Gestión de Proyectos Software

Scrum – Estimación y velocidad

Contenidos

- Planificación, velocidad y estimaciones
- Estimar PBI
- Velocidad

Planificación

- Para planificar el desarrollo de un producto, hay que estimar
 - ¿Cuántos requisitos implementaremos? ¿Cuándo estarán hechos? ¿Cuánto costará?
- En Scrum estimamos el tamaño de lo que se construirá, y medimos la velocidad a la que trabajamos
 - Con eso podemos derivar el probable tiempo de desarrollo (y por tanto el coste), dividiendo el tamaño estimado por la velocidad del equipo

Velocidad

- Velocidad de un equipo en un sprint: la suma de las estimaciones de tamaño de las entradas de la pila que el equipo completó (definición de hecho) en el sprint
- Podemos calcular la media, pero normalmente daremos un rango de velocidades
 - Dependiendo de las unidades en que midamos, la media puede no tener mucho sentido

Tamaño estimado ÷ velocidad medida = (número de sprints)

Qué y cuándo estimar

- Típicamente en tres niveles
 - Pila del portafolio
 - Pila del producto
 - Pila del sprint

Estimaciones de la pila del portafolio

- · No es parte de Scrum, pero es común
- Lista priorizada de productos/proyectos que hay que hacer
- Todavía no tendremos requisitos detallados como para estimar cada uno y luego sumar
- Por ello, generalmente se usan estimaciones de "grano grueso" (p.ej. tallas de ropa: S, M, L, XL)

Estimaciones de la pila del producto

- Las entradas a partir de cierto nivel de detalle (y de prioridad) suelen estimarse numéricamente
 - En puntos de historia o días ideales
- Estimar PBI es parte del *grooming* de la pila
- Algunos practicantes de Scrum no estiman las PBI
 - En su experiencia, cuando los equipos funcionan bien crean PBI de tamaños similares, y basta con contarlas para calcular la velocidad
- Pero en general no todas las PBI son del mismo tamaño al mismo tiempo y es difícil partirlas en tamaños iguales (y a veces es forzado)
 - Además las conversaciones de estimación son una buena forma de sacar a la luz ideas, problemas y asunciones ocultos

Estimaciones de tareas

- En el nivel más detallado están las tareas en la pila del sprint
 - Normalmente se estiman durante la planificación del sprint
- Se estiman en horas ideales (u horas de esfuerzo, horas-persona)
 - Es una estimación de cuánto de la capacidad que el equipo tiene disponible en el sprint hará falta para la tarea

Estimar PBI

Estimar como equipo

- En Scrum la regla es sencilla: la gente que hará el trabajo estima colectivamente
 - El equipo de desarrollo <u>al completo</u> estima
 - El dueño del producto y el ScrumMaster están presentes, pero <u>no estiman</u>
 - El dueño del producto describe y clarifica las PBI
 - El ScrumMaster facilita el trabajo

Las estimaciones no son compromisos

- Si le pides a alguien que estime, sin comprometerse, te dará su mejor estimación
- Si le pides que se comprometa, te dará una estimación por exceso para ir tranquilo
 - Tendrás que pelear para que reduzcan tiempos o no te saldrán los resultados económicos
 - Al final de este tira y afloja las estimaciones serán de todo menos fiables
- Lo que queremos son buenas estimaciones

Exactitud y precisión (accuracy vs precision)

- Hay que intentar ser exactos, no excesivamente precisos
 - 10276 horas-persona, o 45234,25 € son valores muy precisos
 - Pero no sabemos si son exactos
- Estimar hasta este nivel de precisión es un desperdicio
 - A partir de cierto punto, meter más esfuerzo (costoso) en una estimación para precisarla más no la hace más exacta

Estimación de tamaños relativos

- Normalmente estimaremos las entradas de la pila en relación con las otras entradas de la pila, no en valores absolutos
 - En general es más fácil dar estimaciones exactas de esa forma

Unidades de estimación de PBI: puntos de historia

- La alternativa más habitual para estimar las PBI
- Miden la magnitud de una PBI en esfuerzo de desarrollo (que depende de complejidad, tamaño...)
 - Un algoritmo de 50 líneas puede ser muy complejo, aunque sea pequeño
 - Sumar 1 a todos los elementos de una hoja de cálculo de 60K líneas es muy simple, aunque pudiera parecer grande
- Sirven para realizar afirmaciones del tipo, "si realizar esta PBI me cuesta 2 puntos de historia, esta otra me va a costar 4"
 - Estimamos que la segunda PBI es **aproximadamente** el doble de compleja
- Reflejan el esfuerzo asociado con las entradas de la pila del producto desde el punto de vista del equipo de desarrollo

Unidades de estimación de PBI: días ideales

- La segunda alternativa más habitual para estimar PBI
- Número de días-persona necesarios para completar una historia
- Son días ideales
 - El equipo decidirá cual es su definición de "día ideal". P.ej. "6 horas de trabajo continuado".
- Hay más riesgo de malentendidos con los días ideales que con los puntos de historia
 - Además, es difícil usarlo como medida relativa al estar definida en unidades de tiempo (son ideales, pero siguen siendo días...)

¿Para cuándo estará?

 Hoy es lunes y son las 8 de la madrugada. Te señalo una PBI y te pregunto que en cuánto está estimado que cueste hacerla. Me dices que 2 días ideales. ¿Estará para el miércoles?

