

# UNMANNED AERIAL VEHICLE (UAV)

MCTE 4362 (ROBOTIC HARDWARE SYSTEM)

By: Nursyafiqah binti Sobri (1914338)

Lecturer: Asst. Prof Dr. Zulkifli bin Zainal Abidin





# LET'S GET STARTED WITH UAV(\S



# TABLE OF CONTENTS

- 01 INTRODUCTION
- **02** HISTORY & APPLICATIONS
- **MAIN COMPONENTS OF UAV**
- **04** UAV COMPANIES IN MALAYSIA





# HAVE YOU EVER HEARD OF UAV?



- Unmanned Aerial Vehicle (UAV) = Drones
- It is essentially a flying robot that is controlled remotely or can fly autonomously with software-controlled flight plans embedded in its system that work in conjunction with sensors and a global positioning system (GPS)
- Drones are of different types and sizes and are used for a variety of purposes
- "An unmanned aircraft or ship guided by remote control or onboard computers." *Merriam Webster*
- "A drone, in technological terms, is an unmanned aircraft. ... Essentially, a drone is a flying robot that can be remotely controlled or fly autonomously through software-controlled flight plans in their embedded systems, working in conjunction with onboard sensors and GPS." *Internet of Things*\*\*Agenda\*\*

# INTRODUCE THE UAV CONCEPT



 A UAV is capable of controlled, sustained level flight and is powered by a jet, reciprocating, or electric engine







# **HISTORY OF DRONES**



#### 1898

Nikola Tesla premieres a small radio operated boat at a Madison Square Garden exhibition



#### 1935 Queen Bee

Created in the UK, this drone was used by the military for moving target practice.



2001-Present Predator

Designed in the U.S. This drone is used for surveillance and targeted warfare.



#### 2003-Present

Commercial drones gain popularity in construction, real estate, search and rescue, ect.



#### 1918 Kettering Bug

Designed to drop bombs on targets during WWI. The war ends before the Bug is used.



Photo by Greg Hume

#### 1964-1969

The Lightning Bug was created for surveillance during the Cold War by the United States.



#### 2013

Amazon CEO, Jeff Bazos, announces the company's drone delivery plan, opening the door for commercial drone use.





1907

Brequet-Richet Gyroplane 1



1922

Oehmichen No. 2



1931

Fairey IIIF Queen



1935

DH.82 Queen Bee



1956

Convertawings Quadrotor



1999

Roswell Flyer and Draganflyer



2002

X-4 Flyer Mk I

Artist: James North



# **DRONE APPLICATIONS**



# 1. USE IN AGRICULTURE

It assist farmers with crop output



#### Improve water management

From their aerial positions, UAVs identify leaks in irrigation systems



#### Soil Analysis with Drones

- Can fly over the fields and determine the data information in real-time like nitrogen levels



#### Improve Crop Health

Can identify plant counts, the presence of diseased plants, and map out fields accurately



#### Crop Spraying Is More Precise with Drones

- Can increased efficiency and ensure uniform spray coverage







# 2. SURVEYS OF INFRASTRUCTURE





#### AI 3D Modeling With Drones Speeds Up Infrastructure Management

- Have the power to autonomously inspect structures such as buildings, roads, and bridges with aid of advanced sensors



#### **Drones Provide Better Thermal Inspection Options**

- Equipped with thermal cameras where it can quickly survey an entire bridge or building easily



#### Drones Improve the Safety of Infrastructure Management

- Drones complete an inspection without ever placing a human in harm's way







# 3. PERFORM CRITICAL SEARCH-AND-RESCUE MISSIONS



#### Have access to aerial data of a large area

 Allows responders to map the entire search zone and pinpoint possible places where the missing person might be trapped



#### Fast access

 Drones can reach a location a lot faster, even can reach inaccessible places



Examples of rescue drones:





Parrot ANAFI Thermal





# MAIN COMPONENTS OF UAV



# TYPES OF UAV

Every UAV uses the same components to operate:

- 1. Flight Controller
- 2. Propellers
- 3. IMU
- 4. Communication system



# **BASIC ARCHITECTURE OF UAV**







# **BASIC ARCHITECTURE OF UAV**



# **BASIC ARCHITECTURE OF UAV**



# **COMPONENTS OF UAV**

- 1. Hull Design
- 2. Propulsion System (Actuators/Locomotion)
- 3. Navigation System & Control
- 4. Data Collection
- 5. Data Transmission
- 6. Power Management





# 1. HULL DESIGN



#### Technical use for:

- Visual inspections
- Thermal reports
- Photography & Videography
- 3D scans

#### **MULTI-ROTOR DRONES**

- Offer greater control over position and framing, and hence they are perfect for aerial photography and surveillance
- Called multi-rotor because they have more than one motor, more commonly tricopters (3 rotors), quadcopters (4 rotors), hexacopters (6 rotors) and octocopters (8 rotors)

#### FIXED-WING DRONES

- Has one rigid wing that is designed to look and work like an aeroplane, providing the lift rather than vertical lift rotors
- Only needs the energy to move forward and not to hold itself in the air
- Makes them energy-efficient



#### Technical use for:

- Aerial Mapping
- Drone Surveying Forestry/Environmental Drone Surveys, Pipeline UAV Surveys, UAV Coastal Surveys
- Agriculture
- Inspection
- Construction
- Security





