Задача 1. (*Описание открытых подмножеств* \mathbb{R})

- **a)** Докажите, что любое открытое множество в \mathbb{R} можно представить как объединение интервалов.
- **б**) Докажите, что любое открытое множество в \mathbb{R} является объединением непересекающихся интервалов и лучей.

Задача 2. (Принцип вложенных шаров)

- **а)** Докажите, что метрическое пространство полно тогда и только тогда, когда любая последовательность вложенных замкнутых шаров, радиусы которых стремятся к нулю, имеет общую точку.
- **б)*** Докажите, что стремление радиусов к нулю существенно, то есть существует полное пространство и последовательность вложенных шаров, имеющих пустое пересечение.

(Можно построить соответствующую метрику метрику на счётном множестве :вяквярдоП)

Задача 3. Докажите, что подмножество компакта компактно тогда и только тогда, когда оно замкнуто.

Задача 4. (*Onucahue компактов в* \mathbb{R}^n)

- а) Докажите, что единичный куб в \mathbb{R}^n является компактом.
- **б)** Докажите, что подмножество \mathbb{R}^n является компактным тогда и только тогда, когда оно замкнуто и ограничено.

Задача 5*. Приведите пример замкнутого ограниченного множества в C[0,1], не являющегося компактом.

Определение 1. Рассмотрим семейство множеств $\{K_i \mid i \in \mathbb{N}\}$, каждое из которых является объединением непересекающихся отрезков:

- $K_1 = [a, b]$.
- Если $K_i = \bigcup_j [a_{ij}, b_{ij}]$, то $K_{i+1} = \bigcup_j ([a_{ij}, \frac{2}{3}a_{ij} + \frac{1}{3}b_{ij}] \cup [\frac{1}{3}a_{ij} + \frac{2}{3}b_{ij}, b_{ij}]).$

Положим $K[a,b] = \bigcap_{i \in \mathbb{N}} K_i$. Полученное множество называется *множеством Кантора* (на отрезке [a,b]).

Задача 6.

- а) Докажите, что множество Кантора замкнуто.
- б) Докажите, что множество Кантора континуально.
- **в)** Найдите рациональное число, принадлежащее K[0,1], знаменатель которого не является степенью тройки.

Задача 7. (*Кривая Пеано*) Положим I = [0,1]. Рассмотрим последовательность отображений $f_n \colon I \to I^2$.

Первая функция строится как диагональ квадрата: $f_1(t) = (t,t)$.

Для построения второй функции необходимо разделить квадрат на девять маленьких квадратиков и обойти их диагонали в указанном порядке.

Для построения f_3 возьмём f_2 и проход по каждой диагонали заменим на проход по такой же «букве Φ » (соответствующим образом уменьшенной и повёрнутой).

И так далее.

Движение по всем ломаным происходит с постоянной скоростью.

- а) Докажите, что последовательность (f_n) имеет предел в пространстве непрерывных отображений из I в I^2 . Обозначим этот предел через f. (Подсказка: онлоп овтранстропространство)
- **б)** Докажите, что для любого $x \in I^2$ и для любого $\varepsilon > 0$ пересечение $U_{\varepsilon}(x) \cap f_n(I)$ не пусто при $n \gg 0$.
- в) Докажите, что для любой точки $x \in I^2$ и для любого $\varepsilon > 0$ пересечение $U_{\varepsilon}(x) \cap f(I)$ не пусто.
- **г)** Докажите, что $f(I) = I^2$. **д)** Вычислите $f(\frac{1}{4})$.

1 a	1 6	2 a	2 6	3	4 a	4 6	5	6 a	6 б	6 в	7 a	7 б	7 В	7 г	7 д

