

- ➤ Background
- > Research Motivation
- **02** Method Architecture
- 03 Demo System
- 04 Conclusion

Background

False Alarms in Intrusion Detection Systems (IDSs)

How about the current network security situation?

I don't want to design filtering rules manually.

> How to automatically generate filter rules?

Massive alarm events

Network devices

Research Motivation

The spatio-temporal correlation of alarms.

- > Changes in statistical indicators over time reflect the occurrence of abnormal events.
- > Different alarm graphs have same spatial structures: the same generate reasons.

- **02** Method Architecture
 - ➤ Data Preprocessing
 - ➤ Pattern Mining
 - ➤ Similarity Analysis
- 03 Demo System

04 Conclusion

2. Method Architecture

Data Preprocessing

- Using Exponential Weighted Moving Average method to find abnormal behaviors.
- Dynamically set time window according to the current security situation.

2. Method Architecture

Pattern Mining

- > Find alarm groups by community discovery algorithm.
- > Classify alarm clusters according to topology characteristics.

2. Method Architecture

Similarity Analysis 2.3

Event Model: Online conference

2021-09-03 00:00:00 2021-09-16 18:00:00

External device Internal user Partner company

Type: MISC Attack 100% Type: MISC Attack 100%

Center: External device Center: External device

Around: Part-comp 33% Around: Part-comp 25%

Subgraph motifs: Subgraph motifs:

Spatio-temporal Correlation

2021-09-04 14:00:00

Type: Info leakage 100%

Center: Critical server

Around: External 100%

Subgraph motifs:

Type: Info leakage 99%

Center: Critical server

Around: External 100%

Subgraph motifs:

02 Method Architecture

- 03 Demo System
 - ➤ System Overview
 - ➤ Core Function
- 04 Conclusion

3. Demo System

System Overview

- Security risk assessment.
- Alarm handling.

- Alarm graph visualization.
- Check alarm details.

3. Demo System

3.2 Core Function

Demo video at https://bit.ly/NSSA-ST

02 Method Architecture

03 Demo System

- 04 Conclusion
 - **➤** Conclusion

4. Conclusion

Conclusion 4.0

- > We developed a network security situation awareness (NSSA) system based on the spatio-temporal correlation of alarms.
- > Our system can detect high risk patterns semi-automatically and deal low-risk alarms automatically based on historical operations.
- > Compared with the old system, our system has better performance and richer functions.

Performance	Original system	Our system
Processing time	More than 10"	Less than 1"
Data scale	10 ³ -10 ⁵	10 ¹ -10 ²
Accuracy	70%	95%
Cross-platform	no	yes
Similar matching	no	yes

