CSP Chapter 4: Communication

Andrzej Filinski DIKU

Extreme Multiprogramming 8 December 13, 2013

Overview

- Today: channel-based communication.
 - No new concepts; just using existing primitives in a particularly structured way.
 - ► Multi-party participatory *events* → two-party *communications*
 - ▶ In many CSP applications, *all* events are communications.
- Still useful to understand communication a special case of event-based synchronization.
 - ► All previous considerations about concurrency, deadlock, nondeterminism, divergence, etc. still apply.
 - ► Can understand fundamental issues in isolation, without getting tangled up in specifics of channel I/O.
- ▶ Will also introduce a bit of notation from CSP 5.1–5.2 (sequential composition).

Channels

- Channels impose structure on event sets.
 - So far, event names have generally been atomic (coin, coke, sprite, ...).
 - ► Though we have hinted that they might have internal structure (e.g, coin.10kr): "." suggests qualitative difference from "_".
 - Communication operators introduce specialized terminology for working with such events: coin is channel, 10kr is message.
 - ▶ **Def.** auxiliary functions: chan(c.m) = c, msg(c.m) = m.
 - ▶ Shorthand: writing C for $\{c.m \mid c \in C\}$ in $P \setminus C$, $STOP_C$, etc.
- Channels model directed events.
 - ▶ So far, no separation of *roles* played by participants in an event
 - coin means "accept a coin" to vending machine, but "insert a coin" to customer. No formal distinction!
 - ► Channels make a clear separation between roles of *sender* (initiator) and *receiver* (acceptor) of an event.
 - ► CSP channel I/O provides specialized syntax for working with communication events.

Communication topology and alphabets

- Most (frequently: all) of a process's event alphabet can be structured as:
 - 1. Two finite, disjoint sets of *incoming* and *outgoing* channel names: $\alpha_i P = \{c_1, ..., c_n\}$, $\alpha_o P = \{c'_1, ..., c'_m\}$, where $\alpha_i P \cap \alpha_o P = \{\}$.
 - 2. For each channel, a (generally infinite) channel alphabet: for $c \in \alpha_i P \cup \alpha_o P$, $\alpha c(P) = \{m \mid c.m \in \alpha P\}$.
- ▶ By convention, channels are directed, *one-to-one* connections between concurrent processes *P* and *Q*:
 - Matching channels (same name, but incoming in P and outgoing in Q or vice versa) are implicitly connected, and normally concealed from environment:

$$R = (P \parallel Q) \setminus C$$
, where $C = (\alpha_{o}P \cap \alpha_{i}Q) \cup (\alpha_{i}P \cap \alpha_{o}Q)$

Non-matching channels are left unconnected and visible to environment:

$$\alpha_{i}R = (\alpha_{i}P \cup \alpha_{i}Q) - C$$
 $\alpha_{o}R = (\alpha_{o}P \cup \alpha_{o}Q) - C.$

III-formed compositions

- $ightharpoonup R = (P \parallel Q) \setminus C$, where $C = (\alpha_{o}P \cap \alpha_{i}Q) \cup (\alpha_{i}P \cap \alpha_{o}Q)$.
- Two possibilities for clashes:
 - ▶ Different channel alphabets on matching channels: $\alpha c(P) \neq \alpha c(Q)$, for some c.
 - ▶ Multiple senders/receivers on a channel: $\alpha_{o}P \cap \alpha_{o}Q \neq \{\}$ or $\alpha_{i}P \cap \alpha_{i}Q \neq \{\}$.
- Clashes are considered type errors.
 - Note: underlying CSP concurrent composition still formally legal. (Recall: $\alpha(P \parallel Q) = \alpha P \cup \alpha Q$; no requirement that $C \subseteq \alpha P$ in $P \setminus C$).
 - So behavior of communication-ill-typed processes is still well defined in principle.
 - ▶ But: fewer well-typed processes ⇒ more properties hold.
 - For well typed processes, can just write $\alpha c = \alpha c(P) = \alpha c(Q)$.

Output

- ▶ Let $c \in \alpha_{o}P$.
- ▶ Then for any expression e of type αc , we write

$$c! e \rightarrow P$$
 "on c output e , then P "

for $c.m \rightarrow P$, where m is the value of e.

