# Chapitre 18

# Arithmétique

#### **Objectifs**

Dans  $\mathbb{Z}$  et  $\mathbb{K}[X]$  qui sont des anneaux euclidiens :

- Définir la notion de congruence.
- Recherche des diviseurs communs : algorithme d'Euclide.
- Notion d'éléments premiers entre eux : théorème de Bezout et ses conséquences.
- Notion de Pgcd et de Ppcm.
- Notion d'éléments premiers (ou irréductibles), décomposition en facteurs premiers.

#### **Sommaire**

| I)   | Divisibilité                               | 2 |
|------|--------------------------------------------|---|
|      | 1) Rappels                                 | 2 |
|      | 2) Diviseurs communs                       | 2 |
| II)  | Éléments premiers entre eux                | 3 |
|      | 1) Théorème de Bezout                      | 3 |
|      | 2) Conséquences                            | 4 |
| III) | Le plus grand diviseur commun              | 4 |
|      | 1) Définition                              | 4 |
|      | 2) Propriétés                              | 5 |
| IV)  | Le plus petit multiple commun              | 6 |
|      | 1) Définition                              | 6 |
|      | 2) Propriétés                              | 7 |
| V)   | Éléments irréductibles, décomposition      | 7 |
|      | 1) Définition                              | 7 |
|      | 2) Décomposition en facteurs irréductibles | 8 |
|      | 3) Applications                            | 9 |
| VI)  | Exercices                                  | 0 |

Dans ce chapitre, l'anneau  $(\mathcal{A}, +, \times)$  désigne  $(\mathbb{Z}, +, \times)$  ou  $(\mathbb{K}[X], +, \times)$ . Pour  $a \in \mathcal{A}$ , on note |a|: la valeur absolue de a si  $\mathcal{A} = \mathbb{Z}$  et  $|a| = \deg(a)$  si  $\mathcal{A} = \mathbb{K}[X]$ . Pour  $a \in \mathcal{A}$  non nul, on note  $\tilde{a}$ : la valeur absolue de a si  $\mathcal{A} = \mathbb{Z}$  et le polynôme a normalisé si  $\mathcal{A} = \mathbb{K}[X]$ .

**Notation**: Soit  $a \in \mathcal{A}$ , on note  $a \mathcal{A}$  l'ensemble des multiples de  $a : a \mathcal{A} = \{ka \mid k \in \mathcal{A}\}.$ 

On vérifie facilement les propriétés suivantes :

- $-b \in a \mathcal{A} \iff a \mid b \text{ (a divise } b\text{)}.$
- $\forall \lambda \in U(\mathscr{A}), (\lambda a)\mathscr{A} = a\mathscr{A}, \text{ et donc } a\mathscr{A} = \tilde{a}\mathscr{A} \text{ si } a \neq 0.$
- $-(a\mathscr{A},+)$  est un groupe commutatif et  $\forall b \in \mathscr{A}, \forall u \in a\mathscr{A}, bu \in a\mathscr{A}$ . On dit que  $a\mathscr{A}$  est un idéal de A. **Exercice**: Montrer que  $a\mathscr{A} + b\mathscr{A}$  et  $(a\mathscr{A}) \cap (b\mathscr{A})$  sont également des idéaux de  $\mathscr{A}$ .

### I) Divisibilité

#### 1) Rappels

− Division euclidienne dans A :

Soient  $a, b \in \mathbb{Z}$  avec  $b \neq 0$ , alors il existe  $q, r \in \mathbb{Z}$  uniques tels que a = bq + r avec  $0 \leq r < |b|$ . Soient  $A, B \in \mathbb{K}[X]$  avec  $B \neq 0$ , alors il existe  $Q, R \in \mathbb{K}[X]$  uniques tels que A = BQ + R avec  $\deg(R) < \deg(B)$ 

- Soient  $a, b \in \mathcal{A}$ , on dit que b divise a lorsqu'il existe  $k \in \mathcal{A}$  tel que a = bk, lorsque  $b \neq 0$  ceci revient à dire que le reste de la division de a par b est nul. Notation :  $b \mid a$ .
- Quelques propriétés :
  - $-b \mid a \iff a \in b \mathcal{A}.$
  - Si  $a \neq 0$ , alors  $b \mid a \Longrightarrow |b| \leq |a|$ .
  - $-(a \mid b \text{ et } b \mid a) \iff a \mathcal{A} = b \mathcal{A} \iff a = \lambda b \text{ avec } \lambda \text{ inversible dans } \mathcal{A} \text{ [on dit que } a \text{ et } b \text{ sont }$
  - Si *b* | *a* et *b* | *c* alors  $\forall u, v \in \mathcal{A}$ , *b* | au + cv.
  - Si  $nb \mid na$  et si  $n \neq 0$ , alors  $b \mid a$ .

# DÉFINITION 18.1 (congruences)

Soient  $a, b, n \in \mathcal{A}$ , on dit que a et congru à b modulo n lorsque  $n \mid a - b$ . Notation :  $a \equiv b \pmod{n}$ .



#### THÉORÈME 18.1

- La relation de congruence modulo n est une relation d'équivalence.
- Soient  $a, b, c, d, n \in A$ , si  $a \equiv b \pmod{n}$  et  $c \equiv d \pmod{n}$  alors :

 $ac \equiv bd \pmod{n}$  et  $a + c \equiv b + d \pmod{n}$ .

On dit que la relation de congruence est compatible avec les opérations.

Preuve: Laissée en exercice.

**Exemple**: Dans  $\mathbb{Z}$ , si  $n = a_0 + 10a_1 + \cdots + 10^p a_p$  (écriture décimale) alors  $n \equiv a_0 + \cdots + a_p \pmod{3}$  car  $10^k \equiv 1$ (mod 3)

#### **Diviseurs communs**



#### DÉFINITION 18.2 (diviseurs communs)

Pour  $a \in \mathcal{A}$ , on note  $D_a$  l'ensemble des diviseurs de a. Si  $a, b \in \mathcal{A}$ , on note  $D_{a,b}$  l'ensemble des diviseurs communs à a et b, on a donc  $D_{a,b} = D_a \cap D_b$ , cet ensemble contient toujours les inversibles  $de \mathcal{A}$ .

#### Remarques:

- Pour tout élément a ∈  $\mathcal{A}$ ,  $U(\mathcal{A}) \subset D_a$ .
- Dans  $\mathbb{Z}$ : si  $a \neq 0$ , alors  $D_a$  est un ensemble fini, plus précisément  $D_b \subset \llbracket -|a|..|a| \rrbracket$ . Par contre dans  $\mathbb{K}[X]$ l'ensemble  $D_a$  est infini mais l'ensemble des degrés des éléments de  $D_a$  est fini.
- $D_0 = \mathcal{A}$ , Si  $\lambda$  est inversible alors  $D_{\lambda} = U(\mathcal{A})$ .
- Si a et b sont non nuls :  $D_a = D_{\tilde{a}}$  (on en déduit que  $D_{a,b} = D_{\tilde{a},\tilde{b}}$ ).



