Scalable MCMC in degree corrected stochastic block model

Soumyasundar Pal

Dept. of Electrical and Computer Engineering McGill University, Montréal, Québec, Canada

February 11, 2019

Introduction

- Community detection from networks
- Academic collaboration, protein interaction, social networks
- Community: dense internal and sparse external connections
- Earlier approaches: hierarchical clustering, modularity optimization, spectral clustering, clique percolation
- Challenges: handling sparsity, scalability

Introduction

- Heuristic objective function, greedy optimization
- Plethora of techniques^{1 2}
- Numerous quality metrics³
- Principled approach: statistical modelling of community structures

¹S. Fortunato, "Community detection in graphs," *Phys. Rep.*, vol. 486, pp. 75–174, Feb. 2010.

²S. Parthasarathy, Y. Ruan, and V. Satuluri, "Community discovery in social networks: Applications, methods and emerging trends," in *Social Network Data Analytics*, pp. 79–113. Springer US, Boston, MA, Mar. 2011.

³T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly, "Metrics for community analysis: a survey, *ACM Comput. Surv.*, vol. 50, no. 4, pp. 1–37, Aug. 2017.

• Connectivity depends on community membership⁴.

 $^{^4}$ E. Abbe, "Community detection and stochastic block models, *Found. and Trends Commun. and Inform. Theory*, vol. 14, no.1-2, pp. 1162, Jun. 2018.

- Connectivity depends on community membership⁴.
- Stochastic equivalence of nodes within same community

⁴E. Abbe, "Community detection and stochastic block models, *Found. and Trends Commun. and Inform. Theory*, vol. 14, no.1-2, pp. 1162, Jun. 2018.

- Connectivity depends on community membership⁴.
- Stochastic equivalence of nodes within same community

N: no. nodes, K: no. communities

 c_i : membership of node i

$$c_i \in \{1, 2, ..., K\}, \ \mathcal{C} = \{c_i\}_{i=1}^N$$

 $y_{ab} \in \{0,1\}$: (a,b)'th entry in adj. matrix

 $eta_{k\ell} \in (0,1)$: link probability between two nodes in community k and ℓ

⁴E. Abbe, "Community detection and stochastic block models, Found. and Trends Commun. and Inform. Theory, vol. 14, no.1-2, pp. 1162, Jun. 2018.

- Connectivity depends on community membership⁴.
- Stochastic equivalence of nodes within same community

N: no. nodes, K: no. communities

 c_i : membership of node i

$$c_i \in \{1, 2, ..., K\}, \ \mathcal{C} = \{c_i\}_{i=1}^N$$

 $y_{ab} \in \{0,1\}$: (a,b)'th entry in adj. matrix

 $\beta_{k\ell} \in (0,1)$: link probability between two nodes in community k and ℓ

$$y_{ab}|(c_a = k, c_b = \ell) \sim Bernoulli(\beta_{k\ell})$$

⁴E. Abbe, "Community detection and stochastic block models, Found. and Trends Commun. and Inform. Theory, vol. 14, no.1-2, pp. 1162, Jun. 2018.

Stochastic Block Model (SBM)⁵

```
c_i \in \{1,2,...,K\}, \mathcal{C} = \{c_i\}_{i=1}^N y_{ab} \in \{0,1,2,...\}: (a,b)'th entry in adj. matrix \omega_{k\ell} \in \mathbb{R}_+: average number of links between two nodes in community k and \ell
```

 $^{^5}$ B. Karrer and M. E. J. Newman, "Stochastic blockmodels and community structure in networks, *Phys. Rev. E*, vol. 83,no. 1, pp. 016107, Jan. 2011.

