Dans tout le devoir, le plan est reporté à un repère $(O; \vec{i}, \vec{j})$ orthonormé direct.

Exercice 1: (4 points)

- **1.** Résoudre dans \mathbb{R} l'équation $cos(y) = \pi$.
- 2. Résoudre dans \mathbb{R} l'équation $sin(x) = sin(\frac{8\pi}{7})$.
- 3. Montrer que $\frac{\pi}{3} \frac{\pi}{4} = \frac{\pi}{12}$.
- 4. En déduire la valeur de $sin(\frac{\pi}{12})$ en utilisant la formule d'addition.

Exercice 2: (5 points) Soient A et B deux points tels que AB = 8 m. Soit I le milieu du segment [AB]. Soient G l'ensemble des points M tels que : \overrightarrow{MA} . $\overrightarrow{MB} = 9$ et \mathcal{H} l'ensemble des points M tels que : \overrightarrow{MA} . $\overrightarrow{MB} = -17$.

- 1. Démontrer que $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 IA^2$
- 2. En déduire que M appartient à \mathcal{G} si et seulement si $MI^2 = 25$.
- 3. Déterminer alors l'ensemble \mathcal{G} .
- 4. Déterminer \mathcal{H} .

Exercice 3: (3 points)

Montrer que (E): $x^2 - 2x + y^2 + 5y - \frac{7}{4} = 0$ est l'équation d'un cercle dont on déterminera son centre et son rayon.

Exercice 4: (8 points)

On considère les points E(3;0) et F(2;4) et la droite \mathcal{D}_1 d'équation x+y-2=0.

- 1. Déterminer l'équation de la médiatrice du segment [EF].
- 2. Représenter sur une figure les droites \mathcal{D}_1 et \mathcal{D}_2 .
- **3.** Calculer les coordonnées du point L intersection de \mathcal{D}_1 et \mathcal{D}_2 .
- 4. Déterminer l'équation du cercle C de centre F passant par le point E.
- **5.** Déterminer par le calcul si le point L appartient au cercle C.

Exercice 5: (Bonus)

- 1. Démontrer que la fonction racine carrée est strictement croissante.
- 2. Démonstrer le théorème qui fournit l'équation d'un cercle.
- 3. Démontrer le théorème de la médiane.