Section 1.5 – Transpose, Diagonal, Triangular, and Symmetric Matrices

Transpose

Definition

The transpose of a matrix A is defined as the matrix that is obtained by interchanging the corresponding rows and columns in A. Then the transpose of A, denoted by A^T or A'. The columns of A^T are the rows of A.

When A is an m by n matrix, the transpose is n by m:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \quad then \quad A^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$$

The matrix *flips over* the main diagonal. The entry in row i, column j of A^T comes from row j, column i of the original A.

$$\left(A^{T}\right)_{ij} = A_{ji}$$

Properties of Transpose

a)
$$\left(A^T\right)^T = A$$

$$b) \quad \left(A+B\right)^T = A^T + B^T$$

$$c) \quad \left(A - B\right)^T = A^T - B^T$$

$$d) \quad \left(kA\right)^T = kA^T$$

$$e) (AB)^T = B^T A^T$$

The transpose of a product of any number of matrices is the product of the transposes in the reverse order.

Theorem

If A is an invertible matrix, then A^T is also invertible and

$$\left(A^T\right)^{-1} = \left(A^{-1}\right)^T$$

Proof

$$A^{T} \left(A^{-1} \right)^{T} = \left(A^{-1} A \right)^{T} = I^{T} = I$$
$$\left(A^{-1} \right)^{T} A^{T} = \left(A A^{-1} \right)^{T} = I^{T} = I$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad and \quad A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$\Rightarrow \left(A^T\right)^{-1} = \begin{bmatrix} \frac{d}{ad - bc} & -\frac{c}{ad - bc} \\ -\frac{b}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$$

Trace

Definition

If A is a square matrix, then the trace of A, denoted by $\mathbf{tr}(A)$, is defined to the sum of the entries on the main diagonal of A. The trace of A is undefined if A is not a square matrix.

Example

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \rightarrow tr(A) = a_{11} + a_{22} + a_{33}$$

Diagonal

A square matrix in which all the entries off the main diagonal are zero is called a *diagonal matrix*. A general $n \times n$ diagonal matrix can be written as

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

A diagonal matrix is invertible iff all of its diagonal entries are nonzero; the

$$D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \frac{1}{d_n} \end{bmatrix}$$

Powers of diagonal matrices are:

$$D^{k} = \begin{bmatrix} d_{1}^{k} & 0 & \cdots & 0 \\ 0 & d_{1}^{k} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_{n}^{k} \end{bmatrix}$$

Triangular Matrices

A square matrix in which all the entries above the main diagonal are zero is called *lower diagonal triangular*.

A square matrix in which all the entries below the main diagonal are zero is called *upper diagonal triangular*.

A matrix that is either upper triangular or lower triangular is called *triangular*.

lower diagonal triangular

upper diagonal triangular

Theorem

- ✓ The transpose of a lower triangular matrix is upper triangular, and the transpose of a upper triangular matrix is lower triangular.
- ✓ The product of lower triangular matrices is lower triangular, and the product of upper triangular matrices is upper triangular.
- ✓ A triangular matrix is invertible iff its diagonal entries are all nonzero.
- ✓ The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular.

Example

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & -2 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution

$$A^{-1} = \begin{bmatrix} 1 & -\frac{3}{2} & \frac{7}{5} \\ 0 & \frac{1}{2} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \end{bmatrix} \qquad AB = \begin{bmatrix} 3 & -2 & -2 \\ 0 & 0 & 2 \\ 0 & 0 & 5 \end{bmatrix} \qquad BA = \begin{bmatrix} 3 & 5 & -1 \\ 0 & 0 & -5 \\ 0 & 0 & 5 \end{bmatrix}$$

The goal is to describe Gaussian elimination in the most useful way by looking at them closely, which are factorizations of a matrix.

The factors are triangular matrices.

The factorization that comes from elimination is A = LU.

