workerman-manual

walkor

Table of Contents

- 1. Introduction
- 2. 版权信息
- 3. 序言
- 4. 入门指引
 - i. 特性
 - ii. 简单的开发实例
- 5. 安装配置
 - i. 环境要求
 - ii. 下载安装
 - iii. 启动与停止
- 6. 开发流程
 - i. 开发前必读
 - ii. 目录结构
 - iii. 开发规范
 - iv. 基本流程
- 7. 定制通讯协议
 - i. 通讯协议的作用
 - ii. 如何定制协议
 - iii. 一些例子
- 8. 基于Worker开发
 - i. 适用范围
 - ii. Worker 类的回调接口
 - i. onWorkerStart
 - ii. onWorkerStop
 - iii. onConnect
 - iv. onMessage
 - v. onClose
 - iii. Connection 类提供的接口
 - i. send
 - ii. getRemotelp
 - iii. getRemotePort
 - iv. close
- 9. 基于Gateway/BusinessWorker开发
 - i. 适用范围
 - ii. Gateway 类的使用
 - iii. BusinessWorker类的使用
 - iv. Event 类的回调接口
 - i. onConnect
 - ii. onMessage
 - iii. onClose
 - v. Lib\Gateway类提供的接口
 - i. sendToAll
 - ii. sendToClient
 - iii. sendToCurrentClient
 - iv. closeClient

- v. closeCurrentClient
- vi. isOnline
- vii. getOnlineStatus
- vi. 超全局数组\$_SESSION
- vii. 超全局数组\$_SERVER
- viii. 心跳检测
- ix. 分布式部署
 - i. 为什么分布式部署
 - ii. 如何分布式部署
 - iii. Gateway Worker分离部署
- 10. 调试
 - i. 基本调试
 - ii. 网络抓包
 - iii. 追踪系统调用

WorkerMan 3.x 手册

本手册只适用于WorkerMan3.x版本

Home Page: www.workerman.net

版权信息

Copyright © 2013 - 2015,workerman.net 所有。workerman开发者和使用者需要服从 workerman许可协议。

序言

PHP是一种被广泛应用的开源脚本语言,绝大多数开发者使用PHP做基于Web的应用程序,并且有了很多非常知名的Web框架,如laravel、Yii、thinkphp等。

传统的PHP应用程序基本上是在Apache等Web容器中运行的,浏览器与Web容器采用HTTP协议通信,然而在很多实际项目中HTTP协议无法满足我们的需求,尤其是在服务端和客户端要保持长连接,做实时双向通讯时,HTTP协议显得力不从心。例如即时IM通讯,游戏服务器通讯,与硬件传感器通讯等等,开发这些应用程序我们无法直接使用nginx/apache + PHP来实现,也更无法使用传统的PHP框架来做。这就迫使我们寻找一种新的解决方案,这时候WorkerMan就是你的最佳选择。

WorkerMan是一款纯PHP开发的开源的高性能的PHP socket服务器框架,基于WorkerMan开发者可以开发出各种网络服务器,例如基于websocket的服务器、游戏服务器、移动通讯服务器、智能家居服务端、物联网服务、web服务器、RPC服务器等等。几乎任何基于TCP/UDP通讯的服务端都可以用WorkerMan来开发。WorkerMan使得开发者摆脱PHP只能用于Web开发的束缚,向更广阔的前景发展。

本手册作用范围

WorkerMan有分为多进程版本WorkerMan和多线程版本WorkerMan-MT两个版本,多进程版本是稳定版本并运行在Linux系统下,多线程版本处于研发阶段,可以运行在windows系统下用作开发

本手册主要是针对Linux多进程3.x版本的说明

WorkerMan的特性

1、纯PHP开发

使用WorkerMan开发的应用程序不依赖php-fpm、apache、nginx这些容器就可以独立运行。 这使得PHP开发者开发、部署、调试应用程序非常方便。

2、支持PHP多进程

为了充分发挥服务器多CPU的性能,WorkerMan默认支持多进程多任务。WorkerMan开启一个主进程和多个子进程对外提供服务, 主进程负责监控子进程,子进程独自监听网络连接并接收发送及处理数据,由于进程模型简单,使得WorkerMan更加稳定,更加高效。

3、支持TCP、UDP

WorkerMan支持TCP和UDP两种传输层协议,只需要更改一个属性便可以更换传输层协议,业务代码无需改动。

4、支持长连接

很多时候需要PHP应用程序要与客户端保持长连接,比如聊天室、游戏等,但是传统的PHP容器(apache、nginx、php-fpm)很难做到这一点。 使用WorkerMan,只要服务端业务不主动调用关闭连接接口,便可以使用PHP长连接。WorkerMan单个进程可以支持上万的并发连接,多进程则支持数十万的甚至百万并发连接。

5、支持各种应用层协议

WorkerMan接口上支持各种应用层协议,包括自定义协议。在WorkerMan中更换协议同样非常简单,同样只是配置一个字段,协议自动切换,业务代码零改动,甚至可以开启多个不同协议的端口,满足不同的客户端需求。

WorkerMan相关应用中已经用到的协议有统计监控系统(HTTP协议、自定义Statistic二进制协议)、WorkerMan-chat\WorkerMan-Todpole\WorkerMan-Flapyy-Bird(Websocket协议)、WorkerMan-thrift-rcp(Thrift协议)、WorkerMan-json-rpc(自定义json协议)。以上应用中的协议可以拿来直接用,或者开发者选择使用自己的协议。

6、支持高并发

WorkerMan支持Libevent事件轮询库(需要安装Libevent扩展),使用Libevent在高并发时性能非常卓越,如果没有安装Libevent则使用PHP内置的Select相关系统调用,性能也同样非常强悍。

7、支持服务平滑重启

当需要重启服务时(例如发布版本),我们不希望正在处理用户请求的进程被立刻终止,更不希望重启的那一刻导致客户端通讯失败。WorkerMan提供了平滑重启功能,能够保障服务平滑升级,不影响客户端的使用。

8、支持文件更新检测及自动加载

在开发过程中,我们希望在我们改动代码后能够立刻生效,以便查看结果。WorkerMan提供了文件检测及自动加载功能,只要文件有更新,WorkerMan会自动运行reload,以便加载新的文件,使之生效。

9、支持以指定用户运行子进程

因为子进程是实际处理用户请求的进程,为了安全考虑,子进程不能有太高的权限,所以WorkerMan支持设置子运行进程运行的用户,使你的服务器更加安全。

10、支持对象或者资源永久保持

WorkerMan在运行过程中只会载入解析一次PHP文件,然后便常驻内存,这使得类及函数声明、PHP执行环境、符号表等不会重复创建销毁,这与Web容器下运行的PHP机制是完全不同的。在WorkerMan中,一个进程生命周期内静态成员或者全局变量在不主动销毁的情况下是永久保持的,也就是将对象或者链接等资源放到全局变量或者类静态成员中则整个进程生命周期内的所有请求都可以复用。例如只要单个进程内初始化一次数据库连接,则以后这个进程的所有请求都可以复用这个数据库连接,避免了频繁连接数据库过程中TCP三次握手、数据库权限验证、断开连接时TCP四次握手的过程,极大的提高了应用程序效率。

11、高性能

由于php文件从磁盘读取解析一次后便会常驻内存,下次使用时直接使用内存中的opcode, 极大的减少了磁盘IO及PHP中请求初始化、创建执行环境、词法解析、语法解析、编译opcode、请求关闭等诸多耗时过程, 并且不依赖nginx、apache等容器,少了nginx等容器与PHP通信的开销,最主要的是资源可以永久保持,不必每次初始化数据库连接等等, 所以使用WorkerMan开发应用程序,性能非常高。

14、支持HHVM

支持在HHVM虚拟机上运行,可成倍提升PHP性能。尤其是在cpu密集运算业务中,性能非常优异。通过实际压力测试对比,在没有负载业务的情况下,WorkerMan在HHVM下运行比在Zend PHP5.6运行网络吞吐量提高了30-80%左右

- 15、支持分布式部署
- 16、支持守护进程化
- 17、支持多端口监听
- 18、支持标准输入输出重定向

实例一、使用HTTP协议对外提供Web服务

创建http_test.php文件

```
<?php
require_once './Workerman/Autoloader.php';
use Workerman\Worker;

// 创建一个Worker 蓝听2345端口, 使用http协议通讯
$http_worker = new Worker("http://0.0.0.0:2345");

// 启动4个进程对外提供服务
$http_worker->count = 4;

// 接收到浏览器发送的数据时回复hello world给浏览器
$http_worker->onMessage = function($connection, $data)
{
    // 向浏览器发送hello world
    $connection->send('hello world');
};

// 运行worker
Worker::runAll();
```

运行

```
php http_test.php start
```

测试

假设服务端ip为127.0.0.1

在浏览器中访问url http://127.0.0.1:2345

实例二、使用WebSocket协议对外提供服务

创建ws_test.php文件

```
<?php
require_once './Workerman/Autoloader.php';
use Workerman\Worker;

// 创建一个Worker监听2346端口,使用websocket协议通讯
$ws_worker = new Worker("websocket://0.0.0.0:2346");

// 启动4个进程对外提供服务
$ws_worker->count = 4;

// 当收到客戶端发来的数据后返回hello $data给客戶端
```

```
$ws_worker->onMessage = function($connection, $data)
{
    // 向客户端发送hello $data
    $connection->send('hello ' . $data);
};

// 运行worker
Worker::runAll();
```

运行

```
php ws_test.php start
```

测试

打开chrome浏览器,按F12打开调试控制台,在Console一栏输入(或者把下面代码放入到html页面用js运行)

```
// 假设服务端ip为127.0.0.1
ws = new WebSocket("ws://127.0.0.1:2346");
ws.onopen = function() {
    alert("连接成功");
    ws.send('tom');
    alert("给服务端发送一个字符串:tom");
};
ws.onmessage = function(e) {
    alert("收到服务端的消息:" + e.data);
};
```

