Московский Государственный Университет им.М.В.Ломоносова Факультет вычислительной математики и кибернетики

Конспект лекций по курсу «Теория устойчивости и стабилизации»

Преподаватель:

Точилин П. А.

Составители:

Байрамов Н.Р.

Нагапетян Т. А.

Содержание

1.	Лекция 1.	3
	1.1 Динамическая обратная связь по выходу	4
2.	Лекция 2.	5
	2.1 Когда (A, B) не управляема	12
3.	Лекция 3.	14
4.	Лекция 4.	17
5 .	Лекция 5.	19
	5.1 Метод разложения характеристического многочлена	22
	5.2 Аппроксимация задачами на конечных промежутках	24
6.	Лекция 6.	26
7.	Лекция 7.	29
	7.1 Нестационарные системы	29
	7.2 Обратная задача стабилизации	30

1. Лекция 1.

Рассматривается система

$$\dot{x} = f(t, x, u), \ t \geqslant t_0, \ x \in \mathbb{R}^n, u \in \mathbb{R}^m$$
(1.1)

где $u^0(t), x^0(t), t \geqslant t_0$ — желательный режим работы,

 $u=u^0(t)+v,\, f$ — липшицева по x,u, непрерывна по совокупности переменных, $u^0(t)$ — измерима и ограничена, v=v(t,x) — измерима по t, кусочно-непрерывна по x.

Определение 1. Cucmema (1.1) называется стабилизируемой в классе позиционных управлений, если $\exists v(t,x),\ m.ч.\ x^0(t)$ является асимптотически устойчивым решением для системы $O \mathcal{I} Y$

$$\dot{x} = f(x, t, u^0(t) + v).$$

Как следствие, $v(t, x^{0}(t)) = 0$.

Итак, $x^0(t)$ — невозмущенное движение системы (1.1), возмущенное — $\hat{x}(t)$. Введем $\bar{x}(t) = \hat{x}(t) - x^0(t)$. Очевидно,

$$\dot{\bar{x}}(t) = f(t, \hat{x}, u^0(t) + v(t, \hat{x})) - f(t, x^0, u^0(t)) =$$

$$= f(t, x^{0}(t) + \bar{x}(t), u^{0}(t) + v(t, x^{0}(t) + \bar{x}(t))) - f(t, x^{0}, u^{0}(t)) = g(t, \bar{x}, v(t, \bar{x})).$$

Поэтому можно перейти от $\{u^0(t), x^0(t)\}$ к новому положению равновесия $\{v^0(t) \equiv 0, \bar{x}(t) \equiv 0\}$. Тогда перепишем задачу в новом виде

$$\begin{cases} \dot{x} = f(t, x, u) \\ f(t, 0, 0) \equiv 0, \ t \geqslant t_0. \end{cases}$$
 (1.2)

Устойчивость системы (1.2) эквивалентна устойчивости системы (1.1), поэтому в дальнейшем будем предполагать, что невозмущенное решение системы — нулевое.

Определение 2. Система (1.2) называется стабилизируемой по состоянию, если $\exists u = u(t, x)$, такое что

- 1. u(t,0) = 0
- 2. $\dot{x} = f(t, x, u(t, x))$ асимптотически устойчива (или 0-состояние равновесия системы асимптотически устойчиво).

Теперь добавим к системе (1.2) наблюдения:

$$y(t) = h(t, x(t), u(t))$$
 (1.3)

Ограничения на функцию h те же, что и на функцию f.

Определение 3. Система (1.2) называется стабилизируемой по выходу, если $\exists u = u(t,y)$, т.ч. при его подстановке в систему получается ОДУ с асимптотически устойчивым положением равновесия.

Возникает небольшой вопрос в зависимостях. Из вышесказанного получается, что y зависит от u, и обратно, u зависит от y. Дабы разрешить данное противоречие, в дальнейшем будем рассматривать системы вида

$$\dot{x} = f(t, x, u(t, h(t, x)).$$

Пример 1.

Пусть дана система

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = u \end{cases}$$

Очевидно, нулевое положение системы неустойчиво.

1. Попробуем стабилизировать систему при управлениях вида $u = k_1 x_1 + k_2 x_2$ Запишем замкнутую систему в матричном виде:

$$\dot{x} = \left(\begin{array}{cc} 0 & 1\\ k_1 & k_2 \end{array}\right) x$$

Характеристический многочлен данной матрицы:

$$f(\lambda) = \lambda^2 - k_2 \lambda - k_1$$

Если мы хотим стабилизировать систему в данном классе управлений, нам нужно подобрать коэффициенты k_1 и k_2 , чтобы корни имели отрицательные действительные части. Но это легко можно сделать, т.к. $k_1=-\lambda_1\lambda_2$ и $k_2=\lambda_1+\lambda_2$.

2. Теперь введем наблюдение $y = x_1$. Тогда управление, в силу того что x_2 теперь неизвестный параметр, примет вид $u = k_1 x_1$.

Аналогично матричное уравнение

$$\dot{x} = \left(\begin{array}{cc} 0 & 1\\ k_1 & 0 \end{array}\right) x$$

и характеристическое уравнение $f(\lambda) = \lambda^2 - k_1$

- $k_1 > 0$ \Rightarrow корни положительные, система неустойчива;
- $k_1 < 0 \implies$ корни чисто мнимые, система устойчива, но не асимптотически;
- $k_1 = 0$ \Rightarrow нулевой корень, система неустойчива.

1.1 Динамическая обратная связь по выходу.

Используя введенные ранее обозначения для обратной связи, дополним диф-ференциальное уравнение для x, его оценкой:

$$\dot{\hat{x}} = g(t, \hat{x}, u, y) \tag{1.4}$$

Наша система заменится на

$$\begin{cases} \dot{x} = f(t, x, u) \\ y = h(t, x(t), u(t, \hat{x}))) \\ \dot{\hat{x}} = g(t, \hat{x}, u(t, \hat{x}), h(t, x, u(t, \hat{x}))) \end{cases}$$
(1.5)

Определение 4. Будем говорить, что (1.4) и $u(t,\hat{x}) - \partial$ инамическая обратная связь по выходу, если соответствующая система (1.5) — асимптотически устойчива.

Пример 2.

Будем использовать информацию об измерениях и определять ее значимость через коэффициенты l_1 и l_2 :

$$\begin{cases} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= u \\ y &= x_1 \\ \dot{x}_1 &= \hat{x}_2 + l_1(\hat{x}_1 - y) \\ \dot{x}_2 &= u + l_2(\hat{x}_1 - y) \end{cases}$$

Будем искать управление в виде $u = k_1 \hat{x_1} + k_2 \hat{x_2}$ Начальное положение системы считаем произвольным.

Как и в прошлый раз, запишем замкнутую систему:

$$\begin{cases} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= k_1 \hat{x}_1 + k_2 \hat{x}_2 \\ \dot{x}_1 &= \hat{x}_2 + l_1 (\hat{x}_1 - x_1) \\ \dot{x}_2 &= k_1 \hat{x}_1 + k_2 \hat{x}_2 + l_2 (\hat{x}_1 - x_1) \end{cases}$$

Обозначим через $e_1 = x_1 - \hat{x}_1$ и $e_2 = x_2 - \hat{x}_2$

Тогда относительно векторов e и \hat{x} мы получим систему четвертого порядка с матрицей:

$$\begin{pmatrix}
0 & 0 & -l_1 & 1 \\
0 & 0 & -l_2 & 0 \\
0 & 1 & l_1 & 0 \\
k_1 & k_2 & l_2 & 0
\end{pmatrix}$$

Упражнение 1. Можно ли подобрать коэффициенты l_1, l_2, k_1, k_2 , чтобы матрица была устойчивой?

2. Лекция 2.

$$\dot{x} = Ax + Bu \tag{2.1}$$

$$y = Cx + Du (2.2)$$

Применим к системе (2.1),(2.2) преобразование Лапласа-Фурье:

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty f(t)e^{-st}dt,$$

где $s \in \mathbb{C}$.

В силу линейности и того, что $\mathcal{L}(\dot{x}(t)) = sX(s) - x(0)$, где $\mathcal{L}(x(t)) = X(s)$, получаем:

$$\left\{ \begin{array}{rcl} sX(s)-x(0) & = & AX(s)+BU(s) \\ Y(s) & = & CX(s)+DU(s) \end{array} \right.$$

Отсюда (Is - A)X(s) = BU(s) + x(0). Получаем:

$$\left\{ \begin{array}{ll} X(s) & = & (Is-A)^{-1}BU(s) + (Is-A)^{-1}x(0) \\ Y(s) & = & (C(Is-A)^{-1}B + D)U(s) + C(Is-A)^{-1}x(0) \end{array} \right.$$

Чтобы матрица (Is - A) была обратима, s не принадлежит спектру матрицы A. $G(s) = C(Is - A)^{-1}B + D$ — **передаточные матрицы от входа к выходу** (по ним можно определить устойчивость системы).

Определение 5. Говорят, что пара (A,B) — (полностью) управляема, если $\forall x_1 \in \mathbb{R}^n, \ \forall t_1 > 0, \ \exists u(\cdot) \in L_{\infty}(0,t_1), \ m.ч. \ x(0) = 0 \ u \ x(t_1) \bigg|_{u(\cdot)} = x_1.$

Запишем решение системы для $t_1 > 0$:

$$x(t_1) = \int_0^{t_1} e^{A(t_1 - \tau)} Bu(\tau) d\tau$$
$$L_{t_1} = \left\{ \int_0^{t_1} e^{A(t_1 - \tau)} Bu(\tau) d\tau, u(\cdot) \in L_{\infty}(0, t_1) \right\} \subseteq \mathbb{R}^n$$

Поскольку $L_{t_1} \neq \mathbb{R} \Leftrightarrow \exists l \neq 0$, т.ч. $\forall u(\cdot)$:

По теореме Гамильтона-Келли:

$$l^{T}[B, AB, ..., A^{n-1}B] = 0$$

Определение 6. $C = [B, AB, ..., A^{n-1}B]$ - матрица управляемости cucmemu (2.1).

