

**Datasheet** 

## High-side driver with MultiSense analog feedback for automotive applications





#### **Features**

| Max transient supply voltage      | V <sub>CC</sub>   | 40 V      |
|-----------------------------------|-------------------|-----------|
| Operating voltage range           | V <sub>CC</sub>   | 4 to 28 V |
| Typ. on-state resistance (per Ch) | R <sub>ON</sub>   | 140 mΩ    |
| Current limitation (typ)          | I <sub>LIMH</sub> | 12 A      |
| Standby current (max)             | I <sub>STBY</sub> | 0.5 μΑ    |



- AEC-Q100 qualified
- General
  - Single channel smart high-side driver with MultiSense analog feedback
  - Very low standby current
  - Compatible with 3 V and 5 V CMOS outputs
- MultiSense diagnostic functions
  - Multiplexed analog feedback of: load current with high precision proportional current mirror, V<sub>CC</sub> supply voltage and T<sub>CHIP</sub> device temperature
  - Overload and short to ground (power limitation) indication
  - Thermal shutdown indication
  - OFF-state open-load detection
  - Output short to V<sub>CC</sub> detection
  - Sense enable/disable
- Protections
  - Undervoltage shutdown
  - Overvoltage clamp
  - Load current limitation
  - Self limiting of fast thermal transients
  - Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin
  - Loss of ground and loss of V<sub>CC</sub>
  - Reverse battery with external components
  - Electrostatic discharge protection

### **Applications**

- All types of automotive resistive, inductive and capacitive loads
- Specially intended for automotive signal lamps (up to R10W or LED Rear Combinations)
- · Protected supply for ADAS systems: radars and sensors

### **Description**

The devices are single channel high-side drivers manufactured using ST proprietary VIPower M0-7 technology and housed in PowerSSO-16 and SO-8 packages. The

## Product status link

VN7140AJ

VN7140AS



devices are designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, and to provide protection and diagnostics.

The devices integrate advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.

A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, supply voltage feedback and chip temperature sense, in addition to the detection of overload and short circuit to ground, short to  $V_{CC}$  and OFF-state open-load.

A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices.

DS10830 - Rev 4 page 2/45



# 1 Block diagram and pin description



Figure 1. Block diagram

**Table 1. Pin functions** 

| Name               | Function                                                                                                                                               |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>CC</sub>    | Battery connection.                                                                                                                                    |
| OUTPUT             | Power outputs.                                                                                                                                         |
| GND                | Ground connection. Must be reverse battery protected by an external diode / resistor network.                                                          |
| INPUT              | Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.                               |
| MultiSense         | Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.  |
| SEn                | Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.                                                    |
| SEL <sub>0,1</sub> | Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer.                                                     |
| FaultRST           | Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode. |

DS10830 - Rev 4 page 3/45



PowerSSO-16 INPUT □ 16 FaultRST = 15 SEn □ 3 14 GND 🖂 4 13 □ N.C. SEL0 = 5 12 □ N.C. SEL1 □ 6 11 MultiSense □ 7 10 □ N.C. N.C. 🖂 8 9 □ N.C. TAB = Vcc SO-8

Figure 2. Configuration diagram (top view)

GAPG2601151129CFT

Table 2. Suggested connections for unused and not connected pins

| Connection / pin | MultiSense            | N.C.  | Output      | Input                  | SEn, SELx, FaultRST    |
|------------------|-----------------------|-------|-------------|------------------------|------------------------|
| Floating         | Not allowed           | X (1) | X           | X                      | X                      |
| To ground        | Through 1 kΩ resistor | Х     | Not allowed | Through 15 kΩ resistor | Through 15 kΩ resistor |

1. X: do not care.

DS10830 - Rev 4 page 4/45

GADG2203170950PS



# 2 Electrical specification

Vcc Vcc  $V_{\text{Fn}}$  $I_{FR}$ FaultRST OUTPUT<sub>0</sub>, ISEn Vout SEn ISENSE ISEL cs [ SEL<sub>0</sub> VSENSE V<sub>SEn</sub>  $V_{SEL}$ INPUT<sub>0,1</sub> VIN IGND

Figure 3. Current and voltage conventions

Note:  $V_F = V_{OUT} - V_{CC}$  during reverse battery condition.

### 2.1 Absolute maximum ratings

Stressing the device above the rating listed in Table 3. Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

| Symbol            | Parameter                                                                                       | Value              | Unit  |
|-------------------|-------------------------------------------------------------------------------------------------|--------------------|-------|
| V <sub>CC</sub>   | DC supply voltage                                                                               | 38                 | V     |
| -V <sub>CC</sub>  | Reverse DC supply voltage                                                                       | 0.3                | \ \ \ |
| V <sub>CCPK</sub> | Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; $R_L$ = 4 $\Omega$ ) | 40                 | V     |
| V <sub>CCJS</sub> | Maximum jump start voltage for single pulse short circuit protection                            | 28                 | V     |
| -I <sub>GND</sub> | DC reverse ground pin current                                                                   | 200                | mA    |
| I <sub>OUT</sub>  | OUTPUT DC output current                                                                        | Internally limited | _     |
| -l <sub>out</sub> | Reverse DC output current                                                                       | 3                  | Α     |
| I <sub>IN</sub>   | INPUT DC input current                                                                          |                    |       |
| I <sub>SEn</sub>  | SEn DC input current                                                                            | -1 to 10           | m 1   |
| I <sub>SEL</sub>  | Reverse DC output current  INPUT DC input current                                               | -1 10 10           | mA    |
| I <sub>FR</sub>   | FaultRST DC input current                                                                       |                    |       |
| V <sub>FR</sub>   | FaultRST DC input voltage                                                                       | 7.5                | V     |
| 1                 | MultiSense pin DC output current ( $V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$ )                   | 10                 | mA    |
| ISENSE            | MultiSense pin DC output current in reverse (V <sub>CC</sub> < 0 V)                             | -20                | IIIA  |

DS10830 - Rev 4 page 5/45



| Symbol                                | Parameter                                                                                                      | Value      | Unit |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|------|
| E <sub>MAX</sub>                      | Maximum switching energy (single pulse) ( $T_{DEMAG} = 0.4 \text{ ms}$ ; $T_{jstart} = 150 ^{\circ}\text{C}$ ) | 10         | mJ   |
|                                       | Electrostatic discharge (JEDEC 22A-114F)                                                                       |            |      |
|                                       | INPUT                                                                                                          | 4000       |      |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | MultiSense                                                                                                     | 2000       |      |
| V <sub>ESD</sub>                      | SEn, SEL <sub>0,1</sub> , FaultRST                                                                             |            | V    |
|                                       | ОИТРИТ                                                                                                         | 4000       |      |
|                                       | V <sub>CC</sub>                                                                                                |            |      |
| V <sub>ESD</sub>                      | Charge device model (CDM-AEC-Q100-011)                                                                         | 750        | V    |
| Tj                                    | Junction operating temperature                                                                                 | -40 to 150 | °C   |
| T <sub>stg</sub>                      | Storage temperature                                                                                            | -55 to 150 |      |

#### 2.2 Thermal data

Table 4. Thermal data

| Symbol                 | Parameter                                                            | Typ. value |             | Unit  |
|------------------------|----------------------------------------------------------------------|------------|-------------|-------|
| Symbol                 | Farameter                                                            | SO-8       | PowerSSO-16 | Offic |
| R <sub>thj-board</sub> | Thermal resistance junction-board (JEDEC JESD 51-8) (1)              | 31         | 7.9         |       |
| R <sub>thj-amb</sub>   | Thermal resistance junction-ambient (JEDEC JESD 51-2) <sup>(2)</sup> | 71         | 61          | °C/W  |
| R <sub>thj-amb</sub>   | Thermal resistance junction-ambient (JEDEC JESD 51-2)                | 48.5       | 26.5        |       |

<sup>1.</sup> Device mounted on four-layers 2s2p PCB

### 2.3 Main electrical characteristics

7 V <  $V_{CC}$  < 28 V; -40°C <  $T_j$  < 150°C, unless otherwise specified.

All typical values refer to  $V_{CC}$  = 13 V;  $T_j$  = 25°C, unless otherwise specified.

