

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Anti-E1 levels in NON-responders to IFN treatment

Series 1

weeks after start of treatment

Fig. 5

Anti-E1 levels in RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 6

Anti-E1 levels in patients with COMPLETE response to IFN

S/N
SERIES 2

months after start of treatment

Fig. 7

Anti-E1 levels in INCOMPLETE responders to IFN treatment

SERIES 2

months after start of treatment

Fig. 8

Anti-E2 levels in NON-RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 9

Anti-E2 levels in RESPONDERS to IFN treatment

SERIES 1

Fig.10

Anti-E2 levels in INCOMPLETE responders to IFN treatment

SERIES 2

months after start of treatment

Fig. 11

Anti-E2 levels in COMPLETE responders to IFN treatment

SERIES 2

F: finish of treatment
months after start of treatment

Fig. 12

Human anti-E1 reactivity competed with peptides

Fig.13

Competition of reactivity of anti-E1 Mabs with peptides

Fig.14

Anti-E1 (epitope 1) levels in NON-RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 15

Anti-E1 (epitope 1) levels in RESPONDERS to IFN treatment

SERIES 1

Fig. 16
Anti-E1 (epitope 1) levels in RESPONDERS to IFN treatment

Anti-E1 (epitope 2) levels in NON-RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig.17

Anti-E1 (epitope 2) levels in RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 18

Competition of reactivity of anti-E2 Mabs with peptides

Fig.19

Human anti-E2 reactivity competed with peptides

Fig. 20

Fig. 21A

5' GGCATGCAAGCTTAATTAATT3' (SEQ ID NO 1)

3'ACGTCCGTACGTTCGAATTAATTAATCGA5' (SEQ ID NO 94)

5'CCGGGGAGGCCTGCACGTGATCGAGGGCAGACACCACCAACCACATCACTAATAGT
TAATTAACTGCA 3' (SEQ ID NO 2)

3'CCTCCGGACGTGCACTAGCTCCCGTCTGTGGTAGTGGTGGTAGTGATTATCAATTAATTG
5' (SEQ ID NO 95)

SEQ ID NO 3 (HCC19A)

ATGCCCGGTTGCTCTTCCTATCTTCCCTTTGGCTTACTGTCTGTCTGACCAATTCCA
GCTTCCGCTTATGAGGTGGCAACGTGTCCGGATGTACCATGTCACGAACGACTGCT
CCAACCTCAAGCATTGTATGAGGCAGCGGACATGATCATGCACACCCCCGGGTGCGT
GCCCTGCGTTGGGAGAACAACTCTCCCGCTGCTGGTAGCGCTCACCCCCACGGCTC
GCAGCTAGGAACGCCAGCGTCCCACCACGACAATACGACGCCACGTCGATTTGCTCG
TTGGGGCGGCTGCTCTGTTCCGCTATGTACGTGGGGATCTCTGCGGATCTGCTTC
CTCGTCTCCAGCTGTTACCATCTCGCTGCCGGCATGAGACGGTGCAGGACTGCA
ATTGCTCAATCTATCCCGGCCACATAACAGGTACCGTATGGCTTGGGATATGATGAT
GAACTGGTCGCCCTACAACGCCCTGGTGGTATCGCAGCTGCTCCGATCCCACAAGCT
GTCGTGGACATGGTGGGGGGCCATTGGGAGTCCCTGGCGGGCTGCCCTACTATT
CCATGGTGGGAACTGGGCTAAGGTTTGATTGTGATGCTACTCTTGCTCTAATAG

SEQ ID NO 5 (HCC110A)

ATGTTGGGTAAGGTATCGATACCCCTACATGCGGCTTGGCCACCTCGTGGGTACA
TTCCGCTCGTGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACATGCAACAGGGAAATTGCCCGTTGCTCTTCTCT
ATCTTCTCTTGGCTTGCTGTCTGACCGTTCCAGCTCCGCTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCAACTCAAGCATTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGGTGCGTGCCTGCGTTGGGAGAAC
AACTCTTCCCGCTGCTGGTAGCGCTACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCAACGACAATACGACGCCACGTCGATTTGCTGCTTGGGGCGGCTGCTTCTG

Fig. 21B

TTCCGCTATGTACGTGGGGACCTCTCGGAATCTGTCTCCTCGTCTCCCAGCTGTTCA
CCATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCG
CCACATAACGGGTACCGTATGGCTTGGGATATGATGATGAACCTGGTCGCCTACAACG
GCCCTGGTGGTATCGCAGCTGCTCGGATCCCACAAGCTGTCGGACATGGTGGCGG
GGGCCATTGGGAGTCTGGCGGGCTCGCCTACTATTCCATGGTGGGAACTGGC
TAAGGTTTGATTGTGATGCTACTCTTGCTCCCTAATAG

SEQ ID NO 7 (HCCI11A)

ATGTTGGGTAAGTCATCGATACCCCTACGTGCGGCTTCGCCACCTCATGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGTGCCTGCCAGAGCCCTGGCGCATGGCGTCCG
GGTTCTGGAAGACGGCTGAACTATGCAACAGGGATTTCGCTGGTTGCTCTTCTCTA
TCTTCCTCTGGCTTACTGTCTGTCTGACCATTCCAGCTTCCGCTTATGAGGTGCGC
AACGTGTCGGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTATG
AGGCAGCGGACATGATCATGCAACACCCCCGGGTGCGTGCCTGCGTTGGGAGAAC
ACTCTTCCGCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCGT
CCCCACTACGACAATACGACGCCACGTCGATTTCGCTGGGGCGGCTGCTTCTGTT
CCGCTATGTACGTGGGGATCTCTGCGGATCTGTCTCCTCGTCTCCAGCTGTTACC
ATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGCC
ACATAACAGGTACCGTATGGCTTGGGATATGATGATGAACCTGGTAATAG

