Methods

General formulation

$$egin{aligned} \min_{x \in \mathbb{R}^n} f(x) \ ext{s.t.} \ g_i(x) \leq &0, \ i=1,\ldots,m \ h_j(x) = &0, \ j=1,\ldots,k \end{aligned}$$

Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT and Convex optimization problem.

- In fact, there might be very challenging to recognize the convenient form of optimization problem.
- Analytical solution of KKT could be inviable.

Iterative methods

Typically, the methods generate an infinite sequence of approximate solutions

$$\{x_t\},$$

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal) solution x_* .


```
def GeneralScheme(x, epsilon):
    while not StopCriterion(x, epsilon):
        OracleResponse = RequestOracle(x)
        x = NextPoint(x, OracleResponse)
    return x
```

Oracle conception

Complexity

Challenges

Unsolvability

In general, **optimization problems are unsolvable**. 「\(ツ)/

Consider the following simple optimization problem of a function over unit cube:

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $x \in \mathbb{B}^n$

We assume, that the objective function $f(\cdot):\mathbb{R}^n o\mathbb{R}$ is Lipschitz continuous on \mathbb{B}^n :

$$|f(x) - f(y)| \le L \|x - y\|_{\infty} \forall x, y \in \mathbb{B}^n,$$

with some constant L (Lipschitz constant). Here \mathbb{B}^n - the n-dimensional unit cube

$$\mathbb{B}^n = \{x \in \mathbb{R}^n \mid 0 \leq x_i \leq 1, i = 1, \ldots, n\}$$

Our goal is to find such $\tilde{x}:|f(\tilde{x})-f^*|\leq \varepsilon$ for some positive ε . Here f^* is the global minima of the problem. Uniform grid with p points on each dimension guarantees at least this quality:

$$\| ilde{x}-x_*\|_\infty \leq rac{1}{2n},$$

which means, that

$$|f(\tilde{x}) - f(x_*)| \leq \frac{L}{2p}$$

Our goal is to find the p for some ε . So, we need to sample $\left(\frac{L}{2\varepsilon}\right)^n$ points, since we need to measure function in p^n points. Doesn't look scary, but if we'll take $L=2, n=11, \varepsilon=0.01$, computations on the modern personal computers will take 31,250,000 years.

Stopping rules

• Argument closeness:

$$\|x_k - x_*\|_2 < \varepsilon$$

• Function value closeness:

$$\|f_k - f^*\|_2 < arepsilon$$

• Closeness to a critical point

$$||f'(x_k)||_2 < \varepsilon$$

But x_{st} and $f^{st}=f(x_{st})$ are unknown!

Sometimes, we can use the trick:

$$\|x_{k+1} - x_k\| = \|x_{k+1} - x_k + x_* - x_*\| \le \|x_{k+1} - x_*\| + \|x_k - x_*\| \le 2arepsilon$$

Note: it's better to use relative changing of these values, i.e. $\frac{\|x_{k+1}-x_k\|_2}{\|x_k\|_2}$.

Local nature of the methods

Rates of convergence

Speed of convergence

In order to compare perfomance of algorithms we need to define a terminology for different types of convergence.

Let $\{x_k\}$ be a sequence in \mathbb{R}^n that converges to some point x^*

Linear convergence

We can define the *linear* convergence in a two different forms:

$$\|x_{k+1} - x^*\|_2 \leq Cq^k \quad ext{or} \quad \|x_{k+1} - x^*\|_2 \leq q\|x_k - x^*\|_2,$$

for all sufficiently large k. Here $q \in (0,1)$ and $0 < C < \infty$. This means that the distance to the solution x^* decreases at each iteration by at least a constant factor bounded away from 1. Note, that sometimes this type of convergence is also called *exponential* or *geometric*.

Superlinear convergence

The convergence is said to be *superlinear* if:

$$\|x_{k+1} - x^*\|_2 \leq Cq^{k^2} \qquad ext{or} \qquad \|x_{k+1} - x^*\|_2 \leq C_k \|x_k - x^*\|_2,$$

where $q \in (0,1)$ or $0 < C_k < \infty$, $C_k \to 0$. Note, that superlinear convergence is also linear convergence (one can even say, that it is linear convergence with q = 0).

