SICS FORM

 $\textbf{Violet} \qquad 4.0 - 4.2 \times \overline{10^{-7}}$

λ = 780 nm visible light 360 nm

PHYSICAL CO	ONS	STANTS
Acceleration due to gravity	g	$9.8\mathrm{m/s^2}$
Avogadro's number	N_{A}	$6.022 \times 10^{23} \text{ molecules/mol}$
Coulomb's constant	k	$9\times 10^9\mathrm{N}\!\cdot\!\mathrm{m}^2/\mathrm{C}^2$
Gravitational constant	G	$6.67\times 10^{-11}\:{\rm N}\!\cdot\!{\rm m}^2/{\rm kg}^2$
Planck's constant	h	$6.63\times10^{-34}\mathrm{J\cdot s}$
Ideal gas constant	R	$8.314 \text{ J/(mol \cdot K)}$ = $0.082 \text{ atm \cdot L/(mol \cdot K)}$
Permittivity of free space	ε_0	$8.8541 \times 10^{-12}\mathrm{C/(V \cdot m)}$
Permeability of free space	μ_0	$4\pi\times 10^{-7}\mathrm{Wb}/(\mathrm{A}\!\cdot\!\mathrm{m})$
Speed of sound at STP		$331 \mathrm{m/s}$
Speed of light in a vacuum	c	$3.00\times10^8\mathrm{m/s}$
Electron charge	e	$1.60 \times 10^{-19} \: \mathrm{C}$
Electron volt	eV	$1.6022\times 10^{-19}\mathrm{J}$
Atomic mass unit	u	$1.6606 \times 10^{-27} \text{ kg}$ = $931.5 \text{ MeV}/c^2$
Rest mass of electron	$m_{ m e}$	$9.11 \times 10^{-31} \text{ kg}$ = 0.000549 u = 0.511 MeV/ c^2
of proton	m_{p}	$1.6726 \times 10^{-27} \text{ kg}$ = 1.00728 u = $938.3 \text{ MeV}/c^2$
of neutron		$1.6750 \times 10^{-27} \text{ kg}$ = 1.008665 u = $939.6 \text{ MeV}/c^2$
Mass of Earth		$5.976 \times 10^{24} \mathrm{kg}$
Radius of Earth		$6.378\times10^6\mathrm{m}$

DYNAMICS

NEWTON'S LAWS

- 1. First Law: An object remains in its state of rest or motion with constant velocity unless acted upon by a net external force. Second Law: $F_{\rm net}=ma$ $F=\frac{dp}{dt}$
- 2. Second Law: $F_{\mathrm{net}} = ma$
- 3. Third Law: For every action there is an equal and opposite reaction.

Weight	$F_w = mg$
Normal force	$F_{\rm N} = mq \cos \theta$ (θ is the angle to the horizontal)

FRICTION

Copyright © 2002 by SparkNotes LLC.
All rights reserved.
SporkCharts is a registered trademark
of SparkNotes LLC.
A Barmas & Noble Publication
10 9 8 7 6 5 4 3 2
Printed in the USA \$3.95 \$5.95 CAN

Kinetic friction $f_k = \mu_{\mathbf{k}} F_{\mathbf{N}}$ Static friction $f_{s,\,\mathrm{max}} = \mu_\mathrm{s} F_\mathrm{N}$

 μ_s is the coefficient of static friction.

 μ_k is the coefficient of kinetic friction.

For a pair of materials, $\mu_k < \mu_s$.

UNIFORM CIRCULAR MOTION

Centripetal acceleration $a_c = \frac{v^2}{r}$ Centripetal force $F_c=\frac{mv^2}{}$

VECTOR FORMULAS

Notation	$\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$
Magnitude	$a= \mathbf{a} =\sqrt{a_x^2+a_y^2+a_z^2}$
Dot product (θ is the angle between a and b)	$\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$ $= ab \cos \theta$

(θ is the angle between a and b)

