

FORMATO DE SYLLABUS Código: AA-FR-003 Macroproceso: Direccionamiento Estratégico Versión: 01 Fecha de Aprobación:

27/07/2023

Proceso: Autoevaluación y Acreditación

FACULTAD:	TAD: Tecnológica							
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:		
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO								
NOMBRE DEL ESPACIO ACADÉMICO: CONTROL INTELIGENTE								
Código del espacio académico:			7316	Número de créditos académicos:			2	
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2
Tipo de espacio académico:			Asignatura	х	Cátedra			
NATURALEZA DEL ESPACIO ACADÉMICO:								
Obligatorio Básico	-		atorio mentario		Electivo Intrínseco	х	Electivo Extrínseco	
CARÁCTER DEL ESPACIO ACADÉMICO:								
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:								
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:
II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS								

El estudiante debe tener conocimientos previos en sistemas de control clásico y moderno, álgebra lineal, programación, fundamentos de inteligencia artificial, modelado matemático de sistemas dinámicos, y manejo básico de simuladores como MATLAB/Simulink o Python. Es deseable experiencia en instrumentación, automatización y estructuras de control en entornos industriales.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El desarrollo de sistemas de control inteligentes es esencial en la era de la Industria 4.0, donde la toma de decisiones adaptativa y autónoma es una necesidad en entornos complejos, dinámicos y distribuidos. Esta asignatura aporta al perfil del ingeniero de control competencias para diseñar soluciones basadas en redes neuronales, lógica difusa, algoritmos evolutivos y computación bioinspirada, integrando marcos normativos como ISA-95, ISA-99 e ISA/IEC 62443 para garantizar la interoperabilidad, trazabilidad y seguridad de los sistemas automatizados.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar, simular e implementar sistemas inteligentes de control para aplicaciones en automatización industrial, integrando metodologías bioinspiradas y estándares de ciberseguridad y arquitectura industrial.

Objetivos Específicos:

Comprender los principios de control inteligente y su relación con la inteligencia artificial. Analizar e implementar controladores difusos, redes neuronales artificiales y algoritmos genéticos.

 $Comparar enfoques \, cl\'asicos \, y \, bioinspirados \, para \, resolver \, problemas \, de \, control.$

 $Aplicar\ estructuras\ de\ control\ inteligente\ bajo\ entornos\ industriales\ simulados\ o\ reales.$

Integrar estándares ISA como parte del diseño seguro y escalable de sistemas automatizados.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Diseñar soluciones de control inteligente aplicadas a la automatización industrial.

Evaluar el desempeño de diferentes estructuras de control bioinspirado.

Formular soluciones seguras e interoperables bajo los lineamientos ISA/IEC 62443 y ISA-95.

Desarrollar pensamiento crítico, innovación y análisis aplicado a sistemas dinámicos complejos.

Resultados de Aprendizaje:

Implementa controladores inteligentes usando lógica difusa, redes neuronales y algoritmos evolutivos.

Compara esquemas clásicos y bioinspirados en sistemas reales o simulados.

Aplica normas de ciberseguridad en sus soluciones de automatización inteligente.

Desarrolla artículos técnicos y prototipos funcionales en equipos multidisciplinarios.

VI. CONTENIDOS TEMÁTICOS

Introducción a los sistemas inteligentes

Concepto, historia y características

Test de Turing y paradigmas actuales

Herramientas para sistemas inteligentes

Representación del conocimiento y sistemas expertos

Ontologías, razonamiento y Web semántica

Representación simbólica y algorítmica

Modelos bioinspirados y aprendizaje automático

Aprendizaje animal y artificial

Algoritmos de aprendizaje y estadísticas

Incertidumbre y lógica difusa

Fundamentos de lógica difusa

Diseño y simulación de controladores difusos

Aplicaciones industriales

Redes neuronales artificiales (RNA)

Estructuras, entrenamiento y clasificación

Redes recurrentes y procesamiento temporal

RNA para sistemas dinámicos no lineales

Sistemas neurodifusos y adaptativos

Sistemas híbridos de control

Sistemas de inferencia adaptativa (ANFIS)

Algoritmos genéticos y optimización evolutiva

Fundamentos biológicos

Algoritmos genéticos para controladores

Inteligencia de enjambre y colonias

Control inteligente aplicado a la industria 4.0

ISA-95: Integración jerárquica de sistemas

ISA-99 / ISA/IEC 62443: Ciberseguridad en sistemas industriales inteligentes

Aplicaciones industriales en tiempo real

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La asignatura se desarrolla mediante aprendizaje activo y basado en proyectos (ABP). Incluye simulaciones, talleres dirigidos, estudios de caso, lecturas orientadas y desarrollo de un proyecto final de implementación. Se promueve la autonomía, creatividad, trabajo colaborativo y el uso de herramientas computacionales actuales.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con Simuladores y herramientas de IA (MATLAB, Simulink, Python, TensorFlow, LabVIEW), Bases de datos de artículos IEEE, Springer, Scopus.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Opcionalmente, se podrán organizar visitas a centros de innovación, laboratorios de automatización, empresas de tecnología inteligente o ferias académicas, con el objetivo de validar la aplicabilidad de los sistemas desarrollados.

XI. BIBLIOGRAFÍA

Schalkoff, R. (2009). Intelligent Systems: Principles, Paradigms and Pragmatics. Jones & Bartlett

Ponce, P., & Ramírez, F. (2010). Intelligent Control Systems with LabVIEW. Springer

Zilouchian, A., & Jamshidi, M. (2001). Intelligent Control Systems Using Soft Computing Methodologies. CRC Press

Haykin, S. (1999). Neural Networks. Prentice Hall

Klir, G., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall

Gen, M., & Cheng, R. (1996). Genetic Algorithms and Engineering Design. Wiley

ISA (2019). ISA-95: Enterprise-Control System Integration

ISA/IEC (2020). ISA-62443: Security for Industrial Automation and Control Systems

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS Fecha revisión por Consejo Curricular: Fecha aprobación por Consejo Curricular: Número de acta: