Checking NFA Equivalence with Bisimulations up to Congruence

Filippo Bonchi and Damien Pous

CNRS, LIP, ENS Lyon

POPL, Roma, 25.1.2o13

Language equivalence of finite automata

- Useful for model checking:
 - check that a program refines its specification
 - ▶ compute a sequence A_i of automata until $A_i \sim A_{i+1}$

(cf. abstract regular model checking)

- Useful in proof assistants:
 - decide the equational theory of Kleene algebra

$$(R \cup S)^* = R^*; (S; R^*)^*$$

(cf. the ATBR and RelationAlgebra Coq libraries)

► This work: a new algorithm

Outline

Deterministic Automata

Non-Deterministic Automata

Comparison with other algorithms

Deterministic case, naive algorithm, correctness:

- \triangleright A relation R is a bisimulation if x R y entails
 - ightharpoonup o(x) = o(y);
 - for all a, $t_a(x) R t_a(y)$.

Deterministic case, naive algorithm, correctness:

- ▶ A relation *R* is a bisimulation if *x R y* entails
 - ightharpoonup o(x) = o(y);
 - for all a, $t_a(x) R t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation R with x R y

Deterministic case, naive algorithm, correctness:

- ▶ A relation *R* is a bisimulation if *x R y* entails
 - ightharpoonup o(x) = o(y);
 - for all a, $t_a(x) R t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation R with x R y

The previous algorithm attempts to construct a bisimulation

Deterministic case, naive algorithm: quadratic complexity

1 pairs

Deterministic case, naive algorithm: quadratic complexity

2 pairs

3 pairs

4 pairs

5 pairs

6 pairs

7 pairs

Deterministic case, naive algorithm: quadratic complexity

8 pairs

Deterministic case, naive algorithm: quadratic complexity

9 pairs

10 pairs

11 pairs

12 pairs

13 pairs

14 pairs

15 pairs

16 pairs

17 pairs

18 pairs

19 pairs

Deterministic case, naive algorithm: quadratic complexity

20 pairs

21 pairs

21 pairs

21 pairs

21 pairs

21 20 pairs

21 19 pairs

21 18 pairs

21 17 pairs

21 16 pairs

21 15 pairs

21 14 pairs

21 13 pairs

21 12 pairs

21 11 pairs

21 10 pairs

21 9 pairs

One can stop much earlier

[Hopcroft and Karp '71]

One can stop much earlier

[Hopcroft and Karp '71] [Tarjan '75]

Complexity: almost linear

Correctness of HK algorithm, revisited:

- ▶ Denote by R^e the equivalence closure of R
- \triangleright R is a bisimulation up to equivalence if x R y entails
 - ightharpoonup o(x) = o(y);
 - for all a, $t_a(x) R^e t_a(y)$.

Correctness of HK algorithm, revisited:

- ▶ Denote by *R*^e the equivalence closure of *R*
- \triangleright R is a bisimulation up to equivalence if x R y entails
 - o(x) = o(y);
 - for all a, $t_a(x) R^e t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation up to equivalence R, with x R y

Correctness of HK algorithm, revisited:

- ▶ Denote by *R^e* the equivalence closure of *R*
- \triangleright R is a bisimulation up to equivalence if x R y entails
 - o(x) = o(y);
 - for all a, $t_a(x) R^e t_a(y)$.
- ► Theorem: L(x) = L(y) iff there exists a bisimulation up to equivalence R, with x R y

Ten years before Milner and Park!

Outline

Deterministic Automata

Non-Deterministic Automata

Comparison with other algorithms

Non-Deterministic Automata

Deterministic v.s. non-deterministic:

- ▶ Reduction to the deterministic case:
 - ▶ "powerset construction": $(S, t, o) \mapsto (\mathcal{P}(S), t^{\#}, o^{\#})$
 - from states (x, y, ...) to sets of states (X, Y, ...)

Non-deterministic case: use Hopcroft and Karp on the fly:

x | | | | |

Non-deterministic case: use Hopcroft and Karp on the fly:

(correctness comes for free)

One can do better:

One can do better:

One can do better:

parts of the accessible subsets need not be explored

Correctness

▶ Denote by R^u the context closure of R:

$$\frac{X R Y}{X R^{u} Y} \qquad \frac{X_{1} R^{u} Y_{1}}{X_{1} + X_{2} R^{u} Y_{1} + Y_{2}}$$

- ▶ R is a bisimulation up to context if X R Y entails
 - $o^{\#}(X) = o^{\#}(Y)$;
 - for all a, $t_a^\#(X) R^u t_a^\#(Y)$.
- ► Theorem: L(X) = L(Y) iff there exists a bisimulation up to context R, with X R Y

One can do even better:

One can do even better:

Correctness

- ► Let R^c denote the congruence closure of R

 (i.e., equivalence and context closure)
- ▶ R is a bisimulation up to congruence if X R Y entails
 - $o^{\#}(X) = o^{\#}(Y)$;
 - for all a, $t_a^\#(X) R^c t_a^\#(Y)$.
- ► Theorem: L(X) = L(Y) iff there exists a bisimulation up to congruence R, with X R Y

How to check whether $(X, Y) \in R^c$?

How to check whether $(X, Y) \in \mathbb{R}^{c}$?

- ▶ R^c is an equivalence relation
- define a canonical element for each equivalence class

(take the largest set of the equivalence class)

How to check whether $(X, Y) \in \mathbb{R}^{c}$?

- $ightharpoonup R^c$ is an equivalence relation
- define a canonical element for each equivalence class

(take the largest set of the equivalence class)

compute these canonical elements by set rewriting

$$(X, Y \rightarrow_R X + Y \text{ whenever } (X, Y) \in R)$$

How to check whether $(X, Y) \in \mathbb{R}^{c}$?

