Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry"
[LCBE] Langlands correspondence and Bezrukavnikov's equivalence
[LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet)
https://people.math.harvard.edu/~gross/preprints/sat.pdf

Task. Complete the following tables.

K-(-)	pt	B TB	3×B T*(8×B)	Sŧ
G	Z[x*(T)]"	$\mathbb{Z}[x^*(T)]$	$\mathbb{Z}[x^*(\tau)]\otimes_{\mathbb{Z}[x^*(\tau)]^{w}}\mathbb{Z}[x^*(\tau)]$	$Z[W_{ext}]$
В	Z[x*(τ)]	$\mathbb{Z}[X^*(T)] \otimes_{\mathbb{Z}[X^*(T)]}^{\mathbf{w}} \mathbb{Z}[X^*(T)]$	$\mathbb{Z}[\chi^{\tau}(\tau)] \otimes_{\mathbb{Z}[\chi^{\tau}(\tau)]^{w}} \mathbb{Z}[\chi^{\tau}(\tau)] \otimes_{\mathbb{Z}[\chi^{\tau}(\tau)]} \mathbb{Z}[\chi^{\tau}(\tau)]$	
Id	7/			Z[x*(1)]/_~Z[W]
$G \times \mathbb{C}^*$	$\mathbb{Z}[x^*(\tau)]^{\mathbf{w}}[t$	±1]		\mathcal{H}_{ext}
β× ¢ *	Z/[x*(t)][t*	"]		
C*	Z [t±]			

We use the shorthand.

K-(-)	l pt	B 7*B	3×B T*(8×B)	St
G	, К(т) ^w	R(T)	R(T) OR(G) R(T)	Z[Wext]
В	R(T)	R(T) OR(G) R(T)	$R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$	
Id	72			RU/1/2 Z[W]
G×c*	R(G)[t ^{±1}]			Hext
B× C *	R(T)[t ^{±1}]			
C*	Z(t±]			

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{\mathbf{w}} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times \mathcal{O}^*) = \mathbb{Z}[X^*(T)]^{\mathbf{w}}[t^{\frac{1}{2}}]$$

$$R^{G \times \mathcal{O}^*}(S_F) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} \mathcal{H}(\widehat{G}(F), I)$$

Here is an initial example.

K-(-)	pt	B T*B	3×B T*(8×B)	St
SL.	Z(r)	Z (₹ ^{±'}]	Z[zt], zt] /(zz.)(zzt))	$Z[W_{ext}] = \bigoplus_{w \in W} Z[z_w^{\pm 1}]$
B	$\mathbb{Z}[y^{\pm 1}]$	Z[yt',z]/(z-y)(z-y')	Z(y ^{±),} ₹1, ₹2]/((₹,-y)(₹,-y ⁺⁾), (₹1-y)(₹1-y ⁻¹))	
Id	72	7/[2]/(2-1)2	Z[2,, 2,]/((2,-1)2,(2,-1)2)	$R(T)/_{I_{T}} \times Z[W_{f}] = \bigoplus_{\omega \in W} Z[z_{\omega}^{\pm 1}]/_{(z_{\omega}-1)^{*}}$
St xCx	Z/[×,t [±]]			Hext = D Z[zw ,ti]
B× C *	Z/[yt',tt]			
C*	Z'[t [±]]			

K-(-)	pt	Fa Repa(Q)	Fd × Fd,	Zd.d'
Gd	R(Ta) ^{wa}	R(T _d)	R(Td)@R(Td)	
Bu	R(Ta)	R(J)⊗ _{R(Ga)} R(J _d) ⊕ _{Wa} R(Ja)[Ωω] ^{Ta}	R(Ta) & R(Ta) & R(Ta) R(Ta)	[⊕] _{υ.ω'εwa} R(τα) [<u>π</u> ω,ω] ^{τα}
Id	Z	سي الآي	Outers Z [IIww]	Builtery Z [Munui,]
C4×C*	R(Gd)[t ^{±1}]			
B₄×¢*	R(T _e)[t ^{±1}]	C) Live		O to the company of
C*	Z(t [±]]	$\bigoplus_{n=M^1}^{n\in M^1} K(\mathbb{C}_*) [\underline{\mathcal{Y}}^n]_{c_*}$	$\bigoplus_{\omega,\omega'\in W_d} R(T_d \times C') \left[\overline{\Omega_{\omega,\omega'}} \right]^{T_d \times C'}$ $\bigoplus_{\omega,\omega'\in W_d} R(C') \left[\overline{\Omega_{\omega,\omega'}} \right]^{C'}$	$\bigoplus_{w,w'\in w_{\mathcal{A}}} R(\mathcal{T}_{\mathcal{A}} \times \mathring{\mathbf{C}}) \left[\overline{\widetilde{\Omega}_{w,w'}} \right]^{\mathcal{T}_{\mathcal{A}} \times \mathring{\mathbf{C}}^{x}}$ $\bigoplus_{w,w'\in w_{\mathcal{A}}} R(\mathbb{C}^{x}) \left[\overline{\widetilde{\Omega}_{w,w'}} \right]^{\mathbb{C}^{x}}$

K-(-)	pt	Fa Repal(Q)	$F_d \times F_d$	Zd = 11/2, Zd.d.
Gol	R(Ta) ^{Wa}	PR(Ta)	₱ R(T4)⊗ _{R(C4)} R(T4)	
Bu	R(Td)	PRIJORICARITA)	$ \frac{1}{2} R(T_i) \otimes_{R(C_{ij})} R(T_i) \otimes_{R(C_{ij})} R(T_i) $ $ \frac{1}{2} R(T_i) \otimes_{R(C_{ij})} R(T_i) \otimes_{R(C_{ij})} R(T_i) $	⊕ R(Td) [OJuju] Td
Id	Z	or ElWal Z [Ow]	O O O O O O O O O O O O O O O O O O O	D. C. (Wid) Z. [O w.w.]
C4×C*	R(Gd)[t ^{±1}]			
B₃×¢*	R(T ₄)[t ^{±1}] ⊕ _{wewd} R(C ₄ ×€)	$\mathbb{Q}_{\mathbf{w}_{0}}^{\mathbf{T}_{d}\times\mathbf{C}^{\star}})[\overline{\mathcal{O}}_{\mathbf{w}}]$		⊕'e Wdl R(Td×C) [Ōw,w] ^{Td×C*}
	Z[t±]			$\mathbb{C}_{\mathbb{Z}_{\infty}^{(n)} \in \mathbb{W}_{\mathrm{tol}}} \mathbb{R}(\mathbb{C}^{x}) [\overline{\widetilde{\mathcal{O}}}_{\mathbb{Z}_{\infty}^{(n)}}]^{\mathbb{C}^{x}}$

$$H^{G_d}_*(Z_{\underline{d},\underline{d}}) \cong \bigotimes_{\iota} NH_{d_{\iota}}$$

Orange: only know the R(G)-module structure, and the alg structure is yet not known light yellow: $R(G_d)$ -module + W_d -equiv iso

$$d = (1,2) \qquad \begin{array}{c} a \longrightarrow b \\ \langle v_1 \rangle \longrightarrow \langle v_2 \rangle \end{array}$$

$$\overrightarrow{V} \text{ The action on Flag is not the same as in} \qquad \begin{array}{c} \text{http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tom2} \\ \text{sz%20Przezdziecki.pdf} \end{array}$$

	ŧ	# = WU			w	<u>d</u> = u	order of basis	((w)	(w)	B₩	Boo	wBw ⁻¹
Id	Id	(123)	111	C			ξυ., υ ₂ ,υ ₃ }			[* * *] * * <u>*</u>		
ť	(23)	(133)	IX	[',']	Ι <u>Χ</u> Ι	abb []	[v,,v3,v2]	ı		[* * <i>*</i>]		1
2	(12)	(123)	ΧŢ	[',']	ΙЦ	bab XI	{v., v, , v, }	1	0	[* * *]	[* * <u>*</u>	[* * *]
ts	(132)	(123)	×	[, ',]	IΧ	bab XI	ξυ _{3,} υ,,ν ₂ }	2	ı	* * * * *	* **	[* * <u>*</u>
st	(123)	(123)	双	[',']	ΙЦ	bba 💥	[U, V3, V1]	2	0	[* * <u>*</u>]	[* * <u>*</u>]	[* * * *]
sts	(13)	(123)	*	['']	X	bba 💥	{N3, NS, N;}	3	1	[* * * * *	[* _{* *}]	[* _{* *} <u>*</u>

