Rational Conformal Field Theory and Verlinde Operators

Burak Oğuz

Middle East Technical University oguz.burak@metu.edu.tr

September 1, 2024

Mentor: Batuhan Kaynak Acar (LMU Munich)

Overview

- Motivation
- 2 What is QFT?
- 3 Conformal Field Theory in 2 Dimensions
- 4 Hilbert Space of 2d CFT
- Sational Conformal Field Theory and Modular Invariance
- 6 The Fusion Rules and Verlinde Lines
- Non-Invertible Symmetries and Verlinde Lines

Motivation

Conformal Field Theory in 2-dimensions has wide applications in both physics and mathematics. Here are some subset of places where it plays an important role:

- String Theory (worldsheet CFT),
- Integrable systems,
- Statistical systems (Ising model, ...),
- The Geometric Langlands program,
- Infinite dimensional (quantum) algebras,
- Representation theory of Affine Lie algebras,
- etc.

After long considerations and experimental results, physicists were led to formulate the quantum theory as follows:

After long considerations and experimental results, physicists were led to formulate the quantum theory as follows:

• The state of a physical system is captured by vector $|\psi\rangle\in\mathcal{H}$ up to a phase, where \mathcal{H} is a Hilbert space with hermitian inner product.

After long considerations and experimental results, physicists were led to formulate the quantum theory as follows:

- The state of a physical system is captured by vector $|\psi\rangle\in\mathcal{H}$ up to a phase, where \mathcal{H} is a Hilbert space with hermitian inner product.
- ② The physical observables $\mathcal A$ are represented by hermitian operators $\mathcal A:\mathcal H\to\mathcal H.$ A state $|a\rangle\in\mathcal H$ has a definite value $\alpha(a)$ under measurement of $\mathcal A$ if

$$A|a\rangle = \alpha(a)|a\rangle. \tag{1}$$

After long considerations and experimental results, physicists were led to formulate the quantum theory as follows:

- The state of a physical system is captured by vector $|\psi\rangle\in\mathcal{H}$ up to a phase, where \mathcal{H} is a Hilbert space with hermitian inner product.
- ② The physical observables $\mathcal A$ are represented by hermitian operators $\mathcal A:\mathcal H\to\mathcal H.$ A state $|a\rangle\in\mathcal H$ has a definite value $\alpha(a)$ under measurement of $\mathcal A$ if

$$A|a\rangle = \alpha(a)|a\rangle. \tag{1}$$

$$P(\psi \to a) = |\langle a|\psi\rangle|^2, \tag{2}$$

with the constraint

$$\sum_{a} P(\psi \to a) = 1. \tag{3}$$

4/23

What is QFT?

We would like understand the time evolution of the physical states, that is, to calculate $P(i \to f)$ for all i and f. This is calculated by summing up the probability amplitude of all possible intermediate processes that evolve $i \to f$.

This corresponds to taking a trace over all states in ${\cal H}$ with appropriate operator insertions

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle \equiv \operatorname{Tr}_{\mathcal{H}} \left(e^{-\beta H} \mathcal{O}_1 \cdots \mathcal{O}_n \right). \tag{4}$$

What is QFT?

 $\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle$ is called the n-point function. The physical content of a QFT is encoded in the n-point functions. The 0-point is called the partition function, which captures the time evolution

$$Z = \operatorname{Tr}_{\mathcal{H}} e^{-\beta H}. \tag{5}$$

Figure: Partition function as a map from the Hilbert space at the left boundary to the right boundary, which can be interpreted as time evolution map, with $\mathcal X$ the space at time t=0 and $\mathcal X'$ the space at t=1.

Conformal Field Theory in 2 Dimensions

The 2d Conformal Field Theory in flat space is a 2d QFT that is invariant under conformal transformations $x \to x'$ such that:

$$g'_{\mu\nu}(x') = e^{-\omega(x)}\delta_{\mu\nu}.$$
 (6)

For an infinitesimal transformation $x' = x + \varepsilon(x)$, this reads

$$\partial_0 \varepsilon_0 = \partial_1 \varepsilon_1, \quad \partial_0 \varepsilon_1 = -\partial_1 \varepsilon_0,$$
 (7)

and these are the Cauchy-Riemann equations with complex coordinates $z = x^0 + ix^1$ and $\overline{z} = x^0 - ix^1$

$$\overline{\partial}\varepsilon(z) = 0 = \partial\overline{\varepsilon}(\overline{z}). \tag{8}$$

Thus, $z \mapsto z + \varepsilon(z)$ and $\overline{z} \mapsto \overline{z} + \overline{\varepsilon}(\overline{z})$ are conformal transformations, where we view z and \overline{z} to be independent.

