Forma Diagonal

Definição 8 Seja $T \in L(V)$. Dizemos que T é diagonalizável se existe uma base de V formada de autovetores.

Nos próximos quatro exemplos veremos a diagonalização ou não de certos operadores lineares.

Exemplo 27 Seja
$$T \in L(\mathbb{R}^2)$$
; $T(x,y) = (x,2y)$.

É diagonalizável pois o conjunto $\{(1,0),(0,1)\}$ é uma base de \mathbb{R}^2 formada de autovetores.

Como fica a matriz de T em relação à essa base?

$$T(1,0) = (1,0) = 1(1,0) + 0(0,1)$$

e

$$T(0,1) = (0,2) = 0(1,0) + 2(0,1).$$

Portanto,
$$T$$
] = $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

Exemplo 28 Seja
$$T \in L(\mathbb{R}^3)$$
; $T(x, y, z) = (7y - 6z, -x + 4y, 2y - 2z)$.

Obtemos os autovalores 1,-1,2 e autovetores associados (9,3,2),(5,1,2) e (4,2,1), respectivamente que formam uma base de \mathbb{R}^3 e portanto T é diagonalizável. Qual a matriz de T em relação à essa base?

$$T(9,3,2) = (9,3,2) = 1(9,3,2) + 0(5,1,2) + 0(4,2,1),$$

$$T(5,1,2) = (-5,-1,-2) = 0(9,3,2) + (-1)(5,1,2) + 0(4,2,1)$$
 e

$$T(4,2,1) = (8,4,2) = 0(9,3,2) + 0(5,1,2) + 2(4,2,1).$$

Portanto,
$$T$$
] = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Exemplo 29 Seja
$$T \in L(\mathbb{R}^3)$$
; $T(x,y,z) = (x-3y+3z,3x-5y+3z,6x-6y+4z)$.

Obtemos os autovalores -2 e 4 e autovetores associados (1,1,0) e (1,0,-1) a -2 e (1,1,2) a 4 que formam uma base de \mathbb{R}^3 e portanto T é diagonalizável e a matriz de T em relação à essa base é

$$T] = \left[\begin{array}{rrr} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{array} \right].$$

Exemplo 30 Seja $T \in L(\mathbb{R}^3)$; T(x, y, z) = (-3x + y - z, -7x + 5y - z, -6x + 6y - 2z).

 $\operatorname{Ent ilde{ao}}, T$ não é diagonalizável pois não possui uma base de autovetores.

Teorema 10 Sejam $T \in L(V)$, $e \ dimV = n$. Suponha que T possua n autovalores distintos $\lambda_1, \ldots, \lambda_n$. Então T é diagonalizável.

Prova. Sejam v_1, \ldots, v_n autovetores não nulos associados aos autovalores distintos $\lambda_1, \ldots, \lambda_n$.

Do teorema 3 sabemos que eles são linearmente independentes. Logo base, pois dim V = n.

Então T é diagonalizável. Como temos:

$$Tv_1 = \lambda_1 v_1 = \lambda_1 v_1 + 0v_2 + \dots + 0v_n$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$Tv_n = \lambda_n v_n = 0v_1 + 0v_2 + \dots + \lambda_n v_n$$

segue que

$$T] = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

Definição 9 Chamamos de multiplicidade algébrica de um autovalor a quantidade de vezes que ele aparece como raiz do polinômio característico. Chamamos de multiplicidade geométrica de um autovalor λ a dimensão do auto-espaço $V(\lambda)$.

Sugestão 10 Verifique no exemplo 6 as multiplicidades geométricas.

Teorema 11 O operador linear $T \in L(V)$ é diagonalizável se, e só se,

- i) o polinômio característico de T tem todas as raízes em K;
- ii) a multiplicidade algébrica de cada autovalor λ_i é igual à multiplicidade geométrica de λ_i .

Prova Vamos fazer a demonstração para um caso particular.