Stochastic Block Model (SBM)⁵

community k and ℓ

$$\begin{split} c_i &\in \{1,2,...,K\}, \ \mathcal{C} = \{c_i\}_{i=1}^N \\ y_{ab} &\in \{0,1,2,...\} \colon \ (a,b)\text{'th entry in adj. matrix} \\ \omega_{k\ell} &\in \mathbb{R}_+ \colon \text{average number of links between two nodes in} \end{split}$$

 $egin{aligned} y_{ab} | (c_a = k, c_b = \ell) &\sim extit{Poisson}(\omega_{k\ell}) \,, \ \mathcal{L}(\mathbf{y} | \mathcal{C}, \omega) &= \sum ig(m_{k\ell} \log \omega_{k\ell} - n_k n_\ell \omega_{k\ell} ig) \,, \end{aligned}$

 $^{^5}$ B. Karrer and M. E. J. Newman, "Stochastic blockmodels and community structure in networks, *Phys. Rev. E*, vol. 83,no. 1, pp. 016107, Jan. 2011.

Stochastic Block Model (SBM)⁵

$$c_i \in \{1,2,...,K\}$$
, $\mathcal{C} = \{c_i\}_{i=1}^N$ $y_{ab} \in \{0,1,2,...\}$: (a,b) 'th entry in adj. matrix $\omega_{k\ell} \in \mathbb{R}_+$: average number of links between two nodes in community k and ℓ

$$egin{aligned} y_{ab} | (c_a = k, c_b = \ell) &\sim \textit{Poisson}(\omega_{k\ell}) \,, \ \mathcal{L}(\mathbf{y} | \mathcal{C}, \omega) &= \sum_{k,\ell} (m_{k\ell} \log \omega_{k\ell} - n_k n_\ell \omega_{k\ell}) \,, \end{aligned}$$

where,
$$m_{k\ell} = \sum_{a,b} y_{ab} \mathbf{1}_{\{c_a=k,c_b=\ell\}}$$
 and $n_k = \sum_a \mathbf{1}_{\{c_a=k\}}$

 $^{^5}$ B. Karrer and M. E. J. Newman, "Stochastic blockmodels and community structure in networks, *Phys. Rev. E*, vol. 83,no. 1, pp. 016107, Jan. 2011.

ML estimate:

$$\hat{\omega}_{k\ell} = \frac{m_{k\ell}}{n_k n_\ell}$$

ML estimate:

$$\hat{\omega}_{k\ell} = \frac{m_{k\ell}}{n_k n_\ell}$$

$$\begin{split} \mathcal{L}(\mathbf{y}|\mathcal{C}) &= \max_{\omega} \mathcal{L}(\mathbf{y}|\mathcal{C},\omega) = \sum_{k,\ell} \left(\frac{m_{k\ell}}{m}\right) \log \frac{(m_{k\ell}/m)}{(n_k n_\ell/N^2)}\,, \end{split}$$
 where, $m = \sum_{k,\ell} m_{k,\ell}$.

ML estimate:

$$\hat{\omega}_{k\ell} = \frac{m_{k\ell}}{n_k n_\ell}$$

$$\mathcal{L}(\mathbf{y}|\mathcal{C}) = \max_{\omega} \mathcal{L}(\mathbf{y}|\mathcal{C},\omega) = \sum_{k,\ell} \left(\frac{m_{k\ell}}{m} \right) \log \frac{(m_{k\ell}/m)}{(n_k n_\ell/N^2)},$$
 where, $m = \sum_{k,\ell} m_{k,\ell}$.

Greedy algorithm

pick a random node, place it in a community to maximally increase the objective.

- degree heterogeneity within community
- $\theta_a \in (0,1)$: degree correction parameters

- degree heterogeneity within community
- $\theta_a \in (0,1)$: degree correction parameters

$$egin{aligned} y_{ab} | (c_a = k, c_b = \ell) &\sim \textit{Poisson}(heta_a heta_b \omega_{k\ell}) \,, \ &\sum_a heta_a \mathbf{1}_{\{c_a = k\}} = 1 \,. \end{aligned}$$

