Linear Algebra 4th Edition

2. Linear Transformations and Matrices

Linear Transformation

Definition

Let V and W be vector spaces (over F). We call a function $\T:V\rightarrow W\$ a linear transformation from V to W if for all $\xy\rightarrow V\$ and $\xy\rightarrow V\$ we have: $\T(x+y)=T(x)+T(y)\$ 2.\, $\T(x)=cT(x) \$

Notes

- If F is the field of rational numbers, then 1. implies 2.
- However, generally they are logically independent.

Properties

- $\backslash (T(0) = 0 \backslash)$
- \(T(cx+y)=cT(x)+T(y)\)
- \(T(x-y)=T(x)-T(y)\)
- \(T(\sum\limits_{i=1}^n a_ix_i)=\sum\limits_{i=1}^na_iT(x_i)\)

Examples

- \(T:R^2\rightarrow R^2 \text{ by } T(a_1,a_2) = (2a_1+a_2, a_1)\)
- \(T_\theta:R^2\rightarrow R^2 \text{ by } T_\theta(a_1,a_2)=(rcos(\alpha+\theta), rsin(\alpha+\theta))\) Rotation
- \(T:R^2\rightarrow R^2 \text{ by } T(a_1,a_2)=(a_1, -a_2)\) Reflection
- \(T:R^2\rightarrow R^2 \text{ by } T(a_1,a_2)=(a_1, 0)\) Projection
- \(T:M_{m\times n}(F)\rightarrow M_{n\times m}(F) \text{ by } T(A)=A^t\) Transpose
- $\T(T:P_n(R)\rightarrow P_{n-1}(R) \text{ by } T(f(x))=f^{prime}(x)) Differentiation$
- \(T:C(R)\rightarrow R \text{ by }T(f)=\int_a^bf(t)dt\) Integration
- \(I:V\rightarrow V \text{ by }I(x)=x\) Identity
- \(T_0:V\rightarrow W \text{ by } T_0(x)=0\) Zero

Nullspace (Kernel)

Definition

Let V and W be vector spaces. Let $\T:V\rightarrow W\$ be linear. We define the nullspace (or kernel) $\N(T)\$ of T to be the set of all vectors $\xi V\$ such that $\T(x)=0\$; that is: $\N(T)=\xi V:T(x)=0\$

Examples

- $(N(I) = \{0\})$
- \(N(T_0)=V\)

Range (Image)

Definition

Define (R(T)) of T to be the subset of W consisting of all images (under T) of vectors in V; that is:

 $[R(T) = \{T(x):x \in V\}]$

Examples

- \(R(I) = V\)
- \(R(T_0)=\{0\}\)

Theorem 2.1

Let V and W be vector spaces and $(T:V\rightarrow W)$ be linear. Then N(T) and R(T) are subspaces of V and W, respectively.

Theorem 2.2

Let V and W be vector spaces, and let $\T:V\rightarrow W\$ be linear. If $\$ (\beta = $\$ \\dots, v_n\}\) is a basis for V, then:

 $[R(T)=span(T(beta))=span(\{T(v_1),T(v_2),\{dots,T(v_n)\})]$

Note

True if \(\beta\) is infinite.

Important Concepts

Nullity

Definition: If (N(T)) is finite-dimensional, then we define the nullity of T to be the dimension of (N(T)).

Rank

Definition: If (R(T)) is finite-dimensional, then we define the rank of T to be the dimension of (R(T)).

Theorem 2.3 (Dimension Theorem)

If V is finite-dimensional, then: \[nullity(T)+rank(T)=dim(V)\]

Theorem 2.4

T is one to one if and only if $(N(T)=\{0\})$

Theorem 2.5

Let V and W be vector spaces of equal finite dimension, and let $\T:V\rightarrow W\$ be linear. Then the following are equivalent:

- (a) T is one-to-one
- (b) T is onto
- (c) \(rank(T)=dim(V)\)

Important Property

If T is linear and one-to-one, then a subset S is linearly independent if and only if T(S) is linearly independent.

Theorem 2.6

Suppose that $((\{v_1,v_2,\dots,v_n\}))$ is a basis for V. For $(w_1,w_2,\dots,\ w_n)$ in W, there exists exactly one linear transformation $(T:V\rightarrow\ W)$ such that $(T(v_i)=w_i)$ for $(i=1,2,\dots,n)$.

