1211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic 1/23

Soundness and Completeness

Schedule

	propositional logic		predicate logic
4/18 4/20 4/25 4/27 5/2	syntax, semantics normal forms examples natural deduction I natural deduction II completeness midterm exam	5/16 5/18 5/23 5/25	syntax, semantics normal forms natural deduction I natural deduction II examples, properties advanced topics summary
3/3	materii exam	6/6	exam

2/23

Evaluation

midterm exam (40) + final exam (60)

I211E: Mathematical Logic

Definition

- $v \models \phi$ if $[\![\phi]\!]_v = \mathsf{T}$
- $v \models \Gamma$ if $[\![\phi]\!]_v = T$ for all $\phi \in \Gamma$
- $\Gamma \models \phi$ if for every valuation v we have: $v \models \Gamma \implies v \models \phi$

Example

$$\{p, p \to q\} \vDash p \land q \text{ and } \{p, \neg p, p \to q\} \vDash \bot$$

Definition (validity of inference rules)

$$\frac{\Gamma_1 \vdash \phi_1 \quad \cdots \quad \Gamma_n \vdash \phi_n}{\Delta \vdash \psi} \quad \text{is valid if we have: } \Gamma_1 \vDash \phi_1, \dots, \Gamma_n \vDash \phi_n \implies \Delta \vDash \psi$$

 1211E: Mathematical Logic
 3/23
 1211E: Mathematical Logic
 4/23

Lemma

 $\frac{\Gamma \cup \{\phi\} \vdash \psi}{\Gamma \vdash \phi \to \psi} \to_{\mathbf{I}} \text{ is valid}$

Proof.

Assume $\Gamma \cup \{\phi\} \vDash \psi$. We show $\Gamma \vDash \phi \to \psi$. Let v be a valuation. Assume $v \vDash \Gamma$. It is enough to show $v \vDash \phi \to \psi$. As $v \vDash \phi$ or $v \nvDash \phi$, we distinguish two cases.

- If $v \models \phi$ then $v \models \Gamma \cup \{\phi\}$. By assumption $v \models \psi$. So $v \models \phi \rightarrow \psi$.
- If $v \nvDash \phi$ then $v \vDash \phi \to \psi$ is immediate.

In either case, the claim holds.

Exercise

prove that VE is valid.

I211E: Mathematical Logic

5/23

Completeness of Natural Deduction

7/23

Lemma

all inference rules for natural deduction are valid

Soundness Theorem

$$\Gamma \vdash \phi \implies \Gamma \vDash \phi$$

Proof.

We show the claim by induction on proof tree of $\Gamma \vdash \phi$.

- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} $ \blacksquare $ & \begin{tabular}{ll} $\phi \in \Gamma$ \\ \hline $\Gamma \vdash \phi$ \\ \end{tabular} & \begin{tabular}{ll} $\text{then } \Gamma \vDash \phi$ because $v \vDash \phi$ whenever $v \vDash \Gamma$. \\ \end{tabular}$
- $\blacksquare \text{ If } \frac{\Gamma \cup \{\phi\} \vdash \psi}{\Gamma \vdash \phi \to \psi} \to \text{I} \quad \text{then } \Gamma \cup \{\phi\} \vDash \psi \text{ by the I.H. Lemma yields } \Gamma \vDash \phi \to \psi.$
- The other cases are also shown in the same way.

1211E: Mathematical Logic

6/23

Completeness Theorem

$$\Gamma \vDash \phi \implies \Gamma \vdash \phi$$

Proof.

