

Dimensionality Reduction

Sebastian Schelter | Database Group, TU Berlin | Scalable Data Science: Systems and Methods

Overview

- Representing data as matrices
- Intuition
- Applications
 - Latent Semantic Indexing
 - Estimating the number of triangles in a network
- Singular Value Decomposition at Scale
- Summary

Overview

- Representing data as matrices
- Intuition
- Applications
 - Latent Semantic Indexing
 - Estimating the number of triangles in a network
- Singular Value Decomposition at Scale
- Summary

Representing data as matrices

How would you represent the following types of data as a matrix ?

What would be the rows and columns of the matrix? What would be the contents of a cell?

- · a collection of text documents
- a large network
- a set of movie ratings

Representing data as matrices

	idea	rows	columns	cells
text documents	'bag of words'	documents	terms	term occurrence, term frequency, tf-idf scores
network	adjaceny matrix	vertices	vertices	edge occurrences, edge weights
movie ratings	interaction matrix	users	items	occurrence of interaction, rating

- resulting matrices are high-dimensional and extremely sparse in many cases (problematic!)
- **dimensionality reduction:** reduce data to the "**interesting**" dimensions

Overview

- Representing data as matrices
- Intuition
- Applications
 - Latent Semantic Indexing
 - Estimating the number of triangles in a network
- Singular Value Decomposition at Scale
- Summary

[0.5]13

Overview

- Representing data as matrices
- Intuition
- Applications
 - Latent Semantic Indexing
 - Estimating the number of triangles in a network
- Singular Value Decomposition at Scale
- Summary

Latent Semantic Indexing

- quick review of search engines:
 - · documents represented as collection of terms
 - search engines operate on "inverted index" from terms to documents
 - search: lookup documents for terms contained in query from inverted index
 - mathematically: documents and queries represent vectors in high-dimensional term space ("vector space model")
 - searching means finding the closest document vectors to the query vector
- main drawback
 - relies on lexical matches, unable to identify synonyms and conceptually close terms

Lexical matching

- imagine a **corpus** with the following three documents
 - document 1: "bike"
 - document 2: "bike harley"
 - document 3: "berlin"
- a query for "harley" in a search engine which uses lexical matching only returns document 2
 - yet, document 1 might be relevant as well!
- can we build a search engine that is "smart" enough to also return document 1?

Manual solution: query expansion

- create custom taxonomies of weighted relations between terms
 e.g. "harley → bike 0.5"
- automatically expand queries
 - query "harley" becomes "harley bike^0.5"
- drawbacks
 - crafting these lists is a lot of work, as they are domain-dependent!
 - might lead to very long queries (expensive!)
 - · result quality is hard to predict

Towards Latent Semantic Indexing

- intuition: structure contained in the corpus describing relations between terms and documents
- assume terms and documents belong to "latent" concepts, then:
 - a single term describing a particular concept will occur in documents about that concept
 - terms describing the same concept co-occur in documents about that concept
 - documents about a particular concept share a set of characteristic terms

The Linear Algebra view of search

- simplified model:
 - **corpus** is **represented as** *document x term* **matrix**
 - a cell m,n is 1 if document m contains term n and 0 otherwise

		bike	harley	berlin
	doc1	1	0	0
A =	doc2	1	1	0
	doc3	0	0	1

queries "harley" and "harley bike" are just vectors in the term space (analogous to documents)

	bike	harley	berlin	bike	harley	berlin
$q_1 =$	0	1	0	$q_2 = 1$	1	0

- use the **number of shared terms as similarity measure** between queries and documents
 - → search becomes matrix-vector multiplication

$$Aq^{T}$$

• examples: search for "harley" and "harley bike" in corpus

doc1: "bike"

doc2: "harley bike"

doc3: "berlin"

