PCA options for SSVD working notes

November 28, 2011

1 Mean of rows

1.1 B_0 pipeline mods

This option considers that data points are rows in the $m \times n$ input matrix

$$\mathbf{A} = egin{pmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ dots \ \mathbf{a}_m \end{pmatrix}$$

Mean of rows is n-vector

$$\boldsymbol{\xi} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$
$$= \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}.$$

Let $\tilde{\mathbf{A}}$ be \mathbf{A} with the mean subtracted.

$$ilde{\mathbf{A}} = egin{pmatrix} \mathbf{a_1} - oldsymbol{\xi} \ \mathbf{a_2} - oldsymbol{\xi} \ dots \ \mathbf{a}_m - oldsymbol{\xi} \end{pmatrix}.$$

We denote $m \times n$ mean matrix

$$oldsymbol{\Xi} = egin{pmatrix} oldsymbol{\xi} \ oldsymbol{\xi} \ dots \ oldsymbol{\xi} \end{pmatrix}$$

 \mathbf{B}_0 pipeline starts with notion that since $\tilde{\mathbf{A}}$ is dense, its mutliplications are very expensive. Hence, we factorize \mathbf{Y} as

$$\begin{array}{rcl} \mathbf{Y} & = & \tilde{\mathbf{A}}\boldsymbol{\Omega} \\ & = & \mathbf{A}\boldsymbol{\Omega} - \boldsymbol{\Xi}\boldsymbol{\Omega} \end{array}$$

Current \mathbf{B}_0 pipeline already takes care of $\mathbf{A}\Omega$, but the term $\mathbf{\Xi}\Omega$ will need more work.

The term $\Xi\Omega$ will have identical rows $\boldsymbol{\xi}\Omega$ so we need to precompute just one dense n-vector $\boldsymbol{\xi}\Omega$. This computation is very expensive since matrix Ω is dense (potentially several orders of magnitude bigger than input \mathbf{A}) and the median $\boldsymbol{\xi}$ is dense as well, even that we don't actually have to materialize any of Ω . Question is whether we could just ignore it since $\mathbb{E}(\boldsymbol{\xi}\Omega) = 0$.

 \Leftarrow Outstanding issue!!!

Alternatively, we could just brute-force it by creating a separate distributed computation of this over n.

Moving onto **B** and $\mathbf{B}\mathbf{B}^{\top}$:

$$\mathbf{B} = \mathbf{Q}^{\top} \tilde{\mathbf{A}}$$

$$= \mathbf{Q}^{\top} \mathbf{A} - \mathbf{Q}^{\top} \mathbf{\Xi}.$$
(1)

Again, current pipeline takes care of $\mathbf{Q}^{\top}\mathbf{A}$ but product $\mathbf{Q}^{\top}\Xi$ would need more work.

Let
$$\mathbf{W} = \mathbf{Q}^{\top} \mathbf{\Xi}$$
.

Let also
$$\mathbf{a}\odot\mathbf{b}=\begin{pmatrix}a_1b_1\\a_2b_2\\\vdots\\a_kb_k\end{pmatrix}$$
 to be a notation for element-wise vector product.

We see that all columns of **W** are identical, and, more specifically,

$$\begin{aligned} \mathbf{W}_{*,i} &= \mathbf{w} \\ &= \left(\mathbf{Q}^{\top} \mathbf{\Xi}\right)_{*,i} \\ &= \left[\sum_{i=1}^{m} \mathbf{Q}_{i,*}\right] \odot \boldsymbol{\xi} \\ &= \mathbf{s}_{Q} \odot \boldsymbol{\xi} \end{aligned}$$

where $\mathbf{s}_Q = \sum_{i=1}^m \mathbf{Q}_{i,*}$ is sum of all rows of \mathbf{Q} .

Since B_0 pipeline computes $\mathbf{Q}^{\top}\mathbf{A}$ column-wise over columns of \mathbf{Q} and \mathbf{A} , the first thought is that equation (2) can be computed column-wise as well with computation seeded by the $\mathbf{s}_Q \odot \boldsymbol{\xi}$ vector.

