

Progetto di Contatori sincroni

Definizioni caratteristiche
Contatori Binari Naturali
Contatori a codice e modulo liberi ad anello e ad anello incrociato
Contatori modulo diverso da 2ⁿ

12/12/03

Contatori

- Un contatore è una rete sequenziale che, solitamente, riceve in ingresso solamente un evento di conteggio che sposta la posizione corrente in avanti - upwards - (o indietro - downwards) di una unità.
 - Il valore raggiunto è associato allo *stato presente*
 - Possono esistere altri ingressi di controllo per la realizzazione di contatori bidirezionali; il metodo di progetto cambia di poco
- Il contatore appartiene ad una famiglia di reti sequenziali "omogenee" caratterizzate da:
 - Specifiche di funzionamento analoghe per l'intera famiglia:
 - In molti casi, ripetitività e località della struttura.
 - Possibilità di descrizione della specifica semplificata rispetto alla generica tabella degli stati
 - Esistenza di tecniche di implementazione semplificate rispetto a quelle per le generiche reti sequenziali

Circuiti sequenziali speciali

- Esiste una classe di circuiti sequenziali la cui progettazione potrebbe seguire il processo "classico" di sintesi ma che è più conveniente analizzare in altro modo.
 - · La regolarità della struttura facilità la progettazione.
- A questa classe appartengono:
 - Registri (già visti)
 - Memorizzano una definita quantità di informazione
 - Possono operare sul contenuto una o più semplici trasformazioni.
 - » Shift destro/sinistro
 - » Caricamento parallelo/seriale
 - Contatori
 - Attraversano ripetutamente un numero definito di stati
 - » Contatori sincroni
 - » Contatori asincroni (non trattati nel corso)

- 2 -

Contatori - definizioni caratteristiche

Un contatore è caratterizzato da:

- II modulo M
 - M individua il numero di simboli in uscita prodotti dal contatore, e di conseguenza il *periodo* del conteggio;
- II codice
 - E' l'insieme dei valori delle uscite utilizzati per rappresentare il valore del conteggio.
 - A numero minimo di bit: Il numero di tali bistabili è log₂ Ml. (es: Gray, Binario Naturale)
 - Altri codici: se il codice è su k bit, converrà usare k bistabili anche se k> log, Ml, per evitare di inserire una rete di transcodifica fra i bistabili e l'uscita del contatore. (es: 1-hot, parità)
- La codifica
 - Definisce la successione degli M valori associati allo stato attraverso cui il contatore evolve.
 - Nota: la codifica dello stato è definita a priori
 - Es: M=4 codice Gray(codice a numero minimo di bit) codifica: S0=00 S1=01 S2=11 S3=10
 - Es: M=4 codice Parità Pari (codice a numero non minimo di bit): codifica: S0=000 S1=011 S2=101 S3=110

Contatori sincroni e asincroni

- Oltre che per modulo, codice e codifica, i contatori si distinguono in sincroni e asincroni:
 - Contatore sincrono:
 - Tutti i bistabili ricevono simultaneamente in ingresso l'evento di conteggio;
 - Clock oppure Gated Clock (clock attraversa una rete combinatoria).
 - Le eventuali commutazioni sono tutte simultanee (sincrone), a parte modeste variazioni dovute alla propagazione attraverso le reti di eccitazione dei bistabili
 - Contatore asincrono:
 - · Almeno un bistabile *non* riceve in ingresso il segnale di conteggio
 - La sua eventuale commutazione è comandata da quella degli altri bistabili e avverrà con un ritardo dovuto alla propagazione attraverso tali bistabili (oltre che alle reti combinatorie eventualmente presenti)
- Nel seguito si tratterà in dettaglio il progetto dei contatori sincroni.

.

Contatori sincroni: Contatore Binario Naturale

- Contatore binario (modulo 2ⁿ)
 - Modulo: 2n: Codice: A numero minimo bit: Codifica: Binaria Naturale
 - Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 2¹

per M= 2'											
Q_0	Q_0	Q_0	T_0								
0	1	_\ 0	1								
1	0	-/1	1								

Tabella delle transizioni e delle eccitazioni														
	per M= 2 ²													
Q_1	Q_0	Q_1	*Q	p.*	Q_1	Q_0	T_1	Т						
0	0	0	1		0	0	0	1						
0	1	1	0		0	1	1	1						
1	0	1	1	,	1	0	0	1						
1	1	0	0		1	1	1	1						

e delle eccitazioni per M= 23 $Q_2Q_1Q_0$ $T_2T_1T_0$ Q2Q1Q0 Q2*Q1*Q0* 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

Tabella delle transizioni

- 5 -

Contatori sincroni: Contatore Binario Naturale

L'analisi delle tabelle delle eccitazioni evidenzia la sequente regolarità (M=24):