Conformal Field Theory in 2 Dimensions

Figure: Demonstration of a 2d conformal transformation. Taken from Blumenhagen & Plauschinn (2009).

Expanding the holomorphic $\varepsilon(z)$ in a Laurent series, we get

$$\varepsilon(z) = \sum_{n \in \mathbb{Z}} a_n z^{n+1}, \tag{9}$$

which has ∞ many free parameters. Hence, a CFT in 2d has ∞ many local symmetries!

Generators of the Conformal Transformations

The relevant symmetry algebra of the quantum CFT is the Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}$$
 (10)

$$[\overline{L}_n, \overline{L}_m] = (n-m)\overline{L}_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}$$
 (11)

$$[L_n, \overline{L}_m] = 0, (12)$$

where $L_n \& \overline{L}_n$ are the generators of conformal transformations acting on the Hilbert space.

Generators of the Conformal Transformations

The relevant symmetry algebra of the quantum CFT is the Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}$$
 (10)

$$[\overline{L}_n, \overline{L}_m] = (n-m)\overline{L}_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}$$
 (11)

$$[L_n, \overline{L}_m] = 0, (12)$$

where $L_n \& \overline{L}_n$ are the generators of conformal transformations acting on the Hilbert space.

The Hilbert space can thus be decomposed as direct sums of the irreps of the Virasoro algebra,

$$\mathcal{H} = \bigoplus_{h \ \overline{h}} Vir(h, c) \otimes \overline{Vir}(\overline{h}, c), \tag{13}$$

where Vir(h, c) is called a Verma module. Constructing the irreps of Virasoro algebra is analogous to that of $\mathfrak{su}(2)$.

In $\mathfrak{su}(2)$, one has three generators $J_0,J_\pm\equiv J_1\pm iJ_2$ satisfying the algebra

$$[J_0, J_{\pm}] = \pm J_{\pm} \quad ; \quad [J_+, J_-] = 2J_0.$$
 (14)

In $\mathfrak{su}(2)$, one has three generators $J_0,J_\pm\equiv J_1\pm iJ_2$ satisfying the algebra

$$[J_0, J_{\pm}] = \pm J_{\pm} \quad ; \quad [J_+, J_-] = 2J_0.$$
 (14)

How to construct irreps?

1 In the reps space, choose a basis such that J_0 is diagonal,

In $\mathfrak{su}(2)$, one has three generators $J_0,J_\pm\equiv J_1\pm iJ_2$ satisfying the algebra

$$[J_0, J_{\pm}] = \pm J_{\pm} \quad ; \quad [J_+, J_-] = 2J_0.$$
 (14)

- lacktriangle In the reps space, choose a basis such that J_0 is diagonal,
- ② start from a highest weight state: $J_+|j\rangle=0$ and $J_0|j\rangle=j|j\rangle$, where $j\in\mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$,

In $\mathfrak{su}(2)$, one has three generators $J_0,J_\pm\equiv J_1\pm iJ_2$ satisfying the algebra

$$[J_0, J_{\pm}] = \pm J_{\pm} \quad ; \quad [J_+, J_-] = 2J_0.$$
 (14)

- **1** In the reps space, choose a basis such that J_0 is diagonal,
- ② start from a highest weight state: $J_+|j\rangle=0$ and $J_0|j\rangle=j|j\rangle$, where $j\in\mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$,
- ullet construct the descendants by $|m
 angle \equiv (J_{-})^{j-m}|j
 angle$,

In $\mathfrak{su}(2)$, one has three generators $J_0,J_\pm\equiv J_1\pm iJ_2$ satisfying the algebra

$$[J_0, J_{\pm}] = \pm J_{\pm} \quad ; \quad [J_+, J_-] = 2J_0.$$
 (14)

- In the reps space, choose a basis such that J_0 is diagonal,
- ② start from a highest weight state: $J_+|j\rangle=0$ and $J_0|j\rangle=j|j\rangle$, where $j\in\mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$,
- **3** construct the descendants by $|m\rangle \equiv (J_{-})^{j-m}|j\rangle$,
- ullet each $|j\rangle$ and its descendants comprises a unitary irrep,

