

Contrôle continu de statique

Exosquelette Atalante

L'entreprise Wandercraft a développé l'exosquelette *Atalante* pour offrir la possibilité à ses utilisateurs de se lever, s'asseoir, marcher dans toutes les directions et de monter quelques marches en toute autonomie et sans l'aide des mains.

L'exosquelette détecte l'impulsion et l'inclinaison du buste de l'utilisateur, afin d'enclencher la marche dans la direction souhaitée.

Chaque jambe est composée trois solides : le fémur (2) ou (2'), le tibia (3) ou (3') et le pied (4) ou (4'). Ces solides sont reliés par des liaisons pivots situées au genou (point B) et à la cheville (point C). Le bassin (1) est également en liaison pivot à la hanche (point A) avec le fémur (2) ou (2'). Le point I représente la position théorique du nombril de l'usager.

Passage de la position assise à la position debout

La phase où la personne passe de la position assise (position d'installation dans l'exosquelette) à la position debout est importante. Le but de cette partie est de déterminer les lois de commande des actionneurs permettant le passage assis/debout.

Pour cela, nous allons utiliser le modèle cinématique présenté ci-dessous.

1) A partir du schéma cinématique ci-dessus, réaliser le graphe de liaison du système faisant intervenir les solides 0,

1, 2, 3,4 (préciser le nom, le centre et l'axe principal de chaque liaison)

Paramètres géométriques

Solide	Repères ou	Paramètres géométriques	Masses
	Bases associés		
Sol (0)	$B_0(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$		
Bassin (1)	$R_1(A, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z})$	$\overrightarrow{AI} = L_1. \overrightarrow{x_1}$ $\overrightarrow{AG_1} = L_{G1}. \overrightarrow{x_1}$	Masse du bassin + Personne s'appliquant sur une
		$\theta_1 = (\overrightarrow{x_2}, \overrightarrow{x_1}) = (\overrightarrow{y_2}, \overrightarrow{y_1})$	jambe: $m_1 = 32 \text{ kg}$
Fémur (2)	$R_2(B,\overrightarrow{x_2},\overrightarrow{y_2},\overrightarrow{z})$	$\overrightarrow{BA} = L_2 \cdot \overrightarrow{x_2}$	Masse Fémur + Personne :
		$\overrightarrow{BG_2} = \frac{L2}{2} \cdot \overrightarrow{x_2}$	$m_2 = 14 \text{ kg}$
		$\theta_2 = (\overrightarrow{x_3}, \overrightarrow{x_2}) = (\overrightarrow{y_3}, \overrightarrow{y_2})$	
Tibia (3)	$R_3(C,\overrightarrow{x_3},\overrightarrow{y_3},\overrightarrow{z})$	$\overrightarrow{CB} = L_3. \overrightarrow{x_3}$	Masse tibia + Personne :
		$\overrightarrow{CG_3} = \frac{L3}{2} \cdot \overrightarrow{x_3}$	$m_3 = 9kg$
		$\theta_2 = (\vec{x}, \overrightarrow{x_3}) = (\vec{y}, \overrightarrow{y_3})$	
Pied (4)	$R_4(C, \vec{x}, \vec{y}, \vec{z})$	$\overrightarrow{CA} = x(t) \cdot \overrightarrow{x} + y(t) \cdot \overrightarrow{y}$	
		$\overrightarrow{O_1C} = a.\overrightarrow{x} + L_4.\overrightarrow{y}$	
		$\overrightarrow{O_2C} = -b.\overrightarrow{x} + L_4.\overrightarrow{y}$	

Modélisation des liaisons

Liaisons	Définition	Figures de changements de bases
Sol(0)/ Pied (4)	Sphère plan de normale (o_1, \vec{y}) Sphère plan de normale (o_2, \vec{y})	\vec{y}_1 \vec{y}_2 θ_3 \vec{x}_1 \vec{x}_2
Pied(4) / Tibia(3)	Pivot d'axe (\mathbf{C} , $\overrightarrow{\mathbf{z}}$)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Tibia(3) / Fémur(2)	Pivot d'axe ($m{B}$, $ec{m{z}}$)	θ_3
Fémur(2) / Bassin(1)	Pivot d'axe (A , \vec{z})	\vec{z} \vec{x}

Hypothèses:

- Les liaisons sont supposées parfaites
- Le problème est plan, dans le plan (\vec{x}, \vec{y}) .
- On notera g l'accélération de la pesanteur avec g = 9.81 m/s²
- 2) En écrivant la fermeture géométrique entre les points A, B, C, puis en la projetant sur Ox et Oy, déterminer les relations entre x(t), y(t) et les angles θ_2 , θ_3 et les paramètres géométriques

Détermination de la position initiale assise avant le début du mouvement de redressement.

