

Acionamentos Eletrônicos Aula 05 - Circuitos conversores: CA em CC -Retificadores

Apresentação

Os circuitos conversores são a alma dos acionamentos eletrônicos. Nesse sentido, eles são responsáveis por converter sinais nas diversas etapas que são necessárias aos acionamentos eletrônicos de motores elétricos. Assim, os circuitos retificadores são a primeira etapa desse processo de conversão, quando um motor é alimentado a partir da rede elétrica os circuitos são responsáveis em converter a tensão que é fornecida pela concessionária de energia, a qual é alternada em tensão contínua.

Objetivos

- Descrever a necessidade dos retificadores.
- Reconhecer os circuitos retificadores.
- Saber definir a forma de operação dos retificadores.

Conversores

Os conversores são circuitos essenciais aos acionamentos de motores elétricos, pois tratam de modificar a tensão no intuito de adequá-la às diversas etapas do sistema de acionamento. Desse modo, as formas de tensão que fazem parte do acionamento são a tensão contínua (CC) e a tensão alternada (CA), baseando-se nisso, os conversores modificam tensões de quatro formas:

Conversor	Descrição
CA – CC	Retificadores
CC – CA	Inversores
CC – CC	Choppers
CA – CA	Cicloconversores

Quadro 1 - Tipos de conversores. **Fonte:** Autoria própria (2014).

À primeira vista, alguns conversores podem parecer desnecessários, mas na realidade não são. Para controlar o funcionamento de um motor e fazer com que ele opere, por exemplo, com a velocidade desejada, devemos controlar a tensão que é aplicada ao motor, ora aumentando, ora diminuindo. Mas como fazer isso se a tensão que a concessionária de energia fornece é fixa?

A seguir, a Figura 1 mostra uma possível solução para esse problema. Nela observa-se como a tensão, que é fornecida pela concessionária de energia, é modificada. Primeiramente, a tensão alternada da rede elétrica é retificada pelo conversor CA – CC, que disponibilizada em sua saída uma tensão contínua. Assim, a ligação entre o retificador e o inversor é chamada de link DC. O sinal contínuo passa ser a entrada do conversor CC - CA, que o transformará em alternado novamente. A diferença entre a tensão alternada da entrada (rede de alimentação) e a tensão

entregue ao motor pelo inversor esta no fato do sinal na salda ser controlado. A tensão que é fornecida pela concessionária de energia elétrica apresenta tanto o seu valor como a sua frequência, fixas, já a tensão fornecida ao motor é totalmente controlada, podemos modificar a sua amplitude e a sua frequência como desejarmos.

Rede elétrica
O
Redificador
Motor

Figura 01 - Circuito de acionamento de motor com retificador e inversor.

Fonte: Autoria própria (2014).

Essa é apenas uma das situações dos acionamentos eletrônicos de motores elétricos, existem diversas outras que veremos ao longo do estudo dos conversores.

Retificadores

Os circuitos retificadores são circuitos que convertem tensão alternada (CA) em tensão contínua (CC), por isso são chamados de conversores CA-CC. Dessa forma, a estrutura dos circuitos retificadores é baseada em chaveamento, no corte e condução de tensão, e como vimos nas aulas anteriores, existem diversos tipos de dispositivos que funcionam como chave, os utilizados nos conversores CA – CC são os diodos, os tiristores e os transistores. Assim, quando o retificador é construído com diodos, dizemos que o retificado é não controlado e quando é construído com tiristores ou transistores, controlado. Isso ocorre por causa das características de funcionamento desses dispositivos, o diodo não permite controle sobre a sua condução, apenas a polaridade da tensão defini se ele conduz ou não, já o tiristor pode ter a sua condução controlada por meio dos pulsos no gatilho e o transistor a partir da corrente de base. Os circuitos retificadores podem ser monofásicos ou trifásicos, dependendo da aplicação, e podem ainda ser classificados quanto ao tipo de retificação, como meia onda ou onda completa.

Atividade 01

1. Considerando os acionamentos eletrônicos, em muitas situações é necessário utilizar uma tensão contínua a partir da rede de alimentação alternada fornecida pela concessionária de energia elétrica. Por que é necessário converter uma tensão alternada em tensão contínua?

Clique aqui para verificar sua resposta.

