Statistics 5350/7110 Forecasting

Lecture 9 Scatterplot Smoothing

Professor Robert Stine

Admin Issues

- Questions
 - TA office hours
- Assignments
 - Questions regarding Assignment 2
- Quick review
 - Detrending
 - Differencing vs regression
 - Trade-offs: Possible costs vs possible benefits

	Difference	Fit Regression
Stochastic trend Random walk	~	Still nonstationary Inflated precision
Deterministic Linear trend	Loss of efficiency	~

Text, §3.3

Today's Topics

Scatterplot smoothing

- · Common graphical procedure typically used with cross-sectional data
- Dependence leads to special issues with time series (more next time)

Motivation

- Regression fit is a weighted sum of the response, but the weights might surprise you
- Local averages

• Methods

- Bias-variance trade-off
- · Local averaging with a kernel
- Smoothing splines
- Loess

Examples

- Visual benefit
 - Distinguish imagined pattern from something real
 - Frequent in R diagnostic plots
- Goal here
 - Understand methods well-enough to modify defaults

Scatterplot Matrix

Calibration Plot

Smoothing

Regression is smoothing

• Fit in simple regression illustrates general expression: Fit is a weighted sum of response

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = \sum_{i=1}^n h_{ij} Y_j, \quad h_{ij} = \frac{1}{n} + \frac{(x_i - \overline{X})(x_j - \overline{X})}{SS_X}$$

origin of name "hat values" for R function leverage = h_{ii}

- Values of response with most weight are not necessarily those close to x_i
- Weights chosen to reduce the mean squared error (MSE) of the fit
- · Example: Boundary points have the most effect when estimating a linear trend

Scatterplot smoothing

• Smoothed value is a weighted average of "nearby" observations

$$\widehat{Y} = \frac{\sum w_i Y_i}{\sum w_i}$$

- What does it mean to be nearby?
- A moving average makes sense or a sequence of equally spaced values, ...
 But how many to average?

Dangers of crossvalidation with time series illustrated in the Red file.

Bias-Variance Trade-off

Working model

• View data as independent random deviations around smooth function

$$y_i = f(x_i) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma_\epsilon^2)$$

Squared error of an estimator

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \sigma_{\epsilon}^2 + \underbrace{\left(f(x_0) - E\hat{f}(x_0)\right)^2}_{\text{squared bias}} + \underbrace{\text{Var }\hat{f}(x_0)}_{\text{variance}}$$

- Trade-off
 - Smooth, nearly constant estimator has large bias, but small variance
 - Rough, highly responsive estimator has large variance, but small bias
- Making a choice?
 - Prior knowledge of the unknown function f(x)
 - Data-driven methods such as cross-validation <u>not</u> well-suited to time series (not independent errors) e.g. positively autocorrelated leads to under-smoothing (Example simulation in Lecture <u>9.Rmd</u>)

Moving Average

- Average adjacent values
 - · Simple to define when data are equally spaced

$$\widehat{Y}_i = \sum_{j=-k}^k a_j X_{t-j}$$
 with $a_j = 1/(2k+1)$

- Issues
 - Number to average
 - Choice of weights
 - Behavior at boundaries
- Conceptual issue
 - What are we estimating?
 - What's f(x) in this context?

Polynomials

- Polynomials
 - With high-enough degree can approximate any smooth curve
 - Issues at the boundaries (Gibbs effect, must diverge to $\pm \infty$)
- Degree and smoothness
 - Higher degree allows more curvature, greater "flexibility"
 - Global smoothness
 - Choice of degree?

Smoothing Splines

Polynomials

- Closer approximation requires high-degree of curvature
- Issues at the boundaries (Gibbs effect)

• Cubic spline

- · Introduces local fit, analogous to moving average
- Interpolates data with piecewise cubic polynomial
- Continuous first and second derivatives

Smoothing spline

- Doesn't interpolate
- Trades fidelity to data with a smoothing penalty

$$\hat{f} = \arg\min_{f} \sum_{i} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

Choice of λ equivalent to an equivalent degrees of freedom

Smoothing Spline

- Improved behavior over polynomials
 - Allows local change without high degree
 - Improved behavior near boundaries
- Choices
 - Have to choose degree of smoothness
 - Global smoothness

Example 3.17

Kernel Smoothing

- Generalize moving average
 - What happens if the Y values are not equally spaced?
- Kernel smoothing
 - Use a function (the kernel) to set the weights. Handles the boundary problem.

$$\widehat{Y}_i = \frac{\sum_{j=1}^n K(x_i, x_j) Y_j}{\sum K(x_i, x_j)}$$

- Example: Let K be the normal probability density function, using the SD to control the smoothness
- Question: How to choose the bandwidth, the bias/variance trade-off

Higher variance, but less bias

Example 3.18

Default weights

computed from Gaussian density

• Modern scatterplot smoothers

• Locally weighted polynomial regression (as in a kernel) estimates smooth values

Lowess and Loess

- Theory and implementation provide point-wise confidence intervals
- Loess is a revision of predecessor lowess with more theory
- Modern implementation found in many software packages (e.g. ggplot)

• Examples

• Issue remains: How much smoothing is desirable. Default span is often too smooth.

ggplot version, default span

Smaller span

Mortality Data Revisited

- Scatterplot matrix
 - Data are mortality in LA county with particulates and temperature
 - Scatterplot matrix includes smooth curves to check for nonlinearity

Transparent colors are helpful when data overlap

Example 3.19

Mortality Data Revisited

- Mortality appears higher away from temperatures near 75-80 degrees
 - Note that this plot does not show the time dimension of these series

Mortality Data Revisited

- Effects of span size
 - Smaller span captures local fluctuations, but more variable (wider intervals since less data)
 - Wider span often misses local features, but offers narrower confidence intervals.
 - Recommend: Explore a variety of spans

Smoothing Time Series

- A note of caution
 - Smoothing a time series has subtle effects
- Example
 - Start with a random, iid normal series, the canonical "white noise"
- Periodogram
 - Variance explained by sinusoids of the form $\cos(2 \pi f_k t)$ on grid of equally-spaced frequencies
 - Equal energy at every frequency ... flat ... the color spectrum of white light

Smoothing Time Series

- What happens when we smooth the time series?
 - We change how variability in the data spreads out over frequencies
- Example
 - Smoother: Equally weighted moving average
 - Result:

 More variation at lower frequencies: the series has less high-frequency variation: it's smoother!

What's next?

- Decomposing a time series
 - Time series == Trend + Seasonal + Noise
- Common to find "seasonally adjusted" economic data

