with the space $E^* = \operatorname{Hom}(E, \mathbb{R})$ of all linear maps from E to \mathbb{R} . A continuous bilinear map $\varphi \colon E \times E \to \mathbb{R}$ in $\mathcal{L}_2(E, E; \mathbb{R})$ yields a map Φ from E to E' given by

$$\Phi(u) = \varphi_u,$$

where $\varphi_u \in E'$ is the linear form defined by

$$\varphi_u(v) = \varphi(u, v).$$

It is easy to check that φ_u is continuous and that the map Φ is continuous. Then we say that φ is nondegenerate iff $\Phi \colon E \to E'$ is an isomorphism of Banach spaces, which means that Φ is invertible and that both Φ and Φ^{-1} are continuous linear maps. Given a function $J \colon \Omega \to \mathbb{R}$ differentiable on Ω as before (where Ω is an open subset of E), if $\mathrm{D}^2 J(u)$ exists for some $u \in \Omega$, we say that u is a nondegenerate critical point if dJ(u) = 0 and if $\mathrm{D}^2 J(u)$ is nondegenerate. Of course, $\mathrm{D}^2 J(u)$ is positive definite if $\mathrm{D}^2 J(u)(w,w) > 0$ for all $w \in E - \{0\}$.

Using the above definition, Proposition 40.7 can be generalized to a nondegenerate positive definite bilinear form (on a Banach space) and Theorem 40.8 can also be generalized to the situation where $J: \Omega \to \mathbb{R}$ is defined on an open subset of a Banach space. For details and proofs, see Cartan [34] (Part I Chapter 8) and Avez [9] (Chapter 8 and Chapter 10).

In the next section we make use of convexity; both on the domain Ω and on the function J itself.

40.3 Using Convexity to Find Extrema

We begin by reviewing the definition of a convex set and of a convex function.

Definition 40.7. Given any real vector space E, we say that a subset C of E is *convex* if either $C = \emptyset$ or if for every pair of points $u, v \in C$, the line segment connecting u and v is contained in C, i.e.,

$$(1 - \lambda)u + \lambda v \in C$$
 for all $\lambda \in \mathbb{R}$ such that $0 \le \lambda \le 1$.

Given any two points $u, v \in E$, the line segment [u, v] is the set

$$[u,v] = \{(1-\lambda)u + \lambda v \in E \mid \lambda \in \mathbb{R}, \ 0 \le \lambda \le 1\}.$$

Clearly, a nonempty set C is convex iff $[u, v] \subseteq C$ whenever $u, v \in C$. See Figure 40.4 for an example of a convex set.

Definition 40.8. If C is a nonempty convex subset of E, a function $f: C \to \mathbb{R}$ is *convex* (on C) if for every pair of points $u, v \in C$,

$$f((1-\lambda)u + \lambda v) \le (1-\lambda)f(u) + \lambda f(v)$$
 for all $\lambda \in \mathbb{R}$ such that $0 \le \lambda \le 1$;