

 $fines\ comerciales.$

Ecuaciones Diferenciales I

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Índice general

1. Sistemas Lineales

Notación. Por comodidad, a lo largo de la sección notaremos al conjunto de matrices de orden $n \times m$ sobre \mathbb{R} por:

$$\mathbb{R}^{n\times m}=M_{n\times m}(\mathbb{R})$$

Estudiaremos sistemas lineales de primer orden, es decir, ecuaciones de la forma:

$$x' = A(t)x + b(t) \tag{1.1}$$

Con $A: I \to \mathbb{R}^{d \times d}$ y $b: I \to \mathbb{R}^d$, funciones continuas¹ en un intervalo abierto $I \subseteq \mathbb{R}$. Si notamos por $A = (a_{ij})_{i,j}$, $d = (b_i)$ y $x = (x_i)$ a las correspondientes coordenadas de A, b y x, podemos reescribir (??) en forma de sistema, como:

$$\begin{cases} x'_1 &= a_{11}(t)x_1 + \cdots + a_{1d}(t)x_d + b_1(t) \\ x'_2 &= a_{21}(t)x_1 + \cdots + a_{2d}(t)x_d + b_2(t) \\ \vdots &\vdots &\vdots &\vdots \\ x'_d &= a_{d1}(t)x_1 + \cdots + a_{dd}(t)x_d + b_d(t) \end{cases}$$

$$(1.2)$$

Ejemplo. Supongamos que estamos en la situación de la Figura ??, con dos masas m_1 y m_2 , y dos muelles con constantes elásticas k_1 y k_2 . Supongamos además que a la masa m_2 se le aplica una fuerza F(t).

Figura 1.1: Dos masas conectadas por muelles.

Describiremos este sistema de forma matemática describiendo x_1 , la distancia de la masa m_1 a su posición de equilibrio; y x_2 , la distancia de la masa m_2 a su posición de equilibrio a lo largo del tiempo t.

Suponiendo que inicialmente (en el instante t_0) el primer muelle está dilatado (es decir, $x_1(t_0) > 0$) y que el segundo muelle está contraido $(x_2(t_0) - x_1(t_0) < 0)$, aplicando las leyes de Newton, llegamos al sistema:

$$\begin{cases} m_1 x_1'' &= -k_1 x_1 + k_2 (x_2 - x_1) \\ m_2 x_2'' &= -k_2 (x_2 - x_1) + F(t) \end{cases}$$

¹Recordemos que esto significa que sean continuas coordenada a coordenada.

La máquina descrita sigue estas ecuaciones diferenciales, que no están en la categoría que nos interesa, por ser de segundo orden. Sin embargo, un sistema lineal de cualquier orden se puede hacer siempre de primer orden. Para ello, buscamos transformar dos ecuaciones de segundo orden en 4 ecuaciones de primer orden.

El truco para cambiar orden por dimensión es llamar incógnita a las derivadas. Definimos:

$$y_1 = x_1$$
 $y_2 = x_1'$ $y_3 = x_2$ $y_4 = x_2'$

De esta forma:

$$\begin{cases} y_1' &= y_2 \\ y_2' &= \frac{-k_1}{m_1} y_1 + \frac{k_2}{m_1} (y_3 - y_1) \\ y_3' &= y_4 \\ y_4' &= \frac{-k_2}{m_2} (y_3 - y_1) + \frac{F(t)}{m_2} \end{cases}$$

Obtenemos ya un sistema de ecuaciones lineal de primer orden. Los físicos dicen que hemos pasado del espacio de las configuraciones al espacio de estados.

Tenemos:

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\left(\frac{k_1+k_2}{m_1}\right) & 0 & \frac{k_2}{m_2} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_2} & 0 & \frac{-k_2}{m_2} & 0 \end{pmatrix} \qquad b(t) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{F(t)}{m_2} \end{pmatrix}$$

Este cambio se puede aplicar siempre que queramos, y esta es la razón por la que en este capítulo solo estudiaremos sistemas de ecuaciones lineales de primer orden, porque sabiendo resolverlo sabemos resolver cualquier sistema lineal de orden superior.

Teorema 1.1 (Existencia y unicidad de las soluciones). Dados $t_0 \in I$, $x_0 \in \mathbb{R}^d$, existe una única solución del sistema:

$$x' = A(t)x + b(t) \qquad x(t_0) = x_0$$

definida en **todo** el intervalo I.

Para su demostración, será necesario repasar varios conceptos ya vistos en otras asignaturas.

Corolario 1.1.1. Ahora, si tenemos una ecuación lineal de orden superior:

$$x^{(k)} + a_{k-1}(t)x^{(k-1)} + \dots + a_1(t)x' + a_0(t)x = b(t)$$

Lo que hacemos es tomar como incógnitas:

$$y_1 = x \qquad y_2 = x' \qquad \dots \qquad y_k = x^{(k-1)}$$

Y plantear el sistema:

$$\begin{cases} y'_1 &= y_2 \\ y'_2 &= y_3 \\ \vdots & \vdots \\ y'_{k-1} &= y_k \\ y'_k &= -a_0(t)y_1 - a_1(t)y_2 - \dots - a_{k-1}(t)y_k + b(t) \end{cases}$$

Con lo que el Teorema de existencia y unicidad del Capítulo anterior es un corolario del Teorema ??.

Normas matriciales

Dada cualquier norma² $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$, esta nos permite definir una norma matricial $\|\cdot\|: \mathbb{R}^{d \times d} \to \mathbb{R}$, dada por:

$$||A|| = \max\{||Ax|| \mid ||x|| \leqslant 1\} \qquad \forall A \in \mathbb{R}^{d \times d}$$

Notemos que está bien definida³, ya que lo que hacemos es considerar la función $x \mapsto ||Ax||$ (que es continua) definida en la bola unidad junto con su frontera (que es un conjunto compacto), por lo que la imagen de un compacto es un compacto y al estar en \mathbb{R} , es un conjunto cerrado y acotado.

De forma geométrica, cada A es una transformación del espacio \mathbb{R}^d en sí mismo. Lo que hacemos para calcular su norma es calcular las imágenes de todos los vectores de la bola unidad (junto con su frontera) y quedarnos con la mayor norma de todos ellos. Si consideramos la norma vectorial euclídea, lo que hacemos es coger la mayor distancia al origen.

Ejemplo. Considerando el espacio normado $(\mathbb{R}^2, \|\cdot\|_2)$, si tomamos:

$$A = \left(\begin{array}{cc} 2 & 0\\ 0 & 1/2 \end{array}\right) \in \mathbb{R}^{2 \times 2}$$

La aplicación lineal asociada a A transforma \mathbb{S}^1 en una elipse de eje mayor 2 y eje menor 1/2, tal y como vemos en la Figura ??, con lo que ||A|| = 2.

Figura 1.2: Transformación de \mathbb{S}^1 por la aplicación lineal asociada a A.

²Recordamos que una norma es cualquier función que cumpla la desigualdad triangular, homogeneidad por homotecias y no degeneración.

³Que en realidad existe un máximo.

Las normas matriciales así definidas tienen más propiedades que las normas vectoriales de las que provienen, que ya fueron vistas en Métodos Numéricos I:

Proposición 1.2. Se verifica que:

- 1. ||I|| = 1.
- 2. $||AB|| \leq ||A|| ||B||, \forall A, B \in \mathbb{R}^{d \times d}$
- 3. $||Ax|| \le ||A|| ||x||, \ \forall x \in \mathbb{R}^d, A \in \mathbb{R}^{d \times d}$.

Demostración. Demostramos cada igualdad:

- 1. Evidente.
- 2. A partir de la definición, sean $A, B \in \mathbb{R}^{d \times d}$:

$$\begin{split} \|AB\| &= \max\{\|ABu\| \mid \|u\| = 1\} \leqslant \max\{\|A\|\|Bu\| \mid \|u\| = 1\} \\ &\leqslant \max\{\|A\|\|B\|\|u\| \mid \|u\| = 1\} = \|A\|\|B\| \end{split}$$

3. A partir de la definición de ||A||, sabemos que $||Au|| \leq ||A||$ para cualquier $u \in \mathbb{S}^1$ y $A \in \mathbb{R}^{d \times d}$. De esta forma:

$$\left\| A \frac{x}{\|x\|} \right\| = \frac{1}{\|x\|} \cdot \|Ax\| \leqslant \|A\|$$

con lo que:

$$||Ax|| \leqslant ||A|| ||x||$$

Integrales vectoriales

Supongamos que tenemos $f:[a,b]\to\mathbb{R}^d$ una función continua en un intervalo compacto, con lo que f tiene d coordenadas: $f=(f_1,\ldots,f_d)$, todas ellas continuas. De esta forma, podemos definir la integral de f como el vector formado por las integrales de sus componentes

$$\int_{a}^{b} f(t) dt = \begin{pmatrix} \int_{a}^{b} f_{1}(t) dt \\ \int_{a}^{b} f_{2}(t) dt \\ \vdots \\ \int_{a}^{b} f_{d}(t) dt \end{pmatrix}$$

Proposición 1.3. Sea $A \in \mathbb{R}^{d \times d}$, entonces:

$$A \cdot \left(\int_{a}^{b} f(t) \ dt \right) = \int_{a}^{b} [A \cdot f(t)] \ dt$$

Demostración. Si notamos a las coordenadas de A por $A = (a_{ij})_{i,j}$:

$$A\left(\int_{a}^{b} f(t) dt\right) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1d} \\ a_{21} & a_{22} & \cdots & a_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{d1} & a_{d2} & \cdots & a_{dd} \end{pmatrix} \begin{pmatrix} \int_{a}^{b} f_{1}(t) dt \\ \int_{a}^{b} f_{2}(t) dt \\ \vdots \\ \int_{a}^{b} f_{d}(t) dt \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{d} \left(a_{1j} \int_{a}^{b} f_{j}(t) dt\right) \\ \sum_{j=1}^{d} \left(a_{2j} \int_{a}^{b} f_{j}(t) dt\right) \\ \vdots \\ \sum_{j=1}^{d} \left(a_{dj} \int_{a}^{b} f_{j}(t) dt\right) \end{pmatrix}$$

$$= \begin{pmatrix} \int_{a}^{b} \left(\sum_{j=1}^{d} a_{1j} \cdot f_{j}(t)\right) dt \\ \int_{a}^{b} \left(\sum_{j=1}^{d} a_{2j} \cdot f_{j}(t)\right) dt \\ \vdots \\ \int_{a}^{b} \left(\sum_{j=1}^{d} a_{dj} \cdot f_{j}(t)\right) dt \end{pmatrix}$$

$$= \int_{a}^{b} [A \cdot f(t)] dt$$

Proposición 1.4. Se verifica que:

$$\left\| \int_a^b f(t) \ dt \right\| \leqslant \int_a^b \|f(t)\| \ dt$$

Para cualquier norma.

Demostración. Por comodidad, definimos $\Delta_m = \{1, \dots, m\}$.

Sea $P = \{a = x_0 < x_1 < \ldots < x_m = b\}$ una partición de [a,b] y $\xi_j \in [x_{j-1},x_j]$ $\forall j \in \Delta_m$. Como las componentes de f y la función ||f|| son continuas, son integrables en el sentido de Riemann y podemos considerar las sumas de Riemann asociadas a la partición P con etiquetas $\xi_j \ \forall j \in \Delta_m$. Entonces, se cumple que:

$$\sigma(\|f\|, P) = \sum_{j=1}^{d} \|f(\xi_{j})\|(x_{j} - x_{j-1}) = \sum_{j=1}^{d} \|f(\xi_{j})(x_{j} - x_{j-1})\| \geqslant \left\| \sum_{j=1}^{d} (f(\xi_{j})(x_{j} - x_{j-1})) \right\|$$

$$= \left\| \sum_{j=1}^{d} \left(\sum_{k=1}^{d} (f_{k}(\xi_{j})(x_{j} - x_{j-1}))e_{k} \right) \right\| = \left\| \sum_{k=1}^{d} \left(\sum_{j=1}^{d} (f_{k}(\xi_{j})(x_{j} - x_{j-1}))e_{k} \right) \right\|$$

$$= \left\| \sum_{k=1}^{d} (\sigma(f_{k}, P)e_{k}) \right\| = \left\| \begin{pmatrix} \sigma(f_{1}, P) \\ \sigma(f_{2}, P) \\ \vdots \\ \sigma(f_{d}, P) \end{pmatrix} \right\|$$

Por lo que $\sigma(||f||, P) \ge ||(\sigma(f_1, P), \dots, \sigma(f_d, P))||$ para toda partición P del intervalo [a, b].

Por tanto, si $\{P_n\}$ es una sucesión de particiones de [a,b] tales que $\{\Delta P_n\} \longrightarrow 0$ (donde ΔP_n es el diámetro de la partición P_n), usando que ||f|| y todas las componentes de f son Riemann-integrables, se tiene que:

$$\int_{a}^{b} \|f(t)\| dt = \lim_{n \to \infty} \sigma(\|f\|, P_n) \geqslant \lim_{n \to \infty} \left\| \begin{pmatrix} \sigma(f_1, P_n) \\ \vdots \\ \sigma(f_d, P_n) \end{pmatrix} \right\| = \left\| \begin{pmatrix} \lim_{n \to \infty} \sigma(f_1, P_n) \\ \vdots \\ \lim_{n \to \infty} \sigma(f_d, P_n) \end{pmatrix} \right\|$$

$$= \left\| \begin{pmatrix} \int_{a}^{b} f_1(t) dt \\ \vdots \\ \int_{a}^{b} f_d(t) dt \end{pmatrix} \right\| = \left\| \int_{a}^{b} f(t) dt \right\|$$

Es decir:

$$\left\| \int_a^b f(t) \ dt \right\| \leqslant \int_a^b \|f(t)\| \ dt$$

Convergencia uniforme

Dada cualquier norma vectorial $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ y fijado un intervalo $I \subseteq \mathbb{R}$, podemos definir⁴ $\|\cdot\|_{\infty}: \mathbb{F}(I, \mathbb{R}^d) \to \mathbb{R}$ dada por:

$$\|\varphi\|_{\infty} = \sup_{t \in I} \|\varphi(t)\| \qquad \forall \varphi \in \mathbb{F}(I, \mathbb{R}^d)$$

Definición 1.1 (Norma del máximo). Recordamos la definición de la norma vectorial del máximo, $\|\cdot\|_{\text{máx}}: \mathbb{R}^d \to \mathbb{R}$ dada por

$$||x||_{\text{máx}} = \text{máx}\{|x_1|, |x_2|\} \qquad \forall x = (x_1, x_2) \in \mathbb{R}^2$$

Que en algunos contextos se denota también por $\|\cdot\|_1$.

Ejemplo. En $(\mathbb{R}^2, \|\cdot\|_{\text{máx}})$:

1. Sea $\varphi_1:]0,1[\to \mathbb{R}^2$ dada por:

$$\varphi_1(t) = \begin{pmatrix} \cos t \\ e^t \end{pmatrix} \qquad t \in]0,1[$$

Tenemos que $\|\varphi\| = e$.

2. Sea ahora $\varphi_2:]0,1[\to \mathbb{R}^2$ dada por:

$$\varphi_2(t) = \begin{pmatrix} 1/t \\ t \end{pmatrix} \qquad t \in]0,1[$$

Tenemos que $\|\varphi\| = \infty$.

⁴En este caso, no obtenemos una norma, porque puede tomar el valor ∞ .

Definición 1.2. Dada una sucesión de funciones $\{f_n\}$ y una función f, todas ellas definidas sobre un mismo intervalo I, decimos que $\{f_n\}$ converge uniformemente a f si:

$$||f_n - f||_{\infty} \to 0$$

Ejemplo. Dadas $f, \psi \in \mathbb{F}(I, \mathbb{R})$ y $\delta \in \mathbb{R}^+$, que:

$$||f - \psi||_{\infty} \leq \delta$$

significa que ψ no se puede separar de f más que δ . Podemos observar esto gráficamente en la Figura ??, donde ψ debe estar en la región delimitada por las líneas discontinuas.

Figura 1.3: Región en la que debe estar ψ .

Algunas propiedades de la convergencia uniforme⁵ son:

Proposición 1.5. Si f_n son continuas y convergen uniformemente a f, entonces f es continua.

Proposición 1.6. Si $[a,b] \subseteq I$ y tenemos $f_n : I \to \mathbb{R}^d$ funciones continuas que convergen uniformemente $a \ f : I \to \mathbb{R}^d$, entonces:

$$\int_a^b f_n \to \int_a^b f$$

Sin embargo, si f_n son derivables y convergen uniformemente a f, entonces no podemos asegurar que f sea derivable:

Ejemplo. Sean $f_n : \mathbb{R} \to \mathbb{R}$:

$$f_n(t) = \frac{\operatorname{sen}(nt)}{n}$$
 $n \in \mathbb{N}$ $t \in \mathbb{R}$

Tenemos que $f_n \to f$ con $f: \mathbb{R} \to \mathbb{R}$ dada por $f(t) = 0 \ \forall t \in \mathbb{R}$, ya que:

$$||f_n - f||_{\infty} = \sup_{t \in \mathbb{R}} \left| \frac{\operatorname{sen}(nt)}{n} \right| \leqslant \frac{1}{n} \longrightarrow 0$$

⁵que ya fueron vistas en Análisis Matemático II

Y tenemos que:

$$f'_n(t) = \cos(nt) \quad \forall n \in \mathbb{N}, \quad t \in \mathbb{R}$$

Que no convergen a f', ya que:

$$f'_n(\pi) = (-1)^n \not\to f'(\pi) = 0$$

Proposición 1.7 (Test de Weierstrass). Dadas $f_n: I \to \mathbb{R}^d$, resulta que:

$$||f_{n+1}(t) - f_n(t)|| \leq M_n \quad \forall t \in I, \quad \forall n \geqslant 0$$

Si tenemos que $\sum M_n < \infty$. Entonces, f_n converge uniformemente en I.

Este Test de Weierstrass nos permite demostrar la existencia del límite de una sucesión de funciones sin conocer la función límite.

Ejemplo. Sabemos que:

$$e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!} \qquad t \in \mathbb{R}$$

Si definimos:

$$S_n(t) = \sum_{k=0}^n \frac{t^k}{k!} \quad \forall n \in \mathbb{N}, \quad t \in \mathbb{R}$$

1. Recordando la teoría que usábamos en Análisis Matemático I sobre el radio de convergencia, vemos que el radio de convergencia de S_n es infinito, por lo que podemos garantizar convergencia uniforme en cada intervalo compacto de \mathbb{R} , pero no en todo \mathbb{R} .

Pensando en que los polinomios siempre divergen en $-\infty$, podemos intuir que la convergencia en todo \mathbb{R} no la tenemos garantizada, ya que la función exponencial tiede a 0 en dicho límite.

De esta forma, una serie de polinomios nunca puede converger a una función que está acotada en un intervalo no acotado.

