Introduction to Recommender Systems

Dr. Ahmad El Sallab Al Senior Expert

Agenda

- What is a Recommender System?
- Why we need it? Applications
- Types of Recommender Systems
- Build simple recommender system
- Build content-based recommender system
- Collaborative filtering
 - Matrix Factorization
 - Entity Embedding
 - Vector Similarity measures
 - Build State-of-The Art Collaborative filter using DL
- Analysis and Improvements
 - Scaling
 - Movie and User Embedding
 - Meta data integration
 - Deeper model
 - T-SNE visualization

Agenda

- What is a Recommender System?
- Why we need it? Applications
- Types of Recommender Systems
 - Build simple recommender system
 - Build content-based recommender system
- Collaborative filtering
 - Matrix Factorization
 - Entity Embedding
 - Vector Similarity measures
 - Build State-of-The Art Collaborative filter using DL
- Analysis and Improvements
 - Scaling
 - Movie and User Embedding
 - Meta data integration
 - Deeper model
 - T-SNE visualization

What are recommendations?

- Related item recommendations → Similar items
 - Depends on similar items of the current searched items
 - No track of the user history

- Home page recommendations
 - Personalized
 - Depends on the user history + Similar items

Applications

NETFLIX:

Most famous and early adopters

Over 80% of what people watch comes from our recommendations

Recommendations are driven by Machine Learning

-6

Personalized data everywhere!

Applications

Ads Online shopping Friends suggestions (People you may know)

- Content suggestion:
 - YouTube
 - Soundcloud
 - Spotify
 - **Education courses**

Elections!

- Matches 23 million customers with a huge inventory of movies according to their tastes - 60 - 70% of views result from the recommendations 9

- Sits on a huge volume of collective information of its customers - Customers can view what people with similar tastes viewed or purchased
- Customers can ask the recommendations engine to ignore selected purchases

- Sits on a huge volume of collective information of its customers - Customers can view what people with similar tastes viewed or purchased
- Customers can ask the recommendations engine to ignore selected purchases

- Sits on a huge volume of collective information of its customers
- Customers can view what people with similar tastes viewed or purchased
- Customers can ask the recommendations engine to ignore selected subscriptions³

Transportation

Education

Personalized medicine

Medicine description:

Which medicine worked with similar patient condition?

Personalized medicine

Diagnosis:

Which disease phenotype happened with similar patient condition?

Drug Discovery:

Drug discovery is a long experimental process

Game: reduce the space of possible drug compounds!

Drug Discovery:

Which compounds worked with similar disease?

Agenda

- What is a Recommender System?
- Why we need it? Applications
- Types of Recommender Systems
- Build simple recommender system
- Build content-based recommender system
- Collaborative filtering
 - Matrix Factorization
 - Entity Embedding
 - Vector Similarity measures
 - Build State-of-The Art Collaborative filter using DL
- Analysis and Improvements
 - Scaling
 - Movie and User Embedding
 - Meta data integration
 - Deeper model
 - T-SNE visualization

Structure of a Recommendation Engine

Candidate Generation

Search DB

Scoring

- How likely it matches?
 - User history
 - Similar items

Candidate Scoring Re-ranking

Re-ranking

Filter out results

Candidate generation approaches

- Absolute ⇒ Simple
 - Recommend an item based on its **own** popularity, **regardless of the user**
- Experience centric
 - Content based
 - Based on Meta data.
 - Based on history of the user preferences.
 - Not taking advantage of other users similarity
 - Collaborative
 - takes advantages of similar users history,
 - in addition to the same user past preferences, to recommend new items

Candidate generation approaches

Туре	Definition	Example
content- based filtering	Uses similarity between items to recommend items similar to what the user likes.	If user A watches two cute cat videos, then the system can recommend cute animal videos to that user.
collaborative filtering	Uses similarities between queries and items simultaneously to provide recommendations.	If user A is similar to user B, and user B likes video 1, then the system can recommend video 1 to user A (even if user A hasn't seen any videos similar to video 1).

Can take advantage of other users history even if this history is not of the current user! \rightarrow By user similarity

Agenda

- What is a Recommender System?
- Why we need it? Applications
- Types of Recommender Systems
- Build simple recommender system
- Build content-based recommender system
- Collaborative filtering
 - Matrix Factorization
 - Entity Embedding
 - Vector Similarity measures
 - Build State-of-The Art Collaborative filter using DL
- Analysis and Improvements
 - Scaling
 - Movie and User Embedding
 - Meta data integration
 - Deeper mode
 - T-SNE visualization

Simple

We will use IMBD

Decide on the metric or score to rate movies

on. \rightarrow **Votes**

- Calculate the score for every movie.
- Sort the movies based on the score and output the top results.