 (\Rightarrow) Vamos inicialmente supor que $\{v_1, v_2, u_1, u_2, u_3, w\}$ seja uma base de autovetores de V onde $\{v_1, v_2\}$, $\{u_1, u_2, u_3\}$ e $\{w\}$ são os autovetores associados aos

autovalores distintos λ_1, λ_2 e λ_3 respectivamente. A matriz de T em relação a essa base é

$$T] = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_3 \end{bmatrix}$$

Logo $p_T(\lambda) = (\lambda_1 - \lambda)^2 (\lambda_2 - \lambda)^3 \lambda_3$ cujas raízes estão em K. Mostremos agora que $V(\lambda_1) = [v_1, v_2]; \ V(\lambda_2) = [u_1, u_2, u_3] \ e \ V(\lambda_3) = [w].$ É claro que $[v_1, v_2] \subset V(\lambda_1); \ [u_1, u_2, u_3] \subset V(\lambda_2) \ e \ [w] \subset V(\lambda_3).$ Seja $v \in V(\lambda_1)$. Então $Tv = \lambda_1 v$ e por outro lado temos:

$$v = a_1v_1 + a_2v_2 + b_1u_1 + b_2u_2 + b_3u_3 + cw \quad (I)$$

e multiplicando λ_1 por (I) obtemos

$$\lambda_1 v = a_1 \lambda_1 v_1 + a_2 \lambda_1 v_2 + b_1 \lambda_1 u_1 + b_2 \lambda_1 u_2 + b_3 \lambda_1 u_3 + c \lambda_1 w \quad (II)$$

Aplicando T em (I) obtemos

$$\lambda_1 v = a_1 T v_1 + a_2 T v_2 + b_1 T u_1 + b_2 T u_2 + b_3 T u_3 + c T w$$

e portanto,

$$\lambda_1 v = a_1 \lambda_1 v_1 + a_2 \lambda_1 v_2 + b_1 \lambda_2 u_1 + b_2 \lambda_2 u_2 + b_3 \lambda_2 u_3 + c \lambda_3 w \quad (III)$$

Igualando (II) e (III) obtemos $b_1\lambda_1 = b_1\lambda_2$; $b_2\lambda_1 = b_2\lambda_2$; $b_3\lambda_1 = b_3\lambda_2$ e $c\lambda_1 = c\lambda_3$, donde segue que $b_1 = b_2 = b_3 = c = 0$ e portanto $v = a_1v_1 + a_2v_2 \in [v_1, v_2]$. Portanto, $V(\lambda_1) = [v_1, v_2]$ e $dimV(\lambda_1) = 2$.

Logo, temos multiplicidade algébrica = multiplicidade geométrica.

Analogamente concluimos que $V(\lambda_2) = [u_1, u_2, u_3]$, donde $\dim V(\lambda_2) = 3$ e $V(\lambda_3) = [w]$ donde $\dim V(\lambda_3) = 1$.

(\Leftarrow) Agora, assumamos por hipótese, que o polinômio característico de T possa ser fatorado sobre K. Suponhamos $p(\lambda) = (\lambda_1 - \lambda)^2 (\lambda_2 - \lambda)^3 (\lambda_3 - \lambda)$ onde $\lambda_1 \neq \lambda_2 \neq \lambda_3$ e $2 + 3 + 1 = \text{grau } p(\lambda) = \dim V$. Também $\dim V(\lambda_1) = 2$; $\dim V(\lambda_2) = 3$ e $\dim V(\lambda_3) = 1$.

Seja $H = V(\lambda_1) + V(\lambda_2) + V(\lambda_3)$. Mostremos que

$$V(\lambda_1) \cap V(\lambda_2) = V(\lambda_1) \cap V(\lambda_3) = V(\lambda_2) \cap V(\lambda_3) = \{0\}.$$

Com efeito, seja $u \in V(\lambda_i) \cap V(\lambda_j)$. Então $Tu = \lambda_i u = \lambda_j u$ e dai $(\lambda_i - \lambda_j)u = 0$ e portanto u = 0 desde que $\lambda_i \neq \lambda_j$. Assim, $V(\lambda_2) \cap V(\lambda_1) = \{0\}$ e $V(\lambda_3) \cap (V(\lambda_1) + V(\lambda_2)) = \{0\}$, então $H = V(\lambda_1) \oplus V(\lambda_2) \oplus V(\lambda_3)$.

Sendo H um subespaço de V e de mesma dimensão como V segue que H=V. Então $\beta=\{v_1,v_2,u_1,u_2,u_3,w\}$, onde $\{v_1,v_2\}$ é base de $V(\lambda_1)$, $\{u_1,u_2,u_3\}$ é base de $V(\lambda_2)$ e $\{w\}$ é base de $V(\lambda_3)$ será base de V formada por autovetores. Logo T é diagonalizável.