- Special syntax visually flags event as an output communication.
- ▶ Note: we allow *m* to be the result of a simple computation, possibly including variables from process's local state:

$$EVENS_i \stackrel{\triangle}{=} out!(2 \cdot i) \rightarrow EVENS_{i+1}$$

Input

- ▶ Let $c \in \alpha_i P$.
- ▶ Then for any *variable* v, ranging over αc , we write

$$c?v \rightarrow P(v)$$
 "from c input v , then P " for $(w: \{x \mid chan(x) = c\} \rightarrow P(msg(w))$.

- Here, dedicated syntax significantly simplifies notation!
- Variable v may be used in the continuation process P, just like a state variable:

$$COPY \stackrel{\triangle}{=} left?v \rightarrow right!v \rightarrow COPY$$

$$ACCUM_n \stackrel{\triangle}{=} left?v \rightarrow right!(n+v) \rightarrow ACCUM_{n+v}$$

► Caution: When CSP is embedded in imperative language, inputs are normally represented as *assignment*, rather than *binding*, to the target variable.

Output vs. input

- Note asymmetry:
 - ► The prefix c!e can participate in exactly one c-event: environment inputting from c must be prepared to accept any $m \in \alpha c$, or risk deadlock.
 - ► The prefix *c?v* can participate in *all c*-events: environment outputting to c can supply any $m \in \alpha c$ without risking deadlock.
- Again: this is a convention specific to channel-based communication.
 - As opposed to general structured events of the form c.m.
- Engaging in channel events that cannot be expressed in terms of ! or ? also violates convention.
 - **Ex.** $(c.1 \rightarrow STOP \mid c.3 \rightarrow STOP)$ is wrong (for a process with c as an input channel with alphabet $\supseteq \{1,3\}$).
- ► **Communication law** (another special case of 2.3.1 L7): $(c!m \rightarrow P) \parallel (c?v \rightarrow Q(v)) = c.m \rightarrow (P \parallel Q(m))$

Communication in choices

- Convenient to generalize syntax of enumerated choice to allow communication guards.
- Notation:

$$P = (c_1?v_1 \rightarrow P_1(v_1) \mid \cdots \mid c_n?v_n \rightarrow P_n(v_n) \mid c'_1!e_1 \rightarrow P'_i \mid \cdots \mid c'_m!e_m \rightarrow P'_m),$$

where $n, m \ge 0$, $\{c_1, \ldots, c_n\} \subseteq \alpha_i P$, $\{c'_1, \ldots, c'_m\} \subseteq \alpha_o P$, and all channels pairwise distinct.

- Evident expansion into big parameterized choice over union of initial events of component communications.
- ▶ **Note:** still deterministic! Nondeterminism arises from *concealment* of internal communications, not from choice.
- ▶ **Beware:** some implementations of CSP do not allow *output* guards in choices.

Communication-guarded choices and concurrency

Find $P \parallel Q$, where

$$P = (c_1?x \to P_1(x) \mid c_2!e \to P_2)$$

$$Q = (c_2?y \to Q_1(y) \mid c_3!e' \to Q_2)$$

Simply use 2.3.1 L7:

$$A = \{c_{1}.m \mid m \in \alpha c_{1}\} \cup \{c_{2}.e\}$$

$$B = \{c_{2}.m \mid m \in \alpha c_{2}\} \cup \{c_{3}.e'\}$$

$$C = (A \cap B) \cup (A - \alpha Q) \cup (B - \alpha P)$$

$$= \{c_{2}.e\} \cup \{c_{1}.m \mid m \in \alpha c_{1}\} \cup \{c_{3}.e'\}$$

- ► So $P \parallel Q = (c_1?x \to (P_1(x) \parallel Q) \mid c_2.e \to (P_2 \parallel Q_1(e)) \mid c_3!e' \to (P \parallel Q_2))$
 - ▶ Note: write *matched* communication events with ".", not "!".
- ▶ Next, will usually conceal channel c_2 in $P \parallel Q$.

