Dashboard Courses Undergraduate BSc Eng Hons Eng-MATH In19-S4-MA2033 (115096)

MID1-26/05/2022-7.30pm(NO ZOOM NEEDED) MID1

Started on Thursday, 26 May 2022, 7:31 PM

State Finished

Completed Thursday, 26 May 2022, 8:17 PM

on

Time taken 46 mins 7 secs

Grade 5.58 out of 15.00 (37%)

Question 1

Incorrect

Mark 0.00 out of 1.00

Consider the vector space $\mathbb{R}_2[x]$ over \mathbb{R} with the inner product $< f,g> = \int_{-1}^1 f(x)g(x)dx$. The ordered basis $(x^2,x,1)$ when converted to an orthogonal ordered basis, by taking elements in the given order, has the form

- \square a. $(x^2,x,5-3x^2)$
- \square b. $(x^2,x,1)$
- \square c. $(1, x, 3x^2 1)$
- \square d. $(x^2, x, 3 5x^2)$

Your answer is incorrect.

The correct answer is:

$$(x^2, x, 3 - 5x^2)$$

Question 2

Incorrect

Mark 0.00 out of 1.00

Let $T:\mathbb{R}_3[x]\to\mathbb{R}_3[x]$ be a linear transformation over \mathbb{R} given by $T(p(x))=\frac{d}{dx}(p(x))+p(x)$. What are the values of $\mathrm{null}(T)$ and $\mathrm{rank}(T)$?

- a. 3 and 1
- b. 2 and 2
- c. 4 and 0
- d. 0 and 4
- e. 1 and 3

Your answer is incorrect.

The correct answer is:

0 and 4

×

Incorrect

Mark 0.00 out of 1.00

Let $W=\{(1,1,-1)\}$ in the vector space \mathbb{R}^3 over \mathbb{R} . Inner product is the usual dot product. Which of the following are true?

- \square a. $(W^\perp)^\perp=\{(1,1,-1)\}$
- lacksquare b. $W^\perp=\{(0,1,1)\}$
- \square c. $W^\perp = \{(1,0,1)\}$
- ${}^{\blacksquare}$ d. $W^{\perp}=\{(1,0,1),(0,1,1)\}$
- \square e. $(W^{\perp})^{\perp} = \operatorname{span}\{(-1, -1, 1)\}$
- \blacksquare f. $W^{\perp} = \operatorname{span}\{(1, 1, 2), (1, -1, 0)\}$

Your answer is incorrect.

The correct answers are:

$$W^{\perp}=\mathrm{span}\{(1,1,2),(1,-1,0)\}$$

$$(W^{\perp})^{\perp} = \mathrm{span}\{(-1,-1,1)\}$$

Question 4

Incorrect

Mark 0.00 out of 1.00

Consider the linear trasformation $T:\mathbb{R}^3 o\mathbb{R}^2$ over the field \mathbb{R} given by T((x,y,z))=(x+y-z,x-y-z). A basis for $\ker(T)$ is

- \square a. $\{(1,1),(1,0)\}$
- \Box b. $\{(1,0,1)\}$
- \square c. $\{(1,1),(1,-1)\}$
- \square d. $\{(-1,0,-1)\}$

Your answer is incorrect.

The correct answers are:

$$\{(1,0,1)\}$$

$$\{(-1,0,-1)\}$$

×

×

Partially correct	
Mark 0.75 out of 1.00	
Which of the following statements are true in an inner product space?	
a. linearly independent vectors are orthogonal	
b. orthonormal vectors are orthogonal	~
c. orthonormal vectors are linearly independent	✓
d. orthogonal vectors are linearly independent	×
e. linearly independent vectors are orthonormal	
f. orthogonal vectors are orthonormal	
Your answer is partially correct.	
You have selected too many options.	
The correct answers are: orthonormal vectors are orthogonal,	
orthonormal vectors are linearly independent	
orthonormal vectors are intearly independent	
Question 6	
Partially correct	
Mark 0.67 out of 1.00	
What is always true abut the Hamel Base B of the vector space V over the field F ?	
What is always true abut the Hamel Base B of the vector space V over the field F ?	~
	~
$\ensuremath{\mathbb{Z}}$ a. Only finite linear combinations are taken from B	~
$\hfill \square$ a. Only finite linear combinations are taken from B $\hfill \square$ b. Only infinite linear combinations are taken from B	~
$\hfill \Box$ a. Only finite linear combinations are taken from B $\hfill \Box$ b. Only infinite linear combinations are taken from B $\hfill \Box$ c. B is finite	✓
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	*
\blacksquare a. Only finite linear combinations are taken from B \blacksquare b. Only infinite linear combinations are taken from B \blacksquare c. B is finite \blacksquare d. B is uncountable \blacksquare e. $V = \operatorname{span}(\operatorname{span}B)$	*
\blacksquare a. Only finite linear combinations are taken from B \blacksquare b. Only infinite linear combinations are taken from B \blacksquare c. B is finite \blacksquare d. B is uncountable \blacksquare e. $V = \operatorname{span}(\operatorname{span}B)$ \blacksquare f. B is countable	*
a. Only finite linear combinations are taken from B b. Only infinite linear combinations are taken from B c. B is finite d. B is uncountable e. $V = \operatorname{span}(\operatorname{span}B)$ f. B is countable g. B always exists	*
■ a. Only finite linear combinations are taken from B ■ b. Only infinite linear combinations are taken from B ■ c. B is finite ■ d. B is uncountable ■ e. $V = \operatorname{span}(\operatorname{span}B)$ ■ f. B is countable ■ g. B always exists Your answer is partially correct. You have correctly selected 2. The correct answers are:	*
■ a. Only finite linear combinations are taken from B ■ b. Only infinite linear combinations are taken from B ■ c. B is finite ■ d. B is uncountable ■ e. $V = \operatorname{span}(\operatorname{span}B)$ ■ f. B is countable ■ g. B always exists Your answer is partially correct. You have correctly selected 2.	*
■ a. Only finite linear combinations are taken from B ■ b. Only infinite linear combinations are taken from B ■ c. B is finite ■ d. B is uncountable ■ e. $V = \operatorname{span}(\operatorname{span}B)$ ■ f. B is countable ■ g. B always exists Your answer is partially correct. You have correctly selected 2. The correct answers are:	
a. Only finite linear combinations are taken from B b. Only infinite linear combinations are taken from B c. B is finite d. B is uncountable e. $V = \operatorname{span}(\operatorname{span}B)$ f. B is countable g. B always exists Your answer is partially correct. You have correctly selected 2. The correct answers are: Only finite linear combinations are taken from B $V = \operatorname{span}(\operatorname{span}B)$	
a. Only finite linear combinations are taken from B b. Only infinite linear combinations are taken from B c. B is finite d. B is uncountable e. $V = \operatorname{span}(\operatorname{span}B)$ f. B is countable g. B always exists Your answer is partially correct. You have correctly selected 2. The correct answers are: Only finite linear combinations are taken from B	
a. Only finite linear combinations are taken from B b. Only infinite linear combinations are taken from B c. B is finite d. B is uncountable e. $V = \operatorname{span}(\operatorname{span}B)$ f. B is countable g. B always exists Your answer is partially correct. You have correctly selected 2. The correct answers are: Only finite linear combinations are taken from B $V = \operatorname{span}(\operatorname{span}B)$	
a. Only finite linear combinations are taken from B b. Only infinite linear combinations are taken from B c. B is finite d. B is uncountable e. $V = \operatorname{span}(\operatorname{span}B)$ f. B is countable g. B always exists Your answer is partially correct. You have correctly selected 2. The correct answers are: Only finite linear combinations are taken from B $V = \operatorname{span}(\operatorname{span}B)$	
a. Only finite linear combinations are taken from B b. Only infinite linear combinations are taken from B c. B is finite d. B is uncountable e. $V = \operatorname{span}(\operatorname{span}B)$ f. B is countable g. B always exists Your answer is partially correct. You have correctly selected 2. The correct answers are: Only finite linear combinations are taken from B $V = \operatorname{span}(\operatorname{span}B)$	

Correct

Mark 1.00 out of 1.00

Let $T:\mathbb{R}_3[x] o\mathbb{R}_3[x]$ be a linear transformation over \mathbb{R} given by $T(p(x))=rac{d}{dx}(p(x)).$ What are the values of null(T) and rank(T)?

- a. 4 and 0
- b. 2 and 2
- ac. 3 and 1
- ☑ d. 1 and 3
- e. 0 and 4

Your answer is correct.

