Laços encaixados

Disciplina de Programação de Computadores I Universidade Federal de Ouro Preto

Agenda

- Laços encaixados
- Problemas com laços encaixados

Laços encaixados

- Um laço serve para iterar sobre os valores de uma variável, ou seja, executamos ações para cada possível valor de uma variável
- Quando precisamos iterar sobre os valores de 2 ou mais variáveis ao mesmo tempo, devemos utilizar laços dentro de laços, também conhecidos como laços encaixados
- Teremos tantos níveis de encaixe quantas forem as variáveis que devemos contar

Exemplo: Quadrado de asteriscos

 Como imprimir um quadrado formado por asteriscos na tela?

```
* * * * *

* * * * *

* * * *
```

 Devemos imprimir 4 linhas sendo que cada linha deve possuir 4 asteriscos, ou seja, 4 colunas.

Um laço para as linhas e outro laço para as colunas

Código: Quadrado (lado = 4 asteriscos)

```
int main (int argc, char const *argv[])
   int linha, coluna;
   for(linha = 1; linha <= 4; ++linha)
       for(coluna = 1; coluna <= 4; ++coluna)
           printf(" * ");
       printf("\n");
   return 0;
```

linha	coluna
1	1
	2
	3
	4
2	1
	2
	3
	4

Código: Quadrado de asteriscos (lado variável)

```
int main (int argc, char const *argv[]){
   int linha, coluna, lados;
   printf("Quantos lados tem o quadrado?\n");
   scanf("%d", &lados);
   for(linha = 1; linha <= lados; ++linha) {
       for(coluna = 1; coluna <= lados; ++coluna) {
          printf(" * ");
       printf("\n");
   return 0;
```

linha	coluna
1	1
	2
	lados
2	1
	2
	lados
•••	

Exemplo: Triângulo retângulo de asteriscos

 Como imprimir um triângulo retângulo formado por asteriscos na tela?

```
*

* *

* * *

* * *
```

 Devemos imprimir 4 linhas sendo que a primeira tem 1 asterisco e cada próxima linha possui um asterisco a mais que a anterior.

Código: Triângulo retângulo (base = 4 asteriscos)

```
int main (int argc, char const *argv[]) {
   int linha, coluna, max;
   max = 1;
   for(linha = 1; linha <= 4; ++linha)
       for(coluna = 1; coluna <= max; ++coluna)
           printf(" * ");
       printf("\n");
       max ++;
   return 0;
```

linha	max	coluna
1	1	1
2	2	1
		2
3	3	1
		2
		3
4	4	1
		2
		3
		4

Código: Triângulo retângulo (base = 4*) V2.0

```
int main (int argc, char const *argv[]) {
   int linha, coluna;
   for(linha = 1; linha \leq 4; ++linha)
       for(coluna = 1; coluna <= linha; ++coluna)
           printf(" * ");
       printf("\n");
   return 0;
```

linha	coluna
1	1
2	1
	2
3	1
	2
	3
4	1
	2
	3
	4

Exemplo: Triângulo retângulo invertido

 Como imprimir um triângulo retângulo invertido formado por asteriscos na tela?

```
* * * *

* * *

* *
```

 Devemos imprimir 4 linhas sendo que a primeira tem 4 asterisco e cada próxima linha possui um asterisco a menos que a anterior.

Código: Triângulo retângulo invertido (base = 4*)

```
int main (int argc, char const *argv[]) {
   int linha, coluna;
   for(linha = 1; linha \leq 4; ++linha)
       for(coluna = 1; coluna \leq 4 - linha + 1;
         ++coluna)
           printf(" * ");
       printf("\n");
   return 0;
```

linha	coluna	4 - linha + 1
1	1	4
	2	
	3	
	4	
2	1	3
	2	
	3	
3	1	2
	2	
4	1	1

Exemplo: Triângulo retângulo alinhado à direita

 Como imprimir um triângulo retângulo formado por asteriscos na tela e alinhado à direita?

```
* * * * * *
```

• Devemos imprimir 4 linhas sendo que a primeira tem 3 espaços e 1 asterisco e cada próxima linha possui um espaço a menos e um asterisco a mais que a anterior.

Código: Triângulo retângulo alinhado à direita

```
int main (int argc, char const *argv[]) {
   int linha, coluna, max, col_brancos;
   max = 4;
   for(linha = 1; linha <= max; ++linha) {
       for(col_brancos = 1;
          col_brancos <= max - linha;</pre>
          ++col_brancos)
           printf(" ");
       for(coluna = 1; coluna <= linha;
          ++coluna)
           printf(" * ");
       printf("\n");
   return 0;
```

linha	col_brancos	coluna	max - linha
1	1	1	3
	2		
	3		
2	1	1	2
	2	2	
3	1	1	1
		2	
		3	
4		1	0
		2	
		3	
		4	

Arranjo com repetição

- Suponha dois dados, um azul e um branco, cada um com faces que contêm apenas valores de 1 a 4.
- Imprima todas as combinações possíveis para os resultados de uma jogada com desses dados.

Se representarmos uma jogada por um par (a,b), em que a é o valor do dado azul e b é o valor do dado branco, devemos imprimir todos os pares ordenados de (1,1) até (4,4).

Código: Arranjo com repetição

```
int main(int argc, char const *argv[])
  for (int a = 1; a <= 4; ++a)
     for (int b = 1; b \le 4; ++b)
        printf("(%d, %d)\n", a, b);
  return 0;
```

а	b	a	b
1	1	3	1
	2		2
	3		3
	4		4
2	1	4	1
	2		2
	3		3
	4		4

Arranjo sem repetição

- Suponha dois dados, os dois de cor branca, cada um com faces que contêm apenas valores de 1 a 4.
- Imprima todas as combinações possíveis para os resultados de uma jogada com desses dados.

Se representarmos uma jogada por um par (a1,a2), em que a1 e a2 são os valores dos dados brancos, devemos imprimir todos os pares ordenados de (1,1) até (4,4), notando que (1,4) e (4,1) são a mesma jogada, já que ambos os dados são brancos.

Código: Arranjo sem repetição

```
int main(int argc, char const *argv[])
  for (int a1 = 1; a1 <= 4; ++a1)
     for (int a2 = 1; a2 <= a1; ++a2)
        printf("(%d, %d)\n", a1, a2);
  return 0;
```

a1	a2
1	1
2	1
	2
3	1
	2
	3
4	1
	2
	3
	4

Referências Bibliográficas

- Material de aula do Prof. Ricardo Anido, da UNICAMP: http://www.ic.unicamp.br/~ranido/mc102/
- Material de aula da Profa. Virgínia F. Mota: https://sites.google.com/site/virginiaferm/home/disciplinas
- DEITEL, P; DEITEL, H. C How to Program. 6a Ed. Pearson, 2010.