An Inviscid Regularization of the Velocity-Vorticity formulation of the 3D Navier-Stokes Equations

Adam Larios¹

Collaborators:

Yuan Pei² Leo Rebholz³

 1 University of Nebraska, Lincoln, NE, USA 2 Western Washington University, Bellingham, WA, USA 3 Clemson University, Clemson, SC, USA

4 November 2018

University of Arkansas Fayetteville, AR

An Inviscid Regularization of the Velocity-Vorticity formulation of the 3D Navier-Stokes Equations

Adam Larios¹

Collaborators:

Yuan Pei² Leo Rebholz³

 1 University of Nebraska, Lincoln, NE, USA 2 Western Washington University, Bellingham, WA, USA 3 Clemson University, Clemson, SC, USA

4 November 2018

University of Arkansas Fayetteville, AR

- Continuous Data Assimilation and Navier-Stokes
 - Introduction
- 2 The Voigt Model
- 3 Convergence and Blow-up
- 4 Computational Blow-up
- Velocity-Vorticity-Voigt

- 1 Continuous Data Assimilation and Navier-Stokes
 - Introduction
- 2 The Voigt Model
- Convergence and Blow-up
- 4 Computational Blow-up
- Velocity-Vorticity-Voigt

- 1 Continuous Data Assimilation and Navier-Stokes
 - Introduction
- 2 The Voigt Mode
- Convergence and Blow-up
- 4 Computational Blow-up
- 5 Velocity-Vorticity-Voigt

The Incompressible Navier-Stokes/Euler Equations

Claude L.M.H. Navier

George G. Stokes

Momentum Equation

$$\underbrace{\frac{\partial \vec{u}}{\partial t}}_{Acceleration} + \underbrace{(\vec{u} \cdot \nabla)\vec{u}}_{Advection} = \underbrace{-\nabla p}_{Pressure} + \underbrace{\nu \triangle \vec{u}}_{Diffusion}$$

Incompressibility

$$\operatorname{div} \vec{u} = 0$$

Unknowns

 $p := \mathsf{Pressure} (\mathsf{scalar})$

Parameter

 $\vec{u} := \text{Velocity (vector)} \quad \nu := \text{Kinematic Viscosity}$

Problem (J. Leray, 1933)

Can a singularity develop in the solutions?

- 2D case: No.
- 3D case: \$1,000,000 Clay Millennium Prize Problem
- 3D, $\nu = 0$ case: \$0 Pat on the back problem

The Incompressible Navier-Stokes/Euler Equations

Claude L.M.H. Navier

George G. Stokes

Leonhard Euler

Momentum Equation

$$\underbrace{\frac{\partial \vec{u}}{\partial t}}_{Acceleration} + \underbrace{(\vec{u} \cdot \nabla)\vec{u}}_{Advection} = \underbrace{-\nabla p}_{Pressure} + \underbrace{\nu \triangle \vec{u}}_{Diffusion}$$

Incompressibility

$$\operatorname{div} \vec{u} = 0$$

Unknowns

 $p := \mathsf{Pressure} (\mathsf{scalar})$

Parameter

 $\vec{u} := \text{Velocity (vector)} \quad \nu := \text{Kinematic Viscosity}$

Problem (J. Leray, 1933)

Can a singularity develop in the solutions?

- 2D case: No.
- 3D case: \$1,000,000 Clay Millennium Prize Problem
- 3D, $\nu = 0$ case: \$0 Pat on the back problem

Blow-up Criteria

Beale-Kato-Majda Criterion (1984)

$$\pmb{\omega} := \nabla \times \pmb{u} = \text{ Vorticity}$$

$$\int_0^T \|\pmb{\omega}(t)\|_{L^\infty} \, dt < \infty \Longleftrightarrow \text{Solution is regular on } [0,T].$$

Analytical Blow-up Criteria

- Beale, Kato, Majda, 1984
- Ponce. 1985
- Ferrari. 1993
- Constantin, Fefferman, 1993

Constantin, Fefferman, Majda, 1996

Brachet, Bustamante, Krstulovic,

Mininni, Pouquet, Rosenburg, 2013

- L., Titi, 2010
- Gibbon, Titi, 2013
- L., Titi, 2015

Computational Search for Blow-up

- Kerr, 1993, 2013
- Deng, Hou, Yu, 2005
- Hou, Li, 2008
- Hou, 2009

- Lou, Hou, 2014

- Continuous Data Assimilation and Navier-StokesIntroduction
- 2 The Voigt Model
- 3 Convergence and Blow-up
- 4 Computational Blow-up
- 5 Velocity-Vorticity-Voigt

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

3/28

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

• First studied by Oskolkov (1973) as a model for polymeric fluids.

Adam Larios Velocity-Vorticity-Voigt 4 November 2018

3/28

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- First studied by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- First studied by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- First studied by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu>0$ (Y. Cao, Lunasin, Titi; L., Titi).

Adam Larios

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- First studied by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu>0$ (Y. Cao, Lunasin, Titi; L., Titi).
- Global (analytic) regularity in periodic case, with $\nu=0$ (Y. Cao, Lunasin, Titi; L., Titi).

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- First studied by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu>0$ (Y. Cao, Lunasin, Titi; L., Titi).
- Global (analytic) regularity in periodic case, with $\nu=0$ (Y. Cao, Lunasin, Titi; L., Titi).
- ullet Although the parabolic character of the equations is destroyed, global attractor is comprised of analytic functions (for analytic f) (Kalantarov, Titi).

