MAS205 Complex Variables 2005-2006

Exercises 5

Exercise 17: For each of the following functions f(x+iy)=u(x,y)+iv(x,y), find the set of all points (x,y) at which u and v satisfy the Cauchy-Riemann differential equations $(\partial u/\partial x=\partial v/\partial y)$ and $(\partial u/\partial y=-\partial v/\partial x)$.

(a)
$$f(x+iy) = y^2 + ixy^2$$

(b)
$$f(x+iy) = 2xy + 2ixy + y^3/3$$
.

Exercise 18: Let $f(z) = ze^z$. Write f(z) as u(x,y) + iv(x,y) and show that u and v satisfy the Cauchy-Riemann differential equations. Write

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

and use this to express f'(z) as a function of z.

Exercise 19: Use the Cauchy-Riemann differential equations to find at which values of z the following functions are differentiable. Find the derivative of the functions at these points.

(a)
$$f(x+iy) = 3xy^2 - x^3 + i(y^3 - 3x^2y)$$

(b)
$$f(x+iy) = 3x^2y - x^3 + i(y^3 - 3x^2y)$$

(c)
$$f(z) = z(z - \overline{z})^2$$
.

Exercise 20: Let f and g denote functions $\mathbb{C} \to \mathbb{C}$. For each question below, give either a proof or a counterexample to justify your answer.

- (a) If f and g are both differentiable at z_0 , does it follow that gf is continuous at z_0 ?
- (b) If f and g are both non-differentiable at z_0 , does it follow that f + g is non-differentiable at z_0 ?
- (c) If f is differentiable for all $z \in \mathbb{C}$ and g is differentiable at z_0 , does it follow that $g \circ f$ is differentiable at z_0 ?
- (d) Suppose f is discontinuous at 3 + 4i, but continuous everywhere else, and g is discontinuous at 2 + i, but continuous everywhere else. Is f g differentiable at 1 + 3i?

Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 10:30am Wednesday 16th November

Thomas Prellberg, November 2005

(a)
$$u(x,y) = y^2$$
 $\frac{\partial u}{\partial x} = 0$ $\frac{\partial u}{\partial y} = 2y$

$$A(x^{(\lambda)}) = x\lambda_3 \qquad \frac{9x}{9x} = \lambda_3 \qquad \frac{9\lambda}{9x} = 5x\lambda$$

$$CR : \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} \Rightarrow 0 = 2xy \Rightarrow x = 0 = xy = 0$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow 2y = -2$$

$$\frac{\partial u}{\partial y} = -2$$

$$\frac{\partial u}{\partial y} = -2$$

$$\frac{\partial u}{\partial y} \Rightarrow 2y = -2$$

$$CR : \frac{3x}{3v} = \frac{3y}{3v} \sim$$

(1)
$$u(x,y) = 2xy + y^{3/2}$$
 $\frac{\partial u}{\partial x} = 2y$ $\frac{\partial u}{\partial y} = 2x + y^{2}$

$$\frac{\lambda}{2x} = 2y$$

$$v(x|A) = 5xA \qquad \frac{3x}{2x} = 5A \qquad \frac{3x}{2x} = 5x$$

$$CR: \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \Rightarrow 2y = 2x \Rightarrow x = y$$

$$\frac{2\lambda}{3n} = -\frac{3\kappa}{3n} \implies S \times + \lambda_3 = -5\lambda - \kappa = -\lambda - \kappa_3$$

(8)
$$\int_{0}^{1}(z) = 3e^{\frac{z}{2}}$$

$$= (x+iy)e^{x+iy}$$

$$= e^{x}(x \cos y - y \sin y) + i e^{x}(y \cos y + x \sin y)$$

$$u(x+y) = e^{x}(x \cos y - y \sin y)$$

$$v(x+y) = e^{x}(y \cos y + x \sin y)$$

$$\frac{\partial u}{\partial x} = e^{x}(x \cos y - y \sin y + \cos y)$$

$$\frac{\partial u}{\partial x} = e^{x}(x \cos y - y \sin y + \cos y)$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + \cos y)$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + \cos y) = -\frac{\partial u}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \sin y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \cos y + x \cos y) = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = e^{x}(x \cos y - y \cos y) =$$

(a)
$$u(x,y) = 3xy^2 - x^2$$
 $\frac{3u}{3x} = 3y^2 - 3x^2$ $\frac{3u}{3y} = 6xy$

$$v(x,y) = y^3 - 3x^2y$$
 $\frac{3u}{3x} = -6xy$ $\frac{3y}{3y} = 3y^2 - 3x^2$

(R: $\frac{3u}{3x} = 3y^2 - 3x^2 = \frac{3y}{3x}$ $\frac{3u}{3x} = -6xy$ $\frac{3y}{3y} = 3y^2 - 3x^2$

(R: $\frac{3u}{3x} = 6xy = -\frac{3y}{3x}$ $\frac{3u}{3x} = 6xy - 3x^2 + i(-6xy)$

[$\int (x) = -x^2$, $\int (x) = -3x^2 - x^2 + i(-6xy)$

(b) $u(x,y) = 3x^2y - x^2$ $\frac{3u}{3x} = 6xy - 3x^2 - \frac{3y}{3y} = 3x^2$

$$v(x,y) = y^3 - 3x^2y - \frac{3y}{3x} = -6xy - \frac{3y}{3y} = 3y^2 - 3x^2$$

(c) $\int (x,y) = x^2 - x^2$

(n: -4y2 - 8y2 ~ y=0 0=88y > >000 y=0

(b)
$$\int_{0}^{\infty} (z) = Re(z)$$
 nowher diffiable $(n \circ 1)$
 $g(z) = i T_{n}(z)$ nowher diffiable $(n \circ 1)$

And $\int_{0}^{\infty} (z) \cdot g(z) = z$ diffiable $\forall z \in C$

(c)
$$g$$
 may not be $diff' cble at $f(z_0)$ (not)

e.g. $f(z) = 0$, $z_0 = 2$

and $g(z) = \begin{cases} 2 & \text{for } |z| > 1 \\ \hline{z} & \text{for } |z| \le 1 \end{cases}$$

waph:
$$f(z) = \begin{cases} \frac{1}{2} & \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \\ 0 & \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \end{cases}$$

$$g(z) = \begin{cases} -\frac{1}{2} & \frac{1}{2} + \frac{1}{2} + \frac{1}{4} \\ 0 & \frac{1}{2} + \frac{1}{2} + \frac{1}{4} \end{cases}$$

$$f(z) = \begin{cases} 2\overline{z} & \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \\ 0 & \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \end{cases}$$

$$f(z) = \begin{cases} 2\overline{z} & \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \\ 0 & \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \end{cases}$$