Mathematica Lab #2

Arav Bhardwaj

DIRECTIONS: you are ask to complete all of the items below. For submission, submit your work to the appropriate upload site with the file name: LastnameMMALab2.nb, for example: GotwalsMMALab2.nb. Show ALL of your inputs (commands) and resulting outputs. Before you submit, EVALUATE YOUR ENTIRE NOTEBOOK, including if it requests to evaluate INITIALIZATION CELLS!

In this file, I have shown you what the output should look like. You should DELETE all cells with my output, to be replaced by yours. Please do not delete the item-ed numbers.

1. Load the file a comma-separated values file "grades.csv" located at **on Canvas (Files --> Week 2).** Place this data into a variable called "grades".

In[•]:=

grades = Import["http://chemistry.ncssm.edu/data/grades.csv"]

Out[•]=

```
{{College.GPA, HS.GPA, SAT, RecLetterQuality}, {2.04, 2.01, 1070, 5},
 \{2.56, 3.4, 1254, 6\}, \{3.75, 3.68, 1466, 6\}, \{1.1, 1.54, 706, 4\}, \{3, 3.32, 1160, 5\},
 \{0.05, 0.33, 756, 3\}, \{1.38, 0.36, 1058, 2\}, \{1.5, 1.97, 1008, 7\}, \{1.38, 2.03, 1104, 4\},
 \{4.01, 2.05, 1200, 7\}, \{1.5, 2.13, 896, 7\}, \{1.29, 1.34, 848, 3\}, \{1.9, 1.51, 958, 5\},
 \{3.11, 3.12, 1246, 6\}, \{1.92, 2.14, 1106, 4\}, \{0.81, 2.6, 790, 5\}, \{1.01, 1.9, 954, 4\},
 \{3.66, 3.06, 1500, 6\}, \{2, 1.6, 1046, 5\}, \{2.05, 1.96, 1054, 4\}, \{2.6, 1.96, 1198, 6\},
 \{2.55, 1.56, 940, 3\}, \{0.38, 1.6, 456, 6\}, \{2.48, 1.92, 1150, 7\}, \{2.74, 3.09, 636, 6\},
 \{1.77, 0.78, 744, 5\}, \{1.61, 2.12, 644, 5\}, \{0.99, 1.85, 842, 3\}, \{1.62, 1.78, 852, 5\},
 \{2.03, 1.03, 1170, 3\}, \{3.5, 3.44, 1034, 10\}, \{3.18, 2.42, 1202, 5\},
 \{2.39, 1.74, 1018, 5\}, \{1.48, 1.89, 1180, 5\}, \{1.54, 1.43, 952, 3\}, \{1.57, 1.64, 1038, 4\},
 \{2.46, 2.69, 1090, 6\}, \{2.42, 1.79, 694, 5\}, \{2.11, 2.72, 1096, 6\}, \{2.04, 2.15, 1114, 5\},
 \{1.68, 2.22, 1256, 6\}, \{1.64, 1.55, 1208, 5\}, \{2.41, 2.34, 820, 6\}, \{2.1, 2.92, 1222, 4\},
 \{1.4, 2.1, 1120, 5\}, \{2.03, 1.64, 886, 4\}, \{1.99, 2.83, 1126, 7\}, \{2.24, 1.76, 1158, 4\},
 \{0.45, 1.81, 676, 6\}, \{2.31, 2.68, 1214, 7\}, \{2.41, 2.55, 1136, 6\}, \{2.56, 2.7, 1264, 6\},
 \{2.5, 1.66, 1116, 3\}, \{2.92, 2.23, 1292, 4\}, \{2.35, 2.01, 604, 5\}, \{2.82, 1.24, 854, 6\},
 \{1.8, 1.95, 814, 6\}, \{1.29, 1.73, 778, 3\}, \{1.68, 1.08, 800, 2\}, \{3.44, 3.46, 1424, 7\},
 \{1.9, 3.01, 950, 6\}, \{2.06, 0.54, 1056, 3\}, \{3.3, 3.2, 956, 8\}, \{1.8, 1.5, 1352, 5\},
 {2, 1.71, 852, 5}, {1.68, 1.99, 1168, 5}, {1.94, 2.76, 970, 6}, {0.97, 1.56, 776, 4},
 \{1.12, 1.78, 854, 6\}, \{1.31, 1.32, 1232, 5\}, \{1.68, 0.87, 1140, 6\}, \{3.09, 1.75, 1084, 4\},
 \{1.87, 1.41, 954, 2\}, \{2, 2.77, 1000, 4\}, \{2.39, 1.78, 1084, 4\}, \{1.5, 1.34, 1058, 4\},
 \{1.82, 1.52, 816, 5\}, \{1.8, 2.97, 1146, 7\}, \{2.01, 1.75, 1000, 6\}, \{1.88, 1.64, 856, 4\},
 \{1.64, 1.8, 798, 4\}, \{2.42, 3.37, 1324, 6\}, \{0.22, 1.15, 704, 6\}, \{2.31, 1.72, 1222, 5\},
 \{0.95, 2.27, 948, 6\}, \{1.99, 2.85, 1182, 8\}, \{1.86, 2.21, 1000, 6\}, \{1.79, 1.94, 910, 6\},
 \{3.02, 4.25, 1374, 9\}, \{1.85, 1.83, 1014, 6\}, \{1.98, 2.75, 1420, 7\}, \{2.15, 1.71, 400, 6\},
 \{1.46, 2.2, 998, 7\}, \{2.29, 2.13, 776, 6\}, \{2.39, 2.38, 1134, 7\}, \{1.8, 1.64, 772, 4\},
 \{2.64, 1.87, 1304, 6\}, \{2.08, 2.53, 1212, 4\}, \{0.7, 1.78, 818, 6\}, \{0.89, 1.2, 864, 2\}\}
```

