ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231715339

Leaf Alkaloids of Sophora macrocarpa

ARTICLE in JOURNAL OF NATURAL PRODUCTS · JUNE 2004

Impact Factor: 3.8 · DOI: 10.1021/np50023a028

CITATIONS	READS
2	10

3 AUTHORS, INCLUDING:

Bruce Kennedy Cassels
University of Chile

244 PUBLICATIONS 3,445

CITATIONS

SEE PROFILE

LEAF ALKALOIDS OF SOPHORA MACROCARPA

ROSA NEGRETE and NADINE BACKHOUSE

Department of Pharmaceutical Sciences, Faculty of Basic and Pharmaceutical Sciences, University of Chile, Santiago, Chile

and

BRUCE K. CASSELS

Department of Chemistry, Faculty of Science, University of Santiago, Santiago, Chile

The seeds of Sophora macrocarpa Sm. (Fabaceae) are a promising source of edible oil (1), and contain matrine, N-methylcytisine and baptifoline (2). Glc analyses of the leaves of this species suggested that matrine is always, by far, the major alkaloid, accompanied by several unidentified minor bases (3). Fractionation of the crude leaf alkaloids has now afforded matrine, matrine N-oxide, sophoranol, N-methylcytisine and cytisine.

EXPERIMENTAL¹

PLANT MATERIAL.—Sophora macrocarpa leaves were harvested in November, 1978, after flowering, at the eastern foot of La Dormida Pass, about 40 km north of Santiago, Chile. Voucher specimens are deposited at the Natural History Museum in Santiago.

Extraction and isolation of alkaloids. 2 —Air-dried leaves of Sophora macrocarpa (9.0 kg), when worked up by standard procedures, yielded 130 g of crude alkaloids. Matrine, N-methylcytisine, cytisine, matrine N-oxide and sophoranol were identified by mp, $[\alpha]$ p, uv, ir, ms, 1 H and 12 C nmr. The first three alkaloids were further characterized by tlc comparison with reference samples and mp of derivatives. Matrine N-oxide was compared with a synthetic sample prepared from matrine and H₂O₂.

ACKNOWLEDGMENTS

We are grateful to Professors L.E. Navas for the identification of the plant material and J. Bartulin (ms and ¹³C nmr), G. Eckhardt (ms), E. Breitmaier (¹⁴C nmr), M. Shamma and F. Horn (¹⁴H nmr), and J. Medina (ir) for spectra. We acknowledge the technical assistance of N.E. Creuz, H. Fuentes, H. Maldonado, P.J. Manriquez, V. Soto and S. Tortello. This work was supported by SDCACI (University of Chile), DICYT (University of Santiago), and the Organization of American States Organization of American States.

Received 20 November 1981

LITERATURE CITED

- A. de Mayo and B. K. Cassels, Contribuciones (UTE), (5), 33 (1971). M. Silva, M. Medina and P. G. Sammes, Phytochemistry, 7, 661 (1968). A. Riquelme, Thesis, University of Chile, 1979.

Melting points were determined on a Reichert Kofler hot plate and are uncorrected. Uv spectra were recorded on a Zeiss DMR-21 spectrophotometer, and ir spectra were determined on a Leitz III G instrument. H and C nmr spectra were recorded with Varian HA-100 and CFT-20 spectrometers, respectively. Electron impact ms were obtained at 70 eV with a Varian Mat CH-7 instrument. Optical rotations were measured on Perkin-Elmer 141 and 241 polarimeters.

Full details of the isolation and identification of the compounds are available on request to R.N.