Concours marocain : Corrigé 2003 Maths 1, PSI

Maths-MPSI

Mr Mamouni: myismail@altern.org

Source disponible sur:

@http://www.chez.com/myis

I.ETUDE D'UN PREMIER EXEMPLE

- 1) On a : $\lim_{t \to +\infty} t^2 \frac{e^{-t}}{t} = \lim_{t \to +\infty} t e^{-t} = 0$, donc $t \mapsto \frac{e^{-t}}{t}$ est négligeable devant $t \mapsto \frac{1}{t^2}$ en $+\infty$ or $t \mapsto \frac{1}{t^2}$ est intégrable sur l'intervalle $[x, +\infty[$, donc $t \mapsto \frac{e^{-t}}{t}$ l'est aussi .
- 2) a) On a: $\frac{e^{-t}}{t} > 0$ $\forall t \in [x, +\infty[$, donc $\varphi(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt > 0$, d'autre part : $\frac{e^{-t}}{t} < \frac{e^{-t}}{x} \quad \forall t \in]x, +\infty[$, donc $\varphi(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt < \varphi(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = \frac{e^{-t}}{x}$, donc on a montré que , pour tout réel strictement positif x on a : $0 < \varphi(x) < \frac{e^{-x}}{x}$.
 - b) $\forall x \in \mathbb{R}_+^*, \varphi(x) = \int_1^{+\infty} \frac{e^{-t}}{t} dt \int_1^x \frac{e^{-t}}{t} dt$ est dérivable comme différence d'une constante, $\int_1^{+\infty} \frac{e^{-t}}{t} dt$ et d'une primitive $\int_1^x \frac{e^{-t}}{t} dt$ de $\frac{e^{-x}}{x}$, avec $\forall x \in \mathbb{R}_+^*, \varphi'(x) = \frac{e^{-x}}{x}$.
- 3) a) Montrons d'abord que φ est intégrable sur $]0, +\infty[$, en effet d'aprés ce qui précède on peut affirmer que φ est intégrable sur $[1, +\infty[$, de plus $\frac{e^{-t}}{t} \sim \frac{1}{t}$ au voisinage de 0 et $t \mapsto \frac{1}{t}$ n'est pas intégrable sur]0, 1], donc $\int_x^1 \frac{e^{-t}}{t} dt \sim \int_x^1 \frac{1}{t} dt = \ln x$ au voisinage de 0, or $x \mapsto \ln x$ est intégrable sur]0, 1], donc $\varphi(x) = \int_x^1 \frac{e^{-t}}{t} dt + K$ où

- $K=\int_{1}^{+\infty}\frac{e^{-t}}{t}dt$, donc φ est intégrable sur $]0,+\infty[$ et pa $\psi:x\mapsto \varphi(|x|)$ est intégrable sur les deux intervalles $]-\infty[$ $]0,+\infty[$.
- b) Pour tout $x \in \mathbb{R}$, on a $|e^{ixt}\psi| \leq |\varphi(t)|$ et $t \mapsto |\psi|$ into sur les deux intervalles $]-\infty,0[$ et $]0,+\infty[$, donc $t \mapsto e^{ixt}$ deux intervalles $]-\infty,0[$ et $]0,+\infty[$, donc $]0,+\infty[$, donc $]0,+\infty[$ l'est aussi donc les intégrales $I_1 = \int_0^{+\infty} e^{ixt}\psi dt$ et $\int_{-\infty}^0 e^{ixt}\psi(t)dt$ ont un sens et donc $\widehat{\psi}(x) = I_1 + I_2$ a un D'autre part : $\widehat{\psi}(x) = \int_{-\infty}^{+\infty} e^{ixt}\psi(t)dt = \int_0^{+\infty} \frac{1}{2}e^{ixt}\varphi(t)dt$ $\int_{-\infty}^{+\infty} \frac{1}{2}e^{ixt}\varphi(t)dt + \int_0^{+\infty} \frac{1}{2}e^{-ixu}\varphi(u)dt$ $\int_0^{+\infty} \frac{1}{2}e^{ixt}\varphi(t)dt + \int_0^{+\infty} \frac{1}{2}e^{-ixt}\varphi(t)dt = 2\int_0^{+\infty} \varphi(t)\cos(xt)dt$
- c) Pour tout réel non nul x, on a à l'aide d'une intégration par $\widehat{\psi}(x) = \int_0^{+\infty} \varphi(t) \cos(xt) dt = \left[\varphi(t) \frac{\sin xt}{x} \right]_{t \to 0}^{t \to \infty}$ $\int_0^{+\infty} \varphi'(t) \frac{\sin xt}{x} dt =$ $\frac{1}{x} \int_0^{+\infty} \frac{e^{-t}}{t} \sin(xt) dt, \text{ car d'aprés 2.a } |\varphi(t) \frac{\sin xt}{x}| \leq \frac{e^{-t}}{x} \to 0,$ $t \to +\infty \text{ pour } x \text{ fixé, et d'aprés ce qui précède } \varphi(t) \sim \ln t \to 0.$ voisinage de 0, donc

