認證介紹

NI LabVIEW 認證方案分為下列 3 個認證階層:

- LabVIEW 基礎認證 (CLAD)
- LabVIEW 進階認證 (CLD)
- LabVIEW 高階認證 (CLA)

均必須通過前項認證,才能參加下個階段的認證測驗。

CLAD 代表廣泛且通盤了解 LabVIEW 完整版開發系統的核心特性與功能,並可透過相關功能以開發、除錯,並維護小型的 LabVIEW 模組。CLAD 認證代表 LabVIEW 完整版開發系統約 6~9 個月的使用經驗。

CLD 認證代表可開發、除錯、佈署,並維護中型至大型的 LabVIEW 應用。CLD 認證已屬於專業級認證,即以 LabVIEW 開發中、大型應用累計共約 12~18 個月的經驗。

CLA 認證則代表可架構出多位開發者環境的 LabVIEW 應用。通過 CLA 認證資格的應試者,不僅囊括技術專業與軟體開發經驗,可將專案規格分配為進階的 LabVIEW元件,並可妥善利用專案與組態管理工具,完整貫通相關專案。 CLA 認證為使用LabVIEW 開發中、大型應用,並累計共 24 個月以上的經驗。

注意:需先通過 CLAD 認證,才可報名參加 CLD 測驗。 需先通過 CLD 認證,才可報名參加 CLA 測驗。 各項測驗均必須符合上述條件,絕無例外。

測驗概述

<u>測驗使用產品:</u> LabVIEW 2010 完整版開發系統 - 適用於 Windows。可參閱 <u>LabVIEW</u> 開發系統 比較,以進一步了解 LabVIEW 完整版開發系統的功能。

<u>測驗時間:</u>1小時 測驗題數:40

測驗類型: 多重選擇題

通過標準: 70%

本測驗是針對受測者是否熟悉應用所設計,而非著重於受測者對 LabVIEW 功能表的使用步驟,或是否熟悉 VI、元件的名稱。

測驗期間禁止使用 LabVIEW 或其他任何外部資源。測驗中所需的任何輔助資源, 均取自於 LabVIEW Help 中的相關截圖。

爲了維護測驗的公平性,受測者不能拷貝或保留測驗的任何圖片或資訊。若未遵守以上規定,亦將同時喪失測驗資格。在以紙本測驗的地區,若受測者擅自撕去彌封,亦將同時喪失測驗資格。

測驗後續作業

美國與歐洲區: 將於 Pearson Vue 測驗中心舉辦 CLAD 測驗。測驗爲電腦機上測驗,可立刻知道測驗結果。可至 www.pearsonvue.com/ni 獲得相關細節。

<u>亞洲:</u> 測驗爲紙本形式,約需 4 個星期之後得知測驗結果。請聯絡您所在地區的 NI 分公司以了解測驗詳情與排程。

若有其他問題或相關建議,請寄發電子郵件至: certification.taiwan@ni.com.

測驗主題

LabVIEW 基礎認證 (CLAD) 共有 40 題。每次測驗均將從下表所列的各個分類中,選出特定題數作爲考題。

	測驗主題	測驗題數
	LabVIEW 程式設計原則	3
	LabVIEW 環境	2
.E.He	資料型態	2
一般	陣列與叢集	4
	錯誤處理	2
	說明文件	1
	除錯	2
	迴圈	4
架構	Case 架構	1
	Sequence 架構	1
	Event 架構	2
	File I/O	1
程式	時序	2
設計	VI Server	2
	通訊與同步化	2
	設計模式	2
人機	圖表	2
介面	Boolean 機器動作	1
	屬性節點 (Property Nodes)	2
	局部變數	1
變數	구나사다 그 나가설상申산	1
	功能性全域變數	1
	總計	40

測驗主題 (概述):

