Logik und Komplexität ÜBUNG 7

Denis Erfurt, 532437 HU Berlin

Aufgabe 1)

Zeige 1. C ist Hanf-lokal in $S \Rightarrow C$ ist FO-definierbar in S

Beweis. Es exestiert eine Zahl $r \in \mathbb{N}$, so dass für alle $\mathfrak{A}, \mathfrak{B} \in S$ gilt:

Falls
$$\mathfrak{A} \rightleftharpoons_r \mathfrak{B}$$
, so $(\mathfrak{A} \in C \Leftrightarrow \mathfrak{B} \in C)$

 \Rightarrow für jeden r-Umgebungstyp ρ gilt:

Falls
$$\#_{\rho}(\mathfrak{A}) = \#_{\rho}(\mathfrak{B})$$
, so $(\mathfrak{A} \in C \Leftrightarrow \mathfrak{B} \in C)$

Da es sich bei S um endliche Strukturen handelt sind $\mathfrak A$ und $\mathfrak B$ ebenfalls endlich. Sei $r=3^m$.

QUESTION: Kann ich k=0 so annähmen, oder muss ich das für alle k berücksichtigen?

O.b.d.A. ist k=0. Somit sind alle Bedingungen vom Satz von Hanf erfüllt. Somit gilt

Falls
$$\mathfrak{A} \approx_m \mathfrak{B}$$
, so $(\mathfrak{A} \in C \Leftrightarrow \mathfrak{B} \in C)$

Somit gibt es nach Ehrenfeucht eine (FO) Hintikka Formel, die die Gewinnstrategie für Dup. auf m Runden EF Spiel für $\mathfrak A$ und $\mathfrak B$ beschreibt.

Falls
$$\mathfrak{B} \models \phi_A^m$$
, so $(\mathfrak{A} \in C \Leftrightarrow \mathfrak{B} \in C)$

Sei $Q \subseteq m - Typen_0[\sigma]$ so dass f.a. $\mathfrak{A}, \mathfrak{B} \in C$ gilt: $\mathfrak{B} \models \phi_A^m \Rightarrow \phi_A^m \in Q$

$$\psi := \bigvee_{\phi \in Q} \phi$$

Da Q endlich ist exestiert ein solches $\psi \in FO[\sigma]$. Somit gilt

$$\mathfrak{A} \in C \Rightarrow \mathfrak{A} \models \psi$$

Somit ist $C := \{ \mathfrak{A} \in S : \mathfrak{A} \models \psi \}$ und damit FO-definierbar in S.

Aufgabe 2)

Idee: Zerteilung mit dem Kompositionslemma.

QUESTION: konstanten überführen in relationen

Sei
$$\mathcal{A}_f := \mathcal{A}|_{M_f^{\mathcal{A}}}$$
.
 $\Rightarrow \mathcal{A} := \bigsqcup_{f \subseteq \sigma_{k,l}} \mathcal{A}_f$

Nach dem Kompositionslemma folgt:

Falls für alle $\mathcal{A}_f, \mathcal{B}_f$ gilt $\mathcal{A}_f \approx_m \mathcal{B}_f \Rightarrow \mathcal{A} \approx_m \mathcal{B}$

Beobachtung 1: für alle
$$P \in \sigma_{k,l} : P^{\mathcal{A}_f} = \begin{cases} A^{\mathcal{A}_f} & P \in f \\ \{\} & P \notin f \end{cases}$$

Beobachtung 2: Für alle $f \subseteq \sigma_{k,l}$ hängt die Gewinnstrategie von Dup. im $EF(\mathcal{A}_f, \mathcal{B}_f)$ -Spiel **nur** von den Universen $A^{\mathcal{A}_f}, B^{\mathcal{B}_f}$ ab.

 \Rightarrow um zu zeigen $\mathcal{A}_f \approx_m \mathcal{B}_f$ genügt es demnach zu Zeigen: $\mathcal{A}'_f \approx_m \mathcal{B}'_f$. Dabei sind $\mathcal{A}'_f, \mathcal{B}'_f \sigma = \text{-Strukturen mit } A^{\mathcal{A}'_f} = A^{\mathcal{A}_f}$ sowie $B^{\mathcal{B}'_f} = B^{\mathcal{B}_f}$.

Falls $|A^{\mathcal{A}'_f}| = |B^{\mathcal{B}'_f}|$: dann sind beide Strukturen isomorph und somit gilt: $\mathcal{A}'_f \approx_m \mathcal{B}'_f$.

