EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 2B

1. Two capacitors

- (a) Using nodal analysis, find the differential equation describing $V_2(t)$ after the switch closes $(t \ge 0)$.
- (b) Assuming $V_1(0) = 10V$ and $V_2(0) = 5V$, find the solution to the differential equation found in part (a). Use component values $C_1 = 1$ fF, $C_2 = 4$ fF, and $C_2 = 1$ fF, and $C_3 = 1$ fF.
- (c) How does $V_2(t = \infty)$ compare with what we expect from 16A (charge sharing)?
- (d) Calculate the energy stored in C_1 and C_2 versus time.
- (e) Find the difference in total energy stored in the capacitors at $t = \infty$ and t = 0.
- (f) Calculate the energy dissipated by the resistor. Compare it to the difference in the total energy stored in the capacitors at t = 0 and $t = \infty$.

2. RC Circuit Variants

Circuit A on left, circuit B on right

- (a) Using nodal analysis, find and solve the differential equation describing V after the switch closes $(t \ge 0)$ in circuit A. Assume the capacitor is initially discharged $(V(t \le 0) = 0V)$.
- (b) Using nodal analysis, find and solve the differential equation describing $V_1 + V_2$ (the total voltage across the capacitors) after the switch closes $(t \ge 0)$ in circuit B. Assume both capacitors are initially discharged $(V_1(t \le 0) = V_2(t \le 0) = 0)$.

Circuit C on left, circuit D on right

- (c) Using nodal analysis, find and solve the differential equation describing V_1 (the total voltage across the capacitors) after the switch closes $(t \ge 0)$ in circuit C. Assume both capacitors are initially discharged $(V_1(t \le 0) = V_2(t \le 0) = 0)$.
- (d) Using nodal analysis, find and solve the differential equation describing $V_1 + V_3$ (the total voltage across the capacitors) after the switch closes $(t \ge 0)$ in circuit D. Assume all capacitors are initially discharged $(V_1(t \le 0) = V_2(t \le 0) = V_3(t \le 0) = 0)$.

Contributors:

- Kyle Tanghe.
- · Jaymo Kang.