Devoir à la maison n°17 : corrigé

Problème 1 – Matrices stochastiques (d'après ESCP 1996)

Partie I - Etude d'exemples

- 1. a. Si $\alpha=1$, on a évidemment $\gamma_n=1$ pour tout $n\in\mathbb{N}$. Sinon, $\gamma_n=\frac{1}{n+1}\frac{1-\alpha^{n+1}}{1-\alpha}$.
 - **b.** Si $\alpha=1$, (γ_n) est constante égale à 1 donc converge vers 1. Si $\alpha=-1$, $\gamma_n=\frac{1}{n+1}\frac{1+(-1)^n}{2}$ pour tout $n\in\mathbb{N}$ donc $0\leqslant\gamma_n\leqslant\frac{1}{n+1}$ pour tout $n\in\mathbb{N}$. Ainsi (γ_n) converge vers 0.

Si $|\alpha| < 1$, alors $\gamma_n \underset{n \to +\infty}{\sim} \frac{1}{n+1} \frac{1}{1-\alpha}$ donc (γ_n) converge vers 0.

 $\text{Si } |\alpha| > 1 \text{, alors } \gamma_n \underset{n \to +\infty}{\sim} \frac{1}{n+1} \frac{\alpha^{n+1}}{1-\alpha} \text{ donc } (\gamma_n) \text{ diverge.}$

- 2. a. On trouve $A^2 = {}^tA$ et $A^3 = I_3$. On en déduit que $A^{3k} = I_3$, $A^{3k+1} = A$ et $A^{3k+2} = {}^tA$ pour tout $k \in \mathbb{N}$.
 - **b.** Posons $B_n = (n+1)C_n$. D'après la question précédente, $B_{n+3} = B_n + I_n + A + {}^tA$ pour tout $n \in \mathbb{N}$. Ainsi

$$B_{3n} = B_0 + n(I_n + A + {}^tA) = I_n + n(I_n + A + {}^tA)$$

$$B_{3n+1} = B_1 + n(I_n + A + {}^tA) = I_n + A + n(I_n + A + {}^tA)$$

$$B_{3n+2} = B_2 + n(I_n + A + {}^tA) = (n+1)(I_n + A + {}^tA)$$

On en déduit que

$$C_{3n} = \begin{pmatrix} \frac{n+1}{3n+1} & \frac{n}{3n+1} & \frac{n}{3n+1} \\ \frac{n}{3n+1} & \frac{n+1}{3n+1} & \frac{n}{3n+1} \\ \frac{n}{3n+1} & \frac{n}{3n+1} & \frac{n+1}{3n+1} \end{pmatrix} \qquad C_{3n+1} = \begin{pmatrix} \frac{n+1}{3n+2} & \frac{n}{3n+2} & \frac{n+1}{3n+2} \\ \frac{n+1}{3n+2} & \frac{n+1}{3n+2} & \frac{n}{3n+2} \\ \frac{n}{3n+2} & \frac{n+2}{3n+2} & \frac{n+1}{3n+2} \end{pmatrix} \qquad C_{3n+2} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

On constate que les suites (C_{3n}) , (C_{3n+1}) et (C_{3n+2}) convergent vers la même matrice $C = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$.

On en déduit que (C_n) converge vers C.

- c. On a $C^2 = C$ donc $v^2 = v$, ce qui prouve que v est un projecteur. On a clairement $\operatorname{Im} v = \operatorname{vect}((1,1,1))$ et on voit que $\operatorname{Ker} v$ est l'hyperplan de \mathbb{R}^3 d'équation x + y + z = 0.
- 3. **a.** On cherche une matrice inversible $P = \begin{pmatrix} a & b \\ dC & d \end{pmatrix}$ telle que AP = PD. La condition AP = PD équivaut au système

$$\begin{cases} \frac{1}{3}a + \frac{2}{3}c = a \\ \frac{1}{3}b + \frac{2}{3}d = -\frac{1}{6}b \\ \frac{1}{2}a + \frac{1}{2}c = c \\ \frac{1}{2}b + \frac{1}{2}d = -\frac{1}{6}d \end{cases}$$

ou encore

$$\begin{cases} a - c = 0 \\ 3b + 4d = 0 \end{cases}$$

Il suffit par exemple de prendre a=c=1, b=4 et d=-3 i.e. $P=\begin{pmatrix} 1 & 4 \\ 1 & -3 \end{pmatrix}$ qui est inversible, de sorte qu'on a bien $A=PDP^{-1}$.

