Improved Analysis of the Experimental Data on the H₂D⁺ and D₂H⁺ Absorption Spectra

I. N. KOZIN, O. L. POLYANSKY, AND N. F. ZOBOV

Institute of Applied Physics, Academy of Sciences of the USSR, Gorky, USSR

An improved analysis of the ν_1 fundamental bands of the molecular ions H_2D^+ and D_2H^+ has been carried out with two MW frequencies of H_2D^+ and combination differences from the ν_2 and ν_3 bands of H_2D^+ and D_2H^+ . It is shown that the previous analysis of the ν_1 bands was poor because of misassignments. The following reassignments are made: for H_2D^+ , the line 3168.702 cm⁻¹ is assigned to 5_{05} – 4_{04} ; for D_2H^+ , the line 2990.154 cm⁻¹ is assigned to 4_{41} – 3_{30} ; the assignments of the lines 2899.242 and 2899.362 cm⁻¹ are interchanged (this interchange was confirmed independently (S. C. Foster, A. R. W. McKellar, and J. K. G. Watson, J. Chem. Phys. 85, 664, 1986)); the line 2832.859 cm⁻¹ is presumably due to the 5_{15} – 5_{14} transition of H_2D^+ . This reassignment results in a fit that is about five times better than that in the previous model of up to J^4 for H_2D^+ and up to J^6 for D_2H^+ . A Padé model of a one-dimensional approximation of Watson's Hamiltonian is used in both cases. © 1988 Academic Press. Inc.

INTRODUCTION

The H_3^+ molecular ion plays an important part in the formation of molecules in the interstellar medium (1), and the H_2D^+ and D_2H^+ ions are important in the deuterium fractionation of interstellar molecules. They have permanent dipole moments and, therefore, pure rotational spectra. Some lines of these spectra have been observed in the laboratory (2-4) as well as by radio astronomy (5). The H_3^+ ion belongs to the series of the "simplest" quantum systems: H is the simplest atom, H_2 is the simplest diatomic molecule, and H_3^+ is the simplest polyatomic molecule. The H_2D^+ and D_2H^+ molecular ions are the lightest asymmetric top molecules. Thus, a precise analysis of the spectra of these ions is interesting from the viewpoint of both the development of the theory of centrifugal distortion in light molecules and applications in astrophysics and quantum chemistry.

ANALYSIS

The IR spectra of the ν_1 , ν_2 , and ν_3 fundamental bands of the H_2D^+ and D_2H^+ were studied in Refs. (6-10). According to the authors of these papers the experimental uncertainty in the determination of the absorption line centers was about 2×10^{-3} cm⁻¹.

In these investigations experimental data on the line frequencies of rotational and rovibrational spectra of H_2D^+ and D_2H^+ were analyzed. Thirty-seven frequencies of the ν_1 -band transitions of H_2D^+ together with two MW rotational frequencies were fitted in Ref. (8). The standard deviation in a model of conventional Watson's Hamiltonian (11) with terms up to J^6 was 2.5×10^{-2} cm⁻¹:

$$\sigma = \left[\sum_{i=1}^{N} \left(\frac{\nu_{\text{obs.}}^{i} - \nu_{\text{cal.}}^{i}}{\sigma_{i}} \right)^{2} / (N - P) \right]^{1/2}. \tag{1}$$

The fit of 35 line frequencies of the ν_1 band of D_2H^+ in the same model (10) resulted in the standard deviation $\sigma = 4.4 \times 10^{-2}$ cm⁻¹. Thus, the accuracy of the calculated frequencies was more than 10 times worse than the experimental uncertainty.

The data on the ν_2 and ν_3 absorption bands of the H_2D^+ molecular ion were analyzed in Ref. (6) and data on the D_2H^+ ion were analyzed in Ref. (7) by means of a one-dimensional approximation of Watson's Hamiltonian (11) suggested in Ref. (12). As a result of the fitting the standard deviation σ was 9×10^{-3} cm⁻¹ for 73 line frequencies of H_2D^+ and 26×10^{-3} cm⁻¹ for 88 line frequencies of D_2H^+ .

We used the method reported in Ref. (12) to reanalyze the ν_1 bands of the H_2D^+ and D_2H^+ ions and found that by reassigning some frequencies of the bands mentioned above the experimental data could be fitted to an accuracy close to the experimental results.

