1 Les protocoles

Nom	Temp	Traj(mega pas)	Cycles/traj nb	Swap(mega pas)
ph	0.001	*	100000	*
р3	0.2	3	1000	10
p4	0.2	3000	1	10
p5	10;1;0.1;0.01	750	1	7.5
p6	1;0.5;0.25;0.125	750	1	7.5
p7	10;3.16;1;0.316;0.1;0.0316;0.01;0.00316	750	1	1
p8	3;2;1.333;0.888;0592;0.395;0.263;0.175	750	1	7.5
p9	2;1;0.5;0.25	750	1	7.5

Table 1 – Les protocoles

2 MC et Superfamily

	0.001	0.1	0.2	0.3	0.5	0.7
1ABO	7382	8374	6764	5033	2576	1255
1CKA	8045	8497	9139	9534	8060	2490
1BM2	8073	8002	6861	7869	4458	2821
1M61	9489	9662	9825	9777	9822	8744
104C	7124	7702	6909	7849	7623	4847
1G9O	10000	10000	10000	10000	10000	9942
1R6J	9878	9871	9796	8794	5387	3787

Table 2 – Résultats Superfamily selon la température (les protocoles p1 à p7).

3 MC et identite de sequences

	0.001	0.1	0.2	0.3	0.5	0.7
1ABO	33	33	33	32	32	30
1CKA	26	27	27	27	26	26
1BM2	26	27	27	28	25	23
1M61	40	41	41	41	41	39
104C	21	21	21	21	20	19
1G9O	35	35	36	37	36	33
1R6J	33	33	32	32	31	29

TABLE 3 – Pourcentage d'identité de sequences selon la température.

	0.001	0.1	0.2	0.3	0.5	0.7
1ABO	-270.58	-270.13	-270.47	-271.66	-281.05	-289.79
1CKA	-251.45	-247.66	-252.13	-252.34	-261.41	-267.37
1BM2	-482.39	-486.53	-483.38	-486.71	-516.97	-541.96
1M61	-480.61	-481.35	-483.04	-485.87	-506.48	-523.50
104C	-532.77	-527.93	-533.15	-536.23	-563.11	-590.21
1G9O	-423.05	-425.22	-426.86	-432.33	-450.71	-462.17
1R6J	-411.38	-411.31	-412.51	-417.94	-435.40	-449.15

Table 4 – Meilleur energie proteus selon la température

4 MC et meilleur energie proteus

5 MC cycles et iterations

	p2	p22	р3	p32	p33
1ABO	33	33	33	33	33
1CKA	24	25	25	26	25
1BM2	26	27	27	27	27
1M61	40	40	41	42	41
104C	21	21	21	21	21
1G9O	35	35	36	36	36
1R6J	33	33	32	32	33

Table 5 – Pourcentage d'identité selon les cycles et les itérations.

	p5	p52
1ABO	33	30
1CKA	25	24
1BM2	27	22
1M61	41	35
104C	21	18
1G9O	35	31
1R6J	33	27

Table 6 – Pourcentage d'identité pour deux modes de mutations.

	Entropie			Nb seq		
	ph	р3	p4	ph	p3	p4
1ABO	1.929	1.837	2.140	99462	739634	1658717
1CKA	2.110	2.087	2.126	102046	1109115	2485941
1BM2	2.098	1.960	2.114	107938	997826	2239307
1M61	1.811	1.624	1.794	116362	646422	799980
104C	2.323	2.234	2.386	106360	1117327	2470385
1G9O	1.781	1.836	2.074	127185	1067786	2324760
1R6J	1.878	1.940	2.197	98172	1155090	2786131

Table 7 – Moyennes sur les positions des $\exp(\text{entropies})$ pour les 100000 séquences de meilleur energie, nombre de séquences uniques totales

	Su	perFam	ily	Ene	rgie moye	enne	Me	illeur ene	rgie
	ph	р3	p4	ph	p3	p4	ph	p3	p4
1ABO	4196	6764	5033	-277.00	-274.97	-278.56	-270.78	-270.47	-271.66
1CKA	9354	9139	9534	-273.49	-258.16	-260.53	-254.82	-252.12	-252.33
1BM2	6478	6861	7869	-496.42	-493.71	-499.45	-484.08	-483.38	-486.71
1M61	9142	9825	9777	-494.99	-487.95	-492.89	-480.36	-483.03	-485.86
104C	4411	6909	7849	-545.57	-540.67	-546.86	-533.39	-533.14	-536.22
1G9O	10000	10000	10000	-438.12	-433.82	-439.81	-428.80	-426.85	-432.32
1R6J	9466	9796	8794	-416.62	-417.99	-423.39	-408.76	-412.50	-417.94

Table 8 – moyennes sur les positions des $\exp(\text{entropies})$, pour les 10000 seq de ME, score SuperFamily pour les 10000 séquences de meilleur énergie.

Figure 1 – Séquence logo et exponentiel de l'e	ntropie pour une température de 0,3

images/1ABO_p3_similarity_bypos.pdf	<pre>images/1BM2_p3_similarity_bypos.pdf</pre>
images/1CKA_p3_similarity_bypos.pdf	images/1G90_p3_similarity_bypos.pdf
<pre>images/1M61_p3_similarity_bypos.pdf</pre>	<pre>images/104C_p3_similarity_bypos.pdf</pre>

images/1ABO_p4_similarity_bypos.pdf	<pre>images/1BM2_p4_similarity_bypos.pdf</pre>
images/1CKA_p4_similarity_bypos.pdf	images/1G90_p4_similarity_bypos.pdf
<pre>images/1M61_p4_similarity_bypos.pdf</pre>	images/104C_p4_similarity_bypos.pdf

images/1ABO_ph_similarity_bypos.pdf	<pre>images/1BM2_ph_similarity_bypos.pdf</pre>
images/1CKA_ph_similarity_bypos.pdf	images/1G90_ph_similarity_bypos.pdf
<pre>images/1M61_ph_similarity_bypos.pdf</pre>	images/104C_ph_similarity_bypos.pdf

images/1ABO_centiles.png	images/1BM2_centiles.png
images/1CKA_centiles.png	images/1G90_centiles.png
images/1M61_centiles.png	images/104C_centiles.png