

第2章:分组密码体制

2.4 数论基础

赵俊舟

junzhou.zhao@xjtu.edu.cn

2025年3月4日

目录

- 1 群、环和域
- ② 模算术
- ③ 欧几里得算法
- 4 有限域

目录

- ① 群、环和域
- ② 模算术
- ③ 欧几里得算法
- 4 有限域

群 (Groups)

定义 (群, Groups)

记作 $\{G,\cdot\}$, 定义了一个二元运算·的集合 G, G 中每一个序偶 (a,b) 通过运算·生成 G 中的元素 $a\cdot b$, 满足下列公理:

- (A1) 封闭性 Closure: 如果 a 和 b 都属于 G, 则 $a \cdot b$ 也属于 G;
- (A2) 结合律 Associative: 对于 G 中任意元素 a, b, c, 都有 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ 成立;
- (A3) 单位元 Identity element: G 中存在一个元素 e, 对于 G 中任意元素 a, 都有 $a \cdot e = e \cdot a = a$ 成立;
- (A4) 逆元 Inverse element: 对于 G 中任意元素 a, G 中都存在 一个元素 a', 使得 $a \cdot a' = a' \cdot a = e$ 成立。

注:当群中的运算符是加法时,习惯上记它的单位元为 0, a 的 逆元是 -a, 并且减法用以下的规则定义: a-b=a+(-b).

有限群、无限群、阶、交换群和循环群

定义(有限群,无限群,阶)

如果群的元素是有限个,则该群称为有限群;否则,称为无限群。有限群中元素的个数称为有限群的阶。

定义 (交换群,阿贝尔群,Abelian Groups)

还满足以下条件的群称为交换群:

(A5) 交換律 Commutative: 对于 G 中任意的元素 a, b, 都有 $a \cdot b = b \cdot a$ 成立。

定义(循环群, Cyclic Groups)

如果群中的每一个元素都是一个固定的元素 $g \in G$ 的幂 g^k (k 为整数),则称群 G 为循环群。元素 g 生成了群 G,或者说 g 是群 G 的生成元。

环 (Rings)

定义 (环, Rings)

环 R, 记为 $\{R, +, \times\}$, 是具有加法和乘法两个二元运算的元素的集合, 对于环中的任意元素 a, b, c 满足以下公理:

(A1-A5) R 关于加法是一个交换群,单位元是 0,a 的逆是 -a。

(M1) 乘法封闭性: 如果 a 和 b 属于 R, 则 ab 也属于 R。

(M2) 乘法结合律: 对于 R 中任意 a, b, c 有 a(bc) = (ab)c.

(M3) 分配律: a(b+c) = ab + ac 或 (a+b)c = ac + bc。

例 (环)

定义在整数集 \mathbb{Z} 上的加法和乘法运算,都满足上述公理,所以 $\{\mathbb{Z}, +, \times\}$ 构成一个环。

交换环和整环

定义(交换环)

环如果还满足以下条件,则被称为交换环:

(M4) **乘法交换律**: ab = ba。

定义(整环)

交换环如果还满足以下条件,则被称为整环:

(M5) 乘法单位元: R 中存在元素 1 使得所有 a 有 a1 = 1a。

(M6) 无零因子: 如果 R 中有 a, b 且 ab = 0, 则 a = 0 或 b = 0。

注:无零因子指没有非平凡零因子。

例 (整环)

定义在整数集上的环 $\{\mathbb{Z}, +, \times\}$ 是交换环,也是整环。

域(Fields)

定义 (域, Fields)

记为 $\{F, +, \times\}$, 是有加法和乘法的两个二元运算的元素的集合, 对于 F 中的任意元素 a, b, c, 满足以下公理:

(A1-M6) F 是一个整环;

- (M7) **乘法逆元**: 对于 F 中的任意非零元素 a, F 中都存在 一个元素 a^{-1} , 使得 $aa^{-1} = a^{-1}a = 1$.
- 域就是一个集合,在其上进行加减乘除而不脱离该集合,除 法按以下规则定义: $a/b = ab^{-1}$ 。
- 有理数集合、实数集合和复数集合都是域;
- 整数集合不是域,因为除了 1 和 −1 有乘法逆元,其他元素 都无乘法逆元。

