SOLUCION PREGUNTA 1

Entrada:

3 Neuronas que reciben los valores de entrada (en este caso, 3 características o valores).

Capa Oculta 1:

4 Neuronas.

Función de activación ReLU: Aplica la activación ReLU

Capa Oculta 2:

4 Neuronas.

Función de activación ReLU.

Capa de Salida:

1 Neurona

Función de activación Tangente Hiperbólica (Tanh): (-1, 1)

Paso 1

Inicialización de Pesos y Sesgos

W
$$\sim \mathcal{U}\left(-rac{1}{\sqrt{n}},rac{1}{\sqrt{n}}
ight)$$
 Se toma como referencia la inicialización de Xavier

Capa Oculta 1 (4 neuronas, 3 entradas)

Los pesos de la primera capa W1 deben moverse en el rango (-0.577,0.577)

Pesos W1

0.1 -0.3 0.2 0.05

> -0.07 0.02

> > -0.1

0.5 0.4 -0.1 0.3

-0.2 0.1 -0.5 0.2___

Sesgo

b1 =

Capa Oculta 2 (4 neuronas, 3 entradas)

Los pesos de la primera capa W2 deben moverse en el rango (-0.5, 0.5)

Pesos

= 0.1 -0.2 0.3 0.45 0.4 0.3 -0.1

0.2

-0.1 0.2 -0.4 0.35 0.2 0.4 -0.1

0.3

Sesgo

b2 =

0.05 0.1 0.3 -0.1

Capa Salida (1 neuronas, 4 entradas)

Los pesos de la primera capa W1 deben moverse en el rango (-0.577,0.577)

Pesos

Wout =

0.5

-0.4

0.4

-0.2

Sesgo

bout =

0.1

Forward Propagation

Primera entrada

Tomemos la primera fila de Xs (entrada [2.5,3.5, -0.5]):

Capa Oculta 1:

La salida de la primera capa oculta, Z1, se calcula como:

Z1=W1·Xs+b1

Tomemos la primera fila de Xs (entrada [2.5,3.5,-0.5]):

ReLU: f(x) = max(0,x):

A1= ReLU (Z1) = [2.15, 0.53, 0.42, 0.975]

Capa Oculta 2:

La salida de la segunda capa oculta, Z2, se calcula como:

Z2=W2·A1+b2

Z2= [0.63, 0.303, 0.6265, 1.413]

ReLU: f(x) = max(0,x):

A2= ReLU (Z2) = [0.63, 0.303, 0.6265, 1.413]

Capa Salida:

Zout = Wout * A2 + b out

La activación final es:

Z out =

y1 = 0.2559

0.2618

Segunda entrada Tomemos la segunda fila de Xs (entrada [4, -1, 0.5]:

0.2559

Capa Oculta 1:

La salida de la primera capa oculta, Z1, se calcula como:

Z1=W1·Xs+b1

Tomemos la segunda fila de Xs (entrada [4, -1, 0.5]):

Z1
$$\begin{bmatrix} 0.1 & 0.5 & -0.2 \\ -0.3 & 0.4 & 0.1 \\ 0.2 & -0.1 & -0.5 \\ 0.05 & 0.3 & 0.2 \end{bmatrix} * \begin{bmatrix} 4 \\ -1 \\ 0.5 \end{bmatrix} + \begin{bmatrix} 0.05 \\ -0.07 \\ 0.02 \\ -0.1 \end{bmatrix}$$

$$\begin{bmatrix} -0.2 \\ -1.55 \\ 0.65 \\ 0 \end{bmatrix} + \begin{bmatrix} 0.05 \\ -0.07 \\ 0.02 \\ -0.1 \end{bmatrix} = \begin{bmatrix} -0.15 \\ -1.62 \\ 0.67 \\ -0.1 \end{bmatrix}$$

Z1 = [-0.15, -1.62, 0.67, -0.1]

ReLU: f(x) = max(0,x):

A1= ReLU (Z1) = [0, 0, 0.67, 0]

Capa Oculta 2:

La salida de la segunda capa oculta, Z2, se calcula como:

Z2=W2·A1+b2

Z1 = [-0.017, 0.234, 0.032, 0.1345]

ReLU: f(x) = max(0,x):

A2= ReLU (Z2) = [0, 0.234, 0.032, 0.1345]

Capa Salida:

Zout = Wout * A2 + b out

Z out =
$$\begin{bmatrix} 0.5 & -0.4 & 0.4 & -0.2 \end{bmatrix}$$
 * $\begin{bmatrix} 0 & 0.234 & 0.032 & 0.032 & 0.1345 \end{bmatrix}$ Tanh
Z out = $\begin{bmatrix} -0.0077 & 0.0$

La activación final es:

y2 = 0.0077

Tercera entrada Tomemos la tercera fila de Xs (entrada [0.5, 1.5, 1.0]:

Capa Oculta 1:

La salida de la primera capa oculta, Z1, se calcula como:

Z1=W1·Xs+b1

Tomemos la tercera fila de Xs (entrada [0.5, 1.5, 1.0]):

Z1
$$\begin{bmatrix} 0.1 & 0.5 & -0.2 \\ -0.3 & 0.4 & 0.1 \\ 0.2 & -0.1 & -0.5 \\ 0.05 & 0.3 & 0.2 \end{bmatrix} * \begin{bmatrix} 0.5 \\ 1.5 \\ 1 \end{bmatrix} + \begin{bmatrix} 0.05 \\ -0.07 \\ 0.02 \\ -0.1 \end{bmatrix}$$

$$\begin{bmatrix}
0.6 \\
0.55 \\
-0.55 \\
0.675
\end{bmatrix} + \begin{bmatrix}
0.05 \\
-0.07 \\
0.02 \\
-0.1
\end{bmatrix} = \begin{bmatrix}
0.65 \\
0.48 \\
-0.53 \\
0.575
\end{bmatrix}$$

ReLU: f(x) = max(0,x):

A1= ReLU (Z1) = [0.65, 0.48, 0.0, 0.575]

Capa Oculta 2:

La salida de la segunda capa oculta, Z2, se calcula como:

Z2=W2·A1+b2

Z2 = [0.422, 0.344, 0.3895, 0.461]

ReLU: f(x) = max(0,x):

A2= ReLU (Z2) = [0.422, 0.344, 0.3895, 0.461]

Capa Salida:

Zout = Wout * A2 + b out

La activación final es:

y3 = 0.2327

Cuarta entrada Tomemos la cuarta fila de Xs (entrada [3.0, 2.0, -1.5]:

Capa Oculta 1:

La salida de la primera capa oculta, Z1, se calcula como:

Z1=W1·Xs+b1

Tomemos la cuarta fila de Xs (entrada [3, 2, -1.5]):

ReLU: f(x) = max(0,x):

A1= ReLU (Z1) = [1.65, 0, 1.17, 0.35]

Capa Oculta 2:

La salida de la segunda capa oculta, Z2, se calcula como:

Z2=W2·A1+b2

ReLU: f(x) = max(0,x):

Capa Salida:

La activación final es:

y4 = 0.0118

Backward Propagation

Calculo del error de cada salida

	errori	=	yi ´	-	yi		
		•		•			
Entrada 1	error 1	=	0.2559	-	1	=	-0.7441
Entrada 2	error 2	=	0.0077	-	-1	=	1.0077
Entrada 3	error 3	=	0.2327	-	-1	=	1.2327
Entrada 4	error 4	=	0.0118	-	1	=	-0.9882

Paso 1: Calculo del Error (Pérdida)

Función de pérdida

L = 1.016308158

Primera Entrada

Paso 2: Backward Propagation desde la Capa de Salida hacia la Segunda Capa Oculta

1 Gradiente en la salida

$$(\partial L / \partial Y \text{ out})$$
 .= $(y \text{ out - y})$ = $(0-2559 - 1)$ = -0.7441

2 Derivada de la función tanh aplicada en la salida

$$(\partial L/\partial Z \text{ out}) = (\partial L/\partial y \text{ out}) * \tanh'(Z\text{out})$$

$$\tanh'(Z\text{out}) = 1 - \tanh^2(Z\text{out}) = 1 - (0.2559)^2 = 0.93452$$

$$(\partial L / \partial Z \text{ out}) =$$
 .=-0.7441*0.9345 = -0.6954

3 Gradiente de los pesos W3 y las bias b3 en la capa de salida

Gradiente de los pesos Wout

$$(\partial L / \partial W \text{ out}) = (\partial L / \partial Z \text{ out}) * A2$$

Gradiente de bias b out

$$(\partial L / \partial b \text{ out3}) = (\partial L / \partial Z \text{ out}) =$$
 -0.695

Paso 3: Backward Propagation hacia la Segunda Capa Oculta

1 Cálculo del gradiente de la salida A2 de la segunda capa

$$(\partial L / \partial A2) = (\partial L / Zout) * Wout$$

$$(\partial L / Zout) = -0.69536145$$
Wout = $[0.5, -0.4, 0.4, -0.2]$

$$(\partial L / \partial A2) = -0.69536145 * 0.5 -0.4 -0.4 -0.27814 -0.2781 -0.2$$

