Design of Ćuk converter

Design parameter:

Input Voltage $(V_{in}) = 25V$

Output Voltage required $(V_o) = -30V$

Output Resistor (R) = 15 Ohm

Switching Frequency = 50kHz

Output Power $(P_0) = 60W$

Step 1: Determine the Duty Ratio

$$D = \frac{Vo}{Vin + Vo} = 0.545$$

Step 2: Determine the average inductor current and change in inductor currents

$$I_{l2} = \frac{Po}{-Vo} = 2 A$$

$$I_{l1} = \frac{Pin}{Vin} = \frac{(Vin)^2 R}{Vin} = 1.66 A$$

The change in inductor current is given by (assuming 20% changes in ripple current)

$$\Delta I_{l1} = 0.2 \times 1.66 = 0.332 A$$

 $\Delta I_{l2} = 0.2 \times 2 = 0.4 A$

Step 3: Determine Inductor Size

$$\Delta i_l = \frac{VinD}{Lf}$$

From the above equation we can calculate inductance values as:

$$L_1 = \frac{VinD}{\Delta i_{l1}f} = 820uH$$

$$L_2 = \frac{VinD}{\Delta i_{l2}f} = 681uH$$

Step 4: Determine Capacitor size

(Assuming 1% ripple)

$$C_2 = \frac{1 - D}{8L_2 \left(\frac{\Delta Vo}{Vo}\right) f^2} = 3.33 uF$$

Average voltage across C_1 is 25 - (-30) = 55V

Maximum change in $V_{C_1} = 55 \times 0.05V = 2.75V$ (Assuming ripple for C₁ as 5%)

$$C_1 = \frac{VinD}{Rf\Delta V_{c1}} = 7.92uF$$

Choose $C_1 = 8uF$ and C_2 as 3.5uF