Irreps of Virasoro

Analogous to $|j\rangle$, whose descendants form each of the irreps, there exists highest-weight states $|h\rangle$ in the reps of Virasoro algebra, defined by

$$L_n|h\rangle = 0 \ (n > 0), \quad L_0|h\rangle = h|h\rangle.$$
 (15)

Irreps of Virasoro

Analogous to $|j\rangle$, whose descendants form each of the irreps, there exists highest-weight states $|h\rangle$ in the reps of Virasoro algebra, defined by

$$L_n|h\rangle = 0 \ (n > 0), \quad L_0|h\rangle = h|h\rangle.$$
 (15)

Then, similarly, we can generate the spectrum from the descendants:

$$\left|h,(-\vec{k})\right\rangle \equiv L_{-k_1}\cdots L_{-k_n}|h\rangle.$$
 (16)

Operator State Correspondence

In CFT, there is something called the operator state correspondence, which means that to each $|h\rangle$, there corresponds a primary operator ϕ_h of conformal dimension h. We will use this correspondence.

Analogy With $\mathfrak{su}(2)$

Algebra	su(2)	Vir
Grading Operator	J_0	<i>L</i> ₀
Ladder Operator(s)	J_{\pm}	$L_{\mp n}$
Conjugation	$J_\pm^\dagger = J_\mp$	$L_{\mp n}^{\dagger} = L_{\pm n}$
Highest-weight state	j angle	$ h\rangle$

Difference With $\mathfrak{su}(2)$

Null states at level N=2

As opposed to $\mathfrak{su}(2)$, in Vir we have null states such as:

$$\chi_h(z) \equiv \hat{L}_{-2}\phi_h(z) - \frac{3}{2(2h+1)}\hat{L}_{-1}^2\phi_h(z). \tag{17}$$

that satisfy $\langle \chi | \chi \rangle = 0 = \langle \psi | \chi \rangle$ for any $| \psi \rangle$.

We have to mod out all the null states for unitarity!

Rational Conformal Field Theory

For certain values of h and c, there are ∞ many null states. After modding out the corresponding submodule, we end up with finitely many primary fields. These are called rational CFTs:

RCFT

An RCFT is a CFT with finitely many primary fields.

CFT on Riemann Surfaces

A CFT depends on the moduli space of complex structures of the Riemann surface over which it is defined.

- For the Riemann sphere, the conformal class is trivial.
- For the torus, there is a moduli $\tau \in \mathbb{C}^+/SL(2,\mathbb{Z})$.

The Riemann sphere (no moduli)

The Torus (moduli parameter: T)

CFT on Riemann Surfaces

What about Riemann surfaces of higher genus? One can sew the tori together to get higher genus, so the case of torus and modular invariance plays a special role.

Figure: Figure taken from Polchinski (1998).

RCFT on the Torus

We focus on RCFT on the torus now. There are finitely many families $[\phi_i]$, and these representations can be fused together to produce another representation, which we represent with the following diagram:

$$[\phi_i] \times [\phi_j] = \sum_k \mathcal{N}(ijk)[\phi_k]$$
 (18)

The Fusion Diagrams

These diagrams satisfy the following, which gives the fusion rules the structure of an associative algebra

Moreover, one has $(N_i)_i^k = \mathcal{N}(ijk)$ as the representations of the algebra

$$N_i N_j = \sum_k \mathcal{N}(ijk) N_k \tag{19}$$

Virasoro Characters

In a given representation $[\phi_i]$, we define the Virasoro characters

$$\chi_j = \operatorname{Tr}_{[\phi_j]} \left(q^{L_0 - \varepsilon} \right) \equiv \boxed{j \uparrow}.$$
(20)

$$(q=e^{2\pi i \tau})$$

Virasoro Characters

In a given representation $[\phi_j]$, we define the Virasoro characters

$$\chi_j = \operatorname{Tr}_{[\phi_j]} \left(q^{L_0 - \varepsilon} \right) \equiv \boxed{j \uparrow}.$$
(20)

 $(q=e^{2\pi i au})$ Under modular transformations generated by $T: au\mapsto au+1$ and $S: au\mapsto -rac{1}{ au},\ \chi_j$ changes as

$$T: \qquad j \uparrow \qquad \mapsto \qquad e^{2\pi i (h_j + \varepsilon)} \qquad j \uparrow,$$

$$S: \qquad j \uparrow \qquad \mapsto \qquad \sum_{k} S_j^{\ k} \qquad k \uparrow,$$

$$(21)$$

with S_j^k a unitary matrix.

