GEOMETRIA ANALÍTICA - SEMANA 8 Planos, retas e mudança de coordenadas

Professor: Victor M. Cunha

Instituto de Matemática e Estatística (IME) - UFBA

- 1 Distância entre ponto e reta
- 2 Distância entre ponto e plano
- 3 Distância entre retas
- 4 Mudança de Coordenadas
- 5 Translações
- 6 Rotações

- 1 Distância entre ponto e reta
- 2 Distância entre ponto e plano
- 3 Distância entre retas
- 4 Mudança de Coordenadas
- 5 Translações
- 6 Rotações

- Definimos a distância entre o ponto P e a reta r: $A + \lambda \vec{r}$ como a menor distância entre P e um ponto Q da reta.
- lacksquare Geometricamente, esta será a distância entre P e sua projeção ortogonal sobre r.
- Deste modo, se decompormos $\vec{v} = \overrightarrow{AP}$ em uma componente paralela à r e outra perpendicular, temos:

$$\vec{v} = proj_{\vec{r}}\vec{v} + \vec{v}_n$$

e a distância entre o ponto e a reta será dada por $d_{Pr} = \|\vec{v}_n\|$.

DISTÂNCIA ENTRE PONTO E RETA

- Alternativamente, podemos considerar o triângulo formado pelos pontos A, $A + \vec{r}$ e P.
- lacktriangle Geometricamente, a área deste triângulo será dada por $S = \frac{b \cdot h}{2} = \frac{1}{2} \, \| \vec{r} \| \cdot d_{Pr}$
- lacksquare Por outro lado, a partir do produto vetorial temos $S=rac{1}{2}\left\| \vec{r} imes\overrightarrow{AP}
 ight\|.$ Deste modo:

- Calcule a distância do ponto P à reta r:
 - $ightharpoonup r: (1,0,1) + \lambda(2,1,-1) e P(1,1,2).$
 - $ightharpoonup r: (-1, -2, 1) + \lambda(1, 1, -2) e P(1, 0, -3).$
 - $r: \begin{cases} x-y=1 \\ x+y-z=0 \end{cases}$ e P(1,1,-1).
- Encontre os pontos da reta r: $\begin{cases} x+y=2\\ x=y+z \end{cases}$ que distam $\sqrt{\frac{14}{3}}$ de s: x=y=z+1.
- Encontre os pontos de r: x-1=2y=z que equidistam de s: $(2,0,0)+\lambda(0,1,0)$ e t: $\mu(0,0,1)$.
- Encontre o ponto do eixo x mais próximo da reta r: $(0,1,-1) + \lambda(1,2,-1)$.
- Um quadrado ABCD tem a diagonal BD contida na reta r: $\begin{cases} x=1\\ y=z \end{cases}$. Sabendo que A é a origem, determine os outros vértices.
- lacktriangle Determine a equação da superfície cilíndrica de eixo z e raio 1u.c.

- 1 Distância entre ponto e reta
- 2 Distância entre ponto e plano
- 3 Distância entre retas
- 4 Mudança de Coordenadas
- 5 Translações
- 6 Rotações

Distância entre ponto e plano

- Definimos a distância entre o ponto $P(x_0, y_0, z_0)$ e o plano π : Ax + By + Cz + D = 0 como a menor distância entre P e um ponto Q do plano.
- Geometricamente, esta será a distância entre P e sua projeção ortogonal P' sobre π .
- Dado $M \in \pi$ um ponto qualquer do plano, considere a decomposição de $\overrightarrow{v} = \overrightarrow{MP}$ em uma componente paralela à π e outra perpendicular:

$$\vec{v} = \vec{v}_p + \vec{v}_n$$

e a distância entre o ponto e o plano é dada pelo módulo da componente perpendicular $d_{P\pi} = \|\vec{v}_n\|$.

■ A partir do vetor $\vec{n} = (A, B, C)$ normal ao plano, temos $\vec{v}_n = proj_{\vec{n}}\vec{v}$, e:

$$d_{P\pi} = \|proj_{\vec{n}}\vec{v}\| = \frac{|\vec{n} \cdot \overrightarrow{MP}|}{\|\vec{n}\|}$$
$$= \frac{|A(x_0 - x_M) + B(y_0 - y_M) + C(z_0 - z_M)|}{\sqrt{A^2 + B^2 + C^2}}$$

Finalmente, como $M \in \pi$, temos $-Ax_M - By_M - Cz_M = D$ e:

$$d_{P\pi} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

deste modo, obtemos uma fórmula para o cálculo da distância entre um ponto e um plano a partir da equação geral do plano.

