Università degli Studi dell'Aquila

Prova Scritta di Algoritmi e Strutture Dati con Laboratorio

Mercoledì 7 settembre 2022 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. La dimensione dell'input degli algoritmi studiati per calcolare l'n-esimo numero della sequenza di Fibonacci è $k = \Theta(\log n)$. Qual è la complessità temporale in funzione della dimensione dell'input dell'algoritmo ricorsivo basato sul prodotto tra matrici?
 - a) $\omega(k)$ b) $\Theta(n)$ *c) $\Theta(k)$ d) $\Theta(k \log k)$
- 2. Sia dato in input l'array $A = [n, n-1, \ldots, 3, 2, 1]$, e si supponga di applicare su di esso gli algoritmi di ordinamento non decrescente SelectionSort, InsertionSort1 e InsertionSort2. Quale dei tre algoritmi esegue il minor numero di operazioni asintoticamente?
 - a) SelectionSort b) InsertionSort1 c) InsertionSort2 *d) Sono tutt'e tre equivalenti
- 3. L'algoritmo ottimale di fusione di due sequenze ordinate di lunghezza p e q rispettivamente, ha complessità:
 - a) $\Theta(p \cdot q)$ b) $\Theta(p)$ c) $\omega(p+q)$ *d) $\Theta(p+q)$
- 4. Quale tra i seguenti algoritmi non è ottimo se applicato al problema descritto?
 - a) Heap Sort per ordinare una sequenza di \boldsymbol{n} interi arbitrari
 - *b) MERGESORT per ordinare una sequenza di n interi con valori compresi tra 1 e n^c
 - c) Algoritmo di ricerca sequenziale per cercare un elemento in una sequenza di n interi non ordinati
 - d) Integer Sort per ordinare una sequenza di ninteri con valori ${\cal O}(n)$
- 5. Sia H un heap binomiale costituito dagli alberi binomiali $\{B_0, B_1, B_5\}$, e si supponga di eseguire su di esso un'operazione di deleteMin(). Da quali alberi binomiali è formato l'heap binomiale risultante?
 - *a) $\{B_1, B_5\}$ b) $\{B_0, B_1, B_5\}$ c) $\{B_0, B_1, B_2, B_3, B_4\}$ d) $\{B_0, B_5\}$
- 6. Dato un albero binario di ricerca di n elementi, la cancellazione di un elemento restituisce un albero avente al massimo altezza:
 - *a) n-2 b) n c) $\Theta(\log n)$ d) n-1
- 7. Si supponga di inserire la sequenza di chiavi 10, 22, 31 (in quest'ordine) in una tavola hash di lunghezza m = 3 (ovvero con indici 0, 1, 2) utilizzando l'indirizzamento aperto con funzione hash $h(k) = k \mod 3$, e risolvendo le collisioni con il metodo della scansione lineare. Quale sarà la tavola hash finale?
 - a) A = [10, 22, 31] b) A = [22, 31, 10] c) A = [31, 22, 10] *d) A = [31, 10, 22]
- 8. Sia dato un grafo non diretto G con n vertici, numerati da 1 ad n, ed n-1 archi, disposti in modo arbitrario, ma in modo tale da garantire la connessione. Si orientino ora gli archi in modo arbitrario, e si applichi l'algoritmo di ordinamento topologico rispetto al nodo sorgente etichettato 1. La complessità risultante è pari a:
 - a) $\Theta(n^2)$ *b) $\Theta(n)$ c) $\Theta(n \log n)$ d) indefinita (non è detto che l'algoritmo possa essere applicato)
- 9. Dato un grafo diretto senza cicli di costo negativo, e preso un nodo arbitrario s del grafo, si applichi su di esso l'algoritmo di Bellman&Ford per trovare l'albero dei cammini minimi radicato in s. Alla fine dell'i-esima iterazione, l'algoritmo avrà trovato (una sola delle seguenti affermazioni è sempre vera):
 - a) Tutti i cammini minimi da s verso gli i nodi più vicini ad s
 - b) Al più i cammini minimi da s
 - c) Almeno un cammino minimo costituito da esattamente i archi
 - *d) Tutti i cammini minimi da s costituiti da al più i archi
- 10. Dato un grafo completo con n vertici, l'algoritmo di Prim eseguito con un array lineare non ordinato costa:
 - a) $o(n^2)$ b) $\omega(n^2)$ c) $\Theta(n^2 \log n)$ *d) $\Theta(n^2)$

Griglia Risposte

					-					
	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										