Exercise 4.1 Exercise 4.2 – obligatory (6 points)

Let the following context-free grammar G with start symbol S be given:

- a) Which of the following words are derivable? If possible, give a derivation for each.
- (1) cdc

S-> BA

BA -> cA

cA -> cdA · cdA ·

cdcA -> cdc

(2) acbb

S-> BA

BA -> aBbbA

aBbbA -> acbbA

acbbA -> acbb ·

(3) accba

S-> BA

BA -> aBbbA not possible

b) Give a derivation tree for the string aacbbbbcd.

$$S \rightarrow BA$$

$$BA \rightarrow BCA$$

$$DCA \rightarrow BCDA$$

$$BCDA \rightarrow BCDA$$

d) (optional, +2 bonus points) Which language is generated by the grammar G?

S	->	BA
J	_	$D \cap$

Exercise 4.3

Define a context-free grammar for the language of the following regular expression: a(b|cc)* (a|ε)

$$S \rightarrow aAB$$

$$A \rightarrow |bA| ccA$$

$$B \rightarrow a \mid \epsilon$$

Exercise 4.4 - obligatory (6 points)

a) Define a context-free grammar for the language L

$$L = \{ dc^{2n}ba^{n}(n) | n >= 0 \} U \{ ac^{kb} | k > 0 \}.$$

$$S \rightarrow dA \mid aBb$$

$$B \rightarrow cB \mid \epsilon$$

b) Specify a context-free grammar for logical expressions. The expressions can be build from the variable x, y, z, and the logical operators!, &&, and || (similar to Java). Any (sub-)expression can be encompassed by parenthesis. Here are some examples:

х	٠	Expr → letters · ·	٠	٠	$S \rightarrow CAB$	^) o
!z !y x	٠	Expr && Expr Expr Expr	٠	٠	$A \rightarrow B \& \& B \mid B \mid B \mid ($	A) &
(x) · · ·	•	· · ! Expr · · ·	•	•	$C \rightarrow i \mid \varepsilon$	•
!(z && y z) (x !(y && !!z))	٠	(Expr) Letters →	٠	٠		•
		• • • • • • •	•			

Exercise 4.5 (tricky!)

Let S = {0,1}. Specify context-free grammars for the following languages:

$$S \rightarrow 0S1 \mid B$$

$$B \rightarrow 1B \mid \epsilon$$

b) L2 = {
$$0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0$$
}
 $S \to AB \mid$

$$A \to 0A1 \mid E$$

$$B \to 0B1 \mid E$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

$$C = \{0^{n}(n)1^{n}(n+m)0^{n}(m) \mid n > 0, m > 0\}$$

c) L3 = {w ε S* | |w|0 = |w|1 }, i.e. the language of all strings that contain the same number of zeros and ones.

Exercise 4.6 - obligatory (3 points)

Let the following context-free grammar G with start symbol S be given:

$$\dot{S} \rightarrow \dot{S}aS \mid \dot{B}$$

$$B \rightarrow b \mid c \cdot$$

a) Draw a parse tree for the string bacab.

Exercise 4.7

The Ada 2012 programming language reference manual defines the syntax of if statements using EBNF:

If_Statement → if Condition then Sequence_of_Statements

(elsif Condition then Sequence_of_Statements)*
[else Sequence_of_Statements]

end if;

Sequence_of_Statements → Statement +

Terminal symbols are printed as boldface text. Condition and Statement are nonterminal symbols defined elsewhere. Square brackets enclose optional items.

Draw a syntax diagram (railroad diagram) for this section of the Ada grammar.

Exercise 4.8

Transform the following EBNF grammar into a context-free grammar.

$$\dot{S} \rightarrow (\dot{a}Sb)^{\dot{*}} [Ac]^{\dot{a}}$$

$$A \rightarrow (ab \mid Ad) bb$$

Exercise 4.9 - obligatory (5 points)

The following EBNF grammar is given, where [...] indicates optional parts:

 $S \rightarrow aAbA*[cA]a$

A → d+e a) Represent the grammar as a syntax diagram (railroad diagram).																	
٠	٠	•	٠	٠	٠	•	٠	٠	•	•	٠	•	•	•	٠	٠	٠
•5:	<u>G</u>	•	•	A	٠	٠		b —	•	۰	•	•	۰	۰	· (9)—	· •
•	٠	•	٠	٠	٠	•	•	٠	•		•		•	•			٠
•	٠		•	•	•	•	•	•		· [A] •	•		→ ©	A	•	•	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		
.A.	•	٠	•	> .d)-	•/	•	→ @	•	•	•	•	•	•		•	•	٠
•	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	•	٠
b) Convert the EBNF grammar to an equivalent context-free grammar.																	
•	·		·	· grai	·	·	·	iivaie •	•	·	•	· ·	·		•		
$S \rightarrow$	aAb <i>A</i>	*[cA]	la														
	aAb>			•	•	•	•	•	•	•	•	•	•	•	•	•	٠
$X \rightarrow$	AX	€°	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
Ž →	¢A 8	Ε.	•	•	•	•	•	•	•	•	•	•	•				•
•						•				•	•	•	•				
$A \rightarrow$			•					•		•	•	•	•				
$A \rightarrow$	d + e									•	•		•				
	d Υ ε	Ε.						•									
						•											
•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠
•	٠	•	•	٠	٠	•	٠	•	•	•	•	•	•	•	•	٠	٠
•	٠	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	•	•	•	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	٠	٠	٠	•	٠	٠	•	•	٠	•	•	•	•	٠	٠
٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	•	•	•	٠	٠

•

•