 $\varphi(t)\frac{\sin xt}{x} \sim (\ln t + K)\frac{\sin xt}{x} \text{ quand } t \to 0 \text{ pour } x \text{ fixé, comme}$ $\frac{\sin xt}{x} \sim t \text{ quand } t \to 0 \text{ pour } x \text{ fixé, alors } \varphi(t)\frac{\sin xt}{x} \sim (\ln t + K)t$ $\text{quand } t \to 0 \text{ pour } x \text{ fixé et donc } \lim_{t \to 0} \varphi(t)\frac{\sin xt}{x} = 0, \text{ pour } x \text{ fixé.}$ $\text{Ainsi } \widehat{\psi}(x) = \frac{F(x)}{x}, \text{ avec } \Phi : x \mapsto \int_0^{+\infty} \rho(x,t)dt \text{ telle que } \Phi(0) = 0$ et $\rho(x,t) = \frac{e^{-t}}{t}\sin(xt), \text{ donc } \widehat{\psi}(0) = \Phi'(0) \text{ à condition qu'on peut dériver sous signe intégral, ce qui n'est pas difficile à justifier puisque } \frac{\partial \rho}{\partial x} : t \mapsto e^{-t}\cos xt \text{ est intégrable sur } [0,+\infty[\text{ puisque majorée par } e^{-t}, \text{ intégrable sur } [0,+\infty[\text{ pour } x \text{ fixé.}]$

Donc
$$\widehat{\psi}(0) = \Phi'(0) = \int_0^{+\infty} \frac{\partial \rho}{\partial x}(0, t) dt = \int_0^{+\infty} e^{-t} dt = 1.$$

- a) Dans la question précédente on a déjà montré que la fonction $\Phi: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{t} \sin(xt) dt$ est dérivable sur $]0, +\infty[$ avec $\Phi'(x) = \int_0^{+\infty} e^{-t} \cos(xt) dt$, pour tout x > 0, puis on a : $\Phi'(x) = \Re e \int_0^{+\infty} e^{-t} e^{ixt} = \Re e \int_0^{+\infty} e^{(ix-1)t} = \Re e \left[\frac{e^{(ix-1)t}}{ix-1} \right]_{t\to 0}^{t\to +\infty} = -\Re e \left(\frac{1}{ix-1} \right) = \frac{1}{x^2+1}$. Notez bien que : $|e^{(ix-1)t}| = e^{-t} \to 0$ quand $t \to +\infty$.
 - b) D'aprés la question précédente, on a : $\widehat{\psi}(x) = \frac{\Phi(x)}{x}$ pour tout réel non nul x, et Φ est de classe \mathcal{C}^1 sur $]0, +\infty[$ avec $\Phi'(x) = \frac{1}{1+x^2} \quad \forall x > 0$, donc $\Phi(x) = \arctan x + \lambda \quad \forall x > 0$, de même $\Phi(x) = \arctan x + \mu \quad \forall x < 0$, donc

$$\widehat{\psi}(x) = \frac{\arctan x + \lambda}{\arctan x + \mu} \quad \forall x > 0$$

$$\frac{\arctan x + \mu}{x} \quad \forall x < 0$$

$$1 \quad \text{si } x = 0$$

comme $\widehat{\psi}$ est continue sur \mathbb{R} alors $\lambda = \mu = 0$ d'où le résultat.