### -<del>°0</del> - THÉORÈME 18.2

Soient  $a, b, q, r \in \mathcal{A}$ ,  $si \ a = bq + r$ ,  $alors \ D_{a,b} = D_{b,r}$ .

**Preuve**: Si  $d \in D_{a,b}$ , alors  $d \mid a$  et  $d \mid b$  donc  $d \mid a - bq$  i.e.  $d \mid r$ , donc  $d \in D_{b,r}$ . Réciproquement, si  $d \in D_{b,r}$ , alors  $d \mid b$  et  $d \mid r$  donc  $d \mid bq + r$  i.e.  $d \mid a$ , d'où  $d \in D_{a,b}$ .

**Application**: Le théorème ci-dessus fournit un algorithme pour la recherche des diviseurs communs à a et b basé sur la division euclidienne : c'est **l'algorithme d'***Euclide* <sup>1</sup>, voici son principe :

On remarque que si b=0 alors  $D_{a,b}=D_a$ . On peut supposer désormais que  $b\neq 0$  et on cherche à calculer  $D = D_{a,b}$ :

Étape 1 : on effectue la division euclidienne de a par  $b: a = bq_1 + r_1$  avec  $0 \le r_1 < b$  si  $\mathscr{A} = \mathbb{Z}$ , ou  $\deg(r_1) < \deg(b)$  si  $\mathscr{A} = \mathbb{K}[X]$ . On a  $D = D_{b,r_1}$ , donc si  $r_1 = 0$  alors  $D = D_b$ , sinon on passe à l'étape 2 :

<sup>1.</sup> EUCLIDE (300 av. J.C. - 275 av. J.C. environ): on ne sait pratiquement rien de sa vie, il était vraisemblablement grec. Son œuvre est colossale et son ouvrage fondamental « Les éléments » regroupe toutes les connaissances de l'époque, il faudra près de vingt siècles pour dépasser son œuvre.

*Étape 2*: on effectue la division euclidienne de b par  $r_1$ :  $b = r_1q_2 + r_2$  avec  $0 \le r_2 < r_1$  si  $\mathscr{A} = \mathbb{Z}$ , ou  $\deg(r_2) < \deg(r_1)$  si  $\mathscr{A} = \mathbb{K}[X]$ . On a donc  $D = D_{r_1,r_2}$ , donc si  $r_2 = 0$  alors  $D = D_{r_1}$ , sinon on passe à l'étape 3:

*Étape 3*: on effectue la division euclidienne de  $r_1$  par  $r_2$ :  $r_1 = r_2q_3 + r_3$  avec  $0 \le r_3 < r_2$  si  $\mathscr{A} = \mathbb{Z}$ , ou  $\deg(r_3) < \deg(r_2)$  si  $\mathscr{A} = \mathbb{K}[X]$ . On a donc  $D = D_{r_2,r_3}$ , donc si  $r_3 = 0$  alors  $D = D_{r_2}$ , sinon on passe à l'étape 4...

- Si  $\mathscr{A} = \mathbb{Z}$ : la suite des restes obtenus est une suite strictement décroissante d'entiers positifs, elle est donc nécessairement finie, *i.e.* il existe un entier  $n \ge 1$  tel que  $r_n = 0$ , l'ensemble cherché est donc  $D = D_{r_{n-1}}$  (avec la convention  $r_0 = b$ ).
- Si  $\mathcal{A} = \mathbb{K}[X]$ : la suite des degrés des restes obtenus est une suite strictement décroissante d'entiers positifs, elle est donc nécessairement finie, *i.e.* il existe un entier  $n \ge 1$  tel que  $R_n = 0$ , l'ensemble cherché est donc  $D = D_{R_{n-1}}$  (avec la convention  $R_0 = b$ ).

 $D_{a,b}$  est l'ensemble des diviseurs du dernier reste non nul.

**Exemple**: Cherchons les diviseurs communs à a = 336 et b = 210

- on effectue la division de *a* par *b* : 336 = 1 × 210 + 126, donc  $D_{a,b} = D_{210,126}$ .
- on effectue la division de 210 par 126 :  $210 = 1 \times 126 + 84$ , donc  $D_{a,b} = D_{210,126} = D_{126,84}$ .
- on effectue la division de 126 par 84 :  $126 = 1 \times 84 + 42$ , donc  $D_{a,b} = D_{84,42}$ .
- on effectue la division de 84 par 42 :  $84 = 2 \times 42 + 0$ , donc  $D_{a,b} = D_{42,0} = D_{42}$ , c'est à dire :

$$D_{336,210} = \{\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42\}.$$

# II) Éléments premiers entre eux

#### 1) Théorème de Bezout



### Définition 18.3

Soient  $a, b \in \mathcal{A}$ , on dit que a et b sont premiers entre eux (ou a est premier avec b) lorsque les seuls diviseurs communs sont les inversibles de  $\mathcal{A}$ , i.e.  $D_{a,b} = U(\mathcal{A})$ .



Dire que a est premier avec b revient à dire que le dernier reste non nul dans l'algorithme d'Euclide est un inversible de . A .

#### Remarques:

- Dans  $\mathbb{Z}$ : a est premier avec b ssi le seul diviseur commun **positif** est 1.
- Dans  $\mathbb{K}[X]$ : a est premier avec b ssi le seul diviseur commun **unitaire** est 1.
- Si a est premier avec b, alors au moins un des deux est non nul (sinon l'ensemble des diviseurs communs est  $\mathcal{A}$ ).
- a est premier avec a ssi a est un inversible.



#### $\sqrt{\phantom{a}}$ THÉORÈME 18.3 (théorème de *Bezout*<sup>2</sup>)

Soient  $a, b \in \mathcal{A}$ , alors a et b sont premiers entre eux ssi il existe  $u, v \in \mathcal{A}$  tels que au + bv = 1. Les entiers u et v sont appelés coefficients de Bezout (non uniques en général).

**Preuve**: Supposons que u et v existent et soit d un diviseur commun à a et b, alors  $d \mid a$  et  $d \mid b$ , donc  $d \mid au + bv$  i.e.  $d \mid 1$ , donc  $d \in U(\mathcal{A})$  ce qui prouve que a et b sont premiers entre eux.

