# **UACE PHYSICS PAPER 2004**

# Instructions to the candidates:

Answer **five** questions taking at least one from each of the sections **A**, **B**, **C** and **D**, but not more than one question should be chosen from either section **A** or **B** 

Any additional question (s) will not be marked.

Mathematical tables and squared paper will be provided

Non programmable calculators may be used.

Assume where necessary

| Acceleration due to gravity, g | 9.81ms <sup>-2</sup> |
|--------------------------------|----------------------|
| Acceleration due to gravity, g | 9.611118             |

The constant, 
$$\frac{1}{4\pi\varepsilon_0}$$
 9.0 x 10<sup>9</sup>F<sup>-1</sup>m

Permittivity of free space, 
$$\mu_0$$
 4.0 $\pi$  x 10<sup>-7</sup>Hm<sup>-1</sup>

Permittivity of free space, 
$$\epsilon_0$$
 8.85 x  $10^{-12} Fm^{-1}$ 

Resistivity of Nichrome wire at  $25^{\circ}$ C 1.2 x  $10^{-6}$ Ωm

## **SECTION A**

- 1. (a) What is meant by the following terms as applied to a telescope?
  - (i) magnifying power (01mark)
  - (ii) eye-ring (01mark)
  - (b) (i) Draw a ray diagram to show the formation of the final image by an astronomical telescope in normal adjustment. (03marks)
    - (ii) With the aid of the diagram in (b) (i), derive an expression for the magnifying power of an astronomical telescope in normal adjustment. (04marks)
  - (iii) Give the disadvantage of the telescope in (b)(i) when used to view distant objects on earth. Describe how the telescope can be modified to overcome this disadvantage. (04marks)
  - (c) Find the separation of the eye-piece and objective of an astronomical telescope of magnifying power 20 and in normal adjustment, if its eyepiece has a focal length of 5cm. (04marks)
  - (d) State three advantages of a reflecting telescope over a refracting telescope. (03marks)
- 2. (a) Define the terms principal focus and power of a lens. (02marks)
  - (b) Derive the relation between the focal length, f, objective distance, u, and image distance, v, for a thin lens. (07marks)
  - (c) A thin converging lens, P, of focal length 10cm and a thin diverging lens, Q, of focal length 15cm are placed coaxially 50cm apart. If an object, O, is placed 12cm from P on the side remote from Q.
    - (i) find the position, nature and magnification of the final image. (07marks)
    - (ii) Sketch a ray diagram to show the formation of the final image. (02marks)
  - (d) Explain why lenses of narrow aperture are preferred to lenses of wide aperture in optical instruments (02marks)
- 3. (a) (i) What is meant by polarized light
  - (ii) Describe how plane polarized light can be produced (02marks)
  - (iii) Sketch the time variation of electric and magnetic vectors in plane polarized light.
  - (b) Two coherent sources a distance, S, apart produce light of wavelength  $\lambda$  which overlap at a point on a screen at distance D from the sources to form interference pattern.
    - (i) What is meant by coherent sources? (02marks)
    - (ii) Show that fringe width,  $\omega$ , is given by  $\omega = \frac{\lambda D}{S}$  (04marks)
    - (iii) If  $\lambda = 5.46 \times 10^{-7}$ m, S = 5 x  $10^{-5}$ m and D = 0.3m, find the angular position of the first dark fringe on the screen.(04marks)
    - (c) (i) What is meant by diffraction of light? (02marks)
      - (ii) Light of wavelength  $6 \times 10^{-7}$ m is incident on diffraction grating with 500 lines per cm. find the diffraction angle for the first order image. 03marks)

- 4. (a)(i) Distinguish between longitudinal and transverse waves (02marks)
  - (ii) Define wavelength of a wave. (01mark)
  - (b) Describe with the aid of a diagram, an experiment to show the fundamental frequency varies with the tension in a given wire.
  - (c) A sound wave propagating in the x-direction is given by the equation
    - $y = 2 \times 10^{-7} \sin(\sin 8000t 25x)$  meters. Find
    - (i) Amplitude (01mark)
    - (ii) The speed of the wave (05marks)
  - (d) Explain why the amplitude of a wave goes on decreasing as the distance from the source increases

