PRESENTACIÓN FINAL DEL PROYECTO

APLICACIÓN DE UN MODELO DE REDES EN EL SISTEMA DE PUNTOS VERDES DE BARCELONA

Quim Bassa

MESIO 2021

1

Los puntos verdes tiene una labor social, promueven la economía circular, realizan programas concienciación medioambiental y ayudan a mejorar las relaciones vecinales.

Ajuntament de Barcelona

BARCELONA RESIDU ZERO

de 10.00 a 10.00 fr. Set 34 de juny at24 de sebre bro, dissebble fascal. La sebrena següent a la Paria Major de Calicia al PVC territal semandió hancal.

" Provide d'Indel del normal 2819-3020 Post Vard do Basi nesto pará de compostalge

	Total (t)	Collserola	Montjuïc		Les Corts Pedralbes	Vall d'Hebron	Vallbona	Punt verd de barri	Fòrum	Punts verds mòbils
2010	20.127	3.387	4.114	5.267	1.794	3.016	782	1.767	-	-
2015	14.948	2.572	2.706	3.010	816	1.735	597	1.923	741	848
2016	16.207	2.661	2.897	3.273	948	1.972	604	2.137	882	833
2017	16.831	3.079	3.194	3.426	924	1.461	749	2.207	1.024	767
2018	17.651	2.855	3.275	3.474	958	2.012	1.034	2.327	1.086	630
2019	17.759	2.733	3.021	3.569	932	2.063	1.206	2.531	1.087	616
No recuperables	6.616	1.280	1.470	1.661	297	792	587	67	463	0
Runes	5.411	1.099	1.197	1.369	257	606	523	0	361	0
Rebuig	1.205	181	273	292	40	185	64	67	102	0
Recuperables	7.909	1.309	1.307	1.636	528	911	500	1.133	442	143
Paper / cartró	854	160	171	116	85	86	38	141	58	0
Fusta	3.879	645	859	1.093	203	492	321	0	267	0
Ferralla	413	52	58	43	27	44	41	84	35	28
Vidre	850	161	164	249	41	112	55	16	51	0
Poda	679	246	28	122	121	125	35	0	3	0
Tèxtil	1.215	45	27	13	40	46	9	892	28	115
Mobles	18	0	0	0	11	7	0	0	0	0
Altres residus	2.866	124	217	239	98	296	111	1.200	158	423
Especials	368	20	27	34	9	65	9	131	24	50

Fuente: Ajuntament de Barcelona. Ecologia Urbana. Direcció de Serveis de Neteja i Gestió de Residus

Resumen Suposiciones:

- Los puntos móviles y de zona no se consideran. Se considera una red de 27 nodos.
- El material será recogido independientemente de su tipología.
 - ☐ La única restricción será la capacidad del camión.
- Todas las rutas empiezan y terminan en el centro de valorización de TERSA.
 - ☐ 1 ruta= 1 camión
- La demanda semanal a cualquier nodo no es superior a la capacidad del vehículo
 - ☐ Cada nodo solo recibe servicio de un único camión.
- ❖ Se estudia utilizar diferentes flotas de camiones.
 - ☐ Flota uniforme de 10 toneladas
 - ☐ Flota uniforme de 15 toneladas
 - ☐ Flota heterogénea de 10 y 15 toneladas
- La capacidad de almacenamiento de los puntos verde es uniforme.
- El servicio se ejecuta semanalmente. Todos los puntos verdes reciben un camión a la semana.

