PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-235889

(43)Date of publication of application: 31.08.2001

(51)Int.CI.

G03G 5/147 G03G 5/00

(21)Application number: 2000-047214

(71)Applicant: FUJI XEROX CO LTD

(22)Date of filing: 24.02.2000

(72)Inventor: TAKIMOTO HITOSHI YAHAGI KOICHI

HOZUMI MASAHIKO

YAO KENJI

SUZUKI TAKAHIRO **ESUMI TETSUYA** SHIRAI MASAHARU

(54) ELECTROPHOTOGRAPHIC PHOTORECEPTOR, ELECTROPHOTOGRAPHIC DEVICE WITH THE SAME. PROCESS CARTRIDGE AND METHOD FOR PRODUCING THE ELECTROPHOTOGRAPHIC PHOTORECEPTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having high surface strength, good surface smoothness and lubricity and capable of forming a ghost- free image, an electrophotographic device with the photoreceptor and a process cartridge. SOLUTION: The electrophotographic photoreceptor has a surface layer containing metal oxide particles surface-treated with a surface treating agent, an alcohol-soluble bonding resin and an alcohol-soluble electric charge transferring material.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-235889

(P2001-235889A)

(43)公開日 平成13年8月31日(2001.8.31)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコージ(参考)	
G 0 3 G	5/147	503	G 0 3 G	5/147	503	2H068	
		502			502		
		5 0 4			504		
	5/00	101		5/00	101		

審査請求 未請求 請求項の数4 OL (全 15 頁)

(21)出願番号	特願2000-47214(P2000-47214)	(71)出顧人 000005496
		富士ゼロックス株式会社
(22)出願日	平成12年2月24日(2000.2.24)	東京都港区赤坂二丁目17番22号
		(72) 発明者 滝本 整
		神奈川県南足柄市竹松1600番地 富士ゼロ
		ックス株式会社内
		(72)発明者 矢作 浩一
		神奈川県南足柄市竹松1600番地 富士ゼロ
		ックス株式会社内
		(74)代理人 100079049
		弁理士 中島 淳 (外3名)
) 141 / LL (104)

最終頁に続く

(54) 【発明の名称】 電子写真感光体、眩電子写真感光体を有する電子写真装置及びプロセスカートリッジ、並びに眩電子写真感光体の製造方法

(57)【要約】

【課題】 高い表面強度、良好な表面平滑性、及び潤滑性を有し、ゴーストのない画像を形成できる電子写真感 光体、そのような電子写真感光体を備えた電子写真装置 及びプロセスカートリッジを提供する。

【解決手段】 表面処理剤で表面が処理された金属酸化物粒子、アルコール可溶性結着樹脂及びアルコール可溶性電荷輸送材料を含有する表面層を備えた電子写真感光体、及びこの電子写真感光体を備えた電子写真装置並びにプロセスカートリッジ。

【特許請求の範囲】

【請求項1】 表面処理剤で表面が処理された金属酸化 物粒子、アルコール可溶性結着樹脂及びアルコール可溶 性電荷輸送材料を含有する表面層を備えた電子写真感光 体。

【請求項2】 請求項1に記載の電子写真感光体を備え た電子写真装置。

【請求項3】 請求項1に記載の電子写真感光体を備え たプロセスカートリッジ。

【請求項4】 基体上に設けられた感光層を、表面処理 10 剤で表面が処理された金属酸化物粒子、アルコール可溶 性結着樹脂及びアルコール可溶性電荷輸送材料をアルコ ールに溶解、分散させた分散液に浸漬させることにより 表面層を形成する電子写真感光体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は表面層を有する電子 写真感光体、該電子写真感光体を有するプロセスカート リッジ及び電子写真装置、並びに該電子写真感光体の製 造方法に関する。

[0002]

【従来の技術】電子写真方式の複写機やプリンターに用 いる電子写真感光体は、可視光や半導体レーザ光である 近赤外光に対して感度を有することが要請されると共 に、近年ますます高い信頼性と安価なコストを同時に実 現することを求められている。これらの要請に応える現 在最も有力な感光体は有機感光体である。中でも、露光 により電荷を発生する電荷発生層と、発生した電荷を輸 送する電荷輸送層とが積層された機能分離型積層有機感 光体は、感度、帯電性、それらの経時安定性、及び電子 30 写真特性等の点で優れている。このような積層有機感光 体として種々の構造のものが提案され、実用化されてい るが、その多くは低分子の電荷輸送材料を結着樹脂中に 分散した電荷輸送層を最外層として備えたものである。 【0003】しかし、低分子の電荷輸送材料を分散した

電荷輸送層はクリーニングブレードによる機械的ストレ スで磨耗しやすく、このような電荷輸送層を備えた電子 写真感光体の寿命は短かった。

【0004】また、近年、オフィス環境において電子写 影響に関心が高まり、従来の非接触式のコロトロン帯電 方式と比較して格段にオゾン発生量の少ない接触帯電方 式が注目されている。しかし、この接触帯電方式は帯電 ロールや帯電フィルム等を電子写真感光体に接触させて 電子写真感光体を帯電させており、放電領域が感光体表 面に近接しているため、感光体に与える放電ストレスが 非接触式のコロトロン帯電方式のそれより強い。このた め放電生成物が感光体の表面に付着しやすくなったり、 感光体の磨耗量が大きくなり、摩耗による帯電性の低

下等がおこるため為、非接触コロトロン帯電方式と比較 して感光体の寿命が短くなる場合が多い。

【0005】このような事情から、電子写真感光体の表 面強度を上げ、その耐用寿命を延ばすことが要求されて いる。また、長期間にわたる繰り返し使用により、帯電 時に発生するオゾンやNOx等の反応生成物、現像時に 使用するトナーがクリーニング工程で除去されずに電子 写真感光体の表面に残留するといった問題が発生した。

【0006】これらの問題を解決するために、感光体の 表面層の表面硬度を増加させて摩耗や傷を防止する方法 や、感光体の表面層の潤滑性を増加させ、それによって 摩耗を抑制するとともに、トナーや反応生成物等の付着 物を表面層から除去しやすくして表面の劣化を防止する 方法が種々提案されている。

【0007】感光体の表面層を強化する方法としては、 平均粒径が使用する光の波長より小さい導電性の微粒 子、例えば、表面処理剤で表面を処理された金属酸化物 微粒子を結着樹脂中に分散したした表面層で感光層を保 護する方法が提案されている(例えば、特開昭57-3 20 0846号公報)。

【0008】しかし、このような電子写真感光体を用い て形成された画像にはゴーストが発生することがあっ た。

【0009】また、このような表面層の結着樹脂として は熱可塑性樹脂は強度が充分でない為不適当である。一 方熱硬化性樹脂をこの表面層の結着樹脂として用いる場 合、芳香族炭化水素類、酢酸エステル類、ハロゲン化炭 化類等、樹脂を溶解しやすい溶剤を用いざるをえない。 これらの溶剤は感光層の樹脂も溶解してしまうため、表 面層の塗布方法として、浸漬塗布法のように短時間に均 一な厚みの層を形成できるが、その際に感光層を溶かし てしまう方法は採用できない。さらに、熱硬化性樹脂は 塗布液中でも硬化するため、熱硬化性樹脂を含有する塗 布液のポットライフは短い。そこで、表面層の塗布方法 は、感光層を溶解しにくく、かつポットライフの影響の 少ないスプレーコーティング法などに限定されていた。 【0010】また、感光体の表面層の潤滑性を増加させ る方法としては、フッ素系樹脂粉体を表面層中に分散さ せるという方法が提案されている(例えば、特開昭63 真方式のプリンターから発生するオゾンの健康に対する 40 -221355号公報)。この方法によると、フッ案系 樹脂粉体により表面層の表面エネルギーや摩擦係数が低 下し、トナー等が除去されやすくなり、また摩耗や傷に

> 【0011】しかし、フッ素系樹脂粉体は結着樹脂中で 分散しにくく、かつ、凝集しやすいので、厚みが均一で 平滑な表面層を形成することは困難であった。

[0012]

対する耐久性が向上する。

【発明が解決しようとする課題】本発明は、上記の課題 に鑑みたもので、高い表面強度、良好な表面平滑性、及 下、感度の変化、かぶりや黒線の発生といった画質の低 50 び潤滑性を有し、ゴーストのない画像を形成できる電子

写真感光体、そのような電子写真感光体を備えた電子写真装置及びプロセスカートリッジを提供することを目的とする。また、本発明は、浸漬塗布方法により表面層が形成できる電子写真感光体の製造方法を提供することを目的とする。

[0013]

【課題を解決するための手段】本発明は、表面処理剤で 表面が処理された金属酸化物粒子、アルコール可溶性結 着樹脂及びアルコール可溶性電荷輸送材料を含有する表 面層を備えた電子写真感光体を提供する。

