Билет 17. Алгоритм Дейкстры поиска кратчайшего пути в графе и его сложность

Алгоритм Дейкстры — это алгоритм, который находит кратчайшие пути от одной из вершин графа до всех остальных. Алгоритм работает только для графов без ребер отрицательного веса $w(e) \neq 0$.

Пусть дан G=(V,E) — ориентированный взвешанный связный граф, где V — множество вершин, E — множество ребер. Задача кратчайшего пути состоит в отыскании пути минимального веса, соединяющего начальную s и конечную t вершины графа G при условии, что хотя бы один такой путь существует.

На каждой итерации этого алгоритма любая вершина v графа G имеет метку l(v), которая может быть постоянной либо временной. В первом случае l(v) — вес кратчайшего (s,v)-пути. Если l(v) временная метка, то l(v) — вес кратчайшего (s,v)-пути, который прошел только через выршины с постоянными метками. Таким образом, временная метка l(v) является оценкой сверху для веса кратчайшего (s,v)-пути, и став на некоторой итерации постоянной, она остается постоянной до конца работы алгоритма. $\theta(v)$ — номер вершины откуда пришел вес. После того как вершина t получила постоянную метку, с помощью метки $\theta(v)$ легко указать последовательность вершин, которые составляют кратчайший (s,t)-путь.

Перед началом итераций вершина s имеет постоянную метку l(s)=0, а все остальные вершины v - временную метку $l(v)=\infty$.

Общая итерация алгоритма: пусть p — вершина, получившая постоянную метку l(p) на предыдущей итерации. Просматриваем все вершины $v \in \Gamma(p)$, которые имеют временные метки, с целью уменьшить их(если это возможно). Метка l(v) вершины $v \in \Gamma(p)$ заменяется на

$$l(p) + w(p, v),$$

если

$$l(v) > l(p) + w(p, v)$$
.

В этом случаем говорим, что v получила метку l(v) из вершины p, и пологаем $\theta(v)=p.$

Если же

$$l(v) \le l(p) + w(p, v),$$

то метки $\theta(v)$ и l(v) вершины v не меняются на данной итерации. Заканчиваем, когда метка l(t) становится постоянной. l(t) — вес кратчайшего (s,t)-пути, который обозначим как P^* . Этот путь определяется с помощью меток θ :

$$P^* = (s, ..., \theta_3(t), \theta_2(t), \theta(t), t),$$

где
$$\theta_k(t) = \theta(\theta(...\theta(v)...)) \ \forall v \in V.$$

Алгоритм Дейкстры поиска кратчайшего пути

- 1. Положить l(s) = 0 считать эту метку постоянной. Положить $l(v) = \infty$ для всех $v \in V, v \neq s$, эти метки временные. Положить p = s.
 - 2. Для всех $v \in \Gamma(p)$ с временными метками выполнить: если

$$l(v) > l(p) + w(p, v),$$

то
$$(p) = l(p) = w(p, v)$$
 и $\theta(v) = p$.

Иначе l(v) и $\theta(v)$ не менять, где $\Gamma(p)$ — множество соседних вершин к p, p - вершина, которая получила постоянную метку.

3. Пусть V' — множество вершин с временными метками l. Найти вершину v^* , такую что

$$l(v^*) = \min_{v \in V'} l(v).$$

Считать метку $l(v^*)$ — постоянной для вершины v^* .

4. $p=v^*$. Если p=t, то переходим к 5 пункту, где l(t) — вес кратчайшего пути. Иначе переходим к пункту 2.

5.

$$P^* = (s, ..., \theta_3(t), \theta_2(t), \theta(t), t),$$

где P^* — кратчайший путь.

Теорема 1. Алгоритм Дейкстры строит в графе G кратчайший (s,t)- nym_b .

Доказательство. Пойдем по индукции.

