Tsinghua-Berkeley Shenzhen Institute LARGE DEVIATION THEORY Spring 2021

Homework 1

Feng Zhao June 22, 2021

- 1.1. (a) Suppose $A_i = \bigcup_{j \in N} \{a_{ij}\}$, to show $\bigcup_{i \in N} A_i$ is countable. We construct a mapping $(i,j) \to \frac{(i+j)(i+j+1)}{2} + j$, which is a 1-1 mapping from N^2 to N. Therefore, $\bigcup_{i \in N} A_i$ is countable.
 - (b) Q can be regarded as the subset of N^2 . By the property that "Any subset of a countable set is countable", we conclude that Q is countable.
- 1.2. (a) We can verify $\emptyset \in \mathcal{F}_0$. For $A = \bigcup_{i=1}^n [a_i, b_i)$, $A^c = [0, a_1) \bigcup \bigcup_{i=1}^{n-1} [b_i, a_{i+1}) \bigcup [b_n, 1) \in \Omega$. Finally, for $A, B \in \mathcal{F}_0$ we can decompose it into $A = A_1 \cup C, B = B_1 \cup C$ where $C = A \cap B, A_1 = A \setminus C, B_1 = B \setminus C, \in \mathcal{F}_0$. We can verify that both A_1, B_1, C are finite unions of intervals (left-close, right-open), and A_1, B_1, C are disjoint. Then $A \cup B = A_1 \cup B_1 \cup C$ is the collection of interval representations, also finite unions of intervals. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}_0$. Therefore, \mathcal{F}_0 is an algebra. Consider $A_i = [\frac{1}{n}, 1)$, then $\bigcup_{i=2}^{+\infty} A_i = (0, 1) \notin \mathcal{F}_0$. Therefore, \mathcal{F}_0 is not a σ -algebra.
 - (b) Let $A = \bigcup_{i=1}^n [a_i, b_i)$, $B = \bigcup_{i=1}^m [c_i, d_i)$, $b_n = d_m = 1$ is impossible since $A \cap B = \emptyset$. If one of $b_n, d_m = 1$, $P(A \cup B) = 1$ and P(A) + P(B) = 1. If $b_n, d_m < 1$, $P(A \cup B) = 0$ and P(A) + P(B) = 0. In either case, $P(A \cup B) = P(A) + P(B)$. The finite additivity is satisfied.
 - (c) Consider $A_n = [1 \frac{1}{n}, 1 \frac{1}{n+1})$ for $n \ge 2$, $A_n, n = 2, 3, \ldots$ are disjoint, whose union is $[\frac{1}{2}, 1)$. But $P([\frac{1}{2}, 1)) = 1$ while $P(A_n) = 0$. The property of countable additivity is not satisfied.
- 1.3. Suppose $\sum_{n=1}^{\infty} P[X_n > c]$ converges, then for any ϵ , there exists N such that $\sum_{n=N}^{\infty} P[X_n > c] < \epsilon$. By union bound, $P[\sup_n X_n = \infty] \le P[\exists n > N, X_n > c] \le \sum_{n=N}^{\infty} P[X_n > c] < \epsilon$. Since ϵ can be arbitrarily small, $P[\sup_n X_n = \infty] = 0$.

For the other side, we will show that $\forall c>0, \sum_{n=1}^{\infty}P[X_n>c]=\infty \Rightarrow P[\sup_n X_n=\infty]=1. \text{ Let } A_n=\{w|X_n(w)>c\}, \text{ then } A_n \text{ are independent, by Borel-Contelli Lemma, we have } P[\bigcap_{n=1}^{\infty}\cup_{i=n}^{\infty}\{w|X_n(w)>c\}]=1. \text{ Therefore, } P[\bigcup_{i=n}^{\infty}\{w|X_n(w)>c\}]=1 \text{ holds for any } c,n. \text{ Then } P[\bigcap_{i=n}^{\infty}\{w|X_n(w)\leq c\}]=0 \Rightarrow P[\{w|\sup_n X_n(w)\leq c\}]=0. \text{ By union bound, } P[\bigcup_{c=1}^{\infty}\{w|\sup_n X_n(w)\leq c\}]=0, \text{ then taking the complement we have } P[\{\sup_n X_n=\infty\}]=1.$

1.4. For any $c \in \mathbb{R}$,

For any $c \in \mathbb{R}$, $\{w | \max\{X_1(w), X_2(w)\} \leq c\} = \{w | X_1(w) \leq c\} \cap \{w | X_1(w) \leq c\} \in \mathcal{F}$, $\{w | \sup_n X_n(w) \leq c\} = \cap_n \{w | X_n(w) \leq c\} \in \mathcal{F}$, $\{w | \limsup_{n \to \infty} X_n(w) \geq c\} = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{w | X_n(w) \geq c\} \in \mathcal{F}$ ($\limsup_{n \to \infty} X_n(w) = \lim_{n \to \infty} (\sup_{i \geq n} X_i(w))$ is the limit of a decreasing series). Therefore, $\max\{X_1, X_2\}, \sup_n X_n$, $\limsup_{n \to \infty} X_n$ are random variables.