群、环和域的关系

If a and b belong to S, then a + b is also in S a + (b + c) = (a + b) + c for all a, b, c in SThere is an element 0 in R such that a + 0 = 0 + a = a for all a in S For each a in S there is an element -a in Ssuch that a + (-a) = (-a) + a = 0a + b = b + a for all a, b in SIf a and b belong to S, then ab is also in S a(bc) = (ab)c for all a, b, c in S a(b+c) = ab + ac for all a, b, c in S (a + b)c = ac + bc for all a, b, c in S ab = ba for all a, b in SThere is an element 1 in S such that a1 = 1a = a for all a in S If a, b in S and ab = 0, then either a = 0 or b = 0If a belongs to S and a 0, there is an element a^{-1} in S such that $aa^{-1} = a^{-1}a = 1$

目录

- 1 群、环和域
- ② 模算术
- ③ 欧几里得算法
- 4 有限域

模运算和同余

定义(模运算)

如果 a 是整数, n 是正整数, 定义 a 除以 n 所得余数为 a 模 n, 记为 $a \bmod n$ 。对于任意整数 a,有

$$a = \lfloor a/n \rfloor \times n + (a \mod n).$$

例如, $11 \mod 7 = 4$, $-11 \mod 7 = 3$.

定义(同余)

如果 $a \mod n = b \mod n$, 则称整数 $a \mod b$ 是模 $n \mod n$, 表示为 $a \equiv b \pmod n$ 或 $a \equiv_n b$.

例如, $73 \equiv 4 \pmod{23}$, $21 \equiv -9 \pmod{10}$

同余的性质

性质

- $n|(a-b) \Leftrightarrow a \equiv b \pmod{n}$.
- 对称性: $a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n}$.
- 传递性: $a \equiv b \pmod{n}$ 且 $b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}$.

证明.

- (⇒) 如果 n|(a-b), 则有 (a-b) = kn, k 为某个整数,所以 a = b + kn。故 $a \mod n = (b + kn) \mod n = b \mod n$ 。
- (\Leftarrow) 如果 $a \equiv b \pmod{n}$, 那么 $a = k_1 n + r, b = k_2 n + r$, 进而 $n \mid (a b)$ 。

模算术运算

性质(模运算的分配率)

$$(a + b) \mod n = [(a \mod n) + (b \mod n)] \mod n$$

 $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

性质(模运算的加性和乘性)

如果
$$a \equiv b \pmod{n}$$
 且 $c \equiv d \pmod{n}$,则
$$(a+c) \equiv (b+d) \pmod{n}$$

$$(a \times c) \equiv (b \times d) \pmod{n}$$

- $n|(a-b) \wedge n|(c-d) \Rightarrow n|(a-b+c-d) \Rightarrow n|[(a+c)-(b+d)] \Rightarrow (a+c) \equiv (b+d) \pmod{n}$.
- $n|(a-b) \wedge n|(c-d) \Rightarrow n|[c(a-b) + b(c-d)] \Rightarrow n|(ac-bd) \Rightarrow ac \equiv bd \pmod{n}$.

性质

如果 $ac \equiv bd \pmod{n}$ 且 $c \equiv d \pmod{n}$, $\gcd(c, n) = 1$, 则 $a \equiv b \pmod{n}$.

例如: $3 \times 2 \equiv 1 \times 2 \pmod{4}$ 且 $2 \equiv 2 \pmod{4}$,但 $3 \neq 1$ (mod 4), 因为 $\gcd(2,4) \neq 1$ 。

证明.

$$ac \equiv bd \pmod{n} \Rightarrow n | (ac - bd)$$

$$c \equiv d \pmod{n} \Rightarrow n | (c - d) \Rightarrow c - d = kn \text{ for some } k.$$
(2)

$$c \equiv d \pmod{n} \Rightarrow n | (c - d) \Rightarrow c - d = kn \text{ for some } k.$$

So we have d = c - kn. Continuing the argument of Eq. (1), we have that $n[ac - b(c - kn)] \Rightarrow n[ac - bc - kbn] \Rightarrow n[a - b]$

Because gcd(c, n) = 1, then c does not contain divisor n. Hence a - b must have divisor n, i.e., n|(a-b). We thus obtain $a \equiv b \pmod{n}$.

模算术运算

推论

如果 $ai \equiv aj \pmod{n}$ 且 gcd(a, n) = 1,则 $i \equiv j \pmod{n}$ 。

令 $\mathbb{Z}_n \triangleq \{0, ..., n-1\}$ 为小于 n 的非负整数集合。

引理

如果 gcd(a, n) = 1, 则对于每个 $i, j \in \mathbb{Z}_n$ 且 $i \neq j$, 那么 $ai \mod n \neq aj \mod n$

证明.

