		Matoshri College	of Engineering & Rese	earch Centre . Nashik						
	Department of Electronics & Telecommunication Engineering									
	Class: B. E. E & TC Sub: BCS									
0.11.	0	A.Y.2019-2020		Semester -II						
Sr.No.	Question Who proposed the idea of transmission of light via dielectric	Α	В	С	D	Correct				
1	waveguide structure?	a) Christian Huygens	b) Karpon and Bockham	c) Hondros and debye	d) Albert Einstein	: c				
2	Who proposed the use of clad waveguide structure?	a) Edward Appleton	b) Schriever	c) Kao and Hockham	d) James Maxwell	: c				
3	Which law gives the relationship between refractive index of the dielectric?	a) Law of reflection	b) Law of refraction (Snell's Law).	c) Millman's Law	d) Huygen's Law	: b				
4	The light sources used in fibre optics communication are :	a) LED's and Lasers	b) Phototransistors	c) Xenon lights	d) Incandescent	: a				
5	The ray passes through the axis of the fiber core.	a) Reflected	b) Refracted	c) Meridional	d) Shew	: C				
6	Light incident on fibers of angles the acceptance angle do not propagate into the fiber	a) Less than	b) Greater than	c) Equal to	d) Less than and equal to	: b				
7	What is the numerical aperture of the fiber if the angle of acceptance is 16 degree	a) 0.50	b) 0.36	c) 0.20	d) 0.27	: d				
8	The ratio of speed of light in air to the speed of light in another medium is called as	a) Speed factor	b) Dielectric constant	c) Reflection index	d) Refraction index	: d				
9	When a ray of light enters one medium from another medium, which quality will not change	a) Direction	b) Frequency	c) Speed	d) Wavelength	: b				
10	An optical fiber has core-index of 1.480 and a cladding index of 1.478. What should be the core size for single mode operation at 1310nm?	a) 7.31µm	b) 8.71µm	c) 5.26µm	d) 6.50μm	: d				
11	An optical fiber has a core radius 2µmand a numerical aperture of 0.1. Will this fiber operate at single mode at 600 nm?	a) Yes	b) No			: a				
12	What is needed to predict the performance characteristicsics of single mode fibers?	a) The intermodal delay effect	b) Geometric distribution of light in a propagating mode	c) Fractional power flow in the cladding of fiber	d) Normalized frequency	: b				
13	Which equation is used to calculate MFD?	a) Maxwell's equations	b) Peterman equations	c) Allen Cahn equations	d) Boltzmann's equations	: b				

14	A single mode fiber has mode field diameter 10.2µmand V=2.20. What is the core diameter of this fiber?	a) 11.1µm	b) 13.2μm	c) 7.6µm	d) 10.1µm	: d
15	The difference between the modes' refractive indices is called as	a) Polarization	b) Cutoff	c) Fiber birefringence	d) Fiber splicing	: c
	cuitod do	a) i ola ization	S) Catelli	o, i isa siraningana	d/ 1 DOI Optioning	. 0
16	A single mode fiber has a beat length of 4cm at 1200nm. What is birefringence?	a) 2*10-5	b) 1.2*10 ₋₅	c) 3*10 ₋₅	d) 2	: c
17	How many propagation modes are present in single mode fibers?	a) One	b) Two	c) Three	d) Five	: b
18	Numerical aperture is constant in case of step index fiber. State whether the statement is true or false.	a) True	b) False			: a
19	Plastic fibers are less widely used than glass fibers. State whether the statement is true or false.	a) True	b) False			: a
20	Which equations are best suited for the study of electromagnetic wave propagation?	a) Maxwell's equations	b) Allen-Cahn equations	c) Avrami equations	d) Boltzmann's equations	: a
21	When λ is optical wavelength in vacuum, k is given by k=2Π/λ. What does k stand for in the above equation?	a) Phase propagation constant	b) Dielectric constant	c) Boltzmann's constant	d) Free-space constant	: a
22	Constructive interference occurs when total phase change after two successive reflections at upper and lower interfaces is equal to? (Where m is integer)	a) 2∏m	b) Пm	c) Пm/4	d) Πm/6	: a
23	. When light is described as an electromagnetic wave, it consists of a periodically varying electric E and magnetic field H which are oriented at an angle	a) 90 degree to each other	b) Less than 90 degree	c) Greater than 90 degree	d) 180 degree apart	: a
24	A monochromatic wave propagates along a waveguide in z direction. These points of constant phase travel in constant phase travel at a phase velocity V _p is given by	a) V _P =ω/β	b) V _P =ω/c	c) V _P =C/N	d) V _p =mass/acceleration	: a
25	A most important velocity in the study of transmission characteristics of optical fiber is	a) Phase velocity	b) Group velocity	c) Normalized velocity	d) Average velocity	: b
26	Refraction is the	a) Bending of light waves	b) Reflection of light waves	c) Diffusion of light waves	d) Refraction of light waves	: a
27	The phenomenon which occurs when an incident wave strikes an interface at an angle greater than the critical angle with respect to the normal to the surface is called as	a) Refraction	b) Partial internal reflection	c) Total internal reflection	d) Limiting case of refraction	: c
28	Photonic crystal fibers also called as	a) Conventional fibers	b) Dotted fibers	c) Stripped fibers	d) Holey fibers	: d

29	Conventional optical fibers has more transmission losses than photonic crystal fibers. State whether the statement is true or false.	a) True	b) False			: a
30	Losses in photonic crystal fibers are reduced to a level of	a) 0.1dB/km	b) 0.2dB/km	c) 0.3dB/km	d) 0.4dB/km	: C
31	The high index contrast enables the PCF core to be reduced from around 8 µmin conventional fiber to	a) Less than 1µm	b) More than 5µm	c) More than 3µm	d) More than 2µm	: a
32	The periodic arrangement of cladding air holes in photonic band gap fibers provides for the formation of a photonic band gap in the	a) H-plane of fiber	b) E-plane of fiber	c) E-H-plane of fiber	d) Transverse plane of fiber	: d
33	In index-guided photonic crystal fiber structure, the dark areas are air holes. What does white areas suggests?	a) Air	b) Silica	c) Water	d) Plasma	d
34	The unit of measurement of attenuation in optical fibers is	a) km	b) dB	c) dB/km	d) Coulomb's	: c
35	The optical fiber incurs a loss in signal power as light travels down the fiber which is called as	a) Scattering	b) Attenuation	c) Absorption	d) Refraction	: b
36	If the input power 100µW is launched into 6 km of fiber, the mean optical power at the fiber output is 2µW. What is the overall signal attenuation through the fiber assuming there are no connectors or splices?	a) 15.23dB	b) 16.98dB	c) 17.12dB	d) 16.62dB	: b
37	A device which reduces the intensity of light in optical fiber communications is	a) compressor	b) Optical attenuator	c) Barometer	d) Reducer	: b
38	A decibel may be defined as the ratio of input and output optical power for a particular optical wavelength. State whether the following statement is true or false.	a) True	b) False			: a
39	. When the input and output power in an optical fiber is 120μW & 3μW respectively and the length of the fiber is 8 km. What is the signal attenuation per km for the fiber?	a) 3dB/km	b) 2dB/km	c) 1dB/km	d) 4dB/km	: b
40	A multimode step index fiber has a normalized frequency of 72. Estimate the number of guided modes.	a) 2846	b) 2592	c) 2432	d) 2136	: b
41	A graded-index fiber has a core with parabolic refractive index profile of diameter of 30μm, NA=0.2, λ=1μm. Estimate the normalised frequency.	a) 19.32	b) 18.84	c) 16.28	d) 17.12	: b
42	A step-index fiber has core refractive index 1.46 and radius 4.5µm. Find the cutoff wavelength to exhibit single mode operation. Use relative index difference as 0.25%.	a) 1.326µm	b) 0.124µm	c) 1.214µm	d) 0.123µm	: c

43	A single-mode step-index fiber or multimode step-index fiber allows propagation of only one transverse electromagnetic wave.	a) True	b) False			: True
44	One of the given statements is true for intermodal dispersion. Choose the right one.	a) Low in single mode and considerable in multimode fiber	b) Low in both single mode and multimode fiber	c) High in both single mode and multimode fiber	d) High in single mode and low in multimode fiber	: a
45	For lower bandwidth applications,	a) Single mode fiber is advantageous	b) Photonic crystal fibers are advantageous	c) Coaxial cables are advantageous	d) Multimode fiber is advantageous	: d
46	Most of the optical power is carried out in core region than in cladding. State true or false:	a) True	b) False			: a
47	Meridional rays in graded index fibers follow	a) Straight path along the axis	b) Curved path along the axis	c) Path where rays changes angles at core-cladding interface	d) Helical path	: b
48	What is the unit of normalized frequency?	a) Hertz	b) Meter/sec	c) Coulombs	d) It is a dimensionless quantity	: d
49	. Skew rays follow a	a) Hyperbolic path along the axis	b) Parabolic path along the axis	c) Helical path	d) Path where rays changes angles at core-cladding interface	: C
50	A multimode step index fiber has a normalized frequency of 72. Estimate the number of guided modes. A graded-index fiber has a core with parabolic refractive	a) 2846	b) 2592	c) 2432	d) 2136	: b
51	index profile of diameter of 30μm, NA=0.2, λ=1μm. Estimate the normalised frequency.	a) 19.32	b) 18.84	c) 16.28	d) 17.12	: b
52	A step-index fiber has core refractive index 1.46 and radius 4.5µm. Find the cutoff wavelength to exhibit single mode operation. Use relative index difference as 0.25%.	a) 1.326µm	b) 0.124μm	c) 1.214µm	d) 0.123µm	: c
53	A single-mode step-index fiber or multimode step-index fiber allows propagation of only one transverse electromagnetic wave.	a) True	b) False			: True
54	One of the given statements is true for intermodal dispersion. Choose the right one.	a) Low in single mode and considerable in multimode fiber	b) Low in both single mode and multimode fiber	c) High in both single mode and multimode fiber	d) High in single mode and low in multimode fiber	: a
55	For lower bandwidth applications,	Single mode fiber is advantageous	b) Photonic crystal fibers are advantageous	c) Coaxial cables are advantageous	d) Multimode fiber is advantageous	: d
56	Most of the optical power is carried out in core region than in cladding. State true or false:	a) True a) Straight path along the	b) False b) Curved path along the	c) Path where rays changes		: a
57	Meridional rays in graded index fibers follow	axis	axis	angles at core-cladding interface	d) Helical path	: b
58	What is the unit of normalized frequency?	a) Hertz	b) Meter/sec	c) Coulombs	d) It is a dimensionless quantity	: d
59	Skew rays follow a	a) Hyperbolic path along the axis	b) Parabolic path along the axis	c) Helical path	d) Path where rays changes angles at core-cladding interface	: c
60	Which of the following statements best explain the concept of material absorption?	a) A loss mechanism related to the material composition and fabrication of fiber.	b) A transmission loss for optical fibers.	c) Results in attenuation of transmitted light.	d) Causes of transfer of optical power	: a

61	How many mechanisms are there which causes absorption?	a) One	b) Three	c) Two	d) Four	: b
62	Absorption losses due to atomic defects mainly include-	a) Radiation	b) Missing molecules, oxygen defects in glass	c) Impurities in fiber material	d) Interaction with other components of core	: b
63	The effects of intrinsic absorption can be minimized by-	a) Ionization	b) Radiation	c) Suitable choice of core and cladding components	d) Melting	:c
64	Which of the following is not a metallic impurity found in glass in extrinsic absorption?	a) Fe2+	b) Fe3+	c) Cu	d) Si	: d
65	Optical fibers suffer radiation losses at bends or curves on their paths. State true or false	a) True	b) False			: a
66	In the given equation, state what or suggests;	a) Radius of curvature	b) Refractive index difference	c) Radiation attenuation coefficients	d) Constant of proportionality	: C
67	A multimode fiber has refractive indices n1= 1.15, n2=1.11 and an operating wavelength of 0.7μm. Find the radius of curvature?	a) 8.60µm	b) 9.30µm	c) 9.1µm	d) 10.2µm	: b
68	A single mode fiber has refractive indices n1=1.50, n2= 2.23, core diameter of 8μm, wavelength=1.5μm cutoff wavelength= 1.214μm. Find the radius of curvature?	a) 12 mm	b) 20 mm	c) 34 mm	d) 36 mm	: C
69	How the potential macro bending losses can be reduced in case of multimode fiber?	a) By designing fibers with large relative refractive index differences	b) By maintaining direction of propagation	c) By reducing the bend	a) By operating at larger wavelengths	: a
70	Sharp bends or micro bends causes significant losses in fiber. State true or false	a) True	b) False	by readong the bend	Wavelengtho	:a
71	A multimode step index fiber has source of RMS spectral width of 60nm and dispersion parameter for fiber is 150psnm-1km-1. Estimate rms pulse broadening due to material dispersion.	a) 12.5ns km-1	b) 9.6ns km-1	c) 9.0ns km-1	d) 10.2ns km-1	: c
72	. A multimode fiber has RMS pulse broadening per km of 12ns/km and 28ns/km due to material dispersion and intermodal dispersion resp. Find the total RMS pulse broadening.	a) 30.46ns/km	b) 31.23ns/km	c) 28.12ns/km	d) 26.10ns/km	: a
73	Γ_g = dβ / C*dk. What is β in the given equation?	a) Attenuation constant	b) Propagation constant	c) Boltzmann's constant	d) Free-space	: b
74	Most of the power in an optical fiber is transmitted in fiber cladding. State whether the given statement is true or false.	a) True	b) False	: b		

