Звіт Лабораторна робота №3а,b з ООП

"Паралельне мультипоточне програмування"

виконав студент групи IПС-21 Тесленко Назар

Посилання:

- Лабораторна робота №3
- <u>Реалізація unit-тестів</u> (googletests)
- <u>Документація</u> (Doxygen)

Для реалізації послідовних та паралельних алгоритмів для даної роботи була використана лабортаорна робота з предмету "Алгоритми та складність" на тему:

Алгоритм Джонсона для розріджених графів (включає алгоритми Беллмана-Форда і Дейкстри).

Повна умова завдання: Алгоритм Джонсона для розріджених графів (включає алгоритми Беллмана-Форда і Дейкстри). В алгоритмі Дейкстри використайте чергу пріоритетів. Ваги дуг задаються дійсними числами.

Мова реалізації: С++

Алгоритм Беллмана-Форда

Алгоритм Беллмана-Форда використовується для пошуку найкоротших шляхів від однієї стартової вершини до всіх інших у зваженому графі, який може містити ребра з від'ємною вагою. Він ітерує V-1 раз (де V — кількість вершин), поступово оновлюючи відстані.

Складність: O(V*E)

Алгоритм Дейкстри

Алгоритм Дейкстри знаходить найкоротші шляхи від однієї вершини до всіх інших, але лише у графах без від'ємних ребер. Для ефективності використовує чергу пріоритетів.

Складність: O((V+E) log V) для черги пріоритетів

Алгоритм Джонсона

Алгоритм Джонсона дозволяє знайти найкоротші шляхи між усіма парами вершин у зваженому графі, який може містити від'ємні ваги, але не має циклів від'ємної довжини.

Послдіовність виконання:

- 1. Додає нову вершину, з'єднану нульовими ребрами з усіма іншими.
- 2. Застосовує алгоритм Беллмана-Форда, щоб знайти потенціали h(v) для перерахунку ваг.
- 3. Перераховує ваги ребер: $\omega'(u,v) = \omega(u,v) + h(u) h(v)$. Тепер усі ваги невід'ємні.
- 4. Для кожної вершини запускає алгоритм Дейкстри на графі з новими вагами.

Складність: $O(V * E + V^2 log V)$

Чому Джонсон має використовуватись саме на розріджених графах:

У розріджених графах кількість ребер E набагато менша за максимум V^2 .

- Загальна складність Джонсона з пріоритетною чрегою:
 - 1. 1 раз Беллман-Форд: O(V*E)
 - 2. V запусків Дейкстри: Кожен має складність O((V+E)logV), тому загалом O(V(V+E)logV)
 - 3. <u>Отже складність: O(VElogV+V²logV)</u>

Проаналізуємо для різних типів графів:

- Розріджений граф (Е≈V)
 - 1. Беллман-Форд: O(V²)
 - 2. Дейкстра: O(V²logV)
 - 3. <u>Загальна складність: $O(V^2 log V)$ </u> Що є ефективнішим за $O(V^3)$ у Флойда-Воршелла
- Щільний граф (Е≈V²)
 - 1. Беллман-Форд: O(V³)
 - 2. Дейкстра: O(V³logV)
 - 3. <u>Загальна складність: O(V³logV)</u>

Майже те саме, що у Флойда-Воршелла $O(V^3)$, але складніше в реалізації.

Отже, Джонсон з пріоритетною чергою є оптимальним для розріджених графів, де кількість ребер значно менша за V^2 , оскільки в такому випадку часова складність залишається квадратично-логарифмічною $\underline{O(V^2 log V)}$

Проведемо тестування для перевірки ефективності параллелізації алгоритму Джонсона:

Створюватимемо розріджені графи для порівняння

Кількість вершин: 25 Кількість ребер: 100

	Мультипоточний, ms	Послідовний, ms
2	30	20
4	27	20
6	28	23
8	31	25

Кількість вершин: 150 Кількість ребер: 750

	Мультипоточний, ms	Послідовний, ms
2	152	151
4	217	157
6	265	149
8	302	155

При тестуванні на графах з невеликою кількістю вершин та ребер спостерігається варіативність результатів вимірювання часу виконання. Це зумовлено тим, що при малих об'ємах обчислень значну частку загального часу займають допоміжні операції, зокрема:

- ініціалізація структур даних;
- створення об'єктів;
- накладні витрати, пов'язані з системними викликами тощо.

У випадку паралельної реалізації ситуація ускладнюється: додаткові витрати на створення, запуск та синхронізацію потоків можуть перевищувати фактичний виграш від паралелізації. Через це при роботі з невеликими графами паралельна версія алгоритму може демонструвати нижчу або аналогічну продуктивність порівняно з послідовною.

Протестуємо для більш великих графів

Кількість вершин: 1500 Кількість ребер: 2000

	Мультипоточний, ms	Послідовний, ms
2	313	346
4	431	361
6	550	363
8	611	355

Початкове покращення часу при використанні 2 потоків демонструє потенціал паралельного підходу на розріджених графах. Проте подальше збільшення кількості потоків не приводить до лінійного прискорення, а навпаки — викликає погіршення через системні обмеження та зростання витрат на синхронізацію.

Кількість вершин: 10000 Кількість ребер: 11000

	Мультипоточний, ms	Послідовний, ms
2	7874	9861
4	8456	9840
6	7942	9847
8	8641	9793

Кількість вершин: 15000 Кількість ребер: 15000

	Мультипоточний, ms	Послідовний, ms
2	10661	12926
4	7657	11812
6	6946	12421
8	7593	13521

Висновок:

Було реалізовано алгоритм Джонсона для пошуку найкоротших шляхів між усіма парами вершин у зважених графах, включаючи як послідовну, так і паралельну версії. Проведене тестування на графах різного розміру та щільності дозволяє зробити наступні висновки:

- Для малих графів паралельна реалізація не демонструє приросту продуктивності через значні накладні витрати на створення і синхронізацію потоків.
- Для середніх графів виграш від паралельності незначний або відсутній через співставну вартість допоміжних операцій і самого обчислення.
- Для великих розріджених графів мультипотокова реалізація демонструє помітне покращення продуктивності, особливо при використанні 2–4 потоків. Подальше збільшення кількості потоків призводить до втрати ефективності через системні обмеження і зростання витрат на синхронізацію.