Problem 1 (15 marks)

(Learning SVM via Co-ordinate Ascent) Consider the soft-margin linear SVM problem

$$\arg\max_{0\leq \boldsymbol{\alpha}\leq C}f(\boldsymbol{\alpha})$$

where $f(\alpha) = \alpha^{\top} \mathbf{1} - \frac{1}{2} \alpha^{\top} \mathbf{G} \alpha$, \mathbf{G} is an $N \times N$ matrix such that $G_{nm} = y_n y_m \mathbf{x}_n^{\top} \mathbf{x}_m$ and $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_N]$ are the Lagrange multipliers. Given the optimal α , the SVM weight vector is $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$

Your goal is to derive a **co-ordinate ascent** procedure for the vector α , such that each iteration updates a uniformly randomly chosen entry α_n of the vector α . However, instead of updating α via standard co-ordinate descent as $\alpha_n = \alpha_n + \eta g_n$ where g_n denotes the n-th entry of the gradient vector $\nabla_{\alpha} f(\alpha)$, we will update it as $\alpha_n = \alpha_n + \delta_*$ where $\delta_* = \arg \max_{\delta} f(\alpha + \delta \mathbf{e}_n)$ and \mathbf{e}_n denotes a vector of all zeros except a 1 at entry n.

Essentially, this will give the new α_n that guarantees the maximum increase in f, with all other α_n 's fixed at their current value. Derive the expression for δ_* and give a sketch of the overall co-ordinate ascent algorithm.

Note that your expression for δ_* should be such that the constraint $0 \le \alpha_n \le C$ is maintained.

PS: I know I had said that, in this homework, I will give a programming task to implement SVM. :-) Well, even though I am not asking you to implement it, by solving the problem above, you would have pretty much everything you need to implement one of the state-of-the-art algorithms for linear SVM.

Problem 2 (5 marks)

(Within and Across) Suppose we wish to cluster some data by learning a function f such that $f_n = f(x_n)$ is the cluster assignment for point x_n . Show that finding f by minimizing \mathcal{L}_W , which is defined as the sum of squared distances between all pairs of points that are within the same cluster, i.e.,

$$rg \min_{f} \mathcal{L}_W = rg \min_{f} \sum_{n,m} \mathbb{I}[f_n = f_m] ||\boldsymbol{x}_n - \boldsymbol{x}_m||^2$$

implicitly *also* maximizes the sum of squared distances between all pairs of points that are in *different* clusters. (Note: It is not for credit but you can also show that the above is equivalent to the K-means objective!)

Problem 3 (15 marks)

(Estimating a Gaussian when Data is Missing) Suppose we have collected N observations $\{x_1,\ldots,x_N\}$ using a sensor. Let us assume each $x\in\mathbb{R}^D$ as generated from a Gaussian distribution $\mathcal{N}(\mu,\Sigma)$. We would like to estimate the mean and covariance of this Gaussian. However, suppose the sensor was faulty and each x_n could only have part it as observed (think of a blacked out image). Denote $x_n=[x_n^{obs},x_n^{miss}]$ where x_n^{obs} and x_n^{miss} denote the observed and missing parts, respectively, of x_n . We only get to see x_n^{obs} . Note that different observations could have different parts as missing (e.g., different images may have different sets of pixels as missing), so the indices of the observed/missing entries of the vector x_n may be different for different n.

Your goal is to develop an EM algorithm that gives maximum likelihood estimates of μ and Σ given this partially observed data. In particular, in the EM setting, you will treat each \boldsymbol{x}_n^{miss} as a latent variable and estimate its conditional distribution $p(\boldsymbol{x}_n^{miss}|\boldsymbol{x}_n^{obs},\mu,\Sigma)$, given the current estimates μ and Σ of the parameters. In the M step, you will re-estimate μ and Σ , and will alternate between E and M steps until convergence.

Clearly write down the following: (1) The expression for $p(\boldsymbol{x}_n^{miss}|\boldsymbol{x}_n^{obs},\mu,\Sigma)$; (2) The expected CLL for this model; (3) The update equations for μ and Σ .

Also clearly write down all the steps of the EM algorithm in this case, with appropriate equations.

Note/Hint: For this problem, you may find it useful to use the result that if $\mathbf{x} = [\mathbf{x}_a, \mathbf{x}_b]$ is Gaussian then $p(\mathbf{x}_a | \mathbf{x}_b)$ is also Gaussian (you may refer to Section 4.3.1 of MLAPP for the result).

Problem 4 (10 marks)

(Semi-supervised Classification) Consider learning a generative classification model for K-class classification with Gaussian class-conditionals $\mathcal{N}(\boldsymbol{x}|\mu_k,\Sigma_k)$, $k=1,\ldots,K$ with class marginals $p(y=k)=\pi_k$. However, unlike traditional generative classification, in this setting we are given N labeled examples $\{(\boldsymbol{x}_n,y_n)\}_{n=1}^N$ and an additional M unlabeled examples $\{\boldsymbol{x}_{N+1},\ldots,\boldsymbol{x}_{N+M}\}$. Design an EM algorithm to estimate all the unknowns of this model and clearly write down the expressions required in each step of the EM algorithm.

Note: You need not re-do the derivations we have done in the class or other homeworks/practice sets; feel free to re-use those without re-deriving from scratch.

Problem 5 (25 marks)

(Latent Variable Models for Supervised Learning) Consider learning a regression model given training data $\{(\boldsymbol{x}_n,y_n)\}_{n=1}^N$, with $\boldsymbol{x}_n\in\mathbb{R}^D$ and $y_n\in\mathbb{R}$. Let us give a small twist to the standard probabilistic linear model for regression that we have seen in the class. In particular, we will be introducing a latent variable \boldsymbol{z}_n with each training example (\boldsymbol{x}_n,y_n) . The generative story would now be as follows

$$z_n \sim \text{multinoulli}(\pi_1, \dots, \pi_K)$$

 $y_n \sim \mathcal{N}(\boldsymbol{w}_{z_n}^{\top} \boldsymbol{x}_n, \beta^{-1})$

Note that the model for the responses y_n is still discriminative, since the inputs are not being modeled.

The latent variables are $\mathbf{Z} = (z_1, \dots, z_N)$ and the global parameters are $\Theta = \{(\boldsymbol{w}_1, \dots, \boldsymbol{w}_K), (\pi_1, \dots, \pi_K)\}.$

- (1) Give a brief explanation (max. 5 sentences) of what the above model is doing and why you might want to use it instead of the standard probabilistic linear model which models each response as $y_n \sim \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x}_n, \beta^{-1})$.
- (2) Derive an ALT-OPT algorithm to estimate \mathbf{Z} and (MLE of) Θ , and clearly write down each step's update equations. For \mathbf{Z} , you must give the update equation for each individual latent variable $z_n, n=1,\ldots,N$. Likewise, for Θ , you must give the update equation for each $\boldsymbol{w}_k, k=1,\ldots,K$, and $\pi_k, k=1,\ldots,K$. Also, what will be the update of each z_n if $\pi_k=1/K, \forall k$. Give a brief intuitive explanation (max 1-2 sentences) as to what this update does.
- (3) Derive an expectation-maximization (EM) algorithm to estimate **Z** and (MLE of) Θ , and clearly write down each step's update equations. Also show that, as $\beta \to \infty$, the EM algorithm reduces to ALT-OPT.

Note: It is okay to skip some of the standard/obvious steps from your derivations and write down the final expressions directly if the derivations are similar to what we have done in the class or previous homeworks/practice sets, but your final expressions must be clearly and unambiguously written.