

ТОСМ. Начало.

15.1

o) $\Gamma+Q$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa-m_{0}$ $\Gamma\subseteq F(A)$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\forall \varphi\in F(A)$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\forall \varphi\in F(A)$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\forall \varphi\in F(A)$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\forall \varphi\in F(A)$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\forall \varphi\in F(A)$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\forall \varphi\in F(A)$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\exists \varphi_{n,\dots}, \psi_{n} \in \Gamma: \varphi_{n,\dots}, \psi_{n}+\varphi-g_{0}\kappa$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n,\dots}, \varphi_{n}+\varphi-g_{0}\kappa$ $\exists \varphi_{n,\dots}, \varphi_{n} \in \Gamma: \varphi_{n}+\varphi-g_{0}\kappa$ $\exists \varphi_{n} \in \Gamma: \varphi_{n}+$

15.2 — теория сигнатуры сигма, тогда

N $\forall \varphi \in S(\sigma)$ $\varphi \in T \iff T + \varphi$ D) $\neg \varphi \in T_1$, $\neg \varphi = T_1 \implies T - He Teopus <math>\neg \varphi$,

 \triangle 1) (=) $\varphi \in T$, $\varphi \vdash \varphi \cdot g \circ x \Rightarrow T \vdash \varphi$

(E) T + P, T - 7 COR =) WET

$$a)$$
 q -- константа по правилу вывода расширение $+ (q = q) - q$ o $k = T + (Q = q)$ $+ 10$ $= q$ $= q$ $= T$ $= T$

б)
¬ предикат

Tyeth
$$\varphi = \exists x (q(x))$$

 $+ (\varphi v \neg \varphi) \Rightarrow T + (\varphi v \neg \varphi)$

(потому что опять же q принадлежит $\sqrt{}$ и не принадлежит $\sqrt{}$, а T теория $\sqrt{}$)

$$\beta$$
) $q = f''$, Let $\varphi = \forall x (q(\bar{x}) = q(\bar{x}))$

ПРЕДЛОЖЕНИЕ 15.3.

Непротиворечивое, полное множество предложений является теорией, т.е.

Возьмем это утверждение и аксиому, тогда по 10 правилу вывода:

Но по условию Т непротиворечиво, что значит $\forall q_1, \dots, q_n \vdash - ueyon$

противоречие => Т - теория

15.6

Замечание 15.6.

Элементарная теория модели $\mathfrak{A} \in K(\sigma), \ \operatorname{Th}(\mathfrak{A})$ - полная непротиворечивая теория σ .

2)
$$Th(GL) \leftarrow \Rightarrow \exists \overline{\varphi} cTh(GL) : \overline{\varphi} \leftarrow -gok \Rightarrow$$

 $\overline{\varphi} \leftarrow -\tau.u. \Rightarrow \exists \varphi_i \in Th(GL) : GL \neq \varphi_i$

$$\exists \varphi_i \in h(\mathcal{U}) \cdot \mathcal{U} \neq \varphi_i$$

$$\mathcal{U}_{Ho!}$$

$$\mathcal{U}_{Ho!}$$

Получили противоречие, значит теория непротиворечива

Torger
$$\forall \varphi \in S(\pi)$$
 $\frac{\varphi}{\varphi} + \varphi = \Im (\pi) +$

15.2 Следствие 15.8.

Пусть T - теория сигнатуры σ , $T \vdash \Leftrightarrow T = S(\sigma)$.

Теорема 15.9.

Пусть A, B - множества, B - бесконечно, $||A|| \leq ||B||$.

Тогда
$$||A \cup B|| = ||B||$$
.

Без доказательства.

ТЕОРЕМА 15.10.

Пусть A - бесконечное,

$$A^* = \bigcup_{n \in \mathbb{N}} A^n = \{(a_1, \dots, a_n) \mid a_i \in A, \ n \in \mathbb{N}\}.$$
 Тогда $\|A^*\| = \|A\|.$

ТЕОРЕМА 15.11.

