Algumas funções reais importantes

Departamento de Matemática e Aplicações Universidade do Minho

Algumas funções reais importantes

- A. Funções trigonométricas
- B. Funções trigonométricas inversas
- C. Funções hiperbólicas
- D. Funções hiperbólicas inversas

Função trigonométrica seno

Função seno: sin x

- Domínio: $D_{sin} = \mathbb{R}$
- Contradomínio: $D'_{sin} = [-1, 1]$
- Continuidade: contínua em ℝ
- É uma função ímpar: $\sin(-x) = -\sin x, \forall x \in \mathbb{R}$
- Zeros: $x = k\pi, k \in \mathbb{Z}$
- ullet Periodicidade: é uma função periódica de período 2π

Definição: Função periódica

Uma função f é periódica se existe um número positivo p tal que $f(x+p)=f(x), \forall x\in D_f$. Ao menor valor de p chama-se período da função.

Função trigonométrica seno

- Sinal: positiva, $\sin x > 0$, para $x \in]2k\pi, \pi + 2k\pi[, k \in \mathbb{Z}]$ negativa, $\sin x < 0$, para $x \in]\pi + 2k\pi, 2\pi + 2k\pi, [, k \in \mathbb{Z}]$
- Máximo absoluto: 1 , nos pontos $x = \frac{\pi}{2} + 2k\pi \ k \in \mathbb{Z}$
- Mínimo absoluto:-1 , nos pontos $x=rac{3\pi}{2}+2k\pi$ $k\in\mathbb{Z}$
- Monotonia: estritamente crescente nos intervalos $]-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi[,\ k\in\mathbb{Z}$ estritamente decrescente nos intervalos $]\frac{\pi}{2}+2k\pi,\frac{3\pi}{2}+2k\pi[,\ k\in\mathbb{Z}$
- Injectividade: Não é injectiva

Função trigonométrica cosseno

Função cosseno: cos x

- Domínio: $D_{\cos} = \mathbb{R}$
- Contradomínio: $D'_{cos} = [-1, 1]$
- Continuidade: contínua em R
- É uma função par: $\cos(-x) = \cos x, \forall x \in \mathbb{R}$
- Zeros: $x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
- ullet Periodicidade: é uma função periódica de período 2π
- Sinal: positiva, $\cos x > 0$, para $x \in]-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi[,\ k \in \mathbb{Z}$ negativa, $\cos x < 0$, para $x \in]\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi, [,\ k \in \mathbb{Z}$

Função trigonométrica cosseno

- Máximo absoluto: 1 , nos pontos $x=2k\pi$ $k\in\mathbb{Z}$
- ullet Mínimo absoluto: -1 , nos pontos $x=\pi+2k\pi$ $k\in\mathbb{Z}$
- Monotonia: estritamente decrescente nos intervalos $]2k\pi,\pi+2k\pi,[,\ k\in\mathbb{Z}\ ;$ estritamente crescente nos intervalos $]\pi+2k\pi,2\pi+2k\pi[,\ k\in\mathbb{Z}$
- Injectividade: Não é injectiva

Função trigonométrica tangente

Função tangente: $tg x = \frac{\sin x}{\cos x}$

- Domínio: $D_{tg} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$
- Contradomínio: $D'_{tg} = \mathbb{R}$
- Continuidade: contínua no seu domínio
- É uma função ímpar: $tg(-x) = -tgx, \forall x \in D_{tg}$
- Zeros: $x = k\pi, k \in \mathbb{Z}$
- ullet Periodicidade: é uma função periódica de período π

Função trigonométrica tangente

- Sinal: positiva, $tg \times > 0$, para $x \in]2k\pi, \frac{\pi}{2} + 2k\pi[e \times \in]\pi + 2k\pi, \frac{3\pi}{2} + 2k\pi[k \in \mathbb{Z}]$ negativa, $tg \times < 0$, para $x \in]\frac{\pi}{2} + 2k\pi, \pi + 2k\pi[e \times \in]\frac{3\pi}{2} + 2k\pi, 2\pi + 2k\pi[k \in \mathbb{Z}]$
- Máximos e mínimos: não tem
- Monotonia: estritamente crescente no seu domínio
- Injectividade: Não é injectiva