主題	次題
1. LabVIEW 程式設計原則	a. 資料流
	b. 平行機制
2. LabVIEW 環境	a. Virtual Instruments (VI)
	b. 人機介面與程式圖
	c. 圖示與接頭面板
	d. Context Help 視窗
3. 資料型態	a. 列舉、數字、字串、路徑、
	Boolean
	b. 叢集
	c. 陣列
	d. 類型定義
	e. 波形
	f. 時間戳記
	g. 動態資料型態
	h. 資料呈現
	i. 強制 (Coercion)
	j. 資料轉換/操作
4. 陣列與叢集	a. 陣列函式
	b. 叢集函式
	c. 函式多形 (Polymorphism)
5. 錯誤處理	a. 錯誤叢集
	b. VI 與函式錯誤處理
	c. 客制化錯誤代碼
	d. 自動/手動錯誤處理
6. 說明文件	a. 重要性
	b. 文字輔助說明
7. 除錯	a. 工具
	b. 技術
8. 迴圈	a. 迴圈元件
	b. 自動檢索
	c. 移位暫存區
	d. 迴圈行爲
9. Case 架構	a. Case 選擇元
	b. 通道
	c. 應用
10. Sequence 架構	a. 類型
	b. 行爲

c. 應用
a. Notify 與 Filter 事件
b. 應用
a. 函式與 VI
b. 應用
a. 時序函式
b. 應用
a. 類別階層
b. 應用
a. Notifier
b. Queue
c. Semaphore
d. 全域變數 (Global Variable)
e. 應用
a. 狀態機器
b. Master/Slave
c. Producer/Consumer (資料與事件)
d. 應用
a. 類型
b. 繪圖資料
參閱 CLAD 主題細節
參閱 CLAD 主題細節
a. 行爲
b. 應用
a. 行爲
b. 應用

CLAD 主題細節

1. LabVIEW 程式設計原則

- a. 資料流
 - i. 定義資料流
 - ii. 了解 LabVIEW 資料流的重要性
 - iii. 程式設計實作,以了解程式圖、VI、subVI 中的資料流
 - iv. 中斷資料流的程式設計實作
 - v. 透過 VI 追蹤程式碼的執行情況

b. 平行機制

- i. 定義平行執行
- ii. 找出平行程式碼的架構
- iii. 找出平行機制的程式設計警示
- iv. 定義競熊條件
- v. 找出程式碼中的競熊條件
- vi. 找出模糊執行

2. LabVIEW 環境

- a. Virtual Instruments (VI)
 - i. 人機介面與程式圖
 - 1. 找出人機介面物件與程式圖物件之間的關係
 - 2. 檢驗並分析人機介面/程式圖,以描述功能
 - 3. 根據程式圖找出人機介面的結果
 - 4. 找出不具備程式圖的 VI 類型
 - 5. 針對既定應用,初始化人機介面物件的屬性與選項

ii. 圖示與接頭面板

- 1. 了解接頭面板與圖示的用途
- 2. 找出不同連結類型之間的差異

b. Context Help 視窗

- i. 找出並定義 3 種接頭面板的端點類型 Required、 Recommended、Optional
- ii. 根據 Context Help 視窗而了解 VI 或函式的功能

3. 資料型態與資料架構

- a. 列舉、數字、字串、路徑、Boolean
 - i. 為人機介面與程式圖物件找出最合適的資料型態
 - ii. 了解並敘述下列資料型態的相關兩式

- Numeric-Numeric、Conversion、Data Manipulation、 Comparison 面板
- String-String、String/Number Conversion、 String/Array/Path Conversion 面板
- 3. Boolean-Boolean 面板
- 4. File I/O 面板上的 Path-Path 函式

b. 叢集

- i. 透過叢集找出適合 Data Grouping 的應用
- ii. 選擇並套用 Bundle、Unbundle、Bundle by Name、Unbundle by Name 函式
- iii. 重新排列叢集控制元或指示元的可能影響

