

In air

 A structured combination of nodes in different layers that work in cohesion is called a neural network.

• **Nodes** form the most basic processing unit of any neural network.

Input Layer

 Number of nodes represents number of features.

Hidden Layers

- Several hidden layers with varying size.
- Not exposed to input or output.
- Perform complex computations using weights & activation functions.

Output Layer

- Provides final output of the network.
- Regression / Binary Classification 1 neuron
- Multi Classification As many as the class

Number of hidden layers determines the depth of the neural network.

Deep Learning

The term Deep Learning is derived from the depth of the neural network.

Fully Connected Network

Fully Connected Network

Fully Connected Network

Output of each layer becomes input for the next layer

Activation function: Introduces non-linearity and allows network to handle complex patterns

Forward Propagation

The forward movement of data from the input to the output layer is called **forward propagation**.

Output validation

By comparing predicted output values with actual target values

Calculates error in prediction

Using Evaluation Metrics such as *Mean Squared Error*

Error is fed back in reverse to update the weights and biases.

The backward movement of data from the output towards the input layer is called **Backpropagation**.

Up Next: Introduction to the framework

Types of neural network

Selection of the type of neural network depends on:

1 Nature of Data

2 Architecture

3 Sequence Processing

4 Training Dynamics

5 Problem Complexity

Types of neural network

Some of the Popular Neural Networks:

MLP

CNN

RNN

Autoencoder

GANs

Transformer

MLP (Multilayer Perceptron)

- A basic form of neural network that consists of multiple layers of nodes.
- Each node is connected to every node in the previous and the next layers.

MLP (Multilayer Perceptron)

XOR Gate Problem

- The outputs of XOR are linearly inseparable
- A perceptron can only separate data points using a single line
- MLP with two hidden layers effectively combines the results of two linear equations.
- Allows for easy separation of linearly inseparable outputs of an XOR gate.

CNN (Convolutional Neural Network)

- Designed for processing data with grid-like structure, such as images and video recognition.
- CNN Convolution Technique: Utilizes filters to capture spatial relationships in data.
- Widely used for Computer Vision tasks such as object detection, face recognition, and semantic segmentation.

RNN (Recurrent Neural Network)

- They uniquely retain a 'memory' of previous inputs to inform the processing of current input.
- Ideal for Natural Language Processing (NLP).
- RNNs excel in handling sequential data like time series or natural language.

Autoencoders

- **Encoder Role**: Compresses input data into a smaller form through encoding.
- **Decoder Function**: Decodes the compressed data to closely match the original input.
- Ideal for reducing size of data, cleaning noisy data and feature extraction

GANs (Generative Adversarial Networks)

- **Generator:** Creates data similar to input data.
- Discriminator: Differentiates between real and generated data.
- This interplay enhances the quality of generated data
- Ideal for creating realistic images or videos

Transformers

- Transformers have revolutionized the field of NLP.
- They have the ability to capture long-range dependencies and handle sequential data effectively.
- Ideal for machine translation, text summarization and language modeling.

In air