CS 4510: Automata and Complexity Decture 5: NFA To DFA Lecturer: Zvi Galil Author: Austin Peng

Contents

1	Equivalence Of NFAs and DFAs (cont.)	2
2	Closure Under Regular Operations	4

1 Equivalence Of NFAs and DFAs (cont.)

Theorem 1. Every NFA has an equivalent DFA.

Proof. Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing A. Before doing the full construction, first consider the easier case when N has no ε arrows. We will take ε into account later.

1. $Q' = \mathcal{P}(Q)$ (the set of subsets of Q)

Every state of M is a set of states of N.

- 2. Σ (the alphabet) doesn't change
- 3. For $R \in Q'$, and $a \in \Sigma$, let $\delta'(R, a) = \{q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R\}$

If R is a state of M, it is also a set of states of N. When M reads a symbol a in state R, it shows where A takes each state in R. Because each state may go to a set of states, we take the union of all these sets.

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$

4. $q'_0 = \{q_0\}$

M starts in the state corresponding to the collection containing just the start state of N.

5. $F' = \{R \in Q' \mid R \text{ contains an accepting state of } N\}$

The machine M accepts if one of the possible states that N could be in at this point is an accepting state.

Now consider the ε arrows. For any state R of M, we define E(R) to be the collection of states that can be reached from members of R by going only along ε arrows, including members of R themselves. Formally, for $R \subseteq Q$, let

$$E(R) = \{q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}$$

Then we modify the transition function of M to place additional fingers on all states that can be reached by going along ε arrows after every step. Replacing $\delta(r,a)$ by $E(\delta(r,a))$ achieves this. Finally, we need to modify the start state of M to move the fingers initially to all possible states that can be reached from the start state of N along the ε arrows.

The changes mentioned above to account for ε arrows are shown below:

- 3. $\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R \}$
- 4. $q_0' = E(\{q_0\})$

Example 1. Consider the following NFA N:

Note that the DFA will have 8 states, one for each subset of the states of N. The DFA and its transitions are shown below:

The NFA's start state is 1, so the DFA's start state is $E(\{1\}) = \{1,3\}$ (the set of states reachable from 1 by travelling along ε arrows and 1 itself). The NFA's accepting state is 1, so the DFA's accepting states are all sets of states that include 1: $\{\{1\},\{1,2\},\{1,3\},\{1,2,3\}\}$

As for D's transition function, each of D's states goes to one place on input a and one place on input b (by definition of DFA). We will illustrate a few.

- in D, state $\{2\}$ goes to $\{2,3\}$ on input a because in N, state 2 goes to both 2 and 3 on input a.
- in D, state $\{1\}$ goes to \emptyset on input a because no a arrows exit it.
- in D, state $\{1,2\}$ goes to $\{2,3\}$ on input a because in N, state 1 goes nowhere on input a and state 2 goes to both 2 and 3 on input a

NFA with n states \rightarrow DFA with 2^n states.

2 Closure Under Regular Operations

Theorem 2. The class of regular languages is closed under the union operation.

Proof Idea. We have regular languages A_1 and A_2 and want to prove that $A_1 \cup A_2$ is regular. The idea is to take 2 NFAs, N_1 and N_2 , that accept A_1 and A_2 respectively, and combine them into a single new NFA N.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$

The states of N are all the states of N_1 and N_2 with the addition of a new start state g_0 .

- 2. The state q_0 is the start state of N.
- 3. The set of accepting states $F = F_1 \cup F_2$.

The accepting states of N are all the accepting states of N_1 and N_2 . That way, N accepts if either N_1 or N_2 accepts.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

Theorem 3. The class of regular languages is closed under the concatenation operation.

Proof Idea. We have regular languages A_1 and A_2 and want to prove that $A_1 \circ A_2$ is regular. The idea is to take 2 NFAs, N_1 and N_2 , and combine them into a single new NFA N (like how we did in the union closure proof, but with a few changes).

Proof. Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \circ A_2$.

1. $Q = Q_1 \cup Q_2$

The states of N are all the states of N_1 and N_2 .

- 2. The state q_1 is the start state of N_1 .
- 3. The set of accepting states F_2 are the same as the accepting states of N_2 .
- 4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a \in \varepsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

Theorem 4. The class of regular languages is closed under the Kleene star operation.

Proof Idea. We have a regular language A and want to prove that A_1^* also is regular. We take an NFA N_1 for A_1 and modify it to recognize A_1^* as shown. The resulting NFA N will accept its input whenever it can be broken into several pieces and N accepts each piece.

We can construct N like N_1 with additional ε arrows returning to the start state from the accepting states. This way when the processing gets to the end of a piece that N_1 accepts, the machine N has the option of jumping back to the start state to try to read another piece that N_1 accepts.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1. $Q = \{q_0\} \cup Q_1$

The states of N are the states of N_1 plus a new start state.

- 2. The state q_0 is the new start state.
- 3. $F = \{q_0\} \cup F_1$

The accepting states are the old accepting states plus the new start state.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \notin \varepsilon \\ \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a \in \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a \in \varepsilon \\ \emptyset & q = q_0 \text{ and } a \notin \varepsilon \end{cases}$$