Быковская Арина Александровна

БВТ2002

ЛР3. NB, LR, SVM

```
In [1]: import numpy as np
import pandas as pd

from sklearn import preprocessing
import matplotlib.pyplot as plt
plt.rc("font", size=14)
import seaborn as sns
sns.set(style="white") #white background style for seaborn plots
sns.set(style="whitegrid", color_codes=True)

import warnings
warnings.simplefilter(action='ignore')
```

```
In [2]: # Co3dadum DataFrame train_df u3 CSV train.csv
train_df = pd.read_csv("./train.csv")

# Co3dadum DataFrame test_df u3 CSV test.csv
test_df = pd.read_csv("./test.csv")

train_df.head()
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	

```
In [3]: #Посчитайте количество объектов в train_df:", train_df.shape[0])
print("Количество объектов в test_df:", test_df.shape[0])
```

Количество объектов в train_df: 891 Количество объектов в test_df: 418 Примечание. В тестовых данных нет целевой переменной (т. е. столбец «Survival» отсутствует), поэтому цель состоит в том, чтобы предсказать эту переменную с использованием различных алгоритмов машинного обучения, таких как логистическая регрессия.

```
# Проверьте, есть ли в данных train_df пропущенные значения
In [4]:
        train_df.isnull().sum()
        #Если все значения возвращенного Series равны 0, значит, пропущенных значений в DataFl
Out[4]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
        Name
                          0
        Sex
                          0
                        177
        Age
        SibSp
                          0
        Parch
                          a
        Ticket
                          0
        Fare
                          0
        Cabin
                        687
        Embarked
                          2
        dtype: int64
```

Давайте разберемся с графиой "Age" Ответьте на вопросы и сделайте следующие дейтсвия

Сколько процентов значений пропущено? Найдите медиану и среднее значение переменной. Постойте гистаграмму. Какое значение больше: медиана или среднее?

```
In [5]: print("Процент пропущенных значений в переменной Age: %.2f%%" % ((train_df['Age'].isn

▶
```

Процент пропущенных значений в переменной Age: 19.87%

```
In [6]: age_mean = train_df['Age'].mean()
    age_median = train_df['Age'].median()
    print("Среднее значение переменной Age: %.2f" % age_mean)
    print("Медиана переменной Age: %.2f" % age_median)
```

Среднее значение переменной Age: 29.70

Медиана переменной Age: 28.00

In [7]: sns.histplot(data=train_df, x="Age", kde=True)
 plt.show()

На основе результатов предыдущих вычислений можно сделать вывод, что среднее значение переменной "Age" больше, чем медиана. Это означает, что распределение значений переменной несимметрично и имеет длинный хвост вправо.

```
In [8]: sns.histplot(data=train_df, x="Age", kde=True)
    plt.axvline(x=age_mean, color='red', linestyle='--', label='Среднее значение')
    plt.axvline(x=age_median, color='green', linestyle='--', label='Медиана')
    plt.legend()
    plt.show()
```


Исходя из результатов, среднее значение больше, чем медиана

Так как график распределения смещён вправа, использование среднего значения может дать нам необъективные результаты из-за заполнения возрастов, которые старше желаемого. Чтобы справиться с этим, мы будем использовать медиану для вменения пропущенных значений.

Давайте разберемся с графиой "Cabin"

Сколько процентов значений пропущено?

```
In [9]: print("Процент пропущенных значений в столбце 'Cabin': {:.2f}%".format(train_df['Cabi
```

Процент пропущенных значений в столбце 'Cabin': 77.10%

Если в столбце больше половины пропусков, то он не информативен для нас. В дальнейшем мы его уберем

Давайте разберемся с графиой "Embarked"

Сколько процентов значений пропущено?

```
Процент пропущенных значений в столбце 'Embarked': 0.22%

In [11]: train_data = train_df.copy()
```

Основываясь на оценке отсутствующих значений в наборе данных, внесите в данные следующие изменения:

print("Процент пропущенных значений в столбце 'Embarked': {:.2f}%".format(train_df['E

Если в строке отсутствует «Age», вставьте средний возраст. Если отсутствует «Embarked», замените его на наиболее распространенный порт посадки. Удалите столбец "Cabin"

```
In [12]: # Заменяем отсутствующие значения столбца "Age" на средний возраст train_data["Age"].fillna(train_df["Age"].median(skipna=True), inplace=True)

