Assessment Schedule – 2015

Calculus: Apply the algebra of complex numbers in solving problems (91577)

Evidence

Q1	Expected Coverage	Achievement u	Merit r	Excellence t
(a)	$x = 4 \pm 2\sqrt{3}$	Correct solution.		
(b)	$u^3 = -8$ clearly marked on Argand diagram.	Correct solution.		
(c)	$p(3-7i)+q(-4+6i) = 6.5-11i$ $3p-7pi-4p+6iq = 6.5-11i$ $\Rightarrow 3p-4q = 6.5$ and $-7p+6q = -11$ $p = 0.5$ $q = -1.25$	Correct second line.	Correct solution.	
(d)	$ b^{2}-4ac' = (2c+1)^{2} + 4 \times 3 \times (c+3)$ $= 4c^{2} + 16c + 37 \qquad OR$ $= 4(c^{2} + 4c) + 37 \qquad = (2c+4)^{2} + 21 \ge 0$ $= 4([c+2]^{2} - 4) + 37 \qquad \text{Since } (2c+4)^{2} \ge 0$ $= 4(c+2)^{2} + 21$ Which is always positive, as $(c+2)^{2}$ is always positive.	Correct second line.	Correct solution.	

(e)	Let $x^2 + bx + c = (x - p)(x - q)$ $= x^2 - qx - px + pq$ $\Rightarrow b = -p - q$ and $c = pq$ Let $x^2 + dx + e = (x - p)(x - r)$ $= x^2 - rx - px + pr$ $\Rightarrow d = -p - r$ and $e = pr$ $\therefore \frac{e - c}{b - d} = \frac{pr - pq}{-p - q + p + r}$ $= \frac{p(r - q)}{-q + r} = p$	The two 'let' lines.	Successfully equating coefficients.	Correct proof.
	OR $(x-p) \text{ is a factor of } x^2 + bx + c$ $\Rightarrow p^2 + bp + c = 0$ $(x-p) \text{ is a factor of } x^2 + dx + e$ $\Rightarrow p^2 + dp + e = 0$ $\Rightarrow p^2 + bp + c = p^2 + dp + e$ $bp + c = dp + e$ $bp - dp = e - c$ $p(b-d) = e - c$ $p = \frac{e-c}{b-d}$	EITHER $p^{2} + bp + c = 0$ OR $p^{2} + dp + e = 0$	Equating the two equations in the ACH column.	Correct proof.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 partial solution.	1u	2u	3u	1r	2r	1t with 1 minor error.	1 t

Q2	Expected Coverage	Achievement u	Merit r	Excellence t
(a)	-23	Correct solution.		
(b)	$\frac{2+3i}{5+i} = \frac{(2+3i)(5-i)}{(5+i)(5-i)}$ $= \frac{13+13i}{26}$ $= \frac{13}{26}(1+i)$ $= \frac{1}{2}(1+i)$ $\therefore k = \frac{1}{2}$	Correct solution.		
(c)	$1 = A(x(x-1)) + B(x-1) + Cx^{2}$ $= Ax^{2} - Ax + Bx - B + Cx^{2}$ $= (A+C)x^{2} + (B-A)x - B$ $\therefore B = -1, A = -1, C = 1$	Correct second line.	Correct solution.	
(d)	$\left(\frac{4i^7 - i}{1 + 2i}\right)^2 = \left(\frac{-4i - i}{1 + 2i}\right)^2$ $= \left(\frac{-5i}{1 + 2i}\right)^2$ $= \frac{-25}{-3 + 4i}$ $= \frac{-25(-3 - 4i)}{(-3 + 4i)(-3 - 4i)}$ $= \frac{75 + 100i}{25}$ $= 3 + 4i$	Correct third line. Or CRO	Correct solution.	
(e)	$\frac{z-2}{z+5} = \frac{x+yi-2}{x+yi+5}$ $= \frac{(x-2)+yi}{(x+5)+yi}$ $= \frac{\left[(x-2)+yi\right]\left[(x+5)-yi\right]}{\left[(x+5)+yi\right]\left[(x+5)-yi\right]}$ $= \frac{x^2+y^2+3x-10+7yi}{x^2+10x+25+y^2}$ $Arg = \frac{\pi}{4} \Rightarrow x^2+y^2+3x-10=7y$ $\therefore x^2+y^2+3x-10-7y=0$	Correct second line.	Correct 'simplification', 4th line. Accept correct factorised denominator.	Correct solution.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 partial solution.	1u	2u	3u	1r	2r	1t with 1 minor error.	1 t

