Lambda Cálculo Tipado (3/3)

Eduardo Bonelli / Alejandro Ríos

Departamento de Computación, FCEyN, UBA "There may, indeed, be other applications of the system other than its use as a logic"

Alonzo Church, 1932

19 de abril de 2012

Estructura de la clase

Inferencia

Motivación Variables de tipo y sustituciones de tipo Especificación del problema

Unificación

Motivación Definiciones y ejemplos Algoritmo de unificación

Algoritmo de inferencia

Algoritmo de inferencia Ejemplos

Inferencia de tipos

- Problema que consiste en transformar términos sin información de tipos o con información de tipos parcial en términos tipables
- Para ello debe inferirse la información de tipos faltante
- Beneficio para lenguajes con tipos
 - el programador puede obviar algunas declaraciones de tipos
 - en general, evita la sobrecarga de tener que declarar y manipular todos los tipos
 - todo ello sin desmejorar la performance del programa: la inferencia de tipos se realiza en tiempo de compilación

Inferencia de tipos

- Inferencia de tipos es especialmente útil en lenguajes polimórficos
- Nosotros vamos a restringir nuestro estudio a inferencia en Lambda Cálculo Tipado (LC)
- ► Si bien LC no es polimórfico, basta para presentar los conceptos básicos detrás de la inferencia de tipos
- Diremos más sobre polimorfismo à la ML o Haskell al final de la clase
- Algunos nombres importantes en la historia de la inferencia de tipos: Curry, Feys, Hindley, Milner

El problema de la inferencia de tipos

Primero modificamos la sintaxis de los términos de LC eliminando toda anotación de tipos

```
M ::= x
| true \mid false \mid if M then P else Q
| 0 \mid succ(M) \mid pred(M) \mid iszero(M)
| \lambda x : \sigma.M \mid M N \mid
| fix M
```

Denotamos este conjunto de términos con $\Lambda_{\mathcal{T}}$

El problema de la inferencia de tipos

Primero modificamos la sintaxis de los términos de LC eliminando toda anotación de tipos

```
M ::= x
| true | false | if M then P else Q
| 0 | succ(M) | pred(M) | iszero(M)
| \lambda x.M | M N |
| fix M
```

Denotamos este conjunto de términos con A

Función de borrado

Llamaremos $\mathrm{Erase}(\cdot)$ a la función que dado un término de LC elimina las anotaciones de tipos de las abstracciones

 $\operatorname{Erase}: \Lambda_{\mathcal{T}} \longrightarrow \Lambda \text{ se define de la manera esperada}.$

Ejemplo

 $Erase(\lambda x : Nat.\lambda f : Nat \rightarrow Nat.f x) = \lambda x.\lambda f.f x$

Dado un término $U \sin$ anotaciones de tipo, hallar un término estándar (i.e. con anotaciones de tipos) M tal que

- 1. $\Gamma \triangleright M : \sigma$, para algún Γ y σ , y
- 2. Erase(M) = U

Ejemplos

▶ Para $U = \lambda x.x + 5$ tomamos $M = \lambda x : Nat.x + 5$ (observar que no hay otra posibilidad)

Dado un término $U \sin$ anotaciones de tipo, hallar un término estándar (i.e. con anotaciones de tipos) M tal que

- 1. $\Gamma \triangleright M : \sigma$, para algún Γ y σ , y
- 2. Erase(M) = U

- ▶ Para $U = \lambda x.x + 5$ tomamos $M = \lambda x : Nat.x + 5$ (observar que no hay otra posibilidad)
- ▶ Para $U = \lambda x.\lambda f.fx$ tomamos $M_{\sigma,\tau} = \lambda x: \sigma.\lambda f: \sigma \to \tau.fx$ (hay un $M_{\sigma,\tau}$ por cada σ,τ)

Dado un término $U \sin$ anotaciones de tipo, hallar un término estándar (i.e. con anotaciones de tipos) M tal que

