

What is claimed is:

- 1 1. Apparatus for use in a mobile user unit in an orthogonal frequency division
2 multiplexing (OFDM) based spread spectrum multiple access wireless system
3 comprising:
4 a receiver for receiving one or more pilot tone hopping sequences each including
5 pilot tones, said pilot tones each being generated at a prescribed frequency and time
6 instants in a prescribed time-frequency grid; and
7 a detector, responsive to said one or more received pilot tone hopping sequences,
8 for detecting the received pilot tone hopping sequence having strongest power.
1 Sub A
1 2. The invention as defined in claim 1 wherein each of said one or more pilot
2 tone hopping sequences is a Latin Squares based pilot tone hopping sequence.
1 3. The invention as defined in claim 1 wherein said receiver yields a baseband
2 version of a received signal and further including a unit for generating a fast Fourier
3 transform version of said baseband signal, and wherein said detector is supplied with said
4 fast Fourier transform version of said baseband signal to determine a received pilot tone
5 sequence having the strongest power.
1 4. The invention as defined in claim 3 wherein said receiver further includes a
2 quantizer for quantizing the results of said fast Fourier transform.
1 5. The invention as defined in claim 3 wherein said detector is a maximum
2 energy detector.
1 6. The invention as defined in claim 5 wherein said maximum energy detector
2 determines a slope and initial frequency shift of pilot tones in a detected pilot tone
3 hopping sequence having the strongest power.
1 7. The invention as defined in claim 6 wherein said maximum energy detector
2 includes a slope-shift accumulator for accumulating energy along each possible slope
3 and initial frequency shift of said one or more received pilot tone hopping sequences and
4 generating an accumulated energy signal, a frequency shift accumulator supplied with
5 said accumulated energy signal for accumulating energy along pilot frequency shifts of
6 said one or more received pilot tone hopping sequences, and a maximum detector
7 supplied with an output from said frequency shift accumulator for estimating a slope and

8 initial frequency shift of the strongest received pilot tone hopping sequence as a slope and
 9 initial frequency shift corresponding to he strongest accumulated energy.

1 8. The invention as defined in claim 7 wherein said accumulated energy is
 2 represented by the signal $J_0(s, b_0)$, where $J_0(s, b_0) = \sum_{t=0}^{N_s-1} |Y(t, st + b_0 \pmod{N})|^2$, and s
 3 is the slope of the pilot signal, b_0 is an initial frequency shift of the pilot signal, $Y(t, n)$ is
 4 the fast Fourier transform data, $t = 0, \dots, N_s - 1$, $n = st + b_0 \pmod{N}$, and $n = 0, \dots, N-1$.

1 9. The invention as defined in claim 7 wherein said frequency shift accumulator
 2 accumulates energy along pilot frequency shifts of said one or more received pilot tone
 3 hopping sequences in accordance with $J(s, b_0) = \sum_{j=1}^{N_p} J_0(s, b_0 + n_j)$, where s is the slope of
 4 the pilot signal, b_0 is an initial frequency shift of the pilot signal and n_j are frequency
 5 offsets.

1 10. The invention as defined in claim 7 wherein said maximum detector estimates
 2 said slope and initial frequency shift of the strongest received pilot tone hopping
 3 sequence in accordance with $\hat{s}, \hat{b}_0 = \arg \max_{s, b_0} J(s, b_0)$, where \hat{s} is the estimate of the slope,
 4 \hat{b}_0 is the estimate of the initial frequency shift, and where the maximum is taken over
 5 $s \in S$ and $b_0 = 0, \dots, N - 1$.

1 11. The invention as defined in claim 6 wherein said maximum energy detector
 2 includes a frequency shift detector for estimating at a given time frequency shift of the
 3 received pilot tone hopping sequence having strongest energy and an estimated maximum
 4 energy value, and a slope and frequency shift solver, responsive to said estimated
 5 frequency shift and said estimated maximum energy value, for generating estimates of an
 6 estimated slope and an estimated initial frequency shift of the strongest received pilot
 7 signal.

1 12. The invention as defined in claim 11 wherein said estimated frequency shift
 2 at time t is obtained in accordance with $n(t) = st + b_0 \pmod{N}$, where s is the pilot signal
 3 slope, t is a symbol time and $n(t)$ is a frequency shift estimate.