Sublinear convergence

$$\|x_{k+1} - x^*\|_2 \le Ck^q,$$

where q<0 and $0< C<\infty$. Note, that sublinear convergence means, that the sequence is converging slower, than any geometric progression.

Quadratic convergence

$$\|x_{k+1} - x^*\|_2 \leq Cq^{2^k} \qquad ext{or} \qquad \|x_{k+1} - x^*\|_2 \leq C\|x_k - x^*\|_2^2,$$

where $q \in (0,1)$ and $0 < C < \infty$.

Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton's method converges quadratically under appropriate assumptions. In contrast, steepest descent algorithms converge only at a linear rate, and when the problem is ill-conditioned the convergence constant q is close to 1.

How to determine convergence type

Root test

Let $\{r_k\}_{k=m}^{\infty}$ be a sequence of non-negative numbers, converging to zero, and let

$$q = \lim_{k o \infty} \sup_k \ r_k^{1/k}$$

- If $0 \leq q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- ullet In particular, if q=0, then $\{r_k\}_{k=m}^\infty$ has superlinear convergence.
- ullet If q=1, then $\{r_k\}_{k=m}^\infty$ has sublinear convergence.
- The case q > 1 is impossible.

Ratio test

Let $\{r_k\}_{k=m}^\infty$ be a sequence of strictly positive numbers converging to zero. Let

$$q = \lim_{k o\infty}rac{r_{k+1}}{r_k}$$

- If there exists q and $0 \leq q < 1$, then $\{r_k\}_{k=m}^{\infty}$ has linear convergence with constant q.
- ullet In particular, if q=0, then $\{r_k\}_{k=m}^\infty$ has superlinear convergence.
- If q does not exist, but $q=\lim_{k\to\infty}\sup_k\frac{r_{k+1}}{r_k}<1$, then $\{r_k\}_{k=m}^\infty$ has linear convergence with a constant not exceeding q.
- ullet If $\lim_{k o\infty}\inf_krac{r_{k+1}}{r_k}=1$, then $\{r_k\}_{k=m}^\infty$ has sublinear convergence.
- ullet The case $\lim_{k o\infty}\inf_krac{r_{k+1}}{r_k}>1$ is impossible.
- In all other cases (i.e., when $\lim_{k \to \infty} \inf_k \frac{r_{k+1}}{r_k} < 1 \le \lim_{k \to \infty} \sup_k \frac{r_{k+1}}{r_k}$) we cannot claim anything concrete about the convergence rate $\{r_k\}_{k=m}^\infty$.

References

- Code for convergence plots Open in Colab
- CMC seminars (ru)
- Numerical Optimization by J.Nocedal and S.J.Wright

Line search

Problem

Suppose, we have a problem of minimization of a function $f(x):\mathbb{R} o \mathbb{R}$ of scalar variable:

$$f(x) o \min_{x \in \mathbb{R}}$$

Sometimes, we refer to the similar problem of finding minimum on the line segment [a, b]:

$$f(x) o \min_{x \in [a,b]}$$

Line search is one of the simplest formal optimization problems, however, it is an important link in solving more complex tasks, so it is very important to solve it effectively. Let's restrict the class of problems under consideration where f(x) is a *unimodal function*.

Function f(x) is called **unimodal** on [a,b], if there is $x_* \in [a,b]$, that $f(x_1) > f(x_2) \quad orall a \le x_1 < x_2 < x_*$ and $f(x_1) < f(x_2) \quad orall x_* < x_1 < x_2 \le b$

Key property of unimodal functions

Let f(x) be unimodal function on [a,b]. Than if $x_1 < x_2 \in [a,b]$, then:

ullet if $f(x_1) \leq f(x_2)
ightarrow x_* \in [a,x_2]$

ullet if $f(x_1) \geq f(x_2)
ightarrow x_* \in [x_1,b]$

Code

Open in Colab

References

• CMC seminars (ru)

Binary search

Idea

We divide a segment into two equal parts and choose the one that contains the solution of the problem using the values of functions.