Утверждение 1. (A, B) — управляема \Leftrightarrow rg $\mathcal{C} = n$.

Итак, мы получили, что $l\bot L_{t_1} \Leftrightarrow l^T \ \mathcal{C} = 0.$

Это означает, что L_{t_1} не зависит от t_1 : $L_{t_1}=L$. А также что L является линейной оболочкой столбцов \mathcal{C} , т.е. L есть образ линейного оператора \mathcal{C} .

Упражнение 2. Доказать, что если (A, B) управляема в классе измеримых управлений \Rightarrow она управляема в классе непрерывных управлений и даже сколь угодно гладких управлений (например, в классе полиномов).

Теперь рассмотрим случай, когда (A, B) не управляема.

Утверждение 2. Подпространство управляемости L инвариантно относительно A.

Доказательство. По теореме Гамильтона-Келли столбцы $A\mathcal{C}$ линейно выражаются через столбцы матрицы \mathcal{C} . Поэтому

$$x \in L \Rightarrow \forall \tau, e^{A\tau} x \in L.$$

Теорема 1 (О свойствах подпространства управляемости). *Пусть* гд $\mathcal{C} = k < n$. *Тогда:*

- $\forall x_0, x_1 \in L \quad \exists u(\cdot) \in L_\infty : x_0 \longrightarrow x_1.$
- При этом вся траектория $x(t) \in L, \forall t \geqslant 0.$
- И не найдется $x_0 \notin L$, чтобы существовало управление, переводящее его в некоторую $x_1 \in L$.

 $To\ ecmb\ L\ -\ u$ нвариантное подпространство размерности k.

Доказательство.

1. Мы показали уже, что из 0 можно попасть в любую точку L.

Если обратить время, то легко показать, что обратное тоже верно: из любой точки L можно попасть в 0 за заданное наперед время.

Но тогда $\forall x_0, x_1 \in L$ сначала попадем из x_0 в 0, а потом из 0 — в x_1 .

2. Почему траектория останется в L:

$$l \perp L \Rightarrow l^T e^{A(t-\tau)} Bu(\tau) \equiv 0 \,\forall t, \, \tau \Rightarrow l^T \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \equiv 0 \,\forall t \Rightarrow l \perp x(t), \, \forall t \Rightarrow x(t) \in L.$$

3. От противного:

Пусть нашлось $x_0 \notin L$ и управление, переводящее x_0 в некоторую $x_1 \in L$ — тогда существует u, переводящее x_0 в начало координат: $x(0) = x_0$, $x(t_1) = 0$.

Возьмем $z(\tau)=x(t_1-\tau), \quad v(\tau)=u(t_1-\tau).$ Тогда, учитывая, что $\dot{x}=Ax+Bu$, получим $\dot{z}=-Az-Bv, \ z(0)=0, \ z(t_1)=x_0.$

 X_2 Но матрица управляемости для этой системы отличается лишь знаками некоторых столбцов, следовательно, линейная оболочка столбцов будет той же, а значит траектория z(t), начавшись в подпространстве L, должна в нем же и остаться.

Противоречие с $x_0 \notin L$, что завершает доказательство теоремы.

Итак, пусть гд $\mathcal{C} = k < n$. Выберем в пространстве \mathbb{R}^n новый базис:

- \bullet первые k векторов из L,
- ullet оставшиеся n-k из подпространства, ортогонального к L.

$$\bar{x} = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}, L = \left\{ \bar{x} = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix} : x^2 = 0 \right\}$$

где x^1 отвечает первым k координатам, x^2 — оставшимся.

Обозначим T — матрицу перехода от старого базиса к новому: $\bar{x} = Tx$.

Запишем систему (2.1) в новых координатах:

$$\dot{\bar{x}} = T\dot{x} = TAT^{-1}\bar{x} + TBu = A_1\bar{x} + B_1u. \tag{2.3}$$

Теорема 2. Пусть $rg \mathcal{C} = k < n$.

Тогда существует невырожденное преобразование координат, т.ч. в новых координатах система имеет вид

$$\dot{\bar{x}} = \begin{pmatrix} \dot{x}^1 \\ \dot{x}^2 \end{pmatrix} = \begin{pmatrix} A_{11}x^1 + A_{12}x^2 + B_{11}u \\ A_{22}x^2 \end{pmatrix}$$
 (2.4)

u пара (A_{11}, B_{11}) — (полностью) управляема в \mathbb{R}^k .

Доказательство.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} \\ B_{22} \end{pmatrix}$$

1. Покажем сначала, что $B_{22}=0$. От противного: $B_{22}\neq 0 \Rightarrow \exists u: B_{22}u\neq 0$. Тогда выпустим траекторию из $0\in L$:

$$\dot{x}^2|_{t=0} = B_{22}u \neq 0$$

Тогда траектория выйдет за пределы пространства (т.к. x^2 станет неравным нулю). Противоречие с предыдущей теоремой.

2. Аналогично покажем, что $A_{21}=0$. От противного: пусть $\exists x^1: A_{21}x^1\neq 0$. Выберем u=0 и получим

$$\dot{x}^2|_{t=0} = A_{21}x^1 \neq 0.$$

3. Докажем управляемость (A_{11}, B_{11}) . Достаточно показать, что для системы

$$\dot{x}^1 = A_{11}x^1 + B_{11}u$$

из 0 можно за любое время попасть в любую точку x^1 . Но это следует из предыдущей теоремы.

Теорема 3. Следующие утверждения эквивалентны:

- 1. (A, B) y n p a в л я е м a;
- 2. Матрица $[A \lambda I, B]$ имеет полный ранг $\forall \lambda \in \mathbb{C}$;
- 3. $x'A = \lambda x', x \neq 0 \Rightarrow x'B \neq 0$.

Доказательство.

 $\boxed{1 \Rightarrow 2}$ От противного: пусть $\operatorname{rg}[A - \lambda I, B] < n$. Тогда

$$\exists l \neq 0, l \in \mathbb{C}^n : l'[A - \lambda I, B] = 0 \Rightarrow l'A = \lambda l', l'B = 0.$$

Тогда

$$l'AB = \lambda l'B = 0 \quad \dots \quad l'A^{n-1}B = \lambda^{n-1}l'B = 0.$$

То есть $l'\mathcal{C} = 0$. Значит, равны нулю вещественная и мнимая части. Т.к. матрица \mathcal{C} — вещественная, а у l хотя бы одна из частей ненулевая, то $\operatorname{rg} \mathcal{C} < n$. Противоречие с управляемостью.

- $2 \Rightarrow 3$ Очевидно.
- [3 ⇒ 1] От противного: пусть rg $\mathcal{C} < n$. Тогда невырожденным преобразованием координат приведем систему (2.1) к виду (2.4):

$$A_1 = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \quad B_1 = \begin{pmatrix} B_{11} \\ 0 \end{pmatrix}.$$

Пусть $\lambda \in \sigma(A_{22})$, т.е. $\exists x^2 \neq 0, \ x^{2'}A_{22} = \lambda x^{2'}$. Тогда для $\bar{x} = \binom{0}{x^2}$ имеем

$$\bar{x}'A_1 = [0 \ \lambda x^{2'}] \ \bar{x}'B_1 = 0.$$

A поскольку $A_1=TAT^{-1},\,B_1=TB,$ то для $\tilde{x}'=\bar{x}'T\neq 0$

$$\bar{x}'TAT^{-1} = \bar{x}'A_1 = \lambda \bar{x}' \quad \Rightarrow \quad \tilde{x}'A = \lambda \tilde{x}', \quad \tilde{x}'B = \bar{x}'TB = \bar{x}'B_1 = 0.$$

Пришли к противоречию. Теорема доказана.

Определение 7. Мода системы (или мода пары (A, B)) — это собственные значения матрицы A_{11} (управляемая) либо матрицы A_{22} (неуправляемая мода).

Из определения следует, что мода управляема, если для любого левого собственного вектора x, отвечающего моде λ , выполнено $x'B \neq 0$.

Следствие (ИЗ ТЕОРЕМЫ(3)). Пара (A, B) (система (2.1)) — управляема \Leftrightarrow все ее моды управляемы.

Определение 8. Будем говорить, что $(A, B) \sim (A_1, B_1)$, или, соответственно, система (2.1) эквивалентна системе (2.3), если существует невырожденное преобразование координат $T: A_1 = TAT^{-1}, B_1 = TB$.

Отношение эквивалентности — транзитивно, и пространство пар матриц разбивается на классы эквивалентности.

Упражнение 3. Если (A, B) — управляема, то любая эквивалентная ей пара тоже управляема.

Рассмотрим управляемый объект порядка n:

$$x^{(n)} + a_1 x^{(n-1)} + \dots + a_n x = u.$$

Или в нормальной форме: $x_1 = x, x_2 = \dot{x}, \dots, x_n = x^{(n-1)}$:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \dots \\ \dot{x}_{n-1} = x_n \\ \dot{x}_n = -a_1 x_n - \dots - a_n x_1 + u \end{cases}$$
 (2.5)

Матрицы этой системы:

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_1 \end{pmatrix} \quad B = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$

При этом $\varphi(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n$ будет характеристическим многочленом матрицы A и пара (A, B) — управляема, т.к. rg $\mathcal{C} = n$ (она нижнетреугольная):

$$C = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 1 & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots \end{pmatrix}$$

Теорема 4. Всякая вполне управляемая система со скалярным управлением эквивалентна системе вида (2.5), где a_1, \ldots, a_n — коэффициенты характеристического многочлена матрицы A.

