Lektion 3: Lungesygdomme, thoraxsygdomme og brystsygdomme

Andreas Svendsen

Table of contents

ntroduktion	3
_uftvejenes anatomi og fysiologi	3
Overordnet inddeling	3
Funktionel anatomi	3
Luftvejenes forsvar	3
Gasudveksling	4
Relevante strukturer	4
Thoraxvæggen	4
Pleura	4
Mediastinum	4
Respirationsfysiologi	4
Ventilation	4
Respiration under fysisk aktivitet	5
Glat muskulatur i luftvejene	5
Anatomi og funktion	5
Receptorer	6
Respiratorisk kontrol	6
Centrale regulering	6
Perifere receptorer	6
Regulering under fysisk aktivitet	7
_ungesygdomme	7
Akut bronkitis	7
Definition og patofysiologi	7
Epidemiologi	7
Kliniske manifestationer	7
Diagnostik	8

Beha	dling
Fysic	erapeutiske overvejelser
Prog	ose
	lungebetændelse)
Defir	tion og patofysiologi
Epid	miologi
	ke manifestationer
Obje	tive fund
Risik	vurdering - CURB-65 score
Beha	dling
	og prognose
	erapeutiske overvejelser
	ke perspektiver
	vggelse af komplikationer
	e
	enese
	teristika
	miologi
	ostik
	dling
	isk Obstruktiv Lungesygdom)
`	enese
	nismer for åndenød
	natisk påvirkning
	netri og lungefunktion
_	dlingsrationale ved KOL
	rsiologi
	e kendetegn vs. KOL
	ostik
_	mskontrol
	er
	miologi og risikofaktorer
	•
	tasering
	dling
Lungeemb	
	enetisk sammenhæng med DVT
	k præsentation
Særl	e præsentationer

Pleuritis og atelektaser	22
Pleuritis	22
Atelektaser	22
$Thorax sygdomme \dots $	23
Pneumothorax	23
Mediastinitis	24
Brystsygdomme	24
Brystkræft - uddybende patofysiologi	24
Kirurgiske principper ved brystkræft	26
Thoraxdeformiteter og lungefunktion	28

Introduktion

Dette kapitel omhandler sygdomme i luftvejene, thorax og brystet.

Luftvejenes anatomi og fysiologi

Overordnet inddeling

Luftvejene kan inddeles i:

- 1. Øvre luftveje (over stemmelæberne)
 - Næsehulen
 - Svælget (pharynx)
 - Struben (larynx)
- 2. Nedre luftveje (under stemmelæberne)
 - Luftrøret (trachea)
 - Bronkier
 - Bronkioler
 - Alveoler

Funktionel anatomi

Luftvejenes forsvar

- Mekanisk barriere: Slimhinde med fimrehår (cilier) der transporterer slim og partikler opad
- Immunologisk forsvar: Slimhindeassocieret lymfevæv

• Hosterefleks: Beskytter mod aspiration

Gasudveksling

- Sker primært i alveolerne
- Diffusion af O2 og CO2 over alveole-kapillær membranen
- Styres af:
 - Ventilation (luftskifte)
 - Perfusion (blodgennemstrømning)
 - Diffusion (gennem membranen)

Relevante strukturer

Thoraxvæggen

- Ribben og intercostalmuskler
- Diafragma (hovedinspirationsmuskel)
- Auxiliære respirationsmuskler

Pleura

- Visceralt og parietalt pleura
- Pleuraspalten med negativt tryk
- Vigtig for friktionsfri respirationsbevægelser

Mediastinum

- Område mellem lungerne
- Indeholder hjerte, store kar, spiserør mm.

