GEOMETRIE ŞI ALGEBRĂ LINIARĂ

Curs 4 Spaţii vectoriale. Bază

Voi începe cu o noțiune pe care am întâlnit-o în cursul trecut. Fie V un spațiu vectorial peste \mathbb{R} .

Definiția 1. Considerăm $S \subset V$. Numim combinație liniară de elemente din S orice sumă de tipul $\sum_{i \in I} \alpha_i v_i$, cu $\alpha_i \in \mathbb{R}$ și $v_i \in S$. Dacă $|I| = n < \infty$, atunci combinația liniară finită se scrie $\sum_{i=1}^n \alpha_i v_i = \alpha_1 v_1 + \ldots + \alpha_n v_n$.

Sistem de generatori este $S \subset V$ pentru care $\langle S \rangle = V$. Acest lucru înseamnă că orice $v \in V$, se scrie ca o combinație liniară de vectori din S.

Observația 2. Fie V un spațiu vectorial peste \mathbb{R} și $S \subset V$ un sistem de generatori pentru V.

- (1) Dacă $S \subset S' \Longrightarrow S'$ este sistem de generatori.
- (2) Dacă $S \subset \langle S' \rangle \Longrightarrow S'$ este sistem de generatori.
- **Exemplul 3.** (1) $\mathbb{R}[X]_n = \{a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \mid a_j \in \mathbb{R}\}$, spațiul vectorial al polinoamelor de grad cel mult n cu coeficienți reali. Orice polinom de grad cel mult n este o combinație liniară cu coeficienți reali de elemente din $\mathcal{B} = \{X^n, X^{n-1}, \ldots, X, 1\}$, deci \mathcal{B} este sistem de generatori pentru $\mathbb{R}[X]_n$.
 - (2) În particular pentru n = 3, $\mathbb{R}[X]_3 = \{a_3X^3 + a_2X^2 + a_1X + a_0 \mid a_j \in \mathbb{R}\}$, $S = \{X^3, X^2, X, 1\}$. De exemplu $X + 1 = 0X^3 + 0X^2 + 1X + 1$.

Definiția 4. $\{v_1, v_2, \dots, v_k\} \subset V$ se numesc vectori *liniar independenți* dacă și numai dacă orice combinație liniară nulă de acești vectori este trivială.

Definiția de mai sus se scrie: $\{v_1, v_2, \dots, v_k\}$ liniar independenți dacă și numai dacă $a_1v_1 + a_2v_2 + \dots a_kv_k = 0_V \Longrightarrow a_1 = a_2 = \dots = a_k = 0 \in \mathbb{R}$

- **Observația 5.** (1) $(\forall)v \in V \setminus \{0_V\}$ este liniar independent. $a \cdot v = 0_V \Rightarrow a = 0$.
 - (2) 0_V NU este liniar independent . Pentru $a \in \mathbb{R} \setminus \{0\} = \mathbb{R}^*, a \cdot 0_V = 0_V$. Mai mult 0_V nu face parte dintr-un sistem de vectori liniar independenți. Fie $\{v_1, v_2, \ldots, v_k, 0_V\}$ un sistem de vectori ce conține vectorul 0_V . Pentru $(\forall) a \in \mathbb{R}^*$ avem combinația liniară nulă $0v_1 + 0v_2 + \ldots + 0v_k + a0_V = 0_V$, în care avem un coeficient nenul.
 - (3) Dacă $F \subset V$ este o mulțime de vectori liniar independenți în V și $F' \subset F \Rightarrow F'$ este mulțime de vectori liniar independenți

Definiția 6. Numim bază a spațiului vectorial V un sistem de vectori $\{v_1, \ldots, v_p\}$ care este atât liniar independent cât și sistem de generatori pentru V.

Exemplul 7. (1) $S = \{X^3, X^2, X, 1\}$ este bază pentru $\mathbb{R}[X]_3$. Am văzut în **exemplul ??** (2) că S este sistem de generatori pentru $\mathbb{R}[X]_3$. Verificăm faptul că este sistem de vectori liniar independenți.

Considerăm $a_3X^3 + a_2X^2 + a_1X + a_01 = 0 \in \mathbb{R}[X]_3$. În membrul drept avem polinomul nul iar egalitatea înseamnă că cele două polinoame sunt identice, rezultă faptul că au aceeași coeficienți. Deci $a_j = 0, 0 \le j \le 3$.

