Regresión Logística

jerf

19/6/2021

```
dataset = read.csv("Social_Network_Ads.csv")
dataset = dataset[,3:5]
```

Dividir dataset en conjunto de entranmiento y conjunto de test

```
library(caTools)

## Warning: package 'caTools' was built under R version 4.0.5

set.seed(123)
split = sample.split(dataset$Purchased, SplitRatio = 0.75)

training_set = subset(dataset, split == TRUE)
training_set
```

```
##
       Age EstimatedSalary Purchased
## 1
        19
                       19000
                                       0
## 3
                                       0
        26
                       43000
## 6
        27
                       58000
                                       0
## 7
        27
                       84000
                                       0
## 8
        32
                      150000
                                       1
                                       0
## 10
        35
                       65000
        26
                                       0
## 11
                       80000
## 13
        20
                       86000
                                       0
## 14
        32
                       18000
                                       0
## 15
        18
                       82000
                                       0
## 16
                                       0
        29
                       80000
## 17
        47
                       25000
                                       1
## 21
                                       1
        45
                       22000
## 23
        48
                       41000
                                       1
## 24
        45
                       22000
                                       1
## 25
        46
                       23000
                                       1
## 26
        47
                       20000
                                       1
## 27
        49
                       28000
                                       1
## 28
                                       1
        47
                       30000
## 30
        31
                       18000
                                       0
## 31
                                       0
        31
                       74000
## 33
        21
                       16000
                                       0
  36
        35
                       27000
                                       0
## 37
                                       0
        33
                       28000
## 39
        26
                       72000
                                       0
## 40
                                       0
        27
                       31000
## 41
        27
                       17000
                                       0
```

			- 1000	_
##	42	33	51000	0
##	43	35	108000	0
##	44	30	15000	0
##	47	25	79000	0
##	49	30	135000	1
##	50	31	89000	0
##	51	24	32000	0
##	53	29	83000	0
##	54	35	23000	0
##	55	27	58000	0
##	56	24	55000	0
##	57	23	48000	0
##	58	28	79000	0
##	59	22	18000	0
##	60	32	117000	0
##	61	27	20000	0
##	62	25	87000	0
##	63	23	66000	0
##	64	32	120000	1
##	65	59	83000	0
##	67	24	19000	0
##	68	23	82000	0
##	70	31	68000	0
##	71	25	80000	0
			27000	
##	72	24		0
##	73	20	23000	0
##	76	34	112000	1
##	77	18	52000	0
##	78	22	27000	0
##	79	28	87000	0
##	80	26	17000	0
##	81	30	80000	0
##	83	20	49000	0
##	88	28	85000	0
##	90	35	50000	0
##	91	22	81000	0
##	92	30	116000	0
##	93	26	15000	0
##	94	29	28000	0
##	95	29	83000	0
##	96		44000	
		35		0
##	97	35	25000	0
##	98	28	123000	1
##	99	35	73000	0
##	100	28	37000	0
##	101	27	88000	0
##	102	28	59000	0
##	105	19	21000	0
##	106	21	72000	0
##	110	38	80000	0
##	111	39	71000	0
##	112	37	71000	0
##	113	38	61000	0
##	114	37	55000	0
ıτπ	- 1 -I	J.	00000	J

			2222	_
##	115	42	80000	0
##	116	40	57000	0
##	118	36	52000	0
##	119	40	59000	0
##	120	41	59000	0
##	121	36	75000	0
##	122	37	72000	0
##	123	40	75000	0
##	125	41	51000	0
##	128	26	32000	0
##	129	30	17000	0
##	130	26	84000	0
##	132	33	31000	0
##	133	30	87000	0
##	135	28	55000	0
##	136	23	63000	0
##	137	20	82000	0
##	138	30	107000	1
##	140	19	25000	0
##	141	19	85000	0
##	142	18	68000	0
##	143	35	59000	0
##	144	30	89000	0
##	145	34	25000	0
##	146	24	89000	0
##	147	27	96000	1
##	149	29	61000	0
##	150	20	74000	0
##	151	26	15000	0
##	152	41	45000	0
##	153	31	76000	0
##	155	40	47000	0
##	157	46	59000	0
##	158	29	75000	0
##	160	32	135000	1
##	161	32	100000	1
##	164	35	38000	0
##	165	33	69000	0
##	166	18	86000	0
##	167	22	55000	0
##	168	35	71000	0
##	169	29	148000	1
##	171	21	88000	0
##	172	34	115000	0
##	173	26	118000	0
##	174	34	43000	0
##			47000	0
	177	35		
##	178	25	22000	0
##	179	24	23000	0
##	180	31	34000	0
##	181	26	16000	0
##	182	31	71000	0
##	183	32	117000	1
##	184	33	43000	0