Symmetric Matrices

Definition

A square matrix A is said to be *symmetric* if $A^T = A$. That means a square matrix must satisfies $a_{ij} = a_{ji}$

Example

$$A = \begin{pmatrix} 1 & -4 \\ -4 & 1 \end{pmatrix} = A^T$$

$$A = \begin{pmatrix} 6 & 5 & 1 \\ 5 & 0 & 7 \\ 1 & 7 & -1 \end{pmatrix} = A^{T}$$

↓ The *inverse* of a symmetric matrix is also *symmetric*.

Example

Given $A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$, show that the inverse is symmetric too?

Solution

$$A^{-1} = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$$

Theorem

If A and B are symmetric matrices with the same size, and if k is any scalar, then:

44

- a) A^T is symmetric
- b) A + B and A B are symmetric.
- c) kA is symmetric
- \blacksquare If A is an invertible symmetric matrix, then A^{-1} is symmetric.

Proof

Assume that *A* is symmetric and invertible then $A = A^T$

$$(A^{-1})^T = (A^T)^{-1} = A^{-1}$$

Which proves that A^{-1} is symmetric

 \blacksquare Multiplying M by M^T gives a symmetric matrix.

Proof

The entry (i, j) of M^TM , it is the dot product of row i of M^T (column i of M) with column j of M. The (i, j) entry is the same dot product, column j with column i. so M^TM is symmetric. The matrix $M.M^T$ is also symmetric and M^TM is a different matrix from $M.M^T$.

- \blacksquare If A is an invertible symmetric matrix, then AA^T and A^TA are also invertible.
- \blacksquare Matrix A is symmetric across its main diagonal. So is A^{-1}
- \blacksquare Matrix A is tridiagonal (only three nonzero diagonals). But A^{-1} is a full matrix with no zeros. (another reason we don't compute A^{-1})

Example

Given
$$M = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $M^T = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Find $M^T M$ and $M.M^T$

Solution

$$M^{T}M = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
$$MM^{T} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \end{bmatrix}$$

Symmetric in LDU

When elimination is applied to a symmetric matrix, $A^T = A$ is an advantage.

$$\begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
$$L \qquad D \qquad U$$

 \blacksquare If $A = A^T$ can be factored into LDU with no row exchanges, then $U = L^T$. The symmetric factorization of a symmetric matrix is $A = LDL^T$

Exercises Section 1.5 – Transpose, Diagonal, Triangular, and **Symmetric Matrices**

1. Solve Lc = b to find c. Then solve Ux = c to find x. What was A?

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

2. Find L and U for the symmetric matrix

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}$$

Find four conditions on a, b, c, d to get A = LU with four pivots

3. Determine whether the given matrix is invertible

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

Find A^2 , A^{-2} , and A^{-k} by inspection

$$a) \ A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$

$$b) \ A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
 b) $A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$ c) $A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

5. Decide whether the given matrix is symmetric

$$a) \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$

$$b) \begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 7 \end{bmatrix} \qquad c) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

$$c) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

6. Find all values of the unknown constant(s) in order for A to be symmetric

$$A = \begin{bmatrix} 2 & a - 2b + 2c & 2a + b + c \\ 3 & 5 & a + c \\ 0 & -2 & 7 \end{bmatrix}$$

46

- 7. Find a diagonal matrix A that satisfies the given condition $A^{-2} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- **8.** Let A be an $n \times n$ symmetric matrix
 - a) Show that A^2 is symmetric
 - b) Show that $2A^2 3A + I$ is symmetric
- **9.** Prove if $A^T A = A$, then A is symmetric and $A = A^2$
- **10.** A square matrix A is called **skew-symmetric** if $A^T = -A$. Prove
 - a) If A is an invertible skew-symmetric matrix, then A^{-1} is skew-symmetric.
 - b) If A and B are skew-symmetric matrices, then so are A^T , A + B, A B, and kA for any scalar k.
 - c) Every square matrix A can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

$$\left[Hint: \text{ Note the identity } A = \frac{1}{2} \left(A + A^T \right) + \frac{1}{2} \left(A - A^T \right) \right]$$

