Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018233

International filing date: 01 December 2004 (01.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-329060

Filing date: 12 November 2004 (12.11.2004)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

01.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年11月12日

出 願 番 号 Application Number:

特願2004-329060

[ST. 10/C]:

[JP2004-329060]

出 願 人
Applicant(s):

J F E スチール株式会社

2005年 1月14日

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 2004S00878 【整理番号】 平成16年11月12日 【提出日】 特許庁長官 小川 洋 殿 【あて先】 C22C 38/00 【国際特許分類】 【発明者】 東京都千代田区内幸町二丁目2番3号 JFEスチール株式会社 【住所又は居所】 宮田 由紀夫 【氏名】 【発明者】 JFEスチール株式会社 東京都千代田区内幸町二丁目2番3号 【住所又は居所】 内 木村 光男 【氏名】 【発明者】 | FEスチール株式会社 東京都千代田区内幸町二丁目2番3号 【住所又は居所】 内 板倉 教次 【氏名】 【発明者】 東京都千代田区内幸町二丁目2番3号 JFEスチール株式会社 【住所又は居所】 内 正村 克身 【氏名】 【特許出願人】 【識別番号】 000001258 JFEスチール株式会社 【氏名又は名称】 【代理人】 100099531 【識別番号】 【弁理士】 小林 英一 【氏名又は名称】 【先の出願に基づく優先権主張】 特願2004-24687 【出願番号】 平成16年 1月30日 【出願日】 【先の出願に基づく優先権主張】 特願2004-135975 【出願番号】 平成16年 4月30日 【出願日】 【手数料の表示】 【予納台帳番号】 018175 16,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 9706373 【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

mass%で、

C:0.0100%未満、

 $Cr: 10 \sim 14\%$

N:0.0100%未満、

Ni: 3~8%

を、下記(1)式で定義されるCsolが0.0050%未満を満足するように、含有する組成を 有することを特徴とする溶接熱影響部の耐粒界応力腐食割れ性に優れたマルテンサイト系 ステンレス鋼管。

記

 $C sol = C - 1/3 \times C pre$ (1)

22%, Cpre=12.0 Ti/47.9+1/2 (Nb/92.9+Zr/91.2) +1/3 (V/50.9+Hf/17) 8.5 + Ta/180.9) - N/14.0

C、Ti、Nb、Zr、V、Hf、Ta、N:各元素の含有量(mass%)、 なお、Cpre<0の場合は、Cpre=0

【請求項2】

前記組成が、mass%で、

C:0.0100%未満、

 $Cr: 10 \sim 14\%$

 $Si: 0.05 \sim 1.0\%$

P:0.03%以下、

N:0.0100%未満、

Ni: $3 \sim 8 \%$

 $Mn: 0.1 \sim 2.0\%$

S:0.010%以下、

 $A1:0.001\sim0.10\%$ を含み、さらにCu:4%以下、Co:4%以下、Mo:4%以下、W:4%以下のうちから選 ばれた1種又は2種以上、および、Ti:0.15%以下、Nb:0.10%以下、V:0.10%以下、 Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以 上を、前記(1)式で定義されるCsolが0.0050%未満を満足するように、含有し、残部F eおよび不可避的不純物からなる組成であることを特徴とする請求項1に記載のマルテン

【請求項3】

前記組成に加えてさらに、mass%で、Ca:0.010%以下、Mg:0.010%以下、REM:0.010 %以下、B:0.010%以下のうちから選ばれた1種または2種以上を含有することを特徴 とする請求項2に記載のマルテンサイト系ステンレス鋼管。

【請求項4】

前記組成が、mass%で、

サイト系ステンレス鋼管。

C:0.0100%未満、

N:0.0100%未満、

Cr: 10~14%、

Ni: $3 \sim 8 \%$,

 $Si: 0.05 \sim 1.0\%$

 $Mn: 0.1 \sim 2.0\%$

P:0.03%以下、

S:0.010%以下、

 $A1:0.001\sim0.10\%$

 $V:0.02\sim0.10\%$

Ca: 0.0005~0.010%

を含み、さらにCu: 4%以下、Co: 4%以下、Mo: 4%以下、W: 4%以下のうちから選 ばれた1種又は2種以上を、前記(1)式で定義されるCsolが0.0050%未満を満足する ように、含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求 項1に記載のマルテンサイト系ステンレス鋼管。

【請求項5】

前記組成に加えてさらに、mass%でTi:0.15%以下、Nb:0.10%以下、Zr:0.10%以下 、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種又は2種以上を含有すること を特徴とする請求項4に記載のマルテンサイト系ステンレス鋼管。

【請求項6】

ラインパイプ用であることを特徴とする請求項1ないし5のいずれかに記載のマルテン サイト系ステンレス鋼管。

【請求項7】

請求項1ないし6のいずれかに記載のマルテンサイト系ステンレス鋼管を溶接接合して なる溶接構造物。

【書類名】明細書

【発明の名称】マルテンサイト系ステンレス鋼管

【技術分野】

[0001]

本発明は、天然ガスや石油のパイプライン等の使途に好適なマルテンサイト系ステンレ ス鋼管に係り、とくに溶接熱影響部の耐粒界応力腐食割れ性の改善に関する。

【背景技術】

[00002]