(2)
$$\mathcal{M}_2(\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \}$$
 Considerăm $\mathcal{B} = \{ E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$. Arătăm că este bază pentru $\mathcal{M}_2(\mathbb{R})$.

Considerăm un element arbitrar din $\mathcal{M}_2(\mathbb{R})$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = aE_{11} + bE_{12} + cE_{21} + dE_{22}$. Deci \mathcal{B} este sistem de generatori.

Dacă
$$aE_{11}+bE_{12}+cE_{21}+dE_{22}=0$$
 $\mathcal{M}_{2}(\mathbb{R})=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow a=b=c=d=0.$

Aşadar \mathcal{B} este şi sistem liniar independent, şi deci bază.

(3) Considerăm acum $\mathcal{M}_{m,n}(\mathbb{R})$ şi $\mathcal{B} \subset \mathcal{M}_{m,n}(\mathbb{R})$, $\mathcal{B} = \{E_{ij}, 1 \leq i \leq m, 1 \leq j \leq n\}$, unde $E_{ij} = \begin{cases} 1 & \text{pe poziția (i, j)} \\ 0 & \text{în rest.} \end{cases}$ Se demonstrează ca şi în exemplul anterior că \mathcal{B} este bază pentru $\mathcal{M}_{m,n}(\mathbb{R})$.

Se pun două întrebări firești:

- 1. Dacă există bază a unui spațiu vectorial V.
- 2. Ce legătură este între două baze ale aceluiași spațiu vectorial?

Vis-a-vis de prima întrebare avem următoarea

Teorema 8. Fie V un spaţiu vectorial peste corpul \mathbb{R} , F un sistem de vectori liniar independenţi şi S un sistem de generatori pentru spaţiul vectorial V, cu $F \subset S$. Atunci există o bază \mathcal{B} a lui V a.î. $F \subset \mathcal{B} \subset S$.

Pentru orice spațiu vectorial există sisteme de vectori liniar independenți, de exemplu, $(\forall)v \neq 0_V$ (observația ?? (1)).

Corolarul 9. (1) F liniar independent în $V \Rightarrow (\exists)$ bază \mathcal{B} cu $F \subset \mathcal{B}$.

- (2) S sistem de generatori în $V \Rightarrow (\exists)$ bază \mathcal{B} cu $\mathcal{B} \subset S$.
- (3) Orice spațiu vectorial are o bază.

La a doua întrebare răspunsul este dat de

Teorema 10. Fie V un spaţiu vectorial şi \mathcal{B}_1 şi \mathcal{B}_2 baze pentru V. Atunci $|\mathcal{B}_1| = |\mathcal{B}_2|$ (există deci o bijecţie $f: \mathcal{B}_1 \to \mathcal{B}_2$).

Exemplul 11. $\mathbb{R}[X]_2 = \{a_2X^2 + a_1X + a_0 \mid a_j \in \mathbb{R}\}$. Avem baza $\mathcal{B}_1 = \{X^2, X, 1\}$. prezentată anterior. Să verificăm că $\mathcal{B}_2 = \{(X-1)^2, (X-1), 1\}$ este bază.

Sistem de generatori: exprimăm elementele din \mathcal{B}_1 ca nişte combinații liniare de vectorii din \mathcal{B}_2 și aplicăm **observația** ?? (2), pentru $S = \mathcal{B}_1$ și $S' = \mathcal{B}_2$.

Considerăm $X \in \mathcal{B}_1, X = 1 \cdot (X - 1) + 1 \cdot 1) \in \mathcal{B}_2 >$.

Similar $X^2 \in \mathcal{B}_2, X^2 = 1 \cdot (X-1)^2 + 2 \cdot (X-1) + 1 \cdot 1$, de unde $X^2 \in \mathcal{B}_2 >$. Din observația mai sus menționată rezultă \mathcal{B}_2 este sistem de generatori.

Sistem liniar independent: considerăm $a_1(X-1)^2 + a_2(X-1) + a_3 \cdot 1 = 0$, unde 0 este polinomul nul.

Identificând coeficienții termenilor $X^2, X, 1$ rezultă: $\begin{cases} a_1 = 0 \\ -2a_1 + a_2 = 0 \\ a_1 - a_2 + a_3 = 0 \end{cases} \Rightarrow$

 $a_1 = a_2 = a_3 = 0..$

Vedem în acest exemplu că $|B_1| = |\mathcal{B}_2| = 3$.

