

ภาพจำลองอะตอมของทองคำที่สร้างจาก atomic force microscope (AFM)

แบบจำลองอะตอมของดอลตัน

แมกนีเซียม (Mg)

คริปทอน (Kr)

ทฤษฎีอะตอมของคอลตัน

ที่มา: http://www.wise.k12.va.us/jjk/Chemistry/gaslaws.html

- ธาตุประกอบด้วยอนุภาคเล็ก ๆ หลายอนุภาค อนุภาคเหล่านี้เรียกว่า อะตอม ซึ่งแบ่งแยกและทำให้สูญหายไม่ได้
- อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน แต่จะมี สมบัติแตกต่างจากอะตอมของธาตุอื่น
- สารประกอบเกิดจากอะตอมของธาตุมากกว่า 1 ชนิด ทำ ปฏิกิริยาเคมีกันในอัตราส่วนที่เป็นเลขลงตัวน้อย ๆ

หลอดรังสีแคโทด

หลอดรังสีแคโทดที่ดัดแปลงแล้ว

หลอดรังสีแคโทดที่มีขั้วไฟฟ้าในหลอดเพิ่มขึ้นอีกสองขั้ว

หลอดรังสีแคโทดกับอนุภาคบวก

แบบจำลองอะตอมของทอมสัน

แบบจำลองอะตอมของทอมสัน

ที่มา : http://www.nndb.com/people/479/000099182/

"อะตอมเป็นรูปทรงกลมประกอบด้วย เนื้ออะตอมซึ่งมีประจุบวกและมีอิเล็กตรอนซึ่งมี ประจุลบกระจายอยู่ทั่วไป อะตอมในสภาพที่ เป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวก เท่ากับจำนวนประจุลบ"

การทดลองของรัทเทอร์ฟอร์ด

การทดลองของรัทเทอร์ฟอร์ด

การใช้แบบจำลอง อธิบายผลการทดลอง

แบบจำลองอะตอมของรัทเทอร์ฟอร์ด

แบบจำลองอะตอมของรัทเทอร์ฟอร์ด

ที่มา : http://www.biografiasyvidas.com/biografia/r/rutherford.htm

"อะตอมประกอบด้วยนิวเคลียสที่มีขนาดเล็กมาก อยู่ตรงกลาง และมีประจุไฟฟ้าเป็นบวก โดยมี อิเล็กตรอนวิ่งอยู่รอบ ๆ"

อนุภาคมูลฐานของอะตอม

อนุภาค	สัญลักษณ์	ประจุไฟฟ้า (คูลอมบ์)	ชนิดประจุ ไฟฟ้า	มวล (กรัม)	
อิเล็กตรอน (electron)	е	1.602 × 10 ⁻¹⁹	_	9.109 × 10 ⁻²⁸	
โปรตอน (proton)	р	1.602 × 10 ⁻¹⁹	+	1.673 × 10 ⁻²⁴	
นิวตรอน (neutron)	n	0	0	1.675 × 10 ⁻²⁴	

เปรียบเทียบแบบจำลองอะตอมแบบต่าง ๆ

แบบจำลองอะตอม ของดอลตัน แบบจำลองอะตอม ของทอมสัน แบบจำลองอะตอม ของรัทเทอร์ฟอร์ด

สัญลักษณ์นิวเคลียร์

เลขมวล (Mass Number)

- ตัวเลขที่แสดงผลรวมของจำนวน
 โปรตอนและนิวตรอน
- + ใช้สัญลักษณ์เป็น A

เลขอะตอม (Atomic Number)

- 🛨 ตัวเลขที่แสดงจำนวนโปรตอน
- ⁴ ใช้สัญลักษณ์เป็น Z

ตัวอย่าง คาร์บอนมีจำนวนโปรตอน 6 จึงมีเลขอะตอมเท่ากับ 6 และมีจำนวนนิวตรอน เท่ากับ 6 จึงมีเลขมวลเป็น 12 ดังนั้นเขียนสัญลักษณ์นิวเคลียร์ได้เป็น 13 ดังนั้นเขียนสัญลักษณ์นิวเคลียร์ได้เป็น 12 ดังนั้นเขียนสัญลักษณ์นิวเคลียร์ได้เป็น 15 ดังนั้นเขียนสัญลักษณ์นิวเลียร์ได้เป็น 15 ดังนั้นเขียนสัญลักษณ์นิวเล้น 15 ดังนั้นเขียนสันที่นิวเล้น 15 ดังนิวเล้น 15 ดังนั้นเขียนสันที่นิวเล้น 15 ดังนั้น 15

