Assignment No.	4-5-6		
Semester	B.E. Semester VIII – Computer		
	Engineering		
Subject	Data Science Honor		
Subject Professor In-charge	Prof. Amit Alyani		
Academic Year	2024-25		
Student Name	Deep Salunkhe		
Roll Number	21102A0014		

4. Comparison Analysis of Various Classification Algorithms

Key Classification Algorithms

Below is a comparative analysis of various classification algorithms, focusing on their **key points** and **applications**.

Algorithm	Key Points	Applications
Logistic Regression	- Works well for binary classification - Assumes linear relationship between features and output - Sensitive to outliers	- Medical diagnosis (e.g., disease prediction) - Credit scoring - Customer churn prediction
Decision Tree	 Splits data into decision nodes - Prone to overfitting Handles both numerical & categorical data 	- Fraud detection - Customer segmentation - Risk assessment
Random Forest	 Ensemble of multiple decision trees - Reduces overfitting - Handles missing data well 	- Disease diagnosis - Spam filtering - Loan approval system
Support Vector Machine (SVM)	 Works well in high- dimensional spaces - Uses kernel trick to handle non- linearity - Computationally expensive 	- Text categorization - Image classification - Handwriting recognition
K-Nearest Neighbors (KNN)	 Instance-based learning (lazy learning) - Sensitive to noise and outliers - High computational cost for large datasets 	- Recommendation systems - Pattern recognition - Anomaly detection
Naïve Bayes	 Based on Bayes' Theorem Assumes feature independence Works well with small datasets 	 Spam filtering - Sentiment analysis - Document classification
Artificial Neural Networks	- Mimics human brain -	- Image and speech recognition

Algorithm	Key Points	Applications
(ANNs)	Requires large data for training - Can capture complex non-linear patterns	- Drug discovery - Autonomous driving
Gradient Boosting (XGBoost, LightGBM, CatBoost)	 Boosting ensemble technique - Handles missing values well - Computationally efficient 	 Fraud detection - Predictive maintenance - Financial forecasting

5. Apply Multiple Classification Algorithms on a Dataset

We'll use the **Breast Cancer Wisconsin Dataset**, which is available in **sklearn.datasets**. This dataset is suitable for medical classification tasks.

```
# Import necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report,
confusion matrix
from sklearn.datasets import load breast cancer
# Load the dataset
data = load breast cancer()
df = pd.DataFrame(data.data, columns=data.feature names)
df['target'] = data.target
# Split dataset
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train test split(X, y,
test size=0.2, random state=42)
# Standardize features
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Define models
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.naive bayes import GaussianNB
```

```
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
models = {
    "Logistic Regression": LogisticRegression(),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "SVM": SVC(),
    "KNN": KNeighborsClassifier(),
    "Naïve Bayes": GaussianNB(),
    "XGBoost": XGBClassifier(use label encoder=False,
eval metric='logloss')
# Train and evaluate models
results = {}
for name, model in models.items():
    model.fit(X train, y train)
    y pred = model.predict(X test)
    acc = accuracy score(y test, y pred)
    results[name] = acc
    print(f"Model: {name}\n{classification_report(y_test, y_pred)}\n")
# Convert results to DataFrame
results df = pd.DataFrame(list(results.items()), columns=["Model",
"Accuracy"])
print(results df)
Model: Logistic Regression
                           recall f1-score
              precision
                                               support
                   0.98
                             0.95
                                        0.96
                                                    43
           0
                   0.97
                             0.99
           1
                                        0.98
                                                    71
                                        0.97
                                                   114
    accuracy
                   0.97
                             0.97
                                        0.97
                                                   114
   macro avq
weighted avg
                   0.97
                             0.97
                                        0.97
                                                   114
Model: Decision Tree
              precision
                           recall f1-score
                                               support
           0
                   0.93
                             0.91
                                        0.92
                                                    43
           1
                                                    71
                   0.94
                             0.96
                                        0.95
                                        0.94
                                                   114
    accuracy
                                        0.93
   macro avg
                   0.94
                             0.93
                                                   114
                   0.94
                             0.94
                                        0.94
                                                   114
weighted avg
```

