```
uploaded = files.upload()
for fn in uploaded.keys():
 print('User uploaded file "{name}" with length {length} bytes'.format(
      name=fn, length=len(uploaded[fn])))
    选择文件 SeoulBikeData.csv
    • SeoulBikeData.csv(text/csv) - 604169 bytes, last modified: 2021/12/6 - 100% done
    Saving SeoulBikeData.csv to SeoulBikeData.csv
    User uploaded file "SeoulBikeData.csv" with length 604169 bytes
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn.linear model import LinearRegression, Lasso, Ridge
from sklearn.model selection import cross val score
from sklearn.model selection import KFold, GridSearchCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import xgboost as xgb
from xgboost.sklearn import XGBRegressor
data= pd.read csv('SeoulBikeData.csv', encoding = 'latin-1')
```

from google.colab import files

	Date	Rented Bike Count	Hour	$\texttt{Temperature}(\hat{\mathtt{A}}^{\circ}\mathtt{C})$	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature $(\hat{A}^{\circ}C)$	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)
(01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0
	01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0
2	2 01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0
(3 01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0
4	I 01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0

data.describe()

data.head()

		Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature $(\hat{A}^{\circ}C)$	Solar Radiation (MJ/m2)	Rainfall(mm)
	count	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000	8760.000000
	mean	704.602055	11.500000	12.882922	58.226256	1.724909	1436.825799	4.073813	0.569111	0.148687
	std	644.997468	6.922582	11.944825	20.362413	1.036300	608.298712	13.060369	0.868746	1.128193
	min	0.000000	0.000000	-17.800000	0.000000	0.000000	27.000000	-30.600000	0.000000	0.000000
data _l	preproc	essing								
	50%	504 500000	11 500000	13 700000	57 000000	1 500000	1602 ᲘᲘᲘᲘᲘᲘ	5 100000	O 010000	ט טטטטטנ

new_sec = pd.get_dummies(data, columns=['Seasons'],prefix=['season'],drop_first=True)

data = new_sec

data.head()

Date	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)
0 01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0
1 01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0
2 01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0
3 01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0
4 01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0

new_hol = pd.get_dummies(data, columns=['Holiday'],prefix=['holiday'],drop_first=True)
data = new_hol
data.head()

	Date	Rented Bike Count	Hour	$\texttt{Temperature}(\hat{\mathtt{A}}^{\circ}\mathtt{C})$	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature($\hat{A}^{\circ}C$)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)
0	01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0
1	01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0
2	01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0
3	01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0
4	01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0

	Date	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature ($\hat{A}^{\circ}C$)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)
0	01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0
1	01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0
2	01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0
3	01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0
4	01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0

data.columns

```
Index(['i*;Date', 'Rented Bike Count', 'Hour', 'Temperature(°C)',
            'Humidity(%)', 'Wind speed (m/s)', 'Visibility (10m)',
            'Dew point temperature(\hat{A}^{\circ}C)', 'Solar Radiation (MJ/m2)', 'Rainfall(mm)',
            'Snowfall (cm)', 'season Spring', 'season Summer', 'season Winter',
            'holiday_No Holiday', 'functioning day_Yes'],
           dtype='object')
corr = data[['Rented Bike Count', 'Hour', 'Temperature(°C)',
       'Humidity(%)', 'Wind speed (m/s)', 'Visibility (10m)',
       'Dew point temperature(°C)', 'Solar Radiation (MJ/m2)', 'Rainfall(mm)',
       'Snowfall (cm)', 'season_Spring', 'season_Summer', 'season_Winter',
       'holiday_No Holiday', 'functioning day_Yes']].corr()
corr
sns.heatmap(corr, cmap="YlGnBu")
```



```
 \begin{aligned} & \text{data\_lr} = \text{data.drop(['Dew point temperature($\hat{A}^{\circ}$C)','season\_Summer', 'season\_Winter','Humidity($)'], axis = 1)} \\ & \text{corr} = \text{data\_lr[['Rented Bike Count', 'Hour', 'Temperature($\hat{A}^{\circ}$C)',} \\ & \text{'Wind speed (m/s)', 'Visibility (10m)',} \\ & \text{'Solar Radiation (MJ/m2)', 'Rainfall(mm)', 'Snowfall (cm)',} \\ & \text{'season\_Spring','holiday\_No Holiday', 'functioning day\_Yes']].corr()} \\ & \text{corr} \end{aligned}
```