# **SECTION B**

- 5. (a) with the aid of a diagram, describe briefly an experiment to illustrate Lenz's law of electromagnetic induction (05marks)
  - (b) Explain the main precautions taken in the construction of an a.c. transformer. (04marks)
  - (c) Explain the effect of the following on the voltage across the secondary coil of a.c transformer.
    - (i) A fall in the supply frequency of the current in the primary (04marks)
    - (ii) A reduction in the primary turns. (02marks)
  - (d) A transformer whose secondary coil has 60 turns and primary 1200 turns, has its secondary connected to a  $3\Omega$  resistor. If its primary is connected to a 240V a.c supply, calculate the current flowing in the primary assuming that the transformer is 80% efficient. (05marks)
- 6. (a) When can an alternating current be referred to as being sinusoidal?(01mark)
  - (b) Define
    - (i) the root mean square value of an alternating current (01mark)
    - (ii) reactance (01mark)
- (c) Describe the structure and action of a meter that makes use of a thermocouple in measuring the root mean square value of an alternating current. Why this meter does has high sensitivity. (05marks)
- (d) (i) Show that current leads voltage by 90° when a sinusoidal voltage is applied across a capacitor. (05marks)
  - (ii) Sketch a phase diagram to illustrate the orientation of the current vector with respect to voltage vector in (d)(i) above. (01mark)

(e)



An inductor, L, a capacitor, C and switch, K, are connected as shown above. Explain, briefly what happens when the switch K is closed (06marks)

- 7. (a) What is meant by magnetic meridian? (01mark)
  - (b)(i) Describe the effect of eddy currents in a dynamo and state how they can be reduced? (03mark)
    - (ii) Explain why eddy currents are useful in a moving coil galvanometer. (03marks)
    - (iii) What is the difference between a motor and dynamo? (02marks)
  - (c) Describe how a search coil and calibrated ballistic galvanometer can be used to measure magnetic flux density at a given point near a wire carrying current. (06marks)
  - (d) An aircraft is flying horizontally at  $800 \text{km}^{-1}$  at a point where the earth's magnetic flux density is  $2.31 \times 10^{-5} \text{T}$  and angle of dip is  $60^{\circ}$ . If the distance between the wing tips is 50m, calculate the potential difference induced between its wing tips. (05marks)

# **SECTION C**

- 8. (a) (i) define electrical resistivity and state its units (02marks)
  - (ii) Describe with the aid of circuit diagram, an experiment to determine the electrical resistivity of a given wire using a meter bridge. (07marks)
  - (iii) The resistivity of mild steel is  $15 \times 10^{-8}\Omega m$  at  $20^{0}$ C and its temperature coefficient is  $50 \times 10^{-4}$ K<sup>-1</sup>. Calculate the resistivity at  $60^{0}$ C. (05marks)

(b)



Resistors of  $2\Omega$  and  $4\Omega$  are connected in series with power supplies of 12V and 8V as shown in the figure above. Calculate

(i) The reading of voltmeter (04marks)

- (ii) The power dissipated in the  $4\Omega$  resistor (02marks)
- 9. (a) Define the following
  - (i) Capacitance of capacitor (01mark)
  - (ii) Dielectric constant (01mark)
  - (b) Explain the effect of dielectric on the capacitance of a capacitor. (04marks)
  - (c) Derive an expression for energy stored in a capacitor of capacitance, c, charged to a voltage, V. (05marks)

(d)



In the figure above,  $C_1$ ,  $C_2$ , and  $C_3$  are capacitors of capacitances  $3\mu F$ ,  $2\mu F$  and  $2\mu F$  respectively, connected to a battery of e.m.f 100V.

- (i) Calculate the energy stored in the system of capacitors if the space between the plates of  $C_1$  is filled with an insulator of dielectric constant 3, and the capacitors are fully charged. (06marks)
- (ii) Account for the change in energy stored by an isolated parallel plate capacitor when the plate separation is doubled. (03marks)

**END**