	A single mode fiber has a zero dispersion wavelength of					
75	1.21µm and a dispersion slope of 0.08 psnm-2km-1. What is the total first order dispersion at wavelength 1.26µm.	a) -2.8psnm-1 km-1	b) -3.76psnm-1 km-1	c) -1.2psnm-1 km-1	d) 2.4psnm-1 km-1	: b
	The dispersion due to material, waveguide and profile are					
76	-2.8nm-1km-1, 20.1nm-1km-1 and 23.2nm-1km-1respectively. Find the total first order dispersion?	a) 36.2psnm-1 km-1	b) 38.12psnm-1 km-1	c) 40.5psnm-1 km-1	d) 20.9psnm-1 km-1	: c
10	I ma the total mat order dispersion:	a) 50.2p3riii-1 kiri-1	b) 50.12p31111-1 KI11-1	C) 40.0p3////-/- Kill-1	u) 20.5p3iiii-i kiii-i	. 0
		a) Increasing fiber core	b) Decreasing fiber core	c) Decreasing fiber core diameter	d) Increasing fiber core diameter	
		diameter and decreasing	diameter and decreasing	and increasing fractional index	and increasing fractional index	
77	Dispersion-shifted single mode fibers are created by	fractional index difference	fractional index difference	difference	difference	: c
	An alternative modification of the dispersion characteristics					
	of single mode fibers involves achievement of low					
	dispersion gap over the low-loss wavelength region					
78	between –	a) 0.2 and 0.9µm	b) 0.1 and 0.2µm	c) 1.3 and 1.6µm	d) 2 and 3µm	: C
<u> </u>	The fibers which relay the enceted provinces of five circles					
	The fibers which relax the spectral requirements for optical sources and allow flexible wavelength division multiplying	a) Dispersion-flattened	b) Dispersion-enhanced	a) Dispossion compressed single	d) Dispersion-standardized single	
79	are known as-	single mode fiber	single mode fiber	mode fiber	mode fiber	: a
13	are known as-	Single mode inser	Single mode liber	Though the first	Though high	. a
	For suitable power confinement of fundamental mode, the					
	normalized frequency v should be maintained in the range					
	1.5 to 2.4µm and the fractional index difference must be					
	linearly increased as a square function while the core		b) Increasing level of			
	diameter is linearly reduced to keep v constant. This	a) Increasing level of silica	germanium doping in fiber	c) Decreasing level of silica	d) Decreasing level of silica	
80	confinement is achieved by-	doping in fiber core	core	germanium in fiber core	doping in fiber core	: b
	Any amount of stress occurring at the core-cladding					
	interface would be reduced by grading the material					
	composition. State whether the given statement is true or	-> T	h) Falas			
81	false.	a) True	b) False			: a
		a) Diaparaian flattanad				
82	The variant of non-zero-dispersion-shifted fiber is called as	a) Dispersion flattened fiber	b) Zero-dispersion fiber	c) Positive-dispersion fiber	d) Negative-dispersion fiber	: d
02	The variant of horr-zero-dispersion-shifted liber is called as	IIDOI	D) ZCIO-dispersion riber	o, i ositive-dispersion liber	a) Negative-dispersion libel	. u
			b) Non-linear scattering			
83	Rayleigh scattering and Mie scattering are the types of	a) Linear scattering losses	losses	c) Fiber bends losses	d) Splicing losses	: a
	Dominant intrinsic loss mechanism in low absorption	a, another coattening 100000		27	a, ching looco	. u
84	window between ultraviolet and infrared absorption tails is	a) Mie scattering	b) Rayleigh scattering	c) Stimulated Raman scattering	d) Stimulated Brillouin scattering	: b
	Rayleigh scattering can be reduced by operating at					
	smallest possible wavelengths. State whether the following					
85	statement is true or false.	a) True	b) False			: b
	The scattering resulting from fiber imperfections like					
86	core-cladding RI differences, diameter fluctuations, strains, and bubbles is	a) Rayleigh scattering	b) Mie scattering	c) Stimulated Brillouin scattering	d) Stimulated Raman scattering	: b
87		a) Rayleigh scattering a) Forward direction	b) Mile scattering b) Backward direction			
6/	Mie scattering has in-homogeneities mainly in	a) FOI Ward direction	D) Backward direction	c) All direction	d) Core-cladding interface	: a
	The in-homogeneities in Mie scattering can be reduced by					
	coating of a fiber. State whether the following statement is					
88	true or false.	a) True	b) False			: a
	1.00 00100.	10, .100	~, . aloo			. u

		Π		T	I	
		->1	LV Mariliana and Carlana and			
		a) Low optical power	b) Medium optical power		N = 1	
89	Raman and Brillouin scattering are usually observed at	densities	densities	c) High optical power densities	d) Threshold power densities	: c
	The phonon is a quantum of an elastic wave in a crystal					
90	lattice. State whether the given statement is true or false.	a) True	b) False			: a
	J					-
 	A single-mode optical fiber has an attenuation of 0.3dB/km					
	when operating at wavelength of 1.1µm. The fiber core					
	diameter is 4µmand bandwidth is 500 MHz. Find threshold					
			1.) 40 ==		N 40 40	
91	optical power for stimulated Brillouin scattering.	a) 11.20 mw	b) 12.77 mw	c) 13.08 mw	d) 12.12 mw	: b
	0.4 dB/km, 1.4µm, 6µm, 550MHz. Find threshold optical					
92	power for stimulated Raman scattering.	a) 1.98 W	b) 1.20 W	c) 1.18 W	d) 0.96 W	: c
93	Stimulated Brillouin scattering is mainly a	a) Forward process	b) Backward process	c) Upward process	d) Downward process	: b
95	Stirridiated Brillodin scattering is mainly a	a) i diward process	b) backward process	C) Opward process	a) Downward process	. 0
	High frequency optical phonon is generated in stimulated					
94	Raman scattering. State true or false	a) False	b) True			: b
	For many applications which involve optical fiber					
	transmission, an intensity modulation optical source is not					
95	required. State whether the given statement is true or false.	a) True	b) False			: b
	·		 '	\ -	n = · · ·	
96	The optical source used for detection of optical signal is	a) IR sensors	b) Photodiodes	c) Zener diodes	d) Transistors	: b
	An optical fiber behaves as a birefringence medium due to	,			d) Refractive indices of glass and	
97	differences in	geometry	b) Core-cladding symmetry	of waves	silica	: a
	The beat length in a single mode optical fiber is 8 cm,					
	when light from a laser with a peak wavelength 0.6µm is					
98	launched into it. Estimate the modal birefringence.	a) 1×10 ₋₅	b) 3.5×10 ₋₅	c) 2×10-5	d) 4×10-5	
- 30	ladriched into it. Estimate the modal bilennigence.	a) 1410-5	b) 3.5~10-5	C) Z^10-5	u) 4^10-5	: a
	Beat length of a single mode optical fiber is 0.6cm.					
	Calculate the difference between propagation constants for					
99	the orthogonal modes	a) 69.8	b) 99.86	c) 73.2	d) 104.66	: d
	A polarization maintaining fiber operates at a wavelength		<u> </u>			
	1.2µm and have a modal birefringence of 1.8*10-3.					
100	Calculate the period of perturbation.	a) 0.7 seconds	b) 0.6 seconds	c) 0.23 seconds	d) 0.5 seconds	: b
100	Calculate the period of perturbation.	a) 0.7 Seconds	b) 0.0 Seconds	U.23 SECUTIOS	u) u.o seconus	. D
<u> </u>						
	When two components are equally excited at the fiber					
	input, then for polarization maintaining fibers $\delta\Gamma_9$ should be					
101	laround	a) 1.5ns/km	b) 1 ns/km	c) 1.2ns/km	d) 2ns/km	: b
101	around	a, i.ono/kiii	D) 1 113/1011	O) 1.2HO/NH	(1) 2113/1(III	
	Polarization modal noise can the performance					
102	of communication system.	a) Degrade	b) Improve	c) Reduce	d) Attenuate	: a
<u> </u>			h) Proodoning of			
		a) Communication of living	b) Broadening of	a) Overlanding of light multiple		
1 400	Mile at the Proposition to an Paul Chance and a control of	a) Compression of light	transmitted light pulses	c) Overlapping of light pulses on	al). Also a serificación de l'astronomia	
103	What is dispersion in optical fiber communication?	pulses	along the channel	compression	d) Absorption of light pulses	: b

104	What does ISI stands for in optical fiber communication?	a) Invisible size interference	b) Infrared size interference	c) Inter-symbol interference	d) Inter-shape interference	: c
105	For no overlapping of light pulses down on an optical fiber link, the digital bit rate BT must be:	a) Less than the reciprocal of broadened pulse duration	b) More than the reciprocal of broadened pulse duration	c) Same as that of than the reciprocal of broadened pulse duration	d) Negligible	: a
	The maximum bit rate that may be obtained on an optical fiber link is 1/3Γ. State whether the given statement is true					
106	or false.	a) True	b) False			: b
107	3dB optical bandwidth is always the 3dB electrical bandwidth.	a) Smaller than	b) Larger than	c) Negligible than	d) Equal to	: b
108	A multimode graded index fiber exhibits a total pulse broadening of 0.15µsover a distance of 16 km. Estimate the maximum possible bandwidth, assuming no intersymbol interference.	a) 4.6 MHz	b) 3.9 MHz	c) 3.3 MHz	d) 4.2 MHz	: c
109	What is pulse dispersion per unit length if for a graded index fiber, 0.1µs pulse broadening is seen over a distance of 13 km?	a) 6.12ns/km	b) 7.69ns/km	c) 10.29ns/km	d) 8.23ns/km	: b
110	Chromatic dispersion is also called as intermodal dispersion. State whether the given statement true or false.	a) True	b) False			: b
111	Chromatic dispersion is also called as intermodal dispersion. State true or false	a) True	b) False			: b
112	The optical source used in a fiber is an injection laser with a relative spectral width $\sigma \lambda \lambda$ of 0.0011 at a wavelength of 0.70µm. Estimate the RMS spectral width.	a) 1.2 nm	b) 1.3 nm	c) 0.77 nm	d) 0.98 nm	: c
113	In waveguide dispersion, refractive index is independent of	a) Bit rate	b) Index difference	c) Velocity of medium	d) Wavelength	: d
114	Intermodal dispersion occurring in a large amount in multimode step index fiber results in	Propagation of the fiber	b) Propagating through the fiber	c) Pulse broadening at output	d) Attenuation of waves	: c
115	After Total Internal Reflection the Meridional ray		b) Makes an angle equal to critical angle with the axial ray	c) Travels parallel equal to critical angle with the axial ray	d) Makes an angle equal to critical angle with the axial ray	: d
116	Consider a single mode fiber having core refractive index n1= 1.5. The fiber length is 12m. Find the time taken by the axial ray	a) 1.00µsec	b) 0.06µsec	c) 0.90µsec	d) 0.30µsec	: b
	to travel along the fiber					

			+			
	A 4 km optical link consists of multimode step index fiber with core refractive index of 1.3 and a relative refractive index difference of 1%. Find the delay difference between					
117	the slowest and fastest modes at the fiber output.	a) 0.173 µsec	b) 0.152 µsec	c) 0.96 µsec	d) 0.121 µsec	: a
	A multimode step-index fiber has a core refractive index of 1.5 and relative refractive index difference of 1%. The length of the optical link is 6 km. Estimate the RMS pulse					
118	broadening due to intermodal dispersion on the link.	a) 92.6 ns	b) 86.7 ns	c) 69.3 ns	d) 68.32 ns	: b
119	The differential attenuation of modes reduces intermodal pulse broadening on a multimode optical link. State whether the given statement is true or false.	a) True	b) False			: a
120	The index profile of a core of multimode graded index fiber is given by-	a) N (r) = n1 [1 – $2\Delta(r_2/a)_2$] _{1/2} ; r <a< td=""><td>b) N (r) = n1 [3 – $2\Delta(r_2/a)_2$]_{1/2}; r<a< td=""><td>c) N (r) = n1 $[5 - 2\Delta(r_2/a)_2]_{1/2}$; r>a</td><td>d) N (r) = n1 [1 – $2\Delta(r_2/a)_2$]_{1/2}; r<a< td=""><td>: d</td></a<></td></a<></td></a<>	b) N (r) = n1 [3 – $2\Delta(r_2/a)_2$] _{1/2} ; r <a< td=""><td>c) N (r) = n1 $[5 - 2\Delta(r_2/a)_2]_{1/2}$; r>a</td><td>d) N (r) = n1 [1 – $2\Delta(r_2/a)_2$]_{1/2}; r<a< td=""><td>: d</td></a<></td></a<>	c) N (r) = n1 $[5 - 2\Delta(r_2/a)_2]_{1/2}$; r>a	d) N (r) = n1 [1 – $2\Delta(r_2/a)_2$] _{1/2} ; r <a< td=""><td>: d</td></a<>	: d
121	Intermodal dispersion in multimode fibers is minimized with the use of step-index fibers. State whether the given statement is true or false.	a) True	b) False			: b
121	Statement is true or laise.	a) Truc	b) i disc			. 0
	Estimate RMS pulse broadening per km due to intermodal dispersion for multimode step index fiber where length of					
122	fiber is 4 km and pulse broadening per km is 80.6 ns.	a) 18.23ns/km	b) 20.15ns/km	c) 26.93ns/km	d) 10.23ns/km	: b
	Practical pulse broadening value for graded index fiber lies					
123	in the range of	a) 0.9 to 1.2 ns/km	b) 0.2 to 1 ns/km	c) 0.23 to 5 ns/km	d) 0.45 to 8 ns/km	View: b
	The nonlinear effects in optical fibers are large. State					
124	whether the given statement is true or false.	a) True	b) False			: b
	How many categories of nonlinear effects are seen in					
125	optical fibers?	a) One	b) Two	c) Three	d) Four	: b
126	Which of the following is not related to Kerr effects?	a) Self-phase modulation	b) Cross-phase modulation	c) Four-wave mixing	d) Stimulated Raman Scattering	: d
120	Which of the following is not related to Neir effects:	a) Sell-priase modulation	b) Cross-priase modulation	l our-wave mixing	d) Stiffdated Namari Scattering	. u
	<u> </u>				<u> </u>	
127	Linear scattering effects are in nature.	a) Elastic	b) Non-Elastic	c) Mechanical	d) Electrical	: a
	Which thing is more dominant in making a fiber function as	_				
128	bidirectional optical amplifier?	a) Core material	b) Pump source	c) Cladding material	d) Diameter of fiber	: b
	and and all all and a second of					
129	semiconductor laser sources generally have broader bandwidths.	a) Injection	b) Pulsed	a) Solid state	d) Cilicon bybrid	: b
129	broader bandwidths.	a) Injection	b) Fuisea	c) Solid-state	d) Silicon hybrid	. D
	Mantingan effects which are different to the Control of					
120	Nonlinear effects which are defined by the intensity –	a) Coattoring offsets	h) Korr offoots	a) Raman offeats	d) Tamlingan officials	· h
130	dependent refractive index of the fiber are called as	a) Scattering effects	b) Kerr effects	c) Raman effects	d) Tomlinson effects	: b

	Self-phase modulation causes modifications to the pulse		1			
	spectrum. State whether the given statement is true or					
131	false.	a) True	b) False			: a
		a) Enhancing the core				
132	Self-phase modulation can be used for	diameter	b) Wavelength shifting	c) Decreasing the attenuation	d) Reducing the losses in the fiber	: b
	The beating between light at different frequencies or		b) Amplitude modulation of			
133	wavelengths in multichannel fiber transmission causes	a) Attenuation	channels	c) Phase modulation of channels	d) Loss in transmission	: c
	What is different in case of cross-phase modulation from	a) Overlapping but same	b) Overlapping but	c) Non-overlapping and same	d) Non-overlapping but	
134	self-phase modulation?	pulses	distinguishable pulses	pulses	distinguishable pulses	: b
	When three wave components co-propagate at angular					
	frequency w1, w2, w3, then a new wave is generated at					
135	frequency w4, which is given by	a) w4 = w1-w2-w3	b) w4 =w1+w2+w3	c) w4 =w1+w2-w3	d) w4 =w1-w2+w3	: C
	results from case of nonlinear dispersion					
	compensation in which the nonlinear dispersion					
	compensation in which the nonlinear dispersion					
	compensation in which the nonlinear chirp caused by					
	self-phase modulation balances, postpones, the temporal					
136	broadening induced by group velocity delay.	a) Four wave mixing	b) Phase modulation	c) Soliton propagation	d) Raman scattering	: c
	What is a fundamental necessity in the fabrication of fibers	a) Same refractive index			d) Variation of refractive index	
137	for light transmission?	for both core and cladding.	b) Pump source	c) Material composition of fiber	inside the optical fiber	: d
	Which materials are unsuitable for the fabrication of graded		b) Mono-crystalline			
138	index fiber?	a) Glass-like-materials	structures	c) Amorphous material	d) Silica based material	: b
	How many different categories are available for the					
139	methods of preparing optical glasses?	a) 1	b) 2	c) 3	d) 4	: b
		a) Preparation of ultra-pure				
140	What is the first stage in liquid-phase-technique?	material powders	b) Melting of materials	c) Decomposition	d) Crystallization	: a
		a) Filtration,				
	Which processes are involved in the purification stage in	Co-precipitation,	b) Decomposition,			
141	liquid-phase-technique?	Re-crystallization	Filtration, Drying	c) Doping, Drying, Decomposition	d) Filtration, Drying, Doping	: a
	At what temperature range, does the melting of multi					
142	components glass systems takes place?	a) 100-300 degree Celsius	b) 600-800 degree Celsius	c) 900-1300 degree Celsius	d) 1500-1800 degree Celsius	: c
·						
	Fiber drawing using preform was useful for the production					
	of graded index fibers. State whether the given statement is					
143	true or false.	a) True	b) False			: b
	The minute perturbations and impurities in the fiber					
	drawing process using preform technique can result in very	a) Between 500 and 1000	b) Between 100 and 300	c) Between 1200 and 1600 dB/		
144	high losses of	dB/km	dB/km	km	d) More than 2000 dB/km	: a
	The liquid-phase melting technique is used for the	a) With a core diameter of	b) With a core diameter	c) With a core diameter more		
145	production of fibers	, 50μm.	less than 100µm.	than 200µm.	d) With a core diameter of 100µm.	: c

