Feuille de TD 7 Espaces Euclidiens

Exercice 1:

Orthonormaliser dans \mathbb{R}^3 la famille $u_1 = (1, -2, -2), u_2 = (-1, 0, -1)$ et $u_3 = (5, -3, 7)$.

Exercice 2:

Soit F le sous-espace de \mathbb{R}^5 engendré par u=(1,2,3,-1,2) et v=(2,4,7,2,-1). Trouver une base de l'orthogonal F^{\perp} de F.

- Exercice 3: $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. Montrer que A définit un produit scalaire φ sur \mathbb{R}^3 . Construire une base orthonormale pour φ .
 - 2. Considérons la base (u_1, u_2, u_3) de l'espace euclidien \mathbb{R}^3 , où

$$u_1 = (1, 1, 1), \quad u_2 = (0, 1, 1), \quad u_3 = (0, 0, 1).$$

Utiliser le procédé d'orthogonalisation de Gram-Schmidt pour transformer $\{v_i\}$ en une base orthonormale.

Exercice 4:

 \mathbb{R}^4 est muni de sa structure canonique d'espace vectoriel euclidien. Soient $u_1=(1,0,1,0),\ u_2=(1,-1,1,-1)$ et $F=\mathrm{Vect}(u_1,u_2)$.

- 1. Déterminer une base orthonormale de F.
- 2. Déterminer la matrice dans la base canonique de \mathbb{R}^4 du projecteur orthogonal sur F.
- 3. Déterminer la distance du vecteur (1, 1, 1, 1) au sous-espace vectoriel F.
- 4. Déterminer la matrice dans la base canonique de \mathbb{R}^4 de la symétrie orthogonale par rapport à F.

Exercice 5:

Montrer que l'application $(A, B) \mapsto \operatorname{tr}({}^t AB)$ de $M_2(\mathbb{R}) \times M_2(\mathbb{R})$ à valeurs dans \mathbb{R} est un produit scalaire. Calculer l'orthogonal de l'ensemble des matrices diagonales puis celui des matrices symétriques.

Exercice 6:

Dans \mathbb{R}^3 muni de son produit scalaire canonique, déterminer la projection orthogonale sur le plan d'équation x+y+z=0 de (1,0,0), et plus généralement d'un vecteur (x,y,z) quelconque. Donner la matrice de cette projection ainsi que celle de la symétrie orthogonale par rapport à ce plan.

Exercice 7:

Dans \mathbb{R}^3 muni du produit scalaire euclidien canonique, donner la matrice de la projection orthogonale sur le plan d'équation x+2y-3z=0. Donner la matrice de la symétrie orthogonale par rapport à ce même plan.

Exercise 8: Déterminer
$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 \left(e^x - (ax+b)\right)^2 dx$$
.

Exercice 9:

Dans un espace euclidien de dimension n, on considère un sous-espace F de dimension r et (f_1,\ldots,f_r) une base orthonormée de cet espace. On note p_F la projection orthogonale sur F, c'est à dire la projection sur F associée à la décomposition $E = F \oplus F^{\perp}$. Montrer que:

$$\forall v \in F$$
, $p_F(v) = \langle v, f_1 \rangle f_1 + \langle v, f_2 \rangle f_2 + \dots + \langle v, f_r \rangle f_r$.

Exercise 10: Soient
$$E = \mathbb{R}_n[X]$$
, $I_n = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^n e^{\frac{-t^2}{2}} dt$.

1. Montrer que l'intégrale I_n est convergente. Que vaut I_{2p+1} ?

Soit
$$\varphi: E \times E \to \mathbb{R}$$
 définie par $\varphi(P,Q) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P(t)Q(t)e^{\frac{-t^2}{2}} dt$.

- 2. Montrer que φ est un produit scalaire
- 3. On suppose n=2. Écrire la matrice associée à φ dans la base $(1,X,X^2)$. Construire une base orthonormale (P_0, P_1, P_2) par le procédé d'orthogonalisation de Gram-Schmidt appliqué à $(1, X, X^2)$.

Exercice 11:

On munit le \mathbb{R} -espace vectoriel $\mathbb{R}_2[X]$ du produit scalaire ϕ défini sur $\mathbb{R}_2[X] \times \mathbb{R}_2[X]$ par

$$\phi(P,Q) = \int_{-1}^{1} P(t)Q(t) dt.$$

- 1. Déterminer l'orthonormalisée de Gram-Schmidt de la base canonique de $\mathbb{R}_2[X]$.
- 2. Déterminer la distance du polynôme $P = X^2 + X + 1$ au sous-espace vectoriel F de $\mathbb{R}_2[X]$ formé des polynômes f tels que f'(0) = 0.

Exercice 12:

A deux polynômes P et Q de $\mathbb{R}_n[X]$, on associe le nombre

$$\phi(P,Q) = \int_0^1 P'(t)Q'(t) dt + P(0)Q(0).$$

- 1. Montrer que ϕ est un produit scalaire sur $\mathbb{R}_n[X]$.
- 2. Lorsque n=2, donner une base orthonormée pour ce produit scalaire.

Exercice 13:

Soit $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ définie de la manière suivante : si u = (x, y, z) et u' = (x', y', z') alors

$$f(u, u') = 2xx' + yy' + 2zz' + xy' + yx' + xz' + zx' + yz' + zy'.$$

- 1. Montrer que f est un produit scalaire sur \mathbb{R}^3 .
- 2. Soit P le sous-espace vectoriel de \mathbb{R}^3 d'équation cartésienne 2x y + z = 0.
 - (a) Déterminer l'orthogonal du sous-espace vectoriel P.
 - (b) Déterminer un sous-espace vectoriel de \mathbb{R}^3 dont l'orthogonal est P.
- 3. Déterminer l'orthonormalisée de Gram-Schmidt de la base canonique de \mathbb{R}^3 pour f.