

Guía de Estudio — Examen Final

1. Resumen de Definiciones y Teoremas

A continuación le presentamos un resumen de los conceptos que debe saber, comprender y aplicar.

Sucesiones

- Una sucesión es una función cuyo dominio es el conjunto de los números naturales y cuyo contradominio es un subconjunto de los números reales. Formalmente, sean $A \subseteq \mathbb{R}$ y $f: \mathbb{N} \to A_\ni$ $n \to f(n) \triangleq a_n$, f es llamada una sucesión de números reales.
- Dado $p \in \mathbb{R}$ se define a la *vecindad abierta* de p con radio ε al conjunto

$$V_{\varepsilon}(p) = \{ q \in \mathbb{R} \mid d(p,q) = |p-q| < \varepsilon \}.$$

■ Dada una sucesión de números reales $\{a_n\}$ y $L_0 \in \mathbb{R}$, decimos que L_0 es un punto de acumulación de la sucesión $\{a_n\}$, si para $\varepsilon > 0$, el conjunto $\{n \in \mathbb{N} \mid d(L_0, a_n) = |a_n - L_0| < \varepsilon\}$ es infinito. Intuitivamente, L_0 es un punto de acumulación si cualquier "entorno" o vecindad abierta de L_0 contiene a infinitos términos de la sucesión.

Sucesiones Monótonas

- Una sucesión de números reales $\{a_n\}$ se dice que es *creciente* si: $\forall n \in \mathbb{N}, \ a_n \leq a_{n+1}$.
- Una sucesión de números reales $\{a_n\}$ se dice que es decreciente si: $\forall n \in \mathbb{N}, \ a_n \geq a_{n+1}$.
- Se dice que la sucesión de números reales $\{a_n\}$ es monótona si es creciente o decreciente.

Sucesiones Acotadas

- Una sucesión de números reales $\{a_n\}$ está acotada superiormente si existe $M \in \mathbb{R}$ tal que $a_n \leq M \ \forall n \in \mathbb{N}$. Dicho número M es llamado una cota superior de $\{a_n\}$.
 - \circ Llamaremos supremo a la menor de la cotas superiores y lo denotaremos por sup $\{a_n\}$.
 - o Si sup $\{a_n\} \in \{a_n\}$ entonces recibe el nombre de *máximo* de la sucesión $\{a_n\}$, denotado por máx $\{a_n\}$.
- Una sucesión de números reales $\{a_n\}$ está acotada inferiormente si existe $m \in \mathbb{R}$ tal que $m \leq a_n \ \forall n \in \mathbb{N}$. Dicho número m es llamado una cota inferior de $\{a_n\}$.
 - o Llamaremos *infimo* a la mayor de la *cotas inferiores* y lo denotaremos por inf $\{a_n\}$.
 - o Si ínf $\{a_n\} \in \{a_n\}$ entonces recibe el nombre de *mínimo* de la sucesión $\{a_n\}$, denotado por mín $\{a_n\}$.
- Una sucesión de números reales $\{a_n\}$ es acotada si lo está superior e inferiormente.

- Convergencia
 - Se dice que la sucesión de números reales $\{a_n\}$ es convergente a $L \in \mathbb{R}$ si la sucesión tiene exactamente un punto de acumulación y este es L. De esta forma, escribimos

$$\lim_{n\to\infty} a_n = L,$$

que significa:

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ni \ d(L, a_n) = |a_n - L| < \varepsilon \ \forall n > N_{\varepsilon}.$$

- Si los términos de $\{a_n\}$ crecen sin límite escribimos $\lim_{n\to\infty} a_n = \infty$. En el caso en que decrecen sin límite escribimos $\lim_{n\to\infty} a_n = -\infty$.
- Teorema: si una sucesión de números reales $\{a_n\}$ es monótona y acotada, entonces es convergente.
- Propiedades de los Límites de Sucesiones: si $\{a_n\}$ y $\{b_n\}$ son sucesiones convergentes, entonces
 - $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$,
 - $\lim_{n \to \infty} k a_n = k \lim_{n \to \infty} a_n$, para $k \in \mathbb{R}$,
 - $\lim_{n\to\infty} k = k$, para $k \in \mathbb{R}$,

- $\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$,
- $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$, con $b_n \neq 0$ y $\lim_{n \to \infty} b_n \neq 0$.

Limites

Escribimos

$$\lim_{x \to a} f(x) = L$$

y decimos "el límite de f(x) cuando x tiene a a es igual a L", si podemos acercar arbitrariamente los valores de f(x) a L escogiendo x bastante cerca de a pero no igual a a.