Corollary

Let V and W be vector spaces, and suppose that V has a finite basis $((\{v_1,v_2,\dots,v_n\}))$. If (U, T:V) for $(i=1,2,\dots,n)$, then (U=T).

The Matrix Representation of a Linear Transformation

Ordered Basis

Definition

Let V be a finite-dimensional vector space. An ordered basis for V is a basis for V endowed with a specific order; that is, an ordered basis for V is a finite sequence of linearly independent vectors in V that generates V.

Example

In \(F^n\), the standard ordered basis is \(\{e_1, e_2, \dots, e_n\}\)

Coordinate Vectors

Definition

Let \(\beta\) be an unordered basis for a finite-dimensional vector space V. For \(x\in V\), let \(a_1,a_2,\dots, a_n\) be the unique scalars such that: \[x=\sum\limits_{i=1}^na_iu_i\]

We define the coordinate vector of x relative to (β) , denoted by $([x]_\beta)$, by: $[[x]_\beta]$

Using the notation above, we call the \(m\times n\) matrix A defined by \(A_{ij}=a_{ij}\) the matrix representation of T in the ordered bases \(\beta\) and \(\gamma\) and write \(A= [T]_{\beta}^{\gamma}\)

Important Note

Both sums and scalar multiples of linear transformation are also linear.

Theorem 2.7

Let V and W be vector spaces over a field F, and let \(T, U:V\rightarrow W\) be linear.

- (a) For all \(a\in F\), \(aT+U\) is linear
- (b) Using operations of addition and scalar multiplication in the preceding definition, the collection of all linear transformations from V to W is a vector space over F

Definition

Let V and W be vector spaces over F. We denote the vector space of all linear transformations from V into W by $(\mathcal{L}(V, W))$. In the case that V = W, we write $(\mathcal{L}(V))$ instead of $(\mathcal{L}(V, W))$.

Theorem 2.8

Let V and W be finite-dimensional vector spaces with ordered bases \(\beta\) and \(\gamma\), respectively, and let \(T, U:V\rightarrow W\) be linear transformations. Then it satisfies the properties of linear transformations.

Composition of Linear Transformations and Matrix Multiplication

Theorem 2.9

Let V, W, and Z be vector spaces over the same field F, and let $\T (T:V \cap W)$ and $\T (U:W \cap Z)$ be linear. Then $\T (UT:V \cap Z)$ is linear.

Theorem 2.10

Let V be a vector space. Let T, (U_1) , $(U_2 \in \mathcal{L}(V))$. Then:

- (a) $(T(U_1+U_2)=TU_1+TU_2)$ and $((U_1+U_2)T=U_1T+U_2T)$
- (b) \(TU_1U_2=(TU_1)U_2\)
- (c) \(TI=IT=T\)
- (d) \(a(U_1U_2)=(aU_1)U_2=U_1a(U_2)\) for all scalars a

Matrix Multiplication Definition

Let A be a $\mbox{(m\times p\)}$ matrix and B be an $\mbox{(n\times p\)}$ matrix. We define the product of A and B, denoted AB, to be the $\mbox{(m\times p\)}$ matrix such that:

 $[(AB)_{ij} = \sum_{k=1}^nA_{ik}B_{kj} \text{ for } 1\leq m, 1\leq j\leq p$

Theorem 2.11

Let V, W, and Z be finite-dimensional vector spaces with ordered bases (α, β) and $(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\alpha, \beta)$ and $(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\alpha, \beta)$ and $(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\alpha, \beta)$ and $(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\alpha, \beta)$ and $(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\alpha, \beta)$ and $(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\ullet V, W, and Z be finite-dimensional vector spaces with ordered bases <math>(\ullet V, W, and Z be finite A, and A, a$

 $[UT]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$

Corollary 1

Let V be a finite-dimensional vector space with an ordered basis (β) . Let $(T, U \in \mathbb{L}(V))$. Then:

\[[UT]_\beta=[U]_\beta[T]_\beta\]

Corollary 2

Let A be an $(n\times n)$ matrix. Then A is invertible iff (L_A) is invertible. Furthermore: $(L_A)^{-1}=L_{A^{-1}}$

Kronecker Delta

Definition

We define the Kronecker delta $(\left| ij \right| = 1)$ if $\left| ij \right| = 0$ if $\left| i\right| = 0$. The $\left| ij \right| = 0$ if $\left| ij \right| = 0$. The $\left| ij \right| = 0$ if $\left| ij \right| = 0$.

