Rappel de cours

Definition 1. Soit I un intervalle de \mathbb{R} , (U_n) une suite de fonctions définies sur I et f une fonction définie sur I. On dit que (u_n) converge **simplement** vers f sur I si pour tout $x \in I$, la suite $(U_n(x))$ converge vers f(x).

Definition 2. Soit I un intervalle de \mathbb{R} , (U_n) une suite de fonctions définies sur I et f une fonction définie sur I. On dit que (u_n) converge **uniformément** vers f sur I si

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall x \in I, \forall n > n_0, |(U_n(x)) - f(x)| < \epsilon$$

Definition 3.

Exercice 2

Exercice 2.1

Il faut trouver une fonction f(x) tel que $\forall x \in I$, la suite $(U_n(x))$ converge vers f(x). On a $\forall n \in \mathbb{N}$, $(U_n(0)) = 0$, il faut vérifier si la suite de (U_n) converge et trouver la fonction de convergence. Comme d'habitude, trouver une borne supérieure qui converge.

- 1. Trouver une suite de fonction (V_n) et exprimer (V_n) en fonction de (U_n) . Prendre la fonction (V_n) tel que $V_n = g(x,n)U_n$ et $\frac{1}{g(x,n)}$ converge.
- 2. Vérifier que $\lim_{n\to+\infty}V_n(x)=0$ et que $V_n(x)$ est positive donc il existe un c>0, tel que $\forall n>n_0, 0\leq (V_n)\leq c$.
- 3. Remplacer (V_n) dans l'expression, simplifier et regarder si la borne supérieure converge.

Prenons $V_n=U_n.\frac{n^2}{x^2}$, donc $V_n=\frac{n^3}{e^x\sqrt{n}}$ On a $\lim_{n\to+\infty}V_n(x)=0$ et $\forall x\in[0,+\infty[,V_n(x)\geq0$ et prenons c=1. Donc

$$0 \le V_n(x) \le 1$$
$$0 < U_n(x) \frac{n^2}{x^2} < 1$$

$$0 < U_n(x) < \frac{x^2}{n^2}$$

Comme la borne supérieure converge alors (U_n) converge aussi.

Exercice 2.2

La dérivée de $\left(nx^2.e^{-x\sqrt{n}}\right)'=-x(n^{3/2}x-2n)e^{-x\sqrt{n}}$. La dérivée s'annule en 2 points x=0 et $x=\frac{2}{\sqrt{n}}$. on a f(0)=0 et

$$f(\frac{2}{\sqrt{n}}) = n.\frac{4}{n}.e^{-\frac{2}{\sqrt{n}}.\sqrt{n}} = 4.e^{-2} = 0.5413$$

Donc $\sup_{x\in[0,+\infty[}u_n(x)=4.e^{-2}$, comme le sup est constant, la série de fonction u_n ne converge pas. QED