A natural stabilized column generation method

Pablo González-Brevis* and Jacek Gondzio, School of Mathematics, The University of Edinburgh, UK.

NIVERSON BUNG

Column Generation

Motivation

Exploit the advantages of a **primal-dual interior point method** to naturally stabilize the **column generation method**.

Fig. 1: Column generation scheme

Master Problem

The RMP works with a subset \overline{N} of MP columns N.

Therefore, $z^* \leq Z_{RMP}$.

Oracle

 $z_{SP} := \min\{0; c_i - \overline{u}^T a_i \mid a_i \in A\}.$

 $Z_{RMP} + \kappa Z_{SP} \le Z^* \le Z_{RMP}.$

Bounds

where \overline{u} is the vector of duals and κ is a known parameter.

Issues

□ Heading-in and tailing-off effects.

Fig. 2: Unstable behaviour of the standard column generation (CSP and UFLP)

Stabilized CG

- **Artificial**: boxstep method^[1], interior point stabilization^[2], bundle method^[3].
- **Natural**: analytic centre cutting plane method^[4], primal-dual cutting plane method^[5].

Primal-Dual Column Generation Method (PDCGM)

Features

- Allows suboptimal solutions
- Provides a reliable lower bound
- Delivers well-centred dual prices
- Adjusts the optimality tolerance dynamically
- Can warmstart

Fig. 3: Warmstarting strategy

Algorithm

- **1. Input**: Initial RMP; parameters κ , $\varepsilon_{\text{max}} > 0$, D > 1, $\delta > 0$.
- **2. Set** $LB = -\infty, UB = \infty, gap = \infty, \varepsilon = 0.5;$
- **3.** while $(gap \ge \delta)$ do
 - find a well-centred ε -optimal solution $(\tilde{\lambda}, \tilde{u})$ of the RMP;
 - $UB = \min\{UB, \tilde{z}_{RMP}\};$
 - call the *oracle* with the query point \tilde{u} and solve \tilde{z}_{SP} ;
 - $LB = \max\{LB, \kappa \tilde{z}_{SP} + b^T \tilde{u}\};$
 - gap = (UB LB) / (1 + |UB|);
 - $\varepsilon = \min\{\varepsilon_{\max}, \frac{gap}{D}\};$
 - if $(\tilde{z}_{SP} < 0)$ then add the new columns to the RMP;
- 4. end (while)

Numerical Results

Solve the linear-relaxed reformulations of three well-known combinatorial optimization problems.

Strategies

- □ Standard column generation (SCG)
 - Simplex (CPLEX 12.0)
 - Optimal vertex strategy
- □ Analytic centre cutting plane method (ACCPM)
 - Weighted projective algorithm (OBOE)
 - Central prices (analytic centre of localization set)

□ Primal-dual column generation method (PDCGM)

- Primal-dual interior point method (HOPDM)
- Close-to-optimality strategy (μ-centre)

Fig. 4: Strategies in the dual space (RMP)

Fig. 6: Vehicle routing problem with time windows (VRPTW)

Fig. 7: Capacitated lot sizing problem with setup times (CLSPST)

Small and medium size instances

	SCG			AC	СРМ	PDCGM	
class	inst	ite	time	ite	time	ite	time
CSP	262	671.0	51.7	552.1	65.6	440.3	17.5
VRPTW	87	392.4	163.8	187.1	57.8	121.3	45.1

Table 1: Average results adding one column at a time

		SCG		ACC	CPM	PDCGM		
class	k	ite	time	ite	time	ite	time	
CSP	10	182.3	25.5	290.0	65.4	120.2	7.3	
	50	91.0	20.1	316.4	161.2	74.1	10.0	
	100	68.8	24.6	353.6	319.1	63.0	15.1	
VRPTW	10	93.7	40.2	128.7	32.8	44.2	14.8	
	50	45.2	19.7	125.8	31.3	31.0	9.7	
	100	34.5	15.2	126.0	31.3	25.9	7.8	
	200	26.9	12.1	126.9	31.9	23.2	6.9	
	300	23.3	10.7	127.7	32.2	22.6	7.0	

Table 2: Average results adding k-best columns at a time

Large size instances

CLSPST

	SCG		ACCPM		PDCGM	
r	ite	time	ite	time	ite	time
5	27.5	4.7	22.5	3.2	11.5	1.6
10	32.0	62.7	29.5	49.5	15.6	21.0
15	38.4	308.8	36.4	274.3	20.0	106.2
20	45.5	975.8	42.4	941.0	25.9	358.4

Table 3: Average results on 11 instances adding one column at a time per subproblem

CSP

		_	SCG		ACCPM		PDCGM	
n	ame	m	ite	time	ite	time	ite	time
UC)9498	1005	548	12946.8	762	21253.6	293	5678.0
UC	9513	975	518	9903.8	779	19362.0	267	4276.7
UC	9528	945	541	7797.8	740	15919.8	276	4923.6
UC)9543	915	506	5585.0	723	13448.9	263	3723.7

Table 4: Results adding 100 columns at a time

VRPTW

		SCG		ACCPM		PDCGM	
name	n	ite	time	ite	time	ite	time
RC1_6_1	600	258	18972.3	923	56683.3	150	8844.3
C1_4_1	400	137	551.9	272	908.6	53	185.7
C1_2_1	200	85	40.9	169	81.6	29	15.2

Table 5: Results adding 300 columns at a time

Conclusions

- □ PDCGM is a reliable column generation method.
- ☐ It offers improvements over other methods in the literature.
- ☐ The larger the instance, the better the relative performance of the method.
- It can be seen as a general-purpose technique due to the lack of parameter setting.

References

- [1] R. E. Marsten, W. W. Hogan, J. W. Blankenship, "The boxstep method for large-scale optimization", Operations Research 23 (3) (1975) 389–405.
- [2] L.-M. Rousseau, M. Gendreau, D. Feillet, "Interior point stabilization for column generation", Operations Research Letters 35 (5) (2007) 660–668.
- [3] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, F. Vanderbeck, "Comparison of bundle and classical column generation", Mathematical Programming 113 (2008) 299–344.
- [4] J. L. Goffin, A. Haurie and J. P. Vial, "Decomposition and nondifferentiable optimization with the projective algorithm", Management Science, 38(2)(1992), 284-302.
- [5] J. E. Mitchell and B. Borchers, "Solving real-world linear ordering problems using a primal-dual interior point cutting plane method", Annals of Operations Research, 62 (1996), 253-276.
- [†] Presentation based on: J. Gondzio, P. González-Brevis and P. Munari. **New developments in the primal-dual column generation technique**. European Journal of Operational Research, 224(1):41-51, 2013.
- * **Address:** Room 5620, School of Mathematics, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK. **E-mail:** P.Gonzalez-Brevis@sms.ed.ac.uk.
- Supported by: Beca Presidente de la República and Facultad de Ingeniería, Universidad del Desarrollo, Chile.