International Journal of Modern Physics D © World Scientific Publishing Company

Challenging a Newtonian prediction through Gaia wide binaries

X. Hernandez

Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70–264 C.P. 04510 México D.F. México. xavier@astro.unam.mx

R. A. M. Cortés

Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70–264 C.P. 04510 México D.F. México. rcortes@astro.unam.mx

C. Allen

Instituto de Astronomía, Universidad Nacional Autónoma de México,
Apartado Postal 70-264 C.P. 04510
México D.F. México.
chris@astro.unam.mx

R. Scarpa

Instituto de Astrofísica de Canarias, c/via Lactea s/n San Cristobal de la Laguna 38205, Spain Departamento de Astrofísica, Universidad de La Laguna (ULL) 38206 La Laguna, Tenerife, Spain. riccardo.scarpa@gtc.iac.es

> Received Day Month Year Revised Day Month Year

Under Newtonian dynamics, the relative motion of the components of a binary star should follow a Keplerian scaling with separation. Once orientation effects and a distribution of ellipticities are accounted for, dynamical evolution can be modelled to include the effects of Galactic tides and stellar mass perturbers, over the lifetime of the solar neighbourhood. This furnishes a prediction for the relative velocity between the components of a binary and their projected separation. Taking a carefully selected small sample of 81 solar neighbourhood wide binaries from the *Hipparcos* catalogue, we identify these same stars in the recent Gaia DR2, to test the prediction mentioned using the latest and most accurate astrometry available. The results are consistent with the Newtonian prediction for projected separations below 7000 AU, but inconsistent with it at larger separations, where accelerations are expected to be lower than the critical $a_0 = 1.2 \times 10^{-10} \,$ m s⁻² value of MONDian gravity. This result challenges Newtonian gravity at low accelerations and shows clearly the appearance of gravitational anomalies of the type usually attributed to dark matter at galactic scales, now at much smaller

2 X. Hernandez et al.

stellar scales

Keywords: Gravitation; star binary; general.

PACS numbers: 04.50.Kd, 95.35.+d, 97.10.Vm, 97.80.d

1. Introduction

In galactic dynamics, the range of systems over which gravitational anomalies appear in the low acceleration regime extends across vast astronomical scales. Ultra faint dwarf galaxies with scale radii of order a few tens of parsecs show stellar velocity dispersions implying Newtonian mass to light ratios in the hundreds or even thousands (e.g. Ref. 1). The classical dwarfs have sizes of order a kpc and mass to light ratios derived from observed stellar kinematics inconsistent with those of naked stellar populations under standard gravity by well over an order of magnitude (e.g. Ref. 2). This reflects what is observed in spiral galaxies at tens of kpc, where rotation curves (e.g. Ref. 3) again yield dynamics not corresponding to Newtonian dynamics given the empirically determined matter content. The trend has been extended to include elliptical galaxies observed out to their external low acceleration regions recently by Ref. 4, and even for the case of Galactic globular clusters where velocity dispersion profiles suggest a change away from Newtonian dynamics for low accelerations e.g. (Ref. 5, Ref. 6).

Empirically, the above gravitational anomalies can be described by MONDian dynamics (Ref. 7, Ref. 8), where below an acceleration threshold of $a_0=1.2\times 10^{-10}~{\rm m~s^{-2}}$ kinematics stop falling along Newtonian expectations of $v\propto R^{-1/2}$ to flatten out at the Tully-Fisher values of $V_{TF}=(GMa_0)^{1/4}$ for centrifugal equilibrium velocities or corresponding velocity dispersions for pressure supported systems, where M is the total baryonic mass of the system in question. The standard interpretation of this being the presence of dominant halos of a yet undetected hypothetical dark matter component surrounding the astrophysical systems being observed.

Wide binary pairs in the solar neighbourhood offer an opportunity to probe dynamics at low accelerations on the smallest astrophysical scales. In principle these can yield crucial restrictions on the structure of gravity at low accelerations and lengths where the presence of dark matter is not expected. For a solar mass binary, at separations of above $3.4\times10^{-2}\rm pc$, 7000 AU, accelerations will fall below a_0 under Newtonian expectations. A first attempt in this direction was made by two of us in Ref. 9 where we used the Ref. 10 -henceforth SO11- carefully selected sample of Hipparcos wide binaries. This catalogue includes a full Bayesian model and use of local 5-dimensional phase space density to identify wide binary candidates and rigorously assign a probability that each candidate forms a physical system, rather than being the result of chance associations.

Retaining a sample of binaries from SO11 where contamination was limited to less than 10%, in Ref. 9 results indicated relative velocities for the binary pairs stud-

ied above the Newtonian expectations for accelerations below a_0 . This remains true even after accounting for projection effects, ellipticity distributions and disruption and evolution of ionised binaries due to the Galactic tidal field and encounters with field stars and stellar remnants, as modelled by Ref. 11, albeit the relatively large errors in proper motions present in the *Hipparcos* catalogue.

One of us, in Ref. 12, explored the problem using a small sample of 60 candidate wide binaries with projected separations between 0.004 and 1.0 pc. That study found that a number of wide binaries are capable of surviving the galactic tides and stellar encounters of the solar neighbourhood dynamical environment, with a small sub-sample of the widest pairs showing kinematics more consistent with MONDian dynamics than Newtonian ones. More recently, theoretical studies by Ref. 13 and Ref. 14 confirmed that Gaia data, in terms of expected number of detected wide binaries and confidence intervals for the relevant proper motions and parallaxes, are sufficient to detect MONDian deviations from Newtonian dynamics in the low acceleration regime probed by these systems, should they be present.

The obvious next step is to reproduce the careful and detailed procedure presented in SO11, but using this time the Gaia DR2 catalogue. This painstaking approach will ultimately furnish a definitive answer regarding the presence of gravitational anomalies at stellar scales in the low acceleration regime, but is currently hampered by our incomplete understanding of the problems still present in the data of the very novel Gaia DR2. For example, only about two thirds of the Hipparcos2 sources have Gaia DR2 counterparts (Ref. 15). Also, Gaia treats all binaries closer than about 1" (depending on the magnitude difference) as single sources, which may give anomalous parallaxes, and the parallax solutions may be more sensitive to duplicity in certain areas, etc. (see Ref. 16 A1 for some of the known issues.)

A first order sampling of the issue can be more directly probed by taking advantage of the correspondence between the Gaia and the Hipparcos catalogues. One can take the sample selection from the accurate Bayesian analysis of SO11, and the actual astrometric data from the Gaia DR2. Here we present results of such an approach, yielding a small sample of 81 wide binaries from the original SO11 catalogue having a < 10% probability of being chance associations, Gaia DR2 data consistent with the original Hipparcos reported quantities, and consistent parallaxes for both components in the Gaia DR2. Although it is only a reduced sample, the superior quality of the Gaia satellite allows us to infer relative velocities for the binaries in question to a much higher degree of accuracy than what was available to Ref. 9. Interestingly, our results show a departure from Newtonian predictions as projected separations grow beyond the critical 0.034 pc. Indeed, our new results are consistent with what was reported in Ref. 9: the mean values of the inferred relative velocities are essentially unchanged, with the error bars showing a dramatic reduction. This effectively rules out the Newtonian prediction of Ref. 11 and provides solid evidence for a gravitational anomaly in the low acceleration regime, this time at stellar scales.

2. Sample selection

As outlined in the introduction, the sample selection is based on the wide binary catalogue of SO11, which was constructed using a very detailed Bayesian procedure. This identifies and quantifies the probability of each binary pair being an actual physical system, rather than the result of projection effects or chance associations, including also the Tycho-2 and the Tycho double star catalogues (Ref. 17 and Ref. 18). To that end a 5-dimensional space of spatial positions and proper motions was cross-correlated with a galactic phase-space density library, explicitly excluding the largest known local star clusters, to identify binary candidates as significant local over-densities in phase space. Corrections due to spherical projections effects were also considered, to yield a catalogue of 840 wide binaries with projected separations of between 0.003 and 10 pc and, crucially, a well determined probability of chance association, P_{ch} . Taking only those pairs where this probability satisfies $P_{ch} < 10\%$, reduces the original SO11 sample to 359 wide binaries. This catalogue is also narrowly restricted in spectral type for both primaries and companions of each binary, yielding stars in a narrow range of masses centred on $0.5M_{\odot}$. This last is important as it allows a clean comparison to the fixed mass binary simulations of Ref. 11, see below. Following the original SO11 terminology, the brightest star in each binary system is termed the primary.

The SO11 search criteria ensure the absence of near neighbours, and results in binary candidates with separations which are always many times smaller than the typical interstellar separations at the location of the binaries in question. Extensive testing with synthetic samples in SO11 guarantees the catalogue includes very few multiple systems with undetected extra companions and is highly complete in the 6 to 100 pc distance range from the Sun.

We now take advantage of the *Hipparcos* to Gaia DR2 correspondence availability to search for the updated astrometry of the 359 $P_{ch} < 10\%$ wide binary SO11 sample in the Gaia DR2. The search returns only 151 pairs where each component of the SO11 binaries appears in the Gaia DR2 with two proper motion parameters and measured parallax. This is not surprising, since only about two thirds of the Hipparcos2 sources have Gaia DR2 counterparts (Ref. 15). It is not yet clear why there are so many sources missing. According to the above authors a combination of effects may be present. As each binary is excluded if either component is absent from the DR2, the fraction we obtain is typical. Next, the SO11 catalogue returns a few systems where more than one secondary is identified as the companion to a given primary, and also cases where a single secondary is identified as the companion to more than one primary. We remove all these cases of multiple identifications, bringing the sample down to 131 binaries.