• example: search for "harley"

		bike	harley	berlin
	doc1	1	0	0
A =	doc2	1	1	0
	doc3	0	0	1

$$bike$$
 harley berlin $q_1 = 0$ 1 0

$$A \ \boldsymbol{q}_{1}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

example: search for "harley"

$$A \ q_1^T = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

• example: search for "harley"

$$A \ q_1^T = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
lexical matches in doc2 # lexical matches in doc3

• example: search for "bike harley"

$$A q_2^T = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

• example: search for "bike harley"

$$A q_2^T = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

• example: search for "bike harley"

$$A q_2^T = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 # lexical matches in doc2 # lexical matches in doc3

- vector space model of information retrieval
 - a query is just a vector in term space, analogous to a document
 - we can compute the similarity of this vector to all documents
- how does this help with finding "latent concepts"?

- vector space model of information retrieval
 - a guery is just a vector in term space, analogous to a document
 - we can compute the similarity of this vector to all documents
- how does this help with finding "latent concepts"?
 - → we can compute similarities between documents!

- computing AA^T gives a matrix of document similarities
- cell $A_{m,n}$ holds the number of terms shared between documents m and n
 - → documents 1 and 2 are similar!

		doc1	doc2	doc3
	doc1	1	1	0
$AA^T =$	doc2	1	2	0
	doc3	0	0	1

- computing A^TA gives a matrix of term co-occurrences
- cell $A_{m,n}$ holds the number of documents in which terms m and n occur together
 - → "harley" and "bike" are related!

		bike	harley	berlin
	bike	2	1	0
$A^T A =$	harley	1	1	0
	berlin	0	0	1

Singular Value Decomposition (SVD)

- Singular Value Decomposition of a real m x n matrix A:
 - U $(m \times m)$ and V $(n \times n)$ are orthogonal, $\sum (m \times n)$ is diagonal
 - \sum has the square roots of the eigenvalues of $A^{\tau}A$ and AA^{τ} on its diagonal in descending order (**singular values**)
 - columns of U are the corresponding eigenvectors of AA^T (left singular vectors)
 - columns of V are the corresponding eigenvectors of A^TA (right singular vectors)
 - if we only keep the top k singular values of A, we get the optimal rank k approximation A_k of A

$$A = U \sum V^T$$
 $A_k = U_k \sum_k V_k^T$

Interpreting the SVD

- examine the rank-2 decomposition of A
 - rows of A (documents) and columns of A (terms) projected onto a 2-dimensional space, the latent concept space
 - "bike" and "harley" as well as *doc1* and *doc2* point into the same direction ("berlin" and *doc3* point into perpendicular directions)

$$U_{2} = \begin{bmatrix} doc1 \\ doc2 \\ doc3 \end{bmatrix} \begin{bmatrix} -.53 & 0 \\ -.85 & 0 \\ 0 & 1 \end{bmatrix} \quad \Sigma_{2} = \begin{bmatrix} 1.62 & 0 \\ 0 & 1 \end{bmatrix} \quad V_{2} = harley \begin{bmatrix} -.85 & 0 \\ -.53 & 0 \\ berlin \begin{bmatrix} 0 & 1 \end{bmatrix}$$

- dimensions of the space loosely correspond to concepts ("motorcycles" and "berlin")
- replacement documents and terms with vectors that represent their association to the concepts
- singular values denote the "importance" of the concepts

Interpreting the SVD

- latent concept space
 - dimensions represent "concepts" (might be hard to interpret)
 - conceptually similar documents and terms are near to each other

Search in the concept space

- search in the concept space
 - project the query into the concept space (fold-in)

bike harley berlin
$$q = 0 1 0 \hat{q} = q V \Sigma^{-1} = \begin{bmatrix} -.85 & 0 \end{bmatrix}$$

Search in the concept space (the punchline)

- search in the concept space
 - project the query into the concept space (**fold-in**)

bike harley berlin
$$q = 0$$
 1 0 $\hat{q} = q V \Sigma^{-1} = \begin{bmatrix} -.85 & 0 \end{bmatrix}$

compare the projected query to the document concept vectors

$$U_{2} \hat{q}^{T} = \begin{bmatrix} -.53 & 0 \\ -.85 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -.85 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.45 \\ 0.72 \\ 0 \end{bmatrix} \quad \begin{array}{c} doc1 \\ doc2 \\ doc3 \end{array}$$

query matches document 1 although it does not contain the search term "harley" !!!