The correct answer is:

1 and 3

Question 8

Incorrect

Mark 0.00 out of 1.00

Consider the linear Transformation $T:\mathbb{R}_2[x]\to\mathbb{R}_3[x]$ over \mathbb{R} given by $T(p(x))=rac{d}{dx}(p(x))+\int_0^x p(t)dt$. With the ordered base $(1,x,x^2)$ given for $\mathbb{R}_2[x]$ and the ordered base $(1,x,x^2,x^3)$ given for $\mathbb{R}_3[x]$, what is the matrix of T?

Here we use a notation where a matrix with 1st ROW (a,b,c) and 2nd ROW (e,f,g) is written as ((a, b, c), (d, e, f))

- \square a. $((0,1,0),(1,0,2),(1,\frac{1}{2},0),(0,0,\frac{1}{3}))$
- \Box b. $((0,1,0,0),(1,0,\frac{1}{3},0),(0,2,0,\frac{1}{4}))$
- \Box c. $((0,1,0),(1,0,2),(1,\frac{1}{3},0),(0,0,\frac{1}{4}))$
- \blacksquare d. $((0,1,0,0),(1,0,\frac{1}{2},0),(0,2,0,\frac{1}{3}))$

Your answer is incorrect.

The correct answer is:

 $((0,1,0),(1,0,2),(1,\frac{1}{2},0),(0,0,\frac{1}{3}))$

×

, 7.34 PW	MIDT. Attempt review	
Question 9		
Incorrect		
Mark 0.00 out of 1.00		
Which of the following are examples for "su	ubspace U of the vector space V over the field F "?	
Here vector addition is usual addition and	scalar multiplication is usual multiplication.	
\square a. $\mathbb Q$ of $\mathbb R$ over $\mathbb Q$		
\square b. $\mathbb R$ of $\mathbb C$ over $\mathbb R$		
${\color{red} oldsymbol{ ilde{\square}}}$ c. ${\mathbb Z}$ of ${\mathbb C}$ over ${\mathbb R}$		×
${\color{red}\mathbb{Z}}$ d. ${\mathbb{Z}}$ of ${\mathbb{Q}}$ over ${\mathbb{Z}}$		×
\square e. $\mathbb C$ of $\mathbb R$ over $\mathbb Q$		
${\mathbb Z}$ f. ${\mathbb R}$ of ${\mathbb C}$ over ${\mathbb Q}$		~
\square g. $\mathbb Z$ of $\mathbb Q$ over $\mathbb Q$		
Your answer is incorrect.		
The correct answers are:		
\mathbb{Q} of \mathbb{R} over \mathbb{Q}		
,		
\mathbb{R} of \mathbb{C} over \mathbb{R}		
$\mathbb R$ of $\mathbb C$ over $\mathbb Q$		

Partially correct

Mark 0.42 out of 1.00

Which of the following are examples for "vector space V over the field F"?

Here vector addition is usual addition and scalar multiplication is usual multiplication.

- ${\Bbb Z}$ a. ${\Bbb R}$ over ${\Bbb Q}$
- ${\Bbb Z}$ b. ${\Bbb Q}$ over ${\Bbb Z}$
- \square c. $\mathbb Q$ over $\mathbb R$
- \square d. $\mathbb Z$ over $\mathbb Q$
- e. O over O
- \square f. $\mathbb R$ over $\mathbb R$
- \square g. $\mathbb Z$ over $\mathbb Z$

Your answer is partially correct.

You have correctly selected 2.

The correct answers are:

 \mathbb{R} over \mathbb{R}

 \mathbb{R} over \mathbb{Q}

,

 \mathbb{Q} over \mathbb{Q}

Question 11

Correct

Mark 1.00 out of 1.00

Consider the set of solutions V of the differential equation $\frac{dy}{dx}-\frac{1}{2y}=0$ over the field $F=\mathbb{R}$. Which of the following are true?

$$lacksquare$$
 a. $\{\sqrt{x},-\sqrt{x}\}\subset V$

- \square b. $\{\sqrt{x}, -\sqrt{x}\}$ is a basis for V
- \Box c. $\{\sqrt{x}, -\sqrt{x}\}$ is linearly independent
- $\ \ \, \square$ d. V is not a vector space
- \square e. $V = \operatorname{span}\{\sqrt{x}, -\sqrt{x}\}$

Your answer is correct.