Proposição 9 Sejam $T \in L(V)$ e $m(\lambda) = \lambda - \lambda_1$ o polinômio minimal de T. Então $V = Ker(T - \lambda_1 I)$.

Prova. Como, $m(\lambda) = \lambda - \lambda_1$ então $m(T) = T - \lambda_1 I = 0$. Logo, para $v \in V$ temos $m(T)v = (T - \lambda_1 I)v = 0$.

Proposição 10 Sejam $T \in L(V)$ e $m(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) = m_1(\lambda)m_2(\lambda)$ o polinômio minimal de T. Então;

i)
$$V = Ker(\lambda_1 I - T) \oplus Ker(\lambda_2 I - T)$$
.

ii) O polinômio minimal da restrição de T a $Ker(\lambda_i I - T)$ é $m_i(\lambda)$, i = 1, 2.

Prova. Provemos inicialmente o ítem i). Como $m_1(\lambda)$ e $m_2(\lambda)$ são primos entre si, existem polinômios $r(\lambda)$ e $s(\lambda)$ tais que: $r(\lambda)m_1(\lambda) + s(\lambda)m_2(\lambda) = 1$. Portanto, para o operador T,

$$r(T)m_1(T) + s(T)m_2(T) = I.(*)$$

Seja $v \in V$, então aplicando (*) temos

$$r(T)m_1(T)v + s(T)m_2(T)v = v.$$

Mas, $m_2(T)r(T)m_1(T)v = r(T)m_1(T)m_2(T)v = r(T)0v = 0$.

Logo, $r(T)m_1(T) \in Ker(\lambda_2 I - T)$.

Semelhantemente, $s(T)m_2(T) \in Ker(\lambda_1 I - T)$.

Portanto, $V = Ker(\lambda_1 I - T) + Ker(\lambda_2 I - T)$.

Vamos agora provar que é de maneira única.

Suponha $v=u+w=u_1+w_1;\ u,u_1\in Ker(\lambda_1I-T)$ e $w,w_1\in Ker(\lambda_2I-T)$. Temos

$$r(T)m_1(T)(v) = r(T)m_1(T)(u) + r(T)m_1(T)(w) = r(T)m_1(T)(w)$$

e

$$r(T)m_1(T)(v) = r(T)m_1(T)(u_1) + r(T)m_1(T)(w_1) = r(T)m_1(T)(w_1)$$

Aplicando (*) em $w \in w_1$ obtemos

$$w = r(T)m_1(T)(w) + s(T)m_2(T)(w) = r(T)m_1(T)(w)$$

e

$$w_1 = r(T)m_1(T)(w_1) + s(T)m_2(T)(w_1) = r(T)m_1(T)(w_1).$$

Portanto,

$$w = r(T)m_1(T)w = r(T)m_1(T)v = r(T)m_1(T)w_1 = w_1.$$

Analogamente, $u=u_1$. Portanto, $V=Ker(\lambda_1I-T)\oplus Ker(\lambda_2I-T)$. Passemos agora ao ítem ii). Sejam $\hat{m}_1(\lambda)$ o polinômio minimal da restrição T_1 de T ao $Ker(\lambda_1I-T)$ e $\hat{m}_2(\lambda)$ o polinômio minimal da restrição T_2 de T ao $Ker(\lambda_2I-T)$. Temos, $m_1(T_1)(u)=(\lambda_1I-T_1)(u)=\lambda_1u-T_1u=\lambda_1u-Tu=(\lambda_1I-T)u=0$, para todo $u\in Ker(\lambda_1I-T)$. Logo, $m_1(T_1)=0$. Assim, também, $m_2(T_2)=0$. Portanto, $\hat{m}_1(\lambda)|m_1(\lambda)$ e $\hat{m}_2(\lambda)|m_2(\lambda)$. Logo, $\hat{m}_1(\lambda)=m_1(\lambda)=(\lambda_1-\lambda)$ e $\hat{m}_2(\lambda)=m_2(\lambda)=(\lambda_2-\lambda)$.

