

This document is property of Ralink Technology, Corp. Transmittal, receipt, or possession of this document does not express, license, or imply any rights to use, sell, design, or manufacture from this information or the software documented herein. No reproduction, publication, or disclosure of this information, in whole or in part, shall be allowed, unless the prior written consent of Ralink Technology, Inc. is obtained.

NOTE: THIS DOCUMENT CONTAINS SENSITIVE INFORMATION AND HAS RESTRICTED DISTRIBUTION.

Update history

Version	Date	Description	Modified by
0.1	2008/4/11	1. Initial version	Gary
1.0	2008/6/9	 Delete 5G portion. Add "Antenna Diversity" function in 0x37h. Take off "Double Delete Line" on V0.1. 	Vincent
1.1	2008/7/15	 Add 3071, 3072 portion Change file name 	Vincent
1.2	2008/8/25	Add CountryRegion code #31 for 2.4G	Rory
1.3	2008/11/26	 Modify the description of register @ 4Eh~4Fh. Change register "Maximum TX Power for 2.4GHz band" to "EIRF TX Power for 2.4GHz band" 	Vincent
1.4	2008/12/5	Add TX mixer gain setting for 2.4GHz band (48h)	Gary
1.5	2008/11/26	 Add register definition for RT357X Add 5G portion. Add CountryRegion code #14 for 5G 	Vincent
1.6	2008/12/23	1. Add TX mixer gain setting for RT3572 (48h/4Ch)	Gary
1.61	2009/02/16	 Add CountryRegion code #15 (38h) for 5GHz Add channel 169, 173 in CountryRegion code #7 (38h) 	Rory
1.62	2009/04/20	 Add CountryRegion code #16 (38h) for 5GHz Remove channel 169, 173 in CountryRegion code #7 (38h) 	Rex
<u> </u>			
	•		

Contents

1. GE	NERAL DESCRIPTION	4
2. RT	307X_357X EEPROM LAYOUT	4
2.1	E2PROM LAYOUT VERSION # (02H)	9
2.2	ASIC RESERVED (1EH ~ 23H)	9
2.3	NIC Configuration 0 (0x34)	9
2.4	NIC Configuration 1 (0x36)	
2.5	NIC Configuration 2 (0x42)	
2.6	COUNTRY REGION CODE FOR 5G BAND (0x38)	13
2.7	COUNTRY REGION CODE FOR 2.4G BAND (0x39)	
2.8	FREQUENCY OFFSET (0x3A)	
2.9	LED Mode Setting (0x3B)	
2.10	LED A/G CONFIGURATION (3CH~3DH)	16
2.11	ACT CONFIGURATION (3EH~3FH)	17
2.12	LED A/G/ACT POLARITY (40H~41H)	18
2.13	External LNA gain for 2.4GHz Band (44h)	19
2.14	TX MIXER GAIN SETTING FOR 2.4GHZ BAND (48H)	19
2.15	TX MIXER GAIN SETTING FOR 5GHZ BAND (4CH)	
2.16	External LNA gain for 5GHz Band (45h, 49h, 4Dh)	
2.17	EIRPTX Power for 2.4GHz & 5GHz band (4E~4FH)	
2.18	20M/40M BW Power Delta for 2.4GHz band (50H)	22
2.19	20M/40M BW Power Delta for 5GHz Band (51H)	22
2.20	2.4G BAND TX0 & TX1 POWER (52H~6DH)	
2.21	5G BAND TX0 & TX1 POWER (78H~9AH, A6H~C8H)	24
2.22	Tx Power delta TSSI Boundary of 2.4GHz & 5GHz (6EH ~ 76H, D4H ~ DCH)	26
2.23	Tx ALC step value for 2.4GHz & 5G band (77h, DDh)	27
2.24	TX RATE POWER CONFIGURATION (DEH~EFH)	28
2.25	BBP Instructions (TOTAL 8 INSTRUCTIONS) (F0H ~ FEH)	28
2.26	SERIAL NUMBER FOR CUSTOMER (110H ~ 117H)	
2.27	DEVICE CONFIGURATION (2E0H)	29

1. General Description

The EEPROM layout is split into two parts. The first one (up to 0x200) is common for all interfaces; the second part (after 0x200) is only valid to USB.

The following table summarizes EEPROM used in RT3070 configuration.

Ĭ	EEPROM Type	EEPROM size (in byte)
USB	AT25080 Compatible (SPI)	1024 (0x400)

2. RT307x_357x EEPROM Layout

Offset	Default (hex)	b15 ~b8	b7 ~ b0
00h	307x 2070 357x	Chip ID	
02h	0000	EEPROM Version	
04h		Mac Address [15:0]	
06h		Mac Address [31:16]	
08h		Mac Address [47:32]	•
0Ah	FFFF	Reserved	
0Ch	FFFF	Reserved	
0Eh	FFFF	Reserved	
10h	FFFF	Reserved	
12h	FFFF	Reserved	
14h	FFFF	Reserved	
16h	FFFF	Reserved	Reserved
18h	FFFF	Reserved	
1Ah	FFFF	Reserved	
1Ch	FFFF	Reserved	
	FFFF	ASIC Reserved	
24h	FFFF	Reserved	Reserved
26h	FFFF	Reserved	Reserved
28h	FFFF	Reserved	Reserved
2Ah	FFFF	Reserved	Reserved
2Ch	FFFF	Reserved	Reserved
2Eh	FFFF	Reserved	Reserved
30h	FFFF	Reserved	Reserved
32h	FFFF	Reserved	Reserved
34h	FFFF	NIC Configuration 0	
36h	FFFF	NIC Configuration 1	
38h	FFFF	Country Region 2.4G band	Country Region 5G band

