HW9

August 3, 2021

1 IST 387 HW 9

Copyright 2021, Jeffrey Stanton, Jeffrey Saltz, and Jasmina Tacheva

```
[1]: # Enter your name here: Ezra Cohen
```

1.0.1 Attribution statement: (choose only one and delete the rest)

```
[2]: # 1. I did this homework by myself, with help from the book and the professor.
```

Association mining can be applied to many data problems beyond the well-known example of finding relationships between different products in customer shopping data. In this homework assignment, we will explore real data from the banking sector and look for patterns associated with the likelihood of responding positively to a direct marketing campaign and signing up for a term deposit with the bank (stored in the variable "y"). You can find out more about the variables in this dataset here: https://archive.ics.uci.edu/ml/datasets/bank+marketing

1.1 Part 1: Explore Data Set

A. Copy the contents of the following URL to a dataframe called bank: https://ist387.s3.us-east-2.amazonaws.com/data/bank-full.csv

Hint: Even though this is a .csv file, chances are R won't be able to read it in correctly using the read_csv() function. If you take a closer look at the contents of the URL file, you may notice each field is separated by a **semicolon** (;) rather than a comma. In situations like this, consider using something like this:

```
[3]: url<-"https://ist387.s3.us-east-2.amazonaws.com/data/bank-full.csv"
bank <- read.table(url, sep=";", header = TRUE)
dim(bank)
bank</pre>
```

1. 41188 2. 21

	age	Job	marital	education	default	nousing	loan
	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
	56	housemaid	married	basic.4y	no	no	no
	57	services	married	high.school	unknown	no	no
	37	services	married	high.school	no	yes	no
	40	admin.	married	basic.6y	no	no	no
	56	services	married	high.school	no	no	yes
	45	services	married	basic.9y	unknown	no	no
	59	admin.	married	professional.course	no	no	no
	41	blue-collar	married	unknown	unknown	no	no
	24	technician	single	professional.course	no	yes	no
	25	services	single	high.school	no	yes	no
	41	blue-collar	married	unknown	unknown	no	no
	25	services	single	high.school	no	yes	no
	29	blue-collar	single	high.school	no	no	yes
	57	housemaid	divorced	basic.4y	no	yes	no
	35	blue-collar	married	basic.6y	no	yes	no
	54	retired	married	basic.9y	unknown	-	
	35	blue-collar		· ·		yes	yes
	35 46		married	basic.6y	no	yes	no
		blue-collar	married	basic.6y	unknown	yes	yes
	50	blue-collar	married	basic.9y	no	yes	yes
	39	management	single	basic.9y	unknown	no	no
	30	unemployed	married	high.school	no	no	no
	55	blue-collar	married	basic.4y	unknown	yes	no
	55	retired	single	high.school	no	yes	no
	41	technician	single	high.school	no	yes	no
	37	admin.	married	high.school	no	yes	no
	35	technician	married	university.degree	no	no	yes
	59	technician	married	unknown	no	yes	no
	39	self-employed	married	basic.9y	unknown	no	no
	54	technician	single	university.degree	unknown	no	no
A data.frame: 41188×21	55	unknown	married	university.degree	unknown	unknown	unkno
	35	technician	divorced	basic.4y	no	no	no
	35	technician	divorced	basic.4y	no	yes	no
	33	admin.	married	university.degree	no	no	no
	33	admin.	married	university.degree	no	yes	no
	60	blue-collar	married	basic.4y	no	yes	no
	35	technician	divorced	basic.4y	no	yes	no
	54	admin.	married	professional.course	no	no	no
	38	housemaid	divorced	university.degree	no	no	no
	32	admin.	married	university.degree	no	no	no
	32	admin.	married	university.degree	no	yes	no
	38	entrepreneur	married	university.degree	no	no	no
	62	services	married	high.school	no	yes	no
	40	management	divorced	university.degree	no	yes	no
	33	student	married	professional.course	no	yes	no
	31	admin.		university.degree		-	
	62	retired	single married		no	yes	no
				university.degree	no	yes	no
	62	retired 2	married	university.degree	no	yes	no
	34	student	single	unknown	no	yes	no
	38	housemaid	divorced	high.school	no	yes	yes
	57	retired	married	professional.course	no	yes	no

marital

education

age

job

default

housing

loan

Make sure there are 41,188 rows and 21 columns in your bank df.