Função trigonométrica cotangente

Função cotangente: $cotg x = \frac{\cos x}{\sin x}$

- Domínio: $D_{cotg} = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$
- Contradomínio: $D'_{cotg} = \mathbb{R}$
- Continuidade:contínua no seu domínio
- É uma função ímpar: $cotg(-x) = -cotg x, \forall x \in D_{cotg}$
- Zeros: $x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
- ullet Periodicidade: é uma função periódica de período π

Função trigonométrica cotangente

- Sinal: positiva, $cotg \ x>0$, para $x\in]2k\pi, \frac{\pi}{2}+2k\pi[\ e\ x\in]\pi+2k\pi, \frac{3\pi}{2}+2k\pi[, k\in \mathbb{Z}$ negativa, $cotg \ x<0$, para $x\in]\frac{\pi}{2}+2k\pi, \pi+2k\pi[\ e\ x\in]\frac{3\pi}{2}+2k\pi, 2\pi+2k\pi[,\ k\in \mathbb{Z}$
- Máximos e mínimos: não tem
- Monotonia: estritamente decrescente no seu domínio
- Injectividade: Não é injectiva

Função trigonométricas inversas

As funções trigonométricas seno, cosseno, tangente e cotangente são funções não injetivas e, portanto, não possuem inversa.

Considerando restrições adequadas das funções trigonométricas, obtemos funções contínuas e bijetivas definidas em intervalos. A injetividade será conseguida excluindo do domínio todos os pontos onde a função se repete. A sobrejetividade será obtida eliminando do conjunto de chegada todos os pontos que a função não assume. As inversas das restrições assim definidas serão também contínuas.

A função seno é injectiva quando restringida a um intervalo do tipo:

$$[-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi],\,k\in\mathbb{Z}$$

De entre estas, chama-se restrição principal da função seno a

$$sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \left[-1, 1\right] \\
\mathbf{x} \hookrightarrow \qquad \qquad y = \sin x$$

Definição: Função arco-seno

Chama-se função arco-seno à inversa da função seno, quando restringida ao intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, e define-se por:

arcsin :
$$[-1,1] \longrightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$

 $\mathbf{x} \hookrightarrow \qquad \qquad y = \arcsin x$

onde $\arcsin x$ indica o único arco do intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ cujo seno é igual x. Assim,

$$y = \arcsin x \,,\; x \!\in\! [-1,1] \;\iff\; x = \sin y \,,\; y \!\in\! \left\lceil -\frac{\pi}{2},\frac{\pi}{2} \right\rceil.$$

Gráfico da função arco-seno:

- Domínio: $D_{\text{arcsin}} = [-1, 1]$
- Contradomínio: $D'_{arcsin} = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
- Continuidade: contínua no seu domínio
- É uma função ímpar
- Zeros: x = 0
- Sinal: negativa para $x \in]-1,0[$ e positiva para $x \in]0,1[$
- Máximo absoluto: $\frac{\pi}{2}$ em x=1
- Mínimo absoluto: $-\frac{\pi}{2}$ em x=-1
- Monotonia: estritamente crescente em todo o seu domínio

Pelo facto das funções arcsin e sin serem inversas uma da outra , tem-se

$$\arcsin(\sin x) = x, \ \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\sin(\arcsin y) = y, \ \forall y \in [-1, 1].$$

No entanto, apesar de fazer sentido calcular arcsin (sin z), para $z\in\mathbb{R}\setminus\left[-\frac{\pi}{2},\frac{\pi}{2}
ight]$,

tem-se

$$\arcsin(\sin z) \neq z, \ \forall z \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$$

uma vez que $D'_{\mathsf{arcsin}} = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Exercício 1

- 1. Calcular:
 - 1.1 arcsin 1
 - 1.2 $\arcsin \frac{\sqrt{2}}{2}$
 - 1.3 $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$
- 2. Considere a função $h(x) = 2 + \arcsin(3x + 1)$. Determine:
 - 2.1 O domínio de h.
 - 2.2 O contradomínio da função h.
 - 2.3 Caracterize a função inversa de h.
 - 2.4 h(0)
 - 2.5 As soluções da equação $h(x) = 2 + \frac{\pi}{3}$

A função cosseno é injectiva quando restringida a um intervalo do tipo:

$$[k\pi, \pi + k\pi], k \in \mathbb{Z}$$

De entre estas, chama-se restrição principal da função cosseno a

$$\cos: \quad \begin{bmatrix} 0, \pi \end{bmatrix} \longrightarrow \quad \begin{bmatrix} -1, 1 \end{bmatrix} \\ \mathbf{x} \hookrightarrow \qquad \qquad y = \cos x$$