【0014】また、本発明は前記電子写真感光体を備えた電子写真装置及びプロセスカートリッジを提供する。 【0015】さらに、本発明は基体上に設けられた感光層を、表面処理剤で表面が処理された金属酸化物粒子、アルコール可溶性結着樹脂及びアルコール可溶性電荷輸送材料をアルコールに溶解、分散させた分散液に浸漬させることにより表面層を形成する電子写真感光体の製造方法を提供する。

[0016]

【発明の実施の形態】以下、本発明の実施の形態について詳細に説明する。

【0017】本発明の電子写真感光体は、導電性基体と、感光層と、表面層とをこの順で有する。導電性基体と感光層との間には下引き層を設けてもよい。感光層は電荷を発生する機能と電荷を輸送する機能を併せ持つ単層でもよいし、電荷発生層と電荷輸送層から構成される積層体でもよい。また、電荷発生層と電荷輸送層の順番は任意である。さらに、本発明の電子写真感光体は中間層を備えてもよい。

【0018】導電性基体としては公知のものを使用することができる。例えば、アルミニウム、ニッケル、クロム、ステンレス鋼等の金属類、アルミニウム、チタン、ニッケル、クロム、ステンレス鋼、金、バナジウム、酸化錫、酸化インジウム、ITO等の薄膜を設けたプラスチックフィルム、並びに導電性付与剤を塗布または含浸させた紙及びプラスチックフィルム等があげられる。これらの導電性基体の形状はドラム状やシート状が一般的であるが、これらに限定されない。導電性基体の表面には画質に影響のない範囲で各種の処理を行うことができる。例えば、酸化処理、薬品処理、着色処理、砂目立て、液体ホーニング等の乱反射処理等を行うことができる。

【0019】下引き層は結着剤を含有し、下引き層に用いられる結着剤としては、ポリビニルブチラール等のアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニルー酢酸ビニルー無水マレイン酸樹脂、シリコーン樹脂、シリコーンーアルキッド樹脂、フェノー

4

ルーホルムアルデヒド樹脂、及びメラミン樹脂等の高分子化合物、並びにジルコニウム、チタン、アルミニウム、マンガン、シリコン等を含有する有機金属化合物等が挙げられる。有機金属化合物の中では、チタン、アルミニウム、シリコンを含有するものが好ましい。

【0020】チタンを含有する有機金属化合物の例としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2ーエチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、及びポリヒドロキシチタンステアレート等が挙げられる。

【0021】アルミニウムを含有する有機金属化合物の例としては、アルミニウムイソプピレート、モノブトキシアルミニウムイソプロピレート、アルミニウムブチレート、ジエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。

【0022】シリコンを含有する有機金属化合物の例と しては、例えば、ビニルメトキシシラン、ビニルトリエ トキシシラン、ビニルトリス (β-メトキシエトキシ) シラン、ビニルトリアセトキシシラン、ャーメタクリル オキシプロピルートリス (β-メトキシエトキシ) シラ ン、β-(3, 4-エポキシシクロヘキシル) エチルト リメトキシシラン、ァーメタクリロキシプロピルトリメ トキシシラン、γーグリシドキシプロピルトリメトキシ シラン、yーメルカプトプロピルトリメトキシシラン、 $\gamma - T \leq J \mathcal{J} \cap \mathcal{J} \cap \mathcal{J} \cap \mathcal{J} = \mathcal{J} \cap \mathcal{J}$ ミノエチル) - y - アミノプロピルトリメトキシシラ ン、N-β- (アミノエチル) - γ-アミノプロピルメ チルジメトキシシラン、N, N-ビス (β-ヒドロキシ エチル)ーyーアミノプロピルトリエトキシシラン、N ーフェニルー3ーアミノプロピルトリメトキシシラン、 γークロルプロピルトリメトキシシラン等である。これ らの中でも特に好ましく用いられるシラン化合物は、ビ ニルトリエトキシシラン、ビニルトリス(βーメトキシ エトキシシラン)、ャーメタクリロキシプロピルトリメ トキシシラン、γーグリシドキシプロピルメトキシシラ ン、 β - (3, 4 - エポキシシクロヘキシル) エチルト リメトキシシラン、N-β- (アミノエチル) -γ-ア ミノプロピルトリメトキシシラン、N-β- (アミノエ チル) - y - アミノプロピルメチルジメトキシシラン、 y-アミノプロピルトリエトキシシラン、N-フェニル -3-アミノプロピルトリメトキシシラン、y-メチル カプトプロピルトリメトキシシラン、ャークロルプロピ ルトリメトキシシラン等のシランカップリング剤が挙げ られる。

【0023】有機金属化合物は単独で用いたり、複数の

化合物の混合物として用いたり、複数の化合物の重縮合 物として用いたり、下引き層に用いられる前記高分子化 合物とともに用いることができる。また、高分子化合物 も単独で用いたり、組み合わせて用いることができる。 【0024】下引き層中には、干渉縞発生を防止する目 的や電気特性を向上する目的で、各種の有機または無機 微粉末を混合することができる。特に、酸化チタン、酸 化亜鉛、亜鉛華、硫化亜鉛、鉛白、リトポン等の白色顔 料、アルミナ、炭酸カルシム、硫酸バリウム等の体質顔 料としての無機顔料、テフロン樹脂粒子、ベンソグアナ ミン樹脂粒子、スチレン樹脂粒子、シリコン単結晶微粉 末等が有効である。微粉末の粒径は0.01μm~2μ mであることが好ましい。粒径が2μmより大きいと下 引き層の凹凸が激しくなり、電気特性が場所によって異 なり、画質欠陥を生じやすくなる。また、0.01μm より小さいと十分な光散乱効果が得られない。上記微粉 末を添加する場合には、その量は下引き層の固形分に対 して、10~80重量%であることが好ましく、30~ 70重量%であることがより好ましい。

【0025】下引き層の膜厚を厚くすると、導電性基体に凹凸があっても感光体の表面を平滑にできるため、一般に画質欠陥は低減する傾向にあるが、電気特性が劣化する時期が早くなる。このため下引き層の膜厚は0.1~5 μ mの範囲にあることが望ましい。

【0026】電荷発生層は、結着樹脂と、結着樹脂中に分散された電荷発生材料を含有する。電荷発生材料としては、無金属フタロシアニン、チタニルフタロシアニン、鰯フタロシアニン、蝎フタロシアニンが銀力を種では、スクエアリウム系、アントアントロン系、ペリレン系、アゾ系、アントラキノン系、ピレン系、ピリリウム塩、チアピリリウム塩等の各種有機顔料および染料が用いられる。有機顔料は一般に数種の結晶型を有しており、特にフタロシアニン顔料では α 、 β 等をはじめとして各種の結晶型が知られているが、目的に適合した感度が得られるならば、いずれの結晶型を用いてもよい。

【0027】電荷発生層に使用される結着樹脂としては、ビスフェノールAタイプ及びビスフェノールZタイプ等のポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、塩化ビニルアセテート樹脂、スチレンーブタジエン樹脂、塩化ビニルー無水マレイン酸樹脂、シリコーン樹脂、シリコーンーアルキッド樹脂、フェノールーホルムアルデヒド樹脂、スチレンーアルキッド樹脂、ポリーNービニルカルバゾール等が挙げられる。これらの結着樹脂は、単独であるいは2種以上混合して用いることができる。

【0028】電荷発生層には、電荷発生材料の凝集防止、分散性向上、電気特性の向上等の各種の目的でシラ

6

ンカップリング剤や有機金属アルコキシドを加えること ができる。

【0029】電荷発生材料と結着樹脂との配合比(重量比)は、 $10:1\sim1:10$ の範囲が望ましい。また、電荷発生層の厚みは、一般には $0.01\sim5\,\mu$ mであり、好ましくは $0.05\sim2.0\,\mu$ mである。

