## Multivariate Normal Theory

STA721 Linear Models Duke University

Merlise Clyde

September 5, 2017

### Outline

- Multivariate Normal Distribution
- Linear Transformations
- Distribution of estimates under normality

 $\hat{\mathbf{Y}} = \hat{\mu} = \mathbf{P_XY}$  is an unbiased estimate of  $\mu = \mathbf{X}oldsymbol{eta}$ 

- $\hat{\mathbf{Y}} = \hat{\mu} = \mathbf{P_XY}$  is an unbiased estimate of  $\mu = \mathbf{X}\beta$
- ▶  $\mathsf{E}[\mathsf{e}] = \mathbf{0}$  if  $\mu \in \mathcal{C}(\mathsf{X})$

- $\hat{\mathbf{Y}} = \hat{\mu} = \mathbf{P_XY}$  is an unbiased estimate of  $\mu = \mathbf{X}\beta$
- ▶  $\mathsf{E}[\mathsf{e}] = \mathbf{0}$  if  $\mu \in \mathcal{C}(\mathsf{X})$

$$\mathsf{E}[e] = \mathsf{E}[(I - P_X)Y]$$

- $\hat{\mathbf{Y}} = \hat{\mu} = \mathbf{P_XY}$  is an unbiased estimate of  $\mu = \mathbf{X}\beta$
- ▶ E[e] = 0 if  $\mu \in C(X)$

$$\mathsf{E}[e] = \mathsf{E}[(I-P_X)Y]$$

▶ MLE of  $\sigma^2$ :

$$\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$$



- $\hat{f Y}=\hat{m \mu}={\sf P_XY}$  is an unbiased estimate of  $m \mu={\sf X}m eta$
- ▶  $\mathsf{E}[\mathsf{e}] = \mathbf{0}$  if  $\mu \in \mathcal{C}(\mathsf{X})$

$$\mathsf{E}[\mathsf{e}] = \mathsf{E}[(\mathsf{I} - \mathsf{P}_{\mathsf{X}})\mathsf{Y}]$$

▶ MLE of  $\sigma^2$ :

$$\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$$

Is not an unbiased estimate of  $\sigma^2$ , but

$$\hat{\sigma}^2 \equiv \frac{\mathbf{e}^T \mathbf{e}}{n-p} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{Y}}{n-p}$$

where p equals the rank of X is an unbiased estimate.

# Sampling Distributions

- ▶ Distribution of  $\hat{\beta}$
- Distribution of P<sub>X</sub>Y
- Distribution of e

#### Definition

We say that Z has a standard Normal distribution

$$Z \sim N(0,1)$$

with mean 0 and variance 1 if it has density

### Definition

We say that Z has a standard Normal distribution

$$Z \sim N(0,1)$$

with mean 0 and variance 1 if it has density

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$

### **Definition**

We say that Z has a standard Normal distribution

$$Z \sim N(0,1)$$

with mean 0 and variance 1 if it has density

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

If  $Y=\mu+\sigma Z$  then  $Y\sim \textit{N}(\mu,\sigma^2)$  with mean  $\mu$  and variance  $\sigma^2$ 

### Definition

We say that Z has a standard Normal distribution

$$Z \sim N(0,1)$$

with mean 0 and variance 1 if it has density

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

If  $Y=\mu+\sigma Z$  then  $Y\sim \textit{N}(\mu,\sigma^2)$  with mean  $\mu$  and variance  $\sigma^2$ 

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2}$$

Let  $z_i \stackrel{\text{iid}}{\sim} N(0,1)$  for  $i = 1, \ldots, d$  and define

$$\mathbf{Z} \equiv \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_d \end{bmatrix}$$

Let  $z_i \stackrel{\text{iid}}{\sim} N(0,1)$  for i = 1, ..., d and define

$$\mathbf{Z} \equiv \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_d \end{bmatrix}$$

▶ Density of *Z*:

Let  $z_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1)$  for  $i=1,\ldots,d$  and define

$$\mathbf{Z} \equiv \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_d \end{bmatrix}$$