Drawbacks of Latent Semantic Indexing

- computing the SVD of a large corpus is computationally expensive
 - needs constant re-computation for new documents
- hard to scale:
 - document concept matrix typically dense
 - → every document needs to be inspected at query time!
- works well for synonyms but does not handle polysemy

Overview

- Representing data as matrices
- Intuition
- Applications
 - Latent Semantic Indexing
 - Estimating the number of triangles in a network
- Singular Value Decomposition at Scale
- Summary

Social Graphs and Triangles

- social graphs
 - vertices represent users
 - edges represent connections between users, e.g. friendship, following, etc
- a triangle in a graph is a triple of interconnected vertices (3-clique)

- social graphs grow by "closing triangles":
 - "becoming friends with a friend of a friend"

Local clustering coefficient

- a measure of the local "connectedness" of a vertex
 - the number of links between the neighbors of a vertex i divided by the maximum possible number of links between these neighbors

$$C_{i} = \frac{2|\{e_{jk}: v_{j}, v_{k} \in N_{i}, e_{jk} \in E\}|}{k_{i}(k_{i}-1)}$$

local clustering coefficient of 1

local clustering coefficient of 1/3

Local clustering coefficient

local clustering coefficient C_i of a vertex i is connected to the number of triangles t_i
 which vertex i is a part of

$$C_{i} = \frac{2|\{e_{jk}: v_{j}, v_{k} \in N_{i}, e_{jk} \in E\}|}{k_{i}(k_{i}-1)} = \frac{2t_{i}}{k_{i}(k_{i}-1)}$$

local clustering coefficient of 1/3

Applications of the local clustering coefficient

- statistic of interest in network science
- can be used to identify spammers amongst high degree vertices in a social network
 - spammers should have a local clustering coefficient below average as they typically randomly connect to other users

Adjacency matrix of a graph

• A_{ii} is 1 if there is an edge between vertices i and j, 0 otherwise

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Powers of the adjacency matrix

- powers of the adjacency matrix give information about paths in a network
- e.g., cell (i,j) of A² holds the number of paths of length 2 between vertex i and vertex j

$$A^{2} = \begin{bmatrix} 4 & 2 & 1 & 2 & 1 \\ 2 & 3 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 3 & 1 \\ 1 & 2 & 1 & 1 & 2 \end{bmatrix}$$

Powers of the adjacency matrix

- a triangle is a path of length 3 from a vertex back to itself
 - \rightarrow the diagonal of A^3 holds the number of triangles* for each vertex
- unfortunately, multiplying large matrices quickly becomes infeasible

*(actually, its twice the number of triangles, as we count each triangle twice)

Diagonalization

- Diagonalization of a diagonalizable square n x n matrix A:
 - Q $(n \times n)$ is orthogonal, $\Delta (n \times n)$ is diagonal
 - Δ has the the **eigenvalues** of *A* on its diagonal in descending order
 - Q has the corresponding eigenvectors of A as columns
 - if we only keep the top k eigenvalues of A, we get the optimal rank k approximation A_k of A

$$A = Q \Delta Q^T$$

Diagonalization and the powers of a matrix

diagonalization provides an easy way to compute the powers of a matrix

$$A = Q \Delta Q^T$$

• after diagonalization of A, powers of A can be computed by computing only the powers of Δ (which is easy since Δ is a diagonal matrix)

$$A^{3} = Q \Delta Q^{T} Q \Delta Q^{T} Q \Delta Q^{T} = Q \Delta^{3} Q^{T}$$

Powers of the adjacency matrix

 using only a few eigenvectors and eigenvalues usually suffices to get a good estimate of the number of triangles

$$A^{3} \approx Q_{3} \Delta_{3}^{3} Q_{3}^{T} = \begin{bmatrix} 6.0093 \\ 3.9931 \\ 1.9937 \\ 3.9931 \\ 1.99 \end{bmatrix}$$