**Table 5. Power section** 

| Symbol                | Parameter                        | Test conditions                                                      | Min. | Тур. | Max. | Unit |
|-----------------------|----------------------------------|----------------------------------------------------------------------|------|------|------|------|
| V <sub>CC</sub>       | Operating supply voltage         |                                                                      | 4    | 13   | 28   | V    |
| V <sub>USD</sub>      | Undervoltage shutdown            |                                                                      |      |      | 4    | V    |
| V <sub>USDReset</sub> | Undervoltage shutdown reset      |                                                                      |      |      | 5    | V    |
| V <sub>USDhyst</sub>  | Undervoltage shutdown hysteresis |                                                                      |      | 0.3  |      | V    |
|                       | On-state resistance              | I <sub>OUT</sub> = 1 A; T <sub>j</sub> = 25°C                        |      | 140  |      |      |
| R <sub>ON</sub>       |                                  | I <sub>OUT</sub> = 1 A; T <sub>j</sub> = 150°C                       |      |      | 280  | mΩ   |
|                       |                                  | I <sub>OUT</sub> = 1 A; V <sub>CC</sub> = 4 V; T <sub>j</sub> = 25°C |      |      | 210  |      |
| V .                   | Clamp voltage                    | I <sub>S</sub> = 20 mA; 25°C < T <sub>j</sub> < 150°C                | 41   | 46   | 52   | V    |
| V <sub>clamp</sub>    |                                  | $I_S = 20 \text{ mA}; T_j = -40^{\circ}\text{C}$                     | 38   |      |      | V    |

DS10830 - Rev 4 page 6/45

<sup>2.</sup> Device mounted on two-layers 2s0p PCB with 2 cm<sup>2</sup> heatsink copper trace



| Symbol               | Parameter                                                           | Test conditions                                                                                                                                  | Min.                                                                                   | Тур. | Max. | Unit |  |
|----------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|------|------|--|
|                      |                                                                     | $V_{CC} = 13 \text{ V};$<br>$V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$<br>$V_{SEL0,1} = 0 \text{ V}; T_j = 25^{\circ}\text{C}$         |                                                                                        |      | 0.5  |      |  |
| I <sub>STBY</sub>    | Supply current in standby at $V_{CC}$ = 13 $V^{(1)}$                | $V_{CC} = 13 \text{ V};$<br>$V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$<br>$V_{SEL0,1} = 0 \text{ V}; T_j = 85^{\circ}\text{C}$ (2)     |                                                                                        |      | 0.5  | μA   |  |
|                      |                                                                     | $V_{CC} = 13 \text{ V};$<br>$V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$<br>$V_{SEL0,1} = 0 \text{ V}; T_j = 125^{\circ}\text{C}$        |                                                                                        |      | 3    |      |  |
| t <sub>D_STBY</sub>  | Standby mode blanking time                                          | $V_{CC} = 13 \text{ V; } V_{IN} = V_{OUT}$<br>= $V_{FR} = V_{SEL0,1} = 0 \text{ V; }$<br>$V_{SEn} = 5 \text{ V to 5 V}$                          | 60                                                                                     | 300  | 550  | μs   |  |
| I <sub>S(ON)</sub>   | Supply current                                                      | $V_{CC} = 13 \text{ V; } V_{SEn} = 0 \text{ V; } V_{SEL0,1} = V_{FR} = 0 \text{ V; } V_{IN} = 5 \text{ V; } I_{OUT} = 0 \text{ A}$               |                                                                                        | 3    | 5    | mA   |  |
| I <sub>GND(ON)</sub> | Control stage current consumption in ON-state. All channels active. | V <sub>CC</sub> = 13 V; V <sub>SEn</sub> = 5 V;<br>V <sub>FR</sub> = V <sub>SEL0,1</sub> = 0 V; V <sub>IN</sub> = 5 V;<br>I <sub>OUT</sub> = 1 A |                                                                                        |      | 6    | mA   |  |
| l m                  | Off-state output current at V <sub>CC</sub> = 13 V                  | Off-state output current at                                                                                                                      | $V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$<br>$T_j = 25^{\circ}\text{C}$ | 0    | 0.01 | 0.5  |  |
| I <sub>L(off)</sub>  |                                                                     | $V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$<br>$T_j = 125^{\circ}\text{C}$                                                          | 0                                                                                      |      | 3    | μA   |  |
| V <sub>F</sub>       | Output - V <sub>CC</sub> diode voltage                              | I <sub>OUT</sub> = -1 A; T <sub>j</sub> = 150°C                                                                                                  |                                                                                        |      | 0.7  | V    |  |

<sup>1.</sup> PowerMOS leakage included.

Table 6. Switching

|                                            | $V_{CC}$ = 13 V; -40°C < $T_j$ < 150°C, unless otherwise specified |                       |      |      |          |      |  |  |
|--------------------------------------------|--------------------------------------------------------------------|-----------------------|------|------|----------|------|--|--|
| Symbol                                     | Parameter                                                          | Test conditions       | Min. | Тур. | Max.     | Unit |  |  |
| t <sub>d(on)</sub> (1)                     | Turn-on delay time at T <sub>j</sub> = 25 °C                       | R <sub>I</sub> = 13 Ω | 10   | 70   | 120      |      |  |  |
| t <sub>d(off)</sub> (1)                    | Turn-off delay time at T <sub>j</sub> = 25 °C                      | NL - 13 12            | 10   | 40   | 100      | μs   |  |  |
| $(dV_{OUT}/dt)_{on}$ (1)                   | Turn-on voltage slope at T <sub>j</sub> = 25 °C                    | R <sub>I</sub> = 13 Ω | 0.1  | 0.27 | 0.7      | V/µs |  |  |
| (dV <sub>OUT</sub> /dt) <sub>off</sub> (1) | Turn-off voltage slope at T <sub>j</sub> = 25 °C                   | NL - 13 12            | 0.1  | 0.35 | 0.7      | V/μS |  |  |
| W <sub>ON</sub>                            | Switching energy losses at turn-on (t <sub>won</sub> )             | R <sub>L</sub> = 13 Ω | _    | 0.15 | 0.18 (2) | mJ   |  |  |
| W <sub>OFF</sub>                           | Switching energy losses at turn-off (t <sub>woff</sub> )           | R <sub>L</sub> = 13 Ω | _    | 0.1  | 0.18(2)  | mJ   |  |  |
| t <sub>SKEW</sub> (1)                      | Differential Pulse skew (t <sub>PHL</sub> - t <sub>PLH</sub> )     | R <sub>L</sub> = 13 Ω | -100 | -50  | 0        | μs   |  |  |

<sup>1.</sup> See Figure 6. Switching time and Pulse skew.

Table 7. Logic inputs

| 7 V < V <sub>CC</sub> < 28 V; -40°C < T <sub>j</sub> < 150°C |                       |                 |      |      |      |      |  |
|--------------------------------------------------------------|-----------------------|-----------------|------|------|------|------|--|
| Symbol                                                       | Parameter             | Test conditions | Min. | Тур. | Max. | Unit |  |
|                                                              | INPUT characteristics |                 |      |      |      |      |  |

DS10830 - Rev 4 page 7/45

<sup>2.</sup> Parameter specified by design; not subjected to production test.

<sup>2.</sup> Parameter guaranteed by design and characterization; not subjected to production test.



| Symbol                 | Parameter                | Test conditions                                | Min.          | Тур. | Max.             | Uni      |
|------------------------|--------------------------|------------------------------------------------|---------------|------|------------------|----------|
|                        |                          | Test conditions                                | 101111.       | ıyp. |                  |          |
| V <sub>IL</sub>        | Input low level voltage  |                                                |               |      | 0.9              | V        |
| I <sub>IL</sub>        | Low level input current  | V <sub>IN</sub> = 0.9 V                        | 1             |      |                  | μA       |
| V <sub>IH</sub>        | Input high level voltage |                                                | 2.1           |      |                  | V        |
| l <sub>IH</sub>        | High level input current | V <sub>IN</sub> = 2.1 V                        |               |      | 10               | μA       |
| V <sub>I(hyst)</sub>   | Input hysteresis voltage |                                                | 0.2           |      |                  | V        |
| $V_{ICL}$              | Input clamp voltage      | I <sub>IN</sub> = 1 mA                         | 5.3           |      | 7.2              | V        |
| TIGE IMPACTION TO      | input siamp voitage      | I <sub>IN</sub> = -1 mA                        |               | -0.7 |                  |          |
|                        | Fa                       | ultRST characteristics (VN7140A                | J only)       |      |                  |          |
| $V_{FRL}$              | Input low level voltage  |                                                |               |      | 0.9              | V        |
| I <sub>FRL</sub>       | Low level input current  | V <sub>IN</sub> = 0.9 V                        | 1             |      |                  | μΑ       |
| V <sub>FRH</sub>       | Input high level voltage |                                                | 2.1           |      |                  | V        |
| I <sub>FRH</sub>       | High level input current | V <sub>IN</sub> = 2.1 V                        |               |      | 10               | μΑ       |
| V <sub>FR(hyst)</sub>  | Input hysteresis voltage |                                                | 0.2           |      |                  | V        |
| .,                     |                          | I <sub>IN</sub> = 1 mA                         | 5.3           |      | 7.5              |          |
| $V_{FRCL}$             | RCL Input clamp voltage  | I <sub>IN</sub> = -1 mA                        |               | -0.7 |                  | V        |
|                        | SEL <sub>0,1</sub> cha   | racteristics (7 V < V <sub>CC</sub> < 18 V) (V | N7140AJ only) |      |                  |          |
| V <sub>SELL</sub>      | Input low level voltage  |                                                |               |      | 0.9              | V        |
| I <sub>SELL</sub>      | Low level input current  | V <sub>IN</sub> = 0.9 V                        | 1             |      |                  | μA       |
| V <sub>SELH</sub>      | Input high level voltage |                                                | 2.1           |      |                  |          |
| I <sub>SELH</sub>      | High level input current | V <sub>IN</sub> = 2.1 V                        |               |      | 10               | μA       |
| V <sub>SEL(hyst)</sub> | Input hysteresis voltage | IIV                                            | 0.2           |      |                  | V        |
| - SEE(Hyst)            | putyoto.oo.o voltage     | I <sub>IN</sub> = 1 mA                         | 5.3           |      | 7.2              | <u> </u> |
| $V_{SELCL}$            | Input clamp voltage      | I <sub>IN</sub> = -1 mA                        |               | -0.7 | · · <del>-</del> | V        |
|                        | <u> </u>                 | SEn characteristics (7 V < V <sub>CC</sub> < 1 | 18 V)         | 0.7  |                  |          |
| V <sub>SEnL</sub>      | Input low level voltage  | 3.1a1a3.013.130 (1 v · v 00 ·                  |               |      | 0.9              | V        |
|                        |                          | V <sub>IN</sub> = 0.9 V                        | 1             |      | 0.8              |          |
| I <sub>SEnL</sub>      | Low level input current  | VIN - 0.5 V                                    |               |      |                  | μA       |
| V <sub>SEnH</sub>      | Input high level voltage | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \          | 2.1           |      |                  | V        |
| I <sub>SEnH</sub>      | High level input current | V <sub>IN</sub> = 2.1 V                        |               |      | 10               | μA       |
| √SEn(hyst)             | Input hysteresis voltage |                                                | 0.2           |      |                  | V        |
| $V_{SEnCL}$            | Input clamp voltage      | I <sub>IN</sub> = 1 mA                         | 5.3           |      | 7.2              |          |