Réciproquement : si a est premier avec b. En appliquant l'algorithme d'*Euclide* on vérifie qu'à chaque étape le reste  $r_k$  peut se mettre sous la forme  $r_k = a.u_k + b.v_k$  avec  $u_k$  et  $v_k$  dans  $\mathscr A$  (récurrence), comme le dernier reste non nul est inversible dans  $\mathscr A$ , il existe bien u et v dans  $\mathscr A$  tels que 1 = au + bv (de plus on sait les calculer!).

**Exemple**:  $\forall n \in \mathcal{A}, n \text{ et } n+1 \text{ sont premiers entre eux, puisque } n+1-n=1.$ 

<sup>2.</sup> BEZOUT Étienne(1730 – 1783) : mathématicien français, l'un des précurseurs de la géométrie algébrique.

#### Conséquences



#### THÉORÈME 18.4

Si a est premier avec b et si a est premier avec c, alors a est premier avec le produit bc. On en déduit que si a est premier avec  $c_1, \ldots, c_n$ , alors a est premier avec le produit  $c_1 \times \ldots \times c_n$ .

**Preuve**: Il existe  $u, v \in \mathcal{A}$  tels que au + bv = 1, il existe  $p, q \in \mathcal{A}$  tels que ap + cq = 1. On effectue le produit de ces deux relations, ce qui donne a(ucq + uap + pbv) + bc(vq) = 1, d'après le théorème de Bezout, a et bc sont premiers entre eux. Une simple récurrence sur n permet de démontrer la généralisation.



#### -`<mark>@</mark>-THÉORÈME 18.5

Si a est premier avec c, si a  $\mid b$  et si c  $\mid b$ , alors ac  $\mid b$ .

**Preuve**: Il existe  $u, v \in \mathcal{A}$  tels que au + cv = 1, on multiplie par b, ce qui donne : bau + bcv = b, or  $c \mid b$  donc  $ac \mid bau$ , et  $a \mid b$  donc  $ac \mid bcv$ , ce qui entraîne  $ac \mid bau + bcv$  i.e.  $ac \mid b$ .

Remarquons que ce théorème est faux lorsque a et c ne sont pas premiers entre eux, par exemple :  $2 \mid 12$  et  $4 \mid 12$ mais  $2 \times 4 = 8 / 12$ .



#### - 🦙 THÉORÈME 18.6 (théorème de *Gauss*)

Si  $a \mid bc$  et si a est premier avec c, alors  $a \mid b$ .

**Preuve**: Il existe  $u, v \in \mathcal{A}$  tels que au + cv = 1, on multiplie par b, ce qui donne bau + bvc = b, or  $a \mid bc$  donc  $a \mid bau + bcv$ , i.e.  $a \mid b$ .

**Exercice**: Résoudre dans  $\mathbb{Z}$  l'équation 5x + 3y = 2.

**Réponse**: 5 et 3 sont premiers entre eux : 5(2) + 3(-3) = 1, d'où 5(4) + 3(-6) = 2, donc  $(x_0 = 4, y_0 = -6)$ est une solution particulière. L'équation équivaut alors à  $5(x - x_0) = 3(y_0 - y)$ , d'après le théorème de *Gauss*, on a  $3 \mid x - x_0$  et  $5 \mid y_0 - y$ , i.e.  $x = x_0 + 3k$  et  $y = y_0 - 5k'$ , en reportant dans la relation on voit que k = k' et donc les solutions sont les couples :  $(x_0 + 3k, y_0 - 5k)$  avec  $k \in \mathbb{Z}$ .

#### Le plus grand diviseur commun III)

#### 1) Définition

Soient  $a, b \in \mathbb{Z}$  non tous deux nuls (i.e.  $a \neq 0$  ou  $b \neq 0$ ), on sait que  $D_{a,b} = D_r$  où r est le dernier reste non nul dans l'algorithme d'Euclide, on voit que les diviseurs communs à a et b ont une valeur absolue inférieur ou égale à celle de r et donc r est le plus grand diviseur commun.

Soient  $A, B \in \mathbb{K}[X]$  non tous deux nuls, on sait que  $D_{A,B} = D_{\tilde{R}}$  où R est le dernier reste non nul dans l'algorithme d'Euclide. On voit que les diviseurs communs à A et B ont un degré inférieur ou égal à celui de R et donc R est un diviseur commun unitaire de degré maximal. Soit D un autre diviseur commun unitaire de degré maximal (i.e. deg(D) = deg(R)), alors  $D \mid \tilde{R}$  mais l'égalité des degrés entraîne  $D = \lambda \tilde{R}$ , comme ces polynômes sont unitaires on a  $\lambda = 1$  et donc  $D = \tilde{R}$ .



# **Ø**Définition 18.4

Soient  $a, b \in \mathcal{A}$  non tous deux nuls, on appelle pgcd de a et de b le plus « grand diviseur commun » [normalisé]. Notation : pgcd(a, b) ou  $a \wedge b$ , c'est le dernier reste non nul **normalisé** dans l'algorithme d'Euclide.



Il en découle que deux éléments a et b de  $\mathcal{A}$ , non tous deux nuls, sont premiers entre eux ssi  $\operatorname{pgcd}(a,b)=1$ .



#### <sup>-</sup>THÉORÈME 18.7

Soient  $a, b \in \mathcal{A}$  non tous deux nuls, et  $d = \operatorname{pgcd}(a, b)$ , alors d est l'unique élément normalisé dans  $\mathcal{A}$  tel que  $a\mathcal{A} + b\mathcal{A} = d\mathcal{A}$ .

**Preuve**: Unicité : si  $d \mathcal{A} = d' \mathcal{A}$  alors d et d' sont associés, mais comme ils sont normalisés, on a d = d'.

Égalité : dans l'algorithme d'Euclide étendu, il existe u et v dans  $\mathcal A$  tel que au+bv=d, ce qui entraine que  $d\mathcal{A} \subset a\mathcal{A} + b\mathcal{A}$ . Si  $r \in a\mathcal{A} + b\mathcal{A}$ , alors d est diviseur de r donc  $a\mathcal{A} + b\mathcal{A} \subset d\mathcal{A}$ , d'où l'égalité.

#### - G-THÉORÈME 18.8 (Calcul pratique d'un pgcd)

Si  $a, b \in \mathcal{A}$  sont non tous deux nuls alors  $\forall q \in \mathcal{A}$ , pgcd(a, b) = pgcd(a - bq, b).