146	Graded index fibers produced by liquid-phase melting technique are less dispersive than step-index fibers. State whether the given statement is true or false.	a) True	b) False			: a
		- /	.,			-
147	Which of the following is not a technique for fabrication of glass fibers?	a) Vapor phase oxidation method	b) Direct melt method	c) Lave ring method	d) Chemical vapor deposition technique	: c
148	technique is method of preparing extremely pure optical glasses.	a) Liquid phase (melting)	b) Radio frequency induction	c) Optical attenuation	d) Vapor Phase Deposition (VPD)	: d
	Which of the following materials is not used as a starting					
149	material in vapor-phase deposition technique?	a) SiCl4	b) GeCl4	c) O2	d) B2O3	: d
		·		·	·	
150	P2O5 is used as a	a) Dopant	b) Starting material	c) Cladding glass	d) Core glass	: a
	How many types of vapor-phase deposition techniques are					
151	present?	a) One	b) Two	c) Three	d) Four	: b
	uses flame hydrolysis stems from work on	a) Outoida vanar abasa	h) Chamical vanor			
152	soot processes which were used to prepare the fiber with losses below 20 dB/km.	a) Outside vapor phase oxidation	b) Chemical vapor deposition	c) Liquid phase melting	d) Crystallization	: a
132	IOSSES DEIOW 20 GD/KITI.	Oxidation	черозіцоп	c) Liquid priase meiting	d) Grystallization	. a
153	Complete the given reaction	a) 2HCl	b) 4HCl	c) 2Cl ₂	d) 4Cl ₂	: b
133	SiCl4+ 2H2O→ SiO2+	a) 21101	b) 41 lCl	C) 2012	u) 4012	. 0
	31014 1 21 120 - 3102 1					
	In modified chemical vapor deposition, vapor phase					
154	reactant such as pass through a hot zone.	a) Halide and oxygen	b) Halide and hydrogen	c) Halide and silica	d) Hydroxides and oxygen	: a
		,		·		
	is the stimulation of oxide formation by means					
4	of non-isothermal plasma maintained at low pressure in a	a) Outside Vapor Phase	b) Vapor Axial Deposition	c) Modified Chemical Vapor	d) Plasma-activated Chemical	
155	microwave cavity surrounding the tube.	Oxidation (OVPO)	(VAD)	Deposition (MCVD)	Vapor Deposition (PCVD)	: d
	Only graded index fibers are made with the help of					
	vapor-phase deposition techniques. State whether true or					
156	false.	a) True	b) False			: b
		.,	.,			
	Modified Chemical Vapor Deposition (MCVD) process is					
	also called as an inside vapor phase oxidation (IVPD) technique. State whether the given statement is true or					
157	false.	a) True	b) False			: a
158	Multimodo etan index fiber has	a) Large core diameter &	b) Large core diameter and small numerical aperture	c) Small core diameter and large	d) Small core diameter & small	
136	Multimode step index fiber has	large numerical aperture	smaii numencai aperture	numerical aperture	numerical aperture	: a
	. A typically structured glass multimode step index fiber	a) 1.2 to 90 dB km-1at	b) 3.2 to 30 dB km-1at	c) 2.6 to 50 dB km-1at	d) 1.6 to 60 dB km-1at wavelength	
159	shows as variation of attenuation in range of	wavelength 0.69µm	wavelength 0.59µm	wavelength 0.85µm	0.90µm	: c
00	2.10110 do randaon el altonidadon in rango di			патологідат олоорин	0.00pm	. •
		l .	I	I.	<u> </u>	

	A multimode step index fiber has a large core diameter of		1	<u> </u>	1	
160	range	a) 100 to 300 µm	b) 100 to 300 nm	c) 200 to 500 µm	d) 200 to 500 nm	: a
	rungo	α) 100 to 000 μπ	5) 100 to 000 1111	σ) 200 to 000 μπ	a) 200 to 000 11111	. 4
161	Multimode step index fibers have a bandwidth of	a) 2 to 30 MHz km	b) 6 to 50 MHz km	c) 10 to 40 MHz km	d) 8 to 40 MHz km	: b
101	Multimode step index libers have a bandwidth of	a) 2 to 30 WH 12 KH	b) Higher purity than	C) 10 to 40 WHZ KIII	d) 6 to 40 WH 12 KH	. 0
	Multimode graded index fibers are manufactured from		multimode step index		d) Impurity as same as multimode	
162	materials with	a) Lower purity	fibers.	c) No impurity	step index fibers.	: b
		, ,			·	
	The performance characteristics of multimode graded	a) Better than multimode	b) Same as multimode step	c) Lesser than multimode step		
163	index fibers are	step index fibers.	index fibers.	index fibers	d) Negligible	: a
	Multimode graded index fibers have overall buffer jackets		_			
101	same as multimode step index fibers but have core	a) Larger than multimode	b) Smaller than multimode	c) Same as that of multimode	d) Smaller than single mode step	
164	diameters	step index fibers.	step index fibers.	step index fibers.	index fibers.	: b
	a) Larger than multimode step index fibers.					
	b) Smaller than multimode step index fibers.					
	c) Same as that of multimode step index fibers.					
	d) Smaller than single mode step index fibers.					
	: b					
	Multimode graded index fibers with wavelength of 0.85µm					
	have numerical aperture of 0.29 have core/cladding					
165	diameter of	a) 62.5 μm/125 μm	b) 100μm/140 μm	c) 85 µm/ 125 µm	d) 50 μm/ 125μm	: b
	Multimode graded index fibers use incoherent source only.					
166	State whether the following statement is true or false.	a) True	b) False			: b
167	In single mode fibers, the most beneficial index profile is	a) Step index	b) Graded index	c) Step and graded index	d) Coaxial cable	: b
	The fibers mostly not used nowadays for optical fiber					
168	communication system are	a) Single mode fibers	b) Multimode step fibers	c) Coaxial cables	d) Multimode graded index fibers	: a
	O'colo con de Charactter d'autorité de la contra del contra de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la contra del la contra de la contra del la contr					
169	Single mode fibers allow single mode propagation; the cladding diameter must be at least	a) Twice the core diameter	b) Thrice the core diameter	c) Five times the core diameter	d) Ten times the core diameter	: d
109	ciadding diameter must be at least	a) Twice the core diameter	b) Standard single mode	c) Five times the core diameter	d) Non zero dispersion shifted	. u
170	A fiber which is referred as non-dispersive shifted fiber is	a) Coaxial cables	fibers	c) Standard multimode fibers	fibers	: b
	alspecial and modifie	.,		,	5. 0	
	Standard single mode fibers (SSMF) are utilized mainly for					
171	operation in	a) C-band	b) L-band	c) O-band	d) C-band and L-band	: c
	Fiber mostly suited in single-wavelength transmission in	a) Low-water-peak non	b) Standard single mode	,	d) Non-zero-dispersion-shifted	
172	O-band is	dispersion-shifted fibers	fibers	c) Low minimized fibers	fibers	: b
	When optical fibers are to be installed in a working					
470	environment, the most important parameter to be	a) Transmission property	b) Mechanical property of			
173	considered is	of the fiber	the fiber	c) Core cladding ratio of the fiber	d) Numerical aperture of the fiber	: b
	It is not become forther asset the second first file.					
	It is not important to cover these optical fibers required for transmission. State whether the given statement is true or					
174	false.	a) True	b) False			: b
'' '	เผเจน.	a) Huc	טון ז מוסכ			
1			1			

	Optical fibers for communication use are mostly fabricated		b) Silica or multicomponent			
175	from	a) Plastic	glass	c) Ceramics	d) Copper	: b
				·		
176	An Si-O bond with a Young's modulus of 9*1010Nm-1 have an elliptical crack of depth 7nm. The surface energy is 2.29 J. Estimate fracture stress for silica fiber.	a) 4.32*10 ₉ Nm ₋₁	b) 6.32*109Nm-1	c) 5.2*10 ₉ Nm ₋₁	d) 3*10 ₉ Nm-1	: a
177	Calculate percentage strain at break for a Si-O bond with a fracture strength of 3.52*1010Nm-1 and Young's modulus of 9 *100Nm-1.	a) 3.1 %	b) 2.8 %	c) 4.5 %	d) 3.9 %	: d
178	Stress corrosion must be considered while designing and testing optical fiber cables. State whether the given statement is true or false.	a) True	b) False			: a
179	Which statistics are used for calculations of strengths of optical fibers?	a) Edwin statistics	b) Newton statistics	c) Wei-bull statistics	d) Gamma statistics	: c
180	What does n denotes in the equation given below, if v _c is the crack velocity; A is the constant for the fiber material and KI is the strength intensity factor? When optical fibers are to be installed in a working	a) Refractive index	b) Stress corrosion susceptibility	c) Strain	d) Young's modulus	: b
181	environment, the most important parameter to be considered is	a) Transmission property of the fiber	b) Mechanical property of the fiber	c) Core cladding ratio of the fiber	d) Numerical aperture of the fiber	: b
182	It is not important to cover these optical fibers required for transmission. State whether the given statement is true or false.	a) True	b) False			: b
183	Optical fibers for communication use are mostly fabricated from	a) Plastic	b) Silica or multicomponent glass	c) Ceramics	d) Copper	: b
184	An Si-O bond with a Young's modulus of 9*1010Nm-1 have an elliptical crack of depth 7nm. The surface energy is 2.29 J. Estimate fracture stress for silica fiber.	a) 4.32*109Nm-1	b) 6.32*109Nm-1	c) 5.2*109Nm-1	d) 3*109Nm-1	: a
185	Calculate percentage strain at break for a Si-O bond with a fracture strength of 3.52*1010Nm-1 and Young's modulus of 9 *109Nm-1.	a) 3.1 %	b) 2.8 %	c) 4.5 %	d) 3.9 %	: d
186	Stress corrosion must be considered while designing and testing optical fiber cables. State whether the given statement is true or false.	a) True	b) False			: a
187	Which statistics are used for calculations of strengths of optical fibers?	a) Edwin statistics	b) Newton statistics	c) Wei-bull statistics	d) Gamma statistics	: c

202	Loose tube buffer jackets exhibits a low resistance to movement of the fiber. State whether the given statement is true or false.	a) True	b) False			:a
201	buffering?	a) Three	b) One	c) Two	d) Four	: a
	How many types of buffer jackets are used in fiber					
200	How many categories exists in case of cable design?	a) Two	b) Three	c) One	d) Four	: b
199	The cable must be designed such that the strain on the fiber in the cable does not exceed	a) 0.002%	b) 0.01%	c) 0.2%	d) 0.160%	: c
198	The losses caused due to hydrogen absorption mechanisms are in the range of	a) 20 dB/km to25 dB/km	b) 10 dB/km to15 dB/km	c) 25 dB/km to50 dB/km	d) 0 dB/km to5 dB/km	: C
197	The losses due to hydrogen absorption and reaction with fiber deposits can be temporary. State whether the given statement is true or false.	a) True	b) False			: b
196	The radiation-induced attenuation can be reduced through photo-bleaching. State whether the given statement is true or false.	a) True	b) False			: a
195	can induce a considerable amount of attenuation in optical fibers.	a) Micro-bending	b) Dispersion	c) Diffusion of hydrogen	d) Radiation Exposure	: d
194	The diffusion of hydrogen into optical fiber affects the	a) Transmission of optical light in the fiber	b) Spectral attenuation characteristics of the fiber	c) Core of the fiber	d) Cladding of the fiber	: b
193	The fiber should be to avoid deterioration of the optical transmission characteristics resulting from mode-coupling-induced micro-bending.	a) Free from irregular external pressure	b) Coupled with plastic	c) Large in diameter	d) Smooth and in a steady state	: a
192	What does micro-bending losses depend on?	a) Core material	b) Refractive index	c) Diameter	d) Mode and wavelength	: d
191	How many forms of modal power distribution are considered?	a) One	b) Two	c) Three	d) Four	: b
190	Microscopic meandering of the fiber core axis that is micro-bending is caused due to	a) Environmental effects	b) Rough edges of the fiber	c) Large diameter of core	d) Polarization	: a
189	results from small lateral forces exerted on the fiber during the cabling process.	a) Attenuation	b) Micro-bending	c) Dispersion	d) Stimulated Emission	: b
	vc= AKin					
188	What does n denotes in the equation given below, if v _c is the crack velocity; A is the constant for the fiber material and KI is the strength intensity factor?	a) Refractive index	b) Stress corrosion susceptibility	c) Strain	d) Young's modulus	: b

	T			1		
	An inclusion of one or more structural members in an					
	optical fiber so as to serve as a cable core foundation					
	around which the buffer fibers may be wrapped is called					
203		a) Attenuation	b) Splicing	c) Buffering	d) Stranding	: d
	Which of the following is not a strength member used in					
204	optical cable?	a) Steel wire	b) Germanium	c) Aramid yarns	d) Glass elements	: b
	option capie.	a) stool will	b) comanam	o, ruarria yarrio	a) Glaco Glorifotto	
	When the stranding approach consists of individual					
005	elements (e.g. single-fiber or multi fiber loose tube buffer)	-> 0 - 1 1 1 1 -	h) O a said a abla	2) 1	d) Danie danie salida	
205	than the cable is termed as	a) Optical unit cable	b) Coaxial cable	c) Layer cable	d) Bare glass cable	: C
	The primary function of the structural member is load					
206	bearing. State whether the given statement is true or false.	a) True	b) False			: b
	What is the Young's modulus of Kevlar, an aromatic					
207	polyester?	a) 9 ×10 ₁₀ Nm ₋₂	b) 10 ×10 ₁₀ Nm-2	c) 12 ×10 ₁₀ Nm-2	d) 13 ×10 ₁₀ Nm-2	: d
	po., j co. co	S, 5 1010141112	~/ 10 1010HHF2	0, 12 1010111112	5/10 1010111172	
-	The cable is normally covered with an outer plastic sheath			+		+
200		a) Abrasian	b) Armor	a) Friction	d) Diaparaian	
208	to reduce	a) Abrasion	b) Armor	c) Friction	d) Dispersion	: a
000	A measure of amount of optical fiber emitted from source	-) Dediene	b) Angular power		d) Develop leave dive	
209	that can be coupled into a fiber is termed as	a) Radiance	distribution	c) Coupling efficiency	d) Power-launching	: C
					d) Angular power distribution	
210	The ratio $r = (n1 - n)/(n1 - n)$ indicates	a) Fresnel reflection	b) Reflection coefficient	c) Refraction coefficient	coefficient	: b
	A GaAs optical source having a refractive index of 3.2 is					
	coupled to a silica fiber having a refractive index of 1.42.					
	Determine Fresnel reflection at interface in terms of					
211	percentage.	a) 13.4%	b) 17.4%	c) 17.6%	d) 14.8%	: d
					, , , , , , , , , , , , , , , , , , , ,	
	A particular GaAs fiber has a Fresnel reflection magnitude			+		+
	of 17.6% i.e. 0.176. Find the power loss between the					
212		-) 0 00 dD	L) 0.70 JD	-> 0.04 dB	1) 0 00 10	
212	source and the fiber?	a) 0.86 dB	b) 0.78 dB	c) 0.84 dB	d) 0.83 dB	: C
	Two joined step index fibers are perfectly aligned. What is					
	the coupling loss of numerical aperture are NAR= 0.26 for					
213	emitting fiber?	a) -0.828 dB	b) -0.010 dB	c) -0.32 dB	d) 0.32 dB	: b
	Two joined graded index fibers that are perfectly aligned			1		+
	have refractive indices α R=1.93for receiving fiber α E= 2.15					
214	for emitting fiber. Calculate the coupling loss	a) 0.23 dB	b) 0.16 dB	c) 0.82 dB	d) 0.76 dB	: a
4 IT	Tor criticing liber. Calculate the coupling loss	a) v.23 ub	D) 0.10 UB	C) 0.02 UB	(a) 0.70 dB	. a
	How many homes of minelianness at a second series in the			+		
045	How many types of misalignments occur when joining	-> 0	15. T		at) There is	
215	compatible fiber?	a) One	b) Two	c) Five	d) Three	: d
	Losses caused by factors such as core-cladding diameter,					
	numerical aperture, relative refractive index differences,					
216	different refractive index profiles, fiber faults are known as	a) Intrinsic joint losses	b) Extrinsic losses	c) Insertion losses	d) Coupling losses	: a
	1	1				