The correct answers are:

V is not a vector space

 $\{\sqrt{x}, -\sqrt{x}\} \subset V$

Partially correct

Mark 0.67 out of 1.00

Which of the following are inner products < u, v > in the vector space V over the field F? Here the vector addition is usual addition and the scalar multiplication is multiplying by a number.

$${\Bbb Z}$$
 a. $< x,y> = xy$ in ${\Bbb R}$ over ${\Bbb R}$

$$\square$$
 b. $<$ $A,B>=\det(AB)$ in $\mathbb{R}^{n imes n}$ over \mathbb{R}

$${f ilde{\square}}$$
 c. $< f,g> = \int_0^\infty f(x)g(x)dx$ in ${\cal C}[0,\infty)$ over ${\Bbb R}$

$$\square$$
 d. $< f,g> = \int_0^\infty e^{-x} f(x) g(x) dx$ in $\mathcal{C}[0,\infty)$ over $\mathbb R$

Your answer is partially correct.

You have selected too many options.

The correct answer is:

$$< x,y> = xy$$
 in $\mathbb R$ over $\mathbb R$

Question 13

Partially correct

Mark 0.75 out of 1.00

Consider the inner product $< f,g>=\int_{-1}^1 f(x)g(x)dx$ in the vector space $\mathbb{R}_3[x]$ over \mathbb{R} . The best approximation to $2+3x+4x^2$ in $W=\mathrm{span}\{1,x\}$ is

 \square a. $4x^2$

□ b. 0

 \square c. 4+2x

lacksquare d. 2+3x

•

$$\overline{}$$
 e. $\frac{10}{3}+3x$

= 6. $\frac{1}{3} + 3x$

Your answer is partially correct.

You have selected too many options.

The correct answer is:

$$\frac{10}{3} + 3x$$

Partially correct

Mark 0.33 out of 1.00

Let $V=\mathbb{C}^{n \times n}$ and $F=\mathbb{C}$. The vector addition is the matrix addition and the scalar multiplication is multiplying the matrix by a number. Also define the function $<A,B>=\mathrm{trace}(A^HB)$ where $A^H=\overline{A}^T$ is the conjugate transpose.

- $\ \square$ a. V is a vector space over F if the vector addition is the matrix multiplication.
- \square b. < A, A >= $0 \Leftrightarrow A = O$ is not true
- $\ ^{\square}$ c. V is a vector space over F.
- a. Cauchy-Schwarz inequality looks like $|\operatorname{trace}(A^HB)| \leq \|A\|_E \|B\|_E$ where $\|A\|_E = \sqrt{\sum_{i=1}^n |a_{ii}|^2}$ is the Frobeneous norm.
- $\ \square$ e. < A, B> is an inner product on V

Your answer is partially correct.

You have correctly selected 1.

The correct answers are:

V is a vector space over F.

< A, B> is an inner product on V

Cauchy-Schwarz inequality looks like $|\operatorname{trace}(A^HB)| \leq \|A\|_E \|B\|_E$ where $\|A\|_E = \sqrt{\sum_{i=1}^n |a_{ii}|^2}$ is the Frobeneous norm.

Question 15

Incorrect

Mark 0.00 out of 1.00

Consider the linear trasformation $T:\mathbb{R}^3 \to \mathbb{R}^2$ over the field \mathbb{R} given by T((x,y,z))=(x+y-z,x-y-z). A basis for $\mathrm{ran}(T)$ is

$$\square$$
 a. $\{(1,0,1)\}$

$$\{(1,0,1)\}$$

$$\ ^{\square }\text{ b. }\{(1,1),(1,0)\}$$

$$\square$$
 c. $\{(-1,0,-1)\}$

$$\square$$
 d. $\{(1,1),(1,-1)\}$

Your answer is incorrect.

The correct answers are:

$$\{(1,1),(1,-1)\}$$

 $\{(1,1),(1,0)\}$

6/5/22, 7:34 PM MID1: Attempt review

✓ MID1-instructions

Jump to...

Next activity

Assignment 1-Due Sunday 5th June ▶

Stay in touch

University of Moratuwa

https://uom.lk

☑ info[AT]uom[.]lk

f im

□ Data retention summary

[] Get the mobile app