Computer Science 161

PRNGs and Diffie-Hellman Key Exchange

Adapted From CS 161 Fall 2022 - Lecture 8

Last Time: Hashes

- Map arbitrary-length input to fixed-length output
- Output is deterministic and unpredictable
- Security properties
 - One way: Given an output y, it is infeasible to find any input x such that H(x) = y.
 - Collision resistant: It is infeasible to find another any pair of inputs $x' \neq x$ such that H(x) = H(x').
- Some hashes are vulnerable to length extension attacks
- Hashes don't provide integrity (unless you can publish the hash securely)

Last Time: MACs

- Inputs: a secret key and a message
- Output: a tag on the message
- A secure MAC is unforgeable: Even if Mallory can trick Alice into creating MACs for messages that Mallory chooses, Mallory cannot create a valid MAC on a message that she hasn't seen before
- Example: HMAC(K, M) = H((K ⊕ opad) || H((K ⊕ ipad) || M))
- MACs do not provide confidentiality

Last Time: Authenticated Encryption

- Authenticated encryption: A scheme that simultaneously guarantees confidentiality and integrity (and authenticity) on a message
- First approach: Combine schemes that provide confidentiality with schemes that provide integrity and authenticity
 - MAC-then-encrypt: Enc(K₁, M || MAC(K₂, M))
 - Encrypt-then-MAC: Enc(K₁, M) || MAC(K₂, Enc(K₁, M))
 - Always use Encrypt-then-MAC because it's more robust to mistakes
- Second approach: Use AEAD encryption modes designed to provide confidentiality, integrity, and authenticity
 - Drawback: Incorrectly using AEAD modes leads to losing both confidentiality and integrity/authentication

Today: PRNGs and Diffie-Hellman Key Exchange

- Symmetric-key encryption schemes need randomness. How do we securely generate random numbers?
- When discussing symmetric-key schemes, we assumed Alice and Bob managed to share a secret key. How can Alice and Bob share a symmetric key over an insecure channel?

Computer Science 161

Pseudorandom Number Generators (PRNGs)

Cryptography Roadmap

	Symmetric-key	Asymmetric-key
Confidentiality	 One-time pads Block ciphers with chaining modes (e.g. AES-CBC) 	RSA encryptionElGamal encryption
Integrity, Authentication	MACs (e.g. HMAC)	 Digital signatures (e.g. RSA signatures)

- Hash functions
- Pseudorandom number generators
- Public key exchange (e.g. Diffie-Hellman)

- Key management (certificates)
- Password management

Randomness

Computer Science 161 Fall 20

- Randomness is essential for symmetric-key encryption
 - A random key
 - A random IV/nonce
 - Universally unique identifiers (we'll see this shortly)
 - We'll see more applications later
- If an attacker can predict a random number, things can catastrophically fail
- How do we securely generate random numbers?

Entropy

Computer Science 161

In cryptography, "random" usually means "random and unpredictable"

Scenario

- You want to generate a secret bitstring that the attacker can't guess
- You generate random bits by tossing a fair (50-50) coin
- The outcomes of the fair coin are harder for the attacker to guess

Entropy: A measure of uncertainty

- In other words, a measure of how unpredictable the outcomes are
- High entropy = unpredictable outcomes = desirable in cryptography
- The uniform distribution has the highest entropy (every outcome equally likely, e.g. fair coin toss)
- Usually measured in bits (so 3 bits of entropy = uniform, random distribution over 8 values)

Breaking Bitcoin Wallets

Computer Science 161 Fall 2022

- What happens if we use a poor source of entropy?
- Bitcoin users use a randomly-generated private key to access their account (and money)
 - An attacker who learns the key can access the money
 - We'll learn more about Bitcoin later
- An "improvment" [sic] to the algorithm reduced the entropy used to generate the private keys
 - Any private key created with this "improvment" could be brute-forced

