

## **Mahindra University Hyderabad**

École Centrale School of Engineering End-semester Regular Examination

Program: B.Tech. Branch: Computation & Mathematics Year: Second Semester: Second Subject: Computer Organization (MA 2211)

Date: 30/05/2024

Time Duration: 03: 00 Hours

Start Time: 10:00 PM

Max. Marks: 100

## Instructions:

- 1) All questions are compulsory.
- 2) Start each answer on a new page and number your answers clearly. Answer all parts of the same question together and in sequence.
- 3) An explanation of every step is essential. Correct outcomes without description will not be evaluated.
- Q 01: Select the correct choice for the following questions with a proper explanation. Correct choices without valid justification will not be considered.  $[02 \times 15]$ 
  - A) Complement of the expression A'B + CD' is \_\_\_\_\_

i) (A' + B)(C' + D)

ii) (A + B')(C' + D)

iii) (A' + B)(C + D')

iv) (A + B')(C + D')

v) None of these

- B) One of De Morgan's theorems states that  $(A + B)' = A' \cdot B'$ . Simply stated, this means that logically, there is no difference between:
  - i) A NOR and an AND gate with inverted inputs
  - ii) A NAND and an OR gate with inverted inputs
  - iii) An AND and a NOR gate with inverted inputs
  - iv) A NOR and a NAND gate with inverted inputs
- C) The Boolean expression for the following logic circuit can be given as:



i) CA + CB + CD

ii) CA + BD'

iii) C(A + B) + D

iv) CA + CB + D

v) None of these

D) The Boolean function AB + AC is equivalent to \_\_\_\_\_\_

i) AB + AC + BC

ii) A'B'C' + ABC' + A'BC

iii) ABC + A'BC + B'C'

iv) ABC + ABC' + AB'C

v) None of these

| E) The expression for Absorption lav                  | v is given by                        |                               |
|-------------------------------------------------------|--------------------------------------|-------------------------------|
| i) A + AB = A                                         | ii) A + AB = B                       | iii) $AB + AA' = A$           |
| iv) A + B = B + A                                     | v) None of these                     |                               |
| F) Consider the Boolean function Y =                  | = $(a + bc) \cdot (pq + r)$ . The co | mplement of Y, i.e., Y' is:   |
| i) $(a' + b'c') \cdot (p'q' + r')$                    | ii) $a'(b' + c') + (p' + q')r'$      |                               |
| iii) $(a' + b'c') + (p'q' + r')$                      | iv) $(a'b'c') + (p'q'r')$            |                               |
| G) There are minterms for fo                          | ur variables (a, b, c, d).           |                               |
| i) 0                                                  | ii) 2                                | iii) 4                        |
| iv) 8                                                 | v) None of these                     |                               |
| H) The expression $Y = AB + BC + A$                   | C shows the operation                | on.                           |
| i) EX-OR                                              | ii) SOP                              | iii) POS                      |
| iv) NOR                                               | v) None of these                     |                               |
| I) Determine the values of A, B, C, a zero.           | nd D that make the sum te            | rm $A' + B + C' + D$ equal to |
| i) $A = 1, B = 0, C = 0, D = 0$                       | ii) $A = 1, B = 0, C = 1, D$         | ) = 0                         |
| iii) $A = 0, B = 1, C = 0, D = 0$                     | iv) $A = 1, B = 0, C = 1, I$         | ) <del>=</del> 1              |
| J) Total number of inputs in a half a                 | dder is                              |                               |
| i) 2                                                  | ii) 3                                | iii) 4                        |
| iv) 1                                                 | v) None of these                     |                               |
| K) A 32 to 1 multiplexer has the following terminals: |                                      |                               |
| i) 32 outputs, one input, and 5 co                    | ontrol signals                       |                               |
| ii) 32 inputs, one output, and 5 control signals      |                                      |                               |
| iii) 5 inputs, one control signal, and 32 outputs     |                                      |                               |
| iv) 5 inputs, 32 control signals, a                   | nd one output                        |                               |
| L) Half-adders have a major limitati                  | on in that they cannot               | - 60 600                      |
| i) Accept a carry bit from a prese                    | ent stage                            |                               |
| ii) Accept a carry bit from the ne                    | ext stage                            |                               |
| iii) Accept a carry bit from a pre                    | vious stage                          |                               |
| iv) Accept a carry bit from the fo                    | ollowing stages                      |                               |
| M) Both OR and AND gates can have                     | e only two inputs.                   |                               |
| i) True                                               | ii) False                            |                               |

N) How many input lines are in a 'Full Adder'?

i) 2

ii) 4

iii) 1

iv) 3

v) None of these

- O) What is a multiplexer?
  - i) It is a type of decoder which decodes several inputs and gives one output
  - ii) A multiplexer is a device which converts many signals into one
  - iii) It takes one input and results into many output
  - iv) It is a type of encoder which decodes several inputs and gives one output
- Q 02: Answer the following questions. Each question consists of six marks.  $[06 \times 05]$ 
  - Design a combinatorial circuit with two inputs, which produce output as logic 0 when any one input is 1.
  - B) Create a circuit that needs to be built that produces an output of 1 if the decimal digit is 5 or greater, i.e., ≥ 5, and an output of 0 if the decimal digit is less than 5. How can this circuit be built using OR, AND, and inverters?
  - Multiply  $(11010.1110)_2$  by  $(1011.1101)_2$ . Also, divide the octal number  $(2276)_8$  by  $(102)_8$ . Show the calculation part.
  - D) Explain Binary Coded Decimal (BCD). Convert (237574)<sub>8</sub> into BCD code. What are six illegal combinations in the BCD code? Explain why they are illegal.
  - E) Find the output of the given circuits.





Q 03: Answer the following questions. Each question consists of ten marks.

 $[10 \times 04]$ 

- A) Write the truth table and simplified Boolean expression with four inputs and one output for the following instances. Finally, design the combinational circuit for them.
  - i) The output is 1 when the binary value of the inputs is less than or equal to five.
  - ii) The output is 1 when the binary value of the inputs is greater than or equal to ten.
- B) What is K-map? Demonstrate the K-map used for three variables, x, y, z, and for four variables, w, x, y, z. Finally, use K-maps to minimize the following Sum of Product expansions.

i) 
$$F_1 = xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$$

ii) 
$$F_2 = xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$$

- Explain the following by taking a suitable example. Also, give figures where it seems necessary.
  - i) Half Adder with designing and logic diagram.
  - ii) 3 to 8 Decoder with truth table and logic diagram.
- p) Implement a converter, which converts a 4 bit binary code WXYZ into its equivalent Gray code ABCD.