**Preuve**: Soit r = a - bq, on a a = bq + r et on sait alors que  $D_{a,b} = D_{b,r}$ , le résultat en découle.

L'algorithme d'*Euclide* s'écrit ainsi :

```
Procédure pgcd(a0,b0)
Variables
a,b,r: éléments de \mathscr{A}
Début
   a \leftarrow a0
   b \leftarrow b0
   r \leftarrow b
   Tant que r est non nul faire
      r \leftarrow le reste de la division de a par b
      a \leftarrow b
      b \leftarrow r
   Fin du Tant que
   Renvoyer la valeur de a (qui contient le dernier reste non nul)
Fin.
```

```
Exemple: Soit à calculer d = pgcd(3282, 1281):
-3282 = 2 \times 1281 + 720, donc d = pgcd(1281, 720),
-1281 = 1 \times 720 + 561, donc d = pgcd(720, 561),
-720 = 1 \times 561 + 159, donc d = pgcd(561, 159),
-561 = 3 \times 159 + 84, donc d = pgcd(159, 84),
-159 = 1 \times 84 + 75, donc d = pgcd(84, 75),
-84 = 1 \times 75 + 9, donc d = pgcd(75, 9),
-75 = 8 \times 9 + 3, donc d = pgcd(9,3),
-9 = 3 \times 3 + 0, donc d = 3.
```

#### **Propriétés**



#### 🌳 THÉORÈME 18.9 (caractérisations du pgcd)

Soient  $a, b \in \mathcal{A}$  non tous deux nuls, et soit  $d \in \mathcal{A}$  [non nul et normalisé]. On a alors :

```
d = \operatorname{pgcd}(a, b) \iff \exists u, v \in \mathcal{A} \text{ premiers entre eux } tels \text{ que } a = du \text{ et } b = dv.
```

**Preuve**: Si  $d = \operatorname{pgcd}(a, b)$  alors il existe  $u, v \in \mathcal{A}$  tels que a = du et b = dv, soit  $k = u \wedge v$ , alors kd divise a et b, donc  $|kd| \le |d|$  ce qui entraîne k = 1.

Si a = du, b = dv avec  $u \wedge v = 1$ : alors d est un diviseur commun à a et b, d'après le théorème de Bezout, il existe  $\alpha, \beta \in \mathcal{A}$  tels que  $\alpha u + \beta v = 1$ , d'où  $d = \alpha a + \beta b$ , on voit donc que tout diviseur commun à a et b est diviseur de d, donc  $D_{a,b} = D_d$  i.e. d est le plus grand diviseur commun [d est normalisé], i.e.  $d = a \wedge b$ .

### 🛜 THÉORÈME 18.10 (quelques propriétés du pgcd)

Soient  $a, b \in \mathcal{A}$  non tous deux nuls :

- a)  $\forall n \in \mathcal{A}$ ,  $sin \mid a \text{ et } n \mid b$ ,  $alors n \mid pgcd(a,b)$ .
- b)  $\forall \lambda \in U(\mathcal{A})$ ,  $\operatorname{pgcd}(\lambda a, b) = \operatorname{pgcd}(a, \lambda b) = \operatorname{pgcd}(a, b)$ .
- c)  $\forall k \in \mathcal{A} \setminus \{0\}$ ,  $pgcd(ka, kb) = \tilde{k}pgcd(a, b)$ .

- d)  $\forall n \in \mathbb{N}, \operatorname{pgcd}(a^n, b^n) = \operatorname{pgcd}(a, b)^n$ .
- e) Si a et c sont premiers entre eux, alors pgcd(a, bc) = pgcd(a, b).

**Preuve**: Pour le premier point : Soit  $d = \operatorname{pgcd}(a, b)$ , alors  $D_{a,b} = D_d$  donc tout diviseur commun à a et b est un diviseur de d.

Pour le deuxième point :  $D_{\lambda a} = D_a$ .

Pour le troisième point : soit  $d = \operatorname{pgcd}(a, b)$ , alors il existe  $u, v \in \mathbb{Z}$  premiers entre eux tels que a = du et b = dv, d'où ka = kdu et kb = kdv, donc kd = pgcd(ka, kb).

Pour le quatrième point : en reprenant les notations ci-dessus,  $a^n = d^n u^n$  et  $b^n = d^n v^n$ , or u et v sont premiers entre eux, donc  $u^n$  et  $v^n$  aussi (conséquence du théorème de Bezout), par conséquent  $d^n = \operatorname{pgcd}(a^n, b^n)$ .

Pour le cinquième point : on reprend les notations ci-dessus, a = du et bc = dcv mais  $u \mid a$  et a est premier avec c, donc u est premier avec c, d'où u est premier avec cv, et donc  $d = \operatorname{pgcd}(a, bc)$ .

# Le plus petit multiple commun

#### 1) Définition



#### THÉORÈME 18.11

Si a et b sont non nuls, il existe un unique élément m normalisé dans  $\mathcal{A}$  tel que  $(a\mathcal{A}) \cap (b\mathcal{A}) = m\mathcal{A}$ .

**Preuve**: Le résultat est connu dans  $\mathbb{Z}$  car  $(a \mathcal{A}) \cap (b \mathcal{A})$  est un sous-groupe de  $(\mathbb{Z}, +)$ .

Dans  $\mathbb{K}[X]$ : l'ensemble  $C = \{ \deg(u) \mid u \in (a \mathcal{A}) \cap (b \mathcal{A}), u \text{ non nul} \}$  est une partie non vide de  $\mathbb{N}$  (qui contient deg(ab)), cet ensemble admet donc un plus petit élément. Autrement dit, parmi les multiples communs à a et b, non nuls, il y en a [au moins] un qui est minimal en degré. Soit m un multiple commun minimal et normalisé, soit m'un autre multiple commun, on effectue la division euclidienne de m' par m: m' = mq + r avec  $\deg(r) < \deg(m)$ , or cette égalité entraîne que r est aussi un multiple commun à a et b, donc il est forcément nul, ce qui donne m' = mq, on en déduit que  $|(a\mathcal{A}) \cap (b\mathcal{A}) = m\mathcal{A}|$ . L'unicité se montre comme pour le pgcd.

Il découle de ce théorème que c est un multiple commun à a et b si et seulement si  $c \in (a\mathscr{A}) \cap (b\mathscr{A})$ , ce qui équivaut à  $c \in m \mathcal{A}$ , c'est à dire  $m \mid c$ . Ceci entraîne en partculier dans  $\mathbb{Z} : m \leq |c|$ , ou bien dans  $\mathbb{K}[X] : \deg(m) \leq \deg(c)$ .



# **D**ÉFINITION 18.5

Soit  $a, b \in \mathcal{A}$ , non nuls, et soit  $m \in \mathcal{A}$  non nul et **normalisé**, on dit que m est le ppcm de a et blorsque  $(a \mathcal{A}) \cap (b \mathcal{A}) = m \mathcal{A}$ . Notation : m = ppcm(a, b) ou encore  $m = a \vee b$ .



