Ejercicios de Programación Declarativa

Curso 2019/20

Hoja 6

En estos ejercicios usa el predicado del corte siempre que sea útil.

- 1. Escribe una versión del predicado sumintersec/3 utilizando la notación (P->Q;R). $sumintersec(L_1, L_2, N) \longleftrightarrow L_1 \ y \ L_2 \ son \ dos listas de enteros,$ **ordenadas de menor a mayor**y <math>N es la suma de los elementos que están en la intersección de las dos listas.
- 2. Implementación de conjuntos usando listas. Escribe los siguientes predicados en Prolog:
 - (a) $nomiembro(X, L) \longleftrightarrow X$ no es un elemento de la lista L. Utiliza este predicado para definir los siguientes.
 - (b) $hazconjunto(L, C) \longleftrightarrow C$ es un conjunto, representado por medio de una lista, que tiene los mismos elementos que L (no importa en que orden, pero sin que ninguno esté repetido).
 - (c) $union(C_1, C_2, C) \longleftrightarrow C$ es el conjunto formado por los elementos de la unión de los conjuntos C_1 y C_2 .
 - (d) $interseccion(C_1, C_2, C) \longleftrightarrow C$ es el conjunto formado por los elementos de la intersección de los conjuntos C_1 y C_2 .
- 3. Define en Prolog un predicado treeSort(L, LO), para implementar el algoritmo de ordenación de listas utilizando un árbol binario ordenado, que ya programaste en Haskell.
 - $treeSort(L,LO) \longleftrightarrow LO$ es la lista resultante de ordenar la lista L utilizando un árbol ordenado.
- 4. Sean A_1 y A_2 dos árboles binarios ordenados. Define un predicado para determinar si A_1 está contenido en A_2 . Es decir, cada nodo de A_1 es un nodo de A_2 . Haz uso de que los árboles están ordenados.
- 5. Programa en Prolog el siguiente predicado utilizando la aritmética de Prolog: $polinomio(E, X) \longleftrightarrow$ la expresión E es un polinomio con incógnita X.
- 6. Considera el siguente programa Prolog:

```
resta(X, cero, X).
resta(X, suc(Y), Z) :- resta(X, Y, suc(Z)).
```

(a) Describe el árbol de búsqueda de cada uno de los siguientes objetivos a partir del programa anterior: \+ resta(suc(cero), Y, suc²(cero)).

```
\+ resta(suc(cero), suc(cero), suc^2(cero)).
```

(b) Considera ahora la siguiente modificación del programa anterior:

```
resta'(X, cero, X) :- !.
resta'(X, suc(Y), Z) :- resta'(X, Y, suc(Z)).
Determina razonadamente cuáles son las respuestas de los siguientes objetivos Prolog:
resta(X, suc<sup>2</sup>(Y), suc<sup>2</sup>(cero)).
resta'(X, suc<sup>2</sup>(Y), suc<sup>2</sup>(cero)).
\+ resta'(suc<sup>3</sup>(cero), Y, suc(Z)).
```

7. Define un predicado Prolog para conseguir una lista con todas las sublistas de una lista dada, es decir: $suslistas(L+, Ls-) \longleftrightarrow Ls$ es una lista cuyos elementos son las sublistas de la lista dada L.

L+, Ls- indica que el modo de uso del primer argumento será de entrada y el segundo de salida.