

Certifiable Robustness

A. M. Sadeghzadeh, Ph.D.

Sharif University of Technology Computer Engineering Department (CE) Data and Network Security Lab (DNSL)

May 2, 2023

The proof of Theorem 1 is based on $Sebastien\ Bubeck\ lecture$

Today's Agenda

1 Recap

2 Randomized Smoothing

A. M. Sadeghzadeh

Recap

4/25

Certifiable Robustness

A classifier is **certifiably robust** if for any input x, **there exist a guarantee** that the **classifier's prediction is constant within some set around** x, often an ℓ_2 or ℓ_∞ ball.

A. M. Sadeghzadeh Sharif U. T. Certifiable Robustness May 2, 2023

Certifiable Robustness

A classifier is **certifiably robust** if for any input x, there exist a guarantee that the **classifier's prediction is constant within some set around** x, often an ℓ_2 or ℓ_∞ ball.

■ Classifier $f: \mathbb{R}^d \to [0,1]^K$ is ϵ -robust at x, if

$$\forall \|\delta\|_p \le \epsilon, \quad \underset{i \in [K]}{\operatorname{argmax}} f_i(x+\delta) = \underset{i \in [K]}{\operatorname{argmax}} f_i(x)$$

where K is the number of classes.

Certifiable Robustness

A classifier is **certifiably robust** if for any input x, **there exist a guarantee** that the **classifier's prediction is constant within some set around** x, often an ℓ_2 or ℓ_∞ ball.

■ Classifier $f: \mathbb{R}^d \to [0,1]^K$ is ϵ -robust at x, if

$$\forall \|\delta\|_p \le \epsilon, \quad \underset{i \in [K]}{argmax} f_i(x+\delta) = \underset{i \in [K]}{argmax} f_i(x)$$

where K is the number of classes.

[Source]

Certifiable Robustness for L-Lipschitz classifier

Theorem 0: If $f: \mathbb{R}^d \to [0,1]^K$ is L-lipschitz, then f is ϵ -robust at x with $\epsilon = \frac{1}{2L}(P_A - P_B)$, where $P_A = \max_i f_i(x)$, $P_B = \max_{j \neq i} f_j(x)$, and $f_k(x)$ is the k-th element of the probability vector f(x).

A. M. Sadeghzadeh

Certifiable Robustness for L-Lipschitz classifier

Theorem 0: If $f: \mathbb{R}^d \to [0,1]^K$ is L-lipschitz, then f is ϵ -robust at x with $\epsilon = \frac{1}{2L}(P_A - P_B)$, where $P_A = \max_i f_i(x)$, $P_B = \max_{j \neq i} f_j(x)$, and $f_k(x)$ is the k-th element of the probability vector f(x).

Proof.

Since f is L-lipschitz, we have

$$\forall x, y \in \mathbb{R}^d, ||f(y) - f(x)||_2 \le L||y - x||_2$$

Denote $x' = x + \delta$ and assume that $\|\delta\| \le \epsilon$, we get

$$||f(x') - f(x)||_2 \le L||x' - x||_2 \to ||f(x') - f(x)||_2 \le L||\delta||_2 \le L\epsilon$$

Hence, P_A can be reduced at most by $L\epsilon$ and P_B can be increased at most by $L\epsilon$. We have $(P_i'=f_i(x'))$

$$P_A' \ge P_A - L\epsilon$$
 and $P_B' \le P_B + L\epsilon$

Since we want that the label of x' be the same as x, P'_A must be greater than P'_B ($P'_A \geq P'_B$). We have

$$P_A - L\epsilon \ge P_B + L\epsilon \rightarrow 2L\epsilon \le P_A - P_B \rightarrow \epsilon \le \frac{1}{2L}(P_A - P_B)$$

A. M. Sadeghzadeh

Sharif U. T.

Certifiable Robustness

If we compute the (upper bound of) Lipschitz constant of the classifier, we can determine the radius (ϵ) of the robustness for each sample.

■ However, the lipschitz constant of deep neural networks is very large and it grows exponentially with the number of layers. Hence, the certification is useless ($\epsilon \to 0$).

If we compute the (upper bound of) Lipschitz constant of the classifier, we can determine the radius (ϵ) of the robustness for each sample.

■ However, the lipschitz constant of deep neural networks is very large and it grows exponentially with the number of layers. Hence, the certification is useless ($\epsilon \to 0$).

We can **transform classifier** f **to a smoothed version** in order to bound the Lipschitz constant of the classifier.

If we compute the (upper bound of) Lipschitz constant of the classifier, we can determine the radius (ϵ) of the robustness for each sample.

■ However, the lipschitz constant of deep neural networks is very large and it grows exponentially with the number of layers. Hence, the certification is useless ($\epsilon \to 0$).

We can **transform classifier** f **to a smoothed version** in order to bound the Lipschitz constant of the classifier.

■ To smooth classifier *f* , we convolve it with a **Gaussian kernel**.

If we compute the (upper bound of) Lipschitz constant of the classifier, we can determine the radius (ϵ) of the robustness for each sample.

■ However, the lipschitz constant of deep neural networks is very large and it grows exponentially with the number of layers. Hence, the certification is useless ($\epsilon \to 0$).

We can **transform classifier** *f* **to a smoothed version** in order to bound the Lipschitz constant of the classifier.

 \blacksquare To smooth classifier f, we convolve it with a **Gaussian kernel**.

A. M. Sadeghzadeh

Sharif U. T.

Randomized Smoothing

Consider a classification problem from \mathbb{R}^d to classes \mathcal{Y} . Randomized smoothing is a method for constructing a new, smoothed classifier \hat{f} from an arbitrary base classifier f.

