Convergence of AdaBoost

- can use to prove AdaBoost converges to common solution of both problems:
 - can argue that $\mathbf{d}^* = \lim \mathbf{d}_t$ is in \mathcal{P}
 - vectors \mathbf{d}_t are in $\mathcal Q$ always $\Rightarrow \mathbf{d}^* \in \overline{\mathcal Q}$
 - $\therefore \ \mathbf{d}^* \in \mathcal{P} \cap \overline{\mathcal{Q}}$
 - ∴ d* solves both optimization problems
- SO:
 - AdaBoost minimizes exponential loss
 - exactly characterizes limit of unnormalized "distributions"
 - likewise for normalized distributions when weak learning assumption does not hold
- also, provides additional link to logistic regression
 - only need slight change in optimization problem

[with Collins & Singer; Lebannon & Lafferty]