Expected Utility Thm. With "reasonable" preferences, \exists a bernoulli fx u s.t. $L \succeq L' \Leftrightarrow \sum p_i u_i \geq \sum p'_i u_i$. (choose lottery with higher expected utility)

 $SD - G(x) \le F(x) \forall x \text{ (1 function always "under")}$ $\int_{-\infty}^{s} G(x) dx \leq \int_{-\infty}^{s} F(x) d \text{ (2 function mostly under)}$ $\mathbf{Risk \ Aversion} \ \frac{-u''(s)}{u'(s)} \text{ARA} \ \frac{-u''(s) \cdot s}{u'(s)} \ \text{RRA}$

Bayes $p(s|z) = \frac{p(z|s)p(s)}{\sum_{t} p(z|t)p(t)}$ states(s,t) signals(z) $\frac{p(s|z)}{p(t|z)} = \frac{p(z|s)}{p(z|t)} \frac{p(s)}{p(t)}$ posterior = likelihood ratio·priors

Cookbook - 1. Draw decision tree, fill in payoffs and nature probs 2. Solve by BI, take EU at N-moves and max at decision nodes 3. Write induced utilities at each now terminal node, repeat until at start 4. write out complete contingency plan.

V(I) = informed payoff - uninformed payoff - cost of acquiring info

Game Solutions IDDS \subset SPNE \subset NE \subset CE/RE SPNE rules out NE not obtainable by BI

Generalized BI - 1. Find all NE at any irreducible terminal subgame 2. Write out reduced game with a NE payoff vector replacing subgame 3. Iterate until start, always at least one SPNE

Incomplete Info (Harsanyi) - 1. Specify types and connect with N-move, drawing relevant info sets 2. Assume common prior for N-move 3. Solve for NE(BNE) and SPNE(PBE) by normal

Given beliefs μ and strategy profile $\sigma \to 1$) is the Bayesian posterior given common prior and σ . 2) each component of σ is a BR to p. 1+2 is a BNE, PBE if hold in every subgame.

Repeated Games - For finite game, defect is NE. For infinite game, grim is a NE if $\delta > \delta_0$

Folk Thm - any payoff vector that dominates the NE is feasible as a SPNE if players are patient.

Coop Games 2+ players, transferable utility. Start with characteristic fx V (typically list of outcomes of all possible K).

Core - Coalition K blocks allocation u if $\sum_{i \in K} u_i < v(K)$ i.e. if they can do better by themselves. Core is all allocations unblocked by any K.

Shapley Value empty), unique,

	1	2	3
123	0	1	1
132	0	0	2
213	1	0	1
231	2	0	0
312	2	0	0
321	2	0	0
$\phi(v)$	7/6	1/6	4/6

 $\phi(v)$ exists(possibly pareto and optimal. Example:V(i) = 0

V(12) = 1, V(13) = 2

V(23) = 0, V(123) = 2. Then the core is half of side of simplex (100 \leq $x_1 \le 200, x_2 = 0, 0 \le x_3 \le 100$). Note that $\phi(v)$ is outside the core.

NBS - Given threat point, NBS is pareto optimal (on NE frontier) $\max g(u,v) = (u - \bar{u})(v - \bar{v}). \text{ Ex-}$ ample: Feasible utilities given by $20-u^2=v \text{ and } (\bar{u},\bar{v})=(2,2). \text{ max}$

g = (u-2)(v-2). Plug in $v \to (u-2)(18-u^2) = u^2+18u-36$. Then $\frac{dg}{du} = -3u^2+4u+18=0$. This gives u^* , plug in for v^* .

Evo Games Describes ongoing strategic interaction. 2-pop example:

U(I,r) = 2r - 1
$U(D,r) = 2 - 6r \rightarrow r = \frac{3}{8}$
w(A,s) = 2 - 10s
$w(B,s) = s - 1 \to s = \frac{1}{9}$ Then
these are the breaks in state
space (1x1 unit square).