- 1. $\Gamma \triangleright M : \sigma$, para algún Γ y σ , y
- 2. Erase(M) = U

- ▶ Para $U = \lambda x.x + 5$ tomamos $M = \lambda x : Nat.x + 5$ (observar que no hay otra posibilidad)
- ▶ Para $U = \lambda x.\lambda f.fx$ tomamos $M_{\sigma,\tau} = \lambda x: \sigma.\lambda f: \sigma \to \tau.fx$ (hay un $M_{\sigma,\tau}$ por cada σ,τ)
- ▶ Para $U = \lambda x.\lambda f.f(fx)$ tomamos $M_{\sigma} = \lambda x : \sigma.\lambda f : \sigma \to \sigma.f(fx)$ (hay un M_{σ} por cada σ)

Dado un término $U \sin$ anotaciones de tipo, hallar un término estándar (i.e. con anotaciones de tipos) M tal que

- 1. $\Gamma \triangleright M : \sigma$, para algún Γ y σ , y
- 2. Erase(M) = U

- ▶ Para $U = \lambda x.x + 5$ tomamos $M = \lambda x : Nat.x + 5$ (observar que no hay otra posibilidad)
- ▶ Para $U = \lambda x.\lambda f.fx$ tomamos $M_{\sigma,\tau} = \lambda x: \sigma.\lambda f: \sigma \to \tau.fx$ (hay un $M_{\sigma,\tau}$ por cada σ,τ)
- ▶ Para $U = \lambda x.\lambda f.f(fx)$ tomamos $M_{\sigma} = \lambda x : \sigma.\lambda f : \sigma \to \sigma.f(fx)$ (hay un M_{σ} por cada σ)
- ▶ Para U = xx no existe ningún M con la propiedad deseada

El problema del chequeo de tipos

chequeo de tipos ≠ inferencia de tipos

Chequeo de tipos

Dado un término estándar M determinar si existe Γ y σ tales que $\Gamma \rhd M : \sigma$ es derivable.

- Es mucho más fácil que el problema de la inferencia
- Consiste simplemente en seguir la estructura sintáctica de M para reconstruir una derivación del juicio
- ▶ Es esencialmente equivalente a determinar, dados Γ y σ , si $\Gamma \rhd M$: σ es derivable.

Variables de tipo

- ▶ Dado $\lambda x.\lambda f.f(fx)$, para cada σ , $M_{\sigma} = \lambda x : \sigma.\lambda f : \sigma \rightarrow \sigma.f(fx)$ es un solución posible
- ¿De qué manera podemos escribir una única expresión que englobe a todas ellas? Usando variables de tipo
 - ► Todas las soluciones se pueden representar con

$$\lambda x : s.\lambda f : s \rightarrow s.f(fx)$$

- "s" es una variable de tipos que representa una expresión de tipos arbitraria
- Si bien esta expresión no es una solución en sí misma, la sustitución de s por cualquier expresión de tipos sí arroja una solución válida

Variables de tipo

Extendemos las expresiones de tipo de LC con variables de tipo s, t, u,...

$$\sigma$$
 ::= $s \mid Nat \mid Bool \mid \sigma \rightarrow \tau$

- ightharpoonup Denotamos con $\mathcal V$ al conjunto de variables de tipo
- lacktriangle Denotamos con ${\mathcal T}$ al conjunto de tipos así definidos

- ightharpoonup s
 ightharpoonup t
- ▶ $Nat \rightarrow Nat \rightarrow t$
- ▶ $Bool \rightarrow t$

► Función que mapea variables de tipo en expresiones de tipo.

Usamos S, T, etc. para sustituciones.

Formalmente, $S: \mathcal{V} \longrightarrow \mathcal{T}$

► Función que mapea variables de tipo en expresiones de tipo.

Usamos S, T, etc. para sustituciones.

Formalmente, $S: \mathcal{V} \longrightarrow \mathcal{T}$

Sólo nos interesan las S tales que $\{t \in \mathcal{V} \mid St \neq t\}$ es finito.

▶ Una sustitución S puede aplicarse (de manera natural) a

► Función que mapea variables de tipo en expresiones de tipo.

