

Shortest-paths tree (not unique)

24-2×

Main Idea ---- 1

is a shortest path from s to d

Then

- all subpaths are shortest optimal substructure! (i)
- (ii) After $\delta(s, \pi(v))$ is known, we can get $\delta(s, v)$ by Relax($\pi(v), v, w$) e.g. After $\delta(s, c) = 9$ is known, Relax(c, d, w) we have $\delta(s, d) = 9 + w(c, d) = 12$

Main Idea ---- 2

24-3b

If G contains no negative cycles,

- every shortest path is a simple path (i)
- (ii) every shortest path has at most n 1 edges

visit a vertex at most once

(For ease of discussion, assume that there are no 0-cycles)

Main Idea: Bellman-Ford (no negative cycles)

24-5a

shortest path tree

- * Ui: vertices whose shortest paths having i edges
- * U_0 $\xrightarrow{\text{phase 1}} U_1$ $\xrightarrow{\text{phase 2}} U_2$ 0

main idea 1 - correctness

* A simple path has at most n - 1 edges

$$\square$$
 $U_n = U_{n+1} = U_{n+2} = \dots = \emptyset$

 \Rightarrow n - 1 phases is sufficient!

main idea 2 - time complexity

Authors: Bellman 1958, Ford 1956 (Moore 1957)

Simple Speedups:

- (1) Phase 1: relax(s, •) only
- (2) Phase i: relax(v,) only if d(v) changes
- (3) stop once there are no changes

Remark: mentioned early in 1959

Remark: "discovered" by a Chinese in 1994

and named as SPFA

24-5x

Traditional approach: DP (See 15-14a)

24-6a

DP: 有答案的存起來等別人問 (+, u, v等x來問答案)
24.2: 有答案的主動去修正有需要的人 (+, u, v主動用答案修正x)

- * all edges are from left to right \rightarrow
- * $\pi(v_i)$ is one of $v_0, v_1, v_2, ..., v_{i-1}$ (or NIL)
- * Once $v_0, v_1, v_2, ..., v_{i-1}$ ok $\Rightarrow v_i$ ok!
- * Initially, $d(v_0)$ is correct

 v_0 does "relax" with correct $d(v_0) \Rightarrow d(v_1)$ is correct

- \Rightarrow v_1 does "relax" with correct $d(v_1)$ \Rightarrow $d(v_2)$ is correct
- \Rightarrow v₂ does "relax" with correct d(v₂) \Rightarrow d(v₃) is correct
- \Rightarrow • all $d(v_i)$ are correct (by induction)

The longest path problem on a DAG

Negating the edge weights

* edge weights: 5, -2, 7, -1, ... \Rightarrow -5, +2, -7, +1, ...

Why all weights should be nonnegative?

24-8b

(shortest path tree of 24-5 Fig.)

Dijkstra's shortest path algorithm

* d[u] 記住u和S之間目前已知的最短距離 (π[u] 記住目前的predecessor)

Set S

1

1

10

24-10x

Dijkstra's shortest path algorithm

Prim's MST

* key[u] 記住u和T之間最短的一條edge

24-10y

Prim's MST

* key[u] 記住u和T之間最短的一條edge

Prim's MST

key[v]: shortest edge to T

 $\pi[v]$: nearest vertex in T $u \leftarrow \text{ExtractMin}(Q)$ $T \leftarrow T \cup \{u\}$ reduce $\text{key}[\cdot]$ of Adj(u)

(decrease-key)

Dijkstra's shortest path

d[v]: known shortest distance to s

 $\pi[v]$: current predecessor $u \leftarrow \text{ExtractMin}(Q)$ $S \leftarrow S \cup \{u\}$ relax $d[\cdot]$ of Adj(u) (decrease-key)

		array	b. heap	f. heap
Steps 1~3 :	Build Q	O(V)	O(V)	O(V)
Step 5:	V times Extract-Min	$O(V^2)$	O(V lg V)	O(V lg V)
Steps 7~9:	E times Decrease-Key	O(E)	O(E lg V)	O(E)
		O(V ² +E)	O(E lg V)	O(E + Vlg V)

Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)	array	
MAKE-HEAP	$\Theta(1)$	Θ(1)	O(1)	
Insert	$\Theta(\lg n)$	$\Theta(1)$	O(1)	
MINIMUM	$\Theta(1)$	$\Theta(1)$	O(n)	
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$	O(n)	(See 22-1)
Union	$\Theta(n)$	$\Theta(1)$	O(n)	
DECREASE-KEY	$\Theta(\lg n)$	Θ(1)	O(1)	
DELETE	$\Theta(\lg n)$	$O(\lg n)$	O(1)	
build	<i>O</i> (n)	O(n)	O(n)	24-10z

Single-Source Shortest Paths Algorithms - Review Main Ideas

Optimal substructure:
$$\pi(v) \rightarrow v$$
 ok relax ok

No negative cycles: simple path (at most n-1 edges)

Bellman-Ford (no negative cycles, can detect)
$$U_0^{=} \{s\}$$
 $U_1 \rightarrow U_2 \rightarrow U_3 \rightarrow ... \rightarrow U_{n-1}$ ok ok ok ok ok

Dijkstra (no negative edges)
$$O(Vlg V+E)$$

$$= \{s\}$$

$$rank(1) \rightarrow rank(2) \rightarrow rank(3) \rightarrow rank(3)$$

 $\begin{array}{c} = \{s\} \\ \operatorname{rank}(1) \rightarrow \operatorname{rank}(2) \rightarrow \operatorname{rank}(3) \rightarrow \dots \rightarrow \operatorname{rank}(n) \\ \operatorname{ok} & \operatorname{ok} & \operatorname{ok} & \operatorname{ok} \end{array}$

24-10r

Two important special cases

- (1) Bellman-Ford: one phase left to right
- (2) classical: DP