Measure Theory: Exercises (not for credit)

Josephine Evans

November 22, 2021

Question 1. Use the inequality $(x-y)^2 \ge 0$ to show that $xy \le (x^2+y^2)/2$.

Answer: $(x-y)^2 \ge 0$ turns into $x^2 + y^2 - 2xy \ge 0$ so rearranging gives the inequality.

Question 2. Draw a graph of the function $t = s^{p-1}$. Let L be the are underneath the graph and above the s-axis and U be the area above the graph and to the right of the t-axis. Compute the areas of $L \cap \{s : 0 \le s \le x\}$ and $U \cap \{t : 0 \le t \le x\}$ and draw these two sets on your picture. Use this to show that $xy \le x^p/p + y^q/q$.

Answer: It is hard to type an answer to this but the area under the graph will have size x^p/p and the area above the graph will have size y^q/q and the box of width x and height y is contained inside the union of the two areas.

Question 3. Let (E, \mathcal{E}, μ) be a finite measure space and let $p_1 \leq p_2$ show that if $f \in L^{p_2}$ then $f \in L^{p_1}$.

Answer: You can do this using either Holder or Jensen's inequality. The method via Jensen is

$$\left(\int_{E} |f(x)|^{p_{1}} \mu(\mathrm{d}x)\right)^{p_{2}/p_{1}} = \mu(E)^{p_{1}/p_{2}} \left(\frac{1}{\mu(E)} \int_{E} |f(x)|^{p_{1}} \mu(\mathrm{d}x)\right)^{p_{2}/p_{1}}.$$

Then the measure $\mu/\mu(E)$ gives the space E measure 1, and $x \mapsto x^{p_2/p_1}$ is a convex function so we can apply Jensen to get

$$\mu(E)^{p_1/p_2} \left(\frac{1}{\mu(E)} \int_E |f(x)|^{p_1} \mu(\mathrm{d}x) \right)^{p_2/p_1} \le \mu(E)^{p_1/p_2} \frac{1}{\mu(E)} \int |f(x)|^{p_1 * p_2/p_1} \mu(\mathrm{d}x) = \mu(E)^{p_1/p_2 - 1} ||f||_{p_2}^{p_2}.$$

Putting this all together we have

$$||f||_{p_1} \le \mu(E)^{p_1/p_2-1} ||f||_{p_2}.$$

Question 4. Let X be a random variable. Prove the identity

$$\mathbb{E}(|X|^p) = \int_0^\infty px^{p-1} \mathbb{P}(|X| > x) dx$$

and hence show that if for all q > p we have $\mathbb{P}(|X| > x) = O(x^{-q})$ as $x \to \infty$ then $X \in L^p$. (Recall that X is a measurable function from a probability space to \mathbb{R} , \mathbb{P} is the measure on this space and \mathbb{E} is the notation for integrating with respect to \mathbb{P} .

Answer:

$$\begin{split} \mathbb{E}(|X|^p) &= \int_{\Omega} |x|^p \mathbb{P}(\mathrm{d}x) = \int_{\Omega} \left(\int_{0}^{|x|} p y^{p-1} \mathrm{d}y \right) \mathbb{P}(\mathrm{d}x) \\ &= \int_{\Omega} \int_{0}^{\infty} p y^{p-1} \mathbf{1}_{y \leq |x|} \mathrm{d}y \mathbb{P}(\mathrm{d}x) \\ &= \int_{0}^{\infty} \int_{\Omega} \mathbf{1}_{y \leq |x|} \mathbb{P}(\mathrm{d}x) p y^{p-1} \mathrm{d}y \\ &= \int_{0}^{\infty} \mathbb{P}(|X| \geq y) p y^{p-1} \mathrm{d}y. \end{split}$$

Now if $\mathbb{P}(|X| > x) = O(x^{-q})$ for every q > p then there will exist a C such that $\mathbb{P}(|X| > x) \le Cx^{-p-1}$ then

$$\mathbb{P}(|X|^p) \le \int_1^\infty \min\{py^{p-1}, Cy^{-2}\} dy < \infty.$$

2