Algorithm

```
def binary_search(f, a, b, epsilon):
   c = (a + b) / 2
   while abs(b - a) > epsilon:
       y = (a + c) / 2.0
       if f(y) \le f(c):
           b = c
           c = y
       else:
            z = (b + c) / 2.0
           if f(c) \le f(z):
               a = y
               b = z
           else:
               a = c
               c = z
   return c
```


Bounds

The length of the line segment on k + 1-th iteration:

$$\Delta_{k+1} = b_{k+1} - a_{k+1} = rac{1}{2^k}(b-a)$$

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration x_{k+1} :

$$|x_{k+1}-x_*| \leq rac{\Delta_{k+1}}{2} \leq rac{1}{2^{k+1}} (b-a) \leq (0.5)^{k+1} \cdot (b-a)$$

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is $N=2\cdot k$, which implies:

$$|x_{k+1}-x_*| \leq (0.5)^{rac{N}{2}+1} \cdot (b-a) \leq (0.707)^N rac{b-a}{2}$$

By marking the right side of the last inequality for ε , we get the number of method iterations needed to achieve ε accuracy:

$$K = \left\lceil \log_2 \frac{b-a}{\varepsilon} - 1 \right\rceil$$

Golden search

Idea

The idea is quite similar to the dichotomy method. There are two golden points on the line segment (left and right) and the insightful idea is, that on the next iteration one of the points will remain the golden point.

Algorithm

```
def golden_search(f, a, b, epsilon):
    tau = (sqrt(5) + 1) / 2
    y = a + (b - a) / tau**2
    z = a + (b - a) / tau
    while b - a > epsilon:
        if f(y) <= f(z):
            b = z
            z = y
            y = a + (b - a) / tau**2
    else:
        a = y
        y = z
        z = a + (b - a) / tau
    return (a + b) / 2</pre>
```

Bounds

$$|x_{k+1}-x_*| \leq b_{k+1}-a_{k+1} = \left(rac{1}{ au}
ight)^{N-1} (b-a) pprox 0.618^k (b-a),$$

where $au = rac{\sqrt{5}+1}{2}$.

- ullet The geometric progression constant \mbox{more} than the dichotomy method 0.618 worse than 0.5
- The number of function calls **is less** than for the dichotomy method 0.707 worse than 0.618 (for each iteration of the dichotomy method, except for the first one, the function is calculated no more than 2 times, and for the gold method no more than one)

Successive parabolic interpolation

Idea

Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its minimum. Suppose, we have 3 points $x_1 < x_2 < x_3$ such that line segment $[x_1, x_3]$ contains minimum of a function f(x). Then, we need to solve the following system of equations:

$$ax_i^2 + bx_i + c = f_i = f(x_i), i = 1, 2, 3$$

Note, that this system is linear, since we need to solve it on a,b,c. Minimum of this parabola will be calculated as:

$$u = -rac{b}{2a} = x_2 - rac{(x_2 - x_1)^2 (f_2 - f_3) - (x_2 - x_3)^2 (f_2 - f_1)}{2\left[(x_2 - x_1)(f_2 - f_3) - (x_2 - x_3)(f_2 - f_1)
ight]}$$

Note, that if $f_2 < f_1, f_2 < f_3$, than u will lie in $\left[x_1, x_3
ight]$

Algorithm

```
def parabola_search(f, x1, x2, x3, epsilon):
    f1, f2, f3 = f(x1), f(x2), f(x3)
    while x3 - x1 > epsilon:
        u = x2 - 
        ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/
        (2*((x2 - x1)*(f2 - f3) - (x2 - x3)*(f2 - f1)))
        fu = f(u)
        if x2 <= u:
            if f2 <= fu:
                x1, x2, x3 = x1, x2, u
                f1, f2, f3 = f1, f2, fu
            else:
                x1, x2, x3 = x2, u, x3
                f1, f2, f3 = f2, fu, f3
        else:
            if fu <= f2:
                x1, x2, x3 = x1, u, x2
                f1, f2, f3 = f1, fu, f2
                x1, x2, x3 = u, x2, x3
                f1, f2, f3 = fu, f2, f3
   return (x1 + x3) / 2
```

Bounds

The convergence of this method is superlinear, but local, which means, that you can take profit from using this method only near some neighbour of optimum.