实例三、直接使用TCP传输数据

创建tcp_test.php

```
require_once './Workerman/Autoloader.php';
use Workerman\Worker;

// 创建一个Worker监听2347端口,不使用任何应用层协议
$tcp_worker = new Worker("tcp://0.0.0.0:2347");

// 启动4个进程对外提供服务
$tcp_worker->count = 4;

// 当客户端发来数据时
$tcp_worker->onMessage = function($connection, $data)
{
    // 向客户端发送hello $data
    $connection->send('hello ' . $data);
};

// 运行worker
Worker::runAll();
```

```
php tcp_test.php start
```

测试

```
telnet 127.0.0.1 2347
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
tom
hello tom
```

环境要求

运行所需环境

- 1、WorkerMan 要求运行在Linux环境下(centos、RedHat、Ubuntu、debian、mac os等)
- 2、安装有PHP-CLI(版本不低于5.3),并安装了pcnlt、posix扩展
- 3、建议安装libevent扩展,但不是必须的

详细说明

关于PHP-CLI

WorkerMan是以PHP命令行的模式运行的,所以需要安装PHP-CLI。由于WorkerMan核心使用了命名空间等特性,所以需要PHP版本不小于5.3。

关于WorkerMan依赖的扩展

1、pcntl扩展

pcntl扩展是PHP在Linux环境下进程控制的重要扩展,WorkerMan用到了其进程创建、信号控制、定时器、进程状态监控等特性。此扩展win平台不支持。

2、posix扩展

posix扩展使得PHP在Linux环境可以调用系统通过POSIX标准提供的接口。WorkerMan主要使用了其相关的接口实现了守护进程化、用户组控制等功能。此扩展win平台不支持。

3、libevent扩展

libevent扩展使得PHP可以使用系统Epoll、Kqueue等高级事件处理机制,能够显著提高WorkerMan在高并发连接时CPU利用率。在高并发长连接相关应用中非常重要。libevent扩展不是必须的,如果没安装,则默认使用PHP原生Select事件处理机制。

如何安装扩展

如果发现所需扩展没有安装科尝试以下方法:

如果您的php是源码编译

那么请进到php的源码目录,再进入ext目录下,分别找到相应的php模块目录,进行编译

- 1、 假设php目录为/usr/local/php, 进到相应的php模块目录, 执行 /usr/local/php/bin/phpize
- 2、接着执行 ./configure -with-php-config=/usr/local/php/bin/php-config
- 3、接着执行以下命令(没有权限则在命令前加sudo) make && make install

4、 编译完成后,会显示so在哪个目录下,然后打开php.ini之后,在相应地方加入 extension=your_extension.so

centos系统并且PHP是yum安装

- 1、命令行运行 yum install php-cli php-process git php-devel php-pear libevent-devel
- 2、命令行运行 pecl install channel://pecl.php.net/libevent-0.1.0
- 3、命令行运行 echo extension=libevent.so > /etc/php.d/libevent.ini

debian/ubuntu并且PHP是apt-install安装

- 1、命令行运行 apt-get update && apt-get install php5-cli git php-pear php5-dev libeventdev
- 2、命令行运行 pecl install channel://pecl.php.net/libevent-0.1.0
- 3、命令行运行 echo extension=libevent.so > /etc/php5/cli/conf.d/libevent.ini

安装

WorkerMan实际上没有安装脚本,如果你的php环境已经装好,只需要把WorkerMan源代码下载下来即可运行。 下载方法建议用Github clone,你也可以通过下载zip文件的方式下载WorkerMan代码程序。

通过Github安装

centos系统安装教程

1、命令行运行(此步骤包含了安装php-cli主程序以及pcntl、posix、libevent扩展及github程序)

```
yum install php-cli php-process git gcc php-devel php-pear libevent-devel
```

2、命令行运行(此步骤是通过pecl安装libevent扩展,如果失败请尝试按照 4.1 环境要求 一节中使用源码 phpize的方式安装)

```
pecl install channel://pecl.php.net/libevent-0.1.0
```

3、命令行运行(此步骤是配置libevent的ini配置)

```
echo extension=libevent.so > /etc/php.d/libevent.ini
```

注意在提示libevent installation [autodetect]: 时按回车即可

4、命令行运行(此步骤是通过github下载WorkerMan主程序)

```
git clone https://github.com/walkor/workerman
```

5、进入到WorkerMan主程序根目录,命令行运行以下命令启动WorkerMan

```
php start.php start
```

debian/ubuntu系统安装教程(如果不是root用户请用sudo 后面加命令)

1、命令行运行(此步骤包含了安装php-cli主程序、libevent扩展及github程序)

```
apt-get install php5-cli git gcc php-pear php5-dev libevent-dev
```

2、命令行运行(此步骤是通过pecl安装libevent扩展,如果失败请尝试按照 4.1 环境要求 一节中使用源码 phpize的方式安装)

```
pecl install channel://pecl.php.net/libevent-0.1.0
```

提示libevent installation [autodetect]: 时按回车

3、命令行运行(此步骤是配置libevent的ini配置)

```
echo extension=libevent.so > /etc/php5/cli/conf.d/libevent.ini
```

4、命令行运行(此步骤是通过github下载WorkerMan主程序)

```
git clone https://github.com/walkor/workerman
```

5、进入到WorkerMan主程序根目录,命令行运行以下命令启动WorkerMan

```
php start.php start
```

下载ZIP文件安装

- 1、前提条件你本地安装了必要的运行环境,安装方法根据你的系统参考上面1-3步骤
- 2、通过http://www.workerman.net/download/workermanzip 连接下载WorkerMan
- 3、进入到WorkerMan主程序根目录,命令行运行以下命令启动WorkerMan

php start.php start

启动与停止

启动

以debug方式启动

php start.php start

以daemon方式启动

php start.php start -d

停止

php start.php stop

重启

php start.php restart

平滑重启

php start.php reload

查看状态

php start.php status

启动文件说明

WorkerMan自带一个启动文件start.php,用于启动applications下的所有应用。它的原理是扫描查找 applications/应用/下的start.php文件,并载入。applications/应用/start.php里面是服务启动的具体脚本,包含端口、进程数等设置。

什么是平滑重启?

平滑重启不同于普通的重启,平滑重启可以做到在不影响用户的情况下重启服务,以便重新载入PHP程序,完成业务代码更新。

平滑重启一般应用于业务更新或者版本发布过程中, 能够避免因为代码发布重启服务导致的暂时性服务不可用的影响。

平滑重启原理

WorkerMan分为主进程和子进程,主进程负责监控子进程,子进程负责接收客户端的连接和连接上发来的请求数据,做相应的处理并返回数据给客户端。当业务代码更新时,其实我们只要更新子进程,便可以达到更新代码的目的。

当WorkerMan主进程收到平滑重启信号时,主进程会向其中一个子进程发送安全退出(让对应进程处理完毕当前请求后才退出)信号,当这个进程退出后,主进程会重新创建一个新的子进程(这个子进程载入了新的PHP代码),然后主进程再次向另外一个旧的进程发送停止命令,这样一个进程一个进程的重启,直到所有旧的进程全部被置换为止。

我们看到平滑重启实际上是让旧的业务进程逐个退出然后并逐个创建新的进程做到的。为了在平滑重启时不影响客用户,这就要求进程中不要保存用户相关的状态信息,即业务进程最好是无状态的,避免由于进程退出导致信息丢失。

然而像聊天类的长连接应用中,势必要进程保存客户端的socket连接,在平滑重启时会导致客户端连接断开。为了避免这种情况,WorkerMan将即时通讯类的长连接应用分为Gateway进程和BusinessWorker进程。Gateway进程负责接收客户端连接和请求数据,并将请求数据交给BusinessWorker处理,BusinessWorker进程负责业务处理,并把处理结果转发给Gateway进程,进而再转发给用户。这种Gateway BusinessWorker进程模型在业务代码更新时,其实只要平滑重启BusinessWorker进程即可,Gateway进程其实不用重启,所以一般在Gateway进程的中配置noReload=true来避免平滑重启Gateway进程导致客户端连接断开。

开发前必读

使用WorkerMan开发应用, 你需要了解以下内容:

一、WorkerMan开发与普通PHP开发的不同之处

除了与HTTP协议相关的变量函数无法直接使用外,WorkerMan开发与普通PHP开发并没有很大不同。

1、应用层协议不同

- 普通PHP开发一般是基于HTTP应用层协议,WebServer已经帮开发者完成了协议的解析
- WorkerMan支持各种协议,目前内置了HTTP、WebSocket等协议。WorkerMan非常推荐开发者使用 更简单的自定义协议通讯

由于非HTTP协议的应用,所以 header() setcookie() session_start 等函数无法直接使用,需要使用WorkerMan提供的方法

2、请求周期差异

- PHP在Web应用中一次请求过后会释放所有的变量与资源
- WorkerMan开发的应用程序在第一次载入解析后便常驻内存,使得类的定义、全局对象、类的静态成员不会释放,便于后续重复利用

3、注意避免类和常量的重复定义

由于WorkerMan会缓存编译后的PHP文件,所以要避免多次require/include相同的类或者常量的定义文件。建议使用require_once/include_once加载文件。

4、注意单例模式的链接资源的释放

由于WorkerMan不会在每次请求后释放全局对象及类的静态成员,在数据库等单例模式中,往往会将数据库实例(内部包含了一个数据库socket链接)保存在数据库静态成员中,使得WorkerMan在进程生命周期内都复用这个数据库socket链接。需要注意的是当数据库服务器发现某个链接在一定时间内没有活动后可能会主动关闭socket链接,这时再次使用这个数据库实例时会报错,(错误信息类似mysql gone away)。WorkerMan提供了数据库类,有断开重连的功能,开发者可以直接使用。

5、注意不要使用exit、die出语句

• WorkerMan运行在PHP命令行模式下,当调用exit、die退出语句时,会导致当前进程退出。虽然子进程退出后会立刻重新创建一个的相同的子进程继续服务,但是还是可能对业务产生影响。

二、需要了解的基本概念

1、TCP传输层协议

TCP是一种面向连接的、可靠的、基于IP的传输层协议。TCP传输层协议一个重要特点是TCP是基于数据流的,客户端的请求会源源不断的发送给服务端,服务端收到的数据可能不是一个完整的请求,也有可能