▶ Density of *Z*:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_{i}^{2}/2}$$

Let  $z_i \stackrel{\text{iid}}{\sim} N(0,1)$  for i = 1, ..., d and define

$$\mathbf{Z} \equiv \left[ \begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_d \end{array} \right]$$

▶ Density of *Z*:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

Let  $z_i \stackrel{\text{iid}}{\sim} N(0,1)$  for  $i = 1, \dots, d$  and define

$$\mathbf{Z} \equiv \left[ \begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_d \end{array} \right]$$

Density of *Z*:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

 $\triangleright$  E[**Z**] = **0** and Cov[**Z**] =  $I_d$ 

Let  $z_i \stackrel{\text{iid}}{\sim} N(0,1)$  for  $i = 1, \ldots, d$  and define

$$\mathbf{Z} \equiv \left[ \begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_d \end{array} \right]$$

Density of *Z*:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

- $\triangleright$  E[**Z**] = **0** and Cov[**Z**] = I<sub>d</sub>
- $ightharpoonup Z \sim N(\mathbf{0}_d, \mathbf{I}_d)$



Let  $z_i \stackrel{\text{iid}}{\sim} N(0,1)$  for  $i = 1, \ldots, d$  and define

$$\mathbf{Z} \equiv \left[ \begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_d \end{array} \right]$$

Density of *Z*:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

- $\triangleright$  E[**Z**] = **0** and Cov[**Z**] = I<sub>d</sub>
- $ightharpoonup Z \sim N(\mathbf{0}_d, \mathbf{I}_d)$

For a d dimensional multivariate normal random vector, we write  $\mathbf{Y} \sim N_d(m{\mu}, \mathbf{\Sigma})$ 

For a d dimensional multivariate normal random vector, we write  $\mathbf{Y} \sim N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ 

▶  $E[Y] = \mu$ : d dimensional vector with means  $E[Y_j]$ 

For a d dimensional multivariate normal random vector, we write  $\mathbf{Y} \sim N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ 

- ▶  $E[Y] = \mu$ : d dimensional vector with means  $E[Y_j]$
- ► Cov[Y] =  $\Sigma$ :  $d \times d$  matrix with diagonal elements that are the variances of  $Y_j$  and off diagonal elements that are the covariances  $E[(Y_j \mu_j)(Y_k \mu_k)]$

For a d dimensional multivariate normal random vector, we write  $\mathbf{Y} \sim N_d(m{\mu}, \mathbf{\Sigma})$ 

- ▶  $E[Y] = \mu$ : d dimensional vector with means  $E[Y_j]$
- ▶ Cov[ $\mathbf{Y}$ ] =  $\mathbf{\Sigma}$ :  $d \times d$  matrix with diagonal elements that are the variances of  $Y_j$  and off diagonal elements that are the covariances  $\mathsf{E}[(Y_j \mu_j)(Y_k \mu_k)]$

## Density

If  ${f \Sigma}$  is positive definite  $({f x}'{f \Sigma}{f x}>0$  for any  ${f x}\neq 0$  in  ${\Bbb R}^d)$  then  ${f Y}$  has a density  $^1$ 



For a d dimensional multivariate normal random vector, we write  $\mathbf{Y} \sim N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ 

- ▶  $E[Y] = \mu$ : d dimensional vector with means  $E[Y_j]$
- ► Cov[Y] =  $\Sigma$ :  $d \times d$  matrix with diagonal elements that are the variances of  $Y_j$  and off diagonal elements that are the covariances  $E[(Y_j \mu_j)(Y_k \mu_k)]$

#### **Theorem**

#### **Theorem**

If  $\mathbf{A}$   $(n \times n)$  is a symmetric real matrix then there exists a  $\mathbf{U}$   $(n \times n)$  such that  $\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}_n$  and a diagonal matrix  $\mathbf{\Lambda}$  with elements  $\lambda_i$  such that  $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$ 