Let $\{\phi_0,\phi_1,\ldots\}$ be the set of all propositional formulas. Define Γ^* as follows:

$$\Gamma_0 = \Gamma \qquad \Gamma_{i+1} = \begin{cases} \Gamma_i \cup \{\phi_i\} & \text{if } \Gamma_i \cup \{\phi_i\} \not\vdash \bot \\ \Gamma_i & \text{if } \Gamma_i \cup \{\phi_i\} \vdash \bot \end{cases} \qquad \Gamma^* = \bigcup_{i=0}^{\infty} \Gamma_i$$

Define v by $v \models p \iff p \in \Gamma^*$. Structural induction on ψ shows $v \models \psi \iff \psi \in \Gamma^*$. The contraposition of the claim is shown as follows:

$$\Gamma \nvdash \phi \implies \Gamma \cup \{\neg \phi\} \vdash \bot \implies \Gamma^* \cup \{\neg \phi\} \vdash \bot$$
$$\implies v \vDash \Gamma^* \cup \{\neg \phi\} \implies \Gamma^* \nvdash \phi$$

Predicate Logic

I211E: Mathematical Logic

9/23

First-Order Predicate Logic: Syntax

- \blacksquare let \mathcal{V} be set of variables
- let \mathcal{F} be set of function symbols $f^{(n)}$, where n is arity
- let \mathcal{P} be set of predicate symbols $P^{(n)}$, where n is arity

Definition (first-order formulas)

first-order formulas over \mathcal{P} and \mathcal{F} are given by BNF:

$$\phi ::= \top \mid \bot \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi \mid \phi \leftrightarrow \phi$$

$$\mid t \stackrel{.}{=} t$$

$$\mid P(t_1, \dots, t_n)$$

$$\mid \forall x \phi$$

$$\mid \exists x \phi$$

logical connectives
equality
predicate
universal quantifier
existential quantifier

where $P^{(n)} \in \mathcal{P}$, $t_1, \dots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V})$, and $x \in \mathcal{V}$

Terms

- \blacksquare let \mathcal{V} be set of variables x, y, z, \dots
- \blacksquare let \mathcal{F} be set of function symbols $f^{(n)}$ called signature

Definition

- lacktriangle terms over signature ${\mathcal F}$ are given by BNF: $t:=x\mid f(t,\dots,t)$
- $\blacksquare f()$ is abbreviated to f

Example

let
$$V = \{x, y, \ldots\}$$
 and $F = \{f^{(2)}, s^{(1)}, 0^{(0)}\}$

- \blacksquare 0, s(x), f(s(x), y), and s(f(x, y)) are terms
- lacksquare 0(x), x(0), and f(x, x, x) are not

I211E: Mathematical Logic

10/23

Example

let
$$\mathcal{V} = \{x, y, \ldots\}$$
, $\mathcal{F} = \{s^{(1)}, 0^{(0)}\}$ and $\mathcal{P} = \{P^{(1)}, Q^{(2)}, >^{(2)}\}$

- P(s(x)) and $\forall x(P(x) \rightarrow \exists yQ(x,y))$ are formulas
- \blacksquare s(x), s(P(x)), $\forall x$, \forall s(x)(P(x)), and \exists Q(x, y) are not

Example

 $\forall x(x > 0 \rightarrow x^2 > 0)$

 $x^2 > 0$ holds for all x > 0

 $\blacksquare \forall x(x > 0 \lor x \doteq 0)$

 $x \geqslant 0$ holds for all x

for every x there exists y such that x > y there exists x such that x > y for all y

 $\blacksquare \exists x \forall y (x > y)$

1211E: Mathematical Logic

exists x such that x > y for all y

dense set like $\mathbb Q$ and $\mathbb R$

Exercise: Write down formula for mathematical/strong induction.

Bound and free variables

quantifiers bind variables in their scope:

$$\overbrace{ \text{ scope for } x }^{\text{ scope for } x }$$

$$\forall x \ (\forall y \ \ \overbrace{\mathsf{P}(y)}^{\text{ scope for } y} \ \rightarrow \mathsf{Q}(x,y))$$

- such quantified variables are called bound variables
- variables not bound by quantifiers are free variables

Exercise

mark scopes. which variable occurrences are free/bound?