A first test of the reliability with which the *Hipparcos* binaries have been identified in the Gaia DR2 comes from comparing the proper motion measurements reported in SO11 with the corresponding measurements reported in the Gaia DR2. This is shown in Figures 1 and 2, where the ranges shown in the axes were chosen

so as to display clearly most of our sample; a handful of very discordant systems do not appear in the plots, as they are very far from the identity line shown. It is clear that in most cases, the proper motion values reported by both satellites are in agreement with each other, to within their respective confidence intervals, the Hipparcos error ranges being much larger than the Gaia DR2 ones. Still, we introduce a cut to remove from consideration any binary candidate where for any component the *Hipparcos* and Gaia DR2 data are more than 3σ from each other. Our final results are not sensitive to this threshold, provided the few discordant misidentified binaries are removed. This cut leaves us with only 117 stellar pairs. Next, as shown in Figure 3, we check that the Gaia DR2 reported parallax measurements for each of the primaries and companions are not discordant, and remove from the sample any binary where the distances to each component are not within 13% of each other. This exclusion criterion identifies 17 candidates, thus reducing the sample to 100 pairs. Notice that the test shown in Figures 1 and 2 effectively gives us a 10 year baseline which, on top of the robustness in the SO11 catalogue towards multiple systems, where no radial velocities are involved, removes any remaining binary where a third component might be altering proper motions with timescales shorter than 10 years (see Ref. 14).

Finally, we take advantage of the Gaia radial velocity measurements (when available) and remove any binaries where the radial velocity difference, ΔV_r , between both components is larger than 4 km s⁻¹. The resulting cut is not very sensitive to this velocity threshold, as the removed binary pairs typically have much larger and discordant ΔV_r values, with an average value for those removed of $\Delta V_r = 28$ ${\rm km~s^{-1}}$. Our final sample comprises 81 binary pairs.

Thus, we have prefered very strict cuts to our final sample which leave us with modest numbers, but guarantee the exclusion of misidentified stars in going from Hipparcos data to Gaia DR2 and chance alignment contamination in the original SO11 catalogue, all of which become conspicuous in the comparisons presented in this section. Table 1 summarises the Gaia DR2 properties used and catalogue numbers from both *Hipparcos* and Gaia for the primaries and companions of all the binaries used, together with the results of the exclusion criteria described.

3. Gaia wide binary projected kinematic results

In Ref. 9 we calculated the projected separation in the plane of the sky using only the parallax to the primary of each binary, but given the higher quality Gaia DR2 data, we now compute the projected separation between the components of each binary using explicitly the observed Gaia positions and parallaxes to each component of the binary. The average parallax to both components is used to gauge the distance to each pair. Using reported Gaia proper motions, the relative velocity difference in one dimension is calculated for each binary twice, once considering only right ascension proper motions, and once considering only declination proper motions. In all cases the relative physical motion is calculated including full spherical geometric effects (e.g. Ref. 19), and not under the more standard small angle approximation. This requires the radial velocity of at least one component, which we have for 71 of our 81 final pairs. For the remaining 10, a $V_r = 0$ was assumed for the effects of the above correction (e.g. SO11). The effects of the above refinement are only relevant for the nearest and widest of pairs, in our sample only a few individual systems, as can be readily cheched from the data used and shown in table 1.

Figure 4 gives the two Δv_{1D} measurements for each binary pair in the final sample, with corresponding 1σ error bars. A clear flat upper envelope is evident. In Figure 5 we show the rms. value for the one dimensional velocity differences described above, plotted against projected separations in a binned logarithmic scale, circles and triangles for right ascension and declination data, respectively. The horizontal error bars give the bin sizes, while the vertical ones show the contribution of Gaia reported errors and error propagation, to which a Poisson contribution has been added, and which given the small numbers of binaries in each bin (21, 23, 17, 8 and 12, from left to right), actually dominates the error budget in most cases. The dashed vertical line appears at 7000 AU, the approximate scale where acceleration is expected to drop below a_0 .

Also shown in Figure 5 are the Newtonian predictions for this same quantity from Ref. 11, where large collections of 50,000 simulated binaries are modelled for a range of plausible distributions of ellipticities, and followed dynamically under Newtonian expectations within the local Galactic tidal field. These are also subject to the effects of field star and field stellar remnant bombardment for a 10 Gyr period. Finally, the resulting bound and un-bound stellar pairs are projected along a fiducial line of sight to yield a robust prediction for the expected $<\Delta v_{1D}^2>^{1/2}$ as a function of Δr , solid curve. This results are easy to understand; a $\Delta v \propto \Delta r^{-1/2}$ trend is apparent, down to the tidal radius of the problem which appears at 1.7 pc. Beyond this point, ionised binaries continue to move along practically common Galactic orbits, with relative velocities which show a mild enhancement which then levels off at close to 0.1 km s⁻¹.

It is clear that to the left of the a_0 dashed line, our results are consistent within confidence intervals with the Newtonian expectations. However, in going to separations larger than 7000AU, the observed points stop following the expected trend and actually level off at a Δv amplitude close to the values seen at the a_0 point, reproducing qualitatively the phenomenology seen in galactic rotation curves.

This result for the binary sample presented is extremely challenging to a Newtonian point of view, where the relative velocities are expected to be much lower than observed. Given the construction of the SO11 sample, binaries with small velocity differences would appear as stronger local over densities in phase space, and hence, selection criteria, if anything, are biased against binaries with large velocity differences, not small ones. Thus, from a Newtonian point of view, bound binaries with separations smaller that the tidal radius of 1.7 pc and larger than 7000 AU are unexpectedly missing. Also, as already mentioned in Ref. 20, a population of non-

chance associated binaries appears at scales above 7000AU having relative velocities over an order of magnitude above bound expectations, with relative velocities of \sim 1 km s⁻¹ and separations of a few pc, the dynamical ages of un-bound systems are of only a few 10⁶ years. What sustains and replenishes these populations under a Newtonian framework? At separations below the 1.7 pc tidal radius of the problem, bound binaries should appear, under a Newtonian framework.

Furthermore, the results shown in figure 5 confirm what was presented in Ref. 9, though the much coarser Hipparcos data of that first study yielded significantly larger error bars. That those first results might have been the result of missed biases or simply the error structure of the *Hipparcos* data now appears very unlikely, as we see two consistent results coming from data obtained by two completely independent satellites. Indeed, the error bars have significantly shrunk, with central results changing little. Note also that the two Δv_{1D} estimates we obtain, using only right ascension or only declination data, are consistent with each other.

A potential caveat on the interpretation presented comes from the possible presence of a population of misidentified binaries being actually parts of loose, dissolving moving groups. Ref. 20 recently showed that although isolated wide binaries dominate, a search algorithm of the type used in SO11 could also pick up a fraction of misidentified binaries being part of larger moving groups, many of the smallest of which probably remain undiscovered. A full answer and validation or otherwise of our results, necessarily awaits a much more extensive study through the full Gaia catalogue, and a fuller exploration and understanding of the phase-space structure and over-densities of the Solar Neighbourhood and local Milky Way disk environment.

Although the gravitational anomaly detected appears on crossing the a_0 threshold of MOND, in MOND as such, the results are equally unexpected as the external field effect of MOND (or AQUAL e.g. Ref. 8 should dominate. Given that the orbital acceleration of the solar neighbourhood is higher than the internal acceleration of the binaries in question, in MOND as such, only a very modest enhancement of the effective value of G would be expected (e.g. Ref. 13). Thus, within a MONDian frame our results imply not the most well studied version, but rather a variant where the external field effect does not appear, or is much suppressed e.g. as in Ref. 21. In terms of covariant extensions to GR having a MONDian low velocity limit, it is hard to know to what extent an external field effect might be present in many of the recently developed options (e.g. the f(R) variants reviewed in Ref. 22, the emergent gravity of Ref. 23 or the F(R,L) proposal of Ref. 24, so our results then serve as constraints in terms of requiring a minimal external field effect, at least for the sub-parsec scales in the solar neighbourhood explored.

4. Final remarks

We have presented a sample of 81 wide binaries which were very carefully selected against chance associations or projection effects through the cross correlation of the

8 X. Hernandez et al.

Hipparcos, Tycho-2 and the Tycho double star catalogues, amongst others, with the detailed 5-dimensional phase space structure of the solar neighbourhood by SO11. By taking advantage of the cross-identification of the Hipparcos catalogue and the Gaia DR2 data, we updated the parallax and proper motion observations of SO11 to use exclusively Gaia DR2 astrometry.

These binaries are then compared to Newtonian predictions for the expected one dimensional rms. relative velocity between the components of each binary and their projected separations, including modeling orientation effects, a number of plausible distributions of ellipticities and, crucially, the effects of Galactic tides and stellar and stellar remnant perturbers over a 10 Gyr period, by Jiang & Tremaine (2010).

For separations below 7000 AU, where accelerations are expected to be above the $a_0 = 1.2 \times 10^{-10}~{\rm m~s^{-2}}$ of MOND, we find the data to be consistent with the Newtonian predictions. For projected separations above 7000 AU however, the data are inconsistent with Newtonian predictions. This challenges the validity of Newtonian dynamics at the low acceleration regime, and shows the existence of gravitational anomalies of the type generally attributed to the presence of a hypothetical and dominant dark matter component, this time down to the relatively tiny sub-parsec stellar scales.