#### √THÉORÈME 18.12 (caractérisation du ppcm)

Soient  $a, b \in \mathcal{A}$ , non nuls, et soit  $m \in \mathcal{A}$  non nul et normalisé alors :

 $m = \operatorname{ppcm}(a, b) \iff \exists u, v \in \mathscr{A} \text{ premiers entre eux } tels \text{ que } m = au = bv.$ 

**Preuve**: On suppose  $a, b \in \mathcal{A}$ , non nuls.

Si  $m = \operatorname{ppcm}(a, b)$ : alors  $a \mid m$  et  $b \mid m$ . Donc il existe  $u, v \in \mathcal{A}$  tels que m = au = bv, soit  $d = \operatorname{pgcd}(u, v)$  alors il existe  $\alpha, \beta \in \mathcal{A}$  premiers entre eux tels que  $u = d\alpha$  et  $v = d\beta$ , d'où  $m = ad\alpha = bd\beta$ , mais alors  $m' = a\alpha = b\beta$  est un multiple commun à a et b donc  $|m'| \le |m|$  ce qui entraı̂ne d = 1.

Si  $\exists u, v \in \mathcal{A}$  premiers entre eux tels que m = au = bv, alors  $a \mid m$  et  $b \mid m$ , il existe  $\alpha, \beta$  tels que  $u\alpha + v\beta = 1$ , soit m' un multiple commun, alors  $m' = m'u\alpha + m'v\beta$ , on en déduit que  $m \mid m'$  et donc  $|m| \le |n|$ , ce qui prouve que  $m = \operatorname{ppcm}(a, b)$ . 

#### **Propriétés** 2)



#### THÉORÈME 18.13

*Soient*  $a, b \in \mathcal{A}$ , non nuls :

- a)  $\forall n \in \mathcal{A}$ , si  $a \mid n$  et  $b \mid n$  alors  $ppcm(a, b) \mid n$ .
- b) Si a et b sont premiers entre eux, alors  $ppcm(a, b) = a\bar{b}$ .
- c)  $\forall k \in \mathcal{A}$ , non nul, ppcm(ka, kb) = kppcm(a, b).

- d)  $ppcm(a, b) \times pgcd(a, b) = ab$ .
- e)  $\forall n \in \mathbb{N}, \operatorname{ppcm}(a^n, b^n) = \operatorname{ppcm}(a, b)^n$ .

Preuve: Pour le premier point : découle de la démonstration du théorème précédent.

Pour le deuxième point : a et b sont premiers entre eux, alors ab = ba par conséquent ppcm(a, b) = ab d'après le théorème précédent.

Pour le troisième point : soit  $m = \operatorname{ppcm}(a, b)$ , alors m = au = bv avec u et v premiers entre eux, d'où km = kau = kbv et donc km = ppcm(ka, kb).

Pour le quatrième point : soit  $m = \operatorname{ppcm}(a, b)$  et  $d = \operatorname{pgcd}(a, b)$ , il existe u et v premiers entre eux tels que a = dvet b = du, or au = bv donc m = au = bv par conséquent md = adu = ab.

Pour le cinquième point : soit  $m = \operatorname{ppcm}(a, b)$  on a m = au = bv avec u et v premiers entre eux, donc  $m^n = a^n u^n = b^n v^n$  avec  $u^n$  et  $v^n$  premiers entre eux, donc  $m^n = \operatorname{ppcm}(a^n, b^n)$ .

# Éléments irréductibles, décomposition

#### Définition



# **D**ÉFINITION 18.6

Un élément p de 𝒜 est dit **irréductible** lorsque cet élément est non inversible et tel que ses diviseurs normalisés sont 1 et p. L'ensemble des éléments irréductibles normalisés de A est noté I d. Un élément irréductible normalisé de  $\mathbb{Z}$  est aussi appelé nombre premier.

#### **Exemples:**

- 2, 3, 5, 7, 11, 13, 17, 19, 23, ... sont des nombres premiers.
- Les nombres de  $Fermat^3$ :  $F_n = 2^{2^n} + 1$  sont premiers pour n = 0, 1, 2, 3, 4 mais pas pour n = 5. Les nombres de  $Mersennes^4$ :  $M_p = 2^p 1$  où  $p \in P$ , sont premiers pour  $p = 2, 3, 5, 7, 127, \ldots$  mais pas pour
- − Tout polynôme de degré 1 est irréductible, donc  $\forall \lambda \in \mathbb{K}, X + \lambda \in \mathcal{I}$ .
- Tout polynôme de degré 2 sans racine dans  $\mathbb{K}$  est irréductible dans  $\mathbb{K}[X]$ . Cependant cette propriété ne se généralise pas au delà du degré 2, par exemple :  $X^4 + 1$  est sans racine dans  $\mathbb{R}$ , mais ce polynôme est réductible  $\operatorname{car} X^4 + 1 = (X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1).$
- La notion de polynôme irréductible dépend du corps  $\mathbb{K}$ , par exemple,  $X^2 + 1$  est irréductible dans  $\mathbb{R}[X]$ , mais pas dans  $\mathbb{C}[X]$ . De même, le polynôme  $X^2 - 2$  est irréductible dans  $\mathbb{Q}[X]$ , mais pas dans  $\mathbb{R}[X]$ .



# -`<mark>@</mark>-THÉORÈME 18.14

Dans  $\mathbb{C}[X]$ , les polynômes irréductibles unitaires sont les polynômes unitaires de degré 1, c'est à

$$\mathscr{I}_{\mathbb{C}[X]} = \{X + a / a \in \mathbb{C}\}.$$

Dans  $\mathbb{R}[X]$ , les polynômes irréductibles sont les polynômes unitaires de degré 1, plus les polynômes unitaires de degré 2 sans racines réelles. C'est à dire :

$$\mathscr{I}_{\mathbb{R}[X]} = \{ X + a \ / \ a \in \mathbb{R} \} \cup \{ X^2 + pX + q \ / \ p, q \in \mathbb{R}, p^2 - 4q < 0 \}.$$

**Preuve**: Pour  $\mathbb{C}[X]$  cela découle du théorème de *D'Alembert*.

Dans  $\mathbb{R}[X]$ : les polynômes annoncés sont bien irréductibles unitaires. Soit  $P \in \mathscr{I}_{\mathscr{A}}$ , avec  $\deg(P) \geqslant 2$  alors P admet des racines complexes, et celles-ci sont non réelles (P est irréductible de degré supérieur à 1), soit  $\alpha$ l'une d'elles, alors  $\overline{\alpha}$  est également racine de P (et distincte de  $\alpha$ ), donc dans  $\mathbb{C}[X]$  le polynôme P est divisible par  $(X-\alpha)(X-\overline{\alpha})=X^2+pX+q\in\mathbb{R}[X]$  avec  $p^2-4q<0$ . Mais alors P est divisible dans  $\mathbb{R}[X]$  par  $X^2+pX+q$  (unicité du quotient et du reste), or  $P \in \mathcal{I}_{\mathcal{A}}$ , donc nécessairement  $P = X^2 + pX + q$ .

