ENCE360 Operating Systems

Introduction to Operating Systems

Operating Systems

- Operating systems are everywhere, in all shapes and sizes
 - PC, Smartphone
 - Game console, Hand-held
 - TV, Thermostat
 - Car
- While you may never write an OS (but you may!), you will develop software for an OS
- Understanding operating systems will make you a better computer scientist/software engineer
 - "I want to make computers dance for me."
- Last, but not least ...
 - Combines previous classes hardware, algorithms, coding
 - Provides deep knowledge, insights
 - "Operating systems are cool."

Let's Get Started!

- Virtualization
 - Time (CPU)
 - Space (memory)
- Concurrency
- Persistence (I/O)

Chapter 1
MODERN OPERATING SYSTEMS (MOS)
By Andrew Tanenbaum

OPERATING SYSTEMS: THREE EASY PIECES
R. Arpaci-Dusseau and A. Arpaci-Dusseau,
March, 2015
http://www.ostep.org/

Operating Systems are Foundational

- "Nobody has time for all those crazy details."
 - Abstraction
- "Sharing all these devices... it's like herding cats!"

Convience & Efficiency

- Resource Manager
- An OS is an extended machine
 - Hides messy details which must be performed
 - Presents user with virtual machine, easier to use
- An OS is a resource manager
 - Each program gets time with resource
 - Each program gets space on resource

Introduction

- What is an operating system
- History of operating systems
- The operating system zoo
- Computer hardware review
- Operating system concepts
- System calls
- Operating system structure

Refer to Chapter 1
MODERN OPERATING SYSTEMS (MOS)
By Andrew Tanenbaum

What is an Operating System

- It is an extended machine
 - Hides the messy details which must be performed
 - Presents user with a virtual machine, easier to use
- It is a resource manager
 - Each program gets time with the resource
 - Each program gets space on the resource

What is an Operating System

- Operating system
 - 1. creates an "extended machine":
 - This means providing abstraction to make interactions between the hardware and the applications more convenient to programs and programmers
 - 2. Manages the available hardware resources in order to provide efficient use of this hardware.

Layered architecture

History of Operating Systems

- First Generation:
 - (1945–55) Vacuum Tubes and Hard-wiring
- Second Generation:
 - (1955–65) Transistors and Batch Systems
- Third Generation:
 - (1965–1980) ICs and Multiprogramming
- Fourth Generation:
 - (1980–Present) Personal Computers
 - (Present–Future) Quantum Computing and AI

Before Operating Systems

The first digital computer was designed by Charles Babbage (1792-1871)

- English mathematician who tried to build 'analytical engine'
- Ada Lovelace, daughter of Lord Byron was a programmer
- At the time the mechanical demands exceeded the available technology and this computer was not successfully constructed.

First Generation

- Each computer custom built, "programmed" with wires
 - No operating system

Second Generation

- Batch systems
- Programming
- "Operating system" only loaded, cleaned up jobs

Third Generation

- Multiprogramming
 - Two+ jobs in memory
 - "Time sharing" and"multi-tasking"
- First real operating systems
 - MULTICS
 - Led to Unix led to Linux

Fourth Generation

- Personal computers
- Modern operating systems
 - Linux, maxOS,Windows (DOS)
 - virtual memory
 - paging
 - TCP/IP
- Fifth generation?
 - Quantum computing and AI

The Operating System Zoo

- Mainframe operating systems
- Server operating systems
- Multiprocessor operating systems
- Personal computer operating systems
- Real-time operating systems
- Embedded operating systems
- Mobile operating systems

Computer Hardware Review

• Components of a simple personal computer

Storage Hierarchy (Revised)

Computer Technology Objectives

The need for speed

- 1980: 3MHz, real-time games (lo res)
- 1990: 16MHz, AI programs
- 2000: 1GHz, Computer Vision in real-time
- 2010: 3.9GHz 6-core (32nm)

- **2018**: 4.4MHz 18-core (36 threads) 14nm (5nm in 2020) (Intel Core i9-7980XE)
- Future 5 years: Intel 80-core

Technology Trends

Capacity Speed

Logic 2x in 3 years 2x in 3 years

RAM 4x in 3 years 2x in 10 years

Disk 4x in 3 years 2x in 10 years

- Die size: 2x every 3 yrs
- Line width: halve / 7 yrs

SoC vs CPU

the battle for the future of computing

- After more than 50 years at the top of the heap, the CPU finally has some competition from an upstart called the SoC.
- **CPU** cannot function without dozens of other chips. But it's possible to build a complete computer with just a single SoC.
- **SoC** usually contains a CPU, GPU (a graphics processor), memory, USB controller, power management circuits, and wireless radios (WiFi, 3G, 4G LTE, and so on).
- CPU=central processing unit, SoC=system-on-a-chip