Randomized Smoothing

Consider a classification problem from \mathbb{R}^d to classes \mathcal{Y} . Randomized smoothing is a method for constructing a new, **smoothed classifier** \hat{f} from an arbitrary base classifier f.

■ When queried at x, the smoothed classifier \hat{f} returns whichever class the base classifier f is most likely to return when x is perturbed by isotropic Gaussian noise:

$$\begin{split} \hat{f}(x) &= \underset{c \in \mathcal{Y}}{argmax} \ \mathbb{P}(f(x+\epsilon) = c) \\ \text{where} \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I) \end{split} \tag{1}$$

The noise level σ is a hyperparameter of the smoothed classifier \hat{f} which controls a robustness/accuracy tradeoff.

[source]

A. M. Sadeghzadeh

Sharif U. T.

Notation

Suppose that when the base classifier f classifies $\mathcal{N}(x, \sigma^2 I)$, the most probable class c_A is returned with probability P_A , and the "runner-up" class is returned with probability P_B .

• $\underline{P_A}$ is a lower bound for P_A and $\overline{P_B}$ is a lower bound for P_B .

Figure 1. Evaluating the smoothed classifier at an input x. Left: the decision regions of the base classifier f are drawn in different colors. The dotted lines are the level sets of the distribution $\mathcal{N}(x,\sigma^2I)$. Right: the distribution $f(\mathcal{N}(x,\sigma^2I))$. As discussed below, p_A is a lower bound on the probability of the top class and $\overline{p_B}$ is an upper bound on the probability of each other class. Here, g(x) is "blue."

8 / 25

Robustness guarantee

Theorem 1. Let $f: \mathbb{R}^d \to \mathcal{Y}$ be any deterministic or random function, and let $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let \hat{f} be defined as in (1). Suppose $C_A \in \mathcal{Y}$ and $\underline{P_A}, \overline{P_B} \in [0, 1]$ satisfy:

$$\mathbb{P}(f(x+\epsilon) = C_A) \ge \underline{P_A} \ge \overline{P_B} \ge \max_{C \ne C_A} \mathbb{P}(f(x+\epsilon) = C)$$

Then $\hat{f}(x + \delta) = C_A$ for all $\|\delta\|_2 \leq R$, where

$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{P_A}) - \Phi^{-1}(\overline{P_B}))$$

where Φ^{-1} is the inverse of the standard Gaussian CDF.

Robustness guarantee

Theorem 1. Let $f: \mathbb{R}^d \to \mathcal{Y}$ be any deterministic or random function, and let $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let \hat{f} be defined as in (1). Suppose $C_A \in \mathcal{Y}$ and $\underline{P_A}, \overline{P_B} \in [0, 1]$ satisfy:

$$\mathbb{P}(f(x+\epsilon) = C_A) \ge \underline{P_A} \ge \overline{P_B} \ge \max_{C \ne C_A} \mathbb{P}(f(x+\epsilon) = C)$$

Then $\hat{f}(x + \delta) = C_A$ for all $\|\delta\|_2 \leq R$, where

$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{P_A}) - \Phi^{-1}(\overline{P_B}))$$

where Φ^{-1} is the inverse of the standard Gaussian CDF.

This is the graph of the standard normal probability density function $\phi(z)$.

This is the graph of the standard normal cumulative distribution function $\Phi(z)$.

Randomized Smoothing

May 2, 2023

11 / 25

Lipschitz Constant of Randomized Smoothed Classifier

To prove Theorem 1, we need to find the Lipschitz constant of the smoothed classifier \hat{f} .

To prove Theorem 1, we need to find the Lipschitz constant of the smoothed classifier \hat{f} .

Let

$$f: \mathbb{R}^d \to [0, 1]$$
$$\hat{f}(x) = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[f(x + \sigma z)]$$

It is well-known that \hat{f} is Lipschitz (it has uniform bound on the Lipschitz constant). In practice, we can approximate \hat{f} by empirical average

$$y^{(k)} = \sum_{i=1}^{k} f(x + \sigma z), \text{ where } z \sim \mathcal{N}(0, I_d)$$

It can be shown that if $k \to \infty$, $y^{(k)}$ almost surely converges to \hat{f} .

Recall: Expected Value

The expectation, or expected value, of some function f(x) with respect to a probability distribution $P_X(x)$ is the average, or mean value, that f takes on when x is drawn from P.

For discrete random variable X, $P_X(x)$ is **Probability Mass Function (PMF)** and expected value can be computed with a summation:

$$\mathbb{E}_{X \sim P}[f(x)] = \sum_{x} f(x) P_X(x)$$

For continuous random variable X, $P_X(x)$ is **Probability Density Function (PDF)** and expected value is computed with an integral:

$$\mathbb{E}_{X \sim P}[f(x)] = \int f(x)P_X(x)dx$$

Recall

- If $z \sim \mathcal{N}(0, I_d)$, then $\mu + \sigma z \sim \mathcal{N}(\mu, \sigma^2 I_d)$.
- The identity matrix is often denoted by I_n , where n is the dimension. The determinant of the identity matrix is 1.
- The Probability Density Function (PDF) of multivariate normal distribution

$$f_X(x) = \frac{1}{(2\pi)^{d/2} det(\Sigma)^{1/2}} exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}\$$

where X is normally distributed random variable with mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{R}^{d \times d}$, and d is the dimension of x.

