III - Max & Min de variables aléatoires

Soient n un entier naturel non nul et X_1, \ldots, X_n des variables aléatoires à valeurs réelles, indépendantes et de mêmes lois. On note F la fonction de répartition commune à ces variables aléatoires.

Les calculs suivants sont classiques et il est important de savoir les reproduire.

I - Maximum de variables aléatoires

Théorème 1 - Maximum

Soit $Z_n = \max \{X_1, \dots, X_n\}$. En notant F_n la fonction de répartition de Z_n , alors

$$\forall x \in \mathbb{R}, F_n(x) = F(x)^n.$$

Remarque 1

Soit $x \in \mathbb{R}$. L'événement $Z_n \leqslant x$ est réalisé si et seulement si $\max \{X_1, \ldots, X_n\} \leqslant x$. Alors, toutes les variables aléatoires sont inférieures à x et

$$\begin{split} [Z_n \leqslant x] &= [X_1 \leqslant x] \cap \dots \cap [X_n \leqslant x] \\ \mathbf{P}\left(X_n \leqslant x\right) &= \mathbf{P}\left([X_1 \leqslant x] \cap \dots \cap [X_n \leqslant x]\right) \\ &= \mathbf{P}\left(X_1 \leqslant x\right) \cdots \mathbf{P}\left(X_n \leqslant x\right), \text{ par indépendance} \\ &= \mathbf{P}\left(X_1 \leqslant x\right)^n, \text{ car mêmes lois} \\ F_n(x) &= F(x)^n. \end{split}$$

Proposition 1

* Si X_1, \ldots, X_n sont des variables aléatoires à densité de densité f, alors Z_n est une variable aléatoire de densité f_n

définie par

$$f_n(x) = F'_n(x) = nf(x)F(x)^{n-1}.$$

* Si X_1, \ldots, X_n sont des variables aléatoires discrètes et $X_1(\Omega) = \{x_1, \ldots, x_p\}$, où $x_1 \leqslant \cdots \leqslant x_p$, alors pour tout $i \in [1, p]$, en notant $F(x_0) = F_n(x_0) = 0$,

$$\mathbf{P}(Z_n = x_i) = F_n(x_i) - F_n(x_{i-1}) = F(x_i)^n - F(x_{i-1})^n.$$

Exemple 1 - Maximum de deux dés

Soient X_1 et X_2 les résultats indépendants obtenus par le lancer d'un dé équilibré à 6 faces. On pose $Z = \max\{X_1, X_2\}$. Alors, $Z(\Omega) = [1, 6]$.

Pour tout $k \leq 6$,

$$\mathbf{P}(X_1 \leqslant k) = \sum_{j=1}^k \mathbf{P}(X_1 = j) = \sum_{j=1}^k \frac{1}{6}$$
$$= \frac{k}{6}.$$

De manière analogue, $\mathbf{P}(X_2 = k) = \frac{k}{6}$.

Ainsi,

$$\mathbf{P}(Z \leqslant k) = \mathbf{P}(\max\{X_1, X_2\} \leqslant k)$$

$$= \mathbf{P}([X_1 \leqslant k] \cap [X_2 \leqslant k])$$

$$= \mathbf{P}(X_1 \leqslant k) \mathbf{P}(X_2 \leqslant k), \text{ par indépendance}$$

$$= \left(\frac{k}{6}\right)^2.$$

Alors,

$$\mathbf{P}(Z=k) = \mathbf{P}(Z \leqslant k) - \mathbf{P}(Z \leqslant k-1)$$

$$= \left(\frac{k}{6}\right)^2 - \left(\frac{k-1}{6}\right)^2$$

$$= \frac{k^2 - (k-1)^2}{36}$$

$$= \frac{2k-1}{36}.$$

II - Minimum de variables aléatoires

Théorème 2 - Minimum

Soit $Y_n = \min \{X_1, \dots, X_n\}$. En notant G_n la fonction de répartition de Y_n , alors

$$\forall x \in \mathbb{R}, G_n(x) = 1 - (1 - F(x))^n.$$

Remarque 2

Soit $x \in \mathbb{R}$. L'événement $Y_n \leqslant x$ est réalisé si et seulement si $\min \{X_1, \ldots, X_n\} \leqslant x$. Ainsi, l'une des variables aléatoires doit être inférieure ou égale à x. On pourrait ainsi écrire :

$$\mathbf{P}(Y_n \leqslant x) = \mathbf{P}([X_1 \leqslant x] \cup \dots \cup [X_n \leqslant x]).$$

Cependant, cette réunion n'est pas disjointe! On va donc adopter une autre stratégie en utilisant l'événement complémentaire. En effet, min $\{X_1,\ldots,X_n\}>x$ si et seulement si toutes les variables aléatoires sont strictement supérieures à x:

$$\mathbf{P}(Y_n \leq x) = 1 - \mathbf{P}(Y_n > x)$$

$$= 1 - \mathbf{P}(\min\{X_1, \dots, X_n\} > x)$$

$$= 1 - \mathbf{P}([X_1 > x] \cap \dots \cap [X_n > x])$$

$$= 1 - \mathbf{P}(X_1 > x) \dots \mathbf{P}(X_n > x), \text{ par indépendance}$$

$$= 1 - \mathbf{P}(X_1 > x)^n$$
, car mêmes lois
 $= 1 - (1 - \mathbf{P}(X_1 \le x))^n$, par complémentaire
 $= 1 - (1 - F(x))^n$.

