Exercici 1

a) A la trompeta (ens diuen que es pot considerar un tub semiobert), el primer harmònic (també anomenat *fonamental*) que es pot establir és el que ocupa la longitud del tub amb 1/4 de longitud d'ona,

$$l_0 = \frac{1}{4}\lambda_1 \to \lambda_1 = 4l_0 = 4 \cdot 0,975 = 3,90 \, m$$

i la freqüència associada és

$$f_1 = \frac{v}{\lambda_1} = \frac{340}{3,9} = 87, 2 Hz$$

El següent harmònic que es pot establir és el que ocupa la longitud del tub amb 1/4 + 1/2 = 3/4 de longitud d'ona,

$$l_0 = \frac{3}{4}\lambda_2 \rightarrow \lambda_2 = \frac{4}{3} \cdot l_0 = \frac{4}{3} \cdot 0,975 = 1,3 \, m$$

i la freqüència associada és

$$f_2 = \frac{v}{\lambda_2} = \frac{340}{1,3} = 261, 5 \, Hz$$

Aquest harmònic correspondria al tercer en la sèrie dels generats en un tub obert pels dos extrems.

El tercer harmònic (que en realitat és el cinquè de la serie natural) que es pot establir és el que ocupa la longitud del tub amb 1/4 + 1/2 + 1/2 = 5/4 de longitud d'ona,

$$l_0 = \frac{5}{4}\lambda_3 \rightarrow \lambda_3 = \frac{4}{5} \cdot l_0 = \frac{4}{5} \cdot 0,975 = 0,78 \, m$$

i la freqüència associada és

$$f_3 = \frac{v}{\lambda_3} = \frac{340}{0,78} = 435,9 \,Hz$$

b) A la freqüència associada al segon mode de vibració, per la nova longitud l' tenim

$$247 = f_2' = \frac{v}{\lambda_2'} \to \lambda_2' = \frac{v}{f_2'} = \frac{340}{247} = 1,376 \, m$$

i de la relació entre la longitud d'ona i la longitud efectiva de la trompeta

$$l' = \frac{3}{4}\lambda_2' = \frac{3}{4} \cdot 1,376 = 1,0324 \, m$$

El recorregut extra Δl que fa l'aire en aquestes condicions

$$\Delta l = 1,0324 - 0,975 = 0,0574 \, m$$

Exercici 2

a) Podem representar esquemàticament la situació com

En el mode fonamental o primer harmònic veiem que la relació entre la longitud d'ona i la separació entre els punt de subjecció és

$$\lambda = 2L = 2 \cdot 0, 32 = 0,64 \, m$$

ja vam comentar a la classe que el tractament que fem d'aquest tema és aproximat, ja que les equacions que fem servir només valen per petites oscil·lacions, només així podem dir que la longitud de la corda és igual a la separació entre els extrems de subjecció. Els diagrames i dibuixos son exagerats per tal que s'entenguin els diferents mode de vibració de les ones estacionàries, però sempre hem de tenir en compte aquests tipus d'aproximacions.

Els nodes es troben als extrems lligats i el ventre just entre els dos nodes. En una corda lligada per els extrems el nombre de nodes N depèn de l'harmònic n com

$$N = n + 1$$

Per calcular la velocitat de propagació podem fer servir

$$v = \lambda \cdot f = 0,64 \cdot 196 = 125,44 \, m/s$$

b) En quant al tercer harmònic (4 nodes)

i el cinquè harmònic (6 nodes)

En les ones estacionàries es manté constant la velocitat mentre canvien la longitud d'ona i la freqüència. La longitud d'ona es pot deduir de la mateixa representació de l'ona estacionària.

Pel tercer harmònic veiem que en una longitud L hem d'encabir $1 + \frac{1}{2}$ longituds d'ona, llavors

$$\left(1+\frac{1}{2}\right)\lambda = L \to \lambda = \frac{2}{3}L$$

$$v = \lambda \cdot f \to f = \frac{v}{\lambda} = \frac{v}{\frac{2}{2}L} = \frac{3v}{2L} = \frac{3 \cdot 125,44}{2 \cdot 0,32} = 588 \, Hz$$

Pel cinquè harmònic veiem que en una longitud Lhem d'encabir $2+\frac{1}{2}$ longituds d'ona, llavors

$$\left(2+\frac{1}{2}\right)\lambda = L \to \lambda = \frac{2}{5}L$$

$$v = \lambda \cdot f \to f = \frac{v}{\lambda} = \frac{v}{\frac{2}{5}L} = \frac{5v}{2L} = \frac{5 \cdot 125,44}{2 \cdot 0,32} = 980 \, Hz$$

a) El mode fonamental es pot representar com

Exercici 3

En el aquest mode es veu que la relació entre la longitud d'ona i la separació entre els punt de subjecció és

$$\lambda = 2L = 2 \cdot 0,65 = 1,3 \, m$$

La velocitat de les ones components es pot calcular com

$$v = \lambda f = 1, 3 \cdot 330 = 429 \, m/s$$

b)

Exercici 4

a) En tubs semioberts només s'estableixen els harmònics senars. El nombre de longituds d'ona dins el tub semiobert per cada mode és

• 1r harmònic: $\frac{1}{4}$

• 3r harmònic: $\frac{1}{4} + \frac{1}{2}$

• 5è harmònic: $\frac{1}{4} + \frac{1}{2} + \frac{1}{2}$

• 7è harmònic: $\frac{1}{4} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

de manera que en el diagrama de l'enunciat tenim una ona estacionària amb $\left(\frac{1}{4}+\frac{1}{2}+\frac{1}{2}\right)\lambda=L$ que correspon al 5è harmònic.