Table 1. Comparison of acoustic for frequencies for piston-cylinder problem.

Piston mass	Analytical frequency (Rad/s)	TRIA6- S_1 model (Rad/s)	% Error
1.0	281.0	280.81	0.07
0.1	876.0	875.74	0.03
0.01	2441.0	2441.0	0.0
0.001	4130.0	4129.3	0.16

If tables need to extend over to a second page, the continuation of the table should be preceded by a caption, e.g. "Table 2. (Continued)".

		1	1	ı	r	ı	ı																ı		1	ı	1	
Exclusion	Test						υ		c,d					Ф			Ф	Ф			P	a,b,d				P		n next page
$\log_{10}(\Delta R)$		-1.744±0.002	-2.051±0.001	-2.163±0.001	-1.740±0.001	-1.301±0.001	-0.172+0.010	-2.234±0.001	0.910±0.002	-2.445±0.004	-2.473±0.001	-1.666±0.001	-2.029±0.001	-1.675±0.001	-0.982±0.002	0.284±0.001	-1.014±0.016	-1.046±0.004	-1.447±0.002	-1.355±0.001	-1.268±0.008	-1.210±0.006	-1.222±0.001	-0.409±0.002	-2.120±0.002	0.364±0.001		Continued on next page
p	(bc)	$12.046 \pm 0.027 \\ 12.039 \pm 0.011$	17.209 ± 0.012 17.239 ± 0.014	22.087 ± 0.026 22.104 ± 0.022	11.625 ± 0.020 11.698 ± 0.003	14.585 ± 0.037 14.565 ± 0.011	167.953 ± 2.110 22.423 ± 0.025	$12.280 \pm 0.007 \\ 12.278 \pm 0.008$	19.808 ± 0.018 37.842 ± 0.087	16.346 ± 0.014 16.339 ± 0.014	10.768 ± 0.004 10.765 ± 0.005	12.908 ± 0.023 12.914 ± 0.012	10.466 ± 0.007 10.456 ± 0.006	5.960±0.008 5.950±0.003	37.429±0.102 37.683±0.085	46.855 ± 0.061 45.315 ± 0.053	50.506 ± 1.707 48.404 ± 0.137	47.258±0.315 47.708±0.075	47.288±0.092 47.269±0.088	36.024 ± 0.041 36.009 ± 0.052	38.970±0.624 38.006±0.032	40.470±0.074 40.295±0.457	38.123±0.043 38.356±0.061	45.125 ± 0.095 44.748 ± 0.143	30.084 ± 0.022 30.080 ± 0.027	31.596 ± 0.032 35.328 ± 0.055	48.401 ± 0.415	
v_r	(km/s)	$12.01 \pm 0.32 \\ 12.21 \pm 0.17$	34.18± 0.15 34.22± 1.08	-7.21± 0.15 -7.93± 0.16	-1.15± 0.22 -0.88± 0.16	37.67± 0.24 37.94± 0.13		1.07 ± 0.18 1.92 ± 0.27	14.76± 0.16 -23.92± 0.13	8.78± 0.21	-19.86± 0.19	12.89± 0.13	34.14± 0.15 34.44± 0.44	-0.04± 0.22	-45.70± 0.16 -45.00± 0.74	9.48± 0.31 8.62± 0.21	4.58± 0.16	12.26± 0.17	31.35± 0.20 31.90± 0.15	39.89± 0.13 40.31± 0.14	6.44± 3.13 10.70± 0.49	15.64 ± 0.16 21.24 ± 0.43	16.61 ± 0.17 16.83 ± 0.21	3.05± 0.24 3.02± 0.33	8.69± 0.37 9.16± 0.30	20.53± 0.25 2.30± 0.24		
μδ	(yr)	648.523 ± 0.431 649.930 ± 0.154	-316.326 ± 0.052 -310.291 ± 0.064	-107.368 ± 0.079 -111.982 ± 0.055	117.417 ± 0.310 119.633 ± 0.054	-7.332±0.209 -5.778±0.068	-36.058 ± 0.080 -43.071 ± 0.068	-523.602 ± 0.072 -515.938 ± 0.078	-131.548±0.046 -121.897±0.120	-1116.601 ± 0.111 -1119.010 ± 0.095	84.110±0.053 89.266±0.072	3.666±0.226 0.334±0.110	-1138.804±0.104 -1131.947±0.065	-1142.063 ± 0.451 -1124.545 ± 0.068	-147.985±0.089 -145.798±0.079	-31.652±0.041 -36.082±0.038	-2.895 ± 0.821 -10.811 ± 0.098	5.163 ± 0.193 4.481 ± 0.052	-6.237 ± 0.062 -6.314 ± 0.063	-65.299±0.041 -66.663±0.076	85.658±0.968 83.684±0.052	-89.579±0.056 -88.591±0.357	35.596±0.049 36.119±0.065	-7.495±0.066 -6.789±0.088	143.459±0.042 142.603±0.053	38.374±0.041 34.122±0.050	19.748 ± 0.221	
μ_{α}	(mas/yr)	1331.151 ± 0.355 1337.591 ± 0.142	157.945±0.086 156.215±0.089	-109.700±0.095 -101.763±0.080	-32.140±0.276 -32.784±0.049	250.765±0.316 251.000±0.092	2.551 ± 0.100 79.115 ± 0.087	2.784 ± 0.075 3.915 ± 0.078	-201.033±0.052 -102.218±0.095	792.548±0.092 793.487±0.085	-498.018±0.050 -483.168±0.066	74.146±0.306 77.135±0.147	-916.562±0.155 -917.276±0.098	-466.541 ± 0.646 -479.850 ± 0.101	-150.936 ± 0.121 -147.614 ± 0.094	91.146±0.041 92.790±0.045	32.692 ± 0.940 36.368 ± 0.126	18.526±0.121 18.383±0.030	166.360 ± 0.071 168.749 ± 0.073	349.057±0.036 348.847±0.065	-80.769±0.929 -82.413±0.043	197.860±0.093 198.179±0.596	18.789±0.043 18.893±0.061	-110.510±0.075 -110.866±0.102	-114.435±0.047 -111.783±0.060	-63.858±0.051 -56.556±0.064	60.337 ± 0.292	
δ	·g)	-62.503574 -62.572523	16.670667 16.665933	6.186399 6.199170	-57.472197	17.383504	15.350146 15.337041	53.478804	-57.358567 -48.147162	23.612274 23.615657	67.239204 67.256628	-39.192966	-5.071414 -5.099110	-26.607739 -26.550990	18.234370 18.075245	-56.429512 -57.480902	2.763759 2.815808	-33.811016 -33.896542	7.655784	-28.854353	-53.459330 -53.405518	27.556119 27.642799	-31.141532	33.111833 32.614987	-50.456108 -50.466001	-13.256527 -9.976270	15.322854	
σ	(deg)	49.565826 49.454851	55.969727 55.939232	63.869527 63.857006	76.377477 76.447122	81.107227	85.075658 85.495633	85.334752 85.378072	191.308450 213.602784	216.434870 216.448113	244.172569 244.183431	246.005789 245.891422	256.260183 256.303450	258.835189 259.053369	1.477436	24.782478 20.839305	30.511899	37.007194 36.926542	49.360666	50.016623 50.013976	72.734825 72.835038	77.517088	105.040814 105.011544	107.830615 107.810770	116.051359	129.688303 127.418304	134.312562	
GDR2		4722135642226356736 4722111590409480064	43335880716390784 43335537119008896	$\frac{3285218186904332288}{3285218255623808640}$	4763906879239461632 4763897739549071744	3400292798990117888 3394298532176344960	3395863205942142976 3347826784173590656	263916708025623680 263916742385357056	6060965699625586176 6092573252981419776	1254695603704323712 1254694882149817728	1642641410934267008 1642642957122493824	6018047019138644480 6018034958869558912	4364527594192166400 4364480521350598144	4109030160308317312 4109034455276324608	2797111130991722240 2773086595766697856	4911275281704066048 4909846500703006976	2517584007848935808 2517585927699042944	4967177781457918976 4967153630858709120	10584899657116672 10608573516849536	5060104351007433472 5060105892897388288	4777112872882315264 4777119126354782592	3422042582096699520 3422047495539178496	5607190344506642432 5607189485513198208	890422213103244544 890346243721923968	5493209501673364736 5493209437253410432	5746824674801810816 5751951182125903872	610526719204475136	
HIP2		15371 15330	17414 17405	19859 19855	23693 23708	25278 25220	26690 26844	26779 26801	62229 69570	70529 70536	79755 79762	80337 80300	83591 83599	84405 84478	493 495	7699 6485	9487 9519	11477	15304 15310	15527 15526	22534 22562	24046 24035	33705 33691	34714 34700	37718 37727	42401 41662	43970	
Index	SO11	16	17	21	22	25	28	29	65	73	80	81	82	87	112	130	132	140	155	157	173	175	187	190	195	201	204	

10	37	TT 1 .	7
10	Χ.	Hernandez et	al.