II.UN AUTRE EXEMPLE

1) a)
$$\int_0^A e^{(\alpha+i\beta)t} dt = \frac{e^{(\alpha+i\beta)A}}{\alpha+i\beta}.$$

b)
$$\int_{0}^{A} e^{\alpha t} \cos(\beta t) dt = \Re e \left(\int_{0}^{A} e^{(\alpha + i\beta)t} dt \right) = \Re e \left(\frac{e^{(\alpha + i\beta)A}}{\alpha + i\beta} \right) = e^{\alpha A} \Re e \left(\frac{(\cos(\beta A) + i\sin(\beta A))(\alpha - i\beta)}{\alpha^{2} + \beta^{2}} \right) = e^{\alpha A} \frac{\alpha \cos(\beta A) + \beta \alpha^{2}}{\alpha^{2} + \beta^{2}}$$
De même :
$$\int_{0}^{A} e^{\alpha t} \sin(\beta t) dt = \Im e \left(\int_{0}^{A} e^{(\alpha + i\beta)t} dt \right) = e^{\alpha A} \frac{\alpha \sin(\beta A) - \beta \cos(\beta A)}{\alpha^{2} + \beta^{2}}.$$

- c) Pour p réel strictement positif, la fonction $t \mapsto e^{-pt}$ est intégrable sur $[0, +\infty[$ car dominée par la fonction e^{-pt} qui est intégrable sur $[0, +\infty[$. Avec $\int_0^{+\infty} e^{-pt} \cos(\beta t) dt = \lim_{A \longrightarrow +\infty} \int_0^A e^{-pt} \cos(\beta t) dt = \lim_{A \longrightarrow +\infty} e^{-pA} \frac{-p\cos(\beta A) + \beta\sin(\beta A)}{p^2 + \beta^2}$ 0, les exponentielles l'emportent sur les puissances.
- 2) La fonction $h: t \mapsto \frac{1}{\operatorname{ch} t}$ est paire, pour montrer qu'elle est intégra \mathbb{R} , il suffit de le montrer au voisinage de ∞ , en effet $\frac{1}{\operatorname{ch} t} = \frac{2}{e^t + e^{-t}}$, qui est intégrable en $+\infty$, donc h aussi.

3) a)
$$\widehat{h}(x) = \int_{-\infty}^{+\infty} e^{ixt} \psi(t) dt = \int_{0}^{+\infty} \frac{1}{2} e^{ixt} h(t) dt + \int_{-\infty}^{0} \frac{1}{2} e^{ixt} h(t) dt + \int_{0}^{+\infty} \frac{1}{2} e^{ixt} h(t) dt + \int_{0}^{+\infty} \frac{1}{2} e^{-ixt} h(t) dt = \int_{0}^{+\infty} \frac{1}{2} e^{-ixt} h(t) dt = 2 \int_{0}^{+\infty} h(t) \cos(xt) dt.$$

b) Pour tout réel
$$u$$
 différent de 1 et tout entier naurel $n \ge a$: $(1-u)\sum_{k=0}^n u^k = 1-u^{n+1}$, donc $\frac{1}{1-u} = \sum_{k=0}^n u^k + \frac{u^n}{1-u}$ particulier pour tout $t \ge 0$, on a $h(t) = \frac{1}{\operatorname{ch} t} = 2\frac{e^{-t}}{1+e^{-t}}$

$$2e^{-t}\left(\sum_{k=0}^{n}(-1)^{k}e^{-2kt} + (-1)^{n+1}\frac{e^{-2(n+1)t}}{1+e^{-2t}}\right) = 2\sum_{k=0}^{n}(-1)^{k}e^{-(2k+1)t} + (-1)^{n+1}\frac{e^{-(2n+3)t}}{1-e^{-2t}} \text{ et donc pour tout réel } x, \text{ on a } : \widehat{h}(x) = 2\int_{0}^{+\infty}h(t)\cos(xt)dt = 4\sum_{k=0}^{n}(-1)^{k}\int_{0}^{+\infty}e^{-(2k+1)t}\cos(xt)dt + 4(-1)^{n+1}\int_{0}^{+\infty}\frac{e^{-(2n+3)t}}{1+e^{-2t}}\cos(xt)dt.$$