Combined refitting of 37 line frequencies of the fundamental band ν_1 of H_2D^+ (8), two known MW frequencies (2-4), and 20 combination differences from the ground state from the ν_2 - and ν_3 -band data (6) was carried out by the following Padé model of a one-dimensional approximation of Watson's Hamiltonian (12) including terms up to J^4 :

$$H = {}^{\mathbf{P}}H_{\text{diag}} + \frac{1}{2}{}^{\mathbf{P}}H_{\text{offdiag}}(J_{x}^{2} - J_{y}^{2}) + \frac{1}{2}(J_{x}^{2} - J_{y}^{2})^{\mathbf{P}}H_{\text{offdiag}};$$

$${}^{\mathbf{P}}H_{\text{diag}}^{(4)} = \frac{C_{0}^{2}}{C_{0} - C_{1}}; \qquad {}^{\mathbf{P}}H_{\text{offdiag}}^{(4)} = \frac{b_{0}^{2}}{b_{0} - b_{1}};$$

$$C_{0} = \frac{B + C}{2}J^{2} + \left(A - \frac{B + C}{2}\right)J_{z}^{2}; \qquad b_{0} = \frac{B - C}{2};$$

$$C_{1} = -\Delta_{J}J^{4} - \Delta_{JK}J^{2}J_{z}^{2} - \Delta_{K}J_{z}^{4}; \qquad b_{1} = -2(\delta_{J}J^{2} + \delta_{K}J_{z}^{2}). \tag{2}$$

After the reassignment of the 3168.702-cm^{-1} frequency from 5_{14} – 4_{14} to 5_{05} – 4_{04} the standard deviation $\sigma = 9 \times 10^{-3}$ cm⁻¹ was obtained for IR data. The differences between the experimental and calculated values of frequencies reported in Ref. (8) and in this work are presented in Table I. The MW frequencies and combination differences taken from Ref. (6) are given in the first part of Table III together with the differences between the calculated and experimental values. The three combination differences of the ground state obtained by using the 2429.647-cm^{-1} line of the ν_3 band (6) differ by about 0.04 cm⁻¹ from the ones obtained by using the ν_1 - and ν_2 -band frequencies (6, 8). Hence, the frequency of this line is probably incorrect by about 0.04 cm⁻¹. We did not include these differences in the fit. Molecular constants of H_2D^+ in both the ground and (100) states are presented in Table IV.

The refit of 34 out of 35 line frequencies of the ν_1 fundamental band of D_2H^+ from Ref. (10) and 20 combination differences on the ground state from Ref. (7) was carried out in the Padé model of one-dimensional approximation including terms up to J^4 (Eq. (2)) for the ground state and in the Padé model with a diagonal part of the Hamiltonian including terms up to J^6 ,

 $TABLE \ I$ Results of the ν_1 Band of H_2D^+ Analysis (in $cm^{-1})$

Transision		$^{ u}$ obs.	(ν _{obs.} - ν _{cal.})·10 ³	
л'к <u>'</u> к' -	- J"K"K"	Ref. [8]	This work	Ref. [8]
3 1 3	4 1 4	2839.387	4	10
2 1 1	3 1 2	2840.962	18	2
202	303	2871.897	1	2
1 2	3 1 3	2974.811	-3	-6
1 1 0	2 1 1	2887.370	- 6	24
202	221	2904.657	-1	-1
0 1	202	2906.523	-7	-20
1 1 1	2 1 2	2911.635	-11	12
000	101	2946.802	-8	-13
1 2	2 1 1	2952.940	1	-7
3 2 2	321	2963.513	3	-16
3 3 1	3 3 0	2975.064	-4	14
1 1 1	1 1 0	2978.045	1	15
3 3 0	3 3 1	2978.492	3	-11
2 2 1	220	2979.987	-1	-9
2 2 0	221	2991.162	5	1
1 1 0	1 1 1	3003.276	0	23
3 2 1	3 2 2	3009.123	9	9
2 1 1	2 1 2	3028.263	1	-2
0 1	000	3038.177	5	-21
3 1 2	3 1 3	3063.006	-10	-10
2 1 2	1 1 1	3068.845	6	-9
2 2 1	202	3072.190	-3	-11
0 2	1 0 1	3077.611	4	2
2 1 1	1 1 0	3094.671	10	0
3 1 3	2 1 2	3104.207	1	11
303	202	3109.645	-3	46
3 2 2	221	3121.202	-4	-13
1 1 4	3 1 3	3137.007	7	-23
104	303	3139.197	3	-32
3 2 1	220	3140.044	7	0
3 1 2	2 1 1	3141-131	-9	-15
123	3 2 2	3160.971	-20	25
505	404	3168.702	-8	
113	3 1 2	3178-973	-20	26
2 2	3 2 1	3193.963	-2	-4
5 1 4	4 1 3	3208.187	18	-14

