Iterative LQR & Model Predictive Control

Sanjiban Choudhury

TAs: Matthew Rockett, Gilwoo Lee, Matt Schmittle

Table of Controllers

	Control Law	Uses model	Stability Guarantee	Minimize Cost
PID		No	No	No
Pure Pursuit		Circular arcs	Yes - with assumptions	No
Lyapunov		Non-linear	Yes	No
LQR		Linear	Yes	Quadratic

Can we use LQR to swing up a pendulum

Can we use LQR to swing up a pendulun

No!

(Large angles imply large linearization error)

Can we use LQR to swing up a pendulun

No!

(Large angles imply large linearization error)

But we can track a reference swing up trajectory (small linearization error)

But, rst we need to talk about time-varying systems

Today's objectives

- 1. LQR for time-varying systems
- 2. Trajectory following with iLQR
- 3. General nonlinear trajectory optimization with iLQR
- 4. Model predictive control (MPC)

LQR for Time-VaryingDynamical System

$$x_{t+1} = A_t x_t + B_t u_t$$

LQR for Time-VaryingDynamical System

$$x_{t+1} = A_t x_t + B_t u_t$$

$$c(x_t, u_t) = x_t^T Q_t x_t + u_t^T R_t u_t$$

LQR for Time-Varying Dynamical Systems

$$x_{t+1} = A_t x_t + B_t u_t$$

$$c(x_t, u_t) = x_t^T Q_t x_t + u_t^T R_t u_t$$

Straight forward to get LQR equations

$$K_{t} = (R_{t} + B_{t}^{T} V_{t+1} B_{t})^{1} B_{t}^{T} V_{t+1} A_{t}$$

$$V_{t} = Q_{t} + K_{t}^{T} R_{t} K_{t} + (A_{t} + B_{t} K_{t})^{T} V_{t+1} (A_{t} + B_{t} K_{t})$$

$$Discrete Algebraic Riccati equation$$

Why do we care abouttime-varying?

Ans: Linearization about atrajectory

Trajectory tracking for stationary rolls?

Trajectory tracking for stationary rolls?

How do we get such behaviors?

Stationary rolls

Task: Minimize tracking error

$$\min_{\substack{u_0,u_1,\dots,u_{T1}\\t=0}} \sum_{t=0}^{T} c(x_t,u_t)$$

subject to
$$x_{t+1} = f(x_t, u_t) 8t$$

In this scenario, cost is simply a quadratic tracking cost

Why is this a hard optimization problem?

Iterative LQR (iLQR)

Start by guessing a control sequence, Forward simulate dynamics, Linearize about trajectory, Solve for new control sequence and repeat!

i=0

i=10

i=100

Unicycle 2+ + Vt (05 (Ot) dt] System is Linear be constants or independent of Stand Mt

Non-linear system dynamics $S_{t+1} = \int (S_t, Y_t)$ It you know how to solve a linear problem, then to convert a non-linear problem in to the linear one, take TAYLOR SERIES approximation Trovative) LOR solves the optimal control problem by approximating cost function as Quadratic system dynamics of Linear or affine

Step 1: Get a reference trajectory

Note: Simply executing open loop trajectory wont work!

Step 2: Initialize your algorithm

get from some other untroller
like PFD Choose initial trajectory at iteration 0 to linearize about TAYLOR Series $x^{0}(t), u^{0}(t) = \{x^{0}, u^{0}_{0}, x^{0}_{1}, u^{0}_{1}, \dots, x^{0}_{T_{1}}, u^{0}_{T_{1}} \}$

Step 2: Initialize your algorithm

Choose initial trajectory at iteration 0 to linearize about

$$x^{0}(t), u^{0}(t) = \{x^{0}, u^{0}_{0}, x^{0}_{1}, u^{0}_{1}, \dots, x^{0}_{T_{1}}, u^{0}_{T_{1}} \}$$

It's a good idea to choose the reference trajectory

Step 2: Initialize your algorithm

Choose initial trajectory at iteration 0 to linearize about

$$x^{0}(t), u^{0}(t) = \{x^{0}, u^{0}_{0}, x^{0}_{1}, u^{0}_{1}, \dots, x^{0}_{T_{1}}, u^{0}_{T_{1}} \}$$