Control Cont	Index	HIP2	GDR2	σ	δ	$\mu\alpha$	μ8	v_r	q	$\log_{10}(\Delta R)$	Exclusion
44884 69211905203933308 49 137.099189 6 136.4447 - 5.5.2394.0.13 7.20524.0.07 69 00.24 0.24 6 135.29 195.29 0.25 0.25 0.29 0.25 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.25 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	011			9P)	(Se	(mas	/yr)	(km/s)	(bc)		Test
44888 60212000283368 317,112900 37,5324±0.074 38,331±0.014 51312 7488858108712 71,0324±0.074 38,331±0.014 51314 7488658108712 74,0444 74,044 74,044 51314 74886501871333368368 317,112900 74,044 74,044 74,044 5134 748864100357 75,044 74,0		44001	610549499710989440	134.396934	15.581374	60.440 ± 0.161	20.509±0.106		48.801 ± 0.233	-0.638±0.006	
5.3.74	207	44858 44864	692119656035933568 692120029700390912	137.099198 137.112900	27.535750 27.543447	-53.239 ± 0.128 -51.819 ± 0.113	71.659 ± 0.096 73.524 ± 0.074	30.02 ± 0.22 30.31 ± 0.14	48.891 ± 0.237 49.124 ± 0.230	-1.910±0.007	
57777 3500084490721718187 101.852204 2.2.388154 124.8984.012 2.98.817.0084 23.344.0084 2.05 57765 39070818708819038103728 101.852204 2.2.3884.00 -0.0064.00 2.3244.01 13.344.00 55202 390708039212927786 10.47759 10.447759 10.4477759 10.4477759 10.4477759 10.447775	215	51312 52140	749786562715192320 748360706587700352	157.213545	34.885408 32.832960	-111.186 ± 0.069 -110.338 ± 0.106	-62.017±0.069 -58.939±0.087		49.344±0.126 50.382±0.138	0.411±0.002	p
557765 399756<	218	52787	3550081879381593728 3550084490721711872	161.879229	-22.348154	-124.690 ± 0.115 -124.539 ± 0.112	-28.341 ± 0.084 -29.837 ± 0.070	23.85± 0.25 23.24+ 0.52	33.612±0.085	-1.417+0.002	
56007 38772290165464472 178.631576 160.650400 -165.64400 5.764 0.028 -6.764 0.028 56008 38772290165466472 178.686411 19.41157 -460.6500 0.03 -15.407-00.08 -5.816 0.028 -6.764 0.03 -6.816 0.003 -6.816 0.	224	55765	3967618155853506304 3965063921622777856	171.400912	16.456513	-142.347 ± 0.204 -146.589 ± 0.080	-5.645 ± 0.179 -0.006 ± 0.069	18.88± 0.67 8.33+ 0.21	47.198 ± 0.296 47.472 ± 0.093	0.454+0,004	þ
68088 5808107320181281 778.886141 66.376482 13.792.60.03 66.816±0.03 6.81	229	58067	3975129194660883328 3975223065466473216	178.631559	19.411157	-450.502 ± 0.095 -450.600 ± 0.083	-16.554 ± 0.069	5.94± 0.29 5.76+ 0.22	39.622 ± 0.082 39.601 ± 0.071	-1.851+0.002	
64057 344511846322948128 18.6 914217 510.684-0.074 11.0 11.0 1.0	230	58085 58121	5236197322996128128 5236196498362394112	178.686141	-66.376482	13.792 ± 0.037 12.724 ± 0.048	-65.816±0.036 -63.279±0.045		44.078 ± 0.047 44.016 ± 0.063	-1.328±0.001	р
67291 3721124033170707324 20.6437824 6.346899 -5.10447±0.071 -111.022±0.061 -30.67±0.12 67291 3721114033170707324 20.6867729 6.315.77 -110.022±0.061 -30.67±0.12 73660 18660517737120182848 22.448463 -3.53140.064 -110.022±0.064 -118.99±0.26 74666 1278310751763720386 22.448667 45.448463 -3.53140.064 -110.004±0.064 -118.99±0.26 7467 12773310751767 22.44870173 3.334461 3.25.776±0.04 -110.004±0.042 -18.99±0.26 75104 127771805037523077244 23.00240752 3.34407 -179.339±0.036 3.34064 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.043 -10.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -110.004±0.044 -10.31	245	64057 64059	3945118265299248128 3945118643256370688	196.914217 196.918496	24.010449 24.020558	-261.638 ± 0.077 -262.455 ± 0.078	$148.003\pm0.059\\146.042\pm0.054$	-1.68± 0.15 -1.70± 0.13	37.442 ± 0.053 37.433 ± 0.051	-2.150±0.003	
7.3365 1.5889778421048887 24.646406 -35.8698-0.033 1.01074-0.034 -18.994 to 0.14 7.3365 1.588977777772129188248 2.24.877774 45.44466 -35.3014-0.037 1.01074-0.034 -18.994 to 0.26 7.4666 1.27889391077777721918248 2.28.37714 45.44466 -35.3014-0.034 -18.994-0.054 -18.994-0.056 7.4674 1.27718623107677248 2.28.3720448 2.24.372014 -37.320448 2.778-0.040 -10.0040-0.044 -18.394 to 0.18 7.5011 1.2771862310468548 2.29.448 2.20.448 3.320448 2.278-0.023 -26.824-0.17 -26.824-0.03 -26.824-0.17 -6.824-0.03 -6.824-0.17 -6.824-0.03 -6.824-0.17 -6.924-0.03 -6.824-0.11 -6.924-0.03 -6.824-0.11 -6.924-0.13 -6.8240-0.03 -6.824-0.11 -6.824-0.03 -6.824-0.03 -6.824-0.11 -6.824-0.03 -6.824-0.03 -6.824-0.03 -6.824-0.11 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03 -6.924-0.03	253	67246 67291	3721126409323324416 3721114933170707328	206.735799	6.349899	-510.447 ± 0.071 -509.440 ± 0.083	-110.225 ± 0.064 -111.022 ± 0.061	-30.42± 0.20 -30.67± 0.15	31.489±0.039 31.332±0.045	-1.128±0.001	
74666 1278391075716678850 228 876113 33 313351 82 5494.0 554 -110.400±0.04 -11.83± 0.18 74674 127839138183679386 228 910715 33 320448 82.776±0.043 -110.400±0.049 -11.83± 0.18 75011 127711865391466886 228.910775 31.48070 -18.1012±0.033 139.578±0.042 -26.53± 0.17 75011 12771866391791466886 228.910339 31.48109 -18.21041042 -26.53± 0.19 80365 5831891213733677264 246.077754 -59.344070 -18.210410403 -18.210410403 -32.477±0.042 -26.53±0.013 80567 144021866378333786 26.581870 1.533±0.049 -18.2104.060 -23.477±0.050 -24.54±0.10 92688 43120446498894088 28.24.46880 13.21764 -19.93±0.07 -24.34±0.00 -24.34±0.00 94150 6421542154150684160 287.472100 -68.424676 -25.34±0.07 -24.34±0.00 -24.34±0.00 -24.34±0.00 -24.34±0.00 -24.34±0.00 -24.34±0.00 -24.34±0.00 -24.34±0.00 -24.44±0.00 -24.44±0.00 -24.44±0.00	264	73365	1586977844504488576 1586977737129182848	224.886978 224.877247	45.464606	-33.680 ± 0.043 -35.321 ± 0.037	100.046 ± 0.044 101.074 ± 0.039		33.745±0.027 33.768±0.024	-1.986±0.002	
75104 12771185023753077248 330,207752 3148707 -179,33±0.036 139,058±0.039 -26,82±0.17 75101 127718502375405856 229,916339 31,84707 -179,33±0.035 139,573±0.042 -26,32±0.13 79565 5831674068384449792 244,816099 -55,504655 5,669±0.067 18,412±0.051 -31,240.041 -50,33±0.052 -30,33±0.067 -32,22±0.052 -33,72±0.13 7640.3 80565 144001258637691296 262,435269 262,435269 -32,324	270	74666	1278391075716738560 1278392381386793856	228.876113 228.910214	33.314351	82.549 ± 0.554 82.776 ± 0.040	-111.909 ± 0.560 -110.040 ± 0.044	-11.83 ± 0.18	37.342 ± 0.531 36.948 ± 0.042	-1.724±0.009	B
79388 59316474098384440792 244816099 -55 504655 5669±0.067 18412±0.051 -0.31±0.52 7649.1 80366 5831891213733627264 246,077754 -55.3465 -5.569±0.069 -5.572±0.052 -5.572±0.052 -5.572±0.052 -5.572±0.05 -5.572±0	271	75104 75011	1277115023753077248 1277185633015465856	230.207752 229.916339	31.480707	-179.339 ± 0.036 -181.021 ± 0.033	139.058±0.039 139.573±0.042	-26.82± 0.17 -26.32± 0.19	45.885±0.055 45.433±0.057	-0.456±0.001	
8550 1440018669438791296 262.435226 63.851870 1533±0.049 182.0611±0.053 -34.02±0.118 92388 4505477838068764064 282.40888 63.868353 182.07640 -234.47±0.072 -34.54±0.118 92388 431204645484984888 28.31.21484 182.0360.070 -224.47±0.072 -34.54±0.21 94100 64215451545160684160 287.474210 68.424635 11.2040.036 -234.37±0.040 -224.47±0.071 -24.454±0.21 94150 642154545150684160 287.474210 68.29987 15.088±0.022 -23.75±0.041 -9.28±0.013 94154 642156485129063424 287.477210 68.29987 15.088±0.022 -23.755±0.041 -9.28±0.013 9582 428784 1.089910 -25.932±0.077 -237.55±0.077 -237.55±0.077 -9.28±0.077 99110 423608688383161994952 3.00.08909 1.940219 -0.186±0.077 -237.55±0.077 -3.08±0.047 -0.186±0.077 -237.55±0.077 -0.208±0.070 -3.27±0.046 -9.28±0.016 -9.28±0.016 -9.28±0.016 -9.28±0.016 -9.28±0.016 <td< td=""><td>284</td><td>79958 80365</td><td>5931674608438449792 5831891213733627264</td><td>244.816099 246.077754</td><td>-55.504655 -59.344070</td><td>5.669±0.067 -3.205±0.063</td><td>18.412±0.051 -5.572±0.052</td><td>-0.31± 0.52</td><td>28.113±0.029 7649.524±2501.324</td><td>2.417±0.283</td><td>c</td></td<>	284	79958 80365	5931674608438449792 5831891213733627264	244.816099 246.077754	-55.504655 -59.344070	5.669±0.067 -3.205±0.063	18.412±0.051 -5.572±0.052	-0.31± 0.52	28.113±0.029 7649.524±2501.324	2.417±0.283	c
92388 45054778380682640164 28.2408860 13.217640 -199.3184-0.096 -223.9764-0.102 -24.541 0.21 926.88 45012477838068264064 28.240886 28.31214483 11.200184 -189.831-0.096 -223.4771-0.07 -224.477-0.07 -224.477-0.07 -224.477-0.07 -224.477-0.07 -224.477-0.09 -224.24635 155.088 ±0.122 -41.2676±0.141 -5.011 0.12 -22.4477-0.07 -224.477-0.07 -224.477-0.07 -224.477-0.07 -224.247-0.04 -9.28.4 0.10 -22.477-0.04 -9.28.4 0.10 -22.447-0.04 -9.28.4 0.10 -22.407-0.04 -9.28.4 0.11 -9.28.71 0.28.71 -22.21 -22.277-0.06 -22.277-0.06 -22.277-0.06 -22.277-0.06 -22.277-0.06 -22.277-0.07 -22.275-0.06 -9.28.4 0.11 -22.21 -22.27.277-0.07 -22.275-0.04 -9.12 0.14 -22.275-0.04 -9.12 0.20 0.14 -22.24 0.14 -22.24 0.14 0.20 0.14 -22.24 0.14 0.14 0.14 0.14 0.14 0.14 0.14 <td< td=""><td>867</td><td>85620 85575</td><td></td><td>262.435226 262.319088</td><td>63.851870 63.868353</td><td>1.533±0.049 0.864±0.053</td><td>-182.061 ± 0.053 -181.967 ± 0.060</td><td>-34.02± 0.16 -33.72± 0.18</td><td>45.738±0.051 45.663±0.060</td><td>-1.368±0.001</td><td></td></td<>	867	85620 85575		262.435226 262.319088	63.851870 63.868353	1.533±0.049 0.864±0.053	-182.061 ± 0.053 -181.967 ± 0.060	-34.02± 0.16 -33.72± 0.18	45.738±0.051 45.663±0.060	-1.368±0.001	
