On Making Relational Division Comprehensible

Lester I. McCann

mccann@uwp.edu

Computer Science Department
University of Wisconsin — Parkside
Kenosha, WI

Frontiers in Education November 7, 2003

Outline

- Background
- The Relational Division Operator
 - Purpose
 - Connection with Cartesian Product
 - An Example of Its Use
- Division in Relational Algebra
- Division in SQL
 - From Relational Algebra Expression
 - Using a Logical Tautology
 - Using Set Containment
 - Comparing Set Cardinalities
- Division Pitfalls
- Conclusion

Background

- Relational database management systems are based on Codd's relational data model
 - Rooted in set theory
- Codd's original data languages:
 - Relational Calculus (non–procedural)
 - Based on First-Order Predicate Calculus
 - Relational Algebra (procedural)
 - Five fundamental operators: $\sigma, \pi, \times, -, \cup$
 - Three additional operators: \cap , \bowtie , \div

Division

- Division is considered the most challenging of the eight operators
 - Defined using three operators $(\pi, -, \text{ and } \times)$ and six operations
 - Based on finding values that are not answers
 - Not easily expressed in SQL
 - A challenge to explain to students
- Often an afterthought in database texts
- But necessary to answer a specific type of query!

What Division Does

- Division identifies the attribute values from a relation that are found to be paired with all of the values from another relation.
- Viewed another way:
 - As multiplication is to division in arithmetic, Cartesian Product (×) is to Division in relational algebra.

Cartesian Product and Division

Consider the unary relations m and n, and their Cartesian Product o:

Cartesian Product and Division

Division is the opposite of Cartesian Product:

Cartesian Product and Division

Division is the opposite of Cartesian Product:

That's easy! Who needs a formal definition? :-)

A More Practical Example

Consider this subset of Date's famous Suppliers—Parts—Projects schema:

p	<u>pno</u>	pname	color	weight	city
	P1	Nut	Red	12.0	London
	• • •	•••	•••	•••	
	P6	Cog	Red	19.0	London

spj	<u>sno</u>	<u>pno</u>	<u>jno</u>	qty
	S1	P1	J1	200
			• • •	
	S5	P6	J4	500

A More Practical Example (cont.)

Query: Find the sno values of the suppliers that supply all parts of weight equal to 17.

pno pname color weight city

spj sno pno jno qty

A More Practical Example (cont.)

Query: Find the sno values of the suppliers that supply all parts of weight equal to 17.

```
p pno pname color weight city
```

```
spj sno pno jno qty
```

Students can tell us that we need to create this schema:

 $\boxed{\alpha}$ sno pno $\boxed{\beta}$ pno

A More Practical Example (cont.)

Constructing α and β is straight–forward:

 $\alpha \leftarrow \pi_{sno,pno}(SPJ) \text{ and } \beta \leftarrow \pi_{pno}(\sigma_{weight=17}(P))$

α	sno	pno
	S1	P1
	S2	Р3
	S2	P5
	S 3	Р3
	S 3	P4
	S4	P6
	S5	P1
	S5	P2
	S5	Р3
	S5	P4
	S5	P5
	S5	P6

 β pno P2 P3

Division in Relational Algebra

Idea: Find the values that *do not* belong in the answer, and remove them from the list of possible answers.

In our P–SPJ example, the list of possible answers is just the available *sno* values in α :

$\pi_{sno}(\alpha)$	sno
	S1
	S2
	S 3
	S4
	S5

All possible *sno-pno* pairings can be generated easily:

- If we remove from γ all of the pairings also found in α , the result will the values of *sno* that we **do not** want.
- See next slide!

Note that S5 is not represented in δ .

All that remains is to remove the 'non—answer' *sno* values from the set of possible answers:

Relational Algebra Summary

The complete division expression:

$$\alpha \div \beta = \pi_{A-B}(\alpha) - \pi_{A-B}((\pi_{A-B}(\alpha) \times \beta) - \alpha)$$
 3 1 2

- Ignoring the projections, there are just three steps:
 - 1. Compute all possible attribute pairings
 - 2. Remove the existing pairings
 - 3. Remove the non–answers from the possible answers
- This is well within the grasp of DB students!

Moving On to SQL

- Most DB texts cover division when they cover Relational Algebra
 - But they often ignore/hide it in their SQL coverage!
 - Leaves students believing division isn't important not good!
- Why do they overlook division in SQL?
 - No built—in division operator
 - Standard SQL expressions of division are complex
- Division in SQL need not be confusing

Expressing Division in SQL

- I know of four ways to do division in SQL...
 - 1. Direct conversion of the Relational Algebra expression
 - 2. By applying a quantification tautology
 - 3. By using set containment
 - 4. By comparing set cardinalities
- but books frequently choose to use 2 the hard one!