**U** is an orthogonal matrix;  $\mathbf{U}^{-1} = \mathbf{U}^T$ 

#### **Theorem**

- **U** is an orthogonal matrix;  $\mathbf{U}^{-1} = \mathbf{U}^T$
- ▶ The columns of **U** from an Orthonormal Basis for  $\mathbb{R}^n$

#### Theorem

- **U** is an orthogonal matrix;  $\mathbf{U}^{-1} = \mathbf{U}^T$
- ▶ The columns of **U** from an Orthonormal Basis for  $\mathbb{R}^n$
- rank of **A** equals the number of non-zero eigenvalues  $\lambda_i$

#### Theorem

- **U** is an orthogonal matrix;  $\mathbf{U}^{-1} = \mathbf{U}^T$
- ▶ The columns of **U** from an Orthonormal Basis for  $\mathbb{R}^n$
- rank of **A** equals the number of non-zero eigenvalues  $\lambda_i$
- Columns of U associated with non-zero eigenvalues form an ONB for  $C(\mathbf{A})$  (eigenvectors of  $\mathbf{A}$ )

#### Theorem

- **U** is an orthogonal matrix;  $\mathbf{U}^{-1} = \mathbf{U}^T$
- ▶ The columns of **U** from an Orthonormal Basis for  $\mathbb{R}^n$
- rank of **A** equals the number of non-zero eigenvalues  $\lambda_i$
- Columns of U associated with non-zero eigenvalues form an ONB for  $C(\mathbf{A})$  (eigenvectors of  $\mathbf{A}$ )
- $ightharpoonup A^{\rho} = U \Lambda^{\rho} U^{T}$  (matrix powers)

#### Theorem

- **U** is an orthogonal matrix;  $\mathbf{U}^{-1} = \mathbf{U}^T$
- ▶ The columns of **U** from an Orthonormal Basis for  $\mathbb{R}^n$
- rank of **A** equals the number of non-zero eigenvalues  $\lambda_i$
- Columns of U associated with non-zero eigenvalues form an ONB for  $C(\mathbf{A})$  (eigenvectors of  $\mathbf{A}$ )
- $\mathbf{A}^p = \mathbf{U} \mathbf{\Lambda}^p \mathbf{U}^T$  (matrix powers)
- ▶ a (symmetric) square root of A > 0 is  $U\Lambda^{1/2}U^T$

#### Theorem

- **U** is an orthogonal matrix;  $\mathbf{U}^{-1} = \mathbf{U}^T$
- ▶ The columns of **U** from an Orthonormal Basis for  $\mathbb{R}^n$
- rank of **A** equals the number of non-zero eigenvalues  $\lambda_i$
- Columns of U associated with non-zero eigenvalues form an ONB for  $C(\mathbf{A})$  (eigenvectors of  $\mathbf{A}$ )
- $\mathbf{A}^p = \mathbf{U} \mathbf{\Lambda}^p \mathbf{U}^T$  (matrix powers)
- ▶ a (symmetric) square root of A > 0 is  $U\Lambda^{1/2}U^T$

▶ Density of  $Z \sim N(\mathbf{0}, \mathbf{I}_d)$ :

▶ Density of  $Z \sim N(\mathbf{0}, \mathbf{I}_d)$ :

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_{i}^{2}/2}$$

▶ Density of  $Z \sim N(\mathbf{0}, \mathbf{I}_d)$ :

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

▶ Density of  $Z \sim N(\mathbf{0}, \mathbf{I}_d)$ :

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

• Write  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$ 

▶ Density of  $Z \sim N(\mathbf{0}, \mathbf{I}_d)$ :

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

- Write  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$
- ▶ Solve for  $\mathbf{Z} = g(\mathbf{Y})$

▶ Density of  $Z \sim N(\mathbf{0}, \mathbf{I}_d)$ :

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

- Write  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$
- ▶ Solve for  $\mathbf{Z} = g(\mathbf{Y})$
- ▶ Jacobian of the transformation  $J(\mathbf{Z} \to \mathbf{Y}) = |\frac{\partial g}{\partial \mathbf{V}}|$

▶ Density of  $Z \sim N(\mathbf{0}, \mathbf{I}_d)$ :

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

- Write  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$
- ▶ Solve for **Z** = g(**Y**)
- ▶ Jacobian of the transformation  $J(\mathbf{Z} \to \mathbf{Y}) = |\frac{\partial g}{\partial \mathbf{V}}|$
- $\triangleright$  substitute  $g(\mathbf{Y})$  for **Z** in density and multiply by Jacobian

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{Z}}(\mathbf{z})J(\mathbf{Z} \to \mathbf{Y})$$



$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$$
 for  $\mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$  (1)

Proof.