Usamos S, T, etc. para sustituciones.

Formalmente, $S: \mathcal{V} \longrightarrow \mathcal{T}$

- Una sustitución S puede aplicarse (de manera natural) a
 - 1. una expresión de tipos σ (escribimos $S\sigma$)

► Función que mapea variables de tipo en expresiones de tipo.

Usamos S, T, etc. para sustituciones.

Formalmente, $S: \mathcal{V} \longrightarrow \mathcal{T}$

- Una sustitución S puede aplicarse (de manera natural) a
 - 1. una expresión de tipos σ (escribimos $S\sigma$)
 - 2. un término *M* (escribimos *SM*)

► Función que mapea variables de tipo en expresiones de tipo.

Usamos S, T, etc. para sustituciones.

Formalmente, $S: \mathcal{V} \longrightarrow \mathcal{T}$

- Una sustitución S puede aplicarse (de manera natural) a
 - 1. una expresión de tipos σ (escribimos $S\sigma$)
 - 2. un término *M* (escribimos *SM*)
 - 3. un contexto de tipado $\Gamma = \{x_1 : \sigma_1, \dots, x_n : \sigma_n\}$ (escribimos $S\Gamma$ y lo definimos como sigue)

$$S\Gamma \stackrel{\mathrm{def}}{=} \{x_1 : S\sigma_1, \dots, x_n : S\sigma_n\}$$

Sustitución - Nociones adicionales

- ▶ El conjunto $\{t \mid St \neq t\}$ se llama soporte de S
- ► El soporte representa las variables que S "afecta"
- ▶ Usamos la notación $\{\sigma_1/t_1, \ldots, \sigma_n/t_n\}$ para la sustitución con soporte $\{t_1, \ldots, t_n\}$ definida de la manera obvia
- La sustitución cuyo soporte es ∅ es la sustitución identidad y la notamos Id

Instancia de un juicio de tipado

Un juicio de tipado $\Gamma' \rhd M' : \sigma'$ es una instancia de $\Gamma \rhd M : \sigma$ si existe una sustitución de tipos S tal que

$$\Gamma' = S\Gamma$$
, $M' = SM$ y $\sigma' = S\sigma$

Propiedad

Si $\Gamma \rhd M$: σ es derivable, entonces cualquier instancia del mismo también lo es

Función de Inferencia $\mathbb{W}(\cdot)$

Definir una función $\mathbb{W}(\cdot)$ que dado un término U sin anotaciones verifica

Corrección $\mathbb{W}(U) = \Gamma \triangleright M : \sigma$ implica

- ▶ Erase(M) = U y
- $ightharpoonup \Gamma
 ightharpoonup M : \sigma$ es derivable

Completitud Si $\Gamma \triangleright M$: σ es derivable y Erase(M) = U, entonces

- $ightharpoonup \mathbb{W}(U)$ tiene éxito y
- ▶ produce un juicio $\Gamma' \triangleright M' : \sigma'$ tal que $\Gamma \triangleright M : \sigma$ es instancia del mismo (se dice que $\mathbb{W}(\cdot)$ computa un tipo principal)

Inferencia

Unificación

Motivación

Definiciones y ejemplos Algoritmo de unificación

Algoritmo de inferencia

Unificación

- ► El algoritmo de inferencia analiza un término (sin anotaciones de tipo) a partir de sus subtérminos
- Una vez obtenida la información inferida para cada uno de los subtérminos debe
 - 1. (Consistencia) Determinar si la información de cada subtérmino es consistente
 - (Síntesis) Sintetizar la información del término original a partir de la información de sus subtérminos

Ejemplo

Consideremos el término x y + x(y + 1)

- ▶ Del análisis de xy surge que $x :: s \rightarrow t$ e y :: s
- ▶ Del análisis de x(y+1) surge que $x :: Nat \rightarrow u$ e y :: Nat
- Dado que una variable puede tener un sólo tipo debemos compatibilizar la información de tipos
 - ▶ El tipo $s \rightarrow t$ debe ser compatible o unificable con $Nat \rightarrow u$ dado que ambos se refieren a x
 - ► El tipo s debe ser compatible o unificable con Nat dado que ambos se refieren a y