Nivel táctico Nivel estratégico

Nivel operativo

MESIO 2021

Modelo flota homogénea

```
Conjunto V: Vertices = \{0, ... 27\}, v_0 = deposito común
```

$$E = Aristas(i,j), \forall_{ij} \in V, i \neq j$$

Conjunto W: Semanas al año = $\{1, ... 52\}$

$$\mathbf{D}_{i}^{W} = Demanda\ en\ nodo\ "i"\ en\ una\ semana\ "w" \qquad \forall_{i} \in V \setminus \{0\} \ \ \forall_{w} \in W$$

Q = Capacidad del vehiculo

F = Coste fijo de alquiler por vehículo

 $C_{ij} = coste \ de \ transporte \ del \ vertice "i" \ al \ vertice "j" \ <math>\forall_{(i,j)} \in E$

Modelo flota homogénea

La variable x_{ij}^w es una variable binaria que define si la arista (i,j) forma parte de alguna de las ruta en la semana "w".

$$x_{ij}^{w} \in \{0,1\}$$

La variable u_i^w es una variable continua que define la carga acumulada en el camión después de visitar el nodo "i" en la semana "w".

$$u_i^w \in R$$

Restricciones MTZ

Modelo flota homogénea

$$min \sum_{j \in V \setminus \{0\}} \sum_{w \in W} F x_{0j}^w + \sum_{(i,j) \in E} C_{ij} \sum_{w \in W} x_{ij}^w$$

$$\sum_{j \in V, j \neq i} x_{ij}^w = 1 \quad \forall_i \in V \setminus \{0\}, \forall_w \in W$$
 (1)

$$\sum_{i \in V, i \neq j} x_{ij}^w = 1 \quad \forall_j \in V \setminus \{0\}, \forall_w \in W$$
 (2)

$$u_i^w - u_j^w + Qx_{ij}^w \le Q - D_j^w \qquad \forall_{ij} \in V \setminus \{0\} \ t. \ q \ D_i^w + D_j^w \le Q, \qquad \forall_w \in W \ (3)$$

$$D_i^w \le u_i^w \le Q \quad \forall_i \in V \setminus \{0\}, \forall_w \in W \quad (4)$$

MESIO 2021

Modelo flota heterogénea

Fleet Size and Mix VRP with Fixed Costs and Vehicle Dependent Routing Costs (FSMFD)

Conjunto V: Vertices = $\{0, ... 27\}$, $v_0 = deposito común$

 $E = Aristas(i,j), \forall_{ij} \in V, i \neq j$

Conjunto W: Semanas al año = $\{1, ... 52\}$

Conjunto T: Tipo de vehiculos = $\{1,2\}$

Se asume que para cada tipo de vehículo $k \in T$, existe un número indeterminado camiones

 $Q^k = capacidad \ del \ vehiculo \ "k", \qquad \forall k \in T$

 $\mathbf{F}^{\mathbf{k}} = coste \ fijo \ asociado \ a \ cada \ vehiculo \ de \ tipo "k", <math>\forall_{\mathbf{k}} \in T$

 $C_{ij}^k = coste \ de \ transporte \ del \ vertice \ i'' \ al \ vertice \ 'j'' \ por \ el \ camión \ 'k'' \ \forall_{(i,j)} \in E \ \forall_k \in T$

MESIO 2021

Modelo flota heterogénea

 $x_{ij}^{w,k}$ define si la arista es de "i" a "j" esta activa en la semana "w", por el camión "k".

$$x_{ij}^{w,k} \in \{0,1\}$$

 y_{ij}^{w} especifica la carga acumulada al llegar el nodo "j" proveniente del nodo "i" en la semana "w".

$$y_{ij}^w \in R$$

Commodity Flow Constrains

Modelo flota heterogénea

$$\min \sum_{w \in W} \left(\sum_{k \in T} F^k \sum_{j \in \delta^+(0)} x_{0j}^{w,k} + \sum_{k \in T} \sum_{(i,j) \in E} C_{ij}^k x_{ij}^{w,k} \right)$$

$$\sum_{k \in T} \sum_{i \in V} x_{ij}^{w,k} = 1 \qquad \forall_j \in V \setminus \{0\}, \forall_w \in W \qquad (1)$$

$$\sum_{i \in V} x_{ip}^{w,k} - \sum_{j \in V} x_{pj}^{w,k} = 0 \quad \forall_p \in V \setminus \{0\}, \forall_w \in W, \forall_k \in T \quad (2)$$