DISTÂNCIA ENTRE PLANOS E ENTRE PLANO E RETA

- A distância entre o plano α e a reta r é definida como a menor distância entre um ponto $A \in \alpha$ do plano e um ponto $R \in r$ da reta.
- Analogamente, a distância entre dois planos α e β é definida como a menor distância entre um ponto $A \in \alpha$ e um ponto $B \in \beta$.
- Note que caso dois planos, ou um plano e uma reta, sejam concorrentes, a distância entre eles é nula, dado que eles têm um ponto em comum.
- Para calcular a distância entre dois planos paralelos, esta é igual à distância entre um ponto qualquer de um um dos planos e o outro.
- A distância entre uma reta e um plano paralelos é igual à distância entre um ponto qualquer da reta e o plano.
- Note que, no caso de um plano e uma reta, não poderíamos utilizar a distância entre um ponto qualquer do plano e a reta, dado que esta dependeria do ponto escolhido.

- Calcule a distância do ponto P ao plano π :
 - π : 2x y + z 1 = 0 e P(-1, 0, 1).
 - π : x + 2y 3z + 1 = 0 e P(2, -3, -1).
 - $\pi: (1,0,2)\lambda(-1,1,-1) + \mu(0,2,1) \text{ e } P(1,1,1).$
- Encontre os pontos da reta r: $\begin{cases} x+y=2\\ x=y+z \end{cases}$ que distam $\sqrt{6}$ de π : x-2y-z=1.
- Determine uma equação para uma reta que dista 1u.c. dos planos α : x+y+z=1 e β : x-z=0.
- Determine o ponto do plano π : 2x + y 2z = 3 mais próximo da origem.
- Determine uma equação geral do plano π que contém a reta r: $(1,0,1) + \lambda(1,1,-1)$ e dista $\sqrt{2}$ do ponto P(1,1,-1).
- Prove que todo plano que passa pelo ponto médio de um segmento \overline{PQ} é equidistante de P e Q.

- 1 Distância entre ponto e reta
- 2 Distância entre ponto e plano
- 3 Distância entre retas
- 4 Mudança de Coordenadas
- 5 Translações
- 6 Rotações

DISTÂNCIA ENTRE RETAS

- A distância entre as retas r e s é definida como a menor distância entre um ponto $R \in r$ e um ponto $S \in s$.
- Caso as retas sejam concorrentes, a distância entre elas será nula, dado que elas têm um ponto em comum. Caso elas sejam paralelas, ela será igual à distância entre um ponto qualquer de uma das retas e a outra.
- Para retas reversas, no entanto, os pontos $R' \in r$ e $S' \in s$ tais que $d_{rs} = d_{R'Q'}$ estão bem definidos.

■ Dadas as retas r: $A + \lambda \vec{r}$ e s: $B + \mu \vec{s}$, considere a decomposição de $\vec{v} = \overrightarrow{AB}$ em componentes paralelas e perpendicular às retas r e s:

$$\vec{v} = \vec{v}_r + \vec{v}_s + \vec{v}_n$$

onde $\vec{v}_r//\vec{r}$, $\vec{v}_s//\vec{s}$ e \vec{v}_n é perpendicular à \vec{r} e \vec{s} .

- A distância entre as retas é então dada pela norma da componente perpendicular $d_{rs} = \|\vec{v}_n\|$.
- Para uma forma direta de obter $\|\vec{v}_n\|$, considere o vetor $\vec{n} = \vec{r} \times \vec{s}$ perpendicular à ambas as retas. Temos então $\vec{v}_n = proj_{\vec{n}}\vec{v}$ e:

$$d_{rs} = \|proj_{\vec{n}}\vec{v}\| = \frac{|\vec{n} \cdot \overrightarrow{AB}|}{\|\vec{n}\|}$$

lacksquare Finalmente, pela definição do produto vetorial, temos $|\vec{n}\cdot\overrightarrow{AB}|=|det(\vec{r},\vec{s},\overrightarrow{AB})|$ e:

$$d_{rs} = \frac{|det(\vec{r}, \vec{s}, \overrightarrow{AB})|}{\|\vec{r} \times \vec{s}\|}$$

■ Geometricamente, podemos interpretar esta fórmula a partir do volume $V = |det(\vec{r}, \vec{s}, \overrightarrow{AB})|$ do paralelepípedo formado por \vec{r}, \vec{s} e \overrightarrow{AB} , que é dado pela área da base $(A = ||\vec{r} \times \vec{s}||)$ vezes a altura $(h = d_{rs})$.