SEQ ID NO 9 (HCCI12A)

ATGCCCGGTTGCTCTTCTCTATCTTCTCTGGCCCTGCTGTCTGTCTGACCATAACCA
GCTTCCGCTTATGAAGTGCACCGTGTCCGGGGTGTACCATGTCACGAACGACTGCT
CCAACCTCAAGCATACTGTATGAGGCAGCGGACATGATCATGCAACACCCCCGGGTGCGT
GCCCTGCGTTGGGAGGGCAACTCCTCCCGTTGCTGGGTGGCGCTCACTCCACGCTC
GCGGCCAGGAACGCCAGCGTCCCAACACGACAATACGACGCCACGTCGATTGCTC
GTTGGGGCTGCTGCTTCTGTTCCGCTATGTACGTGGGGATCTCTGCGGATCTGTTT
CCTTGTTCCAGCTGTTCACCTCTCACCTCGCCGGCATCAAACAGTACAGGACTGCA
ACTGCTCAATCTATCCCGCCATGTATCAGGTACCCGATGGCTTGGGATATGATGAT
GAACTGGTCCTAATAG

SEQ ID NO 11 (HCCI13A)

ATGTCGGTTGCTCTTCTCTATCTTCTCTGGCCCTGCTGTCTGTCTGACCATAACCA
GCTTCCGCTTATGAAGTGCACCGTGTCCGGGGTGTACCATGTCACGAACGACTGCT
CCAACCTCAAGCATACTGTATGAGGCAGCGGACATGATCATGCAACACCCCCGGGTGCGT

Fig. 21C

GCCCTGGTTCGGGAGGGCAACTCTCCGTTGCTGGGTGGCGCTCACTCCCACGCTC
GCGGCCAGGAACGCCAGCGTCCCCACAACGACAATACGACGCCACGTCGATTTGCTC
GTTGGGGCTGCTGCTTCTGTTCCGCTATGTACGTGGGGATCTCTGCGGATCTGTTT
CCTTGTTCCCAGCTGTTACCTTCTCACCTCGCCGGCATCAAACAGTACAGGACTGCA
ACTGCTCAATCTATCCCGGCCATGTATCAGGTACCCGATGGCTGGATATGATGAT
GAACTGGTAATAG

SEQ ID NO 13 (HCCI17A)

ATGCTGGTAAGGCCATCGATAACCTTACGTGCGGTTGCCGACCTCGTGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAAGACGGCGTGAACATGCAACAGGAATTGCTGGTTGCTCTTCTCTA
TCTTCCTCTGGCTTACTGTCTGTCTAACCAATTCCAGCTTCCGCTTACGAGGTGCGC
AACGTTGCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTATG
AGGCAGCGGACATGATCATGCACACCCCCGGGTGGTGGCTGCCCTGCGTTGGGAGAAC
ACTCTTCCCGCTGCTGGTAGCGCTCACCCCCACGCTCGCGCTAGGAACGCCAGCAT
CCCCACTACAACAATACGACGCCACGTCGATTGCTCGTTGGGC3GCTGCTTCTGTT
CCGCTATGTACGTGGGGATCTCTGGGATCTGTCTTCTCGTCTCCAGCTGTTCAACC
ATCTCGCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGCC
ACATAACGGGTACCGTATGGCTGGATATGATGATGAACTGGTACTAATAG

SEQ ID NO 15 (HCPr51)

ATGCCCGGTTGCTCTTCTCTATCTT

SEQ ID NO 16 (HCPr52)

ATGTTGGTAAGGTATCGATAACCT

SEQ ID NO 17 (HCPr53)

CTATTAGGACCAGTTATCATCATCATATCCCA

SEQ ID NO 18 (HCPr54)

CTATTACCACTGTTATCATCATATCCCA

SEQ ID NO 19 (HCPr107)

ATACGACGCCACGTCGATTCCAGCTGTTACCCATC

Fig. 21D

SEQ ID NO 20 (HCP108)

GATGGTAAACAGCTGGGAATCGACGTGGCGTCGTAT

SEQ ID NO 21 (HCC137)

ATGTTGGTAAGGTATCGATAACCTTACATGCCGCTTCGCCGACCTCGTGGGTACA
TTCCGCTCGTGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACTATGCAACAGGGATTGCCCGTTGCTCTTCTCT
ATCTTCCCTCTGGCTTTGCTGTCTGTGACCGTTCCAGCTTCCGTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCCTCGGGAGAAC
AACTCTCCGCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGGCCACATAACGGGT
CACCGTATGGCTGGGATATGATGATGAACGGTGCCTACAAACGGCCCTGGTGGTAT
CGCAGCTGCTCGGATCCACAAAGCTGTCGTGGACATGGTGGCGGGGCCATTGGGG
AGTCCTGGCGGGTCTGCCTACTATTCCATGGTGGGAACGGCTAAGGTTTGATTG
TGATGCTACTCTTGCTCCCTAATAG

SEQ ID NO 23 (HCC138)

