Granger Causality Network Reconstruction of Neuronal Systems

Yanyang Xiao

Corporator: Yaoyu Zhang, Zhiqin Xu

Advisor: David Cai, Douglas Zhou

2015-11-19

Background

- The big problem: Neuronal network structure?
 - The network structure of nervous system plays a central role in its function.
- Challenges
 - 10⁴ cells per mm³
 - Scale of μm
 - 10⁴ synaptics per cell
- Methods:
 - Functional connectivity
 - Tracer

Background

- Granger Causality is widely applied in this area
- fMRI, BOLD, LFP, Spike trains etc
 - M. Ding, Y. Chen, S.L. Bressler (2006) Granger causality: basic theory and application to neuroscience. In Handbook of Time Series Analysis, ed. B. Schelter, M. Winterhalder, and J. Timmer, Wiley-VCH Verlage, 2006: 451-474
 - ??? List more usage example?
- But without any theory support!

Properties of Neuron

- membranes are insulator with ion-channels
- solution and cytoplasm are conductor -- full of ions

Hodgkin-Huxley Model (HH)

 Based on physics, a detailed neuron model can be writen down.

nonlinear terms

$$I = C_m \frac{dV_m}{dt} + \bar{g}_K n^4 (V_m - V_K) + \bar{g}_{Na} m^3 h (V_m - V_{Na}) + \bar{g}_l (V_m - V_l)$$

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n$$

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h$$

$$I_{i}^{input} = I_{i}^{E} + I_{i}^{I}$$
 $I_{i}^{E} = G_{i}^{E}(V_{i} - V_{G}^{E})$ $I_{i}^{I} = G_{i}^{I}(V_{i} - V_{G}^{I})$

Leaky Integrate-And-Fire Model (I&F)

- Simplified neuron electrophysiology model.
- Easy to understand, easy to compute, easy to analyze (compared to Hodgkin–Huxley model)

nonlinear terms

$$\begin{cases} \frac{dV(t)}{dt} = -G_L(V(t) - \varepsilon_L) - G(t)(V(t) - \varepsilon_E) \\ \frac{dG(t)}{dt} = -\frac{G(t)}{\sigma} + S \sum_{l} \delta(t - T_l) \end{cases}$$

Input from other neurons and external input.

From Single Neuron to Neuronal Network

$$\begin{cases} \frac{dV_i(t)}{dt} = -G^L(V_i(t) - \varepsilon^E) - G_i^E(t)(V_i(t) - \varepsilon^E) \\ \frac{dG_i^E(t)}{dt} = -\frac{G_i^E(t)}{\sigma} + \sum_{\substack{j=1\\j\neq i}}^p \sum_{l} S_{ij} \delta(t - T_{jl}^S) + F_i \sum_{l} \delta(t - T_{il}^F) \\ \text{Input from external input other neurons} \end{cases}$$

$$= \text{a network}$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{jl}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{jl}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} S_{ij} \delta(t - T_{il}^F)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} S_{ij} \delta(t - T_{il}^S)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} S_{ij} \delta(t - T_{il}^S)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} S_{ij} \delta(t - T_{il}^S)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} S_{ij} \delta(t - T_{il}^S)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} S_{ij} \delta(t - T_{il}^S)$$

$$\frac{1}{s_{ij}^2} \sum_{l} S_{ij} \delta(t - T_{il}^S) + F_i \sum_{l} S$$

Spike Train

Q: Can we recover the network from the voltage trace or spike train data?

Voltage trace

Granger Causality (GC)

- Idea: Causality <=> prediction improvement
 - N. Wiener (1956). The theory of prediction.
- Granger Causality <=> linear prediction improvement
 - C. W. J. Granger (1969). Investigating causal relations by econometric models and cross-spectral methods
 - Auto-regression of Xt using different variables:

$$x_{t} = \sum_{j=1}^{\infty} a_{j}^{*} x_{t-j} + \epsilon_{t}^{*}$$
$$x_{t} = \sum_{j=1}^{\infty} a_{j} x_{t-j} + \sum_{j=1}^{\infty} b_{j} y_{t-j} + \epsilon_{t}$$

Define GC:
$$F_{y \to x} = \ln \frac{\operatorname{var}(\epsilon_t^*)}{\operatorname{var}(\epsilon_t)}$$