True Randomness

Computer Science 161

- To generate truly random numbers, we need a physical source of entropy
 - An unpredictable circuit on a CPU
 - Human activity measured at very fine time scales (e.g. the microsecond you pressed a key)
- Unbiased entropy usually requires combining multiple entropy sources
 - Goal: Total number of bits of entropy is the sum of all the input numbers of bits of entropy
 - Many poor sources + 1 good source = good entropy
- Issues with true randomness
 - It's expensive and slow to generate
 - Physical entropy sources are often biased

Exotic entropy source: Cloudflare has a wall of lava lamps that are recorded by an HD video camera that views the lamps through a rotating prism

PuTTY Key Generator

Pseudorandom Number Generators (PRNGs)

Computer Science 161 Fall 20

- True randomness is expensive and biased
- Pseudorandom number generator (PRNGs): An algorithm that uses a little bit of true randomness to generate a lot of random-looking output
 - Also called deterministic random bit generators (DRBGs)
- Usage
 - Generate some expensive true randomness (e.g. noisy circuit on your CPU)
 - Use the true randomness as input to the PRNG
 - Generate random-looking numbers quickly and cheaply with the PRNG
- PRNGs are deterministic: Output is generated according to a set algorithm
 - However, for an attacker who can't see the internal state, the output is computationally indistinguishable from true randomness

PRNG: Definition

Computer Science 161 Fall 20

A PRNG has three functions:

- PRNG.Seed(randomness): Initializes the internal state using the entropy
 - Input: Some truly random bits
- PRNG.Reseed(randomness): Updates the internal state using the existing state and the entropy
 - Input: More truly random bits
- PRNG.Generate(n): Generate n pseudorandom bits
 - Input: A number *n*
 - Output: n pseudorandom bits
 - Updates the internal state as needed

Properties

- Correctness: Deterministic
- **Efficiency**: Efficient to generate pseudorandom bits
- Security: Indistinguishability from random
- Additional security: Rollback resistance

PRNG: Seeding and Reseeding

- Recall: Number of bits of entropy should be the sum of the number of bits in all sources
- A PRNG should be seeded with all available sources of entropy
 - Combining many low-entropy sources should result in high-entropy output
 - o If one source has 0 entropy, it should not reduce the entropy of the output
- Reseeding is used to add even more entropy as it becomes available
 - Reseeding with 0 entropy should not reduce the entropy of the internal state or output

PRNG: Security

- Can we design a PRNG that is truly random?
- A PRNG cannot be truly random
 - The output is deterministic given the initial seed
 - If the initial seed is s bits long, there are only 2s possible output sequences
- A secure PRNG is computationally indistinguishable from random to an attacker
 - Game: Present an attacker with a truly random sequence and a sequence outputted from a secure PRNG
 - An attacker should not be able to determine which is which with probability > 1/2 + negligible
- Equivalent definition: An attacker cannot predict future output of the PRNG

Insecure PRNGs: Breaking Slot Machines

Computer Science 161 Fall 20

- What happens if PRNGs are used improperly?
- A casino in St. Louis experienced unusual bad "luck"
 - Suspicious players would hover over the lever and then spin at a specific time to win
- Vulnerability: Slot machines used predictable PRNGs
 - The PRNG output was based on the current time
- Strategy:
 - Use a smartphone to alert you to when to pull the lever for the best chance of winning
- Las Vegas was not affected by the vulnerability
 - Nevada slot machines must follow evaluation standards designed to address this sort of issue

https://www.wired.com/2017/02/russians-engineer-brilliant-slot-machine-cheat-casinos-no-fix/

Insecure PRNGs: OpenSSL PRNG bug

Computer Science 161 Fall 2022

- What happens if we don't use enough entropy?
- Debian OpenSSL CVE-2008-0166
 - Debian: A Linux distribution
 - OpenSSL: A cryptographic library
 - In "cleaning up" OpenSSL (Debian "bug" #363516), the author "fixed" how OpenSSL seeds random numbers
 - The existing code caused Purify and Valgrind to complain about reading uninitialized memory
 - The cleanup caused the PRNG to only be seeded with the process ID
 - There are only 2¹⁵ (32,768) possible process IDs, so the PRNG only has 15 bits of entropy
- Easy to deduce private keys generated with the PRNG
 - Set the PRNG to every possible starting state and generate a few private/public key pairs
 - See if the matching public key is anywhere on the Internet