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇に対処するために、従 来省みられなかったような深層油田や、開発が一旦放棄されていた腐食性の強いサワーガ ス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田におい て、使用される鋼管としては、耐食性に富むことが求められている。

従来、例えば、炭酸ガスを多量に含む環境では、防食手段としてインヒビターの添加が 行われてきた。しかし、インヒビターの添加は、コスト高となるだけでなく、高温では十 分な効果が得られないことがあるため、最近ではインヒビターを使用せず、耐食性に優れ た鋼管を使用する傾向となっている。

[0003]

ラインパイプ用材料としては、API規格にC量を低減した12%Crマルテンサイト系ス テンレス鋼が規定され、最近では、CO₂ を含有する天然ガス用のラインパイプとしてマ ルテンサイト系ステンレス鋼管が多く使用されるようになってきている。しかし、マルテ ンサイト系ステンレス鋼管は、円周溶接時に予熱や後熱を必要とするうえ、溶接部靭性が 劣るという問題があった。

[0004]

このような問題に対し、例えば、特許文献1には、C:0.02%以下、N:0.07%以下に 低減するとともに、Cr、Ni、Mo量をC量との関係で、また、Cr、Ni、Mo量をC、N量との 関係で、さらにNi、Mn量をC、N量との関係で、適正量に調整したマルテンサイト系ステ ンレス鋼が提案されている。特許文献1に記載された技術で製造されたマルテンサイト系 ステンレス鋼管は、耐炭酸ガス腐食性、耐応力腐食割れ性、溶接性、高温強度および溶接 部靭性がともに優れた鋼管であるとされる。

【特許文献1】特開平9-316611号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

しかし、最近、CO₂を含有する環境下で、マルテンサイト系ステンレス鋼管の円周溶 接した溶接熱影響部(以下、HAZともいう)に割れが生じ、マルテンサイト系ステンレ ス鋼管における新たな問題となっている。

従来、CO₂ を含有する環境下で発生する腐食としては、母材の減肉を伴う、いわゆる 炭酸ガス腐食、あるいは母材の応力腐食割れが知られている。しかし、最近問題となって いる割れは、円周溶接部のHAZのみに発生し、しかも、いわゆる炭酸ガス腐食が全く問 題とならないようなマイルドな環境でも発生するという特徴を有している。また、この割 れは、粒界割れを呈することから、粒界応力腐食割れ(Intergranular Stress Corrosion Cracking) (以下、IGSCCともいう)であると推定されている。

[0006]

このような円周溶接のHAZに発生する、IGSCCを防止するには、600~650℃で3~5m in間保持するという、短時間の溶接後熱処理が有効であることが判明している。しかし、 溶接後熱処理は、短時間といえども、パイプライン敷設工程を複雑にし、かつ工期を長び かせ、敷設コストを上昇させるという問題がある。このようなことから、溶接後熱処理を 行うことなく、CO₂ を含有する環境下でHAZのIGSCCを防止できる、とくにラインパイ プとして好適なマルテンサイト系ステンレス鋼管が要望されている。

[0007]

本発明は、かかる要望に鑑みて成されたものであり、溶接熱影響部の耐粒界応力腐食割 れ性に優れたマルテンサイト系ステンレス鋼管を提案することを目的とする。

【課題を解決するための手段】

[0008]

本発明者らは、上記した課題を達成するために、まず、マルテンサイト系ステンレス鋼 管円周溶接部のHAZで発生するIGSCCの発生原因について鋭意考究した。その結果、基 地中に分散する炭化物が溶接時の熱サイクルにより一旦基地中に固溶し、その後の溶接熱 サイクルで旧オーステナイト粒界にCr炭化物として析出し、旧オーステナイト粒界近傍に Cr欠乏層が形成されるため、IGSCCが発生することを突き止めた。

[0009]

このようなメカニズムによる応力腐食割れは、オーステナイト系ステンレス鋼では知ら れていたが、マルテンサイト系ステンレス鋼で発生するとは考えられていなかった。とい うのは、マルテンサイト組織中のCrの拡散速度は、オーステナイト組織中のそれに比較し 非常に大きいことから、マルテンサイト系ステンレス鋼では、Cr炭化物が生成してもCrが 連続的に供給されるため、Cr欠乏層は形成されないと考えられていたからである。しかし 、本発明者らは、マルテンサイト系ステンレス鋼でも特定の溶接条件の下ではCr欠乏層が 形成され、マイルドな腐食環境でもIGSCCに至ることを初めて見出した。

[0010]

このようなことから、本発明者らは、IGSCCを防止するためには、旧オーステナイト粒 界にCr炭化物の形成を防止することが重要であり、そのためには、C含有量そのものを極 端に低下するか、あるいはさらにTi、Nb、V、Zr等のCrよりも炭化物形成能の大きな炭化 物形成元素を添加し、Cr炭化物の形成に有効に作用する有効固溶C量Csolを0.0050mass %未満とすることが必要であることを見出した。