Weighted Rating (WR) = $\left(\frac{v}{v+m},R\right)+\left(\frac{m}{v+m},C\right)$

where,

- *v* is the number of votes for the movie;
- *m* is the minimum votes required to be listed in the chart;
- \bullet *R* is the average rating of the movie; And
- *C* is the mean vote across the whole report

Simple

We will use IMBD

- Decide on the metric or score to rate movies on.
- Calculate the score for every movie.
- Sort the movies based on the score and output the top results.

#Print the top 15 movies
q_movies[['title', 'vote_count', 'vote_average', 'score']].head(15)

	title	vote_count	vote_average	score
314	The Shawshank Redemption	8358.0	8.5	8.445869
834	The Godfather	6024.0	8.5	8.425439
10309	Dilwale Dulhania Le Jayenge	661.0	9.1	8.421453
12481	The Dark Knight	12269.0	8.3	8.265477
2843	Fight Club	9678.0	8.3	8.256385
292	Pulp Fiction	8670.0	8.3	8.251406
522	Schindler's List	4436.0	8.3	8.206639
23673	Whiplash	4376.0	8.3	8.205404
5481	Spirited Away	3968.0	8.3	8.196055
2211	Life Is Beautiful	3643.0	8.3	8.187171
1178	The Godfather: Part II	3418.0	8.3	8.180076
1152	One Flew Over the Cuckoo's Nest	3001.0	8.3	8.164256
351	Forrest Gump	8147.0	8.2	8.150272
1154	The Empire Strikes Back	5998.0	8.2	8.132919
1176	Psycho	2405.0	8.3	8.132715

Let's code!

https://colab.research.google.com/drive/1gKmgbo9Wr7Np4Ll0S9cMiOpPZ ZvOx6t#scrollTo=AikyGCXpismw

Agenda

- What is a Recommender System?
- Why we need it? Applications
- Types of Recommender Systems
- Build simple recommender system
- Build content-based recommender system
- Collaborative filtering
 - Matrix Factorization
 - Entity Embedding
 - Vector Similarity measures
 - Build State-of-The Art Collaborative filter using DL
- Analysis and Improvements
 - Scaling
 - Movie and User Embedding
 - Meta data integration
 - Deeper mode
 - T-SNE visualization

Content based

Recommend Apps to users on Google Play

Simplest form \rightarrow Decide on certain attributes (Education, Health,....) For each App→ 1/0 if it has this attribute For each user \rightarrow 1/0 if he likes this attribute Measure similarity of the user to all Return top k that matches . . .

Meta data

Suppose a user clicks a certain movie→ Can we recommend similar movies?

Similar based on what? → Meta data

Here we assume the user vector = the clicked movie Meta data

```
#Print plot overviews of the first 5 movies.
metadata['overview'].head()

0 Led by Woody, Andy's toys live happily in his ...
1 When siblings Judy and Peter discover an encha...
2 A family wedding reignites the ancient feud be...
3 Cheated on, mistreated and stepped on, the wom...
4 Just when George Banks has recovered from his ...
Name: overview, dtype: object
```

How to deal with text similarity?

How similar are two reviews?

Then what?

Score table (if needed)

	Movie 1	Movie 2	Movie 3
Movie 1		0.9	0.1
Movie 2			
Movie 3			

Most similar to Movie 1 is Movie

How to encode text data?

First build a vocabulary for your data!

Many ways to encode a review

Vocabulary:
Man, woman, boy,
girl, prince,
princess, queen,
king, monarch

Each word gets a 1x9 vector representation

- BoW: Each sentence will have |V| numbers
 - Binary: Put 1/0 if the word is present/absent in a review
 - Count: Put the number of times the word is mentioned in a review
 - Freq: Normalized counts by total words counts
 - <u>TF-IDF:</u> Normalize by the total mentions in all reviews (frequent words are not important) = TF(in rev) x IDF (in ALL revs)
- Sequence (Advanced)

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

How to measure similarities

Now we represent each review with a vector |V|

How we know 2 vectors are similar?

- Dot $s(q,x) = \langle q,x \rangle = \sum_{i=1}^{a} q_i x_i$.
- Cosine similarity $s(q,x) = \|x\| \|q\| \cos(q,x)$
- Euclidean Distance $\|s(q,x) = \|q-x\| = \left[\sum_{i=1}^d (q_i-x_i)^2
 ight]^{rac{1}{2}}$

All are views of the same equation

Which one to use?

