Parabolická evoluční úloha ve 2D

Vladislav Belov

FJFI ČVUT

7. prosince 2017

- Úvod
- Diskretizace úlohy
- Algoritmus výpočtu aproximace řešení
- 4 Výsledky
 - Aproximace řešení diferenčního schématu
 - Chyba aproximace

- Úvod
- 2 Diskretizace úlohy
- Algoritmus výpočtu aproximace řešení
- 4 Výsledky
 - Aproximace řešení diferenčního schématu
 - Chyba aproximace

Úvod

Cíl:

Aproximace řešení parabolické PDR ve 2D pomocí metody Monte Carlo.

Buďte $u:(0,T)\times\Gamma\longrightarrow\mathbb{R}$, kde $T\in\mathbb{R}$, $\Gamma\subset\mathbb{R}^2$, D>0, pak počáteční úloha vypadá následovně:

$$\frac{\partial}{\partial t}u - D \cdot \Delta u = f,$$

$$u|_{\partial \Gamma} = g,$$

$$u|_{t=0} = h.$$

Zjednodušení:

$$\begin{split} f &\equiv 0; \\ \Gamma &= (-b,b) \times (-b,b), \, b \in \mathbb{R}. \end{split}$$

- 1 Úvod
- Diskretizace úlohy
- 3 Algoritmus výpočtu aproximace řešení
- 4 Výsledky
 - Aproximace řešení diferenčního schématu
 - Chyba aproximace

Trochu numerické matematiky (1)

Numerická matematika \implies pro danou počáteční úlohu existuje tzv. explicitní diferenční schéma:

$$\frac{u_{i,j}^{k+1} - u_{i,j}^{k}}{\tau} = D \cdot \left(\frac{u_{i+1,j}^{k} - 2u_{i,j}^{k} + u_{i-1,j}^{k}}{h^{2}} + \frac{u_{i,j+1}^{k} - 2u_{i,j}^{k} + u_{i,j-1}^{k}}{h^{2}}\right),$$

$$\forall (i,j) \in \omega_{h}, \ \forall k \in \{0,1,\ldots,N_{T}-1\};$$

$$u_{i,j}^{k} = g_{i,j}, \forall (i,j) \in \overline{\omega}_{h} \setminus \omega_{h}, \forall k \in \{0, 1, ..., N_{T}\};$$

$$u_{i,j}^{0} = h_{i,j}, \forall (i,j) \in \overline{\omega}_{h}.$$

Zvolíme-li vhodný poměr $\frac{\tau}{h^2}$ a položíme-li D=1, dostaneme určité *stabilní* explicitní schéma...

Trochu numerické matematiky (2)

Stabilní explicitní diferenční schéma:

$$u_{i,j}^{k+1} = \frac{1}{4} \left(u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k \right),$$

$$\forall (i,j) \in \omega_h, \ \forall k \in \{0,1,\ldots,N_T-1\};$$

$$u_{i,j}^k = g_{i,j}, \forall (i,j) \in \overline{\omega}_h \setminus \omega_h, \ \forall k \in \{0,1,\ldots,N_T\};$$

$$u_{i,j}^0 = h_{i,j}, \ \forall (i,j) \in \overline{\omega}_h.$$

Chyba aproximace:

$$O(\tau + h^2)$$
.

- 1 Úvoc
- Diskretizace úlohy
- 3 Algoritmus výpočtu aproximace řešení
- 4 Výsledky
 - Aproximace řešení diferenčního schématu
 - Chyba aproximace

N-krát se náhodně projdeme po síti...

... a aproximujeme hodnotu řešení v jednom bodě

Průběh jedné simulace

 W_{ini} - počáteční bod náhodné procházky, W_{fin} - její konečný bod, pak definujeme náhodnou veličinu $Y_{W_{ini}}$ následovně:

- $Y_{W_{ini}} = h(W_{fin})$, pokud $W_{fin} \in \omega_h$, ale $W_{fin} \notin \overline{\omega}_h$;
- $Y_{W_{ini}} = g(W_{fin})$, pokud $W_{fin} \in \overline{\omega}_h \setminus \omega_h$.

7. prosince 2017

- 1 Úvod
- Diskretizace úlohy
- 3 Algoritmus výpočtu aproximace řešení
- 4 Výsledky
 - Aproximace řešení diferenčního schématu
 - Chyba aproximace

Nastavení parametrů:

- krok sítě: h = 0.1;
- časové hladiny: k₀ ∈ {50, 250};
- okrajová podmínka: $g \equiv 273$;
- počáteční podmínka: $u(0, x) = h(x) = 10x \cdot \exp(-x^2 y^2) + 273$.

časové hladiny $k_0=50$ (vlevo) a $k_0=250$ (vpravo); hladina významnosti - 5%

časové hladiny $k_0 = 50$ (vlevo) a $k_0 = 250$ (vpravo); hladina významnosti - 5%

časové hladiny $k_0 = 50$ (vlevo) a $k_0 = 250$ (vpravo); hladina významnosti - 5%

časové hladiny $k_0=50$ (vlevo) a $k_0=250$ (vpravo); hladina významnosti - 5%

7. prosince 2017

Maximální chyba aproximace

na hladině významnosti 5%

Počet simulací, N	Max. chyba, $k_0 = 50$	Max. chyba, $k_0 = 250$
10 ²	1.1434	0.6963
10 ³	0.3433	0.1830
104	0.1061	0.0560
10 ⁵	0.0333	0.0176

Tabulka 1 : Maximální chyba aproximace řešení diskretizované parabolické evoluční úlohy pro časové hladiny $k_0 \in \{50, 250\}$.

Děkuji za pozornost.

