RECEIVED CENTRAL FAX CENTER

MAR 0 2 2007

AMENDMENTS

Please amend the claims as follows:

- 1. (cancelled)
- 2. (previously presented) In a method for automatic optimization in color Doppler velocity imaging, an improvement comprising:
- (a) applying multidimensional phase unwrapping to a set of velocity data representing a multidimensional region;
- (b) setting a velocity scale, baseline, a parameter for auto-Doppler tracking, a persistence parameter, a spatial filter parameter, a threshold, a clutter filter parameter, an imaging frequency, or combinations thereof as a function of results of (a); and
 - (c) imaging as a function of the setting.
- 3. (original) The method of Claim 2 wherein (b) comprises:
- (b1) determining a histogram of unwrapped velocities of the set of velocity data; and
 - (b2) selecting the velocity scale as a function of a distribution of the histogram.
- 4. (previously presented) The method of Claim 2 wherein (a) comprises determining a two dimensional phase unwrapping to each value of the set of velocity data, the multidimensional region being an area.
- 5. (previously presented) The method of Claim 2 wherein (a) comprises determining a three dimensional phase unwrapping to each value of the set of velocity data, the multidimensional region being a volume.
- 6. (currently amended) In a method for automatic optimization in color Doppler velocity imaging, an improvement comprising:

RECEIVED CENTRAL FAX CENTER

MAR 0 2 2007

- (a) applying multidimensional phase unwrapping to a set of velocity data representing a multidimensional region wherein (a) comprises:
- (a1) determining a multidimensional closed path with the gradient of the phase integrating to zero; and
- (a2) determining a phase for a plurality of locations along the multidimensional path; and
 - (b) adapting imaging as a function of the phase.
- 7. (original) The method of Claim 6 wherein (al) comprises selecting phase residues along the multidimensional path of opposite values.
- 8. (previously presented) The method of Claim 2 further comprising:
 - (d) setting thresholds as a function of the results of (a) and a measure of clutter.
- (previously presented) The method of Claim 2 further comprising:
- (d) identifying the set of velocity data prior to (a) as associated with a systole period of a heart cycle.
- 10. (previously presented) In a method for automatic optimization in color Doppler velocity imaging, an improvement comprising:
- (a) applying multidimensional phase unwrapping to a set of velocity data representing a multidimensional region;
 - (b) setting the velocity scale as a function of the results of (a);
 - (c) performing (b) as a function of the results and a user aliasing selection; and
 - (d) imaging as a function of the setting.
- 11. (original) The method of Claim 2 wherein (b) comprises setting the imaging frequency as a function of the results of (a), the imaging frequency being for flow imaging.
- 12. (original) The method of Claim 11 wherein (b) comprises:

- determining a correlation as a function of depth between two frames of (b1) velocity data, one of the frames of velocity data being a function of the results of (a); and
- (b2) reducing the imaging frequency in response to a decrease in the correlation at greater depths.
- (original) A system for automatic optimization in velocity imaging, the system having 13. at least one processor operable to implement acts (a) and (b) of Claim 2.
- (currently amended) A method for automatic optimization of a threshold[[s]] for color 14. Doppler imaging, the method comprising:
- determining a clutter level as a function of energy input to and energy output (a) from a clutter filter;
 - selecting a threshold as a function of the clutter level; and (b)
 - imaging as a function of the threshold. (c)
- (original) The method of Claim 14 wherein (a) comprises dividing or subtracting the 15. energy input by the energy output.
- (previously presented) The method of Claim 14 wherein (b) comprises selecting an 16. energy input threshold, an energy output threshold, a velocity threshold, or combinations thereof.
- 17. (original) The method of Claim 14 wherein (b) comprises selecting the threshold as a function of the clutter level, energy output and velocity.
- (original) The method of Claim 16 wherein (b) comprises selecting each of the energy 18. input threshold, the energy output threshold and the velocity threshold as a function of the clutter level, energy output and velocity.

