Datenformat Planungsauftrag (Solver Input) V1.0

- kundenfahrten.csv
- wartungsfenster.csv
- fahrzeuggruppen.csv
- endpunkte.csv
- relationen.csv
- sperren.csv
- leistungsverknuepfungen.csv
- config.yaml

Ein Planungsauftrag besteht aus mehreren Files. Minimal benötigt sind

- kundenfahrten.csv
- fahrzeuggruppen.csv
- relationen.csv

alle anderen sind optional.

kundenfahrten.csv

Kundenfahrten, die durch Rollmaterial abzudecken sind.

Attribut	Beschreibung	Datentyp
id	eindeutiger Identifikator (zBsp. Betriebstag + TrassenId)	string
zugnumm er	Zugnummer für die fachliche Identifikation der Kundenfahrten in Darstellungen etc.	string
betriebstag	Betriebstag für die fachliche Identifikation der Kundenfahrten	date as string
bpAb	Betriebspunkt-Abkürzung Abfahrtsort	string
bpAn	Betriebspunkt-Abkürzung Zielort	string
zeitAb	Abfahrtszeit	datetime as string
zeitAn	Ankunftszeit	datetime as string
richtungsc odeAb	Richtungscode Ausfahrt Abfahrtsbahnhof Jeder Bahnhof hat eine Seite 0 und eine Seite 1. Definiert in den Topologiedaten von CERES. Der richtungscodeAb definiert, beim Abfahrtsort der Kundenfahrt, auf welche Seite ausgefahren wird. Dient der Unterscheidung von Weiterfahrt bei gleicher Fahrtrichtung (Bahnhofseite wechselt zwischen an und ab) oder Wende (Bahnhofseite für an und ab ist dieselbe).	integer (0 or 1)
richtungsc odeAn	Richtungscode Ankunft Zielbahnhof	integer (0 or 1)
distanzIn Km	Streckenlänge der Fahrt in km	float > 0.0
bedarf	Anzahl benötigter Fahrzeuggruppen (Rollmaterial-Einheiten) für die Kundenfahrt	integer >= 1

Konsistenzregeln

- Valide Datentypen gemäss Tabelle oben. Keine leeren Attribute erlaubt
- Eindeutigkeit der Id über alle Kundenfahrten
- Zeitliche Konsistenz: zeitAb < zeitAn (strikt ungleich, um Probleme mit uneindeutige Sortierungen von Leistungen zu vermeiden)

wartungsfenster.csv

Wartungsfenster, die in der Teilneuplanung einzuplanen sind

Attribut	Beschreibung	Datentyp
----------	--------------	----------

id	eindeutiger Identifikator	string
bp	BP wo das Wartungsfenster verfügbar ist	string
startZeit	Zeit ab wann die Wartung stattfindet	datetime as string
endZeit	Zeit bis wann die Wartung dauert	datetime as string

Konsistenzregeln

- Valide Datentypen gemäss Tabelle oben. Keine leeren Attribute erlaubt
- Eindeutigkeit der Id über alle Wartungsfenster
- Zeitliche Konsistenz: startZeit< endZeit

fahrzeuggruppen.csv

Verfügbare Fahrzeuggruppen (verplanbare Rollmaterial-Einheiten)

Attribut	Beschreibung	Datentyp
id	eindeutiger Identifikator	string
startZeit	Zeit ab wann Fahrzeuggruppe einsetzbar (optional)	datetime as string / leer
startBp	BP an welchem die Fahrzeuggruppe startet (optional)	string / leer
kmSeitWartung	Zurückgelegte km seit letzter Wartung	float >= 0.0 / leer (gilt als 0.0)
dauerSeitWartung	Dauer seit letzter Wartung	duration, non-negative / leer (gilt als 0)

Konsistenzregeln

- Valide Datentypen gemäss Tabelle oben. Leere Attribute nur erlaubt wo erwähnt.
 Eindeutigkeit der Id über alle Fahrzeuggruppen
- Falls startZeit oder startBp gesetzt (nicht leer) ist, müssen beide gesetzt sein
- Falls dauerSeitWartung nicht leer ist, darf auch startZeit nicht leer sein
- kmSeitWartung <= config.ivog.distance
- dauerSeitWartung <= config.ivog.duration

endpunkte.csv

Zur Abgrenzung des Planungsausschnitts vorgegebene Endpunkte, bei denen Leistungsketten enden und wieder an die bisherige Planung (Referenzplan)

Attribut	Beschreibung	Datentyp
id	eingeutiger Identifikator	string
endZeit	Zeit bis wann Leistungskette endet	datetime as string
endBp	BP an welchem die Leistungskette endet	string
kmBisWartung	Zurückzulegende km bis zur nächsten Wartung	float >= 0.0 / leer (gilt als 0.0)
dauerBisWartung	Dauer bis zur nächsten Wartung	duration, non-negative / leer (gilt als 0)

Konsistenzregeln

- Valide Datentypen gemäss Tabelle oben. Leere Attribute nur erlaubt wo erwähnt.
- Eindeutigkeit der Id über alle Endpunkte
- Es gibt maximal so viele Endpunkte wie Fahrzeuggruppen
- kmBisWartung <= config.ivog.distance
- dauerSeitWartung <= config.ivog.duration

relationen.csv

Relationen für mögliche Betriebsfahrten, die der Solver in die Leistungsketten einplanen kann, um geographische Lücken zu schliessen.

