3D Sensing and Sensor Fusion http://cg.elte.hu/~sensing

Dmitry Chetverikov, Iván Eichhardt

csetverikov@inf.elte.hu, ivan.eichhardt@sztaki.hu

Eötvös Loránd University Faculty of Informatics

2019 fall (2019-2020-1)

3D Point Cloud Registration

- Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP

3D Point Cloud Registration

- Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- Trimmed Iterative Closest Point
 - Implementation details and analysis

3D Point Cloud Registration

- Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- Trimmed Iterative Closest Point
 - Implementation details and analysis
- Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Euclidean registration of two 3D point sets

- Given:
 - two roughly pre-registered 3D point sets
 - $ightarrow \mathcal{P}$ (data) and \mathcal{M} (model)
- Goal:
 - find optimal motion
 - ightarrow shift and rotation that bring ${\cal P}$ into **best possible** alignment with ${\cal M}$
- We consider Euclidean alignment
 - other alignments, e.g., affine one, are also used

Applications of 3D point cloud registration

- 3D model acquisition
 - reverse engineering
 - scene reconstruction
- Registration of 3D sensor data
 - laser scanner, Lidar, etc.
- Motion analysis
 - model-based tracking

Problems of 3D point cloud registration

- Partially overlapping point sets
 - → incomplete measurements
- Noisy measurements
- Erroneous measurements
 - → outliers
- Shape defects, distortions
- Very large point sets (clouds)
- Point clouds with varying resolution and density

Outline of Iterative Closest Point (ICP)

- Besl and McKay (1992)
- Generic solution to alignment problem

Algorithm: Iterative Closest Point

- **1** Pair each point of \mathcal{P} to closest point in \mathcal{M} .
- Compute motion that minimises mean square error (MSE) between paired points.
- **3** Apply motion to \mathcal{P} and update MSE.
- Iterate until convergence.

Assumptions of ICP

- Given 2 sets of 3D points: **data** set $\mathcal{P} = \{\mathbf{p}_i\}_{1}^{N_p}$ and **model** set $\mathcal{M} = \{\mathbf{m}_i\}_{1}^{N_m}$.
- \mathcal{P} is **subset** of \mathcal{M} : $\mathcal{P} \subset \mathcal{M}$.
- Both \mathcal{P} and \mathcal{M} are **outlier-free**, or have very few outliers.
- Rough pre-registration: max initial relative rotation 20°.
- P is characteristic enough to allow for unambiguous matching¹:
 - no high symmetry
 - no 'featureless' data

¹Typical for most registration algorithms

ICP: Notation and problem statement

For rotation **R** and translation **t**, transformed points of \mathcal{P} are

$$\mathbf{p}_i(\mathbf{R}, \mathbf{t}) = \mathbf{R}\mathbf{p}_i + \mathbf{t}, \quad \mathcal{P}(\mathbf{R}, \mathbf{t}) = \left\{\mathbf{p}_i(\mathbf{R}, \mathbf{t})\right\}_1^{N_p}$$

Individual distance from data point $\mathbf{p}_i(\mathbf{R}, \mathbf{t})$ to \mathcal{M} :

$$\mathbf{m}_{cl}(i, \mathbf{R}, \mathbf{t}) \doteq \arg \min_{\mathbf{m} \in \mathcal{M}} \|\mathbf{m} - \mathbf{p}_i(\mathbf{R}, \mathbf{t})\|$$

 $d_i(\mathbf{R}, \mathbf{t}) \doteq \|\mathbf{m}_{cl}(i, \mathbf{R}, \mathbf{t}) - \mathbf{p}_i(\mathbf{R}, \mathbf{t})\|$

Problem statement: Find rigid motion (\mathbf{R}, \mathbf{t}) that minimises sum of N_p square distances $d_i^2(\mathbf{R}, \mathbf{t})$.

