## ANÁLISE DE SOBREVIVÊNCIA

Airlane P. Alencar – IME-USP

Alessandra C. Goulart – FM-USP

Gisela Tunes Silva – IME-USP

## Objetivo

- Estudar o tempo desde um instante inicial até a ocorrência de um evento (falha).
- Estudar o tempo de sobrevida de um paciente a partir de um instante inicial, por exemplo após o primeiro AVC.
- O que queremos saber?
  - O tempo médio de vida após um AVC para homens, mulheres, dependendo do tipo de AVC.
  - Qual a prob de sobreviver 1 ano, 2 anos pós AVC?
- Referências
  - Colosimo e Giolo
  - Kleinbaum e Klein

## Estimar a prob. de sobrevida

Tempo de sobrevida sem censura

| Tempo   | Frequência |
|---------|------------|
| 0-100   | 2          |
| 100-200 | 5          |
| 200-300 | 10         |
| 300-400 | 16         |
| 400-500 | 9          |
| 500-600 | 7          |
| 600-700 | 4          |
| 700-800 | 1          |
| 800-900 | 0          |
| Total   | 54         |
|         |            |



Fonte: Colosimo e Giolo p.33

#### Probabilidade de Sobrevida

 P(T> 100) = prob. de viver mais que 100 dias não morreu antes de 100

|          |            | Suscetíveis |
|----------|------------|-------------|
| Tempo    | Frequência | no início   |
| 0- 100   | 2          | 54          |
| 100- 200 | 5          | 52          |
| 200- 300 | 10         | 47          |
| 300- 400 | 16         | 37          |
| 400- 500 | 9          | 21          |
| 500- 600 | 7          | 12          |
| 600- 700 | 4          | 5           |
| 700- 800 | 1          | 1           |
| 800- 900 | 0          | 0           |
| Total    | 54         |             |

| Tempo | P(S>t) |         |
|-------|--------|---------|
| 0     | 1      |         |
| 100   | 0.963  | = 52/54 |
| 200   | 0.870  | = 47/54 |
| 300   | 0.685  |         |
| 400   | 0.389  |         |
| 500   | 0.222  |         |
| 600   | 0.093  |         |
| 700   | 0.019  |         |
| 800   | 0.000  |         |

#### Taxa de falha

 Sem censura, a taxa de falha (λ) em um intervalo é quantos falharam com relação a quantos estavam suscetíveis com relação à duração do intervalo

|          |            | Suscetíveis | Taxa de falha |
|----------|------------|-------------|---------------|
| Tempo    | Frequência | no início   | no intervalo  |
| 0- 100   | 2          | 54          | 0.037         |
| 100- 200 | 5          | 52          | 0.096         |
| 200- 300 | 10         | 47          | 0.213         |
| 300- 400 | 16         | 37          | 0.432         |
| 400- 500 | 9          | 21          | 0.429         |
| 500- 600 | 7          | 12          | 0.583         |
| 600- 700 | 4          | 5           | 0.800         |
| 700- 800 | 1          | 1           | 1.000         |
| 800- 900 | 0          | 0           |               |
| Total    | 54         |             |               |

Taxa de falha(400-500)= 9/21=42,9%

> Se já sobreviveu até o tempo 400, a chance de falhar nesse intervalo de 100 horas é 42,9%, ie, taxa=42,9%/100 h

#### Censura

- Poderia propor modelos como os de regressão e análise de variância para a variável resposta Tempo de vida
- Mas se observei que um paciente viveu mais que 800 dias e não sei quando morreu, tenho que inclui-lo na análise! Como?