# Заменяем отсутствующие значения столбца "Embarked" на наиболее распространенный порт train_data["Embarked"].fillna(train_df['Embarked'].value_counts().idxmax(), inplace=T

# Удаляем столбец "Cabin" train_df.drop('Cabin', axis=1, inplace=True)
```

Выполните проверку на пустые значения. Таковых остаться не должно

```
In [13]: # проверка на пустые значения
print(train_df.isnull().sum())
print(test_df.isnull().sum())
```

PassengerId 0 Survived 0 Pclass a Name 0 Sex 0 177 Age SibSp a Parch a Ticket 0 Fare 0 2 Embarked dtype: int64 0 PassengerId 0 Pclass Name 0 Sex 0 86 Age SibSp 0 Parch a Ticket 0 Fare 1 Cabin 327 Embarked 0 dtype: int64

Согласно словарю данных Kaggle, и SibSp, и Parch относятся к путешествиям с семьей. Для простоты (и для учета возможной мультиколлинеарности) я объединим влияние этих переменных в один категориальный предиктор: путешествовал ли этот человек один или нет (0 или 1). Не забудьте удалить SibSp и Parch (Пока работаем с train_data)

```
In [14]: # Создаем новый столбец 'TravelAlone', присваивая ему значение 1, если SibSp и Parch | train_data['TravelAlone'] = (train_data['SibSp'] + train_data['Parch'] == 0).astype(i # Удаляем столбцы 'SibSp' и 'Parch' train_data.drop(['SibSp', 'Parch'], axis=1, inplace=True)
```

также создадим категориальные переменные для класса пассажира ("Pclass"), пола ("Sex") и порта посадки ("Embarked"). Используем функцию pd.get_dummies Не забудьте удалить колонки, из которых делаете dummie-переменные

```
In [15]: training=pd.get_dummies(train_data, columns=["Pclass","Embarked","Sex"])
    training.drop('Sex_female', axis=1, inplace=True)
    training.drop('PassengerId', axis=1, inplace=True)
    training.drop('Name', axis=1, inplace=True)
    training.drop('Ticket', axis=1, inplace=True)

final_train = training
    final_train.head()
```

Out[15]:

	Survived	Age	Fare	Cabin	TravelAlone	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_Q
0	0	22.0	7.2500	NaN	0	False	False	True	False	False
1	1	38.0	71.2833	C85	0	True	False	False	True	False
2	1	26.0	7.9250	NaN	1	False	False	True	False	False
3	1	35.0	53.1000	C123	0	True	False	False	False	False
4	0	35.0	8.0500	NaN	1	False	False	True	False	False
4										•

Теперь примените те же изменения к тестовым данным.

Применим то же значение для «Возраст» в тестовых данных, что и для моих данных обучения (если отсутствует, возраст = 28). Уберем «Cabin» из тестовых данных В переменной порта "Embarked" не было пропущенных значений. Добавим dummie переменные. Наконец, заполним 1 пропущенное значение для «Fare» с медианой 14,45.

```
In [16]: |test_df.isnull().sum()
Out[16]: PassengerId
          Pclass
                            0
          Name
                            0
          Sex
                            0
          Age
                           86
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                           1
          Cabin
                          327
          Embarked
                            a
          dtype: int64
```

```
In [17]:
    test_data = test_df.copy()
    test_data["Age"].fillna(train_df["Age"].median(skipna=True), inplace=True)
    test_data["Fare"].fillna(train_df["Fare"].median(skipna=True), inplace=True)
    test_data.drop('Cabin', axis=1, inplace=True)

    test_data['TravelAlone']=np.where((test_data["SibSp"]+test_data["Parch"])>0, 0, 1)

    test_data.drop('SibSp', axis=1, inplace=True)
    test_data.drop('Parch', axis=1, inplace=True)

    testing = pd.get_dummies(test_data, columns=["Pclass","Embarked","Sex"])
    testing.drop('Sex_female', axis=1, inplace=True)
    testing.drop('PassengerId', axis=1, inplace=True)
    testing.drop('Name', axis=1, inplace=True)

    testing.drop('Ticket', axis=1, inplace=True)

