B-Splines for Cardinal Hermite Interpolation

S. L. Lee

Department of Mathematics University of Alberta Edmonton, Alberta, Canada

Submitted by Hans Schneider

ABSTRACT

We give a proof of a conjecture of I. J. Schoenberg on B-splines for Cardinal Hermite interpolation without the assumption that the characteristic polynomial $\Pi_{n,r}(\lambda)$ is irreducible over the rational field.

1. INTRODUCTION

In the study of Cardinal Hermite interpolation with values and first r-1 $(r\geqslant 1)$ derivatives prescribed at the integers, Lipow and Schoenberg [4] introduced the class $\mathbb{S}_{2m-1,r}$ $(m\geqslant r)$ of Cardinal spline functions $S(x)\in C^{2m-r-1}$ $(-\infty,\infty)$ which are piecewise polynomials of degree 2m-1 in each of the intervals [v,v+1] \forall integers v. Subsequently Schoenberg and Sharma [6] introduced the B-spline $N_s(x)$ $(s=0,1,\ldots,r-1)$ belonging to the space

$$S_{2m-1,r}^{(s)} = \left\{ S(x) \in S_{2m-1,r} : S^{(\rho)}(\nu) = 0 \ (\rho = 0, 1, \dots, r-1, \ \rho \neq s) \ \forall \text{ integers } \nu \right\}$$

$$(1.1)$$

such that $N_s(x)$ vanishes outside the interval (-(m-r+1), (m-r+1)) and

$$N_s^{(s)}(\nu) = c_n \qquad \left[\nu = -(m-r), -(m-r) + 1, \dots, (m-r)\right] \tag{1.2}$$

where c_p are the coefficients of the monic reciprocal polynomial

$$\Pi_{2m-1,r}(\lambda) = \sum_{\nu=0}^{2m-2r} c_{\nu-(m-r)} \lambda^{\nu}. \tag{1.3}$$

LINEAR ALGEBRA AND ITS APPLICATIONS 12, 269–280 (1975) 269

© American Elsevier Publishing Company, Inc., 1975

The main result of Schoenberg and Sharma asserts that every $S(x) \in S_{2m-1,r}^{(s)}$ admits a unique representation of the form

$$S(x) = \sum_{\nu = -\infty}^{\infty} a_{\nu} N_{s}(x - \nu). \tag{1.4}$$

However, their proof is based upon the following ad hoc assumption:

Assumption 1. $\Pi_{2m-1,r}(\lambda)$ is irreducible over the rational field.

That this holds if r is odd and 2m-r is a prime number has been shown recently by Sharma and Strauss [7]. However Schoenberg [5] remarked that "this assumption concerns too deep an arithmetic problem in comparison with the linear algebra nature of the interpolation problem". He also remarked [6] that it would be interesting to establish the result without this assumption. The aim of this note is to give a proof of the representation (1.4) without Assumption 1.

2. PRELIMINARIES AND THE MAIN THEOREM

Let m, r be positive integers with $m \ge r$. The Cardinal Hermite interpolation problem (C.H.I.P.) is posed as follows:

Given r bi-infinite sequences of numbers

$$\mathbf{y}^{(\rho)} = (\mathbf{y}_{\mathbf{y}}^{(\rho)}) \qquad (\rho = 0, 1, \dots, r - 1),$$
 (2.1)

find $S(x) \in S_{2m-1,r}$ such that

$$S^{(\rho)}(\nu) = \psi_{\nu}^{(\rho)} \qquad (\rho = 0, 1, \dots, r - 1)$$
 (2.2)