Theorem 2.12

Let A be an $(m\times n)$ matrix, B and C be $(n\times p)$ matrices, and D and E be $(q\times m)$ matrices. Then:

- (a) \((A(B+C)=AB+AC\) and \((D+E)A=DA+EA\)
- (b) \(a(AB)=(aA)B=A(aB)\) for any scalar A

- (c) \(I_mA=A=AI_n\)
- (d) If V is an n-dimensional vector space with an ordered basis \(\beta\), then \(([I_V]_\beta=I_n\)

Corollary

Let A be an \(m\times n\) matrix, \(B_1, B_2, \dots, B_k\) be \(n\times p\) matrices, \(C_1, C_2, \dots, C_k\) be \(q\times m\) matrices, and \(a_1, a_2, \dots, a_k\) be scalars. Then: \[A(\sum\limits_{i=1}^k a_iB_i)=\sum\limits_{i=1}^k a_iAB_i\] and

\[(\sum\limits_{i=1}^ka_iC_i)A=\sum\limits_{i=1}^ka_iC_iA\]

Theorem 2.13

Let A be an $(m\times n)$ matrix and B be an $(n\times p)$ matrix. For each j $((1\leq p))$ let (u_j) and (v_j) denote the (jth) columns of AB and B, respectively. Then:

- (a) \(u_j=Av_j\)
- (b) $(v_j=Be_j)$, where (e_j) is the jth standard vector of (F^p)

Theorem 2.14

Let V and W be finite-dimensional vector spaces having ordered bases (β) and (\agmma) , respectively, and let $(T:V\rightarrow\ W)$ be linear. Then, for each $(u\in\ V)$, we have:

 $[[T(u)]_gamma=[T]_beta^gamma[u]_beta]$

Theorem 2.15

Let A be an \(m\times n\) matrix with entries from F. Then the multiplication transformation \(L_A:F^n\rightarrow F^m\) is linear. Furthermore, if B is any other \(m\times n\) matrix (with entries from F) and \(\beta\) and \(\gamma\) are the standard ordered bases for \(F^n\) and \(F^m\), respectively, then we have the following properties:

- (a) \([L_A]_\beta^\gamma = A\)
- (b) \(L_A=L_B\) iff \(A=B\)
- (c) $(L_{A+B}=L_A+L_B)$ and $(L_{aA}=aL_A ,,)$ for all a \in F\)
- (d) If \(T:F^n\rightarrow F^m\) is linear, then there exists a unique matrix \((m\times n\))
 matrix C such that \(T=L_C\). In fact, \(C=[T]_\beta^\gamma\)
- (e) If E is an \((n\times p\)) matrix, then \((L_{AE}=L_AL_E\))
- (f) If \((m=n\), then \((L_{I_n}=I_{F^n}\))

Theorem 2.16

Let A, B, and C be matrices such that A(BC) is defined. Then (AB)C is also defined and A(BC)=(AB)C; that is, matrix multiplication is associative.

Invertibility and Isomorphisms

Definition

Let V and W be vector spaces, and let $\T:V\rightarrow W\$ is said to be an inverse of $\T:V\rightarrow W$ if $\T:V\rightarrow W$ and $\T:V\rightarrow W$. If T has an inverse, then T is said to be invertible. As noted in Appendix B, if T is invertible, then the inverse of T is unique and is denoted by $\T^{-1}\$.

Theorem 2.17

Let V and W be vector spaces, and let (T:V) be linear and invertible. Then $(T^{-1}:W)$ is also linear.

Definition

Let A be an \(n\times n\) matrix. Then A is invertible if there exists an \(n\times n\) matrix B such that \(AB=BA=I\).

Lemma

Let T be an invertible linear transformation from V to W. Then V is finite-dimensional iff W is finite-dimensional. In this case, $(\dim(V)=\dim(W))$.

