16S analysis

Autor: Michael Jackson

Contents

1- Experimental samples read asignation	2
2- Read quality control	2
3- Taxonomic insight	2
References	3

1- Experimental samples read asignation

A total of 3 sequence were recived and processed through Illumina Miseq platform, generating 150bp paired-end sequences for each sample (r1 & r2) with qualified libraries. For full analysis source and files results please download the *projects* folder which contains the following:

- 0-raw: The initial FASTQ files used in downstream steps, also contains an initial QC report.
- 1-qc: Filtered reads used to map against DADA2 DB, also contains an QC report.
- 2-taxInsight: Counts and Plots for mapped reads against DADA2 DB.
- report.pdf: static report, a formal way to read a report.
- report.html: dynamic report with interactive plots and tables.

2- Read quality control

The first bioinformatic analysis step is the quality filter reads using DADA2¹ software which consider:

- adapter removal from Illumina sequencing.
- remove bad quality bases at the end of reads (min Quality: 20).
- remove reads who in average have Phread < 20.
- remove Phix sequences from samples.

Quality reports for the 3 samples before and after filter were generated using FASTQC². The figures 1 and 2 show a high quality and homogenity distribution along the reads, both represent a post filter quality summary for the 6 files (r1 and r2), which can be analyzed in more details in the following table:

Table 1: Summary of quality control initial reads after dada2 filt, dereplicate and merge steps.

Sample	input	filtered	$\operatorname{denoisedF}$	$\operatorname{denoisedR}$	merged	nonchim
ERR3357130	100000	89380	88974	88399	81785	70379
ERR3357150	100000	90656	90352	89911	85476	75759
ERR3357164	100000	93646	93330	93296	89490	77538

3- Taxonomic insight

After non-chimera filtered reads, the next step is map it against a taxonomic database, we used the SILVA 3 v132 database and DADA2 assignTaxonomy function to map in a 100% the alignment as their authors recommends. The a summary of results obtained from the assign taxonomy can be checked in the following table:

Table 2: DADA2 top 10 abundances taxas for each sample. The table include at least 1 read assigned for at least 1 sample.

Family	Genus	Species	ERR3357130	ERR3357150	ERR3357164
Bacteroidaceae	Bacteroides	acidifaciens	4090	1466	4523
Bacteroidaceae	Bacteroides	vulgatus	0	0	7658
Muribaculaceae	NA	NA	482	2112	254
Prevotellaceae	Prevotellaceae_U	C 0 \$I-A	10729	8058	5483
	001				
Rikenellaceae	Alistipes	NA	2896	1654	1835
Deferribacteraceae	Mucispirillum	schaedleri	0	0	2931
Helicobacteraceae	Helicobacter	typhlonius	0	0	6153
Helicobacteraceae	Helicobacter	NA	657	2561	47
Lactobacillaceae	Lactobacillus	NA	455	6052	734

Table 2: DADA2 top 10 abundances taxas for each sample. The table include at least 1 read assigned for at least 1 sample. (continued)

Family	Genus	Species	ERR3357130	ERR3357150	ERR3357164
Lactobacillaceae	Lactobacillus	NA	888	12149	1486
Lactobacillaceae	Lactobacillus	NA	971	1894	453
Lactobacillaceae	Lactobacillus	NA	6058	14	2907
Lachnospiraceae	Lachnospiraceae	_F 0%0 20_group	292	49	1613
Lachnospiraceae	Tyzzerella_3	NA	0	2350	79
Enterobacteriacea	e Escherichia/Shig	gellaNA	23	11002	0
Mycoplasmatacea	e Mycoplasma	NA	0	5646	11919

graphically it can be shown as a barplot:

if you want the full table, please see the file 2-taxInsight/abundance.tsv.

References

- 1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016). "DADA2: High-resolution sample inference from Illumina amplicon data." Nature Methods, 13, 581-583. doi: 10.1038/nmeth.3869.
- 2. Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller. "MultiQC: Summarize analysis results for multiple tools and samples in a single report." Bioinformatics (2016), doi: 10.1093/bioinformatics/btw354, PMID: 27312411

3. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Opens external link in new windowNucl. Acids Res. 42:D643-D648

4.