Early identification of *Tuta absoluta* in tomato plants using deep learning

Lilian Mkonyi DSA Research Seminar

November 12, 2020

Introduction

- Tomato (Lycopersicon esculentum) is a nutrition-rich and an edible plant that is widely grown throughout the world (P. Schreinemachers et al., 2018).
- Approximately 160 million tons are produced each year globally, in Tanzania about 247,135 tons harvested in 2016 (Mutayoba et al., 2017).
- Source of income to small scale farmers in Sub-Sahara African countries.
- Given the economic importance of tomato, we should consider the factors affecting its production and find more appropriate technological solutions to maximize its productivity.

Problem Statement

- Tomato productivity is threatened by invasive pest called leafminer *Tuta absoluta* famously known as "Kantangaze" in Tanzania, being causing great loss (Zekeya et al., 2017).
- Despite existence of various ways of controlling the pest, early identification of the pest remains an open-ended research question.
- In Tanzania, for instance agriculture depend on local extension officers as key facilitator (Maginga et al., 2018)
- There is a need to integrate sophisticated technologies, including those based on deep learning, into agriculture to identify pest and to maximize productivity.

Tuta absoluta farm situation

Research Framework

Methodology

- Dataset acquisition
 - Field trial setup
 - Images capturing
 - Preprocessing
- Model development
 - Convolutional Neural Network
- Model evaluation
 - Accuracy and Loss
 - Confusion matrix
 - Evaluation metrics

Dataset acquisition

- Field trial in a net-house at Usariver, Arusha
- Planting tomatoes and inoculating with Tuta absoluta larva
- Image capturing using Canon EOS Kiss X7 camera with a resolution of 5184 X 3456 pixels
- We collected a total of 2145 images (330 being infected with Tuta absoluta)

Dataset acquisition

- Sample leaf images collected from the field
- (a) is the health leaf before inoculation and the red boxes shows the infected leaf, in (b), (c),(d) and (e) is the infected leaf on the 2nd, 4 th, 6th, and 8th days respectively, after inoculation with the *Tuta absoluta*.

Image Pre-processing

- Manipulation of raw image data before being passed into deep learning algorithm to enhance data quality.
- It involved:
 - Labelling: into Health and Non-health classes
 - Resizing: Using Keras resize function
 - Augmentation: Several transformation to increase dataset and prevent overfitting.
- Handling data imbalance

Handling data imbalance

- Images equivalent to 10% of non- health images were held out as test set
- The remaining images were subdivided into 6 clusters
- Each cluster was trained as a separate dataset
- Overall accuracy was calculated as an average over six runs

Table 1: Dataset division

Class	Dataset	Training set	Validation set	Testing set
Н	75:25	223 X 6	74	33
	80:20	237 X 6	60	33
	85:15	252 X 6	45	33
NH	75:25	223	74	33
	8:20	237	60	33
	85:15	252	45	33

Model Development

- Convolutional Neural Network was used to train our models
- We used transfer learning of three pretrained CNN architectures:
 - VGG16
 - VGG19
 - ResNet50
- The experiments were conducted on a desktop computer, pre-installed with Ubuntu 18.04 and equipped with one Intel Core i9-9900 3.6 GHz CPU (16 GB RAM) accelerated by one GeForce RTX 2080Ti GPU (12 GB memory).
- Keras deep learning library with Tensorflow backend was used.

Model Development

Model hyper-parameters

Table 2: Model hyper-parameters

Parameter	Value	
Epoch	1000	
Batch size	8	
Optimizer	SGD	
Learning rate	1e-5	
Dropout	0.5	
Momentum	0.9	
Early stopping	50 epochs	

Model Evaluation

- Accuracy and loss
 - Model was evaluated during training at the end of each epoch by using validation data
 - The graphs below shows training and validation accuracies (a) and losses(b)

Model Evaluation

- Confusion matrix
 - The testing images indicated in the table above were used to evaluate ability of our model to predict new data.
 - Prediction results were visualized in the confusion matrix

Model Evaluation

- F1-score, precision, recall and accuracy were used as our evaluation metrics
- The best performance accuracy was attained by VGG16 on 85:15 dataset, was 91.9%

Table 3: For every Dataset, F1–score $\{mean\ precision,\ mean\ recall,\ overall\ accuracy\}$

Dataset	VGG16	ResNet50	VGG19
80:20	$0.906_{\{0.915,\ 0.915,\ 0.905\}}$	$0.854_{\{0.867,0.856,\ 0.856\}}$	$\begin{array}{c} 0.839_{\{0.852,\ 0.841,\ 0.841\}} \\ 0.831_{\{0.853,\ 0.841,\ 0.836\}} \\ 0.831_{\{0.851,\ 0.833,\ 0.833\}} \end{array}$

Research Contribution

- Model to be used by farmers and extension officers in detecting invasion of *Tuta absoluta* at early stage of tomato plants growth
- An open source dataset to facilitate further research in Tuta absoluta identification from diseased tomato plants(to be published)
- A ppaper titled Early identification of *Tuta absoluta* in tomato plants using deep learning (https://doi.org/10.1016/j.sciaf.2020.e00590)

Limitations of the study

- Deep learning is data hungry, that affects model performance accuracy.
- Running deep learning models requires high computational power resources which are scarce in our working environment.

Achievements

- Presentations attended
 - Poster presented in the Deep Learning Indaba 2019 conference, at Kenyatta University.
 - Poster presented in Black in Al workshop in the NeurIPS Conference 2019, Vancouver Canada.

Awards

 The won an award from Ai4D to facilitate collection of more data

Thank you!