Simulaciones de conformaciones de polímeros con LATTICETM 6.0

Mathurin A. Choblet

Facultad de Física USC

16 de enero 2020

Contenido

- El progama LATTICE
- 2 Dimensiones caracteristicas
 - Cadena de rotación libre
 - Cadena de rotación interna impedida
 - Cadena con enlaces interdependientes (efecto pentano)
- 3 La razón característica del polietileno
- 4 El porcentaje de enlaces trans
- Polímeros vinilos
- **6** Conclusiones

El progama LATTICE 6.0

- Simulación sobre red tetraedrica (109.47°)
- Basado en el principio de Monte-Carlo:

$$P(\phi_i) = \frac{e^{-E(\phi_i)/RT}}{Z}$$

$$Z = \sum_{i=1}^{n} e^{-E(\phi_i)/RT}$$

1) trans 2) gauche- 3) gauche+ (fuente: manual LATTICE)

Probabilidades relativas

enlaces independientes:

•
$$\exp(-0/RT) = 1$$

•
$$\exp(-E_g/RT) = \sigma$$

enlaces interdependientes (después de un paso gauche)

•
$$\exp(-0/RT) = 1$$

•
$$\exp(-E_g/RT) = \sigma$$

•
$$\exp(-(E_g + E_{g+/g-}/RT) = \sigma\omega$$

Input para el programa:

- longitud de enlace (1.53 Å)
- numero de enlaces
- numero de cadenas (6000)
- temperatura (413K)
- E_g , $E_{g+/g-}$

Dimensiones caracteristicas

La razón caracteristica C

$$\langle r^2 \rangle = CnI^2$$

C depende del modelo del polímero.

El radio de giro

$$\langle s^2 \rangle = \frac{\sum m_i (\mathbf{r_i} - \mathbf{R_0})^2}{M}$$

Masas iguales:

$$\langle s^2 \rangle = \frac{1}{2} N^{-2} \sum_{i} \sum_{j} \langle r_{ij}^2 \rangle \xrightarrow[N \to \infty]{} \langle s^2 \rangle = \frac{\langle r^2 \rangle}{6}$$

Comprobación $\langle r^2 \rangle = Cnl^2$

Cadena de rotación libre

Suponemos que el ángulo de enlace au es constante

$$C = \left[1 + \frac{2\cos(180 - \tau)}{1 - \cos(180 - \tau)} - \frac{2\cos(180 - \tau)}{n} \frac{(1 - \cos(180 - \tau))^n}{(1 - \cos(180 - \tau))^2}\right]$$
$$\approx \left[\frac{1 + \cos(180 - \tau)}{1 - \cos(180 - \tau)}\right]$$

$$au=109.47^{\circ}
ightarrow C pprox 2$$

Cadena de rotación interna impedida

Estados gauche y trans con energias diferentes

$$C = \left[\frac{1 + \cos(180 - \tau)}{1 - \cos(180 - \tau)}\right] \left[\frac{2 + \sigma}{3\sigma}\right]$$

 $ightarrow \langle r^2
angle$ varia con la temperatura:

$$\sigma = e^{-E_g/RT}$$

Para T = 413K, $E_g = 2.1kJ/mol$: $C \approx 3.12$

Cadena con enlaces interdependientes (efecto pentano)

• Teoria mas compleja, matriz de peso estadístico

Cadena con enlaces interdependientes (efecto pentano)

Comparación del teflon y del polietileno

$$\begin{bmatrix}
F & F \\
C & C
\end{bmatrix}$$

$$E_{g} = 4600, E_{g+/g-} = 100000$$

$$\begin{pmatrix}
H & H \\
C & C
\end{pmatrix}$$

$$H & H$$

$$H & H$$

$$E_{g} = 2100, E_{g+/g-} = 8400$$

fuente imagenes: wikipedia

La razón caracteristica del polietileno

Valor experimental C=6.7 a T=413K

modelo	parametros	C
Cadena de rotacion libre		2.0
Cadena impedida	$E_g = 2.5$ $E_g = 2.1$	3.49 3.12
$Cadena\ impedida\ +\ volumen\ excluido$	$E_g = 2.5 (1)$ $E_g = 2.5 (2)$ $E_g = 2.1 (1)$ $E_g = 2.1 (2)$	4.93 5.38 4.74 5.10
Cadena impedida + pentano	$E_g = 2.5, \ E_{g+/g-} = 5.4$ $E_g = 2.1, \ E_{g+/g-} = 8.4$	5.75 6.08
${\sf Cadena\ impedida} + {\sf pentano} + {\sf volumen\ excluido}$	$E_g = 2.5$, $E_{g+/g-} = 5.4$ (1) $E_g = 2.5$, $E_{g+/g-} = 5.4$ (2) $E_g = 1.1$, $E_{g+/g-} = 8.4$ (1) $E_g = 2.1$, $E_{g+/g-} = 8.4$ (2)	6.95 9.27 7.51 8.39

El porcentaje de enlaces trans

Polimeros vinilos

Simulaciones con polipropileno ightarrow centro asimétrico

Valor de C=6 según literatura

- simulacion normal 6.07
- simulacion con volumen excluido: 5.95

¿No debería ser muchísima más inexacta esta símulacion?

Conclusiones

- simulaciones rapidas con varías opciones
- metas más pedagocicas del programa
- faltan maneras de extraer datos (por ejemplo de los histogramas)

Bibliografía

- Manual LATTICE John A. Nairn
- Polymer Physics Ulf W. Gedde
- The Science of Polymer Molecules R. H. Boyd and P. J. Phillips