2. De forma análoga y usando el Test de Weierstrass, podemos desmotrar la convergencia de la suesión $\{S_n\}$ en cada intervalo compacto [a, b]:

$$|S_{n+1}(t) - S_n(t)| = \frac{t^{n+1}}{(n+1)!} \le \frac{b^{n+1}}{(n+1)!} \longrightarrow 0 \quad \forall t \in [a, b]$$

Estamos ya listos para realizar la demostración del Teorema ??:

Teorema 1.8 (Existencia y unicidad de las soluciones). Dados $t_0 \in I$, $x_0 \in \mathbb{R}^d$, existe una única solución del sistema:

$$x' = A(t)x + b(t)$$
 $x(t_0) = x_0$ (1.3)

definida en **todo** el intervalo I.

Demostración. Inicialmente, demostraremos el teorema en un caso particular y veremos que el caso general se puede reducir al particular:

 \blacksquare Supongamos que I es un intervalo acotado de longitud l y que:

$$||A(t)|| \le \alpha \quad ||b(t)|| \le \beta \qquad \forall t \in I$$

Exitencia. Queremos llegar a que tenemos una solución x del problema de valores iniciales (??), esta cumplirá:

$$x'(t) = A(t)x(t) + b(t)$$

Con lo que la integraremos (vectorialmente) cogiendo $t_0 \in I$ (son funciones continuas en un compacto):

$$\int_{t_0}^{t} x'(s) \ ds = \int_{t_0}^{t} [A(s)x(s) + b(s)] \ ds$$

Aplicando coordenada a coordenada la Regla de Barrow y que $x(t_0) = x_0$:

$$x(t) - x_0 = x(t) - x(t_0) = \int_{t_0}^t x'(s) \ ds = \int_{t_0}^t [A(s)x(s) + b(s)] \ ds$$

Y hemos llegado a una ecuación integral que cumplirá la x buscada:

$$x(t) = x_0 + \int_{t_0}^t [A(s)x(s) + b(s)] ds$$

Buscaremos soluciones aproximadas (buscamos las iterantes de Picard): La primera aproximación la tomamos como la condición inicial:

$$x_0(t) = x_0 \qquad t \in I$$

con lo que podemos definir:

$$x_{n+1}(t) = x_0 + \int_{t_0}^t [A(s)x_n(s) + b(s)] ds \qquad \forall n \in \mathbb{N} :$$

La idea de la demostración es construir las iterantes de Picard (que están bien definidas y todas de clase $C^1(I)$). Los pasos a seguir son:

- 1. Demostraremos que las iterantes de Picard convergen uniformemente (esto será una función continua).
- 2. Una vez que sabemos que x_n tienden a un límite, haciendo n tender a infinito, vamos a llegar a la ecuación integral, usando para ello la comnutación de integral con convergencia uniforme.
 - El límite de Picard es una solución integral.
- Probar que una solución de la ecuación integral es una solución del problema de valores iniciales.

Comenzando ahora con la demostración, definimos las Iterantes de Picard:

$$x_0(t) = x_0$$

$$x_{n+1}(t) = x_0 + \int_{t_0}^t [A(s)x_n(s) + b(s)] ds$$

Con $x_n: I \to \mathbb{R}^d$ bien definidas y continuas $\forall n \in \mathbb{N}$ (hágase por inducción). Además, $x_n \in C^1(I) \ \forall n \in \mathbb{N}$, gracias al Teorema Fundamental del Cálculo.

Veamos que $\{x_n\}$ converge uniformemente en I, usando para ello el Test de Weierstrass. Comenzamos acotando la primera diferencia:

$$||x_{1}(t) - x_{0}(t)|| = \left| \left| \int_{t_{0}}^{t} [A(s)x_{0} + b(s)] ds \right| \le \left| \int_{t_{0}}^{t} ||A(s)x_{0} + b(s)|| ds \right|$$

$$\le \left| \int_{t_{0}}^{t} [||A(s)|| ||x_{0}|| + ||b(s)||] ds \right| \le \left| \int_{t_{0}}^{t} [\alpha \cdot ||x_{0}|| + \beta] ds \right|$$

$$\le (\alpha \cdot ||x_{0}|| + \beta) \cdot l = M_{0} \in \mathbb{R} \forall t \in I$$

Ahora:

$$||x_2(t) - x_1(t)|| = \left\| \int_{t_0}^t [A(s)(x_2(s) - x_1(s))] \, ds \right\| \le \left| \int_{t_0}^t ||A(s)(x_2(s) - x_1(s))|| \, ds \right|$$

$$\le \alpha \left| \int_{t_0}^t ||x_1(s) - x_0(s)|| \, ds \right| \le \alpha M_0 \left| \int_{t_0}^t ||x_0(s)|| \, ds \right|$$

Donde hemos mantenido la dependencia de t, ya que si ahora decimos que $\alpha M_0 |t-t_0| \leq \alpha M_0 l = M_1$, obtendremos luego una serie $\{\sum M_n\}$ que no converja, con lo que tratamos de mantener la dependencia de t hasta el final:

$$||x_3(t) - x_2(t)|| \le \alpha \left| \int_{t_0}^t ||x_2(s) - x_1(s)|| \, ds \right| \le \alpha^2 M_0 \left| \int_{t_0}^t |s - t_0| \, ds \right|$$
$$= \alpha^2 M_0 \frac{|t - t_0|^2}{2}$$

En definitiva, se puede probar por inducción que:

$$||x_{n+1}(t) - x_n(t)|| \leqslant M_0 \frac{\alpha^n |t - t_0|^n}{n!} \qquad \forall t \in I$$

Definimos ahora:

$$M_n = M_0 \cdot \frac{(\alpha \cdot l)^n}{n!} \quad \forall n \in \mathbb{N} \cup \{0\}$$

Una serie conocida, con lo que:

$$\sum_{n=0}^{\infty} M_n = M_0 \cdot e^{\alpha \cdot l} \in \mathbb{R}$$

Por el Test de Weierstrass, concluimos que $\{x_n\}$ converge uniformemente a una función $x: I \to \mathbb{R}^d$, que por ahora solo sabemos que es continua, por ser x_n continua $\forall n \in \mathbb{N}$.

Veamos ahora que x es solución al problema de valores iniciales. Como:

$$||A(t)x_n(t) - A(t)x(t)|| \le \alpha ||x_n(t) - x(t)||$$

Tenemos que $\{Ax_n\} \to Ax$, con lo que:

$$\int_{t_n}^t A(s)x_n(s) \ ds \longrightarrow \int_{t_0}^t A(s)x(s) \ ds$$

En definitiva:

$$x(t) = x_0 + \int_{t_0}^t [A(s)x(s) + b(s)] ds$$

Aplicando el Teorema Fundamental del Cálculo, tenemos que $x \in C^1(I, \mathbb{R}^d)$:

$$x'(t) = A(t)x(t) + b(t) \quad \forall t \in I$$

Con lo que x es solución de (??) y se tiene que:

$$x(t_0) = x_0 + \int_{t_0}^{t_0} [A(s)x(s) + b(s)] ds = x_0$$

Unicidad. Supongamos que $x, y: I \to \mathbb{R}^d$ son ambas soluciones de (??). Como son soluciones, también cumplen la ecuación integral:

$$x(t) = x_0 + \int_{t_0}^t [A(s)x(s) + b(s)] ds$$
$$y(t) = x_0 + \int_{t_0}^t [A(s)y(s) + b(s)] ds$$

Restando:

$$x(t) - y(t) = \int_{t_0}^{t} [A(s)(x(s) - y(s))] ds$$

Con lo que:

$$||x(t) - y(t)|| = \left| \left| \int_{t_0}^t [A(s)(x(s) - y(s))] \ ds \right| \le \alpha \left| \int_{t_0}^t ||x(s) - y(s)|| \ ds \right| \quad \forall t \in \mathbb{R}$$

Tomando $f(t) = ||x(t) - y(t)|| \ \forall t \in I$, tenemos una función continua no negativa que está en las hipótesis del Lema ??, concluimos que f(t) = 0 $\forall t \in I$, con lo que $x(t) = y(t) \ \forall t \in I$.

■ De vuelta al caso general, buscamos quitar las hipótesis de que I sea un intervalo acotado. Para ello, tomamos una sucesión $\{I_n\}$ de intervalos abiertos y acotados de forma que $t_0 \in I_0$, $I_n \subseteq I_{n+1}$, $\overline{I_n} \subseteq I \ \forall n \in \mathbb{N}$ y:

$$\bigcup_{n=0}^{\infty} I_n = I$$

Podemos ahora definir:

$$\alpha_n = \max_{t \in \overline{I_n}} \|A(t)\|$$
 $\beta_n = \max_{t \in \overline{I_n}} \|b(t)\|$ $\forall n \in \mathbb{N}$

Con lo que la hipótesis extra anterior se verifica en cada intervalo I_n .

Unicidad. Si $x, y : I \to \mathbb{R}^d$ son soluciones de (??), entonces $x_{|I_n}$ y $y_{|I_n}$ son soluciones de (??) en I_n , donde sabemos que se verifica $x(t) = y(t) \ \forall t \in I_n$, para todo $n \in \mathbb{N}$, con lo que $x(t) = y(t) \ \forall t \in I$.

Existencia. Si ahora llamamos x_n a la solución del problema de valores iniciales en el intervalo I_n , definimos $x: I \to \mathbb{R}^d$

$$x(t) = x_n(t)$$
 si $t \in I_n$

Es una función bien definida gracias a la unicidad en cada I_n , es derivable y cumple la ecuación diferencial porque lo es y la cumple en cada I_n .

