

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

Poziom rozszerzony WYPEŁNIA ZDAJĄCY WYBRANE: (system operacyjny) (program użytkowy) (środowisko programistyczne)

DATA: 16 czerwca 2023 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 210 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–7) i czy dołączony jest do niego nośnik danych – podpisany DANE. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin: system operacyjny, program użytkowy oraz środowisko programistyczne.
- 4. Symbol zamieszczony w nagłówku zadania zwraca uwagę na to, że zadanie nie wymaga użycia komputera i odpowiedź do zadania należy zapisać tylko w miejscu na to przeznaczonym w arkuszu egzaminacyjnym.
- 5. Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 6. Jeśli rozwiązaniem zadania lub jego części jest baza danych utworzona z wykorzystaniem MySQL (MariaDB), to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL treści zapytań w języku SQL oraz (przed zakończeniem egzaminu) wyeksportowaną całą bazę w formacie *.sql.
- 7. Pliki oddawane do oceny nazwij dokładnie tak, jak polecono w treści zadań, lub zapisz je pod nazwami (wraz z rozszerzeniem zgodnym z zadeklarowanym oprogramowaniem), jakie podajesz w arkuszu egzaminacyjnym. Pliki o innych nazwach nie będą sprawdzane przez egzaminatora.
- 8. **Przed upływem czasu przeznaczonego na egzamin** zapisz w katalogu (folderze) oznaczonym Twoim numerem PESEL ostateczną wersję plików stanowiących rozwiazania zadań.
- 9. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 10. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 11. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. Mnożenie

Następujący rekurencyjny algorytm mnożenia dwóch liczb całkowitych dodatnich *x*, *y* jest realizowany z użyciem operacji arytmetycznych dodawania i dzielenia całkowitego przez 2.

```
iloczyn(x, y):

jeżeli y = 1

wynikiem jest x

w przeciwnym razie

k \leftarrow y div 2

z \leftarrow \text{iloczyn}(x, k)

jeżeli y \mod 2 = 0

wynikiem jest z + z

w przeciwnym razie

wynikiem jest x + z + z
```

Uwaga: *x mod y* oznacza resztę z dzielenia *x* przez *y*, natomiast *x* div *y* oznacza wynik dzielenia całkowitego *x* przez *y*.

Dla danych liczb x, y interesuje nas **liczba wykonywanych operacji dodawania** podczas obliczania wyniku funkcji iloczyn(x, y).

Przykład 1.

Dla liczb x=9 i y=11 algorytm wykonuje 5 dodawań. Działanie funkcji *iloczyn*(9, 11) można zilustrować w następujący sposób (w nawiasach obok wskazano liczbę wykonywanych operacji dodawania):

```
iloczyn(9, 11) = 9 + z + z, (dwa dodawania)

gdzie z = iloczyn(9, 5)

iloczyn(9, 5) = 9 + z + z, (dwa dodawania)

gdzie z = iloczyn(9, 2)

iloczyn(9, 2) = z + z, (jedno dodawanie)

gdzie z = iloczyn(9, 1)

iloczyn(9, 1) = 9
```

Poniższa tabela ilustruje obliczenia wykonywane podczas wywołania iloczyn(9, 11)

Numer	Parar wywo		Obliczone k, z		Wynik	
wywołania	x	у	k	z	wynik	
1	9	11	5	45	99 (9+45+45)	
2	9	5	2	18	45 (9+18+18)	
3	9	2	1	9	18 (9+9)	
4	9	1	_	_	9	

Zadanie 1.1. (0-2)

Uzupełnij poniższą tabelę tak, aby ilustrowała obliczenia wykonywane podczas wywołania *iloczyn*(10, 45).

Numer wywołania		metry ołania	Obliczone <i>k</i> , <i>z</i>		Wynik
•	X	У	k	Z	•
1	10	45	22		
2					
3					
4					
5					
6		1	_	_	

Miejsce na obliczenia:

Zadanie 1.2. (0-2)

Dla liczb x, y wymienionych w poniższej tabeli podaj liczbę operacji dodawania, jaka zostanie wykonana podczas obliczania wyniku funkcji iloczyn(x, y).

х	у	Liczba dodawań
9	11	5
8	32	
2	47	
112	112	

Miejsce na obliczenia

Zadanie 1.3. (0-2)

Poniżej zapisano iteracyjny algorytm realizujący funkcję iloczyn(x, y). Uzupełnij trzy luki w algorytmie, tak aby był zgodny z poniższą specyfikacją.

