Machine learning II

Learning theory

Souhaib Ben Taieb

February 23, 2022

University of Mons

Table of contents

```
Proof that m_{\mathcal{H}}(N) is polynomial (if there is any break point)

Break point

Bounding m_{\mathcal{H}}(N)
```

Proof that $m_{\mathcal{H}}(N)$ can replace M

Proof that $m_{\mathcal{H}}(N)$ is polynomial (if there is any break point)

Table of contents

Proof that $m_{\mathcal{H}}(N)$ is polynomial (if there is any break point)

Break point

Bounding $m_{\mathcal{H}}(N)$

Proof that $m_{\mathcal{H}}(N)$ can replace N

Main result

Main result

No break point
$$\implies$$
 $m_{\mathcal{H}}(N) = 2^N$

Any break point
$$\implies$$
 $m_{\mathcal{H}}(N)$ is **polynomial** in N

© M Greator: Yaser Abu-Mostafa - LFD Lecture 5

19/20

Break point

k is a break point if $m_{\mathcal{H}}(k) < 2^k$

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	1	2	3	4	5
2-D perceptron					
1-D pos. ray					
2-D pos. rectangles	2	4	8	16	$< 2^5 \cdots$

Quiz I

For every set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$, \mathcal{H} implements $< 2^{k^*}$ dichotomies. Which statement(s) is (are) true?

- 1. k^* is a break point
- 2. k^* is not a break point
- 3. all $k \ge k^*$ are break points
- 4. all $k < k^*$ are break points
- 5. this has nothing to do with break points!

Quiz I

For every set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$, \mathcal{H} implements $< 2^{k^*}$ dichotomies:

- 1. k^* is a break point.
- 2. k^* is not a break point.
- 3. all $k \ge k^*$ are break points.
- 4. all $k < k^*$ are break points.
- 5. this has nothing to do with break points!

Quiz II

To show that k is **not** a break point for \mathcal{H} :

- 1. Show a set of k points x_1, \ldots, x_k which \mathcal{H} can shatter.
- 2. Show \mathcal{H} can shatter any set of k points.
- 3. Show a set of k points x_1, \ldots, x_k which \mathcal{H} cannot shatter.
- 4. Show \mathcal{H} cannot shatter any set of k points.
- 5. Show $m_{\mathcal{H}}(k) = 2^k$.

7

Quiz II

To show that k is **not** a break point for \mathcal{H} :

- 1. Show a set of k points x_1, \ldots, x_k which \mathcal{H} can shatter.
- 2. Show \mathcal{H} can shatter any set of k points. (Overkill)
- 3. Show a set of k points x_1, \ldots, x_k which \mathcal{H} cannot shatter.
- 4. Show \mathcal{H} cannot shatter any set of k points.
- 5. Show $m_{\mathcal{H}}(k) = 2^k$.

Quiz III

To show that k is a break point for \mathcal{H} :

- 1. Show a set of k points x_1, \ldots, x_k which \mathcal{H} can shatter.
- 2. Show \mathcal{H} can shatter any set of k points.
- 3. Show a set of k points x_1, \ldots, x_k which \mathcal{H} cannot shatter.
- 4. Show \mathcal{H} cannot shatter any set of k points.
- 5. Show $m_{\mathcal{H}}(k) = 2^k$.

Quiz III

To show that k is a break point for \mathcal{H} :

- 1. Show a set of k points x_1, \ldots, x_k which \mathcal{H} can shatter.
- 2. Show \mathcal{H} can shatter any set of k points.
- 3. Show a set of k points x_1, \ldots, x_k which \mathcal{H} cannot shatter.
- 4. Show \mathcal{H} cannot shatter any set of k points.
- 5. Show $m_{\mathcal{H}}(k) = 2^k$.

Back to our combinatorial puzzle

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0

Try to add a 6th dichotomy.

