

Part 6:

Functional Dependency Theory

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Closure of a Set of Functional Dependencies

- We have seen that the set of all functional dependencies logically implied by F is the closure of F, and we denote the closure of F by F+
- We can compute F+ by repeatedly applying Armstrong's Axioms:
 - Reflexive rule: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - Augmentation rule: if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
 - Transitivity rule: if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$
- These rules are
 - Sound -- generate only functional dependencies that actually hold, and
 - Complete -- generate all functional dependencies that hold

Closure of Functional Dependencies

- Additional rules:
 - **Union rule**: If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds
 - Decomposition rule: If α → β γ holds, then α → β holds and α → γ holds
 - **Pseudotransitivity rule**: If $\alpha \to \beta$ holds and $\gamma\beta \to \delta$ holds, then $\gamma\alpha \to \delta$ holds

Example of F⁺

■
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H\}$

- Show that the following are members of F⁺
 - $A \rightarrow H$
 - $AG \rightarrow I$
 - $CG \rightarrow HI$
 - $AG \rightarrow I$ (another proof)

Example of F⁺

■
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H\}$

- Show that the following are members of F⁺
 - $A \rightarrow H$
 - by transitivity from A → B and B → H
 - $AG \rightarrow I$ (augmentation proof)
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $CG \rightarrow HI$
 - Since $CG \rightarrow I$ and $CG \rightarrow H$, the union rule implies that $CG \rightarrow HI$
 - AG → I (pseudotransitivity proof)
 - Since $A \rightarrow C$ and $CG \rightarrow I$, the pseudotransitivity rule implies that $AG \rightarrow I$ holds

Procedure for Computing F⁺

The following computes the closure of a set of functional dependencies F

```
F^+ = F
apply the reflexivity rule /* Generate all trivial dependencies */
repeat

for each functional dependency f in F^+
apply the augmentation rule on f
add the resulting functional dependencies to F^+
for each pair of functional dependencies f_1 and f_2 in F^+
if f_1 and f_2 can be combined using transitivity
then add the resulting functional dependency to F^+
until F^+ does not change any further
```


Closure of Attribute Sets

- Given a set of attributes α , define the *closure* of α under F (denoted by α +) as the set of attributes that are functionally determined by α under F
- Algorithm to compute α^+ , the closure of α under F

```
 \begin{array}{l} \textit{result} \coloneqq \alpha; \\ \textbf{repeat} \\ \textbf{for each} \ \text{functional dependency} \ \beta \rightarrow \gamma \ \textbf{in} \ F \ \textbf{do} \\ \textbf{begin} \\ \textbf{if} \ \beta \subseteq \textit{result} \ \textbf{then} \ \textit{result} := \textit{result} \cup \gamma \ ; \\ \textbf{end} \\ \textbf{until} \ (\textit{result} \ \text{does not change}) \\ \end{array}
```


Example of Attribute Set Closure

- R = (A, B, C, G, H, I)
- F = {A → B A → C CG → H CG → I B → H}
- (*AG*)+
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. result = ABCGH (CG \rightarrow H and CG \subseteq ABCG)
 - 4. result = ABCGHI (CG \rightarrow I and CG \subseteq ABCGH)
- Is AG a superkey?

Does
$$AG \rightarrow R$$
?

i.e., Is
$$(AG)^+ \supseteq R$$
?

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R
- Testing functional dependencies
 - To check if a functional dependency α → β holds (or, in other words, is in F⁺), just check if β ⊆ α⁺
 - That is, we compute α^+ by using attribute closure, and then check if it contains β
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$

Canonical Cover

- Suppose that we have a set of functional dependencies F on a relation schema. Whenever a user performs an update on the relation, the database system must ensure that the update does not violate any functional dependencies; that is, all the functional dependencies in F are satisfied in the new database state
- If an update violates any functional dependencies in the set F, the system must roll back the update
- We can reduce the effort spent in checking for violations by testing a simplified set of functional dependencies that has the same closure as the given set
- This simplified set is termed the canonical cover
- To define canonical cover, we must first define extraneous attributes
 - An attribute of a functional dependency in F is extraneous if we can remove it without changing F⁺

- Removing an attribute from the left side of a functional dependency could make it a stronger constraint
 - For example, if we have AB → C and remove B, we get the possibly stronger result A → C. It may be stronger because A → C logically implies AB → C, but AB → C does not, on its own, logically imply A → C
- Depending on what our set F of functional dependencies happens to be, we may be able to remove B from AB → C safely
 - For example, suppose that
 - $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow C\}$
 - Then we can show that F logically implies A → C, making B extraneous in AB → C

- Removing an attribute from the right side of a functional dependency could make it a weaker constraint
 - For example, if we have AB → CD and remove C, we get the possibly weaker result AB → D. It may be weaker because using just AB → D, we can no longer infer AB → C
- Depending on what our set F of functional dependencies happens to be, we may be able to remove C from AB → CD safely
 - For example, suppose that

$$F = \{ AB \rightarrow CD, A \rightarrow C \}$$

• Then we can show that even after replacing $AB \rightarrow CD$ by $AB \rightarrow D$, we can still infer $AB \rightarrow C$ and thus $AB \rightarrow CD$

