6	(a)	State Kirchhoff's second law.
		[2]

(b) An electric heater containing two heating wires X and Y is connected to a power supply of electromotive force (e.m.f.) 9.0 V and negligible internal resistance, as shown in Fig. 6.1.

Fig. 6.1

Wire X has a resistance of $2.4\,\Omega$ and wire Y has a resistance of $1.2\,\Omega$. A voltmeter is connected in parallel with the wires. A variable resistor is used to adjust the power dissipated in wires X and Y.

The variable resistor is adjusted so that the voltmeter reads 6.0 V.

(i) Calculate the resistance of the variable resistor.

resistance =
$$\Omega$$
 [3]

(ii) Calculate the power dissipated in wire X.

(iii)	The cross-sectional area of wire X is three times the cross-sectional area of wire Y. Assume that the resistivity and the number density of free electrons for the metal of both wires are the same.			
	Determine the ratio			
	1.	length of wire X length of wire Y		
		ratio =[2]		
	2.	$\frac{\text{average drift velocity of free electrons in wire X}}{\text{average drift velocity of free electrons in wire Y}}.$		
		ratio =[2]		
		[Total: 11]		