We cannot add a 6th dichotomy

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	•	•	0

If k = 2 is a break point, the maximum number of dichotomies on N = 4 points is 5.

Intuition: any break point implies a huge combinational restriction, i.e. an enormous constraint on the number of dichotomies. The number of dichotomies, which is equal to 2^N (without a break point) will reduce to a polynomial (with a break point).

Table of contents

```
Proof that m_{\mathcal{H}}(N) is polynomial (if there is any break point)

Break point

Bounding m_{\mathcal{H}}(N)
```

Proof that $m_{\mathcal{H}}(N)$ can replace M

Bounding $m_{\mathcal{H}}(N)$

• To show $m_{\mathcal{H}}(N)$ is polynomial, we will show that

$$m_{\mathcal{H}}(N) \leq \cdots \leq \cdots \leq$$
 a polynomial

- The key quantity is B(N, k) which gives the <u>maximum</u> number of dichotomies on N points with break point k.
- How many dichotomies can you list on 4 points with break point 2?

$$B(3,2) = 4 (< 8)$$

$$B(4,2) = 5 (< 16)$$

$m_{\mathcal{H}}(N)$ is bounded by B(N, k)

Suppose that \mathcal{H} has a break point at k. Then

$$m_{\mathcal{H}}(N) \leq B(N, k)$$
.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	 \mathbf{x}_N
0	0	0	0	 •
0	0	0	•	 0
0	0	•	0	 0
0	•	0	0	 0
•	0	0	0	 •
0	0	•	•	 •
0	•	0	•	 0
:	:	÷	:	 :

- Consider any k points. They cannot be shattered (otherwise k woud not be a break point)
- B(N, k) is largest such list

$m_{\mathcal{H}}(N)$ is bounded by B(N, k)

Suppose that \mathcal{H} has a break point at k. Then

$$m_{\mathcal{H}}(N) \leq B(N, k).$$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	 \mathbf{x}_N
0	0	0	0	 •
0	0	0	•	 0
0	0	•	0	 0
0	•	0	0	 0
•	0	0	0	 •
0	0	•	•	 •
0	•	0	•	 0
:	÷	÷	÷	 :

- Consider any k points. They cannot be shattered (otherwise k woud not be a break point)
- B(N, k) is largest such list

How can we bound B(N, k)?

$\overline{B(N,k)}$ for boundary cases

- B(N,1) = ?
- B(1, k) = ? for k > 1
- B(N, N) = ?

B(N, k) for boundary cases

- B(N,1) = ?
- B(1, k) = ? for k > 1
- B(N, N) = ?
- B(N,1)=1
- B(1, k) = 2 for k > 1
- $B(N, N) = 2^N 1$

We then assume $N \ge 2$ and $k \ge 2$ and try to develop a **recursion**.

Let us try to bound B(4,3)

How many dichotomies can you list on 4 points with break point 3 (i.e. no subset of 3 is shattered).

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	0	•	•
0	•	0	•
•	0	0	•
0	•	•	0
•	0	•	0
•	•	0	0

We need to find a recursion, i.e. bound B(4,3) using $B(3,\cdot)$.

Let us try to bound B(4,3)

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	0	•	•
0	•	0	•
•	0	0	•
0	•	•	0
•	0	•	0
•	•	0	0

- Some dichotomies (out of the 2^4) are missing because of the break point constraint (k = 3). The remaining dichotomies are unique.
- What can we say about the prefix (x_1, x_2, x_3) of these remaining dichotomies?

Two types of dichotomies

Prefix (x_1, x_2, x_3) appears once or twice.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	0	•	•
0	•	0	•
•	0	0	•
0	•	•	0
•	0	•	0
•	•	0	0

ightarrow Let us reorder the dichotomies to simplify the couting.

