Riot Networks

Javier Barreda Lachlan Deer Chih-Sheng Hsieh Fernando Vega-Redondo Michael D. König Gizem Korkmaz

June 12, 2019

BDHKKVR (2019)

Motivation

Introduction

000

The emergence of collective action ("riots"), an important phenomenon

- Our approach emphasizes the role of social networks:
 - They underlie payoffs, by peer interaction
 - They channel crucial information, e.g. on the extent of support
 - They are endogenous, i.e. co-evolve with actions
- Our model sheds (theoretical) light on the following issues:
 - How does a large local population coordinate on collective action?
 - How do expectations form and adapt along the process?
 - What is the role of individual heterogeneity (e.g. in preferences)?
- Ensuing key objective:
 - Collection of "big" Twitter data on rioting events (Arab Spring)
 - Structural estimation of our model parameters

BDHKKVR (2019) June 12, 2019 2 / 29 Introduction

Related literature

A wide number of related literature strands

- Coordination games in networks:
 - Fixed networks: Blume (1993), Brock & Durlauf (2001), Morris (2000)
 - Co-evolving networks: Jackson & Watts (2002), Goyal & V-R (2005), König et al. (2014), Marsili & V-R (2017)
- Learning:

DeMarzo et al. (2003), Golub & Jackson (2010), Acemoglu et al. (2014)

Collective action & threshold behavior: Granovetter (1978), Chwe (2000), Barberà & Jackson (2016)

Our model integrates above features into a single framework leading to:

- a closed-form characterization of equilib. paths & full comparative analysis
- a likelihood to be used in structural estimation of the model

Badev (2013) has model in similar vein, but equilibrium not characterized

— hence full-fledged theoretical analysis or structural estimation not possible.

4 日 5 4 周 5 4 3 5 4 3 5 **BDHKKVR (2019)** June 12, 2019 3 / 29

Outline

- The benchmark model: complete (global) information
 - The game-theoretic setup
 - The law of motion: action and link adjustment
 - The potential: characterization of the invariant distribution
 - Stochastically stable states
- The belief-based model: learning and incomplete (local) information
 - The revised law of motion
 - Stochastic stability under belief formation
 - On beliefs and beachheads
 - External manipulation of beliefs
- Empirical application (ongoing): Arab Spring on Twitter
- Summary and conclusions

BDHKKVR (2019) Riot Networks June 12, 2019 4 / 29

Benchmark model: the game-theoretic setup

- Players: (large) population $i \in \mathcal{N} = \{1, \dots, n\}$.
- Network: $G = (g_{ij})_{i,j=1}^n$, with $g_{ij} \in \{1 (i \& j connected), 0 (i \& j not connected)\}$,
- actions: $s = (s_1, ..., s_n), s_i \in \{-1(\text{safe}), +1(\text{risky})\}$
- payoffs:

Introduction

$$\pi_i(\mathbf{s}, G) = (1 - \theta - \rho)\gamma_i s_i + \theta \sum_{j=1}^n g_{ij} s_i s_j + \rho \sum_{j=1}^n s_j s_i - \kappa s_i - \zeta d_i$$

- where
- idiosyncratic characteristic of each agent $i: \gamma_i \in \{-1, +1\}$
- ullet coordination: local/peer effects heta ; global/population effects ho
- **costs**: κ on risky action; ζ on linking (d_i : i's degree)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 9000

The law of motion

Time is continuous. The dynamics induces a path of states $\{\omega_t\}_{t>0} \subset \Omega$ where every $\omega = (\mathbf{s}, G) \in \Omega$ specifies an action profile and a network.

The dynamics involves three components:

(1) **Action adjustment**: At every t, each agent $i \in \mathcal{N}$ is selected at a rate $\chi > 0$ to revise his current action s_{it} , in which case he chooses the new action $s'_i \in \{-1, +1\}$ as a noisy best response to the prevailing state. Formally, for infinitesimal Δt , we posit:

$$\mathbb{P}\left(\omega_{t+\Delta t} = (s_i', \mathbf{s}_{-it}, G_t) | \omega_t = (s_{it}, \mathbf{s}_{-it}, G_t)\right) = \chi \, \mathbb{P}\left(\pi_i(s_i', \mathbf{s}_{-it}, G_t) - \pi_i(s_{it}, \mathbf{s}_{-it}, G_t) + \varepsilon_{it} > 0\right) \Delta t + o(\Delta t).$$

for i.i.d. shocks ε_{it} , assumed logistically distributed with parameter η .

4 D > 4 D > 4 D > 4 D > 3

6 / 29

BDHKKVR (2019) June 12, 2019

The law of motion (cont.)

