Introduction to Schemes

Nutan Nepal

North Carolina State University nnepal2@ncsu.edu

November 27, 2023

Overview

- Spectrum of a ring
- 2 Sheaves
 - Presheaves
- 3 Locally Ringed Spaces
 - Examples
- Affine Schemes
 - Schemes
 - Examples

Spectrum of a ring

Definition: The spectrum of a ring Spec(R) is the set of all prime ideals of the commutative ring R. For example:

- For a field k, Spec(k) is a one point set (0).
- Spec(\mathbb{Z}) is the set $\{(0),(p)\}$ for all primes p.

We can define the Zariski topology on Spec(R) by defining closed sets to be of the form

$$V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}}(R) : \ \mathfrak{p} \supset \mathfrak{a} \}.$$

With this, $\operatorname{Spec}(R)$ becomes a topological space. The open sets of the form $D(f) = \operatorname{Spec}(R) - V((f))$; $f \in R$ are called distinguished open sets.

Presheaf

Definition: A presheaf \mathcal{F} on a topological space X consists of following data:

- For each open set $\mathcal{U} \subset X$ we have a set $\mathcal{F}(\mathcal{U})$. Elements of $\mathcal{F}(\mathcal{U})$ are called sections of \mathcal{F} over \mathcal{U} .
- 2 For each inclusion $\mathcal{U} \hookrightarrow \mathcal{V}$, we have the restriction

$$\mathsf{res}_{\mathcal{V},\mathcal{U}}:\mathcal{F}(\mathcal{V})\longrightarrow\mathcal{F}(\mathcal{U})$$

that satisfies:

- ightharpoonup res $_{\mathcal{U},\mathcal{U}}=\mathsf{id}_{\mathcal{F}(\mathcal{U})}$, and
- if $\mathcal{U} \hookrightarrow \mathcal{V} \hookrightarrow \mathcal{W}$ is are inclusions of open sets we have

$$\mathsf{res}_{\mathcal{V},\mathcal{U}} \circ \mathsf{res}_{\mathcal{W},\mathcal{V}} = \mathsf{res}_{\mathcal{W},\mathcal{U}}.$$

In other words, a presheaf is a contravariant functor on the poset of open sets of X.

Sheaf

Definition: A sheaf \mathcal{F} on a topological space X is a presheaf that satisfies:

• Gluability axiom: If $\{U_i\}$ is an open cover of U, then given $f_i \in \mathcal{F}(U_i)$ such that

$$\mathsf{res}_{\mathcal{U}_i,\;\mathcal{U}_i\cap\mathcal{U}_j}(f_i) = \mathsf{res}_{\mathcal{U}_j,\;\mathcal{U}_i\cap\mathcal{U}_j}(f_j)$$

there exists $f \in \mathcal{U}$ that satisfies $res_{\mathcal{U},\mathcal{U}_i}(f) = f_i$.

② Identity axiom: If $\{\mathcal{U}_i\}$ is an open cover of \mathcal{U} , then given $f_1, f_2 \in \mathcal{F}(\mathcal{U})$ such that

$$\mathsf{res}_{\mathcal{U},\mathcal{U}_i}(\mathit{f}_1) = \mathsf{res}_{\mathcal{U},\mathcal{U}_j}(\mathit{f}_2)$$

for all i, j then $f_1 = f_2$.

Here, gluability axiom says that there is at least one way to glue compatible sections and identity axiom says that there is at most one such gluing.

Examples

Functions on a topological space

Given a topological space X, we can take $\mathcal{F}(X)$ to be the continuous, smooth, real or complex valued functions on X and res to be the usual restriction map between sets. Then \mathcal{F} is a sheaf on X.

Skyscraper Sheaf

If $p \in X$ is a point and S is any set, we define

$$\mathcal{F}(U) = \begin{cases} S & p \in U, \\ \{e\} & p \notin U. \end{cases}$$

where $\{e\}$ is any one point set.

Stalks

Definition: The stalk of a presheaf \mathcal{F} at a point $p \in X$ is the set of all germs at p. That is, it is the set

$$\{(f; U): p \in U; f \in \mathcal{F}(U)\}$$

modulo the relation that $(f; U) \sim (g; V)$ if there is some open set $W \subset U, V$ where $p \in W$ and $\operatorname{res}_{U;W}(f) = \operatorname{res}_{V;W}(g)$.

Ringed Spaces and Locally Ringed Spaces

Definition: Given a sheaf of rings \mathcal{O}_X on X, (X, \mathcal{O}_X) is called a ringed space.

A locally ringed space (X, \mathcal{O}_X) is a ringed space if the stalk of \mathcal{O}_X at every point $p \in X$ is a local ring.

- A morphism of locally ringed spaces $(X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$ constitutes of the continuous map of topological spaces $f: X \to Y$ and morphisms of the structure sheaves.

For example: manifolds with sheaves of smooth functions are locally ringed spaces.

Given the topological space $\operatorname{Spec}(R)$, there is a construction where we consider $\mathcal{O}_{\operatorname{Spec}R}(D(f)) = R_f$, the localization of the ring R at the multiplicative set $\{1, f, f^2, \ldots\}$. With this, we obtain another locally ringed space $(R, \mathcal{O}_{\operatorname{Spec}R})$.

Schemes

Affine Schemes: A locally ringed space which is isomorphic to $(R, \mathcal{O}_{\mathsf{Spec}R})$ for some commutative ring R is called an affine scheme.

Scheme: A locally ringed space is called a scheme if it has an open covering by affine schemes.

The End