$[0\ 0\ 1\ 1]$

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわ ち、本発明の要旨はつぎの通りである。

(1) mass%で、C:0.0100%未満、N:0.0100%未満、Cr:10~14%、Ni:3~8%を 、次(1)式

······· (1) $C sol = C - 1/3 \times C pre$

(ここで、Cpre=12.0 |Ti/47.9+1/2 (Nb/92.9+Zr/91.2) +1/3 (V/50.9+Hf/ 178.5+Ta/180.9) - N/14.0 、C、Ti、Nb、Zr、V、Hf、Ta、N:各元素の含有量(mass%)。なお、Cpre<0の場合は、Cpre=0とする。)

で定義されるCsolが0.0050%未満を満足するように、含有する組成を有することを特徴 とする溶接熱影響部の耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管。

- (2) (1) において、前記組成が、mass%で、C:0.0100%未満、N:0.0100%未満、 Cr:10~14%、Ni:3~8%、Si:1.0%以下、Mn:2.0%以下、P:0.03%以下、S:0. 010%以下、A1:0.10%以下を含み、さらにCu:4%以下、Co:4%以下、Mo:4%以下 、W:4%以下のうちから選ばれた1種又は2種以上、およびTi:0.15%以下、Nb:0.10 %以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから 選ばれた1種または2種以上を、前記(1)式で定義されるCsolが0.0050%未満を満足 するように、含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする マルテンサイト系ステンレス鋼管。
- (3) (2) において、前記組成に加えてさらに、mass%で、Ca:0.010%以下、Mg:0.0 10%以下、REM: 0.010%以下、B: 0.010%以下のうちから選ばれた1種または2種以上 を含有することを特徴とするマルテンサイト系ステンレス鋼管。
- (4) (1) において、前記組成が、mass%で、C:0.0100%未満、N:0.0100%未満、 Cr:10~14%、Ni:3~8%、Si:0.05~1.0%、Mn:0.1~2.0%、P:0.03%以下、S :0.010%以下、A1:0.001~0.10%、V:0.02~0.10%、Ca:0.0005~0.01%、さらにCu :4%以下、Co:4%以下、Mo:4%以下、W:4%以下のうちから選ばれた1種又は2 種以上を、前記(1)式で定義されるCsolが0.0050%未満を満足するように、含有し、

残部Feおよび不可避的不純物からなる組成であることを特徴とするマルテンサイト系ステ ンレス鋼管。

- (5) (4) において、前記組成に加えてさらに、mass%で、Ti:0.15%以下、Nb:0.10 %以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種また は2種以上を含有することを特徴とするマルテンサイト系ステンレス鋼管。
- (6) (1) ないし(5) のいずれかにおいて、ラインパイプ用であることを特徴とする マルテンサイト系ステンレス鋼管。
- (7) (1) ないし(6) のいずれかに記載のマルテンサイト系ステンレス鋼管を溶接接 合してなる溶接構造物。

【発明の効果】

[0012]

本発明によれば、ラインパイプ用として母材の強度、靭性に優れるうえ、母材の耐炭酸 ガス腐食性、耐応力腐食割れ性にも優れ、さらにHAZのIGSCCを溶接後熱処理を施すことな く防止できる、耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管を安価に 提供でき、産業上格段の効果を奏する。なお、本発明鋼管は、熱間加工性にも優れており 、表面欠陥等の発生が少なく、生産性が向上するという効果もある。

【発明を実施するための最良の形態】

[0013]

まず、本発明鋼管の組成限定理由について説明する。以下、組成におけるmass%は単に %と記す。

C:0.0100%未満

Cは、鋼に固溶し、鋼の強度増加に寄与する元素であるが、多量の含有は、HAZを硬 化させ、溶接割れを生じさせたり、HAZの靭性を劣化させるため、本発明では、できるだ け低減することが望ましい。本発明では、とくにHAZのIGSCCを防止するため、Cr 炭化物として析出してCr欠乏層形成の原因となるCを、0.0100%未満に限定する。Cを0. 0100%以上含有すると、HAZのIGSCCを防止することが困難となる。なお、好まし くは0.0050%未満である。

$[0\ 0\ 1\ 4\]$

本発明では、上記したC含有量範囲内としたうえでさらに、有効固溶C量Csolが0.005 0%未満となるように各元素含有量を調整する。これにより、Cr欠乏層の形成が抑制され 、HAZのIGSCCを実質的に抑制できる。なお、「実質的に抑制できる」とは、一般 的な溶接条件(例えば、入熱:10kJ/cmのTIG溶接)で溶接された溶接継手が、ライン パイプとして使用される一般的な使用環境下(例えば、CO2 圧:0.1MPa、液温:100℃ 、pH:4.0の5%NaCl水溶液)でIGSCCを発生しないことを意味する。

[0015]

有効固溶C量Csolは、次(1)式

 $C sol = C - 1/3 \times C pre \qquad \dots \qquad (1)$

で定義される。有効固溶C量Csolは、溶接時にCr炭化物として析出しCr欠乏層を形成す るC量を意味し、全C量から、溶接時に炭化物形成元素Ti、Nb、Zr、V、Hf、Taと結合し て析出するC量、すなわちCr炭化物の形成に寄与しないC量を、差し引いた量である。な お、Cpreは、次(2)式

 $Cpre = 12.0 \ \{Ti/47.9 + 1/2 \ (Nb/92.9 + Zr/91.2) + 1/3 \ (V/50.9 + Hf/178.5 + Ta)\}$ (2) /180.9) - N/14.0

