1/12

Figure 1: XRD pattern of composite following coprecipitation (Cu-K α radiation).

10

Figure 2: SEM micrograph of triple co-precipitate.

2/12

Figure 3: TEM micrograph of triple co-precipitate

5

10

15

Figure 4: XRD pattern of composite following dehydrothermal treatment at 105°C and 50mTorr for 48 hours, indicating that the brushite phase has converted to its dehydrated form monetite.

3/12

 $\square \ 1.50 - 2.00 \ \square \ 2.00 - 2.50 \ \square \ 2.50 - 3.00 \ \square \ 3.00 - 3.50 \ \square \ 3.50 - 4.00 \ \square \ 4.00 - 4.50 \ \square \ 4.50 - 5.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.00 \ \square \ 5.00 - 5.50 \ \square \ 5.00 - 5.50 \ \square \ 5.50 - 6.00 \ \square \ 5.00 - 5.00 \ \square \ 5.00 - 5.50 \ \square \ 5.00 - 5.00 \ \square \ 5.00 - 5.50 \ \square \ 5.00 - 5.50 \ \square \ 5.00 - 5.50 \ \square \ 5.00 - 5.00 \ \square \ 5.00 - 5.50 \ \square \ 5.00 - 5.00 \ \square \ 5.00$

Figure 5: set of combinations of ionic concentration and calcium nitrate: calcium hydroxide ratio for maintaining pH = 4.0.

Yield = 21mg/ mL

PH = 4.0

O.8

Ca(NO₃)₂.4H₂O:Ca(OH)₂
(Molar Ratio)

PH = 4.0

(Molar Ratio)

Mass Yield (g/ mL)

 0.0000-0.0050
 0.0050-0.0100
 0.0100-0.0150
 0.0150-0.0200
 0.0250-0.0250
 0.0250-0.0300
 0.0250-0.0300
 0.0300-0.0350

 0.0250-0.0400
 0.0400-0.0450
 0.0450-0.0500
 0.0500-0.0550
 0.0550-0.0600
 0.0600-0.0650
 0.0650-0.0700

 0.0700-0.0750
 0.0750-0.0800
 0.0850-0.0860
 0.0850-0.0900
 0.0850-0.0900
 0.0850-0.0900

Figure 6: Identification of conditions for pH 4.0 synthesis of a triple coprecipitate slurry containing a 1:1 mass ratio of calcium phosphate to collagen plus GAG.

5

4/12

Figure 7: x-ray diffraction pattern of collagen/GAG/brushite triple coprecipitate following removal of unbound water ($Cu-K_{\alpha}$ radiation).

Figure 8: Secondary (SE) and backscattered electron (BSE) images of surface of triple coprecipitate with CaP: collagen + GAG = 1:1.

5

5/12

Figure 9: x-ray diffraction pattern of collagen/GAG/brushite triple coprecipitate following EDAC crosslinking (Cu- K_{α} radiation).

5

Figure 10: x-ray diffraction pattern of EDAC-crosslinked collagen/GAG/CaP triple coprecipitate following conversion at 37°C to octacalcium phosphate (OCP) over 72 hours at pH 6.67, to form a collagen/GAG/OCP biocomposite (Cu- K_{α} radiation).

6/12

pН

 $\verb| 1.50-2.00 | 2.00-2.50 | 2.50-3.00 | 3.00-3.50 | 3.50-4.00 | 4.00-4.50 | 4.50-5.00 | 5.00-5.60 | 5.60-6.00$

Figure 11: set of combinations of ionic concentration and calcium nitrate: calcium hydroxide ratio for maintaining pH = 4.5.

5

10

Mass Yield (g/ mL)

 0.0000-0.0050
 0.0050-0.0100
 0.0100-0.0150
 0.0150-0.0200
 0.0250-0.0250
 0.0250-0.0300
 0.0300-0.0350

 0.0.356-0.0400
 0.0400-0.0450
 0.0450-0.0500
 0.0500-0.0560
 0.0550-0.0600
 0.0560-0.0600
 0.0560-0.0700

 0.0.700-0.0750
 0.0750-0.0800
 0.0800-0.0850
 0.0850-0.0900
 0.0850-0.0900
 0.0850-0.0900

Figure 12: Identification of conditions for pH 4.5 synthesis of a triple coprecipitate slurry containing a 3:1 mass ratio of calcium phosphate to collagen plus GAG.

7/12

Figure 13: x-ray diffraction pattern of collagen/GAG/brushite triple coprecipitate following removal of unbound water (Cu- K_{α} radiation).

Figure 14: x-ray diffraction pattern of collagen/GAG/brushite triple coprecipitate following EDAC crosslinking (Cu- K_{α} radiation).

15

10

8/12

Figure 15: x-ray diffraction pattern of EDAC-crosslinked collagen/GAG/CaP triple coprecipitate following conversion at 37°C to apatite over 72 hours at pH 8.50, to form a collagen/GAG/apatite biocomposite (Cu- K_{α} radiation).

5

Figure 16: X-ray diffraction pattern of EDAC-crosslinked collagen/GAG/Ap triple coprecipitates after secondary crosslinking via gamma irradiation.

9/12

Figure 17

10/12

5

Figure 18

11/12

Figure 19

12/12

Figure 20

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.