1 13. The invention as defined in claim 12 wherein said estimated maximum
 2 energy value is obtained in accordance with $[E(t), n(t)] = \max_s \sum_{j=1}^{N_p} |Y(t, n + n_j (\text{mod } N))|^2$,
 3 where $E(t)$ is the maximum energy value, $Y(t, n)$ is the fast Fourier transform data, j
 4 $= 1, \dots, N_p$ and n_j are frequency offsets.

1 14. The invention as defined in claim 13 wherein said slope is estimated in
 2 accordance with $\hat{s} = \arg \max_{s \in S} \sum_{t=1}^{N_{sy}-1} E(t) \mathbf{1}_{\{n(t) - n(t-1) = s\}}$, where both $n(t)$ and $n(t-1)$ satisfy
 3 $n(t) = st + b_0 (\text{mod } N)$.

1 15. The invention as defined in claim 13 wherein said frequency shift is estimated
 2 in accordance with $\hat{b}_0 = \arg \max_{b_0=0, \dots, N-1} \sum_{t=0}^{N_{sy}-1} E(t) \mathbf{1}_{\{n(t) = st + b_0\}}$.

1 16. The invention as defined in claim 11 wherein said maximum energy detector
 2 detects said slope in accordance with determining the time, $t_0 \in T$, and slope, $s_0 \in S$,
 3 such that the set of times t on the line $n(t) = n(t_0) + s_0(t - t_0)$, has the largest total pilot
 4 signal energy.

1 17. A method for use in a mobile user unit in an orthogonal frequency division
 2 multiplexing (OFDM) based spread spectrum multiple access wireless system comprising
 3 the steps of:

4 receiving one or more pilot tone hopping sequences each including pilot tones,
 5 said pilot tones each being generated at a prescribed frequency and time instants in a
 6 prescribed time-frequency grid; and

7 in response to said one or more received pilot tone hopping sequences, detecting
 8 the received pilot tone hopping sequence having strongest power.

1 18. The method as defined in claim 17 wherein each of said one or more pilot
 2 tone hopping sequences is a Latin Squares based pilot tone hopping sequence.

1 19. The method as defined in claim 17 wherein said step of receiving yields a
 2 baseband version of a received signal and further including a step of generating a fast
 3 Fourier transform version of said baseband signal, and wherein said step of detecting is

4 responsive to said fast Fourier transform version of said baseband signal for determining
 5 a received pilot tone sequence having the strongest power.

1 20. The method as defined in claim 19 wherein said step of receiving further
 2 includes a step of quantizing the results of said fast Fourier transform.

1 21. The method as defined in claim 19 wherein said step of detecting detects a
 2 maximum energy.

1 22. The method as defined in claim 21 wherein said step of detecting said
 2 maximum energy includes a step of determining a slope and initial frequency shift of
 3 pilot tones in a detected pilot tone hopping sequence having the strongest power.

1 23. The method as defined in claim 22 wherein said step of detecting said
 2 maximum energy includes steps of accumulating energy along each possible slope and
 3 initial frequency shift of said one or more received pilot tone hopping sequences and
 4 generating an accumulated energy signal, in response to said accumulated energy signal,
 5 accumulating energy along pilot frequency shifts of said one or more received pilot tone
 6 hopping sequences, and in response to an output from said step of frequency shift
 7 accumulating, estimating a slope and initial frequency shift of the strongest received pilot
 8 tone hopping sequence as a slope and initial frequency shift corresponding to the strongest
 9 accumulated energy.

1 24. The method as defined in claim 23 wherein said accumulated energy is
 2 represented by the signal $J_0(s, b_0)$, where $J_0(s, b_0) = \sum_{t=0}^{N_{sy}-1} |Y(t, st + b_0 \pmod{N})|^2$, and s
 3 is the slope of the pilot signal, b_0 is an initial frequency shift of the pilot signal, $Y(t, n)$ is
 4 the fast Fourier transform data, $t = 0, \dots, N_{sy} - 1$, $n = st + b_0 \pmod{N}$, and $n = 0, \dots, N-1$.