Доказательство. Итак, B — вектор-столбец. Покажем существование невырожденного преобразования T : $A_1 = TAT^{-1}$, $B_1 = TB$ и

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ -a_{n} & -a_{n-1} & -a_{n-2} & \dots & -a_{1} \end{pmatrix} \quad B_{1} = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$
 (2.6)

Рассмотрим $T^{-1} = [A^{n-1}B \ A^{n-2}B \ \dots \ AB \ B]$ — невырожденная , т.к. система управляема. Тогда

$$TT^{-1} = I \quad \Rightarrow \quad TB = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} = B_1, \quad TAB = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad \dots \quad TA^{n-1}B = \begin{pmatrix} 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}.$$

А т.к. по теореме Гамильтона-Келли $A^n = -a_1 A^{n-1} - \cdots - a_n I$, то

$$TA^{n}B = \begin{pmatrix} -a_{1} \\ \vdots \\ -a_{n} \end{pmatrix} \Rightarrow A_{1} = TAT^{-1} = T[A^{n}B \dots AB] = \begin{pmatrix} -a_{1} & 1 & 0 & \dots & 0 \\ -a_{2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -a_{n} & 0 & 0 & \dots & 0 \end{pmatrix}$$

Но поскольку система (2.5) управляема, то она приводится к такому же виду — а значит, в силу транзитивности преобразования эквивалентности, исходная система эквивалентна системе (2.5).

Если систему (2.1) замкнуть относительно линейной обратной связи по состоянию: u = Kx, то получим следующую замкнутую систему

$$\dot{x} = (A + BK)x\tag{2.7}$$

Теорема 5 (О размещении собственных чисел замкнутой системы). Если (A, B) управляема, то выбором матрицы K можно замкнутой системе назначить в качестве собственных значений — любые комплексно-сопряженные пары чисел.

Доказательство. Мы докажем лишь для частного случая: когда управление — скаляр. Применим к замкнутой системе невырожденное преобразование координат T, приводящее систему к виду (2.6):

$$T(A+BK)T^{-1} = TAT^{-1} + TBKT^{-1}$$
.

Обозначая $K_1 = KT^{-1}$, получим $\dot{\bar{x}} = (A_1 + B_1 K_1)\bar{x}$, причем при таком преобразовании сохраняются собственные значения. Матрицей новой системы будет

$$\begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_n & -a_{n-1} & \dots & -a_1 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} (k_1 \dots k_n) = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ k_1 - a_n & k_2 - a_{n-1} & \dots & k_n - a_1 \end{pmatrix}$$

Таким образом, управляя коэффициентами матрицы-строки K_1 , мы управляем коэффициентами характеристического многочлена матрицы системы — поэтому можно получить любые комплексно-сопряженные пары собственных чисел (сопряженные пары гарантируют нам, что многочлен будет иметь вещественные коэффициенты). А из матрицы K_1 легко получить матрицу $K = K_1 T$. Теорема доказана.

Определение 9. Будем говорить, что пара (A, B) — cmабилизируема, если существует матрица K, такая что все собственные числа матрицы (A + BK) имеют отрицательные действительные части.

Следствие. Ecnu(A, B) - ynpaвляема, то она стабилизируема, и система, замкнутая относительно линейной обратной связи, асимптотически устойчива.

Упражнение 4. Показать, что свойство стабилизируемости инвариантно относительно невырожденного преобразования координат.

2.1 Когда (A, B) не управляема.

Пусть $\operatorname{rg} \mathcal{C} = k < n$. В новом базисе система имеет вид

$$\begin{pmatrix} \dot{x}^1 \\ \dot{x}^2 \end{pmatrix} = \begin{pmatrix} A_{11}x^1 + A_{12}x^2 + B_{11}u \\ A_{22}x^2 \end{pmatrix}$$

и $u=K_1x^1+K_2x^2$ — линейная обратная связь. Тогда замкнутая система имеет блочно-треугольную матрицу:

$$\begin{pmatrix} A_{11} + B_{11}K_1 & A_{12} + B_{11}K_2 \\ 0 & A_{22} \end{pmatrix}$$

Кроме того, выбором K_1 можно добиться устойчивости $(A_{11} + B_{11}K_1)$, а значит система стабилизируема $\Leftrightarrow A_{22}$ — устойчивая матрица.

Утверждение 3. (A, B) стабилизируема \Leftrightarrow система (2.1) стабилизируема (B, B) стабилизируема

Доказательство. Необходимость очевидна: $u(0) = K \cdot 0 = 0$. Покажем достаточность.

Пусть u(x) — некоторый закон, замкнутая относительно него система асимптотически устойчива. Снова перейдем к каноническому базису и замкнем систему:

$$\begin{cases} \dot{x}^{1}(t) = A_{11}x^{1} + A_{12}x^{2} + B_{11}u(T^{-1}\bar{x}) \\ \dot{x}^{2}(t) = A_{22}x^{2} \end{cases}$$

Поскольку эта система должна быть асимптотически устойчивой, то A_{22} — устойчива \Rightarrow система стабилизируема.

Теорема 6. Следующие условия эквивалентны:

- 1. napa(A, B) cma билизируема;
- 2. $\forall \lambda \in \mathbb{C} : \text{Re}(\lambda) \geqslant 0$ выполнено $\text{rg}[A \lambda I, B] = n$;
- 3. $\forall \lambda \in \mathbb{C} : \operatorname{Re}(\lambda) \geqslant 0$ и $\forall x \neq 0$ такого, что $x'A = \lambda x'$ выполнено $x'B \neq 0$.

Доказательство.

 $2 \Leftrightarrow 3$ Очевидно(по определению).

Свойство стабилизируемости и свойство 3) инвариантно относительно линейного преобразования координат (достаточно рассмотреть $\dot{\bar{x}} = Tx$, для которого выполнены те же свойства). Следовательно, считаем что:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}, B = \begin{pmatrix} B_{11} \\ 0 \end{pmatrix}.$$

Причем пара (A, B) - управляема.

 $1 \Rightarrow 3$ $\operatorname{Re}(\lambda) \geqslant 0, A_{22}$ — устойчивая $\Rightarrow \lambda$ — собственное значение матрицы A_{11} . Пусть $x = [x^1, x^2]' \neq 0$ и $x'A = \lambda A$, покажем, что $x^1 \neq 0$.

От противного

 $x^{1} = 0 \Rightarrow x^{2} \neq 0 \Rightarrow x = [0, x^{2}]'$

$$x'A = [0', x^{'2}] \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} = \lambda[0', x^{'2}]$$

$$x^{'2}A_{22} = \lambda x^{'2}.$$

 $x^2 \neq 0 \Rightarrow \lambda$ — собственное значение A_{22} . Пришли к противоречию, т.к. A_{22} — устойчивая $\Rightarrow x^1 \neq 0$.

$$x'A = [x^{'1}, x^{'2}] \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} = \lambda [x^{'1}, x^{'2}]$$

 $\Rightarrow x^{'1} = \lambda x^{'1}.$

Т.к. (A_{11}, B_{11}) управляема, то (как было ранее доказано) $x'^1 B_{11} \neq 0 \Rightarrow x' B \neq 0$.

 $\boxed{3\Rightarrow 1}$ От противного

Пара (A,B)— нестабилизируема $\Leftrightarrow \exists \lambda$ — собственное значение матрицы A_{22} такое, что $\mathrm{Re}(\lambda)\geqslant 0$

$$\Rightarrow \exists x^{'2} \neq 0 : x^{'2} A_{22} = \lambda x^{'2}.$$

Возьмем $x = [0, x^2]' \neq 0$. Тогда

$$x'A = \lambda x'$$

$$x'B = [0, x'^2] \begin{pmatrix} B_{11} \\ 0 \end{pmatrix} = 0,$$

⇒ условие 3) не выполняется. Противоречие.

Упражнение 5. Пара (A,B) - стабилизируема \Leftrightarrow ее любая неустойчивая мода управляема.

3. Лекция 3.

$$\dot{x} = Ax + Bu,$$

$$y = Cx + Du.$$

Определение 10. Пара (C, A) называется **наблюдаемой**, если для любого начального состояния x(0) и любого момента времени $t_1 > 0$, x(0) можно однозначно восстановить, зная измерение y(t) и управление u(t) на отрезке времени $t \in [0, t_1]$.

Запишем формулу Коши:

$$x(t) = e^{At} + \psi(t),$$

где $\psi(t)$ - известная функция, т.к. знаем u(t).

$$y(t) = Ce^{At}x(0) + C\psi(t) + Du(t),$$

Обозначим $\widetilde{y}(t) = y(t) - C\psi(t) - Du(t)$ - известная функция.

- \Rightarrow Система наблюдаема \Leftrightarrow зная $\widetilde{y}(t)$ на $[0,t_1]$, можем восстановить x(0).
- ⇔ соответсвующее однородное уравнение имеет только тривиальное решение.

$$Ce^{At}x(0) = 0 \Leftrightarrow x(0) \equiv 0.$$

$$C(I + At + \frac{t^2}{2!}A^2 + \dots)x(0) = 0$$

$$\Leftrightarrow \begin{cases} Cx(0) &= 0, \\ CAx(0) &= 0, \\ \vdots \\ CA^{n-1}x(0) &= 0. \end{cases}$$

Обозначим

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}.$$

Определение 11. *Матрица О называется матрицей наблюдаемости системы.*

Упражнение 6. Пара (C,A) - наблюдаема \Leftrightarrow из $\mathcal{O}x=0 \Rightarrow x\equiv 0 \Leftrightarrow \operatorname{rg}\mathcal{O}=n$.

$$\mathcal{O}x = 0 \Leftrightarrow x'\mathcal{O}' = 0$$
$$x'\mathcal{O}' = x'[C', A'C', \dots, (A')^{n-1}C'] = 0 \Rightarrow x' \equiv 0.$$

А это условие управляемости пары (A', C').

Упражнение 7. Пара (C, A) - наблюдаема \Leftrightarrow пара (A', C') - управляема (m.e. система $\dot{z} = A'z + C'v$ - управляема).

Поэтому многие свойства управляемости переносятся на свойства наблюдаемости.

Теорема 7. Следующие утверждения эквивалентны:

- 1. $napa\ (C,A)$ наблюдаема;
- 2. $\operatorname{rg} \mathcal{O} = n$;
- 3. $\forall \lambda \in \mathbb{C}$ выполнено $\operatorname{rg} \begin{bmatrix} A \lambda I \\ C \end{bmatrix} = n;$
- 4. $\forall \lambda \in \mathbb{C}$ из условия $Ax = \lambda x, x \neq 0$ следует $Cx \neq 0$;
- 5. Существует такая матрица L, что матрица A+LC имеет любое наперед заданное расположение собственных чисел (при условии, что комплексные числа заданы парами);
- 6. napa (A', C')— ynpaвляема.