UWAGA: spośród operacji arytmetycznych możesz użyć tylko: dodawania, odejmowania, dzielenia całkowitego i reszty z dzielenia. Nie możesz użyć zwłaszcza operacji mnożenia.

Specyfikacja:

Dane:

x, y – liczby całkowite dodatnie

Wynik:

z – wartość iloczynu x*y

Algorytm:

Z←_____

dopóki _____ wykonuj:

jeżeli $y \mod 2 = 1$

$$Z \leftarrow Z + X$$

$$X \leftarrow X + X$$

Zadanie 2. Sufiksy

Słowo definiujemy jako ciąg złożony z małych liter alfabetu angielskiego.

Niech s[1..n] będzie słowem o długości n > 0.

Sufiksem słowa s nazywamy każde jego podsłowo kończące na ostatniej pozycji słowa s. Sufiks s[k..n] nazywamy k-tym sufiksem.

Przykład 1.

słowo s[1..10] = mascarpone ma następujące sufiksy:

k	s[<i>kn</i>]
1	mascarpone
2	ascarpone
3	scarpone
4	carpone
5	arpone
6	rpone
7	pone
8	one
9	ne
10	е

Uporządkowanie alfabetyczne wszystkich sufiksów słowa *mascarpone* daje następującą kolejność ich numerów (od najmniejszego): 5, 2, 4, 10, 1, 9, 8, 7, 6, 3:

k	s[kn]
5	arpone
2	ascarpone
4	carpone
10	е
1	mascarpone
9	ne
8	one
7	pone
6	rpone
3	scarpone

Poniżej zapisano funkcję *czy_mniejszy(n, s, k1, k2)*. Wynikiem funkcji jest wartość PRAWDA, gdy sufiks *s*[*k1..n*] jest mniejszy w porządku alfabetycznym od sufiksu *s*[*k2..n*] oraz FAŁSZ w przeciwnym przypadku.

Specyfikacja

Dane:

n – długość słowa,

s[1..n] – słowo zapisane jako tablica znaków (numerowanych od 1),

k1 – numer pierwszego sufiksu $(1 \le k1 \le n)$,

k2 – numer drugiego sufiksu (1 $\leq k2 \leq n$, $k1 \neq k2$).

Wynik:

PRAWDA jeśli sufiks $s[k_1..n]$ jest mniejszy w porządku alfabetycznym od $s[k_2..n]$, albo FAŁSZ – w przeciwnym wypadku.

czy_mniejszy (n, s, k1, k2)

dopóki ($i \le n$ oraz $j \le n$) wykonuj

$$i \leftarrow i + 1$$

$$j \leftarrow j + 1$$

w przeciwnym razie

zakończ z wynikiem PRAWDA

w przeciwnym razie

zakończ z wynikiem FAŁSZ

jeżeli $(j \le n)$

zakończ z wynikiem PRAWDA

w przeciwnym razie

zakończ z wynikiem FAŁSZ

Zadanie 2.1. (0-2)

Pierwsze dwie instrukcje *jeżeli* w funkcji *czy_mniejszy* wykonują porównania dwóch znaków słowa s.

Przykład:

dla danych s = mascarpone, k1 = 5, k2 = 2 algorytm wykona 3 porównania:

- (pierwsza instrukcja *jeżeli*) sprawdzenie, czy s[5] = s[2]
- (pierwsza instrukcja *jeżeli*) sprawdzenie, czy s[6] = s[3]
- (druga instrukcja *jeżeli*) sprawdzenie, czy s[6] < s[3]

Podaj przykład słowa s, o długości \leq 10 oraz liczb k1, k2, $k1 \neq k2$, dla których funkcja $czy_mniejszy$ wykona dokładnie 6 porównań w pierwszej instrukcji $je\dot{z}eli$.

c –	k1 =	, k 2=
S = .	K / =	. KZ =

Miejsce na obliczenia:

Zadanie 2.2. (0-2)

W plikach slowa1.txt, slowa2.txt i slowa3.txt znajdują się po trzy wiersze:

- w pierwszym wierszu każdego pliku zapisana jest liczba całkowita dodatnia n, oznaczająca długość słowa
- w drugim wierszu zapisane jest *n*-literowe słowo *s*, składające się z małych liter alfabetu angielskiego a-z
- w trzecim wierszu zapisane są dwie liczby k1 i k2, oddzielone spacją.