## 105	33	60000	^
## 185			0
## 186		66000	0
## 187		82000	0
## 188		41000	0
## 189		72000	0
## 190	28	32000	0
## 191	24	84000	0
## 192	19	26000	0
## 194	19	70000	0
## 195	28	89000	0
## 196	34	43000	0
## 197	30	79000	0
## 198	20	36000	0
## 201	35	39000	0
## 202		74000	0
## 203		134000	1
## 204		71000	0
## 205		101000	1
## 206		47000	0
## 200		130000	1
		142000	
			1
## 210		22000	0
## 211		96000	1
## 212		150000	1
## 214		58000	0
## 215		43000	0
## 216		108000	1
## 217		65000	0
## 218		78000	0
## 219		96000	0
## 220		143000	1
## 221	41	80000	0
## 222		91000	1
## 223		144000	1
## 225	35	60000	0
## 227	36	126000	1
## 231	35	147000	1
## 232	39	42000	0
## 233	40	107000	1
## 235	38	112000	0
## 238	37	80000	0
## 240	53	143000	1
## 242	38	59000	0
## 243	50	88000	1
## 244	56	104000	1
## 245		72000	0
## 246		146000	1
## 247		50000	0
## 248		122000	1
## 249		52000	0
## 250		97000	1
## 251		39000	0
## 252		52000	0
## 252 ## 253		134000	1
ππ Δ υυ	+0	194000	1

##	254	37	146000	1
##	256	52	90000	1
##	257	41	72000	0
##	258	40	57000	0
##	259	58	95000	1
##	260	45	131000	1
##	261	35	77000	0
##	262	36	144000	1
##	263	55	125000	1
##	267	40	75000	0
##	268	37	74000	0
##	269	47	144000	1
##	270	40	61000	0
##	271	43	133000	0
##	272	59	76000	1
##	275	57	26000	1
##	276	57	74000	1
##	277	38	71000	0
##	278	49	88000	1
##	279	52	38000	1
##	280	50	36000	1
##	282	35	61000	0
##	283	37	70000	1
##	284	52	21000	1
##	285	48	141000	0
##	287	37	62000	0
##	288	48	138000	1
##	289	41	79000	0
##	290	37	78000	1
##	291	39	134000	1
##	293	55	39000	1
##	294	37	77000	0
##	295	35	57000	0
##	296	36	63000	0
##	297	42	73000	1
##	298	43	112000	1
##	300	46	117000	1
##	301	58	38000	1
##	303	37	137000	1
##	304	37	79000	1
##	306	42	54000	0
##	308	47	113000	1
##	309	36	125000	1
##	311	42	70000	0
##	312	39	96000	1
##	313	38	50000	0
##	314	49	141000	1
##	315	39	79000	0
##	317	54	104000	1
##	318	35	55000	0
##	319	45	32000	1
##			60000	0
	320	36		
##	321	52	138000	1
##	322	53	82000	1

## 32	3 41	52000	0
## 32		131000	1
## 32		72000	0
## 328		75000	0
## 329		118000	1
## 33		107000	1
## 33		51000	0
## 33		65000	0
## 334	4 40	65000	0
## 33	5 57	60000	1
## 33	6 36	54000	0
## 33	7 58	144000	1
## 338	8 35	79000	0
## 340	0 39	122000	1
## 34:	2 35	75000	0
## 34	4 47	51000	1
## 34	5 47	105000	1
## 340		63000	0
## 348		108000	1
## 349		77000	0
## 350		61000	0
## 35		113000	1
## 35:		75000	0
## 354		57000	0
## 35		99000	1
## 35		34000	1
## 35		70000	1
## 35		72000	0
## 35		71000	1
## 36		54000	0
## 36		129000	1
## 365		34000	1
## 36		104000	1
## 36		29000	1
## 37		26000	1
## 37		46000	1
## 37		130000	1
## 37		80000	0
## 37		32000	1
## 37		74000	0
## 378		53000	0
## 379		87000	1
## 38		64000	0
## 38:		33000	1
## 384		28000	1
## 38		33000	1
## 38		60000	1
## 38		39000	1
## 388		71000	0
## 39		35000	1
## 39		33000	1
## 393	3 45	45000	1
## 394	4 60	42000	1
## 39	6 46	41000	1

```
## 397 51 23000 1
## 398 50 20000 1
## 399 36 33000 0
```

testing_set = subset(dataset, split == FALSE)
testing_set

##		Age	EstimatedSalary	Purchased
##	2	35	20000	0
##	4	27	57000	0
##	5	19	76000	0
##	9	25	33000	0
##	12	26	52000	0
##	18	45	26000	1
##	19	46	28000	1
##	20	48	29000	1
##	22	47	49000	1
##	29	29	43000	0
##	32	27	137000	1
##	34	28	44000	0
##	35	27	90000	0
##	38	30	49000	0
	45	28	84000	0
	46	23	20000	0
	48	27	54000	0
##	52	18	44000	0
##	66	24	58000	0
##	69	22	63000	0
##	74	33	113000	0
##	75	32	18000	0
##	82	39	42000	0
##	84	35	88000	0
##	85	30	62000	0
##	86	31	118000	1
##	87	24	55000	0
##	89	26	81000	0
##	103	32	86000	0
##	104	33	149000	1
##	107	26	35000	0
##	108	27	89000	0
##	109	26	86000	0
##	117	35	75000	0
##	124	35	53000	0
##	126	39	61000	0
##	127	42	65000	0
##	131	31	58000	0
##	134	21	68000	0
##	139	28	59000	0
##	148	41	30000	0
##	154	36	50000	0
##	156	31	15000	0
##	159	26	30000	0
##	162	25	90000	0
##	163	37	33000	0
##	170	29	47000	0

