PROJECT PROPOSAL

Detecting Toxic Comments Using Deep Learning and Python

Team Members: KUSHAL REDDY SINGARAM ZAHID SAI SARAN RANGISETTI

Problem Statement

The internet can be a harsh place filled with toxic comments, including hate speech, threats, and harassment. Such negativity discourages healthy discussions and affects online communities. Traditional moderation methods are slow and ineffective, requiring a scalable **Al-powered solution** to detect and filter toxic content automatically.

Business Need

An **accurate and real-time toxicity detection system** is essential for social media platforms, forums, and news websites to:

- Protect users from online harassment.
- Reduce manual moderation efforts and enhance efficiency.
- **Improve engagement** by fostering positive interactions.
- Ensure compliance with content guidelines and regulations.

Project Objective

- Develop a Deep Neural Network (DNN)-based model to classify comments as toxic or non-toxic.
- Utilize cables and Radio apps for seamless integration and real-time predictions.
- Allow custom dataset substitution for platform-specific needs.
- Provide an interactive system to analyze and predict toxicity from raw text.

Techniques & Methodology

Component	Details
Model Development	 Deep Neural Network (DNN): Multi-layer architecture to capture complex language patterns. Cables Integration: Connect deep learning components for real-time predictions. Radio Apps: Enable model deployment and user-friendly interaction.
Frameworks & Tools	 Deep Learning: TensorFlow/Keras for model training. NLP Libraries: NLTK, spaCy for preprocessing. Deployment Tools: FastAPI/Flask for real-time API integration.
Training & Hyperparameter Tuning	 Optimize learning rate, batch size, and activation functions. Use dropout and batch normalization to prevent overfitting.
Evaluation Metrics	 Classification Metrics: Accuracy, F1-score, Precision, Recall, ROC-AUC. Bias Detection: Ensure fair predictions across diverse user comments.
Interpretation & Insights	 Visualize prediction confidence with SHAP/LIME. Generate real-time toxicity scores from raw text inputs.

Dataset Name & Characteristics

- Dataset: <u>Jigsaw Toxic Comment Classification</u>
- Characteristics:
 - o Contains real user comments from Wikipedia discussions.
 - Labeled into multiple toxicity categories: toxic, severe toxic, obscene, threat, insult, identity hate.
 - Multilabel Classification Problem: A comment can belong to multiple categories.
 - Large-scale dataset: Over 150,000 labeled comments.