check out:

- 1. sample mean, variance, moment (sample variance is $c\chi^2$)
- 2. simple random sampling
- 3. WLLN
- 4. Chebyshev, Markov, Cauchy-Schwartz

Change of variables: given Y = g(X), and $f_X(x)$ the density of X,

$$f_Y(y) = \sum_{x:g(x)=y} \frac{f_X(g^{-1}(y))}{\left|\frac{dg}{dx}\right|_{x=g^{-1}(y)}}$$

Example: $X \sim N(0,1)$, and $Y = X^2$:

- 1. range $(Y) = [0, \infty)$,
- 2. $y = g(x) = x^2 \Rightarrow g'(x) = 2x$, and beware: $x = \pm \sqrt{y}$.
- 3. For $x = \sqrt{y}$:

$$\frac{(2\pi)^{-1/2}e^{-(\sqrt{y})^2/2}}{|2\sqrt{y}|} = \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})}$$

For $x = -\sqrt{y}$:

$$\frac{(2\pi)^{-1/2}e^{-(-\sqrt{y})^2/2}}{|-2\sqrt{y}|} = \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})}$$

Hence,

$$f_Y(y) = \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})} + \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})} = \frac{y^{-1/2}e^{-y/2}}{\sqrt{2\pi}}$$

Convolution: for $X \perp \!\!\! \perp Y$, if W = X + Y, then

$$f_W(w) = \int_{supp(Y)} f_{X,Y}(w - y, y) dy$$

$$= \int_{supp(X)} f_{X,Y}(x, w - x) dx$$

$$= \int_{supp(X)} f_X(x) f_Y(w - x) dx$$

$$= f_X * f_Y(w)$$

Poisson Process: if $N_{(0,1)}=\#$ of arrivals in (0,1), and $N_{(0,1)}\sim \operatorname{Poisson}(\lambda)$, then $N_{(0,t)}\sim \operatorname{Poisson}(\lambda t)$. If T_1 is the time until the first arrival, then $T_1\sim \operatorname{Exp}(\lambda)$. Hence, if T_r is time until r^{th} arrival, $T_r=W_1+W_2+\cdots+W_r$ where $W_i\stackrel{iid}{\sim}\operatorname{Exp}(\lambda)$, hence $T_r\sim \Gamma(r,\lambda)$.

"Thinning" the Poisson Process: Given a Poisson process with rate λ , and supposing each arrival is killed with probability p (independent of the rest of process), if X is the Poisson process for the particles who live and Y is for the particles who die, $X \perp \!\!\! \perp Y$, $X \sim \text{Poisson}(\lambda q)$, $Y \sim \text{Poisson}(\lambda p)$. Think about this like a random generator spits out particles of type A or B, with the chance of A being p. Then, provided the generic observational random variable is $\text{Poisson}(\lambda)$, the type A observational random variable will be $\text{Poisson}(\lambda p)$.

 $\begin{array}{lll} \Gamma \ \ {\bf tricks:} & {\rm Given} \ Z \ \sim \ N(0,1), \ Z^2 \ \sim \ \chi^2_{(1)} = \\ \Gamma(1/2,1/2). & {\rm But}, \ X_1 \ \bot \ X_2, \ X_i \ \sim \ \Gamma(r_i,\lambda) \ {\rm has \ that} \\ X_1 + X_2 \ \sim \ \Gamma(r_1 + r_2,\lambda). & {\rm Hence, \ for} \ Z_i \ \stackrel{iid}{\sim} \ N(0,1), \\ \sum_{i=1}^n Z_i^2 \ \sim \ \chi^2_{(n)} = \Gamma(n/2,1/2). \end{array}$

Moments:

- 1. $\mu_k = E(X^k)$ (doesn't always exist)
- 2. if j < k and μ_k exists, then μ_j exists.

MGF:

- 1. $\psi_X = E(e^{tX})$ (doesn't always exist)
- 2. $\psi(0) = 1$
- 3. $\psi_{aX+b}(t) = e^{tb}\psi_X(at)$
- 4. If $X \perp \!\!\!\perp Y$, $\psi_{X+Y}(t) = \psi_X(t)\psi_Y(t)$
- 5. If $\psi_X(t)$ exists in a nhd of 0, $\mu_k = \psi_X^{(k)}(0) < \infty$, for all $k \in \mathbb{N}$. (Inspiration for $E(e^{tx}) = \sum_{k=0}^{\infty} E(X^k) t^k / k!$.)
- 6. ψ_X, ψ_Y existing in nhd of 0 and $\psi_X \equiv \psi_Y$ implies $X \sim Y$.
- 7. If $\{X_n\}$ is a sequence of RV's and $\psi_{X_n} \to \psi_X$ a.e. in a nhd of 0, then $X_n \xrightarrow{\mathcal{L}} X$. That is, $F_{X_n} \to F_X$ at all points of continuity of F_X .

Common MGF's:

$$\begin{array}{c|c} X & \psi_X(t) \\ \hline c, \text{constant} & e^{ct} \\ I_A, \ P(A) = p & pe^t + q \\ \text{Binom}(n,p) & (pe^t + q)^n \\ N(\mu,\sigma^2) & \exp\left\{\mu t + \sigma^2 t/2\right\} \\ \text{Exp}(\lambda) & \lambda(\lambda - t)^{-1} I(t < \lambda) \\ \Gamma(r,\lambda) & \lambda^r (\lambda - t)^{-r} I(t < \lambda) \\ \hline \end{array}$$