Teorema 12 Sejam $T \in L(V)$ e $m(\lambda) = (\lambda_1 - \lambda) \cdots (\lambda_r - \lambda) = m_1(\lambda) \cdots m_r(\lambda)$ o polinômio minimal de T. Então;

- i) $V = Ker(\lambda_1 I T) \oplus \cdots \oplus Ker(\lambda_r I T)$.
- ii) O polinômio minimal da restrição de T a $Ker(\lambda_j I T)$ é $m_j(\lambda)$, $j = 1, \ldots, r$.

Prova. Prova-se por indução em r, usando as proposições anteriores.

Teorema 13 Sejam $T \in L(V)$ e $m(\lambda) = (\lambda_1 - \lambda) \cdots (\lambda_r - \lambda)$ o polinômio minimal de T. Então T é diagonalizável.

Prova. Pelo teorema anterior temos $V = Ker(\lambda_1 I - T) \oplus \cdots \oplus Ker(\lambda_r I - T)$. Seja $w \in Ker(\lambda_i I - T)$. Então $(\lambda_i I - T)(w) = 0$ e daí $T(w) = \lambda_i w$. Portanto todo vetor de $Ker(\lambda_i I - T)$ é autovetor associado a λ_i . Como a união de bases de $Ker(\lambda_1 I - T), \ldots, Ker(\lambda_r I - T)$ é base de V, segue que temos uma base de autovetores para V e portanto T é diagonalizável.

Teorema 14 Seja T um operador linear diagonalizável e sejam $\lambda_1, \ldots, \lambda_r$ autovalores distintos de T. Então o polinômio minimal de T é o polinômio $m(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_r - \lambda)$.

Prova. Precisamos apenas mostrar que m(T) = 0. Se v é um autovetor, então um dos operadores $\lambda_1 I - T, \lambda_2 I - T, \ldots, \lambda_r I - T$ leva v no zero. Portanto $m(T)v = (\lambda_1 I - T)(\lambda_2 I - T)\cdots, (\lambda_r I - T)v = 0$ para todo autovetor v e como existe uma base de autovetores de T, segue que m(T) = 0. Logo é o minimal.

Exemplo 31 Verificar se $T \in L(\mathbb{R}^3)$ é diagonalizável onde

$$T(x, y, z) = (7y - 6z, -x + 4y, 2y - 2z).$$

Temos

$$A = T]_C = \left[\begin{array}{rrr} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{array} \right],$$

onde C denota a base canônica de \mathbb{R}^3 e

$$p(\lambda) = det \begin{bmatrix} -\lambda & 7 & -6 \\ -1 & 4 - \lambda & 0 \\ 0 & 2 & -2 - \lambda \end{bmatrix} = (\lambda - 1)(\lambda + 1)(\lambda - 2).$$

Logo, $m(\lambda) = (\lambda - 1)(\lambda + 1)(\lambda - 2)$. Portanto esse operador é diagonalizável. Assim existe uma base $\beta = \{v_1, v_2, v_3\}$ de autovetores de T de \mathbb{R}^3 tal que

$$T]_{\beta} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{array} \right],$$

a saber $v_1 = (9,3,2)$ associado ao autovalor $\lambda = 1$, $v_2 = (5,1,2)$ associado ao autovalor $\lambda = -1$ e $v_3 = (4,2,1)$ associado ao autovalor $\lambda = 2$.

Exemplo 32 Verificar se é diagonalizável o operador $T\in L(\mathbb{R}^4)$ cuja matriz em relação á base canônica é

$$A = \left[\begin{array}{cccc} 3 & \boxed{1} & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{array} \right].$$

Temos

$$p(\lambda) = det \begin{bmatrix} 3 - \lambda & 1 & 0 & 0 \\ 0 & 3 - \lambda & 0 & 0 \\ 0 & 0 & 3 - \lambda & 0 \\ 0 & 0 & 0 & 4 - \lambda \end{bmatrix} = (3 - \lambda)^3 (4 - \lambda).$$

Logo, $m(\lambda) = (3 - \lambda)^2 (4 - \lambda)$. Portanto esse operador não é diagonalizável.

Exemplo 33 Sejam $A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$. Ver se elas são diagonalizáveis encaradas como matrizes sobre $\mathbb R$ e também sobre $\mathbb C$.