Multivariable GC

GC from Y to X conditional on Z (z_t can be a vector):

$$x_{t} = \sum_{j=1}^{\infty} a_{j}^{*} x_{t-j} + \sum_{j=1}^{\infty} c_{j}^{*} z_{t-j} + \varepsilon_{t}^{*}$$

$$x_{t} = \sum_{j=1}^{\infty} a_{j} x_{t-j} + \sum_{j=1}^{\infty} b_{j} y_{t-j} + \sum_{j=1}^{\infty} c_{j} z_{t-j} + \varepsilon_{t}$$

Define GC:
$$F_{y \to x|z} = \ln \frac{\operatorname{var} \mathcal{E}_t}{\operatorname{var} \mathcal{E}_t}$$

$$F_{y \to x|z} = 0 \iff \operatorname{var} \varepsilon_t^* = \operatorname{var} \varepsilon_t \iff b_j = 0 \ \forall j \ge 1$$

Basic Properties of GC

- GC is meaningful for stationary time series only.
- The prediction errors $(\varepsilon_t, \varepsilon_t^*)$ are white noise

$$cov(\varepsilon_t, \varepsilon_{t-j}) \quad \forall j \in \mathbf{Z}, j \neq 0$$

Change the scale of data does not change GC:

$$u_t = c_u x_t, v_t = c_v y_t$$
 \Rightarrow $F_{u \to v} = F_{x \to y}, F_{v \to u} = F_{y \to x}$

Invertible Causal filter does not change GC:

$$u_t = \sum_{j=0}^{\infty} c_j x_{t-j}, v_t = \sum_{j=0}^{\infty} d_j y_{t-j} \quad c_0 \neq 0, d_0 \neq 0$$

$$\Rightarrow$$
 $F_{u \to v} = F_{x \to y}, F_{v \to u} = F_{y \to x}$

Determine the fitting order in the regression

- Akaike information criterion (AIC)
 - p-variable, fitting order m, data length L, variance of residual Σ

$$AIC/L = 2p^2m/L + \ln|\Sigma| + C$$

GC is estimated with bias

$$E(\hat{F}_{y\to x}) = \frac{m}{I} + F_{y\to x}$$

Significance Test of GC

- Significance Test: Null hypothesis: $F_{y\to x}=0$
 - For data length L, fitting order M

$$L\hat{F}_{y\to x} \stackrel{a}{\sim} \chi_M^2$$

- Set a acceptable probability of Type I error (α
 -), compare the p value of $\hat{f}_{y\to x}$
- Confidence interval:

$$L\hat{F}_{y\to x} \stackrel{a}{\sim} \chi_M^2 (LF_{y\to x})$$

GC of Nonlinear System?

• Example: $\operatorname{var} \varepsilon_t = 1, \operatorname{var} \eta_t = 0.7, \operatorname{cov}(\varepsilon_t, \eta_t) = 0.4$ $\begin{cases} X_t = 0.9 X_{t-1} - 0.5 X_{t-2} + \varepsilon_t \\ Y_t = 0.8 Y_{t-1} - 0.5 Y_{t-2} + 0.16 X_{t-1} - 0.2 X_{t-2} + \eta_t \end{cases}$ $\begin{cases} F_{X \to Y} \approx 0.053 \\ F_{Y \to Y} = 0 \end{cases}$ correct

$$Z_{t} = X_{t}^{5}$$
 $\begin{cases} F_{Z \to Y} \approx 0.007 \\ F_{Y \to Z} \approx 0.017 \end{cases}$ $Z_{t} = X_{t}^{2}$ $\begin{cases} F_{Z \to Y} = 0.000 \\ F_{Y \to Z} = 0.000 \end{cases}$

Not surprising ---- So how about neuronal network?

wrong

Apply Granger Causality to Hodgkin–Huxley model

2 neuron, different dynamical regime.

It's work!

Apply Granger Causality to Hodgkin–Huxley model

Case of bigger network

1000 neuron case (10% connection) also have >98% correctness

Work for both voltage data and spike train data!

Apply Granger Causality to Integrate-And-Fire Model

100 neuron, 20% sparseness, EPSP=0.5mV

120 GC0 \neq 0 P-value = 0.01 best 0 or 1 threshold

0 1 2 3 4

GC value (10⁻⁵)

 $T=10^3$ sec, 86% edges correct.

 $T=10^4$ sec, 100% edges correct.

Point of view of Spike-triggered average

- Every pulse cause a voltage jump in postsynaptic neuron
 - Spike-triggered average could be used to capture the jump.

