

Advanced Exponential Forecasting

Series with No Trend and Seasonality

 Moving Average and Simple Exponential Smoothing should be used for forecasting the series with no trend and seasonality

Series with Additive Trend

- For series with trend, we can use Holt's method, also known as double exponential smoothing
- Similar to Simple Exponential Smoothing, the level of the series is estimated from the data and is updated as more data would become available
- Level is estimated using maximum likelihood method

Holt's Linear Trend Method

• The k-step ahead forecast is given by combining the level estimate at time t (Lt) and trend estimate at time t (Tt):

$$F_{t+k} = L_t + kT_t$$

• The level and trend are updated by the equations:

$$L_{t} = \alpha y_{t} + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$

- Where α and β are smoothing constants whose values range from 0 to 1 and are set by the user or chosen iteratively by R function holt()
- Level equation shows L_t , Level at time t as weighted average of the observation at time t y_t and within sample one step ahead forecast at time t, $(L_{t-1} + T_{t-1})$
- Trend Equation shows T_t , trend estimate at time t as weighted average of (L_t-L_{t-1}) and T_{t-1} , the previous trend estimate

Holt's Method in R

Holt's Method can be implemented using function holt() in R
 Syntax : holt(ts, h, initial, damped=FALSE, exponential=FALSE, alpha=NULL, beta=NULL,...)

where

ts: a numeric vector or time series object

h: Number of periods for forecasting

initial: If "optimal", (default) initial values are optimized with smoothing parameters using ets() which use likelihood method. If "simple", initial values are set to values on first few observations

damped: default=FALSE, if it is set to TRUE then damped trend method is used

exponential: If TRUE then exponential trend is fitted, otherwise (default=FALSE) linear trend is fitted

alpha: smoothing constant for level, if NULL then it is estimated

beta: smoothing constant for trend, if NULL then it is estimated

Example: setting alpha and beta

Academy of St. Example: setting alpha and beta

```
> holtMilk$model
Holt's method
Call:
holt(x = train.ts, h = nValid, initial = "simple", alpha = 0.5,
Call:
     beta = 0.05)
  Smoothing parameters:
    alpha = 0.5
    beta = 0.05
  Initial states:
   1 = 589
    b = -28
 sigma:
        57.7039
> accuracy(holtMilk , valid.ts)
                                                                          ACF1 Theil's U
                   ME
                           RMSE
                                     MAE
                                               MPE
                                                       MAPE
                                                                MASE
Training set 8.15813 57.70387 49.92364 0.9300842 6.838588 2.071448 0.5999152
            79.04433 100.58977 81.63049 8.8166707 9.153775 3.387039 0.6787697 1.918983
Test set
```

STATS Academy of Statistics

Example: Without setting alpha and beta

```
#Without setting Alpha and Beta
holtMilkLin <- holt(train.ts,initial = "simple",h = nValid)
plot(holtMilkLin, ylab = "Milk Production", xlab = "Time",
    bty = "l", xaxt = "n", main = "", flty = 2)
axis(1, at = seq(1962, 1975, 1), labels = format(seq(1962, 1975, 1)))
lines(holtMilkLin$fitted, lwd = 2, col = "blue")
lines(valid.ts)</pre>
```


Example: Without setting alpha and beta

```
> holtMilkLin$model
Holt's method
Call:
holt(x = train.ts, h = nValid, initial = "simple")
 Smoothing parameters:
   alpha = 1
   beta = 0.0443
 Initial states:
   1 = 589
   b = -28
 sigma: 45.8938
> accuracy(holtMilkLin , valid.ts)
                    ME
                             RMSE
                                        MAE
                                                   MPE
                                                            MAPE
                                                                     MASE
                                                                                ACF1 Theil's U
                        45.89378 39.12207 0.5560376 5.350448 1.623266 0.08574719
Training set
              4.437321
Test set
            130.394211 146.13942 130.39421 14.8578433 14.857843 5.410360 0.70254950 2.821901
```

Example: setting the initial=optimal

```
> holtMilkLin$model
Holt's method
Call:
 holt(x = train.ts, h = nValid, initial = "optimal")
  Smoothing parameters:
    alpha = 0.9999
    beta = 1e-04
  Initial states:
    1 = 637.5537
    b = 1.3343
  sigma: 44.3091
     ATC
            ATCc
                      RTC
1639.943 1640.260 1651.443
> accuracy(holtMilkLin , valid.ts)
                           RMSE
                                     MAF
                                                MPE
                                                        MAPE
                                                                 MASE
                                                                            ACF1 Theil's U
                    MF
Training set -0.3539962 44.30911 38.43737 -0.2325406 5.284276 1.594856 0.06750352
                                                                                        NA
            61.9474847 86.62871 66.89926 6.8199315 7.457638 2.775806 0.67455013 1.643056
Test set
```