 ${\bf Cross\ product} \quad |{\bf a}\times{\bf b}|=ab\sin\theta$ $\mathbf{a}\times\mathbf{b}$ points in the direction given by the right-hand rule:

$$\begin{split} \mathbf{a} \times \mathbf{b} &= (a_y b_z - a_z b_y) \, \hat{\mathbf{i}} + (a_z b_x - a_x bz) \, \hat{\mathbf{j}} + (a_x b_y - a_y b_x) \, \hat{\mathbf{k}} \\ &= \begin{vmatrix} a_x & a_y & a_z \\ \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \end{vmatrix} \end{split}$$

ELECTROMAGNETIC CONSTANTS

WAVELENGTHS OF LIGHT IN A VACUUM (m) f = frequency (in Hz) $10^8 \quad 10^9 \quad 10^{10} \quad 10^{11} \quad 10^{12} \quad 10^{13} \quad 10^{14} \quad 10^{15} \quad 10^{16} \quad 10^{17} \quad 10^{18} \quad 10^{19} \quad 10^{20}$ Orange $5.9-6.5\times10^{-7}$ cio microwaves infrared ultraviolet X rays gamma rays Yellow $5.7 - 5.9 \times 10^{-7}$ 10⁻⁶ 10⁻⁷ 10⁻⁶ 10 R O Y G B T V $4.9 - 5.7 \times 10^{-7}$ $4.2 - 4.9 \times 10^{-7}$

INDICES OF	REFRACTION FOR	COMMON SUBSTANC	ES (l = 5.9 X 10 ⁻⁷ m)
Air	1.00	Alcohol	1.36
Corn oil	1.47	Diamond	2.42
Glycerol	1 47	Water	1 33

OPTICS

REFLECTION AND REFRACTION

Law of Reflection	$\theta_{\mathrm{incident}} = \theta_{\mathrm{re}}$	flected
Index of refraction	$n = \frac{c}{v}$	(v is the speed of light in the medium)
Snell's Law	$n_1 \sin \theta_1 = n_2$	$\sin \theta_2$

Critical angle $\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right)$

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \qquad \quad \frac{\text{image size}}{\text{object size}} = -\frac{q}{p}$$

opiicai instrument	rocal distal	ice i	image distance q	type of image	
Lens: Concave	nogotivo		negative (same side)	virtual, erect	•
Concave	negative		negative (same side)	virtual, erect	,
Convex	positive	p < f	negative (same side)	virtual, erect	•
		p > f	positive (opposite side)	real, inverted)
Mirror:					
Convey	negative		negative (opposite side)	virtual erect	۱

Concave positive negative (opposite side) p < f

	$W = \int \mathbf{F} \cdot d\mathbf{s}$
Kinetic energy	$KE = \frac{1}{2}mv^2 = \frac{p^2}{2m}$

Work-Energy Theorem $W = \Delta KE$

(for conservative forces) $\Delta U = -W$ Potential energy

Gravitational $U_g = mgh$

Total mechanical E = KE + Uenergy

 $P_{\text{avg}} = \frac{\Delta W}{\Delta t}$ Average power

 $P = \mathbf{F} \cdot \mathbf{v}$

MOMENTUM AND IMPULSE

Linear momentum	$\mathbf{p} = m\mathbf{v}$
Impulse	$\mathbf{J} = \mathbf{F}t = \Delta \mathbf{p}$
	$\mathbf{J} = \int \mathbf{F} dt = \Delta \mathbf{p}$

All collisions
$$m_1\mathbf{v}_1+m_2\mathbf{v}_2=m_1\mathbf{v}_1'+m_2\mathbf{v}_2'$$

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1(v_1')^2 + \frac{1}{2}m_2(v_2')^2$$

$$v_1 - v_2 = -(v_1' - v_2')$$

KINEMATICS

Average velocity	$\mathbf{v}_{\mathrm{avg}} = \frac{\Delta \mathbf{s}}{\Delta t}$

Displacement $\Delta s = \int v dt$

$\Delta \mathbf{v} = \int \mathbf{a} dt$

$v_f = v_0 + at$

Chanae

 $v_f^2 = v_0^2 + 2a(s_f - s_0)$

CONTINUED ON OTHER SIDE

Wave equation

$$y(x,t) = A \sin(kx - \omega t) = A \sin\left(2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)\right)$$