## 175	34	72000	0
## 176	23	28000	0
## 193	29	43000	0
## 199	26	80000	0
## 200	35	22000	0
## 208	52	114000	0
## 213	59	42000	0
## 224	60	102000	1
## 226	37	53000	0
## 228	56	133000	1
## 229	40	72000	0
## 230	42	80000	1
## 234	49	86000	1
## 236	46	79000	1
## 237	40	57000	0
## 239	46	82000	0
## 241	42	149000	1
## 255	50	44000	0
## 264	35	72000	0
## 265	48	90000	1
## 266	42	108000	1
## 273	60	42000	1
## 274	39	106000	1
## 281	59	88000	1
## 286	37	93000	1
## 292	49	89000	1
## 299	45	79000	0
## 302	48	74000	1
## 305	40	60000	0
## 307	51	134000	0
## 310	38	50000	0
## 316	39	75000	1
## 324	48	30000	1
## 326	41	60000	0
## 332	48	119000	1
## 339	38	55000	0
## 341	53	104000	1
## 343	38	65000	0
## 347	53	72000	1
## 353	42	90000	1
## 363	47	50000	1
## 364	42	79000	0
## 367	58	47000	1
## 368	46	88000	1
## 369	38	71000	0
## 372	60	83000	1
## 373	39	73000	0
## 380	58	23000	1
## 383	44	139000	1
## 389	47	34000	1
## 392	47	23000	1
## 395	39	59000	0
## 400	49	36000	1

Escalado de datos

Standardisation

$$x_{stand} = \frac{x - mean(x)}{sd(x)}$$

```
training_set[,1:2] = scale(training_set[,1:2])
training_set
```

```
##
                Age EstimatedSalary Purchased
## 1
       -1.76554750
                         -1.47334137
                                               0
                                               0
## 3
       -1.09629664
                         -0.78837605
## 6
       -1.00068938
                         -0.36027273
                                               0
##
       -1.00068938
                          0.38177303
                                               0
## 8
                                               1
       -0.52265305
                          2.26542765
       -0.23583125
## 10
                         -0.16049118
                                               0
                                               0
## 11
       -1.09629664
                          0.26761214
## 13
       -1.66994024
                          0.43885347
                                               0
       -0.52265305
                                               0
##
  14
                         -1.50188159
                                               0
##
  15
       -1.86115477
                          0.32469259
                                               0
       -0.80947485
##
  16
                          0.26761214
##
  17
        0.91145593
                         -1.30210004
                                               1
## 21
        0.72024140
                         -1.38772071
                                               1
## 23
        1.00706320
                         -0.84545650
                                               1
## 24
        0.72024140
                         -1.38772071
                                               1
## 25
                                               1
        0.81584866
                         -1.35918049
##
  26
        0.91145593
                         -1.44480115
                                               1
##
  27
        1.10267046
                         -1.21647938
                                               1
##
   28
        0.91145593
                         -1.15939893
                                               1
                                               0
##
   30
       -0.61826032
                         -1.50188159
##
   31
       -0.61826032
                          0.09637081
                                               0
## 33
       -1.57433297
                                               0
                         -1.55896204
##
   36
       -0.23583125
                         -1.24501960
                                               0
##
  37
       -0.42704579
                         -1.21647938
                                               0
                                               0
##
   39
       -1.09629664
                          0.03929037
                                               0
##
   40
       -1.00068938
                         -1.13085871
                                               0
##
  41
       -1.00068938
                         -1.53042182
                                               0
##
  42
       -0.42704579
                         -0.56005428
## 43
       -0.23583125
                          1.06673835
                                               0
## 44
       -0.71386758
                         -1.58750226
                                               0
## 47
       -1.19190391
                          0.23907192
                                               0
##
  49
       -0.71386758
                          1.83732433
                                               1
       -0.61826032
                                               0
##
  50
                          0.52447414
##
   51
       -1.28751117
                         -1.10231849
                                               0
##
   53
       -0.80947485
                          0.35323281
                                               0
##
   54
       -0.23583125
                         -1.35918049
                                               0
                                               0
## 55
       -1.00068938
                         -0.36027273
## 56
       -1.28751117
                         -0.44589340
                                               0
                                               0
## 57
       -1.38311844
                         -0.64567495
   58
       -0.90508211
                                               0
                          0.23907192
##
   59
       -1.47872570
                         -1.50188159
                                               0
                                               0
##
   60
       -0.52265305
                          1.32360034
                                               0
##
  61
       -1.00068938
                         -1.44480115
                                               0
## 62
       -1.19190391
                          0.46739370
## 63
      -1.38311844
                         -0.13195096
                                               0
```

