Solutions to homework 10:

- 1. Prove that there is no integer a so that $a \equiv 2 \pmod{6}$ and $a \equiv 7 \pmod{9}$.
 - Assume, by contrary, that there is an integer a so that $a \equiv 2 \pmod{6}$ and $a \equiv 7 \pmod{9}$.
 - Therefore, a = 6k + 2 and $a = 9\ell + 7$ for $k, \ell \in \mathbb{Z}$.
 - Then

$$a - a = (6k + 2) - (9\ell + 7) \tag{1}$$

$$= 3(2k - 3\ell) - 5 \tag{2}$$

$$=0 (3)$$

$$5 = 3(2k - 3\ell) \tag{4}$$

- We know that $2k 3\ell \in \mathbb{Z}$, hence no $k, \ell \in \mathbb{Z}$ exists such that $2k 3\ell = \frac{5}{3}$.
- This contradicts our assumption, hence the result holds.
- 2. The equation $5y^2 4x^2 = 7$ has no integer solutions.

Hint: Consider the equation modulo 4.

- $y^2 = 4(x^2 y^2) + 7$. Hence, $y^2 \equiv 7 \pmod{4}$.
- \bullet Let's consider the case when y is even or odd.
- Case 1: y is even.
- Then $y = 2k, k \in \mathbb{Z}$, therefore $y^2 = 4k^2$ showing us that $y^2 \equiv 0 \pmod{4}$.
- Case 2: y is odd.
- $y = 2k + 1, k \in \mathbb{Z}$, thus $y^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$.
- As we know that $k^2 + k \in \mathbb{Z}$, $y^2 \equiv 1 \pmod{4}$.
- In either cases, $y^2 \not\equiv 7 \pmod{4}$. In which contradicts are assumption.
- Hence, there are no integer solutions for $5y^2 4x^2 = 7$.
- 3. Let $f: X \to Y$ be a function. Suppose that f admits an inverse function.
 - (a) Prove that the inverse function is unique.
 - Suppose that g is a left inverse of f and h is a right inverse of f.
 - Then, $g \circ f = i_X$ and $f \circ h = i_Y$.

$$g = g \circ i_Y \tag{5}$$

$$=g\circ (f\circ h)\tag{6}$$

$$= (g \circ f) \circ h \tag{7}$$

$$=i_X\circ h \tag{8}$$

$$= h \tag{9}$$

- Therefore, g = h and the inverse function is unique.
- (b) Let $g: Y \to Z$ be another function with an inverse. Show that the inverse function of $g \circ f$ is given by $f^{-1} \circ g^{-1}$
 - We can see that

$$g = g \circ i_Y \tag{10}$$

$$= q \circ (f \circ f^{-1}) \tag{11}$$

$$g \circ g^{-1} = g \circ (f \circ f^{-1}) \circ g^{-1}$$
 (12)

$$i_Z = (g \circ f) \circ (f^{-1} \circ g^{-1})$$
 (13)

- And

$$f^{-1} = f^{-1} \circ i_Y \tag{14}$$

$$=f^{-1}\circ(g^{-1}\circ g)\tag{15}$$

$$f^{-1} \circ f = f^{-1} \circ (g^{-1} \circ g) \circ f \tag{16}$$

$$i_X = (f^{-1} \circ g^{-1}) \circ (g \circ f)$$
 (17)

- Hence we can see that the left and right inverse of $g \circ f$ is $f^{-1} \circ g^{-1}$.
- 4. Prove that $\sqrt[3]{25}$ is irrational.
 - Let's assume, by contrary, that $\sqrt[3]{25}$ is rational.
 - Then $a \in \mathbb{Z}, b \in \mathbb{Z} \{0\}$, such that $\sqrt[3]{25} = \frac{a}{b}$ and $\gcd(a, b) = 1$.
 - We can express this such as $a = 3\sqrt{25}b$.
 - Hence, $a^3 = 25b^3$. We can see that $25 \mid a^3$ thus $5 \mid a^3$, and we know that 5 is prime, therefore, $5 \mid a$.
 - $a = 5n, n \in \mathbb{Z}$. Then $25b^3 = 125n^3$, and $b^3 = 5n^3$.
 - 5 | b^3 proves that 5 | b, hence gcd(a,b) = 5 which contradicts our assumption.
 - Therefore, $\sqrt[3]{25}$ is irrational.
- 5. Let $n \in \mathbb{N}$. Suppose that n is a perfect square, that is $n = m^2$ for some $m \in \mathbb{Z}$. Show that 2n is not a perfect square. You may use the fact that $\sqrt{2}$ is irrational without proof.
 - Let's assume, by contrary, that 2n is a perfect square, hence, $2n = 2m^2 = (\sqrt{2}m)^2$.
 - Now let's assume, by contrary, that $\sqrt{2}m$ is an integer.
 - Thus we can make the expression $\sqrt{2}m = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$.
 - Then $\sqrt{2} = \frac{a}{mb}$ $(m \neq 0)$ showing that $\sqrt{2}$ is a rational number, which contradicts with the fact that $\sqrt{2}$ is an irrational number, therefore showing that $\sqrt{2}m$ is not an integer.
 - This fact contradicts with our assumption that 2n is a perfect square.

