The Best Hyperplane Separator?

- Perceptron finds one of the many possible hyperplanes separating the data
 - .. if one exists
- Of the many possible choices, which one is the best?

The Best Hyperplane Separator?

- Perceptron finds one of the many possible hyperplanes separating the data
 - .. if one exists
- Of the many possible choices, which one is the best?

• Intuitively, we want the hyperplane having the maximum margin

The Best Hyperplane Separator?

- Perceptron finds one of the many possible hyperplanes separating the data
 - .. if one exists
- Of the many possible choices, which one is the best?

- Intuitively, we want the hyperplane having the maximum margin
- Large margin leads to good generalization on the test data
 - We will see this formally when we cover Learning Theory

Support Vector Machine (SVM)

- Probably the most popular/influential classification algorithm
- Backed by solid theoretical groundings (Vapnik and Cortes, 1995)

Support Vector Machine (SVM)

- Probably the most popular/influential classification algorithm
- Backed by solid theoretical groundings (Vapnik and Cortes, 1995)
- A hyperplane based classifier (like the Perceptron)

Support Vector Machine (SVM)

- Probably the most popular/influential classification algorithm
- Backed by solid theoretical groundings (Vapnik and Cortes, 1995)
- A hyperplane based classifier (like the Perceptron)
- Additionally uses the Maximum Margin Principle
 - Finds the hyperplane with maximum separation margin on the training data

ullet A hyperplane based linear classifier defined by ullet and b

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn w and b that achieve the maximum margin

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn w and b that achieve the maximum margin
- ullet For now, assume the entire training data is correctly classified by $({f w},b)$
 - Zero loss on the training examples (non-zero loss case later)

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn w and b that achieve the maximum margin
- ullet For now, assume the entire training data is correctly classified by (\mathbf{w},b)
 - Zero loss on the training examples (non-zero loss case later)

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn w and b that achieve the maximum margin
- ullet For now, assume the entire training data is correctly classified by (\mathbf{w},b)
 - Zero loss on the training examples (non-zero loss case later)

- Assume the hyperplane is such that
 - $\mathbf{w}^T \mathbf{x}_n + b \ge 1$ for $y_n = +1$

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn w and b that achieve the maximum margin
- ullet For now, assume the entire training data is correctly classified by (\mathbf{w},b)
 - Zero loss on the training examples (non-zero loss case later)

- Assume the hyperplane is such that
 - $\mathbf{w}^T \mathbf{x}_n + b \ge 1$ for $y_n = +1$
 - $\mathbf{w}^T \mathbf{x}_n + b \le -1$ for $y_n = -1$

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn \mathbf{w} and b that achieve the maximum margin
- ullet For now, assume the entire training data is correctly classified by (\mathbf{w},b)
 - Zero loss on the training examples (non-zero loss case later)

- Assume the hyperplane is such that
 - $\mathbf{w}^T \mathbf{x}_n + b \ge 1$ for $y_n = +1$
 - $\mathbf{w}^T \mathbf{x}_n + b \leq -1$ for $y_n = -1$
 - Equivalently, $y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1$

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn w and b that achieve the maximum margin
- For now, assume the entire training data is correctly classified by (\mathbf{w}, b)
 - Zero loss on the training examples (non-zero loss case later)

- Assume the hyperplane is such that
 - $\mathbf{w}^T \mathbf{x}_n + b \ge 1$ for $y_n = +1$
 - $\mathbf{w}^T \mathbf{x}_n + b \le -1$ for $y_n = -1$
 - Equivalently, $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$ $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T \mathbf{x}_n + b| = 1$
 - The hyperplane's margin:

$$\gamma = \min_{1 \le n \le N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||}$$

- ullet A hyperplane based linear classifier defined by ullet and b
- Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Goal: Learn w and b that achieve the maximum margin
- For now, assume the entire training data is correctly classified by (\mathbf{w}, b)
 - Zero loss on the training examples (non-zero loss case later)

- Assume the hyperplane is such that
 - $\mathbf{w}^T \mathbf{x}_n + b \ge 1$ for $y_n = +1$
 - $\mathbf{w}^T \mathbf{x}_n + b \le -1$ for $y_n = -1$
 - Equivalently, $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$ $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T \mathbf{x}_n + b| = 1$
 - The hyperplane's margin:

$$\gamma = \min_{1 \leq n \leq N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$$

 \bullet We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$

 \bullet We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$

 \bullet We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$

- Maximizing the margin $\gamma = \min[|\mathbf{w}|]$ (the norm)
- Our optimization problem would be:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, $n = 1, ..., N$

 \bullet We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$

- Maximizing the margin $\gamma = \min |\mathbf{w}| |\mathbf{w}|$ (the norm)
- Our optimization problem would be:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, $n = 1, ..., N$

• This is a Quadratic Program (QP) with N linear inequality constraints

- Large margins intuitively mean good generalization
- We can give a slightly more formal justification to this

- Large margins intuitively mean good generalization
- We can give a slightly more formal justification to this
- Recall: Margin $\gamma = \frac{1}{||\mathbf{w}||}$
- Large margin \Rightarrow small $||\mathbf{w}||$

- Large margins intuitively mean good generalization
- We can give a slightly more formal justification to this
- Recall: Margin $\gamma = \frac{1}{||\mathbf{w}||}$
- Large margin \Rightarrow small $||\mathbf{w}||$
- Small $||\mathbf{w}|| \Rightarrow \text{regularized/simple solutions } (w_i\text{'s don't become too large})$
- ullet Simple solutions \Rightarrow good generalization on test data

- Large margins intuitively mean good generalization
- We can give a slightly more formal justification to this
- Recall: Margin $\gamma = \frac{1}{||\mathbf{w}||}$
- Large margin \Rightarrow small $||\mathbf{w}||$
- Small $||\mathbf{w}|| \Rightarrow \text{regularized/simple solutions } (w_i \text{'s don't become too large})$
- ullet Simple solutions \Rightarrow good generalization on test data
- Want to see an even more formal justification? :-)

- Large margins intuitively mean good generalization
- We can give a slightly more formal justification to this
- Recall: Margin $\gamma = \frac{1}{||\mathbf{w}||}$
- Large margin \Rightarrow small $||\mathbf{w}||$
- Small $||\mathbf{w}|| \Rightarrow \text{regularized/simple solutions } (w_i\text{'s don't become too large})$
- ullet Simple solutions \Rightarrow good generalization on test data
- Want to see an even more formal justification? :-)
 - Wait until we cover Learning Theory!

Solving the SVM Optimization Problem

• Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \qquad n = 1, \dots, N$

Solving the SVM Optimization Problem

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \qquad n = 1, ..., N$

• Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the **Lagrangian**:

Minimize
$$L(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\}$$

subject to $\alpha_n \ge 0$; $n = 1, ..., N$

Solving the SVM Optimization Problem

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \qquad n = 1, ..., N$

• Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the **Lagrangian**:

Minimize
$$L(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\}$$

subject to $\alpha_n \ge 0$; $n = 1, ..., N$

- We can now solve this Lagrangian
 - i.e., optimize $L(\mathbf{w}, b, \alpha)$ w.r.t. \mathbf{w} , b, and α
 - .. making use of the Lagrangian Duality theory..

Next class...

- Solving the SVM optimization problem
- Allowing misclassified training examples (non-zero loss)
- Introduction to kernel methods (nonlinear SVMs)