Application Note

在选择功率 MOSFET 和使用功率 MOSFET 进行设计时避免常 见错误

John Wallace

摘要

功率 MOSFET 广泛应用于开关模式电源、电动自行车和音频放大器等。高载流能力、易驱动性和快速开关特性使 功率 MOSFET 成为设计工程师工具箱中必不可少的工具。在为应用选择功率 MOSFET 时,透彻了解应用要求和 FET 数据表有助于避免一些常见错误。

内容

1 简介	2
2 杏看数据表限制	2
3 应用特定 FET	2
4 栅极驱动电压规格	
4.1 绝对最大 V _{GS}	
4.2 栅源阈值电压 V _{GS(th)}	<u>5</u>
5 高侧和低侧开关	7
5.1 驱动高侧 N 沟道 FET	
5.2 驱动低侧 N 沟道 FET	
5.3 驱动高侧 P 沟道 FET	
5 使用栅源电阻器	
7 最低 R _{DS(on)} 并不意味着最低功率损耗	
3 总结	
9 参考资料	
- ****	
商标	

所有商标均为其各自所有者的财产。

1 简介

为了为设计人员提供帮助,TI发布了一系列用于选择和使用 MOSFET 的技术文章、应用手册和工具:MOSFET 支持和培训工具应用手册。选择 FET 后,还需要做更多工作来确保 FET 在应用中按预期工作。

2 查看数据表限制

在选择 FET 期间,需要查看应用和数据表,确保器件在数据表限制范围内运行。对于定义器件的电气和热限制的 绝对最大额定值尤其如此。超过绝对最大额定值可能会导致 FET 发生灾难性故障。大多数工程师会降低数据表中 的限值,以确保设计中有足够的裕量来应对电压尖峰、瞬变、故障条件、过载、短路等意外事件。例如,绝对最 大 V_{DS} = 30V 的 FET 通常会降额至 24V 最大工作电压。

3应用特定 FET

某些 FET 针对开关模式应用进行了优化,而其他 FET 更适合静态开关。某些 FET 适用于任一应用类型。首先要 做的是查看 FET 数据表。TI FET 数据表第 1 页包含 FET 优化的应用的相关信息。例如,图 3-1 展示了 CSD16570Q5B 数据表,该 FET 针对 ORing 和热插拔应用进行了优化。

1 Features

- Extremely Low Resistance
- Low Q_g and Q_{gd}
- Low Thermal Resistance
- Avalanche Rated
- Pb Free Terminal Plating
- RoHS Compliant
- Halogen Free
- SON 5-mm × 6-mm Plastic Package

2 Applications

· ORing and Hot Swap Applications

3 Description

This 25 V, 0.49 m Ω , SON 5 × 6 mm NexFETTM power MOSFET is designed to minimize resistance for ORing and hot swap applications and is not designed for switching applications.

Product Summary

T _A = 25°	°C	TYPICAL VA	UNIT	
V _{DS}	Drain-to-Source Voltage	25		V
Qg	Gate Charge Total (4.5 V)	95		nC
Q _{gd}	Gate Charge Gate-to-Drain	31		nC
R _{DS(on)}	Drain-to-Source On-Resistance	V _{GS} = 4.5 V 0.68		mΩ
		V _{GS} = 10 V	0.49	mΩ
V _{GS(th)}	Threshold Voltage	1.5		V

Ordering Information(1)

Device	Qty	Media	Package	Ship
CSD16570Q5B	2500	13-Inch Reel	SON 5 × 6 mm	Tape and
CSD16570Q5BT	250	7-Inch Reel	Plastic Package	Reel

For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

İ	T _A =	25°C	VALUE	UNIT
	V _{DS}	Drain-to-Source Voltage	25	V

图 3-1. CSD16570Q5B 数据表

同样,图 3-2 展示了 CSD18541F5 数据表的摘录。该器件针对负载开关和通用开关应用进行了优化。

图 3-2. CSD18541F5 数据表

通过进一步深入探究数据表动态特性可知,CSD16570Q5B 不适合开关模式应用,因为电荷比 $Q_{gd}/Q_{gs} > 1$ 。当 MOSFET 用作同步降压转换器中的低侧 FET 时,这使得 MOSFET 更容易受到 CdV/dt 引起的导通的影响。同样,CSD18541F5 的电荷比大于 1,但典型的内部串联栅极电阻为 $R_G = 1200\,\Omega$ 。这限制了开关速度,该 FET 不是开关模式应用的最佳选择。如果对 FET 是否可用于特定应用存在一些疑问,请查看数据表中的*应用* 部分和*动态特性* 部分。如果还有其他问题,请联系您的 FET 供应商以获取更多信息。

