Unipolar (NRZ)

Advantages

- Simplicity in implementation.
- Doesn't require a lot of bandwidth for transmission.

Disadvantages

- Presence of DC level (indicated by spectral line at 0 Hz).

DC component=
$$\frac{1}{2}$$
* 0 + $\frac{1}{2}$ *a
$$= \frac{a}{2}$$

- Contains low trequency components. Causes "Signal Droop".
- Does not have any error correction capability.
- High probability of error
 Euclidien distance between symbol 1 and 0 is 'a'
- Does not possess any clocking component for ease of synchronisation.

Unipolar(RZ)

Advantages

- Simplicity in implementation.
- Presence of a spectral line at symbol rate which can be used as symbol timing clock signal.

Disadvantages

- Presence of DC level (indicated by spectral line at 0 Hz).
- Continuous part is non-zero at 0 Hz. Causes "Signal Droop".
- Does not have any error correction capability.
- Occupies twice as much bandwidth as Unipolar NRZ.
- Is not Transparent

Polar (NRZ)

- Advantages:
 - Simplicity in implementation.
 - No DC component. DC component= $\frac{1}{2}$ * -a + $\frac{1}{2}$ *a
 - Less probability of error

Euclidien distance between symbol 1 and 0 is '2a'(-a to a)

- Disadvantages:
 - Requires high power

In polar symbol 1 is represented by '+a', symbol 0 is represented by '-a', so signal range is from -a to +a.

=0

- Continuous part is non-zero at 0 Hz. Causes "Signal Droop".
- Does not have any error correction capability.
- Does not posses any clocking component for ease of synchronisation.
- Is not transparent.

Polar RZ

- Advantages:
 - Simplicity in implementation.
 - No DC component.
- Disadvantages:
 - Continuous part is non-zero at 0 Hz. Causes "Signal Droop".
 - Does not have any error correction capability.
 - Does not posses any clocking component for easy synchronisation.
 However, clock can be extracted by rectifying the received signal.
 - Occupies twice as much bandwidth as Polar NRZ.

Bipolar NRZ

• Advantages:

No DC component.

DC component=
$$\frac{1}{2}$$
* 0 + $\frac{1}{4}$ * -a + $\frac{1}{4}$ * +a

- Occupies less bandwidth than unipolar and polar NRZ schemes.
- Does not suffer from signal droop (suitable for transmission over AC coupled lines).
- Possesses single error detection capability.

Transmitted bits	1	1	0	1	1	0	1	1
Transmitted amplitude	+a	-a	0	+a	-a	0	+a	-a
Received amplitude with error	+a	-a	0	+a	+a	0	+a	-a

• Disadvantages:

- Does not possess any clocking component for ease of synchronisation.
- Is not Transparent.
- It requires high memory

Bipolar(RZ)

- Advantages:
 - No DC component.
 - Occupies less bandwidth than unipolar and polar RZ schemes.
 - Does not suffer from signal droop (suitable for transmission over AC coupled lines).
 - Possesses single error detection capability.
 - Clock can be extracted by rectifying (a copy of) the received signal.
- Disadvantages:
 - Is not Transparent.

Manchester

Advantages:

- No DC component.
- Does not suffer from signal droop (suitable for transmission over AC coupled lines).
- Easy to self synchronization.(can obtain the timing information even if error occurs during transmission of long series of 1's and 0's)
- Is Transparent.

Disadvantages:

- Because of the greater number of transitions it occupies a significantly large bandwidth(PSD of Manchester occupies double the bandwidth of other coding techniques)
- Does not have error detection capability.