

Physical Chemistry

Lecture -05

hysics Wallah

By- Amit Mahajan Sir

Topics to be covered

- MEDICS TEST, Revision of Last Class
- Numericals & more numericals
- Degree of Association
- Gibbs free energy, Simultaneous equilibrium
- Magarmach Practice Questions (MPQ) & Home work from modules

Rules to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your Magarmach Practice Questions.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rules to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.

MEDICS

Mastery

Checks your grasp over NEET-level concepts

Evaluation

Judging both knowledge and test-smartness

Decision Making

Testing your speed + accuracy under pressure

Intuition

Some answers need gut + logic - can you spot the trick?

Concepts

It's all about strong basics – no shortcuts here

Strategy

The **MEDICS** test – built for those who heal, hustle, and hope.

The internal energy of an ideal gas increases during an isothermal process when the gas is $\bigcup z f(T) \bigvee (T) V$

- Expanded by adding more molecules to it.
 - B Expanded by adding more heat to it.
 - Expanded against zero pressure.
 - Compressed by doing work on it.

Maximum work can a gas do, if it is allowed to expand isothermally against

Nw = - Pext Tay

- A Vacuum.
- B High pressure of surrounding.
- C Low pressure of surrounding.
- Atmospheric pressure.

If a closed system has adiabatic boundaries, then at least one boundary must be

- (A) Permeable
- B Imaginary
- Movable
- D Fixed

The work done in the isothermal reversible expansion of argon gas at 27°C from $T = 300 \text{ K.} \quad \omega = 4200 \text{ Cal.}$ $V_1 = 4L$ $V_2 = 16L. \quad \omega = -nRT \ln V$ 4L to 16 L was equal to 4200 cal. What is the amount of argon subjected to such an expansion? (Ar = 40, In4 = 1.4)

- 5.0 g
- 20.0 g
- 200.0 g
- 48.1 g

The molar heat capacity of water in equilibrium with ice at constant pressure is

- (A) Zero
- Infinity
- 40.45 kJ/K-mol
- 75.48 J/K-mol

$$Cpm(n_0) = 3$$

$$H_0(1) = H_0(5)$$

$$\Delta H = (n_0) m \Delta^T$$

$$q = m \otimes \Delta^T$$

The latent heat of vaporization of a liquid at 500 K and 1 atm pressure is 10 kcal/mol. What will be the change in internal energy if 3 moles of the liquid changes to vapour state at the same temperature and pressure?

- 27 kcal
- 13 kcal
- -27 kcal
- -13 kcal

oressure?

$$3 \text{ mole} (1) \rightarrow 3 \text{ mole} (9)$$
 $\Delta ng = 3 - 0 = 3$

hec-6 to Lec-10.

Thermodynamics > Tomorrow

Revision of Last Class

$$\frac{1}{M_0 \circ u(g)} = \frac{2}{M_0 \circ u(g)}$$

$$\alpha = \frac{D - d}{d(n-1)} = \frac{M_t - M_0}{M_0 \circ (n-1)}$$

-1. age dissociation = < × 100

QUESTION - (AIIMS 2015)

The reaction $2A(g) + B(g) \rightleftharpoons 3C(g) + D(g)$ is began with the concentrations of A and B both at an initial value of 1.00 M. When equilibrium is reached, the concentration of D is measured and found to be 0.25 M. The value for the equilibrium constant for this reaction is given by the expression

- (A) $[(0.75)^3(0.25)] \div [(0.75)^2(0.25)]$
- B [(0.75)³(0.25)] ÷ [(1.00)²(1.00)]
- $(0.75)^3(0.25)] \div [(0.50)^2(0.75)]$
- $[(0.75)^3(0.25)] \div [(0.50)^2(0.25)]$

[D]er=625M. t=o 出る 1-025:05 t step. 16 = [C]3 [D] = (6.75)3 (0.25) 273 [A] [B] (0.75)1

®

QUESTION – (NCERT Exemplar)

To Sook.