	A step index fiber has a coupling efficiency of 0.906 with uniform illumination of all propagation modes. Find the					
217	insertion loss due to lateral misalignment?	a) 0.95 dB	b) 0.40 dB	c) 0.42 dB	d) 0.62 dB	: C
040	A graded index fiber has a parabolic refractive index profile $(\alpha\text{=}2)$ and core diameter of $42\mu\text{m}.$ Estimate an insertion loss due to a 2 μm lateral misalignment when there is index matching and assuming there is uniform illumination of all		1,0400	.) 0.000	A) 0 000	
218	guided modes only.	a) 0.180	b) 0.106	c) 0.280	d) 0.080	: d
219	Determine coupling efficiency if the misalignment loss in a graded index fiber is 0.102	a) 0.136	b) 0.898	c) 0.982	d) 0.684	: b
220	In a single mode fiber, the losses due to lateral offset and angular misalignment are given by 0.20 dB and 0.46 dB respectively. Find the total insertion loss	a) 0.66 dB	b) 0.26 dB	c) 0.38 dB	d) 0.40 dB	: a
221	The intrinsic loss through a multimode fiber joint is independent of direction of propagation. State whether the given statement is true or false	a) True	b) False			: b
222	The expanded beam connectors use for beam expansion and reduction.	a) Square micro-lens	b) Oval micro-lens	c) Spherical micro-lens	d) Rectangular micro-lens	: c
223	Lens-coupled expanded beam connectors exhibit average losses of in case of single mode and graded index fibers.	a) 0.3 dB	b) 0.7 dB	c) 0.2 dB	d) 1.5 dB	: b
224	Sapphire ball lens expanded beam design is successful than spherical lens coupled design. State whether the given statement is true or false.	a) True	b) False			:а
225	The fiber is positioned at the of the lens in order to obtain a collimated beam and to minimize lens-to-lens longitudinal misalignment effects.	a) Aperture	b) Focal length	c) Curve	d) Exterior circumference	: b
226	exhibits a parabolic refractive index profile with a maximum at the axis similar to graded index fiber.	a) Lens coupled design	b) Sapphire ball lens	c) Spherical micro-lens	d) GRIN-rod lens	: d
227	The GRIN-rod lens can produce a collimated output beam with a divergent angle αof between from a light source situated on, or near to, the opposite lens face.	a) 1 to 5 degrees	b) 9 to 16 degrees	c) 4 to 8 degrees	d) 25 to 50 degrees	: a
228	In the given equation, if r is the radial distance, n is the refractive index; what does z stands for? dr2/dz2= (1/n) (d n/dr)	a) Focal length	b) Distance along the optical axis	c) Axial angle	d) Diameter	: b
229	The majority of the GRIN-rod lenses have diameters in the range of	a) 2 to 2.5 mm	b) 3 to 4 mm	c) 0.1 to 0.4 mm	d) 0.5 to 2 mm	: d

230	Which of the following factors does not cause divergence of the collimated beam from a GRIN-rod lens?	a) Lens cut length	b) Size of fiber core	c) Refractive index profile	d) Chromatic aberration	: c
231	GRIN-rod lens connectors have loss characteristics which are independent of the modal power distribution in the fiber. State whether the given statement is true or false.	a) True	b) False			:a
232	A permanent joint formed between two different optical fibers in the field is known as a	a) Fiber splice	b) Fiber connector	c) Fiber attenuator	d) Fiber dispersion	: a
233	How many types of fiber splices are available?	a) One	b) Two	c) Three	d) Four	: b
234	The insertion losses of the fiber splices are much less than the Fresnel reflection loss at a butted fiber joint. State whether the given statement is true or false.	a) True	b) False			:а
235	What is the main requirement with the fibers that are intended for splicing?	a) Smooth and oval end faces	b) Smooth and square end faces	c) Rough edge faces	d) Large core diameter	: b
236	In score and break process, which of the following is not used as a cutting tool?	a) Diamond	b) Sapphire	c) Tungsten carbide	d) Copper	: d
237	The heating of the two prepared fiber ends to their fusing point with the application of required axial pressure between the two optical fibers is called as	a) Mechanical splicing	b) Fusion splicing	c) Melting	d) Diffusion	: b
238	Which of the following is not used as a flame heating source in fusion splicing?	a) Microprocessor torches	b) Ox hydric burners	c) Electric arc	d) Gas burner	: d
239	Average insertion losses as low as have been obtained with multimode graded index and single-mode fibers using ceramic capillaries.	a) 0.1 dB	b) 0.5 dB	c) 0.02 dB	d) 0.3 dB	: а
240	are formed by sandwiching the butted fiber ends between a V-groove glass substrate and a flat glass retainer plate.	a) Springroove splices	b) V-groove splices	c) Elastic splices	d) Fusion splices	: b
241	Mean splice insertion losses of 0.05 dB are obtained using multimode graded index fibers with the Springroove splice. State whether the given statement is true or false.	a) True	b) False			: а
242	Alignment accuracy of the order is obtained using the three glass rod alignment sleeve.	a) 0.23 µm	b) 0.15 µm	c) 0.05 µm	d) 0.01 μm	: c

	The control of the feet of the control of the contr	1		1		
	In case of multiple fusion, splice losses using an electric					
	arc fusion device with multimode graded index fiber range					
243	from	a) 0.01 to 0.04 dB	b) 0.19 to 0.25 dB	c) 0.12 to 0.15 dB	d) 0.04 to 0.12 dB	: d
	A permanent joint formed between two different optical					
044		a) Fiber enlies	h) Fiber commenter	a) F:httt	d) Fiber disconsists	
244	fibers in the field is known as a	a) Fiber splice	b) Fiber connector	c) Fiber attenuator	d) Fiber dispersion	: a
245	How many types of fiber splices are available?	a) One	b) Two	c) Three	d) Four	: b
2-10	Trow many types of fiber spiloes are available:	a) one	b) 100) Three	a) i dai	. 5
	The insertion losses of the fiber splices are much less than					
	the Fresnel reflection loss at a butted fiber joint. State					
246	whether the given statement is true or false.	a) True	b) False			: a
	What is the main requirement with the fibers that are	a) Smooth and oval end	b) Smooth and square end		+	
247		,	,	a) Dayigh adga fasas	d) Lorgo coro diameter	. 6
247	intended for splicing?	faces	faces	c) Rough edge faces	d) Large core diameter	: b
	In score and break process, which of the following is not					
248	used as a cutting tool?	a) Diamond	b) Sapphire	c) Tungsten carbide	d) Copper	: d
	, g	,	, , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, FF-	-
	The heating of the true property files and to their factors					
	The heating of the two prepared fiber ends to their fusing					
	point with the application of required axial pressure					
249	between the two optical fibers is called as	a) Mechanical splicing	b) Fusion splicing	c) Melting	d) Diffusion	: b
	Which of the following is not used as a flame heating					
250	source in fusion splicing?	a) Microprocessor torches	b) Ox bydric burners	c) Electric arc	d) Gas burner	: d
200	Source in rusion splicing:	a) Microprocessor torches	b) Ox flydric burriers	c) Liectric arc	u) Gas burrier	. u
	The rounding of the fiber ends with a low energy discharge					
	before pressing the fibers together and fusing with a					
251	stronger arc is called as	a) Pre-fusion	b) Diffusion	c) Crystallization	d) Alignment	: a
	is caused by surface tension effects					
252	between the two fiber ends during fusing.	a) Dra fusion	h) Diffusion	a) Calf alignment	d) Calining	
252	between the two liber ends during lusing.	a) Pre-fusion	b) Diffusion	c) Self-alignment	d) Splicing	: C
	Average insertion losses as low as have been					
	obtained with multimode graded index and single-mode					
253	fibers using ceramic capillaries.	a) 0.1 dB	b) 0.5 dB	c) 0.02 dB	d) 0.3 dB	: a
	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, -			1	_
	are formed by conduiching the builted					
	are formed by sandwiching the butted					
054	fiber ends between a V-groove glass substrate and a flat				1,	
254	glass retainer plate.	a) Springroove splices	b) V-groove splices	c) Elastic splices	d) Fusion splices	: b
	Mean splice insertion losses of 0.05 dB are obtained using					
	multimode graded index fibers with the Springroove splice.					
255	State whether the given statement is true or false.	a) True	b) False			: a
200	Otate whether the given statement is true or laise.	a) Hue	b) i aise		+	. a
	Alignment accuracy of the order is obtained					
256	using the three glass rod alignment sleeve.	a) 0.23 µm	b) 0.15 μm	c) 0.05 µm	d) 0.01 µm	: c
	I .					

	In case of multiple fusion, oplice leader using an electric	1	T	1	T T	
	In case of multiple fusion, splice losses using an electric					
	arc fusion device with multimode graded index fiber range					
257	from	a) 0.01 to 0.04 dB	b) 0.19 to 0.25 dB	c) 0.12 to 0.15 dB	d) 0.04 to 0.12 dB	: d
<u> </u>	When considering source-to-fiber coupling efficiencies, the					
			b) Dadianas af an antical			
l	is an important parameter than total output		b) Radiance of an optical			
258	power.	a) Numerical aperture	source	c) Coupling efficiency	d) Angular power distribution	: b
	It is a device that distributes light from a main fiber into one					
259	or more branch fibers.	a) Optical fiber coupler	b) Optical fiber splice	c) Optical fiber connector	d) Optical isolator	: a
255	of more prancifibers.	a) Optical liber coupler	b) Optical liber splice	C) Optical liber confilector	d) Optical isolator	. а
	Optical fiber couplers are also called as					
260		a) Isolators	b) Circulators	c) Directional couplers	d) Attenuators	: c
		1	ĺ		,	
	How many types of multipart entired fiber counters are		 	+		
004	How many types of multiport optical fiber couplers are	-> T	100	L) Firm	J. There	
261	available at present?	a) Two	b) One	c) Four	d) Three	: d
	The optical power coupled from one fiber to another is	a) Numerical apertures of	b) Varying refractive index	c) Angular power distribution at	d) Number of modes propagating	
262	limited by	fibers	of fibers	source	in each fiber	: d
	couplers combine the different wavelength		<u> </u>	<u> </u>	 	
	optical signal onto the fiber or separate the different		1. 040 () 14/54/	N 5: 1: 1	
263	wavelength optical signal output from the fiber.	a) 3-port	b) 2*2-star	c) WDM	d) Directional	: C
	How many fabrication techniques are used for 3 port fiber					
264	couplers?	a) One	b) Two	c) Three	d) Four	: b
207	Couplets:	a) One	b) IWO	c) Thice	a) i oui	. 6
	The most common method for manufacturing couplers is	a) Wavelength division		c) Semitransparent mirror	d) Fused bi-conical taper (FBT)	
265		multiplexing	b) Lateral offset method	method	technique	: d
			Í		· ·	
-	Counters insertion less is some as that of avecas less					
	Couplers insertion loss is same as that of excess loss.	l , _				.
265	State whether the given statement is true or false.	a) True	b) False			: b
	A four-port multimode fiber FBT coupler has 50 µWoptical					
	power launched into port 1. The measured output power at					
	ports 2,3 and 4 are 0.003, 23.0 and 24.5 µW respectively.					
200		a) 0 22 dD	P) 0 33 4D	a) 0 45 dD	4) 0 40 4D	
266	Determine the excess loss.	a) 0.22 dB	b) 0.33 dB	c) 0.45 dB	d) 0.12 dB	: a
	A four-port FBT coupler has 60µW optical power launched					
1	into port one. The output powers at ports 2, 3, 4 are					
267	0.0025, 18, and 22 μW respectively. Find the split ratio?	a) 42%	b) 46%	c) 52%	d) 45%	: d
201	0.0020, 10, and 22 pre respectively. Find the Split Idtio?	a) 72 /0	D) 70 /0	0) 02 /0	u) 75/0	. u
	How many manufacturing methods are used for producing					
268	multimode fiber star couplers?	a) Two	b) One	c) Three	d) Five	: a
		,		, -	'	-
	Coloulate the colitting loss if a 20,000 ment coultings to 50 ment		<u> </u>	<u> </u>		
	Calculate the splitting loss if a 30×30 port multimode fiber					
1	star coupler has 1 mW of optical power launched into an					
269	input port.	a) 13 dB	b) 15 dB	c) 14.77 dB	d) 16.02 dB	: C
			1	1	1	i i

	14. A coupler comprises a number of						
270	cascaded stages, each incorporating three or four-port FBT couplers to obtain a multiport output.	a) Star	b) Ladder	c) WDM	d) Three-port	: a	
270	couplers to obtain a multiport output.	a) Stat	b) Laddel	C) VVDIVI	a) Triree-port	. a	
	A number of three-port single-mode fiber couplers are						
	used in the fabrication of a ladder coupler with 16 output						
	ports. The three-port couplers each have an excess loss of 0.2 dB along with a splice loss of 0.1 dB at the						
271	interconnection of each stage. Determine the excess loss.	a) 1.9 dB	b) 1.4 dB	c) 0.9 dB	d) 1.1 dB	: d	
		,	,		Ź		
	An FBG is developed within a fiber core having a refractive						
272	index of 1.30. Find the grating period for it to reflect an optical signal with a wavelength of 1.33µm.	a) 0.51 µm	b) 0.58 µm	c) 0.61 µm	d) 0.49 µm	: a	
212	optical signal with a wavelength of 1.55µm.	α) 0.51 μπ	υ) 0.30 μπ	ο, σ.σ τ μπτ	α) 0.43 μπ	. a	
	It is a passive device which allows the flow of optical signal						
	power in only one direction and preventing reflections in the						
273	backward direction.	a) Fiber slice	b) Optical fiber connector	c) Optical isolator	d) Optical coupler	: C	
-	Which feature of an optical isolator makes it attractive to						
274	use with optical amplifier?	a) Low loss	b) Wavelength blocking	c) Low refractive index	d) Attenuation	: b	
075	Magneto-optic devices can be used to function as isolators.	-> T	h) F-1				
275	State whether the given statement is true or false.	a) True	b) False			: a	
	How many implementation methods are available for						
276	optical isolators?	a) One	b) Four	c) Two	d) Three	: d	
077	A device which is made of isolators and follows a closed	a) Ciasadatas	h) O mater	a) Attaurates			
277	loop path is called as a	a) Circulator	b) Gyrator	c) Attenuator	d) Connector	: a	
	The commercially available circulators exhibit insertion						
278	losses around	a) 2 dB	b) 0.7 dB	c) 0.2 dB	d) 1 dB	: d	
	A combination of a FBG and optical isolators can be used to produce non-blocking optical wavelength division add/						
	draw multiplexers. State whether the given statement is						
279	true or false.	a) True	b) False			: b	
280	A device which converts electrical energy in the form of a current into optical energy is called as	a) Optical source	b) Optical coupler	c) Optical isolator	d) Circulator	: a	
200	Current into optical energy is called as	a) Optical source	b) Optical couplet	Optical isolatol	u) Girculatoi	. a	
281	How many types of sources of optical light are available?	a) One	b) Two	c) Three	d) Four	: C	
		, Jii	2, 1110	5, 11100	4) 1 041	. 0	
	The frequency of the absorbed or emitted radiation is						
	related to difference in energy E between the higher energy						
282	state E ₂ and the lower energy state E ₁ . State what h stands for in the given equation?	a) Gravitation constant	b) Planck's constant	c) Permittivity	d) Attenuation constant	: b	h = 6.626×10
202	E =E ₂ - E ₁ = hf	a) Gravitation Constant	b) Fidilion 3 Collisiant	o, i cillituvity	a) Attenuation constant	. 0	0.020**10
	I .	1	 	-L			