    final_test = testing
    final_test = testing
    final_test.head()
```

Out[17]:

	Age	Fare	TravelAlone	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_Q	Embarked_S	Se
0	34.5	7.8292	1	False	False	True	False	True	False	
1	47.0	7.0000	0	False	False	True	False	False	True	
2	62.0	9.6875	1	False	True	False	False	True	False	
3	27.0	8.6625	1	False	False	True	False	False	True	
4	22.0	12.2875	0	False	False	True	False	False	True	

In [18]: test_data = test_df.copy()
 test_data["Age"].fillna(train_df["Age"].median(skipna=True), inplace=True)
 test_data["Fare"].fillna(train_df["Fare"].median(skipna=True), inplace=True)
 test_data.drop('Cabin', axis=1, inplace=True)

Оцените выживаемость Пассажиров до 16 лет

In [19]: final_test["Survived"] = 0 # Создаем новый столбец "Survived" и заполняем его нулями final_test.head() # Проверяем результат

Out[19]:

	Age	Fare	TravelAlone	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_Q	Embarked_S	Se
0	34.5	7.8292	1	False	False	True	False	True	False	
1	47.0	7.0000	0	False	False	True	False	False	True	
2	62.0	9.6875	1	False	True	False	False	True	False	
3	27.0	8.6625	1	False	False	True	False	False	True	
4	22.0	12.2875	0	False	False	True	False	False	True	
4										

```
In [20]: # Выберем только тех пассажиров, у которых возраст <= 16 лет under_16 = final_test[final_test["Age"] <= 16]

# Вычислим процент выживаемости survival_rate = under_16["Survived"].mean() * 100

# Выведем результат рrint(f"Процент выживаемости пассажиров до 16 лет: {survival_rate:.2f}%")
```

Процент выживаемости пассажиров до 16 лет: 0.00%

Учитывая выживаемость пассажиров моложе 16 лет, включим в свой набор данных еще одну категориальную переменную: «IsMinor». Значение 1 - если меньше 16 лет, 0 - если больше

```
In [21]: final_train['IsMinor']=np.where(final_train['Age']<=16, 1, 0)
final_test['IsMinor']=np.where(final_test['Age']<=16, 1, 0)</pre>
```

Определите самый безопасный класс Определите, кому удаолсь выжить с большей вероятностью: кто путешествовал в одиночку или нет

```
In [22]: # Определение самого безопасного класса
safest_class = train_data.groupby('Pclass')['Survived'].sum().idxmax()
print('Самый безопасный класс:', safest_class)

# Определение того, кто выжил с большей вероятностью
survival_by_alone = train_data.groupby('TravelAlone')['Survived'].mean()
print('Процент выживаемости для тех, кто путешествовал в одиночку:', survival_by_alon
print('Выживаемость для тех, кто не путешествовал в одиночку:', survival_by_alone[0]
```

Самый безопасный класс: 1 Процент выживаемости для тех, кто путешествовал в одиночку: 0.30353817504655495 Выживаемость для тех, кто не путешествовал в одиночку:: 0.5056497175141242

Выбор признаков для анализа

Рекурсивное устранение признаков

рекурсивное исключение функций (RFE) заключается в выборе функций путем рекурсивного рассмотрения все меньших и меньших наборов функций. Во-первых, оценщик обучается на начальном наборе признаков, и важность каждого признака определяется либо с помощью атрибута «coef_», либо с помощью атрибута «feature_importances_». Затем наименее важные функции удаляются из текущего набора функций. Эта процедура рекурсивно повторяется для сокращенного набора до тех пор, пока в конечном итоге не будет достигнуто желаемое количество функций для выбора.

Изучите материалы ниже

https://www.helenkapatsa.ru/kross-validatsiia/ https://www.codecamp.ru/blog/cross-validation-k-fold/ http://scikit-learn.org/stable/modules/feature_selection.html

```
In [23]: final_train
```

Out[23]:

	Survived	Age	Fare	Cabin	TravelAlone	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_
0	0	22.0	7.2500	NaN	0	False	False	True	False	Fal
1	1	38.0	71.2833	C85	0	True	False	False	True	Fals
2	1	26.0	7.9250	NaN	1	False	False	True	False	Fals
3	1	35.0	53.1000	C123	0	True	False	False	False	Fals
4	0	35.0	8.0500	NaN	1	False	False	True	False	Fals
886	0	27.0	13.0000	NaN	1	False	True	False	False	Fals
887	1	19.0	30.0000	B42	1	True	False	False	False	Fals
888	0	28.0	23.4500	NaN	0	False	False	True	False	Fals
889	1	26.0	30.0000	C148	1	True	False	False	True	Fals
890	0	32.0	7.7500	NaN	1	False	False	True	False	Trı

891 rows × 13 columns