B. Next, we will focus on some key factor variables from the dataset, and convert a few numeric ones to factor variables. Execute the following commands and write a comment describing how the conversion for each numeric variable works and what the variables in the resulting dataframe are.

```
[4]: bank_new <- data.frame(job=bank$job,
                           marital=bank$marital,
                           housing_loan=bank$housing,
                           young=as.factor((bank$age<median(bank$age))),</pre>
     #Makes it into a factor based on if the person is older or younger than the _{f L}
      →median of bank$age, if they are younger it is true if they are older it is_
      \hookrightarrow false
                           contacted_more_than_once=as.factor((bank$campaign>1)),
     #Makes it into a factor based on if they were contacted more than one times if \Box
      they were contacted 1 or last times then it would be false and if they were
      →contacted more than once it would be true
                           contacted before this campaign=as.
      →factor((bank$previous<0)),</pre>
     #Makes it into a factor based on if they had less than zero Banks prior to_{\sqcup}
      → this, and I don't understand the point of this because that doesn't seem
      →possible and the entire column is just false
                           success=(bank$y))
     bank_new
     #Job is what job they do, marital is if they are married or not, housing loan,
      →is whether they have a loan on their house, young is if they are young or
      →not, contacted more than once is if the bank contacted them more than once,
      → Contacted before this campaign is if they had less than zero banks prior to ⊔
      → this, and success is number of successful term deposit sign-up
```

	Job	maritai	nousing_loan	young	contacted_more_tnan_once	con
-	<chr></chr>	<chr></chr>	<chr></chr>	<fct></fct>	<fct></fct>	<fc< td=""></fc<>
	housemaid	married	no	FALSE	FALSE	FAl
	services	married	no	FALSE	FALSE	FAI
	services	married	yes	TRUE	FALSE	FAI
	admin.	married	no	FALSE	FALSE	FAI
	services	married	no	FALSE	FALSE	FAl
	services	married	no	FALSE	FALSE	FAI
	admin.	married	no	FALSE	FALSE	FAI
	blue-collar	married	no	FALSE	FALSE	FAI
	technician	single	yes	TRUE	FALSE	FAI
	services	single	yes	TRUE	FALSE	FAI
	blue-collar	married	no	FALSE	FALSE	FAI
	services	single	yes	TRUE	FALSE	FAI
	blue-collar	single	no	TRUE	FALSE	FAI
	housemaid	divorced	yes	FALSE	FALSE	FAI
	blue-collar	married	yes	TRUE	FALSE	FAI
	retired	married	yes	FALSE	FALSE	FAI
	blue-collar	married	yes	TRUE	FALSE	FAI
	blue-collar	married	yes	FALSE	FALSE	FAI
	blue-collar	married	yes	FALSE	FALSE	FAI
	management	single	no	FALSE	FALSE	FAI
	unemployed	married	no	TRUE	FALSE	FAI
	blue-collar	married	yes	FALSE	FALSE	FAI
	retired	single	yes	FALSE	FALSE	FAI
	technician	single	yes	FALSE	FALSE	FAI
	admin.	married	-	TRUE	FALSE	FAI
	technician		yes	TRUE	FALSE	FAI
		married	no			
	technician	married	yes	FALSE	FALSE FALSE	FAI
	self-employed	married	no	FALSE		FAI
A 1 + C 41100 - 7	technician	single	no	FALSE	TRUE	FAI
A data.frame: 41188×7	unknown	married	unknown	FALSE	FALSE	FAI
	technician	divorced	no	TRUE	FALSE	FAI
	technician	divorced	yes	TRUE	FALSE	FAI
	admin.	married	no	TRUE	FALSE	FAI
	admin.	married	yes	TRUE	FALSE	FAI
	blue-collar	married	yes	FALSE	TRUE	FAI
	technician	divorced	yes	TRUE	TRUE	FAI
	admin.	married	no	FALSE	TRUE	FAI
	housemaid	divorced	no	FALSE	TRUE	FAI
	admin.	married	no	TRUE	FALSE	FAI
	admin.	married	yes	TRUE	TRUE	FAI
	entrepreneur	married	no	FALSE	TRUE	FAI
	services	married	yes	FALSE	TRUE	FAI
		divorced	=	FALSE	TRUE	FAI
	management student	married	yes	TRUE	FALSE	FAI
			yes		FALSE	
	admin.	single	yes	TRUE		FAI
	retired	married	yes	FALSE	FALSE	FAI
	retired	married	yes	FALSE	FALSE	FAI
	student	single	yes	TRUE	FALSE	FAI
	housemaid	divorced	yes	FALSE	FALSE	FAI
	retired	married	yes	FALSE	TRUE	FA]

