

Cours de Mécanique du point matériel

1ère Année

Semestre 1

Filière: SMI/A

Année universitaire: 2020/2021

Introduction

Chapitre I: Outils mathématiques

Chapitre II: Cinématique du point matériel

Chapitre III: Dynamique du point matériel: lois du

mouvement

Chapitre IV: Théorème généraux

Chapitre V: Oscillateurs harmoniques

Introduction

L'objectif de la mécanique classique

appelée aussi mécanique newtonienne

est la description et la prédiction

des mouvements d'objets

observables dans l'univers

La mécanique peut être divisée en trois parties principales :

<u>La cinématique</u> :

étudié les mouvement des corps dans l'espace en fonction du temps indépendamment des causes qui les provoquent

La dynamique :

l'étude de la relation entre le mouvement d'un corps et les causes qui le produisent

La statique:

considérée comme un cas particulier de la dynamique, correspond à l'étude des équilibres et de leur stabilité.

Dans ce cours , on va s'intéresser à : la mécanique du point matériel

Un point matériel:

Objet infiniment petit devant les distances caractéristiques du mouvement

Remarque: Dans de nombreux cas, la géométrie influe

dans le mouvement des corps (rotation).

Dans cette situation, on fait appel à la mécanique du solide.

Chapitre I Outils mathématiques

I.1 Dimensions et unités

La nature d'une grandeur physique se reconnaît par sa dimension.

La dimension d'une grandeur physique G se note par l'expression [G].

Exemple: La dimension de la vitesse est : m/s

La dimension de la vitesse se note : [V]

Toutes les dimensions s'expriment à partir des grandeurs fondamentales :

Grandeur	Unité	Symbole
Masse	Kilogramme	kg
Longueur	Mètre	m
Temps	Seconde	S
Intensité du courant	Ampère	A
Température	Kelvin	K
Quantité de matière	Mole	mol
Intensité lumineuse	Candela	Cd

Système internationales d'unités : SI

Remarques

 Dans une relation entre grandeurs, on remplace chaque terme par la grandeur fondamentale correspondante

L pour une longueur, T pour un temps,

M pour une masse, I pour une intensité électrique...

On obtient ainsi l'équation aux dimensions.

Exemple

$$Vitesse = \frac{dis \tan te}{temps}$$

Dimension d'une vitesse est :

$$[V] = LT^{-1}$$
 Equation aux dimensions.

On ne peut additionner que des termes ayant la même dimension

La dimension du produit de deux grandeurs est le produit des dimensions de chacune des grandeurs:

$$[AB] = [A][B]$$

- La dimension de Aⁿ est égale à [A]ⁿ où n est un nombre sans dimension $[A^n] = [A]^n$
- Pour les fonctions suivantes: sin(u), cos(u), tan(u), ln(u), log(u) et e^u, la grandeur u est sans dimension.
- Une équation doit être homogène

$$xy = z^2 + t \longrightarrow [xy] = [z^2 + t]$$

Exemple:

$$F = m.\gamma \longrightarrow [F] = [m.\gamma] \longrightarrow [F] = [m].\frac{[V]}{[t]} = [m].\frac{[d]}{[t]^2}$$

$$[F] = M.\frac{L}{T^2} = Kg.m/s^2$$

$$F = m.\gamma \longrightarrow [F] = [m].\frac{[M]}{[t]} = [m].\frac{[M]}{[t]^2} = [m].\frac{[M]}{$$

vérification de l'homogénéité de l'expression de la période d'un pendule simple :

$$T = 2\pi \sqrt{\frac{l}{g}}$$
 ou $T = 2\pi \sqrt{\frac{g}{l}}$

La période propre $T \longrightarrow seconde (s)$,

la longueur I du fil, —— mètre (m)

l'intensité du champ de gravitation → (m/s²)