- $\exists (\forall x (P(x,y) \rightarrow \exists y Q(y,x,z))) \lor R(y,z)$
- $\exists \forall x \exists y \forall z (P(x) \rightarrow (Q(x,y) \lor Q(y,z)))$

13/23 I211E: Mathematical Logic

First-Order Logic: Semantics

Definition

structure \mathcal{A} is tuple $(U, \{\bar{P}\}_{P \in \mathcal{P}}, \{\bar{f}\}_{f \in \mathcal{F}})$, where

 $\blacksquare U$ is non-empty set

universe

 $(U, \{\bar{P}_1, \dots, \bar{P}_m\}, \{\bar{f}_1, \dots, \bar{f}_n\})$ is abbreviated to $(U, \bar{P}_1, \dots, \bar{P}_m, \bar{f}_1, \dots, \bar{f}_n)$

Definition (valuation)

given assignment $\alpha: \mathcal{V} \to U$, valuation $[t]_{\mathcal{A},\alpha}$ is defined as follows:

$$\llbracket t \rrbracket_{\mathcal{A},\alpha} = \begin{cases} \alpha(x) & \text{if } t \text{ is variable } x \\ \bar{f}(\llbracket t_1 \rrbracket_{\mathcal{A},\alpha}, \dots, \llbracket t_n \rrbracket_{\mathcal{A},\alpha}) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Sentences

Exercise

define set $FV(\phi)$ of all free variables

$$\mathsf{FV}(\phi) = \begin{cases} \varnothing & \text{if } \phi \in \{\top, \bot\} \\ ? & \text{if } \phi = \neg \phi_1 \\ ? & \text{if } \phi = \phi_1 * \phi_2 \text{ with } * \in \{\land, \lor, \rightarrow, \leftrightarrow\} \end{cases} \quad \mathsf{FV}(t) = \begin{cases} ? & \text{if } t \dots \\ ? & \text{if } \phi \text{ is } s \doteq t \\ ? & \text{if } \phi = \forall x \phi_1 \text{ or } \phi = \exists x \phi_1 \end{cases}$$

Definition

formula ϕ is sentence if $FV(\phi) = \emptyset$

I211E: Mathematical Logic

14/23

Example for Structures

consider structure $\mathcal{A} = (\mathbb{N}, \bar{\mathsf{P}}, \bar{\mathsf{f}}, \bar{\mathsf{s}}, \bar{\mathsf{0}})$ with

$$\bar{\mathbf{0}} = 0$$
 $\bar{\mathbf{s}}(n) = n+1$ $\bar{\mathbf{f}}(m,n) = m+n$ $\bar{\mathbf{P}} = \{(m,n) \in \mathbb{N} \times \mathbb{N} \mid m > n\}$

assignment α with $\alpha(x) = 3$

$$[\![\mathbf{s}(\mathbf{f}(\mathbf{0},x))]\!]_{\mathcal{A},\alpha} = \bar{\mathbf{s}}([\![\mathbf{f}(\mathbf{0},x)]\!]_{\mathcal{A},\alpha}) = \bar{\mathbf{s}}(\bar{\mathbf{f}}(\bar{\mathbf{0}},\alpha(x))) = (0+3)+1=4$$

 $[\![\mathbf{f}(x,\mathbf{0})]\!]_{\mathcal{A},\alpha} = \bar{\mathbf{f}}(\alpha(x),\bar{\mathbf{0}}) = 3$

therefore, $(4,3) \in \bar{P}$

Definition (\mathcal{A} is model of ϕ)

 $\mathcal{A} \models \phi$ if $\mathcal{A}, \alpha \models \phi$ for all α , where:

$$\mathcal{A}, \alpha \vDash \top$$

$$\mathcal{A}, \alpha \nvDash \bot$$

$$\mathcal{A}, \alpha \vDash \neg \phi \iff \mathcal{A}, \alpha \nvDash \phi$$

$$\mathcal{A}, \alpha \vDash \phi \land \psi \qquad \iff \mathcal{A}, \alpha \vDash \phi \text{ and } \mathcal{A}, \alpha \vDash \psi$$