(2) **Link creation**: At every t, each pair of unconnected agents $i, j \in \mathcal{N}$ is selected at a rate $\lambda > 0$ to create a link. Then, they do so iff they both find it profitable given some noisy perceptions of the entailed payoffs. Formally, for infinitesimal $t + \Delta t$, we have:

$$\mathbb{P}\left[\omega_{t+\Delta t} = (\mathbf{s}_t, G_t + ij)|\omega_{t-1} = (\mathbf{s}, G_t)\right] = \lambda \, \mathbb{P}\left[\left\{\pi_i(\mathbf{s}_t, G_t + ij) - \pi_i(\mathbf{s}_t, G_t) + \varepsilon_{ij,t} > 0\right\} \cap \left\{\pi_j(\mathbf{s}_t, G_t + ij) - \pi_j(\mathbf{s}_t, G_t) + \varepsilon_{ij,t} > 0\right\}\right] \Delta t + o(\Delta t)$$

for i.i.d. shocks ε_{it} , assumed logistically distributed with parameter η .

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

BDHKKVR (2019)

Introduction

(3) **Link removal**: At every t, each pair of unconnected agents $i, j \in \mathcal{N}$ is selected at a rate $\xi > 0$ to remove a link. Then, they do so iff at least one of them finds it profitable, given some noisy perceptions of the entailed payoffs. Formally, for infinitesimal $t + \Delta t$, we postulate:

$$\mathbb{P}\left[\omega_{t+\Delta t} = (\mathbf{s}_t, G_t - ij) | \omega_{t-1} = (\mathbf{s}, G_t)\right] = \lambda \, \mathbb{P}\left[\left\{\pi_i(\mathbf{s}_t, G_t - ij) - \pi_i(\mathbf{s}_t, G_t) + \varepsilon_{ij,t} > 0\right\} \cup \left\{\pi_j(\mathbf{s}_t, G_t - ij) - \pi_j(\mathbf{s}_t, G_t) + \varepsilon_{ij,t} > 0\right\}\right] \Delta t + o(\Delta t)$$

for i.i.d. shocks ε_{it} , assumed logistically distributed with parameter η .

4 D > 4 D > 4 E > 4 E > E 9 Q P

Potential and the invariant distribution

A first important result is that the game is a potential game (and hence *noiseless* best-response adjustment converges to some NE).

Proposition

The payoffs of the game admit a potential $\Phi:\Omega o\mathbb{R}$ defined by

$$\Phi(\mathbf{s},G) = (1-\theta-\rho)\sum_{i=1}^{n} \gamma_{i} s_{i} + \frac{\theta}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} s_{i} s_{j} + \frac{\rho}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} s_{i} s_{j} - \kappa \sum_{i=1}^{n} s_{i} - m\zeta,$$

where $m \equiv \sum_{i>i} a_{ij}$ stands for the number of links in G.

BDHKKVR (2019) June 12, 2019 9 / 29

Potential and the invariant distribution (cont.)

For $\eta < \infty$, the process is ergodic. The potential function then leads to the following Gibbs-measure characterizing its (unique) invariant distribution.

Proposition

Introduction

The unique stationary distribution μ^{η} defined on the measurable space (Ω, \mathcal{F}) such that $\lim_{t\to\infty} \mathbb{P}(\omega_t = (\mathbf{s}, \mathcal{G})|\omega_0 = (\mathbf{s}_0, \mathcal{G}_0)) = \mu^{\eta}(\mathbf{s}, \mathcal{G})$. The probability measure μ^{η} is given by

$$\mu^{\eta}(\mathbf{s},G) = \frac{e^{\eta \Phi(\mathbf{s},G)}}{\sum_{G' \in \mathcal{G}^n} \sum_{\mathbf{s}' \in \{-1,+1\}^n} e^{\eta \Phi(\mathbf{s}',G')}}$$

where $\Phi(\cdot)$ is the potential.

BDHKKVR (2019) Riot Networks

Checking the theory numerically

Actual & predicted avge degree for range of ζ and $heta,\,n=10$, and equal number of $\gamma=\pm1$

BDHKKVR (2019) June 12, 2019 11 / 29

Checking the theory numerically

Segregated and Homogenous Societies

12 / 29

BDHKKVR (2019) Riot Networks June 12, 2019

Identify the states visited with positive prob. in the long run for vanishing noise, i.e. the stochastically stable states $\Omega^* \equiv \{\omega \in \Omega \text{ s.t. } \lim_{\eta \to \infty} \mu^{\eta}(\omega) > 0\}.$

