Санкт-Петербургский Политехнический университет Петра Великого

Отчет по курсовой работе по дисциплине "Математическая статистика" по теме "Оценки коэффициентов линейной регрессии"

Студенты: Скворцов Владимир Сергеевич

Горюнов Максим Юрьевич

Голузин Егор Константинович

Преподаватель: Баженов Александр Николаевич

 Γ руппа: 5030102/10201

Санкт-Петербург 2024

Содержание

1	Постановка задачи			
2	Используемые теоретические понятия	2		
	2.1 Метод наименьших квадратов	2		
	2.2 Метод наименьших модулей	2		
	2.3 Бокс-плот Тьюки	2		
3	Описание работы	3		
4	Результаты	4		
	4.1 Напряжение $U = -0.45V$	4		
	4.2 Напряжение $U = -0.35V$	24		
	4.3 Напряжение $U = -0.25V$	24		
	4.4 Напряжение $U = -0.15V$	24		
	4.5 Напряжение $U = -0.05V$	24		
	4.6 Напряжение $U = 0.0V$	24		
	4.7 Напряжение $U = 0.05V$	24		
	4.8 Напряжение $U = 0.15V$	24		
	4.9 Напряжение $U = 0.25V$	24		
	4.10 Напряжение $U = 0.35V$	24		
	4.11 Напряжение $U = 0.45V$	24		
	4.12 Линейная регрессия до предобработки данных	26		
	4.13 Напряжение $U=0.05V$	26		
	4.14 Линейная регрессия после предобработки данных	26		
	4.15 Напряжение $U=0.05V$	26		
5	Выводы	27		

1 Постановка задачи

На основе имеющихся данных о выходных значениях вольтметра, изменяющихся с течением времени, при известных входных значениях подаваемого напряжения необходимо получить оценку данной зависимости с использованием следующих методов:

- 1. Метод наименьших квадратов.
- 2. Метод наименьших модулей.

Для исследования предоставлен шестой столбец данных. Ссылка на исходный материал: https://disk.yandex.ru/d/OAQgCulS6NfbOQ.

2 Используемые теоретические понятия

2.1 Метод наименьших квадратов

При оценивании параметров регрессионной модели используют различные методы. Один из наиболее распрстранённых подходов заключается в следующем: вводится мера (критерий) рассогласования отклика и регрессионной функции, и оценки параметров регрессии определяются так, чтобы сделать это рассогласование наименьшим. Достаточно простые расчётные формулы для оценок получают при выборе критерия в виде суммы квадратов отклонений значений отклика от значений регрессионной функции (сумма квадратов остатков):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (1)

Задача минимизации квадратичного критерия (1) носит название задачи метода наименьших квадратов (МНК), а оценки β_0 , β_1 параметров β_0 , β_1 , реализующие минимум критерия (1), называют МНК-оценками.

2.2 Метод наименьших модулей

Робастность оценок коэффициентов линейной регрессии (т.е. их устойчивость по отношению к наличию в данных редких, но больших по величине выбросов) может быть обеспечена различными способами. Одним из них является использование метода наименьших модулей вместо метода наименьших квадратов:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}.$$
 (2)

2.3 Бокс-плот Тьюки

Боксплот (англ. box plot) — график, использующихся в описательной статистике, компактно изобрадающий одномерное распределение вероятностей. Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выброса). Длину «усов» определяют разность первого квартиля и полутора межквартальных расстояний и сумма третьего квартиля и полутора межквартальных расстояний. Формула имеет вид

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \ X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1),$$
 (3)

где X_1 — нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 - третий квартиль. Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков. Выбросами считаются величины , такие что:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(4)

3 Описание работы

Лабораторные работы выполнены с использованием Python и сторонних библиотек numpy, pandas, matplotlib, seaborn. Для каждого значения напряжения данные были обработаны при помощи боксплота Тьюки, для обработанных данных также был построен график исследуемой зависимости.

Ссылка на GitHub репозиторий:

https://github.com/vladimir-skvortsov/math-stats-course-work

4 Результаты

4.1 Напряжение U = -0.45V

Рис. 1: Гистограмма распределения значений выходного напряжения

Рис. 2: Боксплот распределения значений выходного напряжения

Рис. 3: Гистограмма распределения значений выходного напряжения

Рис. 4: Боксплот распределения значений выходного напряжения

Рис. 5: Гистограмма распределения значений выходного напряжения

Рис. 6: Боксплот распределения значений выходного напряжения

Рис. 7: Гистограмма распределения значений выходного напряжения

Рис. 8: Боксплот распределения значений выходного напряжения

Рис. 9: Гистограмма распределения значений выходного напряжения

Рис. 10: Боксплот распределения значений выходного напряжения

Рис. 11: Гистограмма распределения значений выходного напряжения

Рис. 12: Боксплот распределения значений выходного напряжения

Рис. 13: Гистограмма распределения значений выходного напряжения

Рис. 14: Боксплот распределения значений выходного напряжения

Рис. 15: Гистограмма распределения значений выходного напряжения

Рис. 16: Боксплот распределения значений выходного напряжения

Рис. 17: Гистограмма распределения значений выходного напряжения

Рис. 18: Боксплот распределения значений выходного напряжения

Рис. 19: Гистограмма распределения значений выходного напряжения

Рис. 20: Боксплот распределения значений выходного напряжения

- **4.2** Напряжение U = -0.35V
- **4.3** Напряжение U = -0.25V
- **4.4** Напряжение U = -0.15V
- **4.5** Напряжение U = -0.05V
- **4.6** Напряжение U = 0.0V
- **4.7** Напряжение U = 0.05V
- **4.8** Напряжение U = 0.15V
- **4.9** Напряжение U = 0.25V
- **4.10** Напряжение U = 0.35V
- **4.11** Напряжение U = 0.45V

Рис. 21: Гистограмма распределения значений выходного напряжения

Рис. 22: Боксплот распределения значений выходного напряжения

-0.05	190.0	4931.0	5691.0
-0.45	190.0	4931.0	5691.0
-0.35	190.0	4931.0	5691.0
0.35	190.0	4931.0	5691.0
-0.25	190.0	4931.0	5691.0
0.05	190.0	4931.0	5691.0
0.15	190.0	4931.0	5691.0
0.45	190.0	4931.0	5691.0
0.0	190.0	4931.0	5691.0
0.25	190.0	4931.0	5691.0
-0.15	190.0	4931.0	5691.0

Таблица 1: Боксплот Тьюки

4.12 Линейная регрессия до предобработки данных

4.13 Напряжение U = 0.05V

Рис. 23: Полученные прямые для необработанных данных

4.14 Линейная регрессия после предобработки данных

4.15 Напряжение U = 0.05V

Рис. 24: Полученные прямые для обработанных данных

5 Выводы

- 1. Метод наименьших квадратов позволяет при помощи нетрудоемких вычислений получить коэффициенты линейной регрессии зависимых величин.
- 2. Метод наименьших модулей обеспечивает робастность оценок коэффициентов линейной регрессии.
- 3. При этом предобработка данных позволяет более точно оценить параметры линейной регрессии. Так, при использовании предобработки из исследуемых данных удаляются выбросы, которые понижают точность полученных без предобработки результатов.