Esercizio 1

Nel circuito in figura, i transistori bipolari sono descritti da un modello a soglia, con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V.

$$V_{cc} = 5V, \beta_F = 100, R_b = 12 \, k\Omega, R_i = 1 k\Omega.$$

Per rispondere alle domande successive, è utile tracciare la caratteristica statica $V_u(V_i)$. A questo scopo, si determinino le affermazioni preliminari esatte, fra le seguenti:

- ☐ T1 ON implica T2 ON, ma non viceversa
- ☐ T2 ON implica T1 ON, ma non viceversa
- T1 ON implica T2 ON e viceversa
- T1 non può saturare
- ☐ T2 non può saturare

Calabo caratteristica statica:

T1, T2 OFF:

$$V_{\chi} = V_{i} - R_{i}^{T}R_{i}$$

$$I_{H} + I_{B1} + I_{B2}$$

$$V_{BE1} = V_{\chi} - R_{B}I_{B1}$$

$$V_{BE2} = V_{\chi} - R_{D}I_{B1}$$

$$V_{R} = V_{CC} - R_{C}I_{C2} \rightarrow V_{u} = V_{CC}$$

T1, T2 ON, AD

$$V_{i} - R_{i} I_{Ri} = V_{R}$$

$$I_{CI} + I_{BI} + I_{B2}$$

$$0 > V_{X} = V_{i} - (\beta_{F} + 2)I_{B} = V_{X} + R_{B}I_{B} \rightarrow V_{X} = 0.457 V_{i} + 0.671$$

$$I_{B} = \frac{V_{X} - V_{B}}{R_{B}} \rightarrow I_{C2} = \beta_{F} (V_{X} - V_{B})$$

$$I_{B1} = \frac{V_{X} - V_{B}}{R_{B}} \rightarrow I_{B1} = I_{B2}$$

$$I_{B2} = \frac{V_{X} - V_{B}}{R_{B}} \rightarrow I_{B1} = I_{B2}$$

$$V_{A} = V_{A} - V_{B} \rightarrow V_{A} = V_{CESAT}$$

$$V_{A} = V_{CESAT} \rightarrow V_{A} = V_{CESAT}$$

$$V_{A} = V_{CESAT} \rightarrow V_{A} = V_{CESAT}$$

$$V_{A} = V_{CESAT} \rightarrow V_{A} = V_{A$$

Assumendo $R_c=3k\Omega$, si determini il valore basso dell'uscita V_L . Si indichi il valore in Volt, con 2 cifre decimali. Risposta:

Assumendo $R_c=3k\Omega$, si determini il valore alto dell'uscita V_H .

Si indichi il valore in Volt, con 2 cifre decimali.

Risposta: 5,00

Assumendo $R_c=3k\Omega$, si determini il massimo valore del guadagno di tensione $|A_v|=|rac{dV_u}{dV_i}|$ nell'intervallo $V_i\in[0\div V_{dd}]$.

Si indichi il valore con 2 cifre decimali.

Risposta:

2.57

Assumendo $R_c \equiv 3k\Omega$, si determini il $\,$ valore di V_{iLmax} Si indichi il $\,$ valore in $\,$ V, $\,$ con 2 cifre decimali.

Risposta: 6.75

Assumendo $R_c=3k\Omega$, si determini il $\,$ valore di V_{iHmin} . Si indichi il $\,$ valore in $\,$ V, $\,$ con $\,$ 2 cifre decimali.

Risposta: 2,54

Assumendo $R_c \equiv 3k\Omega$, si determini il $\,$ valore di V_{oLmax} . Si indichi il valore in V, $\,$ con 2 cifre decimali.

Risposta: 0,20

Assumendo $R_c=3k\Omega$, si determini il $\,$ valore di V_{oHmin} . Si indichi il valore in V, $\,$ con 2 cifre decimali.

Risposta: 5.00

In generale, mel tratto di guadagno massimo:

Si determini il valore da assegnarsi alla resistenza R_c in modo tale che il massimo valore del guadagno di tensione $|A_v|=|rac{dV_u}{dV_t}|$ nell'intervallo $V_i\in[0\div V_{dd}]$ sia pari a 4.