$${}^{P}H_{\text{diag}}^{(6)} = C_0 + \frac{C_1^2}{C_1 - C_2};$$

$$C_2 = H_J J^6 + H_{JK} J^4 J_z^2 + H_{KJ} J^2 J_z^4 + H_K J_z^6,$$
(3)

for the (100) vibrational state. The off-diagonal part for the (100) state was the same as that in Eq. (2). We used a higher order in the diagonal part of the Hamiltonian for the excited state because of higher J and K for the (100) data than for the ground state (see Table II).

Transision		$^{ u}$ obs.	$(v_{obs} - v_{cal}) 10^3$	
J'KaKc	- J"Ka"k" σ	Ref. [10]	This work	Ref. [10]
202	3 1 3	2637.524	8	10
101	2 1 2	2661.258	20	6
1 1 1	202	2683.613	0	-47
202	2 1 1	2701.189	12	9
1 1 0	101	2759.036	1	52
2 1 1	202	2769.753	-10	53
3 2 1	3 1 2	2777.196	2	-46
2 2 0	2 1 1	2779.238	-1	32
4 2 2	4 1 3	2782.543	0	36
1 1 1	000	2785.332	0	-46
202	1 1 1	2788.300	11	8
3 1 2	303	2788.990	-11	-57
221	2 1 2	2802.436	-1	7
2 1 2	101	2810.800	-6	-37
4 1 3	404	2815.314	-1	5
3 2 2	3 1 3	2815.778	5	-22
303	2 1 2	2820.564	2	18
3 1 3	202	2832.828	-14	6
404	3 1 3	2849.066	1	-16
4 1 4	303	2854.421	-11	27
2 2 1	1 1 0	2854.707	3	8
220	1 1 1	2866.350	1	33
505	4 1 4	2874.948	9	-45
5 1 5	404	2876.954	0	22
3 2 2	2 1 1	2879.442	6	-22
423	3 1 2	2899.242	6	
606	5 1 5	2899.362	-2	
5 2 4	4 1 3	2915.899	0	-32
3 2 1	2 1 2	2918.238	2	-46
3 3 1	220	2924.524	-3	-13
3 3 0	221	2928.067	ó	.,
4 3 2	3 2 1	2951.532	-10	7
4 3 1	3 2 2	2968.334	7	-11
4 4 1	3 3 0	2990 • 154	2	
				_

To obtain an accuracy close to the experimental value, we reassigned the following three transitions: 2990.154 cm⁻¹ was reassigned from 4_{40} – 3_{31} to 4_{41} – 3_{30} ; 2899.242 cm⁻¹ was reassigned to 4_{23} – 3_{12} , and 2899.362 cm⁻¹ was reassigned to 6_{06} – 5_{15} . This yielded the standard deviation $\sigma = 7 \times 10^{-3}$ cm⁻¹. The results of the analysis for the ν_1 band of D_2H^+ are given in Table II and for the ν_2 and ν_3 bands combination differences are presented in the second part of Table III. The molecular constants of the (000) and (100) states are given in Table IV. The 2832.859-cm⁻¹ transition was excluded from the fit. It may be due to the 5_{15} – 5_{14} transition of the ν_1 band of H_2D^+ . This suggestion can be verified by a test of the dependence of this line's intensity on the H_2/D_2 ratio in a discharge. The exchange in the assignment of the two lines and exclusion of the 2832.859-cm⁻¹ line from the fit were confirmed independently in Ref. (7).

