GEM a soustavy lineárních rovnic, část 1

Odpřednesenou látku naleznete v kapitole 6 skript *Abstraktní a konkrétní lineární algebra*.

Minulé přednášky

- Matice jako (speciální) lineární zobrazení. Obecná lineární zobrazení lze representovat maticí (vzhledem k zadaným bázím).
- Algebra matic (sčítání matic, násobení matic skalárem, násobení matic mezi sebou).
- 3 Zápis $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ kóduje soustavu lineárních rovnic.

Dnešní přednáška

 Gaussova eliminační metoda (GEM) jako universální a systematická metoda řešení soustav lineárních rovnic (nad \mathbb{F}).

Příští přednáška

- Maticové rovnice.
- 4 Hledání soustav, které mají zadané řešení.

Připomenutí (maticový zápis soustavy lineárních rovnic)

Zápis $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, kde \mathbf{A} je matice typu $r \times s$ nad \mathbb{F} , \mathbf{x} je v \mathbb{F}^s a \mathbf{b} je v \mathbb{F}^r , kóduje soustavu lineárních rovnic nad \mathbb{F} .

Terminologie: A je matice soustavy, b je pravá strana rovnice, x je vektor neznámých. Matice $(\mathbf{A} \mid \mathbf{b})$ (také: $(\mathbf{a}_1, \dots, \mathbf{a}_s \mid \mathbf{b})$) je rozšířená matice soustavy.

Například

$$\begin{pmatrix} 2 & -4 & 4 \\ 2 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 12 \\ -42 \end{pmatrix}$$

je zápis soustavy

$$2x_1 - 4x_2 + 4x_3 = 12$$

 $2x_1 + x_3 = -42$

 $\mathsf{nad}\ \mathbb{R}$.

Připomenutí (dva pohledy na řešení soustav)

Pro soustavu

$$\left(\begin{array}{cc|c} 1 & -1 & 4 \\ 2 & 1 & 5 \end{array}\right)$$

nad ℝ je řešení

• Průsečík dvou přímek: x - y = 4 a 2x + y = 5:

Připomenutí (dva pohledy na řešení soustav, pokrač.)

2 Pravá strana je lineární kombinací sloupců matice soustavy $\begin{pmatrix} 1 & -1 & | & 4 \\ 2 & 1 & | & 5 \end{pmatrix}$

Řešení jsou koeficienty této lineární kombinace.

Výhoda druhého pohledu na řešení soustav

Koeficienty lineární kombinace situace napravo se najdou snadno.

Gaussova eliminační metoda je přesně postupné převádění vhodnými isomorfismy do příjemné polohy!

Ve zbytku přednášky

• Nejprve se zaměříme na problém řešení soustav tvaru $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$.

Konvence: Nebude-li řečeno jinak, je soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ ve zbytku přednášky soustavou r rovnic o s neznámých nad \mathbb{F} .

Soustavy budeme většinou zapisovat rozšířenou maticí ($\mathbf{A} \mid \mathbf{b}$) nebo ($\mathbf{a}_1, \dots, \mathbf{a}_s \mid \mathbf{b}$).

Zformulujeme a dokážeme důležitý výsledek: Frobeniovu větu o řešitelnosti soustav lineárních rovnic.

- ② Poté vyřešíme obecný problém maticových rovnic $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$.
- Jako technický prostředek použijeme Gaussovu eliminační metodu (zkráceně: GEM). GEM převádí matice (a tím i soustavy) na "příjemný" tvar.

Definice (horní blokový tvar matice)

Matice M je v horním blokovém tvaru, jsou-li splněny následující dvě podmínky:^a

- M je nad jakýmkoli řádkem samých nul.
- Každý pivot (tj. nenulová položka první zleva) jakéhokoli nenulového řádku matice **M** je vždy více napravo než pivot předchozího řádku.

Příklad

Je v horním blokovém tvaru.

Není v horním blokovém tvaru.

^aPozorování: **M** je v horním blokovém tvaru iff (**M** | **o**) je v horním blokovém tvaru.

Věta (Gaussova eliminační metoda (GEM) nad F)

Jakoukoli matici **M** nad \mathbb{F} lze konečným počtem tzv. řádkových elementárních úprav převést na horní blokový tvar. Řádkové elementární úpravy jsou tří typů:

- (I) Přičtení skalárního násobku řádku matice k jinému řádku matice.
- (II) Prohození dvou řádků v matici.
- (III) Vynásobení řádku matice nenulovým skalárem.

Důkaz.

Nebudeme dělat (viz skripta, Věta 6.3.10.).

Poznámky

GEM: použití řádkových elementárních úprav dané matice s cílem zapsat danou matici v horním blokovém tvaru. Při dosažení tohoto tvaru říkáme, že GEM skončila.

Příklad (Přičtení skalárního násobku řádku k řádku)

$$\text{At' } \mathbf{M} = \begin{pmatrix} 2 & 3 & 5 & 8 \\ 4 & 1 & 7 & 3 \\ 5 & 2 & 6 & 4 \end{pmatrix} \text{ a at' } \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}.$$

Platí

$$\mathbf{P} \cdot \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 5 & 8 \\ 4 & 1 & 7 & 3 \\ 5 & 2 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 5 & 8 \\ 4 & 1 & 7 & 3 \\ 11 & 11 & 21 & 28 \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 \\ R_3 + 3R_1 \end{pmatrix}$$

Tudíž: přičtení skalárního násobku řádku k danému řádku je dáno isomorfismem $\mathbf{P}:\mathbb{R}^3\to\mathbb{R}^3$, aplikovaným na čtveřici vektorů $\mathbf{M}=(\mathbf{m}_1,\mathbf{m}_2,\mathbf{m}_3,\mathbf{m}_4)$ z \mathbb{R}^3 .

Příklad (prohození dvou řádků v matici)

$$\text{At' } \mathbf{M} = \begin{pmatrix} 2 & 3 & 5 & 8 \\ 4 & 1 & 7 & 3 \\ 5 & 2 & 6 & 4 \end{pmatrix} \text{ a at' } \mathbf{P} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Platí

$$\mathbf{P} \cdot \mathbf{M} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 5 & 8 \\ 4 & 1 & 7 & 3 \\ 5 & 2 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 2 & 6 & 4 \\ 4 & 1 & 7 & 3 \\ 2 & 3 & 5 & 8 \end{pmatrix} \begin{pmatrix} R_3 \\ R_2 \\ R_1 \end{pmatrix}$$

Tudíž: prohození dvou řádků je dáno isomorfismem $\mathbf{P}:\mathbb{R}^3\to\mathbb{R}^3$, aplikovaným na čtveřici vektorů $\mathbf{M}=(\mathbf{m}_1,\mathbf{m}_2,\mathbf{m}_3,\mathbf{m}_4)$ z \mathbb{R}^3 .

Příklad (Vynásobení řádku matice nenulovým skalárem)

$$\text{At' } \mathbf{M} = \begin{pmatrix} 2 & 3 & 5 & 8 \\ 4 & 1 & 7 & 3 \\ 5 & 2 & 6 & 4 \end{pmatrix} \text{ a at' } \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Platí

$$\mathbf{P} \cdot \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 5 & 8 \\ 4 & 1 & 7 & 3 \\ 5 & 2 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 5 & 8 \\ -20 & -5 & -35 & -15 \\ 5 & 2 & 6 & 4 \end{pmatrix} \begin{pmatrix} R_1 \\ -5R_2 \\ R_3 \end{pmatrix}$$

Tudíž: vynásobení řádku matice nenulovým skalárem je dáno isomorfismem $P: \mathbb{R}^3 \to \mathbb{R}^3$, aplikovaným na čtveřici vektorů $M = (m_1, m_2, m_3, m_4)$ z \mathbb{R}^3 .

