## 数学Y問題

(120分)

## 【必答問題】 $Y1\sim Y4$ は全員全問解答せよ。

- **Y1** 箱の中に、1から4までの数が1つずつ書かれたカードが計4枚入っている。箱の中から1枚のカードを取り出して、数を確認して箱の中に戻す作業を3回行う。
  - (1) 取り出されたカードに書かれた3つの数がすべて異なる確率を求めよ。
  - (2) 取り出されたカードに書かれた3つの数の最大値が奇数である確率を求めよ。また、取り出されたカードに書かれた3つの数の最大値が奇数であるとき、3つの数がすべて異なる条件付き確率を求めよ。 (配点 20)

$$(1)\frac{3}{8}$$
  $(2)\frac{5}{6}$   $(6)$ 

**Y2** 関数 
$$f(x) = \sin x + a \cos x$$
 (a は定数) があり、 $f\left(\frac{\pi}{3}\right) = \sqrt{3}$  である。

- (1) a の値を求めよ。
- (2)  $0 \le x \le \frac{\pi}{2}$  のとき, f(x) の最大値と最小値を求めよ。また, そのときのx の値をそれ ぞれ求めよ。

(1) 
$$A=\overline{3}$$
  
(2) Max 2  $\left(\chi = \frac{\pi}{6}\right)$   
Men  $\left(\chi = \frac{\pi}{2}\right)$ 

- $\mathbf{Y3}$  O を原点とする座標平面上に,放物線  $C: y=x^2$  があり,C上の点  $A(a, a^2)$  における Cの接線を  $\ell$  とする。ただし,a は正の定数とする。
  - (1) ℓの方程式を求めよ。
  - (2)  $\ell$ とx軸との交点のx座標をaを用いて表せ。また,C, $\ell$ およびx軸で囲まれた図形の面積を $S_1$ とする。 $S_1$ をaを用いて表せ。
  - (3) 点 A を通り、 $\ell$  に垂直な直線とy軸との交点を B とする。C、線分 AB、線分 OB で囲まれた図形の面積を  $S_2$  とする。(2)で求めた  $S_1$  に対し、 $S_2 = 10S_1$  となる a の値を求めよ。 (配点 40)

$$(2) \chi = \frac{\alpha}{2}, S_1 = \frac{\alpha^3}{(2)}$$

$$(3) Q = \frac{\sqrt{6}}{2}.$$

- **Y4** 座標平面上の3点(-3, 2), (1, 4), (5, -4)を通る円を C<sub>1</sub>とする。
  - (1)  $C_1$  の中心の座標と半径を求めよ。
  - (2)  $C_1$  の接線で傾きが  $-\frac{3}{4}$  であるもののうち、y 切片が正であるものを $\ell$  とする。 $\ell$  の方程式を求めよ。
  - (3) (2)のとき, C<sub>1</sub>の中心を通り, y軸およびℓに接する円を C<sub>2</sub>とする。 C<sub>2</sub>の方程式を求めよ。 (配点 40)

9

(3) 
$$C_2 \left( x - \frac{5}{2} \right)^2 + \left( \frac{4}{4} \right)^2 = \frac{25}{4}$$

$$\left( x - \frac{5}{2} \right)^2 + \left( \frac{4}{4} + \frac{4}{4} \right)^2 = \frac{25}{4}$$

【選択問題】 次の指示に従って解答しなさい。

| 【数学Ⅲを学習していない場合(P.10~11)】                               | Y5~Y7の3題中2題を解答せよ。  |
|--------------------------------------------------------|--------------------|
| 【数学Ⅲの「2次曲線」,「複素数平面」,「数列の極限」のいずれかの学習を終えている場合 (P.12~13)】 | Y7~Y10の4題中2題を解答せよ。 |

- $\mathbf{Y7}$  右の図のように、OA=3、OB=2、BC=1、
  - $\cos \angle AOB = -\frac{2}{3}$ , OA //CB である台形 OABC がある。線分 AB を 2:1 に内分する点を D, 線分 OCの中点をEとし、直線 DEと直線 OA の交点 を F とする。また、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$  とする。