Доказательство. $1) \Leftrightarrow 1), 6) \Leftrightarrow 1)$ уже доказали.

 $(6) \Leftrightarrow (3), (4), (5)$ - из свойства управляемости сопряженных матриц. Если (A', C') неуправляема, то можно выделить неуправляемую часть и из этого следует, что у матрицы A_{22} нельзя изменить собственные числа.

Пусть система не наблюдаема. Тогда $\operatorname{rg} \mathcal{O} = k < n$.

Определение 12. Множество $\{x \colon \mathcal{O}x = 0\} = \operatorname{Ker} \mathcal{O} \neq \varnothing$ есть подпространство ненаблюдаемых координат системы.

Если $x(0) \in \text{Ker } \mathcal{O}$, то x(0) не может быть восстановлена, так как $x(0) \in \text{Ker } \mathcal{O} \Rightarrow x(t) \in \text{Ker } \mathcal{O}$, т.к. в противном случае было бы однозначное соответствие между x(t) и $x(0) \Rightarrow x(0) \notin \text{Ker } \mathcal{O}$.

Подпространство $Ker(\mathcal{O})$ — инвариантное подпространство. Т.е. если состояние лехит в $Ker(\mathcal{O})$, то вся траектория лежит в $Ker(\mathcal{O})$, если состояние не из $Ker(\mathcal{O})$, то вся траектория не лежит $Ker(\mathcal{O})$.

Определение 13. Пара $(C,A) - \partial emekmupyema$, если существует матрица L, такая что вещественная часть любого собственного значения матрицы (LC+A) меньше нуля.

Очевидно, что детектируемость (C, A) равносильна стабилизируемости (A', C').

Теорема 8. Следующие утверждения эквивалентны:

- 1. $napa(C, A) \partial emekmupyema;$
- 2. napa(A', C') cma билизируема;

3.
$$\forall \lambda \in \mathbb{C}, \operatorname{Re}(\lambda) \geqslant 0 \Rightarrow \operatorname{rg}\begin{bmatrix} A - \lambda I \\ C \end{bmatrix} = n;$$

4.
$$\forall \lambda \in \mathbb{C}, \operatorname{Re}(\lambda) \geqslant 0$$
, из условия
$$\begin{cases} Ax = \lambda x \\ x \neq 0 \end{cases}$$
 следует $Cx \neq 0$.

Теперь нетрудно показать, что систему (2.1), (2.2) невырожденным линейным преобразованием координат T можно привести к виду:

$$A_{1} = TAT^{-1}, \quad B_{1} = TB,$$

$$C_{1} = CT^{-1}, \quad D_{1} = D,$$

$$\dot{x}^{1} = A_{11}x^{1} + B_{11}u,$$

$$\dot{x}^{2} = A_{21}x^{1} + A_{22}x^{2} + B_{22}u,$$

$$y = C_{11}x^{1} + Du,$$

причем пара (C_{11}, A_{11}) - наблюдаемая, x^2 - наблюдаемые координаты вектора x. (т.к. x^1 не зависит от x^2 , а выход зависит только от x^1)

При выборе базиса для приведения системы (2.1), (2.2) к данному виду выбираем базис так же, как и в случае управляемых систем.

Система детектируема \Rightarrow все собственные значения матрицы A_{22} имеют отрицательные действительные части, т.к.

$$\begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix} + L[C_1, 0] = \begin{pmatrix} \dots & 0 \\ \dots & A_{22} \end{pmatrix}.$$

Из полученного соотношения следует, что выбор матрицы L не влияет на собственные значения числа A_{22} . Таким образом, необходимо требовать, чтобы A_{22} была устойчива.

Можно ли одновременно выделять и управляемую и наблюдаемую части?

Теорема 9 (Структурная теорема Калмана или каноническая форма Калмана). Существует невырожденное преобразование координат, которое переводит систему (2.1), (2.2) к виду:

$$\begin{pmatrix} \dot{x}^1 \\ \dot{x}^2 \\ \dot{x}^3 \\ \dot{x}^4 \end{pmatrix} = \begin{pmatrix} A_{11} & 0 & A_{13} & 0 \\ A_{21} & A_{22} & A_{23} & A_{24} \\ 0 & 0 & A_{33} & 0 \\ 0 & 0 & A_{34} & A_{44} \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \\ x^3 \\ x^4 \end{pmatrix} + \begin{pmatrix} B_{11} \\ B_{12} \\ 0 \\ 0 \end{pmatrix}$$
$$y = C_{11}x^1 + C_{33}x^3 + Du.$$

 $(A_{11}, B_{11}), (A_{22}, B_{12}) - y правляемы пары;$

 $(C_{11},A_{11}),(C_{33},A_{33})$ — наблюдаемые пары;

 $x^1, x^2 - y$ правляемые координаты;

 x^3, x^4 — неуправляемые координаты;

 x^1, x^3 — наблюдаемые координаты;

 x^2, x^4 — ненаблюдаемые координаты.

Доказательство. Есть подпространство управляемости $\bar{L}=\operatorname{Im}\mathcal{C}$ и подпространство ненаблюдаемости $\operatorname{Ker}\mathcal{O}.$

- 1. выбираем базис в $\operatorname{Im} \mathcal{C} \bigcap \operatorname{Ker} \mathcal{O} (x^2 \operatorname{управляемая}, \text{ но ненаблюдаемая координата});$
- 2. дополняем базис до ${\rm Im}\, {\mathcal C}\,\,(x^1-{\rm управляемая}\,\,{\rm и}\,\,{\rm наблюдаемая}\,\,{\rm координата});$
- 3. дополняем базис до $\operatorname{Im} \mathcal{C} \bigcup \operatorname{Ker} \mathcal{O} (x^4 \operatorname{неуправляемая} u$ ненаблюдаемая координата);
- 4. дополняем базис до всего пространства (x^3 неуправляемая, но наблюдаемая координата).

4. Лекция 4.

Рассматриваем систему:

$$\dot{q} = Mq + Nu + Hy,
\hat{x} = Qq + Ru + Sy.$$
(4.1)

Определение 14. Система (4.1) называется асимптотическим наблюдателем для системы (2.1), (2.2), если для любых начальных векторов x(0), q(0) и для любого u(t) справедливо:

$$\hat{x}(t) - x(t) \to 0 \ npu \ t \to \infty.$$

По u(t) из (2.1) находим x(t); далее из (2.2) находим y(t); по y(t) и u(t) из (4.1) находим q(t), а затем $\hat{x}(t)$

Теорема 10. Для существования асимптотического наблюдателя необходимо и достаточно, чтобы пара (C, A) была детектируемой.

Доказательство.

 \Leftarrow (C,A) — детектируема, строим асимптотический наблюдатель.

$$\dot{q} = Aq + Bu + L(Cq + Du - y),$$

$$\hat{x} = q.$$
(4.2)

Можно подобрать L так, что данный наблюдатель будет асимптотическим наблюдателем для нашей системы.

Выберем L так, что матрица (A + LC) — устойчива (это можно сделать, т.к. пара (C, A) — детектируема). Следовательно, (4.2) асимптотический наблюдатель для нашей системы.

Определение 15. Система (4.2) называется асимптотическим наблюдателем Люинбергера полного порядка.

Действительно, имеем

$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} + Du - Cx - Du),$$

$$\dot{\hat{x}} = (A + LC)\hat{x} + Bu - LCx,$$

$$\dot{x} = Ax + Bu.$$

Введем $e(t) = \hat{x}(t) - x(t)$, тогда:

$$\dot{e} = Ae + LCe = (A + LC)e.$$

$$(A+LC)$$
 — устойчива $\Rightarrow e(t) \rightarrow 0, t \rightarrow \infty$.

 \Rightarrow От противного.

(C,A) — не является детектируемой. Тогда выберем начальный вектор

$$x(0) \in ker\mathcal{O}, u(t) \equiv 0, q(0) = 0 \Rightarrow Cx(0) = 0 \Rightarrow Cx(t) = 0.$$

Тогда
$$y(t) = Cx(t) + Du(t) \equiv 0$$
,

Γ

$$\dot{q} = Mq, q(0) = 0 \Rightarrow q(t) \equiv 0 \Rightarrow \hat{x} \equiv 0.$$

Система (4.1) является асимптотическим наблюдателем $\Leftrightarrow x(t) \to 0, t \to \infty$, но это не так, т.к. система недетектируема \Rightarrow у матрицы A_{22} есть собственные числа с положительной действительной частью $\Rightarrow x(0)$ можно выбрать так, что $x(t) \to 0$ (x(0)) соответствует неустойчивой моде).

Определение 16. Пусть задана оценка:

$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} + Du - y) \tag{4.3}$$

Линейной обратной связью по выходу назовем $u = K\hat{x}$.

Теорема 11. Если пара (A, B) стабилизируема, а пара (C, A) детектируема, то существуют матрицы L и K такие, что система (2.1), (2.2), (4.3) с обратной связью по выходу $u = K\hat{x}$ будет асимптотически устойчивой.

Доказательство. Перейдем от пары (x, \hat{x}) к (e, \hat{x}) . Подставим в (4.3) уравнение измерения (2.2):

$$\dot{\hat{x}} = (A + LC)\hat{x} + Bu - LCx \tag{4.4}$$

Тогда получим следующее дифференциальное уравнение для ошибки $e = \hat{x} - x$:

$$\dot{e} = (A - LC)e$$
.

Теперь подставим в (4.4) обратную связь:

$$\dot{\hat{x}} = (A + BK)\hat{x} + LC(\hat{x} - x) = (A + BK)\hat{x} + LCe.$$

Запишем новую систему:

$$\begin{pmatrix} \dot{e} \\ \dot{\hat{x}} \end{pmatrix} = \begin{pmatrix} A + LC & 0 \\ LC & A + BK \end{pmatrix} \begin{pmatrix} e \\ \hat{x} \end{pmatrix}.$$

Понятно, что новая система будет асимптотически устойчивая тогда и только тогда, когда система (2.1), (2.2) асимптотически устойчива. Мы уже доказали, что с выбором K и L можем получить любые собственные значения матриц на диагонали, поэтому можно выбрать эти матрицы так, чтобы система была асимптотически устойчивой.