คลื่นและความยาวคลื่น

ความยาวคลื่น (Wavelength)

- คือระยะทางที่คลื่นเคลื่อนที่ครบ 1 รอบ
- + มีหน่วยเป็นเมตร (m)
- + ใช้สัญลักษณ์เป็น λ

ความถี่ของคลื่น (Frequency)

- คือจำนวนรอบของคลื่นที่เคลื่อนที่ผ่านจุดใดจุดหนึ่งในเวลา 1 วินาที
- + มีหน่วยเป็นจำนวนรอบต่อวินาที (s⁻¹)
 หรือเรียกชื่อเฉพาะว่าเฮิรตซ์ (Hz)
- riangle ใช้สัญลักษณ์เป็น ${f v}$

สเปกตรัมคลื่นแม่เหล็กไฟฟ้า

การหักเหของแสงขาวเมื่อผ่านปริซึม

แสงสีต่าง ๆ ในแถบสเปกตรัมของแสงขาว

สเปกตรัม	สเปกตรัม				
แสงสีม่วง	400 – 420				
แสงสีคราม – น้ำเงิน		420 – 490			
แสงสีเขียว		490 – 580			
แสงสีเหลือง		580 – 590			
แสงสีแสด (ส้ม)		590 – 650			
แสงสีแดง		650 – 700			

เส้นสเปกตรัมของธาตุบางธาตุ

การเปลี่ยนระดับพลังงานของอิเล็กตรอนในอะตอมของไฮโดรเจน

ผลต่างระหว่างพลังงานของเส้นสเปกตรัมของอะตอมไฮโดรเจน

เส้นสเปกตรัม	ี่ ความยาวคลื่น พลังง ปกตรัม (nm) (kJ)		ผลต่างระหว่างพลังงานของ เส้นสเปกตรัมที่อยู่ถัดกัน (kJ)
สีม่วง	410	4.84×10^{-22}	2.70×10^{-23}
สีคราม	434	4.57×10^{-22}	$\begin{array}{c} 2.70 \times 10 \\ \hline \\ 4.90 \times 10^{-23} \end{array}$
สีน้ำเงิน	486	4.08×10^{-22}	$ \begin{array}{c} 4.90 \times 10 \\ 10.60 \times 10^{-23} \end{array} $
สีแดง	656	3.02×10^{-22}	10.60 X 10

แบบจำลองอะตอมของโบร์

แบบจำลองอะตอมของโบร์

ที่มา : http://www.green-planet-solar-energy.com/atom-2.html

"อิเล็กตรอนจะเคลื่อนที่รอบนิวเคลียสเป็นวง คล้ายวงโคจรของดาวเคราะห์รอบดวงอาทิตย์ โดย แต่ละวงจะมีระดับพลังงานเฉพาะตัว ระดับพลังงาน ของอิเล็กตรอนที่อยู่ใกล้นิวเคลียสที่สุดซึ่งมีพลังงาน ต่ำที่สุดเรียกว่า ระดับ K และระดับพลังงานที่อยู่ถัด ออกมาเรียกเป็น L, M, N, ... ตามลำดับ"

ภาพ 2 มิติแสดงกลุ่มหมอกอิเล็กตรอนของไฮโดรเจนอะตอม

แต่ละจุดคือ 1 โอกาสที่จะพบอิเล็กตรอน

แบบจำลองอะตอมแบบกลุ่มหมอก

"อะตอมประกอบด้วยกลุ่มหมอกของอิเล็กตรอนรอบนิวเคลียสบริเวณที่กลุ่มหมอกทึบ แสดงว่ามีโอกาสที่จะพบอิเล็กตรอนได้มากกว่าบริเวณที่กลุ่มหมอกจาง"

วิวัฒนาการของแบบจำลองอะตอม

ปี พ.ศ.2346 (ค.ศ.1803) จอห์น ดอลตัน ทฤษฎีอะตอมของดอลตัน

ปี พ.ศ.2440 (ค.ศ.1897) เซอร์ โจเซฟ จอห์น ทอมสัน แบบจำลองอะตอมของทอมสัน

ปี พ.ศ.2454 (ค.ศ.1911) ลอร์ดเออร์เนสต์ รัทเทอร์ฟอร์ด แบบจำลองอะตอมของรัทเทอร์ฟอร์ด