 PCl_5 , PCl_3 and Cl_2 are at equilibrium at 500K in a closed container and their concentrations are 0.8×10^{-3} mol L^{-1} , 1.2×10^{-3} mol L^{-1} and 1.2×10^{-3} mol L^{-1} respectively. The value of K_c for the reaction PCl_5 (g) PCl_3 (g) + Cl_2 (g) will be

- B 1.8 × 10⁻³
- 1.8 × 10⁻³ L mol⁻¹
- D 0.55 × 10⁴

QUESTION - (NEET 2022)

 $3O_2(g) \rightleftharpoons 2O_3(g)$ for the given reaction at 298 K, K_c is found to be 3.0×10^{-59} . If the concentration of O_2 at equilibrium is 0.040 M, then concentration of O_3 in M is:

- (A) 1.20×10^{21}
- 34.38 × 10⁻³²
- 1.90 × 10⁻⁶³
- \bigcirc 2.40 × 10³¹

at equilibrium is 0.040 M, then concentration of
$$O_3$$
 in M is
$$K_C = \frac{5023^2}{5023^3} = 3 \times 10^{-59} \times (0.004)$$

$$\frac{5033^2}{5033^2} = 3 \times 10^{-59} \times (0.004)$$

$$= \frac{192 \times 10^{-65}}{54}$$

$$= \frac{192 \times 10^{-65}}{54}$$

$$= \frac{192 \times 10^{-65}}{54}$$

$$= \frac{192 \times 10^{-65}}{54}$$

QUESTION - [NCERT: PL-178 | JEE Mains April 2, 2025 (II)]

Consider the following chemical equilibrium of the gas phase reaction at a constant temperature:

 $A(g) \bigoplus B(g) + C(g)$; If p being the total pressure, K_p is the pressure equilibrium constant and a is the degree of dissociation, then which of the following is true at of of Pang equilibrium?

- If p value is extremely high compared to K_p , $\alpha \approx 1$
- XXPT Ja a L When p increases α decreases
- If K_p value is extremely high compared to p, α becomes much less than unity
- When p increases α increases

At temperature T, compound $AB_{2(g)}$ dissociates as $AB_{2(g)} + AB_{(g)} + B_{2(g)}$ having degree of dissociation x (small compared to unity). The correct expression for x in terms K_p and p is

$$\begin{array}{c}
A \\
\sqrt[3]{\frac{2K_p}{p}}
\end{array}$$

$$\begin{array}{c|c}
\hline
2K_p^2 \\
\hline
p
\end{array}$$

$$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{p} \right) \right)$$

$$\sqrt{K_p}$$

t=0
$$t=0$$

$$t=t$$

$$1-x$$

$$1-x$$

$$PAB = XAB \times P$$

$$= 1-x \times P$$

$$= 1-x \times P$$

$$1+0.5x$$

$$PAB = x \times P$$

$$1+0.5x$$

$$P_{82} = \frac{x}{2(1+0.5x)}$$

$$x = \frac{K_{P} \times 2}{P^{1/2}} \times (2)^{2/3}$$

$$x = (K_{P})^{2/3} \times (2)^{2/3}$$

$$(P^{1/2})^{2/3}$$

QUESTION - (NEET 2024)

Consider the following reaction in a sealed vessel at equilibrium with concentrations of

 $N_2 = 3.0 \times 10^{-3} \text{ M}$, $O_2 = 4.2 \times 10^{-3} \text{ M}$ and $NO = 2.8 \times 10^{-3} \text{ M}$.

 $2NO_{(g)} + O_{2(g)} + O_{2(g)}$

If $0.1 \text{ mol } L^{-1}$ of $NO_{(g)}$ is taken in a closed vessel, what will be degree of dissociation (α) of $NO_{(g)}$ at equilibrium?

A 0.00889

B 0.0889

0.8889

D 0.717

2 No cg) 0.1 Q. ->C 0.1-0.1d 2/8×103 2=-38x10-3+1

= 1Ng (9) Kc = INg] Tog] [NO]

x=0.12.

If the concentration of OH⁻ ions in the reaction Fe(OH)₃(s) $\frac{1}{4}$ Fe³⁺(aq.) + 3OH⁻ is decreased by $\frac{1}{4}$ times, then equilibrium concentration of Fe³⁺ will increase by

- A 8 times
- B 16 times
- 64 times
- D 4 times

30 X V

Fe(OH)3(3) = Fe Coq J+30H(aq) Trest new 34 273" = TFe3t] new (37) 2/24 - TFe3t]new 2/3 647 = TFe3tInew

QUESTION - (AIIMS 2018, 26 May)

 $A + 2B \rightleftharpoons 2C$; K = ?