#### Censura?

- O estudo terminou e não observou-se a falha.
- Perda de seguimento (follow up)
- Sei que estava vivo até certo tempo (T>x)
- A pessoa sai do estudo por ocorrência de outro evento.
   Ex: efeito colateral, transplante, óbito quando não for o evento de interesse

## Tempos iniciais e de sobrevida

| Pessoa | Tempo | Falha |
|--------|-------|-------|
| Α      | 5     | 1     |
| В      | 12    | 0     |
| С      | C 3.5 |       |
| D      | 8     | 0     |
| E      | 6     | 0     |
| F      | 3.5   | 1     |



• Tempos: 5, 12+, 3.5+, 8+, 6+, 3.5

#### Tipos de censura

- Censura à direita é a mais usual:
  - Tempo de sobrevida (T) >= tempo observado O.
- Censura à esquerda: T<= O</li>
  - Follow up até pessoas serem HIV+. Fez teste em t e deu positivo então sei que T<t.
- Censura intervalar: Só sei que t1<=T<=t2</li>
   Fiz testes nos instantes t1 e t2

### Tipos de censura

- Aleatória: Tempo de falha (T) e de censura (C) aleatórios e observamos t=min(T,C).
- Censura tipo I: Estudo acaba após certo tempo e temos r falhas e no final do estudo temos n-r censuras.
- Censura tipo II: r é fixado e só os menores r tempos são observados e todos os outros tempos são censurados. O maior tempo observado é t<sub>(r)</sub>.
- Independente: e se a pessoa com melhor prognóstico sempre larga o estudo?
- Colosimo e Giolo: exercícios p.26

#### Curva de sobrevivência

 Apresenta a probabilidade de sobrevivência = função de sobrevivência = S(t)= P(T > t)



Função não crescente com S(0)=1 e que tende a 0 (sem cura= falha ocorre)

- S(1) = P(T>1) >= S(2)...
- Vamos estimar essa curva usando os dados

#### Curva de sobrevivência



Wikipedia. By Michaelg2015 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=52094057

#### Curva de sobrevivência

 Qual curva de sobrevida você prefere para procedimento após sua cirurgia?



### Taxa de falha h(t)

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

- h(t)>=0 e não tem limite máximo
- h(t) é uma taxa que mede o potencial instantâneo
- Ex: Constante para saudáveis (aumenta com idade)
   Maior logo após um AVC e depois decresce
   Aumenta para pacientes com leucemia

#### Taxa e Curva de Sobrevida

S(t) e h(t) são tais que

$$S(t) = \exp\left[-\int_{0}^{t} h(u)du\right]$$

$$h(t) = -\left[\frac{dS(t)/dt}{S(t)}\right]$$

h(t) mede o quanto varia S(t)



$$S(t) = \exp\left[-\int_{0}^{t} h(u)du\right]$$

$$h(t) = - \left\lceil \frac{dS(t)/dt}{S(t)} \right\rceil$$

### Estimativa de S(t) – Kaplan Meier

• Goel et al. 2010. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010 Oct-Dec; 1(4): 274–278.

6, 12, 21, 27, 32, 39, 43, 43, 46+, 89, 115+, 139+, 181+,
211+, 217+, 261, 263, 270, 295+, 311, 335+, 346+, 365+

• t(i) é o i-ésimo tempo de falha ordenado.

## Estimador Kaplan Meier (1958)

| Time of event | No. of Pt. died | Live at the start of the | Estimated   | d probability      | Probability of survivors at the end |
|---------------|-----------------|--------------------------|-------------|--------------------|-------------------------------------|
| (t)           | (d)             | day (n)                  | death (d/n) | survival (1 - d/n) | of time (L)                         |
| 6             | 1               | 23                       | 0.0435      | 0.9565             | 0.9565                              |
| 12            | 1               | 22                       | 0.0455      | 0.9545             | 0.9565 × 0.9545 = 0.9130            |
| 21            | 1               | 21                       | 0.0476      | 0.9524             | o.9130 × o.9523 = o.8695            |
| 27            | 1               | 20                       | 0.0500      | 0.9500             | o.8695 × o.9500 = o.8260            |
| 32            | 1               | 19                       | 0.0526      | 0.9474             | 0.7826                              |
| 39            | 1               | 18                       | 0.0556      | 0.9444             | 0.7391                              |
| 43            | 2               | 17                       | 0.1176      | 0.8824             | 0.6522                              |
| 89            | 1               | 14                       | 0.0714      | 0.9286             | 0.6056                              |
| 261           | 1               | 8                        | 0.125       | 0.875              | 0.5299                              |
| 263           | 1               | 7                        | 0.1429      | 0.8571             | 0.4542                              |
| 270           | 1               | 6                        | 0.1667      | 0.8333             | 0.3785                              |
| 311           | 1               | 4                        | 0.25        | 0.75               | 0.2839                              |