Dot and Euclidean are almost the same. Euclidean is rarely used.

The dot product similarity is sensitive to the norm of the embedding.

Items that appear very frequently in the training set (for example, popular YouTube videos) tend to have embeddings with large norms.

If capturing popularity information is desirable, then you should prefer dot product.

--> Else cosine, or encode as TF-TDF

Putting it all together

```
print(get recommendations('The Dark Knight Rises'))
                                           The Dark Knight
12481
150
                                             Batman Forever
1328
                                             Batman Returns
                                 Batman: Under the Red Hood
15511
585
                                                     Batman
         Batman Unmasked: The Psychology of the Dark Kn...
21194
                        Batman Beyond: Return of the Joker
9230
18035
                                          Batman: Year One
                   Batman: The Dark Knight Returns, Part 1
19792
                              Batman: Mask of the Phantasm
3095
Name: title, dtype: object
get recommendations('The Godfather')
1178
                   The Godfather: Part II
         The Godfather Trilogy: 1972-1990
44030
1914
                  The Godfather: Part III
                                Blood Ties
23126
                         Household Saints
11297
                        Start Liquidation
34717
10821
                                 Flection
                 A Mother Should Be Loved
38030
17729
                        Short Sharp Shock
                       Beck 28 - Familjen
26293
Name: title, dtype: object
```

```
# Function that takes in movie title as input and outputs most similar movies
def get recommendations(title, cosine sim=cosine sim):
    # Get the index of the movie that matches the title
    idx = indices[title]
    # Get the pairwsie similarity scores of all movies with that movie
    sim scores = list(enumerate(cosine sim[idx]))
    # Sort the movies based on the similarity scores
    sim scores = sorted(sim scores, key=lambda x: x[1], reverse=True)
    # Get the scores of the 10 most similar movies
    sim scores = sim scores[1:11]
    # Get the movie indices
    movie indices = [i[0] for i in sim scores]
    # Return the top 10 most similar movies
    return metadata['title'].iloc[movie indices]
```

What if Meta Data is not Text?

- Flags
- Scalars
- Images

Print the first two movies of your newly merged metadata

- ...etc

encha...

What if Meta Data is not Text?

- Flags
- Scalars
- Images
- ...etc

Tabular/variables	Dense/Embedding
Image	Conv2D
Text	LSTM/GRU
Video	VideoCNN, VideoDNN, ConvLSTM, CNN1D, CNN-LSTM

TimeSeries! → (n_samples, n_time_steps, n_features)

What if Meta Data is not Text?

Workaround → Encode all as "soup" of Text

Then apply TF-IDF + cosine similarity as before:

Simple

Doesn't work with numericals, images and videos

	title	cast	director	keywords	genres
0	Toy Story	[tomhanks, timallen, donrickles]	johnlasseter	[jealousy, toy, boy]	[animation, comedy, family]
1	Jumanji	[robinwilliams, jonathanhyde, kirstendunst]	joejohnston	[boardgame, disappearance, basedonchildren'sbook]	[adventure, fantasy, family]
2	Grumpier Old Men	[waltermatthau, jacklemmon, ann-margret]	howarddeutch	[fishing, bestfriend, duringcreditsstinger]	[romance, comedy]
3	Waiting to Exhale	[whitneyhouston, angelabassett, lorettadevine]	forestwhitaker	[basedonnovel, interracial relationship, single	[comedy, drama, romance]
4 F	ather of the Bride Part II	[stevemartin, dianekeaton, martinshort]	charlesshyer	[baby, midlifecrisis, confidence]	[comedy]
5	Heat	[alpacino, robertdeniro, valkilmer]	michaelmann	[robbery, detective, bank]	[action, crime, drama]
6	Sabrina	[harrisonford, juliaormond, gregkinnear]	sydneypollack	[paris, brotherbrotherrelationship, chauffeur]	[comedy, romance]
7	Tom and Huck	[jonathantaylorthomas, bradrenfro, rachaelleig	peterhewitt	D D	[action, adventure, drama]
8	Sudden Death	[jean-claudevandamme, powersboothe, dorian hare	peterhyams	[terrorist, hostage, explosive]	[action, adventure, thriller]
9	GoldenEye	[piercebrosnan, seanbean, izabellascorupco]	martincampbell	[cuba, falselyaccused, secretidentity]	[adventure, action, thriller]

Pros and cons of Content based

No data needed about other users \rightarrow Easy scaling to whatever number of users (less complexity)

No data needed about other users! → Other **similar** users experience is not used!

