# Examining The Relationship Between Characteristics of a Diamond and Its Price

# University of Toronto JSC370 Final Project

# Chia You (Benson) Chou

# 4/23/2023

# Contents

| Methods             |      |  |  |  |  |      |  |      |      |  |      |  |  |  |
|---------------------|------|--|--|--|--|------|--|------|------|--|------|--|--|--|
| Data Collection     | <br> |  |  |  |  | <br> |  | <br> | <br> |  | <br> |  |  |  |
| Data Cleaning       | <br> |  |  |  |  | <br> |  | <br> | <br> |  | <br> |  |  |  |
| Tools Used          | <br> |  |  |  |  | <br> |  |      |      |  |      |  |  |  |
| Results             |      |  |  |  |  |      |  |      |      |  |      |  |  |  |
| Summary Visuals     | <br> |  |  |  |  | <br> |  |      | <br> |  | <br> |  |  |  |
| Modelling           | <br> |  |  |  |  | <br> |  | <br> | <br> |  | <br> |  |  |  |
| Machine Learning Mo |      |  |  |  |  |      |  |      |      |  |      |  |  |  |

# Introduction

Growing up, it is common to hear my parent's talking about how much carat a diamond is and then proceeding to say it must be really expensive if they hear a high number. However, there are many more characteristics, such as the quality of the cut, color, clarity, table, and depth that can be taken account into when evaluating a diamond's value.

For this report, I will be using data scraped from Brilliant Earth. Brilliant Earth is a well-known jewelry company that focuses on ethically sourced and sustainable diamonds, gemstones, and metals. They offer a wide range of engagement rings, wedding bands, and other jewelry that are not only stunning but also socially conscious. On their website, they display a table of available diamonds and their characteristics such as price, shape, carat, quality of the cut, color, clarity, depth, and table. (More details of variables will be discussed in next section)

## Research Question

In this report, I would like to investige this question: What other qualities, besides from carat, influences a diamond's value the most? Do they have a positive or negative influence on a diamond's value?

## Methods

#### **Data Collection**

As there are no API or directly downloadable data from Brilliant Earth, I scraped the data in Python, using Python's Selenium Webdriver to get the dynamic table's Json object, and using the Json and pandas packages to coerce this data into a data frame.

Table 1: Diamond Table (Pre-cleaning)

The table shown below is an example of how the dataset looks like.

rat cut color clarity

| price | shape | carat | cut         | color | clarity | table | depth |
|-------|-------|-------|-------------|-------|---------|-------|-------|
| 11675 | Round | 1.25  | Super Ideal | G     | VS2     | 58.0  | 62.8  |
| 1355  | Round | 0.50  | Super Ideal | I     | SI2     | 60.0  | 59.6  |
| 7965  | Round | 1.02  | Super Ideal | D     | VS2     | 56.0  | 62.6  |
| 4255  | Oval  | 1.00  | Ideal       | Ι     | SI2     | 63.0  | 62.0  |
| 5345  | Oval  | 1.50  | Ideal       | Н     | SI2     | 61.5  | 69.1  |

Table 2: Data Descriptions

| Variables | Descriptions                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------|
| price     | Diamond's Price in CAD                                                                          |
| shape     | Shape of the diamond                                                                            |
| carat     | Weight of the diamond                                                                           |
| cut       | Quality of the cut                                                                              |
| color     | Diamond colour, from J (worst) to D (best)                                                      |
| clarity   | A measurement of how clear the diamond is (SI2(worst), SI1, VS2, VS1, VVS2, VVS1, IF, FL(best)) |
| table     | Width of top of diamond relative to widest point                                                |
| depth     | Total depth percentage of the diamond                                                           |

(More information on table and depth can be found here)

(Other): 184

NA

NA

### **Data Cleaning**

The data collected seems to be well-formatted and the columns are already selected to be variables of interest during the web scraping process. However, we still need to clean the data for: missing data, duplicates, factorization, and unit. With the is.na() function, we know that there are no missing data. I removed the duplicate observations ith the distinct() function. I replaced cut values 'Super Ideal' into 'Premium' for simplicity and avoid confusion. Lastly, I used as.factor() to factorize the character variables.

We can see that there are potential outliers from price, carat, table, and depth. Let's check if these observations were a mistake or not.

color table depth price shape clarity carat cut 20 SI1 67.7 19805 Radiant 2.01Premium Η 69 52 Round VVS2 62.2 23795 1.50 Premium D 60 F 853 **Princess** SI2 73.0 750 0.31Fair 87 SI2 8766 1095 Princess 0.40Good  $\mathbf{E}$ 68 86.0

Table 3: Potential Outliers

We can see that even though these observations do not seem to be recorded as a mistake or placeholder for NA values, from the histogram below, these outliers affects our analysis and limits the conclusion we can make. Thus, I will remove the diamonds with prices that are considered as outliers (1.5IQR + Q3 and Q1 - 1.5IQR).