2 moles of each A and B are present in 10 lit solution. The product C formed 1 mole. Calculate K_c

- A 1.5
- 6.67
- 0.19
- 2.3

 $\frac{1A(9) + 2B(8)}{2} = \frac{2C(8)}{0} = \frac{2x}{x^2}$ $\frac{2-x}{10} = \frac{2-2x}{10}$ $\frac{3x}{10} = \frac{15}{10} = 0.1$ $\frac{1.5}{10} = 0.15$ $0.1 = \frac{1}{10} =$

QUESTION - (AIIMS 2018, 26 May)

 $2ICl \rightarrow I_2 + Cl_2$; $K_c = 0.14$

If initial concentration of ICl is 0.6 M, then equilibrium concentration of I2 is:

- (A) 0.37 M
- B 0.126 M
- © 0.224 M
- D 0.748 M

$$2 \text{ TCL}(8) = .72(8) + .Cla(8)$$
 $0.6 - x$
 $0.6 - x$

Consider the reaction $2SO_2(g) + O_2(g) \not\equiv 2SO_3(g)$ for which $K_c = 278 \text{ M}^{-1}$. 0.001 mole of each reagents $SO_2(g)$, $O_2(g)$ and $SO_3(g)$ are mixed in a 1.0 L flask. Determine the reaction quotient of the system and the spontaneous direction of the system:

 $Q_c = 1000$, equilibrium shifts to the right

 Q_c = 1000, equilibrium shifts to the left

GC = 1000 = 1000 0,601 0,7KC

- $Q_c = 0.001$, equilibrium shifts to the left
- $Q_c = 0.001$, equilibrium shifts to the right

The equilibrium constant K_c for the reaction:

 $P_4(g) \rightleftharpoons 2P_2(g)$ is 1.4 at 400°C. Suppose that 3 moles of $P_4(g)$ and 2 moles of P₂(g) are mixed in 2 litre container at 400°C. What is the value of 9c = [Pa] = (2)/2) = 2<1 TPu7 = (2)/3) = 2<1

reaction quotient (Q_c)?

None of these

The figure shows the change in concentration of species A and B as a function of time. The equilibrium constant K_c for the reaction $A(g) \rightleftharpoons 2B(g)$

is:

$$=\frac{0.16}{0.10}=1.6$$

Data insufficient

9.2 grams of $N_2O_4(g)$ is taken in a closed one litre vessel and heated till the following equilibrium is reached $N_2O_{4(g)} \oplus 2NO_{2(g)}$.

At equilibrium, $50\% N_2O_{4(g)}$ is dissociated. What is the equilibrium

constant (in mol litre⁻¹) (Molecular mass of $N_2O_4 = 92$)

mass of
$$N_2O_4 = 92$$
)
$$c = 50 \times 0.1 = 0.05$$

$$N_2O_4 = 92$$

VILL

Two moles of NH_3 when put into a previously evacuated vessel (one litre), partially dissociated into N_2 and H_2 . If at equilibrium one mole of NH_3 is present, the equilibrium constant is:

- A 3/4 mol² litre⁻²
- B 27/64 mol² litre⁻²
- 27/32 mol² litre⁻²
- 27/16 mol² litre⁻²

$$\frac{119}{2}(3) + 348(4)$$

$$\frac{3}{2} \times \frac{3}{2} \times$$

In a system $A(s) \oplus 2B(g) + 3C(g)$, if the concentration of C at equilibrium is increased by a factor of 2, it will cause the equilibrium concentration of

- B to change to:
- Two times the original value
- One half of its original value
- $2\sqrt{2}$ times to the original value
- $1/2\sqrt{2}$ times the original value

$$|A(s)| = 2B(g) + 3C(g)$$

$$|A(s)| = 2x$$

$$2x$$

$$3x$$

$$|K_c = TBJ^2TCJ^3$$

$$= (2x)^2(3x)^3 = |b8x^5|$$

$$= (2x)^2(3x)^3 = |b8x^5|$$

$$= (3x)^2(3x)^3 = |b8x^5|$$

108x5 = IBJnew (6x)3

108x5 = IBJnew
216x22 = IBJnew
216x22 = 2

[B]old= 2x

For A + B \(\bigcup C + D\), if initially the concentration of A and B are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction?