Communication-guarded choices and concealment

- Find $R \setminus \{c_2.m \mid m \in \alpha c_2\}$, where $R = (c_1?x \rightarrow R_1(x) \mid c_2.e \rightarrow R_2 \mid c_3!e' \rightarrow R_3)$
- ► Use 3.5.1 L10: [Misprint: missing in book]
 - ▶ If $B \cap C$ finite and non-empty, then $(x: B \to P(x)) \setminus C = Q \cap (Q \cap (x: (B C) \to P(x)) \setminus C)$, where $Q = \bigcap_{x \in B \cap C} P(x) \setminus C$
- ► For our R, we have $B = \{c_1.m \mid m \in \alpha c_1\} \cup \{c_2.e, c_3.e'\};$ $P(c_1.m) = R_1(m), P(c_2.e) = R_2, P(c_3.e') = R_3.$
- ► Since $C = \{c_2.m \mid m \in \alpha c_2\}$, $B \cap C = \{c_2.e\}$, and so we simply have $Q = R_2 \setminus C$ for our R.
- ► Thus, writing X^* for $X \setminus C$, we get $R^* = R_2^* \sqcap (R_2^* \sqcap (C_1?x \rightarrow R_1(x)^* \mid C_3!e' \rightarrow R_3^*))$

Examples: streaming

► The copying process:

$$COPY \stackrel{\triangle}{=} left?v \rightarrow right!v \rightarrow COPY$$

where $\alpha_i COPY = \{left\}$ and $\alpha_o COPY = \{right\}$. Copies a stream from channel *left* to channel *right*.

▶ Generalization: mapping. Let $f : A \rightarrow B$ be any simple total function. Then

$$MAP^f \stackrel{\triangle}{=} left?v \rightarrow right!f(v) \rightarrow MAP^f$$

(where $\alpha left = A$ and $\alpha right = B$) applies f to every element of the stream before passing it on.

► $COPY = MAP^{id}$, where id(a) = a.

Multi-input/output

An (elementwise) addition process:

$$ADD \stackrel{\triangle}{=} left_1? v_1 \rightarrow left_2? v_2 \rightarrow right! (v_1 + v_2) \rightarrow ADD$$

A replication process:

$$DELTA \stackrel{\triangle}{=} left?v \rightarrow right_2!v \rightarrow right_1!v \rightarrow DELTA$$

▶ A comparison/switch element (useful for parallel sorting):

$$COMP \stackrel{\triangle}{=} left_1? v \rightarrow left_2? w \rightarrow if v \leq w then (right_1! v \rightarrow right_2! w \rightarrow COMP)$$

else (right_2! v \rightarrow right_1! w \rightarrow COMP)

- ▶ **Note:** all are *systolic*: on each iteration, input or output exactly one value on each channel.
- ▶ But open to potential deadlock! (Consider DELTA followed by ADD, with suitable renaming to connect each right; to left;.)

Avoiding unnecessary sequentialization

- (Will use a bit of notation from Chapter 5, though we're not covering most of that chapter.)
- Brute-force solution: insert buffers (= COPY) on each channel.
 - Really only needed on channels between multi-output and multi-input processes.
- "Obvious" proper solution: perform independent inputs and outputs concurrently. But how?
- Note: $\mu X.left?v \rightarrow (right_1!v \parallel right_2!v) \rightarrow X$ is syntactically ill-formed: cannot prefix by non-atomic action.
- ► How about $\mu X.left?v \rightarrow ((right_1!v \rightarrow X) \parallel (right_2!v \rightarrow X))$? Is it well-formed? Well-typed? Does it "work"?

Properly performing concurrent outputs

Possible approach: explicitly enumerate interleavings

$$DELTA \stackrel{\triangle}{=} left?v \rightarrow (right_1!v \rightarrow right_2!v \rightarrow DELTA \\ | right_2!v \rightarrow right_1!v \rightarrow DELTA)$$

(Note: needs output guards in choice.)

- ▶ What if we had three output channels?
- Impractical to do transformation by hand, but could have special notation that conceptually expanded to the same thing.
- ▶ Alternative: allow concurrent processes to *join* after all have successfully completed their subtasks.

Sequencing

- ▶ Introduce distinguished event $\sqrt{\text{("success")}}$.
- ▶ Special process $SKIP = \sqrt{\rightarrow STOP}$. Signals successful termination, then becomes inactive.
- General sequencing: (P; Q), "P followed by Q". Like prefixing, but P need not be a simple event. (Cf. enumerated choice vs. general choice P □ Q).
- ▶ Informal behavior: process that waits for P to signal successful completion $(\sqrt{})$, then continues with Q.
 - Note: the $\sqrt{\text{ from } P}$ is concealed to environment of (P; Q), but any $\sqrt{\text{ from } Q}$ is not.
- ▶ Have usual sequential-programming laws: (SKIP; P) = P, (P; SKIP) = P, (P; Q; R).
- ► DELTA $\stackrel{\triangle}{=}$ left? $v \rightarrow ((right_1! v \rightarrow SKIP) \parallel (right_2! v \rightarrow SKIP));$ DELTA

Non-systolic network elements

Input merge:

$$\begin{aligned} \textit{MERGE} &\triangleq (\textit{left}_1?\textit{v} \rightarrow \textit{right}!\textit{v} \rightarrow \textit{MERGE} \\ &\mid \textit{left}_2?\textit{v} \rightarrow \textit{right}!\textit{v} \rightarrow \textit{MERGE}) \end{aligned}$$

Like (buffered) any2one channel.