	The radiation emission process (emission of a proton of	1		1		
000	The radiation emission process (emission of a proton at	l		1,_		
283	frequency) can occur in ways.	a) Two	b) Three	c) Four	d) One	: a
	Which process gives the laser its special properties as an					
284	optical source?	a) Dispersion	b) Stimulated absorption	c) Spontaneous emission	d) Stimulated emission	: d
204	Optical 30di cc :	a) Dispersion	b) otimulated absorption	c) opontaneous emission	d) Otimalated emission	. u
	An incandescent lamp is operating at a temperature of					
	1000K at an operating frequency of 5.2×1014 Hz. Calculate					
	the ratio of stimulated emission rate to spontaneous					
285	emission rate.	a) 3×10-13	b) 1.47×10 ₋₁₁	c) 2×10-12	d) 1.5×10-13	: b
200	citiodioii rate.	u) 0.110-13	b) 1.47 ·· 10-11	0) 210-12	a) 1.0 · 10 - 13	. 0
	The lower energy level contains more atoms than upper					
286	level under the conditions of	a) Isothermal packaging	b) Population inversion	c) Thermal equilibrium	d) Pumping	: c
		1	•	<u>'</u>		
	in the lease converted as abote a					
	in the laser occurs when photon	1				
	colliding with an excited atom causes the stimulated					
287	emission of a second photon.	a) Light amplification	b) Attenuation	c) Dispersion	d) Population inversion	: a
	A ruby laser has a crystal of length 3 cm with a refractive			1		
	index of 1.60, wavelength 0.43 µm. Determine the number					
000	index of 1.60, wavelength 0.43 µm. Determine the number		1.3.0.40	1,00,40	10.00.40	
288	of longitudinal modes.	a) 1×10 ₂	b) 3×10 ₆	c) 2.9×10 ₅	d) 2.2×10 ₅	: d
	A semiconductor laser crystal of length 5 cm, refractive					
	index 1.8 is used as an optical source. Determine the					
000		-) 2 2 2 1 -	b) 4 2 01 b	a) 4 0 0 l l=	4) 0 01 -	
289	frequency separation of the modes.	a) 2.8 GHz	b) 1.2 GHz	c) 1.6 GHz	d) 2 GHz	: C
	Doppler broadening is a homogeneous broadening					
	mechanism. State whether the given statement is true or					
290	false.	a) True	b) False			: b
230	laise.	a) True	b) i aise	+		. 0
	An injection laser has active cavity losses of 25 cm-1and					
	the reflectivity of each laser facet is 30%. Determine the					
291	laser gain coefficient for the cavity it has a length of 500µm.	a) 46 cm-1	b) 51 cm ₋₁	c) 50 cm-1	d) 49.07 cm-1	: d
	label gain econicion no the cavity it has a longer of ecopini.	a) 10 0m 1	5) 61 6111	0,0000111	d) 10.07 01111	
	Longitudinal modes contribute only a single spot of light to	1				
	the laser output. State whether the given statement is true					
292	or false.	a) True	b) False			: a
	Considering the values given below selected the read-			+		
000	Considering the values given below, calculate the mode	-> 4 4::40	1.34 0.40	3.440	.1) 040	1 . I
293	separation in terms of free space wavelength for a laser.	a) 1.4×10-11	b)1.6×10-12	c) 1×10-12	d) 6×10-11	: b
	Frequency separation = 2GHz					
	 	İ				
	Wavelength = 0.5 μm.			+		
	lasers are presently the major					
294	laser source for optical fiber communications	a) Semiconductor	b) Non-Semiconductor	c) Injection	d) Solid-state	: c
	The second secon	-/	2,113.1100.1100.1000	7,,	-,	
				1		
	In Nd: YAG lasers, the maximum doping levels of					
295	neodymium is	a) 0.5 %	b) 1.5 %	c) 1.8 %	d) 2 %	: b
	L			1		

	Which of the following is not a property of Nd: YAG laser					
	that enables its use as an optical fiber communication				d) Semiconductors and integrated	
296	source?	a) Single mode operation	b) Narrow line-width	c) Long lifetime	circuits	: d
	The Nd: YAG laser has a narrow line-width which is					
297		a) < 0.01 nm	b) > 0.01 nm	c) > 1 mm	d) > 1.6 mm	: a
	The street of th					
298	The strongest pumping bands is a four level system of Nd: YAG laser at wavelength of range	a) 0.25 and 0.56 nm	b) 0.75 and 0.81 nm	c) 0.12 and 0.23 nm	d) 1 and 2 nm	: b
290	TAG laser at wavelength of range	a) 0.25 and 0.56 mm	0) 0.75 and 0.81 mm	C) 0.12 and 0.23 mm	a) I and 2 mm	. D
-	The Nd: YAG laser is costlier than earth-doped glass fiber					
299	laser. State whether the following statement is true or false	a) True	b) False			: a
	g to					
	It is a resonant cavity formed by two parallel reflecting					
	mirrors separated by a mirror separated by a medium such					
300	as air or gas	a) Optical cavity	b) Wheatstone's bridge	c) Oscillator	d) Fabry-perot resonator	: d
	In a three level system, the threshold power decreases					
301	inversely with the length of the fiber gain medium. State whether the given statement is true or false.	a) True	b) False			: b
301	whether the given statement is true or laise.	a) True	b) i alse			. 0
	Which of the following co-dopant is not employed by					
302	neodymium and erbium doped silica fiber lasers?	a) Phosphorus pent oxide	b) Germania	c) Nitrogen	d) Alumina	: c
	·					
	Dopants levels in glass fiber lasers are generally			c) Same as that of GRIN rod lens	d) Same as that of semiconductor	
303		a) Low	b) High	laser	laser	: a
	fibers include addition of lead fluoride					
304	to the core glass in order to raise the relative refractive index.	a) Solid-state	b) GaAs	c) Semiconductor	d) ZBLANP	: d
304	Index.	a) Suliu-State	D) GaAs	C) Serriconductor	U) ZBLANF	. u
<u> </u>	The lasing output of the basic Fabry-perot cavity fiber is					
305	restricted to between	a) 1 and 2 nm	b) 5 and 10 nm	c) 3 and 6 nm	d) 15 and 30 nm	: b
			,			
		a) Increasing the refractive	b) Decreasing the			
306	In Fabry-perot laser, the lower threshold is obtained by	index	refractive index	c) Reducing the slope efficiency	d) Increasing the slope efficiency	: C
307	When did the non-semiconductor laser developed?	a) 1892	b) 1946	c) 1985	d) 1993	: c
308	Y ₃ A ₁₅ O ₁₂ Is a molecular formula for	a) Ytterbium aluminate	b) Yttrium oxide	c) Ytterbium oxy-aluminate	d) Yttrium-aluminum garnet	: d
	A perfect semiconductor crystal containing no impurities or					
309	lattice defects is called as	a) Intrinsic semiconductor	b) Extrinsic semiconductor	c) Excitation	d) Valence electron	: a
040			b) Probability distribution	c) Fermi-Dirac distribution	al) Common destinate alia (1919) (1919) (1919)	
310	equilibrium is described by the	function	function	function	d) Cumulative distribution function	: C
		a) Refractive index is	h) Doning the material with	a) Increase the hand gar of the		
311	What is done to create an extrinsic semiconductor?	decreased	b) Doping the material with impurities	c) Increase the band-gap of the material	d) Stimulated emission	: b
	What is done to create an extrinsic semiconductor!	uco caseu	impunites	material	a) olimulated emission	. D

	1	I			1	
	The majority of the carriers in a p-type semiconductor					
312	are .	a) Holes	b) Electrons	c) Photons	d) Neutrons	: a
012		4) 110100	b) Licotrons	c) i fictorio	a) Neditorio	. u
	is used when the optical emission					
313	results from the application of electric field.	a) Radiation	b) Efficiency	c) Electro-luminescence	d) Magnetron oscillator	: c
314	In the given equation, what does p stands for?	a) Permittivity	b) Probability	c) Holes	d) Crystal momentum	: d
	p=2πhk		-,			
	p = 1111K					
	The recombination in indirect band-gap semiconductors is					
315	slow. State whether the given statement is true or false.	a) True	b) False			: True
			,			
	Calculate the radioactive minority carrier lifetime in gallium					
	arsenide when the minority carriers are electrons injected					
	into a p-type semiconductor region which has a hole					
	concentration of 1018cm-3. The recombination coefficient					
316	for gallium arsenide is	a) 2ns	b) 1.39ns	c) 1.56ns	d) 2.12ms	: b
	7.21*10-10cm3s-1.					
	Which impurity is added to gallium phosphide to make it an					
317	efficient light emitter?	a) Silicon	b) Hydrogen	c) Nitrogen	d) Phosphorus	: C
					D.I	
318	Denulation inversion is obtained at a n n innetion by	a) Heavy doping of p-type material	b) Heavy doping of n-type material	a) Light dening of a type metarial	d) Heavy doping of both p-type	: d
310	Population inversion is obtained at a p-n junction by	material	material	c) Light doping of p-type material	and n-type material	. u
	A GaAs injection laser has a threshold current density of					
	2.5*103Acm-2and length and width of the cavity is					
	240µmand 110µm respectively. Find the threshold current					
319	for the device.	a) 663 mA	b) 660 mA	c) 664 mA	d) 712 mA	: b
	A GaAs injection laser with an optical cavity has refractive					
	index of 3.6. Calculate the reflectivity for normal incidence					
320	of the plane wave on the GaAs-air interface.	a) 0.61	b) 0.12	c) 0.32	d) 0.48	: C
	A homo-junction is an interface between two adjoining					
	single-crystal semiconductors with different band-gap					
204	energies. State whether the given statement is true or	-> T	h) Falas			
321	false.	a) True	b) False			: b
000		_	10	\ \	n e	
322	How many types of hetero-junctions are available?	a) Two	b) One	c) Three	d) Four	: a
	The grateur is boot developed and in					
	The system is best developed and is used for fabricating both lasers and LEDs for the shorter					
323	wavelength region.	a) InP	b) GaSb	c) GaAs/GaSb	d) GaAs/Alga AS DH	: d
020	wavelength region.	α) 1111	0,000	o) Jano Jago	a) Cansiniga no Di i	. u
	Stimulated emission by recombination of injected carriers is	a) Semiconductor injection		1		+ -
324	encouraged in	laser	b) Gas laser	c) Chemist laser	d) Dye laser	: a
J_ T	555a.agoa iii		2, 340 14001	5, 5.161110010001	2,230 10001	. ~
		1	1	1	<u> </u>	

	I a considered cotton iniciation leaves reconstitute beneficiable in all	T	1	T	T	
205	In semiconductor injection laser, narrow line bandwidth is of	-> 4	In A some	A) F	1) 0	
325	the order	a) 1 nm or less	b) 4 nm	c) 5 nm	d) 3 nm	: a
326	Injection laser have a high threshold current density of	a) 104Acm-2and more	b) 102Acm-2	c) 10-2Acm-2	d) 10-3Acm-2	: a
	,		,	,	,	
			1			
327	ητ Is known as slope quantum efficiency. State true or false	a) Irue	b) False			: b
	The total efficiency of an injection laser with GaAs active					
	region is 12%. The applied voltage is 3.6 V and band gap					
	energy for GaAs is 2.34 eV. Determine external power					
328	efficiency.	a) 7.8 %	b) 10 %	c) 12 %	d) 6 %	: a
	,			,		
	In a DH laser, the sides of cavity are formed by	a) Cutting the edges of	b) Roughening the edges		d) Covering the sides with	
329	lin a Diriasei, the sides of cavity are formed by	device	of device	c) Softening the edges of device	ceramics	: b
329		device	or device	c) Softerling the edges of device	Ceramics	. D
	A particular laser structure is designed so that the active					
	region extends the edges of devices. State whether the					
330	following statement is true or false.	a) True	b) False			: a
331	Gain guided laser structure are	a) Chemical laser	b) Gas laser	c) DH injection laser	d) Quantum well laser	: C
- 001	Call galaca laser structure are	a) Orientical laser	b) Gas laser	C) Di l'injection lasei	d) Quaritum well laser	. 0
332	Laser modes are generally separated by few	a) Tenths of micrometer	b) Tenths of nanometer	c) Tenths of Pico-meter	d) Tenths of millimeter	: b
	The spectral width of emission from the single mode device	a) Smaller than broadened	b) Larger than broadened	c) Equal the broadened transition		
333	is	transition line-width	transition line-width	line-width	d) Cannot be determined	: a
		a) Eliminating all	b) Eliminating all			
334	Single longitudinal mode operation is obtained by	transverse mode	longitudinal modes	c) Increasing the length of cavity	d) Padusing the length of acuity	: d
334	Single longitudinal mode operation is obtained by	transverse mode	longitudinal modes	c) increasing the length of cavity	d) Reducing the length of cavity	. u
	A correct DH structure will restrict the vertical width of					
335	waveguide region	a) 0.5µm.	b) 0.69 µm	c) 0.65 µm	d) Less than 0.4 μm	: d
	The external power efficiency of an injection laser with a					
	GaAs is 13% having band gap energy of 1.64 eV.					
336	Determine external power efficiency	a) 0.198	b) 0.283	c) 0.366	d) 0.467	: a
		,	,	,	, -	-
		<u> </u>			 	
337	The strip width of injection laser is	a) 12 µm	b) 11.5 μm	c) Less than 10 µm	d) 15 µm	: c
	Some refractive index variation is introduced into lateral					
	structure of laser. State whether the given statement is true					
338	or false.	a) True	b) False			:a
	or raiso.	4, 1140	D) 1 0.00			. u
	Duried before investige (DLI) desire in a first of			<u> </u>		
	Buried hetero-junction (BH) device is a type of					
000	laser where the active volume is buried in	-> 0 1	h) O-::dd	a NAVa alla ta dans and dia and a	L. 01	
339	a material of wider band-gap and lower refractive index.	a) Gas lasers.	b) Gain guided lasers.	c) Weak index guiding lasers.	d) Strong index guiding lasers.	: d