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
B	0		•	•
ρ	0	•	0	•
	•		0	•
				1

- α : Prefix $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ appears once
- β : Prefix (x_1, x_2, x_3) appears twice

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
B	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
-	0	0	0	•
В	0		•	•
ρ	0	•	0	•
	•		0	•
	•			

- α : Prefix $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ appears once
- β : Prefix (x_1, x_2, x_3) appears twice
- $B(4,3) = \alpha + 2\beta$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0		•	•
ρ	0	•	0	•
	•		0	

- α : Prefix $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ appears once
- β : Prefix (x_1, x_2, x_3) appears twice
- $B(4,3) = \alpha + 2\beta$
- Strategy for bounding $B(4,3) = \alpha + 2\beta$:

$$\alpha + \beta \leq Q$$

$$\beta \leq R$$

$$\implies \alpha + 2\beta \leq Q + R$$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0		•	•
ρ	0	•	0	•
	•		0	•

- α : Prefix $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ appears once
- β : Prefix $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ appears twice
- $B(4,3) = \alpha + 2\beta$
- Strategy for bounding $B(4,3) = \alpha + 2\beta$:

$$\begin{aligned} \alpha + \beta &\leq Q \\ \beta &\leq R \\ \implies \alpha + 2\beta &\leq Q + R \end{aligned}$$

Q = ?, R = ? ⇒ exploit the fact that
 k = 3 is a break point.

First, bound $\alpha + \beta$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0		•	•
ρ	0	•		•
	•			•

•
$$\alpha + \beta \leq ?$$

First, bound $\alpha + \beta$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0		•	•
ρ	0			•
	•			•

- $\alpha + \beta \leq ?$
- $\alpha + \beta$: the total number of <u>different</u> dichotomies on the first 3 points
- No subset of <u>k = 3</u> of these first 3 points can be shattered (since no 3-subset of all 4 points can be shattered).

First, bound $\alpha + \beta$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0		•	•
ρ	0			•
	•			•

- $\alpha + \beta \leq ?$
- $\alpha + \beta$: the total number of <u>different</u> dichotomies on the first 3 points
- No subset of <u>k = 3</u> of these first 3 points can be shattered (since no 3-subset of all 4 points can be shattered).

$$\implies \alpha + \beta \leq B(3,3)$$

Second, bound β

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•		•	0
	•	•	0	0
	0	0	0	0
β	0		•	0
	0	•	0	0
	•		0	0
	0	0	0	•
β	0	0	•	•
	0	•	0	•
	•	0	0	•

Second, bound β

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•		•	0
	•	•	0	0
	0	0	0	0
β	0		•	0
ρ	0	•	0	0
	•		0	0
	0	0	0	•
β	0	0	•	•
	0	•	0	•
	•	0	0	•

- $\beta \leq ?$
- If 2 points are shattered, then using the mirror dichotomies you shatter 3 points

Second, bound β

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•		•	0
	•	•	0	0
	0	0	0	0
β	0		•	0
ρ	0	•		0
	•			0
	0	0	0	•
β	0	0	•	•
ρ	0	•	0	•
	•	0	0	•

- β ≤ ?
 - If 2 points are shattered, then using the mirror dichotomies you shatter 3 points
- $\beta \le B(3,2)$

Combining, to bound $\alpha + 2\beta$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0		•	•
	0	•	0	•
	•		0	•

•
$$B(4,3) = \alpha + \beta + \beta \le B(3,3) + B(3,2)$$

• The argument generalizes to (N, k):

$$B(N,k) \le B(N-1,k) + B(N-1,k-1)$$

Numerical computation of B(N, k) bound

Numerical computation of B(N,k) bound

@ M Greator: Yaser Abu-Mostafa - LFD Lecture 6

8/18

Analytic solution for B(N, k) bound

Sauer's Lemma:

$$B(N, k) \leq \sum_{i=0}^{k-1} {N \choose i}$$

Proof by induction on N.