Theorem 2.18

Let V and W be finite-dimensional vector spaces with ordered bases \(\beta\) and \(\gamma\), respectively. Let \(T:V\rightarrow W\) be linear. Then T is invertible iff \([T]_\beta^\gamma\) is invertible. Furthermore, \([T^{-1}]_\gamma^\beta=([T]_\beta^\gamma)^{-1}\)

Corollary 1

Let V be a finite-dimensional vector space with an ordered basis \(\beta\), and let \(T:V\rightarrow V\) be linear. Then T is invertible iff \([T]_\beta\) is invertible. Furthermore, \([T^{-1}]_\beta=([T]_\beta)^{-1}\)

Corollary 2

Let A be an $(n\times n)$ matrix. Then A is invertible iff (L_A) is invertible. Furthermore, $((L_A)^{-1}=L_{A^{-1}})$

Definition

Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear transformation \(T:V\rightarrow W\) that is invertible. Such a linear transformation is called the isomorphism from V onto W.

Lagrange Interpolation Formula

- \(P(x)=\sum\limits_{i=0}^ny_i\cdot L_i(x)\)
- \(L_i(x)=\prod\limits_{\substack{j=0\j\neq i}}^n\frac{x-x_j}{x_i-x_j}\)

Theorem 2.19

Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic to W iff $\langle \dim(V) = \dim(W) \rangle$.

Corollary

Let V be a vector space over F. Then V is isomorphic to (F^n) iff $(\dim(V)=n)$.

Theorem 2.20

Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively, and let \(\beta\) and \(\gamma\) be ordered bases for V and W, respectively. Then the function \(\Phi: \mathbb{L}(V,W)\rightarrow M_{m\times n}(F)\), defined by \(\Phi(T)= [T]_\beta^\gamma\) for \(T\in \mathbb{L}(V,W)\), is isomorphism.

Corollary

Let V and W be finite-dimensional vector spaces of dimensions n and m, respectively. Then $\(M_{L}(V,W)\)$ is finite-dimensional of dimension $\(M_{L}(V,W)\)$.

Definition

Let \(\beta\) be an ordered basis for an n-dimensional vector space V over the field F. The standard representation of V with respect to \(\beta\) is the function \(\phi_B:V\rightarrow F^n\) defined by \(\phi_B(x)=[x]_\beta\) for each \(x\in V\).

Theorem 2.21

For any finite-dimensional vector space V with ordered basis \(\beta\), \(\phi_\beta\) is an isomorphism.

The Change of Coordinate Matrix

Theorem 2.22

Let (β) and (β^{prime}) be two ordered bases for a finite-dimensional vector space V, and let $(Q=[I_v]^\beta)$. Then:

- (a) Q is invertible
- (b) For any \(v\in V\), \([v]_\beta=[I_V(v)]_\beta=
 [I_V]_{\beta^\prime}^\beta[v]_{\beta^\prime}\)

Theorem 2.23

Let T be a linear operator on a finite-dimensional vector space V, and let \(\beta\) and \(\beta^\prime\) be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes \(\beta^\prime\text{-coordinates}\) into \(\beta\text{-cooridnate}\). Then: \[[T]_{\beta^\prime}=Q^{-1}[T]_\beta Q\]

Corollary

Let $(A\in M_{n\times n}(F),\)$ and let $(\sum M_{n\times n}(F^n))$. Then $([L_A]_{gamma}Q^{-1}AQ)$, where Q is the $(n\times n)$ matrix whose jth column is the jth vector of $(\sum M_{n\times n}(F^n))$.

Definition

Let A and B be matrices in $(M_{n\times n}(F))$. We say that B is similar to A if there exists an invertible matrix Q such that $(B=Q^{-1}AQ)$.

Dual Spaces

Definition

For a vector space V over F, we define the dual space of V to be the vector space $\$ (\mathcal{L}(V, F)\), denoted by $\$ (V^\star\).

Theorem 2.24

Suppose that V is a finite-dimensional vector space with the ordered basis \(\beta=\{x_1, x_2, \dots, x_n\}\). Let \(f_i(1)\leq i\leq n)\) be the ith coordinate function with respect to \(\beta\) as just defined, and let \(\beta^\star=\{f_1, f_2,\dots,f_n\}\). Then \(\beta^\star\) is an ordered basis for \(V^\star\), and, for any \(f\in V^\star\), we have: \[f=\sum\limits_{i=1}^nf(x_i)f_i\]

Definition

We call the ordered basis $(\beta^s=\{f_1,f_2,\dots,f_n\})$ of (V^s) that satisfies $(f_i(x_j)=\delta_{ij}(1\leq i,j\leq n))$ the dual basis of (β) .