Unificación

- ▶ ¿El tipo $s \rightarrow t$ es compatible o unificable con $Nat \rightarrow u$? Sí
 - ▶ Basta tomar la sustitución $S \stackrel{\text{def}}{=} \{Nat/s, u/t\}$
 - lacksquare Y observar que $S(s
 ightarrow t) = \mathit{Nat}
 ightarrow u = S(\mathit{Nat}
 ightarrow u)$
- ▶ ¿El tipo s es compatible o unificable con Nat? Sí
 - La sustitución antedicha es tal que Ss = SNat

El proceso de determinar si existe una sustitución S tal que dos expresiones de tipos σ, τ son unificables (ie. $S\sigma = S\tau$) se llama unificación

► Vamos a estudiar con precisión el proceso de unificación, repasando antes algunos conceptos básicos sobre sustituciones

Composición de sustituciones

La composición de S y T, denotada $S \circ T$, es la sustitución que se comporta como sigue:

$$(S \circ T)(\sigma) = S(T\sigma)$$

Ejemplo

Sea $S = \{u \rightarrow Bool/t, Nat/s\}$ y $T = \{v \times Nat/u, Nat/s\}$, entonces $T \circ S = \{(v \times Nat) \rightarrow Bool/t, v \times Nat/u, Nat/s\}$

- ▶ Decimos que S = T si tienen el mismo soporte y St = Tt para todo t en el soporte de S
- \triangleright $S \circ Id = Id \circ S = S$
- $S \circ (T \circ U) = (S \circ T) \circ U$

Preorden sobre sustituciones

Una sustitución S es más general que T si existe U tal que $T = U \circ S$.

► La idea es que S es más general que T porque T se obtiene instanciando S

Unificador

Una ecuación de unificación es una expresión de la forma $\sigma_1 \doteq \sigma_2$. Una sustitución S es una solución de un conjunto de ecuaciones de unificación $\{\sigma_1 \doteq \sigma'_1, \ldots, \sigma_n \doteq \sigma'_n\}$ si $S\sigma_1 = S\sigma'_1, \ldots, S\sigma_n = S\sigma'_n$

- ► La sustitución $\{Bool/v, Bool \times Nat/u\}$ es solución de $\{v \times Nat \rightarrow Nat \doteq u \rightarrow Nat\}$
- ▶ $\{Bool \times Bool/v, (Bool \times Bool) \times Nat/u\}$ también!
- $\{v \times Nat/u\}$ también!
- ▶ ${Nat \rightarrow s \doteq t \times u}$ no tiene solución
- ▶ $\{u \rightarrow Nat \doteq u\}$ no tiene solución

Unificador más general (MGU)

Una sustitución S es un MGU de $\{\sigma_1 \doteq \sigma'_1, \ldots, \sigma_n \doteq \sigma'_n\}$ si

- 1. es solución de $\{\sigma_1 \doteq \sigma'_1, \dots, \sigma_n \doteq \sigma'_n\}$
- 2. es más general que cualquier otra solución de $\{\sigma_1 \doteq \sigma'_1, \dots, \sigma_n \doteq \sigma'_n\}$

- La sustitución {Bool/v, Bool × Nat/u} es solución de {v × Nat → Nat = u → Nat} pero no es un MGU pues es instancia de la solución {v × Nat/u}
- $\{v \times Nat/u\}$ es un MGU del conjunto

Algoritmo de unificación

Teorema

Si $\{\sigma_1 \doteq \sigma_1', \dots, \sigma_n \doteq \sigma_n'\}$ tiene solución, existe un MGU y además es único salvo renombre de variables

- ► Entrada:
 - ▶ Conjunto de ecuaciones de unificación $\{\sigma_1 \doteq \sigma_1', \dots, \sigma_n \doteq \sigma_n'\}$
- Salida:
 - ▶ MGU S de $\{\sigma_1 \doteq \sigma'_1, \ldots, \sigma_n \doteq \sigma'_n\}$, si tiene solución
 - ▶ falla, en caso contrario

