

REVISANDO...

Forwarding acontece quando o switch tem a entrada para o MAC de destino. O quadro será encaminhado somente para a porta indicada na tabela.

Flooding acontece quando o *switch* não tem entrada para o MAC de destino. O quadro é enviado para todas as portas, com exceção da porta de origem.

Filter acontece quando o MAC de origem e de destino estão localizados na mesma porta. O quadro é simplesmente descartado.

ENCAMINHAMENTO EM REDES LOCAIS (LAN)

ENCAMINHAMENTO EM REDES LOCAIS (LAN)

COMO EVITAR A TEMPESTADE DE BROADCAST?

Se livrar dos loops!

SPANNING TREE PROTOCOL (STP)

SPANNING TREE PROTOCOL (STP)

SPANNING TREE PROTOCOL (STP)

Subgrafo que contém todos os nós mas nem todas as arestas

Links fora da spanning tree não realizam encaminhamento

ABORDAGEM DO ALGORITMO DE SPANNING TREE

- Pegue topologia arbitrária;
- > Selecione um subconjunto de links que formem uma spanning tree;
- Só encaminhe quadros pela spanning tree:
 - Sem loops
 - Sem broadcast storm

SPANNING TREE PROTOCOL

- Protocolo no qual os switches definem a spanning tree
- Propriedades interessantes:
 - não requer configuração;
 - se auto-adapta (plug-n-play).

ALGORITMO TEM DOIS ASPECTOS...

- Selecione uma raiz (root)
 - Destino no qual todos os menores caminhos chegarão
 - Seleciona o nó com o menor identificador (MAC)
- Calcule os menores caminhos para a raiz
 - Nenhum menor caminho pode ter um loop
 - Mantenha somente os links que fazem parte de um menor caminho
 - Defina alguma regra de desempate para que se mantenha somente um menor caminho para nó
 - ex: escolher o caminho a partir do vizinho com menor identificador

EXEMPLO STP

- Vamos executar o STP neste exemplo:
 - Assuma que todos os links tem distância 1
 - Mensagens (Y, d, X)
 - Propondo Y como root
 - Da origem X
 - com distância d entre X e Y
 - Switches elegem o nó com menor ID (MAC)
 - Y nas mensagens
 - Cada switch determina se um link está no menor caminho para o root
 - Se não está, exclui da árvore

PASSOS DO ALGORITMO STP

Mensagens (Y, d, X)

- Propondo root Y, a partir do nó X, anunciando distância d para Y
- Inicialmente cada switch se anuncia como root
 - ou seja, anuncia (X, 0, X) para seus vizinhos
- > Switches atualizam seus dados ao receber as mensagens
 - Se recebe um ID menor do que o do seu atual root, atualiza e define quem enviou como o próximo hop
- Switches computam a distância até o root
 - Adicionando I a distância recebida pelo vizinho
- Se o root mudou ou se o menor caminho para o root mudou:
 - ▶ Envia mensagem de atualização para os vizinhos: (Y, d+I, X)

	RECEBE	ENVIA	PRÓXIMO HOP
1		(1, 0, 1)	1
2		(2, 0, 2)	2
3		(3, 0, 3)	3
4		(4, 0, 4)	4
5		(5, 0, 5)	5
6		(6, 0, 6)	6
7		(7, 0, 7)	7

	RECEBE	ENVIA	PRÓXIMO HOP
1 (1, 0, 1)	(3, 0, 3), (5, 0, 5), (6, 0, 6)		1
2 (2, 0, 2)	(3, 0, 3), (4, 0, 4), (6, 0, 6), (7, 0, 7)		2
3 (3, 0, 3)	(1, 0, 1), (2, 0, 2)	(1, 1, 3)	1
4 (4, 0, 4)	(2, 0, 2), (7, 0, 7)	(2, 1, 4)	2
5 (5, 0, 5)	(1, 0, 1), (6, 0, 6)	(1, 1, 5)	1
6 (6, 0, 6)	(1, 0, 1), (2, 0, 2), (5, 0, 5)	(1, 1, 6)	1
7 (7, 0, 7)	(2, 0, 2), (4, 0, 4)	(2, 1, 7)	2

	RECEBE	ENVIA	PRÓXIMO HOP
1 (1, 0, 1)	(1, 1, 3), (1, 1, 5), (1, 1, 6)		1
2 (2, 0, 2)	(1, 1, 3), (2, 1, 4), (1, 1, 6), (2, 1, 7)	(1, 2, 2)	3 (ou 6)
3 (1, 1, 3)			1
4 (2, 1, 4)	(2, 1, 7)		2
5 (1, 1, 5)	(1, 1, 6)		1
6 (1, 1, 6)	(1, 1, 5)		1
7 (2, 1, 7)	(2, 1, 4)		2

	RECEBE	ENVIA	PRÓXIMO HOP
1 (1, 0, 1)			1
2 (1, 2, 2)			3
3 (1, 1, 3)	(1, 2, 2)		1
4 (2, 1, 4)	(1, 2, 2)	(1, 3, 4)	2
5 (1, 1, 5)			1
6 (1, 1, 6)	(1, 2, 2)		1
7 (2, 1, 7)	(1, 2, 2)	(1, 3, 7)	2

	RECEBE	ENVIA	PRÓXIMO HOP
1 (1, 0, 1)			1
2 (1, 2, 2)	(1, 3, 4), (1, 3, 7)		3
3 (1, 1, 3)			1
4 (1, 3, 4)	(1, 3, 7)		2
5 (1, 1, 5)			1
6 (1, 1, 6)			1
7 (1, 3, 7)	(1, 3, 4)		2

APÓS 5 ITERAÇÕES...

- 3-1
- 5-1
- 6-1
- > 2-3
- **→** 4-2
- > 7-2

