Import Necessary Liabraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")
```

Load the Data Set

```
In [92]: df=pd.read_csv("Employee Dataset.csv")
    df
```

Out[92]:		id	groups	age	healthy_eating	active_lifestyle	salary
	0	0	А	36	5	5	2297
	1	1	Α	26	3	5	1134
	2	2	Α	61	8	1	4969
	3	3	0	24	3	6	902
	4	4	0	39	6	2	3574
	5	5	0	32	5	3	2761
	6	6	AB	25	4	6	1484
	7	7	В	39	8	6	3809
	8	8	Α	32	5	6	2065
	9	9	Α	28	4	8	1020
	10	10	А	30	6	9	1950
	11	11	0	40	7	1	4387
	12	12	Ο	23	3	2	1830
	13	13	0	30	6	8	2182
	14	14	AB	51	7	5	3460
	15	15	В	26	3	8	662
	16	16	А	30	3	5	1134
	17	17	Α	22	4	8	1020
	18	18	Α	27	2	6	779
	19	19	0	32	7	6	3228
	20	20	0	39	7	6	3228
	21	21	0	26	1	6	1360

	id	groups	age	healthy_eating	active_lifestyle	salary
22	22	АВ	40	7	5	3460
23	23	В	37	6	4	3110
24	24	Α	28	5	8	1601
25	25	А	30	6	7	2414
26	26	Α	62	9	6	700
27	27	0	37	3	5	1134
28	28	Ο	30	6	7	2414
29	29	0	37	8	6	3809
30	30	AB	28	4	7	1252
31	31	В	30	7	8	2764
32	32	Α	22	3	8	662
33	33	Α	25	4	6	1484
34	34	Α	29	5	7	1833
35	35	0	27	2	4	785
36	36	Ο	39	5	5	2297
37	37	0	26	3	5	1134
38	38	AB	26	3	7	670
39	39	В	29	2	6	779
40	40	Α	30	6	8	2182
41	41	Α	32	5	3	2761
42	42	Α	31	6	7	2414
43	43	0	23	4	10	556

		id	groups	age	healthy_eating	active_lifestyle	salary
4	14	44	0	35	6	6	2646
4	15	45	0	25	5	8	1601
4	16	46	AB	29	4	3	2179
4	17	47	В	30	4	6	1484
4	18	48	А	30	5	6	2065
4	19	49	А	29	6	9	1950

Fetch the Features Names

```
In [93]: df.columns
Out[93]: Index(['id', 'groups', 'age', 'healthy_eating', 'active_lifestyle', 'salary'], dtype='object')
```

check the shape of dataset

```
In [94]: df.shape
Out[94]: (50, 6)
```

Fetch the data type

```
In [95]: df.dtypes
```

```
Out[95]: id int64
groups object
age int64
healthy_eating int64
active_lifestyle int64
salary int64
dtype: object
```

Data Preprocessing

\cap	1.1	+	Г	a	a	7	
U	и	L	L	ン	\mathcal{I}	Ш	•

	groups	age	healthy_eating	active_lifestyle	salary
0	А	36	5	5	2297
1	Α	26	3	5	1134
2	Α	61	8	1	4969
3	0	24	3	6	902
4	0	39	6	2	3574
5	0	32	5	3	2761
6	AB	25	4	6	1484
7	В	39	8	6	3809
8	Α	32	5	6	2065
9	А	28	4	8	1020
10	А	30	6	9	1950
11	0	40	7	1	4387
12	0	23	3	2	1830
13	0	30	6	8	2182
14	AB	51	7	5	3460
15	В	26	3	8	662
16	Α	30	3	5	1134
17	А	22	4	8	1020
18	А	27	2	6	779
19	0	32	7	6	3228
20	0	39	7	6	3228
21	0	26	1	6	1360

	groups	age	healthy_eating	active_lifestyle	salary
22	АВ	40	7	5	3460
23	В	37	6	4	3110
24	А	28	5	8	1601
25	А	30	6	7	2414
26	Α	62	9	6	700
27	0	37	3	5	1134
28	Ο	30	6	7	2414
29	0	37	8	6	3809
30	AB	28	4	7	1252
31	В	30	7	8	2764
32	А	22	3	8	662
33	А	25	4	6	1484
34	А	29	5	7	1833
35	0	27	2	4	785
36	0	39	5	5	2297
37	0	26	3	5	1134
38	AB	26	3	7	670
39	В	29	2	6	779
40	А	30	6	8	2182
41	А	32	5	3	2761
42	А	31	6	7	2414
43	0	23	4	10	556

	groups	age	healthy_eating	active_lifestyle	salary
44	0	35	6	6	2646
45	0	25	5	8	1601
46	AB	29	4	3	2179
47	В	30	4	6	1484
48	А	30	5	6	2065
49	А	29	6	9	1950