Napisz program z zaimplementowaną funkcją *czy_mniejszy*. Jako wynik Twój program powinien wypisywać TAK lub NIE, w zależności od wyniku funkcji *czy_mniejszy*. Odpowiedzi dla poszczególnych plików zapisz w pliku wyniki2 2.txt.

Dla przykładowego pliku sufiks_1.txt, Twój program powinien dać odpowiedź: TAK, a dla przykładowego pliku sufiks 2.txt – odpowiedź: NIE.

Do oceny oddajesz:

- plik wyniki2_2.txt zawierający odpowiedzi (odpowiedź dla każdego z plików powinna być poprzedzona jego nazwą)
- plik(i) zawierający(-e) kody źródłowe Twojego programu o nazwie(-ach):

.....

Zadanie 2.3. (0-3)

Dana jest dodatnia liczba całkowita n oraz słowo s[1..n]. Naszym celem jest obliczenie wartości elementów tablicy T[1..n] zawierającej numery sufiksów słowa s[1..n] uporządkowanych w porządku alfabetycznym.

Przykład:

dla słowa *mascarpone* wynikowa tablica *T* to [5, 2, 4, 10, 1, 9, 8, 7, 6, 3], dla słowa *kalafiorowa* wynikowa tablica *T* to [11, 4, 2, 5, 6, 1, 3, 7, 9, 8, 10].

<u>Z wykorzystaniem funkcji</u> *czy_mniejszy(n, s, k1, k2)* zapisz w wybranej przez siebie notacji (w postaci pseudokodu lub w wybranym języku programowania) algorytm, który obliczy wartości elementów tablicy *T* zawierającej numery sufiksów zgodnie z porządkiem alfabetycznym sufiksów słowa *s*.

Uwaga: w zapisie możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), odwoływanie się do pojedynczych elementów tablicy, porównywanie liczb lub znaków, instrukcje sterujące i przypisania lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje.

Specyfikacja

Dane:

n – liczba całkowita dodatnia, długość słowa

s[1..*n*] – słowo zapisane jako tablica znaków (numerowana od 1)

Wynik:

T[1..n] – tablica T taka, że T[i]-ty sufiks słowa s jest mniejszy w porządku alfabetycznym od T[i+1]-go sufiksu słowa s dla każdego $1 \le i < n$.

Algorytm:

Zadanie 2.4. (0-3)

W pliku slowa4. txt znajduje się 10 wierszy. Każdy wiersz zawiera liczbę n (1 $\leq n \leq$ 100) oraz n-literowe słowo s składające się z małych liter alfabetu angielskiego. Dane w wierszu są oddzielone znakiem odstępu.

Napisz program, który dla każdego słowa s z pliku wypisze jego sufiks najmniejszy w porządku alfabetycznym.

Przykład:

Sufiksem najmniejszym w porządku alfabetycznym dla słowa *mascarpone* jest *arpone*, a dla słowa *truskawki* sufiksem najmniejszym w porządku alfabetycznym jest *awki*.

Dla przykładowego pliku sufiks_4.txt, zawierającego tylko 4 wiersze (ze słowami: banan, mascarpone, abcaabbaabbccba, maturazinformatyki), Twój program powinien dać odpowiedź:

an

arpone

а

aturazinformatyki

Wyniki zapisz w pliku wyniki2_4.txt, każdy sufiks w oddzielnym wierszu, zgodnie z kolejnością danych w pliku slowa4.txt.

Do oceny oddajesz:

- plik wyniki2 4.txt zawierający odpowiedź do zadania 2.4.
- plik(i) zawierający(-e) kody źródłowe Twojego programu o nazwie(-ach):

Zadanie 3. Anagram binarny

W pliku anagram. txt znajduje się 1000 wierszy. Każdy wiersz zawiera liczbę binarną, składającą się z maksymalnie 14 cyfr: 0 lub 1. Każda liczba zaczyna się jedynką i żadna z nich się nie powtarza.