Respirationsfysiologi

Ventilation

- Inspiration: Aktiv proces primært diafragma
- Ekspiration: Passiv proces ved hvile
- Lungevolumina:
 - Tidalvolumen

- * Normal vejrtrækningsvolumen i hvile
- * Ca. 500 mL hos voksne
- * Kan øges betydeligt ved behov (fx under træning)
- Vitalkapacitet
 - * Maksimal mængde luft der kan udåndes efter maksimal indånding
 - * Normalt 3-5 L (afhængig af køn, alder, højde)
 - * Vigtig parameter ved lungefunktionsundersøgels
- Residualvolumen
 - * Luftmængde der bliver tilbage i lungerne efter maksimal udånding
 - * Ca. 1.2 L hos voksne
 - * Kan ikke måles ved spirometri
 - * Øget ved emfysem/KOL
- Andet:
 - FVC
 - * Forceret vitalkapacitat. Total volumen, i liter, der ekspireres efter maksimal inhalation, of så hurtig og fuldstændig ekspiration som muligt.
 - FEV1
 - * Udgør første del af FVC målingen. Den volumen der er ekspireret i løbet af 1 sekund.
 - FEV1/FVC ratio (Tiffeneaus indeks).
 - * Forholdet mellem FEV1 og FVC, dvs., hvor stor andel af forceret vitalkapacitet tømmes ud i løbet af første sekund.
 - * Denne variabel definerer obstruktion:
 - · Hvis forholdet er under 0.7 taler man om obstruktiv lungefunktionsnedsættelse.
 - Peak flow
 - * Angiver den maksimale lufthastighed, der kan pustes luften ud af lungerne. Det måles i enheden liter pr. minut.

Respiration under fysisk aktivitet

- Øget ventilation
- Rekruttering af auxiliære respirationsmuskler
- Ændret respirationsmønster

Glat muskulatur i luftvejene

Anatomi og funktion

• Findes i bronkier og bronkieler

- Regulerer luftvejsdiameter
- Styres af autonome nervesystem:
 - Parasympatisk stimulation \rightarrow kontraktion (forsnævring)
 - Sympatisk stimulation \rightarrow relaksation (udvidelse)

Receptorer

1. Beta-2 receptorer:

- Stimulering medfører bronkodilatation
- Målreceptor for beta-2-agonister ved astmabehandling

2. Muskarinerge receptorer:

- Stimulering medfører bronkokonstriktion
- Målreceptor for antikolinergika ved KOL-behandling

3. Inflammatoriske receptorer:

- Responderer på inflammatoriske mediatorer
- Vigtige ved astma og allergiske reaktioner
- Påvirkes af steroider

Respiratorisk kontrol

Centrale regulering

- Respirationscenter i hjernestammen:
 - Automatisk regulering af vejrtrækning
 - Responderer på:
 - * pCO2 (primær stimulus)
 - * pH
 - * pO2 (mindre betydning)

Perifere receptorer

- Kemoreceptorer:
 - Måler blodets pH, pCO2 og pO2
 - Findes i carotislegemet og aortalegemet
- Strækereceptorer:

- I lungerne og thoraxvæggen
- Beskytter mod overudspiling
- Bidrager til normal respirationsrytme

Regulering under fysisk aktivitet

- Øget ventilation drives primært af:
 - Øget CO2-produktion
 - Faldende pH
 - Neural feedback fra arbejdende muskler

Lungesygdomme

Akut bronkitis

Definition og patofysiologi

- Inflammation i trachea og større bronkier
- Primært viralt udløst (>90% af tilfældene)
- Kan også skyldes bakterien Bordatella Pertussis (kighoste)
 - Forebygges gennem børnevaccinationsprogrammet
 - Vaccination tilbydes også til gravide

Epidemiologi

- Meget hyppig tilstand
- Ses ofte i primær sektor
- Næsten aldrig indlæggelseskrævende
- Hyppigst i vinterhalvåret

Kliniske manifestationer

Symptomer: - Hoste og hosteanfald - Initialt tør hoste - Senere produktiv hoste med ekspektorat - Evt. feber (oftest let forhøjet) - Nogle får let åndenød - Varighed typisk få dage op til 3 uger

Diagnostik

- Primært klinisk diagnose
- Sjældent behov for supplerende undersøgelser
- Ved mistanke om kighoste kan tages:
 - Podning fra næse-svælg
 - Blodprøver for antistoffer