Flow problem with existing SSVD is the **s** term, which is not yet known at the time of formation of **B** columns because formation of **Q** blocks happens at the same pipeline that further on produces **B** columns. But we probably can produce it by the time of final summations of $\mathbf{B}\mathbf{B}^{\top}$.

Let
$$\mathbf{b}_i = \mathbf{B}_{*,i}$$
, $\tilde{\mathbf{b}}_i = \left(\mathbf{Q}^{\top} \mathbf{A}\right)_{*,i}$. Then $\mathbf{b}_i = \tilde{\mathbf{b}}_i - \mathbf{w}$

$$\mathbf{B}\mathbf{B}^{ op} = \sum_{i}^{n} \mathbf{b}_{i} \mathbf{b}_{i}^{ op}$$

$$\begin{aligned} \mathbf{b}_{i} \mathbf{b}_{i}^{\top} &= & \left(\tilde{\mathbf{b}}_{i} - \mathbf{w}\right) \left(\tilde{\mathbf{b}}_{i} - \mathbf{w}\right)^{\top} \\ &= & \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} - \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top} - \mathbf{w} \tilde{\mathbf{b}}_{i}^{\top} - \mathbf{w} \mathbf{w}^{\top} \\ &= & \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} - \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top} - \left(\tilde{\mathbf{b}}_{i} \mathbf{w}^{\top}\right)^{\top} + \mathbf{w} \mathbf{w}^{\top}. \end{aligned}$$

$$\mathbf{B}\mathbf{B}^{\top} = \sum_{i}^{n} \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} \tag{3}$$

$$-\sum \left[\tilde{\mathbf{b}}_{i}\mathbf{w}^{\top} + \left(\tilde{\mathbf{b}}_{i}\mathbf{w}^{\top}\right)^{\top}\right] \tag{4}$$

$$+ n \cdot \mathbf{w} \mathbf{w}^{\mathsf{T}}.$$
 (5)

Let $k \times k$ matrix $\mathbf{C} = \sum_{i=1}^{n} \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top}$, and then we can rewrite equation (4) as

$$\mathbf{B}\mathbf{B}^{\top} = \sum_{i}^{n} \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} - \mathbf{C} - \mathbf{C}^{\top} + n \cdot \mathbf{w}\mathbf{w}^{\top}.$$

So we can compute $\tilde{\mathbf{B}} = \sum_i \tilde{\mathbf{b}}_i \tilde{\mathbf{b}}_i^{\top}$ right away, that's what Bt-job does. We also can add $n \cdot \mathbf{w}_i \mathbf{w}_i^{\top}$ in front end since it is a tiny matrix and at this point \mathbf{w} is already known. The task boils down to computing small $(k+p) \times (k+p)$ matrix \mathbf{C} and then subtracting $\mathbf{C} + \mathbf{C}^{\top}$ in front end as well. Note that

$$\mathbf{C} = \sum_{i}^{n} \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top}$$
$$= \left(\sum_{i}^{n} \tilde{\mathbf{b}}_{i}\right) \mathbf{w}^{\top}$$
$$= \mathbf{s}_{\tilde{R}} \mathbf{w}^{\top}.$$

In this case, $\mathbf{s}_{\tilde{B}}$ can be output by Bt job as well. Hence \mathbf{C} can be computed as an outer product of two small k-vectors in the front end as well.

PCA would be primarily interested in \mathbf{V} or \mathbf{V}_{σ} output of the decomposition in order to fold in new items back into PCA space, so we need to correct \mathbf{V} job as well in this case to fix output of Bt-job.

1.2 Power Iterations (aka B_i pipeline) additions

Power iterations pipeline produces $\mathbf{B}_{i}^{\top} = \mathbf{A}^{\top} \operatorname{qr} \left(\mathbf{A} \mathbf{B}_{i-1}^{\top} \right) \cdot \mathbf{Q}$. Similarly to versions of \mathbf{B} , each iteration would produce corrective vector \mathbf{w}_{i-1} .

Obviously, we need to amend power iteration work flow to fix output of previous Bt-job on the fly with \mathbf{w}_{i-1} to reconstruct correct \mathbf{B}_{i-1} similarly to what is done in the \mathbf{V} .

Another note is that we run eigendecomposition only after the last iteration so the term $\mathbf{s}_{\tilde{B}}$ needs to be computed only during the last iteration.