

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA FAX: +82-31-645-6401 TEL: +82-31-645-6300

FCC/ISED SIGFOX REPORT

Certification

Applicant Name:

WISOL CO., LTD

Address:

Date of Issue:

July 25, 2017

Test Site/Location:

HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majangmyeo, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-R-1706-F043

HCT FRN: 0005866421

ISED Registration Number: 5944A-5

FCC ID : 2ABA2SFM20R2 IC ID : 11534A-SFM20R2

531-7, Gajang-ro, Osan-si Gyeonggi-do, 18103, Korea

APPLICANT : WISOL CO., LTD

Model: SFM20R2

EUT Type: Sigfox Quad-mode module

Low: 22.450 dBm (175.79 mW) Max. RF Output Power:

High: 22.752 dBm (188.45 Mw)

Low: 902.1375 MHz - 904.6625 MHz

Frequency Range: High: 920.1375 MHz - 922.6625 MHz

Modulation type: **DBPSK**

FCC Classification: FCC Part 15 Spread Spectrum Transmitter

FCC Rule Part(s): Part 15 subpart C 15.247

IC Rule Part(s): RSS-247 Issue 2 (February 2017), RSS-Gen Issue 4(November 2014)

The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by: Jung Lae Cho

Engineer of Telecommunication testing center

Approved by : Jong Seok Lee

Manager of Telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1706-F043	July 25, 2017	- First Approval Report

Report No.: HCT-R-1706-F043

Table of Contents

1.	GENERA	AL INFORMATION	4
2.	EUT DES	SCRIPTION	4
3.	TEST ME	THODOLOGY	5
	3.1	EUT CONFIGURATION	5
	3.2	EUT EXERCISE	5
	3.3	GENERAL TEST PROCEDURES	5
	3.4	DESCRIPTION OF TEST MODES	6
4.	INSTRUI	MENT CALIBRATION	6
5.	FACILITI	ES AND ACCREDITATIONS	6
	5.1	FACILITIES	6
	5.2	EQUIPMENT	6
6.	ANTENN	A REQUIREMENTS	6
7.	MEASUF	REMENT UNCERTAINTY	7
8.	SUMMAI	RY OF TEST RESULTS	8
	8.1 FCC	Part	8
	8.2 IC Pa	ırt	9
9.	TEST RE	SULT	10
	9.1	PEAK POWER	
	9.2	BAND EDGES	
	9.3	FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	22
	9.4	NUMBER OF HOPPING FREQUENCY	
	9.5	TIME OF OCCUPANCY (DWELL TIME)	36
	9.6	SPURIOUS EMISSIONS	42
	9.6.1	CONDUCTED SPURIOUS EMISSIONS	42
	9.6.2	RADIATED SPURIOUS EMISSIONS	50
	9.6.3	RECEIVER SPURIOUS EMISSIONS	69
	9.7	POWERLINE CONDUCTED EMISSIONS	70
10.		LIST OF TEST EQUIPMENT	
	10.1	LIST OF TEST EQUIPMENT(Conducted Test)	75
	10.2	LIST OF TEST FOLUPMENT(Radiated Test)	76

1. GENERAL INFORMATION

Applicant: WISOL CO., LTD

Address: 531-7, Gajang-ro, Osan-si Gyeonggi-do, 18103, Korea

FCC ID: 2ABA2SFM20R2 **IC**: 11534A-SFM20R2

EUT Type: Sigfox Quad-mode module

Model: SFM20R2

Date(s) of Tests: April 17, 2017 ~ July 7, 2017

HCT Co., Ltd.

Place of Tests:
74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

2. EUT DESCRIPTION

Model	SFM20R2		
EUT Type	Sigfox Quad-mode module		
Power Supply	DC 3.3 V		
Fraguency Bango	Low : 902.1375 MHz – 904.6625 MHz		
Frequency Range	High: 920.1375 MHz - 922.6625 MHz		
Max. RF Output Power:	Low: 22.450 dBm (175.79 mW) / High: 22.752 dBm (188.45 Mw)		
Modulation Type DBPSK			
Modulation Technique	FHSS		
Number of Channels	Low : 54 Channels (9 Macro channels x 6 Micro channels)		
Number of Channels	High : 54 Channels (9 Macro channels x 6 Micro channels)		
	Manufacturer: INNO-LINK		
Antenna Specification	Antenna type: External dipole antenna		
	Peak Gain : 2.01 dBi		

* 15.247 Requirements for Sigfox transmitter

- This Sigfox Quad-mode module has been tested by a Sigfox Qualification Lab, and we confirm the following:
- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) is used in the measurement of the test device.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C / the RSS-Gen issue 4, RSS-247 issue 2.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW ≥3*RBW).

Conducted Antenna Terminal

See Section from 7.8.2 to 7.8.8.(ANSI 63.10-2013)

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2006).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* This module has SMA type antenna connector, not unique coupling. So it`s subject to Limited single-modular transmitter.

*The OEM manufacturer who will install this module into their device must not give an access to an tenna and connector by end-user in compliance with FCC Section 15.203.