1 25. The method as defined in claim 23 wherein said step of frequency shift
 2 accumulating includes a step of accumulating energy along pilot frequency shifts of said
 3 one or more received pilot tone hopping sequences in accordance with
 4 $J(s, b_0) = \sum_{j=1}^{N_p} J_0(s, b_0 + n_j)$, where s is the slope of the pilot signal, b_0 is an initial
 5 frequency shift of the pilot signal and n_j are frequency offsets.

1 26. The method as defined in claim 23 wherein said step of maximum energy
 2 detecting includes a step of estimating said slope and initial frequency shift of the
 3 strongest received pilot tone hopping sequence in accordance with $\hat{s}, \hat{b}_0 = \arg \max_{s, b_0} J(s, b_0)$,

4 where \hat{s} is the estimate of the slope, \hat{b}_0 is the estimate of the initial frequency shift, and
 5 where the maximum is taken over $s \in S$ and $b_0 = 0, \dots, N - 1$.

1 27. The method as defined in claim 22 wherein said step of maximum energy
 2 detecting includes a step of estimating at a given time frequency shift of the received
 3 pilot tone hopping sequence having strongest energy and estimating a maximum energy
 4 value, and in response to said estimated frequency shift and said estimated maximum
 5 energy value, generating estimates of an estimated slope and an estimated initial
 6 frequency shift of the strongest received pilot signal.

1 28. The method as defined in claim 27 wherein said estimated frequency shift at
 2 time t is obtained in accordance with $n(t) = st + b_0 \pmod{N}$, where s is the pilot signal
 3 slope, t is a symbol time and $n(t)$ is a frequency shift estimate.

1 29. The method as defined in claim 28 wherein said estimated maximum energy
 2 value is obtained in accordance with $[E(t), n(t)] = \max_n \sum_{j=1}^{N_p} |Y(t, n + n_j \pmod{N})|^2$, where
 3 $E(t)$ is the maximum energy value, $Y(t, n)$ is the fast Fourier transform data, j
 4 $= 1, \dots, N_p$ and n_j are frequency offsets.

1 30. The method as defined in claim 29 wherein said slope is estimated in
 2 accordance with $\hat{s} = \arg \max_{s \in S} \sum_{t=1}^{N_{sy}-1} E(t) \mathbf{1}_{\{n(t)-n(t-1)=s\}}$, where both $n(t)$ and $n(t-1)$ satisfy
 3 $n(t) = st + b_0 \pmod{N}$.

1 31. The method as defined in claim 29 wherein said frequency shift is estimated
 2 in accordance with $\hat{b}_0 = \arg \max_{b_0=0, \dots, N-1} \sum_{t=0}^{N_{sy}-1} E(t) \mathbf{1}_{\{n(t)=st+b_0\}}$.

1 32. The method as defined in claim 27 wherein said step of maximum energy
 2 detecting includes a step of finding the time, $t_0 \in T$, and slope, $s_0 \in S$, such that the set of
 3 times t on the line $n(t) = n(t_0) + s_0(t - t_0)$, has the largest total pilot signal energy.

1 33. Apparatus for use in a mobile user unit in an orthogonal frequency division
2 multiplexing (OFDM) based spread spectrum multiple access wireless system comprising
3 the steps of:

4 means for receiving one or more pilot tone hopping sequences each including
5 pilot tones, said pilot tones each being generated at a prescribed frequency and time
6 instants in a prescribed time-frequency grid; and

7 means, responsive to said one or more received pilot tone hopping sequences,
8 detecting the received pilot tone hopping sequence having strongest power.

1 34. The invention as defined in claim 33 wherein each of said one or more pilot
2 tone hopping sequences is a Latin Squares based pilot tone hopping sequence.

1 35. The invention as defined in claim 33 wherein said means for receiving yields
2 a baseband version of a received signal and further including means for generating a fast
3 Fourier transform version of said baseband signal, and wherein said means for detecting
4 is responsive to said fast Fourier transform version of said baseband signal for
5 determining a received pilot tone sequence having the strongest power.

1 36. The invention as defined in claim 35 wherein said means for generating said
2 fast Fourier transform includes means for quantizing the results of said fast Fourier
3 transform.

1 37. The invention as defined in claim 35 wherein means for detecting detects a
2 maximum energy.

1 38. The invention as defined in claim 37 wherein said means for detecting said
2 maximum energy includes means for determining a slope and initial frequency shift of
3 pilot tones in a detected pilot tone hopping sequence having the strongest power.

