LR_4 Лабораторная работа №4

Для подготовки к данной лабораторной работе вам необходимо выполнить практики по созданию симуляции в Gazebo, добавлению сенсоров и обработке информации с них, также по использованию ros_control.

1. Создадим новый пакет и назовем его

catkin_create_pkg my_robot_simulation_control roscpp rospy std_msgs

- 2. Склонировать актуальные изменения из репозитория ros_course_2023 (likerobotics) в локальную копию (в папке локальной копии выполнить)

 git pull
- 3. Скопировать содержимое папки **practice_7** из локальной копии в рабочее простраство catkin (т.е. скопировать папку **my_robot_simulation_control** в папку **catkin_ws/src/**).
- 4. Создадим внутри пакета неообходимые папки и файл запуска lab4.launch

Также скопируем в новый пакет файлы вашей модели дифференциальной платформы с лабораторной работы №3.

Всегда при копировании файлов или фрагментов кода(или разметки) проверяйте корректность указанных путей (включая название файлов).

- 3. В рамках лабораторной необходимо создать симуляцию робота с дифференциальным приводом, который не использует плагин differential_drive, а использует ros_control, при этом упраление колесами должно выполняться по скорости, а не по положению.
- 4. Оснастить робота сенсорами: лидар и камера.
- 5. Также необходимо написать управляющую программу, которая будет считывать данные с сенсоров и формировать управление (любое поведение).

Номера вариантов для студентов соответствуют последней цифре ISU ID:

LR_4 Лабораторная работа №4

Последняя цифра ису ID	Диапазон видимости лидара(мин-макс расстояние)	Разрешение камеры	Габаритные размеры в мм, Д Ш В
1	30 мм 3 м	1024x960	200x140x90
2	40 мм 4 м	960x840	200x140x120
3	30 мм 3 м	960x960	260x140x100
4	30 мм 3 м	1024x960	260x160x100
5	30 мм 4 м	1024x1024	190x160x130
6	30 мм 5 м	800x600	200x160x90
7	50 мм 5 м	1024x960	200x160x90
8	30 мм 3 м	1024x600	230x140x90
9	100 мм 3 м	960x960	220x160x90
0	300 мм 3 м	960x840	200x180x120

Как отправить готовое решение на проверку?

Нобходимо в вашей копии репозитория ros_course_2023 (которая хранится на вашем гитлабе) создать папку practice_7 и в нее скопировать папку my_robot_simulation_control с вашим решением. После это сделать

```
git add .
git commit -m "my best lab 4"
git push
```

LR_4 Лабораторная работа №4