It's a good idea to choose the reference trajectory

Initialization is very important!
We will be perturbing this initial trajectory

At a given iteration i, we are going to linearize about

$$x_0^i, u_0^i, x_1^i, \dots$$

At a given iteration i, we are going to linearize about

$$x_0^i, u_0^i, x_1^i, \dots$$

Change of variable - we will track the delta perturbations

$$X_t = X_t X_t^i$$

$$u_t = u_t u_t^i$$

$$x_t = x_t \quad x_t^i \qquad u_t = u_t \quad u_t^i$$

$$X_{t} = X_{t} \times i^{t}$$

$$U_{t} = U_{t} U_{t}$$

$$TAYLOR somes for vector-valued vector function$$

$$\lambda_{t+1} = \int (\chi_{t}^{i} + \delta \chi_{t}) \chi_{t}^{i} + \delta \chi_{t}^{i} +$$

$$A_t = \frac{@f}{@x} x_{x_t^i}$$

$$B_t = \frac{@f}{@u_{u_t^i}}$$

$$X_t = X_t X_t^i$$

$$u_t = u_t \quad u_t^i$$

Affine function

This is an a ne system, not linear $x_{t+1} = A_t x_t + B_t u_t + (f(x_t^i, u_t^i) x_{t+1}^i)$ This is an a ne system, not linear

$$A_t = \frac{@f}{@x_{x_t^i}}$$

$$B_t = \frac{@f}{@u_{u_t^i}}$$

$$\begin{cases} x_{t+1} \\ y_{t+1} \\ y_{t} \\ y_{t}$$

Step 4: Quadricize cost about trajectory

Our cost function is already quadratic, otherwise we would apply Taylor expansion

$$c(x_t, u_t) = (x_t \ x_t^{\text{ref}})^T Q(x_t \ x_t^{\text{ref}}) + (u_t \ u_t^{\text{ref}})^T R(u_t \ u_t^{\text{ref}})$$

$$\begin{cases} y_t & y_t \\ y_t & y_t \\ y_t & y_t \end{cases}$$

Step 4: Quadricize cost about trajectory

Our cost function is already quadratic, otherwise we would apply

Taylor expansion
$$c(x_t, u_t) = (X_t)^T X_t^{ref} T_t^T Q(x_t x_t^{ref}) + (u_t u_t^{ref})^T R(u_t u_t^{ref})$$

$$= X_t^T Q_t Q(x_t^i x_t^{ref})^T Q(x_t^i x_t^{ref}) + (u_t^i u_t^{ref})^T (x_t^i x_t^{ref})^T (x_t^i x_t^{ref}) + (u_t^i u_t^{ref})^T (x_t^i x_t^{ref})^T (x_t^i x_t^{ref}) + (u_t^i u_t^{ref})^T (x_t^i x_t^{ref})^T (x_t^i x_t^{ref})^T$$

$$u_{t}^{T}$$
 R $R(u_{t}^{i} u_{t}^{ref})$ u_{t} 1 $(u_{t}^{i} u_{t}^{ref})^{T}R$ $(u_{t}^{i} u_{t}^{ref})^{T}(u_{t}^{i} u_{t}^{ref})$ 1

We have all the ingredients to call LQR

$$\tilde{K}_t = (\tilde{R}_t + \tilde{B}_t^T \tilde{V}_{t+1} \tilde{B}_t)^1 \tilde{B}_t^T \tilde{V}_{t+1} \tilde{A}_t$$

similarly calculate the value function ...