【0030】電荷輸送層は電荷輸送材料と、必要に応じ て結着樹脂を含有する。電荷輸送材料としては、2,5 ービス(p ージエチルアミノフェニル)-1.3.4-オキサジアソール等のオキサジアソール誘導体、1, 3, 5ートリフェニルーピラゾリン、1ーピリジルー3 - (p-ジエチルアミノスチリル) - 5 - (p-ジエチ・ ルアミノスチリル) ピラゾリン等のピラゾリン誘導体、 トリフェニルアミン、トリ (p-メチルフェニル) アミ ルー4-アミン、ジベンジルアニリン等の芳香族第3級 アミノ化合物、N, N' ージフェニルーN, N' ービス (3-x+v) - [1, 1'-v)4.4′ージアミン等の芳香族第3級ジアミノ化合物、 (4' - x) + 2 = 2 = 1等の1、2、4-トリアジン誘導体、4-ジエチルアミ ノベンズアルデヒドー1,1-ジフェニルヒドラゾン等 のヒドラゾン誘導体、2-フェニル-4-スチリルーキ ナゾリン等のキナゾリン誘導体、6-ヒドロキシー2. 3 - ジ (p - メトキシフェニル) ベンゾフラン等のベン ゾフラン誘導体、p-(2,2-ジフェニルビニル)-N, N-ジフェニルアニリン等のα-スチルベン誘導 体、エナミン誘導体、N-エチルカルバゾール等のカル バゾール誘導体、ポリーNービニルカルバゾールおよび その誘導体などの正孔輸送物質;クロラニル、ブロモア ントラキノン等のキノン系化合物、テトラアルキルジメ タン系化合物、2、4、7-トリニトロフルオレノン、 2, 4, 5, 7-テトラニトロー9-フルオレノン等の フルオレノン化合物、キサントン系化合物、チオフェン. 化合物等の電子輸送物質;および上記した化合物からな る基を主鎖または側鎖に有する重合体などが挙げられ る。これらの電荷輸送材料は、単独でまたは2種以上を 組み合わせて使用することができる。

【0031】電荷輸送層に用いられる結着樹脂の例としては、アクリル樹脂、ポリアリレート、ポリエステル樹脂、ビスフェノールAタイプ及びビスフェノールZタイプ等のポリカーボネート樹脂、ポリスチレン、アクリロニトリルースチレン共重合体、アクリロニトリルーブタジエン共重合体、ポリビニルブチラール、ポリビニルホルマール、ポリスルホン、ポリアクリルアミド、ポリアミド、塩素ゴム等の絶縁性樹脂、並びにポリビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン等の有機光導電性ポリマー等が挙げられる。

【0032】電荷輸送材料と上記結着樹脂との配合比は 10:1~1:5が好ましい。また、電荷輸送層の膜厚 は一般に $5\sim50~\mu$ m であり、好ましくは $1~0\sim4~0~\mu$ m である。

【0033】感光層が単層である場合には、結着樹脂中 に電荷発生材料や電荷輸送材料を分散させたもの等を用 いることができる。

【0034】電子写真装置中で発生するオゾンや酸化性ガス、光や熱による感光体の劣化を防止する目的で、感光層中に酸化防止剤、光安定剤、熱安定剤などの添加剤を添加することができる。酸化防止剤としては、例えば、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノンおよびそれらの誘導体、有機硫黄化合物、有機リン化合物等が挙げられる。光安定剤の例としては、ベンゾフェノン、ベンゾアゾール、ジチオカルバメート、テトラメチルピペン等の誘導体が挙げられる。

【0035】表面層は、表面処理剤で表面が処理された 金属酸化物粒子、結着樹脂、及び電荷輸送材料を含有す る。この表面層は無色透明であることが好ましい。

【0036】金属酸化物粒子の含有量は表面層全重量に対し、5~90重量%であることが好ましく、30~80重量%であることがより好ましい。含有量が5重量%に満たないと十分な導電性を得にくく、90重量%を超えると十分な機械的強度を得にくくなることがある。

【0037】金属酸化物粒子の平均一次粒子径は0.01 ~0.3 μ mであることが好ましく、 $0.05\sim0.1$ μ mであることがより好ましい。平均一次粒子径が0.01 μ mに満たないと、該粒子が凝集しやすくなり、そのため分散が困難になり、また、0.3 μ mを超えると表面層が着色するため、感光体の感度低下、画質欠陥が発生する場合がある。

【0038】本発明で用いる金属酸化物としては、酸化スズ、酸化アンチモン、酸化亜鉛、酸化チタン、酸化ビスマス、酸化インジウム、酸化タンタル、タンタルがド

 $X-SO_2NRCH_2CH_2O$ (CH_2CH_2O) nH X-RO (CH_2CH_2O) nH

【0045】 【化2】

$$X-R$$
 O(CH₂CH₂O)nH (IV)

【0046】式中、Rは単結合、アルキル基を、Xは-CF₃、-C₄F₉、-C₆F₁₃、-C₈F₁₇等のフッ化ア ルキル基を示し、nは正の整数を示す。

【0047】金属酸化物粒子を上記表面処理剤で表面処理するには、まず、金属酸化物粒子と表面処理剤とを適当な溶剤中に分散し、表面処理剤を金属酸化物粒子表面に付着させる。反応促進のためにこの分散液中に触媒を添加してもよい。金属酸化物粒子を溶剤中で分散させる方法としては、ロールミル、ボールミル、振動ミル、ア

8

ープされた酸化スズ、アンチモンがドープされた酸化スズ、インジウムがドープされた酸化スズ等が挙げられる。これらの金属酸化物は単独で用いても、二種以上を用いてもよい。

【0039】金属酸化物の表面エネルギーを低下させる ために使用される表面処理剤としては、シランカップリ ング剤、シリコーンオイル、シロキサン化合物、及び界 面活性剤等が挙げられる。これらはフッ素原子を含有す ることが好ましい。

【0040】フッ素含有シランカップリング剤の例としては、例えば、CF3CH2CH2Si(OCH3)3、C4F9CH2CH2Si(OCH3)3、C6F13CH2CH2Si(OCH3)3、C8F17CH2CH2Si(OCH3)3、C8F17CH2CH2Si(OCH3)3、C8F17CH2CH2CH2Si(OCH3)3、C0F21CH2CH2Si(OCH3)3、C10F21Si(OCH3)3、C10F21CH2CH2Si(OCH3)3が挙げられる。

【0041】フッ素変性シリコーンオイルの例としては、例えば、下記一般式(I)に示した化合物が挙げられる。

[0042]

【化1】

$$\begin{array}{c|c} CH_{3} & CH_{3} & CH_{3} \\ \hline \\ CH_{3} & SIO & SIO & SIO & SIO \\ \hline \\ CH_{3} & CH_{3} & CH_{4} \end{array} \tag{I}$$

【0043】式中のRは一CH₂CH₂CF₃、一CH₂CH₂CF₄F₉、一CH₂CH₂C₆F₁₃、一CH₂CH₂C₈F₁₇等のフッ化アルキル基を示し、m及びnは正の整数を示す。

【0044】フッ素系界面活性剤の例としては、例えば、下記一般式(II) \sim (IV) に示した化合物が挙げられる。

(III) (III)

トライター、サンドミル、超音波分散等の方法を用いることができる。次にこの分散液から溶剤を除去した後、熱処理により金属酸化物粒子表面に表面処理剤を固着させる。得られた表面処理済み金属酸化物が凝集している場合は、必要に応じて、粉砕処理を行なっても良い。

【0048】表面処理剤の添加量は、金属酸化物粒子の 粒径にもよるが、金属酸化物量に対して、1~70重量 %であることが好ましく、5~50重量%であることが より好ましい。

【0049】表面層の結着樹脂はアルコール溶剤に可溶であることが必要であり、このような結着樹脂としては、例えば、ポリアミド樹脂やポリビニルアルコール成分を有する樹脂等が挙げられる。ポリアミド樹脂としては、アルコール溶剤に可溶の共重合ナイロン、メトキシ

メチル化ナイロンが用いられる。共重合ナイロンは、ナイロン6、ナイロン66,ナイロン610,ナイロン12等を種々に組み合わせて重合したものであり、さらにそれをメトキシメチル化したものも使用できる。また、ポリビニルアルコール成分を有する樹脂としては、ポリ酢酸ビニルを鹸化したポリビニルアルコール(ポリビニルアルコールとポリ酢酸ビニルの共重合樹脂)、さらにそれを脂肪族アルデヒドでアセタール化したポリビニルアセタール(ポリビニルアルコールーポリ酢酸ビニルーポリビニルアセタールの3元共重合樹脂)などが用いられる。ポリビニルアセタールには、ポリビニルホルマール、ポリビニルブチラールなどが含まれる。

【0050】表面層に用いられる電荷輸送材料はアルコール溶剤に可溶であることが必要であり。このような電荷輸送材料としては下記一般式(V)で示す電荷輸送性材料が挙げられる。

[0051]

【化3】

$$A = [(T)I - U]_{\mathbf{m}}$$
 (V)

【0052】式中、1 は0から4の整数、mは1から4の整数を示し、Tは炭素数1から10の直鎖、分岐鎖のアルキレン、エステル結合、エーテル結合等のいずれかを含み、Uはカルボン酸、または水酸基を示す。 A は下記一般式 (VI)、または (VII)で表される構造を示す。

[0053]

【化4】

10

【0054】 R_6 および R_6 は同一でも異なっていてもよく、水素原子、アルキル基、アルコキシ基、ハロゲン原子を表し、 $R_{53}\sim R_{66}$ は同一でも異なっていてもよく、水素原子、アルキル基、アルコキシ基、ハロゲン原子または置換アミノ基を表す。また、 $k\sim n$ はそれぞれ1または2の整数を表す。