- 11. Suppose R is rectangular (m by n) and A is symmetric (m by m)
 - a) Transpose $R^T AR$ to show its symmetric
 - b) Show why $R^T R$ has no negative numbers on its diagonal.
- **12.** If L is a lower-triangular matrix, then $\left(L^{-1}\right)^{T}$ is ______Triangular
- 13. True or False
 - a) The block matrix $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ is automatically symmetric
 - b) If A and B are symmetric then their product is symmetric
 - c) If A is not symmetric then A^{-1} is not symmetric
 - d) When A, B, C are symmetric, the transpose of ABC is CBA.
 - e) The transpose of a diagonal matrix is a diagonal.
 - f) The transpose of an upper triangular matrix is an upper triangular matrix.
 - g) The sum of an upper triangular matrix and a lower triangular matrix is a diagonal matrix.
 - h) All entries of a symmetric matrix are determined by the entries occurring on and above the main diagonal.
 - *i*) All entries of an upper triangular matrix are determined by the entries occurring on and above the main diagonal.

- j) The inverse of an invertible lower triangular matrix is an upper triangular matrix.
- k) A diagonal matrix is invertible if and only if all of its diagonal entries are positive.
- 1) The sum of a diagonal matrix and a lower triangular matrix is a lower triangular matrix.
- m) A matrix that is both symmetric and upper triangular must be a diagonal matrix.
- n) If A and B are $n \times n$ matrices such that A + B is symmetric, then A and B are symmetric.
- o) If A and B are $n \times n$ matrices such that A + B is upper triangular, then A and B are upper triangular.
- p) If A^2 is a symmetric matrix, then A is a symmetric matrix.
- q) If kA is a symmetric matrix for some $k \neq 0$, then A is a symmetric matrix.
- **14.** Find 2 by 2 symmetric matrices $A = A^T$ with these properties
 - a) A is not invertible
 - b) A is invertible but cannot be factored into LU (row exchanges needed)
 - c) A can be factored into LDL^T but not into LL^T (because of negative D)
- **15.** A group of matrices includes AB and A^{-1} if it includes A and B. "Products and inverses stay in the group." Which of these sets are groups?

Lower triangular matrices L with 1's on the diagonal, symmetric matrices S, positive matrices M, diagonal invertible matrices D, permutation matrices P, matrices with $Q^T = Q^{-1}$. *Invent two more matrix groups*.

- **16.** Write $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$ as the product *EH* of an elementary row operation matrix *E* and a symmetric matrix *H*.
- 17. When is the product of two symmetric matrices symmetric? Explain your answer.
- **18.** Express $\left(\left(AB \right)^{-1} \right)^T$ in terms of $\left(A^{-1} \right)^T$ and $\left(B^{-1} \right)^T$
- 19. Find the transpose of the given matrix: $\begin{bmatrix} 8 & -1 \\ 3 & 5 \\ -2 & 5 \\ 1 & 2 \\ -3 & -5 \end{bmatrix}$
- **20.** Show that if A is symmetric and invertible, then A^{-1} is also symmetric.
- **21.** Prove that $(AB)^T = B^T A^T$

22. For the given matrix, compute
$$A^T$$
, $\left(A^T\right)^{-1}$, A^{-1} , and $\left(A^{-1}\right)^T$, then compare $\left(A^T\right)^{-1}$ and $\left(A^{-1}\right)^T$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

- 23. Show that a 2×2 lower triangular matrix is invertible if and only if $a_{11}a_{22} \neq 0$ and in this case the inverse is also lower triangular.
- **24.** Let A be any 2×2 diagonal matrix. Give a necessary and sufficient condition on the diagonal entries so that A has an inverse. Compute the inverse of any such matrix.