Para o caso real temos:

$$p_A(\lambda) = \det \begin{bmatrix} 3-\lambda & -1 \\ 1 & 1-\lambda \end{bmatrix} = (3-\lambda)(1-\lambda) + 1 = (\lambda-2)^2.$$

Então $m_A(\lambda) = (\lambda - 2)^2$ ou $m_A(\lambda) = (\lambda - 2)$. Agora,

$$m_A(A) = A - 2I = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}.$$

Logo, $m_A(\lambda) = (\lambda - 2)^2$ e A não é diagonalizável em \mathbb{R} . Vejamos de outra forma.

Para
$$\lambda = 2$$
 temos $\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2 \begin{bmatrix} x \\ y \end{bmatrix}$.

Então

$$\begin{cases} 3x - y = 2x \\ x + y = 2y \end{cases}$$

Portanto, V(2) = [(1,1)] e dimV(2) = 1 = multiplicidade geométrica $\neq 2$ = multiplicidade algébrica. Ainda,

$$p_B(\lambda) = \det \begin{bmatrix} 1 - \lambda & -1 \\ 2 & -1 - \lambda \end{bmatrix} = (1 - \lambda)(-1 - \lambda) + 2 = \lambda^2 + 1.$$
Portants as

Portanto não tem autovalor em IR e daí B não é diagonalizável em IR.

Para o caso complexo temos:

$$p_A(\lambda) = (\lambda - 2)^2$$
 e $m_A(\lambda) = (\lambda - 2)^2$.

Ainda V(2) = [(1,1)] e portanto A não é diagonalizável em \mathbb{C} .

Também, $p_B(\lambda) = \lambda^2 + 1 = (\lambda + i)(\lambda - i) = m_B(\lambda)$ e portanto B é diagonalizável em C.

De outra forma, para
$$\lambda = i$$
 temos $\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = i \begin{bmatrix} x \\ y \end{bmatrix}$.

Então
$$\begin{cases} (1-i)x - y = 0 \\ 2x - (i-1)y = 0 \end{cases}$$
 ou equivalentemente $(1-i)x + y = 0$.

Portanto, $V(i) = \{(x, (1-i)x)\} = [(1, 1-i)] \in dim V(i) = 1$, donde segue que multiplicidade geométrica = multiplicidade algébrica.

Para
$$\lambda = -i$$
 temos $\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -i \begin{bmatrix} x \\ y \end{bmatrix}$.

Então $\begin{cases} (1+i)x - y = 0 \\ 2x + (i-1)y = 0 \end{cases}$ ou equivalentemente (-1-i)x + y = 0.

Portanto, $V(-i) = \{(x, (1+i)x)\} = [(1, 1+i)]$ e dim V(-i) = 1, donde segue que multiplicidade geométrica = multiplicidade algébrica.

Sugestão 11 Dada a matriz
$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$
 encontrar uma matriz inversível

P tal que P-1AP é diagonal.

Sugestão 12 Para cada matriz $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$ e $C = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$ encontrar, quando possível, matrizes inversíveis P_1 , P_2 e P_3 tais que $P_1^{-1}AP_1$, $P_2^{-1}BP_2$ e $P_3^{-1}CP_3$ são diagonais.

Exemplo 34 Suponhamos que A seja uma matriz 2×2 com elementos reais e simétrica ($A^t = A$). Então A é semelhante sobre \mathbb{R} a uma matriz diagonal.

Suponhamos $A=\begin{bmatrix} a_{11} & a \\ a & a_{22} \end{bmatrix}$. Então, o polinômio característico é $p(\lambda)=\lambda^2+(-a_{11}-a_{22})\lambda+a_{11}a_{22}-a^2$. Se A=0 ou $A=\begin{bmatrix} a_{11} & 0 \\ 0 & a_{11} \end{bmatrix}$ o resultado é imediato. Suponhamos A diferente dessas duas. Calculando o discriminante de $p(\lambda)$ obtemos: $\Delta=a_{11}^2+2a_{11}a_{22}+a_{22}^2-4(a_{11}a_{22}-a^2)=(a_{11}-a_{22})^2+4a^2$. Portanto $\Delta>0$ e assim $p(\lambda)$ tem duas raizes reais e distintas o que implica que A tem dois autovalores reais e distintos e portanto A é diagonalizável.