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$$
 for  $\mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$  (1)

### Proof.

▶ since  $\Sigma > 0$ ,  $\exists$  by the spectral theorem an  $\mathbf{A}$  ( $d \times d$ ) such that  $\mathbf{A} > 0$  and  $\mathbf{A}\mathbf{A}^T = \Sigma$ 

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ} \quad \text{ for } \mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$$
 (1)

### Proof.

- ▶ since  $\Sigma > 0$ ,  $\exists$  by the spectral theorem an  $\mathbf{A}$  ( $d \times d$ ) such that  $\mathbf{A} > 0$  and  $\mathbf{A}\mathbf{A}^T = \Sigma$
- ▶  $\mathbf{A} > 0 \Rightarrow \mathbf{A}^{-1}$  exists

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ} \quad \text{ for } \mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$$
 (1)

#### Proof.

- ▶ since  $\Sigma > 0$ ,  $\exists$  by the spectral theorem an  $\mathbf{A}$  ( $d \times d$ ) such that  $\mathbf{A} > 0$  and  $\mathbf{A}\mathbf{A}^T = \Sigma$
- ▶  $\mathbf{A} > 0 \Rightarrow \mathbf{A}^{-1}$  exists
- ▶ Multiply both sides (1) by  $\mathbf{A}^{-1}$ :

$$\mathbf{A}^{-1}\mathbf{Y} = \mathbf{A}^{-1}\mu + \mathbf{A}^{-1}\mathbf{A}\mathbf{Z}$$

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ} \quad \text{ for } \mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$$
 (1)

### Proof.

- ▶ since  $\Sigma > 0$ ,  $\exists$  by the spectral theorem an  $\mathbf{A}$  ( $d \times d$ ) such that  $\mathbf{A} > 0$  and  $\mathbf{A}\mathbf{A}^T = \Sigma$
- $ightharpoonup A > 0 \Rightarrow A^{-1}$  exists
- ▶ Multiply both sides (1) by  $\mathbf{A}^{-1}$ :

$$\mathbf{A}^{-1}\mathbf{Y}=\mathbf{A}^{-1}\boldsymbol{\mu}+\mathbf{A}^{-1}\mathbf{A}\mathbf{Z}$$

• Rearrange  $\mathbf{A}^{-1}(\mathbf{Y} - \boldsymbol{\mu}) = \mathbf{Z}$ 

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ} \quad \text{ for } \mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$$
 (1)

### Proof.

- ▶ since  $\Sigma > 0$ ,  $\exists$  by the spectral theorem an  $\mathbf{A}$  ( $d \times d$ ) such that  $\mathbf{A} > 0$  and  $\mathbf{A}\mathbf{A}^T = \Sigma$
- ho ho ho ho ho ho ho ho ho exists
- ▶ Multiply both sides (1) by  $\mathbf{A}^{-1}$ :

$$\mathbf{A}^{-1}\mathbf{Y}=\mathbf{A}^{-1}\boldsymbol{\mu}+\mathbf{A}^{-1}\mathbf{A}\mathbf{Z}$$

- Rearrange  $\mathbf{A}^{-1}(\mathbf{Y} \boldsymbol{\mu}) = \mathbf{Z}$
- ▶ Jacobian of transformation  $d\mathbf{Z} = |\mathbf{A}^{-1}|d\mathbf{Y}$

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ} \quad \text{ for } \mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$$
 (1)