Relationen sind aggregierte Start-Ziel Verbindungen, ohne Betrachtung von Teilabschnitten. Siehe auch Topologie Granularität.

Attribut	Beschreibung	Datentyp
bpAb	Betriebspunkt-Abkürzung Abfahrtsort	string
bpAn	Betriebspunkt-Abkürzung Ankunftsort	string
distanzInKm	Streckenlänge der Fahrt in km	float > 0.0
fahrtdauer	Dauer der Fahrt	duration as string > 0
richtungscodeAb	Richtungscode Ausfahrt Abfahrtsbahnhof	integer (0 or 1)
richtungscodeAn	Richtungscode Ankunft Zielbahnhof	integer (0 or 1)

Konsistenzregeln

- · Valide Datentypen gemäss Tabelle oben. Keine leeren Attribute erlaubt
- Eindeutigkeit der bpAb, bpAn Kombination über alle Relationen
- bpAn nicht gleich bpAb

sperren.csv

Temporär gesperrte Relationen für Betriebsfahrten.

Bei einer Sperre einer Teilstrecke müssen alle betroffenen Relationen gesperrt werden. Siehe auch Topologie Granularität.

Attribut	Beschreibung	Datentyp
bpAb	Betriebspunkt-Abkürzung Abfahrtsort	string
bpAn	Betriebspunkt-Abkürzung Ankunftsort	string
zeitVon	Start der Sperre	datetime as string
zeitBis	Ende der Sperre	datetime as string

Konsistenzregeln

- Valide Datentypen gemäss Tabelle oben. Keine leeren Attribute erlaubt
- Referentielle Integrität: Kombination aus bpAb+bpAn ist auflösbar in relationen.csv
- Zeitliche Konsistenz: zeitVon< zeitBis

leistungsverknuepfungen.csv

Abhängigkeiten zwischen Leistungen als zusätzliche Randbedingungen für die Solver.

Use Cases:

- Im Rahmen der Interaktiven Planung kann der User eine bestehende Lösung anpassen, indem er ausgewählte Paare von Leistungen 'aneinander bindet' oder 'auseinander bricht'. Solche Randbedingungen werden im hier beschriebenen File aufgelistet als Bestandteil des Planungsauftrags.
- Die Referenzlösung wird mittels Leistungsverknüpfungen an die Solver gegeben, um Abweichungen in der Zielfunktion bestrafen zu können.

Später braucht es dann zudem Möglichkeiten für Präzisierungen, welche Leistung gemeint ist, zB. wenn mehrere pro Kundenfahrt.

Attribut	Beschreibung	Datentyp
leistungTy p1	KUNDENFAHRT, WARTUNG, STARTPUNKT	string
leistungId1	Id von Kundenfahrt, Wartungsfenster (WARTUNG), Fahrzeuggruppe (STARTPUNKT)	string
kettenLab el1	Kettenlabel für verknüpfte Leistung 1 gesetzt bei spezifischem Verknüpfungstyp (REFERENCE, JOINT, SEPARATE) und wenn leistungsTyp1 == KUNDENFAHRT	string / leer
leistungTy p2	KUNDENFAHRT, WARTUNG, ENDPUNKT	string

leistungld2	Id von Kundenfahrt, Wartungsfenster (WARTUNG), Endpunkt (ENDPUNKT)	string
kettenLab el2	Kettenlabel für verknüpfte Leistung 2 gesetzt bei spezifischem Verknüpfungstyp (REFERENCE, JOINT, SEPARATE) und wenn leistungsTyp2 == KUNDENFAHRT	string / leer
type	REFERENCE, JOINT, SEPARATE Für die Bedeutung der einzelnen Typen, siehe Geschäftsregel 'Spezifische Leistungsveknüfpung' und Zielfunktionskomponente 'Abweichung Referenzlösung'. A Zu beachten: JOINT und REFERENCE Leistungsverknüpungen übersteuern zudem die Prozesszeiten, die für Leistungsübergänge benötigt sind. Siehe Geschäftsregeln zu den Prozesszeiten.	Enum as string