Adam Larios

$$\begin{cases} -\alpha^2 \partial_t \triangle \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- First studied by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu>0$ (Y. Cao, Lunasin, Titi; L., Titi).
- Global (analytic) regularity in periodic case, with $\nu=0$ (Y. Cao, Lunasin, Titi; L., Titi).
- Although the parabolic character of the equations is destroyed, global attractor is comprised of analytic functions (for analytic f) (Kalantarov, Titi).
- Solutions do not experience instantaneous smoothing.

Adam Larios Velocity-Vortic

$$\begin{cases} -\alpha^2 \partial_t \Delta u + \partial_t u + (u \cdot \nabla) u = -\nabla p + \nu \Delta u + \mathbf{f}, \\ \nabla \cdot u = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- First studied by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu>0$ (Y. Cao, Lunasin, Titi; L., Titi).
- Global (analytic) regularity in periodic case, with $\nu=0$ (Y. Cao, Lunasin, Titi; L., Titi).
- Although the parabolic character of the equations is destroyed, global attractor is comprised of analytic functions (for analytic f) (Kalantarov, Titi).
- Solutions do not experience instantaneous smoothing.
- Parabolic character of the equations is destroyed.
 (Recovered in the 'long term' behavior. (Kalantarov, Titi))

Adam Larios Velocity-Vorticity-Voigt 4 November 2018

3/28

Vorticity magnitude, $T=2\,$

Vorticity magnitude, $T=6\,$

5/28

$$\begin{cases}
-\alpha^2 \triangle \partial_t \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0 \\
\nabla \cdot \mathbf{u} = 0 \\
\mathbf{u}(0) = \mathbf{u}_0
\end{cases}$$

$$\begin{cases}
-\alpha^2 \triangle \partial_t \boldsymbol{u} + \partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = 0 \\
\nabla \cdot \boldsymbol{u} = 0 \\
\boldsymbol{u}(0) = \boldsymbol{u}_0
\end{cases}$$

$$\frac{1}{2} \frac{d}{dt} \left(\alpha^2 \|\nabla \boldsymbol{u}\|_{L^2}^2 + \|\boldsymbol{u}\|_{L^2}^2\right) = 0$$

$$\begin{cases}
-\alpha^2 \triangle \partial_t \boldsymbol{u} + \partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = 0 \\
\nabla \cdot \boldsymbol{u} = 0 \\
\boldsymbol{u}(0) = \boldsymbol{u}_0
\end{cases}$$

$$\frac{1}{2} \frac{d}{dt} \left(\alpha^2 \|\nabla \boldsymbol{u}\|_{L^2}^2 + \|\boldsymbol{u}\|_{L^2}^2\right) = 0$$

$$\alpha^2 \|\nabla \boldsymbol{u}\|_{L^2}^2 + \|\boldsymbol{u}\|_{L^2}^2 = \alpha^2 \|\nabla \boldsymbol{u}_0\|_{L^2}^2 + \|\boldsymbol{u}_0\|_{L^2}^2$$

$$\begin{cases}
-\alpha^2 \triangle \partial_t \boldsymbol{u} + \partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = 0 \\
\nabla \cdot \boldsymbol{u} = 0 \\
\boldsymbol{u}(0) = \boldsymbol{u}_0
\end{cases}$$

$$\frac{1}{2} \frac{d}{dt} \left(\alpha^2 \|\nabla \boldsymbol{u}\|_{L^2}^2 + \|\boldsymbol{u}\|_{L^2}^2\right) = 0$$

$$\alpha^2 \|\nabla \boldsymbol{u}\|_{L^2}^2 + \|\boldsymbol{u}\|_{L^2}^2 = \alpha^2 \|\nabla \boldsymbol{u}_0\|_{L^2}^2 + \|\boldsymbol{u}_0\|_{L^2}^2$$

What makes the Voigt-regularization work?

$$\begin{cases} -\alpha^2 \triangle \partial_t \boldsymbol{u} + \partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = 0 \\ \nabla \cdot \boldsymbol{u} = 0 \\ \boldsymbol{u}(0) = \boldsymbol{u}_0 \end{cases}$$
$$\frac{1}{2} \frac{d}{dt} \left(\alpha^2 \|\nabla \boldsymbol{u}\|_{L^2}^2 + \|\boldsymbol{u}\|_{L^2}^2 \right) = 0$$

Modified Energy Equality (Cao, Lunasin, Titi, 2006)

$$\alpha^2 \|\nabla \boldsymbol{u}\|_{L^2}^2 + \|\boldsymbol{u}\|_{L^2}^2 = \alpha^2 \|\nabla \boldsymbol{u}_0\|_{L^2}^2 + \|\boldsymbol{u}_0\|_{L^2}^2$$

Analytical Results: Regularity

$$\begin{cases}
-\alpha^{2}\partial_{t}\triangle\boldsymbol{u} + \partial_{t}\boldsymbol{u} + (\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = -\nabla p + \nu\triangle\boldsymbol{u} \\
\nabla\cdot\boldsymbol{u} = 0 \\
\boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_{0}(\boldsymbol{x})
\end{cases} (2.1)$$

Theorem (Global Existence)(Cao, Lunasin, Titi)

Let $u_0 \in H^1$, $\nu \ge 0$. Then NSV has a unique solution in $C^1((-\infty,\infty),H^1)$ under either periodic or (if $\nu > 0$) homogeneous Dirichlet (no-slip) boundary conditions.