Algoritmo de Martelli-Montanari

- Vamos a presentar un algoritmo no-determinístico
- Consiste en reglas de simplificación que simplifican conjuntos de pares de tipos a unificar (goals)

$$G_0 \mapsto G_1 \mapsto \ldots \mapsto G_n$$

- ► Las secuencias que terminan en el goal vacío son exitosas; aquellas que terminan en falla son fallidas
- Algunos pasos de simplificación llevan una sustitución que representa una solución parcial al problema

$$G_0 \mapsto G_1 \mapsto_{S_1} G_2 \mapsto \ldots \mapsto_{S_k} G_n$$

▶ Si la secuencia es exitosa el MGU es $S_k \circ ... \circ S_1$

Reglas del algoritmo de Martelli-Montanari

1. Descomposición

$$\begin{aligned} &\{\sigma_1 \rightarrow \sigma_2 \doteq \tau_1 \rightarrow \tau_2\} \cup \textit{G} \mapsto \{\sigma_1 \doteq \tau_1, \sigma_2 \doteq \tau_2\} \cup \textit{G} \\ &\{\textit{Nat} \doteq \textit{Nat}\} \cup \textit{G} \mapsto \textit{G} \\ &\{\textit{Bool} \doteq \textit{Bool}\} \cup \textit{G} \mapsto \textit{G} \end{aligned}$$

2. Eliminación de par trivial $\{s \doteq s\} \cup G \mapsto G$

- 3. **Swap**: si σ no es una variable $\{\sigma \doteq s\} \cup G \mapsto \{s \doteq \sigma\} \cup G$
- 4. Eliminación de variable: si $s \notin FV(\sigma)$ $\{s \doteq \sigma\} \cup G \mapsto_{\{\sigma/s\}} \{\sigma/s\}G$
- 5. Falla $\{\sigma \doteq \tau\} \cup G \mapsto \mathtt{falla}, \ \mathsf{con}\ (\sigma, \tau) \in T \cup T^{-1} \ \mathsf{y}$ $T = \{(\mathit{Bool}, \mathit{Nat}), (\mathit{Nat}, \sigma_1 \to \sigma_2), (\mathit{Bool}, \sigma_1 \to \sigma_1)\}$
- 6. Occur check: si $s \neq \sigma$ y $s \in FV(\sigma)$ $\{s \doteq \sigma\} \cup G \mapsto falla$

Ejemplo de secuencia exitosa

$$\{ (Nat \rightarrow r) \rightarrow (r \rightarrow u) \stackrel{.}{=} t \rightarrow (s \rightarrow s) \rightarrow t \}$$

$$\rightarrow^{1} \qquad \{ Nat \rightarrow r \stackrel{.}{=} t, r \rightarrow u \stackrel{.}{=} (s \rightarrow s) \rightarrow t \}$$

$$\rightarrow^{3} \qquad \{ t \stackrel{.}{=} Nat \rightarrow r, r \rightarrow u \stackrel{.}{=} (s \rightarrow s) \rightarrow t \}$$

$$\rightarrow^{4} \qquad \{ r \rightarrow u \stackrel{.}{=} (s \rightarrow s) \rightarrow (Nat \rightarrow r) \}$$

$$\rightarrow^{4} \qquad \{ r \stackrel{.}{=} s \rightarrow s, u \stackrel{.}{=} Nat \rightarrow r \}$$

$$\rightarrow^{4} \qquad \{ u \stackrel{.}{=} Nat \rightarrow (s \rightarrow s) \}$$

$$\rightarrow^{4} \qquad Nat \rightarrow (s \rightarrow s)/u \qquad \emptyset$$

► EI MGU es $\{Nat \rightarrow (s \rightarrow s)/u\} \circ \{s \rightarrow s/r\} \circ \{Nat \rightarrow r/t\} = \{Nat \rightarrow (s \rightarrow s)/t, s \rightarrow s/r, Nat \rightarrow (s \rightarrow s)/u\}$