Lema 1.9. Sea J un intervalo $y f: J \to \mathbb{R}_0^+$ continua, sean $t_0 \in J$, $\alpha > 0$:

$$f(t) \leqslant \alpha \left| \int_{t_0}^t f(s) \ ds \right| \quad \forall t \in J \Longrightarrow f(t) = 0 \quad \forall t \in J$$

Demostración. Realizando primero la demostración en un caso más específico:

• Si J es compacto, $\exists \max_{t \in J} f(t) = m$, con lo que:

$$f(t) \leqslant \alpha \cdot m \cdot |t - t_0| \quad \forall t \in J$$

$$f(t) \leqslant \alpha \left| \int_{t_0}^t [\alpha \cdot m \cdot |s - t_0|] ds \right| \leqslant m \cdot \frac{\alpha^2 |t - t_0|^2}{2} \forall t \in J$$

En definitiva, se puede probar por inducción que:

$$0 \leqslant f(t) \leqslant m \cdot \frac{\alpha^n |t - t_0|^n}{n!} \quad \forall t \in J$$

Como sabemos que la serie de dichos términos converge, sabemos que la sucesión tiende a 0, luego tomando límites llegamos a que $0 \le f(t) \le 0 \ \forall t \in J$, concluimos que $f(t) = 0 \ \forall t \in J$.

■ Sea ahora J cualquier intervalo, tomamos J_n un intervalo compacto de forma que $J_n \subseteq J_{n+1}$ con $t_0 \in J_0$ y:

$$\bigcup_{n=0}^{\infty} J_n = J$$

Por el paso anterior, $f(t) = 0 \ \forall t \in J_n$, para todo $n \in \mathbb{N}$, con lo que $f(t) = 0 \ \forall t \in J$.

1.1. Sistemas lineales homogéneos

Nos preocupamos ahora por sistemas de la forma

$$x' = A(t)x$$

con $A: I \to \mathbb{R}^{d \times d}$ una función continua. Sean $V = C^1(I, \mathbb{R}^d)$ y $W = C^0(I, \mathbb{R}^d)$.

Definición 1.3. Dado un sistema lineal homogéneo de la forma (??), definimos el operador asociado a la ecuación como la aplicación $L: V \to W$ dado por:

$$L[x] = x' - Ax$$

Se verifica que el operador lineal L asociado a la ecuación (??) es lineal. Más aún, se verifica que $Z = \ker L$ es el espacio vectorial de las soluciones de la ecuación (??).

Proposición 1.10. dim Z = d.

Demostración. Para ello, fijado $t_0 \in I$, definimos $\Phi_{t_0}: Z \to \mathbb{R}^d$ dada por $\Phi_{t_0}(x) = x(t_0)$, que es un isomorfismo entre Z y \mathbb{R}^d gracias al Teorema ??, concluimos que dim Z = d.

Dados $\phi_1, \ldots, \phi_d \in Z$ funciones linealmente independientes en V, todas las soluciones de (??) las obtendremos mediante combinaciones lineales de dichas funciones:

$$x(t) = c_1 \phi_1(t) + \ldots + c_d \phi_d(t)$$
 $c_1, \ldots, c_d \in \mathbb{R}$

Proposición 1.11. Dadas $\phi_1, \ldots, \phi_d \in \mathbb{Z}$, son equivalentes:

- i) $\{\phi_1, \ldots, \phi_d\}$ es una base.
- $ii) \det(\phi_1(t)|\ldots|\phi_d(t)) \neq 0 \ \forall t \in I.$
- iii) det $(\phi_1(t)|\ldots|\phi_d(t)) \neq 0$ para cierto $t \in I$.

Demostración. Se deja como ejercicio para el lector.

Sabemos que la ecuación de la forma $(\ref{eq:continuous})$ no se puede resolver de forma explícita para $d \geqslant 2$. En el siguiente ejemplo, veremos soluciones de ecuaciones de la forma $(\ref{eq:continuous})$ que sí se pueden resolver de forma explícita.

Ejemplo. Un primer ejemplo de estos son los sistemas triangulares. Consideramos el sistema:

$$\begin{cases} x_1' = x_1 + x_2 \\ x_2' = \frac{1}{t}x_2 \end{cases}$$

Estamos trabajando con $I = \mathbb{R}^+, d = 2$ y:

$$x = \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \qquad A(t) = \left(\begin{array}{cc} 1 & 1 \\ 0 & {}^{1/\!t} \end{array} \right) \quad \forall t \in I$$

Comenzaremos resolviendo la segunda ecuación y luego sustituyendo en la primera:

$$x_2' = \frac{1}{t}x_2$$

Sabemos que las soluciones de esta ecuación son de la forma $x_2:I\to\mathbb{R}$

$$x_2(t) = c_2 t$$
 $c_2 \in \mathbb{R}$ $t \in I$

Trataremos de resolver ahora la ecuación:

$$x_1' = x_1 + c_2 t$$

que es una ecuación lineal completa. Para resolverla, haremos uso de su estructura afín: buscaremos una solución a ojo y le sumaremos las soluciones de su ecuación homogénea. Buscamos con una función de la forma:

$$x_1(t) = \alpha t + \beta$$
 $t \in I$

Derivando:

$$\alpha = \alpha t + \beta + c_2 t$$

Que nos lleva a unas ecuaciones:

$$\begin{cases} \alpha = \beta \\ \alpha + c_2 = 0 \end{cases}$$

Con lo que la solución particular buscada es:

$$x_1(t) = -c_2(t+1) \qquad t \in I$$

Finalmente, una solución de la ecuación completa es $x_1: I \to \mathbb{R}$ dada por:

$$x_1(t) = -c_2(t+1) + c_1e^t$$
 $c_2 \in \mathbb{R}$ $t \in I$

Para buscar una base que nos dé el espacio de soluciones para el sistema, haremos elecciones de c_1 y c_2 para obtener dos funciones linealmente independientes. De esta forma, una base la obtenemos con:

$$\phi_1(t) = \begin{pmatrix} e^t \\ 0 \end{pmatrix} \qquad \phi_2(t) = \begin{pmatrix} -(t+1) \\ t \end{pmatrix} \qquad \forall t \in I$$

Que son dos funciones $\phi_1, \phi_2: I \to \mathbb{R}$ linealmente independientes, ya que:

$$\det(\phi_1(t)|\phi_2(t)) = t \cdot e^t \neq 0 \qquad \forall t \in I$$

1.1.1. Sistemas de coeficientes constantes

Un tipo de sistemas que también se puede resolver siempre es cuando la función A es constante. Veamos este ejemplo, donde trabajamos con una matriz $A \in \mathbb{R}^{d \times d}$, con lo que $I = \mathbb{R}$.

Supongamos que $\lambda \in \sigma(A) \cap \mathbb{R}$ es un valor propio no trivial de A, y consideramos $v \in \mathbb{R}^d \setminus \{0\}$ un vector propio asociado a λ . En dicho caso, la función $x : I \to \mathbb{R}$ dada por

$$x(t) = e^{\lambda t} \cdot v \qquad t \in I$$

Es una solución del sistema, ya que:

$$x'(t) = \lambda e^{\lambda t} v$$

Y se tiene que:

$$Ax(t) = e^{\lambda t} Av = \lambda e^{\lambda t} v = x'(t) \qquad \forall t \in I$$

De esta forma, ante un sistema de coeficientes constantes en el que la matriz A sea diagonalizable, bastará encontrar los valores y vectores propios de la matriz para hayar las soluciones.

Ejemplo. Sea el sistema de ecuaciones diferenciales dado por la matriz:

$$A = \left(\begin{array}{cc} 3 & 1\\ 1 & 3 \end{array}\right)$$

Tenemos que $\sigma(A) = \{\lambda_1, \lambda_2\}$, con $\lambda_1 = 4$ y $\lambda_2 = -2$. Además, sabemos que los vectores $v_1 = (1, 1)$ y $v_2 = (1, -1)$ son vectores propios asociados a dichos valores, respectivamente. De esta forma, sabemos que:

$$\phi_1(t) = e^{4t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \phi_2(t) = e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \forall t \in I$$

Son soluciones del sistema, que además son linealmente independientes, ya que:

$$\det(\phi_1(t)|\phi_2(t)) = e^{2t} \det(v_1|v_2) \neq 0 \qquad \forall t \in I$$

Valores propios complejos

Dada una matriz $A \in \mathbb{R}^{d \times d}$, si tomamos $\lambda \in \sigma(A) \cap (\mathbb{C} \setminus \mathbb{R})$, con vector propio $w \in \mathbb{C}^d \setminus \{0\}$. Lo que haremos ahora será buscar soluciones del sistema en los complejos, es decir, buscar una función $x : \mathbb{R} \to \mathbb{C}^d$ pensando en \mathbb{C} como en \mathbb{R}^2 : x = u + iv. Al obtener una solución compleja x, su parte real u = Re(x) y su parte imaginaria v = Im(x) son soluciones reales:

Ejemplo. Si ahora tomamos la matriz:

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \in \mathbb{R}^{2 \times 2}$$

Es la matriz asociada a la rotación de 90° , que no tiene valores propios reales, sino complejos:

$$\sigma(A) = \{\lambda_1 = i, \lambda_2 = -i\}$$

Con vectores propios asociados $v_1 = (1, i)$, $v_2 = (1, -i)$ linealmente independientes. Podemos construir una solución compleja:

$$\psi(t) = e^{it} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} e^{it} \\ ie^{it} \end{pmatrix} = \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix} \qquad \forall t \in I$$

De donde podemos obtener dos soluciones reales:

$$\phi_1(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} \qquad \phi_2(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} \qquad t \in I$$

Que son linealmente independientes, por ser $\det(\phi_1(t)|\phi_2(t)) \neq 0 \ \forall t \in I$.