Napisz **program(y)**, który(-e) da(-dzą) odpowiedzi do podanych zadań. Odpowiedzi do zadań zapisz w pliku wyniki3.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Uwaga: plik przyklad.txt zawiera 100 wierszy przykładowych danych spełniających warunki zadania. Odpowiedzi dla danych z pliku przyklad.txt są podane pod treściami zadań.

Zadanie 3.1. (0-2)

Liczbę binarną nazywamy *zrównoważoną*, gdy zawiera tyle samo zer i jedynek, natomiast *prawie zrównoważoną*, gdy liczba jedynek różni się od liczby zer o 1.

Przykład:

Liczba 101010 jest liczbą *zrównoważoną*. Liczba 1011010 jest liczbą *prawie zrównoważoną*.

Podaj, ile jest liczb binarnych zrównoważonych oraz ile jest liczb binarnych prawie zrównoważonych w pliku anagram. txt.

Dla danych z pliku przyklad. txt prawidłową odpowiedzią jest: 21
15

Zadanie 3.2. (0-3)

Anagramy cyfrowe to liczby utworzone z tego samego zestawu cyfr ustawionych w różnych kolejnościach. Przy tym pierwsza cyfra liczby nie może być równa zero.

Przykład:

Z liczby 209 zapisanej dziesiętnie można utworzyć 4 anagramy: 209, 902, 290, 920. Z liczby binarnej 11100 można utworzyć 6 różnych anagramów: 10011, 10101, 10110, 11001, 11100.

Znajdź wszystkie takie liczby binarne 8-cyfrowe w pliku anagram.txt, z których można utworzyć największą liczbę anagramów. Wypisz te liczby w kolejności, w jakiej występują w pliku anagram.txt.

Dla danych z pliku przyklad. txt prawidłową odpowiedzią jest:

Zadanie 3.3. (0-2)

Podaj największą wartość bezwzględną różnicy między sąsiednimi liczbami (to jest liczbami zapisanymi w sąsiednich wierszach np. 1 i 2 wierszu, 2 i 3 wierszu itd.) w pliku anagram. txt. Tę wartość podaj w zapisie binarnym.

Dla danych z pliku przyklad. txt prawidłową odpowiedzią jest: 1110001010

Zadanie 3.4. (0-4)

Zamień wszystkie liczby binarne z pliku anagram. txt na ich odpowiedniki w systemie dziesiętnym. Następnie spośród otrzymanych liczb dziesiętnych:

- a) podaj, ile jest takich, w których nie występuje cyfra zero
- b) podaj liczbę, która ma największą sumę **różnych** cyfr (jeśli liczb, które mają tę samą, największą sumę różnych cyfr, jest więcej niż jedna podaj tę, która występuje jako pierwsza w pliku z danymi).

Przykład:

Dla liczby 20462 suma jej różnych cyfr to 12 (2+0+4+6), dla liczby 344 suma różnych cyfr to 7.

Dla danych z pliku przyklad.txt prawidłową odpowiedzią jest: 81 895

Do oceny oddajesz:

- plik tekstowy wyniki3.txt, zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(-e) kody źródłowe Twojego(-ich) programu(-ów) o nazwie(-ach) odpowiednio:

zadanie 3.1	
zadanie 3.2.	
zadanie 3.3.	
zadanie 3.4.	

Zadanie 4. (0-2)

Uzupełnij brakujące pola tabeli:

- w wierszu pierwszym dla liczby zapisanej w systemie o podstawie 3 podaj jej zapis w systemie o podstawie 9
- w wierszu drugim dla liczby zapisanej w systemie o podstawie 9 podaj jej zapis w systemie o podstawie 3.

1.	101201 ₃	
2.		24879

Miejsce na obliczenia:

Zadanie 5. (0-1)

Zapis koloru tła w arkuszu CSS został wyrażony w postaci background-color: #E9967A;

1.	Zapis dziesiętny składowej czerwonej koloru #E9967A to 233.	P	F
2.	Zmiana zapisu #E9967A na rgb(255,255,255) da w efekcie biały kolor tła.	Р	F

Zadanie 6. Fotowoltaika

Pan Oszczędny pod koniec roku 2019 zamontował 18 paneli fotowoltaicznych na dachu swojego domu. Od 1 stycznia 2020 do 31 maja 2020 roku zapisywany był co godzinę przez całą dobę pobór prądu od dostawcy i generowany prąd przez panele fotowoltaiczne. W pliku fotowoltaika.txt zapisano datę i godzinę, pobór prądu z sieci energetycznej [kWh] oraz liczbę wygenerowanych kilowatogodzin przez panele. Dane w wierszach oddzielone są znakiem tabulacji.