The time 't' for which the value of 'L' i.e. total probability of survival at the end of a particular time is 0.50 is called as median survival time. The estimates obtained are invariably expressed in graphical form. The graph plotted between estimated survival probabilities/estimated survival percentages (on Y axis) and time past after entry into the study (on X axis) consists of horizontal and vertical lines. (If the survival curve is drawn as a step function: the proportion surviving remains unchanged between the events, even if there are some intermediate censored observations. It is incorrect to join the calculated points by sloping lines (Figure 1).



## Objetivo

 Estimar curvas de sobrevida levando-se em conta a censura (KK)

```
Grupo 1 - Tratamento - n=21 - 9 falhas e 12 censuras
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+
Grupo 2 - Placebo - n=21 - 21 falhas
1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23
```

## Dados formato longo

| ind | t  | Falha | Grupo                                     |
|-----|----|-------|-------------------------------------------|
| 1   | 6  | 1     | 1                                         |
| 2   | 6  | 1     | 1                                         |
| 3   | 6  | 1     | 1                                         |
| 4   | 7  | 1     | 1                                         |
| 5   | 10 | 1     | 1                                         |
| 6   | 13 | 1     | 1                                         |
| 7   | 16 | 1     | 1                                         |
| 8   | 22 | 1     | 1                                         |
| 9   | 23 | 1     | 1                                         |
| 10  | 6  | 0     | 1                                         |
| 11  | 9  | 0     | 1                                         |
| 12  | 10 | 0     | 1                                         |
| 13  | 11 | 0     | 1                                         |
| 14  | 17 | 0     | 1                                         |
| 15  | 19 | 0     | 1                                         |
| 16  | 20 | 0     | 1                                         |
| 17  | 25 | 0     | 1                                         |
| 18  | 32 | 0     | 1                                         |
| 19  | 32 | 0     | 1                                         |
| 20  | 34 | 0     | 1                                         |
| 21  | 35 | 0     | 1                                         |
| 1   | 1  | 1     | 2                                         |
| 2   | 1  | 1     | 2                                         |
| 3   | 2  | 1     | 2                                         |
| 4   | 2  | 1     | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 5   | 3  | 1     | 2                                         |
| 6   | 4  | 1     | 2                                         |
| 7   | 4  | 1     | 2                                         |

## Estimativa de S(t) – Kaplan Meier

• 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+

|   |       |        | censura        | expostos  |                         |
|---|-------|--------|----------------|-----------|-------------------------|
| i | t(i)  | falhas | [t(i), t(i+1)) | sobrevive | ram até t(i) (#T>=t(i)) |
|   | 0     | 0      | 0              | 21        | sobrevivem >=0 semanas  |
| 1 | 6     | 3      | 1              | 21        | sobrevivem >=6 semanas  |
| 2 | 7     | 1      | 1              | 17        | sobrevivem >=7 semanas  |
| 3 | 10    | 1      | 2              | 15        | sobrevivem >=10 semanas |
| 4 | 13    | 1      | 0              | 12        | sobrevivem >=13 semanas |
| 5 | 16    | 1      | 3              | 11        | sobrevivem >=16 semanas |
| 6 | 22    | 1      | 0              | 7         | sobrevivem >=22 semanas |
| 7 | 23    | 1      | 5              | 6         | sobrevivem >=23semanas  |
|   | Total | 9      | 12             |           |                         |

