Supplementary materials for Using Auxiliary Item Information in the Item Parameter Estimation of a Graded Response Model for a Small to Medium Sample Size: Empirical versus Hierarchical Bayes Estimation

Matthew Naveiras and Sun-Joo Cho Vanderbilt University

 ${\bf Appendix}~{\bf A}$ Probability Density Functions of Different Prior Distributions

Figure A1: Probability density functions of different normal (top) and half-Cauchy (bottom) distribution scales

Appendix B

Empirical Study

Illustration

In this section, we illustrate the empirical and hierarchical Bayes methods described by applying them to an empirical data set. R functions to implement the methods used below are available on GitHub (https://github.com/naveirmd/Auxiliary_Item_Information_GRM).

Data Description

The data analyzed using the methods described were collected from the Vanderbilt Fatigue Scale for Adults (VFS-A), which was designed to measure listening-related fatigue. Preliminary research led to the identification of four domains of listening-related fatigue: cognitive, emotional, physical, and social (Davis, Schlundt, Camarata, Bess, & Hornsby, 2020). Using Mplus Version 8.3 (Muthén & Muthén, 1998-2017), exploratory factor analyses were conducted using polychoric correlations (specifically, limited information robust weighted least square estimation with Oblimin rotation and Oblique type) to extract 1, 2, 3, and 4 factors to explore the number and structure of the factors of the VFS-AHL. In Table B1 these four models were compared with standardized root mean square residual (SRMR), root mean square error of approximation (RMSEA), comparative fit index (CFI), and Tucker-Lewis index (TLI). Based on empirically-supported guidelines a model is considered to fit well if SRMR < .08, RMSEA < .06, CFI > .95, and TLI > .95 (Hu & Bentler, 1999; Yu, 2002). The unidimensional model was considered a well-fitting model according to the SRMR, CFI, and TLI. In addition, parallel analysis with polychoric correlations (Cho, Li, & Bandalos, 2009) supported the extraction of one dimension. Based on the exploratory factor analyses and the parallel analysis, we considered listening-related fatigue to be a unidimensional construct. Based on these exploratory factor analyses, we considered listening-related fatigue to be a unidimensional construct.

¹Quartimin, Geomin, and Target rotation methods resulted in similar patterns of factor loadings across all methods.

Fix Indices 2-Factor 3-Factor 1-Factor 4-Factor SRMR 0.0380.028 0.022 0.018 RMSEA 0.082[0.079, 0.085]* 0.072[0.069, 0.075]* 0.062[0.059, 0.064]* 0.054[0.051,0.057]*CFI 0.9860.9900.9930.995TLI 0.9850.9890.992 0.994

Table B1: Fit Indices from Exploratory Factor Analyses

Note. * 90% confidence interval

The research version of the VFS-A was analyzed, having 10 five-point Likert-scale items for each of the four domains of listening-related fatigue, for a total of 40 items. A total of 273 participants completed all 40 items. Of these 273 participants, 150 participants were randomly sampled to illustrate the empirical and hierarchical Bayes methods for a small sample size.

Analysis

The VFS-A has a mutually-exclusive binary Q-matrix having four domains: cognitive, emotional, physical, and social. The four domains were treated as item covariates for analysis.

For dummy variable coding, the social domain was chosen (arbitrarily) as the reference category. The regression structure for item parameters was structured as follows:

$$\alpha_i = \gamma_{\alpha 0} + \gamma_{\alpha 1} x_{i1} + \gamma_{\alpha 2} x_{i2} + \gamma_{\alpha 3} x_{i3} + \epsilon_{\alpha i} \tag{1}$$

and

$$\beta_{i,k} = \gamma_{\beta 0k} + \gamma_{\beta 1k} x_{i1} + \gamma_{\beta 2k} x_{i2} + \gamma_{\beta 3k} x_{i3} + \epsilon_{\beta ik}, \tag{2}$$

where $x_{i1} = 1$ for cognitive items, $x_{i2} = 1$ for emotional items, and $x_{i3} = 1$ for physical items. Estimates for the regression coefficients ($\gamma_{\alpha 0}$, $\gamma_{\alpha d}$, $\gamma_{\beta 0 k}$, and $\gamma_{\beta d k}$) were obtained from the 1m function in R, using maximum likelihood estimates obtained from mirt.

The regression structures for hierarchical Bayesian priors were structured as follows:

$$\alpha_i \sim N(\gamma_{\alpha 0} + \gamma_{\alpha 1} x_{i1} + \gamma_{\alpha 2} x_{i2} + \gamma_{\alpha 3} x_{i3}, \sigma_{\alpha}^2)$$
(3)

and

$$\beta_{i,k} \sim N(\gamma_{\beta 0k} + \gamma_{\beta 1k} x_{i1} + \gamma_{\beta 2k} x_{i2} + \gamma_{\beta 3k} x_{i3}, \sigma_{\beta k}^2). \tag{4}$$

For regression coefficients ($\gamma_{\alpha 0}$, $\gamma_{\alpha d}$, $\gamma_{\beta 0 k}$, and $\gamma_{\beta d k}$), a non-informative hyper-prior distribution of $N(0, 10^2)$ was chosen. A weakly-informative hyper-prior distribution of Cauchy(0, 10)I(0,) was imposed on the standard deviations of residuals (σ_{α} and $\sigma_{\beta k}$).

The default arguments for rStan of 4 chains, 2,000 iterations, 1,000 warmup (i.e., burnin) iterations per chain, and thinning = 1 were used for analysis. Convergence amongst the 4 chains was evaluated using the Gelman-Rubin statistic (Gelman & Rubin, 1992). Note that these arguments were sufficient to achieve sufficient convergence in both sample sizes, having Gelman-Rubin statistics in the range of 0.95 to 1.05 for all parameters. Obtaining results for sample sizes of 150 in R required approximately 1.2 hours on a computer with a 2.30GHz processor and 8.00gb of RAM.

Results

The results obtained for J=150 are presented in this section. Comparisons of regression coefficient estimates for both empirical Bayes and hierarchical Bayes methods are illustrated in Table B2. Median hierarchical Bayes estimates were used for calculating hierarchical shrinkage and standardized differences, as well as for comparing hierarchical and empirical Bayes methods. Results were highly comparable between empirical and hierarchical Bayes methods: r(18) = .995, p-value < .01 for item regression parameters, and r(3) = .975, p-value < .01 for the standard deviations of residuals ($\hat{\phi}_{\alpha}$ and $\hat{\phi}_{\beta k}$). However, the standard deviation of residuals were generally larger for the empirical Bayes method than for the hierarchical Bayes method.

Table B3 reports the results for empirical and hierarchical Bayes estimates of α_i , and Table B4 reports the results for empirical and hierarchical Bayes estimates of β_{i4} for illustration. The standard deviations of empirical Bayes estimates were lower than the standard errors of maximum likelihood estimates, because of the added information from item covariates. However, even for a small sample size of J=150, maximum likelihood estimates had significantly lower standard errors than regression estimates (as seen in Table B3 by comparing $\hat{\tau}_{\alpha i}$ and $\bar{\phi}_{\alpha}$), because the information provided by the data far outweighed the information provided by the item covariates. This is

Table B2: Regression Coefficients for Empirical Bayes vs. Hierarchical Bayes, J=150

	Empiric	al Bayes		Hiera	rchical E	Bayes	
	EST	SE	Mean	Median	SD	0.025*	0.975*
Discr	iminatio	n					
$\gamma_{\alpha 0}$	2.095	0.251	2.143	2.135	0.281	1.620	2.719
$\gamma_{\alpha 1}$	0.673	0.365	0.509	0.509	0.361	-0.229	1.208
$\gamma_{\alpha 2}$	0.979	0.355	0.999	0.993	0.368	0.285	1.736
$\gamma_{\alpha 3}$	0.458	0.355	0.319	0.313	0.355	-0.380	1.019
ϕ_{lpha}	0.794	0.147	0.741	0.732	0.112	0.546	0.986
Thre	shold 1						
$\gamma_{\beta01}$	-4.149	0.593	-4.001	-3.989	0.558	-5.095	-2.912
$\gamma_{\beta 11}$	-2.116	0.861	-2.168	-2.173	0.782	-3.742	-0.632
$\gamma_{\beta 21}$	-1.356	0.838	-1.303	-1.317	0.767	-2.777	0.200
$\gamma_{\beta 31}$	0.142	0.838	0.500	0.510	0.767	-1.023	2.046
$\phi_{\beta 1}$	1.874	0.820	1.619	1.602	0.236	1.216	2.135
Thre	shold 2						
$\gamma_{\beta02}$	-2.179	0.423	-1.997	-2.000	0.423	-2.795	-1.175
$\gamma_{\beta 12}$	-1.874	0.615	-1.896	-1.889	0.571	-3.050	-0.775
$\gamma_{\beta 22}$	-1.041	0.598	-0.973	-0.966	0.552	-2.090	0.137
$\gamma_{\beta 32}$	0.548	0.598	0.714	0.727	0.551	-0.395	1.767
$\phi_{eta 2}$	1.338	0.418	1.202	1.187	0.162	0.928	1.558
Thre	shold 3						
$\gamma_{\beta 03}$	-0.249	0.353	-0.071	-0.073	0.403	-0.865	0.717
$\gamma_{\beta 13}$	-1.238	0.513	-1.409	-1.410	0.527	-2.426	-0.379
$\gamma_{\beta 23}$	-0.522	0.499	-0.461	-0.466	0.527	-1.486	0.573
$\gamma_{\beta 33}$	0.722	0.499	0.772	0.763	0.523	-0.253	1.775
$\phi_{eta 3}$	1.116	0.290	1.110	1.098	0.144	0.867	1.435
Thre	$\mathbf{shold} 4$						
$\gamma_{\beta 04}$	1.653	0.314	1.811	1.815	0.382	1.070	2.555
$\gamma_{\beta 14}$	-0.381	0.456	-0.627	-0.631	0.492	-1.598	0.345
$\gamma_{\beta 24}$	0.081	0.444	0.158	0.162	0.497	-0.825	1.109
$\gamma_{\beta 34}$	1.009	0.444	0.970	0.967	0.502	-0.022	1.932
$\phi_{\beta 4}$	0.993	0.230	1.067	1.051	0.142	0.835	1.382

Note. * Percentiles of posterior distribution

further seen in the calculated values for shrinkage. The average shrinkage for items 2-40 in Table B3 (note that shrinkage was not calculated for item 1) was .159, meaning that on average item covariates contributed 15.9% of the information used in estimating α_i , with the data providing the remaining 84.1% of the information. Similar results were obtained for item threshold parameters. Item threshold parameters (β_{i1} , β_{i2} , β_{i3} , and β_{i4}) had average shrinkages across items of 11.2%, 10.2%, 9.1%, and 12.7% (respectively). The item parameter estimates obtained using empirical Bayes and hierarchical Bayes (as well as their respective SDs or SEs) were highly similar for all item parameters at each sample size.

Table B3: Comparison of Empirical and Hierarchical Bayesian Estimates for α_i with J=150

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Emp	oirical			Hierarchica	ıl
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ste	p 1	St	ep 2	St	ер 3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Item	Domain	$\widehat{\alpha}_i$	$\widehat{\tau}_{\alpha i}$	$\bar{\alpha}_i$	$\overline{\phi}_{\alpha}$	$ \tilde{\alpha}_i$	$\tilde{\sigma}_{\alpha i}$	— Shrinkage	Posterior Median	SD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	С			NA	NA	NA	NA		-7.180	1.263
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$^{\mathrm{C}}$	-8.430	1.250	-6.265	1.874	-7.763	1.040	0.308	-7.628	0.925
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	$^{\mathrm{C}}$	-8.382	1.068	-6.265	1.874	-7.863	0.928	0.245	-7.267	0.760
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$^{\mathrm{C}}$	-6.893	1.121	-6.265	1.874	-6.728	0.962	0.263	-6.701	0.936
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$^{\mathrm{C}}$	-7.202	0.921	-6.265	1.874	-7.020	0.826	0.194	-6.705	0.726
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$^{\mathrm{C}}$	-5.978	0.723	-6.265	1.874	-6.015	0.674	0.129	-6.056	0.660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	$^{\mathrm{C}}$	-4.747 (0.594	-6.265	1.874	-4.886	0.567	0.091	-4.573	0.532
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$^{\mathrm{C}}$	-5.924 (0.758	-6.265	1.874	-5.972	0.702	0.141	-6.094	0.702
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$^{\rm C}$	-4.927 (0.596	-6.265	1.874	-5.050	0.568	0.092	-4.984	0.531
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$^{\mathrm{C}}$	-3.901 (0.458	-6.265	1.874	-4.034	0.445	0.056	-4.156	0.478
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	\mathbf{E}	-4.324 (0.556	-5.505	1.874	-4.419	0.533	0.081	-4.600	0.575
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	\mathbf{E}	-5.863 (0.704	-5.505	1.874	-5.819	0.659	0.124	-5.657	0.622
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	\mathbf{E}	-4.778 (0.565	-5.505	1.874	-4.838	0.541	0.083	-4.920	0.554
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	\mathbf{E}	-5.523 (0.674	-5.505	1.874	-5.521	0.635	0.115	-5.271	0.575
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	\mathbf{E}	-6.735	0.820	-5.505	1.874	-6.537	0.751	0.161	-6.273	0.654
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	\mathbf{E}	-3.166 (0.456	-5.505	1.874	-3.297	0.443	0.056	-3.139	0.424
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	\mathbf{E}	-6.319 (0.757	-5.505	1.874	-6.205	0.702	0.140	-5.966	0.623
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	\mathbf{E}	-7.211 (0.880	-5.505	1.874	-6.903	0.797	0.181	-6.536	0.695
21 P -8.197 1.044 -4.007 1.874 -7.205 0.912 0.237 -6.644 6.644 6.594 0.838 0.200 -6.120 6.20 6.120 6.23 P -2.773 0.392 -4.007 1.874 -2.825 0.383 0.042 -2.695 6.24 P -7.667 0.966 -4.007 1.874 -6.898 0.859 0.210 -6.150 6.25 P -5.524 0.692 -4.007 1.874 -5.342 0.649 0.120 -4.766 6.26 P -2.033 0.319 -4.007 1.874 -2.089 0.314 0.028 -1.962 6.27 P -1.330 0.228 -4.007 1.874 -2.089 0.314 0.028 -1.962 6.27 P -1.330 0.228 -4.007 1.874 -2.089 0.314 0.028 -1.962 6.27 9.2736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 6.28 9.226 0.015 -1.124 6.24 0.228 -1.124 0.228 -1.124 0.228 -1.1	19	\mathbf{E}	-5.848 (0.755	-5.505	1.874	-5.800	0.700	0.140	-5.380	0.599
22 P -7.240 0.937 -4.007 1.874 -6.594 0.838 0.200 -6.120 0 23 P -2.773 0.392 -4.007 1.874 -2.825 0.383 0.042 -2.695 0 24 P -7.667 0.966 -4.007 1.874 -6.898 0.859 0.210 -6.150 0 25 P -5.524 0.692 -4.007 1.874 -5.342 0.649 0.120 -4.766 0 26 P -2.033 0.319 -4.007 1.874 -2.089 0.314 0.028 -1.962 0 27 P -1.330 0.228 -4.007 1.874 -1.369 0.226 0.015 -1.357 0 28 P -2.736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 0 29 P -1.115 0.237 -4.007 1.874 -1.510 0.235	20	\mathbf{E}	-5.284 (0.632	-5.505	1.874	-5.307	0.599	0.102	-5.156	0.553
23 P -2.773 0.392 -4.007 1.874 -2.825 0.383 0.042 -2.695 0 24 P -7.667 0.966 -4.007 1.874 -6.898 0.859 0.210 -6.150 0 25 P -5.524 0.692 -4.007 1.874 -5.342 0.649 0.120 -4.766 0 26 P -2.033 0.319 -4.007 1.874 -2.089 0.314 0.028 -1.962 0 27 P -1.330 0.228 -4.007 1.874 -1.369 0.226 0.015 -1.357 0 28 P -2.736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 0 29 P -1.115 0.237 -4.007 1.874 -1.160 0.235 0.016 -1.124 0 30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 0 31 S -6.171 0.841	21	P	-8.197	1.044	-4.007	1.874	-7.205	0.912	0.237	-6.644	0.738
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	P	-7.240	0.937	-4.007	1.874	-6.594	0.838	0.200	-6.120	0.688
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	P	-2.773 (0.392	-4.007	1.874	-2.825	0.383	0.042		
26 P -2.033 0.319 -4.007 1.874 -2.089 0.314 0.028 -1.962 (27 P -1.330 0.228 -4.007 1.874 -1.369 0.226 0.015 -1.357 (28 P -2.736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 (29 P -1.115 0.237 -4.007 1.874 -1.160 0.235 0.016 -1.124 (30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 (31 S -6.171 0.841 -4.149 1.874 -5.832 0.767 0.168 -5.709 (32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 (33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 (34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 (35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (24	P	-7.667	0.966	-4.007	1.874	-6.898	0.859	0.210	-6.150	0.657
27 P -1.330 0.228 -4.007 1.874 -1.369 0.226 0.015 -1.357 0 28 P -2.736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 0 29 P -1.115 0.237 -4.007 1.874 -1.160 0.235 0.016 -1.124 0 30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 0 31 S -6.171 0.841 -4.149 1.874 -5.832 0.767 0.168 -5.709 0 32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 0 33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 0 34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 0 35 S -3.422 0.406	25	P	-5.524 (0.692	-4.007	1.874	-5.342	0.649	0.120	-4.766	0.539
28 P -2.736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 (29 P -1.115 0.237 -4.007 1.874 -1.160 0.235 0.016 -1.124 (30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 (31 S -6.171 0.841 -4.149 1.874 -5.832 0.767 0.168 -5.709 (32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 (33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 (34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 (35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (3.430 0.045)	26	P	-2.033 (0.319	-4.007	1.874	-2.089	0.314	0.028	-1.962	0.297
28 P -2.736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 (29 P -1.115 0.237 -4.007 1.874 -1.160 0.235 0.016 -1.124 (30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 (31 S -6.171 0.841 -4.149 1.874 -5.832 0.767 0.168 -5.709 (32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 (33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 (34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 (35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (3.430 0.045)	27	P	-1.330 (0.228	-4.007	1.874	-1.369	0.226	0.015	-1.357	0.230
29 P -1.115 0.237 -4.007 1.874 -1.160 0.235 0.016 -1.124 0 30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 0 31 S -6.171 0.841 -4.149 1.874 -5.832 0.767 0.168 -5.709 0 32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 0 33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 0 34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 0 35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 0	28	P	-2.736	0.389	-4.007	1.874	-2.789	0.381	0.041		
30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 0.023 31 S -6.171 0.841 -4.149 1.874 -5.832 0.767 0.168 -5.709 0.000 32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 0.000 33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 0.057 34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 0.000 35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430	29	P	-1.115 (0.237	-4.007	1.874	-1.160	0.235	0.016	-1.124	0.230
32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 (33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 (34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 (35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (30	P			-4.007	1.874	-1.511	0.284	0.023	-1.413	0.270
32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 (33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 (34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 (35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (31	S	-6.171 (0.841	-4.149	1.874	-5.832	0.767	0.168	-5.709	0.704
34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 (35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (32		-3.524 (0.413	-4.149	1.874			0.046		
34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 (35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (33	S	-6.904	0.849	-4.149	1.874	-6.435	0.773	0.170	-6.057	0.662
35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 (
37 S -3.367 0.448 -4.149 1.874 -3.409 0.436 0.054 -3.173 (
38 S -3.218 0.389 -4.149 1.874 -3.257 0.381 0.041 -3.239 (
39 S -3.026 0.390 -4.149 1.874 -3.073 0.382 0.042 -2.964 (
40 S -3.647 0.430 -4.149 1.874 -3.672 0.419 0.050 -3.718 (

Note. Maximum likelihood estimation was unable to estimate the fourth threshold of item 1 ($\beta_{1,4}$) because no responses were obtained in the fifth category of item 1. Because of this, item 1 was omitted during Step 2 when obtaining regression estimates, resulting in the missing values for item 1 (noted as NA). Because regression estimates were required for the values calculated in Step 3, these values are also missing for item 1. This is one instance where hierarchical Bayes estimation has an advantage over empirical Bayes estimation. Because the hyper-prior distribution for $\beta_{1,4}$ in hierarchical Bayesian estimation provides information outside of the data, $\beta_{1,4}$ is still capable of being estimated.

Appendix C

LLTM Literature Review

Papers published in these six journals were reviewed to report how item covariate structures were used for item response models in common practice: Acta Psychologica, Applied Psychological Measurement (APM), Educational and Psychological Measurement (EPM), Journal of Educational Measurement (JEM), Multivariate Behavioral Research (MBR), and Psychometrika (PMET). Papers were searched using the keywords "item response theory linear logistic test model."

Q-matrices generally took on one of four common patterns. First, 36% (10) of the reviewed papers used a mutually-exclusive binary Q-matrix item covariate structure. Items constructed in this way were assigned a value of 1 for at most one of the item covariates, and a value of 0 for all other item covariates. Second, 25% (7) of the reviewed papers used a non-mutually-exclusive binary Q-matrix item covariate structure. Items constructed in this way were assigned a value of 1 for any number of item covariates, and a value of 0 for all other item covariates. Third, 11% (3) of the reviewed papers used a non-mutually-exclusive non-binary Q-matrix item covariate structure. Items constructed in this way were assigned a value to each item covariate indicative of how many occurrences of that item trait were present in the item. Fourth, 29% (8) of the reviewed papers used a Q-matrix by factor item covariate structure. Items constructed in this way had one of the three previously defined item covariate structures for each of two or more item factors, although the most common pattern of this structure was a mutually-exclusive binary Q-matrix for each factor.

Table B4: Comparison of Empirical and Hierarchical Bayesian Estimates for $\beta_{i,4}$ with J=150

					Em	pirical			Hierarchica	al
		St	ep 1	S	tep 2	St	ер 3			
Item	Domain	$\widehat{eta}_{i,4}$	$\hat{\tau}_{\beta i,4}$	$ar{eta}_{i,4}$	$\bar{\phi}_{\beta,4}$	$\tilde{\beta}_{i,4}$	$\tilde{\sigma}_{\beta i,4}$	Shrinkage	Posterior Median	SD
1	С	NA	NA	NA	NA	NA	NA	NA	-1.184	0.247
2	$^{\mathrm{C}}$	0.712	0.352	1.272	0.993	0.774	0.332	0.111	0.927	0.312
3	$^{\mathrm{C}}$	2.128	0.499	1.272	0.993	1.956	0.446	0.202	2.150	0.400
4	$^{\mathrm{C}}$	-0.306	0.285	1.272	0.993	-0.186	0.274	0.076	-0.067	0.257
5	$^{\mathrm{C}}$	0.611	0.368	1.272	0.993	0.691	0.345	0.121	0.829	0.320
6	$^{\mathrm{C}}$	1.347	0.339	1.272	0.993	1.339	0.320	0.104	1.548	0.323
7	$^{\mathrm{C}}$	3.144	0.483	1.272	0.993	2.785	0.435	0.191	3.154	0.421
8	$^{\mathrm{C}}$	1.366	0.312	1.272	0.993	1.358	0.298	0.090	1.555	0.301
9	$^{\mathrm{C}}$	1.079	0.341	1.272	0.993	1.100	0.323	0.105	1.306	0.326
10	$^{\mathrm{C}}$	1.364	0.280	1.272	0.993	1.357	0.270	0.074	1.522	0.283
11	\mathbf{E}	0.417	0.215	1.735	0.993	0.476	0.210	0.045	0.586	0.221
12	\mathbf{E}	2.078	0.392	1.735	0.993	2.032	0.365	0.135	2.287	0.361
13	\mathbf{E}	1.659	0.315	1.735	0.993	1.666	0.300	0.091	1.913	0.316
14	\mathbf{E}	1.396	0.409	1.735	0.993	1.445	0.378	0.145	1.682	0.371
15	\mathbf{E}	2.127	0.446	1.735	0.993	2.061	0.407	0.168	2.307	0.397
16	\mathbf{E}	2.875	0.429	1.735	0.993	2.696	0.394	0.157	3.058	0.400
17	\mathbf{E}	1.822	0.421	1.735	0.993	1.809	0.387	0.152	2.036	0.382
18	\mathbf{E}	2.297	0.478	1.735	0.993	2.191	0.431	0.188	2.432	0.410
19	\mathbf{E}	1.093	0.461	1.735	0.993	1.207	0.418	0.177	1.405	0.401
20	\mathbf{E}	1.581	0.391	1.735	0.993	1.602	0.364	0.134	1.862	0.370
21	P	2.213	0.451	2.662	0.993	2.290	0.411	0.171	2.268	0.378
22	P	-0.226	0.358	2.662	0.993	0.107	0.337	0.115	0.210	0.284
23	P	2.399	0.365	2.662	0.993	2.430	0.342	0.119	2.647	0.347
24	P	3.550	0.562	2.662	0.993	3.335	0.489	0.242	3.315	0.434
25	P	3.128	0.519	2.662	0.993	3.028	0.460	0.214	3.138	0.433
26	P	3.986	0.467	2.662	0.993	3.747	0.422	0.181	3.998	0.418
27	P	2.201	0.279	2.662	0.993	2.235	0.269	0.073	2.375	0.283
28	P	2.903	0.395	2.662	0.993	2.870		0.137		0.378
29	P	2.873	0.345	2.662	0.993	2.850	0.326	0.108	2.996	0.328
30	P	3.590	0.427	2.662	0.993	3.446	0.392	0.156	3.654	0.381
31	S	0.700	0.281	1.653	0.993	0.771	0.270	0.074	0.909	0.265
32	S	1.423	0.280	1.653	0.993		0.269	0.074		0.271
33	S	1.047	0.369	1.653	0.993	1.121	0.346	0.122	1.252	0.313
34	S	-0.269	0.282	1.653	0.993	-0.126	0.271	0.075	0.004	0.253
35	S		0.300	1.653	0.993	1.993		0.084		0.295
36	S		0.319		0.993	2.028		0.094		0.304
37	S		0.446		0.993	3.147		0.168		0.405
38	S	2.083			0.993	2.047		0.084		0.298
39	S		0.373	1.653	0.993		0.349	0.123		0.342
40	S		0.257		0.993	1.234		0.063		0.251

Note. Maximum likelihood estimation was unable to estimate the fourth threshold of item 1 $(\beta_{1,4})$ because no responses were obtained in the fifth category of item 1. Because of this, item 1 was omitted during Step 2 when obtaining regression estimates, resulting in the missing values for item 1 (noted as NA).

Table C1: LLTM Literature Review

Reference	Number of Items	Number of Item Covariates (per factor)	Item Covariate Structure
Baker (1993)	21	∞	Non-mutually exclusive binary Q-matrix
Bechger, Verstralen, & Verhelst (2002)	rc	2	Non-mutually exclusive non-binary Q-matrix
Beretvas & Williams (2004)	17	2	Mutually exclusive binary Q-matrix
Bolt, Cohen, & Wollack (2002)	26	2	Mutually exclusive binary Q-matrix
Chalmers (2015)	15	3	Mutually exclusive binary Q-matrix
Choi & Wilson (2015)	24	2x2x3=12**	Q-matrix by factor
De Boeck (2008)	24	2x2x3=12**	Q-matrix by factor
Embretson (2015)	20	4	Non-mutually exclusive binary Q-matrix
Fischer (1973)	29	∞	Non-mutually exclusive binary Q-matrix
Freund, Hofer, & Holling (2008)	25	ಬ	Non-mutually exclusive binary Q-matrix
Gorin (2005)	29	ಬ	Mutually exclusive binary Q-matrix
Hartig, Frey, Nold, & Klieme (2012)	46	2x2=4**	Q-matrix by factor
Hoffman, Yang, Bovaird, & Embretson (2006)	64	3	Non-mutually exclusive non-binary Q-matrix
Hohensinn & Kubinger (2011)	18	င	Mutually exclusive binary Q-matrix
Hornke & Habon (1986)	24	8x3=24**	Q-matrix by factor
Ip, Magee, Youssef, & Chen (2019)	31	9	Non-mutually exclusive binary Q-matrix
Ip, Smits, & De Boeck (2009)	∞	2x2=4**	Q-matrix by factor
Kim (2018)	13	3x3x3=27**	Q-matrix by factor
Kubinger (2008)	29	∞	Non-mutually exclusive binary Q-matrix
Medina-Diaz (1993)	29	∞	Non-mutually exclusive binary Q-matrix
Mislevy (1988)	20	9	Mutually exclusive binary Q-matrix
Mitchell (1983)	334	10	Mutually exclusive binary Q-matrix
Poinstingl (2009)	25	***	Q-matrix by factor
Rakkapao, Prasitpong, & Arayathanitkul (2016)	20	10	Mutually exclusive binary Q-matrix
Rost & Cartensen (2002)	2.2	11x7 = 77**	Q-matrix by factor
Sheehan & Mislevy (1990)	93	3	Mutually exclusive binary Q-matrix
Shermis & Chang (1997)	45/90/90*	4	Mutually exclusive binary Q-matrix
Whitely & Schneider (1981)	30	∞	Non-mutually exclusive non-binary Q-matrix

Note. * Three forms of the same test were used in this study. Form A had 45 items, and Forms B/C each had 90 items. ** The number of item groups is equal to the product of the number of levels per factor. For example, three factors with two levels for each factor results in $2 \times 2 \times 2 = 8$

item groups.

*** The number of factors in this study was 8. Three factors had mutually exclusive binary Q-matrices with 4, 3, and 5 levels. The remaining five factors counted the occurrences of different item attributes.

Table C2: \mathbb{R}^2 of Simulated Item Parameters for Each Level of RSD

		ME Q	-matrix	NME Q	-matrix
		24 items	48 items	24 items	48 items
	.10	.81	.83	.92	.84
RSD	.30	.48	.44	.57	.67
	.50	.17	.26	.40	.45

Appendix D

Hypotheses of Simulation Results

Research question 1a: Accuracy of item parameter estimates. Because the use of group means results in shrinkage, which increases the accuracy of item parameter estimates (see p. 13), we expect both empirical Bayes and hierarchical Bayes to have lower RPB and lower RMSE than MMLE (which does not use group means at all, and therefore has no shrinkage). Because we expect MMLE to have high RMSE at small and medium sample sizes, we also expect empirical Bayes (which uses maximum likelihood estimates in Step 2) to have higher RPB and higher RMSE than hierarchical Bayes with item covariates (which does not use maximum likelihood estimates). Therefore, we expect the following relations regarding RPB and RMSE: empirical Bayes < MMLE, hierarchical Bayes with item covariates < MMLE, and hierarchical Bayes with item covariates < empirical Bayes. For medium to large sample sizes, RPB and RMSE are comparable.

Research question 1b: Acceptability of hierarchical Bayes. As discussed in the introduction, MMLE is expected to have difficulty with achieving convergence in smaller sample sizes, making estimation of item parameters impossible. In such conditions we expect a hierarchical Bayes method with item covariates to estimate item parameters and posterior SD with an acceptable degree of accuracy, having RPB < 10% and SDB < 10% for all item parameter types.

Research question 2: Added accuracy of item covariates. To examine the added value of item covariates in a hierarchical Bayes method for all conditions, we compare the accuracy of a hierarchical Bayes method both with and without item covariates. As discussed previously (see p. 13), because the use of multiple item covariates results in group shrinkage rather than total shrinkage, it is expected that hierarchical Bayes with item covariates will have lower RPB than hierarchical Bayes without item covariates. Therefore, regarding RPB we expect hierarchical Bayes with item covariates < hierarchical Bayes without item covariates.

²Although we expect lower RMSE when item covariates are used (in empirical Bayes and hierarchical Bayes methods) compared to when item covariates are not used (in MMLE), we have no such expectations for RMSE regarding the change in RMSE by using multiple item covariates (in hierarchical Bayes with item covariates) as

Research question 3: Accuracy of posterior SD estimates. Because empirical Bayes ignores the uncertainty of item parameter estimates in Step 2, it is expected that empirical Bayes will result in large SDB. Alternatively, because hierarchical Bayes implements this uncertainty by using a one-step approach, it is expected that hierarchical Bayes will more accurately estimate its posterior SD than empirical Bayes, resulting in a smaller SDB. Therefore, for SDB we expect hierarchical Bayes with item covariates < empirical Bayes.

In addition to these hypotheses, certain patterns are expected across estimation methods regarding the four simulation factors:

Number of persons. It is expected that an increase in the number of persons will result in decreases in RPB and RMSE. As the number of persons approaches a large sample size of 2000, differences in the RMSE among these methods are expected to decrease as the accuracy of MMLE (which most prominently suffers in small sample sizes) increases. It is also expected than an increase in the number of persons will result in a decrease in SDB for both empirical Bayes and hierarchical Bayes.

Number of items. It is expected that an increase in the number of items will result in a decrease in the RPB as prior means are based on a larger number of items, therefore decreasing the shrinkage for individual items. Alternatively, it is expected that an increase in the number of items will result in higher RMSE, as there are more item parameters to estimate. For a fixed number of persons, it is expected that an increase in the number of items will result in higher SDB.

RSD. It is expected that an increase in RSD will result in a decrease in the RPB and an increase in the RMSE, because less shrinkage is expected with a larger RSD in empirical Bayes and hierarchical Bayes. A larger RSD is not expected to affect SDB.

Item covariate structure. It is expected that RPB and RMSE are larger for ME Q-matrix opposed to using a single item covariates (in hierarchical Bayes without item covariates). As a result, we do not have any hypotheses regarding differences in RMSE between hierarchical Bayes with item covariates and hierarchical Bayes without item covariates.

conditions than for NME Q-matrix conditions because there is a smaller number of items having the same item covariate in the ME Q-matrix (sparse matrix) than in the NME Q-matrix (dense matrix).

Appendix E

Results of Simulation Results

15

Table E1: RPB of MMLE, Empirical Bayes, & Hierarchical Bayes by Item Parameter Type for Research Question 1a

	β_{i4}	1.713	0.806	0.805	0.487	0.445	0.218	4.590	4.441	4.446	-1.503	4.789	4.653	4.132	4.290	4.282	4.152	-2.809	-2.750	1.521	0.882	0.285	0.100	-0.268	0.189	-0.798	-0.947	-0.878	5.053	4.417	3.522	2.906	1.415	3.339	9.865	9.847	9.806
sayes	β_{i3}	1.993	0.574	0.926	0.255	0.329	0.133	-6.807	-1.814	3.192	-1.383	5.878	5.470	4.385	4.850	4.661	4.179	-2.542	-2.735	0.001	-1.024	-1.603	-1.906	-2.155	-0.458	-0.815	-0.929	-0.933	7.824	6.550	4.785	3.743	0.916	3.160	12.796	11.436	10.074
archical E	β_{i2}	0.625	1.411	0.618	1.139	0.874	0.492	-0.799	1.775	3.907	-0.183	4.526	4.430	5.062	4.421	4.222	4.158	-2.447	-2.573	1.232	1.806	2.065	2.503	2.456	1.198	-1.564	-0.871	-0.942	-1.443	-0.997	-0.200	0.464	2.582	3.991	7.567	6.431	9.130
Hier	β_{i1}	0.911	1.303	0.688	0.887	0.637	0.372	3.810	4.309	4.426	-1.532	4.380	4.179	4.442	4.236	3.994	4.115	-3.043	-2.744	2.209	2.204	2.137	2.091	1.886	0.892	-0.963	-0.657	-0.820	1.425	1.365	1.595	1.743	2.241	3.624	9.159	9.419	9.788
	α_i	4.154	3.309	2.430	2.031	1.302	0.309	2.904	1.712	0.374	0.342	3.295	2.792	2.063	1.998	1.271	0.428	2.177	0.297	2.409	2.178	1.814	1.347	0.802	0.235	1.978	1.501	0.391	2.922	2.098	0.681	0.667	0.144	0.224	2.582	1.318	0.422
	β_{i4}	-19.702	-18.852	-17.625	-16.432	-12.675	-5.747	1.369	2.441	3.712	-2.065	-16.339	-15.130	-13.884	-12.764	-9.166	-2.203	-5.382	-3.854	-15.090	-13.803	-12.917	-12.160	-9.223	-3.105	-4.514	-3.354	-1.551	-14.898	-13.828	-12.643	-11.622	-2.029	2.809	8.154	8.762	9.497
es	β_{i3}	-13.104	-13.033	-11.881	-11.426	-8.977	-5.733	-9.042	-4.473	3.428	-2.165	-10.012	-9.209	-9.043	-8.149	-5.830	-3.396	-4.203	-3.712	-16.268	-16.136	-15.195	-14.636	-12.404	-5.419	-2.948	-2.268	-1.318	-12.096	-11.759	-11.121	-10.530	-2.743	2.644	9.729	609.6	9.581
pirical Bay	β_{i2}	-63.628	-59.218	-58.262	-54.943	-46.576	-18.941	-7.945	-3.008	2.867	-1.679	-50.321	-47.551	-44.373	-41.550	-33.500	-9.499	-10.690	-4.486	-30.265	-28.541	-27.481	-25.882	-21.942	-10.121	-10.175	-6.850	-2.646	-30.086	-28.074	-26.378	-25.418	-6.919	1.512	2.273	3.134	8.246
Em	β_{i1}	-39.749	-35.476	-34.127	-32.036	-24.751	-8.954	-0.777	1.371	3.614	-2.098	-32.854	-30.136	-27.633	-25.362	-19.178	-4.189	-7.672	-4.035	-21.125	-19.400	-18.427	-16.998	-12.939	-4.674	-4.184	-2.770	-1.382	-21.144	-18.989	-17.257	-15.935	-2.749	2.752	7.916	8.621	9.539
	$lpha_i$	-34.020	-33.123	-32.417	-31.597	-27.868	-16.452	-9.344	-6.248	-2.047	-1.343	-31.468	-30.479	-29.961	-28.804	-25.295	-13.745	-7.131	-3.087	-22.153	-20.881	-20.422	-19.869	-17.585	-9.153	-6.324	-4.076	-1.213	-23.010	-21.734	-21.333	-20.457	-8.652	-1.684	-2.467	-2.000	-0.964
	β_{i4}	2.557	1.417	1.385	1.063	0.829	0.390	5.872	5.333	4.712	-1.430	6.117	5.751	5.060	5.045	4.753	4.253	-1.855	-2.511	2.342	1.829	1.449	1.231	0.872	0.583	0.048	-0.455	-0.768	4.263	3.494	3.009	2.805	1.784	3.650	10.780	10.389	9.914
	β_{i3}	2.739	1.034	1.417	0.805	0.709	0.346	7.129	6.476	5.236	-1.580	5.927	5.646	4.480	4.890	4.721	4.179	-1.744	-2.520	2.071	1.366	1.296	0.968	0.706	0.536	-0.222	-0.528	-0.842	4.099	3.199	2.598	2.673	1.660	3.661	10.768	10.263	9.755
MMLE	β_{i2}	1.107	1.764	0.823	1.059	0.947	0.575	3.866	4.538	4.532	-0.324	5.464	4.916	5.443	4.805	4.542	4.409	-2.609	-2.563	1.559	1.570	1.162	1.360	0.899	0.568	-0.417	-0.246	-0.778	3.596	3.320	2.925	2.438	2.065	3.432	11.888	8.977	9.748
	β_{i1}	1.517	1.872	1.154	1.222	0.944	0.513	5.030	5.033	4.568	-1.399	5.817	5.246	5.338	5.044	4.588	4.345	-2.312	-2.543	2.021	1.772	1.441	1.324	1.002	0.556	-0.151	-0.256	-0.723	4.214	3.469	3.061	2.637	1.966	3.554	10.938	10.479	10.016
	$lpha_i$	1.709	1.340	0.795	0.583	0.375	0.166	0.547	0.352	0.001	-0.323	1.271	1.081	0.572	0.679	0.358	0.108	0.358	-0.345	1.007	1.305	1.129	0.863	0.513	0.164	0.485	0.359	0.061	1.479	1.507	0.588	0.645	0.100	-0.267	-0.151	-0.507	-0.565
	Q-matrix	$\overline{ ext{ME}}$	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	ME	NME	NME	NME	NME	NME	NME	NME	NME	NME	NME	NME	NME						
	# Persons	150	200	250	300	200	2000	300	200	2000	2000	150	200	250	300	200	2000	200	2000	150	200	250	300	200	2000	300	200	2000	100	150	200	250	2000	2000	300	200	2000
	RSD	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.3	0.5	0.5	0.5
	# Items	24	24	24	24	24	24	24	24	24	24	48	48	48	48	48	48	48	48	24	24	24	24	24	24	24	24	24	48	48	48	48	48	48	48	48	48

Table E2: RMSE of MMLE, Empirical Bayes, & Hierarchical Bayes by Item Parameter Type for Research Question 1a

0.390 0.814 0.391 0.220 0 0.380 0.732 0.556 0.203 0 0.367 0.701 0.546 0.188 0 0.355 0.662 0.513 0.180 0 0.311 0.518 0.439 0.154 0 0.181 0.267 0.212 0.125 0
0.396 0.814 0.597 0.220 0.448 0.380 0.732 0.556 0.203 0.417 0.367 0.701 0.546 0.188 0.391 0.355 0.662 0.513 0.180 0.364 0.311 0.518 0.439 0.154 0.291 0.181 0.267 0.212 0.125 0.215
0.380 0.732 0.556 0.367 0.701 0.546 0.355 0.662 0.513 0.311 0.518 0.439 0.181 0.267 0.212 0.
0.355 0.311 0.181
0.290 0.247
0.172 0.180 0.290 $0.134 0.140 0.247$
0.054 0.245 0.
Z000 0007

4.841 3.331 2.744 2.744 0.727 10.847 10.847 10.848 0.8001.4370.884 0.207 9.723 1.793 0.391 7.895 4.495 5.598 2.593 9.001 $\frac{\beta_{i3}}{2.580}$ $\frac{2.580}{2.580}$ 11.148 6.483 8.412 8.412 8.6.013 9.2404 9.211 9.2247 β_{12} 2.700
6.182
4.492
4.492
5.857
5.672
3.020
4.348
4.188
2.484
4.188
2.687
0.404
12.723
14.523
8.720 2.825 4.988 4.273 2.704 11.222 0.588 8.035 6.891 4.897 2.847 2.847 2.847 3.168 3.153 3.487 1.811 $1.790 \\ 0.649 \\ 4.413$ $\begin{array}{c} 7.904 \\ 5.926 \\ 8.327 \end{array}$ 4.197 10.253 7.699 6.424 0.872 -1.607 $\begin{array}{c} \beta_{i1} \\ 3.382 \\ 4.973 \\ 2.835 \\ 5.361 \\ 4.576 \\ -0.792 \\ 2.079 \end{array}$ 1.653 1.255 1.894 1.894 1.3992 1.5171 9.568 8.359 8.359 8.359 8.359 8.4380 4.047 2.589 1.217 0.612 3.832 4.506 5.577 4.284 2.958 6.074 3.760 2.432 2.103 0.784 0.715 1.159 4.397 3.966 8.872 5.5100.393 0.875 7.003 3.591 $\begin{array}{c} \alpha_1 \\ 0.114 \\ 0.564 \\ 0.564 \\ 0.564 \\ 0.564 \\ 0.564 \\ 0.564 \\ 0.5650 \\ 0.5650 \\ 0.5650 \\ 0.5650 \\ 0.5650 \\ 0.5650 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.058 \\ 0.0$ 3.476 -6.587 9.130 $\begin{array}{c} -1.135 \\ 4.611 \\ 2.898 \\ -2.898 \\ -3.460 \\ -3.246 \\ -3.265 \\ -3.265 \\ -3.265 \\ -3.265 \\ -9.556 \\ -8.015 \\ -9.556$ $\begin{array}{c} \beta_{14} \\ \hline 1.568 \\ \hline 1.568 \\ \hline 2.037 \\ 4.705 \\ 4.266 \\ 4.165 \\ -1.161 \\ -1.181 \\ -1.382 \\ -1.382 \\ -1.382 \\ -1.382 \\ \end{array}$ $\begin{array}{c} \beta_{i3} \\ 0.928 \\ 0.928 \\ -25.937 \\ 15.113 \\ -9.961 \\ 1.726 \\ 0.370 \\ 0.854 \end{array}$ $\begin{array}{c} -0.529 \\ -0.004 \\ -0.254 \\ 5.370 \end{array}$ -1.553 -3.150 -2.808 -3.048 -3.117 -11.631 -11.718 -9.553 -9.590 -7.480 $1.944\\1.114$ $\begin{array}{c} 0.219 \\ -0.050 \\ -0.611 \end{array}$ 6.997 $\begin{array}{c} 4.482 \\ 3.043 \end{array}$ $\begin{array}{c} 1.653 \\ 3.358 \end{array}$ $\begin{array}{c} 1.924 \\ 2.872 \end{array}$ 1.040 $7.244 \\ 3.828$ $\begin{array}{c} 2.945 \\ 3.021 \\ 2.847 \end{array}$ 1.922 18.5903.247-0.013 -0.540 -1.308 -1.472 -1.954 14.346 12.919 3.285 2.3318 -3.824 -3.824 -3.824 -1.955 -1.175 4.175 -2.040 5.7482.810 $\begin{array}{c} \text{RPB} \\ \frac{\beta_{12}}{\beta_{12}} \\ 2.114 \\ -4.740 \\ -2.866 \\ 0.958 \\ 0.162 \\ 14.859 \\ 5.097 \\ 0.571 \\ 4.465 \\ 0.934 \\ \end{array}$ $3.318 \\ 2.467$ 2.245 2.533 1.260 2.536 4.968 6.972 2.147 2.719 2.161 2.521 2.169 2.169 $\begin{array}{c} \beta_{i1} \\ 2.329 \\ 2.329 \\ 4.169 \\ 4.095 \\ 4.322 \\ 4.322 \\ 4.322 \\ -1.092 \\ -1.192 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -1.322 \\ -2.935 \\ -2.$ 2.514 2.090 2.436 2.965 4.032 4.109 3.826 3.997 4.198 8.267 $\frac{\alpha_t}{6.215}$ 6.215 7.849 5.671 4.523 3.517 15.109 7.130 7.13.813 2.835 15.580 9.665 6.941 7.626 4.800 2.519 0.617 4.722 7.735 5.051 3.097 $0.458 \\ 4.883$ $3.572 \\ 3.390$ 1.992 $\begin{array}{c} 0.424 \\ 0.587 \end{array}$ $\begin{array}{c} 0.516 \\ 6.876 \\ 4.898 \end{array}$ $\begin{array}{c} 3.442 \\ 2.723 \\ 2.344 \end{array}$ NAME OF STREET O

Table E3: RPB and SDB of Hierarchical Bayes with Item Covariates by Item Parameter Type for Research Question 1b

Table E4: RPB of Hierarchical Bayes with/without Item Covariates by Item Parameter Type for Research Question 2

Items	RSD	Persons	O-matrix	α_i	β_{i1}	β_{i2}	β_{i3}	β_{iA}	α_i	β_{i1}	β_{i2}	β_{i3}	$\beta_{i,l}$
24	0.1	100	ME	6.215	2.329	2.114	0.928	1.568	1.187	2.316	9.627	4.874	0.56
24	0.1	150	ME	4.154	0.911	0.625	1.993	1.713	1.631	1.836	8.041	3.863	0.94
24	0.1	200	ME	3.309	1.303	1.411	0.574	0.806	1.636	2.533	8.046	1.238	-0.00
24	0.1	250	$\overline{\mathrm{ME}}$	2.43	0.688	0.618	0.926	0.805	1.195	1.939	6.359	1.322	0.128
24	0.1	300	$\overline{\mathrm{ME}}$	2.031	0.887	1.139	0.255	0.487	1.07	1.996	5.878	0.553	-0.05
24	0.1	500	ME	1.302	0.637	0.874	0.329	0.445	0.845	1.696	4.344	0.039	-0.06
24	0.1	2000	ME	0.309	0.372	0.492	0.133	0.218	0.264	0.786	1.546	0.032	0.115
24	0.3	100	$\overline{\mathrm{ME}}$	7.849	4.169	-4.74	-25.937	5.037	5.203	3.901	1.242	-45.848	3.454
24	0.3	150	$\overline{ ext{ME}}$	5.671	4.095	-2.866	-18.354	4.705	4.022	4.238	1.878	-30.405	3.73
24	0.3	200	$\overline{\mathrm{ME}}$	4.523	4.322	-0.958	-15.113	4.266	3.144	4.341	2.603	-23.153	3.618
24	0.3	250	ME	3.517	4.289	-0.162	-9.961	4.165	2.534	4.244	2.696	-15.714	3.757
24	0.3	300	$\overline{\mathrm{ME}}$	2.904	3.81	-0.799	-6.807	4.59	1.994	3.884	1.797	-11.078	4.17
24	0.3	500	$\overline{\mathrm{ME}}$	1.712	4.309	1.775	-1.814	4.441	1.221	4.278	3.137	-4.42	4.30
24	0.3	2000	$\overline{\mathrm{ME}}$	0.374	4.426	3.907	3.192	4.446	0.26	4.417	4.272	2.333	4.33
24	0.5	100	$\overline{\mathrm{ME}}$	15.109	-0.708	14.859	1.726	-1.161	12.592	-0.642	16.341	0.334	-3.26
24	0.5	150	ME	9.782	-1.092	5.097	0.37	-1.352	8.156	-1.045	7.533	-0.781	-2.85
24	0.5	200	ME	7.13	-1.489	-0.571	0.854	-1.181	5.659	-1.372	1.693	-0.365	-2.518
24	0.5	250	$\overline{\mathrm{ME}}$	4.879	-1.322	4.465	-0.529	-1.685	4.182	-1.199	6.084	-1.476	-2.63
24	0.5	300	$\overline{\mathrm{ME}}$	4.56	-1.382	-0.934	-0.004	-1.382	3.681	-1.293	1.183	-0.887	-2.2
24	0.5	200	$\overline{\mathrm{ME}}$	2.809	-1.592	-2.04	-0.254	-1.135	2.373	-1.488	-0.519	-0.945	-1.728
24	0.5	2000	$\overline{ ext{ME}}$	0.342	-1.532	-0.183	-1.383	-1.503	0.624	-1.437	-0.497	-1.524	-1.62
48	0.1	100	$\overline{\mathrm{ME}}$	4.74	5.19	5.748	5.37	4.611	1.685	7.331	17.162	5.868	2.548
48	0.1	150	$\overline{ ext{ME}}$	3.295	4.38	4.526	5.878	4.789	1.826	7.497	16.14	3.074	2.31'
48	0.1	200	ME	2.792	4.179	4.43	5.47	4.653	1.793	7.484	15.163	1.822	2.5
48	0.1	250	$\overline{ ext{ME}}$	2.063	4.442	5.062	4.385	4.132	1.308	7.701	14.903	0.385	1.77
48	0.1	300	$\overline{ ext{ME}}$	1.998	4.236	4.421	4.85	4.29	1.36	7.465	13.673	0.577	1.94
48	0.1	200	$\overline{ ext{ME}}$	1.271	3.994	4.222	4.661	4.282	0.918	6.618	11.078	1.038	2.4
48	0.1	2000	$\overline{ ext{ME}}$	0.428	4.115	4.158	4.179	4.152	0.288	5.077	6.464	2.894	3.55
48	0.3	100	$\overline{ ext{ME}}$	8.66.8	-3.1	-0.013	-1.553	-2.898	6.418	-2.791	5.417	-4.725	-5.00
48	0.3	150	$\overline{ ext{ME}}$	6.196	-2.935	-0.54	-3.15	-3.46	4.664	-2.483	3.479	-5.383	-4.77
48	0.3	200	$\overline{ ext{ME}}$	5.14	-3.097	-1.308	-2.808	-3.246	3.756	-2.782	1.551	-4.309	-4.10
48	0.3	250	$\overline{ ext{ME}}$	3.813	-2.982	-1.472	-3.048	-3.265	2.71	-2.755	0.698	-4.139	-3.90
48	0.3	300	$\overline{\mathrm{ME}}$	2.835	-3.077	-1.954	-3.117	-3.266	1.972	-2.891	-0.305	-3.838	-3.65
48	0.3	200	$\overline{ ext{ME}}$	2.177	-3.043	-2.447	-2.542	-2.809	1.605	-2.938	-1.445	-2.978	-3.05
48	0.3	2000	$\overline{ ext{ME}}$	0.297	-2.744	-2.573	-2.735	-2.75	0.042	-2.735	-2.469	-2.782	-2.80
48	0.5	100	$\overline{ ext{ME}}$	15.58	-6.469	14.346	-12.631	-10.247	12.414	-6.091	30.358	-14.116	-10.8
48	0.5	150	$\overline{ ext{ME}}$	9.665	-6.101	12.919	-11.718	-9.556	7.862	-5.8	23.525	-12.917	-10.59
48	0.5	200	$\overline{ ext{ME}}$	6.941	-6.819	3.285	-9.553	-8.351	5.234	-6.554	11.942	-10.61	-9.343
48	0.5	250	$\overline{ ext{ME}}$	5.626	-6.857	2.318	-8.772	-8.015	4.57	-6.666	8.984	-9.736	-8.6
48	0.5	300	ME	4.8	-6.758	-0.838	-9.59	-8.023	3.849	-6.645	4.245	-10.117	-8.54
48	0.5	500	ME	2.519	-6.867	-3.824	-7.48	-7.154	2.026	-6.772	-0.524	-7.869	-7.50
	1												