ATGTTGGTAAGGTATCGATAACCTTACATGCCGCTTCGCCGACCTCGTGGGTACA
TTCCGCTCGTGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACTATGCAACAGGGATTGCCCGTTGCTCTTCTCT
ATCTTCCCTCTGGCTTTGCTGTCTGTGACCGTTCCAGCTTCCGTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCCTCGGGAGAAC
AACTCTCCGCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGGCCACATAACGGGT
CACCGTATGGCTGGGATATGATGATGAACGGTAA
TAG

SEQ ID NO 25 (HCC139)

ATGTTGGTAAGGTATCGATAACCTTACATGCCGCTTCGCCGACCTCGTGGGTACA
TTCCGCTCGTGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACTATGCAACAGGGATTGCCCGTTGCTCTTCTCT

Fig. 21E

ATCTTCCTCTGGCTTGCTGTCTGACCGTTCCAGCTTCCGCTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTACGAACGACTGCTCCAACCTAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGGTGCGTGCCTCGCGTCCGGAGAAC
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATAACGACGCCACGTCGATTCCCAGCTGTTACCATCTGCCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCCACATAACGGGT
CACCGTATGGCTGGGATATGATGATGAACGGTGCCTACAACGGCCCTGGTGGTAT
CGCAGCTGCTCGGATCCTCTAATAG

SEQ ID NO 27 (HCCI40)

ATGTTGGTAAGGTATCGATACCCCTACATGCGGCTTCGCCGACCTCGTGGGTACA
TTCCGCTCGTGGGCCCTAGGGGGCGTGCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGACGGCGTGAACATGCAACAGGGAAATTGCCCCGGTTGCTCTTCT
ATCTTCCTCTGGCTTGCTGTCTGACCGTTCCAGCTTCCGCTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTACGAACGACTGCTCCAACCTAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGGTGCGTGCCTCGCGTCCGGAGAAC
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATAACGACGCCACGTCGATTCCCAGCTGTTACCATCTGCCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCCACATAACGGGT
CACCGTATGGCTGGGATATGATGATGAACGGTGCCTACAACGGCCCTGGTGGTAT
CGCAGCTGCTCGGATCGTATCGAGGGCAGACACCACCACTCACTAATAG

SEQ ID NO 29 (HCCI62)

ATGGGTAAGGTATCGATACCCCTACGTGCGGATTGCCGATCTCATGGGTACATCC
CGCTCGTCGGCGCTCCCGTAGGAGGGCGTCGAAGAGGCCCTGGCGATGGCGTGGGGC
CCTTGAAGACGGGATAAAATTGCAACAGGGAAATTGCCCCGGTTGCTCTTCTATTT
TCCTTCTCGCTCTGTTCTCTGCTTAATTCCAGCAGCTAGTCTAGACTGGCGGAAT
ACGTCTGGCCTCTATGTCCTTACCAACGACTGTTCCAATAGCAGTATTGTGTACGAGGC
CGATGACGTTATTCTGCACACACCCGGCTGCATACCTTGTGTCAGGACGGCAATACA
TCCACGTGCTGGACCCAGTGACACACCTACAGTGGCAGTCAAGTACGTGGAGCAACCA
CCGCTTCGATAACGAGTCATGTGGACCTATTAGTGGCGCGGCCACGATGTGCTCTGC
GCTCTACGTGGGTGACATGTGTGGGCTGCTTCTCGTGGGACAAGCCTTACGTTCA
GACCTCGTCGCCATCAAACGGTCCAGACCTGTAACTGCTCGCTGTACCCAGGCCATCT
TTCAGGACATCGAATGGCTGGGATATGATGATGAACGGTAATAG

Fig. 21F

SEQ ID NO 31 (HCC163)

ATGGGTAAGGTATCGATAACCTAACGTGGGATTGCCGATCTCATGGGTATATCC
CGCTCGTAGGGGGCCATTGGGGCGTCGCAAGGGCTCTGCACACGGTGTGAGGGT
CCTTGAGGACGGGTAAACTATGCAACAGGGAAATTACCCGGTTGCTCTTCTCTATCT
TTATTCTGCTCTCTCGTGTGACCGTCCGGCTCTGCAGTTCCCTACCGAAATG
CCTCTGGGATTATCATGTTACCAATGATTGCCAAACTCTTCCATAGTCTATGAGGCA
GATAACCTGATCCTACACGCACSTGGTTGCGTGCCTGTGTATGACAGGTAATGTGA
GTAGATGCTGGGTCAAATTACCCCTACACTGTCAGCCCCGAGCCTCGGAGCAGTCAC
GGCTCCTCTCGGAGAGCCGTTGACTACCTAGCAGGGAGGGGCTGCCCTTGCTCCCG
TTATACGTAGGAGACCGTGTGGGCCTATTCTGGTAGGCCAAATGTTCACCTATA
GGCCTGCCAGCACGCTACGGTGCAGAACTGCAACTGTTCCATTACAGTGGCCATGT
.TACCGGCCACGGATGGATATGATGATGAACGGTAATAG

SEQ ID NO 33 (HCP109)

TGGGATATGATGATGAACGGTC

SEQ ID NO 34 (HCP172)

CTATTATGGTGGTAAKGCCARCARAGAGCAGGAG

SEQ ID NC 35 (HCC122A)

