

Katedra Automatyki i Robotyki

Kierunek: Automatyka i Robotyka Specjalność: Automatyka przemysłowa

Technologia i projektowanie zautomatyzowanych systemów obróbkowych

Projekt zautomatyzowanego gniazda do obróbki i montażu elektrozaworu

Autorzy: inż. Anna Nowak inż. Jan Kowalski

Strona 2 przeznaczona jest dla wizualizacji całego stanowiska/maszyny (tu przykład niepowiązany z tematem)

1. Opis urządzenia/ Opis stanowiska

Opis powinien zawierać ogólne przedstawienie urządzenia czyli:

- przedstawienie poprzez opis detalu wykonywanego przy pomocy urządzenia/stanowiska (odwołanie do załącznika),
- przedstawienie poprzez opis półfabrykatu użytego do produkcji detalu (jeżeli pojawia się rysunek techniczny półfabrykatu jako załącznik to dodać do niego odniesienie w tekście),
- krótki opis procesu produkcyjnego (wykorzystane metody, procesy, narzędzia).

W opisie można również zawrzeć ewentualny podział maszyny na podsystemy oraz opisanie zadań i funkcjonalności poszczególnych podsystemów. Należy również wskazać główny element kontrolujący pracę (sterownik PLC) i ogólnie opisać jego zadania.

W opisie powinny zostać wyszczególnione założenia dla projektu (np. w postaci listy wypunktowanej). Rozdział ten powinien zawarty na 1-2 stronach.

2. Dobór komponentów

W rozdziale tym dla każdego z komponentów powinien znaleźć się 2-3 zdaniowy opis w którym jest zawarte jego szczegółowe zastosowanie/funkcja w projektowanym urządzeniu/stanowisku. Komponent powinien zostać zaprezentowany poprzez fotografię/schemat/rysunek oraz w tabeli powinny zostać zawarte najważniejsze (z punktu widzenia projektu) parametry wybranego komponentu.

Przykład:

2.1. Stół obrotowy WEISS TC0220T

Do przenoszenia elementów pomiędzy stacjami maszyny obróbkowej wykorzystano stół obrotowy WEISS TC0220T w wariancie z 6-cioma pozycjami (rys. 1). Na stole obrotowym zamontowana została płyta wraz z sześcioma gniazdami. Umożliwia to prowadzenie wszystkich operacji w tym samym czasie dzięki czemu wynikowy czas cyklu wynosi niewiele ponad 3 sekundy. Parametry tego komponentu zawarto w tabela 1.

Rys. 1 Stół obrotowy WEISS TC0220T

Podstawowe parametry stołu obrotowego WEISS TC0220T

Podstawowe parametry stołu obrotowego WEISS TC0220T	
Rekomendowana średnica płyty obrotowej	maks. 1100 mm
Dostępne ilości pozycji	2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36
Dopuszczalny moment obrotowy	145 Nm
Dokładność indeksowania	40 arcsec
Masa całkowita	44 kg

Tabela 1

3. Wyszczególniony opis działania

Rozdział ten poświęcony powinien zostać szczegółowemu opisowi poszczególnych podsystemów maszyny/stanowiska. **Jako jeden z podsystemów potraktować panel operatorski**.

Przykład:

Początkiem cyklu montażu elektrozaworu jest jednoczesne podanie pierścienia i rdzenia za pośrednictwem podajników wibracyjnych do stacji załadunkowych.

3.1. Stacja załadunku rdzenia

Rys. 2. Widok na stację załadunku rdzenia

Stacja załadunku rdzenia składa się z 4 siłowników pneumatycznych liniowych oraz siłownika obrotowego. Rdzenie transportowane są z podajnika wibracyjnego w orientacji poziomej. Sekwencja operacji:

- Czujnik indukcyjny w gnieździe siłownika obrotowego sprawdza obecność rdzenia, jeżeli detal pojawi się wewnątrz gniazda siłownik obrotowy 1 zmienia orientację rdzenia do pozycji pionowej.
- Siłownik 2 wysuwa się powodując przejazd manipulatora nad gniazdo obrotowe
- Siłownik 3 wysuwa się umieszczając szczęki chwytaka na wysokości rdzenia
- Następuje zamknięcie szczęk siłownika chwytaka 5.
- Siłownik 3 wykonuje ruch powrotny
- Siłownik 2 wsuwa się umieszczając rdzeń nad gniazdem stołu obrotowego
- Następuje wysunięcie siłownika 3 i otworzenie szczęk chwytaka 5
- Siłownik 4 przemieszcza się w dół dociskając rdzeń w gnieździe, oraz wykonuje ruch powrotny, siłownik 3 wsuwa się.

