Spatial Perception

A Few Pictures

Space Perception Is Important!

 Desktop is a design using the concept of space.

3D virtual environments also use spatial metaphor.

Necker Cube

 https://michaelbach.de/ot/sze-Necker/index.html

We Relay on Various Cues to Tell the Depth!

Our Brain Plays a Key Role in Deciding Which Objects are Closer and Which are Farther Away.

Spatial Perception

- Two types of cues
 - Pictorial cues
 - Non-pictorial cues

Occlusion

- Objects closer to us occlude those farther away.
 - The strongest depth cue.

Size Perspective

- Size gradients
 - Using object size as reference
- Can be overridden by other cues

Texture Perspective

Texture gradients

Assuming the same

size of repeated patterns

Linear Perspective

- Convergence of parallel lines on the picture plane.
 - Grid lines on the ground.
 - Many 3D environments provide such visual cues.

Cast Shadows

• Where are these two spheres?

Cast Shadows

• Where are these two spheres?

Degree of Contrast

- Aerial haze
 - Distant objects are blurrier.
 - Sun, air, etc.

Elevation (Height on Picture Plane)

Relative height

Importance of View Perspective

Evolution of Depth Representation

Giotto di Bondone (1266–1337)

Kinetic Cues

- Motion Parallax
 - Different retina images due to the movement of the view point.

Binocular Disparity (Stereoscopic Depth)

- Binocular disparity
 - Different retina images on left and right eyes.
- Our brain can calculate the distance based on the disparity.
 - Distance is limited.

Physiological Cues

Non-pictorial cues

- Based on the change of eye lens
- Convergence
 - Based on the relative angles of two eyes.

How Should We Incorporate Depth/Distance in Visualization Design?

Some Principles

Depth cues should be tied to design goals.

Some Principles

- Avoid occlusion.
 - If necessary, make critical information visible.

Some Principles

Provide appropriate depth cues.

3D Style vs. 3D Space

- 3D Style
 - Using depth information to enrich information presentation
 - No need to navigate through the depth dimension.
 - Conventional 2D navigation techniques.
 - -2.5 D
- 3D Space
 - Users have to move around in 3D spaces.
 - Need special designs to support 3D space exploration.

Some Pictures

Visual Object and Meaning

"A picture is worth a thousand words"

- We human beings are very good at picking up the meaning of visual objects.
 - A small fraction of a second.

"A picture is worth a thousand words"

- We human beings are very good at picking up the meaning of visual objects.
 - A small fraction of a second.
- However, not every picture can be quickly picked up.

Object Recognition

Easier from a familiar viewpoint

Limited Tolerance of Transformation

Mental Rotation Is Difficult

– Are the objects in each pair same?

Pattern identification with rotation

https://michaelbach.de/ot/fcs-thompsonThatcher/index.ht

Familiar Structure

Design Implications

- Making objects easy to identify
 - Using typical members or instances of their class
 - Showing from a typical viewpoint
 - Presenting structural relationships clearly
 - Using commonly seen, familiar objects

- E.g., Icon design
 - Don't invent new icons unless it is absolute necessary.

The Good (?)

The Bad

The Ugly

Meanings of Visual Objects

Emotion

Action

Knowledge

Summary on Visual Perception

- Visual perception is the result of eye and brain activities.
 - Mental interpretation on physic objects
- What we see is very selective, and goal-oriented.
 - We cannot see everything.
- Good designs often leverage the characteristics of visual perception.
 - Be aware of what we are good at and what we are not.
 - Pop-up, depth perception, icons, etc.
- Some high-level skills (e.g., pattern recognition) are trainable.
 - Importance of prior knowledge and exercises.

About Midterm I

- 20 multiple-choice questions.
- Basic concepts about visualization, visual analytics, visual perception.
 - Focus on lecture notes on Mondays.