假设 $ai \mod n = aj \mod n$,即 $ai \equiv aj \pmod n$ 。由于 $\gcd(a, n) = 1$,所以 $i \equiv j \pmod n$ 。又因为 $i, j \in \mathbb{Z}_n$,所以只能 i = j,这与条件 $i \neq j$ 相矛盾,所以假设不成立。

加法逆元和乘法逆元

- 加法逆元: 对于给定的 $a \in \mathbb{Z}_n$, 如果存在 $z \in \mathbb{Z}_n$, 使得 $a + z \equiv 0 \pmod{n}$, 则称 $z \ni a$ 的加法逆元, 即 -a = z。
- 乘法逆元: 对于给定的 $a \in \mathbb{Z}_n \setminus \{0\}$, 如果存在 $z \in \mathbb{Z}_n \setminus \{0\}$, 使得 $az \equiv 1 \pmod{n}$, 则称 z 为 a 的乘法逆元,即 $a^{-1} = z$ 。
- $\mathbb{Z}_n \setminus \{0\}$ 中的所有元素都有加法逆元,但不一定都有乘法逆元

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6
	I		1	1	1		1	: !

X 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 7 2 0 2 4 6 0 2 4 6 3 0 3 6 1 4 7 2 5	~ / 6 /		, I—	1	~	112 17	71711	~ ~	70
1 0 1 2 3 4 5 6 7 2 0 2 4 6 0 2 4 6	<	0	0 1	2	3	4	5	6	7
2 0 2 4 6 0 2 4 6)	0	0 0	0	0	0	0	0	0
	1	0	0 1	2	3	4	5	6	7
3 0 3 6 1 4 7 2 5	2	0	0 2	4	6	0	2	4	6
	3	0	0 3	6	1	4	7	2	5
4 0 4 0 4 0 4	4	0	0 4	0	4	0	4	0	4
5 0 5 2 7 4 1 6 3	5	0	0 5	2	7	4	1	6	3
6 0 6 4 2 0 6 4 2	5	0	0 6	4	2	0	6	4	2
7 0 7 6 5 4 3 2 1	7	0	0 7	6	5	4	3	2	1

模 8 加法

模 8 乘法

乘法逆元存在的条件

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

模 7 乘法

定理(乘法逆元存在的条件)

如果 gcd(a, n) = 1,则 $\mathbb{Z}_n \setminus \{0\}$ 中存在 a 的模 n 乘法逆元 $z \in \mathbb{Z}_n \setminus \{0\}$,使得 $az \equiv 1 \pmod{n}$,即 $a^{-1} \mod n = z$ 。

因为 a 与 n 互素,由前面的引理知,如果用 a 乘以 $\mathbb{Z}_n\setminus\{0\}$ 中的所有数 z 模 n,得到的余数将以不同次序涵盖 $\mathbb{Z}_n\setminus\{0\}$ 中的所有数,那么至少有一个余数为 1,这时的 z 即为 a 的乘法逆元。

乘法逆元存在的条件

$i \in \mathbb{Z}_n$	ai $mod n \in \mathbb{Z}_n$
0	0
1	$a \bmod n$
2	$2a \mod n$
:	:
n - 1	$a(n-1) \bmod n$

- 由引理知,当 gcd(a, n) = 1 时,第二列的 n 个元素互不相等。
- 又这 n 个元素都取值于 \mathbb{Z}_n ,因此它们构成的集合就是 \mathbb{Z}_n 。
- 那么这个集合必然存在元素 1, 记 ax mod n = 1, 这个 x 就
 是 a 的乘法逆元。

目录

- 1 群、环和域
- ② 模算术
- ③ 欧几里得算法
- 4 有限域

欧几里得算法(Euclidean Algorithm)

- 欧几里得算法是数论中的一个基本技巧,可以求两个正整数的最大公约数。
- 欧几里得算法的原理: 对任意整数 a, b, 且 $a \ge b > 0$, 则 $gcd(a, b) = gcd(b, a \mod b)$ 。
- 也就是说, 求 a, b 的最大公约数可以转化为求 b 和 a 模 b 的最大公约数, 即辗转相除法。

```
Same GCD

GCD GCD

710 = 2 \times 310 + 9

310 = 3 \times 90 + 40

90 = 2 \times 40 + 10

40 = 4 \times 10
```

```
Euclid(a,b){
   if(b==0) then return a;
   else return Euclid(b, a mod b);
}
```