	L D : 11 (: e /DIN 1		1	·	1000	
340	In Buried hetero-junction (BH) lasers, the optical field is confined within	a) Tanana alima ati an	la) I ataual disaatias	a) Outside the statis	d) Both transverse and lateral	: d
340	Confined within	a) Transverse direction.	b) Lateral direction.	c) Outside the strip.	direction.	. u
044	A double-channel planar buried hetero-structure (DCP BH)				1) 0:0	
341	has a planar active region, the confinement material is	a) Alga AS	b) InGaAsP	c) GaAs	d) SiO ₂	: b
	Problems resulting from parasitic capacitances can be	a) Through regrowth of		c) By using a planar InGaAsP	d) By using a AlGaAs active	
342	overcome	semi-insulating material.	b) By using oxide material.	active region.	region.	: a
343	Quantum well lasers are also known as	a) BH lasers.	b) DH lasers.	c) Chemical lasers.	d) Gain-guided lasers.	: b
					garage record	
	Quantum well lasers are providing high inherent advantage					
344	over	a) Chemical lasers.	b) Gas lasers.	c) Conventional DH devices.	d) BH device.	: c
344	over	a) Chemical lasers.	b) Gas lasers.	c) conventional bir devices.	d) bit device.	. 0
	Otalia arangatan afi a danilar an languis inggantant Otata				+	
345	Strip geometry of a device or laser is important. State whether the given statement is true or false.	a) True	b) False			
343	whether the given statement is true or laise.	a) True	D) False		+	: a
		a) Multi Ouant	h) Cinala Ous it is a "		-	
040	Detter and terror of a feetback and to the later of the	a) Multi Quantum well	b) Single Quantum well		d) Dilliana	
346	Better confinement of optical mode is obtained in	lasers.	lasers.	c) Gain guided lasers.	d) BH lasers.	: a
347	Multi-quantum devices have superior characteristics over	a) BH lasers.	b) DH lasers.	c) Gain guided lasers.	d) Single-quantum-well devices.	: b
348	Dot-in-well device is also known as	a) DH lasers.	b) BH lasers.	c) QD lasers.	d) Gain guided lasers.	: c
010	Bot in Non device to died fallowing	a) Biriadore.	D) Bi i iddore.	0) QD 100010.	d) Can galaca lacere.	. 0
	A BH can have anything from a single electron to several				+	
	electrons. State whether the given statement is true or					
349	false.	a) True	b) False			: b
0.10	Tailot.	4) 1145	5) 1 0.00			. 5
	QD lasers have a very low threshold current densities of				+	
350	range	a) 0.5 to 5 A cm-2	b) 2 to 10 A cm-2	c) 10 to 30 A cm-2	d) 6 to 20 A cm-2	: d
330	Tange	a) 0.3 to 3 A GH-2	b) 2 to 10 A GH-2	C) 10 to 30 A CITI-2	d) 0 to 20 A GH-2	. u
	may be improved through the use					
	of frequency-selective feedback so that the cavity loss is		b) Longitudinal mode			
351	different for various longitudinal modes.	a) Frequency selectivity	selectivity	c) Electrical feedback	d) Dissipated power	: b
331	different for various forigitudinal modes.	a) Frequency selectivity	Selectivity	C) Electrical reedback	u) Dissipated power	. U
	Dovice which apply the frequency selective feedback				+	
	Device which apply the frequency-selective feedback technique to provide single longitudinal operation are					
352	referred to as	a) DSM lasers	b) Nd: YAG lasers	c) Glass fiber lasers	d) QD lasers	: a
332	Teleffed to as	a, Doivi lasers	D) Nu. IAG Idaela	C) Class liber lasers	עט ומספוס	. a
	Which of the following does not provide single fragment					
353	Which of the following does not provide single frequency operation?	a) Short cavity resonator	b) DSM lasers	c) Coupled cavity resonator	d) Fabry-Perot resonator	: d
333	operation:	a) Onort Cavity resonator	D) DOW IGSELS	c) Coupled Cavity resoliatol	a) i abiy-i ciol resoliatoi	. u
	A method for ingregating the length direct mode					
	A method for increasing the longitudinal mode					
354	discrimination of an injection laser which is commonly used?					
354	useu:				+	
	Conventional alequad universal track upon and different to	a) 200ad ama ata : !!: - :	b) 400 cms and supply		+	
255	Conventional cleaved mirror structures are difficult to		b) 100 µm and greater	o) 50 um	d) 150 um	
355	fabricate with the cavity lengths below	150 μm	than 50 µm	c) 50 µm	α) 150 μπ	: C

	II a · e e · · · ·	I		T		
	In the given equation, corrugation period is given by					
	Ιλ _b /2Ne. If λb is the Bragg wavelength, then what does 'I'					
356	stand for?	a) Length of cavity	b) Limitation index	c) Integer order of grating	d) Refractive index	: C
	The first order grating (I=1) provide the strongest coupling					
	within the device. State whether the given statement is true					
357	or false.	a) True	b) False			
337	orialse.	a) True	D) Faise			: a
	The semiconductor lasers employing the distributed					
	feedback mechanism are classified in					
358	categories	a) One	b) Two	c) Three	d) Four	: b
	1	-, -			, , , , , ,	
ļ	DDE DUIL		_		+	
	DBF-BH lasers exhibit low threshold currents in the range					
359	of	a) 40 to 50 mA	b) 21 to 30 mA	c) 2 to 5 mA	d) 10 to 20 mA	: d
	Fabry-Perot devices with BH geometries high modulation		1			
	speeds than DFB-BH lasers. State whether the given					
360	statement is true or false	a) True	b) False			: b
300	Statement is true or raise	a) True	D) Faise			. 0
	The InGaAsP/InP double channel planar DFB-BH laser with					
	a quarter wavelength shifted first order grating provides a					
	single frequency operation and incorporates a phase shift					
361	Of	a) π/2 Radians	b) 2π Radians	c) π Radians	d) 3π/2 radians	: a
301	01	a) 11/2 Radialis	D) ZII Naulalis	C) II Radialis	u) 311/2 radians	. a
	The narrow line-width obtained under the CW operation for					
	quarter wavelength shifted DFB laser is					
362		a) 2 MHz	b) 10 MHz	c) 3 MHz	d) 1 MHz	: c
		-/				
	Line (20) and the investment of DED becomes					
	Line-width narrowing is achieved in DFB lasers by a			l		
363	strategy referred as	a) Noise partition	b) Grating	c) Tuning	d) Bragg wavelength detuning	: d
	is a technique used to render the					
	non-conducting material around the active cavity by					
364	producing permanent defects in the implanted area	a) Dispersion	b) Ion de-plantation	c) Ion implantation	d) Attenuation	: c
304	producing permanent defects in the implanted area	a) Dispersion	b) for de-plantation	c) ion impiantation	d) Attenuation	. C
	The threshold temperature coefficient for InGaAsP devices					
365	is in the range of	a) 10-40 K	b) 40-75 K	c) 120-190 K	d) 150-190 K	: b
					<u> </u>	
—	The process where the energy released during the		+	 	+	
	The process where the energy released during the	a) lates valer - Free d				
	recombination of an electron-hole event getting transferred		1			
366	to another carrier is known as	absorption	b) Auger recombination	c) Carrier leakage effects	d) Exothermic actions	: b
		a) Strained MQW	1	c) Gain-guided strained		
367	Auger recombination can be reduced by using	structure.	b) Strained SQW structure.	structure.	d) Strained Quantum dots lasers.	: a
307	/ lagor recombination can be reduced by using	ou dotare.	b) Strained SQVV Structure.	ou dotai c.	a) otrained Qualitum dots lasers.	. a
	High strain in strained MCQ structure should be					
	incorporated. State whether the given statement is true or					
368	false.	a) True	b) False			: b
		- /	1, 2			
L						

1			11 > 1 - 1 - 1			
1 200 -	The control of the form of the form of the form of the first of the form of the first of the fir		b) Inter-valence band	.) On with a land on a	d) I and to reach the second of the second o	
369 T	The parameter that prevents carrier from recombination is	a) Auger recombination	absorption	c) Carrier leakage	d) Low temperature sensitivity	: C
L						
	Determine the threshold current density for an AlGaAs		1	\	III 5 00	.
370 ir	njection laser with T0=180k at 30°C.	a) 6.24	b) 9.06	c) 3.08	d) 5.09	: d
	The phenomenon occurring when the electron and photon					
	opulation within the structure comes into equilibrium is		b) Inter-valence band			.
371 k	known as	a) Auger recombination	absorption	c) Carrier leakage	d) Relaxation oscillations	: d
V	When a current pulse reaches a laser having parasitic			1		
372 c	capacitance after the initial delay time, that pulse will	a) Have no effect	b) Will get vanished	c) Becomes narrower	d) Gets broader	: d
	Reducing delay time and are of high		b) Inter-valence band			
373 ir	mportance for lasers.	a) Auger recombination	absorption	c) Carrier leakage effects	d) Relaxation oscillations	: d
	Dynamic line-width broadening under the direct modulation		b) Inter-valence band			
374 o	of injection current is known as	a) Auger recombination	absorption	c) Carrier leakage effects	d) Frequency Chirping	: d
- /	A particular characteristic or parameter that occurs during					
375 a	analog transmission of injection lasers is	a) Noise	b) Mode hopping	c) Carrier leakage effects	d) Frequency Chirping	: a
Ir	ntensity of output from semiconductor injection lasers	a) Fluctuations in				
376 le	eading to optical intensity noise is due to	amplitude	b) Mode hopping	c) Carrier leakage effects	d) Frequency Chirping	: a
	7		, , ,	, and the second		
Ir	n multimode lasers the optical feedback from unnecessary					
	external reflections affecting stability of frequency and					
	ntensity is	a) Remains unaffected	b) Increased gradually	c) Reduced	d) Gets totally vanished	: c
		,	, , , , , , , , , , , , , , , , , , , ,	,	,, , , , , , , , , , , , , , , , , , , ,	
l le	Reduction in the number of modes in multimode fiber					
	ncreases the mode partition noise. State whether the given					
378 s	statement is true or false.	a) False	b) True			: a
		,				
 	The behavior of laser occurring when current is increased			1		
	above threshold particularly is	a) Mode hopping	b) Auger recombination	c) Frequency chirping	d) Noise	: a
J. 0	and the section of th	.,oooopping	a, a ago: 1000mbillotion	-,		. ~
 	lasers are presently the major			+		
380	aser source for optical fiber communications	a) Semiconductor	b) Non-Semiconductor	c) Injection	d) Solid-state	: c
300 16	addi ddardd for optical fiber communications	a) ocificoridacioi	b) 14011-0011110011000101	o, injection	a) cond-state	. 0
 1.	n Nd: YAG lasers, the maximum doping levels of			+		
	n No. 146 lasers, the maximum doping levels of neodymium is	a) 0.5 %	b) 1.5 %	c) 1.8 %	d) 2 %	: b
301 11	icodymiuili is	a) 0.0 /0	D) 1.J /0	0, 1.0 /0	u) 2 /0	
—	Milaiah of the following is not a managing of NIII. VAC 1			1		
'	Which of the following is not a property of Nd: YAG laser hat enables its use as an optical fiber communication				d) Comisondustars and integrated	
	nat enables its use as an optical fiber communication source?	a) Single made energtion	b) Narrow line-width	c) Long lifetime	d) Semiconductors and integrated circuits	: d
	SOULCE /	a) Single mode operation	D) INGLIOW IIITE-WICED	c) Long lifetime	Circuits	. u
	7001001					
382 s						
382 s	The Nd: YAG laser has a narrow line-width which is	2) 40 04 272	h) > 0.04 mm	2) 2 4 2222	d) > 4.0 mags	
382 s		a) < 0.01 nm	b) > 0.01 nm	c) > 1 mm	d) > 1.6 mm	: a

