1. A method for containment of critical dimension growth of a feature located on a substrate including the steps of:

selecting a substrate with a hard mask comprised of a reactive metal deposited over a layer to be etched; and

processing the layer in a reactor.

2. The method of claim 1 wherein:

said selecting step includes selecting a substrate having a hard mask which hard mask comprises of one of titanium, aluminum, and tantalum.

3. The method of claim 1 including the step of:
exposing the hard mask to a stream of oxidizing gas in the reactor
prior to or during said etch step.

4. The method of claim 1 including the step of:
exposing the hard mask to an oxidizing stream comprising of one
of oxygen, nitrogen, fluorine, boron, and carbon gas, and any
combination of oxygen, nitrogen, fluorine, boron, and carbon gas, in the
reactor prior to or during said etch step.

5. The method of claim 1 wherein:
said selecting step includes selecting a substrate with a lithographic layer covering the hard mask into the reactor.

6. The method of claim 1 wherein:

1921

5

15

20

25

Attorney Docket No.: TEGL 1082 SRM srm/tegl/1082/1082.001

said selecting step includes selecting a substrate having a hard mask which is readily oxidizable.

7. The method of claim 1 wherein:

said selecting step includes selecting a substrate with a hard mark, which hard mask is comprised of a metal with a low sputtering yield.

8. The method of claim 1 including the step of:

exposing the hard mask to a stream of oxidizing gas in the reactor prior to or during said etch step in order to oxidize the surface of the hard mask and thereby slow down an etch rate of the hard mask.

9. The method of claim 1 wherein:

said selecting step includes selecting a hard mask (1) on which has been or (2) on which can be developed at least one of an oxide, nitride, fluoride, boride and carbide.

10. The method of claim 1 including the step of:

providing energy to the reactor in order to increase a rate of oxidation of the hard mask in order to slow down the rate of erosion of the hard mask.

11. The method of claim 10 wherein:

said step of providing energy causes the substrate in the reactor to be heated to from about 80°C to about 300°C.

1/2. The method of claim 1 including the step of:

15

20

5

oxidizing the hard mask either prior to or during the processing step.

A method for containment of critical dimension growth of 13. a feature located on a substrate including the steps of:

selecting a substrate with a hard mask deposited over a layer to be etched, wherein said hard mask/has a low sputter yield and a low reactivity to the etch chemistry of/an etch process; and

processing the layer in a reactor using the said etch chemistry.

10

5

14. The method of claim 13 wherein:

said selecting step includes selecting a substrate wherein said hard mask is comprised of a reactive metal.

The method of claim 13 wherein:

said selecting step includes selecting a substrate having a hard mask which is comprising at least one of titanium, aluminum, tantalum, tungsten, cobalt, and molybdenum.

The method of claim 13 including the step of: exposing the hard mask to a stream of oxidizing gas in the reactor prior to or during said processing step.

The method of claim 13 including the step of:

exposing the hard/mask to a stream consisting of one of oxygen, nitrogen, flyorine, boron, and carbon and any combination of oxygen, nitrogen, fluorine, boron and carbon.

The method of claim 13 wherein :

Attorney Docket No.: TEGL 1082 SRM srm/tegl/1082/1082.001

5

said selecting step includes selecting a substrate with a lithographic layer covering the hard mask.

19. The method of claim 18 wherein: said selecting step includes/selecting a substrate having a hard

20. The method of claim 13 including the step of:

exposing the hard mask to a stream of oxidizing gas in the reactor prior to or during said etch step in order to oxidize the surface of the hard mask, and thereby slow down an etch rate of the hard mask.

21. The method/of claim 13 wherein:

mask which is readily oxidizable.

said selecting step includes placing a hard mask (1) which has been or (2) which can be oxidized.

22. The method of claim 13 including the step of:

providing energy to the reactor in order to increase a rate of oxidation of the hard mask in order to slow down the rate of erosion of the hard mask.

23. The method of claim 22 wherein:

said step of providing energy causes the substrate in the reactor to be heated to from about 80°C to about 300°C.

24. The method of claim 13 including the step of: oxidizing the hard mask either prior to or during the processing

Attorney Docket No.: TEGL 1082 SRM srm/tegl/1082/1082.001

step.

20

20

25

5

25. A method for containment of critical dimension growth of a feature located on a wafer including the steps of:

selecting a substrate with a hard mask which comprises at least one of titanium, titanium compounds, aluminum, aluminum compounds, tantalum, tantalum compounds, tungsten, tungsten compounds, cobalt, cobalt compounds, molybdenum, and molybdenum compounds, over a layer to be etched into a reactor; and

processing the layer in the reactor.