(ここで、C、Ti、Nb、Zr、V、Hf、Ta、N:各元素の含有量(mass%)) で定義されるものであり、Cpre<0の場合は、Cpre=0とする。なお、Cpreの計算に 際しては、(2)式中に含まれる元素のうち、含有しない元素は零として、計算するもの とする。また、各元素で炭化物の形成のしやすさ、炭化物の溶解のしやすさが異なるため 、各種実験結果を総合して、本発明で使用するCpreでは、Nb、Zrの効果はTiの1/2とし、 V、Hf、Taの効果はTiの1/3とした。また、本発明ではNを含有するため、Ti、Nb、Zr、 V、Hf、Taは優先して窒化物を形成する。このため、本発明で使用するCpreでは、窒化

物形成に寄与するTi、Nb、Zr、V、Hf、Ta相当量を差し引いた形としている。また、HAZ でのCr欠乏層形成という非平衡状態であることを考慮すると、Cr炭化物以外の炭化物を形 成しCr炭化物の形成を防止できる有効な、C量は、Cpreの1/3であると見積った。

[0016]

なお、Ti、Nb、Zr、V、Hf、Taのいずれも含有しない場合は、Cpreは負となり、本発 明ではCpre=0とするため、有効固溶C量Csol=Cとなり、有効固溶C量が0.0050%未 満を満足するようにするには、C含有量を0.0050%未満に調整することが肝要となる。

N:0.0100%未満

Nは、Cと同様に、鋼に固溶し、鋼の強度増加に寄与する元素であり、多量の含有は、 HAZを硬化させ、溶接割れを生じさせたり、HAZの靭性を劣化させるため、本発明では 、できるだけ低減することが望ましい。また、Nは、Ti、Nb、Zr、V、Hf、Taと結合し窒 化物を形成するため、炭化物を形成しCr炭化物の形成を防止できるTi、Nb、Zr、V、Hf、 Ta量を低減することになり、Cr欠乏層形成を抑制しIGSCCを抑制する効果を低下させ ることになる。このため、Nはできるだけ低減することが望ましい。上記したNの悪影響 は、0.0100%未満であれば許容できるため、本発明では、Nは0.0100%未満に限定した。 なお、好ましくは0.0070%以下である。

$[0\ 0\ 1\ 7]$

Cr:10~14%

Crは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性等の耐食性を向上させる ための基本元素であり、本発明では10%以上の含有を必要とする。一方、14%を超える含 有は、フェライト相が形成しやすくなり、マルテンサイト組織を安定して確保するために 多量の合金元素添加を必要とし材料コストの上昇を招く。このため、本発明ではCrは10~ 14%の範囲に限定した。

[0018]

Ni: $3 \sim 8 \%$

Niは、耐炭酸ガス腐食性を向上させるとともに、固溶して強度上昇に寄与し、また靭性 を向上させる元素である。また、オーステナイト形成元素であり、低炭素域でマルテンサ イト組織を安定して確保するために有効に作用する。このような効果を得るためには、3 %以上の含有を必要とする。一方、8%を超える含有は、変態点が低下しすぎて、所望の 特性を確保するための焼戻し処理が長時間となるうえ、材料コストの高騰を招く。このた め、Niは $3\sim8$ %の範囲に限定した。なお、好ましくは $4\sim7$ %である。

$[0\ 0\ 1\ 9]$

上記した基本成分に加えて、さらに下記の元素を含有することができる。

 $Si: 0.05 \sim 1.0\%$

Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素であり、本発 明では0.05%以上含有する。しかし、Siはフェライト生成元素でもあり、1.0%を超える 多量の含有は母材および HAZ 靭性を劣化させる。このため、 Si は $0.05\sim1.0\%$ に限定す ることが好ましい。なお、より好ましくは0.1~0.5%である。

[0020]

 $Mn: 0.1\sim 2.0\%$

Mnは、固溶して鋼の強度上昇に寄与するとともに、オーステナイト生成元素であり、フ ェライト生成を抑制して母材およびHAZの靭性を向上させる。このような効果を得るため に本発明では0.1%以上含有することが好ましい。一方、2.0%を超えて含有しても効果が 飽和する。このため、Mnは0.1~2.0%に限定することが好ましい。なお、より好ましくは 0.2~1.2%である。

[0021]

P:0.03%以下

Pは、粒界に偏析して粒界強度を低下させ、耐応力腐食割れ性に悪影響を及ぼす元素で あり、本発明ではできるだけ低減することが好ましいが、0.03%までは許容できる。この ため、Pは0.03%以下に限定することが好ましい。なお、熱間加工性の観点からは、0.02

%以下とすることがより好ましい。また、過度のPの低減は精錬コストの高騰および生産 性の低下をもたらすため、0.010%以上とすることが好ましい。

[0022]

S:0.010%以下

Sは、MnS等の硫化物を形成し、加工性を低下させる元素であり、本発明ではできるだ け低減することが好ましいが、0.010%までは許容できる。このため、Sは0.010%以下に 限定することが好ましい。なお、また、過度のSの低減は精錬コストの高騰および生産性 の低下をもたらすため、0.0005%以上とすることが望ましい。

[0023]