Point of view of Spike-triggered average

Define spike-triggered value

Looks good

Spike-triggered average could failed to reveal causal relationship

Problem of spike-triggered average

- Solution: eliminate effect of self dynamics
- -> Do autoregression first

$$\begin{cases} x_t = \sum_{j=1}^{\infty} \tilde{a}_j x_{t-j} + \varepsilon_t^* \\ y_t = \sum_{j=1}^{\infty} \tilde{d}_j y_{t-j} + \eta_t^* \end{cases}$$

• Then analyze causal relations between \mathcal{E}_{t}^{*} and η_{t}^{*}

Spike-triggered average of residual

• It's now work!

Relation of Spike-triggered Average and GC

Observation

Residual of voltage likes delta function

Spike-triggered Value and covariance:

$$\eta_{p|d}^{*}(t_{rel}) = \frac{1}{N_{spike|d}} \sum_{t=1}^{L} \eta_{p}^{*}(t) \cdot S_{d}(t - t_{rel})$$

$$\approx \frac{L}{N_{spike|d}} \frac{1}{h_{d}} E\left(\eta_{p}^{*}(t) \epsilon_{d}^{*}(t - t_{rel})\right)$$

Relation of Spike-triggered Average and GC

Property of GC

$$x_{t} = \sum_{j=1}^{\infty} a_{j}^{*} x_{t-j} + \varepsilon_{t}^{*}, \quad y_{t} = \sum_{j=1}^{\infty} d_{j}^{*} y_{t-j} + \eta_{t}^{*} \qquad \Rightarrow \qquad F_{\varepsilon^{*} \to \eta^{*}} = F_{x \to y}$$

$$F_{\eta^{*} \to \varepsilon^{*}} = F_{y \to x}$$

Asymptotics for c_i small

$$\eta_t^* + \sum_{j=1}^{\infty} \tilde{d}_j \eta_{t-j}^* + \sum_{j=1}^{\infty} \tilde{c}_j \epsilon_{t-j}^* = \eta_t$$

$$\tilde{c}_j \approx -\mathrm{E}(\epsilon_t^* \eta_{t+j}^*) / \mathrm{var}(\epsilon_t^*) \quad \forall j \ge 1$$

$$F_{x \to y} \approx \frac{\operatorname{var}(\epsilon_t)}{\operatorname{var}(\eta_t)} \sum_{i=1}^{\infty} \tilde{c}_j^2 \approx \frac{(h_d \cdot \Delta t \cdot \nu_x)^2}{\operatorname{var}(\eta_t) \operatorname{var}(\epsilon_t^*)} \sum_{t_{rel} > 0} \eta_{y|x}^*(t_{rel})^2$$

Prediction From Above Relation

• EPSP proportional to Coupling strength $GC \propto (\text{Coupling strength})^2$

Minimum data length for a good network reconstruction

Define correct probability

$$p_{\text{correct}} = \int_0^{F_{thres}} \rho_{m,L,F0}(F) \, \mathrm{d}F \, \left(1 - \int_0^{F_{thres}} \rho_{m,L,F1}(F) \, \mathrm{d}F \right),$$

 false positive error rate=0.01, p_{correct}=90%, fitting order m

Minimum data length for a good network reconstruction

Firing interval v.s. total input strength

GC v.s. total input strength

Minimum time v.s. total input strength

GC of sub network

- Pairwise GC v.s. joint-regression GC
 - 80 Excitatory neuron, 20 Inhibitory neuron

- Correctness v.s. number of neurons and sparseness

Results of HH

Typical Voltage trace and spike train

For spike train data

Partial directed coherence and GC

 Luiz A. BaccalaÂ, Koichi Sameshima, Partial directed coherence: a new concept in neural structure determination

PDC:
$$\bar{\pi}_{ij}(f) \stackrel{\Delta}{=} \frac{\bar{A}_{ij}(f)}{\sqrt{\bar{\mathbf{a}}_{j}^{\mathrm{H}}(f)\bar{\mathbf{a}}_{j}(f)}}$$
 $GC(i \leftarrow j) \approx \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left(1 + \left| \overline{\pi}_{ij}(f) \right|^{2} \right) df$

GC Limitation

- Common input
- Non-stationary data
 - trend;
 - contain pure periodic component
- Non-linear measurement: $\widetilde{x}_t = f(x_t)$
 - Could lead to totally different result.
- Nonlinear system

Summary, Weakness and Further Possible Work

- Granger causality works well in Hodgkin

 Huxley model

 (a highly nonlinear model) and I&F model.
 - That's because GC has eliminated the histroy affection of each time series, and approximate the spike-triggered value which captures information flow between neurons.

Weakness:

- 1. Needs very long data, typically 15 min of data.
- Various limitations.
- Not designed for neuron science.