The strongest pumping bands is a four level system of Not 34 YAG lesser is coefficient than earth-doped glass fiber asset. State whether the following statement is true or false as the state of same as the same as		The strongest numbing hands is a four level quotom of Nd.		 	1		
The Nst. YAG isser is costiler than earth-doped glass fiber laser. State whether the following statement is true or false and it is a resonant cavity formed by two parallel reflecting as an or gas are or gas as an	204		a) 0.25 and 0.56 nm	b) 0.75 and 0.81 nm	a) 0.12 and 0.22 nm	d) 1 and 2 nm	. h
laser. State whether the following statement is rive or false. It is a resonant cavity formed by two parallel reflecting mirrors separated by a mirror se	304	rag laser at wavelength of range	a) 0.25 and 0.56 mm	b) 0.75 and 0.81 nm	C) 0.12 and 0.23 nm	a) i and z nin	. D
laser. State whether the following statement is rive or false. It is a resonant cavity formed by two parallel reflecting mirrors separated by a mirror se							
It is a resonant cavity formed by two parallel reflecting mirrors separated by a medium such also does are roughed to part of the foreign medium. State also does not roughed to part of the foreign medium. State also five responsibility and the foreign medium. State also five responsibility and the foreign medium. State also five responsibility. The foreign medium dispersible foreign medium. State also five responsibility. The foreign medium dispersible five responsibility. The five five responsibility of the following co-dopant in rot employed by all not proposed five responsibility. The five responsibility of the following co-dopant in rot employed by all not proposed five responsibility. The five responsibility of the following co-dopant in rot employed by all not proposed five responsibility. The five responsibility of the following co-dopant in rot employed by all not responsibility. The five responsibility of the following co-dopant in rot employed by all not responsibility. The five responsibility of the following co-dopant in rot employed by all not responsibility. The five responsibility of the following co-dopant in rot employed by all not responsibility. The five responsibility of the following co-dopant in rot employed by all not responsibility. The five responsibility of the following co-dopant in rot employed by the responsibility of the following co-dopant in rot employed by the responsibility of the following co-dopant in rot employed by the rot rot responsibility. The five responsibility of the following responsibility. The five responsibility of the following responsibility of the following responsibility of the following responsibility of the following responsibility of the refractive index. The following responsibility of the rot rough in responsibility of the rot rot responsibility of the refractive index. The rot rot rot rot responsibili							
mirrors separated by a mirror separated by a medium such as as as as are greated by a mirror separated by a policial cavity by the file separate in the region medium. State whether the given statement is true or false. 383 Which of the following co-dopant is not employed by assembly a phosphorus pent oxide by Germania commended by Commended b	385	laser. State whether the following statement is true or false	a) Irue	b) False			: a
mirrors separated by a mirror separated by a medium such as as as as are greated by a mirror separated by a policial cavity by the file separate in the region medium. State whether the given statement is true or false. 383 Which of the following co-dopant is not employed by assembly a phosphorus pent oxide by Germania commended by Commended b							
as a ir or gas in a three level system, the threshold power decreases inversely with the length of the fiber gain medium. State whether the given statement is true or false. which of the following co-dopant is not employed by an ecotymium and erbitum doped silical fiber issers? a) Phosphorus pent oxide b) False b) False c) Nitrogen d) Alumina c) Nitrogen d) Alumina c) Same as that of GRIN rod lens d) Same as that of semiconductor disser c) Same as that of GRIN rod lens d) Same as that of semiconductor disser a) Dopants levels in glass fiber lasers are generally a) Low b) High c) Same as that of GRIN rod lens d) Same as that of semiconductor disser a) C) Same as that of GRIN rod lens d) Same as that of semiconductor disser a) Saloid-state b) GaAs c) Semiconductor d) ZBLANP d) The lasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 15 and 30 nm b) 15 and 30 nm c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency d) Nicroasing the slope efficiency d) Prequency multiplication d) Yutrum-aluminum garnet d) Ferquency a) Prequency with gain a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of the change in a) Increasing the refractive nocurs as a result of t							
in a three level system. The threshold power decreases inversely with the length of the fiber gain medium. State whether the given statement is true or false. 37 which of the following co-dopant is not employed by neodymium and erbium doped slicia fiber lasers? 38 phosphorus pent oxide b) Germania c) Nitrogen d) Aumina c) Same as that of SRIN rod lens d) Same		mirrors separated by a mirror separated by a medium such					
inversely with the length of the fiber gain medium. State 387 whether the given statement is true or false. 397 which of the following co-dopant is not employed by 388 neodymlum and erbium doped silica fiber lasers? 398 neodymlum and erbium doped silica fiber lasers? 399 a) Dopants levels in glass fiber fasers are generally 390 b) Low 390 b) High 390 c) Same as that of GRIN rod lens in J. Same as that of semiconductor laser 390 the core glass in order to raise the relative refractive index 390 the core glass in order to raise the relative refractive index 391 restricted to between 392 In Fabry-perot laser, the lower threshold is obtained by 393 When did the non-semiconductor laser developed? 394 Y-As Or2 is a molecular formula for 395 When did the non-semiconductor laser developed? 396 Y-As Or2 is a molecular formula for 397 User as a result of the change in 398 Laser ine-width and slability 399 Laser cavity length can be extended by 390 What is the purpose of wavelength dispersive element is 390 Laser refractive index 391 Careasing the refractive index 392 In Fabry-perot laser of coherent optical fiber 393 When did the non-semiconductor laser developed? 394 Y-As Or2 is a molecular formula for 395 Barnission? 396 Laser cavity length can be extended by 397 Laser cavity length can be extended by 398 What is the purpose of wavelength dispersive element is 399 Laser ine-width or reduce the line-width is to make the	386	as air or gas	a) Optical cavity	b) Wheatstone's bridge	c) Oscillator	d) Fabry-perot resonator	: d
inversely with the length of the fiber gain medium. State 37 Whether the given statement is true or false. 38 Note that the following co-dopant is not employed by 38 neodymium and erbium doped silica fiber lasers? 39 Dopants levels in glass fiber lasers are generally 389 389 390 30 Dopants levels in glass fiber lasers are generally 390 390 30 Interessing the refractive index 390 390 390 390 390 390 390 390 390 390							
inversely with the length of the fiber gain medium. State 37 Whether the given statement is true or false. 38 Note that the following co-dopant is not employed by 38 neodymium and erbium doped silica fiber lasers? 39 Dopants levels in glass fiber lasers are generally 389 389 390 30 Dopants levels in glass fiber lasers are generally 390 390 30 Interessing the refractive index 390 390 390 390 390 390 390 390 390 390		In a three level system, the threshold power decreases					
Which of the following co-dopant is not employed by neodymium and erbium doped silica fiber lasers? a) Phosphorus pent oxide b) Germania c) Nitrogen d) Alumina c) C 389 Dopants levels in glass fiber lasers are generally a) Low b) High claser fibers include addition of lead fluoride to the core glass in order to raise the relative index. a) Solid-state b) GaAs c) Semiconductor d) ZBLANP d d) The tasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b d) 15 and 30 nm d)							
388 neodymlum and erbium doped silica fiber lasers? a) Phosphorus pent oxide b) Germania c) Nitrogen d) Alumina ; c	387	whether the given statement is true or false.	a) True	b) False			: b
388 neodymlum and erbium doped silica fiber lasers? a) Phosphorus pent oxide b) Germania c) Nitrogen d) Alumina ; c			,				
388 neodymlum and erbium doped silica fiber lasers? a) Phosphorus pent oxide b) Germania c) Nitrogen d) Alumina ; c		Which of the following co-donant is not employed by					
Dopants levels in glass fiber lasers are generally a) Low b) High c) Same as that of GRIN rod lens d) Same as that of semiconductor laser is desired in the core glass in order to raise the relative refractive index a) Low b) High c) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of semiconductor laser is d d) Same as that of semiconductor laser is d d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor d) Same as that of GRIN rod lens d) Same as that of semiconductor laser is d d) Same as that of GRIN rod lens d) Same as that of semiconductor d) Same as that of GRIN rod lens d) Same as that of semiconductor d) Same as that of GRIN rod lens d) Same as that of semiconductor d) Same as that of GRIN rod lens d) Same as that of semiconductor d) Same as that of GRIN rod lens d) Same rod lens d) Same rod lens d) Same rod lens d)	388		a) Phosphorus pent oxide	b) Germania	c) Nitrogen	d) Alumina	· с
a) Low b) High laser laser laser : a fibers include addition of lead fluoride to the core glass in order to raise the relative refractive index. a) Solid-state b) GaAs c) Semiconductor d) ZBLANP : d The lasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm : b a) 1 increasing the refractive index c) Reducing the slope efficiency d) Increasing the slope efficiency d) Increasing the slope efficiency index c) 392 In Fabry-perot laser, the lower threshold is obtained by index c) Reducing the slope efficiency d) Increasing t							
a) Low b) High laser laser : a fibers include addition of lead fluoride to the core glass in order to raise the relative refractive index. a) Solid-state b) GaAs c) Semiconductor d) ZBLANP : d The lasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm : b a) 1 noreasing the refractive index c) Reducing the slope efficiency d) Increasing the slope efficiency d) Increasing the slope efficiency index c) Reducing the slope efficiency d) Increasing the slope		Donants levels in class fiber lasers are generally			c) Same as that of GRIN rod lens	d) Same as that of semiconductor	
fibers include addition of lead fluoride to the core glass in order to raise the relative refractive index. The lasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm c) 4 and 6 mm d) 15 and 30 nm c) 4 and 6 mm d) 15 and 30 nm c) 5 and 6 nm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm c) 6 and 6 mm d) 15 and 30 nm d) 15	380	Doparits levels in glass liber lasers are generally	3) 0, 10	b) High	1 '	,	
the core glass in order to raise the relative refractive index. The lasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm c) 4 neward and index difference c) 2 or cladding diameter d) 3 Frequency d) 4 or cladding diameter d) 5 or cladding diameter d) 6 or cladding diameter d) 7 or cladding diameter d) 8	303		a) Low	b) r ligit	lasei	lasci	. a
the core glass in order to raise the relative refractive index. The lasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm c) 4 neward and index difference c) 2 or cladding diameter d) 3 Frequency d) 4 or cladding diameter d) 5 or cladding diameter d) 6 or cladding diameter d) 7 or cladding diameter d) 8		Characteristic and Itter and the additional for					
The lasing output of the basic Fabry-perot cavity fiber is restricted to between a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm c) 6 Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope eff	200		a) Calid atata	h) 0-A-	a) Carriage divistes	4) 7DI AND	
a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm c) 6 c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency d) Prequency c) Core cladding diameter d) Frequency c) Core cladding diameter d) Frequency c) Attenuation d) Line-width broadening d) Line-width broadening d) Line-width broadening d) Line-width broadening d) Using GRIN-rod lenses c) Reducing frequency d) Reducing frequency electric times d) Reducing frequency d) Reducing frequency electric times electric times electric times el	390	the core glass in order to raise the relative retractive index.	a) Solid-state	D) GaAs	c) Semiconductor	(1) ZBLANP	: 0
a) 1 and 2 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm b) 5 and 10 nm c) 3 and 6 nm d) 15 and 30 nm c) 6 c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency c) Reducing the slope efficiency d) Increasing the slope efficiency d) Prequency c) Core cladding diameter d) Frequency c) Core cladding diameter d) Frequency c) Attenuation d) Line-width broadening d) Line-width broadening d) Line-width broadening d) Line-width broadening d) Using GRIN-rod lenses c) Reducing frequency d) Reducing frequency electric times d) Reducing frequency d) Reducing frequency electric times electric times electric times el							
a) Increasing the refractive index c) Reducing the slope efficiency d) Increasing the slope efficiency correction index c) Reducing the slope efficiency d) Increasing the slope efficiency correction index corre							
In Fabry-perot laser, the lower threshold is obtained by index refractive index c) Reducing the slope efficiency d) Increasing the slope efficiency : c 393 When did the non-semiconductor laser developed? a) 1892 b) 1946 c) 1985 d) 1993 : c 394 Y ₃ Als O ₁₂ Is a molecular formula for Which of these factors are critical in affecting the system performance in the case of coherent optical fiber transmission? 395 Is a molecular formula for Which of these factors are critical in affecting the system performance in the case of coherent optical fiber a) Laser line-width and stability 395 Is a molecular formula for a) Laser line-width and stability b) Refractive index and index difference c) Core cladding diameter d) Frequency : a 396 Isasing frequency with gain 397 Laser cavity length can be extended by What is the purpose of wavelength dispersive element is a) Wavelength selectivity An effective method to reduce the line-width is to make the	391	restricted to between	a) 1 and 2 nm	b) 5 and 10 nm	c) 3 and 6 nm	d) 15 and 30 nm	: b
In Fabry-perot laser, the lower threshold is obtained by index refractive index c) Reducing the slope efficiency d) Increasing the slope efficiency : c 393 When did the non-semiconductor laser developed? a) 1892 b) 1946 c) 1985 d) 1993 : c 394 Y ₃ Als O ₁₂ Is a molecular formula for Which of these factors are critical in affecting the system performance in the case of coherent optical fiber transmission? 395 Is a molecular formula for Which of these factors are critical in affecting the system performance in the case of coherent optical fiber a) Laser line-width and stability 395 Is a molecular formula for a) Laser line-width and stability b) Refractive index and index difference c) Core cladding diameter d) Frequency : a 396 Isasing frequency with gain 397 Laser cavity length can be extended by What is the purpose of wavelength dispersive element is a) Wavelength selectivity An effective method to reduce the line-width is to make the							
393 When did the non-semiconductor laser developed? 394 Y ₃ As O ₁₂ Is a molecular formula for 395 Which of these factors are critical in affecting the system performance in the case of coherent optical fiber transmission? 396 Isasing frequency with gain 397 Laser cavity length can be extended by What is the purpose of wavelength dispersive element is LEC lasers? An effective method to reduce the line-width is to make the			a) Increasing the refractive				
394 Y3Ais O12 Is a molecular formula for a) Ytterbium aluminate b) Yttrium oxide c) Ytterbium oxy-aluminate d) Yttrium-aluminum garnet : d Which of these factors are critical in affecting the system performance in the case of coherent optical fiber a) Laser line-width and stability b) Refractive index and index difference c) Core cladding diameter d) Frequency : a 395 lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 396 laser cavity length can be extended by a) Increasing the refractive index and index difference c) Attenuation d) Line-width broadening : d 397 Laser cavity length can be extended by index and index difference c) Attenuation d) Line-width broadening : d 398 LEC lasers? a) Wavelength dispersive element is a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a	392	In Fabry-perot laser, the lower threshold is obtained by	index	refractive index	c) Reducing the slope efficiency	d) Increasing the slope efficiency	: c
394 Y3As O12 Is a molecular formula for a) Ytterbium aluminate b) Yttrium oxide c) Ytterbium oxy-aluminate d) Yttrium-aluminum garnet : d Which of these factors are critical in affecting the system performance in the case of coherent optical fiber a) Laser line-width and stability b) Refractive index and index difference c) Core cladding diameter d) Frequency : a 395 lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 396 laser cavity length can be extended by a) Increasing the refractive index b) Reducing frequency feedback d) Using GRIN-rod lenses : c 397 What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a							
394 Y3As O12 Is a molecular formula for a) Ytterbium aluminate b) Yttrium oxide c) Ytterbium oxy-aluminate d) Yttrium-aluminum garnet : d Which of these factors are critical in affecting the system performance in the case of coherent optical fiber a) Laser line-width and stability b) Refractive index and index difference c) Core cladding diameter d) Frequency : a 395 lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 396 laser cavity length can be extended by a) Increasing the refractive index b) Reducing frequency feedback d) Using GRIN-rod lenses : c 397 What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a	393	When did the non-semiconductor laser developed?	a) 1892	h) 1946	c) 1985	d) 1993	. C
Which of these factors are critical in affecting the system performance in the case of coherent optical fiber as a Laser line-width and stability and stability as a laser line-width and stability and stability are laser line-width and stability and stabi	- 000	When did the non-semiconductor laser developed:	4) 1002	b) 1040	0) 1000	4) 1000	. 0
Which of these factors are critical in affecting the system performance in the case of coherent optical fiber as a Laser line-width and stability and stability as a laser line-width and stability and stability are laser line-width and stability and stabi							
performance in the case of coherent optical fiber a) Laser line-width and stability b) Refractive index and index difference c) Core cladding diameter d) Frequency : a occurs as a result of the change in lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber at a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber at a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber at a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber at a line-width and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber at a line-width and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber at a line-width and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Attenuation d) Line-width broadening : d other cases of coherent optical fiber and stability b) Dispersion c) Dispersion c) Attenuatio	394	Y ₃ A ₁₅ O ₁₂ Is a molecular formula for	a) Ytterbium aluminate	b) Yttrium oxide	c) Ytterbium oxy-aluminate	d) Yttrium-aluminum garnet	: d
performance in the case of coherent optical fiber a) Laser line-width and stability b) Refractive index and index difference c) Core cladding diameter d) Frequency : a occurs as a result of the change in lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index difference c) Attenuation d) Line-width broadening : d otalian index dif							
395 transmission? stability index difference c) Core cladding diameter d) Frequency : a 396 a lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 397 a Laser cavity length can be extended by index b) Reducing frequency feedback d) Using GRIN-rod lenses : c 398 b Reduction of line-width c) Frequency multiplication d) Avalanche multiplication index difference c) C) Core cladding diameter d) Frequency : a 398 c) Core cladding diameter d) Freque							
occurs as a result of the change in a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 396 Laser cavity length can be extended by index b) Reducing frequency c) Introduction of external feedback d) Using GRIN-rod lenses : c What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a An effective method to reduce the line-width is to make the		performance in the case of coherent optical fiber	a) Laser line-width and				
396 lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 397 Laser cavity length can be extended by a) Increasing the refractive index b) Reducing frequency b) Reducing frequency c) Introduction of external feedback d) Using GRIN-rod lenses : c 398 What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a An effective method to reduce the line-width is to make the	395	transmission?	stability	index difference	c) Core cladding diameter	d) Frequency	: a
396 lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 397 Laser cavity length can be extended by a) Increasing the refractive index b) Reducing frequency b) Reducing frequency c) Introduction of external feedback d) Using GRIN-rod lenses : c 398 What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a An effective method to reduce the line-width is to make the							
396 lasing frequency with gain a) Frequency multiplication b) Dispersion c) Attenuation d) Line-width broadening : d 397 Laser cavity length can be extended by a) Increasing the refractive index b) Reducing frequency b) Reducing frequency c) Introduction of external feedback d) Using GRIN-rod lenses : c 398 What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a An effective method to reduce the line-width is to make the		occurs as a result of the change in					
397 Laser cavity length can be extended by a) Increasing the refractive index b) Reducing frequency c) Introduction of external feedback d) Using GRIN-rod lenses c to What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication a to An effective method to reduce the line-width is to make the	396		a) Frequency multiplication	b) Dispersion	c) Attenuation	d) Line-width broadening	: d
397 Laser cavity length can be extended by index b) Reducing frequency feedback d) Using GRIN-rod lenses : c What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication : a An effective method to reduce the line-width is to make the						i i	
397 Laser cavity length can be extended by index b) Reducing frequency feedback d) Using GRIN-rod lenses : c What is the purpose of wavelength dispersive element is LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication : a An effective method to reduce the line-width is to make the			a) Increasing the refractive		c) Introduction of external		
What is the purpose of wavelength dispersive element is 398 LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a An effective method to reduce the line-width is to make the	397	I aser cavity length can be extended by	,	b) Reducing frequency	1 /	d) Using GRIN-rod lenses	· c
398 LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a An effective method to reduce the line-width is to make the	- 55.					-,	
398 LEC lasers? a) Wavelength selectivity b) Reduction of line-width c) Frequency multiplication d) Avalanche multiplication : a An effective method to reduce the line-width is to make the		What is the number of wavelength dispersive element is		<u> </u>			
An effective method to reduce the line-width is to make the	300		a) Wavelength coloctivity	h) Peduction of line width	c) Frequency multiplication	d) Avalanche multiplication	
	390	LEG Idocio:	a) wavelength selectivity	b) Reduction of line-width	6) Frequency multiplication	u) Avaianche multiplication	. a
		A # # 10 11 11 11 11 11 11 11 11 11 11 11 11					
1 Land Calandar Otata and the Color of the Calandar Calan							
cavity longer. State whether the following statement is true	000		->	h) Edic			
399 or false. a) True b) False : a	399	or talse.	a) Irue	b) False			: a

