Algoritmos Aleatorizados

Parte III

Segundo semestre 2022

IIC2283

Prof. Nicolás Van Sint Jan

Outline

Calculo de la mediana

Desigualdades de Markov y Chebyshev

La mediana de una lista de números enteros

Suponga que n es un número impar y L[1 ... n] es una lista de números enteros sin elementos repetidos.

Recuerde que usamos la notación $L[1 \dots n]$ para indicar que L es una lista con n elementos

Definición

L[i] es la mediana de L si:

$$|\{j \in \{1, \dots, n\} \mid L[j] < L[i]\}\}| = \left\lfloor \frac{n}{2} \right\rfloor$$
$$|\{k \in \{1, \dots, n\} \mid L[k] > L[i]\}\}| = \left\lfloor \frac{n}{2} \right\rfloor$$

La mediana de una lista de números enteros

Ejercicio

Construya un algoritmo que calcule la mediana de una lista L[1...n] y que en el peor caso sea $\mathcal{O}(n \cdot \log_2(n))$

 Considere como la operación básica a contar la comparación de números enteros

Vamos a construir un algoritmo aleatorizado de tipo Las Vegas para este problema.

¡Este algoritmo funciona en tiempo lineal!

Un algoritmo aleatorizado para el cálculo de la mediana

Suponga que el procedimiento Mergesort(L) ordena una lista L utilizando el algoritmo Mergesort.

El siguiente procedimiento calcula la mediana de una lista de enteros $L[1 \dots n]$ (suponiendo que n es impar y L no tiene elementos repetidos):

Calcular Mediana $(L[1 \dots n])$

Un algoritmo aleatorizado para el cálculo de la mediana

```
d := R \left| \left| \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \right| \right|
u := R \left[ \left[ \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \right] \right]
S := \emptyset
m_d := 0
m_{"} := 0
for i := 1 to n do
        if d \leq L[i] and L[i] \leq u then Append(S, [L[i]])
        else if L[i] < d then m_d := m_d + 1
        else m_{ii} := m_{ii} + 1
if m_d \geq \left\lceil \frac{n}{2} \right\rceil or m_u \geq \left\lceil \frac{n}{2} \right\rceil or
                     Length(S) > 4 \cdot \left| n^{\frac{3}{4}} \right| then return sin\_resultado
else
        Mergesort(S)
        return S\left[\left[\frac{n}{2}\right]-m_d\right]
```

El algoritmo es correcto y eficiente

Ejercicios

Demuestre lo siguiente:

- 1. Si $\operatorname{CalcularMediana}(L)$ retorna un número entero m, entonces m es la mediana de L
- 2. Si se tiene un procedimiento LanzarMoneda() que retorna 0 ó 1 con probabilidad $\frac{1}{2}$, entonces existe un algoritmo para construir R que invoca a este procedimiento a los más $c \cdot n^{\frac{3}{4}} \cdot \log_2(n)$ veces, donde c es una constante fija y n es el largo de la lista de entrada
 - Podemos suponer que ${f Lanzar Moneda}()$ en el peor caso es ${\cal O}(1)$
- 3. **CalcularMediana**(L) en el peor caso es $\mathcal{O}(n)$, suponiendo que n es el largo de L y considerando todas las operaciones realizadas

¿Cuál es la probabilidad de no retornar un resultado?

La llamada CalcularMediana(L) puede no retornar un resultado

■ El procedimiento en este caso retorna sin_resultado

Para que **CalcularMediana** pueda ser utilizado en la práctica la probabilidad que no entregue un resultado debe ser baja

La probabilidad de no retornar resultado

Sea $L[1 \dots n]$ una lista de números enteros tal que $n \ge 2001$, n es impar y la mediana de L es m

Defina las siguientes variables aleatorias:

$$Y_{1} = \left| \left\{ i \in \left\{ 1, \dots, \left\lceil n^{\frac{3}{4}} \right\rceil \right\} \mid R[i] \leq m \right\} \right|$$

$$Y_{2} = \left| \left\{ i \in \left\{ 1, \dots, \left\lceil n^{\frac{3}{4}} \right\rceil \right\} \mid R[i] \geq m \right\} \right|$$

Estas son variables aleatorias dado que R es construido escogiendo elementos de L con distribución uniforme (y de manera independiente)

La probabilidad de no retornar resultado

Lema

CalcularMediana(L) retorna sin_resultado si y sólo si alguna de las siguientes condiciones se cumple:

- 1. $Y_1 < \left| \frac{1}{2} \cdot n^{\frac{3}{4}} n^{\frac{1}{2}} \right|$
- 2. $Y_2 \le \left[n^{\frac{3}{4}} \right] \left[\frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \right]$
- 3. **Length**(*S*) > $4 \cdot |n^{\frac{3}{4}}|$

Ejercicio

Demuestre el lema.

La probabilidad de no retornar resultado

Tenemos entonces que la probabilidad de que CalcularMediana(L) retorne $sin_resultado$ es igual a:

$$\Pr(Y_1 < \left\lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \right\rfloor \lor$$

$$Y_2 \leq \left\lceil n^{\frac{3}{4}} \right\rceil - \left\lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \right\rceil \lor \text{Length}(S) > 4 \cdot \left\lfloor n^{\frac{3}{4}} \right\rfloor)$$

Necesitamos entonces acotar superiormente

- $Pr(Y_2 \leq \left\lceil n^{\frac{3}{4}} \right\rceil \left\lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \right\rceil)$
- Pr(Length(S) > 4 · $\lfloor n^{\frac{3}{4}} \rfloor$)

¿ Que herramientas podemos usar para acotar estas probabilidades ?

Outline

Calculo de la mediana

Desigualdades de Markov y Chebyshev

La desigualdad de Markov

Teorema

Sea X una variable aleatoria no negativa. Para cada $a \in \mathbb{R}^+$ se tiene que:

$$\Pr(X \ge a) \le \frac{\mathsf{E}(X)}{a}$$

Este resultado se conoce como la desigualdad de Markov.

Una demostración de la desigualdad de Markov

Demostración

Suponemos que el recorrido de X es un conjunto finito $\Omega \subseteq \mathbb{R}_0^+$:

$$E(X) = \sum_{r \in \Omega} r \cdot \Pr(X = r)$$

$$= \left(\sum_{r \in \Omega : r < a} r \cdot \Pr(X = r)\right) + \left(\sum_{s \in \Omega : s \ge a} s \cdot \Pr(X = s)\right)$$

$$\ge \sum_{s \in \Omega : s \ge a} s \cdot \Pr(X = s)$$

$$\ge \sum_{s \in \Omega : s \ge a} a \cdot \Pr(X = s)$$

$$= a \cdot \left(\sum_{s \in \Omega : s \ge a} \Pr(X = s)\right)$$

$$= a \cdot \Pr(X \ge a)$$

Concluimos que
$$\Pr(X \ge a) \le \frac{E(X)}{a}$$
.

La desigualdad de Chebyshev

Teorema

El siguiente resultado se conoce como la desigualdad de Chebyshev:

$$\Pr(|X - \mathsf{E}(X)| \ge a) \le \frac{\mathsf{Var}(X)}{a^2}$$

Demostración

Utilizando la desigualdad de Markov obtenemos:

$$\Pr(|X - \mathsf{E}(X)| \ge a) = \Pr((X - \mathsf{E}(X))^2 \ge a^2)$$

$$\le \frac{\mathsf{E}((X - \mathsf{E}(X))^2)}{a^2}$$

$$= \frac{\mathsf{Var}(X)}{a^2}$$