

Genetic Algorithms for Feature Selection

Tom Gedeon Research School of Computer Science Australian National University tom@cs.anu.edu.au

based on slides by Nandita Sharma

Human Centred Computing

Overview

- What is feature selection?
- ▶ Feature selection for stress recognition
- Evolutionary Algorithms (EAs) for feature selection
- Comparison of feature selection methods

Feature Selection

▶ A simple data set:

	Class A						
ID	F1	F2	F3	F4			
1	0.80	0.50	0.37	0.48			
2	0.91	0.54	0.16	0.44			
3	0.63	0.88	0.54	0.25			
4	0.70	0.52	0.27	0.48			
5	0.77	0.03	0.02	0.27			
6	0.64	0.36	0.19	0.09			

Class B							
ID	F1	F2	F3	F4			
7	0.98	0.12	0.74	0.89			
8	0.64	0.38	0.56	0.61			
9	0.45	0.20	0.86	0.08			
10	0.04	0.26	0.32	0.39			
11	0.38	0.07	0.64	0.97			
12	0.94	0.81	0.51	0.92			

- A classifier could be used to separate the classes using all features - any problems?
 - Would a smaller set of features suffice?

Feature Selection

	Class A							
ID	F1	F2	F3	F4				
1	0.80	0.50	0.37	0.48				
2	0.91	0.54	0.16	0.44				
3	0.63	0.88	0.54	0.25				
4	0.70	0.52	0.27	0.48				
5	0.77	0.03	0.02	0.27				
6	0.64	0.36	0.19	0.09				

Class B							
ID	F1	F2	F3	F4			
7	0.98	0.12	0.74	0.89			
8	0.64	0.38	0.56	0.61			
9	0.45	0.20	0.86	0.08			
10	0.04	0.26	0.32	0.39			
11	0.38	0.07	0.64	0.97			
12	0.94	0.81	0.51	0.92			

- Which features can determine the different classes above? F3
 - Can these features improve classification performance?
- Now, suppose you have a data set that is 100 times larger.
 - What characteristics do you want in your feature selection method?

Stress Recognition

- Aim: model stress using physiological and physical sensor signals to recognise stress
- Models based on artificial neural networks (ANNs) & support vector machines (SVMs)
- Hundreds of stress features
 - ▶ redundant and irrelevant features → motivates feature selection
- Genetic algorithm & correlation methods for feature selection

Stress

Reaction or response to the imbalance caused between demands & resources available to a person

Stress Measures

Traditional measures

- Interviews, self-assessment reports (subjective)
- Task performance

Physiological measures

Heart rate, brain waves, skin conductivity

Physical measures

Body movement, face & eye tracking, voice

Reasons for using physiological & physical measures

- Objective
- Provides data at a higher granularity for detailed analysis

Physiological & Physical Signals

Stress Data Collection: A HCI Experiment

- 1. Present experiment requirements to participant
- 2. Participant provides consent
- 3. Equipment
 - Physiological signals ECG, GSR, BP
 - Physical signals Eye gaze, Pupil diameter
- 4. Participant does some task
- 5. Assessment & survey

Participant's Room

Computer screen displaying task

Blood pressure cuff

Face & eye
tracking
cameras

Disposable ECG & GSR electrodes

ANN & SVM Stress Models

- What are the problems with using all the stress features?
 - Large ANN
 - Could negatively affect model performance
 - Longer computation times
- Solution? Optimise features

Genetic Algorithm

Genetic Algorithm for Feature Selection

Chromosome

- ▶ A chromosome represents a feature subset
- ▶ Features in a subset are used as classifier inputs

FI	F2	F3	F4	F5	F6	F7	•••	Fn
I	0	0	0	I		Q	•••	ı l
where Fi = ith feature				featu	ates F7 are is not subset	in	indicates Fn feature is in the subset	

Correlation Method for Feature Selection

- Pseudo-independent Feature Selection algorithm (PISA)
- Based on correlation coefficients
 - measure for strength of linear relationship between features
- ▶ Let X & Y be features

 $x_t & y_t$ be feature values at time-step t in X & Y

 σ_X & σ_Y be standard deviations

 r_{xy} = correlation coefficient

$$r_{XY} = \frac{\sum_{t=0}^{T} (x_t - \bar{X})(y_t - \bar{Y})}{(T+1)\sigma_X \sigma_Y} \qquad |r_{XY}| \le 1$$

Stress Recognition Models

- I. ANN: all stress features were inputs
- 2. **PISA+ANN**: ANN with inputs selected by PISA
- 3. **GA+ANN**: ANN with inputs selected by a GA
- 4. **SVM**: all the stress features were inputs, like the ANN
- 5. **PISA+SVM**: SVM with inputs selected by PISA
- 6. **GA+SVM**: SVM with inputs selected by a GA

Results

Model performance using 10-fold cross-validation

Classification Performance Measure	ANN	PISA+ANN	GA+ANN	SVM	PISA+SVM	GA+SVM
Accuracy	0.68	0.76	0.82	0.67	0.80	0.98
F-score	0.67	0.79	0.82	0.67	0.79	0.98

- Classifiers with feature selection methods performed better
- ▶ GA hybrid models performed the best

Summary

- Purpose for feature selection
- ▶ Feature selection for optimising model performance
- ▶ A real-world application of EAs stress recognition
- ► EAs are good for selecting the more relevant features & reduce the use of redundant features for modelling