$$\sum_{i \in V} y_{ij}^w - \sum_{i \in V} y_{ji}^w = D_i^w \qquad \forall_j \in V \setminus \{0\}, \ \forall_w \in W \quad (3)$$

$$D_j^w x_{ij}^{w,k} \le y_{ij}^w \le \left(Q^k - D_i^w\right) x_{ij}^{w,k} \qquad \forall_{i,j} \in V \text{ , } i \ne j \text{, } \forall_w \in W \text{ , } \forall_k \in T \text{ (4)}$$

Descripción del problema resuelto

- Optimizar el coste mensual
- ❖ Red de 10 nodos
- Se asume una demanda mensual de 211 toneladas, la cual se distribuye aleatoriamente entre 4 semanas.
- ❖ La demanda semanal también se distribuye de forma completamente aleatoria entre los diferentes puntos verdes.
- ❖ El coste fijo de alquiler del camión de 10 toneladas es 300€/u, y el de 15 toneladas de 500€/u.
- ❖ La distancia entre nodos representa al coste de transporte.
 - ☐ Se ha utilizado la distancia euclidiana
 - ☐ El coste de transporte del camión de 15 toneladas es 20% más caro.

Arista	15 toneladas	10 toneladas
(0,1)	21	17
(0,2)	48	40
(0,3)	55	46

TRASH 10t

Semana 3: Camiones=7 Coste=2779

Semana 4: Camiones=4 Coste=1779

Semana 2: Camiones=4 Coste=2598

15t

Semana 4: Camiones=3 Coste=1950

Solución para Q=10

Semana	Demanda	Camiones/rutas	Coste
1	56	8	3080€
2	53	6	2377€
3	62	7	2779€
4	40	4	1779€
Total	211	25	10.015€

Solución para Q=15

Semana	Demanda	Camiones/rutas	Coste
1	56	4	2681€
2	53	4	2598€
3	62	5	3110€
4	40	3	1950€
Total	211	16	10.339€

10t

15t

Semana 1: CamionesQ10=2 CamionesQ15=3 Coste=2686 Semana 2: CamionesQ10=4 CamionesQ15=1 Coste=2247

Semana 3: CamionesQ10=5 CamionesQ15=1 Coste=2688

Semana 4: CamionesQ10=4 CamionesQ15=0 Coste=1779

Solución para Q=10 y Q=15

Semana	Demanda	Camiones	Camiones	Coste
		Q=10	Q=15	
1	56	2	3	2686
2	53	4	1	2247
3	62	5	1	2688
4	40	4	0	1779
Total	211	15	5	9.400

Solución no óptima para la semana 1

Píldora sobre resolución heurística

- Algoritmo Greedy
- ❖ Algoritmo de Ahorros de Clarke y Wright

Solución exacta	Clarke & Wright	Greedy
3080€	3080€	3183€

Conclusiones

Semana	Demanda	Tipo de flota	Camiones	Camiones	Coste
			Q=10	Q=15	
1	56	Homogénea	0	4	2681
2	53	Heterogénea	4	1	2247
3	62	Heterogénea	5	1	2688
4	40	Homogénea	4	0	1779
Total	211		13	6	9395

Semanas	Programación n	VRPy	
	Q10	Q15	Q10 y Q15
1	0,07s	1,88s	6,44s
2	0,17s	4,19s	5,96s
3	0,02s	1,91s	5,26s
4	1,37s	58,55	13,3s

Semana 2: CamionesQ10=4 CamionesQ15=1 Coste=2247

Semana 3: CamionesQ10=5 CamionesQ15=1 Coste=2688 Semana 4: CamionesQ10=4 CamionesQ15=0 Coste=1779

