UPPSALA UNIVERSITET

Matematiska institutionen

Inger Sigstam, tel: 471 3223

Tentamen i matematik ALGEBRA 1 2009-05-29

Skrivtid: 8-13. Inga hjälpmedel tillåtna. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger högst 5 poäng. För betygen 3 (4) (5) krävs minst 18 (25) (32) poäng, inklusive ev bonuspoäng.

1. (a) Avgör om någon eller båda av följande formler är tautologi genom att sätta upp sanningsvärdestabeller för dem.

$$(\neg (p \land \neg q) \land q) \longrightarrow p \qquad \neg (p \land q) \longleftrightarrow (\neg p \lor \neg q).$$

- (b) Låt A och B vara mängder i ett universum U. Visa att $(A \cap B)^c = A^c \cup B^c$. (Om X är en mängd i U, så betecknar X^c komplementet till X med avseende på U.)
- 2. Konstruera fyra funktioner f_1 , f_2 , f_3 och f_4 från $\mathbf N$ till $\mathbf N$ med följande egenskaper:
 - (i) $f_1: \mathbf{N} \longrightarrow \mathbf{N}$ är bijektiv;
 - (ii) $f_2: \mathbf{N} \longrightarrow \mathbf{N}$ är injektiv men inte surjektiv;
 - (iii) $f_3: \mathbf{N} \longrightarrow \mathbf{N}$ är surjektiv men inte injektiv;
 - (iv) $f_4: \mathbf{N} \longrightarrow \mathbf{N}$ är varken surjektiv eller injektiv.
- 3. Visa med induktion att $2^{n+2} + 3^{2n+1}$ är delbar med 7 för alla naturliga tal n.
- 4. Visa att om heltalet n inte är delbart med 3, så är talet $n^4 + n^2 + 1$ delbart med 3.
- 5. Bestäm sista siffran då talet 23⁸¹² skrivs i basen 7.
- 6. På mängden av par av positiva heltal, $\mathbf{Z}_{+} \times \mathbf{Z}_{+}$, definierar vi en relation S genom

$$(a,b)S(c,d) \iff ad = bc.$$

Visa att S är en ekvivalensrelation på $\mathbf{Z}_+ \times \mathbf{Z}_+$.

Ekvivalensklassen som innehåller paret (a, b) betecknas [(a, b)].

Räkna upp tre par förutom (3, 4) som tillhör ekvivalensklassen [(3, 4)]. Visa sedan att [(3, 4)] är uppräkneligt oändlig genom att ange en bijektion $f: \mathbf{N} \longrightarrow [(3, 4)]$.

- 7. Ekvationen $z^4 + 12z^3 + 56z^2 + 120z + 100 = 0$ har minst en multipelrot. Lös ekvationen fullständigt.
- 8. Polynomet $f(z) = z^3 \frac{2}{3}z^2 + az 2$ har reella koefficienter. Minst ett nollställe till f ligger på imaginära axeln. Lös ekvationen f(z) = 0. Vad är a?

LYCKA TILL!

Korta svar till Algebra 1, 20090529:

- 1. (a) Den första formeln är inte tautologi eftersom den är falsk om p är falsk och q är sann. Den andra formeln är tautologi.
 - (b) Rita t ex Venndiagram för de båda mängderna. Eller visa att för ett godtyckligt element $x \in U$ gäller $x \in (A \cap B)^c \iff x \in A^c \cup B^c$. Man kan då ha användning av tautologin i uppgift (a).
- 2. T ex: $f_1(n) = n$; $f_2(n) = n + 2$; $f_3(n) = n 1$ om n > 0, $f_3(0) = 0$; $f_4(n) = 10$. Egenskaperna måste visas gälla.
- 3. $A(n) = 2^{n+2} + 3^{2n+1}$. Bas: 7|A(0) eftersom A(0) = 7. I.A: 7|A(p) för ett viss heltal $p \ge 0$. Alltså finns heltal K så att A(p) = 7K. Ind.Steg: $A(p+1) = 2 \cdot 2^{p+2} + 9 \cdot 3^{2p+1} = 2\left(2^{p+2} + 3^{2p+1}\right) + 7 \cdot 3^{2p+1} = [enl.I.A.] = 2 \cdot 7K + 7 \cdot 3^{2p+1} = 7\left(2K + 3^{2p+1}\right)$. Alltså 7|A(p+1). Enligt induktionsaxiomet följer nu att 7|A(n) för alla naturliga tal n. VSB
- 4. Falluppdela efter vad n är kongruent med modulo 3.
- 5. Ett tal X i basen 7: $X = a_n 7^n + \dots + a_2 7^2 + a_1 7 + a_0$, där $a_0, \dots, a_n \in \{0, 1, \dots, 6\}$. Man ser att $X a_0$ är delbar med 7, och alltså är sista siffran det tal mellan 0 och 6 som X är kongruent med modulo 7.

Vi får nu (modulo 7): $23^{812} \equiv 2^{812} = 2^{3 \cdot 270 + 2} = (2^3)^{270} \cdot 2^2 \equiv 1^{270} \cdot 4 = 4$. Svar: Sista siffran är 4.

6. S är reflexiv, dvs (a,b)S(a,b) eftersom ab=ba för alla pos heltal. S är symmetrisk, ty (a,b)S(c,d) innebär ad=bc, och (c,d)S(a,b) innebär cb=da. Den ena medför den andra eftersom multiplikation är kommutativ. För att visa S transitiv, anta att (a,b)S(c,d) och (c,d)S(e,f). Då gäller ad=bc och cf=de. Vill visa att (a,b)S(e,f), dvs att af=be. Vi får $ad \cdot cf=bc \cdot de$, förkorta med cd (som inte är 0 eftersom vi sysslar med positiva heltal) och få af=be. Alltså är S en ekvivalensrelation.

Vi har (a,b)S(3,4) omm 4a=3b. Eftersom 3 primtal och inte delare i 4, så måste 3|a, dvs a=3k för något heltal k. Då blir $3b=4\cdot 3k$, som medför att b=4k. Alltså, om $(a,b)\in [(3,4)]$ så är (a,b)=(3k,4k) för något heltal k>0. Det följer att $[(3,4)]=\{(3k,4k):k\geq 1,k\in \mathbf{N}\}.$

Så $f: \mathbf{N} \longrightarrow [(3,4)]$ kan t ex definieras: f(n) = (3(n+1), 4(n+1)).

7. Använd Euklides algoritm för att finna en SGD till f(z) och f'(z). Multipelrötter måste vara nollställen till SGD.

Alternativt: Sök först nollställena till f'(z), och pröva dessa i f(z). (Ett multipelnollställe till f(z) måste vara ett nollställe till f'(z).) En SGD till f(z) och f'(z) är $r(z) = z^2 + 6z + 10$. Genom att läsa baklänges i Euklides algoritm ser man att $f(z) = r(z)^2$.

SVAR: Det finns två dubbelrötter: $-3 \pm i$.

8. Ett nollställe till f(z) är z=bi på im-axeln (där alltså $b\in \mathbf{R}$). Eftersom polynomets alla koefficienter är reella är även -bi en rot, och det tredje nollstället är reellt, säg c. Nollställenas summa är $\frac{2}{3}$, vilket ger $bi-bi+c=\frac{2}{3}$, så $c=\frac{2}{3}$. Rötternas produkt är 2, vilket ger $-b^2i^2\frac{2}{3}=2$, så $b^2=3$. Nu kan f(z) faktoriseras $f(z)=(z-bi)(z+bi)(z-\frac{2}{3})=(z^2+3)(z-\frac{2}{3})$, varur vi får a=3.

Svar: Ekvationens rötter: $\frac{2}{3}$, $\pm \sqrt{3}i$. Koefficienten för z är a=3.