 \forall integers v.Lipow and Schoenberg [4] proved that if the data (2.1) satisfy the condition

$$y_{\nu}^{(\rho)} = 0(|\nu|^{\gamma}) \qquad (\rho = 0, 1, \dots, r - 1)$$
 (2.3)

for some $\gamma > 0$, then the C.H.I.P. has a unique solution $S(x) \in \mathbb{S}_{2m-1,r}$ such that $S(x) = O(|x|^{\gamma})$. It was also shown that the null space

$$\hat{S}_{2m-1,r} = \{ S(x) \in \hat{S}_{2m-1,r} : S^{(\rho)}(\nu) = 0 \ (\rho = 0, 1, \dots, r-1) \ \forall \text{ integers } \nu \}$$
(2.4)

is a linear space of dimension d=2m-2r spanned by the eigensplines $S_j(x)$ $(j=1,2,\ldots,d)$ which satisfy the functional relation

$$S_i(x+1) = \lambda_i S_i(x) \quad \forall x \in \mathbb{R},$$
 (2.5)

where λ_i $(j=1,2,\ldots,d)$ are the zeros (real and simple) of $\Pi_{2m-1,r}(\lambda)$, which is given explicitly by

$$\Pi_{2m-1,r}(\lambda) = P\left(\begin{array}{c} r, r+1, \dots, 2m-1 \\ 0, 1, \dots, 2m-r-1 \end{array} : \lambda\right), \tag{2.6}$$

where we use the notation $P \binom{i_0,i_1,\ldots,i_r}{j_0,j_1,\ldots,j_r}:\lambda$ $(\nu=0,1,2,\ldots)$ to denote the determinant obtained from the matrix $\|\binom{i}{j}-\lambda\delta_{ij}\|$ $(i,j=0,1,2,\ldots)$ by deleting all the rows and columns except those labeled $\{i_0,i_1,\ldots,i_r\}$ and $\{j_0,j_1,\ldots,j_r\}$ respectively, and $P\binom{i_0,i_1,\ldots,i_r}{j_0,j_1,\ldots,j_r}$ the corresponding determinant obtained from the matrix $P=\|\binom{i}{j}\|$ $(i,j=0,1,2,\ldots)$. Lipow and Schoenberg [4] proved that the zeros of the polynomial $\Pi_{n,r}(\lambda)$ are real, simple and of sign $(-1)^r$, and it was shown in [3] (see also [2]) that the zeros of $\Pi_{n,r}(\lambda)$ and $\Pi_{n-1,r}(\lambda)$ strictly interlace.

We shall prove the following theorem.

Theorem 1. Every $S(x) \in \mathbb{S}_{2m-1,r}^{(s)}$ $(s=0,1,\ldots,r-1)$ admits a unique representation of the form $S(x) = \sum_{\nu=-\infty}^{\infty} a_{\nu} N_{s}(x-\nu)$.

The proof of Schoenberg and Sharma [6] for this theorem depends on the following lemma under the condition that Assumption 1 holds.

LEMMA 1. For every s = 0, 1, ..., r-1, the 2m-2r+2 polynomials

$$N_s(x), N_s(x+1), \dots, N_s(x+2m-2r+1) \qquad \left[x \in \left(-(m-r+1), -(m-r) \right) \right] \tag{2.7}$$

are linearly independent.

In order to prove the theorem it is enough to prove Lemma 1 without Assumption 1. The remaining proof is the same as in [6].

3. PROOF OF LEMMA 1

We shall show that the 2m-2r+2 polynomials given by (2.7) are linearly independent. Suppose

$$a_0 N_s(x) + a_1 N_s(x+1) + \dots + a_{2m-2r+1} N_s(x+2m-2r+1) = 0$$

$$\forall x \in (-(m-r+1), -(m-r)). \tag{3.1}$$

Then

$$a_0 N_s^{(\rho)} (-(m-r)) + a_1 N_s^{(\rho)} (-(m-r)+1) + \dots + a_{2m-2r} N_s^{(\rho)} ((m-r)) = 0$$

$$(\rho = s, r, r+1, \dots, 2m-r-1), \tag{3.2}$$

since $N_s^{(\rho)}$ ((m-r)+1)=0 $(\rho=0,1,\ldots,2m-r-1)$. Now (3.2) gives a homogeneous system of 2m-2r+1 equations in 2m-2r+1 unknowns a_0,a_1,\ldots,a_{2m-2r} , whose determinant is given by

