ES-S2

2017-2018

Correction - Géométrie –

1. a.
$$\operatorname{Mat}_{\vec{k},\vec{i},\vec{j}}(R_{\theta}) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
; on en déduit que R_{θ} est la rotation de \mathbb{R}^3 d'axe $\operatorname{Vect}\{\vec{j}\}$, d'angle θ .

b.
$$\Gamma_{x_0}$$
 est le cercle contenu dans le plan d'équation $y = \frac{x_0^2}{2}$, de centre $C\left(0, \frac{x_0^2}{2}, 0\right)$ et de rayon $|x_0|$.

Il admet pour équations : $\begin{cases} y = \frac{x_0^2}{2} \\ x^2 + z^2 = x_0^2 \end{cases} \text{ et pour représentation paramétrique : } \begin{cases} x = x_0 \cos(\theta) \\ y = \frac{x_0^2}{2} \\ z = -x_0 \sin(\theta) \end{cases}, \theta \in \mathbb{R}.$

c.
$$\mathcal{S}$$
 a pour équation : $x^2 + z^2 - 2y = 0$. C'est une surface de révolution, engendrée par la parabole d'équations
$$\begin{cases} y = \frac{x^2}{2} \\ z = 0 \end{cases}$$
, autour de l'axe (Oy) .

d. On a d'une part :
$$(x, y, z) \in \mathscr{S} \Leftrightarrow (x, y, z) = f(x, z) \Leftrightarrow (x, y, z) \in \Sigma$$
; d'autre part :

$$(x, y, z) \in \mathscr{S} \quad \Leftrightarrow \quad \exists (x_0, \theta) \in \mathbb{R}^2, (x, y, z) = \left(x_0 \cos(\theta), \frac{x_0^2}{2}, -x_0 \sin(\theta)\right)$$
$$\Leftrightarrow \quad \exists (x_0, \theta) \in \mathbb{R}^2, (x, y, z) = \varphi\left(x_0, \frac{\pi}{2} - \theta\right)$$
$$\Leftrightarrow \quad (x, y, z) \in \Phi$$

On en déduit que \mathscr{S}, Σ et Φ sont confondues.

e. On a:
$$\frac{\partial f}{\partial x}(x_0, z_0) = \begin{pmatrix} 1 \\ x_0 \\ 0 \end{pmatrix}$$
, $\frac{\partial f}{\partial z}(x_0, z_0) = \begin{pmatrix} 0 \\ z_0 \\ 1 \end{pmatrix}$, donc $\frac{\partial f}{\partial x}(x_0, z_0) \wedge \frac{\partial f}{\partial z}(x_0, z_0) = \begin{pmatrix} x_0 \\ -1 \\ z_0 \end{pmatrix}$.

On en déduit une équation du plan tangent à
$$\Sigma$$
 en A_0 : $x_0(x-x_0) - \left(y - \frac{x_0^2 + z_0^2}{2}\right) + z_0(z-z_0) = 0$, soit encore : $x_0x - y + z_0z - \frac{x_0^2 + z_0^2}{2} = 0$.

2. a. La tangente en
$$P$$
 à \mathscr{C}_1 est dirigée par $\overrightarrow{T_1}\begin{pmatrix} 1\\x_0\\0 \end{pmatrix}$; elle admet donc pour représentation paramétrique :

$$\left\{ \begin{array}{l} x=x_0+t \\ y=\frac{x_0^2}{2}+x_0t \end{array} \right., \ t\in\mathbb{R}. \ \text{On en d\'eduit que son intersection avec la droite } \Delta \ \text{est le point } A_1\left(0,-\frac{x_0^2}{2},0\right). \\ z=0 \end{array} \right.$$

b. La tangente en
$$Q$$
 à \mathscr{C}_2 est dirigée par $\overrightarrow{T_2}\begin{pmatrix} 0\\1\\y_0\end{pmatrix}$; elle admet donc pour représentation paramétrique :

$$\begin{cases} x = 0 \\ y = y_0 + t \\ z = \frac{y_0^2}{2} + y_0 t \end{cases}, t \in \mathbb{R}. \text{ On en déduit que son intersection avec la droite } \Delta \text{ est le point } A_2\left(0, \frac{y_0}{2}, 0\right).$$

c.
$$A_1 = A_2 \Leftrightarrow y_0 = -x_0^2$$

d. Soit
$$x_0 \in \mathbb{R}^*$$
. On considère les points $P\left(x_0, \frac{x_0^2}{2}, 0\right)$ et $Q\left(0, -x_0^2, \frac{x_0^4}{2}\right)$ qui satisfont la condition précédente.