Output distribution:

$$DIST \stackrel{\triangle}{=} left?v \rightarrow (right_1!v \rightarrow DIST \mid right_2!v \rightarrow DIST)$$

Like (buffered) one2any channel.

Mutable global state:

$$VAR_v \stackrel{\triangle}{=} (set?w \rightarrow VAR_w \mid get!v \rightarrow VAR_v)$$

Obviously generalizable to more complex operations. Ultimate "object orientation": objects interact *only* by communication.

Buffering

► Simple *COPY* from before is actually a one-place buffer:

$$COPY \stackrel{\triangle}{=} left?v \rightarrow right!v \rightarrow COPY$$

▶ Suppose *left* $\in \alpha_o PROD$, *right* $\in \alpha_i CONS$. Then in

PROD can output one (but only one) message even before CONS is ready to accept it.

► (What if we actually don't want a built-in buffer, but a wire-like channel that forces synchronization between sender(s) and receiver(s)? *Acknowledgments*; see next time.)

Control vs. data state

- ► $COPY \stackrel{\triangle}{=} left?v \rightarrow right!v \rightarrow COPY$
- ► *COPY* is evidently (why?) equivalent to $BUFFER_{\langle\rangle}$ from the following pair of definitions:

$$\begin{array}{ccc} \textit{BUFFER}_{\langle \rangle} & \stackrel{\triangle}{=} & \textit{left?} \, \textit{v} \rightarrow \textit{BUFFER}_{\langle \textit{v} \rangle} \\ \textit{BUFFER}_{\langle \textit{v} \rangle} & \stackrel{\triangle}{=} & \textit{right!} \, \textit{v} \rightarrow \textit{BUFFER}_{\langle \rangle} \end{array}$$

- ▶ Internal process state is always a combination of *control state* (position in code) and *data state* (value of local variables).
- What about multi-place buffers?

A two-place buffer

- Two approaches.
 - 1. Two single-place buffers, one after the other

$$\begin{array}{ccc} \textit{COPY1} & \triangleq & \textit{left?v} \rightarrow \textit{mid!v} \rightarrow \textit{COPY1} \\ \textit{COPY2} & \triangleq & \textit{mid?v} \rightarrow \textit{right!v} \rightarrow \textit{COPY2} \\ \textit{BUFI}^2 & = & (\textit{COPY1} \parallel \textit{COPY2}) \setminus \{\textit{mid}\} \end{array}$$

where $P \setminus \{c\}$ again abbreviates $P \setminus \{c.m \mid m \in \alpha c\}$. Buffer contents is *implicit* and distributed throughout system.

2. One process with buffer contents as local state:

$$\begin{array}{ccc} \textit{BUFE}_{\langle \rangle}^2 & \triangleq & \textit{left}?\,\textit{v} \rightarrow \textit{BUFE}_{\langle \textit{v}\rangle}^2 \\ \textit{BUFE}_{\langle \textit{v}_1\rangle}^2 & \triangleq & (\textit{left}?\,\textit{v}_2 \rightarrow \textit{BUFE}_{\langle \textit{v}_1,\textit{v}_2\rangle}^2 \mid \textit{right}!\,\textit{v}_1 \rightarrow \textit{BUFE}_{\langle \rangle}^2) \\ \textit{BUFE}_{\langle \textit{v}_1,\textit{v}_2\rangle}^2 & \triangleq & \textit{right}!\,\textit{v}_1 \rightarrow \textit{BUFE}_{\langle \textit{v}_2\rangle}^2 \end{array}$$

- ▶ Should be obvious how to generalize both to *n*-place variants for arbitrary $n \ge 1$.
- ▶ Can we prove that $BUFI^2 = BUFE_{\langle \rangle}^2$? See next time.