WAVE ON STRING

	length
Speed of standing wave $v = \sqrt{\frac{F_T}{\mu}}$	

Wavelength of standing wave

SOUND WAVES

Beat frequency

$$f_{\text{beat}} = |f_1 - f_2|$$

DOPPLER EFFECT

Motion of observer	Motion of source Stationary	Toward observer	Away from observer
Stationary	v	at v_s $v_{ m eff} = v$	$v_{ m eff} = v$
	f	$\lambda_{\text{eff}} = \lambda \left(\frac{v - v_s}{v} \right)$ $f_{\text{eff}} = f \left(\frac{v}{v - v_s} \right)$	$\lambda_{\text{eff}} = \lambda \left(\frac{v + v_s}{v} \right)$ $f_{\text{eff}} = f \left(\frac{v}{v + v_s} \right)$
Towards source at v_o	$v_{\text{eff}} = v + v_o$ $\lambda_{\text{eff}} = \lambda$ $f_{\text{eff}} = f\left(\frac{v + v_o}{v}\right)$	$v_{ m eff} = v$ $\lambda_{ m eff} = v$	$v \pm v_o$ $\lambda \left(\frac{v \pm v_s}{v} \right)$
Away from source at v_o	$v_{\text{eff}} = v - v_o$ $\lambda_{\text{eff}} = \lambda$ $f_{\text{eff}} = f\left(\frac{v - v_o}{c}\right)$	1	$f\left(\frac{v \pm v_o}{v \pm v_s}\right)$

ROTATIONAL MOTION

Angular position	$\theta = \frac{s}{r}$
Angular velocity	$\omega = \frac{v}{r}$
$\omega_{\text{avg}} = \frac{\Delta \theta}{\Delta t}$	$\omega = \frac{d\theta}{dt}$
Angular acceleration	$\alpha = \frac{a_t}{r}$
$\alpha_{\text{avg}} = \frac{\Delta \omega}{\Delta t}$	$\alpha = \frac{d\omega}{dt}$

CONSTANT Q

$$\begin{split} \omega_f &= \omega_0 + \alpha t & \omega_{\text{avg}} = \frac{1}{2}(\omega_0 + \omega_f) \\ \\ \theta &= \theta_0 + \omega_0 t + \frac{1}{2}\alpha t \\ \\ &= \theta_0 + \omega_{\text{avg}} t \\ \\ \hline \omega_f^2 &= \omega_0^2 + 2\alpha(\theta_f - \theta_0) \end{split}$$

MOMENTS OF INERTIA (/)

loique	7 — 1 / 51110
$\tau = d\mathbf{L}$	$\tau = \mathbf{r} \times \mathbf{F}$
$\tau = \frac{1}{dt}$	$\tau = I\alpha$
Angular momentum	$L = pr \sin \theta$
$\mathbf{L} = \mathbf{r} \times \mathbf{p}$	$\mathbf{L} = I\omega$
Rotational K	$E_{+} = \frac{1}{2}I\omega^2$

SIMPLE HARMONIC **MOTION**

PENDULUM

Velocity at equilibrium $v = \sqrt{2g\ell \left(1 - \cos\theta_{\text{max}}\right)}$ $T = 2\pi \sqrt{\frac{\ell}{q}}$

MASS-SPRING SYSTEM

Restoring force

 Δx is the distance the spring is stretched or compressed from the equilibrium position. and k is the spring constant. $U_e = \frac{1}{2}k(\Delta x)^2$ Elastic potential energy

 $F = -k(\Delta)x$

 $x = A \sin(\omega t)$ where $\omega = \frac{2\pi}{T} = \sqrt{\frac{k}{m}}$ is the angular frequency and $A=(\Delta x)_{\mathrm{max}}$ is the amplitude.

THERMODYNAMICS

1. First Law

 Δ (Internal Energy) = $\Delta Q + \Delta W$

2. Second Law: All systems tend spontaneously toward maximum entropy. Alternatively, the efficiency $e=1-\frac{\Delta Q_{\mathrm{out}}}{\Delta Q_{\mathrm{in}}}$ of any heat engine always satisfies $0 \le e < 1$

kinetic energy **GAS LAWS**

Universal Gas Law	PV = nRT	Boyle's Law	$P_1V_1 = P_2V_2$
Combined Gas Law	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	Charles's Law	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$

ELECTRICITY

ELECTROSTATICS

Coulomb's Law	$F = k \frac{q_1 q_2}{r^2} = \frac{1}{4\pi}$	$\frac{q_1q_2}{\varepsilon_0} \frac{q_1q_2}{r^2}$	
Electric field	$\mathbf{E} = \frac{\mathbf{F}_{\text{on } q}}{q}$	$\mathbf{F} = \mathbf{E}q$	
D-4	A IZ W		

Current	$I = \frac{\Delta Q}{\Delta t}$
Resistance	$R = \rho \frac{L}{A}$
Ohm's Law	$I = \frac{V}{R}$
Power dissingted by resistor	$P = VI = I^2R$

Heat energy dissipated by resistor

Series circuits

$$\begin{split} I_{\text{eq}} &= I_1 = I_2 = I_3 = \dots \\ V_{\text{eq}} &= V_1 + V_2 + V_3 + \dots \\ R_{\text{eq}} &= R_1 + R_2 + R_3 + \dots \end{split}$$

$R_{\rm eq} = R_1 + R_2 + R_3 + \cdots$

Parallel circuits $I_{\rm eq} = I_1 + I_2 + I_3 + \cdots$ $V_{\rm eq} = V_1 = V_2 = V_3 = \dots$ $\frac{1}{q} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \cdots$

KIRCHHOFF'S RULES

Loop rule: The sum of all the (signed) potential differences around any closed loop is zero. $\textbf{Node rule:} \ \text{The total current entering a juncture must equal the total current leaving the juncture.}$

MAGNETISM

Magnetic force on moving charge	$F=qvB\sin\theta$	$\mathbf{F}=q\left(\mathbf{v}\times\mathbf{B}\right)$
Magnetic force on current-carrying wire	$F = BI\ell \sin \theta$	$\mathbf{F} = I(\ell \times \mathbf{B})$

MAGNETIC FIELD PRODUCED BY

Magnetic field due to a moving charge	$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{q\mathbf{v} \times \hat{\mathbf{r}}}{r^2}$
Magnetic field produced by a current-carrying wire	$B = \frac{\mu_0}{2\pi} \frac{I}{r}$
Magnetic field produced by a solenoid	$B=\mu_0 nI$
Biort-Savart Law	$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I\left(d\ell \times \hat{\mathbf{r}}\right)}{r^2}$
Lenz's Low and Forodoy's Low	$\varepsilon = -\frac{d\Phi_B}{dt}$

MAXWELL'S EQUATIONS

Gauss's Law	$\oint_{s} \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enclosed}}}{\varepsilon_{0}}$
Gauss's Law for magnetic fields	$\oint_s \mathbf{B} \cdot d\mathbf{A} = 0$
Faraday's Law	$\oint_{c} \mathbf{E} \cdot d\mathbf{s} = -\frac{\partial \Phi_{B}}{\partial t} = -\frac{\partial}{\partial t} \oint_{s} \mathbf{B} \cdot d\mathbf{A}$
Ampere's Law	$\oint_c \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{\text{enclosed}}$
Ampere-Maxwell Law	$\oint_{c} \mathbf{B} \cdot d\mathbf{s} = \mu_{0} I_{\text{enclosed}} + \mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \oint_{s} \mathbf{E} \cdot d\mathbf{A}$

GRAVITY

Newton's Law of Universal Gravitation	$F = G \frac{m_1 m_2}{r^2}$
Acceleration due to gravity	$a = rac{GM_{ m Earth}}{r_{ m Earth}^2}$
Gravitational potential	$U(r) = -\frac{GMm}{r}$
Escape velocity	$v_{\text{escape}} = \sqrt{\frac{GM}{r}}$

KEPLER'S LAWS OF PLANETARY MOTION

- 1. Planets revolve around the Sun in an elliptical path with the Sun at one focus.
- 2. The imaginary segment connecting the planet to the Sun sweeps out equal areas in equal time.
- 3. The square of the period of revolution is directly proportional to the cube of the length of The square of the period of the semimajor axis of revolution: $\frac{T^2}{a^3}$ is constant.

SPARKCHARTS