4 栅极驱动电压规格

一个常见的错误是将 FET 栅极驱动至不正确的电压。通常, V_{GS} 过低,无法达到数据表中指定的 $R_{DS(on)}$ 。本文档的后面部分将介绍有关此主题的更多信息。

FET 数据表中包含 V_{GS} 的多项规格。有绝对最大 V_{GS} 的规格、栅源阈值电压 $V_{GS(th)}$ 的规格和在一个或多个 V_{GS} 值下 $R_{DS(on)}$ 的规格。下一节将介绍其中每一项以及在选择 FET 时如何使用这些规格。

4.1 绝对最大 V_{GS}

绝对最大 V_{GS} 额定值可以是单个值,也可以是单独的正值和负值,具体取决于栅极结构。如您的 MOSFET 包含哪种类型的 ESD 保护?技术文章中所述,TI FET 可以具有单端、背对背栅极 ESD 保护或无栅极 ESD 保护。采用单端 ESD 结构的 FET 的绝对最大 V_{GS} 只有一个值。施加极性相反的电压会使栅源 ESD 二极管正向偏置,从而允许电流流入栅极,并将 V_{GS} 钳位在结压降处。可以添加一个外部栅极电阻器,以限制栅极电流并防止损坏 FET。

具有背对背 ESD 保护或无 ESD 保护的器件具有单独的正负绝对最大 V_{GS} 值,这些值可以是对称的(即 ±20V)或非对称的(即 -12V/+16V)。切勿在 V_{GS} 超过绝对最大规格的情况下运行 FET,否则 FET 可能会损坏。

表 4-1、表 4-2 和表 4-3 展示了以下 TIN 沟道 MOSFET 的绝对最大额定值示例:

 $T_{\Delta} = 25^{\circ}C$ 值 单位 30 ٧ V_{DS} 漏源电压 ±20 ٧ V_{GS} 栅源电压 持续漏极电流 (受封装限制) 60 I_D 持续漏极电流(受芯片限制), T_C = 25°C 时测得 123 Α 24 持续漏极电流 256 Α 脉冲漏极电流 I_{DM} 功率耗散 3.1 P_D W 功率耗散, T_C = 25°C T_{J} °C 工作结温和贮存温度 -55 至 150 T_{stg} 雪崩能量,单脉冲 E_AS 76 mJ $I_D = 39A$, L = 0.1mH , $R_G = 25\Omega$

表 4-1. CSD17581Q5A 绝对最大额定值

事 4つ	CSD173	01日4 443	计量十二级	中店
7 ♥ 4-/	CSD1/3	81F4 24	XVITED V 29//I	TE 1H

	T _A = 25°C 时测得,除非另有说明	值	单位
V _{DS}	漏源电压	30	V
V_{GS}	栅源电压	12	V
I _D	持续漏极电流, T _A = 25°C	3.1	A
I _{DM}	脉冲漏极电流, T _A = 25°C	12	A
1-	持续栅极钳位电流	35	mA
I _G	脉冲栅极钳位电流	350	IIIA
P _D	功率耗散	500	mW
ESD 等级	人体放电模型 (HBM)	4	kV
ESD 等级	组件充电模式 (CDM)	2	kV
T _J 、 T _{stg}	运行结温和储存温度范围	-55 至 150	°C
E _{AS}	雪崩能量,单脉冲 I_D = 7.4A, L = 0.1mH, R_G = 25 Ω	2.7	mJ

表 4-3. CSD16415Q5 绝对最大额定值

	T _A = 25°C	值	单位
V _{DS}	漏源电压	25	V
V _{GS}	栅源电压	-12 至 16	V
	持续漏极电流(受封装限制)	100	
I _D	持续漏极电流(受芯片限制), T _C = 25°C 时测得	261	A
	持续漏极电流	38	
I _{DM}	脉冲漏极电流,T _A = 25°C	200	А
P _D	功率耗散	3.2	W
	功率耗散,T _C = 25°C	156	- VV
T _J , T _{stg}	工作结温和贮存温度	-55 至 150	°C
E _{AS}	雪崩能量,单脉冲 I_D = 100A,L = 0.1mH, R_G = 25 Ω	500	mJ

4.2 栅源阈值电压 V_{GS(th)}

在 TI FET 数据表中,栅源阈值电压 $V_{GS(th)}$ 是在 I_D = 250μA 时指定的。此时,FET 刚刚开始传导电流、低于最小 V_{GS} ,其中 $R_{DS(on)}$ 在数据表中指定。例如,如表 4-4 所示,CSD18541F5 60V N 沟道 FET 的 $V_{GS(th)}$ = 1.75V,但最小 V_{GS} = 4.5V,其中 $R_{DS(on)}$ 在数据表中指定。

表 4-4. CSD18541F5 电气特性

T_A = 25°C(除非另外注明)

	参数	测试条件	最小值	典型值	最大值	单位
静态特性		·				
BV _{DSS}	漏源电压	V_{GS} = 0V , I_{DS} = 250 μ A	60			V
I _{DSS}	漏源漏电流	V _{GS} = 0V , V _{DS} = 48V			1	μΑ
I _{GSS}	栅源漏电流	V _{DS} = 0V , V _{GS} = 20V			10	μA
V _{GS(th)}	栅源阈值电压	V _{DS} = V _{GS} I _{DS} = 250 μ A	1.4	1.75	2.2	V
D	是海日泽市加	V _{GS} = 4.5V , I _{DS} = 1A		57	75	m Ω
R _{DS(on)}	漏源导通电阻	V _{GS} = 10V , I _{DS} = 1A		54	65	
g _{fs}	跨导	V _{DS} = 6V , I _{DS} = 1A		7.7		S
动态特性						
C _{iss}	输入电容	V 0V V 00V		598	777	pF
C _{oss}	输出电容	$V_{GS} = 0V , V_{DS} = 30V ,$ f = 1MHz		47	61	pF
C _{rss}	反向传输电容	, <u>-</u>		8.1	10.5	pF
R_G	串联栅极电阻			1200	1600	Ω
Qg	栅极电荷总量 (10V)			11	14	nC
Q _{gd}	栅极电荷(栅极到漏极)	V = 20V = 1A		1.6		nC
Q _{gs}	栅极电荷(栅漏极)	$V_{DS} = 30V , I_{DS} = 1A$		1.5		nC
Q _{g(th)}	V _{th} 下的栅极电荷			0.8		nC
Q _{oss}	输出电荷	V _{DS} = 30V , V _{GS} = 0V		3.2		nC
t _{d(on)}	导通延迟时间			572		ns
t _r	上升时间	V _{DS} = 30V , V _{GS} = 4.5V ,		540		ns
t _{d(off)}	关断延迟时间	$I_{DS} = 1A$, $R_G = 0\Omega$		1076		ns
t _f	下降时间			496		ns
二极管特	性					
V _{SD}	二极管正向电压	I _{SD} = 1A , V _{GS} = 0V		0.8	1	V

栅极驱动电压规格 www.ti.com.cn

一个常见的错误是假定只要 $V_{GS} \ge V_{GS(th)}$,FET 就会导通并在应用中按预期运行。但情况并非总是如此。为确保 $R_{DS(on)}$ 满足数据表限制, V_{GS} 必须始终大于或等于最小值,其中 $R_{DS(on)}$ 在数据表中指定。这种情况经常被忽 略,并且会导致应用出现意外的问题。使用 CSD18541F5 的客户必须更改设计,因为应用使用的是 $V_{GS} = 3.3V$, 而不是 V_{GS} = 4.5V。如图 4-1 所示,当在 V_{GS} < 4.5V 的情况下运行 CSD18541F5 时,曲线的斜率几乎是垂直 的, $V_{GS(th)}$ 的微小变化会导致 $R_{DS(on)}$ 发生指数级变化。