Pentru că oricare două baze într-un spațiu vectorial V au același cardinal putem da

Definiția 12. Fie V un spațiu vectorial. Numim dimensiunea spațiului vectorial V și notăm cu $\dim_{\mathbb{R}}(V) = \dim(V) = |\mathcal{B}|$, cardinalul unei baze \mathcal{B} a lui V.

Observația 13. (1) dim_{\mathbb{R}} 0 = 0. Baza spațiului vectorial 0 este ϕ (mulțimea vidă).

- (2) $\dim(\mathcal{M}_2(\mathbb{R})) = 4$, o bază fiind descrisă în **exemplul ??** (2). Pentru $\mathcal{M}_{m,n}(\mathbb{R})$ avem $\dim(\mathcal{M}_{m,n}(\mathbb{R})) = m \cdot n$, o bază fiind specificată în **exemplul ??** (3).
- (3) dim($\mathbb{R}[X]_2$) = 3, o bază fiind $\mathcal{B}_1 = \{X^2, X, 1\}$ sau $\mathcal{B}_2 = \{(X-1)^2, (X-1), 1\}$.

Definiția 14. Fie $\{V\}_{i\in I}$ subspații ale spațiului vectorial V. Notăm $\langle \bigcup_{i\in I} V_i \rangle$, subspațiul generat de reuniunea subspațiilor V_i , cu $\sum_{i\in I} V_i$ și numim acest subspațiu, suma subspațiilor V_i .

Deci
$$\sum_{i \in I} V_i = \{\underbrace{v_{i_1} + v_{i_2} + \ldots + v_{i_k}}_{\text{finit} \check{\mathbf{a}}} \mid v_{i_j} \in V_{i_j} \}.$$

Teorema 15 (teorema Grassmann). Fie V un spațiu vectorial și U_1 , U_2 subspații ale sale. Atunci $\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$.

Observația 16. Acest rezultat este o manifestare a principiului includerii-excluderii. Acesta este: dacă A, B sunt mulțimi finite, atunci $|A \cup B| = |A| + |B| - |A \cap B|$. În demonstrația teoremei A și B sunt baze pentru U_1 și respectiv U_2 .

Morfisme de spații vectoriale

Definiția 17. Se numește morfism de spații vectoriale $f:V\longrightarrow W$ o funcție omogenă și aditivă.

- aditivă: $f(v_1 + v_2) = f(v_1) + f(v_2)$, pentru $(\forall)v_1, v_2 \in V$.
- omogenă: $f(\alpha v) = \alpha f(v)$ pentru $(\forall) \alpha \in \mathbb{R}$ și $(\forall) v \in V$.

Propoziția 18. $f: V \longrightarrow W$ este morfism de spații vectoriale dacă și numai dacă pentru $(\forall)\alpha, \beta \in \mathbb{R}$ și $(\forall)v_1, v_2 \in V$ avem $f(\alpha v_1 + \beta v_2) = \alpha f(v_1) + \beta f(v_2)$.

Observația 19. $f: V \longrightarrow W$ morfism, atunci $f(0_V) = 0_W$.

Exemplul 20. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}, f\left(\begin{array}{c} x \\ y \end{array}\right) = x + y$. Să demonstrăm că este morfism.

Fie
$$v_1, v_2 \in \mathbb{R}^2$$
 şi $\alpha, \beta \in \mathbb{R}$. Avem $f(\alpha v_1 + \beta v_2) = f(\alpha \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \beta \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}) = f(\alpha \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \beta \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}) = f(\alpha \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \beta \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}) = \alpha x_1 + \beta x_2 + \alpha y_1 + \beta y_2 = \alpha (x_1 + y_1) + \beta (x_2 + y_2) = \alpha \cdot f(\alpha \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \beta \cdot f(\alpha y_1 + \beta y_2) = \alpha f(v_1) + \beta f(v_2).$

Fie $f:V\longrightarrow W$ un morfism de spații vectoriale reale și $U\subset V$ un subspațiu vectorial. Atunci f(U) este subspațiu în W.

În particular $\text{Im}(f) = f(V) = \{f(v) | v \in V\}$, imaginea morfismului f este subspațiu în W.

Demonstrație: Fie $w_1, w_2 \in \text{Im}(f) \Leftrightarrow (\exists) \ v_1, v_2 \in V \text{ a.i.} \ f(v_1) = w_1 \text{ și } f(v_2) = w_2.$ Fie $\alpha, \beta \in \mathbb{R}$. $\alpha w_1 + \beta w_2 = \alpha f(v_1) + \beta f(v_2) = f(\alpha v_1 + \beta v_2)$. Ultima egalitate are loc pentru că f este morfism. $\alpha v_1 + \beta v_2 \in V$ și astfel am arătat că $\alpha w_1 + \beta w_2 \in \text{Im}(f)$, adică Im(f) este subspațiu în W.