[0055]

【化5】

$$(V I I)$$

$$(R_{7a})n$$

【0056】 R_{71} $\sim R_{72}$ は同一でも異なっていてもよく、水素原子、アルキル基、アルコキシ基、ハロゲン原子を表し、mおよびnはそれぞれ1または2の整数を表す。また、 R_{73} は水素原子、炭素数 $1\sim4$ のアルキル基または炭素数 $6\sim1$ 2のアリール基を表す。

【0057】一般式 (VI) で示されるベンジジン系化 合物の具体的な化合物例を表1~3に示す。

[0058]

【表1】

化合物 No.	Rei	(R ₆₂) k	(R ₈₄) 1	R _{t2}	(R _{cs}) n	(R _{se}) n
1-1	Н	3-CH,	H	H	3-CH ₃	E
1 -2	H	4-CH ₃	H	H	4-CH ₃	H
1 -3	Н	3-C ₂ H ₅	Я	B	3-C2H2	Н
1-4	CH ₃	Н	H	CH ₃	н	H
1 -5	CH3	2-CH ₃	Н	CH3	2-СН,	В
1-6	CH,	3-CH ₃	Н	CH2	3-CH ₃	Н
1 -7	CH ₃	4-CH,	Н	CH3	4-CH,	H
1 -8	CH ₃	4-CH ₃	5-CH2	CH ₃	4-CH,	2-CH ₃
1 -9	CH ₃	4-CH,	3-CH ₃	CH ₃	4-CH ₃	3-CH ₃
1-10	CH,	4-CH ₃	4-CH;	CH3.	4-CH ₃	4-CH,
1-11	CH3	3, 4-CH ₃	H	CH3	3, 4-CH ₃	В
1-12	CB3	3, 4-CH ₃	3. 4-CH ₃	CH ₃	3, 4-CH ₃	3. 4-CH ₃
1-13	CH3	4-C ₂ H ₅	R	CH ₃	4-C ₂ H ₅	Н
1-14	CH,	4-C ₃ H,	H	СН	4-CH ₃ H,	Н
1-15	CH,	4-C.H.	н	CH ₃	4-C4H9	Н
1-16	CH3	4-C2H5	2-CH ₃	CH ₁	4-C ₂ H ₅	2-CH ₃
1-17	CH ₃	4-C ₂ H ₅	3-CH ₃	CH ₃	4-C ₂ H ₅	3-CH,
1 - 18	CH,	4-C ₂ H ₅	4-CH ₃	CH,	4-C ₂ H;	4-CH;
1-19	CH3	4-C ₂ H ₅	3. 4-CH ₃	CH,	4-C,H,	3. 4-CH ₃
1 -20	CH3	4-C ₈ H ₇	3-CH ₃	CH ₃	4-C₃H,	3-CH ₂
1-21	CH3	4-C ₃ H ₇	4-CH ₃	CH ₃	4-C ₃ H ₁	4-CH,
1 -22	CH ₃	4-C₄H₃	3-CH ₃	CH3	4-C4H4	3-CH,
1 -23	CH ₃	4-C ₄ H ₉	4-CH _a	CH ₃	4-C₄H₃	4-CH,
1 -24	CH,	4-C ₂ H,	4-C ₂ H ₅	CH,	4-C ₁ H ₅	4-C ₂ H ₅
1 -25	CH ₃	4-C ₂ H ₅	4-0CH ₃	CH;	4-C2H2	4-0CH ₃
1 -26	CH ₃	4-C ₃ H ₇	4-C ₃ H ₇	CH3	4-C ₃ H ₇	4-C ₃ H,
1 -27	CH ₃	4-C3H7	4-0CH ₃	CH,	4-C ₃ H ₇	4-0CH ₃
1 -28	CH ³	4-C ₄ H ₉	4-C ₄ H ₉	CH ₃	4-C ₄ H ₉	4-C ₄ H ₉
1 -29	CH,	4-C ₄ H ₉	4-0C,H ₉	CH ₂	4-C₄H ₉	4-0C ₄ H ₉
1 -30	Н	3-CH ₃	В	H	3-CH ₃	Н
1-31	C 1	H	H	CI	H	Н
1 -32	Cl	2-CH ₃	H	Cl	2-CH ₃	Н
1 -33	C 1	3-CH ²	H	Cl	3-CH ₃	Н

[0059]

