AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for executing a fail instruction to
2	facilitate transactional execution on a processor, comprising:
3	executing a start transactional execution instruction to start transactionally
4	executing a block of instructions within a program, wherein the start transactional
5	execution instruction marks the beginning of a block of instructions to be
6	executed transactionally, and wherein the start transactional execution instruction
7	specifies an action to take if transactional execution of the block of instructions
8	fails, and wherein the action to take can include acquiring a lock on the block of
9	instructions;
10	wherein changes made during the transactional execution are not
11	committed to the architectural state of the processor unless the transactional
12	execution successfully completes; and
13	if the fail instruction is encountered during the transactional execution,
14	terminating the transactional execution without committing
15	results of the transactional execution to the architectural state of
16	the processor,
17	retrying the transactional execution a specified number of
18	times, and
19	if the fail instruction continues to be encountered after the
20	specified number of times, obtaining a lock for the block of
21	instructions.

1	2. (Original) The method of claim 1, wherein terminating the transactional
2	execution involves discarding changes made during the transactional execution.
1	3. (Original) The method of claim 2, wherein discarding changes made
2	during the transactional execution involves:
3	discarding register file changes made during the transactional execution;
4	clearing load marks from cache lines;
5	draining store buffer entries generated during transactional execution; and
6	clearing store marks from cache lines.
1	4. (Original) The method of claim 1, wherein terminating the transactional
2	execution additionally involves branching to a location specified by a
3	corresponding start transactional execution (STE) instruction.
1	5 (Canceled)
1	6. (Original) The method of claim 1, wherein terminating the transactional
2	execution additionally involves attempting to re-execute the block of instructions.
1	7. (Currently amended) The method of claim 1, wherein if the
2	transactional execution of the block of instructions is successfully completed
3	completes, the method further comprises:
4	atomically committing changes made during the transactional execution;
5	and
6	resuming normal non-transactional execution.

1	8. (Original) The method of claim 1, wherein potentially interfering data
2	accesses from other processes are allowed to proceed during the transactional
3	execution of the block of instructions.
1	9. (Original) The method of claim 1, wherein if an interfering data access
2	from another process is encountered during the transactional execution, the
3	method further comprises:
4	discarding changes made during the transactional execution; and
5	attempting to re-execute the block of instructions.
1	10. (Original) The method of claim 1, wherein the block of instructions to
2	be executed transactionally comprises a critical section.
2	be executed transactionally comprises a critical section.
1	11. (Original) The method of claim 1, wherein the fail instruction is a
2	native machine code instruction of the processor.
1	12. (Original) The method of claim 1, wherein the fail instruction is
2	defined in a platform-independent programming language.
1	13. (Currently amended) A computer system that supports a fail instruction
2	to facilitate transactional execution, comprising:
3	a processor; and
4	an execution mechanism within the processor;
5	wherein the execution mechanism is configured to execute a start
6	transactional execution instruction to transactionally execute a block of
7	instructions within a program, wherein the start transactional execution instruction
8	marks the beginning of a block of instructions to be executed transactionally, and
9	wherein the start transactional execution instruction specifies an action to take if

10	transactional execution of the block of instructions fails, and wherein the action to
1	take can include acquiring a lock on the block of instructions;
2	wherein changes made during the transactional execution are not
3	committed to the architectural state of the processor unless the transactional
4	execution successfully completes; and
15	wherein if the fail instruction is encountered during the transactional
16	execution, the execution mechanism is configured to:
17	terminate the transactional execution without committing
8	results of the transactional execution to the architectural state of
19	the processor,
20	retry the transactional execution a specified number of
21	times, and
22	if the fail instruction continues to be encountered after the
23	specified number of times, obtain a lock for the block of
24	instructions.
1	14. (Original) The computer system of claim 13, wherein while
2	terminating the transactional execution, the execution mechanism is configured to
3	discard changes made during the transactional execution.
1	15. (Original) The computer system of claim 14, wherein while discarding
2	changes made during the transactional execution, the execution mechanism is
3	configured to:
4	discard register file changes made during the transactional execution;
5	clear load marks from cache lines;
6	drain store buffer entries generated during transactional execution; and to
7	clear store marks from cache lines.

1	16. (Original) The computer system of claim 13, wherein while	
2	terminating the transactional execution, the execution mechanism is additional	
3	configured to branch to a location specified by a corresponding start transaction	
4	execution (STE) instruction.	
1	17 (Canceled).	
1	18. (Original) The computer system of claim 13, wherein while	
2	terminating the transactional execution, the execution mechanism is additionally	
3	configured to attempt to re-execute the block of instructions.	
1	19. (Currently amended) The computer system of claim 13, wherein if the	
2	transactional execution of the block of instructions is successfully completed	
3	eompletes, the execution mechanism is configured to:	
4	atomically commit changes made during the transactional execution; and	
5	to	
6	resume normal non-transactional execution.	
1	20. (Original) The computer system of claim 13, wherein the computer	
2	system is configured to allow potentially interfering data accesses from other	
3	processes to proceed during the transactional execution of the block of	
4	instructions.	
1	21. (Original) The computer system of claim 13, wherein if an interfering	
2	data access from another process is encountered during the transactional	
3	execution, the execution mechanism is configured to:	
4	discard changes made during the transactional execution; and to	
5	attempt to re-execute the block of instructions	

22. (Original) The computer system of claim 13, wherein the block of
instructions to be executed transactionally comprises a critical section.
23. (Original) The computer system of claim 13, wherein the fail
instruction is a native machine code instruction of the processor.
24. (Original) The computer system of claim 13, wherein the fail
instruction is defined in a platform-independent programming language.
25. (Currently amended) A computing means that supports that supports a
fail instruction to facilitate transactional execution, comprising:
a processing means; and
an execution means within the processing means;
wherein the execution means is configured to execute a start transactional
execution instruction to transactionally execute a block of instructions within a
program, wherein the start transactional execution instruction marks the beginning
of a block of instructions to be executed transactionally, and wherein the start
transactional execution instruction specifies an action to take if transactional
execution of the block of instructions fails, and wherein the action to take can
include acquiring a lock on the block of instructions;
wherein changes made during the transactional execution are not
committed to the architectural state of the processor unless the transactional
execution successfully completes; and
wherein if the fail instruction is encountered during the transactional
execution, the execution means is configured to:
terminate the transactional execution without committing
results of the transactional execution to the architectural state of
the processor,

20	retry the transactional execution a specified number of
21	times, and
22	if the fail instruction continues to be encountered after the
23	specified number of times, obtain a lock for the block of
24	instructions.