Analytical Results: Regularity

$$\begin{cases}
-\alpha^{2}\partial_{t}\triangle\boldsymbol{u} + \partial_{t}\boldsymbol{u} + (\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = -\nabla p + \nu\triangle\boldsymbol{u} \\
\nabla\cdot\boldsymbol{u} = 0 \\
\boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_{0}(\boldsymbol{x})
\end{cases} (2.1)$$

Theorem (Global Existence)(Cao, Lunasin, Titi)

Let $u_0 \in H^1$, $\nu \ge 0$. Then NSV has a unique solution in $C^1((-\infty,\infty),H^1)$ under either periodic or (if $\nu > 0$) homogeneous Dirichlet (no-slip) boundary conditions.

Theorem $(H^s \text{ Regularity and Analyticity})(L., Titi)$

Let $u_0 \in H^s$, $s \ge 0$, $\nu \ge 0$. Then NSV has a unique solution in $C^1((-\infty,\infty),V\cap H^s)$, under periodic boundary conditions. Furthermore, if $u_0 \in V \cap C^\omega$, then $u \in C^1((-\infty,\infty),V\cap C^\omega)$.

Analytical Results: Convergence

- Given initial data $u_0 \in H^s$, $s \ge 3$.
- Let u be a solution to the Euler equations with initial data u_0 .
- ullet Let $oldsymbol{u}^{lpha}$ be a solution of the Euler-Voigt equations with initial data $oldsymbol{u}_0.$

Theorem (Convergence)(L., Titi)

Suppose $u\in C([0,T],H^s)\cap C^1([0,T],H^{s-1})$ for $s\geq 3$. Then $u^\alpha\to u$ in $L^\infty([0,T],L^2)$.

Analytical Results: Convergence

- Given initial data $u_0 \in H^s$, $s \ge 3$.
- Let u be a solution to the Euler equations with initial data u_0 .
- ullet Let $oldsymbol{u}^{lpha}$ be a solution of the Euler-Voigt equations with initial data $oldsymbol{u}_0.$

Theorem (Convergence)(L., Titi)

Suppose ${\bf u}\in C([0,T],H^s)\cap C^1([0,T],H^{s-1})$ for $s\geq 3$. Then ${\bf u}^\alpha\to {\bf u}$ in $L^\infty([0,T],L^2)$.

Specifically,

$$\|\boldsymbol{u}(t)-\boldsymbol{u}^{\alpha}(t)\|_{L^{2}}^{2}+\alpha^{2}\|\nabla(\boldsymbol{u}(t)-\boldsymbol{u}^{\alpha}(t))\|_{L^{2}}^{2}\leq C\alpha^{2}.$$

- Continuous Data Assimilation and Navier-Stokes
 Introduction
- 2 The Voigt Model
- 3 Convergence and Blow-up
- 4 Computational Blow-up
- 5 Velocity-Vorticity-Voigt

Convergence

- Given initial data $u_0 \in H^s$, $s \ge 3$.
- Let u be a solution to the Euler equations with initial data u_0 .
- Let u^{α} be a solution of the Euler-Voigt equations with initial data u_0 .

Theorem (Convergence)(A.L., E.S. Titi, 2010, DCDS)

Suppose $u \in C([0,T],H^s) \cap C^1([0,T],H^{s-1})$ for $s \geq 3$. Then $u^{\alpha} \to u$ in $L^{\infty}([0,T],L^2)$.

Specifically,

$$\|\boldsymbol{u}(t) - \boldsymbol{u}^{\alpha}(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla(\boldsymbol{u}(t) - \boldsymbol{u}^{\alpha}(t))\|_{L^{2}}^{2} \le C\alpha^{2}(e^{Ct} - 1).$$

So that

$$\sup_{t \in [0,T]} \| \boldsymbol{u}(t) - \boldsymbol{u}^{\alpha}(t) \|_{L^{2}} \sim \mathcal{O}(\alpha)$$

Blow-up Criterion 1

$$\begin{aligned} \|\boldsymbol{u}^{\alpha}\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \boldsymbol{u}^{\alpha}\|_{L^{2}}^{2} &= \|\boldsymbol{u}_{0}\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \boldsymbol{u}_{0}\|_{L^{2}}^{2} \\ \|\boldsymbol{u}\|_{L^{2}}^{2} + \limsup_{\alpha \to 0^{+}} \alpha^{2} \|\nabla \boldsymbol{u}^{\alpha}\|_{L^{2}}^{2} &= \|\boldsymbol{u}_{0}\|_{L^{2}}^{2} \end{aligned}$$

Theorem (Blow-up Criterion 1)(A.L., E.S. Titi, 2010, DCDS)

Suppose there exists a finite time $T_* > 0$ such that

$$\sup_{t \in [0,T_*]} \limsup_{\alpha \to 0^+} \alpha^2 \|\nabla u^{\alpha}(t)\|_{L^2}^2 > 0.$$

Then the 3D Euler equations develop a singularity on the interval $[0, T_*]$.

Note (vorticity!):

$$\|
abla oldsymbol{u}^{lpha}\|_{L^2}^2 = \|oldsymbol{\omega}^{lpha}\|_{L^2}^2$$

 Similar Blow-up criteria exist for inviscid SQG (Khouider, Titi), inviscid Boussinesq (L., Lunasin, Titi).