- An attribute of a functional dependency in F is extraneous if we can remove it without changing F⁺
- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F
 - Remove from the left side: Attribute A is extraneous in α if
 - $A \in \alpha$ and
 - F ⇒ (F {α → β}) ∪ {(α A) → β} = F',
 replacing the functional dependency α → β by a new functional dependency by taking out A from the left-hand side
 - i.e., it is assumed possible to replace a weaker FD by a stronger FD
 - Remove from the right side: Attribute A is extraneous in β if
 - A ∈ β and
 - The set of functional dependencies

$$F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\} \Rightarrow F$$

- i.e., it is assumed possible to replace a stronger FD by a weaker FD
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" FD always implies a "weaker" one

Removal from Left

Original:

$$F: A\underline{B} \to C, A \to D, D \to C$$
 (weaker)

(i.e.,
$$F \Rightarrow F'$$
)

B removed:

$$F': A \rightarrow C, A \rightarrow D, D \rightarrow C$$
 (stronger)

If $F \Rightarrow F'$, then $F' \Rightarrow F$ is always true $(stronger \Rightarrow weaker)$

Removal from Right

Original:

 $F: AB \rightarrow CD, A \rightarrow E, E \rightarrow C$ (stronger)

(i.e.,
$$F' \Rightarrow F$$
)

C removed:

$$F': AB \rightarrow D, A \rightarrow E, E \rightarrow C$$
 (weaker)

If
$$F' \Rightarrow F$$
, then $F \Rightarrow F'$ is always true (stronger \Rightarrow weaker)

Testing if an Attribute is Extraneous

- Let R be a relation schema and let F be a set of functional dependencies that hold on R. Consider an attribute in the functional dependency $\alpha \to \beta$.
- To test if attribute $A \in \beta$ is extraneous in β
 - Consider the set (i.e., removing A from the FD) $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\},$
 - check that α^+ contains A under F'; if it does, A is extraneous in β
- To test if attribute $A \in \alpha$ is extraneous in α
 - Let $\gamma = \alpha \{A\}$. Check if $\gamma \to \beta$ can be inferred from F.
 - Compute γ⁺ using the dependencies in F
 - If γ^+ includes all attributes in β , then A is extraneous in α

Examples of Extraneous Attributes

- Let $F = \{AB \rightarrow CD, A \rightarrow E, E \rightarrow C\}$
- To check if C is extraneous in $AB \rightarrow CD$, we:
 - Compute the attribute closure of AB under

$$F' = \{AB \rightarrow D, A \rightarrow E, E \rightarrow C\}$$

- The closure is ABCDE, which includes CD
- This implies that C is extraneous

Canonical Cover

A **canonical cover** for F is a set of dependencies F_c such that

- F logically implies all dependencies in F_c , and
- F_c logically implies all dependencies in F, and
- No functional dependency in F_c contains an extraneous attribute, and
- Each left side of functional dependency in F_c is unique. That is, there are no two dependencies in F_c
 - $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ such that
 - $\alpha_1 = \alpha_2$

Canonical Cover

To compute a canonical cover for F:

$$F_c = F$$

repeat

Use the union rule to replace any dependencies in F of the form

$$\alpha_1 \rightarrow \beta_1$$
 and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$

Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β

/* Note: test for extraneous attributes done using F_{c} , not F^* /

If an extraneous attribute is found, delete it from $\alpha \to \beta$ in F_c .

until (F_c does not change)

 Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Example: Computing a Canonical Cover

■
$$R = (A, B, C)$$

 $F = \{A \rightarrow BC$
 $B \rightarrow C$
 $A \rightarrow B$
 $AB \rightarrow C\}$

- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - Check if the result of deleting A from AB → C is implied by the other dependencies
 - Yes: in fact, B → C is already present!
 - Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in $A \rightarrow BC$
 - Check if $A \to C$ is logically implied by $A \to B$ and the other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
- The canonical cover is: $A \rightarrow B$ $B \rightarrow C$

Dependency Preservation

- Let F be the set of dependencies on schema R and let R_1 , R_2 , ..., R_n be a decomposition of R.
- The **restriction** of F to R_i is the set F_i of all functional dependencies in F^+ that include **only** attributes of R_i
 - Note that the definition of restriction uses all dependencies in in F^+ , not just those in F
- The set of restrictions F_1 , F_2 , ..., F_n is the set of functional dependencies that can be checked efficiently
- More precisely, let F_i be the set of dependencies in F^+ that include only attributes in R_i .
 - A decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

Since all functional dependencies in a restriction involve attributes of only one relation schema, it is possible to test such a dependency for satisfaction by checking only one relation

Testing Decomposition for BCNF

To check if a relation R_i in a decomposition of R is in BCNF

- Either test R_i for BCNF with respect to the **restriction** of F^+ to R_i (that is, all FDs in F^+ that contain only attributes from R_i)
- Or use the original set of dependencies F that hold on R, but with the following test:
 - for every set of attributes $\alpha \subseteq R_i$, check that α^+ (the attribute closure of α) either includes no attribute of R_i α , or includes all attributes of R_i .
 - If α^+ includes none of the attributes of R_i α , that means α is not a (non-trivial) determinant within R_i
 - If α^+ includes all of the attributes of R_i , then α is a superkey of R_i

