МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»
Тема: Оценка параметров надежности программ по временным
моделям обнаружения ошибок

Студент гр. 8304	Ястребов И.М.
Преподаватель	Ефремов М. А.

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранда, для различных законов распределения времени обнаружения отказов и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20] (см. Таблица 1).

Таблица 1 — Равномерное распределение при n = 30

i	1	2	3	4	5	6	7	8	9	10
X_i	0.203	1.406	2.038	3.394	3.399	3.601	3.928	6.080	6.627	6.760
i	11	12	13	14	15	16	17	18	19	20
X_i	7.744	9.044	9.242	9.901	9.935	10.201	10.410	11.118	12.296	12.651
i	21	22	23	24	25	26	27	28	29	30
X_i	13.280	16.585	16.828	17.216	17.221	17.640	17.663	18.117	18.376	18.389

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.221 > 15.5$$
 условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 2).

Таблица 2 – Значения функций для равномерного распределения при n = 30.

m	31	32	33	34	35	36
f	3.994	3.027	2.558	2.255	2.034	1.863
g	2.783	2.547	2.347	2.177	2.030	1.901
f-g	1.211	0.480	0.211	0.078	0.004	0.038

Минимум разности достигается при m=35. Первоначальное количество ошибок B=m-1=34. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00652$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где $j=n+1,n+2\dots,n+k.$ Результат представлен в таблице 3.

Таблица 3 — Время обнаружения следующих ошибок для равномерного распределения при n=30.

j	31	32	33	34
X_j	38.337	51.116	76.675	153.35

Было рассчитано время до завершения тестирования $t_k=319.479$ дней. Было рассчитано общее время тестирования $t_{\rm oбщ}=630.785$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 4).

i	1	2	3	4	5	6	7	8
X_i	0.055	0.353	0.617	0.750	1.836	2.155	2.792	3.681
i	9	10	11	12	13	14	15	16
X_i	4.065	5.201	6.228	8.689	8.693	9.933	10.013	13.493
i	17	18	19	20	21	22	23	24
X_i	13.594	14.612	15.287	15.841	16.272	16.999	17.329	19.454

Таблица 4 — Равномерное распределение, n = 24.

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.498 > 12.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 5)

Таблица 5 — Расчёт значений функций для равномерного распределения n = 24.

m	25	26	27
f	3.775	2.815	2.354
g	3.199	2.823	2.525
f-g	0.576	0.008	0.171

Минимум разности достигается при m=26. Первоначальное количество ошибок B=m-1=25. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01357$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 6}.$

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения при n=24.

j	25
X_j	73.661

Было рассчитано время до завершения тестирования $t_k=73.661$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=281.615$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 7).

Таблица 7 — Равномерное распределение при n = 18.

i	1	2	3	4	5	6	7	8	9
X_i	0.645	1.514	1.956	2.247	2.833	3.422	3.857	4.030	4.533
i	10	11	12	13	14	15	16	17	18
X_i	4.804	7.131	8.901	10.395	11.018	13.529	17.844	19.564	19.972

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.433 > 9.5$$
 условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 8)

Таблица 8 – Значения функций для равномерного распределения при n=18.

m	19	20	21
f	3.495	2.547	2.097
g	3.233	2.741	2.378
f-g	0.262	0.194	0.281

Минимум разности достигается при m=20. Первоначальное количество ошибок B=m-1=19. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01983$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 9}.$

Таблица 9 — Время обнаружения следующих ошибок для равномерного распределения при n=18.

j	19
X_j	50.417

Было рассчитано время до завершения тестирования $t_k=50.417$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=188.621$ дней.

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b (см Таблица 10).

Таблица 10 – Экспоненциальное распределение при n=30

i	1	2	3	4	5	6	7	8	9	10
X_i	0.318	0.395	0.449	0.927	1.746	2.031	2.397	2.608	3.027	3.034
i	11	12	13	14	15	16	17	18	19	20
X_i	3.085	3.090	3.578	5.072	5.308	5.973	6.723	7.492	7.723	8.298
i	21	22	23	24	25	26	27	28	29	30
X_i	8.303	10.115	10.839	14.835	17.320	20.326	20.349	20.537	21.305	36.644

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 23.057 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 11).

Таблица 11 — Значения функций для экспоненциального распределения при $\mathbf{n}=30.$

m	31	32
f	3.995	3.027
g	3.777	2.354
f-g	0.218	0.327

Минимум разности достигается при m=31. Первоначальное количество ошибок B=m-1=30. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01487$.

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 253.862$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 12).

Таблица 12 – Экспоненциальное распределение, n = 24.

i	1	2	3	4	5	6	7	8
X_i	0.576	0.603	0.644	1.875	2.143	3.535	3.541	4.134
i	9	10	11	12	13	14	15	16
X_i	4.681	5.638	7.234	8.439	8.726	10.032	10.092	12.567
i	17	18	19	20	21	22	23	24
X_i	13.319	13.583	15.575	16.772	25.229	31.017	39.278	46.049

$$A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 18.611 > 12.5$$
 — условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 13).

Таблица 13 – Значения функций для экспоненциального распределения при n = 24.

m	25	26
f	3.776	2.816
g	3.757	3.248
f-g	0.019	0.432

Минимум разности достигается при m=25. Первоначальное количество ошибок B=m-1=24. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01316$.

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 285.293$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b = 0.1 (см Таблица 14).