## 64	-0.52265305	1.40922101	1
## 65		0.35323281	0
## 67	-1.28751117	-1.47334137	0
## 68	-1.38311844	0.32469259	0
## 70	-0.61826032	-0.07487051	0
## 71	-1.19190391	0.26761214	0
## 72	-1.28751117	-1.24501960	0
## 73	-1.66994024	-1.35918049	0
## 76	-0.33143852	1.18089923	1
## 77	-1.86115477	-0.53151406	0
## 78	-1.47872570	-1.24501960	0
## 79	-0.90508211	0.46739370	0
## 80	-1.09629664	-1.53042182	0
## 81	-0.71386758	0.26761214	0
## 83	-1.66994024	-0.61713472	0
## 88	-0.90508211	0.41031325	0
## 90	-0.23583125	-0.58859450	0
## 91	-1.47872570	0.29615237	0
## 92	-0.71386758	1.29506012	0
## 93	-1.09629664	-1.58750226	0
## 94	-0.80947485	-1.21647938	0
## 95	-0.80947485	0.35323281	0
## 96	-0.23583125	-0.75983583	0
## 97	-0.23583125	-1.30210004	0
## 98	-0.90508211	1.49484167	1
## 99	-0.23583125	0.06783059	0
## 100	-0.90508211	-0.95961738	0
## 101	-1.00068938	0.49593392	0
## 102	-0.90508211	-0.33173251	0
## 105	-1.76554750	-1.41626093	0
## 106	-1.57433297	0.03929037	0
## 110	0.05099054	0.26761214	0
## 111	0.14659781	0.01075015	0
## 112	-0.04461672	0.01075015	0
## 113	0.05099054	-0.27465207	0
		-0.44589340	0
## 115		0.26761214	0
## 116		-0.38881295	0
## 118	-0.14022399	-0.53151406	0
## 119	0.24220507	-0.33173251	0
## 120	0.33781234	-0.33173251	0
## 121	-0.14022399	0.12491104	0
## 122	-0.04461672	0.03929037	0
## 123	0.24220507	0.12491104	0
## 125	0.33781234	-0.56005428	0
## 128	-1.09629664	-1.10231849	0
## 129	-0.71386758	-1.53042182	0
	-1.09629664	0.38177303	0
## 132	-0.42704579	-1.13085871	0
	-0.71386758	0.46739370	0
	-0.90508211	-0.44589340	0
	-1.38311844	-0.21757162	0
## 137	-1.66994024	0.32469259	0
	-0.71386758	1.03819813	1

##	140	-1.76554750	-1.30210004	0
##	141	-1.76554750	0.41031325	0
##	142	-1.86115477	-0.07487051	0
##	143	-0.23583125	-0.33173251	0
##	144	-0.71386758	0.52447414	0
##	145	-0.33143852	-1.30210004	0
##	146	-1.28751117	0.52447414	0
##	147	-1.00068938	0.72425569	1
##	149	-0.80947485	-0.27465207	0
##	150	-1.66994024	0.09637081	0
##	151	-1.09629664	-1.58750226	0
##	152	0.33781234	-0.73129561	0
##	153	-0.61826032	0.15345126	0
##	155	0.24220507	-0.67421517	0
##	157	0.81584866	-0.33173251	0
##	158	-0.80947485	0.12491104	0
##	160	-0.52265305	1.83732433	1
##	161	-0.52265305	0.83841658	1
##	164	-0.23583125	-0.93107716	0
##	165	-0.42704579	-0.04633029	0
##	166	-1.86115477	0.43885347	0
##	167	-1.47872570	-0.44589340	0
##	168	-0.23583125	0.01075015	0
##	169	-0.80947485	2.20834721	1
##	171	-1.57433297	0.49593392	0
##	172	-0.33143852	1.26651990	0
##	173	-1.09629664	1.35214056	0
##	174	-0.33143852	-0.78837605	0
##	177	-0.23583125	-0.67421517	0
##	178	-1.19190391	-1.38772071	0
##	179	-1.28751117	-1.35918049	0
##	180	-0.61826032	-1.04523805	0
##	181	-1.09629664	-1.55896204	0
##	182	-0.61826032	0.01075015	0
##	183	-0.52265305	1.32360034	1
##	184	-0.42704579	-0.78837605	0
##	185	-0.42704579	-0.30319229	0
##	186	-0.61826032	-0.13195096	0
##	187	-1.66994024	0.32469259	0
##	188	-0.42704579	-0.84545650	0
##	189	-0.23583125	0.03929037	0
##	190	-0.90508211	-1.10231849	0
##	191	-1.28751117	0.38177303	0
##	192	-1.76554750	-1.27355982	0
##	194	-1.76554750	-0.01779007	0
##	195	-0.90508211	0.52447414	0
##	196	-0.33143852	-0.78837605	0
##	197	-0.71386758	0.23907192	0
##	198	-1.66994024	-0.98815761	0
##	201	-0.23583125	-0.90253694	0
##	202	1.10267046	0.09637081	0
##	203	0.14659781	1.80878411	1
##	204	0.33781234	0.01075015	0
##	205	1.96313585	0.86695680	1