Definição: Função arco-cosseno

Chama-se função arco-cosseno à inversa da função cosseno, quando restringida ao intervalo $[0,\pi]$, e define-se por:

$$\begin{array}{ccc} \arccos: & [-1,1] \longrightarrow & [0,\pi] \\ & \mathbf{x} \hookrightarrow & \mathbf{y} = \arccos \mathbf{x} \end{array}$$

onde $\arccos x$ indica o único arco do intervalo $[0,\pi]$ cujo cosseno é igual x. Assim,

$$y = \arccos x, x \in [-1, 1] \iff x = \cos y, y \in [0, \pi].$$

Gráfico da função arco-cosseno:

- Domínio: $D_{\text{arccos}} = [-1, 1]$
- Contradomínio: $D'_{\text{arccos}} = [0, \pi]$
- Continuidade: contínua no seu domínio
- É uma função que não é par nem é ímpar
- Zeros: x = 1
- Sinal: é não negativa no seu domínio
- Máximo absoluto: π em x=-1
- Mínimo absoluto: 0 em x = 1
- Monotonia: estritamente decrescente em todo o seu domínio

Pelo facto das funções arccos e cos serem inversas uma da outra , tem-se

$$\arccos(\cos x) = x, \ \forall x \in [0, \pi]$$

$$cos(arccos y) = y, \forall y \in [-1, 1].$$

No entanto, apesar de fazer sentido calcular arccos (cos z), para $z \in \mathbb{R} \setminus [0,\pi]$, tem-se

$$\arccos(\cos z) \neq z$$
, $\forall z \notin [0, \pi]$,

uma vez que $D'_{
m arccos} = [0,\pi].$

Exercício 2

Calcular:

- 1.1 arccos 1
- $1.2 \operatorname{arccos}(-1)$
- 1.3 $\arccos(\frac{-\sqrt{2}}{2})$
- 1.4 $\arccos(\cos(5\pi))$
- 1.5 $\arccos(\cos(\frac{25\pi}{4}))$
- 1.6 $\sin(\arccos(-\frac{5}{13}))$

Função trigonométrica inversa arco-tangente

A função tangente é injectiva quando restringida a um intervalo do tipo:

$$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,\,k\in\mathbb{Z}$$

De entre estas, chama-se restrição principal da função tangente a

$$tg:]-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow \mathbb{R}$$
 $\mathbf{x} \hookrightarrow y = tg \mathbf{x}$

Definição: Função arco-tangente

Chama-se função arco-tangente à inversa da função tangente, quando restringida ao intervalo $]-\frac{\pi}{2},\frac{\pi}{2}[$, e define-se por:

$$arctg: \mathbb{R} \longrightarrow]-\frac{\pi}{2}, \frac{\pi}{2}[$$

$$\mathbf{x} \hookrightarrow \qquad y = arctg \ x$$

onde $arctg\ x$ indica o único arco do intervalo $]-\frac{\pi}{2},\frac{\pi}{2}[$ cujo tangente é igual x. Assim,

$$y = \operatorname{arctg} x \,,\; x \in \mathbb{R} \iff x = \operatorname{tg} y \,,\; y \in] - \frac{\pi}{2}, \frac{\pi}{2}[.$$

Função trigonométrica inversa arco-tangente

Gráfico da função arco-tangente:

- lacksquare Domínio: $D_{arctg} = \mathbb{R}$
- Contradomínio: $D'_{arctg} =] \frac{\pi}{2}, \frac{\pi}{2}[$
- Continuidade: contínua no seu domínio
- É uma função ímpar
- Zeros: x = 0
- Sinal: negativa para $x \in]-\infty,0[$ e positiva para $x \in]0,+\infty[$
- Monotonia: estritamente crescente em todo o seu domínio

Função trigonométrica inversa arco-cotangente

A função cotangente é injectiva quando restringida a um intervalo do tipo:

$$]k\pi,\pi+k\pi[,k\in\mathbb{Z}$$

De entre estas, chama-se restrição principal da função cotangente a

$$cotg:]0, \pi[\longrightarrow \mathbb{R}$$

 $\mathbf{x} \hookrightarrow y = cotg \ x$

Definição: Função arco-cotangente

Chama-se função arco-cotangente à inversa da função cotangente, quando restringida ao intervalo $]0, \pi[$, e define-se por:

$$arccotg: \mathbb{R} \longrightarrow]0, \pi[$$
 $\mathbf{x} \hookrightarrow y = arccotg \ x$

onde $\operatorname{arccotg} x$ indica o único arco do intervalo $]0,\pi[$ cujo tangente é igual x. Assim,

$$y = \operatorname{arccotg} x, \ x \in \mathbb{R} \iff x = \operatorname{cotg} y, \ y \in]0, \pi[.$$

Função trigonométrica inversa arco-cotangente

Gráfico da função arco-cotangente:

- Domínio: $D_{arccotg} = \mathbb{R}$
- Contradomínio: $D'_{arccotg} =]0, \pi[$
- Continuidade: contínua no seu domínio
- É uma função que não é par nem é ímpar
- Zeros: não tem
- Sinal:é sempre positiva para $x \in \mathbb{R}$
- Monotonia: estritamente decrescente em todo o seu domínio

Função Hiperbólicas

Vamos agora introduzir as funções hiperbólicas, apresentar algumas das suas propriedades e esboçar os seus gráficos. São funções que resultam de combinações de funções exponenciais e possuem propriedades semelhantes, do ponto de vista formal, às das funções trigonométricas.

Função seno hiperbólico

Definição: Função seno hiperbólico

Chama-se seno hiperbólico à função definida por :

$$sh: \mathbb{R} \longrightarrow \mathbb{R}$$

$$\mathbf{x} \hookrightarrow shx = \frac{e^{x} - e^{-x}}{2}$$

Gráfico da função seno hiperbólico:

- Domínio: $D_{sh} = \mathbb{R}$
- Contradomínio: $D'_{sh} = \mathbb{R}$
- Continuidade: contínua no seu domínio
- É uma função ímpar
- Zeros: x = 0

Função seno hiperbólico

- Sinal: negativa para $x \in]-\infty, 0[$ e positiva para $x \in]0, \infty[$
- \bullet Monotonia: estritamente crescente em $\mathbb R$
- Injectividade: É injectiva
- ullet Mais ainda, $\lim_{x \to +\infty} \sinh x = +\infty$ e $\lim_{x \to -\infty} \sinh x = -\infty$

Função cosseno hiperbólico

Definição: Função cosseno hiperbólico

Chama-se cosseno hiperbólico à função definida por :

$$ch: \mathbb{R} \longrightarrow [1, +\infty[$$
 $\mathbf{x} \hookrightarrow chx = \frac{e^{x} + e^{-x}}{2}$

Gráfico da função cosseno hiperbólico:

- Domínio: $D_{ch} = \mathbb{R}$; Contradomínio: $D'_{ch} = [1, +\infty[$
- Continuidade: contínua em ℝ
- É uma função par

Função cosseno hiperbólico

- Zeros: não tem
- ullet Sinal: é sempre positiva em ${\mathbb R}$
- Monotonia: estritamente decrescente para $x \in]-\infty,0[$ e estritamente crescente para $x \in]0,+\infty[$
- Mínimo absoluto: 1, no ponto x = 0.
- Injectividade: Não é injectiva
- Mais ainda, $\lim_{x\to+\infty} ch x = \lim_{x\to-\infty} ch x = +\infty$

Função tangente hiperbólica

Definição: Função tangente hiperbólica

Chama-se tangente hiperbólica à função definida por:

$$th: \mathbb{R} \longrightarrow]-1,1[$$
 $\mathbf{x} \hookrightarrow thx = \frac{shx}{chx}$

ou seja, definida por

$$th x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Gráfico da função tangente hiperbólica:

• Domínio: $D_{th} = \mathbb{R}$; Contradomínio: $D'_{th} =]-1,1[$

Função tangente hiperbólica

- Continuidade: contínua em R
- É uma função ímpar
- Zeros: x = 0
- Sinal: negativa para $x \in]-\infty,0[$ e positiva para $x \in]0,+\infty[$
- Monotonia: estritamente crescente em todo o seu domínio
- Injectividade: É injectiva
- Mais ainda, $\lim_{x\to+\infty} th x = 1$ e $\lim_{x\to-\infty} th x = -1$. (A.H. y=-1 e y=1)

