Внешний курс. Раздел 2

Основы информационной безопасности

Малюга В. В.

8 марта 2024

Российский университет дружбы народов, Москва, Россия

Докладчик

- Малюга Валерия Васильевна
- студентка группы НКАбд-04-23
- Российский университет дружбы народов
- https://github.com/vvmalyuga

Цель работы

Цель

Пройти второй блок курса **"Основы кибербезопасности"**, а именно — изучить:

- шифрование данных на устройствах
- принципы безопасного хранения паролей
- методы фишинга
- виды вредоносного ПО
- сквозное шифрование в мессенджерах

Защита ПК и телефона

Шифрование диска

Шифрование диска— технология защиты информации, переводящая данные в нечитаемый код. Это не позволяет посторонним получить доступ к содержимому.

Иллюстрация: шифрование диска

Рис. 1: Шифрование диска

Тип шифрования

Шифрование часто основано на **симметричном методе**, когда для шифрования и дешифрования используется один и тот же ключ.

Иллюстрация: симметричное шифрование

Рис. 2: Тип шифрования

Программы шифрования

Примеры программ: BitLocker, FileVault, VeraCrypt и другие. Они позволяют настроить полное или частичное шифрование данных.

Иллюстрация: программы для шифрования

Рис. 3: Программы

Пароли

Надежный пароль

Стойкий пароль — длинный, содержит специальные символы и не основан на личной информации. Его сложно подобрать.

Иллюстрация: стойкость пароля

Рис. 4: Надежный пароль

Надёжное хранение

Менеджеры паролей — единственный по-настоящему безопасный способ хранения. Другие методы (запись на бумаге, в блокноте и т.д.) ненадежны.

Иллюстрация: ненадежные способы

Рис. 5: Ненадежное хранение

CAPTCHA

Капча используется для определения, что перед устройством— человек, а не бот.

Иллюстрация: капча

Рис. 6: CAPTCHA

Хеширование паролей

Пароли не хранятся в открытом виде.

Используются хеш-функции, которые необратимо шифруют данные.

Иллюстрация: хеширование

Рис. 7: Хеши паролей

Использование соли

Добавление соли в хеш-функции повышает безопасность. Однако это не единственная мера, необходима комплексная защита.

Иллюстрация: соль

Рис. 8: Про соль

Комплексная защита

Все меры безопасности должны использоваться вместе: хеширование, соль, шифрование и менеджеры паролей.

Иллюстрация: меры защиты

Рис. 9: Меры защиты

Фишинг

Ссылки

Фишинговые ссылки подделываются под настоящие, но содержат небольшие отличия.

Иллюстрация: фишинговые ссылки

Рис. 10: Ссылки

От кого приходит фишинг

Фишинговое письмо может прийти даже от знакомого — если его аккаунт взломан.

Иллюстрация: фишинг от знакомого

Рис. 11: Фишинг от знакомого

Вредоносное ПО

Вирусы

Вирусы — это вредоносные программы, цель которых — нанести ущерб пользователю.

Иллюстрация: вирус

Рис. 12: Тип вируса

Троян

Троян — вредоносная программа, маскирующаяся под легальное Π O.

Иллюстрация: троян

Рис. 13: Троян

Безопасность мессенджеров

Обмен ключами

При первом сообщении между пользователями происходит обмен ключами шифрования.

Иллюстрация: формирование ключа

Рис. 14: Формирование ключа

Сквозное шифрование

Сообщения шифруются на стороне отправителя и расшифровываются только получателем.

Иллюстрация: сквозное шифрование

Рис. 15: Сквозное шифрование

Выводы

Выводы

- Изучены методы шифрования и защиты устройств
- Рассмотрены надежные способы хранения паролей