是多个请求连在一起。这就需要我们在这源源不断的数据流中区分每个请求的边界。而应用层协议主要是为请求边界定义一套规则,避免请求数据混乱。

2、应用层协议

应用层协议(application layer protocol)定义了运行在不同端系统上(客户端、服务端)的应用程序进程如何相互传递报文,例如HTTP、WebSocket都属于应用层协议。例如一个简单的应用层次协议可以如下 {"module":"user","action":"getInfo","uid":456}\n"。此协议是以 "\n" (注意这里 "\n" 代表的是回车)标记请求结束,消息体是字符串。

3、短连接

短连接是指通讯双方有数据交互时,就建立一个连接,数据发送完成后,则断开此连接,即每次连接只完成一项业务的发送。像WEB网站的HTTP服务一般都用短链接。

短链接应用程序开发可以参考基本开发流程一章

4、长连接

长连接,指在一个连接上可以连续发送多个数据包

长连接多用于操作频繁,点对点的通讯的情况。每个TCP连接都需要三步握手,这需要时间,如果每个操作都是先连接,再操作的话那么处理速度会降低很多。所以长连接在每个操作完后都不断开,下次处理时直接发送数据包就OK了,不用建立TCP连接。例如:数据库的连接用长连接,如果用短连接频繁的通信会造成socket错误,而且频繁的socket创建也是对资源的浪费。

当需要主动向客户端推送数据时,例如聊天类、即时游戏类、手机推送等应用需要长连接。 长链接应用程序开发可以参考Gateway/Worker开发流程

5、平滑重启

一般的重启的过程是把所有进程全部停止后,再开始创建全新的服务进程。在这个过程中会有一个短暂的时间内是没有进程对外提供服务的,这就会导致服务暂时不可用,这在高并发时势必会导致请求失败。

而平滑重启则不是一次性的停止所有进程,而是一个进程一个进程的停止,每停止一个进程后马上重新创建一个新的进程项替,直到所有旧的进程都被替换为止。

平滑重启WorkerMan可以使用 php your_file.php reload 命令, 能够做到在不影响服务质量的情况下更新应用程序

三、两种开发模式

在WorkerMan中有两种开发模式

1、基于Worker开发

即直接使用Worker类来开发,例如下面的代码

```
require_once './Workerman/Autoloader.php';
use Workerman\Worker;
```

```
// 创建一个Worker监听2347端口,不使用任何应用层协议
$tcp_worker = new Worker("tcp://0.0.0.0:2347");
// 当客户端发来数据时
$tcp_worker->onMessage = function($connection, $data)
{
    // 向客户端发送hello $data
    $connection->send('hello ' . $data);
};
```

Worker是WorkerMan中最基本的功能单元,提供了接收并维护大量客户端连接的能力,同时也可以做相应的业务逻辑。基于Worker能开发出各种复杂的进程模型,以满足各种应用需求。例如下面讲到的Gateway/Worker进程模型也是基于Worker开发的。

2、基于Gateway/Worker开发

Gateway/Worker也是基于Worker开发的,这种进程模型分为两组进程,Gateway进程和Worker进程,其中Gateway进程只负责网络IO,Worker进程只负责处理业务逻辑。所有客户端与Gateway进程开放的端口建立连接发送及接收数据,Gateway进程将接收到的数据交给Worker进程处理,Worker处理过程中如果需要给其它客户端发送数据,则将数据交给Gateway转发。

Gateway/Worker模型非常适合游戏类、即时IM、聊天室等客户端与客户端需要即时通讯的业务。

下面是基于Gateway/Worker开发小蝌蚪服务端代码片段

```
use \Workerman\WebServer;
use \GatewayWorker\Gateway;
use \GatewayWorker\BusinessWorker;

require_once __DIR__ . '/../../Workerman/Autoloader.php';

// gateway
$gateway = new Gateway("websocket://0.0.0.0:8585");

$gateway->name = 'TodpoleGateway';

$gateway->count = 4;

$gateway->reloadable = false;

$gateway->lanIp = '127.0.0.1';

$gateway->startPort = 4000;

// bussinessWorker
$worker = new BusinessWorker();

$worker->name = 'TodpoleBusinessWorker';

$worker->count = 4;
```

```
// workerman启动脚本,用于启动applications下的所有应用
// 基于workerman开发的所有应用程序
— start.php

    Applications

               // 基于workerman开发的小蝌蚪应用程序
// 配置相关
 └─ Todpole
    ├─ Config
       ├─ Db.php // 数据库配置
       └─ Store.php// memcache存储配置
     ├── Event.php // 业务实现【开发主要关注这个文件】
      — start.php  // 启动脚本,定义监听端口、进程数量等等
    └─ Web // 小蝌蚪应用自身的Web界面文件
 GatewayWorker
                    // Gateway/Worker模型公共类库
 ├── BusinessWorker.php // Worker业务进程
  — Gateway.php // Gateway进程
 └─ Lib
                   // 类库
    ├─ Autoloader.php // 自动加载类
     ├─ Context.php // Gateway与Worker通讯的上下文
     ├─ DbConnection.php // 数据库连接类
    — Workerman
                         // workerman内核代码
 — Autoloader.php
                         // 自动加载类
                         // socket连接相关
   - Connection
     ├─ ConnectionInterface.php// socket连接接口
     ├─ TcpConnection.php // Tcp连接类
     — AsyncTcpConnection.php // 异步Tcp连接类
    UdpConnection.php
                        // Udp连接类
                        // 网络事件库
   - Events
    ├── EventInterface.php // 网络事件库接口
     ├─ Libevent.php
                         // Libevent网络事件库
                        // Select网络事件库
    └─ Select.php
                        // 常用的类库
   — Lib
    ├─ Constants.php
                        // 常量定义
     └─ Timer.php
                        // 定时器
                         // 协议相关
   Protocols
    ├── ProtocolInterface.php // 协议接口类
     ├─ Http
                        // http协议相关
    │ └─ mime.types // mime类型
    ├─ Http.php
                        // http协议实现
      - Websocket.php // websocket协议的实现
    GatewayProtocol.php // Gateway/Worker模型中的通讯协议
  — WebServer.php
                         // WebServer
                         // Worker
  — Worker.php
```

应用程序目录

应用程序目录一般放在applications目录下,如applications/ChatApp/

入口文件

和nginx+PHP-FPM下的PHP应用程序一样,WorkerMan中的应用程序也需要一个入口文件,WorkerMan的入口文件为start.php,放在applications/YourApp/下(YourApp为你应用的名称)。

applications/YourApp/start.php 中是创建监听进程相关的代码,例如下面的基于Worker开发的代码片段

```
<?php
use Workerman\Worker;

// 创建一个Worker监听2345端口,使用http协议通讯
$http_worker = new Worker("http://0.0.0.0:2345");

// 启动4个进程对外提供服务
$http_worker->count = 4;

// 接收到浏览器发送的数据时回复hello world给浏览器
$http_worker->onMessage = function($connection, $data)
{
    // 向浏览器发送hello world
    $connection->send('hello world');
};
```

注意

applications下的启动文件start.php中不要运行 Worker::runAll(); , Worker::runAll(); 统一由 WorkerMan根目录中的start.php运行

WorkerMan中的代码规范

1、 类采用首字母大写的驼峰式命名, 类文件名称必须与文件内部类名相同, 以便自动加载。例如:

```
class UserInfo
{
...
```

2、使用命名空间,命名空间名字与目录路径对应,并以开发者的项目根目录为基准。

例如项目Applications/MyApp/,类文件Applications/MyApp/MyClass.php因为在项目根目录,所以命名空间省略。类文件Applications/MyApp/Protocols/MyProtocol.php因为MyProtocol.php在MyApp项目的Protocols目录下,所以要加上命名空间 namesapce Protocols; , 如下:

```
namesapce Protocols;
class MyProtocol
{
....
```

3、普通函数及变量名采用小写加下划线方式例如

```
$connection_list = array();
function get_connection_list()
{
....
```

4、 类成员及类的方法采用首字母小写的驼峰形式 例如:

```
public $connectionList;
public function getConnectionList();
```

5、函数及类的参数采用小写加下划线方式

```
function get_connection_list($one_param, $tow_param)
{
....
```

(以一个简单的Websocket聊天室服务端为例)

1、在applications下建立项目目录,例如建立目录

Applications/SimpleChat/

2、选定开发模型,基于Worker开发还是基于Worker/Gateway开发

假设用户量不大,这里基于Worker开发

3、选定协议

这里我们选定telnet文本协议

(目前WorkerMan支持HTTP、Websocket、Telnet文本协议,如果需要使用其它协议,请参照协议一章开发自己的协议)

4、写启动脚本

Applications/SimpleChat/start.php

```
<?php
use Workerman\Worker;
$global_uid = 0;
$connections_array = array();
// 当客户端连上来时分配uid,并保存连接,并通知所有客户端
function handler_connection($connection)
{
   global $connections_array, $global_uid;
   // 为这个链接分配一个uid
   $connection->uid = ++$global_uid;
   // 保存连接
   $connections_array[$connection->uid] = $connection;
}
// 当客户端发送消息过来时, 转发给所有人
function handle_message($connection, $data)
   global $connections_array;
   foreach($connections_array as $conn)
       $conn->send("user[{$connection->uid}] said: $data");
   }
}
// 当客户端断开时, 从连接数组中删除
function handle_close($connection)
   global $connections_array;
   unset($connections_array[$connection->uid]);
}
```

```
// 创建一个telnet文本协议的Worker监听2347接口
$telnet_worker = new Worker("telnet://0.0.0.0:2347");

// 只启动1个进程,这样方便客户端之间传输数据
$telnet_worker->count = 1;

$telnet_worker->onConnect = 'handler_connection';
$telnet_worker->onMessage = 'handle_message';
$telnet_worker->onClose = 'handle_close';
```

通讯协议的作用

由于TCP是基于流的,客户端发送的请求数据是像水流一样流入到服务端,服务端探测到有数据到来后应该检查数据是否是完整的,因为可能只是一个请求的部分数据到达服务端,,甚至可能是多个请求连在一起到达服务端。如何判断请求是否全部到达或者从多个连在一起的请求中分离请求,就需要规定一套通讯协议。

在WorkerMan中为什么要制定协议?