Offset	Default (hex)	b15 ~b8	b7 ~ b0					
3Ah	FFFF	LED Mode	Frequency offset					
3Ch	FFFF	LED A/G Configuration						
3Eh	FFFF	LED ACT Configuration						
40h	FFFF	LED A/G/ACT Polarity						
42h	FFFF	NIC Configuration 2						
44h	FFFF	External LNA gain for 5G Band (CH36~CH64)	External LNA gain for 2.4G Band					
46h	0000	2.4G RSSI1 offset	2.4G RSSI0 offset					
48h	0000	External LNA gain for 5G Band (CH100~CH128)	TX mixer gain setting for 2.4Ghz Band					
4Ah	0000	5G RSSI1 offset	5G RSSI0 offset					
4Ch	0000	External LNA gain for 5G Band (CH132~CH165)	TX mixer gain setting for 5Ghz Band					
4Eh	FFFF	EIRP TX Power for 5GHz band	EIRP TX Power for for 2.4GHz band					
50h	FFFF	20M/40M BW Power delta for 5G band	20M/40M BW Power delta for 2.4G band					
52h	FFFF	Channel 2 TX0 power	Channel 1 TX0 power					
54h	FFFF	Channel 4 TX0 power	Channel 3 TX0 power					
56h	FFFF	Channel 6 TX0 power	Channel 5 TX0 power					
58h	FFFF	Channel 8 TX0 power	Channel 7 TX0 power					
5Ah	FFFF	Channel 10 TX0 power	Channel 9 TX0 power					
5Ch	FFFF	Channel 12 TX0 power	Channel 11 TX0 power					
5Eh	FFFF	Channel 14 TX0 power	Channel 13 TX0 power					
60h	FFFF	Channel 2 TX1power	Channel 1 TX1 power					
62h	FFFF	Channel 4 TX1 power	Channel 3 TX1 power					
64h	FFFF	Channel 6 TX1 power	Channel 5 TX1 power					
66h	FFFF	Channel 8 TX1 power	Channel 7 TX1 power					
68h	FFFF	Channel 10 TX1 power	Channel 9 TX1 power					
6Ah	FFFF	Channel 12 TX1 power	Channel 11 TX1 power					
6Ch	FFFF	Channel 14 TX1 power	Channel 13 TX1 power					
6Eh	FFFF	2.4G TX power –3 TSSI boundary	2.4G TX power -4 TSSI boundary					
70h	FEFF	2.4G TX power –1 TSSI boundary	2.4G TX power –2 TSSI boundary					
72h	FFFF	2.4G TX power +1 TSSI boundary	2.4G TX power ±0 TSSI boundary					
74h	FFFF	2.4G TX power +3 TSSI boundary	2.4G TX power +2 TSSI boundary					
76h	FFFF	2.4G TX ALC step value 2.4G TX power +4 TSSI boundary						
78h	FFFF	Channel 38 TX0 power	Channel 36 TX0 power					
7Ah	FFFF	Channel 44 TX0 power	Channel 40 TX0 power					
7Ch	FFFF	Channel 48 TX0 power	Channel 46 TX0 power					
7Eh	FFFF	Channel 54 TX0 power	Channel 52 TX0 power					

Offset	Default (hex)	b15 ~b8	b7 ~ b0					
80h	FFFF	Channel 60 TX0 power	Channel 56 TX0 power					
82h	FFFF	Channel 64 TX0 power	Channel 62 TX0 power					
84h	FFFF	Channel 102 TX0 power	Channel 100 TX0 power					
86h	FFFF	Channel 108 TX0 power	Channel 104 TX0 power					
88h	FFFF	Channel 112 TX0 power	Channel 110 TX0 power					
8Ah	FFFF	Channel 118 TX0 power	Channel 116 TX0 power					
8Ch	FFFF	Channel 124 TX0 power	Channel 120 TX0 power					
8Eh	FFFF	Channel 128 TX0 power	Channel 126 TX0 power					
90h	FFFF	Channel 134 TX0 power	Channel 132 TX0 power					
92h	FFFF	Channel 140 TX0 power	Channel 136 TX0 power					
94h	FFFF	Channel 151 TX0 power	Channel 149 TX0 power					
96h	FFFF	Channel 157 TX0 power	Channel 153 TX0 power					
98h	FFFF	Channel 161 TX0 power	Channel 159 TX0 power					
9Ah	FFFF	Reserved	Channel 165 TX0 power					
9Ch	FFFF	Reserved	Reserved					
9Eh	FFFF	Reserved						
A0h	FFFF	Reserved	Reserved					
A2h	FFFF	Reserved	Reserved					
A4h	FFFF	Reserved	Reserved					
A6h	FFFF	Channel 38 TX1 power	Channel 36 TX1 power					
A8h	FFFF	Channel 44 TX1 power	Channel 40 TX1 power					
AAh	FFFF	Channel 48 TX1 power	Channel 46 TX1 power					
ACh	FFFF	Channel 54 TX1 power	Channel 52 TX1 power					
AEh	FFFF	Channel 60 TX1 power	Channel 56 TX1 power					
B0h	FFFF	Channel 64 TX1 power	Channel 62 TX1 power					
B2h	FFFF	Channel 102 TX1 power	Channel 100 TX1 power					
B4h	FFFF	Channel 108 TX1 power	Channel 104 TX1 power					
B6h	FFFF	Channel 112 TX1 power	Channel 110 TX1 power					
B8h	FFFF	Channel 118 TX1 power	Channel 116 TX1 power					
BAh	FFFF	Channel 124 TX1 power	Channel 120 TX1 power					
BCh	FFFF	Channel 128 TX1 power	Channel 126 TX1 power					
BEh	FFFF	Channel 134 TX1 power	Channel 132 TX1 power					
C0h	FFFF	Channel 140 TX1 power Channel 136 TX1 power						
C2h	FFFF	Channel 151 TX1 power	Channel 149 TX1 power					
C4h	FFFF	Channel 157 TX1 power	Channel 153 TX1 power					
C6h	FFFF	Channel 161 TX1 power	Channel 159 TX1 power					