Overview

- Representing data as matrices
- Intuition
- Applications
 - Latent Semantic Indexing
 - Estimating the number of triangles in a network
- Singular Value Decomposition at Scale
- Summary

Singular Value Decomposition

- if matrix A only has a small number of columns:
 - compute A^TA at scale
 - use a fast single machine solver to compute the first k eigenvalues and eigenvectors of of A^TA
 - this gives \sum_{k} and V_{k}
 - compute U_k at scale as A $V_k \sum_{k=0}^{-1} V_k$

Lanczos algorithm

- Lanczos algorithm
 - computes eigendecomposition of matrix A
 - SVD can be computed from eigendecomposition of A^TA
 - Krylov subspace method, repeatedly multiplies matrix with a random vector
 - creates a tridiagonal matrix T which has the same eigenvalues as A (and makes them easy to find)
 - easy to scale as it requires only matrix-vector multiplications

```
\begin{array}{l} v_1 \leftarrow \text{ random vector with norm 1} \\ v_0 \leftarrow 0 \\ \beta_1 \leftarrow 0 \\ \\ \text{for } j = 1,2,...,m-1 \\ w_j \leftarrow A \, v_j \\ \alpha_j \leftarrow w_j \, v_j \\ w_j \leftarrow w_j - \alpha_j \, v_j - \beta_j \, v_{j-1} \\ \beta_{j+1} \leftarrow \mid w_j \mid \\ v_{j+1} \leftarrow w_j \, / \, \beta_{j+1} \\ \end{array}
```

$$T = \begin{pmatrix} \alpha_1 & \beta_2 & 0 & 0 & 0 & 0 \\ \beta_2 & \alpha_2 & \beta_3 & 0 & 0 & 0 \\ 0 & \beta_3 & a_3 & \dots & 0 & 0 \\ 0 & 0 & \dots & \dots & \beta_{m-1} & 0 \\ 0 & 0 & 0 & \beta_{m-1} & a_{m-1} & \beta_m \\ 0 & 0 & 0 & 0 & \beta_m & a_m \end{pmatrix}$$

Overview

- Representing data as matrices
- Intuition
- Applications
 - Latent Semantic Indexing
 - Estimating the number of triangles in a network
- Singular Value Decomposition at Scale
- Summary

Summary

- · often: data looks high dimensional, but has low-rank structure
- dimensionality reduction projects data onto a low-rank space
 - via matrix decomposition techniques, e.g. SVD, Eigendecomposition
- many interesting problems solvable via generalization provided by dimensionality reduction
 - Latent Semantic Indexing
 - Triangle Count Estimation
 - Latent Factor Models for Recommender Systems (coming up)
- SVD at Scale
 - use Lanczos algorithm (main operation: matrix-vector multiplications)
- not covered:
 - Principal Components Analysis (PCA), as it is hard to scale

Further Reading

- Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval (Vol. 1, p. 496). Cambridge: Cambridge university press.
- Dumais, S. T. (2004). *Latent semantic analysis*. Annual review of information science and technology, 38(1), 188-230.
- Kang, U., Meeder, B., & Faloutsos, C. (2011). Spectral analysis for billion-scale graphs:
 Discoveries and implementation. In Advances in Knowledge Discovery and Data Mining
 (pp. 13-5). Springer Berlin Heidelberg.
- Strang, G. (1993). *The fundamental theorem of linear algebra*. American Mathematical Monthly, 848-855.