Aproksymacja średniokwadratowa dyskretna

Grams, Stanisław Jezierski, Maciej Korczakowski, Juliusz MFI UG Algorytmy Numeryczne

14 stycznia 2019

1 Implementacja

Program "approximations" został napisany w języku C++ a wyniki działania programu zapisywane są do poszczególnych plików *.csv.

1.1 Zaimplementowane oraz użyte algorytmy

- (G): Algorytm Gaussa z częściowym wyborem elementu
- (G_SPARSE): Algorytm Gaussa z częściowym wyborem elementu i optymalizacją dla macierzy rzadkich
- (GS_1E10): Algorytm Gaussa-Seidela (precyzja 1×10^{-10} , struktura macierzy tablicowa)
- (GS_EIGEN): Algorytm Gaussa-Seidela z implementacją dla biblioteki Eigen3 (precyzja 1×10^{-10}) ¹
- (LU_EIGEN): Algorytm SparseLU pochodzący z biblioteki Eigen3 ²

W celu obsługi metod **GS_EIGEN** oraz **LU_EIGEN** oparteych o bibliotekę *Eigen*3 należało w dodatku do zadania nr 3 doimplementować klasy *SparseMatrix* oraz *SparseGenerator* pozwalające na wydajne operacje na nowych typach.

Testy zostały wykonane dla ilości agentów równej N=3..60.

Przypomnienie: rząd macierzy można wyznaczyć ze wzoru $A = \frac{(N+1)*(N+2)}{2}$

2 Analiza wyników

¹http://komi.web.elte.hu/elektronikus/src/p184-koester.pdf

²https://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html

3 Aproksymacja

3.1 Wyliczone współczynniki wielomianów

- Rozwiązywanie układu równań:
 - 1. (G): $f(x) = 2.08794e 9x^3 + (-8.95133e 8)x^2 + 8.29139e 5x^1 0.00728348$
 - 2. (G_SPARSE): $f(x) = 1.85075e 7x^2 + (-7.88855e 5)x^1 + 0.00772861$
 - 3. (**GS**_1**E10**): $f(x) = 6.81554e 6x^2 + (-0.00319507)x^1 + 0.319738$
 - 4. (GS_EIGEN): $f(x) = 1.29824e 7x^2 + (-3.45283e 6)x^1 + 0.000242044$
 - 5. (**LU_EIGEN**): $f(x) = 0.000129468x^1 0.0128829$
- Generowanie macierzy:
 - 1. (G): $f(x) = 1.04135e 12x^3 + (2.25873e 8)x^2 + 3.36946e 6x^1 0.000383727$
 - 2. (G_SPARSE): $f(x) = 2.51315e 8x^2 + 1.55354e 6x^1 0.00028272$
 - 3. (**GS**₋₁**E10**): $f(x) = 2.83629e 8x^2 + (-2.47976e 6)x^1 + 0.000380382$
 - 4. (GS_EIGEN): $f(x) = 3.71718e 8x^2 + (-2.87381e 8)x^1 + 0.000124703$
 - 5. (**LU_EIGEN**): $f(x) = 6.80852e 5x^1 0.014481$

3.2 Poprawność wyników aproksymacji – błędy bezwzględne

	Obliczanie	Generowanie
G	0.307364774043810629	0.009470184227150496
G_SPARSE	0.043499922329411848	0.006761815415625999
GS_1E10	1.792431959293490085	0.013518592473739061
GS_EIGEN	0.020786725071974720	0.009817717627604215
LU_EIGEN	0.055710669049853154	0.081653183626553646

Wniosek 1. Uzyskane wyniki znajdują się w granicy tolerancji błędu dla funkcji aproksymującej opartej o aproksymacje średniokwadratową dyskretną.

4 Ekstrapolacja

4.1 Ekstrapolacja czasu obliczeń dla układu o rozmiarze rzędu 100000

	Wyliczony czas [s]
G	2087048.540863713948056102
G_SPARSE	1842.864744169787172723
GS_1E10	67836.170996347194886766
GS_EIGEN	1297.890374618339365043
LU_EIGEN	12.933910601128554063

5 Próba obliczenia układu o rozmiarze rzędu 100000 i klasa SparseMatrix

Jako najszybszą metodę uznaliśmy **LU_EIGEN** i tą metodą wykonaliśmy test dla macierzy rzędu 100 128 (446 agentów). Uzyskany czas wynosi 63.291921000000002095 i jest około 4.9x gorszy od aproksymowanego. Metody oparte o bibliotekę *Eigen*3 odznaczają się również znacznie niższym zużyciem pamięci operacyjnej.

6 Podział pracy

Stanisław Grams	Juliusz Korczakowski	Maciej Jezierski		
Implementacja algorytmu Gaussa-	Implementacja klasy Approximation	Przygotowanie sprawozdania		
Seidela				
Implementacja klasy SparseMatrix oraz	Przygotowanie wykresów oraz tabel	Agregacja uzyskanych wyników		
SparseGenerator w oparciu o Eigen3				
Przygotowanie prób i ich uruchomienie	Przygotowanie wykresów końcowych	Praca nad strukturą projektu		