Q3	Expec	ted Coverage	Achievement u	Merit r	Excellence t
(a)	$zw = (4+2i)(-1+3i)$ $= -4+12i-2i+6i^{2}$ $= -10+10i$ $Arg(zw) = 135^{\circ} = \frac{3\pi}{4} = 2.36 \text{ rs}$	ad	Correct solution.		
(b)	$b^{2} - 4ac = 0$ $\frac{1}{k^{2}} - 4k \times 2 = 0$ $\frac{1}{k^{2}} = 8k$ $k^{3} = \frac{1}{8}$ $k = \frac{1}{2}$		Correct solution.		
(c)	$f(-2) = 0$ $\Rightarrow -24 + 4A + 16 = 0$ $A = 2$ $3w^{3} + Aw^{2} - 3w + 10 = (w+2)$ $\therefore (w+2)(3w^{2} - 4w + 5) = 0$ $w = \frac{4 \pm \sqrt{16 - 4 \times 3 \times 5}}{6}$ $= \frac{4 \pm \sqrt{-44}}{6}$ $= \frac{2 \pm \sqrt{11}i}{3}$ Or w 0.667 \pm 1.1055i	$\left(3w^2-4w+5\right)$	Correct value of A found.	Correct solution.	
(d)	$z^{3} = 2k \operatorname{cis}\left(\frac{\pi}{3}\right)$ Therefore roots are: $z_{1} = \sqrt[3]{2k} \operatorname{cis}\left(\frac{\pi}{9}\right)$ $z_{2} = \sqrt[3]{2k} \operatorname{cis}\left(\frac{7\pi}{9}\right)$ $z_{3} = \sqrt[3]{2k} \operatorname{cis}\left(\frac{13\pi}{9}\right)$ OR $\sqrt[3]{2k} \operatorname{cis}\left(\frac{-5\pi}{9}\right)$	or Arg = 1.047 or 60° or Arg = 0.349 or 20° or Arg = 2.443 or 140° or Arg = 4.538 or 260° or Arg = -1.745 or -100°	One correct solution or 3 correct arguments.	Three correct solutions – allow alternative correct values.	

(e)(i)	$z^5 = 1$	Correct	Correct
	$z^5 = 1 \operatorname{cis} 0$	values of z_1 to z_5 .	solution.
	Therefore roots are	21 to 25.	
	$z_1 = 1 \operatorname{cis} 0$		
	or 1		
	$z_2 = 1\operatorname{cis}\left(\frac{2\pi}{5}\right) \qquad \text{or Arg} = 1.257 \text{or } 72^\circ$		
	or 0.309 + 0.951i		
	$z_3 = 1\operatorname{cis}\left(\frac{4\pi}{5}\right) \qquad \text{or Arg} = 2.513 \text{or } 144^\circ$		
	or $-0.809 + 0.588i$		
	$z_4 = 1\operatorname{cis}\left(\frac{6\pi}{5}\right) \qquad \text{or Arg} = 3.770 \text{or } 216^\circ$		
	or $1\operatorname{cis}\left(\frac{-4\pi}{5}\right)$ or $\operatorname{Arg} = -2.513$ or -144°		
	or – 0.809 – 0.588i		
	$z_5 = 1\operatorname{cis}\left(\frac{8\pi}{5}\right) \qquad \text{or Arg} = 5.027 \text{or } 288^\circ$		
	or $1\operatorname{cis}\left(\frac{-2\pi}{5}\right)$ or $\operatorname{Arg} = -1.257$ or -72°		
	or 0.309 – 0.951i		
(ii)	Let $p = 1 \operatorname{cis}\left(\frac{2\pi}{5}\right)$ which is z_2 above or $\mathfrak{p} = 0.309 + 0.951i$		
	Then		
	$p^2 = \left(1\operatorname{cis}\left(\frac{2\pi}{5}\right)\right)^2 = 1\operatorname{cis}\left(\frac{4\pi}{5}\right) = z_3$		
	$p^{3} = \left(1\operatorname{cis}\left(\frac{2\pi}{5}\right)\right)^{3} = 1\operatorname{cis}\left(\frac{6\pi}{5}\right) = z_{4}$		
	$p^4 = \left(1\operatorname{cis}\left(\frac{2\pi}{5}\right)\right)^4 = 1\operatorname{cis}\left(\frac{8\pi}{5}\right) = z_5$		
	And $z_1 = 1 \operatorname{cis} 0 = 1$		
	\therefore roots are $1, p, p^2, p^3$ and p^4		

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 partial solution.	1u	2u	3u	1r	2r	1t with 1 minor error.	1 t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 6	7 – 12	13 – 18	19 – 24