MATH-UA 120 Section 7

Ishan Pranav

September 12, 2023

And

The operation and, denoted \wedge , is defined:

$$T \wedge T = T$$
,

$$\top \wedge \bot = \bot$$
,

$$\bot \land \top = \bot$$
,

$$\bot \land \bot = \bot$$
.

\mathbf{Or}

The operation or, denoted \vee , is defined:

$$\top \vee \top = \top,$$

$$\top \lor \bot = \top$$
,

$$\bot \lor \top = \top$$
,

$$\bot \lor \bot = \bot$$
.

Not

The operation not, denoted \neg , is defined:

$$\neg \top = \bot,$$

$$\neg \bot = \top$$
.

Proposition 6

The Boolean expressions $\neg(x \land y)$ and $(\neg x) \lor (\neg y)$ are logically equivalent.

Commutative property of and

$$x \wedge y = y \wedge x$$
.

Commutative property of or

$$x \lor y = y \lor x$$
.

Associative property of and

$$(x \wedge y) \wedge z = x \wedge (y \wedge z).$$

Associative property of or

$$(x \lor y) \lor z = x \lor (y \lor z).$$

True identity

$$x \wedge \top = x$$
.

False identity

$$x \lor \bot = x$$
.

Idemopotency

$$x \wedge x = x$$
.

$$x \lor x = x$$
.

Double negative

$$\neg(\neg x) = x.$$

Distributive property of and

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

Distributive property of or

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Inverse element

$$x \wedge (\neg x) = \bot.$$

 $x \vee (\neg x) = \top.$

De Morgan's laws

$$\neg(x \land y) = (\neg x) \lor (\neg y),$$

$$\neg(x \lor y) = (\neg x) \land (\neg y).$$

Implication

The material conditional operation (also called an *if-then* or *implication*), denoted \rightarrow , is defined:

$$\begin{array}{c|ccc} x & y & x \to y \\ \top & \top & \top \\ \top & \bot & \bot \\ \bot & \top & \top \\ \bot & \bot & \top \end{array}$$

Equivalence

The material biconditional operation (also called an if and only if or equivalence), denoted \leftrightarrow , is defined:

$$\begin{array}{c|ccc} x & y & x \leftrightarrow y \\ \top & \top & \top & \top \\ \top & \bot & \bot \\ \bot & \top & \bot \\ \bot & \bot & \top \end{array}$$

3

Proposition 7

The expressions $x \to y$ and $(\neg x) \lor y$ are logically equivalent.

The columns for $x \to y$ and $(\neg x) \lor y$ are the same, and therefore these expressions are logically equivalent.

Tautology

A Boolean expression is a *tautology* if the evaluation of all possible values of its variables is true.

Contradiction

A Boolean expression is a *contradiction* if the evaluation of all possible values of its variables is false.

Contingency

A Boolean expression is a *contingency* if its evaluation is sometimes true and sometimes false.

1 Calculations

- a. $\top \land \top \land \top \land \top \land \bot = \bot$.
- b. $(\neg \top) \lor \top = \top$.
- c. $\neg(\top \lor \top) = \bot$.
- d. $(\top \lor \top) \land \bot = \bot$.
- e. $\top \lor (\top \land \bot) = \top$.

2 Prove: $(x \land y) \lor (x \land \neg y) = x$

$$(x \wedge y) \vee (x \wedge \neg y) = x \wedge (y \vee \neg y),$$
 distributive property;
= $x \wedge \top$, inverse elements;
= x , identity.

3 Prove: $x \to y = (\neg y) \to (\neg x)$

$$x \to y = (\neg x) \lor y,$$
 Proposition 7;
 $= y \lor (\neg x),$ commutative property;
 $= \neg (\neg y) \lor (\neg x),$ double negative;
 $= (\neg y) \to (\neg x),$ Proposition 7.

We conclude that an *if-then* statement $(x \to y)$ is logically equivalent to its contrapositive, $(\neg y) \to (\neg x)$.

4 Prove: $x \leftrightarrow y = (x \to y) \land (y \to x)$

$$x \leftrightarrow y = ((\neg x) \lor y) \land ((\neg y) \lor x)$$
$$= ((\neg x) \lor y) \land (y \to x)$$
$$= (x \to y) \land (y \to x). \blacksquare$$

5 Prove: $x \to y = (\neg x) \lor y$

We conclude that $x \to y$ implies $(\neg x) \lor y$.