DS10830 - Rev 4 page 8/45



**Table 8. Protections** 

| 7 V < V <sub>CC</sub> < 18 V; -40°C < T <sub>j</sub> < 150°C |                                                         |                                                                                                                                  |                      |                      |                      |      |  |
|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|------|--|
| Symbol                                                       | Parameter                                               | Test conditions                                                                                                                  | Min.                 | Тур.                 | Max.                 | Unit |  |
| -                                                            | DO also at aircraft arrows t                            | V <sub>CC</sub> = 13 V                                                                                                           | 8                    | 12                   | 40                   |      |  |
| I <sub>LIMH</sub>                                            | DC short circuit current                                | 4 V < V <sub>CC</sub> < 18 V <sup>(1)</sup>                                                                                      |                      |                      | 16                   | A    |  |
| L                                                            | Short circuit current                                   | V <sub>CC</sub> = 13 V;                                                                                                          |                      | 4                    |                      | _ ^  |  |
| I <sub>LIML</sub>                                            | during thermal cycling $T_R < T_j < T_{TSD}$            |                                                                                                                                  | 4                    |                      |                      |      |  |
| T <sub>TSD</sub>                                             | Shutdown temperature                                    |                                                                                                                                  | 150                  | 175                  | 200                  |      |  |
| T <sub>R</sub>                                               | Reset temperature <sup>(1)</sup>                        |                                                                                                                                  | T <sub>RS</sub> + 1  | T <sub>RS</sub> + 7  |                      |      |  |
| T <sub>RS</sub>                                              | Thermal reset of fault diagnostic indication            | V <sub>FR</sub> = 0 V; V <sub>SEn</sub> = 5 V                                                                                    | 135                  |                      |                      | °C   |  |
| T <sub>HYST</sub>                                            | Thermal hysteresis( $T_{TSD}$ - $T_R$ ) <sup>(1)</sup>  |                                                                                                                                  |                      | 7                    |                      |      |  |
| ΔT <sub>J_SD</sub>                                           | Dynamic temperature                                     | $T_j = -40^{\circ}C; V_{CC} = 13 \text{ V}$                                                                                      |                      | 60                   |                      | K    |  |
| tLATCH_RST                                                   | Fault reset time for output unlatch (only for VN7140AJ) | V <sub>FR</sub> = 5 V to 0 V; V <sub>SEn</sub> = 5 V;<br>V <sub>IN</sub> = 5 V; V <sub>SEL0</sub> = 0 V; V <sub>SEL1</sub> = 0 V | 3                    | 10                   | 20                   | μs   |  |
|                                                              |                                                         | I <sub>OUT</sub> = 1 A; L = 6 mH; T <sub>j</sub> = -40°C                                                                         | V <sub>CC</sub> - 38 |                      |                      | V    |  |
| $V_{DEMAG}$                                                  | Turn-off output voltage clamp                           | I <sub>OUT</sub> = 1 A; L = 6 mH; T <sub>j</sub> = 25°C to 150°C                                                                 | V <sub>CC</sub> - 41 | V <sub>CC</sub> - 46 | V <sub>CC</sub> - 52 | V    |  |
| V <sub>ON</sub>                                              | Output voltage drop limitation                          | I <sub>OUT</sub> = 0.07 A                                                                                                        |                      | 20                   |                      | mV   |  |

<sup>1.</sup> Parameter guaranteed by design and characterization; not subjected to production test.

Table 9. MultiSense

| 7 V < V <sub>CC</sub> < 18 V; -40°C < T <sub>j</sub> < 150°C |                                                |                                                                                                                            |      |      |      |      |  |
|--------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|------|------|------|--|
| Symbol                                                       | Parameter                                      | Test conditions                                                                                                            | Min. | Тур. | Max. | Unit |  |
| V                                                            | MultiSanaa alama valtaga                       | V <sub>SEn</sub> = 0 V; I <sub>SENSE</sub> = 1 mA                                                                          | -17  |      | -12  | V    |  |
| V <sub>SENSE_CL</sub>                                        | MultiSense clamp voltage                       | V <sub>SEn</sub> = 0 V; I <sub>SENSE</sub> = -1 mA                                                                         |      | 7    |      | V    |  |
|                                                              | Curre                                          | entSense characteristics                                                                                                   | -    |      |      |      |  |
| K <sub>OL</sub>                                              | Iout/Isense                                    | I <sub>OUT</sub> = 0.01 A; V <sub>SENSE</sub> = 0.5 V;<br>V <sub>SEn</sub> = 5 V                                           | 295  |      |      |      |  |
| $dK_{cal}/K_{cal}$ (1) (2)                                   | Current sense ratio drift at calibration point | I <sub>OUT</sub> = 0.01 A to 0.025 A;<br>I <sub>cal</sub> = 17.5 mA; V <sub>SENSE</sub> = 0.5 V;<br>V <sub>SEn</sub> = 5 V | -30  |      | 30   | %    |  |
| K <sub>LED</sub>                                             | Iout/Isense                                    | I <sub>OUT</sub> = 0.025 A; V <sub>SENSE</sub> = 0.5 V;<br>V <sub>SEn</sub> = 5 V                                          | 330  | 580  | 820  |      |  |
| dK <sub>LED</sub> /K <sub>LED</sub> (1) (2)                  | Current sense ratio drift                      | I <sub>OUT</sub> = 0.025 A; V <sub>SENSE</sub> = 0.5 V;<br>V <sub>SEn</sub> = 5 V                                          | -25  |      | 25   | %    |  |
| Κ <sub>0</sub>                                               | Iout/Isense                                    | I <sub>OUT</sub> = 0.07 A; V <sub>SENSE</sub> = 0.5 V;<br>V <sub>SEn</sub> = 5 V                                           | 375  | 550  | 720  |      |  |
| dK <sub>0</sub> /K <sub>0</sub> (1) (2)                      | Current sense ratio drift                      | I <sub>OUT</sub> = 0.07 A; V <sub>SENSE</sub> = 0.5 V;<br>V <sub>SEn</sub> = 5 V                                           | -20  |      | 20   | %    |  |
| K <sub>1</sub>                                               | I <sub>OUT</sub> /I <sub>SENSE</sub>           | I <sub>OUT</sub> = 0.15 A; V <sub>SENSE</sub> = 4 V;<br>V <sub>SEn</sub> = 5 V                                             | 360  | 500  | 670  |      |  |