Definice (ekvivalentní soustavy)

Řekneme, že soustavy $(\mathbf{A} \mid \mathbf{b})$ a $(\mathbf{A}' \mid \mathbf{b}')$ r rovnic o s neznámých jsou ekvivalentní^a (značení: $(\mathbf{A} \mid \mathbf{b}) \sim (\mathbf{A}' \mid \mathbf{b}'))$, když pro každý vektor \mathbf{x} z \mathbb{F}^s platí: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ právě tehdy, když $\mathbf{A}' \cdot \mathbf{x} = \mathbf{b}'$.

Tvrzení (základní vlastnosti ekvivalence soustav)

Platí:

- **1** $(A \mid b) \sim (A \mid b)$.
- 2 Jestliže $(\mathbf{A} \mid \mathbf{b}) \sim (\mathbf{A}' \mid \mathbf{b}')$, pak $(\mathbf{A}' \mid \mathbf{b}') \sim (\mathbf{A} \mid \mathbf{b})$.
- $\textbf{9} \quad \mathsf{Jestli\check{z}e} \; (\textbf{A} \mid \textbf{b}) \sim (\textbf{A}' \mid \textbf{b}') \; \mathsf{a} \; (\textbf{A}' \mid \textbf{b}') \sim (\textbf{A}'' \mid \textbf{b}''), \; \mathsf{pak} \\ (\textbf{A} \mid \textbf{b}) \sim (\textbf{A}'' \mid \textbf{b}'').$

Ať $\mathbf{P}: \mathbb{F}^r \to \mathbb{F}^r$ je jakýkoli isomorfismus. Potom platí

- $2 \operatorname{rank}((\mathbf{A} \mid \mathbf{b})) = \operatorname{rank}((\mathbf{P} \cdot \mathbf{A} \mid \mathbf{P} \cdot \mathbf{b})).$

Důkaz.

Přednáška.

^aSlogan: Ekvivalentní soustavy stejných rozměrů mají stejná řešení.

Shrnutí

Ať **M** je jakákoli nad \mathbb{F} o r řádcích. Potom platí:

- **1** Každá elementární úprava matice **M** je dána součinem $\mathbf{P} \cdot \mathbf{M}$ pro vhodný "elementární" isomorfismus $\mathbf{P} : \mathbb{F}^r \to \mathbb{F}^r$.
- $oldsymbol{0}$ Je-li matice $oldsymbol{M}'$ horním blokovým tvarem a matice $oldsymbol{M}$, pak
 - **Q** Existuje isomorfismus $\mathbf{P}: \mathbb{F}^r \to \mathbb{F}^r$ tak, že $\mathbf{M}' = \mathbf{P} \cdot \mathbf{M}$ a $\mathbf{P} = \mathbf{P}_k \cdot \ldots \cdot \mathbf{P}_1$, kde k je nějaké přirozené číslo a $\mathbf{P}_1, \ldots, \mathbf{P}_k$ jsou "elementární" isomorfismy.
 - ② Platí $rank(\mathbf{M}) = rank(\mathbf{M}')$ a $def(\mathbf{M}) = def(\mathbf{M}')$.

Speciálně: pro M ve tvaru (A | b) lze elementárními úpravami převést každou soustavu na horní blokový tvar (A' | b'). Navíc platí (A | b) \sim (A' | b').

^aDůležité: nikdy jsme neříkali, že při elementárních úpravách lze vyškrtávat nulové řádky. Vyškrtávat nulové řádky při GEM nebudeme; matice **M** a **M**′ musí mít stejné rozměry!

Důsledky

- Pro každou matici M platí rank(M) = rank(M^T), kde M^T je transponovaná matice^a k matici M.
- 4 Hodnost matice M je rovna počtu nenulových řádků v horním blokovém tvaru po skončení GEM.
- Oefekt matice M je roven počtu sloupců matice M mínus hodnost matice M.

$$\mathbf{M} = \begin{pmatrix} 2 & 4 & -1 \\ 3 & 1 & 7 \end{pmatrix}$$

je

$$\mathbf{M}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \\ -1 & 7 \end{pmatrix}$$

 $^{^{}a}$ Matice \mathbf{M}^{T} má jako své sloupce původní řádky matice \mathbf{M} zapsané ve stejném pořadí. Například pro

