Chương 7

Phụ thuộc hàm và Chuẩn hóa cơ sở dữ liệu

Nội dung trình bày

- Nguyên tắc thiết kế các lược đồ quan hệ.
- Phụ thuộc hàm.
- Các dạng chuẩn.
- Một số thuật toán chuẩn hóa.

Phân rã lược đồ quan hệ

- Lược đồ quan hệ chung R(A₁, ..., A_n)
 - Tập hợp tất cả các thuộc tính của các thực thể.
- Xác định tập PTH F trên R.
- Phân rã
 - Sử dụng các thuật toán chuẩn hóa để tách R thành tập các lược đồ D = {R₁, ..., R_m}.
- Yêu cầu
 - Bảo toàn thuộc tính.
 - Các lược đồ R_i phải ở dạng chuẩn 3 hoặc Boyce-Codd.

Phân rã bảo toàn PTH (1)

- Tính chất bảo toàn PTH
 - Xét lược đồ R và tập PTH F. Giả sử R được phân rã thành D = {R₁, ..., R_m}.
 - Đặt $\pi_{Ri}(F) = \{X \rightarrow Y \in F^+ : X \cup Y \subset R_i\}.$
 - D được gọi là phân rã bảo toàn phụ thuộc hàm đối với F nếu $(\pi_{R1}(F) \cup ... \cup \pi_{Rm}(F))^+ = F^+.$
- Ví dụ

Phân rã bảo toàn PTH (2)

R11	<u>A</u>	В	C	D
	1	α	β	2
	2	β	γ	3
	3	α	δ	2

R111	<u>A</u>	С	D
	1	β	2
	2	γ	3
	3	δ	2
	4	β	4

R112	<u>D</u>	В
	2	α
	3	β
	4	α

<u>A</u>	В	С	D
1	α	β	2
4	α	β	4

Thêm bộ $(4, \beta, 4)$ vào R111 và $(4, \alpha)$ vào R112 thì trạng thái csdl sẽ không thỏa PTH FD2

Phân rã bảo toàn PTH (3)

- Định lý 7.1
 - Tồn tại một phân rã bảo toàn PTH D = {R₁, ..., R_m} của lược đồ R đối với tập PTH F sao cho các R_i ở dạng chuẩn 3.
- Thuật toán 7.4
 - Nhập: R(U), U = {A₁, ..., A_n} và tập PTH F.
 - Xuất: D = {R₁, ..., R_m}, R_i ở dạng chuẩn 3.
 - B1:
 - Tìm phủ tối thiểu G của F.
 - B2:
 - Với mỗi $X \to A_i \in G$, xây dựng lược đồ $R_i(U_i)$, $U_i = X \cup \{A_j\}$. Khóa chính của R_i là X.

Phân rã bảo toàn PTH (4)

- *B3*:
 - Giả sử xong B2 ta có các lược đồ $R_1, ..., R_m$. Nếu $U_1 \cup ... \cup U_m \neq U$ thì xây dựng thêm lược đồ $R_{m+1}(U_{m+1}), U_{m+1} = U (U_1 \cup ... \cup U_m)$. Khóa chính của R_{m+1} là U_{m+1} .
- *B4*:
 - Xuất các lược đồ R_i.

Ví dụ phân rã bảo toàn PTH (1)

- Cho
 - R(ABCDEFG)
 - $F = \{B \rightarrow A, D \rightarrow C, D \rightarrow EB, DF \rightarrow G\}$
- Tách về dạng chuẩn 3, bảo toàn PTH
 - B1:
 - Phủ tối thiểu $G = \{B \rightarrow A, D \rightarrow C, D \rightarrow B, D \rightarrow E, DF \rightarrow G\}$.
 - B2:

- B3:
 - Xuất D = $\{R_1, R_2, R_3\}$.

Ví dụ phân rã bảo toàn PTH (2)

- Cho
 - R(ABCDEFGHI)
 - $F = \{B \rightarrow A, D \rightarrow C, D \rightarrow EB, DF \rightarrow G\}$
- Tách về dạng chuẩn 3, bảo toàn PTH
 - B1:
 - Phủ tối thiểu $G = \{B \rightarrow A, D \rightarrow C, D \rightarrow B, D \rightarrow E, DF \rightarrow G\}$.
 - B2:

- B3:
 - Vì $U_1 \cup U_2 \cup U_3 = \{ABCDEFG\}$ nên đặt $R_4(HI)$.
- B4:
 - $D = \{R_1, R_2, R_3, R_4\}.$

Phân rã không mất thông tin (1)

- Tính chất không mất thông tin
 - Xét lược đồ R và tập PTH F. Giả sử R được phân rã thành D = {R₁, ..., R_m}.
 - D được gọi là phân rã không mất thông tin đối với F nếu với mọi trạng thái $r \in R$ thì $(\pi_{R1}(r) * ... * \pi_{Rm}(r)) = r$.
- Định lý 7.2
 - Phân rã D = {R₁(U₁), R₂(U₂)} của R(U) không mất thông tin đối với tập PTH F nếu và chỉ nếu:
 - $(U_1 \cap U_2) \rightarrow (U_1 U_2) \in F^+$, hoặc
 - $(U_1 \cap U_2) \to (U_2 U_1) \in F^+$.
- Định lý 7.3
 - Nếu phân rã D = {R₁, ..., R_m} của R không mất thông tin đối với F và phân rã D_i = {Q₁, ..., Q_k} của R_i không mất thông tin đối với π_{Ri}(F) thì D' = {R₁, ..., R_{i-1}, Q₁, ..., Q_k, R_{i+1}, ..., R_m} của R cũng không mất thông tin.

Phân rã không mất thông tin (2)

- Thuật toán 7.5
 - Nhập: R(U), U = {A₁, ..., A_n} và tập PTH F.
 - Xuất: D = {R₁, ..., R_m}, R_i ở dạng chuẩn Boyce-Codd.
 - B1:
 - $D = \{R\};$
 - B2:
 - Nếu có lược đồ $Q(U_Q) \in D$ không ở dạng chuẩn BC thì
 - + Tìm $X \to Y \in \pi_Q(F)$ làm Q vi phạm điều kiện BC.
 - + D = (D {Q}) \cup Q₁(U_{Q1}) \cup Q₂(U_{Q2}) với U_{Q1} = U_Q Y và U_{Q2} = X \cup Y.
 - + Quay lại B2.
 - Ngược lại, chuyển sang B3.
 - B3:
 - Xuất D.

Ví dụ phân rã không mất thông tin (1)

- Cho:
 - R(ABCDEFG)
 - $F = \{B \rightarrow A, D \rightarrow C, D \rightarrow EB, DF \rightarrow G\}$
- Tách về dạng chuẩn BC, không mất thông tin.

Ví dụ phân rã không mất thông tin (2)

