G2Vec: Distributed gene representations for identification of cancer prognostic genes

User Manual (version 0.1)

April 23, 2018

Index

1. Installation	3
2. Quick start	3
1) Run	3
2) Example	4
3. Contact	6
4. Reference.	6

1. Installation

```
This library 'G2Vec' requires:
```

Python 3,

Numpy ($\ge 1.6.1$),

Scikit-learn (≥0.18),

Tensorflow (≥1.4)

To download or update those libraries, use 'pip' in command line.

pip install numpy scikit-learn tensorflow

Download the G2Vec module from https://github.com/mathcom/G2Vec.

If successfully downloaded, a user can find the following 4 files:

G2Vec.py,

ex EXPRESSION.txt,

ex CLINICAL.txt,

ex NETWORK.txt

2. Quick start

1) Run

\$ python G2Vec.py [-h] [-p LENPATH] [-r NUMREPETITION]

[-s SIZEHIDDENLAYER] [-l LEARNINGRATE]

[-n NUMBIOMARKER]

EXPRESSION_FILE CLINICAL_FILE NETWORK_FILE

RESULT NAME

Option	Name	Description
	EXPRESSION_FILE (positional argument)	Tab-delimited file for gene expression profiles as below: PATIENT TCGA-2Y-A9GS TCGA-2Y-A9GU TCGA-2Y-A9GX A1BG 14.467 13.187 14.775 A1CF 10.620 10.291 10.08 A2LD1 6.638 11.509 6.882
	CLINICAL_FILE (positional argument)	Tab-delimited file for patient's clinical data as below (LABEL= 0:good prognosis and 1:poor prognosis): PATIENT LABEL TCGA-2Y-A9GS 1 TCGA-2Y-A9GU 0 TCGA-2Y-A9GX 0
	NETWORK_FILE (positional argument)	Tab-delimited file for gene interaction network as below: GENEI GENE2 EIF2A YWHAE HNF4A HIST1H2AC TRA2B POLR2F

Option	Name	Description
	RESULT_NAME	The results of G2Vec are saved with the following
	(positional argument)	names:
		1) RESULT_FILE_biomarkers.txt
		2) RESULT_FILE_lgroups.txt
		3) RESULT FILE vectors.txt
-h	Help message	Show this help message and exit
	(optional argument)	
-p	Length of random paths	This parameter represents the maximum length of
	(optional argument)	random paths generated from gene correlation
		networks. (default=80)
-r	Repetition number of	This parameter decides how many random paths are
	random walk procedure	generated from each gene correlation network. For a
	(optional argument)	given positive integer r , a random walker departs from
		all genes r times, resulting that a maximum of r random
		paths will be generated for each gene. (default=10)
-S	Size of hidden layer	This parameter decides the number of hidden neurons,
	(optional argument)	which is equal to the dimension of distributed
		representations. (default=128)
-l	Learning rate	This parameter decides how quickly weights in a neural
	(optional argument)	network converge. (default=0.005)
-n	Number of biomarkers	This parameter is number of biomarkers identified
	(optional argument)	from each L -group. If N is given, then the total of
		biomarkers is 2N. (default=50)

2) Example

\$ python G2Vec.py ex EXPRESSION.txt ex CLINICAL.txt ex NETWORK.txt ex RESULT

(1) Log in command line

- The number of random paths can be different from the below log due to random walk algorithm.
- The results of training can be different because of variable initialization and early stopping.

```
>>> 0. Arguments
Namespace (CLINICAL FILE='ex CLINICAL.txt',
EXPRESSION FILE='ex EXPRESSION.txt', NETWORK FILE='ex NETWORK.txt',
RESULT FILE='ex RESULT', epoch=500, learningRate=0.005, lenPath=80,
numBiomarker=50, numRepetition=10, sizeHiddenlayer=128)
>>> 1. Load data
>>> 2. Preprocess data
   n_samples: 135
   n_genes : 7523
                      (common genes in both EXPRESSION and NETWORK)
   n edges : 216540 (edges with the common genes)
>>> 3. Generate random paths from each group
   *** most time consuming step ***
   n paths : 45402
   n genes : 3773
                      (genes in good or poor random paths)
>>> 4. Compute distributed representations using modified CBOW
   Start training the modified CBOW with early stopping
                     ACC[val]=0.6336 ACC[tr]=0.6310 (2.369 sec)
    - Epoch: 000
   - Epoch: 005
                      ACC[val]=0.8044 ACC[tr]=0.8232 (10.459 sec)
   - Epoch: 010
                      ACC[val]=0.8434 ACC[tr]=0.8633 (11.008 sec)
```

(2) ex RESULT biomarkers.txt

- A list of biomarkers identified by G2Vec.py

```
GeneSymbol
ADH1C
AKAP13
ARHGEF3
ARTN
ATG7
```

(3) ex RESULT lgroups.txt

- A list of whole genes and their *L-group* labels
- tab-delimited format

GeneSymbol	Lgroup(0:good,1:poor,2:other)	
A1CF	2	
A2M	2	
AAAS	2	
AAK1	1	
AARS	2	

$(4) \ ex_RESULT_vectors.txt$

- A list of distributed gene representations computed by G2Vec
- tab-delimited format

GeneSymbol	V0	V1	V2
A1CF	0.092807	-0.044005	-0.027056
A2M	0.098863	-0.061118	0.02870
AAAS	-0.044920	-0.086036	0.100735
AAK1	-0.025246	0.031078	0.09121

3. Contact

Bug reporting, questions or any suggestions are highly appreciated.

Jonghwan Choi (<u>mathcom@inu.ac.kr</u>)

Jaegyoon Ahn (jgahn@inu.ac.kr)

4. Reference

Jonghwan Choi, et al. " G2Vec: Distributed gene representations for identification of cancer prognostic genes" (submitted)