ST 705 Linear models and variance components Lab practice problem set 6

February 10, 2020

1. Prove that if $\lambda^{(1)'}\beta, \ldots, \lambda^{(k)'}\beta$ are estimable, then so is

$$\sum_{j=1}^{k} d_j \lambda^{(j)'} \beta,$$

for any scalar constants d_1, \ldots, d_k .

- 2. Given an example using the one-way ANOVA model from Section 3.4 to show that if $\lambda'\beta$ is not estimable, then $\lambda'\widehat{\beta}$ is not unbiased.
- 3. Consider the model $Y_{ij} = \mu + \alpha_i + \beta_i x_{ij} + U_{ij}$, for $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$. Further, assume that $\sum_{j=1}^{m} (x_{ij} \bar{x}_{i\cdot})^2 > 0$ for all $i \in \{1, ..., n\}$. Derive the necessary and sufficient conditions for an estimable function $\lambda' \gamma$, where $\gamma := (\mu, \alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n)'$.