THE YONEDA LEMMA

JEFFREY JIANG

Let \mathcal{C} be a category. Any object $X \in \mathcal{C}$ determines a covariant functor $h_X : \mathcal{C} \to \operatorname{Set}$ where given an object $Y \in \mathcal{C}$, we let $h_X(Y) = \operatorname{Map}_{\mathcal{C}}(X,Y)$. Given a morphism $f : Y \to Z$, we let $h_X(f) : \operatorname{Map}_{\mathcal{C}}(X,Y) \to \operatorname{Map}_{\mathcal{C}}(X,Z)$ be defined by $h_X(f)(\varphi) = f \circ \varphi$. This defines a contravariant functor $h : \mathcal{C} \to \operatorname{Fun}(\mathcal{C},\operatorname{Set})$ assigning each object X the functor h_X , and to each morphism $f : X \to Y$ a natural transformation $h_Y \to h_X$ that maps a morphism $\varphi \in \operatorname{Map}_{\mathcal{C}}(Y,Z)$ to $\varphi \circ f \in \operatorname{Map}_{\mathcal{C}}(X,Z)$ for all objects $Z \in \mathcal{C}$.

Theorem 0.1 (*The Yoneda Lemma*). The functor $h: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}, \operatorname{Set})$ is fully faithful, i.e. for any objects $X, Y \in \mathcal{C}$, the map $\operatorname{Map}_{\mathcal{C}}(X, Y) \to \operatorname{Map}_{\operatorname{Fun}(\mathcal{C}, \operatorname{Set})}(h_Y, h_X)$ is bijective.

Proof. Let $X,Y \in \mathcal{C}$. Suppose two functions $f,g:X \to Y$ induce the same natural transformation $h_Y \to h_X$. The mappings $\operatorname{Map}_{\mathcal{C}}(Y,Y) \to \operatorname{Map}_{\mathcal{C}}(X,Y)$ given by precomposition with f and g agree, so in particular, we must have that $\operatorname{id}_Y \circ f = \operatorname{id}_Y \circ g$, so f = g. This shows that the map $\operatorname{Map}_{\mathcal{C}}(X,Y) \to \operatorname{Map}_{\operatorname{Fun}(\mathcal{C},\mathsf{Set})}(h_Y,h_X)$ is injective. For surjectivity, we want to show that any natural transformation $\eta:h_Y \to h_X$ is given by precomposition by some morphism $X \to Y$. Let $\eta_Y:\operatorname{Map}_{\mathcal{C}}(Y,Y) \to \operatorname{Map}_{\mathcal{C}}(X,Y)$ be the map given by η . Then we claim that η_Y is given by precomposition with the morphism $\eta_Y(\operatorname{id}_Y)$. Let $\varphi:X \to Y$ be a morphism. Then η being a natural transformations gives us the commutative diagram

$$\begin{array}{ccc} \operatorname{Map}_{\mathcal{C}}(Y,Y) & \stackrel{\varphi \circ (-)}{\longleftarrow} \operatorname{Map}_{\mathcal{C}}(Y,Y) \\ & & & & \downarrow \eta_{Y} \\ \operatorname{Map}_{\mathcal{C}}(X,Y) & \stackrel{}{\longleftarrow} \operatorname{Map}_{\mathcal{C}}(X,Y) \end{array}$$

Starting with id_{γ} in the top right we get

$$\eta_Y(\varphi \circ \mathrm{id}_Y) = \varphi \circ \eta_Y(\mathrm{id}_Y)$$

which is the desired result. Then given any $Z \in \mathcal{C}$, we want to show that η_Z is also given by precomposition with $\eta_Y(\mathrm{id}_Y)$. Given a morphism $\varphi: Y \to Z$, we again get the diagram

$$\begin{array}{ccc} \operatorname{Map}_{\mathcal{C}}(Y,Z) & \stackrel{\varphi \circ (-)}{\longleftarrow} \operatorname{Map}_{\mathcal{C}}(Y,Y) \\ \eta_{Z} & & & \downarrow \eta_{Y} \\ \operatorname{Map}_{\mathcal{C}}(X,Z) & \stackrel{}{\longleftarrow} \operatorname{Map}_{\mathcal{C}}(X,Y) \end{array}$$

Then the fact that this commutes tells us that

$$\eta_Z(\varphi \circ \mathrm{id}_Y) = \varphi \circ \eta_Y(\mathrm{id}_Y)$$

which is the desired result. Therefore, the map $\operatorname{Map}_{\mathcal{C}}(X,Y) \to \operatorname{Map}_{\operatorname{Fun}(\mathcal{C},\mathsf{Set})}(h_Y,h_X)$ is surjective