Conditional communication guards

- ▶ Note that in *BUFE*², we actually treat all *left*-communications in the same way (add input to *end* of buffer), and likewise for *right*-communications (take output from *front* of buffer).
- ▶ But we only communicate on *left* when buffer is non-full, and only communicate on *right* when buffer is non-empty.
- Can express this more concisely:

$$BUF_s^n \triangleq IN_s^n \square OUT_s^n$$

 $IN_s^n = \text{if } \#s < n \text{ then } left? v \to BUF_{s^{\hat{}}(v)}^n \text{ else } STOP$
 $OUT_s^n = \text{if } \#s > 0 \text{ then } right! s_0 \to BUF_{s'}^n \text{ else } STOP$

(Remember notation: s_0 is head of sequence; s' is its tail.)

Many CSP implementations have special syntax for expressing conditional willingness to communicate based on boolean flag.

Specifications (1): Stream values

- ▶ **Def.** $s \downarrow c = msg^*(s \upharpoonright \{x \mid chan(x) = c\}).$ ▶ **Ex:** $\langle in.3, out.13, in.5, out.15, in.7 \rangle \downarrow in = \langle 3, 5, 7 \rangle.$
- ▶ **Recall:** P **sat** $S(tr) \iff \forall s \in traces(P). S(s).$
 - ► Convenient (though potentially confusing) shorthand: all occurrences of c in S(tr) stand for $tr \downarrow c$.
 - ▶ [Doubly confusing: writing f(c) for $f^*(c)$.]
- ► Ex: Let $ADD10 = \mu X.in?v \rightarrow out!(v+10) \rightarrow X$. Then ADD10 sat $(out \le (x \mapsto x+10)*(in))$, where \le is prefix ordering on traces.
- ▶ Let $DELTAS \triangleq left?v \rightarrow right_1!v \rightarrow right_2!v \rightarrow DELTAS$. Then DELTAS sat $(right_1 \leq left \land right_2 \leq right_1)$.
- ▶ But processes that only accepted input but never performed any output would satisfy those specs as well...

Specifications (2): Delays

- Also want to express that outputs don't lag too far behind input.
- ▶ Def. $s \leq^n t \iff s \leq t \land \#t \leq \#s + n$.
- s is a prefix of t, but at most n elements shorter.
- ► Can then show ADD10 sat (out \leq^1 ($x \mapsto x + 10$)*(in)).
- ► Similarly, DELTAS sat $(right_1 \le left \land right_2 \le right_1 \land right_2 \le^1 left)$.
- ▶ Buffering may cause longer latency between input and output: $BUFE^n$ sat $(right \le^n left)$, for $n \ge 1$.

Pipes

- Specialized notation for processes with exactly one input and one output channel.
- ▶ **Notation**: $P \gg Q$ ("P pipe Q"?)
- Output on P's right channel is connected to Q's left.
- ▶ Formally, $P \gg Q = (f_1(P) \parallel f_2(Q)) \setminus \{mid\}$, where $f_1(left.m) = left.m$, $f_1(right.m) = mid.m$, and $f_2(left.m) = mid.m$, $f_2(right.m) = right.m$.
 - ▶ Shorthand: $f_1(left) = left$, $f_1(right) = mid$, analogously for f_2 .
- **Ex:** Could write $BUFI^2 = COPY \gg COPY$.
- ► Can show: $(P \gg Q) \gg R = P \gg (Q \gg R)$, so might as well write as $P \gg Q \gg R$.

Subordination

- ► Even more specialized notation: P // Q
- $ightharpoonup \alpha(P /\!\!/ Q) = \alpha Q \alpha P$, where $\alpha P \subseteq \alpha Q$.
- ▶ Could define by $P /\!\!/ Q = (P \parallel Q) \setminus \alpha P$.
- ▶ P is a "local server" for Q.
- Particularly useful in connection with process labeling:

$$x: VAR_0 /\!\!/ y: VAR_0 /\!\!/ (\cdots x.set!3 \rightarrow \cdots y.get?v \rightarrow \cdots)$$

Next time

- ► Tuesday, December 17: CSP Equivalences.
 - Last theory lecture in 2013; one more after Christmas.
- Nothing new from book, just examples of reasoning about CSP processes and channels.
- ▶ Be sure you're fully caught up on CSP book through 5.2.
- ► Assignment 1 due on Sunday; Assignment 2 out on Tuesday.