Blow-up Criterion 2

Theorem (Blow-up Criterion 2)(L., Peterson, Titi, Wingate, 2016 Theor. Comp. Fluid Dyn.)

Suppose there exists a finite time $T_* > 0$ such that

$$\limsup_{\alpha \to 0^+} \left(\alpha \sup_{t \in [0, T^*]} \| \nabla u^{\alpha}(t) \|_{L^2} \right) > 0.$$
(3.1)

Then the 3D Euler equations develop a singularity on the interval $[0, T_*]$.

Moreover,

$$\lim \sup_{\alpha \to 0^+} \sup_{t \in [0,T]} \alpha^2 \|\nabla u^{\alpha}(t)\|_{L^2}^2 \ge \sup_{t \in [0,T]} \lim \sup_{\alpha \to 0^+} \alpha^2 \|\nabla u^{\alpha}(t)\|_{L^2}^2.$$
 (3.2)

So the new criterion is stronger.

Remarks on Blow-up Criteria

Blow-up via limiting regularization

- Beale-Kato-Majda-type criteria track $\omega(t)$, a quantity which comes from an equation that is **not known to be globally well-posed!** (Namely, 3D Euler.)
- Here, we track a quantity $\nabla u^{\alpha}(t)$, coming from 3D Euler-Voigt equations, which *are* globally well-posed.

12 / 28

Remarks on Blow-up Criteria

Blow-up via limiting regularization

- ullet Beale-Kato-Majda-type criteria track $\omega(t)$, a quantity which comes from an equation that is **not known to be globally well-posed!** (Namely, 3D Euler.)
- Here, we track a quantity $\nabla u^{\alpha}(t)$, coming from 3D Euler-Voigt equations, which *are* globally well-posed.

Comparison with Navier-Stokes $(\nu \to 0)$

No hope for a corresponding "well-posed-to-not-well-posed" blow-up criterion by viewing 3D Euler an invisicid limit of 3D Navier-Stokes, since 3D Navier-Stokes is not known to be well-posed.

Outline

- Continuous Data Assimilation and Navier-Stokes
 Introduction
- 2 The Voigt Mode
- Convergence and Blow-up
- 4 Computational Blow-up
- 5 Velocity-Vorticity-Voigt

Energy Balance at resolution 1024^3

$$\alpha^{2} \|\nabla \boldsymbol{u}\|_{L^{2}}^{2} + \|\boldsymbol{u}\|_{L^{2}}^{2} = \alpha^{2} \|\nabla \boldsymbol{u}_{0}\|_{L^{2}}^{2} + \|\boldsymbol{u}_{0}\|_{L^{2}}^{2}$$

Computational Approach

 $\underline{\mathsf{Idea:}}$ Investigate the behavior of $f_t(\alpha) := \| \nabla {m{u}}^{\alpha}(t) \|_{L^2}$

Implication of Blow-up Criterion 1

If $\alpha \|\nabla u^{\alpha}(t)\|_{L^2} \sim C\alpha^p$ as $\alpha \to 0$, then $p \le 0$ implies blow-up.

Implication of Blow-up Criterion 2

If $\max_{t \in [0,T]} \|\nabla u^{\alpha}(t)\|_{L^2} \sim C\alpha^p$ as $\alpha \to 0$. Then $p \le -1$ implies blow-up.

Test: Benjamin-Bona-Mahony Equation

$$-\alpha^2 u_{txx} + u_t + uu_x = \nu u_{xx}, \qquad x \in \mathbb{T} = [-\pi, \pi], \quad \nu \ge 0$$
$$u(x, 0) = \sin(x).$$

Test: Benjamin-Bona-Mahony Equation

$$-\alpha^2 u_{txx} + u_t + uu_x = \nu u_{xx}, \qquad x \in \mathbb{T} = [-\pi, \pi], \quad \nu \ge 0$$
$$u(x, 0) = \sin(x).$$

- (a) α vs. $\|u_x^{\alpha}(t)\|_{L^2}$ for the BBM equations. $\nu=0$ case.
- (b) α vs. $\|u_x^{\alpha}(t)\|_{L^2}$ for the BBM equations. $\nu>0$ case.

Figure: Simulations of the 1D BBM equations detecting the known singularity in the 1D Burgers equation at T=1. Resolution: $8192=2^{13}$.

3D Euler Equations

Numerical Methods

Pseudo-spectral (i.e., Fourier) methods in space, RK-4 in time, 2/3 dealiasing. Resolution 1024^3 spatial grid points. Adaptive Δt respecting advective CFL.

Initial data: Taylor Green Vortex

$$\begin{cases} u_1 = \sin(2\pi x)\cos(2\pi y)\cos(2\pi z), \\ u_2 = -\cos(2\pi x)\sin(2\pi y)\cos(2\pi z), \\ u_3 = 0. \end{cases}$$

First use of Taylor-Green initial data

Brachet, Meiron, Orszag, Nickel, Morf, Frisch (1983, JFM; 1984, JSP) **Blow-up time** ≈ 4.2 .

16 / 28

Spectrum 3D Euler-Voigt

Energy spectrum vs. wave number at times $t = 0.0, 0.1, \dots, 4.9, 5.0$. Black curve: t = 4.2, where critical slope is observed. ($\alpha = 12/1024$.) Resolution: 1024^3 (> 1 billion grid points. Processor time ≈ 10 years.)