PRNG: Rollback Resistance

- Rollback resistance: If the attacker learns the internal PRNG state, they
 cannot learn anything about previous states or outputs
 - Game: An attacker knows the current internal state of the PRNG and is given a sequence of truly random bits and a sequence of previous output from the PRNG
 - The attacker cannot determine which is which with probability > 1/2
- Rollback resistance is not required in a secure PRNG, but it is a useful property
 - Consider:
 - Alice uses the same PRNG to generate her secret key and the IVs for encryption
 - Mallory compromises the internal state of the PRNG
 - If the PRNG is not rollback resistant, Mallory can derive previous PRNG output... such as the secret key

Computer Science 161 Fall 20

- Idea: HMAC output looks unpredictable. Let's use HMAC to build a PRNG!
- HMAC takes two arguments (key and message). Let's keep two values, K
 (key) and V (value) as internal state

Computer Science 161

Seed(s):

$$K = 0$$

$$V = 0$$

Initialize internal state

$$K = HMAC(K, V || 0x00 || s)$$

$$V = HMAC(K, V)$$

$$K = HMAC(K, V || 0x01 || s)$$

$$V = HMAC(K, V)$$

Update internal state with provided entropy

Computer Science 161

Reseed(s):

K = HMAC(K, V || 0x00 || s)

V = HMAC(K, V)

K = HMAC(K, V || 0x01 || s)

V = HMAC(K, V)

Update internal state with provided entropy

Computer Science 161

Generate(*n*):

```
output = "
while len(output) < n do

V = HMAC(K, V)
output = output || V
end while</pre>
```

Call HMAC repeatedly to generate random-looking output

K = HMAC(K, V || 0x00)V = HMAC(K, V)

Update internal state with no extra entropy

return output[:*n*]

HMAC-DRBG: Security

- Assuming HMAC is secure, HMAC-DRBG is a secure, rollback-resistant PRNG
 - Secure: If you can distinguish PRNG output from random, then you've distinguished HMAC from random
 - Rollback-resistant: If you can derive old output from the current state, then you've reversed the hash function or HMAC
 - The full proof is out of scope
 - In other words: if you break HMAC-DRBG, you've either broken HMAC or the underlying hash function

Insecure PRNGs: CVE-2019-16303

Computer Science 161 Fall 20

- Relevant if you wrote an app in JHipster before 2019
- Password reset functions
 - When you forget your password, receive an email with a special link to reset your password
 - The special link should contain a randomly-generated code (so attackers can't make their own link)
- Vulnerability: Bad PRNG
 - You can figure out the PRNG's internal state from the reset link
 - Request password reset links for other people's accounts
 - Predict the "random" reset link and take over any account you want!

Insecure PRNGs: Rust Rand_Core

- A Rust library has an interface for "secure" random number generators... but it isn't actually secure!
- Example: ChaCha8Rng
 - A stream cipher PRNG
 - No reseed function: no way of adding extra entropy after the initial seed
 - Seed only takes 32 bits: no way to combine entropy
 - No rollback resistance
- None of the "secure" RNGs are cryptographically secure
 - None have a reseed function to add extra entropy
 - None take arbitrarily long seeds
- Takeaway: Always make sure you use a secure PRNG
 - Consider human factors? Use fail-safe defaults? Remember CS61A exam questions?