Features are hand-engineered (meta data) → Can be overcome with structure DL→ Learn the features→ But again, which Meta data to use?

Agenda

- What is a Recommender System?
- Why we need it? Applications
- Types of Recommender Systems
- Build simple recommender system
- Build content-based recommender system
- Collaborative filtering
 - Matrix Factorization
 - Entity Embedding
 - Vector Similarity measures
 - Build State-of-The Art Collaborative filter using DL
- Analysis and Improvements
 - Scaling
 - Movie and User Embedding
 - Meta data integration
 - Deeper model
 - T-SNE visualization

Basic idea

Similar users favor similar items!

Why?

Latent Factors!

Analysis shows that the younger users category

Prefer similar movies

In other words → Age groups prefer similar movie groups

Factor = Age

Embeddings

A mapping from discrete (categorical) space

⇒ Vector space

Word ⇒ Vectors → Word Embedding

Sentence ⇒ Vectors → Sentence **Embedding**

User ⇒ Vectors → User Embedding

Movies/Items ⇒ Vectors → Item Embedding

Vocabulary: Man, woman, boy, girl, prince, princess, queen, king, monarch

Each word get: a 1x9 vector representation

How to calculate the Embedding? Big topic! Core of the Recommendation Engine

Why?

Latent Factors!

Factor = Age

Give each user a factor index according to age = [-1,1].

Do the same for movies.

1D Embedding!

Why?

Latent Factors!

Factor = Age

Give each user a factor index according to age = [-1,1] → User Embedding Vector (1D)

Do the same for movies.→

Movie Embedding Vector

(1D)

1D Embedding!

What of we have more Latent Factors?

Each user and movie are attributed to two factors

[Blockbuster, Age]

Each of the 2 attributes range from [-1,1]

So each user or movie is represented in 2D space with a 2D vector say [0.6, 0.2]

Who decides on the factors?

In the example, we decided: Blockbuster, Age

Can we learn them?

From what? → Data

Matrix Factorization

Loss = min (A - A_pred) \rightarrow Find U and V

A_pred = U.V^T (outer product)

$$\min_{U \in \mathbb{R}^{m imes d}, \ V \in \mathbb{R}^{n imes d}} \sum_{(i,j) \in \mathrm{obs}} (A_{ij} - \langle U_i, V_j \rangle)^2.$$

SVD

The GT A can be only the "observed" or rated movies by a user

This will be very sparse

SVD is a linear algebra technique to **factorize** a given matrix to it's components.

Given A (GT) \rightarrow factorize to get U and V \rightarrow Slow and might not work due to large A and sparsity (many 0's)

SVD

$$\min_{U \in \mathbb{R}^{m imes d}, \ V \in \mathbb{R}^{n imes d}} \|A - UV^T\|_F^2.$$

SVD

The GT A can be only the "observed" or rated movies by a user

This will be very sparse

Weighted MF → Unobserved = 0's

Weighted Matrix Factorization decomposes the objective into the following two sums:

- A sum over observed entries.
- A sum over unobserved entries (treated as zeroes).

$$\Sigma_{(i, j) \in obs} (A_{ij} - U_i \cdot V_j)^2$$

Weighted MF

$$\sum_{(i, j) \in obs} (A_{ij} - U_i \cdot V_j)^2 + W_0 \sum_{(i, j) \in obs} (0 - U_i \cdot V_j)^2$$

SVD

$$|A - U V^T|_F^2$$

= $\Sigma_{(i,j)} (A_{ij} - U_i . V_j)^2$

$$\min_{U \in \mathbb{R}^{m \times d}, \ V \in \mathbb{R}^{n \times d}} \sum_{(i,j) \in \text{obs}} (A_{ij} - \langle U_i, V_j \rangle)^2 + w_0 \sum_{(i,j) \not \in \text{obs}} (\langle U_i, V_j \rangle)^2.$$

Cost of SVD

$$\min_{U \in \mathbb{R}^{m imes d}, \ V \in \mathbb{R}^{n imes d}} \|A - UV^T\|_F^2.$$

MATRIX MULTIPLICATION

The product of an $m \times n$ matrix A by an $n \times k$ matrix B is an $m \times k$ matrix C.

```
The pseudo code is: procedure matrix_multiplication(A, B, C) is for i = 1 to m do for j = 1 to k do c_{ij} = 0; for s = 1 to n do c_{ij} = c_{ij} + (a_{is} * b_{sj}); end for; end for;
```

This procedure takes m*k*n steps.

