

Курсовой проект от «МегаФон»

Расчет вероятности подключения услуги

Содержание:

1	Задача и данные
2	Подготовка и обработка данных
3	Выбор модели и сравнение с альтернативами
4	Оценка результатов
5	Принцип составления индивидуальных предложений для выбранных абонентов

Задача:

Построить алгоритм, который для каждой пары пользовательуслуга определит вероятность подключения услуги.

Данные:

1.DATA_TRAIN.CSV

- id идентификатор абонента (831 653 итого , из них 806613 уникальных);
- buy_time время покупки (c 09.07.2018 по 31.12.2018);
- vas_id подключаемая услуга (8 различных);
- target целевая переменная, где 1 означает подключение услуги, 0 - отказ;

2. FEATURES.CSV

- id идентификатор абонента (4 512 528 итого);
- buy_time время покупки с 09.07.2018 по 21.01.2019;
- 252 анонимизированных признака

3.DATA_TRAIN.CSV

- id идентификатор абонента (71231 итого, из них 70152 уникальных, 67013 не было в train);
- buy_time время покупки (c 07.01.2019 no 21.01.2019);
- vas_id подключаемая услуга (8, как и в train);

Подготовка и обработка данных:

- 1. Уменьшение features.csv до списка id только из train + test
- 2. Объединение data_train + features по id пользователей
- 3. Создание новых признаков:
 - о дата: счёт дней, день месяца, неделя года
 - доля подключений услуг по сравнению с отказами
 - подсчет кол-ва предложений абоненту и промежутка времени между предложениями
 - информация о том, какие услуги уже предлагались ранее
 - необычные (самые высокие) значения анонимизированных признаков
- 4. Количество анонимизированных признаков уменьшено до 10 методом PCA

Target Distribution 800000 700000 600000 500000 400000 300000 200000 100000 1.0 target.

Сложности:

- 1. Значительный дисбаланс между классами. Важно скорректировать веса.
- 2. Время предложения услуги не совпадает с временем формирования профиля пользователя. Тем не менее, временной промежуток всего полгода.
- 3. Большой объем данных снижает скорость их обработки, увеличивает сложность вычислений, важно оптимизировать ресурсы
- 4. Большинство признаков анонимизированы и нормализованы, их смысл не очевиден, но видна высокая корреляция между собой.

Модели

Подбор параметров осуществлялся с помощью GridSearchCV

n_estimators=425, max_depth=6, learning_rate=0.005, reg_lambda=0.8, reg_alpha=0.8, scale_pos_weight=3, random_state=13, eval_metric='logloss', importance_type='weight'

silent=True, iterations=160, learning_rate=0.03, depth=7, l2_leaf_reg=4, auto_class_weights='Balanced', eval_metric='F1', early_stopping_rounds=50, random_state=42

objective='binary', max_depth=13, n_estimators=100, num_leaves = 100, learning_rate=0.045, scale_pos_weight = 1.7935, reg_lambda = 0.2

Результаты:

XGBoost : AUC_PR = 0.706, AUC_ROC = 0.953,

CatBoost : AUC_PR = 0.702, AUC_ROC = 0.955

LGBM : AUC_PR = 0.711, AUC_ROC = 0.956

Выбор: **LGBMClassifier**

- Оптимальный порог: 0.49
- F1-макро на валидационном датасете при этом пороге: 0,7911

По сравнению с XGB и CB:

- Лучшая скорость работы (04.39 с)
- Экономия вычислительных ресурсов
- Меньшее потребление памяти

Индивидуальные предложения абонентам

Каким абонентам стоит предлагать услуги?

- С точки зрения ML, чтобы добиться оптимального соотношения precision-recall по позитивному классу, можно звонить клиентам, набравшим скор > 0.423
- С точки зрения бизнеса могут быть разные варианты:
- снижение порога для захвата рынка и роста recall
- повышение порога для экономии ресурсов и роста precision.
 - Возможно, если клиента не заинтересовала эта услуга, ему интересна другая, нужно предложить её.

Возможно, клиенту не интересна ни одна из услуг или клиент не настроен общаться.

Важно определить, на взаимодействие с какими абонентами имеет смысл тратить ресурсы (решение задачи Uplift)

Мультиклассовая классификация с LGBMClassifier

Определить, каким абонентам лучше предложить конкретную услугу

id	best_s	rvice	1	2	4	5	6	7	8	9
3814346		1	0.829745	0.025227	0.099069	0.034631	0.003106	0.000659	0.003532	0.004030
1286899		1	0.828157	0.024882	0.112372	0.018246	0.004297	0.006880	0.000737	0.004429
2025852		1	0.818740	0.047081	0.094031	0.016927	0.002638	0.012438	0.000656	0.007488

Но не позволяет с уверенностью сказать, что на клиента имеет смысл тратить ресурсы

Спасибо за внимание!

Решение:

https://github.com/YanaAbakumova/Projects/tree/main/Megafon_project