Model: Randor	n Forest precision	recall	f1-score	support
0	0.98 0.96	0.93 0.99	0.95 0.97	43 71
1	0.90	0.99	0.97	/ 1
accuracy macro avg weighted avg	0.97 0.97	0.96 0.96	0.96 0.96 0.96	114 114 114
Madal CVM				
Model: SVM	precision	recall	f1-score	support
0 1	1.00 0.97	0.95 1.00	0.98 0.99	43 71
accuracy macro avg weighted avg	0.99 0.98	0.98 0.98	0.98 0.98 0.98	114 114 114
Model: KNN				
HOUCE. KIN	precision	recall	f1-score	support
0 1	0.93 0.96	0.93 0.96	0.93 0.96	43 71
accuracy			0.95	114
macro avg weighted avg	0.94 0.95	0.94 0.95	0.94 0.95	114 114
weighted avg 0.55 0.55 1.				
Model: Naïve	Bayes precision	recall	f1-score	support
	precision	recatt	11-30016	3αρροί τ
0 1	0.98 0.96	0.93 0.99	0.95 0.97	43 71
accuracy			0.96	114
accuracy macro avg	0.97	0.96	0.96	114
weighted avg	0.97	0.96	0.96	114

/usr/local/lib/python3.11/dist-packages/xgboost/core.py:158:
UserWarning: [10:07:20] WARNING: /workspace/src/learner.cc:740:
Parameters: { "use_label_encoder" } are not used.

warnings.warn(smsg, UserWarning)

Model: XGBoost	-			
	precision	recall	f1-score	support
0	0.95	0.93	0.94	43
1	0.96	0.93	0.94	71
1	0.90	0.37	0.97	/ 1
accuracy			0.96	114
macro avg	0.96	0.95	0.95	114
weighted avg	0.96	0.96	0.96	114
	Model Ad	curacy		
0 Logistic Re		973684		
	•	938596		
2 Rando		964912		
3		982456		
2 Rando 3 4 5 Naï 6		947368		
5 Nai	•	964912		
0	XGBoost 0.	956140		

6. Comparison Analysis of Classification Algorithm Results

Model	Accuracy (%)	
SVM	98.24%	
Logistic Regression	97.37%	
Random Forest	96.49%	
Naïve Bayes	96.49%	
XGBoost	95.61%	
KNN	94.73%	
Decision Tree	93.86%	
•		

Key Observations

- **SVM performed the best**, achieving **98.24% accuracy**. This suggests that the dataset is well-suited for a hyperplane-based separation.
- Logistic Regression and Random Forest also performed very well with 97.37% and 96.49% accuracy, respectively.
- Naïve Bayes surprisingly performed better than XGBoost, indicating that feature independence assumptions might not be too unrealistic in this dataset.
- Decision Tree had the lowest accuracy (93.86%), possibly due to overfitting.

```
# Update the results DataFrame
results_updated = pd.DataFrame({
    "Model": ["Logistic Regression", "Decision Tree", "Random Forest",
"SVM", "KNN", "Naïve Bayes", "XGBoost"],
```

```
"Accuracy": [0.973684, 0.938596, 0.964912, 0.982456, 0.947368,
0.964912, 0.956140]
})
# Plot the updated accuracy of models
plt.figure(figsize=(10,6))
sns.barplot(x=results_updated["Model"], y=results_updated["Accuracy"],
palette="coolwarm")
plt.xticks(rotation=45)
plt.ylabel("Accuracy Score")
plt.title("Updated Comparison of Classification Algorithms")
plt.show()
<ipython-input-2-0f6e020c6290>:9: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `x` variable to `hue` and set
`legend=False` for the same effect.
  sns.barplot(x=results updated["Model"],
y=results_updated["Accuracy"], palette="coolwarm")
```


Conclusion

- If the goal is maximum accuracy, SVM is the best choice for this dataset.
- Logistic Regression is a close second, making it a simpler but effective alternative.
- Random Forest and Naïve Bayes also perform well, making them reliable choices.
- XGBoost didn't outperform simpler models, which might indicate it requires hyperparameter tuning.
- **Decision Tree alone is less reliable**, but when combined in ensembles like Random Forest, it performs better.