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70

IC: 11534A-SFM20R2

HCT CO.,LTD.

8. SUMMARY OF TEST RESULTS

8.1 FCC Part

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)(i)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(2)	< 1 W if ≥ 50 non- overlapping hopping channels used < 0.25 W if < 50 non- overlapping hopping channels used		PASS
Carrier Frequency Separation	§15.247(a)(1)	>25 kHz or > 20dB BW of hopping channel	CONDUCTED	PASS
Number of Hopping Frequencies	§15.247(a)(1)(i)	≥ 50		PASS
Time of Occupancy	§15.247(a)(1)(i)	<400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge(Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 9.7		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 9.6.2	RADIATED	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 9.6.3	NADIATED	PASS

8.2 IC Part

Test Description	IC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	RSS-247, 5.1.3	N/A		PASS
99 % Bandwidth	RSS-Gen, 6.6	N/A		PASS
Conducted Maximum Peak Output Power	RSS-247, 5.4.1	< 1 W if the hopset uses 50 or more hopping channels < 0.25 W if the hopset uses less than 50 hopping channels		PASS
Carrier Frequency Separation	RSS-247, 5.1.2	>25 kHz or > 20dB BW of hopping channel		PASS
Number of Hopping Frequencies	RSS-247, 5.1.3	≥ 50	CONDUCTED	PASS
Time of Occupancy	RSS-247, 5.1.3	< 0.4 s		PASS
Conducted Spurious Emissions	RSS-247, 5.5	< 20 dB for all out-of band emissions		PASS
Band Edge(Out of Band Emissions)	RSS-247, 5.5	< 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	RSS-Gen, 8.8	RSS-Gen section 8.8 table 3		PASS
Radiated Spurious Emissions	RSS-Gen, 8.9	RSS-Gen section 8.9 table 4, 5		PASS
Radiated Restricted Band Edge	RSS-Gen, 8.10	RSS-Gen section 8.10 table 6	RADIATED	PASS
Receiver Spurious Emissions	RSS-Gen, 5 RSS-Gen, 7.1.2	RSS-Gen section 7.1.2 table 2		PASS

9. TEST RESULT 9.1 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 902-928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.
- 3. The e.i.r.p of this module not exceed 4 W because the antenna gain not exceed not 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW ≥ RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

SAMPLE CALCULATION

Output Power = Spectrum Reading Power + Attanuator loss + Cable loss(1 ea) = 10 dBm + 10 dB + 0.1 dB = 20.1 dBm

Note:

- 1. The power results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 900 MHz range that was rounded off to the closest tenth dB. Actual value of loss for the Attenuator and cable combination is 10 dB at 900 MHz.

HCT CO.,LTD. F-TP22-03 (Rev.00) 10 / 76

IC: 11534A-SFM20R2

FCC ID: 2ABA2SFM20R2 /

TEST RESULTS

No non-compliance noted

Test Data

[Low Band]

Channel	Frequency	Output Power (DBPSK)		Limit	Result
	(MHz)	(dBm)	(mW)	(mW)	
Low	902.1375	22.429	174.94		PASS
Mid	903.4125	22.397	173.66	1000	PASS
High	904.6625	22.450	175.79		PASS

[High Band]

[9						
Channel	Frequency	Output Power (DBPSK)		Limit	Result	
	(MHz)	(dBm)	(mW)	(mW)		
Low	920.1375	22.752	188.45		PASS	
Mid	921.3875	22.727	187.37	1000	PASS	
High	922.6625	22.666	184.76		PASS	

Test Plots (DBPSK) – Low Band Peak Power (Low)

Test Plots (DBPSK)
Peak Power (Middle)

Test Plots (DBPSK)
Peak Power (High)

Test Plots (DBPSK) – High Band

Peak Power (Low)

Agilent Spectrum Analyzer - Swept SA

Test Plots (DBPSK)
Peak Power (Middle)

Test Plots (DBPSK)
Peak Power (High)

9.2 BAND EDGES

LIMIT

According to §15.247(d) / RSS-247 5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013)

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.

5) RBW: 100 kHz6) VBW: 300 kHz7) Detector: Peak8) Trace: Max hold

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2

TEST RESULTS

See attached.

Note:

- 1. The results in plot is already including the actual values of loss for the Attanuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 900 MHz range that was rounded off to the closest tenth dB. Actual value of loss for the Attenuator and cable combination is 10 dB at 900 MHz.

