Présentation du projet de sysnum

Ryan Lahfa, Constantin Gierczak-Galle, Julien Marquet, Gabriel Doriath Döhler

Introduction

Car c'est notre projet!

Le projet se divise en deux sous-projets :

- Le processeur Minecraft avec l'ISA V-RISC-V¹;
- Le processeur RISC-V écrit en System Verilog et simulé avec Verilator

¹Invention de cerveaux malades.

Motivations

- Motivations
- Redstone

- Motivations
- Redstone
- ISA

- Motivations
- Redstone
- ISA
- Détails d'implémentation

 Fonctionnalités principales du processeur : extensions, entrées-sorties

- Fonctionnalités principales du processeur : extensions, entrées-sorties
- Prototypes

- Fonctionnalités principales du processeur : extensions, entrées-sorties
- Prototypes
- lacktriangledown Icarus Verilog o Verilator et Verilog o System Verilog

- Fonctionnalités principales du processeur : extensions, entrées-sorties
- Prototypes
- Icarus Verilog \rightarrow Verilator et Verilog \rightarrow System Verilog
- Caches, MMU

- Fonctionnalités principales du processeur : extensions, entrées-sorties
- Prototypes
- Icarus Verilog \rightarrow Verilator et Verilog \rightarrow System Verilog
- Caches, MMU
- Wishbone

- Fonctionnalités principales du processeur : extensions, entrées-sorties
- Prototypes
- Icarus Verilog \rightarrow Verilator et Verilog \rightarrow System Verilog
- Caches, MMU
- Wishbone
- Vérification formelle avec SymbiFlow

- Fonctionnalités principales du processeur : extensions, entrées-sorties
- Prototypes
- Icarus Verilog o Verilator et Verilog o System Verilog
- Caches, MMU
- Wishbone
- Vérification formelle avec SymbiFlow
- Contrôleur VGA

Minecraft

Motivations

Minecraft: circuits logiques avec de la redstone².

²cf slide suivante

Motivations

Minecraft: circuits logiques avec de la redstone².

Déjà quelques implémentations existantes de CPU plus ou moins complexes.

²cf slide suivante

Motivations

Minecraft: circuits logiques avec de la redstone².

Déjà quelques implémentations existantes de CPU plus ou moins complexes.

But : implémenter un CPU 8-bits simple dans Minecraft ; contraintes surtout liées au jeu.

²cf slide suivante

Redstone

Redstone : poudre qui, placée au sol, forme des fils. Valeurs : 0 ou 1^3 .

 $^{^3\}mbox{Subtilit\'e}$: il y a des histoires de puissance... Out of the scope pour cette présentation

Redstone

Redstone : poudre qui, placée au sol, forme des fils. Valeurs : 0 ou 1³.

Un agencement d'éléments (fils de redstone, torches de redstones, blocs, etc.) forme un **circuit logique combinatoire**. Propagation non instantanée : facteur à prendre en compte (naïvement, \geq 0.1 seconde pour qu'un signal parcourt 16 blocs) \rightarrow limitation en taille.

 $^{^3\}mathsf{Subtilit\'e}$: il y a des histoires de puissance... Out of the scope pour cette présentation

Redstone

Redstone : poudre qui, placée au sol, forme des fils. Valeurs : 0 ou 1³.

Un agencement d'éléments (fils de redstone, torches de redstones, blocs, etc.) forme un **circuit logique combinatoire**. Propagation non instantanée : facteur à prendre en compte (naïvement, \geq 0.1 seconde pour qu'un signal parcourt 16 blocs) \rightarrow limitation en taille.

Quelques timings ajustés et des fonctionnalités de Minecraft permettent de faire des latchs : sauvegarde de données.

³Subtilité : il y a des histoires de puissance... Out of the scope pour cette présentation

ISA: V-RISC-V

V-RISC-V = Very Reduced Instruction Set Computer (-V pour le jeu de mot)

Données sur 8 bits, instructions sur 32 bits.

ISA: V-RISC-V

 $\mbox{V-RISC-V} = \mbox{Very Reduced Instruction Set Computer (-V pour le jeu de mot)}$

Données sur 8 bits, instructions sur 32 bits.

- STORE
- LOAD
- ADD
- OR
- XOR
- LOADI
- JMP conditionnel

ISA: V-RISC-V

V-RISC-V = Very Reduced Instruction Set Computer (-V pour le jeu de mot)

Données sur 8 bits, instructions sur 32 bits.

- STORE
- LOAD
- ADD
- OR
- XOR
- LOADI
- JMP conditionnel

```
| pc : 1 | flag : 2 | or,carry,xor : 3 | read1 : 4 | imm : 0:3 | write : 4 | imm : 4:7 | read2 : 4
```

Pseudo-instructions

Avec les instructions de base et les registres spéciaux :

- NOP
- SUB
- HALT
- PRINT
- JMP (inconditionnel)
- MOV
- NOT
- CMP

Registres

16 general purpose registers : $\mbox{\em \%0}$ to $\mbox{\em \%15}.$

Registres

16 general purpose registers : $\mbox{\em \%0}$ to $\mbox{\em \%15}.$

Largeur: 8 bits

Registres

16 general purpose registers : %0 to %15.

Largeur: 8 bits

Registres spéciaux :

- $\%0 = 0 \rightarrow NOP$
- $%1 = -1 \rightarrow NOT$
- %15 = random(0, 255)

Aspect technique

Conclusion et ouvertures

Achievements:

CPU V-RISC-V avec ROM, registres, ALU, instructions arithmétiques et logiques.

⁴O: afficheurs 7-segments; I: sélecteurs à leviers

⁵En fait déjà presque possible...

Conclusion et ouvertures

Achievements:

CPU V-RISC-V avec ROM, registres, ALU, instructions arithmétiques et logiques.

TODO:

RAM, I/O utilisateur⁴, découpage de l'espace mémoire, pipeline⁵

⁴O: afficheurs 7-segments; I: sélecteurs à leviers

⁵En fait déjà presque possible...

Le processeur RISC-V (Sakaido, le

brillant)

Fonctionnalités principales

Il s'agit d'un processeur RISC-V qui implémente RV321 6 .

⁶RV32IM était disponible à un moment