Prepared by Nikshita Ranganathan, Archit Barua Shyamala Venkatakrishnan, Heejae Roh Professor Venkata Duvvuri

June 8th, 2023

3DHEALS® CLUSTERING MODEL

Northeastern University

3DHEAL5®

Business Problem

Building Customer email lookalikes

01

04

Predictive Model

For Customer Behavior

Clustering Model

Targeting with K-mode clustering

02

05

Recommendation & Future Plan

Clustering Visualization

Exploratory Data Analysis

03

06

Q&A

Business Problem

01

Building Customer email lookalikes

Business Problem

- Attendee Segmentation: Cluster attendees based on 'Industry', 'Organization', 'Job Title', 'Country/Region', and 'Source Name' for enhanced understanding of attendee demographics.
- Event Attendance Prediction: Utilize features like 'Industry', 'Organization', 'Job Title', 'Country/Region', etc., to predict likely attendance for future events.
- Webinar/Session Optimization: Analyze 'Time in Session (minutes)', 'Join Time', 'Leave Time', and 'Questions & Comments' to optimize the timing and cont ent of sessions.
- Consent Management: Observe fields related to consent to understand attendee comfort levels with data sharing and recording, thereby improving data u sage planning and addressing privacy concerns.
- Sponsorship Analysis: If 'Source Name' indicates sponsors, analyze the success of different sponsors in attracting attendees.
- Attendee Origin Analysis: Examine 'Country/Region', 'City', 'State/Province', and 'Zip/Postal Code' to gain insights into the geographical distribution of att endees for targeted marketing efforts.
- Marketing Channel Effectiveness: Analyze 'Email' domain, 'Linkedin Link', and 'Source Name' to determine which marketing channels drive the highest event attendance.
- Session Feedback Analysis: Mine 'Questions & Comments' for insights about the sessions' strengths and areas for improvement.

Clustering Model

02

Targeting with K-mode clustering

Model Target: Building customer email lookalike

K-Mode Clustering

What if the data is

Categorical

Master's student

Research Engineer

Postdoc Assistant Professor

DirectorBiomedical Engineer Researcher CTO

Founder

CEOPhD student Associate Professor

Research Assistant President Partner Professor Engineer Consultant Student

Scientist

Job Title

Country

Industry

Organization

Source Name

Domain

K-Mode Clustering

Select Modes instead of average

person	hair color	eye color	skin color
P1	blonde	amber	fair
P2	brunette	gray	brown
Р3	red	green	brown
P4	black	hazel	brown
P5	brunette	amber	fair
P6	black	gray	brown
P7	red	green	fair
P8	black	hazel	fair

Data Cleaning

Removing unwanted variables

Removed: 'User Name (Original Name)','First Name','Last Name','Is Guest', ...

Extracting Domain Name

From email

01 —

_____03

Removing empty/missing records

02

domain_name

gmail.com

uq.edu.au

gmail.com

pegamedical.com

wakehealth.edu

..

clecell.co.kr

inobitec.com

gmail.com

outlook.com

gmail.com

After Data Cleaning

	Country/Region	Industry	Organization	Job Title	Source Name	domain_name
0	IN	Medical, Pharma, Biotech	DrNGPIT	Student	LinkedIn	gmail.com
1	AU	Medical, Pharma, Biotech	University of Queensland	Post doctoral researcher	Website	uq.edu.au
2	FR	Medical, Pharma, Biotech	4dcell	Production manager	LinkedIn	gmail.com
3	CA	Medical, Pharma, Biotech	Pega Medical	R&D Engineering Associate	Mailchimp	pegamedical.com
4	US	Education	Wake Forest University	Graduate Student	Mailchimp	wakehealth.edu

6 Variables 3,078 Observations

Finding optimal k with elbow method

Select Cluster variables

Decide n_Cluster = 2

Column	Unique	
Country	87	
Industry	30	
Organization	1,876	
Job Title	1,291	
Source Name	9	
Domain	745	

Cluster Ratio

Cluster	Counts	Percent
0	2,505	79.0%
1	573	21.0%

Cluster '0' and Centroids

Medical, Pharma, Biotech Industry

VoxCell BioInnovation
Organization

Mailchimp Source Name

Gmail.com
Domain_name

Cluster '1' and Centroids

IN
India
Country/Region

EducationIndustry

The Hong Kong
Polytechnic University
Organization

Student Job Title

Mailchimp Source Name

Poly.edu.hk
Domain_name

Validating the effectiveness of clusters

Silhouette coefficient

- A measure of how well each data point is assigned to its cluster.
- A high value indicates that the data point is well-assigned to its cluster.

Calinski - Harabasz index

- A measure of the separation between clusters.
- A high Calinski Harabasz index indicates that the clusters are well-separated.

Davies-Bouldin index

- A measure of the compactness and separation of clusters.
- A low value indicates that the clusters are compact and well-separated.

Attended Yes or No

By Countries

By Industries

By Organizations

By Job Titles

Cluster

By Source Name

By Domain_name

Predictive Modeling

04

For Customer Behavior

Split the train & test data

One-Hot Encoding

New Customer Clustering

Decision Tree & Random Forest

encoder_Industry_8 <= 0.5 gini = 0.308 samples = 2154 value = [1745, 409]

Country/Region: India

encoder__Country/Region_44 <= 0.5 gini = 0.081 samples = 1711 value = [1639, 72]

encoder__Country/Region_82 <= 0.5 gini = 0.364 samples = 443 value = [106, 337]

Country/Region: India

encoder_Country/Region_44 <= 0.5 gini = 0.081 samples = 1711 value = [1639, 72]

Country/Region: USA

encoder__Country/Region_82 <= 0.5 gini = 0.364 samples = 443 value = [106, 337]

