Operating Systems & Security

(478550)

Computer Security & OS Lab
Dept. of Software Science, DKU

Cho, Seong-je (조성제)

Fall, 2015

sjcho at dankook.ac.kr

Many photos/pictures in presentation licensed from google images or wikipedia

Teaching Team

- Instructor
 - Prof. Cho, Seong-je (조성제 교수)
 - Room 511, Natural Science Hall
 - Computer Security & OS Lab. **Dept. of Computer Science, Dankook Univ.**
 - Faculty advisor of the Aegis, Information Security Club
 - Email) sicho at dankook.ac.kr
 - http://SecureSW.dankook.ac.kr
 - » Lecture notes, Exam schedule, Assignments

- TA
 - Kyeonghwan Lim and Nak-young Kim (임경환 & 김낙영
 - Room 504/502, Media center building

What is Operating Systems?

What is Computer Security? Which types of threats are there?

Operating Systems

- a collection of software that manages computer hardware resources and provides common services for computer programs
 - Kernel provides the most basic level of control over all of the computer's hardware devices
 - OS must be capable of distinguishing between requests which should be allowed to be processed, and others which should not be

Operating systems

Common features

- Process management
- Interrupts
- Memory management
- File system
- Device drivers
- Networking (TCP/IP, UDP)
- Security (Process/Memory protection)
- I/O

What is Computer Security?

- Allow intended use of computer systems
- Prevent unintended use that may cause harm
- Protect information and systems from security threats
 - Protect computing <u>resources</u> and system assets from security threats
 - Security threats: STRIDE

What is This Class About?

Learn About Security

Make a Difference

Topics Covered in Class of Spring Semester, 2015

- Basic security threats and properties
 - Microsoft STRIDE vs. CIA Triad
- Primary concepts for Cryptography
 - Symmetric Cryptography vs. Public-key Cryptography
 - Cryptographic Hash Functions
- C secure coding overview
 - BoF overview, Integer overflow, Format string overview
- Web Security: SQL injection, XSS, ...
- Network security basics
 - Sniffing, Spoofing, Firewall, DDoS attacks
- Malware
 - Backdoor, Logic bomb, Viruses, Worms
 - Reverse engineering (Reversing)

Topics Covered in Class of this Semester

- Basic system security attacks and defense
 - Authentication, Access control (DAC/MAC), Logging
 - Buffer overflow, Ret2Libc ↔ Stack canary, ASLR, Libsafe
 - Privilege escalation
- **Malware**
 - Reverse engineering (Reversing)
 - Keylogger, Backdoor, Rootkits
- **OS** security
 - Command injection, DLL injection, Hooking
 - Password cracking
 - Multilevel security (MLS), Virtualization
- **Linux Security Framework**
 - SELinux, SMACK, AppArmor, grsecurity, ...

Course Format

- Lecture: 15 weeks (including midterm/final exam)
 - Lecture + Practical exercise (roughly 60:40)

Midterm exam: Oct. 27 or Nov. 02

Final exam: Dec. 16

- Students can get extra credit (or bonus points)
 - Presentation about recent security issues
 - E.g.: Android/iOS Security, SNS Security, Tizen Security, ...
 - Reporting after a field trip to an expo
 - Technical report including hands-on experience (practical exercises) in current systems

Assignments and Labs

- Tentative plan
 - **■** Two types of homework
 - Several Labs + Team-based term project
- Usually 2-3 weeks long
- Lab
 - Done in groups of 3~4 (Pick partners soon!)
- Expected Assignment/Lab
 - Buffer overflow, Ret2Libc, DLL injection
 - Malware analysis (Reversing), Android malware analysis
 - Rootkit (Hooking), Network security

Grading

- Coursework will consist of homeworks and a midterm exam, and a comprehensive final exam.
- The overall grade will be determined as follows:
 - 30% from the midterm exam
 - 30% from the final exam
 - 10% from assignments
 - 20% from lab, presentations & discussions (Technical Reports)
 - 10% from attendance and participation
- "A/B/C/D/F" Grading systems
 - Grade percentage can be variable
 - Only 10% to 20% of all students may receive grade 'A'

Cheating policy

- Performance must be 100% individual effort on all exams, that is, no collaboration is allowed on exams. Any collaboration or copying will be considered cheating.
- Group work on lab is permitted, but each student must list his or her collaborators in writing for each problem, using a phrase like "In collaboration with Gildong Hong...". If a student turns in a solution without listing the others who helped produce this solution, this act will be considered cheating (for it is plagarism).
- Late homework assignments will not be accepted without a medical or other life-emergency excuse.
- Students caught cheating will be given a zero on the homework or exam in question and have a letter filed with their associate dean for academic affairs.