- Therefore, the result holds.
- 6. Let $f: \mathbb{Z} \to \mathbb{Z}$ defined so that

$$f(n) = \left\{ \begin{array}{ll} 3 - n & n \text{ is even} \\ 7 + n & n \text{ is odd} \end{array} \right.$$

Prove that f is bijective and give its compositional inverse f^{-1} .

- Let $n_1, n_2 \in \mathbb{Z}$ such that n_1, n_2 are even numbers and $f(n_1) = f(n_2)$.
- Then

$$f(n_1) = f(n_2) \tag{18}$$

$$3 - n_1 = 3 - n_2 \tag{19}$$

$$n_1 = n_2 \tag{20}$$

- Hence, $n_1 = n_2$.
- Now let $n_1, n_2 \in \mathbb{Z}$ such that n_1, n_2 are odd numbers and $f(n_1) = f(n_2)$.
- Then

$$f(n_1) = f(n_2) \tag{21}$$

$$7 + n_1 = 7 + n_2 \tag{22}$$

$$n_1 = n_2 \tag{23}$$

- Hence, $n_1 = n_2$.
- Now let $n_1 \in \mathbb{Z}$ such that n_1 is odd and $n_2 \in \mathbb{Z}$ such that n_2 is even.
- Because n_1 is odd and n_2 is even, $n_1 \neq n_2$.
- Then

$$f(n_1) - f(n_2) = (7 + n_1) - (3 - n_2)$$
(24)

$$= 4 + n_1 + n_2 \tag{25}$$

- We know that $n_1 + n_2$ is odd hence $4 + n_1 + n_2 \neq 0$.
- Therefore, $f(n_1) \neq f(n_2)$ showing us that f is injective.
- Now let $k \in \mathbb{Z}$ and k is even and let n = k 7.
- We can see that n is odd thus f(n) = f(k-7) = 7 + (k-7) = k.
- Now let $k \in \mathbb{Z}$ be odd and p = 3 k.
- We can also see that p is even and f(p) = f(3-k) = 3 (3-k) = k.
- Hence f is surjective therefore f is bijective.
- Let us define $f^{-1}(n) = 3 n$ when n is even.
- $f(f^{-1}(n)) = f(3-n) = 3 (3-n) = n$.

- And let us define $f^{-1}(n) = n 7$ when n is odd.
- $f(f^{-1}(n)) = f(n-7) = 7 + (n-7) = n$.

$$f^{-1}(n) = \left\{ \begin{array}{ll} 3 - n & n \text{ is even} \\ 7 + n & n \text{ is odd} \end{array} \right.$$

- 7. Let $A = \mathbb{R} \{0, 1\}$ and let $f: A \to A$ be defined by $f(x) = 1 \frac{1}{x}$.
 - (a) Show that $f \circ f \circ f = i_A$ and let $f : A \to A$ be defined by $f(x) = 1 \frac{1}{x}$. f(f(f(x))) is

$$f(f(f(x))) = f(f(1 - \frac{1}{x}))$$
(26)

$$= f(1 - \frac{1}{1 - \frac{1}{x}}) \tag{27}$$

$$=f(\frac{-1}{x-1})\tag{28}$$

$$=1-\frac{1}{\frac{1}{1-x}}\tag{29}$$

$$= 1 - (1 - x) \tag{30}$$

$$=x\tag{31}$$

- Hence, f(f(f(x))) = x showing us that $f \circ f \circ f = i_A$.
- (b) Prove that any function $g:A\to A$ satisfying $g\circ g\circ g=i_A$ is bijective.
 - Let $x, y \in A$ s.t. g(x) = g(y).
 - Then g(g(x)) = g(g(y)), and g(g(g(x))) = g(g(g(y))).
 - -g(g(g(x))) = x = y = g(g(g(y))).
 - Therefore, g is injective.
 - Now let $a \in A$, then g(g(g(a))) = a.
 - Let g(a) = b, then g(b) = a.
 - Hence we can declare that g is surjective.
 - Therefore, g is bijective.
- (c) Use part (b) to conclude that f is bijective and determine f^{-1} .
 - As we proved in (a), f(f(f(x))) = x hence f is bijective.
 - Now let $f^{-1}(x)$ be defined as $f^{-1}(x) = \frac{1}{1-x}$.
 - As f is bijective it is sufficient to f^{-1} is a right inverse of f.
 - Thus, $f(f^{-1}(x)) = f(\frac{1}{1-x}) = 1 \frac{1}{\frac{1}{1-x}} = 1 (1-x) = x$.
 - Therefore, $f^{-1}(x) = \frac{1}{1-x}$
- 8. Prove that if k is a positive integer and \sqrt{k} is not an integer, then \sqrt{k} is an irrational number.

Hint: Bézout's identity will help you.

- Assume to contrary that when $k \in \mathbb{N}$ and $\sqrt{k} \notin \mathbb{Z}$, then $\sqrt{k} \in \mathbb{Q}$.
- Then this implies that $\sqrt{k} = \frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$.
- We know that $\sqrt{k} \notin \mathbb{Z}$ so $\gcd(a, b) = 1$.
- $k = (\sqrt{k})^2 = (\frac{a}{b})^2$, and we know that gcd(a, b) = 1 therefore $k \notin \mathbb{N}$.
- This contradicts with our assumption hence \sqrt{k} is an irrational number.