COOPERATIVE GAME THEORY

RICHARD MUŽÍK

RICHARD@IMUZIK.CZ

APRIL 21, 2023

INTRODUCTION

Cooperative game

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v \colon 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

 \blacksquare $S \subseteq N$... coalition

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- $S \subseteq N$... coalition
- \blacksquare v(S) ... value of coalition

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- \blacksquare Γ^n ... set of *n*-person cooperative games
- \blacksquare $S \subseteq N$... coalition
- \blacksquare v(S) ... value of coalition

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- \blacksquare Γ^n ... set of *n*-person cooperative games
- \blacksquare $S \subseteq N$... coalition
- \blacksquare v(S) ... value of coalition
- \blacksquare usually $N = \{1, \ldots, n\}$

•

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- \blacksquare Γ^n ... set of *n*-person cooperative games
- \blacksquare $S \subseteq N$... coalition
- \blacksquare v(S) ... value of coalition
- \blacksquare usually $N = \{1, \ldots, n\}$
 - \blacktriangleright (S, v_S) is **subgame** (N, v):

 - $\mathbf{v}_{S}(T) := v(T) \text{ pro } T \subseteq S$

•

Goal: Find the best connection of players to a source

Goal: Find the best connection of players to a source

■ $N = N' \cup \{o\}$... set of players + source

Goal: Find the best connection of players to a source

- $N = N' \cup \{o\}$... set of players + source
- \blacksquare c_{ij} ... cost of connecting i,j

Goal: Find the best connection of players to a source

- $N = N' \cup \{o\}$... set of players + source
- $c_{ij} ... cost of connecting i, j$
- solution: a network, where each $i \in N$ is connected to 0 with minimal sum of costs

Money first!

Money first!

- Payoff vector $\mathbf{x} \in \mathbb{R}^n$
 - $ightharpoonup x_i$ represents payoff of player i

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **individually rational**, if $x_i \geq v(i)$

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \geq v(i)$
 - ▶ players prefer x_i over v(i)

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \geq v(i)$
 - ightharpoonup players prefer x_i over v(i)
- $\mathcal{I}^*(v) = \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$... preimputation
 - $ightharpoonup x(S) := \sum_{i \in S} x_i$

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \geq v(i)$
 - ightharpoonup players prefer x_i over v(i)
- $\mathcal{I}^*(v) = \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$... preimputation ► $x(S) := \sum_{i \in S} x_i$
- $\mathcal{I}(v) = \{x \in \mathcal{I}^*(v) \mid \forall i \in \mathbb{N} : x_i \geq v(i)\}$... imputation

Set of payoff vectors satisfying further properties are solution concepts

- Set of payoff vectors satisfying further properties are solution concepts
- Can reflect payoff distribution, which is

- Set of payoff vectors satisfying further properties are solution concepts
- Can reflect payoff distribution, which is
 - ► ...fair...
 - ► ...non-discriminatory...
 - ► ...stable (players will accept it)...
 - **...**

Formally:

Formally:

1. sets of payoff vectors

Formally:

- 1. sets of payoff vectors
 - $\blacktriangleright \ \Sigma(v) = \{x \in \mathbb{R}^n \mid \dots \}$

Formally:

- 1. sets of payoff vectors
 - $\blacktriangleright \ \Sigma(v) = \{x \in \mathbb{R}^n \mid \dots \}$
- 2. functions on games

Formally:

- 1. sets of payoff vectors
 - $\blacktriangleright \ \Sigma(v) = \{x \in \mathbb{R}^n \mid \dots \}$
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

We distringush

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $\blacktriangleright \ \Sigma \colon \Gamma^n \to 2^{\mathbb{R}^n}$

We distringush

1. single-point solution concepts

2. multi-point solution concepts

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

We distringush

- 1. single-point solution concepts
 - ightharpoonup as a set: $\Sigma(v) = \{x\}$
 - we prefer: $\Sigma(v) = x$
- 2. multi-point solution concepts

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

We distringush

- 1. single-point solution concepts
 - ightharpoonup as a set: $\Sigma(v) = \{x\}$
 - \blacksquare we prefer: $\Sigma(v) = x$
 - ▶ as a function: $\Sigma \colon \Gamma^n \to \mathbb{R}$
- 2. multi-point solution concepts

MULTI-POINT SOLUTION CONCEPT: THE CORE

Idea: Payoff distribution leads to cooperation...