Для любого множества A существует такой кардинал α , что $||A|| = ||\alpha||$.

ТЕОРЕМА 15.12.

 $\forall A, B$ выполняется: $\|A\| \leqslant \|B\|$ или $\|B\| \leqslant \|A\|$.

Доказательство:

Пусть существуют кардиналы α , β такие, что $\|A\| = \|\alpha\|$, $\|B\| = \|\beta\|$. Но т.к. α , β - кардиналы, выполняется $\alpha \leqslant \beta$ или $\beta \leqslant \alpha$. Тогда выполняется и условие: $\|A\| \leqslant \|B\|$ или $\|B\| \leqslant \|A\|$.

Теорема доказана.

Предложение 15.13.

Если α - бесконечный кардинал, то α - предельный ординал.

Доказательство:

Докажем от противного. Пусть α - бесконечный кардинал и непредельный ординал, т.е. $\alpha = \beta + 1 \Rightarrow \beta$ - бесконечный ординал и $\alpha = \beta \cup \{\beta\}$. Но тогда по теореме 15.9. выходит, что $\|\alpha\| = \|\beta\|$, откуда следует $\beta < \alpha$. Получаем противоречие, т.к. предположили, что α - непредельный ординал $\Rightarrow \alpha$ - предельный ординал.

Предложение доказано.

Определение 7.22. Ординальными числами (ординалами) называются:

$$\begin{split} \alpha_0 &= 0 = \emptyset; \\ \alpha_1 &= 1 = \{\emptyset\}; \\ \alpha_2 &= 2 = \{\emptyset; \ \{\emptyset\}\}; \\ \alpha_3 &= 3 = \Big\{\emptyset; \ \{\emptyset\}; \ \{\emptyset\}, \{\emptyset\}\}\Big\}; \\ \dots \\ \alpha_{n+1} &= \alpha_n \cup \{\alpha_n\}; \\ \omega &= \{\alpha_0, \alpha_1, \dots, \alpha_n \dots\}; \\ \omega &+ 1 = \omega \cup \{\omega\} = \{\alpha_0, \alpha_1, \dots, \alpha_n \dots, \omega\}; \\ 2\omega &= \{\alpha_0, \alpha_1, \dots, \alpha_n, \dots, \omega, \omega + 1, \dots, \omega + n, \dots\}; \\ \alpha &= \{\beta \mid \beta < \alpha\}. \end{split}$$

Определение 7.23. α называется непредельным ординалом, если существует ординал β такой, что $\alpha = \beta + 1$. α называется предельным ординалом, если не существует ор-

динала β такого, что $\alpha = \beta + 1$.

Определение 7.26. Ординал α называется кардиналом, если для любого ординала $\beta < \alpha$ имеет место $\| \beta \| \neq \| \alpha \|$.

ТОСМ. Начало.

15.14
$$CX \in K(\sigma)$$
, $X - wh-60 hep.$

$$Y: X \to 10L1 - OSHAYUBAHUB REPEMBHHAX UNG X HG M$$

• $FV(\Gamma) = \{x \mid \exists \varphi \in \Gamma : x \in FV(\varphi)\}$ мнажество свободных переменных множества формул Γ ge [⊆ F(J)

- \mathcal{O}_{F} [Г \mathcal{V}_{I} (Г истинно на модели при означивании гамма) Если $\forall \varphi \in \mathsf{F}$ (\mathcal{I}_{F} \mathcal{V}_{I}
- Γ выполнимо на модели А-красивое если $\exists \gamma \colon FV(\Gamma) \to [CI]$ $: CI \models [T\gamma]$

то есть если существует такое означивание что гамма истинно на модели.

Г выполнимо (имеет модель) если существует модель на которой Г выполнимо

$$\exists \mathcal{U} \in K(\sigma(\Gamma)) \cup \exists \gamma : \forall \Gamma \forall I) \rightarrow |\mathcal{U}| : \mathcal{U} \models \Gamma \exists \gamma \exists I) \vdash \mathcal{U}$$