MCAL/MT - série 3 - (1 TD)

Ensemble non-dénombrable et Programmation chimique

$ ext{Exercice 1}: \mathbb{N} o \mathbb{B} ext{ non-dénombrable}$	
Q1. Complétez On note $\mathbb B$ l'ensemble des booléens $\{\mathbb V,\mathbb F\}$. $\mathbb N\to\mathbb B$ $\ensuremath{\text{$\varrho$}}$	
de, c'e	
associent un $\mathbb{N} \to \mathbb{B} = \{P \mid \dots \}$	}
Considérons un	par ur
tableau $[0\mathrm{N}[$ qui indique pour chaque entier i la valeur $$	P(i) associée.
Q2. Donnez quatre éléments de $\mathbb{N} \to \mathbb{B}$.	
Q3. Rangez vos 4 éléments dans un tableau de booléens à deux dimensiones 4 premières lignes, 6 premières colonnes du tableau.	$ ext{s} \; [0\mathbb{N}[imes [0\mathbb{N}[; \mathbf{donne}]]]$
${f Q4.~Complétez~la~preuve}$ On montre que ${\Bbb N} o{\Bbb B}$ e	
preuve par:	
${\mathbb S}$ que l'ensemble ${\mathbb N} o {\mathbb B}$ soit dénombrable c'e	
avec N. Hors il existe une entre N et N $ ightarrow$	B qui, à un en-
tier ℓ , le prédicat P_ℓ . On peut alors ranger	le
dans un tableau $[0N[imes[0N[$ à la manière de George	en plaçant
sur la ℓ le du prédicat On pe	ut donc re
un élément de $\mathbb{N} o \mathbb{B}$ par son de ligne : la l	ligne l définit le
prédicat P_ℓ .	· ·
Considérons la du tableau et exhibons	une contradic-
tion : Puisque le tableau contient prédicat	$P: \mathbb{N} \to \mathbb{B}$
défini par $P(i) \stackrel{ ext{def}}{=}$ doit	ta-
bleau à une certaine ligne, disons ℓ , donc P	
Exemple : Le prédicat P correspond à la de la	du
tableau. Dans le cas du tableau de la question précédente, le prédicat ${\cal P}$ ser	ait
P(0) = P(1) = P(2) = P(3) = etc	

Évaluons P au point ℓ :

 $P(\ell)=$ puisque; mais, par ailleurs, $P(\ell)=$ par: Contradiction. Conclusion: En suppo $\mathbb{N} \to \mathbb{B}$, on aboutit à ..., donc $\mathbb{N} \to \mathbb{B}$

Exercice 2 : Génération de graphes en Gamma

Q5. Exécutez le programme Gamma Γ_1 ci-dessous sur le multi-ensemble $\{ITV(1,8)\}$ où \div est la division entière, c'est-à-dire $5 \div 2 = 2$.

$$\Gamma_1 \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} \operatorname{ITV}(x,y) & \xrightarrow{x \leq y+1} & \operatorname{ITV}(x,\ (x+y) \div 2), & \operatorname{ITV}(1+(x+y) \div 2,\ y) \\ \operatorname{ITV}(x,x) & \longrightarrow & \operatorname{N}(x) \end{array} \right.$$

- **Q6.** (a) Combien d'applications de règles sont nécessaires avant d'arriver à la stabilité du multiensemble? (b) En combien d'étapes ¹ atteint-on la stabilité?
- Q7. Généralisation (a) Expliquez l'effet du programme Γ_1 sur le multi-ensemble $\{ITV(1,n)\}$ où n est un entier > 1. (b) En combien d'applications de règles et combien d'étapes obtient-on la stabilité?

Représentation d'un graphe par un multi-ensemble On peut décrire un graphe par l'ensemble de ses arcs. On notera ARC(i, j) un arc entre le nœud i et le nœud j.

- Q8. (a) Donnez le multi-ensemble correspondant au graphe (1) et (b) dessinez le graphe correspondant au multi-ensemble $\{ARC(1,1),ARC(2,3)\}$
- **Q9.** On considère un multi-ensemble \mathcal{M} qui contient des nœuds N(i) numérotés de 1 à n. Donnez un programme Gamma qui à partir des nœuds de \mathcal{M} et de l'atome $G(p) \in \mathcal{M}$ construit un graphe à exactement p arcs différents entre des nœuds de \mathcal{M} .

Indication : L'atome G(..) de \mathcal{M} qui sert à contrôler l'arrêt de la réaction.

Q10. Notre but est d'adapter le programme précédent pour garantir qu'on construit un **graphe** connexe c'est-à-dire un graphe qui ne contient pas de sous-graphes disjoints 2 . Cette fois on commence avec un atome G'(p) dans un multi-ensemble \mathcal{M}' de nœuds primés, notés N'(i) pour indiquer qu'il ne font pas partie du graphe connexe. L'idée est de changer un noeud N'(i) en N(i) lorsqu'il se trouve connecté au graphe. Donnez un programme Gamma qui – à partir des nœuds de \mathcal{M}' et de l'atome G'(p) – construit un graphe connexe à exactement p arcs différents entre des nœuds de \mathcal{M}' .

Exercice 3: Machines de Turing à 3.. 2.. 1 bande(s)

On considère l'alphabet $\Sigma = \{\Box, \$, 1, 0, \S\}$. Le symbole \S servira de marqueur. On s'intéresse à l'opération $S : \{0,1\}^* \to 1^*0^*$ qui prend en paramètre un mot binaire $\omega \in \{0,1\}^*$ et range tous les 1 du mot avant les 0.

Exemple : S(000111) = 111000 et S(10101) = 11100 et $S(\epsilon) = \epsilon$

^{1.} une étape = une application en parallèle des règles

^{2.} Un nœud N(i) sans arc ne constitue pas un graphe.

Le but de cet exercice est de réaliser l'opération S de trois façons : avec une MT à 3 bandes (B_1, B_2, B_3) , puis à 2 bandes (B_1, B_2) , puis à une seule bande (B_1) . Au départ le mot ω est inscrit sur la bande B_1 ; les autres bandes contiennent juste un \S ; la tête de lecture/écriture de chaque bande est positionnée sur le \S . À la fin de l'exécution, la bande B_1 doit contenir le mot $S(\omega)$.

- **Q11.** Donnez une MT $M_{\frac{3}{\S}}$ qui recherche le symbole \S vers la droite et ramène la tête de lecture/écriture de B_1 sur le \S .
- Q12. (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec une MT M_3 à 3 bandes (B_1, B_2, B_3) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_3(10101)$.
- Q13. Donnez les transitions de la MT M_3 à trois bandes qui réalise S.
- Q14. (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_2 à 2 bandes (B_1, B_2) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_2(10101)$.
- Q15. Donnez les transitions de la MT M_2 à deux bandes qui réalise S.
- Q16. (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_1 à une bande (B_1) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_1(10101)$.
- Q17. Donnez les transitions de la MT M_1 à une bande qui réalise S.