Exponential Trend Method

 The k-step ahead forecast is given by combining the level estimate at time t (Lt) and trend estimate at time t (Tt):

$$F_{t+k} = L_t \times T_t^{\ k}$$

The level and trend are updated by the equations:

$$L_{t} = \propto y_{t} + (1 - \propto)(L_{t-1} \times T_{t-1})$$

$$T_{t} = \beta \left(\frac{L_{t}}{L_{t-1}}\right) + (1 - \beta)T_{t-1}$$

- Where α and β are smoothing constants whose values range from 0 to 1 and are set by the user or chosen iteratively by R function holt()
- Level equation shows L_t , Level at time t as weighted average of the observation at time t y_t and within sample one step ahead forecast at time t, $(L_{t-1} \times T_{t-1})$
- Trend Equation shows T_t , trend estimate at time t as weighted average of (L_t/L_{t-1}) and T_{t-1} , the previous trend estimate

Exponential Trend in R

 For implementing exponential trend method in holt() we set the argument exponential=TRUE

Model and Accuracy

```
> holtMilkExp$model
Holt's method with exponential trend
Call:
holt(x = train.ts, h = nValid, initial = "simple", exponential = TRUE)
 Smoothing parameters:
    alpha = 1
   heta = 0.039
 Initial states:
   1 = 589
   b = 0.9525
 sigma: 0.0664
> accuracy(holtMilkExp , valid.ts)
                                                                         ACF1 Theil's U
                MF
                        RMSE
                                  MAE
                                             MPE
                                                      MAPE
                                                              MASE
Training set 4.225 45.88032 38.98685 0.5368849 5.328352 1.617655 0.09351393
            96.527 113.84889 96.53213 10.8807155 10.881390 4.005343 0.66663233 2.177755
Test set
```


Damped Trend Methods

- It has been observed that Holt's Linear Trend and Exponential Trend tend to over-forecast for longer forecast horizons
- Gardner and McKenzie (1985) suggested a parameter that dampens the trend line to a flat line some time in the future
- Methods with damped trend have been proven to be more successful when forecasts are to be predicted by automatic process
- There are two types of damped trend methods:
 - Additive Damped Trend
 - Multiple Damped Trend

Additive Damped Trend

• In association with the smoothing parameters α and β , damped methods also include a damping parameter φ ; $0 < \varphi < 1$ as:

$$F_{t+k} = L_t + (\varphi + \varphi^2 + \dots + \varphi^k) T_t$$

$$L_t = \propto y_t + (1 - \propto) (L_{t-1} - \varphi T_{t-1})$$

$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta) \varphi T_{t-1}$$

• If φ=1 then the method is Holt's Linear Method

Multiplicative Damped Trend

 Taylor(2003) introduced a damping parameter to the exponential trend

$$F_{t+k} = L_t \times T_t^{(\varphi + \varphi^2 + \dots + \varphi^k)}$$

$$L_t = \alpha y_t + (1 - \alpha) L_{t-1} \times T_{t-1}^{\varphi}$$

$$T_t = \beta \left(\frac{L_t}{L_{t-1}}\right) + (1 - \beta) T_{t-1}^{\varphi}$$

Example: Additive Damped Trend

```
> holtMilkDamp$model
Damped Holt's method
Call:
 holt(x = train.ts, h = nValid, damped = TRUE, initial = "optimal")
  Smoothing parameters:
    alpha = 0.9999
    beta = 1e-04
    phi = 0.98
  Initial states:
    1 = 636.8221
    b = 1.8639
  sigma: 44.3054
     ATC
             ATCC
                       BIC
1641.921 1642.401 1656.297
> accuracy(holtMilkDamp , valid.ts)
                     MF
                             RMSE
                                                  MPF
                                                                              ACF1 Theil's U
                                       MAF
                                                          MAPE
                                                                   MASE
Training set 0.3351106 44.30542 38.40045 -0.1422836 5.277879 1.593324 0.06737316
                                                                                           NA
             85.2917080 104.13195 85.69006 9.5612885 9.613703 3.555480 0.66346402 1.985189
Test set
```

Example: Multiplicative Damped Trend

```
> holtMilkDamp$model
Damped Holt's method with exponential trend
Call:
 holt(x = train.ts, h = nValid, damped = TRUE, exponential = TRUE)
  Smoothing parameters:
    alpha = 0.9999
    beta = 1e-04
    phi = 0.9067
  Initial states:
    1 = 636.7437
    b = 0.9917
  sigma: 0.0629
     ATC
             ATCC
                       BTC
1647.589 1648.069 1661.965
> accuracy(holtMilkDamp , valid.ts)
                                                                             ACF1 Theil's U
                            RMSE
                                      MAF
                                                 MPF
                                                         MAPE
                                                                  MASE
Training set 1.369702
                       44.30205 38.32190 0.01641978 5.261043 1.590065 0.06791672
                                                                                          NA
             87.260090 105.78596 87.58223 9.79247286 9.834860 3.633991 0.66359471
Test set
                                                                                     2.01787
```

Holt-Winters Seasonal Method

- This method comprises of the forecast equation and three smoothing equations each for level, trend and seasonal component
- We use m to denote the period of season
- The additive method of Holt-Winters can be preferred when the seasonal variations are roughly constant through the series
- The multiplicative method is preferred when the seasonal variations are changing proportional to the level of the series.