Otra forma de resolver el sistema:

$$\begin{cases} x_1' = x_2 \\ x_2' = -x_1 \end{cases}$$

Es pasarlo a una ecuación de orden superior. Para ello, derivamos la primera ecuación:

$$x_1'' = x_2' = -x_1$$

despejando, tenemos que:

$$x_1'' + x_1 = 0$$

Con polinomio característico $p(\lambda) = \lambda^2 + 1$. Tiene soluciones complejas y si tomamos sus soluciones:

$$e^{it} = \cos t + i \sin t$$
 e^{-it}

Con lo que una solución es

$$x_1(t) = c_1 \cos t + c_2 \sin t$$

$$x_2(t) = -c_1 \sin t + c_2 \cos t$$

1.1.2. Matriz solución y matriz fundamental

Hemos ya trabajado con los sistemas lineales homogéneos, los que tenían la forma (??) con $A:I\to\mathbb{R}^{d\times d}$ una función continua. Seguiremos ahora trabajando con una ecuación de la misma forma, pero ahora no estaremos interesados en buscar soluciones $x:I\to\mathbb{R}^d$, sino en buscar matrices solución.

Definición 1.4 (Matriz solución). Dada una ecuación de la forma (??) siendo $A: I \to \mathbb{R}^{d \times d}$ una función continua, diremos que una función $\Phi: I \to \mathbb{R}^{d \times d}$ es una matriz solución de la ecuación si es derivable y cumple que:

$$\Phi'(t) = A(t)\Phi(t) \qquad \forall t \in I$$

Ejemplo. Antes teníamos el sistema x' = Ax dado por:

$$A = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

⁶Recordamos que esto es equivalente a que cada componente sea derivable

Puede comprobarse que $\Phi : \mathbb{R} \to \mathbb{R}^{2 \times 2}$ dada por:

$$\Phi(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \qquad t \in I$$

es una matriz solución del sistema. También lo es:

$$\Phi_1(t) = \begin{pmatrix} 2\cos t & 3\sin t \\ -2\sin t & 3\cos t \end{pmatrix} \qquad t \in I$$

Observación. Sea $\Phi: I \to \mathbb{R}^{d \times d}$, si notamos a sus columnas por ϕ_1, \ldots, ϕ_d :

$$\Phi = (\phi_1 | \dots | \phi_d)$$

 Φ es una matriz solución de $(??) \iff \phi_1, \ldots, \phi_d \in Z$.

Esto se debe a que si tenemos una matriz $B = (b_1 | \dots | b_d)$, entonces:

$$A \cdot B = (Ab_1 | \dots | Ab_d)$$

Con lo que si se cumple $\Phi'(t) = A(t)\Phi(t)$, entonces:

$$(\phi_1'|\ldots|\phi_d') = A(\phi_1|\ldots|\phi_d)$$

y viceversa.

A partir de esta observación, una matriz solución no es nada más que una matriz cuyas columnas son soluciones.

Definición 1.5 (Matriz fundamental). Sea Φ una matriz solución, si existe⁷ $t \in I$ tal que $\det(\Phi(t)) \neq 0$, diremos que Φ es una matriz fundamental.

Observación. Notemos que una matriz fundamental es una matriz cuyas columnas forman un sistema fundamental: Si $\Phi = (\phi_1 | \dots | \phi_d)$ es una matriz fundamental, entonces $\{\phi_1, \dots, \phi_d\}$ es un sistema fundamental.

Como realizar combinaciones lineales de ϕ_1, \ldots, ϕ_d es equivalente a multiplicar la matriz Φ por un vector:

$$\alpha_1 \phi_1 + \ldots + \alpha_d \phi_d = \Phi \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_d \end{pmatrix}$$

Obtentemos la identidad:

$$Z = \{ \Phi \cdot c \mid c \in \mathbb{R}^d \}$$

Notemos que si exigimos solo que Φ sea una matriz solución (no necesariamente fundamental), solo obtenemos la inclusión:

$$\{\Phi \cdot c \mid c \in \mathbb{R}^d\} \subseteq Z$$

⁷Esto es equivalente a que el determinante sea distinto de 0 para todo $t \in I$, gracias a la teoría desarrollada.

Derivación del producto de dos matrices

Con vistas a demostrar una proposición, aprenderemos ahora a derivar un producto de matrices

Lema 1.12. Sean $\Phi, \Psi : I \to \mathbb{R}^{d \times d}$ functiones derivables, entonces $\Phi \cdot \Psi$ es derivable, con^8 :

$$(\Phi \cdot \Psi)' = \Phi' \cdot \Psi + \Phi \cdot \Psi'$$

Demostración. Si $\Phi = (\phi_{ij})_{i,j}$ y $\Psi = (\psi_{ij})_{i,j}$, tenemos que ϕ_{ij}, ψ_{ij} son derivables, para todo $i, j \in \{1, \ldots, d\}$. Si definimos:

$$\xi_{ij} = \sum_{k=1}^{d} \phi_{ik} \cdot \psi_{kj} \qquad \forall i, j \in \{1, \dots, d\}$$

Entonces, tenemos que $\Phi \cdot \Psi = (\xi_{ij})_{i,j}$, con cada ξ_{ij} derivable por ser suma de productos de funciones derivables. Ahora, si escribimos el cociente incremental de la función $\Phi \cdot \Psi$:

$$\begin{split} \frac{1}{h}[\Phi(t+h)\cdot\Psi(t+h)-\Phi(t)\Psi(t)] &= \\ \frac{1}{h}[\Phi(t+h)\cdot\Psi(t+h)-\Phi(t+h)\cdot\Psi(t)] &+ \frac{1}{h}[\Phi(t+h)\Psi(t)-\Phi(t)\Psi(t)] \end{split}$$

Sacando factor común:

$$\begin{split} \frac{1}{h} [\Phi(t+h) \cdot \Psi(t+h) - \Phi(t)\Psi(t)] &= \\ \frac{\Phi(t+h)}{h} [\Psi(t+h) - \Psi(t)] + \frac{1}{h} [\Phi(t+h) - \Phi(t)]\Psi(t) \end{split}$$

Y si ahora hacemos $h \to 0$:

$$(\Phi \cdot \Psi)'(t) = \Phi(t) \cdot \Psi'(t) + \Phi'(t) \cdot \Psi(t) = \Phi'(t) \cdot \Psi(t) + \Phi(t) \cdot \Psi'(t) \qquad \forall t \in I$$

Proposición 1.13. Supongamos que Φ es una matriz solución y que $C \in \mathbb{R}^{d \times d}$. Entonces $\Phi \cdot C$ es una matriz solución.

Demostración. Que Φ sea una matriz solución significa que es derivable y que:

$$\Phi'(t) = A(t) \cdot \Phi(t) \quad \forall t \in I$$

Por el Lema??:

$$(\Phi \cdot C)' = \Phi' \cdot C = (A \cdot \Phi) \cdot C = A \cdot (\Phi \cdot C)$$

Con lo que $\Phi \cdot C$ es una matriz solución.

⁸Recordemos que el producto de matrices no es conmutativo, luego debemos mantener el órden en la fórmula.

Corolario 1.13.1. Si Φ es una matriz fundamental y $C \in \mathbb{R}^{d \times d}$ con $\det(C) \neq 0$. Entonces $\Phi \cdot C$ es una matriz fundamental.

Ejercicio. Si tenemos una matriz fundamental Φ , podemos obtener todas las bases de soluciones si multiplicamos por cada matriz $C \in \mathbb{R}^{d \times d}$ con $\det(C) \neq 0$.

Definición 1.6 (Matriz fundamental principal en un punto). Dado $t_0 \in I$, decimos que Φ es una matriz fundamental principal en t_0 si Φ es una matriz fundamental y se verifica que

$$\Phi(t_0) = I$$

Ejemplo. Si consideramos el sistema anterior x' = Ax dado por la matriz:

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

Sabemos que la matriz $\Phi: I \to \mathbb{R}$ dada por:

$$\Phi(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \qquad t \in I$$

Es fundamental. Además, es principal en cualquier punto de la forma $2k\pi$, con $k \in \mathbb{Z}$.

Proposición 1.14. Dado un sistema lineal homogéneo de la forma (??) y $t_0 \in I$, entonces existe una única matriz fundamental principal en t_0 .

Demostración. Dado un sistema lineal homogéneo de la forma (??), consideramos Z, que sabemos que tiene dim Z = d. De esta forma, cogemos $\phi_1, \ldots, \phi_d \in Z$ funciones linealmente independientes y definimos $\Phi : I \to \mathbb{R}^{d \times d}$ dada por:

$$\Phi(t) = (\phi(t)_1 | \dots | \phi(t)_d) \qquad t \in I$$

De esta forma, Φ es una matriz fundamental para (??), con lo que su determinante será no nulo: $\det(\Phi(t)) \neq 0 \ \forall t \in I$. Consideramos $\Phi^{-1}(t_0) \in \mathbb{R}^{d \times d}$, con $\det(\Phi^{-1}(t_0)) \neq 0$, por lo que aplicando el Corolario ??, tenemos que la función $\Phi \cdot \Phi^{-1}(t_0) : I \to \mathbb{R}^{d \times d}$ es una matriz fundamental, que verifica que:

$$(\Phi \cdot \Phi^{-1}(t_0))(t_0) = \Phi(t_0) \cdot \Phi^{-1}(t_0) = I$$

Por tanto, $\Phi \cdot \Phi^{-1}(t_0)$ es una matriz fundamental principal en t_0 .

Supongamos ahora que $\Phi, \Psi: I \to \mathbb{R}^{d \times d}$ son dos matrices fundamentales principales en $t_0 \in I$. Si notamos a sus columnas por:

$$\Phi = (\phi_1 | \dots | \phi_d) \qquad \Psi = (\psi_1 | \dots | \psi_d)$$

con $\phi_i, \psi_i : I \to \mathbb{R}^d \ \forall i \in \{1, \dots, d\}$. Como $\Phi(t_0) = I = \Psi(t_0)$, tenemos que tanto ϕ_i como ψ_i son ambas soluciones de la ecuación (??) para la condición inicial $t_0 \in I$, $\alpha_i = (0, \dots, 0, \overset{i}{1}, 0, \dots, 0) \in \mathbb{R}$, para cada $i \in \{1, \dots, d\}$. Sin embargo, el Teorema ?? nos garantiza la unicidad de dichas soluciones, con lo que $\phi_i = \psi_i \ \forall i \in \{1, \dots, d\}$. Luego $\Phi = \Psi$.