- Calcule a distância entre as retas r e s:
 - $r: (2,1,0) + \lambda(-1,1,-1) es: (0,-1,1) + \mu(1,2,-3)$
 - $r: \frac{1-x}{2} = 2y = z e s: (0,0,2) + \mu(4,-1,-2).$
 - $r: \begin{cases} \overline{x} = z 1 \\ y = 3z 2 \end{cases} es: \begin{cases} 3x 2z + 3 = 0 \\ y z 2 = 0 \end{cases}$
 - $r: (1,1,0) + \lambda(0,2,1)$ e $s: (-2,4,0) + \mu(-3,1,-1)$
- Determine o ponto da reta r: $(1,2,0) + \lambda(1,-1,1)$ mais próximo da reta s: $(0,1,0) + \mu(2,1,0)$.
- Para as retas da questão anterior, determine a reta t perpendicular à r e s. O que podemos dizer quanto aos pontos de interseção de t com r e s?
- Determine uma equação geral para uma reta paralela à r: x+1=y-2=z+3 e que dista 1u.c. dos eixos x e y.

- 1 Distância entre ponto e reta
- 2 Distância entre ponto e plano
- 3 Distância entre retas
- 4 Mudança de Coordenadas
- 5 Translações
- 6 Rotações

Mudança de Coordenadas

- A escolha de um sistema de coordenadas diferente do canônico $\{O, \vec{i}, \vec{j}, \vec{k}\}$ pode ser muito conveniente em problemas de geometria analítica.
- Podemos querer simplificar os cálculos ou explorar simetrias do problema a partir de outras coordenadas.
- Considere, por exemplo, o cilindro de raio r e eixo dado pela reta 2x+1=y-2=z. A equação deste cilindro é complexa, mas se considerarmos um sistema de coordenadas ortonormal onde o eixo z coincide com esta reta, ela se reduz a $x^2+y^2=r^2$.
- Veremos então como relacionar as coordenadas em um sistema $E = \{O^e, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ com as coordenadas em outro sistema $F = \{O^f, \vec{f}_1, \vec{f}_2, \vec{f}_3\}$.
- Em particular, dado o ponto $P = (u, v, w)_F$ representado no sistema F, queremos encontrar as coordenadas $(x, y, z)_E$ de P em E.

Quando dizemos que as coordenadas de P na base F são $(u, v, w)_F$, isto significa que:

$$\overrightarrow{O^fP} = u\overrightarrow{f_1} + v\overrightarrow{f_2} + w\overrightarrow{f_3}$$

$$P = O_F + u\overrightarrow{f_1} + v\overrightarrow{f_2} + w\overrightarrow{f_3}$$

■ Deste modo, se as coordenadas de O^f , $\vec{f_1}$, $\vec{f_2}$ e $\vec{f_3}$ na base E são $O^f = (h, k, m)_E$, $\vec{f_1} = (a_{11}, a_{21}, a_{31})_E$, $\vec{f_2} = (a_{12}, a_{22}, a_{32})_E$ e $\vec{f_3} = (a_{13}, a_{23}, a_{33})_E$, temos:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} h \\ k \\ m \end{pmatrix} + u \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + v \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} + w \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$$
$$\begin{cases} x = h + a_{11}u + a_{12}v + a_{13}w \\ y = k + a_{21}u + a_{22}v + a_{23}w \\ z = m + a_{31}u + a_{32}v + a_{33}w \end{cases}$$

 \blacksquare Temos, portanto, equações que nos permitem converter as coordenadas do ponto P do sistema F para o sistema E.