c. 陣列

- i. 選擇並套用 Array 面板的函式
- ii. 可能造成記憶體使用問題的關鍵
- iii. 可能降低記憶體容量的關鍵
- iv. 了解應如何正確使用陣列而改善應用

d. 類型定義

- i. 了解應如何使用類型定義或絕對類型定義而改善應用
- ii. 決定是否需要類型定義或絕對類型定義,以呈現資料項目

e. 波形

- i. 選擇並套用波形資料型態,以於圖表中顯示資料
- ii. 選擇並套用現成應用的 Build Waveform 與 Get Waveform Component 函式

f. 時間戳記

- i. 敘述並套用時間戳記的資料型態,以利量測資料
- ii. 針對現成應用的 Timing 面板,選擇並套用時間戳記函式

g. 動態資料型態

- i. 找出動態資料的使用範例
- ii. 說明 Convert from Dynamic Data Express VI 的功能
- iii. 找出何種控制元/指示元與輸出/輸入可使用動態資料

h. 資料呈現

- i. 了解不同資料呈現的位元用途
- ii. 更改常數、控制元、指示元的數字呈現
- iii. 透過不同的整數類型,找出資料呈現的範圍限制與周遭範圍 (Wrap-around)
- iv. 找出既有的 LabVIEW Big-endianness

i. 強制 (Coercion)

- i. 選擇最合適的資料型態以限制此強制
- ii. 找出異質數字運算所造成的資料型態與記憶體使用情形
- iii. 正確選擇並套用 Conversion 面板的函式

j. 資料轉換/操作

- i. 定義並套用資料轉換、操作、Typecasting 的原則
- ii. 找出並選擇兩式,以切換資料型態與數字呈現

4. 陣列與叢集

a. 陣列函式

- i. 找出 Array 面板的函式
- ii. 透過陣列函式確認現有程式圖的結果
- iii. 選擇並套用函式,以獲得所需的行為
- iv. 比較並選擇相等的設計替代方式

b. 叢集函式

- i. 從 Cluster, Class, & Variant 面板找出函式,並附加至叢集
- ii. 透過叢集函式確認現有程式圖的結果
- iii. 選擇並套用叢集,以獲得所需的行為

c. 函式多形 (Polymorphism)

- i. 定義多形
- ii. 了解多形的優點
- iii. 透過多形輸入找出 VI 中的資料元素輸出

5. 錯誤處理

a. 錯誤叢集

- i. 定義並找出錯誤叢集的元件功能
- ii. 找出可接受錯誤叢集的端點,並作爲輸入
- iii. 錯誤與警示之間的差異

b. VI 與函式錯誤處理

- i. 從 Dialog & User Interface 面板找出錯誤處理 VI
- ii. 找出最合適的位置以處理並報告錯誤
- iii. 選擇 VI 或函式,以完成特定錯誤處理與報表製作功能

c. 客制化錯誤代碼

- i. 找出客制化錯誤代碼的可用範圍
- ii. 操作錯誤叢集以產生客制錯誤

d. 自動/手動錯誤處理

- i. 說明自動錯誤處理的影響
- ii. 設計可高效率管理錯誤的 VI
- iii. 透過程式圖說明錯誤發生時的執行動作

6. 說明文件

a. 重要性

- i. 了解將敘述 (Description) 新增至 VI Properties 的重要性
- ii. 找出新增 Tip strip 的重要性

b. 文字輔助說明

- i. 了解執行 VI 時必備何項輸入
- ii. 了解應如何於 Context Help 中記錄 VI 的輸入/出

7. 除錯

a. 工具

- i. 了解除錯工具 Highlight Execution、Breakpoints and Single-Stepping、Probes
- ii. 說明函式並適當用於特定的除錯工具

b. 技術

- i. 提出情況,再選出最合適的除錯工具或策略
- ii. 針對錯誤而找出特定程式圖

8. While Loops 與 For Loops

a. 迴圈元件

- i. 找出迴圈元件並說明其功能 Tunnels、Count Terminal、Conditional Terminal、Iteration Terminal、Shift Registers
- ii. 說明迴圈元件的行為