#### Propriétés élémentaires :

a) Si p est irréductible, alors  $\forall n \in \mathcal{A}$ , si  $n \notin M_p$  alors  $\operatorname{pgcd}(p, n) = 1$ .

**Preuve**: Soit  $d = \operatorname{pgcd}(p, n)$ , alors  $d \mid p$  donc d = 1 ou  $d = \tilde{p}$ , mais  $\tilde{p}$  ne divise pas n, donc  $d \neq \tilde{p}$ , i.e. d = 1.  $\square$ 

7

<sup>3.</sup> FERMAT Pierre De (1601 - 1665) : mathématicien amateur (éclairé!) l'un des plus féconds de son époque mais qui faisait peu de démonstrations et publiait peu.

<sup>4.</sup> MERSENNES Marin (1588 - 1648) : moine français qui entretenait une correspondance suivie avec les mathématiciens de son époque.

b) Si  $n \in \mathcal{A}$  est non inversible, alors n possède au moins un diviseur irréductible.

**Preuve**: Soit  $B = \{|d| / d \mid n \text{ et } d \notin U(\mathscr{A})\}$ , alors B est une partie de  $\mathbb{N}$  non vide  $(|n| \in B)$ , soit p un diviseur de n avec  $|p| \in B$  **minimal**, si  $d \mid p$  avec d normalisé et  $d \notin U(\mathscr{A})$ , alors  $d \mid n$  et donc  $|d| \in B$ , d'où  $|d| \geqslant |p|$ , or  $d \mid p$ , donc  $|d| \leqslant |p|$  et finalement |d| = |p|, d'où  $d = \tilde{p}$  et donc p est irréductible.

c) L'ensemble  $\mathscr{I}_{\mathscr{A}}$  est infini.

**Preuve**: Si  $\mathscr{I}_{\mathscr{A}}$  est fini, alors  $\mathscr{I}_{\mathscr{A}} = \{p_1, \dots, p_n\}$ , posons  $N = 1 + p_1 \times \dots \times p_n$ , alors N est non inversible, donc N admet au moins un diviseur irréductible normalisé q, comme  $q \in \mathscr{I}_{\mathscr{A}}$ , on a  $q \mid p_1 \times \dots \times p_n$ , et comme  $q \mid N$ , on a  $q \mid 1$  ce qui est absurde, donc  $\mathscr{I}_{\mathscr{A}}$  est infini.

d) Si  $p \in \mathcal{I}_{\mathcal{A}}$  et si  $p \mid nm$ , alors  $p \mid n$  ou  $p \mid m$ .

**Preuve**: Supposons que p ne divise pas n, alors  $n \notin M_p$  donc  $\operatorname{pgcd}(p,n) = 1$  et par conséquent  $p \mid m$  (d'après le théorème de *Gauss*).

e) Dans  $\mathbb{Z}$ : si p est premier, alors  $\forall k \in [[1..p-1]], p \mid \binom{p}{k}$ .

**Preuve**: On a  $k\binom{p}{k} = p\binom{p-1}{k-1}$  qui est donc divisible par p, mais comme  $k \in [[1..p-1]]$ , p est premier avec k, par conséquent, d'après le théorème de *Gauss*,  $p \mid \binom{p}{k}$ .

**Compléments** : Soit  $(p_n)_{n\geqslant 1}$  la suite strictement croissante des nombres premiers, la répartition de ces nombres encore aujourd'hui mal connue, cependant on a les quelques résultats suivants :

- Tout segment de la forme [n..2n] contient au moins un nombre premier (théorème de *Bertrand*).
- Si  $a, b \in \mathbb{N}^*$  sont premier entre eux, alors il existe une infinité de nombre premiers de la forme an + b (théorème de *Dirichlet*).
- $-p_n \sim n \ln(n)$  (théorème de *Hadamard*).

### 2) Décomposition en facteurs irréductibles



#### Ŷ THÉORÈME 18.15 (décomposition en produit de facteurs premiers)

Tout élément  $n \in \mathcal{A}$  non inversible, est un produit d'éléments irréductibles. Plus précisément, il existe  $r \geqslant 1$ , il existe  $p_1, \ldots, p_r \in \mathscr{I}_{\mathcal{A}}$ , il existe des entiers  $\alpha_1, \ldots, \alpha_r \in \mathbb{N}^*$ , il existe  $\lambda \in U(A)$  tels que :

$$n = \lambda \times p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_r^{\alpha_r}.$$

**Preuve**: On a  $n = \lambda \times \tilde{n}$  avec  $\lambda$  inversible. On se ramène ainsi au cas où n est normalisé.

Dans  $\mathbb{Z}$ : par récurrence sur n: pour n=2 il n'y a rien à montrer car 2 est premier. Supposons le théorème démontré jusqu'au rang  $n \ge 2$ , alors n+1 admet au moins un diviseur premier p, donc n+1=pk, si k=1 alors n+1 est premier, sinon k est un produit de facteurs premiers (HR), donc n+1 aussi.

Dans  $\mathbb{K}[X]$ : par récurrence sur  $\deg(n)$ : pour  $\deg(n)=1$  il n'y a rien à montrer. Supposons le théorème démontré jusqu'au rang k, si  $\deg(n)=k+1$  alors n admet au moins un diviseur irréductible unitaire p, donc n=pq, si q=1 alors n est irréductible, sinon q est un produit de facteurs irréductibles (HR), donc n aussi.



#### THÉORÈME 18.16 (unicité de la décomposition)

Si  $n \in \mathcal{A}$  s'écrit sous la forme :

$$n = \lambda \times p_1^{\alpha_1} \times \ldots \times p_r^{\alpha_r} = \mu \times q_1^{\beta_1} \times \ldots \times q_s^{\beta_s},$$

avec  $p_1, \ldots, p_r \in \mathscr{I}_{\mathscr{A}}, \alpha_1, \ldots, \alpha_r \in \mathbb{N}^*, q_1, \ldots, q_s \in \mathscr{I}_{\mathscr{A}}, \beta_1, \ldots, \beta_s \in \mathbb{N}^*, \text{ et } \lambda, \mu \in U(\mathscr{A}) \text{ alors } r = s, \lambda = \mu \text{ et il existe une permutation } \sigma \text{ de } \llbracket 1..r \rrbracket \text{ telle que pour } i \in \llbracket 1..r \rrbracket, p_i = q_{\sigma(i)}, \alpha_i = \beta_{\sigma(i)}. \text{ La décomposition est unique } [\grave{a} \text{ l'ordre près}].$ 

**Preuve**: Si  $p_1 \notin \{q_1, \dots, q_s\}$ , alors  $p_1$  est premier avec  $q_1, \dots, q_s$ , donc  $p_1$  est premier avec  $q_1^{\beta_1} \times \dots \times q_s^{\beta_s}$ , i.e.  $p_1$  est premier avec n, ce qui est absurde puisque  $p_1 \mid n$ , donc  $p_1 \in \{q_1, \dots, q_s\}$ . Finalement on a  $\{p_1, \dots, p_r\} \subset \{q_1, \dots, q_s\}$  et par symétrie on a l'égalité des deux ensembles, donc r = s. Quitte à permuter les indices que la famille  $(q_i)$ , on peut supposer que  $p_1 = q_1, \dots, p_r = q_r$ .

