Intervalles de confiance (p.262)

La table suivante (voir p.262) résume bien les intervalles de confiance.

ableau 10.3 Les divers intervalles de confiance	e — résumé	111 (cort à 100(1 - 0) %
Valeur à estimer	Estimateur ponctuel	Intervalle de confiance bilatéral à $100(1-lpha)\%$
u : la moyenne d'une loi normale de variance σ^2 connue	\overline{X}	$\overline{X} \pm z_{\alpha 2} \sigma / \sqrt{n}$
μ : la moyenne d'une loi normale de variance σ^2 inconnue	\overline{X}	$\overline{X} \pm t_{a/2;n-1} S / \sqrt{n}$
$\mu_1 - \mu_2$: la différence entre les moyennes de deux lois normales de variances respectives σ_1^2 et σ_2^2 connues	$\overline{X}_{_{1}}-\overline{X}_{_{2}}$	$\left(\overline{X}_1 - \overline{X}_2\right) \pm z_{\omega/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$\mu_1 - \mu_2$: la différence entre les moyennes de deux lois normales ayant une même variance $(\sigma_1^2 = \sigma_2^2)$ inconnue	$\overline{X}_1 - \overline{X}_2$	$(\overline{X}_1 - \overline{X}_2) \pm t_{a/2, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \text{ où } S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)}{n_1 + n_2 - 2}}$
$\mu_{\rm D}=\mu_{\rm l}-\mu_{\rm 2}$: la différence entre les moyennes de deux lois normales, dans le cas d'échantillons appariés	\overline{D}	$\overline{D} \pm t_{at2:n-1} S_D / \sqrt{n}$
σ^2 : la variance d'une loi normale	S^2	$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$
σ_1^2/σ_2^2 : le rapport des variances de deux lois normales	$\frac{S_1^2}{S_2^2}$	$\frac{S_{1-\alpha/2,n-1}^{2}}{S_{2}^{2}F_{\alpha/2;n_{1}-1,n_{2}-1}} \le \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \le \frac{S_{1}^{2}}{S_{2}^{2}F_{1-\alpha/2,n_{1}-1,n_{2}-1}}$
p: la proportion ou le paramètre d'une loi binomiale	\hat{p}	$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
$p_1 - p_2$: la différence de deux proportions ou de deux paramètres binomiaux	$\hat{p}_{_1} - \hat{p}_{_2}$	$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha \beta} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$