欧几里得算法的原理

- 假设要求整数 a 和 b 的最大公因子,不妨令 a ≥ b > 0.
- b 除 a 可以表示为 a = qb + r,其中 $0 \le r < b$ 为余数。
- 如果 r = 0,则 gcd(a, b) = b;
- 如果 $r \neq 0$,考虑 gcd(a, b) 和 gcd(b, r) 之间的关系:
 - 令 $d = \gcd(a, b)$ 。因为 d|a 且 d|b,所以 d|(a qb),即 d|r。也就是说,d 是 b, r 的公因子。那么, $d \leq \gcd(b, r)$.
 - 令 $c = \gcd(b, r)$ 。因为 c|b 且 c|r,所以 c|(qb+r),即 c|a。也就是说,c 是 a,b 的公因子。因为 a, b 的最大公因 子是 d,所以 $c = \gcd(b, r) \le d$.
- 所以 gcd(a, b) = gcd(b, r),即求 a 和 b 的最大公因子可以转 化为求 b 和 r 的最大公因子。

扩展欧几里得算法

给定两个整数 a 和 b, 扩展欧几里得算法不仅可以求出最大公因子 d, 而且可以得到两个整数 x 和 y, 满足

$$ax + by = d = \gcd(a, b)$$

利用欧几里得算法,并且假设每步 i 都可得到 x_i
 和 y_i 满足 r_i = ax_i + by_i。则有以下关系式:

$$a = q_1b + r_1 r_1 = ax_1 + by_1 b = q_2r_1 + r_2 r_2 = ax_2 + by_2 r_1 = q_3r_2 + r_3 r_3 = ax_3 + by_3 \vdots \vdots r_{n-2} = q_nr_{n-1} + r_n r_n = ax_n + by_n r_{n-1} = q_{n+1}r_n + 0$$

• 从而得到 $d = r_n = ax_n + by_n = ax + by$,即 $x = x_n, y = y_n$.

扩展欧几里得算法

$r_0 = b$		$x_0 = 0; y_0 = 1$	$b = ax_0 + by_0$
	$a = q_1 b + r_1$	$x_1 = x_{-1} - q_1 x_0 = 1$ $y_1 = y_{-1} - q_1 y_0 = -q_1$	$r_1 = ax_1 + by_1$
$ \begin{aligned} r_2 &= b \bmod r_1 \\ q_2 &= \lfloor b/r_1 \rfloor \end{aligned} $	$b = q_2 r_1 + r_2$	$ \begin{aligned} x_2 &= x_0 - q_2 x_1 \\ y_2 &= y_0 - q_2 y_1 \end{aligned} $	$r_2 = ax_2 + by_2$
$ \begin{aligned} r_3 &= r_1 \bmod r_2 \\ q_3 &= \lfloor r_1/r_2 \rfloor \end{aligned} $	$r_1 = q_3 r_2 + r_3$	$ \begin{aligned} x_3 &= x_1 - q_3 x_2 \\ y_3 &= y_1 - q_3 y_2 \end{aligned} $	$r_3 = ax_3 + by_3$
•	•	•	•
•	•	•	•
•	•	•	•
$\begin{vmatrix} r_n = r_{n-2} \bmod r_{n-1} \\ q_n = \lfloor r_{n-2}/r_{n-1} \rfloor \end{vmatrix}$	$r_{n-2} = q_n r_{n-1} + r_n$	$x_n = x_{n-2} - q_n x_{n-1} y_n = y_{n-2} - q_n y_{n-1}$	$r_n = ax_n + by_n$
$\begin{bmatrix} r_{n+1} = r_{n-1} \operatorname{mod} r_n = 0 \\ q_{n+1} = \lfloor r_{n-1}/r_n \rfloor \end{bmatrix}$	$r_{n-1} = q_{n+1}r_n + 0$		$d = \gcd(a, b) = r_n$ $x = x_n; y = y_n$

用扩展欧几里得算法求乘法逆元

- 如果 a 和 n 互素, 那么 a 有模 n 的乘法逆元, 即 a⁻¹ 存在。
- 问题: 如何确定 a 的乘法逆元 a⁻¹?
- 利用扩展欧几里得算法,存在整数 x 和 y,满足

$$ax + ny = \gcd(a, n) = 1$$

两边同时模 n, 得到

$$(ax + ny) \bmod n = 1$$

进而得到

$$ax \mod n = 1$$

所以 $a^{-1} = x$.