Test Data

[Low Band]

- Without hopping

Frequency	Channel	D-BPSK	Limit	Margin	Pocult
(MHz)	Chame	(dB)	(dBc)	D-BPSK (dBc)	Result
902.1375	Low	72.348	20	52.35	Pass
904.6625	Upper	70.608	20	50.61	Pass

- With hopping

Frequency	Channel	D-BPSK	Limit	Margin	Result
(MHz)	No.	(dB)	(dBc)	D-BPSK (dBc)	Result
902.1375	Lower	71.777	20	51.78	Pass
904.6625	Upper	72.159	20	52.16	Pass

[High Band]

- Without hopping

Frequency	Channel	D-BPSK	Limit	Margin	Result
(MHz)	Chame	(dB)	(dBc)	D-BPSK (dBc)	Result
920.1375	Low	71.766	20	51.77	Pass
922.6625	Upper	72.106	20	52.11	Pass

- With hopping

Frequency	Channel	D-BPSK	Limit	Margin	Dogult	
(MHz)	No.	(dB)	(dBc)	D-BPSK (dBc)	Result	
920.1375	Lower	72.316	20	52.32	Pass	
922.6625	Upper	71.440	20	51.44	Pass	

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 /

IC: 11534A-SFM20R2

Test Plots without hopping (DBPSK) – Low Band Band Edges (Low)

Test Plots without hopping (DBPSK) Band Edges (High)

Test Plots with hopping (DBPSK) Band Edges (Low)

Test Plots with hopping (DBPSK) Band Edges (High)

Test Plots without hopping (DBPSK) – High Band Band Edges (Low)

Test Plots without hopping (DBPSK) Band Edges (High)

Test Plots with hopping (DBPSK) Band Edges (Low)

Test Plots with hopping (DBPSK) Band Edges (High)

9.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

According to §15.247(a)(1) / RSS-247 5.1.2, Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

TEST PROCEDURE

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013)

- 1) Span: Wide enough to capture the peaks of two adjacent channels
- RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

TEST RESULTS

No non-compliance noted

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2

Test Data – Low Band

Channel Separation (kHz)	20dB Bandwidth (kHz)		Limit	Result
DBPSK	Channel	DBPSK	(kHz)	
	Low	23.55	>25 or	
25.050	Mid	23.38	>20dB BW of	Pass
	High	23.40	hopping channel	

Occupied Bandwidth (99% BW)

99% BW (kHz)			
Channel	Low	Mid	High
	25.544	25.534	25.541

Test Data - High Band

Channel Separation (kHz)		20dB Bandwidth (kHz)		Result
DBPSK	Channel	DBPSK	(kHz)	
	Low	23.65	>25 or	
25.050	Mid	23.53	>20dB BW of	Pass
	High	23.65	hopping channel	

Occupied Bandwidth (99% BW)

99% BW (kHz)			
Channel	Low	Mid	High
	25.530	25.553	25.556

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2

Test Plots (DBPSK) - Low Band

Channel Separation

Test Plots (DBPSK) – High Band

Channel Separation

Test Plots (DBPSK) – Low Band 20 dB Bandwidth (Low)

20 dB Bandwidth (Mid)

20 dB Bandwidth (High)

Test Plots (DBPSK) – High Band 20 dB Bandwidth (Low)

20 dB Bandwidth (Mid)

20 dB Bandwidth (High)

Test Plots (DBPSK) – Low Band Occupied Bandwidth (Low)

Occupied Bandwidth (Mid)

Occupied Bandwidth (High)

Test Plots (DBPSK) – High Band Occupied Bandwidth (Low)

Occupied Bandwidth (Mid)

Occupied Bandwidth (High)

9.4 NUMBER OF HOPPING FREQUENCY

LIMIT

According to §15.247(a)(1)(i) / RSS-247 5.1.3, if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

Test Configuration

TEST PROCEDURE

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.

TEST RESULTS

No non-compliance noted

Test Data (Number of Hopping Frequencies : $9 \times 6 = 54$)

(Number of Macro CH)	(Number of Micro CH)	
D-BPSK	D-BPSK	
9	6	

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2

Test Plots – Low Band Number of macro channels

Test Plots

Number of micro channels in one single macro channel

Test Plots – High Band Number of macro channels

Test Plots

Number of micro channels in one single macro channel

9.5 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to §15.247(a)(1)(i) / RSS-247 5.1.3, Frequency hopping systems operating in the 902 MHz ~ 928MHz bands. if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013)

- 1) Span: Zero span, centered on a hopping channel
- RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

TEST RESULTS

See the table.

[Low Band]

	Channel	DBPSK	Limit (ms)	Result
Pulse	Low	359.3 ms		PASS
Time (ms)	Mid	358.5 ms	400	PASS
	High	358.5 ms		PASS

[High Band]

	Channel	DBPSK	Limit (ms)	Result
Pulse	Low	358.5 ms		PASS
Time	Mid	358.5 ms	400	PASS
(ms)	High	358.5 ms		PASS

[Low Band]
Test Plots (Channel Low)
Time slot length = 0.359 ms

Test Plots (Channel Mid) Time slot length = 0.359 ms

Test Plots (Channel High) Time slot length = 0.359 ms

Test Plots Hops / channel @ 20s = 1 (The highest emission is only relevant)

[High Band]
Test Plots (Channel Low)
Time slot length = 0.359 ms

Test Plots (Channel Mid) Time slot length = 0.359 ms

Test Plots (Channel High) Time slot length = 0.359 ms

Test Plots
Hops / channel @ 20s = 1 (The highest emission is only relevant)

9.6 SPURIOUS EMISSIONS

9.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Requirements and limit, §15.247(d) / RSS-247(Issue 2) Section 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit: 20 dBc

Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013)

1) Span: 30 MHz to 10 times the operating frequency in GHz.