TABLE III $MW\ Frequencies\ (in\ MHz)\ and\ Combination\ Differences\ (in\ cm^{-1})\ of\ H_2D^+\ and\ D_2H$ in the Ground State from the ν_2 and ν_3 Bands Data

Assignment obs. (vobs. vcal.)·10			
JKaKc -	- J"KaKc		200
H ⁵ D	+		
2 2 0	221	155 987.185	-35
1 1 0	1 1 1	372 421.380	0
3 0 3	221	32.758	- 4
2 1 2	110	66.403	-4
4 1 4	3 1 2	77.520	13
3 1 3	2 1 1	78.124	0
220	202	92.201	4
2 1 1	1 1 1	115.904	-4
322	2 2 0	130.922	1
202	0 0 0	131.660	-12
3 3 0	3 1 2	133.670	- 7
2 2 1	1 0 1	172.953	4
3 1 2	2 1 2	187.300	1 5
3 1 3	1 1 1	194.028	3
303	101	205.711	0
3 2 2	202	223.125	3
3 1 2	1 1 0	253.711	3
3 3 1	2 1 1	282.407	8
3 3 0	2 1 2	320.967	11
5 1 4	4 1 4	335.094	-8
3 3 0	1 1 0	387.381	4
3 3 1	1 1 1	398.315	-1
D2H	+		
3 0 3	2 2 1	16.935	- 5
2 1 2	1 1 0	52.271	5
3 1 2	2 1 1	63.665	2
4 1 4	3 1 2	65.952	4
220	202	80.346	3
2 1 1	1 1 1	87.111	-1
3 2 2	2 2 0	101.251	- 5
202	000	101.719	0
3 1 2	2 1 2	141.042	0
221	1 0 1	144.246	0
3 1 3	1 1 1	150.775	0
303	1 0 1	161.183	-4
322	2 0 2	181.598	0
3 1 2	1 1 0	193.314	6
4 1 3	3 1 3	199.021	1
423	3 0 3	223.366	12
5 1 4	4 1 4	257.547	0
4 1 3	2 1 1	262.685	2
431	3 1 3	323.358	- 3
5 1 4	3 1 2	323.492	-4

In Table V we present the calculated rotational levels of the H_2D^+ and D_2H^+ ions in the ground and (100) states up to J, K = 6.

Besides the fit of the ν_1 bands in the models of Eqs. (2) and (3), a fit was made in the model by using a higher order of the perturbation theory, i.e., with terms up to J^6 (12 constants both for the ground and excited states). The standard deviations in this case were 2×10^{-3} cm⁻¹. We do not present the results of this fit because the experimental data analyzed did not include enough levels with high J and K (except the (100) state of D_2H^+) to yield "true" values of the H constants. These incorrect constants lead to incorrect energy levels for high rotational quantum numbers (K > 4). It is obvious that analysis of the data with higher rotational quantum numbers will require that the model be expanded.

PREDISSOCIATION SPECTRUM

In conclusion we discuss an additional aspect that has aroused much interest in the study of the spectra of the H_3^+ ion and its deuterated species. We are referring to the 27 000 lines of the H_3^+ predissociation spectrum and the several thousand lines of its deuterated species in the region 872–1092 cm⁻¹ (13), the interpretation of which is very complicated. Carrington and Kennedy (13) suggested that the H_3^+ ion be considered a complex of the H_2 molecule and the H^+ proton and interpreted its spectrum as the splitting of transitions between various rovibrational levels of the H_2 molecule due to its interaction with the proton. Their supposition was partially confirmed by computer simulation of a pseudo-low-resolution spectrum of H_3^+ . However, the calculation and assignment of specific frequencies proved to be impossible in this model (14); hence

TABLE IV

Molecular Constants of H₂D⁺ and D₂H⁺ lons for the Ground (000) and the (100) Vibrational States (in cm⁻¹)