- degree heterogeneity within community
- $\theta_a \in (0,1)$: degree correction parameters

$$egin{aligned} y_{ab} | ig(c_a = k, c_b = \ell ig) &\sim \textit{Poisson}(heta_a heta_b \omega_{k\ell} ig) \,, \ &\sum_a heta_a extbf{1}_{\{c_a = k\}} = 1 \,. \end{aligned}$$

$$\mathcal{L}(\mathbf{y}|\mathcal{C}) = \max_{\omega,\theta} \mathcal{L}(\mathbf{y}|\mathcal{C},\omega,\theta) = \sum_{k,\ell} \left(\frac{m_{k\ell}}{m} \right) \log \frac{(m_{k\ell}/m)}{(\kappa_k \kappa_\ell/m^2)},$$

where,
$$\kappa_k = \sum d_a \mathbf{1}_{\{c_a=k\}}$$
 .

Overlapping communities⁶

⁶E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, "Mixed membership stochastic blockmodels," in *J. Mach. Learn.Res.*, vol. 9, pp. 19812014, Jun. 2008.

- Overlapping communities⁶
- ullet Community membership probability: $\pi_{m{a}} \in (0,1)^K, \sum_{k=1}^K \pi_{m{a}k} = 1$

- Overlapping communities⁶
- Community membership probability: $\pi_a \in (0,1)^K, \sum_{k=1}^K \pi_{ak} = 1$
- Prior distributions: $\beta_{k\ell} \sim Beta(\eta), \pi_a \sim Dir(\alpha)$

- Overlapping communities⁶
- ullet Community membership probability: $\pi_{m{a}} \in (0,1)^K, \sum_{k=1}^K \pi_{m{a}k} = 1$
- Prior distributions: $\beta_{k\ell} \sim Beta(\eta), \pi_a \sim Dir(\alpha)$

Generative Model

for any two nodes a and b: sample $Z_{ab} \sim \pi_a$ and $Z_{ba} \sim \pi_b$

sample $Z_{ab} \sim \pi_a$ and $Z_{ba} \sim \pi_b$ sample $y_{ab}|(Z_{ab} = k, Z_{ba} = \ell) \sim Bernoulli(\beta_{k\ell})$

⁶E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, "Mixed membership stochastic blockmodels," in *J. Mach. Learn.Res.*, vol. 9, pp. 19812014, Jun. 2008.

- Overlapping communities⁶
- Community membership probability: $\pi_{a} \in (0,1)^{K}, \sum_{k=1}^{K} \pi_{ak} = 1$
- Prior distributions: $\beta_{k\ell} \sim Beta(\eta), \pi_a \sim Dir(\alpha)$

Generative Model

for any two nodes a and b: sample $Z_{ab} \sim \pi_a$ and $Z_{ba} \sim \pi_b$ sample $y_{ab}|(Z_{ab} = k, Z_{ba} = \ell) \sim Bernoulli(\beta_{k\ell})$

- Posterior inference of $p(\beta, \pi | \mathbf{y})$
- assortative MMSB (a-MMSB): $\beta_{k\ell} = \delta$ for $k \neq \ell$

⁶E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, "Mixed membership stochastic blockmodels," in *J. Mach. Learn.Res.*, vol. 9, pp. 19812014, Jun. 2008.

Variational inference⁷

⁷P. K. Gopalan, S. Gerrish, M. Freedman, D. M. Blei, and D. M. Mimno, "Scalable inference of overlapping communities," in *Proc. Adv. Neural Inf. Proc. Systems*, Dec. 2012.

⁸W. Li, S. Ahn, and M. Welling, "Scalable MCMC for mixed membership stochastic blockmodels," in *Proc. Artificial Intell.and Statist.*, May 2016.

- Variational inference⁷
 - Mean field approximation
 - Stochastic gradient optimization
 - Outperforms traditional techniques

⁷P. K. Gopalan, S. Gerrish, M. Freedman, D. M. Blei, and D. M. Mimno, "Scalable inference of overlapping communities," in *Proc. Adv. Neural Inf. Proc. Systems*, Dec. 2012.

