importing necessary libraries

```
In [3]: 1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sb
5 from sklearn.model_selection import train_test_split
```

reading the dataset

Out[4]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

¹⁵⁰ rows × 5 columns

cleaning the data

```
In [5]:
        1 df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 5 columns):
            Column
                          Non-Null Count Dtype
             sepal_length 150 non-null
         0
                                          float64
            sepal_width
         1
                          150 non-null
                                          float64
         2
             petal_length 150 non-null
                                          float64
         3
             petal_width 150 non-null
                                          float64
                          150 non-null
                                          object
             species
        dtypes: float64(4), object(1)
        memory usage: 6.0+ KB
```

In [6]: 1 df.head()

Out[6]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [7]: 1 df.isna().any()

Out[7]: sepal_length False sepal_width False petal_length False species False

dtype: bool

In [8]: 1 df.tail()

Out[8]:

	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

In [9]: 1 df.describe()

Out[9]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [10]:
                df["species"].value_counts()
Out[10]: species
           Iris-setosa
                                  50
                                  50
           Iris-versicolor
           Iris-virginica
                                  50
           Name: count, dtype: int64
In [11]:
                convert={"species":{"Iris-setosa":1,"Iris-versicolor":2,"Iris-virginica
               df=df.replace(convert)
             3
                df
Out[11]:
                 sepal_length
                              sepal_width petal_length petal_width
                                                                    species
              0
                          5.1
                                      3.5
                                                   1.4
                                                               0.2
                                                                          1
              1
                          4.9
                                      3.0
                                                   1.4
                                                               0.2
                                                                          1
              2
                          4.7
                                      3.2
                                                   1.3
                                                               0.2
                                                                          1
              3
                          46
                                      3.1
                                                   1.5
                                                               0.2
                                                                          1
                          5.0
                                      3.6
                                                               0.2
              4
                                                   1.4
                                                                          1
            145
                          6.7
                                      3.0
                                                   5.2
                                                               2.3
                                                                          3
            146
                          6.3
                                      2.5
                                                   5.0
                                                               1.9
                                                                          3
            147
                          6.5
                                      3.0
                                                   5.2
                                                               2.0
                                                                          3
                                                   5.4
            148
                          6.2
                                      3.4
                                                               2.3
                                                                          3
                          5.9
                                      3.0
                                                   5.1
                                                                          3
            149
                                                               1.8
```

preparing the inputs and outputs

```
In [33]: 1 x=df[['sepal_length','sepal_width','petal_length','petal_width']].value
2 y=df[['species']].values
```

Train a model

```
In [39]: 1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.50)
2 srav=LogisticRegression()
3 srav.fit(x_train,y_train)
4 print(srav.score(x_test,y_test))
```

0.96

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\utils\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

```
y = column_or_1d(y, warn=True)
```