【表2】

No. Re: Œ ₄₂) k (E ₆) I R ₁ : Œ ₆) n Œ ₄₀ n 1 −34 C1 4−CH ₃ H C1 4−CH ₃ 2−CH ₃ 1 −35 C1 4−CH ₃ 2−CH ₃ C1 4−CH ₃ 2−CH ₃ 1 −36 C1 4−CH ₃ 3−CH ₃ C1 4−CH ₃ 3−CH ₃ 1 −37 C1 4−CH ₃ 4−CH ₃ C1 4−CH ₃ 4−CH ₃ 1 −38 C ₂ H ₃ H H C ₂ H ₅ H H 1 −39 C ₂ H ₂ 2−CH ₃ H C ₂ H ₅ H H 1 −40 C ₂ H ₅ 3−CH ₃ H C ₂ H ₅ 3−CH ₃ H 1 −41 C ₂ H ₅ 3−CH ₃ H C ₂ H ₅ 3−CH ₃ H 1 −42 C ₂ H ₅ 3−CH ₃ H C ₂ H ₅ 4−CH ₃ H 1 −43 C ₂ H ₅ 4−CH ₃ 4−CH ₃ 4−CH ₃ 4−CH ₃ 4−CH ₃ 1 −44 C ₂ H		Υ	T			·	
1-35 C1 4-CH ₃ 2-CH ₃ C1 4-CH ₃ 2-CH ₃ 1-36 C1 4-CH ₃ 3-CH ₃ C1 4-CH ₃ 3-CH ₃ 1-37 C1 4-CH ₃ 4-CH ₃ C1 4-CH ₃ 4-CH ₃ 1-38 C ₂ H ₃ H H C ₂ H ₅ C1 4-CH ₃ 4-CH ₃ 1-39 C ₂ H ₃ 2-CH ₃ H C ₂ H ₅ 2-CH ₃ H 1-40 C ₂ H ₅ 3-CH ₃ H C ₂ H ₅ 3-CH ₃ H 1-41 C ₂ H ₅ 4-CH ₃ H C ₂ H ₅ 3-CH ₃ H 1-42 C ₂ H ₅ 4-CH ₃ H C ₂ H ₅ 4-CH ₃ H 1-43 C ₂ H ₅ 4-CH ₃ 4-CH ₃ C ₂ H ₅ 4-CH ₃ 4-CH ₃ 1-44 C ₂ H ₅ 4-C ₂ H ₅ 4-CH ₃ C ₂ H ₅ 4-C ₂ H ₄ 4-CH ₃ 1-43 C ₂ H ₅ 4-C ₂ H ₅ 4-CH ₃ C ₂ H ₅ 4-C ₂ H ₄ 4-CH ₃ 1-44 C ₂ H ₅ 4-C ₂ H ₅ 4-CH ₃ C ₂ H ₅ 4-C ₂ H ₄ 4-CH ₃ 1-45 C ₂ H ₅ 4-C ₂ H ₅ 4-CH ₃ C ₂ H ₅ 4-C ₄ H ₄ 4-CH ₃ 1-46 OCH ₂ H H OCH ₃ C ₂ H ₅ 4-C ₄ H ₄ 4-CH ₃ 1-47 OCH ₃ 2-CH ₃ H OCH ₃ 2-CH ₃ H OCH ₃ 1-4CH ₄ 1-4CH ₃ 1-4B OCH ₃ 3-CH ₃ H OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-CH ₃ 4-CH ₃ 1-51 OCH ₃ 4-CH ₃ 4-CH ₃ 0CH ₃ 4-CH ₃ 1-52 OCH ₃ 4-CH ₃ 1-52 OCH ₃ 4-CH ₃ 1-54 CH ₃ 1-52 OCH ₃ 4-CH ₃ 1-64 H OCH ₃ 1-64 H OCH ₃ 1-64 H OCH ₃ 1-65 CH ₃ 4-CH ₃ 1-65 CH ₃ 4-CH ₃ 1-66 H A-C ₄ H ₃	化合物 No.	Ret	(R ₆₃) k	(R ₆₄) 1	R _{tz}	(R _{e∈}) na	(R _{se}) n
1-36 C1 4-CH ₃ 3-CH ₃ C1 4-CH ₃ 3-CH ₃ 1-37 C1 4-CH ₃ 4-CH ₃ C1 4-CH ₃ 3-CH ₃ 1-38 C ₂ H ₂ H H C ₂ H ₃ 2-CH ₃ H C ₁ H ₂ 1-39 C ₂ H ₃ 2-CH ₃ H C ₂ H ₃ 2-CH ₃ H C ₂ H ₃ 2-CH ₃ H C ₂ H ₃ 1-40 C ₂ H ₃ 3-CH ₃ H C ₂ H ₃ 2-CH ₃ H C ₂ H ₃ 4-CH ₃ 4-CH ₃ C ₂ H ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ C ₂ H ₃ 4-CH ₃ 4-CH ₃ 1-43 C ₂ H ₃ 4-C ₂ H ₃ 4-CH ₃ 4-CH ₃ C ₂ H ₃ 4-C ₂ H ₄ 4-CH ₃ 1-45 C ₂ H ₃ 4-C ₂ H ₃ 4-C ₂ H ₃ 4-CH ₃ C ₂ H ₃ 4-C ₂ H ₄ 4-CH ₃ 1-46 OCH ₃ H H OCH ₃ H H OCH ₃ H H H OCH ₃ H H H OCH ₃ H H H OCH ₃ 1-48 OCH ₃ 3-CH ₃ H OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-49 OCH ₃ 4-CH ₃ 4-CH ₃ H OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-50 OCH ₃ 4-C ₃ H ₄ 4-CH ₃ 4-CH ₃ 0CH ₃ 4-C ₄ H ₄ 4-CH ₃ 1-55 OCH ₃ 4-C ₄ H ₄ 4-CH ₃ 1-56 OCH ₃ 4-C ₄ H ₄ 4-CH ₃ 1-60 H 4-C ₄ H ₄ 4-CH ₄ 1-CH	1 -34	Cl	4-CH ₃	Н	CI	4-CH,	i E
1 - 36 C1 4 - CH ₃ 3 - CH ₃ C1 4 - CH ₃ 3 - CH ₃ 1 - 37 C1 4 - CH ₃ 4 - CH ₃ C1 4 - CH ₃ 4 - CH ₃ 1 - 38 C ₂ H ₃ H H C ₂ H ₅ H H 1 - 39 C ₂ H ₂ 2 - CH ₃ H C ₂ H ₅ 2 - CH ₂ H 1 - 40 C ₂ H ₅ 3 - CH ₃ H C ₂ H ₅ 3 - CH ₃ H 1 - 41 C ₂ H ₅ 4 - CH ₃ H C ₂ H ₅ 4 - CH ₃ H 1 - 42 C ₂ H ₅ 4 - CH ₃ H C ₂ H ₅ 4 - CH ₃ H 1 - 43 C ₂ H ₅ 4 - CH ₃	1 -35	Cl	4-CH ₃	2-CH ₃	CI	4-CH,	2-сн.
1-37 C1 4-CH ₃ 4-CH ₃ C1 4-CH ₂ 4-CH ₃ 1-38 C ₂ H ₃ H H C ₂ H ₅ H H 1-39 C ₂ H ₂ 2-CH ₃ H C ₂ H ₅ 2-CH ₂ H 1-40 C ₂ H ₅ 3-CH ₃ H C ₂ H ₅ 3-CH ₂ H 1-41 C ₂ H ₅ 4-CH ₃ H C ₂ H ₅ 4-CH ₃ H 1-42 C ₂ H ₅ 4-CH ₃ H C ₂ H ₅ 4-CH ₃ H 1-43 C ₂ H ₅ 4-C ₂ H ₅ 4-CH ₃ C ₄ H ₅ 4-CH ₃ 4-CH ₃ 1-43 C ₂ H ₅ 4-C ₂ H ₅ 4-C ₄ H ₅ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1-44 C ₂ H ₅ 4-C ₄ H ₅ 4-CH ₃ C ₄ H ₅ 4-C ₄ H ₄ 4-CH ₃ 1-44 OCH ₃ 4-C ₄ H ₉ 4-CH ₃ C ₄ H ₅ 4-C ₄ H ₄ 4-CH ₃ 1-47 OCH ₃ 3-CH ₃ H OCH ₃ 3-CH ₃ H	1 -36	CI	4-CH ₃	3-CH ₃	CI		
1 - 38 C ₂ H ₂ H H C ₂ H ₃ H C ₁ H ₃ 2-CH ₂ H 1 - 39 C ₂ H ₂ 2-CH ₃ H C ₂ H ₅ 3-CH ₂ H 1 - 40 C ₂ H ₅ 3-CH ₃ H C ₂ H ₅ 3-CH ₂ H 1 - 41 C ₂ H ₅ 4-CH ₃ H C ₂ H ₅ 4-CH ₃ H 1 - 42 C ₂ H ₅ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 4-CH ₃ 1 - 43 C ₂ H ₅ 4-C ₂ H ₅ 4-CH ₃ C ₂ H ₅ 4-CH ₃ 4-CH ₃ 1 - 44 C ₂ H ₅ 4-C ₂ H ₇ 4-CH ₃ C ₂ H ₅ 4-C ₂ H ₁ 4-CH ₃ 1 - 45 C ₂ H ₅ 4-C ₂ H ₉ 4-CH ₃ C ₂ H ₅ 4-C ₂ H ₁ 4-CH ₃ 1 - 46 OCH ₃ H H OCH ₃ 2-CH ₃ H H 1 - 49 OCH ₃ 3-CH ₃ H OCH ₃ 3-CH ₃ H 1 - 49 OCH ₃ 4-CH ₃ H	1 -37	<u> C1</u>	4-CH ₃	4-CH ₃	Cl		
1 - 39 C _x H ₂ 2 - CH ₃ H C ₁ H ₅ 2 - CH ₂ H 1 - 40 C ₂ H ₅ 3 - CH ₃ H C ₂ H ₅ 3 - CH ₂ H 1 - 41 C ₂ H ₅ 4 - CH ₃ H C ₁ H ₅ 4 - CH ₃ H 1 - 42 C ₂ H ₅ 4 - CH ₃ H H	1 -38	C ₂ H ₅	H	H	C.H.		
1 - 40 C ₂ H ₃ 3 - CH ₃ H C ₂ H ₃ 3 - CH ₃ H 1 - 41 C ₂ H ₃ 4 - CH ₃ H C ₂ H ₅ 4 - CH ₃ H 1 - 42 C ₂ H ₅ 4 - CH ₃ 4 - CH ₃ C ₂ H ₅ 4 - CH ₃ 4 - CH	1 -39	C _z H _a	2-CH ₃	Н		2-СН-	
1-41 C ₂ H ₃ 4-CH ₃ H C ₁ H ₂ 4-CH ₃ H H	1 -40	C ₂ H ₅	3-CH ₃	Н			
1-42 C ₂ H ₅ 4-CH ₃ 4-CH ₃ C ₁ H ₅ 4-CH ₃ 1-4CH ₃ 4-CH ₃ 1-4CH ₃	1-41	C _z H ₅	4-CH,	Н			
1-43 C _z H ₅ 4-C _z H ₅ 4-CH ₃ C _z H ₅ 4-C _z H ₅ 4-CH ₃ 4-C _z H ₅ 4-C _z H ₅ 4-CH ₃ 4-C _z H ₅ 4-C _z H ₅ 4-CH ₃ H A-CH ₃	1 -42	C_2H_5	4-CH,	4-CH ₃			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -43	C _z H ₅				 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -44	C2H2	4-C ₃ H ₇				
1-46 OCH3 H H OCH3 H H 1-47 OCH3 2-CH3 H OCH3 2-CH3 H 1-48 OCH3 3-CH3 H OCH3 3-CH3 II 1-49 OCH3 4-CH3 H OCH3 4-CH3 H 1-50 OCH3 4-CH3 4-CH3 OCH3 4-CH3 4-CH3 1-51 OCH3 4-CH3 4-CH3 OCH3 4-C2H5 4-CH3 1-52 OCH3 4-C3H7 4-CH3 OCH3 4-C2H1 4-CH3 1-53 OCH3 4-C4H9 4-CH3 OCH3 4-C4H3 4-CH2 1-54 CH3 2-N(CHy); H CH3 2-N(CHy); H 1-55 CH4 3-N(CH3); H CH3 2-N(CH3); H 1-56 CH3 4-N(CH3); H CH3 4-N(CH3); H 1-57 CH3 4-C1 II CH3 4-C1	1 -45	C ₂ H ₅	•				
1-47 OCH3 2-CH3 H OCH3 2-CH3 H 1-48 OCH3 3-CH3 H OCH3 3-CH3 II 1-49 OCH3 4-CH3 H OCH3 4-CH3 H 1-50 OCH3 4-CH3 4-CH3 OCH3 4-CH3 4-CH3 1-51 OCH3 4-CH5 4-CH2 OCH3 4-C2H5 4-CH3 1-52 OCH3 4-C3H7 4-CH3 OCH3 4-C2H7 4-CH3 1-53 OCH3 4-C4H9 4-CH3 OCH3 4-C4H9 4-CH3 1-54 CH3 2-N(CH3); H CH3 2-N(CH3); H 1-55 CH4 3-N(CH3); H CH3 3-N(CH3); H 1-56 CH3 4-N(CH3); H CH3 4-N(CH3); H 1-57 CH3 4-C1 II CH3 4-C1 H 1-58 H 3-CH3 H H H	1 -46	OCH3	Н				
1-48 OCH ₃ 3-CH ₃ H OCH ₃ 3-CH ₃ H 1-49 OCH ₃ 4-CH ₃ H OCH ₃ 4-CH ₃ H 1-50 OCH ₃ 4-CH ₃ OCH ₃ 4-CH ₄ 4-CH ₃ 1-51 OCH ₃ 4-CH ₅ 4-CH ₃ OCH ₃ 4-CH ₄ 4-CH ₃ 1-52 OCH ₃ 4-CH ₄ 4-CH ₃ OCH ₃ 4-CH ₄ 4-CH ₃ 1-53 OCH ₃ 4-CH ₄ 4-CH ₃ OCH ₃ 4-CH ₄ 4-CH ₃ 1-54 CH ₃ 2-N (CH ₃) H CH ₃ 2-N (CH ₃) H 1-55 CH ₃ 3-N (CH ₃) H CH ₃ 3-N (CH ₃) H 1-56 CH ₃ 4-N (CH ₃) H CH ₃ 4-N (CH ₃) H 1-57 CH ₃ 4-C1 II CH ₃ 4-C1 H 1-58 H 3-CH ₃ H H H H H 1-59 H <t< td=""><td>1 -47</td><td>OCH3</td><td>2-СН,</td><td>H</td><td></td><td>2-CH,</td><td></td></t<>	1 -47	OCH3	2-СН,	H		2-CH,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -48	OCH ₃	3-CH ₃	Н	 		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -49	OCH3	4-CH ₃	H	OCH,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -50	OCH,	4-CH ₃	4-CH,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-51	OCH,	4-C ₂ H ₅				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -52	OCH3	4-C ₃ H ₇		OCH ₃		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -53	OCH ₃	4-C ₄ H ₉		OCH,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -54	CH ₃					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -55	CH ₃		Н			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -56	CH ₃	4-N (CH ₃) ,	Н			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -57	CH ₃	4-C1	II		· · · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -58	H	3-CH ₃	Н			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -59	Н	4-C ₃ H,	4-CH,	OCH ₃	4-C,H;	
1-61 H 2-N (CH ₃) , H CH ₃ 2-N (CH ₂) , H 1-62 H 3-N (CH ₃) , H CH ₃ 3-N (CH ₂) , H 1-63 H 4-N (CH ₂) , H CH ₃ 4-N (CH ₂) , H 1-64 H 4-C1 H CH ₃ 4-C1 H 1-65 CH ₃ 3-N (CH ₂) , H CH ₃ H 4-CH ₃	1-60	Н					
1-62 H 3-N (CH ₂) 2 H CH ₃ 3-N (CH ₂) 2 H 1-63 H 4-N (CH ₂) 2 H CH ₃ 4-N (CH ₂) 2 H 1-64 H 4-C1 H CH ₃ 4-C1 H 1-65 CH ₃ 3-N (CH ₂) 2 H CH ₃ H 4-CH ₃	1-61	Н					
1-63 H 4-N (CH ₂) 2 H CH ₃ 4-N (CH ₂) 2 H 1-64 H 4-C1 H CH ₃ 4-C1 H 1-65 CH ₃ 3-N (CH ₂) 2 H CH ₃ H 4-CH ₃	1-62	Н		Н			
1-64 H 4-C1 H CH ₃ 4-C1 H 1-65 CH ₃ 3-N (CH ₃) ₂ H CH ₃ H 4-CH ₃	1 -63	H		Н			
1-65 CH ₃ 3-N (CH ₃) ₂ H CH ₃ H 4-CH ₄	1-64	Н		H			
1 60 90	1 -65	CH ₃	3-N (CH ₃),				
1-66 CH ₃ $4-N$ (CH ₃) 2 H CH ₃ H $4-CH3$	1 -66	CH ₃	4-N (CH ₃) 2	H	CH,	Н	

