Arguments

August 29, 2019

1 Arguments

An argument is a finite sequence of propositions. All propositions except for the final statement are called *premises* while the final statement is called the *conclusion*. We say that an argument is *valid* if the truth of all premises implies the truth of the conclusion.

From the definition of an argument it is clear that an argument consisting of a sequence of premises $P_1, ..., P_n$ and a conclusion C is valid of and only if

$$(P_1 \wedge P_2 \wedge \cdots \wedge P_n) \Rightarrow C$$

is a tautology.

1.1 Rules of Inference

- 1. $A :: A \vee B$
- 2. $A \wedge B$: A
- 3. $(A \Rightarrow B) \land A$: B
- 4. $(A \Rightarrow B) \land \neg B$ $\therefore \neg A$
- 5. $(A \vee B) \wedge \neg B$: A
- 6. $(A \Rightarrow B) \land (B \Rightarrow C) \therefore A \Rightarrow C$
- 7. $(A \Leftrightarrow B) \land (B \Leftrightarrow C) \therefore A \Leftrightarrow C$
- 8. $(A \Rightarrow B) \land (C \Rightarrow D) \land (A \lor B) \therefore C \lor D$

Other useful rules:

- 1. Premises can be used anywhere in the proof.
- 2. Any conclusions that have been made can be used as premises in the follow-up steps of the proof.
- 3. If $(A_1, A_2, \dots, A_n, A : B)$ is a valid argument, then $(A_1, A_2, \dots, A_n : A \Rightarrow B)$ is also valid. (If the conclusion that needs to be proved is $A \Rightarrow B$, then A can be used as a premise.)

1.2 Exercise

- 1. Show that $(p \lor q, p \Rightarrow \neg r, s \Rightarrow t, \neg s \Rightarrow r, \neg t \quad \therefore q)$ is a valid argument.
- 2. Show that $(p \Rightarrow (q \Rightarrow r), \neg s \lor p, q : s \Rightarrow r)$ is a valid argument.

1.3 Predicate Logic

A predicate is a declaritive sentence involving variables. I.e. a statement involving variables such that when the variables a substituted with appropriate individuals we obtain a proposition. The arity of a predicate is the number of distinct variables appearing in the predicate.

Predicate logic consists of basic predicate variables A, B, P, Q, \dots , variables x, y, z, \dots , and constants a, b, c, \dots . If A is, for example, a binary predicate, then we write A(x,y) to indicate that x and y are the variables appearing in A. The variables x, y, z, \dots take values from a universe called the *domain of discourse*. The constants a, b, c, \dots are specific individuals from the domain of discourse. Replacing all the variables by constants in a predicate or compound expression yields a declaritive statement (a proposition).

1.4 Logical Quantifier

Bounding variables in a compound expression using the *logical quantifier* \forall , that reads for all . . . , or the *logical quantifier* \exists , that reads there exists . . .

1.
$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

$$2. \ \neg \exists x A(x) \equiv \forall x \neg A(x)$$

3.
$$\forall x A(x) \land B \equiv \forall x (A(x) \land B)$$

4.
$$\forall x A(x) \lor B \equiv \forall x (A(x) \lor B)$$

5.
$$\exists x A(x) \land B \equiv \exists x (A(x) \land B)$$

6.
$$\exists x A(x) \lor B \equiv \exists x (A(x) \lor B)$$

7.
$$\forall x (A(x) \land B(x)) \equiv \forall x A(x) \land \forall x B(x)$$

8.
$$\exists x (A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$$

1.5 Exercise

1.
$$\forall x A(x) \Rightarrow B \equiv \exists x (A(x) \Rightarrow B)$$

2.
$$\exists x A(x) \Rightarrow B \equiv \forall x (A(x) \Rightarrow B)$$

3.
$$\neg \forall x (F(x) \Rightarrow G(x)) \equiv \exists x (F(x) \land \neg G(x))$$

4. Show that $(\exists x(P(x) \Rightarrow Q(x))) \Leftrightarrow ((\forall xP(x)) \Rightarrow (\exists xQ(x)))$ is a tautology.

