

Ensemble Learning: Gradient Boosting Machine (GBM)

Pilsung Kang
School of Industrial Management Engineering
Korea University

Friedman (2001), Natekin and Knoll (2013)

Gradient Boosting = Gradient Descent + Boosting

Adaboost

- \checkmark Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- ✓ In each stage, introduce a weak leaner to compensate the shortcomings of existing weak leaners.
- √ In Adaboost, "shortcomings" are identified by high-weight data points.

Adaboost

+0.92

$$H(x) = \sum_{t} \rho_t h_t(x)$$

Gradient Boosting

- \checkmark Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- ✓ In each stage, introduce a weak leaner to compensate the shortcomings of existing weak leaners.
- ✓ In Gradient Boosting, "shortcomings" are identified by gradients.
- ✓ Both high-weight data points and gradients tell us how to improve our model.
- Gradient Boosting for Different Problems
 - ✓ Difficulty: Regression < Classification < Ranking</p>
 - Associated with the complexity of the derivative of a loss function

- Motivation (for regression problem)
 - √ What if we attempt to predict the residuals with the additional regression model?

• Main idea

ric	ınal	Dataset
או וי	Jiiiai	Dataset

O	
χl	уl
x ²	y ²
x³	y ³
x ⁴	y ⁴
x ⁵	y ⁵
× ⁶	y ⁶
x ⁷	y ⁷
x ₈	y 8
x ⁹	y ⁹
x ¹⁰	y 10

Modified Dataset I

×I	$y^{l}-f_{l}(x^{l})$
x^2	$y^2-f_1(x^2)$
x^3	$y^3 - f_1(x^3)$
× ⁴	$y^4 - f_1(x^4)$
x ⁵	$y^5 - f_1(x^5)$
x ⁶	$y^6 - f_1(x^6)$
x ⁷	$y^{7}-f_{1}(x^{7})$
x ⁸	$y^8 - f_1(x^8)$
x ⁹	$y^9 - f_1(x^9)$
×10	$y^{10}-f_1(x^{10})$

Modified Dataset 2

χ ^l	$y^{1}-f_{1}(x^{1})-f_{2}(x^{1})$
x^2	$y^2-f_1(x^2)-f_2(x^2)$
x^3	$y^3-f_1(x^3)-f_2(x^3)$
× ⁴	$y^4 - f_1(x^4) - f_2(x^4)$
x ⁵	$y^5 - f_1(x^5) - f_2(x^5)$
× ⁶	$y^6 - f_1(x^6) - f_2(x^6)$
x ⁷	$y^7 - f_1(x^7) - f_2(x^7)$
x ₈	$y^8 - f_1(x^8) - f_2(x^8)$
x ⁹	$y^9 - f_1(x^9) - f_2(x^9)$
×10	y^{10} - $f_1(x^{10})$ - $f_2(x^{10})$

$$y = f_1(\mathbf{x})$$
 $y - f_1(\mathbf{x}) = f_2(\mathbf{x})$ $y - f_1(\mathbf{x}) - f_2(\mathbf{x}) = f_3(\mathbf{x})$

Illustrative Example

- How is this idea related to the gradient?
 - √ Loss function of the ordinary least square (OLS)

$$\min L = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$

✓ Gradient of the Loss function

$$\frac{\partial L}{\partial f(\mathbf{x}_i)} = f(\mathbf{x}_i) - y_i$$

✓ Residuals are the negative gradient of the loss function

$$y_i - f(\mathbf{x}_i) = -\frac{\partial L}{\partial f(\mathbf{x}_i)}$$

- Gradient Descent Algorithm
 - ✓ Blue line: value of loss function with a given parameter
 - ✓ Black point: current state
 - ✓ Arrows: the direction that the parameter should follow to minimize the loss function

GBM Regression Example I

GBM Regression Example I

https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d

• GBM Regression Example 2

https://www.quora.com/How-would-you-explain-gradient-boosting-machine-learning-technique-in-no-more-than-300-words-to-non-science-major-college-students

• GBM Regression Example 3

https://docs.paperspace.com/machine-learning/wiki/gradient-boosting

- Gradient Boosting: Algorithm
 - 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$.
 - 2. For m=1 to M:
 - 2.1 For $i = 1, \ldots, N$ compute

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

- 2.2 Fit a regression tree to the targets g_{im} giving terminal regions $R_{im}, j = 1, \dots, J_m$.
- 2.3 For $j = 1, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)$$

- 2.4 Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$
- 3. Output $\hat{f}(x) = f_M(x)$.

• Loss Functions for Regression

Loss Function	Formula
Squared loss (L ₂)	$\Psi(y,f)_{L_2} = \frac{1}{2}(y-f)^2$
Absolute loss (L _I)	$\Psi(y,f)_{L_1} = y - f $
Huber loss	$\Psi(y, f)_{\text{Huber, }\delta} = \begin{cases} \frac{1}{2}(y - f)^2 & y - f \le \delta \\ \delta(y - f - \delta/2) & y - f > \delta \end{cases}$
Quantile loss	$\Psi(y,f)_{\alpha} = \begin{cases} (1-\alpha) y-f & y-f \le 0\\ \alpha y-f & y-f > 0 \end{cases}$

Loss Functions for Regression

Loss Functions for Classification

Loss Function	Formula
Bernoulli loss	$\Psi(y, f)_{\text{Bern}} = \log(1 + \exp(-2\bar{y}f))$
Adaboost loss	$\Psi(y, f)_{Ada} = \exp(-\bar{y}f)$

(Note)

In binary classification, the target is usually defined by $y \in \{0,1\}$, but here we define $\bar{y} = 2y - 1$ so that $\bar{y} \in \{-1,1\}$

Loss Functions for Classification

(A) Bernoulli loss function. (B) Adaboost loss function.

Overfitting problem in GBM

FIGURE 4 | Examples of overfitting in GBMs on: (A) regression task; (B) classification task. Demonstration of fitting a decision-tree GBM to a noisy sinc(x) data: (C) M = 100, $\lambda = 1$; (D) M = 1000, $\lambda = 1$; (E) M = 100, $\lambda = 0.1$; (F) M = 1000, $\lambda = 0.1$.

Regularization

√ Subsampling

- At each learning iteration, only a random part of the training data is used to fit a consecutive base-learner.
- The training data is typically sampled without replacement, but bagging can be also acceptable.

Regularization

√ Shrinkage

- Used for reducing/shrinking the impact of each additional fitted base-leaners.
- Better to improve a model by taking many small steps than by taking fewer large steps.

$$\widehat{f}_t \leftarrow \widehat{f}_{t-1} + \lambda o_t h(x, \theta_t)$$

- Regularization
 - ✓ Early Stopping
 - Use the validation error

FIGURE 5 | Error curves for GBM fitting on sinc(x) data: (A) training set error; (B) validation set error. Error curves for learning simulations and number of base-learners M estimation: (C) error curves for cross-validation; (D) error curves for bootstrap estimates.

- Variable Importance in Tree-based Gradient Boosting
 - ✓ $Influence_i(T)$: importance of the variable j in a single tree T.
 - ✓ Assume that there are L terminal nodes $\rightarrow L-1$ splits.

$$Influence_{j}(T) = \sum_{i=1}^{L-1} (IG_{i} \times \mathbf{1}(S_{i} = j))$$

√ Variable importance of Gradient boosting

$$Influence_{j} = \frac{1}{M} \sum_{k=1}^{M} Influence_{j}(T_{k})$$

