Devoir Maison n°10.

Exercice 1 : Soit ABCD un parallélogramme.

Montrer que
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \frac{1}{2} (AC^2 - AB^2 - AD^2)$$

Exercice 2 : Soit MNP un triangle et I le milieu de [NP].

Démontrer que le triangle MNP est rectangle en M si et seulement si $MI = \frac{NP}{2}$

Exercice 3 : On considère la suite définie pour $n \ge 1$ par :

$$\begin{cases} u_1 = \frac{1}{3} \\ u_{n+1} = \frac{n+1}{3n} u_n \end{cases}$$

- 1. Calculer u_2 , u_3 et u_4 .
- 2. On pose $v_n = \frac{u_n}{n}$, pour tout entier $n \ge 1$.

Montrer que, pour tout entier $n \ge 1$, $v_{n+1} = \frac{1}{3}v_n$.

En déduire que la suite (v_n) est une suite géométrique dont on précisera la raison et le premier terme.

- 3. Montrer que $u_n = n \left(\frac{1}{3}\right)^n$ pour tout entier $n \ge 1$.
- 4. Montrer que $u_{n+1} u_n = \left(\frac{1}{3}\right)^{n+1} (1-2n)$ pour tout entier $n \ge 1$. En déduire le sens de variation de la suite (u_n) .
- 5. On considère la fonction suivante :

```
def limite(epsilon) :
n=1
while n*(1/3)**n>epsilon :
    n = n+1
return n
```

- a. Que renvoie limite(10^{-2}) ? b.Que renvoie limite(10^{-4})?
- c. Vers quelle valeur semble tendre la suite (u_n) lorsque n tend vers $+\infty$?