Inexact line search

This strategy of inexact line search works well in practice, as well as it has the following geometric interpretation:

Sufficient decrease

Let's consider the following scalar function while being at a specific point of x_k :

$$\phi(\alpha) = f(x_k - \alpha \nabla f(x_k)), \alpha \ge 0$$

consider first order approximation of $\phi(\alpha)$:

$$\phi(lpha) pprox f(x_k) - lpha
abla f(x_k)^ op
abla f(x_k)$$

A popular inexact line search condition stipulates that α should first of all give sufficient decrease in the objective function f, as measured by the following inequality:

$$f(x_k - lpha
abla f(x_k)) \leq f(x_k) - c_1 \cdot lpha
abla f(x_k)^ op
abla f(x_k)$$

for some constant $c_1 \in (0,1)$. (Note, that $c_1=1$ stands for the first order Taylor approximation of $\phi(\alpha)$). This is also called Armijo condition. The problem of this condition is, that it could accept arbitrary small values α , which may slow down solution of the problem. In practice, c1 is chosen to be quite small, say $c1 \approx 10^{-4}$.

Curvature condition

To rule out unacceptably short steps one can introduce a second requirement:

$$-
abla f(x_k - lpha
abla f(x_k))^ op
abla f(x_k) \geq c_2
abla f(x_k)^ op (-
abla f(x_k))$$

for some constant $c_2 \in (c_1,1)$, where c_1 is a constant from Armijo condition. Note that the left-handside is simply the derivative $\nabla_{\alpha}\phi(\alpha)$, so the curvature condition ensures that the slope of $\phi(\alpha)$ at the target point is greater than c_2 times the initial slope $\nabla_{\alpha}\phi(\alpha)(0)$. Typical values of $c_2\approx 0.9$ for Newton or quasi-Newton method. The sufficient decrease and curvature conditions are known collectively as the Wolfe conditions.

Goldstein conditions

Let's consider also 2 linear scalar functions $\phi_1(\alpha), \phi_2(\alpha)$:

$$\phi_1(\alpha) = f(x_k) - \alpha \alpha \|\nabla f(x_k)\|^2$$

and

$$\phi_2(lpha) = f(x_k) - eta lpha \|
abla f(x_k)\|^2$$

Note, that Goldstein-Armijo conditions determine the location of the function $\phi(\alpha)$ between $\phi_1(\alpha)$ and $\phi_2(\alpha)$. Typically, we choose $\alpha=\rho$ and $\beta=1-\rho$, while $\rho\in(0.5,1)$.

References

• Numerical Optimization by J.Nocedal and S.J.Wright.

Sho	ow w	ith th	ne de	finiti	on th	at th	e seq	uenc	e { -	$\left(\frac{1}{k}\right)_{k}^{\infty}$	o do =1	es n	ot ha	ve a l	inear	con	verge	ence i	ate (but it		
.cor	nverg	ges to	zero	o).																ē		,
											•										•	
			•		•						•		•							•	·	
								•		•	•	•	•						•			
-										•	•		•									
	٠																					
	٠		•		•			٠	•		•	٠	•	•					•		•	
-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
											•											

