WELCOME TO

Introduction to Probability

Classical Probability

Classical Probability <u>assumes</u> all outcomes in a sample space are equally likely, then calculates likelihood of something happening.

Event A result of an experiment , usually expressed as a letter (A,B,...)

Outcome A result of the experiment that cannot be broken down into smaller events.

Sample Space The set of all possible outcomes.

$$P(A) = \frac{Number\ of\ Outcomes\ that\ satisfy\ A}{Total\ number\ of\ Outcomes\ in\ the\ sample\ space}$$

Empirical Probability

Empirical Probability is based on experience, we <u>actually</u> perform the experiment and record data.

$$P(A) = \frac{n(A)}{n(S)} \leftarrow number\ of\ times\ the\ event\ actually\ occurs\\ \leftarrow number\ of\ times\ the\ experiment\ is\ performed$$

Example: What is the chance that someone rates their football team as good or better?

Rule of Complement

Complement of an Event, is the event that does not occur.

Probability of A' is (1 - Probability of A)

Joint Probability

Joint Probability is the likelihood that two or more events will coincide.

The <u>UNION</u> of two events A and B is that either A occurs or B occur or both occurs (All colored parts)

The <u>INTERSECTION</u> of two events A and B is that both A and B will occur (Dark middle part only)

Mutually Exclusive Events

Mutually Exclusive Events (or Disjoint Events): Two or more events that cannot occur at the same time.

Suppose you are rolling a six-sided die.

What is the probability that you roll an odd number or you roll a 2?

Example - Joint Probability

In a group of students, 40% are taking Math, 20% are taking History and 10% of students are taking both Math and History.

Q: Find the Probability of a Student taking either Math or History or both.

$$P(M \text{ or } H) = 40\% + 20\% - 10\% = 50\%$$

Q: Find the Probability of rolling A: (2 or less) AND B: (5 or More)?

A: Roll 2 or less B: Roll 5 or more

A: Roll 2 or less B: Roll 5 or more

P(A)=2/6 P(B)=2/6

P(A or B) = P(A) + P(B) = 4/6

Conditional Probability

The probability of an event occurring **GIVEN** that another event has already occurred.

P (A|B) denotes the conditional probability of event A occurring given that event B has occurred.

Conditional Probability - Example

If someone asks you, what is the likelihood that you're carrying an umbrella?

Your first question would be: Is it raining?

Thus, knowing whether it is raining affects the chances that you're carrying an umbrella.

Marginal Probability

When we have a larger set of related variables that you collected for a study, we might want to focus on one of them to answer a specific question.

Marginal probability focuses on one variable ignoring a other set of related variables.

Example:

Given Accident data for DUI and non-DUI of driver,
Find Probability a Driver had Accident when DUI & non-DUI.

	Accident	No Accident	Total
DUI	70	130	200
Non- DUI	30	770	800
Total	100	900	1000

A = Accident
$$P(A) = 100/1000 = 0.10$$

$$D = DUI P(D') = 1 - 200/1000 = 0.80$$

TECH I.S.

Independence

If Event A does not affect Event B and vice-versa, then they are INDEPENDENT events.

$$P(A|B)=P(A) \longrightarrow P(B|A)=P(B) \longrightarrow P(A \cap B) = P(A)P(B)$$

Example: If we roll a die twice, the outcome of the first roll and second roll have no effect on each other - thus they are independent.

For example,

When we roll a dice twice the probability of getting a 6 is $\frac{1}{6}$.

So the probability of getting a 6 and a 6 is $\frac{1}{6} imes \frac{1}{6} = \frac{1}{36}$.

Much obliged.

TECH I.S.