The Cumulative Distribution Function (CDF) of multivariate normal distribution

$$P(X \le x) = F_X(x) = \int_{-\infty}^x f_X(t)dt$$

A. M. Sadeghzadeh

To prove Theorem 1, we need to find the Lipschitz constant of the smoothed classifier \hat{f} .

Let

$$\begin{split} f: \mathbb{R}^d &\to [0,1] \\ \hat{f}(x) &= \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[f(x+\sigma z)] \end{split}$$

It is well-known that \hat{f} is Lipschitz (it has uniform bound on the Lipschitz constant). In practice, we can approximate \hat{f} by empirical average

$$y^{(k)} = \sum_{i=1}^{k} f(x + \sigma z), \text{ where } z \sim \mathcal{N}(0, I_d)$$

It can be shown that if $k \to \infty$, $y^{(k)}$ almost surely converges to \hat{f} .

We have

$$\hat{f}(x) = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[f(x + \sigma z)] = \frac{1}{(2\pi)^{d/2}} \int f(x + \sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz$$

 $\hat{f}(x)$ is the weighted average of f(x) in the vicinity of x.

A. M. Sadeghzadeh

Sharif U. T.

We had

$$\hat{f}(x) = \frac{1}{(2\pi)^{d/2}} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz$$

Change of variable: $w = -\sigma z$.

Recall: change of variable

Double Integral.

Suppose that we want to integrate f(x, y) over the region R. Under the transformation x = g(u, v), y = h(u, v) the region becomes S and the integral becomes

$$\iint\limits_{R} f\left(x,y\right) \, dx dy = \iint\limits_{S} f\left(g\left(u,v\right),h\left(u,v\right)\right) \left|\frac{\partial \left(x,y\right)}{\partial \left(u,v\right)}\right| \, du dv$$

where
$$\left|\frac{\partial(x,y)}{\partial(u,v)}\right| = \left|\begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array}\right|$$
 is the absolute value of inverse Jacobian determinant of the

transformation.

Vector Integral.

Suppose $x,y\in\mathbb{R}^d$ that we want to integrate $f\left(x\right)$ over the region R. Under the transformation $y=g\left(x\right)$ the region becomes S and the integral becomes

$$\int\limits_{R} f\left(x\right) \, dx = \int\limits_{S} f\left(g\left(x\right)\right) \left|\frac{\partial x}{\partial y}\right| \, dy$$

where $\left|\frac{\partial x}{\partial u}\right|$ is the absolute value of inverse Jacobian determinant of the transformation.

We had

$$\hat{f}(x) = \frac{1}{(2\pi)^d} \int f(x + \sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz$$

Change of variable: $w = -\sigma z$. Hence, $dz = \frac{1}{\sigma^d} dw$. We get

$$\hat{f}(x) = \frac{1}{(2\pi)^{d/2}} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz = \int f(x-w) \frac{1}{(2\pi)^{d/2}\sigma^d} \exp\{-\frac{\|w\|_2^2}{2\sigma^2}\} dw$$

A. M. Sadeghzadeh

We had

$$\hat{f}(x) = \frac{1}{(2\pi)^d} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz$$

Change of variable: $w=-\sigma z$. Hence, $dz=\frac{1}{\sigma^d}dw$. We get

$$\hat{f}(x) = \frac{1}{(2\pi)^{d/2}} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz = \int f(x-w) \frac{1}{(2\pi)^{d/2} \sigma^d} \exp\{-\frac{\|w\|_2^2}{2\sigma^2}\} dw$$

Recall: Convolution

Convolution of two functions f and g over a infinite range $(-\infty,+\infty)$ is given by

$$f * g = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{+\infty} f(t-\tau)g(\tau)d\tau = g * f$$

where the symbol [f * g](t) denotes convolution of f and g.

We had

$$\hat{f}(x) = \frac{1}{(2\pi)^d} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz$$

Change of variable: $w = -\sigma z$. Hence, $dz = \frac{1}{\sigma^d} dw$. We get

$$\hat{f}(x) = \frac{1}{(2\pi)^{d/2}} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz = \int f(x-w) \underbrace{\frac{1}{(2\pi)^{d/2}\sigma^d} \exp\{-\frac{\|w\|_2^2}{2\sigma^2}\}}_{g_{\sigma}(w)} dw$$

$$\hat{f}(x) = \int f(x-w)g_{\sigma}(w)dw = \int f(w)g_{\sigma}(x-w)dw = f * g_{\sigma}$$

A. M. Sadeghzadeh

We had

$$\hat{f}(x) = \frac{1}{(2\pi)^d} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz$$

Change of variable: $w = -\sigma z$. Hence, $dz = \frac{1}{\sigma^d} dw$. We get

$$\hat{f}(x) = \frac{1}{(2\pi)^{d/2}} \int f(x+\sigma z) \exp\{-\frac{\|z\|_2^2}{2}\} dz = \int f(x-w) \underbrace{\frac{1}{(2\pi)^{d/2}\sigma^d} \exp\{-\frac{\|w\|_2^2}{2\sigma^2}\}}_{g_{\sigma}(w)} dw$$

$$\hat{f}(x) = \int f(x-w)g_{\sigma}(w)dw = \int f(w)g_{\sigma}(x-w)dw = f * g_{\sigma}$$

Recall

Let $f:I\to R$ be a continuous and differentiable function over some set $I\subseteq\mathbb{R}^d$, if we have $\|f'(x)\|_2\le m$ for all $x\in I$, then m is the upper Lipschitz constant of f ($L\le m$).

Hence, We calculate $\|\nabla_x \hat{f}(x)\|_2$ in order to find the **upper bound on Lipschitz constant** of \hat{f} .