94150 64215548729063416 287,472100 -68,424635 155,710+0.036 -42,976±0.141 -9.61±0.12 94154 642155485729063424 287,472100 -68,424635 155,710+0.036 -41,977±0.046 -9.28±0.13 97384 42405068901169614478 298,785710 -28.13 ±0.07 -226,73±0.046 -9.28±0.13 97384 424050688734041478 29.8.359566 0.52710 -28.73±0.07 -237,525±0.070 97940 424062688683261184 298,56229 1.94226 -5.08±0.077 -269,831±0.047 10.20±0.20 97950 424062688683261184 298,56229 1.94226 -1.562±0.077 -269,831±0.047 10.20±0.20 99100 424062688683261184 298,607297 -0.58476 115.262±0.077 -269,831±0.047 10.20±0.20 99100 42408626879662637 303,108646 -1.563±0.076 -56,831±0.044 -3.73±0.046 -3.75±0.046 99550 6877966226379760697 303,108646 -2.103364 -1.575±0.046 -7.53±0.046 -3.75±0.046 100896 4228891667990334976 306,864400	309	92388 92638	4505477838068264064 4312046495498949888	282.408880 283.121483	13.217640	-199.313 ± 0.096 -189.830 ± 0.070	-223.979 ± 0.102 -224.477 ± 0.079	-54.54± 0.21 -22.45± 0.90	37.760±0.068 38.302±0.065	0.150±0.002	p
9784 4240050801690614976 296.888713 1.087910 -28.713±0.067 -226.744±0.046 97840 4240050801690614976 292.839656 0.557119 -25.932±0.072 -257.555±0.070 97940 42400508688383261184 298.505299 1.942265 -1.562±0.085 -270.206±0.052 9.55±0.16 97940 424005868683261184 298.505299 1.940219 -0.186±0.077 -269.831±0.047 10.20±0.20 99170 4236829635619443977344 302.008909 -0.675476 115.520±0.04 -67.915±0.050 -3.08±0.14 99170 4238695936019949952 301.788725 -0.874544 115.276±0.104 -67.915±0.050 -3.08±0.14 99550 687796622687960976 303.108644 12.618440 -2.108470.068 -193.857±0.045 27.53±0.05 100886 422889122133732864 306.86440 -2.103364 -67.53±0.068 -194.017 -67.53±0.045 -7.414.041 100886 422889122133732864 306.86149 -2.103364 -6.200.068 -67.23±0.045 -7.24.241±0.058 -7.42.41±0.056 -7.25±0.045	314	94150 94154	6421542154150684160 6421555485729063424	287.472100 287.479128	-68.424635 -68.299872	155.088 ± 0.122 155.710 ± 0.036	-42.976±0.141 -41.937±0.046	-9.61± 0.12 -9.28± 0.13	36.982±0.122 36.655±0.041	-1.096±0.002	
97940 4240626688833261184 298.562299 1.942265 -1.562±0.085 -270.206±0.052 9.55±0.16 97940 42406268883261184 298.607267 1.940265 -1.562±0.085 -270.206±0.052 9.55±0.16 99171 42386286196924924 298.607267 1.94019 -0.186±0.07 -269.33±0.060 -3.27±0.14 99170 423862893761949495 301.788725 -0.874474 115.520±0.095 -67.915±0.050 -3.08±0.14 99550 6879642527778188 303.10864 -12.893999 192.627±0.068 -19.5497±0.064 27.33±0.216 100886 422888166799033497 30.868440 -21.893999 -19.2627±0.088 -19.5497±0.045 27.53±0.216 100886 42288816799033497 30.868440 -21.9817 -61.3916.059 -69.039±0.057 -17.640.355±0.057 106353 683002718217925474 32.306671 -20.957957 -275.074±0.103 -124.241±0.086 32.57±0.016 107299 683002714322545441332864 32.306614 -20.97676 -65.657±0.099 -69.039±0.057 -116 107290	322	97384	4240508901699614976 4287506873404614784	296.888713	1.087910	-28.713 ± 0.067 -25.932 ± 0.072	-226.754 ± 0.046 -237.555 ± 0.070		47.116 ± 0.093 44.067 ± 0.083	0.560±0.002	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323	97940 97950	4240626686883261184 4240625896609242624	298.562299 298.607267	1.942265	-1.562 ± 0.085 -0.186 ± 0.077	-270.206±0.052 -269.831±0.047	9.55± 0.16 10.20± 0.20	40.151 ± 0.097 40.047 ± 0.087	-1.502±0.002	
99570 G8796622637818888 303.108646 12.618340 193.068±0.11 195.47±0.064 27.30±0.16 100896 4228891667990334976 303.040245 -12.618340 192.627±0.068 -193.897±0.064 27.53±0.25 100896 4228891667990334976 306.864400 -2.103364 -64.779±0.352 -67.523±0.216 27.53±0.216 1008363 4228891667990334976 306.864400 -2.103364 -64.779±0.352 -67.523±0.216 -7.75±0.216 1008363 42288912131377237864 306.861988 -2.118817 -61.6369±0.09 -69.238±0.016 -14.779±0.16 -17.241±0.056 32.57±0.016 1005363 6830027143225634472 323.086142 -20.970035 -24.665±0.091 -12.341±0.056 32.57±0.016 1077390 645895176971500158144 326.00646 -57.283282 -115.298±0.049 -52.865±0.045 37.16±0.16 111570 662082890706789248 33.918256 -28.478717 188.18±1.765 -16.3000000000000000000000000000000000000	325	99171	4236276194243977344 4235895935019949952	302.008090 301.788725	-0.678476 -0.874544	115.520 ± 0.095 115.276 ± 0.104	-67.593±0.060 -67.915±0.050	-3.27± 0.14 -3.08± 0.14	46.678±0.137 46.633±0.144	-0.621±0.003	
100886 422889122138732864 306.884400 -2.103374 -6.17392.0.35 -67.23240.216 -17.70±0.15 100835 6830027182179257472 323.096671 -20.957957 -279.074±0.103 -124.241±0.086 32.57±0.11 106356 683002714323584413 333.086142 -20.957957 -279.074±0.103 -124.241±0.086 32.57±0.01 107299 6845895174352473 323.086142 -20.957957 -279.074±0.103 -124.241±0.086 32.57±0.01 107299 645896176957140325642 325.986032 -57.382457 -116.5632±0.062 -52.8757±0.054 36.567±0.02 1107299 6458961769571500672 326.000646 -57.283282 -115.289±0.049 -52.8656±0.045 37.16±0.16 111520 662082882890706789248 38.918255 -23.479717 168.4812+1.765 -163.7622+1.749 17.78±0.54 112324 221182689176 34.2419386 66.198867 -62.5654-0.03 -10.525±0.05 -10.255±0.05 112334 65318024040664428672 34.774925 -13.520412 -49.037±0.02 -13.47622 -12.2555±0.05 <td>326</td> <td>99572 99550</td> <td></td> <td>303.108646 303.040242</td> <td>-12.618340</td> <td>193.068 ± 0.111 192.627 ± 0.068</td> <td>-195.497±0.064 -193.957±0.045</td> <td>27.30± 0.16 27.53± 0.25</td> <td>28.249±0.054 28.248±0.033</td> <td>-0.854±0.001</td> <td></td>	326	99572 99550		303.108646 303.040242	-12.618340	193.068 ± 0.111 192.627 ± 0.068	-195.497±0.064 -193.957±0.045	27.30± 0.16 27.53± 0.25	28.249±0.054 28.248±0.033	-0.854±0.001	
$ \begin{array}{c} 106333 6830027182179257472 323.096671 -20.975035 -279.074\pm0.103 -124.3211\pm0.066 33.52\pm0.16 \\ 107299 6830027143525634432 232.3086142 -20.970035 -284.665\pm0.091 -123.311\pm0.075 33.62\pm0.28 \\ 1077290 6458951765971500672 325.955032 -57.325475 -116.563\pm0.062 -52.575\pm0.054 36.95\pm0.20 \\ 110084 66135556421407325672 334.478622 -27.28282 -115.298\pm0.049 -52.865\pm0.045 37.16\pm0.16 \\ 111520 662082596776789248 338.918255 -27.33824 193.181\pm1.765 -163.762\pm1.749 1.78\pm0.54 \\ 111234 2211829991078689312 34.2413969 -62.265\pm0.062 -135.767\pm0.633 -10.25\pm0.18 \\ 111234 6541802406664428672 346.719425 -43.520412 -49.037\pm0.631 -13.454\pm0.651 \\ 114131 6541802406664428677 201.2524016 \\ 108256 -20.256254016 -20.256254016 \\ 114131 -20.256254016 -20.256254016 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.256256250 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.2562564016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254016 -20.2562540 \\ 114131 -20.256254017 -20.2562540 \\ 114131 -20.256254017 -20.2562540 \\ 114131 -20.256254017 -20.2562540 \\ 114131 -20.256254017 -20.2562540 \\ 114131 -20.256254017 -20.256254017 -20.256254017 \\ 114131 -20.256254017 -20.256254017 -20.256254017 \\ 114131 -20.256254017 -20.256254017 -20.256254017 \\ 114131 -20.25624017 -20.256254017 -20.256254017 \\ 114131 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20.25624017 -20$	131	100896 100895	4228891667990334976 4228891221313732864	306.864400 306.861958	-2.103364 -2.119817	-64.779 ± 0.352 -61.630 ± 0.099	-67.523 ± 0.216 -69.039 ± 0.057	-14.70± 0.17	49.464 ± 0.479 46.078 ± 0.108	-1.858±0.006	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	342	106353 106350	6830027182179257472 6830027143525634432	323.096671 323.086142	-20.957957 -20.970035	-279.074 ± 0.103 -284.665 ± 0.091	-124.241 ± 0.086 -123.311 ± 0.075	32.57 ± 0.16 33.62 ± 0.28	28.740 ± 0.061 28.738 ± 0.053	-2.107 ± 0.004	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	344	107299	6458951765971500672 6458952345790198144	325.995032 326.000646	-57.325475	-116.563 ± 0.062 -115.298 ± 0.049	-52.575 ± 0.054 -52.865 ± 0.045	36.95± 0.20 37.16± 0.16	44.462±0.089 44.373±0.066	-1.484±0.002	
$\frac{112734}{112324} \underbrace{2211829991078869312}_{2107431640738691776} \underbrace{342,419396}_{341,264616} \underbrace{66.19867}_{6.2,665\pm0.062} \underbrace{-125,772\pm0.633}_{-135,767\pm0.063} \underbrace{-10.25\pm0.18}_{-10.25\pm0.18}$	352	110084	6613555642140332672 6620882890706789248	334.478622	-32.479717	163.485 ± 0.077 198.181 ± 1.765	-203.690±0.078 -163.762±1.749		47.692±0.111 51.467±2.529	0.700±0.023	Ф
114131 6541802406664428672 346.719425 -43.520412 -49.037±0.621 -13.454±0.651	359	112724		342.419369 341.264616	66.199867 58.146467	-63.663±0.625 -62.565±0.062	-125.772±0.633 -135.767±0.059	-10.25± 0.18	37.163±0.525 35.353±0.046	0.708±0.007	
$6541802578463122688 346.662879 -43.503830 -47.921\pm0.088 -22.151\pm0.100 15.37\pm0.23 $	998	114131	6541802406664428672 6541802578463122688	346.719425 346.662879	-43.520412 -43.503830	-49.037 ± 0.621 -47.921 ± 0.088	-13.454 ± 0.651 -22.151 ± 0.100	15.37± 0.23	36.046 ± 0.634 40.237 ± 0.143	-1.531±0.010	