[0060]

【表3】

化合物 No.	Rei	(R ₆₃) k	(R ₄₄) 1	Rez	(R ₆₅) m	(R _{es}) n
1-67	CH3	4-C1	Н	CH,	H	4-CH,

【0061】一般式 (VII) で示されるトリアリールアミン系化合物の具体的な化合物例を表4、5に示す

[0062]

【表4】

化合物	(R ₇₇) p	(R ₇₂) q	R ₇₃	化合物	(R ₇₁) p	(12 ₇₂) q	R _{ro}
No. 2-1	н	H	н	No.	3. 5-C3,	3-CH,	3-C::,
2-2	В	<u></u> Н	2-CH,	2 -25	3, 5-CR.	4-CH,	4-CH ₂
2-3	н	E E	3-CH,	2 -26	3.5-CH	H	н
2-4	8	E E	4-CH,	2-27	3.3 Cag	н	
2-5	B						2-CJL
		2-CH ₃	2-CH,	2-28	H	н	3-C ₂ H ₄
2-6	H	2-CH ₃	3-CH ₃	2 -29	H	н	4-C ₄ H ₆
2-7	H	2-CH ₃	4-CH,	2 -30	2-Œ,	2-CH ₃	4-C _e H _s
2-8	H	3-CH ₃	3-CH,	2-31	3-CH ₃	3-CH ₃	4-C.H.
2-9	H	3-CH ₃	4-CH,	2 -32	4-CF ₃	4-CH ₃	4-Calif
2-10	- н	4-CH ₃	4-CH,	2-33	3, 4-CH,	3, 4-CH ₃	4-CaHs
2-11	2-CH,	2-CH ₃	2-CH,	2-34	3. 4-CH ₄	3. 4-CH ₃	3-CH,
2-12	2-CH,	2-CH ₃	3-CH,	2-35	3, 4-CH ₃	3. 4-СН	4-CH ₃
2-13	2-CH ₃	2-CH ₃	4-CH ₃	2-36	3, 4-CH ₃	н .	4-C _e H _s
2-14	2-CH,	3-CH ₃	3-CH ₃	2-37	3, 4-CH,	3-CH ₃	4-C _s H _s
2-15	2-CH,	3-CH,	4-CH,	2-38	3, 4-CH ₃	3~CH ₃	4-C.H.
2-16	2-CH ₃	4-CH,	4~CH ₃	2 -39	3, 4-CH,	4-CH ₃	4-Cally
2-17	3-CH ₃	3-CH ₃	3-C∺₃	2 -40	3, 4-CH,	H	н
2-18	3-CH,	3-СН,	4-Ci,	2~41	4-CH ₃	3-OCH,	н
2-19	3-CH,	4-СҢ	4-CH,	2 -42	4-CH,	4-0CH ₃	H
2 -20	· 4-Cil,	4-CH ₃	4-CH ₃	2~43	3. 4-CH ₂	3-0CH,	н
2-21	2, 4-CH ₃	н	н	2-44	3, 4-CH ₃	4-0CH ₃	H
2 -22	2, 4-CH,	3-CH,	3-CK ₂	2-45	4-CH,	4-0CH ₃	4-C _p H _s
2-23	2, 4-CH,	4-CH ₃	4-CH ₂	2 -46	3, 4-CH ₃	4-0CH ₃	4−C _p H ₅

[0063]

【表5】

【0064】また、上記一般式(I)で示される化合物 以外にも、本発明の重合体と共に使用して、良好な特性 が得られる電荷輸送材料として、以下の一般式(VII

2-55

4-CH₃

4-CH,

I) ~ (XII) で示される化合物が挙げられる。 【0065】 【化6】

【0066】式中、Xsは置換基を有していてもよい2 価の炭化水素基を表し、Rsi~Rs6はそれぞれ水素原 子、ハロゲン原子、置換基を有してもよいアルキル基、 アルコキシ基、または置換アミノ基を表し、これらは互 いに同一でも異なっていてもよい。また、Rs7~Rs12 はそれぞれ水素原子、置換基を有してもよいアルキル 基、置換基を有してもよいアリール基、または置換基を 有してもよい複素環基を表し、これらは互いに同一でも 異なっていてもよく、Rs8とRs9、Rs11とRs12は縮合 して炭素環基または複素環基を形成していてもよい。 【0067】

10007

【化7】

$$\begin{array}{c}
R_{01} \\
R_{02}
\end{array}$$

$$\begin{array}{c}
R_{04} \\
R_{05}
\end{array}$$

$$\begin{array}{c}
R_{04} \\
R_{05}
\end{array}$$

$$\begin{array}{c}
R_{04} \\
R_{05}
\end{array}$$

【0068】式中、X9は一CH2CH2-または一CH=CH-を表し、R91~R93はアルキル基、アラルキル基、置換基を有してもよいアリール基、または置換基を有してもよい複素環基を表し、R94~R95は水素原子、アルキル基、アルコキシ基またはハロゲン原子を表す。