Proposition

Introduction

Assume $\zeta < \theta$ and let $n_+ \equiv \#(\{i \in \mathcal{N} : \gamma_i = +1\})$. If

$$\theta < \theta^* = \frac{(n-n_+)(\zeta-2\rho)+2(1-\kappa-\rho)}{2+n-n_+},$$

all states in Ω^* involve a network with two cliques of sizes n_+ and $n-n_+$, with agents in them choosing $s_i=\gamma_i=+1$ and $s_i=\gamma_i=-1$, respectively. Instead, if $\theta>\theta^*$, all states in Ω^* involve a complete network K_n where all agents $i\in\mathcal{N}$ choose either $s_i=+1$ if $n_+>\frac{n}{2}$, or $s_i=-1$ if $n_+<\frac{n}{2}$.

Observation: If pop. size n, global coordination effect are large, ρ , $\theta^* \leq 0$.

< □ > < □ > < □ > < □ > < 亘 > < 亘 > < 亘 > ○ 호 · ♡ < ⊙

BDHKKVR (2019) Riot Networks June 12, 2019 13 / 29

The belief-based model: revised law of motion

Here, each agent i holds expectations $p_i \in [0,1]$ on the fraction of agents $j \in \mathcal{N}$ in the overall population choosing $s_i = +1$.

Then, the agent guides his behavior according to the **expected payoff**

$$\mathbb{E}_{i}(\pi_{i}|\mathbf{s},\mathbf{p},G) = (1-\theta-\rho)\gamma_{i}s_{i} + \theta\sum_{j=1}^{n}a_{ij}s_{i}s_{j} + \rho np_{i}s_{i} - \kappa s_{i} - \zeta d_{i},$$

in terms of which we posit **direct counterparts** of prior (1)-(3):

- (1') Action adjustment
- (2') Link creation

Introduction

(3') Link removal

June 12, 2019

Law of motion for beliefs under incomplete information

Belief-based model

0000000

Agents revise beliefs by combining the following sources of local info.:

- the action frequencies of current partners, extrapolated globally;
- the beliefs of current partners, integrated à la DeGroot.
- **Belief adjustment**: At every t, each agent $i \in \mathcal{N}$ is selected at a rate $\tau > 0$ to revise his current belief p_i . In that case, he carries out a convex combination of the action frequencies and average beliefs of his current partners. Formally, for weight $\varphi \in (0,1]$, and

$$f_i(\mathbf{s}_t, \mathbf{p}_t, G_t) = \varphi \frac{1}{d_{it}} \sum_{j=1}^n a_{ij,t} s_{jt} + (1 - \varphi) \frac{1}{d_{it}} \sum_{j=1}^n a_{ij,t} \rho_{jt}$$

4 D > 4 D > 4 E > 4 E > E 9 Q P

Potential & invariant distribution: incomplete information

Again, we find that the game has a potential (a different one!) and hence the usual best-response adjustment converges to some NE.

Proposition

Introduction

The payoffs of the game admit a potential $\tilde{\Phi}:\Omega\to\mathbb{R}$ defined by

$$\tilde{\Phi}i(\mathbf{s},G) = (1-\theta-\rho)\sum_{i=1}^{n} \gamma_{i}s_{i} + \frac{\theta}{2}\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}s_{i}s_{j} + \rho p_{i}\sum_{i=1}^{n} p_{i}s_{i} - \kappa \sum_{i=1}^{n} s_{i} - m\zeta,$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Again, for $\eta < \infty$, the process is ergodic. Thus we obtain an identical characterization of its unique invariant distribution - in terms of the new potential $\Phi(\cdot)$, instead of the former $\Phi(\cdot)$.

Proposition

Introduction

The unique stationary distribution $\tilde{\mu}^{\eta}$ defined on the measurable space (Ω, \mathcal{F}) such that $\lim_{t\to\infty} \mathbb{P}(\omega_t = (\mathbf{s}, G)|\omega_0 = (\mathbf{s}_0, G_0)) = \tilde{\mu}^{\eta}(\mathbf{s}, G)$. The probability measure $\tilde{\mu}^{\eta}$ is given by

$$ilde{\mu}^{\eta}(\mathbf{s},G) = rac{e^{\eta ilde{\Phi}(\mathbf{s},G)}}{\sum_{G' \in \mathcal{G}^n} \sum_{\mathbf{s}' \in \{-1,+1\}^n} e^{\eta ilde{\Phi}(\mathbf{s}',G')}}$$

where $\tilde{\Phi}(\cdot)$ is the potential.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □

Identify the states visited with positive prob. in the long run for vanishing noise, i.e. the stochastically stable states $\Omega^* \equiv \{\omega \in \Omega \text{ s.t. } \lim_{n \to \infty} \mu^{\eta}(\omega) > 0\}.$