A partir de $v = \lambda f$ podem calcular la longitud d'ona

$$\lambda = \frac{v}{f} = \frac{340}{637} = 0,534 = 5,34 \cdot 10^{-1} \, m$$

i

$$L = \left(\frac{1}{4} + \frac{1}{2} + \frac{1}{2}\right)\lambda = 1,25 \cdot 0,534 = 0,667 = 6,67 \cdot 10^{-1} \, m$$

b)

Exercici 5

a) Si el so fos produït per un to pur només hi hauria un pic d'intensitat, el corresponent a la freqüència del so. Es tracta per tant, d'un so complex perquè s'hi veuen diferents harmònics. Ens diuen que al segon pic correspon una freqüència de $880\,Hz$. L'enunciat no especifica quin tipus d'instrument ha produït el so, la qual cosa no és trivial, ja que els tubs semioberts no presenten harmònics parells, i això fa que el resultat del càlcul sigui diferent a si es tracta d'una corda lligada pels extrems o un tub obert. Analitzem els dos casos.

Tub obert pels dos extrems / Corda lligada pels extrems en aquest cas es generen tots els harmònics i la relació entre la longitud del tub/corda amb la longitud d'ona de l'harmónic és

$$\lambda_n = \frac{2}{n}L \quad n = 1, 2 \dots$$

llavors les frequències que s'obtenen són

$$f_n = \frac{v}{\lambda_n} = \frac{v}{\frac{2}{n}L} = n \cdot \frac{v}{2L}$$
 $n = 1, 2, \dots$

sense necessitat de més dades, es veu que la relació entre el fonamental i el segon harmònic és $f_2=2f_1$ de manera que la freqüència del fonamental val

$$f_1 = \frac{f_2}{2} = \frac{880}{2} = 440 \, Hz$$

El pic etiquetat amb I serà el nové i per tant la seva freqüència val

$$f_9 = 9f_1 = 9 \cdot 440 = 3960 \, Hz$$

Tub semiobert En aquest cas la relació entre la longitud del tub i la longitud d'ona del corresponent harmònic és

$$\lambda_n = \frac{4L}{2n+1} \quad n = 0, 1 \dots$$

Compte que ara el comptador n no codifica els harmònics com abans. Per n=0 obtenim el fonamental, per n=1 obtenim el tercer harmònic, per n=2

obtenim el cinquè, etc. En aquestes condicions, les freqüències corresponen a

$$f_n = \frac{v}{\lambda_n} = \frac{v}{\frac{4}{2n+1}L} = (2n+1) \cdot \frac{v}{4L}$$
 $n = 0, 1, \dots$

de forma que la relació entre el fonamental i el següent harmònic (en tubs semioberts, el tercer) és

$$f_3 = 3f_0$$

de manera que tenim

$$f_0 = \frac{f_3}{3} = \frac{880}{3} = 293,3 \,Hz$$

i el que correspondria al pic Iseria el que genera n=8 que és el 17è harmònic, llavors

$$f_8 = (2 \cdot 8 + 1) \cdot \frac{v}{4L} = 17f_0 = 17 \cdot 293, 3 = 4987 \,Hz$$

b)

Exercici 6

a) La condició perquè es formi una ona estacionària és que en la longitud del tub hi hagi un nombre semienter de longituds d'ona.

$$L = n\frac{\lambda}{2}$$

de forma que les diferents longituds d'ona que es poden donar són

$$\lambda = \frac{2L}{n} = \frac{2 \cdot 1, 0}{n} = \frac{2, 0}{n} m$$
 $n = 1, 2, 3 \dots$

Expressió que genera els diferents harmònics. Per n=1, l'harmònic corresponent rep el nom de fonamental.

En quant a les frequències, tenim

$$f = \frac{v}{\lambda} \to f_n = \frac{v}{\frac{2L}{n}} = \frac{nv}{2L} = \frac{n \cdot 343, 0}{2 \cdot 1, 0} = 171, 5 \cdot n \, Hz$$
 $n = 1, 2, 3 \dots$

b) Si el tub estigués ple d'heli, les freqüències serien ara

$$f_n = \frac{n \cdot 975, 0}{2 \cdot 1, 0} = 487, 5 \cdot n \, Hz$$
 $n = 1, 2, 3 \dots$

Com veiem les freqüències són molt més altes amb l'heli, el que explica el fet que una persona sembla que parli amb veu de dibuixos animats si s'omple els pulmons d'heli i parla a continuació.

Exercici 7

a) La relació entre la longitud d'ona del primer harmònic en un tub semiobert i la longitud del tub és

$$\frac{1}{4}\lambda = l$$

de manera que

$$\lambda = 4l = 4 \cdot 0, 19 = 0, 76 \, m$$

ara, amb la relació

$$v = \lambda f$$

obtenim

$$v = 0,76 \cdot 440 = 334,4 \, m/s$$

la representació de l'ona estacionària des de la superfície de l'aigua fins a l'obertura del tub és

En el cas del següent harmònic, (que correspon al tercer) en la longitud del tub en què s'estableix l'ona estacionària hi hem d'encabir 1/4+1/2 de longitud d'ona.

$$\frac{3}{4}\lambda' = l'$$

i la representació de la situació és ara

b)

Exercici 8

a) Calculem la longitud d'ona corresponent a la freqüència fonamental

$$\lambda = \frac{v}{f} = \frac{340}{235} = 1,447 \, m$$

per una altra banda, sabem que al fonamental, en un tub obert pels dos extrems s'estableix mitja longitud d'ona, de forma que podem escriure

$$L = \frac{1}{2}\lambda = \frac{1}{2} \cdot 1,447 = 0,723 \, m$$

b)