Cheating policy & Course Requirements

- No cheating
 - What is cheating?
 - Sharing code: either by copying, retyping, looking at, or supplying a copy of a file.
 - What is NOT cheating?
 - Helping others use systems or tools.
 - Helping others with high-level design issues.
 - Helping others debug their code.
 - Penalty for cheating: F grade
- **Active class participation**
 - Question
 - **Presentation & Discussion**
 - Feedback

Read newspapers including "보안뉴스" (http://www.boannews.com/)

Textbook

- William Stallings and Lawrie Brown, Computer Security: Principles and Practice, 2/E or 3/E, Prentice Hall, 2011/2014, Pearson' International Edition
 - http://williamstallings.com/ComputerSecurity/
 - http://www.pearsonhighered.com/educator/academic/product/1,,0132775069,00.html
 - http://www.pearsonhighered.com/educator/product/Computer-Security-Principles-and-Practice/9780133773927.page

William Stallings . Lawrie Brown

Contents of Text

Chap.1: Overview Part I: Computer Security Technology and **Principles Chap. 2: Cryptographic Tools Chap. 3: User Authentication Chap. 4: Access Control Chap. 5: Database & Cloud Security Chap. 6: Malicious Software Chap. 7: Denial-of-Service Attacks Chap. 8: Intrusion Detection** Chap. 9: Firewalls and IPS Part II: SW Security and Trusted Systems **Chap. 10: Buffer Overflow Chap. 11: Software Security** Chap. 12: OS Security **Chap. 13: Trusted Computing and Multilevel Security**

Part III: Management Issues Chap.14: Security Management and RA Chap. 15: Security Controls, Plans, and Proc Chap. 16: Physical & Infrastructure Sec Chap. 17: Human Resource Security **Chap. 18: Security Auditing** Chap. 19: Legal & Ethical Aspects **Part IV: Cryptographic Algorithms** Chap. 20: Symmetric Encryption and **Message Confidentiality** Chap. 21: Public-key Cryptography & **Message Authentication Part V: Network Security** Chap. 22: Internet Security Protocols and **Standards Chap. 23: Internet Authentication Applications**

Chap. 24: Wireless Network Security

Tentative Schedule (subject to change)

- Week 1: Course introduction, Threats
- Week 2: Overview of (OS + security)
- Week 3: User authentication, <u>/etc/{passwd, shadow}, Password cracking</u>
- Week 4: Access control: DAC, SetUID program, RUID/EUID
- Week 5: Access control: MAC, Privilege escalation, SELinux overview
- Week 6: Access control: RBAC, SELinux TE & RBAC & MLS
- Week 7: Comparison of SELinux, AppArmor, and SMACK
- Week 8: Midterm exam
- Week 9: Malware (Keylogger, <u>Backdoor</u>)
- Week 10: Malware (Rootkit, ...), Practical exercise for malware
- Week 11: Buffer overflow attack, <u>BoF exercise</u>
- Week 12: Defense of BoF attacks: ASLR, Guard page, LibSafe, Ret2Libc
- Week 13: Race conditions, Return Oriented Programming (ROP)
- Week 14: Injection (Command, DLL), Trusted OS, Presentation
- Week 15: Final exam, Presentation

Tentative schedule

Week	Lecture	Hands-on Exercise(s)	
1	Introduction	OWASP Top 10 WebGoat	
2	Overview of (OS + security)		
3	User authentication	Password cracking	
4	Discretionary Access Control (DAC)	SELinux (basic commands, user addition, policy insertion & change)	
5	Mandatory Access Control (MAC)		
6	Role-based Access Control (RBAC)	SMACK (basic commands, policy insertion & change)	
7	Comparison of SELinux, AppArmor, SMACK		
8	Mid-term exam		
9	Malware (keylogger, Backdoor)	Rootkit & Its defense	
10	Malware (Rootkit)		
11	Buffer overflow attacks	Buffer Overflow	
12	Defense for Buffer overflow, Ret2Libc		
13	Race condition & ROP	Race condition or ROP	
14	Injection, Smartphone security issues	Android library injection	
· 15	Final exam		

15

OS Security Example: File Permissions

- File permissions (Authorization)
 - Readable/Writeable/eXecutable by a user or group of users
- In Unix-like OS's, a file permission matrix shows who is allowed to do what to the file.
 - Files have owner permissions, which show what the owner can do, and group permissions, which show what some group id can do, and world permissions, which give default access rights.