2. Display the data as a nice table:

In[•]:=

grades // TableForm; Grid[grades, Frame → All]

Out[•]=

	1		
College.GPA			RecLetterQuality
2.04	2.01	1070	5
2.56	3.4	1254	6
3.75	3.68	1466	6
1.1	1.54	706	4
3	3.32	1160	5
0.05	0.33	756	3
1.38	0.36	1058	2
1.5	1.97	1008	7
1.38	2.03	1104	4
4.01	2.05	1200	7
1.5	2.13	896	7
1.29	1.34	848	3
1.9	1.51	958	5
3.11	3.12	1246	6
1.92	2.14	1106	4
0.81	2.6	790	5
1.01	1.9	954	4
3.66	3.06	1500	6
2	1.6	1046	5
2.05	1.96	1054	4
2.6	1.96	1198	6
2.55	1.56	940	3
0.38	1.6	456	6
2.48	1.92	1150	7
2.74	3.09	636	6
1.77	0.78	744	5
1.61	2.12	644	5
0.99	1.85	842	3
1.62	1.78	852	5
2.03	1.03	1170	3
3.5	3.44	1034	10
3.18	2.42	1202	5
2.39	1.74	1018	5
1.48	1.89	1180	5
1.54	1.43	952	3
1.57	1.64	1038	4
2.46	2.69	1090	6
2.42	1.79	694	5
2.11	2.72	1096	6
2.04	2.15	1114	5
1.68	2.22	1256	6
1.64	1.55	1208	5

2.41	2.34	820	6
2.1	2.92	1222	4
1.4	2.1	1120	5
2.03	1.64	886	4
1.99	2.83	1126	7
2.24	1.76	1158	4
0.45	1.81	676	6
2.31	2.68	1214	7
2.41	2.55	1136	6
2.56	2.7	1264	6
			3
2.5	1.66 2.23	1116 1292	4
2.35	2.01	604	5
2.82	1.24		_
		854	6
1.8	1.95	814	6
1.29	1.73	778	3
1.68	1.08	800	2
3.44	3.46	1424	7
1.9	3.01	950	6
2.06	0.54	1056	3
3.3	3.2	956	8
1.8	1.5	1352	5
2	1.71	852	5
1.68	1.99	1168	5
1.94	2.76	970	6
0.97	1.56	776	4
1.12	1.78	854	6
1.31	1.32	1232	5
1.68	0.87	1140	6
3.09	1.75	1084	4
1.87	1.41	954	2
2	2.77	1000	4
2.39	1.78	1084	4
1.5	1.34	1058	4
1.82	1.52	816	5
1.8	2.97	1146	7
2.01	1.75	1000	6
1.88	1.64	856	4
1.64	1.8	798	4
2.42	3.37	1324	6
0.22	1.15	704	6
2.31	1.72	1222	5
0.95	2.27	948	6
1.99	2.85	1182	8
1.86	2.21	1000	6
1.79	1.94	910	6
3.02	4.25	1374	9
1.85	1.83	1014	6

1.98	2.75	1420	7
2.15	1.71	400	6
1.46	2.2	998	7
2.29	2.13	776	6
2.39	2.38	1134	7
1.8	1.64	772	4
2.64	1.87	1304	6
2.08	2.53	1212	4
0.7	1.78	818	6
0.89	1.2	864	2

3. Delete the header row and then extract out each variable and place it into its own variable name, using these variable names: collegegpa, hsgpa,sat,recs. Do NOT include the heading as a part of the dataset.