RBW: 100 kHz
 VBW: 300 kHz
 Sweep: Coupled
 Detector: Peak

Measurements are made over the 30 MHz to 10 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

TEST RESULTS

No non-compliance noted.

Note: In order to simplify the report, attached plots were only the worst case channel and data rate.

FACTORS FOR FREQUENCY

Freq(MHz)	Factor(dB)
30	10.95
100	9.51
200	9.823
300	9.848
400	9.909
500	9.941
600	9.986
700	10.00
800	10.02
900	10.00
1000	10.12
2000	10.32
3000	11.15
4000	10.74
5000	10.63
6000	10.66
7000	10.90
8000	10.82
9000	10.93
10000	11.00

Note: 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Attenuator loss

HCT CO.,LTD.

[Low Band]

Test Plots (DBPSK)- 30 MHz - 1 GHz Spurious Emission

Test Plots (DBPSK)- 1 GHz – 3 GHz Spurious Emission

Test Plots (DBPSK)- 3 GHz – 5 GHz Spurious Emission

Test Plots(DBPSK)- 5 GHz - 7 GHz Spurious Emission

Test Plots (DBPSK)- 7 GHz - 9 GHz Spurious Emission

Test Plots(DBPSK)- 9 GHz - 10 GHz Spurious Emission

[High Band]

Test Plots (DBPSK)- 30 MHz - 1 GHz Spurious Emission

Test Plots (DBPSK)- 1 GHz – 3 GHz Spurious Emission

Test Plots (DBPSK)- 3 GHz - 5 GHz

Spurious Emission

Test Plots(DBPSK)- 5 GHz - 7 GHz

Spurious Emission

Test Plots (DBPSK)- 7 GHz - 9 GHz Spurious Emission

Test Plots(DBPSK)- 9 GHz - 10 GHz Spurious Emission

9.6.2 RADIATED SPURIOUS EMISSIONS

LIMIT: §15.247(d), §15.205, §15.209 / RSS-Gen(Issue 4) Section 8.9

1. 20dBc in any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

Restricted band of operation: §15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Test Configuration

Below 30 MHz

30 MHz - 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. Spectrum Setting
 - a. Peak: 1 GHz 10 GHz, RBW = 1 MHz, VBW ≥3*RBW
 - b. Average (RMS): 1 GHz 10 GHz, RBW = 1 MHz, VBW ≥3*RBW

HCT CO.,LTD.

Note:

- 1. We are performed the RSE and radiated band edge using standard radiated method.
- 2. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
- 3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)

HCT CO.,LTD.

54 / 76

TEST RESULTS

9 kHz - 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
No Critical peaks found									

Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. This test is performed with hopping off.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 7. The test results for below 30 MHz is correlated to an open site.

The result on OATS is about 2 dB higher than semi-anechoic chamber (10 m chamber)

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
	No Critical peaks found									

Notes:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. This test is performed with hopping off.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

Above 1 GHz [Low Band]

Operation Mode: CH Low(DBPSK)

Frequency [MHz]	Reading [dBuV]	<pre>% A.F.+C.L A.G.+D.F+F.L. [dB]</pre>	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2706.41	55.79	-10.83	V	44.96	73.98	29.02	PK
2706.41	48.52	-10.83	V	37.69	53.98	16.29	AV
3608.55	60.51	-8.2	V	52.31	73.98	21.67	PK
3608.55	55.83	-8.2	V	47.63	53.98	6.35	AV
4510.69	50.92	-5.92	V	45.00	73.98	28.98	PK
4510.69	41.19	-5.92	V	35.27	53.98	18.71	AV
5412.83	49.10	-1.86	V	47.24	73.98	26.74	PK
5412.83	38.49	-1.86	V	36.63	53.98	17.35	AV
8119.24	45.82	5.95	V	51.77	73.98	22.21	PK
8119.24	34.22	5.95	V	40.17	53.98	13.81	AV
9021.38	46.02	7.24	V	53.26	73.98	20.72	PK
9021.38	34.27	7.24	V	41.51	53.98	12.47	AV
2706.41	55.45	-10.83	Н	44.62	73.98	29.36	PK
2706.41	48.24	-10.83	Н	37.41	53.98	16.57	AV
3608.55	61.20	-8.2	Н	53.00	73.98	20.98	PK
3608.55	56.68	-8.2	Н	48.48	53.98	5.50	AV
4510.69	50.65	-5.92	Н	44.73	73.98	29.25	PK
4510.69	41.03	-5.92	Н	35.11	53.98	18.87	AV
5412.83	49.33	-1.86	Н	47.47	73.98	26.51	PK
5412.83	38.78	-1.86	Н	36.92	53.98	17.06	AV
8119.24	45.33	5.95	Н	51.28	73.98	22.70	PK
8119.24	33.73	5.95	Н	39.68	53.98	14.30	AV
9021.38	46.02	7.24	Н	53.26	73.98	20.72	PK
9021.38	34.27	7.24	Н	41.51	53.98	12.47	AV