DS10830 - Rev 4 page 9/45



| Symbol                                             | Parameter                                                                                           | Test conditions                                                                                                                                                                    | Min. | Тур. | Max. | Īι |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|----|
| dK <sub>1</sub> /K <sub>1</sub> <sup>(1) (2)</sup> | Current sense ratio drift                                                                           | I <sub>OUT</sub> = 0.15 A; V <sub>SENSE</sub> = 4 V;<br>V <sub>SEn</sub> = 5 V                                                                                                     | -15  |      | 15   |    |
| K <sub>2</sub>                                     | I <sub>OUT</sub> /I <sub>SENSE</sub>                                                                | I <sub>OUT</sub> = 0.7 A; V <sub>SENSE</sub> = 4 V;<br>V <sub>SEn</sub> = 5 V                                                                                                      | 380  | 475  | 570  |    |
| dK <sub>2</sub> /K <sub>2</sub> (1) (2)            | Current sense ratio drift                                                                           | I <sub>OUT</sub> = 0.7 A; V <sub>SENSE</sub> = 4 V;<br>V <sub>SEn</sub> = 5 V                                                                                                      | -10  |      | 10   |    |
| K <sub>3</sub>                                     | I <sub>OUT</sub> /I <sub>SENSE</sub>                                                                | I <sub>OUT</sub> = 2 A; V <sub>SENSE</sub> = 4 V; V <sub>SEn</sub> = 5 V                                                                                                           | 430  | 470  | 520  | T  |
| dK <sub>3</sub> /K <sub>3</sub> (1) (2)            | Current sense ratio drift                                                                           | I <sub>OUT</sub> = 2 A; V <sub>SENSE</sub> = 4 V; V <sub>SEn</sub> = 5 V                                                                                                           | -5   |      | 5    |    |
|                                                    |                                                                                                     | MultiSense disabled: V <sub>SEn</sub> = 0 V                                                                                                                                        | 0    |      | 0.5  |    |
|                                                    |                                                                                                     | MultiSense disabled:<br>-1 V < V <sub>SENSE</sub> < 5 V <sup>(1)</sup>                                                                                                             | -0.5 |      | 0.5  |    |
| I <sub>SENSE0</sub>                                | MultiSense leakage current                                                                          | MultiSense enabled: $V_{SEn}$ = 5 V;<br>Channel ON; $I_{OUT}$ = 0 A; Diagnostic<br>selected; $V_{IN}$ = 5 V; $V_{SEL0}$ = 0 V;<br>$V_{SEL1}$ = 0 V; $I_{OUT}$ = 0 A                | 0    |      | 2    |    |
|                                                    |                                                                                                     | MultiSense enabled: V <sub>SEn</sub> = 5 V;<br>Channel OFF; Diagnostic selected:<br>V <sub>IN</sub> = 0 V; V <sub>SEL0</sub> = 0 V; V <sub>SEL1</sub> = 0 V                        | 0    |      | 2    |    |
| V <sub>OUT_MSD</sub> (1)                           | Output voltage for MultiSense shutdown                                                              | $V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V};$<br>$V_{SEL1} = 0 \text{ V}; R_{SENSE} = 2.7 \text{ k}\Omega; I_{OUT} = 1 \text{ A}$                         |      | 5    |      |    |
| V <sub>SENSE_SAT</sub>                             | Multisense saturation voltage                                                                       | $V_{CC}$ = 7 V; $R_{SENSE}$ = 2.7 k $\Omega$ ;<br>$V_{SEn}$ = 5 V; $V_{IN}$ = 5 V; $V_{SEL0}$ = 0 V;<br>$V_{SEL1}$ = 0 V; $I_{OUT}$ = 2 A; $I_{j}$ = 150°C                         | 5    |      |      |    |
| SENSE_SAT (1)                                      | CS saturation current                                                                               | $V_{CC} = 7 \text{ V}; V_{SENSE} = 4 \text{ V}; V_{IN} = 5 \text{ V};$<br>$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 0 \text{ V};$<br>$T_j = 150 ^{\circ}\text{C}$ | 4    |      |      |    |
| I <sub>OUT_SAT</sub> (1)                           | Output saturation current                                                                           | $V_{CC} = 7 \text{ V}; V_{SENSE} = 4 \text{ V}; V_{IN} = 5 \text{ V};$<br>$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 0 \text{ V};$<br>$T_j = 150 ^{\circ}\text{C}$ | 2.2  |      |      |    |
|                                                    | 0                                                                                                   | FF-state diagnostic                                                                                                                                                                |      |      |      |    |
| V <sub>OL</sub>                                    | OFF-state open-load voltage detection threshold                                                     | V <sub>IN</sub> = 0 V; V <sub>SEn</sub> = 5 V; V <sub>SEL0</sub> = 0 V;<br>V <sub>SEL1</sub> = 0 V                                                                                 | 2    | 3    | 4    |    |
| I <sub>L(off2)</sub>                               | OFF-state output sink current                                                                       | $V_{IN} = 0 \text{ V}; V_{OUT} = V_{OL}; T_j = -40 \text{ °C to}$<br>150 °C                                                                                                        | -100 |      | -15  |    |
| <sup>t</sup> dstkon                                | OFF-state diagnostic delay time from falling edge of INPUT (see Figure 9. T <sub>DSTKON</sub> )     | V <sub>IN</sub> = 5 V to 0 V; V <sub>SEn</sub> = 5 V;<br>V <sub>SEL0</sub> = 0 V; V <sub>SEL1</sub> = 0 V; I <sub>OUT</sub> = 0 A;<br>V <sub>OUT</sub> = 4 V                       | 100  | 350  | 700  |    |
| t <sub>D_OL_V</sub>                                | Settling time for valid OFF-<br>state open load diagnostic<br>indication from rising edge of<br>SEn | V <sub>IN</sub> = 0 V; V <sub>FR</sub> = 0 V; V <sub>SEL0</sub> = 0 V;<br>V <sub>SEL1</sub> = 0 V; V <sub>OUT</sub> = 4 V;<br>V <sub>SEn</sub> = 0 V to 5 V                        |      |      | 60   |    |
| t <sub>D_VOL</sub>                                 | OFF-state diagnostic delay time from rising edge of V <sub>OUT</sub>                                | V <sub>IN</sub> = 0 V; V <sub>SEn</sub> = 5 V; V <sub>SEL0</sub> = 0 V;<br>V <sub>SEL1</sub> = 0 V; V <sub>OUT</sub> = 0 V to 4 V                                                  |      | 5    | 30   |    |

DS10830 - Rev 4 page 10/45



|                                           | / V < V <sub>CC</sub>                                                                                                     | < 18 V; -40°C < T <sub>j</sub> < 150°C                                                                                                                                                          |           |                      |                      |      |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|----------------------|------|
| Symbol                                    | Parameter                                                                                                                 | Test conditions                                                                                                                                                                                 | Min.      | Тур.                 | Max.                 | Unit |
|                                           |                                                                                                                           | $V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN} = 0 \text{ V}; R_{SENSE} = 1 \text{ k}\Omega; T_j = -40^{\circ}\text{C}$                                         | 2.325     | 2.41                 | 2.495                | V    |
| V <sub>SENSE_TC</sub>                     | MultiSense output voltage proportional to chip temperature                                                                | $V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V; } V_{IN} = 0 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega; T_j = 25^{\circ}\text{C}$                                      | 1.985     | 2.07                 | 2.155                | V    |
|                                           |                                                                                                                           | $V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V; } V_{IN} = 0 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega; T_j = 125^{\circ}\text{C}$                                     | 1.435     | 1.52                 | 1.605                | V    |
| dV <sub>SENSE_TC</sub> /dT <sup>(1)</sup> | Temperature coefficient                                                                                                   | T <sub>j</sub> = -40°C to 150°C                                                                                                                                                                 |           | -5.5                 |                      | mV/l |
| Tra                                       | nsfer function                                                                                                            | V <sub>SENSE_TC</sub> (T) = V <sub>SENSE_TC</sub> (T <sub>0</sub> ) + dV <sub>S</sub>                                                                                                           | ENSE_TC   | / dT * (             | T - T <sub>0</sub> ) |      |
|                                           | V <sub>CC</sub> supply voltage                                                                                            | e analog feedback (VN7140AJ only)                                                                                                                                                               |           |                      |                      |      |
| V <sub>SENSE_VCC</sub>                    | MultiSense output voltage proportional to V <sub>CC</sub> supply voltage                                                  | $V_{CC}$ = 13 V; $V_{SEn}$ = 5 V; $V_{SEL0}$ = 5 V; $V_{SEL1}$ = 5 V; $V_{IN}$ = 0 V; $V_{SENSE}$ = 1 k $\Omega$                                                                                | 3.16      | 3.23                 | 3.3                  | V    |
| Tran                                      | sfer function (3)                                                                                                         | V <sub>SENSE_VCC</sub> = V <sub>CC</sub> / 4                                                                                                                                                    |           |                      |                      |      |
|                                           | Fault diagnostic fe                                                                                                       | eedback (see Table 10. Truth table)                                                                                                                                                             |           |                      |                      |      |
| V <sub>SENSEH</sub>                       | MultiSense output voltage in fault condition                                                                              | $\begin{split} &V_{CC} = 13 \ V; \ V_{IN} = 0 \ V; \ V_{SEn} = 5 \ V; \\ &V_{SEL0} = 0 \ V; \ V_{SEL1} = 0 \ V; \ I_{OUT} = 0 \ A; \\ &V_{OUT} = 4 \ V; \ R_{SENSE} = 1 \ k\Omega; \end{split}$ | 5         |                      | 6.6                  | V    |
| I <sub>SENSEH</sub>                       | MultiSense output current in fault condition                                                                              | V <sub>CC</sub> = 13 V; V <sub>SENSE</sub> = 5 V                                                                                                                                                | 7         | 20                   | 30                   | mA   |
| MultiSens                                 | se timings (current sense mode -                                                                                          | see Figure 7. MultiSense timings (currer                                                                                                                                                        | nt sense  | mode))               | (4)                  |      |
| t <sub>DSENSE1H</sub>                     | Current sense settling time from rising edge of SEn                                                                       | $V_{IN}$ = 5 V; $V_{SEn}$ = 0 V to 5 V;<br>$R_{SENSE}$ = 1 k $\Omega$ ; $R_{L}$ = 13 $\Omega$                                                                                                   |           |                      | 60                   | μs   |
| t <sub>DSENSE1L</sub>                     | Current sense disable delay time from falling edge of SEn                                                                 | $V_{IN}$ = 5 V; $V_{SEn}$ = 5 V to 0 V;<br>$R_{SENSE}$ = 1 k $\Omega$ ; $R_{L}$ = 13 $\Omega$                                                                                                   |           | 5                    | 20                   | μs   |
| t <sub>DSENSE2H</sub>                     | Current sense settling time from rising edge of INPUT                                                                     | $V_{IN}$ = 0 V to 5 V; $V_{SEn}$ = 5 V;<br>$R_{SENSE}$ = 1 k $\Omega$ ; $R_L$ = 13 $\Omega$                                                                                                     |           | 100                  | 250                  | μs   |
| Δt <sub>DSENSE2H</sub>                    | Current sense settling time from rising edge of I <sub>OUT</sub> (dynamic response to a step change of I <sub>OUT</sub> ) | $V_{IN}$ = 5 V; $V_{SEn}$ = 5 V; $R_{SENSE}$ = 1 k $\Omega$ ; $I_{SENSE}$ = 90 % of $I_{SENSEMAX}$ ; $R_{L}$ = 13 $\Omega$                                                                      |           |                      | 100                  | μs   |
| <sup>t</sup> DSENSE2L                     | Current sense turn-off delay time from falling edge of INPUT                                                              | $V_{IN}$ = 5 V to 0 V; $V_{SEn}$ = 5 V;<br>$R_{SENSE}$ = 1 k $\Omega$ ; $R_L$ = 13 $\Omega$                                                                                                     |           | 50                   | 250                  | μs   |
| MultiSense timings (cl                    |                                                                                                                           | re Figure 8. Multisense timings (chip temp<br>(N7140AJ only) ) (4)                                                                                                                              | perature  | and V <sub>C</sub>   | c sense              | mode |
| t <sub>DSENSE3H</sub>                     | V <sub>SENSE_TC</sub> settling time from rising edge of SEn                                                               | $V_{SEn}$ = 0 V to 5 V; $V_{SEL0}$ = 0 V;<br>$V_{SEL1}$ = 5 V; $R_{SENSE}$ = 1 k $\Omega$                                                                                                       |           |                      | 60                   | μs   |
| t <sub>DSENSE3L</sub>                     | V <sub>SENSE_TC</sub> disable delay time from falling edge of SEn                                                         | $V_{SEn}$ = 5 V to 0 V; $V_{SEL0}$ = 0 V; $V_{SEL1}$ = 5 V; $R_{SENSE}$ = 1 k $\Omega$                                                                                                          |           |                      | 20                   | μs   |
| MultiSense timings                        |                                                                                                                           | Figure 8. Multisense timings (chip temper/N7140AJ only)) <sup>(4)</sup>                                                                                                                         | rature ar | id V <sub>CC</sub> : | sense mo             | ode) |
| t <sub>DSENSE4H</sub>                     | V <sub>SENSE_VCC</sub> settling time from rising edge of SEn                                                              | $V_{SEn}$ = 0 V to 5 V; $V_{SEL0}$ = 5 V;<br>$V_{SEL1}$ = 5 V; $R_{SENSE}$ = 1 k $\Omega$                                                                                                       |           |                      | 60                   | μs   |
| t <sub>DSENSE4L</sub>                     | V <sub>SENSE_VCC</sub> disable delay time from falling edge of SEn                                                        | $V_{SEn} = 5 \text{ V to } 0 \text{ V; } V_{SEL0} = 5 \text{ V;}$<br>$V_{SEL1} = 5 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$                                                                   |           |                      | 20                   | μs   |