b. On trouve $P^{-1} = \frac{1}{7} \begin{pmatrix} 3 & 4 \\ 1 & -1 \end{pmatrix}$. Par récurrence, on obtient $A^k = PD^kP^{-1}$. Or $D^k = \begin{pmatrix} 1 & 0 \\ 0 & \left(-\frac{1}{6}\right)^k \end{pmatrix}$ et un calcul donne alors

$$A^{k} = \begin{pmatrix} \frac{3}{7} + \frac{4}{7} \left(-\frac{1}{6} \right)^{k} & \frac{4}{7} - \frac{4}{7} \left(-\frac{1}{6} \right)^{k} \\ \frac{3}{7} - \frac{3}{7} \left(-\frac{1}{6} \right)^{k} & \frac{4}{7} + \frac{3}{7} \left(-\frac{1}{6} \right)^{k} \end{pmatrix}$$

- $\textbf{c.} \ \ \text{On a} \ A^k = U + \left(-\tfrac{1}{6}\right)^k V \ \text{pour tout} \ k \in \mathbb{N} \ \text{avec} \ U = \left(\begin{array}{cc} \frac{3}{7} & \frac{4}{7} \\ \frac{3}{2} & \frac{4}{7} \end{array}\right) \ \text{et} \ V = \left(\begin{array}{cc} \frac{4}{7} & -\frac{4}{7} \\ -\frac{3}{7} & \frac{3}{7} \end{array}\right).$
- d. On a donc

$$C_n = U + \frac{1 - \left(-\frac{1}{6}\right)^{n+1}}{1 - \left(-\frac{1}{6}\right)}V = U + \frac{1}{n+1}\frac{6}{7}\left(1 - \left(-\frac{1}{6}\right)^{n+1}\right)V$$

- **e.** Comme $\left|-\frac{1}{6}\right| < 1$, on montre que (C_n) converge vers C = U.
- **f.** On vérifie que $U^2 = U$, ce qui prouve que $v^2 = v$. v est donc un projecteur de \mathbb{R}^2 . On a alors Im v = vect((1,1)) et Ker v est la droite d'équation 3x + 4y = 0.

Partie II – Etude de (C_n) lorque A est r-périodique

- 1. **a.** Posons $z_k = \frac{1}{r} \sum_{l=0}^{r-1} \alpha_{k+l}$ pour tout $k \in \mathbb{N}$. En utilisant, la périodicité de (α_k) , on montre que $z_{k+1} = z_k$ pour tout $k \in \mathbb{N}$. Ainsi la suite (z_k) est constante égale à $z_0 = \gamma$.
 - **b.** Pour tout $n \in \mathbb{N}$,

$$\begin{split} \beta_{n+r} &= \sum_{k=0}^{n+r} \alpha_k - \frac{n+r+1}{r} \sum_{k=0}^{r-1} \alpha_k \\ &= \sum_{k=0}^{n} \alpha_k - \frac{n+1}{r} \sum_{k=0}^{r-1} \alpha_k + \sum_{k=n+1}^{n+r} \alpha_k - \sum_{k=0}^{r-1} \alpha_k \\ &= (n+1)\gamma_n - (n+1)\gamma + \sum_{k=0}^{r-1} \alpha_{n+1+k} - \sum_{k=0}^{r-1} \alpha_k \\ &= \beta_n + rz_{n+1} - r\gamma = \beta_n \end{split}$$

en utilisant la question précédente. Ainsi (β_n) est r-périodique et est donc bornée comme toute suite périodique. En effet, pour tout $n \in \mathbb{N}$,

$$\min_{0 \le k \le r-1} \beta_k \le \beta_n \le \max_{0 \le k \le r-1} \beta_k$$

c. Pour tout $n \in \mathbb{N}$

$$\gamma_n = \gamma + \frac{\beta_n}{n+1}$$

Comme (β_n) est bornée, (γ_n) converge vers γ .

2. **a.** Puisque $A^r = I_p$, $A^{k+r} = A^k$ pour tout $k \in \mathbb{N}$. Il s'ensuit que $\alpha_{k+r} = a_{i,j}(A^{k+r}) = a_{i,j}(A^k) = \alpha_k$ pour tout $k \in \mathbb{N}$. La suite (α_k) est donc r-périodique. Avec les notations de la question précédente, on a $\gamma_n = c_{i,j}(C_n)$ pour tout $n \in \mathbb{N}$. Or on a montré que (γ_n) converge vers γ . Or

$$\gamma = \frac{1}{r} \sum_{k=0}^{r-1} \alpha_k = \frac{1}{r} \sum_{k=0}^{r-1} c_{i,j}(A^k) = c_{i,j} \left(\frac{1}{r} \sum_{k=0}^{r-1} A^k \right)$$

