Learning effective representations with Graph Neural Networks

Nicolò Navarin

Assistant Professor

Department of Mathematics

University of Padua

Talk @ TU Wien 24/11/2020

Learning effective representations with Graph Neural Networks

Nicolò Navarin

Assistant Professor

Department of Mathematics

University of Padua

Talk @ TU Wien 24/11/2020

Graphs are everywhere..

Knowledge graphs

- In several settings it is natural to represent data as graphs.
- We may want to predict some

• over Graphs or

property:

over Graph Nodes

Chemical compounds

Parse trees

Gene networks

Images

Classification/Regression on Graphs

In this talk, classification/regression on graphs

- Dataset composed of N pairs {(G_i, y_i), 1 ≤ i ≤ N}
 Each graph:
 - n_i vertices
 - (possibly) discrete label associated to each node; I(v)
 - d vectorial **attributes** associated to each node: a(v) or $X \in \mathbb{R}^{n_i \times d}$
- Given an unseen graph G, the task is to predict the correct target y

Machine learning on Graphs

- It is difficult to cast "mainstream" learning algorithms to work on graphs.
- 3 possible ways:
 - Define a ad-hoc vector representation for graphs
 - Kernel methods: 2 components
 - kernel (similarity) function on graphs
 - "kernelized" learning algorithms
 - access examples only via dot products.
 - · Fixed, infinite-dimensional representation
 - Define new learning algorithms able to deal directly with graphs (e.g. Graph Neural Networks, Graph Attention Networks..)

Graph Kernels

$$k(X,Y) = \phi(X)^T \phi(Y)$$

- Implicitly define a mapping from input space (the space of graphs) to feature space.
- Input space Feature Space

- Several proposals in literature:
 - Global measures: Random walks,
 Shortest paths, Graphlets
 - Local measures:
 - Weisfeiler-Lehman subtree kernel
 - Ordered Decomposition DAGs kernel
 - Explicit feature space, <u>hashing</u> to obtain a fixed-size representation

Weisfeiler-Lehman Subtree kernel

Figures from: Shervashidze at al. Weisfeiler-Lehman Graph Kernels, JMLR 2011

Weisfeiler-Lehman Subtre

er-Lehman Subtree kernel

Brief History of GNNs

- The idea of Neural Networks for structured data dates back to '97 [Sperduti & Starita, 1997]
- In the '00s, two proposals:
 - Graph Neural Network Model [Scarselli, Gori et al., 2009]
 - Recurrent model, contraction mapping
 - Neural Networks for Graphs [Micheli, 2009]
 - Convolutional model, layer-wise training
- Recently, many works proposing slight modifications, e.g.:
 - [Tarlow et al., 2016] Extends [Scarselli, Gori et al., 2009]
 - no contraction mapping, GRUs
 - [Kipf & Welling, 2017] proposes an approach similar to [Micheli, 2009] for node classification
 - end-to-end

Sperduti & Starita (1997). Supervised neural networks for the classification of structures. IEEE TNNs. Scarselli, Gori et al. (2009). The Graph Neural Network Model. IEEE TNNs.

Micheli (2009). Neural network for graphs: A contextual constructive approach. IEEE TNNs.

Kipf & Welling(2017). Semi-Supervised Classification with Graph Convolutional Networks. In ICLR.

Tarlow et al. (2016). Gated Graph Sequence Neural Networks. In ICLR.

State value 0 (Hidden Layers) Flow of information (from state values) Flow of contextual inf. (among states) Network connection (Output Layer) Graph edge Input Graph

- Each convolution takes as input the representation of all previous layers
- Trained layer-wise (cascade correlation)
- Readout a representation per-graph per-layer is computed using the sum

UNIVERSITA

DEGLI STUDI DI PADOVA

GNN by Scarselli, Gori et al.

- Recurrent neurons, but similar in spirit to NN4G.
- · The unrolled network is close to NN4G, but:
 - tied parameters
 - defined as a contraction mapping

division of scarsein, donce an

GNN by Scarselli, Gori et al.