Theorem 2.25

Let V and W be finite-dimensional vector spaces over F with ordered bases \(\beta\) and \(\gamma\), respectively. For any linear transformation \(T:V\rightarrow W\), the mapping \(T^t:W^\star\rightarrow V^\star\) defined by \(T^t(g)=gT\) for all \(g\in W^\star\) is a linear transformation with the property that \([T^t]_{\gamma^\star}^{\beta^\star}= ([T]_\beta^\gamma)^t\)

Lemma

Let V be a finite-dimensional vector space, and let $(x\in V)$. If $(\hat x)(f)=0$ for all $(f\in V^s)$, then (x=0).

Theorem 2.26

Let V be a finite-dimensional space, and define $(\psi:V\rightarrow V^{\star})$ by $(\psi(x)=\hat{x})$. Then $(\psi(x)=\hat{x})$ is an isomorphism.

Corollary

Let V be an finite-dimensional vector space with dual space (V^{star}) . Then every ordered basis for (V^{star}) is the dual basis for some basis for V.

Homogeneous Linear Differential Equations with Constant Coefficients

Definition

Given a function $(x\in \mathbb{R}, \mathcal{C})$ with real part (x_1) and imaginary part (x_2) , we say that x is differentiable if (x_1) and (x_2) are differentiable. If x is differentiable, we define the derivative of x by (x°) = x_1° prime + ix_2 $^\circ$.

Theorem 2.27

Any solution to a homogeneous linear differential equation with constant coefficients has derivatives of all orders; that is, if x is a solution to such an equation, then $(x^{(k)})$ exists for every positive integer k.

Important Notes

- We use \(C^{\infty}\) to denote the set of all functions in \(\mathcal{F}(\mathcal{R}, \mathcal{C})\) that has derivatives of all orders.
- For any polynomial \((p(t)\)\) over C of positive degree, p(D) is called a differential operator. The order of the differential operator p(D) is the degree of the polynomial p(t).
- Given the differential equations above, the complex polynomial $(p(t)=t^n+a_{n-1}t^{n-1}+\dot s+a_1t+a_0)$ is called the auxiliary polynomial associated with equation.

Corollary

The set of all solutions to a homogeneous linear differential equation with constant coefficients is a subspace of \(C^{\infty}\).

Important Definitions

1. Let \(c=a+ib\) be a complex number with real part a and imaginary part b. Define:

\[e^c=e^a(cosb+isinb)\]

\[e^{ib}=cosb+isinb\]

The special case:

is called Euler's formula.

2. A function $(f:R\rightarrow C)$ defined by $(f(t)=e^{ct})$ for a fixed complex number c is called an exponential function.

Theorem 2.29

For any exponential function $(f(t)=e^{ct}), (f^{prime}(t)=ce^{ct}).$

Theorem 2.30

The solution space for $(y^{prime}+y_0y=0)$ is of dimension 1 and has $((e^{-a_0t}))$ as a basis.

Corollary

For any complex number c, the null space of the differential operator (D-cI) has (e^{ct}) as a basis.

Theorem 2.31

Let p(t) be the auxiliary polynomial for a homogeneous linear differential equation with constant coefficients. For any complex number c, if c is a zero of p(t), then (e^{ct}) is a solution to the differential equation.

Theorem 2.32

For any differential operator p(D) of order n, the null space of p(D) is an n-dimensional subspace of (C^∞) .

Lemma 1

Lemma 2

Let V be a vector space, and suppose T and U are linear operators on V such that U is onto and the null spaces of T and U are finite-dimensional. Then the null space of TU is finite-dimensional, and:

 $[\dim(N(TU))=\dim(N(T))+\dim(N(U))]$

Corollary

The solution space of any nth-order homogeneous linear differential equation with constant coefficients is an n-dimensional subspace of \((C^\infty\))

Theorem 2.33

Given n distinct complex numbers (c_1, c_2, \dots, c_n) , the set of exponential functions $(e^{c_1t}, e^{c_2t}, \dots, e^{c_nt})$ is linearly independent.

Corollary

For any nth-order homogeneous linear differential equation with constant coefficients, if the auxiliary polynomial has n distinct zeros $(c_1, c_2, dots, c_n,)$ then $(e^{c_1t}, e^{c_2t}, dots, e^{c_nt})$ is a basis for the solution space of the differential equation.

Lemma

For a given complex number c and positive integer n, suppose that \(((t-c)^n\) is the auxiliary polynomial of a homogeneous linear differential equation with constant coefficients. Then the set:

\[\beta = \{e^{ct}, \dots, t^{n-1}e^{ct}\}\]
is a basis for the solution space of the equation.