Q.	Q ₂	Q,(2,	т,	T_2	$\Gamma, \bar{1}$	1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
0 1 1 1	0	0	1	0	0	1	1
1	0	1	0	0	0	0	1
1	0	1	1	0	1	1	1
1	1	0	0	0	0	0	1
$\frac{1}{1}$	1	0	1	0	0	1	1
1	1	1	0	0	0	0	1
1	1	1	1	1	1	1	1

 $T_0 \equiv 1$

Q ₃	Q ₂	Q_1	20	$ T_3 $	T ₂	Γ_1 7	0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
$\frac{\frac{0}{1}}{\frac{1}{1}}$	0	0	1	0	0	1	1
1	0	1	0	0	0	0	1
1	0	1	1	0	1	1	1
1	1	0	0	0	0	0	1
$\frac{1}{1}$	1	0	1	0	0	1	1
1	1	1	0	0	0	0	1
1	1	1	1	1	1	1	1
		т,	_	: (Q ₀		

$Q_3Q_2Q_1Q_0$ $T_3T_2T_1T_0$									
0	0	Ō	0	0	0	0	1		
0	0	0	1	0	0	1	1		
0	0	1	0	0	0	0	1		
0	0	1	1	0	1	1	1		
0	1	0	0	0	0	0	1		
0	1	0	1	0	0	1	1		
0	1	1	0	0	0	0	1		
0	1	1	1	1	1	1	1		
1	0	0	0	0	0	0	1		
1	0	0	1	0	0	1	1		
1	0	1	0	0	0	0	1		
1	0	1	1	0	1	1	1		
1	1	0	0	0	0	0	1		
1	1	0	1	0	0	1	1		
1	1	1	0	0	0	0	1		
1	1	1	1	1	1	1	1		
Т,	=ç	21 5	٠Q		Q ₁	*:	Г,		

MLASO

Contatori sincroni: Contatore Binario Naturale

Sono possibili due implementazioni per le funzioni di eccitazione:

- 6 -

- Contatore serie: $T_0=1$; $T_1=Q_0$; $T_n=Q_{n-1}*T_{n-1}$
 - Tutti gli stadi, ad esclusione dei primi due, risultano perfettamente identici.
 - La regolarità della struttura è "pagata" con un maggior ritardo di propagazione (limita la frequenza di funzionamento).
 - Nota: la frequenza di funzionamento si riduce linearmente con la dimensione del contatore poiché T_i diventa stabile solo dopo che lo è diventato T_{i-1}.
- Contatore parallelo: $T_0=1$; $T_1=Q_0$; $T_n=Q_{n-1}*Q_{n-2}*Q_{n-3}...*Q_0$
 - · Schema molto semplice e regolare.
 - Minor ritardo di propagazione rispetto al caso precedente (frequenza di funzionamento maggiore rispetto al caso precedente).
 - Nota: la frequenza di funzionamento si riduce all'aumentare delle dimensioni del contatore a causa dell'aumento del numero degli ingressi alle porte AND.
- In generale, la regolarità deriva dal ciclo di conteggio: cambiando tipo di bistabile (es: FFD) le funzioni di eccitazione cambiano, ma la regolarità resta.

Contatori sincroni: Contatore Binario Naturale

Contatore binario (modulo 2ⁿ) serie:

Contatore binario (modulo 2ⁿ) parallelo:

- 9 -

Contatori sincroni: Contatore Binario Naturale

- Contatore binario (modulo 2ⁿ)
 - Modulo: 2n: Codice: A numero minimo bit: Codifica: Binaria Naturale

Tabella delle eccitazioni

Bistabile utilizzato: D

abella delle eccitazioni								
per M= 2 ¹								
$Q_0 D_0$								

p	er	IVI=	22
Q_1	Q_0	D_1	D_0
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

- 10 -

Contatori sincroni: Contatore Binario Naturale

L'analisi delle tabelle delle eccitazioni evidenzia la seguente regolarità (M=24):