## 206 0.91145593	-0.67421517	0
## 207 1.67631405	1.69462322	1
## 209 0.24220507	2.03710588	1
## 210 0.81584866	-1.38772071	0
## 211 1.00706320	0.72425569	1
## 212 1.38949226	2.26542765	1
## 214 -0.23583125	-0.36027273	0
## 215 0.91145593	-0.78837605	0
## 216 2.15435038	1.06673835	1
## 217 1.10267046	-0.16049118	0
## 218 0.24220507	0.21053170	0
## 219 0.81584866	0.72425569	0
## 220 2.05874311	2.06564610	1
## 221 0.33781234	0.26761214	0
## 222 -0.23583125	0.58155458	1
## 223 -0.04461672	2.09418633	1
## 225 -0.23583125	-0.30319229	0
## 227 -0.14022399	1.58046234	1
## 231 -0.23583125	2.17980699	1
## 232 0.14659781	-0.81691628	0
## 233 0.24220507	1.03819813	1
## 235 0.05099054	1.18089923	0
## 238 -0.04461672	0.26761214	0
## 240 1.48509952	2.06564610	1
## 242 0.05099054	-0.33173251	0
## 243 1.19827773	0.49593392	1
## 244 1.77192132	0.95257746	1
## 245 0.33781234	0.03929037	0
## 246 1.29388499	2.15126677	1
## 247 -0.23583125	-0.58859450	0
## 248 1.86752858	1.46630145	1
## 249 0.33781234	-0.53151406	0
## 250 -0.23583125	0.75279591	1
## 251 0.62463413	-0.90253694	0
## 252 -0.04461672	-0.53151406	0
## 253 1.00706320	1.80878411	1
## 254 -0.04461672	2.15126677	1
## 256 1.38949226	0.55301436	1
## 257 0.33781234	0.03929037	0
## 258 0.24220507	-0.38881295	0
## 259 1.96313585	0.69571547	1
## 260 0.72024140	1.72316344	1
## 261 -0.23583125	0.18199148	0
## 262 -0.14022399	2.09418633	1
## 263 1.67631405	1.55192212	1
## 267 0.24220507	0.12491104	0
## 268 -0.04461672	0.09637081	0
## 269 0.91145593	2.09418633	1
## 270 0.24220507	-0.27465207	0
## 271 0.52902687	1.78024389	0
## 272 2.05874311	0.15345126	1
## 275 1.86752858	-1.27355982	1
## 276 1.86752858	0.09637081	1
## 277 0.05099054	0.01075015	0