- 19. (original) The method of Claim 14 wherein (b) comprises selecting the threshold for a first region and an additional threshold of a same type for a second region different than the first region.
- 20. (previously presented) The method of Claim 16 wherein (b) comprises selecting at least two of the thresholds from the group of: the energy input threshold, the energy output threshold and the velocity threshold as a function of the clutter level.
- 21. (previously presented) The method of Claim 16 wherein (b) comprises selecting the energy input or energy output thresholds.
- 22. (previously presented) The method of Claim 16 further comprising:
 - (d) identifying the clutter level as high and a velocity as low; and
- (e) selecting a clutter filter as a complex notch filter as a function of the identification of (d).
- 23. (previously presented) The method of Claim 17 further comprising:
- (d) applying multidimensional phase unwrapping to a set of velocity data representing a multidimensional region;

wherein (b) comprises selecting as a function of the velocity, the velocity being from results of (d).

- 24. (previously presented) The method of Claim 14 further comprising:
- (d) applying multidimensional phase unwrapping to a set of velocity data representing a multidimensional region; and
 - (e) setting an imaging frequency as a function of results of (a).
- 25. (previously presented) A system for automatic optimization of thresholds for velocity imaging, the system comprising a processor operable to perform the acts (a) and (b) of Claim 14.

- 26. (previously presented) A method for automatic optimization in velocity imaging, the method comprising:
- (a) determining a correlation as a function of depth between two sets of velocity data;
 - (b) altering an imaging frequency as a function of the correlation; and
 - (c) imaging as a function of the altered imaging frequency.
- (previously presented) The method of Claim 26 further comprising:
- (d) identifying the two sets of velocity data as frames of data associated with a peak systole period.
- 28. (original) The method of Claim 26 wherein (b) comprises decreasing the imaging frequency where the correlation decreases for greater depths.
- 29. (previously presented) The method of Claim 26 further comprising:
 - (d) detecting a displacement in an imaging region; and
 - (e) triggering (a) and (b) in response to (d).
- 30. (previously presented) The method of Claim 2 further comprising:
 - (d) detecting a displacement in an imaging region; and
 - (e) triggering (a) and (b) in response to (d).
- 31. (previously presented) The method of Claim 14 further comprising:
 - (d) detecting a displacement in an imaging region; and
 - (e) triggering (a) and (b) in response to (d).
- 32. (previously presented) A method for automatic optimization of an ultrasound imaging parameter, the method comprising:
 - (a) detecting a displacement associated with an imaging region;

- (b) automatically updating an imaging parameter selected from the group of: a flow imaging parameter, a velocity scale, a velocity threshold, an energy threshold, an imaging frequency, a beamforming parameter, a persistence value, spatial filter value and combinations thereof in response to (a); and
 - (c) imaging as a function of the updated imaging parameter.
- 33. (previously presented) The method of Claim 32 wherein (b) comprises:
- (b1) applying multidimensional phase unwrapping to a set of velocity data representing a multidimensional region; and
- (b2) setting the velocity scale, or the imaging frequency as a function of results of (b1).
- 34. (previously presented) The method of Claim 32 wherein (b) comprises:
- (b1) determining a clutter level as a function of energy input to and energy output from a clutter filter; and
- (b2) selecting the energy threshold, or the velocity threshold as a function of the clutter level.
- 35. (previously presented) The method of Claim 32 wherein (a) comprises detecting elevation, azimuth, range displacement, or combinations thereof in an azimuth and range imaging plane and wherein (b) comprises adaptively updating the imaging parameter.
- 36. (original) The method of Claim 32 wherein (a) comprises detecting the displacement from B-mode data representing a sub-region of the imaging region.
- 37. (original) The method of Claim 36 wherein (b) comprises automatically updating the flow imaging parameter.
- 38. (previously presented) The method of Claim 32 wherein (a) comprises:
 - (a1) calculating a similarity; and

- comparing the similarity or a value responsive to the similarity to a threshold. (a2)
- (original) The method of Claim 32 wherein (a) comprises: 39.
 - identifying a feature; and (a1)
- comparing the feature within a first image to the feature within a second (a2)image.
- (original) The method of Claim 32 wherein (a) comprises detecting a repositioning of 40. a spectral Doppler gate.
- (original) The method of Claim 32 wherein (a) comprises detecting the displacement 41. of an imaging plane from flow data.
- 42-45. (cancelled)