Função cotangente hiperbólica

Definição: Função cotangente hiperbólica

Chama-se cotangente hiperbólica à função definida por :

$$\begin{array}{ccc} \textit{coth}: & \mathbb{R}\backslash\{0\} \longrightarrow & \mathbb{R}\backslash[-1,1] \\ & \mathbf{x} \hookrightarrow & \textit{coth}\,\mathbf{x} = \frac{\textit{ch}\,\mathbf{x}}{\textit{sh}\,\mathbf{x}} \end{array}$$

ou seja, definida por

$$coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Gráfico da função cotangente hiperbólica:

Função cotangente hiperbólica

- Zeros: não tem
- Sinal: negativa para $x \in]-\infty,0[$ e positiva para $x \in]0,+\infty[$
- Monotonia: estritamente decrescente em todo o seu domínio
- Injectividade: É injectiva
- Mais ainda, $\lim_{x\to +0^+} \coth x = +\infty$ e $\lim_{x\to 0^-} \coth x = -\infty$. (A.V. x=0) e
- $\lim_{x\to+\infty} \coth x = 1$ e $\lim_{x\to-\infty} \coth x = -1$. (A.H. y=-1 e y=1)

Propriedades das funções hiperbólicas

Com manipulações algébricas simples, é fácil verificar que estas funções hiperbólicas verificam as seguintes propriedades:

1.
$$ch^2 x - sh^2 x = 1$$
, $\forall x \in \mathbb{R}$

2.
$$ch x + sh x = e^x$$
, $\forall x \in \mathbb{R}$

3.
$$th^2 x + \frac{1}{ch^2 x} = 1, \ \forall x \in \mathbb{R}$$

4.
$$coth^2 x - \frac{1}{sh^2 x} = 1, \ \forall x \in \mathbb{R} \setminus \{0\}$$

5.
$$sh(x \pm y) = sh \times ch y \pm ch \times sh y, \forall x, y \in \mathbb{R}$$

6.
$$ch(x \pm y) = ch x ch y \pm sh x sh y, \forall x, y \in \mathbb{R}$$

7.
$$sh(2x) = 2sh x ch x, \forall x \in \mathbb{R}$$

8.
$$ch(2x) = ch^2 x + sh^2 x$$
, $\forall x \in \mathbb{R}$

9.
$$ch^2 x = \frac{ch(2x) + 1}{2}, \forall x \in \mathbb{R}$$

10.
$$sh^2 x = \frac{ch(2x) - 1}{2}, \ \forall x \in \mathbb{R}$$

Demonstração:

1. Seja $x \in \mathbb{R}$ qualquer. Então

$$ch^{2} x - sh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$
$$= \frac{1}{4} \left(e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x}\right) = 1$$

6. Seja $x, y \in \mathbb{R}$ quaisquer. Então

$$ch x ch y + sh x sh y = \frac{e^{x} + e^{-x}}{2} \frac{e^{y} + e^{-y}}{2} + \frac{e^{x} - e^{-x}}{2} \frac{e^{y} - e^{-y}}{2}$$

$$= \frac{e^{x+y} + e^{x-y} + e^{-x+y} + e^{-x-y}}{4} + \frac{e^{x+y} - e^{x-y} - e^{-x+y} + e^{-x-y}}{4}$$

$$= \frac{e^{x+y} + e^{-x-y}}{2} = ch(x+y)$$

As restantes alíneas demonstram-se de maneira semelhante.

Funções hiperbólicas inversas

Vamos agora definir as funções hiperbólicas inversas. Como vimos anteriormente, as funções *sh* , *th* e *coth* são injetivas, enquanto que a função *ch* não é injetiva e, portanto, não será invertível. Para esta última, iremos considerar uma restrição apropriada.

