Chapter 1

Logic

Chapter 2

Session 3

Part B: Logical Operations

Let $n \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let p and q be the following propostions concerning the integers n.

p n is event

q n < 5

Find the values of n for which each of the following compound statement is true,

- (i) ¬p
- (ii) $p \wedge q$
- (iii) $\neg p \lor q$
- (iv) $p \oplus q$

Question 3

Let $S = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$ $n \in S$ p: n is a multiple of two q: n is a multiple of five Express the following statement using logic symbols n is not a multiple of either 2 or 5.

List the elements of S which are in the truth set for the statement in (ii).

Write the contrapositive of the following statement concerning an integer n.

If the last digit of n is 4, then n is divisible by 3

2.1 Conditional Connectives

Construct the truth table for the proposition $p \to q$.

p	q	$p \rightarrow q$	$q \rightarrow p$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

2.2 Tautologies and Truth Tables

Truth Table for the Biconditional Connective.

P	Q	$P \leftrightarrow Q$
Т	Т	
Т	F	
F	Т	
F	F	Т

P	Q	$P \lor Q$	
T	Т		
Т	F		
F	Т		
F	F		

Question 3

Part A: Propositions

Let p, q be the following propositions:

- p : this apple is red,
- \bullet q: this apple is ripe.

Express the following statements in words as simply as you can:

- (i) $p \rightarrow q$
- (ii) $p \wedge \neg q$.

Express the following statements symbolically:

- (iii) This apple is neither red nor ripe.
- (iv) If this apple is not red it is not ripe.

Question 3

Question 6

2.2.1 Question 6

Say with reason whether or not \mathcal{R} is

- reflexive
- symmetric
- transitive

In the cases where the given property does not hold provide a counter example to justify this.

Question 6 Part A: Digraphs

Suppose $A = \{1, 2, 3, 4\}$. Consider the following relation in A

$$\{(1,1),(2,2),(2,3),(3,2),(4,2),(4,4)\}$$

Draw the direct graph of A. Based on the Digraph of A discuss whether or not a relation that could be depicted by the digraph could be described as the following, justifying your answer.

- (i) Symmetric
- (ii) Reflexive
- (iii) Transitive
- (iv) Antisymmetric

Part B: Relations

Determine which of the following relations xRy are reflexive, transitive, symmetric, or antisymmetric on the following - there may be more than one characteristic. if

- (i) x = y
- (ii) x < y
- (iii) $x^2 = y^2$
- (iv) $x \ge y$

Question 2

Let $A = \{0, 1, 2\}$ and $R = \{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)\}$ and $S = \{(0, 0), (1, 1), (2, 2)\}$ be 2 relations on A. Show that

- (i) R is a partial order relation.
- (ii) S is an equivalence relation.

Part C: Partial Orders

Let $A = \{0, 1, 2\}$ and $R = \{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)\}$ and $S = \{(0, 0), (1, 1), (2, 2)\}$ be 2 relations on A. Show that

- (i) R is a partial order relation.
- (ii) S is an equivalence relation.

Biconnective Operators

$$p \longleftrightarrow q$$

We could verbalize this as "p implies q and q implies p". Maths for Computing Sprint

Part 0. - Numeracy

2.2.2 Factorials

Evaluate the following

- 6!
- 3!
- 1!
- 0!

Evaluate the following expressions

$$\frac{5!}{3!}$$
 and $\frac{6!}{2! \times 4!}$

Laws of Logarithms

- Addition of Logarithms
- Subtraction of Logaritms
- $\bullet\,$ Powers of Logarithms

Section 3. Logic

Proofs with Truth Tables

$$\neg (p \vee q) \wedge p \equiv q$$

2.3 Section 3 Logic

2.3.1 Logical Operations

- $\neg p$ the negation of proposition p.
- $p \wedge q$ Both propositions p and q are simultaneously true (Logical State AND)
- $p \lor q$ One of the propositions is true, or both (Logical State : OR)
- $p \otimes q$ Only one of the propositions is true (Logical State : exclusive OR (i.e XOR)

p	q	$p \lor q$	$q \wedge p$	$p\otimes q$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

2.4 Logic Proposition

Let p, Q and r be the following propositions concerning integers n:

- p: n is a factor of 36 (2)
- q: n is a factor of 4 (2)
- r: n is a factor of 9 (3)

n	p	q	r
1	1	1	1
2	1	0	1
3	0	1	1
4	1	0	1
6	0	0	1
9	0	1	1
12	0	0	1
18	0	0	1
36	0	0	1

For each of the following compound statements, express it using the propositions P q and r, andng logical symbols, then given the truth table for it,

- 1) If n is a factor of 36, then n is a factor of 4 or n is a factor of 9
- 2) If n is a factor of 4 or n is a factor of 9 then n is a factor of 36

- $\bullet \ p \to q$ p implies q
- $p \lg q$

Part 1: Logic

1.1 2010 Question 3

Let $S = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}$ and let p, q be the following propositions concerning the integer $n \in S$.

- p: n is a multiple of two. (i.,18e. {10, 12, 14, 16, 18})
- q: n is a multiple of three. i.e. {12, 15, 18}

For each of the following compound statements find the sets of values n for which it is true.

