

Cross Modality Learning on Proteins (ECEN 766 Final Project)

Shaowen Zhu April 30th, 2020

- Introduction
- Methods and Results
 - Data Process
 - Sequence to Secondary Structure
 - Sequence to Fold
- **Conclusion and Future Work**

Protein Modalities

Protein is an essential kind of nutrition materials which can be represented in different modalities.

1-D: AA (amino acid) sequence, SS (secondary structure)

2-D: contact map, distance matrix

3-D: structure

What is the relationship between the modalities and can one modality help to learn another?

Modalities Translation

Structure to others: DSSP

Sequence to SS: <u>SCRATCH</u>, <u>TAPE Transformer</u>

Seq & SS & PSSM & SA to Structure (Fold): DeepSF

Most SOTA methods are based on MSA (multiple sequence alignment) and can be rather time-consuming (minutes for just one sequence). How can we model the relationship and make the the prediction directly on the sequence?

Project Idea

- **♦** Introduction
- Methods and Results
 - Data Process
 - Sequence to Secondary Structure
 - Sequence to Fold
- **Conclusion and Future Work**

Data Process

This project is based on the ASTRAL SCOPe 2.07 Dataset with less than

40% identity.

• Remove the sequences with missing residues or abnormal residues.

- Remove the sequence longer than 512.
- Only consider single-chain proteins.
- For Seq2Fold, only consider the folds with at least 3 sequences.

	a	b	С	d	е	f	g
S2S	2497	2793	3924	3405	233	253	709
S2F	2276	2681	3868	3141	178	206	632

Sequence to SS

Focus only on protein segments to predict the local structure.

Window Size	SV	/M	FCNN	
	linear	rbf		
3	0.539 / 0.722	0.539 / 0.722	0.553 / 0.706	
	1246.3 / 0.772	1511.9 / 1.043	221.5 / 0.045	
5	0.585 / 0.762	0.587 / 0.770	0.591 / 0.738	
	2950.0 / 1.326	1806.1 / 1.984	226.0 / 0.032	
7	0.616 / 0.794	0.616 / 0.802	0.611 / 0.833	
	5812.0 / 1.639	2248.3 / 2.010	230.1 / 0.057	

DeepSF

DeepSF is an 1-D CNN that can predict the fold of given sequences.

Sequence to Fold

Sequence to Fold

Accuracy	DeepSF (AA)	DeepSF (AA + SS _{pre})	DeepSF (AA + SS)
Top 1	0.122	0.131	0.502
Top 5	0.307	0.317	0.757
Top 10	0.422	0.438	0.830
Top 15	0.503	0.507	0.879
Top 20	0.558	0.569	0.903

- **♦** Introduction
- Methods and Results
 - Data Process
 - Sequence to Secondary Structure
 - Sequence to Fold
- **♦** Conclusion and Future Work

Conclusion Future Work

This project provided a quick and efficient method to predict the protein SS, and showed that SS can help to improve the SF model performance.

Future Work:

- Other sequence-based models for SS (Transformer, Seq2Seq, ...)
- Test whether some other modalities can be efficiently predicted and applied to help the fold prediction.

