	附表:
	$\Phi(2.5)=0.994$, $\Phi(1.5)=0.933$, $\Phi(2.33)=0.99$, $\Phi(1.96)=0.975$, $\Phi(1.64)=0.95$, $t_{0.05}(8)=1.8595$,
	$t_{0.025}(8) = 2.3060$, $t_{0.05}(9) = 1.8331$, $t_{0.025}(9) = 2.2622$, $\chi^2_{0.95}(8) = 2.733$, $\chi^2_{0.95}(9) = 3.325$,
	$\chi^2_{0.975}(8) = 2.18$, $\chi^2_{0.975}(9) = 2.700$, $\chi^2_{0.025}(8) = 17.535$, $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.05}(8) = 15.507$,
	$\chi_{0.05}^2(9)=16.919$
	一、填空题 (10 分) 得分
	1. 一名射手连续向一目标射击三次,事件 A_i 表示射手第 i 次击中目标(i =1,2,3),则 $\overline{A_1 \cup A_2 \cup A_3}$
	表示的含义是
	2. 设随机变量 X 的分布函数满足 $F(x) = a - e^{-x}, x > 0$,则 $a =$
	3. 如果(X,Y)服从二维正态分布,则其边缘分布(一定是或不一定是)正态分布.
	4. 设X~N(0,0.5),Y~N(0,0.5), 且X与Y相互独立,则E X-Y =
	5. 设随机变量 X 服从几何分布, 期望为 4, 则 P(X=1)=
	6. 设 $X_1, X_2,, X_n,$ 是独立同分布的随机变量序列,且有有限的期望 $E(X_k) = \mu$ 与方差
	$D(X_k) = \sigma^2 > 0, k = 1, 2,$,则 $Y = \frac{1}{n} \sum_{k=1}^n X_k^2$ 依概率收敛到
000000	7. 设随机变量 $X \sim F(n,n)$ 且 $P(X > A) = 0.3$, $A > 0$ 为常数,则 $P(X > \frac{1}{A}) = $
,	8. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占 20%,以 X 表示在随机抽查的 100 个索赔户中,因被盗向保险公司索赔的户数.则被盗索赔户不少于 14 户且不多于 30 户的
7	概率近似为
9	0. 设 X_1, X_2, \cdots, X_n 为总体 $N(\mu, \sigma^2)$ 的一个样本,其中 $\mu \in R$, $\sigma > 0$ 未知, \bar{X}, S^2 分别是样本均
1	直和样本方差,则μ的置信水平为1-α的置信区间为
1	0. 设总体 $X\sim N(\mu, 4^2)$, $x_1,, x_{16}$ 是总体 X 的样本值,已知假设 H_0 : $\mu=0$, H_1 : $\mu>0$.在显著性

第1页共8页

水平 α = 0.01下的拒绝域是_______.

二、(12分) 得分

- 1. 叙述两个事件互斥和独立的关系.
- 2. 为了防止意外,某矿内同时设有两种报警系统甲和乙,每种系统单独使用时,系统甲有效的概率为 0.92,系统乙有效的概率为 0.93. 在系统甲失灵的情况下,系统乙有效的概率为 0.85. 求:(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)在系统乙失灵的情况下,系统甲有效的概率.

1.设随机变量 X 的分布函数如下:

$$F(x) = \begin{cases} 0, & x < -1 \\ 1/4, & -1 \le x < 2 \\ 1/2, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

求 (1) 随机变量 X 的分布律; (2) P(X > 1).

- 2. 设随机变量 X 服从区间(-1,1)上的均匀分布,求
- (1) $P(|X| < \frac{1}{4})$; (2) 设 $Y = X^2$, 求Y的概率密度函数 $f_2(y)$.

设随机变量(X.1)的概率密度函数为

$$f(x,y) = \begin{cases} 12e^{-(3x+4y)}, & x > 0, y > 0 \\ 0, & \text{其它}. \end{cases}$$

- (1) 求X和Y的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$; (2) 判断X和Y是否相互独立,并给出理由;
- (3) 求函数 $Z = \min(X, Y)$ 的密度函数 $f_z(z)$;
- (4) 求函数U = 3X + 4Y 的分布函数 $F_U(u)$ 和密度函数 $f_U(u)$.

五、(14分) 得分

- 1. 叙述切比雪夫不等式.
- 2. 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其它.} \end{cases}$$

 $\diamondsuit Y=X^2$.

- (1) 求 E(X), D(X), E(Y), D(Y); (2) 求X与Y的相关系数;
- (3) 判断X与Y是否相关,判断X与Y是否独立 (说明理由).

六、(8分) 得分

设 $X_1, X_2, ..., X_s$, 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,令 $Z = \frac{\sqrt{3}(X_1 + X_2)}{\sqrt{2(X_3^2 + X_4^2 + X_5^2)}}$ 。 (1) 求 Z 的分布: (2) 求 Z 的分布. (要求写出具体过程)

七、(14分) 得分 1、设总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{2}, & \sqrt{\alpha} < x < \sqrt{\alpha} + 2 \\ 0, & \text{ 其他} \end{cases}$$

其中, ∞ 0 为未知参数。 X_1,X_2,\cdots,X_n 为取自该总体的样本, x_1,x_2,\cdots,x_n 为相应的样本观测值. 求参数 α 的矩估计.

2. 设总体 X 服从以 p 为参数的两点分布,即其分布律为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

其中 $0 未知,<math>X_1, X_2, \cdots, X_n$ 为取自该总体的样本, x_1, x_2, \cdots, x_n 为相应的样本观测值。求 参数 p 及 $β = \frac{1-p}{p}$ 的最大似然估计.

八、(14分)

- 1. 叙述假设检验的理论依据.
- 2. 某卷装卫生纸净含量按标准要求为200克/卷,已知该卷装卫生纸净含量服从正态分布 $N(\mu, \sigma^2)$ 。今抽取9卷,测得其净含量样本均值 $\bar{x}=197$ 克,样本标准差s=4.5克。问在显著性水 $\Psi \alpha = 0.05$ 下,该卷装卫生纸净含量是否符合要求?