

$$\begin{array}{c} \sin \left(-x \right) = 1 \\ \cos \left(-2x \right) \end{array}$$

$$- \sin x = \cos \left(2x \right)$$

$$- \sin x = - \cos \left(2x \right)$$

$$- \sin x = - - 2 \sin^2 x$$

$$2 \sin^2 x - \sin x - 1 = 0$$

$$2 \sin^2 x - \sin x - 1 = 0$$

$$3 \sin x = 5$$

$$2 \sin^2 x - \sin x - 1 = 0$$

$$3 \sin x = 5$$

$$2 \sin^2 x - \sin x - 1 = 0$$

$$3 \sin x = 1$$

$$x = \frac{\pi}{2} + 2 \tan x$$

$$x = \frac{\pi}{4} + 2 \tan x$$

$$x =$$

b
$$2\sin 4x - 1 = 0$$
 $\sin 4x - \frac{1}{2}$
 $4x = \frac{\pi}{6} + 2k\pi$ $x = \frac{\pi}{24} + \frac{k}{2}\pi$
 $4x = \frac{\pi}{6} + 2k\pi$ $x = \frac{5}{24} + \frac{k}{2}\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$ $x = \frac{5}{24} + \frac{k}{2}\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$ $x = \frac{5}{24} + \frac{k}{2}\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$ $x = \frac{5}{24} + \frac{k}{2}\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$ $x = \frac{5}{24} + \frac{k}{2}\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$ $x = \frac{5}{6}\pi + 2k\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$ $x = \frac{5}{6}\pi + 2k\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$ $x = \frac{5}{6}\pi + 2k\pi$
 $4x = \frac{5}{6}\pi + 2k\pi$

Tutti gli augoli identificati de punti sorra le rette, verificationes le disugua glionza Trovo le soluzioni di sinx= 1/2 e poi scelgo l'intervallo compreso tre le due soluzioni Sol finale di sinx > 1/2 è T < x < 5 T (convenzione, sempre seus) $\cos x < \frac{\sqrt{2}}{2}$ 504: 2cosx < 12 Risolus cosx = 12 $SR: \frac{\pi}{4} < \times < \frac{\pi}{4}\pi$ $\underline{n.518}$ 2 cos 2x - 1 ≤ 0 cos 2x $\leq \frac{1}{2}$ Trovo le soluzioni di cos $2x = \frac{1}{2}$ Non ē $2x = \frac{\pi}{3}$ $x = \frac{\pi}{6}$ $2x = -\frac{\pi}{3}$ Perché è sogliate? L'errore sta nel fatto che avendo la funzione goniometrica un periodo < 2T , ha più soluzioni nell'intervalla [0;2T] che vanno sistemate per gli intervalli di soluzione.