

Human-Aware Epistemic Task Planning for Human-Robot Collaboration

The workshop on Human-Aware and Explainable Planning (HAXP) at ICAPS 2024

Shashank Shekhar, Anthony Favier, and Rachid Alami

LAAS-CNRS, Toulouse, France, ANITI

3 June 2024

Our Focus decisional aspects of HR collaboration

Artificial Intelligence (AI) is required to equip robots with the ability to make decisions in settings like home, workshop, etc.

Common task & separate workspace

• Human-Aware Task Planning (HATP) takes into consideration a variety of factors, such as developing robot policies that are *proactive*, *safe*, *legible*, *acceptable*, *predictable*, *etc*. (Alami et al., 2006).

Related Work: Planning for HR Collaboration

- Offline Planning (for a shared goal)
 - Builds joint policies before the execution starts
 - Built joint policies that include *coordinated human robot actions*
 - Policies shared are *assumed* to be followed by **H** & **R** (Alami et al., 2006; Roncone et al., 2017; Lallement et al., 2018)

Related Work: Planning for HR Collaboration

- Offline Planning (for a shared goal)
 - Builds joint policies before the execution starts
 - Built joint policies that include coordinated human robot actions
 - Policies shared are assumed to be followed by H & R (Alami et al., 2006; Roncone et al., 2017; Lallement et al., 2018)

Online Planning

- Online human-aware planners prepare reactive policies for the real-time operation
- They prioritizing *responsiveness* and *adaptiveness* (Darvish et al., 2021, Ramachandruni et al., 2023)

Related Work: Uncontrollable Human Operator

- Handled by using a distinct human model
 - Builds robot's policies by predicting human decisions and actions (Hoffman et al., 2007; Unhelkar 2019, 2020; Buisan et al., 2022)

Related Work: Uncontrollable Human Operator

- Handled by using a distinct human model
 - Builds robot's policies by predicting human decisions and actions (Hoffman et al., 2007; Unhelkar 2019, 2020; Buisan et al., 2022)
- HATP/EHDA (Buisan et al., 2022)
 - It stands for Human-Aware Task Planner which Estimates Human Decisions and Actions
 - (Qualitative) Offline planning framework
 - Explicit task models for both HUMAN and ROBOT with (non-) shared goals
 - Supports planning with agent's false beliefs
 - The joint policy is produced in a *turn-taking* manner

Rational behind HATP/EHDA

- We consider that the human's goal is known
- We focus on rational choices aligned with that objective

Rational behind HATP/EHDA

- We consider that the human's goal is known
- We focus on rational choices aligned with that objective
- Planning accounts for **non-deterministic** choices available to **H**, allowing **R** to adapt its behavior accordingly
 - We will now delve into HATP/EHDA framework description

Agents' Models: RM and HM

Beliefs: agent's knowledge from their perspective

Agenda: agent's goals

Action Model: agent's capabilities

Triggers: agent's possible reaction

Similar model structures but their purposes are fundamentally different!

Step 1. Compute the robot's next action – append it into the plan, update agents' beliefs

Step 1. Compute the robot's next action – append it into the plan, update agents' beliefs

Step 3. Get possible human actions based on their updated beliefs – append them in the plan and apply the effects on agents' beliefs

- **Step 1.** Compute the robot's next action append it into the plan, update agents' beliefs
- **Step 3.** Get possible human actions based on their updated beliefs append them in the plan and apply the effects on agents' beliefs
- Steps 2. & 4. Check the triggers to append reactions in agents' agendas

HATP/EHDA – The Planning Process

Human Actions

- Estimated with Human Model
- Non-deterministic (AND)

Robot Actions

- **Computed** with Robot Model
- Best choice (**OR**)

HATP/EHDA – The Planning Process

Human Actions

- Estimated with Human Model
- Non-deterministic (AND)

Robot Actions

- **Computed** with Robot Model
- Best choice (OR)

Key Point: The planner constructs the robot's policy by interleaving anticipated human actions to accomplish the objective.

HATP/EHDA – The Planning Process [1]

Planning Problem

The Planner

Execution experiences are not always shared!

- We assumes that the human's goal is known
- We focus on rational choices aligned with that objective
- Planning accounts for **non-deterministic** choices available to **H**, allowing **R** to adapt its behavior accordingly
- (novelty and contribution) Building robot's policy by anticipating periods when the human may not actively participate in the task or is away for finishing a subtask
 - Agents have (non-) shared execution experience
 - Agents can have divergent beliefs

Illustrative Example

- Consider the following scenario
 - > Human and robot team up to achieve a task together
 - For example: **cooking pasta**

Pasta cooking shared task

Illustrative Example

- Consider the following scenario
 - > Human and robot team up to achieve a task together
 - For example: **cooking pasta**
 - > Human needs to leave the Kitchen, but...
 - (Non-determinism) Humans cannot be controlled and choose when to leave for fetching the pasta packet
 - **Humans** are rational agents

