Théorie des langages Introduction aux automates finis

TELECOM Nancy (1A)

Automates finis

Plan

- Rappels
- Automates finis indéterministes
- Automates finis déterministes
- Expressions régulières et automates (Théorème de Kleene)
 - Des expressions régulières aux automates finis
 - Des automates finis aux expressions régulières

Rappels

- Opérations sur les langages : union, produit (concaténation), fermeture itérative . . .
- L'ensemble $Rat(A^*)$ des langages réguliers (ou rationnels) sur l'alphabet A est défini inductivement par:
 - 1. la base est l'ensemble $\{\emptyset, \{\varepsilon\}\} \cup \{\{a\}, a \in A\}$
 - 2. l'ensemble des opérations est $\mathcal{O}p = \{union, produit, itéré\}$
- L'ensemble \mathcal{R}_A des **expressions régulières** (ou rationnelles) pour l'alphabet A est défini inductivement sur l'alphabet $A \cup \{\}, (, \emptyset, +, *, \varepsilon\}$ de la manière suivante:
 - 1. la base est $\{\emptyset, \ \varepsilon\} \cup \{a, a \in A\}$
 - 2. si e_1 et e_2 sont deux expressions régulières, alors $(e_1 + e_2)$, $(e_1 e_2)$, $(e_1)^*$ sont des expressions régulières.
- Résultat : un langage est régulier ssi il est dénoté par une expression régulière.

Automate fini (définition)

Définition

On appelle automate fini (AF) tout quintuplet A = (A, Q, I, E, T) où

- A est un alphabet
- Q est un ensemble fini, l'ensemble des états
- $I \subset Q$ est l'ensemble des états initiaux
- $T \subset Q$ est l'ensemble des états finaux (terminaux)
- $E \subset Q \times (A \cup \{\varepsilon\}) \times Q$ est l'ensemble des transitions de \mathcal{A} (E définit une relation appelée relation de transition de \mathcal{A})

Remarque

Une **transition** de A est un triplet de E.

Une transition est de la forme (q_1, a, q_2) ou (q_1, ε, q_2) où q_1 et q_2 sont des états, a est une lettre de A et ε le mot vide

On note aussi de telles transitions $q_1 \stackrel{a}{\to} q_2$ ou $q_1 \stackrel{\varepsilon}{\to} q_2$.

 q_1 et q_2 sont respectivement l'origine et l'extrémité de la transition, a et ε sont les étiquettes des transitions.

Représentation sagittale d'un automate

Un automate fini (A, Q, I, E, T) est représenté par un graphe orienté tel que

- les sommets du graphe sont les états de l'automate, les éléments de Q
- toute transition de la forme (q_1, e, q_2) est représentée par un arc étiqueté par $e \in A \cup \{\varepsilon\}$ et reliant les sommets q_1 et q_2 .

- les états initiaux (éléments de I) sont repérés par une pointe de flèche,
- les états finaux (élements de T) sont notés par des doubles cercles (ou par des flèches sortantes non reliées à d'autres sommets)

Exemple

Exemple

$$\mathcal{A} = (\{a, b\}, \{q_0, q_1, q_2\}, \{q_0\}, E, \{q_0, q_2\}) \text{ où } E = \{(q_0, a, q_0), (q_0, b, q_0), (q_0, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, \epsilon, q_2)\}$$

Calcul dans un automate

Définition

Soit $\mathcal{A}=(A,\ Q,\ I,\ E,\ T)$ un automate fini. On appelle **calcul** dans \mathcal{A} toute suite c de transitions $((q_i,a_i,q_{i+1})_{i\in[1,n-1]}$ tel que l'extrémité d'une transition est l'origine de la suivante. On note un tel calcul de la façon suivante :

$$c = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} q_3 \xrightarrow{a_3} \dots \xrightarrow{a_{n-1}} q_n$$

On dit que:

- $a_1 a_2 a_3 \dots a_{n-1} \in A^*$ est l'étiquette du calcul c
- $q_1 \in Q$ est l'origine de c
- $q_n \in Q$ est l'extrémité de c

Exemple

Le calcul défini par :

$$c = ((1, a, 1), (1, b, 2), (2, b, 3), (3, a, 2)) = 1 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{b} 3 \xrightarrow{a} 2$$

a pour origine l'état 1, pour extrémité l'état 2 et pour étiquette le mot abba.