Application: Universally Unique Identifiers (UUIDs)

Computer Science 161 Fall 20

Scenario

- You have a set of objects (e.g. files)
- You need to assign a unique name to every object
- Every name must be unique and unpredictable

Solution: Choose a random value

 If you use enough randomness, the probability of generating the same random value twice are astronomically small (basically 0)

Universally Unique Identifiers (UUIDs)

- 128-bit unique values
- To generate a new UUID, seed a secure PRNG properly, and generate a random value
- Often written in hexadecimal: 00112233-4455-6677-8899-aabbccddeeff
- You'll work with UUIDs in Project 2

PRNGs: Summary

- True randomness requires sampling a physical process
 - Slow, expensive, and biased (low entropy)
- PRNG: An algorithm that uses a little bit of true randomness to generate a lot of random-looking output
 - Seed(entropy): Initialize internal state
 - Reseed(entropy): Add additional entropy to the internal state
 - Generate(n): Generate n bits of pseudorandom output
 - Security: Computationally indistinguishable from truly random bits
- CTR-DRBG: Use a block cipher in CTR mode to generate pseudorandom bits
- HMAC-DRBG: Use repeated applications of HMAC to generate pseudorandom bits
- Application: UUIDs

Computer Science 161

Stream Ciphers

Stream Ciphers

Computer Science 161

Another way to construct symmetric key encryption schemes

- Idea
 - A secure PRNG produces output that looks indistinguishable from random
 - An attacker who can't see the internal PRNG state can't learn any output
 - What if we used PRNG output as the key to a one-time pad?
- Stream cipher: A symmetric encryption algorithm that uses pseudorandom bits as the key to a one-time pad

Stream Ciphers

Computer Science 161

 Protocol: Alice and Bob both seed a secure PRNG with their symmetric secret key, and then use the output as the key for a one-time pad

Stream Ciphers: Encrypting Multiple Messages

Computer Science 161

 Recall: One-time pads are insecure when the key is reused. How do we encrypt multiple messages without key reuse?

Stream Ciphers: Encrypting Multiple Messages

Computer Science 161

 Solution: For each message, seed the PRNG with the key and a random IV, concatenated. Send the IV with the ciphertext

Stream Ciphers: AES-CTR

- If you squint carefully, AES-CTR is a type of stream cipher
- Output of the block ciphers is pseudorandom and used as a one-time pad

Counter (CTR) mode encryption

Stream Ciphers: Security

Computer Science 161

 Stream ciphers are IND-CPA secure, assuming the pseudorandom output is secure

- In some stream ciphers, security is compromised if too much plaintext is encrypted
 - Example: In AES-CTR, if you encrypt so many blocks that the counter wraps around, you'll start reusing keys
 - In practice, if the key is n bits long, usually stop after $2^{n/2}$ bits of output
 - Example: In AES-CTR with 128-bit counters, stop after 2⁶⁴ blocks of output

Stream Ciphers: Encryption Efficiency

Computer Science 161 Fall 20

- Stream ciphers can continually process new elements as they arrive
 - Only need to maintain internal state of the PRNG
 - Keep generating more PRNG output as more input arrives
- Compare to block ciphers: Need modes of operations to handle longer messages, and modes like AES-CBC need padding to function, so doesn't function well on streams

Stream Ciphers: Decryption Efficiency

- Suppose you received a 1 GB ciphertext (encryption of a 1 GB message) and you only wanted to decrypt the last 128 bytes
- Benefit of some stream ciphers: You can decrypt one part of the ciphertext without decrypting the entire ciphertext
 - \circ Example: In AES-CTR, to decrypt only block *i*, compute E_K (nonce || *i*) and XOR with the *i*th block of ciphertext
 - Example: ChaCha20 (another stream cipher) lets you decrypt arbitrary parts of ciphertext
 - What about HMAC-DRBG? You have to generate all the PRNG output up until the block you want to decrypt

Next: Diffie-Hellman Key Exchange

Computer Science 161 Fall 20

 When discussing symmetric-key schemes, we assumed Alice and Bob managed to share a secret key. How can Alice and Bob share a symmetric key over an insecure channel? Computer Science 161