 $A1:0.001\sim0.10\%$

Alは、脱酸剤として作用し、0.001%以上含有することが好ましいが、0.10%を超える 含有は靭性を劣化させる。このため、A1は0.001~0.10%に限定することが好ましい。な お、より好ましくは0.01~0.04%である。

Cu: 4%以下、Co: 4%以下、Mo: 4%以下、W: 4%以下のうちから選ばれた1種又 は2種以上

Cu、Co、Mo、Wはいずれも、CO2 を含有する天然ガスを輸送するラインパイプ用鋼管 に要求される特性である耐炭酸ガス腐食性を向上させる元素であり、本発明では選択して 1種又は2種以上をCr、Niとともに、含有する。

[0024]

Cu: 4%以下

Cuは、耐炭酸ガス腐食性を向上させるとともに、オーステナイト形成元素であり、低炭 素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を 得るためには、1%以上含有することが好ましい。一方、4%を超えて含有しても、効果 が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Cuは 4%以下の範囲に限定することが好ましい。なお、より好ましくは1.5~2.5%である。

[0025]

Co: 4%以下、

Coは、Cuと同様に、耐炭酸ガス腐食性を向上させるとともに、オーステナイト形成元素 であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。この ような効果を得るためには、1%以上含有することが好ましい。一方、4%を超えて含有 しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。こ のため、Coは4%以下の範囲に限定することが好ましい。なお、より好ましくは1.5~2.5 %である。

[0026]

Mo: 4%以下

Moは、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を向上させる元 素であり、その効果を得るためには0.3%以上含有することが好ましい。一方、4%を超 える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果 が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Moは 4%以下の範囲に限定することが好ましい。なお、より好ましくは1.0~3.0%であり、さ らに好ましくは1.5~3.0%である。

[0027]

W: 4%以下

Wは、Moと同様に、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を 向上させる元素であり、その効果を得るためには1%以上含有することが好ましい。一方 、4%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ 性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。この ため、Wは4%以下の範囲に限定することが好ましい。なお、より好ましくは1.5~3.0% である。

[0028]

Ti:0.15%以下、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下 、Ta:0.20%以下のうちから選ばれた1種または2種以上

Ti、Nb、V、Zr、Hf、Taはいずれも、炭化物形成元素であり、1種または2種以上を選 択して含有する。Ti、Nb、V、Zr、Hf、Ta はいずれも、Crに比べて炭化物形成能が強く、 溶接熱で固溶したCが、冷却時にCr炭化物として旧オーステナイト粒界に析出するのを抑 制し、HAZの耐粒界応力腐食割れ性を向上させる効果を有する。また、Ti、Nb、V、Zr 、Hf、Ta の炭化物は、溶接熱で高温に加熱されても溶解しにくく固溶Cの発生が抑制さ れ、このことを介してCr炭化物の形成を抑制し、HAZの耐粒界応力腐食割れ性を向上さ せるという効果もある。このような効果を得るためには、Ti:0.03%以上、Nb:0.03%以 上、V:0.02%以上、Zr:0.03%以上、Hf:0.03%以上、Ta:0.03%以上、をそれぞれ含 有することが好ましい。一方、Ti:0.15%、Nb:0.10%、V:0.10%、Zr:0.10%、Hf: 0.20%、Ta:0.20%を超える含有は、耐溶接割れ性、靭性を劣化させる。このため、Ti: 0.15%以下、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta: 0.20%以下にそれぞれ限定することが好ましい。なお、より好ましくは、 $Ti:0.03\sim0.12$ %、Nb:0.03~0.08%、V:0.02~0.08%、Zr:0.03~0.08%、Hf:0.10~0.18%、Ta: 0.10~0.18%である。

[0029]

なお、Tiは、有効固溶C量Csolを低下させる効果が他の元素より大きく、耐粒界応力 腐食割れ性改善に最も有効な元素である。なお、より好ましくは0.06~0.10%である。

また、Vは、高温における強度上昇にも有効な元素であり、耐粒界応力腐食割れ性改善 以外の目的からも含有させることが好ましい。このような効果を得るためには0.02%以上 含有することが好ましい。0.02%未満では、とくに80~150℃の高温強度を確保するうえ で充分ではなく、一方、0.10%を超える多量の含有は、靭性の劣化を招く。なお、より好 ましくは0.03~0.07%である。

[0030]

Ca: 0.010%以下、Mg: 0.010%以下、REM: 0.010%以下、B: 0.010%以下のうちから 選ばれた1種または2種以上

Ca、Mg、REM、Bは、いずれも熱間加工性、連続鋳造における安定製造性の向上に有効 に作用する元素であり、必要に応じ選択して含有できる。このような効果を得るためには 、Ca:0.0005%以上、Mg:0.0010%以上、REM:0.0010%以上、B:0.0005%以上、それ ぞれ含有することが好ましい。一方、Ca:0.010%、Mg:0.010%、REM:0.010%、B:0. 010%を超えて含有すると粗大介在物として存在しやすくなるため耐食性の劣化、靭性の 低下が著しくなる。このため、Ca:0.010%以下、Mg:0.010%以下、REM:0.010%以下、 B:0.010%以下にそれぞれ限定することが好ましい。なお、Caは、鋼管の品質安定性が 高く、製造コストも低く抑えることができ、品質安定性、経済性の観点から最も有効であ る。Caのより好ましい範囲は0.005~0.0030%である。