$Q_3Q_2Q_1Q_0 \mid D_3D_2D_1D_0 \mid$	$Q_3Q_2Q_1Q_0$ $D_3D_2D_1D_0$	$Q_3Q_2Q_1Q_0$ $D_3D_2p_1D_0$	$Q_3Q_2Q_1Q_0$ $D_3P_2D_1D_0$
0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0	0 0 0 1 0 0 1 0	0 0 0 1 0 0 1 0	0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1	0 0 1 0 0 0 1 1	0 0 1 0 0 0 1 1	0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0	0 0 1 1 0 1 0 0	0 0 1 1 0 1 0 0	0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1	0 1 0 0 0 1 0 1	0 1 0 0 0 1 0 1	0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0	0 1 0 1 0 1 1 0	0 1 0 1 0 1 1 0	0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1	0 1 1 0 0 1 1 1	0 1 1 0 0 1 1 1	0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0	0 1 1 1 1 0 0 0	0 1 1 1 1 0 0 0	0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1	1 0 0 0 1 0 0 1	1 0 0 0 1 0 0 1	1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0	1 0 0 1 1 0 1 0	1 0 0 1 1 0 1 0	1 0 0 1 1 0 1 0
1 0 1 0 1 0 1 1	1 0 1 0 1 0 1 1	1 0 1 0 1 0 1 1	1 0 1 0 1 0 1 1
1 0 1 1 1 1 0 0	1 0 1 1 1 1 0 0	1 0 1 1 1 1 0 0	1 0 1 1 1 1 0 0
1 1 0 0 1 1 0 1	1 1 0 0 1 1 0 1	1 1 0 0 1 1 0 1	1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 0	1 1 0 1 1 1 1 0	1 1 0 1 1 1 1 0	1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 1	1 1 1 0 1 1 1 1	1 1 1 0 1 1 1 1	1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0	1 1 1 1 0 0 0 0	1 1 1 1 0 0 0 0	1 1 1 1 0 0 0 0
Parallelo D ₀ =Q ₀ ⊕1=Q ₀ '	$D_1 = Q_1 \oplus Q_0$	$D_2 = Q_2 \oplus \overline{(Q_1 * Q_0)}$	$D_3=Q_3\oplus(Q_2*Q_1*Q_0)$
Serie $D_0 = Q_0 \oplus 1 = Q_0'$	$D_1 = Q_1 \oplus Q_0$	$D_2 = Q_2 \oplus (Q_1 * Q_0) = Q_2 \oplus (Q_1 * K_0)$	$D_3 = Q_3 \oplus (Q_2 * K_1)$

- 11 -

Contatori sincroni: codici e moduli liberi

- Due casi diversi:
 - Progetto di contatori con modulo libero (2ⁿ o diverso da 2ⁿ), codice a numero non minimo bit e codifica non binaria naturale
 - · Struttura regolare.
 - Contatori ad anello (codice one-hot)
 - Contatore ad anello incrociato
 - · A struttura non regolare.
 - Si applica una metodologia di progetto semplificata rispetto a quella generale per le reti sequenziali
 - Progetto di contatori con modulo diverso da 2ⁿ, codice a numero minimo bit e codifica binaria naturale

- 12 -

- A struttura non regolare.
 - Si applica una metodologia di progetto semplificata rispetto a quella generale per le reti seguenziali:

Contatori sincroni: codici e moduli liberi

Contatore "ad anello"

- Modulo: n; Codice: One hot; Codifica: 2k

- Bistabile utilizzato: D

Codice one-hot:

- In ogni codifica valida uno e un solo bit assume valore 1, tutti gli altri valgono 0;
- Per codificare *n* informazioni diverse occorrono *n* bit
 - il codice non è a numero minimo di bit.
- Esempio: i numeri da 0 a 3 sono codificati come:
 - $-0 = 0001 (2^0)$
 - $-1 = 0010 (2^1)$
 - $-2 = 0100(2^2)$
 - $-3 = 1000 (2^3)$
 - esiste una corrispondenza 1-a-1 fra l'entità codificata e la posizione dell'unico 1 nella codifica.

- 13 -

Contatori sincroni: codici e moduli liberi

- Contatore "ad anello" (ring counter) modulo n:
 - È un registro a scorrimento con riporto tra stadio iniziale e finale

- Il valore del FFD0 viene posto a 1 prima dell'inizio del conteggio; i rimanenti FFD vengono posti a 0.

- 14 -

Contatori sincroni: codici e moduli liberi

- Il contatore "ad anello" ha una struttura ad alto costo ma molto semplice, compatta e veloce
 - il numero di bistabili è molto più elevato del minimo e cresce linearmente.
- Viene utilizzato, ad esempio, in applicazioni nelle quali si deve abilitare uno e un solo sottosistema; il contatore svolge il ruolo di unità di controllo.
 - Lo stato di ogni bistabile del contatore costituisce immediatamente il segnale di controllo e non occorre alcuna rete di transcodifica.
 - Se gli stati del contatore sono n, le linee di segnale che si inviano ai sottosistemi controllati sono ancora n.
 - Nota: I'uso di un contatore con un codice a numero minimo bit es., binario naturale richiederebbe una rete di *transcodifica* che per ogni stato del contatore generasse un valore attivo su una sola delle n linee di segnale in uscita (rete combinatoria con $k = \lceil \log n \rceil$ ingressi e n uscite); la rete di transcodifica, al crescere di n, avrebbe costi crescenti e introdurrebbe crescenti ritardi di propagazione