Resposta

1. Para controlar o funcionamento de um motor faz-se necessário controlar a tensão que é aplicada ao motor e as vezes a frequência, ora aumentando, ora diminuindo. Mas a tensão e frequência da rede elétrica são constantes. Para isso, faz-se necessário convertê-la em contínua e através de um inversor, converter a tensão continua em alternada novamente com a frequência e amplitude totalmente controladas.

Princípio de Operação dos Circuitos Retificadores

Os conversores CA – CC funcionam transformando tensão alternada (CA) em tensão contínua (CC). Esse processo se dá por meio de um circuito que faz com que a tensão se mantenha o tempo todo positiva. A Figura 2 mostra um exemplo de um circuito que faz isso de forma bem simples.

Figura 02 - Circuito retificador simples.

A tensão de entrada V\$ oscila de forma senoidal entre valores positivos e negativos, como mostra o gráfico da Figura 2. Portanto, quando a tensão V\$ é positiva, o diodo está polarizado diretamente e então conduz, transferindo a tensão VP para o resistor R\$, $V_{R} = V$ \$. Já quando a tensão V\$ está no ciclo negativo, então ocorre o contrário, o diodo está polarizado reversamente e não há condução, então não há tensão sobre o resistor $V_{R} = 0$ \$.

Dessa forma, consegue-se manter sobre o resistor R (saída do circuito) sempre uma tensão positiva, mas na realidade não é exatamente contínua. Para resolver esse problema, e deixar a tensão na saída o mais próximo possível de uma tensão contínua, é usado um capacitor que "segura" a tensão no seu maior valor. A Figura 3 mostra um circuito retificador com capacitor.

Figura 03 - Circuito retificador simples com capacitor.

Fonte: Autoria própria (2014).

Note que quando o capacitor é inserido a tensão na saída do retificador se aproxima de uma tensão contínua. Assim, o valor do capacitor e o tipo de carga influenciam em como essa tensão será na saída. Mas de uma forma geral, o capacitor funciona carregando e descarregando-se de tal forma que tenta manter a tensão no maior valor. Essa oscilação da tensão devido à carga e descarga do capacitor é chamada de Ripple. A Figura 4 mostra os períodos de carga e descarga do capacitor, assim como o Ripple.

Figura 04 - Forma de onda na saída do retificador.

Fonte: Autoria própria (2014).

Atividade 02

1. Caro aluno, levando em consideração o princípio de operação dos circuitos retificadores, responda: Por que a etapa de filtragem do sinal é necessária na saída do circuito retificador?

<u>Clique aqui</u> para verificar sua resposta.

Resposta

 Para a diminuição da tensão de ripple. Dessa forma, o capacitor segura a tensão no maior valor possível, deixando a tensão de saída o mais próximo possível de uma tensão contínua.

Tipos de Circuitos Retificadores

Existem várias topologias possíveis para o circuito retificador, cada uma delas apresenta vantagens e desvantagens. Sendo que os tipos mais conhecidos são o retificador de meia onda, o de onda completa e o de onda completa em ponte. Por isso, veremos as características de cada um deles.

Retificadores de Meia Onda

As principais características dos circuitos retificadores de meia onda são a presença de um diodo em série com a carga e a tensão na carga correspondente à metade da tensão de entrada, mas o retificador de meia onda também pode ser construído usando-se outro tipo de chave, como por exemplo, o tiristor. Um exemplo de retificador de meia onda simples a diodo foi mostrado nas Figuras 2 e 3, considerando uma carga resistiva. Quando consideramos a carga indutiva, como mostrado na Figura 5, o circuito retificador deve incluir um diodo extra, chamado de diodo de "roda livre", que é representado na Figura 5 pelo diodo D2. Esse diodo deve estar presente porque durante o ciclo positivo da tensão V o indutor está armazenando energia e o sentido da corrente é mostrado pela corrente i+. Assim, quando o sentido da tensão V é invertido, então o diodo D1 é cortado e o indutor está com energia armazenada, não podendo ter seus terminais abertos, pois haveria uma mudança brusca na sua corrente, o que danificaria o componente. Dessa forma, o diodo D2 é inserido para que o indutor possa ter um caminho para manter sua corrente sem variação brusca, passando então a circular a corrente i-. Resumindo, a corrente i+ circula durante o ciclo positivo da tensão V e a corrente idurante o ciclo negativo.

Figura 05 - Retificador de meia onda com carga indutiva.

Os circuitos retificadores, em muitas aplicações, não são alimentados diretamente da rede elétrica, mas a partir de um transformador. Essa variação não interfere na análise a ser feita dos conversores CA – CC.