Le théorème de *Gauss* entraı̂ne que  $p_k^{\alpha_k} \mid p_k^{\beta_k}$ , donc  $\alpha_k \leq \beta_k$ , par symétrie on a  $\beta_k \leq \alpha_k$ , et donc  $\alpha_k = \beta_k$ , ce qui termine la preuve.

#### 3) **Applications**

- Si  $n \in \mathcal{A} \setminus U(\mathcal{A})$ , alors la décomposition de n en produit de facteurs irréductibles permet de trouver tous les diviseurs de n.

En effet : Si  $n=\lambda \times p_1^{\alpha_1} \times \ldots \times p_r^{\alpha_r}$ , soit d est un diviseur normalisé de n, si p est un diviseur irréductible de d, alors p est un diviseur irréductible de n, donc  $p \in \{p_1, \dots, p_r\}$ , donc d s'écrit sous la forme:

$$d = p_1^{\beta_1} \times \ldots \times p_r^{\beta_r} \text{ avec } 0 \leqslant \beta_k \leqslant \alpha_k$$

- Si  $n, m \in \mathcal{A} \setminus U(\mathcal{A})$ , alors à partir de leur décomposition en produit de facteurs irréductibles, on peut calculer pgcd(n, m) et ppcm(n, m).

En effet : Si  $n = \lambda \times p_1^{\alpha_1} \times ... \times p_r^{\alpha_r}$  et  $m = \mu \times q_1^{\beta_1} \times ... \times q_s^{\beta_s}$ , alors les diviseurs irréductibles communs à n et m doivent appartenir à  $\{p_1,\ldots,p_r\}\cap\{q_1,\ldots,q_s\}$ , d'où la discussion :

- $-\{p_1,\ldots,p_r\}\cap\{q_1,\ldots,q_s\}=\emptyset$ , alors n et m sont premiers entre eux. i.e.  $\operatorname{pgcd}(n,m)=1$  et donc  $ppcm(n, m) = \widetilde{nm}$ .
- $\{p_1,\ldots,p_r\}\cap\{q_1,\ldots,q_s\}=\{v_1,\ldots,v_t\}$ , alors quitte à changer la numérotation, on peut supposer que  $p_1 = q_1 = v_1, \dots, p_t = q_t = v_t$  sont les diviseurs irréductibles communs à n et m. Mais alors tout diviseur [normalisé] commun à n et m doit s'écrire sous la forme  $v_1^{k_1} \times ... \times v_t^{k_t}$  avec  $k_i \leq \min(\alpha_i, \beta_i)$ pour  $i \in [[1..t]]$ , le plus grand diviseur commun est donc :

$$pgcd(n,m) = v_1^{k_1} \times ... \times v_t^{k_t} \text{ avec } k_i = \min(\alpha_i,\beta_i) \text{ pour } i \in \llbracket 1..t \rrbracket.$$
 En faisant le rapport 
$$\frac{nm}{pgcd(n,m)} \text{ on obtient } ppcm(n,m), \text{ ce qui donne}:$$

$$ppcm(n,m) = v_1^{k_1} \times ... \times v_t^{k_t} \times p_{t+1}^{\alpha_{t+1}} \times ... \times p_r^{\alpha_r} \times q_{t+1}^{\beta_{t+1}} \times ... \times q_s^{\beta_s}$$

$$avec \ k_i = \max(\alpha_i, \beta_i) \text{ pour } i \in [1..t].$$

#### **Exemples:**

- $-336 = 2^4 \times 3 \times 7$  et  $420 = 2^2 \times 3 \times 5 \times 7$ , donc pgcd $(336, 420) = 2^2 \times 3 \times 7 = 84$ , et ppcm $(336, 420) = 2^4 \times 3 \times 5 \times 7$ .
- Dans  $\mathbb{C}[X]: z \in \mathbb{C}$  est racine commune de P et Q si et seulement si z est racine de  $\operatorname{pgcd}(P,Q)$ .

**Exercice**: Dans  $\mathbb{C}[X]$  on a, pour  $n, m \in \mathbb{N}^*$ :  $\operatorname{pgcd}(X^n - 1, X^m - 1) = X^d - 1$  où  $d = \operatorname{pgcd}(n, m)$ .

**Réponse**: Il existe  $u, v \in \mathbb{Z}$  tels que nu + mv = d, on en déduit que  $z^n = z^m = 1$  si et seulement si  $z^d = 1$ , les racines du pgcd sont donc les racines d-ièmes de l'unité, ce qui donne le résulat.

#### VI) **Exercices**

#### ★Exercice 18.1

- a) Soit  $n \in \mathbb{N}$ , calculer:
  - i)  $pgcd(5^{n+1} + 6^{n+1}, 5^n + 6^n)$  ii) pgcd(2n+1, 9n+4) iii) pgcd(5n-9, 2n-6).
- b) Soient  $a, b, c, d \in \mathbb{N}^*$  avec  $a \wedge b = c \wedge d = 1$ . Montrer que  $pgcd(ac, bd) = pgcd(a, d) \times$ pgcd(c, b).

#### ★Exercice 18.2

- a) Décomposer 2709 et 294 en produit de facteurs premiers, en déduire que 2709 |  $2^{294} 1$ .
- b) Montrer que  $\forall n \in \mathbb{N}, n^2 \mid (n+1)^n 1, (2^n 1)^2 \mid 2^{n(2^n 1)} 1, \text{ et } n + 1 \mid C_{2n}^n$
- c) Soient  $n, m, d \in \mathbb{N}^*$  tels que  $n^d \mid m^d$ , montrer que  $n \mid m$ .
- d) Soient  $n, m, d, p \in \mathbb{N}^*$  avec  $n \wedge m = 1$ , montrer que si  $nm = d^p$ , alors il existe  $u, v \in \mathbb{N}^*$  tels que  $n = u^p$  et  $m = v^p$ .
- e) Soient  $n, m \in \mathbb{N}^*$  premiers entre eux, soit d un diviseur positif de nm, montrer que d s'écrit de manière unique sous la forme  $d = d_1 d_2$  avec  $d_1$  diviseur positif de n et  $d_2$  diviseur positif de

#### ★Exercice 18.3

Soit *p* un nombre premier.

