BUT Informatique 2^{ème} année Parcours A

R3.A.15: Machine Learning

2023-2024

Sébastien Lefèvre sebastien.lefevre@univ-ubs.fr

Evaluation

• Correction en séance

• Discussion : modalité d'évaluation

		Durée : 10 minutes	2023-2024
Expliquer les termes su	uivants.		
Classification (classification)	ation)		
Régression (regression)		
Apprentissage supervis	sé (supervised learning)		
Apprentissage non-sup	pervisé (unsupervised learning	g)	
Ensemble d'entraînem	ent (train set)		
Ensemble de test (test	set)		
Échantillons (samples)			
Caractéristiques (featu	res)		
-			

Bilan séance 1

- 1. Introduction à la démarche pédagogique, au module
 - → liste de sujets à aborder
 - → vocabulaire ML (évaluation)
- 2. Introduction à scikit-learn

```
>>> from sklearn.ensemble import RandomForestClassifier
>>> clf = RandomForestClassifier(random_state=0)
>>> X = [[ 1, 2, 3], [11, 12, 13]]
>>> y = [0, 1]
>>> clf.predict(X)
>>> clf.predict([[4, 5, 6], [14, 15, 16]])

...
>>> pipe = make_pipeline(StandardScaler(), LogisticRegression())
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
>>> pipe.fit(X_train, y_train)
>>> accuracy_score(pipe.predict(X_test), y_test)
```

Séance 2 : Classification supervisée

- 1. Principes
- 2. Algorithmes
- 3. Mise en œuvre en Python

Machine Learning Algorithms - Classification Exploratory Data Analysis (EDA) Logistic Regression Dec

visit www.visual-design.net for step by step guide

Restitutions:

- 1. Explication d'un ou plusieurs algorithmes (fiche de révision)
- Exemple(s) de code Python (notebook)