Retificadores de Onda Completa

O circuito retificador de onda completa tem o mesmo princípio de funcionamento do retificador de meia onda, a diferença operacional é que o retificador de onda completa aproveita também o ciclo negativo da tensão de entrada, convertendo essa tensão em tensão positiva para a carga, diferentemente do retificador de meia onda, em que essa tensão é perdida. A Figura 6 mostra o retificador de onda completa a diodos.

Figura 06 - Retificador de onda completa.

Fonte: Autoria própria (2014).

Durante o ciclo positivo da tensão V, a corrente que circula pelo circuito retificador é a corrente i+. Nessa situação, a tensão positiva polariza diretamente os diodos D1 e D4, enquanto que os diodos D2 e D3 estão cortados. Quando a tensão V está no seu semiciclo negativo, então os diodos D2 e D3 estão polarizados diretamente e os diodos D1 e D4 estão cortados. Isso faz com que circule no circuito a corrente i-. Note que, em ambos os casos, a corrente sempre passa pela carga (resistor R) com o mesmo sentido, isso faz com que a tensão sempre tenha a mesma polaridade, sendo, dessa forma, sempre positiva. A Figura 7 mostra os circuitos equivalentes para o retificador nas duas situações, quando a tensão de entrada V está no seu semiciclo positivo e no negativo, respectivamente.

Figura 07 - Retificador de onda completa no ciclo positivo e negativo da tensão de entrada.

Fonte: Autoria própria (2014).

A forma de onda na saída do circuito retificador é mostrada na Figura 8, a tensão VR é sempre positiva e é aproveitado tanto o semiciclo positivo quanto o negativo da tensão de entrada.

Figura 08 - Forma de onda do retificador de onda completa.

Atividade 03

1. A partir do que foi visto a respeito dos Retificadores de onda completa, responda: Qual a diferença entre o circuito retificador de meia onda e o de onda completa? Como o circuito de onda completa funciona?

<u>Clique aqui</u> para verificar sua resposta.

Resposta

1. O circuito de meia onda utiliza apenas um diodo em série com a carga. Dessa forma, apenas a metade da tensão é aplicada a carga (apenas o semiciclo positivo da onda que polariza e coloca o diodo em condução), enquanto a outra é totalmente descartada (diodo em corte). No caso de um retificador de onda completa, ele utiliza 4 diodos (em configuração ponte). Cada par de diodos fica em ativado (entra em condução) em cada semiciclo (o positivo e o negativo). Assim ele aproveita o semiciclo negativo também, convertendo essa tensão em tensão positiva sobre a carga.

Durante o semiciclo positivo, os diodos D1 e D4 ficam polarizados, fazendo a tensão sobre \$ V_{R} \$ positiva. Durante o semiciclo negativo, a tensão polariza os diodos D2 e D3, fazendo a tensão sobre \$ V_{R} \$ novamente positiva.

Retificadores Trifásicos

Os retificadores monofásicos são mais simples de trabalhar, porém quando se trata de aplicação com uma potência mais elevada, inevitavelmente opta-se pelo retificador trifásico. Logo, a diferença construtiva do retificador monofásico para o trifásico está na quantidade de chaves, pois no trifásico temos na entrada três sinais de tensão enquanto que no monofásico apenas uma. Portanto, a saída dos dois tipos de retificadores é a mesma, uma carga cuja tensão seja contínua.

Assim como os monofásicos, os retificadores trifásicos podem ser não controlados, semicontrolados e controlados. A Figura 9 mostra um exemplo dos três tipos de retificadores trifásicos.

Figura 09 - Tipos de retificadores trifásicos.

Note que a diferença entre um retificador controlado, semicontrolado e não controlado está no tipo de chave que é utilizado. Desse modo, nos circuitos não controlados existem apenas dispositivos não controláveis, os diodos, enquanto nos circuitos controlados há apenas tiristores, em que é possível controlar a sua condução por meio do gatilho. No semicontrolado, há uma mistura de dispositivos controlados e não controlados. A forma de onda na saída do retificador trifásico é mostrada na Figura 10.

Figura 10 - Forma de onda no retificador trifásico.

Fonte: Autoria própria (2014).