On a :
$$\overrightarrow{QP} = \begin{pmatrix} x_0 \\ \frac{3}{2}x_0^2 \\ -\frac{x_0^4}{2} \end{pmatrix}$$
. Ainsi, la surface réglée engendrée par les droites (PQ) admet pour représentation

Spé PT

paramétrique :
$$\begin{cases} x = x_0 t \\ y = -x_0^2 + \frac{3}{2}x_0^2 t \\ z = \frac{x_0^4}{2} - \frac{x_0^4}{2} t \end{cases}, (x_0, t) \in \mathbb{R}^* \times \mathbb{R}.$$

$$\mathbf{e.} \quad \text{On a}: \frac{\partial \psi}{\partial x}(x_0, t) = \begin{pmatrix} t \\ (3t - 2)x_0 \\ 2(1 - t)x_0^3 \end{pmatrix}, \frac{\partial f}{\partial t}(x_0, t) = \begin{pmatrix} \frac{x_0}{3} \\ \frac{3}{2}x_0^2 \\ -\frac{x_0^4}{2} \end{pmatrix}, \text{ donc } \frac{\partial \psi}{\partial x}(x_0, t) \wedge \frac{\partial \psi}{\partial t}(x_0, t) = \begin{pmatrix} \left(-2 + \frac{3}{2}t\right)x_0^5 \\ \left(2 - \frac{3}{2}t\right)x_0^4 \\ \left(2 - \frac{3}{2}t\right)x_0^2 \end{pmatrix}.$$

Pour $x_0 \in \mathbb{R}^*$, et $t \neq \frac{4}{3}$, les plans tangents à Ψ en $M = \psi(x_0, t)$ admettent $\vec{n} = \begin{pmatrix} x_0^3 \\ -x_0^2 \\ 1 \end{pmatrix}$, comme vecteur normal, ils sont donc parallèles.

Exercice 2

1.a. Pour
$$t < 0$$
, la tangente en M_t à Γ est dirigée par le vecteur $\overrightarrow{T_t} = \begin{pmatrix} 2t - \frac{2}{t^2} \\ -\frac{2}{t^3} + 2 \end{pmatrix} \neq \overrightarrow{0}$.

On en déduit que a normale à
$$\Gamma$$
 en M_t admet pour équation : $2t\left(1-\frac{1}{t^3}\right)\left(x-t^2-\frac{2}{t}\right)+2\left(-\frac{1}{t^3}+1\right)\left(y-\frac{1}{t^2}-2t\right)=0$, ce qui équivaut à :

$$tx + y - \left(t^3 + 2 + \frac{1}{t^2} + 2t\right) = 0$$

b. La développée d'une courbe paramétrée est l'enveloppe de ses normales. Ainsi, le point de coordonnées (x,y)est sur la développée de Γ si, et seulement s'il existe t < 0 tel que :

est sur la développée de l'si, et seulement s'il existe
$$t < 0$$
 tel que :
$$\begin{cases} tx + y - \left(t^3 + 2 + \frac{1}{t^2} + 2t\right) = 0\\ x - \left(2 + 3t^2 - \frac{2}{t^3}\right) = 0 \end{cases}$$
, le déterminant de ce système étant bien non nul.

On en déduit une représentation paramétrique de la développée de Γ : $\begin{cases} x(t) = 2 + 3t^2 - \frac{2}{t^3} \\ y(t) = -2t^3 + 2 + \frac{3}{2} \end{cases}, t < 0.$

c. Le centre de courbure C_{-1} de Γ au point M_{-1} a pour coordonnées (7,7). Le rayon de courbure R_{-1} de Γ au point M_{-1} est tel que $\overline{M_{-1}C_{-1}} = R_{-1}\overline{N_{-1}}$, où $\overline{N_{-1}}$ est le vecteur unitaire qui dirige la normale à Γ au point M_{-1} .

On a :
$$M_{-1} = (-1, -1), C_{-1} = (7, 7)$$
 et $\overrightarrow{N_{-1}} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$; on en déduit que $R_{-1} = -8\sqrt{2}$.

2. a. La tangente à Γ en M_{-1} est dirigée par $\overrightarrow{T_{-1}} = \begin{pmatrix} -4 \\ 4 \end{pmatrix}$, donc la tangente à $\mathscr C$ et la tangente à Γ en M_{-1} sont confondues si, et seulement si $\overrightarrow{T_{-1}}$. $\overrightarrow{\Omega M_{-1}} = 0$.

On en déduit que 4(a+1) - 4(b+1) = 0 donc que a = b.

De plus, M_{-1} est sur \mathscr{C} si, et seulement si $(a+1)^2 + (b+1)^2 = r^2$.

Finalement, \mathscr{C} et Γ sont tangentes si, et seulement si b=a et $r=\sqrt{2}|a+1|$.

- **b.** $f_a(x,y) = (x-a)^2 + (y-a)^2 2(a+1)^2$.
- **c.** On pose t = u 1, et on a : $f_7(x(u 1), y u 1)$) $\left(6 u^2 + 2u + \frac{2}{1 u}\right)^2 + \left(9 \frac{1}{(1 u)^2} 2u\right)^2 128$. Les DL usuels donnent : $f_7(x(u-1), y(u-1)) = o_{u\to 0}(u^3)$.
- **d.** Pour a = 7, Ω est C_{-1} et et $r = |R_{-1}|$. Remarque : Le cercle de centre C_{-1} et de rayon $|R_{-1}|$ (appelé cercle osculateur) est le cercle de meilleure $\overline{\text{approximation de }\Gamma}$ au voisinage de M_{-1} .

Spé PT Page 2 sur 2