传统PHP开发都是基于Web的,基本上都是HTTP协议,HTTP协议的解析处理都由WebServer独自承担了,所以开发者不会关心协议方面的事情。然而当我们需要基于非HTTP协议开发时,开发者就需要考虑协议的事情了。

WorkerMan已经支持的协议

WorkerMan目前已经支持HTTP、Websocket、Telnet协议,需要基于这些协议通讯时可以直接使用,使用方法及时在初始化Worker或者Gateway类时指定协议,例如

```
use Workerman\Worker;
// websocket://0.0.0.0:2345 表明用websocket协议监听2345端口
$websocket_worker = new Worker('websocket://0.0.0.0:2345');
```

使用自定义的通讯协议

当WorkerMan自带的通讯协议满足不了开发需求时,开发者可以定制自己的通讯协议,定制方法见下一节内容

如何定制协议

实际上制定自己的协议是比较简单的事情。简单的协议一般包含两部分:

- 区分数据边界的标识
- 数据格式定义

一个例子

协议定义

例如区分数据边界的标识为换行符"\n"(注意请求数据本身内部不能包含换行符),数据格式为Json,例如下面是一个符合这个规则的请求包。

```
{"type":"message","content":"hello"}
```

注意上面的请求数据末尾有一个换行字符(在PHP中用双引号字符串"\n"表示),代表一个请求的结束。

实现步骤

在WorkerMan中如果要实现上面的协议,假设协议的名字叫JsonNL,所在项目为MyApp,则需要以下步骤

- 1、建立文件Applications/MyApp/Protocols/JsonNL.php
- 2、实现JsonNL类,必须实现三个静态方法分别为 input、encode、decode

具体实现

Applications/MyApp/Protocols/JsonNL.php的实现

```
class JsonNL
{
    * 检查包的完整性
    * 如果能够得到包长,则返回包的在buffer中的长度,否则返回0继续等待数据
    * @param string $buffer
    */
   public static function input($buffer)
      // 获得换行字符"\n"位置
      $pos = strpos($buffer, "\n");
      // 没有换行符,无法得知包长,返回0继续等待数据
      if($pos === false)
      {
          return ⊙;
      // 有换行符,返回当前包长(包含换行符)
      return $pos+1;
   }
```

```
* 打包, 当向客户端发送数据的时候会自动调用
    * @param string $buffer
    * @return string
   public static function encode($buffer)
       // json序列化,并加上换行符作为请求结束的标记
       return json_encode($buffer)."\n";
   }
    * 解包,当接收到的数据字节数等于input返回的值(大于0的值)自动调用
    * 并传递给onMessage回调函数的$data参数
    * @param string $buffer
    * @return string
   public static function decode($buffer)
       // 去掉换行, 还原成数组
       return json_decode(trim($buffer), true);
   }
}
```

至此, JsonNL协议实现完毕, 可以在MyApp项目中使用, 使用方法例如下面

文件: Applications\MyApp\start.php

```
use Workerman\Worker;
$json_worker = new Worker('JsonNL://0.0.0:1234');
$json_worker->onMessage = ...
...
```

协议接口说明

在WorkerMan中开发的协议类必须实现三个静态方法,input、encode、decode,协议接口说明见Workerman/Protocols/ProtocolInterface.php,定义如下:

```
namespace Workerman\Protocols;

use \Workerman\Connection\ConnectionInterface;

/**
    * Protocol interface
    * @author walkor <walkor@workerman.net>
    */
interface ProtocolInterface
{
        /**
          * 用于在接收到的recv_buffer中分包
          *
          * 如果可以在$recv_buffer中得到请求包的长度则返回整个包的长度
          * 否则返回0,表示需要更多的数据才能得到当前请求包的长度
          * 如果返回false或者负数,则代表错误的请求,则连接会断开
          *
          * @param ConnectionInterface $connection
          * @param string $recv_buffer
```

```
* @return int|false
   public static function input($recv_buffer, ConnectionInterface $connection);
    * 用于请求解包
    * input返回值大于0,并且WorkerMan收到了足够的数据,则自动调用decode
    * 然后触发onMessage回调,并将decode解码后的数据传递给onMessage回调的第二个参数
    * 也就是说当收到完整的客户端请求时,会自动调用decode解码,无需业务代码中手动调用
    * @param ConnectionInterface $connection
    * @param string $recv_buffer
    */
   public static function decode($recv_buffer, ConnectionInterface $connection);
    * 用于请求打包
    * 当需要向客户端发送数据即调用$connection->send($data);时
    * 会自动把$data用encode打包一次,变成符合协议的数据格式,然后再发送给客户端
    * 也就是说发送给客户端的数据会自动encode打包,无需业务代码中手动调用
    * @param ConnectionInterface $connection
    * @param mixed $data
    */
   public static function encode($data, ConnectionInterface $connection);
}
```

例子一

协议定义

- 首部部固定10个字节长度用来保存整个数据包长度,位数不够补0
- 数据格式为xml

数据包样本

其中0000000121代表整个数据包长度,后面紧跟xml数据格式的包体内容

协议实现

```
class XmlProtocol
{
   public static function input($recv_buffer)
       if(strlen($recv_buffer) < 10)</pre>
       {
           // 不够10字节,返回0继续等待数据
           return 0;
       // 返回包长,包长包含 头部数据长度+包体长度
       $total_len = base_convert($json_str, 10, 10);
       return $total_len;
   }
   public static function decode($recv_buffer)
       // 请求包体
       $body = substr($recv_buffer, 10);
       return simplexml_load_string($body);
   }
   public static function encode($xml_string)
       // 包体+包头的长度
       $total_length = strlen($xml_string)+10;
       // 长度部分凑足10字节,位数不够补0
       $total_length_str = str_pad($total_length, 10, '0', STR_PAD_LEFT);
       // 返回数据
       return $total_length_str . $xml_string;
   }
}
```

协议定义

- 首部4字节网络字节序unsigned int, 标记整个包的长度
- 数据部分为Json字符串

数据包样本

```
****{"type":"message","content":"hello all"}
```

其中首部四字节*号代表一个网络字节序的unsigned int数据,为不可见字符,紧接着是Json的数据格式的包体数据

协议实现

```
class JsonInt
{
   public static function input($recv_buffer)
   {
       // 接收到的数据还不够4字节,无法得知包的长度,返回0继续等待数据
       if(strlen($recv_buffer)<4)</pre>
       {
           return ⊙;
       }
       // 利用unpack函数将首部4字节转换成数字,首部4字节即为整个数据包长度
       $unpack_data = unpack('Ntotal_length', $recv_buffer);
       return $unpack_data['total_length'];
   }
   public static function decode($recv_buffer)
       // 去掉首部4字节,得到包体Json数据
       $body_json_str = substr($recv_buffer, 4);
       // json解码
       return json_decode($body_json_str, true);
   }
   public static function encode($data)
   {
       // Json编码得到包体
       $body_json_str = json_encode($data);
       // 计算整个包的长度,首部4字节+包体字节数
       $total_length = 4 + strlen($body_json_str);
       // 返回打包的数据
       return $total_length . $body_json_str;
   }
}
```

Worker开发适用范围

Worker说明

Worker是WorkerMan中最基本的功能单元,Worker可以开启多个进程监听端口并使用特定协议通讯。每个Worker进程独立运作,每个Worker进程都能接收无数的客户端连接,并处理这些连接上发来的数据。

Worker 的进程模型

特点:

从图上我们可以看出每个Worker维持着各自的客户端连接,能够方便的实现客户端与服务端的实时通讯,基于这种模型我们可以方便实现一些基本的开发需求,例如HTTP服务器、Rpc服务器、一些智能硬件实时上报数据、服务端推送数据等等。

缺点:

基于Worker无法方便的实现客户端与可客户端的通讯,例如上图中client①要给client⑤发送数据,由于两个客户端在不同的Worker进程,Worker进程①无法直接给Worker进程②的client⑤发送数据,所以需要我们做一些开发工作,才能实现客户端之间的通讯。

如果需要客户端之间通讯,可以基于WorkerMan的Gateway/Worker开发,见下一章节。

适用范围:

其实基于Worker能够开发出几乎所有的网络应用服务端程序,但是如果你需要客户端之间的实时通讯,例如游戏服务器、聊天服务器等,可以直接使用WorkerMan提供的Gateway/Worker开发模式。除此之外,所有的网络服务程序都可以基于Worker开发。

Worker提供的方法

onWorkerStart

说明:

```
callback Worker::onWorkerStart
```

设置Worker 启动时的回调函数,即当Worker 启动后立即执行Worker::onWorkerStart成员指定的回调函数

回调函数的参数

\$worker

即Worker对象

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.8484');
$worker->onWorkerStart = function($worker)
{
    echo "Worker starting...\n";
};
```

onWorkerStop

说明:

```
callback Worker::onWorkerStop
```

设置Workert停止时的回调函数,即当Worker收到stop信号后立即执行Worker::onWorkerStop指定的回调函数

回调函数的参数

\$worker

即Worker对象

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.8484');
$worker->onWorkerStop = function($worker)
{
    echo "Worker stopping...\n";
};
```

onConnect

说明:

```
callback Worker::onConnect
```

当有客户端连接时触发的回调函数

回调函数的参数

\$connection

连接对象,连接对象的说明见下一节

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.8484');
$worker->onConnect = function($connection)
{
    echo "new connection from ip " . $connection->getRemoteIp() . "\n";
};
```

onMessage

说明:

```
callback Worker::onMessage
```

当有客户端的连接上有数据发来时触发

回调函数的参数

\$connection

连接对象,连接对象的说明见下一节

\$data

客户端连接上发来的数据,如果Worker指定了协议,则\$data是对应协议decode(解码)了的数据

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.0:8484');
$worker->onMessage = function($connection, $data)
{
    var_dump($data);
    $connection->send('receive success');
};
```

onClose

说明:

```
callback Worker::onClose
```

当客户端的连接断开时触发,不管连接是如何断开的,只要断开就会触发

回调函数的参数

\$connection

连接对象,连接对象的说明见下一节

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.8484');
$worker->onClose = function($connection)
{
    echo "connection closed\n";
};
```

send

说明:

```
mixed Connection::send(mixed $data [,$raw = false])
```

向客户端发送数据

参数

\$data

要发送的数据,如果在初始化Worker类时指定了协议,则会自动调用协议的encode方法,完成协议打包工作后发送给客户端

\$raw 是否发送原始数据,即不调用协议的encode方法,默认是false,即自动调用协议的encode方法

返回值

true 表示发送成功

null 表示放入待发送队列,等待异步发送

false 表示发送失败,失败原因可能是客户端连接已经关闭,或者该连接的本地发送缓冲区已满

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.0:8484');
$worker->onMessage = function($connection, $data)
{
    $connection->send("hello\n");
};
```

getRemotelp

说明:

```
string Connection::getRemoteIp()
```

获得该连接的客户端ip

参数

无参数

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.0:8484');
$worker->onConnect = function($connection)
{
    echo "new connection from ip " . $connection->getRemoteIp() . "\n";
};
```

getRemotePort

说明:

```
int Connection::getRemotePort()
```

获得该连接的客户端端口

参数

无参数

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.0:8484');
$worker->onConnect = function($connection)
{
    echo "new connection from address " .
    $connection->getRemoteIp() . ":". $connection->getRemotePort() ."\n";
};
```

close

说明:

```
void Connection::close(mixed $data [,$raw = false])
```

向客户端发送数据

参数

\$data

要发送的数据,如果在初始化Worker类时指定了协议,则会自动调用协议的encode方法,完成协议打包工作后发送给客户端

\$raw 是否发送原始数据,即不调用协议的encode方法,默认是false,即自动调用协议的encode方法

```
use WorkerMan\Worker;
$worker = new Worker('websocket://0.0.0.0:8484');
$worker->onMessage = function($connection, $data)
{
    $connection->send("hello\n");
};
```

Gateway/Worker说明

Gateway/Worker模型是基于基础的Worker模型开发的一套可以实现客户端与客户端实时通讯的架构,主要用于游戏服务器、聊天服务器等需要客户端之间通讯的项目

Gateway/Worker 的进程模型

特点:

从图上我们可以看出Gateway负责接收客户端的连接以及连接上的数据,然后Worker接收Gateway发来的数据做处理,然后再经由Gateway把结果转发给其它客户端。每个客户端都有很多的路由到达另外一个客户端,例如client①与client①可以经由蓝色路径完成数据通讯

优点:

- 1、可以方便的实现客户端之间的通讯
- 2、Gateway与Worker之间是基于socket长连接通讯,也就是说Gateway、Worker可以部署在不同的服务器上,非常容易实现分布式部署,扩容服务器
- 3、Gateway进程只负责网络IO,业务实现都在Worker进程上,可以reload Worker进程,实现不影用户的情况下实现代码热更新

适用范围:

适用于客户端与客户端需要实时通讯的项目。如果只需要客户端与服务端之间的通讯,可以考虑基于 Worker模型开发

Gateway类的使用

文件位置: GatewayWorker/Gateway.php

Gateway类其实也是基于基础的Worker开发的。由于Gateway类的工作内容固定,所以不提供Worker的基本回调接口,也请不要给Gateway对象的onWorkerStart、onWorkerStop、onConnect、onMessage、onClose设置回调函数

1、协议

和Worker一样,在初始化Gateway对象时设置Gateway的协议,例如下面设置Gateway的通讯协议为websocket

```
use \GatewayWorker\Gateway;

// 指定websocket协议

$gateway = new Gateway("websocket://0.0.0.0:8585");
```

2、name

和Worker一样,可以设置Gateway进程的名称,方便status命令中查看统计

3、count

和Worker一样,可以设置Gateway进程的数量,以便充分利用多cpu资源

4、lanlp

lanlp是Gateway所在服务器的内网IP,只有在分布式部署时才需要设置

5、startPort

Gateway进程启动后会监听一个本机端口,用来给BusinessWorker提供链接服务,然后Gateway与BusinessWorker之间就通过这个连接通讯。这里设置的是Gateway监听本机端口的起始端口。比如启动了4个Gateway进程,startPort为2000,则每个Gateway进程分别启动的本地端口一般为2001、2003、2003、2004。

当本机有多个Gateway/BusinessWorker项目时,需要把每个项目的startPort设置成不同的段

6、心跳设置,具体说明见心跳一节

BusinessWorker类的使用

BusinessWorker共其实也是基于基础的Worker开发的。由于BusinessWorker进程中无法直接操作Gateway 进程的连接,也就无法获得连接对象,所以无法使用BusinessWorker的onConnect、onMessage、onClose属性,请开发者不要调用以上回调属性包括onWorkerStart、onWorkerStop属性。

BusinessWorker的相关回调函数在项目中的Event.php中定义,具体内容参见下一节

BusinessWorker类可以定制的内容

1、name

和Worker一样,可以设置BusinessWorker进程的名称,方便status命令中查看统计

2、count

和Worker一样,可以设置BusinessWorker进程的数量,以便充分利用多cpu资源

Event类的回调接口

Event::onConnect

说明:

```
void Event::onConnect(int $client_id);
```

当客户端连接上gateway进程时触发。

绝大多数应用不用实现这个函数。

参数

\$client_id 全局唯一的客户端socket_id

返回值

无返回值, 任何返回值都会被视为无效的

```
use \GatewayWorker\Lib\Gateway;

public onConnect($client)
{
    Gateway::sendToCurrentClient('hello');
}
```

Event::onMessage

说明:

```
void Event::onMessage(int $client_id, mixed $recv_data);
```

当收到一个客户端请求后触发

参数

```
$client_id
全局唯一的客户端
$recv_buffer
```

完整的客户端请求数据,数据类型取决于Gateway所使用协议的decode方法返的回值类型

返回值

无返回值, 任何返回值都会被视为无效的

```
use \GatewayWorker\Lib\Gateway;

class Event
{
...
    /**
    * 有消息时触发该方法
    * @param int $client_id 发消息的client_id
    * @param mixed $message 消息
    * @return void
    */
    public static function onMessage($client_id, $message)
    {
            // 群聊,转发请求给其它所有的客户端
            return GateWay::sendToAll($message));
      }
    ...
}
```

Event::onClose

说明:

```
void Event::onClose(int $client_id);
```

客户端主动断开时触发。一般在这里做一些数据清理工作

参数

\$client_id

全局唯一的client_id

返回值

无返回值, 任何返回值都会被视为无效的

```
use \GatewayWorker\Lib\Gateway;

/**

* 当用户断开连接时触发的方法

* @param integer $client_id 断开连接的客户端client_id

* @return void

*/
public static function onClose($client_id)

{
    // 广播 xxx 退出了
    GateWay::sendToAll("client[$client_id] logout\n"));
}
```

Lib\Gateway 类提供的接口

文件位置:GatewayWorker/Lib/Gateway.php

Lib\Gateway类是Gateway/BusinessWorker模型中给客户端发送数据的类。

提供了单发、群发以及关闭客户端连接的接口。

\GatewayWorker\Lib\Gateway::sendToAll

说明:

```
void Gateway::sendToAll(mixed $send_data [, array $client_id_array=array()]);
```

向所有客户端或者client_id_array指定的客户端发送 \$send_data 数据。如果指定的\$client_id_array中的 client_id不存在则自动丢弃

参数

• \$send_data

要发送的数据,此数据会被Gateway所使用协议的encode方法打包后发送给客户端

• \$client_id_array

指定向哪些client_id发送,如果不传递该参数,则是向所有在线客户端发送 \$send_data 数据

```
use \GatewayWorker\Lib\Gateway;

class Event
{
....

public static function onMessage($client_id, $message)
{
    // $message = '{"type":"say_to_all","content":"hello"}'
    $req_data = json_decode($message, true);
    // 如果是向所有客户端发送消息
    if($req_data['type'] == 'say_to_all')
    {
        Gateway::sendToAll($req_data['content']);
    }
}
...
}
```

\GatewayWorker\Lib\Gateway::sendToClient

说明:

```
void Gateway::sendToClient(int $client_id, mixed $send_data);
```

向客户端client_id发送 \$send_data 数据。如果client_id对应的客户端不存在或者不在线则自动丢弃发送数据

参数

• \$client_id

客户端的client_id, 当客户端连接Gateway的那一刻框架便为其分配了一个全局唯一的client_id用来全局标识一个客户端连接。对某个客户端的操作都需要知道客户端的client id

• \$send_data

要发送的数据,此数据会被Gateway所使用协议的encode方法打包后再发送给客户端

```
use \GatewayWorker\Lib\Gateway;
class Event
{
...

public static function onMessage($client_id, $message)
{
    // $message = '{"type":"say_to_one","to_client_id":100,"content":"hello"}'
    $req_data = json_decode($message, true);
    // 如果是向某个客户端发送消息
    if($req_data['type'] == 'say_to_one')
    {
        // 转发消息给对应的客户端
        Gateway::sendToClient($req_data['to_client_id'], $req_data['content']);
    }
}
...
}
```

\GatewayWorker\Lib\Gateway::sendToCurrentClient

说明:

void Gateway::sendToCurrentClient(mixed \$send_data);

作用与Gateway::sendToClient相同,只不过是只能给当前用户发送

\GatewayWorker\Lib\Gateway::closeClient

说明:

```
void Gateway::closeClient(int $client_id);
```

断开与client_id对应的客户端的连接

参数

• \$client_id

全局唯一标识客户端连接的id

```
use \GatewayWorker\Lib\Gateway;

class Event
{
...

public static function onMessage($client_id, $message)
{
    // 如果传递的消息不ok就踢掉对应客户端
    $is_ok = your_check_fun($message);
    if(!$is_ok)
    {
        Gateway::closeClient($client_id);
    }
}
...
}
```

\GatewayWorker\Lib\Gateway::closeCurrentClient

说明:

void Gateway::closeCurrentClient();

作用与Gateway::closeClient相同,只不过是断开当前客户端的连接

\GatewayWorker\Lib\Gateway::isOnline

说明:

```
int Gateway::isOnline(int $client_id);
```

判断\$client id是否还在线

参数

• \$client_id

全局唯一的客户端client_id

返回值

在线返回1,不在线返回0

```
use \GatewayWorker\Lib\Gateway;
class Event
{
. . .
   public static function onMessage($client_id, $message)
       // $message = '{"type":"say_to_one","to_client_id":100,"content":"hello"}'
       $req_data = json_decode($message, true);
       // 如果是向某个客户端发送消息
       if($req_data['type'] == 'say_to_one'))
           // 如果不在线就先存起来
           if(!Gateway::isOnline($req_data['to_client_id'])
               your_store_fun($message);
           }
           else
               // 在线就转发消息给对应的客户端
               Gateway::sendToClient($req_data['to_client_id'], $req_data['content']);
       }
   }
}
```