A. M. Sadeghzadeh

We had

$$\hat{f}(x) = f * g_{\sigma}$$

$$\nabla_x \hat{f}(x) = \nabla_x (f * g_{\sigma})$$

We had

$$\hat{f}(x) = f * g_{\sigma}$$

$$\nabla_x \hat{f}(x) = \nabla_x (f * g_{\sigma})$$

Generally speaking, since convolution is a linear operator and since only g depends on x, $\nabla_x(f*g_\sigma)=f*\nabla_xg_\sigma$. Therefore

$$\nabla_x \hat{f}(x) = \nabla_x (f * g_\sigma) = f * \nabla_x g_\sigma$$

We had

$$\hat{f}(x) = f * g_{\sigma}$$

$$\nabla_x \hat{f}(x) = \nabla_x (f * g_{\sigma})$$

Generally speaking, since convolution is a linear operator and since only g depends on x, $\nabla_x(f*g_\sigma)=f*\nabla_xg_\sigma$. Therefore

$$\nabla_x \hat{f}(x) = \nabla_x (f * g_\sigma) = f * \nabla_x g_\sigma$$

Thus, we should compute $\nabla_x g_\sigma$

$$\nabla_x g_{\sigma} = \nabla_x \left(\frac{1}{(2\pi)^{d/2} \sigma^d} \exp\{-\frac{\|x - w\|_2^2}{2\sigma^2}\}\right) = \frac{1}{(2\pi)^{d/2} \sigma^d} \frac{-2(x - w)}{2\sigma^2} \exp\{-\frac{\|x - w\|_2^2}{2\sigma^2}\}$$
$$= \frac{-(x - w)}{\sigma^2} g_{\sigma}$$

A. M. Sadeghzadeh

We had

$$\hat{f}(x) = f * g_{\sigma}$$

$$\nabla_x \hat{f}(x) = \nabla_x (f * g_{\sigma})$$

Generally speaking, since convolution is a linear operator and since only g depends on x, $\nabla_x(f*g_\sigma)=f*\nabla_xg_\sigma$. Therefore

$$\nabla_x \hat{f}(x) = \nabla_x (f * g_\sigma) = f * \nabla_x g_\sigma$$

Thus, we should compute $\nabla_x g_\sigma$

$$\nabla_x g_{\sigma} = \nabla_x \left(\frac{1}{(2\pi)^{d/2} \sigma^d} \exp\{-\frac{\|x - w\|_2^2}{2\sigma^2}\}\right) = \frac{1}{(2\pi)^{d/2} \sigma^d} \frac{-2(x - w)}{2\sigma^2} \exp\{-\frac{\|x - w\|_2^2}{2\sigma^2}\}$$
$$= \frac{-(x - w)}{\sigma^2} g_{\sigma}$$

We have

$$\nabla_x \hat{f}(x) = \int f(w) \frac{-(x-w)}{\sigma^2} g_{\sigma}(x-w) dw = \int f(x-w) \frac{-w}{\sigma^2} g_{\sigma}(w) dw$$

A. M. Sadeghzadeh

Sharif U. T.

We had

$$\nabla_x \hat{f}(x) = \int f(x-w) \frac{-w}{\sigma^2} g_{\sigma}(w) dw$$

We had

$$\nabla_x \hat{f}(x) = \int f(x - w) \frac{-w}{\sigma^2} g_{\sigma}(w) dw$$

Change of variable: $w = -\sigma z$. We get

$$\begin{split} \nabla_x \hat{f}(x) &= \int f(x+\sigma z) \frac{\sigma z}{\sigma^2} g_\sigma(-\sigma z) \sigma^d dz = \int f(x+\sigma z) \frac{z}{\sigma} \frac{\sigma^d}{(2\pi)^{d/2} \sigma^d} \exp\{-\frac{\|-\sigma z\|_2^2}{2\sigma^2}\} dz \\ &= \int f(x+\sigma z) \frac{z}{\sigma} \underbrace{\frac{1}{(2\pi)^{d/2}} \exp\{-\frac{\|z\|_2^2}{2}\}}_{\mathcal{N}(0,I_d)} dz = \mathbb{E}_{z \sim \mathcal{N}(0,I_d)} [f(x+\sigma z) \frac{z}{\sigma}] \end{split}$$

We had

$$\nabla_x \hat{f}(x) = \int f(x - w) \frac{-w}{\sigma^2} g_{\sigma}(w) dw$$

Change of variable: $w = -\sigma z$. We get

$$\nabla_x \hat{f}(x) = \int f(x+\sigma z) \frac{\sigma z}{\sigma^2} g_{\sigma}(-\sigma z) \sigma^d dz = \int f(x+\sigma z) \frac{z}{\sigma} \frac{\sigma^d}{(2\pi)^{d/2} \sigma^d} \exp\{-\frac{\|-\sigma z\|_2^2}{2\sigma^2}\} dz$$
$$= \int f(x+\sigma z) \frac{z}{\sigma} \underbrace{\frac{1}{(2\pi)^{d/2}} \exp\{-\frac{\|z\|_2^2}{2}\}}_{\mathcal{N}(0,I_d)} dz = \mathbb{E}_{z \sim \mathcal{N}(0,I_d)} [f(x+\sigma z) \frac{z}{\sigma}]$$

Therefore, for Lipschitz constant of \hat{f} , we have

$$L_{\hat{f}} \leq \|\nabla_x \hat{f}(x)\|_2 \Rightarrow L_{\hat{f}} \leq \|\mathbb{E}_{z \sim \mathcal{N}(0, I_d)} \underbrace{[\underline{f(x + \sigma z)}}_{\in [0, 1]} \underbrace{z}_{\sigma}]\|_2 \leq \|\mathbb{E}_{z \sim \mathcal{N}(0, I_d)} [\frac{z}{\sigma}]\|_2$$

