

COMP34711 Week 2

(Simple)

Language Models and Representations

Goran Nenadic

"Learning" language

The "Internet	of Things" is an ide	ea that's bee	en around f	or
, k	out is only now bed	coming a	•	The basic
concept is tha	t everyday domest	ic	like toa	sters,
kettles and frie	dges will be able to	use techno	logy and th	ne
Internet to wo	ork more	For ϵ	example, u	sing
sensors, your	fridge might be ab	le to identify	when it's	empty
and notify you	that it needs to b	e	_, or your h	neating
system may be	e able to sense wh	en there is r	nobody in t	he house
and switch	off. These	ideas can als	so be	in
cities, such as	sensors in roads th	nat tell your	car when t	here is a
ahe	ad. The "Internet of	of Things" of	ffers oppor	tunities,
but some	too.			

"Learning" language

5	Test 20
pl	have 10 minutes to do this test. Work as quickly and as accurately as you can.
月月	in the missing letters to complete the words in the following passage.
	The "Internet of Things" is an idea that's been around for d c es
	but is only now becoming a r li li li The basic concept is that
	everyday domestic plia es like toasters, kettles and
	fridges will be able to use technology and the Internet to work more
	e file n ly. For example, using sensors, your fridge
	might be able to identify when it's empty and notify you that it needs to be
	eflld, or your heating system may be able to sense
	when there is nobody in the house and switch ts off.
	These ideas can also be e pleed in cities, such as sensors in
	roads that tell your car when there is a h z ahead.
	The "Internet of Things" offers opportunities, but some r s too.
	Like other devices that are on ced to the Internet,
	household items could be attacked by criminals — people may be a year
	wing backed. For now, the technology is suit in its
	of their electrical gadgets getting made to wait and see what the future holds.

Language modelling

 An (often probabilistic) language model = a function that assigns a probability over a piece of text so that 'natural' pieces have a larger probability

```
P("the the the the") – pretty small P("the cat in the hat") – pretty big P("the cat in the hat") > P("the hat in the cat")
```

P("the cat in the hat") ?? P("the hat on the cat")

Language models and representations

- *Model* = a "simplified", abstract representation of something, often in a computational form
 - e.g. tossing a coin
 - e.g. probabilistic model of whether forecast
- How do we represent a piece of text (e.g. word, sentence, paragraph, document, corpus)?
 [use 'document' as an umbrella term here]

Language models and representations

https://huggingface.co/roberta-base

https://huggingface.co/bert-base-cased

https://huggingface.co/bert-base-chinese

O

- Simplest model: "bag of words" (BoW)
 - Reduce each document into a bag of words
- Bag is a set with repetitions, but it could be used with binary indicators too.

- Note on terminology:
 - Bag of terms
 - Bag of tokens
 - Later, we will talk about bag of stems, etc.

Questions:

- Is the meaning lost without order?
 John is quicker than Mary. vs Mary is quicker than John.
- What about negations?
- Are all words equally important?
- Is the meaning lost without context? Ambiguities?
- Would it work for all languages?
- What about (important) combinations of words?

BoW is however efficient

Used in many NLP systems

- Use all words? Or skip some?
 - How about so-called stop-words (the, and, of, it, ...)?
 - Most frequent ones?
- Do we want to "rank" them?
 - Give some weight to more important ones
 - How do you decide on importance/relevance?

Let's see some linguistic hypotheses and theories

Frequency of words

- Some words are very frequent
 - e.g. "the", "of", "to"
- Many words are less frequent
 - e.g. "bazinga"
 - ~50% terms appears once
- Zipf's Law
 - frequency of any word in a given collection is inversely proportional to its rank in the frequency table.

George Zipf 1902-1950

Zipf's law

Wikipedia abstracts

→ 3.5M En abstracts

 $r \times P_r \cong const \rightarrow r \times freq_r \cong const$

Term	Rank	Frequency	r x freq
the	1	5,134,790	5,134,790
of	2	3,102,474	6,204,948
in	3	2,607,875	7,823,625
a	4	2,492,328	9,969,312
is	5	2,181,502	10,907,510
and	6	1,962,326	11,773,956
was	7	1,159,088	8,113,616
to	8	1,088,396	8,707,168
by	9	766,656	6,899,904
an	10	566,970	5,669,700
it	11	557,492	6,132,412
for	13	493,374	5,970,456
as	14	480,277	6,413,862
on	15	471,544	6,723,878
from	16	412,785	7,073,160

Think about rare words:

- spelling errors
- names
- emails
- codes

Zipf's law

r = rank of term according to frequency Pr = probability of appearance of term

Luhn's hypothesis

The words exceeding the upper cut-off are considered to be common.

Those below the lower cut-off rare, and therefore not contributing significantly to the content of the article.

Hans Peter Luhn 1896-1964

http://www.dcs.gla.ac.uk/Keith/pdf/Chapter2.pdf

LUHN, H.P., 'The automatic creation of literature abstracts', IBM Journal of Research and Development, 2, 159-165 (1958).

