ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа **АСМ**

Шульмина Анастасия Сергеевна Группа Б04-007

Дифракционная решетки.

Рис. 1: Карта дифрацкионной решетки.

Рис. 2: Трехмерный вид дифрацкионной решетки.

Рис. 4: Профиль сечения.

Исходя из данных, можно оценить период решетки. $d=\frac{N}{\delta x}=900\pm100$ шт/мм.

Рис. 3: Профиль одного штриха.

Фотонный кристалл.

Рис. 5: Карта фотонного кристалла
 №1.

Рис. 6: Трехмерный вид фотонного кристалла N_1 .

Рис. 7: Карта фотонного кристалла №2.

Рис. 8: Трехмерный вид фотонного кристалла №2.

Рис. 9: Сечение фотонного кристалла №2.

Можно предположить, что диаметр шаров SiO2 примерно равен 300-500 нм

Mica

Рис. 10: Карта слюды.

Рис. 11: Трехмерный вид слюды.

Рис. 12: Профиль сечения слюды горизонтальный.

Рис. 13: Профиль сечения слюды вертикальный.