LMAT1111 – Mathématiques générales (1^{re} partie) Corrigé de l'examen

Augusto Ponce et Pedro Vaz

11 janvier 2016

1. (3 points) Les propositions suivantes sont-elles vraies ou fausses? Répondez par vrai ou faux à la fin de la ligne, sans justifier. Chaque mauvaise réponse entraînera l'annulation d'une bonne réponse. Vous pouvez vous abstenir sans être pénalisé.

(a) La fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 définie pour $x \in \mathbb{R}$ par $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{si } x \neq 1, \\ 2 & \text{si } x = 1, \end{cases}$ est continue.

- (b) L'équation $\cos(x) + x^2 5 = 0$ admet au moins une solution dans \mathbb{R} .
- (c) La fonction $u:]1, 10[\to \mathbb{R}$ définie pour $t \in]1, 10[$ par $u(t) = \frac{e^t}{t}$ vérifie l'équation différentielle tu'(t) = (t-1)u(t).
- $(d) \int_{-1}^{1} (\sin x)^6 \, \mathrm{d}x = 0.$
- (e) Si $f: \mathbb{R}^2 \to \mathbb{R}$ est la fonction définie pour $(x, y) \in \mathbb{R}^2$ par $f(x, y) = y \ln(1 + xy^2)$, alors $\nabla f(1, 0) = (1, 0)$.
- (f) La fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour $(x,y) \in \mathbb{R}^2$ par $f(x,y) = e^y \sin(2x)$ vérifie l'équation aux dérivées partielles $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

Solution:

- (a) Vrai
- (b) Vrai
- (c) Vrai
- (d) Faux
- (e) Faux
- (f) Faux

2. (2,5 points) Calculez la limite $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

Mentionnez le(s) résultat(s) du cours que vous utilisez. Vous serez évalué sur la qualité de votre rédaction mathématique.

Solution: Puisque la fonction $x \in \mathbb{R} \mapsto \cos x$ est deux fois dérivable, son polynôme de Taylor T^2 d'ordre 2 autour de 0 existe et est donné par

$$T^2(x) = 1 - \frac{x^2}{2}.$$

En écrivant la formule de Taylor $\cos x = T^2(x) + R^2(x)$, nous avons pour tout $x \in \mathbb{R}_*$,

$$\frac{1 - \cos x}{x^2} = \frac{1}{2} + \frac{R^2(x)}{x^2}$$

et donc par la propriété de la somme de limite et la définition du reste de Taylor, nous avons

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} + 0 = \frac{1}{2}.$$

3. (1 point) Calculez l'intégrale $\int_0^{\pi} x \cos(x) dx$. Écrivez votre réponse à la fin de cette phrase, sans justifier :

Solution: Intégration par parties :

$$\int_0^{\pi} x \cos(x) dx = (\pi \sin \pi - 0 \sin 0) - \int_0^{\pi} \sin(x) dx = -\int_0^{\pi} \sin(x) dx = \cos \pi - \cos 0 = -2.$$

4. (1 point) Déterminez la valeur du maximum de la fonction $f:[0,6] \to \mathbb{R}$ définie pour $x \in [0,6]$ par $f(x) = \frac{e}{4} - \frac{e^{(x/2)}}{3}$. Écrivez votre réponse à la fin de cette phrase, sans justifier :

Solution: Comme $f'(x) = -\frac{e^{x/2}}{6}$ on voit que f n'a pas de points critiques sur]0,6[. Comme f est continue sur un intervalle fermé on calcule f(0) et f(6) pour conclure que le maximum de f sur]0,6[est $f(0)=\frac{e}{4}-\frac{1}{3}.$

5. (2,5 points) Soit $f:]-1, +\infty[\to \mathbb{R}$ la fonction définie pour $x \in]-1, +\infty[$ par

$$f(x) = \ln(1+x).$$

En utilisant un développement de Taylor de la fonction f au point a=0, montrez que $\ln{(1,5)}\approx\frac{3}{8}$; estimez l'erreur de cette approximation.

Mentionnez le(s) résultat(s) du cours que vous utilisez. Vous serez évalué sur la qualité de votre rédaction mathématique.

Solution: Puisque f est deux fois différentiable, on remarque que pour $x \in \mathbb{R}$,

$$T_{f,0}^2(x) = x - \frac{x^2}{2}.$$

En particulier,

$$T_{f,0}^2(\frac{1}{2}) = \frac{3}{8}.$$

On a donc, par définition du reste,

$$\ln \frac{3}{2} - \frac{3}{8} = f\left(\frac{1}{2}\right) - \frac{3}{8} = R_{f,0}^2\left(\frac{1}{2}\right).$$

Par la formule du reste de Lagrange, il existe c compris entre 0 et $\frac{1}{2}$ tel que

$$R_{f,0}^2\left(\frac{1}{2}\right) = \frac{f^{(3)}(c)}{3!}\left(\frac{1}{2}\right)^3 = \frac{1}{(1+c)^3}\frac{1}{24}.$$

On a alors, puisque $0 \le c \le \frac{1}{2}$,

$$0 \le R_{f,0}^2(\frac{1}{2}) \le \frac{1}{24}.$$

Ainsi, dans l'approximation $\ln 1.5 \approx \frac{3}{8}$, on commet une erreur d'au plus $\frac{1}{24}$.