Calcul réussi

Remarque

On s'autorise désormais à écrire $q \xrightarrow{\alpha} q'$ pour désigner un calcul d'origine q, d'étiquette $\alpha \in A^*$ et d'extrémité q' sans expliciter les états intermédiaires.

Définition

On dit qu'un calcul dans un automate A = (A, Q, I, E, T) est **réussi** lorsque son origine appartient à I (i.e. est un état initial) et son extrémité à T (i.e. est un état final) :

c est un calcul réussi
$$\Leftrightarrow$$
 $c = p \xrightarrow{\alpha} q$, $p \in I$, $q \in T$, $\alpha \in A^*$

Etat accessible

Définition (état accessible)

Soit $\mathcal{A}=(A,Q,I,E,T)$ un automate fini et $q\in Q$. On dit que q est un état **accessible** si et seulement si il existe un mot $\alpha\in A^*$ et un état initial $q_0\in I$ tel que $q_0\stackrel{\alpha}{\longrightarrow} q$, autrement dit, s'il existe un calcul dont l'origine est un état intial et dont l'extrémité est q.

L'ensemble des états accessibles de ${\mathcal A}$ est donc :

$$\{q \in Q, \ (\exists \alpha \in A^*) \ (\exists q_0 \in I) \ q_0 \stackrel{\alpha}{\longrightarrow} q\}$$

Un état qui n'est pas accessible est dit inaccessible.

Automate déterministe

Définition

On appelle automate fini déterministe tout quintuplet

$$\mathcal{A} = (A, Q, q_0, \delta, T)$$

tel que :

- A est un alphabet
- Q est un ensemble fini, l'ensemble des états
- $q_0 \in Q$ est l'unique état initial
- $\delta: Q \times A \rightarrow Q$ est la fonction transition
- T ⊂ Q est l'ensemble des états terminaux

Remarque

Un automate fini déterministe est un cas particulier d'un automate fini indéterministe avec les contraintes suivantes :

- I, l'ensemble des états initiaux, est un singleton
- E, l'ensemble des transitions, est défini par la fonction δ : c.-à-d. pour tout état $q \in Q$ et toute lettre $a \in A$ il existe au plus un état $q' \in Q$ tel que $q \stackrel{a}{\longrightarrow} q'$
- d'après la définition de la fonction δ , il n'y a pas de transition étiquetée par ε

Automates déterministes/indéterministes

Remarque

Soit A = (A, Q, I, E, T) un automate, si A comporte au moins une des caractéristiques suivantes :

- i) plusieurs états initiaux
- ii) au moins une transition étiquetée par arepsilon
- iii) un état qui est l'origine de plusieurs transitions différentes de même étiquette, c'est-à-dire qu'il existe au moins deux transitions (q, a, q') et (q, a, q'') avec $q' \neq q''$.

alors A est indéterministe, sinon, il est déterministe.

Prolongement de la fonction de transition δ

Définition

Soit (Q, A, δ, s_0, F) un automate fini déterministe, la fonction de transition $\delta: Q \times A \to Q$ se prolonge en une application $\delta^*: Q \times A^* \to Q$ définie par :

- $\delta^*(q, \varepsilon) = q$ pour tout q de Q
- $\delta^*(q, \alpha.a) = \delta(\delta^*(q, \alpha), a)$ pour tout q de Q, pour tout α de A^* et tout a de A

Remarque et propriété

- δ^* est définie par récurrence sur la longueur du mot, (définition pour la base ε et les mots αa)
- δ^* est un prolongement de δ , (c.-à-d. $\delta^*(q,a) = \delta(q,a)$ pour tout état q et toute lettre a)
- ce prolongement vérifie : $\delta^*(q, \alpha.\beta) = \delta^*(\delta^*(q, \alpha), \beta)$ pour tout état q de Q et tout mot α et β de A^* (démonstration à effectuer par récurrence sur la longueur de β)

