

DREAM, a Front End ASIC for CLAS12 detector

User Manual

Production Version, Document 3.0, January 14, 2014.

Authors: P. Baron; E. Delagnes; C. Flouzat; F. Guilloux

©LAS12 Revision history

Date	Revision	Changes				
25-Sept-12	1.0	Document Creation				
04-March-13	2.0	Value of functionality test capacitor: 500 fF instead of 100 fF				
		Register 10 & 11: these 2 registers permit to select the SCA readout of the 64 channels if put to "1"				
14-January-14	3.0	DC voltage of SCA and GAIN-2 input [Vref sca]				

A number of modifications have been made on this production version compared to the previous prototype version and are reported in Annexe 3 of this document.

©LAS12 Contents

<i>1</i> .	Introduction	5
1.1	DREAM general description	5
1.2	DREAM requirements	6
2 .	Architecture of the front-end part of the channel	7
2.1	General description 2.1.1 Channel input 2.1.2 The Charge Sensitive Amplifier (CSA) 2.1.3 The Pole-Zero cancellation stage (PZC) 2.1.4 The RC ² filter (SK filter) 2.1.5 The inverting x2 Gain (G-2)	
<u>3.</u>	Discrimination channel	9
3.1	HIT signal 3.1.1 Inhibition 3.1.2 Veto condition 3.1.3 Duration of the Hit signal	
3.2	Global HIT signal 3.2.1 Enable of the HIT output signal 3.2.2 Other way to read the HIT signal	12
<mark>4.</mark>	Principle of operation of the SCA	12
4.1	Simplified Operation	12
4.2	More detailed Principle of Operation	14
4.3	SCA initialization	15
4.4	The SCA "idle" phase	16
4.5	Analogue encoding of digital data during SCA readout	16
<u>5.</u>	The differential output buffer	16
<mark>6.</mark>	Architecture of the test & analog and digital "spy" modes systems	17
6.1	General description of the test system	17
6.2	General description of the analog "spy" mode system	18
6.3	General description of the digital "spy" mode system	18
<u>7.</u>	The DREAM slow control	19
7.1	Power on Reset	19
7.2	Description of the slow control serial link	19
7.3	Resynchronization of Sc_dout	20
7.4	Writing mode (address other that 0) in a register of NBD bits	20
7.5	Read operation on a NBD bits register	21
7.6	1 8	21
	7.6. A The register 0 7.6. B The register 1 7.6. C The register 2 7.6. D The register 3 7.6. E The register 4	$\frac{22}{25}$
	7.0. F The register 5	30
	7.6. G The register 6 7.6. H The register 7 7.6. I The register 8 7.6. J The register 9	33
	7.6 K The register 10	35

CLAS12

	7.6. L The register 11	36
<mark>8.</mark>	The power supply connections	
8.1		
8.2	The protection diode bias	38
8.3	The front-end bias	38
	8.3.A The CSA bias	38
	8.3.B The Pole-Zero-Cancellation stage bias	38
	8.3.C The SK filter stage bias	38
	8.3.D The inverting Gain-2 stage bias	
8.4		39
	8.4.A The analog memory cell matrix	39
	8.4.B The "return buffer" amplifiers 8.4.C The SCA read amplifiers	39
	8.4.C The SCA read amplifiers 8.4.D The SCA digital part 8.4.E The SCA mondains	39
	8.4.E The SCA guard ring	40
8.5		
8.6	The channel power consumption	40
<mark>9.</mark>	The DC voltage references	40
<mark>10.</mark>	Specifications for digital signals	41
<u>11.</u>	Timing Specifications.	43
<u>12.</u>	Pinout of the DREAM chip.	44
<u>13.</u>		
An	nexe 1: DREAM Package specifications	47
An	nexe 2: Bonding Diagram	48
An	nexe 3: List of modifications	49
Bib	bliography	50

1. Introduction

This document describes the DREAM (**D**ead-timeless **R**ead-out **E**lectronics **A**SIC for **M**icromégas) circuit developed to read the large Micromegas chambers of the CLAS12 experiment tracker. This ASIC performs the collection, the amplification, the filtering, the discrimination and the analogue storage of the detector signal in an analogue memory which is used as a Level 1 latency and derandomizing buffer. The sampled signals which have been marked by the trigger are read-out asynchronously without stopping the analog storage process allowing a "deadtime free" operation for trigger rates up to more than 20 kHz. These samples are serialized in order to be digitized by an external ADC. The architecture reuse previous developments made for the AFTER [ref.1] and AGET chips [ref.2] with significant new features and modifications.

1.1 DREAM general description

The **DREAM** chip includes 64 channels (**Fig. 1**) each handling one detector channel. A channel integrates mainly: a charge sensitive preamplifier, an analogue filter (shaper), a discriminator usable for trigger building and a 512-sample analog memory.

The charge sensitive preamplifier (CSA) gain is programmable to accommodate a dynamic range up going from 50 fC to 600 fC. This gain is selectable for each channel, by selecting one of the available CSA feedback capacitors (ASIC Slow Control).

The analog filter consists in a Pole Zero Cancellation stage followed by a 2-complex pole Sallen-Key low pass filter. The peaking time of the global filter is selectable among sixteen values in the range of 50 ns to 900 ns. The filtered signal is sent to both the analog memory and the discriminator inputs.

Fig. 1: Block diagram of the DREAM chip.

The analogue memory is based on a Switched Capacitor Array structure (SCA), used as a 512 cell-depth circular buffer in which the analog signal coming out from the shaper is continuously sampled and stored. The sampling frequency is defined by *WCk* in the range of 1 MHz to 50 MHz. The analogue cells marked by the external trigger input signal (*Trig*) after a programmable fix latency are frozen waiting for readout, otherwise they are ready to be overwritten at the next cycle of the write pointer. Then, the oldest available frozen time slice is read on demand (initiated by the external *Read* signal). The analogue samples from the

©LAS12

enabled (by slow control) channels corresponding to the triggered time slice are successively multiplexed toward a differential driver designed to drive an external 12-bit ADC at a frequency up to 20 MHz (defined by *RCk*). After readout, the cells from the triggered time slice are released and ready to be overwritten.

In parallel, the filtered signal is compared by a discriminator to a programmable threshold value set by a 7-bit (+1 polarity bit). This discriminator can be disabled channel by channel. A logical fast OR of the 64 channels is performed on-chip and sent using LVDS signal on *Hitm* & *Hitp* pads if the level of multiplicity is greater than a programmable value. The duration of this signal can be either an image of the time over threshold of the triggered signal either set to a fix value depending on the slow control.

A serial link, compatible with the SPI protocol, permits the configuration of the main chip parameters (e.g. gain, peaking time & test).

A chip input permits to calibrate or to test the channels.

For testability purposes, a "spy" mode is available to control some internal test points (CSA & PZC outputs; SCA & discriminator inputs) of the first analogue channel or to output the HIT signal and several debug modes are allowing the user to control some critical digital signals of the chip.

To cope with the various detector configurations, this ASIC can operate with the both signal polarities according to the adjustment of DC voltages inside the ASIC. It is also possible to bypass the internal CSA of the channel and to inject directly the input signals to the filter or SCA inputs.

1.2 DREAM requirements

The main requirements for the DREAM chip are summarized in the Table 1.

Parameter	Value		
Polarity of detector signal	Negative or Positive		
Number of channels	64		
External Preamplifier option	Yes; access to the filter or SCA inputs		
Charge measurement			
Input dynamic range/gain	50 fC; 100 fC; 200 fC; 600 fC, selectable per channel		
Output dynamic range	2V p-p		
I.N.L	< 2%		
Charge Resolution	> 8 bits		
Sampling			
Peaking time value	50 ns to 900 ns (16 values)		
Number of SCA Time bins	512		
Sampling Frequency (WCk)	1 MHz to 50 MHz		
Triggering			
Discriminator solution	Leading edge		
HIT signal	OR of the 64 discriminator outputs in LVDS level		
Threshold Range	5% or 17.5% of the input dynamic range		
I.N.L	< 5%		
Threshold value	(7-bit + polarity bit) DAC common to all channels		
Minimum threshold value	≥ noise		
Readout			
Readout frequency	Up to 20 MHz		
Channel Readout mode	all channels excepted those disabled (statically)		
SCA cell Readout mode	Triggered columns only		
Test			
Calibration (current input mode)	1 channel among 64; external test capacitor		
Test (voltage input mode)	1 channel among 64; internal test capacitor (1/charge range)		
Functional (voltage input mode)			
Trigger rate	Up to 20kHz (4 samples read/trigger).		
Counting rate	< 50 kHz / channel		
Power consumption	< 10 mW / channel		

Table 1: Summary of the DREAM requirements.

2. Architecture of the front-end part of the channel

The architecture of the front-end part has been designed to match the noise requirements for the large Micromegas detectors foreseen for the CLAS12 tracker. It has been optimized to minimize the noise for relatively fast peaking times compatible with high particle rate. It takes into account the power consumption, occupancy and silicon area constraints and can also fit various configurations of detector parameters (gain, capacitor...), and can deal with the both detector signal (positive or negative) polarities.

2.1 General description

The front-end channel (Fig. 2) is made up of four stages:

- C.S.A: Charge Sensitive Amplifier,
- PZC: the pole-zero cancellation stage,
- R.C² filter: Sallen & Key filter,
- An inverting x2 Gain.

The parameters of the different stages are controlled by slow control, locally (at the channel level) or globally (at the ASIC level).

Fig. 2: Schematic of the front-end part of the analog channel.

The power supply, DC voltage and current references of the different stages are independent at the channel level and also at the ASIC level excepted for the inverting 2x Gain and the discriminator.

2.1.1 Channel input

In the nominal mode, the input signal goes through the input of the CSA (Charge Sensitive Amplifier). But by slow control, it is possible to switch the signal to the input of the SK filter or the inverting 2x Gain (state1<29:28>). In this case, the internal supply of the CSA and PZC filter will be cut off.

2.1.2 The Charge Sensitive Amplifier (CSA)

This amplifier is based on the single-ended folded cascode architecture. The input stage is formed by two complementary CMOS transistors (NMOS & PMOS) with gates connected together to the channel input. The input branch current is defined by an internal regulator common to 32 channels (2 regulators in chip), and controlled via slow control (state1<1:0>). This bias current choice (400)

CLAS12

µA to 1.2mA) will be the result of a trade-off between the noise and power consumption performances that will depend on the application. The pads **101** & **124** (vreg_csad & vreg_csag) allow to filter the internal regulator voltages.

The CSA DC output voltage is defined internally and must be filtered externally through the pad **115** (vdc_csa). This DC value must be adapted, by slow control (state1<11>), to the polarity of the input signal. For the anode polarity (negative input current) 1.8V and 2.8 V for the other input polarity. The charge to voltage conversion (input charge range: 50 fC, 100 fC, 200 fC or 600 fC) is achieved by one of the feedback capacitors (CF) selected by Slow Control. This gain control is done channel by channel with two 64-bit slow control registers state6<63:0> & state7<63:0> (2 bits per channel).

The DC feedback (**Fig. 3**) of the CSA is achieved by an attenuating current conveyor (*AICON*). This current conveyor attenuates by a factor A the current flowing through the Ra resistor connected between the CSA output and the *AICON* input, so that it is equivalent to a resistor of high value Rf = A . (Ra + Rin), where Rin is the *AICON* input impedance. The Rf.Cf time constant can be set to $5\mu s$, compatible with high rate operation, or $50 \mu s$ independently of the Gain (and therefore of Cf) value selected. The choice of the value is done by the bit state1<31>.

The maximum DC current that the CSA DC-feedback can source or sink to the detector is - 90 nA to + 30 nA (50 fC input charge range).

Fig. 3: Principle of the CSA DC feedback.

2.1.3 The Pole-Zero cancellation stage (PZC)

The PZC stage permits to avoid long duration undershoot at the shaped output due to the CSA main pole. It introduces a zero to cancel the low frequency pole of the CSA and replaces it by a higher frequency pole with a value selectable, via Slow Control (state1<7:4>), between sixteen possible values (25 ns to $0.45~\mu s$).