Recal: Triangel inequality

Triangle Inequality. Let $a_k \in \mathbb{R}^d$,

$$|\sum_{k=1}^{N} a_k| \le \sum_{k=1}^{N} |a_k|.$$

Corollary: For random variable X, if X has a finite expectation, then

$$|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$$

Proof sketch:

$$|\mathbb{E}[X]| = |\sum_{x} x P_X(x)| \leq \sum_{x \text{ Triangle Inequality}} \sum_{x} |x| P_X(x) = \mathbb{E}[|X|]$$

We had

$$\nabla_x \hat{f}(x) = \int f(x - w) \frac{-w}{\sigma^2} g_{\sigma}(w) dw$$

Change of variable: $w = -\sigma z$. We get

$$\nabla_x \hat{f}(x) = \int f(x+\sigma z) \frac{\sigma z}{\sigma^2} g_{\sigma}(-\sigma z) \sigma^d dz = \int f(x+\sigma z) \frac{z}{\sigma} \frac{\sigma^d}{(2\pi)^{d/2} \sigma^d} \exp\{-\frac{\|-\sigma z\|_2^2}{2\sigma^2}\} dz$$
$$= \int f(x+\sigma z) \frac{z}{\sigma} \underbrace{\frac{1}{(2\pi)^{d/2}} \exp\{-\frac{\|z\|_2^2}{2}\}}_{\mathcal{N}(0,I_d)} dz = \mathbb{E}_{z \sim \mathcal{N}(0,I_d)} [f(x+\sigma z) \frac{z}{\sigma}]$$

Therefore, for Lipschitz constant of \hat{f} , we have

$$\begin{split} L_{\hat{f}} &\leq \|\nabla_x \hat{f}(x)\|_2 \Rightarrow L_{\hat{f}} \leq \|\mathbb{E}_{z \sim \mathcal{N}(0,I_d)} \underbrace{[f(x + \sigma z)}_{\in [0,1]} \frac{z}{\sigma}]\|_2 \leq \|\mathbb{E}_{z \sim \mathcal{N}(0,I_d)} [\frac{z}{\sigma}]\|_2 \\ &\leq \frac{1}{\sigma} \mathbb{E}_{z \sim \mathcal{N}(0,I_d)} [\|z\|_2] \end{split}$$

A. M. Sadeghzadeh

14 / 25

Lipschitz Constant of Randomized Smoothed Classifier

Recall: Convex Function and Jensen's Inequality

Convex set. A set C is convex if the line segment between any two points in C lies in C, i.e., if for any $x_1, x_2 \in C$ and any $\lambda \in [0, 1]$, we have: $\lambda x_1 + (1 - \lambda)x_2 \in C$

Convex Function. Consider a function $f:I\to\mathbb{R}$, where $I\subseteq\mathbb{R}$ is a convex set. We say that f is a convex function if, for any two points x and y in I and any $\lambda\in[0,1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Jensen's Inequality. If f(x) is a convex function on I, and $\mathbb{E}[f(X)]$ and $f(\mathbb{E}[X])$ are finite, then f(E[X]) < E[f(X)].

A. M. Sadeshzadeh Sharif U. T. Certifiable Robustness May 2, 2023

We had

$$\nabla_x \hat{f}(x) = \int f(x - w) \frac{-w}{\sigma^2} g_{\sigma}(w) dw$$

Change of variable: $w = -\sigma z$. We get

$$\nabla_x \hat{f}(x) = \int f(x+\sigma z) \frac{\sigma z}{\sigma^2} g_{\sigma}(-\sigma z) \sigma^d dz = \int f(x+\sigma z) \frac{z}{\sigma} \frac{\sigma^d}{(2\pi)^{d/2} \sigma^d} \exp\{-\frac{\|-\sigma z\|_2^2}{2\sigma^2}\} dz$$
$$= \int f(x+\sigma z) \frac{z}{\sigma} \underbrace{\frac{1}{(2\pi)^{d/2}} \exp\{-\frac{\|z\|_2^2}{2}\}}_{\mathcal{N}(0,I_d)} dz = \mathbb{E}_{z \sim \mathcal{N}(0,I_d)} [f(x+\sigma z) \frac{z}{\sigma}]$$

Therefore, for Lipschitz constant of \hat{f} , we have

$$L_{\hat{f}} \leq \|\nabla_{x} \hat{f}(x)\|_{2} \Rightarrow L_{\hat{f}} \leq \|\mathbb{E}_{z \sim \mathcal{N}(0, I_{d})} \underbrace{\underbrace{f(x + \sigma z)}_{\in [0, 1]} \frac{z}{\sigma}}]\|_{2} \leq \|\mathbb{E}_{z \sim \mathcal{N}(0, I_{d})} [\frac{z}{\sigma}]\|_{2}$$
$$\leq \frac{1}{\sigma} \mathbb{E}_{z \sim \mathcal{N}(0, I_{d})} [\|z\|_{2}] \leq \frac{1}{\sigma} \sqrt{\mathbb{E}_{z \sim \mathcal{N}(0, I_{d})} [\|z\|_{2}^{2}]}$$

Note: Since $f(x) = x^2$ is a convex function, for random variable X, we have $f(\mathbb{E}[g(X)]) \underset{\text{lemonyly in complete}}{\leq} \mathbb{E}[f(g(X))] \Rightarrow \mathbb{E}^2[g(X)] \leq \mathbb{E}[g^2(X)] \Rightarrow \mathbb{E}[g(X)] \leq \sqrt{\mathbb{E}[g^2(X)]}$