	В	\mathbf{G}	
I	1,-8	-1,0	(s)
D	-4,2	2,1	(1-s)

Monopolistic normal problem: $\max qp(q)-c(q)$. Take derivative w.r.t q and solve. parametric example: $p = a - bq_T$

const. $cost = cq_i$ $q_{-j} = \frac{q_{T-q_j}}{J-1}$ avg. of other firms (n=J). In stack. leader gets twice as much, but total profits < Cournot. Better to be 2nd in Bertrand. $q^m \ < \ q^c \ < \ q^s \ <$ $q^b = q^{comp}$.

	monop	cournot	stack
q_1	$\frac{1}{2} \frac{a-c}{b}$	$\frac{1}{3}\frac{a-c}{b}$	$\frac{1}{2}\frac{a-c}{b}$
q_2		$\frac{1}{3} \frac{a-c}{b}$	$\frac{1}{4} \frac{a-c}{b}$
q_T	$\frac{1}{2} \frac{a-c}{b}$	$\frac{2}{3}\frac{a-c}{b}$	$\frac{3}{4} \frac{a-c}{b}$
π_1	$\frac{1}{4} \frac{(a-c)^2}{b}$	$\frac{1}{9} \frac{(a-c)^2}{b}$	$\frac{1}{8} \frac{(a-c)^2}{b}$
π_2		$\frac{1}{9} \frac{(a-c)^2}{b}$	$\frac{1}{16} \frac{(a-c)^2}{b}$
π_T	$\frac{1}{4} \frac{(a-c)^2}{b}$	$\frac{2}{9} \frac{(a-c)^2}{b}$	$\frac{3}{16} \frac{(a-c)^2}{b}$

Entry Games -

Stage 1:[in with cost K,out]. Stage 2:K is sunk, J entrants. Cournot: Stage 1:[1,0]. Stage 2:get $\pi_j^{NE} - K$ if in, 0 if out. From parametric case: $\pi_j^{NE} - K = \frac{(a-c)^2}{b(J+1)} - K$. J must be s.t. $\frac{(a-c)^2}{b(J+1)} \approx K$, then can solve for J so that if anyone else enters, it is unprofitable.

Adverse Selection - Asymmetric Info. Ex: Seller knows quality θ =value to buyer. Seller values at $r(\theta).\Theta(p) = \{\theta : r(p) \le p\}$ is the subset of sellers willing to sell at price p. Then a competitive eqm. in a market with asymmetric info is $(p^*, \Theta (p^*))$ s.t. $p^* = E(\theta | \theta \in \Theta^*)$ (i.e. expected quality among those that are selling is the price). Used car ex - $\theta = [2, 3]$. $r(\theta) = \theta - .1$. Then $p^* = \frac{2 + (p + .1)}{2}$ solving for p gives $p^* = 2.1$, and $\Theta^* = [2, 2.2]$. 80% market failure.

Signalling - N-move θ , I sends message $m(\theta)$ and U picks action a(m) after forming beliefs $\mu(\theta|m)$. PBE is $[m^*, a^*, \mu]$ s.t. 1. $m^* \in \operatorname{argmax} u_s(m, a^*; \theta) \forall \theta$ (for every possible state, send m that max u given U's BR to m). 2. $a^* \in \operatorname{argmax} \sum_{\theta} \mu \cdot u_r(a, m; \theta)$ (pick a that max EV) 3. μ is consistent with Bayes given N-move and m^*

Kinds of PBE - 1. Separating (each state θ a different m^*) 2. pooling (m^* constant) 3. partial pooling (not 1:1) 4. hybrid (mixed). For separating, a false message must be too costly if not true (i.e. sending H when state is L).

Screening - U moves first and provides "menu" of choices to induce I to reveal info

P/A Model - $max_e \ EU_P \ \text{s.t.} \ IC[e] : EU_A(e) \ge EU_A(\tilde{e}) \forall e \in$ $\{e_L, e_H\}$ and $PC : EU_A(e) \ge \bar{u}_A\}$. $u_A = v(w) - g(e)$. $u_P = v(e)$ $E(\pi|e) - E(w|e)$. Reduces to P minimize wage schedule that induces e_H :

 $L = -\int w(\pi)f(\pi|e_H)d\pi + \gamma[\int v(w(\pi))f(\pi|e_H)d\pi - \bar{u}_A] +$

 $\mu[\int v(w(\pi))(f(\pi|e_H) - f(\pi|e_L)d\pi - g(e_H) + g(e_L)]$ FOC w.r.t $w(\pi)$ gives: $\frac{1}{v'(w(\pi))} = \gamma + \mu(1 - \frac{f(\pi|e_L)}{f(\pi|e_H)})$. LHS is 1 if e is unobservable, and $\gamma = 1, \mu = 0$. If not, γ is the base pay and μ is extent of effort-based bonus.