⁸W. Li, S. Ahn, and M. Welling, "Scalable MCMC for mixed membership stochastic blockmodels," in *Proc. Artificial Intell.and Statist.*, May 2016.

- Variational inference⁷
 - Mean field approximation
 - Stochastic gradient optimization
 - Outperforms traditional techniques
- Markov chain Monte Carlo⁸

⁷P. K. Gopalan, S. Gerrish, M. Freedman, D. M. Blei, and D. M. Mimno, "Scalable inference of overlapping communities," in *Proc. Adv. Neural Inf. Proc. Systems*, Dec. 2012.

⁸W. Li, S. Ahn, and M. Welling, "Scalable MCMC for mixed membership stochastic blockmodels," in *Proc. Artificial Intell.and Statist.*, May 2016.

- Variational inference⁷
 - Mean field approximation
 - Stochastic gradient optimization
 - Outperforms traditional techniques
- Markov chain Monte Carlo⁸
 - Stochastic gradient Riemannian Langevin dynamics (SGRLD)
 - Faster convergence
 - Better approximation of posterior

⁷P. K. Gopalan, S. Gerrish, M. Freedman, D. M. Blei, and D. M. Mimno, "Scalable inference of overlapping communities," in *Proc. Adv. Neural Inf. Proc. Systems*, Dec. 2012.

⁸W. Li, S. Ahn, and M. Welling, "Scalable MCMC for mixed membership stochastic blockmodels," in *Proc. Artificial Intell.and Statist.*, May 2016.

Generalization of a-MMSB

⁹S. Pal and M. Coates, "Scalable MCMC in degree corrected stochastic block model," in *Proc. Intl. Conf. Acoust., Speech and Signal Proc*, May 2019 (Accepted).

- Generalization of a-MMSB
- Node specific degree correction parameters: $r_a \in \mathbb{R}$

- Generalization of a-MMSB
- Node specific degree correction parameters: $r_a \in \mathbb{R}$
- Community specific parameters: $q_k > 0$

- Generalization of a-MMSB
- Node specific degree correction parameters: $r_a \in \mathbb{R}$
- Community specific parameters: $q_k > 0$

Generative Model

```
for any two nodes a and b: sample Z_{ab} \sim \pi_a and Z_{ba} \sim \pi_b if Z_{ab} = Z_{ba} = k: sample y_{ab} \sim Bernoulli(logit^{-1}(q_k + r_a + r_b)) else: sample y_{ab} \sim Bernoulli(logit^{-1}(r_a + r_b))
```

⁹S. Pal and M. Coates, "Scalable MCMC in degree corrected stochastic block model," in *Proc. Intl. Conf. Acoust., Speech and Signal Proc*, May 2019 (Accepted).

- Generalization of a-MMSB
- Node specific degree correction parameters: $r_a \in \mathbb{R}$
- Community specific parameters: $q_k > 0$

Generative Model

```
for any two nodes a and b: sample Z_{ab} \sim \pi_a and Z_{ba} \sim \pi_b if Z_{ab} = Z_{ba} = k: sample y_{ab} \sim Bernoulli(logit^{-1}(q_k + r_a + r_b)) else: sample y_{ab} \sim Bernoulli(logit^{-1}(r_a + r_b))
```

- Prior distributions: $r_a \sim \mathcal{N}(0, \sigma^2), q_k \sim \mathcal{N}(0, \sigma^2) \mathbf{1}_{\{a_k > 0\}}$
- Posterior inference of $p(\mathbf{q}, \mathbf{r}, \pi | \mathbf{y})$

⁹S. Pal and M. Coates, "Scalable MCMC in degree corrected stochastic block model," in *Proc. Intl. Conf. Acoust., Speech and Signal Proc*, May 2019 (Accepted).