แบบจำลองอะตอม แบบกลุ่มหมอก

ปี พ.ศ.2456 (ค.ศ.1913) นีลส์ โบร์ ทฤษฎีอะตอมไฮโดรเจนของโบร์

แผนภาพระดับพลังงานของอะตอมที่มีหลายอิเล็กตรอน

รูปร่างออร์บิทัล s p และ d

จำนวนอิเล็กตรอนสูงสุดในระดับพลังงานย่อยและในแต่ละระดับพลังงาน

ระดับพลังงาน	ระดับพลังงานย่อย	จำนวนอิเล็กตรอนสูงสุด ในระดับพลังงานย่อย	จำนวนอิเล็กตรอนสูงสุด ในระดับพลังงาน
1	S	2	2
2	S	2	8
	p	6	O
3	S	2	
	p	6	18
	d	10	
4	S	2	
	p	6	32
	d	10	J2
	f	14	

ลำดับการบรรจุอิเล็กตรอนลงในออร์บิทัล

จำนวนระดับพลังงานย่อย

$$n = 1$$

$$n = 2$$

$$n = 3$$

$$n = 4$$

$$n = 5$$

$$n = 6$$

$$n = 7$$

3p

แผนภาพแสดงการบรรจุอิเล็กตรอนในออร์บิทัลของธาตุบางธาตุ

2p 15 25 หรือ $1s^2 2s^1$ ₃Li หรือ $1s^2 2s^2$ ₄Be หรือ $1s^2 2s^2 2p^1$ ₅B หรือ $1s^2 2s^2 2p^2$ หรือ $1s^2 2s^2 2p^3$ $_{7}N$ หรือ $1s^2 2s^2 2p^4$ หรือ $1s^2 2s^2 2p^5$ หรือ $1s^2 2s^2 2p^6$ ₁₀Ne :

ตารางธาตุของเมนเดเลเอฟที่ปรับปรุงใหม่

REIHEN	GRUPPE 1. — R ² O	GRUPPE II. RO	GRUPPE III. R2O3	GRUPPE IV. RH4 RO2	GRUPPE V. RH3 R2O5	GRUPPE VI. RH ² RO ³	GRUPPE VII. RH R207	GRUPPE VIII. RO4
1	H=1							
2	Li = 7	Be = 9,4	B = 11	C=12	N=14	0=16	F=19	
3	Nq = 23	Mg = 24	A1 = 27,3	Si = 28	P = 31	S = 32	C1 = 35,5	
4	K = 39	Ca = 40	-= 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63.
5	(Cu = 63)	Zn = 65	-=68	-= 72	As = 75	Se = 78	Br = 80	
6	Rb = 85	Sr=87	3Af = 88	Zr = 90	Nb = 94	Mo = 96	-=100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
7	(Ag = 108)	Cd = 112	In=113	Sn=118	Sb=122	Te=125	J=127	A STATE OF THE STA
8	CS = 133	Ba = 137	? Di = 138	?Ce = 140	-	-	-	
9	(-)	_	_	_	-	-	_	
10	-	-	?Er = 178	? La = 180	Ta = 182	W = 184	-	Os = 195, Ir = 197, Pt = 198, Au = 199
11	(Au=199)	Hg = 200	TI = 204	Pb = 207	Bi = 208	_	_	
12	_	_	_	Th = 231	_	U = 240	_	

ตารางธาตุในปัจจุบัน

ตารางธาตุแสดงระดับพลังงานย่อยหรือออร์บิทัลที่อยู่ในแต่ละระดับพลังงาน

รัศมีโคเวเลนต์ของไฮโดรเจนและคลอรีน

ความยาวพันธะ H - H = 74 pm
รัศมีโคเวเลนต์ของ H =
$$\frac{74}{2}$$
 pm = 37 pm

ความยาวพันธะ Cl - Cl = 198 pm
รัศมีโคเวเลนต์ของ Cl =
$$\frac{198}{2}$$
 pm
= 99 pm