c) Pour tout réel x et tout entier naurel $n \ge 1$, on a : $\left| \int_{0}^{+\infty} \frac{e^{-(2n+3)t}}{1+e^{-2t}} \cos(xt) dt \right| \le \int_{0}^{+\infty} \left| \frac{e^{-(2n+3)t}}{1+e^{-2t}} \cos(xt) \right| dt \le \int_{0}^{+\infty} e^{-(2n+3)t} dt = \frac{1}{2n+3}$ D'autre part : $\left| \widehat{h}(x) - 4 \sum_{k=0}^{n} (-1)^{k} \int_{0}^{+\infty} e^{-(2k+1)t} \cos(xt) dt \right| = 4 \left| \int_{0}^{+\infty} \frac{e^{-(2n+3)t}}{1+e^{-2t}} \cos(xt) dt \right| \le \frac{4}{2n+3} \longrightarrow 0$, quand $n \longrightarrow +\infty$, d'où : $\widehat{h}(x) = 4 \sum_{k=0}^{+\infty} (-1)^{k} \int_{0}^{+\infty} e^{-(2n+1)t} \cos(xt) dt$.

d) D'aprés la question II.1.c on a :
$$\forall x \in \mathbb{R}$$
, $\hat{h}(x) = 4\sum_{n=0}^{+\infty} (-1)^n \frac{2n+1}{x^2+(2n+1)^2}$.

4) a) Calcul des coefficients de Fourrier :
$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(t) \cos(nt) dt = 0 \text{ car } t \mapsto u(t) \cos(nt) \text{ impaire sur } [-\pi, \pi], \text{ de même } t \mapsto u(t) \sin(nt) \text{ paire sur } [-\pi, \pi], \text{ alors } b_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(t) \sin(nt) dt = 2\frac{1}{2\pi} \int_{0}^{\pi} u(t) \sin(nt) dt = \frac{1}{\pi} \int_{0}^{\pi} \cosh(xt) \sin(nt) dt$$

$$= \frac{1}{2\pi} \left(\int_0^{\pi} e^{xt} \sin(nt) dt + \int_0^{\pi} e^{-xt} \sin(nt) dt \right)$$

$$= \frac{1}{2\pi} \left(e^{x\pi} \frac{x \sin(n\pi) - n \cos(n\pi)}{x^2 + n^2} + e^{-x\pi} \frac{-x \sin(n\pi) - n \cos(n\pi)}{x^2 + n^2} \right)$$

$$= \frac{1}{\pi} \frac{(-1)^n n}{x^2 + n^2} \operatorname{ch}(x\pi).$$

b) <u>Théorème</u>: Si f est une fonction 2π -périodique, de classe morceaux, alors sa série de Fourrier converge simplement, et point de continuité x de f, sa somme est égale à f(x) et e point de discontinuité x de f, sa somme est égale à la demi- $\frac{f_d(x) + f_g(x)}{2}.$

La fonction u vérifie bien les hypotèses du théorème et conting $]0,\pi[,$ avec :

$$\frac{f_d(x) + f_g(x)}{2} = 0 \text{ pour } x = 0 \text{ ou } x = \pi, \text{ la série de Fourrie}$$
fonction u étant $\sum_{n \ge 0} b_n \sin nt$, d'où $\sum_{n \ge 0} b_n \sin nt = \operatorname{ch}(xt) \quad \forall t$

et $\sum_{n\geq 0} b_n \sin nt = 0$ pour t = 0 ou $t = \pi$.

c) Pour
$$t = \frac{\pi}{2}$$
 ce développement devient : $\sum_{n\geq 0} b_{2n+1} \sin 2n \frac{\pi}{2}$ = 0, donc . $\cosh(\frac{x\pi}{2})$ $\frac{\cosh(x\pi)}{\pi} \sum_{n\geq 0} (-1)^{n+1} \frac{2n+1}{x^2 + (2n+1)^2}$.

5) D'aprés les questions II.3.d et II.4.c et la formule $\operatorname{ch}\gamma = \operatorname{ch}^2\left(\frac{\gamma}{2}\right)$ $\gamma \in \mathbb{R}$)

III.QUELQUES PROPRIÉTÉS DE LA TRANSFORMÉE DE FOUL D'UNE FONCTION

1) Transformée de Fourier d'une fonction intégrable

a) Pour x fixé, on a : $|e^{-ixt}f(t)| \le |f(t)| \quad \forall t \in \mathbb{R}$, or f une for continue par morceaux et intégrable sur \mathbb{R} ; donc $t \mapsto e^{-ixt}f(t)$

aussi d'où pour tout réel x, $\widehat{f}(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$ est bien définie, en plus $|\widehat{f}(x)| = |\int_{-\infty}^{+\infty} e^{-ixt} f(t) dt| \le \int_{-\infty}^{+\infty} |f(t)| dt = M$, constante qui ne dépond pas de x et donc la fonction \widehat{f} est bornée .

b) Si de plus f est continue, alors $t \mapsto e^{-ixt} f(t)$ est intégrable sur \mathbb{R} et $x \mapsto e^{-ixt} f(t)$ continue sur \mathbb{R} , donc \widehat{f} est aussi continue.