Ejemplo de secuencia fallida

Propiedades del algoritmo

Teorema

- ► El algoritmo de Martelli-Montanari siempre termina
- ▶ Sea *G* un conjunto de pares
 - si G tiene un unificador, el algoritmo termina exitosamente y retorna un MGU
 - ▶ si G no tiene unificador, el algoritmo termina con falla

Inferencia

Unificación

Algoritmo de inferencia Algoritmo de inferencia Ejemplos

Algoritmo de inferencia

- Vamos a presentar un algoritmo de inferencia para LC
- ▶ El objetivo es definir $\mathbb{W}(U)$ por recursión sobre la estructura de U
- ▶ Primero presentamos la cláusulas que definen W(.) sobre las constantes y las variables, luego pasamos a las demás construcciones
- Utilizaremos el algoritmo de unificación

Algoritmo de inferencia (caso constantes y variables)

```
\mathbb{W}(0) \stackrel{\text{def}}{=} \emptyset \rhd 0 : Nat
\mathbb{W}(true) \stackrel{\text{def}}{=} \emptyset \rhd true : Bool
\mathbb{W}(false) \stackrel{\text{def}}{=} \emptyset \rhd false : Bool
\mathbb{W}(x) \stackrel{\text{def}}{=} \{x : s\} \rhd x : s, \quad s \text{ variable fresca}
```

Algoritmo de inferencia (caso succ)

- ▶ Sea $\mathbb{W}(U) = \Gamma \triangleright M : \tau$
- ▶ Sea $S = MGU\{\tau \doteq Nat\}$
- Entonces

$$\mathbb{W}(\operatorname{succ}(U)) \stackrel{\text{def}}{=} S\Gamma \rhd S \operatorname{succ}(M) : Nat$$

Nota: Caso pred es similar

Algoritmo de inferencia (caso iszero)

- ▶ Sea $\mathbb{W}(U) = \Gamma \triangleright M : \tau$
- ▶ Sea $S = MGU\{\tau \doteq Nat\}$
- Entonces

$$\mathbb{W}(iszero(U)) \stackrel{\text{def}}{=} S\Gamma \triangleright S iszero(M) : Bool$$

Algoritmo de inferencia (caso ifThenElse)

- Sea
 - $\mathbb{W}(U) = \Gamma_1 \rhd M : \rho$ $\mathbb{W}(V) = \Gamma_2 \rhd P : \sigma$
 - $\blacktriangleright \ \mathbb{W}(W) = \Gamma_3 \triangleright Q : \tau$
- Sea

$$S = MGU(\{\sigma_1 \doteq \sigma_2 \mid x : \sigma_1 \in \Gamma_i \land x : \sigma_2 \in \Gamma_j, i \neq j\} \cup \{\sigma \doteq \tau, \ \rho \doteq Bool\})$$

Entonces

$$\mathbb{W}(if \ U \ then \ V \ else \ W) \stackrel{\text{def}}{=} S\Gamma_1 \cup S\Gamma_2 \cup S\Gamma_3 \rhd S(if \ M \ then \ P \ else \ Q) : S\sigma$$

Algoritmo de inferencia (caso aplicación)

- Sea
 - $\blacktriangleright W(U) = \Gamma_1 \triangleright M : \tau$
 - \blacktriangleright $\mathbb{W}(V) = \Gamma_2 \triangleright N : \rho$
- Sea

$$S = MGU(\{\sigma_1 \doteq \sigma_2 \mid x : \sigma_1 \in \Gamma_1 \land x : \sigma_2 \in \Gamma_2\}$$

$$\cup$$

$$\{\tau \doteq \rho \rightarrow t\}) \quad \text{con } t \text{ una variable fresca}$$

Entonces

$$\mathbb{W}(\red{U}\red{V}) \stackrel{\text{def}}{=} S\Gamma_1 \cup S\Gamma_2 \rhd S(MN) : St$$

Algoritmo de inferencia (caso abstracción)