$$\Delta = \begin{vmatrix} N_s^{(s)}(-(m-r)) & N_s^{(s)}(-(m-r)+1) & \cdots & N_s^{(s)}((m-r)) \\ N_s^{(r)}(-(m-r)) & N_s^{(r)}(-(m-r)+1) & \cdots & N_s^{(r)}((m-r)) \\ N_s^{(r+1)}(-(m-r)) & N_s^{(r+1)}(-(m-r)+1) & \cdots & N_s^{(r+1)}((m-r)) \\ \vdots & & \vdots & & \vdots \\ N_s^{(2m-r-1)}(-(m-r)) & N_s^{(2m-r-1)}(-(m-r)+1) & \cdots & N_s^{(2m-r-1)}((m-r)) \end{vmatrix}.$$

$$(3.3)$$

Next we show that this determinant is non-zero. For this purpose we multiply Δ by the following determinant:

$$V = \begin{vmatrix} 1 & \lambda_1^{(m-r)} & \lambda_2^{(m-r)} & \cdots & \lambda_{2m-2r}^{(m-r)} \\ 1 & \lambda_1^{(m-r)-1} & \lambda_2^{(m-r)-1} & \cdots & \lambda_{2m-2r}^{(m-r)-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_1^{-(m-r)} & \lambda_2^{-(m-r)} & \cdots & \lambda_{2m-2r}^{-(m-r)} \end{vmatrix}$$

to obtain

where λ_j $(j=1,2,\ldots,2m-2r)$ are the zeros of $\Pi_{2m-1,r}(\lambda)$. Observe that the elements on the first row of (3.4) are all zero except the first element, which is $\Pi_{2m-1,r}(1)$. Hence we have

$$\Delta \cdot V = \Pi_{2m-1,r}(1) \begin{vmatrix} B_1^{(r)}(0) & B_2^{(r)}(0) & \cdots & B_{2m-2r}^{(r)}(0) \\ B_1^{(r+1)}(0) & B_2^{(r+1)}(0) & \cdots & B_{2m-2r}^{(r+1)}(0) \\ \vdots & \vdots & & \vdots \\ B_1^{(2m-r-1)}(0) & B_2^{(2m-r-1)}(0) & \cdots & B_{2m-2r}^{(2m-r-1)}(0) \end{vmatrix}$$
(3.5)

where

$$B_{j}(x) = \sum_{\nu=-\infty}^{\infty} \lambda_{j}^{\nu} N_{s}(x-\nu) \qquad (j=1,2,\ldots,2m-2r).$$
 (3.6)

In Sec. 4 it is shown that the splines $B_j(x)$ $(j=1,2,\ldots,2m-2r)$ are equal to the eigensplines $S_j(x)$ defined by the functional equation (2.5), and that the columns of the determinant on the right of (3.5) are linearly independent vectors in \mathbf{R}^{2m-2r} . Since $\Pi_{2m-1,r}(1)\neq 0$, we conclude that $\Delta \cdot V \neq 0$ and therefore $\Delta \neq 0$. It follows from (3.2) that $a_j = 0$ $(j=1,2,\ldots,2m-2r)$ and then from (3.1) that $a_{2m-2r+1}$ is also zero. Thus the polynomials given by (2.7) are linearly independent.

4. THE SPLINES $B_i(x)$

In proving Lemma 1 we made use of the following

LEMMA 2. Let $B_j(x)$ (j=1,2,...,2m-2r) be defined by (3.6). Then the

vectors

$$\left(B_{i}^{(r)}(0), B_{i}^{(r+1)}(0), \dots, B_{i}^{(2m-r-1)}(0)\right) \in \mathbb{R}^{2m-2r} \tag{4.1}$$

are linearly independent.

In order to prove Lemma 2 we shall first of all show that $B_j(x)$ (j = 1, 2, ..., 2m - 2r) are equal to the eigensplines $S_j(x) \in \mathring{S}_{2m-1,r}$ defined by the functional relation (2.5).