The second branch of the CSA *AICON* (**Fig. 3**) is used to emulate the high value resistor (Rp) placed in parallel with the Cp to create a transmission zero cancelling the CSA pole. It is replaced by a new pole Rs.Cs defined by the feedback network of the stage that participates to the shaping.

The DC output voltage of this block is defined internally and must be filtered externally through the pad **114** (**Vdc_c**). This DC value must be adapted, by slow control (state1<11>), to the polarity of the input signal. For the anode polarity (negative input current) 2.2 V and 0.7 V for the other input polarity.

CLAS12

In the normal mode, the shaping time of the PZC and SK filter is the same and is controlled by the state1<7:4> bits. But it is possible to dissociate them by setting the state1<10> bit to "1". In this condition, the shaping time of the PZC is fixed to 450 ns independently of the 16 possible shaping time values of the SK filter, so that the channel behaves as an **integrator with 450ns decay time constant**.

2.1.4 The RC² filter (SK filter)

Associated with the previous PZC stage, this 2-complex pole Sallen-Key low pass filter provides a semi-Gaussian shaping of the analog channel. The filter damping factor is ξ = 0.75, so that the global filter response exhibits a 1% only undershoot.

The peaking time of the global filter is defined by switching different combinations of resistors on both the PZC and SK filter stages. The available range of peaking time extends from **50** ns to **900** ns (sixteen values). The DC output voltage of the filter is defined internally as for the PZC (pad **114**).

2.1.5 The inverting x2 Gain (G-2)

This stage provides an extra x2 inverting voltage gain and the necessary buffering for the signal sampling in the SCA. Its total dynamic (full range) is 1.5V, mainly limited by slew rate effects.

The DC output voltage of this block is defined internally and must be filtered externally through the pad **110** (**Vdc_g2**). This DC value must be adapted, by slow control (state1<11>), to the polarity of the input signal. For the anode polarity (negative input current) 0.7 V and 2.2 V for the other input polarity.

Its input common-mode voltage is defined internally and must be filtered externally through the pad **111** (**Vref_sca**). This pin is also used to supply the reference voltage of the SCA at a fixed value of 0.7V.

3. Discrimination channel

The discrimination channel is not useful for the CLAS12 experiment. Nevertheless, as it was existing in the AGET design, we have decided to keep it in a simplify version, considering it could be useful for detector testing or other experiments. But it has been considered that this channel is a "secondary functionality" and therefore all its specifications are considered also to be of secondary importance.

The event detection is performed by comparing the amplitude of the shaped signal (**Fig. 4**) to a programmable threshold value. The duration of the discriminator output signal as other parameters of the discriminator are defined by slow control.

The output signal of the shaping filter is first amplified and converted into a differential signal using amplifier (differential gain of 28 or 9) before the comparator in order to increase the discrimination sensitivity. It means that the dynamic range of the discriminator channel is only equal to 5 % or 17.5 % (state1<30>) of the input dynamic range of the main analog channel.

Fig. 4: block schematic of the analog channel.

The threshold value of the discriminator is controlled and adjusted using a 8-bit DAC (7-bit state1<20:14> plus 1 polarity bit state1<21>) common to all the channels. Actually for layout reasons, two DACS, each connected to 32 channels, but controlled by the same slow control bits are used. If the signal cross the threshold, the discriminator output signal is used to form with the 63 others discriminator signals the *HIT* signal (pads 60 & 61 **Hitp** & **Hitm**). The polarity bit is necessary to control the threshold and the logical output edge according to the polarity of the detector signal.

3.1 HIT signal

In each channel **i**, the *HIT(i)* signal provided by the discriminator is conditioned by several slow control parameters and signals as explained in this section. This signal is used to switch on or off a current source (**Fig. 5**) which is summed with the 63 others current sources to form the internal global *HIT* signal.

Fig. 5: block schematic of the channel HIT data.

3.1.1 Inhibition

The discriminator can be disabled (standby mode) channel by channel. The inhibition bits are gathered in two 32-bit registers (address 8 or 9 depending to the channel number) (see 7.6.1 & 7.6.J).

3.1.2 <u>Veto condition</u>

It is also possible to inhibit multiple triggering of the comparator outputs (Hit(i)) during a time window of around **4** μ **s** [set by an analog ramp generator & comparator]. This veto condition is controlled by the state1<22> bit.

3.1.3 Duration of the Hit signal

The duration of the signal can be:

- The same of the one of discriminator output signal (Time over Threshold). This mode is controlled by the state1<23> bit.
- Chosen between two possible values: 100ns or 200ns. The choice is made by the state1<24> bit and enabled by setting the previous state1<23> bit to"0".

These durations are obtained using monostables, and therefore are subject to technology process variations. The 2 slow control bits state1<26:25> allow the control of these process variations (**Table 2**).

State1<26>	State1<25>	Range_HIT_width="0"			Range_HIT_width="1"		
Msb_HIT_width	Lsb_HIT_width	wp	tm	ws	Wp	tm	ws
0	0	61 ns	94 ns	128 ns	142 ns	218 ns	297 ns
0	1	50 ns	77 ns	106 ns	110 ns	170 ns	232 ns
1	0	72 ns	110 ns	150 ns	153 ns	235 ns	319 ns
1	1	83 ns	127 ns	171 ns	194 ns	298 ns	404 ns

Table 2: the adjustment of the HIT signal width.

[wp for worst power case; tm for typical mean case; ws for worst speed case].

3.2 Global HIT signal

The summed current of the **HIT(i)** channel signals is converted into voltage signal (**Fig. 6**). This signal is compared to the threshold value controlled by 3-bit of slow control state2<27:25>.

Fig. 6: block schematic of the HIT signal generation.

According to the multiplicity number (**Table 3**), the output of discriminator is translated into the LVDS signals available on the chip pins (Hitp & Hitm).

State2<27>	State2<26>	State2<25>	Multiplicity Level
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	4
1	0	1	11
1	1	0	26
1	1	1	55

Table 3: Selection of multiplicity level.

3.2.1 Enable of the HIT output signal

The *HIT* signal is available on pads 60&61 (**Hitp** & **Hitm**) by using the bit state1<27>.

3.2.2 Other way to read the HIT signal

For test purpose, it is possible to see the signal using the "spy" mode. The selection of the signal (1 among 6) is made using the 3 slow control bits state2<2:0>. The spy signal is available on the pin *Out debug* (pad 38).

State2<2> Debug2	State2<1> Debug1	State2<0> Debug0	Out_debug (canal1)
0	0	0	Standby
0	0	1	CSA
0	1	0	CR
0	1	1	Gain-2
1	0	0	Positive input of the discriminator
1	0	1	negative input of the discriminator
1	1	0	HIT
1	1	1	None

Table 4: Selection of the output in the "spy" mode.

4. Principle of operation of the SCA

4.1 Simplified Operation

The analogue memory of Dream requires 5 digital signals to operate:

- * Two clocks sequencing respectively the write and read operations:
- **WCk**: the write clock, max frequency specified: 20MHz (operation up to 40-50 MHz probably possible if the event rate and then the buffer occupation is not too high).
 - **RCk**: the read clock with a maximum frequency of 20 MHz.

For SCA operation, these clocks are active on their rising edges, and can be interrupted when they are not used. In principle they can be at a different frequency and even asynchronous.

- * Three control signals:
 - *Write*: signal defining the write operation and initializing the system.
 - *Trig*: "trigger" signal marking the acceptance of an event after a fixed latency **TRIGLAT**. It is taken into account on the rising edge of *WCk*.
 - **Read**: signal commanding the read operation.

CLAS12

All these signals, excepted **Write** which is using a TTL compatible signal, are using differential LVDS compatible signals.

The analogue memory (**Fig. 7**) is composed of 64 lines of 512-cell switched capacitor array, each connected to the output of a Very Front End channel. The operations are done in parallel on the 64 lines of the SCA.

Fig. 7: Interconnection of the SCA with the very front-end part of the chip.

The SCA works as a L1 latency circular buffer. The analogue data is continuously sampled and memorized in it. Only the columns selected by an external trigger arriving with a fix **TRIGLAT** latency are frozen before to be read out on demand. Otherwise, during next SCA cycle, the unfrozen columns are overwritten when the write pointer of the circular buffer reach them again.

The readout is asynchronous and totally driven by external signals. It is performed in FIFO mode (the first data written is coming out first).

Fig. 8: SCA used as a L1 circular buffer with frozen cells.

4.2 More detailed Principle of Operation

When the Write signal takes state of '1', the analogue buffer is initialized and becomes ready for acquisition after few clock cycles (see the paragraph about initialization).

The output signal of the Front End part of the chip is sampled at the write clock frequency (rising edge) in the successive analogue memory free cells of the SCA. The SCA is used as a circular buffer: when the last cell is reached, the write pointer restarts on the first cell (or on the first free cell if the first is frozen).

When the Trig signal is high on the rising edge of **WCk**, the column on which the signal was sampled **TRIGLAT** clock periods before is frozen in and is marked with an **Event Number**.

Fig. 9: Architecture of the Dream SCA Manager.

The Event Number (9 bits in **Gray code**) is incremented in the **Write Event Counter** at each new trigger. One "Event" corresponds to only one cell. To keep several (**Nc**) cells for a "physics" trigger, the *Trig* pulse must last **Nc** *WCk* period. Actually, it will be considered by the chip as **Nc** events. The only practical limitation for **Nc** is the SCA depth (and the already frozen columns)

The frozen columns are skipped by the write pointer as long as they are not released.

The sampling and triggering operations are of course not interrupted during the readout operation.

The readout of the event stored in the SCA with number equal to the **Read Event Counter** value is started on the rising edge of the **Read** signal. Actually, this is the oldest event stored in the SCA.

Analogue data are successively multiplexed on the *RCk* rising edge on the differential output of the chip:

The 3 first analogue data are coding the **Event Number**.

The samples of all the "enabled" channels are successively multiplexed starting from the channel with the lower index. If the *Read* signal is still high when the last channel is reached, the multiplexing restarts at the first channel.

The readout of some channels may be skipped using the Slow Control registers 9 and 10.

CLAS12

The readout is stopped when **Read** returns to 0. Starting at the next **RCk** rising edge, the 3 last analogue data, coding the index of the column on which the event was stored, are multiplexed. The **Read Event Counter** is then incremented.

The column is not released immediately at the trailing edge of Read but after a variable delay which can be as long as 512 *WCk* periods.

Theoretically, the write and the read operation can be totally asynchronous at the unique exception of the trailing edge of the Read signal which should be sent with a controlled phase in respect to the rising edge of **WCk** to avoid any metastability problem that could bring out desynchronisation between DREAM chips.

At least 4 *RCk* periods are required between the trailing edge of *Read* and the beginning of the next read operation (next rising edge of the *Read* signal).

Fig. 10: Chronogram of the SCA Readout Operation.

4.3 SCA initialization

When the Write signal is at low level, the writing operation is inhibited in the SCA. The rising edge of *Write* initiates the synchronous resets of the *Write* Pointer, the Write Event Counter and the *Read Event Counter*. It also releases all the cells (reset the markers freezing the columns) and initializes the trigger pointer (an internal pointer allowing to deal with the latency). For debugging reason, these initialization operations can be individually disabled by slow control using the bits 28-31 (DisInitWev, DisInitRev, DisInitPtW, DisInitPtS) of the register number 2. The user must wait (*TRIGLAT*+1) *WCk* periods after the rising edge of *Write* before sending a trigger.

Fig. 11: Chronogram of the initialization phase of the SCA.

©LAS12 4.4 The SCA "idle" phase

Outside the read operation the DREAM chip output is in *idle* state. The chip behavior in this state is set by the value of the bits 6 and 7 of the SlowControl register 2 (*EnMkerRst* and *DisCompEvt*).

When *EnMkerRst* is set to **0**, the chip output voltage is at the standard baseline value of the chip.

When **EnMkerRst** is set to **1**, a "binary" data, depending on the state of the bit 7 of register 2 (**DisCompEvt**) is sent to the analogue output. A binary "0" corresponds to a low analogue level corresponding to a negative saturation of the ADC, whereas a binary "1" is a high analogue level corresponding to a positive saturation of the ADC.