Dacă $Y \subset W$ este un subspațiu în W, atunci $f^{-1}(Y) = \{v \in V \mid f(v) \in Y\}$ este subspațiu vectorial în V.

În particular $\text{Ker}(f) = f^{-1}(0_W) = \{v \in V | f(v) = 0_W\}$, nucleul morfismului f, este subspaţiu în V. Demonstrăm acest lucru.

Demonstrație: Fie $v_1, v_2 \in \text{Ker}(f)$ şi $\alpha, \beta \in \mathbb{R}$. $f(\alpha v_1 + \beta v_2) = \alpha f(v_1) + \beta f(v_2) = \alpha 0_W + \beta 0_W = 0_W \Leftrightarrow \alpha v_1 + \beta v_2 \in \text{Ker}(f)$.

Teorema 21 (rang-defect). Fie $f: V \longrightarrow W$ morfism de spaţii vectoriale finit dimensionale. Atunci $\dim(V) = \dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f))$.

 $\dim(\operatorname{Im}(f))$ se numește rangul aplicației f, și $\dim(\operatorname{Ker}(f))$ defectul lui f.

П

Demonstrație: $\operatorname{Ker}(f) \subset V$. $\dim(V) < \infty \Rightarrow \dim(\operatorname{Ker}(f)) < \infty$. Fie $\{v_1, v_2, \dots, v_k\}$ bază pentru $\operatorname{Ker}(f)$. Completăm la o bază pentru V. Fie $\{v_1, \dots, v_k, u_{k+1}, \dots, u_n\}$ această bază. Demonstrăm că $\{f(u_{k+1}), f(u_{k+2}), \dots, f(u_n)\}$ este bază pentru $\operatorname{Im}(f)$. Considerăm $w \in \operatorname{Im}(f)$ arbitrar. $(\exists)v \in V$ a.î. f(v) = w.

Dar $\{v_1, \ldots, v_k, u_{k+1}, \ldots, u_n\}$ este bază pentru V, deci $(\exists)\alpha_1, \alpha_2, \ldots, \alpha_n$ a.î. $v = \alpha_1 v_1 + \ldots + \alpha_k v_k + \alpha_{k+1} u_{k+1} + \ldots + \alpha_n u_n$.

Atunci $w = f(v) = f(\alpha_1 v_1 + \ldots + \alpha_k v_k + \alpha_{k+1} u_{k+1} + \ldots + \alpha_n u_n) = \alpha_1 f(v_1) + \ldots + \alpha_k f(v_k) + \alpha_{k+1} f(u_{k+1}) + \ldots + \alpha_n f(u_n) = \alpha_{k+1} f(u_{k+1}) + \ldots + \alpha_n f(u_n)$, pentru că $v_1, \ldots, v_k \in \text{Ker}(f)$. Deci $\{f(u_{k+1}), f(u_{k+2}), \ldots, f(u_n)\}$ este sistem de generatori. Considerăm acum $\beta_{k+1} f(u_{k+1}) + \ldots + \beta_n f(u_n) = 0_W \Leftrightarrow f(\beta_{k+1} u_{k+1} + \ldots + \beta_n u_n) = 0_W \Leftrightarrow \beta_{k+1} u_{k+1} + \ldots + \beta_n u_n \in \text{Ker}(f)$. $\{v_1, \ldots, v_k\}$ bază în Ker(f). Deci $(\exists) \gamma_1, \ldots, \gamma_k \in \mathbb{R}$ a.î. $\beta_{k+1} u_{k+1} + \ldots + \beta_n u_n = \gamma_1 v_1 + \ldots + \gamma_k v_k \Leftrightarrow \gamma_1 v_1 + \ldots + \gamma_k v_k - \beta_{k+1} u_{k+1} - \ldots - \beta_n u_n = 0_V \Rightarrow \gamma_1 = \ldots = \gamma_k = \beta_{k+1} = \ldots = \beta_n = 0$. Ultima implicație are loc datorită faptului că $\{v_1, \ldots, v_k, u_{k+1}, \ldots, u_n\}$ este bază în V. Deci $\{f(u_{k+1}), f(u_{k+2}), \ldots, f(u_n)\}$ este sistem liniar independent.