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on. 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/ http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-SchubCells-Usp.pdf

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F), I)
 - How does $\mathcal{H}(G(F), I)$ reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref. [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/o611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Repk}}^{\mathsf{nil}}(\omega)$$
 where $Q = \cdot \cdot \rightarrow \cdot \cdot 5$ [Lec 2-3] - understand $\mathcal{H}_{\mathsf{P}'} \cong \mathcal{U}_{\mathsf{V}}(\widehat{\mathsf{sl}}_{\mathsf{L}})$ [Lec 4]

- understand

$$d_{p'} \cong \mathcal{U}_{v}(sl_{1})$$
 [Lec 4]

- define (Quantum) Kac-Moody/loop algs

[Appendix 4]

- Why is that graded

$$K_{o}(Rep^{\frac{\pi}{2}}(R)) = U_{g}(n(Q))$$

$$R = \bigoplus_{\underline{a}} H.^{G \times G}(Z_{\underline{a}})$$
and what is
$$K_{o}\left(\operatorname{Rep}^{Z}\left(\bigoplus_{\underline{a}} K_{o}^{G \times G^{*}}(Z_{\underline{a}})\right)\right)?$$

4. Work out the big picture

5. A closer check of Satake iso

Ko combinations Hecke alg

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{W} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\frac{1}{2}}] = \mathbb{Z}[X^*(T)]^{W}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times C^*) = \mathbb{Z}[X^*(T)]^{W}[t^{\frac{1}{2}}]$$

$$R(G(F), I)$$
It's claimed by my school mate that
$$R_{o}(Pevv_{B}(G)) \cong \mathcal{H}(G, B)$$

$$R_{o}(B) \cong \mathcal{H}(G, B)$$

$$R(G) \cong \mathcal{H}(G)$$

$$R(G) \cong \mathcal{H}(G)$$

$$R(G) \cong \mathcal{H}(G)$$

$$R(G) \cong \mathcal{H}(G)$$

$$R(G) \cong \mathcal{H}$$

Now, about Steinberg varieties. 6 Draw a picture, indicating the shape/generalization of the following spaces. (e.p. in the case of \cdot , \cdot 5, $\cdot \rightarrow \cdot$) G, B,T B, T*B, St g, g, gs, gs, R, N, N, h, n gh, Oh, Mw 7. Try to understand what Kazhdan-Lusztig polynomials are [KL], and - Compute the transformation matrix between [[Tw], weWf] and [[Ab], weWf]? - understand what standard /crystal basis is - understand the relationship between KL poly and crystal basis - see if it is related to two basis in Rep (G) (irr reps & multiplicative basis) 8 Try to understand the module part, i.e., - numbers of components of the Springer fiber
- how does Korp(St) act on Korp (Springer fiber) also act on Korp (Repola) - does that occupy "all rep" of Korp (St) 9 Ways of finding multiplication structure 1 By direct computation (with techniques) double coset calculus Hecke algebra 2 By formulas as alg-isos KG (98) induction formula 3 By geometrical computation cup product? de Rham calculus cohomology intersection theory Chow group 4 By deformation (indirect) H ^ω_{α×α}(St) 10. Different views on the double coset $B \setminus G/B = (*/B) \times_{*/G} (*/B)$ - as a set - as flag variety quotient B-action

- as a stack

- groupoid structure

Some excuses for not working a lot on the project.

Preparation for summer school	2	weeks
Summer school of the modular form	1	week
Tourism in Paris	1	week
Conference in Antwerp	1	week
Reading [Ginz, Chap 5]	2	weeks
Computing H(G,B), High, (Haff)		week
Applying for tutorials, extend the residence permit,	2	weeks
preparation for TOEFL exam, Klein AG Summer school on Langlands & ICM watch (part)	1	week
In total		weeks
TV COM	()	MEGV7

tough new semester.

- 3 Seminars (+ Master Thesis Seminar)
- Tutorial
- TUEFL exam on 15th Qt.
- The seminar handout and other materials are not completed.
 - · L-parameters
 - · moduli in AG
 - some following developments of the modular form (different type of gps, Hecke operators,...)
 - · reps of GLi(Q)
- applying for the PhD program.