### Proof.

- ▶ since  $\Sigma > 0$ ,  $\exists$  by the spectral theorem an  $\mathbf{A}$  ( $d \times d$ ) such that  $\mathbf{A} > 0$  and  $\mathbf{A}\mathbf{A}^T = \Sigma$
- ho ho ho ho ho ho ho ho ho exists
- ▶ Multiply both sides (1) by  $A^{-1}$ :

$$\mathbf{A}^{-1}\mathbf{Y} = \mathbf{A}^{-1}\boldsymbol{\mu} + \mathbf{A}^{-1}\mathbf{A}\mathbf{Z}$$

- Rearrange  $\mathbf{A}^{-1}(\mathbf{Y} \boldsymbol{\mu}) = \mathbf{Z}$
- ▶ Jacobian of transformation  $d\mathbf{Z} = |\mathbf{A}^{-1}|d\mathbf{Y}$
- Substitute and simplify algebra

$$f(\mathbf{Y}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} \exp(-\frac{1}{2}(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{Y} - \boldsymbol{\mu}))$$



$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with  $\mathbf{Z} \in \mathbb{R}^d$  and  $\mathbf{A}$  is  $n \times d$ 

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with  $\mathbf{Z} \in \mathbb{R}^d$  and  $\mathbf{A}$  is  $n \times d$   $\blacktriangleright$   $\mathrm{E}[\mathbf{Y}] = \mu$ 

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with  $\mathbf{Z} \in \mathbb{R}^d$  and  $\mathbf{A}$  is  $n imes d$ 

- $\triangleright$  E[Y] =  $\mu$
- $ightharpoonup Cov(\mathbf{Y}) = \mathbf{A}\mathbf{A}^T \geq 0$

 $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$  with  $\mathbf{Z} \in \mathbb{R}^d$  and  $\mathbf{A}$  is n imes d

- ightharpoonup  $\mathsf{E}[\mathbf{Y}] = \mu$
- $ightharpoonup Cov(\mathbf{Y}) = \mathbf{A}\mathbf{A}^T \geq 0$
- $lackbr{\triangleright} lackbr{\mathsf{Y}} \sim \mathsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma}) ext{ where } oldsymbol{\Sigma} = oldsymbol{\mathsf{A}}oldsymbol{\mathsf{A}}^T$

If  $\Sigma$  is singular then there is no density (on  $\mathbb{R}^n$ ), but claim that Y still has a multivariate normal distribution!

 $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$  with  $\mathbf{Z} \in \mathbb{R}^d$  and  $\mathbf{A}$  is  $n \times d$ 

- $\triangleright$  E[Y] =  $\mu$
- $ightharpoonup Cov(\mathbf{Y}) = \mathbf{A}\mathbf{A}^T \geq 0$
- $ightharpoonup \mathbf{Y} \sim \mathsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$  where  $oldsymbol{\Sigma} = oldsymbol{\mathsf{A}}oldsymbol{\mathsf{A}}^T$

If  $\Sigma$  is singular then there is no density (on  $\mathbb{R}^n$ ), but claim that  $\mathbf{Y}$ still has a multivariate normal distribution!

#### Definition

 $\mathbf{Y} \in \mathbb{R}^n$  has a multivariate normal distribution  $\mathsf{N}(\mu, \mathbf{\Sigma})$  if for any  $\mathbf{v} \in \mathbb{R}^n \ \mathbf{v}^T \mathbf{Y}$  has a normal distribution with mean  $\mathbf{v}^T \mu$  and variance  $\mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$ 

 $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$  with  $\mathbf{Z} \in \mathbb{R}^d$  and  $\mathbf{A}$  is  $n \times d$ 

- $\triangleright$  E[Y] =  $\mu$
- $ightharpoonup Cov(Y) = AA^T > 0$
- $ightharpoonup \mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \text{ where } \boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^T$

If  $\Sigma$  is singular then there is no density (on  $\mathbb{R}^n$ ), but claim that  $\mathbf{Y}$ still has a multivariate normal distribution!