BCNF Decomposition Algorithm

```
result := {R};

done := false;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency

that holds on R_i such that \alpha is not a superkey of R_i

and \alpha \cap \beta = \emptyset;

result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Note:

• If $\alpha \cap \beta \neq \emptyset$, e.g., $\alpha \cap \beta = \gamma$, then $(R_i - \beta)$ would exclude γ , losing the information on γ in $R_i - \beta$, and α is incomplete in $R_i - \beta$ which would be undesirable (see next example)

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
 - course_id→ title, dept_name, credits
 - building, room_number→capacity
 - course_id, sec_id, semester, year→building, room_number, time_slot_id
- A candidate key {course_id, sec_id, semester, year}.
- BCNF Decomposition:
 - course_id→ title, dept_name, credits holds
 - but course_id is not a superkey.
 - We replace class by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

Example of BCNF Decomposition

- course is in BCNF but not class-1
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- building, room_number→capacity holds on class-1
 - but {building, room_number} is not a superkey for class-1.
 - We replace class-1 by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF
- For the sake of argument, suppose we write the FD

building, room_number→capacity as

building, room_number \rightarrow capacity, building (i.e., $\alpha \cap \beta \neq \emptyset$)

Then we would exclude building from the section table making it:

section (course_id, sec_id, semester, year, room_number, time_slot_id)

which is undesirable since the building information is lost

3NF or BCNF?

- There are some situations where
 - BCNF is not dependency preserving, and
 - efficient checking for FD violation on updates is important
- We can use Third Normal Form (3NF)
 - Allows some redundancy
 - But functional dependencies can be checked on individual relations without computing a join
 - There is always a lossless-join, dependency-preserving decomposition into 3NF

3NF Example - Relation dept_advisor

- Consider R = dept_advisor (s_ID, i_ID, dept_name)
 F = {s_ID, dept_name → i_ID, i_ID → dept_name}
- Two candidate keys: s_ID, dept_name, and i_ID, s_ID
- R is in 3NF
 - s_ID, dept_name → i_ID
 - s_ID, dept_name is a superkey
 - i_ID → dept_name
 - dept_name is contained in a candidate key
- R is not in BCNF, since i_ID is a determinant but not a superkey
- If we decompose it into

```
(i_ID, dept_name) and (s_ID, i_ID)
```

then the first FD cannot be easily checked

 In fact, any decomposition of R will not have all 3 attributes, and checking the first FD requires all 3 attributes to be present in the same relation

3NF Decomposition Algorithm

```
Let F_c be a canonical cover for F;
i := 0:
for each functional dependency \alpha \rightarrow \beta in F_c do
 if none of the schemas R_i, 1 \le i \le i contains \alpha \beta
        then begin
                i := i + 1:
                R_i := \alpha \beta
           end
if none of the schemas R_{j}, 1 \le j \le i contains a candidate key for R
 then begin
           i := i + 1:
           R_i:= any candidate key for R;
        end
repeat /* Optionally, remove redundant relations */
   if any schema R_i is contained in another schema R_k
     then /* Delete R_i */
        R_i := R_i;
        i := i-1:
until no more R_i's can be deleted
return (R_1, R_2, ..., R_i)
```


3NF Decomposition: An Example

- Relation schema:
 - cust_banker_branch = (customer_id, employee_id, branch_name, type)
 Where type indicates the type of account
- The functional dependencies for this relation schema are:
 - customer_id, employee_id → branch_name, type
 - employee_id → branch_name
 - customer_id, branch_name → employee_id
- We first compute a canonical cover
 - branch_name is extraneous in the r.h.s. of the 1st dependency
 - No other attribute is extraneous, so we get F_c =
 customer_id, employee_id → type
 employee_id → branch_name
 customer id, branch name → employee id
 - customer_id, employee_id is a candidate key

3NF Decomposition Example

```
customer_id, employee_id → type
employee_id → branch_name
customer_id, branch_name → employee_id
```

The for loop generates following 3NF schema:

```
(customer_id, employee_id, type)
(employee_id, branch_name)
(customer_id, branch_name, employee_id)
```

- Observe that (customer_id, employee_id, type) contains a candidate key of the original schema, so no further relation schema needs be added
- At end of for loop, detect and delete schemas, such as (<u>employee_id</u>, branch_name), which are subsets of other schemas
- The resultant simplified 3NF schema is:

```
(customer_id, employee_id, type)
(customer_id, branch_name, employee_id)
```


Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 - The decomposition is lossless
 - The dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 - The decomposition is lossless
 - It may not be possible to preserve dependencies

Design Goals

- Goal for a relational database design is:
 - BCNF
 - Lossless join
 - Dependency preservation
- If we cannot achieve this, we accept one of
 - Lack of dependency preservation
 - Redundancy due to use of 3NF