17 / 28

Blow-up Test for 3D Euler

<u>Result:</u> Near $\alpha \approx 16/1024$, $t \approx 4.2$ we observe $\|\nabla \boldsymbol{u}^{\alpha}(t)\| \sim C\alpha^{-1.1}$.

Outline

- Continuous Data Assimilation and Navier-Stokes
 Introduction
- 2 The Voigt Mode
- Convergence and Blow-up
- 4 Computational Blow-up
- Velocity-Vorticity-Voigt

Navier-Stokes

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \nu \triangle \mathbf{u} + \nabla \times \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Vorticity:
$$\boldsymbol{\omega} := \nabla \times \boldsymbol{u}$$
. (Biot-Savart: $\boldsymbol{u} = -\triangle^{-1}\nabla \times \boldsymbol{\omega}$).

$$\partial_t \boldsymbol{\omega} + (\boldsymbol{\omega} \cdot \nabla) \boldsymbol{u} = (\boldsymbol{u} \cdot \nabla) \boldsymbol{\omega} + \nu \triangle \boldsymbol{\omega}$$

Navier-Stokes

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \nu \triangle \mathbf{u} + \nabla \times \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Vorticity: $\boldsymbol{\omega} := \nabla \times \boldsymbol{u}$. (Biot-Savart: $\boldsymbol{u} = -\triangle^{-1} \nabla \times \boldsymbol{\omega}$).

$$\partial_t \boldsymbol{\omega} + (\boldsymbol{\omega} \cdot \nabla) \boldsymbol{u} = (\boldsymbol{u} \cdot \nabla) \boldsymbol{\omega} + \nu \triangle \boldsymbol{\omega}$$

Vector identity: $(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = \boldsymbol{\omega}\times\boldsymbol{u} + \frac{1}{2}\nabla|\boldsymbol{u}|^2.$

Navier-Stokes

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \nu \triangle \mathbf{u} + \nabla \times \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Vorticity: $\boldsymbol{\omega} := \nabla \times \boldsymbol{u}$. (Biot-Savart: $\boldsymbol{u} = -\triangle^{-1} \nabla \times \boldsymbol{\omega}$).

$$\partial_t \boldsymbol{\omega} + (\boldsymbol{\omega} \cdot \nabla) \boldsymbol{u} = (\boldsymbol{u} \cdot \nabla) \boldsymbol{\omega} + \nu \triangle \boldsymbol{\omega}$$

Vector identity: $(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = \boldsymbol{\omega}\times\boldsymbol{u} + \frac{1}{2}\nabla|\boldsymbol{u}|^2.$

Velocity-Vorticity Formulation

$$\begin{cases} \partial_t \mathbf{u} + \boldsymbol{\omega} \times \mathbf{u} + \nabla \left(p + \frac{1}{2} |\mathbf{u}|^2 \right) = \nu \triangle \mathbf{u} + \mathbf{f}, \\ \partial_t \boldsymbol{\omega} + (\boldsymbol{\omega} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \boldsymbol{\omega} = \nu \triangle \boldsymbol{\omega} + \nabla \times \mathbf{f}, \\ \nabla \cdot \mathbf{u} = \nabla \cdot \boldsymbol{\omega} = 0. \end{cases}$$

<u>Idea</u>: View ω as decoupled from u (No Biot-Savart Law).

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{w} \times \boldsymbol{u} + \nabla \pi &= \nu \triangle \boldsymbol{u} + \mathbf{f}, \\ \partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{w} &= \nu \triangle \boldsymbol{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \boldsymbol{u} &= \nabla \cdot \boldsymbol{w} &= 0, \\ \boldsymbol{u}(0) &= \boldsymbol{u}_0, \\ \boldsymbol{w}(0) &= \boldsymbol{w}_0 = \nabla \times \boldsymbol{u}_0, \end{cases}$$

• Smooth solutions coincide with smooth solutions of NSE by uniqueness.

$$\begin{cases} \partial_t \mathbf{u} + \mathbf{w} \times \mathbf{u} + \nabla \pi &= \nu \triangle \mathbf{u} + \mathbf{f}, \\ \partial_t \mathbf{w} + (\mathbf{w} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{w} &= \nu \triangle \mathbf{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \mathbf{u} &= \nabla \cdot \mathbf{w} &= 0, \\ \mathbf{u}(0) &= \mathbf{u}_0, \\ \mathbf{w}(0) &= \mathbf{w}_0 &= \nabla \times \mathbf{u}_0, \end{cases}$$

- Smooth solutions coincide with smooth solutions of NSE by uniqueness.
- Similar to MHD, dropping $\mathbf{B} \cdot \nabla \mathbf{B}$ term. (Not necessarily easier.)

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{w} \times \boldsymbol{u} + \nabla \pi &= \nu \triangle \boldsymbol{u} + \mathbf{f}, \\ \partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{w} &= \nu \triangle \boldsymbol{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \boldsymbol{u} &= \nabla \cdot \boldsymbol{w} &= 0, \\ \boldsymbol{u}(0) &= \boldsymbol{u}_0, \\ \boldsymbol{w}(0) &= \boldsymbol{w}_0 &= \nabla \times \boldsymbol{u}_0, \end{cases}$$

- Smooth solutions coincide with smooth solutions of NSE by uniqueness.
- Similar to MHD, dropping $\mathbf{B} \cdot \nabla \mathbf{B}$ term. (Not necessarily easier.)
- Linear in each equation (only nonlinear through coupling).