SoC vs CPU the battle for the future of computing

Typical CPU computer vs SoC computer (iPad)

• CPU=central processing unit, SoC=system-on-a-chip

SoC: \$3 Wi-Fi chip with full TCP/IP stack and microcontroller

- 160MHz
- WiFi(a,b,g)
- 16 GPIO
- UART
- ADC
- Arduino

ESP8266

SoC: \$5 Rasperry Pi Zero

- 1GHz ARM11 core, GPU
- 512MB RAM
- 64GB micro card
- HDMI out
- USB2
- \$1.70 WiFi USB

Intel IPP = Integrated Performance Primitives

SIMD = Single Instruction, Multiple Data (multiple 256bit registers) (a supercomputer technique employed to achieve data level parallelism) Using SSE = Streaming SIMD Extensions (in silicon)

Is an Intel software library for processing:

- Vector/Matrix Mathematics
- Computer Vision
- Cryptography
- Data Compression
- Image Colour Conversion
- Ray Tracing/Rendering
- Signal Processing
- Speech Coding
- Speech Recognition
- String Processing

Nvidia GeForce GTX TITAN Z

- 5,760 CUDA cores
- 12 GB of GDDR5 memory

Virtualization

Virtualization: feature of multi-core chidesigned to run multiple operating systems simultaneously.

Teloportation: Virtual Machine is temporarily stopped and then resumed on a different computer

Products: Parallels, VirtualBox, Virtual Iron, Virtual PC, Hyper-V, VMware KVM, QEMU, Adeos, Mac-on-Linux, Win4BSD, Win4Lin Pro, vBlade, . . .

Metric Units

Ехр.	Explicit	Prefix	Ехр.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.00001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.00000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 ⁻²⁴	0.0000000000000000000000000001	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

The metric prefixes

Max **64 bit** number = 18, 446,744, 073,709, 551,615 As a memory address, access 18,000 Petabytes of memory/disk Or access 18 million Terabyte hard disks

The Hard Drive, 60 years on

• 1956: IBM shipped the first hard drive, the RAMAC 305, which held 5MB of data at \$10,000 a megabyte. It is as big as two refrigerators and uses 50 24-inch platters.

• 2018: 16 terabyte HDD (Seagate)

• 2018: 100 terabyte SSD (Nimbus Data)

Operating systems prepare for the next-generation hardware

Significant milestone releases:

Microsoft Windows 10

- Start menu back, virtual desktops
- Edge browser (no IE), same OS running on PCs, phones, etc

Apple macOS 10.14 Mojave (was Mac OS X)

• new Apple File System ... (Mojave late 2018)

Apple iOS 12

• Siri Shortcuts, Group FaceTime calls with up to 32 people, Memoji, and a more organized Lock Screen ...

Google Android 8.1 Oreo

• notification grouping, video picture-in-picture, performance improvements, battery usage optimization, Bluetooth 5, system-level integration with VoIP apps, wide colour gamuts, Wi-Fi Aware, Android Go, hardware abstraction layer ... (Android P late 2018)

Best 2018 Linux distributions:

Overall: Ubuntu, Server: CentOS, Gaming: Fedora Games Spin, Lightweight: Lubuntu, for Programmers: Fedora, Beginner-Friendly: Manjaro (or Mint), Best-Looking: elementary OS, for Windows Users: Robolinux, for Kids: Sugar on a Stick (SoaS) ...

Android

now over 88% of smart phone sales (Gartner)

- Android is not an operating system. Android is a software stack for mobile devices that includes Linux, middleware and key applications.
- Android includes a set of core libraries that provides most of the functionality available in the core libraries of the Java programming language.
- Every Android application runs in its own process, with its own instance of the **Android Runtime (ART)** (was *Dalvik Virtual Machine*) **compiles** entire applications (Dalvik bytecode) into native machine code **during installation**.
 - The Android Runtime relies on the Linux kernel for underlying functionality such as threading and low-level memory management.
- But the Linux kernal does not have a native X Window System or the full set of standard GNU libraries.

Architecture

Robot Operating System (ROS)

(is not an operating system)