We had

$$L_{\hat{f}} \leq \frac{1}{\sigma} \sqrt{\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\|z\|_2^2]}$$

We had

$$L_{\hat{f}} \le \frac{1}{\sigma} \sqrt{\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\|z\|_2^2]}$$

We know

$$\begin{split} \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[\|z\|_2^2] &= \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_1^2 + z_2^2 + \ldots + z_d^2] \\ &= \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_1^2] + \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_2^2] + \ldots + \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_d^2] = 1 + 1 + \ldots + 1 = d \end{split}$$

Recall: For random variable X, $var(X) = E(X^2) - E[X]^2$

We had

$$L_{\hat{f}} \le \frac{1}{\sigma} \sqrt{\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\|z\|_2^2]}$$

We know

$$\begin{split} \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[\|z\|_2^2] &= \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_1^2 + z_2^2 + \ldots + z_d^2] \\ &= \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_1^2] + \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_2^2] + \ldots + \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_d^2] = 1 + 1 + \ldots + 1 = d \end{split}$$

Recall: For random variable X, $var(X) = E(X^2) - E[X]^2$

Finally, we have

$$L_{\hat{f}} \le \frac{\sqrt{d}}{\sigma}$$

However, since the upper bound depends on the dimension of x, it increases as d grows. As $L_{\hat{f}}$ increases, the radios of our certify bound decreases.

A. M. Sadeghzadeh

We had

$$L_{\hat{f}} \le \frac{1}{\sigma} \sqrt{\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\|z\|_2^2]}$$

We know

$$\begin{split} \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[\|z\|_2^2] &= \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_1^2 + z_2^2 + \ldots + z_d^2] \\ &= \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_1^2] + \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_2^2] + \ldots + \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[z_d^2] = 1 + 1 + \ldots + 1 = d \end{split}$$

Recall: For random variable X, $var(X) = E(X^2) - E[X]^2$

Finally, we have

$$L_{\hat{f}} \le \frac{\sqrt{d}}{\sigma}$$

However, since the upper bound depends on the dimension of x, it increases as d grows. As $L_{\hat{f}}$ increases, the radios of our certify bound decreases.

The main issue is that we calculated the Lipschitz constant working for all x in the input space. We know that the robustness of various inputs is different. Hence, we should compute the local **Lipschitz constant** that depends on specific input x.

Lipschitz Constant

$$\exists L \ \forall x, y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Local Lipschitz Constant

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

A. M. Sadeghzadeh

Sharif U. T.

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Local Lipschitz Constant

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

A. M. Sadeghzadeh

Sharif U. T.

Lipschitz Constant

$$\exists L \ \forall x, y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Local Lipschitz Constant

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

A. M. Sadeghzadeh

Sharif U. T.

Lipschitz Constant

$$\exists L \ \forall x, y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Local Lipschitz Constant

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

A. M. Sadeghzadeh

Sharif U. T.

Lipschitz Constant

$$\exists L \ \forall x, y: \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

Local Lipschitz Constant

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

A. M. Sadeghzadeh

Sharif U. T.

Lipschitz Constant

$$\exists L \ \forall x, y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

$$\forall x \ \exists L_x \ \forall y : \ \|f(y) - f(x)\|_2 \le L_x \|y - x\|_2$$

We can write \mathcal{L}_2 as the supremum of an inner product

$$\|\nabla_x \hat{f}\|_2 = \sup_{\|u\|_2 = 1} u.\nabla_x \hat{f} \quad \text{(where } u^* = \frac{\nabla_x \hat{f}}{\|\nabla_x \hat{f}\|_2}\text{)}$$

We can write L_2 as the supremum of an inner product

$$\|\nabla_x \hat{f}\|_2 = \sup_{\|u\|_2 = 1} u \cdot \nabla_x \hat{f} \quad \text{(where } u^* = \frac{\nabla_x \hat{f}}{\|\nabla_x \hat{f}\|_2}\text{)}$$

We know $\nabla_x \hat{f}(x) = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\frac{z}{\sigma} f(x + \sigma z)]$. Therefor, we have

$$\|\nabla_x \hat{f}\|_2 = \sup_{\|u\|_2 = 1} u.\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\frac{z}{\sigma} f(x + \sigma z)]$$

We can write L_2 as the supremum of an inner product

$$\|\nabla_x \hat{f}\|_2 = \sup_{\|u\|_2 = 1} u.\nabla_x \hat{f} \quad \text{(where } u^* = \frac{\nabla_x \hat{f}}{\|\nabla_x \hat{f}\|_2}\text{)}$$

We know $\nabla_x \hat{f}(x) = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\frac{z}{\sigma} f(x + \sigma z)]$. Therefor, we have

$$\|\nabla_x \widehat{f}\|_2 = \sup_{\|u\|_2 = 1} u.\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\frac{z}{\sigma} f(x + \sigma z)]$$

Since expectation and inner product are linear operators, we have

$$\|\nabla_x \hat{f}\|_2 = \sup_{\|u\|_2 = 1} \mathbb{E}_{z \sim \mathcal{N}(0, I_d)} \left[\frac{z \cdot u}{\sigma} f(x + \sigma z) \right]$$

We can write L_2 as the supremum of an inner product

$$\|\nabla_x \hat{f}\|_2 = \sup_{\|u\|_2 = 1} u.\nabla_x \hat{f} \quad \text{(where } u^* = \frac{\nabla_x \hat{f}}{\|\nabla_x \hat{f}\|_2}\text{)}$$