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{w} \times \boldsymbol{u} + \nabla \pi &= \nu \triangle \boldsymbol{u} + \mathbf{f}, \\ \partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{w} &= \nu \triangle \boldsymbol{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \boldsymbol{u} &= \nabla \cdot \boldsymbol{w} &= 0, \\ \boldsymbol{u}(0) &= \boldsymbol{u}_0, \\ \boldsymbol{w}(0) &= \boldsymbol{w}_0 = \nabla \times \boldsymbol{u}_0, \end{cases}$$

- Smooth solutions coincide with smooth solutions of NSE by uniqueness.
- Similar to MHD, dropping $\mathbf{B} \cdot \nabla \mathbf{B}$ term. (Not necessarily easier.)
- Linear in each equation (only nonlinear through coupling).
- Can help stabilize numerical simulations.

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{w} \times \boldsymbol{u} + \nabla \pi &= \nu \triangle \boldsymbol{u} + \mathbf{f}, \\ \partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{w} &= \nu \triangle \boldsymbol{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \boldsymbol{u} &= \nabla \cdot \boldsymbol{w} &= 0, \\ \boldsymbol{u}(0) &= \boldsymbol{u}_0, \\ \boldsymbol{w}(0) &= \boldsymbol{w}_0 = \nabla \times \boldsymbol{u}_0, \end{cases}$$

- Smooth solutions coincide with smooth solutions of NSE by uniqueness.
- Similar to MHD, dropping $\mathbf{B} \cdot \nabla \mathbf{B}$ term. (Not necessarily easier.)
- Linear in each equation (only nonlinear through coupling).
- Can help stabilize numerical simulations.

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{w} \times \boldsymbol{u} + \nabla \pi &= \nu \triangle \boldsymbol{u} + \mathbf{f}, \\ \partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{w} &= \nu \triangle \boldsymbol{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \boldsymbol{u} &= \nabla \cdot \boldsymbol{w} = 0, \\ \boldsymbol{u}(0) &= \boldsymbol{u}_0, \\ \boldsymbol{w}(0) &= \boldsymbol{w}_0 = \nabla \times \boldsymbol{u}_0, \end{cases}$$

- Smooth solutions coincide with smooth solutions of NSE by uniqueness.
- Similar to MHD, dropping $\mathbf{B} \cdot \nabla \mathbf{B}$ term. (Not necessarily easier.)
- Linear in each equation (only nonlinear through coupling).
- Can help stabilize numerical simulations.

Incomplete History (mostly numerical work):

- Guevremont, Habashi, Hafez, 1990
- Gatski, 1991
- Wu, Wu, Wu, 1995
- Meitz, Fasel, 2000

- Wong, Baker, 2002
- Lo, Young, Murugesan, 2006
- Heister, Olshanskii, Rebholz, 2017
- Olshanskii, Rebholz, Salgodo 2018

ldea

• Global well-posedness in 3D for VV is still (obviously) open.

21 / 28

Idea

- Global well-posedness in 3D for VV is still (obviously) open.
- Regularizations for NSE extend trivially to VV.

Idea

- Global well-posedness in 3D for VV is still (obviously) open.
- Regularizations for NSE extend trivially to VV.
- Regularizing only one equation might give GWP and better accuracy.

Idea

- Global well-posedness in 3D for VV is still (obviously) open.
- Regularizations for NSE extend trivially to VV.
- Regularizing only one equation might give GWP and better accuracy.

Idea

- Global well-posedness in 3D for VV is still (obviously) open.
- Regularizations for NSE extend trivially to VV.
- Regularizing only one equation might give GWP and better accuracy.

Velocity-Vorticity-Voigt System (L., Pei, Rebholz, 2018, JDE)

$$\begin{cases} (I - \alpha^2 \triangle) \partial_t \mathbf{u} + \mathbf{w} \times \mathbf{u} + \nabla \pi &= \nu \triangle \mathbf{u} + \mathbf{f}, \\ \partial_t \mathbf{w} + (\mathbf{w} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{w} &= \nu \triangle \mathbf{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \mathbf{u} &= \nabla \cdot \mathbf{w} = 0. \end{cases}$$

Idea

- Global well-posedness in 3D for VV is still (obviously) open.
- Regularizations for NSE extend trivially to VV.
- Regularizing only one equation might give GWP and better accuracy.

Velocity-Vorticity-Voigt System (L., Pei, Rebholz, 2018, JDE)

$$\begin{cases} (I - \alpha^2 \triangle) \partial_t \mathbf{u} + \mathbf{w} \times \mathbf{u} + \nabla \pi &= \nu \triangle \mathbf{u} + \mathbf{f}, \\ \partial_t \mathbf{w} + (\mathbf{w} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{w} &= \nu \triangle \mathbf{w} + \nabla \times \mathbf{f}, \\ \nabla \cdot \mathbf{u} &= \nabla \cdot \mathbf{w} = 0. \end{cases}$$

Boundary conditions (Olshanskii, Rebholz, Salgodo, Galvin, 2015, CMAME)

$$\begin{cases} \left. \boldsymbol{u} \right|_{\partial\Omega} = \boldsymbol{0}, \\ \left. \boldsymbol{w} \cdot \mathbf{n} \right|_{\partial\Omega} = \boldsymbol{0}, \\ \left(\nu(\nabla \times \boldsymbol{w}) \times \mathbf{n} - (\mathbf{f} - \nabla \pi) \times \mathbf{n}) \right|_{\partial\Omega} = \boldsymbol{0}. \end{cases}$$

