The Oldest Unsolved Problem

PON Theory:

Do any odd perfect numbers exist?

A perfect number is when:

$$(2^{p}-1) * 2^{p-1}$$

Where (2^p-1) is a prime number.

The first 8 perfect numbers is:

# Perfect number	Formula	p
1 6	2^(1) * (2^2 - 1)	2
2 28	2^(2) * (2^3 - 1)	3
3 496	2^(4) * (2^5 - 1)	5
4 8,128	2^(6) * (2^7 - 1)	7
5 33,550,336	2^(12) * (2^13 - 1)	13
6 8,589,869,056	2^(16) * (2^17 - 1)	17
7 137,438,691,328	2^(18) * (2^19 - 1)	19
8 2,305,843,008,139,952,128	2^(30) * (2^31 - 1)	31

An odd number must be:

$$N = 2^{p-1}(2^p - 1)$$

There 2^{p-1} is a prime number.

In the PON Theory it's believed that there does not exist any odd perfect nummber.

PON stands for Perfect Odd Number.