Package 'ConvergenceConcepts'

October 12, 2022

Type Package
Title Seeing Convergence Concepts in Action
Version 1.2.3
Date 2022-08-18
Author Pierre Lafaye De Micheaux [aut, cre], Benoit Liquet [aut]
Maintainer Pierre Lafaye De Micheaux <lafaye@unsw.edu.au></lafaye@unsw.edu.au>
Description This is a pedagogical package, designed to help students understanding convergence of random variables. It provides a way to investigate interactively various modes of convergence (in probability, almost surely, in law and in mean) of a sequence of i.i.d. random variables. Visualisation of simulated sample paths is possible through interactive plots. The approach is illustrated by examples and exercises through the function 'investigate', as described in Lafaye de Micheaux and Liquet (2009) <doi:10.1198 tas.2009.0032="">. The user can study his/her own sequences of random variables.</doi:10.1198>
License GPL (>= 2)
LazyLoad yes
Depends R (>= 2.5.0), tcltk, tkrplot, lattice, grDevices
Suggests
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-18 12:10:06 UTC
R topics documented:
check.convergence 2 criterion 4 generate 5 investigate 6 law.plot2d 6 law.plot3d 7

2 check.convergence

	p.as.plot visualize.crit . visualize.sp .	 												 							9
Index																					12
check	.convergence	C	hec	k c	on	ve	rg	en	ce												

Description

This function enables one to investigate the four classical modes of convergence on simulated data: in probability, almost surely, in r-th mean and in law.

Usage

```
check.convergence(nmax,M,genXn,argsXn=NULL,mode="p",epsilon=0.05,r=2,nb.sp=10,
    density=FALSE,densfunc=dnorm,probfunc=pnorm,tinf=-3,tsup=3,plotfunc=plot,...)
```

Arguments

nmax	number of points in each sample path.
М	number of sample paths to be generated.
genXn	a function that generates the Xn-X values, or only the Xn values in the law case.
argsXn	a list of arguments to genXn.
mode	a character string specifying the mode of convergence to be investigated, must be one of "p" (default), "as", "r" or "L".
epsilon	a numeric value giving the interval endpoint.
r	a numeric value (r>0) if convergence in r-th mean is to be studied.
nb.sp	number of sample paths to be drawn on the left plot.
density	if density=TRUE, then the plot of the density of X and the histogram of X n is returned. If density=FALSE, then the plot of the distribution function $F(t)$ of X and the empirical distribution $Fn(t)$ of X n is returned.
densfunc	function to compute the density of X.
probfunc	function to compute the distribution function of X.
tinf	lower limit for investigating convergence in law.
tsup	upper limit for investigating convergence in law.
plotfunc	R function used to draw the plot: for example plot or points.
	optional arguments to plotfunc.

check.convergence 3

Details

The objective of this function is to investigate graphically the convergence of some random variable Xn to some random variable X. In order to use it, you should be able to provide generators of Xn and X (or of Xn-X). The four modes of convergence that you can try are: in probability, almost surely, in r-th mean and in law. For the convergence in law, we compute $\hat{l}_n(t) = |\hat{F}_n(t) - F(t)|$ for ten values equally distributed between tinf and tsup.

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

```
criterion, generate, investigate, law.plot2d, law.plot3d, p.as.plot, visualize.crit,
visualize.sp
```

Examples

4 criterion

cr	: 1		•	
cr	1 T	er	1	on.

Convergence criterion computation

Description

This function computes the values of the criterion convergence function for convergence in probability, almost surely or in r-th mean, given the sample paths.

Usage

```
criterion(data,epsilon=0.05,mode="p",r=2)
```

Arguments

data matrix containing the sample paths of Xn-X values.

epsilon a numeric value giving the interval endpoint.

mode a character string specifying the mode of convergence to be investigated, must

be one of "p" (default), "as" or "r".

r a numeric value (r>0) if convergence in r-th mean is to be studied.

Details

The data matrix contains the X_n-X values. If mode="p", criterion approximates $p_n=P[|X_n-X|>\epsilon]$. If mode="as", criterion approximates $a_n=P[\exists k\geq n;|X_k-X|>\epsilon]$. If mode="r", criterion approximates $e_{n,r}=E|X_n-X|^r$. The approximations are based on the frequentist approach.

Value

crit the vector of criterion values.

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

check.convergence, generate, investigate, law.plot2d, law.plot3d, p.as.plot, visualize.crit, visualize.sp

generate 5

Examples

```
myrbinom <- function(n,alpha){rbinom(n,1,1/(1:n))*((1:n)**alpha)} data <- generate(nmax=1000,M=500,myrbinom,args=list(alpha=0.5))$data critr1 <- criterion(data,mode="r",r=1)$crit
```

generate

Generation of sample paths

Description

This function generates the sample paths of a sequence of random variables.

Usage

```
generate(randomgen,nmax=1000,M=500,argsgen=NULL)
```

Arguments

nmax number of points in each sample path.

M number of sample paths to be generated.

randomgen a function that generates the Xn-X values.

argsgen a list of arguments to randomgen.

Value

data matrix containing in each row a sample path of Xn-X values.

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

```
check.convergence, criterion, investigate, law.plot2d, law.plot3d, p.as.plot, visualize.crit, visualize.sp
```

Examples

6 law.plot2d

investigate

Investigate examples and exercises from the paper

Description

This function investigates the convergence for all the examples and exercises from the article cited in references.

Usage

investigate()

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

check.convergence, criterion, generate, law.plot2d, law.plot3d, p.as.plot, visualize.crit, visualize.sp

Examples

investigate()

law.plot2d

Interactive 2D convergence in law

Description

This function enables one to draw the interactive 2D plot to investigate convergence in law.

