Exercises in Introductory Physics I

Exercise Sheet 5 due to 20.11.23, 11:59 AM

Newton's Law

- 1. Consider a system of masses as shown in Figure 1. Note that the two ropes $(\overline{ABCM}$ and $\overline{Bm})$ are fixed at the point B. The mass $m=20\,\mathrm{kg}$.
 - a) Find the mass M required to fulfil the two following conditions (1P):
 - i) the rope tension T in the rope section AB should be twice of that in the section \overline{BCM} and
 - ii) the angle \widehat{ABC} should be 90°.
 - b) Find the force exerted by the pulley C on the upper block? (1P)

Figure 1: Masses on ropes

2. Three fixed masses are connected by cords that loop over frictionless pulleys (Figure 2). Mass 1 lies on a frictionless table. The masses are $m_1 = 7 \,\mathrm{kg}, \, m_2 = 5 \,\mathrm{kg}$ and $m_3 = 10 \,\mathrm{kg}$. What is the tension in the cord at the right, when the masses are released? (2P)

Figure 2: Pulleys

- 3. The kinetic friction coefficient between an object and a surface is 0.2. The surface is inclined under 45°. The object was given an initial velocity of $v_0 = 20 \,\mathrm{m/s}$ (upwards along the surface). Find the height the object will attain. (1P)
- 4. A force F applied to an object in the horizontal direction can give rise to sliding motion. If a force is applied under a certain angle α to the horizontal direction (see Figure 3), sliding can only be achieved if $\alpha < \alpha_{cr}$. Find the critical angle α_{cr} . (1P)

Figure 3: Sliding object

5. Two cords both having length l are connected to a metal rod A (Figure 4). The distance between the connection points is also l. On the other ends, both cords are fixed at a metal ball with mass m. The metal rod rotates with the angular frequency ω . Find (i) the tensions in the upper and lower cords and (ii) the angular frequency, such, that tension in the lower cord just becomes zero. (2P)

Figure 4: Rotating ball