Définition 11.1 - série entière

On appelle série entière de la variable complexe x de coefficients $(a_n)_{n\in\mathbb{N}}$ la série de fonctions $\sum_n a_n x^n$.

Théorème 11.3 - lemme d'Abel

Soit $\sum_n a_n z^n$ une série entière et z_0 un nombre complexe non nul tel que $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée. Pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série $\sum_n a_n z^n$ est absolument convergente.

Définition 11.4 - rayon de convergence d'une série entière

On appelle rayon de convergence de la série entière $\sum_n a_n z^n$ la borne supérieure (au sens large) de cet intervalle :

 $R = \sup\{r \ge 0, (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée}\}$

Théorème 11.5 - propagation sur le cercle de convergence des caractères forts

Soit $\sum_{n} a_n z^n$ une série entière de rayon de convergence.

- 1. Si la série converge absolument en un point du cercle, alors elle converge absolument sur tout le cercle.
- 2. Si la série diverge grossièrement en un point du cercle, alors elle diverge grossièrement sur tout le cercle.

Proposition 11.8 - rayon de convergence de $\sum_n n^{\alpha} z^n$

Pour tout $\alpha \in \mathbb{R}$, le rayon de convergence de la série entière $\sum_{n} n^{\alpha} z^{n}$ vaut 1.

Proposition 11.11 (1) - comparaison de séries entières par inégalité

Soit $\sum_n a_n z^n$ et $\sum_n b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Si à partir d'un certain rang $|a_n| \le |b_n|$, alors $R_a \ge R_b$.

Proposition 11.11 (2) - comparaison de séries entières par domination

Soit $\sum_n a_n z^n$ et $\sum_n b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Si $a_n = \mathcal{O}(b_n)$, alors $R_a \geq R_b$. Proposition 11.11 (3) - comparaison de séries entières par équivalence

Soit $\sum_n a_n z^n$ et $\sum_n b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Si $a_n \underset{n \to +\infty}{\sim} b_n$, alors $R_a = R_b$.