Ceci montrer que (C_n) converge vers

$$C = \frac{1}{r} \sum_{k=0}^{r-1} A^k$$

b. Comme A et I_p commutent

$$\begin{split} A^{r} - I_{p} &= (A - I_{p}) \left(\sum_{k=0}^{r-1} A^{k} \right) = r(A - I_{p}) C \\ &= \left(\sum_{k=0}^{r-1} A^{k} \right) (A - I_{p}) = rC(A - I_{p}) \end{split}$$

Comme $A^r = I_p$ et $r \neq 0$, AC = CA = C.

c. Puisque AC = C, on montre par récurrence que $A^kC = C$ pour tout $k \in \mathbb{N}$. Il s'ensuit que

$$C^{2} = \frac{1}{r} \left(\sum_{k=0}^{r-1} A^{k} \right) C = \frac{1}{r} \sum_{k=0}^{r-1} A^{k} C = \frac{1}{r} \sum_{k=0}^{r-1} C = C$$

On en déduit que $v^2 = v$ et v est donc un projecteur.

On a AC = C, ce qui signifie $u \circ v = v$ ou encore $(u - Id) \circ v = 0$ et donc $Im v \subset Ker(u - Id)$. Soit $x \in Ker(u - Id)$. Alors u(x) = x puis $u^k(x) = x$ pour tout $k \in \mathbb{N}$. On en déduit que

$$v(x) = \frac{1}{r} \sum_{k=0}^{r-1} u^k(x) = x$$

et donc $x \in \text{Im } \nu$. Ainsi $\text{Ker}(\mathfrak{u} - \text{Id}) \in \text{Im } \nu$. Finalement $\text{Ker}(\mathfrak{u} - \text{Id}) = \text{Im } \nu$.

De même, CA = C, ce qui sigifie que $v \circ u = v$ ou encore $v \circ (u - Id) = 0$ et donc $Im(u - Id) \subset Ker v$. Mais on a également $rg v = \dim Ker(u - Id)$ d'après ce qui précède. Le théorème du rang permet donc d'affirmer que $rg(u - Id) = \dim Ker v$ puis que $rg(u - Id) = \dim Ker v$.

3. a. La suite (α'_k) est r-périodique. La suite (γ'_n) qui lui est associée converge donc vers

$$\gamma' = \frac{1}{r} \sum_{k=0}^{r-1} \alpha_k'$$

Pour tout $n \in \mathbb{N}$,

$$\begin{split} \gamma_n' - \gamma_n &= \frac{1}{n+1} \left(\sum_{k=0}^n \alpha_k' - \sum_{k=0}^n \alpha_k \right) \\ &= \frac{1}{n+1} \left(\sum_{k=m}^{n+m} \alpha_k - \sum_{k=0}^n \alpha_k \right) \\ &= \frac{1}{n+1} \left(\sum_{k=n+1}^{n+m} \alpha_k - \sum_{k=0}^{m-1} \alpha_k \right) \\ &= \frac{1}{n+1} \left(y_n - K \right) \end{split}$$

avec $y_n = \sum_{k=n+1}^{n+m} \alpha_k$ et $K = \sum_{k=0}^{m-1} \alpha_k$. La suite (y_n) est r-périodique donc bornée. On en déduit que la $(\gamma_n' - \gamma_n)$ converge vers 0. Ainsi (γ_n) converge vers

$$\gamma' = \frac{1}{r} \sum_{k=m}^{m+r-1} \alpha_k$$

b. Soit $(i,j) \in [1,p]^2$. La suite de terme général $\alpha_k = c_{i,j}(A^k)$ est r-périodique à partir du rang m. D'après la question précédente, la suite (γ_n) qui lui est associée converge vers γ' en gardant les mêmes notations. Ceci montre que (C_n) converge vers

$$C = \frac{1}{r} \sum_{k=m}^{m+r-1} A^k$$

c. Comme A et Ip commutent

$$A^{m+r} - A^{m} = (A - I_{p}) \left(\sum_{k=m}^{m+r-1} A^{k} \right) = r(A - I_{p})C$$
$$= \left(\sum_{k=m}^{m+r-1} A^{k} \right) (A - I_{p}) = rC(A - I_{p})$$

Comme $A^{m+r} = A^m$ et $r \neq 0$, AC = CA = C.