Escala de estimación

- Para favorecer la exactitud sobre la precisión
 - Usar escalas en las que no están todos los números
 - Las unidades son las que se usen: puntos de historia o días ideales
- La escala más común es una secuencia de Fibonacci modificada
 - 1, 2, 3, 5, 8, 13, 20, 40 y 100
- Una alternativa es usar potencias de dos
 - 1, 2, 4, 8, 16, 32, ...
- Agrupamos PBI similares en esfuerzo y les damos el mismo número
 - Las PBI con el mismo número serán de esfuerzos parecidos, aunque no iguales

5

Velocidad

Velocidad

- Cantidad de trabajo completada en cada sprint
 - Mide tamaño/esfuerzo de las tares completadas, no su "valor"
 - Todas las PBI tienen algún valor (o no deberían estar en la pila)
 - Pero tamaño y valor no necesariamente están relacionados. Hay cosas que cuesta poco hacer y pueden tener un impacto importante en, por ejemplo, el éxito comercial del producto
- •Se mide sumando el tamaño **estimado** de las PBI completadas en el sprint
 - Recordatorio: una PBI se ha completado si está "hecha" y "aceptada"
- Esencial para la planificación
 - Para planificar un lanzamiento, dividimos el tamaño del mismo por la velocidad media del equipo para estimar los sprints necesarios
- · Herramienta de diagnóstico para evaluar y mejorar al equipo
 - Observando su propia velocidad en el tiempo, el equipo puede aprender cómo los cambios en sus procesos afectan a la entrega de valor al cliente

Calcular un rango de velocidades

- Para la planificación lo más útil es expresar la velocidad como un rango
 - Por ejemplo: el equipo suele completar entre
 25 y 30 puntos cada sprint
- Preferimos exactitud que excesiva precisión
- El rango permite comunicar incertidumbre, algo que un valor concreto oculta

Inciso: rangos y estimación en proyectos de software

Exactitud de las estimaciones en gestión de proyectos en general (PMBOK 3d edition 2004)		Exactitud de las estimaciones en desarrollo de software (Rapid Development, McConnell, 1996)	
Conceptual	-30% +50%	-75% +300%	Concepto de producto inicial
Preliminar	-20% +30%	-50% +100%	Definición de producto aprobada
Definitivo	-15% +20%	-33% +50%	Especificación de requisitos
Control	-10% +15%	-20% +25%	Especificación del diseño del producto

(c) Datos de la Tabla 3-I del libro Software Project Secrets. Why Software Projects Fail, de George Stepanek, Apress, 2005

Calcular un rango de velocidades

 Si para un lanzamiento hemos estimado 200 puntos de esfuerzo, y la velocidad media del equipo es entre 17 y 20 puntos por sprint, necesitaremos entre 10 y 12 sprints para completar el lanzamiento

Calcular un rango de velocidades

- Para calcular la velocidad baja y la alta no hay una forma exigida
- Una fácil es coger las velocidades históricas y tomar un intervalo de p.ej. el 90%. Asumiendo que es una distribución normal:
 - Rango = (Media +/- 1.645 * Desviación estándar)
 - Ejemplo: valores históricos 17,21,20,15,25,16,20 Rango = (19.1 +/- 1.645 * 3,4) (y luego redondeando, que los puntos de historia no tienen decimales): (14 - 25)
- También podemos dividir los valores históricos en dos grupos, por encima de la mediana y por debajo, y calcular luego la media de cada uno como valores para el rango

Predecir la velocidad

- Si no tenemos datos históricos (p.ej. equipo nuevo) tendremos que predecir la velocidad del equipo
- Opción común: que el equipo planifique un sprint y, si nos parece razonable, tomar la suma de tamaños de los PBI para el sprint como su velocidad predicha
 - Para tener un rango podemos añadir/restar valores a esa predicción a partir de datos de otros equipos, o podemos pedirles que estimen dos sprints y usar esos resultados
- En cuanto tengamos un valor real, descartaremos la predicción y usaremos ese

Usos incorrectos de la velocidad

- Es una herramienta de planificación y de diagnóstico del equipo
- No es una medida de prestaciones ni de productividad

Pintar puntos de historia

 Copiad este dibujo, lo más fielmente posible, en el papel que os he dado a cada equipo

Pintar puntos de historia

- Cada figura es una PBI, y completarla requiere colorearla
- Estimad el esfuerzo que va a costar completar cada una en puntos de historia
 - Podéis anotar los puntos de historia junto a cada figura
 - Luego cada equipo me dirá la estimación total: cuántos puntos de historia para colorear todas las figuras
- Haced también una estimación de tiempo: ¿cuánto creéis que tardaréis en colorearlas todas?
- Trabajaréis en sprints de 1 minuto
 - La definición de hecho es "pintada por completo"
 - El objetivo es pintar todas las posibles en el menor número de sprints (productividad)

Pintar puntos de historia

Debriefing

Bibliografía

- Kenneth S. Rubin. Essential Scrum. A practical guide to the most popular agile process
 - Chapter 7 (Estimation and Velocity)

**** Visual AGILExicon®**

- Slides in this presentation contain items from the Visual AGILExicon®, which is a trademark of Innolution, LLC and Kenneth S. Rubin.
- The Visual AGILExicon is used and described in the book: "Essential Scrum: A Practical Guide to the Most Popular Agile Process"
- You can learn more about the Visual AGILExicon and permitted uses at: http://innolution.com/resources/valhome-page

Connect with Innolution:

Facebook.com/InnolutionLLC

Twitter.com/krubinagile

Visual AGILExicon®