sns.heatmap(corr, cmap="YlGnBu")

new_hour = pd.get_dummies(data, columns=['Hour'],prefix=['Hour'],drop_first=True)
data = new_hour
data.head()

	Date	Rented Bike Count	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature $(\hat{A}^{\circ}C)$	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	seasc
	01/12/2017	254	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0	
	01/12/2017	204	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0	
:	2 01/12/2017	173	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0	
;	3 01/12/2017	107	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0	
4	1 01/12/2017	78	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0	

	Date	Rented Bike Count	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature($\hat{A}^{\circ}C$)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	season_Spring	season_
0	01/12/2017	254	37	2.2	2000	-17.6	0.0	0.0	0.0	0	
1	01/12/2017	204	38	0.8	2000	-17.6	0.0	0.0	0.0	0	
2	01/12/2017	173	39	1.0	2000	-17.7	0.0	0.0	0.0	0	
3	01/12/2017	107	40	0.9	2000	-17.6	0.0	0.0	0.0	0	
Λ	N1/19/9N17	72	36	23	2000	_18 6	$\cap \cap$	0.0	0.0	0	
	'Visib 'Solar 'seaso 'funct 'Hour_ 'Hour_ 'Hour_ 'Tem_w	ility (1 Radiati n_Spring ioning d 6', 'Hou 13', 'Ho 19', 'Ho	.0m)', 'Dew po .on (MJ/m2)', ,', 'season_Su lay_Yes', 'Hou ur_7', 'Hour_6 ur_14', 'Hous ur_20', 'Hous 'em_hot'],	raint tender 'Rainfaummer', ur_1', 3', 'Horal 'Ho	mperature(°Call(mm)', 'Sall(mm)', 'Sall(mm)', 'Sall(mm)', 'Sall(mm)', 'Hour_2', 'Hour_9', 'Hour_16', '	, 'Wind speed (m/sc)', nowfall (cm)', ter', 'holiday_No our_3', 'Hour_4', _10', 'Hour_11', Hour_17', 'Hour_18 Hour_23', 'Tem_cod	Holiday', 'Hour_5', 'Hour_12',				

len(data.columns)