price shape carat cut color clarity table depth Min. : 555.0Round :7574 Min. :0.250 Fair: 23 D: 599 SI1:3205 Min. :49.00 Min. :49.70 1st Qu.: 830.0 Princess: 505 1st Qu.:0.300 Good: 414 E:2515 SI2:2387 1st Qu.:57.00 1st Qu.:61.40  $Pear:\,495$ Median: 925.0Median: 0.310 Very Good:2042 F:2017 VS2:1426 Median :58.00 Median :62.40 Mean: 926.6Mean :0.327 Mean :62.95 Oval: 477 Ideal :2891 G:1695VS1:979Mean:59.19 3rd Qu.:1035.0 Emerald: 294 3rd Qu.:0.340 Premium:4374 H:1019VVS2:8633rd Qu.:60.00 3rd Qu.:63.20 Max. :1135.0 Marquise: 215 Max. :0.610 NA I:1068 VVS1: 711 Max. :87.00 Max. :86.00

J: 831

(Other): 173

NA

NA

NA

Table 4: Summary Table (Post Cleaning)



Originally, we have 9793 diamond observations, and after filtering, we reduced to 9744 diamond observations

# Tools Used

Data wrangling were completed with tidyverse and dplyr. Figures were created with ggplot2, interactive visuals were created using plotly. Tables were created with kable and kableExtra. Packages used for modelling include rpart, randomForest, xgboost, and caret.

# Results

# **Summary Visuals**

## Multi-variable Relationships

First, I will create boxplots between price and categorical variables such as cut, shape, color, and clarity.



We can see that for cut and clarity, while the price range for each level are about the same, which indicates a variety of options for each quality level, the median price increases as the quality gets better. However, we see an inverse relationship between color quality and price. For prices in each diamond shape, we don't see a clear pattern. However, we do see that for the more commonly seen shape (Round), it has a wider price range with a median of about 850-900 CAD.

Next, I will create a general graph to show the relationship between carat and price for each cut and shape (Refer to website for interactive graph). We also see a similar trend among different groups, which is as carat increases, the expected diamond price also increases.

(Refer to website for interactive graph) Next, I will create scatterplot over price vs table and depth. We see that despite having diamonds with all ranges of table and depth at each price level, table does not seem to have a positive relationship with price, while the depth percentage has a positive relationship.

#### Modelling

#### Linear Model

I tried fitting a basic linear model with all the variables as price is a continuous variable that can be predicted by a linear model.

This model has an 59.5713399% which means that only about 59.5713399% of the variance of our predictors is explained by the variance of price. Notice that the insignificant variables are: shapeCushion, shapeEmerald, shapePrincess, shapeRadiant, cutGood, cutVery Good based on their p-values from Wald Z-test:

|                        | Estimate | p-values |
|------------------------|----------|----------|
| (Intercept)            | -351.730 | 0.000    |
| shapeCushion           | 21.054   | 0.655    |
| shape Emerald          | 40.939   | 0.382    |
| shapeHeart             | 131.739  | 0.009    |
| ${\it shape Marquise}$ | 195.142  | 0.000    |
| shapeOval              | 179.276  | 0.000    |
| shapePear              | 162.285  | 0.001    |

#### (continued)

|                             | Estimate | p-values |
|-----------------------------|----------|----------|
| shapePrincess               | -27.554  | 0.558    |
| shapeRadiant                | 17.635   | 0.717    |
| shapeRound                  | 120.421  | 0.010    |
| carat                       | 2211.366 | 0.000    |
| ${ m cutGood}$              | 18.947   | 0.278    |
| cutVery Good                | 31.450   | 0.069    |
| $\operatorname{cutIdeal}$   | 55.980   | 0.001    |
| $\operatorname{cutPremium}$ | 75.387   | 0.000    |
| colorE                      | -25.095  | 0.000    |
| $\operatorname{colorF}$     | -27.285  | 0.000    |
| $\operatorname{color} G$    | -61.578  | 0.000    |
| $\operatorname{color} H$    | -105.997 | 0.000    |
| colorI                      | -186.469 | 0.000    |
| $\operatorname{colorJ}$     | -251.133 | 0.000    |
| claritySI1                  | 66.619   | 0.000    |
| clarityVS2                  | 158.542  | 0.000    |
| clarityVS1                  | 182.876  | 0.000    |
| clarityVVS2                 | 197.169  | 0.000    |
| clarityVVS1                 | 213.211  | 0.000    |
| clarityIF                   | 237.615  | 0.000    |
| table                       | 1.869    | 0.000    |
| depth                       | 3.918    | 0.000    |

With that in mind, I attempted to see if removing these insignificant factors will yield a better  $\mathbb{R}^2$ .

This new model yields an  $\mathbb{R}^2$  of 0.48632, which is lower than the original model. Thus, we would want to take the full model rather than the reduced model.

#### Interpretation of Values

The estimates above represent the change in prices of a diamond for a unit increase in the continuous variables or for being a certain level of a categorical variable.