Offset	Default (hex)	b15 ~b8	b7 ~ b0
C8h	FFFF	Reserved	Channel 165 TX1 power
CAh	FFFF	Reserved	Reserved
CCh	FFFF	Reserved	Reserved
CEh	FFFF	Reserved	Reserved
D0h	FFFF	Reserved	Reserved
D2h	FFFF	Reserved	Reserved
D4h	FFFF	5G TX power –3 TSSI boundary	5G TX power –4 TSSI boundary
D6h	FFFF	5G TX power –1 TSSI boundary	5G TX power –2 TSSI boundary
D8h	FFFF	5G TX power +1 TSSI boundary	5G TX power ±0 TSSI boundary
DAh	FFFF	5G TX power +3 TSSI boundary	5G TX power +2 TSSI boundary
DCh	FFFF	5G TX ALC step value	5G TX power +4 TSSI boundary
DEh	6666	TX power for CCK 5.5M/11M	TX power for CCK 1M/2M
E0h	6666	TX power for OFDM 12M/18M	TX power for OFDM 6M/9M
E2h	6666	TX power for OFDM 48M/54M	TX power for OFDM 24M/36M
E4h	6666	TX power for HT MCS=2,3	TX power for HT MCS=0,1
E6h	6666	TX power for HT MCS=6,7	TX power for HT MCS=4,5
E8h	6666	TX power for HT MCS10,11	TX power for HT MCS8,9
EAh	6666	TX power for HT MCS14,15	TX power for HT MCS12,13
ECh	6666	TX power for STBC MCS2,3	TX power for STBC MCS0,1
EEh	6666	TX power for STBC MCS6,7	TX power for STBC MCS4,5
F0h	FFFF	Reserved	Reserved
F2h	FFFF	Reserved	Reserved
F4h	FFFF	Reserved	Reserved
F6h	FFFF	Reserved	Reserved
F8h	FFFF	Reserved	Reserved
FAh	FFFF	Reserved	Reserved
FCh	FFFF	Reserved	Reserved
FEh	EFFF	Reserved	Reserved

USB Specific Contents

USB S	pecific Contents	
Offset	Content	Value
High Sp	eed Wireless Descriptor	
200h	Device Descriptor	12 01 00 02 00 00 00 40 VV VV ¹ PP PP ¹ RR RR ¹ 01 02 03 ² 01
212h	Device Qualifier	0A 06 00 02 00 00 00 40 01 00
21Ch	Configuration Descriptor	09 02 43 00 01 01 04 ² 80 PP ³
225h	Interface Descriptor	09 04 00 00 07 FF FF FF 05 ²
22Eh	EP 1 IN Descriptor	07 05 81 02 00 02 00
235h	EP 1 OUT Descriptor	07 05 01 02 00 02 00
23Ch	EP 2 OUT Descriptor	07 05 02 02 00 02 00
243h	EP 3 OUT Descriptor	07 05 03 02 00 02 00
24Ah	EP 4 OUT Descriptor	07 05 04 02 00 02 00
251h	EP 5 OUT Descriptor	07 05 05 02 00 02 00
258h	EP 6 OUT Descriptor	07 05 06 02 00 02 00
High Sp	eed CD-ROM Identification	n(Auto-run)
260h	Vendor Name	52 61 6C 69 6E 6B 20 20 (Ralink)
268h	Product Name	57 69 72 65 6c 65 73 73 20 31 31 6E 20 20 20 20 (Wireless 11n)
278h	Version Number	31 2E 30 30 (1.00)
High Sp	eed CD-ROM Descriptor(A	uto-run)
280h	Device Descriptor	12 01 00 02 00 00 00 40 VV VV ¹ PP PP ¹ RR RR ¹ 06 07 08 ² 01
292h	Device Qualifier	0A 06 00 02 00 00 00 40 01 00
29Ch	Configuration Descriptor	09 02 20 00 01 01 09 ² 80 PP ³
2A5h	Interface Descriptor	09 04 00 00 02 08 06 50 OA ²
2AEh	EP 1 IN Descriptor	07 05 81 02 00 02 00
2B5h	EP 1 OUT Descriptor	<mark>0</mark> 7 05 01 02 00 02 00
Other D	evice Configuration	
2E0h	Device Configuration	(See following description)
2E1h	(For F/W internal use)	00
2E2h	NOR Flash Size	(Flash size in 64KB)-1
String D	escriptor Address	
2F0h	String Desc. Start Addr ⁴	00 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF
String D	escriptor	
300h	String Descriptor 0	04 03 09 04

RT3X7X EEPROM Confidential Page 8

Vendor ID, product ID and revision ID respectively
 String descriptor index. 00 if not available.
 Maximum power consumption. The unit is 2mA.
 Corresponding string descriptor starts at 0x300+Sn

2.1 E2PROM layout version # (02h)

Value	Description					
0	Version 0.					
1 ~ 255 Invalid version. Treat as version 0.						