Ejercicio. Existe una Fórmula de Jacobi-Liouville para sistemas:

Dada una matriz solución $\Phi(t)$ de (??), tomamos $t_0 \in I$. Resulta que:

$$\det \Phi(t) = \det \Phi(t_0) \cdot e^{\int_{t_0}^t tr A(s) \ ds} \qquad \forall t \in I$$

Donde notamos por trA(s) a la traza de la matriz A en el punto $s \in \mathbb{R}$. Se pide:

- Demostrar la fórmula.
- Ver que la fórmula del Capítulo anterior es un caso particular de esta.

(**Pista**: derivar la función $\det \Phi(t)$, sacar una ecuación diferencial de primer orden de la que es solución y comprobar que la expresión de la derecha también es solución del mismo problema de valores iniciales.)

1.2. Exponencial de una matriz

Como motivación, volvemos a la ecuación diferencial del inicio del curso:

$$x' = \lambda x$$

Tenemos que una solución suya viene dada por $x: \mathbb{R} \to \mathbb{R}$

$$x(t) = e^{\lambda t} x_0 \qquad t \in \mathbb{R}$$

para cierto $x_0 \in \mathbb{R}$. Si ahora consideramos el sistema de ecuaciones:

$$x' = Ax$$

Buscamos que las soluciones del sistema sean de la forma:

$$x(t) = e^{tA}x_0$$

Pero, ¿qué es la exponencial de una matriz?

1.2.1. Definición de exponencial de una matriz

Recordando la definición de la exponencial, dado $\lambda \in \mathbb{R}$, e^{λ} se define como:

$$e^{\lambda} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!}$$

Es decir, el límite de una serie de potencias, pero ¿cómo podemos generalizar este límite a las matrices? Pues bien, podemos pensar intuitivamente en este límite como en un "polinomio de grado infinito", y en asignaturas pasadas⁹ aprendimos ya que dado un polinomio, por ejemplo $p(\lambda) = \lambda^3 - \lambda + 3$, podemos cambiar su dominio de definición (usualmente \mathbb{R}) a $\mathbb{R}^{d \times d}$, a partir de la fórmula:

$$P(A) = A^3 - A + 3I$$
 $A \in \mathbb{R}^{d \times d}$

Por lo que ya sabemos evaluar polinomios en matrices. Antes de definir qué es la exponencial de una función, es necesario antes ver ciertos resultados, para poder realizar dicha definición.

⁹Como en Geometría II.

Lema 1.15. Sea $\{A_n\}$ con $A_n \in \mathbb{R}^{d \times d} \ \forall n \in \mathbb{N}$ una sucesión de matrices $y \{M_n\}$ con $M_n \in \mathbb{R} \ \forall n \in \mathbb{N}$ una sucesión de números reales de forma que $||A_n|| \leq M_n \ \forall n \in \mathbb{N}$, si se verifica que:

$$\sum_{n=0}^{\infty} M_n < \infty$$

Entonces:

$$\sum_{n=0}^{\infty} A_n < \infty$$

Lema 1.16. La serie

$$\left\{ \sum_{n=0}^{k} \frac{1}{n!} A^n \right\}$$

es convergente.

Demostración. Si consideramos la sucesión $\left\{\frac{1}{n!}A^n\right\}$, tenemos que:

$$\left\| \frac{1}{n!} A^n \right\| = \frac{1}{n!} \|A^n\| \stackrel{(*)}{\leqslant} \frac{1}{n!} \|A\|^n \qquad \forall n \in \mathbb{N}$$
 (1.4)

Donde en (*) hemos usado que $\|\cdot\|$ es una norma matricial, con lo que se da que $\|A \cdot B\| \leq \|A\| \|B\|$ para cualesquiera matrices A y B, que puede generalizarse para todo $n \in \mathbb{N}$ fácilmente por inducción. Si ahora definimos la sucesión $\{M_n\}$ de forma que:

$$M_n = \frac{1}{n!} ||A||^n \qquad \forall n \in \mathbb{N}$$

la desigualdad (??) nos da que $||A_n|| \leq M_n \ \forall n \in \mathbb{N}$, y como sabemos que:

$$\sum_{n=0}^{\infty} M_n = e^{\|A\|} < \infty$$

Definición 1.7 (Exponencial de una matriz cuadrada). Sea $A \in \mathbb{R}^{d \times d}$ una matriz cuadrada, definimos:

$$e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

que sabemos que es convergente por el Lema??.

Observación. Notemos que en el Lema ??, además de probar que la serie que nos da la definición de la exponencial de una matriz es convergente, habíamos conseguido probar que:

$$||e^A|| \leqslant e^{||A||} \qquad \forall A \in \mathbb{R}^{d \times d}$$

Una vez definida la exponencial de una matriz, la única forma que tenemos de calcularla para una matriz dada es a partir de la definición, por lo que tendremos que calcular el límite de una serie de potencias matriciales.

Parece lógico pensar que las matrices para las cuales es fácil calcular su exponencial son aquellas para las que es fácil calcular sus potencias, tal y como pondremos de manifiesto en el siguiente ejemplo, donde aprendemos a calcular la exponencial de las matrices más sencillas.

Ejemplo. Calcularemos a continuación la exponencial de varias matrices, de forma que para estas es fácil calcular su exponencial.

1. Calculemos e^0 , con $0 \in \mathbb{R}^{d \times d}$:

$$e^0 = \sum_{n=0}^{\infty} \frac{1}{n!} 0^n = I$$

2. Si ahora tratamos de calcular la exponencial de cualquier matriz diagonal:

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{pmatrix} \qquad \lambda_1, \lambda_2, \dots, \lambda_d \in \mathbb{R}$$

Sabemos que:

$$A^{n} = \begin{pmatrix} \lambda_{1}^{n} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{d}^{n} \end{pmatrix} \qquad \forall n \in \mathbb{N}$$

De esta forma:

$$e^{A} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} + \begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{d} \end{pmatrix} + \\ + \dots + \begin{pmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{d}^{k} \end{pmatrix} + \dots$$

con lo que obtenemos la matriz diagonal de forma que en la posición i, i de la matriz (con $i \in \{1, ..., d\}$) tenemos:

$$\sum_{n=0}^{\infty} \frac{1}{n!} \lambda_i^n = e^{\lambda_i}$$

Es decir, en cada componente de la diagonal tenemos el desarrollo en serie de la exponencial de cada λ_i , con lo que:

$$e^{A} = \begin{pmatrix} e^{\lambda_1} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_d} \end{pmatrix}$$

3. Si ahora calculamos la exponencial de cualquier matriz nilpotente (cualquier matriz que tenga una potencia nula), sucederá algo parecido a lo que nos sucedía con la exponencial, y es que la serie se convierte en una suma finita.

Un ejemplo muy representativo de esto es la matriz:

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Es decir, la matriz cuyas componentes son todo ceros salvo la diagonal que se encuentra por encima de la diagonal princpal, cuyos componentes son todo unos. Esta matriz cuenta con una propiedad especial, y es que en cada potencia de la matriz la diagonal de los unos asciende un nivel (compruébese), con lo que si seguimos calculando potencias, obtenemos finalmente que:

$$A^{d-1} = \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \qquad A^d = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} = 0$$

Por lo que $A^k = 0$ para cualquier $k \ge d$. De esta forma, solo tenemos que calcular una suma finita para calcular la exponencial de una matriz, que a su vez es fácil de calcular:

$$e^{A} = \begin{pmatrix} 1 & 1 & \frac{1}{2!} & \cdots & \frac{1}{(d-1)!} \\ 0 & 1 & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \frac{1}{2!} \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \cdots & \cdots & 1 \end{pmatrix}$$

Y estas son las matrices más fáciles para las que se puede obtener la exponencial de una matriz.

Hay métodos alternativos que nos permiten calcular la exponencial de cualquier matriz, entre los que distinguimos:

- Un método algebraico con muchos cálculos que no nos interesará.
- Un método basado en ecuaciones diferenciales, que justificará por qué nos interesan las exponenciales de las matrices y que veremos a continuación.

1.2.2. Formas de cálculo de exponenciales de matrices

Proposición 1.17. Dado un sistema de la forma:

$$x' = Ax \tag{1.5}$$

con $A \in \mathbb{R}^{d \times d}$. La función $\Phi : \mathbb{R} \to \mathbb{R}^{d \times d}$ dada por:

$$\Phi(t) = e^{tA} \qquad t \in \mathbb{R}$$

es la matriz fundamental de (??) principal en $t_0 = 0$.

