ASSIGNMENT-1

Q1.) Suppose that the values for a given set of data are grouped into intervals. The intervals and corresponding frequencies are as follows:

Age Group	Frequency	Cumulative Frequency (CF)
1-5	200	200
6-15	450	650
16-20	300	950
21-50	1500	2450
51-8	700	3150
81-110	44	3194

Compute an approximate median value for the data.

$$ext{Median} = l_1 + \left(rac{rac{n}{2} - (\sum f) imes l}{ ext{freq median}}
ight) imes ext{width}$$

- Total Frequency (NNN) = 3194
- Median Position = N/2 = 3194/2 = 1597
- The cumulative frequency just before **1597** is **950**, and the next class is **21–50**, so this is the **median class**.
- L1= 21 (Lower boundary of the median class 21–50)
- ∑f previous= 950
- F_median=1500
- w= 50-21= 29

$$egin{aligned} ext{Median} &= 21 + \left(rac{1597 - 950}{1500}
ight) imes 29 \ &= 21 + \left(rac{647}{1500}
ight) imes 29 \ &= 21 + (0.4313 imes 29) \ &= 21 + 12.51 \ \hline pprox 33.51 \ \hline \end{aligned}$$

Q2.) Suppose that a hospital tested the age and body fat data for 18 randomly selected adults with the following results:

age	23	23	27	27	39	41	47	49	50
%fat	7.8	9.5	17.8	25.9	26.5	27.2	27.4	28.8	30.2
age	52	54	54	56	57	58	58	60	61
%fat	31.2	31.4	32.9	33.4	34.1	34.6	35.7	41.2	42.5

Calculating Mean Age:

$$\overline{x} = rac{\sum x_i}{n}$$

Here,

 x_i = ith observation, $1 \le i \le n$

 $\sum x_i$ = Sum of observations

n = Number of observations

$$\sum x_i = 836$$

$$n = 18$$

$$\overline{x}$$
 = 836/18 = 46.44

• Calculating Median for Age:

If n is odd, the median is at position $\frac{n+1}{2}$.

If n is even, the median is the average of the values at positions $rac{n}{2}$ and $rac{n}{2}+1$.

Number of ages = 18 (even), so:

$$\text{Median Age} = \frac{50 + 52}{2} = \boxed{51.0}$$

Age (xi)	Mean (x ⁻)	<i>xi</i> - <i>x</i> -	(xi-x ⁻)2
23	46.4	-23.4	547.56
23	46.4	-23.4	547.56
27	46.4	-19.4	376.36
27	46.4	-19.4	376.36
39	46.4	-7.4	54.76
41	46.4	-5.4	29.16
47	46.4	0.6	0.36
49	46.4	2.6	6.76
50	46.4	3.6	12.96
52	46.4	5.6	31.36
54	46.4	7.6	57.76
54	46.4	7.6	57.76

Variance =
$$\frac{\Sigma(xi-x^{-})}{n} = \frac{2970.12}{18} = 165.01$$

Standard Deviation =
$$\sqrt{\text{Variance}} = \sqrt{165.01} = 12.85$$

• Calculating Mean Fat:

$$\sum X_i = 518.1$$

 $n = 18$
 $\overline{x} = 518.1/18 = 28.78$

• Calculating Median for Fat:

$$\text{Median Fat Percentage} = \frac{31.2 + 30.2}{2} = \boxed{30.7}$$

Variance =
$$\frac{1544.12}{18} = 85.6$$

Standard Deviation =
$$\sqrt{85.6} = 9.25$$