housing_loan young

 $contacted_more_than_once$

con

job

marital

C. Count the number of successful term deposit sign-ups, using the table() command on the success variable.

```
[5]: table(bank_new$success)
```

no yes 36548 4640

D. Express the results of problem C as percentages by sending the results of the table() command into the prop.table() command.

```
[6]: prop.table(table(bank_new$success))
```

```
no yes
0.8873458 0.1126542
```

E. Using the same techniques, show the percentages for the **marital** and **housing_loan** variables as well.

```
[7]: prop.table(table(bank_new$marital))
prop.table(table(bank_new$housing_loan))
```

```
divorced married single unknown 0.111974361 0.605224823 0.280858502 0.001942313
```

```
no unknown yes 0.45212198 0.02403613 0.52384190
```

1.2 Part 2: Coerce the data frame into transactions

F. Install and library two packages: arules and arulesViz.

```
[21]: #install.packages("arules")
  #install.packages("arulesViz")
  library(arules)
  library(arulesViz)
```

G. Coerce the bank new dataframe into a sparse transactions matrix called bankX.

```
[9]: bankx<-as(bank_new,"transactions")
```

```
Warning message:
```

```
"Column(s) 1, 2, 3, 7 not logical or factor. Applying default discretization (see '? discretizeDF')."
```

H. Use the itemFrequency() and itemFrequencyPlot() commands to explore the contents of bankX. What do you see?

[10]: itemFrequency(bankx) itemFrequencyPlot(bankx)

#From this we can see what occurred in what percent of the cases and we can get \rightarrow information like a majority of the people have a job as admin, most of them \rightarrow have a marital status of married, and and way more people have success as a \rightarrow no then as a yes

job=admin. 0.253034864523648 job=blue-collar 0.224677090414684 job=entrepreneur 0.0257356511605322 job=management 0.035350101971448 **job=housemaid** 0.0709915509371662 job=retired 0.0417597358453919 job=self-employed 0.03450033990482660.0963630183548606 job=student 0.0212440516655336 job=technician iob=services 0.16371273186365 job=unemployed 0.0246188210158299 job=unknown 0.00801204234242983 marital=divorced 0.111974361464504 marital=married 0.605224822763912 marital=single 0.280858502476449 marital=unknown $0.00194231329513451 \text{ housing}_loan=no$ 0.452121977274934 housing\ loan=unknown 0.0240361270272895 housing\ loan=yes contacted\ more\ than\ once=FALSE 0.4283286394095370.571671360590463 contacted\ before\ this\ campaign=FALSE 0.8873458288821991 success=no 0.112654171117801 success=yes