2) Transformations

- a) f est une fonction continue par morceaux et intégrable sur \mathbb{R} , donc pour tout réel a, les fonctions $f_a(t) = f(t-a)$ et $_af(t) = f(at)$ sont aussi des fonctions continues par morceaux et intégrables sur \mathbb{R} et par suite possédent des transformés de Fourier, avec que pour tout réel x, $\widehat{f}_a(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t-a) dt = e^{-iax} \int_{-\infty}^{+\infty} e^{-ixu} f(u) du = e^{-iax} \widehat{f}(x)$, en utilisant le changement de variable u = t a et de même avec le changement de variable v = at on obtient $\widehat{af}(x) = \frac{1}{|a|} \widehat{f}\left(\frac{x}{a}\right)$ ($a \neq 0$), faites attention ici aux bornes si a < 0 alors $-\infty$ devient $+\infty$ et inversement ce qui justifie le |a|.
- b) La transformée de Fourier de l'application $t\mapsto f(t)e^{iat}$ au point x est : $\int_{-\infty}^{+\infty} e^{-i(x-a)t} f(t) dt = \widehat{f}(x-a).$
- c) Si f est paire alors $\widehat{f}(x) = \int_{-\infty}^{0} e^{-ixt} f(t) dt + \int_{0}^{\infty} e^{-ixt} f(t) dt = \int_{0}^{+\infty} e^{-ixt} f(t) dt + \int_{0}^{\infty} e^{ixu} f(-u) du = \int_{0}^{+\infty} e^{-ixt} f(t) dt + \int_{0}^{\infty} e^{ixu} f(u) du = \int_{0}^{+\infty} e^{-ixt} f(t) dt + \int_{0}^{\infty} e^{ixt} f(t) du = 2 \int_{0}^{+\infty} \cos(xt) f(t) dt$, on a utilisé le changement de variable u = -t puis on a remplacé u par t puisque sont deux variables muettes. Si f est impaire on obtient $\widehat{f}(x) = 2i \int_{0}^{+\infty} \sin(xt) f(t) dt$.

d) La transformée de Fourier d'une fonction réelle paire est réel que celle d'une fonction réelle impaire est imaginaire.

3) Dérivation

- a) f' étant intégrable sur \mathbb{R} , donc $\int_0^x f'(t)dt = f(x) f(0)$ admilimite finie quad $x \longrightarrow +\infty$, et donc $\lim_{t \to \infty} f$ est finie, soit L limite, si $L \neq 0$ alors $|f(x)| \longrightarrow |L| > \frac{|L|}{2}$, quand $x \longrightarrow +\infty$ est continue, donc un intervalle $[A, +\infty[$ sur lequel $|f| > \frac{|L|}{2}$, continue sur $[A, +\infty[$, donc le fonction constante $\frac{|L|}{2}$ le serve ce qui n'est pas le cas, donc $L = \lim_{t \to \infty} f = 0$, et de même on que $\lim_{t \to \infty} f = 0$.
- b) f' étant une fonction continue par morceaux et intégral \mathbb{R} , donc admet une transformée de Fourrier, définie par tion : $\forall x \in \mathbb{R}$: $\widehat{f}'(x) = \int_{-\infty}^{+\infty} e^{-ixt} f'(t) dt = \left[e^{-ixt} f(t)\right]_t^t$ $ix \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt = ix \widehat{f}(x)$, donc $\widehat{f}(x) = \frac{\widehat{f}'(x)}{x}$ tend vertion f'.
- c) Le fait que l'application $g: t \mapsto tf(t)$ est intégrable sur le permet d'affirmer que \widehat{f} est de classe \mathcal{C}^1 sur \mathbb{R} et de dériver signe intégral; avec :

$$\forall x \in \mathbb{R}, \quad \left(\widehat{f}\right)'(x) = -i \int_{-\infty}^{+\infty} e^{-ixt} t f(t) dt = -i\widehat{g}(x).$$

Fin.