Model Adequacy checking

Wednesday, 21 August 2019 11:06 AM

E(1) = XB BB model parameters
Y n N (XB, In 52) 52 unknown

- 1) Errors are un correlated
- a) Errors are independent.
- 3) Evrors are normally distributed

Coefficient of deturnination (R2)

$$R^{2} = \frac{\text{Variation of Y explained by nodel}}{\text{Total Variation}}$$

$$= \frac{\text{SS Model}}{\text{SS T}}$$

$$= \frac{\mathcal{Z}}{\left[\frac{\hat{y_{i}} - \bar{y}}{2}\right]^{2}} = \frac{\mathcal{Z}}{\left[\frac{\hat{y_{i}} - \bar{y}}{2}\right]^{2}} = \frac{\mathcal{Z}}{\left[\frac{\hat{y_{i}} - \bar{y}}{2}\right]^{2}}$$

De Larger value of R2 & constdered better for the model

R² E CO1 []

$$\frac{1}{8ST} + \frac{SSError}{SST} \Rightarrow R^2 = 1 - \frac{SSE}{SST}$$

As $R^2 = 1 - (SSE/SST)$. If we increase the number of regression variables such that (X^TX) nemains invertible then R^2 roll increase with the number of regressor volable.

Adjusted R2

$$R_{avj}^{2} = 1 - \frac{SSE}{df(SSE)}$$

$$= 1 - \frac{SSE}{(n-k-1)}$$

$$= 1 - \frac{SSE}{(n-k-1)}$$

When R_{adj}^2 attains maxima then we can stop and build the model.

ERROR ANALYSIS

$$\stackrel{?}{=} \frac{1}{y} - \stackrel{?}{y} = (I - P_x) \frac{1}{y} \sim \mathcal{N}(0, F^2(I - P_x))$$

$$\stackrel{?}{=} \frac{1}{\sqrt{2}} \sim \chi^2_{n-\kappa-1}$$

$$e_{i}^{2} = y_{i}^{2} - y_{i}^{2} \sim \mathcal{N}(0, \delta^{-2}(1 - h_{i}^{2}))$$

Assuming $H = P_{x}$
 $cov(e_{i}^{2}, e_{j}^{2}) = cov(y_{i}^{2} - y_{i}^{2}, y_{j}^{2} - y_{i}^{2})$
 $= \delta^{-2}(-h_{i}^{2}) = \delta^{-2}(I - H)_{i}^{2}$

* estimated errors are correlated in general. Define

$$r_i^o = \frac{e_i}{\sqrt{\sigma^2 (l-h_{ii})}}$$
 We can estimate $\hat{r}^2 = \frac{85E}{1-K-1}$

re will follow $N(0_1)$ when $n \uparrow \infty$ because $\hat{\sigma}^2 \longrightarrow \sigma^2$ with Prob 1 (Chebysher)

If we flot the histogram of emperical density then we are supposed to get the pdf of N(0,1).

We also can do 9-9 blot for ri's. If the errors are normally distributed then only 99 plot will give a straight line passing through origin with slope 1.

q=x such that

$$P(Z \le x) = p$$

$$\frac{\#(r^2 \le x)}{n} = p$$

 $\frac{21(r/2n)}{n} = 0$

 $\frac{h-b}{h}$ blot $e_i = y_i - \hat{y}_i$ prediction area of y_i but the same y_i has been used to get \hat{f} and \hat{y}_i .

(y;, ni) from the dataset and predict y; based on other (n-1) data then what will be the change corresponding

where $e(i) = y_i - \hat{y_i}$ $\hat{y_{(i)}} = \text{predicted value of } y_i \text{ leased on rest}$ (n-1) obsurations.

 $Z(y_i^2 - y_{(i)})^2 = Predicted (Residual)$ $Z(y_i^2 - y_{(i)})^2 = PRESS$.

Leave out [Tack-Knife]

$$e(l) = \frac{e_l}{l - h_{ii}} \sim N(0, \frac{\sigma^2}{l - h_{ij}})$$
 This can be shown

Standardize e(i) as

$$\frac{e(i)}{\sqrt{r^2/(1-hii)}} = \frac{ei/(1-hii)}{\sqrt{\sigma^2/(1-hii)}}$$

 $=\frac{e_i'}{\sqrt{\sigma^2(1-h_i)}}$

Here we need to estimate or based on (n-1) observations