400	Which devices are used to modulate the external cavity in order to achieve the higher switching speeds?	a) Electromagnetic	b) Acousto-optic	c) Dispersive	d) Lead	: b
401	How many techniques are used to tune monolithic integrated devices (lasers)?	a) Five	b) One	c) Two	d) Three	: c
402	laser can be produced when a coupler section is introduced between the amplifier and phase sections of a structure	a) SG-DBR	b) GCSR	c) Y 4-shifted	d) DSM	: b
403	The rare-earth-doped fiber lasers have spectral line-width in the range of	a) 0.1 to 1 nm	b) 1.2 to 1.5 nm	c) 6 to 10 nm	d) 2 to 2.3 nm	: a
404	The lasing line-width of Fox-smith resonator is	a) Less than 1 MHz	b) 1 MHz	c) 2 MHz	d) Greater than 3 MHz	: a
405	What is the widest tuning range obtained in optical fiber laser structure?	a) 60 nm	b) 80 nm	c) More than 100 nm	d) 100 nm	: c
406	The mechanism which results from a refractive index change in the passive waveguide layer is called as	a) Absorption	b) Spontaneous emission	c) Monolithic inversion	d) Bragg wavelength control	: d
407	How many sections are included in a sampling grating distributed Bragg-reflector laser (SG-DBR)?	a) Four	b) Five	c) Three	d) Two	: b
408	Fiber based lasers provide diffraction-limited power at higher levels than solid-state laser. State whether the given statement is true or false	a) True	b) False			: a
409	The parameters having a major role in determining threshold current of efficiency of injection laser are:	a) Angle recombination and optical losses	b) Frequency chirping	c) Relaxation oscillation	d) Mode hopping	: a
410	Auger current is mostly for material with band gap providing longer wavelength emission.	a) Unaffected	b) Lesser	c) Larger	d) Vanishes	: c
411	Injection lasers operating in smaller wavelengths are subjected to increased carrier losses. State whether the following statement is true or false?	a) True	b) False			: b
412	Devices based on quaternary PbSnSeTe and their ternary compounds, emit at wavelength?	a) Between 3-4 µm	b) Longer than 4 µm	c) Between 3.5 to 4.2 µm	d) Between 2 to 3 µm	: b
413	Replacing Sn with Eu, Cd or Ge in some the band gap.	a) Remove the band gap	b) Does not affect	c) Decreases	d) Increases	: d
414	Lasing obtained in when 191 mW of pump light at a wavelength of 0.477 µm is launched into laser.	a) Ternary PbSnSeTe alloy laser	b) Quaternary PbSnSeTe alloy laser	c) Doped Fluoro-zirconate fiber	d) Ternary PbEuTe alloy laser	: c
	I .		-	+		

	The thulium doped fiber laser when pumped with			I	1	
415	alexandrite laser output at 0.786 µm, the laser emits at	a) 0.6 um	b) 0.9 um	0) 2 2 μm	d) 1 2um	
413	alexandrite laser output at 0.766 µm, the laser emits at	a) 0.6 µm	b) 0.8 µm	c) 2.3 µm	d) 1.2µm	: C
	The diode-cladding-pumped Erbium praseodymium-doped					
416	fluoride device operates at wavelength.	a) Around 3 µm	b) 4 μm	c) 2.6 µm	d) 1.04 μm	: a
	A technique based on inter-sub band transition is known					
417	as	a) Auger recombination	b) Frequency chirping	c) Inter-valence band absorption	d) Quantum cascading	: d
	as	a) Auger recombination	b) I requericy chirpling	c) inter-valence band absorption	d) Quantum cascading	. u
	In a QC laser, a same electron can emit number of					
418	photons. State the given statement is true or false?	a) True	b) False			: a
	The phenomenon resulting in the electrons to jump from					
	one state to another each time emitting of photon is known	a) Inter-valence band				
419	as:	absorption	b) Mode hopping	c) Quantum cascading	d) Quantum confinement	: d
419	as.	absorption	b) Wode Hopping	C) Quantum cascading	d) Quantum commement	. u
			-			
420	A QC laser is sometimes referred as:	a) Unipolar laser	b) Bipolar laser	c) Gain guided laser	d) Non semiconductor laser	: a
	In QC lasers, it is possible to obtain different output signal	a) Inter-valence band			d) Selecting layers of different	
421	wavelengths. This can be achieved by	absorption	b) Mode hopping	c) Quantum cascading	thickness	: d
421	wavelengins. This can be achieved by	absorption	b) Wode Hopping	C) Quantum cascading	HIICKHESS	. u
	QC lasers the performance					
422	characteristics.	a) Have negligible effects	b) Does not affects	c) Improves	d) Degrades	: C
	An MQW cascaded laser is more advantageous because					
423	of:	a) Mode hopping	b) Auger recombination	c) Control over layers of material	d) Properties of material	: c
725	oi.	a) Wode Hopping	b) Auger recombination	c) Control Over layers of material	l Toperties of material	. 0
	The absence of in LEDs limits the			c) Optical amplification through	d) Optical amplification through	
424	internal quantum efficiency.	a) Proper semiconductor	b) Adequate power supply	stimulated emission	spontaneous emission	: C
	The excess density of electrons Δnand holes Δpin an LED					
425	is	a) Equal	b) Δpmore than Δn	c) Δn more than Δp	d) Does not affects the LED	: a
		a) =qaa:	5) ====================================	o,	(a) 2000 Het alledte the 222	
	The hele consentention is automate metanicle :		+			
400	The hole concentration in extrinsic materials is	->	h	-X	D P - 9-1	
426	electron concentration.	a) much greater than	b) lesser than	c) equal to	d) negligible difference with	: a
					d) Optical amplification through	
427	In a junction diode, an equilibrium condition occurs when	a) Δngreater than Δp	b) Δnsmaller than Δp	c) Constant current flow	stimulated emission	: c
	, , ,	, , , , , , , , , , , , , , , , , , , ,	,	, , , , , , , , , , , , , , , , , , , ,	-	
	Determine the total carrier recombination lifetime of a		+			
	double heterojunction LED where the radioactive and					
400	nonradioactive recombination lifetime of minority carriers in				, o = =	
428	active region are 70 ns and 100 ns respectively.	a) 41.17 ns	b) 35 ns	c) 40 ns	d) 37.5 ns	: a
	Determine the internal quantum efficiency generated within					
	a device when it has a radiative recombination lifetime of					
429	80 ns and total carrier recombination lifetime of 40 ns.	a) 20 %	b) 80 %	c) 30 %	d) 40 %	: b
1.20	555 dd total carrier recombination metinic of 40 Hz.	-, -0 /0	~, 55 /5	0,00,70	u, .u /v	

	Compute power internally generated within a					
	double-heterojunction LED if it has internal quantum efficiency of 64.5 % and drive current of 40 mA with a peak					
430	emission wavelength of 0.82 µm.	a) 0.09	b) 0.039	c) 0.04	d) 0.06	: b
	onnoten waterength of old pinn	α, σ.σσ	2) 0.000	, 0.0	47 0.00	
	The Lambertian intensity distribution the					
431	external power efficiency by some percent.	a) Reduces	b) Does not affects	c) Increases	d) Have a negligible effect	: a
	A planar LED fabricated from GaAs has a refractive index					
432	of 2.5. Compute the optical power emitted when transmission factor is 0.68.	a) 3.4 %	b) 1.23 %	c) 2.72 %	d) 3.62 %	: c
432	transmission factor is 0.00.	a) 5.4 /0	0) 1.23 /0	C) 2.12 /0	u) 3.02 /6	
<u> </u>	A planar LED is fabricated from GaAs is having a optical					
	power emitted is 0.018% of optical power generated					
	internally which is 0.018% of optical power generated					
400	internally which is 0.6 P. Determine external power	\ 0.400/	1. \ 0.000/	\ 0.050/	N 0 00/	
433	efficiency.	a) 0.18%	b) 0.32%	c) 0.65%	d) 0.9%	: d
	For a GaAs LED, the coupling efficiency is 0.05. Compute					
434	the optical loss in decibels.	a) 12.3 dB	b) 14 dB	c) 13.01 dB	d) 14.6 dB	: c
101	the obtact loss in double.	(d) 12.0 dB	5) 11 45	0, 10.01 45	a) 11.0 dB	. 0
	13. In a GaAs LED, compute the loss relative to internally					
	generated optical power in the fiber when there is small air					
	gap between LED and fiber core. (Fiber coupled = 5.5 *					
435	10-4Pint)	a) 34 dB	b) 32.59 dB	c) 42 dB	d) 33.1 dB	: b
	Determine and the first the first have Code LED					
	Determine coupling efficiency into the fiber when GaAs LED is in close proximity to fiber core having numerical aperture					
436	of 0.3	a) 0.9	b) 0.3	c) 0.6	d)0.12	: a
100		(a) 0.0	2) 0.0		6/01.2	
	If a particular optical power is coupled from an incoherent					
	LED into a low-NA fiber, the device must exhibit very high					
407	radiance . State whether the given statement is true or					
437	false.	a) True	b) False			: a
400		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 > 1 P - 1		DAL P. T.	
438	The amount of radiance in planer type of LED structures is	a) Low	b) High	c) Zero	d) Negligible	: a
	In optical fiber communication, major					
439	types of LED structures are used	a) 2	b) 4	c) 6	d) 3	: c
100	typee of EED off dotal or allo doca	(4) 2		0,0	u) 0	. 0
	As compared to planar LED structure, Dome LEDs have					
	External power efficiency,					
440	effective emission area and radiance.	a) Greater, lesser, reduced	b) Higher, greater, reduced	c) Higher, lesser, increased	d) Greater, greater, increased	: b
	The techniques by Burros and Dawson in reference to					
441	homo structure device is to use an etched well in GaAs structure. Determine the given statement is True or false.	a) True	b) False			: a
741	Suddiction. Determine the given statement is true of false.	a) Huc	D) I disc			. a
	In surface emitter LEDs, more advantage can be obtained					
442	by using	a) BH structures	b) QC structures	c) DH structures	d) Gain-guided structure	: c
	1-7 2	- /	1 - /	1-/	1 - / 3	

443	Internal absorption in DH surface emitter Burros type LEDs is	a) Cannot be determined	b) Negligible	c) High	d) Very low	: d
444	DH surface emitter generally give	a) More coupled optical power	b) Less coupled optical power	c) Low current densities	d) Low radiance emission into-fiber	: a
445	A DH surface emitter LED has an emission area diameter of 60µm. Determine emission area of source	a) 1.534*10 ₋₆	b) 5.423*10 ₋₃	c) 3.564*10 ₋₂	d) 2.826*10 ₋₉	: d
446	Estimate optical power coupled into fiber of DH SLED having emission area of 1.96*10.5, radiance of 40 W/rcm2, numerical aperture of 0.2 and Fresnel reflection coefficient of 0.03 at index matched fiber surface.	a) 5.459*10-5	b) 1.784*10-3	c) 3.478*10 ₂	d) 9.551*10 ₋₅	: d
447	In a multimode fiber, much of light coupled in the fiber from an LED is	a) Increased	b) Reduced	c) Lost	d) Unaffected	: c
448	Determine the overall power conversion efficiency of lens coupled SLED having forward current of 20 mA and forward voltage of 2 V with 170 µWof optical power launched into multimode step index fiber.	a) 1.256*10-5	b) 4.417*10 ₂	c) 4.25*10-3	d) 2.14*10 ₋₃	: c
449	The overall power conversion efficiency of electrical lens coupled LED is 0.8% and power applied 0.0375 V. Determine optical power launched into fiber	a) 0.03	b) 0.05	c) 0.3	d) 0.01	: a
450	Mesa structured SLEDs are used	a) To reduce radiance	b) To increase radiance	c) To reduce current spreading	d) To increase current spreading	: C
451	The InGaAsP is emitting LEDs are realized in terms of restricted	a) Length strip geometry	b) Radiance	c) Current spreading	d) Coupled optical power	: a
452	The active layer of E-LED is heavily doped with	a) Zn	b) Eu	c) Cu	d) Sn	: a
453	Intrinsically are a very linear device.	a) Injection lasers	b) DH lasers	c) Gain-guided	d) LEDs	: d
454	Linearizing circuit techniques are used for LEDs. State whether the given statement is true or false.	a) True	b) False			: a
455	The internal quantum efficiency of LEDs decreasing with temperature.	a) Exponentially, decreasing	b) Exponentially, increasing	c) Linearly, increasing	d) Linearly, decreasing	: b
456	To utilize of SLDs at elevated temperatures, the use of thermoelectric coolers is important.	a) Low-internal efficiency	b) High-internal efficiency	c) High-power potential	d) Low-power potential	: c
457	For particular materials with smaller bandgap energies operating in wavelength, the linewidth tends to	a) 2.1 to 2.75 µm, increase	b) 1.1 to 1.7 μm, increase	c) 2.1 to 3.6 µm, decrease	d) 3.5 to 6 µm, decrease	: b

	<u> </u>	1	<u> </u>			
458	The active layer composition must be adjusted if a particular center wavelength is desired. State whether the given statement is true or false.	a) True	b) False			: a
459	In optical fiber communication, the electrical signal dropping to half its constant value due to modulated portion of optical signal corresponds to	a) 6 dB	b) 3 dB	c) 4 dB	d) 5 db	: b
460	The optical 3 dB point occurs when currents ratio is equal to	a) ⁵ ⁄8	b) ² / ₃	C) ½	d) 3/4	: c
461	The optical bandwidth is the electrical bandwidth.	a) Smaller	b) Greater	c) Same as	d) Zero with respect to	: b
462	When a constant d.c. drive current is applied to device, the optical o/p power is 320 µm. Determine optical o/p power when device is modulated at frequency 30 MHz with minority carrier recombination lifetime of LED i.e. 5ns.	a) 4.49*10 ₋₁₂	b) 6.84*10 ₋₉	c) 1.29*10 ₋₆	d) 2.29*10 ₋₄	: d
463	The optical power at 20 MHz is 246.2 µW. Determine dc drive current applied to device with carrier recombination lifetime for LED of 6ns.	a) 3.48*10 ₋₄	b) 6.42*10 ₋₉	c) 1.48*10 ₋₃	d) 9.48*10-12	: a
464	Determine the 3 dB electrical bandwidth at 3 dB optical bandwidth Bopt of 56.2 MHz.	a) 50.14	b) 28.1	c) 47.6	d) 61.96	: b
465	The 3 dB electrical bandwidth B is 42 MHz. Determine 3dB optical bandwidth Bopt:	a) 45.18	b) 59.39	c) 78.17	d) 94.14	: b
466	Determine degradation rate βrif constant junction temperature is 17 degree celsius.	a) 7.79*10-11	b) 7.91*10-11	c) 6.86*10-11	d) 5.86*10- ₁₁	: a
467	Determine CW operating lifetime for LED with β rt = -0.58 and degradation rate β r= 7.86*10-11 h-1.	a) 32.12	b) 42	c) 22.72	d) 23.223	: c