Constant	H2D+		D ₂ H ⁺	+
	(000)	(100)	(000)	(100)
١,٥		2992.505(6)		2736.941(2)
A	43.4385(18)	41.6057(28)	36.19394(34)	35•47188(35)
В	29.13355(95)	29.3205(32)	21.87711(31)	21.63468(28)
С	16,60138(95)	16.3854(32)	13.06462(31)	12.94104(28)
$\Delta_{ m J}$ · 10 3	10.012(12)	9.8927(38)	5.847(10)	6.241(17)
Δ _{JK} · 10 ³	0.17(13)	1.75(23)	1.876(31)	-1.49(21)
$\Delta_{ m K} \cdot 10^2$	3.022(14)	2.523(24)	1.8688(63)	3.7747(95)
δ _J · 10 ³	4.0306(62)	3.889(24)	2.2696(35)	2.3235(38)
δ_{K} · 10 ²	1.9563(36)	0.241(15)	1.4218(66)	1.3441(54)
н _Ј • 10 ⁶				7.06(23)
н _{ЈК} • 10 ⁵				6.57(33)
н _{к Ј} . 10 ⁴				-2.511(71)
н _к - 10 ³				1.6044(85)

TABLE V $\label{eq:calculated} \mbox{Calculated Rotational Energy Levels of H_2D^+ and D_2H^+ Ions in the Ground and the (100) Vibrational States (in cm^{-1}) }$

Level	н ₂ р+		D2H+	
J KaKc	(000)	(100)	(000)	(100)
101	45.695	45.666	34.918	34.551
1 1 1	60.023	57.985	49.250	48.390
1 1 0	72.446	70.794	57.988	57.012
202	131.641	130.796	101.719	100.597
2 1 2	138.846	136.357	110.255	108.783
2 1 1	175.924	174.601	136.362	134.540
221	218.641	211.327	179.165	175.751
220	223.844	217.294	182.061	178.658
303	251.405	248.784	196.105	193.875
3 1 3	254.050	250.547	200.025	197.612
3 1 2	326.158	324.557	251.296	248.165
3 2 2	354.773	347.345	283.317	278.857
3 2 1	376.340	371.379	296.024	291.550
3 3 1	458.337	442.384	377.137	369.647
3 3 0	459.822	444.321	377.764	370.290
404	402.869	398.094	315.748	312.148
4 1 4	403.672	398.544	317-245	313.596
4 1 3	516.162	512.645	399.045	394.122
423	531,363	523.256	419.459	413.591
4 2 2	581.526	577.800	450.698	444.647
4 3 2	645.612	630.171	519.383	510.624
431	654.549	641.467	523.386	514.703
441	778.679	750.636	643.435	630.974
4 4 0	779.016	751.134	643.543	631.086
505	586.232	579.073	460.410	455 • 242
5 1 5	586.451	579.172	460.922	455.761
5 1 4	738.753	731.827	574.792	567.682
5 2 4	745.556	735.556	585.599	578.003
5 2 3	833.302	829.355	643.205	635.035
533	876.711	861.459	696.002	685.657
532	904.227	894.620	709.542	699.320
5 4 2	1012.446	985.357	820.580	806.866
541	1015.142	989.284	821.480	807.794
551	1177.314	1133.988	976.540	959.853
550	1177.380	1134.099	976.556	959.870
606	801.565	791.728	630.235	623.344
616	801.621	791.747	630.398	623.529
615	990.977	980.368	774.945	765.509
625	993.220	981.429	779.847	770.238
624	1123.612	1116.851	869.149	858.399
634	1148.124	1132.322	905.168	892.990
633	1206.268	1199.357	936.747	924.637
643	1291.575	1265.605	1032.841	1017.713
642		1281.116	1032.841	1021.786
6	1302.653	1412.177	1186.797	
651	1454.532	1412.177	1186.797	1169.045 1169.412
661	1455.187			
	1650.503	1589.083	1373.906	1356.976
660	1650.515	1589.105	1373.908	1356.978

we had to consider the H_3^+ ion as an integral molecule. In using such an approach in the interpretation of the predissociation spectrum one must take into account the centrifugal distortion. For very high rotational quantum numbers, the centrifugal effects predicted by the perturbation theory give absurd results (negative or excessively high positive energy levels and the like). We have demonstrated (16) that the method in Ref. (12) gives predictions of high J and K levels of light molecules thousands of times more precise than values calculated with the standard polynomial Hamiltonian. So we inserted the constants of H_3^+ for the ground and the first excited vibrational states obtained in Ref. (15) in the Hamiltonian of Ref. (12) having the form