2 Derivada de la función tanh aplicada en Z2

$$(\partial L / \partial Z2) = (\partial L / \partial A2) * \tanh'(Z2)$$

 $\tanh'(x) = 1 - \tanh^2(x)$

3 Gradiente respecto a los pesos W2 y bias 2

Gradiente de los pesos W2

$$(\partial L/\partial W2) = (\partial L/\partial Z2) * A1T$$

$$A1 = [2.15, 0.53, 0.42, 0.975]$$

$$(\partial L/\partial W2) = \begin{bmatrix} -0.210 \\ 0.253 \\ -0.169 \\ -0.139 \end{bmatrix} * \begin{bmatrix} 2.15, 0.53, 0.42, 0.975 \\ \end{bmatrix}$$

$$= \begin{bmatrix} -0.452 \\ 0.54395 \\ 0.13409 \\ -0.36335 \\ -0.08957 \\ -0.07367 \end{bmatrix} * 0.10626 0.246675$$

$$-0.29885 \\ -0.07367 \\ -0.05838 \\ -0.135525 \end{bmatrix}$$

Gradiente bias b2

Paso 4: Backward Propagation hacia la Primera Capa Oculta

1 Gradiente de A1

$$(\partial L / \partial A1) = (\partial L / \partial Z2) * W2T$$

2 Propagado gradiente hacia atrás

(
$$\partial L / \partial Z2$$
) = -0.210 0.253 -0.169 -0.139

La Matriz de pesos W2

$$(\partial L / \partial A1) = W2T * (\partial L / \partial Z2)$$

(
$$\partial L / \partial A1$$
) = -0.185
-0.019
0.091
0.034

3 Gradiente de Z1 en la primera capa oculta

$$(\partial L / \partial Z1) = (\partial L / \partial A1) * \tanh ' (Z1)$$

 $\tanh ' (Z1) = 1 - \tanh^2 (Z1)$

tanh' (Z1) =
$$(1-(2.15)^2)$$
 = -3.623
 $(1-(0.53)^2)$ 0.719
 $(1-(0.42)^2)$ 0.824
 $(1-(1.975)^2)$ -2.901

4 Gradiente de W1

$$(\partial L / \partial W1) = (\partial L / \partial Z1) * XT$$

Primera entrada de X1 = [2.5, 3.5, -0.5]

(
$$\partial L / \partial W1$$
) = 0.670
-0.014
0.075
-0.100

Paso 5: Gradiente de las bias b1 - Primera Capa Oculta

$$(\partial L / \partial b1) = (\partial L / \partial Z1) =$$

$$0.670$$

$$-0.014$$

$$0.075$$

$$-0.100$$

Resumen de los Gradientes Finales: Primera Entrada

Gradiente W3

Gradiente b3

$$(\partial L / \partial b \text{ out}) = -0.695$$

Gradiente W2

Gradiente b2

$$(\partial L / \partial b2) = \begin{bmatrix} -0.210 \\ 0.253 \\ -0.169 \\ -0.139 \end{bmatrix}$$

Gradiente b1

Actualización de pesos y bias con Descenso de Gradiente

Wnuevo = Wviejo - n * $((\partial L / \partial W))$

b nuevo= $bviejo - n * ((\partial L / \partial b))$

Primera Entrada

Revisar los Gradientes

Gradiente W out

Gradiente b out

$$(\partial L / \partial b \text{ out}) = -0.695$$

Tasa de Aprendizaje (n)

Actualziar los pesos de W out

Wout =
$$\begin{bmatrix} 0.5 \\ -0.4 \\ 0.4 \\ -0.2 \end{bmatrix} - 0.01 * \begin{bmatrix} -0.438 \\ -0.211 \\ -0.436 \\ -0.983 \end{bmatrix}$$
Wout =
$$\begin{bmatrix} 0.504 \\ -0.398 \\ 0.404 \end{bmatrix}$$

Actualizar los pesos de b out

Gradiente W 2

$$(\partial L / \partial W 2) =$$
 -0.452
 -0.111
 -0.088
 -0.205
 0.544
 0.134
 0.106
 0.247
 -0.363
 -0.090
 -0.071
 -0.165
 -0.299
 -0.074
 -0.058
 -0.136

Gradiente b 2

(
$$\partial$$
L / ∂ b 2) = -0.210
0.253
-0.169
-0.139

Tasa de Aprendizaje (n)

Actualziar los pesos de W 2

Actualizar los pesos de b 2

Gradiente W 1

Tasa de Aprendizaje (n)

Actualziar los pesos de W 1

Actualizar los pesos de b 1

Forward Propagation Nuevos Pesos y Bias

Primera entrada Tomemos la primera fila de Xs (entrada [2.5,3.5, -0.5]):

Capa Oculta 1:

La salida de la primera capa oculta, Z1, se calcula como:

Z1=W1·Xs+b1

Tomemos la primera fila de Xs (entrada [2.5,3.5,-0.5]):

Capa Oculta 2:

La salida de la segunda capa oculta, Z2, se calcula como:

Z2=W2·A1+b2

ReLU: f(x) = max(0,x):

Capa Salida:

Zout = Wout * A2 + b out

Z out =
$$\begin{bmatrix} 0.5 & -0.4 & 0.4 & -0.2 \end{bmatrix} * \begin{bmatrix} 0.64 & 0.32 & 0.6 & 0.32 & 0.6 & 0.36 & 0.254 & 0.254 & 0.254 & 0.$$

La activación final es: