Machine Intelligence based IoT Management System

Presented by:-Abin Mathew Abraham (150948015)

Guided by:-Sucharitha Shetty Swarup Kumar Mohalik

Contents

- Introduction
- Objectives
- Background
- Overview of Solution
- Implementation Details
- Use Cases
- Result Analysis
- Summary
- Future Work
- Future Scope
- References

Introduction

- Future is IoT
- Data -> Information -> Context Awareness -> Decisions
- Scaling
- Device Management
- Autonomous and Adaptive
- Areas:-
 - Network Protocols
 - Al Planning
 - Software Development

Objectives

- Prototype of an Autonomous and Adaptive IoT Management System
- Salient Features:-
 - Efficient Communication with Constrained Devices
 - Use of a Standard Industry Protocol for Device Management
 - Autonomous and Adaptive Application

Background

CoAP

- Embedded web transfer protocol
- Asynchronous transaction model
- UDP binding, reliability, multicast
- GET, POST, PUT, DELETE methods
- URI support
- 4 byte header
- o DTLS
- Built in discovery
- Optional Observation and Block Transfer
- Subset of MIME types and response codes

Background (contd.)

- LwM2M
 - OMA Alliance
 - Independent of type/category of device
 - Independent of network
 - Object Models (supports IPSO object models and Custom models)
 - Interfaces Bootstrapping, Registration, Management, Reporting
 - Object Access Read, Write, Execute (easy translation from HTTP)
- Al Planning
 - To achieve pre-stated objectives
 - Formulate a problem as search problem and search for goals
 - Planners (FF, Metric FF, Optic, PANDA service)
 - PDDL

Background (contd.)

- Leshan
 - Open Source
 - Eclipse IoT Project
 - Java libs for developing LwM2M Server and Client
 - CoAP implementation Californium
 - DTLS implementation Scandium
- openHAB 2.0
 - Open Home Automation Bus
 - Runs on JVM
 - Integration platform for devices/technologies -> one solution
 - Automation Rules

Overview of Solution

- Part 1 System
 - Server for handling clients
 - Constrained Environment CoAP
 - Device Management LwM2M
 - REST APIs
 - HTTP to CoAP translations
- Part 2 Application
 - Decoupled from the System
 - Pull states form the server using REST APIs
 - Policy incorporation
 - LTL integration
 - Generate PDDL files from states, policies and LTL formulas
 - Execute plan through REST APIs

Overview of Solution (contd.)

- Part 3 Planning
 - Decoupled from Application
 - Planner Application/Service
 - Takes PDDL domain and problem files as inputs
 - Generates a plan if possible
 - BFS, A*, EHC and their combinations
 - Sends the plan back to the Application

Overview of Solution (contd.)

Figure 1 - Proposed System Architecture

Implementation Details

- Leshan Server and Device Clients
 - LwM2M over CoAP
 - Clients are specifically developed for the devices JAVA
 - Server has GUI
- openHAB 2.0 Application
 - Custom Binding for Leshan Server
 - Fetches states through Server's REST APIs
 - Clients can be controlled through GUI
 - Rules and Scripts For automation
 - Generates the PDDL problem file external Python script
 - Calls the planner service http call from shell/python script
 - Executes Plan through REST APIs of Server

Implementation Details (contd.)

- PANDA Planner Service
 - Ericsson's internal tool
- Metric FF, FF, Optic Planner application
 - Open source

Implementation Details (contd.)

Use Cases

- Building Use Case
 - Purpose: Create the autonomous and adaptive system
 - Fire Sensor and Sprinkler in every room
 - A critical device like building server will be there in one room
 - Room Client Leshan Client
 - Fire Sensor Generic Sensor Object
 - Sprinkler Actuation Object
 - Building Server Client Leshan Client
 - Power up/Shutdown Actuation Object
 - Location Set Point Object
 - Clients <--> Server communication LwM2M over CoAP
 - openHAB 2.0 frequently pulls the device states

- Building Use Case (contd.)
 - Expected System Behaviour
 - Detection, Planning, Execution
 - If fire and no building server in the room turn on sprinkler
 - If fire and building server is there in the room turn off the server first and then turn on sprinkler

- Camera use cases
 - Purpose: Policy incorporation, LTL formula incorporation
 - Cameras and Regions covered
 - Critical Regions
 - Critical Regions must not be unmonitored
 - Cameras must be upgraded
 - Upgradation can only happen when camera is switched off
 - Switching off cameras can result in unmonitored critical regions
 - Goal: Sequence of steps which doesn't allow unmonitored critical regions

- Camera use cases (contd.)
 - 3 Camera use case
 - Approaching the problem in simple way

- Camera use cases (contd.)
 - 5 Camera use case
 - Adopting the simple approach to complex case

- Camera use cases (contd.)
 - 13 Camera use case
 - Scaling (61 regions, 24 critical regions), LTL

- Camera use cases (contd.)
 - Every policy change shouldn't be a remodelling task
 - Policy from Policy file → Domain PDDL file
 - Dummy action
 - Force the action after every real action
 - o LTL always, eventually, next time, until and release
 - LTL formula → Büchi Automaton [3]
 - Online software was used

Result Analysis

- Building use case
 - Leshan Server start

```
LeshanServerProject [Java Application] /usr/lib/jvm/oracle_jdk8/bin/java (25-May-2017, 12:34:51 PM)
May 25, 2017 12:34:51 PM org.eclipse.californium.core.network.config.NetworkConfig load
INFO: loading properties from file /home/abin/leshan project workspace/leshan-server-project/Californium.properties
May 25, 2017 12:34:51 PM org.eclipse.californium.core.CoapServer start
INFO: Starting server
May 25, 2017 12:34:51 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Starting endpoint at coap://0.0.0.0:5683
May 25, 2017 12:34:51 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Started endpoint at coap://0.0.0.0:5683
May 25, 2017 12:34:51 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Starting endpoint at coaps://0.0.0.0:5684
May 25, 2017 12:34:51 PM org.eclipse.californium.scandium.DTLSConnector start
INFO: DTLS connector listening on [0.0.0.0/0.0.0.0:5684] with MTU [1,280] using (inbound) datagram buffer size [16,474 bytes]
May 25, 2017 12:34:51 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Started endpoint at coaps://0.0.0.0:5684
2017-05-25 12:34:51,554 INFO LeshanServer - LWM2M server started at coap://0.0.0.0/0.0.0.0:5683, coaps://0.0.0.0/0.0.0.0:5684.
2017-05-25 12:34:51.611 INFO LeshanServerDemo - Web server started at http://127.0.1.1:45456/.
```

- Building use case (contd.)
 - Leshan Clients start

```
BuildingServerLeshanClient [Java Application] /usr/lib/jvm/oracle jdk8/bin/java (25-May-2017, 1:05:38 PM)
May 25, 2017 1:05:39 PM org.eclipse.californium.core.network.config.NetworkConfig load
INFO: loading properties from file /home/abin/leshan project workspace/building server leshan-client/Californium.properties
2017-05-25 13:05:39,112 INFO LeshanClient - Starting Leshan client ...
May 25, 2017 1:05:39 PM org.eclipse.californium.core.CoapServer start
INFO: Starting server
May 25, 2017 1:05:39 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Starting endpoint at coaps://0.0.0.0:0
May 25, 2017 1:05:39 PM org.eclipse.californium.scandium.DTLSConnector start
INFO: DTLS connector listening on [0.0.0.0/0.0.0.0:49472] with MTU [1,280] using (inbound) datagram buffer size [16,474 bytes]
May 25, 2017 1:05:39 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Started endpoint at coaps://0.0.0.0:49472
May 25, 2017 1:05:39 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Starting endpoint at coap://0.0.0.0:0
May 25, 2017 1:05:39 PM org.eclipse.californium.core.network.CoapEndpoint start
INFO: Started endpoint at coap://0.0.0.0:52840
2017-05-25 13:05:39.126 INFO LeshanClient - Leshan client started [endpoint:BuildingServerClient].
2017-05-25 13:05:39,129 INFO RegistrationEngine - Trying to register to coap://localhost:5683 ...
2017-05-25 13:05:39,142 INFO RegistrationEngine - Next registration update in 27.0s...
2017-05-25 13:05:39,143 INFO RegistrationEngine - Registered with location '/rd/4pJqQA3s2j'.
```

- Building use case (contd.)
 - Leshan Server GUI after client registrations

- Building use case (contd.)
 - Client Controls in GUI

- Building use case (contd.)
 - GET request on Application Type resource

```
▼ Response Headers
                     view parsed
  HTTP/1.1 200 OK
  Content-Type: application/json
  Content-Length: 86
  Server: Jetty(9.1.4.v20140401)
▼ Request Headers
                    view parsed
  GET /api/clients/RoomAClient/3306/0/5750?format=JSON HTTP/1.1
  Host: localhost:45456
  Connection: keep-alive
  Accept: application/json, text/plain, */*
  User-Agent: Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36
  Referer: http://localhost:45456/
  Accept-Encoding: gzip, deflate, sdch, br
  Accept-Language: en-US, en; q=0.8
```

▼ Query String Parameters

view parsed

format=JSON

- Building use case (contd.)
 - GET request's response

```
    Headers Preview Response Timing

1 {"status":"CONTENT","content":{"id":5750,"value":"Room A Sprinkler control Actuator"}}
```

- Building use case (contd.)
 - PUT request to On/Off resource

```
× Headers Preview Response Timing
   Referrer Policy: no-referrer-when-downgrade
▼ Response Headers
                      view parsed
   HTTP/1.1 200 OK
   Content-Type: application/json
   Content-Length: 20
   Server: Jetty(9.1.4.v20140401)
▼ Request Headers
                     view parsed
   PUT /api/clients/RoomAClient/3306/0/5850?format=JSON HTTP/1.1
   Host: localhost:45456
   Connection: keep-alive
   Content-Length: 26
   Accept: application/json, text/plain, */*
   Origin: http://localhost:45456
   User-Agent: Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36
   Content-Type: application/json
   Referer: http://localhost:45456/
   Accept-Encoding: gzip, deflate, sdch, br
   Accept-Language: en-US,en;g=0.8
▼ Ouerv String Parameters
                            view parsed
   format=JSON
▼ Request Payload
                    view parsed
   {"id":5850, "value": "true"}
```

- Building use case (contd.)
 - PUT request's response on success

```
X Headers Preview Response Timing
1 {"status":"CHANGED"}
```

- Building use case (contd.)
 - REST API call for registry details

```
← → C ↑ ① localhost:45456/api/clients?format=JSON
∰ Apps ★ Bookmarks M AS3 🖰 Drop me in Book 💪 Google 🔞 Empire 🔞 Empire
                                                                                                   Other bookmarks
[{"endpoint":"RoomAClient", "registrationId":"ZX5dWOacYG", "registrationDate":"2017-05-
28T02:02:09+05:30", "lastUpdate": "2017-05-
28T02:02:09+05:30", "address": "127.0.0.1:38139", "lwM2mVersion": "1.0", "lifetime": 30, "bindingMode": "U", "rootPath": "/",
"objectLinks":[{"url":"/","attributes":{"rt":"oma.lwm2m"}},{"url":"/1/0","attributes":{}},
{"url":"/3300/0","attributes":{}},{"url":"/3306/0","attributes":
{}}], "secure": false, "additionalRegistrationAttributes": {}},
{"endpoint": "RoomBClient", "registrationId": "mrKWwSlTxX", "registrationDate": "2017-05-
28T02:02:12+05:30", "lastUpdate": "2017-05-
28T02:02:12+05:30", "address": "127.0.0.1:44398", "lwM2mVersion": "1.0", "lifetime": 30, "bindingMode": "U", "rootPath": "/",
"objectLinks":[{"url":"/","attributes":{"rt":"oma.lwm2m"}},{"url":"/1/0","attributes":{}},
{"url":"/3300/0","attributes":{}},{"url":"/3306/0","attributes":
{}}], "secure": false, "additionalRegistrationAttributes": {}},
{"endpoint": "BuildingServerClient, registrationId": "R1TB0K9YAv", registrationDate": "2017-05-
28T02:02:04+05:30", "lastUpdate": "2017-05-
28T02:02:04+05:30", "address": "127.0.0.1:52218", "lwM2mVersion": "1.0", "lifetime": 30, "bindingMode": "U", "rootPath": "/",
"objectLinks":[{"url":"/","attributes":{"rt":"oma.lwm2m"}},{"url":"/1/0","attributes":{}},
{"url":"/3306/0","attributes":{}},{"url":"/3308/0","attributes":
{}}], "secure": false, "additionalRegistrationAttributes": {}}]
```

- Building use case (contd.)
 - Parsed response for previously mentioned call

```
10
      "endpoint": "RoomAClient",
      "registrationId": "AVbdiXTNfP",
      "registrationDate": "2017-05-26T13:25:36+05:30",
      "lastUpdate": "2017-05-26T13:27:51+05:30",
      "address": "127.0.0.1:53840",
      "lwM2mVersion": "1.0".
      "lifetime":30.
      "bindingMode": "U",
      "rootPath":"/".
      "objectLinks": ⊕ [4],
      "secure": false.
      "additionalRegistrationAttributes": □{
```

- Building use case (contd.)
 - Expanding object links in previous response

```
"objectLinks": 0[
   ⊕ {...}.
      "url": "/1/0".
      "attributes": -{
      "url":"/3300/0",
      "attributes": □{
      "url": "/3306/0",
      "attributes": -{
```

- Building use case (contd.)
 - Custom binding to communicate with Leshan Server
 - Hash table of client handlers (key registration id)
 - Hash table of object handlers (key channel id)
 - Commands are handled in a thread
 - From the thread corresponding API calls are made

- Building use case (contd.)
 - Custom binding's description

- Building use case (contd.)
 - Thing creation

- Building use case (contd.)
 - GUI after Refresh button click

- Building use case (contd.)
 - Response for button clicks

- Building use case (contd.)
 - Cron job

```
when
    Time cron "0/10 * * * * * ?"
then

sendCommand("leshanserverinterface_leshanadapter_ProjectLeshanServer_BuildingServerClient_IPSOSetPoint_0_readValue","ON");
    sendCommand("leshanserverinterface_leshanadapter_ProjectLeshanServer_BuildingServerClient_IPSOActuation_0_readOnOffState","ON");

sendCommand("leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomAClient_IPSOActuation_0_readOnOffState","ON");

sendCommand("leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomAClient_IPSOGenericSensor_0_readValue","ON");

sendCommand("leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomBClient_IPSOActuation_0_readOnOffState","ON");

sendCommand("leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomBClient_IPSOGenericSensor_0_readValue","ON");

end

end
```

- Building use case (contd.)
 - Rules

```
Prule "Fire in Room A detected"
when
    Item leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomAClient_IPSOGenericSensor_0_readValueResponse changed from OFF to ON or
    Item leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomAClient_IPSOGenericSensor_0_readValueResponse changed from NULL to ON
then
        callScript("switchonsprinklerA")
end

Prule "Fire in Room B detected"
when
    Item leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomBClient_IPSOGenericSensor_0_readValueResponse changed from OFF to ON or
    Item leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomBClient_IPSOGenericSensor_0_readValueResponse changed from NULL to ON
then
    callScript("switchonsprinklerB")
end
```

- Building use case (contd.)
 - Shell script execution for PDDL generation and planning

- Building use case (contd.)
 - Plan generated when building server is in Room B and fire is in Room A

```
ff: found legal plan as follows
step 0: SWITCH_ON_SPRINKLER ROOMA
```

Plan generated when both building server and fire is in Room B

```
ff: found legal plan as follows
step 0: SWITCH_OFF_SERVER ROOMB
1: SWITCH_ON_SPRINKLER ROOMB
```

- Building use case (contd.)
 - Plan generated when building server is in Room A and fire is in Room B

```
ff: found legal plan as follows step 0: SWITCH_ON_SPRINKLER ROOMB
```

Plan generated when both building server and fire is in Room A

```
ff: found legal plan as follows
step 0: SWITCH_OFF_SERVER ROOMA
1: SWITCH_ON_SPRINKLER ROOMA
```

- Building use case (contd.)
 - Parsing and Plan Execution

```
while(i < len){
    cmd = commands.get(i)
    param = params.get(i)

if(cmd.equals("switch_off_server")){
    item = "leshanserverinterface_leshanadapter_ProjectLeshanServer_BuildingServerClient_IPSOActuation_0_readOnOffStateResponse"
        sendCommand(item, "OFF")

}else if(cmd.equals("switch_on_sprinkler") && param.equals("roomA")){
    item = "leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomAClient_IPSOActuation_0_readOnOffStateResponse"
        sendCommand(item, "ON")

}else if(cmd.equals("switch_on_sprinkler") && param.equals("roomB")){
    item = "leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomBClient_IPSOActuation_0_readOnOffStateResponse"
        sendCommand(item, "ON")
}
i++
}</pre>
```

- Building use case (contd.)
 - States after fire sensor is triggered in room A

- Building use case (contd.)
 - openHAB logs after execution

```
13:15:50.168 [INFO ] [smarthome.event.ItemCommandEvent ] - Item 'leshanserver interface_leshanadapter_ProjectLeshanServer_BuildingServerClient_IPSOActuation_0 _readOnOffStateResponse' received command OFF
13:15:50.168 [INFO ] [marthome.event.ItemStateChangedEvent] - leshanserverinterf ace_leshanadapter_ProjectLeshanServer_BuildingServerClient_IPSOActuation_0_readOnOffStateResponse changed from ON to OFF
13:15:50.169 [INFO ] [smarthome.event.ItemCommandEvent ] - Item 'leshanserver interface_leshanadapter_ProjectLeshanServer_RoomAClient_IPSOActuation_0_readOnOffStateResponse' received command ON
13:15:50.172 [INFO ] [marthome.event.ItemStateChangedEvent] - leshanserverinterface_leshanadapter_ProjectLeshanServer_RoomAClient_IPSOActuation_0_readOnOffStateResponse changed from OFF to ON
```

Autonomous and Adaptive

- Camera use case
 - 'Safety check' action
 - 'Check' predicate
 - 'Safe' predicate

```
(exists (?r - region)
        (and (critical ?r)
(not (safe))
```

- Camera use case (contd.)
 - Plan generated for 3 camera use case
 - SAFETY-CHECKs will be removed

```
0: SAFETY-CHECK
1: UPGRADE C2
2: SAFETY-CHECK
3: TURN-ON C2
4: SAFETY-CHECK
5: TURN-OFF C1
6: SAFETY-CHECK
7: UPGRADE C1
8: SAFETY-CHECK
   TURN-ON C1
10: SAFETY-CHECK
12: SAFETY-CHECK
13: UPGRADE C3
15: TURN-ON C3
16: SAFETY-CHECK
```

- Camera use case (contd.)
 - Plan generated for 5 camera use case

- Camera use case (contd.)
 - Optimized 'Safety Check' action

- Camera use case (contd.)
 - Sample Policy File

```
"policy_condition":"(forall (?r - region) (imply (critical ?r) (exists (?c) (iscovering ?c ?r))))",
"policy_effect":"(safe)"
```

'Safety check' action in meta domain file

- Camera use case (contd.)
 - 'Safety Check' action in generated domain file

- Camera use case LTL
 - Camera cannot turn on right after upgradation
 - Has to wait at least 3 steps
 - LTL formula: wait U (upgrade & XF(XXX turn_on))

- Camera use case LTL (contd.)
 - Implementation of the Büchi Automaton

```
IMPLEMENTATION OF BUCHI AUTOMATON
 UCHI AUTOMATON END
```

- Camera use case LTL (contd.)
 - Meaningless plan generated

```
78: UPGRADE C13
79: SAFETY-CHECK
80: TURN-OFF C6
81: SAFETY-CHECK
82: TURN-ON C6
83: SAFETY-CHECK
84: TURN-OFF C6
85: SAFETY-CHECK
86: TURN-ON C13
87: SAFETY-CHECK
88: TURN-ON C6
89: SAFETY-CHECK
```

- Camera use case LTL (contd.)
 - Pause action
 - To counter meaningless plans
 - Less costly plans

- Camera use case LTL (contd.)
 - Plan generated after including LTL formula and Pause action

0: TURN-OFF C1	22: TURN-OFF C5	44: TURN-ON C7	66: UPGRADE C12
1: SAFETY-CHECK	23: SAFETY-CHECK	45: SAFETY-CHECK	67: SAFETY-CHECK
2: UPGRADE C1	24: UPGRADE C5	46: TURN-OFF C9	68: TURN-ON C11
3: SAFETY-CHECK	25: SAFETY-CHECK	47: SAFETY-CHECK	69: SAFETY-CHECK
4: TURN-OFF C2	26: TURN-ON C4	48: UPGRADE C9	70: PAUSE
5: SAFETY-CHECK	27: SAFETY-CHECK	49: SAFETY-CHECK	71: SAFETY-CHECK
6: UPGRADE C2	28: TURN-OFF C6	50: TURN-ON C8	72: PAUSE
7: SAFETY-CHECK	29: SAFETY-CHECK	51: SAFETY-CHECK	73: SAFETY-CHECK
8: TURN-OFF C3	30: UPGRADE C6	52: TURN-OFF C10	74: TURN-ON C12
9: SAFETY-CHECK	31: SAFETY-CHECK	53: SAFETY-CHECK	75: SAFETY-CHECK
10: UPGRADE C3	32: TURN-ON C5	54: UPGRADE C10	76: TURN-OFF C13
11: SAFETY-CHECK	33: SAFETY-CHECK	55: SAFETY-CHECK	77: SAFETY-CHECK
12: TURN-ON C1	34: TURN-OFF C7	56: TURN-ON C9	78: UPGRADE C13
13: SAFETY-CHECK	35: SAFETY-CHECK	57: SAFETY-CHECK	79: SAFETY-CHECK
14: TURN-ON C2	36: UPGRADE C7	58: TURN-OFF C11	80: PAUSE
15: SAFETY-CHECK	37: SAFETY-CHECK	59: SAFETY-CHECK	81: SAFETY-CHECK
16: TURN-OFF C4	38: TURN-ON C6	60: UPGRADE C11	82: PAUSE
17: SAFETY-CHECK	39: SAFETY-CHECK	61: SAFETY-CHECK	83: SAFETY-CHECK
18: UPGRADE C4	40: TURN-OFF C8	62: TURN-ON C10	84: PAUSE
19: SAFETY-CHECK	41: SAFETY-CHECK	63: SAFETY-CHECK	85: SAFETY-CHECK
20: TURN-ON C3	42: UPGRADE C8	64: TURN-OFF C12	86: TURN-ON C13
21: SAFETY-CHECK	43: SAFETY-CHECK	65: SAFETY-CHECK	87: SAFETY-CHECK

Summary

- System
 - Constrained Devices
 - Device Management
- Autonomous and Adaptive
 - Al Planning
 - Application which takes decisions and executes them
- Policy Incorporation
- Linear Temporal Logic

Future Work

- Test Scalability
- Test complex use cases
- Replanning
 - Fault Injection System
- Linear Temporal Logic
 - Doesn't fully capture the notion of time
 - Incorporating LTL like the policies
- EARS

Future Scope

- LwM2M and CoAP
 - Industrial Standard
 - Will be widely accepted
- Long Term Projects
- Less Maintenance
- Will be able to handle unexpected scenarios
- Cost Effective

References

- Semantic Interoperability, Release 2.0, AIOTI WG03 IoT Standardisation, 2015
- 2. Swarup Mohalik, Mahesh Babu Jayaraman, Badrinath Ramamurthy and AnetaVulgarakis, "SOA-PE: A Service-oriented Architecture for Planning and Execution in Cyber-physical Systems", in IEEE-IC -SSS 2015
- Fabio Patrizi, Nir Lipoveztky, Giuseppe De Giacomo and Hector Geffner, "Computing Infinite Plans for LTL Goals Using a Classical Planner"
- 4. B.Nebel, "The FF Planning System: Fast Plan Generation Through Heuristic Search", in Journal of Artificial Intelligence Research, Volume 14, 2001, Pages 253 302
- 5. Dan Klein and Pieter Abbeel. University of Berkeley. Artificial Intelligence [Online]. Available: https://www.edx.org/course/artificial-intelligence-uc-berkeleyx

References (contd.)

- Dr. Gerhard Wickler and Prof. Austin Tate. University of Edinburgh. Artificial Intelligence Planning [Online]. Available: https://www.youtube.com/playlist?list=PLwJ2VKmefmxpUJEGB1ff6yUZ5Zd7Gegn2
- 7. Leshan. [Online]. Available: https://github.com/eclipse/leshan
- 8. openHAB documents. [Online]. Available: http://docs.openhab.org/
- 9. Eclipse Smarthome.[Online].Available: http://www.eclipse.org/smarthome/
- 10. John Terzakis. Intel Corporation. EARS: The Easy Approach to Requirements Syntax.[Online]. Available: https://www.iaria.org/conferences2013/filesICCGI13/ICCGI_2013_Tutorial_Terzakis.pdf

Questions... Suggestions...

https://github.com/abinmath ewabraham/machine_intellig ence_based_iot_managemen t_system

Thank You