Search: overview

Course plan

Application: route finding

Objective: shortest? fastest? most scenic?

Actions: go straight, turn left, turn right

Application: robot motion planning

Objective: fastest path

Actions: acceleration and throttle

Application: robot motion planning

Objective: fastest? most energy efficient? safest? most expressive?

Actions: translate and rotate joints

Application: multi-robot systems

Objective: fastest? most energy efficient?

Actions: acceleration and steering of all robots

Application: solving puzzles

Objective: reach a certain configuration

Actions: move pieces (e.g., Move12Down)

Application: machine translation

la maison bleue

the blue house

Objective: use fluent English and preserve meaning

Actions: append single words (e.g., the)

Beyond reflex

Classifier (reflex-based models):

$$x \longrightarrow \boxed{f} \longrightarrow \text{ single action } y \in \{-1, +1\}$$

Search problem (state-based models):

$$x \longrightarrow f \longrightarrow action sequence (a_1, a_2, a_3, a_4, \dots)$$

Key: need to consider future consequences of an action!

5221

Paradigm

Modeling

Inference

Learning

CS221

18

Roadmap

Modeling

Learning

Modeling Search Problems

Structured Perceptron

Algorithms

Tree Search

Dynamic Programming

Uniform Cost Search

Programming and Correctness of UCS

A*

A* Relaxations

Search: modeling

Question

A farmer wants to get his cabbage, goat, and wolf across a river. He has a boat that only holds two. He cannot leave the cabbage and goat alone or the goat and wolf alone. How many river crossings does he need?

- 4
- 5
- 6
- 7
- no solution

CS221

26

Farmer Cabbage Goat Wolf

Actions:

F⊳ F⊲

FC⊳ FC⊲

FG⊳ FG⊲

FW⊳ FW⊲

Approach: build a **search tree** ("what if?")

CS221

30

Search problem

Transportation example

Example: transportation-

Street with blocks numbered 1 to n.

Walking from s to s+1 takes 1 minute.

Taking a magic tram from s to 2s takes 2 minutes.

How to travel from 1 to n in the least time?

[live solution: TransportationProblem]

Search: tree search

Backtracking search

[whiteboard: search tree]

If b actions per state, maximum depth is D actions:

- Memory: O(D) (small)
- \bullet Time: $O(b^D)$ (huge) $[2^{50} = 1125899906842624]$

Backtracking search

Algorithm: backtracking search-

def backtrackingSearch(s, path):

If lsEnd(s): update minimum cost path

For each action $a \in Actions(s)$:

Extend path with Succ(s, a) and Cost(s, a)

Call backtrackingSearch(Succ(s, a), path)

Return minimum cost path

[live solution: backtrackingSearch]

Depth-first search

Assumption: zero action costs

Assume action costs Cost(s, a) = 0.

Idea: Backtracking search + stop when find the first end state.

If b actions per state, maximum depth is D actions:

- Space: still O(D)
- ullet Time: still $O(b^D)$ worst case, but could be much better if solutions are easy to find

42

Breadth-first search

Assumption: constant action costs-

Assume action costs $\operatorname{Cost}(s,a) = c$ for some $c \geq 0$.

Idea: explore all nodes in order of increasing depth.

Legend: b actions per state, solution has d actions

• Space: now $O(b^d)$ (a lot worse!)

• Time: $O(b^d)$ (better, depends on d, not D)

DFS with iterative deepening

Assumption: constant action costs-

Assume action costs Cost(s, a) = c for some $c \ge 0$.

Idea:

Modify DFS to stop at a maximum depth.

• Call DFS for maximum depths 1, 2,

DFS on d asks: is there a solution with d actions?

Legend: b actions per state, solution size d

• Space: O(d) (saved!)

• Time: $O(b^d)$ (same as BFS)

Tree search algorithms

Legend: b actions/state, solution depth d, maximum depth D

Algorithm	Action costs	Space	Time
Backtracking	any	O(D)	$O(b^D)$
DFS	zero	O(D)	$O(b^D)$
BFS	${\rm constant} \geq 0$	$O(b^d)$	$O(b^d)$
DFS-ID	${\rm constant} \geq 0$	O(d)	$O(b^d)$

- Always exponential time
- Avoid exponential space with DFS-ID

Tree Search Review

Search: dynamic programming

Minimum cost path from state s to a end state:

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsEnd}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$$

Motivating task

Example: route finding-

Find the minimum cost path from city 1 to city n, only moving forward. It costs c_{ij} to go from i to j.

Observation: future costs only depend on current city

State: past sequence of actions current city

Exponential saving in time and space!

Algorithm: dynamic programming-

def DynamicProgramming(s):

If already computed for s, return cached answer.

If lsEnd(s): return solution

For each action $a \in Actions(s)$: ...

[live solution: Dynamic Programming]

Assumption: acyclicity-

The state graph defined by $\mathsf{Actions}(s)$ and $\mathsf{Succ}(s,a)$ is acyclic.

CS221

Key idea: state-

A **state** is a summary of all the past actions sufficient to choose future actions **optimally**.

past actions (all cities) 1 3 4 6

state (current city) 1 3 4 6

62

Handling additional constraints

Example: route finding-

Find the minimum cost path from city 1 to city n, only moving forward. It costs c_{ij} to go from i to j.

Constraint: Can't visit three odd cities in a row.

State: (whether previous city was odd, current city)

Question

Objective: travel from city 1 to city n, visiting at least 3 odd cities. What is the minimal state?

CS221 66

State graph

State: (min(number of odd cities visited, 3), current city)

Question

Objective: travel from city 1 to city n, visiting more odd than even cities. What is the minimal state?

Summary

• State: summary of past actions sufficient to choose future actions optimally

• Dynamic programming: backtracking search with **memoization** — potentially exponential savings

Dynamic programming only works for acyclic graphs...what if there are cycles?

Dynamic Programming Review

CS221

Key idea: state-

A **state** is a summary of all the past actions sufficient to choose future actions **optimally**.

12

Search: uniform cost search

Ordering the states

Observation: prefixes of optimal path are optimal

Key: if graph is acyclic, dynamic programming makes sure we compute $\mathsf{PastCost}(s)$ before $\mathsf{PastCost}(s')$

If graph is cyclic, then we need another mechanism to order states...

Uniform cost search (UCS)

Key idea: state ordering-

UCS enumerates states in order of increasing past cost.

Assumption: non-negativity-

All action costs are non-negative: $Cost(s, a) \ge 0$.

UCS in action:

High-level strategy

- Explored: states we've found the optimal path to
- Frontier: states we've seen, still figuring out how to get there cheaply
- Unexplored: states we haven't seen

CS221

82

Uniform cost search example

[whiteboard]

Minimum cost path:

 $A \rightarrow B \rightarrow C \rightarrow D$ with cost 3