1er cas:

$$T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \left(\frac{m}{m/s^2}\right)^{\frac{1}{2}} = s$$

$$T = 2\pi \sqrt{\frac{g}{l}} = 2\pi \left(\frac{m/s^2}{m}\right)^{\frac{1}{2}} = s^{-1}$$

I.2 Les vecteurs

Définition

→ Un vecteur est un être mathématique associé à un:

- → Il est caractérisé par :
 - 1. Sa direction : le support du vecteur
 - 2. Son sens: orientation du vecteur
 - 3. Son module : grandeur du vecteur 🛕

sens : de A à B

Module: AB

Vecteur unitaire

Un vecteur : \mathcal{U} est unitaire si

$$\bmod ule \ de \ \vec{u} = |\vec{u}| = |\vec{u}| = 1$$

Vecteur unitaire associé à un vecteur quelconque

Soit un vecteur quelconque :

OPPERATIONS SUR LES VECTEURS

On ne change pas les caractéristiques d'un vecteur par <u>translation</u> c'est-àdire sa norme, sa direction, son sens restent les mêmes

$$\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{V}$$

- Deux vecteurs ayant même direction sont dits parallèles.
- \bullet AB = -BA sont deux vecteurs de sens opposés

$$\vec{\mathbf{V}} = \lambda \vec{\mathbf{V}} \qquad \vec{\mathbf{U}}$$
 Si λ négatif
$$||\vec{\mathbf{U}}|| = -\lambda ||\vec{\mathbf{V}}|| \ge 0$$

<u>Si λ positif</u>

Addition de deux vecteurs

1. Méthode du triangle

 \mathbf{U}

3.Relation de Chasles

Pour tout point A, D, et X du plan ou de l'espace, on a l'égalité :

$$\overrightarrow{AD} = \overrightarrow{AX} + \overrightarrow{XD}$$

Base orthonormée directe

$$B = \left\{ \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \right\} \text{ est une base } \underline{\text{orthonormé}} \text{ si:}$$

 $\stackrel{
ightarrow}{i,j}$ et k sont orthogonaux deux à deux

Repère orthonormé direct

Un repère R de l'espace est défini par :

- Un point de l'espace appelé origine : O
- Trois directions orientées x, y et z perpendiculaire deux à deux
 - ***** base orthonormée: $\begin{pmatrix} \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \end{pmatrix}$

Terminologie:

On parle : repère (O,x,y,z) d'origine O

muni de la base : $\begin{pmatrix} \rightarrow & \rightarrow & \rightarrow \\ i, j, k \end{pmatrix}$

Notation:

$$R(O,x,y,z)$$
 Ou $R(O,i,j,k)$

Composantes d'un vecteur

On considère un système d'axes tri-orthogonal

muni d'une base orthonormée

thonormée
$$\left\{ \begin{array}{c} \uparrow & \rightarrow & \rightarrow \\ i, j, k \end{array} \right\}$$
 $\left\{ \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\}$

Les Composantes du vecteur OM

dans la base $\left\{ \stackrel{\rightarrow}{i}, \stackrel{\rightarrow}{j}, \stackrel{\rightarrow}{k} \right\}$ Sont : \mathcal{X} ; \mathcal{Y} et \mathcal{Z}

On écrit:

$$\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

Le module de \overrightarrow{OM} est:

$$\left\|\overrightarrow{OM}\right\| = \sqrt{x^2 + y^2 + z^2}$$

I.3 Produit scalaire

Définition

Le produit scalaire de deux vecteurs A et Best un scalaire défini par:

$$\overrightarrow{\mathbf{A}} \bullet \overrightarrow{\mathbf{B}} = \left\| \overrightarrow{\mathbf{A}} \right\| \times \left\| \overrightarrow{\mathbf{B}} \right\| \times \cos \theta = \overrightarrow{\mathbf{B}} \bullet \overrightarrow{\mathbf{A}}$$

On a:

Or:

$$\cos\theta = \frac{OH}{\|\vec{B}\|} \longrightarrow OH = \|\vec{B}\| \cdot \cos\theta$$

$$\vec{A} \cdot \vec{B} = \|\vec{A}\| \times \|\vec{B}\| \times \cos\theta$$

$$\rightarrow$$

$$\overrightarrow{A} \bullet \overrightarrow{B} = \begin{vmatrix} \overrightarrow{A} \\ \overrightarrow{A} \end{vmatrix} \times OH$$

Produits scalaires élémentaires

Les vecteurs unitaires orthogonaux: $\begin{Bmatrix} \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \end{Bmatrix}$

$$\{i,j,k\}$$
(base cartésienne)

Satisfont: $\rightarrow \rightarrow \rightarrow \rightarrow$

Expression analytique du produits scalaires

Soient:
$$\vec{A} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$

 $\vec{B} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$
 $\vec{A} \cdot \vec{B} = x_1 x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$

Composantes d'un vecteur

Soit:
$$\overrightarrow{A} = x\overrightarrow{i} + y \overrightarrow{j} + z\overrightarrow{k}$$
 $\longrightarrow x = \overrightarrow{A}.\overrightarrow{i}$ $y = \overrightarrow{A}.\overrightarrow{j}$ $z = \overrightarrow{A}.\overrightarrow{k}$

$$\overrightarrow{A} = (\overrightarrow{A}.\overrightarrow{i})\overrightarrow{i} + (\overrightarrow{A}.\overrightarrow{j})\overrightarrow{j} + (\overrightarrow{A}.\overrightarrow{k})\overrightarrow{k}$$

Propriétés du produits scalaires :

$$(\vec{a}.\vec{b} = \vec{b}.\vec{a} \quad \text{Commutativit\'e}$$

$$(\lambda + \mu).\vec{a} = \lambda.\vec{a} + \mu.\vec{a}$$

$$\lambda.(\mu\vec{a}) = (\lambda\mu).\vec{a}$$

$$\lambda.(\vec{a} + \vec{b}) = \lambda.\vec{a} + \lambda.\vec{b}$$

$$\vec{a}.\vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$

$$\vec{a}.\vec{a} = \vec{a}^2$$

$$\vec{a}.\vec{a} = \vec{a}^2$$

Distributivité

1.4 Produit vectoriel

Le produit vectoriel de A et B $not\acute{e}:A \wedge B$ est un vecteur :

$$\overline{C}$$
 tel que :

- **♦** Sa direction : $\Delta \perp plan(\overrightarrow{A} \ et \ \overrightarrow{B})$ **△ ♦** Son sens : $(\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C})$ direct
- Son module:

$$\left\| \overrightarrow{\mathbf{C}} \right\| = \left\| \overrightarrow{A} \wedge \overrightarrow{B} \right\| = \left\| \overrightarrow{A} \right\| \times \left\| \overrightarrow{B} \right\| \sin \theta$$

<u>Remarques</u>

Le module du produit vectoriel de $A\ et\ B$

est la surface du parallélogramme formé par ses vecteurs.

$$\left\| \overrightarrow{A} \wedge \overrightarrow{B} \right\| = \left\| \overrightarrow{C} \right\|$$

Produits vectoriel élémentaire

Les vecteurs unitaires orthogonaux:
$$\left\{ \stackrel{\rightarrow}{i}, \stackrel{\rightarrow}{j}, \stackrel{\rightarrow}{k} \right\}$$
 base cartésienne

$$\overrightarrow{i} \wedge \overrightarrow{j} = \overrightarrow{k}; \ \overrightarrow{j} \wedge \overrightarrow{k} = \overrightarrow{i}; \ \overrightarrow{k} \wedge \overrightarrow{i} = \overrightarrow{j}$$