[0031]

上記した成分以外の残部はFeおよび不可避的不純物である。

つぎに、本発明鋼管の好ましい製造方法について、継目無鋼管を例として説明する。 まず、上記した組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常の溶製方法で溶製し

、連続鋳造法、造塊-分塊圧延法等の公知の方法で、ビレット等の鋼管素材とすることが 好ましい。ついで、これら鋼管素材を加熱し、通常のマンネスマンープラグミル方式、あ るいはマンネスマン-マンドレルミル方式等の製造設備を用いて熱間加工、造管して、所 望寸法の継目無鋼管とすることが好ましい。なお、得られた継目無鋼管は、空冷以上の冷 却速度で室温まで冷却することが好ましい。なお、鋼管素材を、プレス方式の熱間押出設 備を用いて継目無鋼管としても何ら問題はない。

[0032]

上記した組成の継目無鋼管であれば、熱間加工後、空冷以上の冷却速度で冷却すれば、 マルテンサイト組織とすることができるが、熱間加工後室温まで冷却し、焼戻し処理を施 すことが好ましい。また、熱間加工後、室温まで冷却したのち、さらにAc3 変態点以上

の温度に再加熱したのち空冷以上の冷却速度で冷却する焼入れ処理を行ってもよい。焼入れ処理を施された継目無鋼管は、ついでAci変態点以下の温度で焼戻し処理を行うことが好ましい。

[0033]

なお、本発明鋼管は、上記したような継目無鋼管に限定されるものではなく、上記した 組成の鋼管素材を用いて、通常の工程に従い、電縫鋼管、UOE鋼管、スパイラル鋼管な どの溶接鋼管としてもよい。

なお、本発明のマルテンサイト系ステンレス鋼管は、溶接接合して溶接構造物とすることができる。溶接構造物としては、ラインパイプ同士を円周溶接したパイプライン、ライザーや、マニフォールドなどの石油・天然ガス生産関連設備、化学プラント用配管設備、橋梁等が例示できる。本発明でいう溶接構造物には、本発明のマルテンサイト系ステンレス鋼管同士を溶接接合してなる溶接構造物に加えて、本発明のマルテンサイト系ステンレス鋼管と他の材質からなる鋼管とを溶接接合してなる溶接構造物または本発明のマルテンサイト系ステンレス鋼管と他の材質からなる部品とを溶接接合してなる溶接構造物を含むものとする。

【実施例】

[0034]

表1に示す組成の溶鋼を脱ガス後、100kg鋼塊に鋳造し、さらに熱間鍛造したのち、モデルシームレス圧延機を用いた熱間加工により造管し、外径65mm×肉厚5.5mmの継目無鋼管とした。なお、造管後、空冷した。

得られた継目無鋼管について、造管後冷却のままで内外表面の割れ発生の有無を目視で調査し、内表面あるいは外表面に割れが発生したものを×、いずれにも発生しなかったものを○として、熱間加工性を評価した。

[0035]

ついで、得られた継目無鋼管に、焼入れ焼戻し処理を施し、X-80グレードの鋼管とした。なお、一部の鋼管では、焼入れ処理を行わず、焼戻し処理のみとした。

得られた鋼管について、引張試験、シャルピー衝撃試験、炭酸ガス腐食試験、硫化物応 力腐食割れ試験を実施した。試験方法はつぎのとおりとした。

(1) 引張試験

得られた継目無鋼管から、API 弧状引張試験片を採取し、引張試験を実施し、引張特性 (降伏強さYS、引張強さTS)を求め、母材強度を評価した。

(2) シャルピー衝撃試験

得られた継目無鋼管から、JIS Z 2202の規定に準拠してVノッチ試験片(厚さ:5.0mm)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、 -40° における吸収エネルギーVE $_-$ 40(J)を求め、母材靭性を評価した。

(3) 炭酸ガス腐食試験

得られた継目無鋼管から、厚さ 3 mm×幅25mm×長さ50mmの腐食試験片を機械加工によって採取し、腐食試験を実施し、耐炭酸ガス腐食性、耐孔食性を評価した。腐食試験は、オートクレーブ中に保持された3.0MPaの炭酸ガスを飽和させた150 $\mathbb C$ の20 $\mathbb C$ NaCl水溶液中に腐食試験片を浸漬し、浸漬期間を30日間として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、試験後の腐食試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。孔食が発生しなかった場合を $\mathbb C$ 、発生した場合を $\mathbb C$ とした。

(4) 硫化物応力腐食割れ試験

得られた継目無鋼管から、4点曲げ試験片(大きさ:厚さ4 mm×幅15 mm×長さ115 mm)を採取し、EFC No. 17に準拠した4 点曲げ試験を実施し、耐硫化物応力腐食割れ性を評価した。使用した試験液は、5 %NaC1+NaHCO $_3$ 液 (pH: 4.5)とし、10 %H $_2$ S+CO $_2$ 混合ガスを流しながら試験を行った。付加応力はYSとし、試験期間は720 時間とし、破断の有無を測定した。破断しなかった場合を〇、破断したものを×とした。なお、YSは母材降伏強さである。

