STATES OF MATTER

Degrees of Freedom

• Translational freedom is the ability to move from one position in space to another.

• Rotational freedom is the ability to reorient the particle's direction in space.

• *Vibrational freedom* is the ability to oscillate about a particular point in space.

States and Degrees of Freedom

- The molecules in a gas have complete freedom of motion.
 - Their kinetic energy overcomes the attractive forces between the molecules.
- The molecules in a solid are locked in place; they cannot move around.
 - Though they do vibrate, they don't have enough kinetic energy to overcome the attractive forces.
- The molecules in a liquid have limited freedom—they can move around a little within the structure of the liquid.
 - They have enough kinetic energy to overcome some of the attractive forces, but not enough to escape each other.

Phase Diagrams

- Phase diagrams describe the different states and state changes that occur at various temperature/pressure conditions.
- Regions represent states.
- Lines represent state changes.
 - The liquid/gas line is the vapor pressure curve.
 - Both states exist simultaneously.
 - The critical point is the furthest point on the vapor pressure curve.
- The triple point is the temperature/pressure condition where all three states exist simultaneously.
- For most substances, freezing point increases as pressure increases.

Phase Diagrams- detailed

Phase Diagrams

A phase diagram allows for the prediction of the state of matter at any given temperature & pressure.

Key aspects:

- -critical point*
- -normal boiling point
- -triple point

*At the *critical temperature* or higher temperatures, the gas cannot be condensed to a liquid, no matter how high the pressure gets.

Morphic Forms of Ice

Temperature (not to scale)

Supercritical Fluid

- As a liquid is heated in a sealed container, more vapor collects causing the pressure inside the container to rise.
 - and the density of the vapor to increase
 - and the density of the liquid to decrease
- At some temperature, the meniscus between the liquid and vapor disappears and the states commingle to form a supercritical fluid.
- Supercritical fluids have properties of both gas and liquid states.

Practice—Consider the phase diagram of CO₂ shown. What phase(s) is (are) present at each of the following conditions?

- 20.0 °C, 72.9 atm
- -56.7 °C, 5.1 atm
- 10.0 °C, 1.0 atm
- -78.5 °C, 1.0 atm
- 50.0 °C, 80.0 atm

Heat of Fusion

- The amount of heat energy required to melt one mole of the solid is called the **heat of fusion**, ΔH_{fus} .
 - sometimes called the enthalpy of fusion
- always endothermic, therefore ΔH_{fus} is +
- somewhat temperature dependent
- $\Delta H_{\text{crystallization}} = -\Delta H_{\text{fusion}}$
- generally much less than ΔH_{vap}
- $\Delta H_{\text{sublimation}} = \Delta H_{\text{fusion}} + \Delta H_{\text{vaporization}}$

TABLE 11.8 Heats of Fusion of Several Substances			
Liquid	Chemical Formula	Melting Point (°C)	$\Delta H_{ m fus}({ m kJ/mol})$
Water	H ₂ O	0.00	6.02
Rubbing alcohol (isopropyl alcohol)	C_3H_8O	-89.5	5.37
Acetone	C_3H_6O	-94.8	5.69
Diethyl ether	$C_4H_{10}O$	-116.3	7.27

SPECIFIC HEAT re-visited

The quantity of heat required to raise the temperature of one gram of a substance by one degree Celsius (or one Kelvin)

$$q = s \times m \times \Delta T$$

ENTHALPY OF A PHASE CHANGE

The heat energy required to undergo a change in phase occurs at constant temperature and is associated with the average change in distance between molecules.

For water:

$$\Delta H^{o}_{fus} = 335 \text{ J/g or } 6.02 \text{ kJ/mol}$$

 $\Delta H^{o}_{vap} = 2260 \text{ J/g or } 40.7 \text{ kJ/mol}$

Heating Curve of Water

Practice—How much heat is needed to raise the temperature of a 12.0-g benzene sample from -10.0 °C to 25.0 °C?

