In []:

In [78]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [79]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red.csv")
a
```

Out[79]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	ē
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

4

In [80]:

```
a=a.head(10)
a
```

Out[80]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	1
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	1
4.0	_	_	_	_	_	_	_	_	_		•

In [81]:

```
# to find
a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	10 non-null	float64
1	volatile acidity	10 non-null	float64
2	citric acid	10 non-null	float64
3	residual sugar	10 non-null	float64
4	chlorides	10 non-null	float64
5	free sulfur dioxide	10 non-null	float64
6	total sulfur dioxide	10 non-null	float64
7	density	10 non-null	float64
8	рН	10 non-null	float64
9	sulphates	10 non-null	float64
10	alcohol	10 non-null	float64
11	quality	10 non-null	int64
		(4)	

dtypes: float64(11), int64(1)

memory usage: 1.1 KB

In [82]:

```
# to display summary of statastic
a.describe()
```

Out[82]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density
coun	t 10.000000	10.000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000
mear	7.950000	0.631	0.104000	2.330000	0.077000	14.800000	48.900000	0.997080
sto	1 .162612	0.161	0.194548	1.376025	0.010198	4.467164	25.066356	0.001038
mir	7.300000	0.280	0.000000	1.200000	0.065000	9.000000	18.000000	0.994600
25%	7.400000	0.585	0.000000	1.825000	0.071500	11.500000	34.000000	0.996800
50%	7.650000	0.655	0.010000	1.900000	0.075000	15.000000	47.000000	0.997400
75%	7.800000	0.700	0.055000	2.225000	0.076000	16.500000	59.750000	0.997800
max	11.200000	0.880	0.560000	6.100000	0.098000	25.000000	102.000000	0.998000
4								

In [85]:

```
# to display colum heading
a.columns
```

Out[85]:

In [84]:

sns.pairplot(a)

Out[84]:

<seaborn.axisgrid.PairGrid at 0x203ab501c40>

In [86]:

```
sns.displot(a["residual sugar"])
```

Out[86]:

<seaborn.axisgrid.FacetGrid at 0x203d6848ca0>

In [87]:

Out[87]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide
0	7.4	0.70	0.00	1.9	0.076	11.0
1	7.8	0.88	0.00	2.6	0.098	25.0
2	7.8	0.76	0.04	2.3	0.092	15.0
3	11.2	0.28	0.56	1.9	0.075	17.0
4	7.4	0.70	0.00	1.9	0.076	11.0
5	7.4	0.66	0.00	1.8	0.075	13.0
6	7.9	0.60	0.06	1.6	0.069	15.0
7	7.3	0.65	0.00	1.2	0.065	15.0
8	7.8	0.58	0.02	2.0	0.073	9.0
9	7.5	0.50	0.36	6.1	0.071	17.0

In [88]:

```
sns.heatmap(b.corr())
```

Out[88]:

<AxesSubplot:>

In [90]:

In [91]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [92]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[92]:

LinearRegression()

In [93]:

```
lr.intercept_
```

Out[93]:

9.325873406851315e-15

In [94]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[94]:

fixed acidity -2.088683e-15 volatile acidity 1.137009e-14 citric acid 2.425779e-14 residual sugar 1.000000e+00 chlorides 2.007004e-14 free sulfur dioxide 1.509803e-17

In [95]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[95]:

<matplotlib.collections.PathCollection at 0x203e0bfe520>

In [96]:

```
lr.score(x_test,y_test)
```

Out[96]:

1.0

In [97]:

```
lr.score(x_train,y_train)
```

Out[97]:

1.0

```
In [98]:
from sklearn.linear_model import Ridge,Lasso
In [99]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[99]:
Ridge(alpha=10)
In [100]:
rr.score(x_test,y_test)
Out[100]:
0.8726431720424364
In [101]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[101]:
Lasso(alpha=10)
In [102]:
la.score(x_test,y_test)
Out[102]:
0.0
In [ ]:
```