Diffie-Hellman Key Exchange

Cryptography Roadmap

Computer Science 161

	Symmetric-key	Asymmetric-key		
Confidentiality	 One-time pads Block ciphers with chaining modes (e.g. AES-CBC) 	RSA encryptionElGamal encryption		
Integrity, Authentication	MACs (e.g. HMAC)	 Digital signatures (e.g. RSA signatures) 		

- Hash functions
- Pseudorandom number generators
- Public key exchange (e.g. Diffie-Hellman)

- Key management (certificates)
- Password management

Secure Color Sharing

Secure Color Sharing

Computer Science 161

 Suppose Alice and Bob want a secret paint color, but Eve can see paint colors sent between Alice and Bob

- Alice generates a secret color amber A, and Bob generates a secret color blue B
- Alice and Bob agree on a common, public color green G
- They both mix their secret colors with G, so Alice has green-amber GA, and Bob has green-blue GB
- Alice sends GA to Bob, and Bob sends GB to Alice
 - Note: Eve now knows the colors GA and GB! Assume that it is hard to separate colors.
- Alice knows GB, so she can mix in A to form greenamber-blue GAB. Bob knows GA, so he can mix in B to form GAB, as well!
 - Eve only knows G, GA, and GB, so she can only form green-amber-green-blue GAGB, which is not the same!

Discrete Log Problem and Diffie-Hellman Problem

- Recall our paint assumption: Separating a paint mixture is hard
 - Is there a mathematical version of this? Yes!
- Assume everyone knows a large prime p (e.g. 2048 bits long) and a generator g
 - Don't worry about what a generator is
- Discrete logarithm problem (discrete log problem): Given g, p, g^a mod p for random a, it is computationally hard to find a
- Diffie-Hellman assumption: Given g, p, g^a mod p, and g^b mod p for random a, b, no polynomial time attacker can distinguish between a random value R and g^{ab} mod p.
 - o Intuition: The best known algorithm is to first calculate a and then compute $(g^b)^a$ mod p, but this requires solving the discrete log problem, which is hard!
 - Note: Multiplying the values doesn't work, since you get g^{a+b} mod $p \neq g^{ab}$ mod p

Diffie-Hellman Key Exchange

44

Diffie-Hellman Key Exchange Example From Wikipedia

Computer Science 161 Fall 2022

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

The simplest and the original implementation^[2] of the protocol uses the multiplicative group of integers modulo p, where p is prime, and g is a primitive root modulo p. These two values are chosen in this way to ensure that the resulting shared secret can take on any value from 1 to p-1. Here is an example of the protocol, with non-secret values in blue, and secret values in red.

```
1. Alice and Bob publicly agree to use a modulus p = 23 and base q = 5 (which is a primitive root modulo 23).
```

- 2. Alice chooses a secret integer a = 4, then sends Bob $A = g^{a} \mod p$
 - $A = 5^4 \mod 23 = 4$ (in this example both A and a have the same value 4, but this is usually not the case)
- 3. Bob chooses a secret integer b = 3, then sends Alice $B = g^b \mod p$
 - $B = 5^3 \mod 23 = 10$
- 4. Alice computes $s = B^a \mod p$
 - $s = 10^4 \mod 23 = 18$
- 5. Bob computes $s = A^b \mod p$
 - $s = 4^3 \mod 23 = 18$
- 6. Alice and Bob now share a secret (the number 18).

Both Alice and Bob have arrived at the same values because under mod p,

$$A^b \bmod p = g^{ab} \bmod p = g^{ba} \bmod p = B^a \bmod p$$

More specifically,

$$(g^a \bmod p)^b \bmod p = (g^b \bmod p)^a \bmod p$$

Diffie-Hellman Key Exchange Example From Wikipedia

Computer Science 161

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Secrecy chart [edit]

The chart below depicts who knows what, again with non-secret values in blue, and secret values in **red**. Here Eve is an eavesdropper – she watches what is sent between Alice and Bob, but she does not alter the contents of their communications.

