Step-1

Suppose that T(v) = v, except that $T(0, v_2) = (0, 0)$.

We have to show that the given transformation satisfies $T(cv) = cT(v)_{\text{but not}} T(v+w) = T(v) + T(W)$.

Step-2

Let
$$(v_1, v_2) = v$$
 and $v_1 \neq 0$

Let
$$T(v_1, v_2) = (v_1, v_2), c \neq 0$$

Now

$$T(cv) = T(c(v_1, v_2))$$
$$= T(cv_1, cv_2)$$
$$= (cv_1, cv_2)$$

$$=c(v_1,v_2)$$

$$= cT(v)$$

Therefore, T(cv) = cT(v)

Step-3

Let c = 0

Then

$$T(cv) = T(0,0)$$
$$= (0,0)$$

And

$$cT(v) = 0T(v_1, v_2)$$
$$= 0(v_1, v_2)$$
$$= (0,0)$$

Therefore, T(cv) = cT(v)

Step-4

Let
$$(2,3),(-2,4) \in \mathbb{R}^2$$

Now

$$T(2,3)+T(-2,4)=(2,3)+(-2,4)$$
 (Since $T(v)=v$)
= $(0,7)$

And

$$T((2,3)+(-2,4)) = T(0,7)$$

= $(0,0)$ (Since $T(0,v_2)=(0,0)$)

Therefore,
$$T(2,3)+T(-2,4) \neq T((2,3)+(-2,4))$$

Hence
$$T(v+w) \neq T(v) + T(w)$$