B.Sc Data Science II Introduction to the Lecture LectureSlide

D. T. McGuiness, Ph.D

2025.WS

Table of Contents

1. Introduction

Table of Contents

Table of Contents

First Steps

Introduction

Lecture Contents

Requirement and Learning Outcomes

Lecture Information

Assignments

Lecture Sources

Content Preview

- Warning: This is the content only covered by me as this lecture is shared by Peter Kandolf in Tutorials.
- The goal of this lecture is to give you a much deeper understanding of how machine learning algorithms work and work through practical examples.
- In this lecture we will focus on Neural Networks (NN) a type of machine learning algorithm with uncountable amount of applications in industry.
- This lecture is a total of 4 SWS with a total of sixty (60) UE.
- A unit (UE) is defined as 45 min lecture.

First Steps Introduction

- For three (3) sessions there will be a self-guided study which will require you to work through the material on your own.
- In these sessions you should focus on two topics: Ensemble Learning and Random Forests and Dimensionality Reduction. You can either access this content on WebBook or LectureBook which hold the same content.
- The next face-to-face session will focus on a recap of these topics along with any questions you may have.
- Afterwards there will be a 15 min long quiz covering these two topics only.

First Steps Introduction

- Lecture materials and all possible supplements will be present in its Github Repo.
 - You can easily access the link to the web-page from here.

Github is chosen for easy access to material management and CI/CD capabilities and allowing hosting websites.

In the lecture content is also distributed as a WebBook which can be accessed from the Repo website.

First Steps Lecture Contents

■ The student should be comfortable with working with either Python and should have gained a working knowledge of statistics.

Requirements	Taught Lecture	Code	Degree	Outcome
Python Programming	Software Design	SWD	B.Sc	Programming
Working with IoT	Internet of Things	IOT	B.Sc	Understanding AI/ML
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

Table 1: Distribution of materials across the semester.

Description	Value
Official Name	Machine Learning & Data Science 2
Lecture Code	MLDS2
Module Code	MECH-B-5-MLDS-MLDS2-ILV
Lecture Name	Data Science II
Semester	5
Season	WS
Lecturer	Daniel T. McGuiness, Ph.D
Module Responsible	BnM
Software	Python
SWS Total	4
UE Total	60
ECTS	5
Working Language	English

First Steps Lecture Information

- The lecture will have one personal assignment, (along with tutorial work), which will be based on applying machine learning principles with programming.
- For the written exam you are allowed to write your own equation reference paper, as long as it is a single sheet of A4, double sided and contains no exercise or solutions.

Assignment Type	Value
Quiz	5
Personal Assignment	35
Final Exam	60
Sum	100

First Steps Assignments

Neural Networks: Methodology and Applications

Python for Data Analysis: Data Wrangling with Pandas, Numpy, and iPython

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

TensorFlow for Deep Learning: From Linear Regression To Reinforcement Learning

Al and Machine Learning for Coders

Neural Networks and Deep Learning

Python Machine Learning

Machine Learning with Python Cookbook

Table 2: Lecture sources which can be useful during the course of the lecture. For more information on sources, please consult the repo.

First Steps Lecture Sources

Торіс	Units	Self Study
Support Vector Machines	4	8
Decision Trees	4	8
Ensemble Learning and Random Forests	4	8
Dimensionality Reduction	4	8
Unsupervised Learning	4	8
Introduction to Artificial Neural Networks	4	8
Computer Vision using Convolutional Neural Networks	4	8
SUM	28	56

First Steps Content Preview