The estimated diamond price is about -351.7 CAD when all other variables are 0. Only looking at the variables with significant p-values, we see the most influential variable being carat, with an increase of 2211.366 CAD for each unit increase in carat. We also see that with the diamond having a clarity of IF (the second highest clarity), it increases the price by about 237.615 CAD. Surprisingly, our model predicts that no matter which color a diamond belongs to, it decreases the price.

## Machine Learning Models

Next, I will try machine learning models such as Decision Tree, Random Forest, and XGBoost to further explore which variables are important when predicting a diamond price. RMSE will be used to compare model performance.

#### **Decision Tree**

I fit a decision tree to see what qualities can really separate the price level of a diamond. In order for the graph to be comprehensible and fit for the general cases, I set the max tree depth to 15, and pruned the tree at the minimum x-error, which has a cp-value of 0.0003427563.



Within each tree node, we have the predicted price and the percentage of that quality with the predicted price.

Table 6: Decision Tree Variable Importance

|                      | Variable Importance |
|----------------------|---------------------|
| carat                | 30955853            |
| clarity              | 29165407            |
| color                | 18320085            |
| shape                | 10631316            |
| depth                | 7315823             |
| table                | 5929165             |
| $\operatorname{cut}$ | 4109143             |

#### Random Forest

As the model attempts different value combinations, I didn't further specify more hyperparameters.

Table 7: Random Forest Variable Importance

|              | Variable Importance |
|--------------|---------------------|
| carat        | 32794727            |
| clarity      | 31350791            |
| color        | 19501288            |
| depth        | 13182664            |
| table        | 7559503             |
| shape<br>cut | 7498196<br>5227533  |

#### XGBoost

XGBoost tunes the max depth, number of estimators, and learning rate for the optimal performance. The final model has the parameters: nrounds = 300, max\_depth = 5, eta = 0.1

Table 8: XGBoost Variable Importance

|               | Overall   |
|---------------|-----------|
| carat         | 0.3729774 |
| colorJ        | 0.0674470 |
| table         | 0.0614418 |
| depth         | 0.0577699 |
| clarityVS2    | 0.0547177 |
| colorI        | 0.0458095 |
| claritySI1    | 0.0422782 |
| clarityVS1    | 0.0408084 |
| clarityVVS2   | 0.0303189 |
| shapeRound    | 0.0291391 |
| cutPremium    | 0.0271444 |
| clarityVVS1   | 0.0269797 |
| clarityIF     | 0.0176089 |
| colorH        | 0.0166674 |
| shapeOval     | 0.0146190 |
| cutVery Good  | 0.0141197 |
| shapePear     | 0.0126653 |
| colorE        | 0.0123657 |
| shapePrincess | 0.0121605 |
| colorG        | 0.0102483 |
| colorF        | 0.0088806 |
| cutIdeal      | 0.0073893 |
| shapeMarquise | 0.0060945 |
| shapeEmerald  | 0.0039101 |
| cutGood       | 0.0035219 |
| shapeCushion  | 0.0017272 |
| shapeRadiant  | 0.0008084 |
| shapeHeart    | 0.0003813 |
| clarityFL     | 0.0000000 |

To find out which model performed the best, we will look for the model with the lowest RMSE. As we see from the table below, XGBoost yielded the best results out of the three.

Table 9: RMSE for Each Model

| Model         | RMSE     |
|---------------|----------|
| Decision Tree | 72.93466 |
| Random Forest | 71.68729 |
| XGBoost       | 69.91932 |

As the RMSE's are still within reasonable range, we can take the variable importance outputs and the results

from the linear model for a clear idea of the relationship between price and our predictors.

# Conclusion

From our initial multi-variable relationship visuals, attributes such as cut, color, shape, clarity, carat, and depth correlate with the pricing of the diamond. In the linear model, we see that in addition to carat, attributes like: color, clarity, shape, cut, table, and depth all have factor levels that are significant. We weren't able to remove the insignificant factor levels as it decreases our  $R^2$ . Despite these insignificant variables and factors, things matched our expectations as carat positively influences the price the most while the other attributes, except color, also increases the price. This can be further supported by the output from our machine learning models. We noticed that carat, color, and clarity played a big role in predicting a diamond price as it appeared in the top 3 of all 3 models. In conclusion, we found that asides from carat, the next positively influential quality is clarity. And not surprisingly, the value of a diamond increases as its qualities get better.

#### Limitations & Future Directions

There are several limitations of this study. One would be how the data was obtained. As the table on the website was a dynamic table, the parsing process was made more difficult as it required to loop through different paths to request the data. This may caused us to miss some data that could be crucial to this project. Next, Brilliant Earth may not represent the whole diamond selling industry. Thus, there may be ways they set prices for their diamonds that are different to other vendors.

One thing that I want to further investigate that was not available was introducing the time when the prices are decided. I believe that time may also play a role when deciding the diamond prices (especially when there are high or low demands).