$$H = \int_0^\infty \frac{C_0^2 e^{-t}}{C_0 - C_1 t} dt;$$

$$C_0 = BJ^2 + (C - B)J_z^2; \qquad C_1 = -D_I J^4 - D_{IK} J^2 J_z^2 - D_K J_z^4$$

and calculated the system of energy levels. The accuracy of the predictions of the energy levels is not high enough to allow a specific assignment of the spectrum in Ref. (13), but it gives some levels with J = 25-45 in two previously mentioned vibrational states close to 35 000 cm⁻¹ and the transitions between them with $\Delta J = 1$, $\Delta K = 3$, 1 which are in the region 900-1100 cm⁻¹. If we suppose the values of the B, C, and D_J , D_{JK} , D_K constants of more excited vibrational states are of the same order of magnitude, it can be shown that we can also obtain the levels near the dissociation threshold and the transitions between them in the region 900-1100 cm⁻¹. These calculations do not give us specific assignments of the frequencies of Ref. (13) but they demonstrate the validity of the approach of Ref. (12) in calculating the levels and transitions of H_3^+ near the dissociation threshold. We have shown (16) that the inclusion of every perturbation term of higher order gives more precise results, contrary to the effect of the polynomial Hamiltonian, which is divergent. Thus, the knowledge of H, L, and P constants of H_3^+ from the analysis of rovibrational bands permits us to interpret the predissociation spectrum of H_3^+ .

ACKNOWLEDGMENTS

The authors are sincerely grateful to Dr. J. K. G. Watson for communicating his results before publication and to Dr. A. F. Krupnov for useful discussions and his interest in this work.

RECEIVED: January 22, 1987

REFERENCES

- T. OKA, in "Molecular Ions: Spectroscopy, Structure and Chemistry" (T. A. Miller and V. E. Bandybey, Eds.), pp. 73-90, North-Holland, Amsterdam, 1983.
- M. BOGEY, C. DEMUYNCK, J. L. DESTOMBES, AND B. LEMOINE, Astron. Astrophys. 137, L15-L16 (1984).
- 3. H. E. WARNER, W. T. CONNER, R. H. PETRMICHL, AND R. C. WOODS, J. Chem. Phys. 81, 2514 (1984).
- 4. S. SAITO, K. KAWAGNCHI, AND E. HIROTA, J. Chem. Phys. 82, 45-47 (1985).
- T. G. PHILLIPS, G. A. BLAKE, J. KEENE, R. C. WOODS, AND E. CHURCHWELL, Astrophys. J. Lett. 294, L45-L48 (1985).

- S. C. FOSTER, A. R. W. MCKELLAR, I. R. PETERKIN, J. K. G. WATSON, F. S. PAN, M. W. CROFTON, R. S. ALTMAN, AND T. OKA, J. Chem. Phys. 84, 91-99 (1986).
- 7. S. C. FOSTER, A. R. W. MCKELLAR, AND J. K. G. WATSON, J. Chem. Phys. 85, 664-670 (1986).
- 8. T. AMANO, J. Opt. Soc. Amer. B 2, 790-798 (1985).
- 9. T. AMANO AND J. K. G. WATSON, J. Chem. Phys. 81, 2869-2871 (1984).
- 10. K. G. LUBIC AND T. AMANO, Canad. J. Phys. 62, 1886-1888 (1984).
- 11. J. K. G. WATSON, J. Chem. Phys. 46, 1935-1949 (1967).
- 12. O. L. POLYANSKY, J. Mol. Spectrosc. 112, 79-87 (1985).
- 13. A. CARRINGTON AND R. A. KENNEDY, J. Chem. Phys. 81, 91-112 (1984).
- 14. J. TENNYSON AND B. T. SUTCLIFFE, Mol. Phys. 51, 887-906 (1984).
- J. K. G. WATSON, S. C. FOSTER, A. R. MCKELLAR, P. BERNATH, T. AMANO, F. S. PAN, M. W. CROFTON, R. C. ALTMAN, AND T. OKA, Canad. J. Phys. 62, 1875-1885 (1984).
- O. L. POLYANSKY AND N. F. ZOBOV, "Proceedings of the IXth International Conference on High Resolution IR Spectroscopy, Prague, 1986," p. 84.