- a) Montrer que  $\forall n \in \mathbb{N}, p \mid (n+1)^p n^p 1$ . En déduire que  $p \mid n^p n$ .
- b) Soit  $n \in \mathbb{Z}$  tel que  $n \notin p\mathbb{Z}$ , montrer que  $p \mid n^{p-1} 1$ .

#### ★Exercice 18.4

En observant les carrés d'entiers modulo 11, résoudre dans  $\mathbb{Z}$  l'équation  $x^2 + y^2 = 11z^2$ .

#### ★Exercice 18.5

En observant les carrés d'entiers modulo 23, montrer si n et m sont deux entiers dans  $\mathbb{N}^*$  tels que  $m < n\sqrt{23}$ , alors  $n\sqrt{23} - m \geqslant \frac{2}{m}$ .

#### ★Exercice 18.6

Résoudre dans  $\mathbb{N}^2$  le système  $\begin{cases} x+y = 56 \\ \text{ppcm}(x,y) = 105 \end{cases}$ 

#### ★Exercice 18.7

Soit  $n \in \mathbb{N}$ .

- a) Déterminer n tel que  $13 \mid n^2 + 20n + 74$ .
- b) En déduire que  $n^2 + 20n + 74$  n'est jamais divisible par 169.

#### ★Exercice 18.8

Soient  $a, b, c \in \mathbb{Z}$  avec a, b non tous deux nuls, on cherche à résoudre ax + by = c.

- a) Donner une condition nécessaire et suffisante pour qu'il y ait des solutions.
- b) Lorsque la condition est remplie, montrer que si on connaît une solution, alors toutes les autres solutions s'en déduisent. Résoudre 323x 391y = 612.

# ★Exercice 18.9

Soit  $n \in \mathbb{N}$ , quel est le chiffre des unités du nombre  $N = 1 + 7 + \cdots + 7^n$ ?

#### ★Exercice 18.10

Soit  $f: \mathbb{N}^* \times \mathbb{N}^* \to \mathbb{N}^*$  une application telle que :  $\begin{cases} \forall \ a \in \mathbb{N}^*, f(a,a) = a \\ \forall \ a,b \in \mathbb{N}^*, f(a,b) = f(b,a) \\ \forall \ a,b \in \mathbb{N}^*, f(a,b) = f(a,a+b) \end{cases}$ . Déterminer f.

#### ★Exercice 18.11

Soient a, n deux entiers strictement positifs et premiers entre eux. On note  $r_1, \ldots, r_p$  les entiers de l'intervalle [1..n] qui sont premiers avec n.

- a) Montrer que l'application  $f: \{r_1, \dots, r_p\} \to \{r_1, \dots, r_p\}$  définie par  $: f(r_i)$  est le reste de la division de  $ar_i$  par n, est une bijection.
- b) En déduire  $\prod_{k=1}^p ar_i \equiv \prod_{k=1}^p r_i \pmod n$ , puis que  $a^p \equiv 1 \pmod n$  [théorème d'Euler].

## ★Exercice 18.12

Un éleveur possède un troupeau de n moutons, s'il le partage équitablement entre 3 de ses enfants, il en restera x ( $x \in [0..2]$ ), s'il le partage entre 4 de ses enfants alors il en restera y ( $y \in [0..3]$ ), et s'il le partage entre ses 5 enfants, alors il en restera z ( $z \in [0..4]$ ). Combien de moutons peut-il y avoir dans son troupeau?

#### ★Exercice 18.13

Pour  $n \ge 1$ , on note  $\varphi(n)$  le nombre d'entiers  $k \in [0..n-1]$  qui sont premiers avec n.

- a) Calculer  $\varphi(n)$  pour n=2,3,4,12. Si p est premier, montrer que  $\varphi(p^n)=p^{n-1}(p-1)$ .
- b) On pose  $A = \{\frac{k}{n} / 1 \le k \le n\}$ , soit d un diviseur positif de n, si on met chaque élément de A sous forme irréductible, combien y aura-t-il de fractions avec un dénominateur égal à d? En déduire que :

$$n = \sum_{d|n} \varphi(d).$$

#### ★Exercice 18.14

Soit  $P \in \mathbb{Q}[X]$  à coefficients entiers, soit  $n \in \mathbb{Z}$ , on pose m = P(n).

- a) Montrer que  $\forall k \in \mathbb{Z}, P(n+km) \equiv 0 \pmod{m}$ .
- b) En déduire qu'il n'existe pas de polynôme P non constant à coefficients entiers, tel que  $\forall n \in \mathbb{Z}, P(n)$  est un nombre premier.

#### ★Exercice 18.15

Soient  $nm \in \mathbb{N}^*$  avec  $m \le n$ , montrer que :  $X^{2^m} + X^{2^{m-1}} + 1 \mid X^{2^n} + X^{2^{n-1}} + 1$ .

#### ★Exercice 18.16

Montrer que dans  $\mathbb{C}[X]$  deux polynômes non constants sont premiers entre eux ssi ils n'ont pas de racine commune. Montrer que l'équivalence est fausse dans  $\mathbb{R}[X]$ .

#### ★Exercice 18.17

Résoudre dans  $\mathbb{R}$  le système :  $\begin{cases} x^4 + x^3 - 4x^2 - 5x - 5 &= 0 \\ x^5 - 5x^3 + 3x^2 - 15 &= 0 \end{cases}$ .

#### ★Exercice 18.18

Soient  $P, Q \in \mathbb{K}[X]$ , avec  $P \neq Q$ , on pose pour  $n \in \mathbb{N}$ ,  $T_n = \frac{P^n - Q^n}{P - Q}$ .

- a) Montrer que  $T_n \in \mathbb{K}[X]$ .
- b) Montrer que si pgcd(P,Q) = 1, alors  $pgcd(P Q, T_n) = 1$ .

#### ★Exercice 18.19

- a) Montrer que le polynôme  $P = X^4 X^2 + 1$  est irréductible dans  $\mathbb{Q}[X]$ .
- b) Même question avec  $P = X^4 + X^3 + X^2 + X + 1$ .

#### ★Exercice 18.20

Soit  $P \in \mathbb{C}[X]$ , calculer pgcd(P, P'). En déduire une condition simple sur les nombres p et q pour que le polynôme  $P = X^3 + pX + q$  ait une racine multiple.

#### ★Exercice 18.21

Soient  $n, m \in \mathbb{N}^*$  et  $d = \operatorname{pgcd}(n, m)$ . Avec l'algorithme d'Euclide, montrer que  $\operatorname{pgcd}(X^n - 1, X^m - 1) = X^d - 1$ .