Замечание. Таким образом

$$||x(t)|| \le \beta e^{-\alpha t} ||x(0)||, \quad \alpha > 0, \ \beta > 0,$$

и смещая собственные числа матрицы влево от мнимой оси, можем добиться любой степени устойчивости.

Рассмотрим пример, который показывает, какие проблемы могут возникнуть при такой стабилизации.

Пример 3.

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = u \end{cases}$$

Выберем управление $u = k_1 x_1 + k_2 x_2$, получим следующее выражение для матрицы [A + BK]:

$$[A + BK] = \left(\begin{array}{cc} 0 & 1\\ k_1 & k_2 \end{array}\right)$$

Выберем коэффициенты k_1 и k_2 так, чтобы получить собственные значения $\lambda_1 = -a, \, \lambda_2 = -2a$ матрицы [A+BK]. Получаем, что $k_1 = -2a^2$ и $k_2 = -3a$ и соответственные собственные векторы $q_1 = (1, -a)^T$ и $q_2 = (1, -2a)^T$. Аналитическое решение имеет вид:

$$x(t) = c_1 q_1 e^{-at} + c_2 q_2 e^{-2at}$$

Пусть выполняются начальные условия $x_1(0) = 1$ и $x_2(0) = 0$. Тогда легко получить значения коэффициентов: $c_1 = -1$ и $c_2 = 2$. Рассмотрим, что происходит с второй координатой решения:

$$x_2(t) = 2a(e^{-2at} - e^{-at})$$

Понятно, что если выберем параметр a очень большой (например $a=10^3$), то при малых значениях t ($t\sim a^{-1}$) значение $x_2\sim 10^3$, $u\sim 10^6$. Т.е. при небольших t траектория ведет себя неправильно, и, вообще говоря, нужен компромисс между скоростью стремления траектории к нулю и величиной управления.

Лекция 5.

$$\dot{x} = Ax + Bu \tag{5.1}$$

Введем функционал:

$$J(u) = \int_{0}^{\infty} (x^{T}Qx + u^{T}Ru)dt, \qquad (5.2)$$

где Q и R — симметричные положительно определенные матрицы. Понятно, что функционал (5.2) будет неотрицательный.

Интеграл в правой части может расходится, но существуют обратные связи, для которых интеграл сходится. Будем рассматривать u(x) в классе гладких управлений.

Поставим задачу: Среди всех допустимых управлений выбрать то, которое обеспечивает минимум функционала (5.2).

Рассмотрим уравнение относительно матрицы P:

$$A^{T}P + PA - PBR^{-1}B^{T}P + Q = 0, (5.3)$$

где P — симметричная матрица. Пусть существует P>0 и P — решение (5.3).

Рассмотрим квадратичную форму $V(x) = x^T P x$ и подсчитаем ее производную в силу системы (5.1):

$$\frac{d}{dt}V(x) = \langle 2Px, Ax + Bu \rangle = 2x^T P A x + 2x^T P B u = x^T (A^T P + P A) x + 2x^T P B u.$$

Определим матрицу $K=R^{-1}B^TP$ и рассмотрим следующую квадратичную форму:

$$(u + Kx)^{T}R(u + Kx) = u^{T}Ru + x^{T}K^{T}Ru + u^{T}RKx + x^{T}K^{T}RKx =$$

$$= u^{T}Ru + x^{T}PBu + u^{T}B^{T}Px + x^{T}PBR^{-1}B^{T}Px = \left\{PBR^{-1}B^{T}P = A^{T}P + PA + Q, (5.3)\right\} =$$

$$= u^{T}Ru + 2x^{T}PBu + x^{T}(A^{T}P + PA)x + x^{T}Qx = \frac{dV(x)}{dt} + f_{0}(x, u),$$

где $f_0(x, u) = x^T Q x + u^T R u$.

Перепишем финальный результат еще раз:

$$\frac{dV(x)}{dt} + f_0(x, u) = (u + Kx)^T R(u + Kx) \ge 0$$
 (5.4)

Если возьмем управление $u_0(x) = -Kx$, то получим:

$$\frac{dV(x)}{dt}\Big|_{u=u_0(x)} + f_0(x, u_0(x)) = 0$$
 (5.5)

Пусть u(x) — произвольная стабилизирующая обратная связь, для которой функционал $J(u) < \infty$. Подставим u(x) в (5.4) и проинтегрируем от 0 до T:

$$\int_{0}^{T} \frac{dV}{dt} dt + \int_{0}^{T} f_0(x, u) dt \geqslant 0$$

Перейдя к пределу при $T\to\infty$, с учетом того, что $V(x(T))\underset{T\to\infty}{\longrightarrow}0$, получим:

$$J(u) \geqslant V(x(0)).$$

Когда в качестве управления выберем $u_0(x) = -Kx$, будет верно равенство (5.5) и получим, что $J(u_0(x)) = V(x(0))$. Отсюда следует, что $u_0(x)$ — оптимальное управление.

Осталось показать, что u_0 — стабилизирующее и $J(u_0) < +\infty$. Сделаем дополнительные рассуждения. Для этого перепишем (5.5) в другом виде:

$$\frac{dV(x)}{dt}\Big|_{u=u_0(x)} = -f_0(x, u_0(x)) = -x^T Q x - x^T P B R^{-1} B^T P x$$

Это определенно отрицательная квадратичная форма, т.е. V(x) – функция Ляпунова. Функция V(x) удовлетворяет условиям, характерным для квадратичных форм, поэтому имеется экспоненциальная устойчивость:

$$\frac{dV}{dt} \leqslant -\alpha V, \ \alpha > 0 \implies V(x(t)) \leqslant e^{-\alpha t} V(x(0)),$$

т.е. $J(u_0) < +\infty$, и верно равенство $J(u_0(x)) = V(x(0))$.

Таким образом, доказана следующая теорема:

Теорема 12. Пусть Q, R — симметричные положительно определенные матрицы и пусть (5.3) имеет решение P > 0. Тогда управление $u_0 = -Kx$, где $K = R^{-1}B^TP$, стабилизирует систему (5.1) и минимизирует функционал (5.2) и $J(u_0(x)) = (x(0))^T Px(0)$.

Замечание. Линейная обратная связь оказалась оптимальной для всех стабилизирующих связей.

Замечание. V(x) является функцией Ляпунова и функцией цены в данной задаче и удовлетворяет уравнению Гамильтона-Якоби-Беллмана:

$$\min_{u} \left(\frac{dV}{dt} + f_0(x, u) \right) = 0$$

$$\min_{u} \left(\langle \nabla V(x), Ax + Bu \rangle + f_0(x, u) \right) = 0$$

Приведем обобщение данной теоремы, добавив уравнение наблюдения y = Cx.

Теорема 13. Пусть (A, B) — стабилизируемая пара, (C, A) — детектируемая пара. Тогда $\exists ! P \geqslant 0$ — решение уравнения Риккати

$$A^T P + PA - PBR^{-1}B^T P + C^T QC = 0,$$

 $u\;u=-R^{-1}B^TPx\;-\;c$ табилизирующее оптимальное управление для задачи с функционалом

 $J(u) = \int_0^\infty (y^T Q y + u^T R u) dt.$

Теперь рассмотрим проблему существования и единственности для уравнения Риккати (5.3).

Теорема 14. Пусть Q, R — симметричные положительно определенные матрицы u (A, B) управляемая пара. Тогда существует u единственно положительно определенное решение уравнения Pиккати (5.3).

Доказательство.

$$V_1|_{u_1(\cdot)} = V_2|_{u_2(\cdot)} = 0.$$

Отсюда получаем, что $P_1 = P_2$.

Существование. Без доказательства.

Пример 4.

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = u \end{cases}, \quad J(u) = \int_0^\infty (x_1^2 + \rho u^2) dt, \ \rho > 0.$$

У нас система со следующими матрицами:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, Q = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, R = \rho$$

Выполнены условия теоремы 13, поскольку $\operatorname{rg}[BAB]=2$, и легко подобрать L:A+LC — устойчивая матрица. Поэтому можно построить стабилизирующее оптимальное управление для данной задачи в виде линейной обратной связи.

Решение уравнения Риккати $A^TP + PA - PBR^{-1}B^TP + Q = 0$ находится из несложной системы алгебраических уравнений:

$$P = \begin{pmatrix} \sqrt{2}\rho^{\frac{1}{4}} & \sqrt{\rho} \\ \sqrt{\rho} & \sqrt{2}\rho^{\frac{3}{4}} \end{pmatrix}$$

Сразу видно, что $|P|=\rho>0$. Возьмем управление u=-Kx, где $K=R^{-1}B^TP=(\rho^{-\frac{1}{2}},\sqrt{2}\rho^{-\frac{1}{4}})$. Тогда получим:

$$[A + BK] = \begin{pmatrix} 0 & 1 \\ -\rho^{-\frac{1}{2}} & -\sqrt{2}\rho^{-\frac{1}{4}} \end{pmatrix}$$

и соответственные собственные значения $\lambda_{1,2} = \frac{1}{\sqrt{2}} \rho^{-\frac{1}{4}} (-1 \pm i)$ имеют отрицательные действительные части. Как видно, построенное согласно теореме 13 управление действительно является стабилизирующим.

Замечание. Если у нас есть следующие ограничения: $|x_i(t)| \le \overline{x_i} \ u \ |u(t)| \le \overline{u}$, то можем рассматривать функционал:

$$J(u) = \sum \left(\frac{x_i}{\overline{x_i}}\right)^2 + \left(\frac{u}{\overline{u}}\right)^2 \to min$$

Замечание. Можно не просто минимизировать функционал, но и с заданной степенью устойчивости δ :

5.1 Метод разложения характеристического многочлена.

Это еще один метод построения обратной связи, но здесь не нужно решать уравнение Риккати.