#### Probabilidade de falha e sobrevivência

- Em [t(i), t(i+1))
- P(morrer em [6,7))= 3/21
- P(sobrevivem ao [6,7))= 1-3/21

|   |       |        | censura        | expostos    | Em [t(    | i), t(i+1))    |
|---|-------|--------|----------------|-------------|-----------|----------------|
| i | t(i)  | falhas | [t(i), t(i+1)) | (# T>=t(i)) | P(morrer) | P(sobr)=1-P(m) |
|   | 0     | 0      | 0              | 21          | 0         | 1              |
| 1 | 6     | 3      | 1              | 21          | 0.143     | 0.857          |
| 2 | 7     | 1      | 1              | 17          | 0.059     | 0.941          |
| 3 | 10    | 1      | 2              | 15          | 0.067     | 0.933          |
| 4 | 13    | 1      | 0              | 12          | 0.083     | 0.917          |
| 5 | 16    | 1      | 3              | 11          | 0.091     | 0.909          |
| 6 | 22    | 1      | 0              | 7           | 0.143     | 0.857          |
| 7 | 23    | 1      | 5              | 6           | 0.167     | 0.833          |
|   | Total | 9      | 12             |             |           |                |

### Estimar S(t)=P(T>t) - KM

- P(T>6) = 0.857
- P(T>7)= P(T>7|T>6)P(T>6)= 0.857\*0.941

|   |       |        | censura        | expostos    | Em [t(i), t(i+1)) |                |                   |
|---|-------|--------|----------------|-------------|-------------------|----------------|-------------------|
| i | t(i)  | falhas | [t(i), t(i+1)) | (# T>=t(i)) | P(morrer)         | P(sobr)=1-P(m) | S^(t)= S estimada |
|   | 0     | 0      | 0              | 21          | 0                 | 1              | 1                 |
| 1 | 6     | 3      | 1              | 21          | 0.143             | 0.857          | 0.857             |
| 2 | 7     | 1      | 1              | 17          | 0.059             | 0.941          |                   |
| 3 | 10    | 1      | 2              | 15          | 0.067             | 0.933          |                   |
| 4 | 13    | 1      | 0              | 12          | 0.083             | 0.917          |                   |
| 5 | 16    | 1      | 3              | 11          | 0.091             | 0.909          |                   |
| 6 | 22    | 1      | 0              | 7           | 0.143             | 0.857          |                   |
| 7 | 23    | 1      | 5              | 6           | 0.167             | 0.833          |                   |
|   | Total | 9      | 12             |             |                   |                |                   |

#### Estimar S(t)=P(T>t) - KM

- P(T>7)= P(T>7|T>6)P(T>6)= 0.857\*0.941=0.807
- P(T>10)= P(T>10|T>7)P(T>7)= 0.807\*0.933=

|   |       |        | censura        | expostos    | Em [t(i), t(i+1)) |                |                   |
|---|-------|--------|----------------|-------------|-------------------|----------------|-------------------|
| i | t(i)  | falhas | [t(i), t(i+1)) | (# T>=t(i)) | P(morrer)         | P(sobr)=1-P(m) | S^(t)= S estimada |
|   | 0     | 0      | 0              | 21          | 0                 | 1              | 1                 |
| 1 | 6     | 3      | 1              | 21          | 0.143             | 0.857          | 0.857             |
| 2 | 7     | 1      | 1              | 17          | 0.059             | 0.941          | 0.807             |
| 3 | 10    | 1      | 2              | 15          | 0.067             | 0.933          |                   |
| 4 | 13    | 1      | 0              | 12          | 0.083             | 0.917          |                   |
| 5 | 16    | 1      | 3              | 11          | 0.091             | 0.909          |                   |
| 6 | 22    | 1      | 0              | 7           | 0.143             | 0.857          |                   |
| 7 | 23    | 1      | 5              | 6           | 0.167             | 0.833          |                   |
|   | Total | 9      | 12             |             |                   |                |                   |

## Estimar S(t) - KM

|   |       |        | censura        | expostos    | Em [t(i), t(i+1)) |                |                   |
|---|-------|--------|----------------|-------------|-------------------|----------------|-------------------|
| i | t(i)  | falhas | [t(i), t(i+1)) | (# T>=t(i)) | P(morrer)         | P(sobr)=1-P(m) | S^(t)= S estimada |
|   | 0     | 0      | 0              | 21          | 0                 | 1              | 1                 |
| 1 | 6     | 3      | 1              | 21          | 0.143             | 0.857          | 0.857             |
| 2 | 7     | 1      | 1              | 17          | 0.059             | 0.941          | 0.807             |
| 3 | 10    | 1      | 2              | 15          | 0.067             | 0.933          | 0.753             |
| 4 | 13    | 1      | 0              | 12          | 0.083             | 0.917          | 0.690             |
| 5 | 16    | 1      | 3              | 11          | 0.091             | 0.909          | 0.627             |
| 6 | 22    | 1      | 0              | 7           | 0.143             | 0.857          | 0.538             |
| 7 | 23    | 1      | 5              | 6           | 0.167             | 0.833          | 0.448             |
|   | Total | 9      | 12             |             |                   |                |                   |