目录

- 1 群、环和域
- 2 模算术
- ③ 欧几里得算法
- 4 有限域

有限域(Galois Fields)

- 有限域(也称伽罗瓦域)是包含有限个元素的域,用 GF(q) 或 \mathbb{F}_q 表示包含 q 个元素的有限域。
- 有限域的阶(即元素个数)只能是素数 p 或素数的幂次 p^n 。
- 包含 p 个元素的有限域称为素域, 记为 GF(p)。
- 包含 p^n 个元素的域称为扩域,记为 $GF(p^n)$ 。
- 关注两种有限域: 有限域 GF(p) 和有限域 $GF(2^n)$ 。

有限域 GF(p)

- 给定素数 p,有限域 GF(p) 的集合为 \mathbb{Z}_p ,运算为模 p 算术 运算。
- 由于 \mathbb{Z}_p 中的所有非零整数都与 p 互素,因此 \mathbb{Z}_p 中所有非零整数都有乘法逆元。
- 最简单的有限域是 GF(2), 它的代数运算简述如下:

+	0	1	$\times \mid 0 \mid 1$	w	-w	w^{-1}
0	0	1	$\overline{0}$ 0 0	0	0	_
1	1	0	1 0 1	1	1	1
Ac	lditi	on	Multiplication		Invers	es

有限域 GF(p) 的问题

- 所有加密算法都涉及整数集上的算术运算。
- 假如使用 8 比特来表示一个数,那么整数集为 Z₂₅₆;
- 由于 256 不是一个素数,这个集合不是一个域;
- 小于 256 的最大素数为 251, 所以可以在域 \mathbb{Z}_{251} 上运算, 但 $251 \sim 255$ 范围内的数就不能使用, 造成存储空间浪费。
- 所以希望寻找一个包含 2ⁿ 个元素的集合,其上定义了加法和 乘法使之成为一个域,给集合的每个元素赋值为 0 到 2ⁿ – 1 之间的唯一整数。
- GF(2ⁿ) 是一种含有 2ⁿ 个元素的有限域。

有限域 GF(2") 的定义

集合: 所有次数小于 n 且系数为 0 或 1 的多项式,其中每个 多项式有如下形式:

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0 = \sum_{i=0}^{n-1} a_i x^i$$

其中 $a_i \in \{0,1\}$ 。

- 多项式 m(x) 是系数为 0 或 1 且次数为 n 的不可约多项式,也称为素多项式,扮演模数的角色。
- 加法: 多项式系数对应相加,按照 \mathbb{Z}_2 上的模 2 加法,等价于异或。
- 乘法: 按照多项式乘法进行, 如果运算结果的次数大于 n-1, 需要除以不可约多项式 m(x), 得到的余式为乘法计算结果。

举例: 有限域 GF(2³)

• 有限域 GF(23) 所在的集合包含 8 个多项式:

$$\{0, 1, x, x^2, x^2 + x, x + 1, x^2 + 1, x^2 + x + 1\}$$

- 需要选择次数为 3 的不可约多项式,仅有两个这样的多项式 $x^3 + x^2 + 1$ 和 $x^3 + x + 1$.
- 加法和乘法分别为多项式加法和多项式乘法,对应系数模 2。
- 考虑 $f(x) = x + 1, g(x) = x^2 + x + 1$, 取不可约多项式 $m(x) = x^3 + x + 1$ 。
- $f(x) + g(x) = x^2$.
- $f(x)g(x) = x^3 + 1$,次数超过 3,需模不可约多项式。
- $f(x)g(x) \mod m(x) = x_{\circ}$

举例: 有限域 GF(2⁸)

有限域 $GF(2^8)$, $m(x) = x^8 + x^4 + x^3 + x + 1$, 考虑两个多项式 $f(x) = x^6 + x^4 + x^2 + x + 1$ 和 $g(x) = x^7 + x + 1$ 。

$$f(x) + g(x) = x^{6} + x^{4} + x^{2} + x + 1 + x^{7} + x + 1$$

$$= x^{7} + x^{6} + x^{4} + x^{2}$$

$$f(x) \times g(x) = x^{13} + x^{11} + x^{9} + x^{8} + x^{7}$$

$$+ x^{7} + x^{5} + x^{3} + x^{2} + x$$

$$+ x^{6} + x^{4} + x^{2} + x + 1$$

$$= x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1 \sqrt{x^{13} + x^{11} + x^{9} + x^{8}} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$x^{13} + x^{9} + x^{8} + x^{6} + x^{5}$$

$$x^{11} + x^{9} + x^{8} + x^{6} + x^{5}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{2} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{2} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{2} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{2} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{2} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{2} + x^{6} + x^{4} + x^{3}$$

