# SESIÓN / 02 OPERACIONES CON VECTORES

- / RECORRIDO
- / BÚSQUEDA
- / MODIFICACIÓN
- / ELIMINACIÓN

#### / INTRODUCCIÓN

- La clase anterior conocimos las Estructuras de Datos, la forma cómo se clasifican y la importancia de una adecuada selección de los algoritmos para la elaboración de programas eficientes.
- En la presente sesión, trataremos con mayor detalle la primera Estructura de Datos: Los Arreglos; específicamente, los arreglos unidimensionales. Revisaremos sus principales características, la forma cómo se representan y las operaciones que se pueden realizar sobre esta estructura.
- Culminaremos analizando la eficiencia de los algoritmos de búsqueda y eliminación.

# **RECORRIDO**

#### Recorrido

Consiste en visitar cada elemento del Vector.



#### Recorrido

Consiste en visitar cada elemento del Vector.



#### Recorrido

Consiste en visitar cada elemento del Vector.



**BÚSQUEDA** 

## Búsqueda

Se trata de encontrar un valor dentro del Vector.

Ejemplo: En el siguiente Vector, busca el número 7

2 A[0]

9 A[1]

A[2]

Resultado:

7 A[3]

El número 7 se encuentra en la posición 3

1 A[4]

# Algoritmos de búsqueda

- Búsqueda Lineal
- Búsqueda Binaria



## / BÚSQUEDA SECUENCIAL

#### Descripción

Consiste en recorrer el Vector, desde la posición cero, comparando cada elemento con el dato buscado.

Ejemplo: En el siguiente Vector, busca el número 70

| A | 0  | 1  | 2  | 3  | 4  |  |  |
|---|----|----|----|----|----|--|--|
|   | 20 | 90 | 40 | 70 | 10 |  |  |

Resultado: El número 70 se encuentra en la posición 3. Se tuvieron que realizar 4 comparaciones.

## / BÚSQUEDA SECUENCIAL

#### Eficiencia

La eficiencia se determina por el número de comparaciones a realizar.

Si el dato buscado se encuentra en la primera posición:
 Sólo se necesitará hacer una comparación.

Mejor caso

 Si el dato buscado se encuentra en la última posición ó si este no se encuentra en el Vector:
 Para un Vector con n elementos, se tendrá que realizar n comparaciones



#### Descripción

Este algoritmo compara el dato buscado con el valor almacenado en la posición central del Vector. Si no son iguales, buscará el dato en la parte izquierda ó en la parte derecha del Vector, dependiendo del valor de la posición central.

Requisito: Los elementos del Vector, deben estar ordenados.

# Descripción

Ejemplo: Dado el siguiente Vector, busca el número 60

| 0  |    |    |    |    | _  | _  |    |    | _  |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 12 | 20 | 24 | 30 | 36 | 40 | 48 | 50 | 52 | 60 | 64 | 70 | 78 | 80 | 86 | 90 |

Nombre del Vector: Elemento

Dato a buscar: 60

## Descripción

1. Determinamos el límite inferior y el límite superior

|    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 12 | 20 | 24 | 30 | 36 | 40 | 48 | 50 | 52 | 60 | 64 | 70 | 78 | 80 | 86 | 90 |
|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

2. Hallamos la posición central

$$medio = \frac{0+15}{2}$$
  $medio = \frac{0}{2}$ 

$$medio = 7$$

3. Comparamos el dato buscado con el elemento de la posición central

$$60 = 50$$
?

## Descripción

1. Determinamos el límite inferior y el límite superior

| 12     20     24     30     36     40     48     50     52     60     64     70     78     80     86     90 | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                                                                                                             | 12 | 20 | 24 | 30 | 36 | 40 | 48 | 50 | 52 | 60 | 64 | 70 | 78 | 80 | 86 | 90 |

2. Hallamos la posición central

$$medio = \frac{8+15}{2}$$

$$medio = 11$$

3. Comparamos el dato buscado con el elemento de la posición central

## Descripción

1. Determinamos el límite inferior y el límite superior

| 0 1   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 12 20 | 24 | 30 | 36 | 40 | 48 | 50 | 52 | 60 | 64 | 70 | 78 | 80 | 86 | 90 |

2. Hallamos la posición central

$$medio = \frac{8+10}{2}$$

$$medio = 9$$

3. Comparamos el dato buscado con el elemento de la posición central

¿ dato = elemento[9] ?

$$60 = 60$$
?

#### Eficiencia

La eficiencia se determina por el número de comparaciones a realizar.

Si el dato buscado se encuentra en la posición central:
 Sólo se necesitará hacer una comparación.

Mejor caso

 Si el dato buscado se encuentra en uno de los extremos ó si este no se encuentra en el Vector:

Para un Vector con n elementos, el número <u>aproximado</u> de comparaciones será: log<sub>2</sub>n



# MODIFICACIÓN

#### Modificación

Consiste en cambiar el valor de un elemento del Vector.

Ejemplo: En el siguiente Vector, modifica el número 9 por el número 8

2 A[0]

9 A[1]

4 A[2]

7 A[3]

A[4]

#### Modificación

Consiste en cambiar el valor de un elemento del Vector.

Ejemplo: En el siguiente Vector, modifica el número 9 por el número 8

| 2 | A[0]            | 2 | A[0] |
|---|-----------------|---|------|
| 9 | A[1]            | 8 | A[1] |
| 4 | A[2] Resultado: | 4 | A[2] |
| 7 | A[3]            | 7 | A[3] |
| 1 | A[4]            | 1 | A[4] |

# ELIMINACIÓN

#### Eliminación

Se trata de sacar un elemento del Vector.

La eliminación puede ser:

- Al inicio.
- Al final.
- Entre dos elementos.

#### Eliminación

Se trata de sacar un elemento del Vector.

Ejemplo: En el siguiente Vector, elimina el número 9

2 A[0]

9 A[1]

4 A[2]

7 A[3]

A[4]

#### Eliminación

Se trata de sacar un elemento del Vector.

Ejemplo: En el siguiente Vector, elimina el número 9

| 2 | A[0] |            | 2 | A[0] |               |
|---|------|------------|---|------|---------------|
| 9 | A[1] |            | 4 | A[1] |               |
| 4 | A[2] | Resultado: | 7 | A[2] | Se realizaron |
| 7 | A[3] |            | 1 | A[3] | 3 traslados   |
| 1 | A[4] |            |   | A[4] |               |

#### / CONCLUSIONES

- La forma de representar gráficamente un Arreglo Unidimensional depende de la operación que se desea realizar.
- Sobre los datos almacenados en un Vector, se pueden realizar seis operaciones.
- La eficiencia de los algoritmos de búsqueda se mide por el número de comparaciones a realizar.

# / BIBLIOGRAFÍA

- Cairo, O.; Guardati, S. (2008). Estructuras de datos. 3ra. Edición. México D.F., Mexico: McGraw Hill.
- Instituto NIIT (2011). <u>Data Structures and Algorithms</u>. Student guide.