Estratégia para Preenchimento de Falhas usando Deep Learning e Análise do Potencial Eólico através da Distribuição de Weibull

> Marcos Jacinto Daniel Carvalho Gilvandro Medeiros Marcus Brito

Preenchimento de Falhas - LSTM

Problema identificado:
Falha nas séries temporais =>
Dificuldade em obter tendências e
sazonalidade existentes nas séries
meteorológicas, impossibilitando a
análise climática (variações
meteorológicas em larga escala de
tempo).

Amostragem dos dados e redução de dimensionalidade (PCA)

Organização dos dados para LSTM

Treinamento e validação da rede neural, gerando métricas de erro e correlação

Métrica	IC (α = 95%)
PCA-Ratio	0.99 +/- 0.01
MAE	0.33 +/- 0.06
RMSE	0.69 +/- 0.11
Coef. de Corr. (R)	0.78 +/- 0.04

Códigos e material desenvolvidos: https://github.com/gilvandrocesardemedeiros/CCD

Cidades de maior interesse

Distribuição de Weibull

$$F(v) = \left(\frac{k}{c}\right) \left(\frac{v}{c}\right)^{k-1} exp\left[-\left(\frac{v}{c}\right)^{k}\right]$$

Fórmula - Dist. Weibull

$$V_{MP} = c \left[\frac{(k-1)}{k} \right]^{\frac{1}{k}}$$

Fórmula - VMP

$$V_{MaxE} = c \left[\frac{(k+2)}{k} \right]^{\frac{1}{k}}$$

Fórmula - VME

Velocidade mais provável

Macau/RN	5,63 m/s
Mata Grande/AL	4,94 m/s
Campos Sales/CE	4,43 m/s
Natal/RN	4,24 m/s
Aracati/CE	4,16 m/s

Velocidade mais energética

Santa Cruz/RJ	8,57 m/s
Cabo Frio/RJ	7,83 m/s
Porto de Pedras/AL	6,65 m/s
Macau/RN	6,60 m/s
Iguaba Grande/AL	6,58 m/s

Potencial Eólico por cidade brasileira

