MA1102R

AY20/21 sem 2 by jovyntls

00. FUNCTIONS & SETS

sets

$$A = \{x \mid properties \ of x\}$$

- $A \subseteq B$: A is a subset of B
- $A \nsubseteq B$: A is not a subset of B
- $A = B \leftrightarrow A \subseteq B \land B \subseteq A$

operations on sets

- union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
- difference: $A \setminus B = \{x \mid x \in A \land x \notin B\}$

notations of sets

notations of intervals

- · closed interval (inclusive): $[a, b] = \{x \mid a < x < b\}$
- open interval (exclusive):
- $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ $(a,b) = \{x \mid a < x < b\}$ $\cdot \mathbb{N} = \mathbb{Z}^+$
- ∅: empty set • $(a, \infty) = \{x \mid a < x\}$

functions

- existence: $\forall a \in A, f(a) \in B$
- uniqueness: $\forall a \in A$ has only one image in B.
- for $f:A\to B$
 - domain: A
 - codomain: B
- range: $\{f(x) \mid x \in A\}$
- · for this mod:
 - $A, B \subseteq \mathbb{R}$
 - if A is not stated, the domain of f is the largest possible set for which f is defined
 - if B is not stated, $B = \mathbb{R}$

graphs of functions

The graph of
$$f$$
 is the set $G(f) := \{(x, f(x)) \mid x \in A\}$

- if $A, B \subseteq R$ then $G(f) \subseteq A \times B \subseteq \mathbb{R} \times \mathbb{R}$
- each element is a point on the Cartesian plane \mathbb{R}^2

algebra of functions

function	domain
(f+g)(x) := f(x) + g(x)	$A \cap B$
(f-g)(x) := f(x) - g(x)	$A \cap B$
(fg)(x) := f(x)g(x)	$A \cap B$
(f/g)(x) := f(x)/g(x)	$\{x \in A \cap B \mid g(x) \neq 0\}$

types of functions

- rational function: $R(x) = \frac{P(x)}{Q(x)}$, where P, Q are polynomials and $Q(x) \neq 0$
 - every polynomial is a rational function (Q(x) = 1)
- · algebraic function: constructed from polynomials using algebraic operations

- a function f is **increasing** on a set I if $x_q < x_2 \Rightarrow f(x_1) < f(x_2)$ for any $x_1, x_2 \in I$.
- ullet a function f is **decreasing** on a set I if $x_q < x_2 \Rightarrow f(x_1) > f(x_2)$ for any $x_1, x_2 \in I$.
- · even/odd:
 - even function: $\forall x, f(-x) = f(x)$
 - * symmetric about the y-axis
 - odd function: $\forall x, f(-x) = -f(x)$
 - * symmetric about the origin O
 - any function defined on \mathbb{R} can be decomposed *uniquely* into the sum of an even function and an odd function
- power function: xⁿ

•
$$x^n$$
 is $\begin{cases} \text{an odd function,} & \text{if } n \text{ is odd} \\ \text{an even function,} & \text{if } n \text{ is even} \end{cases}$

01. LIMITS

precise definition of limits

Let f be a function defined on an open interval containing a, except possibly at a.

The limit of f(x) as x approaches a, equals L if, for every $\epsilon > 0$ there is $\delta > 0$ such that

informally,

- $0 < |x a| < \delta \Rightarrow x$ is close to but not equal to a.
- $0 < |f(x) L| < \epsilon \Rightarrow f(x)$ is arbitrarily close to L.

limit laws

- Let $c \in \mathbb{R}$. $\lim_{x \to a} c = c$
- $\lim x = a$

Suppose $\lim f(x) = L$ and $\lim g(x) = M$. Let c be a

- $\lim_{x \to a} (cf(x)) = cL = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} (f(x) + g(x)) = L + M = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\lim_{x \to a} (f(x) + g(x)) = E + M = \lim_{x \to a} f(x) + \lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x \to a} (f(x)g(x)) \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\cdot \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided that } \lim_{x \to a} g(x) \neq 0$
- $\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

$\frac{f(x)}{g(x)}$ exists and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} f(x) = 0$

inequalities on limits

Suppose
$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = M$.

if $f(x) \leq g(x)$ for all x near a (except possibly at a), then $L \leq M$.

lemma

If
$$f(x) \ge 0$$
 for all x , then $L \ge 0$.