<u>Objectif</u>: Déterminer la position du pied pour éviter le basculement en début de mouvement de mise en position debout; mise en évidence d'un besoin de basculement du tronc vers l'avant.

Au début de la phase de redressement, il existe un risque de basculement vers l'arrière de la personne installée dans l'exosquelette. On cherche la position limite des pieds pour qu'il n'y ait pas basculement. A partir de cette position limite des pieds, on détermine la position générale de l'exosquelette en début de phase de redressement.

On rappelle que géométriquement on a défini : $\overrightarrow{CA} = x(t).\overrightarrow{x} + y(t).\overrightarrow{y}$

Pour cette partie on prend y(t) constant avec $y(t) = Y_0 = 400$ mm.

On supposera le solide (1) vertical donc que $\overrightarrow{x_1} = \overrightarrow{y}$

Le contact entre l'exosquelette et la chaise est rompu (pas d'action mécanique transmise).

On cherche à régler x(t) pour cette position on note $x(t) = X_0$ (Figure ci-dessous).

À noter : X_0 est pris en valeur algébrique, X_0 est négatif sur la figure

On donne les torseurs d'actions mécaniques des liaisons sphère/plan en O₁ et O₂.

$$\{\mathcal{T}_{0\to 4}^1\} = \left\{\begin{matrix} Y_{01}, y \\ \overrightarrow{0} \end{matrix}\right\} \text{ et } \{\mathcal{T}_{0\to 4}^2\} = \left\{\begin{matrix} Y_{02}, y \\ \overrightarrow{0} \end{matrix}\right\}$$

- 3) En prenant en compte le fait que la personne dans l'exosquelette peut basculer vers l'arrière lorsque le contact est rompu avec la chaise, donner la condition de non basculement sur l'effort Y₀₂.
- 4) Isoler l'ensemble { 1 + 2 + 3 +4 } et faire le bilan des actions mécaniques qui lui sont appliquées
- **5)** Appliquer le principe fondamental de la statique en O₁, puis déterminer l'effort Y₀₂ en fonction des masses m₁, m₂, m₃ et des données géométriques.(on précisera les conditions d'application du principe fondamental de la statique)

La courbe représentant l'effort Y_{02} .en fonction de la position initiale X_0 des pieds a été tracé sur les graphiques donnés ci-après :

6) A partir de ces graphiques déterminer la position initiale limite X_0 à donner aux pieds et l'angle θ_3 correspondant pour qu'il n'y ait pas basculement.

Pour des raisons pratiques au niveau de la mise en position debout, l'angle θ_3 doit être au minimum égal à 70° en début de mouvement.

7) En prenant ce critère en compte, y-a-t-il un risque de basculement?

Pour éviter ce problème, le corps de la personne solidaire du bassin (1) de l'exosquelette est penché vers l'avant en position initiale de redressement .

Finalement la position initiale est définie par : $X_0 = -273$ mm, $Y_0 = 400$ mm, $\theta_3 = 70^\circ$, $\theta_2 = 108.5^\circ$ et $\theta_1 = -106.5^\circ$.

Rappel:

Le torseur des actions transmissibles du solide i sur le solide j par la liaison entre i et j au point A sera noté :

$$\left\{\mathcal{T}_{A(i\rightarrow j)}\right\} = A \left\{ \begin{array}{c} \overrightarrow{R_{A\, \iota\rightarrow j}} \\ \overrightarrow{M_{A\, \iota\rightarrow j}} \end{array} \right\} = A \left\{ \begin{array}{c} \overrightarrow{R_{A\, \iota\rightarrow j}} &= X_{A\, ij}.\overrightarrow{x} + Y_{A\, ij}.\overrightarrow{y} + Z_{A\, ij}.\overrightarrow{z} \\ \overrightarrow{M_{A\, \iota\rightarrow j}} &= L_{A\, ij}.\overrightarrow{x} + M_{A\, ij}.\overrightarrow{y} + N_{A\, ij}.\overrightarrow{z} \end{array} \right\}_{(x,y,z)} = A \left\{ \begin{array}{c} X_{A\, ij} & L_{A\, ij} \\ Y_{A\, ij} & M_{A\, ij} \\ Z_{A\, ij} & N_{A\, ij} \end{array} \right\}_{(x,y,z)}$$