Expression analytique du produit vectoriel

Soient:
$$\vec{A} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$
 $\vec{B} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$

$$\overrightarrow{\mathbf{A}} \wedge \overrightarrow{\mathbf{B}} = egin{bmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \ x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 \end{bmatrix} = \overrightarrow{i} igg| egin{matrix} y_1 & z_1 \ y_2 & z_2 \end{bmatrix}$$

$$+ (-1) \overrightarrow{j} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \overrightarrow{k} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \overrightarrow{k} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$$

$$= \overrightarrow{i}(y_{1}z_{2} - z_{1}y_{2}) + \overrightarrow{j}(z_{1}x_{2} - z_{2}x_{1}) + \overrightarrow{k}(x_{1}y_{2} - y_{1}x_{2})$$

$$+ \overrightarrow{k}(x_{1}y_{2} - y_{1}x_{2})$$
23

Propriétés du produits vectoriel :

$$\vec{a} \wedge \vec{b} = -\vec{b} \wedge \vec{a}$$

$$\vec{a} \wedge \vec{a} = \vec{0}$$

$$\vec{a} \wedge (\vec{b} + \vec{c}) = \vec{a} \wedge \vec{b} + \vec{a} \wedge \vec{c}$$

Trièdre directe

les vecteurs unitaires de la base cartésienne satisfont:

$$\overrightarrow{i} \wedge \overrightarrow{j} = \overrightarrow{k}; \ \overrightarrow{j} \wedge \overrightarrow{k} = \overrightarrow{i}; \ \overrightarrow{k} \wedge \overrightarrow{i} = \overrightarrow{j}$$

I.5 Produit mixte

Le produit mixte de trois vecteurs $\stackrel{
ightharpoonup}{A};\stackrel{
ightharpoonup}{B}et\stackrel{
ightharpoonup}{C}$

est un scalaire défini par:

$$\left(\overrightarrow{A} \wedge \overrightarrow{B} \right) \bullet \overrightarrow{C} = \left(\overrightarrow{C} \wedge \overrightarrow{A} \right) \bullet \overrightarrow{B} = \left(\overrightarrow{B} \wedge \overrightarrow{C} \right) \bullet \overrightarrow{A}$$

Remarque:

le module du produit mixte de trois vecteurs est le volume du parallélépipède formé par les trois vecteurs

I.6 Dérivée d'un vecteur

Soient: $\begin{cases} V & \text{un vecteur} \\ \text{et } R(0,x,y,z) \text{ un repère muni d'une base } : (i,j,k) \\ & \longrightarrow \end{cases}$

$$\overrightarrow{V}(t) = \overrightarrow{V_x(t)i} + \overrightarrow{V_y(t)j} + \overrightarrow{V_z(t)k}$$

La dérivée de $\overrightarrow{V}(t)$

$$\left(\frac{\overrightarrow{dV}}{dt}\right)_{\mathbb{R}} = \left(\frac{dV_{x}}{dt}\right)^{\rightarrow} i + \left(\frac{dV_{y}}{dt}\right)^{\rightarrow} j + \left(\frac{dV_{z}}{dt}\right)^{\rightarrow} k$$

Remarque

Soit:
$$\overrightarrow{u} = \frac{\overrightarrow{V}}{\|\overrightarrow{V}\|} = \frac{\overrightarrow{V}}{V}$$
 Vecteur unitaire associé à \overrightarrow{V} (t)

Soit:
$$\vec{u} = \frac{\vec{V}}{\|\vec{V}\|} = \frac{\vec{V}}{V}$$
 Vecteur unitaire associé à $\vec{V}(t)$

$$\vec{V} = \vec{V} \cdot \vec{u} \cdot \vec{v} \cdot \vec{v$$

dérivée du module par rapport à t Pr FAIZ

dérivée du sens par rapport à t et par rapport

Dérivée d'un vecteur unitaire tournant

Remarque:

$$\left\| \frac{d\vec{u}(\theta)}{d\theta} \right\| = (-\sin\theta)^2 + (\cos\theta)^2 = 1$$

$$\vec{u} \cdot \frac{d\vec{u}(\theta)}{d\theta}, \vec{k}$$

$$\vec{u} \cdot \frac{d\vec{u}(\theta)}{d\theta} = 0$$
est une base orth directe

$$\left(\begin{matrix} \stackrel{\rightarrow}{u}, \stackrel{\rightarrow}{du(\theta)}, \stackrel{\rightarrow}{k} \\ \stackrel{\rightarrow}{d\theta} \end{matrix}\right)$$

est une base orthonormée directe

I.8 Différentielle d'une fonction à plusieurs variables

Soit une fonction à N variables:

Définition

$$f(x_1, x_2, \dots, x_N)$$

La différentielle de f est :

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_N} dx_N$$

$$\frac{\partial f}{\partial x_i}$$

 $\frac{\mathcal{O}\!f}{\widehat{\mathcal{O}}\!x_i} \quad \text{la dérivée normale de } \textit{f} \text{ par rapport à xi en supposant que} \\ \text{tout les } x_j \ \left(j \neq i\right) \quad \text{sont constants.}$

la dérivée partielle de par rapport à xi

Exemple:

$$f(x, y, z) = x^2 y^3 z^4$$

La différentielle de f est : $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$

$$\frac{\partial f}{\partial x} = 2xy^3z^4$$

$$\frac{\partial f}{\partial y} = 3x^2y^2z^2$$

la dérivée partielle de f par rapport à 🗶

la dérivée partielle de f par rapport à V

la dérivée partielle de f par rapport à Z

Donc:

$$df = 2xy^3z^4dx + 3x^2y^2z^4dy + 4x^2y^3z^3dz$$

Résolution des équations différentielles

Les lois physiques sont formulées mathématiquement en termes d'équations différentielles ; loi fondamentale de la dynamique, équation des mouvements Harmoniques, etc...

1) La solution générale de l'équation différentielle linéaire à coefficients constants :

$$\mathbf{a} \mathbf{y}' + \mathbf{b} \mathbf{y} = \mathbf{0}$$
 est $\mathbf{y} = \mathbf{C} \mathbf{e}^{rt}$

- Où r = -a/b est la solution de l'équation caractéristique ar + b = 0 et C est une constante.
- 2) La solution générale de l'équation (de l'oscillateur harmonique). :

$$y''+\omega^2y=0$$
 est $y=A\sin(\omega t)+B\cos(\omega t)$

où A et B sont deux constantes

3) La solution de l'équation du second ordre homogène à coefficients constants

$$ay"+by'+cy=0$$

On distingue trois cas, suivant la valeur du discriminant : $\Delta = b^2 - 4ac$

a) Si
$$\Delta > 0$$
; la solution générale est : $y = A e^1 + B e^2$

où A et B sont des constantes et

$$\mathbf{r}_1 = \frac{-\mathbf{b} + \sqrt{\Delta}}{2\mathbf{a}} \quad \mathbf{et} \ \mathbf{r}_2 = \frac{-\mathbf{b} - \sqrt{\Delta}}{2\mathbf{a}}$$

b) Si
$$\Delta > 0$$
; la solution générale est : $\mathbf{y} = \mathbf{e^{rt}}(\mathbf{At} + \mathbf{B})$ $\mathbf{r} = \frac{-\mathbf{b}}{2\mathbf{a}}$

c) Si D < 0; la solution générale est :

$$y = e^{\alpha t} (A \sin(\beta t) + B \cos(\beta t))$$

4) La solution de l'équation du second ordre homogène à coefficients constants avec Second membre :

$$ay$$
"+ by '+ $cy = f(t)$

La méthode de résolution d'une équation différentielle linéaire à coefficients constants avec second membre est la suivante :

a) Recherche de la solution générale y_g de l'équation sans second membre (ESSM) associée par utilisation de l'équation caractéristique (EC).

$$ay$$
"+ by '+ $cy = 0$

b) Recherche d'une solution particulière y_p de l'équation avec second membre.

$$ay$$
"+ by '+ $cy = f(t)$

c) Utilisation de la formule $y = y_g + y_p$