Comparando a forma da tensão de saída do retificador monofásico com o trifásico, nas mesmas condições, percebemos que no trifásico o Ripple acaba sendo menor, pois temos três ondas de tensões que estão muito próximas; enquanto que no monofásico há apenas uma, deixando a tensão na saída mais espaçada. A Figura 11 mostra a comparação do Ripple entre o retificador monofásico e trifásico.

Figura 11 - Ripple no retificador monofásico e trifásico.

Fonte: Autoria própria (2014).

Em ambos os casos são usados filtros para melhorar a tensão de saída, ou seja, deixá-la o mais próximo possível de uma tensão contínua.

Atividade 04

1. Existem vantagens em se utilizar o retificador trifásico em relação ao monofásico? Quais?

<u>Clique aqui</u> para verificar sua resposta.

Resposta

1. Sim. A potência fornecida é maior. A tensão de ripple acaba sendo bem menor já que a distância entre as onda é bem menor (existem 3 ondas) se comparada a monofásica (com apenas 1 onda). Isso faz com que a tensão seja mais próxima ainda da tensão contínua. Maior tensão, maior potência.

Leitura Complementar

Para entender um pouco mais sobre conversores CA – CC é recomendada a leitura do texto que foi elaborado para a disciplina Eletrônica de Potência na UNICAMP. Nele você vai encontrar desenhos de circuitos, forma de ondas e equações relativas aos retificadores.

• J. A. Pomílio, **Eletrônica de potência**, UNICAMP, Campinas-SP, 2008.

Disponível

http://www.dsce.fee.unicamp.br/~antenor/pdffiles/eltpot/cap3.pdf

Resumo

Nessa aula, você viu o conceito de conversores e especificamente o conversor CA – CC. Viu que os circuitos que convertem tensão alternada em tensão contínua também são chamados de circuitos retificadores e que podem ter diversas topologias e que neles podem ser usados diversos tipos de chaves. Além disso, você teve a oportunidade de entender um pouco em que situação os circuitos retificadores são utilizados e, baseando no conhecimento do funcionamento das chaves, viu qual o princípio de operação dos conversores CA – CC.

Autoavaliação

- 1. Em que situação o retificador é utilizado?
- 2. Considerando o circuito e a forma de onda da figura:

Qual a forma de onda VR?

- 3. O que seria o diodo de "roda livre" e para que serve?
- 4. Considere a figura e responda:

- a. Sendo a tensão V uma tensão senoidal, desenhe a forma de onda da entrada V e da saída VR.
- b. Desenhe o Ripple na saída.
- 5. Analisando o circuito da Figura e os respectivos sinais de entrada V1 e V2, desenhe a forma de onda na saída VR.

6. Por que o Ripple no retificador monofásico é diferente no trifásico quando consideramos tensões senoidais de mesma amplitude e frequência?

Clique aqui para verificar suas respostas.

Respostas

 São utilizados quando se deseja possuir tensão contínua, como é o caso de circuitos eletrônicos ou no estágio inicial de um controlador de velocidade de motores AC.

3. É um diodo extra inserido em paralelo a carga quando a carga do circuito é indutiva. É inserido de forma invertida em relação a tensão que aparece na carga, assim estando em corte quando a tensão aparece sobre a carga. Esse diodo deve estar presente porque durante o ciclo positivo da tensão V o indutor está armazenando energia e o sentido da corrente vai do positivo para o negativo da fonte. Assim, quando o sentido da tensão V é invertido, então o diodo retificador corta e o indutor, que está com energia armazenada, se opõe a variação brusca na sua corrente, forçando a passagem da corrente que pode acabar danificando o diodo de retificação. Dessa forma, o diodo de roda livre é inserido para que o indutor possa ter um caminho para manter sua corrente sem variação brusca, passando então a circular a corrente através dele.

4. a.

b. No caso desse circuito que não possui capacitor, o ripple

è identico a forma de onda \$ V_{R} \$.

5.

6. Porque no período de um ciclo de uma tensão monofásica, existe apenas uma senoide. No caso da trifásica, existe três senoides. Com isso, a distância entre cada senoide fica bem reduzida, havendo sobreposição das senoides e por tal, uma menor variação da tensão retificada sobre a carga.

Referências

BARBI, I. **Eletrônica de potência.** 6. ed. Florianópolis: Edição do Autor, 2006. Disponível em: http://ivobarbi.com/PDF/livros/Potl/Potl.pdf>. Acesso em: 26 fev. 2014.

RASHID, M. H. Eletrônica de potência. São Paulo: Makron, 1999.