Listing of Claims:

- (Previously Presented): A method for in-phase and quadrature mismatch calibration of a transmitter, comprising the following steps:
 - generating a discrete-time signal $x[n] = x(n \cdot T_s)$, wherein $x(t) = e^{j2xf_st}$ and f_{\Box} and T_s are real numbers;
 - obtaining a corrected signal $x_c[n]$ based on the signal x[n] and a set of correction parameters A_p and B_p , wherein $x_c[n] = A_p \cdot x[n] + B_p \cdot x^*[n]$;
 - converting the corrected signal $x_c[n]$ to an analog corrected signal $x_c(t)$;
 - applying in-phase and quadrature modulation to the analog corrected signal $x_n(t)$ and outputting a modulated signal $x_m(t)$;
 - obtaining a first desired component measure $W^{(i)}(f_r)$ and a first image component measure $W^{(i)}(-f_r)$ from the modulated signal $x_m(t)$ with a first set of the correction parameters A_n and B_n :
 - obtaining a second desired component measure $W^{(2)}(f_T)$ and a second image component measure $W^{(2)}(-f_T)$ from the modulated signal $x_m(t)$ with a second set of the correction parameters A_p and B_p ;
 - obtaining a third desired component measure $W^{(3)}(f_T)$ and a third image component measure $W^{(3)}(-f_T)$ from the modulated signal $x_m(t)$ with a third set of the correction parameters A_p and B_p ;
 - obtaining a fourth and fifth set of correction parameters A_p and B_p based on the first, the second, and the third desired component

- measures as well as the first, the second, and the third image component measures:
- obtaining a fourth desired component measure $W^{(4)}(f_T)$ and a fourth image component measure $W^{(4)}(-f_T)$ from the modulated signal $x_m(t)$ with the fourth set of correction parameters A_p and B_p ;
- obtaining a fifth desired component measure $W^{(5)}(f_T)$ and a fifth image component measure $W^{(5)}(-f_T)$ from the modulated signal $x_m(t)$ with the fifth set of correction parameters A_p and B_p , and
- obtaining a final set of the correction parameters A_p and B_p from the fourth and fifth sets of correction parameters.
- 2. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 1, wherein the first set of correction parameters $(A_p,B_p)=(a,0)$, the second set of correction parameters $(A_p,B_p)=(b,b)$, and the third set of correction parameters $(A_p,B_p)=(b,b)$, where a and b are real numbers.
- 3. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 2, wherein the parameter a is 1 and the parameter b is 1/2.

4. (Previously Presented): The method for mismatch calibration of a transmitter as claimed in claim 1, wherein the fourth set of correction parameters (A_0,B_0) are obtained by

$$A_{p} = \sqrt{P} - j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} - j\sqrt{Q}$$

and the fifth set of correction parameters (A_p,B_p) are obtained by

$$A_{p} = \sqrt{P} + j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} + j\sqrt{Q}$$

where

$$\begin{split} \alpha \approx \hat{\alpha} &= \frac{\sqrt{N/O} - 1}{\sqrt{N/O} + 1}, \\ N &= (W^{(2)}(f_T) + W^{(2)}(-f_T))/2, \\ O &= (W^{(3)}(f_T) + W^{(3)}(-f_T))/2, \\ Q &= \frac{\hat{\alpha}^2 - \rho^{(1)}}{(1 + \rho^{(1)})(\hat{\alpha}^2 - 1)}, \\ P &= 1 - Q, \\ \rho^{(1)} &= \frac{W^{(1)}(-f_T)}{W^{(1)}(f_T)}. \end{split}$$

5. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 1, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_T)$, is less than the function of $W^{(5)}(-f_T)$,

otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

- 6. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 5, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a value of $W^{(4)}(-f_T)$ is less than a value of $W^{(5)}(-f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 7. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 1, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(f_T)$ is greater than the function of $W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 8. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 7, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a value of $W^{(4)}(f_T)$ is greater than a value of $W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