• 
$$P(T>7)= P(T>7|T>6)P(T>6)= 0.857*0.941$$

$$\hat{S}(t_{(f)}) = \prod_{i=1}^{f} P(T > t_{(i)} \mid T > t_{(i-1)})$$

#### Gráfico



### Propriedades do estimador

#### O estimador de Kaplan-Meier é

- Não viciado para amostras grandes
- É consistente
- Converge assintoticamente para processo gaussiano
- É o estimador de máxima verossimilhança de S(t)
- Variância do estimador e IC assint. p.41 Fórmula de Greenwood
- Para altos valores de t, o IC pode apresentar valor <0 e pode ser usada transf. de  $\hat{S}(t)$ . Default do R  $\log(\hat{S}(t))$ .
- Outro estimador é o de Nelson-Aalen (vide p. 43 Colosimo e Giolo)

#### Com censura

- Exemplo: Colosimo e Giolo
- Terapia esteróide no tratamento de hepatite viral aguda (Gregory al., 1976)
- 29 pacientes aleatorizados: 14 com esteroide
- Acompanhamento de 29 semanas

### Exercício Colosimo e Giolo p39

- Tempos de sobrevida (até a morte ou censura)
- Esteróide: 1, 1, 1, 1+, 4+, 5, 7, 8, 10, 10+, 12+, 16+, 16+, 16+
- Usar comandos no R

# Comparação de curvas - Kleinbaum e Klein p.61

- Grupo 1 Tratamento n=21 9 falhas e 12 censuras
- 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+
- Grupo 2 Placebo n=21 21 falhas
- 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22,23
- Tabela com os tempos de falha e número de óbitos (m) e suscetíveis (n) segundo o grupo

## Comparação de curvas - Kleinbaum e Klein p.61

- Qual o valor esperado para cada tempo e grupo se a sobrevida fosse igual nos 2 grupos?
- Esperado no grupo 1:

$$e1f = \left(\frac{m1f + m2f}{n1f + n2f}\right) \cdot n1f$$

Mortalidade igual nos 2 grupos em t(f)

| t(f) | m1f | m2f | n1f | n2f      |
|------|-----|-----|-----|----------|
| 1    | 0   | 2   | 21  | 21       |
| 2    | 0   | 2   | 21  | 19       |
| 3    | 0   | 1   | 21  | 17       |
| 4    | 0   | 2   | 21  | 16       |
| 5    | 0   | 2   | 21  | 14<br>12 |
| 6    | 3   | 0   | 21  | 12       |
| 7    | 1   | 0   | 17  | 12       |
| 8    | 0   | 4   | 16  | 12       |
| 10   | 1   | 0   | 15  | 8        |
| 11   | 0   | 2   | 13  | 8        |
| 12   | 0   | 2   | 12  | 6        |
| 13   | 1   | 0   | 12  | 4        |
| 15   | 0   | 1   | 11  | 4        |
| 16   | 1   | 0   | 11  | 3        |
| 17   | 0   | 1   | 10  | 3        |
| 22   | 1   | 1   | 7   | 2        |
| 23   | 1   | 1   | 6   | 1        |
| soma | 9   | 21  |     |          |

