TEST $n^{\circ}1$

QUESTIONS DE COURS

- a) Donner trois propriétés des fonctions génératrices:
- 1) Si X_1, X_2 sont deux v.a .r de lois P_{X_1} et P_{X_2} alors $\Psi_{X_1}(t) = \Psi_{X_2}(t) \iff P_{X_1} = P_{X_2}$
- 2) Si X_1, X_2 sont deux v.a .r indépendantes alors $\Psi_{X_1+X_2}(t) = \Psi_{X_1}(t) \Psi_{X_2}(t)$
- 3) Soit X une v.a.r . X admet des moments à l'ordre k si et seulement si Ψ_X est dérivable jusqu'à l'ordre k et on a: $\Psi_X^{(k)}(0) = E(X^k)$.
 - b) Enoncer le théorème de Rao-Blackwell:

Soit T un estimateur sans biais de $g(\theta)$ et S une statistique exhaustive pour θ , alors $E_{\theta}(E_{\theta}(T/S)) = g(\theta)$ et $Var_{\theta}(E_{\theta}(T/S)) \leq Var_{\theta}(T)$.

 $(E_{\theta}(T/S))$ est un autre estimateur sans biais de $q(\theta)$ de plus petite variance, et donc meilleur)

c) Définir la notion d'estimateur ESBVUM

Un estimateur T de $g(\theta)$ est dit ESBVUM (estimateur sans biais de variance uniformément mimimale) s'il est sans biais et si pour tout autre estimateur sans biais T'de $g(\theta)$, on a

$$Var_{\theta}(T). \leq Var_{\theta}(T') \ \forall \theta \in \Theta.$$

- d) Répondre par vrai ou faux aux questions suivantes:
- 1) Soit $(X_1, X_2,, X_n)$ et $(Y_1, Y_2,, Y_m)$ deux échantillons, respectivement, des v.a indépendantes X de loi $N(\mu_1, \sigma_1^2)$ et Y de loi $N(\mu_2, \sigma_2^2)$, alors

$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sum_{i=1}^{m} (Y_i - \overline{Y})^2} \backsim F_{(n,m)} : \text{ Faux}$$

- 2) L'erreur moyenne quadratique de $\widehat{\theta}$ est égale à son biais plus sa variance: Faux
- 3) Soit $\widehat{\theta}$ l'EMV de θ qu'on suppose de plus sans biais alors $\exp(\widehat{\theta})$ est l'EMV de $\exp(\theta)$ et il est sans biais: Faux

EXERCICE 1

On considère un n-échantillon d'une v.a de densité $f_X(x) = \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}} 1_{\{x>\theta\}}$

Déterminer des statistiques exhaustives pour θ si α est connu, pour α si θ est connu puis pour (α, θ) .

1

La vraisemblance s'écrit:
$$L(\theta, \widetilde{x}) = \frac{\alpha^n \theta^{n\alpha}}{(\prod\limits_{i=1}^n x_i)^{\alpha+1}} 1_{\{\min x_i > \theta\}}.$$

$$1^{er} \text{ cas: } \alpha \text{ connu, } \theta \text{ inconnu}$$

$$L(\theta, \widetilde{x}) = \frac{\alpha^n}{(\prod_{i=1}^n x_i)^{\alpha+1}} \theta^{n\alpha} 1_{\{\min x_i > \theta\}} = h(\widetilde{x}) g(\theta, \min x_i) \text{ avec } g(\theta, \min x_i) = \theta^{n\alpha} 1_{\{\min x_i > \theta\}} \text{ donc } T(\widetilde{x}) = \theta^{n\alpha} 1_{\{\min x_i > \theta\}}$$

 $\min x_i$ est exhaustive pour θ .

 $2^{\grave{e}me}$ cas: α inconnu, θ connu

$$L(\theta, \widetilde{x}) = 1_{\{\min x_i > \theta\}} \frac{\alpha^n \theta^{n\alpha}}{\left(\prod_{i=1}^n x_i\right)^{\alpha+1}} = h'(\widetilde{x}) g'(\theta, \min x_i) \text{ avec } g'(\theta, \prod_{i=1}^n x_i) = \frac{\alpha^n \theta^{n\alpha}}{\left(\prod_{i=1}^n x_i\right)^{\alpha+1}} \text{ donc } T(\widetilde{x}) = \prod_{i=1}^n x_i$$

est exhaustive pour α .

EXERCICE 2

Soit $x_1, x_2, ... x_n$ un n-échantillon d'une v.a X de densité $f_X(x) = \frac{1}{\rho} x^{\frac{1-\theta}{\theta}}$

1) Déterminer l'estimateur du maximum de vraisemblance de θ

$$L(\theta, \widetilde{x}) = \frac{1}{\theta^n} (\prod_{i=1}^n x_i)^{\frac{1-\theta}{\theta}} \implies \log L(\theta, \widetilde{x}) = -n \log \theta + \frac{1-\theta}{\theta} \sum_{i=1}^n \log x_i \implies \frac{\partial}{\partial \theta} \log L(\theta, \widetilde{x}) = -\frac{n}{\theta} - \frac{1}{\theta^2} \sum_{i=1}^n \log x_i$$

$$\frac{\partial}{\partial \theta} \log L(\theta, \widetilde{x}) = 0 \iff \widehat{\theta} = -\frac{\sum_{i=1}^{n} \log x_i}{n} \text{ et } \frac{\partial^2}{\partial \theta^2} \log L(\widehat{\theta}, \widetilde{x}) = 0$$

 $\widehat{\theta}$ est donc l'EMV de θ .

2) Montrer que $Y = -\log(X)$ suit une loi exponentielle de paramètre θ .

On a
$$F_Y(x) = P(-\log(X) < x) = P(X > e^{-x}) = 1 - F_Y(e^{-x}) \implies f_Y(x) = e^{-x} f_X(e^{-x}) = \frac{1}{\theta} e^{-\frac{1}{\theta}x}$$
.
Donc $Y \sim Exp(\frac{1}{\theta})$.

3) L'estimateur obtenu en 1) est-il sans biais? de variance mimimum? efficace?

$$\widehat{\theta}$$
 est un estimateur sans biais car $-\sum_{i=1}^n \log X_i \leadsto \gamma(n, \frac{1}{\theta}) \implies E(-\frac{\sum_{i=1}^n \log x_i}{n}) = \theta$. D'autre part f_X appartient à la famille des lois exponentielles:

$$\log f_X(x) = -\log \theta + \frac{1-\theta}{\theta} \log x = c(\theta) + \alpha(\theta)a(x) \text{ avec} a(x) = \log x \text{ et } h(x) = 0. \text{ On conclut que}$$

$$-\sum_{i=1}^n \log x_i \text{ est exhaustive pour } \theta, \text{ et de plus complète car cette staztistique est de même dimension que } \theta,$$

$$-\sum_{i=1}^n \log x_i$$

$$-\sum_{i=1}^n \log x_i \text{ est donc l'unique ESBVUM de } \theta.$$