- (1) 内積 $\overline{a \cdot b}$  の値を求めよ。また、 $\overline{OD}$  を $\overline{a}$ 、 $\overline{b}$  を用いて表せ。
- (2) 点 $G \in \overline{DG} = k\overline{DE}$  (kは実数)を満たす点とする。 $\overline{OG}$ を $\overline{a}$ ,  $\overline{b}$ , kを用いて表せ。ま た, 点 G が点 F に一致するとき, k の値を求めよ。
- (3) 点 H を  $\overrightarrow{OH} = t\overrightarrow{b}$  (t は 0 でない実数) を満たす点とする。 $\overrightarrow{OH} \perp \overrightarrow{CH}$  であるとき,tの値を求めよ。また、このとき △AFH の面積を求めよ。 (配点 40)

(1) 
$$\overrightarrow{Q}, \overrightarrow{D} = -4$$
,  $\overrightarrow{OD} = 3(\overrightarrow{Q} + 2\overrightarrow{D})$   
(2)  $\overrightarrow{OG} = (-5\cancel{E}) \overrightarrow{Q} + (3-6\cancel{D})$ ,  $\cancel{E} = 4$   
(3)  $\cancel{E} = \frac{4}{3}$ ,  $\overrightarrow{A} = \frac{32\sqrt{3}}{3}$   
Y8  $0$  を原点とする座標平面上に、焦点の1つが点  $(\sqrt{2}, 0)$  である楕円  $C: \frac{x^2}{a^2} + y^2 = 1$ 

(a>1) がある。

(1) a の値を求めよ。

- (2) 点 A(0, 2) から C に異なる 2 つの接線  $\ell_1$ ,  $\ell_2$  を引く。  $\ell_1$ ,  $\ell_2$  の方程式を求めよ。 た だし、 $(\ell_1 の傾き) > (\ell_2 の傾き) とする。$
- (3) 点 P が C の y < 0 の部分を動くとする。(2)で求めた  $\ell_1$ ,  $\ell_2$  に対して、点 P から  $\ell_1$  に 引いた垂線と ℓ1 との交点を H1 とし、点 P から ℓ2 に引いた垂線と ℓ2 との交点を H2 とす る。四角形  $AH_1PH_2$ の面積が  $\frac{9}{8}$  となるとき,点 P の座標を求めよ。 (配点 40)

$$(1) \alpha = \sqrt{3} (2) l_1 : f = x_{t} 2, l_2 f = -x_{t} 2$$

(3) 
$$P\left(\pm\frac{3\sqrt{5}}{4}, -\frac{1}{4}\right)$$

- $\mathbf{Y9}$  p を実数の定数とする。x の 2 次方程式  $x^2-2px+p^2+3=0$  の虚数解のうち、虚部が正 であるものを  $\alpha$  とし、O を原点とする複素数平面上で、 $\alpha$  を表す点を A とする。
  - αをpを用いて表せ。
  - (2) 点 A を原点のまわりに  $\frac{\pi}{3}$  だけ回転し、さらに原点からの距離を  $\frac{1}{2}$  倍にした点を  $B(\beta)$  とすると、 $\beta$  の虚部が  $2\sqrt{3}$  となった。このとき、 $\rho$  の値を求めよ。
  - (3) (2)のとき、 $\triangle$ OAB の外接円の周上に 2 点 C, D を BC = BD,  $\angle CBD = \frac{\pi}{6}$  となるようにとる。 2 点 C, D を表す複素数を求めよ。ただし、3 点 B, C, D はこの順に反時計回りにあるものとする。

$$(1) A = p + \sqrt{3} \hat{v}$$
  
 $(2) p = 7$ 

(3) 
$$C = \frac{3+1}{2} + \frac{3-7}{2} = \frac{1}{2}$$
,  $D = \frac{43+1}{2} + \frac{3-2}{2}$ 

 $\mathbf{Y}$  10 数列  $\{a_n\}$  は  $a_1=5$ ,  $a_{n+1}=2a_n-3$   $(n=1, 2, 3, \dots)$  を満たしている。また,数列  $\{b_n\}$  は  $b_1=b$  (b は定数),  $b_{n+1}=b_n+a_n-3$   $(n=1, 2, 3, \dots)$  を満たしている。

- (1) anをnを用いて表せ。
- (2)  $b_n$  を n, b を用いて表せ。
- (3) r を正の数とする。  $\lim_{n\to\infty}\frac{b_n}{r^n}=1$  であるとき,r の値を求めよ。さらに,このとき,

$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{b_k}{r^{2k}} = 3 \ となる b の値を求めよ。$$
 (配点 40)

(1) 
$$Q_{N} = 2^{N} + 3$$

$$(2) bn = 2^{n} - 2+b$$