W stacji zostały zastosowane komponenty:

- Siłownik 1 SMC-MDSUA3-90
- Siłownik 2 SMC-CG1BN25
- Siłownik 3 SMC-MXQR12-30
- Siłownik 4 SMC-CD85E25
- Siłownik 5 Schunk MPG25-1 Gripper
- Prowadnica liniowa HIWIN wraz z wózkiem HGH25CAZ0-H
- Indukcyjny czujnik obecności Baluff BES m04ec-psc10b-ep02

4. Opis systemu bezpieczeństwa

W rozdziale tym powinien zostać opisany system bezpieczeństwa czyli wykorzystanie np. ogrodzenia, wyłączników awaryjnych, czujników zamkniecia osłon, drzwi czy bramek.

Przykład części opisu systemu bezpieczeństwa:

Wszystkie osłony, które można otworzyć są zabezpieczone ryglami uniemożliwiającymi otworzenie drzwi maszyny bez uprzedniego wyłączenia sterowania oraz odcięcia dopływu sprężonego powietrza, ponadto maszyna została wyposażona w wyłączniki bezpieczeństwa.

Rys. 3 Przykład zastosowania ryglowania osłon

5. Algorytm blokowy

Przykład prostego opisu algorytmu przy pomocy schematu blokowego:

W przypadku rozbudowanego algorytmu należy podzielić go na funkcję reprezentowane poprzez osobne schematy blokowe.

6. Załączniki

W załącznikach należy zawrzeć:

- rysunek techniczny półfabrykatu (jeżeli półfabrykatem jest krążek lub formatka blachy albo prostopadłościenny blok wykonany z metalu to pomijamy ten punkt),
- rysunek techniczny elementu wytwarzanego na maszynie/stanowisku,
- rysunek techniczny całej maszyny/stanowiska w rzucie na płaszczyznę XY,
- w przypadku wykorzystania pras w projekcie dodatkowo rysunek techniczny stępla i matrycy,
- opcjonalnie można dołączyć rysunki techniczne elementów które sami projektowaliście,
- schematy elektryczne z podziałem na podsystemy (symbole urządzeń mają się pokrywać z tymi użytymi w szczegółowym opisie działania).

Wskazówki edytorskie:

Plik ten zawiera przygotowane **style** formatowania z których należy korzystać podczas przygotowywania sprawozdania.

1. Przykład wstawiania tabeli

Wstawianą tabelę i podpis należy wykonać według wzoru poniżej. Numerację tabeli wykonujemy poprzez Odwołania->Wstaw podpis->Etykieta:Tabela. Każda wstawiona tabela musi mieć odnośnik w tekście. Odnośnik wstawiamy poprzez Odwolania->Odsyłacz. Jeżeli w kolumnie tabeli znajdują się wartości wielkości należy wstawić ich jednostkę w nawiasach kwadratowych np. [mV].

Np.:

Dane otrzymane po przeprowadzeniu badania (tabela 2) zostały przeanalizowane.....

lub:

Dane pomiarowe zostały zawarte w tabela 2.

Tabela 2.

Dane pomiarowe	
Kolumna 1	Kolumna 2
Xxxx	VVVV

2. Przykład wstawiania rysunku

Wstawiany rysunek i podpis należy wyśrodkować z użyciem stylu Podpis_rys. Numerację rysunku wykonujemy poprzez Odwołania->Wstaw podpis->Etykieta:Rys. Każdy wstawiony rysunek musi mieć odnośnik w tekście. Odnośnik wstawiamy poprzez Odwolania->Odsyłacz. W przypadku schematów elektrycznych, elektronicznych oraz blokowych preferuje się wykorzystanie grafiki wektorowej. Np. generowanie schematu do pliku *.svg. W przypadku problemów z importem plików *.svg należy przekonwertować je do *.wmf przy użyciu programu inkscape. Do przygotowywania schematów blokowych polecam program drawio.

W ćwiczeniu wykorzystano układ którego schemat zawarto poniżej

Rys. 4 Schemat badanego układu.

3. Przykład listy wypunktowanej

Stanowisko pomiarowe składa się z:

- oscyloskopu,
- zasilacza stabilizowanego,
- generatora sygnałów.

4. Przykład wzoru

Wzory wstawiamy **zawsze przy pomocy edytorów wzorów matematycznych**. (polecam MathType lub Microsoft Equation). Wzór powinien być numerowany po prawej stronie oraz powinien mieć odnośnik w tekście.

Energię E możemy wyznaczyć z wzoru (1).

$$E = m \cdot c^2 \tag{1}$$

gdzie: m - masa,

c - prędkość światła w próżni.

5. Przykład kodu języka programowania

```
clear
th1 = -pi:0.01:pi;
th2 = zeros(size(th1))
th4 = zeros(size(th1))
d3 = zeros(size(th1))
d4=0.5; l1=1; l2=1;
```

Skr. 1 Kod definiujący wektory początkowe