$$\mathcal{A}, \alpha \vDash s \doteq t \qquad \qquad \overset{\cdot}{\Longleftrightarrow} \ [\![s]\!]_{\mathcal{A}, \alpha} = [\![t]\!]_{\mathcal{A}, \alpha}$$

$$\mathcal{A}, \alpha \vDash P(t_1, \dots, t_n) \iff (\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket) \in \bar{P}$$

$$\mathcal{A}, \alpha \vDash \forall x \phi \iff \mathcal{A}, \frac{\alpha[a/x]}{} \vDash \phi \text{ for all } a \in U$$

$$\mathcal{A}, \alpha \vDash \exists x \phi \qquad \iff \mathcal{A}, \alpha[a/x] \vDash \phi \text{ for some } a \in U$$

with
$$(\alpha[a/x])(x)=a$$
 and $(\alpha[a/x])(y)=\alpha(y)$ for all $y\neq x$

I211E: Mathematical Logic

17/23

Proposition

For the structure $A = (\mathbb{N}, \overline{P}, \overline{f}, \overline{s}, \overline{0})$ with

$$\bar{\mathbf{0}} = 0$$
 $\bar{\mathbf{s}}(n) = n+1$ $\bar{\mathbf{f}}(m,n) = m+n$ $\bar{\mathbf{P}} = \{(m,n) \in \mathbb{N} \times \mathbb{N} \mid m > n\}$ we have $\mathcal{A} \vDash \forall x \exists y \; \mathbf{P}(y,x)$.

Proof.

Let $\alpha: \mathcal{V} \to \mathbb{N}$ be an assignment. Let a be an arbitrary element in \mathbb{N} . Take b = a + 1. As b > a, we obtain $(b, a) \in \bar{P}$. Thus, $\mathcal{A}, \alpha[a/x][b/y] \models P(y, x)$. So we have $\mathcal{A}, \alpha[a/x] \models \exists y \ \mathsf{P}(y,x)$. Therefore, $\mathcal{A}, \alpha \models \forall x \exists y \ \mathsf{P}(y,x)$. Hence, $\mathcal{A} \models \forall x \exists y \ \mathsf{P}(y, x)$ follows.

Proof (shorter version).

Given $x \in \mathbb{N}$, take y = x + 1. Then $\overline{P}(y, x)$ holds. Hence, the claim follows.

19/23

Proposition

For the structure $A = (\mathbb{N}, \overline{P}, \overline{f}, \overline{s}, \overline{0})$ with

$$\bar{\mathbf{0}} = 0$$
 $\bar{\mathbf{s}}(n) = n+1$ $\bar{\mathbf{f}}(m,n) = m+n$ $\bar{\mathbf{P}} = \{(m,n) \in \mathbb{N} \times \mathbb{N} \mid m > n\}$

we have $\mathcal{A} \models \forall x \, \mathsf{P}(\mathsf{s}(\mathsf{f}(\mathsf{0},x)),\mathsf{f}(x,\mathsf{0})).$

Proof.

Let $\alpha: \mathcal{V} \to \mathbb{N}$ be an assignment. Let a be an arbitrary element in \mathbb{N} . We have:

$$[\![\mathsf{s}(\mathsf{f}(\mathsf{0},x))]\!]_{\mathcal{A},\alpha[a/x]} = a+1 \qquad \qquad [\![\mathsf{f}(x,\mathsf{0})]\!]_{\mathcal{A},\alpha[a/x]} = a$$

So $(a+1,a) \in \bar{P}$. Thus, $\mathcal{A}, \alpha[a/x] \models \mathsf{P}(\mathsf{s}(\mathsf{f}(\mathsf{0},x)),\mathsf{f}(x,\mathsf{0}))$ for all $a \in \mathbb{N}$.

Therefore, $\mathcal{A}, \alpha \vDash \forall x \ \mathsf{P}(\mathsf{s}(\mathsf{f}(\mathsf{0},x)),\mathsf{f}(x,\mathsf{0})).$

Hence, $\mathcal{A} \models \forall x \ \mathsf{P}(\mathsf{s}(\mathsf{f}(\mathsf{0},x)),\mathsf{f}(x,\mathsf{0}))$ follows.