0.506 0.513 0.513 0.519 0.525 0.525 0.837 0.844 0.865 0.843 0.249 0.249 0.241 0.241 0.263 0.263 0.263 0.263 0.263 0.263 0.263Hierarchical Bayes w/out Item Covariates 0.236 0.224 0.218 0.219 0.222 0.229 0.484 0.502 0.58 1.3640.81 0.16 0.154 0.139 0.126 0.283 0.257 0.255 0.255 0.257 0.427 0.427 0.423 0.152 0.152 0.185 0 h_{12} h_{12} h0.417 $\begin{array}{c} \beta_{i1} \\ \hline 0.33 \\ 0.312 \\ 0.303 \\ 0.291 \\ 0.284 \\ 0.266 \\ 0.24 \end{array}$ $\begin{array}{c} 0.511 \\ 0.53 \\ 0.537 \\ 0.539 \end{array}$ 0.541 0.549 0.555 0.892 0.904 0.917 0.92 0.929 0.329 0.305 0 0.5490.554 0.565 $\begin{array}{c} 0.115 \\ 0.056 \\ 0.257 \\ 0.284 \\ 0.184 \\ 0.162 \\ 0.114 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.028 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.128 \\ 0.055 \\$ $\begin{array}{c} 0.052 \\ 0.241 \\ 0.203 \\ 0.182 \\ 0.161 \\ 0.149 \end{array}$ 0.151 0.137 0.126 0.118 0.113 0.094 $\begin{array}{c} 0.52 \\ 0.521 \\ 0.525 \\ 0.524 \\ 0.527 \\ 0.843 \\ 0.852 \\ 0.859 \\ 0.863 \\ \end{array}$ 0.865 0.876 0.875 0.304 0.295 0.285 0.276 0.268 0.268 0.268 0.268 0.256 0.556 0.566 0.567 0.576 0.582 0.803 $\begin{array}{c} \beta_{i4} \\ 0.3i \\ 0.201 \\ 0.262 \\ 0.25 \\ 0.246 \\ 0.236 \\ 0.238 \\ 0.228 \\ 0.534 \\ 0.531 \\ 0.531 \end{array}$ Hierarchical Bayes w/Item Covariates h_{13} h_{13} h0.304 $0.452 \\ 0.46$ 0.465 0.4640.4670.124 0.334 0.322 0.313 0.306 0.304 $\begin{array}{c} 0.299 \\ 0.288 \\ 0.435 \end{array}$ $\begin{array}{c} 0.415 \\ 0.405 \\ 0.397 \\ 0.395 \\ 0.385 \\ 0.371 \end{array}$ $\begin{array}{c} 0.185 \\ 0.165 \\ 0.159 \\ 0.151 \\ 0.145 \end{array}$ $0.135 \\ 0.124$ 0.323 0.3150.313 0.31 0.3030.3350.2950.403 0.411 0.253 0.033 0.0254 0.0258 0.0258 0.0238 0.0238 0.0551 0.0554 0.0338 0.0338 0.0338 0.0338 0.0358 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 0.0559 $\begin{array}{c} 0.118 \\ 0.056 \\ 0.271 \\ 0.216 \\ 0.18 \\ 0.169 \end{array}$ $0.26 \\ 0.218$ 0.1550.148 0.057 0.057 0.155 0.13 0.111 0.06 0.09 0.053 0.015 0.019 0.053 0.0530.11 0.094 0.0710.142 0.1070.191 0.167100 150 200 250 300 500 2000 100 150 200 250 300 500

Table E5: RMSE of Hierarchical Bayes with/without Item Covariates by Item Parameter Type for Research Question 2

Table E6: SDB of Empirical Bayes and Hierarchical Bayes by Item Parameter Type for Research Question 3

					EB	Empirical Bayes	/es			Hiera	Hierarchical B	Bayes	
Items	$^{\mathrm{RSD}}$	Persons	Q-matrix	α_i	β_{i1}	β_{i2}	β_{i3}	β_{i4}	α_i	β_{i1}	β_{i2}	β_{i3}	β_{i4}
24	0.1	150	ME	-1.322	-6.472	-10.202	4.114	5.339	-0.837	2.254	4.333	3.941	2.851
24	0.1	200	$\overline{\mathrm{ME}}$	-2.223	-10.249	-12.988	3.996	6.155	7.408	6.017	6.043	4.501	6.452
24	0.1	250	ME	-2.017	-10.192	-17.64	4.182	3.795	10.245	8.672	8.42	8.513	8.849
24	0.1	300	ME	-3.682	-14.543	-13.297	3.543	3.83	10.933	7.604	11.448	8.098	9.115
24	0.1	200	$\overline{ ext{ME}}$	-8.441	-6.633	-14.387	4.407	4.638	9.598	8.914	10.601	8.126	9.048
24	0.1	2000	$\overline{\mathrm{ME}}$	-6.107	2.973	-4.779	3.621	6.012	-23.86	0.179	2.999	2.322	2.288
24	0.3	300	$\overline{\mathrm{ME}}$	6.029	5.551	2.453	2.766	5.052	7.037	3.715	3.415	5.298	4.358
24	0.3	200	$\overline{ ext{ME}}$	4.136	3.876	2.058	3.254	4.257	3.963	2.388	2.275	4.692	3.834
24	0.3	2000	ME	3.269	1.699	0.813	1.857	1.448	1.832	1.026	0.378	0.776	0.659
24	0.5	2000	$\overline{\mathrm{ME}}$	0.207	0.883	1.173	0.389	0.901	-0.846	0.04	0.644	0.026	0.2
48	0.1	150	$\overline{\mathrm{ME}}$	23.822	29.738	14.627	18.61	27.652	14.272	15.775	14.574	12.107	12.832
48	0.1	200	ME	22.579	23.756	11.953	15.127	26.812	14.04	13.014	9.324	8.19	12.49
48	0.1	250	ME	20.382	17.192	7.859	14.423	23.463	12.828	11.276	10.751	10.736	13.328
48	0.1	300	ME	16.372	14.616	7.097	13.78	21.265	14.756	13.645	13.261	13.939	14.985
48	0.1	500	ME	11.08	13.998	6.541	13.018	15.967	22.427	12.677	12.844	13.574	11.926
48	0.1	2000	ME	7.971	10.044	6.165	7.382	9.92	10.557	6.278	6.215	6.122	5.905
48	0.3	500	ME	8.336	6.878	4.586	3.216	6.432	7.801	3.964	4.909	4.643	5.036
48	0.3	2000	ME	3.641	2.994	1.613	1.31	2.143	1.895	1.75	1.244	1.018	1.021
24	0.1	150	NME	7.704	2.632	-0.893	7.226	13.233	10.688	4.07	6.227	11.016	9.128
24	0.1	200	NME	8.313	1.405	-4.833	6.25	10.305	11.249	2.625	3.025	11.604	7.215
24	0.1	250	NME	4.735	-1.438	-5.359	7.605	11.922	7.838	3.19	4.588	11.09	6.667
24	0.1	300	NME	2.362	-0.97	-6.629	6.802	13.898	6.442	1.838	3.183	11.704	8.645
24	0.1	200	NME	1.229	0.863	-7.203	7.03	10.455	6.202	2.464	1.38	6.867	5.217
24	0.1	2000	NME	1.578	3.648	-2.291	4.5	5.1111	1.524	-0.368	0.091	3.039	1.251
24	0.3	300	NME	10.574	5.225	5.506	4.786	8.383	-4.569	-2.717	-0.997	2.905	2.37
24	0.3	200	NME	5.101	3.066	3.223	2.693	3.841	1.653	1.044	0.707	2.254	1.498
24	0.3	2000	NME	1.222	1.042	1.923	0.95	0.342	-0.039	0.389	0.951	0.75	-0.385
48	0.1	100	NME	24.216	27.252	15.9	18.362	28.358	17.239	9.698	10.967	11.559	13.657
48	0.1	150	NME	24.851	25.268	15.463	18.296	25.791	19.454	9.507	10.839	16.582	14.044
48	0.1	200	NME	22.758	21.573	12.703	18.47	24.302	7.91	89.9	7.566	18.069	12.052
48	0.1	250	NME	20.988	17.359	7.964	15.985	19.87	7.571	0.218	4.718	16.292	11.286
48	0.1	2000	NME	6.871	7.363	4.908	6.599	7.563	1.171	1.354	1.595	5.724	3.926
48	0.3	2000	NME	2.184	1.61	1.55	2.009	2.059	0.64	0.78	0.829	1.676	1.362
48	0.5	300	NME	5.495	4.389	2.137	1.992	5.26	3.222	1.73	1.921	1.826	2.101
48	0.5	200	NME	2.638	1.715	2.627	1.907	3.555	1.068	0.104	2.227	1.605	1.492
48	0.5	2000	NME	1.441	1.864	0.127	-0.315	0.47	0.98	1.337	-0.099	-0.614	0.017