DS10830 - Rev 4 page 11/45



|                         | 7 V < V <sub>CC</sub> < 18 V; -40°C < T <sub>j</sub> < 150°C                   |                                                                                                                                                                            |      |      |      |      |  |
|-------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|--|
| Symbol                  | Parameter                                                                      | Test conditions                                                                                                                                                            | Min. | Тур. | Max. | Unit |  |
|                         | MultiSense timings (Mult                                                       | iplexer transition times) (VN7140AJ only)                                                                                                                                  | (4)  |      |      |      |  |
| t <sub>D_CStoTC</sub>   | MultiSense transition delay from current sense to T <sub>C</sub> sense         | $V_{IN}$ = 5 V; $V_{SEn}$ = 5 V; $V_{SEL0}$ = 0 V; $V_{SEL1}$ = 0 V to 5 V; $I_{OUT}$ = 0.5 A; $R_{SENSE}$ = 1 k $\Omega$                                                  |      |      | 60   | μs   |  |
| t <sub>D_</sub> TCtoCS  | MultiSense transition delay from T <sub>C</sub> sense to current sense         | $V_{IN} = 5 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V to } 0 \text{ V; } I_{OUT} = 0.5 \text{ A; } R_{SENSE} = 1 \text{ k}\Omega$ |      |      | 20   | μs   |  |
| t <sub>D_</sub> cstoVcc | MultiSense transition delay from current sense to V <sub>CC</sub> sense        | $V_{IN}$ = 5 V; $V_{SEn}$ = 5 V; $V_{SEL0}$ = 5 V; $V_{SEL1}$ = 0 V to 5 V; $I_{OUT}$ = 0.5 A; $R_{SENSE}$ = 1 k $\Omega$                                                  |      |      | 60   | μs   |  |
| t <sub>D_</sub> vcctocs | MultiSense transition delay from V <sub>CC</sub> sense to current sense        | $V_{IN}$ = 5 V; $V_{SEn}$ = 5 V; $V_{SEL0}$ = 5 V; $V_{SEL1}$ = 5 V to 0 V; $I_{OUT}$ = 0.5 A; $R_{SENSE}$ = 1 k $\Omega$                                                  |      |      | 20   | μs   |  |
| t <sub>D_TCto</sub> vcc | MultiSense transition delay from T <sub>C</sub> sense to V <sub>CC</sub> sense | $V_{CC}$ = 13 V; $T_j$ = 125°C; $V_{SEn}$ = 5 V; $V_{SEL0}$ = 0 V to 5 V; $V_{SEL1}$ = 5 V; $R_{SENSE}$ = 1 k $\Omega$                                                     |      |      | 20   | μs   |  |
| t <sub>D_</sub> vcctotc | MultiSense transition delay from V <sub>CC</sub> sense to T <sub>C</sub> sense | $V_{CC}$ = 13 V; $T_j$ = 125°C; $V_{SEn}$ = 5 V; $V_{SEL0}$ = 5 V to 0 V; $V_{SEL1}$ = 5 V; $R_{SENSE}$ = 1 k $\Omega$                                                     |      |      | 20   | μs   |  |

- 1. Parameter specified by design; not subjected to production test.
- 2. All values refer to  $V_{CC}$  = 13 V;  $T_j$  = 25°C, unless otherwise specified.
- 3.  $V_{CC}$  sensing and  $T_C$  are referred to GND potential.
- 4. Transition delays are measured up to +/- 10% of final conditions.

Figure 4. I<sub>OUT</sub>/I<sub>SENSE</sub> versus I<sub>OUT</sub>



DS10830 - Rev 4 page 12/45





Figure 5. Current sense accuracy versus I<sub>OUT</sub>

Figure 6. Switching time and Pulse skew



DS10830 - Rev 4 page 13/45





Figure 7. MultiSense timings (current sense mode)

Figure 8. Multisense timings (chip temperature and  $V_{\text{CC}}$  sense mode) (VN7140AJ only)



GAPGCFT00319

DS10830 - Rev 4 page 14/45



Figure 9. T<sub>DSTKON</sub>



GAPG2609141140CFT

Table 10. Truth table

| Mode                    | Conditions                                       | IN <sub>X</sub> | FR <sup>(1)</sup> | SEn                | SEL <sub>X</sub> (1) | OUT <sub>X</sub> | MultiSense   | Comments                                                                         |         |                                   |
|-------------------------|--------------------------------------------------|-----------------|-------------------|--------------------|----------------------|------------------|--------------|----------------------------------------------------------------------------------|---------|-----------------------------------|
| Standby                 | All logic inputs low                             | L               | L                 | L                  | L L                  |                  | L L          |                                                                                  | Hi-Z    | Low quiescent current consumption |
|                         |                                                  | L               | Х                 |                    |                      | L                | See (2)      |                                                                                  |         |                                   |
| Normal                  | Nominal load connected;                          |                 | L                 | S                  | see <sup>(2)</sup>   | Н                | See (2)      | Outputs configured for auto-restart                                              |         |                                   |
|                         | T <sub>j</sub> < 150 °C                          | Н               | Н                 |                    |                      | Н                | See (2)      | Outputs configured for latch-off <sup>(1)</sup>                                  |         |                                   |
|                         | Overload or short to GND                         | L               | Х                 | See <sup>(2)</sup> |                      | L                | See (2)      |                                                                                  |         |                                   |
| Overload                | causing:<br>T <sub>j</sub> > T <sub>TSD</sub> or | Н               | L                 |                    |                      | Н                | See (2)      | Output cycles with temperature hysteresis                                        |         |                                   |
|                         | $\Delta T_j > \Delta T_{j\_SD}$                  | Н               | Н                 |                    |                      |                  |              | L                                                                                | See (2) | Output latches-off <sup>(1)</sup> |
| Undervoltage            | V <sub>CC</sub> < V <sub>USD</sub> (falling)     | Х               | X                 | X                  | Х                    | L<br>L           | Hi-Z<br>Hi-Z | Re-start when V <sub>CC</sub> > V <sub>USD</sub> + V <sub>USDhyst</sub> (rising) |         |                                   |
| OFF-state               | Short to V <sub>CC</sub>                         | L               | Х                 |                    |                      | Н                | See (2)      | COBINGE ( C)                                                                     |         |                                   |
| diagnostics             | Open-load                                        | L               | Х                 | See (2)            |                      | Н                | See (2)      | External pull-up                                                                 |         |                                   |
| Negative output voltage | Inductive loads turn-off                         | L               | Х                 | S                  | see (2)              | < 0 V            | See (2)      |                                                                                  |         |                                   |