40

linear regression

```
'Hour 2', 'Hour 3', 'Hour 4', 'Hour 5', 'Hour 6', 'Hour 7', 'Hour 8',
            'Hour 9', 'Hour 10', 'Hour 11', 'Hour 12', 'Hour 13', 'Hour 14',
            'Hour 15', 'Hour 16', 'Hour 17', 'Hour 18', 'Hour 19', 'Hour 20',
            'Hour 21', 'Hour 22', 'Hour 23', 'Tem cool', 'Tem warm', 'Tem hot'],
          dtype='object')
x lr = data lr[['Wind speed (m/s)', 'Visibility (10m)',
       'Solar Radiation (MJ/m2)', 'Rainfall(mm)', 'Snowfall (cm)',
       'season Spring', 'holiday No Holiday', 'functioning day Yes', 'Hour 1',
       'Hour 2', 'Hour 3', 'Hour 4', 'Hour 5', 'Hour 6', 'Hour 7', 'Hour 8',
       'Hour 9', 'Hour 10', 'Hour 11', 'Hour 12', 'Hour 13', 'Hour 14',
       'Hour 15', 'Hour 16', 'Hour 17', 'Hour 18', 'Hour 19', 'Hour 20',
       'Hour 21', 'Hour 22', 'Hour 23', 'Tem cool', 'Tem warm', 'Tem hot']]
#define cross-validation method to use
cv = KFold(n splits=10, random state=1, shuffle=True)
#build multiple linear regression model
lr = LinearRegression()
#use k-fold CV to evaluate model
scores = cross_val_score(lr, x_lr, y, scoring='neg_mean_squared_error',
                         cv=cv, n jobs=-1)
lr mse = np.mean(- scores)
print('the mse of linear regression is: ', lr mse)
    the mse of linear regression is: 157261.75138991658
#define cross-validation method to use
cv = KFold(n splits=10, random state=1, shuffle=True)
#build multiple linear regression model
lr = LinearRegression()
#use k-fold CV to evaluate model
scores = cross_val_score(lr, x_lr, y, scoring='r2',
                         cv=cv, n jobs=-1)
r2 = np.mean(scores)
print('the r2 of linear regression is: ', r2)
    the r2 of linear regression is: 0.6215266289297408
lasso
cv = KFold(n splits=10, random state=1, shuffle=True)
#build multiple linear regression model
lasso mse=[1
for i in np.arange(0,0.2,0.0005):
 lasso = Lasso(alpha = i)
  #use k-fold CV to evaluate model
  scores = cross_val_score(lasso, x, y, scoring='neg_mean_squared_error',
                         cv=cv, n jobs=-1)
 lasso_mse.append(np.mean(- scores))
plt.plot(list(np.arange(0,0.2,0.0005)), lasso_mse, color='b', linestyle='dashed', marker='o',markerfacecolor='blue', markersize=6)
plt.xlabel('lambda')
plt.ylabel('score')
```

```
Text(0, 0.5, 'score')
          +1.389e5
       40
       35
       30
      e 25
       20
       15
       10
          0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
print("lambda: ", lasso_mse.index(min(lasso_mse))*0.0005)
print("mse: ", min(lasso_mse))
     lambda: 0.028
     mse: 138906.03305971067
cv = KFold(n_splits=10, random_state=1, shuffle=True)
#build multiple linear regression model
lasso_mse=[]
for i in np.arange(0,0.2,0.0005):
  lasso = Lasso(alpha = i)
  #use k-fold CV to evaluate model
  scores = cross_val_score(lasso, x, y, scoring='r2',
                          cv=cv, n_jobs=-1)
  lasso_mse.append(np.mean(scores))
plt.plot(list(np.arange(0,0.2,0.0005)), lasso_mse, color='b', linestyle='dashed', marker='o',markerfacecolor='blue', markersize=6)
plt.xlabel('lambda')
plt.ylabel('score')
     Text(0, 0.5, 'score')
         le-5+6.657e-1
      5 e
       3 -
       2 -
         0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
max(lasso_mse)
     0.6657875098838415
```

regression tree

tree cv results

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_max_depth	params	split0_test_score	split1_test_sc
0	0.010374	0.001224	0.002490	0.000128	1	{'max_depth': 1}	-352204.422819	-343757.44
1	0.014235	0.002029	0.002698	0.000103	2	{'max_depth': 2}	-300984.413112	-310015.12
2	0.017231	0.001112	0.003072	0.000870	3	{'max_depth': 3}	-267719.559974	-294516.73§
3	0.019841	0.000818	0.002813	0.000349	4	{'max_depth': 4}	-228854.160668	-246528.08
4	0.023203	0.001187	0.002812	0.000265	5	{'max_depth': 5}	-176729.348148	-204569.97
5	0.026405	0.001230	0.002898	0.000376	6	{'max_depth': 6}	-156159.908426	-175102.056
6	0.029575	0.000858	0.002881	0.000161	7	{'max_depth': 7}	-143027.331511	-161269.64 [§]
7	0.031988	0.000320	0.002797	0.000098	8	{'max_depth': 8}	-129472.682360	-143001.78
8	0.035998	0.001628	0.002934	0.000384	9	{'max_depth': 9}	-123507.812133	-128775.60
9	0.038365	0.001458	0.002850	0.000173	10	{'max_depth': 10}	-115345.930774	-120793.07
10	0.041356	0.001249	0.002889	0.000094	11	{'max_depth': 11}	-97680.916792	-103960.96
11	0.043690	0.000634	0.002797	0.000028	12	{'max_depth': 12}	-89630.907228	-99339.202
12	0.046876	0.001271	0.002836	0.000076	13	{'max_depth': 13}	-90304.979433	-102873.676
13	0.049285	0.000475	0.002810	0.000032	14	{'max_depth': 14}	-88866.246209	-98348.09(
14	0.051950	0.000499	0.002980	0.000373	15	{'max_depth': 15}	-89683.779964	-94431.642
15	0.055348	0.001839	0.002868	0.000022	16	{'max_depth': 16}	-83450.525284	-96781.388