Exemplo 35 Seja N uma matriz complexa 2×2 tal que $N^2 = 0$. Então N = 0 ou N é semelhante sobre $\mathbb C$ a $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

Suponhamos $N \neq 0$. Então existe $v \neq 0$ tal que $Nv \neq 0$ e $N^2v = 0$, onde $N: \mathbb{C}^2 \to \mathbb{C}^2$. Afirmamos que $\beta = \{v, Nv\}$ é base de \mathbb{C}^2 . Mostremos inicialmente que β é linearmente independente.

Com efeito, se av + bNv = 0 então aplicando N obtemos $aNv + bN^2v = 0$ ou equivalentemente aNv = 0 e portanto a = 0 donde segue que bNv = 0 e consequentemente b = 0 e portanto β é de fato linearmente independente.

Agora, como $dim_{\mathbb{C}}\mathbb{C}^2 = 2$, segue que é base e como Nv = 0v + 1Nv e N(Nv) = 0 = 0v + 0Nv temos imediatamente que $N]_{\beta} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

Exemplo 36 Seja $T \in L(\mathbb{R}^4)$ representado em relação á base ordenada canônica pela matriz

 $\begin{bmatrix}
 0 & 0 & 0 & 0 \\
 a & 0 & 0 & 0 \\
 0 & b & 0 & 0 \\
 0 & 0 & c & 0
 \end{bmatrix}.$

Em que condições sobre a,b e c T é diagonalizável?

Temos $p(\lambda) = \lambda^4$. Para ser diagonalizável, $m(\lambda) = \lambda$ e daí deveríamos ter m(T) = 0. Logo, a = b = c = 0.

Exemplo 37 Toda matriz A, tal que $A^2 = A$, é semelhante a uma matriz diagonal.

Inicialmente observemos que as únicas matrizes diagonais D tais que $D^2 = D$ são matrizes em que os elementos da diagonal são 0 ou 1.

Se A=0 ou A=I o resultado é imediato. Suponhamos então que $A\neq 0$ e $A\neq I$. Notemos que $q(x)=x^2-x$ é um polinômio que anula a matriz A, desde que $q(A)=A^2-A=0$. Assim, os possíveis polinômios minimais para A são da forma m(x)=x+a ou $m(x)=x^2+bx+c$ para alguns a, b e c.

Mostremos agora, que não podemos ter m(x) = x + a. De fato, se m(x) = x + a, como m(A) = 0 então deveríamos ter que A + aI = 0 e portanto A = -aI donde seguiria que A = 0 ou A = I o que é um absurdo.

Suponhamos então que $m(x) = x^2 + bx + c$. Logo, como m(A) = 0 então deveríamos ter que $A^2 + bA + cI = 0$ e como $A^2 = A$, então teríamos (b+1)A + cI = 0. Logo, b+1=0, senão teríamos $A = \frac{-c}{b+1}I$ e portanto A = 0 ou A = I o que é um absurdo, e daí b = -1 e c = 0 donde segue que $m(x) = x^2 - x$ e portanto A é diagonalizável.

Sugestão 13 Mostre que se A é uma matriz tal que $A^2 = A$, então o polinômio característico de A é da forma $p_A(\lambda) = \lambda^m (\lambda - 1)^p$ onde m + p é a ordem da matriz A.

Proposição 11 Seja $T \in L(V)$ diagonalizável e W um subespaço T-invariante. Então T_W é diagonalizável.

Prova. Temos que T é diagonalizável. Então o polinômio mínimo de T se fatora em fatores lineares distintos. Pela Proposição \P , o polinômio minimal de T_W divide o de T. E daí também se fatora em fatores lineares distintos. Logo T_W é diagonalizável.

Exemplo 38 Responda se é verdadeira ou falsa a afirmação abaixo: Se a matriz triangular A for semelhante a uma matriz diagonal, então A já é diagonal.

Falso. Vejamos um contra-exemplo. Seja $A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$.

Então p(x) = (1-x)(2-x) = m(x) e portanto A é diagonalizável e

$$B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] = P^{-1}AP.$$

Sugestão 14 Seja

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

uma matriz sobre o corpo real IR. Encontre condições necessárias e suficientes em a,b e c, para que A seja diagonalizável.