Запишем уравнение Гамильтона-Якоби-Беллмана

$$\min_{u} \left\{ \frac{dV}{dt} + f_0(x, u) \right\} = 0,$$

Уравнение $\min_u \{\langle \nabla V(x(t)), Ax(t) + Bu \rangle + f_0(x(t), u)\} = 0$ выполняется вдоль оптимальной траектории. Положим $\psi(t) = -\nabla V(x(t))$. Тогда можно записать эквивалентное уравнение

$$\max_{x} \left\{ -f_0(x(t), u) + \psi'(t)(Ax(t) + Bu) \right\} = 0.$$

 $u^{0}(x(t))$ доставляет этот максимум. Обозначим $H(x(t), \psi(t), u) = -f_{0}(x(t), u) + \psi'(t)(Ax(t) + Bu)$. Тогда согласно принципу максимума:

$$\max_{u} H = 0,$$

причем $\dot{\psi} = -\frac{\partial H}{\partial x}$. Тогда наряду с исходной системой будем рассматривать сопряженную:

$$\begin{cases} \dot{x} = Ax + Bu \\ \dot{\psi} = -\frac{\partial H}{\partial x} \end{cases}$$

Для рассматриваемой линейно-квадратичной задачи $\frac{\partial H}{\partial u} = 0 \Rightarrow -2Ru + B'\psi = 0 \Rightarrow u = \frac{1}{2}R^{-1}B'\psi$. Подставляем u в систему:

$$\left\{ \begin{array}{lcl} \dot{x} &=& Ax + \frac{1}{2}BR^{-1}B'\psi, \\ \dot{\psi} &=& 2Qx - A'\psi \end{array} \right.$$

Получаем систему дифференциальных уравнений с соответствующей матрицей:

$$\left(\begin{array}{cc} A & S \\ 2Q & -A' \end{array}\right),\,$$

где $S = \frac{1}{2}BR^{-1}B'$. Характеристический многочлен данной матрицы имеет вид:

$$D(\lambda) = \left| \begin{array}{cc} A - \lambda I & S \\ 2Q & -A' - \lambda I \end{array} \right| = \left| \begin{array}{cc} A' - \lambda I & 2Q \\ S & -A - \lambda I \end{array} \right|.$$

Так как Q, S — симметричные матрицы, имеем

$$D(\lambda) = (-1)^n \begin{vmatrix} S & -A - \lambda I \\ A' - \lambda I & 2Q \end{vmatrix} = \begin{vmatrix} -A - \lambda I & S \\ 2Q & A' - \lambda I \end{vmatrix} =$$
$$= (-1)^{2n} \begin{vmatrix} A + \lambda I & S \\ 2Q & -A' + \lambda I \end{vmatrix} = D(-\lambda)$$

Получили $D(\lambda) = D(-\lambda)$, следовательно, если λ — корень, то $-\lambda$ — тоже корень. Так как замкнутая система устойчива, то n корней лежат в левой полуплоскости, а остальные — в правой. Объединим корни, лежащие слева, и обозначим соответствующий им многочлен $\phi_1(\lambda)$, а для тех, что справа — $\phi_2(\lambda)$. Тогда $D(\lambda) = \phi_1(\lambda)\phi_2(\lambda)$. Следовательно, будем знать все λ для системы, замкнутой оптимальной обратной связью u = -Kx. Тогда для заданных λ :

$$\det(A + BK - \lambda I) = 0 \Rightarrow \det(A + BK - \lambda I) = (-1)^n \phi_1(\lambda).$$

Получаем систему уравнений относительно коэффициентов матрицы K, решаем ее, приравнивая коэффициенты при одинаковых степенях λ .

Для любого невырожденного линейного преобразования T верно

$$\det(A + BK - \lambda I) = \det T(-1)^n \phi_1(\lambda) T^{-1}.$$

Так как управление скалярно, можно подобрать такое T, что

$$T(A+BK)T^{-1} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \\ -a_n + \tilde{k_1} & \dots & -a_1 + \tilde{k_n} \end{pmatrix}$$

где $\tilde{K}=KT^{-1}$. Тогда $-a_n+\tilde{k_1},\ldots,-a_1+\tilde{k_n}$ — коэффициенты характеристического многочлена матрицы $T(A+BK)T^{-1}$ и совпадают с коэффициентами $\phi_1(\lambda)\Rightarrow -a_i+\tilde{k}_{n+1-i}=\beta_i\Rightarrow$ система $\alpha_i(K)=\beta_i$ линейна относительно K. Таким образом, можно найти оптимальную матрицу K, не решая уравнение Риккати (5.3).

Пример 5.

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 + u \end{cases}$$

Рассмотрим функционал $J(u)=\frac{1}{2}\int\limits_0^\infty (x_2^2+u^2)dt$. Соответствующий гамильтониан имеет вид:

$$H = \frac{1}{2}(x_2^2 + u^2) + \psi_1 x_2 + \psi_2 (-x_1 + u)$$
$$\frac{\partial H}{\partial u} = -u + \psi_2 = 0 \Rightarrow u = \psi_2.$$

Сопряженная система:

$$\begin{cases} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -x_1 + \psi_2 \\ \dot{\psi}_1 &= -\frac{\partial H}{\partial x_1} = \psi_2 \\ \dot{\psi}_2 &= -\frac{\partial H}{\partial x_2} = x_2 - \psi_1 \end{cases}$$

Матрица полученной системы:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -\lambda & 1 & 0 & 0 \\ -1 & -\lambda & 0 & 1 \\ 0 & 0 & -\lambda & 1 \\ 0 & 1 & -1 & -\lambda \end{pmatrix}$$

Характеристический многочлен: $\lambda^4 + \lambda^2 + 1 \Rightarrow \lambda_{1,2}^2 = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$. Квадраты корней лежат на единичной окружности, поэтому по формуле Муавра получим $\lambda_{1,2,3,4} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i; \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$.

$$\phi_1(\lambda) = (\lambda + \frac{1}{2} - \frac{\sqrt{3}}{2}i)(\lambda + \frac{1}{2} + \frac{\sqrt{3}}{2}i) = \lambda^2 + \lambda + 1$$

Берем $u = k_1 x_1 + k_2 x_2$, тогда матрица замкнутой системы будет иметь вид:

$$\left(\begin{array}{cc} 0 & 1 \\ -1 + k_1 & k_2 \end{array}\right).$$

Получаем характеристический многочлен $\lambda^2 - k_2\lambda + 1 - k_1$.

$$\lambda^2 - k_2 \lambda + 1 - k_1 = \lambda^2 + \lambda + 1 \Rightarrow k_1 = 0, k_2 = -1$$

Получаем, что оптимальная обратная связь имеет вид: $u = -x_2$.

5.2 Аппроксимация задачами на конечных промежутках.

Будем минимизировать следующий функционал:

$$J_T(u) = \int_0^T f_0(x, u) dt.$$
 (5.6)

Решение данной задачи существует и единственно, так как функционал строго выпуклый, слабо полунепрерывный снизу.

Функцию Ляпунова в этом случае будем искать в виде следующей квадратичной формы:

$$V_T(t,x) = x'P(t)x,$$

где P(t) зависит от времени и от T.

$$\frac{dV}{dt} = x'\dot{P}x + \langle 2Px, Ax + Bu \rangle$$

Запишем уравнение Гамильтона-Якоби-Беллмана для данной задачи:

$$\min_{u} \{ x' \dot{P}x + \langle 2Px, Ax + Bu \rangle + f_0(x, u) \} = 0$$

Тогда

$$x'(\dot{P} + A'P + P'A - PBR^{-1}B'P + Q)x = 0,$$

кроме того, $V_T(0) = x'P(0)x$. Получаем дифференциальное уравнение Риккати:

$$\begin{cases} \dot{P} + A'P + P'A - PBR^{-1}B'P + Q = 0\\ \dot{P}(T) = 0 \end{cases}$$
 (5.7)

Сделаем в (5.7) замену $\tau = T - t$ и обозначим $P(T - t) = S(t) \Rightarrow P(0) = S(T), P(T) = S(0),$ кроме того, $V_T(0, x) = x'S(T)x$. Тогда получим следующую систему:

$$\begin{cases} \dot{S} = A'S + SA - SBR^{-1}B'S + Q \\ \dot{S}(0) = 0 \end{cases}$$
 (5.8)

Теорема 15. Пусть алгебраическое уравнение Риккати (5.3) имеет положительно определенное решение P. Тогда $\exists \lim_{T \to \infty} S(T) = P$.

Доказательство. Так как $\exists P>0$ — решение алгебраического уравнения Риккати (5.3), то \exists оптимальная стабилизирующая обратная связь u^0 .

Рассмотрим последовательность T_k : $T_k < T_{k+1}, T_k \to \infty$.

Пусть $u^{\hat{k}}$ - оптимальное управление для задачи $(5.1)(5.6) \Rightarrow J_{T_k}(u^k) \leqslant J_{T_k}(u^{k+1}) \Rightarrow$

$$\Rightarrow J_{T_k}(u^k) \leqslant \int_0^{T_k} f_0(x, u^{k+1}) dt \leqslant \int_0^{T_{k+1}} f_0(x, u^{k+1}) = J_{T_{k+1}}(u^{k+1}),$$

кроме того, $\forall T_k$ выполнено $J_{T_k}(u^k)\leqslant J_{T_k}(u^0)\leqslant J(u^0)\Rightarrow$ для любого фиксированного начального вектора x

$$V_{T_k}(0,x) \leqslant V_{T_{k+1}}(0,x) \leqslant V(x).$$

 $V_{T_k}(0,x) = x'S(T_k)x \leqslant x'Px$ для любого монотонно возрастающего $x \Rightarrow x'S(T_k)x$ ограничена сверху. Таким образом, существует $\lim_{T_k \to \infty} x'S(T_k)x = x'Sx$, $\forall x$, то есть $S(T_k) \to S^*$, кроме того, $x'S^*x \leqslant x'Px$.

Покажем, что $S^* = P$. Действительно, если подставить S(T) в дифференциальное уравнение Риккати (5.7) и $T_k \to \infty$, то $\dot{S} = 0 \Rightarrow S^*$ — решение (5.7), но решение уравнения Риккати единственно $\Rightarrow S^* = P \Rightarrow S(T) \to P$ при $T \to +\infty$.

