

Implémentez un modèle de scoring

Projet 7 Parcours Data Scientist Python Jupyter Notebook – VSCode Github > Streamlit > Heroku

Yanes Khereddine

OpenClassrooms - Centrale Supélec

Sommaire

Contexte: Impact marcher

LE CRÉDIT À LA CONSOMMATION CONCERNE PLUS D'UN MÉNAGE SUR 4*

Problématique:

Présentation des données

Kaggle "Home Credit Default Risk": https://www.kaggle.com/c/home-credit-default-risk/data

Schéma de la BDD source Kaggle

Description rapide des données

Analyse exploratoire des données

Inspiré par le Kernel :

https://www.kaggle.com/thiagopanini/predicting-credit-risk-eda-viz-pipeline https://www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction

Inspiré par le Github :

https://github.com/nalron/project credit scoring model

Distribution de la cible

ICI LA VARIABLE TARGET EST CE QU'ON NOUS DEMANDE DE PRÉDIRE:

- 0: POUR LE PRÊT A ÉTÉ REMBOURSÉ À TEMPS.
- 1: INDIQUANT QUE LE CLIENT A EU DES DIFFICULTÉS DE PAIEMENT.

SMOTE

ET

Classe Weight >>> Hyperparamètres des Model

Preprocessing : Application_train

Opération de Merging

Enrichissement de l'échantillon de travail :

Combinaison des **7 jeux de données**. Avant 122 features - Après **165 features**

Dont 3 features de moyenne et de comptage :

PREVIOUS_LOANS_COUNT: nombre des précédents crédits pris par le client MONTHS_BALANCE_MEAN: solde mensuel moyen des précédents crédits PREVIOUS_APPLICATION_COUNT: nombre de demandes antérieures au crédit immobilier

Feature engineering

Enrichissement de l'échantillon par 4 ratios explicatifs :

CREDIT_INCOME_PERCENT: % montant du crédit par rapport au revenu d'un client

ANNUITY_INCOME_PERCENT: % rente de prêt par rapport au revenu d'un client

DAYS_EMPLOYED_PERCENT: % jours employés par rapport à l'âge du client

CREDIT_TERM: durée du paiement en mois

Echantillon de travail obtenu : 356255 x 169

Modélisation : Baseline fixée par régression logistique

Elaboration d'un modèle, optimisation et compréhension.

Baseline Régression logistique

Performances de la "baseline" avec toutes les features.

Synthèse des modèle

	Model	AUC	Accuracy	Precision	Recall	F1	Time
0	LogisticRegression	0.739456	0.920167	0.428571	0.018908	0.036217	5.940477
1	RandomForestClassifier	0.736040	0.920417	0.000000	0.000000	0.000000	52.483439
2	DecisionTreeClassifier	0.693081	0.918667	0.306452	0.019958	0.037475	0.713839

.

Feature selection

Recursive Feature Elimination: RFECV

Identification des best features par validation croisée en optimisant la métrique AUC.

Fonction coût

Limiter les risques de perte financière :

Pénaliser les Faux Positifs et les Faux Négatifs.

Quantification de l'importance relative entre Recall et Precision.

Estimation du coût moyen d'un défaut de paiement.

Estimation du coût d'opportunité d'un client refusé par erreur.

Connaissance métier nécessaire ou hypothèses à fixer.

Métrique d'évaluation

Amélioration de la métrique et pénalisation des erreurs FP et FN. Meilleures performances RandomForest.

Features Engineering

Matrice de confusion + Courbe ROC / AUC score+ Features Selection.

Présentation du dashboard

Versioning Github: https://github.com/DeepScienceData/Projet-OpenClassRoms

Heroku: https://model-scoring-openclassrom.herokuapp.com/

Streamlit: https://share.streamlit.io/deepsciencedata/projet-openclassroms/app/app.py

Streamlit

Streamlit : framework open-source Python spécialisé ML. **Application web :** modèles de ML et visualisation des données.

Application performante: mise en cache via une annotation.

Création facile: sans nécessité d'implémenter du HTML.

	Maturity	Popularity	Simplicity	Adaptability	Focus	Language support
Streamlit	С	A	A	C	Dashboard	Python
Dash	В	A	В	В	Dashboard	Python, R, Julia
Panel	С	В	В	В	Dashboard	Python
Shiny	A	В	В	В	Dashboard	R
Voila	С	C	A	C	Dashboard	Python, R, Julia
Jupyter	A	A	В	В	Notebook	Python, R, Julia
Flask	Α	A	В	A	Web framework	Python

23

Schéma fonctionnel de l'application

Conclusion

Utilisation et modification d'un Kernel Kaggle.
Entraînement d'un modèle de scoring.
Fonction coût, optimisation et évaluation.
Interprétabilité du modèle RandomForest.
Dashboard interactif.

STREAMLIT: DASHBOARD

HEROKU: DASHBOARD