

## **Confidential Computing and Networking**



© CONFIDENTIAL COMPUTING TAC Tech Talk - 7 April 2022

#### **Eric Voit**

**Principal Engineer** Cisco Systems evoit@cisco.com



Context

Categorization

Use Cases

Standardization

## **Confidential Computing**



- Competing definitions, can mean:
  - Protection of Data in Use
    - In a hardware based Trusted Execution Environment (TEE)



- Protection of Data at Rest
- Application opaque to the Operator
  - Non-repudiable code identity

## Confidential Computing, Networked

Opaque clusters of networked compute emerge

- Zero Trust evolves to hardware-signed evidence (non-repudiation+)
- Remote Attestation of security posture and/or peer identity

Metcalfe's law: value of network is proportional to the square of the number of connected users of the system (n<sup>2</sup>)

- Mesh a mix and match of chip types across L1 ↔ L7 platforms
- Ubiquitous Trustworthy Peers



### **Confidential Application**



We haven't explored terminology in the CCC for this yet

- An application asserting a unified set of Data-in-Use, Data-at-Rest, and Data-in-Transit guarantees throughout all digital systems where sensitive data is visible.
- Dynamic maintenance of the Attestation state of mesh of TEEs which comprise the application.
  - Routing Protocol parallels
- Relevant data to protect will vary based on interested party
- What Evidence (if any) provided to application user?



## Virtuous Cycle Incomplete without Networking



Can I trust my peer













Context

Categorization

Use Cases

Standardization

#### **Categorizing Confidential Compute**



#### Packaging Options using © CONFIDENTIAL TERMINOLOGY







#### What Actually is Protected



#### **Ubiquitous Trustworthy Peers**



- Network a Heterogeneous mix of TEE
- Requires standardization/agreement on Mutually Authenticated Secure Channel (MASC) interaction models and credential formats.

### Functional Requirements – Minimally Deployable Subset





Context

Categorization

**Use Cases** 

Standardization

#### **Networking Applications in Public Cloud**



**Opaque Keystore** 

**Opaque Container Cluster** 

**Opaque Router** 

**Opaque Access Credentials** 

**Opaque Mobility** 

**Opaque Computing Area Network** 

#### **Networking Applications on Premise**



All Applications from public cloud

Secured Firewall Rules

**Opaque Telemetry** 

#### Below Zero Trust

#### Hardware Secret based Admission Control



Helps address 60%+ of Malware delivered over encrypted channel

#### Router Based Applications



NOS keystore / Datastore

Containers and Local Apps

Line Card verified clusters

**Tenant Opaque Telemetry** 

#### Intersecting Organizational Trust Boundaries





Context

Categorization

Use Cases

Standardization

# Connectivity based on Trustworthiness Building upon draft-ietf-rats-architecture



#### draft-ietf-rats-ar4si

Fric Voit

Henk Birkholz Fraunhofer SIT henk.birkholz@sit.fraunhofer.de hardjono@mit.edu

Arm Limited

Vincent Scarlata



# draft-ietf-rats-ar4si Things which the Relying Party might Action

#### Verifiable Identity instance(s)

Attester chip vendor chip type target environment target developer instance verifier id verifier developer

#### + Trustworthiness Claims of the Verifier



#### Verifiable Freshness

| Random<br>Number | nonce           |
|------------------|-----------------|
| Synchronized     | timestamp       |
| Clocks           | tuda sync token |
| Epoch            | epoch id        |

#### Connectivity based on Trustworthiness



## ·I|I·I|I· CISCO