direct substitution property

Let f be a polynomial or rational function. If a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

If
$$f(x)=g(x)$$
 for all x near a except possibly at a , then
$$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)$$

applications

- if a is not in the domain (e.g. 0 denominator), don't apply
- · convert to an equivalent function and then sub in

one-sided limits

· limit laws also hold for one-sided limits

If as x is close to a from the right, f(x) is close to L, the right-hand limit of f as x approaches a equals L.

$$(x \to a^+ \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^+} f(x) = L$$

If as x is close to a from the left, f(x) is close to L, the left-hand limit of f as x approaches a equals L. $(x \to a^- \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^-} f(x) = L$

$$\lim_{x \to a} f(x) = L \leftrightarrow \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L$$

$$f(x) \to L \Leftarrow x \to a \Leftrightarrow \begin{cases} x \to a^{+} \Rightarrow f(x) \to L \\ x \to a^{-} \Rightarrow f(x) \to L \end{cases}$$

definition of one-sided limits

$$\begin{array}{c} \text{LH Limit: } \lim_{x\to a^-} f(x) = L \\ \text{if for every } \epsilon > 0 \text{ there exists } \delta > 0 \text{ such that} \\ 0 < a - x < \delta \Rightarrow |f(x) - L| < \epsilon \end{array}$$

RH Limit:
$$\lim_{x \to a^+} f(x) = L$$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that $0 < x - a < \delta \Rightarrow |f(x) - L| < \epsilon$

definition of infinite limits

$$\lim_{x\to a}f(x)=\infty$$
 if for every $M>0$ there exists $\delta>0$ such that
$$0<|x-a|<\delta\Rightarrow f(x)>M$$

negative infinite limit:

$$0 < |x - a| < \delta \Rightarrow f(x) < M$$

limits to infinity

$$\lim_{x\to\infty}f(x)=L :$$
 For every $\epsilon>0$, there exists N such that
$$x>N\Rightarrow |f(x)-L|<\epsilon$$

$$\lim_{x\to\infty}f(x)=\infty$$
: For every $M>0$, there exists N such that $x>N\Rightarrow f(x)>M$

squeeze theorem

- Suppose f(x) is bounded by g(x) and h(x) where • q(x) < f(x) < h(x) for all x near a (except at a), • and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$.
 - Then $\lim f(x) = L$

02. CONTINUOUS FUNCTIONS

definition of continuity

a function f is **continuous at** $a \Leftrightarrow$ f is continuous from the left and from the right at a. $\lim f(x) = f(a)$

a function f is continuous at an interval if it is continuous at every number in the interval.

> f is continuous on **open interval** (a, b) $\Leftrightarrow f$ is continuous at every $x \in (a, b)$ f is continuous on closed interval [a, b] f is continuous at every $x \in (a, b)$ f is continuous from the right at af is continuous from the left at b

continuity test

f is continuous at $a \Leftrightarrow$

- 1. f is defined at a (a is in the domain of f)
- 2. $\lim f(x)$ exists
- 3. $\lim f(x) = f(a)$

precise definition of continuity

a function f is continuous at a number a if $\forall \epsilon > 0, \exists \delta > 0$ such that $|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon$

examples of discontinuity

- removable discontinuity
- · infinite discontinuity
- jump discontinuity

properties of continuous functions

let f and g be functions continuous at a. let c be a constant.

- 1. cf is continuous at a
- 2. f + q is continuous at a
- 3. f g is continuous at a
- 4. fg is continuous at a
- 5. $\frac{f}{a}$ is continuous at a, provided $g(a) \neq 0$

other properties

- · a polynomial is continuous everywhere;
- · a rational function is continuous on its domain
- let c be a real number. f(x) = c is continuous on \mathbb{R} .
- f(x) = x is continuous on \mathbb{R} .

trigonometric functions

- $f(x) = \sin x$ and $g(x) = \cos x$ are continuous everywhere
- $\tan x, \sec x$ are continuous whenever $\cos x \neq 0$
- $\cot x$, $\csc x$ are continuous whenever $\sin x \neq 0$
 - domain: $\mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi, \cdots\}$

composite of continuous functions

if
$$f$$
 is continuous at b and $\lim_{x\to a}g(x)=b,$ then
$$\lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))$$

if g is continuous at a and f is continuous at g(a), then $f\circ g$ is continuous at a. $\lim (f\circ g)(x)=(f\circ g)(a)$

substitution theorem

Suppose y=f(x) such that $\lim_{x\to a}f(x)=b.$ If

- 1. q is continuous at b, OR
- 2. $\forall x \text{ near } a, \text{ except at } a, f(x) \neq b \text{ and } \lim_{y \to b} g(y) \text{ exists}$

Then $\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y)$

intermediate value theorem

Let f be a function continuous on [a,b] with $f(a) \neq f(b)$. Let N be a number between f(a) and f(b). Then there exists $c \in (a,b)$ such that f(c) = N.

