150 ELETROMAGNETISMO

3E. Uma bateria comum de lanterna pode fornecer cerca de 2,0 W·h de energia antes que ela se esgote. (a) Sabendo-se que uma bateria custa 80 centavos de dólar, qual será o custo de operação de uma lâmpada de 100 W durante 8,0 h, usando baterias? (b) Qual será o custo se a energia for fornecida pela companhia elétrica a 12 centavos de dólar por kW·h?

4P. Uma determinada bateria de automóvel cuja fem é de 12 V tem uma carga inicial de 120 A·h. Supondo que a diferença de potencial entre seus terminais permaneça constante até que a bateria esteja completamente descarregada, por quantas horas ela poderá fornecer energia na taxa de 100 W?

Seção 29-5 Diferenças de Potencial

5E. Na Fig. 29-18, $\mathcal{E}_1 = 12$ V e $\mathcal{E}_2 = 8$ V. (a) Qual é o sentido da corrente no resistor? (b) Que bateria está realizando trabalho positivo? (c) Que ponto, A ou B, está no potencial mais alto?

Fig. 29-18 Exercício 5

6E. Um fio de resistência 5,0 Ω está ligado a uma bateria cuja fem \mathscr{E} é de 2,0 V e a resistência interna é de 1,0 Ω . Em 2,0 min (a) que quantidade de energia é transferida da forma química para a forma elétrica? (b) Que quantidade de energia aparece no fio como energia térmica? (c) Explique a diferença encontrada nas respostas dos itens (a) e (b).

7E. Na Fig. 29-5a considere $\mathscr{E} = 2.0 \text{ V e } r \approx 100 \Omega$. Faça os gráficos (a) da corrente e (b) da diferença de potencial através de R, como funções de R na faixa de 0 até 500 Ω . Marque os valores de R para os dois gráficos sobre um mesmo eixo. (c) Faça um terceiro gráfico multiplicando as ordenadas dos dois primeiros para os mesmos valores de R. Qual é o significado físico desse gráfico?

8E. Suponha que as baterias na Fig. 29-19 tenham resistências internas desprezíveis. Determine (a) a corrente no circuito, (b) a potência dissipada em cada resistor e (c) a potência de cada bateria e se a energia é fornecida ou absorvida por ela.

Fig. 29-19 Exercício 8.

9E. Uma bateria de automóvel com uma fem de 12 V e uma resistência interna de $0.040~\Omega$ está sendo carregada com uma corrente de 50 A. (a) Qual é a diferença de potencial entre seus terminais? (b) A que taxa a energia está sendo dissipada como calor na bateria? (c) A que taxa a

energía elétrida está sendo convertida em energia química? (d) Quais são as respostas dos itens (a) e (b) quando a bateria é usada para suprir 50 A para o motor de arranque?

10E. Na Fig. 29-20, quando o potencial no ponto P é de 100 V, qual é o potencial no ponto Q?

Fig. 29-20 Exercício 10.

11E. Na Fig. 29-21, o trecho de circuito AB absorve 50 W de potência quando é percorrido por uma corrente i = 1.0 A no sentido indicado. (a) Qual é a diferença de potencial entre A e B? (b) O elemento C não tem resistência interna. Qual é a sua fem? (c) Qual é a sua polaridade?

Fig. 29-21 Exercício 11.

12E. Na Fig. 29-6a calcule a diferença de potencial através de R_2 , supondo $\mathscr{E}=12$ V, $R_1=3.0$ Ω , $R_2=4.0$ Ω e $R_3=5.0$ Ω .

13E. Na figura 29-7a calcule a diferença de potencial entre $a \in c$ considerando um caminho que contenha R, r_2 , e \mathcal{E}_2 . (Veja o Exemplo 29-2).

14E. O indicador de gasolina de um automóvel é mostrado esquematicamente na Fig. 29-22. O indicador (do painel) tem uma resistência de $10\,\Omega$. O tanque é simplesmente um flutuador ligado a um resistor variável que tem uma resistência de $140\,\Omega$ quando o tanque está vazio, $20\,\Omega$ quando ele está cheio e varia linearmente com o volume de gasolina. Determine a corrente no circuito quando o tanque está (a) vazio; (b) metade cheio; (c) cheio.