Langage reconnaissable par un automate

Définition

Soit A = (A, Q, I, E, T) un automate fini. On dit qu'un mot $\alpha \in A^*$ est **reconnu** (ou **accepté**) par A s'il existe un calcul réussi d'étiquette α :

$$(\exists (q_0, \ldots, q_n) \in Q^{n+1}) \ (\exists (a_0, \ldots, a_{n-1}) \in (A \cup \{\varepsilon\})^n)$$
 $q_0 \in I \text{ et } q_n \in T \text{ et } q_0 \xrightarrow{a_0} q_1 \ldots q_{n-1} \xrightarrow{a_{n-1}} q_n$
où $\alpha = a_0 \ldots a_{n-1}$. Ce qui s'écrit, sous forme plus condensée :

$$(\exists q_0 \in I) \ (\exists q_n \in T) \ q_0 \stackrel{\alpha}{\longrightarrow} q_n$$

Définition

Soit $\mathcal{A} = (A, Q, I, E, T)$, on appelle **langage reconnu** par \mathcal{A} que l'on note $\mathcal{L}(\mathcal{A})$, l'ensemble des mots reconnus par \mathcal{A} :

$$\mathcal{L}(\mathcal{A}) = \left\{ \alpha \in A^*, \ (\exists q \in I) \ (\exists q' \in T) \ q \xrightarrow{\alpha} q' \right\}$$

Définition

On dit qu'un langage est reconnaissable par un AF s'il existe un automate fini qui le reconnaît. On note $Rec(A^*)$ l'ensemble des langages sur l'aphabet A reconnaissables par un automate fini.

Remarques

Remarque

Si $\mathcal{A}=(A,\ Q,\ q_0,\ \delta,\ T)$ un automate fini déterministe :

- Un mot α est reconnu par $\mathcal A$ ssi $\delta^*(q_0,\ \alpha)\in \mathcal T$
- $L(A) = \{ \alpha ; \delta^*(q_0, \alpha) \in T \}$

Remarque

- Etant donné un mot et un automate **déterministe**, il est facile de vérifier si le mot est reconnu par l'automate en utilisant δ^* (de façon pratique, on peut aussi le faire en utilisant la représentation sagittale d'un automate)
- Si l'automate est indéterministe il faut simuler toutes les exécutions en tenant compte des différents choix possibles.

Théorème de Kleene

Théorème

Soit A un alphabet, $Rat(A^*)$ l'ensemble des langages rationnels (réguliers) sur A et $Rec(A^*)$ l'ensemble des langages sur A reconnaissables par un automate fini. Le **théorème de Kleene** établit que :

$$Rat(A^*) = Rec(A^*)$$

Autrement dit, les langages rationnels sont exactement ceux reconnus par les automates finis.

Remarque

Ce théorème nous permet de dire que pour toute expression régulière dénotant un langage L, on peut construire un automate reconnaissant L et, réciproquement, à tout automate \mathcal{A} on peut associer une expression régulière dénotant $\mathcal{L}(\mathcal{A})$.

Expressions régulières et automates

Lemme 1

Si un langage est dénoté par une expression régulière (i.e. est régulier) il est reconnu par un automate fini (non déterministe).

Démonstration

La démonstration utilise la définition inductive des expressions régulières. On montre que pour chaque expression régulière de base $(\emptyset, \varepsilon, a \in A)$ il existe un automate reconnaissant le langage dénoté par cette expression régulière. On montre que pour des expressions régulières composées $(e_1 + e_2)$, $(e_1 e_2)$ et $(e_1)^*$ il est possible d'obtenir un automate reconnaissant le langage décrit par ces expressions à partir d'automates reconnaissant les langages dénotés par e_1 et e_2 .

Démonstration

• à l'expression rationnelle vide, \varnothing , on associe l'automate $\mathcal{A} = (A, Q, I, E, T) = (A, \{q_0\}, \{q_0\}, \emptyset, \emptyset).$

Cet automate ne reconnaît aucun mot donc $\mathcal{L}(\mathcal{A}) = \emptyset = \mathcal{L}_{\mathcal{R}}(\emptyset)$

• à l'expression rationnelle ε , on associe l'automate $\mathcal{A} = (A, \{q_0\}, \{q_0\}, \emptyset, \{q_0\}).$

Cet automate reconnaît le mot vide $\mathcal{L}(\mathcal{A}) = \{\varepsilon\} = \mathcal{L}_{\mathcal{R}}(\varepsilon)$

Démonstration (suite)

