

SIPMOS ® Small-Signal Transistor

- N channel
- Enhancement mode
- Avalanche rated
- V_{GS(th)}= 2.1 ... 4.0 V
- Pb-free lead plating; RoHS compliant
- Qualified according to AEC Q101
- Halogen-free according to IEC61249-2-21

Pin 1	Pin 2	Pin 3	Pin 4
G	D	S	D

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Marking
BSP298	400 V	0.5 A	3 Ω	PG-SOT223	BSP298

Туре	Pb-free	Tape and Reel Information	Packaging
BSP298	Yes	H6327	Dry

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		А
<i>T</i> _A = 26 °C		0.5	
DC drain current, pulsed	I _{Dpuls}		
T _A = 25 °C		2	
Avalanche energy, single pulse	E _{AS}		mJ
$I_{\rm D}$ = 1.35 A, $V_{\rm DD}$ = 50 V, $R_{\rm GS}$ = 25 Ω			
$L = 125 \text{ mH}, T_j = 25 \text{ °C}$		130	
Gate source voltage	V _{GS}	± 20	V
Power dissipation	P _{tot}		W
<i>T</i> _A = 25 °C		1.8	
ESD Class JESD22-A114-HBM		Class 1b	

Maximum Ratings

Parameter	Symbol	Values	Unit
Chip or operating temperature	T _j	-55 + 150	°C
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip to ambient air	R _{thJA}	≤ 70	K/W
Therminal resistance, junction-soldering point 1)	R _{thJS}	≤ 10	
DIN humidity category, DIN 40 040		Е	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

¹⁾ Transistor on epoxy pcb 40 mm x 40 mm x 1,5 mm with 6 cm² copper area for drain connection

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.25 \text{ mA}, T_{\rm j} = 0 ^{\circ}\text{C}$		400	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$		2.1	3	4	
Zero gate voltage drain current	I _{DSS}				μΑ
$V_{\rm DS} = 400 \ {\rm V}, \ V_{\rm GS} = 0 \ {\rm V}, \ T_{\rm j} = 25 \ {\rm ^{\circ}C}$		-	0.1	1	
$V_{\rm DS} = 400 \text{ V}, \ V_{\rm GS} = 0 \text{ V}, \ T_{\rm j} = 125 ^{\circ}\text{C}$		-	10	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{\rm GS} = 10 \text{ V}, I_{\rm D} = 0.5 \text{ A}$		-	2.2	3	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit	
		min.	typ.	max.		
Dynamic Characteristics						
Transconductance	g_{fS}				S	
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 0.5 \text{ A}$		0.5	1.2	-		
Input capacitance	C _{iss}				pF	
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	300	400		
Output capacitance	Coss					
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	50	75		
Reverse transfer capacitance	C _{rss}					
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	20	30		
Turn-on delay time	$t_{d(on)}$				ns	
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.3 A						
$R_{\rm GS} = 50 \ \Omega$		-	10	15		
Rise time	t_{r}					
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.3 \; {\rm A}$						
$R_{\rm GS}$ = 50 Ω		-	25	40		
Turn-off delay time	$t_{d(off)}$					
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.3 \; {\rm A}$						
$R_{\rm GS}$ = 50 Ω		-	30	40		
Fall time	t_{f}					
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.3 \; {\rm A}$						
$R_{\rm GS}$ = 50 Ω		-	20	30		

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				А
<i>T</i> _A = 25 °C		-	-	0.5	
Inverse diode direct current,pulsed	/ _{SM}				
<i>T</i> _A = 25 °C		-	-	2	
Inverse diode forward voltage	V _{SD}				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm F} = 1 \text{ A}, T_{\rm j} = 25 ^{\circ}\text{C}$		-	0.95	1.2	
Reverse recovery time	t _{rr}				ns
$V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	300	-	
Reverse recovery charge	Q _{rr}				μC
$V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	2.5	-	

Power dissipation

$$P_{\text{tot}} = f(T_{A})$$

Safe operating area $I_D = f(V_{DS})$

parameter : D = 0, $T_C=25$ °C

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{A}})$

parameter: V_{GS} ≥ 10 V

Transient thermal impedance

$$Z_{\mathsf{th}\;\mathsf{JA}} = f(t_{\mathsf{p}})$$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\rm D}$ = $f(V_{\rm DS})$ parameter: $t_{\rm p}$ = 80 $\mu {\rm s}$, $T_{\rm j}$ = 25 °C

Typ. transfer characteristics $I_D = f(V_{GS})$ parameter: $t_D = 80 \mu s$

Typ. drain-source on-resistance

 $R_{\mathrm{DS (on)}} = f(I_{\mathrm{D}})$ parameter: t_{p} = 80 µs, T_{j} = 25 °C

Typ. forward transconductance $g_{fs} = f(I_D)$ parameter: $t_p = 80 \ \mu s$,

Drain-source on-resistance

$$R_{\rm DS~(on)}$$
 = $f(T_{\rm j})$
parameter: $I_{\rm D}$ = 0.5 A, $V_{\rm GS}$ = 10 V

Gate threshold voltage

$$V_{GS (th)} = f(T_j)$$

parameter: $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$

Typ. capacitances

$$C = f(V_{DS})$$

parameter: V_{GS} =0V, f = 1 MHz

Forward characteristics of reverse diode

$$I_{\mathsf{F}} = f(V_{\mathsf{SD}})$$

parameter: T_{j} , t_{p} = 80 μ s

Avalanche energy $E_{AS} = f(T_j)$ parameter: I_D = 1.35 A, V_{DD} = 50 V R_{GS} = 25 Ω , L = 125 mH

Drain-source breakdown voltage

$$V_{(BR)DSS} = f(T_j)$$

Safe operating area $I_D=f(V_{DS})$

parameter : D = 0.01, $T_C=25$ °C

Package outlines

SOT-223

Dimensions in mm

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.