*A.F.: Antenna Factor / C.L.: Cable Loss / AMP.G.: Amplifier Gain / D.F.: Distance Factor / F.L.: Filter Loss

Operation Mode: CH Mid(DBPSK)

- μοισιασι	lode. Of Fivile	,					
Frequency [MHz]	Reading [dBuV]		ANT. POL	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2710.24	55.31	-10.83	V	44.48	73.98	29.50	PK
2710.24	47.54	-10.83	V	36.71	53.98	17.27	AV
3613.65	60.33	-8.17	V	52.16	73.98	21.82	PK
3613.65	55.61	-8.17	V	47.44	53.98	6.54	AV
4517.06	50.90	-5.79	V	45.11	73.98	28.87	PK
4517.06	41.71	-5.79	V	35.92	53.98	18.06	AV
5420.48	48.78	-1.93	V	46.85	73.98	27.13	PK
5420.48	38.12	-1.93	V	36.19	53.98	17.79	AV
8130.71	45.74	5.97	V	51.71	73.98	22.27	PK
8130.71	34.11	5.97	V	40.08	53.98	13.90	AV
9034.13	45.89	6.50	V	52.39	73.98	21.59	PK
9034.13	34.18	6.50	V	40.68	53.98	13.30	AV
2710.24	55.03	-10.83	Н	44.20	73.98	29.78	PK
2710.24	47.21	-10.83	Н	36.38	53.98	17.60	AV
3613.65	60.81	-8.17	Н	52.64	73.98	21.34	PK
3613.65	56.46	-8.17	Н	48.29	53.98	5.69	AV
4517.06	50.37	-5.79	Н	44.58	73.98	29.40	PK
4517.06	40.61	-5.79	Н	34.82	53.98	19.16	AV
5420.48	49.29	-1.93	Н	47.36	73.98	26.62	PK
5420.48	38.43	-1.93	Н	36.50	53.98	17.48	AV
8130.71	45.18	5.97	Н	51.15	73.98	22.83	PK
8130.71	33.63	5.97	Н	39.60	53.98	14.38	AV
9034.13	45.52	6.50	Н	52.02	73.98	21.96	PK
9034.13	42.49	6.50	Н	48.99	53.98	4.99	AV

Operation Mode: CH High(DBPSK)

•							
Frequency	Reading	A.G.+D.F+F.L.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2713.99	54.29	-10.83	V	43.46	73.98	30.52	PK
2713.99	45.95	-10.83	V	35.12	53.98	18.86	AV
3618.65	59.83	-8.11	V	51.72	73.98	22.26	PK
3618.65	54.93	-8.11	V	46.82	53.98	7.16	AV
4523.31	50.93	-5.79	V	45.14	73.98	28.84	PK
4523.31	41.87	-5.79	V	36.08	53.98	17.90	AV
5427.98	45.24	-1.76	V	43.48	73.98	30.50	PK
5427.98	37.11	-1.76	V	35.35	53.98	18.63	AV
8141.96	45.77	5.99	V	51.76	73.98	22.22	PK
8141.96	34.15	5.99	V	40.14	53.98	13.84	AV
9046.63	46.01	7.00	V	53.01	73.98	20.97	PK
9046.63	34.23	7.00	V	41.23	53.98	12.75	AV
2713.99	54.10	-10.83	Н	43.27	73.98	30.71	PK
2713.99	45.61	-10.83	Н	34.78	53.98	19.20	AV
3618.65	60.19	-8.11	Н	52.08	73.98	21.90	PK
3618.65	55.71	-8.11	Н	47.60	53.98	6.38	AV
4523.31	50.40	-5.79	Н	44.61	73.98	29.37	PK
4523.31	40.48	-5.79	Н	34.69	53.98	19.29	AV
5427.98	45.68	-1.76	Н	43.92	73.98	30.06	PK
5427.98	37.43	-1.76	Н	35.67	53.98	18.31	AV
8141.96	45.24	5.99	Н	51.23	73.98	22.75	PK
8141.96	33.70	5.99	Н	39.69	53.98	14.29	AV
9046.63	45.80	7.00	Н	52.80	73.98	21.18	PK
9046.63	34.10	7.00	Н	41.10	53.98	12.88	AV

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 10 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor + Filter Loss
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. Spectrum setting:
 - a. Peak: 1 GHz 10 GHz, RBW = 1 MHz, VBW ≥3*RBW
 - b. Average (RMS): 1 GHz 10 GHz, RBW = 1 MHz, VBW ≥3*RBW
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

[High Band]

Operation Mode: CH Low(DBPSK)