- ▶ R^c is an equivalence relation
- ▶ define a canonical element for each equivalence class (take the largest set of the equivalence class)
- ► compute these canonical elements by set rewriting $(X, Y \rightarrow_R X+Y \text{ whenever } (X, Y) \in R)$
- ▶ Theorem: $(X, Y) \in R^c$ iff $X \downarrow_R = Y \downarrow_R$

Hopcroft and Karp with Contexts: HKC

- ▶ The resulting algorithm is called HKC, it combines
 - "up to equivalence"

[HK'71, Milner'89]

"up to context"

[MPW'92, Sangiorgi'95]

Hopcroft and Karp with Contexts: HKC

▶ The resulting algorithm is called HKC, it combines

"up to equivalence" [HK'71, Milner'89]"up to context" [MPW'92, Sangiorgi'95]

► Good property: no need to explore all accessible states of the determinised automata

Outline

Deterministic Automata

Non-Deterministic Automata

Comparison with other algorithms

Antichain-based algorithms (AC)

"Antichains: a new algorithm
 for checking universality of finite automata"
 De Wulf, Doyen, Henzinger, and Raskin, CAV '06

- ► Algorithms for language inclusion
- ▶ Rough idea: iterate over an antichain to reach a fixpoint

```
Algorithm 2: Language Inclusion Checking
     Input: NFA \mathcal{A} = (\Sigma, Q_{\mathcal{B}}, I_{\mathcal{B}}, F_{\mathcal{B}}, \delta_{\mathcal{B}}), \mathcal{B} = (\Sigma, Q_{\mathcal{B}}, I_{\mathcal{B}}, F_{\mathcal{B}}, \delta_{\mathcal{B}}). A relation \preceq \in (\mathcal{A} \cup \mathcal{B})^{\subseteq}.
    Output: TRUE if L(\mathcal{A}) \subseteq L(\mathcal{B}). Otherwise, FALSE.
 1 if there is an accepting product-state in \{(i, I_{\mathcal{B}}) \mid i \in I_{\mathcal{B}}\} then return FALSE:
 2 Processed:=0:
 3 Next:= Initialize(\{(i, Minimize(I_R)) \mid i \in I_R\});
 4 while Next \neq 0 do
           Pick and remove a product-state (r, R) from Next and move it to Processed;
           foreach (p,P) \in \{(r',Minimize(R')) \mid (r',R') \in Post((r,R))\} do
                 if (p, P) is an accepting product-state then return FALSE;
                 else if \exists p' \in P \text{ s.t. } p \prec p' then
 8
                       if \exists (s,S) \in Processed \cup Next \ s.t. \ p \preceq s \land S \preceq^{\forall \exists} P \ \text{then}
                              Remove all (s, S) from Processed \cup Next s.t. s \leq p \land P \leq^{\forall \exists} S;
                              Add (p, P) to Next;
11
12 return TRUE
```

Antichain-based algorithms (AC)

- "Antichains: a new algorithm
 for checking universality of finite automata"
 De Wulf, Doyen, Henzinger, and Raskin, CAV '06
 - Algorithms for language inclusion
 - ▶ Rough idea: iterate over an antichain to reach a fixpoint
- "Antichain Algorithms for Finite Automata"
 Doyen and Raskin, TACAS '10
- "When Simulation Meets Antichains" Abdulla, Chen, Holík, Mayr, and Vojnar, TACAS '10
- → Exploit simulation preorders

(cf. Richard Mayr's talk)

Rephrasing antichains with coinduction

In the paper:

- ► Antichains (AC) rephrased as simulations up to upward closure
- One-to-one correspondence with bisimulations up to context (rather than bisimulations up to congruence for HKC)

Rephrasing antichains with coinduction

In the paper:

- ► Antichains (AC) rephrased as simulations up to upward closure
- One-to-one correspondence with bisimulations up to context (rather than bisimulations up to congruence for HKC)
- Exploiting simulation preorders in AC as an additional up-to technique
- ▶ Which can easily be adapted to HKC

 \rightarrow HKC'

1. Benchmarks

- Implementations
 - ▶ AC, AC': libvata (C++, for tree automata)
 - ▶ HK, HKC, HKC': homemade OCaml implementation
- Testcases
 - random automata (using [Tabakov, Vardi '05] model)
 - automata inclusions arising from model checking (the ones from [Abdulla, Chen, Holík, Mayr, and Vojnar '10])

1. Benchmarks

- Implementations
 - ▶ AC, AC': libvata (C++, for tree automata)
 - ▶ HK, HKC, HKC': homemade OCaml implementation
- Testcases
 - ► random automata (using [Tabakov, Vardi '05] model)
 - automata inclusions arising from model checking (the ones from [Abdulla, Chen, Holík, Mayr, and Vojnar '10])
- → Up to two orders of magnitude faster than libvata (lots of numbers in the paper)

2. Formal analysis of the proof techniques

We established the following picture:

where an arrow means:

- ▶ the proof technique is at least as powerful
- there are examples yielding to an exponential improvement

2. Formal analysis of the proof techniques

Intuition for HKC>AC in the equivalence case

disjoint or non-disjoint equivalence check

Intuition for HKC=AC in the disjoint inclusion case

disjoint inclusion check

Intuition for HKC'>AC' in the disjoint inclusion case

disjoint inclusion check, but with simulation preorder

Summary

► A new and efficient automata algorithm, exploiting ideas from concurrency theory: up-to techniques

[Milner '89, Sangiorgi '95]

- ► A unified framework: coinduction, to rephrase and compare various algorithms from the literature
 - ► Hopcroft and Karp '71
 - Antichains '06
 - Antichains with similarity '10
- ▶ The algorithms can be tested online:

http://perso.ens-lyon.fr/damien.pous/hknt