Formale Grundlagen der Informatik II 7. Übungsblatt

SS 2012

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

Alexander Kreuzer

Pavol Safarik

Gruppenübung

Aufgabe G1

Wir betrachten ungerichtete Graphen $\mathcal{G} = (V, E)$. Welche der folgenden Aussagen lassen sich durch eine Menge von FO-Formeln ausdrücken? Geben Sie eine entsprechende Formelmenge an, oder begründen Sie, wieso eine solche nicht existiert.

- (a) Der Abstand zwischen den Knoten x und y ist gerade oder unendlich.
- (b) \mathcal{G} enthält keinen Kreis.
- (c) \mathcal{G} enthält einen Kreis.
- (d) Jeder Knoten von \mathcal{G} hat unendlich viele Nachbarn.
- (e) Kein Knoten von \mathcal{G} hat unendlich viele Nachbarn.

Aufgabe G2

- (a) Geben Sie eine passende Signatur an, und drücken Sie darüber die folgenden "Tatsachen" durch Sätze der Logik erster Stufe aus:
 - i. Ein Drache ist glücklich, wenn alle seine Kinder fliegen können.
 - ii. Grüne Drachen können fliegen.
 - iii. Ein Drache ist grün, wenn einer seiner Elterndrachen grün ist.
 - iv. Alle grünen Drachen sind glücklich.

Hinweis: Überlegen Sie sich u. a., was Sie in der Signatur benötigen, um "ist Kind von" ausdrücken zu können.

- (b) Leiten sie argumentativ die vierte Aussage aus den ersten drei her.
- (c) Zeigen Sie mittels dem Resolutionsverfahren, dass die vierte Aussage aus den ersten drei folgt. Hinweis: Beachten Sie, dass man auf eine Skolemfunktion geführt wird, die ggf. "nicht fliegende Kinder" liefert.

Aufgabe G3

Beweisen Sie die gegebene Folgerungsbeziehung sowohl im Sequenzenkalkül als auch durch Resolution.

$$\forall x \neg P(x), \neg \forall x (\neg P(x) \land \neg Q(x)) \models \exists x Q(x)$$

Aufgabe G4

Sei S eine Signatur, die mindestens ein Konstantensymbol enthält und wofür die Menge der geschlossenen Termen $T_0(S)$ unendlich ist.

1

(a) Zeigen Sie, dass es keine Menge Φ von S-Sätzen gibt, so dass Φ genau dann wahr ist in einer S-Struktur A, wenn A ein Herbrandmodell ist.

Hinweis: Betrachten Sie erst den Spezialfall S=(c,f) (eine Konstante c und ein einstelliges Funktionssymbol f).

(b) Folgern Sie aus (a), dass es keine S-Formel $\psi(x)$ geben kann, so dass

$$(\mathcal{A}, \beta[x \mapsto a]) \vDash \psi(x)$$

gilt, genau dann wenn a die Interpretation von einem variablenfreien Term ist.

Aufgabe G5

Seien

$$\varphi_1 := \forall x \exists y (R(x,y) \land (P(x) \to Q(y))
\varphi_2 := \forall x \forall y (R(x,y) \to \neg R(y,x))
\varphi_3 := \exists x (P(x) \land \forall y (\neg P(y) \land Q(y) \to R(y,x))
\varphi_4 := \neg \exists x \exists y (R(x,y) \land P(x) \land P(y))$$

- (a) Wandeln Sie die Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ in Skolem-Normalform um.
- (b) Zeigen Sie *semantisch*, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ nicht erfüllbar ist.
- (c) Zeigen Sie jetzt mit Hilfe des Resolutionsverfahrens, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ nicht erfüllbar ist.
- (d) Je drei der vier Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ sind gemeinsam erfüllbar. Weisen Sie dies alle vier Kombinationen durch Angabe von Herbrand-Modellen nach.

Aufgabe G6 (Brouwer-Heyting-Kolmogorov Interpretation — Zusatzaufgabe)

Im folgenden bezeichnen φ und ψ quantorenfreie Formeln in FO. Beschreiben Sie informell mittels der Brouwer-Heyting-Kolmogorov Interpretation die Bedeutung der folgenden Aussagen:

$$\neg \forall n \varphi(n)$$

$$\exists n \neg \varphi(n)$$

$$\varphi \lor \psi$$

$$\neg (\neg \varphi \lor \neg \psi)$$

Argumentieren Sie informell mittels der Brouwer-Heyting-Kolmogorov Interpretation, welche der folgenden Aussagen intuitionistisch wahr bzw. im intuitionistischem Sinne falsch sind:

$$\exists n \neg \varphi(n) \to \neg \forall n \varphi(n)
\neg \forall n \varphi(n) \to \exists n \neg \varphi(n)
\varphi \lor \psi \to \neg (\neg \varphi \lor \neg \psi)
\neg (\neg \varphi \lor \neg \psi) \to \varphi \lor \psi$$

Aufgabe G7 (Zusatzaufgabe)

Die Gödel-Genzen Negativübersetzung ordnet jeder FO-Formel φ eine FO-Formel φ^N zu. Die Formel φ^N ist induktiv durch folgende Regeln gegeben.

$$\varphi^N := \neg \neg \varphi \qquad \text{falls } \varphi \text{ ein atomare Formel ist}$$

$$(\varphi \wedge \psi)^N := \varphi^N \wedge \psi^N$$

$$(\varphi \vee \psi)^N := \neg (\neg \varphi^N \wedge \neg \psi^N)$$

$$(\varphi \to \psi)^N := \varphi^N \to \psi^N$$

$$(\neg \varphi)^N := \neg \varphi^N$$

$$(\forall x \varphi)^N := \forall x \varphi^N$$

$$(\exists x \varphi)^N := \neg (\forall x \neg \varphi^N)$$

- (a) Zeigen Sie, dass für alle FO-Formel φ gilt $\models \varphi \leftrightarrow \varphi^N$.
- (b) Zeigen Sie, dass φ^N nur aus doppelt negierten Atomen, \wedge , \rightarrow , \forall und \bot besteht. $(\neg \varphi \text{ wir als Abkürzung für } \varphi \rightarrow \bot \text{ gelesen.})$
- (c) Bemerken Sie, dass

$$\vdash_H \varphi \iff \vdash_{H_i} \varphi^N$$

Benutzen Sie dafür den Satz auf Folie 173.

Aufgabe G8 (Zusatzaufgabe)

(a) Wir betrachten Wortmodelle $\mathcal{W}=(\{1,\dots,n\},<,P_a,P_b)$ (siehe Skript – Seite 3) mit zwei Buchstaben. Bestimmen Sie durch Analyse von Ehrenfeucht-Fraïssé Spielen den minimalen Quantorenrang einer Formel, mit deren Hilfe die beiden folgenden Wörter unterschieden werden können:

$$a b a b a$$
 $a b b a b a$

(b) Wir betrachten Strukturen $\mathcal{A}=(A,P,Q)$ mit zwei einstelligen Relationen P und Q. Zeigen Sie, dass es keine FO-Formel φ gibt, so dass gilt

$$\mathcal{A} \models \varphi \iff P \text{ und } Q \text{ haben gleich viele Elemente.}$$

(c) Zeigen Sie, dass es für Wortstrukturen $\mathcal{W}=(\{1,\ldots,n\},<,P_a,P_b)$ keine FO-Formel φ gibt, so dass gilt

$$\mathcal{W} \models \varphi \iff \mathcal{W}$$
 enthält gleich viele a wie b .

(Beachten Sie, dass die Aussage aus (b) hieraus folgt.)