													Vid	e or	тат	ies	спс	iiie:	ngır	ng a	. IV 6	ewto	πιι	ин Т	red	иси	оп	1
Exclusion	Test	c,d					Р		v	c,d			0			ਲ				υ				a,b c,d	ਲ	v		Continued on next page
$\log_{10}(\Delta R)$		0.742±0.005	-0.650±0.003	-0.165±0.003	-1.760±0.004	-0.971±0.001	-0.406±0.002	-1.994±0.004	0.763±0.004	0.161±0.004	0.035±0.003	0.322±0.003	0.478±0.007	-1.668±0.008	-1.693±0.002	-1.005±0.003	-1.615±0.003	-1.788±0.005	-0.260±0.006	-0.094±0.006	-0.460±0.002	-0.718±0.004	0.333±0.004	0.798±0.005	-1.610±0.008	1.617±0.031		Continued
p	(bc)	98.401±0.465 78.579±0.471	54.877±0.174 55.049±0.155	82.225 ± 0.309 81.436 ± 0.274	63.089 ± 0.207 63.343 ± 0.183	56.705 ± 0.096 56.764 ± 0.068	81.153 ± 0.209 81.000 ± 0.207	60.120±0.132 60.105±0.118	107.030±0.560 90.724±0.345	94.865±0.546 76.807±0.280	96.694±0.329 96.453±0.291	105.680 ± 0.336 100.649 ± 0.266	104.541 ± 0.602 195.915 ± 1.768	76.949±0.139 77.615±0.735	55.118±0.069 54.988±0.074	75.921±0.271 74.962±0.192	64.132 ± 0.214 64.119 ± 0.204	83.375 ± 0.300 83.051 ± 0.224	101.834 ± 0.560 98.459 ± 0.715	75.565±0.284 132.969±1.180	58.897±0.154 59.114±0.083	82.925±0.369 82.508±0.328	87.312 ± 0.462 89.594 ± 0.410	89.428 ± 0.675 109.959 ± 0.579	94.444±0.524 94.856±0.692	95.725 ± 1.022 1029.404 ± 39.123	73.249 ± 0.382	
v_r	(km/s)	7.21 ± 0.26 1.66 ± 0.26	9.54± 0.18 9.77± 0.27	5.31± 0.16 5.62± 0.19	18.27 ± 0.20	49.99± 0.18 50.23± 0.29	3.37 ± 0.37	27.02± 0.15 27.30± 0.24	9.73± 0.31	-14.72± 15.28 30.25± 0.21	18.12± 0.91	17.59± 0.97		9.03± 2.40	27.65± 0.14 27.94± 0.19	21.51± 0.25	38.60 ± 0.17 38.97 ± 0.17	$9.57\pm\ 0.16$ $7.96\pm\ 0.23$		-21.34± 0.30	26.05± 0.45	29.53± 0.54 30.69± 0.68	25.40± 0.74	-37.59 ± 5.29 25.30 ± 0.50	-26.28± 0.30	32.57± 0.27		
μδ	yr)	$10.121 \pm 0.050 \\ 1.430 \pm 0.085$	-221.185 ± 0.071 -223.039 ± 0.062	-54.504 ± 0.062 -54.529 ± 0.061	-48.602±0.076 -50.508±0.075	75.327±0.049 75.068±0.033	-73.686±0.044 -75.405±0.044	184.300 ± 0.061 183.174 ± 0.050	-23.012±0.082 -25.355±0.073	-8.651±0.090 -6.609±0.085	-9.937±0.057 -6.409±0.047	-5.105±0.059 -5.318±0.057	-31.966±0.079 -31.248±0.069	43.356±0.047 44.655±0.207	-97.151 ± 0.049 -97.358 ± 0.050	72.662±0.154 73.646±0.100	11.603 ± 0.057 12.163 ± 0.054	22.037 ± 0.077 22.892 ± 0.046	-32.465±0.080 -33.164±0.089	-46.080±0.069 -53.567±0.066	-3.082±0.073 -3.100±0.041	-28.727±0.092 -29.008±0.069	-23.036±0.085 -21.779±0.080	-71.574 ± 0.089 -70.593 ± 0.066	-35.555±0.073 -34.348±0.076	12.065±0.155 -5.904±0.039	19.548 ± 0.117	
μα	(mas/yr)	42.692 ± 0.099 46.899 ± 0.117	-110.351 ± 0.145 -107.019 ± 0.094	128.469 ± 0.101 129.340 ± 0.085	156.296 ± 0.086 155.319 ± 0.086	294.867±0.051 294.046±0.032	-28.252±0.047 -28.369±0.040	112.396±0.074 111.098±0.064	-29.750±0.103 -26.869±0.069	59.150±0.093 58.013±0.088	41.760±0.052 42.102±0.043	37.017±0.040 38.972±0.039	38.561±0.106 28.033±0.088	26.094±0.042 25.698±0.199	-10.234±0.043 -9.249±0.048	47.538±0.086 49.705±0.061	16.653 ± 0.102 15.953 ± 0.100	12.719 ± 0.049 12.411 ± 0.042	9.167 ± 0.097 9.341 ± 0.102	-0.561±0.099 -2.399±0.088	25.325±0.054 24.080±0.034	-7.541±0.119 -8.312±0.085	14.670 ± 0.080 15.729 ± 0.086	-8.834 ± 0.110 -8.260 ± 0.080	-8.301±0.087 -7.316±0.092	-12.784±0.165 -11.563±0.064	-23.039 ± 0.140	
۶	g)	-8.876220 -9.430027	-5.911442	-19.389626	31.550204 31.545948	-51.965451 -52.044359	-49.728032 -49.904326	15.419357 15.417794	1.091259	13.710430 14.613596	-39.932267 -40.194081	-36.127117 -37.041717	27.571643 26.852557	-59.776194 -59.775713	-70.027068 -70.024519	-52.859782 -52.901991	0.553169 0.574687	-21.247450 -21.239607	6.868519 7.170142	31.426028 31.048402	-28.708027 -28.626307	10.252564 10.339045	-5.464855 -5.897631	34.444815 36.934039	22.123988 22.117513	40.883448 45.000203	-52.123645	
ά	(deg)	3.966260	7.316650 7.499004	15.117303	21.393618 21.411410	21.776124 21.895937	23.151342 22.818624	35.831622 35.821737	37.871913 40.903989	42.554350 42.195278	42.699429	49.720802 48.821500	52.833080	54.542882 54.511235	56.195067 56.256345	64.667115 64.564161	69.361411 69.358778	69.904334 69.895710	81.661830 81.750020		84.043022 84.415231	85.048812 84.946518	86.106147 84.773120	88.219656 91.436317	98.529539 98.515108	109.509153	125.729666	
GDR2		2428524528072046464 2428948114926672128	2526899001640197248 2526925389919277056	2356290256259997696 2356080043380354816	315635261093206656 315635192373731328	4916890556306664192 4916887395210737024	4929377881661762944 4929369360446613248	76300510625993344 76300476266255488	2500621360930896640 2498487861696380672	31986240656172800 33216147491735808	4949158198924394496 4949081572411575552	5047006006423053440 5046487311812732544	117916235464382336 69733883588579840	4728825002249947904 4728825036609672576	4666907551119833984 4666907516760096512	4780193841901310336 4780194185498710144	3230677565443833088 3230677870385455232	2976981131534077056 2976981337692506240	3238066592819780608 3334161160308637312	3447142233536837376 3447107495841475712	2907397747897070336 2907308172059100544	3339560999352744960 3339565461821955712	3023084272561678976 3017087261266087552	3454470100579668992 3453690993510788480	3382205557837836288 3382205592197580928	948509515477490560 974093501788080384	5322206718812246656	
HIP2		1266 118	2292 2350	4702 4833	6668 6675	6772 6804	7189 7086	11137	11736 12728	13223 13122	13271 13499	15432	16410 16742	16959 16942	17486 17515	20109 20074	21537 21534	21704 21702	25453 25483		26309 26453	26680 26646	27069 26588	27791 28872	31323 31316	35341 35799	41081	
Index	SO11	381	384	392	402	404	405	417	422	426	427	441	445	448	450	462	465	467	478	481	484	487	489	492	499	510	525	