In[•]:=

```
gradesNoHeader = Delete[grades, 1];
{collegegpa, hsgpa, sat, recs} = Transpose[gradesNoHeader]
```

Out[•]=

```
\{\{2.04, 2.56, 3.75, 1.1, 3, 0.05, 1.38, 1.5, 1.38, 4.01, 1.5, 1.29, 1.9, 3.11, 1.92, 0.81, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.90, 1.9
   1.01, 3.66, 2, 2.05, 2.6, 2.55, 0.38, 2.48, 2.74, 1.77, 1.61, 0.99, 1.62, 2.03,
   3.5, 3.18, 2.39, 1.48, 1.54, 1.57, 2.46, 2.42, 2.11, 2.04, 1.68, 1.64, 2.41, 2.1,
   1.4, 2.03, 1.99, 2.24, 0.45, 2.31, 2.41, 2.56, 2.5, 2.92, 2.35, 2.82, 1.8, 1.29,
   1.68, 3.44, 1.9, 2.06, 3.3, 1.8, 2, 1.68, 1.94, 0.97, 1.12, 1.31, 1.68, 3.09,
   1.87, 2, 2.39, 1.5, 1.82, 1.8, 2.01, 1.88, 1.64, 2.42, 0.22, 2.31, 0.95, 1.99,
   1.86, 1.79, 3.02, 1.85, 1.98, 2.15, 1.46, 2.29, 2.39, 1.8, 2.64, 2.08, 0.7, 0.89
  {2.01, 3.4, 3.68, 1.54, 3.32, 0.33, 0.36, 1.97, 2.03, 2.05, 2.13, 1.34, 1.51, 3.12,
   2.14, 2.6, 1.9, 3.06, 1.6, 1.96, 1.96, 1.56, 1.6, 1.92, 3.09, 0.78, 2.12, 1.85, 1.78,
   1.03, 3.44, 2.42, 1.74, 1.89, 1.43, 1.64, 2.69, 1.79, 2.72, 2.15, 2.22, 1.55, 2.34,
   2.92, 2.1, 1.64, 2.83, 1.76, 1.81, 2.68, 2.55, 2.7, 1.66, 2.23, 2.01, 1.24, 1.95, 1.73,
   1.08, 3.46, 3.01, 0.54, 3.2, 1.5, 1.71, 1.99, 2.76, 1.56, 1.78, 1.32, 0.87, 1.75,
    1.41, 2.77, 1.78, 1.34, 1.52, 2.97, 1.75, 1.64, 1.8, 3.37, 1.15, 1.72, 2.27, 2.85,
    2.21, 1.94, 4.25, 1.83, 2.75, 1.71, 2.2, 2.13, 2.38, 1.64, 1.87, 2.53, 1.78, 1.2},
  {1070, 1254, 1466, 706, 1160, 756, 1058, 1008, 1104, 1200, 896, 848, 958, 1246,
   1106, 790, 954, 1500, 1046, 1054, 1198, 940, 456, 1150, 636, 744, 644, 842, 852,
   1170, 1034, 1202, 1018, 1180, 952, 1038, 1090, 694, 1096, 1114, 1256, 1208, 820,
   1222, 1120, 886, 1126, 1158, 676, 1214, 1136, 1264, 1116, 1292, 604, 854, 814,
   778, 800, 1424, 950, 1056, 956, 1352, 852, 1168, 970, 776, 854, 1232, 1140, 1084,
    954, 1000, 1084, 1058, 816, 1146, 1000, 856, 798, 1324, 704, 1222, 948, 1182,
   1000, 910, 1374, 1014, 1420, 400, 998, 776, 1134, 772, 1304, 1212, 818, 864},
  {5, 6, 6, 4, 5, 3, 2, 7, 4, 7, 7, 3, 5, 6, 4, 5, 4, 6, 5, 4, 6, 3, 6, 7, 6, 5,
    5, 3, 5, 3, 10, 5, 5, 5, 3, 4, 6, 5, 6, 5, 6, 5, 6, 4, 5, 4, 7, 4, 6, 7, 6,
   6, 3, 4, 5, 6, 6, 3, 2, 7, 6, 3, 8, 5, 5, 5, 6, 4, 6, 5, 6, 4, 2, 4, 4, 4,
    5, 7, 6, 4, 4, 6, 6, 5, 6, 8, 6, 6, 9, 6, 7, 6, 7, 6, 7, 4, 6, 4, 6, 2}}
```

4. Put variables hsgpa and collegegpa into ONE list with the variable name: hscollege:

In[•]:=

hscollege = Transpose [{hsgpa, collegegpa}]