O YXAW ⇒ BUT DOUG MAN QUEZXAW ⇒ B TO A (FEED)
= 7 VAA(X) VB) 9V2P (387) = 73XA60VB
= 3x 7AWVBO blow & E YX 7AWVB 7 = 21
= 72 (7AK)VB)(9V2F) A = YX (7AK) VB)
= 77(A(x) =)B) = 47 (A(x) =)B)
THE MENT OF THE CAMPACE CANDINGS OF THE PARTY OF THE PART
3 7 4x (F(x) ⇒ G(x)) 1 = (P(x) ⇒ Q(x1)) 1
= 7 VX (7FW) VG(X)) = 3x (7P(X) VQ(X))
= 3x7(7FWVG(X)) = 3x7P(X) V 3xQ(X)
= 3x (FX) A7G(XI) =7YXP(X) V3XQ(X)
$\equiv (\forall \lambda \lambda ()) \Rightarrow (\exists \lambda \beta())$
700000000000000000000000000000000000000
977 (60570) (6779)

1.6 Rules of inference for quantified expressions

Universal Instantiation, Universal Generalisation, Existential Instantiation, Existential Generalisation.

Show that $(\exists x(P(x) \Rightarrow Q(x))) \Leftrightarrow ((\forall xP(x)) \Rightarrow (\exists xQ(x)))$ is a tautology. First, we will prove $(\exists x(P(x) \Rightarrow Q(x))) \Rightarrow ((\forall xP(x)) \Rightarrow (\exists xQ(x)))$ is a tautology. We only need to show that $\because \exists x(P(x) \Rightarrow Q(x)) \therefore (\forall xP(x)) \Rightarrow (\exists xQ(x))$ is a valid argument.

- 1. $\therefore \exists x (P(x) \Rightarrow Q(x))$
- 2. $\therefore P(a) \Rightarrow Q(a)$, where a is some (unknown) element of the domain of discourse.
- $3. \because \forall x P(x)$
- 4. $\therefore P(a)$ Universal Instantiation of 3
- 5. $\therefore Q(a)$ Modus Ponens from 2 and 4
- 6. $\therefore \exists x Q(x)$ Existential Generalisation of 5

Next, we will prove $((\forall x P(x)) \Rightarrow (\exists x Q(x))) \Rightarrow (\exists x (P(x) \Rightarrow Q(x)))$ is a tautology. We only need to show that $(\forall x P(x)) \Rightarrow (\exists x Q(x)) \therefore \exists x (P(x) \Rightarrow Q(x))$ is a valid argument.

- 1. $\because (\forall x P(x)) \Rightarrow (\exists x Q(x))$
- 2. $\therefore P(a) \Rightarrow Q(a)$, where a is some (unknown) element of the domain of discourse.
- 3. $\therefore \exists x (P(x) \Rightarrow Q(x))$ Existential Generalisation of 2

1.7 A Confusing Problem

What's wrong with the following inference? The premise is $\forall x \exists y F(x,y)$.

- 1. $\forall x \exists y F(x,y)$
- 2. $\exists y F(t, y)$ (UI)
- 3. F(t,c) (EI)
- 4. $\forall x F(x,c)$ (UG)
- 5. $\exists y \forall x F(x,y)$ (EG)

Step 3 is wrong. Actually, step 3 should be F(t, c(t)). We cannot use EI here.

1.8 Vacuously true

If the domain of the universal quantifier \forall is the empty set $M = \emptyset$, then the statement $(\forall x \in M)A(x)$ is defined to be true regardless of the predicate A(x). It is then said that A(x) is vacuously true.

1.9 Valid and sound

Valid: If the truth of all premises implies the truth of the conclusion.

Sound: If, in addition to being valid, an argument has only true premises, we say that the argument is sound. In that case, its conclusion is true.