Canonical commutation relation

Consider the canonical commutation relation in one dimension.

$$XP - PX = i\hbar$$

Let

$$X = x, \quad P = -i\hbar \frac{\partial}{\partial x}$$

Show that

$$(XP - PX)\psi(x, t) = i\hbar\psi(x, t)$$

Eigenmath code:

Result:

 $i\hbar\psi(x,t)$

In three dimensions (symbol \otimes is outer product, ∇ is gradient)

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \otimes, \quad P = -i\hbar \nabla$$

Eigenmath code:

Result:

$$\begin{bmatrix} i\hbar\psi(x,y,z,t) & 0 & 0 \\ 0 & i\hbar\psi(x,y,z,t) & 0 \\ 0 & 0 & i\hbar\psi(x,y,z,t) \end{bmatrix}$$