■ Nota: al calcular $\lim_{x\to a} f(x)$ no importa si f está definida o no en x=a, lo único que interesa es como está definida cerca de a. En cada uno de los tres casos que se ilustran en la siguiente figura tenemos que $\lim_{x\to a} f(x) = L$.

- Límites Laterales
 - Escribimos

$$\lim_{x \to a^{-}} f(x) = L$$

y decimos que el *límite lateral izquierdo* de f(x) cuando x tiende a a es igual a L, si podemos aproximar los valores de f(x) a L tanto como queramos, escogiendo una x bastante cerca de a pero menor que a.

• Escribimos

$$\lim_{x \to a^+} f(x) = L$$

y decimos que el *límite lateral derecho* de f(x) cuando x tiende a a es igual a L, si podemos aproximar los valores de f(x) a L tanto como queramos, escogiendo una x bastante cerca de a pero mayor que a.

- Teorema: $\lim_{x\to a} f(x) = L$ si y solo si $\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x) = L$.
- Definición Formal de Límite: sea f una función definida en un intervalo abierto que contiene a a (salvo posiblemente en a) y $L \in \mathbb{R}$, escribimos

$$\lim_{x \to a} f(x) = L,$$

si dado cualquier $\varepsilon > 0$ existe un número correspondiente $\delta > 0$ tal que

si
$$0 < |x - a| < \delta$$
, entonces $|f(x) - L| < \varepsilon$.

- Propiedades de los Límites: si $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ existen, entonces
 - $\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$.
 - $\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x)$, para $k \in \mathbb{R}$.
 - $\lim_{x \to a} k = k$, para $k \in \mathbb{R}$.
 - $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$.
 - $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$, $\operatorname{con} \lim_{x \to a} g(x) \neq 0$.
 - Si $\lim_{x \to a} f(x)$ existe y $n \in \mathbb{Z}^+$, $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$.
 - Si $\lim_{x \to a} g(x) = L$ y $\lim_{x \to L} f(x) = f(L)$ entonces, $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$.

- Teorema de la Compresión o del Encaje: si $h(x) \leq f(x) \leq g(x)$ para todos los x en un intervalo abierto que contiene a a (excepto posiblemente en a) y si lím h(x) =lím g(x) = Lentonces $\lim_{x \to a} f(x) = L$.
- Continuidad
 - Una función f es continua en un número a si se satisfacen las siguientes 3 condiciones:
 - (i) f(a) está definida,
- (ii) $\lim_{x \to a} f(x)$ existe, y (iii) $\lim_{x \to a} f(x) = f(a)$.
- Tipos de Discontinuidades:

Evitable Inevitable (por Salto)

Inevitable (Infinita)

- Una función f es continua en un intervalo abierto (a, b) si es continua en cada punto del intervalo.
- Una función f es continua en un intervalo cerrado [a,b] si es continua en el intervalo abierto (a, b) y

$$\lim_{x \to a^+} f(x) = f(a)$$
 y $\lim_{x \to b^-} f(x) = f(b)$.

• Propiedades de la Continuidad: sean $b \in \mathbb{R}$ y f, g funciones continuas en x = a, entonces las siguientes funciones también son continuas en a.

• Múltiplo escalar: bf,

 \circ Cociente: $\frac{f}{g}$, si $g(a) \neq 0$,

 $f \pm g$, • Suma y diferencia: • Producto: fg,

 \circ Composición: $f \circ g$, f continua en g(a).

- Las funciones polinomiales, racionales, radicales, trigonométricas y sus inversas, exponenciales y logarítmicas son continuas en sus *dominios*.
- Teorema del Valor Intermedio: si f es continua en el intervalo cerrado $[a,b], f(a) \neq f(b)$ y k es cualquier número entre f(a) y f(b), entonces existe al menos un número $c \in [a,b]$ tal que: f(c) = k.

Introducción a la Derivada

 \blacksquare La derivada de una función f en x viene dada por

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

siempre que este límite exista. Es decir que, geométricamente, la derivada es la pendiente de la recta tangente a la curva en un punto P(x, f(x)).

• Notación: otras notaciones para la derivada de y = f(x) (respecto de x) son

$$y'$$
, $\frac{dy}{dx}$, $\frac{df}{dx}$, $\frac{d}{dx}f(x)$, $Df(x)$, $D_xf(x)$, D_xy .

■ Una función es *derivable* en un número x = c si $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ existe, esto es, si las derivadas laterales *derecha* e *izquierda*,

$$f'_{+}(c) = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c}$$
 y $f'_{-}(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c}$,

existen y son iguales.