MESIO 2021 25

PARAMETROS

Conjunto V: Vertices = $\{0, ... 27\}$ $v_0 = deposito común$ $E = Aristas (i, j) \forall_{ij} \in V$ Conjunto W: Semanas al año = $\{1, ... 52\}$ Conjunto T: Tipo de vehiculos = $\{1, 2\}$ $Q^k = capacidad del vehiculo k$, $k \in T$

Se asume un entorno determinista donde se conoce la demanda de cada nodo "i" en todo "w".

$$\mathbf{Z}_{i}^{w,w'} = residuo \ acumulado \ en "i" \ entre \ semana "w" \ y "w'", \qquad \forall_i \in V \setminus \{0\}, w = |w| - 4$$

 $t.\ q.\ w' = w + 1, w + 2, w + 3$

Este parámetro define la demanda acumulada en un nodo entre dos consecutivos servicios. Es la cantidad de residuos almacenados en un nodo des de que se recibe servicio en la semana "w" hasta que se recibe el siguiente servicio en la semana "w".

$$Z_i^{w,w'} = \sum_{w=w}^{w=w'} d_i^w \ u_i^{w'} u_i^w \quad \forall_i \in V \setminus \{0\}, w = |w| - 4, \forall_{w'} \in W'$$

N = Capacidad de almacenamiento nodo

 $C_{ij}^k = coste \ de \ transporte \ del \ vertice$ "i" al vertice "j" por el camión "k" $\forall_{(i,j)} \in E \ \forall_k \in T$

 F^k = costes fijos para el vehiculo "k", $k \in T$

❖ VARIABLES

$$x_{ij}^{w,k} \in \{0,1\}$$

La arista es de "i" a "j" esta activa en la semana "w", por el camión "k".

$$u_i^w \in \{0,1\}$$

En la semana "w" se debe visitar el nodo "i".

$$y_{ii}^{w} \in \{0,1\}$$

Carga acumulada al llegar el nodo "j" proveniente del nodo "i" en la semana "w"

❖ MODELO

La función objetivo mide el coste total del servicio para todo el horizonte temporal.

$$\sum_{w \in W} \left(\sum_{k \in T} F^k \sum_{j \in \delta^+(0)} x_{0j}^{w,k} + \sum_{k \in T} \sum_{(i,j) \in E} C_{ij}^k x_{ij}^k \right)$$

Restricciones de configuración de la demanda (Schedualing)

1. Imponemos que al menos una vez al mes, es decir cada 4 semanas, cada nodo debe recibir un camión.

$$\sum_{t=0}^{t+4} u_i^{w+t} \ge 1 \quad \forall_i \in V \setminus \{0\}, w = 1,2,3 \dots |w| - 4 \quad (1)$$

2. Imponemos que el volumen de residuos acumulados entre dos servicios consecutivos "w" y "w" no debe ser superior a la capacidad de almacenamiento del punto verde.

$$z_i^{w,w'} \le N \quad \forall_i \in V \setminus \{0\}, w = 1,2,3 \dots |w| - 4, \quad \forall_{w'} \in W'$$
 (2)

Restricciones de configuración del VRP con flota heterogénea

$$\sum_{i \in V \setminus \{0\}} x_{i0}^{w,k} = \sum_{j \in V \setminus \{0,i\}} x_{0j}^{w,k} \quad \forall_w \in W, \forall_k \in T \quad (3)$$

$$\sum_{i \in V} x_{ip}^{w,k} - \sum_{j \in V} x_{pj}^{w,k} = 0 \quad \forall_p \in V \setminus \{0\}, \forall_w \in W, \forall_k \in T \quad (4)$$

$$\sum_{i \in V} y_{ij}^w - \sum_{i \in V} y_{ji}^w = d_i^w \qquad \forall_j \in V \setminus \{0\}, \ \forall_w \in W \ (\mathbf{5})$$

$$d_j^w x_{ij}^{w,k} \le y_{ij}^w \le \left(Q^k - d_i^w\right) x_{ij}^{w,k} \qquad \forall_{i,j} \in V , i \ne j, \forall_w \in W , \forall_k \in T$$
 (6)