26. A method for containment of critical dimension growth of a feature located on a substrate including the steps of:

depositing on a substrate over a layer to be etched a hard mask comprising at least one of a reactive metal, an oxide of a reactive metal, a nitride of a reactive metal, a fluoride of a reactive metal, a boride of a reactive metal, and a carbide of a reactive metal; and processing the layer in the reactor.

27. The method of claim 26 wherein:

said hard mask is selected from a material having a low sputter yield.

28. A method for containment of critical dimension growth of a feature located on a substrate including the steps of:

depositing on a substrate over a layer to be etched a hard mask, wherein said hard mask has at least one of a low sputter yield and a low reactivity to the etch chemistry of an etch process; and

processing the layer in the reactor using the said etch chemistry.

29. A method for containment of critical dimension growth of a feature located on a substrate including the steps of:

depositing on a substrate over a layer to be etched, a hard mask which comprises at least one of titanium, titanium compounds, aluminum, aluminum compounds, tantalum, tantalum compounds, tungsten, tungsten compounds, cobalt, cobalt compounds, molybdenum, and molybdenum compounds; and

processing the layer in the reactor.

30. A method of containment of critical dimension growth of a feature located on a wafer including the steps of:

selecting a substrate with a hard mask consisting of one of a reactive metal, an oxide of a reactive metal, a nitride of a reactive metal, a fluoride of a reactive metal, a boride of a reactive metal, and a carbide of a reactive metal, and a compound comprising any combination of an oxide, a fluoride, a nitride, a carbide, and a boride of a reactive metal, deposited over a layer to be etched; and

processing the layer in the reactor.

31. The method of claim 30 wherein:

said selecting step includes selecting a substrate having a hard mask which consists of one of titanium, titanium compounds, aluminum, aluminum compounds, tantalum, tantalum compounds, tungsten, tungsten compounds, cobalt, cobalt compounds, molybdenum, and molybdenum compounds.

32. The method of claim 30 including the step of: selecting a hard mask consisting of a reactive metal; and

25

exposing the hard mask to a stream comprising of at least one of oxygen, nitrogen, fluorine, boron, carbon, and ions or radicals of oxygen, ions or radicals of nitrogen, ions or radicals of fluorine, ions or radicals of boron, and ions or radicals of carbon in the reactor prior to or during said etch step.

33. The method of claim 30 wherein:

said selecting step includes selecting a substrate with a hard mask, which hard mask is comprised of a metal with a low sputtering vield.

The method bf claim 30 including the step of: 34.

providing energy to the reactor in order to increase a rate of oxidation of the hard mask in order to slow down the rate of erosion of the hard mask.

The method of claim 13 wherein: 35.

said selecting step includes selecting a substrate wherein said hard mask comprises at least one of a reactive metal, an oxide of a reactive metal, a /nitride of a reactive metal, a fluoride of a reactive metal, a carbide/of a reactive metal, a boride of a reactive metal or some combination of a reactive metal.

The method of claim 1 including the step of: using the etched substrate to fabricate one of a semiconductor chip, a magnetic head, and a flat panel display.

37 The method of claim 1 wherein:

Attorney Docket No.: TEGL 1082 SRM srm/tool/3/082/1082.001

10

20

25

said selecting step includes a hard mask comprised of at least one of a reactive metal and a compound of a reactive metal, and

said selecting step further includes selecting a hard mask comprised of at least one of titanium, aluminum, tantalum, tungsten, cobalt, molybdenum, copper, nickel, iron, and compounds of at least one of titanium, aluminum, tantalum, tungsten, cobalt, molybdenum, copper, nickel, and iron.

38. The method of claim 1 wherein:

said selecting step includes a hard mask comprised of at least one of a reactive metal and a compound of a reactive metal, and said compound comprises at least one of an oxide, a nitride, a fluoride, a boride, and a carbide of a reactive metal, and any combination of an oxide, a nitride, a fluoride, a boride, and a carbide of a reactive metal.

39. The method of claim 1 wherein:

said selecting step includes a hard mask comprised of at least one of a reactive metal and a compound of a reactive metal, and said compound comprises any compounds formed by exposing a reactive metal to ions or radicals of at least one of oxygen, nitrogen, fluorine, boride, carbon, and any combination of said gases.

40. The method of claim 1 wherein:

said selecting step includes a hard mask comprised of at least one of a reactive metal and a compound of a reactive metal; and

said selecting step includes selecting a hard mask consisting of one of titanium, aluminum, tantalum, tungsten, cobalt, molybdenum, copper, iron, nickel, and compounds of one of titanium, aluminum, tantalum, tungsten, cobalt, molybdenum, copper, iron, and nickel.

Attorney Docket No.: TEGL 1082 SRM srm/tegl/1082/1082.001

5

15

20

41. The method of claim 38 wherein the processing step operates at one of below atmospheric pressure, atmospheric pressure, and above atmospheric pressure.

add of the control of