Demostración. La demostración se podría hacer si previamente aprendemos a derivar series de potencias matriciales, algo que no haremos, por lo que optamos por esta otra demostración, que podemos realizar tras la demostración del Teorema ??. Calculemos las iterantes de Picard para la ecuación (??) con cualquiera condición inicial $x(0) = x_0 \in \mathbb{R}^d$, viendo cómo es la sucesión $\{x_n(t)\}$:

$$x_0(t) = x_0$$

 $x_{n+1}(t) = x_0 + \int_{t_0}^t Ax_n(s) \ ds$

Por la teoría vista en la demostración del Teorema ??, sabemos que $\{x_n(t)\}$ converge uniformemente a una función x en $I \subseteq \mathbb{R}$, con I un intervalo acotado y que x era solución del problema con las condiciones iniciales. Calculemos una expresión para dicha x:

$$x_1(t) = x_0 + \int_0^t Ax_0 ds = x_0 + tAx_0 = (I + tA)x_0$$

Que es un polinomio de primer grado en t.

$$x_2(t) = x_0 + \int_0^t A(I + sA)x_0 \, ds = x_0 + tAx_0 + \frac{s^2}{2}A^2x_0 = \left(I + tA + \frac{t^2}{2}A^2\right)x_0$$

Que es un polinomio de segundo grado en t. Por inducción se podría probar que:

$$x_n(t) = \left(I + tA + \frac{t^2}{2}A^2 + \dots + \frac{t^n}{n!}A^n\right)x_0 \qquad \forall n \in \mathbb{N}$$

Por una parte, sabemos que el paréntesis converge a e^{tA} y que x_0 es un vector constante. Como el producto de matrices por vectores es una operación continua, tenemos que $\{x_n(t)\} \to e^{tA}x_0$. Por otra parte, sabemos que las iterantes de Picard convergen absolutamente a la solución del problema de valor inicial, x(t). Por tanto, deducimos que:

$$x(t) = e^{tA}x_0$$

Para cualquier $x_0 \in \mathbb{R}^d$.

Para finalizar la demostración, hemos de probar tres cosas:

- Que Φ es una matriz solución de (??).
- Que Φ es una matriz fundamental.

- Que $\Phi(0) = I$, para tener que es principal en 0.
- 1. Ver que Φ es una matriz solución de (??) es equivalente a ver que sus columnas son soluciones vectoriales de la misma ecuación. Para ello, escribimos cómo son las columnas de Φ :

$$\Phi(t) = (\phi_1(t)|\dots|\phi_d(t)) = (\Phi(t)e_1|\dots|\Phi(t)e_d)$$

donde hemos notado por e_i al *i*-ésimo vector de la base canónica de \mathbb{R}^d . Sin embargo, antes vimos que cualquier función definida de la forma:

$$x_v(t) = e^{tA}v \qquad v \in \mathbb{R}^d$$

Es una solución de (??), por lo que $\Phi(t)e_i$ es solución de la ecuación, para cualquier e_i vector de la base canónica, de donde deducimos que Φ es una matriz solución de (??).

3. Tenemos que:

$$\Phi(0) = e^0 = I$$

2. Como $\Phi(0) = I$, tenemos que $\det(\Phi(0)) = 1 \neq 0$, por lo que Φ es matriz fundamental de $(\ref{eq:posterior})$, y en el punto 3 vimos que es principal en 0.

Observación. Notemos que la Proposición ?? nos da una equivalencia entre los sistemas de ecuaciones lineales y el cálculo de exponenciales de una matriz:

- Si sabemos calcular e^{tA} , sabemos ya resolver el sistema x' = Ax, ya que cualquier función vectorial de la forma $e^{tA} \cdot v$ será solución, independientemente del $v \in \mathbb{R}^d$ escogido.
- Si ahora tenemos un sistema x' = Ax y queremos calcular e^{tA} , si resolvemos el sistema, obtenemos una matriz fundamental $\Phi : \mathbb{R} \to \mathbb{R}^{d \times d}$. Sin embargo, esta no tiene por qué ser la matriz fundamental principal en 0. A pesar de ello, anteriormente vimos en el Corolario ??, que nos permite realizar el cálculo $(\det(\Phi(t)) \neq 0 \ \forall t \in \mathbb{R})$:

$$\Phi(t)\Phi(0)^{-1}$$

Obteniendo una matriz fundamental que además es principal en 0, ya que:

$$\Phi(0)\Phi(0)^{-1} = I$$

Por lo que dada cualquier matriz fundamental de (??), ya sabemos calcular la expoencial de la matriz A:

$$e^A = \Phi(t)\Phi(0)^{-1}$$

1.2.3. Casos de cálculo de la exponencial de una matriz

Dada una matriz $A \in \mathbb{R}^{d \times d}$, veamos ahora varios casos de cálculo de e^A . Cada nuevo caso de cálculo engloba a los anteriores, pero el proceso para conseguir e^A es más difícil cuanto más general sea el caso.

Si A es diagonalizable en \mathbb{R}

En dicho caso, tendremos $\lambda_1, \ldots, \lambda_d \in \mathbb{R}$ valores propios reales de forma que podamos encontrar $v_1, \ldots, v_d \in \mathbb{R}^d$ vectores linealmente independientes¹⁰ teniendo que v_i sea un vector propio del valor propio $\lambda_i, \forall i \in \{1, \ldots, d\}$. Vimos en la Sección ?? que si teníamos un sistema de la forma x' = Ax, entonces las funciones:

$$x_{v_i}(t) = e^{\lambda_i t} \cdot v_i \qquad i \in \{1, \dots, d\}$$

eran solución del sistema. En esta situación, podemos producir una matriz solución, $\Phi: \mathbb{R} \to \mathbb{R}^{d \times d}$ de la forma:

$$\Phi(t) = (x_{v_1}(t)|\dots|x_{v_d}(t)) \qquad t \in \mathbb{R}$$

Que es una matriz fundamental, ya que:

$$\det(\Phi(0)) = \det(v_1|\dots|v_d) \neq 0$$

Por ser $\mathcal{B} = \{v_1, \dots, v_d\}$ una base de \mathbb{R}^d , con lo que finalmente podemos aplicar la siguiente fórmula:

$$e^{tA} = \Phi(t) \cdot \Phi(0)^{-1} \qquad \forall t \in \mathbb{R}$$

Para obtener e^{tA} .

Ejemplo. Buscamos calcular la exponencial de la matriz:

$$A = \left(\begin{array}{cc} 1 & 3 \\ 3 & 1 \end{array}\right)$$

A tiene valores propios $\lambda_1 = 4$ y $\lambda_2 = -2$, de forma que los vectores $v_1 = (1,1)$ y $v_2 = (-1,1)$ forman una base de \mathbb{R}^2 de vectores propios. Por tanto, la matriz:

$$\Phi(t) = \begin{pmatrix} e^4 t & e^{-2t} \\ e^4 t & -e^{-2t} \end{pmatrix}$$

es una matriz fundamental de x' = Ax, con:

$$\Phi(0) = \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array}\right)$$

Y bastaría calcular $\Phi(t) \cdot \Phi(0)^{-1}$ para obtener e^{tA} .

Si A es diagonalizable en \mathbb{C}

En dicho caso, tendremos r valores propios reales: $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ y r vectores propios reales linealmente independientes, $v_1, \ldots, v_r \in \mathbb{R}^d$. Además, tendremos d-r valores propios complejos, de forma que cuando tengamos un valor propio complejo, su conjugado también será un valor propio complejo, por lo que tendremos los valores propios complejos $\mu_1, \ldots, \mu_s, \overline{\mu_1}, \ldots, \overline{\mu_s} \in \mathbb{C}$ de forma que 2s = d-r. Para cada valor propio complejo, tendremos un vector propio que sea linealmente independiente del

¹⁰Luego forman una base.

resto, por lo que tendremos como vectores propios $w_1, \ldots, w_s, \overline{w_1}, \ldots, \overline{w_s} \in \mathbb{C}^d$ de forma que:

$$\mathcal{B} = \{v_1, \dots, v_r, w_1, \overline{w_1}, \dots, w_s, \overline{w_s}\}\$$

Sea una base de vectores propios de \mathbb{R}^d . Construiremos las funciones:

$$x_{v_i} : \mathbb{R} \to \mathbb{R}^d$$
 $i \in \{1, \dots, r\}$
 $x_{w_j} : \mathbb{R} \to \mathbb{C}^d$ $j \in \{1, \dots, s\}$

dadas por:

$$x_{v_i}(t) = e^{\lambda_i t} \cdot v_i \qquad t \in \mathbb{R}, \quad i \in \{1, \dots, r\}$$
$$x_{w_j}(t) = e^{\mu_j t} \cdot w_j \qquad t \in \mathbb{R}, \quad j \in \{1, \dots, s\}$$

Notemos que hemos usado solo los vectores propios w_j y que no hemos usado los vectores $\overline{w_j}$, ya que cuando tengamos $w_j \in \mathbb{C}^d$, entonces los vectores:

$$Re(z) = \frac{1}{2}w_j + \frac{1}{2}\overline{w_j}$$
$$Im(z) = \frac{1}{2i}w_j - \frac{1}{2i}\overline{w_j}$$

Son linealmente independientes, y estos serán los que nos interesen¹¹. Definimos ahora:

$$\psi_j(t) = Re(x_{w_j}(t))$$
 $\tilde{\psi}_j(t) = Im(x_{w_j}(t))$ $\forall t \in \mathbb{R}$

Anteriormente vimos que x_{w_j} , ψ_j y $\tilde{\psi}_j$ son soluciones de x' = Ax, por lo que la matriz $\Phi : \mathbb{R} \to \mathbb{R}^{d \times d}$ dada por:

$$\Phi(t) = \left(x_{v_1}(t)|\dots|x_{v_r}(t)|\psi_1(t)|\tilde{\psi}_1(t)|\dots|\psi_s(t)|\tilde{\psi}_s(t)\right) \qquad t \in \mathbb{R}$$

Es una matriz solución, que además es fundamental por ser $\mathcal B$ una base. Finalmente, aplicamos la fórmula:

$$e^{tA} = \Phi(t)\Phi(0)^{-1}$$

Ejemplo. Buscamos ahora calcular la exponencial de matriz:

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Esta tiene como valores propios $\mu_1 = i$ y $\mu_2 = -i$, de forma que los vectores $w_1 = (1, i)$ y $w_2 = (1, -i)$ forman una base de \mathbb{C}^2 de vectores propios. Anteriormente vimos que las funciones:

$$e^{it} \cdot v_1 \qquad e^{-it} \cdot v_2$$

eran solución de x' = Ax. Con la primera (la segunda se obtiene con el conjugado) obtenemos las funciones:

$$\psi_1(t) = Re(e^{it}, ie^{it}) = (\cos t, \sin t)$$

$$\tilde{\psi}_1(t) = Im(e^{it}, ie^{it}) = (\sin t, \cos t)$$

¹¹Por lo que a pesar de no considerar las funciones $x_{\overline{w_j}}$, las consideramos de forma implícita al considerar las funciones x_{w_j} y luego considerar sus partes real e imaginaria.

