

Approximating Minimum Manhattan Networks in Higher Dimensions

Aparna Das · Emden R. Gansner · Michael Kaufmann Stephen Kobourov · **Joachim Spoerhase** · Alexander Wolff

ESA'11

Minimum Manhattan Networks

Given a set of points called **terminals** in \mathbb{R}^d , find a minimum-length network such that each pair of terminals is connected by a **Manhattan path**.

Minimum Manhattan Networks

Given a set of points called **terminals** in \mathbb{R}^d , find a minimum-length network such that each pair of terminals is connected by a **Manhattan path**.

Minimum Manhattan Networks

Given a set of points called **terminals** in \mathbb{R}^d , find a minimum-length network such that each pair of terminals is connected by a **Manhattan path**.

A Manhattan path is a chain of axis-parallel line segments whose total length is the Manhattan distance of the chain's endpoints.

Results for 2D

• introduced by Gudmundsson et al. (NJC'01)

Results for 2D

- introduced by Gudmundsson et al. (NJC'01)
- currently best approximation ratio is 2;
 by Nouiua ('05), Chepoi et al. ('08), Guo et al. ('08) using different techniques

Results for 2D

- introduced by Gudmundsson et al. (NJC'01)
- currently best approximation ratio is 2;
 by Nouiua ('05), Chepoi et al. ('08), Guo et al. ('08) using different techniques
- NP-hardness shown by Chin et al. (SoCG'09)

Results for 2D

- introduced by Gudmundsson et al. (NJC'01)
- currently best approximation ratio is 2;
 by Nouiua ('05), Chepoi et al. ('08), Guo et al. ('08) using different techniques
- NP-hardness shown by Chin et al. (SoCG'09)

Results for 3D (or higher dimensions)

Results for 2D

- introduced by Gudmundsson et al. (NJC'01)
- currently best approximation ratio is 2;
 by Nouiua ('05), Chepoi et al. ('08), Guo et al. ('08) using different techniques
- NP-hardness shown by Chin et al. (SoCG'09)

Results for 3D (or higher dimensions)

 constant factor approximation for very restricted 3D case by Muñoz et al. (WALCOM'09)

Results for 2D

- introduced by Gudmundsson et al. (NJC'01)
- currently best approximation ratio is 2;
 by Nouiua ('05), Chepoi et al. ('08), Guo et al. ('08) using different techniques
- NP-hardness shown by Chin et al. (SoCG'09)

Results for 3D (or higher dimensions)

- constant factor approximation for very restricted 3D case by Muñoz et al. (WALCOM'09)
- Non-trivial approximations for unrestricted version?

Our Results

• 4(k-1) approximation for 3D – if the terminals lie in the union of k horizontal planes

Our Results

• 4(k-1) approximation for 3D – if the terminals lie in the union of k horizontal planes

• $O(n^{\epsilon})$ approximation for general case in any fixed dimension and for any fixed $\epsilon > 0$

Our Results

• 4(k-1) approximation for 3D – if the terminals lie in the union of k horizontal planes

• $O(n^{\epsilon})$ approximation for general case in any fixed dimension and for any fixed $\epsilon > 0$

Decomposition into Directional Subproblems

Directional Subproblem: M-connect all pairs of terminals t=(x,y,z) and t'=(x',y',z') with $x\leq x'$, $y\leq y'$, $z\leq z'$.

Decomposition into Directional Subproblems

Directional Subproblem: M-connect all pairs of terminals t=(x,y,z) and t'=(x',y',z') with $x\leq x'$, $y\leq y'$, $z\leq z'$.

We call such pairs relevant.

Decomposition into Directional Subproblems

Directional Subproblem: M-connect all pairs of terminals t=(x,y,z) and t'=(x',y',z') with $x\leq x'$, $y\leq y'$, $z\leq z'$.

We call such pairs relevant.

General problem can be decomposed into four directional subproblems

Let N be some directional Manhattan network.

Let N be some directional Manhattan network.

horizontal part N_{xy}

Let N be some directional Manhattan network.

horizontal part N_{xy}

Let N be some directional Manhattan network.

horizontal part N_{xy}

 N_{xy} is a directional **2D Manhattan network** for $R \cup B$

 N_{xy} is a directional 2D Manhattan **network** for $R \cup B$

Use 2D approximation on both planes

 \times pillar $\in N_z$

Approximating the Horizontal Part is Easy

Copy 2-approximate 2D network for $R \cup B$ onto both planes

But How to Find the Pillars?

Each rectangle spanned by a relevant red-blue terminal pair is **pierced** by some pillar in *N*.

But How to Find the Pillars?

Each rectangle spanned by a relevant red-blue terminal pair is **pierced** by some pillar in *N*.

Lower Bounding by Red-Blue Piercings

Subproblem RBP:

Given a set of red and blue points in the plane,

find a minimum set of piercing pts (pillars) such that each rectangle spanned by a relevant red-blue pair is pierced.

Lower Bounding by Red-Blue Piercings

Subproblem RBP:

Given a set of red and blue points in the plane,

find a minimum set of piercing pts (pillars) such that each rectangle spanned by a relevant red-blue pair is pierced.

