3. Биполарен транзистор Bipolar Junction Transistor - BJT

Ј.Ќосев, Т.Карталов, Електроника, 3ФЕИТ053018

 Структура и симбол на БЈТ

 п р п с Е р п р с с В В

 Е-емитер В-база С-колектор

1

- Анимација: како работи транзисторот
- https://www.youtube.com/watch?v=jVyyHfsAfyA

J.Косев, Т.Карталов, Електроника, 3ФЕИТ053018

Ċ

Фактор на струјно засилување (инф.)

$$I_{nE} = \gamma(-I_E)$$
 $\gamma < \approx 1$

Фактор на инјекција

$$I_{nC} = \beta^* I_{nE} \qquad \beta^* < \approx 1$$

$$\beta^* < \approx 1$$

Транспортен фактор

$$-I_E=I_{nE}+I_{pE}$$

$$I_C=I_{nC}+I_{CBO} \hspace{0.2cm} \} \Longrightarrow \hspace{0.2cm} I_C=eta^*\gamma(-I_E)+I_{CBO}$$
 $I_B=-I_C-I_E \hspace{0.2cm} lpha=eta^*\gamma \hspace{0.2cm}$ Фактор на струјно засилување во спој со заедничка база

$$I_{C} = lpha(-I_{E}) + I_{CBO}$$
 Типично: 0,95 < $lpha$ < 0,995

Типично:

Фактор на струјно засилување (инф.)

$$\begin{split} -I_E &= I_{nE} + I_{pE} \\ I_C &= I_{nC} + I_{CBO} \end{split} \} \Rightarrow \qquad I_C = \frac{\alpha}{1-\alpha} I_B + \frac{1}{1-\alpha} I_{CBO} \\ I_B &= -I_C - I_E \end{split} \Rightarrow \beta = \frac{\alpha}{1-\alpha} \quad \text{фактор на струјно } \\ \beta &= \frac{\alpha}{1-\alpha} \quad \text{фактор на струјно } \\ \text{засилување во спој со заеднички емитер} \end{split}$$

$$I_C = \beta I_B + (\beta + 1)I_{CBO}$$

Типично:

 $20 < \beta < 200$

I_{CBO}: типично 1nA

Струјно-напонска зависност во НАП (инф.)

Од релацијата на Шокли за емитерскиот спој:

од релацијата на Шокли за емитерскиот спој:
$$-I_E = I_{Sn}(e^{\frac{U_{BE}}{U_T}}-1) + I_{Sp}(e^{\frac{U_{BE}}{U_T}}-1)$$

$$I_C = \alpha(-I_E) + I_{CBO} \approx I_S(e^{\frac{U_{BE}}{U_T}}-1)$$

$$I_C = I_S(e^{\frac{U_{BE}}{U_T}}-1) \qquad \neq f(U_{CB})$$
 I_{CBO} : занемарливо

!! Поведение: НАПОНСКИ КОНТРОЛИРАН СТРУЕН ГЕНЕРАТОР

Други поларизации на биполарен транзистор

Режим на работа	Поларизација на емитерската бариера	Поларизација на колекторската бариера
Нормално активно подрачје, НАП	Директна	Инверзна
Инверзно активно подрачје, ИАП	Инверзна	Директна
Режим на заситување	Директна	Директна
Режим на запирање	Инверзна	Инверзна

Струјно-напонска зависност во сите подрачја - Еберс Мол (инф.)

• Комплетните струјно-напонски карактеристики се дефинирани со релациите (моделот) на Еберс-Мол (информативно):

13

• Транзистор во електрично коло

Струјно-напонска зависност (во НАП) (повторно)

Од релацијата на Шокли за емитерскиот спој (со мали занемарувања):

$$-I_{E} = I_{Sn}(e^{\frac{U_{BE}}{U_{T}}}-1) + I_{Sp}(e^{\frac{U_{BE}}{U_{T}}}-1) = I_{SE}(e^{\frac{U_{BE}}{U_{T}}}-1)$$

$$I_{B} = -I_{E} - I_{C} = ...I_{SB}(e^{\frac{U_{BE}}{U_{T}}}-1) \leftarrow$$
 Закон

$$rac{I_{C}}{I_{B}} = rac{I_{S}(e^{rac{U_{BE}}{U_{T}}}-1)}{I_{SB}(e^{rac{U_{BE}}{U_{T}}}-1)}pprox eta$$
 І_{сво} : занемарливо

!! Сооднос на две експоненцијални зависности по ист закон резултира со линеарна зависност

Упростен модел за мали сигнали (= мали промени на напоните и струите во НАП) (инф.)

Е-М модел генерално:

(ИНФ.)

Е-М модел генерално:

$$I_C = I_C(V_{BE}, V_{CE})$$
 $I_B = I_B(V_{BE}, V_{CE})$
 \Rightarrow
 $dI_C = \frac{\partial I_C}{\partial V_{BE}} \Big|_{\mathcal{Q}} dV_{BE} + \frac{\partial I_C}{\partial V_{CE}} \Big|_{\mathcal{Q}} dV_{CE}$
 $dI_B = \frac{\partial I_B}{\partial V_{BE}} \Big|_{\mathcal{Q}} dV_{BE} + \frac{\partial I_B}{\partial V_{CE}} \Big|_{\mathcal{Q}} dV_{CE}$

Модел во НАП:

$$I_{C} \approx I_{S} e^{\frac{V_{BE}}{V_{T}}}$$

$$I_{B} \approx \frac{I_{S}}{\beta} e^{\frac{V_{BE}}{V_{T}}}$$

$$\Rightarrow dI_{C} \approx \frac{I_{C}}{V_{T}} |_{Q} dV_{BE} + 0 \cdot dV_{CE}$$

$$dI_{B} \approx \frac{I_{B}}{V_{T}} |_{Q} dV_{BE} + 0 \cdot dV_{CE}$$

J.Ќосев, Т.Карталов, Електроника, 3ФЕИТ053018

25

Модел за мали сигнали (НАП)

• Мала промена на струјата/напонот:

$$\begin{split} dI_C \to & i_c, \qquad dV_{BE} \to v_{be}, \qquad dI_B \to i_b \Longrightarrow \\ dI_C \approx & \frac{I_C}{V_T} \Big|_{\mathcal{Q}} \ dV_{BE} \to & \qquad i_c \approx g_m v_{be} \\ dI_B \approx & \frac{I_B}{V_T} \Big|_{\mathcal{Q}} \ dV_{BE} \to & \qquad i_b \approx \frac{1}{r_\pi} v_{be} \end{split}$$

- $g_m = I_{CQ}/V_T$ @ $V_{CE} = V_{CEQ}$: преносна проводност (транскондуктанса)
- $r_{\pi} = V_{T}/I_{BQ}$ @ $V_{CE} = V_{CEQ}$: динамичка отпорност база-емитер

Модел за мали сигнали (НАП)

• Еквивалентна шема:

• Релации што ги поврзуваат малите промени на напоните и струите кај транзисторот околу работната точка во НАП

.I Косев Т Карталов Електроника 3ФЕИТ053018

27

Модел за мали сигнали (НАП)

• Алтернативна еквивалентна шема:

LÉOCER T KANTAROR EREKTRONIUM 30ENT0530

Транзистор како прекинувач

J Косев Т Карталов Електроника 3ФЕИТ053018

31

- Транзисторот работи во режим на големи сигнали.
- Од подрачје на заситување во подрачје на запирање.
- Транзисторот работи како напонски (струјно) управувана преклопка.

.I Косев Т Карталов Електроника ЗФЕИТ053018