Clearly it follows from (3.6) that $B_i(x)$ satisfies the functional relation

$$B_i(x+1) = \lambda_i B_i(x) \qquad (x \in \mathbb{R}), \tag{4.2}$$

and we have only to show that it is not identically zero. For this purpose let us set, for s = 0, 1, ..., r - 1,

$$\phi_{s}(x;\lambda) \equiv \phi_{2m-1,r,s}(x;\lambda) = \lambda^{(m-r)} \sum_{\nu=-\infty}^{\infty} \lambda^{\nu} N_{s}(x-\nu)$$

$$= \lambda^{(m-r)} \sum_{\nu=-(m-r)}^{(m-r)+1} \lambda^{\nu} N_{s}(x-\nu) \qquad (x \in [0,1]). \tag{4.3}$$

Observe that $\phi_s(x;\lambda)$ is a polynomial in $x \in [0,1]$ of degree 2m-1 when λ is fixed, and

$$\phi_s(x; \lambda_i) = \lambda_i^{(m-r)} B_i(x) \qquad (x \in [0, 1]),$$
 (4.4)

where λ_j $(j=1,2,\ldots,2m-2r)$ are the zeros of $\Pi_{2m-1,r}(\lambda)$. Furthermore,

$$\phi_s^{(s)}(0;\lambda) = \Pi_{2m-1,r}(\lambda)$$
 (4.5)

where the differentiation is with respect to x.

If we set

$$\Pi_{n,r,s}(\lambda) = P\left(\begin{array}{c} s, r+1, \dots, n \\ 0, 1, \dots, n-r \end{array} : \lambda\right) \qquad (s=0,1,\dots,r-1), \tag{4.6}$$

we have

LEMMA 3. For every $s = 0, 1, \ldots, r-1$,

$$\phi_s^{(r)}(0;\lambda) = \frac{r!}{s!} \Pi_{2m-1,r,s}(\lambda) \qquad (\lambda \in \mathbf{R}), \tag{4.7}$$

where $\phi_s(x;\lambda)$ is given by (4.3) and the derivative is with respect to x.

Proof. If λ is not a zero of $\Pi_{2m-1,r}(\lambda)$, it follows from (4.5) that $\phi_s(x;\lambda)$, as a polynomial in x, is not identically zero. It is easy to see from (4.3) that

$$\phi_s^{(\rho)}(1;\lambda) = \phi_s^{(\rho)}(0;\lambda) = 0$$
 $(\rho = 0, 1, ..., r-1, \rho \neq s)$

$$\phi_s^{(\rho)}(1;\lambda) = \lambda \phi_s^{(\rho)}(0;\lambda) \qquad (\rho = s, r, r+1, \dots, 2m-r-1),$$
 (4.8)

so that we can write

$$\phi_s(x;\lambda) = a_0 x^{2m-1} + a_1 x^{2m-2} + \dots + a_{2m-r-1} x^r + (\Pi_{2m-1,r}(\lambda)) \frac{x^s}{s!}. \quad (4.9)$$

Writing (4.9) first followed by (4.8) in increasing ρ , we obtain a homogeneous system of 2m-r+1 equations. Eliminating the unknowns, we see that if λ is not a zero of $\Pi_{2m-1,r}(\lambda)$, then

By continuity we conclude that (4.10) holds for all real λ . It is clear that (4.10) implies (4.7).

Next we establish a useful identity for the polynomials $\Pi_{n,r}(\lambda)$ and $\Pi_{n,r,s}(\lambda)$.

LEMMA 4. Let n, r be positive integers such that $n \ge 2r + 1$. If $0 \le s \le r - 1$, then

$$\Pi_{n,r}(\lambda)\Pi_{n-1,r,s}(\lambda) - \Pi_{n-1,r}(\lambda)\Pi_{n,r,s}(\lambda) = -\Pi_{n,r+1}(\lambda)\Pi_{n-1,r-1,s}(\lambda).$$
(4.11)

he fc	llowing ((n-r-1)	<i>Proof.</i> Consider the following $(n-r+2)\times(n-r+1)$ matrix	r+1) mat	xir.		
$\dots 1-\lambda = 0$		0	:	:	:	:	0
:		÷	$\binom{r}{r-1}$	$\binom{r}{r-1}$ $1-\lambda$	0	:	0
: :		÷	:	$\binom{r+1}{r}$	$\binom{r+1}{r}$ $(1-\lambda)$:	0
					···		
: :		:	÷	:	:	$\binom{n-r}{n-r-1}$	$(1-\lambda)$
: :		÷	:	:	:	$\binom{n-r+1}{n-r-1}$	$\binom{n-r+1}{n-r}$
							•••
:		:	:	:	÷	$\binom{n}{n-r-1}$	$\binom{n}{n-r}$

