BABCOCK UNIVERSITY, ILISHAN – REMO, OGUN STATE DEPARTMENT OF BASIC SCIENCES

1ST SEMESTER EXAMINATION, 2014/2015 SESSION

MATH 101, GENERAL MATHEMATICS I

TOTAL MARKS: 60, TIME ALLOWED: 2 Hours

EXAMINER: Adio, A.K., Ayinde, S.A., Bamisile, O.O., Kanu, R.U., Mewomo, O.T. INSTRUCTION: ATTEMPT ANY FOUR (4) QUESTIONS.

Question 1

- a) If $\mu = \{4,5,6,\dots,14,15\}$ and A,B and C are subsets of μ such that $A = \{multiples\ of\ 2\}$, B= $\{multiples\ of\ 3\}$, C= $\{multiples\ of\ 5\}$.
 - i. $A \cup B$, $A \cup C$ and $B \cap C$
- ii. Use your result in (i) above to show that $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$ (5 marks)
- b) At a sports club with 195 members, it was found that 90 played football; 76 played volleyball and 67 played basketball. 35 played both football and volleyball, 28 played both volleyball and basketball and 30 played both football and basketball; 35 did not play any of the three games. Determine the number of members who played:
 - i. All the three games
 - ii. Football only
 - iii. Volleyball and basketball but not football
 - iv. Neither football nor volleyball.

(10 marks)

✓ Question 2

- a) Using completing the square method solve $ax^2 + bx + c = 0$, (5 marks) hence use your result to solve $x^2 + 6x 9 = 0$. (2 marks)
- b) Determine the values of k in $x^2 + 3(k+3)x \frac{9}{2}k = 0$, if it has equal roots. (4 marks)
- c) If α and β are the roots of $2x^2+4x+5=0$. Find the equations whose roots are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$. (4 marks)

Question 3

- a) Find the sum of the first twenty terms of an arithmetic progression of which the third term is 55 and the last term is -98. (5 marks)
- b) Given that $\frac{1}{y-x}$, $\frac{1}{2y}$, and $\frac{1}{y-z}$ are consecutive terms of an arithmetic progression, prove that x, y and z are consecutive term of a geometric progression. (5 marks)
- Find the sum of the first 6 terms of a geometric progression whose third term is 27 and sixth term is 8.
 (5 marks)

Question 4

a) Prove the following by mathematical induction

i. That
$$3^n + 2n - 1$$
 is a multiple of 4.

(4 marks)

That $9^n - 1$ is divisible by 8.

 $(3\frac{1}{2}$ marks)

b) Prove by induction that 5+10+15+20+25+...+5n = $\frac{5n(n+1)}{2}$ for all possible values of n.

 $(7\frac{1}{2} \text{ marks})$

Question 5

a) Simplify (i) n!/n + 2! (ii) n!/(n-2)!

(4 marks)

b) Expand $(2x-3y)^5$. Hence evaluate 1.97^5 d) Obtain and simplify the term in the expansion $(2x^2-y^3)^8$ which contains \cancel{x}^6 (5 marks)

Question 6

a) Find the modulus of the complex number $\frac{(1+i)(2+i)}{3-i}$

(5 marks)

b) Given the complex number z=3+7i, show that $z\bar{z}=|z|^2$, where \bar{z} denote the conjugate of z.

(5 marks)

c) By using DeMoivre's Theorem, show that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.

(5 marks)