รัศมีแวนเดอร์วาลส์ของคริปทอนและไฮโดรเจน

รัศมีอะตอม (พิโกเมตร) ของธาตุในตารางธาตุ

IA							VIIIA
H							Не
37	IIA	IIIA	IVA	VA	VIA	VIIA	180
Li	Be	B	O	N	0	(Ne
152	111	80	77	75	73	71	160
Na	Mg	Al	Si	P	S	Cl	Ar
186	160	143	117	110	103	99	190
K	Ca	Ga	Ge	As	Se	Br	Kr
227	197	122	123	125	116	114	200
Rb	Sr	In	Sn	Sb	Те		Xe
248	215	163	141	145	143	133	220
Cs	Ba	T	Pb	Bi	Po	At	
265	217	170	175	155	140	140	

เปรียบเทียบขนาดอะตอมกับไอออน

Mg: $1s^2 2s^2 2p^6 3s^2$ 160 pm

 $Mg^{2+}: 1s^2 2s^2 2p^6$ 65 pm

 $0: 1s^2 2s^2 2p^4$ 73 pm

 $0^{2^{-}}$: $1s^{2} 2s^{2} 2p^{6}$ 140 pm

รัศมีไอออนของ Mg²⁺ และ O²⁻

รัศมีอะตอมและรัศมีไอออน (พิโกเมตร) ของธาตุในตารางธาตุ

IA	IIA	IIIA	IVA	VA	VIA	VIIA
Li 152	Be 111	B 80	© 77	N 75	O 73	F 71
59 Li	31 Be ²⁺	20 ^{B3+}		171 N ³⁻	140 02-	133 F
Na 186	Mg 160	Al 143	Si 118	P 110	S 103	Cl 99
99 Na [†]	Mg ²⁺	Al ³⁺ 50 ○		212 P ³⁻	184 S ²⁻	181 Cl
K 227	Ca 197	Ga 122	Ge 123	As 125	Se 116	Br 114
138 K ⁺	Ca ²⁺	Ga ³⁺ 62 ○		As ³⁺	198 Se ² -	196 Br
Rb 248	Sr 215	ln 163	Sn 141	Sb 145	Te 143	133
148 Rb [†]	Sr ²⁺	In ³⁺ 92	Sn ²⁺ 93	Sb ³⁺ 89	221 Te ²⁻	220
Cs 265	Ba 217	Tl 170	Pb 175	Bi 155		
	Ba ²⁺	Tl ⁺	Pb ²⁺	Bi ³⁺		
169 Cs ⁺	135	149	132	96		

ค่าพลังงานไอออไนเซชันลำดับที่ 1 ของธาตุในตารางธาตุ

1 🗲 เลขอะตอม									
	H 1318 ← ค่าพลังงานไอออไนเซชันลำดับที่ 1 (kJ/mol)								
IA	IIA	IIIA	IVA	VA	VIA	VIIA	He 2379		
3	4	5	6	7	8	9	10		
Li	Be	В	C	N	0	F	Ne		
526	906	807	1093	1407	1320	1687	2087		
11	12	13	14	15	16	17	18		
Na	Mg	Al	Si	Р	S	Cl	Ar		
496	744	584	793	1018	1006	1257	1527		
19	20	31	32	33	34	35	36		
K	Ca	Ga	Ge	As	Se	Br	Kr		
425	596	585	768	953	947	1146	1357		
37	38	49	50	51	52	53	54		
Rb	Sr	In	Sn	Sb	Te	l I	Xe		
409	556	565	715	840	876	1015	1177		
55	56	81	82	83	84	85	86		
Cs	Ва	Τl	Pb	Bi	Ро	At	Rn		
382	509	596	722	710	818	-	1043		
87	88								
Fr	Ra								
_	516								

ค่าอิเล็กโทรเนกาติวิตีของธาตุในตารางธาตุ

		1 ← H	— เลขอะ	ตอม					
	2.20 🗲 — ค่าอิเล็กโทรเนกาติวิตี								
	1		•					2	
	LA	ша	ша	11.7.6	\	\	\	He	
ı	IA	IIA	IIIA	IVA	VA	VIA	VIIA		
	3	4	5	6	7	8	9	10	
	Li	Be	В	C	N	0	F	Ne	
	0.98	1.57	2.04	2.55	3.04	3.44	3.98		
	11	12	13	14	15	16	17	18	
	Na	Mg	Al	Si	Р	S	Cl	Ar	
	0.93	1.31	1.61	1.90	2.19	2.58	3.16		
	19	20	31	32	33	34	35	36	
	K	Ca	Ga	Ge	As	Se	Br	Kr	
	0.82	1.00	1.81	2.01	2.18	2.55	2.96	2.90	
	37	38	49	50	51	52	53	54	
	Rb	Sr	In	Sn	Sb	Te	1	Xe	
	0.82	0.95	1.78	1.96	2.05	2.10	2.66	2.60	
	55	56	81	82	83	84	85	86	
	Cs	Ba	Τl	Pb	Bi	Ро	At	Rn	
	0.79	0.89	2.04	2.33	2.02	2.00	2.20		
	87	88							
	Fr	Ra							
	0.70	0.90							