Lower Bounding by Red-Blue Piercings

Subproblem RBP:

Given a set of red and blue points in the plane,

find a minimum set of piercing pts (pillars) such that each rectangle spanned by a relevant red-blue pair is pierced.

Theorem (Soto & Telha, IPCO'11)

Red-blue piercing can be solved in polynomial time.

Lemma

```
Given red-blue piercing S and Manhattan network for R \cup B, we can move the needles (pts) in S so that for each relevant pair (r, b) there is an M-path that contains a needle of S.
```


Lemma

```
Given red-blue piercing S and Manhattan network for R \cup B, we can move the needles (pts) in S so that for each relevant pair (r, b) there is an M-path that contains a needle of S.
```


Lemma

Given red-blue piercing S and Manhattan network for $R \cup B$, we can *move* the needles (pts) in S so that for each relevant pair (r, b) there is an M-path that contains a needle of S.

Lemma

```
Given red-blue piercing S and Manhattan network for R \cup B, we can move the needles (pts) in S so that for each relevant pair (r, b) there is an M-path that contains a needle of S.
```


Extend piercing pts to pillars

Converting Piercings to Pillars (II)

Extend piercing pts to pillars

Converting Piercings to Pillars (II)

Extend piercing pts to pillars \rightsquigarrow feasible 3D Manhattan network!

Converting Piercings to Pillars (II)

Extend piercing pts to pillars \rightsquigarrow feasible 3D Manhattan network!

 $cost \leq 4 \cdot OPT$

(due to the four directions)

k Planes – Horizontal Part

copy 2D Manhattan network onto each plane

k Planes – Horizontal Part

copy 2D Manhattan network onto each plane

• Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes.

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT_z.

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT $_z$.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT_z.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT_z.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

• Apply this recursively to planes $(1, \ldots, i)$ and $(i + 1, \ldots, k)$.

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT $_z$.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

• Apply this recursively to planes (1, ..., i) and (i + 1, ..., k).

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT_z.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

- Apply this recursively to planes $(1, \ldots, i)$ and $(i + 1, \ldots, k)$.
- Ratio satisfies $r(k) \le r(i) + r(k i 1) + 1$.

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT_z.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

- Apply this recursively to planes $(1, \ldots, i)$ and $(i + 1, \ldots, k)$.
- Ratio satisfies $r(k) \le r(i) + r(k-i-1) + 1$. $\Rightarrow r(k) \le k-1$.

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT_z.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

- Apply this recursively to planes $(1, \ldots, i)$ and $(i + 1, \ldots, k)$.
- Ratio satisfies $r(k) \le r(i) + r(k-i-1) + 1$. $\Rightarrow r(k) \le k-1$.

Overall ratio

- Choose i such that (R_i, B_i) can be pierced with a minimum number of pillars.
- Extend those pillars over all k planes. \Rightarrow cost \leq OPT_z.
- All terminal pairs $r \in R_i$, $b \in B_i$ are M-connected by v-part \cup h-part

- Apply this recursively to planes (1, ..., i) and (i + 1, ..., k).
- Ratio satisfies $r(k) \le r(i) + r(k-i-1) + 1$. $\Rightarrow r(k) \le k-1$.

Our Results for Higher Dimensions

- 4(k-1) approximation for 3D if the terminals lie in the union of k horizontal planes
- $O(n^{\epsilon})$ approximation for general case in any fixed dimension and for any fixed $\epsilon > 0$

• determine bounding cuboid

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution
- connect terminals to grid

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution
- connect terminals to grid

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution
- connect terminals to grid

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution
- connect terminals to grid("patching" by directed Steiner trees)

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution
- connect terminals to grid("patching" by directed Steiner trees)
- pairs in different slabs are M-connected

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution
- connect terminals to grid("patching" by directed Steiner trees)
- pairs in different slabs are M-connected
- apply recursively to slabs

- determine bounding cuboid
- partition into $c \times c$ slabs with n/c terminals each
- add resulting grid to solution
- connect terminals to grid("patching" by directed Steiner trees)
- pairs in different slabs are M-connected
- apply recursively to slabs
- overall ratio $O(n^{\epsilon})$ (by choosing c accordingly)

• Can we achieve $O(\log n)$ or even constant ratio?

- Can we achieve $O(\log n)$ or even constant ratio?
- "GMMN": What if only a given set of terminal pairs needs to be M-connected?
 (Open question of Chepoi; unknown even for 2D.)

- Can we achieve $O(\log n)$ or even constant ratio?
- "GMMN": What if only a given set of terminal pairs needs to be M-connected?
 (Open question of Chepoi; unknown even for 2D.)

Latest News

- $O(\log^{d+1} n)$ -approximation algorithm for d dimensions.
- $O(\log n)$ -approximation algorithm for 2D.

- Can we achieve $O(\log n)$ or even constant ratio?
- "GMMN": What if only a given set of terminal pairs needs to be M-connected?
 (Open question of Chepoi; unknown even for 2D.)

Latest News

- $O(\log^{d+1} n)$ -approximation algorithm for d dimensions.
- $O(\log n)$ -approximation algorithm for 2D.
- Both these results hold for GMMN as well.