#### Definition

 $\mathbf{Y} \in \mathbb{R}^n$  has a multivariate normal distribution  $\mathsf{N}(\mu, \mathbf{\Sigma})$  if for any  $\mathbf{v} \in \mathbb{R}^n \ \mathbf{v}^T \mathbf{Y}$  has a normal distribution with mean  $\mathbf{v}^T \mu$  and variance  $\mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$ 

see linked videos using characteristic functions:

$$Y \sim N(\mu, \sigma^2) \Leftrightarrow \varphi_V(t) \equiv E[e^{itY}] = e^{it\mu - t^2\sigma^2/2}$$



If 
$$\mathbf{Y} \sim \mathsf{N}_n(oldsymbol{\mu}, oldsymbol{\Sigma})$$

If 
$$\mathbf{Y} \sim \mathsf{N}_n(oldsymbol{\mu}, oldsymbol{\Sigma})$$
 then for  $\mathbf{A}$   $m imes n$ 

$$\mathbf{AY} \sim \mathsf{N}_{\mathit{m}}(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{T})$$

If 
$$\mathbf{Y} \sim \mathsf{N}_n(oldsymbol{\mu}, oldsymbol{\Sigma})$$
 then for  $\mathbf{A}$   $m imes n$ 

$$\mathbf{AY} \sim \mathsf{N}_{\textit{m}}(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{T})$$

 $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^T$  does not have to be positive definite!

If 
$$\mathbf{Y} \sim \mathsf{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 then for  $\mathbf{A} \ m \times n$ 

$$\mathbf{AY} \sim \mathsf{N}_{\textit{m}}(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{T})$$

 $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^T$  does not have to be positive definite! (Proof in book or linked video)

# Distribution of $\hat{\mathbf{Y}}$ and $\mathbf{e}$ (marginally)

Multiple ways to define the same normal:

▶  $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$ ,  $\mathbf{Z}_1 \in \mathbb{R}^n$  and take  $\mathbf{A} \ d \times n$ 

- ▶  $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$ ,  $\mathbf{Z}_1 \in \mathbb{R}^n$  and take  $\mathbf{A} \ d \times n$
- **Z**<sub>2</sub>  $\sim \mathsf{N}(\mathbf{0}, \mathbf{I}_p), \ \mathbf{Z}_2 \in \mathbb{R}^p$  and take  $\mathbf{B} \ d \times p$

- ▶  $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$ ,  $\mathbf{Z}_1 \in \mathbb{R}^n$  and take  $\mathbf{A} \ d \times n$
- **Z**<sub>2</sub>  $\sim \mathsf{N}(\mathbf{0}, \mathbf{I}_p), \ \mathbf{Z}_2 \in \mathbb{R}^p$  and take  $\mathbf{B} \ d \times p$
- ▶ Define  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}_1$

- ▶  $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$ ,  $\mathbf{Z}_1 \in \mathbb{R}^n$  and take  $\mathbf{A} \ d \times n$
- lacksquare lacksquare
- ▶ Define  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$
- ▶ Define  $\mathbf{W} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$

Multiple ways to define the same normal:

- ▶  $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$ ,  $\mathbf{Z}_1 \in \mathbb{R}^n$  and take  $\mathbf{A} \ d \times n$
- lacksquare lacksquare
- ▶ Define  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$
- Define  $\mathbf{W} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$

### **Theorem**

If 
$$Y = \mu + AZ_1$$
 and  $W = \mu + BZ_2$  then  $Y \stackrel{\mathrm{D}}{=} W$  if and only if  $AA^T = BB^T = \Sigma$ 

Multiple ways to define the same normal:

- ▶  $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$ ,  $\mathbf{Z}_1 \in \mathbb{R}^n$  and take  $\mathbf{A} \ d \times n$
- lacksquare lacksquare
- $\blacktriangleright \ \mathsf{Define} \ \mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}_1$
- ▶ Define  $\mathbf{W} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$