Behandling

- Oftest ingen specifik behandling nødvendig
- Symptomatisk behandling kan omfatte:
 - Hvile
 - Sufficient væskeindtag
 - Evt. smertestillende/febernedsættende
- Ved bakteriel årsag (fx kighoste):
 - Antibiotika
- Ved disponerede patienter (fx lungesyge):
 - Prednisolon
 - Evt. bronkodilaterende medicin

Fysioterapeutiske overvejelser

- Normalt ikke behov for fysioterapi
- Ved produktiv hoste kan overvejes:
 - Instruktion i effektiv hosteteknik
 - PEP-fløjte ved sejt sekret
- Ved kendt lungesygdom:
 - Vurder behov for pause/modificering af træning
 - Monitorer evt. forværring af grundsygdom

Prognose

- God prognose
- Selvlimiterende forløb
- Sjældent komplikationer hos ellers raske
- Kan evt. udløse eksacerbation hos patienter med kronisk lungesygdom

Pneumoni (lungebetændelse)

Definition og patofysiologi

- Inflammation i lungeparenkymet med konsolidering af lungevævet
- Kan være:
- Viralt udløst
- Bakterielt udløst (hyppigst Streptococcus pneumoniae)
- (sjældent andre mikroorganismer)
- Aspirationsudløst

Epidemiologi

- Meget hyppig årsag til lægekontakt
- Cirka 20.000 indlægges årligt i DK
- \bullet 60.000-100.000 behandles i almen praksis
- Inddeling efter smittested:
- Samfundserhvervet
- Hospitalserhvervet
- Aspirationspneumoni

Kliniske manifestationer

Kardinalsymptomer: - Feber - Hoste med ekspektorat - Åndenød

 \emptyset vrige symptomer: - Almen sygdomsfølelse - Træthed - Evt. thorakale smerter - Hos ældre kan symptomerne være meget vage: - Forvirring - Nedsat funktionsniveau - Let temperaturforhøjelse

Objektive fund

- Feber (ikke altid)
- Forhøjede infektionstal i blodprøver
- Stetoskopi: Krepitation
- Nedsat saturation
- Påvirket A-gas (arteriel blodprøve)
- Positive fund ved diagnostisk percussion
- Infiltrat på røntgen af thorax

Risikovurdering - CURB-65 score

Point gives for hver af følgende: - Confusion (nyopstået) - Urea >7 mmol/L - Respirationsfrekvens $30/\min$ - Blood pressure (BT systolisk <90 eller diastolisk 60) - Alder 65 år

Scoring og handling: - 0-1 point: Behandles i praksis - 2 point: Overvej indlæggelse - 3+ point: Altid indlæggelse

Behandling

Medicinsk: - Antibiotika tilpasset formodet agens - Væskebehandling ved behov - Evt. ilt-tilskud ved hypoksi - Evt. bronkodilaterende medicin

Fysioterapeutisk behandling: - Lejring for optimal ventilation - Sekretmobilisering: - PEP-fløjte - Vejrtrækningsøvelser - Hosteinstruktion - Tidlig mobilisering når relevant

Forløb og prognose

- Store individuelle forskelle:
- Nogle har subklinisk forløb
- Andre udvikler svær sygdom med behov for intensiv behandling
- Særlige risikogrupper:
- Ældre
- Immunsupprimerede
- Komorbiditet
- Nedsat lungefunktion

Fysioterapeutiske overvejelser

Vurdering: - Respirationsfrekvens - Saturation - Arbejdsgrad af vejrtrækning - Sekretproblematik - Mobilitetsniveau - Udholdenhed

Intervention: 1. Akut fase: - Fokus på lejring og sekretmobilisering - Minimal belastning - Tæt monitorering

- 2. Subakut fase:
- Gradvis mobilisering
- Fortsæt sekretmobilisering
- Instruktion i hjemmeøvelser
- 3. Rehabiliteringsfase:

- Gradvis genoptræning
- Udholdenthedstræning
- Styrketræning
- Vejrtrækningsøvelser

Kliniske perspektiver

Case: Ældre patient med pneumoni Hr. Jensen, 78 år, indlægges med pneumoni. Han har tidligere været selvhjulpen men er nu sengeliggende og afkræftet.