print(tree_cv.best_params_, tree_cv.best_score_)

{'max_depth': 17} -93253.09044873233

max_depth: 17 ;mse: 93253.090449

random forest

```
max_depth_values = range(24,40)
n_estimators_values = range(50,51)
rf = RandomForestRegressor(max_features='sqrt', random_state=0)
rf_params = {'n_estimators': n_estimators_values, 'max_depth': max_depth_values}
```

```
rf cv = GridSearch(rf, rf params)
rf cv.fit(x, y)
rf_cv_results = pd.DataFrame(rf_cv.cv_results_)
for depth in max_depth_values:
    results = rf cv results[rf cv results['param max depth'] == depth]
    plt.plot(results['param_n_estimators'], -results['mean_test_score'],
            label='max depth=%s' % depth)
plt.legend()
plt.show()
     '\nrf_cv_results = pd.DataFrame(rf_cv.cv_results_)\n\nfor depth in max_depth_values:\n results = rf_cv_results[rf_cv_results]
     s['param max depth'] == depth]\n
                                       plt.plot(results['param_n_estimators'], -results['mean_test_score'],\n
    av denth=%c' % denth\\nnlt legend(\\nnlt chow(\\n'
print(rf_cv.best_params_, rf_cv.best_score_)
     {'max_depth': 32, 'n_estimators': 50} -61751.064016737466
max_depth_values = range(32,33)
n_estimators_values = range(1,101)
rf = RandomForestRegressor(max_features='sqrt', random_state=0)
rf_params = {'n_estimators': n_estimators_values, 'max_depth': max_depth_values}
rf cv = GridSearch(rf, rf params)
rf_cv.fit(x, y)
rf cv results = pd.DataFrame(rf cv.cv results )
for depth in max_depth_values:
    results = rf_cv_results[rf_cv_results['param_max_depth'] == depth]
    plt.plot(results['param_n_estimators'], -results['mean_test_score'],
            label='max_depth=%s' % depth)
plt.legend()
plt.show()
     160000
                                         max_depth=32
     140000
     120000
     100000
      80000
      60000
                                                100
print(rf_cv.best_params_, rf_cv.best_score_)
     {'max_depth': 32, 'n_estimators': 96} -60952.22667642568
```

