

Chapter 7: Enhanced Interior Gateway Protocol (EIGRP)

Scaling Networks

Cisco | Networking Academy® | Mind Wide Open®

- 7.0 Introduction
- 7.1 Characteristics of EIGRP
- 7.2 Configuring EIGRP for IPv4
- 7.3 Operation of EIGRP
- 7.4 Configuration of EIGRP for IPv6
- 7.5 Summary

- Describe the features and operation of EIGRP.
- Examine the different EIGRP packet formats.
- Calculate the composite metric used by the Diffusing Update Algorithm (DUAL).
- Describe the concepts and operation of DUAL.
- Examine the commands to configure and verify basic EIGRP operations for IPv4 and IPv6.

7.1 Characteristics of EIGRP

Cisco | Networking Academy® | Mind Wide Open™

Basic Features of EIGRP

Features of EIGRP

- Released in 1992 as a Cisco proprietary protocol.
- 2013 basic functionality of EIGRP released as an open standard.
- Advanced Distance Vector routing protocol.
- Uses the Diffusing Update Algorithm (DUAL) to calculate paths and back-up paths.
- Establishes Neighbor Adjacencies.
- Uses the Reliable Transport Protocol to provide delivery of EIGRP packets to neighbors.
- Partial and Bounded Updates. Send updates only when there is a change and only to the routers that need the information.
- Supports Equal and Unequal Cost Load Balancing.

Basic Features of EIGRP

Protocol Dependent Modules

Basic Features of EIGRP

Reliable Transport Protocol

EIGRP Replaces TCP with RTP

Authentication

- EIGRP can be configured to authenticate routing information.
- Ensures routers only accept updates from routers that have been configured with the correct authentication information.

Packet Type	Description		
Hello	Used to discover other EIGRP routers in the network.		
Acknowledgement	Used to acknowledge the receipt of any EIGRP packet.		
Update	Convey routing information to known destinations.		
Query	Used to request specific information from a neighbor router.		
Reply Used to respond to a query.			

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

- Used to discover EIGRP neighbors.
- Used to form and maintain EIGRP neighbor adjacencies.
- Sent as IPv4 or IPv6 multicasts.
- IPv4 multicast address 224.0.0.10.
- IPv6 multicast address FF02::A.
- Unreliable delivery.
- Sent every 5 seconds (every 60 seconds on low-speed NBMA networks).
- EIGRP uses a default Hold timer of three times the Hello interval before declaring neighbor unreachable.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Types of EIGRP Packets

EIGRP Update & Acknowledgement Packets

- Update packets are sent to propagate routing information, only when necessary.
- Sends Partial updates only contains information about route changes.
- Sends Bounded updatessent only to routers affected by the change.
- Updates use reliable delivery, therefore, require an acknowledgement.

Types of EIGRP Packets

EIGRP Query and Reply Packets

- Used when searching for networks.
- Queries use reliable delivery, which can be multicast or unicast.
- Replies use reliable delivery.

Encapsulating EIGRP Messages

Type/Length/Values Types

Data Link Frame Header

IP Packet Header

EIGRP Packet Header

TLV Types

Data Link Frame

MAC Source Address = Address of sending

interface

MAC Destination

Address = Multicast: IPv4 Source Address = 01-00-5E-00-00-0A

IP Packet

Address of sending

interface

IPv4 Destination Address = Multicast:

224.0.0.10

Protocol field = 88 for

EIGRP

EIGRP Packet Header

Opcode for EIGRP

packet type

Autonomous System Number

TLV Types Some types include:

0x0001 EIGRP Parameters 0x0102 IP Internal

Routes

0x0103 IP External

Routes

EIGRP Messages

EIGRP Packet Header and TLV

7.2 Configuring EIGRP for IPv4

Cisco Networking Academy® Mind Wide Open®

Configuring EIGRP with IPv4

EIGRP Network Topology

This course uses the topology that configures EIGRP with IPv4.

Configuring EIGRP with IPv4

Autonomous System Numbers

- The router eigrp autonomous-system command enables the EIGRP process.
- The autonomous system number is only significant to the EIGRP routing domain.
- The EIGRP autonomous system number is not associated with the Internet Assigned Numbers Authority (IANA) globally assigned autonomous system numbers used by external routing protocols.
- Internet Service Providers (ISPs) require an autonomous system number from IANA.
- ISPs often use the Border Gateway Protocol (BGP), which does use the IANA autonomous system number in its configuration.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configuring EIGRP with IPv4 Router EIGRP Command

Router (config) # router eigrp autonomous-system

```
R1(config) #router eigrp 1
R1(config-router) #
```

To completely remove the EIGRP routing process from a device, use the no router eigrp autonomous-system command.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configuring EIGRP with IPv4 EIGRP Router ID

Used in both EIGRP and OSPF routing protocols, the router ID's role is more significant in OSPF.