- 9. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 1, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_T^-)$ and $W^{(4)}(f_T^-)$ is less than the function of $W^{(5)}(-f_T^-)$ and $W^{(5)}(-f_T^-)$ and $W^{(5)}(-f_T^-)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 10. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 9, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if $W^{(4)}(-f_T)/W^{(4)}(f_T)$ is less than $W^{(5)}(-f_T)/W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 11. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 1, further comprising the following steps:

further adding a DC compensation parameter γ_p while obtaining the corrected signal $x_c[n]$ such that $x_c[n] = A_{a^{-1}}(x[n] + \gamma_c) + B_{a^{-1}}(x[n] + \gamma_c)^*$;

- obtaining a first local leakage component measure L_1 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $\gamma_p = \zeta_1$, where ζ_1 is a real number;
- obtaining a second local leakage component measure L_2 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $y_p = \zeta_2$, where ζ_2 is a real number;
- obtaining a third local leakage component measure L_3 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_{p_t} and the parameter $\gamma_0 = j\zeta_1$;
- obtaining a fourth local leakage component measure L_4 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $\gamma_p = j\zeta_2$;
- obtaining a fifth local leakage component measure L_5 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter x_0 =0; and
- obtaining a final DC compensation parameter $\gamma_{p,final}$ based on the first local leakage component measure L_1 , the second local leakage component measure L_2 , the third local leakage component measure L_3 , the fourth local leakage component measure L_4 and the fifth local leakage component measure L_5 .

12. (Previously Presented): The method for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 11, wherein the final DC compensation parameter $\gamma_{p,dinal}$ is obtained by

$$\gamma_{p, \mathit{final}} = -\frac{1}{2} \cdot \frac{\zeta_2^2(L_1 - L_5) - \zeta_1^2(L_2 - L_5)}{\zeta_1(L_2 - L_5) - \zeta_2(L_1 - L_5)} - j \frac{1}{2} \cdot \frac{\zeta_2^2(L_3 - L_5) - \zeta_1^2(L_4 - L_5)}{\zeta_1(L_4 - L_5) - \zeta_2(L_3 - L_5)}.$$

- 13. (Previously Presented): An apparatus for in-phase and quadrature mismatch calibration of a transmitter, comprising:
 - a signal generator for generating a discrete-time signal $x[n] = x(n \cdot T_s)$, wherein $x(t) = e^{t/2\pi f_s t}$ and f_{\square} and T_s are real numbers;
 - a correction module for receiving the discrete-time signal x[n] and obtaining a corrected signal $x_c[n]$ based on the signal x[n] and a set of correction parameters A_p and B_p , wherein $x_c[n] = A_p \cdot x[n] + B_p \cdot x^c[n]$;
 - a first and second D/A converter converting the corrected signal $x_c[n]$ to an analog signal $x_c(t)$, wherein the first D/A converter converts the real part of the corrected signal to a real part of the analog signal, and the second D/A converter converts the imaginary part of the corrected signal to an imaginary part of the analog signal;
 - a modulator applying in-phase and quadrature modulation to the analog signal $x_n(t)$, and outputting a modulated signal $x_m(t)$;

a measurer configured to:

- obtain a first desired component measure $W^{(1)}(f_T)$ and a first image component measure $W^{(1)}(-f_T)$ from the modulated signal $x_m(t)$ with a first set of the correction parameters A_p and B_p ;
- obtain a second desired component measure $W^{(2)}(f_T)$ and a second image component measure $W^{(2)}(-f_T)$ from the modulated signal $x_m(t)$ with a second set of the correction parameters A_p and B_p ;
- obtain a third desired component measure $W^{(3)}(f_T)$ and a third image component measure $W^{(3)}(-f_T)$ from the modulated signal $x_m(t)$ with a third set of the correction parameters A_p and B_n :
- obtain a fourth desired component measure $W^{(4)}(f_T)$ and a fourth image component measure $W^{(4)}(-f_T)$ from the modulated signal $x_m(t)$ with a fourth set of correction parameters A_p and B_p ; and
- obtain a fifth desired component measure $W^{(5)}(f_T)$ and a fifth image component measure $W^{(5)}(-f_T)$ from the modulated signal $x_m(t)$ with a fifth set of correction parameters A_p and B_0 ; and

a processor configured to:

obtain the fourth and fifth sets of correction parameters A_p and B_p based on the first, the second, and the third desired component measures as well as the first, the second, and the third image component measures; and

choose a final set of correction parameters A_p and B_p from the fourth and fifth sets of correction parameters.

14. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 13, wherein the first set of correction parameters $(A_p,B_p)=(a,0)$, the second set of correction parameters $(A_p,B_p)=(b,b)$, and the third set of correction parameters $(A_p,B_p)=(b,b)$, where a and b are real numbers.

15. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 14, wherein the parameter a is 1 and the parameter b is 1/2.

16. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 13, wherein the fourth set of correction parameters (A_{n} , B_{o}) are obtained by

$$A_{p} = \sqrt{P} - j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} - j\sqrt{Q}$$

and the fifth set of correction parameters (A_p,B_p) are obtained by

$$A_{p} = \sqrt{P} + j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} + j\sqrt{Q}$$

where

$$\alpha \approx \hat{\alpha} = \frac{\sqrt{N_O} - 1}{\sqrt{N_O} + 1},$$

$$N = (W^{(2)}(f_T) + W^{(2)}(-f_T))/2,$$

$$O = (W^{(3)}(f_T) + W^{(3)}(-f_T))/2,$$

$$Q = \frac{\hat{\alpha}^2 - \rho^{(1)}}{(1 + \rho^{(1)})(\hat{\alpha}^2 - 1)},$$

$$P = 1 - Q,$$

$$\rho^{(1)} = \frac{W^{(1)}(-f_T)}{W^{(0)}(f_T)}.$$

17. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 13, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_T)$ is less than the function of $W^{(5)}(-f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

18. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 17, wherein the final set of correction parameters (A_0,B_0) is set to be the fourth set of correction

parameters if a value of $W^{(4)}(-f_T)$ is less than a value of $W^{(5)}(-f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

19. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 13, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(f_{\bar{t}})$ is greater than the function of $W^{(5)}(f_{\bar{t}})$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

20. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 19, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a value of $W^{(4)}(f_T)$ is greater than a value of $W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

21. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 13, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_{\star})$ and $W^{(4)}(f_{\star})$ is less than the function of

 $W^{(5)}(-f_T)$ and $W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

- 22. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 21, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if $W^{(4)}(-f_T)/W^{(4)}(f_T)$ is less than $W^{(5)}(-f_T)/W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 23. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 13, wherein the processor further configured to:

further add a DC compensation parameter γ_p while obtaining the corrected signal $x_c[n]$ such that $x_c[n] = A_n \cdot (x[n] + \gamma_n) + B_n \cdot (x[n] + \gamma_n)^* \; ;$

- obtain a first local leakage component measure L_1 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $y_0=\zeta_1$, where ζ_1 is a real number;
- obtain a second local leakage component measure L_2 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $y_0 = \zeta_2$, where ζ_2 is a real number;

- obtain a third local leakage component measure L_3 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $y_0=i\zeta_1$;
- obtain a fourth local leakage component measure L_4 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $\gamma_p = j\zeta_2$;
- obtain a fifth local leakage component measure L_5 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter γ_p =0; and
- obtain a final DC compensation parameter $\gamma_{p,final}$ based on the first local leakage component measure L_1 , the second local leakage component measure L_2 , the third local leakage component measure L_3 , the fourth local leakage component measure L_4 and the fifth local leakage component measure L_5 .
- 24. (Previously Presented): The apparatus for in-phase and quadrature mismatch calibration of a transmitter as claimed in claim 23, wherein the final DC compensation parameter $\gamma_{v,dinal}$ is obtained by

$$\gamma_{p,\mathit{final}} = -\frac{1}{2} \cdot \frac{\zeta_2^2(L_1 - L_5) - \zeta_1^2(L_2 - L_5)}{\zeta_1(L_2 - L_5) - \zeta_2(L_1 - L_5)} - j \cdot \frac{1}{2} \cdot \frac{\zeta_2^2(L_3 - L_5) - \zeta_1^2(L_4 - L_5)}{\zeta_1(L_4 - L_5) - \zeta_2(L_3 - L_5)}.$$