

the adventures of bob

NFC, Contactless, and Mobile: A Security Analysis

Speaker: Hadi Nahari

Job Title: Principal Mobile & Security Architect

Company Name: PayPal

Intro

Devices have changed... just a little bit

1956, a 5 MB HDD by IBM

2011, Kindle Fire by Amazon

Hadi's Background

- Author of "Web Commerce Security: Design and Development" book, published by John Wiley & Sons.
- Security, Cryptography, Complex System Analysis Identity Management, Asset Protection, Information Assurance Schemes
- Massively Scalable Systems design, implementation, and governance Vulnerability Assessment, Threat Analysis (VATA)
- Theory of Programming Languages, Formal Languages, Functional Languages, Semantics of Security
- Enterprise & Embedded (Netscape, Sun Microsystems, United States Government, Motorola, eBay, PayPal,...)

Agenda

RSACONFERENCE CHINA 2011

- NFC
- Mobile
- Mobile + NFC
- Conclusion, Q&A

Contactless & NFC

- NFC: Near Field Communication
- NFC is a short-range wireless technology that allows devices to exchange information when tapped together
- NFC is a subset of Contactless
 - Bluetooth, Wi-Fi, & ZigBee are other examples

NFC modes

- Tag/Sticker (or read/write)
 - Non-secure, reading smart tags

- Peer-To-Peer
 - Non-secure, device to device

- Card Emulation
 - Secure via "Secure Element"

Secure Element

- Secure Element (SE) is a hardware device that protects key material
- May or may not include crypto engine
- Different SE types:
 - USIM/UICC
 - Embedded SE (eSE)
 - microSD
 - TPM
 - MTM

NFC Phone $\leftarrow \rightarrow$ POS

- Point Of Sale (POS) devices operate in CE mode*
- In CE, NFC device and POS mutually authenticate each other
- SE is required in an NFC-mobile phone
- Solutions with no SE:
 - Higher risk
 - Increased fraud
- Why does Mobile+NFC matter?

Mobile: Usage

Global Mobile vs. Desktop Internet User Projection, 2007 – 2015E

Source: http://gigaom.com/2010/04/12/mary-meeker-mobile-internet-will-soon-overtake-fixed-internet/

Mobile: Growth

Source: Forrester Research; eMarketer

Mobile matters to NFC

- Ok, mobile+NFC is important
- How to integrate NFC into mobile?
 - Where should the surgery be made?
- Which stack matters the most?

Mobile: Which Stack?

- 3 month average ending in July 2011
- Mobile subscribers age 13+

Smartphone Platform	Share (%) of EU5 Smartphone Users		
	Jul-10	Jul-11	Point Change
Total Smartphone Users	100.00%	100.0%	0.0
Symbian	53.9%	37.8%	-16.1
Google	6.0%	22.3%	16.2
Apple	19.0%	20.3%	1.2
RIM	8.0%	9.4%	1.5
Microsoft	11.5%	6.7%	-4.8

^{*}MobiLens measures users above the age of 13 and reports on only primary handset usage

Source: comScore Mobile

Android + NFC

- Well, Android is not exactly the most secure OS
 - In fact, Android is hackers' heaven...
 - ...and our job-security
- Thus exposing NFC functionality to Android should be done carefully
 - "CIA agent in KGB domain" paradox
- Some integration glue is needed
 - Both in Java & native layers

Stack Integration

How NFC is Glued into Android

What about SE??

- Don't worry: we still need SE
- Two* main SE use cases
 - Embedded SE (eSE)
 - UICC/SIM as SE
 - *the other use cases are less prevalent

Two* Main Cases

GOOGLE WALLET APPROACH

Mobile Network Operator - Centric Approach

- Secure Element = SIM so called "SIM-NFC"
- Download of credentials via the network (from MNO or 3rd party)
- Security: in the SIM (user-oriented, removable)
- The SIM can also support DRM, Mobile TV access rights

UICC-BASED SE

Mobile+NFC: Case I

Mobile Phone

Mobile+NFC: Case II

Mobile Phone

Who does what

- Android holds the high-level app
- SE holds the secure app
 - establishes secure NFC channel
- Isolation at hardware layer
- There is more within SE and its apps
 - ISD: Issuer Security Domain
 - SSD: Secondary Security Domain
 - ...

Inside SE

- Issuer Security Domain (ISD)
 - ISD has the highest privilege
 - Can enable/disable other SDs
 - Is invoked first in CE mode
 - All this is outside "Android"

The rest of *Mobile*

- There's more to mobile+NFC than just the handheld device
- Very complex, busy ecosystem
- Many, many players from cradle to grave
- Ecosystem still undergoing changes

Ecosystem

Complexity = security's worst enemy

Source: Federal Reserve, "The Case for Mobile Payments in the US", April 2011

- Mobile Fraud Risk: new environments & entities
- Financial Fraud Risk: legacy environments & entities
- Legacy payments relationships

- Without a footprint in SE, even a privileged access to Android core won't help, because:
 - Card Emulation mode cannot be enabled (readers/POS require this mode)
- Therefore Android apps are left with P2P or tag/sticker modes:
 - neither is suitable for security-sensitive ops

- It is very likely that Android applications will remain un-secure, because:
 - It's unlikely that Android will ever give applications any access to Secure Element

- UICC/SIM is still the most prevalent SE
- But this is quickly changing:
 - eSE, μSD, TrustZone, TEE, TPM, MTM, Secure μKernel, ...

- Unsolved or unclear use cases:
 - Multiple SE in the same device
 - Multiple Trusted Service Manager (TSM)
 - Device-to-human identity binding
 - Roles of ecosystem participants

Final thoughts

- It's no longer sufficient to rely <u>only</u> on the device: Backend risk mitigation, fraud detection and prevention is necessary
- Adaptive, extensible risk mitigation infrastructure that works with devicebased security is required
- Collaboration among ecosystem participants is critical: the most effective and efficient risk mitigation and fraud prevention models are collaborative

Thank You

Q&A

- Standard Rates:
 - Answers: \$1
 - Correct answers: \$3
 - Correct answers requiring thought: \$5
- Contact:
 - www.linkedin.com/in/hadinahari