If **DisCompEvt** is set to **0**: the output digital level sent on the analogue output during the idle phase is a digital 0.

If **DisCompEvt** is set to **1**: the output digital level is 1 if at least one triggered event is stored in the DREAM chip (waiting for readout); otherwise it is set to 0.

4.5 Analogue encoding of digital data during SCA readout

During the 3 first and 3 last clock periods of the readout of an event, 3 analogue data, coding each a 3-bit digital words, are sent to the analogue output. Two 9 bits digital data are thus sent. For each word, the first analogue data is coding the 3 most significant bits, the second the 3 intermediate bits and the last analogue data for the less significant bit of the digital data.

Each analogue data can take 8 levels (corresponding to a 3-bit digital data), starting typically from - *570mV* (code 0) by step of *163 mV*.

There is major exception to this: if a **Read** signal is sent by the controller while there is no event stored in the chip, the 3 last data of the analogue frame corresponding normally to the column index are forced to a special low level of **740mV** which can be interpreted as an error code.

5. The differential output buffer

This buffer is designed to drive differentially an external 12-bit ADC at up to 20MHz readout frequency (with a typical input capacitance up to 7pF, PCB parasitics included). Its input, connected to the SCA multiplexer output, is single-ended while its output is differential. As shown on **Fig. 12**, the single-ended to differential conversion is achieved using a full differential amplifier with its negative input connected to a reference voltage **Vicm.** This buffer also provides a gain of 1.328 between the differential output $(V_{op}-V_{on})$ and its input (V_{ip}) to fit with the differential ADC input range (+/-1 V).

Thanks an internal common mode feedback, the common mode output voltage of the amplifier ($(\mathbf{V_{op}} + \mathbf{V_{on}})/2$) is equal to the voltage applied on the **vocm** (Pad 55) input. Its value can be fixed between 0.7V to 1.7V (1V for CLAS12 ADC).

The input common mode voltage (**Vicm**) is defined internally and must be filtered externally through the pad 56. The value of this voltage is controlled by the 2-bit state1<13:12>, to take into account the signal polarity and the offset voltage.

Fig. 12: Schematic of the readout buffer.

6. Architecture of the test & analog and digital "spy" modes systems

The DREAM chip includes a test system useful for the electrical calibration, the production test of the chips, and the control of the functionality of the overall electronics (ASIC to acquisition) when connected to detector. The chip also offers the possibility to spy internal nets inside the ASIC through 2 modes: analog and digital. The analog mode concerns the front end part of the channel 1 (CSA, PZC, Gain-2 outputs and discriminator inputs) and the HIT signal in CMOS level. The digital mode is dedicated to logical signals used for the SCA sampling and reading.

6.1 General description of the test system

The DREAM ASIC (**Fig. 13**) offers 3 different modes of test: calibration, test and functionality.

The Calibration operation consists in generating the same knew charge on the inputs of all the channels of the ASIC. Therefore, the charge pulse is generated outside of the chip, directly on the PCB. The charge injection is generated by applying a voltage step to a precision capacitor connected to the input of the selected channel via the *In_Test* input (pad 35).

Fig. 13: Schematic of the test system

©LAS12

For the two other modes, the charge injection is generated through internal capacitors driven by an externally generated voltage applied on the pad *In_Test*.

In the test mode, four different values of injection capacitor can be used. This permits working with the same test voltage pulse level for the 4 ranges. The selection of the injection capacitor is done with the 2-bit state1<3:2>.

In the functionality test mode, a single capacitor (500 fF) per channel is used.

For the 3 injection modes, the channel selection is made by switches inside the chip configured by slow control (state3<31:0> or state4<31:0>). For the two first modes, only one tested channel must be selected whereas up to the 64 channels can be selected when the functionality mode is used.

6.2 General description of the analog "spy" mode system

This mode permits to visualize on an oscilloscope (**Fig. 14**) the outputs of the CSA, PZC block and Gain-2 and the discriminator inputs of the channel number 1. It also gives the possibility to view the HIT signal.

This feature is useful to compare experimental and simulation results. By the state2<2:0> bits, one of these signals can be multiplexed, through an internal test buffer, to the pad *Out debug* (pad 38).

If the "spy" mode is not selected, the internal buffer is put in a standby mode.

Fig. 14: Schematic of the analog "spy" system

6.3 General description of the digital "spy" mode system

This mode permits to visualize on an oscilloscope (**Fig. 15**) some critical signals used for the SCA management. Two signals among 16 possible (8 issued from column 0 and 8 from column 511) can be multiplexed simultaneously on pads *Hitp* and *Hitm*, in LVDS level and pad **Out_debug** in CMOS level. This selection is made using the 9 Slow Control bits state2<24:16>.

Fig. 15: Principle of the digital "spy" system.

7. The DREAM slow control

The slow control permits to program various chip parameters (gain, shaping time, test mode ...) and to access to specific modes of operation. It is a serial protocol, used in several ASICs designed in IRFU laboratory. It gives access in write or read mode to the thirteen internal registers of the chip.

7.1 Power on Reset

When the chip is powered on, an internal "power on reset" device delivers a reset pulse (about 1ms of duration) resetting all the registers (all bits to 0), excepted for the register 5 which has only a read access.

7.2 Description of the slow control serial link

The link uses **4** signals [They use **CMOS** [0V; 3.3V] levels; except for the clock using **LVDS** levels]:

- **Sc_din** [pin n°39]: input data of the serial link.
- **RCkm&RCkp** [pins n°44&45]: readout clock also used to clock of the serial link. It is named **RCk** in the following section.
- **Sc_en** [pin n°40]: enable of the serial link.
- **Sc_dout** [pin n°41]: output data of the serial link.

IMPORTANT WARNINGS:

RCk is disabled in the slow control block during acquisition (if WRITE = 1).

⇒ Slow control is only possible if WRITE = 0

As RCk is used both for readout and slow control, it is forbidden to make a slow control access during readout and vice versa

⇒ The Read signal must be equal to 0 when Sc_en is set to 1.

The data are latched on the input lines, decoded and operations of reading/writing are carried out, by the ASIC, on the falling edge of **RCk**. The data at the output of **Sc_dout** are also normally synchronous with this edge. A safe way to generate **Sc_din** & **Sc_en** signals consists in changing their state on the rising edge of **RCk**.

On **Sc_din**, the data frame is defined as:

[r/wb] [Ad6... Ad0] [DNBD-1...D0]

[r/wb]: This first bit defines the type of operation. r/wb = 1 : readout; 0: write.

[Ad6... Ad0]: These 7 bits give the address of the target register.

[DNBD-1...D0]: This is the NBD bits of data to transmit.

The most significant bit of the address and the data is always sent (or read) first.

The **Sc_en** signal frames the data sent on **Sc_din**. It must rise simultaneously with the positioning of [r/wb] and must go down one cycle of **RCk** after the positioning of the last bit of data (**D0**) on **Sc_din**. Thus, the data packet defined by the setting of the **Sc_en** signal to 1 must frame [8+ NBD falling edges] of **RCk**.

The **RCk** clock must be present immediately after the beginning of the data frame and must continue at least during four clocks (falling edge) after the falling edge of **Sc_en**.

Between the slow-control frames, the **Sc_dout** output is in idle state. If the **force_eout** bit of the register 2 is high, this output keeps its last valid value. If it is low (default mode), the output is in high impedance state.

7.3 Resynchronization of Sc_dout

All the data on the **Sc_dout** line are, by default, locally synchronized at each register level on the **RCk** falling edge. But this synchronizing is partially lost due to the different transit times in the chip. It is also possible, by slow control, to synchronize the signal on **Sc_dout**. This is done by the bit 9 (**out_resync**) of the register 2, and the choice of active edge by the bit 10 (**synchro_inv**). If the state is "1", the synchronization is made on the falling edge of **RCk**; "0" on the rising edge. All the chronograms on the next figures are in the case where the slow control bit **out_resync** is "0".

7.4 Writing mode (address other that 0) in a register of NBD bits

The write mode (**Fig. 16**) is defined by the first bit **r/wb = 0** on **Sc_din**. The falling edge of **Sc_en** starts the writing of the **NBD** last bits on **Sc_din** in the target register. After the eighth falling edge of **RCk**, **Sc_dout** leaves its idle state. During **NBD** clocks, **Sc_dout** takes the **Q0<n:1>** states, according to the history on the **Sc_din** line. Then, it will take the states present **NBD** clocks before (A<0>, D<NBD-1>, D<NBD-2> and D<NBD-3>).

Fig. 16: The write mode.

Sc_dout will come back to its idle state 4 falling edges of the clock after the falling of **Sc_en**. The number of **NBD** bits present in the data part of **Sc_din** can be greater than the size of the register (**C** bits). In this case, only the **C** last bits will be written in the register. The **NBD-C-3** first bits of the data will go out on the **Sc_dout** after A0, DNBD-1, DNBD-2 & DNBD-3. This feature can be used to test the serial link.

7.5 Read operation on a NBD bits register

In the readout mode (Fig. 17), Sc_en must cover more than 8+NBD-2 falling edges of RCk. A minimum of 4 falling edges of RCk after the falling of Sc_en is necessary to finish the reading phase.

Fig. 17: The read mode.

The first bit on **Sc_din** must be to "1" (**r/wb**). Thus the 7 other bits define the address of the register. The next bits can be indefinite.

At the eighth falling edge of **RCk**, the address is decoded and **Sc_dout** leaves the idle state. During 1 clock cycle, its state **Y** depends on history of the serial link.

At the ninth falling edge of **RCk**, the data of the register is serialized toward **Sc_dout** during **NBD-1** clock cycles. After these **NBD** clock cycles, the data coming out from the **Sc_dout** are no more valid.

As for the writing phase, **Sc_dout** go back to the idle state, **4** clock cycles after the falling edge of **Sc_en**.

7.6 Description of the slow control registers

The DREAM chip includes 12 internal registers for the ASIC configuration (table 5) with different wide (16 to 64 bits).

address	name	Width	access	action
0	dummy		W	serial link test purpose
1	ASIC configuration 1	32 bits	R/W	chip configuration
	ASIC configuration 2	32 bits	R/W	Special modes and test configuration.
3	First group test selection	32 bits	R/W	selection of tested channels (1 to 32)
4	Second group test selection	32 bits	R/W	selection of tested channels (33 to 64)
5	ASIC version number	16 bits	R	Contains the version number of the chip
6	Gain 1 to 32	64 bits	R/W	Input charge range of the channel 1 to 32
7	Gain 33 to 64	64 bits	R/W	Input charge range of the channel 33 to 64
8	Trigger Inhibition 1 to 32	32 bits	R/W	inhibition of the channel trigger 1 to 32
9	Trigger inhibition 33 to 64	32 bits	R/W	inhibition of the channel trigger 33 to 64
10	SCA Readout 1 to 32	32 bits	R/W	enabling of the SCA readout channel 1 to 32
11	SCA Readout 35 to 64	32 bits	R/W	enabling of the SCA readout of channels 33 to 64
12	Trigger Latency	16 bits	R/W	Value of the Trigger Latency

Table 5: Mapping of the DREAM slow control registers.

7.6. A The register 0

The register **0** doesn't physically exist. But, when it is addressed in write mode, **Sc_dout** recopy the data on **Sc_din** (after the eighth falling edge of **RCk**). **Sc_dout** comes back to the idle state (4 falling edges after the falling edge of **Sc_en**).