Let $\mathbf{f}^{(\nu)}$ denote the ν th column of (4.12) $(\nu=1,2,\ldots,n-r)$ and \mathbf{d} denote the last column. Further, let $\mathbf{a}=(1,0,\ldots,0)^T$, $\mathbf{b}=(0,1,0,\ldots,0)^T$ and $\mathbf{c}=(0,0,\ldots,0,1)^T$ be column vectors in \mathbf{R}^{n-r+2} . If we denote by $D(\mathbf{a},\mathbf{b},\mathbf{f})$ $\equiv D(\mathbf{a},\mathbf{b},\mathbf{f}^{(1)},\mathbf{f}^{(2)},\ldots,\mathbf{f}^{(n-r)})$ the determinant whose columns are the vectors $\mathbf{a},\mathbf{b},\mathbf{f}^{(1)},\ldots,\mathbf{f}^{(n-r)}$ in this order, then (4.11) follows easily from the following identity (see [1], p. 7):

$$\begin{vmatrix} D(\mathbf{a}, \mathbf{c}, \mathbf{f}) & D(\mathbf{b}, \mathbf{c}, \mathbf{f}) \\ D(\mathbf{a}, \mathbf{d}, \mathbf{f}) & D(\mathbf{b}, \mathbf{d}, \mathbf{f}) \end{vmatrix} = D(\mathbf{a}, \mathbf{b}, \mathbf{f})D(\mathbf{c}, \mathbf{d}, \mathbf{f}).$$

LEMMA 5. Let $n \ge 2r + 1$. If (r - s) is even, then

$$\Pi_{n,r,s}(\lambda) > 0$$
 for $(-1)^{r+1} \lambda \ge 0$. (4.13)

where $\Pi_{n,r,s}(\lambda)$ is given by (4.6).

Proof. If we expand the determinantal representation of $\Pi_{n,r,s}(\lambda)$ in powers of λ , and take into account that r-s is even, we obtain

$$\Pi_{n,r,s}(\lambda) = a_0 \left[(-1)^{r+1} \lambda \right]^{n-2r+1} + a_1 \left[(-1)^{r+1} \lambda \right]^{n-2r}
+ a_2 \left[(-1)^{r+1} \lambda \right]^{n-2r-1} + \dots + a_{n-2r+1},$$
(4.14)

where

$$a_{0} = P \begin{pmatrix} n-r+1, & n-r+2, & \dots, & \dots, & \dots, & n \\ 0, & 1, & \dots, & s-1, & s+1, & \dots, & r \end{pmatrix},$$

$$a_{n-2r+1} = P \begin{pmatrix} s, & r+1, & r+2, & \dots, & n \\ 0, & 1, & \dots, & \dots, & n-r \end{pmatrix} \text{ and }$$

$$a_{k} = \sum P \begin{pmatrix} s, \nu_{2}, \dots, \nu_{k}, n-r+1, n-r+2, \dots, n \\ 0, 1, \dots, s-1, s, s+1, \dots, r, \nu_{2}, \dots, \nu_{k} \end{pmatrix}$$

$$+ \sum P \begin{pmatrix} \gamma_{1}, \gamma_{2}, \dots, \gamma_{k}, n-r+1, n-r+2, \dots, n \\ 0, 1, \dots, s-1, s+1, \dots, r, \gamma_{1}, \gamma_{2}, \dots, \gamma_{k} \end{pmatrix} \qquad (k=1, 2, \dots, n-2r).$$

$$(4.15)$$

The first summation on the right hand side of the last equation of (4.15) is over all possible choices of $\{\nu_2, \nu_3, \ldots, \nu_k\}$ from $\{r+1, r+2, \ldots, n-r\}$, while the second is over all possible choices of $\{\gamma_1, \gamma_2, \ldots, \gamma_k\}$ from $\{r+1, r+2, \ldots, n-r\}$.

