2024 IEEE International Conference on Information Reuse and Integration for Data Science (IRI)

IRI 2024

Table of Contents

Message from the General Co-Chairs xiii
Message from the Program Co-Chairs xiv
Steering Committeexvi
Conference Organizersxvii
Program Committeexviii
Additional Reviewersxix
Program Committee (AIHC 2024)xx
Program Committee (IEEE EM-RITE 2024) xxi
Program Committee (TechAAL 2024)
Machine Learning
Uncertainty Quantification in Table Structure Recognition 1 Kehinde Ajayi (Old Dominion University), Leizhen Zhang (Old Dominion University), Yi He (Old Dominion University), and Jian Wu (Old Dominion University)
Quantifying Data Difficulty with Polarized K-Entropy for Assessing Machine Learning Models 7 Ayomide Afolabi (Kennesaw State University, USA), Ramazan Aygun (Kennesaw State University, USA), and Truong X. Tran (The Pennsylvania State University, USA)
Context-Relevant Denoising for Unsupervised Domain-Adapted Sentence Embeddings
Synthesizing Class Labels for Balanced and Highly Imbalanced Cognition Data
Artificial Intelligence for Health
A Multi-Task Learning Network for Automated Detection of Oral Epithelial Dysplasia

Machine Learning Prognostics for the Obstructive Sleep Apnea Disorder Following Long COVID 31 Manoj Purohit (Marquette University, USA) and Praveen Madiraju (Marquette University, USA)
Deep-Accel: A Face Touch Prediction Framework to Reduce Obsessive-Compulsive Disorder37 Samuel Fipps (Oklahoma State University), Bai Chen (University of Florida), Lisa Anthony (University of Florida), Mamoun T. Mardini (University of Florida), and Arunkumar Bagavathi (Oklahoma State University)
An Enhanced Model for ASR in the Medical Field
Deep Learning
Squeeze and Excitation Block Based Neural Architecture Search with Randomization for CNN Construction
Enabling Intelligent Immersive Learning using Deep Learning-Based Learner Confidence Estimation
Mohammadreza Akbari Lor (University of Missouri-Kansas City, USA), Shu-Ching Chen (University of Missouri-Kansas City, USA), Mei-Ling Shyu (University of Missouri-Kansas City, USA), Yudong Tao (University of Miami, USA), and Shahin Vassigh (Florida International University, USA)
Emotion Sentiment Analysis in Turkish Music
Deep Body Fitness
Smart Cities
A Data Science Solution to Integrate Weather Data for Energy Consumption Analysis

Enhancing Parking Efficiency: An Innovative Vehicle Scheduling Algorithm
Correlating Power Outage Spread with Infrastructure Interdependencies During Hurricanes
Machine Learning Applications
Accelerating Relational Keyword Queries With Embedded Predictive Neural Networks
Wear Detection for a Cutting Tool Based on Feature Extraction and Multivariate Regression
EcoScript: A Real-Time Presentation Supporting Tool using a Speech Recognition Model
Computer Vision
Enhancing Choroidal Nevi Segmentation in Fundus Images using YOLO Mehregan Biglarbeiki (University of Calgary, Canada), Roberto Souza (University of Calgary, Canada), Emad Mohammed (Wilfrid Laurier University, Canada), Ezekiel Weis (University of Alberta, Canada), Carol. L. Shields (Wills Eye Hospital, USA), Sandor R. Ferenczy (Wills Eye Hospital, USA), Behrouz Far (University of Calgary, Canada), and Trafford Crump (University of Calgary, Canada)
Advancing Pneumonia Classification and Detection: Comparative Analysis of Deep Learning Models using Convolutional Neural Networks
Advanced Gaze Analytics Dashboard

Large Language Models and Federated Learning School, USA), Glen Horton (University of Cincinnati, USA), Thomas Scherz (University of Cincinnati, USA), and Nan Niu (University of Cincinnati, USA) Vedant S. Lanjewar (The Pennsylvania State University, USA), Hai-Anh Tran (Hanoi University of Science and Technology, Vietnam), and Truong X. Tran (The Pennsylvania State University, USA) Exploring Improved Asynchronous Federated Learning with Fresh Information in Contested Environment 132 Danda B. Rawat (Howard University, USA) Prompirit: Automatic Prompt Engineering Assistance for Improving AI-Generated Art Hannah Kim (Ewha Womans University, Republic of Korea), Hyun Lee (Ewha Womans University, Republic of Korea), Sunyu Pang (Ewha Womans University, Republic of Korea), and Uran Oh (Ewha Womans University, Republic of Korea) Security Android Malware Detection: An Empirical Investigation into Machine Learning Classifiers 144 Aaditya Raval (North Carolina Agricultural and Technical State University, USA) and Mohd Anwar (North Carolina Agricultural and Technical State University, USA) Defending the Defender: Detecting Adversarial Examples for Network Intrusion Detection Dalila Khettaf (Ecole Nationale Superieure d'Informatique, Algeria) and Lydia Bouzar-Benlabiod (Acadia University, Canada) Victor Wen (University of Montana, USA) and Zedong Peng (University of Montana, USA) Large Language Models Wenbo Wang (University of Missouri, USA), Can Li (University of Missouri, UŠA), Lingshu Hu (University of Missouri, USA), Bin Pang (University of Missouri, USA), Bitty Balducci (Washington State University, USA), Detelina Marinova (University of Missouri, USA), Matthew Gordon (University of Missouri, USA), and Yi Shang (University of Missouri, USA)