b. 自動檢索

- i. 找出自動檢索通道
- ii. 找出新通道的預設檢索設定
- iii. 說明自動檢索通道,並了解是否使用自動檢索通道的影響

c. 移位暫存區

- i. 說明移位暫存區 (Shift register) 的用途,並將之初始化為資料 儲存要素
- ii. 根據迴圈終止或達到已設定的循環次數之後,找出移位暫存區中的資料值
- iii. 找出堆疊式移位暫存區的初始化/非初始化行為
- iv. 找出 Feedback Nodes 與其迴圈中的用途

d. 迴圈行為

- i. 找出 For Loops 與 While Loops 的特定行為
- ii. 選擇並套用最合適的迴圈架構
- iii. 根據程式圖找出迴圈循環的次數
- iv. 找出 For Loops 條件端點的使用情形
- v. 在不同情況下,找出程式碼執行的必要迴圈端點

9. Case 架構

a. Case 選擇元

- i. 了解輸入所能接受的資料型態
- ii. 找出數字值範圍的不同範例選擇
- iii. 從程式圖中找出所要執行的範例

b. 誦道

- i. 找出不同的輸出通道選項
- ii. 找出各種通道類型的優/缺點

c. 應用

- i. 決定 Case 架構何時應取代其他架構
- ii. 根據 Case 架構而找出控制元/指示元的合適替代

10. Sequence 架構

a. 類型

- i. Flat Sequence 架構
- ii. Stacked Sequence 架構

b. 行為

- i. 找出 Sequence 架構的基本功能
- ii. 針對具備 Sequence 架構的程式圖,找出其結果
- iii. 說明錯誤發生時 Sequence 架構的行為
- iv. 說明 Stacked Sequence 架構中的序列行為

c. 應用

- i. 找出 Stacked/Flat Sequence 架構的優、缺點
- ii. 決定 Sequence 架構是否更適用

11. Event 架構

a. Notify 與 Filter 事件

- i. 定義 Filter 與 Notify 事件
- ii. 說明 Filter 與 Notify 事件的行為差異
- iii. 找出程式圖中的 Filter 與 Notify 事件
- iv. 透過 Event 架構而套用 Value (Signaling) 屬性節點

b. 應用

- i. 了解事件導向程式設計的優點
- ii. 了解事件產生的不同方式
- iii. 從程式圖中找出所執行的結果

12. File I/O

a. 函式與 VI

- i. 從 File I/O 面板中找出 VI 與函式
- ii. 透過相關函式找出現有程式圖的結果
- iii. 了解初/高階 File I/O VI 的優、缺點

b. 應用

- i. 判斷程式圖是否發生錯誤
- ii. 根據現有程式圖的特定函式,了解所寫入的位元組數量
- iii. 了解是否以高效率方法將資料寫入至檔案

13. 時序

a. 時序函式

- i. 找出並敘述 Timing 面板上的函式
- ii. 透過 Tick Count 函式說明 Rollover 的影響

b. 應用

- i. 根據方案選出最合適的函式
- ii. 選用正確函式以降低迴圈所佔用的 CPU 資源
- iii. 針對長時間的時序應用,選擇正確函式

14. VI Server

a. 類別階層

- i. 說明方法與屬性繼承
- ii. 選用合適參考以銜接控制元與 subVI

b. 應用

- i. 針對屬性節點與請求節點,找出正確的使用條件
- ii. 選擇合適的屬性節點與請求節點,以呼叫屬性與方法
- iii. 強 (Strictly Typed)/弱 (Weakly Typed) 型別控制參考之間的差異
- iv. 「原 VI (Calling VI)」與「使用 VI Server 的 subVI」之間的互動