Contatori sincroni: codici e moduli liberi

- Contatore "ad anello incrociato"
 - Modulo: 2*n (nota: sempre pari):
 - Codice e Codifica (esempio):

	cource e courrica (esempro).												
	Q_1	Q_0	Q_1	*Q	*	$Q_2Q_1Q_0 \ Q_2^*Q_1^*Q_0^*$							
0	0	0	0	1	0)	0	0	0	0	0	1	
1	0	1	1	1	1		0	0	1	0	1	1	
2	1	1	1	0	2	2	0	1	1	1	1	1	
3	1	0	0	0	3	3	1	1	1	1	1	0	
					4	Ŀ	1	1	0	1	0	0	
					5	,	1	0	0	0	0	0	

		_	_		_		_	_	
		Q	Q_2	Q_1	δο ΄	Q_3^*	Q_2	Q_1	Q_0
()	0	0	0	0	0	0	0	1
1	L	0	0	0	1	0	0	1	1
2	2	0	0	1	1	0	1	1	1
3	3	0	1	1	1	1	1	1	1
4	ł	1	1	1	1	1	1	1	0
Ę	5	1	1	1	0	1	1	0	0
6	5	1	1	0	0	1	0	0	0
7	7	$\overline{1}$	0	0	0	0	0	0	0

- Bistabile utilizzato: D
- Per codificare 2^*n informazioni diverse occorrono n bit
- · Il codice non è a numero minimo di bit.
- Svantaggi principali: modulo sempre pari, codice e codifica senza particolare campo di applicabilità
- Vantaggio principale: distanza di Hamming unitaria, prestazioni elevate, meno elementi di memoria rispetto al contatore ad anello

Contatori sincroni: codici e moduli liberi

Contatore "ad anello incrociato" modulo 2*n:

Il valore del FFD₀ viene inizializzato a 1 (quindi Q'₀ vale 0) prima dell'inizio del conteggio; i rimanenti FFD vengono posti a 0.

- 17 -

Contatori sincroni: codici e moduli liberi

- Contatore modulo diverso da 2ⁿ: Esempio1.
 - Modulo: 6: Codice: A numero minimo bit: Codifica: Binaria **Naturale**
 - Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 6

Nota: le equazioni derivano dalla sintesi delle tre funzioni combinatorie T₀, T₁ e T₂

- 18 -

Contatori sincroni: codici e moduli liberi

- Contatore modulo diverso da 2ⁿ: Esempio2.
 - Modulo: 10; Codice: A numero minimo bit; Codifica: Binaria Naturale (Contatore BCD o Decadico)
 - Bistabile utilizzato: T

ni e delle eccitazioni per M= 10

Tabella delle transizio											
Q ₃	Q_2	Q_1	2 ₀	Q_3	Q ₂ *	Q_1	Q_0	*			
0	0	0	0	0	0	0	1				
0	0	0	1	0	0	1	0				
0	0	1	0	0	0	1	1				
0	0	1	1	0	1	0	0				
0	1	0	0	0	1	0	1				
0	1	0	1	0	1	1	0				
0	1	1	0	0	1	1	1				
0	1	1	1	1	0	0	0				
1	0	0	0	1	0	0	1				
1	0	0	1	0	0	0	0				

Nota: In modo analogo si potrebbe ottenere la realizzazione mediante $D_1 = Q_3' * Q_1' * Q_0 + Q_3' * Q_1 * Q_0'$ $D_2 = Q_3' * Q_2' * Q_1 * Q_0 + Q_2 * Q_0' + Q_2 * Q_1'$ $D_3 = Q_3 * Q_1' + Q_2 * Q_1 * Q_0$

Contatori sincroni: Composizione di contatori

- É possibile realizzare contatori per moduli elevati partendo da contatori più semplici
 - Esempio: realizzare un contatore a k cifre decimali utilizzando K blocchi del contatore decadico (Mod-10 ([0..9]));
- Ogni sotto-contatore genera un segnale di overflow (carry) che, quando raggiunge valore 1, consente al clock di attivare il sottocontatore collegato ad esso in cascata.
- La condizione di overflow è quella indicata dalla ultima configurazione di stato presente prodotta dal contatore a valle.
 - Esempio: nel contatore BCD, la condizione di traboccamento è 1001 che corrisponde a $f(Q_3, Q_2, Q_1, Q_0) = Q_3 * Q_2' * Q_1' * Q_0$
- Il modulo del contatore complesso è il prodotto dei moduli.
 - Esempio: Due contatori Mod-2 e Mod-5 possono produrre un contatore decadico.

Contatori sincroni: Composizione di contatori

Esempio: contatore BCD a 3 Cifre (Mod-1000)

un contatore Mod-6 (la versione a destra è più costosa e lenta).

- 21 -