- 1. VN7140AJ only
- 2. Refer to Table 11. MultiSense multiplexer addressing

Table 11. MultiSense multiplexer addressing

| SEn.    | SEL. | SEL.             | MUX channel  | MultiSense output |          |                     |                 |  |
|---------|------|------------------|--------------|-------------------|----------|---------------------|-----------------|--|
| SEn SEL | JEL1 | SLL <sub>0</sub> | MOX Chamilei | Normal mode       | Overload | OFF-state diag. (1) | Negative output |  |
|         | SO-8 |                  |              |                   |          |                     |                 |  |

DS10830 - Rev 4 page 15/45



| SEn  | SEL. | SEL₀ | MUX channel             | MultiSense output                           |                                          |                                          |                 |  |
|------|------|------|-------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|-----------------|--|
| SEII | JLL1 | 3220 | ) WOX Chamile           | Normal mode                                 | Overload                                 | OFF-state diag. (1)                      | Negative output |  |
| L    | N.A. | N.A. | N.A.                    | Hi-Z                                        |                                          |                                          |                 |  |
| Н    | N.A. | N.A. | Channel diagnostic      | I <sub>SENSE</sub> = 1/K * I <sub>OUT</sub> | V <sub>SENSE</sub> = V <sub>SENSEH</sub> | V <sub>SENSE</sub> = V <sub>SENSEH</sub> | Hi-Z            |  |
|      |      |      |                         | PowerS                                      | SO-16                                    |                                          |                 |  |
| Н    | L    | L    | Channel diagnostic      | I <sub>SENSE</sub> = 1/K * I <sub>OUT</sub> | V <sub>SENSE</sub> = V <sub>SENSEH</sub> | V <sub>SENSE</sub> = V <sub>SENSEH</sub> | Hi-Z            |  |
| Н    | L    | Н    | Channel diagnostic      | I <sub>SENSE</sub> = 1/K * I <sub>OUT</sub> | V <sub>SENSE</sub> = V <sub>SENSEH</sub> | V <sub>SENSE</sub> = V <sub>SENSEH</sub> | Hi-Z            |  |
| Н    | Н    | L    | T <sub>CHIP</sub> Sense | V <sub>SENSE</sub> = V <sub>SENSE_TC</sub>  |                                          |                                          |                 |  |
| Н    | Н    | Н    | V <sub>CC</sub> Sense   | V <sub>SENSE</sub> = V <sub>SENSE_VCC</sub> |                                          |                                          |                 |  |

In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN = 0; OUT = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0. Example 2: FR = 1; IN = 0; OUT = latched, V<sub>OUT</sub> > V<sub>OL</sub>; MUX channel = channel 0 diagnostic; Mutisense = V<sub>SENSEH</sub>

#### 2.4 Waveforms

Figure 10. Latch functionality - behavior in hard short-circuit condition (T<sub>AMB</sub> << T<sub>TSD</sub>)



GADG1703171451PS

DS10830 - Rev 4 page 16/45





Figure 11. Latch functionality - behavior in hard short-circuit condition

Logic high Sense enable Logic high Input Logic high t > t<sub>latch RST</sub> Fault Reset  $\mathsf{I}_{\mathsf{lim}_{\mathsf{H}}}$ Output current  $I_{\text{lim}}$ TTSD  $T_{R}$ Junction temperature Thermal shut down cycling in AutoRestart mode  $T_{\mathsf{AMB}}$ Logic high Internal fault detection Hard Output Voltage short circuit Vout < 5V Vout < 5 V Vsense<sub>H</sub> Multisense voltage

Figure 12. Latch functionality - behavior in hard short-circuit condition (autorestart mode + latch off)



GADG2103171742PS

DS10830 - Rev 4 page 17/45



Figure 13. Standby mode activation



GADG1703171116PS

Figure 14. Standby state diagram



DS10830 - Rev 4 page 18/45



### 2.5 Electrical characteristics curves









DS10830 - Rev 4 page 19/45





Figure 20. High level logic input current liH, IFRH, ISELH, ISEnH [μΑ] 3.5 3 2.5 1.5 0.5 -50 25 50 75 100 125 150 T [°C] GAPGCFT01226









DS10830 - Rev 4 page 20/45





Figure 26. On-state resistance vs. V<sub>CC</sub> Ron [mOhm] T = 150 °C T = 125 °C\_ T = 25 °C T = -40 °C Vcc [V] GAPGCFT01232









DS10830 - Rev 4 page 21/45





VOL [V]

4
3.5
2.5
2
1.5
1
0.5
-50 -25 0 25 50 75 100 125 150 175
T [°C]
GAPGCFT01238





DS10830 - Rev 4 page 22/45



### 3 Protections

#### 3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing  $\Delta T_j$  through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as  $\Delta T_j$  exceeds the safety level of  $\Delta T_{j\_SD}$ . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermomechanical fatigue.

#### 3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage <u>level on the FaultRST</u> pin, the device switches on again as soon as its junction temperature drops to  $T_R$  (FaultRST = Low) or remains off (FaultRST = High).

#### 3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I<sub>LIMH</sub>, by operating the output power MOSFET in the active region.

#### 3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V<sub>DEMAG</sub>, allowing the inductor energy to be dissipated without damaging the device.

DS10830 - Rev 4 page 23/45

GAPGCFT01212



# Maximum demagnetization energy (VCC = 16 V)

VN7140Ax - Maximum turn off current versus inductance

VN7140Ax - Single Pulse

Repetitive pulse Tjstart=125°C

O.1

O.1

1 L (mH) 10

100

1000

Figure 35. Maximum turn off current versus inductance

Note: Values are generated with  $R_L = 0 \Omega$ .

In case of repetitive pulses,  $T_{jstart}$  (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

DS10830 - Rev 4 page 24/45



# 5 Package and PCB thermal data

### 5.1 PowerSSO-16 thermal data

Figure 36. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)



Figure 37. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)



Table 12. PCB properties

| Dimension                                | Value              |
|------------------------------------------|--------------------|
| Board finish thickness                   | 1.6 mm +/- 10%     |
| Board dimension                          | 77 mm x 86 mm      |
| Board Material                           | FR4                |
| Copper thickness (top and bottom layers) | 0.070 mm           |
| Copper thickness (inner layers)          | 0.035 mm           |
| Thermal vias separation                  | 1.2 mm             |
| Thermal via diameter                     | 0.3 mm +/- 0.08 mm |
| Copper thickness on vias                 | 0.025 mm           |
| Footprint dimension (top layer)          | 2.2 mm x 3.9 mm    |

DS10830 - Rev 4 page 25/45



| Dimension                                     | Value                                             |
|-----------------------------------------------|---------------------------------------------------|
| Heatsink copper area dimension (bottom layer) | Footprint, 2 cm <sup>2</sup> or 8 cm <sup>2</sup> |

Figure 38. PowerSSO-16 R<sub>thj-amb</sub> vs PCB copper area in open box free air condition (one channel on)



Figure 39. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)



DS10830 - Rev 4 page 26/45



#### **Equation: pulse calculation formula**

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$
  
where  $\delta = t_P/T$ 

Figure 40. Thermal fitting model of a double-channel HSD in PowerSSO-16



TAPG2001151031CFT

Note:

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 13. Thermal parameters

| Area/island (cm²) | Footprint | 2   | 8   | 4L  |
|-------------------|-----------|-----|-----|-----|
| R1 (°C/W)         | 3.2       |     |     |     |
| R2 (°C/W)         | 4.4       |     |     |     |
| R3 (°C/W)         | 8         | 8   | 8   | 5   |
| R4 (°C/W)         | 16        | 6   | 6   | 4   |
| R5 (°C/W)         | 30        | 20  | 10  | 3   |
| R6 (°C/W)         | 26        | 20  | 18  | 7   |
| C1 (W.s/°C)       | 0.00012   |     |     |     |
| C2 (W.s/°C)       | 0.005     |     |     |     |
| C3 (W.s/°C)       | 0.1       |     |     |     |
| C4 (W.s/°C)       | 0.2       | 0.3 | 0.3 | 0.4 |
| C5 (W.s/°C)       | 0.4       | 1   | 1   | 4   |
| C6 (W.s/°C)       | 3         | 5   | 7   | 18  |

DS10830 - Rev 4 page 27/45



### 5.2 SO-8 thermal data

Figure 41. S0-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)



Figure 42. SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)