CLAS12

7.6. B The register 1

This 32-bit register is located at address number 1 (table 6). This register controls the main configuration parameters of the chip front-end part.

bit	name	action	
0	lcsa0	LSB for the CSA input current value	
1	lcsa1	MSB for the CSA input current value	
2	TestGain0	LSB of the internal test capacitor in Test mode	
3	TestGain1	MSB of the internal test capacitor in Test mode	
4	Time0	LSB of the filter peaking time	
5	Time1	bit 1 of the filter peaking time	
6	Time2	bit 2 of the filter peaking time	
7	Time3	MSB of the filter peaking time	
8	Test0	LSB of the test mode register	
9	Test1	MSB of the test mode register	
10	Integrator mode	If 1, set the PZC shaping time value to 500 ns	
11	Polarity	Specify the polarity of the input detector signal	
12	Vicm0	LSB of the input common mode voltage of the data buffer	
13	Vicm1	MSB of the input common mode voltage of the data buffer	
14	ThDAC 0	LSB of the global threshold DAC	
15	ThDAC 1	Bit 1 of the global threshold DAC	
16	ThDAC 2	Bit 2 of the global threshold DAC	
17	ThDAC 3	Bit 3 of the global threshold DAC	
18	ThDAC 4	Bit 4 of the global threshold DAC	
19	ThDAC 5	Bit 5 of the global threshold DAC	
20	ThDAC 6	MSB of the global threshold DAC	
21	ThDAC sign	Sign bit for the global threshold DAC	
22	HIT veto	Select the HIT logic veto	
23	TOT	if 1, width HIT = output discri (Time over Threshold)	
24	Range_HIT_width	Select the width range of the HIT signal (100ns/200ns)	
25	Lsb_HIT_width	LSB of the HIT width	
26	Msb_HIT_width	MSB of the HIT width	
27	HIT_enable	If 1, enables the HIT on channels & LVDS outputs	
28	External 0	LSB of the external input selection	
29	External 1	MSB of the external input selection	
30	Discri_range	If 1, the discriminator input range is fixed to 5% (17.5% for 0)	
31	Int_time_constant	If 1, the CSA integration time constant is set to 50 μs (5 μs for 0)	

Table 6: Register 1 Mapping.

The purposes of the register 1 bit are described hereafter:

state1<0:1>: Bits Icsa0 & Icsa1.

These 2 bits configure the current value of the CSA input stage (table 7). This feature permits to adapt the power consumption versus the noise resolution.

lcsa1	lcsa0	Current value
0	0	400 μA
0	1	500 μA
1	0	800 μA
1	1	1.2 mA

Table 7: Definition of the CSA input current.

state1<2:3>: Bits TestGain0 &TestGain1.

These 2 bits are need to select one internal test capacitor among 4 (table 8) in the test mode.

TestGain1	TestGain0	Test Capacitor value
0	0	100 fF
0	1	200 fF
1	0	400 fF
1	1	2 pF

Table 8: Choice of the internal test capacitor.

state1<4:7>: Bits Time0 to Time3.

These 4 bits are setting the peaking time of the shaper (table 9), by switching resistors on the PZC & SK filters.

Time3	Time2	Time1	Time0	Peaking Time [5%_100%] (ns)
0	0	0	0	76
0	0	0	1	123
0	0	1	0	180
0	0	1	1	228
0	1	0	0	283
0	1	0	1	328
0	1	1	0	388
0	1	1	1	433
1	0	0	0	578
1	0	0	1	618
1	0	1	0	675
1	0	1	1	717
1	1	0	0	781
1	1	0	1	818
1	1	1	0	880
1	1	1	1	919

Table 9: Definition of the peaking time.

state1<8:9>: Bits Test0 & Test1.

These bits are defining the test mode (table 10).

Test1	Test0	Test mode
0	0	nothing
0	1	calibration
1	0	test
1	1	functionality

Table 10: Definition of the test mode.

The calibration, test & functionality tests require the choice of one or several channels. This is done by the registers 3 & 4. For the test mode, it is also necessary to select the internal capacitor (Gain 0 & 1 of the register 1).

state1<10>: Bit integrator mode.

This bit fixes the shaping time of the PZC stage to 450 ns value independently of the 16 possible shaping time values of the Sallen-Key filter.

state1<11>: Bit polarity.

This bit controls the value of the dc voltage level (2 values) of the CSA, CR and Gain -2 according to the input signal polarity (table 11).

CSA	CR&SK	G2	Bit polarity	Detector signal
1.8V	2.2V	0.7V	0	Neg. (CSA current out)
2.8V	0.7V	2.2V	1	Pos. (CSA current in)

Table 11: CSA, CR, SK & Gain2 dc voltage value versus bit polarity.

state1<12:13>: Bits vicm0 & vicm1.

These 2 bits adapt the input common mode voltage of the analog output buffer, according to the polarity of the signal and additional offset (table 12).

Polarity	VICM value	Vicm 0	Vicm 1
negative	1.25V	0	0
	1.35V	1	0
positive	1.55V	0	1
	1.65V	1	1

Table 12: Definition of the Buffer Vicm.

state1<14:21>: Bits ThDAC0 to ThDAC sign.

The first 7 bits are defining the value of the global threshold and the last bit (DAC sign) the polarity of the input signal ("0" for negative polarity).

state1<22>: Bit HIT veto.

This bit controls the veto on the HIT building (table 13).

Bit HIT veto	veto
0	none
1	4 µs

Table 13: Definition of the HIT veto.

state1<23>: Bit TOT.

This bit permits ("1") or not ("0") to have a **HIT** signal with the same duration as the one of the discriminator output signal (Time Over Threshold).

state1<24>: Bit Range_HIT_width.

This bit defines the width range of the HIT signal (table 14).

Range_HIT_width	Width range (ns)
0	100 ns
1	200 ns

Table 14: Definition of the HIT width range.

state1<25:26>: Bits Isb_HIT_width & msb_HIT_width.

These 2 bits adjust the value of the HIT according to the technology process variations (table 15 & 16) and to the value of the *Range_HIT_width* value.

For Range_HIT_width = "0".

Msb_HIT_width	Lsb_HIT_width	wp	tm	ws
0	0	60.86 ns	93.88 ns	127.91 ns
0	1	49.8 ns	77.4 ns	106.25 ns
1	0	71.95 ns	110.36 ns	149.8 ns
1	1	82.86 ns	126.9 ns	171.6 ns

Table 15: adjustment of the HIT width in the 100 ns range.

For Range_HIT width = "1".

Msb_HIT_width	Lsb_HIT_width	wp	tm	WS
0	0	142 ns	218 ns	297 ns
0	1	110 ns	170 ns	232 ns
1	0	153 ns	235 ns	319 ns
1	1	194 ns	298 ns	404 ns

Table 16: adjustment of the HIT width in the 200 ns range.

state1<27>: Bit HIT enable.

This bit enables the HIT data output at the channel level and LVDS outputs.

state1<28:29>: Bits External 0 & External 1.

These 2 bits specify the access point in the external input mode (table 17).

External 1	External 0	Access point
0	0	none
0	1	SK Filter input
1	0	Gain-2 input
1	1	CSA standby

Table 17: Definition of the access point.

state1<30>: Bit discri-range.

This bit permits to select the value of input dynamic range of the discriminator between two values: 5 or 17.5 % of the channel input dynamic range.

State1<30>	Input dynamic range of the discriminator
0	17.5 %
1	5 %

Table 18: Definition of the input dynamic range of the discriminator.

<u>state1<31></u>: Bit Int_time_constant.

By slow control, it is possible to select the value of integration time constant between two values for all the 4 gains: 5 µs or 50 µs (table 19).

State1<31>	CSA Integration time constant
0	5 μs
1	50 μs

Table 19: Definition of the integration time constant value.

7.6. C The register 2

This 32-bit register is used to configure the test modes and to control the SCA readout (table 20).

bit	name	Action		
0	debug0			
1	debug1	These 3 bits select the internal signal to be visualized on scope.		
2	debug2			
3	forceDAC<0>	If different of 0, force the Event Number to a fix value.		
4	forceDAC<1>			
5	SC_lowBLSCARes	This bit controls or not the CSA read amplifier current		
		If 1, a "digital" marker (level defined by DiscompEvt)) is sent at the		
		Output during the idle phase of the SCA readout instead of the SCA		
6	EnMkerRst	base line (0.7 V).		
7	DiscompEvt	Set the level of the "digital" level (if EnMkerRst is set to "1").		
		If 1, the output current of the analog block Gain-2 is increased		
8	boost_pw	(+20%)		
		If 1, the SC output data is resynchronized by a clock edge (selected		
9	out_resync	by synchro_inv).		
10	avnahra inv	Select the edge for the synchronizing of the SC output data: 0=		
10	synchro_inv	rising,1=falling.		
11	force_eout	If 1, inhibit the 3rd state of the SC output buffer during SC idle state.		
12	Cur_RA<0>	These 2 bits are programing the current of the SCA readout		
13 14	Cur BUE 405	amplifiers.		
	Cur_BUF<0> Cur_BUF<1>	These 2 bits are programing the current of the SCA output buffers.		
15 16	SCASpy<0>			
17	SCASpy<0>			
18	SCASpy<1>			
19	SCASpy<2>			
20	SCASpy<4>	These 9 bits are programing the spy Output of the SCA.		
21	SCASpy<4>	These o bits are programing the spy Output of the OOA.		
22	SCASpy<6>			
23	SCASpy<7>			
24	SCASpy<8>			
25	HIT_multi<0>			
26	HIT_multi<1>	These 3 bits select the multiplicity threshold value for the HIT signal		
27	HIT multi<2>	The second that the second the se		
28	DisInitWev	If 1 disable the reset of the Write Event Counter.		
29	DisInitRev	If 1 disable the reset of the Read Event Counter.		
30	DisInitPtW	If 1 disable the reset of the Write and Trigger Pointers.		
31	DisInitPtSK	If 1 disable the reset of the Skip Pointers.		
<u> </u>		1		

Table 20: Register 2.

state2<0:2>: Bits Debug 0 & Debug 2.

These 3 bits permits to multiplex toward the *Out_debug* pad the output of the CSA, PZC filter and Gain-2 or of the 2 inputs of the discriminators from the channel number 1. It is also possible to view directly the trigger signal. Depending on these bits (table 21), one among these outputs is selected.

Debug2	Debug1	Debug0	Out_debug (canal1)
0	0	0	Standby
0	0	1	CSA
0	1	0	CR
0	1	1	Gain-2
1	0	0	Positive input of the discriminator
1	0	1	negative input of the discriminator
1	1	0	HIT
1	1	1	none

Table 21: Selection of the output in the analog "spy" mode.

state2<3:4>: Bits forceDAC<0:1>

Mask the 9 bit word coded in analogue levels corresponding to the **EventNumber** at the beginning of the readout phase (table 22).

ForceDAC	Effect on the EventNumber data
0	no masking
1	Forced to 0
2	Forced to 90 (001011010 in binary)
3	Forced to 511

Table 22: Event Number masking.

This can be used for testing or to calibrate the levels of the DAC coding the digital information during the beginning and the end of the Readout.

state2<5>: Sc_LowBLSCARes.

If "1", the SCA read amplifier is put in standby outside the read phase.

state2<6>: en_mker_rst.

If "1", a "digital" marker (level defined by the bit state2<7>) is sent at the Output during the idle phase of the SCA readout. If "0", the output voltage is fixed to 0.7 V.

<u>state2<7></u>: DisCompEvt.

This bit set the level of the "digital" marker. If "0" the digital level sent on the analogue output during the idle phase is a digital "0". If "1" the digital level is "1" if at least one triggered event is stored in the DREAM chip, otherwise a 0 is sent.

state2<8>: boost_pw.

If 1, the output current of the GAIN-2 amplifier is increased by +20%. It can be used for very fast sampling frequencies and in case of chip fabricated in a "slow" corner process.

state2<9>: out_resync.

If 1, the **Sc_dout** output data is resynchronized by a clock edge **RCk**, selected by **synchro_inv**.

state2<10>: synchro_inv.

It selects the edge for the synchronizing of the **Sc_dout** output data. "0" select the rising edge, "1" the falling.

state2<11>: force_eout.

"1" inhibits the 3rd state functionality of the Slow Control output buffer.

state2<12:13>: Bits CUR_RA <0:1>.

These 2 bits are controlling the bias current of the 64 SCA line readout amplifiers. The table 23 gives the different values of the current consumed by a single readout buffer.

CUR_RA<1>	CUR_RA<0>	value
0	0	352uA
0	1	450uA
1	0	637uA
1	1	1150uA

Table 23: Control of the SCA line readout amplifier.