Fig. 29-22 Exercício 14.

15P. (a) Na Fig. 29-23, que valor deve ter R para que a corrente no circuito seja de 1,0 mA? Considere $\mathscr{C}_1 = 2,0 \text{ V}$, $\mathscr{C}_2 = 3,0 \text{ V}$ e $r_1 = r_2 = 3,0 \Omega$. (b) Com que taxa a energia térmica aparece em R?

Fig. 29-23 Problema 15.

16P. Deseja-se produzir calor na taxa de 10 W ligando-se um resistor de 0,10 Ω a uma bateria cuja fem é de 1,5 V. (a) Que diferença de potencial deve existir através do resistor? (b) Qual deve ser a resistência interna da bateria?

17P. A corrente num circuito de malha única com uma resistência R é de 5,0 A. Quando uma nova resistência de 2,0 Ω é introduzida em série no circuito, a corrente cai para 4,0 A. Qual é o valor de?

18P. Um dispositivo de fem & fornece potência a uma linha de transmissão cuja resistência é R. Determine a razão entre a potência dissipada na linha para & = 110.000 V e a potência dissipada para &= 110 V. considerando que a potência fornecida seja a mesma nos dois casos.

19P. O motor de arranque de um automóvel está virando lentamente e o mecânico terá de decidir se troca o motor, o cabo ou a bateria. O manual do fabricante diz que a bateria de 12 V não pode ter mais que $0.020\,\Omega$ de resistência interna, o motor não mais que $0,200~\Omega$ de resistência e o cabo não mais que $0,040~\Omega$ de resistência. O mecânico liga o motor e mede 11,4 V através da bateria, 3,0 V através do cabo e uma corrente de 50 A. Qual é a parte defeituosa?

20P. Duas baterias tendo a mesma fem & nas diferentes resistências internas r_1 e r_2 $(r_1 > r_2)$ estão ligadas em série a uma resistência externa R. (a) Determine o valor de R que produz uma diferença de potencial igual a zero entre os terminais de uma das baterias. (b) Que bateria é essa?

21P. Uma célula solar gera uma diferença de potencial de 0,10 V quando um resistor de 500 Ω está ligado a ela, e uma diferença de potencial de 0,15 V quando o resistor for de 1,000 Ω. Quais são (a) a resistência interna e (b) a fem da célula solar? (c) A área da célula é de 5,0 cm² e a taxa por unidade de área em que ela recebe energia luminosa é 2,0 mW/ cm². Qual é a eficiência da célula para converter a energia luminosa em energia térmica no resistor externo de 1.000 Ω ?

22P. (a) Na Fig. 29-5a, mostre que a taxa na qual a energia é dissipada em R como energia térmica é um máximo quando R = r. (b) Mostre que esta potência máxima vale $P = \mathcal{E}^2/4r$.

23P. Os condutores A e B, tendo comprimentos iguais de 40,0 m e diâmetros iguais de 2,60 mm, estão ligados em série. Uma diferença de potencial de 60,0 V é aplicada entre as extremidades do fio composto. As resistências dos fios valem 0.127 e 0,729 Ω , respectivamente. Determine (a) a densidade de corrente em cada fio e (b) a diferença de potencial através de cada fio. (c) Identifique os materiais dos fios. Veja a Tabela 28-1.

24P. Uma bateria de fem $\mathscr{E} = 2,00 \text{ V}$ e resistência interna $r = 0,500 \Omega$ está movendo um motor. O motor está levantando um peso de 2,00 N à velocidade escalar constante υ = 0,500 m/s. Supondo que não haja perda de energia, determine (a) a corrente i no circuito e (b) a diferença de potencial V entre os terminais do motor. (c) Discuta o fato de existirem duas soluções para este problema.

25P. Um resistor de temperatura estável é construído ligando-se um resistor feito de silício em série a um outro feito de ferro. Se a resistência total necessária fosse de 1.000 Ω para uma larga faixa de temperatura em torno de 20°C, quais seriam as resistências dos dois resistores? Veja a Tabela 28-1.

Seção 29-6 Circuitos de Múltiplas Malhas

26E. Quatro resistores de 18.0 Ω estão ligados em paralelo através de uma bateria ideal cuja fem é de 25,0 V. Qual é a corrente que percorre a bateria?