12 X. Hernandez et al.

(24) β μα (max/y) (34) (44) (44x) (4xm/y) (350,6158) (350,2778) (320,2778) (320,2778) (320,2778) (350,6158) (350,5170) (350,52770) (350,4270) (350,4270) (350,4270) (350,6158) (350,52770) (350,52770) (350,52770) (350,4270) (350,4270) (350,4270) (350,6158) (350,6158) (350,6158) (350,6158) (350,6158) (350,6170	$\frac{\alpha}{125.251760} \qquad \frac{\delta}{-52.227884} \qquad \frac{\mu \alpha}{-22.095\pm0.056} \qquad \frac{\mu \beta}{-125.251760} \qquad \frac{\beta}{-55.227884} \qquad \frac{\mu \beta}{-22.095\pm0.056} \qquad \frac{\beta}{-96.0563} \qquad \frac{\beta}{-96.0663} \qquad \frac{\beta}{-96.0663$
(deg) 125.251760 -5.2.27884 128.096341 -0.937884 128.096341 -0.937488 128.096341 -0.937488 140.0874785 -9.556820 140.0874785 -9.556820 140.087478 -9.556820 140.087478 -9.556820 141.625549 78.437519 141.625549 78.437519 141.625549 78.437519 141.625549 78.437519 141.625549 78.437519 141.6363499 -64.990828 144.75679 -65.68881 144.68637 -66.65881 148.373489 -76.298948 188.717107 -55.789916 188.717107 -55.789916 188.71774 -10.752474 188.43733 -65.63002 188.47773 -66.63887 20.286933 -65.63002 188.77774 -10.476289 188.77774 -10.476289 188.77774 -10.476289 188.77774 -10.476289 188.77774 -10.476289 188.77774 -10.476289 188.77774 -10.476289 199.64933 -65.659076 188.77774 -10.476289 190.39833 -66.078376 20.258939 -20.55884 20.658390 -2.55884 20.658390 -2.55884 20.6573833 -66.078376 20.653890 -2.55884 20.653889 -2.568890 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890 20.658390 -2.568890	HIP2 CDR2 Cdeg
25.251766 128.092410 128.092410 140.02634 140.026145 140.57966 141.627966 141.627966 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.72489 144.7249 144	HIP2 CIDR2
	HIP2 40916 41881 41881 45802 45803 45903 45037 461701 47231 47231 47231 47231 47231 47231 47231 47339 51536 51536 51608 61709 61716 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719 61719

