לינארית פ \sim מבוא לצורת ג'ורדן, פולינום מינימלי

שחר פרץ

2025 במאי 7

רשימת פולינומים חמודים:

- $f_A = f_T = \det(Ix A)$ הפולינום האופייני
 - A_f בהינתו מטריצה, המטריצה סטריצה -

משפט 1. תהי $M_n(\mathbb{F})$, איזיאל, קיים ויחיד ב $I_A\subseteq \mathbb{F}[x]$ פוליגום פתוקו בעל $I_A=\{p\in \mathbb{F}[[x]\colon p(A)=0]\}$, פוליגום פתוקו בעל הרגה פיניפלית.

I_A לעיל ואדרה 1.

הוכחה. נבחין כי $\mathbb{F}[x]$ תחום שלמות ולכן נוצר ע"י פולינום הוכחה. כי סה"כ אידיאל. $\mathbb{F}[x]$ תחום שלמות ולכן נוצר ע"י פולינום הוכחה. נבחין כי $p \sim p'$ אז $I_A = (p) = (p')$ אז הוא יחיד. לפולינום הנ"ל נקרא הפולינום המינימלי של $T: V \to V$ ט"ל ניתן להגדיר את $T: V \to V$ ט"ל ניתן להגדיר את $T: V \to V$

 $m_A\mid p$ ומתקיים $p\in I_A$ אז p(A)=0 כך ש־ $p\in \mathbb{F}[x]$ ומתקיים $p\in M_n(\mathbb{F})$ הערה 1. אם

. ממספט קיילי המילטון. ש־ $m_a \mid f_a$ שי אנו יודעים אנו אנו $m_a \mid f_a$

 $D\colon \mathbb{F}[x] o \mathbb{F}[x]$ דוגמאות. עבור $H_a=(x-1)^n$ אל העמים כן - לדגומה בעבור $m_a=(x-1)^n$ לא בהכרח $m_a=(x-1)^n$ אופרטור הגזירה מתקיים $H_a=(x-1)^n$ וכן $H_a=(x-1)^n$ כי יש פולינומים שנדרש לכזור $H_a=(x-1)^n$ פולינומים שנדרש לכזור הגזירה מתקיים $H_a=(x-1)^n$ וכן $H_a=(x-1)^n$ כי יש פולינומים שנדרש לכזור $H_a=(x-1)^n$ אופרטור הגזירה מתקיים $H_a=(x-1)^n$ וכן $H_a=(x-1)^n$ כי יש פולינומים שנדרש לכזור $H_a=(x-1)^n$ וכן $H_$

 $A=M_A$ אז $A=M_A$ משפט 2. (תזכורת) תהא $A=A_f$ המטריצה המצורפת ל-

 $m_A=m_T$ אז $T\colon V o V$ משפט 3. אס A משפט 3

 $I_A=I_T$ אז $[p(T)]_B=p([T]_B)$ אז $p\in\mathbb{F}[x]$. אז הוכחה. נבחר בסיס ל-B, ל-B, איז הוכחה. נבחר בסיס ל-

 $m_a=\prod_{i=1}^k(x-\lambda_i)$ אז ($f_A=\prod_{i=1}^k(x-\lambda_i)^{r^i}$ נניח ש־A לכסינה והע"ע השונים הם $\lambda_1\dots\lambda_k$ (כלומר $\lambda_1\dots\lambda_k$

הוכחה. בה"כ A אלכסונית, $A = \mathrm{diag}(\lambda_1 \dots \lambda_k)$ עם חזרות. נבחין ש־0 $\prod_{i=1}^k (x-\lambda_i I) = 0$ עם חזרות. נבחין אם $A = \mathrm{diag}(\lambda_1 \dots \lambda_k)$ היוכחה. בה"כ A אלכסונית, $A = \mathrm{diag}(\lambda_1 \dots \lambda_k)$ עם חזרות. $A = \mathrm{diag}(\lambda_1 \dots \lambda_k)$ מתאים ל־ λ_i כלשהו וכך זה מתאפס. ידוע $T \colon V \to V$ עד: $V \to V$ שבסיס של ו"עים $V \to V$ שירד או המכופלים אז ה"ע שירד אי ידע מאס אים הז הוקטור העצמי המצאים. $M_a \mid \prod_{i=1}^k (x-\lambda_i)$

איפיון דרגת הפולינום המינימלי

. יותר נמוכות חזקות של סצ"ל את לבטא שעבורו ניתן שעבורו ניתן למעשה, הנ"ל הוא המינימלי שעבורו ניתן לבטא את d

. בשדה. ללא תלות בשדה אז m_A ו־ $A\in M_n(\mathbb{K})$ אז ניתן לחשוב על " $\mathbb{F}\subseteq\mathbb{K}$, ר $A\in M_n(\mathbb{F})$ אם הערה 3.

משפט 4. אס g(T), h(T) ט"ל אז $T \colon V o V$ י $g, h \in \mathbb{F}[x]$ פתחלפות.