Frequency [MHz]	Reading [dBuV]	<pre>% A.F.+C.L A.G.+D.F+F.L. [dB]</pre>	ANT. POL	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2760.41	59.79	-9.87	V	49.92	73.98	24.06	PK
2760.41	55.34	-9.87	V	45.47	53.98	8.51	AV
3680.55	59.46	-8.11	V	51.35	73.98	22.63	PK
3680.55	54.78	-8.11	V	46.67	53.98	7.31	AV
4600.69	51.12	-4.42	V	46.70	73.98	27.28	PK
4600.69	42.76	-4.42	V	38.34	53.98	15.64	AV
7361.10	48.28	5.43	V	53.71	73.98	20.27	PK
7361.10	36.74	5.43	V	42.17	53.98	11.81	AV
8281.24	47.20	7.55	V	54.75	73.98	19.23	PK
8281.24	37.53	7.55	V	45.08	53.98	8.90	AV
2760.41	60.19	-9.87	Н	50.32	73.98	23.66	PK
2760.41	55.54	-9.87	Н	45.67	53.98	8.31	AV
3680.55	60.43	-8.11	Н	52.32	73.98	21.66	PK
3680.55	55.58	-8.11	Н	47.47	53.98	6.51	AV
4600.69	52.06	-4.42	Н	47.64	73.98	26.34	PK
4600.69	43.80	-4.42	Н	39.38	53.98	14.60	AV
7361.10	48.44	5.43	Н	53.87	73.98	20.11	PK
7361.10	36.90	5.43	Н	42.33	53.98	11.65	AV
8281.24	47.50	7.55	Н	55.05	73.98	18.93	PK
8281.24	37.60	7.55	Н	45.15	53.98	8.83	AV

*A.F.: Antenna Factor / C.L.: Cable Loss / AMP.G.: Amplifier Gain / D.F.: Distance Factor / F.L.: Filter Loss

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

Operation Mode: CH Mid(DBPSK)

		፠A.F.+C.L					Measurement
Frequency	Reading	A.G.+D.F+F.L.	ANT. POL	Total	Limit	Margin	Type
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Турс
2764.16	56.19	-9.89	V	46.30	73.98	27.68	PK
2764.16	50.14	-9.89	V	40.25	53.98	13.73	AV
3685.55	59.65	-8.16	V	51.49	73.98	22.49	PK
3685.55	55.07	-8.16	V	46.91	53.98	7.07	AV
4606.94	51.68	-4.53	V	47.15	73.98	26.83	PK
4606.94	43.36	-4.53	V	38.83	53.98	15.15	AV
7371.10	48.01	5.39	V	53.40	73.98	20.58	PK
7371.10	36.78	5.39	V	42.17	53.98	11.81	AV
8292.49	47.10	7.35	V	54.45	73.98	19.53	PK
8292.49	37.14	7.35	V	44.49	53.98	9.49	AV
2764.16	56.45	-9.89	н	46.56	73.98	27.42	PK
2764.16	50.40	-9.89	Н	40.51	53.98	13.47	AV
3685.55	60.47	-8.16	Н	52.31	73.98	21.67	PK
3685.55	55.82	-8.16	Н	47.66	53.98	6.32	AV
4606.94	52.50	-4.53	Н	47.97	73.98	26.01	PK
4606.94	44.20	-4.53	Н	39.67	53.98	14.31	AV
7371.10	47.99	5.39	Н	53.38	73.98	20.60	PK
7371.10	36.90	5.39	Н	42.29	53.98	11.69	AV
8292.49	47.14	7.35	Н	54.49	73.98	19.49	PK
8292.49	37.21	7.35	Н	44.56	53.98	9.42	AV

Operation Mode: CH High(DBPSK)

Frequency	Reading	* A.F.+C.L A.G.+D.F+F.L.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Type
2767.99	58.19	-9.91	V	48.28	73.98	25.70	PK
2767.99	52.79	-9.91	V	42.88	53.98	11.10	AV
3690.65	60.31	-8.22	V	52.09	73.98	21.89	PK
3690.65	54.96	-8.22	V	46.74	53.98	7.24	AV
4613.31	52.41	-4.64	V	47.77	73.98	26.21	PK
4613.31	42.69	-4.64	V	38.05	53.98	15.93	AV
7381.30	47.98	5.48	V	53.46	73.98	20.52	PK
7381.30	36.76	5.48	V	42.24	53.98	11.74	AV
8303.96	47.73	7.48	V	55.21	73.98	18.77	PK
8303.96	37.64	7.48	V	45.12	53.98	8.86	AV
2767.99	58.45	-9.91	Н	48.54	73.98	25.44	PK
2767.99	53.00	-9.91	Н	43.09	53.98	10.89	AV
3690.65	61.54	-8.22	Н	53.32	73.98	20.66	PK
3690.65	55.74	-8.22	Н	47.52	53.98	6.46	AV
4613.31	52.54	-4.64	Н	47.90	73.98	26.08	PK
4613.31	42.80	-4.64	Н	38.16	53.98	15.82	AV
7381.30	48.04	5.48	Н	53.52	73.98	20.46	PK
7381.30	36.80	5.48	Н	42.28	53.98	11.70	AV
8303.96	47.75	7.48	Н	55.23	73.98	18.75	PK
8303.96	37.72	7.48	Н	45.20	53.98	8.78	AV