$$x^{11} + x^{2} + x^{6} + x^{$$

有限域 $GF(2^n)$ 上乘法的另一种计算方式

- $GF(2^n)$ 内的一个多项式可以由它的二元系数 $(a_{n-1}\cdots a_1a_0)$ 唯一表示,因此 $GF(2^n)$ 内的每个元素可以用 n 位数来表示。
- 加法等价于按位异或,乘法通过左移及按位异或计算。
- 考虑有限域 $GF(2^8)$, 使用不可约多项式 $m(x) = x^8 + x^4 + x^3 + x + 1$ 。
- 考虑两个元素 $A = (a_7 \dots a_0)$ 和 $B = (b_7 \dots b_0)$ 。
- 则 $A + B = (c_7 \cdots c_0)$ 其中 $c_i = a_i \oplus b_i$ 。
- 考虑乘法 {02} · A, 即用 x 乘 A 对应的多项式:
 - $\mbox{ } \mbox{ }$
 - $\mbox{$\sharp$} \ \mbox{$a_7=1$ fb}, \ \{02\} \cdot \mbox{$A=(a_6\cdots a_00)\oplus(00011011)$}$
- 这样可以通过反复运用上面的规则计算 *A* · *B* 。

举例: 有限域 GF(2⁸) 上的乘法

- 有限域 $GF(2^8)$, $m(x) = x^8 + x^4 + x^3 + x + 1$, 考虑两个多项式 $f(x) = x^6 + x^4 + x^2 + x + 1$ 和 $g(x) = x^7 + x + 1$ 。
- 计算 $f(x) \times g(x)$, 即 $(01010111) \times (10000011)$:

```
Redoing this in binary arithmetic, we need to compute (01010111) \times (10000011). First, we determine the results of multiplication by powers of x:
```

```
\begin{array}{l} (01010111)\times (00000010)=(10101110)\\ (01010111)\times (00000100)=(01011100)\oplus (00011011)=(01000111)\\ (01010111)\times (00001000)=(10001110)\\ (01010111)\times (00010000)=(00011100)\oplus (00011011)=(00000111)\\ (01010111)\times (00100000)=(00001110)\\ (01010111)\times (01000000)=(00011100)\\ (01010111)\times (10000000)=(0011100)\\ (01010111)\times (10000000)=(00111000) \end{array}
```

So,

```
(01010111) \times (10000011) = (01010111) \times [(00000001) \oplus (00000010) \oplus (10000000)]
= (01010111) \oplus (10101110) \oplus (00111000) = (11000001)
which is equivalent to x^7 + x^6 + 1.
```

$GF(2^3)$ 中的运算, $m(x) = x^3 + x + 1$

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	Х	x + 1	x^2	$x^2 + 1$	$x^2 + 1$	$x^2 + x + 1$
001	1	1	0	x + 1	х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	х	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	X	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	X	1	0
		000	001	010	011	100	101	110	111
	×	000	001 1	010 x	$011 \\ x + 1$	$ \begin{array}{c} 100 \\ x^2 \end{array} $	101 $x^2 + 1$	110 $x^2 + x$	$ \begin{array}{ccc} 111 \\ x^2 + x + 1 \end{array} $
000	× 0								
000 001		0	1	х	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
	0	0	0	0	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$ 0 $x^2 + x + 1$
001	0 1	0 0	0 1	0 x	x + 1 0 $x + 1$	x^2 0 x^2	$x^2 + 1$ 0 $x^2 + 1$	$x^2 + x$ 0 $x^2 + x$	$x^2 + x + 1$
001 010	0 1 x	0 0 0	1 0 1 x	x 0 x x x ²	$x + 1$ 0 $x + 1$ $x^2 + x$	x^{2} 0 x^{2} $x + 1$	$x^2 + 1$ 0 $x^2 + 1$ 1	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$	$x^{2} + x + 1$ 0 $x^{2} + x + 1$ $x^{2} + 1$
001 010 011	0 1 x $x + 1$	0 0 0 0	1 0 1 x x + 1	x 0 x x^2 $x^2 + x$	$x + 1$ 0 $x + 1$ $x^{2} + x$ $x^{2} + 1$	x^{2} 0 x^{2} $x + 1$ $x^{2} + x + 1$	$x^{2} + 1$ 0 $x^{2} + 1$ 1 x^{2}	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$ 1	$x^{2} + x + 1$ 0 $x^{2} + x + 1$ $x^{2} + 1$ x
001 010 011 100	0 1 x $x + 1$ x^{2}	0 0 0 0 0	$ \begin{array}{c c} 1 & 0 \\ 1 & x \\ x + 1 \\ x^2 & \end{array} $	x 0 x x^{2} $x^{2} + x$ $x + 1$	$x + 1$ 0 $x + 1$ $x^{2} + x$ $x^{2} + 1$ $x^{2} + x + 1$	x^{2} 0 x^{2} $x + 1$ $x^{2} + x + 1$ $x^{2} + x$	$x^{2} + 1$ 0 $x^{2} + 1$ 1 x^{2} x	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$ 1 $x^{2} + 1$	$ \begin{array}{c cccc} x^2 + x + 1 \\ 0 \\ x^2 + x + 1 \\ x^2 + 1 \\ x \\ 1 \end{array} $
001 010 011 100 101	0 1 x $x + 1$ x^{2} $x^{2} + 1$	0 0 0 0 0 0	$ \begin{array}{c c} 1 & 0 \\ 1 & x \\ x + 1 \\ x^2 \\ x^2 + 1 \end{array} $	x 0 x x^{2} $x^{2} + x$ $x + 1$ 1	$x + 1$ 0 $x + 1$ $x^{2} + x$ $x^{2} + 1$ $x^{2} + x + 1$	x^{2} 0 x^{2} $x + 1$ $x^{2} + x + 1$ $x^{2} + x$ x	$x^{2} + 1$ 0 $x^{2} + 1$ 1 x^{2} x $x^{2} + x + 1$	$x^{2} + x$ 0 $x^{2} + x$ $x^{2} + x + 1$ 1 $x^{2} + 1$ $x + 1$	$ \begin{array}{c cccc} x^2 + x + 1 \\ & 0 \\ x^2 + x + 1 \\ & x^2 + 1 \\ & x \\ & 1 \\ & x^2 + x \end{array} $