Fysioterapeutiske overvejelser: 1. Initial vurdering: - Hvordan vurderer du sikkert mobiliseringsniveau? - Hvilke parametre monitorerer du? - Hvilke kontraindikationer for mobilisering?

- 2. Behandlingsplan:
- Kort sigt: Forebyggelse af komplikationer
- Mellem sigt: Gradvis mobilisering
- Lang sigt: Genoptræning til tidligere funktionsniveau

Mulige svar på overvejelser:

Sikker mobiliseringsvurdering: - Vitalparametre i hvile og ved aktivitet - Saturation >90% (eller <4% fald ved aktivitet) - RF <25 - Puls <120 - Patientens subjektive oplevelse - Observationer af arbejdsgrad

Monitorering: - Saturation kontinuerligt under aktivitet - Respirationsfrekvens - Puls - Borg score for dyspnø - Subjektiv træthed - Hudfarve

Kontraindikationer for mobilisering: - Feber >38.5°C - Betydelig desaturation ved minimal aktivitet - Kredsløbsinstabilitet - Svær dyspnø i hvile - Akut konfusion

Forebyggelse af komplikationer

- Immobilisationsrelaterede:
- Tryksår
- Muskelatrofi
- DVT
- Respirationsrelaterede:
- Atelektaser
- Sekretstagnation
- Superinfektion

Tuberkulose

Patogenese

- Forårsages af Mycobacterium tuberculosis
- Primær infektion:
 - 1. Bakterier inhaleres til alveolerne
 - 2. Fagocyteres af makrofager
 - 3. Bakterierne kan overleve i makrofagerne
 - 4. Der dannes granulomer ("tuberkler")
 - 5. Immunsystemet indkapsler ofte infektionen
- Reaktivering kan ske ved:
 - Svækket immunforsvar
 - HIV
 - Underernæring
 - Høj alder
 - Immunsupprimerende behandling

Karakteristika

- Langsom vækst af bakterien
- Danner karakteristiske granulomer
- Kan give kaverner (hulrum) i lungevævet
- Særlig cellevægsstruktur gør bakterien:
 - Svær at behandle
 - Modstandsdygtig mod mange antibiotika
 - Kræver specialiseret farvning for at se i mikroskop

Epidemiologi

- Globalt:
 - 8 millioner nye tilfælde årligt
 - 1,3 millioner dødsfald
 - Største infektiøse dræber
- Danmark:
 - Ca. 200 tilfælde årligt
 - Primært i risikogrupper
 - Effektivt screeningsprogram for risikogrupper

Diagnostik

- Røntgen thorax
 - Karakteristiske forandringer:
 - * Infiltrater i overlapperne
 - * Kavernedannelse
 - * Calcifikationer
- Mikrobiologisk:
 - Ekspektorat til dyrkning og resistensbestemmelse
 - PCR for hurtigt svar
- IGRA-test (Interferon Gamma Release Assay)
 - Kan påvise latent infektion

Behandling

- Isolation indtil non-infektiøs (typisk 2 uger)
- Antibiotika i 6 måneder:
 - 4-stofsbehandling initial
 - Senere 2-stofsbehandling
- Kontrol af komplians essentielt
- Smitteopsporing af nære kontakter

KOL (Kronisk Obstruktiv Lungesygdom)

Patogenese

- Kronisk inflammation i luftvejene fører til:
 - 1. Bronkitis komponent:
 - Fortykkelse af bronkievæggen
 - Øget slimdannelse
 - Nedsat cilefunktion
 - 2. Emfysem komponent:
 - Destruktion af alveolerne
 - Tab af elasticitet
 - Nedsat gasudveksling
- Resulterer i:

- Irreversibel luftvejsforsnævring
- Air trapping
- Dynamisk hyperinflation ved aktivitet

Mekanismer for åndenød

1. Mekanisk komponent:

- Øget respiratorisk arbejde pga. luftvejsobstruktion
- Dynamisk hyperinflation \rightarrow fladere diafragma
- Nedsat elasticitet \rightarrow tidligere luftvejskollaps

2. Gasudveksling:

- Ventilations-perfusions mismatch
- Nedsat diffusionskapacitet
- Kan føre til hypoksæmi og hyperkapni