- Teorema: si f es derivable en x = c, entonces f es continua en x = c.
- Una función deja de ser derivable en x = a para los casos ilustrados en la siguiente figura.

■ Teoremas Básicos de Derivación

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}[cf(x)] = cf'(x)$$

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

■ Derivadas de las Funciones Trigonométricas

$$\frac{d}{dx}(\sec(x)) = \cos(x)$$

$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$

$$\frac{d}{dx}(\cot(x)) = \sec^2(x)$$

$$\frac{d}{dx}(\cot(x)) = -\csc^2(x)$$

$$\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)$$

$$\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$$

2. Ejercicios de Repaso

A continuación le presentamos una serie de preguntas, ejercicios y problemas como preparación para su evaluación final. Recuerde, primero repase su cuaderno y ejercicios realizados en clase. Asegúrese que entiende bien todo lo que allí se discutió. Finalmente, resuelva todos estos ejercicios como práctica y utilice la teoría resumida en la sección anterior como guía.

2.1. Conceptos

- 1. Determine si las siguientes proposiciones son verdaderas o falsas; de ser falsas razone su respuesta.
 - a) Si la función f(x) no está definida en x=a, entonces $\lim_{x\to a} f(x)$ no existe.
 - b) Si $\lim_{x \to 3^{-}} f(x) = 5$ y $\lim_{x \to 3^{+}} f(x) = 3$ entonces $\lim_{x \to 3} f(x) = 3$.
 - c) Suponga que f es una función continua en un número x=a y $\lim_{x\to a} f(x)=10$ entonces f(a)=10.
 - d) Para una función f continua, si f(1)>0 y f(3)<0, entonces existe un número $c\in[1,3]$ tal que f(c)=0.
 - $e) \ \mbox{Si } p$ es un polinomio, entonces $\lim_{x \to b} p(x) = p(b).$
 - $f) \frac{d}{dx}[\pi^4] = 4\pi^3.$
 - g) Toda función continua en un intervalo \mathcal{I} es derivable en \mathcal{I} .
 - h) Una sucesión $\{a_n\}$ puede tener mínimo pero no ínfimo.
 - i) La derivada de una función f en un número x=c, se puede interpretar como la pendiente de la recta tangente a la curva f en dicho número c.
 - j) Toda sucesión acotada debe ser convergente.
 - k) Dadas las funciones f, g diferenciables en un intervalo \mathcal{I} , $\frac{d}{dx}[f(x)\cdot g(x)]=f'(x)\cdot g'(x)$.
- 2. Dada la función y = g(x) cuya gráfica se ilustra en la siguiente figura, establezca el valor (si existe) de cada una de las cantidades que se indican a continuación.
 - $a) \lim_{t\to 0^-} g(t),$

 $f) \lim_{t \to 2^+} g(t),$

 $b) \lim_{t \to 0^+} g(t),$

 $g) \lim_{t\to 2} g(t),$

 $c) \lim_{t\to 0}g(t),$

 $t\rightarrow 2$

d) g(2),

h) g(0),

 $e) \lim_{t \to 2^{-}} g(t),$

i) g(4).

- 3. Utilizando la definición de derivada, demuestre que: $\frac{d}{dx}(1-x+x^2)=2x-1$.
- 4. Exprese la función trigonométrica $f(x) = \tan x$ en términos de senos y cosenos para demostrar que: $\frac{d}{dx}(\tan x) = \sec^2 x$.
- 5. Dado el bosquejo de la gráfica de la función y = f(x) mostrado en la figura, ¿cuál de las siguientes aseveraciones acerca de y = f(x) es verdadera?

- a) La función y = f(x) es derivable en los puntos A, B y C.
- b) La función y = f(x) es derivable en el punto B, pero no lo es en los puntos A y C.
- c) La función y = f(x) es derivable en los puntos A y B, pero es discontinua en C.
- d) La función y = f(x) es discontinua en los puntos A, B y C.
- e) Ninguna de las aseveraciones es verdadera.