Configuring EIGRP with IPv4

Configuring the EIGRP Router ID

Configuring the EIGRP router ID

```
Router(config) # router eigrp autonomous-system

Router(config-router) # eigrp router-id ipv4-address
```

- The IPv4 loopback address can be used as the router ID.
- If the eigrp router-id value is not configured, the highest loopback address is selected as the router ID.
- Configuring a loopback interface

```
Router(config) # interface loopback number
Router(config-if) # ip addressipv4-address subnet-mask
```

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

- Enables any interface on this router that matches the network address in the network router configuration mode command to send and receive EIGRP updates.
- These networks are included in EIGRP routing updates.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

The eigrp log-neighbor-changes router configuration mode

- On by default
- Displays changes in neighbor adjacencies
- Verifies neighbor adjacencies during configuration
- Indicates when any adjacencies have been removed

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

The Network Command and Wildcard Mask

 To configure EIGRP to advertise specific subnets only, use the wildcard-mask option with the network command.

```
Router (config-router) # network network address [wildcard-mask]
```

- The wildcard mask is the inverse of the subnet mask.
- To calculate the wildcard mask, subtract the subnet mask from 255.255.255.255:

255.255.255.255

- -- 255.255.255.252
 - 0. 0. 0. 3 wildcard mask
- Note: Some IOS versions also let you enter the subnet mask instead of a wildcard mask.

Configuring EIGRP with IPv4 Passive Interface

- Use the passive-interface command to:
 - Prevent neighbor adjacencies
 - Suppress unnecessary update traffic
 - Increase security controls, such as preventing unknown rogue routing devices from receiving EIGRP updates
- To configure:

```
Router(config) # router eigrp as-number
Router(config-router) # passive-
interface interface-type interface-number
```

To verify:

Router# show ip protocols

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configuring EIGRP with IPv4

Verifying EIGRP: Examining Neighbors

Configuring EIGRP with IPv4 Verifying EIGRP: show ip protocols Command

show ip protocols Command

Configuring EIGRP with IPv4

Verifying EIGRP: Examine the IPv4 Routing Table

```
R1's IPv4 Routing Table
     172.16.0.0/16 is variably subnetted, 5 subnets, 3
masks
         172.16.1.0/24 is directly connected,
GigabitEthernet0/0
         172.16.1.1/32 is directly connected.
GigabitEthernet0/0
        172.16.2.0/24 [90/2170112] via 172.16.3.2,
00:14:35, Serial0/0/0
         172.16.3.0/30 is directly connected, Serial0/0/0
         172.16.3.1/32 is directly connected, SerialO/0/0
     192.168.1.0/24 [90/2170112] via 192.168.10.6,
00:13:57, Serial0/0/1
     192.168.10.0/24 is variably subnetted, 3 subnets, 2
maska
         192.168.10.4/30 is directly connected,
Serial0/0/1
         192.168.10.5/32 is directly connected,
Serial0/0/1
         192.168.10.8/30 [90/2681856] via 192.168.10.6,
00:50:42, Serial0/0/1
                         [90/2681856] via 172.16.3.2,
00:50:42, Serial0/0/0
R1#
```


7.3 Operation of EIGRP

Cisco Networking Academy® Mind Wide Open®

EIGRP Initial Route Discovery EIGRP Neighbor Adjacency

EIGRP Initial Route Discovery

EIGRP Topology Table

Convergence – All routers have the correct, most up-to-date information about the network.

Metrics

EIGRP Composite Metric

EIGRP Composite Metric

Default Composite Formula: metric = [K1*bandwidth + K3*delay]

Complete Composite Formula: metric = [K1*bandwidth + (K2*bandwidth)/(256 - load)+K3*delay] * [K5/(reliability + K4)]

(Not used if "K" values are 0)

Note: This is a conditional formula. If K5 = 0, the last term is replaced by 1 and the formula becomes: Metric = [K1 * bandwidth + (K2 * bandwidth)/(256 load) + K3 * delay]

Default values:

K1 (bandwidth) = 1

K2 (load) = 0

K3 (delay) = 1

K4 (reliability) = 0

K5 (reliability) = 0

"K" values can be changed with the metric weights command

Router (config-router) # metric weights tos k1 k2 k3 k4 k5

Metrics

Examining Interface Values

- BW Bandwidth of the interface (in Kilobits per second).
- DLY Delay of the interface (microseconds).
- Reliability Reliability of interface; by default, the value is not included in the computing metric.
- Txload, Rxload By default, the value is not included in the computing metric.

```
R1#show interface serial 0/0/0
Serial0/0/0 is up, line protocol is up
  Hardware is WIC MBRD Serial
  Internet address is 172.16.3.1/30
 MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation HDLC, loopback not set
<Output omitted>
R1#
R1#show interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is fc99.4775.c3e0 (bia
fc99.4775.c3e0)
  Internet address is 172.16.1.1/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
<Output omitted>
R1#
```


Bandwidth Metric

- Use the show interfaces command to verify bandwidth.
- Most serial bandwidths are set to 1,544 kb/s (default).
- A correct value for bandwidth is very important in order to calculate the correct metric (both sides of link must have same bandwidth).

```
R1(config)# interface s 0/0/0
R1(config-if)# bandwidth 64

R1# show interface s 0/0/0
Serial0/0/0 is up, line protocol is up
Hardware is WIC MBRD Serial
Internet address is 172.16.3.1/30
MTU 1500 bytes, BW 64 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
<Output omitted>
```


Delay Metric

Interface Delay Values			
Media	Delay	=	
Ethemet	1,000		
Fast Ethemet	100		
Gigabit Ethemet	10		
16M Token Ring	630		
FDDI	100		
T1 (Serial Default)	20,000		
DS0 (64 Kbps)	20,000		
1024 Kbps	20,000		
56 Kbps	20,000		

Calculating the EIGRP Metric

- **Step 1.** Determine the link with the slowest bandwidth. Use that value to calculate bandwidth (10,000,000/bandwidth).
- **Step 2.** Determine the delay value for each outgoing interface on the way to the destination. Add the delay values and divide by 10 (sum of delay/10).
- **Step 3.** Add the computed values for bandwidth and delay, and multiply the sum by 256 to obtain the EIGRP metric.

```
[K1 * bandwidth + K3 * delay] * 256 = Metric

Since K1 and K3 both equal 1, the formula simplifies to:

(Bandwidth + Delay) * 256 = Metric

((10,000,000 / bandwidth) + (sum of delay / 10)) * 256 = Metric

(R2# show ip route

D 192.168.1.0/24 [90/3012096] via 192.168.10.10, 00:12:32, Serial0/0/1
```


- Diffusing Update ALgorithm (DUAL) provides the following:
 - Loop-free paths and loop-free backup paths
 - Fast convergence
 - Minimum bandwidth usage with bounded updates
- The decision process for all route computations is done by the DUAL Finite State Machine (FSM)
 - DUAL FSM tracks all routes.
 - Uses EIGRP metrics to select efficient, loop-free paths.
 - Identifies the routes with the least-cost path to be inserted into the routing table.
- EIGRP maintains a list of backup routes that DUAL has already determined that can be used immediately if the primary path fails.

DUAL and the Topology Table

Successor and Feasible Distance

- The **Successor** is the least-cost route to the destination network.
- The **Feasible Distance** (FD) is the lowest calculated metric to reach the destination network.

Feasible Successors, Feasibility Condition, and Reported Distance

- Feasible Successor (FS) is a neighbor that has a loop-free backup path to the same network as the successor, and it satisfies the Feasibility Condition (FC).
- Feasibility Condition (FC) is met when a neighbor's Reported Distance (RD) to a network is less than the local router's feasible distance to the same destination network.
- Reported Distance (RD) is an EIGRP neighbor's feasible distance to the same destination network.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Topology Table: show ip eigrp Command

R2#show ip eigrp topology EIGRP-IPv4 Topology Table for AS(1)/ID(2.2.2.2) Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply, r - reply Status, s - sia Status P 172.16.2.0/24, 1 successors, FD is 2816 via Connected, GigabitEthernet0/0 P 192.168.10.4/30, 1 successors, FD is 3523840 via 192.168.10.10 (3523840/2169856), Serial0/0/1 R2#show ip eigrp topology via 172.16.3.1 (41024000/2169856), Serial0/0/0 <Output omitted> P 192.168.1.0/24, 1 successors, FD is 3012096 via 192.168.10.10 (3012096/2816), Serial0/0/1 P 192.168.1.0/24, 1 successors, FD is 3012096 via 172.16.3.1 (41024256/2170112), Serial0/0/0 via 192.168.10.10 (3012096/2816), Serial0/0/1 via 172.16.3.1 (41024256/2170112), Serial0/0/0 R2#show ip eigrp topology <Output omitted> Feasible distance if Outbound interface P 192.168.1.0/24, 1 successors, FD is 3012096 the feasible to reach this network via 192.168.10.10 (3012096/2816), Serial0/0/1 successor (R1) was via 172.46.3.1 (41024266/2170412), Serial0/4/0 the successor Feasible distance Feasible Successor's Next hop address of the feasible (R1) Reported successor (R1) Distance Successor's (R3) Reported Distance Next hop address of Outbound interface the successor to reach this network