■ Podemos também expressar estas equações matricialmente. De fato, sendo $P_E = (x, y, z)$ e $P_F = (u, v, w)$ as coordenadas de P em E e F, respectivamente, e definindo a matriz M_{ef} como:

$$M_{ef} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

temos então:

$$P_E = O_E^f + M_{ef}P_F$$

- A matrix M_{ef} é a matriz de mudança das coordenadas F para E.
- De modo geral, as bases $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ e $\{\vec{f}_1, \vec{f}_2, \vec{f}_3\}$ não precisam ser ortonormais. Lembre, no entanto, que as fórmulas de produto escalar, determinante, produto vetorial e cálculo de distâncias apenas são válidas em bases ortonormais.

■ Sendo $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ e $\{\vec{f}_1,\vec{f}_2,\vec{f}_3\}$ bases do \mathbb{R}^3 , a relação entre (x,y,z) e (u,v,w) é unívoca. A matriz M_{ef} é portanto inversível, e podemos representar P_F em função de P_E como:

$$P_{F} = -M_{ef}^{-1}O_{E}^{f} + M_{ef}^{-1}P_{E}$$

$$P_{F} = O_{F}^{e} + M_{fe}P_{E}$$

onde $O_F^e=-M_{ef}^{-1}O_E^f$ são as coordenadas de O^e na base F e $M_{fe}=M_{ef}^{-1}$ é a matriz de mudança de coordenadas de E para F.

- Deste modo, podemos converter as coordenadas de um ponto de F para E ou vice-e-versa. Também podemos relacionar as equações para lugares geométricos (retas, planos, esferas...) entre uma base e outra, como veremos nos exercícios.
- Muitas vezes uma destas bases é a canônica. Note que isto, no entanto, não é necessário.

Exercícios

- Considere as bases $E = \{O, \vec{i}, \vec{j}, \vec{k}\}$ e $F = \{O^f, \vec{f_1}, \vec{f_2}, \vec{f_3}\}$, onde $O^f(-1, 1, -1)$, $\vec{f_1} = (1, 1, 0), \vec{f_2} = (-1, 1, 0)$ e $\vec{f_3} = (0, 0, 2)$.
 - ▶ Determine as equações de mudança de base de F para E. Represente o ponto $(-3,2,2)_F$ em E.
 - lacktriangle Determine as equações de mudança de base de E para F. Represente o ponto $(1,3,-1)_F$ em E.
 - Considere a reta $r: (1,-1,0)_F + \lambda(2,1,-1)_F$ e o plano $\alpha: 2u+v-2w=1$, representados no sistema F. Determinar suas equações nas coordenadas E.
- Mostre que mudanças de base levam retas em retas e planos em planos.
- Considere as bases $E = \{O, \vec{i}, \vec{j}\}$ e $F = \{O^f, \vec{f_1}, \vec{f_2}\}$, onde $O^f(2, 1), \vec{f_1} = (3, 0)$ e $\vec{f_2} = (2, 0)$.
 - ightharpoonup Determine as equações de mudança de base de F para E. Interprete geometricamente.
 - Considere γ : $u^2 + v^2 = 1$ uma circunferência em F. Determine a equação de γ em E.
- Sejam E e F sistemas de coordenadas ortonormais. Mostre que M_{ef} é tal que $M_{ef}^{\intercal}M_{ef}=I$, onde I é a matriz identidade. Matrizes assim são ditas unitárias.

- 1 Distância entre ponto e reta
- 2 Distância entre ponto e plano
- 3 Distância entre retas
- 4 Mudança de Coordenadas
- 5 Translações
- 6 Rotações

- Translações são mudanças de coordenadas onde apenas a origem é modificada. Ou seja, onde $M_{ef} = I$.
- Sendo $O_E^f=(h,k,m)$, temos que as coordenadas de P em E podem ser expressas a partir das coordenadas em F como:

$$P_E = O_E^f + P_F$$

$$\begin{cases} x = h + u \\ y = k + v \\ z = m + w \end{cases}$$

■ Note que a transformação inversa também é uma translação, dada por:

$$P_F = -O_E^f + P_E$$

ou seja, u = x - h, v = y - k e w = z - k.