Out[•]=

```
\{\{2.01, 2.04\}, \{3.4, 2.56\}, \{3.68, 3.75\}, \{1.54, 1.1\}, \{3.32, 3\}, \{0.33, 0.05\},
 \{0.36, 1.38\}, \{1.97, 1.5\}, \{2.03, 1.38\}, \{2.05, 4.01\}, \{2.13, 1.5\}, \{1.34, 1.29\},
 \{1.51, 1.9\}, \{3.12, 3.11\}, \{2.14, 1.92\}, \{2.6, 0.81\}, \{1.9, 1.01\}, \{3.06, 3.66\},
 \{1.6, 2\}, \{1.96, 2.05\}, \{1.96, 2.6\}, \{1.56, 2.55\}, \{1.6, 0.38\}, \{1.92, 2.48\},
 \{3.09, 2.74\}, \{0.78, 1.77\}, \{2.12, 1.61\}, \{1.85, 0.99\}, \{1.78, 1.62\},
 \{1.03, 2.03\}, \{3.44, 3.5\}, \{2.42, 3.18\}, \{1.74, 2.39\}, \{1.89, 1.48\}, \{1.43, 1.54\},
 \{1.64, 1.57\}, \{2.69, 2.46\}, \{1.79, 2.42\}, \{2.72, 2.11\}, \{2.15, 2.04\},
 \{2.22, 1.68\}, \{1.55, 1.64\}, \{2.34, 2.41\}, \{2.92, 2.1\}, \{2.1, 1.4\}, \{1.64, 2.03\},
 \{2.83, 1.99\}, \{1.76, 2.24\}, \{1.81, 0.45\}, \{2.68, 2.31\}, \{2.55, 2.41\}, \{2.7, 2.56\},
 \{1.66, 2.5\}, \{2.23, 2.92\}, \{2.01, 2.35\}, \{1.24, 2.82\}, \{1.95, 1.8\}, \{1.73, 1.29\},
 \{1.08, 1.68\}, \{3.46, 3.44\}, \{3.01, 1.9\}, \{0.54, 2.06\}, \{3.2, 3.3\}, \{1.5, 1.8\},
 \{1.71, 2\}, \{1.99, 1.68\}, \{2.76, 1.94\}, \{1.56, 0.97\}, \{1.78, 1.12\}, \{1.32, 1.31\},
 \{0.87, 1.68\}, \{1.75, 3.09\}, \{1.41, 1.87\}, \{2.77, 2\}, \{1.78, 2.39\}, \{1.34, 1.5\},
 \{1.52, 1.82\}, \{2.97, 1.8\}, \{1.75, 2.01\}, \{1.64, 1.88\}, \{1.8, 1.64\}, \{3.37, 2.42\},
 \{1.15, 0.22\}, \{1.72, 2.31\}, \{2.27, 0.95\}, \{2.85, 1.99\}, \{2.21, 1.86\}, \{1.94, 1.79\},
 \{4.25, 3.02\}, \{1.83, 1.85\}, \{2.75, 1.98\}, \{1.71, 2.15\}, \{2.2, 1.46\}, \{2.13, 2.29\},
 \{2.38, 2.39\}, \{1.64, 1.8\}, \{1.87, 2.64\}, \{2.53, 2.08\}, \{1.78, 0.7\}, \{1.2, 0.89\}\}
```

5. Show a boxplot for the variable recs (recommendation letters)

In[•]:=

BoxWhiskerChart[recs, Method → {"BoxWidth" → "Scaled"}, ChartStyle → "Pastel"]

Out[•]=

6. Plot hscollege as a graph with dots. Label the axes as shown in the graph below:

```
ListPlot[hscollege, PlotLabel → "Plot of HS GPA vs. College GPA",

AxesLabel → {"HS GPA", "College GPA"}]

Out[*]=

Plot of HS GPA vs. College GPA

College GPA

4

4

4

4

HS GPA

HS GPA
```

7. Perform a linear regression on the hscollege data set:

In[•]:=

```
linearModel = LinearModelFit[hscollege, x, x];
linearModel["BestFit"]

Out[0]=

0.822036 + 0.565491 x
```

8. Plot the original data points in hscollege with the line of best fit as an overlay:

```
Show[ListPlot[hscollege, PlotLabel → "Plot of HS GPA vs. College GPA",
AxesLabel → {"HS GPA", "College GPA"}], Plot[linearModel["BestFit"], {x, 0, 5}]]

Out[*]=

Plot of HS GPA vs. College GPA

College GPA

4

4

3

2

1
```