Следствие. $V_T(0,x) \to V(x)$ $npu T \to \infty$.

Таким образом, получили еще один способ построения оптимальной обратной связи

А если добавить к уравнению (5.1) уравнение наблюдений

$$y = Cx$$

то в уравнении Риккати матрица Q заменится на C'QC. Если Q, R — положительно определены, (A, B) — стабилизируема, (C, A) — детектируема, то матричное уравнение Риккати имеет единственное положительно определённое решение, а соответствующая обратная связь является оптимальным законом стабилизации.

6. Лекция 6.

Рассмотрим следующую систему:

$$\dot{x} = f(x, u) \tag{6.1}$$

Пусть $f(\cdot,\cdot)$ — непрерывно дифференцируемая по x,u функция, f(0,0)=0. Тогда в малой окрестности нуля справедливо разложение

$$f(x,u) = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial u}(0,0)u + r(x,u),$$
$$A = \frac{\partial f}{\partial x}(0,0), \quad B = \frac{\partial f}{\partial u}(0,0).$$

Пусть $\|r(x,u)\| \leqslant k(\|x\|+\|u\|)^{1+\alpha}$, где $\alpha>0$. Очевидно, что при $x\to 0$ и при $u\to 0$

$$\frac{r(x,u)}{\|x\|\cdot\|u\|} \longrightarrow 0.$$

Пусть пара (A,B) стабилизируема. Тогда $\exists K: A_1 = A + BK$ — устойчива, и u = Kx стабилизирует линейную часть:

$$\dot{x} = A_1 x + r(x, Kx) \tag{6.2}$$

По теореме об устойчивости по первому приближению решение системы (6.2) асимптотически устойчиво. Т.к. A_1 устойчива, то $\forall Q>0$ существует положительно определённое симметрическое решение уравнения Ляпунова

$$A_1'P + PA_1 = -Q$$

Рассмотрим V(x) = x'Px

$$\frac{dV}{dt} = \langle 2Px, A_1x + r(x, Kx) \rangle = -x'Qx + 2x'P'r(x, Kx) \leqslant$$

$$\leqslant \{Q > 0 \Rightarrow x'Qx \ge C_1 ||x||^2\} \le -C_1 ||x||^2 + 2k||x|| ||P|| (||x|| + ||Kx||)^{\alpha+1} \leqslant$$

$$\leqslant (-C_1 + C_2 ||x||^{\alpha}) ||x||^2.$$

При $\|x\| < \sqrt[\alpha]{\frac{C_1}{C_2}}$ последнее выражение строго меньше нуля. Т.е. этот шар — область притяжения нулевого решения. Недостаток — только локальная устойчивость, при больших отклонениях такой регулятор не обеспечивает асимптотической устойчивости. Поэтому хотим получить условия, обеспечивающие глобальную устойчивость замкнутой системы.

Теорема 16 (достаточное условие глобальной стабилизируемости).

$$\dot{x} = f(x, u), u \in U, f(0, 0) = 0, 0 \in U$$

Пусть существует такая непрерывно дифференцируемая функция V(x) и непрерывно дифференцируемое u(x):

- 1. V(x) > 0 $npu \ x \neq 0$, V(0) = 0
- 2. $V(x) \to \infty$ $npu ||x|| \to \infty$
- 3. $\forall x, u(x) \in U, u(0) = 0$
- 4. $\forall x \neq 0, \langle \nabla V(x), f(x, u(x)) \rangle < 0$

Тогда решение $\dot{x} = f(x, u(x))$ асимптотически устойчиво в целом, т.е.

$$\forall x(0) \Rightarrow x(t) \to 0$$

Доказательство.

(ссылка на теорему об асимптотической устойчивости в целом, те же требования, но без u) та же теорема, но переформулированная.

Функция V, для который выполнены первые три условия, и $\inf_{u \in U} \langle \nabla V(x), f(x, u(x)) \rangle < 0$ называется CLF (Control Lyapunov Function).

Далее рассмотрим гладкое управление $u(x) \in U: u(0) = 0$. Замкнутая система

$$\dot{x} = f(x, u(x)) = F(x) \tag{6.3}$$

И пусть

- 1. f(x,u) гладкая по x и по u
- 2. $u(x) \in U$ гладкая и u(0) = 0

$$J(x) = \frac{\partial f}{\partial x}(x, u(x)) + \frac{\partial f}{\partial u}(x, u(x)) \frac{\partial u}{\partial x}$$

J(x) — Якобиан замкнутой системы.

Теорема 17. Пусть $\exists \varepsilon > 0: \forall \lambda(x)$ - с.значения матрицы J(x) + J'(x), имеет место

$$\lambda(x) \leqslant -\varepsilon$$
.

Tогда x = 0 — единственное состояние равновесия системы (6.3), которое глобально асимптотически устойчиво.

Доказательство.

1. Пусть \bar{x} — состояние равновесия системы, т.е. $F(\bar{x})=0$. Покажем, что J(x) не обращается в ноль в некоторой окрестности \bar{x} . В противном случае $\exists w \neq 0$: Jw=0. Тогда w'(J+J')w=0, но левая часть по условию теоремы не больше $\lambda(x)\|w\|^2<-\varepsilon\|w\|^2<0$, т.е. пришли к противоречию. Таким образом, \bar{x} — изолированный корень, т.е. любая особая точка замкнутой системы изолирована.

2. Пусть x(t) — некоторое решение исходной системы.

Рассмотрим $y(t) = \dot{x}(t)$, тогда

Таким образом, решение ограничено для любой начальной точки.

3. Покажем, что решение сходится к состоянию равновесия. $\forall t_k \to \infty \Rightarrow x(t_k)$ ограничена, тогда выделим сходящуюся подпоследовательность. Не ограничивая общности:

$$x(t_k) \to \bar{x}$$

$$0 \leftarrow y(t_k) = \dot{x}(t_k) = F(x(t_k)) \to F(\bar{x})$$

$$\downarrow \downarrow$$

$$F(\bar{x}) = 0$$

4. Теперь покажем, что $x(t) \to \bar{x}$. Выберем кольцо вокруг \bar{x} , где нет других особых точек:

$$\delta < \|x - \bar{x}\| < 2\delta.$$

Обозначим $\min_{\delta<\|x-\bar x\|<2\delta}\|F(x)\|=\gamma_\delta>0$. В силу стремления y к нулю, найдётся такой момент T такой, что

$$\forall t > T \Rightarrow ||y(t)|| \le \frac{\gamma_{\delta}}{2}$$

$$\exists k : t_k > T, \ \|x(t_k) - \bar{x}\| < \delta$$

Тогда вся траектория с момента времени t_k не может пересечь кольцо, т.к. иначе в нём

$$||F(x(t))|| \ge \gamma_{\delta} > \frac{\gamma_{\delta}}{2} > ||y(t)|| = ||\dot{x}(t)|| = ||F(x(t))||.$$

Таким образом, для любого малого δ найдётся такой момент времени t_k , начиная с которого траектория не выходит за δ -окрестность \bar{x} , т.е.

$$x(t) \to \bar{x}$$

5. Покажем, что нет других особых точек, кроме нуля. Действительно, для всех особых точек строим области притяжения, которые открыты в силу непрерывной зависимости траектории от начальных данных. Пусть A_1 — область притяжения нуля, A_2 — объединение остальных областей притяжения. Тогда

$$\mathbb{R}^n = A_1 + A_2.$$

Т.е. \mathbb{R}^n представимо в виде прямой суммы двух открытых множеств, что противоречит связности \mathbb{R}^n .

6. Для глобальной асимптотической устойчивости нуля можно вместо п.4 рассмотреть V(x) = F'(x)F(x), тогда

$$\frac{dV}{dt} = F'J'F + F'JF = F'(J'+J)F \leqslant -\varepsilon ||F||^2.$$

7. Лекция 7.

7.1 Нестационарные системы.

$$\dot{x} = f(t, x, u) \tag{7.1}$$

Теперь u=u(t,x) и, как обычно, $f(t,0,0)=0,\ u(t,0)=0.$ Тогда u=u[t]=u(t,x(t)), замыкание определяем очевидным образом и

$$J(u) = \int_{t_0}^{\infty} f_0(t, x(t), u[t]) dt$$

Определение 17. Оптимальным стабилизирующим будем называть такое управление u_0 , для которого замкнутая система асимптотически устойчива, и для любого стабилизирующего и выполнено $J(u_0) \leq J(u)$.

Обозначим $\frac{dV}{dt}+f_0(t,x,u)=B[V,t,x,u]$. Тогда уравнение Γ -Я-Б: $\min_x B[V,t,x,u]=0$.

Теорема 18 (Красовский Н.Н.). Пусть $\exists V(t,x) > 0$ при $x \neq 0$, V(t,0) = 0, определенная в шаре $||x|| \leqslant H$, допускающая бесконечно малый высший предел и $\exists u^0(t,x)$ такие, что

- 1. $f_0(t, x, u^0(t, x)) > 0$ $npu \ x : ||x|| \le H, x \ne 0$
- 2. $B[V, t, x, u^{0}(t, x)] = 0 \text{ npu } t \ge t_{0}, ||x|| \le H$
- 3. $B[V, t, x, u] \geqslant 0$ npu $t \geqslant t_0, ||x|| \leqslant H, \forall u$

Tогда u^0 — оптимальное стабилизирующее управление.

Доказательство. Так как V(t,x) допускает бесконечно малый высший предел, то $0 < V(t,x) \leqslant w(\|x\|), w(0) = 0$. Из первого и второго условия следует, что $\frac{dV}{dt} = -f_0(t,x,u^0(t,x)) < 0$. Получаем, что \exists положительно определенная V(t,x), допускающая бесконечно малый высший предел, полная производная которой отрицательно определена \Rightarrow нулевое состояние системы ассимптотически устойчиво. Поэтому $\exists \eta, \exists h < H$:

$$\sup_{x} \{ V(t,x) : ||x|| \le \eta \} < \inf_{x} \{ V(t,x) : ||x|| = h \}$$

Следовательно, решение, начинающееся в $||x|| \le \eta$, будет оставаться в шаре радиуса h и $u \to 0$ при $t \to \infty$.