## 278 1.10267046		1
## 279 1.38949226	-0.93107716	1
## 280 1.19827773	-0.98815761	1
## 282 -0.23583125	-0.27465207	0
## 283 -0.04461672	-0.01779007	1
## 284 1.38949226	-1.41626093	1
## 285 1.00706320	2.00856566	0
## 287 -0.04461672	-0.24611184	0
## 288 1.00706320	1.92294500	1
## 289 0.33781234	0.23907192	0
## 290 -0.04461672	0.21053170	1
## 291 0.14659781	1.80878411	1
## 293 1.67631405	-0.90253694	1
## 294 -0.04461672	0.18199148	0
## 295 -0.23583125	-0.38881295	0
## 296 -0.14022399	-0.21757162	0
## 297 0.43341960	0.06783059	1
## 298 0.52902687	1.18089923	1
## 300 0.81584866	1.32360034	1
## 301 1.96313585	-0.93107716	1
## 303 -0.04461672	1.89440477	1
## 304 -0.04461672	0.23907192	1
## 306 0.43341960	-0.47443362	0
## 308 0.91145593	1.20943946	1
## 309 -0.14022399	1.55192212	1
## 311 0.43341960	-0.01779007	0
## 312 0.14659781	0.72425569	1
## 313 0.05099054	-0.58859450	0
## 314 1.10267046		1
	0.23907192	0
## 317 1.58070679	0.95257746	1
## 318 -0.23583125	-0.44589340	0
## 319 0.72024140	-1.10231849	1
## 320 -0.14022399	-0.30319229	0
## 321 1.38949226	1.92294500	1
	0.32469259	1
## 323 0.33781234	-0.53151406	0
## 325 1.00706320	1.72316344	1
## 327 0.33781234	0.03929037	0
## 328 0.43341960	0.12491104	0
## 329 -0.14022399	1.35214056	1
## 330 0.91145593	1.03819813	1
## 331 0.05099054	-0.56005428	0
## 333 0.43341960	-0.16049118	0
## 334 0.24220507	-0.16049118	0
## 335 1.86752858	-0.30319229	1
## 336 -0.14022399	-0.47443362	0
## 337 1.96313585	2.09418633	1
## 338 -0.23583125	0.23907192	0
## 340 0.14659781	1.46630145	1
## 342 -0.23583125	0.12491104	0
## 344 0.91145593	-0.56005428	1
## 345 0.91145593	0.98111768	1
## 346 0.33781234	-0.21757162	0
010 0.00101204	0.21101102	v

```
## 348
        1.58070679
                         1.06673835
                                              1
## 349
                                              0
        0.14659781
                         0.18199148
  350
        0.05099054
                        -0.27465207
                                              0
  351
        0.05099054
                         1.20943946
                                              1
##
   352 -0.04461672
                         0.12491104
                                              0
  354 -0.04461672
                                              0
                        -0.38881295
   355 -0.14022399
                         0.80987635
                                              1
## 356
        2.15435038
                        -1.04523805
                                              1
##
  357
        1.58070679
                        -0.01779007
                                              1
                                              0
##
  358
        0.33781234
                         0.03929037
  359
        0.24220507
                         0.01075015
                                              1
                                              0
##
  360
        0.43341960
                        -0.47443362
##
   361
        0.52902687
                         1.66608300
                                              1
                        -1.04523805
##
   362
        1.48509952
                                              1
   365
        0.43341960
##
                         0.95257746
                                              1
##
   366
        2.05874311
                        -1.18793916
                                              1
  370
##
        1.58070679
                        -1.27355982
                                              1
  371
        2.15435038
                        -0.70275539
                                              1
##
  374
        2.05874311
                         1.69462322
                                              1
  375 -0.04461672
                         0.26761214
                                              0
##
  376
        0.81584866
                        -1.10231849
                                              1
  377
        0.81584866
                         0.09637081
                                              0
## 378
        0.43341960
                        -0.50297384
                                              0
## 379
        0.33781234
                         0.46739370
                                              1
                                              0
## 381
        0.43341960
                        -0.18903140
  382
        1.00706320
                        -1.07377827
                                              1
## 384
        1.10267046
                        -1.21647938
                                              1
                        -1.07377827
##
   385
        1.86752858
                                              1
   386
##
        1.77192132
                        -0.30319229
                                              1
##
   387
        1.10267046
                        -0.90253694
                                              1
##
  388
        0.14659781
                         0.01075015
                                              0
##
  390
        1.00706320
                        -1.01669783
                                              1
##
   391
        1.00706320
                        -1.07377827
                                              1
  393
##
        0.72024140
                        -0.73129561
                                              1
##
   394
        2.15435038
                        -0.81691628
                                              1
  396
##
        0.81584866
                        -0.84545650
                                              1
## 397
        1.29388499
                        -1.35918049
                                              1
## 398 1.19827773
                        -1.44480115
                                              1
## 399 -0.14022399
                        -1.07377827
testing_set[,1:2] = scale(testing_set[,1:2])
testing_set
##
                Age EstimatedSalary Purchased
## 2
       -0.30419063
                        -1.51354339
                                              0
## 4
                                              0
```

```
-1.05994374
                         -0.32456026
## 5
       -1.81569686
                          0.28599864
                                              0
## 9
       -1.24888202
                                              0
                         -1.09579256
## 12
       -1.15441288
                         -0.48523366
                                              0
##
  18
        0.64050076
                        -1.32073531
                                              1
## 19
        0.73496990
                        -1.25646596
                                              1
## 20
        0.92390818
                        -1.22433128
                                              1
## 22
        0.82943904
                        -0.58163769
                                              1
                                              0
## 29
       -0.87100546
                        -0.77444577
## 32
      -1.05994374
                         2.24621408
                                              1
```