VVV: Weak and Strong Solutions

Definition of weak solution

Let T>0 be arbitrary. Suppose $\boldsymbol{u}_0\in V$, $\boldsymbol{w}_0\in H$, and $f\in L^2(0,T;H)$. We call the pair $(\boldsymbol{u},\boldsymbol{w})$ a weak solution on the time interval [0,T] to the VVV system, if $\boldsymbol{u}\in C(0,T;V)$, $\boldsymbol{u}_t\in L^2(0,T;V)$, $\boldsymbol{w}\in C_w(0,T;H)\cap L^2(0,T;V)$, $\boldsymbol{w}_t\in L^2(0,T;H^{-1})$, and moreover, $(\boldsymbol{u},\boldsymbol{w})$ satisfies

$$\begin{cases} \alpha^{2}((\boldsymbol{u}_{t}, \psi)) + (\boldsymbol{u}_{t}, \psi) + ((\boldsymbol{u}, \psi)) + \langle \boldsymbol{w} \times \boldsymbol{u}, \psi \rangle = (\mathbf{f}, \psi), \\ \langle \boldsymbol{w}_{t}, \psi \rangle + ((\boldsymbol{w}, \psi)) - \langle B(\boldsymbol{u}, \psi), \boldsymbol{w} \rangle - \langle \widetilde{B}(\boldsymbol{w}, \boldsymbol{u}), \psi \rangle = -(\mathbf{f}, \nabla \times \psi), \end{cases}$$

holds for any $\psi \in L^2(0,T;V)$.

Definition of strong solution

Let T>0 be an arbitrarily given time. Suppose $u_0\in V$, $w_0\in V$, and $\mathbf{f}\in L^2(0,T;H_{\mathrm{curl}})$. We call the pair (u,w) a strong solution on the time interval [0,T] to the VVV system, if it is a weak solution and satisfies additionally $w\in C([0,T];V)\cap L^2(0,T;D(A))$, and $w_t\in L^2(0,T;H)$.

VVV: GWP Theorems

(L., Pei, Rebholz, 2018, JDE)

Suppose $u_0 \in V$, $w_0 \in H$, and $\mathbf{f} \in L^2(0,T;H)$. Then, the VVV sytem possesses a unique global weak solution (u,w) that satisfies $\nabla \cdot w = 0$. Moreover, the following energy equality holds for a.e. $t \in [0,T]$.

$$\alpha^{2} \|\nabla \boldsymbol{u}(t)\|_{L^{2}}^{2} + \|\boldsymbol{u}(t)\|_{L^{2}}^{2} + 2 \int_{0}^{t} \|\nabla \boldsymbol{u}(s)\|_{L^{2}}^{2} ds$$
$$= \alpha^{2} \|\nabla \boldsymbol{u}_{0}\|_{L^{2}}^{2} + \|\boldsymbol{u}_{0}\|_{L^{2}}^{2} + 2 \int_{0}^{t} (\boldsymbol{u}(s), \mathbf{f}(s)) ds$$

(L., Pei, Rebholz, 2018, JDE)

For the initial data $\boldsymbol{u}_0 \in V$, $\boldsymbol{w}_0 \in V$, and $\mathbf{f} \in L^2(0,T;H_{\operatorname{curl}})$, there exists a unique strong solution $(\boldsymbol{u},\boldsymbol{w})$. Moreover, if we further assume that the initial data $\boldsymbol{u}_0 \in H^s \cap V$, $\boldsymbol{w}_0 \in H^s \cap V$, and $\mathbf{f} \in L^2(0,T;H_{\operatorname{curl}}^{s-1})$ for $s \geq 2$, $s \in \mathbb{N}$, then, the solution $\boldsymbol{u} \in C_w(0,T;H^s \cap V)$ and $\boldsymbol{w} \in C_w(0,T;H^s \cap V) \cap L^2(0,T;H^{s+1} \cap V)$.

VVV: Convergence of vorticity

Convergence of vorticity (L., Pei, Rebholz, 2018, JDE)

Denote by $\omega := \nabla \times u$ the vorticity of the flow and let $u_0 \in H^4 \cap V$, $\mathbf{f} \in H^2$. Then, we have

$$\|\boldsymbol{\omega}(t) - w(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \boldsymbol{\omega}(t) - \nabla \boldsymbol{w}(t)\|_{L^{2}}^{2} + \int_{0}^{t} \|\nabla \boldsymbol{\omega}(s) - \nabla \boldsymbol{w}(s)\|_{L^{2}}^{2} ds$$

$$\leq C_{0}e^{Ct} + \frac{\tilde{K}\alpha^{2}}{C}(e^{Ct} - 1),$$

where C_0 depends on the initial data and \tilde{K} is explained in the proof. If we further assume $w_0 = \nabla \times u_0$, then,

$$\|\boldsymbol{\omega}(t) - \boldsymbol{w}(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \boldsymbol{w}(t) - \nabla \boldsymbol{\omega}(t)\|_{L^{2}}^{2} + \int_{0}^{t} \|\nabla \boldsymbol{\omega}(s) - \nabla \boldsymbol{w}(s)\|_{L^{2}}^{2} ds$$

$$\leq K\alpha^{2} (e^{Ct} - 1),$$

for a.e. t>0, i.e., $\| {\boldsymbol w} - {\boldsymbol \omega} \|_{L^\infty(0,T;L^2)} \sim \mathcal{O}(\alpha)$ and $\| {\boldsymbol w} - {\boldsymbol \omega} \|_{L^2(0,T;V)} \sim \mathcal{O}(\alpha)$. In particular, $\| {\boldsymbol w} - {\boldsymbol \omega} \|_{L^\infty(0,T;L^2)} \to 0$ and $\| {\boldsymbol w} - {\boldsymbol \omega} \|_{L^2(0,T;V)} \to 0$ as $\alpha \to 0$.