27E. Deseja-se produzir uma resistência total de 3,00 Ω ligando-se uma resistência desconhecida a uma resistência de 12.0 Ω. Qual deve ser o valor da resistência desconhecida e como deve ser ela ligada?

28E. Usando somente dois resistores, separadamente, em série ou em paralelo, desejamos obter resistências de 3,0, 4,0, 12 c 16Ω . Quais são os valores das duas resistências?

29E. Na Fig. 29-24 determine a corrente em cada resistor e a diferença de potencial entre $a \in b$. Considere $\mathcal{E}_1 = 6.0 \text{ V}$, $\mathcal{E}_2 = 5.0 \text{ V}$, $\mathcal{E}_3 = 4.0 \text{ V}$, $R_1 = 100 \ \Omega \ e R_2 = 50 \ \Omega.$

Fig. 29-24 Exercício 29.

30E. A Fig. 29-25 mostra um circuito contendo três chaves, indicadas por S₁, S₂ e S₃. Determine a corrente que passa por a para todas as combinações possíveis das chaves. Considere $\mathcal{E} = 120 \text{ V}, R_i = 20.0 \Omega \text{ e } R_i$ = 10,0 Ω. Suponha que a bateria não tenha resistência.

Fig. 29-25 Exercício 30.

31E. Na Fig. 29-26, determine a resistência equivalente entre os pontos (a) A e B, b) A e C e (c) B e C.

Fig. 29-26 Exercício 31.

32E. Na Fig. 29-27, determine a resistência equivalente entre os pontos D e E

Fig. 29-27 Exercício 32.

33E. Duas lâmpadas, uma de resistência R_1 e a outra de resistência R_2 , $R_1 > R_2$, estão ligadas a uma bateria (a) em paralelo e (b) em série. Que lâmpada brilha mais (dissipa mais energia) em cada caso?

34E. Na Fig. 29-8, calcule a differença de potencial entre os pontos c e d por todos os caminhos possíveis. Suponha que $\mathscr{E}_1 = 4.0 \text{ V}$, $\mathscr{E}_2 = 1.0 \text{ V}$. $R_1 \approx R_2 = 10 \Omega$ e $R_3 = 5.0 \Omega$.

35E. Nove fios de cobre de comprimento *l* e diâmetro *d* estão ligados em paralelo formando um único condutor composto de resistência *R*. Qual deverá ser o diâmetro *D* de um único fio de cobre de comprimento *l*, para que ele tenha a mesma resistência?

36E. Uma linha de força de 120 V é protegida por um fusível de 15 A. Qual é o número máximo de lâmpadas de 500 W que podem operar, simultaneamente, em paralelo, nessa línha sem "queimar" o fusível?

37E. Um circuito contém cinco resistores ligados a uma bateria cuja fem é de 12 V, conforme é mostrado na Fig. 29-28. Qual é a diferença de potencial através do resistor de 5,0 Ω ?

Fig. 29-28 Exercício 37.

38P. Dois resistores, R_1 e R_2 , podem ser ligados tanto em série quanto em paralelo por meio de uma bateria ideal cuja fem é \mathscr{E} . Desejamos que a taxa de dissipação de energia elétrica da combinação em paralelo seja cinco vezes a da combinação em série. Sendo R_1 = 100 Ω , qual deve ser o valor de R_2 ? (Sugestão: Existem duas respostas.)

39P. Dispõe-se de um certo número de resistores de $10\,\Omega$, cada um deles sendo capaz de dissipar somente 1,0 W. Que número mínimo de tais resistores precisamos dispor numa combinação série-paralelo, a fim de obtermos um resistor de $10\,\Omega$ capaz de dissipar pelo menos 5,0 W?

40P. Duas baterias de fem \mathscr{E} e resistência interna r estão ligadas em paralelo através de um resistor R, como na Fig. 29-29a. (a) Para que valor de R a taxa de dissipação de energia elétrica pelo resistor é máxima? (b) Qual é a taxa máxima de dissipação de energia?

41P. Dispõe-se de duas baterias de fem \mathscr{E} e resistência interna r. Elas podem ser ligadas em paralelo (Fig. 29-29a) ou em série (Fig. 29-29b) e são usadas para estabelecer uma corrente num resistor R, (a) Obtenha as expressões da corrente em R para ambos os tipos de ligação. Qual das ligações produz a maior corrente (b) quando R > re (c) quando R < r?