Si indichi il valore in $k\Omega$, con 2 cifre decimali.

Risposta: 4.56

Esercizio 2

Nel circuito in figura, i transistori sono caratterizzati dai coefficienti β_n e β_p e dalle tensioni di soglia $V_{Tn} = |V_{Tp}| = V_T$.

$$V_{dd} = 2.9 \text{ V}, \beta_n = 0.5 \frac{\text{mA}}{\text{V}^2}, \beta_p = 4.5 \frac{\text{mA}}{\text{V}^2}, V_T = 0.3 \text{ V}, C = 7 \text{ pF}.$$

Il eizenito i un nevertitore "pseudo p-mos", com ypa puel-up
$$V_{GSM} = V_{DO} \rightarrow V_{MN}$$
 Semjer on $V_{UV} \rightarrow V_{UV} \rightarrow V$

Si determini il valore basso V_L caratteristico della rete.

Si indichi il valore in V, con 2 cifre decimali.

Risposta:

Con riferimento al punto precedente, si determinino le regioni di funzionamento dei transistori per $V_i = V_H$, $V_u = V_L$.

- □ n OFF
- n SAT
- n LIN
- p OFF
- □ pSAT
- □ p LIN

Si determini il valore alto V_H caratteristico della rete.
Si indichi il valore in V, con 2 cifre decimali.
Risposta: 2.75
2.13
Con riferimento al punto precedente, si determinino le regioni di funzionamento dei transistori per
$V_i = V_L, V_u = V_H$.
□ n OFF ✓ n SAT
n LIN
□ p OFF
p SAT
p LIN
Assumendo che il segnale di ingresso alterni periodicamente i valori V_H e V_L , con duty- cycle=50%, si determini il consumo medio di potenza statica.
Si indichi il valore in mW, con 2 cifre decimali.
Risposta: 2.45

$$V_{H} = 2.75$$

$$V_{L} = 0$$

$$V_{L} = 0$$

$$V_{H} = V_{L} + V_{L}$$

Assumendo che il segnale di ingresso commuti istantaneamente da V_L a V_H , si determini il tempo di propagazione $t_{p,HL}$.

Si indichi il valore in ns, con 2 cifre decimali.

Risposta: 6.13

Con riferimento al tempo $t_{p,HL}$ calcolato al punto precedente, si determinino le regioni di funzionamento dei transistori nel primo tratto del transitorio.

- □ n OFF
- n SAT
- □ n LIN
- p OFF
- □ p SAT
- □ p LIN

Con riferimento al tempo $t_{p,HL}$ calcolato al punto precedente, si determinino le regioni di funzionamento dei transistori nel secondo tratto del transitorio.

- □ n OFF
- n SAT
- √ n LIN
- p OFF
- □ p SAT
- □ p LIN
- non esiste un secondo tratto del transitorio

tolh:
$$V_1 \cdot V_{H} \rightarrow V_{L} \rightarrow P$$
 on isomaniemente: SAT & $V_u < V_{T}$
 $V_u \cdot V_{L} \rightarrow V_{L} \rightarrow V_{L} \rightarrow P$ on solution reasonable: SAT & $V_u < V_{T} \rightarrow V_{L} \rightarrow$

Assumendo che il segnale di ingresso commuti istantaneamente da V_H a V_L , si determini il tempo di propagazione $t_{p,LH}$.

Si indichi il valore in ns. con 2 cifre decimali.

Risposta:

Con riferimento al tempo $t_{p,LH}$ calcolato al punto precedente, si determinino le regioni di funzionamento dei transistori nel primo tratto del transitorio.

- □ n OFF
- n SAT
- n LIN
- □ p OFF
- V p SAT
- □ pLIN

Con riferimento al tempo $t_{p,LH}$ calcolato al punto precedente, si determinino le regioni di funzionamento dei transistori nel secondo tratto del transitorio.

- n OFF
- □ n SAT
- n LIN
- □ p OFF
- □ p SAT
- P p LIN
- non esiste un secondo tratto del transitorio