Konsistenzregeln

- Valide Datentypen gemäss Tabelle oben. Keine leeren Attribute erlaubt. Leere Attribute nur bei Kettenlabels, bei Referenzen auf Wartung, Start oder -Endpunkt (nicht bei Referenzen auf Kundenfahrten)
- Referentielle Integrität: (leistungTyp1. leistungId1) und (leistungTyp2. leistungId2) sind je nach Typ auflösbar in kundenfahrten. csv, wartungsfenster.csv, fahrzeuggruppen.csv, endpunkte.csv
- Keine Selbstverknüpfung: leistungld1 unterscheidet sich von leistungld2
- Zeitliche Konsistenz: kundenfahrt1.zeitAn / wartungsfenster1.endZeit / fahrzeuggruppe1.startZeit <= kundenfahrt2.zeitAb / wartungsfenster2. startZeit / endpunkt2.endZeit
- Flusserhaltungskonsistenz JOINT: Pro leistungsTyp+leistungsId+kettenLabel gibt es max. eine ausgehende und max. eine eingehende Leistungsverknüpfung vom Typ JOINT
- Flusserhaltungskonsistenz REFERENCE: Pro leistungsTyp+leistungsId+kettenLabel gibt es max. eine ausgehende und max. eine eingehende Leistungsverknüpfung vom Typ REFERENCE
- Uniqueness über den ganzen Datensatz (inkl. Kettenlabels): Mehrere identische Einträge sind nicht zulässig
- Widerspruchsfreiheit pro Leistungspaar: Pro leistungld1+leistungld2 (jeweils inkl. Kettenlabels) kann es nicht sowohl JOINT und auch noch SEPARATE Verbindungen haben.

config.yaml

Dieses File gibt es einmal im Roma Helper hinterlegt für die Defaultwerte und einmal (optional) im Planungsauftrag. Letzteres beinhaltet übersteuernde Werte mit Vorrang.

parameter name	description	data type	default value
required process durations between Leistungen			
duration_between_leistungen.minimal	required process durations between Leistungen	duration as string	"PT19S"
duration_between_leistungen.wende	required process duration between Leistungen in turnround case	duration as string	"PT2M"
duration_between_leistungen.betriebsfahrt	required process duration before and after Betriebsfahrt	duration as string	"PT2M"
duration_between_leistungen.kuppeln	required process duration between Leistungen when bedarf changes	duration as string	"PT4M"
duration_between_leistungen.event	minimal time between ordering-relevant events (arrival at Stärkung with same RC, departure at Schwächung with same RC) choosable by SMT solver	duration as string	"PT1M"
penalty weights in objective function (1 unit = 1 Betri	iebsfahrtkilometer)		
objective.cost_per_fahrzeuggruppe_planned	cost per Fahrzeuggruppe performing Leistungen (at least one)	integer, non-negative	100
objective. cost_per_violated_reference_leistungsverknuepfung	cost per violated Leistungsverknüpfung of type Reference	integer, non-negative	20
bjective.continuous_idle_time.minimum	bonus to favor long continuous idle times to prevent a tattered timetable	iso duration, non-negative	PT1H
bjective.continuous_idle_time.exponent		float, >= 1.0	1.1
objective.continuous_idle_time.cost_factor	cost_factor * max(fuer.ab - von.an - minimum, 0)^(exponent)	float, <= 0.0	-5.0
objective.bathtub.marginal_cost_per_deceeded_km	cost of performing maintenance on a Rollmaterialeinheit whose km counter is below lower bound bathtub.distance.lb (accounted for each km).	float, non-negative	0.05
objective.bathtub.marginal_cost_per_exceeded_km	cost of performing maintenance on a Rollmaterialeinheit whose	float, non-negative	

objective.bathtub.marginal_cost_per_deceeded_second	cost of performing maintenance on a Rollmaterialeinheit whose time counter is below lower bound bathtub.duration. lb (accounted for each second).	float, non-negative	0.0002
objective.bathtub.marginal_cost_per_exceeded_second	cost of performing maintenance on a Rollmaterialeinheit whose time counter is above upper bound bathtub.duration.ub (accounted for each second).	float, non-negative	0.0002
ivog for Wartungsintervalle (will be moved to fahrzeugty	pen, as soon as we can model different types)		
ivog.duration	maximum duration between consecutive "Wartungen"	duration, positive	"P30D"
ivog.distance	maximum number of kilometers between two "Wartungen"	float, positive	12500.0
ivog.bathtub.distance.lb	lower bound of optimal km counter range for performing maintenance	float, positive	0.0
ivog.bathtub.distance.ub	upper bound of optimal km counter range for performing maintenance	float, positive	12500.0
vog.bathtub.duration.lb	lower bound of optimal time counter range for performing maintenance	float, positive	"P0D"
ivog.bathtub.duration.ub	upper bound of optimal time counter range for performing maintenance	float, positive	"P30D"
postprocessing Teilleistungsketten-Graph (TLK)			
postprocessing.cut_gap	Minimum length of gap between two Leistungen, such that a cut is inserted between them in the TLK.	duration, positive	"PT4H"