

Agenda

- The History of Computer Vision
- From CNNs to Vision Transformers
- Generative AI: GANs and Diffusion Models
- 3D Reconstruction with NeRFs and Gaussian Splatting
- Emerging Computer Vision Frontiers

A Brief History of Computer Vision

1957
The first digitally scanned photos

Russell Kirsch

1970

Neocognitron

Kunihiko Fukushima

2001
The Viola-Jones
algorithm
Paul Viola and Michael Jones

2012-2024

Deep Learning

Vision Transformers
Diffusion Models
Generative Al
3D Reconstruction

1963 Machine Perception of Three-Dimensional Solids

Lawrence Roberts

. Second Rotated View

1989

LeNet-5Yann LeCun

2009

ImageNet Dataset

Fei-Fei Li

Convolutional Neural Networks

CNN Architecture

Hierarchical feature extraction and classification

Convolutional Neural Networks and Transformers

What are Vision Transformers (ViTs)?

CNN Architecture

Hierarchical feature extraction and classification

Vision Transformer Architecture

Attention-based patch embedding and classification

Comparison of CNN and ViT Methods

Vision Transformers

self-DIstillation with NO labels (DINO)

- Self-supervised learning method
- Same architecture for teacher and student networks
- Student network matches the output distribution of a teacher network
- Teacher network learns from the student parameters through exponential moving average (EMA)

Vision Transformers

Segment Anything Model (SAM)

- SAM was trained on an unprecedented dataset of 11 million images and 1.1 billion segmentation masks
- Strong zero-shot performance
- Promptable segmentation

<u>SAM</u>

Vision Transformers

Contrastive Language-Image Pretraining (CLIP)

- Trained on 400 million (image, text) pairs
- Jointly trains an image and text encoder to predict the correct pairings of a (image, text) examples
- Projected in a shared embedding space to understand the text/image relationships
- Applications image search, image captioning

CLIP

Getting Started With Vision Transformers

DINO Notebook

#Installing the TAO launcher

!pip3 install nvidia-pyindex
!pip3 install nvidia-tao

#Pull pre-trained model from NGC

!ngc registry model download-version
nvidia/tao/pretrained_dino_nvimagenet:fan_small_hybri
d nvimagenet --dest \$LOCAL PROJECT DIR/dino/

#Run Inference of a pre-trained model

tao model dino inference -e /path/to/spec.yaml -r
/path/to/results/
inference.checkpoint=/path/to/model.pth

Finetuning on Custom Datasets:

- Tao model dino train
- Tao model dino evaluate

Generative Models

Generative Adversarial Networks (GANs)

GAN Architecture

Adversarial training

- The generator creates synthetic data, and the discriminator tries to distinguish the generated data from real data
- Training instability and mode collapse issues

Generative Models

From GANs to Diffusion Models

GAN Architecture

Adversarial training

- The generator creates synthetic data, and the discriminator tries to distinguish the generated data from real data
- Training instability and mode collapse issues

Diffusion Model Architecture

Gradual addition and removal of noise

- Learn to reverse a diffusion process by iteratively removing noise from data
- Can generate high-quality samples across various domains

Generative Models

NVIDIA Edify

- Instead of using a single denoiser, Edify trains an ensemble of expert denoising networks
- Edify also combines text embeddings from both T5 and CLIP models instead of using just one text encoder

Wildlife photography of wolf, beautiful eyes, golden hour

Generative AI by gettyimages

Built using NVIDIA Picasso

- State-of-the-art NVIDIA Edify model architecture for 4K generative photography
- Commercially safe—trained exclusively on Getty Images licensed data; uncapped indemnification
- Access via Web or iStock.com
- Advanced visual editing APIs for adding subjects, expanding images or replacing specific element

nature photography of a rock arch, a mountain lake with a forest and fog in the background, overcast, majestic

A photo of a Shiba Inu dog with a backpack riding a bike

import requests # Call model from NVIDIA NGC invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/89848fb8-549f-41bb-88cb-95d6597044a4" fetch url format = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/" # Provide API key here headers = { "Authorization": "Bearer \$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC", "Accept": "application/json", # Provide prompts and parameters payload = { "prompt": "A photo of a Shiba Inu dog with a backpack riding a bike", "negative prompt": "beach", "inference steps": 25 # re-use connections session = requests.Session() response = session.post(invoke url, headers=headers, json=payload) while response.status code == 202: response = session.get(fetch url format + response.headers.get("NVCF-REQID"), headers=headers) response.raise for status() response_body = response.json() print(response_body)

catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/sdxl

A photo of a Shiba Inu dog with a backpack riding a bike

import requests # Call model from NVIDIA NGC invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/89848fb8-549f-41bb-88cb-95d6597044a4" fetch url format = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/" # Provide API key here headers = { "Authorization": "Bearer \$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC", "Accept": "application/json", while response.status code == 202: response = session.get(fetch url format + response.headers.get("NVCF-REQID"), headers=headers) response_body = response.json()

catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/sdxl

A photo of a Shiba Inu dog with a backpack riding a bike

```
fetch url format = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/"
# Provide prompts and parameters
payload = {
"prompt": "A photo of a Shiba Inu dog with a backpack riding a bike",
"negative prompt": "beach",
"inference_steps": 25
while response.status code == 202:
        response = session.get(fetch url format + response.headers.get("NVCF-REQID"), headers=headers)
response_body = response.json()
```

catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/sdxl

Structure from Motion (SfM)

- An imaging technique for estimating 3D structures from 2D image sequences
- SfM tracks features (e.g. corner points, edges) across multiple images to find correspondences.
- This method struggles to capture fine details and complex geometry and struggles with certain materials

Neural Radiance Fields (NeRFs)

NeRF architecture

- NeRFs can generate novel views of complex 3D scenes, based on a partial set of 2D images
- Several decoupled modules Sampling, encoding, neural network, and rendering
- Diverse applications spanning virtual/augmented reality, medical imaging, robotics, and autonomous navigation

<u>Neuralangelo</u>

3D Online Shopping Experiences Powered by NeRFs

RECON Labs Inc.

3D Gaussian Splatting

3D Gaussian Splatting

3D Gaussian Splatting

Instant-NGP

Gaussian Splatter

Getting Started With Instant-NGP & 3D Gaussian Splatting

Video Tutorial by Eric Hanes, NVIDIA

Step by Step Instructions in GitHub

Video Tutorial by The NeRF Guru

Step by Step Instructions in GitHub

Emerging Computer Vision Frontiers

Emerging Computer Vision Frontiers

Text-2-Image with Character Consistency

"walking in the garden"

"cooking in her house"

"drinking tea from a cup"

"riding her bicycle on a dirt road"

"sitting in a chair on her porch"

"A photo of an old woman wearing a dress."

Emerging Computer Vision Frontiers

Text-to-4D (3D in motion)

Other Relevant GTC Sessions

- [S62724] Revolutionizing Vision AI: From 2D to 3D Worlds
- [S62818] The Visionaries: A Cross-Industry Exploration of Computer Vision
- [CWE63456] Build Accelerated Computer Vision Microservices With NVIDIA Libraries and SDKs
- [S62624] The Vision-Al Revolution powered by DeepStream

