Optimization methods. <u>Seminar 7. Subdifferential</u>

Alexandr Katrutsa

Moscow Institute of Physics and Technology Department of Control and Applied Mathematics

October 22, 2017

Reminder

- Convex function
- Epigraph and sublevel set
- Criteria of convex function
- Jensen inequality

Motivation

For what?

The important property of any convex function f is that for any point x for all $y \in \text{dom } f$ the following inequality holds:

$$f(y) - f(x) \ge \langle a, y - x \rangle$$

for some vector \mathbf{a} , namely tangent hyperplane to the function at the point \mathbf{x} is a global lower bound for the function.

- If the function f is differentiable, then $\mathbf{a} = \nabla f(\mathbf{y})$.
- What if the function f is **not** differentiable?

Definition

Subgradient

A vector **a** is called *subgradient* of a function $f: X \to \mathbb{R}^n$ in a point **x**, if $f(\mathbf{y}) - f(\mathbf{x}) \ge \langle \mathbf{a}, \mathbf{y} - \mathbf{x} \rangle$

for all $y \in X$.

Subdifferential

A set of subgradients of the function f in the point x is called subdifferential of the function f in the point x and is denoted as $\partial f(x)$.

Helpful facts

Moreau-Rockafellar theorem

Let $f_i(\mathbf{x})$ be convex functions defined over convex sets

$$G_i, i = 1, ..., n$$
. Then, if $\bigcap_{i=1}^n \operatorname{relint}(G_i) \neq \emptyset$, then a function

$$f(\mathbf{x}) = \sum_{i=1}^{n} a_i f_i(\mathbf{x}), \ a_i > 0$$
 has subdifferential $\partial_G f(\mathbf{x})$ on the set

$$G = \bigcap_{i=1}^n G_i$$
 and $\partial_G f(\mathbf{x}) = \sum_{i=1}^n a_i \partial_{G_i} f_i(\mathbf{x})$.

Subdifferential of maximum

If
$$f(\mathbf{x}) = \max_{i=1,\dots,m} (f_i(\mathbf{x}))$$
, then

Alexandr Katrutsa

Helpful facts

Moreau-Rockafellar theorem

Let $f_i(\mathbf{x})$ be convex functions defined over convex sets $G_i,\ i=1,\ldots,n.$ Then, if $\bigcap\limits_{i=1}^n \operatorname{relint}(G_i)
eq \varnothing$, then a function $f(\mathbf{x}) = \sum_{i=1}^{n} a_i f_i(\mathbf{x}), \ a_i > 0$ has subdifferential $\partial_G f(\mathbf{x})$ on the set $G = \bigcap_{i=1}^{n} G_i$ and $\partial_G f(\mathbf{x}) = \sum_{i=1}^{n} a_i \partial_{G_i} f_i(\mathbf{x}).$

Subdifferential of maximum

If
$$f(\mathbf{x}) = \max_{i=1,\dots,m} (f_i(\mathbf{x}))$$
, then $\partial_G f(\mathbf{x}) = \operatorname{Conv}\left(\bigcup_{i \in \mathcal{J}(\mathbf{x})} \partial_G f_i(\mathbf{x})\right)$, где $\mathcal{J}(\mathbf{x}) = \{i = 1,\dots,m | f_i(\mathbf{x}) = f(\mathbf{x})\}$

Examples

Find subdifferential fr the following functions

- Absolute value: f(x) = |x|
- ℓ_2 norm: $f(x) = ||x||_2$
- Scalar maximum: $f(x) = \max(e^x, 1 x)$
- Multivariate maximum: $f(x) = |c^T x|$
- $f(x) = |c_1^T x| + |c_2^T x|$

Conditional subdifferential

Definition

A set $\{\mathbf{a}|f(\mathbf{x})-f(\mathbf{x}_0)\geq \langle \mathbf{a},\mathbf{x}-\mathbf{x}_0\rangle,\ \forall \mathbf{x}\in X\}$ is called *subdifferential* of function f in a point \mathbf{x}_0 on a set X and denoted as $\partial_X f(\mathbf{x}_0)$.

From conditional subdifferential to unconditional one

If the function f is convex, then consider a function $g(\mathbf{x}) = f(\mathbf{x}) + \delta(\mathbf{x}|X)$, which is also convex. Thus

$$\partial g(\mathbf{x}_0) = \partial_X f(\mathbf{x}_0) = \partial f(\mathbf{x}_0) + \partial \delta(\mathbf{x}_0|X).$$

Find $\partial \delta(\mathbf{x}_0|X)$:

$$\delta(\mathbf{x}|X) - \delta(\mathbf{x}_0|X) \stackrel{\mathbf{x} \in X}{=} 0 \ge \langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle$$

Normal cone

A set $N(\mathbf{x}_0|X) = {\mathbf{a}|\langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle \leq 0, \ \forall \mathbf{x} \in X}$ is called normal cone to the set X in a point \mathbf{x}_0 .

Then
$$\partial_X f(\mathbf{x}_0) = \partial f(\mathbf{x}_0) + \mathcal{N}(\mathbf{x}_0|X)$$

Alexandr Katrutsa

Seminar 7

Examples

•
$$f(x) = |x|, X = \{-1 \le x \le 1\}$$

•
$$f(\mathbf{x}) = |x_1 - x_2|, X = {\mathbf{x} | ||\mathbf{x}||_2^2 \le 2}$$

Recap

- Subgradient
- Subdifferential
- Conditional subdifferential
- How to compute them