By Lemma 6.2 in [2], $a_k > 0$ for all k = 0, 1, ..., n - 2r + 1. Hence (4.13) follows from (4.14).

REMARK. It was in fact given in [2] that if r-s is even, $\Pi_{n,r,s}(\lambda)$ has real simple zeros of sign $(-1)^r$.

LEMMA 6. Let n, r be positive integers such that $n \ge 2r + 1$. If $0 \le s \le r - 1$ and r - s is odd, the zeros of $\Pi_{n,r,s}(\lambda)$ are real simple zeros; one of which is $(-1)^{r-1}$, and the remaining ones are all of sign $(-1)^r$.

Proof. Without loss of generality we assume that r is even. By Theorem 7.3 in [2] the zeros of $\Pi_{n,r}(\lambda)$ and $\Pi_{n-1,r}(\lambda)$ are positive, simple and interlacing. Let us denote the zeros of $\Pi_{n,r}(\lambda)$ by $\{\lambda_j^{(n)}\}$ $(j=1,2,\ldots,l)$, where l=n-2r+1. Then

$$0 < \lambda_1^{(n)} < \lambda_1^{(n-1)} < \lambda_2^{(n)} < \dots < \lambda_{l-1}^{(n-1)} < \lambda_l^{(n)}. \tag{4.16}$$

From (4.11) we have

$$\Pi_{n-1,r}(\lambda_{i}^{(n)})\Pi_{n,r,s}(\lambda_{i}^{(n)}) = \Pi_{n,r+1}(\lambda_{i}^{(n)})\Pi_{n-1,r-1,s}(\lambda_{i}^{(n)}). \tag{4.17}$$

Since r-1-s is even, it follows from Lemma 5 that the right hand side of (4.17) is positive for $i=1,2,\ldots,l$. Hence

$$\operatorname{sgn} \Pi_{n-1,r}(\lambda_j^{(n)}) = \operatorname{sgn} \Pi_{n,r,s}(\lambda_j^{(n)}), \tag{4.18}$$

and it follows from (4.16) that $\Pi_{n,r,s}(\lambda)$ has exactly one zero in each of the intervals $(\lambda_j^{(n)}, \lambda_{j+1}^{(n)})$ $(j=1,2,\ldots,l-1)$. Since $\Pi_{n,r,s}(\lambda)$ is a reciprocal polynomial (see [2]), the remaining zero must be -1.

Lemma 7. The splines $B_j(x)$ $(j=1,2,\ldots,2m-2r)$ defined in (3.6) are not identically zero.

Proof. In view of (4.4) and (4.7) we have only to show that

$$\Pi_{2m-1,r,s}(\lambda_i) \neq 0$$
 $(j=1,2,\ldots,2m-2r),$ (4.19)

where λ_{j} are the zeros of $\Pi_{2m-1,r}(\lambda)$. From the relation (4.11) we have

$$\Pi_{2m-2,r}(\lambda_j)\Pi_{2m-1,r,s}(\lambda_j) = \Pi_{2m-1,r+1}(\lambda_j)\Pi_{2m-2,r-1,s}(\lambda_j). \tag{4.20}$$

Since λ_j $(j=1,2,\ldots,d)$ are of sign $(-1)^r$, $\Pi_{2m-1,r+1}(\lambda_j)\neq 0$. Also $\Pi_{2m-2,r-1,s}(\lambda_j)\neq 0$ in view of Lemmas 5 and 6, since $\lambda_j\neq (-1)^r$. Hence $\Pi_{2m-1,r,s}(\lambda_j)\neq 0$ $(j=1,2,\ldots,d)$.

Corollary 1. The splines $B_j(x)$ $(j=1,2,\ldots,2m-2r)$ belong to $\mathring{S}_{2m-1,r}$ and are equal to the eigensplines $S_j(x)$ defined by the relation (2.5) up to a constant factor.