1 39. The invention as defined in claim 38 wherein said means for detecting said
2 maximum energy includes means for accumulating energy along each possible slope and
3 initial frequency shift of said one or more received pilot tone hopping sequences, means
4 for generating an accumulated energy signal, means, responsive to said accumulated
5 energy signal, for accumulating energy along pilot frequency shifts of said one or more
6 received pilot tone hopping sequences, and means, responsive to an output from said
7 means for frequency shift accumulating, for estimating a slope and initial frequency shift

8 of the strongest received pilot tone hopping sequence as a slope and initial frequency shift
 9 corresponding to the strongest accumulated energy.

1 40. The invention as defined in claim 39 wherein said accumulated energy is
 2 represented by the signal $J_0(s, b_0)$, where $J_0(s, b_0) = \sum_{t=0}^{N_{sy}-1} |Y(t, st + b_0 \pmod{N})|^2$, and s
 3 is the slope of the pilot signal, b_0 is an initial frequency shift of the pilot signal, $Y(t, n)$ is
 4 the fast Fourier transform data, $t = 0, \dots N_{sy} - 1$, $n = st + b_0 \pmod{N}$, and $n = 0, \dots N-1$.

1 41. The invention as defined in claim 39 wherein said means for frequency shift
 2 accumulating includes means for accumulating energy along pilot frequency shifts of said
 3 one or more received pilot tone hopping sequences in accordance with
 4 $J(s, b_0) = \sum_{j=1}^{N_p} J_0(s, b_0 + n_j)$, where s is the slope of the pilot signal, b_0 is an initial
 5 frequency shift of the pilot signal and n_j are frequency offsets.

1 42. The invention as defined in claim 39 wherein said means for maximum
 2 energy detecting includes means for estimating said slope and initial frequency shift of
 3 the strongest received pilot tone hopping sequence in accordance with
 4 $\hat{s}, \hat{b}_0 = \arg \max_{s, b_0} J(s, b_0)$, where \hat{s} is the estimate of the slope, \hat{b}_0 is the estimate of the
 5 initial frequency shift, and where the maximum is taken over $s \in S$ and $b_0 = 0, \dots, N - 1$.

1 43. The invention as defined in claim 37 wherein said means for maximum
 2 energy detecting includes means for estimating at a given time frequency shift of the
 3 received pilot tone hopping sequence having strongest energy and for estimating a
 4 maximum energy value, and means, responsive to said estimated frequency shift and said
 5 estimated maximum energy value, for generating estimates of an estimated slope and an
 6 estimated initial frequency shift of the strongest received pilot signal.

1 44. The invention as defined in claim 43 wherein said estimated frequency shift
 2 at time t is obtained in accordance with $n(t) = st + b_0 \pmod{N}$, where s is the pilot signal
 3 slope, t is a symbol time and $n(t)$ is a frequency shift estimate.

1 45. The invention as defined in claim 44 wherein said estimated maximum
 2 energy value is obtained in accordance with $[E(t), n(t)] = \max_n \sum_{j=1}^{N_p} |Y(t, n + n_j \pmod{N})|^2$,
 3 where $E(t)$ is the maximum energy value, $Y(t, n)$ is the fast Fourier transform data, j
 4 $= 1, \dots, N_p$ and n_j are frequency offsets.

1 46. The invention as defined in claim 45 wherein said slope is estimated in
 2 accordance with $\hat{s} = \arg \max_{s \in S} \sum_{t=1}^{N_{sy}-1} E(t) \mathbf{1}_{\{n(t) - n(t-1) = s\}}$, where both $n(t)$ and $n(t-1)$ satisfy
 1 $n(t) = st + b_0 \pmod{N}$.

1 47. The invention as defined in claim 45 wherein said frequency shift is estimated
 2 in accordance with $\hat{b}_0 = \arg \max_{b_0=0, \dots, N-1} \sum_{t=0}^{N_{sy}-1} E(t) \mathbf{1}_{\{n(t) = st + b_0\}}$.

1 48. The invention as defined in claim 43 wherein said means for detecting
 2 maximum energy includes means for finding the time, $t_0 \in T$, and slope, $s_0 \in S$, such that
 3 the set of times t on the line $n(t) = n(t_0) + s_0(t - t_0)$, has the largest total pilot signal
 4 energy.