ค่าสัมพรรคภาพอิเล็กตรอนของธาตุในตารางธาตุ

	1 ←	— เลขอะ	ตอม						
	-77 ← ค่าสัมพรรคภาพอิเล็กตรอน (kJ/mol)								
IA	IIA	IIIA	IVA	VA	VIA	VIIA	He (21)		
3	4	5	6	7	8	9	10		
Li	Be	В	C	N	0	F	Ne		
-58	(241)	-23	-123	0	-142	-333	(29)		
11	12	13	14	15	16	17	18		
Na	Mg	Al	Si	Р	S	Cl	Ar		
-53	(230)	-44	-120	-74	-200	-348	(35)		
19	20	31	32	33	34	35	36		
K	Ca	Ga	Ge	As	Se	Br	Kr		
-48	(154)	-35	-118	-77	-195	-324	(39)		
37	38	49	50	51	52	53	54		
Rb	Sr	In	Sn	Sb	Те	l	Xe		
-47	(120)	-34	-121	-101	-190	-295	(40)		
55	56	81	82	83	84	85	86		
Cs	Ва	Tl	Pb	Bi	Ро	At	Rn		
-45	(52)	-48	-101	-100	?	?	?		
87	88								
Fr	Ra								
2	7						_		

จุดหลอมเหลวและจุดเดือดของธาตุในตารางธาตุ

	-259.1								
	-252.8 ←	H -252.8 ← จุดเดือด (°C)							
							-272		
							He		
IA	IIA	IIIA	IVA	VA	VIA	VIIA	-269		
179	1280	2300	>3550	-209.86	-218	-223	-248		
Li	Be	В	C	N	0	F	Ne		
1317	2770	2550	4827	-195.8	-183	-187	-246		
97.6	650	660	1410	44	113	-102	-189		
Na	Mg	Al	Si	P	S	Cl	Ar		
892	1170	2450	2355	280	445	-35	-186		
63	839±2	29.78	937.4	358 (สลาย)	217	-7	-157		
K	Ca	Ga	Ge	As	Se	Br	Kr		
770	1484	2403	2830	613 (ระเหิด)	685	59	-153		
39	770	156.61	231.9	631	450	114	-112		
Rb	Sr	In	Sn	Sb	Te	1	Xe		
688	1580	2080	2270	1635	990	183	-107		
28	714	304	327.5	271.3	254	302	-71		
Cs	Ba	Τl	Pb	Bi	Ро	At	Rn		
678	1870	1473	1740	1560	962	337	-62		
-	700		_			-			
Fr	Ra								
-	1737								

เลขออกซิเดชันต่าง ๆ ของธาตุในตารางธาตุ

							VIIIA
IA	IIA	IIIA	IVA	VA	VIA	VIIA	He
+1 Li	Be +2	+3 B	-4 +2 +4 C	-1 +1 -2 +2 -3 N +3 +4 +5	-1 +2 -2 O	-1 F	Ne
Na +1	Mg ⁺²	Al +3	-4 +2 Si +4	-3 +3 P +5	-2 +2 S +4 +6	-1 Cl +1 +5 +5 +7	Ar
K ⁺¹	Ca ⁺²	Ga ⁺¹	Ge +2	-3 As +3 +5	-2 Se +2 +4 +6	-1 Br +1 +5 +7	Kr ⁺²
Rb +1	Sr +2	In +1	Sn ⁺²	-3 +3 +5 Sb +5	-2 +2 +4 +6	-1 +1 +5 +7	Xe +2 +4 +6 +8
Cs ⁺¹	Ba ⁺²	Tl +1 +3	Pb +2 +4	Bi +3 +5	Po +2 +4	⁻¹ At	Rn ⁺²
Fr ⁺¹	Ra ⁺²						

แนวโน้มสมบัติของธาตุตามหมู่และตามคาบในตารางธาตุ