-rw-rw-r	1 pbg	staff	31200	Sep 3 08:30	intro.ps
drwx	5 pbg	staff	512	Jul 8 09.33	private/
drwxrwxr-x	2 pbg	staff	512	Jul 8 09:35	doc/
drwxrwx	2 pbg	student	512	Aug 3 14:13	student-proj/
-rw-rr	1 pbg	staff	9423	Feb 24 2003	program.c
-rwxr-xr-x	1 pbg	staff	20471	Feb 24 2003	program
drwxxx	4 pbg	faculty	512	Jul 31 10:31	lib/
drwx	3 pbg	staff	1024	Aug 29 06:52	mail/
drwxrwxrwx	3 pbg	staff	512	Jul 8 09:35	test/

OS Security Example: File Permissions

Authorization on Windows 7

OS Security Example: File Permissions

- Android 2.2는 134개의 permission을 정의
 - Such as dialing (CALL_PHONE), taking pictures (CAMERA)
- Ask which permissions is accepted at install time

Auxiliary Textbook

- M.T. Goodrich and R. Tamassia, Introduction to Computer Security, Pearson' International Edition (Addison-Wesley), 2011
 - http://www.securitybook.net/
 - http://www.ics.uci.edu/~goodrich/teach/ics8/syll.html
 - http://www.pearsonhighered.com/educator/product/Introduction-to-Computer-Security/0321512944.page

Contents of Textbook

	International Edition	Original Edition
Chap.1:	Introduction	Introduction
Chap.2:	Cryptography	Physical Security
Chap.3:	Operating Systems Security	Operating Systems Security
Chap.4:	Malicious Software	Malware
Chap.5:	Network Security I	Network Security I
Chap.6:	Network Security II	Network Security II
Chap.7:	Browser Security	Web Security
Chap.8:	Physical Security	Cryptography
Chap.9:	Security Models and Practice	Security Models and Practice
Chap.10:	Application Security	Distributed Application Security

Auxiliary Textbook

- M.T. Goodrich and R. Tamassia, Introduction to Computer Security:
 Pearson New International Edition (Addison-Wesley), 2013
 - http://catalogue.pearsoned.co.uk/educator/product/Introduction-to-Computer-Security-Pearson-New-International-Edition/9781292025407.page
 - ISBN-10: 1292025409 ISBN-13: 9781292025407

PEARSON NEW INTERNATIONAL EDITION

Introduction to Computer Security
Michael Goodrich Roberto Tamassia
First Edition

References

- <u>crackmes.de</u> A great site for testing your reversing skills. Crackmes range from Very Easy to Very Hard [1-9] for many <u>Operating systems</u>!
 - Reverser's playground: <u>www.crackmes.de</u>
- tdhack.com a lot of challenges including cryptographic riddles, hackmes and software applications to crack for both Windows and Linux. Polish and English languages are supported.
 - Hacking, cracking, wargames, cryptography

● 양대일, 정보보안 개론과 실습: 시스템 해킹과 보안(개정판), 한빛미디어, 2011 http://hack.pe.kr/321

Notice / Notification

- Be careful that only the attendee can download the lecture notes
 - Copyright of all lecture notes should be protected
- Please do not distribute/upload the lecture notes (PDF slides) via the Internet, blog, usb, email, ...
 - We are strictly prohibited from distributing the PPT/PDF slides written by the authors of textbooks

Everyone is invited, regardless of skill

Contact: Cho, Seong-je <sjcho at dankook.ac.kr>

or

Visit: http://securesw.dankook.ac.kr

We need great diligence and effort.

Every effort makes the next effort easier and more enjoyable

A Key Comment

- Do not try attacks at home or school!
- Our goal is to educate so you can defend, not attack

Summary

- **Prerequisites**
 - Clanguage, Computer architecture
 - System programming (Debugging)
- **Related courses**
 - Computer Security
 - Introduction to operating systems, Computer networks
- http://securesw.dankook.ac.kr

Any questions?

- Hardships, The way of suffering
 - Diligence, An unremitting effort, Sincerity, Passion

Expert, Specialist

Black hat vs. White hat