3. Muskulær dysfunktion:

- Systemisk inflammation
- Dekonditionering
- Kortikosteroid-induceret myopati

Systematisk påvirkning

KOL er ikke kun en lungesygdom, men påvirker hele kroppen: - Systemisk inflammation - Kardiovaskulær komorbiditet - Osteoporose - Depression - Muskelatrofi - Metaboliske forstyrrelser

Spirometri og lungefunktion

Centrale begreber

- **FEV1** (Forceret Ekspiratorisk Volumen 1. sekund):
 - Luftmængde der kan udåndes i første sekund ved maksimal udånding
 - Nedsat ved obstruktion i luftvejene
- **FVC** (Forceret Vital Kapacitet):
 - Total luftmængde der kan udåndes ved maksimal udånding
 - Nedsat ved restriktiv lungesygdom
- FEV1/FVC ratio:

- Normal ratio >70\%
- Vigtigste parameter til at skelne mellem obstruktiv og restriktiv lungesygdom

Obstruktiv vs. Restriktiv lungesygdom

Obstruktiv lungesygdom (fx KOL og astma): - Karakteriseret ved: - Nedsat luftflow pga. forsnævrede luftveje - FEV1 er markant nedsat - FVC er normal eller let nedsat - FEV1/FVC ratio er <70% - Flow-volumen kurve viser: - Konkav kurve - Langsom tømning

Restriktiv lungesygdom (fx lungefibrose): - Karakteriseret ved: - Nedsat lungevolumen - Både FEV1 og FVC er nedsat - FEV1/FVC ratio er normal eller forhøjet - Flow-volumen kurve viser: - Normal form men reduceret størrelse - Hurtig tømning

Behandlingsrationale ved KOL

Bronkodilaterende behandling

- Virkning:
 - Afslapning af glat muskulatur i bronkierne
 - Øger luftvejenes diameter
 - Reducerer air trapping
- Typer:
 - Beta-2-agonister (både kort- og langtidsvirkende)
 - Antikolinergika

Inhalationssteroid

- Virkning:
 - Dæmper inflammation i luftvejene
 - Reducerer eksacerbationsrisiko
 - Mindsker slimproduktion
- Indikation:
 - Primært til patienter med hyppige eksacerbationer
 - Ofte i kombination med bronkodilaterende medicin

PEP/CPAP rationale

• Fysiologiske effekter:

- Modvirker tidlig luftvejskollaps
- Holder små luftveje åbne længere
- Letter sekretmobilisering
- Reducerer arbejdet med vejrtrækningen

• Kliniske fordele:

- Bedre sekretclearance
- Reduceret air trapping
- Forbedret gasudveksling

Træningsrationale

1. Systemiske effekter:

- Forbedrer muskelstyrke og udholdenhed
- Øger kardiovaskulær fitness
- Reducerer systemisk inflammation

2. Respiratoriske effekter:

- Forbedrer ventilations-perfusions forhold
- Øger respiratorisk muskelstyrke
- Reducerer dynamisk hyperinflation ved aktivitet

3. Psykologiske effekter:

- Øget selvtillid
- Bedre sygdomskontrol
- Reduceret angst for åndenød

Astma

Patofysiologi

- Karakteriseret ved kronisk inflammation i luftvejene med:
 - Hyperreaktive luftveje
 - Reversibel luftvejsobstruktion
 - Inflammatorisk celleinfiltration
 - Bronkial hyperreaktivitet

Mekanismer for bronkokonstriktion

1. Tidlig fase:

- Allergener/irritanter aktiverer mastceller
- Frigivelse af histamin og andre mediatorer
- Akut bronkokonstriktion
- Øget slimproduktion

2. Sen fase:

- Inflammatoriske celler tiltrækkes
- Ødem i slimhinden
- Fortykket basalmembran
- Kronisk inflammation

Særlige kendetegn vs. KOL

- Reversibel obstruktion
- Ofte allergisk komponent
- Typisk debut i barndommen
- Bedre prognose
- God effekt af inhalationssteroid
- Normal lungefunktion mellem anfald