```
In [100... df2.shape
Out[100... (50, 5)
```

EDA

seperate categorical and numerical data

```
In [101... Cat_col=df2.select_dtypes(include='object').columns
Num_col=df2.select_dtypes(exclude='object').columns
print('Categorical_column',Cat_col)
print('Numerical_column',Num_col)

Categorical_column Index(['groups'], dtype='object')
Numerical_column Index(['age', 'healthy_eating', 'active_lifestyle', 'salary'], dtype='object')
```

Correlation between numerical features

```
In [102... corr=df2[Num_col].corr()
    corr
```

Out[102...

	age	healthy_eating	active_lifestyle	salary
age	1.000000	0.703395	-0.433615	0.594401
healthy_eating	0.703395	1.000000	-0.068449	0.757873
active_lifestyle	-0.433615	-0.068449	1.000000	-0.495540
salary	0.594401	0.757873	-0.495540	1.000000

Plotting Heatmap to visualize the correlation

Fetch the descriptive behavior of numerical value

In [104... df2.describe().T

Out[104...

	count	mean	std	min	25%	50%	75%	max
age	50.0	31.88	8.390082	22.0	26.25	30.0	35.75	62.0
healthy_eating	50.0	4.92	1.827678	1.0	3.25	5.0	6.00	9.0
active_lifestyle	50.0	5.90	2.022829	1.0	5.00	6.0	7.00	10.0
salary	50.0	2027.50	1076.861885	556.0	1134.00	1950.0	2732.25	4969.0

int64

Fetch the concise summary of dataset

```
In [105... df2.info()
```

4 salary 50 non-null dtypes: int64(4), object(1)

memory usage: 2.1+ KB

Display the mean for each numerical column

```
In [106... mean_age=df2[Num_col]['age'].mean()
    mean_healthy_eating=df2[Num_col]['healthy_eating'].mean()
    mean_active_lifestyle=df2[Num_col]['active_lifestyle'].mean()
    mean_salary=df2[Num_col]['salary'].mean()
```

```
print('mean_age',mean_age)
print('mean_healthy_eating',mean_healthy_eating)
print('mean_active_lifestyle',mean_active_lifestyle)
print('mean_salary',mean_salary)

mean_age 31.88
mean_healthy_eating 4.92
mean_active_lifestyle 5.9
mean salary 2027.5
```

Frequency count for the categorical column 'groups'

```
In [107...
          group values counts=df2['groups'].value counts()
          group values counts
Out[107...
          groups
                 20
           0
                 18
                  6
           AB
           Name: count, dtype: int64
          plt.figure(figsize=(10,5))
 In [63]:
          plt.bar(group_values_counts.index,group_values_counts,color='red',edgecolor='black')
          plt.title("count of different employee groups")
          plt.xlabel("Employee Groups")
          plt.ylabel("Employee Counts")
          for i, value in enumerate(group values counts):
                plt.text(i,value, str(value), ha='center',va='bottom', fontsize=10, fontweight='bold')
          plt.show()
```

count of different employee groups

Plotting box plot for anomalies detection and outliers

```
In [108...
plt.figure(figsize=(15,10))
for i in range(len(Num_col)):
    plt.subplot(2,2,i+1)
    sns.boxplot(df2[Num_col[i]])
    plt.title(f' Outliers detection(box_plot) for {Num_col[i]}')
    plt.grid()
plt.show()
```


Outliers Treatment & Outliers Capping