15. 資料同步化與通訊

a. Notifier

- i. 找出並敘述 Notifier 面板上的函式
- ii. 若現有程式圖使用 Notifier, 判斷其執行結果

b. Queue

- i. 找出並敘述 Queue 面板上的函式
- ii. 若現有程式圖使用 Queue, 判斷其執行結果

c. Semaphore

- i. 說明 Semaphore 的功能
- ii. 找出 Semaphore 的適當使用條件

d. 全域變數 (Global Variable)

- i. 說明全域變數的行為
- ii. 找出全域變數的適當使用條件

e. 應用

- i. 根據設計方案,選出最合適的資料同步化機制
- ii. 說明 Notifier 與 Queue 之間的功能差異

16. 設計模式

a. 狀態機器

- i. 了解狀態機器 (State machine) 架構的基礎元件
- ii. 找出可維護狀態資訊的機制

b. Master/Slave

- i. 了解 Master/Slave 架構的基礎元件
- ii. 找出 Master/Slave 設計形式的優、缺點
- iii. 說明 Notifier 既有的迴圈時序

c. Producer/Consumer (資料與事件)

- i. 了解 Producer/Consumer 設計形式的基礎元件
- ii. 找出 Producer/Consumer 設計形式的優、缺點
- iii. 說明 Queue 既有的迴圈時序

d. 應用

- i. 提供程式設計細項,選出最合滴的設計形式
- ii. 比較設計形式並了解其各自的優、缺點

17. 圖表

a. 類型

- i. 區別不同類型的圖、表
- ii. 了解波形圖的緩衝 (Buffering) 功能
- iii. 找出何種圖/表可支援非相等間隔 (Uneven) 的 X 軸座標
- iv. 者出何種圖/表可支援多軸

b. 繪圖資料

- i. 找出圖/表中可接受的資料型態
- ii. 根據已知方案選出最合適的圖/表類型

18. Boolean 機器動作

- a. 說明 6 種不同的機器動作
- b. 找出各種動作均適用的條件
- c. 根據方案與程式圖而判斷執行結果

19. 屬性節點 (Property Nodes)

- a. 定義 Property Nodes 的執行順序
- b. 判斷 Property Nodes 所適合的使用條件
- c. 若於執行 Property Node 期間發生錯誤,判斷將發生何種結果

20. 局部變數

- a. 行為
 - i. 說明行爲或局部變數
 - ii. 透過使用局部變數的程式圖,判斷其結果
 - iii. 找出可能的競熊條件

b. 應用

- i. 判斷何時可於通訊作業中使用局部變數
- ii. 針對不當使用局部變數的程式圖,進而除錯

21. 功能性全域變數

- a. 行為
 - i. 說明功能性全域變數的行為
 - ii. 找出相關元件與資料儲存機制
 - iii. 判斷是否需要重入 (Reentrancy)

b. 應用

- i. 說明功能性全域變數的同步化功能
- ii. 說明隱藏資訊
- iii. 根據方案而判斷該功能性全域變數是否合適

CLAD 測驗準備資源

測驗準備資源:

CLAD Preparation:

• CLAD Preparation E-Kit (包含準備指南與範例測驗)

CLAD Preparation 網路研討會:

- NI CLAD Preparation Course (線上) 網路研討會
- LabVIEW 基礎認證 (CLAD) 最容易忽略的概念

免費線上 LabVIEW 教育訓練與教學

- 線上 LabVIEW 圖形化程式設計課程 (Connexions 所提供)
- LabVIEW 介紹課程 3 小時
- LabVIEW 介紹課程 6 小時

NI 講師主導或函授自學課程:

- LabVIEW 核心課程 1 (LabVIEW Core 1)
- LabVIEW 核心課程 2 (LabVIEW Core 2)
- LabVIEW 核心課程 3 (LabVIEW Core 3)
- LabVIEW 優化效能課程 (LabVIEW Performance)

其他 NI 資源:

- NI 學術網頁
- NI Developer Zone
- NI LabVIEW Zone
- NI LabVIEW 支援