[0069]

【化8】

$$R_{101}$$

$$R_{104}$$

$$R_{105}$$

$$R_{103}$$

$$R_{103}$$

【0070】式中、R₁₀₁~R₁₀₂はアルキル基を表し、R₁₀₃は水素原子、アルキル基、アルコキシ基またはハロゲン原子を表し、R₁₀₄~R₁₀₅は水素原子、アルキル基、アラルキル基または置換基を有してもよいアリール基を表す。

[0071]

- --【化9】

$$R_{112}$$
 R_{113}
 R_{114}
 R_{114}
 R_{114}
 R_{114}
 R_{114}
 R_{115}
 R_{115}
 R_{116}
 R_{116}

【0072】式中、Rim~Rimはそれぞれ水素原子、アルキル基、アルコキシ基またはハロゲン原子を表し、これらは互いに同一でも異なっていてもよい。

[0073]

【化10】

$$\begin{array}{c|c} R_{121} & H_2 \\ \hline \\ R_{122} & H_2 \\ \hline \\ C_2 H_6 \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

$$\begin{array}{c|c} C & C \\ C & C \\ C & C \\ \end{array}$$

【0074】式中、R₁₂₁~R₁₂₄はそれぞれ水素原子、 アルキル基、置換基を有してもよいアリール基または置 換基を有してもよい複素環基を表す。

【0075】電荷輸送材料の含有量は表面層全重量に対し、1~90重量%であることが好ましく、5~60重量%であることがより好ましい。含有量が1重量%に満たないと 残留電位が溜まり易くなり、90重量%を超えると未反応の水酸基が増えるため、電気特性が環境に依存するようになる。また、付着物が付き易くなる。

【0076】表面層に用いられる結着樹脂と電荷輸送材料の少なくとも一方は架橋されていることが好ましい。 架橋剤としては、メラミン誘導体、ポリイソシアネート 等が挙げられる。

【0077】メラミン誘導体としては下記一般式(XII)で示される化合物が好ましい。

[0078]

【化11】

20

【0079】式中、R¹はメチル基、エチル基、または ブチル基を表し、R²は水素、アセトニル基、またはヒ ドロキシメチル基を表す。

【0080】イソシアネートはブロック型イソシアネー トであることが好ましい。このブロック型イソシアネー トは、ポリイソシアネート化合物に、ある種の活性水素 を有する化合物(ブロック剤)を反応させて得られる常 温で安定な化合物であり、これを一定の条件下に加熱す るとブロック剤が解離して、もとの活性なイソシアネー ト基が再生される。このようなブロック型イソシアネー トのベースとなるポリイソシアネート化合物としては、 トリレンジイソシアネート、ジフェニルメタン-4, 4'-ジイソシアネート、ヘキサメチレンジイソシアネ ート、イソホロンジイソシアネート、ジシクロヘキシル メタンジイソシアネート、ポリメチレンポリフェニルポ リイソシアネート等が挙げられる。このイソシアネート と反応させるブロック剤としては、カプロラクタム等の ラクタム類、メチルエチルケトオキシムやアセトオキシ ム等のオキシム類、マロン酸ジエチル、アセト酢酸エチ ル等のβ-ジケトン類等が挙げられる。

【0081】本発明においては、表面を平滑にするために、表面層中にレベリング剤を添加することができる。 【0082】本発明の表面層の膜厚は $0.5\sim50\mu$ mであることが好ましく、 $2\sim10\mu$ mであることがおまり好ましい。膜厚が 0.5μ mに満たないと寿命の向上が図れず、 50μ mを超えると感度の低下や、残留電位の上昇が発生しやすくなる。

【0083】本発明の電子写真感光体は以下のように製造できる。

布液を調整する。その上に感光層が形成された導電性基体をこの塗布液に浸漬して、塗布層を乾燥し、本発明の電子写真感光体が得られる。アルコール溶剤としては、メタノール、エタノール、nープロパノール、イソプロパノール、nーブタノール、メダノール、secーブタノール、tertーブタノール等が挙げられる。

【0085】本発明の電子写真感光体は、ライトレンズ系複写機、近赤外光もしくは可視光に発光するレーザービームプリンター、デイジタル複写機、LEDプリンター、レーザーファクシミリなどの電子写真装置に用いることができる。また、この電子写真感光体は一成分系、二成分系の正規現像剤あるいは反転現像剤と合わせて用いることができる。

【0086】図1は本発明の電子写真感光体7を備えた非接触帯電型の電子写真装置20の概略図である。電子写真感光体7の周囲には、電源9から電圧が供給されるコロナ放電方式の帯電用部材8、電子写真感光体7を露光する画像入力装置10、電子写真感光体7上の潜像にトナーを付着させる現像装置11、電子写真感光体7上のトナー画像を紙等の記録媒体に転写させる転写装置12、電子写真感光体7上に残留したトナーを除去するりリーニング装置13、および電子写真感光体7上の電荷を除去する除電器14がこの順で設けられている。また、記録媒体の搬送路の電子写真感光体より下流側にはトナー画像を記録媒体に定着させる定着装置15が設けられている。なお、クリーニング装置13は省略してもよい。

【0087】図2は本発明の電子写真感光体7を備えた接触帯電型の電子写真装置22の概略図である。なお、図1の電子写真装置20の構成と同じ構成には同じ符号を用い、その説明を省略する。この電子写真装置22は図1の電子写真感光体20の帯電用部材8の代わりに、電子写真感光体7に接触する帯電用部材24を備えている。この電子写真装置22ではクリーニング装置13、除電器14を省略sることができる。

【0088】また、図3は本発明の電子写真感光体7を備えたプロセスカートリッジ17の概略図である。なお、図1の電子写真装置20の構成と同じ構成には同じ符号を用い、その説明を省略する。このプロセスカートリッジ17内には、電子写真感光体7、帯電用部材8、現像装置11、クリーニング装置13、及び除電器14が固定され、プロセスカートリッジ17の外側には、このプロセスカートリッジ17を電子写真装置に取りつけるための取り付けレール16が固定されている。

[0089]

【実施例】以下に、本発明の実施例を説明するが、本発明はこれらの実施例に何ら限定されるものではない。

(実施例1) 4重量部のポリビニルブチラール樹脂 (エスレックBM-S、積水化学社製) を溶解した n - ブチルアルコール170重量部に、ジルコニウム含有有機金

22

属化合物としてアセチルアセトンジルコニウムブチレート30重量部、およびシリコン含有有機金属化合物として γ -アミノプロビルトリメトキシシラン3重量部を添加して撹拌し、下引き層形成用の塗布液を得た。この塗布液を、ホーニング処理により粗面化された直径84mmのアルミニウム基体の上に浸漬塗布し、室温で5分間風乾を行った後、基体を10分間で50 $^{\circ}$ に昇温し、50 $^{\circ}$ 、85 $^{\circ}$ RH(露点47 $^{\circ}$)の恒温恒湿槽中に入れて、20分間加湿硬化促進処理を行った。その後、熱風乾燥機に入れて170 $^{\circ}$ で10分間乾燥を行った。

【0090】電荷発生材料としての塩化ガリウムフタロシアニン1.5 重量部、塩化ビニルー酢酸ビニル共重合体樹脂(VMCH、日本ユニオンカーバイト社製)10重量部およびnーブチルアルコール300重量部からなる混合物をサンドミルにて4時間分散した。得られた分散液を上記下引き層上に浸漬塗布し、乾燥して、膜厚0.2μmの電荷発生層を形成した。

【0092】次に、導電性微粒子である酸化スズ粒子 (S-1、三菱マテリアル社製) 100重量部をヘプタ デカフルオロデシルトリメトキシシラン (TSL823 3、東芝シリコーン社製) 20重量部、及びメタノール 300部とともにボールミルで24時間攪拌し、この溶 液をろ過し、フィルター上の酸化スズをメタノールで洗 浄後、150℃で2時間乾燥することによって酸化スズ 粒子の表面処理を行なった。この表面処理を行なった酸 化スズ粒子12重量部と下記構造式 (XIV) で示され る電荷輸送材料4重量部と、ブロック型イソシアネート (スミジュールBL3175、住友バイエルウレタン社 製) 11重量部をポリビニルブチラール樹脂 (エスレッ クBH-S、積水化学社製)8重量部をn-ブチルアル コール200部に溶解した溶液に混ぜ、サンドミルにて 12時間分散した。得られた分散液に前記電荷輸送層を 浸漬塗布して、150℃1時間の乾燥硬化処理を施し6 μmの表面層を、上記電荷輸送層の上に形成した。この ように、表面層塗布溶剤にその下の電荷輸送層樹脂を溶 解しないアルコールを使用したため、上記のように全層 を浸漬塗布により形成でき、効率的に電子写真感光体を 製造できた。なお、表面層塗布液の液粘度は、イソシア ネート硬化剤としてブロック型のものを使用している 為、常温(20~25℃)においては1ヶ月経過しても 大きな変化はなく安定であった。