Definição: Função argumento do seno hiperbólico

Chama-se função argumento do seno hiperbólico à função inversa do seno hiperbólico e define-se por :

$$argsh: \mathbb{R} \longrightarrow \mathbb{R}$$
$$\mathbf{y} \hookrightarrow x = argshy$$

onde

$$x = \operatorname{argsh} y, \ y \in \mathbb{R} \iff y = \operatorname{sh} x, \ x \in \mathbb{R}.$$

Função argumento do seno hiperbólico

Cálculo da expressão analítica de argsh. Seja $x \in \mathbb{R}$ qualquer. Então

$$y = sh x \quad \Leftrightarrow \quad y = \frac{e^{x} - e^{-x}}{2}$$
$$\Leftrightarrow \quad y = \frac{e^{2x} - 1}{2e^{x}} \Leftrightarrow e^{2x} - 2ye^{x} - 1 = 0$$

Esta última condição é uma equação do segundo grau na incógnita e^x . Aplicando a fórmula resolvente, sai

$$e^{x} = y \pm \sqrt{y^2 + 1}$$

sendo a solução com o sinal + a única admissível, uma vez que

$$e^x > 0$$
, $\forall x \in \mathbb{R}$ e $y - \sqrt{y^2 + 1} < 0$, $\forall y \in \mathbb{R}$

Mas

$$e^x = y + \sqrt{y^2 + 1} \Leftrightarrow x = \ln\left(y + \sqrt{y^2 + 1}\right)$$

donde,

$$\operatorname{argsh} y = \ln\left(y + \sqrt{y^2 + 1}\right), \ \forall y \in \mathbb{R}.$$

Função argumento do seno hiperbólico

Gráfico da função argumento do seno hiperbólico

- Domínio: $D_{argsth} = \mathbb{R}$; Contradomínio: $D'_{argsh} = \mathbb{R}$
- Continuidade: contínua no seu domínio
- É uma função ímpar
- Zeros: x = 0
- Sinal: negativa para $x \in]-\infty, 0[$ e positiva para $x \in]0, +\infty[$
- Monotonia: estritamente crescente em todo o seu domínio
- Mais ainda, $\lim_{x\to +\infty} \operatorname{argsh} x = +\infty$ e $\lim_{x\to -\infty} \operatorname{argsh} x = -\infty$

Função argumento do cosseno hiperbólico

Como a função cosseno hiperbólico não é injectiva, não admite função inversa. No entanto, observa-se que a função cosseno hiperbólico é injectiva quando restringida a um dos intervalos: $]-\infty,0]$ ou $[0,\infty[$.

Definição: Função argumento do cosseno hiperbólico

Chama-se função argumento do cosseno hiperbólico à inversa da função cosseno hiperbólica, quando restringida ao intervalo $[0, \infty[$, e define-se por:

onde

$$x = \operatorname{argch} y, \ y \in [1, \infty[\iff y = \operatorname{ch} x, \ x \in [0, \infty[.$$

Função argumento do seno hiperbólico

Cálculo da expressão analítica de argch. Seja $x \ge 0$ qualquer. Então

$$y = chx \Leftrightarrow y = \frac{e^{x} + e^{-x}}{2}$$
$$\Leftrightarrow y = \frac{e^{2x} + 1}{2e^{x}} \Leftrightarrow e^{2x} - 2ye^{x} + 1 = 0$$

Esta última condição é uma equação do segundo grau na incógnita e^x . Aplicando a fórmula resolvente, sai

$$e^x = y \pm \sqrt{y^2 - 1}.$$

Como $x \ge 0 \Rightarrow e^x \ge 1$ a solução com o sinal + é a única admissível (a solução com o sinal - corresponderia à inversa da restrição do ch para $x \le 0$). Mas

$$\mathrm{e}^{\mathrm{x}} = \mathrm{y} + \sqrt{\mathrm{y}^2 - 1} \; \mathrm{x} \geq \mathrm{0}, \, \mathrm{y} \geq \mathrm{1} \Leftrightarrow \mathrm{x} = \mathrm{ln} \left(\mathrm{y} + \sqrt{\mathrm{y}^2 - 1} \right) \; \mathrm{x} \geq \mathrm{0}, \, \mathrm{y} \geq \mathrm{1}$$

donde,

$$\operatorname{argch} y = \ln\left(y + \sqrt{y^2 - 1}\right), \ \forall y \in [1, +\infty[.$$

Função argumento do cosseno hiperbólico

Gráfico da função argumento do cosseno hiperbólico

- Domínio: $D_{argch} = [1, \infty[$; Contradomínio: $D'_{argch} = [0, \infty[$
- Continuidade: contínua no seu domínio
- É uma função que não é par nem é ímpar
- Zeros: x = 1
- Sinal: sempre positiva para $x \in]1, +\infty[$
- Monotonia: estritamente crescente em todo o seu domínio
- Mais ainda, $\lim_{x\to +\infty} \operatorname{argch} x = +\infty$

A função tangente hiperbólica é injectiva em todo o seu domínio. Portanto, admite função inversa.