Removing stop words

- Highly frequently occurring words have low distinguishing power for representing documents
 - Top 30 words account for ~30% of mentions
 - Closed class function words (the, and, of, it, ...)
- Therefore, such words are often filtered oiut
- Stop-word lists
 - E.g. https://gist.github.com/sebleier/554280
 - Different lists for different applications, domains, etc.

[But not every application would benefit from removing stop words]

Vector representation

- Vector representation is a way to implement the BoW model.
- How to represent documents as vectors?
- Vocabulary V = set of terms left after pre-processing (tokenization, stop-word removal, case folding, etc.)
- Each document is represented as a /V/-dimensional vector:

$$d = [w_1, w_2, ..., w_{|V|}]$$

w_i is a <u>weight</u> of term *i* in the vocabulary

- Very high-dimensional representation
 - Millions of dimensions
 - These are very sparse vectors most entries are zero

Weights

Represent terms as an incidence (0, 1)

Weights

- Would a frequency vector be better?
 - Intuitively: if a term occurs many times in a document, is that word more important?
 - But:
 - Almost all documents will have (many) determiners?
 - Rare terms are more discriminative than frequent terms
 - Documents have different lengths: will clearly affect the counts
- Raw term frequency is not what we want:
 - E.g. term that appears 10 times is more important than a term with 1 occurrence but not 10 times!

Importance does not increase proportionally with term frequency

Weights

- We will consider different weights when we look into Information Retrieval next week
 - E.g. inverse document frequency (in how many documents this word appears)
- Note again: these are very sparse models. Can we get more dense models to represent words and thus documents?
 - We will look later at word embeddings.

Combinations of words?

- Why only single words? Maybe a bag of n-grams?
 - Can n-grams represent some context?
- Reminder n-grams
 - a contiguous sequence of n words from a given sequence of text
 - 1-gram = "unigram"; "bigram" = 2-gram; "trigram" = 3-gram, etc.
 - Frequency of longer n-grams is often quite low

VSM representation with n-grams?

Combinations of words

Trigrams							
Frequency	Token						
42030	THE U. S.						
27260	IN NINETEEN EIGHTY						
24165	CENTS A SHARE						
18233	NINETEEN EIGHTY SIX						
16786	NINETEEN EIGHTY SEVEN						
15316	FIVE MILLION DOLLARS						
14943	MILLION DOLLARS OR						
14517	MILLION DOLLARS IN						
12327	IN NEW YORK						
11981	A YEAR EARLIER						

Probabilistic language models

- Other ways to model text data?
- There is a lot about uncertainty and probability in how we use languages
- For example, is word 'running' more likely to follow word 'rabbit' than word 'flying'

I saw a rabbit <u>running</u> yesterday.

I saw a rabbit <u>flying</u> yesterday.

How do we know that?

Probabilistic language models

```
    p("I saw a rabbit running yesterday") = ?
    p("I saw a rabbit flying yesterday") = ?
    p("I → saw → a → girl → running → yesterday )
    p("≠a → girl → saw → I → running → yesterday )
```

A language model (LM) measures the probability of natural language utterances, giving higher scores to those that are more common, more grammatical, more "natural".

Unigram Language Model

Consider the sequence $S = w_1 w_2 ... w_n$ as a sequence of independent unigrams (single tokens)

$$P(S) = P(w_1) * P(w_2) * ... * P(w_n) = \prod_{i} P(w_i)$$

p("the cat in the hat </s>")

=
$$p("the")p("cat")p("in")p("the")p("hat")p("")$$

$$= 0.28 \times 0.18 \times 0.18 \times 0.28 \times 0.18 \times 0.18$$

Unigram Language Models

- Note: we assumed here that words appeared independently (and identically distributed, iid) of each other
 - That can't be true!
 - But it works pretty well (for some applications)
- How do we find these probabilities?
 - Use corpus frequencies as relative counts count how many times they appear in a real-world dataset.
- Parameters of unigram LMs = word probabilities estimated from a corpus
 - How many?

Unigram Language Models

- How to deal with unseen (out-of-vocabulary, OOV)
 words that may appear in a sentence we want to
 estimate the probability for?
 - E.g. misspellings or new words
- Go with p(OOV) = 0? Harsh?
- Or somehow to estimate these probabilities
 - Same for all OOV words?
 - E.g. add-one smoothing
 - Other smoothings later.

$$P(w) = \frac{\#w+1}{\sum_{w' \in D} (\#w'+1)}$$

Unigram Language Models

 Key issue: complete loss of order information with the unigram model

```
p("the the the the </s>") > p("the cat in the hat </s>") 
 <math>p("cat the hat in the </s>") = p("the cat in the hat </s>")
```

- How to add some sequencing into modelling?
- Chain rule

Chain Rule

- Chain rule in probability theory:
 - Calculate the joint distribution of a set of random variables using only conditional probabilities.