TGGGATATGATGATGAACGGTCGCCTACAACGGCCCTGGTGGTATCGCAGCTGCTCC
GGATCCCACAAGCTGCGTGGACATGGTGGCGGGGCCATTGGGAGTCCTGGCGG
GCCTCGCCTACTATTCCATGGTGGGAACGGCTAAGGTTGGTTGTGATGCTACTC
TTTGCCTGGCGTGCACGGGATACCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCA
GGGGCTTGTGCTCCCTTTAGCCCCGGGCGCTCAGAAAATCCAGCTCGTAAACAC
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAACGCAACGACTCCCTCCAAAC
AGGGTTCTTGCGCACTATTCTACAAACACAAATTCAACTCGTGTGGATGCCAGAG
CGCTTGGCCAGCTGCGCTCATCGACAAGTTCGCTCAGGGTGGGTCCTCACTT
ACACTGAGCCTAACAGCTGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACC
GTGTGGTATTGTACCCCGTCTCAGGTGTGGTCCAGTGTATTGCTTACCCCCGAGCC
CTGTTGTGGTGGGACGACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGGCGAA
CGACTCGGATGTGCTGATTCTCAACAAACACGCCGCCGCCAGGGCAACTGGTTCGGC
TGTACATGGATGAATGGCACTGGTTACCAAGACGTGTGGGGCCCCCGTGCACACA
TCGGGGGGCCGGCAACAAACACCTTGACCTGCCCACTGACTGTTTGGAAAGCACCC
CGAGGCCACCTACGCCAGATGGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTT

Fig. 21G

CATTACCCATATAAGGCTCTGGCACTACCCCTGCACTGTCAACTTACCCATCTTCAGGT
TAGGATGTACGTGGGGCGTGGAGCACAGGTTGAAGCCGCATGCAATTGGACTCG
AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG
TCTACAACAGAGTGGCAGATACTGCCCTGTTCTTACACCACCCGCCATCCA
CCGGCCTGATCCACCTCCATCAGAACATCGTGGACGTGCAATACCTGTACGGTAGG
GTCGGCGGTTGTCTCCCTGTATCAAATGGGAGTATGTCCTGTTGCTCTCCTCTCCT
GGCAGACGCGCGCATCTGCGCCTGCTTATGGATGATGCTGCTGATAGCTAAGCTGAG
GCCGCCCTAGAGAACCTGGTGGCCTCAATGCGGGGGCGTGGCCGGGGCGCATGGC
ACTCTTCTTCTTGTGTTCTTCTGTGCTGCCCTGGTACATCAAGGGCAGGCTGGTCCC
TGGTGCGGCATACGCCCTCATGGCGTGTGGCCGCTGCTCCTGCTTCTGCTGGCCTTAC
CACCAACGAGCTTATGCCCTAGTAA

SEQ ID NO 37 (HCCI41)

GATCCCACAAGCTGTCGTGGACATGGTGGCGGGGCCATTGGGAGTCCTGGCGGG
CCTCGCCTACTATTCCATGGTGGGAACCTGGCTAAGGTTTGGTTGTATGCTACTCT
TTGCCGGCGTGCACGGCATAACCGCGTGTCAAGGAGGGCAGCAGCCTCCGATAACCA
GGGGCCTTGTGTCCTCTTACAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGAAACAC
CAACGGCAGTGGCACATCAACAGGACTGCCCTGAAC TGCAACGACTCCCTCCAAAC
AGGGTTCTTGGCAGTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG
CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTGCTCAGGGGTGGGCTCCACTT
ACACTGAGCCTAACAGCTGGACCAGAGGCCACTGCTGGCACTACGCCCTCGACC
GTGTGGTATTGTACCCCGGTCTCAGGTGTGGGTCCAGTGTATTGCTTACCCCGAGCC
CTGTTGGTGGGACGACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGGCGAA
CGACTCGGATGTGCTGATTCTCAACAAACACGCCCGCCGCGAGGCAACTGGTTGGC
TGTACATGGATGAATGGCACTGGGTTACCAAGACGTGTGGGGCCCCCGTGCAACAA
TCGGGGGGCCGGCAACAAACACCTTGACCTGCCCACTGACTGTTTGGGAAGCACCC
CGAGGCCACCTACGCCAGATGGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTT
CATTACCCATATAAGGCTCTGGCACTACCCCTGCACTGTCAACTTACCCATCTTCAGGT
TAGGATGTACGTGGGGCGTGGAGCACAGGTTGAAGCCGCATGCAATTGGACTCG
AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG
TCTACAACAGAGTGGCAGAGTGGCAGAGCTTAATTAAATTAG

SEQ ID NO 39 (HCCI42)

GATCCCACAAGCTGTCGTGGACATGGTGGCGGGGCCATTGGGAGTCCTGGCGGG
CCTCGCCTACTATTCCATGGTGGGAACCTGGCTAAGGTTTGGTTGTATGCTACTCT

Fig. 21H

TTGCCGGCGTCGACGGGCATACCCCGTGTCAAGGAGGGGCAGCAGCCTCCGATAACCA
GGGGCCTTGTGTCCCTCTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACAC
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAECTGCAACGACTCCCTCAAAC
AGGGTTCTTGCAGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG
CGCTTGGCCAGCTGTGCTCCATCGACAAGTTGCTCAGGGGTGGGTCCCCTCACTT
ACACTGAGCCTAACAGCTGGACCAGAGGCCACTGCTGGCACTACGCCCTCGACC
GTGTGGTATTGTACCCGCGTCTAGGTGTGGTCCAGTGTTGCTCACCCCGAGCC
CTGTTGTGGTGGGACGACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGGCGAA
CGACTCGGATGTGCTGATTCTCAACAAACACGC3GCCCGCGAGGGCAACTGGTTCGGC
TGTACATGGATGAATGGCACTGGTTCAACCAAGACGTGTGGGGCCCCCGTGCAACAA
TCGGGGGGGCCGGCAACAAACACCTTGACCTGCCACTGACTGTTTCGGAAGCACCC
CGAGGCCACCTACGCCAGATGCGGTTCTGGCCACTGCAACTTCACCATCTCAAGGT
CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGCAACTTCACCATCTCAAGGT
TAGGATGTACGTGGGGGGCGTGGAGCACAGGTTGCAAGCCGATGCAATTGGACTCG
AGGAGAGCGTTGTACTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG
TCTACAAACAGGTGATCGAGGGCAGACACCACTACCCACCATCACTAATAG

