

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Построение и решение двойственной задачи. Задание 5»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Задание 2.1

Дано

Целевая функция:

$$f = -x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases}
-x_1 + 2x_2 \ge -1 \\
-2x_1 + x_2 \le 2 \\
3x_1 + x_2 \le 3
\end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Задание

Каноническая форма прямой задачи

1. Вводим слабые переменные $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$:

$$-x_1 + 2x_2 - y_1 = -1$$

$$-2x_1 + x_2 + y_2 = 2$$

$$3x_1 + x_2 + y_3 = 3$$

2. Делаем правые части равенств положительными:

$$x_1 - 2x_2 + y_1 = 1$$

$$-2x_1 + x_2 + y_2 = 2$$

$$3x_1 + x_2 + y_3 = 3$$

Таким образом, прямая задача сведена к канонической форме.

Формулируем двойственную задачу

Функция цели:

$$\phi = -\lambda_1 + 2\lambda_2 + 3\lambda_3 \longrightarrow min$$

Ограничения:

$$\lambda_1 - 2\lambda_2 + 3\lambda_3 \ge -1$$

$$-2\lambda_1 + \lambda_2 + \lambda_3 \ge 1$$

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0$$

Каноническая форма двойственной задачи

Функция цели:

$$\phi = -\lambda_1 + 2\lambda_2 + 3\lambda_3 \longrightarrow min$$

1. Вводим слабые переменные $\xi_1 \ge 0, \xi_2 \ge 0$:

$$\lambda_1 - 2\lambda_2 + 3\lambda_3 - \xi_1 = -1$$

$$-2\lambda_1 + \lambda_2 + \lambda_3 - \xi_2 = 1$$

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0$$

2. Делаем правые части равенств положительными:

$$-\lambda_1 + 2\lambda_2 - 3\lambda_3 + \xi_1 = 1$$

$$-2\lambda_1 + \lambda_2 + \lambda_3 - \xi_2 = 1$$

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0$$

Решение двойственной задачи

Напоминание из задачи 2.1

 y_2, y_3 — свободные переменные x_1, x_2, y_1 — базисные переменные

1. Выразим базисные переменные через свободные:

$$x_{1} = \frac{1}{5} + \frac{y_{2}}{5} - \frac{y_{3}}{5}$$

$$x_{2} = 2 + 2x_{1} - y_{2} = \frac{12}{5} - \frac{3}{5}y_{2} - \frac{2}{5}y_{3}$$

$$y_{1} = 5 + 3x_{1} - 2y_{2} = \frac{28}{5} - \frac{7}{5}y_{2} - \frac{3}{5}y_{3}$$

 \downarrow

$$x_1 = \frac{1}{5} + \frac{y_2}{5} - \frac{y_3}{5}$$

$$x_2 = \frac{12}{5} - \frac{3}{5}y_2 - \frac{2}{5}y_3$$

$$y_1 = \frac{28}{5} - \frac{7}{5}y_2 - \frac{3}{5}y_3$$

2. Выразим функцию цели f через свободные переменные:

$$f = x_1 - y_2 + 2 = \frac{11}{5} - \frac{4}{5}y_2 - \frac{y_3}{5} \longrightarrow max$$

 \downarrow

$$f = \frac{11}{5} - \frac{4}{5}y_2 - \frac{y_3}{5} \longrightarrow max$$

Из оптимального решения симплекс-методом прямой задачи видно, что переменные базисные переменные x_1, x_2 выражаются через свободные переменные y_2, y_3 следующим образом:

$$x_1 = \frac{1}{5} + \frac{y_2}{5} - \frac{y_3}{5}$$

$$x_2 = \frac{12}{5} - \frac{3}{5}y_2 - \frac{2}{5}y_3$$

Функция цели:

$$f = \frac{11}{5} - \frac{4}{5}y_2 - \frac{y_3}{5} \longrightarrow max$$

 y_2 и y_3 входят в выражение для оптимальной функции цели прямой задачи с коэффициентами $-\frac{4}{5}$ и $-\frac{1}{5}$.

Переменные y_2 и y_3 индуцируют следующие ограничения двойственной задачи:

$$y_2 \to \lambda_2 \ge 0$$
 $y_3 \to \lambda_3 \ge 0$

Лемма:

Если в прямой (двойственной) задаче начальная базисная переменная входит в оптимальное решение целевой функции как свободная переменная, то коэффициент при ней в целевой функции равен разности между правой и левой частями ограничения двойственной (прямой) задачи, индуцированного рассматриваемой начальной базисной переменной.

По лемме получается:

$$-\frac{4}{5} = 0 - \lambda_2 \qquad -\frac{1}{5} = 0 - \lambda_3$$

Тогда решение двойственной задачи выглядит следующим образом: $\lambda_1=0, \lambda_2=\frac{4}{5}, \lambda_3=\frac{1}{5}$

Функция цели:

$$\phi = -\lambda_1 + 2\lambda_2 + 3\lambda_3 = \frac{8}{5} + \frac{3}{5} = \frac{11}{5}$$

$$\phi = \frac{11}{5} = 2.2$$

Напоминание из задачи 2.1

$$x_1 = \frac{1}{5} = 0.2$$

 $x_2 = \frac{12}{5} = 2.4$
 $f = \frac{11}{5} = 2.2$

То есть $\phi(\Lambda^*) = f(X^*)$ и критерий оптимальности Канторовича выполняется.