### **Theorem**

If 
$$Y = \mu + AZ_1$$
 and  $W = \mu + BZ_2$  then  $Y \stackrel{\mathrm{D}}{=} W$  if and only if  $AA^T = BB^T = \Sigma$ 

see linked video

### Zero Correlation and Independence

### **Theorem**

For a random vector  $\mathbf{Y} \sim N(\mu, \mathbf{\Sigma})$  partitioned as

$$\mathbf{Y} = \left[ egin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array} 
ight] \sim \mathcal{N} \left( \left[ egin{array}{c} \mu_1 \\ \mu_2 \end{array} 
ight], \left[ egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array} 
ight] 
ight)$$

### Zero Correlation and Independence

### **Theorem**

For a random vector  $\mathbf{Y} \sim \textit{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  partitioned as

$$\mathbf{Y} = \left[ egin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array} 
ight] \sim \mathcal{N} \left( \left[ egin{array}{c} \mu_1 \\ \mu_2 \end{array} 
ight], \left[ egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array} 
ight] 
ight)$$

then  $Cov(\mathbf{Y}_1, \mathbf{Y}_2) = \mathbf{\Sigma}_{12} = \mathbf{\Sigma}_{21}^T = \mathbf{0}$  if and only if  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  are independent.

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1, \mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1,\mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

If  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  are independent

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1,\mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

If  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  are independent

$$\mathsf{E}[(\mathbf{Y}_1 - \mu_1)(\mathbf{Y}_2 - \mu_2)^T] = \mathsf{E}[(\mathbf{Y}_1 - \mu_1)\mathsf{E}(\mathbf{Y}_2 - \mu_2)^T] = \mathbf{00}^T = \mathbf{0}$$

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1,\mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

If  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  are independent

$$\mathsf{E}[(\mathbf{Y}_1 - \mu_1)(\mathbf{Y}_2 - \mu_2)^T] = \mathsf{E}[(\mathbf{Y}_1 - \mu_1)\mathsf{E}(\mathbf{Y}_2 - \mu_2)^T] = \mathbf{00}^T = \mathbf{0}$$

therefore  $\Sigma_{12} = \mathbf{0}$ 



# Zero Covariance Implies Independence

Assume 
$$\Sigma_{12} = \mathbf{0}$$

### Proof

Choose an

$$\mathbf{A} = \left[ \begin{array}{cc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array} \right]$$

such that 
$$\mathbf{A}_1\mathbf{A}_1^{\mathcal{T}}=\mathbf{\Sigma}_{11},\,\mathbf{A}_2\mathbf{A}_2^{\mathcal{T}}=\mathbf{\Sigma}_{22}$$

# Zero Covariance Implies Independence

Assume 
$$\Sigma_{12} = 0$$

### Proof

Choose an

$$\mathbf{A} = \left[ \begin{array}{cc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array} \right]$$

such that 
$$\mathbf{A}_1\mathbf{A}_1^{\mathcal{T}}=\mathbf{\Sigma}_{11}\text{, }\mathbf{A}_2\mathbf{A}_2^{\mathcal{T}}=\mathbf{\Sigma}_{22}$$

Partition

$$\mathbf{Z} = \left[ \begin{array}{c} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{array} \right] \sim \mathsf{N} \left( \left[ \begin{array}{cc} \mathbf{0}_1 \\ \mathbf{0}_2 \end{array} \right], \left[ \begin{array}{cc} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{array} \right] \right) \text{ and } \boldsymbol{\mu} = \left[ \begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right]$$

# Zero Covariance Implies Independence

Assume 
$$\Sigma_{12} = \mathbf{0}$$

#### **Proof**

► Choose an

$$\mathbf{A} = \left[ \begin{array}{cc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array} \right]$$

such that  $\mathbf{A}_1\mathbf{A}_1^T = \mathbf{\Sigma}_{11}$ ,  $\mathbf{A}_2\mathbf{A}_2^T = \mathbf{\Sigma}_{22}$ 

Partition

$$\mathbf{Z} = \left[ egin{array}{c} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{array} 
ight] \sim \mathsf{N} \left( \left[ egin{array}{cc} \mathbf{0}_1 \\ \mathbf{0}_2 \end{array} 
ight], \left[ egin{array}{cc} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{array} 
ight] 
ight) ext{ and } oldsymbol{\mu} = \left[ egin{array}{c} oldsymbol{\mu}_1 \\ oldsymbol{\mu}_2 \end{array} 
ight]$$

lacksquare then  $f Y \stackrel{
m D}{=} f AZ + m{\mu} \sim {\sf N}(m{\mu},m{\Sigma})$ 