Theorem 2.34

Given a homogeneous linear differential equation with constant coefficients and auxiliary polynomial:

Appendix A: Sets

Key Concepts

- The elements of a set are listed is immaterial
- If \(B\subseteq A\), and \(B\neq A\), then B is called a proper subset of A
- \(A=B\) iff \(A\subseteq B\) and \(B\subseteq A\)

- A technique for proving \((A=B\))
- \(\emptyset\) is a subset of every set
- A index set's elements have their own indices respectively
- A relation on A is a set of ordered pairs of elements of A such that \(((x,y)\in S\)) iff x stands in the given relationship to y

Equivalence Relation S on A

- For each \(x\in A\), \(x\sim x\) (reflexivity)
- If \(x\sim y\), then \(y\sim x\) (symmetry)
- If \(x\sim y\) and \(y\sim z\), then \(x\sim z\) (transitivity)

Appendix B: Functions

Basic Concepts

- f(x) is called the image of x under f
 - \circ If \(S\subseteq A,\) we denote by \(f(S)\) that \(\\{f(x):x\in S\}\) of all images of elements of S
- x is called a preimage of f(x) under f
 - \circ If \(T\subseteq B,\) we denote by \(f^{-1}(T)\) that \(\{x\in A:f(x)\in T\}\) of all preimages of elements in T
- If \(f:A\rightarrow B\), then A is called the domain of f, and B is called the codomain of f
 - The set $(\{f(x):x\in A\}\})$ is called the range of f
 - Range is a subset of codomain

Important Properties

- Each element of the range has a unique preimage are called one-to-one
- If codomain equals to the range, then the function is called onto
- Let \(f:A\rightarrow B\) be a function and \(S\subseteq A\). Then a function \
 (f_S:S\rightarrow B\), called the restriction of f to S, can be defined by \(f_S(x)=f(x)\) for each \(x\in S\)
- Functional composite is associative
- A function is invertible iff it's one-to-one and onto
 - \((f\circ g)(y)=y\,\forall y\in B, (g\circ f)(x)=x\,\forall x\in A\)
 - If f is invertible, (f^{-1}) is invertible, and $((f^{-1})^{-1} = f)$
 - If \(f:A\rightarrow B\) and \(g:B\rightarrow C\) are invertible, then \(g\circ f\) is invertible and \((g\circ f)^{-1}=f^{-1}\circ g^{-1}\)

Appendix C: Fields

Definition

A field F is a set on which two operations \((+\)\) and \(\\cdot\)(called addition and multiplication, respectively) are defined so that, for each pair of elements \((x,y\)in F\), there are unique elements \((x+y\)\) and \((x\)cdot y\)\ in F for which the following conditions hold for all elements a, b, c in F:

- Commutativity of Addition and Multiplication
- Associativity of Addition and Multiplication
- Existence of Identity Elements
- Existence of Inverses
- Distributivity of multiplication over addition

Important Notes

- · The set of integers is not a field
- The elements 0 and 1, and the inverses are unique
- The additive identity of a field has no multiplicative inverse
- The smallest positive integer p for which a sum of p 1's equals 0 is called the characteristic of F. If no such positive integer exists, then F is said to have characteristic zero

Appendix D: Complex Numbers

Definition

A complex number is an expression of the form (z=a+bi), where a and b are numbers called the real part and the imaginary part of z, respectively.

Theorem D.1

The set of complex numbers with the operations of addition and multiplication previously defined is a field.

Important Definitions

- The complex conjugate of a complex number a+bi is the complex number a-bi. We
 denote the conjugate of the complex number by \(\bar{z}\)
- The absolute value(or modulus) of z is the real number \(\sqrt{a^2+b^2}\). We denote the absolute value of z by \(|z|\)

Theorem D.3 (Part)

\(|z+w|\leq|z|+|w|\)

\(|z|-|w|\leq|z+w|\)

Corollary

If \(p(z)=a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0\) is a polynomial of degree \(n\geq 1\)
with complex coefficients, then there exist complex numbers \(c_1, c_2,\cdots,c_n\)(not
necessarily distinct) such that:

$$[p(z)=a_n(z-c_1)(z-c_2)\cdot (z-c_n)]$$

• \(\mathbb{C}\) is Algebraically Closed

Appendix E: Polynomials

Definition

A polynomial of f(x) divides a polynomial g(x) if there exists a polynomial q(x) such that (g(x)=f(x)q(x))

Theorem E.1 (The Division Algorithm for Polynomials)

- (f(x)=g(x)q(x)+r(x)) is unique.
 - $\circ \setminus (deg(r(x)) < deg(g(x)) \setminus)$

Corollary 1

Factor Theorem

Corollary 2

• Any polynomial of degree \(n\geq 1\) has at most n distinct zeros.