- 1. При k = 1 очевидно.
- 2. Пусть для k-1 верно. Обозначим через P^0 (s,v)-путь, построенный алгоритмом в результате k итераций, а через P^* кратчайший (s,v)-путь. По условию $w(P^0) = l(v)$. Пусть V_1 и V_2 множества вершин, у которых соответсвенно есть постоянные и временные метки перед началом k-й итерации. Рассмотрим два случая:

1—**случай:** Пусть P^* содержит вершину из V_2 . Пусть \bar{v} - первая вершина (считая от s), принадлежащая P^* , а вершина v' предшествует \bar{v} на пути P^* , т.е. $(v',\bar{v})\in EP^*$ (т.е. ребро (v',\bar{v}) из множества ребер E на пути P^*). В силу выбора v' имеем $\bar{v}\in V_1$. Обозначим: P_1^* — часть пути P^* от s до \bar{v} . По предположению индукции l(v') — вес кратчайшего (s,v')-пути. Поэтому

$$w(P_1^*) = l(v') + w(v', \bar{v}) \ge l(\bar{v}) (1),$$

т.к. $l(\bar{v})$ — временная метка, а l(v) — постоянная метка вершины v выбирается на k-ой интерации как минимальная из временных, то

$$l(\bar{v}) \geq l(v)$$
 (2).

Объединим неравенства (1) и (2), также воспользуемся условием

$$w(P^0) = l(v),$$

подставим его в неравенство (1) вместо $l(\bar{v})$, получим

$$w(P_1^*) = l(v') + w(v', \bar{v}) \ge l(v) = w(P^0),$$

далее, из того, что P_1^* часть пути P^* , то очевидно, что

$$w(P^*) \ge w(P_1^*)$$
.

Отсюда следует:

$$w(P^*) \ge w(P_1^*) \ge l(v) = w(P^0),$$

т.е. P^0 — это кратчайщий (s, v)-путь.

2-случай: Все вершины P^* входят в V_1 . Пусть v' и v'' вершины такие, что $(v',v)\in EP^*, (v'',v)\in EP^0$. Обозначим через P' — часть пути P^* от s до v', согласно предположению индукции имеем

$$w(P') > l(v')$$
.

Поэтому, если v'=v'', то

$$w(P^*) = w(P') + w(v', v) > l(\bar{v}) + w(v', v) = w(P^0).$$

Пусть теперь $v' \neq v''$. Т.к. v получает постоянную метку l(v) из v'', а не из v' (т.к. алгоритм проходит через v'' к v, а не черезе v'), то

$$w(P^*) = l(v') + w(v', v) \ge l(v'') + w(v'', v) = w(P^0).$$

(Эта формула следует из того, что в вершину мы приходим из пути, который строит алгоритм, и минимального пути. А алгоритм хуже, чем минимальный путь не построит).

Таким образом, и в случае 2 верно неравенство

$$w(P^0) \le w(P^*),$$

т.е. P^0 — кратчайший (s, v)-путь. Теорема корректности доказана.

Теорема 2. Алгоритм Дейкстры строит в графе G кратчайший (s,t)- путь за время $O(|G|^2)$

 $({\it Hanomunanue:}\ |G|\ -\ {\it мощность}\ {\it графа}\ {\it paвная}\ {\it числу}\ {\it вершин}\ n,\ m.e.\ |G|=n)$

Доказательство. Вычисления максимальны, когда вершина t получает постоянную метку самой последней и G — является полным. Поэтому |G|-1 - это число итераций алгоритма, т.е. каждый из пунктов 2-4 выполнятеся |G|-1 раз. Очевидно, что пункт 4 выполеятся за время O(1), а для выполнения каждого из пунктов 2,3 достаточно времени O(|G|).

Построение пути с помощью меток θ можно сделать, затратив не более O(|G|) операций. Отсюда следует, что время построения кратчайшего (s,t)-пути не превосходит $O(|G|^2)$. Теорема о сложности алгоритма доказана.