Ответ:
$$\lambda_1 = 0, \lambda_2 = \frac{4}{5}, \lambda_3 = \frac{1}{5}, \phi = \frac{11}{5}$$

Задание 4.1

Дано

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases} 3x_1 - 2x_2 \ge -8 \\ 3x_1 + x_2 \ge 3 \\ x_2 \le 8 \\ x_1 \le 4 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Задание

Каноническая форма прямой задачи

1. Вводим слабые переменные $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0$:

$$3x_1 - 2x_2 - y_1 = -8$$

$$3x_1 + x_2 - y_2 = 3$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

2. Делаем правые части равенств положительными:

$$-3x_1 + 2x_2 + y_1 = 8$$

$$3x_1 + x_2 - y_2 = 3$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

Таким образом, прямая задача сведена к канонической форме.

Метод штрафов

Введём искусственную переменную — $r \ge 0$.

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$-3x_1 + 2x_2 + y_1 = 8 \qquad \rightarrow \lambda_1$$

$$3x_1 + x_2 - y_2 + r = 3 \qquad \rightarrow \lambda_2$$

$$x_2 + y_3 = 8 \qquad \rightarrow \lambda_3$$

$$x_1 + y_4 = 4 \qquad \rightarrow \lambda_4$$

$$x_i \ge 0 \ \forall i = \overline{1,2}; \quad y_j \ge 0 \ \forall j = \overline{1,4}$$

Перепишем функцию цели:

$$f = 4x_1 + x_2 - Mr = 4x_1 + x_2 - M(3 - 3x_1 - x_2 + y_2)$$

 \downarrow

$$f = -3M + (3M + 4)x_1 + (M+1)x_2 - My_2$$

Пусть M = 100, тогда функция цели примет следующий вид: $f = -300 + 304x_1 + 101x_2 - 100y_2$

Формулируем двойственную задачу

Функция цели:

$$\phi = 8\lambda_1 + 3\lambda_2 + 8\lambda_3 + 4\lambda_4 - 300 \longrightarrow min$$

Ограничения:

$$-3\lambda_{1} + 3\lambda_{2} + \lambda_{4} \ge 304$$
$$2\lambda_{1} + \lambda_{2} + \lambda_{3} \ge 101$$
$$-\lambda_{2} \ge -100$$
$$\lambda_{1} \ge 0, \lambda_{3} \ge 0, \lambda_{4} \ge 0$$

Решение двойственной задачи

Напоминание из задачи 4.1

Базисные переменные: y_1, x_1, x_2, y_2 . Свободные переменный: y_3, y_4, r .

БП	x_1	x_2	y_1	y_2	y_3	y_4	r	Своб.
								член
f	0	0	0	0	1	4	100	24
y_1	0	0	1	0	-2	3	0	4
x_1	1	0	0	0	0	1	0	4
x_2	0	1	0	0	1	0	0	8
y_2	0	0	0	1	1	3	-1	17

Таким образом, получается:

$$f + y_3 + 4y_4 + 100r = 24 \rightarrow f = 24$$

$$y_1 - 2y_3 + 3y_4 = 4 \rightarrow y_1 = 4$$

$$x_1 + y_4 = 4 \rightarrow x_1 = 4$$

$$x_2 + y_3 = 8 \rightarrow x_2 = 8$$

$$y_2 + y_3 + 3y_4 - r = 17 \rightarrow y_2 = 17$$

$$y_3 = 0, y_4 = 0, r = 0$$

Целевая функция прямой задачи выражается так:

$$f = 24 - y_3 - 4y_4 - 100r \longrightarrow max$$

Переменные $y_2,\ y_3$ и y_4 индуцируют следующие ограничения двойственной задачи:

$$y_2 \to -\lambda_2 \ge -100$$
 $y_3 \to \lambda_3 \ge 0$ $y_4 \to \lambda_4 \ge 0$

Тогда по лемме:

$$0 = -100 + \lambda_2$$
 $-1 = 0 - \lambda_3$ $-4 = 0 - \lambda_4$

Тогда решение двойственной задачи выглядит следующим образом: $\lambda_1=0, \lambda_2=100, \lambda_3=1, \lambda_4=4$

Функция цели:

$$\phi = 8\lambda_1 + 3\lambda_2 + 8\lambda_3 + 4\lambda_4 - 300 = 8*0 + 3*100 + 8*1 + 4*4 - 300 = 24$$

 \downarrow

$$\phi = 24$$

Напоминание из задачи 4.1

 $x_1 = 4$

 $x_2 = 8$

f = 24

То есть $\phi(\Lambda^*) = f(X^*)$ и критерий оптимальности Канторовича выполняется.

Ответ: $\lambda_1 = 0, \lambda_2 = 100, \lambda_3 = 1, \lambda_4 = 4, \phi = 24$