

Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 66%. We keep your highest score.

Next item $\, o \,$

1.	Using the following data, calculate the input dimension (context vector) of the neural network in a given n-gram-based language model:	1/1 point
	Vocabulary = {I, hate, like, surgeons, surgery, football, vacations, broccoli}	
	Context size = 2	
	○ 1/4	
	16	
	O 10	
	O 4	
	Correct The input dimension is the product of vocabulary size and context size. With eight words and a context size of two, the input dimension is 16.	
2.	Consider the phrase, "I like watching movies and sports on" Using the tri-gram model, what will be the context and predicted word(s) at 't=5'?	1/1 point
	Context: ["1", "like"]; Predicted word: "watching"	
	Context: ["like", "watching"]; Predicted word: "and"	
	Context: ["watching", "movies"]; Predicted word: "on"	
	Context: ["watching", "movies"]; Predicted word: "and"	
	Correct In a tri-gram model, the prediction for words at position 't' is based on the positions 't-1' and 't-2'. At 't=5', the context is "watching movies", and the predicted target word is "and".	
3.	Which of the following set of codes converts the list of token indices into a PyTorch tensor?	1/1 point
	<pre>x_c=torch.tensor(context)</pre>	
	index_to_token[predicted_index]	
	<pre>Context=text_pipeline("Never gonna")</pre>	
	Out=model(x_c)	
	<pre>predicted_index =torch.argmax(out,1)</pre>	
	Correct That's right! While making a prediction, this set of code converts the list of token indices into a PyTorch tensor.	