Forma Triangular

Vamos iniciar esta seção com algumas propriedades de matriz triangular:

- a) Se nenhum elemento da diagonal principal é 0, então A é inversível.
- b) Se um elemento da diagonal principal é 0, então A é não inversível.
- c) Os autovalores de A são exatamente os elementos de sua diagonal principal.
- d) Se A é uma matriz quadrada de ordem n e todos os elementos de sua diagonal principal são nulos, então $A^n = 0$.
- e) det A = produto dos elementos de sua diagonal principal (No determinante consideramos sempre um produto de n elementos tal que um e só um elemento provém de cada linha e um e só um elemento provém de cada coluna).

Definição 10 O operador linear T se diz triangulável se existir uma base em relação à qual T seja representado por uma matriz triangular.

Teorema 15 Se T é triangulável, então o polinômio característico de T tem a forma: $p(x) = (x - c_1)^{d_1} \cdots (x - c_r)^{d_r}$, $c_i \in K$. E então o polinômio minimal de T tem a forma: $m(x) = (x - c_1)^{e_1} \cdots (x - c_r)^{e_r}$, $c_i \in K$ e $e_i \leq d_i$, $i = 1, \ldots, r$.

Prova: Como T é triangulável então é semelhante a uma matriz triangular B. Como matrizes semelhantes possuem o mesmo polinômio característico, então det(T-xI)=det(B-xI) e das propriedades de matriz triangular sabemos que o det(B-xI) é igual ao produto dos elementos da diagonal da matriz (B-xI). Logo, $p(x)=(x-c_1)^{d_1}\cdots(x-c_r)^{d_r},\ c_i\in K$. Como o polinômio minimal divide o polinômio característico, então $m(x)=(x-c_1)^{e_1}\cdots(x-c_r)^{e_r},\ c_i\in K$ e $e_i\leq d_i,$ $i=1,\ldots,r$.

Teorema 16 Seja $T \in L(V)$ com todos os seus autovalores distintos c_1, \ldots, c_r em K e seu polinômio característico $p(x) = (x - c_1)^{d_1} \cdots (x - c_r)^{d_r}$. Então T é triangulável.

Prova: A demonstração será feita por indução na dimensão de V. Faremos inicialmente para os casos de dimensão 1,2 e depois para n. dim V = 1.

Neste caso, cada representação matricial de T é uma matriz 1×1 , que é triangular.

dimV = 2

Neste caso temos $p(x) = (x - c_1)(x - c_2), c_1 \neq c_2$ ou $p(x) = (x - c_1)^2$.

Se $p(x) = (x - c_1)(x - c_2)$, $c_1 \neq c_2$, então T é diagonalizável e daí triangulável. Se $p(x) = (x - c_1)^2$, então temos dois candidatos a polinômio minimal: $m_1(x) = (x - c_1)$ e $m_2(x) = p(x)$.

Se for $m_1(x)$, então é diagonalizável e daí triangular.

Suponhamos agora que seja o $m_2(x)$. Existe $v \neq 0 \in V$ tal que $Tv = c_1v$. Seja $\{v, v_1\}$ é base de V. Suponhamos agora que seja o $m_2(x)$. Existe $v \neq 0 \in V$ tal que $Tv = c_1v$. Seja $\{v, v_1\}$ é base de V.

Temos $\bar{T}: \bar{V} \to \bar{V}$ dada por $\bar{T}(u+[v]) = Tu+[v]$. Vejamos qual a matriz de \bar{T} em relação a esta base. Temos $\bar{T}(v_1+[v]) = Tv_1+[v]$. Um representante seria: $Tv_1+av=bv+dv_1+av=dv_1+(b+a)v$. Logo $\bar{T}(v_1+[v])=dv_1+[v]=d(v_1+[v])$ e portanto $\bar{T}]=[d]$. Assim, d é autovalor de \bar{T} e daí $\bar{p}(x)=(x-d)$. Como $\bar{p}[p]$, então $d=c_1$ e assim, $\bar{T}(v_1+[v])=c_1v_1+[v]$ e portanto, $Tv_1=c_1v_1+\alpha v$. Logo,

$$T] = \left[\begin{array}{cc} c_1 & \alpha \\ 0 & c_1 \end{array} \right]$$

e T é triangular.

Agora, suponha que dimV=n>2 e que o teorema vale para espaços de dimensão menor do que n.

Como o polinômio característico de T se fatora em polinômios lineares, T tem pelo menos um autovalor e portanto pelo menos um autovetor não nulo v, digamos , $Tv=a_{11}v$.