Fig. 29-29 Problemas 40 e 41.

42P. Um grupo de N baterias idênticas de fem \mathscr{E} e resistência interna r podem ser todas ligadas em série (Fig. 29-30a) ou todas em paralelo (Fig. 29-30b) com um resistor R. Mostre que, para R = r, as duas montagens darão a mesma corrente em R.

Fig. 29-30 Problema 42.

43P. (a) Calcule a corrente que atravessa cada uma das baterias ideais da Fig. 29-31. Suponha que $R_1=1.0~\Omega, R_2=2.0~\Omega, \mathcal{E}_1=2.0~V~e~\mathcal{E}_2=\mathcal{E}_3=4.0~V.$ (b) Calcule $V_u=V_0$.

Fig. 29-31 Problema 43.

44P. Numa lâmpada de três vias de 120 V regulada para 100, 200 e 300 W, um dos filamentos se queima. Depois disso, a lâmpada opera sem alterar as intensidades correspondentes às posições mais baixa e mais alta da chave, porém não opera na posição do meio. (a) De que modo os filamentos estão ligados às três posições da chave? (b) Calcular as resistências dos filamentos.

45P. (a) Na Fig. 29-32, qual é a resistência equivalente do circuito elétrico mostrado? (b) Qual é a corrente em cada resistor? Faça $R_1 = 100$ Ω , $R_2 = R_3 = 50 \Omega$, $R_4 = 75 \Omega$ e $\mathscr{E} = 6$, 0 V; suponha que a bateria é ideat.

Fig. 29-32 Problema 45.

46P. Na Fig. 29-33, $\mathscr{C}_1 = 3,00 \text{ V}$, $\mathscr{C}_2 = 1,00 \text{ V}$, $R_1 = 5,00 \Omega$, $R_2 = 2,00 \Omega$, $R_3 = 4,00 \Omega$ e as duas baterias são ideais. (a) Qual é a taxa de dissipação de energia em R_1 ? Em R_2 ? Em R_3 ? (b) Qual é a potência da bateria 1? E da bateria 2?

Fig. 29-33 Problema 46.

47P. No circuito da Fig. 29-34, para que valor de R a bateria ideal transferirá energia aos resistores (a) na taxa de 60.0 W, (b) na taxa máxima possível e (c) na taxa mínima possível? (d) Para os itens (b) e (c), quais são os valores das taxas?

Fig. 29-34 Problema 47.

48P. No circuito da Fig. 29-35, \mathscr{E} tem um valor constante mas R pode variar. Determine o valor de R que resulta no aquecimento máximo daquele resistor. A bateria é ideal.

Fig. 29-35 Problema 48.

49P. Na Fig. 29-36, determine a resistência equivalente entre os pontos (a) $F \in H \in (b)$ $F \in G$.

Fig. 29-36 Problema 49.

50P. Um fio de cobre de raio a = 0.250 mm tem uma capa de alumínio de raio externo b = 0.380 mm. (a) O fio composto é percorrido por uma corrente i = 2.00 A. Usando a Tabela 28-1, calcular a corrente em cada material. (b) Sabendo-se que uma diferença de potencial V = 12.0 V, entre as extremidades, mantém a corrente, qual é o comprimento do fio composto?

51P. A Fig. 29-37 mostra uma bateria ligada a um resistor uniforme R_o . Um contato deslizante pode percorrer o resistor desde x=0, à esquerda, até x=10 cm, à direita. Determine uma expressão para a potência dissipada no resistor R como função de x. Faça o gráfico da função para $\mathcal{E}=50$ V, R=2.000 Ω e $R_0=100$ Ω .

Fig. 29-37 Problema 51.

52P. A Fig. 29-11a mostra 12 resistores, cada um de resistência R, formando um cubo. (a) Determine R_{13} , a resistência equivalente entre as extremidades da diagonal de uma face. (b) Determine R_{13} , a resistência equivalente entre as extremidades da diagonal do cubo. (Veja o Exemplo 29-4.)

