

1. General System Description & Critical Data

Technical Data

Max linear Speed (m/s) 0.22	Max Rotational speed (deg/s) 62	Battery Capacity (mAh) 1800
Total Mass 1.445 kg (without counterweights)	Dimension W, L, H (cm) 18, 35, 26	Centre of Gravity X,Y,Z (cm) 0.05, 3.84, -13.2
Navigation Algorithm Frontier-based exploration	Temperature detection system AMG8833	Firing System Dual Flywheel
Software Ros2 Humble	Chassis Robotis Co Turtlebot 3	

System Description

The ZelephantBot is a search and rescue robot built on the TurtleBot platform by Robotis. It is designed to autonomously navigate enclosed maze-like environments, simulating disaster scenarios. Equipped with a temperature sensor, the ZelephantBot can detect heat sources that may indicate the presence of survivors. To signal for immediate assistance, it launches flares upward—represented by ping pong balls. This launching mechanism is powered by a dual flywheel system, and controlled precisely through a single servo motor.

2. <u>Technical Guide</u>

Hardware Diagram

Software Flowchart

3. Acceptable Deferred Defects Log

<u>Acce</u> p	Acceptable Deferred Defects Log				
S/N	Defect Description	Risk classification Level		_evel	
		Low	Med	High	
01.	Feeder Servo arm deforming due to prolonged use	X			
02.	Flywheel tires being worn out. Flywheel able to launch ball above the wall	X			
03.	Slight shaking of the top waffle plate due to the increased standoff heights making it unstable	Х			
04.	Grooves in the PVC pipe connector may cause the ball to get stuck. Cushion tape had been added to ensure balls will roll over		Х		
05.	Motor does spin when screwed into housing, used tight fit to hold it in place	Х			

Risk Classification Level

Low: The ZelephantBot will be able to complete the mission as expected.

Med: Although its performance is compromised, the ZelephantBot can still complete the mission.

High: Supervision of the ZelephantBot is required for this aspect. Should issues occur, immediately reset the ZelephantBot for maintenance before initiating another mission.

4. Factory Acceptance Test

Factory	Factory Acceptance Test				
S/N	Test Description	Steps to Conduct Test	Expected Result	Proposed rectification	
Genera	al System				
1.1	Shake test	Remove the battery then shake the ZelephantBot	No loose fasteners and components	Replace loose fasteners with Nyloc nuts	
1.2	Is the ZelephantB ot able to complete bring up	Run rosbu with the robot placed on the floor.	No error messages and 'Run!' message is expected.	-	

2.1 Is the coordinator node initialized and ready to start? Can the ZelephantB of detect the 'numan'? System Run rteleop and ros2 launch auto_mapper_launch. py map_path:=~/map is_sim:=true on the laptop from two different terminals and manually navigate allowing ZelephantBot to map the area Firing system	1.3	Able to drive around?	Run rteleop and drive the ZelephantBot around	Able to drive around without stopping	Observe rosbu to see if motors are disconnect ed by checking whether the output "Process died: stack smashing detected" is present. Fix connection.	
coordinator node initialized and ready to start? Heat Detection System 3.1	Coordi	nator System				
Can the ZelephantB ot detect the 'human'? Pupthon3 heat_detection_node .py" on the RPi The initial mean temperature will be outputted on the terminal and it should not be 0. Check i2c detect to see whether the address is still available. If so, rerun the command.	2.1	coordinator node initialized and ready	"python3 ~/Documents/eg231 0/coordinator_node.	· · · · · · · · · · · · · · · · · · ·	rerunning the	
ZelephantB ot detect the 'human'? "python3 heat_detection_node .py" on the RPi Navigation System 4.1 Is the LIDAR and SLAM algorithm working? Is junch auto_mapper.launch. py map_path:=~/map is_sim:=true on the laptop from two different terminals and manually navigate allowing ZelephantBot to map the area "python3 heat_detection_node not be 0." outputted on the terminal and it should not be 0. Lipundarian available. If so, rerun the command. Live map constantly recorded and updated. Keep restarting until the map topic receives updates.	Heat D	etection Syster	<u></u>			
4.1 Is the LIDAR and SLAM algorithm working? Run rteleop and ros2 launch auto_mapper auto_mapper.launch. py map_path:=~/map is_sim:=true on the laptop from two different terminals and manually navigate allowing ZelephantBot to map the area Live map constantly recorded and updated. Keep restarting until the map topic receives updates.	3.1	ZelephantB ot detect the	"python3 heat_detection_node	outputted on the terminal and it should	detect to see whether the address is still available. If so, rerun the	
LIDAR and SLAM auto_mapper auto_mapper auto_mapper.launch. py map_path:=~/map is_sim:=true on the laptop from two different terminals and manually navigate allowing ZelephantBot to map the area updated. restarting until the map topic receives updates.	Naviga	Navigation System				
Firing system	4.1	LIDAR and SLAM algorithm	launch auto_mapper auto_mapper.launch. py map_path:=~/map is_sim:=true on the laptop from two different terminals and manually navigate allowing ZelephantBot to map		restarting until the map topic receives	
	Firing s	Firing system				

<u>5.1</u>	Can the servo feed the balls on command?	Run "python3 motor_driver. py" on the RPi	Check that the flywheel motors spin and the servo moves according to the firing sequence of 2 seconds and 4 seconds	Check wiring connection s.
5.2	Can the flywheel spin up at the same time on command?	2. Enter the following input on a new terminal: "ros2 topic pub /shooting_command_in std_msgs/ms g/String "{data: 'START'}""		
5.3	Can the ball be shot upwards high enough	Insert payload into the firing system and run the test codes above.	Observe if the ball gets fired to the acceptable height of 1.5m	Check servo placement.

5. Maintenance and Part Replacement Log

Maintenance and Part Replacement Log			
S/N	Date Reported	Description of Parts Replaced	Remarks
01.	09/04/2025	OpenCR Fuse Replacement	Fuse popped from overcurrent