SEQ ID NO 41 (HCCI43)

ATGGTGGGAACTGGCTAAGGTTTGGTTGTGATGCTACTCTTGCCGGCGTCGACG
GGCATACCCGGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCAGGGGCTTGTGTCCT
CTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC
ATCAACACAGGACTGCCCTGAACTGCAACGACTCCCTCAAACAGGGTCTTGCCAC
TATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTCG
CTCCATCGACAAGTTGCTCAGGGGTGGGTCCCTCACTTACACTGAGCCTAACAGC
TCGGACCAGAGGCCACTGCTGGCACTACGCCCTCGACCGTGTGGTATTGTACCCG
CGTCTCAGGTGTGGTCCAGTGTTGCTCACCCGAGCCCTGTTGTGGTGGGAC
GACCGATCGGTTGGTGTCCACGTATAACTGGGGGCGAACGACTCGGATGTGCTG
ATTCTCAACAAACACGCCCGCCCGAGGCAACTGGTTCGGCTGTACATGGATGAATG
GCACTGGTTCAACCAAGACGTGTGGGGGCCCCCGTGCACACATCGGGGGGCCGGCA
ACAACACCTTGACCTGCCCACTGACTGTTTGGAAAGCACCCGAGGCCACCTACGC
CAGATGCGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTCAAGGTTAGGATGTACGTGG
CTCTGGCACTACCCCTGCACTGTCACATTCAAGGTTAGGATGTACGTGG
GGCGTGGAGCACAGGTTGCAAGCCGATGCAATTGGACTCGAGGAGAGCGTTGTGA
CTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTACAAACAGAGTGG
CAGAGCTTAATTAAATTAG

Fig. 21I

SEQ ID NO 43 (HCC144)

ATGGTGGGAACTGGCTAAGGTTTGTTGTGATGCTACTCTTGCCGGCGTCGACG
GGCATACCCGGTGTCAAGGAGGGCAGCAGCCTCCGATACCAGGGCCTGTGTCCT
CTTAGCCCCGGTGGCTCAGAAAATCCAGCTCGTAAACACCCAACGGCAGTTGGCAC
ATCAACAGGAACGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTGCCGAC
TATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTG
CTCCATCGACAAGTCGCTCAGGGTGGGTCCTCACTTACACTGAGCCTAACAGC
TCGGACAGAGGCCCTACTGCTGGCACTACCGCCTCGACCGTGTGGTATTGTACCCG
CGTCTCAGGTGTGGTCCAGTGTATTGCTCACCCCGAGCCCTGTTGTGGTGGGAC
GACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGCGAACGACTCGGATGTGCTG
ATTCTCAACAAACACGCGCCGCGCGAGGCAACTGGTCGGCTGTACATGGATGAATG
GCACTGGTTACCAAGACGTGTGGGGCCCCCGTCAACATGGGGGGCCGGCA
ACAACACCTTACCTGCCCCACTGACTGTCTCGGAAGCACCCCGAGGCCACCTACGC
CAGATGCGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTTCAATTACCCATATAGG
CTCTGGCACTACCCCTGCACTGTCAACTTACCATCTCAAGGTTAGGATGTACGTGG
GGCGTGGAGCACAGGTCGAAGCCGATGCAATTGAACTCGAGGAGAGCGTTGTGA
CTTGGAGGACAGGGATAGATCAGAGCTTAGCCGCTGCTGTCTACAACACAGGTGAT
CGAGGGCAGACACCATACCCACCATCACTAATAG

SEQ ID NO 45 (HCC164)

ATGGTGGCGGGGGCCCATTGGGAGTCCTGGCGGGCTCGCCTACTATTCCATGGTGG
GGAACCTGGCTAAGGTTTGTTGTGATGCTACTCTTGCCGGCGTCGACGGCATAAC
CCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCAGGGCCTGTGTCCTCTTAC
CCCAGGTGGCTCAGAAAATCCAGCTCGTAAACACCCAACGGCAGTTGGCACATCAAC
AGGACTGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTGCCGCACTATTCT
ACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTGCTCCAT
CGACAAGTCGCTCAGGGTGGGTCCTCACTTACACTGAGCCTAACAGCTCGGAC
CAGAGGCCCTACTGCTGGCACTACCGCCTCGACCGTGTGGTATTGTACCCCGTCTC
AGGTGTGGTCCAGTGTATTGCTCACCCCGAGCCCTGTTGTGGTGGGACGACCGA
TCGGTTGGTGTCCCCACGTATAACTGGGGGCGAACGACTCGGATGTGCTGATTCTC
AACAAACACGCGGGCGCCGAGGCAACTGGTCGGCTGTACATGGATGAATGGCACT
GGGTTACCAAGACGTGTGGGGCCCCCGTCAACATGGGGGGGGCGAACAAAC
ACCTTGACCTGCCCCACTGACTGTTCGGAAGCACCCCGAGGCCACCTACGCCAGAT
GCGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTTCAATTACCCATATAGGCTCTG
CACTACCCCTGCACTGTCAACTTACCATCTCAAGGTTAGGATGTACGTGGGGGCG