[0093]

【化12】

【0094】上記のようにして得られた電子写真感光体を、(A)20℃、50%RHの環境下で、グリッド印加電圧-650Vのスコロトロン帯電器で帯電し、

(B) 0. 5秒後に780nmの半導体レーザを用いて9.0mJ/m²の光を照射して照射部を放電させ、更に、(C) 3秒後に50mJ/m²の赤色LED光を照射して全面を除電するというプロセスの各工程における電子写真感光体の表面の電位を測定した。この場合、

(A) の電位 V_H が高い程コントラストを高くすることが可能であり、(B) の電位 V_L が低い程高感度であり、(C) V_{RP} の電位が低い程残留電位が少なく、次の画像形成に影響する残留画像やカブリが少ないことを示す。

【0095】また、上記の電子写真感光体を、28℃、

85%RHの高温高湿環境下にて接触帯電方式であるプリンター(富士ゼロックス製 Color Laser Wind 3310を電子写真感光体の表面の電位を測定できるように改造)に装着し、50000枚のA4用紙にモノクロ画像を印刷し、画質と感光体の摩耗量を評価した。その結果を表6に示す。

24

(実施例2)表面層中の材料である構造式(XIV)で示される電荷輸送材料に代えて、構造式(XV)で示される電荷輸送材料を用いた以外は実施例1と同様に電子写真感光体を作製し、評価した。その結果を表6に示す。

【0096】 【化13】

【0097】 (実施例3) 電子写真感光体の電荷輸送層 までは、実施例1と同様に作製した。次に、導電性微粒 子である酸化スズ粒子 (S-1、三菱マテリアル社製) 100重量部を(3、3、3-トリフルオロプロピル) トリメトキシシラン(チッソ社製)20重量部、及びメ タノール300部とともにボールミルで24時間攪拌 し、この溶液をろ過し、フィルター上の酸化スズ粒子を メタノールで洗浄後、150℃で2時間乾燥することに よって酸化スズ粒子の表面処理を行なった。この表面処 理を行なった酸化スズ粒子12重量部と構造式 (XI V) で示される電荷輸送材料4重量部を、ポリビニルブ チラール樹脂(エスレックBH-S、積水化学社製)8 重量部をnーブチルアルコール200部に溶解した溶液 に混ぜ、サンドミルにて12時間分散した。得られた分 散液を用いて浸漬塗布を行い、150℃1時間の乾燥硬 化処理を施し厚さ6μmの表面層を、上記電荷輸送層の 上に形成した。このようにして得られた電子写真感光体 を実施例1と同様に評価をした。その結果を表6に示

(実施例4) 電子写真感光体の電荷輸送層までは、実施例1と同様に作製した。次に、導電性微粒子である酸化スズ粒子(S-1、三菱マテリアル社製)100重量部をヘプタデカフルオロデチルトリメトキシシラン(TS

L8233、東芝シリコーン社製) 20重量部、及びメ タノール300部とともにボールミルで24時間攪拌 し、この溶液をろ過し、フィルター上の酸化スズ粒子を メタノールで洗浄後、150℃で2時間乾燥することに よって酸化スズ粒子の表面処理を行なった。この表面処 理を行なった酸化スズ粒子12重量部と構造式 (XI V) で示される電荷輸送材料4重量部とブロック型イソ シアネート(コロネート2507、日本ポリウレタンエ 業社製) 15重量部を、ポリアミド樹脂(プラタボンド MX1602、エルフアトケムジャパン社製) 8重量部 をnーブチルアルコール200部に溶解した溶液に混 ぜ、サンドミルにて12時間分散した。得られた分散液 を用いて浸漬塗布を行い、150℃1時間の乾燥硬化処 理を施し厚さ6μmの表面層を、上記電荷輸送層の上に 形成した。このようにして得られた電子写真感光体を実 施例1と同様に評価をした。その結果を表6に示す。

(実施例 5)表面層中の酸化スズ粒子(S-1、三菱マテリアル社製)に代えて、 Sb_2O_6 がドープされた酸化スズ粒子(T-1、三菱マテリアル社製)を金属酸化物粒子として用いた以外は実施例 1 と同様に金属酸化物の表面処理をして、電子写真感光体を作製し、評価した。その結果を表 6 に示す。

(比較例1) 表面層を設けなかった以外は実施例1と同

様にして電子写真感光体を作製し、評価した。その結果 を表6に示す。

【0098】この電子写真感光体では、摩耗耐性が低い ために、プリントするにつれ、電荷輸送層が薄くなり、 帯電性が低下したので、50000枚印刷後の電気特性 は評価できなかった。

(比較例2) 電荷輸送層までは、実施例1と同様にして 電子写真感光体を作製した。次に、導電性微粒子である 酸化スズ粒子(S-1、三菱マテリアル社製)100重 量部をヘプタデカフルオロデシルトリメトキシシラン (TSL8233、東芝シリコーン社製) 20重量部、 及びメタノール300部とともにボールミルで24時間 攪拌し、この溶液をろ過し、メタノールで洗浄後、15 0℃で2時間乾燥することによって酸化スズ粒子の表面・ 処理を行なった。この表面処理を行なった酸化スズ粒子

12重量部とブロック型イソシアネート (スミジュール BL3175、住友バイエルウレタン社製) 11 重量部 をポリビニルブチラール樹脂(エスレックBH-S、積 水化学社製) 12重量部をn-ブチルアルコール200 部に溶解した溶液に混ぜ、サンドミルにて12時間分散 した。得られた分散液を用いて浸漬塗布を行い、150 ℃1時間の乾燥硬化処理を施し厚さ6 u mの表面層を、 上記電荷輸送層の上に形成した。このようにして得られ た電子写真感光体を実施例1と同様に評価をした。その

【0099】画質については、最初に文字を印刷した 後、低濃度のソリッド画像を印刷したときに、先に印刷 した文字のネガゴーストが確認された。

[0100] 【表6】

結果を表6に示す。

	-27	初期電気特性			50000 枚7 9小後電気特性			
	Vb[v]	V1[v]	Vrp[v]	Υn[ν]	V1[v]	Vrp[v]	[µ m]	初期百賀
実施例 1	-6 40	-190	-40	-630	-195	-50	1. 7	問題無し
英施例 2	-645	~185	-45	-640	-190	-55	1. 7	配題無し
英施例3	-640	~185	-40	-635	-190	-45	1.9	問題無し
突施例 4	-640	-180	-40	-630	-185	-65	1.8	問題無し
実施例 5	-645	-185	-45	-635	-185	-50	1.9	問題無し
比較例1	-645	-150	-30		_	-	10. 1	問題無し
比較例2	-635	-300	-250	-630	-330	-280	1. 6	ゴースト発生

[0101]

【発明の効果】本発明は、高い表面強度、良好な表面平 滑性、及び潤滑性を有し、ゴーストのない画像を形成で きる電子写真感光体、そのような電子写真感光体を備え た電子写真装置及びプロセスカートリッジを提供でき る。また、本発明は、浸漬塗布方法により表面層が形成 30 12 転写装置 できる電子写真感光体の製造方法を提供できる。

【図面の簡単な説明】

【図1】 本発明で用いる非接触帯電型の電子写真装置 の概略図である。

【図2】 本発明で用いる接触帯電型の電子写真装置の 概略図である。

【図3】 本発明で用いるプロセスカートリッジの概略 図である。

【符号の説明】

7 電子写真感光体

- 带電用部材 8
- 電源
- 10 画像入力装置
- 11 現像装置
- - 13 クリーニング装置
 - 14 除電器
 - 15 定着器
 - 16 取り付けレール
 - 17 カートリッジ
 - 20 電子写真装置
 - 22 電子写真装置
 - 24 帯電用部材

【図1】

20

フロントページの続き

(72)発明者 穂積 正彦

神奈川県南足柄市竹松1600番地 富士ゼロ

ックス株式会社内

(72)発明者 八百 健二

神奈川県南足柄市竹松1600番地 富士ゼロ

ックス株式会社内

(72)発明者 鈴木 貴弘

神奈川県南足柄市竹松1600番地 富士ゼロ

ックス株式会社内

(72) 発明者 江角 鉄也

神奈川県南足柄市竹松1600番地 富士ゼロ

ックス株式会社内

(72) 発明者 白井 正治

神奈川県南足柄市竹松1600番地 富士ゼロ

ックス株式会社内

Fターム(参考) 2H068 AA03 AA04 AA05 BA03 BA12

BA58 BB16 BB28 BB29 CA37

EA14 EA16