2.2 ASIC reserved (1Eh ~ 23h)

Field	Description					
15:0	Reserved.	_	4	-		•

2.3 NIC Configuration 0 (0x34)

15 14 13 12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	RFIC T	уре			TX Pat	h settin	g		RX Path setting			
Reserved	1: RT28	320 (2.4	4G 2T3I	R)	1: 1TX		₹ 4		1: 1RX			
	2: RT28	350 (2.4	4G/5G 2	2T3R)	2: 2TX				2: 2RX			
	3: RT2	720 (2.4	4G 1T2	R)		I = I	, T					
	4: RT2	750 (2.4	4G/5G 1	IT2R)	W	A 4		,				
	5: RT30	020 (2.4	4G, 1T1	R,	-	u						
	inside F	RT3070)			—	•					
	6: RT20	020 (2.4	4G, 1T1	R, 🔚		*						
	inside F	RT2070)			*						
	7: RT30	021 (2.4	1G 🥼									
	1T2R,ir	A03503		,								
	8: RT30	0 <mark>22</mark> (2.4	4G 2T2	R,								
	inside F	R <mark>T3</mark> 072	()									
	9: RT30	052 (2.4	4G/5G	2 T 2R,								
	inside F	RT3572		7								

NIC Configuration 0 Register Bit Fields Description

Offset	Field	Description
34h	3:0	RX front-end architecture in the system. 0 (0000): Reserved. 1 (0001): 1 RX front-end in the system. 2 (0010): 2 RX front-end in the system. 3 ~ F (0011 ~ 1111): Reserved.
3411	7:4	TX front-end architecture in the system. 0 (0000): Reserved. 1 (0001): 1 TX front-end in the system. 2 (0010): 2 TX front-end in the system. 3~ F (0011 ~ 1111): Reserved.

Offset	Field	Description
35h	11:8	RF transceiver IC type. 0 (0000): Reserved 1 (0001): RF IC type is RT2820 (2.4GHz, 2T3R) (Reserved) 2 (0010): RF IC type is RT2850 (2.4/5GHZ, 2T3R) (Reserved) 3 (0011): RF IC type is RT2720 (2.4GHz, 1T2R). (Reserved) 4 (0100): RF IC type is RT2750 (2.4/5GHz, 1T2R) (Reserved) 5 (0101): RF IC type is RT3020 (2.4GHz, 1T1R, inside RT3070) 6 (0110): RF IC type is RT3021 (2.4GHz, 1T1R, inside RT2070) 7 (0111): RF IC type is RT3021 (2.4GHz, 2T2R) 8 (1000): RF IC type is RT3022 (2.4GHz, 2T2R) 9 (1001): RF IC type is RT3522(2.4GHz/5G, 2T2R) A~F(1010~1111): Reserved
	15:12	Reserved.

2.4 NIC Configuration 1 (0x36)

Bit[7:0]=0xFF will be treated as INVALID and used Default Value. Bit[15:8]=0xFF will be treated as INVALID and used Default Value

				Account Victor			
7	6	5	4	3	2	1	0
WPS	5G side band	2.4G side band	Proprietary	EXT LNA	EXT LNA	TX ALC	HW CTRL
PBC	for 40M BW	for 40M BW	Test bit	5G	2.4G		
0: off (D)	0: off(D)	0: off	0: off(D)	0: off	0: off	0: off(D)	0: off(D)
1: on	1: on	1: on(D)	1: on	1: on	1: on	1: on	1: on

15	14 ~ 12	11	10	9	8
DAC	Reserved	Antenna	Broadband	40M BW in	40M BW in
test bit		Diversity	EXT LNA	5G band	2.4G band
0: off (D)		0: off (D)	0: off	0: on (D)	0: on (D)
1: on		1: on	1: on	1: off	1: off

NIC Configuration 1 Register Bit Fields Description

Offset	Field	Description
36h		Hardware Radio Control. 0: disable hardware radio control (default value). 1: enable hardware radio control. When "hardware radio control" bit is enabled (=1), the driver will read MAC's GPIO[2] status. When GPIO[2] pin is low, the radio is disabled. When GPIO[2] pin is high, the radio is enabled. The Radio ON/OFF is controlled by both software UI and MAC's GPIO[2] pin.
		TX Auto Level Control. 0: disable TX ALC function (default value). 1: enable TX ALC function. When the TX ALC function is enabled (=1), the driver will automatic compensate TX power varied due to temperature variation. It also needs to fill the register "Tx ALC step value for 2.4GHz (77h)" for the TX ALC function.

Offset	Field	Description
		External 2.4GHz band LNA.
	2	0: Board without external LNA for 2.4GHz band must set this bit to 0.
		1: Board with external LNA for 2.4GHz band must set this bit to 1 (default value).
		External 5GHz band LNA.
	3	0: Board without external LNA for 5GHz band must set this bit to 0.
		1: Board with external LNA for 5GHz band must set this bit to 1.
	4	Proprietary TEST BIT.
	4	For debug purpose. Default value is 0.
	5	2.4GHz side band for 40MHz BW.
	5	For debug purpose.
	6	5G side band for 40M BW
	O	For debug purpose.
	7	WPS Push Button Configuration control.
		0: disable WPS PBC control (default value). 1: enable WPS PBC control.
		The WPS PBC function is controlled through GPIO[3].
		If LED mode set to "Signal strength" (64), WPS PBC will be disabled.
	8	40M BW in 2.4GHz band. 0: enable 40MHz bandwidth for 2.4GHz band
		1: disable 40MHz bandwidth for 2.4GHz band
	9	40M BW in 5G band 0: enable 40MHz bandwidth for 5GHz band.
		1: disable 40MHz bandwidth for 5GHz band.
		Broadband EXT LNA
	10	0: Board without external LNA must set this bit to 0.
37h		1: Board with external LNA must set this bit to 1.
0711		Antenna Diversity control.
	11	0: disable diversity function (default value).
		1: enable diversity function.
	14:12	Reserved
	4	DAC test bit
	15	0: Disable DAC test.
		1: Enable DAC test.

2.5 NIC Configuration 2 (0x42)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						TX Stream			RX Stream						
								1: 1 Str	eam			1: 1 Str	eam		
								2: 2 Str	eam			2: 2 Str	eam		

Note:

- 1. The 1 stream support MCS0~MCS7. The 2 stream support MCS0~MCS15.
- 2. Stream setting should be equal or less than path setting of EEPROM (0x34)
- 3. Default=0xFF means that based on the path setting (0x34) for MAX capability.

NIC Configuration 2 Register Bit Fields Description

Offset	Field	Description
42h	3:0	RX stream. 0 (0000): Reserved 1 (0001): 1 RX stream 2 (0010): 2 RX stream 3 ~ F (0011 ~ 1111): Reserved.
7211	7:4	TX stream. 0 (0000): Reserved 1 (0001): 1 TX stream 2 (0010): 2 TX stream 3 ~ F (0011 ~ 1111): Reserved.
43h	15:8	Reserved.

2.6 Country Region Code for 5G band (0x38)

Default value = FFh, which means read from INF and registry, more flexible than reading from EEPROM, this is our current InstallShield CCS implementation. We do not recommend customers to read SKU from EEPROM. therefore, FFh is our default value.

CountryCode— Specify the domain code, can be FFh or one of the followings,

Index	Support Channels
0	36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161, 165
1	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
2	36, 40, 44, 48, 52, 56, 60, 64
3	52, 56, 60, 64, 149, 153, 157, 161
4	149, 153, 157, 161, 165
5	149, 153, 157, 161
6	36, 40, 44, 48
7	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165
8	52, 56, 60, 64
9	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140, 149, 153, 157, 161, 165
10	36, 40, 44, 48,149, 153, 157, 161, 165
11	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 149, 153, 157, 161
12	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
13	52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161
14	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 136, 140, 149, 153, 157, 161, 165
15	149, 153, 157, 161, 165, 169, 173
16	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165, 169, 173

Note: 1.) If set to Index #12, it will also turn on 802.11h and Carrier Detection by default

2.7 Country Region Code for 2.4G band (0x39)

Default value = FFh, which means read from INF and registry, more flexible than reading from EEPROM, this is our current InstallShield CCS implementation. We do not recommend customers to read SKU from EEPROM. Value FFh is the default value.

CountryCode— Specify the domain code, can be FFh or one of the followings,

Index	Support Channels
0	CH 1 ~ 11
1	CH 1 ~ 13
2	CH 10 ~ 11
3	CH 10 ~ 13
4	CH 14
5	CH 1 ~ 14
6	CH 3 ~ 9
7	CH 5 ~ 13
31	CH1 ~ 14 (CH1 ~ 11 active scan, CH12 ~ 14 passive scan)

Notes: If set to read SKU from EEPROM, only available if 2.4G Country Region code registers are programmed.

2.8 Frequency offset (0x3A)

Used for crystal calibration.

2.9 LED Mode Setting (0x3B)

7	6	5	4	3	2	1	0
GPIO Polarity	LED control m	ode					

Offset	Field	LED Mode		Description	
	[6:0]	0	HW control	The default mode. Driver sets MAC register and MAC controls LED.	
		1	FW default mode	The firmware controls how LED blinks.	
		2	8sec scan	Same as LED mode 1 except that fast blink for 8sec when doing scanning.	
3Bh		3-63	-	Reserved.	
		64	Signal strength setting	Besides mode 1, additionally set LED signal strength. LedParam1[0] = GPIO polarity (0 is negative) LedParam0 = Signal strength (Valid value are 0, 1, 3, 7, 15, 31. Where value 0 is the weakest signal strength.)	
	7	GPIO Polarity		0: Negative polarity 1: Positive polarity	

GPIO 0-4 will be used as signal strength indicator only in Mode 64.

			OOEO, TOTAL		
signal strength	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0
Very Strong	on	on	on	on	on
Good	off	on	on	on	on
Average	off	off	on	on	on
Weak	off	off	off	on	on
Very Weak	off	off	off	off	on
not linked	off	off	off	off	off

2.10 LED A/G Configuration (3Ch~3Dh)

7	6	5	4	3	2	1	0
LEI	DA	LED G		Reserved		LED G	
	Radio on and link down				Radi	io off	

15	14	13	12	11	10	9	8
LE	DΑ	LE	O G	LED A		LED G	
Radio on and link to A					Radio on a	nd link to G	

Offset	States	Field	RDY A/G	LED_RDYG behavior
	Radio off	[1:0]	LLDG	00: Reserved 01: Solid on
3Ch	Radio oii	[3:2]	LED A	10: Slow blink 11: Fast blink
3011	Radio on and	[5:4]		00: Reserved 01: Solid on
	link down	[7:6]	LEDA	10: Slow blink 11: Fast blink
	Radio on and link to G	[9:8]		00: Reserved 01: Solid on
3Dh		[11:10]	LED A	10: Slow blink 11: Fast blink
		[13:12]		00: Reserved 01: Solid on
	link to A	[15:14]	LEDA	10: Slow blink 11: Fast blink

2.11 ACT Configuration (3Eh~3Fh)

7	6	5	4	3	2	1	0
	Radio on an	d link down			Rad	io off	

15	14	13	12	11	10	9	8
	Radio on a	nd link to A			Radio on a	nd link to G	

Offset	States	Field	LED_ACT behavior
	Radio off	[1:0]	00: Reserved 01: Solid on 10: Blink when transmitting data and management packet 11: Blink when transmitting data, management packet and beacon
		2	0: Solid on when no traffic 1: Slow blink when no traffic
3Eh		3	Reserved
SEII	Radio on but link down	[5:4]	00: Reserved 01: Solid on 10: Blink when transmitting data and management packet 11: Blink when transmitting data, management packet and beacon
		6	0: Solid on when no traffic 1: Slow blink when no traffic
		7	Reserved
	Radio on and link to G	[9:8]	00: Reserved 01: Solid on 10: Blink when transmitting data and management packet 11: Blink when transmitting data, management packet and beacon
		10	0: Solid on when no traffic 1: Slow blink when no traffic
•		11	Reserved
3Fh	Radio on and link	[13:12]	00: Reserved 01: Solid on 10: Blink when transmitting data and management packet 11: Blink when transmitting data, management packet and beacon
	to A	14	0: Solid on when no traffic 1: Slow blink when no traffic
		15	Reserved