A \Rightarrow nxn elements Each comes from a dot operation \Rightarrow m Overall cost is O(mn²)

Cost of SVD

Scales quadratic with nxk!

```
n=n_movies
k=n_users
m=n_latent=emb_sz
U⇒ kxm
V⇒ nxm
MATRIX MULTIPLICATION
```

The product of an $m \times n$ matrix A by an $n \times k$ matrix B is an $m \times k$ matrix C.

```
The pseudo code is: procedure matrix_multiplication(A, B, C) is for i = 1 to m do for j = 1 to k do c_{ij} = 0; for s = 1 to n do c_{ij} = c_{ij} + (a_{is} * b_{sj}); end for; end for;
```

This procedure takes m*k*n steps.

A ⇒ nxn elements Each comes from a dot operation ⇒ m Overall cost is O(mnk)

Issues with Matrix Factorization

- Cost of matrix operations: Scales quadratic with vocab_sz (millions or words, or movies, or users)
- What happens when new movies or users appear?

In the example, we decided: Blockbuster, Age

Can we learn them?

From what? → Data

- For each [(user,movie)] pair we have a rating
- If we give each user/movie a random vector
- Dot them → Get a scalar
- Try to fit this scalar to the (user,movie)-->rating

Let's code!

https://colab.research.google.com/drive/1GLofcB4RMPg8yQLyQcb_KA_mB5LRwYMa

```
# Number of latent factors
emb sz = 50
# User embeddings
user = layers.Input(shape=(1,), name='user_id')
user emb = layers.Embedding(n users, emb sz, embeddings regularizer=regularizers.12(1e-6), name='user embedding LUT')(user)
user emb = layers.Reshape((emb sz,))(user emb)
# Movie embeddings
movie = layers.Input(shape=(1,), name='movie id')
movie emb = layers.Embedding(n movies, emb sz, embeddings regularizer=regularizers.12(1e-6), name='movie embedding LUT')(movie)
movie emb = layers.Reshape((emb sz,))(movie emb)
# Dot product
rating = layers.Dot(axes=1, name='similarity measure')([user emb, movie emb])
# Model
model = models.Model([user, movie], rating)
# Compile the model
model.compile(loss='mse', metrics=metrics.RootMeanSquaredError(),
              optimizer=optimizers.Adam(lr=0.001))
# Show model summary
model.summary()
plot model(model, show shapes=True)
```

Results

Benchmark results show lowest RMSE of 0.89 on the 100K dataset as we are using.

We reach 0.85!

Only in few epochs MovieLens (100K)

Algorithm	MAE			RMSE			Train Time (s)			Test Time (s)		
	MMLite	PREA	LibRec	MMLite	PREA	LibRec	MMLite	PREA	LibRec	MMLite	PREA	LibRed
GlobalAvg	0.945	0.949	0.945	1.126	1./28	1.126	00:00	00:00	00:00	00:00	00:00	00:00
UserAvg	0.835	0.838	0.835	1.041	.043	1.042	00:00	00:00	00:00	00:00	00:00	00:00
ItemAvg	0.817	0.823	0.817	1.024	1.030	1.025	00:00	00:00	00:00	00:00	00:00	00:00
PD	N/A	N/A	0.794	N/A	N/A	1.094	N/A	N/A	00:00	N/A	N/A	14:26
	sigma=2.5											
UserKNN	0.721	0.732	0.737	0.921	0.937	0.944	00:02	00:00	00:05	01:38	(00:20)x5	00:03
	neighbors=60, shrinkage=25, similarity=pcc/MMLite: reg_u=12, reg_i=1											
ItemKNN	0.703	0.716	0.723	0.899	0.914	0.924	00:03	00:00	00:05	02:00	(01:47)x5	00:06

Agenda

- What is a Recommender System?
- Why we need it? Applications
- Types of Recommender Systems
- Build simple recommender system
- Build content-based recommender system
- Collaborative filtering
 - Matrix Factorization
 - Entity Embedding
 - Vector Similarity measures
 - Build State-of-The Art Collaborative filter using DL
- Analysis and Improvements
 - Scaling
 - Movie and User Embedding
 - Meta data integration
 - Deeper model
 - T-SNE visualization