Fig. 21J

TGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCCTGTGACTTGGA
GGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTACAACAGAGTGGCAGATA
CTGCCCTGTTCTTACACCACCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCA
GAACATCGTGGACGTGCAATACTGTACGGTGTAGGGTCGGCGGTTGTCTCCCTTGTC
ATCAAATGGGAGTATGTCCTGTTGCTCTTCTCTGGCAGACGCGCGCATCTGCGC
CTGCTTATGGATGATGCTGCTGATAGCTAACGCTGAGGCCGCCTAGAGAACCTGGTG
GTCCTCAATGCGCGGCCGTGGCGGGGCGCATGGCACTCTTCTTCTTGTGTTCTT
CTGTGCTGCCTGGTACATCAAGGGCAGGCTGGTCCCTGGTGC GGCA TACGCCCTCTAT
GGCGTGTGGCCGCTGCTCTGCTTCTGCTGGCCTTACCAACCACGAGCTTATGCCTAGTAA

SEQ ID NO 47 (HCC165)

AATTGGGTAAGGTATCGATAACCTTACATGCGGTTGCCGACCTCGTGGGGTACA
TTCCGCTCGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTAACTATGCAACAGGGAAATTGCCCCGTTGCTCTTCCT
ATCTCCTCTTGCTTGTCTGTCTGACCGTCCAGCTTCCGTTATGAAGTGC
CAACGTGTCCGGATGTACCATGTACGAACGACTGCTCCAACCTCAAGCATTGTGAT
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCGTGCCTGCCTCGGGAGAAC
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATACGACGCCACGTCGATTGCTCTGGGCGGCTGCTTCTG
TTCCGCTATGTACGTGGGGACCTCTGCGGATCTGTCTCCTCGTCTCCAGCTGTTCA
CCATCTCGCCTGCCGGCATGAGACGGTGCAAGGACTGCAATTGCTCAATCTATCCCGG
CCACATAACGGGTACCGTATGGCTGGATATGATGATGAACTGGTCGCCTACAACG
GCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAAGCTGTOGTGGACATGGTGGCGG
GGGCCATTGGGAGTCCTGGCGGGCCTGCCACTATTCCATGGTGGGAACTGGC
TAAGGTTTGTTGTATGCTACTCTTGCCGGCGTCGACGGCATAACCCCGTGTCA
GAGGGCAGCAGCCTCCGATACCAAGGGGCTTGTGTCCTCTTACGCCCCGGTCCG
TCAGAAAATCCAGCTCGAAACACCAACGGCAGTTGGCACATCAACAGGACTGCC
GAAC TGCAACGACTCCCTCCAAACAGGGTTCTTGCCGACTATTCTACAAACACAAA
TTCAACTCGTCTGGATGCCAGAGCGCTTGGCAGCGTGTGCTCCATCGACAAGTC
CTCAGGGGTGGGTCCCTCACTTACACTGAGCCTAACAGCTCGGACCAAGAGGCC
CTGCTGGCACTACGCCCTCGACCGTGTGGTATTGTAACCGCGTCTCAGGTGTGG
CCAGTGTATTGCTTACCCCGAGCCCTGTTGGTGGGACGACCGATCGGTTGGT
CCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTGATTCTCAACAAACACGCC
CCGCCCGAGGCAACTGGTCGGCTGTACATGGATGAATGGCACTGGGTTACCAAGA
CGTGTGGGGGCCCCCGTCAACATCGGGGGGCCGGCAACAAACACCTTGACCTGCC

Fig. 21K

CCACTGACTGTTTCGGAAGCACCCCGAGGCCACCTACGCCAGATGCCGGTCTGGGCC
CTGGCTGACACCTAGGTGTATGGTCATTACCCATATAAGGCTCTGGCACTACCCCTGCA
CTGTCAACTCACCATCTCAAGGTTAGGAATGTACGTGGGGGGGTGGAGGCACAGGTT
CGAAGCCGATGCAATTGGACTCGAGGAGAGCGTTGTACCTGGAGGACAGGGATAG
ATCAGAGCTTAGCCCCGCTGCTGTCTACAACAGAGTGGCAGATACTGCCCTGTTCC
TTCACCACCCCTGCCGGCCCTATCCACCGGCTGATCCACCTCCATCAGAACATCGTGG
ACGTGCAATACCTGTACGGTGTAGGGTCGGCGTTGTCTCCCTGTATCAAATGGGA
GTATGTCCTGTTGCTCTTCCTTCTCCTGGCAGACGCCGCATCTGC3CCTGCTTATGGA
TGATGCTGCTGATAGCTAAGCTGAGGCCGCTTAGAGAACCTGGTGGTCCCTCAATGCG
GGCGGCCGTGGCCGGGGCGATGGCACTCTTCCCTTGTCTTCTGTGCTGCC
GGTACATCAAGGGCAGGGCTGGTCCCTGGTGGCATACGCCCTCATGGCGTGTGGCC
GCTGCTCCTGCTTCTGCTGGCCTTACCAACGAGCTTATGCCCTAGTAAGCTT