The nominal configuration is: < **10** > (637 μ A).

state2<14:15>: Bits CUR_BUF <0:1>.

These 2 bits are controlling the bias current of the SCA amplifiers used in the output analogue multiplexer. The table 24 shows the different values of the current consumed by these 3 amplifiers.

CUR_BUF<1>	CUR_BUF<0>	I power
0	0	1.503 mA
0	1	1.914 mA
1	0	2.700 mA
1	1	4.870 mA

Table 24: Control of the SCA mux amplifiers current.

The nominal configuration is: « 10 » (2.7 mA).

state2<16> to state2<24>: Bits SCASpy<0:8>.

These 9 bits are programing the Spy Output of the SCA.

state2<16:18>: Bits SCASpyCh0<0:2>.

These 3 bits select the test signal, 1 among 8 (table 25), sent on the *Hitp* & *Hitm* outputs.

SCASpyCh0<2>	SCASpyCh0<1>	SCASpyCh0<0>	Test signal on Hitp&Hitm
0	0	0	Write Pointer
0	0	1	Read Column Signal
0	1	0	Trigger Pointer
0	1	1	WCk (for col. 0) or Trig (for col. 511)
1	0	0	Release Pointer
1	0	1	Release Ready Pointer 110: Skip Pointer
1	1	0	Skip Pointer
1	1	1	Write Event signal

Table 25: Selection of the test signal on *Hitp & Hitm* outputs.

state2<19>: Bits SCASpyCh0<3>.

This bit defines the source column of the test signal (table 26), sent on the *Hitp* & *Hitm* outputs.

SCASpyCh0<3>	Source column of the Test signal on Hitp&Hitm outputs
0	Column 0
1	Column 511

Table 26: Selection of the source column of the test signal on *Hitp & Hitm* outputs.

state2<20:22>: Bits SCASpyCh1<0:2>.

These 3 bits select the test signal, 1 among 8 (table 27), sent on the **Out_debug** output.

SCASpyCh1<2>	SCASpyCh1<1>	SCASpyCh1<0>	Test signal on Out_debug
0	0	0	Write Pointer
0	0	1	Read Column Signal
0	1	0	Trigger Pointer
0	1	1	WCk (for col. 0) or Trig (for col. 511)
1	0	0	Release Pointer
1	0	1	Release Ready Pointer 110: Skip Pointer
1	1	0	Skip Pointer
1	1	1	Write Event signal

Table 27: Selection of the test signal on *Out_debug* output.

state2<23>: Bit SCASpyCh1<3>.

This bit defines the source column of the test signal (table 28), sent on the *Out_debug* output.

SCASpyCh1<3>	Source column of the test signal on Out_debug output
0	Column 0
1	Column 511

Table 28: Selection of the source column of the test signal on *Out_debug* output.

state2<24>: Bit EnSCASpy

This bit enables the spy mode of the SCA digital signals. In this mode, 2 spy signal selected among 16 possible are send on the chip pads: *Hitp*&*Hitm* (through a CMOS to LVDS converter) and *Out_debug*.

state2<25:27>: Bits Hit_multi<0:2>.

These 3 bits select the multiplicity level value (table 29) necessary to validate a HIT signal.

Hit_multi<2>	Hit_multi<1>	Hit_multi<0>	Multiplicity level
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	4
1	0	1	11
1	1	0	26
1	1	1	55

Table 29: Selection of the multiplicity level need to validate a HIT signal.

<u>state2<28:31></u>: Bits **DisInitWev**, **DisInitRev**, **DisInitPtW**, **DisInitPtSK**.

These bits permit to inhibit reset or initialization performed respectively on the Write Event Counter, the Read Event Counter, the Write and Trigger Pointers, and the Skip Pointer when the Write signal rises to 1.

7.6. D The register 3

This 32-bit register is located at address number 3. It is used to select the channel for the test (table 30). The channel number goes from 1 to 32.

bit	name	action
0	select c32	Selection of the channel 32 for the test
1	select c31	Selection of the channel 31 for the test
2	select c30	Selection of the channel 30 for the test
3	select c29	Selection of the channel 29 for the test
4	select c28	Selection of the channel 28 for the test
5	select_c27	Selection of the channel 27 for the test
6	select_c26	Selection of the channel 26 for the test
7	select_c25	Selection of the channel 25 for the test
8	select_c24	Selection of the channel 24 for the test
9	select_c23	Selection of the channel 23 for the test
10	select_c22	Selection of the channel 22 for the test
11	select_c21	Selection of the channel 21 for the test
12	select_c20	Selection of the channel 20 for the test
13	select_c19	Selection of the channel 19 for the test
14	select_c18	Selection of the channel 18 for the test
15	select_c17	Selection of the channel 17 for the test
16	select_c16	Selection of the channel 16 for the test
17	select_c15	Selection of the channel 15 for the test
18	select_c14	Selection of the channel 14 for the test
19	select_c13	Selection of the channel 13 for the test
20	select_c12	Selection of the channel 12 for the test
21	select_c11	Selection of the channel 11 for the test
22	select_c10	Selection of the channel 10 for the test
23	select_c9	Selection of the channel 9 for the test
24	select_c8	Selection of the channel 8 for the test
25	select_c7	Selection of the channel 7 for the test
26	select_c6	Selection of the channel 6 for the test
27	select_c5	Selection of the channel 5 for the test
28	select_c4	Selection of the channel 4 for the test
29	select_c3	Selection of the channel 3 for the test
30	select_c2	Selection of the channel 2 for the test
31	select_c1	Selection of the channel 1 for the test

Table 30: Description of the register 3.

7.6. E The register 4

CLAS12

This 32-bit register is located at address number 4. It is used to select the channel for the test (table 31). The channel number goes from 33 to 64.

bit	name	action
0	select_c33	Selection of the channel 33 for the test
1	select_c34	Selection of the channel 34 for the test
2	select_c35	Selection of the channel 35 for the test
3	select_c36	Selection of the channel 36 for the test
4	select_c37	Selection of the channel 37 for the test
5	select_c38	Selection of the channel 38 for the test
6	select_c39	Selection of the channel 39 for the test
7	select_c40	Selection of the channel 40 for the test
8	select_c41	Selection of the channel 41 for the test
9	select_c42	Selection of the channel 42 for the test
10	select_c43	Selection of the channel 43 for the test
11	select_c44	Selection of the channel 44 for the test
12	select_c45	Selection of the channel 45 for the test
13	select_c46	Selection of the channel 46 for the test
14	select_c47	Selection of the channel 47 for the test
15	select_c48	Selection of the channel 48 for the test
16	select_c49	Selection of the channel 49 for the test
17	select_c50	Selection of the channel 50 for the test
18	select_c51	Selection of the channel 51 for the test
19	select_c52	Selection of the channel 52 for the test
20	select_c53	Selection of the channel 53 for the test
21	select_c54	Selection of the channel 54 for the test
22	select_c55	Selection of the channel 55 for the test
23	select_c56	Selection of the channel 56 for the test
24	select_c57	Selection of the channel 57 for the test
25	select_c58	Selection of the channel 58 for the test
26	select_c59	Selection of the channel 59 for the test
27	select_c60	Selection of the channel 60 for the test
28	select_c61	Selection of the channel 61 for the test
29	select_c62	Selection of the channel 62 for the test
30	select_c63	Selection of the channel 63 for the test
31	select_c64	Selection of the channel 64 for the test

Table 31: Description of the register 4.

7.6. F The register 5

This 16- bit register is located at address number 5. It contains the version number of the circuit. The version number is: 0x0302 (0x0301 for DREAM prototype version).

CLAS12

7.6. G The register 6

This 64-bit register defines the gain of the 32 first channels. For each channel, there are 2 bits to select its CSA charge capacitor among 4 possible. The mapping is given in the table 32.

bit	name	action	bit	name	action
0	Lsb Gain c32		32	Lsb Gain c16	
1	Msb Gain c32	Gain selection channel 32	33	Msb Gain c16	Gain selection channel 16
2	Lsb Gain c31		34	Lsb Gain c15	
3	Msb Gain c31	Gain selection channel 31	35	Msb Gain c15	Gain selection channel 15
4	Lsb Gain c30		36	Lsb Gain c14	
5	Msb Gain c30	Gain selection channel 30	37	Msb Gain c14	Gain selection channel 14
6	Lsb Gain c29		38	Lsb Gain c13	
7	Msb Gain c29	Gain selection channel 29	39	Msb Gain c13	Gain selection channel 13
8	Lsb Gain c28		40	Lsb Gain c12	
9	Msb Gain c28	Gain selection channel 28	41	Msb Gain c12	Gain selection channel 12
10	Lsb Gain c27		42	Lsb Gain c11	
11	Msb Gain c27	Gain selection channel 27	43	Msb Gain c11	Gain selection channel 11
12	Lsb Gain c26		44	Lsb Gain c10	
13	Msb Gain c26	Gain selection channel 26	45	Msb Gain c10	Gain selection channel 10
14	Lsb Gain c25		46	Lsb Gain c09	
15	Msb Gain c25	Gain selection channel 25	47	Msb Gain c09	Gain selection channel 9
16	Lsb Gain c24		48	Lsb Gain c08	
17	Msb Gain c24	Gain selection channel 24	49	Msb Gain c08	Gain selection channel 8
18	Lsb Gain c23		50	Lsb Gain c07	
19	Msb Gain c23	Gain selection channel 23	51	Msb Gain c07	Gain selection channel 7
20	Lsb Gain c22		52	Lsb Gain c06	
21	Msb Gain c22	Gain selection channel 22	53	Msb Gain c06	Gain selection channel 6
22	Lsb Gain c21		54	Lsb Gain c05	
23	Msb Gain c21	Gain selection channel 21	55	Msb Gain c05	Gain selection channel 5
24	Lsb Gain c20		56	Lsb Gain c04	
25	Msb Gain c20	Gain selection channel 20	57	Msb Gain c04	Gain selection channel 4
26	Lsb Gain c19		58	Lsb Gain c03	
27	Msb Gain c19	Gain selection channel 19	59	Msb Gain c03	Gain selection channel 3
28	Lsb Gain c18		60	Lsb Gain c02	
29	Msb Gain c18	Gain selection channel 18	61	Msb Gain c02	Gain selection channel 2
30	Lsb Gain c17		62	Lsb Gain c01	
31	Msb Gain c17	Gain selection channel 17	63	Msb Gain c01	Gain selection channel 1

Table 32: Description of the register 6.

At the channel level, the gain is defined as follows:

MSB	LSB	Input dynamic range
0	0	50 fC (0,5 pF)
0	1	100 fC (1 pF)
1	0	200 fC (2 pF)
1	1	600 fC (1,2 pF)

7.6. H The register 7

This 64-bit register defines the gain of the 32 last channels. For each channel, there are 2 bits to select its CSA charge capacitor among 4 possible. The mapping is given in the table 33.

bit	name	action	bit	name	action
0	Lsb Gain c33		32	Lsb Gain c49	
1	Msb Gain c33	Gain selection channel 33	33	Msb Gain c49	Gain selection channel 49
2	Lsb Gain c34		34	Lsb Gain c50	
3	Msb Gain c34	Gain selection channel 34	35	Msb Gain c50	Gain selection channel 50
4	Lsb Gain c35		36	Lsb Gain c51	
5	Msb Gain c35	Gain selection channel 35	37	Msb Gain c51	Gain selection channel 51
6	Lsb Gain c36		38	Lsb Gain c52	
7	Msb Gain c36	Gain selection channel 36	39	Msb Gain c52	Gain selection channel 52
8	Lsb Gain c37		40	Lsb Gain c53	
9	Msb Gain c37	Gain selection channel 37	41	Msb Gain c53	Gain selection channel 53
10	Lsb Gain c38		42	Lsb Gain c54	
11	Msb Gain c38	Gain selection channel 38	43	Msb Gain c54	Gain selection channel 54
12	Lsb Gain c39		44	Lsb Gain c55	
13	Msb Gain c39	Gain selection channel 39	45	Msb Gain c55	Gain selection channel 55
14	Lsb Gain c40		46	Lsb Gain c56	
15	Msb Gain c40	Gain selection channel 40	47	Msb Gain c56	Gain selection channel 56
16	Lsb Gain c41		48	Lsb Gain c57	
17	Msb Gain c41	Gain selection channel 41	49	Msb Gain c57	Gain selection channel 57
18	Lsb Gain c42		50	Lsb Gain c58	
19	Msb Gain c42	Gain selection channel 42	51	Msb Gain c58	Gain selection channel 58
20	Lsb Gain c43		52	Lsb Gain c59	
21	Msb Gain c43	Gain selection channel 43	53	Msb Gain c59	Gain selection channel 59
22	Lsb Gain c44		54	Lsb Gain c60	
23	Msb Gain c44	Gain selection channel 44	55	Msb Gain c60	Gain selection channel 60
24	Lsb Gain c45		56	Lsb Gain c61	
25	Msb Gain c45	Gain selection channel 45	57	Msb Gain c61	Gain selection channel 61
26	Lsb Gain c46		58	Lsb Gain c62	
27	Msb Gain c46	Gain selection channel 46	59	Msb Gain c62	Gain selection channel 62
28	Lsb Gain c47		60	Lsb Gain c63	
29	Msb Gain c47	Gain selection channel 47	61	Msb Gain c63	Gain selection channel 63
30	Lsb Gain c48		62	Lsb Gain c64	
31	Msb Gain c48	Gain selection channel 48	63	Msb Gain c64	Gain selection channel 64

Table 33: Description of the register 7.