Seção 29-7 Instrumentos de Medidas Elétricas

53E. Um simples obmímetro é feito ligando-se uma bateria de lanterna de 1,50 V em série com uma resistência R e um amperímetro que lê desde 0 até 1,00 mA, como é mostrado na Fig. 29-39. R é ajustado de modo que, ao fazer-se contato direto entre os "clips", o ponteiro sofra deflexão sobre a escala completa (de 1,00mA). Que resistência externa ligada entre os clips resultaria na deflexão de (a) 10%, (b) 50% e (c) 90% da escala completa? (d) Sabendo-se que a resistência do amperímetro vale 20.0 Ω e que a resistência interna da bateria é desprezível, qual é o valor de R?

Fig. 29-38 Exercício 53.

54E. Para o controle manual, sensível, da corrente num circuito, podemos usar uma combinação em paralelo de resistores variáveis, do tipo contato deslizante, como mostra a Fig. 29-39. Suponhamos que a resistência total R_1 do resistor A seja 20 vezes a resistência total R_2 do resistor B. (a) Que procedimento deveríamos usar para ajustar a corrente ao valor desejado? (b) Por que a combinação em paralelo é melhor que um único resistor variável?

Fig. 29-39 Exercício 54.

55P. (a) Na Fig. 29-40, determine qual será a leitura do amperímetro, supondo & = 5.0 V (para a bateria ideal), $R_1 = 2.0 \Omega$, $R_2 = 4.0 \Omega$ e $R_3 = 6.0 \Omega$. (b) O amperímetro e a fonte de fem são agora permutados. Mostre que a leitura do amperímetro permanece inalterada.

Fig. 29-40 Problema 55.

56P. Qual é a corrente, em termos de % e R, indicada pelo amperímetro da Fig. 29-41? Suponha que a resistência do amperímetro seja nula e que a bateria seja ideal.

Fig. 29-41 Problema 56.

57P. Quando as luzes de um automóvel são ligadas, um amperímetro em série com elas indica 10 A e um voltímetro ligado através delas indica 12 V. Veja a Fig. 29-42. Quando o motor de arranque é ligado, a indicação do amperímetro cai para 8,0 A e as luzes se ofuscam um pouco. Sabendo-se que a resistência interna da bateria é de 0,050 Ω e que a do amperímetro é desprezível, quais são (a) a fem da bateria e (b) a corrente que percorre o motor de arranque quando as luzes estão acesas?

Fig. 29-42 Problema 57.

58P. Na Fig. 29-13, suponha que $\mathscr{E}=3.0 \text{ V}$, $r=100 \Omega$, $R_1=250 \Omega$ e $R_2=300 \Omega$. Sabendo-se que a resistência do voltímetro é $R_{\rm v}=5.0 \text{ k}\Omega$, que erro percentual é cometido na leitura da diferença de potencial através de R_1 ? Ignore a presença do amperímetro.

59P. Na Fig. 29-13, suponha que $\mathscr{E} = 5.0 \text{ V}$, $r = 2.0 \Omega$, $R_1 = 5.0 \Omega$ e $R_2 = 4.0 \Omega$. Sabendo-se que a resistência do amperímetro é $R_A = 0.10 \Omega$, que erro percentual é cometido na leitura da corrente? Suponha que o voltímetro não esteja presente.

60P. Um voltímetro (resistência R_v) e um amperímetro (resistência R_A) são ligados para medir uma resistência R_i como mostra a Fig. 29-43a. A resistência é dada por R=V/i, onde V é a leitura do voltímetro e i é a corrente no resistor R. Parte da corrente (i') registrada pelo amperímetro passa através do voltímetro, de modo que a razão das leituras dos medidores (= V/i') dá somente um valor *aparente* R' para a resistência. Mostre que R e R' estão relacionados por

$$\frac{1}{R} = \frac{1}{R'} - \frac{1}{R_V}.$$

Note que para $R_V \rightarrow \infty R' \rightarrow R$.

Fig. 29-43 Problemas 60, 61 c 62.

61P. (Veja o Problema 60). Para medir uma resistência, os medidores podem também ser ligados como mostra a Fig. 29-43b. Novamente, a razão das leituras dos medidores dá apenas um valor aparente R' para a resistência. Mostre que agora R'está relacionado a R por

$$R = R' - R_{A},$$

onde R_A é a resistência do amperímetro. Note que para $R_A \to 0$, $R' \to R$.