We know $\nabla_x \hat{f}(x) = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)} \left[\frac{z}{\sigma} f(x + \sigma z) \right]$. Therefor, we have

$$\|\nabla_x \widehat{f}\|_2 = \sup_{\|u\|_2 = 1} u.\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\frac{z}{\sigma} f(x + \sigma z)]$$

Since expectation and inner product are linear operators, we have

$$\|\nabla_x \hat{f}\|_2 = \sup_{\|u\|_2 = 1} \mathbb{E}_{z \sim \mathcal{N}(0, I_d)} \left[\frac{z \cdot u}{\sigma} f(x + \sigma z) \right]$$

We want to $\|\nabla_x \hat{f}\|_2$ becomes input-dependent. We assume $p_x = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[f(x + \sigma z)]$. Thus, we have

$$\begin{split} \|\nabla_x \hat{f}\|_2 &= \sup_{\|u\|_2 = 1} \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\frac{z.u}{\sigma} f(x + \sigma z)] \\ &\text{such that} \quad \mathbb{E}_z[f(x + \sigma z)] = p_x \end{split}$$

(See this video for the rest of proof.) Certifiable Robustness

17/25

By taking supremum over u and f, the local Lipschitz constant L_x for input x is as follows

$$L_x \le \frac{1}{\sqrt{2\pi}\sigma} e^{-\{\Phi^{-1}(p_x)\}^2/2}$$

Where Φ is the Cumulative Density Function (CDF) of standard Gaussian distribution $\mathcal{N}(0, I_d)$.

- The bound is input-dependent.
- The bound does not depend on the input dimension d.
- L_x decreases as p_x rises.
- **L**_x decreases as σ rises.

We introduce $\psi(t)$ so that the Lipschitz constant of $\psi(\hat{f}(x))$ is $\frac{1}{\sigma}$. We have

$$\begin{split} \nabla_x \psi(\hat{f}(x)) &= \nabla_x \hat{f}(x). \nabla_{\hat{f}(x)} \psi(\hat{f}(x)) \\ \|\nabla_x \psi(\hat{f}(x))\|_2 &= \|\nabla_x \hat{f}(x)\|_2 |\nabla_{p_x} \psi(p_x)| \end{split}$$

where $\nabla_{p_x}\psi(p_x)$ is a scalar. We know $\|\nabla_x\hat{f}(x)\|_2 \leq \frac{1}{\sqrt{2\pi}\sigma}e^{-\{\Phi^{-1}(p_x)\}^2/2}$. In order to the Lipschitz constant of $\psi(\hat{f}(x))$ be $\frac{1}{\sigma}$, $\nabla_{p_x}\psi(p_x)$ should be

$$\frac{1}{\frac{1}{\sqrt{2\pi}}e^{-\{\Phi^{-1}(p_x)\}^2/2}}$$

Therefore, we have

$$\psi'(p_x) = \frac{1}{\frac{1}{\sqrt{2\pi}}e^{-\{\Phi^{-1}(p_x)\}^2/2}}$$

Recall: The Derivative of the CDF of Standard Normal Distribution

The derivative of the CDF of standard normal distribution $\mathcal{N}(0, I)$

$$\Phi'(t) = \frac{d}{dt} \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-s^2/2} ds = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

Recall: Fundamental Theorem of Calculus

If f(x) is continuous over an interval [a, b], and the function F(x) is defined by

$$F(x) = \int_{a}^{x} f(t)dt,$$

then F'(x) = f(x) over [a, b].

Another way of stating the conclusion of the fundamental theorem of calculus is:

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

The conclusion of the fundamental theorem of calculus can be loosely expressed in words as: "the derivative of an integral of a function is that original function", or "differentiation undoes the result of integration".

We introduce $\psi(t)$ so that the Lipschitz constant of $\psi(\hat{f}(x))$ is $\frac{1}{\sigma}$. We have

$$\nabla_x \psi(\hat{f}(x)) = \nabla_x \hat{f}(x) \cdot \nabla_{\hat{f}(x)} \psi(\hat{f}(x))$$
$$\|\nabla_x \psi(\hat{f}(x))\|_2 = \|\nabla_x \hat{f}(x)\|_2 |\nabla_{p_x} \psi(p_x)|$$

where $\nabla_{p_x} \psi(p_x)$ is a scalar. We know $\|\nabla_x \hat{f}(x)\|_2 \le \frac{1}{\sqrt{2\pi}\sigma} e^{-\{\Phi^{-1}(p_x)\}^2/2}$. In order to the Lipschitz constant of $\psi(\hat{f}(x))$ be $\frac{1}{\sigma}$, $\nabla_{p_x} \psi(p_x)$ should be

$$\frac{1}{\frac{1}{\sqrt{2\pi}}e^{-\{\Phi^{-1}(p_x)\}^2/2}}$$

Therefore, we have

$$\psi'(p_x) = \frac{1}{\frac{1}{\sqrt{2\pi}}e^{-\{\Phi^{-1}(p_x)\}^2/2}} = \left[\Phi'(\Phi^{-1}(p_x))\right]^{-1}$$