Adam Larios

VVV: Convergence of velocity

Convergence of velocity (L., Pei, Rebholz, 2018, JDE)

Denote by $\widetilde{\boldsymbol{\omega}}:=\nabla\times\widetilde{\boldsymbol{u}}$ the vorticity of $\widetilde{\boldsymbol{u}}$ in NS, and let \boldsymbol{u}_0 , \mathbf{f} , and T>0 be the same as in prev. Theorem, and set $\boldsymbol{w}_0=\nabla\times\boldsymbol{u}_0$ and $\widetilde{\boldsymbol{u}}_0=\boldsymbol{u}_0$. Then, for any $\alpha\in(0,1]$,

$$\|\boldsymbol{\omega}(t) - \widetilde{\boldsymbol{\omega}}(t)\|_{L^{2}}^{2} + \|\boldsymbol{u}(t) - \widetilde{\boldsymbol{u}}(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \boldsymbol{u}(t) - \nabla \widetilde{\boldsymbol{u}}(t)\|_{L^{2}}^{2}$$
$$+ \int_{0}^{t} \|\nabla \boldsymbol{u}(s) - \nabla \widetilde{\boldsymbol{u}}(s)\|_{L^{2}}^{2} ds$$
$$\leq C\alpha^{2}$$

for a.e. t>0 in the interval of existence of the solution to NSE, say, up to T>0 and the constant C depends on $\|\widetilde{\boldsymbol{u}}\|_{H^3}$, $\|\boldsymbol{u}\|_{H^3}$, as well as $\|\mathbf{f}\|_{H^2_{\text{curl}}}$. In particular, we have $\|\boldsymbol{\omega}-\widetilde{\boldsymbol{\omega}}\|_{L^\infty(0,T;H)}\to 0$, $\|\boldsymbol{u}-\widetilde{\boldsymbol{u}}\|_{L^\infty(0,T;H)}\to 0$, and $\|\boldsymbol{u}-\widetilde{\boldsymbol{u}}\|_{L^2(0,T;V)}\to 0$ as $\alpha\to 0$.

Remarks

• Analysis of 3D VVV is distinct from analysis of "3D Voigt-MHD" with Voigt-regularization on momentum equation (Larios, Titi, 2011).

- Analysis of 3D VVV is distinct from analysis of "3D Voigt-MHD" with Voigt-regularization on momentum equation (Larios, Titi, 2011).
- Cancellation of the nonlinear terms and that occurs in energy estimates for the MHD-Voigt equations does not occur in the VVV system

- Analysis of 3D VVV is distinct from analysis of "3D Voigt-MHD" with Voigt-regularization on momentum equation (Larios, Titi, 2011).
- Cancellation of the nonlinear terms and that occurs in energy estimates for the MHD-Voigt equations does not occur in the VVV system
- Therefore one must deal directly with the analogue of the vortex-stretching term $(\boldsymbol{w}\cdot\nabla)\boldsymbol{u}$.

- Analysis of 3D VVV is distinct from analysis of "3D Voigt-MHD" with Voigt-regularization on momentum equation (Larios, Titi, 2011).
- Cancellation of the nonlinear terms and that occurs in energy estimates for the MHD-Voigt equations does not occur in the VVV system
- Therefore one must deal directly with the analogue of the vortex-stretching term $(w\cdot \nabla)u$.
- Key idea is to notice that one may first obtain an energy estimate purely in terms of u, and then use this bound to obtain a bound on w.

- Analysis of 3D VVV is distinct from analysis of "3D Voigt-MHD" with Voigt-regularization on momentum equation (Larios, Titi, 2011).
- Cancellation of the nonlinear terms and that occurs in energy estimates for the MHD-Voigt equations does not occur in the VVV system
- ullet Therefore one must deal directly with the analogue of the vortex-stretching term $(w\cdot\nabla)u.$
- Key idea is to notice that one may first obtain an energy estimate purely in terms of u, and then use this bound to obtain a bound on w.
- ullet Higher-order estimates on u are not w-independent, but can be obtained using a bootstrapping technique, going back and forth between the two equations.

VVV: Invsicid Case?

- Do analogous results hold in the inviscid (Euler-Voigt) case?
- Vorticity stretching term $(w \cdot \nabla)u$ can no longer be controlled in the same way, as higher-order derivatives cannot be absorbed into the viscosity, so higher-order estimates are needed, but as with other α -models, this is not currently understood.
- In the proof of convergence as $\alpha \to 0$, the estimates depend crucially on the fact that $\int_0^T \|\nabla u(t)\|_{L^2}^2 dt$ is bounded *independently* of $\alpha \in (0,1]$, which is a property that one does not have in the Euler-Voigt equations.

Thank you!