At the channel level, the gain is defined as follows:

MSB	LSB	Input dynamic range
0	0	50 fC (0,5 pF)
0	1	100 fC (1 pF)
1	0	200 fC (2 pF)
1	1	600 fC (1,2 pF)

7.6. I The register 8

This 32-bit register permits to inhibit the discriminator of specific channel. The mapping for the channel 1 to 32 is given in the table 34.

bit	name	action
0	Trig_inhi_c32	inhibition of the channel 32
1	Trig_inhi _c31	inhibition of the channel 31
2	Trig_inhi _c30	inhibition of the channel 30
3	Trig_inhi _c29	inhibition of the channel 29
4	Trig_inhi _c28	inhibition of the channel 28
5	Trig_inhi _c27	inhibition of the channel 27
6	Trig_inhi _c26	inhibition of the channel 26
7	Trig_inhi _c25	inhibition of the channel 25
8	Trig_inhi _c24	inhibition of the channel 24
9	Trig_inhi _c23	inhibition of the channel 23
10	Trig_inhi _c22	inhibition of the channel 22
11	Trig_inhi _c21	inhibition of the channel 21
12	Trig_inhi _c20	inhibition of the channel 20
13	Trig_inhi _c19	inhibition of the channel 19
14	Trig_inhi _c18	inhibition of the channel 18
15	Trig_inhi _c17	inhibition of the channel 17
16	Trig_inhi _c16	inhibition of the channel 16
17	Trig_inhi _c15	inhibition of the channel 15
18	Trig_inhi _c14	inhibition of the channel 14
19	Trig_inhi _c13	inhibition of the channel 13
20	Trig_inhi _c12	inhibition of the channel 12
21	Trig_inhi _c11	inhibition of the channel 11
22	Trig_inhi _c10	inhibition of the channel 10
23	Trig_inhi _c9	inhibition of the channel 9
24	Trig_inhi _c8	inhibition of the channel 8
25	Trig_inhi _c7	inhibition of the channel 7
26	Trig_inhi _c6	inhibition of the channel 6
27	Trig_inhi _c5	inhibition of the channel 5
28	Trig_inhi _c4	inhibition of the channel 4
29	Trig_inhi _c3	inhibition of the channel 3
30	Trig_inhi _c2	inhibition of the channel 2
31	Trig_inhi _c1	inhibition of the channel 1

Table 34: Description of the register 8.

7.6. J The register 9

This 32-bit register permits to inhibit the discriminator of specific channel. The mapping for the channel 33 to 64 is given in the table 35.

bit	name	action
0	Trig_inhi_c33	inhibition of the channel 33
1	Trig_inhi _c34	inhibition of the channel 34
2	Trig_inhi _c35	inhibition of the channel 35
3	Trig_inhi _c36	inhibition of the channel 36
4	Trig_inhi _c37	inhibition of the channel 37
5	Trig_inhi _c38	inhibition of the channel 38
6	Trig_inhi _c39	inhibition of the channel 39
7	Trig_inhi _c40	inhibition of the channel 40
8	Trig_inhi _c41	inhibition of the channel 41
9	Trig_inhi _c42	inhibition of the channel 42
10	Trig_inhi _c43	inhibition of the channel 43
11	Trig_inhi _c44	inhibition of the channel 44
12	Trig_inhi _c45	inhibition of the channel 45
13	Trig_inhi _c46	inhibition of the channel 46
14	Trig_inhi _c47	inhibition of the channel 47
15	Trig_inhi _c48	inhibition of the channel 48
16	Trig_inhi _c49	inhibition of the channel 49
17	Trig_inhi _c50	inhibition of the channel 50
18	Trig_inhi _c51	inhibition of the channel 51
19	Trig_inhi _c52	inhibition of the channel 52
20	Trig_inhi _c53	inhibition of the channel 53
21	Trig_inhi _c54	inhibition of the channel 54
22	Trig_inhi _c55	inhibition of the channel 55
23	Trig_inhi _c56	inhibition of the channel 56
24	Trig_inhi _c57	inhibition of the channel 57
25	Trig_inhi _c58	inhibition of the channel 58
26	Trig_inhi _c59	inhibition of the channel 59
27	Trig_inhi _c60	inhibition of the channel 60
28	Trig_inhi _c61	inhibition of the channel 61
29	Trig_inhi _c62	inhibition of the channel 62
30	Trig_inhi _c63	inhibition of the channel 63
31	Trig_inhi _c64	inhibition of the channel 64

Table 35: Description of the register 9.

7.6. K The register 10

This 32-bit register permits to enable the SCA readout for the specified channels (1 to 32). The mapping for the channel 1 to 32 is given in the table 36.

bit	name	action
0	Sca_inhi_c32	SCA read enable of the channel 32
1	Sca_inhi_c31	SCA read enable of the channel 31
2	Sca_inhi_c30	SCA read enable of the channel 30
3	Sca_inhi_c29	SCA read enable of the channel 29
4	Sca_inhi_c28	SCA read enable of the channel 28
5	Sca_inhi_c27	SCA read enable of the channel 27
6	Sca_inhi_c26	SCA read enable of the channel 26
7	Sca_inhi_c25	SCA read enable of the channel 25
8	Sca_inhi_c24	SCA read enable of the channel 24
9	Sca_inhi_c23	SCA read enable of the channel 23
10	Sca_inhi_c22	SCA read enable of the channel 22
11	Sca_inhi_c21	SCA read enable of the channel 21
12	Sca_inhi_c20	SCA read enable of the channel 20
13	Sca_inhi_c19	SCA read enable of the channel 19
14	Sca_inhi_c18	SCA read enable of the channel 18
15	Sca_inhi_c17	SCA read enable of the channel 17
16	Sca_inhi_c16	SCA read enable of the channel 16
17	Sca_inhi_c15	SCA read enable of the channel 15
18	Sca_inhi_c14	SCA read enable of the channel 14
19	Sca_inhi_c13	SCA read enable of the channel 13
20	Sca_inhi_c12	SCA read enable of the channel 12
21	Sca_inhi_c11	SCA read enable of the channel 11
22	Sca_inhi_c10	SCA read enable of the channel 10
23	Sca_inhi_c9	SCA read enable of the channel 9
24	Sca_inhi_c8	SCA read enable of the channel 8
25	Sca_inhi_c7	SCA read enable of the channel 7
26	Sca_inhi_c6	SCA read enable of the channel 6
27	Sca_inhi_c5	SCA read enable of the channel 5
28	Sca_inhi_c4	SCA read enable of the channel 4
29	Sca_inhi_c3	SCA read enable of the channel 3
30	Sca_inhi_c2	SCA read enable of the channel 2
31	Sca_inhi_c1	SCA read enable of the channel 1

Table 36: Description of the register 10.

7.6. L The register 11

This 32-bit register permits to enable the SCA readout for the specified channels (33 to 64). The mapping for the channel 33 to 64 is given in the table 37.

bit	name	action
0	Sca_inhi_c33	SCA read enable of the channel 33
1	Sca_inhi_c34	SCA read enable of the channel 34
2	Sca_inhi_c35	SCA read enable of the channel 35
3	Sca_inhi_c36	SCA read enable of the channel 36
4	Sca_inhi_c37	SCA read enable of the channel 37
5	Sca_inhi_c38	SCA read enable of the channel 38
6	Sca_inhi_c39	SCA read enable of the channel 39
7	Sca_inhi_c40	SCA read enable of the channel 40
8	Sca_inhi_c41	SCA read enable of the channel 41
9	Sca_inhi_c42	SCA read enable of the channel 42
10	Sca_inhi_c43	SCA read enable of the channel 43
11	Sca_inhi_c44	SCA read enable of the channel 44
12	Sca_inhi_c45	SCA read enable of the channel 45
13	Sca_inhi_c46	SCA read enable of the channel 46
14	Sca_inhi_c47	SCA read enable of the channel 47
15	Sca_inhi_c48	SCA read enable of the channel 48
16	Sca_inhi_c49	SCA read enable of the channel 49
17	Sca_inhi_c50	SCA read enable of the channel 50
18	Sca_inhi_c51	SCA read enable of the channel 51
19	Sca_inhi_c52	SCA read enable of the channel 52
20	Sca_inhi_c53	SCA read enable of the channel 53
21	Sca_inhi_c54	SCA read enable of the channel 54
22	Sca_inhi_c55	SCA read enable of the channel 55
23	Sca_inhi_c56	SCA read enable of the channel 56
24	Sca_inhi_c57	SCA read enable of the channel 57
25	Sca_inhi_c58	SCA read enable of the channel 58
26	Sca_inhi_c59	SCA read enable of the channel 59
27	Sca_inhi_c60	SCA read enable of the channel 60
28	Sca_inhi_c61	SCA read enable of the channel 61
29	Sca_inhi_c62	SCA read enable of the channel 62
30	Sca_inhi_c63	SCA read enable of the channel 63
31	Sca_inhi_c64	SCA read enable of the channel 64

Table 37: Description of the register 11.

7.6. M The register 12

This 16-bit register permits to define the Trigger Latency. Only the first 9 bits are currently used (table 38).

bit	name	action
0	TrigLat<0>	Lsb of the Trigger Latency value
1	TrigLat<1>	
2	TrigLat<2>	
3	TrigLat<3>	
4	TrigLat<4>	
5	TrigLat<5>	
6	TrigLat<6>	
7	TrigLat<7>	
8	TrigLat<8>	Msb of the Trigger Latency value

Table 38: Description of the register 12.

8. The power supply connections

A significant number of pins of the DREAM chip (19 Vdd; 19 Gnd) are dedicated to power supplies. The analog channels of DREAM are split into 2 groups of 32, for matching a square package. The height of these 2 groups (8 mm) and the sensitivity of each block (CSA, CR, SK, G-2, Discriminator & Dac threshold) imply to supply these blocks independently. This is also true for the SCA powering.

All the Vdd (Gnd) pads can be connected to the same PCB Vdd (Gnd) plan. A decoupling ceramic capacitor of 100 nF must be put very shortly to each Vdd connection point. An additional capacitor of 10 μ F must be added for the pads: 36, 63, 98, 99, 115 & 127.

8.1 The cavity connection

The substrat (P type) of the chip must be connected to the ground. This is done by connecting the bottom of the package cavity with 3 pins in each corner (**Fig. 18**).

Fig. 18: Bonding diagram of the DREAM chip.

N° pin	Name	Current value	Description
		0 A	Cavity; Protection diodes [33 to 64]; SCA digital
33	Gnd_Substrat		guard ring; Slow Control + left part (1to32).
97	Gnd_Substrat	0 A	Cavity; Protection diodes [65 to 96].
128	Gnd_Substrat	0 A	Cavity; Protection diodes [1 to 32].