Proposition 2

* Si X_1, \ldots, X_n sont des variables aléatoires à densité de densité f, alors Y_n est une variable aléatoire de densité g_n définie par

$$g_n(x) = G'_n(x) = nf(x)(1 - F(x))^{n-1}$$

* Si X_1, \ldots, X_n sont des variables aléatoires discrètes et $X_1(\Omega) = \{x_1, \ldots, x_p\}$, où $x_1 \leqslant \cdots \leqslant x_p$, alors pour tout $i \in [1, p]$, en notant $F(x_0) = G_n(x_0) = 0$,

$$\mathbf{P}(Y_n = x_i) = G_n(x_i) - G_n(x_{i-1})$$

= $(1 - F(x_{i-1})^n) - (1 - F(x_{i-1})^n)$.

Exemple 2 - Minimum de deux lois géométriques

Soient X_1 une variable aléatoire de loi géométrique de paramètre p_1 et X_2 une variable aléatoire de loi géométrique de paramètre p_2 . On suppose X_1 et X_2 indépendantes. On pose $Y = \min\{X_1, X_2\}$.

D'après la définition des lois géométriques, pour tout $k \in \mathbb{N}^*$,

$$\mathbf{P}(X_1 \le k) = \sum_{j=1}^k \mathbf{P}(X_1 = j) = \sum_{j=1}^k p_1 (1 - p_1)^{j-1}$$
$$= p_1 \sum_{j=0}^{k-1} (1 - p_1)^j = p_1 \times \frac{1 - (1 - p_1)^k}{1 - (1 - p_1)}$$
$$= 1 - (1 - p_1)^k.$$

De manière analogue, $\mathbf{P}(X_2 \leqslant k) = 1 - (1 - p_2)^k$.

Soit $k \in \mathbb{N}^*$. En reprenant l'idée du théorème précédent,

$$\mathbf{P}(Y \le k) = 1 - \mathbf{P}(Y > k) = 1 - \mathbf{P}(\min\{X_1, X_2\} > k)$$

$$= 1 - \mathbf{P}([X_1 > k] \cap [X_2 > k])$$

$$= 1 - \mathbf{P}(X_1 > k) \mathbf{P}(X_2 > k), \text{ par indépendance}$$

$$= 1 - (1 - p_1)^k (1 - p_2)^k.$$

Ainsi,

$$\mathbf{P}(Y = k) = \mathbf{P}(Y \le k) - \mathbf{P}(Y \le k - 1)$$

$$= (1 - p_1)^{k-1} (1 - p_2)^{k-1} - (1 - p_1)^k (1 - p_1)^k$$

$$= [(1 - p_1)(1 - p_2)]^{k-1} (1 - (1 - p_1)(1 - p_2)).$$

Ainsi, Y suit une loi géométrique de paramètre $1-(1-p_1)(1-p_2)$.

III - Généralisons!

Théorème 3 - Statistique d'ordre k

Soit $k \in [1, n]$. On ordonne X_1, \ldots, X_n par ordre croissant et on note U_k la valeur du k^e réel ainsi obtenu. On pose H_k la fonction de répartition de U_k . Alors,

$$\forall x \in \mathbb{R}, H_k(x) = \sum_{i=k}^n \binom{n}{i} F(x)^i (1 - F(x))^{n-i}.$$

Remarque 3

- * Lorsque k = n, on obtient $U_n = \max\{X_1, \dots, X_n\}$.
- * Lorsque k = 1, on obtient $U_1 = \min \{X_1, \dots, X_n\}$.
- * Soit $x \in \mathbb{R}$. Dans le cas général, on note N(x) le nombre de variables aléatoires X_1, \ldots, X_n inférieures ou égales à x. N(x) compte le nombre de succès dans un schéma

de Bernoulli dont la probabilité de succès vaut $\mathbf{P}(X_1 \leq x) = F(x)$. Ainsi, $N(x) \hookrightarrow \mathcal{B}(n, F(x))$. $[U_k \leq x]$ signifie que la k^e plus petite variable aléatoire est inférieure à x, donc que le nombre de variables aléatoires inférieures ou égales à x est supérieur à k:

$$H_k(x) = \mathbf{P}(U_k \le x)$$

$$= \mathbf{P}(N(x) \ge k)$$

$$= \sum_{i=k}^{n} \mathbf{P}(N(x) = i)$$

$$= \sum_{i=k}^{n} \binom{n}{i} F(x)^i (1 - F(x))^{n-i}.$$