DUAL and the Topology Table

Topology Table: No Feasible Successor

DUAL and Convergence

DUAL Finite State Machine (FSM)

DUAL and Convergence

DUAL: Feasible Successor

```
R2#debug eigrp fsm
EIGRP Finite State Machine debugging is on
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #interface s 0/0/1
R2(config-if)#shutdown
<Output omitted>
EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 3012096,
RD is 3012096 on tid 0
DUAL: AS(1) Removing dest 172.16.1.0/24, nexthop 192.168.10.10
DUAL: AS(1) RT installed 172.16.1.0/24 via 172.16.3.1
<Output omitted>
R2(config-if) #end
R2#undebug all
R2#show ip route
<Output omitted>
D 192.168.1.0/24 [90/41024256] via 172.16.3.1, 00:15:51,
Serial0/0/0
                           New Successor (R1)
```

Presentation ID Cisco Confidential 4

DUAL and Convergence

DUAL: No Feasible Successor

```
R1#show ip eigrp topology
<Output omitted>
P 192.168.1.0/24, 1 successors, FD is 2170112
        via 192.168.10.6 (2170112/2816), Serial0/0/1
                       No feasible successor
    Successor (R3)
R1#debug eigrp fsm
EIGRP Finite State Machine debugging is on
R1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config) #interface s 0/0/1
R1 (config-if) #shutdown
<Output omitted>
EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 2170112,
RD is 2170112
DUAL: AS(1) Dest 192.168.1.0/24 entering active state for tid
EIGRP-IPv4(1): dest(192.168.1.0/24) active
EIGRP-IPv4(1): rcvreply: 192.168.1.0/24 via 172.16.3.2 metric
41024256/3012096 EIGRP-IPv4(1): reply count is 1
EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is
72057594037927935, RD is 72057594037927935
DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6
 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2
 <Output omitted>
R1(config-if)#end
R1#undebug all
```


7.4 Configuration of EIGRP for IPv6

Cisco Networking Academy® Mind Wide Open®

EIGRP for IPv4 vs. IPv6 EIGRP for IPv6

Comparing EIGRP for IPv4 and IPv6

	EIGRP for IPv4	EIGRP for IPv6
Advertised routes	IPv4 networks	IPv6 prefixes
Distance vector	Yes	Yes
Convergence technology	DUAL	DUAL
Metric	Bandwidth and delay by default, reliability and load are optional	Bandwidth and delay by default, reliability and load are optional
Transport protocol	RTP	RTP
Update messages	Incremental, partial and bounded updates	Incremental, partial and bounded updates
Neighbor discovery	Hello packets	Hello packets
Source and destination addresses	IPv4 source address and 224.0.0.10 IPv4 multicast destination address	IPv6 link-local source address and FF02::10 IPv6 multicast destination address
Authentication	Plain text and MD5	MD5
Router ID	32-bit router ID	32-bit router ID

IPv6 Link-local Addresses

Configuring EIGRP for IPv6

EIGRP for IPv6 Network Topology

Configuring EIGRP for IPv6

Configuring IPv6 Link-Local Addresses

Manually configuring link-local addresses

```
R1(config) #interface s 0/0/0
R1(config-if) #ipv6 address fe80::1 ?
link-local Use link-local address

R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config) #interface s 0/0/1
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config-if) #exit
R1(config-if) #interface g 0/0
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #
```

Verifying link-local addresses

```
R1#show ipv6 interface brief
GigabitEthernet0/0
                         [up/up]
    FE80::1
    2001:DB8:CAFE:1::1
                                                 Same IPv6 link-local
Serial0/0/0
                         [up/up]
                                                 address is
    FE80::1 <
                                                 configured on all
    2001:DB8:CAFE:A001::1
                                                 interfaces.
Serial0/0/1
                         [up/up]
    FE80::1
    2001:DB8:CAFE:A003::1
R1#
```

Configuring EIGRP for IPv6 Configuring EIGRP for the IPv6 Routing Process

- The ipv6 unicast-routing global configuration mode command is required to enable any IPv6 routing protocol.
- Configuring EIGRP for IPv6

```
R2(config)#ipv6 unicast-routing
R2(config)#ipv6 router eigrp 2
R2(config-rtr)#eigrp router-id 2.0.0.0
R2(config-rtr)#no shutdown
R2(config-rtr)#
```