Věta (Frobenius)

- Soustava ($\mathbf{A} \mid \mathbf{b}$) má řešení právě tehdy, když platí rovnost $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A} \mid \mathbf{b})$.
- 2 Pokud ($\mathbf{A} \mid \mathbf{b}$) má řešení, potom lze říci následující: ^a Zvolme jakékoli \mathbf{p} , splňující rovnost $\mathbf{A} \cdot \mathbf{p} = \mathbf{b}$. Potom $\mathbf{A} \cdot \mathbf{x}_0 = \mathbf{b}$ platí právě tehdy, když $\mathbf{x}_0 = \mathbf{p} + \mathbf{x}_h$ pro nějaké \mathbf{x}_h z ker(\mathbf{A}).

Důkaz.

- **1** (**A** | **b**) má řešení právě tehdy, když **b** je v $\operatorname{im}(\mathbf{A})$. To nastane právě tehdy, když $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A} \mid \mathbf{b})$. Viz str 12, téma 3A.
- Triviální.

^aBudeme používat i zkrácený a přehledný zápis: množinu všech řešení lze napsat jako $\mathbf{p} + \ker(\mathbf{A}) = \{\mathbf{p} + \mathbf{x}_h \mid \mathbf{x}_h \in \ker(\mathbf{A})\}$, kde $\mathbf{A} \cdot \mathbf{p} = \mathbf{b}$.

Základní myšlenky řešení soustavy (A | b)

- $\ker(\mathbf{A}) = \{\mathbf{x} \mid \mathbf{A} \cdot \mathbf{x} = \mathbf{o}\}$ je lineární podprostor prostoru \mathbb{F}^s . Tudíž pro vyřešení $\mathbf{A} \cdot \mathbf{x} = \mathbf{o}$ stačí najít bázi $\ker(\mathbf{A})$. Tato báze má přesně $\operatorname{def}(\mathbf{A})$ prvků.
 - Jakékoli bázi prostoru ker(**A**) budeme říkat fundamentální systém soustavy s maticí **A**.
- Soustavě (A | o) budeme říkat homogenní soustava příslušná k matici A.
 - Jakékoli řešení homogenní soustavy je tedy lineární kombinací prvků fundamentálního systému.
- Jakékoli řešení soustavy lze vyjádřit ve tvaru p + x_h, kde x_h je v ker(A) a p je jakékoli řešení původní soustavy (takzvané partikulární řešení).

Jak vyřešit homogenní soustavu (A | o)

- **1** GEM: $(A \mid o) \sim (A' \mid o)$.
- Víme: $rank(\mathbf{A}) = rank(\mathbf{A}')$ a matice \mathbf{A}' je v horním blokovém tvaru. Tudíž známe defekt matice \mathbf{A} : $d = def(\mathbf{A}) = s rank(\mathbf{A}) = s rank(\mathbf{A}')$.
- Báze prostoru ker(A) musí mít d prvků. Tudíž d hodnot v každém řešení lze zvolit (jde o posice, na kterých nejsou pivoty matice A'). Touto volbou zajistíme lineární nezávislost. Dalších s d hodnot lze spočíst z nenulových rovnic v soustavě (A' | o) zpětným dosazením.

Jak nalézt partikulární řešení soustavy (A | b)

- **1** GEM: $(A | b) \sim (A' | b')$.
- d hodnot v partikulárním řešení lze zvolit (jde o posice, na kterých nejsou pivoty matice A').
- 3 Zpětné dopočtení z nenulových rovnic soustavy ($\mathbf{A}' \mid \mathbf{b}'$).

Příklad (ukázka systematického řešení soustavy nad ℝ)

Nad \mathbb{R} vyřešte: $2x_1 + 3x_2 - 4x_3 = 2$ (maticově: $\begin{pmatrix} 2 & 3 & -4 & 2 \end{pmatrix}$). Pro matici soustavy $\mathbf{A} = \begin{pmatrix} 2 & 3 & -4 \end{pmatrix}$ platí rovnosti $\mathrm{rank}(\mathbf{A}) = 1$ a $\mathrm{def}(\mathbf{A}) = 2$. Pivot je na první posici: volit budeme vždy druhou a třetí položku, první položku dopočteme.