Scaling

To help the model to scale the output within the required range, we pass the output of the Dot product to a sigmoid, which ranges from [0,1], then we scale that up to the range of min_rating to max_rating.

```
# Number of latent factors
emb sz = 50
# User embeddings
user = layers.Input(shape=(1,))
user emb = layers.Embedding(n users, emb sz, embeddings regularizer=regularizers.12(1e-6))(user)
user emb = layers.Reshape((emb sz,))(user emb)
# Movie embeddings
movie = layers.Input(shape=(1,))
movie emb = layers.Embedding(n movies, emb sz, embeddings regularizer=regularizers.12(1e-6))(movie)
movie emb = layers.Reshape((emb sz,))(movie emb)
# Dot product
rating = layers.Dot(axes=1)([user_emb, movie emb])
rating = layers.Activation('sigmoid')(rating)
rating = layers.Lambda(lambda x:x*(max rating - min rating) + min rating)(rating)
# Model
model = models.Model([user, movie], rating)
```

Scaling

To help the model to scale the output within the required range, we pass the output of the Dot product to a sigmoid, which ranges from [0,1], then we scale that up to the range of min_rating to max_rating.

User and movie bias

The first simple approach was based on recommending top movies, <u>regardless of the</u> <u>user(s) preferences.</u> → <u>Similar to item popularity Simple Recommender</u>

The latent factors are dependent on the dot product of users and movies ratings.

But there might be some prior movie or user factor, that does not depend on the relation between the user and his ratings.

Like for example, how much a **movie is popular** independent of the specific user rating. Say a user never clicks a certain category of movies (popular), how can we recommend to him?

or how much a user likes movies, independent of his rating to a specific movie.

Here where the bias role comes in.

User and movie bias

```
# User embeddings
user = layers.Input(shape=(1),name='user id')
user_emb = layers.Embedding(n_users, emb_sz, embeddings_regularizer=regularizers.12(1e-6),name='user_embedding')(user)
user emb = layers.Reshape((emb sz,))(user emb)
# User bias
user bias = layers.Embedding(n users, 1, embeddings regularizer=regularizers.12(1e-6),name='user bias')(user)
user bias = layers.Reshape((1,))(user bias)
# Movie embeddings
movie = layers.Input(shape=(1,),name='movie id')
movie_emb = layers.Embedding(n_movies, emb_sz, embeddings_regularizer=regularizers.12(1e-6), name='movie embedding')(movie)
movie emb = layers.Reshape((emb sz,))(movie emb)
# Movie hias
movie bias = layers.Embedding(n movies, 1, embeddings regularizer=regularizers.12(1e-6), name='movie bias')(movie)
movie bias = layers.Reshape((1,))(movie bias)
# Dot product
rating = layers.Dot(axes=1,name='similarity measure')([user emb, movie emb])
# Add biases
rating = layers.Add()([rating, user bias, movie bias])
rating = layers.Activation('sigmoid', name='rating scaling')(rating)
rating = layers.Lambda(lambda x:x*(max rating - min rating) + min rating)(rating)
# Model
model = models.Model([user, movie], rating)
```

User and movie bias

In the same way we could add any other meta data

- Flags
- Scalars
- Images
- ...etc

Tabular/variables	Dense/Embedding
Image	Conv2D
Text	LSTM/GRU
Video	VideoCNN, VideoDNN, ConvLSTM, CNN1D, CNN-LSTM

+ TimeSeries! → (n_samples, n_time_steps, n_features)

What if Meta Data is not Text?

Analysis of movie bias

How popular is a certain movie, independent of the user preference?

```
movie_bias_model = models.Model(movie, movie_bias)
movie_bias_model.summary()

mbs = movie_bias_model.predict(movies_in)
```

	title	bias
1	Jumanji (1995)	0.560876
0	Toy Story (1995)	0.501703
198	Eat Drink Man Woman (Yin shi nan nu) (1994)	0.391028
6	Sabrina (1995)	0.363988
2008	Thirteenth Floor, The (1999)	0.356012
	112	331
3915	Signs (2002)	-0.239535
6332	Flags of Our Fathers (2006)	-0.242444
1493	Bambi (1942)	-0.254248
6642	Bucket List, The (2007)	-0.258685
8453	Boyhood (2014)	-0.276169