Usage

law.plot2d(data,density=FALSE,densfunc=dnorm,probfunc=pnorm,tinf=-5,tsup=5)

law.plot3d 7

Arguments

data matrix containing the sample paths of All values.	data	matrix containing the sample paths of Xn values.
--	------	--

density if density=TRUE, then the plot of the density of X and the histogram of Xn is

returned. If density=FALSE, then the plot of the distribution function F(t) of X

and the empirical distribution Fn(t) of Xn is returned.

densfunc function to compute the density of X.

probfunc function to compute the distribution function of X.

tinf lower limit for investigating convergence in law.

tsup upper limit for investigating convergence in law.

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

```
check.convergence, criterion, generate, investigate, law.plot3d, p.as.plot, visualize.crit, visualize.sp
```

Examples

```
rand <- function(n){(cumsum(rchisq(n,df=1))-(1:n))/sqrt(2*(1:n))}
data <- generate(randomgen=rand,nmax=1000,M=500)$data
law.plot2d(data)</pre>
```

law.plot3d Static 3D convergence in law

Description

This function enables one to draw the static 3D plot to investigate convergence in law.

Usage

```
law.plot3d(data,probfunc,tinf=-5,tsup=5)
```

p.as.plot

Arguments

data	matrix containing the sample paths of Xn values.
probfunc	function to compute the distribution function of X.
tinf	lower limit for investigating convergence in law.
tsup	upper limit for investigating convergence in law.

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

```
check.convergence, criterion, generate, investigate, law.plot2d, p.as.plot, visualize.crit,
visualize.sp
```

Examples

```
rand <- function(n){(cumsum(rchisq(n,df=1))-(1:n))/sqrt(2*(1:n))}
data <- generate(randomgen=rand,nmax=300,M=2000)$data
law.plot3d(data,pnorm)</pre>
```

p.as.plot

Interactive plot for convergence in probability and almost surely

Description

This function enables one to draw the interactive plots used to study convergence in probability and almost surely.

Usage

```
p.as.plot(data,critp,critas,epsilon=0.05,nb.sp=10,mode="p")
```

Arguments

data	matrix containing the sample paths of Xn-X values.
critp	vector containing the criterion values for convergence in probability.
critas	vector containing the criterion values for convergence almost surely.
epsilon	a numeric value giving the interval endpoint.
nb.sp	number of sample paths to be drawn on the left plot.
mode	a character string specifying the mode of convergence to investigate, must be one of "p" (default), "as" or "r".

visualize.crit 9

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

check.convergence, criterion, generate, investigate, law.plot2d, law.plot3d, visualize.crit, visualize.sp

Examples

```
myrbinom <- function(n,alpha){rbinom(n,1,1/(1:n))*((1:n)**alpha)}
data <- generate(randomgen=myrbinom,nmax=1000,M=500,argsgen=list(alpha=0.5))$data
critp <- criterion(data,epsilon=0.05,"p")$crit
critas <- criterion(data,epsilon=0.05,"as")$crit
p.as.plot(data,critp,critas,epsilon=0.05,nb.sp=10,mode="p")</pre>
```

visualize.crit

Visualisation of convergence criterion curves

Description

This function enables one to visualize the convergence criterion curve.

Usage

```
visualize.crit(crit,plotfunc=plot,...)
```

Arguments

crit vector containing the criterion values.

plotfunc R function used to draw the plot: for example plot or points.

... optional arguments to plotfunc.

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

10 visualize.sp

See Also

check.convergence, criterion, generate, investigate, law.plot2d, law.plot3d, p.as.plot, visualize.sp

Examples

visualize.sp

Visualisation of sample paths

Description

This function enables one to visualize the sample paths.

Usage

```
visualize.sp(data,epsilon=0.05,nb.sp=10,plotfunc=plot,...)
```

Arguments

data matrix containing the sample paths of Xn-X values.

epsilon a numeric value giving the interval endpoint.

nb.sp number of sample paths to draw on the plot.

plotfunc R function used to draw the plot: for example plot or points.

... optional arguments to plotfunc.

Author(s)

P. Lafaye de Micheaux and B. Liquet

References

Lafaye de Micheaux, P. (<plafaye@club.fr>), Liquet, B. "Understanding Convergence Concepts: a Visual-Minded and Graphical Simulation-Based Approach", The American Statistician, 63:2, 173–178, (2009).

See Also

```
check.convergence, criterion, generate, investigate, law.plot2d, law.plot3d, p.as.plot,
visualize.crit
```

visualize.sp 11

Examples

Index

```
* distribution
                                                  law.plot3d, 3-7, 7, 9, 10
    check.convergence, 2
                                                  p.as.plot, 3-8, 8, 10
    criterion, 4
    generate, 5
                                                  visualize.crit, 3–9, 9, 10
    investigate, 6
                                                  visualize.sp, 3-10, 10
    law.plot2d, 6
    law.plot3d, 7
    p.as.plot, 8
    visualize.crit, 9
    visualize.sp, 10
* dplot
    check.convergence, 2
    investigate, 6
    law.plot2d, 6
    law.plot3d, 7
    p.as.plot, 8
    visualize.crit, 9
    visualize.sp, 10
* htest
    \verb|check.convergence|, 2|
    criterion, 4
    investigate, 6
    law.plot2d, 6
    law.plot3d, 7
    p.as.plot, 8
    visualize.crit, 9
    visualize.sp, 10
* iplot
    check.convergence, 2
    investigate, 6
    law.plot2d, 6
    p.as.plot, 8
check.convergence, 2, 4–10
criterion, 3, 4, 5-10
generate, 3, 4, 5, 6-10
investigate, 3-5, 6, 7-10
law.plot2d, 3-6, 6, 8-10
```