```
In [24]: from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import RFE

cols = ["Age","Fare","TravelAlone","Pclass_1","Pclass_2","Embarked_C","Embarked_S","S X = final_train[cols] y = final_train['Survived'] # Cosdaŭme Logreg u вычислите важность функций model = LogisticRegression() # cosdaŭme модель RFE u выберите 8 атрибутов rfe = RFE(model, n_features_to_select=8) rfe = rfe.fit(X, y) # резюмируем выбор атрибутов print('Selected features: %s' % list(X.columns[rfe.support_]))
```

Selected features: ['Age', 'TravelAlone', 'Pclass_1', 'Pclass_2', 'Embarked_C', 'Embarked_S', 'Sex_male', 'IsMinor']

Age	1	0.17	0.32	0.016	0.03	-0.0067	0.081	-0.58	- 1.0 - 0.8
TravelAlone	0.17	1	-0.11	-0.039	-0.095	0.029	0.3	-0.32	- 0.6
Pclass_1	0.32	-0.11	1	-0.29	0.3	-0.16	-0.098	-0.13	- 0.4
Pclass_2	0.016	-0.039	-0.29	1	-0.13	0.19	-0.065	0.0031	- 0.2
Embarked_C	0.03	-0.095	0.3	-0.13	1	-0.78	-0.083	0.0013	- 0.0
Embarked_S	-0.0067	0.029	-0.16	0.19	-0.78	1	0.12	0.012	- -0.2
Sex_male	0.081	0.3	-0.098	-0.065	-0.083	0.12	1	-0.1	- -0.4
IsMinor	-0.58	-0.32	-0.13	0.0031	0.0013	0.012	-0.1	1	- -0.6
	Age	TravelAlone	Pclass_1	Pclass_2	Embarked_C	Embarked_S	Sex_male	IsMinor	

представьте, перед вами стоит задача оценки качества работы модели машинного обучения и сравнения таких моделей межд собой

идея: разделение датасета на выборку для обучения и тестирования

Оценка модели на основе простого разделения train/test с использованием функции train test split()

```
In [26]: from sklearn.model_selection import train_test_split, cross_val_score
         from sklearn.metrics import accuracy_score, classification_report, precision_score, r
         from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_curve, auc,
         # create X (features) and y (response)
         X = final train[Selected features]
         y = final_train['Survived']
         # можно использовать разделение обучения/тестирования с разными значениями random sta
         # мы можем изменить значения random state, которые изменят показатели точности
         # результаты сильно меняются, поэтому результаты тестирования являются оценкой с высо
         # test_size разделяет выборку на тестовую и убучающую в соотношении 20/80
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state
         # check classification scores of logistic regression
         logreg = LogisticRegression()
         logreg.fit(X_train, y_train)
         y_pred = logreg.predict(X_test)
         y_pred_proba = logreg.predict_proba(X_test)[:, 1]
         [fpr, tpr, thr] = roc_curve(y_test, y_pred_proba)
         print('Train/Test split results:')
         print(logreg.__class__.__name__+" accuracy is %2.3f" % accuracy_score(y_test, y_pred)
         print(logreg.__class__.__name__+" log_loss is %2.3f" % log_loss(y_test, y_pred_proba)
         print(logreg.__class__.__name__+" auc is %2.3f" % auc(fpr, tpr))
```

Train/Test split results: LogisticRegression accuracy is 0.782 LogisticRegression log_loss is 0.504 LogisticRegression auc is 0.838

Оценка модели на основе K-fold cross-validation с использованием функции cross_val_score()

```
In [27]: # 10-fold cross-validation logistic regression
logreg = LogisticRegression()
# Используем cross_val_score function
# Мы передаём полные X and y, a не X_train u y_train, функция сама разбиваем данные
# cv=10 for 10 folds
# scoring = {'accuracy', 'neg_log_loss', 'roc_auc'} в качестве метрик оценивания резу,
scores_accuracy = cross_val_score(logreg, X, y, cv=10, scoring='accuracy')
scores_log_loss = cross_val_score(logreg, X, y, cv=10, scoring='neg_log_loss')
scores_auc = cross_val_score(logreg, X, y, cv=10, scoring='roc_auc')
print('K-fold cross-validation results:')
print(logreg._class_.__name__+" average accuracy is %2.3f" % scores_accuracy.mean()
print(logreg._class_.__name__+" average log_loss is %2.3f" % -scores_log_loss.mean(
print(logreg._class_.__name__+" average auc is %2.3f" % scores_auc.mean())