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

#### Proof.

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

▶ But **Z**<sub>1</sub> and **Z**<sub>2</sub> are independent

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

- ▶ But **Z**<sub>1</sub> and **Z**<sub>2</sub> are independent
- ▶ Functions of **Z**<sub>1</sub> and **Z**<sub>2</sub> are independent

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

- ▶ But **Z**<sub>1</sub> and **Z**<sub>2</sub> are independent
- Functions of Z<sub>1</sub> and Z<sub>2</sub> are independent
- ▶ Therefore  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  are independent

#### Proof.

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

- ▶ But  $\mathbf{Z}_1$  and  $\mathbf{Z}_2$  are independent
- Functions of Z<sub>1</sub> and Z<sub>2</sub> are independent
- ▶ Therefore **Y**<sub>1</sub> and **Y**<sub>2</sub> are independent

For Multivariate Normal Zero Covariance implies independence



### Corollary

If  $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$  and  $\mathbf{A}\mathbf{B}^T = \mathbf{0}$  then  $\mathbf{A}\mathbf{Y}$  and  $\mathbf{B}\mathbf{Y}$  are independent.

### Corollary

If  $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$  and  $\mathbf{A}\mathbf{B}^T = \mathbf{0}$  then  $\mathbf{A}\mathbf{Y}$  and  $\mathbf{B}\mathbf{Y}$  are independent.

$$\left[\begin{array}{c} \mathbf{W}_1 \\ \mathbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \mathbf{A} \\ \mathbf{B} \end{array}\right] \mathbf{Y} = \left[\begin{array}{c} \mathbf{AY} \\ \mathbf{BY} \end{array}\right]$$

### Corollary

If  $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$  and  $\mathbf{A}\mathbf{B}^T = \mathbf{0}$  then  $\mathbf{A}\mathbf{Y}$  and  $\mathbf{B}\mathbf{Y}$  are independent.

#### Proof.

$$\left[\begin{array}{c} \textbf{W}_1 \\ \textbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \textbf{A} \\ \textbf{B} \end{array}\right] \textbf{Y} = \left[\begin{array}{c} \textbf{AY} \\ \textbf{BY} \end{array}\right]$$

 $\mathsf{Cov}(\mathbf{W}_1, \mathbf{W}_2) = \mathsf{Cov}(\mathbf{AY}, \mathbf{BY}) = \sigma^2 \mathbf{AB}^T$ 

### Corollary

If  $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$  and  $\mathbf{A}\mathbf{B}^T = \mathbf{0}$  then  $\mathbf{A}\mathbf{Y}$  and  $\mathbf{B}\mathbf{Y}$  are independent.

#### Proof.

Þ

$$\left[\begin{array}{c} \mathbf{W}_1 \\ \mathbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \mathbf{A} \\ \mathbf{B} \end{array}\right] \mathbf{Y} = \left[\begin{array}{c} \mathbf{AY} \\ \mathbf{BY} \end{array}\right]$$

- $ightharpoonup \operatorname{Cov}(\mathbf{W}_1,\mathbf{W}_2) = \operatorname{Cov}(\mathbf{AY},\mathbf{BY}) = \sigma^2 \mathbf{AB}^T$
- **AY** and **BY** are independent if  $\mathbf{AB}^T = \mathbf{0}$



# Joint Distribution of $\hat{\mathbf{Y}}$ and $\mathbf{e}$

## More Distribution Theory

Distributions unconditional on  $\sigma^2$ 

- $\rightarrow \chi^2$  distributions  $(\hat{\sigma}^2)$
- ightharpoonup t distribution ( $\hat{\mathbf{Y}}$ ,  $\mathbf{e}$ ,  $\hat{\boldsymbol{\beta}}$ )