۱ ـ	ı		l	l	l	l	ı	ı	l	l	l		l			l											1	
Exclusion	Test		p		P	p	p	c,d			P	Ф	c,d			P				υ				P				n next page
$\log_{10}(\Delta R)$		-1.996±0.013	-1.871±0.008	-1.091±0.002	0.014±0.003	0.868±0.007	0.460±0.004	0.655±0.002	-1.469±0.008	-1.119±0.003	0.812±0.003	-0.997±0.004	0.419±0.004	0.223±0.006	-1.836±0.013	0.516±0.002	-2.095±0.005	-0.757±0.015	0.125±0.019	0.908±0.033	-1.878±0.004	-1.743±0.009	-1.176±0.002	0.189±0.001	0.309±0.004	-0.821±0.003		Continued on next page
p	(bc)	68.484 ± 0.284 68.085 ± 0.278	88.382±0.436 89.125±0.420	54.983 ± 0.136 54.724 ± 0.156	76.037±0.302 67.463±0.203	82.944±0.887 88.630±0.468	71.079 ± 0.306 80.184 ± 0.321	74.958±0.181 99.969±0.249	101.209 ± 1.084 99.832 ± 0.640	80.848±0.272 79.667±0.190	82.661±0.311 73.460±0.234	90.978±0.397 90.133±0.337	71.053 ± 0.322 84.984 ± 0.363	103.306 ± 0.605 109.826 ± 0.798	96.083±0.534 96.934±0.538	84.236±0.185 86.532±0.173	60.953±0.220 60.950±0.186	85.947 ± 2.503 91.402 ± 0.617	90.149 ± 1.382 85.947 ± 2.503	124.509±12.288 328.737±4.829	63.078±0.208 63.093±0.203	104.908±0.685 105.016±0.629	64.364 ± 0.211 64.049 ± 0.124	57.493±0.082 65.332±0.122	85.988±0.270 87.808±0.446	89.053±0.300 89.993±0.292	116.759 ± 1.188	
v_r	(km/s)	5.75± 0.18 4.72± 0.22	15.18 ± 12.84 28.05 ± 0.18	-11.80± 0.15 -11.49± 0.14	-9.52± 0.26 -25.82± 1.27	-15.85± 0.15 -3.50± 0.26	-61.82 ± 0.16 -18.21 ± 0.71	-20.02± 0.23 -40.40± 0.29			-14.44± 0.22 -22.79± 0.29	-28.07 ± 0.18	-83.59± 0.12 19.85± 0.25	-44.16± 0.33	-5.14± 0.16	1.76± 0.46 -12.52± 0.40	-40.83± 0.17 -41.00± 0.16				-0.18 ± 0.20 -0.21 ± 0.19	-62.19± 0.23	-14.38 ± 0.17 -14.24 ± 0.27	3.21± 0.18 -9.36± 0.18	-10.04± 0.17	-16.94± 0.28 -17.98± 0.43		
48	/yr)	-27.236 ± 0.101 -26.793 ± 0.102	-45.424 ± 0.076 -44.559 ± 0.081	-44.363±0.086 -43.678±0.095	-30.371 ± 0.071 -28.983 ± 0.060	-42.217 ± 0.205 -43.981 ± 0.066	2.520 ± 0.058 9.315 ± 0.061	31.931 ± 0.050 30.284 ± 0.045	-10.476±0.134 -9.859±0.095	30.655±0.056 29.770±0.042	19.568±0.063 21.769±0.071	-59.011 ± 0.087 -60.275 ± 0.084	-106.932 ± 0.081 -102.548 ± 0.085	-53.633±0.091 -51.286±0.087	1.586 ± 0.076 1.748 ± 0.068	-5.617 ± 0.055 -1.773 ± 0.051	53.912±0.053 52.346±0.050	-12.433±0.407 -15.899±0.082	-14.783 ± 0.246 -12.433 ± 0.407	5.631±1.216 0.497±0.060	-58.445±0.064 -59.388±0.065	-122.858 ± 0.057 -122.511 ± 0.055	221.381 ± 0.105 221.043 ± 0.070	-42.621 ± 0.048 -40.421 ± 0.050	-61.530±0.069 -59.448±0.055	-30.438±0.051 -27.428±0.044	-11.888±0.138	
μ_{α}	(mas/yr)	-114.076 ± 0.108 -113.740 ± 0.104	39.425±0.094 37.270±0.094	93.410±0.064 93.470±0.073	-79.827 ± 0.083 -70.150 ± 0.072	-17.765 ± 0.214 -15.408 ± 0.093	-59.445±0.065 -56.658±0.058	-30.683±0.041 -30.122±0.032	0.353±0.175 0.364±0.124	-11.782 ± 0.054 -11.230 ± 0.037	-60.249±0.072 -54.948±0.083	-16.092 ± 0.099 -13.134 ± 0.087	-32.617 ± 0.086 -43.037 ± 0.096	-0.873±0.104 -5.729±0.101	77.717±0.075 79.534±0.073	43.638±0.057 45.000±0.042	23.989 ± 0.081 23.964 ± 0.074	23.300 ± 0.463 24.031 ± 0.114	23.248 ± 0.230 23.300 ± 0.463	-7.280 ± 1.319 1.538 ± 0.067	-132.528±0.101 -129.729±0.096	94.662 ± 0.082 93.796 ± 0.078	66.243 ± 0.082 66.494 ± 0.058	23.834±0.051 19.428±0.053	42.026 ± 0.043 44.104 ± 0.053	43.599±0.064 43.875±0.051	22.239 ± 0.137	
δ	(B:	-48.293349	-18.072550 -18.081112	30.443646 30.520323	-2.066574	-1.186582	18.325889	23.985828	4.219745 4.207160	24.237827 24.252545	3.408540 5.700825	8.103517	-46.899274 -46.122032	-43.154515 -42.288522	-55.564195 -55.572839	51.720942 49.767527	8.382994	-59.193721 -59.264087	-58.901415 -59.193721	16.157968 16.372994	6.588725	-42.620131 -42.620666	81.092228 81.140436	61.364403 61.118583	-68.791520 -69.171496	-49.383030 -49.449714	22.457052	
δ	(deg)	207.884045 207.893709	211.410852 211.412416	220.077109 220.118799	232.953494 232.604610	233.241330 238.052074	239.757321 239.094563	247.745828 250.861555	250.161198 250.146462	257.763126 257.820456	259.153687 263.339536	263.469996 263.483482	271.858999 269.293720	273.581281 273.257554	275.541876 275.542705	284.270902 282.666306	295.691253 295.684014		299.276478 297.686877	303.437164	303.540141 303.537683	306.999982 306.986590	307.366686 307.593111	309.283271 312.239000	312.236006 315.826134	313.358335	317.629011	
GDR2		6094716308525121408 6094716239805635072	6291206045789315328 6291205977069837696	1282815063829295360 1282817022334383232	4414349489701257984 4416093315142832128	4416110082695309184 4403070149671286656	1202709349617637632 1204270110670555136	1299204074916904320 1299508639637961344	4434301983614947072 4434301841878055296	4571879578631697024 4571879475552172544	4388409330344765056 4485937214320449280	4487578544660527488 4487581018562340992	6719536193567989120 5954345541675673728	6721441784663730816 6724728980838829952	6649398690418063232 6649398690418059392	2133995118527034496 2143913950359678464		6447036152303430528 6447030139349235200	6447100091479968256 6447036152303430528	1808691203160200576 1808808571723073152	4249652990144051840 4249652783985617920	6679307846231740032 6679308018030433536	$2298101352139398144 \\2298101901895214720$	2195226749280378368 2194321816851242624	6375446646806738816 6375793502540188800	6481251098731588224 6481246906845850880	1839746393680655232	
HIP2		67639 67645	68830 68833	71726 71737	76046 75923	76133 77728	78283 78067	80886 81875	81641 81634	84054 84070	84515 85911	85940 85944	88782	89373 89274	90026 90028	93029 92467	96979 96976		98174 97646	99689 100451	99729 99727	100941 100937	101082 101166	101719 102727	102725 103917	103107 103139	104536	
Index	SO11	989	642	655	677	829	691	704	707	713	715	726	737	740	743	749	756	759	761	768	770	276	777	780	782	784	793	

14 X. Hernandez et al.

Test

IIP2	GDR2	σ	δ	$\mu\alpha$	μ_{δ}	v_r	p	$\log_{10}(\Delta R)$
		(deg)	(g)	(mas/yr)	/yr)	(km/s)	(bc)	
2981	2981 1838905954482116480 312.957870 21.868618	312.957870	21.868618	20.705±0.081	-11.991±0.072	-11.55± 0.18	108.378±0.582	0.933±0.007
9306	6611824083124944384	332.177751	-33.125589	13.261 ± 0.078	24.447 ± 0.081		78.654±0.344	
0433	6599619950733282304	335.519158	-34.488798	11.670 ± 0.060	25.950 ± 0.066		86.438 ± 0.281	0.649 ± 0.003
2537	2396293134977302272	341.906431	-23.172364	24.576 ± 0.071	-10.583 ± 0.065	-3.25 ± 0.37	78.726±0.286	
1596	6628071944405827712	339.129743	-21.584986	31.319 ± 0.072	-4.837 ± 0.062	$11.06\pm\ 1.60$	106.288 ± 0.444	0.688 ± 0.003
7454	2337899270721594752	357.237150	-25.144889	-13.177 ± 0.093	-42.966 ± 0.111	-3.30± 0.83	85.714 ± 0.686	
7720	2338428513772452480	358.123916	-24.165778	-15.355 ± 0.095	-39.481 ± 0.069	44.28 ± 0.67	113.458 ± 0.771	0.343 ± 0.006
	F	able 9. Hinnard	Se and Gaia ide	ntification numbers	Table 9. Himorons and Cais identification numbers for the 133 hinary stars used torother with	otane need together	4	

SO11

Table 2: Hipporcas and Gatai alentification numbers for the 133 binary stars used, together with Gaia DR2 data and results of the exclusion tests performed: (a) shows an individual star excluded (which results in the exclusion of the respective binary) for having an inconsistent proper motion in right ascension between Hipporcas and the DR2, (b) the corresponding result for declination, (c) shows a binary excluded for having discordant parallaxes to both components (distance differences larger than 13 %) in the DR2 data, and (d) gives binaries removed for having DR2 radial velocity differences > 4 km s⁻¹, with the 81 retained binaries appearing blank in this column. Upper rows give data of primaries and lower ones of secondaries.

Acknowledgments

XH and RAMC acknowledge the support of DGAPA-UNAM PAPIIT IN-104517 and CONACyT.

- 1. Koposov S. E. et al., ApJ 811 (2015) 62
- 2. Salucci P., Wilkinson M. I., Walker M. G., Gilmore G. F., Grebel E. K., Koch A., Frigerio M. C. & Wyse R. F. G., MNRAS 420 (2012) 2034
- 3. Lelli F., McGaugh S. S. & Schombert J. M., MNRAS 468 (2017) L68
- 4. Durazo R., Hernandez X., Cervantes Sodi B., & Sanchez, S. F., ApJ 863 (2018) 107
- 5. Scarpa R., Marconi G. & Gilmozzi R., A&A 405 (2003) L15
- 6. Scarpa R., Marconi G., Carraro G., Falomo R. & Villanova S., A&A 525 (2011) A148
- 7. Milgrom M., ApJ **287** (1984) 571
- 8. Sanders R. H. & McGaugh S. S., ARA&A 40 (2002) 263
- 9. Hernandez X., Jimenez M. A. & Allen C., Eur. Phys. J. C 72 (2012) 1884
- 10. Shaya E. J. & Olling R. P., ApJS 192 (2011) 2
- 11. Jiang Y.-F. & Tremaine S., MNRAS 401 (2010) 977
- 12. Scarpa R., Ottolina R., Falomo R., Treves A., Int. J. Mod. Phys. 26 (2017) 1750067
- 13. Pittordis C. & Sutherland W., MNRAS 480 (2018) 1778
- 14. Banik I. & Zhao H., MNRAS 480 (2018) 2660
- 15. Marrese P. M., Marinoni S., Fabrizio M. & Altavilla G., arXiv:180809151 (2018)
- 16. Gaia Collaboration, A&A 616 (2018) 1
- 17. Høg E., et al., A&A **357** (2000) 367
- 18. Fabricius C., Høg E., Makarov V.V., Mason B.D., Wycoff G.L. & Urban S.E., A&A **384** (2002) 180
- 19. Smart W. M., 1968, Stellar Kinematics. Longmans, London
- 20. Oh S., Price-Whelan A. M., Hogg D. W., Morton T. D. & Spergel D. N., AJ 153 (2017) 257
- 21. Milgrom, M., AcPPB 42 (2011) 2175
- 22. Capozziello, S., & De Laurentis, M., PhR 509 (2011) 167
- 23. Verlinde, E., SciPostPhys **2** (2017) 016
- 24. Barrientos, E., & Mendoza, S., Phys. Rev. D 98 (2018) 084033