03. DERIVATIVES

tangent line

the tangent line to y=f(x) at (a,f(a)) is the line passing through (a,f(a)) with slope f'(a): y=f'(a)(x-a)+f(a)

definition of derivatives

- f is differentiable at a if f'(a) exists
- f'(a) is the slope of y = f(x) at x = a

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- $f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D_x f(x) = \cdots$
- $\frac{dy}{dx} := \lim_{x \to 0} \frac{\Delta y}{\Delta x}$ (derivative of y with respect to x)
- $f'(a) = \frac{dy}{dx}|_{x=a}$

differentiable functions

- f is differentiable at a if $f'(a) := \lim_{x \to 0} \frac{f(a+h) f(a)}{h}$
- f is differentiable on (a,b) if f is differentiable at every $c\in(a,b)$

differentiability & continuity

- if f is differentiable at a, then f is continuous at a.
- differentiability \Rightarrow continuity

differentiation

- every polynomial and rational function is differentiable on its domain
- the domain of f' may be smaller than the domain of f. • trigonometric functions are differentiable on the domain

chain rule

If g is differentiable at a and f is differentiable at b=g(a), then $F=f\circ g$ is differentiable at a and $F'(a)=(f\circ g)'(a)=f'(b)g'(a)=f'(g(a))g'(a)$ If z=f(y) and y=g(x), then

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

$$\frac{dz}{dx} |_{x=a} = \frac{dz}{dy}|_{y=b} \frac{dy}{dx}|_{x=a}$$

generalised chain rule

h is differentiable at a;g is differentiable at B=h(a);f is differentiable at c=g(b).

$$(f \circ (g \circ h))' = f' \circ (g \circ h) \cdot (g \circ h)'$$
$$= f'(c)g'(b)h'(a)$$

Leibniz notation:

If
$$y = h(x), z = g(y), w = f(z),$$

$$\frac{dw}{dx} = \frac{dw}{dz} \frac{dz}{dy} \frac{dy}{dx}$$

implicit differentiation

• assumes that $\frac{dy}{dx}$ exists

second derivative

$$f''(x) = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$
$$f' = D(f) \Rightarrow f'' := D^2(f)$$

higher derivatives

$$f^{(0)}:=f$$
 For any positive integer $n, f^{(n)}:=(f^{(n-1)})'$ if $y=f(x)$, then $f^{(n)}(x)=y^{(n)}=\frac{d^ny}{dx^n}=D^nf(x)$

04. APPLICATIONS OF DIFFERENTIATION

extreme values of functions

Let f be a function with domain D.

global (absolute) max/min

- · aka absolute max/min
- extreme values = absolute maximum and absolute minimum

$$f$$
 has a global **maximum** at $c \in D$ $\Leftrightarrow f(c) \geq f(x)$ for all $x \in D$ f has a global **minimum** at $c \in D$ $\Leftrightarrow f(c) \leq f(x)$ for all $x \in D$

local max/min

aka relative max/min aka "turning points"

$$f$$
 has a local **maximum** at $c \in D$ $\Leftrightarrow f(c) \geq f(x)$ for all x near c f has a local **minimum** at $c \in D$ $\Leftrightarrow f(c) \leq f(x)$ for all x near c

extreme value theorem

existence

if f is continuous on a finite closed interval [a,b], then f attains extreme values on [a,b].

value

the extreme value occurs at either critical numbers or the endpoints (x = a, x = b).

critical numbers

Then $c \in D$ is a *critical number* of f if f'(c) = 0, or f'(c) does not exist.

fermat's theorem

Suppose f has a local maximum or minimum at c. If f'(c) exists, then f'(c)=0.