Proposition

Introduction

Assume $\zeta < \theta$ and let $n_+ \equiv \#(\{i \in \mathcal{N} : \gamma_i = +1\})$. If

$$\theta < \tilde{\theta} = \frac{(n-n_+)\zeta + 2(1-\kappa-\rho)}{2+n-n_+},$$

all states in Ω^* involve a network with two cliques of sizes n_+ and $n - n_+$, with agents in them choosing $s_i = \gamma_i = +1$ and $s_i = \gamma_i = -1$, respectively. Instead, if $\theta > \theta^*$, all states in Ω^* involve a complete network K_n where all agents $i \in \mathcal{N}$ choose either $s_i = -1$ if $n_+ > \frac{n}{2}$, or $s_i = -1$ if $n_+ < \frac{n}{2}$.

4 D > 4 D > 4 D > 4 D > 3

BDHKKVR (2019)

Introduction

On peer pressure, segregation, and information

Comparing segregation thresholds under complete & incomplete info.:

$$\frac{(n-n_+)(\zeta-2\rho) + 2(1-\kappa-\rho)}{2+n-n_+} = \theta^* < \tilde{\theta} = \frac{(n-n_+)\zeta + 2(1-\kappa-\rho)}{2+n-n_+}$$

For large n and ρ , $\theta^* = 0$ while $\hat{\theta}$ almost constant

BDHKKVR (2019) June 12, 2019 19 / 29

Sample Network Structures

Role of homophily on network structure

mophiny on network structure

Introduction

Why is the comparison of thresholds θ^* and $\tilde{\theta}$ important?

- It bears on whether a relatively small group of $n_- \equiv n n_+$ revolutionaries can gain a stable beachhead.
- Thereafter, through "drift" (or gradual change in socio-political conditions), it can take over.

Explicit modeling of beliefs also allows one to study **belief manipulation** (by, say, a government), modifying the belief formation rule as

$$f_i(\mathbf{s}_t, \mathbf{p}_t, G_t) = \underbrace{\nu g}_{propaganda} + \varphi \frac{1}{d_{it}} \sum_{j=1}^n a_{ij,t} s_{jt} + (1 - \varphi - \nu) \frac{1}{d_{it}} \sum_{j=1}^n a_{ij,t} p_{jt}$$

 $u\in(0,1]$ parametrizes manipulation strength, g=-1 is preferred action Naturally, manipulation seen to reduce the "segregation parameter region"

 ♦ □ ▷ ♦ □ ▷ ♦ □ ▷ ♦ □ ▷ ♦ □ ▷ ♦ □
 ♦ ○ ○ ○

 BDHKKVR (2019)
 Riot Networks
 June 12, 2019
 21 / 29

Empirical application I: Social unrest in Latin America

A wide and diverse range of social unrest in Latin America (LA)

- Context: a large set of cross-continental different riot instances, approx 15K
- Over almost two years November 1st, 2012 August 31st, 2014.
- Our data:

Introduction

- Network/communication: Twitter, with 600M tweets
- 10% sample of all tweets in LA for the period
- Complementary data: list of events including location, dates, and type of protest, population involved, reported evidence on the event, etc.

BDHKKVR (2019) June 12, 2019 22 / 29

Country	Events
Mexico	4,454
Venezuela	3,072
Brazil	3,051
Paraguay	1,800
Argentina	1,227
Colombia	1,069
Chile	638
El Salvador	608
Uruguay	570
Ecuador	410

4□ > 4□ > 4□ > 4□ > 4□ > 4□

BDHKKVR (2019) Riot Networks June 12, 2019 23 / 29

Operationalization, Objectives and Examples

Operationalization of theory:

- Generate social network: (i) retweets (ii) @-mentions
- NLP analysis of Twitter data to extract message content & intrinsic features of users (gender, location, etc.) for econometric analysis

Objectives of Empirical Analysis:

- Testing the model and structural estimation of the parameters
- Comparative analysis and policy prediction

Examples:

Introduction

- Mexican Riots, 'Yo soy 132'
 - June 2012, biased media coverage, students
- 'Brazillian Spring'
 - June 2013, increases in bus fares, general population

BDHKKVR (2019) June 12, 2019 24 / 29 Introduction

Structural estimation of the model: the essential idea

Our explicit (closed-form) solution of the model underlies the econometric maximum-likelihood strategy, applied either statically or dynamically:

• Static approach: For any observed strategy profile and network (s, G), we use as likelihood the invariant distribution:

$$\tilde{\mu}^{\eta}(\mathbf{s},G;\varpi) = \frac{e^{\eta\tilde{\Phi}(\mathbf{s},G)}}{\sum_{G'\in\mathcal{G}^n}\sum_{\mathbf{s}'\in\{-1,+1\}^n}e^{\eta\tilde{\Phi}(\mathbf{s}',G')}}$$

where $\varpi=(\gamma,\theta,\rho,\kappa,\zeta)$ are the parameters to be used as likelihood maximizers.

