Tutorial 6

Al2101 - Convex Optimization

Question (a)

The decision variables represented by x_1, x_2, x_3 . Where,

 x_1 = The proportion of time devoted each day to iPod covers production. x_2 = The proportion of time devoted each day to iPhone covers production. x_3 = The proportion of time devoted each day to iPad covers production.

Since x_1, x_2, x_3 are the proportion of time in each day. The sum of all should equal 1. i.e., $\sum x_i = 1$.

Now, the weekly production of each of these covers will be:

$$w_1 = 5 * x_1 * 6000$$
 ; Production of iPod covers.
 $w_2 = 5 * x_2 * 5000$; Production of iPhone covers.
 $w_3 = 5 * x_3 * 3000$; Production of iPod covers.

Now, the space that each of these w_1, w_2, w_3 takes are:

$$S = (w_1 * 0.040) + (w_2 * 0.045) + (w_3 * 0.210)$$
; $S \le 6000$

Our goal is to maximize the net profit that we gain. Let P be the net profit gain. Then,

$$P = (4 * w_1) + (6 * w_2) + (10 * w_3)$$

After maximizing the profit function P, we get

$$x_1 \approx 0.1667$$
 $x_2 \approx 0.3073$ $x_3 \approx 0.5260$ And $P \approx 145,000.00$

The decision variable P as a function of x_1, x_2, x_3 can be stated as follows:

$$P = (120000 * x_1) + (150000 * x_2) + (150000 * x_3)$$

Question (b)

The decision variables represented by y_1, y_2, y_3 . Where,

 y_1 = The number of iPod covers produced over the week. y_2 = The number of iPhone covers produced over the week. y_3 = The number of iPad covers produced over the week.

Now, the space that each of these y_1, y_2, y_3 takes are:

$$S = (y_1 * 0.040) + (y_2 * 0.045) + (y_3 * 0.210)$$
; $S \le 6000$

And, as per the constraints given in the Problem Statement,

$$5000 \le y_1 \le 10000$$
, Max and Min Production over the week for iPod. $0 \le y_2 \le 15000$, Max and Min Production over the week for iPhone. $4000 \le y_3 \le 8000$. Max and Min Production over the week for iPad.

Our goal is to maximize the net profit that we gain. Let P be the net profit gain.

After maximizing the profit function P, we get

$$y_1 \approx 5000$$

 $y_2 \approx 7683$
 $y_3 \approx 7889$
And $P \approx 145,000.00$

The decision variable P as a function of y_1, y_2, y_3 can be stated as follows:

$$P = (4 * y_1) + (6 * y_2) + (10 * y_3)$$

Question (c)

The decision variables represented by z_1, z_2, z_3 . Where,

 z_1 = The number of hours devoted to the production of iPod smart covers in one week.

 z_2 = The number of hours devoted to the production of iPod smart covers in one week.

 z_3 = The number of hours devoted to the production of iPod smart covers in one week.

Since z_1, z_2, z_3 are number of hours devoted in the week, the sum of all should equal 40. i.e., $\Sigma z_i = 40$.

Now, the weekly production of each of these covers will be:

$$w_1 = \frac{z_1 * 6000}{8}$$
 ; Production of iPod covers.
$$w_2 = \frac{z_2 * 5000}{8}$$
 ; Production of iPhone covers.
$$w_3 = \frac{z_1 * 3000}{8}$$
 ; Production of iPad covers.

Now, the space that each of these w_1, w_2, w_3 takes are:

$$S = (w_1 * 0.040) + (w_2 * 0.045) + (w_3 * 0.210) ; S \le 6000$$

Our goal is to maximize the net profit that we gain. Let P be the net profit gain. Then,

$$P = (4 * w_1) + (6 * w_2) + (10 * w_3)$$

After maximizing the profit function P, we get

$$z_1 \approx 6.667$$

$$z_2 \approx 12.294$$

$$z_3 \approx 21.040$$
 And $P \approx 145,000.00$

The decision variable P as a function of z_1, z_2, z_3 can be stated as follows:

$$P = (3000 * z_1) + (3750 * z_2) + (3750 * z_3)$$

Question (d)

Relationship between the variables x_1, x_2, x_3 and z_1, z_2, z_3 of part (a) and part (c) respectively.

As;

 x_i = The proportion of time devoted to each item in a day. z_i = Total hours devoted to each item over a week.

Since every day, the outcome is the same irrespective of the day of the week, the distribution of time each day, i.e., x_i is the same every day of the week (Working Days).

It is also stated that each day, the total hours of work is 8 hours. Therefore, the total hours devoted in a day when expressed in terms of x_i is 8 * x_i .

A total of 5 working days per week. Therefore, the total hours devoted in a week would be 5 * $(8 * x_i) = 40 * x_i$.

Thus, the mathematical formula to compute z_i from x_i is;

$$z_i = 40 * x_i$$