Registration algorithm by Chen and Medioni (1992)

- Iterative scheme similar to Besl and McKay
- ullet Distances from points of ${\mathcal P}$ to surface of ${\mathcal M}$
 - → point-to-surface
- Faster convergence when two sets are close
- ullet Needs triangulation of ${\mathcal M}$ to obtain surface
 - non-trivial operation

Point-to-point vs point-to-surface

- We use formulation of Besl and McKay
- Distances from points of P to points of M
 - → point-to-point
 - → does not need triangulation
- Easier to use
 - → more frequently used in practice

Outline

- Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- 2 Trimmed Iterative Closest Point
 - Implementation details and analysis
- 3 Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Searching for closest point: k-d tree 1/2

(a) Dashed lines: axis-aligned cutting planes². Small diamonds: data points A–H. (b) K-d tree. Interior nodes: cutting planes with dimensions and cutting values. Leaf nodes: data points.

²Source: Szeliski, Computer Vision

Searching for closest point: k-d tree 2/2

- Recursively split plane minimizing maximum depth of tree
- Classic search:
 - locate query point (+) in its bin (D)
 - search nearby leaves (C,B...) until closest point is found
- Best Bin First search (usually, more efficient):
 - search bins in order of their spatial proximity to query point

Closed-form solutions for optimal rigid motion

- Unit Quaternions: used by original ICP
- Singular Value Decomposition
- Orthogonal Matrices
- Dual Quaternions

Properties of methods for optimal motion

Method	Accuracy	2D Stability ³	Speed,	Speed,
			small N_p	large N_p
UQ	good	good	fair	fair
SVD	good	good	fair	fair
OM	fair	poor	good	poor
DQ	fair	fair	poor	good

- Comparative analysis⁴
 - Unit Quaternions
 - Singular Value Decomposition
 - Orthogonal Matrices
 - Dual Quaternions
 - N_p: number of points

³In presence of degenerate (2D) data

⁴Eggert (1997)

Outline

- Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- 2 Trimmed Iterative Closest Point
 - Implementation details and analysis
- Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Properties of ICP 1/2

- Pre-registration required. Options:
 - manual
 - known sensor motion between two measurements
 - Genetic Algorithm → illustrated later in lecture
 - surface feature-based pre-registration
 - ...
- Point pairing
 - computationally demanding
 - special data structures used to speed up
 - → k-d trees, spatial bins

Properties of ICP 2/2

- Optimal motion: closed-form solutions available
- ICP has been proven to converge to local minimum
- Applicable to different kinds of measurements
 - surface measurements
 - volumetric measurements

Drawbacks of ICP

- Assumes outlier-free data
- Assumes that \mathcal{P} is subset of \mathcal{M} : $\mathcal{P} \subset \mathcal{M}$
- → Not robust
- → Not applicable to parially overlapping measurements
 - Relatively slow convergence

Outline

- Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- 2 Trimmed Iterative Closest Point
 - Implementation details and analysis
- Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Categorisation of ICP variants

Goal: Improve robustness and convergence (speed)⁵.

- Selecting subsets of $\mathcal P$ and $\mathcal M$
 - random sampling for Monte-Carlo technique
- Matching (pairing) selected points
 - closest point
 - point-to-surface: faster when normals are precise
- Weighting and rejecting pairs
 - distribution of distances between paired points
 - geometric constraints (e.g., compatibility of normal vectors)
- Assigning error metric and minimising it
 - iterative: original ICP
 - direct: Levenberg-Marquardt algorithm

⁵Rusinkiewicz (2001)

Robustifying ICP algorithm

- ICP assumption:
 - ullet each point of ${\mathcal P}$ has valid correspondence in ${\mathcal M}$
- Not applicable to:
 - partially overlapping sets
 - sets containing outliers
- How to robustify ICP?
 - reject wrong point pairs
 - → based on different criteria

Rejection criteria

Statistical criteria: Monte-Carlo with robust statistics

- Least median of squares (LMedS)
- Least trimmed squares (LTS)

