Discrete Mathematics and Algorithms (CSE611) Lecture No: 4

Prepared by

Madala V V Satyanarayna (201305508)

Arpit Kumar Jaiswal (201305509)

Priyanshu Agrawal (201305511)

Mohd Salman Khan (201305513)

on

Topic: Relations

August 26, 2013

1 Problem (Equivalence Classes)

Let Z be the set of integers. Let R be a relation in Z defined by the open sentence (x-y) is divisible by m, where $x, y \in Z$. Verify whether R is an equivalence relation. If so, find the equivalence classes.

Part 1 Claim : R is an equivalence relation.

Part 2 Equivalence classes.

Solution (Part 1)

I) Reflexive

: Let
$$(x, x) \in R$$
.

Therefore, x - x is divisible by m. and 0 is divisible by all the integers except 0 itself.

Hence Relation R is Reflexive.

II) Symmetric

Let
$$(x, y) \in R$$
.

Therefore, x - y = (k)m — equation (1) where K is any integer.

Equation 1 can be also be written as:

$$y - x = (-k)m - k$$
 is also a constant.

Hence the relation R is symmetric.

III) Trasitive Relation Let $(x, y), (y, z) \in R$.

Therefore,

$$x - y = m * k_1$$

and
$$y - z = m * k_2$$

Hence,
$$x - z = x - y + y - z = mk_1 + mk_2 = m(k_1 + k_2)$$

here $k_1 + k_2$ is a constant.

Hence x - z is also divisible by m

$$(x,z) \in R$$
.

Therefore, R is a transitive relation.

solution (part 2)

For (m = 6) we define the equivalent classes as : -

$$\implies$$
 $[p] = S_p = \{6k + p|p = 0, 1, 2, 3.....and k = \pm 1, \pm 2, \pm 3.....$

x - y = 6k (x-y is divisible by m)

$$\implies x = 6k + y$$

So,
$$[0] = S_0 = \{.... - 12, -6, 0, 6, 12....\}$$

$$\implies$$
 [1] = $S_1 = \{... - 11, -5, 1, 7, 13....\}$

$$\implies$$
 [2] = $S_2 = \{... - 10, -4, 2, 8, 14....\}$

$$\implies$$
 [3] = $S_3 = \{... -9, -3, 3, 9....\}$

$$\implies$$
 [4] = S_4 = {... - 8, -2, 4, 10....}

$$\implies$$
 [5] = $S_5 = \{... -7, -1, 5, 11....\}$

 $S_0, S_1, S_2, S_3, S_4, S_5$ forms a partition of Z under modulo 6 operation, since

1)
$$S_i \cap S_j = \emptyset \ \forall i \neq j, i, j = 0, 1, 2, 3, 4, 5$$

2)
$$\bigcup_{i=0 to 5} \cup_i = Z$$

2 Theorem on Equivalence relations and partition

An Equivalence relation R in a non-empty set A partitions A and conversely a partition of A defines an Equivalence relation.

2.1 Theorem: Every partition of a set induces an equivalence relation on it

Proof: Let $P = \{A1, A2, A3....An\}$ be a partition on a set A. Define a relation R on set A as ${}_aR_b$ if a belongs to the same block as b.

RTP: R is an equivalence relation.

- (i) Since every element in a belongs to the same block as itself, ${}_aR_b$ holds, $\forall a \in A$.
- $\Rightarrow R$ is Reflexive.

- (ii) Let ${}_aR_b$ hold.
- $\Rightarrow a$ belongs to the same block as b.
- \Rightarrow b belongs to the same block as a.
- $\Rightarrow {}_{b}R_{a}$ holds
- $\Rightarrow R$ is Symmetric.
- (iii) Let ${}_aR_b$ and ${}_bR_c$ hold

 $_aR_b \Rightarrow a$ belongs to the same block as b.

 $_bR_c \Rightarrow a$ belongs to the same block as c.

 $_{a}R_{b}\wedge _{b}R_{c}$

- $\Rightarrow a$ also belongs to the same block as c.
- $\Rightarrow {}_aR_b$ holds.
- $\therefore R$ is transitive.