Puisque AC=C, on montre par récurrence que $A^kC=C$ pour tout $k\in\mathbb{N}$. Il s'ensuit que

$$C^2 = \frac{1}{r} \left(\sum_{k=m}^{m+r-1} A^k \right) C = \frac{1}{r} \sum_{k=m}^{m+r-1} A^k C = \frac{1}{r} \sum_{k=m}^{m+r-1} C = C$$

On en déduit que $v^2 = v$ et v est donc un projecteur.

On a AC = C, ce qui signifie $u \circ v = v$ ou encore $(u - Id) \circ v = 0$ et donc $Im v \subset Ker(u - Id)$. Soit $x \in Ker(u - Id)$. Alors u(x) = x puis $u^k(x) = x$ pour tout $k \in \mathbb{N}$. On en déduit que

$$v(x) = \frac{1}{r} \sum_{k=m}^{m+r-1} u^k(x) = x$$

et donc $x \in \text{Im } \nu$. Ainsi $\text{Ker}(u - \text{Id}) \in \text{Im } \nu$. Finalement $\text{Ker}(u - \text{Id}) = \text{Im } \nu$.

De même, CA = C, ce qui sigifie que $v \circ u = v$ ou encore $v \circ (u - Id) = 0$ et donc $Im(u - Id) \subset Ker v$. Mais on a également $rg v = \dim Ker(u - Id)$ d'après ce qui précède. Le théorème du rang permet donc d'affirmer que $rg(u - Id) = \dim Ker v$ puis que Im(u - Id) = Ker v.

Partie III - Etude de matrices stochastiques

- **1.** Pour aller plus vite, on utilisera le fait que $M \in \mathcal{M}_p(\mathbb{R})$ est stochastique *si et seulement si* M est à coefficients positifs et si MU = U avec $U \in \mathcal{M}_{p,1}(\mathbb{R})$ dont tous les coefficients valent 1.
 - a. Puisque M et N sont à coefficients positifs et que λ et μ sont des réels positifs, $\lambda M + \mu N$ est à coefficients positifs. De plus, $(\lambda M + \mu N)U = \lambda MU + \mu NU = (\lambda + \mu)U = U$ car M et N sont stochastiques et car $\lambda + \mu = 1$. Ainsi $\lambda M + \mu N$ est stochastique.

Remarque. On a en fait montré que S_p est une partie *convexe* de $\mathcal{M}_p(\mathbb{R})$.

b. Pour tout $(i, j) \in [1, p]^2$,

$$c_{i,j}(MN) = \sum_{k=1}^{p} c_{ik}(M)c_{kj}(N) \geqslant 0$$

car M et N sont à coefficients positifs. De plus, MNU = MU = U car M et N sont stochastiques. Donc MN l'est également.

c. Tout d'abord, on montre par récurrence que A^n est stochastique pour tout $n \in \mathbb{N}$ en utilisant la question précédente.

 $C_0 = I_p$ est stochastique. Supposons que C_n le soit pour un certain $n \in \mathbb{N}$. Alors $C_{n+1} = \frac{n}{n+1}C_n + \frac{1}{n}A^{n+1}$ est stochastique d'après la question **III.1.a**. Par récurrence, $C_n \in \mathcal{S}_p$ pour tout $n \in \mathbb{N}$. Supposons que (C_n) admet une limite C. Puisque pour tout $n \in \mathbb{N}$, C_n est stochastique, on a

 $\blacktriangleright \forall (i,j) \in [1,p]^2, c_{i,j}(C_n) \geqslant 0.$

▶
$$\forall i \in [1, p], \sum_{j=1}^{p} c_{i,j}(C_n) = 1.$$

Par passage à la limite,

▶ $\forall (i,j) \in [[1,p]]^2, c_{i,j}(C) \ge 0.$

▶
$$\forall i \in [1, p], \sum_{j=1}^{p} c_{i,j}(C) = 1.$$

Ainsi C est stochastique.

- a. Supposons M déterministe. La somme des coefficients de chaque ligne vaut 1. Comme tous les coefficients valent 0 ou 1, un seul des coefficients de chaque ligne vaut 1 et les autres valents 0. Réciproquement si tous les coefficients sont égaux à 0 ou 1 et si chaque ligne de M contient exactement un coefficient égal à 1, alors M est bien déterministe.
 - **b.** Il y a p choix possibles pour la position du seul coefficient 1 pour chacune des p lignes d'une matrice déterministe. On en déduit que card $\mathcal{D}_{\mathfrak{p}} = \mathfrak{p}^{\mathfrak{p}}$.
 - **c.** MN est stochastique d'apès la question **III.1.b**. De plus, pour tout $(i,j) \in [1,p]^2$

$$c_{\mathfrak{i},\mathfrak{j}}(MN)=\sum_{k=1}^{p}c_{\mathfrak{i}k}(M)c_{k\mathfrak{j}}(N)\in\mathbb{N}$$

La somme des coefficients de chaque ligne de MN valant 1 et chacun de ces coefficients étant entier naturel, un seul d'entre eux vaut 1 et les autres sont nuls. Ceci prouve que MN est déterministe.