Deterr	mine	the co	onver	genc	e or c	diverg	gence	of a	give	n sec	quenc	$\operatorname{te} r_k$	$=\frac{1}{k^2}$	· .							
•																					
•	•																				
•		•																			
٠	•																				
		•																			
•		•		•																	
٠	٠		٠	•	٠	•	-	•	•	•	•	•	•	•	•	•	٠	٠	•	٠	•
· Exam _l		•	•	·	•	•	•	•	·	•	•	•	•	•	•		•	•	•		
-/41111																					
	•							(1)	∞											
	•	:he de	efiniti	on th	at the	e seq	uenc	e { -	$\left\{\frac{1}{k^k}\right\}$	∞ $k=1$	does 1	not h	ave a	linea	ar coi	nverg	gence	rate	(but	it	
Show	with t	he de	efiniti o). _.	on th	at the	e seq	uenc	e { -	$\left. \frac{1}{k^k} \right\}$	∞ $k=1$.	does 1	not h	ave a	linea	ar coi	nverg	gence	rate	(but	it	
Show	with t	he de	efiniti o).	on th							does 1				ar coi	nverg	gence	rate	(but	it	
Show	with t	he de o zero	efiniti 0).	on th											ar coi	nverg	gence	rate	(but	it	
Show	with t	he de	efiniti o).	on th											ar coi	nverg	gence	rate	(but	it	
Show	with t	he de	efiniti 0).	on th											ar con	nverg	gence	rate	(but	it	
Show to the converse of the co	with t	o zero	O).																	it	
Show v	with trges t	o zero	O).																		
Show v	with trges t	o zero	o).																		
Show stands	with t	o zer	o).																		
Show stands	with trges t	o zer	o).																		
Show v	with trges t	o zer	o).		· · · · · · · · ·													· · · · · · · · ·			
Show v	with t	o zer	o)																		

Example 5 Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	De	ermi	ne th	ne co	nver	genc	e or c	diverg	gence	e of a	give	n seq	uenc	${\sf e}r_k$	= 0.	707^{κ}	٠.			
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	i																			
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	•					·					·			ě	·	·			•	
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.						٠								•	٠					
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	i																			
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	•																			
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.																				
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	ı																			
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	•					•					•			•					•	
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.																				
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	·																			
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	•			•							•			•	•	•			•	
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.						•					•									
Determine the convergence or divergence of a given sequence $r_k=0.707^{2^k}$.	ı																			
	Exa	mpl	e 5																	
		-																		
	Det			ne co	nver	genc	e or c	diverg	gence	e of a	give	า seq	uenc	$\mathrm{ce}r_k$	= 0.	707^{2}	k •			
	Det			ne co	nver	genc	e or c	diverg	gence	e of a	give	n seq	uenc	$\operatorname{ce} r_k$	=_0.	707^2	k • .			
	Dei			ne co	nver	genc	e or c	diverg	gence	e of a	givei	n seq	uenc	$\operatorname{ce} r_k$	= 0.	707^2				
	Dei			ne co	nver	genco	e or c	diverg	gence	e of a	give	n seq	uenc	${ m ce}r_k$.	=_0.	707 ²		 		
	De			ne co	nver	genc	e or c	diverg	gence	e of a	give	n seq	uenc	se r_k	=0.	707 ²		 		
	De			ne co	nver	genco	e or c	diverg	gence	e of a	give	n seq	uenc	te r_k	=0.	707 ²	k	 		
	Det			ne co	nver	genc	e or c	diverg	gence	e of a	give	n seq	uenc	se r_k	= 0.	707^2	k	 		
		ermi	ne th																	
		ermi	ne th																	
		ermi	ne th															-		•
		ermi	ne th																	
		ermi	ne th																	· ·
		ermi	ne th															 		

