CSCI 3230

Fundamentals of Artificial Intelligence

Chapter 2 NTELLIGENT AGENTS

Outline

- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agents and environments

- Agents include humans, robots, softbots, thermostats, etc.
- The agent function maps from percept histories to actions:

 $f: P^* \to A$

The agent program runs on the physical architecture to produce f

Four Main Things

- Percepts: (sensor reading)
 - Percept sequence is everything perceived so far
 - Sounds, images, text, facts, rules, knowledge
- Actions: (Actuators)
 - Manipulation of effectors that affect the environment
- Goals: performance measure
 - More effective, more efficient (to achieve the goal)
- Environment
 - To understand and react to the external world (environment) as appropriate

Vacuum-cleaner world

- Percepts: location and contents, e.g. [A, Dirty]
 - 2 variables in one state

- Actions: Right, Left, Suck, NoOp
- Goal?

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [B, Clean]	Right, Left
[A, Clean], [B, Dirty]	Right, Suck

What is the right function?

Can it be implemented in a small agent program?

```
Function Reflex-Vacuum-Agent([location, agent])
return action
if status = Dirty then return suck
else if location = A then return Right
else if location = B then return Left
```

Stopping criteria?

No, it will loop forever Difficult to make a stopping criteria for A.I. Program

Rational Agent:

one that does the right things (right actions).

Performance measure:

- How successful:
 - Need an objective performance measure imposed by some authority.
 - E.g. performance measure for a floor cleaning agent:
 - Amount of dirt cleaned up within a time period?
 - Amount of electricity consumed?
 - How much free time the agent has to perform other work?

Rationality 1

- When to evaluate the agent performance:
 - E.g. measure the amount of dirt in the 1st hour = evaluating the initial performance and not how clean the agent overall.
 - Need to measure the performance in long run.
 - Rationality is concerned with expected success given what has been achieved.
 - E.g. street crossing is rational because most of the time the crossing would be successfully.
- What is rational at any given time depends on four things:
 - 1. The performance measure that defines degree of success. objective
 - 2. Everything that the agent has perceived so far. facts
 - 3. What the agent knows about the environment. knowledge
 - 4. The actions that the agent can perform. Capabilities e.g. surgeon??

Rationality 2

Definition of a rational agent: For each possible percept sequence, a rational agent should choose an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge (capabilities) it has.

```
Rational ≠ omniscient (know everything)
```

Rational ≠ clairvoyant (see future)

Rational ≠ successful

Rational \Rightarrow exploration, learning, autonomy(?) \triangleq \pm

Rationality 3

Autonomy

- An agent's behavior is based on its experience and the built-in knowledge for the particular environment in which it operates.
- A system is autonomous to the extent that its behavior is determined by its own experience.
- E.g. evolution provides animals with enough builtin reflexes so that can survive long enough to learn for themselves.
- It would be reasonable to provide an AI agent with some initial knowledge as well as an ability to LERAN Meta-knowledge

Intelligent Agent Alda - Affective Intelligent Driving Agent [Youtube]

PEAS

Performance Environment Actuators Sensors

To design a rational agent, we must specify

the <u>task environment</u> - PEAS (problem definition)

Consider, e.g., the task of designing an automated taxi:

Performance measure??

Environment??

Actuators??

Sensors??

PEAS 2

Answer:

To design a rational agent, we must specify the task environment.

Consider, e.g. the task of designing an automated taxi:

Performance measure??

Safety, destination, profits, legality, comfort, ...

Environment??

US streets/freeways, traffic, pedestrians, weather, ...

Actuators??

Steering, Accelerator, brake, horn, speaker/display,...

Sensors??

Video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Internet shopping agent

Performance measure??

Environment??

Actuators??

Sensors??