Idea: Payoff distribution leads to cooperation...

The core

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \left\{ x \in \mathcal{I}^*(v) \mid x(S) \geq v(S), \forall S \subseteq N \right\}.$$

■ assumption: homo economicus

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals
- \blacksquare v(N) ... value, which is distributed among players

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - ► model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals
- \blacksquare v(N) ... value, which is distributed among players
- $x(S) > v(S) \implies$ coalition S does not leave N

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - ► model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals
- \blacksquare v(N) ... value, which is distributed among players
- $x(S) > v(S) \implies$ coalition S does not leave N
 - \blacktriangleright would lead to (S, v_S)
 - \triangleright v(S) ... distributed value

The core

For a cooperative game (N, v), the **core** C(v) is

$$C(\mathbf{v}) = \{ \mathbf{x} \in \mathcal{I}^*(\mathbf{v}) \mid \mathbf{x}(\mathbf{S}) \geq \mathbf{v}(\mathbf{S}), \forall \mathbf{S} \subseteq \mathbf{N} \}.$$

The core

For a cooperative game (N, v), the **core** C(v) is

$$C(\mathbf{v}) = \{ \mathbf{x} \in \mathcal{I}^*(\mathbf{v}) \mid \mathbf{x}(\mathbf{S}) \ge \mathbf{v}(\mathbf{S}), \forall \mathbf{S} \subseteq \mathbf{N} \}.$$

Reminder

Nash equilibrium

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(\mathbf{v}) = \{ \mathbf{x} \in \mathcal{I}^*(\mathbf{v}) \mid \mathbf{x}(\mathbf{S}) \ge \mathbf{v}(\mathbf{S}), \forall \mathbf{S} \subseteq \mathbf{N} \}.$$

Reminder

Nash equilibrium

Strategy profile $(s_1, ..., s_n)$ is **Nash equilibrium**, if it holds for every player i,

$$v_i(s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) \ge v_i(s_1, \dots, s_{i-1}, t_i, s_{i+1}, \dots, s_n)$$

for every $t_i \in S_i$.

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

There are cooperative games (N, v) with empty core.

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

There are cooperative games (N, v) with empty core.

■ Non-esential games

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

There are cooperative games (N, v) with empty core.

- Non-esential games
 - $ightharpoonup v(N) < \sum_{i \in N} v(i)$

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

There are cooperative games (N, v) with empty core.

- Non-esential games
 - $ightharpoonup v(N) < \sum_{i \in N} v(i)$
- Let $x \in C(v)$

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

There are cooperative games (N, v) with empty core.

- Non-esential games
 - $ightharpoonup v(N) < \sum_{i \in N} v(i)$
- Let $x \in C(v)$
 - $ightharpoonup x(N) = v(N) < \sum_{i \in N} \le x(N)$

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

There are cooperative games (N, v) with empty core.

- Non-esential games
 - $ightharpoonup v(N) < \sum_{i \in N} v(i)$
- Let $x \in C(v)$

$$ightharpoonup x(N) = v(N) < \sum_{i \in N} \le x(N)$$

a x does not exist $\implies C(v) = \emptyset$

Question: When is the core non-empty?

Question: When is the core non-empty? We can encode the core as linear program (P) and determine the dual program (D)

Question: When is the core non-empty? We can encode the core as linear program (P) and determine the dual program (D)

Question: When is the core non-empty?
We can encode the core as linear program (P) and determine the dual program (D)

Question: When is the core non-empty?

We can encode the core as linear program (P) and determine the dual program (D)

$$\blacksquare (P) = \begin{cases} min_{x \in \mathbb{R}^n} & x(N) \\ \text{subject to} & x(S) \ge v(S) \text{ for } S \subseteq N \end{cases}$$

We derive the weak Bondereva-Shapley theorem

Weak Bondareva-Shapley theorem

Cooperative game (N, v) has non-empty core if and only if

$$v\left(N\right) \geq \sum_{S \subset N} y_S v\left(S\right) \text{ for all feasible } y \in \mathbb{R}^{(2^n-1)}$$

Idea: Divide the profit in a fair way...

