Báo Cáo về Phân Lớp Dữ Liệu Bằng Danh Sách Luật Bayesian cho Bài Toán Dự đoán Đột Quy

Nguyễn Hữu Lộc - 23C1503131/12/2024

Mục lục

1	Giới thiệu sơ lược	1
2	Các công trình liên quan	4
3	Self-RAG: Học cách tìm nguồn, tạo sinh và đánh giá 3.1 Sơ lược bài toán và phương pháp	4 4 4 4 4
4	Thí nghiệm 4.1 Bài toán và dữ liệu	4 4
5	Kết quả và Phân tích 5.1 Kết quả	4 4
6	Kết luận	4

1 Giới thiệu sơ lược

Với sự phát triển vượt trôi của các mô hình Large Language Model (LLM) trong thời gian gần đây, rất nhiều giải pháp đã được nghiên cứu và thử nghiệm nhằm mục đích tăng hiệu quả cho kết quả đầu ra, và giải quyết những vấn đề khó khăn. Đặc biệt quan tâm hơn cả là việc tính minh bạch của các mô hình LLM đang chịu nhiều chỉ trích do sự hình thành ảo giác trong quá trình suy luận, dẫn tới các phương pháp nhằm bổ sung dữ liệu cho mô hình Retrieval-Augmented Generation (RAG) được ra đời. Tuy nhiên các mô hình RAG lại có mặt hạn chế về cơ chế lấy dữ liệu từ các Cơ Sở Dữ Liệu Vector (CSDLV) một cách chưa thực

Hình 1: Ví du về Danh Sách Luât Bayesian

tế và thường phụ thuộc vào cài đặt cố định, thiếu tính linh hoạt. Trong báo cáo này, nhóm sẽ giới thiệu đến một phương pháp mới có tính linh hoạt cao tên là Sel-Reflective Retrieval-Augmented Generation (Self-RAG) nhằm giải quyết vấn đề trên. Self-RAG sử dụng một mô hình tương tự như các mô hình LLM khác nhưng đã được huấn luyện lại cho phép nó có thể tự nhận xét, đánh giá câu trả lời thông qua các Reflection Token, được đưa vào bộ dữ liệu học nhằm mục đích cho phép mô hình tự đánh giá nếu câu trả lời có cần phải có trích dẫn hay không, và liệu trích dẫn hiện tại có phù hợp hay không. Từ đó, có 2 loại Reflection Token là "Retrieval" và "Critique" sẽ được đưa vào huấn luyện để mô hình tự tạo sinh ra, khác biệt so với các mô hình là truy cứu RAG rồi ghép vào prompt, còn Self-RAG sẽ tự tạo sinh ra lúc cần truy cứu. Đây chính là điểm tạo nên sự linh hoạt cho mô hình và giúp giảm chi phí huấn luyện. Chi tiết quy trình này có thể thấy thông qua phần bên phải của Hình 1.

Để chi tiết hơn thì quy trình của Self-RAG có thể được trình bày như sau:

- 1. Khi tiếp nhận prompts, mô hình đầu tiên sẽ suy luận nếu nó có cần phải truy cứu dữ liệu từ CSDLV hay không. Nếu cần, mô hình sẽ tạo sinh ra Reflection Token "Retrieval" và gọi truy cứu Retriever.
- Kiểm tra xem các dữ liệu truy xuất ra từ CSDLV có tính liên quan với prompts input hay không và tạo sinh ra các câu trả lời tương ứng với từng dữ liệu.
- 3. Tạo sinh các token "Critique" và kiểm tra kết quả trả lời từ mô hình. Tiêu chí sẽ là tính đúng đắn (factuality) và chất lượng câu trả lời (overall quality) rồi cuối cùng mới trả lại câu prompts output.

Sự khác biệt của Self-RAG so với các mô hình RAG khác là ở chỗ mô hình sẽ tư tao sinh ra Reflection Token và token này hình thành thông qua huấn luyên

đặc biệt với bộ dữ liệu được xử lý bởi một mô hình "critic" khác. Dữ liệu huấn luyện cho Self-RAG đầu tiên sẽ được đưa qua mô hình "critic" để đánh giá, và thay thế các đoạn dữ liệu thành các Reflection Token "Retrieval" và "Critique" tương ứng, từ đó tạo nên bộ dữ liệu huấn luyện có sẵn những token này. Từ đó, dữ liệu này sẽ được đưa vào huấn luyện, cho phép Self-RAG có thể tự tạo ra những yêu cầu đánh giá và truy vấn theo nhu cầu. Điều này giúp tiết kiệm chi phí thay vì dùng 2 mô hình song song, 1 để tạo sinh câu trả lời và 1 để đánh giá, khi đưa vào thực tế như một vài phương pháp lồng ghép việc đánh giá kết quả từ truy vấn khác như mô hình Adaptive RAG [1].

Việc sử dụng các Reflection Token cũng cho phép mô hình có sự linh hoạt cao hơn khi có thể cho phép người dùng tạo ra các giới hạn mềm, điều chỉnh số lượng truy vấn hoặc đánh giá theo nhu cầu. Điều này cải thiện được việc thiếu linh hoạt khi điều khiển cứng thông qua điều chỉnh tham số về số lượng truy vấn cho mỗi prompt input như các mô hình RAG ban đầu.

- 2 Các công trình liên quan
- 3 Self-RAG: Học cách tìm nguồn, tạo sinh và đánh giá
- 3.1 Sơ lược bài toán và phương pháp
- 3.2 Huấn luyện Self-RAG
- 3.2.1 Huấn luyện phần đánh giá
- 3.2.2 Huấn luyện phần tạo sinh
- 3.2.3 Suy Luận
- 4 Thí nghiệm
- 4.1 Bài toán và dữ liệu
- 4.2 Cài đặt thí nghiệm
- 5 Kết quả và Phân tích
- 5.1 Kết quả
- 5.2 Phân tích
- 6 Kết luận

References

[1] Soyeong Jeong et al. "Adaptive-rag: Learning to adapt retrieval-augmented large language models through question complexity". In: arXiv preprint arXiv:2403.14403 (2024).