Metropolis adjusted Langevin algorithm (MALA)

• parameter θ , observed data $\mathbf{X} = \{x_1, x_2, ..., x_N\}$

Metropolis adjusted Langevin algorithm (MALA)

- parameter θ , observed data $\mathbf{X} = \{x_1, x_2, ..., x_N\}$
- prior distribution $p(\theta)$, generative model $p(\mathbf{X}|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$

Metropolis adjusted Langevin algorithm (MALA)

- parameter θ , observed data $\mathbf{X} = \{x_1, x_2, ..., x_N\}$
- prior distribution $p(\theta)$, generative model $p(\mathbf{X}|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$
- posterior distribution: $p(\theta|\mathbf{X}) \propto p(\theta) \prod_{i=1}^{n} p(x_i|\theta)$

Metropolis adjusted Langevin algorithm (MALA)

- parameter θ , observed data $\mathbf{X} = \{x_1, x_2, ..., x_N\}$
- prior distribution $p(\theta)$, generative model $p(\mathbf{X}|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$
- posterior distribution: $p(\theta|\mathbf{X}) \propto p(\theta) \prod_{i=1}^{n} p(x_i|\theta)$

$$\bullet \ \ q(\theta^*|\theta) = \mathcal{N}(\theta^*|\theta + \frac{\epsilon}{2} \Big(\nabla_{\theta} \log p(\theta) + \sum_{i=1}^{N} \nabla_{\theta} \log p(x_i|\theta) \Big), \epsilon I)$$

Metropolis adjusted Langevin algorithm (MALA)

- parameter θ , observed data $\mathbf{X} = \{x_1, x_2, ..., x_N\}$
- prior distribution $p(\theta)$, generative model $p(\mathbf{X}|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$
- posterior distribution: $p(\theta|\mathbf{X}) \propto p(\theta) \prod_{i=1}^{n} p(x_i|\theta)$
- $\bullet \ \ q(\theta^*|\theta) = \mathcal{N}(\theta^*|\theta + \frac{\epsilon}{2} \Big(\nabla_\theta \log p(\theta) + \sum_{i=1}^N \nabla_\theta \log p(x_i|\theta) \Big), \epsilon I)$
- ullet acceptance probability: min $\left(1, rac{p(heta^*|\mathbf{x})q(heta| heta^*)}{p(heta|\mathbf{x})q(heta^*| heta)}
 ight)$

Metropolis adjusted Langevin algorithm (MALA)

- parameter θ , observed data $\mathbf{X} = \{x_1, x_2, ..., x_N\}$
- prior distribution $p(\theta)$, generative model $p(\mathbf{X}|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$
- posterior distribution: $p(\theta|\mathbf{X}) \propto p(\theta) \prod_{i=1}^{n} p(x_i|\theta)$
- $\bullet \ \ q(\theta^*|\theta) = \mathcal{N}(\theta^*|\theta + \frac{\epsilon}{2} \Big(\nabla_\theta \log p(\theta) + \sum_{i=1}^N \nabla_\theta \log p(x_i|\theta) \Big), \epsilon I)$
- acceptance probability: $\min \left(1, \frac{p(\theta^*|\mathbf{x})q(\theta|\theta^*)}{p(\theta|\mathbf{x})q(\theta^*|\theta)}\right)$
- Preconditioning: Riemannian Langevin Dynamics (RLD)

Stochastic gradient Langevin dynamics (SGLD)

• complexity in LD: $\mathcal{O}(N)$

- complexity in LD: $\mathcal{O}(N)$
- stochastic gradient: $\mathcal{O}(n)$ complexity

- complexity in LD: $\mathcal{O}(N)$
- stochastic gradient: $\mathcal{O}(n)$ complexity
- $\bullet \ \nabla_{\theta} \log p(\mathbf{X}|\theta) \approx \frac{N}{n} \sum_{x_{ti} \in \mathbf{X_t}} \nabla_{\theta} \log p(x_{ti}|\theta)$