Diagnostik

- Spirometri med reversibilitetstest:
 - Min. 12% stigning i FEV1 efter beta-2-agonist
 - Absolut stigning på mindst 200 ml
- Peak flow monitorering:
 - Døgnvariation > 20% diagnostisk
 - Nyttigt til monitorering af sygdomskontrol

Sygdomskontrol

Vurderes ud fra: 1. Dagsymptomer: - Hyppighed - Sværhedsgrad - Påvirkning af aktivitet

2. Natsymptomer:

• Frekvens

• Påvirkning af søvn

3. Medicinforbrug:

- Behov for anfaldsmedicin
- Komplians med fast medicin

4. Lungefunktion:

- FEV1
- Peak flow værdier

Lungecancer

Epidemiologi og risikofaktorer

- 4500 nye tilfælde årligt i Danmark
- Næsthyppigste cancerform
- Primære risikofaktorer:
 - Rygning (80-90% af tilfælde)
 - Passiv rygning
 - Asbest eksposition
 - Radon
 - Luftforurening

Klassifikation

1. Småcellet lungecancer (SCLC):

- 15-20% af tilfælde
- Meget aggressiv
- Tidlig spredning
- Primært kemoterapi

2. Ikke-småcellet lungecancer (NSCLC):

- 80-85% af tilfælde
- Langsommere vækst
- Kirurgi hvis mulig
- Flere undertyper:
 - Adenokarcinom
 - Planocellulært karcinom
 - Storcellet karcinom

Klinisk præsentation

1. Lokale symptomer:

- Vedvarende hoste (60-70%)
- Hæmoptyse (35-40%)
- Åndenød (50%)
- Thorakale smerter

2. Systemiske symptomer:

- B-symptomer
- Vægttab
- Træthed
- Feber

3. Særlige præsentationer:

- Pancoast tumor:
 - Apikal tumor
 - Horners syndrom
 - Plexus brachialis påvirkning
- Recurrensparese:
 - Hæshed
- Superior vena cava syndrom:
 - Ødem i ansigt/hals
 - Venestase

Metastasering

• Lokal spredning:

- Samme/modsatte lunge
- Mediastinale lymfeknuder

• Fjernmetastaser:

- Knogler (særligt columna)
- Lever
- Hjerne
- CNS

Behandling

1. Kirurgi:

- Kurativt sigte
- Kræver god lungefunktion
- Kun ved lokaliseret sygdom

2. Kemoterapi:

- Standard ved SCLC
- Adjuverende ved NSCLC
- Pallierende ved metastatisk sygdom

3. Strålebehandling:

- Kurativt eller pallierende
- Ofte kombineret med kemo

4. Rehabilitering:

- Fysisk træning
- Sekretmobilisering
- Energibesparelse
- Psykosocial støtte

Lungeemboli

Patofysiologi

- Akut tillukning af lungearterie(r) med trombe
- Konsekvenser afhænger af:

1. Størrelse på emboli:

- Små embolier kan være asymptomatiske
- Store embolier kan give akut højresidig belastning

2. Lokalisation:

- Centrale vs. perifere embolier
- Saddelemboli særligt alvorlig

3. Kardiopulmonal reservekapacitet:

- Raske tåler større embolier bedre
- KOL-patienter særligt sårbare

Patogenetisk sammenhæng med DVT

- $\bullet~90\%$ stammer fra DVT i underekstremiteter
- Vigtig at huske DVT-profylakse ved:
 - Immobilisation
 - Store operationer
 - Graviditet/barsel
 - Cancer
 - Kendte koagulationsforstyrrelser

Klinisk præsentation

• Akutte symptomer:

- Åndenød (85%)
- Thorakale smerter (40%)
- Hoste (20%)
- Synkope (10%)

• Objektive fund:

- Takypnø
- Takykardi
- Evt. højresidigt svigt
- Hypoxi

Særlige præsentationer

1. Saddelemboli:

- Rammer bifurkaturen af a. pulmonalis
- Giver akut højresidig belastning
- Kan føre til PEA/asystoli