Environment types

Properties of Environments

- Accessible vs. Inaccessible (fully vs. partially observable)
 - Sensors detect all aspects of environment relative to choosing an action
 - Sensors can access complete state = fully observable
- Deterministic vs. Nondeterministic
 - Is the next state entirely determined by the previous state and action
- Episodic vs. Non-episodic (sequential)
 - Episode = (percept, action) pair
 - Episodic = episodes do not depend on actions in previous episodes, and need not think ahead
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multi-agent (competitive or cooperative)

Environment types 2

十五子棋

7	Crossword	Chess	Backgammon	Internet shop	Taxi
Observable??	Fully	Fully	Fully	Partially	Partially ?
Deterministic??	yes	Strat*	Stochastic ^{隨機}	Strat*	Stochastic
Episodic??	Sequential	Sequential	Sequential	Sequential	Sequential
Static??	yes	Semi dynamic	yes	dynamic	dynamic
Discrete??	yes	yes	yes	yes	Continuous
Single-agent??	Single-agent	Multi-agent	Multi-agent	Single-agent (auction: Multi-agent)	Multi- agent

^{*}Strat: Strategic-deterministic except for the actions of other agents

The environment type largely determines the agent design.

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

Four basic types in order of increasing generality:

- Simple reflex agents
- Reflex agents with state (model-based)
- Goal-based agents
- Utility-based agents

All these can be turned into learning agents

1. Simple reflex agents

1. Simple reflex Agents

Agents with condition-Action Rules.

E.g. If car in front is breaking then initiate-braking.

```
Function Simple-reflex-agent (percept) return action
static: rules, a set of condition-action rules

state ← Interrupt-Input (percept)
rule ← Rule-match (state, rules)
action← Rule-action [rule]
return action
```

2. Model-based Reflex agents with state

2. Model-based Reflex Agents that keep track of the world with Internal State

Simple agents that maintain some sort of internal state of the world (and a model) in order to choose an action.

E.g. a driving agent need internal states to decide whether it is possible to change lane.

```
Function Model-Based-Reflex-Agent (percept) returns action
static: state, a description of the current world state
model, a description of how the next state depends on current state
and action
rules, a set of condition-action rules
action, the most recent action, initially none

state ← Update-state (state, action, percept, model)
rule ← Rule-match (state, rules)
action ← Rule-action [rule]
return action
```

3. Model-based, Goal-based agents

3. Goal-based Agents

- Knowing about the current state of the environment is not always enough to decide what to do.
 - e.g. At a road junction, the agent need to know whether to turn (left/right) or go straight.
- The agent need a GOAL describing the desirable situations.
 e.g. Passenger's destination
- Search (ch3−6) and Planning (ch10 11) are subfields of AI for finding action sequences that do achieve the agent's goals

4. Model-based, Utility-based agents

4. Utility-based Agents

- Goals alone are not really enough to generate high-quality behavior.
 - e.g. Many action sequences can get the car to its destination, i.e. achieving the goal.
 - But some are quicker, safer, more reliable, cheaper, or more comfortable than others.
- If one world state is preferred to another, then it has higher utility for the agent.
- There may be more than one utility functions for selecting an action, and they may conflict each other.
 - e.g. Speed and safety.

We can only achieve some utilities, or have a compromise action.

5. Learning Agents

Fig. 2.15

5. Learning Agents (1)

- LA has 4 conceptual components, Fig 2.15.
- The learning element responsible for making improvements, and the performance element – responsible for selecting external actions.
- The <u>performance element</u> is what we have previously considered to be the entire agent: it takes in percepts and decides on actions.
- The <u>learning element</u> takes some knowledge about the learning element and some <u>feedback</u> on how the agent is doing, and determines how the performance element should be modified to (hopefully) do better in the future.

5. Learning Agents (2)

- The <u>critic</u> tells the learning element how well the agent is doing and employs a *fixed standard* of performance. Necessary because the percepts themselves provide no indication of agent's success.
 E.g., a chess program may receive a percept indicating that it has checkmated its opponent, but it needs a performance standard to know that is a good thing; the percept itself does not say so.
- It is important that the performance standard is a fixed measure that is conceptually outside the agent; otherwise the agent could adjust its performance standards to meet its behavior. E.g...

5. Learning Agents (3)

- The problem generator responsible for suggesting problems & actions for new and informative experiences.
- The performance element tends to repeat doing the actions that are best, given what it knows. But if the agent is willing to explore a little, and do some perhaps suboptimal actions in the short run, it might discover much better action for a long run. The problem generator's job is to suggest these exploratory problems and actions.
- ▶ E.g. identify areas of behavior need improvements and suggest experiments –braking in different road surface conditions. Problem space coverage