2.12 LED A/G/ACT Polarity (40h~41h)

7	6	5	4	3	2	1	0
Reserved	LED ACT	LED A	LED G	Reserved	LED ACT	LED A	LED G
	Radio on ar	d link down			Radi	o off	

15	14	13	12	11	10	9	8
Reserved	LED ACT	LEDA	LED G	Reserved	LED ACT	LED A	LED G
Radio on and link to A					Radio on a	nd link to G	

Offset	States	Field		LED behavior	
		0	LED G		
	Radio off	1 LED A 1: Positive polarity 0: Negative polarity		1: Positive polarity 0: Negative polarity	
	Itadio oli	2	LED ACT		
40h		3	Reserved	Reserved and must be filled as 1.	
4011		4	LED G		
	Radio on but link down	5	LED A	1: Positive polarity 0: Negative polarity	
		6	LED ACT		
		7	Reserved	Reserved and must be filled as 1.	
		8	LED G		
	Radio on and link	9	Reserved	1: Positive polarity 0: Negative polarity	
	to G	10	LED ACT		
41h		11	Reserved	Reserved and must be filled as 1.	
4111		12	LED G		
	Radio on and link to A	adio on and link 13 LED A		1: Positive polarity _0: Negative polarity	
		14	LED ACT		
		15	Reserved	Reserved and must be filled as 1.	

2.13 External LNA gain for 2.4GHz Band (44h)

External LNA gain for 2.4GHz Band Register Bit Fields Description

Offset	Field		D	escription	
		External LNA gair 1 step = 1 dB Example:	n for 2.4G Band.		
44h	7:0		Value	LNA gain (dB)	
			0000 0000	0	
			0000 0001	1	X
			0000 1010	10	

2.14 TX mixer gain setting for 2.4GHz band (48h)

TX mixer gain setting for 2.4GHz band Register Bit Fields Description (For RT307x only)

Offset	Field	Description
48h	7:0	This register is for RT307x TX mixer gain setting. 2 (010)= +0dB (Default), 0x00 and 0xFF are invalid that will apply to default setting. 3 (011)= +1dB 4 (100)= +2.5dB

TX mixer gain setting for 2.4GHz band Register Bit Fields Description (For RT3572 only)

Offset	Field	Description
48h	7:0	This register is for RT3572 2.4GHz TX mixer gain setting. 1 (001)= +1.5dB 2 (010)= +3dB 4 (100)= +4dB (Default)

2.15 TX mixer gain setting for 5GHz band (4Ch)

TX mixer gain setting for 5GHz band Register Bit Fields Description (For RT3572 only)

Offset	Field	Description		
4Ch		This register is for RT3572 5GHz TX mixer gain setting. 1 (001)= +1dB 2 (010)= +4dB (Default) 4 (100)= +7dB		

2.16 External LNA gain for 5GHz Band (45h, 49h, 4Dh)

External LNA gain for 5GHz Band Register Bit Fields Description

Offset	Field	Description		
		External LNA gain for 5GHz Band for channel 36 to 64. I step = 1dB. Example:		
45h,	7:0	Value LNA gain (dB)		
,		0000 0000 0		
		0000 0001 1		
		0000 1010 10		
49h	7:0	External LNA gain for 5GHz Band for channel 100 to 128. I step = 1dB. Example: Value D000 0000 0000 0001 1 0000 1010 10		
4Dh	7:0	0000 1010 10 External LNA gain for 5GHz Band for channel 132 to 165. I step = 1dB. Example: Value LNA gain (dB) 0000 0000 0 0000 0001 1 0000 1010 10		

2.17 EIRP TX Power for 2.4GHz & 5GHz band (4E~4Fh)

The register is intended to limit the TX power for different countries in one SKU.

EIRP TX Power for 2.4GHz & 5GHz band Register Bit Fields Description

Offset	Field	Description	
4Eh	7:0	2.4GHz maximum TX power. The register value is the board's EIRP value. The driver will compare the board's EIRP with each country allow TX power automatically if this function is enabled. FF (1111 1111): disable the maximum TX power comparison function. Example: 08 (0000 1000): TX power limit is 8dBm 10 (0001 0000): TX power limit is 16dBm 12 (0001 0010): TX power limit is 18dBm	
4Fh	15:8	5GHz maximum TX power. The register value is the board's EIRP value. The driver will compare the board's EIRP with each country allow TX power automatically if this function is enabled. FF (1111 1111): disable the maximum TX power comparison function. Example: 08 (0000 1000): TX power limit is 8dBm 10 (0001 0000): TX power limit is 16dBm 12 (0001 0010): TX power limit is 18dBm	

Example:

If antenna gain is 3dBi, board's maximum TX power is 17dBm. The Equivalent isotropically radiated power (EIRP) is 17+3=20dBm. The value of offset 4Eh is 14 (0001 0100).

Following table is based on the maximum TX power comparison function is enabled.

Country	Allowed TX power of the country (dBm)	Offset 4Eh = 14	Exact maximum EIRP (dBm)
А	20	20	20
В	16	20	16
С	18	20	18
D	23	20	20

Note:

If allowed country power is greater than the TX power setting of offset 4Eh, then the board maximum EIRP is the TX power setting of offset 4Eh.