Given: 12.0 glbenzenecsetg=10.2021230 lOJ; C,
$$T_2 = 5.5$$
 °C), seg 2 = fn5ttlog, seg 3 (Π_3 9.78.55°C; Π_2 =225.00°C) kJ

Conceptual Plan: $q = m_0 C_0 \Delta T$ $glkkJ$ $glkkJ$

HEATING - COOLING CURVE

Calculate the amount of energy required to convert 15.0 g of ice at -0.5 °C to steam at 125.0 °C

Water and the Changes of State

Q. How many kilojoules of energy are needed to change 15.0 g of ice at -5.00°C to steam at 125.0 °C?

The first step is to design a pathway:

```
\begin{split} q_1 &= ms\Delta T \text{ for ice from -5.0 to } 0.0 \text{ °C, the specific heat of ice is } 4.213 \text{ J/g °C} \\ q_2 &= \Delta H_{fus} \text{ for ice to liquid at } 0.0 \text{ °C} \\ q_3 &= ms\Delta T \text{ for liquid } 0.0 \text{ °C to } 100.0 \text{ °C} \\ q_4 &= \Delta H_{vap} \text{ for liquid to steam at } 100.0 \text{ °C} \\ q_5 &= ms\Delta T \text{ for steam } 100.0 \text{ to } 125.0 \text{ °C; the specific heat of steam is } 1.900 \text{ J/g °C} \\ so \ q_T &= q_1 + q_2 + q_3 + q_4 + q_5 \end{split}
```

The next step is to calculate each q:

INTERMOLECULAR FORCES

Why are molecules attracted to each other?

- Intermolecular attractions are due to attractive forces between opposite charges.
 - + ion to ion
 - + end of polar molecule to end of polar molecule
 - *H-bonding especially strong*
 - Even nonpolar molecules will have temporary charges.
- larger the charge = stronger attraction
- longer the distance = weaker attraction
- However, these attractive forces are small relative to the bonding forces between atoms.
 - generally smaller charges
 - generally over much larger distances

INTERMOLECULAR FORCES - types

INTRAMOLECULAR > INTERMOLECULAR

(covalent, ionic)
" between atoms"

(van der Waals, etc) "between molecules"

TYPES

Neutral Molecules:

- 1. London Dispersion
- 2. Dipole-dipole forces
- 3. Hydrogen bonding

Ions:

1. Ion-dipole force

Intermolecular Forces- description

- London Dispersion Forces: Also called Induced dipole forces. An instantaneous dipole is created within the atom or molecule via the instantaneous movement of the electrons around the nucleus. All molecules have LDF.
- ➤ Dipole-Dipole Forces: The attractive force between molecules due to the existence of an overall dipole moment. Polar molecules have d-d forces.
- ➤ Hydrogen Bonding: The attractive force between a highly electronegative atom of one molecule with the hydrogen on another molecule also containing a very electronegative atom. N, O, F are the electronegative atoms.

HYDROGEN BONDING

AN INTERMOLECULAR ATTRACTION THAT EXISTS BETWEEN A <u>HYDROGEN ATOM</u> IN A POLAR BOND AND AN UNSHARED ELECTRON PAIR ON A NEARBY ELECTRONEGATIVE SPECIES, USUALLY

O, F, and N

NOTE: (A special type of dipole-dipole interaction)

- stronger than dipole-dipole and London dispersion forces
- Accounts for water's unusual properties
 - high boiling point
 - solid Less dense than liquid
 - universal solvent
 - high heat capacity

Example: Determine if dipole—dipole attractions occur between CH₂Cl₂ molecules.

 CH_2CI_2 , EN C = 2.5, H = 2.1, CI = 3.0 Given: Are dipole-dipole attractions present? Find: Molecule Lewis **Bond** Conceptual **Formula Structure Polarity Polarity** Plan: Shape **EN Difference Relationships:** Molecules that have dipole-dipole attractions must be polar. CI—C **Solution:** polar molecule; 3.0 - 2.5 = 0.5therefore polar dipole-dipole attractions C—H 2.5 - 2.1 = 0.4nonpolar

Polar Solvents

Lecture examples

List the intermolecular force(s) that pertain to the following compounds.

a) HF

b) SO₃

c) H₂S

d) CO

e) SiCl₄

step1: draw structure

step2: determine dipole moments

step3: identify the IMF

Ion-Dipole Attraction

- In a mixture, ions from an ionic compound are attracted to the dipole of polar molecules.
- The strength of the ion—dipole attraction is one of the main factors that determines the solubility of ionic compounds in water.

FLOWCHART OF INTERMOLECULAR FORCES

Interacting molecules or ions