Exercícios

- Considere uma translação onde E é o sistema de coordenadas canônico do \mathbb{R}^3 e a origem de F é o ponto (2,-1,1).
 - ► Determine as equações desta translação.
 - Considere a esfera λ : $u^2 + v^2 + w^2 = 2$ em F. Determine a equação de λ em E
- Sejam r e r' duas retas paralelas. Mostre que r' pode ser obtida a partir de r através de uma translação.
- Sejam α e α' dois planos paralelos. Mostre que α' pode ser obtido a partir de α através de uma translação.
- Mostre que toda a equação da forma $y = ax^2 + bx + c$ pode ser obtida a partir de $v = au^2$ via translações.
- Mostre que toda a equação da forma $z = ax^2 + by^2 + cx + dy + e$ pode ser obtida a partir de $w = au^2 + bv^2$ via translações.
- Mostre que a composição de duas translações é uma translação.

- 1 Distância entre ponto e reta
- 2 Distância entre ponto e plano
- 3 Distância entre retas
- 4 Mudança de Coordenadas
- 5 Translações
- 6 Rotações

6 30

Rotações no Plano

- Rotações consistem em mudanças de coordenadas onde a origem não se altera e a nova base $\{\vec{f_1}, \vec{f_2}\}$ pode ser obtida a partir da base antiga $\{\vec{e_1}, \vec{e_2}\}$ através de uma rotação.
- Considerando no plano uma rotação de θ no sentido anti-horário, a nova base pode ser expressa a partir da antiga como:

$$\vec{f}_1 = \cos\theta \vec{e}_1 + \sin\theta \vec{e}_2$$

$$\vec{f}_2 = -\sin\theta \vec{e}_1 + \cos\theta \vec{e}_2$$

$$\begin{cases} x = (\cos\theta)u - (\sin\theta)v \\ y = (\sin\theta)u + (\cos\theta)v \end{cases}$$

$$M_{ef} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Rotações no Espaço

- Rotações no espaço são consideravelmente mais complexas do que no plano.
- Agora não podemos mais definir uma rotação apenas a partir de um ângulo. Precisamos também do eixo em torno do qual estamos rotacionando.
- Note, no entanto, que rotações são transformações rígidas. Ou seja, se a base original era ortonormal, a nova base também será. A matriz de rotação será portanto unitária.
- Além disto, rotações preservam a orientação. A partir destas duas propriedades, podemos definir rotações no espaço.
- De fato, dadas duas bases ortonormais de mesma orientação, sempre existe uma rotação que transforma uma delas na outra. Deste modo, definimos rotações como transformações onde a origem não se altera e a matriz M_{ef} satisfaz:

$$M_{ef}^{\mathsf{T}} M_{ef} = I \qquad det(M_{ef}) = 1$$

Rotações no Espaço

- Rotações em torno dos eixos coordenados são particularmente úteis. Note que ao rotacionarmos em torno do eixo z, o vetor \vec{k} não se altera e temos uma rotação de θ no sentido anti-horário no plano xy.
- A matriz de transformação é então dada por:

$$R_{\theta}^{z} = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

podemos definir de modo análogo rotações em torno dos eixos x e y:

$$R_{\theta}^{y} = \begin{pmatrix} sen \theta & 0 & cos \theta \\ 0 & 1 & 0 \\ cos \theta & 0 & -sen \theta \end{pmatrix} \qquad R_{\theta}^{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & cos \theta & -sen \theta \\ 0 & sen \theta & cos \theta \end{pmatrix}$$

- Determine no plano a transformação associada à uma rotação de $\pi/4$ no sentido anti-horário. Considere a parábola $\alpha\colon v=au^2$ nas novas coordenadas. Determine a equação desta parábola nas coordenadas antigas.
- Mostre que a composição de uma rotação de θ com uma rotação de φ no plano corresponde à uma rotação de $\theta + \varphi$.
- lacksquare Seja $M_{ef} \in \mathbb{R}^{2 imes 2}$ uma matriz de rotação no plano.
 - ► Mostre que $M_{ef}^{\mathsf{T}} M_{ef} = I$. Conclua que distâncias são invariantes em rotações.
 - Mostre que $\det(M_{ef})=1$. Conclua que rotações preservam a orientação.
- Mostre que a composição de duas rotações é também uma rotação.
- Considere no espaço uma rotação de $\pi/4$ em torno do eixo z, seguida de uma rotação de $\pi/2$ em torno do eixo x. Determine a equação desta transformação.
- Considere o lugar geométrico de equação $x^2 + xy + y^2 = 1$. Encontre uma rotação que elimine o termo xy desta equação.