Package 'FGalgorithm'

October 12, 2022

Version 1.0				
Date 2013-06-04				
Title Flury and Gautschi algo	prithms			
Author Dariush Najarzadeh				
Maintainer Dariush Najarza	deh <d_najarzadeh@sbu.ac.ir></d_najarzadeh@sbu.ac.ir>			
Description This is a packag algorithms.	e for implementation of Flury-Gautschi			
License GPL (>= 2)				
NeedsCompilation no Repository CRAN				
R topics documente	ed:			
FGalgorithm-package		3		
Index		4		
FGalgorithm-package	Execute the Flury and Gautschi diagonalisation algorithm, which tries to simultaneously diagonalize a set of symmetric positive definite matrices.			

Description

The minimization of the objective function

$$\Phi(B) = \prod_{i=1}^{k} \left[\frac{\det(diag(B'A_{i}B))}{\det(B'A_{i}B)} \right]^{n_{i}}$$

is required for a potpourri of statistical problems. This algorithm (Flury & Gautschi, 1984) is designed to find an orthogonal matrix B_0 of dimension $p \times p$ such that

$$\Phi(B) \ge \Phi(B_0)$$

for all orthogonal matrices B. The matrices $A_1,...,A_k$ are positive-definite and are usually sample covariance matrices and n_i s are positive real numbers.

It can be shown (Flury, 1983) that if $B_0 = [b_1, b_2, \dots, b_p]$, then the following system of equations holds:

$$b_l'\left[\sum_{i=1}^k n_i \frac{\lambda_{il} - \lambda_{ij}}{\lambda_{il}\lambda_{ij}} A_i\right] b_j = 0$$
 $(l, j = 1, \dots, p; l \neq j)$

where

$$\lambda_{ih} = b_h' A_i b_h$$
 $(i = 1, \dots, k; h = 1, \dots, p).$

In other words, Flury and Gautschi algorithms find the solution B_0 of the above system of equations. Also, this algorithm can be used to find the maximum likelihood estimates of common principal components in k groups (Flury,1984).

Details

Package: FGalgorithm
Type: Package
Version: 1.0
Date: 2012-11-14

Date: 2012-11-14 License: GPL (>= 2)

Author(s)

Dariush Najarzadeh

Maintainer: Dariush Najarzadeh < D_Najarzadeh@sbu.ac.ir>

References

Flury, B. N. (1983), "A generalization of principal component analysis to k groups", Technical Report No. 83-14, Dept. of Statistics, Purdue University.

Flury, B. N. (1984). Common principal components in k groups. Journal of the American Statistical Association, 79(388), 892-898.

Flury, B. N., & Gautschi, W. (1984). An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on Scientific and Statistical Computing, 7(1), 169-184.

FGalgorithm 3

FGalgorithm	Flury and Gautschi algorithms
	-

Description

Find the orthogonal matrix B_0 such that minimize $\Phi(B)$.

Usage

```
FGalgorithm(eF, eG, p, n , A)
```

Arguments

eF,eG	small positive constants controlling error terms.	
р	dimensionality.	
n	a numeric vector containing the positive integers.	
Α	a list of length k of positive definite symmetric matrices.	

Value

Orthogonal matrix B_0 such that minimize Φ with respect to the group of orthogonal matrices B.

Author(s)

Dariush Najarzadeh

References

Flury, B. N., & Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on Scientific and Statistical Computing, 7(1), 169-184.

Examples

```
n<-numeric(3)
n[[1]]<-50
n[[2]]<-50
n[[3]]<-50
A<-vector("list",length=3)
A[[1]]<-var(iris[51:100,1:4])
A[[2]]<-var(iris[101:150,1:4])
A[[3]]<-var(iris[1:50,1:4])
B0<-FGalgorithm(1e-5,1e-5,4,n,A)
B0</pre>
```

Index

$* \ Flury \ and \ Gautschi \ algorithm$

FGalgorithm, 3 FGalgorithm-package, 1

FGalgorithm, 3
FGalgorithm-package, 1