Geometric criteria: Iterative Closest Reciprocal Point⁶

- Similar to backward consistency check in stereo matching
- Use ϵ -reciprocal correspondence:
 - if point $\mathbf{p} \in \mathcal{P}$ has closest point $\mathbf{m} \in \mathcal{M}$, then
 - back-project \mathbf{m} onto $\mathcal P$ by finding closest point $\mathbf{p}' \in \mathcal P$
 - reject pair (\mathbf{p}, \mathbf{m}) if $\|\mathbf{p} \mathbf{p}'\| > \epsilon$

Convergence of above methods

- Different heuristics combined
- → Heterogeneous algorithms
- → Convergence cannot be proved
- E.g., Iterative Closest Reciprocal Point does not converge
- → Stopping conditions difficult to use

Robust statistics

- Sort distances between paired points
- Minimize:
- For Least median of squares,
 - value in the middle of sorted sequence
 - incompatible with computation of optimal motion
- For Least trimmed squares,
 - sum of certain number of least values (e.g., least 50%)
 - compatible with computation of optimal motion
 - better convergence rate, smoother objective function

Randomised robust regression

Use LMedS or LTS to

- Repeatedly draw random samples
- Estimate optimal motion parameters
- Detect and reject outliers
- Find least squares solution for inliers

Robust to outliers, but breakdown point is 50%

→ **Minimum overlap** is 50%

Assumptions of Trimmed ICP

- 2 sets of 3D points: **data** set $\mathcal{P} = \{\mathbf{p}_i\}_1^{N_p}$ and **model** set $\mathcal{M} = \{\mathbf{m}_i\}_1^{N_m}$. $(N_p \neq N_m.)$
- Minimum guaranteed rate of data points that can be paired is known: **minimum overlap** ξ . Number of data points that can be paired $N_{po} = \xi N_p$.
- Rough pre-registration: max initial relative rotation 20°.
- Overlapping part is characteristic enough to allow for unambiguous matching:
 - no high symmetry
 - no 'featureless' data

Problem statement: TrICP

- Informal statement
 - Find Euclidean transformation that brings an N_{po} -point subset of \mathcal{P} into best possible alignment with \mathcal{M} .
- Formal statement
 - Find rigid motion (\mathbf{R}, \mathbf{t}) that minimises sum of least N_{po} square distances $d_i^2(\mathbf{R}, \mathbf{t})$.
- Conventional ICP
 - $\xi = 1$ and $N_{po} = N_p$.
- Trimmed ICP
 - Smooth transition to ICP as $\xi \to 1$.

Outline of of TrICP

Basic idea: Consistent use of LTS in deterministic way

Algorithm: Trimmed Iterative Closest Point 7

- **Olosest point**: For each point $\mathbf{p}_i \in \mathcal{P}$, find closest point in \mathcal{M} and compute d_i^2 .
- **2 Trimmed Squares**: Sort d_i^2 , select N_{po} least values and calculate their sum S_{TS} .
- **3 Convergence test**: If any of stopping conditions is satisfied, exit; otherwise, set $S'_{TS} = S_{TS}$ and continue.
- **Motion calculation**: For N_{po} selected pairs, compute optimal motion (\mathbf{R} , \mathbf{t}) that minimises S_{TS} .
- **5** Data set motion: Transform \mathcal{P} by (\mathbf{R}, \mathbf{t}) and go to 1.

⁷Chetverikov et al. (2002)

Stopping conditions

- Maximum allowed number of iterations N_{iter} has been reached, or
- Trimmed MSE is sufficiently small, or
- Change of Trimmed MSE is sufficiently small.

Trimmed MSE *e*: For sorted distances

$$d_{s1} \leq d_{s2} \leq \ldots \leq d_{sN_{po}} \leq \ldots \leq d_{sN_p},$$

$$S_{TS} \doteq \sum_{si=s1}^{sN_{po}} d_{si}^2$$
 $e \doteq \frac{S_{TS}}{N_{po}}$

Change of Trimmed MSE: $|S_{TS} - S_{TS}'|$

Outline

- Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- Trimmed Iterative Closest Point
 - Implementation details and analysis
- Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Implementation details

- Finding closest point
 - use k-d tree
- Sorting individual distances and calculating LTS
 - use heap sort
- Computing optimal motion
 - use Unit Quaternions
 - robust to noise
 - stable in presence of degenerate data ('flat' point sets)
 - relatively fast

Automatic setting of overlap parameter ξ 1/2

When ξ is unknown, it is set automatically by minimising objective function

$$\psi(\xi) = \frac{e(\xi)}{\xi^{1+\lambda}}, \qquad \lambda = 2$$

- In given range $\alpha \le \xi \le \beta$, $\psi(\xi)$ minimises trimmed MSE $e(\xi)$ and tries to use as many points as possible.
- Larger λ : avoid undesirable alignments of symmetric and/or 'featureless' parts.
- $\psi(\xi)$ is minimised using modified Golden Section Search Algorithm.

Automatic setting of overlap parameter ξ 2/2

Typical shapes of objective functions $e(\xi)$ and $\psi(\xi)$.

Convergence of Trimmed ICP

Theorem: *TrICP* always converges monotonically to local minimum with respect to trimmed MSE objective function.

Convergence to global minimum depends on initial guess.

Sketch of proof of convergence

- Optimal motion does not increase MSE: if it did, it would be inferior to identity transformation, as the latter does not change MSE.
- Updating the closest points does not increase MSE: no individual distance increases.
- **Updating the list of** N_{po} **least distances** does not increase MSE: to enter the list, any new pair has to substitute a pair with larger distance.
- Sequence of MSE values is nonincreasing and bounded below (by zero), hence it converges to a local minimum.

Outline

- 1 Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- 2 Trimmed Iterative Closest Point
 - Implementation details and analysis
- Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Results for Frog

 $\operatorname{set} \mathcal{P} = \operatorname{set} \mathcal{M}$

result of ICP

result of TrICP

Aligning two partial measurements of Frog. (≈3000 points)

Results for Skoda part

TrICP: Aligning partial measurements of **Skoda part**.

(≈6000 points)

Results for Fiat part

TrICP: Aligning partial measurements of Fiat part. (overlap \approx 20%.)

Results for Skull

TrICP: Aligning two measurements of chimpanzee skull. (≈100000 points)

Outline

- 1 Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- 2 Trimmed Iterative Closest Point
 - Implementation details and analysis
- Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Results for Frog dataset

Frog dataset, GA alignment⁸ and final alignment

- Significant relative rotation in data compensated
- TrICP refines result of GA

⁸Lomonosov, Chetverikov, Ekárt (2006)

Results for Angel dataset

Angel dataset, GA alignment and final alignment.

Results for Bird dataset

Bird dataset, GA alignment and final alignment.

Outline

- 1 Iterative Closest Point
 - Major components of ICP
 - Analysis of ICP
 - Further development of ICP
- 2 Trimmed Iterative Closest Point
 - Implementation details and analysis
- Sample results of 3D data registration
 - Laser scanner data registration
 - Using Genetic Algorithm for pre-alignment
 - Lidar data registration

Laser scanner data registration
Using Genetic Algorithm for pre-alignment
Lidar data registration

Central Market Hall

- 160 point clouds acquired by car-mounted Lidar⁹
- Registered by TrICP without knowledge of motion
- Surface obtained by triangulation where possible

⁹SZTAKI project i4D

Detail of point cloud

- Varying spatial resolution
 - point cloud dense at bottom
 - decreasing with height

Part of Kende street

- 360 point clouds acquired by car-mounted Lidar
- Registered by TrICP without knowledge of motion
- Part shown: entrance of SZTAKI

Issues to be addressed

- Point clouds with varying resolution and density
 - → parts with different impacts on registration
 - → problems when flat, featureless parts dominate
- Long sequences of point clouds
 - registration errors tend to accumulate
 - → growing shape distortion
- Closed loops of point clouds for complete 3D models
 - accumulated registration errors disturb fitting in the end
 - → need for global cost function
 - ightarrow adjust all partial registrations, smooth errors
- Very large point clouds
 - large computational load
 - → slow operation
 - → need for hardware support (e.g., GPU)