If A is a generator, then the positivity of the resolvent $R(\lambda,A)$ for large real λ implies the positivity of the semigroup (by Prop. 1.1). On C(K) much more is true. Even if A is not supposed to be a generator, the existence and positivity of $R(\lambda,A)$ for large real λ implies that A is a generator (of a positive semigroup). This is surprising, because it means that in the case when the resolvent is positive, the norm condition on the resolvent $\sup\{\|(\lambda-w)^nR(\lambda,A)^n\|: n \in \mathbb{N}, \lambda \ge 0\} < \infty$ which appears in the Hille-Yosida theorem (A-II, Thm.1.7) is automatically fulfilled.

Theorem 1.8. Let K be compact and A be a densely defined operator on C(K). Suppose that there exists $w \in \mathbb{R}$ such that $[w,\infty) \subset \rho(A)$ and $R(\lambda,A) \geq 0$ for all $\lambda \geq w$. Then A is the generator of a strongly continuous positive semigroup. Moreover,

$(1.3) \qquad \omega(A) \leq w.$

<u>Proof.</u> a) Assume that w < 0. Denote by 1 the constant-1-function. Let u = R(0,A)1. We claim that u >> 0. If not, then there exists $x \in K$ such that u(x) = 0. Let $f \in C(K)$. Then $|f| \le ||f||1$. Consequently, $|R(0,A)f| \le |R(0,A)|f| \le ||f||R(0,A)1 = ||f||u$. Hence (R(0,A)f)(x) = 0 for all $f \in C(K)$. Since D(A) = R(0,A)C(K), it follows that D(A) is not dense, a contradiction. Define $||f||_{O} = \inf\{\lambda > 0: ||f| \le \lambda u\} = ||f/u||_{\infty}$. Then $||f||_{O}$ is an equivalent norm on C(K). Moreover, $||f||_{O} \le 1$ if and only if $||f||_{O} = [-u,u]$. By the resolvent equation we have

b) If w is arbitrary, let $\lambda > w$ and consider $A - \lambda$. Then $[w-\lambda,\infty) \subset \rho(A-\lambda)$ and $R(\mu,A-\lambda) = R(\mu+\lambda,A) \ge 0$ for all $\mu \in [w-\lambda,\infty)$. Thus by a), $A - \lambda$ is the generator of a bounded positive semigroup. Consequently, A is a generator as well and $\omega(A) \le \lambda$.

In Theorem 1.8 it is enough to assume that $R(\lambda_n,A) \geq 0$ for some sequence $(\lambda_n) \subset \rho(A) \cap \mathbb{R}$ satisfying $\lim_{n \to \infty} \lambda_n = \infty$. This follows from the following lemma.