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 10 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor + Filter Loss
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. Spectrum setting:
 - a. Peak: 1 GHz 10 GHz, RBW = 1 MHz, VBW ≥3*RBW
 - b. Average (RMS): 1 GHz 10 GHz, RBW = 1 MHz, VBW ≥3*RBW
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

■ RESULT PLOTS – Low Band

Radiated Spurious Emissions plot – Peak, Average Reading (DBPSK 3rd Harmonic, Y-V)

Radiated Spurious Emissions plot – Peak, Average Reading (DBPSK 4th Harmonic, Z-H)

Date: 9.MAY.2017 11:55:26

Radiated Spurious Emissions plot - Peak, Average Reading (DBPSK 5th Harmonic, Z-V)

Radiated Spurious Emissions plot – Peak, Average Reading (DBPSK 6th Harmonic, X-H)

Date: 9.MAY.2017 11:29:22

Radiated Spurious Emissions plot – Peak, Average Reading (DBPSK 9th Harmonic, Z-V)

Radiated Spurious Emissions plot - Peak, Average Reading (DBPSK 10th Harmonic, X-V)

Note: Only the worst case plots for Radiated Spurious Emissions.

■ RESULT PLOTS – High Band

Radiated Spurious Emissions plot – Peak, Average Reading (DBPSK 4th Harmonic, X-H)

Date: 5.JUL.2017 10:18:29

Note: Only the worst case plots for Radiated Spurious Emissions.

9.6.3 RECEIVER SPURIOUS EMISSIONS

IC Rule(s) RSS-Gen

Test Requirements: Blow the table

Operating conditions: Under normal test conditions

Method of testing: Radiated

F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)

S/A. Settings:

F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)

Mode of operation: Receive

Frequency	Field Strength
(MHz)	(microvolts/m at 3 meters)
30 – 88	100
88 - 216	150
216 – 960	200
Above 960	500

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBμV	dB /m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB	
No critical peaks found								

Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	$dB\mu \! \! V$	dB /m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB		
	No critical peaks found								

9.7 POWERLINE CONDUCTED EMISSIONS

LIMIT: §15.207(a) / RSS-Gen(Issue 4) Section 8.8

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Evenuency Denne (MUT)	Limits (dBμV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

RESULT PLOTS

Conducted Emissions (Line 1)

SIGFOX L1 MODE

1/2

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions: SFM20R2 WISOL SHIELD ROOM SIGFOX MODE

FCC CLASS B

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.152000	45.4	9.000	Off	L1	9.6	20.5	65.9
0.160000	44.6	9.000	Off	L1	9.6	20.9	65.5
0.168000	43.3	9.000	Off	L1	9.6	21.7	65.1
0.174000	41.6	9.000	Off	L1	9.6	23.1	64.8
0.180000	39.0	9.000	Off	L1	9.6	25.4	64.5
0.186000	38.2	9.000	Off	LI	9.6	26.0	64.2
1.050000	29.4	9.000	Off	L1	9.7	26.6	56.0
1.058000	30.3	9.000	Off	L1	9.7	25.7	56.0
1.068000	31.0	9.000	Off	L1	9.7	25.0	56.0
1.090000	30.2	9.000	Off	L1	9.7	25.8	56.0
1.128000	29.8	9.000	Off	L1	9.7	26.2	56.0
1.134000	29.9	9.000	Off	L1	9.7	26.1	56.0
9.184000	23.5	9.000	Off	L1	10.1	36.5	60.0
9.372000	23.3	9.000	Off	L1	10.1	36.7	60.0
9.378000	23.3	9.000	Off	L1	10.1	36.7	60.0
9.384000	23.4	9,000	Off	L1	10.1	36.6	60.0
9.436000	23.0	9.000	Off	L1	10.1	37.0	60.0
9.526000	22.8	9.000	Off	L1	10.1	37.2	60.0

Final Result 2

2017-07-07

오전 11:32:56

SIGFOX L1 MODE

2/2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	29.3	9.000	Off	L1	9.6	26.7	56.0
0.156000	31.7	9.000	Off	L1	9.6	24.0	55.7
0.162000	30.4	9.000	Off	L1	9.6	25.0	55.4
0.168000	29.5	9.000	Off	L1	9.6	25.6	55.1
0.174000	28.1	9.000	Off	L1	9,6	26.7	54.8
0.178000	25.7	9.000	Off	L1	9.6	28.9	54.6
1.068000	24.6	9.000	Off	L1	9.7	21.4	46.0
1.082000	24.7	9.000	Off	L1	9.7	21.3	46.0
1.086000	24.7	9.000	Off	L1	9.7	21.3	46.0
1.112000	24.3	9.000	Off	Lt	9.7	21.7	46.0
1.128000	24.0	9.000	Off	Lt	9.7	22.0	46.0
1.136000	23.9	9.000	Off	L1	9.7	22.1	46.0
9.276000	15.5	9.000	Off	L1	10.1	34.5	50.0
9.290000	15.4	9.000	Off	L1	10.1	34.6	50.0
9.294000	15.5	9.000	Off	L1	10.1	34.5	50.0
9.384000	15.8	9.000	Off	LT	10.1	34.2	50.0
9.416000	15.8	9.000	Off	L1 -	10.1	34.2	50.0
9.436000	15.8	9.000	Off	L1	10.1	34.2	50.0