• **Dynamic approach**: For any observed sequence of networks $(G_t)_{t=t_1}^{t_2}$ and action profiles $(\mathbf{s}_t)_{t=t_1}^{t_2}$ we use as likelihood:

$$\mathbb{P}((G_t,\mathbf{s}_t)_{t=t_1+1}^{t_2}|\mathbf{s}_{t_1},G_{t_1};\varpi) = \prod_{t=t_1+1}^{t_2}\mathbb{P}((G_t,\mathbf{s}_t)_{t=t_1+1}^{t_2}|G_{t-1},\mathbf{s}_{t-1};\varpi).$$

 4 □ ▶ 4 ∰ ▶ 4 ½ ▶ 4 ½ ▶ ½
 € ◆ 9 €

 BDHKKVR (2019)
 Riot Networks
 June 12, 2019
 25 / 29

	(1)	(II)	(III)
Local spillover (θ)	0.3123***	0.0244	0.1742***
Global conformity ($ ho$)	(0.0140) 1.75E-05*** (5.27E-07)	(0.0219)	(0.0122) 1.79E-05*** (4.36E-07)
Individual heterogeneity (γ)			
female	-0.3523***		-0.3400***
capital	(0.0200) 0.1525*** (0.0097)		(0.0170) 0.1700*** (0.0095)
follower count	0.0006		0.0019
kloutscore	(0.0048) -0.0028*** (0.0007)		(0.0049) -0.0029*** (0.0009)
Linking cost (ζ)	()		()
constant		12.7970*** (0.0391)	12.9531*** (0.0118)
$ female_i - female_i $		0.0959	0.0661**
$I(\text{capital}_i = \text{capital}_i)$		(0.0720) -0.9417***	(0.0288) -1.00064***
$ follower_i - follower_j $		(0.0557) 0.2397***	(0.0065) 0.2597***
$ kloutscore_i - kloutscore_j $		(0.0179) 0.0242*** (0.0024)	(0.0043) 0.0212*** (0.0016)
Sample size		60,837	

	(1)	(II)	(III)
Local spillover (θ)	0.1850*** (0.0089)	0.1671*** (0.0116)	0.1826*** (0.0051)
Global conformity (ρ)	-2.08E-05*** (3.41E-07)	(0.0110)	-2.01E-05*** (3.49E-07)
Individual heterogeneity (γ)			
female	-1.0408*** (0.0644)		-0.8223*** (0.0408)
capital	0.4104*** (0.0228)		0.3822*** (0.0138)
follower count	-0.2865*** (0.0111)		-0.2939*** (0.0098)
kloutscore	0.0277*** (0.0015)		0.0281*** (0.0012)
Linking cost (ζ)			
constant		12.7474*** (0.0231)	12.8553*** (0.0134)
$ female_i - female_j $		0.3688*** (0.0419)	0.2734*** (0.0165)
$I(\operatorname{capital}_i = \operatorname{capital}_j)$		-1.8217*** (0.0608)	-1.6673*** (0.0306)
$ follower_i - follower_j $		0.1971*** (0.0125)	0.1913*** (0.0095)
$ kloutscore_i - kloutscore_j $		0.0486*** (0.0023)	0.0417*** (0.0018)
Sample size		96,566	

BDHKKVR (2019) Riot Networks June 12, 2019 27 / 29

Main points from the preliminary case-specific analysis:

- \bullet Both local and global effects (θ and $\rho)$ are as predicted, positive and significant
- Importance of global effetc provides strong motivation for the belief-based formulation under incomplete information
- Heterogeneity in γ_i important, intuitive

- The rise of collective action in large populations is not well understood - cannot be modeled as a standard coordination game
- We propose a rich model where actions and links co-evolve, as dictated by (myopic) payoff considerations
- Motivated by the large-population context, incomplete information and locally-formed expectations alternative to benchmark setup
- The model can be fully solved analytically, which permits its structural estimation, both statically and dynamically
- This approach can be applied to a wide range of collective-action problems, for many of which extensive data are becoming available.
 - Example provided: Unrest in Latin America
 - To come: Arab Spring.

BDHKKVR (2019) June 12, 2019 29 / 29