- $p \lor q$: (p or q: 10 12 14 15 16 18)
- $p \wedge q$: (p and q: 12 18)
- $\neg p \oplus q$: (not-p or q, but not both)
 - $-\neg p \text{ not-p} = \{1113151719\}$
 - $-\neg p \lor q \text{ not-p or q } \{11121315171819\}$
 - $-\neg p \wedge q \text{ not-p and q } \{15\}$
 - $-\neg p \oplus q = \{11, 12, 13, 17, 18, 19\}$

1.2 2010 Question 3

Let p and q be propositions. Use Truth Tables to prove that

$$p \to q \equiv \neg q \to \neg$$

Important Remember to make a comment at the end to say why the table proves that the two statements are logically equivalent. e.g. since the columns are identical both sides of the equation are equivalent.

р	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

р	q	$\neg q$	$\neg p$	$\neg q \to \neg p$
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	0	1

(Key "difference" is first and last rows)

1.3 Membership Tables for Laws

Page 44 (Volume 1) Q8. Also see Section 3.3 Laws of Logic.

Construct a truth table for each of the following compound statement and hence find simpler propositions to which it is equivalent.

- $p \vee F$
- $p \wedge T$

Solutions

р	T	$p \lor T$	$p \wedge T$
0	1	1	0
1	1	1	1

• Logical OR: $p \vee T = T$

• Logical AND: $p \wedge T = p$

р	F	$p \vee F$	$p \wedge F$
0	0	0	0
1	0	1	0

• Logical OR: $p \vee F = p$

• Logical AND: $p \wedge F = F$

1.4 Propositions

Page 67 Question 9 Write the contrapositive of each of the following statements:

• If n=12, then n is divisible by 3.

• If n=5, then n is positive.

• If the quadrilateral is square, then four sides are equal.

Solutions

• If n is not divisible by 3, then n is not equal to 12.

• If n is not positive, then n is not equal to 5.

• If the four sides are not equal, then the quadrilateral is not a square.

Prepositional Logic

2.4.1 five basic connectives

Reflexive, Symmetric and Transitive

• Reflexive

• Symmetric

• Transitive

2.4.2 Logarithms

Here we assume x and y are positive real numbers. 1. loga(xy) = loga(x) + loga(y) 2. loga(x/y) = loga(x) - loga(y) 3. $loga(x^r) = rloga(x)$ for any real number r. Invertible Functions

2.4.3 Proof by Induction

Another sequence is defined by the recurrence relation un = un-1+2n-1 and u1 = 1. (i) Calculate u2, u3, u4 and u5. 1,4,9,16,25

(ii) Prove by induction that $u_n = n^2$ for all $n \ge 1$ Exponentials

Prepositional Logic

- $\bullet \ p \wedge q$
- $\bullet \ p \vee q$
- $\bullet \ p \to q$

1.5 Truth Sets

2009

Let $n = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let p, q be the following propositions concerning the integer n.

- p: n is even,
- q: $n \ge 5$.

By drawing up the appropriate truth table nd the truth set for each of the propositions $p \vee \neg q$ and $\neg q \rightarrow p$

n	p	q	$\neg q$	$p \vee \neg q$
1	0	0	1	1
2	1	0	1	0
3	0	0	1	1
4	1	0	1	0
5	0	1	0	1
6	1	1	0	1
7	0	1	0	1
8	1	1	0	1
9	0	1	0	1

Truth Set = $\{1, 3, 5, 6, 7, 8, 9\}$

n	р	q	$q \rightarrow p$	$q \rightarrow p$
1	0	0	1	0
2	1	0	1	0
3	0	0	1	0
4	1	0	1	0
5	0	1	0	1
6	1	1	1	0
7	0	1	0	1
8	1	1	1	0
9	0	1	0	1

Truth Set = $\{5,7,9\}$

1.6 Biconditional

See Section 3.2.1.

Use truth tables to prove that $\neg p \leftrightarrow \neg q$ is equivalent to $p \leftrightarrow q$

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

р	q	$\neg p$	$\neg q$	$p \leftrightarrow q$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

1.7 2008 Q3b Logic Networks

Construct a logic network that accepts as input p and q, which may independently have the value 0 or 1, and gives as final input $\neg (p \land \not q)$ (i.e. $\equiv p \rightarrow q$).

Logic Gates

- AND
- OR
- NOT

Examiner's Comments: Many diagrams were carefully and clearly drawn and well labelled, gaining full marks. The logic table was also well done by most, but there were a few marks lost in the final part by failing to deduce that since the columns of the table are identical the expressions are equivalent.

2.4.4 logical implication

Logical implication is a type of relationship between two statements or sentences. The relation translates verbally into "logically implies" or "if/then" and is symbolized by a double-lined arrow pointing toward the right (\rightarrow). If A and B represent statements, then $A \rightarrow B$ means "A implies B" or "If A, then B." The word "implies" is used in the strongest possible sense.

As an example of logical implication, suppose the sentences A and B are assigned as follows:

A = The sky is overcast. B = The sun is not visible.

In this instance, A B is a true statement (assuming we are at the surface of the earth, below the cloud layer.) However, the statement B A is not necessarily true; it might be a clear night. Logical implication does not work both ways. However, the sense of logical implication is reversed if both statements are negated. That is,

$$(A \to B) \equiv (-B \to -A)$$

Using the above sentences as examples, we can say that if the sun is visible, then the sky is not overcast. This is always true. In fact, the two statements A B and -B -A are logically equivalent.

1.8 2008 Q3b Logic Networks

Construct a logic network that accepts as input p and q, which may independently have the value 0 or 1, and gives as final input $(p \land q) \lor \neg q$ (i.e. $\equiv p \to q$).

Important Label each of the gates appropriately and label the diagram with a symblic expression for the output after each gate.