Gospodarstwo domowe Pana Oszczędnego w pierwszej kolejności zużywa prąd wygenerowany przez panele fotowoltaiczne. Jeżeli potrzeby są większe, to pobiera go z sieci energetycznej. Pobór równy 0 oznacza, że ogniwa wytwarzają co najmniej tyle energii, ile wynosiły potrzeby gospodarstwa domowego. Generowanie równe 0 oznacza, że panele nie produkują energii (z powodu braku nasłonecznienia).

Przykładowy fragment pliku:

Data_godzir	na	Pobor	[kWh]	Generowanie	[kWh]
01.01.2020	01:00	0,367		0	
01.01.2020	02:00	0,485		0	
01.01.2020	03:00	0,299		0	
01.01.2020	04:00	0,453		0	
01.01.2020	05:00	0,409		0	
01.01.2020	06:00	0,542		0	
01.01.2020	07:00	0,416		0	
01.01.2020	08:00	0,453		0	
01.01.2020	09:00	0,35		0,001	
01.01.2020	10:00	0,22		0,02	
01.01.2020	11:00	0,178		0,07	
01.01.2020	12:00	0,084		0,158	
01.01.2020	13:00	0,25		0,165	
01.01.2020	14:00	0,175		0,238	
01.01.2020	15:00	2,057		0,129	
01.01.2020	16:00	1,051		0	
01.01.2020	17:00	2,179		0	

Z wykorzystaniem dostępnych narzędzi informatycznych podaj odpowiedzi do poniższych zadań. Odpowiedzi zapisz w pliku wyniki6.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Zadanie 6.1. (0-2)

Podaj dzień, w którym panele wytworzyły łącznie w ciągu całego dnia najwięcej energii liczonej w kWh. Podaj datę i liczbę wygenerowanych kilowatogodzin.

Zadanie 6.2. (0-2)

O której godzinie najczęściej zdarzała się sytuacja, że energia wytworzona przez ogniwa pokrywa w całości zapotrzebowanie gospodarstwa (pobór z sieci wynosił 0)? Podaj tę godzinę i liczbę dni, w których pobór z sieci wynosił 0 o tej godzinie.

Zadanie 6.3. (0-3)

Utwórz zestawienie średniej liczby wygenerowanych kWh w poszczególnych godzinach. Wartości zapisz z dokładnością do czterech miejsc po przecinku. Dla swojego zestawienia utwórz wykres kolumnowy. Pamiętaj o prawidłowym opisie osi oraz o tytule wykresu.

Zadanie 6.4. (0-2)

Pan Oszczędny rozważa rozbudowę systemu generowania energii za pomocą ogniw fotowoltaicznych. Bazą do obliczeń są wszystkie dane z **kwietnia** 2020 roku. Podaj minimalną liczbę paneli, o którą należałoby powiększyć system, aby przy kwietniowym zużyciu prądu i kwietniowym nasłonecznieniu, w godzinach od 10 do 15 system nie pobierał prądu z zakładu energetycznego.

Do oceny oddajesz:

•	plik tekstowy wyniki6.txt, zawierający odpowiedzi do poszczególnych zadań
	(odpowiedź do każdego zadania powinna być poprzedzona jego numerem)

plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie(-ach):

Zadanie 7. Instalacje

W bazie danych firmy X zawarte są informacje o instalacjach pewnej aplikacji, o urządzeniach, na których ta aplikacja została zainstalowana, oraz o krajach, w których przeprowadzono instalację.

Dane zgromadzono w plikach tekstowych: kraje.txt, instalacje.txt oraz urzadzenia.txt. Pierwszy wiersz każdego z plików jest wierszem nagłówkowym, a dane w wierszach rozdzielone są znakami tabulacji.

Plik o nazwie kraje.txt zawiera informacje o krajach, w których instalowano aplikację. W każdym wierszu pliku znajdują się następujące dane:

kod_k – kod kraju (napis dwuznakowy)
nazwa k – nazwa kraju (napis do 50 znaków)

ludnosc k - ludność kraju (liczba całkowita do 10 cyfr określająca liczbę ludności).