Таблица 14 - Экспоненциальное распределение при <math>n = 18.

i	1	2	3	4	5	6	7	8	9
X_i	0.678	1.152	3.333	5.447	5.516	6.459	7.688	9.071	9.731

i	10	11	12	13	14	15	16	17	18
X_i	10.830	11.035	12.181	14.092	14.241	24.535	29.257	30.814	33.401

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.225 > 9.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 15).

Таблица 15 — Значения функций для экспоненциального распределения при ${\bf n}=18$

m	19	20	21
f	3.495	2.547	2.097
g	3.116	2.656	2.315
/f-g/	0.379	0.109	0.218

Минимум разности достигается при m=20. Первоначальное количество ошибок B=m-1=19. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01157$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 16}.$

Таблица 16

- Время обнаружения следующих ошибок для релеевского распределения при n=30.

j	19
X_j	86.368

Было рассчитано время до завершения тестирования $t_k=86.368$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=315.838$ дней.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)) (см Таблица 17).

Таблица 17 – Релеевское распределение при <i>n</i> :	= 3	0.
--	-----	----

i	1	2	3	4	5	6	7	8	9	10
X_i	1.666	2.305	3.717	4.457	4.870	5.059	5.359	5.935	6.198	6.687
i	11	12	13	14	15	16	17	18	19	20
X_i	7.037	7.334	7.719	7.736	8.048	8.254	8.464	8.468	8.998	10.016
i	21	22	23	24	25	26	27	28	29	30
X_i	10.164	10.891	11.091	11.259	11.839	12.531	12.878	14.507	14.619	16.423

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.104 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 18).

Таблица 18 – Значения функций для релеевского распределения при n = 30.

m	31	32	33	34	35	36	37	38	39	40
f	3.994	3.027	2.558	2.255	2.034	1.863	1.724	1.608	1.510	1.424
g	2.521	2.326	2.158	2.014	1.887	1.775	1.676	1.587	1.507	1.435
/f-g/	1.437	0.701	0.400	0.241	0.147	0.088	0.048	0.021	0.003	0.011

Минимум разности достигается при m=39. Первоначальное количество ошибок B=m-1=38. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00592$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1,n+2\dots,n+k$. Результат представлен в таблице 19.

Таблица 19 — Время обнаружения следующих ошибок для релеевского распределения при n=30.

j	31	32	33	34	35	36	37	38
X_j	21.101	24.115	28.134	33.761	42.202	56.269	84.404	168.809

Было рассчитано время до завершения тестирования $t_k = 458.798$ дней.

Было рассчитано общее время тестирования $t_{
m oбщ} = 713.342$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c = 8.0 (см Таблица 20).

Таблица 20 – Релеевское распределение при n = 24

i	1	2	3	4	5	6	7	8
X_i	3.206	3.610	5.008	6.708	7.299	7.310	7.882	8.330
i	9	10	11	12	13	14	15	16
X_i	8.359	8.785	9.128	9.299	10.298	10.524	11.374	11.885
i	17	18	19	20	21	22	23	24
X_i	12.185	12.332	12.576	12.963	14.615	15.732	16.601	29.234

$$A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 15.417 > 12.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 21).

Таблица 21 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29	30	31	32
f	3.775	2.815	2.354	2.058	1.843	1.678	1.544	1.434
g	2.504	2.267	2.072	1.907	1.767	1.645	1.540	1.447
/f-g/	1.271	0.548	0.282	0.151	0.076	0.033	0.004	0.013

Минимум разности достигается при m=31. Первоначальное количество ошибок B=m-1=30. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00603$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице } 22.$

Таблица 22 — Время обнаружения следующих ошибок для релеевского распределения при ${\rm n}=24$

j	25	26	27	28	29	30
X_j	27.621	33.146	41.432	55.432	82.865	165.73

Было рассчитано время до завершения тестирования $t_k = 406.039$ дней.

Было рассчитано общее время тестирования $t_{
m oбщ} = 661.297$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром с = 8.0 (см Таблица 24).

Таблица 23 — Релеевское распределение при n = 18

i	1	2	3	4	5	6	7	8	9
X_i	1.709	2.857	5.055	5.073	6.220	7.066	7.448	8.897	10.517
i	10	11	12	13	14	15	16	17	18
X_i	11.066	11.317	12.751	12.893	13.286	16.158	16.456	17.976	20.412

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.047 > 9.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 24).

Таблица 24 - 3начения функций для релеевского распределения при n = 18.

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.588	2.263	2.010	1.808	1.643
f-g	0.907	0.285	0.088	0.004	0.036

Минимум разности достигается при m=22. Первоначальное количество ошибок B=m-1=21. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00966$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где j=n+1,n+2...,n+k. Результат представлен в таблице 25.

Таблица 25 — Время обнаружения следующих ошибок для релеевского распределения при n=18

m	19	20	21
X_j	34.496	51.744	103.489

Было рассчитано время до завершения тестирования $t_k=189.729$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=376.896$ дней.

4. Результаты расчетов.

В таблицах 26 и 27 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 26 – Оценка первоначального числа ошибок.

n	Входные	Распределение				
	данные, %	Равномерное Экспоненциаль		Релеевское		
30	100	34	30	38		
24	80	25	24	30		
18	60	19	19	21		

Таблица 27 – Оценка полного времени проведения тестирования.

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	630.785	253.862	713.342		
24	80	281.615	285.293	661.297		
18	60	188.621	315.838	376.896		

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. Релеевское и равномерное распределения показывают примерно одинаковые результаты.

Выводы.

В ходе выполнения работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.