Mathematics for AI

Homework 5

Read these first:

- i. To achieve the full score, you need to write your solutions using LaTeX. If you choose to write your solutions on paper or in a word processing software (e.g., MS Word, LibreOffice), you can receive up to 90% of the score.
- ii. If writing on paper, you must use a scanner or a camera scanning app (e.g., CamScanner) to scan the document and submit it as a *single PDF file*. Ensure your answers are written neatly, organized, and legible on paper.
- iii. When using LaTeX, follow one of these two conventions:
 - (a) Represent scalars with italic letters (a, A), vectors with bold lowercase letters $(a, using \mathbb{A})$, and matrices with bold uppercase letters $(A, using \mathbb{A})$, or
 - (b) Represent scalars with italic letters (a, A), vectors with bold letters (\mathbf{a}) , and matrices with typewriter uppercase letters $(\mathbf{A}, \text{ using } \mathbf{A})$.
- iv. Your LATEX document must include a title, a date, and your name as the author.
- v. If writing on paper, submit a single PDF file; do not send multiple image files.
- vi. If using LaTeX, submit the .tex source file (along with any other required source files) in addition to the PDF file.

Here is a short tutorial on LATEX:

https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Mathematics for AI

Homework 5

Fall 2024

Convex sets

1. Let $C \subseteq \mathbb{R}^n$ be a convex set, with $x_1, \ldots, x_k \in C$, and let $\theta_1, \ldots, \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0$, $\theta_1 + \cdots + \theta_k = 1$. Show that $\theta_1 x_1 + \cdots + \theta_k x_k \in C$. (The definition of convexity is that this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.

[Boyd, S.(2004). Convex Optimization. Cambridge University Press. (Exercise 2.1)]

2. Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{ x \in \mathbb{R}^n \mid x^T A x + b^T x + c \le 0 \},$$

with $A \in S^n$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

- (a) Show that C is convex if $A \succeq 0$.
- (b) Show that the intersection of C and the hyperplane defined by $g^T x + h = 0$ (where $g \neq 0$) is convex if $A + \lambda g g^T \succeq 0$ for some $\lambda \in \mathbb{R}$.

Are the converses of these statements true?

[Boyd, S.(2004). Convex Optimization. Cambridge University Press. (Exercise 2.10)]

Convex functions

- 3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex, and $a, b \in \text{dom } f$ with a < b.
 - (a) Show that

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

for all $x \in [a, b]$.

(b) Show that

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x}$$

for all $x \in (a, b)$. Draw a sketch that illustrates this inequality.

(c) Suppose f is differentiable. Use the result in (b) to show that

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b).$$

Note that these inequalities also follow from (3.2):

$$f(b) \ge f(a) + f'(a)(b-a), \quad f(a) \ge f(b) + f'(b)(a-b).$$

(d) Suppose f is twice differentiable. Use the result in (c) to show that $f''(x) \ge 0$ and $f''(b) \ge 0$.

[Boyd, S.(2004). Convex Optimization. Cambridge University Press. (Exercise 3.1)]

- 4. For each of the following functions determine whether it is convex, concave.
 - (a) $f(x) = e^x 1$ on \mathbb{R} .
 - (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
 - (c) $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
 - (d) $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
 - (e) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.
 - (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on \mathbb{R}^2_{++} .

[Boyd, S.(2004). Convex Optimization. Cambridge University Press. (Exercise 3.16)]

Duality

5. A simple example Consider the optimization problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$,

with variable $x \in \mathbb{R}$.

- (a) **Analysis of primal problem.** Give the feasible set, the optimal value, and the optimal solution.
- (b) Lagrangian and dual function. Plot the objective x^2+1 versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x,\lambda)$ versus x for a few positive values of λ . Verify the lower bound property $(p^* \geq \inf_x L(x,\lambda))$ for $\lambda \geq 0$. Derive and sketch the Lagrange dual function g.
- (c) **Lagrange dual problem.** State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^* . Does strong duality hold?

[Boyd, S.(2004). Convex Optimization. Cambridge University Press. (Exercise 5.1)]

6. Consider the equality constrained least-squares problem

minimize
$$||Ax - b||_2^2$$

subject to $Gx = h$,

where $A \in \mathbb{R}^{m \times n}$ with rank A = n, and $G \in \mathbb{R}^{p \times n}$ with rank G = p.

Give the KKT conditions, and derive expressions for the primal solution x^* and the dual solution ν^* .

[Boyd, S.(2004). Convex Optimization. Cambridge University Press. (Exercise 5.27)]