A New Method Supporting Qualitative Data Analysis Through Prompt Generation for Inductive Coding	
Leveraging ChatGPT to Predict Requirements Testability with Differential In-Context Learning Mahima Dahiya (University of Cincinnati, USA), Rashminder Gill (University of Cincinnati, USA), Nan Niu (University of Cincinnati, USA), Hemanth Gudaparthi (Governors State University, USA), and Zedong Peng (University of Montana, USA)	170
Evaluating the Effectiveness of Fine-Tuning Large Language Model for Domain-Specific Task Saumya Dabhi (Old Dominion University, USA), Joseph Martinez (Old Dominion University, USA), and Faryaneh Poursardar (Old Dominion University, USA) University, USA)	176
Responsable AI	
Causal Rule Forest: Toward Interpretable and Precise Treatment Effect Estimation	178
Improving Sign Language Recognition Performance using Multimodal Data	184
Social Media Governance and Fake News Detection Integrated with Artificial Intelligence Governance Bhavani Thuraisingham (The University of Texas at Dallas) and Teena Thomas (The University of Texas at Dallas)	190
Improving Ethical Considerations in GenAI Responses using Introspection	198
EM-RITE	
Applying Machine Learning to Language Problem Analysis Kuo-Chung Chu (National Taipei University of Nursing and Health Sciences, Taiwan), Yu-Jen Chiu (National Taipei University of Nursing and Health Sciences, Taiwan), and Jakir Hossain Bhuiyan Masud (Public Health Informatics Foundation, Bangladesh)	200
Generative AI in Multimodal Cross-Lingual Dialogue System for Inclusive Communication Support	204

How Reliable AI Chatbots are for Disease Prediction from Patient Complaints?
Artificial Intelligence for HealthCare (AIHC) Workshop - I
Impact of Class Imbalance on Unsupervised Label Generation for Medicare Fraud Detection 216 Robert K.L. Kennedy (Florida Atlantic University, Florida) and Taghi M. Khoshgoftaar (Florida Atlantic University, Florida)
A Novel Approach to Blastocyst Quality Assessment using Deep Learning TLI Image Analysis 222 Rong-Yu Wu (National Taiwan Ocean University, Taiwan), Huai-Wen Chang (National Taiwan Ocean University, Taiwan), Ming-Jer Chen (Lee Women's Hospital Division of Infertility, Taiwan), Yu-Chiao Yi (Taichung Veterans General Hospital (VGHTC), Taiwan), Shih-Kai Lee (National Taiwan Ocean University, Taiwan), Ren-Jie Huang (National Taiwan Ocean University, Taiwan), and Jung-Hua Wang (National Taiwan Ocean University, Taiwan)
Enhancing Cervical Cancer Prediction: A Comparative Analysis of Machine Learning Algorithms and Development of a Novel Screening Tool
An Early Investigation into the Utility of Multimodal Large Language Models in Medical Imaging
Zona Pellucida Thickness Measurement via Instance Segmentation using Compound Loss Functions
AI and Software Engineering
FeaMod: Enhancing Modularity, Adaptability and Code Reuse in Embedded Software Development 246
Al Maruf (Ontario Tech University, Canada), Akramul Azim (Ontario Tech University, Canada), Nitin Auluck (Indian Institute of Technology (IIT), India), and Mansi Sahi (Indian Institute of Technology (IIT), India)

Function-Level Software Metrics for Predicting Vulnerable Code	<u>!</u> 52
Applying Cluster Hypothesis to the Next Release Problem	<u>2</u> 58
Automatic Pseudocode Extraction at Scale	<u>!</u> 64
Refactoring: Deep Dive and Current Trends	<u>2</u> 70
Artificial Intelligence for HealthCare (AIHC) Workshop - II	
Subgroup Analysis via Model-Based Rule Forest	<u>?</u> 72
Glioma Grading using Machine Learning Techniques: Model Optimization and web Deployment . 2 Uriel Nguefack Yefou (African Institute for Mathematical Sciences, Cameroon), Solafa Fadlallah (African Institute for Mathematical Sciences, Senegal), Kobby Panford-Quainoo (African Institute for Mathematical Sciences, Rwanda), Phanie Dianelle Negho (African Institute for Mathematical Sciences, Cameroon), and Dieu-Donné Fangnon (African Institute for Mathematical Sciences, Senegal)	<u>!</u> 78
Fairness Metrics in AI Healthcare Applications: A Review	284
Integrating Traditional Machine and Deep Learning Methods for Enhanced Alzheimer's Detection from MRI Images	<u>2</u> 90
Supervised Contrastive Vision Transformer for Breast Histopathological Image Classification	<u>2</u> 96

Enhancing Disease Symptom Analysis in Thai Text: Methods for Text Oversampling in Imbalanced Data for Disease Detection	302
CV & Visual Analytics	
Multi-Eyes: A Framework for Multi-User Eye-Tracking using Webcameras Bhanuka Mahanama (Old Dominion University, USA), Vikas Ashok (Old Dominion University, USA), and Sampath Jayarathna (Old Dominion University, USA)	308
A Systematic Review of Facial Recognition Methods: Advancements, Applications, and Ethical Dilemmas	314
Visual Analytics in Requirements Engineering: A Systematic Literature Review	320
A Transformer Approach for Camera-to-LIDAR Data Registration Ju Wang (Virginia State University, USA), Yong Tang (n/a), Venkat R. Dasari (DEVCOM Army Research Laboratory, USA), Billy Geerhart (DEVCOM Army Research Laboratory, USA), Brian Rapp (DEVCOM Army Research Laboratory, USA), Peng Wang (DEVCOM Army Research Laboratory, USA), Wei-Bang Chen (Virginia State University, USA), and Isaac Watts (Virginia State University, USA)	326
Author Index	331