Machine Learning

VC-Dimension

Fabio Vandin

December 11th, 2023

PAC Learning

Question: which hypothesis classes \mathcal{H} are PAC learnable?

Up to now: if $|\mathcal{H}| < +\infty \Rightarrow \mathcal{H}$ is PAC learnable.

What about \mathcal{H} : $|\mathcal{H}| = +\infty$? Not PAC learnable?

We focus on:

- binary classification: $\mathcal{Y} = \{0, 1\}$
- 0-1 loss

but similar results apply to other learning tasks and losses.

Restrictions

Definition (Restriction of \mathcal{H} to \mathcal{C})

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $\mathcal{C} = \{c_1, \dots, c_m\} \subset \mathcal{X}$. The restriction $\mathcal{H}_{\mathcal{C}}$ of \mathcal{H} to \mathcal{C} is:

$$\mathcal{H}_{C} = \{[h(c_1), \ldots, h(c_m)] : h \in \mathcal{H}\}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

if
$$|\mathcal{H}|_{2,1}$$

 $\Rightarrow 1 \leq |\mathcal{H}_{c}| \leq 2^{m}$

Restrictions

Definition (Restriction of \mathcal{H} to \mathcal{C})

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, \dots, c_m\} \subset \mathcal{X}$. The restriction \mathcal{H}_C of \mathcal{H} to C is:

$$\mathcal{H}_C = \{ [h(c_1), \ldots, h(c_m)] : h \in \mathcal{H} \}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Note: \mathcal{H}_C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} .