Experiment: Single Phase AC Series Circuit

Ayush Nagpure

Batch – 2024

Application No - 158377

Subgroup – 1H3

Objectives: To determine experimentally;

- (1) Voltage distribution in a single phase AC series circuit.
- (2) Power and power factor of the (a) circuit (b) choke coil.
- (3) The value of the circuit elements R,L &C

Equipments: (1) Resistor (2) Choke coil (3) Capacitor (4) SPDT Key

(5) Wattmeter 250V/1Amp(6) AC volt-meter150V (7) AC Ammeter- 1Amp

Circuit Diagram

Theory:

For a given AC series circuit, when energized from an ac source, same current flows through series connected resistance R, choke coil L& capacitor C.

The voltage drop across these elements is as follows:

- (1) Across Resistance; $V_R = IR$
- (2) Across Inductance; $V_L = IX_L = I(j\omega L)$
- (3) Across Capacitor; $V_c = -jIX_C = I/(j\omega c)$
- (4) The resistance of inductance r_L can be measured by multimeter, so total circuit resistance $=(\mathbf{R} + \mathbf{r_L})$
- (5) Total voltage across the circuit is : $V_S = I[R + r_L + j(\omega L 1/\omega C)] = I[R + r_L + j(X_L X_c)]$

$$= I(R+r_L+jX)=IZ$$

- (6) Power consumed in the choke coil $=P_L=I^2(r_L)=V_LICos\Phi$
- (7) Power factor of the circuit $Cos\Phi = (R + r_L)/Z$
- (8)Power consumed in the circuit, $P_t = I^2 (R + r_L) = V_s I Cos \Phi$ (the extra power $I^2 r_L$ is consumed by choke coil)
- (9) Power factor of the choke coil = $r_L/\sqrt{r_L^2 + X^2} = P_L/V_LI$

```
Where  X_L = \omega L; \mbox{ Inductive reactance in ohms; } X_C = (1/\omega c); \mbox{ Capacitive Reactance in ohms; } X = X_L - X_C \ , \mbox{ the combined reactance in ohms}  Now, impendence Z = \sqrt{\{(R + r_L)^2 + X^2\}}
```

Procedure:

- ➤ Connect the experimental set as shown in the circuit diagram.
- > Select AC 130volt from the supply panel and switch on the input supply.
- Measure voltage drop across each component with the help of voltmeter.
- ➤ Measure current flowing in the circuit with the help of ammeter.
- ➤ Keep SPDT switch at position 1, Wattmeter will give the power consumed (P_L) in the choke coil.
- ➤ Shift SPDT switch to position 2, wattmeter will give the power consumed (P_t) by the total circuit.
- > Record the readings of the instruments carefully in the observation table.

Precautions:

- ➤ Always keep the measuring instruments in horizontal position.
- ➤ Select appropriate range of the instruments i.e the range of the instruments should always be more than the existing value of current or voltage in the circuit .
- ➤ Do not touch the resistance as it might have been heated up.

Observation Table:

Sr. No.	Applied voltage	Circuit current	Voltage drop across circuit elements			Power consumed (W)	
	$\mathbf{v_s}$	I	Resistance V _R	Choke coil V _L	Capacitor V _C	Across choke coil P _L	Whole circuit P _t
1.	129.5	0.54A	110V	45.5V	86.2V	6W	67W

Report:

- ▶ Using the relations given in theory, calculate the following forsupply voltage; Impedance of coil Z_L , Inductive reactance of coil X_L , Capacitive reactance X_C and hence R, L &C.
- ➤ Calculate the value of power and power factor of the total circuit and that of choke coil.Comparethese values with the wattmeter readings.
- > Draw the phasor diagram for any one of the observations.
- > Draw the waveform for voltage and current in the RL series circuit as a function of time.

Points to remember:

- **1.** Multiplication factor of wattmeter =(Voltage range*Current range*pf of wattmeter)/Max scale deflection.
- **2.** Actual reading of wattmeter = multiplication factor * reading of wattmeter.

Calculations:

nclusion - We can see that calculated values of power and power factor are equal to observed values.	al or nearly
<u>Ayu</u>	sh Nagpure