#### Technical use for:

- Aerial LIDAR laser scan
- Drone surveying
- Carrying heavy payloads

#### SINGLE-ROTOR DRONES

- Single-rotor drone types are strong and durable
- They look similar to actual helicopters in structure and design
- A single-rotor has just one rotor, which is like one big spinning wing, plus a tail rotor to control direction and stability

#### FIXED-WING HYBRID VTOL

- VTOL stands for Vertical Take-off and Landing
- Merge the benefits of fixed-wing and rotor-based designs
- Has rotors attached to the fixed wings, allowing it to hover and take off and land vertically
- Eg: Amazon's Prime Air delivery drone (picture below)



Technical use for:

Drone delivery













|       | Multi-Rotor                                                                                                                                                | Fixed-Wing                                                                                                                                          | Single-Rotor                                                                                                           | Fixed-Wing Hybrid                                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Pros  | <ul> <li>Accessibility</li> <li>Ease of use</li> <li>VTOL and hover flight</li> <li>Good camera control</li> <li>Can operate in a confined area</li> </ul> | <ul><li>Long endurance</li><li>Large area<br/>coverage</li><li>Fast flight speed</li></ul>                                                          | <ul> <li>VTOL and hover flight</li> <li>Long endurance (with gas power)</li> <li>Heavier payload capability</li> </ul> | <ul> <li>VTOL</li> <li>Have autopilot option to keep the drone stable around the sky</li> <li>Long-endurance flight</li> </ul> |
| Cons  | <ul><li>Short flight times</li><li>Small payload capacity</li></ul>                                                                                        | <ul> <li>Launch and recovery needs a lot of space</li> <li>No VTOL/hover</li> <li>Harder to fly, more training needed</li> <li>Expensive</li> </ul> | <ul> <li>More dangerous</li> <li>Harder to fly,<br/>more training<br/>needed</li> <li>Expensive</li> </ul>             | <ul> <li>Not perfect at either hovering or forward flight</li> <li>Still in development</li> </ul>                             |
| Price | \$5k-\$65k for pro<br>drones                                                                                                                               | \$25-\$120k for pro<br>drones                                                                                                                       | \$25-\$300k for pro<br>drones                                                                                          | In development                                                                                                                 |





# 2. PROPULSION SYSTEM

(ACTUATORS/LOCOMOTION)

Propeller









# Gripper











# Water Nozzle

Using pump to spray liquid.

Main usage is currently for agriculture.

Eg: crop spraying











# 3. NAVIGATION SYSTEM & CONTROL



## **GNSS SYSTEM**

GNSS system to get the best navigation information





A cloud base service



# **GPS RTK Controller**

#### Beacon for RTK









# **GPS RTK Controller**











# 4. DATA COLLECTION

### **Thermal View**



Thermal Camera
 plays a huge role in
 findings victims







## Long Range Viewer



30X Optical zoom makes it the greatest surveyor to be used to search people from a high place





### Orientation, Motion and Heading

#### **VN-200**

#### INTRODUCTION

The VN-200 is a miniature, high performance GNSS-Aided Inertial Navigation System (GNSS/INS) that combines 3-axis gyros, accelerometers and magnetometers, a high-sensitivity GNSS receiver, and advanced Kalman filtering algorithms to provide optimal estimates of position, velocity, and attitude.

| 0.2°                     | 0.03°                          | 5-7°/hr                 |  |  |
|--------------------------|--------------------------------|-------------------------|--|--|
| Dynamic Heading Accuracy | Dynamic Pitch/Roll<br>Accuracy | Gyro In-Run Bias (typ.) |  |  |
| < 0.04 mg                | ±16 g                          | ±2,000°/sec             |  |  |
| Accel In-Run Bias        | Accelerometer Range            | Gyroscope Range         |  |  |
| 800 Hz                   | 400 Hz                         | 500 mW                  |  |  |
| IMU Data                 | Navigation Data                | Power                   |  |  |
|                          |                                |                         |  |  |



# 5. DATA TRANSMISSION

### **First Person View**







People can perceive the first person view of the drone

# **Radio Frequency**











Radio Receiver

# 6. POWER MANAGEMENT

### **Battery with Fast Charging Station**



#### **WB37 Intelligent Battery**

Capacity: 4920 mAh Voltage: 7.6V Type: LiPo

Energy: 37.39 Wh

Charging Time (using BS60 Intelligent Battery Station):

70 min (15 °C to 45 °C); ): 130 min (0 °C to 15 °C)



#### **BS60 Intelligent Battery Station**

- For DJI Matrice 300 RTK batteries
- Charge 8xTB60 & 4xWB37 batteries
- Built-in carry telescoping handle
- Automatic pressure valve
- · Status LEDs & firmware updateable

- Requires USB type-C cable & remote
- Hard-shell case with built-in wheels
- Padlock holes for improved safety
- Air intake & air vent

### **Tethered Drone**







Winch system to keep wire neatly coiled

# **UAV COMPANIES IN MALAYSIA**

Poladrone https://poladrone.com/about\_us.html

Vortex Edge Sdn Bhd http://www.vortex-edge.com/uav-solutions/

Malaysia UAV Developments Association https://muda.org.my/

**DEFTECH** https://www.deftechust.com/copy-of-products

Dragonfly Robotix https://www.dragonflyrobotix.com/

Kambyan Network https://www.kambyan.net/

*DroneCult* <a href="https://www.dronecult.photography/">https://www.dronecult.photography/</a>