2. Multiple små embolier:

- Kan give gradvis forværring
- Kronisk cor pulmonale

3. Infarktpneumoni:

- Ses ved perifere embolier
- Giver pleural smerte
- Hæmoptyse

Pleuritis og atelektaser

Pleuritis

- Inflammation of pleura parietalis og/eller visceralis
- Ætiologi:
 - 1. Primær pleuritis:
 - Viral
 - Bakteriel
 - Autoimmun
 - 2. Sekundær pleuritis:
 - Efter pneumoni
 - Ved lungeemboli
 - Ved cancer
- Patofysiologi:
 - Inflammation \rightarrow smerte ved respirationsbevægelse
 - Evt. pleuraexsudat
 - Kan give adhærencer

Atelektaser

- Manglende udfoldning af lungevæv
- Typer:
 - 1. Resorptionsatelektase:
 - Obstruktion af luftvej
 - Luft resorberes distalt for obstruktion
 - 2. Kompressionsatelektase:
 - Ydre tryk på lungen
 - Fx pleuraexsudat, tumor
 - 3. Mikroatelektaser:
 - Manglende dybe vejrtrækninger
 - Ses ved immobilisation
 - Post-operativt
- Betydning for fysioterapeuter:
 - Vigtig komplikation at forebygge
 - Mobilisering essentielt
 - PEP-fløjte effektiv behandling
 - Lejring og respirationsøvelser vigtige

Thoraxsygdomme

Pneumothorax

- Luft i pleurahulen \rightarrow sammenfald af lunge
- Patofysiologiske konsekvenser:

1. Direkte effekter:

- Nedsat ventileret lungevolumen
- Forskydning af mediastinum
- Kompression af modsidige lunge

2. Ved trykpneumothorax:

- Envejsventil \rightarrow progressiv trykstigning
- Påvirkning af venøst tilbageløb
- Kan føre til obstruktivt shock

Klassifikation

1. Spontan pneumothorax:

- Primær: Unge, høje, slanke mænd
- Sekundær: Ved lungesygdom (fx KOL)
- Patogenese:
 - Ruptur af subpleurale blebs
 - Øget risiko ved visse bindevævssygdomme
 - Forværres af rygning/hash

2. Traumatisk pneumothorax:

- Direkte traume \rightarrow pleuralæsion
- Penetrerende traumer
- Costafrakturer med lungepunktur

3. Trykpneumothorax (tensionspneumothorax):

- Akut livstruende tilstand
- Patofysiologi:
 - -Envejsventil \rightarrow luft kan komme ind men ikke ud
 - Progressiv trykstigning
 - Mediastinal forskydning
 - Kompression af v. cava \rightarrow nedsat cardiac output
- Kræver akut dekompression med nål

Mediastinitis

- Alvorlig infektion i mediastinum
- Ætiologi:

1. Post-operativ:

- Efter hjertekirurgi/øsofaguskirurgi
- Ofte stafylokokker
- Kan føre til sternuminsufficiens

2. Descenderende nekrotiserende mediastinitis:

- Spredning fra oropharyngeal infektion
- Høj mortalitet
- Kræver aggressiv kirurgisk intervention

• Klinisk billede:

- Svær påvirket patient
- Thorakale smerter
- Dyspnø
- Ofte septisk
- Synkebesvær
- Subkutant emfysem

Brystsygdomme

Brystkræft - uddybende patofysiologi

Spredningsveje

1. Lymfogen spredning:

- Følger anatomiske lymfebaner
- Primært til aksil
- Betydning for sentinel node procedure
- Kan også sprede sig til:
 - Supraklavikulære lymfeknuder
 - Mammaria interna lymfeknuder
 - Kontralaterale aksilknuder

2. Hæmatogen spredning:

• Hyppigste lokalisationer:

- Knogler (særligt columna)
- Lunger
- Lever
- Hjerne
- Kan give spredning mange år efter primær behandling

Molekylære subtyper

• Har betydning for behandling og prognose:

1. Hormonreceptor positive:

- Responderer på anti-hormonal behandling
- Bedre prognose
- Kan recidivere sent

2. HER2 positive:

- Targeteret behandling mulig
- Tidligere dårlig prognose, nu bedre

3. Triple negative:

- Ingen targeteret behandling
- Dårligere prognose
- Recidiverer ofte tidligt

Rehabilitering efter brystkræft

- Fysiske udfordringer:
- Nedsat skuldermobilitet
- Lymfødem
- Arvævsstramning
- Nedsat muskelstyrke
- Fatigue
- Træningsmæssige hensyn:

1. Akut fase:

- Gradvis mobilisering af skulder
- Forebyggelse af lymfødem
- Let konditionstræning

2. Senere fase:

- Progressiv styrketræning mulig
- Kun symptombegrænsning
- Fokus på funktion
- Forebyggelse af inaktivitet

Kirurgiske principper ved brystkræft

Brystbevarende kirurgi (lumpektomi)

- Indikationer:
- Tumor < 4-5 cm
- Favorabelt forhold mellem tumorstørrelse og bryststørrelse
- Ikke multifokal sygdom
- Patient ønske
- Teknik:

1. Tumorfjernelse:

- Resektion med sikkerhedsafstand
- Markering af kaviteten med clips
- Orientering af præparat

2. Onkoplastik:

- Rekonstruktion af defekten
- Bevare brystets form
- Symmetri med modsidige bryst

• Fordele:

- Kosmetisk resultat
- Mindre indgreb
- Hurtigere rekonvalescens
- Ulemper:
- Behov for strålebehandling
- Risiko for re-resektion
- Risiko for lokalt recidiv

Mastektomi

- Indikationer:
- Store tumorer
- Multifokal sygdom
- Tidligere strålebehandling
- Inflammatorisk cancer
- Patient ønske
- Varianter:

1. Simpel mastektomi:

- Fjernelse af hele brystkirtlen
- Bevarer pectoralismuskulaturen

2. Modificeret radikal mastektomi:

- Inkluderer aksildissektion
- Standard ved aksilmetastaser

3. Skin-sparing mastektomi:

- Bevarer huden
- Muliggør direkte rekonstruktion
- Kræver særlige onkologiske kriterier

Aksilkirurgi

- Sentinel node procedure:
- Identificerer første drænerende lymfeknude
- Radioaktiv markør + blåfarve
- Hvis negativ \rightarrow ingen yderligere kirurgi
- Aksildissektion:
- Fjernelse af niveau I+II lymfeknuder
- Øget risiko for:
 - Lymfødem
 - Nerveskade
 - Nedsat skulderfunktion

Thoraxdeformiteter og lungefunktion

Pectus excavatum

- Anatomiske forhold:
- 1. Kardiopulmonale påvirkninger:
 - Kompression af højre ventrikel
 - Nedsat cardiac output ved belastning
 - Restriktivt lungefunktionsmønster

2. Biomekaniske konsekvenser:

- Ændret thoraxmekanik
- Påvirket respirationsmuskulatur
- Ofte associeret skoliose
- Funktionelle konsekvenser:
- Nedsat udholdenhed
- Dyspnø ved anstrengelse
- Trykken i brystet
- Palpitationer

Pectus carinatum

- Anatomiske forhold:
- Fremstående sternum
- Normal intratorakal volumen
- Sjældnere kardiel påvirkning
- Biomekaniske aspekter:
- 1. Respiratorisk:
 - Normal lungefunktion
 - Kan give thorakale smerter
 - Påvirket vejrtrækningsmønster
- 2. Muskuloskeletalt:
 - Kompensatorisk holdning
 - Thorakal hyperkyfose
 - Cervikale spændinger

Behandlingsmæssige overvejelser

1. Konservativ behandling:

- Fysioterapi fokuseret på:
 - Holdningskorrektion
 - Styrke af thorakal muskulatur
 - Optimering af vejrtrækning
 - Udspænding af forkortede strukturer

2. Kirurgisk behandling:

- Indikationer:
 - Svær funktionel påvirkning
 - Dokumenteret kardiopulmonal påvirkning
 - Betydelig psykosocial påvirkning

3. Postoperativ rehabilitering:

- Gradvis mobilisering
- Respiratoriske øvelser
- Holdningskorrektion
- Smertehåndtering
- Aktivitetstilpasning