1 Příslušná homogenní rovnice: $(2 \ 3 \ -4 \ | \ 0)$.

Fundamentální systém: $\begin{pmatrix} -\frac{3}{2} \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$.

- 2 Partikulární řešení pro $\begin{pmatrix} 2 & 3 & -4 & | & 2 \end{pmatrix}$: $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
- $\textbf{ Celkov\'e řešen\'e: } \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \operatorname{span} \left\{ \begin{pmatrix} -\frac{3}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \right\}.$

Příklad (geometrický význam postupu řešení soustavy)

Rovnice $2x_1 + 3x_2 - 4x_3 = 2$ v \mathbb{R}^3 popisuje rovinu ρ v prostoru \mathbb{R}^3 . Tato rovina ρ je v obecné poloze (rovina ρ neprochází počátkem, protože $2 \neq 0$).

- Homogenní rovnice $2x_1+3x_2-4x_3=0$ je paralelní posunutí roviny ρ tak, aby výsledná rovina ρ_h procházela počátkem.
 - Fundamentální systém \mathbf{x}_1 , \mathbf{x}_2 je systém souřadnic v rovině ρ_h .
- 2 Partikulární řešení rovnice $2x_1 + 3x_2 4x_3 = 2$ je libovolný bod **p** v původní rovině ρ .
- 3 Zápis $\mathbf{p} + \operatorname{span}\{\mathbf{x}_1, \mathbf{x}_2\}$ obecného řešení vyjadřuje opětovné paralelní posunutí roviny ρ_h zpět do roviny ρ .

Poznámka

Stejnou geometrickou představu je třeba mít pro řešení obecné soustavy ($\mathbf{A} \mid \mathbf{b}$) nad \mathbb{F} .

Příklad (systematické řešení komplikovanější soustavy nad ℝ)

$$\begin{pmatrix} 1 & 3 & 2 & 0 & | & 3 \\ 1 & 1 & 1 & -1 & | & 5 \\ 2 & 8 & 5 & 3 & | & 7 \\ 3 & 9 & 6 & 2 & | & 12 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 2 & 0 & | & 3 \\ 0 & -2 & -1 & -1 & | & 2 \\ 0 & 2 & 1 & 3 & | & 1 \\ 0 & 0 & 0 & 2 & | & 3 \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 - R_1 \\ R_3 - 2R_1 \\ R_4 - 3R_1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 3 & 2 & 0 & | & 3 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} & | & -1 \\ 0 & 0 & 0 & 2 & | & 3 \\ 0 & 0 & 0 & 2 & | & 3 \end{pmatrix} \begin{pmatrix} R_1 \\ R_3 + R_2 \\ R_3 + R_2 \\ R_4 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 3 & 2 & 0 & | & 3 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} & | & -1 \\ 0 & 0 & 0 & 1 & | & \frac{3}{2} \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 \\ 1/2R_3 \\ R_4 - R_3 \end{pmatrix}$$

Důležité: povšimněme si značení řádkových úprav; úpravy budeme vždy takto vyznačovat.

Příklad (pokrač.)

Po skončení GEM
$$\begin{pmatrix} 1 & 3 & 2 & 0 & 3 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} & -1 \\ 0 & 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ jsou pivoty na čtvrté,}$$

druhé a první posici. Tyto položky v řešení budeme dopočítávat, třetí položku řešení budeme volit.

Řešení je:
$$\begin{pmatrix} \frac{33}{4} \\ -\frac{7}{4} \\ 0 \\ \frac{3}{2} \end{pmatrix} + a \cdot \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, \text{ kde } a \in \mathbb{R}.$$

Zkrácený zápis:
$$\begin{pmatrix} \frac{33}{4} \\ -\frac{7}{4} \\ 0 \\ \frac{3}{2} \end{pmatrix} + \operatorname{span}\begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}).$$

Řešením soustavy je přímka v \mathbb{R}^4 .