Optimization Model for a SCRUM-Based Software Development Company

AI Analyst

September 5, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	DecisionVariables	5

1 Sets (Entities)

- Project = $\{p|p \text{ is a project}\}$, with attributes id, name, $project_start$, $project_end$, description, brown
- $\bullet \ \ {\rm Team} = \{t | t \ \ {\rm is \ a \ team} \}, \ {\rm with \ attributes} \ id, name, team_size, team_start, team_status, location \}.$
- Worker = $\{w|w \text{ is a worker}\}$, with attributes id, name, $first_name$, email, $start_date$, status, au
- $\bullet \ \ \text{Feature} = \{f | f \ \text{is a feature}\}, \ \text{with attributes} \ id, title, description, status, priority, estimated} \ _ef. \ \\$
- Skill = $\{s|s \text{ is a skill}\}$, with attributes id, label, description, level, certified, category
- Role = $\{r|r \text{ is a role}\}$, with attributes id, role name, description, area of responsibility
- ProductOwner = $\{po|po \text{ is a product owner}\}$, with attributes id, name, email, availability
- ScrumMaster = $\{sm|sm \text{ is a scrum master}\}$, with attributes id, name, email, experience
- ProductBacklog = $\{pb|pb \text{ is a product backlog}\}$, with attributes id, $created_on$, $last_updated$, nu
- Sprint = $\{sp|sp \text{ is a sprint}\}$, with attributes id, $sprint_number$, $start_date$, end_date , status, acts
- SprintGoal = {sg|sg is a sprint goal}, with attributes id, objective_description, achievement_st
 UserStory = {us|us is a user story}, with attributes id, title, description, acceptance criteria, pr
- Task = $\{tsk|tsk \text{ is a task}\}$, with attributes id, title, description, status, effort, type
- Blocker = $\{bl|bl$ is a blocker $\}$, with attributes id, title, description, severity, status, detected on,
- Stakeholder = $\{sh|sh \text{ is a stakeholder}\}$, with attributes id, name, organization, role, email, area
- Velocity = $\{vel | vel \text{ is a velocity record}\}$, with attributes id, $number_of_sprints_used$, $avg._stellow$

2 Indices

- $w \in Worker$
- $t \in \text{Team}$
- $f \in \text{Feature}$
- $sp \in Sprint$
- $sg \in SprintGoal$
- $us \in UserStory$

- $tsk \in Task$
- $bl \in Blocker$
- $sh \in Stakeholder$
- $vel \in Velocity$

3 Goals

• G0, maximize team availability: Maximize the overall availability of team members.

$$\text{Maximize } \sum_{w \in \text{Worker}} \text{availability}(w)$$

• G1, minimize _feature _effort: Minimize the total estimated effort for features in the backlog.

$$\label{eq:minimize} \text{Minimize } \sum_{f \in \text{Feature}} \text{estimated_effort}(f)$$

• G2, maximize_sprint_goal_achievement: Maximize the number of sprints where the goal was fully achieved.

Maximize
$$\sum_{sg \in SprintGoal} I[achievement_status(sg) = 'Achieved']$$

• G3, minimize_blocker_severity: Minimize the severity of active blockers.

$$\underset{\text{status}(bl) = \text{'Active'}}{\text{Minimize}} \sum_{\substack{bl \in \text{Blocker} \\ \text{status}(bl) = \text{'Active'}}} \text{severity}(bl)$$

- G4, maximize_velocity: Maximize the team's average velocity.
 - Maximize avg. $_$ story $_$ points(vel) for the target team's velocity vel
- **G5**, minimize_sprint_overdue: Minimize the number of tasks not done by the sprint end date.

$$\begin{array}{c} \text{Minimize } \sum_{\substack{tsk \in \text{Task} \\ \text{status}(tsk) \neq \text{'Done'}}} 1 \end{array}$$

• **G6**, maximize _stakeholder _influence: Maximize engagement from high-influence stakeholders.

$$\label{eq:maximize} \underset{sh \in \mathit{Stakeholder}}{\sum} \text{influence_level}(sh)$$

4 Conditions

• C0, team_has_scrum_master: A team must be supported by a ScrumMaster.

 $\forall t \in \text{Team}, \exists sm \in \text{ScrumMaster such that is_supported_by}(t, sm)$

• C1, product_backlog_has_owner: The Product Backlog must be managed by a Product Owner.

 $\forall pb \in \text{ProductBacklog}, \exists po \in \text{ProductOwner such that manages_backlog}(po, pb)$

• C2, user_story_has_acceptance_criteria: A User Story must have defined acceptance criteria.

 $\forall us \in \text{UserStory}, \text{acceptance_criteria}(us) \neq \emptyset$

• C3, task_not_blocked: A task in progress should not be blocked.

 $\forall tsk \in \text{Task where status}(tsk) = \text{'In Progress'}, bl \in \text{Blocker such that is_blocked_by}(tsk, bl)$

• C4, sprint_has_goal: Every sprint must have a defined goal.

 $\forall sp \in \text{Sprint}, \exists sg \in \text{SprintGoal such that pursues_goal}(sp, sg)$

• C5, worker_has_required_skill: A worker assigned to a task must have the required skill.

 \forall assignment of worker w to task tsk, the skill requirements of $tsk \subseteq \text{skills}(w)$

• C6, feature_included_in_release: A feature planned for a release must be marked as done.

 $\forall f \in \text{Feature in a release plan}, \text{status}(f) = \text{'Done'}$

• C7, budget_not_exceeded: The total project cost must not exceed the allocated budget.

$$\sum \operatorname{cost}(\operatorname{features}, \operatorname{tasks}, \operatorname{workers}) \leq \operatorname{budget}(p) \quad \forall p \in \operatorname{Project}$$

5 DecisionVariables

• DV0, assign_worker_to_task: Binary decision to assign a specific worker to a task.

$$x_{w,tsk} \in \{0,1\} \quad \forall w \in \text{Worker}, \forall tsk \in \text{Task}$$

• DV1, select_feature_for_sprint: Binary decision to include a feature in a sprint.

$$y_{f,sp} \in \{0,1\} \quad \forall f \in \text{Feature}, \forall sp \in \text{Sprint}$$

• DV2, set_sprint_duration: The length of a sprint in days.

$$d_{sp} \in Z^+ \quad \forall sp \in \text{Sprint}, \quad 7 \le d_{sp} \le 30$$

• DV3, set team size: The number of workers assigned to a team.

$$n_t \in Z^+ \quad \forall t \in \text{Team}, \quad 3 \le n_t \le 9$$

• DV4, set_story_points: The estimated story points for a user story.

$$p_{us} \in Z^+ \quad \forall us \in \text{UserStory}, \quad 1 \le p_{us} \le 20$$

• DV5, assign priority to feature: The priority level of a feature.

$$q_f \in Z^+ \quad \forall f \in \text{Feature}, \quad 1 \le q_f \le 5$$

• DV6, allocate_budget_to_feature: The amount of budget allocated to a feature's development.

$$b_f \in \mathbb{R}^+ \quad \forall f \in \text{Feature}, \quad 0.0 \le b_f \le 100000.0$$