(5) U曲げ応力腐食割れ試験

得られた継目無鋼管から厚さ4mm×幅15mm×長さ115mmの試験用素材を採取し、試験用素材の中央部に、図1に示すHAZの熱サイクルを模擬した再現溶接熱サイクルを付与した。これら再現溶接熱サイクル付与済みの試験片素材中央部から、厚さ2mm×幅15mm×長さ75mmの試験片を切出し、U曲げ応力腐食割れ試験を実施した。

[0036]

U曲げ応力腐食割れ試験は、図2に示すような治具を用いて試験片を内半径:8mmでU字型に曲げ、腐食環境中に浸漬する試験とした。試験期間は168時間とした。使用した腐食環境は、液温:100℃、CO2 圧:0.1MPa、pH:2.0の5%NaC1液とした。試験後、試験片断面について、100倍の光学顕微鏡で割れの有無を観察し、耐粒界応力腐食割れ性を評価した。割れがある場合を×、割れがない場合を○とした。

[0037]

得られた結果を表2に示す。

[0038]

【表1】

*) Cpre=12.0 {T1/47.9+1/2 (Nb/92.9+Zr/91.2) +1/3 (V/50.9+Hf/178.5+Ta/180.9) ーN/14.0}、ただし、Cpre<0の場合はCpre=**) Csol=C-1/3×Cpre

10/

[0039]

出証特2004-3122738

【表2】

本発明例 本発明例 本発明例 本発明例 本発明例 本発明例 本発明例 靊 0.00290.0024 0.0025 0.0023 0.00390.00310.00400.00220.0041 Csol 0.01690.01320.0140 0.0013 0.0092 0.01570.0087 0.01370.0011 Срге Ca, Mg, REM, B REM: 0.0054 Ca:0.0020 Ca:0.0015 Ca:0.0017 Mg:0.0025 Ca:0.0021 B:0.0015 i 1 Ti:0.073, Nb:0.012, V:0.041 Ti, Nb, V, Zr, Hf, Ta Ti:0.035, V:0.072 Ti:0.068, V:0.048 Ti:0.079, V:0.026 Ti:0.069, V:0.036 Ti:0.065, V:0.035 Ti:0.050, V:0.041 Ta:0.157 Hf:0.143 Cu, Mo, W, Co Mo:1.9 Co:2.9 Cu:3.2 Mo:1.2 Mo:1.6 Mo:2.0 Mo:2.1 W:1.3 ₩:1.8 mass %) 4.5 4.9 5.3 5.2 4.8 5.1 5.4 بر ان 5.1 Z 0.0075 0.0072 0.00250.00250.00680.00630.0061 0.00790.0082尔 Z 0.024 0.031 0.030 0.019 0.023070.0 0.0250.024 0.030 松 A1 11.8 12.5 12.0 12.2 12.3 12.0 12.1 ರ 小 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 S 0.016 0.012 0.012 0.0150.018 0.012 0.014 0.013 0.00977 0.51 0.350.87 1.36 1.02 0.62 0.45 0.44 0.55 Æ 0.25 0.30 0.19 0.41 0.35 0.24 0.26 0.25 0.24 [表1-2] S 0.00620.00760.00690.0045 0.00430.00680.00750.0068 0.0081 14 16 113 10 Ħ 9

*) Cpre=12.0 {Ti/47.9+1/2 (Nb/92.9+Zr/91.2) +1/3 (V/50.9+Hf/178.5+Ta/180.9) ーN/14.0}、ただし、Cpre<0の場合はCpre=0 $Csol = C - 1/3 \times Cpre$

【0040】 【表3】

備が					本発明例	本発明例	本発明例	本発明例	十%阳極	4×7E7.17.3	全化光型	本纸咒	本発明例	本発明例	本発明例	本発明例	本発明例	木発明何	十一次四位	本纸咒吵	本郑昭彻	比較例	比較例	・比較例	上數位	大学田を	4×2×11/21	本光灯
11/2 压控码下上符合生化体		世は ひくだけ 湯			0	0	0	C			0	0	0	0	0	0	C		0 (0	0	×	×	×				
11.17.4.1.1.	一言を力多一下七冊を有	一心としかるこれ			0	0	С			Э	0	0	0	0	0	0			Э	0	0	0	0) - -	×	
A 6.01	移 英		孔食発生	の有無	0	С	C			0	0	0	0	0	0	С		5	0	0	0	0	С)	×	0
一世出版がス	耐炭酸ガス腐食性 		腐食速度	(mm/yr)	0.033	0.034	0 055	0.000	0.087	0.103	0.021	0.048	0,046	0.043	690 0	0 055	000	0, 033	0,060	0.088	0,092	0. 105	0 084	0 047	70.0	0.092	0.098	0.086
	勒性		VE		227	926	202	700	738	231	238	204	243	228	219	606	707	234	219	238	250	227	202	303	777	62	247	211
	軐		TS	MPa	853	8/40	040	113	875	882	702	770	006	773	739	262	9	701	814	797	864	749	GV8	7750	25/	968	746	742
	引服特性		YS	MPa	623	211	170	260	621	979	579	809	639	808	2002	769	1004	575	619	614	639	607	20 2	CTO	282	636	612	605
	熱処理				TO	g E	- 6	<u>م</u> ا	QT	QT	QT	TO	; -	, E	8 0	3 6	۵.	QT	QT	OT	F.O.	3 6	3 6	الا	QT	QT	QT	QT
	熱間	加工	却					Э	0	0	С	C						0	0	C					0	0	0	×
[表2-1]	圖	Š			<	۲ .	A	B	ن —		(T	Ĺ	1 12	4 (:	<u>ا</u> ,	 	Ţ	X	┼	+	+	-	-	Д,	á	꿈	ß
発	鏓	極	. <u>.</u> 9		-	C	.71	က	4	ιc	'c	,	- °	0 0	n :	3 ;		12	13	1	-	G 5	의 ;	=	<u>~</u>	19	8	21