Pasta cooking shared task

Illustrative Example: Human Choice 1

- Consider the following scenario
 - > Human and robot team up to achieve a task together
 - For example: **cooking pasta**
 - > Human needs to leave the Kitchen, but...
 - (Non-determinism) Humans cannot be controlled and choose when to leave for fetching the pasta packet
 - **Humans** are rational agents

Pasta cooking shared task

Illustrative Example: Human Choice 2

- Consider the following scenario
 - > Human and robot team up to achieve a task together
 - For example: **cooking pasta**
 - > Human needs to leave the Kitchen, but...
 - (Non-determinism) Humans cannot be controlled and choose when to leave for fetching the pasta packet
 - **Humans** are rational agents

Pasta cooking shared task

Illustrative Example: Suppose human picked the 2nd option

- Consider the following scenario
 - > Human and robot team up to achieve a task together
 - For example: cooking pasta
 - > Human needs to leave the Kitchen, but...
 - (Non-determinism) Humans cannot be controlled and choose when to leave for fetching the pasta packet
 - **Humans** are rational agents
 - Meanwhile, robot can progress in their absence towards achieving the task
 - Humans missed the real progress achieved by robot
 - Humans can estimate the set of worlds they expect to see one of those when back
 - We consider that humans carry an estimated model of the robot.

Let us consider a single plan trace to understand the (non-) shared execution experiences

Pasta cooking shared task

By the time human fetches pasta, robot adds salt to the pan

Anticipating Potential Progress

Kitchen

(H)

Anticipating Potential Progress

Kitchen

(H)

Anticipating Potential Progress

Pasta cooking shared task

Kitchen

Human Can Assess Changes

Pasta cooking shared task

Human Can Assess Changes

Pasta cooking shared task

Human Aware Epistemic Task planner

Our Objectives

• Building **robot's** policy that accounts for **human** uncontrollable behaviors

Human Aware Epistemic Task planner

Our Objectives

- Building robot's policy that accounts for human uncontrollable behaviors
- Also, keeping track of potential advancements the robot can achieve from the human's perspective – that human can estimate to be possible
 - (This is effective when the execution experience is not shared)

Human Aware Epistemic Task planner

Our Objectives

- Building robot's policy that accounts for human uncontrollable behaviors
- Also, keeping track of potential advancements the robot can achieve from the human's perspective – that human can estimate to be possible
 - (This is effective when the execution experience is not shared)
- The robot's policy has appropriate course of action depending on different situations arise:
 - Responding to the human enquiry, e.g., whether the salt is added?
 - Robot communicates, e.g., salt is added
 - Robot's (ontic) action, e.g., adds salt in the presence of human

Human Aware Epistemic Task planner

Consideration

- We consider that human has an estimated robot's model (HuMM)
 - This is effective in managing potential advancements
- To plan robot's actions the planner uses robot model (RM)
 - Note that RM ≠ HuMM (disparate model)
- And to anticipate and estimate possible human actions, human model (HM) is used

Human Aware Epistemic Task planner

Consideration

- We consider that human has an estimated robot's model (HuMM)
 - This is effective in managing potential advancements
- To plan robot's actions the planner uses robot model (RM)
 - Note that RM ≠ HuMM (disparate model)
- And to anticipate and estimate possible human actions, human model (HM) is used

Today's focus

- The framework we developed is general and works for RM ≠ HuMM
- But to simplify the presentation, we assume that RM =
 HuMM

Modeling Aspects

Modeling aspects: Agents' Beliefs

Modeling aspects: Agents' Beliefs

Modeling aspects: Agents' Beliefs

Modeling aspects: (Non-) Observable Variables

Modeling aspects: (Non-) Observable Variables

Modeling aspects: Notion of Places

Modeling aspects: Notion of Places

Modeling aspects: Shared Experience

- An agent can observe an action execution:
 - When observer is also the actor, and
 - If the observer **shares** the same **place** as of the actor when the action is executed (in **place**)
 - In that case, the actor and observer are also said to be co-present

Modeling aspects: Shared Experience

- An agent can observe an action execution:
 - When observer is also the actor, and
 - If the observer **shares** the same **place** as of the actor when the action is executed (in **place**)
 - In that case, the actor and observer are also said to be co-present

Action's effects:

- Effects will be observed by the **actor** and all the **co-present observers**
- Moreover, changes w.r.t. observable variables can also be observed later when an agent enters place
- But non-co-present agents **cannot assess** the changes w.r.t. non-observable variables
- Accordingly, agents' beliefs are updated!

Modeling aspects: Situation Assessment

- To systematically manage the evolution and contraction of estimated beliefs of the agents:
 - our framework implements a situation assessment process
 - it utilizes models for co-presence, (non-) observable variables, etc.

Our Planning Framework

(leverages tools developed for DEL-based epistemic planning)

Our Planning Approach (roughly...)

• An epistemic state (a set of tuples):

```
s = {..., <RM,HM,HuMM>, ...}
```


Our Planning Approach (roughly...)

