Assignment 3 - Q2. Date: DDMMYY
Q2a) computing Gradient?
$e_{ij}^2 = (r_{ij} - \sum_{i} p_{ik} a_{ij})$
Portial derivative wrt P
$\frac{\partial}{\partial x_{ij}} = -2\left(v_{ij} - \sum_{i \in A} P_{ik} Q_{kj}\right) Q_{kj}$
dpik replacing with eij
≥ cij = -2eijaki
DAIK .
Partial Devivative wit a
2 eij = -2 (rij - ≥ Pikaki) (Pik)
dans
$\frac{\partial e_{ij}}{\partial x_{ij}} = -2e_{ij}P_{ik}$
90x?
Updated values of P&Q
Pik = Pik + \alpha \frac{2}{2} e_{ij} = Pik + 2 \alpha e_{ij} \alpha k_{ij}
$Q_{kj} = Q_{kj} + \alpha \frac{\partial}{\partial e_{ij}} = Q_{kj} + 2\alpha e_{ij} P_{ik}$
90/r?
b) Adding Biases
$\hat{V}_{ij} = U_i + I_j + \sum_{i} P_{ik} a_{kj}$
ej = [rij = (Z Pikaki + VitIj)]
Partial Deviloative ust 11
$\frac{\partial}{\partial v_i} e_{ij}^2 = -2 \left(v_{ij} - \left(\sum_{k} \rho_{ik} \alpha_{kj} + v_{i} + \vec{I}_{j} \right) \right) = -2 e_{ij}$
dvi
Partial Derivative wrt I
deij= -2(rij-(≥ pikqm+vi+1j) = -2eij
Upaated values of biases, u & I
$V_i' = V_i + \alpha \frac{\partial}{\partial v_i} e_{ij} = V_i + 2\alpha e_{ij}$
$T_{j}' = T_{j}' - \alpha \frac{\partial}{\partial I_{j}} e_{ij}' = T_{j} + \sum_{\alpha \in ij} e_{\alpha ij}$