Lecture 14: MIPS R10000

Kunle Olukotun Gates 302 kunle@ogun.stanford.edu

http://www-leland.stanford.edu/class/ee282h/

MIPS R10000

- Shipping in 1996
- Designed to overcome performance limits
 - » Memory bandwidth and latency
 - » Compiler scheduling not effective on integer applications
- Representative modern microprocessor design
 - » multiple instruction issue
 - » register renaming
 - » out-of-order execution
 - » speculative execution
 - » non-blocking caches
 - » precise exceptions
- Detailed look at architecture
- Performance summary
- K. Yeager, "The MIPS R10000 superscalar microprocessor," IEEE Micro, vol. 16, pp. 28–40, 1996.

2

R10K Block Diagram

R10K Pipeline

4

Instruction Fetch/Decode

- Fetch four instructions per cycle
 - » any word alignment within 16 word cache line
- Decode up to four instructions per cycle
 - » requires four separate decoders
- Instructions not decoded are placed in 8-word instruction buffer
 - » caused by structural hazards or special instructions

.

Branch Unit

- Branches occur frequently
- 2-bit 512 entry BHT
- 1 branch delay slot for taken branches
- Delayed branches add difficulty
- Four entry branch stack
 - » alternate branch address
 - » copy of integer and FP register map tables
- Mispredicted branches
 - » immediately restore state (Int &FP tables) and fetch form alternate branch address
 - » 4 bit branch mask associated with each instruction used to abort instructions

Instruction Fetch and Branch

Instruction Fetch and Branch

Register Renaming

- Convert 5-bit logical register numbers to 6-bit physical register numbers
 - » Eliminates WAR and WAW hazards
 - » Support for speculation and precise interrupts
- Register map tables
 - » Integer: 33 × 6 bit RAM
 - » FP: 32×6 bit RAM
- Free lists
 - » lists of currently unassigned physical registers
 - » 32 entry FIFOs
- Active list
 - » All instructions "in flight" in the machine kept in 32 entry FIFO
 - » provides unique 5-bit ID for each instruction
 - » operates like a reorder buffer
 - » logical destination number
 - » old physical register number
 - » done bit

Register Renaming

Queues

- Integer, Address, FP queues
- Design limits clock frequency
- Entries allocated at decode
- Integer queue
 - » 16 entries
 - » no order
 - » ten 16 bit comparators per entry for RAW hazards
- FP queue
 - » similar to integer queue
- Address queue
 - » similar to integer queue
 - » FIFO order

Integer Queue

Register Files

- Integer register files
 - » 64 registers
 - » 7 read ports
 - » 3 write ports
 - » separate 64 bit condition file
- FP register file
 - » 64 registers
 - » 5 read ports
 - » 3 write ports

Execution Units

Unit	Latency (cycles)	Repeat rate (cyles)	Instruction
Either ALU	1	1	add, sub, logical, trap
ALU1	1	1	branch
ALU2	10	10	64-bit multiply
ALU2	67	67	64-bit divide
Load/store	2	1	load integer
Add	2	1	add, sub, compare
Multiply	2	1	DP multliply
Divide	19	21	DP divide
Load/store	3	1	load FP value

1:

Instruction Execution Review

Memory Hierarchy

1

Memory Hierarchy

- Instruction cache
 - » 32 KB, 2-way SA, 128 B line size
- Load/store Unit
 - » address calculation
 - » memory address translation (TLB)
 - 64 entries FA
 - 2 pages per entry
- Data cache
 - » 32 KB, 2-way SA, 64 B line size, write-back
 - » 2-way interleaved for bandwidth to support loads, stores, cache refills
 - » nonblocking with four outstanding requests
- Secondary cache
 - » 128 b wide interface
 - » 512KB-16 MB
 - » pseudo 2-way SA using 8 Kb MRU table

Implementation

- 0.35 micron process
- 16.6 × 17.9 mm chip
- 298 mm²
- 6.8 million transistors
 - » 4.4 million cache
 - » 2.4 million logic
- Full-custom design for datapaths and control logic
- Semi-custom design for less critical control logic

1

Nonblocking Data Cache Performance

R10K Performance

13 SPEC95int and 22 SPEC95fp @ 250 MHz

10