Alice		Bob		Eve	
Known	Unknown	Known	Unknown	Known	Unknown
p = 23		p = 23		p = 23	
<i>g</i> = 5		g = 5		<i>g</i> = 5	
a = 6	b	<i>b</i> = 15	a		a, b
A = 5 ^a mod 23		B = 5 ^b mod 23			
$A = 5^6 \mod 23 = 8$		$B = 5^{15} \mod 23 = 19$			
<i>B</i> = 19		A = 8		A = 8, B = 19	
<i>s</i> = B ^a mod 23		s = A ^b mod 23			
<i>s</i> = 19 ⁶ mod 23 = 2		s = 8 ¹⁵ mod 23 = 2			5

Now s is the shared secret key and it is known to both Alice and Bob, but *not* to Eve. Note that it is not helpful for Eve to compute AB, which equals g^{a+b} mod p.

Ephemerality of Diffie-Hellman (短暂性)

Computer Science 161

- Diffie-Hellman can be used ephemerally (called Diffie-Hellman ephemeral, or DHE)
 - **Ephemeral** (sounds like: uh-feh-mr-uhl): Short-term and temporary, not permanent
 - Alice and Bob discard a, b, and $K = g^{ab} \mod p$ when they're done
 - Because you need a and b to derive K, you can never derive K again!
 - Sometimes K is called a session key, because it's only used for a an ephemeral session
- Benefit of DHE: Forward secrecy
 - Eve records everything sent over the insecure channel
 - Alice and Bob use DHE to agree on a key $K = g^{ab} \mod p$
 - Alice and Bob use K as a symmetric key
 - After they're done, discard a, b, and K
 - Later, Eve steals all of Alice and Bob's secrets
 - Eve can't decrypt any messages she recorded: Nobody saved a, b, or K, and her recording only has $g^a \mod p$ and $g^b \mod p$!

Diffie-Hellman: Security

Diffie-Hellman: Issues

- Diffie-Hellman is not secure against a MITM adversary
- DHE is an active protocol: Alice and Bob need to be online at the same time to exchange keys
 - What if Bob wants to encrypt something and send it to Alice for her to read later?
 - Next time: How do we use *public-key encryption* to send encrypted messages when Alice and Bob don't share keys and aren't online at the same time?
- Diffie-Hellman does not provide authentication
 - You exchanged keys with someone, but Diffie-Hellman makes no guarantees about who you exchanged keys with; it could be Mallory!

Elliptic-Curve Diffie-Hellman (ECDH)

Computer Science 161

- Notice: The discrete-log problem seems hard because exponentiating integers in modular arithmetic "wraps around"
 - Diffie-Hellman can be generalized to any mathematical group that has this cyclic property
 - Discrete-log uses the "multiplicative group of integers mod p under generator g"
- Elliptic curves: A type of mathematical curve
 - Big idea: Repeatedly adding a point to itself on a curve is another cyclic group.
 - You don't need to understand the math behind elliptic curves
- Elliptic-curve Diffie-Hellman: A variation of Diffie-Hellman that uses elliptic curves instead of modular arithmetic
 - Based on the elliptic curve discrete log problem, the analog of the discrete log problem
 - Benefit of ECDH: The underlying problem is harder to solve, so we can use smaller keys (3072-bit DHE is about as secure as 384-bit ECDHE)

Summary: Diffie-Hellman Key Exchange

Computer Science 161

Algorithm:

- Alice chooses a and sends g mod p to Bob
- Bob chooses b and sends g^b mod p to Alice
- Their shared secret is $(g^a)^b = (g^b)^a = g^{ab} \mod p$
- Diffie-Hellman provides forwards secrecy: Nothing is saved or can be recorded that can ever recover the key
- Diffie-Hellman can be performed over other mathematical groups, such as elliptic-curve Diffie-Hellman (ECDH)
- Issues
 - Not secure against MITM
 - o Both parties must be online
 - Does not provide authenticity