Table 14. PCB properties

| Dimension                                     | Value                                                     |  |  |
|-----------------------------------------------|-----------------------------------------------------------|--|--|
| Board finish thickness                        | 1.6 mm +/- 10%                                            |  |  |
| Board dimension                               | 77 mm x 86 mm                                             |  |  |
| Board Material                                | FR4                                                       |  |  |
| Copper thickness (top and bottom layers)      | 0.070 mm                                                  |  |  |
| Copper thickness (inner layers)               | 0.035 mm                                                  |  |  |
| Thermal vias separation                       | 1.2 mm                                                    |  |  |
| Thermal via diameter                          | 0.3 mm +/- 0.08 mm                                        |  |  |
| Copper thickness on vias                      | 0.025 mm                                                  |  |  |
| Heatsink copper area dimension (bottom layer) | Footprint, 2 + 2 cm <sup>2</sup> or 8 + 8 cm <sup>2</sup> |  |  |

DS10830 - Rev 4 page 28/45



Figure 43. SO-8 R<sub>thj-amb</sub> vs PCB copper area in open box free air condition (one channel on)



Figure 44. SO-8 thermal impedance junction ambient single pulse (one channel on)



Equation: pulse calculation formula

 $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$  where  $\delta = t_P/T$ 

DS10830 - Rev 4 page 29/45



Figure 45. Thermal fitting model of a double-channel HSD in SO-8



TAPG2001151031CFT

Note: The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

**Table 15. Thermal parameters** 

| Area/island (cm <sup>2</sup> ) | Footprint | 2   | 8   | 4L  |
|--------------------------------|-----------|-----|-----|-----|
| R1 (°C/W)                      | 4.2       |     |     |     |
| R2 (°C/W)                      | 4.3       |     |     |     |
| R3 (°C/W)                      | 10        |     |     |     |
| R4 (°C/W)                      | 28        | 17  | 17  | 17  |
| R5 (°C/W)                      | 24        | 12  | 9   | 4   |
| R6 (°C/W)                      | 30        | 23  | 19  | 9   |
| C1 (W.s/°C)                    | 0.00012   |     |     |     |
| C2 (W.s/°C)                    | 0.003     |     |     |     |
| C3 (W.s/°C)                    | 0.03      |     |     |     |
| C4 (W.s/°C)                    | 0.1       |     |     |     |
| C5 (W.s/°C)                    | 0.4       | 0.8 | 0.8 | 0.8 |
| C6 (W.s/°C)                    | 3         | 7   | 11  | 22  |

DS10830 - Rev 4 page 30/45



## 6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK is an ST trademark.

### 6.1 PowerSSO-16 package information

⊕ ggg M C A-B D Bottom view ggg M C A-B D Section A-A E3 E2 or dual gauge only // eee C □ ccc C SEATING PLANE 2x Gfff CA-B D Section B-B WITH PLATING E1 E BASE METAL Top view  $\Rightarrow$ 8017965\_Rev\_9 GAPG1605141159CFT

Figure 46. PowerSSO-16 package outline

DS10830 - Rev 4 page 31/45



Table 16. PowerSSO-16 mechanical data

|          | Millimeters     |                  |      |
|----------|-----------------|------------------|------|
| Symbol - | Min.            | Тур.             | Max. |
| Θ        | 0°              |                  | 8°   |
| Θ1       | 0°              |                  |      |
| Θ2       | 5°              |                  | 15°  |
| Θ3       | 5°              |                  | 15°  |
| A        |                 |                  | 1.70 |
| A1       | 0.00            |                  | 0.10 |
| A2       | 1.10            |                  | 1.60 |
| b        | 0.20            |                  | 0.30 |
| b1       | 0.20            | 0.25             | 0.28 |
| С        | 0.19            |                  | 0.25 |
| c1       | 0.19            | 0.20             | 0.23 |
| D        |                 | 4.9 BSC          |      |
| D2       | 2.90            |                  | 3.50 |
| D3       | 2.20            |                  |      |
| е        |                 | 0.50 BSC         |      |
| E        | 6.00 BSC        |                  |      |
| E1       |                 | 3.90 BSC         |      |
| E2       | 2.20 2.80       |                  | 2.80 |
| E3       | 1.50            |                  |      |
| h        | 0.25            |                  | 0.50 |
| L        | 0.40            | 0.60             | 0.85 |
| L1       | 1.00 REF        |                  |      |
| N        | 16              |                  |      |
| R        | 0.07            |                  |      |
| R1       | 0.07            |                  |      |
| S        | 0.20            |                  |      |
|          | Tolerance of fo | orm and position |      |
| aaa      |                 | 0.10             |      |
| bbb      |                 | 0.10             |      |
| ccc      |                 | 0.08             |      |
| ddd      |                 | 0.08             |      |
| eee      |                 | 0.10             |      |
| fff      | 0.10            |                  |      |
| 999      |                 | 0.15             |      |

DS10830 - Rev 4 page 32/45



# 6.2 SO-8 package information

Figure 47. SO-8 package outline



Table 17. SO-8 mechanical data

|      |             | Dimensions |      |  |
|------|-------------|------------|------|--|
| Ref. | Millimeters |            |      |  |
|      | Min.        | Тур.       | Max. |  |
| Α    |             |            | 1.75 |  |
| A1   | 0.10        |            | 0.25 |  |
| A2   | 1.25        |            |      |  |
| b    | 0.28        |            | 0.48 |  |
| С    | 0.17        |            | 0.23 |  |
| D    | 4.80        | 4.90       | 5.00 |  |
| E    | 5.80        | 6.00       | 6.20 |  |
| E1   | 3.80        | 3.90       | 4.00 |  |
| е    |             | 1.27       |      |  |
| h    | 0.25        |            | 0.50 |  |
| L    | 0.40        |            | 1.27 |  |
| L1   |             | 1.04       |      |  |
| k    | 0°          |            | 8°   |  |
| ccc  |             |            | 0.10 |  |

DS10830 - Rev 4 page 33/45



# 6.3 PowerSSO-16 packing information

Figure 48. PowerSSO-16 reel 13"



TAPG2004151655CFT

Table 18. Reel dimensions

| Description    | <b>V</b> alue <sup>(1)</sup> |
|----------------|------------------------------|
| Base quantity  | 2500                         |
| Bulk quantity  | 2500                         |
| A (max)        | 330                          |
| B (min)        | 1.5                          |
| C (+0.5, -0.2) | 13                           |
| D (min)        | 20.2                         |
| N              | 100                          |
| W1 (+2 /-0)    | 12.4                         |
| W2 (max)       | 18.4                         |

1. All dimensions are in mm.

DS10830 - Rev 4 page 34/45



P<sub>2</sub> P<sub>0</sub> 4.0 ±0.05

Ø 1.55 ±0.05

X

P<sub>1</sub> P<sub>0</sub> A<sub>0</sub> ±0.1

F W

SECTION X - X

REF 0.6

SECTION Y - Y

SAPCEZ04151242CFT

Figure 49. PowerSSO-16 carrier tape

Table 19. PowerSSO-16 carrier tape dimensions

| Description    | <b>V</b> alue <sup>(1)</sup> |
|----------------|------------------------------|
| A <sub>0</sub> | 6.50 ± 0.1                   |
| В <sub>0</sub> | 5.25 ± 0.1                   |
| Κ <sub>0</sub> | 2.10 ± 0.1                   |
| K <sub>1</sub> | 1.80 ± 0.1                   |
| F              | 5.50 ± 0.1                   |
| P <sub>1</sub> | 8.00 ± 0.1                   |
| W              | 12.00 ± 0.3                  |

1. All dimensions are in mm.

Figure 50. PowerSSO-16 schematic drawing of leader and trailer tape



DS10830 - Rev 4 page 35/45

GAPG2004151511CFT



# 6.4 SO-8 packing information

Figure 51. Reel for SO-8



TAPG2004151655CFT

Table 20. Reel dimensions

| Description    | Value <sup>(1)</sup> |
|----------------|----------------------|
| Base quantity  | 2500                 |
| Bulk quantity  | 2500                 |
| A (max)        | 330                  |
| B (min)        | 1.5                  |
| C (+0.5, -0.2) | 13                   |
| D (min)        | 20.2                 |
| N              | 100                  |
| W1 (+2/ -0)    | 12.4                 |
| W2 (max)       | 18.4                 |

1. All dimensions are in mm.

DS10830 - Rev 4 page 36/45



P2 2.0±0.1 (I) 4.0±0.1 (II)

91.6±0.1

R 0.2

Typicol

REF. 4.18

REF. 4.18

REF. 4.18

REF. 4.18

REF. 5.66

REF. 6.57

Figure 52. SO-8 carrier tape

GAPG2105151447CFT

Table 21. SO-8 carrier tape dimensions

| Description    | Value <sup>(1)</sup> |
|----------------|----------------------|
| A <sub>0</sub> | 6.50 ± 0.1           |
| В <sub>0</sub> | 5.30 ± 0.1           |
| K <sub>0</sub> | 2.20 ± 0.1           |
| К <sub>1</sub> | 1.90 ± 0.1           |
| F              | 5.50 ± 0.1           |
| P <sub>1</sub> | 8.00 ± 0.1           |
| W              | 12.00 ± 0.3          |

1. All dimensions are in mm.

Figure 53. SO-8 schematic drawing of leader and trailer tape



DS10830 - Rev 4 page 37/45



### 6.5 PowerSSO-16 marking information

Figure 54. PowerSSO-16 marking information



Parts marked as '&' are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

### 6.6 SO-8 marking information

Figure 55. SO-8 marking information



Note:

Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions

DS10830 - Rev 4 page 38/45



# 7 Order codes

Table 22. Device summary

| Package     | Order codes   |
|-------------|---------------|
|             | Tape and reel |
| PowerSSO-16 | VN7140AJTR    |
| SO-8        | VN7140ASTR    |

DS10830 - Rev 4 page 39/45



# **Revision history**

Table 23. Document revision history

| Date        | Revision | Changes                                                                                                                                                       |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03-Jun-2015 | 1        | Initial release.                                                                                                                                              |
| 22-Jul-2015 | 2        | Updated cover image.  Updated Table 4: "Thermal data"  Updated following sections:  Section 6.1: "PowerSSO-16 thermal data"  Section 6.2: "SO-8 thermal data" |
| 13-Oct-2016 | 3        | <ul> <li>Added AEC Q100 qualified in Features section</li> <li>Updated Figure 61: "PowerSSO-16 marking information"</li> </ul>                                |
| 28-Jun-2018 | 4        | Minor text changes in TCASE and VCC monitor.                                                                                                                  |
| 04-Apr-2019 | 5        | Updated Table 16. PowerSSO-16 mechanical data                                                                                                                 |

DS10830 - Rev 4 page 40/45





# **Contents**

| 1   | Bloc   | ck diagram and pin description            | 3  |
|-----|--------|-------------------------------------------|----|
| 2   | Elec   | ctrical specification                     | 5  |
|     | 2.1    | Absolute maximum ratings                  | 5  |
|     | 2.2    | Thermal data                              | 6  |
|     | 2.3    | Main electrical characteristics           | 6  |
|     | 2.4    | Waveforms                                 | 16 |
|     | 2.5    | Electrical characteristics curves         | 18 |
| 3   | Prof   | tections                                  |    |
|     | 3.1    | Power limitation                          | 23 |
|     | 3.2    | Thermal shutdown                          | 23 |
|     | 3.3    | Current limitation                        | 23 |
|     | 3.4    | Negative voltage clamp                    | 23 |
| 4   | Max    | ximum demagnetization energy (VCC = 16 V) | 24 |
| 5   | Pac    | kage and PCB thermal data                 | 25 |
|     | 5.1    | PowerSSO-16 thermal data                  | 25 |
|     | 5.2    | SO-8 thermal data                         | 27 |
| 6   | Pac    | kage information                          | 31 |
|     | 6.1    | PowerSSO-16 package information           |    |
|     | 6.2    | SO-8 package information                  | 32 |
|     | 6.3    | PowerSSO-16 packing information           |    |
|     | 6.4    | SO-8 packing information                  |    |
|     | 6.5    | PowerSSO-16 marking information           |    |
|     | 6.6    | SO-8 marking information                  |    |
| 7   | Ord    | er codes                                  | 39 |
| Rev | /ision | history                                   |    |



# **List of tables**

| Table 1.  | PIN TUNCTIONS                                           | . 3 |
|-----------|---------------------------------------------------------|-----|
| Table 2.  | Suggested connections for unused and not connected pins | . 4 |
| Table 3.  | Absolute maximum ratings                                | . 5 |
| Table 4.  | Thermal data                                            | . 6 |
| Table 5.  | Power section                                           | . 6 |
| Table 6.  | Switching                                               | . 7 |
| Table 7.  | Logic inputs                                            | . 7 |
| Table 8.  | Protections                                             | . 9 |
| Table 9.  | MultiSense                                              | . 9 |
| Table 10. | Truth table                                             | 15  |
| Table 11. | MultiSense multiplexer addressing                       | 15  |
| Table 12. | PCB properties                                          | 25  |
| Table 13. | Thermal parameters                                      | 27  |
| Table 14. | PCB properties                                          | 28  |
| Table 15. | Thermal parameters                                      | 30  |
| Table 16. | PowerSSO-16 mechanical data                             | 32  |
| Table 17. | SO-8 mechanical data                                    | 33  |
| Table 18. | Reel dimensions                                         | 34  |
| Table 19. | PowerSSO-16 carrier tape dimensions                     | 35  |
| Table 20. | Reel dimensions                                         | 36  |
| Table 21. | SO-8 carrier tape dimensions                            | 37  |
| Table 22. | Device summary                                          | 39  |
| Table 23. | Document revision history                               | 40  |

DS10830 - Rev 4 page 42/45



# **List of figures**

| Figure 1.  | Block diagram                                                                                          |      |
|------------|--------------------------------------------------------------------------------------------------------|------|
| Figure 2.  | Configuration diagram (top view)                                                                       |      |
| Figure 3.  | Current and voltage conventions                                                                        |      |
| Figure 4.  | I <sub>OUT</sub> /I <sub>SENSE</sub> versus I <sub>OUT</sub>                                           | . 12 |
| Figure 5.  | Current sense accuracy versus I <sub>OUT</sub>                                                         | . 13 |
| Figure 6.  | Switching time and Pulse skew                                                                          | . 13 |
| Figure 7.  | MultiSense timings (current sense mode)                                                                |      |
| Figure 8.  | Multisense timings (chip temperature and V <sub>CC</sub> sense mode) (VN7140AJ only)                   |      |
| Figure 9.  | T <sub>DSTKON</sub>                                                                                    |      |
| Figure 10. | Latch functionality - behavior in hard short-circuit condition (T <sub>AMB</sub> << T <sub>TSD</sub> ) |      |
| Figure 11. | Latch functionality - behavior in hard short-circuit condition.                                        |      |
| Figure 11. | Latch functionality - behavior in hard short-circuit condition (autorestart mode + latch off)          |      |
| Figure 12. | Standby mode activation                                                                                |      |
| Figure 14. | Standby state diagram.                                                                                 |      |
| Figure 15. | OFF-state output current                                                                               |      |
| Figure 16. | Standby current                                                                                        |      |
| Figure 10. | I <sub>GND(ON)</sub> vs. Tcase                                                                         |      |
|            |                                                                                                        |      |
| Figure 18. | Logic Input high level voltage                                                                         |      |
| Figure 19. | Logic Input low level voltage                                                                          |      |
| Figure 20. | High level logic input current.                                                                        |      |
| Figure 21. | Low level logic input current                                                                          |      |
| Figure 22. | Logic Input hysteresis voltage.                                                                        |      |
| Figure 23. | FaultRST Input clamp voltage                                                                           |      |
| Figure 24. | Undervoltage shutdown                                                                                  |      |
| Figure 25. | On-state resistance vs. T <sub>case</sub>                                                              |      |
| Figure 26. | On-state resistance vs. V <sub>CC</sub>                                                                |      |
| Figure 27. | Turn-on voltage slope                                                                                  |      |
| Figure 28. | Turn-off voltage slope                                                                                 |      |
| Figure 29. | Won vs. T <sub>case</sub>                                                                              |      |
| Figure 30. | Woff vs. T <sub>case</sub>                                                                             |      |
| Figure 31. | I <sub>LIMH</sub> vs. T <sub>case</sub>                                                                |      |
| Figure 32. | OFF-state open-load voltage detection threshold                                                        | . 22 |
| Figure 33. | V <sub>sense</sub> clamp vs. T <sub>case</sub>                                                         | . 22 |
| Figure 34. | V <sub>senseh</sub> vs. T <sub>case</sub>                                                              | . 22 |
| Figure 35. | Maximum turn off current versus inductance                                                             | . 24 |
| Figure 36. | PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)                                                | . 25 |
| Figure 37. | PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)                                               | . 25 |
| Figure 38. | PowerSSO-16 R <sub>thj-amb</sub> vs PCB copper area in open box free air condition (one channel on)    | . 26 |
| Figure 39. | PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)                           |      |
| Figure 40. | Thermal fitting model of a double-channel HSD in PowerSSO-16                                           |      |
| Figure 41. | S0-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)                                                       |      |
| Figure 42. | SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)                                                      |      |
| Figure 43. | SO-8 R <sub>thj-amb</sub> vs PCB copper area in open box free air condition (one channel on)           |      |
| Figure 44. | SO-8 thermal impedance junction ambient single pulse (one channel on)                                  |      |
| Figure 45. | Thermal fitting model of a double-channel HSD in SO-8                                                  |      |
| Figure 46. | PowerSSO-16 package outline                                                                            |      |
| Figure 47. | SO-8 package outline                                                                                   |      |
| Figure 48. | PowerSSO-16 reel 13"                                                                                   |      |
| Figure 49. | PowerSSO-16 carrier tape                                                                               |      |
| Figure 50. | PowerSSO-16 schematic drawing of leader and trailer tape                                               |      |
| 3          | <del></del>                                                                                            |      |

DS10830 - Rev 4 page 43/45

## **VN7140AJ, VN7140AS**

### List of figures



| Figure 51. | Reel for SO-8                                     | 36 |
|------------|---------------------------------------------------|----|
| Figure 52. | SO-8 carrier tape                                 | 37 |
| Figure 53. | SO-8 schematic drawing of leader and trailer tape | 37 |
| Figure 54. | PowerSSO-16 marking information                   | 38 |
| Figure 55. | SO-8 marking information                          | 38 |

DS10830 - Rev 4 page 44/45



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to <a href="https://www.st.com/trademarks">www.st.com/trademarks</a>. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS10830 - Rev 4 page 45/45