2.2. Operatoria

- 1. Dada la sucesión: $\{a_n\}_{n\in\mathbb{N}} = \left\{\frac{2n+1}{n+2}\right\}_{n\in\mathbb{N}}$.
 - a) Calcule los términos a_1 , a_2 , a_3 y a_{100} .
 - b) Determine el o los puntos de acumulación de la sucesión, si existen. ¿Es convergente o divergente dicha sucesión? Justifique su respuesta.
 - c) Encuentre el conjunto de cotas superiores, el conjunto de cotas inferiores, el supremo, el ínfimo, el máximo y el mínimo de la sucesión si es que existen.
 - d) Determine si la sucesión es monótona y de serlo pruébelo.
- 2. Evalúe cada uno de los siguientes *límites*.

$$a) \ \, \lim_{n\to\infty} \frac{3n^2+18}{\frac{1}{2}n^2-9}.$$

$$a) \lim_{n \to \infty} \frac{3n^2 + 18}{\frac{1}{2}n^2 - 9}. \qquad c) \lim_{n \to \infty} \left(3 + \frac{3 + 2n}{6n^2 - 20} \right). \qquad e) \lim_{x \to 2} \frac{x^2 - 4}{x - 2}.$$

$$b) \lim_{n \to \infty} \cos(n\pi), n \in \mathbb{N}. \qquad d) \lim_{x \to 3} \frac{x^2 + 3}{x}. \qquad f) \lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}.$$

$$e) \lim_{x\to 2} \frac{x^2-4}{x-2}.$$

b)
$$\lim_{n \to \infty} \cos(n\pi), n \in \mathbb{N}.$$

$$d) \lim_{x \to 3} \frac{x^2 + 3}{x}$$

$$f) \lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}.$$

$$g) \lim_{y \to 3^{-}} \frac{1}{y-3}.$$

$$i) \lim_{\theta \to \frac{\pi}{2}} \frac{\cos^2(\theta)}{1 - \sin \theta}.$$

$$h) \lim_{\theta \to 0} \frac{\sin(\pi\theta)}{\theta}.$$

$$j$$
) $\lim_{z \to 7^+} \sqrt{7-z}$.

3. Analizar la continuidad de cada una de las siguientes funciones. No olvide especificar el tipo de discontinuidad, en caso de existir alguna.

a)
$$f(x) = \begin{cases} \frac{x^2 - 25}{x - 5} & \text{si } x \neq 5\\ 10 & \text{si } x = 5. \end{cases}$$

b)
$$g(t) = \begin{cases} \frac{t^2 - 2t - 15}{t - 5} & \text{si } t \le 5\\ t + 2 & \text{si } t > 5. \end{cases}$$

4. Encontrar la primera derivada de las siguientes funciones. Simplifique su respuesta.

a)
$$y = x^4 - 2x^2 + 5\pi - 2\cos x$$
.

$$h) \ y = x^3 \sin x \cos x.$$

$$b) f(t) = \frac{5}{t^2}.$$

$$i) f(t) = \frac{t^4 - 1}{t^4 + 1}.$$

c)
$$f(x) = \sqrt{x} + \frac{3x^3}{2} - 2x - 3\tan x$$
.

$$f(v) = \sin^2(v) - 4v^3 + \frac{3}{\cos v}.$$

d)
$$f(z) = -\frac{3}{\sqrt{z}} + z^8 - \frac{8}{z}$$
.

$$f(v) = \sin^2(v) - 4v^s + \frac{1}{\cos v}$$

$$e) y = (x^2 + x^3)^2.$$

k)
$$y = 5x^3 - \frac{\sin x}{x^3} + 2x \sec x$$

$$f) \ \ y = \frac{x^2 - x + 2}{\sqrt{x}}.$$

$$f(z) = \frac{2z \tan z}{1 - 2z}$$

$$g) \ f(w) = 5w^2 \operatorname{sen}(w).$$

2.3. **Aplicaciones**

Finalmente, las aplicaciones sin miedo.

- 1. Considere la parábola \mathcal{P} con vértice V(-2,1), que pasa por el punto P(0,0) y que tiene eje focal paralelo al eje y.
 - a) Encuentre la ecuación en forma canónica de la parábola \mathcal{P} .
 - b) Encuentre la ecuación en forma general de la parábola \mathcal{P} .
 - c) ¿Cuál es la pendiente de la recta tangente a \mathcal{P} en el punto A(-4,0)?
 - d) Determine la ecuación de la recta tangente a \mathcal{P} en dicho punto.
 - e) ¿Cuál es la pendiente de la recta normal a \mathcal{P} en dicho punto?
 - f) Determine la ecuación de la recta normal a \mathcal{P} en dicho punto.
 - q) ¿Qué sucede con la recta normal y la recta tangente en el vértice V de la parábola? ¿Cuáles son sus ecuaciones?