使用生成元定义 $GF(2^n)$

- 阶为 q 的有限域 \mathbb{F} 的生成元是域的一个元素,记为 g ,该元素的前 q-1 个幂构成了 \mathbb{F} 的所有非零元素,即域 \mathbb{F} 的元素为 $\{0,g^0,g^1,\ldots,g^{q-2}\}$ 。
- 考虑由多项式 m(x) 定义的域 \mathbb{F} , 如果 \mathbb{F} 内的一个元素 b 满足 m(b) = 0, 则称 b 为多项式 m(x) 的根。
- 可以证明一个不可约多项式的根 g 是这个不可约多项式定义的有限域的生成元。
- 通常,由不可约多项式 m(x) 生成的域 $GF(2^n)$,有 $g^n = m(g) g^n$ 。计算 g^{n+1} 到 g^{2^n-2} 。域的元素对应 g^0 到 g^{2^n-2} ,外加 0。域元素的乘法用等式 $g^k = g^{k \bmod (2^n-1)}$ 计算。

由 $m(x) = x^3 + x + 1$ 生成的域 $GF(2^3)$

•
$$m(g) = 0 \Rightarrow g^3 + g + 1 = 0$$
, 所以 $g^3 = g + 1$.

•
$$g^4 = g \cdot g^3 = g^2 + g$$
.

•
$$g^5 = g \cdot g^4 = g^3 + g^2 = g^2 + g + 1$$
.

•
$$g^6 = g \cdot g^5 = g^3 + g^2 + g = g^2 + 1$$
.

•
$$g^7 = g^3 + g = 1 = g^0$$
,开始循环,一般地 $g^k = g^{k \mod (2^n - 1)}$ 。

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation
0	0	000	0
$g^0(=g^7)$	1	001	1
g^1	g	010	2
g^2	g^2	100	4
g^3	g + 1	011	3
g^4	$g^2 + g$	110	6
g^5	$g^2 + g + 1$	111	7
g^6	$g^2 + 1$	101	5

使用生成元的 $GF(2^3)$ 算术

		000	001	010	100	011	110	111	101
	+	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
001	1	1	0	g + 1	$g^2 + 1$	g	$g^2 + g + 1$	$g^2 + g$	g^2
010	g	g	g + 1	0	$g^2 + g$	1	g^2	$g^2 + 1$	$g^2 + g + 1$
100	g^2	g^2	$g^2 + 1$	$g^2 + g$	0	$g^2 + g + 1$	g	g + 1	1
011	g^3	g + 1	g	1	$g^2 + g + 1$	0	$g^2 + 1$	g^2	$g^2 + g$
110	g^4	$g^2 + g$	$g^2 + g + 1$	g^2	g	$g^2 + 1$	0	1	g + 1
111	g^5	$g^2 + g + 1$	$g^2 + g$	$g^2 + 1$	g + 1	g^2	1	0	g
101	g^6	$g^2 + 1$	g^2	$g^2 + g + 1$	1	$g^2 + g$	g + 1	g	0
		000	001	010	100	011	110	111	101
	×	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	0	0	0	0	0	0	0
001	1	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
010	g	0	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1
100	g^2	0	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g
011	g^3	0	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2
110	g^4	0	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1
111	g^5	0	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$
101	g^6	0	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$

