| Name: |  |
|-------|--|
| Perm: |  |

 ${\bf Math~34A~Final~Exam,\,Spring~2022}$ 

1. (15 pts) Please use the graph below to estimate your answers.



(a) Find  $\log(2512)$ 

$$\log(2512) \approx$$

(b) Find  $\log(2^{10})$ 

$$\log(2^{10}) \approx$$

(c) Approximate a solution for x in the equation  $2^{3x-5} = 5^3$ 



| (6 pts) For this problem, $k, m$ , and $b$ are constant values. | Find $\frac{d}{dx}$ | $\frac{1}{2}\left(2ke^{3kx}+mx\right)$ | (c+b) | and |
|-----------------------------------------------------------------|---------------------|----------------------------------------|-------|-----|
| simplify your answer.                                           |                     |                                        |       |     |

$$\frac{d}{dx}\left(2ke^{3kx} + mx + b\right) =$$

3. (10 pts) This question is about the graph of the function

$$f(x) = -x^2 + 8x + 16.$$

(a) When does f achieve its highest value?

When 
$$x =$$

(b) Write the equation of the tangent line at x = 0 in the form y = mx + b.

$$y =$$

4. (7 pts) For each part of problem (4) please use the graph below to estimate your answers.



(a) (3pts) Find a solution for  $2^x = \frac{4}{3}$ 



(b) (4pts) The SoCal Burger restaurant chain has been very popular since they first opened their first location in Santa Barbara a few years ago and they now have hundreds of locations. In fact, over the last twelve months the number of locations has doubled! In order to set a world record, they just need to grow 50% over the next year. Assuming that their steady, exponential growth from last year continues over the next year, how many months would it take?

(Hint, the answer is **not** 6 months).

A model that might be helpful:  $y = A \cdot 2^t$ , where y is the number of locations t years from now and A is the current number of locations.



5. (9pts) Below is the graph of a funtion g(x) with five labeled points, A, B, C, D, and E. Identify a point where g''(x) < 0, a point where g''(x) = 0, and a point where g''(x) > 0.



| 11( ) (0   | /// ) 0    | ' | 11/ \ > 0  |
|------------|------------|---|------------|
| g''(x) < 0 | g''(x) = 0 |   | g''(x) > 0 |
| 9 (**)     | 9 (**)     |   | 9 (**) 1   |

6. (10pts) For this problem,  $f(x) = (x^2 + 3)(x + 2)$ .

(a) 
$$f'(x) =$$

(b) 
$$f''(x) =$$

| 7. | (15pts) Jack Johnson* will be playing at the Santa Barbara Bowl next fall. He give 100 concert tickets, asking you to sell them on campus for a charity and to give awa left-over tickets. The price is up to you, but you need to sell them all at the same If the price you set is \$20 each then you would sell all 100 tickets. For each dollar decide to increase the price, the number of tickets you could sell would decrease by | y any<br>price.<br>r you |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|    | (a) If your ticket price is $\$(20+x)$ , how many tickets would you be able to sell?                                                                                                                                                                                                                                                                                                                                                     |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    | $oxed{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                | ickets                   |
|    | (b) What is the total amount of money (in terms of x) you would receive for s those tickets? You do not need to simplify your answer for this part.                                                                                                                                                                                                                                                                                      | selling                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    | \$                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
|    | (c) What is the maximum amount of money you could receive from selling tickets                                                                                                                                                                                                                                                                                                                                                           | s?                       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|    | \$                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
|    | $\Phi$                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |

<sup>\*</sup>Maybe this story isn't so far-fetched. Jack Johnson is a UCSB alumnus and after he heard about a tragic event that happened here a few years ago he came and played a free concert in front of Storke Tower. He also fund-raises frequently for people in need in this area, including a benefit a couple months ago for victims of the Thomas fire.