Definição: Função argumento da tangente hiperbólica

Chama-se função argumento da tangente hiperbólica à função inversa da tangente hiperbólica e define-se por :

$$egin{array}{ll} {\sf argth}: &]-1,1[\longrightarrow & \mathbb{R} \\ {\sf y} \hookrightarrow & {\it x} = {\it argth}\,{\it y} \end{array}$$

onde

$$x = argth y, y \in]-1,1[\iff y = thx, x \in \mathbb{R}.$$

Cálculo da expressão analítica de argth.

Para $x \in \mathbb{R}$ e $y \in]-1,1[$ tem-se

$$y = thx \Leftrightarrow y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\Leftrightarrow y = \frac{e^{2x} - 1}{e^{2x} + 1} \Leftrightarrow e^{2x} (1 - y) = y + 1$$

$$\Leftrightarrow e^{x} = \sqrt{\frac{1 + y}{1 - y}} \Leftrightarrow x = \ln\left(\sqrt{\frac{1 + y}{1 - y}}\right)$$

donde,

$$argth y = \ln\left(\frac{1+y}{1-y}\right), \ \forall y \in]-1,1[$$

Gráfico da função argumento da tangente hiperbólica

- Domínio: $D_{argth} =]-1,1[$
- Contradomínio: $D'_{argth} = \mathbb{R}$
- Continuidade: contínua no seu domínio
- Zeros: x = 0
- Sinal: negativa para $x \in]-1,0[$ e positiva para $x \in]0,1[$
- Monotonia: estritamente crescente em D_{argth}
- Mais ainda, $\lim_{x\to 1^-} argth x = 1$ $\lim_{x\to -1^+} argth x = -1$. (A.V. x=-1 e x=1)

A função cotangente hiperbólica é injectiva em todo o seu domínio. Portanto, admite função inversa.

Definição: Função argumento da cotangente hiperbólica

Chama-se função argumento da cotangente hiperbólica à função inversa da cotangente hiperbólica e define-se por :

$$\begin{array}{ccc} \textit{argcoth}: & \mathbb{R}\backslash [-1,1] \longrightarrow & \mathbb{R}\backslash \{0\} \\ & \textbf{y} \hookrightarrow & \textit{x} = \textit{argcoth}\, \textit{y} \end{array}$$

onde

$$x = \operatorname{argcoth} y, \ y \in \mathbb{R} \setminus [-1, 1] \iff y = \operatorname{coth} x, \ x \in \mathbb{R} \setminus \{0\}.$$

Cálculo da expressão analítica de argcoth.

Para $x \in \mathbb{R} \setminus \{0\}$ e $y \in \mathbb{R} \setminus [-1, 1]$ tem-se

$$y = \coth x \iff y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$\Leftrightarrow y = \frac{e^{2x} + 1}{e^{2x} - 1} \Leftrightarrow e^{2x} (y - 1) = y + 1$$

$$\Leftrightarrow e^x = \sqrt{\frac{y + 1}{y - 1}} \Leftrightarrow x = \ln\left(\sqrt{\frac{y + 1}{y - 1}}\right)$$

donde,

$$argcoth y = \ln\left(\frac{y+1}{y-1}\right), \ \forall y \in \mathbb{R} \setminus [-1,1]$$

Gráfico da função argumento da cotangente hiperbólica

- Domínio: $D_{argcoth} = \mathbb{R} \setminus [-1, 1]$
- ullet Contradomínio: $D'_{argcoth} = \mathbb{R} ackslash \{0\}$
- Continuidade: contínua no seu domínio
- É uma função ímpar
- Zeros: não tem

- Sinal: negativa para $x \in]-\infty, -1[$ e positiva para $x \in]1, +\infty[$
- Monotonia: estritamente decrescente em D_{argcoth}
- Mais ainda, $\lim_{x\to 1^+} \operatorname{argcoth} x = +\infty$. (A.V. x=1) $\lim_{x\to -1^-} \operatorname{argcoth} x = -\infty$. (A.V. x=-1) e
- $\lim_{x\to -\infty} \operatorname{argcoth} x = 0$, $\lim_{x\to +\infty} \operatorname{argcoth} x = 0$. (A.H. y=0)