Table 39: Pins for the cavity connection.

8.2 The protection diode bias

All the pins of the chip are protected by internal diodes. The power supplies of these diodes are carried out by independent pins and are used also to supply others "quiet" parts of the chip.

N° pin	Name		Description
		0 A	Gnd for Cavity; Protection diodes [33 to 64]; SCA guard ring;
33	Gnd_Substrat		Slow Control + left part (channel 1to32).
		0 A	Vdd for Protection diodes [33 to 64]; Slow Control + left part
34	Vdd_prob		(channel 1to32).
97	Gnd_Substrat	0 A	Gnd for Cavity; Protection diodes [65 to 96].
98	Vdd_proind	0 A	Vdd for Protection diodes [65 to 96].
112	Vdd_proh	0 A	Vdd for HIT & Slow control right; Protection diodes [99 to 126].
113	Gnd_proh	0 A	Gnd for HIT & Slow control right; Protection diodes [99 to 126].
127	Vdd_proing	0 A	Vdd for Protection diodes [1 to 32].
128	Gnd_Substrat	0 A	Gnd for Cavity; Protection diodes [1 to 32].

Table 40: Pins for the protection diodes bias.

8.3 The front-end bias

The front-end is made of 5 blocks: CSA, PZC, SK, Gain-2 & HIT (Gain & Discriminator). Each of them uses dedicated pins for power supplies, excepted for the Trigger block. The analog & digital aspect of this functionality and the lake of free pins have push to use the bias of other blocks.

8.3.A The CSA bias

The DC power consumption current depends on the value of CSA nominal bias current set internally by 2-bit slow control state1<1:0>.

N° pin	Name	ldc (mA)	Description
36	Vdd_csag	10.9/12.3/17.36/24.15 (4.65 in standby mode)	Vdd & Gnd:
37	Gnd_csag	10.9/12.3/17.36/24.15 (4.65 in standby mode)	• CSA (1 to 32)
125	Gnd_csag	10.9/12.3/17.36/24.15 (4.65 in standby mode)	 DAC_{threshold} (1 to 32)
126	Vdd_csag	10.9/12.3/17.36/24.15 (4.65 in standby mode)	
62	Gnd_csad	10.9/12.3/17.36/24.15 (4.65 in standby mode)	Vdd & Gnd:
63	Vdd_csad	10.9/12.3/17.36/24.15 (4.65 in standby mode)	 CSA (33 to 64)
99	Vdd_csad	10.9/12.3/17.36/24.15 (4.65 in standby mode)	 DAC_{threshold} (33 to 64)
100	Gnd_csad	10.9/12.3/17.36/24.15 (4.65 in standby mode)	

Table 41: Pins for the CSA bias.

8.3.B <u>The Pole-Zero-Cancellation stage bias</u>

N° pin	Name	ldc (mA)	Description
102	Vdd_crd	10.6 (2.2 in standby mode)	Vdd & Gnd for PZC channel 33 to 64.
103	Gnd_crd	10.6 (2.2 in standby mode)	
122	Gnd_crg	10.6 (2.2 in standby mode)	Vdd & Gnd for PZC channel 1 to 32.
123	Vdd_crg	10.6 (2.2 in standby mode)	

Table 42: Pins for the PZC bias.

8.3.C <u>The SK filter stage bias</u>

N° pin	Name	ldc (mA)	Description
104	Gnd_skd	3.53 (1.5 in standby mode)	Vdd & Gnd for SK filter channel 33 to 64.
105	Vdd_skd	3.53 (1.5 in standby mode)	
120	Gnd_skg	3.53 (1.5 in standby mode)	Vdd & Gnd for SK filter channel 1 to 32.
121	Vdd_skg	3.53 (1.5 in standby mode)	

Table 43: Pins for the SK filter bias.

©LAS12

8.3.D The inverting Gain-2 stage bias

N° pin	Name	ldc (mA)	Description
			Vdd & Gnd:
106	Vdd_g2d	23.43	 Gain₋₂ (33 to 64)
			 Gain_{threshold} (33 to 64)
107	Gnd_g2d	23.43	 Discri_{input} (33 to 64)
			Vdd & Gnd:
122	Gnd_g2g	23.43	 Gain₋₂ (1 to 32)
			 Gain_{threshold} (1 to 32)
123	Vdd_g2g	23.43	 Discri_{input} (1 to 32)

Table 44: Pins for the Gain-2 bias.

8.4 The SCA power supplies

The SCA is divided into 4 parts: The matrix (512 x 64 analog cells), the input stage "return buffers" (1 per line), the SCA read amplifier (1 per line) and the digital part (clock, address ...).

8.4.A The analog memory cell matrix

The supply of the matrix is made by a metal grid on its entire surface. This grid is connected to the power bus supply of the return and output buffers. The DC power consumption of this part is zero.

8.4.B The "return buffer" amplifiers

This stage buffers the Vreturn voltage (Vref_sca [pin n° 111]) to provide it as a reference to the memory cells.

N° pin	Name	ldc (mA)	Description
116	Vdd	3.4	Vdd & Gnd: Return buffer & Matrix
117	Gnd	3.4	

Table 45: Pins for the "return buffer" amplifiers.

8.4.C The SCA read amplifiers

This amplifier is used to read back the analog data stored in the memory cells. It is active only during the read phase. Its power consumption value is adjustable by slow control (2-bit state2<13:12>).

N° pin	Name	ldc (mA)	Description
108	Vdd	15/19/27.5/50	Vdd & Gnd: SCA readout amplifiers & Matrix
109	Gnd	15/19/27.5/50	

Table 46: Pins for the SCA read amplifiers.

8.4.D The SCA digital part

This part generates and distributes the signals required for the writing and reading operations in the SCA.

N° pin	Name	ldc (mA)	Description
53	Gnd	0.509	Vdd & Gnd for SCA logic& LVDS receivers
54	Vdd	0.509	

Table 47: Pins for the SCA digital part.

8.4.E The SCA guard ring

An important point concerns the parasitic injection charge through the substrat between the SCA (the noise source) and the front-end (CSA input). So, particularity care has been taken into account by putting guard ring around the SCA. The supply of these 2 rings (pplus&nplus diffusion) is done by 2 specific pads.

N° pin	Name	ldc (mA)	Description
51	Vdd	0	Vdd & Gnd for SCA guard ring
52	Gnd	0	

Table 48: Pins for the SCA guard ring.

8.5 The readout output buffers

This section of the chip includes the analog output multiplexer, the several intermediate buffers and the differential output buffer. The bias current of the intermediate buffers is controlling by the state2<15:14>.

N° pin	Name	Idc (mA)	Description
57	Vdd_out	17.3	Vdd & Gnd for the readout output & SCA buffers
64	Gnd	17.3	

Table 49: Pins for the readout output buffers.

8.6 The channel power consumption

The chip power consumption depends of the CSA bias current value and also of the one chooses to optimize the readout of the analog data (bias of the output buffers). For a CSA bias nominal value of $400 \, \mu A$, the power consumption per channel will be around $8.7 \, mW$; $11.34 \, mW$ for CSA bias value of $1.2 \, mA$.

9. The DC voltage references

The DREAM chip needs DC reference voltages to bias the inputs or outputs of its functional blocks. All these voltages are defined internally (except for **Vocm** (pad 55)) and are accessible through some pads (table 50). For the DC voltage **Vref_sca**, it is necessary to decrease the input impedance by putting external resistor bridge (511 Ω to Vdd and 147 Ω to the ground for DC voltage of 0.736 V).

For high frequency noise reduction, all these pads must be bypassed to ground by a 100 nF ceramic capacitor.

N° pin	Name	Description
55	Vocm	Common mode output voltage of the SCA readout buffer
56	Vicm	Common mode input voltage of the SCA readout buffer
101	Vreg_csad	Regulator voltage of the CSA input transistors (channel 33 to 64)
110	Vdc_g2	DC output level voltage of Gain.2
111	Vref_sca	DC reference level voltage of SCA and Gain.₂ input
114	Vdc_c	DC output level voltage of the PZC & SK filters
115	Vdc_csa	DC output level voltage of the CSA
124	Vreg_csag	Regulator voltage of the CSA input transistors (channel 1 to 32)

Table 50: Pins for the DC voltage references.

10. Specifications for digital signals

The DREAM chip uses two types of digital inputs:

- LVDS differential inputs. These inputs are not internally terminated (differential input resistance > 10 Mohm).
- CMOS inputs (high level = VDD, low level = 0).

Two types of digital outputs are available:

- CMOS outputs (high level = VDD, low level = 0).
- LVDS compatible outputs as shown on Fig 19.

Considering LVDS outputs:

An external terminating resistor Rout must be connected between the positive and negative outputs of the signal at the receiver level. The high level is defined by a 3mA current circulating from the positive output to the negative input through the external terminating resistor. This current is inverted in case of a low LVDS level.

Name	Description	Min	Тур.	Max
VDD	Power supply voltage	3.2V	3.3V	3.4V
PVDD	Total power			
Vcmm LVDSin	Common mode for LVDS inputs	0.6V	1.2 V	3V
Vswing LVDSin	LVDS input swing	0.2V	0.4 V	
VCMOSin_I	Low level for CMOS input	-0.2V	0	VSS+0.6V
VCMOSin_h	High level for CMOS input	2	3.3	3.5V
Rin_dig	Input resistance for the digital inputs (CMOS or LVDS)	10 MOhm		
Cin_ding	Input capacitance for the digital inputs		4pF	
lout	Current for LVDS outputs		3mA	
Rout	External load resistance required for LVDS outputs		100 Ohm	
Vcout	Common mode voltage for LVDS outputs		1.25V	
Vswing out	LVDS differential output swing (3mA setting, 100 Ohm load)		600mV	
VCMOSout_I	Low CMOS output level	0V	0V	0.4V
VCMOSout_h	High CMOS output	2.9V	3.3V	3.3V
ICMOSout	Maximum current for CMOS outputs			4 mA

Table 51: specifications for digital signals.

The common mode output voltage (Voutp+Voutm)/2 is internally set to **1.25V**. In the standard mode of operation, Rout=100 Ohm (to properly terminate a 100 Ohm impedance differential line), as lout =3mA, the voltage levels on the 2 outputs are 1.5V and 0.9V, giving a differential voltage swing compatible with standard LVDS receiver.

Fig 19: Principle of a LVDS compatible output.

11. Timing Specifications.

The table 52 summarizes the main timing requirements for the DREAM chip. The setup, hold and delay times standard definitions are shown on Fig 20.

Туре	Signal	Signal edge	Clock	Clock edge	Min	Тур	Max	Unit
Frequency			RCk (Slow Control)				20	MHz
			RCk					
Duty Cycle			(Slow Control)		0.4	0.5	0.6	
Setup	sc_en	both	RCk	-	10			ns
Hold	sc_en	both	RCk	•	10			ns
Setup	sc_din	both	RCk	-	10			ns
Hold	sc_din	both	RCk	-	10			ns
Propagation	Sc_dout		RCk				30	ns
Frequency			RCk (Readout)				20	MHz
Duty Cycle			RCk (Readout)		0.4	0.5	0.6	ns
Frequency			WCk	+		20	50	MHz
Duty Cycle			WCk	+	0.4	0.5	0.6	
Setup	Write	both	WCk	+	5			ns
Hold	Write	both	WCk	+	5			ns
Setup	Trig	both	WCk	+	5			ns
Hold	Trig	both	WCk	+	5			ns
Setup	Read	+	RCk	+	5			ns
Setup	Read	•	WCk	+	5			ns
Hold	Read	-	WCk	+	4			WCK periods
Aperture	Analog Sampling		WCK	+		TBD		ns
Delay	Analog Out		RCK	+		10		ns

Table 52: Timing Requirements.

Fig 20: Definition of the timing parameters.

©LAS12 12. Pinout of the DREAM chip.

The DREAM chip is housed in a 128-pin Low Quad Flat Pack (LQFP-128). The package body dimensions are $14 \times 14 \times 1.4$ mm. Its pitch is 0.4 mm with 2 mm footprint. The pin configuration is given in the **Fig. 21**.