Step 5: Do a backward pass

Calculate controller gains for all time steps

Step 6: Do a forward pass to get new trajectory

Compute control action

$$u_t^{i+1} = u_t^i + \tilde{K}_t^{X_t^{i+1}} X_t^i$$

Apply dynamics

$$x_t^{i+1} = f(x_t^{i+1}, u_t^{i+1})$$

Step 6: Do a forward pass to get new trajectory

Compute control action

$$u_t^{i+1} = u_t^i + \tilde{K}_t^{X_t^{i+1}} X_t^i$$

Apply dynamics $x_t^{i+1} = f(x_t^{i+1}, u_t^{i+1})$

Step 6: Do a forward pass to get new trajectory

Compute control action

$$u_t^{i+1} = u_t^i + \tilde{K}_t \quad X_t^{i+1} \quad X_t^i$$

Apply dynamics $x_t^{i+1} = f(x_t^{i+1}, u_t^{i+1})$

Step 6: Do a forward pass to get new trajectory

Compute control action

$$u_t^{i+1} = u_t^i + \tilde{K}_t \quad X_t^{i+1} \quad X_t^i$$

Apply dynamics $x_t^{i+1} = f(x_t^{i+1}, u_t^{i+1})$

Step 6: Do a forward pass to get new trajectory

Compute control action

$$u_t^{i+1} = u_t^i + \tilde{K}_t \quad X_t^{i+1} \quad X_t^i$$

Apply dynamics

$$x_t^{i+1} = f(x_t^{i+1}, u_t^{i+1})$$

Problem: Forward pass will go bonker

Problem: Forward pass will go bonker

Linearization error gets bigger and bigger and bigger

Problem: Forward pass will go bonker

Linearization error gets bigger and bigger and bigger

Remedies: Change cost function topenalize deviation from linearization

1. Can we solve LQR for continuous time dynamics?

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! Just quadricize the cost

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! Just quadricize the cost

3. What if I want to penalize control derivatives?

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! Just quadricize the cost

3. What if I want to penalize control derivatives?

No problem! Add control as part of state space

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! Just quadricize the cost

3. What if I want to penalize control derivatives?

No problem! Add control as part of state space

4. Can we handle noisy dynamics?

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! Just quadricize the cost

3. What if I want to penalize control derivatives?

No problem! Add control as part of state space

4. Can we handle noisy dynamics?

Yes! Gaussian noise does not change the answer

Table of Controllers

	Control Law	Uses model	Stability Guarantee	Minimize Cost
PID		No	No	No
Pure Pursuit		Circular arcs	Yes - with assumptions	No
Lyapunov		Non-linear	Yes	No
LQR		Linear	Yes	Quadratic
iLQR		Non-linear	Yes	Yes

iLQR is just one technique

It's far from perfect - can't deal with model errors / constraints ...

Look at current state error and compute control actions

Look at current state error and compute control actions

Look at current state error and compute control actions

Look at current state error and compute control actions

Goal: To drive error to 0 ... to optimally drive it to 0

Limitations of this framework

A xed control law that looks at instantaneous feedback

$$U_t = (X_t, X_t^{ref})$$
Fixed Reference

Why is it so di cult to create a magic control law?

Simple scenario: Car tracking a straight line

Simple scenario: Car tracking a straight line

Small error, control within steering constraints

Simple scenario: Car tracking a straight line

Simple scenario: Car tracking a straight line

We could "clamp control command" ... but what are the implications?

General problemComplex models

Dynamics $x_{t+1} = f(x_t, u_t)$

Constraints $g(x_t, u_t)$ 0

Such complex models imply we need to:

- 1. Predict the implications of control actions
- 2. Do corrections NOW that would a ect the future
- 3. It may not be possible to nd one law might need to predict

Example:Rough terrain mobility

2560, 2.5 second trajectories sampled with cost-weighted average @ 60 Hz

Example:Rough terrain mobility

2560, 2.5 second trajectories sampled with cost-weighted average @ 60 Hz

Problem 2: What if some errors are worse than others

We need a cost function that penalizes states non-uniformly

Key Idea:

Frame control as amoptimization problem

1. Plan a sequence of control actions

2. Predict the set of next states unto a horizon H

3. Evaluate the cost / constraint of the states and controls

4. Optimize the cost

How are the controls executed?

Step 1: Solve optimization problem to a horizon

How are the controls executed?

Step 1: Solve optimization problem to a horizon

Step 2: Execute the rst control

How are the controls executed?

Step 1: Solve optimization problem to a horizon

Step 2: Execute the rst control

Step 3: Repeat!

MPC is a framework

Step 1: Solve optimization problem to a horizon

Step 2: Execute the rst control

Step 3: Repeat!

Why do we need to replan?

What happens if the controls are planned once and executed?

Why do we need to replan?

What happens if the controls are planned once and executed?