- Recurrent neurons, but similar in spirit to NN4G.
- · The unrolled network is close to NN4G, but:
 - tied parameters
 - defined as a contraction mapping

- urrent neurons, but similar in spirit to NN4G. unrolled network is close to NN4G, but:
- tied parameters
- defined as a contraction mapping

rent neurons, but similar in spirit to NN4G. nrolled network is close to NN4G, but: tied parameters defined as a contraction mapping

Convolution operator (on images)

General definition for filter f and signal x:

$$(f * x)(t) = \int_{-\infty}^{\infty} f(\tau)x(t - \tau) d\tau$$

In images, it corresponds to

$$(f * x) (i,j) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} f(s,t) x(i-s,j-t)$$

Where f is a $2a \times 2b$ filter and x an image

How to define convolution on graphs?

Consider a simple setting:

- single undirected graph
- $x: V \to \mathbb{R}$: a signal on the nodes of a graph
 - Represented as vector $x \in \mathbb{R}^n$

The convolution operator is difficult to define in the vertex domain

Convolution Theorem:

- Convolution in one domain (time, space)
- corresponds to pointwise multiplication in frequency domain $\hat{f} + \hat{f} + \hat{g} = \hat{f} + \hat{f} + \hat{g} = \hat{f} + \hat{g} + \hat$

 $\widehat{f} * \widehat{g} = \widehat{f} \odot \widehat{g}$ \widehat{f} : Fourier transform of f

O Hadamard (element-wise) product

How to define convolution on graphs?

Main steps:

- Graph Fourier Transform
 - Fourier Basis are eigenvectors of normalized Graph Laplacian

We can then define the graph convolution in the frequency domain

$$f *_{G} x = U\hat{F}U^{T}x$$
where $\hat{F} = diag(\hat{f})$

- For some choice of filters, e.g. polynomials of the spectral matrix
 - The convolution can be computed in the node space directly

Summary of Graph Convolution

 1-localized GCN maps multisets of representations (node and neighbours at the previous layer) to a new one:

$$H_v^{l+1} = f(\lbrace H_v^l, H_u^l, \forall u \in ne(v)\rbrace)$$
where $H^0 = X$

 f: linear mapping & non-linear activation function, e.g.

$$H^{l+1} = \sigma \left(\widecheck{D}^{-1/2} \widecheck{A} \widecheck{D}^{-1/2} H^l \Theta^l \right)$$

The convolution operator can be generalized to be more expressive than 1-WL [6]

If f is expressive enough (and with an injective readout), a multilayer 1-localized GCN is as expressive ad the 1-dim WL isomorphism test

Readout Layer (back to graph classification)

With GC we have a representation for each graph node.

How can we map node representations to a graph-level representation?

- Readout function:
 - Maps a (multi) set of node representations to a graph-level representation
 - Differentiable
- Naïve solutions:
 - sum (or average) of node representations
 - More complex alternatives: Universal readout (DeepSets) [7]

[7] Navarin, N., Tran, D. Van, & Sperduti, A. (2019). Universal Readout for Graph Convolutional Neural Networks. International Joint Conference on Neural Networks. Budapest, Hungary.

Kernel information in GNNs

- In many cases, graph kernels perform better (or comparably) to GCNs
- In particular in the domain of molecules

Our idea is to integrate the knowledge carried by the kernel in the representation learned by the GCN

	Method/Dataset	MUTAG	PTC	NCI1	PROTEINS	D & D	
Graph kernels	RW	$79.17{\pm}2.07$	55.91±0.32	>3 days	59.57±0.09	>3 days	
	PK	$76.00{\pm}2.69$	59.50±2.44	82.54 ± 0.47	73.68±0.68	$78.25 {\pm} 0.51$	
	WL	84.11 ± 1.91	57.97±2.49	84.46 ± 0.45	74.68±0.49	78.34±0.62	
Graph	PSCN	1.0	-	$76.34{\pm}1.68$	75.00±2.51	76.27±2.64	
Neural -	CapsGCN	86.67 ± 6.88	-	78.35±1.55	76.28±3.63	75.38 ± 4.17	
Networks	DGCNN	82.48±1.49	57.14±2.19	72.97±0.92	73.96±0.41	78.09±0.72	
				\			