Rolle's Theorem

Let f be a function such that f is continuous on [a,b], f is differentiable on (a,b), and f(a)=f(b). Then there is a number $c\in(a,b)$ such that f'(c)=0.

mean value theorem

Let f be a function such that f is *continuous* on [a,b] and f is *differentiable* on (a,b). Then there exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$

• generalisation of Rolle's theorem when f(a) = f(b).

ordinary differential equations

Let f and g be continuous on [a,b]. If f'(x)=g'(x) for all $x\in(a,b)$, then f(x)=g(x)+C on [a,b] for a constant C.

increasing/decreasing test

Let f be continuous on $\left[a,b\right]$ and differentiable on $\left(a,b\right)$.

- f'(x) > 0 for any $x \in (a,b) \Rightarrow f$ is increasing.
 - f is increasing $\Rightarrow f(x) \ge 0$
- f'(x) < 0 for any $x \in (a, b) \Rightarrow f$ is decreasing. • f is decreasing $\Rightarrow f(x) < 0$
- $f'(x) = 0 \Rightarrow f$ could be increasing OR decreasing.

first derivative test

Let f be continuous and c be a critical number of f. Suppose f is differentiable near c (except possibly at c). At c, if f' changes from:

- (+) to (-) ightarrow f has a local ${f maximum}$ at c
- (-) to (+) $\rightarrow f$ has a local **minimum** at c
- no change in sign $\rightarrow f$ has neither local max/min at c.

concavity

 $f \text{ is } \mathbf{concave } \mathbf{up} \text{ on an open interval } I$ if $f(x) > f'(y)(x-y) + f(y) \text{ for any } x \neq y \in I$ for $a < b \in I$, f'(a) < f'(b) concave $\mathbf{up} \Leftrightarrow f' \text{ is increasing}$ $f \text{ is } \mathbf{concave } \mathbf{down} \text{ on an open interval } I$ if $f(x) < f'(y)(x-y) + f(y) \text{ for any } x \neq y \in I$ for $a < b \in I$, f'(a) > f'(b) concave $\mathbf{down} \Leftrightarrow f' \text{ is } \mathbf{decreasing}$

concavity test

- f'' > 0 on $I \Rightarrow f$ is concave up on I
- f'' < 0 on $I \Rightarrow f$ is concave down on I

second derivative test

If f'(c) = 0 and f''(c) exists,

- $f''(c) > 0 \Rightarrow f$ has a local maximum at c.
- $f''(c) < 0 \Rightarrow f$ has a **local minimum** at c.
- $f''(c) = 0 \Rightarrow$ inconclusive

inflection point

- A point P on the curve $\underline{y}=f(x)$ is an inflection point if
 - f is continuous at P, and
 - the concavity of the curve changes at P.
- if c is an inflection point and f is twice differentiable at c, then $f^{\prime\prime}(c)=0.$

Taylor's Theorem

$$\begin{split} f(x) &= f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \\ &\qquad \qquad \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n, \\ \text{where } R_n &= \frac{f^{(n+1)}(a)}{(n+1)!}(x-a)^{(n+1)} \text{ for } c \text{ between } x \text{ and } a \end{split}$$

Taylor Series

As
$$R-n \to 0$$
 as $n \to \infty$, then
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

L'Hopital's Rule $(\frac{0}{0})$

Let f and g be functions such that

• f and q are differentiable near a (except at a).

Then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
, provided that the RHS limit exists or is $\pm \infty$

L'Hopital's Rule $\binom{\infty}{\infty}$

Suppose that

•
$$\lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = \infty$$
,

- f and g are differentiable near a (except at a),
- $g'(x) \neq 0$ near a (except at a)

Then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
 provided that the RHS limit exists or is $\pm \infty$

Cauchy's Mean Value Theorem

Let f,g be continuous on [a,b], differentiable on (a,b), and $g'(x) \neq 0$ for any $x \in (a,b)$. Then there exists $c \in (a,b)$ such that f'(c) = f(b) - f(a)

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

misc

triangle inequality

$$|a=b| < |a| + |b|$$
 for all $a, b \in \mathbb{R}$

binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

= $a^n + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{n-1} a b^{n-1} + b^n$

where the binomial coefficient is given by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

factorisation

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

misc

•
$$\forall x \in (0, \frac{\pi}{2}), \sin x < x < \tan x$$