Fig. 21: Pinout of the DREAM chip.

The pin function descriptions of the chip are reported in the table 53.

N° Pin	Name	Dir.	Level	Description
1 to 32	In<32> to In<01>	In	Analog	Inputs of channels 32 to 1
33	gnd	In	0V	Gnd for protection diode [33 to 64], cavity, Slow Control
34	Vdd_prob	In	3.3V	Vdd for protection diode [33 to 64], Slow Control
35	In_test	In	Analog	Input for the test, functionality or calibration
36	Vdd_csag	In	3.3V	Vdd for the csa of the channels 32 to 1 & Threshold DAC
37	gnd	In	0V	Gnd for the csa of the channels 32 to 1 & Threshold DAC
38	Out_debug	Out	Analog	Output of the "spy" mode: "analog" or "SCA"
39	Sc_din	In	CMOS 3.3V	Serial data input of Slow Control
40	Sc_en	In	CMOS 3.3V	Chip Select input of Slow Control
41	Sc_dout	Out	CMOS 3.3V	Serial data output of Slow Control
42	Readm	In	LVDS	SCA negative read mode
43	Readp	In	LVDS	SCA positive read mode
44	<i>RCk</i> m	In	LVDS	SCA or Slow Control Negative read clock

45	<i>RCk</i> p	In	LVDS	SCA or Slow Control Positive read clock	
46	WCkm	In	LVDS	SCA Negative write clock	
47	<i>WCk</i> p	In	LVDS	SCA Positive write clock	
48	Write	In	CMOS 3.3V	SCA write init mode	
49	Triggerm	In	LVDS	Trigger Negative input signal	
50	Triggerp	In	LVDS	Trigger Positive input signal	
51	vdd	In	3.3V	Vdd SCA guard ring	
52	gnd	In	0V	Gnd SCA guard ring	
53	gnd	In	0V	Gnd SCA logic	
54	vdd	In	3.3V	Vdd SCA logic	
55	vocm	In	ADC vicm	Common mode output voltage of the Readout buffer	
56	vicm	In	Analog	Common mode input voltage of the Readout buffer	
57	Vdd_out	In	3.3V	Vdd of the Readout buffer & SCA buffer	
58	vop	Out	Analog	Positive output of the Readout buffer	
59	vom	Out	Analog	Negative output of the Readout buffer	
60	Hitp	Out	LVDS	Hit Positive output signal + SCA internal signals	
61	Hitm	Out	LVDS	Hit Negative output signal + SCA internal signals	
62	gnd	In	0V	Gnd for the CSA of the channels 33 to 64 & Threshold DAC	
63	Vdd_csad	In	3.3V	Vdd for the CSA of the channels 33 to 64 & Threshold DAC	
64	gnd	In	0V	Gnd buffer out, logic	
65 to 96	In<64> to In<33>	In	Analog	Inputs of channels 64 to 33	
97	gnd	In	0V	Gnd for protection diode [33 to 64] & cavity	
98	Vdd_proind	In	3.3V	Vdd for protection diode [33 to 64]	
99	Vdd_csad	In	3.3V	Vdd for the CSA of the channels 33 to 64 & Threshold DAC	
100	gnd	In	0V	Gnd for the CSA of the channels 33 to 64 & Threshold DAC	
101	Vreg_csad	Out	Analog	Regulator voltage of the input transistors of CSA [33 to 64]	
102	Vdd_crd	In	3.3V	Vdd for the PZC of the channels 33 to 64	
103	gnd	In	0V	Gnd for the PZC of the channels 33 to 64	
104	Vdd_skd	In	3.3V	Vdd for the SK filter of the channels 33 to 64	
105	gnd	In	0V	Gnd for the SK filter of the channels 33 to 64	
106	Vdd_g2d	In	3.3V	Vdd for the Gain -2 of the channels 33 to 64; Threshold gain & LEAD input stage.	
		In	0V	Gnd for the Gain -2 of the channels 33 to 64;	
107	gnd		0.01	Threshold gain & LEAD input stage.	
108	Vdd	In	3.3V	Vdd SCA Readout Amplifier + Matrix	
			O) /	0 1004 D 1 14 15 144 15	
109	gnd	In O t	0V	Gnd SCA Readout Amplifier + Matrix	
110	Vdc_g2	Out	0.7V [2.2V]	DC output level voltage of the Gain-2	
110 111	Vdc_g2 vref_sca	Out Out	0.7V [2.2V] 0.7V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input	
110 111 112	Vdc_g2 vref_sca vdd_proh	Out Out In	0.7V [2.2V] 0.7V 3.3V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right	
110 111 112 113	Vdc_g2 vref_sca vdd_proh gnd	Out Out In In	0.7V [2.2V] 0.7V 3.3V 0V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right	
110 111 112 113 114	Vdc_g2 vref_sca vdd_proh gnd Vdc_c	Out Out In In Out	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V]	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter	
110 111 112 113 114 115	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa	Out Out In Out Out Out Out Out	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V]	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA	
110 111 112 113 114 115 116	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd	Out Out In In Out Out In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix	
110 111 112 113 114 115	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa	Out Out In Out Out Out In Out Out In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix	
110 111 112 113 114 115 116	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd	Out Out In In Out Out In In In In In In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage.	
110 111 112 113 114 115 116 117	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd gnd	Out Out In Out Out Out In Out Out In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1;	
110 111 112 113 114 115 116 117	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd	Out Out In In Out Out In In In In In In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage.	
110 111 112 113 114 115 116 117 118	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd gnd Vdd_g2g	Out Out In In Out Out In In In In In In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V 0V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage.	
110 111 112 113 114 115 116 117 118 119	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd gnd Vdd_ggd gnd	Out Out In In Out Out In In In In In In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V 0V 3.3V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Gnd for the SK filter of the channels 32 to 1	
110 111 112 113 114 115 116 117 118 119 120	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd gnd Vdd_ggd gnd Vdd_g2g gnd Vdd_skg	Out Out In In Out Out In In In In In In In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V 0V 0V 3.3V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Gnd for the SK filter of the channels 32 to 1 Vdd for the SK filter of the channels 32 to 1	
110 111 112 113 114 115 116 117 118 119 120 121	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd gnd Vdd_ggd gnd Vdd_g2g gnd Vdd_skg gnd	Out Out In In Out Out In In In In In In In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V 0V 0V 3.3V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Gnd for the SK filter of the channels 32 to 1 Vdd for the SK filter of the channels 32 to 1	
110 111 112 113 114 115 116 117 118 119 120 121 122 123	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd gnd Vdd_g2g gnd Vdd_skg gnd Vdd_crg	Out Out In In Out Out In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V 0V 3.3V 0V 3.3V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Gnd for the SK filter of the channels 32 to 1 Vdd for the SK filter of the channels 32 to 1 Gnd for the PZC of the channels 32 to 1	
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd Vdd_g2g gnd Vdd_skg gnd Vdd_crg Vdd_crg Vreg_csag	Out Out In In Out Out In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V 0V 3.3V 0V 3.3V 0V 3.3V Analog	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Gnd for the SK filter of the channels 32 to 1 Vdd for the SK filter of the channels 32 to 1 Regulator voltage of the input transistors of CSA [32 to 1]	
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	Vdc_g2 vref_sca vdd_proh gnd Vdc_c Vdc_csa Vdd gnd gnd Vdd_g2g gnd Vdd_skg gnd Vdd_crg Vreg_csag gnd	Out Out In In Out Out In	0.7V [2.2V] 0.7V 3.3V 0V 2.2V [0.7V] 1.8V [2.8V] 3.3V 0V 0V 3.3V 0V 3.3V 0V 3.3V 0V 3.3V 0V	DC output level voltage of the Gain-2 DC reference level voltage of the SCA and Gain-2 input Vdd for protection diode [99 to 126], Trigger & Slow Control right Gnd for protection diode [99 to 126], Trigger & Slow Control right DC output level voltage of the PZC & SK filter DC output level voltage of the CSA Vdd return buffer + Matrix Gnd return buffer + Matrix Gnd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Vdd for the Gain -2 of the channels 32 to 1; Threshold gain & LEAD input stage. Gnd for the SK filter of the channels 32 to 1 Vdd for the SK filter of the channels 32 to 1 Gnd for the PZC of the channels 32 to 1 Gnd for the PZC of the channels 32 to 1 Regulator voltage of the input transistors of CSA [32 to 1] Gnd for the CSA of the channels 32 to 1 & Threshold DAC	

Table 53: Description of the pins of the DREAM chip.

A picture of the DREAM chip layout is given in the **Fig. 22.** The circuit is manufactured using the AMS CMOS 0.35 μ m technology. The die area is 8591.5 μ m (+240 μ m) x 7455.8 μ m (+240 μ m).

Fig. 22: Layout of the DREAM chip.

The DREAM chip integrates around 730 000 components (# 687 000 transistors; # 38 000 capacitors; # 5700 resistors).

Annexe 1: DREAM Package specifications

The description of the package is given in the Fig. 23 & Fig. 24.

Fig. 23: Package description.

Fig. 24: Package dimension.

Annexe 2: Bonding Diagram

The 152 pads of the chip are much greater than the available 128 pads of the package chosen (LQFP-128 pins). Therefore double or triple bonding must be necessary done to reduce the self & resistor effects of the bonding for the digital supplies (SCA) and analog supplies (CSA) of the chip. The bonding diagram of DREAM is reported in the **Fig. 25**.

Fig. 25: Bonding diagram of the DREAM chip.

A double bonding is necessary for the package pin numbers: 33, 36, 37, 62, 63, 97, 102, 103, 106, 107, 108, 109, 112, 113, 116, 117, 118, 119, 122, 123 & 128.

A triple bonding for the package pin numbers: 52, 53 & 54.

The package pin numbers: 33, 97 & 128 are used to supply the cavity of the package (ASIC substrate).

©LAS12 Annexe 3: List of modifications

Few modifications have been made on the production version of DREAM circuit. This is the list of them.

- A/ The CSA integration time constant can be now choose between 2 values: 5 μ s (prototype version) or 50 μ s. It implies one new slow control bit: state1<31>.
 - B/ The input dynamic range of 1 pC is replaced by 600 fC.
- C/ The input dynamic range of the discriminator can be fixed to 5% or 17.5% of the input dynamic range of the analog channel. The new slow control bit state1<30> permits to define this gain.
- D/ A new set of values for the filter is used to cover uniformly the range between 50 and 400 ns.
- E/ A programmable threshold is settable on the multiplicity signal to generate the HIT signal. It requires new slow control bit state2<27:25>.
- F/ The SCA read amplifier can be have or not working with a constant current. It is done by using new slow control bit state2<5>.
- G/ The version number of the production version is set to: 0x0302 (0x0301 in previous version).
- H/ It is now not possible to view the SCA "spy" signals independently on the two pads HITP&HITM in CMOS level. The SCA_SPY_0 is output to the pad Out_debug (pin n° 38) and the SCA_SPY_1 in LVDS level through the pads HITP&HITM (pin n° 60 & 61).
- I/ The depth of the registers 8 & 9 is reduced to 32-bit (64-bit in the previous version).

© AS12 Bibliography

- Ref.1: AFTER, an ASIC for the Readout of the Large T2K Time Projection Chambers Baron, P. Calvet, D. Delagnes, E. de la Broise, X. Delbart, A. Druillole, F. Mazzucato, E. Monmarthe, E. Pierre, F. Zito, M., Nuclear Science, IEEE Transactions on, June 2008 Volume: 55, Issue: 3, Part 3, page(s): 1744-1752.
 - Ref. 2: AGET, the GET front-end ASIC, for the readout of the Time Projection Chambers used in nuclear physic experiments

Anvar, S; Baron, P.; Blank, B.; Chavas, J.; Delagnes, E.; Druillole, F.; Hellmuth, P.; Nalpas, L.; Pedroza, J.L.; Pibernat, J.; Pollacco, E.; Rebii, A.; Usher, N.

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Digital Object Identifier: 10.1109/NSSMIC.2011.6154095 Publication Year: 2011, Page(s): 745 - 749

http://www-tpc-get.cea.fr/index.php