Pre-training GNNs with kernels

First attempt: pre-training

Kernels are defined over pairs of graphs, so we define a siamese GCN architecture

- The target is the kernel value
- After pre-training, we can train a single network using supervised labels as usual

Pre-training GNNs with kernels

First attempt: pre-training

 Kernels are defined over pairs of graphs, so we define a siamese GCN architecture

- The target is the kernel value
- After pre-training, we can train a single network using supervised labels as usual

Pre-training GNNs with kernels

Pros:

- Promising results
- Unsupervised
- Pre training acts as a bias toward good representations
- bound on (training) error depending on reconstruction loss

Cons:

Computational time: quadratic in the number of examples

MUTAG	PTC	NCI1
81.39±1.74	55.65±0.46	62.49±0.27
79.17 ± 2.07	55.91 ± 0.32	>3 days
76.00 ± 2.69	$59.50{\pm}2.44$	82.54 ± 0.47
84.11 ± 1.91	57.97±2.49	84.46±0.45
85.83±1.66	58.59±2.47	74.44±0.47
88.10±1.05	61.03±2.86	77.13±0.45
	81.39 ± 1.74 79.17 ± 2.07 76.00 ± 2.69 84.11 ± 1.91 85.83 ± 1.66	81.39 ± 1.74 55.65 ± 0.46 79.17 ± 2.07 55.91 ± 0.32 76.00 ± 2.69 59.50 ± 2.44 84.11 ± 1.91 57.97 ± 2.49 85.83 ± 1.66 58.59 ± 2.47

Multi-task training approach

Second approach: Multi-task training

- Single network, two outputs
- Hashing to map the kernel embedding to a fixed, small vector
- We try to reconstruct the kernel embedding as a secondary output

Pros:

- No added complexity (pre-processing of kernel computation)
- Any graph embedding can be used (i.e. domain knowledge)

Cons:

 We don't have control in where the network will store information from the embedding

Layer-wise kernel supervision

Third approach: Layer-wise Multi-task training

- Single network, multiple outputs
- **Split features** in the embedding according to their complexity
- Deeper layers reconstruct more complex features

Graph kernel embedding Graph neural embedding WL embedding h=3 Aggregation (e.g. Sum) Graph Convolution Layer WL embedding h=2 Graph Convolution Layer 2 Aggregation (e.g. Sum) WL embedding h=1 Graph Convolution Layer 1 Aggregation (e.g. Sum)

Pros:

No added complexity (preprocessing of kernel computation)

Cons (future works):

Even lower-grained supervision possible?

Input graph

The embedding size is

decided a-priori based on a kernel complexity measure

k, multiple outputs in the embedding neir complexity reconstruct more

Layer-wise Multi-task Task Graph kernel embedding Graph neural embedding WL embedding h=3 Readout Aggregation (e.g. Sum) Graph Convolution Layer 3 WL embedding h=2 Graph Convolution Layer 2 Aggregation (e.g. Sum) WL embedding h=1 Graph Convolution Layer 1 Aggregation (e.g. Sum) Input graph

The embedding siz

decided a-priori ba on a kernel comple

nplexity (prekernel computation)

rks):

res

ained supervision

- All kernel-based training approaches improve over standard training
- In general, MT < PT < LMT
- The techniques are applicable to all GNNs
 - The improvement may vary depending on the architecture