## 34	-0.96547460	-0.74231109	0
## 35	-1.05994374	0.73588415	0
	-0.77653633	-0.58163769	0
## 45	-0.96547460	0.54307608	0
## 46	-1.43782030	-1.51354339	0
## 48	-1.05994374	-0.42096430	0
## 52	-1.91016600	-0.74231109	0
## 66	-1.34335116	-0.29242558	0
## 69	-1.53228944	-0.13175218	0
## 74	-0.49312891	1.47498177	0
## 75	-0.58759805	-1.57781275	0
## 82	0.07368593	-0.80658045	0
## 84	-0.30419063	0.67161480	0
## 85	-0.77653633	-0.16388686	0
## 86	-0.68206719	1.63565517	1
## 87	-1.34335116	-0.38882962	0
## 89	-1.15441288	0.44667204	0
## 103	-0.58759805	0.60734544	0
## 104	-0.49312891	2.63183023	1
## 107	-1.15441288	-1.03152320	0
## 108	-1.05994374	0.70374947	0
## 109	-1.15441288	0.60734544	0
## 117	-0.30419063	0.25386397	0
## 124	-0.30419063	-0.45309898	0
## 126	0.07368593	-0.19602154	0
## 127	0.35709335	-0.06748283	0
## 131	-0.68206719	-0.29242558	0
## 134	-1.62675858	0.02892121	0
## 139	-0.96547460	-0.26029090	0
## 148	0.26262421	-1.19219660	0
## 154	-0.20972149	-0.54950301	0
## 156	-0.68206719	-1.67421679	0
## 159	-1.15441288	-1.19219660	0
## 162	-1.24888202	0.73588415	0
## 163	-0.11525235	-1.09579256	0
## 170	-0.87100546	-0.64590705	0
## 175	-0.39865977	0.15745993	0
## 176	-1.43782030	-1.25646596	0
## 193	-0.87100546	-0.77444577	0
## 199	-1.15441288	0.41453736	0
## 200	-0.30419063	-1.44927403	0
## 208	1.30178474	1.50711645	0
## 213	1.96306872	-0.80658045	0
## 224	2.05753786	1.12150030	1
## 226	-0.11525235	-0.45309898	0
## 228	1.67966130	2.11767536	1
## 229	0.16815507	0.15745993	0
## 230	0.35709335	0.41453736	1
## 234	1.01837732	0.60734544	1
## 236	0.73496990	0.38240268	1
## 237	0.16815507	-0.32456026	0
## 239	0.73496990	0.47880672	0
## 241	0.35709335	2.63183023	1
## 255	1.11284646	-0.74231109	0

```
## 264 -0.30419063
                         0.15745993
                                             0
## 265
                                             1
        0.92390818
                         0.73588415
## 266
        0.35709335
                         1.31430838
## 273
        2.05753786
                                             1
                        -0.80658045
## 274
        0.07368593
                         1.25003902
                                             1
## 281
        1.96306872
                         0.67161480
                                             1
## 286 -0.11525235
                         0.83228819
                                             1
## 292
        1.01837732
                         0.70374947
                                             1
## 299
        0.64050076
                         0.38240268
## 302
        0.92390818
                         0.22172929
                                             1
## 305
        0.16815507
                        -0.22815622
## 307
                                             0
        1.20731560
                         2.14981004
## 310 -0.02078321
                        -0.54950301
                                             0
                         0.25386397
## 316
        0.07368593
                                             1
## 324
        0.92390818
                        -1.19219660
                                             1
## 326
        0.26262421
                        -0.22815622
## 332
        0.92390818
                        1.66778985
                                             1
## 339 -0.02078321
                        -0.38882962
## 341 1.39625388
                                             1
                         1.18576966
## 343 -0.02078321
                        -0.06748283
## 347
        1.39625388
                         0.15745993
                                             1
## 353
        0.35709335
                         0.73588415
        0.82943904
## 363
                        -0.54950301
                                             1
## 364
        0.35709335
                         0.38240268
## 367
        1.86859958
                        -0.64590705
## 368
        0.73496990
                         0.67161480
## 369 -0.02078321
                         0.12532525
## 372
        2.05753786
                         0.51094140
                                             1
## 373
        0.07368593
                         0.18959461
## 380
        1.86859958
                        -1.41713935
                                             1
## 383
        0.54603163
                         2.31048343
## 389
        0.82943904
                        -1.06365788
                                             1
## 392
        0.82943904
                        -1.41713935
                                             1
## 395
                        -0.26029090
                                             0
        0.07368593
## 400
        1.01837732
                        -0.99938852
```

Ajustar el modelo de Regresión Logística con el conjunto de entrenamiento

```
##
                   Estimate Std. Error z value Pr(>|z|)
                    -1.1923
                                0.2018
                                       -5.908 3.47e-09 ***
## (Intercept)
                     2.6324
                                0.3461
                                        7.606 2.83e-14 ***
                                         5.996 2.03e-09 ***
  EstimatedSalary
                     1.3947
                                0.2326
  Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 390.89 on 299
                                     degrees of freedom
## Residual deviance: 199.78 on 297
                                     degrees of freedom
  AIC: 205.78
##
##
## Number of Fisher Scoring iterations: 6
```