Idea: Divide the profit in a fair way...

The Shapley value

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

$$\blacksquare$$
 $v(S \cup i) - v(S)$

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)

$$= \frac{s!(n-s-1)!}{n!}$$

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)
- $= \frac{s!(n-s-1)!}{n!}$
 - weights reflecting different sizes of coalitions

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)
- $= \frac{s!(n-s-1)!}{n!}$
 - weights reflecting different sizes of coalitions
- \blacksquare $\sum_{S\subseteq N\setminus i}$

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)
- $\frac{s!(n-s-1)!}{n!}$
 - ▶ weights reflecting different sizes of coalitions
- $\blacksquare \sum_{S \subseteq N \setminus i}$
 - ▶ sum of all marginal contributions of i

12

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_{i}(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subset N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

■ The players agree om the following procedure:

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- The players agree om the following procedure:
 - 1. Form the grandcoalition N.

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subset N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- The players agree om the following procedure:
 - 1. Form the grandcoalition N.
 - 2. Enter the the coalition individually and randomly.

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subset N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- The players agree om the following procedure:
 - 1. Form the grandcoalition N.
 - 2. Enter the the coalition individually and randomly.
 - 3. When player *i* enters coalition *S*, he receives $v(S \cup i) v(S)$.

SINGLE-POINT SOLUTION CONCEPT: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- The players agree om the following procedure:
 - 1. Form the grandcoalition N.
 - 2. Enter the the coalition individually and randomly.
 - 3. When player *i* enters coalition *S*, he receives $v(S \cup i) v(S)$.
- \blacksquare s! (n-s-1)! ... number of situations, in which i enters S

SINGLE-POINT SOLUTION CONCEPT: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- The players agree om the following procedure:
 - 1. Form the grandcoalition N.
 - 2. Enter the the coalition individually and randomly.
 - 3. When player *i* enters coalition *S*, he receives $v(S \cup i) v(S)$.
- \blacksquare s! (n-s-1)! ... number of situations, in which i enters S
- \blacksquare n! ... number of all possible ways to construct N

SINGLE-POINT SOLUTION CONCEPT: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- The players agree om the following procedure:
 - 1. Form the grandcoalition N.
 - 2. Enter the the coalition individually and randomly.
 - 3. When player *i* enters coalition S, he receives $v(S \cup i) v(S)$.
- \blacksquare s! (n-s-1)! ... number of situations, in which i enters S
- \blacksquare n! ... number of all possible ways to construct N
- lacktriangledown $\phi_i(v)$... the average value of player *i*'s payment

It is possible to define it using its properties...

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

- 1. (AXIOM OF EFFICIENCE)
- 2. (AXIOM OF SYMMETRY)
- 3. (AXIOM OF NULL PLAYER)
- 4. (AXIOM OF ADDITIVITY)

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

- 1. (AXIOM OF EFFICIENCE)
 - $ightharpoonup \sum_{i \in N} f_i(v) = v(N)$
- 2. (AXIOM OF SYMMETRY)
- 3. (AXIOM OF NULL PLAYER)
- 4. (AXIOM OF ADDITIVITY)

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

- 1. (AXIOM OF EFFICIENCE)
 - $ightharpoonup \sum_{i \in N} f_i(v) = v(N)$
- 2. (AXIOM OF SYMMETRY)
 - $\blacktriangleright \ \forall i,j \in \mathsf{N} \ (\forall \mathsf{S} \subseteq \mathsf{N} \setminus \{i,j\} : \mathsf{v}(\mathsf{S} \cup i) = \mathsf{v}(\mathsf{S} \cup j)) \implies f_i(\mathsf{v}) = f_j(\mathsf{v})$
- 3. (AXIOM OF NULL PLAYER)
- 4. (AXIOM OF ADDITIVITY)