Далее покажем оптимальность.

$$V(T, x(T)) - V(t_0, x^0) = -\int_{t_0}^{T} f_0(t, x, u^0(t, x)) dt$$

Т.к. u_0 — стабилизирующее управление, то $x(T) \to 0$ при $T \to \infty$. Из условия V(t,0) = 0 получаем, что

$$-V(t_0, x^0) = -J(u^0)$$

Из условия 3 теоремы получаем, что

$$-V(t_0, x^0) \geqslant -J(u),$$

то есть u^0 — оптимально.

7.2 Обратная задача стабилизации.

В этом пункте будем решать обратную задачу стабилизации — нахождение оптимального стабилизирующего управления и J по V(t,x).

Рассмотрим систему с линейным управлением:

$$\dot{x} = f(x) + g(x) u$$

$$f(0) = 0$$

$$J = \int_{-\infty}^{\infty} (l(x) + u'R(x)u)dt,$$
(7.2)

l(x) > 0, R(x) > 0, V(x) — гладкая. Будем искать условия на V(x), при которых можно будет построить оптимальное глобально стабилизирующее управление. Запишем уравнение Гамильтона-Якоби-Беллмана:

$$\min_{u} \{ V'_x f(x) + V'_x g(x) u + l(x) + u' R(x) u \} = 0$$

Дифференцируя по u, получим:

$$g'(x)V'_x + 2R(x)u = 0$$

Откуда найдем управление, минимизирующее V(x):

$$u^{0}(x) = -\frac{1}{2}R^{-1}(x)g'(x)V'_{x}$$

Отметим, что $u^0(x)$ не зависит от l(x). Вводя ограничения на l(x), будем достигать нужного результата. Предположим, что выполнено соотношение:

$$l(x) = -V_x'f(x) + \frac{1}{4}V_x'g(x)R^{-1}g'V_x' > 0$$

Тогда

$$\frac{dV}{dt}|_{\frac{u^0(x)}{2}} = V_x' f(x) - \frac{1}{4} V_x' g(x) R^{-1} g' V_x' = -l(x) < 0$$

Последнее неравенство следует из нашего ограничения на l(x). Предположим также, что $V(x) \to \infty$ при $||x|| \to \infty$. Тогда $\frac{u_0(x)}{2}$ стабилизирует исходную систему. Отметим, что $\forall \alpha \geqslant \frac{1}{2}$ управление αu^0 также стабилизирует систему (поскольку неравенство на производную V(x) будет выполняться). То есть u_0 — стабилизатор. Т.к. на u_0 достигается минимум в уравнении Гамильтона-Якоби-Беллмана, то u_0 — оптимальное.

Таким образом, были получены два предположения, на основе которых можно сформулировать теорему о решении обратной задачи. Но сначала дадим определение.

Определение 18. Пусть u(x) — стабилизирующее управление. Назовем (m_1, m_2) интервалом устойчивости u(x), если $u_{\alpha}(x) = (1+\alpha)u(x) \ \forall \alpha \in (m_1, m_2)$ — стабилизирующие управления.

Теорема 19. Пусть $\exists V(x) - \phi$ ункция цены, V(x) > 0 при $x \neq 0$, $V(x) \to \infty$ при $||x|| \to \infty$. Пусть $\exists l(x)$, определяемая как

$$l(x) = -V_x'f(x) + \frac{1}{4}V_x'g(x)R^{-1}g'V_x' > 0$$

Тогда $u^0(x)=-\frac{1}{2}R^{-1}(x)g'(x)V'_x$ является управлением, глобально стабилизирующим исходную систему. Оно имеет интервал устойчивости $(-\frac{1}{2},\infty)$ и доставляет минимум функционалу $J=\int\limits_0^\infty (l(x)+u'(x)R^{-1}(x)u(x))dt$

Доказательство. Отметим, что проверять условие на l(x) не очень удобно. Поэтому попытаемся вывести условие на V(t,x), которое бы гарантировало выполнения неравенства на l(x). Сделаем это в ходе решения второй задачи. Будем искать условия на V(t,x), при которых можно будет построить функционал J и оптимальное стабилизирующее управление.

Положим

$$b'(x) = V_x'g(x)$$

$$a(x) = V_x' f(x)$$

Выпишем первое из условий на V(t,x).

Условие А. *Если* b(x) = 0 $u \ x \neq 0$, $mo \ a(x) < 0$

Замечание. Если условие 1 не выполнено, то нельзя гарантировать существование стабилизирующего управления. При его выполнении при построенном ниже p(x) будет выполняться условие на l(x) предыдущей теоремы.

Построим стабилизирующее управление. Рассмотрим:

$$p(x) = \begin{cases} c_0 + \frac{a(x) + \sqrt{a^2(x) + (b'(x)b(x))^2}}{b'(x)b(x)}, b(x) \neq 0\\ c_0, b(x) = 0 \end{cases}$$

Рассмотрим $u^0(x) = -p(x)b(x)$

$$\frac{dV}{dt}|_{\frac{u^0}{2}} = a(x) + b'(x)(-\frac{1}{2}p(x)b(x)) = a(x) - \frac{1}{2}p(x)b'(x)b(x) =$$

$$= a(x) + \begin{cases} -\frac{1}{2}c_0b'b - \frac{1}{2}(a + \sqrt{a^2 + (b'b)^2}), b \neq 0 \\ -\frac{1}{2}c_0b'b, b = 0 \end{cases} = \begin{cases} \frac{1}{2}(a - \sqrt{a^2 + (b'b)^2}) - \frac{1}{2}c_0b'b, b \neq 0 \\ a(x), b = 0. \end{cases}$$

Теперь найдем R(x), то есть по сути построим функционал J. Для этого сравним полученное нами управление с выражением для управлениея из предыдущей теоремы.

$$Ip(x) = \frac{1}{2}R^{-1} \to R = \frac{1}{2}p^{-1}I$$

Отметим, что константа c_0 необходима для $\exists p^{-1}$. Ее всегда можно подобрать так, чтобы $p(x) \neq 0$. По предыдущей теореме получаем, что $u^0(x) = -p(x)b(x)$ — стабилизирующее управление для J при так введенном R(x).

Однако для того чтобы $u^0(x)$ было непрерывным в 0, необходимо, чтобы p(x) было непрерывным в 0. Получаем

Условие В.
$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x: 0 < ||x|| < \delta \quad \exists u: ||u|| < \varepsilon \ u$$

$$a(x) + b(x)u(x) < 0$$

Условие В называют еще свойством малых управлений (small control property).

Пример 6.

$$\dot{x} = x^3 + x^2 u$$
$$V(x) = \frac{1}{2}x^2$$

Будем действовать по изложенным выше схемам:

$$V_x = x \Rightarrow a(x) = x^4, b(x) = x^3$$

Легко видеть, что условия A и B выполнены.

$$p(x) = c_0 + \frac{x^4 + \sqrt{x^8 + x^{12}}}{x^6}.$$

$$u(x) = -p(x)b(x) = -p(x)x^3, u(0) = 0, R(x) = \frac{1}{2}p^{-1}$$

Упражнение 8. $Bunucamb \ l(x)$.

Выпишем уравнение Гамильтона-Якоби-Беллмана при R=1:

$$\min_{u} \{V_x x^3 + V_x x^2 u + l(x) + \frac{1}{2}u^2\} = 0$$

$$u = -V_x x^2$$

$$V_x x^3 - \frac{1}{2} V_x^2 x^4 + l(x) = 0$$

$$V_x = \frac{1}{x} + \sqrt{\frac{1}{x^2} + 2\frac{l(x)}{x^4}}$$

Выбран корень квадратного уравнения со знаком $+,\ m.к.$ для корня со знаком $-V_x\to\infty$ при $x\to0$

Упражнение 9. Посмотреть ассимптотику V_x при $x \to 0$.

Продолжим доказательство

Условие А можно записать как:

$$\inf \left(V_x' f(x) + V_x' g(x) u \right) < 0, \ x \neq 0 \tag{7.3}$$

А условие **B** как: $\forall \varepsilon > 0 \, \exists \delta > 0: \, \forall x: 0 < \|x\| < \delta \, \exists u: \, \|u\| < \varepsilon$ и

$$V'_r f(x) + V'_r g(x) u < 0, x \neq 0$$

Усилим условие A — получим условие A^{*}:

 \exists положительно определенная функция $\alpha(x): a(x) \leqslant -\alpha(x), \forall x: b(x) = 0, x \neq 0$ (7.4)

Если выполнено условие ${\bf B}$ и ${\bf A'}$, то можно рассмотреть еще один вид регуляторов:

$$u(x) = -p(x)b(x)$$
, где $p(x) = \begin{cases} c_0 + 2\frac{a(x) + \alpha(x)}{b'(x)b(x)}, \ a(x) + \alpha(x) > 0 \ (b(x) \neq 0) \\ c_0 \end{cases}$

Вычислим производную функции Ляпунова в силу системы при $\frac{u(x)}{2}$.

$$\frac{dV}{dt}\Big|_{\frac{u(x)}{2}} = a(x) - \frac{1}{2}p(x)b'(x)b(x) = a(x) - \begin{cases} \frac{c_0}{2}b'(x)b(x) + a(x) + \alpha(x) \\ \frac{c_0}{2}b'(x)b(x) \end{cases} =
= \begin{cases} -\frac{c_0}{2}b'(x)b(x) - \alpha(x) \\ -\frac{c_0}{2}b'(x)b(x) + a(x) \end{cases} \le -\frac{c_0}{2}b'(x)b(x) - \alpha(x)$$

Таким образом производная функции Ляпунова в силу системы оказывается определенно отрицательной. А значит, управление u(x) стабилизирует систему и имеет интервал устойчивости $(-1/2,\infty)$.

Упражнение 10. Показать, что u(x) — гладкая при $x \neq 0$ и непрерывна в нуле.