- ► Sea $\mathbb{W}(U) = \Gamma \triangleright M : \rho$
- Si el contexto tiene información de tipos para x (i.e. $x : \tau \in \Gamma$ para algún τ), entonces

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma \setminus \{x : \tau\} \rhd \lambda x : \tau. M : \tau \to \rho$$

Si el contexto no tiene información de tipos para x
 (i.e. x ∉ Dom(Γ)) elegimos una variable fresca s y entonces

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma \rhd \lambda x : s. M : s \to \rho$$

Algoritmo de inferencia (caso fix)

- ▶ Sea $\mathbb{W}(U) = \Gamma \triangleright M : \tau$
- ▶ Sea $S = MGU\{\tau \doteq t \rightarrow t\}$, t variable fresca

$$\mathbb{W}(fix(U)) \stackrel{\text{def}}{=} S\Gamma \rhd S fix(M) : St$$

Ejemplo

- Vamos a mostrar cómo inferir el tipo de if true then succ(x y) else x (succ(y))
- Aplicaremos el algoritmo, paso por paso

Ejemplo (1/4)

if true then succ(x y) else x(succ(y))

 $\mathbb{W}(true) = \emptyset \triangleright true : Bool$

Ejemplo (2/4)

if true then succ(x y) else x(succ(y))

Ejemplo (3/4)

if true then succ(x y) else x(succ(y))

Ejemplo (4/4)

$$M = if true then succ(x y) else x (succ(y))$$

```
▶ \mathbb{W}(true) = \emptyset \rhd true : Bool

▶ \mathbb{W}(succ(xy)) = \{x : t \to Nat, y : t\} \rhd succ(xy) : Nat

▶ \mathbb{W}(x succ(y)) = \{x : Nat \to w, y : Nat\} \rhd x succ(y) : w

\mathbb{W}(M) = \{x : Nat \to Nat, y : Nat\} \rhd M : Nat

donde S = MGU(\{t \to Nat \doteq Nat \to w, t \doteq Nat, Nat \doteq w\}) = \{Nat/t, Nat/w\}
```

Un ejemplo de falla

M = if true then x 2 else x true

Complejidad

- ► Tanto la unificación como la inferencia para LC se puede hacer en tiempo lineal
- ► El tipo principal asociado a un término sin anotaciones puede ser exponencial en el tamaño del término

Considerar inferir el tipo de $P^n M$ con $P: s \rightarrow s \times s$ y $M: \sigma$

- ¿Esto no contradice lo antedicho?
- No. Se pueden representar usando dags en cuyo caso el tamaño del tipo principal de U será O(n)
- ► NB: En la presencia de polimorfismo la inferencia es exponencial

Let-Polymorphism

▶ Los lenguajes funcionales como ML, Haskell, etc. permiten tipos polimórficos de la forma

$$\forall s_1 \dots s_n \sigma \ (\sigma \ \text{sin} \ \text{cuantificadores})$$

- ► Este tipo de polimorfismo restringido se llama predicativo
- ► En particular no se pueden definir funciones que tomen a otras funciones polimórficas como argumento

Let-Polymorphism

```
Prelude> (\f-> (f True, f 3)) (\x -> 5)
ERROR - Illegal Haskell 98 class constraint in inferred type
*** Expression : (\f -> (f True, f 3)) (\x -> 5)
*** Type : Num Bool => (Integer, Integer)

Prelude> (\f-> (f True, f 3)) id
ERROR - Illegal Haskell 98 class constraint in inferred type
*** Expression : (\f -> (f True, f 3)) id
*** Type : Num Bool => (Bool, Bool)
```

Let-Polymorphism

 Para poder declarar y usar funciones polimórficas se introduce la construcción let

```
Prelude> let g = x->5 in (g True, g 3) (5,5)
```

- Polimorfismo predicativo con declaraciones let polimórficas forman el núcleo (básico) del sistema de tipos de ML y Haskell
- La inferencia de tipos para este sistema es muy similar a aquella vista hoy
- ▶ Para más detalles consultar capítulo 11 del texto de Mitchell o capítulo 22 del texto de Pierce