I211E: Mathematical Logic

18/23

Proposition

For the structure $\mathcal{A} = (U, \bar{\mathsf{P}}, \bar{\mathsf{f}}, \bar{\mathsf{s}}, \bar{\mathsf{0}})$ with $U = \mathbb{N}$ and

$$\bar{0} = 0$$
 $\bar{s}(n) = n + 1$ $\bar{f}(m, n) = m + n$ $\bar{P} = \{(m, n) \in U \times U \mid m > n\}$

we have $\mathcal{A} \nvDash \forall x \exists y \ \mathsf{P}(x,y)$.

Proof.

Consider x = 0. For any $y \in \mathbb{N}$ the predicate $\bar{P}(x,y)$ does not hold because 0 is the smallest number in \mathbb{N} .

Exercise

- 1 what about $\forall x \forall y \ \mathsf{P}(x,y), \ \exists x \exists y \ \mathsf{P}(x,y), \ \mathsf{and} \ \exists x \forall y \ \mathsf{P}(x,y)$?
- 2 what if $U = \mathbb{Z}$?

Example for Equality \doteq

let $\mathcal{A} = (\mathbb{N}, \{\bar{\mathsf{E}}\}, \{\bar{\mathsf{+}}, \bar{\mathsf{s}}, \bar{\mathsf{0}}\})$ be structure with

$$\bar{\mathbf{s}}(n) = n+1$$
 $m + n = m+n$ $\bar{\mathbf{E}} = \{2n \mid n \in \mathbb{N}\}$

and α assignment such that $\alpha(x) = 3$

- $\boxed{1} \ \mathcal{A} \vDash \forall x \forall y \ (x \doteq y \rightarrow x + 0 \doteq 0 + y)$
- $2 \mathcal{A} \models \mathsf{E}(0)$
- $\exists \mathcal{A} \nvDash \mathsf{E}(\mathsf{s}(0))$
- $A \models \forall x (E(x) \rightarrow E(s(s(x))))$
- $5 \quad \mathcal{A} \vDash \forall x \forall y \ ((\mathsf{E}(x) \land \mathsf{E}(y)) \to \mathsf{E}(x+y))$

Exercise

- 1 which of formulas hold if $\bar{0} = 1$?
- $\boxed{2}$ find structure with universe $\{0,1\}$ that plays same role

I211E: Mathematical Logic

21/23

Supplementary Comments

- first-order logic with set theory is considered as foundation of mathematics
- predicates are also called relations
- lacksquare in textbook $[\![t]\!]_{\mathcal{A},\alpha}$ is written as $[\![t]\!]_{\mathcal{A}}$ and $t^{\mathcal{A}}$ where α is omitted
- $\blacksquare \forall x P(x) \land \exists y Q(y)$ is usually parsed as $(\forall x P(x)) \land (\exists y Q(y))$
- $\blacksquare \forall x. P(x) \land Q(x)$ is often parsed as $\forall x (P(x) \land Q(x))$
- $\blacksquare \forall x, y, z. \ \phi$ stands for $\forall x \forall y \forall z. \ \phi$
- formulas like $\forall x P(x)$ and $\forall y P(y)$ are called α -equivalent

23/23

Validity and Satisfiability

Definition

- lacktriangledown ϕ is valid ($\models \phi$) if $\mathcal{A} \models \phi$ for all \mathcal{A}
- $lacktriangleq \phi$ is satisfiable if $\mathcal{A} \models \phi$ for some \mathcal{A}

Lemma

 ϕ is valid $\iff \neg \phi$ is unsatisfiable

Exercise

which are valid, and which are satisfiable?

1: P(a)

3: $P(a) \rightarrow \exists x P(x)$

2: $(\forall x P(x)) \rightarrow P(a)$ 4: $(\forall x P(x)) \land (\exists x \neg P(x))$

I211E: Mathematical Logic

22/23