- **d.** La suite (A^k) est à valeurs dans \mathcal{D}_p d'après la question précédente. Comme \mathcal{D}_p est un ensemble fini, la suite (A^k) ne peut être injective. Il existe donc des entiers naturels m et n tels que m < n et $A^m = A^n$. Posons $r = n m \in \mathbb{N}^*$. Alors $A^{m+r} = A^m$ i.e. A est donc n-périodique à partir du rang n. Si n est inversible, alors en multipliant l'égalité n0 par n1 par n2 par n3 par n4 par n5 prouve que n6 est n5 prouve que n6 est n7 periodique.
- e. Chaque colonne de A contient au moins un coefficient égal à 1 sinon une colonne de A serait nulle, ce qui contredirait son inversibilité. Comme A contient un seul coefficient égal à 1 par ligne, elle contient en tout p coefficients égaux à 1. On en déduit que chaque colonne de A contient exactement un coefficient égal à 1, les autres étant nuls.

On voit alors que $A^tA = I_p$, ce qui prouve que $A^{-1} = {}^tA$. Les coefficients de tA sont tous égaux à 0 ou 1 et comme chaque colonne de tA contient exactement un coefficient égal à 1, chaque ligne de tA contient exactement un coefficient égal à 1. Ceci prouve que $A^{-1} = {}^tA$ est déterministe. Comme A^{-1} est évidemment inversible, $A^{-1} \in \Delta_p$.

Remarque. Comme le produit de deux matrices déterministes inversibles et une matrice déterministe (d'après III.2.c) inversible et que $I_n \in \Delta_p$, on voit que Δ_p est un sous-groupe de $GL_p(\mathbb{R})$.

Les matrices déterministes inversibles sont aussi appelées matrices de permutation. Je vous laisse deviner pourquoi. ■

- 3. D'après la question III.2.d, A est r-périodique à partir d'un certain rang m. D'après les questions II.3.b et II.3.c, (C_n) converge vers une matrice C telle que $C^2=C$. D'après la question III.1.c, $C\in\mathcal{S}_p$.
- **4. a.** Puisque $XY = I_p$, X et Y sont inversibles.
 - **b.** Soit $j \in [1, p]$. D'une part,

$$c_{jj}(XY) = \sum_{k=1}^{p} c_{jk}(X)c_{kj}(Y) \leqslant \mu_{j} \sum_{k=1}^{p} c_{jk}(X) = \mu_{j}$$

Puisque $c_{ij}(XY) = c_{ij}(I_p) = 1$, on a $\mu_i \ge 1$. D'autre part,

$$\sum_{i=1}^{p} c_{i,j}(Y) = 1$$

et $c_{i,j}\geqslant 0$ pour tout $i\in [\![1,p]\!]$ donc $c_{i,j}\leqslant 1$ pour tout $i\in [\![1,p]\!]$. On en déduit que $\mu_j\leqslant 1$. Finalement $\mu_j=1$.

c. Soit $j \in [1,p]$. Puisque $\mu_j = 1$, un des coefficients de la $j^{\grave{e}me}$ ligne vaut 1. Puisque Y est stochastique, la somme des coefficients de cette ligne vaut 1 et, puisque tous les autres coefficients de cette ligne sont positifs, ils sont nuls.

Les coefficients de Y valent donc tous 0 ou 1 et chaque ligne de Y contient exactement un coefficient égal à 1, ce qui prouve que Y est déterministe. Ainsi $Y \in \Delta_p$ puisque Y est également inversible. Puisque $XY = I_p$, $X = Y^{-1}$ est donc $X \in \Delta_p$ d'après **III.2.e**.

d. Posons $W=UV\in\Delta_p$. On a donc $W^{-1}UV=I_p$. D'après **III.2.e**, $W^{-1}\in\Delta_p$ et a fortiori $W^{-1}\in\mathcal{S}_p$. D'après **III.1.b**, $W^{-1}U\in\mathcal{S}_p$ et ce qui précède montre que $W^{-1}U\in\Delta_p$ et $V\in\Delta_p$. Enfin, $U=W(W^{-1}U)\in\mathcal{D}_p$ d'après **III.2.c** et U est inversible car W et $W^{-1}U$ le sont. Ainsi $U\in\Delta_p$.