

KKBox: Predicting Customer Behavior for Music Streaming Services

Goals & Objectives

本プロジェクトの最終ゴールは、 音楽ストリーミングサービスの **会員数を増やす**ことである。

OBJECTIVE

上記ゴールのために、データ分析を通し、 サービス離反顧客の判別予測をし、離反確率の 高い顧客へ集中的にマーケティングが出来る土台 を作ることが本プロジェクトの目的となっている。 具体的には、顧客の離反行動について、

一時的な離反なのか**永続的な離反**なのかを予測するモデルを構築する。

Problem Statement

Transaction ID	Account ID	Transaction Date	Membership Expired Date	Expired Days
23	1aefooaif66hK	2015/2/3	2015/3/3	2
24	4245gjroqklaaD	2015/4/30	2016/4/30	376
	•			
309423	887HHKUH9	2017/3/15	2017/3/22	62

音楽ストリーミングサービスにおけるユーザーアカウントが失効したレコードの中で、 Expired Daysがある値を超えると永続的な離反と見なす

Expired Days Threshold

アカウントが失効した際に、一時的な離反か永続的な離反かを区切るしきい値には 再契約者のパレート図で傾向が変化した**74日**を採用した

Available Features

使用出来る特徴量は、過去に起きたTransaction、 過去のサービス利用ログ、アカウント情報の3点のみ

Evaluation Method

実運用になるべく近づけるために、 時間軸が後ろのものを評価用テストデータとした

ROC AUC Score

評価の指標として、データの特性に大きくよらずモデルの優位性を評価出来る、ROC曲線のAUC(Area Under the Curve)を採用

Results: Scores

テストデータに対するスコアは上記の通り。

Model Description

上記2種類のモデルを組み合わせて離反顧客の判別予測を実施した。

Model Description

Basic Description

- ・勾配Boosting系列の機械学習モデル
- ・予測精度を競う世界大会kaggleでは 今最も使用されているモデル

<u>Algorithm</u>

- ・決定木モデルを構築し、その決定木 モデルの予測値と正解の差を後続の 決定木が予測する
- ・最終的な特徴量は26個となった

Feature Selection

特徴量の選択には、ラッパー法(※APPENDIX#1)ながら計算時間が比較的短い

Permutation Importanceによる特徴量選択を実施

Hyperparameter Tuning

モデルのパラメータ調整には、**Bayesian Optimization**と呼ばれる、 ベイズの定理をベースとした最適パラメータの探索アルゴリズムを使用

Validation Method

Rolling Windows

(For Feature Selection Tuning)

モデルの検証は、過去データから未来データを予測する形を崩さずに、 幅広い時間軸で検証出来るように**TimeSeriesSplit方式**の交差検証法を実施

Validation Method

Expanding Windows

(For Hyperparameter Tuning)

モデルの検証は、過去データから未来データを予測する形を崩さずに、 幅広い時間軸で検証出来るように**TimeSeriesSplit方式**の交差検証法を実施

DEEP LEARNING

Model Description

Basic Description

- ・時系列データを扱うのに長けている LSTMがベース構造
- ・機械学習モデルよりもミクロな特徴 を掴むことが出来る

<u>Algorithm</u>

・LSTM用のサービス利用ログの インプットと、機械学習モデルと 同じ特徴量を学習するインプットの 2種類インプットを作成する

Results: Scores

テストデータに対するスコアは上記の通り。

Results: Confusion Matrix

一時的な離反

永続的な離反

一時的な離反 (予想) 31,694

Transactions

3,763

Transactions

Recall:

85.68%

永続的な離反 (予想) 5,445

Transactions

32,592

Transactions

Precision: **89.64%**

f1 Score:

87.62%

Analysis: Useful Features

num_past_expired_transactions_log	-0.091358	過去の離反回数
num_logs_last3months	-0.042701	過去3ヶ月のサービス利用ログ
is_auto_renew	-0.024783	自動更新かどうか
payment_plan_days_log	-0.015758	契約プランのサービス利用料
mean_expired_days_log	-0.011396	過去の離反日数平均
actual_amount_paid_log	-0.006963	支払ったサービス利用料
city_1	-0.002877	住所:都市IDが#1
num_unique_last3months_log	-0.002798	過去3ヶ月の音楽を聞いた曲の種類数
sum_actual_amount_paid_log	-0.002515	過去の累計サービス利用料
payment_plan_days_categorized_30	-0.002074	契約プランの日数:30日
total_secs3months	-0.002030	過去3ヶ月の音楽を聞いた秒数合計
total_sec_skew3months	-0.001777	過去3ヶ月の音楽を聞いた秒数の尖度

Permutation Importanceの上位26個の特徴を使用した上記は上位12個の特徴である

Further Proposals

モデルのしきい値を0.35にすると、Recallが90%となり、 永続的な離反顧客をより高確率で当てられるようになる

Further Proposals

DEEP LEARNING

予測精度が高い

AUC ROC 94.29

モデル運用が低コスト

特徴量が26個と少なく、時間軸の変化に よらない汎用的な特徴を使用しているため、 モデルの再学習が頻繁に必要としない 離反顧客を正確に予測しているため、 費用対効果が高いマーケティングが 可能

予測結果への説明力が高い

比較的単純な機械学習モデルなため、モデルの 予測結果に対する説明力が強い

モデルの運用工数・運用コストを抑えたい場合、LightGBMモデルのみ使用 モデルの精度を高め、マーケティングコストを抑えたい場合、両モデルを使用

Further Proposals

Payment Methodによって正例、負例の割合に大きな差があったため、Payment Methodの選択によってクーポンを配ることも離反を回避出来るかもしれない

APPENDIX

APPENDIX #1

	フィルタ法	ラッパー法	埋め込み法
計算時間	0	\triangle	0
予測精度	\triangle	©	
	相関などの統計量を 使って選択する方法。 一般的に高速だが、 精度の点で難がある。	モデルの学習と特徴 選択を何度も繰り返 すことでベストな組 み合わせを見つける 方法。時間はかかる が、予測精度は高い。	モデルの学習と同時 に使用する変数を学 習する方法。計算時 間と精度のバランス が良い。