```
col=['age','healthy eating','active lifestyle','salary']
In [109...
           a=df[col].describe(percentiles=[0.95,0.96,0.97,0.98,0.99]).T
Out[109...
                                                  std
                                                              50%
                                                                       95%
                                                                               96%
                                                                                        97%
                                                                                                98%
                                                                                                         99%
                          count
                                                       min
                                   mean
                                                                                                                max
                            50.0
                                   31.88
                                             8.390082
                                                       22.0
                                                               30.0
                                                                      46.05
                                                                              51.40
                                                                                       56.30
                                                                                                61.02
                                                                                                        61.51
                                                                                                                 62.0
                     age
                                    4.92
                                                                       8.00
                                                                               8.00
                                                                                                8.02
                                                                                                         8.51
           healthy_eating
                            50.0
                                             1.827678
                                                        1.0
                                                                5.0
                                                                                        8.00
                                                                                                                 9.0
                                    5.90
           active lifestyle
                           50.0
                                             2.022829
                                                        1.0
                                                                6.0
                                                                       8.55
                                                                                9.00
                                                                                        9.00
                                                                                                9.02
                                                                                                         9.51
                                                                                                                 10.0
                           50.0 2027.50 1076.861885 556.0 1950.0 3809.00 3832.12 4115.34 4398.64 4683.82 4969.0
                   salary
In [110...
          print(df2[df2['age']>46.05].shape)
           print(df2[df2['healthy eating']>9.0].shape)
           print(df2[df2['active lifestyle']>10.0].shape)
           print(df2[df2['salary']>4969.0].shape)
         (3, 5)
         (0, 5)
         (0, 5)
         (0, 5)
          Outliers capping
          df2['age']=np.where(df2['age']>46.05,46.05,df2['age'])
In [111...
          df2['healthy eating']=np.where(df2['healthy eating']>9.0,9.0,df2['healthy eating'])
          df2['active lifestyle']=np.where(df2['active lifestyle']>10.0,10.0,df2['active lifestyle'])
          df2['salary']=np.where(df2['salary']>4969.0,4969.0,df2['salary'])
In [112...
          plt.figure(figsize=(10,5))
           for i in range (len(Num col)):
               plt.subplot(2,2,i+1)
               sns.boxplot(df2[Num col[i]])
               plt.title(f' capped value(box plot) for {Num col[i]}')
               plt.grid()
           plt.show()
```


average values of age, healthy_eating, active_lifestyle, and salary within each group

```
In [150... Average_value=df2.groupby('groups')[['age','healthy_eating','active_lifestyle','salary']].mean().reset_index()
Average_value
```

Out[150...

	groups	age	healthy_eating	active_lifestyle	salary
0	А	30.455000	5.000000	6.400000	1821.700000
1	AB	32.341667	4.833333	5.500000	2084.166667
2	В	31.833333	5.000000	6.333333	2101.333333
3	0	31.333333	4.833333	5.333333	2212.666667

plt.ylabel('Average_value')
plt.xlabel('Employee Groups')

plt.show()

Histograms for age, healthy_eating, active_lifestyle, and salary to visualize the distribution of each numerical variable.

```
In [152... plt.figure(figsize=(15, 10))

# Histogram for 'age'
plt.subplot(2, 2, 1)
plt.hist(Average_value['age'], bins=10, color='skyblue', edgecolor='black')
plt.title('Distribution of Age')
plt.xlabel('Age')
plt.ylabel('Frequency')

# Histogram for 'healthy_eating'
```

```
plt.subplot(2, 2, 2)
plt.hist(Average_value['healthy_eating'], bins=10, color='lightgreen', edgecolor='black')
plt.title('Distribution of Healthy Eating')
plt.xlabel('Healthy Eating Score')
plt.ylabel('Frequency')
# Histogram for 'active lifestyle'
plt.subplot(2, 2, 3)
plt.hist(Average value['active lifestyle'], bins=10, color='lightcoral', edgecolor='black')
plt.title('Distribution of Active Lifestyle')
plt.xlabel('Active Lifestyle Score')
plt.ylabel('Frequency')
# Histogram for 'salary'
plt.subplot(2, 2, 4)
plt.hist(Average value['salary'], bins=10, color='lightgoldenrodyellow', edgecolor='black')
plt.title('Distribution of Salary')
plt.xlabel('Salary')
plt.ylabel('Frequency')
plt.tight layout()
plt.show()
```


In []: