

# Санкт-Петербургский государственный университет Кафедра системного программирования

## Оптимизация библиотеки xxHash для архитектуры RISC-V

Николай Алексеевич Пономарев, группа 21.Б10-мм

Научный руководитель: К. К. Смирнов, ст. преподаватель кафедры ИАС

Санкт-Петербург 2023

#### xxHash

xxHash — современная библиотека для высокопроизводительного хеширования Особенности:

- Поддерживает вычисление 32-, 64- и 128-битных хешей
- Скорость работы превышает пропускную способность оперативной памяти<sup>1</sup>
- Имеет поддержку векторных расширений процессора
  - SSE2, AVX2, AVX512 (x86 64)
  - NEON, SVE (ARM)
  - VSX (PowerPC)
  - ▶ Но нет поддержки RVV (RISC-V)

<sup>1</sup>https://github.com/Cyan4973/xxHash/blob/v0.8.1/README.md

#### Постановка задачи

**Целью** работы является реализация хеш-функций из библиотеки ххHash при помощи векторных расширений архитектуры RISC-V.

#### Задачи:

- Сравнить возможности разных версий векторного расширения RISC-V
- Выбрать целевую платформу для адаптации кода и проведения измерений
- Адаптировать одну из существующих реализаций под выбранную платформу
- Выполнить замеры производительности адаптированного кода

## Векторные возможности RISC-V

Векторное расширение RISC-V, сокращенно RVV, в данный момент представлено двумя несовместимыми версиями:

| RVV 1.0                                   | RVV 0.7.1                               |
|-------------------------------------------|-----------------------------------------|
| Стабильная версия                         | Нестабильная версия                     |
| Поддерживается современными компиляторами | Требуется специализированный компилятор |
| Есть перегрузка intrinsic функций         | Нет перегрузки intrinsic функций        |
| Нет устройств в продаже <sup>2</sup>      | Есть устройства в свободной продаже     |

<sup>&</sup>lt;sup>2</sup>На момент написания

#### Целевая платформа

В качестве целевой платформы был выбран одноплатный ПК Sipeed Lichee RV на чипе Allwinner D1

- Единственная доступная на момент написания платформа с поддержкой RVV
- Поддерживает RVV 0.7.1
- Не поддерживает 64-битные элементы вектора  $\implies$  используем 32-битные

## Проблемы при адаптации

В качестве базовой была выбрана реализация для SSE2, она использует векторы с 64-битными элементами. Адаптированная реализация использует 32-битные элементы вектора.

При реализации были встречены следующие проблемы:

- Сложности обработки 64-битных чисел, представленных как пары 32-битных
  - ▶ Необходимость реализации умножения с ручным расширением
  - Необходимость ручной реализации сложения с переносом
- Сложности с работой с масками в RVV 0.7.1
  - Отсутствие операции загрузки маски из памяти, необходимость создания маски по уже загруженному вектору
- Работа с неопределенным поведением при загрузке по невыровненному адресу

## Экспериментальное исследование

Измерения проводились на одноплатном компьютере Sipeed Lichee RV 86 со следующими характеристиками:

- Процессор Allwinner D1 с частотой 1 ГГц;
- Оперативная память DDR3 объемом 512 Мб с частотой 800 МГц;
- Операционная система Debian Sid с последними обновлениями на момент тестирования.

Для компиляции использовался компилятор от компании Alibaba с флагами -03 и -march=rv64gcv0p7. Для выбора набора функций использовались флаги -DXXH\_VECTOR=XXH\_RVV соответственно. Данные измерений были получены с помощью поставляемой вместе с библиотекой утилиты xxhsum.

#### Результаты экспериментального исследования

Таблица: Сравнение производительности хеш-функции XXH3 на входных данных размером в 1000 Кб; числа приведены с относительной погрешностью 0.5%

| Набор функций Скорость работы, Мб/с |       |
|-------------------------------------|-------|
| Скалярный                           | 169.3 |
| Векторный                           | 116.0 |

#### Вероятные причины замедления:

- Большое количество операций загрузки при вызове функций
- Использование инструкций объединения векторов и инструкций перестановки элементов вектора

#### Результаты

- Изучены возможности разных версий векторного расширения RISC-V
- Выбрана целевая платформа для адаптации кода и проведения измерений
- Проведена адаптация одной из существующих реализаций под выбранную платформу
- Выполнены замеры производительности адаптированного кода

Исходный код расположен по адресу: https://github.com/WoWaster/xxHash.