	Method/Dataset	MUTAG	PTC	NCI1	PROTEINS	D&D
	WL (h=3)	76.79*±3.17	57.48*±1.36	82.13±2.17	69.63*±1.22	73.64*±2.56
	DGCNN	$82.48^* \pm 1.49$	57.14*±2.19	72.97*±0.87	$73.96*\pm0.41$	78.09*±0.72
	LMT-FGCNN	86.81 ± 1.75	59.04 ± 0.94	82.20 ± 0.54	76.03 ± 0.68	80.14 ±0.76
×	FGCNN	84.49±1.90	58.82 ± 1.80	81.50±0.39	74.57*±0.80	77.47*±0.86
stud	LMT-DGCNN	85.00 ± 1.15	59.39 ± 0.51	$77.02*\pm0.48$	$74.61*\pm0.89$	78.11*±0.61
ion	MT-DGCNN	83.68 ± 1.29	58.39 ± 1.11	$76.55*\pm0.40$	$74.42*\pm0.36$	78.17*±0.57
Ablation study	MT-FGCNN	85.81 ± 1.62	59.23 ± 2.35	81.86 ± 0.41	75.18 ± 0.66	79.90 ± 0.39
¥.	PT-DGCNN	85.38 ± 1.47	58.48 ± 1.92	$75.20^* \pm 0.87$	75.19 ± 0.42	78.38*±0.55

- All kernel-based training approaches improve over standard training
- In general, MT < PT < LMT
- The techniques are applicable to all GNNs
 - The improvement may vary depending on the architecture

	Method/Dataset	MUTAG	PTC	NCI1	PROTEINS	$\mathbf{D}\&\mathbf{D}$
1	WL (h=3)	76.79*±3.17	57.48*±1.36	82.13±2.17	69.63*±1.22	73.64*±2.56
(-	DGCNN	$82.48^* \pm 1.49$	57.14*±2.19	72.97*±0.87	73.96*±0.41	$78.09^* \pm 0.72$
_	LMT-FGCNN	86.81 ± 1.75	59.04 ± 0.94	82.20±0.54	76.03±0.68	80.14 ±0.76
_	FGCNN	84.49±1.90	58.82 ± 1.80	81.50±0.39	74.57*±0.80	77.47*±0.86
study	LMT-DGCNN	85.00 ± 1.15	59.39 ±0.51	$77.02*\pm0.48$	$74.61*\pm0.89$	$78.11^* \pm 0.61$
	MT-DGCNN	83.68 ± 1.29	58.39 ± 1.11	$76.55*\pm0.40$	$74.42*\pm0.36$	$78.17^* \pm 0.57$
Ablation	MT-FGCNN	85.81 ± 1.62	59.23 ± 2.35	81.86 ± 0.41	75.18 ± 0.66	79.90 ± 0.39
A	PT-DGCNN	85.38 ± 1.47	58.48 ± 1.92	75.20* ±0.87	75.19 ± 0.42	$78.38*\pm0.55$

9 ASU

- All kernel-based training approaches improve over standard training
- In general, MT < PT < LMT
- The techniques are applicable to all GNNs
 - The improvement may vary depending on the architecture

	Method/Dataset	MUTAG	PTC	NCI1	PROTEINS	$\mathbf{D}\&\mathbf{D}$
1	WL (h=3)	76.79*±3.17	57.48*±1.36	82.13±2.17	69.63*±1.22	$73.64*\pm2.56$
(-	DGCNN	$82.48^* \pm 1.49$	57.14*±2.19	72.97*±0.87	73.96*±0.41	$78.09^* \pm 0.72$
_	LMT-FGCNN	86.81 ±1.75	59.04 ± 0.94	82.20±0.54	76.03±0.68	80.14 ±0.76
_	FGCNN	84.49±1.90	58.82 ± 1.80	81.50±0.39	74.57*±0.80	77.47*±0.86
study	LMT-DGCNN	85.00 ± 1.15	59.39 ±0.51	$77.02*\pm0.48$	$74.61^* \pm 0.89$	$78.11^* \pm 0.61$
	MT-DGCNN	83.68 ± 1.29	58.39 ± 1.11	$76.55*\pm0.40$	$74.42*\pm0.36$	$78.17^* \pm 0.57$
Ablation	MT-FGCNN	85.81 ± 1.62	59.23 ± 2.35	81.86 ± 0.41	75.18 ± 0.66	79.90 ± 0.39
A	PT-DGCNN	85.38 ± 1.47	58.48 ± 1.92	$75.20^* \pm 0.87$	75.19 ± 0.42	$78.38*{\pm}0.55$
100						