Going Deeper

We could build multi Dense layers after the Dot

Use regularization to help model generalization

Embedding Regularizer \rightarrow The embedding is the biggest layer \rightarrow

Source of model complexity →

Overfitting

→ Penalize by regularization

Layer (type)	Output	Shape	Param #	Connected to
input_21 (InputLayer)	[(None	, 1)]	0	
input_22 (InputLayer)	[(None	, 1)]	0	
embedding_23 (Embedding)	(None,	1, 50)	30500	input_21[0][0]
embedding_25 (Embedding)	(None,	1, 50)	486200	input_22[0][0]
reshape_12 (Reshape)	(None,	50)	0	embedding_23[0][0]
reshape_14 (Reshape)	(None,	50)	0	embedding_25[0][0]
embedding_24 (Embedding)	(None,	1, 1)	610	input_21[0][0]
embedding_26 (Embedding)	(None,	1, 1)	9724	input_22[0][0]
concatenate_4 (Concatenate)	(None,	100)	0	reshape_12[0][0] reshape_14[0][0]
reshape_13 (Reshape)	(None,	1)	0	embedding_24[0][0]
reshape_15 (Reshape)	(None,	1)	0	embedding_26[0][0]
add_2 (Add)	(None,	100)	0	concatenate_4[0][0] reshape_13[0][0] reshape_15[0][0]
dense_48 (Dense)	(None,	10)	1010	add_2[0][0]
dense_49 (Dense)	(None,	1)	11	dense_48[0][0]
lambda 3 (Lambda)	(None,	1)	0	dense_49[0][0]

Use regularization to help model generalization

Embedding Regularizer → The embedding is the biggest layer →

Source of model complexity →

Overfitting

→ Penalize by regularization

```
input 21 (InputLayer)
                                 [(None, 1)]
input_22 (InputLayer)
                                 [(None, 1)]
embedding 23 (Embedding)
                                 (None, 1, 50)
                                                                   input 21[0][0]
                                                       30500
embedding 25 (Embedding)
                                                                   input 22[0][0]
                                 (None, 1, 50)
                                                       486200
reshape 12 (Reshape)
                                                                   embedding 23[0][0]
                                 (None, 50)
reshape_14 (Reshape)
                                                                   embedding_25[0][0]
                                 (None, 50)
embedding 24 (Embedding)
                                 (None, 1, 1)
                                                                   input 21[0][0]
                                                       610
                                                                   input 22[0][0]
embedding 26 (Embedding)
                                 (None, 1, 1)
                                                       9724
concatenate 4 (Concatenate)
                                 (None, 100)
                                                      0
                                                                   reshape_12[0][0]
                                                                   reshape_14[0][0]
                                                                   embedding 24[0][0]
reshape_13 (Reshape)
                                 (None, 1)
reshane 15 (Reshane)
                                 (None, 1)
                                                                   embedding 26[0][0]
                                                                   concatenate_4[0][0]
                                                                   reshape 13[0][0]
                                                                   reshape 15[0][0]
                                                                   add_2[0][0]
                                                      1010
                                                                   dense 48[0][0]
                                                      11
                                                                   dense_49[0][0]
```

```
# User embeddings
user = layers.Input(shape=(1,))
user_emb = layers.Embedding(n_users, emb_sz, embeddings_regularizer=regularizers.12(1e-6))(user)
user_emb = layers.Reshape((emb_sz,))(user_emb)

# User bias
user_bias = layers.Embedding(n_users, 1, embeddings_regularizer=regularizers.12(1e-6))(user)
user_bias = layers.Reshape((1,))(user_bias)
```

Analysis of Latent Factors

So far we don't control the latent factors:

(Age, Year, Blockbuster,...etc)

They are learnt! We just set emb_sz

But can we understand what they represent?

Use PCA to summarize them to the top K factors → Say 3

(PCA → project to the most changing direction that holds the info

```
top_movies_embs = movie_emb_model.predict(movies_in)

top_movies_embs.shape

(2000, 50)

from sklearn.decomposition import PCA

pca = PCA(n_components=3)
  result = pca.fit_transform(top_movies_embs)
```

try tpo figure out what are the latent factors:

```
movie_latent_factors = pd.DataFrame(movies_titles)
movie_latent_factors['factor_0'] = result[:,0]
movie_latent_factors['factor_1'] = result[:,1]
movie_latent_factors['factor_2'] = result[:,2]
movie_latent_factors
```

Analysis of Latent Factors

If we sort by factor_0, we see on one end it captures classics, on the other it captures action movies

