

Academic Year:	2022/2023	Term:	First term	A
Course Code:	Eective1	Course Title:	VLSI	

Cairo University

Faculty of Engineering

Electronics and Communications Engineering Department – 4th Year

VLSI PROJECT

Name	Sec	BN
عبدالمنعم احمد عبدالمنعم سلام	2	50
منی منصور امین محمد	4	30

Table of Contents

1- Layout of the basic cells	1
2- Layout of the multiplier core	2
3-Extract and simulation of the multiplier core	3
3.1 Case x=11111,y=1111111 then p=000000000001	
3.2 Case x=01111,y=1000000 then p=110001000000	
4-Performance estimation	4
4.1 Worst Case delay calculation	
4.2 Max Frequency Calculation	
4.3 Dynamic Power at max Frequency Calculation	
4.4 Core area.	
5- Layout of the multiplier core after pads	5
6-Extract and simulation of the multiplier core after pads	6
6.1 Case x=01111,y=0111111 then p=001110110001	6
6.2 Case x=01111,y=1000000 then p=110001000000	6
7-Performance estimation after pads	7
7.1 Worst Case delay calculation	
7.2 Max Frequency Calculation	
7.3 Dynamic Power at max Frequency Calculation	

1-Layout of the basic cells

figure1-AND

figure2-FA

figure3-FA-AND

2-Layout of the multiplier core

Comment: DRC has been done for all Layouts above.

3-Extract and simulation of the multiplier core

3.1 Case x=11111,y=1111111 then p=000000000001

3.2 Case x=01111,y=1000000 then p=110001000000

X4 x3 x2 x1 x0 y6 y5 y4 y3 y2 y1 y0

Comment: More simulation cases are given in design_simulation.doc

4-Performance estimation

4.1 Worst Case delay calculation

P11 is the critical path: 95.31n-50.025n = 45.285ns

 tp_{LH} =45.285ns and this is the worst case delay.

4.2 Max Frequency Calculation

$$f_{max} = \frac{1}{tp_{LH}} = \frac{1}{45.285n} = 22.082 \ MHz$$

4.3 Dynamic Power at max Frequency Calculation

11890: 11891: TOTAL POWER DISSIPATION 1.26E-08 WATTS

The total power dissipated is 12.6 nwatt

4.4 Core area

 $core~area=1,\!058,\!414~\lambda^2$

5-Layout of the multiplier core after pads

6-Extract and simulation of the multiplier core After pads

6.1 Case x=01111,y=0111111 then p=001110110001

6.2 Case x=01111,y=1000000 then p=110001000000

Comment: More simulation cases are given in design_simulation.doc

7-Performance estimation After pads

7.1 Worst Case delay calculation

P11 is the critical path:130.214n-50.025n =80.189ns

 tp_{LH} =80.189ns and this is the worst case delay.

7.2 Max Frequency Calculation

$$f_{max} = \frac{1}{tp_{LH}} = \frac{1}{80.189n} = 12.4705 MHz$$

7.3 Dynamic Power at max Frequency Calculation

25915: 25916: TOTAL POWER DISSIPATION 7.74E-01 WATTS

The total power dissipated is 774 mwatt