▼ NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

▼ Import NumPy as np

```
import numpy as np
```

▼ Create an array of 10 zeros

▼ Create an array of 10 ones

```
np.ones(10)
array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
```

▼ Create an array of 10 fives

```
np.full(10,5)

array([5, 5, 5, 5, 5, 5, 5, 5, 5, 5])
```

▼ Create an array of the integers from 10 to 50

```
np.arange(10,51)

array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
```

▼ Create an array of all the even integers from 10 to 50

```
np.arange(10,51,2)

array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50])
```

▼ Create a 3x3 matrix with values ranging from 0 to 8

▼ Create a 3x3 identity matrix

▼ Use NumPy to generate a random number between 0 and 1

```
np.random.rand()
0.013271747966982606
```

▼ Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

```
np.random.randn(25)

array([-1.26017564, 0.53158675, -0.3162218 , -0.28575923, -1.38738975, -0.14925411, 0.56903193, -0.84336426, -1.62145382, 0.05054008, -0.50096727, 0.56841313, 0.13310042, -2.97079152, 0.14670392, 1.18248236, 0.552154 , 0.60857144, -0.62658178, 0.14490813, -0.24592704, 1.08710508, 1.80381859, 1.23860156, 0.39527548])
```

▼ Create the following matrix:

▼ Create an array of 20 linearly spaced points between 0 and 1:

```
np.linspace(0, 1, 20)

array([0. , 0.05263158, 0.10526316, 0.15789474, 0.21052632, 0.26315789, 0.31578947, 0.36842105, 0.42105263, 0.47368421, 0.52631579, 0.57894737, 0.63157895, 0.68421053, 0.73684211, 0.78947368, 0.84210526, 0.89473684, 0.94736842, 1.
```

▼ Numpy Indexing and Selection

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

```
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[3,4]
     20
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[:3, 1:2]
     array([[ 2],
            [7],
            [12]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[4, :]
     array([21, 22, 23, 24, 25])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[3:, :]
     array([[16, 17, 18, 19, 20],
            [21, 22, 23, 24, 25]])
```

- ▼ Now do the following
- ▼ Get the sum of all the values in mat

```
mat = np.arange(1,26).reshape(5,5)
np.sum(mat)
325
```

▼ Get the standard deviation of the values in mat

```
np.std(mat)
7.211102550927978
```

▼ Get the sum of all the columns in mat

```
np.sum(mat, axis=0)
    array([55, 60, 65, 70, 75])
```

Double-click (or enter) to edit

✓ 0s completed at 12:13 PM

×