Stephan Lehmke mailto:Stephan.Lehmke@cs.uni-dortmund.de

June 21, 2003

 $Stephan\ Lehmke \\ \verb|mailto:Stephan.Lehmke@cs.uni-dortmund.de| \\ June\ 21,\ 2003$

Contents

 $Stephan\ Lehmke \\ \verb|mailto:Stephan.Lehmke@cs.uni-dortmund.de| \\ June\ 21,\ 2003$

Contents

1 A list environment

 $Stephan\ Lehmke \\ \verb|mailto:Stephan.Lehmke@cs.uni-dortmund.de| \\ June\ 21,\ 2003$

Contents

1 A list environment

foo.

 $Stephan\ Lehmke \\ \texttt{mailto:Stephan.Lehmke@cs.uni-dortmund.de}$

June 21, 2003

Contents

1 A list environment

foo. bar.

Stephan Lehmke mailto:Stephan.Lehmke@cs.uni-dortmund.de

June 21, 2003

1 A list environment

foo. bar.

Contents

baz.

 $Stephan\ Lehmke \\ \texttt{mailto:Stephan.Lehmke@cs.uni-dortmund.de}$

June 21, 2003

Contents

1 A list environment

foo. bar.

baz. qux.

$$\sum_{i=1}^{n} i \tag{1}$$

(2)

(3)

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

- (2)
- (3)
- (4)

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n$$

$$= 1 + n + 2 + (n-1) + \dots$$
(1)

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

(3)

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n$$

$$= 1 + n + 2 + (n-1) + \dots$$

$$= (1+n) + \dots + (1+n)$$
(2)
(3)

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= (1+n) + \dots + (1+n) \tag{3}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)}{} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

 $n \log n \quad n \log n \quad n^2 \quad 2^n$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\begin{array}{c|cccc} n & \log n & n \log n & n^2 & 2^n \\ \hline 0 & & & \end{array}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

n	$\log n$	$n \log n$	n^2	2^n
0		_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3			

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

n	$\log n$	$n \log n$	n^2	2^n
0			0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

γ	$\log t$	$n - n \log n$	n^2	2^n
() —		0	1
1	. 0	0	1	2
2	2 1	2	4	4
	3 1.	6 4.8	9	8
4	2	8	16	16
5	$\tilde{2}$.	3 11.6	25	32

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0		_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

$$x(t)$$
 $y(t)$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0		_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

4 A picture

y(t)

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0	_	_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0	_	_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0		_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0	_	_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0		_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n \tag{1}$$

$$= 1 + n + 2 + (n - 1) + \cdots$$
 (2)

$$= \underbrace{(1+n) + \dots + (1+n)}_{\times \frac{n}{2}} \tag{3}$$

$$= \frac{(1+n)\cdot n}{2} \tag{4}$$

3 An array

n	$\log n$	$n \log n$	n^2	2^n
0		_	0	1
1	0	0	1	2
2	1	2	4	4
3	1.6	4.8	9	8
4	2	8	16	16
5	2.3	11.6	25	32