- 2. Se deja caer una moneda desde lo alto de un edificio que tiene una altura de 1,362 pies. Asuma que la función de posición de la moneda viene dada por $s(t) = -16t^2 + v_0t + s_0$, en donde v_0 es la velocidad inicial de la moneda y s_0 su posición inicial.
 - a) Determine las funciones que describen la posición, velocidad y aceleración de la moneda.
 - b) Calcule su *velocidad promedio* en el intervalo [1, 2].
 - c) Encuentre las velocidades instantáneas cuando t = 1 y t = 2.
 - d) Calcule el tiempo que tarda la moneda en llegar al suelo.
 - e) Determine su velocidad justo en el instante en que cae al suelo.

3. Respuestas

Y para que esté $m\'{a}s$ tranquilo $a\'{u}n$ le damos las respuestas a todos los ejercicios de las secciones de operatoria y aplicaciones.

Operatoria

1.
$$a)$$
 $a_1 = 1$, $a_2 = \frac{5}{4}$, $a_3 = \frac{7}{5}$ y $a_{100} = \frac{201}{102}$.

- b) Punto de acumulación es 2, demuéstrelo calculando el límite paso a paso.
- c) Conjunto de cotas superiores es: $S = \{x \in \mathbb{R} \mid x \geq 2\}$, $\sup\{a_n\} = 2$ y $\max\{a_n\}$ no existe. Conjunto de cotas inferiores es: $I = \{x \in \mathbb{R} \mid x \leq 1\}$, $\inf\{a_n\} = 1$ y $\min\{a_n\} = 1$.
- d) La sucesión es monótona creciente, no olvide demostrarlo.

2. a) 6. d) 4. g)
$$-\infty$$
.
b) No existe, la sucesión es

b) No existe, la sucesión es e) 4. i)
$$\pi$$
. alternante. i) 2. c) 3. f) $\frac{2}{3}$. j) No existe.

- a) La función dada es continua en todo su dominio. No olvide aplicar la definición para verificar la continuidad de f en x = 5.
 b) La función tiena una discentinuidad inquitable (non selta) en m. 5. No obvide inquitable (non selta) en m. 5. No obvide inquitable (non selta) en m. 5.
 - b) La función tiene una discontinuidad inevitable (por salto) en x=5. No olvide justificar su respuesta.

su respuesta.

4. a)
$$4x^3 - 4x + 2\sin x$$
.

a)
$$4x^3 - 4x + 2\sin x$$
.
b) $-\frac{10}{t^3}$.
d) $\frac{3}{2z\sqrt{z}} + 8z^7 + \frac{8}{z^2}$.
e) $4x^3 + 10x^4 + 6x^5$.

c)
$$\frac{1}{2\sqrt{(x)}} + \frac{9}{2}x^2 - 2 - 3\sec^2 x$$
.
f) $\frac{3x^2 - x - 2}{2x\sqrt{x}}$.
g) $5w (2\sin w + w\cos w)$.

h)
$$x^2(3\sin x \cos x + x\cos^2 x - x\sin^2 x)$$
. j) $2\sin y \cos y - 12y^2 + 3\sec y \tan y$.

$$i) \ \frac{8t^3}{(t^4+1)^2}.$$

k)
$$15x^2 - \frac{x\cos x - 3x\sin x}{x^4} + 2\sec x + 2x\sec x \tan x$$
.

$$l) \ \frac{2(\tan z + z\sec^2 z - 2z^2\sec^2 z)}{(1 - 2z)^2}.$$

Aplicaciones

- 1. a) Ecuación en forma canónica de la parábola \mathcal{P} : $(x+2)^2 = -4(y-1)$.
 - b) Ecuación en forma general de la parábola $\mathcal{P}: x^2 + 4x + 4y = 0$.
 - c) Pendiente de la recta tangente T en el punto A es: $m_T = 1$.
 - d) Ecuación de la recta tangente T en el punto A es: y = x + 4.
 - e) Pendiente de la recta normal N en el punto A es: $m_N = -1$.
 - f) Ecuación de la recta normal N en el punto A es: y = -x 4.
 - g) En el vértice de la parábola \mathcal{P} , la recta tangente es horizontal y tiene ecuación: y = 1, mientras que la recta normal es vertical con ecuación x = -2.

2.
$$a)$$
 $s(t) = -16t^2 + 1362$, $v(t) = s'(t) = -32t$ y $a(t) = v'(t) = s''(t) = -32$.

- b) -48 pies.
- c) s'(1) = -32 pies/s y s'(2) = -64 pies/s.
- d) Aproximadamente 9.23 segundos.
- e) Aproximadamente -295.24 pies/s.

4. Referencias

[1] Stewart, J., D. Clegg y S. Watson: Cálculo, Trascendentes tempranas. Cengage Learning, 1a. edición, 2021.