

Taming the Inconsistency of Wi-Fi Fingerprints for Device-Free Passive Indoor Localization

Xi Chen¹, Chen Ma¹, Michel Allegue², and Xue Liu¹

- 1. McGill University, Montreal, Canada.
 - 2. Aerial.ai, Montreal, Canada.

The Background

Why Device-Free & Passive?

People are not always **carrying devices**.

Why Device-Free & Passive?

- > Disadvantages of dedicated infrastructure
 - Installation cost
 - Scalability issue
 - Line-of-sight limitation
 - Range limitation

Motion Sensors

Cameras

RFID
Tag & Reader

BLE Proximity Beacons (e.g., Estimote)

Wi-Fi Based DfP Localization

Fingerprinting: Associate signal features such as Channel State Information (CSI) with users' locations.

Example CSI Fingerprints

The changes in the indoor environment make the fingerprint **inconsistent** with the current situation.

- The CSI will be "contaminated" by environment changes.
 - The recorded fingerprints no longer represent the **changed** environment.

The CSI will be "contaminated" by environment changes.

The recorded fingerprints no longer represent the changed

environment.

Record the fingerprints again?

Our Solution to Recycle

Reuse the Fingerprints

Reconstruct old fingerprint space from the changed one.

The Mapping Functions

Map CSI from one space to another

Unknown mapping How to determine?

The Mapping Functions

The mapping functions are identical for different locations.

$$H_{p1} = H_{p2} = \dots = H_{pN} = H.$$

Space-to-space mapping

The Mapping Functions

> An identical H

$$V_{p1}^{old} = H \times V_{p1}^{new} + n_{p1},$$
 $V_{p2}^{old} = H \times V_{p2}^{new} + n_{p2},$
 \vdots
 $V_{pN}^{old} = H \times V_{pN}^{new} + n_{p3}.$

The Mapping Function

- > An identical H
 - How to autonomously associate one V^{new} to a location without human effort?

McGill Autonomous Fingerprinting

- The status of an **empty area** can be detected autonomously using variance of CSI magnitude.
 - Detecting Empty Associate V^{new} to P_{empty}

$$V_{empty}^{old} = H \times V_{empty}^{new} + n$$
.

Contaminant Removal

$$\triangleright \widehat{H} = \widehat{H}_{Empty}$$

Contaminant Removal Example

An example of contaminant removal result @ P1

Removing Residual Errors

- An autoencoder learns an encoding of the fingerprint space.
 - This encoding contains certain characteristics of the space.

Autoencoders

- The autoencoder maps new profiles back to the fingerprint space using the recorded encoding.
 - Old space characteristics are encoded back to the contaminated profiles.

AutoFi

> The architecture of AutoFi.

Experiments

Experiment Setup

- ➤ A Linksys WRT160N router, a laptop with Intel 5300 NIC.
 - Wi-Fi traffic: 10 20 pings per second.

Experiment Setup

> Introducing the "contaminants"

Experiment Results

Baseline, no mapping was applied, Random Forest (RF).

(a) Opening the windows.

(b) Opening the doors.

	Opening windows		Opening doors	
Accuracy	Mean	Min	Mean	Min
Baseline	18.8%	0%	41.7%	0%

Experiment Results

Using only contaminant removal technique.

(a) Opening the windows.

(b) Opening the doors.

	Opening windows		Opening doors	
Accuracy	Mean	Min	Mean	Min
Baseline	18.8%	0%	41.7%	0%
Con. Rmv.	69.0%	0%	70.0%	0%

Experiment Results

➤ AutoFi (both contaminant removal and autoencoder)

(a) Opening the windows.

(b) Opening the doors.

	Opening windows		Opening doors	
Accuracy	Mean	Min	Mean	Min
Baseline	18.8%	0%	41.7%	0%
Con. Rmv.	69.0%	0%	70.0%	0%
AutoFi	84.9%	47.6%	90.2%	71.3%

Conclusion

Conclusion

> Problem:

Small variations in the environment may significantly contaminate the fingerprints in the localization systems.

- > Solution AutoFi
 - Reuse the fingerprints with a contaminant removal technique, which autonomously maps the contaminated profiles back to the fingerprint space.
 - Utilize an autoencoder to preserve a **characteristic presentation** of the fingerprint space.

Thank you! Questions?

Email: xi.chen11@mail.mcgill.ca

Url: www.xi-chen.com