2017-07-07

오전 11:32:56

Conducted Emissions (Line 2)

SIGFOX N MODE 1/2

HCT TEST Report

Common Information

Manufacturer:
Test Site:
Operating Conditions:

SFM20R2 WISOL SHIELD ROOM SIGFOX MODE

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	44.1	9.000	Off	N	9.6	21.9	66.0
0.154000	43.6	9.000	Off	N	9.6	22.2	65.8
0.160000	43.8	9.000	Off	N	9.6	21.6	65.5
0.168000	44.9	9.000	Off	N	9.6	20.1	65.1
0.178000	43.3	9.000	Off	N	9.6	21.3	64.6
0.184000	42.6	9.000	Off	N	9.6	21.7	64.3
1.038000	29.6	9.000	Off	N	9.7	26.4	56.0
1.058000	30.3	9.000	Off	N	9.7	25.7	56.0
1.090000	30.2	9.000	Off	N	9.7	25.8	56.0
1.094000	30.0	9.000	Off	N	9.7	26.0	56.0
1.112000	29.8	9.000	Off	N	9.7	26.2	56.0
1.134000	29.7	9.000	Off	N	9.7	26.3	56.0
9.032000	30.3	9.000	Off	N	10.1	29.7	60.0
9.242000	31.7	9.000	Off	N	10.1	28.3	60.0
9.314000	31.5	9.000	Off	N	10.1	28.5	60.0
9.424000	31.3	9.000	Off	N	10.1	28.7	60.0
9.448000	31.2	9.000	Off	N	10.1	28.8	60.0
9.474000	31.1	9.000	Off	N	10.1	28.9	60.0

Final Result 2

2017-07-07

오전 11;22:18

SIGFOX N MODE

2/2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	24.9	9.000	Off	N	9.6	31.1	56.0
0.154000	24.8	9.000	Off	N	9.6	31.0	55.8
0.164000	29.6	9.000	Off	N	9.6	25.7	55.3
0.174000	29.5	9.000	Off	N	9.6	25.3	54.8
0.182000	29.4	9.000	Off	N	9.6	25.0	54.4
0.190000	26.5	9.000	Off	N	9.6	27.6	54.0
1.050000	23.6	9.000	Off	N	9.7	22.4	46.0
1.060000	24.2	9.000	Off	N	9.7	21.8	46.0
1.090000	24.6	9.000	Off	N	9.7	21.4	46.0
1.094000	24.5	9.000	Off	N	9.7	21.5	46.0
1.126000	23.9	9.000	Off	N	9.7	22.1	46.0
1.138000	23.6	9.000	Off	N	9.7	22.4	46.0
9.046000	24.6	9.000	Off	N	10.1	25.4	50.0
9,130000	25.2	9.000	Off	N	10.1	24.8	50.0
9.220000	25.5	9.000	Off	N	10.1	24.5	50.0
9.242000	25.5	9.000	Off	N	10.1	24.5	50.0
9.286000	25.5	9.000	Off	N	10.1	24.5	50.0
9.424000	25.1	9.000	Off	N	10.1	24.9	50.0

2017-07-07

오전 11:22:18

10. LIST OF TEST EQUIPMENT

10.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	12/23/2016	Annual	100073
Rohde & Schwarz	ESCI / Test Receiver	12/23/2016	Annual	100584
Agilent	N9020A / Signal Analyzer	06/13/2017	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	11/30/2016	Annual	MY49431210
Agilent	N1911A / Power Meter	04/17/2017	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/17/2017	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/23/2016	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/12/2017	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/30/2017	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/10/2016	Annual	07560
Rohde & Schwarz	EMC32 / Software	-	-	-

F-TP22-03 (Rev.00) FCC ID: 2ABA2SFM20R2 / IC: 11534A-SFM20R2 HCT CO.,LTD.

10.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Audix	AM4000 / Antenna Position Tower	N/A	N/A	N/A
Audix	Turn Table	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Rohde & Schwarz	Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	08/25/2016	Biennial	9120D-1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	09/04/2015	Biennial	BBHA9170541
Rohde & Schwarz	FSP / Spectrum Analyzer	09/10/2016	Annual	100688
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/23/2016	Annual	101068-SZ
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	06/12/2017	Annual	8
Wainwright Instruments	WHFX7.0/18G-8SS / High Pass Filter	05/15/2017	Annual	29
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	06/30/2017	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/24/2017	Annual	2
Agilent	8493C-10 / Attenuator(10 dB)	08/11/2016	Annual	76649
CERNEX	CBLU1183540 / Power Amplifier	07/15/2016	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	07/15/2016	Annual	22965
CERNEX	CBL18265035 / Power Amplifier	01/23/2017	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/30/2017	Annual	25956