

CPE 323 Intro to Embedded Computer Systems System Architecture

Aleksandar Milenkovic milenka@uah.edu

CPU, Memory, Peripherals, Bus (MAB, MDB)

Active LPMO LPM1 LPM2 LPM3 LPM4

MSP430FG4618 Block Diagram

MSP430xG461x Microcontroller

MSP430F5529 (PN)

- A quad flat package (QFP) surface mounted IC package, leads extend on all 4 sides: LQFP (low profile QFP), TQFP (thin QFP)
- PN Texas Instruments name of the package

Figure 1-1. Functional Block Diagram – MSP430F5529IPN, MSP430F5527IPN, MSP430F5525IPN, MSP430F5521IPN

Pin Diagram for MSP430F5529

Clock Subsystem

- Generate clocks used by components on the chip
 - Configured and tuned by software, enable/disable clocks for Low-Power Modes
- Multiple types (FLL+, Basic Clock Module)
- Three clocks are available:
 - Main clock (MCLK): CPU, DMA, selected peripherals
 - Sub-system clock (SMCLK): peripherals
 - Auxiliary clock (ACLK): peripherals

Watchdog Timer

- Monitors system operation
- Two modes of operation
 - Watchdog
 - Interval timer
- Watchdog: performs controlled system reset if a software error occurs
- Interval timer: generates an regular periodic interrupt
- Active on power-up

Timers (Timer_A, Timer_B)

- Time keeping
 - Timer block: counter
 - Capture&Compare block: logic where action occurs
- Two main functions
 - Capture
 - Compare
- Capture: monitor external events (signal transitions) and timestamp them when a change is detected
- Compare: produce PWM signals, compare running counter to predefined values in CCRx and trigger a change in a signal

Comparator (Comparator_A)

- Compare an analog signal to a reference voltage and produces a binary output (1 if Vin>Vref, 0 otherwise)
- Supports precision slope analog-to-digital conversions
- Supply voltage supervision
- Monitoring of external analog signals

Analog-to-Digital Converter (ADC12)

- Convert analog signals to binary counterparts
- ADC12:
 - 12-bit resolution
 - 200 Ksamples/s
 - 8 external inputs
 - Local memory
 - Programmable sample time
 - Selectable reference voltages

Serial Communication Interfaces (USCI, USART, USI)

- Support for synchronous and asynchronous serial communication
- UART
- SPI
- 12C
- Infrared

TI Experimenter's Board: Block Diagram

- Microcontroller's (F4618, F2013)
- JTAGs
- Buttons/Switches
- Capacitive Touch Pad
- Microphone
- Buzzer
- LCD
- Wireless Interface
- RS232

TI Experimenter's Board

- Two on-board CPUs
 - MSP430FG4618
 - MSP430F2013
- The Softbaugh SBLCDA4 LCD display
 - 4-MUX operation and is interfaced to the MSP430FG4618 LCD driver peripheral
- Momentary Push-ON Buttons
 - S1 and S2 are connected to pins on Port 1 (P1) of the MSP430FG4618
- Light Emitting Diodes (LEDs)
 - Four LEDs, three of which are connected to the MSP430FG4618, and one connected to the F2013.
- Buzzer
 - Connected to one of the MSP430FG4618 port pins and can be disabled using jumper JP1

TI Experimenter's Board

Single-Touch Capacitive Sensing Interface

 A 16-segment touch pad in the shape of a "4" is connected to the data pins of the MSP430F2013, which then relays the data to the MSP430FG4618 using the inter-processor communications peripherals on each CPU

RS232 Serial Communication Port

 A standard 9-pin serial communications port is connected to the MSP430FG4618 USCI peripheral and can be used when the USCI is configured in UART mode

Microphone & Analog Out

 A microphone is connected to a port pin of the MSP430FG4618, and the input to the 3.5mm analog out can be connected to the output from the MSP430FG4618's 12-bit digital to and analog (DAC12) convertor

Radio

Wireless Communication Module Interface

Headers

MSP430FG4618 Pin Access

Capacitive Touch Pad

Power Supply Configuration, RF Daughter Card Connect, Audio Output

MSP430FG4618

RS232 Connector, LCD Display

Blink a LED Program

```
TI Experimenter board demo, blinking leds LED1 and LED2 (msp430FG4618)
   Description: Toggle P2.1 and P2.2 by xoring P2.1 and P2.2 inside a loop.
              The LEDs are connected to P2.1 and P2.2 and are on when
              P2.1=1 and P2.2=1:
              The LEDs are initialized P2.1 to be off, and P2.2 to be on:
              ACLK = 32.768kHz, MCLK = SMCLK = default DCO
               MSP430xG461x
        /1\1
         --|RST
                      P2.21-->LED1 (GREEN)
                      P2.1|-->LED2(YELLOW)
   Alex Milenkovich, milenkovic@computer.org
#include "msp430xG46x.h"
void main(void)
  WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
  P2DIR I = 0 \times 06:
                       // Set P2.1&P2.2 to output direction (0000 0110)
  P2OUT = 0x02:
                       // Set P2OUT to 0x0000 0010 (LED2 is on, LED1 is off)
  for (;;) {
    unsigned int i;
    P2OUT ^= 0x06;
                       // Toggle P2.1 using exclusive-OR
    i = 50000;
                       // Delay
    do (i--);
    while (i != 0);
```