# Circuit Analysis Techniques



# Lecture 2 Mesh and Node Analysis

Lecture delivered by:



# **Topics**

- Source transformation
- Mesh analysis
- Node analysis



## **Objectives**

At the end of this lecture, student will be able to:

- Perform source transformation, Voltage source to current source and vice versa
- Analyse mesh circuits using KVL
- Analyse nodal circuits using KCL



#### **Source Transformation**

• Source transformation is the process of replacing a voltage source  $v_s$  in series with a resistor R by a current source  $i_s$  in parallel with a resistor R, or vice versa.



$$v_s = i_s R$$
 or  $i_s = \frac{v_s}{R}$ 



#### **Source Transformation**



$$V_s = R_s I_s$$

$$I_s = \frac{V_s}{R_s}$$



#### **Source Transformation**

- Equivalent sources can be used to simplify the analysis of some circuits
- Voltage source in series with a resistor is transformed into a current source in parallel with a resistor
- Current source in parallel with a resistor is transformed into a voltage source in series with a resistor



# Example

• Use source transformation to find  $v_o$  in the circuit in Fig.





#### Example Cont..





Use current division in Fig.(c) to get

$$i = \frac{2}{2+8}(2) = 0.4A$$
 and  $v_o = 8i = 8(0.4) = 3.2V$ 



#### Mesh Analysis

- Mesh analysis method a current is assigned to each window of the network such that the currents complete a closed loop
- They are also referred to as loop currents
- Each element and branch therefore will have an independent current
- If a branch has two of the mesh currents, the actual current is given by their algebraic sum
- The assigned mesh currents may have either clockwise or counterclockwise directions



## Mesh Analysis

Analysis using KVL to solve for the currents around each closed loop of the network.

#### Mesh analysis procedure:

- 1. Assign currents to each closed loop of the network.
- 2. Apply KVL around each closed loop of the network.
- 3. Solve the resulting simultaneous linear equation for the loop currents.



#### Mesh Analysis: Basic Concepts:

In formulating mesh analysis we assign a mesh current to each mesh.





#### Mesh Analysis: Example 1

Write the mesh equations and solve for the currents  $I_1$  and  $I_2$ .



Circuit for Example 1

Mesh 1 
$$4I_1 + 6(I_1 - I_2) = 10 - 2$$
 Eq (1)

Mesh 2 
$$6(I_2 - I_1) + 2I_2 + 7I_2 = 2 + 20$$
 Eq (2)



#### Mesh Analysis: Example 1, continued.

Simplifying Eq (1) and (2) gives,

$$10l_1 - 6l_2 = 8$$

$$-6I_1 + 15I_2 = 22$$

$$I_1 = 2.2105 A$$

$$I_2 = 2.3509 A$$

#### Mesh Analysis: Example 2

 Obtain the current in each branch of the network using the mesh current method



• The currents I1 and I2 are chosen as shown on the circuit diagram. Applying KVL around the left loop, starting at point  $\alpha$ 

$$-20 + 5I_1 + 10(I_1 - I_2) = 0$$

### Mesh Analysis

Now around the right loop, starting at point β,

$$8 + 10(I_2 - I_1) + 2I_2 = 0$$

Rearranging terms in both the equations

$$15I_1 - 10I_2 = 20$$
$$-10I_1 + 12I_2 = -8$$

- Solving simultaneously we get I<sub>1</sub> = 2A and I<sub>2</sub> = 1A
- The current in the center branch, shown dotted, is  $I_1 I_2 = 1$  A.

- Node voltage method, one principal nodes is selected as the reference and equations based on KCL are written at the other principal nodes
- At each other principal nodes, a voltage is assigned, where it is understood that this is a voltage with respect to the reference node
- These voltages are the unknowns and, when determined by a suitable method

# **Nodal Analysis**

Analysis using KCL to solve for voltages at each common node of the network

#### Nodal analysis procedure:

- 1. Determine the number of common nodes and reference node within the network.
- 2. Apply KCL at each of the common nodes in the network
- 3. Solve the resulting simultaneous linear equation for the nodal voltages.



# **Circuit Analysis**

#### **Nodal Analysis:**



For the given circuit Find V<sub>1</sub> and V<sub>2</sub>.



# **Circuit Analysis**

#### **Nodal Analysis:**



<u>At v<sub>1</sub>:</u>

$$\frac{V_1}{10} + \frac{V_1 - V_2}{5} = 2$$

Eq 1

<u>At v<sub>2</sub>:</u>

$$\frac{V_2 - V_1}{5} + \frac{V_2}{20} = -6$$

Eq 2

## **Circuit Analysis**

#### **Nodal Analysis: Clearing Equations;**

#### From Eq 1:

$$V_1 + 2V_1 - 2V_2 = 20$$

or

$$3V_1 - 2V_2 = 20$$

Eq 3

#### From Eq 2:

$$4V_2 - 4V_1 + V_2 = -120$$

or

$$-4V_1 + 5V_2 = -120$$

Eq 4

Solution:  $V_1 = -20 \text{ V}$ ,  $V_2 = -40 \text{ V}$ 



 Example, The network shown in Fig contains five nodes, where 4 and 5 are simple nodes and 1, 2, and 3 are principal nodes



This can be redrawn as shown





 The network is redrawn and node 3 selected as the reference for voltages V1 and V2. KCL requires that the total current out of node 1 be zero

$$\frac{V_1 - V_a}{R_A} + \frac{V_1}{R_B} + \frac{V_1 - V_2}{R_C} = 0$$

Similarly, the total current out of node 2 must be zero

$$\frac{V_2 - V_1}{R_C} + \frac{V_2}{R_D} + \frac{V_2 - V_b}{R_E} = 0$$

Put two equations for V<sub>1</sub> and V<sub>2</sub> in matrix form and solve

$$\begin{bmatrix} \frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} & -\frac{1}{R_C} \\ -\frac{1}{R_C} & \frac{1}{R_C} + \frac{1}{R_D} + \frac{1}{R_E} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} V_a/R_A \\ V_b/R_E \end{bmatrix}$$

#### Summary

- Source transformation simplifies the analysis of some circuits
- Voltage source in series with a resistor is transformed into a current source in parallel with a resistor and vice versa
- Mesh analysis is a systematic technique to evaluate all voltages and currents in a circuit based on Kirchoff's Voltage Law and Ohm's Law.
- Nodal Analysis is a step-by-step approach to solve circuits,
   It is based on Kirchoff's Current Law