An epistemic state (a set of tuples):

```
s = {..., <RM,HM,HuMM>, ...}
```

- (ROBOT) an epistemic action captures all possible events w.r.t. every HuMM in s
 - One of these events is the real R-action that the robot performs (aligns with RM)

Our Planning Approach (roughly...)

• An epistemic state (a set of tuples):

```
s = \{..., <RM,HM,HuMM>, ...\}
```

- (ROBOT) an epistemic action captures all possible events w.r.t. every HuMM
 - One of these events is the real R-action that the robot performs (aligns with RM)
 - The indistinguishability relation w.r.t. HUMAN is maintained as per copresent-HR

Our Planning Approach (roughly...)

- (HUMAN) an epistemic action captures all possible events w.r.t.
 HM
 - The real H-action performed must be applicable w.r.t. each world (i.e., in HM) in the epistemic state

Our Planning Approach (roughly...)

- (HUMAN) an epistemic action captures all possible events w.r.t.
 HM
 - The real H-action performed must be applicable w.r.t. each world (i.e., in HM) in the epistemic state
- We apply the epistemic action and generate the next epistemic state...
 - The size of this next state may grow (compared to the previous state)

Our Planning Approach (roughly...)

- > Just after next state is generated:
 - We call the situation assessment (SA) subroutine that may shrink the overall possibilities

Our Planning Approach (roughly...)

- > Just after next state is generated:
 - ➤ We call the **situation assessment (SA)** subroutine that may shrink the overall possibilities
 - Robot takes the perspective of human and ignores those possibilities that are impossible to be considered by humans

Human-Aware Epistemic Task Planner

To continue from this point onwards...

Human-Robot Communication

- About some state variable p
 - In an epistemic state s = {..., <RM,HM,HuMM>, ...}, HUMAN may not know the real value of p, but they always know that ROBOT knows the real world and real value of p
 - HUMAN can inquire about p (uncontrollable operator)
 - ROBOT can inform them the value of p if it optimizes the policy afterwards
 - ROBOT can also choose to act to implicitly communicate the value of p

Implementation Details

- ➤ We build an **AND/OR** search based **planner** that performs breadth-first search
 - ➤ Its underlying idea is based on the HATP/EHDA planner (as described earlier)
- Our planner is implemented in Python

Empirical Evaluation

Cube Organization Scenario

- > Two cubes: **cr (red)** and **cw** (white)
- > box1 and box2 are placed on mt
 - They can be either transparent or opaque.
- ➤ **Task** organize the cubes in such a way that cubes from one table are placed in one box
- The choice of which box is flexible as long as each table's cubes end up in separate boxes

Initial state

States in which the goal is satisfied

Just before Situation Assessment

(all possible worlds from Human's perspective which the planner prepared)

After SA

When the boxes are opaque: Human Inquires

When the boxes are opaque: Robot Communicates

Human remains with the real world

Experiments: Quantitative Analysis

This is the preliminary data for our planner based on AND/OR search which conducts breadth-first search.

inst	K	comm	#states		#leaves	time (ms) \times 10^5
P1 (2,2,T)	2	N	218	4	3	0.008
P2 (2,2,O)	2	Y	236	4	3	0.014
P3 (3,2,T)	2	N	1643	7	6	5.906
P4 (3,2,O)	2	Y	2003	7	6	9.816
P5 (3,2,T)	4	N	4107	14	5	99.81
P6 (3,2,O)	4	Y	5607	14	5	125.3

Table 1: The planner's performance is evaluated on different metrics. inst is instance description. Whether communication is employed – comm. The metrics include the total number of states explored (#states), the worst-case number of worlds (|W|) evaluated in a state, the number of traces (#leaves), and the execution time (measured in 10^5 ms).

Experiments: Quantitative Analysis

This is the preliminary data for our planner based on AND/OR search which conducts breadth-first search.

inst	K	comm	#states	W	#leaves	time (ms) $ imes 10^5$
P1 (2,2,T)	2	N	218	4	3	0.008
P2 (2,2,O)	2	Y	236	4	3	0.014
P3 (3,2,T)	2	N	1643	7	6	5.906
P4 (3,2,O)	2	Y	2003	7	6	9.816
P5 (3,2,T)	4	N	4107	14	5	99.81
P6 (3,2,O)	4	Y	5607	14	5	125.3

Table 1: The planner's performance is evaluated on different metrics. inst is instance description. Whether communication is employed – comm. The metrics include the total number of states explored (#states), the worst-case number of worlds (|W|) evaluated in a state, the number of traces (#leaves), and the execution time (measured in 10^5 ms).

Conclusion

- Our novel framework allows the robot to implement a ToM not only at execution time but also at planning time
- This is done, thanks to the following:
 - the use of epistemic reasoning,
 - the notion of shared experience, and
 - observable and non-observable facts, which allow anticipation of human situation assessment
- We showed the applicability and effectiveness of our human-aware planner.

Thank you