\GatewayWorker\Lib\Gateway::getOnlineStatus

说明:

```
array Gateway::getOnlineStatus(void);
```

获取当前所有在线client_id列表

范例

```
use \GatewayWorker\Lib\Gateway;

// 打印在线client_id列表
var_export(Gateway::getOnlineStatus());
```

打印出的数据类似如下:

```
array(
    0=>1001,
    1=>1009,
    2=>99,
);
```

超全局数组 \$_SESSION

\$ SESSION 是什么

WorkerMan中的超全局数组 \$_SESSION 和PHP自身的 \$_SESSION 功能基本相同。每个client_id对应一个 \$_SESSION 数组, \$_SESSION 数组中可以保存对应客户端的会话数据,对应的client_id的后续请求可以直接使用这个数组中的数据,而不用去反复读取存储。

\$_SESSION 使用场景

(WorkerMan>=2.1.2, Gateway/Worker模型)

例如客户端链接WorkerMan后,需要发送验证数据让服务端验证是否合法,一般要传递一次用户名和密码数据,然后在 Gateway::onMessage(\$client_id, \$message) 中通过查询数据库验证 \$message 中的用户名密码是否正确,如果正确就可以将用户的uid写入到 \$_SESSION 中如 \$_SESSION['uid']=\$uid; ,那么当这个client_id再次发来数据时,要判断这个客户端是否是被验证过的,就可以用 \$_SESSION['uid'] 是否被设置来判断。

\$ SESSION 使用注意事项

- 使用 \$_SESSION 时无需调用session_start等函数,可直接使用
- \$_SESSION 中无法保存资源类型的数据
- 当客户端连接断开后,对应的客户端 \$_SESSION 将会清除

\$ SESSION 实现原理

在WorkerMan的Gateway/Worker模型中,每个客户端的 \$_SESSION 数据是存储在Gateway进程内存中的,每次Gateway进程转发消息给BusibuessWorker进程时,都会顺便携带上对应客户端的 \$_SESSION 数据给BusibuessWorker进程,这时BusibuessWorker进程就能使用 \$_SESSION 了。而当 \$_SESSION 数据有更改时,BusibuessWorker会将新的 \$_SESSION 数据传递给Gateway进程进行保存。

超全局数组\$ SERVER

\$ SERVER 是什么

WorkerMan中的超全局数组 \$_SERVER 包含了5个元素,分别是:

- REMOTE_ADDR // 客户端ip(如果客户端处于局域网,则是客户端所在局域网的出口ip)
- REMOTE_PORT // 客户端端口(如果客户端处于局域网,则是客户端所在局域网的出口端口)
- GATEWAY ADDR // gateway所在服务器的ip
- GATEWAY_PORT // geteway所在服务器的端口
- GATEWAY_CLIENT_ID // 全局唯一的客户端id

\$ SERVER 使用场景

当需要在Event.php中获得客户端的ip及端口信息时,可以使

用 \$_SERVER['REMOTE_ADDR'] 和 \$_SERVER['REMOTE_APORT'] 获得。当想在某个函数逻辑处理时获得当前客户端的client id时,可以使用 \$_SERVER['GATEWAY_CLIENT_ID'] 方便的获得

\$_SERVER 使用注意事项

• \$_SERVER['GATEWAY_ADDR'] 和 \$_SERVER['GATEWAY_PORT'] 开发者一般用不到,可以忽略。

\$_SERVER 原理

在WorkerMan的Gateway/BusinessWorker模型中,每个客户端都会连接在gateway进程上,当gateway进程收到客户端的数据时,会将客户端的ip端口及client_id连通消息传递给worker进程,worker进程初始化 \$_SERVER 数组便可以使用了。

服务端到客户端的心跳检测

WorkerMan支持服务端与客户端定时发送心跳检测

为什么需要心跳检测?

有些极端情况如客户端掉电、网络关闭、拔网线、路由故障等,这些极端情况都属于连接断开的情况,然 而这些情况如果没有应用层的心跳检测,服务端是无法快速感知的。而服务端定时向客户端发送心跳数据 可以解决这个问题。

什么情况需要定时心跳检测?

一般的应用其实不需要心跳检测,因为正常的情况客户端断开服务端是能立刻感知到的。如果应用要求对于极端连接断开的情况也要及时检测到,则需要服务端与客户端的定时心跳检测。

心跳检测的原理是什么?

服务端向客户端发送心跳检测,客户端接收到心跳数据后,可以忽略不做任何处理,也可以回应心跳检测 (向服务端发送一段任意数据)。这就分为两种情况,

- 1、当服务端不要求客户端必须回应心跳检测时,假如客户端遇到掉电等极端情况,这时服务端向客户端发送的心跳数据在TCP层面就会发送超时,遇到这种超时情况TCP会重试多次(次数及间隔依赖操作系统的配置),多次无果后会断开连接。这种极端情况从连接断开到服务端检测到可能要持续至少10分钟。
- 2、当服务端要求必须回应检测时,如果服务端在规定的时间内没有收到客户端的任何数据,则立刻判定客户端已经断开,服务端就立即断开连接。

WorkerMan中如何配置心跳检测?

目前只有Gateway/BusinessWorker模型实现了应用层心跳检测,Worker默认没有应用层的心跳检测,如有需要可以自行开发。

例子:

心跳检测在初始化Gateway时设置,例如

```
$gateway = new Gateway("Websocket://0.0.0.0:8585");
$gateway->pingInterval = 10;
$gateway->pingNotResponseLimit = 2;
$gateway->pingData = '{"type":"ping"}';
```

说明:

Gateway::\$pingInterval

服务端向客户端发送心跳数据的时间间隔单位:秒。如果设置为0代表不发送心跳检测

Gateway::\$pingNotResponseLimit

客户端连续\$pingNotResponseLimit次\$pingInterval时间内不回应心跳则断开链接。 如果设置为0代表客户端不用发送回应数据,即通过TCP层面检测连接的连通性(极端情况至少10分钟才能检测到)

Gateway::\$pingData

要发送的心跳请求数据,心跳数据是任意的,只要客户端能识别即可。

技巧1

如果客户端有定时向服务端发送心跳检测,则服务端可以不必向客户端发送心跳检测,即利用客户端主动发送的数据判断客户端是否存活。这时我们需要设置 pingData='',例如如下配置

```
$gateway = new Gateway("Websocket://0.0.0.0:8585");
$gateway->pingInterval = 10;
$gateway->pingNotResponseLimit = 2;
$gateway->pingData = '';
```

代表服务端不发送任何心跳数据,但是客户端如果 pingInterval*pingNotResponseLimit=20 秒内连接上没有任何请求则断开连接

技巧2

服务端可以只发送心跳检测,而不要求客户端必须回应,则可以像下面这样设置。

```
$gateway = new Gateway("Websocket://0.0.0.0:8585");
$gateway->pingInterval = 10;
$gateway->pingNotResponseLimit = 0;
$gateway->pingData = '{"type":"ping"}';
```

其中 pingNotResponseLimit = 0 代表服务端允许客户端不响应心跳,也就是通过TCP层面检测连接的状态,这样如果客户端因为断电等极端情况断开连接,可能需要等待TCP超时重传多次才能感应到连接断开,耗时较长。

WorkerMan分布式的好处

(只针对Gateway/Worker模型)

1、成倍提高系统承载能力并降低成本

单机遇到资源瓶颈时,要想单机支持更大的用户量,一般是优化业务和增加服务器配置。然而这么做只能 是杯水车薪,成本巨大并且效果非常有限。

WorkerMan支持分布式部署,你可以利用多台价格低廉的普通服务器,组成一个庞大的服务器集群,成倍的增加系统承载能力,这不管在资金成本上还是人力成本上都是最划算的方案。

2、提高系统稳定性

单机对外提供服务,则风险很大,服务器任何故障都可能引起整个服务的不可用。

WorkerMan分布式可以有效的降低这个风险,如果一台服务器故障宕机,还有其它服务器可以继续工作,可以做到对服务无影响或者影响最小化。例如WorkerMan中一台Gateway服务器宕机,可以利用LVS健康探测等技术立刻踢掉故障ip,集群立刻恢复服务。如果WorkerMan中任意一台Worker机器宕机,则GateWay会立刻踢掉故障Worker机器,做到对外网服务几乎无影响。

3、平滑过渡

请求量突然增大,系统已经无法支撑,而你却束手无策。

WorkerMan分布式可以让你从容应对,只需要再启动几台WorkerMan服务器,便可以让你的系统增加几倍的承载能力,轻松应对突发流量。等请求量降下去时,你可以为降低成本将服务器回收,而不影响任何用户。

如何分布式WorkerMan

关键点

- 1、设置Gateway实例的 lanIp 与当前服务器内网ip一致
- 2、 Applications/XXX/Config/Store.php 中 memcache 相关配置

部署示例

以Applications/Demo为例,假如需要部署三台服务器(192.168.1.1-3)提供高可用服务。。另外有一台 memcache服务器(ip 192.168.1.4,端口11211)做全局数据共享。

- 1、给三台服务器的PHP添加memcached或者memcache扩展。推荐用memcached扩展,ubuntu/debian可使用 sudo apt-get install php5-memcached安装。
- 2、配置三台服务器 Applications/Demo/Config/Store.php 如下

3、分别配置三台服务器Gateway对象的 lanIp 为当前服务器的内网ip。例如配置192.168.1.1服务器 Gateway实例

Applications/Demo/start.php中设置

```
$gateway = new Gateway("yourProtocol://0.0.0.0:your_port");
....
$gateway->lanIp = 192.168.1.1;
....
```

4、逐台启动WorkerMan, 至此WorkerMan分布式部署完毕。

说明:

- 1、三台WorkerMan机器都运行了Gateway进程和Worker进程,客户端连接上任意一台WorkerMan的Gateway端口即可。
- 2、为了方便前端接入和扩容,可以在Gateway前加一层DNS、LVS等负载均衡策略
- 3、如果服务器不够用可以使用同样的方法增加服务器
- 4、如果需要下线服务器,可以停止WorkerMan,然后执行后续停机等下线操作(由于Gateway进程维护着客户端连接,当对应服务器下线时,对应服务器的客户端会掉线一次。如何做到下线机器不影响用户参考下一节)。

gateway worker 分离部署

什么是Gateway Worker分离部署

Gateway/Worker模式有两组进程,Gateway进程负责网络IO,Worker进程负责业务处理,Gateway与Worker之间使用TCP长连接通讯。当系统出现负载时,一般都是业务进程Worker出现瓶颈。我们可以把Gateway Worker分开部署在不同的服务器上,单独增加Worker服务器提升系统负载能力。同理,如果Gateway进程出现瓶颈,则增加Gateway服务器。

部署示例

以Applications/Todpole为例,假如需要部署三台服务器提供高可用服务。瓶颈在worker进程,则可使用1台作为gateway服务器,另外两台做worker服务器。(如果瓶颈在gateway进程(一般是带宽瓶颈),则可以2台gateway机器,1台worker机器,部署方法类似)。

gateway worker 分离部署扩容步骤

- 1、首先将进程切分,将Gateway进程部署在一台机器上(假设内网ip为192.168.0.1),BusinessWorker部署在另外两台机器上(内网ip为192.168.0.2/3)
- 2、由于192.168.0.1这台机器只部署Gateway进程,所以将该ip上的初始化BusinessWorker示例的地方注释或者删掉,避免运行BusinessWorker进程,例如

打开文件Applications/Todpole/start.php, 注释掉bussinessWorker初始化

```
// bussinessWorker
//$worker = new BusinessWorker();
//$worker->name = 'TodpoleBusinessWorker';
//$worker->count = 4;
...
```

3、配置Gateway服务器(192.168.0.1)上的Gateway实例的 lanIp=192.168.0.1 与本机ip一致,Gateway服务器的初始化文件最终类似下面配置(如果有单独的Web服务器运行蝌蚪界面,可以把WebServer初始化部分也去掉)

文件Applications/Todpole/start.php

```
<?php
use \Workerman\WebServer;
use \GatewayWorker\Gateway;
use \GatewayWorker\BusinessWorker;

// gateway
$gateway = new Gateway("Websocket://0.0.0.0:8282");
$gateway->name = 'TodpoleGateway';
$gateway->count = 4;
$gateway->lanIp = '127.0.0.1';
$gateway->startPort = 2000;
```

```
$gateway->pingInterval = 10;
$gateway->pingData = '{"type":"ping"}';

// bussinessWorker
//$worker = new BusinessWorker();
//$worker->name = 'TodpoleBusinessWorker';
//$worker->count = 4;

// WebServer
$web = new WebServer("http://0.0.0.0:8383");
$web->count = 12;
$web->addRoot('kedou.workerman.net', __DIR__.'/Web');
```

3、由于192.168.0.2/3 两台服务器只部署BusinessWorker进程,所以将这两台ip上的Gateway初始化注释 掉或者删掉,避免运行Gateway进程,BusinessWorker服务器初始化文件类似下面(如果有单独的Web服务器运行蝌蚪界面,可以把WebServer初始化部分也去掉)

文件Applications/Todpole/start.php

```
<?php
use \Workerman\WebServer;
use \GatewayWorker\Gateway;
use \GatewayWorker\BusinessWorker;
// gateway
//$gateway = new Gateway("Websocket://0.0.0.0:8282");
//$gateway->name = 'TodpoleGateway';
//$gateway->count = 4;
//$gateway->lanIp = '127.0.0.1';
//$gateway->startPort = 2000;
//$gateway->pingInterval = 10;
//$gateway->pingData = '{"type":"ping"}';
// bussinessWorker
$worker = new BusinessWorker();
$worker->name = 'TodpoleBusinessWorker';
$worker->count = 4;
// WebServer
$web = new WebServer("http://0.0.0.0:8383");
$web->count = 12;
$web->addRoot('kedou.workerman.net', __DIR__.'/Web');
```

- 4、由于物理机之间需要共享一些数据,需要部署一台memcache服务器,假设部署在Gateway(192.168.0.1)这台机器上,memcache服务端口为11211
- 5、给三台服务器的PHP添加memcached或者memcache扩展。推荐用memcached扩展,ubuntu/debian可使用 sudo apt-get install php5-memcached安装。
- 6、配置memcache, 更改三台服务器上 Applications/Todpole/Config/Store.php 中的 driver 、 gateway 两项配置如下,

```
// 存储驱动改为memcache
public static $driver = self::DRIVER_MC
// 更改memcache ip和端口
public static $gateway = array(
```

```
'192.168.0.1:11211',
);
```

7、首先启动Gateway服务器192.168.0.1, 然后启动BusinessWorker的服务器192.168.0.2/3至此, *WorkerMan*分布式部署完毕。

一些问题及解答

为什么将Gateway与BusinesWorker分别部署在不同的服务器上?

首先说明的是不一定非要将Gateway BusinessWorker分开部署,但是推荐分开部署,原因如下:

- 1、由于Gateway只负责网络IO,只要服务器带宽够用,绝大多数情况下Gateway服务器不会成为瓶颈,所以在很长时间我们只需要一台或者少数几台Gateway服务器即可。由于我们不想BusinessWorker影响到Gateway,所以将Gateway和BusinessWorker分开部署
- 2、BusinessWorker主要负责业务逻辑。当请求量增大时,由于可能BusinessWorker业务比较复杂,负载可能会明显升高,这时我们只要单纯增加BusinessWorker服务器即可,Gateway服务器则一般不需要变动,也就是不用通知客户端Gateway的ip有所变动
- 3、当系统BusinessWorker负载较低,需要下线服务器时,我们只需要下线BusinessWorker服务器即可, 无需变动GateWay服务器,也就不会导致客户端链接因为服务器下线而断开。

当BusinessWorker服务器集群负载较低时,需要下线一些机器怎么实施?

只需要停止BusinessWorker的服务,运行 php start.php stop,然后下线即可。Gateway服务器会自动感知有BusinessWorker服务器下线,不会再将请求转发给下线的机器,整个下线过程中不影响服务质量。

当Gateway服务器集群负载较低时,需要下线一些机器怎么实施?

首先还是要说明下Gateway服务器一般情况下不会成为系统瓶颈,所以一般你很长时间内Gateway服务器数量是一个稳定的值,一般一台即可

下线Gateway服务器,首先停止服务,运行 php start.php stop ,此时会导致该服务器上已有的客户端链接断开,然后下线服务器即可。此时BusinessWorker会感知到有Gateway服务器下线,会自动断开与Gateway进程的联系。

基本调试

WorkerMan3.0有两种运行模式,调试模式以及daemon运行模式

运行 php start.php start 进入调试模式,这时代码中的 echo、var_dump、var_export 等函数打印会在终端显示。注意以 php start.php start 运行的WorkerMan在终端关闭时所有进程会退出。

而运行 php start.php start -d 则是进入daemon模式,也就是正式上线的运行模式,关闭终端不受影响。

如果想daemon方式运行时也能看到 echo、var_dump、var_export 等函数打印,可以设置 Worker::\$stdoutFile属性,例如

```
use Workerman\Worker;

// 将屏幕打印輸出到Worker::$stdoutFile指定的文件中
Worker::$stdoutFile = '/tmp/stdout.log';

$http_worker = new Worker("http://0.0.0.0:2345");
$http_worker->onMessage = function($connection, $data)
{
    $connection->send('hello world');
};
```

网络抓包

下面的例子中我们通过 tcpdump 查看 workerman-chat 应用通过 websocket 传输的数据。 workerman-chat 例子中服务端是通过 7272 端口对外提供 websocket 服务的,所以我们抓取 7272 端口上的数据包。

- 1、运行命令 tcpdump -Ans 4096 -iany port 7272
- 2、在浏览器地址栏输入 http://127.0.0.1:55151
- 3、输入昵称 mynick
- 4、发表框输入 hi, all !

