

Оценка моделей

Александр Немальцев

Руководитель направления, СБЕР

Более 5 лет работаю в сфере анализа данных и Data Science

💥 Разрабатываю модели рекомендаций

управленческих решений

Работал в таких крупных компаниях, как SAS, X5 Group

Что будет на уроке сегодня

- Метрики регрессии
- 🖈 Метрики для оценки прогноза временных рядов
- 🖈 🛮 Метрики бинарной классификации
- 🖈 🛮 Метрики многоклассовой классификации
- Метрики кластеризации

Основные виды моделей

Обучение с учителем

- задача восстановления регрессии
- задача классификации

Обучение без учителя

Плюсы:

- Прост в реализации
- Позволяет оценить качество модели относительно среднего предсказания

Минусы:

Плохо интерпретировать

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Плюсы:

- Прост в реализации
- Численно понимаем, как ошибается модель

Минусы:

- Не ясно, в какую сторону модель ошибается больше
- Диапазон ответов не нормирован

$$RMSE = \sqrt{rac{1}{n}\sum (y_i - \hat{y_i})^2}$$

Root Mean Squared Error (RMSE)

$$\frac{2^2 + -2^2}{2} = \frac{4+4}{2} = 4$$

Плюсы:

- Не так чувствителен к выбросам
- Штрафует более высокие отклонения

Минусы:

- Диапазон ответов не нормирован
- **У** Производная в точке 0 не определена

MAE =
$$\frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Плюсы:

- У Хорошо объясняет полученную модель
- Принимает ограниченный диапазон

Минусы:

∀ Не всегда модель с высоким показателем R2 работает корректно

$$R^2 \equiv 1 - \frac{\sum_i (y_i - f_i)^2}{\sum_i (y_i - \bar{y})^2},$$

Плюсы:

Минусы:

💔 🛮 Не учитывает ошибку на каждом шаге прогноза

$$BIAS = \frac{Actual - Forecast}{ABS(Actual - Forecast)}$$

Плюсы:

Учитывает ошибку прогноза на каждом шаге

Минусы:

- 💔 🛮 Нет понимания, как смещён прогноз
- Не учтены суммарные продажи за весь период прогноза

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

Плюсы:

- Учитывает ошибку прогноза на каждом шаге
- Учитывает сумму продаж за весь период

Минусы:

💔 🛮 Нет понимания, как смещён прогноз

$$WAPE = \frac{\sum_{t=1}^{n} |A_t - F_t|}{\sum_{t=1}^{n} |A_t|}$$

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Плюсы:

- Прост в реализации
- 🤎 Показывает процент точных попаданий

Минусы:

Не применим в задачах с сильным дисбалансом классов

Predicted Class

$$precision = \frac{TP}{TP + FP}$$

True Class

Плюсы:

Устойчив к дисбалансу классов

Минусы:

У Смотрит в основном на положительный класс

$$recall = \frac{TP}{TP + FN}$$

Плюсы:

Устойчив к дисбалансу классов

Минусы:

Смотрит в основном на положительный класс

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$$

Плюсы:

- ♥ Объединяет 2 метрики в одну
- № Позволяет задавать веса для одной из метрик

Минусы:

💔 🛮 Не работает с вероятностными моделями

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

Плюсы:

- 💚 Ранжирующая метрика
- Устойчив к дисбалансу классов
- 💚 Работает с вероятностными моделями

Минусы:

💔 🛮 Не во всех задачах применима

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

gG (mg/ml)	Sensitivity	Specificity
6.7350	.888	.560
6.8450	.879	.560
6.9100	.879	.600
6.9350	.879	.680
6.9550	.871	.680
6.9900	.862	.680
7.0550	.853	.680
7.1400	.845	.680
7.2100	.836	.680

Плюсы:

- 💚 Ранжирующая метрика
- Устойчив к дисбалансу классов
- 💚 Работает с вероятностными моделями

Минусы:

🢔 Не во всех задачах применима

У	prediction	predict_proba
0	1	0.6
1	1	0.9
0	0	0.05
0	1	0.99
1	0	0.2
1	1	0.6
0	0	0.3
0	1	0.51

У	prediction	predict_proba
0	1	0.99
1	1	0.9
0	1	0.6
1	1	0.6
0	1	0.51
0	0	0.3
1	0	0.2
0	0	0.05

У	prediction	predict_proba
0	1	0.99
1	1	0.9
0	1	0.6
1	1	0.6
0	1	0.51
0	0	0.3
1	0	0.2
0	0	0.05

У	prediction	predict_proba
0	1	0.99
1	1	0.9
0	1	0.6
1	1	0.6
0	1	0.51
0	0	0.3
1	0	0.2
0	0	0.05

У	prediction	predict_proba
0	1	0.99
1	1	0.9
0	1	0.6
1	1	0.6
0	1	0.51
0	0	0.3
1	0	0.2
0	0	0.05

У	prediction	predict_proba
0	1	0.99
1	1	0.9
0	1	0.6
1	1	0.6
0	1	0.51
0	0	0.3
1	0	0.2
0	0	0.05

У	prediction	predict_proba
0	1	0.99
1	1	0.9
0	1	0.6
1	1	0.6
0	1	0.51
0	0	0.3
1	0	0.2
0	0	0.05

Многоклассовая классификация

- Усредняем элементы матрицы ошибок (ТР, FР, TN, FN) между бинарными классификаторами. Затем по одной усреднённой матрице ошибок считаем Precision, Recall, F-меру. Это называют микроусреднением.
- Считаем Precision, Recall для каждого классификатора отдельно, а потом усредняем.
 Это называют макроусреднением.

Коэффициент силуэта:

$$S(x_i) = \frac{B(x_i) - A(x_i)}{\max(B(x_i), A(x_i))}$$

Гомогенность:

$$Homogeneity = 1 - \frac{H_{class|clust}}{H_{class}}$$

Полнота:

Полнота:
$$Completeness = 1 - \frac{H_{clust|class}}{H_{clust}}$$

V-мера:

$$V_{\beta} = \frac{(1+\beta) \cdot Homogeneity \cdot Completeness}{\beta \cdot Homogeneity + Completeness}$$

Что мы сегодня узнали и чему научились

- 🧠 Метрики регрессии
- 🧠 Метрики для оценки прогноза временных рядов
- 🧠 Метрики бинарной классификации
- 🧠 Метрики многоклассовой классификации
- 🧠 Метрики кластеризации

Практическое задание

Предположим, что мы решаем задачу определения мошеннических операций. Мы разделили выборку, обучили модель и теперь хотим её оценить.

Требуется рассчитать следующие ключевые метрики:

- 1. Recall
- 2. Precision
- 3. Accuracy
- 4. f1-score

Как изменятся метрики, если в качестве бейзлайна (самой простой модели) возьмём константную модель, которая всегда выдаёт ответ 1?

У	prediction	predict_proba
0	1	0.7
0	0	0.1
1	1	0.9
1	0	0.5
0	0	0.4

Вопросы?

Вопросы?