图 4-1. CSD18541F5 R_{DS(on)} 与 V_{GS} 间的关系

www.ti.com.cn *高侧和低侧开关*

5 高侧和低侧开关

功率 MOSFET 用作高侧和低侧开关。区别是什么,栅极驱动是如何实现的?高侧开关将 FET 放置在输入电源和负载之间。低侧开关将 FET 放置在负载和接地端之间。图 5-1 和图 5-2 展示了简化示例。

图 5-1. N 沟道 FET 高侧开关

图 5-2. N 沟道 FET 低侧开关

5.1 驱动高侧 N 沟道 FET

高侧 N 沟道 FET 的栅极必须驱动到至少比输入高 V_{GS} 最小值的电压,其中 $R_{DS(on)}$ 已在数据表中指定。这是因为当 FET 导通且 $V_{GS} = V_G - V_S = V_G - V_{IN}$ 时,漏极和源极的电压大致相同。例如,当使用 CSD18541F5 作为高侧开关且 $V_{IN} = 24V$ 时, $V_G \ge V_{IN} + V_{GS \, (min)} = 24V + 4.5V = 28.5V$ 。

5.2 驱动低侧 N 沟道 FET

驱动低侧 N 沟道 FET 要简单得多,因为源极接地,栅极只需被驱动至 V_{GS} 最小值,其中 $R_{DS(on)}$ 在数据表中指定。

5.3 驱动高侧 P 沟道 FET

如图 5-3 所示,P 沟道 FET 由于驱动栅极的简单性,主要用作高侧开关。要导通器件,栅极应下拉至 GND。要关断器件,栅极应上拉至 V_{IN} 。为了避免损坏 FET,请务必查看数据表,确保输入电压 V_{IN} \leq 绝对最大 V_{GS} 。

图 5-3. P 沟道 FET 高侧开关

6 使用栅源电阻器

栅极悬空或开路可能是发生 FET 故障的原因。当 FET 的栅极保持开路时,栅极可以充电至意外导致漏极电流 I_D 流动的电压。这可能会导致不必要的行为,直至并包括 FET 的灾难性故障。如图 6-1 所示,在栅极和源极之间添加一个 $10k\Omega$ 至 $1M\Omega$ 的电阻器是确保 FET 在栅极悬空时处于关断状态的简单方法。

图 6-1. 具有栅源电阻器 RGS 的 N 沟道 FET

7 最低 R_{DS(on)} 并不意味着最低功率损耗

具有最低 $R_{DS(on)}$ 的 MOSFET 是否会产生最低的功率损耗?这取决于应用和 FET 的使用方式。导通损耗或 I^2R 损耗与 $R_{DS(on)}$ 成正比,对于热插拔、负载开关和 OR-ing 等应用(其中 FET 不会在几十或几百 kHz 的频率下开关),具有最低导通电阻的器件会产生最低的功率损耗。

在直流/直流转换器等开关模式应用中,开关损耗可能在总 MOSFET 功率损耗中的占比很大。R_{DS(on)} 是 FET 芯片尺寸的函数,在给定的 MOSFET 工艺技术和电压额定值下,较大的芯片会产生较低的 R_{DS(on)}。较大的芯片还具有较高的电荷和电容,从而使开关损耗增加。为开关模式应用选择 FET 时,必须在导通损耗和开关损耗之间实现平衡,从而将 FET 的总体功率损耗降至最低。

TI 针对各种考虑到这一点的应用发布了大量基于 Excel 的 FET 选择工具。例如,利用同步降压 FET 选择工具,用户可以输入要求并根据功率损耗、封装和 1ku 价格比较多达三种不同的 TI FET 设计。

8 总结

功率 MOSFET 是一种多功能器件,可用于多种应用。本文介绍了在选择 FET 和使用 FET 进行设计时要避免的一些常见错误。

9 参考资料

以下文档可作为进一步参考,帮助您了解有关 TI MOSFET 的更多信息:

- 德州仪器 (TI), MOSFET 支持和培训工具 应用手册
- 德州仪器 (TI), 您的 MOSFET 包含哪种类型的 ESD 保护? 技术文章

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司