多项式欧几里得算法

- 类似于计算两个整数最大公因子的欧几里得算法 $gcd(a, b) = gcd(b, a \mod b)$
- 计算两个多项式 a(x) 和 b(x) 最大公因式的欧几里得算法为 $gcd(a(x),b(x))=gcd(b(x),a(x)\bmod b(x))$

Euclidean Algorithm for Polynomials						
Calculate	Which satisfies					
$r_1(x) = a(x) \bmod b(x)$	$a(x) = q_1(x)b(x) + r_1(x)$					
$r_2(x) = b(x) \bmod r_1(x)$	$b(x) = q_2(x)r_1(x) + r_2(x)$					
$r_3(x) = r_1(x) \bmod r_2(x)$	$r_1(x) = q_3(x)r_2(x) + r_3(x)$					
•	•					
•	•					
•	•					
$r_n(x) = r_{n-2}(x) \bmod r_{n-1}(x)$	$r_{n-2}(x) = q_n(x)r_{n-1}(x) + r_n(x)$					
$r_{n+1}(x) = r_{n-1}(x) \mod r_n(x) = 0$	$r_{n-1}(x) = q_{n+1}(x)r_n(x) + 0$ $d(x) = \gcd(a(x), b(x)) = r_n(x)$					

多项式欧几里得算法

- $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$, $b(x) = x^4 + x^2 + x + 1$, 计算 gcd(a(x), b(x)).
- 首先用 a(x) 除以 b(x), 得余式 $r_1(x) = x^3 + x^2 + 1$

$$x^{4} + x^{2} + x + \frac{x^{2} + x}{\sqrt{x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1}}$$

$$\frac{x^{6} + x^{4} + x^{3} + x^{2}}{x^{5} + x^{4} + x^{3} + x^{2} + x}$$

$$\frac{x^{5} + x^{3} + x^{2} + x}{x^{3} + x^{2} + 1}$$

• 再用 b(x) 除以 $r_1(x)$, 整除, 所以 $gcd(a(x),b(x)) = r_1(x)$.

$$\begin{array}{r}
 x + 1 \\
 x^3 + x^2 + 1 / x^4 + x^2 + x + 1 \\
 \underline{x^4 + x^3 + x} \\
 x^3 + x^2 + 1 \\
 \underline{x^3 + x^2 + 1}
 \end{array}$$

多项式扩展欧几里得算法

- 类似的,扩展欧几里得算法在计算两个多项式 a(x) 和 b(x) 最大公因式的同时能够得到两个多项式 v(x) 和 w(x),满足 $a(x)v(x) + b(x)w(x) = \gcd(a(x),b(x))$
- 当 gcd(a(x), b(x)) = 1 时,存在 $a(x) \mod b(x)$ 或 $b(x) \mod a(x)$ 的乘法逆元,即为:

$$a(x)^{-1} \bmod b(x) = v(x)$$

或

$$b(x)^{-1} \bmod a(x) = w(x)$$

多项式扩展欧几里得算法

例

• 已知 $a(x) = x^8 + x^4 + x^3 + x + 1$, $b(x) = x^7 + x + 1$, 计算 $b(x)^{-1} \mod a(x) = ?$

Initialization	$a(x) = x^8 + x^4 + x^3 + x + 1; v_{-1}(x) = 1; w_{-1}(x) = 0$ $b(x) = x^7 + x + 1; v_0(x) = 0; w_0(x) = 1$
Iteration 1	$q_1(x) = x; r_1(x) = x^4 + x^3 + x^2 + 1$ $v_1(x) = 1; w_1(x) = x$
Iteration 2	$q_2(x) = x^3 + x^2 + 1; r_2(x) = x$ $v_2(x) = x^3 + x^2 + 1; w_2(x) = x^4 + x^3 + x + 1$
Iteration 3	$q_3(x) = x^3 + x^2 + x; r_3(x) = 1$ $v_3(x) = x^6 + x^2 + x + 1; w_3(x) = x^7$
Iteration 4	$q_4(x) = x; r_4(x) = 0$ $v_4(x) = x^7 + x + 1; w_4(x) = x^8 + x^4 + x^3 + x + 1$
Result	$d(x) = r_3(x) = \gcd(a(x), b(x)) = 1$ $w(x) = w_3(x) = (x^7 + x + 1)^{-1} \mod (x^8 + x^4 + x^3 + x + 1) = x^7$

小结

- 1 群、环和域
- ② 模算术
- ③ 欧几里得算法
- 4 有限域