Z-test for difference of proportions

$$H_0$$
: $P_c - P_a = 0$
 H_a : $P_c - P_a \neq 0$
 $\alpha = 0.01$

Where P_c is the proportion of Caucasians that are categorized as "high risk" and P_a is the proportion of African Americans categorized as "high risk", and P_{co} will be the combined rate.

Our Z-score is given by
$$Z = \frac{P_c - P_a - H_0}{\sigma_{P_c - P_a}}$$

And
$$\sigma_{P_c - P_a} = \sqrt{\frac{P_{co}(1 - P_{co})}{n_c} + \frac{P_{co}(1 - P_{co})}{n_a}}$$

Where n_c and n_a

are the total number of people in our Caucasian and African American samples, respectively. To obtain our proportions and n values, we reference the outputs from our code:

```
> race_count
race n
1 African-American 5807
2 Asian 58
3 Caucasian 4077
```

Using the total n-values for each group and these proportions, we can derive our n-values:

	Caucasian	African American	Combined
Low/Medium risk	3535	4663	8198
High risk	542	1144	1686
Total	4077	5807	9884

Thus $P_c = 0.133$ $P_a = 0.197$ $P_{co} = 1686/9884 = 0.1706$ $n_c = 4077$ $n_a = 5807$

We calculate
$$\sigma_{P_c - P_a} = \sqrt{\frac{.1706(.8294)}{4077} + \frac{.1706(.8294)}{5807}} = 0.0077$$

And our Z-score is
$$Z = \frac{.133 - .197 - 0}{.0077} = -8.312$$

With a P-value ≈ 0 , we reject H_0

Therefore we can conclude that there is a statistically significant difference in the rates at which Caucasians and African Americans are being categorized as high-risk.