Теория категорий Функторы

Валерий Исаев

17 февраля 2020 г.

План лекции

Определение

Изоморфизм категорий

Определение функторов

- Функторы между категориями С и D это морфизмы категорий.
- ▶ Функтор F состоит из функции $F: Ob(\mathbf{C}) \to Ob(\mathbf{D})$ и функций $F: Hom_{\mathbf{C}}(X,Y) \to Hom_{\mathbf{D}}(F(X),F(Y))$ для всех $X,Y \in Ob(\mathbf{C})$.
- Эти функции должны сохранять тождественные морфизмы и композиции:

$$F(id_X) = id_{F(X)}$$

$$F(g \circ f) = F(g) \circ F(f)$$

Забывающие функторы

- ightharpoonup Забывающий функтор **Grp** ightharpoonup **Set**, сопоставляющий каждой группе множество ее элементов.
- ▶ Для других алгебраических структур тоже существуют забывающие функторы $\mathbf{Ring} \to \mathbf{Set}$, $\mathbf{Ab} \to \mathbf{Set}$, и так далее.
- Можно задавать функторы, которые забывают не всю информацию.
- Например, существует два забывающих функтора $\mathbf{Ring} \to \mathbf{Grp}$ и $\mathbf{Ring} \to \mathbf{Ab}$.

Примеры функторов

- Функторы между категориями предпорядков это в точности монотонные функции.
- Если M и N пара моноидов, и C_M и C_N категории на одном объекте, соотетствующие этим моноидам, то функторы между C_M и C_N это в точности гомоморфизмы моноидов M и N.
- ▶ Пусть **C** декартова категория и A объект **C**, тогда $A \times : \mathbf{C} \to \mathbf{C}$ функтор, сопоставляющий каждому объекту B объект $A \times B$ и каждому морфизму $f : B \to B'$ морфизм $id_A \times f : A \times B \to A \times B'$.
- ightharpoonup Существует очевидный функтор $I: \mathbf{Agda}
 ightarrow \mathbf{Set}.$
- ightharpoonup Функторам в агде соответствуют функторы $\mathbf{Agda} o \mathbf{Agda}$.

Функторы и дуальность

- ightharpoonup Каждому функтору $F: \mathbf{C} o \mathbf{D}$ можно сопоставить функтор $F^{op}: \mathbf{C}^{op} o \mathbf{D}^{op}$.
- **Р** Другими словами существует биекция между множествами функторов ${f C} o {f D}$ и ${f C}^{op} o {f D}^{op}$.
- ightharpoonup С другой стороны, функторы вида ${f C}^{op} o {f D}$ никак не связаны с функторами вида ${f C} o {f D}$.
- Первые называются контравариантными функторами, а вторые – ковариантными.

Пределы и копределы функторов

- ▶ Для любого функтора $F: \mathbf{J} \to \mathbf{C}$ можно определить понятие предела $\lim F$ и копредела $\operatorname{colim} F$. Определение такое же как и для диаграмм.
- Категории **J** можно рассматривать как обобщение графов, а функтор $F: \mathbf{J} \to \mathbf{C}$ как обощение диаграмм в \mathbf{C} .
- Любой диаграмме можно сопоставить функтор, и наоборот. (Эти конструкции не взаимообратные)
- Но пределы и копределы соответствующих диаграмм и функторов будут совпадать.
- ightharpoonup Функторы $F: \mathbf{J}
 ightharpoonup \mathbf{C}$ тоже называют диаграммами.

План лекции

Определение

Изоморфизм категорий

Изоморфные категории

- ▶ Для любой категории \mathbf{C} существует тождественный функтор $Id_{\mathbf{C}}: \mathbf{C} \to \mathbf{C}$, отправляющий каждый объект и морфизм в себя.
- ▶ Если $F: \mathbf{C} \to \mathbf{D}$ и $G: \mathbf{D} \to \mathbf{E}$, то функтор $G \circ F: \mathbf{C} \to \mathbf{E}$ определяется на объектах и на морфизмах как композиция F и G.
- Композиция функторов ассоциативна, тождественный функтор является единицей для композиции.
- ▶ Функтор $F: \mathbf{C} \to \mathbf{D}$ называется *изоморфизмом* категорий, если существует функтор $G: \mathbf{D} \to \mathbf{C}$ такой, что $G \circ F = Id_{\mathbf{C}}$ и $F \circ G = Id_{\mathbf{D}}$.
- ► Категории **C** и **D** *изоморфны*, если существует изоморфизм $F: \mathbf{C} \to \mathbf{D}$.

Злые понятия

- Как правило, имея две группы, не имеет смысла спрашивать равны ли они; нужно спрашивать об их изоморфности.
- Это верно для объектов в любой категории.
- Любое понятие, которое говорит о равенстве объектов некоторой категории, называют злым.
- Изоморфизм категорий злое понятие.