$\label{eq:Appendix F}$ Method Selection Guideline Supplement

Figure F1: Method selection guideline

References

- Baker, F. B. (1993). Sensitivity of the linear logistic test model to misspecification of the weight matrix. Applied Psychological Measurement, 17(3), 201–210. https://doi.org/10.1177/014662169301700301
- Bechger, T. M., Verstralen, H. H. F. M. & Verhelst, N. D. (2002). Equivalent linear logistic test models. *Psychometrika*, 67, 123–136. https://doi.org/10.1007/BF02294712
- Beretvas, S. N., & Williams, N. J. (2004). The use of hierarchical generalized linear model for item dimensionality assessment. *Journal of Educational Measurement*, 41(4), 379-395. https://doi.org/10.1111/j.1745-3984.2004.tb01172.x
- Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter estimation under conditions of test speededness: Application of a mixture Rasch model with ordinal constraints. *Journal of Educational Measurement*, 39(4), 331-348. https://doi.org/10.1111/j.1745-3984.2002.tb01146.x
- Chalmers, R. P. (2015). Extended mixed-effects item response models with the MH-RM algorithm. *Journal of Educational Measurement*, 52(2), 200-222. https://doi.org/10.1111/jedm.12072
- Cho, S.-J., Li, F., & Bandalos, D. L. (2009). Accuracy of the parallel analysis procedure using polychoric correlations. *Educational and Psychological Measurement*, 69, 748-759.
- Choi, I. H., & Wilson, M. (2015). Multidimensional classification of examinees using the mixture random weights linear logistic test model. *Educational and psychological measurement*, 75(1), 78-101. https://doi.org/10.1177%2F0013164414522124
- Davis, H., Schlundt, D., Camarata, S., Bess, F., & Hornsby, B. (2020, in review). Understanding listening-related fatigue: Perspectives of adults with hearing loss. *International Journal of Audiology*.
- Embretson, S. E. (2015). The multicomponent latent trait model for diagnosis: Applications to heterogeneous test domains. *Applied Psychological Measurement*, 39(1), 16-30. https://doi.org/10.1177%2F0146621614552014
- Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37(6), 359-374. https://doi.org/10.1016/0001-6918(73)90003-6
- Freund, P. A., Hofer, S., & Holling, H. (2008). Explaining and controlling for the psychometric properties of computer-generated figural matrix items. *Applied Psychological Measurement*, 32(3), 195-210. https://doi.org/10.1177%2F0146621607306972

- Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511. http://doi.org/10.1214/ss/1177011136
- Gorin, J. S. (2005). Manipulating processing difficulty of reading comprehension questions: The feasibility of verbal item generation. *Journal of Educational Measurement*, 42(4), 351-373. https://doi.org/10.1111/j.1745-3984.2005.00020.x
- Hartig, J., Frey, A., Nold, G., & Klieme, E. (2012). An application of explanatory item response modeling for model-based proficiency scaling. *Educational and Psychological Measurement*, 72(4), 665-686. https://doi.org/10.1177%2F0013164411430707
- Hoffman, L., Yang, X., Bovaird, J. A., & Embretson, S. E. (2006). Measuring attentional ability in older adults: Development and psychometric evaluation of DriverScan. *Educational and Psychological Measurement*, 66(6), 984-1000. https://doi.org/10.1177%2F0013164406288170
- Hohensinn, C., & Kubinger, K. D. (2011). Applying item response theory methods to examine the impact of different response formats. *Educational and Psychological Measurement*, 71(4), 732-746. https://doi.org/10.1177%2F0013164410390032
- Hornke, L. F., & Habon, M. W. (1986). Rule-based item bank construction and evaluation within the linear logistic framework. *Applied Psychological Measurement*, 10(4), 369-380. https://doi.org/10.1177%2F014662168601000405
- Hu, L.-t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. http://doi.org/10.1080/10705519909540118
- Ip, E. H., Magee, M. F., Youssef, G. A., & Chen, S. H. (2019). Gleaning information for cognitive operations from don't know responses in cognitive and noncognitive assessments. *Multivariate Behavioral Research*, 54(2), 159-172. https://doi.org/10.1080/00273171.2018.1503075
- Ip, E. H., Smits, D. J. M., & De Boeck, P. (2009). Locally dependent linear logistic test model with person covariates. *Applied Psychological Measurement*, 33(7), 555-569. https://doi.org/10.1177/0146621608326424
- Kim, J. (2018). Extensions and applications of item explanatory models to polytomous data in item response theory (Doctoral dissertation, UC Berkeley). Retrieved from https://escholarship.org/uc/item/4pf2p2fj
- Kubinger, K. D. (2008). Applications of the linear logistic test model in psychometric research. *Educational and Psychological Measurement*, 69(2), 232–244. https://doi.org/10.1177/0013164408322021

- Medina-Díaz, M. (1993). Analysis of cognitive structure using the linear logistic test model and quadratic assignment. Applied Psychological Measurement, 17(2), 117-130. https://doi.org/10.1177%2F014662169301700202
- Mitchell, K. J. (1983). Cognitive processing determinants of item difficulty on the verbal subtests of the armed services vocational aptitude battery. Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Muthén, L. K., & Muthén, B. O. (1998–2017). *Mplus user's guide* (8th ed.). Los Angeles, CA: Muthén & Muthén.
- Poinstingl, H. (2009). The linear logistic test model (LLTM) as the methodological foundation of item generating rules for a new verbal reasoning test. *Psychology Science Quarterly*, 51(2), 123-134.
- Rakkapao, S., Prasitpong, S., & Arayathanitkul, K. (2016). Analysis test of understanding of vectors with the three-parameter logistic model of item response theory and item response curves technique. *Physical Review Physics Education Research*, 12(2), 020135. https://doi.org/10.1103/PhysRevPhysEducRes.12.020135
- Rost, J., & Carstensen, C. H. (2002). Multidimensional Rasch measurement via item component models and faceted designs. *Applied Psychological Measurement*, 26(1), 42-56. https://doi.org/10.1177%2F0146621602026001003
- Sheehan, K. M., & Mislevy, R. J. (1990). Integrating cognitive and psychometric models to measure document literacy. *Journal of Educational Measurement*, 27(3), 255–272. https://doi.org/10.1111/j.1745-3984.1990.tb00747.x
- Shermis, M. D., & Chang, S.-H. (1997). The use of item response theory (IRT) to investigate the hierarchical nature of a college mathematics curriculum. *Educational and Psychological Measurement*, 57(3), 450-458. https://doi.org/10.1177%2F0013164497057003006
- Whitely, S. E., & Schneider, L. M. (1981). Information structure for geometric analogies: A test theory approach. *Applied Psychological Measurement*, 5(3), 383-397. https://doi.org/10.1177%2F014662168100500312
- Yu, C.-Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes (Doctoral dissertation, University of California, Los Angeles). Retrieved from https://www.statmodel.com/download/Yudissertation.pdf