【表4】

	施				本発明例	本発明例	本発明例	本発明例	本発明例	本発明例	本発明例	本発明例	本発明例
一	HAZ 耐粒界心力腐食割びは 割れの有無				0	0	0	0	0	0	0	0	0
2 2 3 1	一直紀2巻一点七書で年				0	0	0	0	0	0	0	0	0
	缩 食性		孔食発生	の有無	0	0	0	0	C	C	0	0	0
	耐炭酸ガス腐食性		腐食速度	(mm/yr)	0.054	0.054	0.045	0.053	0.045	0.042	0.043	0.047	0.051
	刺性		VE-40	۳,	203	211	209	211	206	913	203	211	209
	41 1		TS	MPa	735	765	752	768	784	769	751	743	752
	引張特性		YS	MPa	610	620	601	619	208	580	579	621	631
	熱処理				TO	TO	. T.O.	T.O.	¥ C	¥ C	A C	7 C	QT
	熱間加工	7117	靯		С	C							
[表2-2]	墨名	No.			1.4	E	2 5	3 =	3 5	3 5	1 2	2 1	
极	墨!	Ш	No.		99	9.4	7, 7,	96	0 2	7 06	07	67	3 5

[0042]

本発明例はいずれも、溶接後熱処理を施すことなくHAZのIGSCCを防止することができ、 HAZの耐粒界応力腐食割れ性に優れていることがわかる。また、本発明例は、ラインパイ

プ用として優れた母材強度、母材靭性を有するうえ、さらに母材の耐炭酸ガス腐食性、耐硫化物応力腐食割れ性にも優れている。なお、鋼管No.20(本発明例)は、Moが本発明のより好ましい範囲を低く外れるため、炭酸ガス腐食試験では孔食が発生し、また硫化物応力腐食割れ試験では割れが発生しているが、U曲げ応力腐食割れ試験では割れは発生していない。したがって、特段の耐炭酸ガス腐食性、耐硫化物応力腐食割れ性が要求されない場合には、Mo含有量が本発明のより好ましい範囲から低く外れる鋼管をラインパイプ用として適用しても問題なく使用できると考えられる。これに対し、本発明の範囲を外れる比較例は、HAZにIGSCCが発生し、HAZの耐粒界応力腐食割れ性が不足している。

【図面の簡単な説明】

[0043]

- 【図1】実施例で使用した溶接再現熱サイクルを模式的に示す説明図である。
- 【図2】実施例で使用したU曲げ応力腐食割れ試験用試験片の曲げ状況を模式的に示す説明図である。

ピーク温度:1300℃(1s保持)

【図2】

【要約】

【課題】 溶接熱影響部の耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス 鋼管を提案する。

【解決手段】 mass%で、C:0.0100%未満、N:0.0100%未満、Cr:10~14%、Ni:3~8%、あるいはさらに、Si、Mn、P、S、Alを適正範囲とし、さらにCu:4%以下、Co:4%以下、Mo:4%以下、W:4%以下のうちの1種以上、およびTi:0.15%以下、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちの1種以上を、Csol=C-1/3×Cpre(ここで、Cpre=12.0 {Ti/47.9+1/2 (Nb/9 2.9+Zr/91.2) +1/3 (V/50.9+Hf/178.5+Ta/180.9) -N/14.0} 、なお、Cpre <0の場合は、Cpre=0とする)で定義されるCsolが0.0050%未満を満足するように、含有する組成とする。さらに、Ca、Mg、REM、Bのうちの1種以上を含有してもよい。これにより、溶接熱影響部に発生する粒界応力腐食割れを防止することができる。

【選択図】 なし

認定・付加情報

特許出願の番号

特願2004-329060

受付番号

5 0 4 0 1 9 3 8 0 9 0

書類名

特許願

担当官

第五担当上席

0094

作成日

平成16年11月17日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000001258

【住所又は居所】

東京都千代田区内幸町二丁目2番3号

【氏名又は名称】

IFEスチール株式会社

【代理人】

申請人

【識別番号】

100099531

【住所又は居所】

千葉県船橋市本町6丁目1番7号 エスペランサ

K 4 階 小林特許事務所

【氏名又は名称】

小林 英一

特願2004-329060

出願人履歴情報

識別番号

[000001258]

1. 変更年月日 [変更理由]

2003年 4月 1日

名称変更 住所変更

住 所

東京都千代田区内幸町二丁目2番3号

氏 名 JFEスチール株式会社