Przykład:

kod_k	nazwa_k	ludnosc_k
AN	NETHERLANDS ANTILES	227049
CR	COSTA RICA	5003393
DZ	ALGERIA	42545964

Plik o nazwie urzadzenia. txt zawiera informacje o urządzeniach, na których może być instalowana aplikacja. W każdym wierszu pliku znajdują się następujące informacje:

kod u – unikatowy kod (liczba całkowita co najwyżej 5-cyfrowa)

nazwa_u - nazwa urządzenia (napis do 80 znaków)
producent_u - producent urządzenia (napis do 35 znaków)
typ u - typ urządzenia (napis: *Tablet, Phone* lub *PC*).

Uwaga: nazwa urządzenia nie jest unikatowa – w tabeli mogą występować dwa lub więcej urządzenia o tej samej nazwie.

Przykład:

kod_u	nazwa_u	producent_u	typ_u
12410	PLATINUM_E5	Sky Devices	Phone
6549	Ilium L1120	Lanix	Phone

Plik o nazwie instalacje.txt zawiera informacje o instalacjach aplikacji. W każdym wierszu pliku znajdują się następujące informacje:

data i - data instalacji (w formacie dd.mm.rrrrr)

kod_u – kod urządzenia, na którym była wykonana instalacja (liczba całkowita co

najwyżej 5-cyfrowa)

kod k - kod kraju, w którym znajdowało się to urządzenie (napis dwuznakowy).

Uwaga: kod_u nie oznacza pojedynczego egzemplarza urządzenia, a tylko jego rodzaj – to znaczy na urządzeniach o tym samym kodzie może być wykonanych wiele instalacji.

Przykład:

data_i	kod_k	kod_u
01.03.2019	AM	145
01.03.2019	AR	804
01.03.2019	AT	12632

Z wykorzystaniem danych zawartych w podanych plikach oraz dostępnych narzędzi informatycznych, podaj odpowiedzi do zadań 7.1.–7.4. Odpowiedzi zapisz w pliku wyniki7.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Zadanie 7.1. (0-2)

Dla każdego typu urządzenia podaj liczbę instalacji aplikacji na tym typie urządzenia.

Zadanie 7.2. (0-2)

Podaj nazwę producenta urządzeń, dla którego w lutym 2019 wykonano najwięcej instalacji. Podaj liczbę tych instalacji.

Zadanie 7.3. (0-3)

Podaj nazwy pięciu krajów, w których przeprowadzono najwięcej instalacji w przeliczeniu na 1 000 000 mieszkańców, oraz podaj liczby tych instalacji.

Dla każdego z tych pięciu krajów podaj liczbę instalacji na 1 000 000 mieszkańców z dokładnością do dwóch miejsc po przecinku.

Uwaga: pomiń kraje, w których jest mniej niż milion mieszkańców.

Zadanie 7.4. (0-2)

Podaj kod oraz nazwę urządzenia typu tablet ("Tablet"), na którym zainstalowano aplikację w największej liczbie krajów. Podaj także liczbę krajów, w których instalowano aplikację na tym urządzeniu.

Do oceny oddajesz:

- plik tekstowy wyniki7.txt zawierający odpowiedzi do zadań 7.1.–7.4. (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(-e) komputerową realizację Twoich obliczeń o nazwie(-ach):

Zadanie 7.5. (0-2)

Do istniejących już tabel bazy danych dołączono tabelę *firmy* zawierającą dane firm, w których wykonywano instalacje aplikacji.

Tabela *firmy* zawiera pola *id_firmy* (identyfikator firmy – klucz podstawowy) oraz *nazwa* – nazwa firmy.

Do tabeli *instalacje* (zawierającej dane z pliku instalacje.txt) dodano pole *id_firmy* wskazujące, w której firmie na należących do niej urządzeniach wykonano instalacje.

Tabele firmy i instalacje połączone są relacją jeden do wielu.

Zapisz w języku SQL zapytanie, w którym dla każdej nazwy firmy z tabeli *firmy* zliczysz liczbę instalacji wykonanych w tej firmie. Wynik posortuj nierosnąco według liczby instalacji.

Miejsce na zapis zapytania:

BRUDNOPIS (nie podlega ocenie)

INFORMATYKA Poziom rozszerzony

Formula 2023

INFORMATYKA Poziom rozszerzony

Formula 2023

Formula 2023