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

- 1. (AXIOM OF EFFICIENCE)
 - $\blacktriangleright \ \sum_{i\in N} f_i(v) = v(N)$
- 2. (AXIOM OF SYMMETRY)

$$\blacktriangleright \ \forall i,j \in \mathsf{N} \ (\forall \mathsf{S} \subseteq \mathsf{N} \setminus \{i,j\} : \mathsf{v}(\mathsf{S} \cup i) = \mathsf{v}(\mathsf{S} \cup j)) \implies f_i(\mathsf{v}) = f_j(\mathsf{v})$$

- 3. (AXIOM OF NULL PLAYER)
 - $ightharpoonup \forall i \in N \ (\forall S \subseteq N : v(S) = v(S \cup i)) \implies f_i(v) = 0$
- 4. (AXIOM OF ADDITIVITY)

. 2

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

- 1. (AXIOM OF EFFICIENCE)
 - $ightharpoonup \sum_{i \in N} f_i(v) = v(N)$
- 2. (AXIOM OF SYMMETRY)

$$\blacktriangleright \forall i,j \in \mathsf{N} \ (\forall \mathsf{S} \subseteq \mathsf{N} \setminus \{i,j\} : \mathsf{v}(\mathsf{S} \cup i) = \mathsf{v}(\mathsf{S} \cup j)) \implies f_i(\mathsf{v}) = f_j(\mathsf{v})$$

- 3. (AXIOM OF NULL PLAYER)
 - $ightharpoonup \forall i \in N \ (\forall S \subseteq N : v(S) = v(S \cup i)) \implies f_i(v) = 0$
- 4. (AXIOM OF ADDITIVITY)
 - \triangleright $v, w \in \Gamma^n : f(v+w) = f(v) + f(w)$

1. We fix one construction of N

- 1. We fix one construction of N
 - ▶ $\sigma \in \Sigma_n$... represent it by permutation
 - $ightharpoonup \sigma(i)$... the order, in which player i enters the coalition

- 1. We fix one construction of N
 - ▶ $\sigma \in \Sigma_n$... represent it by permutation
 - $ightharpoonup \sigma(i)$... the order, in which player i enters the coalition
- 2. We compute player's payments

- 1. We fix one construction of N
 - ▶ $\sigma \in \Sigma_n$... represent it by permutation
 - $ightharpoonup \sigma(i)$... the order, in which player i enters the coalition
- 2. We compute player's payments
 - $ightharpoonup m_{\rm v}^{\sigma}$... marginal vector
 - $(m_{v}^{\sigma})_{i} = v (S_{\sigma(i)} \cup i) v (S_{\sigma(i)})$
 - $S_{\sigma(i)} = \{j \in N \mid \sigma(j) < \sigma(i)\}$... predecessors of i under σ

- 1. We fix one construction of N
 - ▶ $\sigma \in \Sigma_n$... represent it by permutation
 - $ightharpoonup \sigma(i)$... the order, in which player i enters the coalition
- 2. We compute player's payments
 - $ightharpoonup m_{\rm v}^{\sigma}$... marginal vector
 - $(m_{v}^{\sigma})_{i} = v \left(S_{\sigma(i)} \cup i\right) v \left(S_{\sigma(i)}\right)$ $S_{\sigma(i)} = \{j \in N \mid \sigma(j) < \sigma(i)\} \text{ ... predecessors of } i \text{ under } \sigma$
- 3. We consider all combinations

- 1. We fix one construction of N
 - ▶ $\sigma \in \Sigma_n$... represent it by permutation
 - $ightharpoonup \sigma(i)$... the order, in which player i enters the coalition
- 2. We compute player's payments
 - $ightharpoonup m_{\rm v}^{\sigma}$... marginal vector
 - $(m_{v}^{\sigma})_{i} = v \left(S_{\sigma(i)} \cup i\right) v \left(S_{\sigma(i)}\right)$ $S_{\sigma(i)} = \{j \in N \mid \sigma(j) < \sigma(i)\} \text{ ... predecessors of } i \text{ under } \sigma(i) = i$
- 3. We consider all combinations
 - ▶ $W(v) = conv \{ m_v^{\sigma} \mid \sigma \in \Sigma_n \}$... Webber set

- 1. We fix one construction of N
 - ▶ $\sigma \in \Sigma_n$... represent it by permutation
 - $ightharpoonup \sigma(i)$... the order, in which player i enters the coalition
- 2. We compute player's payments
 - $ightharpoonup m_{\rm v}^{\sigma}$... marginal vector
 - $(m_{v}^{\sigma})_{i} = v \left(S_{\sigma(i)} \cup i\right) v \left(S_{\sigma(i)}\right)$ $S_{\sigma(i)} = \{j \in N \mid \sigma(j) < \sigma(i)\} \text{ ... predecessors of } i \text{ under } \sigma$
- 3. We consider all combinations
 - ▶ $W(v) = conv \{ m_v^{\sigma} \mid \sigma \in \Sigma_n \}$... Webber set
- It holds: $\phi(\mathbf{v}) = \sum_{\sigma \in \Sigma_n} \frac{m_{\mathbf{v}}^{\sigma}}{n!}$

- 1. We fix one construction of N
 - ▶ $\sigma \in \Sigma_n$... represent it by permutation
 - $ightharpoonup \sigma(i)$... the order, in which player i enters the coalition
- 2. We compute player's payments
 - $ightharpoonup m_{\rm v}^{\sigma}$... marginal vector
 - $(m_{v}^{\sigma})_{j} = v \left(S_{\sigma(i)} \cup i \right) v \left(S_{\sigma(i)} \right)$ $S_{\sigma(i)} = \{ j \in N \mid \sigma(j) < \sigma(i) \} ... \text{ predecessors of } i \text{ under } \sigma$
- 3. We consider all combinations
 - ▶ $W(v) = conv \{ m_v^{\sigma} \mid \sigma \in \Sigma_n \}$... Webber set
- It holds: $\phi(\mathbf{v}) = \sum_{\sigma \in \Sigma_n} \frac{m_{\mathbf{v}}^{\sigma}}{n!}$

Relation between the Shapley value and the Webber set

For a cooperative game (N, v) it holds:

$$\phi(\mathsf{v}) \in \mathcal{W}(\mathsf{v})$$

Moreover, $\phi(v)$ is the center of gravity of W(v).

Provable by induction:

The Weber set contains the core

For every cooperative game (N, v), it holds $C(v) \subseteq W(v)$

■ monotonic game

$$(S \subseteq T \subseteq N) (v(S) \le v(T))$$

■ monotonic game

$$(S \subseteq T \subseteq N) (v(S) \le v(T))$$

■ superadditive game

$$(S,T\subseteq N,S\cap T=\emptyset)\left(v(S)+v(T)\leq v\left(S\cup T\right)\right)$$

■ monotonic game

$$(S \subseteq T \subseteq N) (v(S) \le v(T))$$

■ superadditive game

$$(S, T \subseteq N, S \cap T = \emptyset) (v(S) + v(T) \le v(S \cup T))$$

convex game

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

■ monotonic game

$$(S \subseteq T \subseteq N) (v(S) \le v(T))$$

■ superadditive game

$$(S, T \subseteq N, S \cap T = \emptyset) (v(S) + v(T) \le v(S \cup T))$$

convex game

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

■ essential game

$$v(N) \ge \sum_{i \in N} v(i)$$

■ monotonic game

$$(S \subseteq T \subseteq N) (v(S) \le v(T))$$

■ superadditive game

$$(S, T \subseteq N, S \cap T = \emptyset) (v(S) + v(T) \le v(S \cup T))$$

convex game

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

■ essential game

$$v(N) \geq \sum_{i \in N} v(i)$$

■ balanced game

$$\mathcal{C}(v) \neq \emptyset$$

Question: What are the relations between them?

Question: What are the relations between them?

Balanced and essential

Balanced cooperative games are essential.

Question: What are the relations between them?

Balanced and essential

Balanced cooperative games are essential.

 \blacksquare (N, v) is essential

Question: What are the relations between them?

Balanced and essential

Balanced cooperative games are essential.

- \blacksquare (N, v) is essential

Question: What are the relations between them?

Balanced and essential

Balanced cooperative games are essential.

- \blacksquare (N, v) is essential
- \blacksquare (N, v) is balanced

Question: What are the relations between them?

Balanced and essential

Balanced cooperative games are essential.

- \blacksquare (N, v) is essential
 - $\blacktriangleright \ \mathcal{I}(v) = \{x \in \mathbb{R}^n \mid x(N) = v(N) \land \forall i \in N : x_i \ge v(i)\} \neq \emptyset$
- \blacksquare (N, v) is balanced
 - $\blacktriangleright \ \emptyset \neq \mathcal{C}(v) \subseteq \mathcal{I}(v)$

Question: What are the relations between them

Convex and superadditive

Convex cooperative games are superadditive.

Question: What are the relations between them

Convex and superadditive

Convex cooperative games are superadditive.

- \blacksquare (N, v) is convex
 - $(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$

Question: What are the relations between them

Convex and superadditive

Convex cooperative games are superadditive.

- \blacksquare (N, v) is convex
 - $(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$
- \blacksquare (N, v) is superadditive
 - $\blacktriangleright (S, T \subseteq N, S \cap T = \emptyset) (v(S) + v(T) \le v(S \cup T))$

Question: What are the relations between them

Convex and superadditive

Convex cooperative games are superadditive.

- \blacksquare (N, v) is convex
 - $(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$
- \blacksquare (N, v) is superadditive
 - $(S, T \subseteq N, S \cap T = \emptyset) (v(S) + v(T) \le v(S \cup T))$
- \blacksquare $S \cap T = \emptyset$
 - $ightharpoonup (S \cap T) = 0$
 - $ightharpoonup v(S) + v(T) \le v(S \cup T)$

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Core of convex games

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Convex games

$$(S,T\subseteq N)(v(S)+v(T)\leq v(S\cap T)+v(S\cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Proof: We show only $m_v^{id} \in \mathcal{C}(v)$

Convex games

$$(S,T\subseteq N)(v(S)+v(T)\leq v(S\cap T)+v(S\cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Proof: We show only $m_{v}^{id} \in \mathcal{C}(v)$

1.
$$m_{v}^{id}(N) = \sum_{i \in N} v(\{1, ..., i\}) - v(\{1, ..., i-1\}) = V(N)$$

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Proof: We show only $m_{v}^{id} \in \mathcal{C}(v)$

1.
$$m_{v}^{id}(N) = \sum_{i \in N} v(\{1, ..., i\}) - v(\{1, ..., i-1\}) = V(N)$$

2. $m_{v}^{id}(S) \geq v(S)$

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Proof: We show only $m_v^{id} \in \mathcal{C}(v)$

1.
$$m_{v}^{id}(N) = \sum_{i \in N} v(\{1, ..., i\}) - v(\{1, ..., i-1\}) = V(N)$$

- 2. $m_{v}^{id}(S) \geq v(S)$
 - $ightharpoonup S = \{s_1, s_2, \dots, s_k\}$
 - $\blacksquare \ S_1 < S_2 < \dots < S_k$

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Proof: We show only $m_{v}^{id} \in \mathcal{C}(v)$

1.
$$m_{\nu}^{id}(N) = \sum_{i \in N} \nu(\{1, \dots, i\}) - \nu(\{1, \dots, i-1\}) = V(N)$$

- 2. $m_{v}^{id}(S) \geq v(S)$
 - ► $S = \{s_1, s_2, \dots, s_k\}$
 - lacksquare $S_1 < S_2 < \cdots < S_k$
 - $\mathbf{v}(\{1,...,s_i\}) \mathbf{v}(\{1,...,s_{i-1}\}) \ge \mathbf{v}(\{s_1,...,s_i\}) \mathbf{v}(\{s_1,...,s_{i-1}\})$
 - $\{s_1, s_2, ..., s_l\} \subseteq \{1, ..., s_l\}$ for $l \le k$

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Proof: We show only $m_{v}^{id} \in \mathcal{C}(v)$

1.
$$m_{\nu}^{id}(N) = \sum_{i \in N} \nu(\{1, \dots, i\}) - \nu(\{1, \dots, i-1\}) = V(N)$$

2.
$$m_{v}^{id}(S) \geq v(S)$$

$$\triangleright S = \{S_1, S_2, \dots, S_k\}$$

$$s_1 < s_2 < \cdots < s_k$$

$$V(\{1,...,s_i\}) - V(\{1,...,s_{i-1}\}) \ge V(\{s_1,...,s_i\}) - V(\{s_1,...,s_{i-1}\})$$

Convex games

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

Core of convex games

For a convex cooperative game (N, v), it holds C(v) = W(v)

Proof: We show only $m_{v}^{id} \in \mathcal{C}(v)$

1.
$$m_{\nu}^{id}(N) = \sum_{i \in N} \nu(\{1, \dots, i\}) - \nu(\{1, \dots, i-1\}) = V(N)$$

2.
$$m_{v}^{id}(S) \geq v(S)$$

►
$$S = \{s_1, s_2, \dots, s_k\}$$

$$\blacksquare S_1 < S_2 < \dots < S_k$$

$$V(\{1,...,s_i\}) - V(\{1,...,s_{i-1}\}) \ge V(\{s_1,...,s_i\}) - V(\{s_1,...,s_{i-1}\})$$

$$\{s_1,s_2,...,s_l\} \subseteq \{1,...,s_l\} \text{ for } l \le k$$

►
$$m_v^{id} \ge \sum_{s:\in S} v(\{s_1,\ldots,s_i\}) - v(\{s_1,\ldots,s_{i-1}\}) = v(S)$$

Convex games

$$(S,T\subseteq N)\left(v(S)+v(T)\leq v\left(S\cap T\right)+v\left(S\cup T\right)\right)$$

Consequence:

The Shapley value and convex games

Convex games

$$(S,T\subseteq N)\left(v(S)+v(T)\leq v\left(S\cap T\right)+v\left(S\cup T\right)\right)$$

Consequence:

The Shapley value and convex games

For a convex cooperative game (N, v), it holds:

- 1. $\phi(\mathbf{v}) \in \mathcal{C}(\mathbf{v})$
- **2.** $\phi(v)$ is the centre of gravity of C(v)

DISADVANTAGES OF THE MODEL AND

MOTIVATION FOR NEXT LECTURES

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0.$

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

1. we might not be interested in forming N

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0.$

- 1. we might not be interested in forming N
 - we want to analyze coalition formation

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- 1. we might not be interested in forming N
 - ▶ we want to analyze coalition formation
- 2. not every coalition makes sense

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0.$

- 1. we might not be interested in forming N
 - we want to analyze coalition formation
- 2. not every coalition makes sense
 - two players from completely different fields (why would they want to cooperate)

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0.$

- 1. we might not be interested in forming N
 - we want to analyze coalition formation
- 2. not every coalition makes sense
 - two players from completely different fields (why would they want to cooperate)
- 3. 2^n real values representing v

Cooperative game

- 1. we might not be interested in forming N
 - we want to analyze coalition formation
- 2. not every coalition makes sense
 - two players from completely different fields (why would they want to cooperate)
- 3. 2^n real values representing v
 - expensive to get all information
 - expensive to store all information

Cooperative game

- 1. we might not be interested in forming N
- 2. not every coalition makes sense
- 3. 2^n real values representing v

Cooperative game

- 1. we might not be interested in forming N
 - ► games with coalition structure
- 2. not every coalition makes sense
- 3. 2^n real values representing v

Cooperative game

- 1. we might not be interested in forming N
 - games with coalition structure
- 2. not every coalition makes sense
 - games on graphs (Martin Černý)
- 3. 2^n real values representing v

Cooperative game

- 1. we might not be interested in forming N
 - games with coalition structure
- 2. not every coalition makes sense
 - games on graphs (Martin Černý)
- 3. 2^n real values representing v
 - ► incomplete games (David Sychrovský + Filip Úradník)
 - ► interval games (Martin Kunst)
 - ► stochastic games (David Ryzák)
 - ► models with compact characteristic function (Martin Černý)