à tout $a \in A$ on associe l'automate $\mathcal{A} = (A, \{q_0, q_1\}, \{q_0\}, \{(q_0, a, q_1)\}, \{q_1\})$:

Cet automate reconnaît le mot a, donc $\mathcal{L}(\mathcal{A}) = \{a\} = \mathcal{L}_{\mathcal{R}}(a)$

Démonstration (Hypothèse de récurrence)

Hypothèse de récurrence : Soient $A_1 = (A, Q_1, I_1, E_1, T_1)$ et $A_2 = (A, Q_2, I_2, E_2, T_2)$ deux automates reconnaissant respectivement les langages dénotés par les expressions e_1 et e_2 . L'automate A_i est représenté par le schéma suivant :

On crée un nouvel état initial q_0 et un ensemble E' de nouvelles transitions telles que,

$$\forall q \in \textit{I}_1 \cup \textit{I}_2, \ \textit{q}_0 \stackrel{\varepsilon}{\longrightarrow} \textit{q}. \ \text{On a} \ \mathcal{A} = (\textit{A}, \ \textit{Q}_1 \cup \textit{Q}_2 \cup \{\textit{q}_0\}, \ \{\textit{q}_0\}, \ \textit{E}_1 \cup \textit{E}_2 \cup \textit{E}', \ \textit{T}_1 \cup \textit{T}_2).$$

Démonstration $((e_1e_2))$

Soit \mathcal{A} l'automate reconnaissant $\mathcal{L}_{\mathcal{R}}((e_1e_2))$:

On crée un ensemble E' de ε -transitions reliant tous les états terminaux de \mathcal{A}_1 aux états initiaux de \mathcal{A}_2 . On a alors $\mathcal{A}=(A,\ Q_1\cup Q_2,\ I_1,\ E_1\cup E_2\cup E',\ T_2)$.

Démonstration $((e)^*)$

Soit $\mathcal{A}=(A,Q,I,E,T)$ l'automate reconnaissant le langage dénoté par l'expression rationnelle e. L'automate $\mathcal{A}'=(A,\ Q',\ I',\ E',\ T')$ reconnaissant $\mathcal{L}_{\mathcal{R}}\left(\stackrel{\bullet}{(e)^*}\right)$ est tel que :

$$Q' = Q \cup \{q_0, q_F\}, \ I' = \{q_0\}, \ T' = \{q_F\} \text{ et }$$
 $E' = E \cup \{q_0 \xrightarrow{\varepsilon} q, q \in I\} \cup \{q \xrightarrow{\varepsilon} q_F, q \in F\} \cup \{q_0 \xrightarrow{\varepsilon} q_F, q_F \xrightarrow{\varepsilon} q_0\}.$

L'automate reconnaissant $\mathcal{L}_{\mathcal{R}}\left((e)^+\right)$ s'obtient, quant à lui, de la même façon que le précédent en retirant la transition $q_0 \stackrel{\varepsilon}{\longrightarrow} q_F$ (dont le but est uniquement de faire reconnaître le mot vide par l'automate).

Langage associé à un état

Définition

Soit $\mathcal{A}=(A,\ Q,\ I,\ E,\ T)$ un automate fini, soient $p,q\in Q$

- on note $E_{p,q}$, l'ensemble des étiquettes des transitions d'origine p et d'extrémité q
- on pose $L_p = \{ \alpha : \alpha \in A^* \text{ et } (\exists r \in T) \ p \stackrel{\alpha}{\rightarrow} r \}$

Remarques

- L_p est l'ensemble des mots qui sont les étiquettes des calculs qui vont de p à un état final de $\mathcal A$
- ullet à chaque état $p\in Q$ on peut associer un langage L_p
- on a évidemment $\mathcal{L}(\mathcal{A}) = \sum_{p \in I} L_p$

Système d'équations

Pour montrer que $\mathcal{L}(A)$ est rationnel il suffit de montrer que chacun des L_p est rationnel.

$$L_p = \{ \alpha : \alpha \in A^* \text{ et } (\exists r \in T) \ p \stackrel{\alpha}{\rightarrow} r \}$$

Un mot α appartient à L_p :

- soit $\alpha = \varepsilon$ dans ce cas $p \in T$ (p est un état final)
- soit $\alpha=a\beta$ avec a l'étiquette d'une transition de $\mathcal A$ qui va de p à q et β appartient à L_q

On peut donc écrire :

$$(\forall p \in Q) \ L_p = \sum_{q \in Q} E_{p,q} L_q + \delta_{p,T} \ (I)$$

où $\delta_{p,T} = \varepsilon$ si $p \in T$ et \emptyset sinon

(1) définit un système de n équations linéaires à n inconnues avec n = card(Q), les inconnues étant les L_p , les coefficients dans $\mathcal{P}(A)$.