I. This is a fairly large dataset, so we will explore only the first 10 observations in the ${\bf bankX}$ transaction matrix:

```
[11]: inspect(bankx[1:10])
```

```
items transactionID
[1] {job=housemaid,
    marital=married,
    housing_loan=no,
    young=FALSE,
    contacted_more_than_once=FALSE,
    contacted_before_this_campaign=FALSE,
    success=no} 1
[2] {job=services,
```

```
marital=married,
      housing_loan=no,
      young=FALSE,
      contacted_more_than_once=FALSE,
      contacted_before_this_campaign=FALSE,
      success=no}
                                                        2
[3] {job=services,
     marital=married,
     housing_loan=yes,
      young=TRUE,
      contacted_more_than_once=FALSE,
      contacted_before_this_campaign=FALSE,
                                                        3
      success=no}
[4] {job=admin.,
     marital=married,
     housing_loan=no,
      young=FALSE,
      contacted_more_than_once=FALSE,
      contacted_before_this_campaign=FALSE,
     success=no}
                                                        4
[5] {job=services,
     marital=married,
     housing_loan=no,
      young=FALSE,
      contacted_more_than_once=FALSE,
      contacted_before_this_campaign=FALSE,
                                                        5
      success=no}
[6] {job=services,
     marital=married,
     housing_loan=no,
      young=FALSE,
      contacted_more_than_once=FALSE,
      contacted_before_this_campaign=FALSE,
     success=no}
                                                        6
[7] {job=admin.,
     marital=married,
     housing_loan=no,
      young=FALSE,
      contacted_more_than_once=FALSE,
      contacted_before_this_campaign=FALSE,
      success=no}
                                                        7
[8] {job=blue-collar,
     marital=married,
     housing_loan=no,
      young=FALSE,
      contacted_more_than_once=FALSE,
      contacted_before_this_campaign=FALSE,
      success=no}
                                                        8
```

```
[9] {job=technician,
     marital=single,
     housing_loan=yes,
     young=TRUE,
     contacted more than once=FALSE,
     contacted_before_this_campaign=FALSE,
     success=no}
                                                        9
[10] {job=services,
     marital=single,
     housing_loan=yes,
     young=TRUE,
     contacted_more_than_once=FALSE,
     contacted_before_this_campaign=FALSE,
     success=no}
                                                        10
```

Explain the difference between **bank_new** and **bankX** in a block comment:

Bank_new is a data set and Bankx is a sparse transactions Matrix

1.3 Part 3: Use arules to discover patterns

Support is the proportion of times that a particular set of items occurs relative to the whole dataset. **Confidence** is proportion of times that the consequent occurs when the antecedent is present.

J. Use **apriori** to generate a set of rules with support over 0.005 and confidence over 0.3, and trying to predict who successfully signed up for a term deposit. **Hint:** You need to define the **right-hand side rule (rhs)**.

K. Use inspect() to review of the **ruleset**.

```
[51]: inspect(ruleset)
```

```
lhs
                                               rhs
                                                                  support
confidence
             coverage
                          lift count
[1] {job=student,
                                            => {success=yes} 0.006409634
     marital=single}
0.3203883 0.02000583 2.843999
                                 264
[2] {job=student,
     marital=single,
                                            => {success=yes} 0.006312518
     voung=TRUE}
0.3233831 0.01952025 2.870582
                                 260
[3] {job=student,
     marital=single,
     contacted before this campaign=FALSE} => {success=yes} 0.006409634
```

```
0.3203883 0.02000583 2.843999 264
[4] {job=student,
    marital=single,
    young=TRUE,
    contacted_before_this_campaign=FALSE} => {success=yes} 0.006312518
0.3233831 0.01952025 2.870582 260
```

L. Use the output of inspect() or inspectDT() and describe any 2 rules the algorithm found.

All of these rules are very similar so it would be difficult to discuss two separate rules so I will just discuss the last rule which includes everything from all the prior rules, this rule includes the job is student, the marital status is single, young is true, and contacted prior to Campaign is false, all of these things make sense together, someone who is a student is likely to be young and single and everyone was not contacted prior to the campaign so it would be false for everyone, and what all of this is implying is that younger less experienced people are more likely to sign up for it