Proof of Lemma 2. Define a linear transformation $\Phi: \mathring{\mathbb{S}}_{2m-1,r} \to \mathbb{R}^{2m-2r}$ by

$$\Phi(S(x)) = (S^{(r)}(0), S^{(r+1)}(0), \dots, S^{(2m-r-1)}(0)) \quad \forall S(x) \in \mathcal{S}_{2m-1,r}. \quad (4.21)$$

Clearly Φ is linear, and we shall show that it is non-singular.

For this purpose, let $(a_1, a_2, ..., a_{2m-2r}) \in \mathbb{R}^{2m-2r}$ and define a polynomial in [0,1] by

$$P(x) = \frac{b_0 x^{2m-1}}{(2m-1)!} + \frac{b_1 x^{2m-2}}{(2m-2)!} + \dots + \frac{b_{r-1} x^{2m-r}}{(2m-r)!} + \frac{a_{2m-2r} x^{2m-r-1}}{(2m-r-1)!} + \dots + \frac{a_1 x^r}{r!}.$$
 (4.22)

If we set

$$P^{(\rho)}(1) = 0$$
 $(\rho = 0, 1, \dots, r - 1),$ (4.23)

we obtain a non-homogeneous system of r equations in r unknowns $b_0, b_1, \ldots, b_{r-1}$ which can be uniquely solved in terms of $a_1, a_2, \ldots, a_{2m-2r}$. Thus each vector $(a_1, a_2, \ldots, a_{2m-2r}) \in \mathbf{R}^{2m-2r}$ determines a unique polynomial P(x) satisfying

$$P^{(\rho)}(1) = P^{(\rho)}(0) = 0$$
 $(\rho = 0, 1, \dots, r - 1).$ (4.24)

By the same argument as in [4], P(x) determines a unique spline $S(x) \in \mathring{S}_{2m-1,r}$ such that

$$S(x) = P(x)$$
 $(x \in [0, 1]).$ (4.25)

It follows from (4.22) and (4.25) that $\Phi(S(x)) = (a_1, a_2, \dots, a_{2m-2r})$. Hence Φ is non-singular.

Since the eigensplines in $\mathring{S}_{2m-1,r}$ are linearly independent, it follows

from Corollary 1 that $\Phi(B_i(x)) = (B_i^{(r)}(0), B_i^{(r+1)}(0), \dots, B_i^{(2m-r-1)}(0))$ $(j = 1, 2, \dots, 2m-2r)$ are linearly independent.

REMARK. The fact that the splines $B_j(x)$ $(j=1,2,\ldots,2m-2r)$ defined by (3.6) are not identically zero is essential for us to conclude that they are equal to the eigensplines except for a constant factor. Professor I. J. Schoenberg has kindly pointed out that $B_j(x) \equiv 0$ does not follow from Corollary 1 of [6]. In fact the uniqueness assertion of Corollary 1 in [6] is true only in a certain restricted sense.

I am grateful to Professors I. J. Schoenberg and A. Sharma for their kind help in writing this paper.

REFERENCES

- 1 S. Karlin, Total Positivity, Stanford U. P., 1968.
- S. L. Lee, Cardinal lacunary spline interpolation, Ph.D. thesis, University of Alberta.
- 3 S. L. Lee and A. Sharma, Cardinal lacunary interpolation by g-splines I (The characteristic polynomials). J. Approx. Theory, to be published.
- 4 P. Lipow and I. J. Schoenberg, Cardinal interpolation and spline functions III. Cardinal Hermite interpolation. *Linear Algebra Appl.* 6 (1973), 273–304.
- 5 I. J. Schoenberg, Cardinal spline interpolation, Regional conference series in applied mathematics, SIAM, 1973.
- 6 I. J. Schoenberg and A. Sharma, Cardinal interpolation and spline functions V. The B-splines for Cardinal Hermite interpolation, Linear Algebra Appl. 7 (1973), 1-42.
- 7 A. Sharma and E. G. Strauss, On the irreducibility of a class of EulerFrobenius polynomials, *Can. Math. Bull.*, to be published.

Received 22 October 1974