Predicción de los resultados con el conjunto testing

```
prob pred = predict(classifier,
                     type = 'response',
                     newdata = testing_set[, -3])
prob_pred
                            4
                                          5
                                                                     12
                                                                                  18
## 0.0162395375 0.0117148379 0.0037846461 0.0024527456 0.0073339436 0.2061576580
                           20
                                         22
                                                                     32
             19
                                                       29
                                                                                  34
  0.2669935073 0.3851475689 0.5448578778 0.0103005636 0.2994922143 0.0084168787
             35
                           38
                                         45
                                                       46
                                                                     48
                                                                                  52
  0.0494471952 0.0171641479 0.0485051303 0.0008343060 0.0102561619 0.0007055347
                           69
                                                                     82
             66
                                         74
                                                       75
  0.0058448457 0.0044534947 0.3933468488 0.0071065671 0.1068589185 0.2580084947
                                                                   103
             85
                           86
                                         87
                                                       89
##
## 0.0303248927 0.3303649169 0.0051132916 0.0263861849 0.1310148056 0.7649772313
            107
                          108
                                        109
                                                      117
                                                                    124
  0.0034367786 0.0473827096 0.0327965105 0.1626049288 0.0675494054 0.2189658514
            127
                          131
                                        134
                                                      139
                                                                    148
##
   0.4142562486 0.0324337750 0.0043457839 0.0163538708 0.1030590600 0.0751093248
            156
                          159
                                        162
                                                      163
                                                                    170
  0.0048556976 0.0027487256 0.0306647902 0.0463555716 0.0122981409 0.1169016711
            176
                          193
                                        199
                                                      200
                                                                    208
  0.0011936610 \ 0.0103005636 \ 0.0252589417 \ 0.0177353905 \ 0.9870859806 \ 0.9453359968
            224
                          226
                                        228
                                                      229
                                                                    230
                                                                                 234
   0.9969454446 \ 0.1064430571 \ 0.9979393884 \ 0.3705093415 \ 0.5807527959 \ 0.9117762840
            236
                          237
                                        239
                                                      241
                                                                    255
##
  0.7817273411 0.2310672929 0.8037996043 0.9682706714 0.6686007827 0.1451169281
            265
                          266
                                                                    281
## 0.9060311409 0.8293112410 0.9568520348 0.6781064291 0.9926955397 0.4170486388
                                                      305
##
                          299
                                        302
                                                                    307
   0.9220096987 0.7363498859 0.8247736816 0.2558136823 0.9932007105 0.1178058928
            316
                          324
                                        326
                                                      332
                                                                   339
  0.3442845494 0.3958138650 0.3059412440 0.9725035550 0.1431602303 0.9842795480
            343
                          347
                                        353
                                                      363
                                                                   364
                                                                                 367
## 0.2073273008 0.9371909698 0.6843940060 0.5559479117 0.5698028861 0.9440512240
##
            368
                          369
                                        372
                                                      373
                                                                   380
                                                                                 383
```

```
## 0.8427877409 0.2549836305 0.9928717092 0.3243409327 0.8519685008 0.9697473704 ## 389 392 395 400 ## 0.3793408625 0.2718336775 0.2040229226 0.5236436275
```

Lo anterior fue calcular un vector de probabilidades de en purchased sea 1. Con esto construimos la prediccion de la variable dependiente

```
y_pred = ifelse(prob_pred > 0.5, 1, 0)
y_pred
##
                                   20
                                        22
                                            29
                                                 32
                                                     34
                                                          35
                                                              38
                                                                  45
                                                                       46
                                                                           48
                                                                                52
                      12
                          18
                               19
##
     0
         0
              0
                  0
                       0
                           0
                                0
                                    0
                                         1
                                             0
                                                  0
                                                      0
                                                           0
                                                               0
                                                                    0
                                                                        0
                                                                             0
                                                                                 0
                                                                                     0
                                                                                          0
##
    74
        75
             82
                 84
                      85
                          86
                               87
                                   89 103 104 107 108 109 117 124 126 127 131 134 139
                       0
                           0
                                0
                                     0
                                         0
                                                  0
                                                           0
                                                               0
                                                                    0
                                                                        0
              0
                   0
                                             1
                                                      0
                                                                             0
## 148 154 156 159 162 163 170 175 176 193 199 200 208 213 224 226 228 229 230 234
         0
              0
                  0
                       0
                           0
                                0
                                    0
                                         0
                                             0
                                                  0
                                                      0
                                                           1
                                                               1
                                                                    1
                                                                        0
                                                                                 0
                                                                             1
## 236 237 239 241 255 264 265 266 273 274 281 286 292 299 302 305 307 310 316 324
                           0
              1
                   1
                       1
                                1
                                     1
                                         1
                                             1
                                                  1
                                                      0
                                                           1
                                                               1
                                                                    1
                                                                        0
                                                                             1
                                                                                 0
## 326 332 339 341 343 347 353 363 364 367 368 369 372 373 380 383 389 392 395 400
                       0
                           1
                                1
                                     1
                                         1
                                             1
                                                  1
                                                      0
                                                           1
                                                               0
                                                                    1
```

Comparar uno a uno los resultados predichos con los esperados no es una buena técnica por lo que se construye la matriz de confusión

```
cm = table(testing_set[, 3], y_pred)
cm

##     y_pred
##     0     1
##     0     57     7
##     1     10     26
```

La diagonal principal es la cantidad de datos que son predichos correctamente.La diagonal secundaria son los fallos

Visualización del conjunto de entranmiento

Logistic Regression (Training set)

Visualising the Test set results

```
library(ElemStatLearn)
set = testing_set
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('Age', 'EstimatedSalary')
prob_set = predict(classifier, type = 'response', newdata = grid_set)
y_grid = ifelse(prob_set > 0.5, 1, 0)
plot(set[, -3],
    main = 'Logistic Regression (Test set)',
    xlab = 'Age', ylab = 'Estimated Salary',
    xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
```

Logistic Regression (Test set)