Kleinbaum e Klein

## Estatística Log Rank

| t(f) | m1f | m2f | n1f | n2f | e1f           | e2f           | m1f-e1f | m2f-e2f |
|------|-----|-----|-----|-----|---------------|---------------|---------|---------|
| 1    | 0   | 2   | 21  | 21  | (2/42) 21=1   | (2/42) 21=1   | -1.00   | 1.00    |
| 2    | 0   | 2   | 21  | 19  | (2/40) 21=1.1 | (2/40) 19=1   | -1.05   | 1.05    |
| 3    | 0   | 1   | 21  | 17  | (1/38) 21=0.6 | (1/38) 17=0.4 | -0.55   | 0.55    |
| 4    | 0   | 2   | 21  | 16  | (2/37) 21=1.1 | (2/37) 16=0.9 | -1.14   | 1.14    |
| 5    | 0   | 2   | 21  | 14  | (2/35) 21=1.2 | (2/35) 14=0.8 | -1.20   | 1.20    |
| 6    | 3   | 0   | 21  | 12  | (3/33) 21=1.9 | (3/33) 12=1.1 | 1.09    | -1.09   |
| 7    | 1   | 0   | 17  | 12  | (1/29) 17=0.6 | (1/29) 12=0.4 | 0.41    | -0.41   |
| 8    | 0   | 4   | 16  | 12  | (4/28) 16=2.3 | (4/28) 12=1.7 | -2.29   | 2.29    |
| 10   | 1   | 0   | 15  | 8   | (1/23) 15=0.7 | (1/23) 8=0.3  | 0.35    | -0.35   |
| 11   | 0   | 2   | 13  | 8   | (2/21) 13=1.2 | (2/21) 8=0.8  | -1.24   | 1.24    |
| 12   | 0   | 2   | 12  | 6   | (2/18) 12=1.3 | (2/18) 6=0.7  | -1.33   | 1.33    |
| 13   | 1   | 0   | 12  | 4   | (1/16) 12=0.8 | (1/16) 4=0.3  | 0.25    | -0.25   |
| 15   | 0   | 1   | 11  | 4   | (1/15) 11=0.7 | (1/15) 4=0.3  | -0.73   | 0.73    |
| 16   | 1   | 0   | 11  | 3   | (1/14) 11=0.8 | (1/14) 3=0.2  | 0.21    | -0.21   |
| 17   | 0   | 1   | 10  | 3   | (1/13) 10=0.8 | (1/13) 3=0.2  | -0.77   | 0.77    |
| 22   | 1   | 1   | 7   | 2   | (2/9) 7=1.6   | (2/9) 2=0.4   | -0.56   | 0.56    |
| 23   | 1   | 1   | 6   | 1   | (2/7) 6=1.7   | (2/7) 1=0.3   | -0.71   | 0.71    |
| soma | 9   | 21  |     |     | 19.25         | 10.75         | -10.25  | 10.25   |

### Teste Log rank

 A estatística de teste compara os valores observados e os valores esperados em um grupo

$$estat = \frac{(O_2 - E_2)^2}{Var(O_2 - E_2)} = \frac{\left(\sum_f (m_{2f} - e_{2f})\right)^2}{Var(O_2 - E_2)}$$

$$Var(O_i - E_i) = \sum_f \frac{n_{1f} n_{2f} \left(m_{1f} + m_{2f}\right) \left(n_{1f} + n_{2f} - m_{1f} - m_{2f}\right)}{\left(n_{1f} + n_{2f}\right)^2 \left(n_{1f} + n_{2f} - 1\right)}$$

- H0: as curvas são iguais
- Sob H0,  $estat \sim \chi_1^2$

## Teste log rank - exemplo

- Estat=  $(10.25)^2/6.26 = 16.7929$
- Valor p = P(quiquad1>16.7929) < 0.0001</li>
- No excel: Valor p=1-DIST.QUIQUA(B77;1;1)
- Conclusão: Há diferença significativa entre as curvas

## Log rank para g grupos

- A estatística envolve a diferença entre valores observados e esperados para todos os grupos mas precisa calcular a matriz de variâncias e covariâncias dessas diferenças.
- Sob H0
- Esse teste é assintótico, ou seja, essa distribuição vale para n grande

estat ~ 
$$\chi_{g-1}^2$$

#### Outros testes

- Outros testes semelhantes ao teste log rank incluem pesos wf para cada tempo t(f).
- Estatística ponderada

