VE216 Recitation Class 2 Chapter 1&2

MA, Anlin

UM-SJTU Joint Institute

June 2023

Table of Contents

Chapter 1

2 Impulse / Step Response

3 Convolution

Transformations

- Folding/ Reflection/ Time-reversal y(t) = x(-t)
- Time-scaling y(t) = x(at)
- Time-shifting $y(t) = x(t t_0)$
- Amplitude-reversal y(t) = -x(t)
- Amplitude-scaling y(t) = ax(t)
- Amplitude-shifting y(t) = x(t) + b

$$y(t) = x(at - b) = x(\frac{t - t_0}{w})$$

Signal Characteristics

- Period T: x(t+T) = x(t), T > 0, for any t
 - ▶ Fundamental period T₀: smallest period
 - ▶ Sum of two periodic signals is periodic $\Leftrightarrow \frac{T_1}{T_2}$ is rational
- Average value: $A = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$
- Energy: $E = \int_{-\infty}^{\infty} |x(t)|^2 dt$
 - Energy signal: $E < \infty$
- Average power: $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$
 - ▶ Power signal: $E=\infty \& P < \infty \& P \neq 0$

Singularity Functions

$$\bullet \ \mathsf{u(t)} = \begin{cases} 1, \, t > 0 \\ 0, \, t < 0 \end{cases}$$

• $u(t-t_0)$ turns on at $t=t_0$

$$\bullet \ \text{rect(t)} = \begin{cases} 1, -\frac{1}{2} < t < \frac{1}{2} \\ 0, \textit{otherwise} \end{cases}$$

- ▶ $rect(\frac{t-t_0}{T})$: centered at t_0 with width T
- $\delta(t)$: zero width & infinite height
 - ► Sampling: $x(t) \cdot \delta(t t_0) = x(t_0) \cdot \delta(t t_0)$
 - ► Convolution: $x(t) * \delta(t t_0) = \int_{-\infty}^{\infty} x(t \tau) \cdot \delta(\tau t_0) d\tau = x(t t_0)$
 - ► Shifting: $\int_{-\infty}^{\infty} x(t) \cdot \delta(t t_0) dt = x(t_0)$
 - $\delta(t) = \frac{d}{dt}u(t)$, $u(t) = \int_{-\infty}^{t} \delta(\tau)d\tau$
 - ▶ Unit Area: $\int_{-\infty}^{\infty} \delta(t t_0) dt = 1$, for any t_0
 - Scaling: $\delta(at+b) = \frac{1}{|a|}\delta(t+\frac{b}{a})$, for any $a \neq 0$
 - Algebaic: $t \cdot \delta(t) = 0$

System Characteriscs

- Linearity: $T[a_1x_1(t) + a_2x_2(t)] = a_1T[x_1(t)] + a_2T[x_2(t)]$
 - 1. $x_1(t) \to y_1(t) \& x_2(t) \to y_2(t)$
 - 2. $a_1x_1(t) + a_2x_2(t) \rightarrow y(t)$
 - 3. y(t) vs. $a_1y_1(t) + a_2y_2(t)$
- Stability
 - 1. Assume there exists M_x s.t. $|x(t)| <= M_x < \infty$
 - 2. Substitute in y to see whether y is bounded
- Causal:Depends only on present and past
- Memoryless: Depends only on present
 - ▶ Memoryless → Causal
- Time-Invariance
 - 1. Find $y(t-t_0)$ by replacing every t in y with t- t_0
 - 2. Find the output y_d when input is $x_d = x(t t_0)$
 - 3. $y(t-t_0)$ vs. y_d

Table of Contents

Chapter 1

2 Impulse / Step Response

3 Convolution

Impulse Response

- The output of the system when the input is delta function.
- $y(t)=x(t)*h(t)\leftrightarrow LTI$ system
- An LTI system is completely characterized by h(t).

LTI System Properties & h(t)

- Causality \leftrightarrow h(t)=0 when t< 0
- Static/Memoryless \leftrightarrow h(t)=a $\cdot\delta$ (t)
- BIBO Stable $\leftrightarrow \int_{-\infty}^{\infty} |h(t)| dt < \infty$
- Intertibility \leftrightarrow h(t)* $h_i(t) = \delta(t)$

Step Response

- ullet The output of the system when input is step function u(t)
- $h(t) = \frac{d}{dt}s(t)$

Table of Contents

Chapter 1

2 Impulse / Step Response

Convolution

Convolution Properties

- Commutative: h(t) * x(t) = x(t) * h(t)
- Associative: $[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$
- Distributive: $x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$
- Delay: $x(t) * \delta(t t_0) = x(t t_0)$
- Integration: $\left[\frac{d}{dt}x(t)\right]*h(t) = x(t)*\left[\frac{d}{dt}h(t)\right]$
- $y(at) = (h * x)(at) \neq h(at) * x(at)$

How to Proceed

Discuss Piecewise!

Example

$$rect(\frac{t-2}{3}) * rect(\frac{t+1}{4})$$