Lecture 2: Introduction To Data Visualization

Instructor: Saravanan Thirumuruganathan

Outline

- Data Mining Terminology
- Basics of Visualization
 - Graph integrity
 - 2D visualization
 - Basics of higher dimensional visualization

Piazza

- Enrollment done for registered students
- Auditing students send me your email id
- "Search for Teammates" enabled

Socrative

- Instant Student Feedback
- Accessible via Smart Phone, Tablet, Laptop
- No login needed from Student's end
- Use a consistent name throughout the semester

In-Class Quizzes

- URL: http://m.socrative.com/
- Room Name: 4f2bb99e

Misc Announcements

- Slides for Lecture 1 updated
- Change Office hour timings?
- Installation of Scientific Python

Other Relevant Online Classes

- Machine Learning, Stanford: https://www.coursera.org/course/ml
- Mining of Massive Datasets, Stanford: https://www.coursera.org/course/mmds
- Statistical Learning, Stanford: https://class.stanford. edu/courses/HumanitiesandScience/StatLearning/ Winter2015/about

Data Mining Terminology

Data Matrix

Table 1.1. Extract from the Iris dataset

(Sepal length	Sepal width	Petal length	Petal width	Class
	X_1	X_2	X_3	X_4	X_5
\mathbf{x}_1	5.9	3.0	4.2	1.5	Iris-versicolor
\mathbf{x}_2	6.9	3.1	4.9	1.5	Iris-versicolor
X ₃	6.6	2.9	4.6	1.3	Iris-versicolor
\mathbf{x}_4	4.6	3.2	1.4	0.2	Iris-setosa
X 5	6.0	2.2	4.0	1.0	Iris-versicolor
\mathbf{x}_6	4.7	3.2	1.3	0.2	Iris-setosa
X 7	6.5	3.0	5.8	2.2	Iris-virginica
x ₈	5.8	2.7	5.1	1.9	Iris-virginica
:	:	:	:	:	Ė
X 149	7.7	3.8	6.7	2.2	Iris-virginica
\mathbf{x}_{150}	5.1	3.4	1.5	0.2	Iris-setosa

Data Matrix

$$\mathbf{D} = \begin{pmatrix} & X_1 & X_2 & \cdots & X_d \\ \mathbf{x}_1 & x_{11} & x_{12} & \cdots & x_{1d} \\ \mathbf{x}_2 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

Data Matrix

- n rows and d columns
- Row ⇒ Tuple/Entities
- Column ⇒ attribute/feature
- Special column called Class
- x_i : i-th row, X_j : j-th column
- Row ⇒ entities, instances, examples, records, transactions, objects, points, feature-vectors, tuples
- Column ⇒ attributes, properties, features, dimensions, variables, fields
- $n \Rightarrow \text{size}$, $d \Rightarrow \text{dimensionality of data}$

Geometric View

Figure 1.1. Row \mathbf{x}_1 as a point and vector in (a) \mathbb{R}^2 and (b) \mathbb{R}^3 .

Implications '

- Each photo in the universe is some point in high dimension
- Each book (written or in future) are some point in high dimension

Ben Shneiderman, 1996:1

- 1D (sequences)
- Temporal
- 2D (maps)
- 3D (shaped)
- nD (relational)
- Trees (hierarchical)
- Networks (graphs)
- Others (text)

¹The Eyes Have It: A Task by Data Type Taxonomy for Information Visualization [Shneiderman, 96]

Semantics vs. Types

- Data Semantics: real-world meaning
 - e.g., company name, day of the month, person height, etc.
- Data Type: Interpretation in terms of scales of measurements
 - e.g., quantity or category, sensible mathematical operations etc.

Nominal (Categorical) (N)
Are = or ≠ to other values
Apples, Oranges, Bananas,...

○ □ + △ S U

Ordinal (O)
Obey a < relationship
Small, medium, large

---////// min max

Quantitative (Q)
Can do arithmetic on them
10 inches, 23 inches, etc.

On the theory of scales and measurements [S. Stevens, 46]

Q - Interval (location of zero arbitrary)
Dates: Jan 19; Location: (Lat, Long)

Like a geometric point. Cannot compare directly.

Only differences (i.e., intervals) can be compared

Q - Ratio (zero fixed)

Measurements: Length, Mass, Temp, ...

Origin is meaningful, can measure ratios & proportions Like a geometric vector, origin is meaningful

- N Nominal (labels)
 - Operations: $=, \neq$
- O Ordinal (ordered)
 - Operations: $=, \neq, >, <$
- Q Interval (location of zero arbitrary)
 - Operations: $=, \neq, >, <, +, -$
- Q Ratio (zero fixed)
 - Operations: $=, \neq, >, <, +, -, \times, \div$

What is the data type of:

• Gender:

What is the data type of:

• Gender: Categorical/Nominal

• Age:

What is the data type of:

• Gender: Categorical/Nominal

• Age: Ordinal

• Height:

What is the data type of:

• Gender: Categorical/Nominal

• Age: Ordinal

• Height: Quantitative - Ratio

Date:

What is the data type of:

• Gender: Categorical/Nominal

• Age: Ordinal

• Height: Quantitative - Ratio

• Date: Quantitative - Interval

Data Dimensions

- Univariate (1D)
- Bivariate (2D)
- Trivariate (3D)
- Multivariate (nD)

Introduction To Data Visualization

Visualization Goals

Presentation

- Known facts about data
- Task: Communicate results

Exploration

- Data without hypothesis
- Task: Generate hypothesis

Confirmation

- Hypothesis is given
- Task: Verify / falsify hypothesis

Visualization Goals

"The greatest value of a picture is when it forces us to notice what we never expected to see."

-John Tukey (1915 - 2000)

Anscombe's Quartet

Same mean, variance, correlation, and linear regression line

Graphical Integrity

"There are three kinds of lies: lies, damned lies, and statistics."

- attributed to Benjamin Disraeli in 19th Century

Labelling Chart Axes

²http://xkcd.com/833/

Lying with Scales

³Ward, Grinstein, Keim, 2011

Scales are Critical!

- What are your bounds upper and lower?
- What scale works? Linear? Log? Clipping? Breaks?
- Relative or absolute values?
- How can you make things comparable?

Log Scale

SCIENCE TIP: LOG SCALES ARE FOR QUITTERS WHO CAN'T FIND ENOUGH PAPER TO MAKE THEIR POINT PROPERLY.

ŀ

⁴http://xkcd.com/1162/

Graph Types (2D and nD)

Summary

Major Concepts:

- Data mining Terminology
- Visualization basics
- Graphical Integrity
- Graph Types for 2D and nD

Slide Material References

• Slides from Harvard CS 109 (2013 and 2014)