The equilibrium constant K_c for the reaction

 $SO_2(g) + NO_2(g) \implies SO_3(g) + NO(g)$ is 16. If 1 mole of each of all the four gases is taken in 1 dm3 vessel, the equilibrium concentration of NO would

be:

1503(9) + NOg(9) = 1503(9) + NO(9)

$$\frac{(1+x)^{2}}{(1-x)^{2}} = 16$$
 $\frac{1+x}{1-x} = 16$

At a certain temperature, only 50% HI is dissociated at equilibrium in the following reaction: $2HI(g) \oplus H_2(g) + I_2(g)$ The equilibrium constant for this reaction is:

- 0.25
- B 1.0
- 3.0
- 0.5

$$2 \text{ HI(g)} = |12(g) + |12(g)|$$
 $t = 0$
 $2 \text{ HI(g)} = 0$
 $2 \text{$

$$K_{0} = (6.5)^{2} = 0.25$$

The equilibrium constant K_p for the reaction $H_2(g) + CO_2(g) \bigoplus H_2O(g) + CO(g)$

is 4.0 at 1660°C. Initially 0.80 mole H₂ and 0.80 mole CO₂ are injected into a 5.0 litre flask. What is the equilibrium concentration of $CO_2(g)$?

None of these

$$\frac{3c}{0.8-x} = 2$$

$$2 = 1.6 - 2x$$

$$3x = 1.6$$

$$x = 16 = 0.53$$

$$30$$

$$80 = 0.8 - 0.53 = 0.053$$

At 1000 K, a sample of pure NO₂ gas decomposes as $2NO_2(g) = 2NO(g) + O_2(g)$

The equilibrium constant K_p is 156.25 atm. Analysis shows that the partial pressure of O_2 a 0.25 atm at equilibrium. The partial pressure of

NO₂ at equilibrium is:

is 156.25 atm. Analysis shows that the tm at equilibrium. The partial pressure of
$$Pog = 0.5$$
 atm $Pog = 0.5$ atm $Pog = 0.5$

For the equilibrium A \(\pi\) B, the variation of the rate of the forward (a) and reverse (b) reaction with time is given by:

(JEE Mains)

For a reaction, X + Y = 2Z; 1.0 mol of X, 1.5 mol of Y, and 0.5 mol of Z, were taken in a 1 L vessel and allowed to react. At equilibrium, the concentration of Z was 1.0 mol L. The equilibrium constant of the X

reaction is $\frac{x}{15}$. The value of x is......

$$X(9) + Y(9) = 22(9)$$
 $1-x$
 $1.5-x$
 0.75
 1.25

$$K_{c} = (1)^{2} = x$$
 $(6.75)'(1.25)'$

5.1 g NH₄SH is introduced in 3.0 L evacuated flask at 327°C. 30% of the solid NH₄SH decomposed to NH₃ and H₂S as gases. The K_n of the reaction at 327°C is: (R = 0.082 atm mol⁻¹K⁻¹, molar mass of S = 32 g mol⁻¹, molar mass of N = 14 g mol⁻¹) | 1/(-3) | V=3L T= 600K

mass of $N = 14 \text{ g mol}^{-1}$

$$4.9 \times 10^{-3} \text{ atm}^2$$

$$NH_{U}SH = NH_{3}C9) + H_{2}SC9)$$
 $O(X)$
 $O(X)$

Kp=KcCRT) Dng. = 10 4 (1x 500) = 50 × 50 × 10 4 = 25 x 10 2 - 0-25 atm

The equilibrium constant at 298 K for a reaction, $A + B \rightleftharpoons C + D$ is 100. If the initial concentrations of all the four species were 1 M each, then

equilibrium concentration of D (in mol L-1) will be

A(g) + B(g) = C(g) + D(g) |+x| |+x| |+x| |-x| - 9

 $K_{c} = \frac{(1+3c)^{2}}{(1-x)^{2}} = 100$

0.818

1.182

0.182

Yakeen Leads, You Achieve

Use Coupon Code YNIO MRP: 34499/and get in ₹4049/- only

Available on PW STORE