Verlinde Lines

We define twist operations of the characters with ϕ_i operators along the a-cycle and the b-cycle, which we represent as follows

$$\phi_i(a)\chi_j \equiv \boxed{\xrightarrow{i} j \uparrow}, \tag{22}$$

$$\phi_i(b)\chi_j \equiv \left| i \uparrow \quad j \uparrow \right|. \tag{23}$$

These correspond to winding a ϕ_i operator inside the trace once.

One can see that

$$\left| \xrightarrow{i} j \uparrow \right| = \lambda_i^{(j)} \qquad j \uparrow, \tag{24}$$

$$\begin{vmatrix}
i \uparrow & j \uparrow \\
\end{vmatrix} = \sum_{k} A_{ij}^{k} \begin{vmatrix}
k \uparrow \\
\end{vmatrix}, \tag{25}$$

where $A_{ij}^{\ k}$ are related to $\mathcal{N}(ijk)$.

Now, a key idea is to observe that under the modular transformation $S: \tau \mapsto -\frac{1}{\tau}$, the a-cycle and the b-cycle are exchanged.

Now, a key idea is to observe that under the modular transformation $S: \tau \mapsto -\frac{1}{\tau}$, the a-cycle and the b-cycle are exchanged. So under the exchange, the diagrams behave like

$$S: \left[i \uparrow \quad j \uparrow \right] \mapsto \sum_{m} S_{j}^{m} \left[\xrightarrow{j} \quad m \uparrow \right] = \sum_{m} S_{j}^{m} \lambda_{i}^{(m)} \left[\qquad m \uparrow \right]$$
 (26)

Now, a key idea is to observe that under the modular transformation $S: \tau \mapsto -\frac{1}{\tau}$, the a-cycle and the b-cycle are exchanged. So under the exchange, the diagrams behave like

$$S: \left[i \uparrow \quad j \uparrow \right] \mapsto \sum_{m} S_{j}^{m} \left[\xrightarrow{j} \quad m \uparrow \right] = \sum_{m} S_{j}^{m} \lambda_{i}^{(m)} \left[\qquad m \uparrow \right]$$
 (26)

Now, a key idea is to observe that under the modular transformation $S: \tau \mapsto -\frac{1}{\tau}$, the a-cycle and the b-cycle are exchanged. So under the exchange, the diagrams behave like

using the fact that S_k^m is unitary, we find

$$A_{ij}^{k} = \sum_{m} S_j^{m} \lambda_i^{(m)} S_m^{\dagger k}. \tag{28}$$

Verlinde Rules

This is a remarkable result. The matrices $(N_i)_j^k \equiv \mathcal{N}(ijk)$, are diagonalized by the S-matrices of modular transformations. This is the main result of the seminal paper by E. Verlinde (1988).

Verlinde's Result

The modular transformations S for an RCFT on the torus diagonalize the fusion algebra, hence solves the fusion rules purely in terms of the unitary matrices $S_i^{\ j}$.

The Verlinde lines play an important role in 3d Topological Quantum Field Theory (TQFT), and in Knot Theory through Witten's Knot invariants defined via Chern-Simons TQFT.

• In the previous decade, a new perspective on symmetry has appeared in the paper by Gaiotto, Kapustin, Seiberg, and Willett (2014).

- In the previous decade, a new perspective on symmetry has appeared in the paper by Gaiotto, Kapustin, Seiberg, and Willett (2014).
- In this generalized symmetries context, there are non-invertible symmetries in 2-dimensional theories which are not associated to a group but to a modular fusion category \mathcal{M} .

- In the previous decade, a new perspective on symmetry has appeared in the paper by Gaiotto, Kapustin, Seiberg, and Willett (2014).
- In this generalized symmetries context, there are non-invertible symmetries in 2-dimensional theories which are not associated to a group but to a modular fusion category \mathcal{M} .
- The Verlinde lines studied here are closely related to the fusion lines $a,b,\dots\in\mathcal{M}$ for theories incorporating non-invertible symmetries .

- In the previous decade, a new perspective on symmetry has appeared in the paper by Gaiotto, Kapustin, Seiberg, and Willett (2014).
- In this generalized symmetries context, there are non-invertible symmetries in 2-dimensional theories which are not associated to a group but to a modular fusion category \mathcal{M} .
- The Verlinde lines studied here are closely related to the fusion lines $a,b,\dots\in\mathcal{M}$ for theories incorporating non-invertible symmetries .
- We also studied extensions of results about the asymptotic density of states in the presence of \mathcal{M} , but we do not have the time time dwell on that.