Statystyka

Lista 4

Zadanie 1.

Podaj przedział ufności dla różnicy dwóch średnich w modelu normalnym o znanych wariancjach na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 2.

Wygeneruj $n_1 = 50$ i $n_2 = 50$ obserwacji z rozkładu

(a) normalnego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,

(i)
$$\mu_1 = 0, \ \sigma_1 = 1; \ \mu_2 = 0, \ \sigma_2 = 1,$$

(ii)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 1$, $\sigma_2 = 1$,

(iii)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2$,

(iv)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 1$, $\sigma_2 = 2$,

(b) logistycznego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,

$$\mu_1 = 0, \, \sigma_1 = 1; \, \mu_2 = 0, \, \sigma_2 = 1,$$

(ii)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 1$, $\sigma_2 = 1$,

(iii)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2$,

(iv)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 1$, $\sigma_2 = 2$,

(c) Cauchy'ego z parametrem przesunięcia μ_1 i μ_2 oraz skali σ_1 i σ_2 , odpowiednio,

(i)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 1$,

(ii)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 1$, $\sigma_2 = 1$,

(iii)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 0$, $\sigma_2 = 2$,

(iv)
$$\mu_1 = 0$$
, $\sigma_1 = 1$; $\mu_2 = 1$, $\sigma_2 = 2$.

Na tej podstawie wyznacz przedział ufności z zadania 1 dla parametru $\mu_1 - \mu_2$ na poziomie ufności $1 - \alpha = 0.95$ oraz jego długość. Doświadczenie powtórz 10 000 razy. Oszacuj prawdopodobieństwo pokrycia nieznanego parametru przez przedział ufności oraz jego długość. Przedyskutuj uzyskane wyniki.

Zadanie 3.

Podaj przedział ufności dla różnicy dwóch średnich w modelu normalnym o nieznanych równych wariancjach na poziomie ufności $1 - \alpha$. Uzasadnij jego postać.

Zadanie 4.

Powtórz eksperyment numeryczny z zadania 2 dla wybranych konfiguracji. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanego parametru przez przedział ufności z zadania 3 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane rezultaty.

Zadanie 5.

Podaj przedział ufności dla różnicy dwóch średnich w modelu normalnym o nieznanych różnych wariancjach na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 6.

Powtórz eksperyment numeryczny z zadania 2 dla wybranych konfiguracji. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanego parametru przez przedział ufności z zadania 5 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane rezultaty.

Zadanie 7.

Podaj przedział ufności dla ilorazu dwóch wariancji w modelu normalnym o znanych średnich na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 8.

Powtórz eksperyment numeryczny z zadania 2. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanego parametru przez przedział ufności z zadania 7 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane wyniki.

Zadanie 9.

Podaj przedział ufności dla ilorazu dwóch wariancji w modelu normalnym o nieznanych średnich na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 10.

Powtórz eksperyment numeryczny z zadania 2. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanego parametru przez przedział ufności z zadania 9 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane wyniki.

Zadanie 11.

Powtórz eksperyment numeryczny z zadań 2, 4, 6, 8, 10, dla $n_1 = n_2 = 20$ i $n_1 = n_2 = 100$. Przedyskutuj uzyskane rezultaty w nawiązaniu do wcześniejszych wyników.

Zadanie 12

Omów Metodę Delta [Patrz np. rozdział 4.3.2 i Twierdzenie 4.3.9 w Hogg i inni (2005)] oraz jej potencjalne zastosowanie do konstrukcji przedziałów ufności [Patrz np. str 328 w Hogg i inni (2005)].

Literatura

Hogg, R. V., McKean, J. W., Craig, A. T. (2005). *Introduction to Mathematical Statistics*. Pearson Education International, London.

Koronacki, J., Mielniczuk, J. (2009). Statystyka dla studentów kierunków technicznych i przyrodniczych. Wydawnictwa Naukowo-Techniczne, Warszawa.