SEC ID NC 49 (HCC166)

ATGAGCACGAATCCTAAACCTCAAAGAAAAACCAACGTAACACCCAACCGCCGCCA
CAGGACGTCAGTTCCCAGGGCGGTGGTCAGATCGTTGGTGGAGTTACCTGTTGCCGC
GCAGGGGCCAGGTTGGGTGTGCGCGCACTAGGAAGACTTCCGAGGGTGGCTGG
CTCGTGGGAGGCAGAACCTATCCCCAAGGCTGCCGACCCGAGGGTAGGGCCTGGG
CTCAGCCCGGGTACCTTGGCCCTCTATGGCAATGAGGGCATGGGTGGGCAGGATG
GCTCTGTACCCCGCGCTCTGGCCTAGTTGGGGCCCTACAGACCCCCGGCGTAGG
TCGCGTAATTGGTAAGGTATCGATACCCCTACATGCCGCTTCCGACCTCGTGG
GGTACATTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGG
CGTCGGGTTCTGGAGGGACGGCGTGAACATGCAACAGGGATTGGCCGGTTGCTCT
TTCTCTATCTTCCTTGGCTTGTGCTGTGACCGCTTCCAGCTCCGCTTATGAA
GTGCGCAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTAAGCATTG
TGTATGAGGCAGCGGACATGATCATGCACACCCCCGGGTGGCTGCCCTCGTGG
GAACAACTCTCCCGCTGGTAGGGTACGGCTCACCCCCACGCTCGCAGCTAGGAACGCC
AGCGTCCCCACCAACGACAATACGACGCCACGTCGATTGCTCGTGGGGCGCTGCTT
TCTGTTCCGCTATGTACGTGGGGACCTCTGCGGATCTGTCTTCTCGTCTCCAGCTG
TTCACCATCTCGCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATC
CCGGCCACATAACGGGTACCGTATGGCTGGATATGATGAACTGGTGCCTAC
AACGGCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGTGGACATGGT
GCGGGGGCCATTGGGGAGTCCTGGCGGCCCTGCCTACTATTCCATGGTGGGGAACT
GGGCTAAGGTTTGGTTGTATGCTACTCTTGCCTGGCGTGCACGGGATACCCCGCT
GTCAGGAGGGCAGCAGCCTCCGATACCAGGGCCTTGTGTCCCTCTTAGCCCCGGG

Fig. 21L

TCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAACAGGACT
GCCCTGAAC TGCAACGACTCCCTCAAACAGGGTTCTTGCCGACTATTCTACAAAC
ACAAATTCACACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTCGCTCCATCGACAA
GTTCGCTCAGGGGTGGGGTCCCTCACTTACACTGAGCCTAACAGCTCGGACCAGAGG
CCCTACTGCTGGCACTACGCCCTCGACC GTGTGGTATTGTACCCGCGTCTCAGGTGT
GCGGTCCAGTGTATTGCTTCACCCCCAGCCCTGTTGTGGTGGGACGACCGATCGGTT
TGGTGTCCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTGATTCTAACAAAC
ACGC CGCCGCCCGAGGCAACTGGTCGGCTGTACATGGATGAATGGCACTGGTTCA
CCAAGACGTGTGGGGGCCCGTGC AACATCGGGGGGCCGGCAACAACACCTTGA
CCTGCCCACTGACTGTTTCGGAAGCACCCGAGGCCACCTACGCCAGATCGGTT
TGGGCCCTGGCTGACACCTAGGTGTATGGTCATTACCCATATAGGCTCTGGCACTAC
CCCTGCACTGTCAACTTACCATCTCAAGGTTAGGATGTACGTGGGGCGTGGAGC
ACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTTGGAGGACA
GGGATAGATCAGAGCTAGCCCGCTGCTGCTGTACAAACAGAGTGGCAGATACTGCC
CTGTTCTTCAACCACCCCTGCCGCCCTATCCACCGGCCTGATCCACCTCCATCAGAAC
ATCGTGGACCTGCAATA CCTGTACGGTGTAGGGTCGGCGTTGTCTCCCTTGTCA
AATGGGAGTATGTCTGTTGCTCTTCCCTCCTGGCAGACGCCGCATCTGCCCTGC
TTATGGATGATGCTGCTGATAGCTCAAGCTGAGGCCGCTTAGAGAACCTGGTGGTCC
TCAATGCCGCCGCGTGGCGGGCGCATGGCACTCTTCCCTGTGTTCTCTGT
GCTGCCTGGTACATCAAGGGCAGGCTGGTCCCTGGTGGCGCATACGCCCTCTATGGCG
TGTGGCCCGCTGCTCTGCTTCTGCTGGCCTTACCAACCACGAGCTTATGCCTAGTAA

Fig. 22

OD measured at 450 nm
construct

Fraction	volume	dilution	39 Type 1b	40 Type 1b	62 Type 3a	63 Type 5a
START	23 ml	1/20	2.517	1.954	1.426	1.142
FLOW THROUGH	23 ml	1/20	0.087	0.085	0.176	0.120
1	0.4 ml	1/200	0.102	0.051	0.048	0.050
2			0.396	0.550	0.090	0.067
3			2.627	2.603	2.481	1.372
4			3	2.967	3	2.694
5			3	2.810	2.640	1.154
6			2.694	2.499	1.359	1.561
7			2.408	2.481	0.347	1.390
8			2.176	1.970	1.624	0.865
9			1.461	1.422	0.887	0.504
10			1.236	0.926	0.543	0.519
11			0.981	0.781	0.294	0.294
12			0.812	0.650	0.149	0.199
13			0.373	0.432	0.139	0.209
14			0.653	0.371	0.145	0.184
15			0.441	0.348	0.151	0.151
16			0.321	0.374	0.098	0.106
17			0.525	0.186	0.099	0.108
18			0.351	0.171	0.083	0.090
19			0.192	0.164	0.084	0.087