Job Title: Student

Industry: Medical, Pharma, Biotech

Job Title: CEO

Job Title: Student

encoder_Job Title_1074 <= 0.5 gini = 0.022 samples = 1603 value = [1585, 18]

encoder_Industry_20 <= 0.5 gini = 0.5 samples = 108 value = [54, 54] encoder__job Title_178 <= 0.5 gini = 0.018 samples = 333 value = [3, 330] encoder_job Title_1074 <= 0.5 gini = 0.119 samples = 110 value = [103, 7]

Country/Region: India

encoder_Country/Region_44 <= 0.5 gini = 0.081 samples = 1711 value = [1639, 72]

Cluster '1' and Centroids

IN
India
Country/Region

Country/Region: USA

encoder__Country/Region_82 <= 0.5 gini = 0.364 samples = 443 value = [106, 337]

Cluster 'o' and Centroids

US
United States
Country/Region

Model

Random Forest

Confusion Matrix

Next Steps

Recommendations

- **Customized Marketing:** Leverage attendee segmentation for designing personalized marketing strategies to increase engagement and event attendance.
- Predictive Modelling: Employ predictive models to forecast event attendance for efficient resource planning and management.
- Event Timing and Content: Evaluate session/webinar engagement to identify areas for content enhancement or timing adjustment.
- Data Privacy Considerations: Maintain respect for data privacy, exploring alternatives if attendees express discomfort with recording or info rmation sharing.
- Sponsorship Collaboration: Analyze sponsor influence on event attendance for potential strategic collaborations.
- Geographic Targeting: Consider focusing on regions with higher attendance rates for event hosting or increased marketing efforts.
- Marketing Channels: Assess the effectiveness of various marketing channels to concentrate efforts on the most impactful ones.
- Feedback Analysis: Apply natural language processing techniques to 'Questions & Comments' for valuable attendee sentiment analysis and direct feedback.

Centroids Cluster 'o'

USUnited States

Medical, Pharma, Biotech

VoxCell BioInnovation

CEO

Mailchimp

Gmail.com

Country/Region

Industry

Organization

Organization

Source Name

Domain

Cluster '1'

IN India

Education

The Hong Kong Polytechnic University

Student

Mailchimp

Poly.edu.hk

Future Plans

Sentiment Analysis: Using Natural Language Processing (NLP) techniques in the 'Questions & Comments' field might reveal valuable insights ab out the attendees' opinions and attitudes. This can help in improving the event experience further.

Predictive Modeling for Attendance: Build a predictive model using machine learning techniques to forecast an individual's attendance for futur e events based on their past records and engagement.

Network Analysis: If data on the relationships between attendees is available (such as connections on LinkedIn), network analysis could be used to identify influencers and key clusters within the attendee community.

Time Series Analysis: This can be used to understand the patterns in attendee registrations and dropout rates over time. This can help in better planning and predicting future event attendance.

Churn Analysis: Perform a churn analysis to identify individuals who have stopped attending the events. Understanding these individuals' characteristics can help devise strategies to re-engage them.

REFERENCE

- 3DHEALS. (n.d.). About us. Retrieved from https://3dheals.com/about-us
- Deloitte. (2020). 2020 global health care outlook: Laying a foundation for the future. Retrieved from https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/global-health-care-sector-outlook.html
- Machado, L. (2018, August 20). Artificial intelligence and 3D printing. Medium. https://medium.com/healthcare-3d-printing-stories/artificial-intelligence-and-3d-printing-94f45f3e45dd
- PwC. (2019). What's next for the pharmaceuticals industry, amid digital disruption and rapid technological advances? Retrieved from https://www.pwc.com/gx/en/pharma-life-sciences/pdf/pwc-pharma-2020.pdf
- Statista. (2021). 3D printing Statistics & Facts. Retrieved from https://www.statista.com/topics/1174/3d-printing
- 3D Systems. (n.d.). Healthcare. Retrieved from https://www.3dsystems.com/healthcare
- 3DHEALS. (n.d.). About us. Retrieved from https://3dheals.com/about
- Gartner. (2018). Gartner says 3D printing is changing the landscape of the medical device market. Retrieved from https://www.gartner.com/en/newsroom/press-releases/2018-04-03-gartner-says-3d-printing-is-changing-the-landscape-of-the-medical-device-market
- Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2020). Additive manufacturing and its societal impact: A literature review. The International Journal of Advanced Manufacturing Technology, 67(5-8), 1191-1203. doi: 10.1007/s00170-012-4558-5

REFERENCE

- Organovo. (n.d.). About Organovo. Retrieved from https://organovo.com/about/Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: Review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5(4), 335-341.doi: 10.1007/s11548-010-0476-x
- Stratasys. (n.d.). Medical solutions. Retrieved from https://www.stratasys.com/medical
- Suganya Karunamurthy. (2022). K-Mode Clustering | solved example | implementation. YouTube. Retrieved from https://www.youtube.com/watch?v=EVI2ejcsTfg
- Harika Bonthu. (2021, June 13). KModes Clustering algorithm for categorical data. Analytics Vidhya. Retrieved from https://www.analyticsvidhya.com/blog/2021/06/kmodes-clustering-algorithm-for-categorical-data/#h-2-scree-plot-or-elbow-curve-to-find-optimal-kvalue
- PRASHANT BANERJEE. (2022). K-Means clustering with Python. Kaggle. Retrieved from https://www.kaggle.com/code/prashant111/k-means-clustering-with-python
- ASHISH. (2020). Bank customer clustering (K-Modes Clustering). Kaggle. Retrieved from https://www.kaggle.com/code/ashydv/bank-customer-clustering-k-modes-clustering/notebook
- rakshithvasudev. (2017, August 2). What is one hot encoding? why and when do you have to use it?. Hackernoon. Retrieved from https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f