Teste de Wilcoxon: wf=nf
 Maior peso para os tempos iniciais

$$= \frac{\left(\sum_{f} w_{f} \left(m_{if} - e_{if}\right)\right)^{2}}{\operatorname{var}\left(\sum_{f} w_{f} \left(m_{if} - e_{if}\right)\right)}$$

#### Outros testes

| Teste                  | Peso                                                         |  |  |
|------------------------|--------------------------------------------------------------|--|--|
| Log rank               | 1                                                            |  |  |
| Wilcoxon               | $n_f$                                                        |  |  |
| Tarone-Ware            | $\sqrt{n_f}$                                                 |  |  |
| Peto                   | Sobrevivência estimada combinada nos 2 grupos                |  |  |
| Flemington- Harrington | $\hat{S}(t_{(f-1)})^p \left[1 - \hat{S}(t_{(f-1)})\right]^q$ |  |  |

#### Teste estratificado

- Compara 2 curvas de sobrevida controlando por uma variável categorizada (G estratos)
- Calcula as diferenças Oi-Ei para cada estrato e soma essas diferenças.
- Elas devem estar no mesmo sentido nos vários estratos.
- Sob H0

estat ~ 
$$\chi_{G-1}^2$$

## Intervalo de confiança para S(t)

- O estimador de Kaplan Meier para S(t) tem distribuição normal assintótica.
- Intervalo de confiança para S(t)
- Fórmula de Greenwood:

$$IC = \left[\hat{S}(t) \mp z \sqrt{v \hat{a} r(\hat{S}(t))}\right]$$

$$v \hat{a} r(\hat{S}(t)) = \left(\hat{S}(t)\right)^{2} \sum_{f:t_{(f)} \leq t} \left[\frac{m_{f}}{n_{f}(n_{f} - m_{f})}\right]$$

 Obs: Para valores extremos de t, este IC pode apresentar limites negativos ou maiores que 1. Kalbfleish e Prentice (1980) sugerem usar U^(u)=log[-log(^S(t))] e sua variância assintótica para construir IC. (Colosimo e Giolo, p.42).

## Exemplo KK

#### IC – Grupo Tratamento

```
Grupo=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
                     0.857
                                        0.720
  6
        2.1
                           0.0764
                                                    1.000
        17
                1 0.807
                           0.0869
                                        0.653
                                                    0.996
                1 0.753 0.0963
 10
        15
                                        0.586
                                                    0.968
 13
                1 0.690
        12
                          0.1068
                                        0.510
                                                    0.935
                1 0.627 0.1141
 16
        11
                                        0.439
                                                    0.896
 22
                1 0.538
                          0.1282
                                        0.337
                                                    0.858
 23
                1 0.448
                                                    0.807
                           0.1346
                                        0.249
```

## Kaplan Meier com ICs



#### No R

```
d=read.csv("C:/Users/Lane/Dropbox/2018/surv/data/kk1.csv", sep=";")
names(d)
# Grupo: 1=tratamento e 2=Placebo
d$Grupo <- factor(d$Grupo, labels = c("tratamento", "placebo"))
library(survival)
fit <- survfit(Surv(t, Falha) ~ Grupo, data=d)
summary(fit)
plot(fit, lty = 1:2, col=1:2, xlab= "semanas", ylab= "Sobrevivência")
legend(20, 1, c("Tratamento", "Placebo"), lty = 1:2, col=1:2, box.col="white")
plot(fit, conf.int=T, lty = 1:2, col=1:2, xlab= "semanas", ylab= "Sobrevivência")
legend(23, .2, c("Tratamento", "Placebo"), lty = 1:2, col=1:2, box.col="white")
survdiff(formula = Surv(t, Falha) ~ Grupo, data=d)
 survdiff(formula = Surv(t, Falha) ~ Grupo, data = d)
             N Observed Expected (O-E)^2/E (O-E)^2/V
  Grupo=tratamento 21 9
                                19.3
                                        5.46
                                                 16.8
  Grupo=placebo 21
                                                16.8
                          21
                                10.7
                                        9.77
```

## Bibliografia

- Kleinbaum e Klein. Survival analysis a self-learning text.
- Colosimo e Giolo. Análise de sobrevivência aplicada.