 The no shutdown command and a router ID are required for the router to form neighbor adjacencies.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configuring EIGRP for IPv6

ipv6 eigrp interface Command

Enabling EIGRP of IPv6 on an Interface

```
R1(config) #interface g0/0
R1(config-if) #ipv6 eigrp 2
R1(config-if) #exit
R1(config) #interface s 0/0/0
R1(config-if) #ipv6 eigrp 2
R1(config-if) #exit
R1(config-if) #exit
R1(config) #interface s 0/0/1
R1(config-if) #ipv6 eigrp 2
R1(config-if) #ipv6 eigrp 2
R1(config-if) #
```

```
R2(config) #interface g 0/0
R2(config-if) #ipv6 eigrp 2
R2(config-if) #exit
R2(config) #interface s 0/0/0
R2(config-if) #ipv6 eigrp 2
R2(config-if) #exit
%DUAL-5-NBRCHANGE: EIGRP-IPv6 2: Neighbor FE80::1
(Serial0/0/0) is up: new adjacency
R2(config) #interface s 0/0/1
R2(config-if) #ipv6 eigrp 2
R2(config-if) #ipv6 eigrp 2
R2(config-if) #
```


Verifying EIGRP for IPv6

Verifying EIGRP for IPv6: Examining Neighbors

Verifying EIGRP for IPv6: show ip protocols Command

```
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "eigrp 2"
EIGRP-IPv6 Protocol for AS(2)
                                  Routing protocol and Process ID (AS)
                                  Number)
  Metric weight K1-1, K2-0, K3-1, K4-0, K5-0 [2] K values used in
                                                    composite metric
  NSF-aware route hold timer is 240
  Router-ID: 1.0.0.0 (3) EIGRP Router ID
  Topology: 0 (base)
    Active Timer: 3 min
                                             EIGRP Administrative
    Distance: internal 90 external 170 4
                                             Distances
    Maximum path: 16
    Maximum hopcount 100
    Maximum metric variance 1
  Interfaces:
                            Interfaces enabled for this EIGRP for IPv6.
    GigabitEthernet0/0
    Seria10/0/0
    Seria10/0/1
  Redistribution:
    None
R1#
```

Verifying EIGRP for IPv6 Verifying EIGRP for IPv6: Examine the Routing Table

Use the **show ipv6 route** command to examine the IPv6 routing table.

```
R1#show ipv6 route
<Output omitted>
  2001:DB8:CAFE:1::/64 [0/0]
   via GigabitEthernet0/0, directly connected
 2001:DB8:CAFE:1::1/128 [0/0]
   via GigabitEthernet0/0, receive
D 2001:DB8:CAFE:2::/64 [90/3524096]
   via FE80::3, Serial0/0/1
 2001:DB8:CAFE:3::/64 [90/2170112]
   via FE80::3, Serial0/0/1
 2001:DB8:CAFE:A001::/64 [0/0]
   via Serial0/0/0, directly connected
L 2001:DB8:CAFE:A001::1/128 [0/0]
   via Serial0/0/0, receive
D 2001:DB8:CAFE:A002::/64 [90/3523840]
   via FE80::3, Serial0/0/1
C 2001:DB8:CAFE:A003::/64 [0/0]
   via Serial0/0/1, directly connected
  2001:DB8:CAFE:A003::1/128 [0/0]
    via Serial0/0/1, receive
  FF00::/8 [0/0]
    via NullO, receive
R1#
```

Chapter 7: Summary

- EIGRP is a classless, advanced distance vector routing protocol.
- EIGRP uses the source code of "D" for DUAL in the routing table.
- The default administrative distance of 90 is used for internal routes and 170 for routes imported from an external source.
- Advanced features include DUAL, establishing neighbor adjacencies, RTP, partial and bounded updates, and equal and unequal cost load balancing.
- PDMs give EIGRP the capability to support different Layer 3 protocols.
- EIGRP Hello packets are used to discover neighbors.
- The show ip eigrp neighbors command is used to view neighbor table and verify adjacencies.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Chapter 7: Summary (cont.)

- EIGRP sends partial bounded updates when a change occurs on network.
- EIGRP composite metric uses bandwidth, delay, reliability and load to determine the best path (by default, only bandwidth and delay are used).
- DUAL FSM is used to determine best path; Successor and potential backup path, FS to every destination network.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Cisco | Networking Academy® | Mind Wide Open™