max_depth: 32, mse: 60952.22667642568

plt.plot(n estimators values, -results,)

```
xgbe = XGBRegressor(random state=0, verbosity = 0)
n estimators values = range(50, 51)
xqbe params = {'n estimators': n estimators values, 'max depth': range(15,30)} # dictionary of hyperparameters of the tree
xgbe cv = GridSearch(xgbe, xgbe params)
xgbe cv.fit(x, y)
    '\nxgbe cv results = pd.DataFrame(xgbe cv.cv results ) # estimation results transformed to a pd.DataFrame\nfor depth in [15,4]
           results = xqbe cv results[xqbe cv results['param max depth'] == depth]\n plt.plot(results['param n estimators'], -
    results['mean test score'],\n
                                           label='max depth=%s' % depth)\nplt.legend()\nplt.show()\n
print(xgbe cv.best params , xgbe cv.best score )
    {'max depth': 16, 'n estimators': 50} -61148.434162836
xgbe = XGBRegressor(random state=0, verbosity = 0)
n estimators values = range(50, 51)
xqbe params 1 = {'n estimators': n estimators values, 'max depth': range(1, 15)} # dictionary of hyperparameters of the tree
xgbe cv 1 = GridSearch(xgbe, xgbe params 1)
xgbe cv 1.fit(x, y)
    GridSearchCV(cv=((array([ 0, 1,
                                        2, ..., 8757, 8758, 8759]),
                      array([ 9, 15, 20, 22, 33, 38, 39, 42, 44, 48, 49,
             50, 98, 119, 121, 122, 133, 134, 140, 144, 147, 152,
            154, 156, 158, 159, 162, 167, 185, 187, 188, 196,
                                                                     221,
            229, 233, 234, 244, 247, 253, 257, 273, 274, 277, 296,
            304, 317, 318, 321, 343, 379, 380, 384, 388, 393, 394,
           396, 406, 420, 422, 451, 454, 462, 487, 495, 499, 521,
           526, 528, 532, 541, 543, 565, 574, 578, 597, 633, 6...
           8389, 8393, 8401, 8408, 8417, 8418, 8428, 8430, 8435, 8448, 8467,
           8472, 8473, 8498, 8499, 8523, 8527, 8535, 8539, 8541, 8547, 8559,
           8571, 8574, 8575, 8579, 8607, 8615, 8622, 8625, 8629, 8636, 8652,
           8674, 8683, 8684, 8691, 8707, 8735, 8748]))),
                 estimator=XGBRegressor(verbosity=0),
                param grid={'max depth': range(1, 15),
                            'n estimators': range(50, 51)},
                return train score=True, scoring='neg mean squared error')
print(xqbe cv 1.best params , xqbe cv 1.best score )
    {'max depth': 10, 'n estimators': 50} -59598.60077625162
xgbe = XGBRegressor(random state=0, verbosity = 0)
n estimators values = range(1, 101)
xgbe params = {'n estimators': n estimators values, 'max depth': [10]} # dictionary of hyperparameters of the tree
xgbe cv = GridSearch(xgbe, xgbe params)
xgbe cv.fit(x, y)
xgbe cv results = pd.DataFrame(xgbe cv.cv results ) # estimation results transformed to a pd.DataFrame
results = xgbe cv results['mean test score']
```

```
plt.show()

No handles with labels found to put in legend.
```

plt.legend()


```
print(xgbe_cv.best_params_, xgbe_cv.best_score_)
    {'max_depth': 10, 'n_estimators': 92} -57628.67093667293

from xgboost import plot_importance
    xgbe_best = XGBRegressor(random_state=0, verbosity = 0, n_estimators = 92, max_depth = 10)
    xgbe_best.fit(x,y)

ax = plot_importance(xgbe_best, height = 1)
fig = ax.figure
fig.set_size_inches(12, 10)
plt.show()
```

			Feat	ure importan	ce		
Humidity(%)							7966
Dew point temperature(°C)					574	2	
Wind speed (m/s) -				4723	-		
Visibility (10m) -				4081			
Solar Radiation (MJ/m2) -		2618					
holiday No Holiday	528						
Rainfall(mm) -	475						
season Spring	457						
functioning day Yes	340						
Tem cool -	283						
Hour_8 -	275						
season_Summer =	254						
Snowfall (cm)	237						
Hour_7	226						
Hour_18	207						
season_Winter =	203						
Tem_warm =	191						
yı Hour_5							
当 Hour_4 -							
Hour_16	142						
IIIUui_13	139						
Hour_17	130						
Hour_10	114						
Hour_3	112						
Hour_20	102						
Hour_15	101						
Hour_21 -	100 97						
Hour_2							
Hour_6	95 94						
Hour_22	86						
Hour_11							
Hour_23	84 84						
Hour_9							
Hour_12 -							
Hour_14							
Hour_1							
Hour_13							
Tem_hot -	31						

✓ 0秒 完成时间: 15:59