9 ASC

- All kernel-based training approaches improve over standard training
- In general, MT < PT < LMT
- The techniques are applicable to all GNNs
 - The improvement may vary depending on the architecture

	Method/Dataset	MUTAG	PTC	NCI1	PROTEINS	$\mathbf{D} \& \mathbf{D}$
1	WL (h=3)	76.79*±3.17	57.48*±1.36	82.13±2.17	69.63*±1.22	73.64*±2.56
(=	DGCNN	82.48*±1.49	57.14*±2.19	72.97*±0.87	73.96*±0.41	$78.09*\pm0.72$
_	LMT-FGCNN)	86.81 ± 1.75	59.04 ± 0.94	82.20±0.54	76.03±0.68	80.14±0.76
_	FGCNN	84.49±1.90	58.82± 1.80	81.50±0.39	74.57*±0.80	77.47*±0.86
study	- LMT-DGCNN	85.00 ± 1.15	59.39 ±0.51	$77.02*\pm0.48$	$74.61*\pm0.89$	$78.11^* \pm 0.61$
1747.42	-MT-DGCNN	83.68 ± 1.29	58.39 ± 1.11	76.55*±0.40	$74.42*\pm0.36$	78.17*±0.57
Ablation	MT-FGCNN	85.81 ± 1.62	59.23 ± 2.35	81.86 ± 0.41	75.18 ± 0.66	79.90 ± 0.39
A	PT-DGCNN	85.38 ± 1.47	58.48 ± 1.92	$75.20^* \pm 0.87$	75.19 ± 0.42	78.38*±0.55

9 ASU

Semi-supervised learning

- We can add more (unlabelled) data in the training
- Semi-supervised learning
- The more data we add, the higher the performance

Dataset/	DGCNN	FGCNN	LMT-FGCNN		
Method			+0	+1	+2
NCI1B	72.92	79.27	81.01	81.19	82.07
	±0.56	±0.70	±0.56	±0.46	±0.21
NCI33B	75.00	81.75	81.81	82.60	82.69
	±0.42	±0.67	±0.20	±0.39	±0.56
NCI41B	70.94	78.30	79.02	79.10	79.54
	±0.53	±0.67	±0.17	±0.40	±0.15

Semi-supervised learning

- · We can add more (unlabelled) data in the training
- Semi-supervised learning
- · The more data we add, the higher the performance

Dataset/	DGCNN	FGCNN	LMT-FGCNN		
Method			+0	+1	+2
NCI1B	72.92	79.27	81.01	81.19	82.07
	±0.56	±0.70	±0.56	±0.46	±0.21
NCI33B	75.00	81.75	81.81	82.60	82.69
	±0.42	±0.67	±0.20	±0.39	±0.56
NCI41B	70.94	78.30	79.02	79.10	79.54
	±0.53	±0.67	±0.17	±0.40	±0.15

Conclusions

- In this talk, I presented different ways to merge:
 - Kernel methods for graphs
 - Neural Networks for Graphs
- Future work:
 - Other types of (pre) training
 - Recurrent GNNs
 - Work on relational graphs and graphs modelling more complex tasks

Classification/Regression on graph nodes

- Dataset: a single huge graph:
 - n vertices
 - •d attributes associated to nodes: $X \in \mathbb{R}^{n \times d}$
 - target associated to a small subset of nodes
- Given an unseen node, the task is to predict the correct target y