#1: From Relational Algebra

Recall the Relational Algebra formulation:

$$\alpha \div \beta = \pi_{A-B}(\alpha) - \pi_{A-B}((\pi_{A-B}(\alpha) \times \beta) - \alpha)$$

- We need to know that in SQL ...
 - ... EXCEPT means difference (–)
 - ... a join without the WHERE clause produces a Cartesian Product
 - ... nested SELECTs sometimes need an alias ... (SELECT ...) as alias...

#1: From Relational Algebra (cont.)

The direct translation from Relational Algebra:

where α would be select sno, pno from spj and β is select pno from p where weight=17^{FIE 2003 - p.20/3}

#2: By Logical Tautology

- Consider our original English P–SPJ query:
 Find the sno values of the suppliers that supply all parts of weight equal to 17.
- Now consider this rewording that makes the quantifications more explicit:
 - Find the sno values such that for <u>all</u> parts of weight <u>17 there</u> <u>exist</u> suppliers that supply them all
- Problem: For this we need $\forall a(\exists b \ f(a,b))$, but SQL does not support universal quantification.

#2: By Logical Tautology (cont.)

Solution: We can apply this tautology:

$$\forall a(\exists b \, f(a,b)) \leftrightarrow \overline{\exists} a(\overline{\exists} b \, f(a,b))$$

Wording before conversion:

Find the sno values such that for <u>all</u> parts of weight 17 <u>there</u> <u>exist</u> suppliers that supply them all

Wording after conversion:

Find sno values such that there do not exist any parts of weight 17 for which there do not exist any suppliers that supply them all

#2: By Logical Tautology (cont.)

The resulting SQL version (with intentional misspellings of 'local' and 'global'):

- Imagine presenting this to undergrads who have just a lecture or two of SQL under their belts.
- You **do** get the chance to talk about scoping of aliases...

#3: Set Containment

- Consider this: If a supplier supplies a superset of the parts of weight 17, the supplier supplies them all.
 - If only SQL had a superset (containment) operator...

#3: Set Containment

- Consider this: If a supplier supplies a superset of the parts of weight 17, the supplier supplies them all.
 - If only SQL had a superset (containment) operator...
- Logic to the rescue!

If
$$A \supseteq B$$
, $B - A$ will be empty (or, $\overline{\exists}(B - A)$)

where

- A contains the parts of weight 17 that a supplier supplies
- \blacksquare B contains all available parts of weight 17.

#3: Set Containment (cont.)

The resulting SQL query scans through the sno values, computes A based on the current sno, and includes it in the quotient if the difference is empty:

The lack of a double negation makes this approach easier to understand.

#4: A Counting We Will Go

- The effect of the set containment approach is to indirectly count the members of each of the two sets, in hopes that the sums are equal.
- Thanks to SQL's count (), we can do the counting directly.
- The plan:
 - We find the suppliers that supply parts of weight 17 and how many of those parts each supplies.
 - A having clause compares each count to the total number of parts of weight 17.

#4: A Counting We Will Go (cont.)

The resulting SQL query:

- No negations at all!
- Not surprisingly, students like it quite well.

Two Division Pitfalls

- 1. As "All" / "For All" queries need division, does that mean division $\equiv \forall$? No!
 - Consider this query:

What are the names of the students taking all of the Computer Science seminar classes?

We need operand relations like these:

enroll name class semin

|seminar| class

But ... what if *seminar* is empty?

Two Division Pitfalls (cont.)

1. (cont.)

- One can say that, if no seminar classes are offered, then all students are taking all seminars!
- Of course, the real meaning of the query was: What are the names of the students taking all of the Computer Science seminar classes, assuming that at least one is being offered?
- Students need to realize that the divisor . . .
 - is usually the result of a subquery, and
 - ... may well contain no tuples

Two Division Pitfalls (cont.)

- 2. Queries that give the same result as division are not replacements for division
 - Consider this variation of our 'all parts of weight 17' query:
 - Find the sno values of the suppliers that supply all parts of weight equal to <u>19</u>.
 - If students inspect Date's sample data, they learn the answer is suppliers S4 and S5 ...
 - ... which also is the result of this query:
 - Find the sno values of the suppliers that supply parts of weight equal to 19.

Two Division Pitfalls (cont.)

2. (cont.)

That query can be answered with a simple join of the division operands:

- To help students avoid temptation, select a divisor relation that contains more than one tuple.
 - Only one part has weight 19, but two parts have weight 17.
 - Attempting the join on the 'weight 17' query would produce S2, S3, and S5 all three supply at least one of the parts of weight 17.

Conclusion

- Division is as important in SQL as it is in Relational Algebra
- Students can understand division in both languages if we give them a chance
- A variety of possible implementations of division are possible in SQL
- Looking for shortcuts to division doesn't work

Any Questions?

This full—screen PDF presentation was created in LATEX using the prosper presentation class.