Algebraic Number Theory (MA3A6) - Problem Sheet 7

You should answer any **three** out of **five** questions. All questions have equal weight. Marks will also be awarded for clarity/presentation.

Deadline: 4pm on Thursday 10th March (week 9)

- 1. Let K be a number field with ring of integers \mathcal{O}_K . If $\alpha \in \mathcal{O}_K$ then $\text{Tr}(\alpha\beta) \in \mathbb{Z}$ for all $\beta \in \mathcal{O}_K$; prove this. What about the converse: if $\alpha \in K$ and $\text{Tr}(\alpha\beta) \in \mathbb{Z}$ for all $\beta \in \mathcal{O}_K$, is α necessarily in \mathcal{O}_K ?
- 2. Let $\alpha \in \mathbb{C}$ be a root of $x^3 x^2 + 2x + 1$ and consider $K = \mathbb{Q}(\alpha)$.
 - (a) Compute $Tr(\alpha)$ and $Tr(\alpha^2)$.
 - (b) Compute the discriminant of $\mathbb{Z}[\alpha]$ and prove that $\mathbb{Z}[\alpha] = \mathcal{O}_K$.
 - (c) Factor the ideals (2), (3), (5) and (7) into prime ideals of \mathcal{O}_K . Which of these prime ideals are principal? What are their norms?
- 3. (a) Prove the Chinese Remainder Theorem for commutative rings: If I and J are ideals of a ring R with I+J=R, then $R/(I\cap J)\cong R/I\times R/J$.
 - (b) If P_1, \ldots, P_m are distinct maximal ideals of a ring R, prove that the natural map $R \to R/P_1 \times \cdots \times R/P_m$ is surjective. Prove that for all $i, P_i \setminus \bigcup_{j \neq i} P_j$ is non-empty.
 - (c) An ideal I of a ring R is said to be *primary* if the following conditions hold: I is not the whole R and if $a, b \in R$, $ab \in I$, $a \notin I$, then there exists an integer $m \ge 1$ with $b^m \in I$.
 - Show that every primary ideal of a Dedekind domain R is a power of a prime ideal. (Hint: use the factorisation of ideals into prime ideals).
- 4. Solve $x^2 + 56 = y^3$ in integers. You may use without proof that $h_{\mathbb{Q}(\sqrt{-14})} = 4$.
- 5. (a) Prove that if we have $[K : \mathbb{Q}] = 2$ then $K = \mathbb{Q}(\sqrt{d})$ for some square-free $d \in \mathbb{Z} \setminus \{1\}$. (We have used but never proved this in lectures).
 - (b) Given $d \in \mathbb{Z}_{<0}$ square-free, prove that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}^{\times}$ is finite.