Recall:The Derivative of Inverse Function

Given an invertible function y = f(x), the derivative of its inverse function $f^{-1}(y)$ is

$$[f^{-1}]'(y) = \frac{1}{f'(f^{-1}(y))} = [f'(f^{-1}(y))]^{-1}$$

Proof

To see why this is true, start with the function $x=f^{-1}(y)$. Write this as y=f(x) and differentiate both sides implicitly with respect to y using the Chain Rule

$$1 = f'(x).\frac{dx}{dy}$$

Thus

$$\frac{dx}{dy} = \frac{1}{f'(x)}$$

but $x = f^{-1}(y)$. Thus,

$$[f^{-1}]'(y) = \frac{1}{f'[f^{-1}(y)]}$$

A. M. Sadeghzadeh

We introduce $\psi(t)$ so that the Lipschitz constant of $\psi(\hat{f}(x))$ is $\frac{1}{\sigma}$. We have

$$\begin{split} \nabla_x \psi(\hat{f}(x)) &= \nabla_x \hat{f}(x). \nabla_{\hat{f}(x)} \psi(\hat{f}(x)) \\ \|\nabla_x \psi(\hat{f}(x))\|_2 &= \|\nabla_x \hat{f}(x)\|_2 |\nabla_{p_x} \psi(p_x)| \end{split}$$

where $\nabla_{p_x}\psi(p_x)$ is a scalar. We know $\|\nabla_x\hat{f}(x)\|_2 \leq \frac{1}{\sqrt{2\pi}\sigma}e^{-\{\Phi^{-1}(p_x)\}^2/2}$. In order to the Lipschitz constant of $\psi(\hat{f}(x))$ be $\frac{1}{\sigma}$, $\nabla_{p_x}\psi(p_x)$ should be

$$\frac{1}{\frac{1}{\sqrt{2\pi}}e^{-\{\Phi^{-1}(p_x)\}^2/2}}$$

Therefore, we have

$$\psi'(p_x) = \frac{1}{\frac{1}{\sqrt{2\pi}}e^{-\{\Phi^{-1}(p_x)\}^2/2}} = \left[\Phi'(\Phi^{-1}(p_x))\right]^{-1} = \left[\Phi^{-1}\right]'(p_x)$$

Thus

$$\psi(p_x) = \Phi^{-1}(p_x) + c$$

where c is a constant (we set c = 0).

A. M. Sadeghzadeh

Sharif U. T.

Certifiable Robustness for $1/\sigma$ -Lipschitz smoothed classifier

Since, the Lipschitz constant of $\Phi^{-1}(\hat{f}(x))$ is $\frac{1}{\sigma}$, similar to **Theorem 0**, we can show that

$$\underset{i}{\operatorname{argmax}} \ \hat{f}_i(x+\delta) = \underset{i}{\operatorname{argmax}} \ \hat{f}_i(x)$$

for all $\|\delta\|_2 \leq R$, where

$$R = \frac{1}{2L}(\Phi^{-1}(P_A) - \Phi^{-1}(P_B)) = \frac{\sigma}{2}(\Phi^{-1}(P_A) - \Phi^{-1}(P_B)),$$

 $P_A = \max_i \hat{f}_i(x), P_B = \max_{j \neq i} \hat{f}_j(x),$ and $\hat{f}_k(x)$ is the k-th element of the probability vector $\hat{f}(x)$.

Training the Base Classifier

Theorem 1 holds regardless of how the base classifier f is trained.

- If the base classifier f is trained via standard supervised learning on the data distribution, it will see no noisy images during training, and hence will not necessarily learn to classify $\mathcal{N}(x, \sigma^2 I)$ with x's true label.
- Therefore, we **train the base classifier with Gaussian data augmentation** at variance σ^2 .

A. M. Sadeghzadeh

Experiments

Evaluation metric is $\operatorname{certified}$ test set accuracy at radius r defined as

- lacksquare The fraction of the test set which \hat{f} classifies correctly with a prediction that is certifiably robust within an ℓ_2 ball of radius r.
- Thus, to compute **certified accuracy**, we pick a target radius and count the number of points in the test set whose certified radius $r \ge T$ and where the predicted c_A matches the test set label. Standard accuracy is instantiated with T = 0.

CIFAR10 model

- ResNet-110
- \blacksquare n=100000 (use n samples from $f(x+\epsilon)$ to obtain some $\underline{P_A}$ and $\overline{P_B}$.)
- Certifying each example took 15 seconds on an NVIDIA RTX 2080 Ti.

ImageNet model

- ResNet-50
- n = 100000
- certifying each example took 110 seconds.

Experiments

	r = 0.0	r = 0.5	r = 1.0	r = 1.5	r = 2.0	r = 2.5	r = 3.0
$\sigma = 0.25$	0.67	0.49	0.00	0.00	0.00	0.00	0.00
$\sigma = 0.50$	0.57	0.46	0.37	0.29	0.00	0.00	0.00
$\sigma = 1.00$	0.44	0.38	0.33	0.26	0.19	0.15	0.12

Table 2. Approximate certified test accuracy on ImageNet. Each row is a setting of the hyperparameter σ , each column is an ℓ_2 radius. The entry of the best σ for each radius is bolded. For comparison, random guessing would attain 0.001 accuracy.

Experiments

Figure 6. Approximate certified accuracy attained by randomized smoothing on CIFAR-10 (left) and ImageNet (right). The hyperparameter σ controls a robustness/accuracy tradeoff. The dashed black line is an upper bound on the empirical robust accuracy of an undefended classifier with the base classifier's architecture.

Gaussian Smoothing for L_P Attacks

If we use Gaussian smoothing against L_P attacks, for $p \geq 2$ we get

$$r_p = \frac{\sigma}{2d^{\frac{1}{2} - \frac{1}{p}}} (\Phi^{-1}(p_1(x)) - \Phi^{-1}(p_2(x)))$$

Curse of dimensionality: For L_P attacks where p>2, the smoothing-based certificate upper bound decreases as d increases.