הוכחה.

$$(g(T) \circ h(T))(v) = (g \cdot h)(T)(v) = (h \cdot g)(T)(v) = (h(T) \cdot g(T))(v)$$

f(T) אז $\deg f>0$ וגם $f(x)\mid m_T(x)$ אם $T\colon V o V$. אם ט"ל ט"ל יהי m_T הפולינום מינימלי). יהי יהי אינו הפיך.

הפיכה. אז: $f \cdot g = m_T$ כך ש־ $g \in \mathbb{F}[x]$ הפיכה ש־ $f \mid m_T$ הפיכה. אז:

$$f(T) \circ g(T) = m_T(T) = 0, \ 0 = f(T)^{-1} \circ (0) = g(T)$$

ידוע:

$$\deg m_T = \underbrace{\deg f}_{>0} + \deg g \implies \deg g < \deg m_T$$

lacktriangleבה"כ g מתוקן וקיבלנו סתירה למינימליות של m_T , אלא אם כן g(x) פולינום ה־g(x) פולינום מינימלי.

הוכחה אהה עבור מחלק של m_A עבור מטריצה.

 $m_T(\lambda)=0$ משפט 5. אס λ ע"ע של T אז

הוכחה. נשתמש בטענת עזר: אם $p\in\mathbb{F}[x]$ פולינום המקיים $p\in\mathbb{F}[x]$, ו"ג ע"ע של p, אז $p(\lambda)=0$ (טענת עזר: אם $p\in\mathbb{F}[x]$ פולינום המקיים $p(\lambda)=0$ ווא יהיה די ברור, אבל הנה נימוק קיים $p(\lambda)=0$ שעבורו $p(\lambda)=0$ (הסיבה לשוויון האחרון – תפתחו את $p(\lambda)=0$ ווא יהיה די ברור, אבל הנה נימוק קצר)

$$p(x) = \sum_{i=0}^{n} a_i x^i, \ p(T)(v) = \left(\sum_{i=0}^{n} a_i T^i\right)(v) = \sum_{i=0}^{n} a_i T^i(v) = \left(\sum_{i=0}^{n} a_i \lambda^i\right) v = p(\lambda)v$$

"זה טבעוני, זה טבעוני וזה ממששש טבעוני". "מה זה אומר שזה לא טבעוני? יש בזה קצת ביצה".

 $m_T(\lambda)=0$ משפט 6. λ ע"ע של T אמ"מ λ

 λ וסה"כ $(x-\lambda)\mid f_T$ וסה"כ $m_T\mid f_T$ ידוע אחד הוכח. לפי משפט בזו $m_T(x)\mid m_T(x)$ לפי משפט הוכחה. כיוון אחד הוכח. מהכיוון השני, ידוע $m_T(\lambda)=0$ לפי משפט בזו $m_T(x)\mid m_T(x)$ ידוע של $m_T(x)$ וסה"כ $m_T(x)$ ידוע של $m_T(x)$ וסה"כ $m_T(x)$ וסה"כ $m_T(x)$ ידוע של $m_T(x)$ ידוע אחד הוכח.

 $m_A(x)\mid f_A(x)\mid (m_A(x))^n$.7 משפט

הוכחה. נותר להוכיח \mathbb{F} את \mathbb{F} . ידוע שפולינום מינימלי/אופייני נשארים זהים מעל כל שדה שמכיל את \mathbb{F} . לכן, ניתן להניח שהוא $f\mid g$ מעל \mathbb{F} , אז \mathbb{F} מעל \mathbb{F} . אז:

$$(\sum n_i = n) \qquad f_A = \prod_{i=1}^k (x - \lambda_i)^{n_i}, \ m_A(x) = \prod_{i=1}^k (x - \lambda_i)^{m_i} \quad (1 \le m_i \le n_i), \ (m_a(x))^n = \prod_{i=1}^k (x - \lambda_i)^{n|m_i}$$

 $.f_A \mid m_A^n$ אז מצאנו $1 \leq m_i \implies n \leq m_i \cdot n$ בגלל ש־

 $\dim V = n$ עם $T \colon V o V$ הוכחה זהה עבור

 $g \mid m_A$ אי פריק. אז $g \mid f_A$ נניח ש־ $g \mid f_A$ מסקנה (שימושית!). נניח ש

הוכחה.

$$g \mid f_A \mid (m_A)^n$$

 $g \mid m_A$ ידוע g אי פריק, ולכן ראשוני (כי $\mathbb{F}[x]$ תחום ראשי) ולכן

משפט 8. נניח ש־ $A=\log(A_1\dots A_k)$, אז מתקיים אין גלוקים עס גלוקים עס גלוקים על האלכסוו, $A=\deg(A_1\dots A_k)$, אז מתקיים $M_a=\ell\mathrm{cm}(m_{A_1}\dots m_{A_k})$

אמ"מ: $\ell = \ell \mathrm{cm}(a_1 \ldots a_n)$ ור ור $\alpha_1 \ldots \alpha_n \in R$ אמ"מ:

$$\forall i \in [n] : a_i \mid \ell$$

$$\forall b \in R \colon \forall i \in [n] \colon a_i \mid b \longrightarrow \ell \mid b$$