Definition

Two nonzero polynomials are called relatively prime if no polynomial of positive degree divides each of them.

Theorem E.2

If $(f_1(x))$ and $(f_2(x))$ are relatively prime polynomials, there exist polynomials $(q_1(x))$ and $(q_2(x))$ such that:

$$[q_1(x)f_1(x)+q_2(x)f_2(x)=1]$$

Definitions

Let $(f(x)=a_0+a_1(x)+\cdot cdots+a_nx^n)$ be a polynomial with coefficients from a field F. If T is a linear operator on a vector space V over F, we define:

\(f(T)=a_0I+a_1T+\cdots+a_nT^n\)

Similarly, if A is a n x n matrix with entries from F, we define \
 (f(A)=a_0I+a_1A+\cdots+a_nA^n\)

Theorem E.3

Let f(x) be a polynomial with coefficients from a field F, and let T be a linear operator on a vector space V over F. Then the following statements are true:

- f(T) is a linear operation on V
- If (β) is a finite ordered basis for V and $(A=[T]_\beta)$, then $([f(T)]_\beta=f(A))$.

Theorem E.4

Let T be a linear operator on a vector space V over a field F, and let A be a square matrix with entries from F. Then, for any polynomials $(f_1(x))$ and $(f_2(x))$ with coefficients from F:

- $(f_1(T)f_2(T)=f_2(T)f_1(T))$
- $(f_1(A)f_2(A)=f_2(A)f_1(A))$

Theorem E.5

Let T be a linear operator on a vector space V over a field F, and let A be a n x n matrix with entries from F. If $(f_1(x))$ and $(f_2(x))$ are relatively prime polynomials with entries from F, then there exist polynomials $(q_1(x))$ and $(q_2(x))$ with entries from F such that:

- $(q_1(T)f_1(T)+q_2(T)f_2(T)=I)$
- $(q_1(A)f_1(A)+q_2(A)f_2(A)=I)$

Definition

A polynomial f(x) with coefficients from a field F is called monic if its leading coefficient is 1. If f(x) has positive degree and cannot be expressed as a product of polynomials with coefficients from F each having positive degree, then f(x) is called irreducible.

Theorem E.6

Let $(\phi(x)\)$ and f(x) be polynomials. If $(\phi(x)\)$ is irreducible and $(\phi(x)\)$ does not divide f(x), then $(\phi(x)\)$ and f(x) are relatively prime.

Theorem E.7

Any two distinct irreducible monic polynomials are relatively prime.

Theorem E.8

Let f(x), g(x), and $(\phi(x)\)$ be polynomials. If $(\phi(x)\)$ is irreducible and divides the product $(f(x)g(x)\)$, then $(\phi(x)\)$ divides f(x) or $(\phi(x)\)$ divides g(x).

Corollary

Let $(\phi(x), \phi_1(x), \phi_2(x), \phi_n(x))$ be irreducible monic polynomials. If $(\phi(x))$ divides the product $(\phi_1(x)\phi_2(x)\cdots\phi_n(x))$, then $(\phi(x)=\phi_i(x))$ for some $i(\i = 1,2,\cdots, n))$.

Theorem E.9 (Unique Factorization Theorem for Polynomials)

For any polynomial (f(x)) of positive degree, there exist a unique constant c; unique distinct irreducible monic polynomials $(\phi_1(x), \phi_2(x), \dots, \hi_k(x))$; and unique positive integers (n_1, n_2, \dots, n_k) such that: $[f(x)=c[\phi_1(x)]^{n_1}[\phi_2(x)]^{n_2}\cdots [\phi_k(x)]^{n_k}]$

Theorem E.10

Let f(x) and g(x) be polynomials with coefficients from an infinite field F. If f(a)=g(a) for all \ $(a \in F)$, then (f(x)) and g(x) are equal.