Seja W=[v]. Então W é T-invariante. Faça $\bar{V}=V/W$. Então $\dim \bar{V}=n-1$. Seja $\bar{T}(u+W)=Tu+W$. Sabemos que $\bar{p}|p$ e também $\bar{m}|m$. Assim \bar{V} e \bar{T} satisfazem as hipóteses do teorema.

Portanto, por indução, existe uma base $\{v_2 + W, \dots, v_n + W\}$ de \bar{V} tal que $\bar{T}(v_2 + W) = a_{22}(v_2 + W), \ \bar{T}(v_3 + W) = a_{32}(v_2 + W) + a_{33}(v_3 + W), \ \dots, \ \bar{T}(v_n + W) = a_{n2}(v_2 + W) + \dots + a_{nn}(v_n + W).$

Então $\{v,v_2,\ldots,v_n\}$ é base de V. Como $\bar{T}(v_2+W)=a_{22}(v_2+W)$, temos $\bar{T}(v_2+W)-a_{22}(v_2+W)=0$ e portanto $Tv_2+W-a_{22}+W=0$ e daí $Tv_2-a_{22}v_2\in W$.

Logo, $Tv_2 - a_{22}v_2 = a_{12}v$, ou equivalentemente, $Tv_2 = a_{12}v + a_{22}v_2$.

Analogamente, para $i=3,\ldots,n,\ Tv_i-a_{2i}v_2-\cdots-a_{ii}v_i\in W,\ logo,\ Tv_i=a_{1i}v+a_{2i}v_2+\cdots+a_{ii}v_i.$ Assim, $Tv=a_{11}v,\ Tv_2=a_{12}v+a_{22}v_2,\ \ldots,\ Tv_n=a_{1n}v+a_{2n}v_2+\cdots+a_{nn}v_n$ e portanto a matriz de T nessa base é triangular. E olhando para essa matriz triangular, os elementos da diagonal a_{11},\ldots,a_{nn} , são os autovalores c_i repetido d_i vezes.

Corolário 1 Se $T \in L(V)$ tem todos os autovalores em K, então T é triangulável.

Exemplo 39 Verifique se
$$A = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$$
 é triangulável.

Temos $p_A(x) = (x-4)(x+2)^2$ e portanto A tem todos os seus autovalores em IR, donde segue que A é triangulável.

Temos $m_A(x) = (x-4)(x+2)^2$ e portanto A não é diagonalizável.

Para o autovalor x = 4, v = (0, 1, 1) é autovetor.

Consideremos W = [(0,1,1)] e $\tilde{V} = \mathbb{R}^3/W$. Então $\dim \tilde{V} = 2$.

Afirmamos que $\{(1,1,0)+W,(0,1,0)+W\}$ é base de \bar{V} .

Precisamos só mostrar que são linearmente independentes.

Com efeito, se a((1,1,0)+W)+b((0,1,0)+W)=W então a(1,1,0)+W+b(0,1,0) + W = W e portanto (a, a + b, 0) + W = W.

Assim, (a, a + b, 0) = x(0, 1, 1) ou equivalentemente, a = 0, a + b = x e 0 = x.

Logo, a = b = 0 e daí é linearmente independente.

Consideremos então a seguinte base do \mathbb{R}^3 , $\{(0,1,1),(1,1,0),(0,1,0)\}$. Então,

$$A(0,1,1) = (0,4,4) = 4(0,1,1) + 0(1,1,0) + 0(0,1,0)$$

 $A(1,1,0) = (-2,-2,0) = 0(0,1,1) - 2(1,1,0) + 0(0,1,0)$
 $A(0,1,0) = (1,5,6) = 6(0,1,1) + 1(1,1,0) - 2(0,1,0)$ e logo

$$B = \left[\begin{array}{ccc} 4 & 0 & 6 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{array} \right].$$

Se
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
, $P^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ -1 & 1 & -1 \end{bmatrix}$ e daí obtemos $P^{-1}AP = B$.

Sugestão 15 Achar uma base triangular para as aplicações de C2 representadas pelas matrizes $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 1 & i \\ 1 & i \end{bmatrix}$ $e \ C = \begin{bmatrix} 1 & 2 \\ i & i \end{bmatrix}$.