If allowed country power is less than the TX power setting of offset 4Eh, then the board maximum EIRP is the country's allowed TX power.

RT3X7X EEPROM Confidential Page 21

2.18 20M/40M BW Power Delta for 2.4GHz band (50h)

Driver compensates the TX power value of 40M BW with this configured value.

2.4GHz TX power delta configuration Register Bit Fields Description

Offset	Field	Description	
50h	5:0	40M BW TX power delta value (MAX=4). 000001: 1dBm 000010: 2dBm 000011: 3dBm 000100: 4dBm	
	6	increase 40M BW TX power with the delta value. decrease 40M BW TX power with the delta value.	
	7	1: enable TX power compensation.	

Example:

Originally, 40M BW TX power = 14dBm and 20M BW TX power = 14dBm when TX power delta configuration is not enabled.

If want keep 20M BW TX power in 14dBm and reduce 40M BW TX power to 10dBm (delta=4dBm), set 50h = 84h (1000 0100), set 51h = 84h (1000 0100).

2.19 20M/40M BW Power Delta for 5GHz band (51h)

5GHz TX power delta configuration Register Bit Fields Description

Offset	Field	Description	
51h	5:0	40M BW TX power delta value (MAX=4). 000001: 1dBm 000010: 2dBm 000011: 3dBm 000100: 4dBm	
	6	1: increase 40M BW TX power with the delta value. 0: decrease 40M BW TX power with the delta value.	
	7	1: enable TX power compensation.	

RT3X7X EEPROM Confidential Page 22

2.20 2.4G band TX0 & TX1 Power (52h~6Dh)

To prevent reading from EMPTY E2PROM, driver treats these "Channel xx Tx Power" value 0 and any value > =0x20 as invalid. That is, only bit [0..4] in each byte contains valid data, [bit 5..7] MUST be 0.

2.4GHz TX0 & TX1 power setting register

Offset	b15 ~b8	b7 ~ b0
52h	Channel 2 TX0 power	Channel 1 TX0 power
54h	Channel 4 TX0 power	Channel 3 TX0 power
56h	Channel 6 TX0 power	Channel 5 TX0 power
58h	Channel 8 TX0 power	Channel 7 TX0 power
5Ah	Channel 10 TX0 power	Channel 9 TX0 power
5Ch	Channel 12 TX0 power	Channel 11 TX0 power
5Eh	Channel 14 TX0 power	Channel 13 TX0 power
60h	Channel 2 TX1power	Channel 1 TX1 power
62h	Channel 4 TX1 power	Channel 3 TX1 power
64h	Channel 6 TX1 power	Channel 5 TX1 power
66h	Channel 8 TX1 power	Channel 7 TX1 power
68h	Channel 10 TX1 power	Channel 9 TX1 power
6Ah	Channel 12 TX1 power	Channel 11 TX1 power
6Ch	Channel 14 TX1 power	Channel 13 TX1 power

2.21 5G band TX0 & TX1 Power (78h~9Ah, A6h~C8h)

To prevent reading from EMPTY E2PROM, driver treats these "Channel xx Tx Power" value 0 and any value > =0x20 as invalid. That is, only bit[0..4] in each byte contains valid data, bit [5..7] MUST be 0.

5GHz TX0 power setting register

Offset	b15 ~b8	b7 ~ b0
78h	Channel 38 TX0 power	Channel 36 TX0 power
7Ah	Channel 44 TX0 power	Channel 40 TX0 power
7Ch	Channel 48 TX0 power	Channel 46 TX0 power
7Eh	Channel 54 TX0 power	Channel 52 TX0 power
80h	Channel 60 TX0 power	Channel 56 TX0 power
82h	Channel 64 TX0 power	Channel 62 TX0 power
84h	Channel 102 TX0 power	Channel 100 TX0 power
86h	Channel 108 TX0 power	Channel 104 TX0 power
88h	Channel 112 TX0 power	Channel 110 TX0 power
8Ah	Channel 118 TX0 power	Channel 116 TX0 power
8Ch	Channel 124 TX0 power	Channel 120 TX0 power
8Eh	Channel 128 TX0 power	Channel 126 TX0 power
90h	Channel 134 TX0 power	Channel 132 TX0 power
92h	Channel 140 TX0 power	Channel 136 TX0 power
94h	Channel 151 TX0 power	Channel 149 TX0 power
96h	Channel 157 TX0 power	Channel 153 TX0 power
98h	Channel 161 TX0 power	Channel 159 TX0 power
9Ah	Reserved	Channel 165 TX0 power

5GHz TX1 power setting register

Offset	b15 ~b8	b7 ~ b0
A6h	Channel 38 TX1 power	Channel 36 TX1 power
A8h	Channel 44 TX1 power	Channel 40 TX1 power
AAh	Channel 48 TX1 power	Channel 46 TX1 power
ACh	Channel 54 TX1 power	Channel 52 TX1 power
AEh	Channel 60 TX1 power	Channel 56 TX1 power
B0h	Channel 64 TX1 power	Channel 62 TX1 power
B2h	Channel 102 TX1 power	Channel 100 TX1 power
B4h	Channel 108 TX1 power	Channel 104 TX1 power
B6h	Channel 112 TX1 power	Channel 110 TX1 power
B8h	Channel 118 TX1 power	Channel 116 TX1 power
BAh	Channel 124 TX1 power	Channel 120 TX1 power
BCh	Channel 128 TX1 power	Channel 126 TX1 power
BEh	Channel 134 TX1 power	Channel 132 TX1 power
C0h	Channel 140 TX1 power	Channel 136 TX1 power
C2h	Channel 151 TX1 power	Channel 149 TX1 power
C4h	Channel 157 TX1 power	Channel 153 TX1 power
C6h	Channel 161 TX1 power	Channel 159 TX1 power
C8h	Reserved	Channel 165 TX1 power

2.22 Tx Power delta TSSI Boundary of 2.4GHz & 5GHz (6Eh ~ 76h, D4h ~ DCh)

Driver compares current TSSI value (from BBP R49) with this TSSI reference value as a base to decide if real-time TX power compensation is required. 0xFF will be treated as invalid value. This function is controlled by 'TXALC' bit in NIC configuration1 bit1.