Proof of Sauer's Lemma

- 1. Verify it for the boundary conditions
 - The statement is true whenever k = 1 or N = 1, by inspection.
 - Since the statement is already true when k=1 (for all values of N) by the initial condition, we only need to worry about $k \geq 2$.
- 2. Suppose $B(N, k) \leq \sum_{i=0}^{k-1} {N \choose i}$ for $k \geq 2$
- 3. Assuming (2), show that $B(N+1,k) \leq \sum_{i=0}^{k-1} {N+1 \choose i}$ for $k \geq 2$.
 - You can use the following Lemma: $\binom{N+1}{i} = \binom{N}{i} + \binom{N}{i-1}$. In other words, when choosing i objects from N + 1 objects, either the first object is not included, in $\binom{N}{i}$ ways, or the first object is included in $\binom{N}{i-1}$ ways.

Proof of Sauer's Lemma

$$B(N+1,k) \leq B(N,k) + B(N,k-1)$$

$$\leq \sum_{i=0}^{k-1} {N \choose i} + \sum_{i=0}^{k-2} {N \choose i}$$

$$= \sum_{i=0}^{k-1} {N \choose i} + \sum_{i=1}^{k-1} {N \choose i-1}$$

$$= 1 + \sum_{i=1}^{k-1} \left[{N \choose i} + {N \choose i-1} \right]$$

$$= 1 + \sum_{i=1}^{k-1} {N+1 \choose i}$$

$$= \sum_{i=0}^{k-1} {N+1 \choose i}$$

It is polynomial!

Theorem. If k is any break point for \mathcal{H} , i.e. $m_{\mathcal{H}}(k) < 2^k$, then

$$m_{\mathcal{H}}(k) \leq B(N,k) \leq \sum_{i=0}^{k-1} {N \choose i}.$$

But, we also have that

$$\sum_{i=0}^{k-1} \binom{N}{i} \le \begin{cases} N^{k-1} + 1 \\ (\frac{eN}{k-1})^{k-1} \end{cases}$$
 (polynomial in N)

 \rightarrow If we can replace M by $m_{\mathcal{H}}(N)$ in the bound, then learning is feasible.

Three examples

$$\sum_{i=0}^{k-1} \binom{N}{i}$$

• \mathcal{H} is **positive rays:** (break point k=2)

$$m_{\mathcal{H}}(N) = N + 1 \le N + 1$$

• \mathcal{H} is **positive intervals**: (break point k = 3)

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \le \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

• \mathcal{H} is 2D perceptrons: (break point k=4)

$$m_{\mathcal{H}}(N) = ? \le \frac{1}{6}N^3 + \frac{5}{6}N + 1$$

© M Greator: Yaser Abu-Mostafa - LFD Lecture 6

12/18

Proof that $m_{\mathcal{H}}(N)$ can replace M

Proof that $m_{\mathcal{H}}(N)$ can replace M

What we want

Instead of:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2 \qquad \mathbf{M} \qquad e^{-2\epsilon^2 N}$$

We want:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2 \, \, \mathbf{m}_{\mathcal{H}}(N) \, \, e^{-2\epsilon^2 N}$$

@ M Greator: Yaser Abu-Mostafa - LFD Lecture 6

14/18

Pictorial proof

Pictorial proof ®

- How does $m_{\mathcal{H}}(N)$ relate to overlaps?
- ullet What to do about $E_{
 m out}$?
- Putting it together

© M Greator: Yaser Abu-Mostafa - LFD Lecture 6

15/18

Overlaps between events

What to do about E_{out} ?

What to do about E_{out}

@ @ Greator: Yaser Abu-Mostafa - LFD Lecture 6

17/18

The Vapnik-Chervonenkis (VC) Inequality

Putting it together

Not quite:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2 m_{\mathcal{H}}(N) e^{-2\epsilon^2 N}$$

but rather:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}$$

The Vapnik-Chervonenkis Inequality

@ M Greator: Yaser Abu-Mostafa - LFD Lecture 6

18/18