- complexity in LD: $\mathcal{O}(N)$
- stochastic gradient: $\mathcal{O}(n)$ complexity
- $\nabla_{\theta} \log p(\mathbf{X}|\theta) \approx \frac{N}{n} \sum_{x_{ti} \in \mathbf{X_t}} \nabla_{\theta} \log p(x_{ti}|\theta)$
- ullet annealed step-size schedule $\sum_{t=1}^{\infty} \epsilon_t = \infty$ and $\sum_{t=1}^{\infty} \epsilon_t^2 < \infty$

- complexity in LD: $\mathcal{O}(N)$
- stochastic gradient: $\mathcal{O}(n)$ complexity
- $\bullet \ \nabla_{\theta} \log p(\mathbf{X}|\theta) \approx \frac{N}{n} \sum_{x_{ti} \in \mathbf{X}_{t}} \nabla_{\theta} \log p(x_{ti}|\theta)$
- \bullet annealed step-size schedule $\sum_{t=1}^{\infty} \epsilon_t = \infty$ and $\sum_{t=1}^{\infty} \epsilon_t^2 < \infty$
- no acceptance probability computation

- complexity in LD: $\mathcal{O}(N)$
- stochastic gradient: $\mathcal{O}(n)$ complexity
- $\nabla_{\theta} \log p(\mathbf{X}|\theta) \approx \frac{N}{n} \sum_{x_{ti} \in \mathbf{X_t}} \nabla_{\theta} \log p(x_{ti}|\theta)$
- annealed step-size schedule $\sum_{t=1}^{\infty} \epsilon_t = \infty$ and $\sum_{t=1}^{\infty} \epsilon_t^2 < \infty$
- no acceptance probability computation
- asymptotic convergence¹⁰ to the posterior distribution

Numerical Experiments and Results

	NETSCIENCE	RELATIVITY	HEP-TH	HEP-PH ¹¹
Nodes	1589	5242	9877	12008
Edges	2742	14996	25998	118521

¹¹ J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graph evolution: densification and shrinking diameters," in ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, Mar. 2007

Numerical Experiments and Results

	NETSCIENCE	RELATIVITY	HEP-TH	HEP-PH ¹¹
Nodes	1589	5242	9877	12008
Edges	2742	14996	25998	118521

• held out test set: 10% of the links, same number of non-links

¹¹ J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graph evolution: densification and shrinking diameters," in ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, Mar. 2007

Numerical Experiments and Results

	NETSCIENCE	RELATIVITY	HEP-TH	HEP-PH ¹¹
Nodes	1589	5242	9877	12008
Edges	2742	14996	25998	118521

- held out test set: 10% of the links, same number of non-links
- evaluation metrics:
 - average perplexity:

$$\begin{split} & perp_{avg}(\mathbf{Y_{test}}|\{\pi^{(i)}, q^{(i)}, r^{(i)}\}_{i=1}^T) \\ & = \exp\left(-\frac{\sum\limits_{y_{ab} \in \mathbf{Y_{test}}} \log\left\{\frac{1}{T}\sum\limits_{i=1}^T p(y_{ab}|\pi^{(i)}, q^{(i)}, r^{(i)})\right\}}{|\mathbf{Y_{test}}|}\right). \end{split}$$

- area under ROC (AUC) for link prediction task

¹¹ J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graph evolution: densification and shrinking diameters," in ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, Mar. 2007

Convergence of Perplexity

Figure: Convergence of perplexity for HEP-PH dataset, $\mathcal{K}=50$

Comparison of Perplexity at convergence

Figure: (a) NETSCIENCE, (b) RELATIVITY, (c) HEP-TH and (d) HEP-PH

Comparison of AUC at convergence

Figure: (a) NETSCIENCE, (b) RELATIVITY, (c) HEP-TH and (d) HEP-PH

Conclusion

• MMDCB models the observed graph better than a-MMSB.

- SG-MCMC algorithms scale well to large networks.
- Future work:
 - better generative models
 - efficient mini-batch sampling, variance reduction
 - more advanced SG-MCMC algorithms