2.2 Number of partitions of finite set

Number of partitions(and hence the equivalence relation) of a set with size n

$$= \sum_{r=1}^{n} S(n,r)$$

where S(n,r) is the string number of the second kind.

$$S(n,r) = \begin{cases} 1 & \text{if r=1 or n=r} \\ S(n-1,r-1) + r.S(n-1,r) & \text{if } 1 < r < n \end{cases}$$

Let R be a binary relation on a set A, where |A| = n.

$$|A \times A| = n \times n = n^2$$

$$|P(A \times A)| = 2^{n^2}$$

- \Rightarrow Total no. of relation on $A = 2^{n^2}$
- \Rightarrow Total no. of reflexive relation on $A = 2^{n(n-1)}$
- \Rightarrow Total no. of symmetric relation on $= 2^{n(n+1)/2}$
- \Rightarrow Total no. of anti-symmetric relation on $= 2^n . 3^{n(n-1)/2}$
- \Rightarrow Total no. of both reflexive and symmetric (compatible) relations on $A=2^p$, where $p=^nC_2=n(n-1)/2$

 \Rightarrow Total no. of equivalence relation on $A=\sum\limits_{r=1}^nS(n,r)$ example: S(5,r)=S(5,1)+S(5,2)+S(5,3)+S(5,4)+S(5,5)=52

3 Closure of Relations

3.1 Compatibility Relation

Def: Let R be a relation in a non-empty set A (i.e., $R \subseteq A \times A$). Then, R is said to be a compatibility relation if it is both reflexive and symmetric.

Problem: Let A be a set of people, and R a binary relation on A such that $(a,b) \in R$ if a is a friend of b. Verify whether R is a compatibility relation.

Solution:

- (i) R is reflexive, since a is always a friend of $a \in A$ (i.e., himself/herself), that is, ${}_aR_b$ holds, $a \in A$.
- (ii) R is symmetric, since, if a is a friend of b, then obviously b is also a friend of a, that is, if ${}_aR_b$ holds, then ${}_bR_a$ also holds, $\forall a,b\in A$.

Hence, R is a compatibility relation.

Important Observations:

All equivalence relations are compatibility relations.

Let R and S be two compatibility relations on a set A. Then $R \cap S$ is a compatibility relation, but $R \cup S$ may or may not be a compatibility relation (True/False).

4 Closure of Relations

4.1 Reflexive Closure

Def: A relation R is the reflexive closure of a relation R if and only if

- (a) R is reflexive,
- (b) $R \subseteq R'$,
- (c) For any relation R'', if $R \subseteq R''$ and R'' is reflexive, then $R' \subseteq R''$, i.e., R' is the smallest relation that satisfies the conditions (a) and (b).

The reflexive closure of a relation R is denoted by r(R).

Problem (Closure of Relations): Given the relation $R = \{(a, b), (b, a), (b, b), (c, b)\}$ on the set $A = \{a, b, c\}$. Compute the reflexive closure r(R) of R.

It is clear that R is not reflexive, since $(a, a) \notin R$ and $(c, c) \subseteq R$.

Consider a relation R' which contains R as well as the tuples (a, a) and (c, c) that is,

$$R' = R \cup \{(a, a), (c, c)\} = \{(a, a), (a, b), (b, a), (b, b), (c, b), (c, c)\}$$

Then, clearly R' is reflexive and $R \subseteq R'$.

Furthermore, any other relation, say R'', containing R must also contain (a, a) and (c, c); otherwise it will not be reflexive. So, $R' \subseteq R''$. As R' contains R, and R' is reflexive, and is contained in every reflexive relation that contains R, so R' is the smallest relation satisfies conditions (a) and (b). Hence, r(R) = R'.

4.2 Symmteric Closure

Def:

A relation R' is the symmetric closure of a relation R if and only if

(a)R' is symmetric,

(b) $R \subseteq R'$, (c) For any relation R'', $if R' \subseteq R''$ and R is symmetric, then $R' \subseteq R''$, i.e., R' is the smallest relation that satisfies the conditions (a) and (b).