- 62P. (Veja os Problemas 60 e 61.) Na Fig. 29-43 as resistências do amperímetro e do voltímetro valem 3,00 Ω e 300 Ω , respectivamente. Faça $\mathscr{E} = 12.0 \text{ V}$ para a bateria ideal e $R_0 = 100 \Omega$. Sendo $R = 85.0 \Omega$, (a) quais serão as leituras dos medidores para as duas ligações diferentes? (b) Que resistência aparente R' será calculada em cada caso?
- 63P. Na Fig. 29-44 ajustamos o valor de R_i até que os pontos a e b fiquem exatamente com o mesmo potencial. (Verificamos esta condição ligando momentaneamente um amperímetro sensível entre a e b; se estes pontos estiverem no mesmo potencial, o amperímetro não defletirá.) Mostre que, após essa ajustagem, a seguinte relação é válida:

$$R_x = R_s(R_2/R_1).$$

Fig. 29-44 Problemas 63 e 64.

Um resistor desconhecido (R_x) pode ser medido em termos de um padrão (R_s) usando este dispositivo, que é chamado de ponte de Wheats-

64P. Se os pontos a e b na Fig. 29-44 forem ligados por um fio de resistência r, mostre que a corrente no fio será

$$i = \frac{\mathscr{E}(R_s - R_x)}{(R + 2r)(R_s + R_x) + 2R_sR_x},$$

onde \mathscr{E} é a fem da bateria ideal. Suponha que $R_1 = R_2 = R$ e que R_0 é igual a zero. Esta fórmula é consistente com o resultado do Problema 63?

Seção 29-8 Circuitos RC

- **65E.** Em um circuito RC em série $\mathscr{E} = 12.0 \text{ V}$, $R = 1.40 \text{ M}\Omega$ e C = 1.80μF. (a) Calcular a constante de tempo. (b) Determine a carga máxima que aparecerá no capacitor durante o processo de carga. (c) Quanto tempo levará para a carga aumentar até 16,0 µC?
- 66E. Quantas constantes de tempo devem decorrer até que um capacitor em um circuito RC em série esteja carregado com menos de 1,0% de sua carga de equilíbrio?
- **67E.** Um capacitor com uma carga inicial q_a é descarregado através de um resistor. Em termos da constante de tempo au, em quanto tempo o capacitor perderá (a) a primeira terça parte de sua carga e (b) dois terços de sua carga?
- **68E.** Um resistor de 15,0 k Ω e um capacitor são ligados em série e, a seguir, uma diferença de potencial de 12,0 V é aplicada através deles. A diferença de potencial através do capacitor sobe para 5.00 V em 1.30 μs. (a) Calcular a constante de tempo do circuito. (b) Determine a capacitância do capacitor.
- **69P.** Um capacitor com uma diferença de potencial inicial de 100 V é descarregado através de um resistor quando uma chave entre eles é fechada no instante t = 0. No instante t = 10.0 s a diferença de potencial através do capacitor é 1,00 V. (a) Qual é a constante de tempo do circuito? (b) Qual é a diferença de potencial através do capacitor no instante t = 17.0 s?
- 70P. A Fig. 29-45 mostra o circuito de uma lanterna do tipo usado nos canteiros de obras das rodovias. A lâmpada fluorescente L (de capacitância desprezível) está ligada em paralelo ao capacitor C de um circuito RC. A corrente só passa através da lâmpada quando a diferença de potencial através dela alcança a voltagem de ruptura V_t ; neste evento, o capacitor descarrega através da lâmpada e a lâmpada pisca por um período curto de tempo. Suponha que dois "flashes" por segundo sejam necessários. Para uma fâmpada com voltagem de ruptura $V_i = 72.0 \text{ V}$. uma bateria ideal de 95,0 V e um capacitor de 0,150 μF, qual será a resistência R do resistor?

Fig. 29-45 Problema 70.

71P. Um capacitor de 1.0 μ F com uma energia inicial armazenada de 0.50 J é descarregado através de um resistor de $1.0 \text{ M}\Omega$. (a) Qual é a carga inicial do capacitor? (b) Qual é a corrente através do resistor no instante em que a descarga se inicia? (e) Determine V_c , a diferença de