Holt-Winters Additive Method

The component form of the model:

$$F_{t+k} = L_t + kT_t + S_{t-m+k_m}^{+}$$

$$L_t = \propto (y_t - S_{t-m}) + (1 - \propto)(L_{t-1} + T_{t-1})$$

$$T_t = \beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_t = \gamma(y_t - L_t) + (1 - \gamma)S_{t-m}$$

Where

 S_t : Seasonal Estimate at time t

 k_m^+ : [(k-1) mod m)]+1 which ensures that the estimates of the seasonal indices used for forecasting come from the final year

Holt-Winters Multiplicative Method

The component form of the model: (Additive Trend)

$$F_{t+k} = (L_t + kT_t)S_{t-m+k_m}^{+}$$

$$L_t = \propto \left(\frac{y_t}{S_{t-m}}\right) + (1 - \propto)(L_{t-1} + T_{t-1})$$

$$T_t = \beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_t = \gamma\left(\frac{y_t}{L_t}\right) + (1 - \gamma)S_{t-m}$$

Where

 S_t : Seasonal Estimate at time t

 k_m ⁺: [(k-1) mod m)]+1 which ensures that the estimates of the seasonal indices used for forecasting come from the year

final

Holt-Winters in R

• Holt-Winters method can be implemented in R with function hw() Syntax: hw(ts, h, initial, seasonal, exponential, alpha, beta, gamma, ...) where

ts: a numeric vector or time series object

h: Number of periods for forecasting

initial: If "optimal", initial values are optimized with smoothing parameters using ets(). If "simple", initial values are set to values on first few observations

seasonal: Type of seasonality in hw model. "additive" or "multiplicative"

exponential: If TRUE then exponential trend is fitted, otherwise (default=FALSE) linear trend is fitted

alpha: smoothing constant for level, if NULL then it is estimated

beta: smoothing constant for trend, if NULL then it is estimated

gamma: smoothing constant for seasonal component, if NULL then it is estimated

Example: Holt-Winters Additive

Model and Accuracy

```
> HWMilkAdd$model
Holt-Winters' additive method
Call:
 hw(x = train.ts, h = nValid, seasonal = "additive")
  Smoothing parameters:
    alpha = 0.6799
    beta = 1e-04
    gamma = 1e-04
  Initial states:
    1 = 605.2517
    b = 1.8674
    s=-42.4299 -78.1707 -49.0858 -52.9431 -12.6427 30.1153
           81.8793 110.4519 50.4173 34.5289 -54.7018 -17.4186
  sigma: 6.7803
     ATC
             ATCc
                       BIC
1172.125 1176.897 1218.128
> accuracy(HWMilkAdd , valid.ts)
                                                                                       ACF1 Theil's U
                                RMSE
                                           MAF
                                                        MPE
                                                                 MAPE
                                                                           MASE
Training set 0.004482957
                            6.780315 5.113118 -0.004536466 0.7172879 0.2121552 -0.00143546
Test set
             -31.344975577 34.516856 31.344976 -3.714358918 3.7143589 1.3005760 0.75248253 0.6954029
```

Sane's Academy of Statistics

Example: Holt-Winters Multiplicative Method

Model and Accuracy

```
> HWMilkMult$model
Holt-Winters' multiplicative method
Call:
hw(x = train.ts, h = nValid, seasonal = "multiplicative")
 Smoothing parameters:
    alpha = 0.4545
    beta = 1e-04
    gamma = 0.4984
  Initial states:
    1 = 607.4071
    b = 1.6494
    s=0.9349 0.8864 0.9193 0.9055 0.9746 1.0478
          1.1337 1.1832 1.0747 1.0507 0.9208 0.9683
  sigma: 0.0114
    ATC
            AICC
                      BIC
1222.410 1227.182 1268.413
> accuracy(HWMilkMult , valid.ts)
                             RMSE
                                       MAE
                                                    MPE
                                                            MAPE
                                                                       MASE
                                                                                 ACF1 Theil's U
                     ME
Training set 0.292404 8.285546 6.318835 0.05940374 0.8635815 0.2621832 0.2478558
Test set
            -34.286119 37.181644 34.299906 -4.01202864 4.0137413 1.4231830 0.7322070 0.7299709
```

Taxonomy of Exponential Methods

	Seasonal Component		
Trend Component	N (None)	A (Additive)	M (Multiplicative)
N (None)	(N,N)	(N,A)	(N,M)
A (Additive)	(A,N)	(A,A)	(A,M)
Ad (Additive Damped)	(Ad,N)	(Ad,A)	(Ad,M)
M (Multiplicative)	(M,N)	(M,A)	(M,M)
Md (Multiplicative Damped)	(Md,N)	(Md,A)	(Md,M)

- (N,N): Simple exponential smoothing
- (A,N): Holt's linear method
- (M,N): Exponential trend method
- (A_d,N): Additive damped trend method
- (M_d,N): Multiplicative damped trend method
- (A,A): Additive Holt-Winters method
- (A,M): Multiplicative Holt-Winters method
- (A_d,M): Holt-Winters damped method