The symmetric closure of a relation R is denoted by s(R).

Problem (Closure of Relations): Given the relation $R = \{(a, a), (a, b), (c, c), (b, c), (b, a), (a, c)\}$ on the set $A = \{a, b, c\}$. Compute the symmetric closure s(R) of R.

It is clear that R is not symmetric.

To be symmetric, R needs the pairs (c, b) and (c, a). Consider a relation R' which contains R as well as the tuples (c, b) and (c, a), that is,

$$R' = R \cup \{(c,b), (c,a)\} = \{(a,a), (a,b), (c,c), (b,c), (b,a), (a,c), (c,b), (c,a)\}$$

Then, clearly R' is symmetric and $R \subseteq R'$.

Furthermore, any other relation, say R'', containing R must also contain (c, b) and (c, a); otherwise it will not be symmetric. So, $R' \subseteq R''$. So, R' is the smallest relation satisfies conditions (a) and (b). Hence, s(R) = R'.

4.3 Transitive Closure

Def: A relation R' is the transitive closure of a relation R if and only if

- (a) R' is transitive,
- (b) $R \subseteq R'$,
- (c) For any relation R'', if $R \subseteq R''$ and R is transitive, then $R' \subseteq R''$, i.e., R' is the smallest relation that satisfies the conditions (a) and (b).

The transitive closure of a relation R is denoted by t(R) or R^t .

Problem (Closure of Relations): Let R be the less than (<) relation on the set Z of integers. Compute the transitive closure t(R) of R.

The transitive closure of the less than (<) relation on Z is the less than (<) relation itself.

How to find Transitive Closure of a given Relation R?

We need to add the minimum number of tuples to R giving us R^t such that if $(a,b) \subseteq R^t$ and $(b,c) \subseteq R^t$, then $(a,c) \subseteq R^t$.

Thus,
$$R^t = R \cup \{(a,b) \subseteq R^t \land (b,c) \subseteq R^t \Longrightarrow (a,c) \subseteq R^t\}.$$

Problem (Closure of Relations): Let A = 1, 2, 3 and $R = \{(1,1), (1,2), (1,3), (2,3), (3,1)\}$ be a relation on A.

Compute the transitive closure R^t of R.

Solution:

Clearly, R is not transitive. For example,

$$(2,3) \in R \land (3,1) \in R$$

$$(2,1)\subseteq \mathbb{R}$$
.

Add the following minimum number of tuples in R to construct R such that $R \subseteq R$ and R is transitive:

$$(2,3) \subseteq R \land (3,1) \subseteq R \longrightarrow (2,1) \subseteq R^t$$

$$(3,1) \subseteq R \land (1,2) \subseteq R \longrightarrow (3,2) \subseteq R^t$$

$$(3,1) \subseteq R \land (1,3) \subseteq R \longrightarrow (3,3) \subseteq R6t$$

$$(2,1)\subseteq R^t\wedge (1,2)\subseteq R\longrightarrow (2,2)\subseteq R^t$$

Thus, $R^t = t(R) = R' = R(2, 1), (2, 2), (3, 2), (3, 3).$

5 Functions

A Function is defined by two sets X and Y and a rule (relation) f which assigns every element of X to an element of Y.

Mathematically, f: X is a function from X to Y defined by

$$y = f(x), \forall x \in X.$$

X: Domain of f

Y: Co-Domain (range) of f

The image $y \in Y$ of an element $x \in X$ is denoted by y = f(x).

The pre-image $x \in X$ of an element, $y \in Y$ is an element such that f(x) = y.

The set of all elements in Y which have at least one pre-image is called the image of f, denoted by

$$\operatorname{Im}(f) = \{f(x) | x \in X\} \subset Y.$$

Example : Let
$$X=\{a,b,c\}\ Y=\{1,2,3,4\}\ f:X\in Y$$

$$\mathrm{Im}(f) = \{1,3,4\} \subset Y.$$