3.3 The Isomorphism Theorems

- 1) Fix any $c \in \mathbb{F}_q$ where $c \neq 0$, then we have for all $M \in \mathrm{SL}_n(\mathbb{F}_q)$ that $cM \in \mathrm{GL}_n(\mathbb{F}_q)$ and $c^{-1}cM \in \mathrm{SL}_n(\mathbb{F}_q)$, which shows a bijection between the elements in $\mathrm{SL}_n(\mathbb{F}_q)$ and $c \cdot \mathrm{SL}_n(\mathbb{F}_q)$. We also have that if $c_1, c_2 \in \mathbb{F}_q$ are distinct, then $\det(c_1M) \neq \det(c_2M)$, thus since \mathbb{F}_q has q-1 non-zero choices for c, we have that $|\mathrm{GL}_n(\mathbb{F}_q)/\mathrm{SL}_n(\mathbb{F}_q)| = q-1$.
- 3) Since $H \subseteq G$, we have that $N_G(H) = G$, thus any subgroup K of G is a subgroup of $N_G(H)$, thus by the second isomorphism theorem, we have that $KH \subseteq G$ and $H \subseteq KH$, and by Lagrange's theorem we have |G:H| = |G:KH| |KH:H|. Since |G:H| = p is prime, we must have that |G:KH| is p or 1. If it is p, then |KH:H| = 1 which shows that KH = H, thus $K \subseteq H$. Otherwise, if |G:KH| = 1, then |KH:H| = p, and again by the second isomorphism theorem we have $K/K \cap H \cong KH/H$ which implies $|K:K\cap H| = |KH:H| = p$, and we are finished.
- **4)** Given groups A and B, fix normal subgroups $C \subseteq A$ and $D \subseteq B$. Clearly $C \times D \subseteq A \times B$. Let $(c,d) \in C \times D$ and $(a,b) \in A \times B$, then we have that $aca^{-1} \in C$ and $bdb^{-1} \in D$. Since $(a,b)^{-1} = (a^{-1},b^{-1})$, we have that $(a,b) \circ (c,d) \circ (a^{-1},b^{-1}) = (aca^{-1},bdb^{-1}) \in C \times D$, thus showing that $C \times D \subseteq A \times B$.

Since $C \times D$ is normal, it is the kernel of some homomorphism $\phi : A \times B \to (A \times B)/(C \times D)$. By the first isomorphism theorem, we have that $(A \times B)/\ker \phi \cong \phi(A \times B)$. For each $(aC, bD) \in (A/C) \times (B/D)$, we have that $\phi((a, b)) = (a, b)(C \times D) = (aC, bD)$, thus ϕ is surjective and $\phi(A \times B) = (A/C) \times (B/D)$, showing that $(A \times B)/(C \times D) \cong (A/C) \times (B/D)$.

3.4 Composition Series and the Hölder Program

- 1) Let G be an abelian simple group and $x \in G$ be a non-identity element. We must have that $\langle x \rangle = G$, otherwise it would be a normal subgroup that is both proper and non-trivial, and thus G would not be simple. Now, suppose |G| is infinite, then $\langle x^n \rangle$ is a proper normal subgroup for any $n \in \mathbb{Z}$, thus |G| must be finite. Finally, if n > 1 is a proper divisor of |G|, then $\langle x^n \rangle$ is a proper normal subgroup, thus |G| must have no proper divisors > 1, thus |G| is prime. Since G is also cyclic, we have that $G \cong \mathbb{Z}/p\mathbb{Z}$.
- 2) By the subgroup lattice for D_8 provided in the text, we have that the decomposition series for D_8 are as follows:

$$1 \leq \langle s \rangle \leq \langle s, r^2 \rangle \leq D_8$$

$$1 \leq \langle sr^2 \rangle \leq \langle s, r^2 \rangle \leq D_8$$

$$1 \leq \langle r^2 \rangle \leq \langle s, r^2 \rangle \leq D_8$$

$$1 \leq \langle r^2 \rangle \leq \langle r \rangle \leq D_8$$

$$1 \leq \langle r^2 \rangle \leq \langle rs, r^2 \rangle \leq D_8$$

$$1 \leq \langle r^2 \rangle \leq \langle rs, r^2 \rangle \leq D_8$$

$$1 \leq \langle rs \rangle \leq \langle rs, r^2 \rangle \leq D_8$$

$$1 \leq \langle rs \rangle \leq \langle rs, r^2 \rangle \leq D_8$$

$$1 \leq \langle sr \rangle \leq \langle rs, r^2 \rangle \leq D_8$$

4) Fix a finite abelian group G. If |G|=1, we have that $\{e\} \leq \{e\}$, thus the base case holds. Now fix a positive integer n and suppose the proposition holds for all groups where |G| < n, and let k be a divisor of n. If k is prime, then by Cauchy's theorem there exists $x \in G$ with |x| = k, and thus $|\langle x \rangle| = k$. Otherwise, some prime p < k divides k, and again we can choose $x \in G$ with $|\langle x \rangle| = p$. Since k/p divides $|G/\langle x \rangle|$, we can use the induction hypothesis and the fourth isomorphism theorem to obtain a subgroup $H/\langle x \rangle \leq G/\langle x \rangle$ with order k/p and $H \leq G$. By Lagrange's theorem we find that $k/p = |H/\langle x \rangle| = |H|/p$, thus |H| = k and we are finished.

3.5 Transpositions and the Alternating Group

- 1) σ is even and τ is odd, thus $\sigma\tau$ is odd.
- 3) For any $\sigma \in S_n$, we can take its decomposition into transpositions, thus without loss of generality we can take σ to be a transposition in S_n , say $(i \ j)$ for integers $1 \le i < j \le n$. Let $\sigma' \in S_n$ be defined as $(i \ i+1)(i+1 \ i+2) \cdots (j-1 \ j)(j-2 \ j-1) \cdots (i \ i+1)$. We have that $\sigma'(i)$ brings i to i+1, then i+2, until we get to j, then doesn't touch j for the rest of the transpositions, thus $\sigma'(i) = j$. Likewise, j isn't touched until $(j-1 \ j)$, and then cascades through the rest of the transpositions until it reaches i, thus $\sigma'(j) = i$ and $\sigma = \sigma'$. We can repeat this process for each transposition in a general element of S_n , thus we are finished.
- 9) We have that $\{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ is the subgroup of A_4 with order 4. The mapping $e \mapsto (0,0), (1\ 2)(3\ 4) \mapsto (0,1), (1\ 3)(2\ 4) \mapsto (1,0), (1\ 4)(2\ 3) \mapsto (1,1)$ is an isomorphism, so the subgroup is isomorphic to V_4 .