K-fold cross-validation results:
```

LogisticRegression average accuracy is 0.796 LogisticRegression average log_loss is 0.454 LogisticRegression average auc is 0.850

Оценка модели на основе K-fold cross-validation с использованием функции cross_validate()

K-fold cross-validation results: LogisticRegression average accuracy: 0.796 (+/-0.024) LogisticRegression average log_loss: 0.454 (+/-0.037) LogisticRegression average auc: 0.850 (+/-0.028)

Формула Байеса

$$P(A|B) = \frac{P(B \mid A)P(A)}{P(B)}$$

```
и см. ниже);
                 Р ( А | В ) — вероятность гипотезы А при наступлении события В (апостерио
             рная вероятность);
                 Р ( В | А ) — вероятность наступления события В при истинности гипотезы
             Α;
                 Р ( В ) Р(В) - полная вероятность наступления события В.
In [29]: import matplotlib.pyplot as plt
         from scipy.stats.stats import pearsonr
         from sklearn.naive_bayes import GaussianNB
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import accuracy_score, recall_score, precision_score
In [30]: | classifier = GaussianNB()
         classifier.fit(X_train, y_train)
         #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state
Out[30]:
          ▼ Gaus$ianNB
          GaussianNB()
In [31]:
         def cross_validate(estimator, train, validation):
             X train = train[0]
             Y_train = train[1]
             X val = validation[0]
             Y val = validation[1]
             train predictions = classifier.predict(X train)
             train_accuracy = accuracy_score(train_predictions, Y_train)
             train_recall = recall_score(train_predictions, Y_train)
             train_precision = precision_score(train_predictions, Y_train)
             val predictions = classifier.predict(X val)
             val_accuracy = accuracy_score(val_predictions, Y_val)
             val recall = recall score(val predictions, Y val)
             val_precision = precision_score(val_predictions, Y_val)
             print('Model metrics')
             print('Accuracy Train: %.2f, Validation: %.2f' % (train accuracy, val accuracy))
                              Train: %.2f, Validation: %.2f' % (train recall, val recall))
             print('Recall
             print('Precision Train: %.2f, Validation: %.2f' % (train_precision, val_precision
         cross_validate(classifier, (X_train, y_train), (X_test, y_test))
         Model metrics
         Accuracy Train: 0.77, Validation: 0.76
                   Train: 0.66, Validation: 0.75
         Precision Train: 0.78, Validation: 0.68
```

Р (А) Р(А) — априорная вероятность гипотезы А (смысл такой терминологи

```
In [33]: from sklearn.svm import SVC
# Declaring the SVC with no tunning
classifier = SVC()

# Fitting the data. This is where the SVM will learn
classifier.fit(X_train, y_train)

# Predicting the result and giving the accuracy
score = classifier.score(X_test, y_test)
print(score)
```

0.5698324022346368

|Посчитайте score, если train set будет состоять только из 3 переменных: ['Sex', 'Age', 'Pclass']

In [34]: final_train

Out[34]:

	Survived	Age	Fare	Cabin	TravelAlone	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_
0	0	22.0	7.2500	NaN	0	False	False	True	False	Fals
1	1	38.0	71.2833	C85	0	True	False	False	True	Fals
2	1	26.0	7.9250	NaN	1	False	False	True	False	Fals
3	1	35.0	53.1000	C123	0	True	False	False	False	Fals
4	0	35.0	8.0500	NaN	1	False	False	True	False	Fals
886	0	27.0	13.0000	NaN	1	False	True	False	False	Fals
887	1	19.0	30.0000	B42	1	True	False	False	False	Fals
888	0	28.0	23.4500	NaN	0	False	False	True	False	Fals
889	1	26.0	30.0000	C148	1	True	False	False	True	Fals
890	0	32.0	7.7500	NaN	1	False	False	True	False	Trı

891 rows × 13 columns

```
In [35]: Selected_features = ['Sex_male', 'Age', 'Pclass_1', 'Pclass_2', 'Pclass_3']

x = final_train[Selected_features]
y= final_train['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0.2, r
```