Let's sort by the factors:

	title	factor_0	factor_1	factor_2
2	Grumpier Old Men (1995)	-1.279781	-0.244140	-0.453658
24	Leaving Las Vegas (1995)	-1.226336	-0.033326	0.202144
134	Crimson Tide (1995)	-1.151981	-0.268237	0.227814
61	Friday (1995)	-1.081181	-0.283692	-0.473304
777	20,000 Leagues Under the Sea (1954)	-1.046890	-0.085251	0.516375
	in the second	***		
5923	Bewitched (2005)	1.161033	-0.146358	0.087674
8691	Deadpool (2016)	1.211176	-0.771655	0.063774
2224	Home Alone 2: Lost in New York (1992)	1.321183	-0.430576	-0.046365
7888	Prometheus (2012)	1.328679	-0.168954	0.467732
3915	Signs (2002)	1.508746	-0.404520	0.125356

Analysis of Latent Factors

If we sort by factor_2, it seems to caputre 80's and 90's movies

117 Brothers McMullen, The (1995) -0.589981 0.178241 -0.0 946 Graduate, The (1967) -0.338809 -0.401788 -0.0 199 Exotica (1994) -0.647799 -0.192046 -0.0 2044 Mystery Men (1999) 0.481943 0.023822 -0.0 830 Weekend at Bernie's (1989) 0.729404 0.545231 0.0 630 Phenomenon (1996) 0.583151 0.238616 0.0 1056 Star Trek V: The Final Frontier (1989) -0.055650 0.001553 0.3 598 Spy Hard (1996) -0.570099 0.124406 0.3		title	factor_0	factor_1	factor_2
946 Graduate, The (1967) -0.338809 -0.401788 -0.6 199 Exotica (1994) -0.647799 -0.192046 -0.6 2044 Mystery Men (1999) 0.481943 0.023822 -0.6	1347	Mercury Rising (1998)	0.332178	0.076090	-0.702017
199 Exotica (1994) -0.647799 -0.192046 -0.0 2044 Mystery Men (1999) 0.481943 0.023822 -0.0 830 Weekend at Bernie's (1989) 0.729404 0.545231 0.0 630 Phenomenon (1996) 0.583151 0.238616 0.0 1056 Star Trek V: The Final Frontier (1989) -0.055650 0.001553 0.3 598 Spy Hard (1996) -0.570099 0.124406 0.3	117	Brothers McMullen, The (1995)	-0.589981	0.178241	-0.691810
2044 Mystery Men (1999) 0.481943 0.023822 -0.6	946	Graduate, The (1967)	-0.338809	-0.401788	-0.658833
Weekend at Bernie's (1989) 0.729404 0.545231 0.0 630 Phenomenon (1996) 0.583151 0.238616 0.0 1056 Star Trek V: The Final Frontier (1989) -0.055650 0.001553 0.0 598 Spy Hard (1996) -0.570099 0.124406 0.0	199	Exotica (1994)	-0.647799	-0.192046	-0.658026
830 Weekend at Bernie's (1989) 0.729404 0.545231 0.6 630 Phenomenon (1996) 0.583151 0.238616 0.6 1056 Star Trek V: The Final Frontier (1989) -0.055650 0.001553 0.7 598 Spy Hard (1996) -0.570099 0.124406 0.7	2044	Mystery Men (1999)	0.481943	0.023822	-0.636760
630 Phenomenon (1996) 0.583151 0.238616 0.0 1056 Star Trek V: The Final Frontier (1989) -0.055650 0.001553 0.0 598 Spy Hard (1996) -0.570099 0.124406 0.0		122			
1056 Star Trek V: The Final Frontier (1989) -0.055650 0.001553 0.3 598 Spy Hard (1996) -0.570099 0.124406 0.3	830	Weekend at Bernie's (1989)	0.729404	0.545231	0.678696
598 Spy Hard (1996) -0.570099 0.124406 0.	630	Phenomenon (1996)	0.583151	0.238616	0.682040
	1056	Star Trek V: The Final Frontier (1989)	-0.055650	0.001553	0.704540
1435 Torms of Endoarmont (1983) 0 483175 0 176901 0	598	Spy Hard (1996)	-0.570099	0.124406	0.772339
1433 Tellis of Elidealillett (1303) 0.403173 0.170301 0.	1435	Terms of Endearment (1983)	0.483175	0.176901	0.797862

2000 rows × 4 columns

Visualization

References

https://developers.google.com/machine-learning/recommendation/collaborative/basics

https://colab.research.google.com/drive/1GLofcB4RMPq8yQLyQcb_KA_mB5LRwYMa

https://colab.research.google.com/drive/1gKmqbo9Wr7Np4LI0S9cMiOpPZ_ZvOx6t#scrollTo=DDnVz1pkh5hf