Con lo que podemos construir la matriz $\Phi : \mathbb{R} \to \mathbb{R}^{2\times 2}$:

$$\Phi(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

que es solución y fundamental por ser $\{(1,i),(1,-i)\}$ una base de \mathbb{C}^2 . Adicionalmente, hemos tenido la suerte de que:

$$\Phi(0) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) = I$$

Con lo que $e^{tA} = \Phi(t) \ \forall t \in \mathbb{R}$.

Como curiosidad, vemos que obtenemos la generalización de la fórmula:

$$e^{i\pi} + 1 = 0$$

ya que:

$$e^{\begin{pmatrix} 0 & \pi \\ -\pi & 0 \end{pmatrix}} + I = 0$$

Ejercicio. Se deja como ejercicio obtener la fórmula de e^{tA} a partir de su propia definición. Resulta un buen ejercicio para saber manejar bien las series.

1.2.4. Forma canónica de Jordan

Para cualquier matriz $A \in \mathbb{R}^{d \times d}$

Forma canónica de Jordan

Dada una matriz de la forma $A \in \mathbb{R}^{d \times d}$, entonces, siempre podemos encontrar:

$$A = P^J P^{-1}$$

Con J una matriz diagonal (la forma de Jordan) por bloques:

$$J = \begin{pmatrix} J_1 & \cdots & & \\ & J_2 & \cdots & & \\ & & \ddots & & \\ & & & J_r \end{pmatrix}$$

Con:

$$J_i = \begin{pmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & \cdots & \lambda_i \end{pmatrix}$$

Entonces, una matriz es diagonalizable \iff tiene tantas cajas de Jordan como dimensiones, es decir, si todas sus cajas de Jordan son diagonalizables.

La forma de Jordan es única salvo permutaciones de cajas. Supongamos que 3 es un valor propio triple. Tenemos los casos:

$$\begin{pmatrix} 3 & & \\ & 3 & \\ & & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & \\ & 3 & \\ & & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & \\ & 3 & 1 \\ & & 3 \end{pmatrix}$$

Correspondientes a que las multiplicidades geométricas son, respectivamente, 3, 2 y 1; con cajas de dimensión 1, una caja de dimensión 2 o una caja de dimensión 3. Para calcular la exponencial de cualquier matriz (aunque no sea diagonalizable, como una nilpotente). Sabiendo obtener la forma canónica de Jordan es posible obtener la exponencial de una matriz. Esto se debe a que:

2. a) Si dos matrices son semejantes, sus exponenciales son semejantes: Si $A = PBP^{-1}$ con det $B \neq 0$, entonces: $e^A = Pe^BP^{-1}$.

Demostración. Tenemos que:

$$A^{2} = (PBP^{-1})(PBP^{-1}) \stackrel{(*)}{=} PB^{2}P^{-1}$$

 $A^{n} = PB^{n}P^{-1}$

Donde en (*) aplicamos que el producto de matrices es asociativo. Ahora:

$$S_n = I + A + \frac{1}{2}A^2 + \dots + \frac{1}{n!}A^n$$

$$= I + PBP^{-1} + \frac{1}{2}PB^2P^{-1} + \dots + \frac{1}{n!}PB^nP^{-1}$$

$$\stackrel{(*)}{=} P\left(I + B + \frac{1}{2}B^2 + \dots + \frac{1}{n!}B^n\right)P^{-1}$$

Donde en (*) aplicamos que el producto de matrices es distributivo. Pasando a límite y usando que el producto de matrices es continuo:

$$e^A = Pe^B P^{-1}$$

Calcular e^A se reduce a saber calcular e^J y la matriz P.

b) Las matrices diagonales por bloques (como la matriz de Jordan), su exponencial es su exponencial por bloques (similar a las matrices diagonales), ya que:

$$J^n = \left(\begin{array}{cc} J_1^n \\ & J_2^n \\ & & J_r^n \end{array}\right)$$

con lo que:

$$e^J = \left(\begin{array}{cc} e^{J_1} & & \\ & e^{J_2} & \\ & & e^{J_r} \end{array}\right)$$

Por tanto, tenemos que saber calcular e^J siendo:

$$J = \begin{pmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & \cdots & \lambda_i \end{pmatrix}$$

Y esta la vamos a calcular resolviendo un sistema de ecuaciones diferenciales: x' = Jx, siendo $x \in \mathbb{R}^r$, si $J \in \mathbb{R}^{r \times r}$. De esta forma, tendremos el sistema:

$$\begin{cases} x'_1 &= \lambda x_1 + x_2 \\ x'_2 &= \lambda x_2 + x_3 \\ &\vdots \\ x'_{r-1} &= \lambda x_{r-1} + x_r \\ x'_r &= \lambda x_r \end{cases}$$

Aplicando el cambio:

$$y_i(t) = e^{-\lambda t} x_i(t)$$

Tenemos que:

$$y_1' = e^{-\lambda t} x_1' - \lambda e^{-\lambda t} x_1 = e^{-\lambda t} (x_1' - \lambda x_1) = e^{-\lambda t} x_2 = y_2$$

Por tanto, tenemos la ecuación:

$$\begin{cases} y_1' &= y_2 \\ y_2' &= y_3 \\ &\vdots \\ y_r' &= 0 \end{cases}$$

Que ya se puede resolver de forma fácil en escalera, con:

$$y_r(t) = c_r$$

$$y_{r-1}(t) = c_{r-1} + c_r t$$

$$y_{r-2}(t) = c_{r-2} + c_{r-1} t + c_r \frac{t^2}{2}$$

$$\vdots$$

$$y_1(t) = c_1 + c_2 t + c_3 \frac{t^2}{2} + \dots + c_r \frac{t^{r-1}}{(r-1)!}$$

Deshaciendo el cambio, tenemos:

$$x_{r}(t) = e^{\lambda t} c_{r}$$

$$x_{r-1}(t) = e^{\lambda t} (c_{r-1} + c_{r}t)$$

$$x_{r-2}(t) = e^{\lambda t} \left(c_{r-2} + c_{r-1}t + c_{r}\frac{t^{2}}{2} \right)$$

$$\vdots$$

$$x_{1}(t) = e^{\lambda t} \left(c_{1} + c_{2}t + c_{3}\frac{t^{2}}{2} + \dots + c_{r}\frac{t^{r-1}}{(r-1)!} \right)$$

Y para construir una matriz fundamental de x' = Jx, vamos dando valores a las constantes que sean linealmente independientes:

$$\Phi(t) = e^{\lambda t} \begin{pmatrix} 1 & t & t^2/2 & \cdots & t^{r-1}/(r-1)! \\ 0 & 1 & t & \cdots & t^{r-2}/(r-2)! \\ 0 & 0 & 1 & \cdots & t^{r-3}/(r-3)! \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Que es matriz fundamental, por tener determinante 1. De esta forma:

$$e^{tJ} = e^{\lambda t} \begin{pmatrix} 1 & t & t^2/2 & \cdots & t^{r-1}/(r-1)! \\ 0 & 1 & t & \cdots & t^{r-2}/(r-2)! \\ 0 & 0 & 1 & \cdots & t^{r-3}/(r-3)! \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Ejemplo. Consideramos:

$$A = \left(\begin{array}{cc} 2 & 0 \\ -1 & 2 \end{array}\right)$$

Que solo tiene el valor propio $\lambda_1 = 2$ (raíz doble), con vector propio $v_1 = (0, 1)$. En este caso, la forma canónica de Jordan podría ser:

$$J = \begin{pmatrix} 2 & \\ & 2 \end{pmatrix} \qquad J = \begin{pmatrix} 2 & 1 \\ & 2 \end{pmatrix}$$

Y la primera es imposible, ya que sería generalizable. Finalmente, calculamos una matriz P tal que:

$$A = PJP^{-1}$$

Que podemos calcular gracias al sistema:

$$AP = PJ$$

Una matriz P admisible (hay muchas), es:

$$P = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

Con lo que:

$$e^A = Pe^J P^{-1}$$

Y usando la fórmula anteriormente obtenida para el caso r=2:

$$e^J = e^2 \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$

Con lo que llegamos a que (háganse las cuentas):

$$e^A = Pe^J P^{-1}$$

1.3. Fórmula de variación de constantes

Falta por ver

Ejemplo. Si tenemos (hágase la cuenta para sacar la ecuación):

$$p(\lambda) = (\lambda - 3)^3$$

Tres soluciones linealmente inedependientes de la ecuación serían:

$$e^{3t}$$
 te^{3t} t^2e^{3t}

Si ahora consideramos:

$$p(\lambda) = (\lambda - 3)^3 (\lambda^2 + 1)^2$$

Las soluciones serían (las que faltan):

 $\cos t$ $\sin t$ $t \cos t$ $t \sin t$

$$L(e^{\lambda t}) = p(\lambda)e^{\lambda t}$$

La derivamos respecto a λ (pensando que es funcion de dos variables, λ y t) (como se justifica la derivabilidad respecto a λ ?):

$$L(te^{\lambda t}) = p'(\lambda)e^{\lambda t} + p(\lambda)te^{\lambda t}$$

Y si tenemos una raíz doble (es raíz de p y de p'), tenemos que $te^{\lambda t}$ es solución. Esto también vale para exponenciales complejas.