e.g.
$$S = \text{the cat in the hat}$$

$$p(S) = p(\text{the}) \cdot p(\text{cat}|\text{the}) \cdot p(\text{in}|\text{the cat in the})$$

$$p(\text{the}|\text{the cat in}) \cdot p(\text{hat}|\text{the cat in the})$$

So, for utterance: $w_1 w_2 w_3 \dots w_L$

$$p(w_1, w_2, w_3, ..., w_L)$$

$$= p(w_1) p(w_2 | w_1) p(w_3 | w_1, w_2) p(w_4 | w_1, w_2, w_3) \cdots p(w_L | w_1, w_2, ..., w_{L-1})$$

$$= \prod_{k=1}^{L} p(w_k | w_1, w_2, ..., w_{k-1})$$

Chain Rule

 Approximation: take (only) a fixed number of words before the current one

$$p(w_{1:L}) = \prod_{k=1}^{L} p(w_k | w_{k-N+1:k-1})$$

Unigram model (N=0)

$$p(w_{1:L}) = \prod_{k=1}^{L} p(w_k | w_{k-N+1:k-1}) = \prod_{k=1}^{L} p(w_k)$$

• Bigram model (N=1)

$$p(w_{1:L}) = \prod_{k=1}^{L} p(w_k | w_{k-N+1:k-1}) = \prod_{k=1}^{L} p(w_k | w_{k-1})$$

Bigram Model

$$p(w_{1:L}) = \prod_{k=1}^{L} p(w_k | w_{k-N+1:k-1}) = \prod_{k=1}^{L} p(w_k | w_{k-1})$$

p("the cat in the hat </s>")

$$= p("the")p("cat"|"the")p("in"|"cat")p("the"|"in")p("hat"|"the")p(""|"hat")$$

Bi-gram model corresponds to a Markov chain. It assumes that a state depends only on its previous state not on the other events that occurred before it.

Trigram Model

N-gram Models

N-gram model assumes

$$p(w_k|w_{1:k-1}) = p(w_k|w_{\overline{k-N+1:k-1}})$$

We only care about N-1 previous "states" (words) of w_k

For example: If we focus on the 10th word in a sequence:

$$\dots w_6 w_7 w_8 w_9 w_{10} w_{11} w_{12} w_{13} \dots$$

N=4:
$$p(w_{10}|w_{1:9}) = p(w_{10}|w_{7:9})$$

N=3:
$$p(w_{10}|w_{1:9}) = p(w_{10}|w_{8:9}) \rightarrow \text{trigram model}$$

N=2:
$$p(w_{10}|w_{1:9}) = p(w_{10}|w_{9}) \rightarrow \text{bigram model}$$

N-gram Probabilities

N-gram model:
$$p(w_{1:L}) = \prod_{k=1}^{L} p(w_k | w_{k-N+1:k-1})$$

- How to estimate the N-gram conditional probability using a training corpus
 - Based on word counts.
 - Using a statistical model, e.g., hidden Markov model and Gaussian mixture model.
 - Using a machine learning model, e.g., neural network.

Estimate N-gram probability based on counts.

For the bigram case:

$$p(w_{k}|w_{k-1}) = \frac{count("w_{k-1}w_{k}")}{\sum_{w} count("w_{k-1}w")} = \frac{count("w_{k-1}w_{k}")}{count("w_{k-1}")} \xrightarrow{\text{denoted by}} \frac{C(w_{k-1:k})}{C(w_{k-1})}$$

Generalise to N-gram case

$$p(w_{k}|w_{k-N+1:k-1}) = \frac{C(w_{k-N+1:k})}{C(w_{k-N+1:k-1})}$$

Example:

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Example:

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Get raw bigram frequencies from a larger corpus:

count(want chinese) = 6; count(to spend) = 211

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

From 9220 sentences (but can/should get billion-word corpus)

Noramalise with unigram counts:

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

N-gram Probabilities

N-gram model:
$$p(w_{1:L}) = \prod_{k=1}^{L} p(w_k | w_{k-N+1:k-1})$$

Example:

$$p("I want to eat Chinese food") = p(I)*p(want | I) * . . .$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Examples – similar process for N-grams

$$p("want"|"I") = \frac{C("I want")}{C("I")} \text{ (bi-gram examle)}$$

$$p("machine"|"support vector") = \frac{C("support vector machine")}{C("support vector")} \text{ (tri-gram example)}$$

The University of Manchester Homework and further reading

- Do your homework (estimated time ~ 2 hours)
 - Practice tokenisation, sentence segmentation, n-gram extraction,
 n-gram modelling
- Ch3 in: Jurafsky, Martin: Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition
 - https://web.stanford.edu/~jurafsky/slp3/
- Ch3 in: Bird, Klein, Loper: Natural Language Processing with Python: analyzing text with the Natural Language Toolkit
 - http://www.nltk.org/book/