On résout ce système par application du "lemme d'Arden"

Lemme d'Arden

Lemme d'Arden

Soit A un vocabulaire et L_1 et L_2 deux langages sur A, on considère l'équation $X = L_1.X + L_2$ (1) où X l'inconnue est un langage sur A.

- Si $\varepsilon \not\in L_1$ l'équation (1) admet une solution unique $L_1^*.L_2$.
- Si $\varepsilon \in L_1$, l'ensemble des solutions de l'équation (1) est $\{L_1^*.(L_2+L)\}$ où L est un langage quelconque

Théorème

Soit le système suivant de n (n > 0) équations :

$$\left\{ L_i = \sum_{j=1}^n E_{i,j} L_j + F_i \right\}_{i \in [1,n]}$$

tels que les langages $E_{i,j}$ $(1 \le i,j \le n)$ ne contiennent pas ε et les langages L_i sont les inconnues. Ce système admet une unique solution (et si les langages $E_{i,j}$ et F_i sont réguliers alors les langages L_i le sont aussi).

La démonstration de ce théorème peut se faire par récurrence sur l'entier n, en utilisant le lemme d'Arden.

Méthode de construction d'une expression régulière à partir d'un automate fini

Soit A = (A, Q, I, E, T) un automate fini sans transition sur le mot vide :

Construction du système d'équations sous la forme :

$$\left\{ L_i = \sum_{j=0}^n E_{i,j} L_j + F_i \right\}_{i \in [0,n]}$$

Les états sont numérotés de 0 à n. Pour établir ce système on utilise les transitions en partant de chaque état de A

• Résolution du système par substitution, en utilisant le lemme d'Arden sur certaines équations. Le but de la résolution est de donner une expression régulière correspondant à la réunion des langages L_i où i correspond à un état initial de l'automate (on obtient ainsi le langage reconnu par l'automate donné).

Exemple

Soit A l'automate suivant :

Ecriture du sytème :

$$\begin{cases} L_0 = a\tilde{L}_1 + bL_1 = (a+b)L_1 \\ L_1 = bL_1 + aL_2 + \varepsilon \text{ (car } 1 \in T) \\ L_2 = (a+b)L_2 \end{cases}$$

On applique le lemme d'Arden à la 3ème équation

$$\begin{cases} L_0 = (a+b)L_1 \\ L_1 = bL_1 + aL_2 + \varepsilon \\ L_2 = (a+b)^* \emptyset = \emptyset \end{cases}$$

Exemple (fin)

On reporte $L_2 = \emptyset$ dans la deuxième équation :

$$\begin{cases}
L_0 = (a+b)L_1 \\
L_1 = bL_1 + \varepsilon \\
L_2 = \emptyset
\end{cases}$$

On applique le lemme d'Arden à la deuxième équation :

$$\begin{cases}
L_0 = (a+b)L_1 \\
L_1 = b^* \varepsilon = b^* \\
L_2 = \emptyset
\end{cases}$$

On reporte L_1 dans la première équation en utilisant la deuxième équation

$$\begin{cases}
L_0 = (a+b)b^* \\
L_1 = b^* \\
L_2 = \emptyset
\end{cases}$$

On obtient donc $\mathcal{L}(\mathcal{A}) = L_0 = (a+b)b^*$

Conclusion

- Ce qu'il faut retenir :
 - Automate fini indéterministe (calcul, langage reconnu par un automate)
 - Automate fini déterministe
 - Théorème de Kleene : langage régulier (ou rationnel) \equiv langage reconnu par un automate fini)
 - Expression régulière → Automate fini
 - Automate fini → Expression régulière
- Nombreuses applications (dans divers domaines) des automates finis.
- Prochaines notions abordées en TD :
 - Déterminisation des automates
 - Minimisation des automates