6. (1 point) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie pour $(x,y) \in \mathbb{R}^2$ par $f(x,y) = e^{xy} + xy^2 - x^2$. Déterminez l'équation du plan tangent à cette fonction au point (1,0). Écrivez votre réponse à la fin de cette phrase, sans justifier:

Solution:
$$-2(x-1)+y$$

7. (1 point) Calculez l'intégrale $\iint_A y^2 dx dy$ où $A \subset \mathbb{R}^2$ est le triangle de sommets (0,0), (4,0) et (2,2). Écrivez votre réponse à la fin de cette phrase, sans justifier:

Solution: Nous avons

$$\int_A y^2 \, dx \, dy = \int_0^2 \left(\int_y^{4-y} y^2 \, dx \right) dy = \int_0^2 y^2 (4-2y) \, dy = 4\frac{2^3}{3} - 2\frac{2^4}{4} = \frac{8}{3}$$

8. (2,5 points) Montrez que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour $(x,y) \in \mathbb{R}^2$ par

$$f(x,y) = \begin{cases} \frac{xy^4}{\sqrt{x^2 + y^8}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0), \end{cases}$$

est continue en (0,0).

Mentionnez le(s) résultat(s) du cours que vous utilisez. Vous serez évalué sur la qualité de votre rédaction mathématique.

Solution: Nous avons que $|x| \le \sqrt{x^2} \le \sqrt{x^2 + y^8}$. Alors pour tout $(x, y) \ne (0, 0)$,

$$\left| \frac{xy^4}{\sqrt{x^2 + y^8}} \right| = \frac{|x|}{\sqrt{x^2 + y^8}} y^4 \le y^4,$$

et alors,

$$-y^4 \le \frac{xy^4}{\sqrt{x^2 + y^8}} \le y^4.$$

Nous avons ainsi que pour tout $(x, y) \in \mathbb{R}^2$,

$$-y^4 \le f(x,y) \le y^4.$$

Puisque les fonctions $g:(x,y)\in\mathbb{R}^2\mapsto -y^4$ et $h:(x,y)\in\mathbb{R}^2\mapsto y^4$ sont continues et valent 0 en (0,0), par la propriété de l'étau nous avons que f est continue en (0,0).

9. (1 point) Déterminez, si possible, $b \in \mathbb{R}$ tel que pour x > 0, $\frac{x^3 - 15x^2 + \sqrt{7}}{x - 11} = x^2 - 4x + b + R(x)$, avec $\lim_{x \to +\infty} R(x) = 0$. Écrivez votre réponse à la fin de cette phrase, sans justifier :

Solution:
$$b = 44$$

10. (2,5 points) L'indice de refroidissement dû au vent I est une température subjective qui dépend de la température réelle T et de la vitesse du vent v de sorte que I = f(T, v). La table que voici donne quelques valeurs de cet indice :

Servez-vous de cette table pour estimer la valeur de cet indice quand la température est de -12 °C et la vitesse du vent est de 33 km/h en utilisant des notions abordées au cours.

Vous serez évalué sur la qualité de votre rédaction mathématique. N'oubliez pas d'indiquer les unités.

Solution: On approxime f(T,v) par son plan tangent autour de $(T^*,v^*)=(-10\,^{\circ}\text{C},30\text{km/h})$:

$$f(T,v) \approx f(T^*,v^*) + \frac{\partial f}{\partial T}(T^*,v^*)(T-T^*) + \frac{\partial f}{\partial v}(T^*,v^*)(v-v^*).$$

En utilisant les valeurs du tableau, on voit que :

$$f(T^*, v^*) = -20 \,^{\circ}\text{C}$$

$$\frac{\partial f}{\partial T}(T^*, v^*) \approx \frac{f(-15, 30) - f(-10, 30)}{-15 - (-10)} = \frac{-26 - (-20)}{-5} = \frac{6}{5}$$

$$\frac{\partial f}{\partial v}(T^*, v^*) \approx \frac{f(-10, 40) - f(-10, 30)}{40 - 30} = \frac{-21 - (-20)}{40 - 30} = -\frac{1}{10} \,^{\circ}\text{C/(km/h)}$$

et donc

$$f(T, v) \approx -20 + \frac{6}{5}(T+10) - \frac{1}{10}(v-30)$$
 °C

quand T est proche de $-10\,^{\circ}\mathrm{C}$ et v est proche de $30\mathrm{km/h}$.

On peut se servir de cette approximation pour estimer la valeur de f quand la température est de -12 °C et la vitesse du vent est de 33km/h :

$$f(-12, 33) \approx -20 + \frac{6}{5}(-12 + 15) - \frac{1}{10}(33 - 30)$$
 °C
= $-20 - \frac{12}{5} - \frac{3}{10}$ °C
= -22.7 °C.