2.4GHz Tx Power delta TSSI Boundary

Offset	b7 ~ b0
6Eh	2.4G TX power –4 TSSI boundary
6Fh	2.4G TX power –3 TSSI boundary
70h	2.4G TX power –2 TSSI boundary
71h	2.4G TX power –1 TSSI boundary
72h	2.4G TX power ±0 TSSI boundary
73h	2.4G TX power +1 TSSI boundary
74h	2.4G TX power +2 TSSI boundary
75h	2.4G TX power +3 TSSI boundary
76h	2.4G TX power +4 TSSI boundary

5GHz Tx Power delta TSSI Boundary

Offset	b7 ~ b0
D4h	2.4G TX power –4 TSSI boundary
D5h	2.4G TX power –3 TSSI boundary
D6h	2.4G TX power –2 TSSI boundary
D7h	2.4G TX power –1 TSSI boundary
D8h	2.4G TX power ±0 TSSI boundary
D9h	2.4G TX power +1 TSSI boundary
DAh	2.4G TX power +2 TSSI boundary
DBh	2.4G TX power +3 TSSI boundary
DCh	2.4G TX power +4 TSSI boundary

2.23 Tx ALC step value for 2.4GHz & 5G band (77h, DDh)

Delta value for Tx Power step up/down(1 step=0.5dBm) auto-calibration. Driver reads this value as delta value when doing real-time TX calibration. 0xFF will be treated as invalid value. This function controlled by 'TXALC' bit in NIC configuration1 bit1.

Offset	Field	Description			
		TX ALC step value 1 step = 0.5 dBm Example:	e for 2.4G & 5G Band		
77h, <mark>DD</mark>	7:0	7:0		Value	LNA gain (dBm)
·			0000 0000	0	
			0000 0001	0.5	
			0000 1010	5	

2.24 TX rate power configuration (DEh~EFh)

Default value=0x66, low byte for TX power0 setting, High byte for TX power1 (1 step=1dBm)

The 1 step=1dBm.

Offset	Default Value	Description	Bit [7:4]	Bit [3:0]	
DEh	66	TX power for CCK 1M/2M	TX1 power setting	TX0 power setting	
DFh	66	TX power for CCK 5.5M/11M	TX1 power setting	TX0 power setting	
E0h	66	TX power for OFDM 6M/9M	TX1 power setting	TX0 power setting	
E1h	66	TX power for OFDM 12M/18M	TX1 power setting	TX0 power setting	
E2h	66	TX power for OFDM 24M/36M	TX1 power setting	TX0 power setting	
E3h	66	TX power for OFDM 48M/54M	TX1 power setting	TX0 power setting	
E4h	66	TX power for HT MCS=0,1	TX1 power setting	TX0 power setting	
E5h	66	TX power for HT MCS=2,3	TX1 power setting	TX0 power setting	
E6h	66	TX power for HT MCS=4,5	TX1 power setting	TX0 power setting	
E7h	66	TX power for HT MCS=6,7	TX1 power setting	TX0 power setting	
E8h	66	TX power for HT MCS=8,9	TX1 power setting	TX0 power setting	
E9h	66	TX power for HT MCS=10,11	TX1 power setting	TX0 power setting	
EAh	66	TX power for HT MCS=12,13	TX1 power setting	TX0 power setting	
EBh	66	TX power for HT MCS=14,15	TX1 power setting	TX0 power setting	
ECh	66	TX power for STBC MCS=0,1	TX1 power setting	TX0 power setting	
EDh	66	TX power for STBC MCS=2,3	TX1 power setting	TX0 power setting	
EEh	66	TX power for STBC MCS=4,5	TX1 power setting	TX0 power setting	
EFh	66	TX power for STBC MCS=6,7	TX1 power setting	TX0 power setting	

Example:

If the calibrated TX0 & TX1 power =15dBm for MCS 14 & MCS 15 = 0x66 (offset = EBh).

Want to set both TX0 & TX1 power to 19dBm for MCS 0 & MCS 1 (offset = E4h).

The power difference is 4dBm (19-15). It need to increase register value from 6 to A (4dBm = 4 step). i.e. setting E4h=0xAAh can meet the power requirement.

2.25 BBP Instructions (total 8 instructions) (F0h ~ FEh)

8 spare BBP instructions are reserved in E2PROM; each instruction is a <BBP register ID, BBP register value> pair which instructs device driver to initialize the specified BBP register with the specified value upon NIC initialization.

BBP instructions with value <FF, FF> or <00,00> are considered invalid and will be ignored.

2.26 Serial Number for Customer (110h ~ 117h)

2.27 Device Configuration (2E0h)

7	6	5	4	3	2	1	0
Reserved				Force Timer0	NOR flash	8051 power ma	anagement
				enable	type	status	

[Note] b0 and b1 are one-hot.

Device Configuration Register Bit Fields Description

Field	Description				
1:0	8051 power management status 00: AWAKE. Always on 01: DOZE. Allow 8051 to enter low power mode only when there is no active task 10: SLEEP. Deeper sleep mode for 8051. Active tasks are serviced every 40us.				
2	NOR flash type. 0: MX29LV033A or AT49BV322A compatible 1: Reserved				
3	Force Timer0 enable				
7:4	Reserved				