ECE113, Winter 2023

Quiz #2

Digital Signal Processing

University of California, Los Angeles; Department of ECE

Prof. A. Kadambi TA: S. Zhou, A. Vilesov

Wednesday, 11 Jan 2023 10 points total.

Name:	
HID	

1. (10 points) Consider the following sequences:

$$x[n] = \operatorname{Re}\left(e^{j\pi n/8}\right),$$

$$y[n] = \operatorname{Im}\left(e^{j\pi n/5}\right),$$

$$z[n] = x[n] + y[n],$$

- (a) What is the fundamental period of x[n]?
- (b) What is the fundamental period of y[n]?
- (c) Is z[n] periodic? If yes, what is the fundamental period? If no, why?

Solutions:

- Solutions: (a) By Euler's formula: $x[n] = \operatorname{Re}\left(e^{j\pi n/8}\right) = \cos(\frac{\pi}{8}n), \ x[n+N_x] = \cos(\frac{\pi}{8}(n+N_x)) = \cos(\frac{\pi}{8}n+\frac{\pi}{8}N_x)$. Since $x[n] = x[n+N_x]$, it should be $\frac{\pi}{8}N_x = 2\pi$, so $N_x = 16$.
- (b) Similarly, $y[n] = \sin(\frac{\pi}{5}n)$, $N_y = 10$. (c) Yes. $N_z = LCM(N_x, N_y) = 80$.