Language Models are Unsupervised Multitask Learners

Presentation for Seminar - CS399

M. Maheeth Reddy

1801CS31

Abstract

- Question Answering
- Machine Translation
- Reading Comprehension
- Summarization

Natural Language Processing tasks

Supervised learning on task-specific datasets

• OpenAI, an AI research lab in San Francisco, have made an attempt to address this problem through unsupervised learning.

OpenAl

GPT-2

1,542M parameter
Transformer

- Trained on a dataset of millions of webpages called WebText.
- On CoQA dataset, it achieved 55 F1 score, without any explicit training on the dataset
- It can generate coherent paragraphs of text.
- Findings suggest a promising path towards building language processing systems which learn to perform tasks from their naturally occurring demonstrations.

CoQA is a large-scale dataset for building Conversational Question Answering systems.

Introduction

- General procedure to creating ML systems:
 - collect a dataset of training examples demonstrating correct behavior for a desired task,
 - train a system to imitate these behaviors, and
 - then test its performance on other examples.
- This has served well to make progress on narrow experts.
- To utilize multitask learning to improve general performance of machine learning models, additional setups are explored.

Approach

- Language Modeling forms the core of the approach.
- A language model analyzes the pattern of human language for the prediction of words through statistics. It is the core component of modern Natural Language Processing (NLP).
- For GPT-2, Transformer based language model is used. Transformer is used to maintain the wide-range context of words in a paragraph.

Training Dataset

- For a multitask learning language model, the training dataset must be large enough so that a wide variety tasks can be performed.
- The dataset made by OpenAI, for GPT-2, called WebText is comprised of scrapings of posts from Reddit which have atleast 3 upvotes.
- The number of upvotes is a good but a vague filter of posts which people have found to be interesting.
- WebText contains 40 GB of text, equivalent to 8 million documents.

"I'm not the cleverest man in the world, but like they say in French: Je ne suis pas un imbecile [I'm not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate in the riding of Joliette, wrote in French: "Mentez mentez, il en restera toujours quelque chose," which translates as, "Lie lie and something will always remain."

"I hate the word 'perfume," Burr says. 'It's somewhat better in French: 'parfum.'

If listened carefully at 29:55, a conversation can be heard between two guys in French: "-Comment on fait pour aller de l'autre coté? -Quel autre coté?", which means "- How do you get to the other side? - What side?".

If this sounds like a bit of a stretch, consider this question in French: **As-tu aller au cinéma?**, or **Did you go to the movies?**, which literally translates as Have-you to go to movies/theater?

"Brevet Sans Garantie Du Gouvernement", translated to English: "Patented without government warranty".

Table 1. Examples of naturally occurring demonstrations of English to French and French to English translation found throughout the WebText training set.

Details about Model

- Current large scale LMs include pre-processing steps such as lowercasing, tokenization, and out-of-vocabulary tokens which restrict the space of model-able strings.
- GPT-2 utilizes Byte Pair Encoding (BPE) in-order to evaluate the language model on any dataset without the pre-processing.

low	lower	lowest
smart	smarter	smartest

Experiments on Language Modeling Datasets

- Four Language Models with different no. of parameters were trained as shown here.
- The 117M parameter model is equivalent to original GPT.
- The 345M parameter model is equivalent to largest model from BERT (by Google)
- There is one 762M parameter model.
- The 1542M parameter model is called GPT-2
- All models underfit WebText.

Children's Book Test (CBT) dataset

- CBT was designed to test the role of memory and context in language processing and understanding.
- The test requires predictions about different types of missing words in children's books, given both nearby words and a wider context from the book.
- The prediction accuracy for common nouns and named entities were measured.
- GPT-2 achieved 93.30% accuracy for common nouns and 89.05% for named entities, hence setting a new benchmark.

	CBT-CN	CBT-NE
	(ACC)	(ACC)
SOTA	85.7	82.3
117M	87.65	83.4
345M	92.35	87.1
762M	93.45	88.0
1542M	93.30	89.05

LAMBADA dataset

- It is a collection of narrative passages that requires language models to guess the last word if they are exposed to the whole passage, not just by the last sentence but by a wider context.
- GPT-2 improves the state of the art from 99.8 to 8.63 perplexity and increases the accuracy of LMs on this test from 59.23% to 63.24%.

	LAMBADA (PPL)	LAMBADA (ACC)
SOTA	99.8	59.23
117M	35.13	45.99
345M	15.60	55.48
762M	10.87	60.12
1542M	8.63	63.24

Other datasets

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2	PTB	enwik8	text8	WikiText103	1BW
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)	(PPL)	(BPB)	(BPC)	(PPL)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

Achieved state-of-the-art results on 7 out of 8 language modelling datasets

Performance in Reading Comprehension

- The Conversation Question Answering dataset (CoQA) tests reading comprehension capabilities and also the ability of models to answer questions that depend on conversation history.
- GPT-2 achieves 55 F1 score without explicitly training on this dataset.
- This matches or exceeds the performance of 3 out of 4 baseline systems which were trained on CoQA.

Performance in Summarization

- GPT-2's ability to perform summarization was tested on the CNN and Daily Mail dataset, which consists of some unique news articles from the journalists.
- The generated summaries only begin to approach the performance of classic neural baselines.
- The model often focuses on recent content from the article or is confused by specific details such as how many cars were involved in a crash.

	R-1	R-2	R-L	R-AVG
Bottom-Up Sum	41.22	18.68	38.34	32.75
Lede-3	40.38	17.66	36.62	31.55
Seq2Seq + Attn	31.33	11.81	28.83	23.99
GPT-2 TL; DR:	29.34	8.27	26.58	21.40
Random-3	28.78	8.63	25.52	20.98
GPT-2 no hint	21.58	4.03	19.47	15.03

Comparison of GPT-2 ROUGE 1,2,L F1 metrics with other models for Text Summarization

Performance in Translation

- GPT-2 doesn't outperform existing language models in translation.
- On the WMT-14 English-French dataset, GPT-2 performs slightly worse than a word-by-word substitution. (5 BLEU)
- On the WMT-14 French-English dataset, GPT-2 performs worse (11.5 BLEU) than the state-of-the-art benchmark (33.5 BLEU).
- BLEU is a translation performance metric.

Performance in Question Answering

- The Natural Questions dataset was used to evaluate how GPT-2 generates the correct answer to factoid-style questions.
- It was observed that GPT-2 answers 5.3 times more question correctly than the smallest 117M parameter model.
- This suggests that model capacity has been a major factor in the poor performance of neural systems on this kind of task.
- But the performance of GPT-2 is still worse than the 30 to 50% range of open domain question answering systems.

Observations

- Unsupervised learning can be explored for multitask learning language models.
- GPT-2 achieves state of the art performance on 7 out of 8 tested language modeling datasets.
- On reading comprehension the performance of GPT-2 is competitive.
- In case of summarization, GPT-2 is still far from useable for practical applications but is suggestive for research.
- On question answering and translation, language models only begin to outperform trivial baselines when they have sufficient capacity.
- When a large language model is trained on a sufficiently large and diverse dataset it can perform well across many domains and datasets.

Language Models are Unsupervised Multitask Learners

Links		
Potoronco Panor	https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf	
Reference Paper	https://is.gd/SdhRmT - (Shortened Link)	
GitHub	https://github.com/openai/gpt-2	
Web	https://openai.com/blog/better-language-models/	

Thank You