

ESG - Calibrage

o5th April of 2017

- 1. Contexte des ESG Rappels ESG implementation
- 2. Choix du modèle dans le context du Calibrage Calibration
- 3. Choix des données et Incertitudes Environnement Risque-Neutre
- 4. Calibrage Optimisation
- 5. Validation du calibrage

1. Contexte des ESG - Rappels

1.1. Définition d'un ESG

- ESG: Projections simultanées de plusieurs quantités économiques et financières
 - Taux d'intérêts
 - Rendements Actions
 - Inflation
 - Rendement Propriétés (Loyer, Capital)
- Equity returns Scenarios

- Ces quantités économiques sont modélisées à partir de modèles mathématiques
 - Paramètres du modèle -> Calibrage
 - Aléa et Diffusion ->
 Simulations utilisant des mouvements browniens

1.2. But d'un ESG

- Raisons de son utilisation :
 - Calculs du Best Estimate
 - Valorisation des actifs
 - Distribution des bénéfices (« Profit sharing ») : Implique la projection de produits financiers
- Pourquoi plusieurs scénarios?
 - Scénarios adverses: Très utile pour certains contrats d'assurance Vie avec
 TMG afin de déclencher certaines garanties
 - Calcul des FOGs (Coûts des options et garanties financières) :
 - $FOGs = BE_{Stochastique} BE_{Th\'eorique}$

Figure 1: ESG Process

- 2 composantes principales:
 - Calibrage
 - Simulation

2. Choix du modèle dans le context du Calibrage

2.1. Contexte et choix du modèle

- Risque-Neutre : Les scénarios doivent répliquer les prix du marché à une date donnée ("Market consistent")
 - Les instruments financiers utilisés pour calibrer le modèle sont extraits à la date du calibrage (à *t* donné).
 - Instruments financiers choisis dépendent de l'indice à simuler
 - Prix, Volatilité du marché extraits de Bloomberg
- Monde réel : Le but est d'ajuster les quantités économiques par rapport à un historique donné.
 - Utilisation d'un historique de données
 - Choix de l'intervalle de temps à prendre en compte

2.1. Contexte et choix du modèle

- Pour chaque indice simulé, il est nécessaire de choisir un modèle mathématique adéquat.
- Processus de calibrage est à effectuer pour chaque modèle afin de déterminer les paramètres du modèle
- Ne pas oublier le calibrage des corrélations inter-indices
- Le choix du modèle est guide par plusieurs questions:
 - Quel indice à modéliser?
 - Contexte de projection (RN vs MR)
 - Complexité du modèle

2.2. Liste des modèles classiques

Indices	Modèles	Volatilité stochastique ?	Sauts?	Risque- Neutre?	Monde réel?	Complexité (Echelle de 1 à 3)
Modèles de taux	HW1F			x	х	1
	HW2F			х	х	2
	Vasicek				x	1
Rendemen ts Actions et Propriétés	Black- Scholes			x	x	1
	Heston	x		x	x	2
	Merton		x	х	х	2
	SVJD	x	x	x	х	3
Inflation	Gadmer				х	1
	Kruse- Heston	x		x		2

2.2. Complexité du modèle

- La complexité du modèle est un facteur important
- BS vs SVJD:
 - BS

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

SVJD

$$\begin{cases} dS_t = S_t \left(\mu_0 + r + \frac{1}{2} V_t - \lambda \mu \right) dt + S_t \sqrt{V_t} dW_t^S \\ + S_t (J_t - 1) dq_t(\lambda) dt \\ dV_t = \kappa (\gamma - V_t) dt + \sigma_V \sqrt{V_t} dW_t^V \\ dW_t^S dW_t^V = \rho dt \end{cases}$$

- 6 paramètres de plus à calibrer au sein du modèle SVJD par rapport au modèle BS
- Difficultés d'interprétation des paramètres
- Difficultés du calibrage. Fixer certains paramètres à priori?

3. Choix des données et Incertitudes – Environnement Risque-Neutre

3.1. Choix des données et Incertitudes

- Pour chaque indice simulé, il est nécessaire de choisir un modèle mathématique adéquat.
- Les instruments financiers utilisés dépendent de l'indice simulé. Il est possible de calibrer à partir
 - Des volatilités implicites
 - Directement à partir des prix des instruments
- Indice Action : Calls
 - Volatilité implicites des calls sont cotées sur le marché.
 - Volatilités implicites ne sont pas liquides pour les maturités de call élevées (>2 ans)
 - Conséquence: Adapter l'extraction des données pour avoir des produits liquides

- Les Caps/Caplets ou Swaptions sont utilisés pour calibrer les modèles de Taux.
 - Problème : Taux négatifs
- Calibrage à partir des volatilités implicites devient impossible avec la méthode usuelle (Loi log-normale) car volatilité infini dans ce contexte.
 - Changement de loi nécessaire -> Loi normale
 - Calibrer à partir des prix des Caps ou Swaptions
 - Avantages:
 - Directement coté sur le marché
 - Prix accessible par formule fermée
 - Inconvénients :
 - Spécifications techniques de l'EIOPA: « The asset model should be calibrated to a properly calibrated volatility measure » (« Technical Specification on the Long Term guarantee Assessment »)
 - Volatilité est un bon indicateur du risque observé sur le marché

4. Calibrage - Optimisation

4.1. Calibrage Risque-Neutre

_	D+	Dánl	: ~		dannáaa	مام	100 0 40 h ó
	BUT:	Kepi	iquer	ies	données	ae	marche

Etape 1 : Préparation des données

- 1) Sélection de l'indice et du modèle associé à calibrer?
- 2) Contexte de projection?
- 3) Choix des données?

Exemple:

- 1) Modèle de taux HW1F
- **2) RN**
- 3) Caplets et calcul du prix à partir de la volatilité implicite

Maturity	Annual_Interest_Rate
1	0,162%
2	0,175%
3	0,220%
4	0,284%
5	0,360%
6	0,442%
7	0,528%
8	0,624%
9	0,721%
10	0,812%
11	0,903%
12	0,977%
13	1,043%
14	1,092%
15	1,148%
16	1,187%
17	1,225%
18	1,261%
19	1,289%
20	1,321%
21	1,338%
22	1,360%

Financial_Instrument	Maturity	Strike	Market_Volatility
Caplet	1	1,00%	122,21%
Caplet	2	1,00%	111,51%
Caplet	3	1,00%	83,13%
Caplet	4	1,00%	87,33%
Caplet	5	1,00%	74,45%
Caplet	6	1,00%	74,24%
Caplet	7	1,00%	73,04%
Caplet	8	1,00%	65,28%
Caplet	9	1,00%	61,30%
Caplet	10	1,00%	60,55%
Caplet	12	1,00%	54,20%
Caplet	15	1,00%	60,86%
Caplet	1	2,00%	95,80%
Caplet	2	2,00%	95,80%
Caplet	3	2,00%	95,80%
Caplet	4	2,00%	76,44%
Caplet	5	2,00%	43,63%
Caplet	6	2,00%	85,09%
Caplet	7	2,00%	50,07%
Caplet	8	2,00%	52,30%
Caplet	9	2,00%	46,33%
Caplet	10	2,00%	46,03%
Caplet	12	2,00%	41,22%
Caplet	15	2,00%	43,70%

4.1. Calibrage Risque-Neutre

- Etape 2 : Optimisation de la fonction objective
 - Minimiser la somme des écarts entre les prix de marché et les prix calculés par le modèle

$$\Theta^* = \underset{Params}{\operatorname{Argmin}} \sum_{i=1}^{N} (m_i(Prix Marché(i) - Prix Modèle(i))^2)$$

- Ecart absolu : $m_i = 1$
 - Plus d'importance pour les instruments dérivés de prix élevés

- Ecart absolu : $m_i = \frac{1}{Prix Marché(i)}$
 - Même importance

- Ecart pondéré : $m_i \neq \forall i$
 - Permet de privilégier certains instruments

- Optimisation d'une fonction objective non linéaire
 - Possibilité d'avoir des contraintes non linéaires sur les variables
 - Exemple : Modèle d'Heston
 - Conséquence : Optimisation d'une fonction complexe
- 2 classes d'algorithmes
 - Analytique : Aucune connaissance du gradient à priori
 - Méthode de Quasi-Newton : « LBFGS »
 - Programmation séquentielle quadratique (« SQP »)
 - Gestion de la contrainte : Lagrangien augmenté modifié
 - Heuristique :
 - Algorithme génétique
 - Algorithmes de type « Restarted » (Package R « Rsolnp »; https://cran.r-project.org/web/packages/Rsolnp/Rsolnp.pdf)

4.2. Optimisation – Algorithme génétique

- **But** : Optimiser les paramètres du modèles afin de répliquer un historique de données.
- Etape 1 : Sélection des données
 - Intervalles de temps du calibrage :
 - Date initiale
 - Pas de temps
 - **...**
- Etape 2 : Techniques du calibrage :
 - Méthodes statistiques sur l'historique (Implique Optimisation)
 - Méthode des moments (« Moments matching »)
 - Maximum de vraisemblance (« Maximum likelihood »)
 - ACP

5. Validation du calibrage

- Risque-Neutre :
 - Réplication du marché : « Market consistency »

- Martingalité
 - Ces deux notions peuvent être contradictoires
- Monde Réel :
 - Respect des propriétés statistiques (Moments de la distribution, a, alyse des dépendances,...)

www.addactis.com

ADDACTIS Worldwide 13/15 boulevard de la Madeleine 75001 PARIS France

> Tel.: +33 (0)4 81 92 13 00 Fax.: +33 (0)4 81 92 13 01

SAS au capital de 100 000 Euros - RCS: PARIS 529 256 695 - TVA intracommunautaire: FR 86529256695

Reception +33 (0)4 81 92 13 00

Worldwide actuarial software. European expertise. Local solutions.