באופן $m_A(x)$ ה בכל ה־ ℓ כת שמתחלק בכל הדרגה המינימלית בעל הוא הפולינום בעל ה־ ℓ כלי, במקרה שלנו, ה־מקבל בכל ה־ ℓ כלי, מתקבל כיוצר של אידיאל החיתוך בתחום הראשי. כלומר:

$$I = (\ell) = \bigcap_{i=1}^{n} Ra_i$$

($Ra = (a) = \langle a \rangle$ נהבהרת הסימון:

הוכחה (למשפט לעיל). לכל $g \in \mathbb{F}[x]$ מתקיים:

$$g(A) = \begin{pmatrix} g(A_1) & & \\ & \ddots & \\ & & g(A_k) \end{pmatrix}$$

. מתקיים dem^- אמ"מ g(A)=0 אמ"מ dem^- אמ"מ g(A)=0 אמ"מ dem^- אמ"מ פיימנו. אמ"מ פון אימנו.

משפט 9. נניח ש־ $V o T, S \colon V o V$ ט"ל מתחלפות. אז:

- הם T-אינווריאנטים (ולהפך). $\operatorname{Im} S, \ \ker S$.1
- גם S(W) הוא T-אינו' אז $S \subseteq W$ הוא $S \subseteq W$ גם .2
- . אמל $W_1+W_2,\;W_1\cap W_2$ הם $W_1,W_2\subseteq V$ הם $W_1,W_2\subseteq V$ אמל.
 - עס"ו T אמ W אם W אם $W\subseteq V$ את $W\subseteq V$ אם W .4

s(u)=v בך ש־ט $u\in V$ ביים $v\in\operatorname{Im} S$ הוכחה.

$$Tv = T(S(u)) = (T \circ S)(u) = (S \circ T)(u) = S(T(u)) \in \operatorname{Im} S$$

 $v \in \ker S$ ועבור

$$S(T(v)) = \cdots = T(S(v)) = T(0) = 0 \implies T(v) \in \ker S$$

v=S(w)כך ש־ $w\in W$ כיים $v\in S(W)$ כיהי .2

$$T(v) = T(S(w)) = S(T(w)) \in S(W)$$

 $T(w) \in W$ כי

- 3. ראינו בתרגול הקודם
 - $.w\in W$ יהי.

$$f = \sum_{i=1}^{n} a_i x^i, \ f(T)w(=\left(\sum_{i=0}^{n} a_i T^i\right)(w) = \sum_{i=0}^{n} a_i T^i(w)$$

באינדוקציה W . $T^i(w) \in W$ תמ"ו ולכן סגור וצ"ל וסיימנו. [בסיכום כתוב הוכחה: קל]

(הערה: 3, 4 לא תלויים בהיות הטרנספורמציות מתחלפות)

 $\gcd(g,h)=1$ עכור $f=g\cdot h$ אז: f(T)=0 משפט 10. ("מאוד חשוב") יהי V מ"ו מעל $T\colon V o V$ משפט 11. ("מאוד חשוב") יהי

$$V = \ker g(T) \oplus \ker h(T)$$

. ואס g,h אז אין על הפולינושים הפינישליים לעיל הפולינושים אז $f=M_T$ ואס הפולינושים הפולינושים הפינישליים לעיל

הבהרת הכוונה ב"פולינום המינימלי לצמצום T על תתי המרחבים": בהינתן $T_u=T_{|_U}\colon U o U$, $T=U\oplus W$ הבהרת הכוונה ב"פולינום המינימלי לצמצום T על תתי המרחבים": בהינתן $m_T=m_{T_U}\cdot m_{T_W}$

הוכחה. מכך ש־(g,h)=1 קיימים $a,b\in\mathbb{F}[x]$ קיימים $a,b\in\mathbb{F}[x]$ קיימים $a,b\in\mathbb{F}[x]$ קיימים $a,b\in\mathbb{F}[x]$ הוכחה.

$$a(T) \circ g(T) + b(T) \circ h(T) = \mathrm{Id}$$

:אזי:

$$(a(T) \circ g(T))(v) + (b(T) \circ h(T))(v) = v$$

טענת עזר. $(a(T)\circ g(T))(v)\in\ker h(T)$. זאת כי:

$$(h(T)\circ a(T)\circ g(T))(v)=a(T)\circ (h\cdot g)(T)=a(T)(0)=0$$

 $\ker h(T)+$ באופן זהה $\ker g(T)$ ווקטור מ־ $\ker h(T)\circ h(T)$. סה"כ הצגנו כל וקטור כסכום של וקטור מ־ $\ker h(T)\circ h(T)$ ווקטור מ־ $\ker h(T)\circ h(T)$. נבחין ש־: $\ker g(T)\circ \ker h(T)$ איז. עתה נראה שהסכום הוא ישר. יהא $\ker g(T)\circ \ker h(T)$. נבחין ש־:

$$0 + 0 = (a(T) \circ g(T))(v) + (b(T) \circ h(T))(v) = v$$

.....

שחר פרץ, 2025

 ${\it GitHub.com/shpe/cs-tau-shpe}$