Falls
$$|A^{\mathcal{A}'_f}|, |B^{\mathcal{B}'_f}| > 2^m$$
:

QUESTION: Was muss bei einer Menge übereinstimmen? Falls Sp. eine Menge auswählt, was kann Dup als valide menge auswählen? müssen sie Gleiche Kardinalität besitzen

Aufgabe 3. a)

Zeige 2. 2-COL ist nicht Fo-definierbar in DGraph \Rightarrow Für jedes $r \in \mathbb{N}$ exestiert ein $\mathfrak{A}_r \in 2-COL$ und $\mathfrak{B}_r \in DGraph \setminus 2-COL$ mit $\mathfrak{B}_r \rightleftarrows_r \mathfrak{A}_r$:

Beweis. Sei \mathfrak{A}_r eine Struktur bestehend aus 2 gerichteten Kreisen mit je 2r+3 Knoten. Sei \mathfrak{B}_r ein Großer Kreis mit 4r+6 Knoten.

Für alle $a \in A$ sieht der r-Umgebungstyp $\mathfrak{N}_r^{\mathfrak{A}_r}(a)$ wie eine Linie aus mit 2r+1 Knoten.

Auch gilt für alle $a \in A, b \in B$:

$$(\mathcal{N}_r^{\mathfrak{A}_r}(a), a) \cong (\mathcal{N}_r^{\mathfrak{B}_r}(b), b)$$

Somit gilt für jeden r-Umgebungstyp $\varrho: \#_{\varrho}(\mathfrak{A}_r) = \#_{\varrho}(\mathfrak{B}_r)$ und somit:

$$\mathfrak{A} \rightleftharpoons_r \mathfrak{B}_r$$

Klar ist auch: $\mathfrak{A}_r\in DGraph\backslash 2-COL$, da die Kreise jeweils eine ungerade Anzahl an Knoten besitzen. Jedoch ist $\mathfrak{B}_r\in 2-COL$.

$$\Rightarrow$$
Somit ist $2 - COL$ nicht FO-definierbar in $DGraph$.

Aufgabe 3. b)

Zeige 3. 3 - COL ist nicht FO-definierbar in DGraph. \Rightarrow Für jedes $r \in \mathbb{N}$ exestiert ein $\mathfrak{A}_r \in 3 - COL$ und $\mathfrak{B}_r \in DGraph \setminus 3 - COL$ mit $\mathfrak{B}_r \rightleftarrows_r \mathfrak{A}_r$:

Beweis. Sei K_r ein Graph mit: $V = \{1, ..., r\}$ sowie $E = \{(n, n + 1) : n \in \{1, ..., r - 1\}\} \cup \{(n, n + 2) : n \in \{1, ..., r - 2\}\} \cup \{(n - 1, 1), (n, 1), (n, 2)\}$

 $\mathcal{K}_r \in 3 - COL \Leftrightarrow r = 6n \text{ für } n \in \mathbb{N}^+$

Für ein Kreis \mathcal{K}_{r+1} und ein Beliebigen $a \in V$ sieht die r-Umgebung $\mathcal{N}^{\mathcal{K}_{r+1}}(a)$ folgendermaßen aus:

Außerdem gilt für $a \in \mathcal{K}_p, b \in \mathcal{K}_q$ mit $p, q \ge r + 1$:

$$(\mathcal{N}_r^{\mathcal{K}_p}(a), a) \cong (\mathcal{N}_r^{\mathcal{K}_q}(b), b)$$

Sei $\mathfrak{A}_r := \mathcal{K}_{6r+6} \cup \mathcal{K}_{6r+8} \cup \mathcal{K}_{6r+10}$

 \Rightarrow f.a. $r \in \mathbb{N} \colon \mathfrak{B}_r \in DGraph \setminus 3 - COL$

Sei $\mathfrak{B}_r := \mathcal{K}_{18r+24}$

 \Rightarrow f.a. $r \in \mathbb{N}$: $\mathfrak{B}_r \in 3 - COL$

Da $|A|=|B|\Rightarrow$ für jeden r-Umgebungstyp $\varrho\colon \#_\varrho({\mathfrak A}_r)=\#_\varrho({\mathfrak B}_r)$

und somit $\mathfrak{B}_r \rightleftharpoons_r \mathfrak{A}_r$

Aufgabe 4)