Fig. 23

Figure 24

Fraction	volume	dilution	OD measured at 450 nm			
			construct			
			39 Type 1b	40 Type 1b	62 Type 3a	63 Type 5a
20	250 μ l	1/200	0.072	0.130	0.096	0.051
21			0.109	0.293	0.084	0.052
22			0.279	0.249	0.172	0.052
23			0.093	0.151	0.297	0.054
24			0.080	0.266	0.438	0.056
25			0.251	0.100	0.457	0.048
26			3	1.649	0.722	0.066
27			3	3	2.528	0.889
28			3	3	3	2.345
29			3	3	2.849	2.580
30			2.227	1.921	1.424	1.333
31			0.263	0.415	0.356	0.162
32			0.071	0.172	0.154	0.064
33			0.103	0.054	0.096	0.057
34			0.045	0.045	0.044	0.051
35			0.043	0.047	0.045	0.046
36			0.045	0.045	0.049	0.040
37			0.045	0.047	0.046	0.048
38			0.046	0.048	0.047	0.057
39			0.045	0.048	0.050	0.057
40			0.046	0.049	0.048	0.049

DRAFT - NOT FOR DISTRIBUTION

157

Fig. 25

Fig. 26

Fig. 27

Fig.28

M 1 2 3 4 5 6

Fig.29

- Lane 1: Crude Lysate
- Lane 2: Flow through Lentil Chromatography
- Lane 3: Wash with EMPIGEN Lentil Chromatography
- Lane 4: Eluate Lentil Chromatography
- Lane 5: Flow through during concentration lentil eluate
- Lane 6: Pool of Elafter Size Exclusion Chromatography

© 1992 Wiley & Sons, Inc.

Fig. 30

NON - REDUCED

Fig. 31A

E2 + CONTAMINANTS (AGGREGATES)

REDUCED

Fig. 31B

Fig. 32

SILVER STAIN OF PURIFIED E2

1. 30 mM IMIDAZOLE WASH Ni-IMAC
2. 0.5 ug E2

Fig.33

No.	Ret. (mi)	Peak start (mi)	Peak end (mi)	Dur (mi)	Area (mi*mAU)	Height (mAU)
1	-0.45	-0.46	-0.43	0.04	0.0976	4.579
2	1.55	0.75	3.26	2.51	796.4167	889.377
3	3.27	3.26	3.31	0.05	0.0067	0.224
4	3.33	3.32	3.33	0.02	0.0002	0.018

Total number of detected peaks = 4
 Total Area above baseline = 0.796522 mi*mAU
 Total area in evaluated peaks = 0.796521 mi*mAU
 Ratio peak area / total area = 0.999999
 Total peak duration = 2.613583 mi

Fig. 34

Fig. 35A-1

Fig. 35A-2

Fig. 35A-3

Fig. 35A-4

Fig. 35A-5

Fig. 35A-6

Fig. 35A-7

Fig. 35A-8

Fig. 35B-1

Fig. 35B-2

Fig. 35B-3

Fig. 35B-4

Fig. 35B-5

Fig. 35B-6

Fig. 35B-7

Fig. 35B-8

Fig. 36A

E1 Ab

Fig. 36B

E2 Ab

Fig. 37A
Non Responders

Fig. 37B
Long Term Responders

Fig. 37C
Type 1b

Fig. 37D
Type 3a

Fig. 38

Relative Map Positions of
anti-E2 monoclonal antibodies

PARTIAL DEGLYCOSYLATION OF HCV E1 ENVELOPE PROTEIN

Fig. 39

PARTIAL TREATMENT OF HCV E2\E2s ENVELOPE PROTEINS
BY PNGase F

Fig. 40

Fig. 41 *In Vitro* Mutagenesis of HCV E1 glycoprotein

Fig. 42A *In Vitro* Mutagenesis of HCV E1 glycoprotein

1. First step of PCR amplification (Gly-# and Ovr-# primers)

2. Overlap extension and nested PCR

a. Overlap extension

Fig. 42B

Fig. 43 *In Vitro* Mutagenesis of HCV E1 glycoprotein

Fig. 44A

Fig. 44B

Fig. 45

KDa 19 67 43 29 18
| | | | |

A small, dark, irregularly shaped object, possibly a piece of debris or a fossil specimen, positioned below the numerical sequence.

Fig. 46

Fig. 47

	age (years)	HCV infection (years)	genotype
Marcel	17	9	1a
Peggy	21	16.5	1b
Ferma	15	9	1a
Yoran	12	none	
Marti	12	none	

chronic carriers (strong T-cell adjuvant)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 50 µg E1 dose

0 3 6 9 12 15 26 29 32 35 38 41 weeks

naive (alum)

↓ ↓ ↓ ↓ ↓ ↓ 50 µg E1 dose

0 3 6 9 12 15 weeks

Fig.

48

Fig. 49

1 Fem m a, 2 Marcel, 3 Peggy

Fig. 50

Fig 51

Fig 52

Fig 53

vaccinated

controls