最终抓取的数据如下:

```
* TCP第一次握手
* 浏览器本地端口60653向远程端口7272发送SYN包
17:50:00.523910 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [S], seq 3524290970, win 32768
E..<.h@.@.HQ.....h..i......0.....@....
. . . . . . . . . . . . .
 * TCP第二次握手
* 远程端口7272向浏览器端口60653回应SYN+ACK包
17:50:00.523935 IP 127.0.0.1.7272 > 127.0.0.1.60653: Flags [S.], seq 692696454, ack 35242
E..<..@.@.<....h..)I....i.....0....@....
. . . . . . . . . . . .
* TCP第三次握手,完成TCP链接
 * 浏览器本地端口60653向远程端口7272发送ACK包
17:50:00.523948 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [.], ack 1, win 256, options [
E..4.i@.@.HX.....h..i.)I.....(.....
. . . . . . . .
 * websocket握手
* 浏览器本地端口60653向远程端口7272发送websocket握手请求数据
17:50:00.524412 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [P.], seq 1:716, ack 1, win 25
E....j@.@.E.....h..i.)I.......
.....GET / HTTP/1.1
Host: 127.0.0.1:7272
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:31.0) Gecko/20100101 Firefox/31.0
Accept: text/html, application/xhtml+xml, application/xml;q=0.9, */*;q=0.8
Accept-Language: zh-cn, zh; q=0.8, en-us; q=0.5, en; q=0.3
Accept-Encoding: gzip, deflate
Sec-WebSocket-Version: 13
Origin: http://127.0.0.1:55151
Sec-WebSocket-Key: zPDr6m4czzUd0FnsxIUEAw==
Cookie: Hm_lvt_abcf9330bef79b4aba5b24fa373506d9=1402048017; Hm_lvt_5fedb3bdce89499492c079
Connection: keep-alive, Upgrade
Pragma: no-cache
```

```
Cache-Control: no-cache
Upgrade: websocket
 * websocket握手
 * 远程端口7272向浏览器端口60653发送ACK包,表明远程7272端口已经收到websocket握手请求数据
17:50:00.524423 IP 127.0.0.1.7272 > 127.0.0.1.60653: Flags [.], ack 716, win 256, options
E..4(u@.@..M.....h..)I....lf.....(.....
 * websocket握手
 * 远程端口7272向浏览器端口60653发送websocket握手回应,表明握手成功
17:50:00.535918 IP 127.0.0.1.7272 > 127.0.0.1.60653: Flags [P.], seq 1:157, ack 716, win
E...(v@.@.....h..)I....lf......
......HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Sec-WebSocket-Version: 13
Connection: Upgrade
Sec-WebSocket-Accept: nSsCeIBUsFnDJCRb/BN1FzBUDpM=
/*
 * websocket握手成功
 * 浏览器本地端口60653向远程端口7272发送ACK,表明接收到websocket握手回应数据
17:50:00.535932 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [.], ack 157, win 256, options
E..4.k@.@.HV.....h..lf)I.#....(.....
. . . . . . . .
 * 输入昵称请求
 * 浏览器通过websocket协议向7272端口发送 昵称 请求 {"type":"login","name":"mynick"}
 * 由于浏览器向服务端发送的数据为websocket协议掩码处理过的数据,所以无法看到原文 {"type":"login","na
 */
17:50:30.652680 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [P.], seq 716:754, ack 157, wi
E..Z.1@.@.H/....h..lf)I.#....N....
* 输入昵称请求
 * 7272端口向浏览器返回ACK,表明昵称请求已经接收,并返回用户列表{"type":"user_list" ...
17:50:30.653546 IP 127.0.0.1.7272 > 127.0.0.1.60653: Flags [P.], seq 157:267, ack 754, wi
E...(w@.@.....h..)I.#..l.......
...^...^.l{"type":"user_list","user_list":[{"uid":783654164,"name":"\u732a\u732a"},{"uid"
 * 输入昵称请求
 * 浏览器返回ACK,表明用户列表数据已经收到
17:50:30.653559 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [.], ack 267, win 256, options
E..4.m@.@.HT.....h..l.)I.....(.....
...^...^
 * 输入昵称请求
 * 7272端口向浏览器返回ACK, 并返回用登录结果{"type":"login",...
17:50:30.653689 IP 127.0.0.1.7272 > 127.0.0.1.60653: Flags [P.], seq 267:346, ack 754, wi
E...(x@.@....h..)I....l...w....
...^...^.M{"type":"login","uid":783700053,"name":"mynick","time":"2014-08-12 17:50:30"}
```

```
* 输入昵称请求 完毕
* 浏览器返回ACK,表明登录结果数据包收到
17:50:30.653695 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [.], ack 346, win 256, options
E..4.n@.@.HS.....h..l.)I.....(.....
...^...^
* 服务端7272端口通知其它浏览器有新用户登录
17:50:30.653749 IP 127.0.0.1.7272 > 127.0.0.1.60584: Flags [P.], seq 436:515, ack 816, wi
E.....@.@.3....w....h..f....G.....w.....
...^...y.M{"type":"login","uid":783700053,"name":"mynick","time":"2014-08-12 17:50:30"}
 * 其它浏览器返回 ACK,表明收到新用户登录通知的请求
17:50:30.653755 IP 127.0.0.1.60584 > 127.0.0.1.7272: Flags [.], ack 515, win 256, options
E..4.X@.@.#j.....h.G..f..$.....(.....
...^...^
 * mynick用户发言 hi, all!
 * 浏览器向服务端7272端口发送发言数据 {"type":"say","to_uid":"all","content":"hi, all !"}
* 由于浏览器向服务端发送的数据为websocket协议掩码处理过的数据,所以无法看到原文
17:51:02.775205 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [P.], seq 754:812, ack 346, wi
E..n.o@.@.H.....b....h..l.)I......b.....
fTX.d.P[(...9H..C=LT.~.BV=...0SnB-X.
/*
* mynick用户发言 hi, all!
* 7272端口向所有浏览器客户端中一个浏览器转发发言数据 {"type":"say","from_uid":....
17:51:02.776785 IP 127.0.0.1.7272 > 127.0.0.1.60653: Flags [P.], seq 346:448, ack 812, wi
E...(y@.@.....h..)I....l......
......d{"type":"say","from_uid":783700053,"to_uid":"all","content":"hi, all !","time"
* mynick用户发言 hi, all!
 * 浏览器响应ACK,收到发言数据
17:51:02.776808 IP 127.0.0.1.60653 > 127.0.0.1.7272: Flags [.], ack 448, win 256, options
E..4.p@.@.HQ.....h..l.)I.F.....(.....
. . . . . . . .
 * mynick用户发言 hi, all!
 * 7272端口向所有浏览器客户端中一个浏览器转发发言数据 {"type":"say", "from_uid":....
17:51:02.776827 IP 127.0.0.1.7272 > 127.0.0.1.60584: Flags [P.], seg 515:617, ack 816, wi
E.....@.@.3g.....h..f..$.G.....
......^.d{"type":"say","from_uid":783700053,"to_uid":"all","content":"hi, all !","time"
 * mynick用户发言 hi, all!, 所有浏览器都收到转发的发言数据,发言完毕
 * 浏览器响应ACK, 收到发言数据
17:51:02.776842 IP 127.0.0.1.60584 > 127.0.0.1.7272: Flags [.], ack 617, win 256, options
E..4.Y@.@.#i.....h.G..f.....(.....
```

以上是登录+发言的所有所有请求,一共有两个浏览器客户端。

包数据中 [S] 代表 SYN 请求(发起链接请求); [.] 代表 ACK 回应,说明请求对端已经收到;[P]代表 发送数据;[P.]代表[P]+[.]

如果端口上传输的数据是二进制数据,则可以以十六进制来查看 tcpdump -XAns 4096 -iany port 7272

跟踪系统调用

当想知道一个进程在做什么事情的时候,可以通过 strace 命令跟踪一个进程的所有系统调用。

1、运行 php start.php status 能看到workerman相关进程的信息 如下:

```
Hello admin
WorkerMan version:3.0.1
start time:2014-08-12 17:42:04 run 0 days 1 hours
load average: 3.34, 3.59, 3.67
worker_name exit_status exit_count
BusinessWorker 0
           8 workers
                          14 processes
             0
ChatWeb
                             0
FileMonitor
             0
              0
Gateway
                             0
             0
Monitor
                             0
StatisticProvider 0
StatisticWeb 0
StatisticWorker 0
-----PROCESS STATUS-----
pid memory listening timestamp worker_name 10352 1.5M tcp://0.0.0.0:55151 1407836524 ChatWeb
              listening timestamp worker_name
                                                   total_request packet_err
                                                       12
10354 1.25M tcp://0.0.0.0:7272 1407836524 Gateway
                                                                     0
10355 1.25M tcp://0.0.0.0:7272 1407836524 Gateway
                                                                     0
10365 1.25M tcp://0.0.0.0:55757 1407836524 StatisticWeb
10358 1.25M tcp://0.0.0.0:7272 1407836524 Gateway
                                                       3
                                                                     0
     1.25M
              tcp://0.0.0.0:55858 1407836524 StatisticProvider 0
10364
                                                                     0
     1.25M
             tcp://0.0.0.0:7272 1407836524 Gateway
10356
                                                        3
                                                                     0
10366 1.25M udp://0.0.0.0:55656 1407836524 StatisticWorker 55
                                                                     0
10349 1.25M tcp://127.0.0.1:7373 1407836524 BusinessWorker 5
                                                                     0
10350 1.25M tcp://127.0.0.1:7373 1407836524 BusinessWorker 0
                                                                     0
10351 1.5M
              tcp://127.0.0.1:7373 1407836524 BusinessWorker
                                                        5
                                                                     0
10348
       1.25M tcp://127.0.0.1:7373 1407836524 BusinessWorker
```

2、例如我们想知道pid为10354的gateway进程在做什么,则可以运行命令 strace -p 10354 (可能需要root 权限) 类似如下:

```
sudo strace -p 10354
Process 10354 attached - interrupt to quit
clock_gettime(CLOCK_MONOTONIC, {118627, 242986712}) = 0
gettimeofday({1407840609, 102439}, NULL) = 0
                               = -1 EINTR (Interrupted system call)
epoll_wait(3, 985f4f0, 32, -1)
--- SIGUSR2 (User defined signal 2) @ 0 (0) ---
send(7, "\f", 1, 0)
sigreturn()
                                       = ? (mask now [])
clock_gettime(CLOCK_MONOTONIC, {118627, 699623319}) = 0
gettimeofday({1407840609, 559092}, NULL) = 0
epoll_wait(3, {{EPOLLIN, {u32=9, u64=9}}}, 32, -1) = 1
clock_gettime(CLOCK_MONOTONIC, \{118627, 699810499\}) = 0
gettimeofday({1407840609, 559277}, NULL) = 0
recv(9, "\f", 1024, 0)
recv(9, 0xb60b4880, 1024, 0)
                                     = -1 EAGAIN (Resource temporarily unavailable)
epoll_wait(3, 985f4f0, 32, -1) = -1 EINTR (Interrupted system call)
```

```
--- SIGUSR2 (User defined signal 2) @ 0 (0) ---
 send(7, "\f", 1, 0)
                                        = 1
                                        = ? (mask now [])
 sigreturn()
 clock_gettime(CLOCK_MONOTONIC, {118628, 699497204}) = 0
 gettimeofday(\{1407840610, 558937\}, NULL) = 0
 epoll_wait(3, {{EPOLLIN, \{u32=9, u64=9\}\}}}, 32, -1) = 1
 clock_gettime(CLOCK_MONOTONIC, \{118628, 699588603\}) = 0
 gettimeofday({1407840610, 559023}, NULL) = 0
 recv(9, "\f", 1024, 0)
                                       = 1
 recv(9, 0xb60b4880, 1024, 0)
                                       = -1 EAGAIN (Resource temporarily unavailable)
 epoll_wait(3, 985f4f0, 32, -1) = -1 EINTR (Interrupted system call)
 --- SIGUSR2 (User defined signal 2) @ 0 (0) ---
 send(7, "\f", 1, 0)
                                       = 1
 sigreturn()
                                        = ? (mask now [])
```

3、其中每一行是一个系统调用,从这个信息中我们很容易看到进程在做一些什么事情,可以定位到进程卡在哪里,卡在链接还是读取网络数据等