The Div "Als" a,b + b
$$\neq$$
 0

$$a = q \cdot b + r$$

Greatest Com		mon Divisor			gcd	
a, b e	Z	(No4	head	<u></u>	。)	

0 € r 2 161

gcd(a,b) = the largest positive inter

that divides both

i.e. d = gcd (a, b) means:

dla, dlb

if clandb then c ≤ d

$$ex$$
 $a = 28, b = 16$

$$D_{+}(a) = D_{+}(16) = \{1, 2, 4, 7, 14, 28\}$$

 $D_{+}(b) = D_{+}(16) = \{1, 2, 4, 8, 16\}$

ex gcd(1044, 339).

writing out all divisors of (moderatch,) big integers is tedious or difficult!

Euclid's Divisium Algoriahm (compute god)

Euclidean Algorithm

- (1) Given $a,b\in\mathbb{Z}$ with $b\neq 0$, use the Division "Algorithm" to write $a=q_1\cdot b+r_1$
- (2) Apply the Division "Algorithm" to b and r_1 to find $b = q_2 \cdot r_1 + r_2$
- (3) Repeatedly apply the Division "Algorithm" until a remainder with value 0 is produced

$$a = q_1 \cdot b + r_1$$

$$b = q_2 \cdot r_1 + r_2$$

$$r_1 = q_3 \cdot r_2 + r_3$$

$$r_2 = q_4 \cdot r_3 + r_4$$

$$\vdots$$

$$r_{n-2} = q_n \cdot r_{n-1} - r_n$$

$$r_{n-1} = q_{n+1} \cdot r_n - 0$$

(4) If $r_{n+1} = 0$, then the previous remainder, r_n , is the gcd(a, b).

$$339 = 12 - 27 + 15$$

$$27 = 1 \cdot 15 + 12$$

$$15 = 1 \cdot 12 + 3$$

$$9cd(n44,339)$$

+
$$vo key reasons$$

• $gcd(c, o) = c$
 $D_{+}(x) = \{1, ..., C\}$

•
$$gcd(a,b) = gcd(a-b, b)$$

$$= gcd(a-2b, b)$$

$$= gcd(a-3b, b)$$

$$= gcd(a-3b, b)$$

$$= gcd(a-2b, b)$$

$$= gcd(a-b, b)$$

Bezour's Identity

an integer linear combo. of a 4 b

- · coefficient x15 de not amque
- · you can find values for x by using

the Euclidean Alg. bockwards!

Example 3.2. We recall the steps from the Euclidean Division Algorithm used to compute gcd(120, 34) = 2:

$$120 = 3 \cdot 34 + 18$$

$$34 = 1 \cdot 18 + 16$$

$$18 = 1 \cdot 16 + 2$$

$$16 = 8 \cdot 2 + \boxed{0}$$

Designing with the second to the last line are seen called for 2 - mod(120, 24) to

$$2 = 120 \cdot x + 34 \cdot y$$

$$18 = 1 \cdot 16 + 2$$
 \rightarrow $2 = 18 - 1 \cdot 16$

$$34 = 1 \cdot 18 + 16$$

$$2 = 2 - 18 - 34$$

$$120 = 3 \cdot 34 + 18$$

$$2 = 2.120 - 6.34 - 34$$

$$2 = 2.120 + (-7).34$$

X

Def If g(d(a,b)) = 1then we say a t b one relatively prime

ex] gcd(121,49) = 1

121 + 49 are relatively prime

Bezour's Id. 3 x1y, 121.x+ 49.y =1