Sho	w th	at th	e sec	quen	ce $_{\cdot}^{x_k}$	= 1	+ (0	$(0.5)^{2}$	is q	uadr	atical	ly co	nverg	ged to	1.						
	•			-								٠									
	•	•		•		•	•		•			•	•	•	•				•	•	•
	•	•		•		•	•	•				•				•	•				•
1	٠	•		•			٠	•	•	•	•	٠	•	•	•	•	•		•	•	
	٠		•	-	•		•	•	•	•	•	•	•		•	•	•	•		•	
	•		•	-	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				•																	
Exa	ampl	e 7																			
	-						l:			_:				ſ	$(\frac{1}{4})^{\frac{1}{2}}$	2^k	$\mathrm{if}\ k\ \mathrm{i}$	s eve	en		
	-		ne co	nver;	genco	e or d	liverg	ence	e of a	giver	n seq	uenc	e r_k	$=$ $\left\{ \right.$	$\left(\frac{1}{4}\right)^{2}$ $\frac{x_{k-1}}{k}$	2^k ,	$\mathrm{if}\ k\ \mathrm{if}$	s eve	en d		
	-		ne co	nver;	gence	e or d	liverg	ence	of a	giver	n seq	uenc	e r_k	= {	$\left(\frac{1}{4}\right)^{\frac{1}{2}}$	2 ^k , , ,	$\inf_{k} k$ is	s eve s ode	en d		
	-		ne co	nver;	gence	e or d	liverg	ence	e of a	giver	ı seq	uenc	e r_k	= {	$\left(\frac{1}{4}\right)^2$ $\frac{x_{k-1}}{k}$	2 ^k , ,	$\inf_{k} k$ if k if k	s eve s ode	en d		
	-		ne co	nver	gence	e or d	liverg	ence	e of a	giver	n seq	uenc	e r_k	= {	$\frac{\left(\frac{1}{4}\right)^2}{\frac{x_{k-1}}{k}}$	2 ^k , , ,	$egin{array}{l} \mathrm{if}\ k\ \mathrm{if}\ . \end{array}$	s eve s ode	en d		
	-		ne co	nver	gence	e or d	liverg	ence	e of a	giver · · ·	n seq	uenc	e r_k	= {	$\frac{\left(\frac{1}{4}\right)^2}{\frac{x_{k-1}}{k}}$	2 ^k , , ,	$\mathrm{if}\ k \ \mathrm{if} \ k \ \mathrm{i} \ .$	s eve s ode	en d		
	-		ne co	nverş	gence	e or d	liverg	ence · · · ·	e of a	giver	າ seq	uenc · · ·	e r_k		$\left(\frac{1}{4}\right)^2$ $\frac{x_{k-1}}{k}$	2 ^k , , , .	if k i	s eve s ode	en d		
De	termi	ne th																			
De	termi	ne th																			
De	termi	ne th																			
De	termi	ne th																			
De	termi	ne th																			
De	termi	ne th																			

Det	ermi	ne th	ne co	nver	gence	e or c	liverg	gence	e of a	give	n sec	quenc	$\mathrm{ce}r_k$	$=$ $\left\{ \right.$	$\frac{\frac{1}{k}}{\frac{1}{k}}$,	if k	is e	dd .				
														١.	k^2 .		. 15 0	iu.				
													•									
Exa	mpl	e 9																				
	-		bo s			o of 10		ogoti		ı mə bə		مطامه		0 ba	50 m	o inte	200	Drove	o +b o	t c c c c	10066	
												nd let only i										
		$^{n+s}$ istan		Jarry	COTTO	0,80,	10 7710		istari		arra	Orny i		10 30	quen	το (,	κJ <i>k</i> =	-m CO		5ca 11	i i cari	y
•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
												•										
												•										
												•										
												•										
												•										
												•										
												•										
												•										
			•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Consider the function $f(x)=(x+\sin x)e^x,\quad x\in[-20,0].$

						< I, to nditio		may	be n	o ste	p len	gths	that s	satisf	y the	Wolf	e cor	nditio	ns (s	uffici	ent	
							-			•												
							-															
			•				-							•								
							-															
							-															
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•		•			
	٠	•	•			•	•	•		•	•	•			•				•		•	
	•	•	•			•	•				•						•			٠	•	•
						onal ein co			of a	stroi	ngly (onve	x qua	adrat	ic tur	nction	1	•				
			•	•	•		-	•	•	•	-			•	•				•			
							-				-											
•	٠						•															
•	•	•	•		•	•	•	•		•	•	٠	•	•	•		•		•	•	•	٠
																					•	
																					•	
																					•	
																					•	