1 of 7

https://assessment.casa.uh.edu/Assessment/Print.

(c)
$$=\frac{109}{64}$$

d)
$$=\frac{105}{64}$$

e)
$$=\frac{101}{64}$$

Question 3

Compute the lower Riemann sum for the given function $f(x) = \sin(x)$ over

a)
$$\frac{2}{9}\pi$$
 [0, $\frac{2}{9}$] $\frac{1}{10}$ Sin(e) = 9

the interval
$$x \in [0, \pi]$$
 with respect to the partition $P = \begin{bmatrix} 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi \end{bmatrix}$. Subinterval longth min of f .

a) $-\frac{5}{6}\pi$ $\begin{bmatrix} 0 & \frac{1}{6} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{6} \end{bmatrix}$

$$\frac{3}{6} \left[\frac{57}{6}, \pi \right] = 0$$

d)
$$\frac{1}{2}\pi$$
 $1 = \frac{1}{6} \cdot 0 + \frac{411}{6} \cdot \frac{1}{2} + \frac{1}{6} \cdot 0$

e)
$$=\frac{2}{3}\pi$$
 $=\frac{\sqrt{7}}{3}$

Question 4

2 of 7

Estimate the integral $\int_0^{\pi} x^2 dx$ by the <u>left endpoint</u> estimate, n = 6.

$$fox)=X^2$$
 Subinterval length value of left endpoint
 $f(x)=X^2$ [01] 1 $f(x)=1^2=1$

$$f(3)=3=9$$

 $f(4)=4^2=16$

e) -50 Riemann Sum=1.0+1.1+1.4+1.9+1.16+1.25

Question 5

Estimate the integral $\int_{0}^{\infty} 5 x^2 dx$ by the midpoint estimate, n = 6

Subinterval [0,2]

$$f(5) = 125$$

$$2 f(1) = 245$$

$$f(q) = 405$$

Question 6 Riemann Sum=2.5+2.45+2.125+2.245+2.405+2.605

Given that $\int_{0}^{1} f(x) dx = 2$, $\int_{0}^{4} f(x) dx = 4$ and $\int_{4}^{5} f(x) dx = 3$ find $\int_{0}^{5} f(x) dx$.

a)
$$9$$
 $\int_0^5 f(x) dx = \int_0^4 f(x) dx + \int_4^5 f(x) dx$

Print Test

https://assessment.casa.uh.edu/Assessment/Print.

Question 7

$$\int_0^1 f(x) \, \mathrm{d}x = 4, \int_0^4 f(x) \, \mathrm{d}x = 6 \text{ and } \int_4^7 f(x) \, \mathrm{d}x = 4 \text{ find } \int_7^1 f(x) \, \mathrm{d}x.$$

$$\int_{0}^{\infty} f(x) dx = -\int_{0}^{\infty} f(x) dx$$

$$=-[54 \text{ fix)dx} + 54 \text{ foodx}$$

d)
$$-6 = -[4+6-4] = -6$$
.

Question 8 Given that

 $\int_{1}^{4} f(x) dx = 3, \int_{0}^{4} f(x) dx = 3 \text{ and } \int_{1}^{6} f(x) dx = 7 \text{ find } \int_{1}^{6} f(x) dx.$

a)
$$-4$$
 $\int_4^6 f \cos dx = \int_1^6 f \cos dx - \int_1^4 f \cos dx$

$$= 7-3=4.$$

4 of 7

- d) 4
- e) -7

Question 9

Given that

$$\int_{1}^{4} f(x) \, \mathrm{d}x = 3, \int_{3}^{4} f(x) \, \mathrm{d}x = 5 \text{ and } \int_{1}^{7} f(x) \, \mathrm{d}x = 6 \text{ find } \int_{3}^{7} f(x) \, \mathrm{d}x.$$

$$\int_{-8}^{7} f(x) dx = \int_{1}^{7} f(x) dx - \int_{1}^{3} f(x) dx$$

= $\int_{1}^{7} f(x) dx - \int_{1}^{4} f(x) dx + \int_{3}^{4} f(x) dx$ = 6 - 3 + 5 = 8.

c) 8

- d) 9
- e) 14

Question 10

The graph of f is shown below on the interval [-2, 4].

The area bounded between the graph of f and the x-axis on [-2,-1] is $\frac{t}{3}$. the area bounded between the graph of f and the x-axis on [-1,3] is $\frac{32}{3}$. and the area bounded between the graph of f and the x-axis on [3, 4] is $\frac{1}{3}$ Determine $\int_{-1}^{1} f(x) dx$. $= (1) = \frac{7}{3}$.

- a) $\sqrt{\frac{7}{3}}$
- **b**) 0
- c) $=\frac{46}{3}$

e) 13

7 of 7 04/13/2015 09:59 AM