On The Convergence of FedAvg on Non-iid Data

Xiang Li*, Kaixuan Huang*, Wenhao Yang* Shusen Wang and Zhihua Zhang

• Standard Distributed Learning = centralize data and then fit models

- Standard Distributed Learning = centralize data and then fit models
- Federated Learning (FL) = fit model collaboratively without data sharing

- Standard Distributed Learning = centralize data and then fit models
- · Federated Learning (FL) = fit model collaboratively without data sharing
- FL has three unique characters:

- Standard Distributed Learning = centralize data and then fit models
- · Federated Learning (FL) = fit model collaboratively without data sharing
- FL has three unique characters:
 - training data is massively distributed;

- Standard Distributed Learning = centralize data and then fit models
- · Federated Learning (FL) = fit model collaboratively without data sharing
- · FL has three unique characters:
 - · training data is massively distributed;

Communication efficiency.

- Standard Distributed Learning = centralize data and then fit models
- Federated Learning (FL) = fit model collaboratively without data sharing
- · FL has three unique characters:
 - · training data is massively distributed;

Communication efficiency.

unable to control over users' devices;

- Standard Distributed Learning = centralize data and then fit models
- Federated Learning (FL) = fit model collaboratively without data sharing
- · FL has three unique characters:
 - training data is massively distributed;
 - unable to control over users' devices;

Communication efficiency.

Partial device participation.

- · Standard Distributed Learning = centralize data and then fit models
- Federated Learning (FL) = fit model collaboratively without data sharing
- FL has three unique characters:
 - training data is massively distributed;
 - unable to control over users' devices;
 - the training data are non-iid.

Communication efficiency.

Partial device participation.

- · Standard Distributed Learning = centralize data and then fit models
- Federated Learning (FL) = fit model collaboratively without data sharing
- FL has three unique characters:
 - training data is massively distributed;
 - unable to control over users' devices;
 - the training data are non-iid.

Communication efficiency.

Partial device participation.

Heterogeneity.

Consider the distributed optimization: $\min_{w} F(w) \triangleq \sum_{k=1}^{N} p_k F_k(w)$ where N is # of devices and p_k is the weight of the k-th device.

- Consider the distributed optimization: $\min_{w} F(w) \triangleq \sum_{k=1}^{N} p_k F_k(w)$ where N is # of devices and p_k is the weight of the k-th device.
- The k-th device holds n_k training data: x_{k,1}, x_{k,2}, ···, x_{k,nk} ~ D_k.

- Consider the distributed optimization: $\min_{w} F(w) \triangleq \sum_{k=1}^{N} p_k F_k(w)$ where N is # of devices and p_k is the weight of the k-th device.
- The k-th device holds n_k training data: x_{k,1}, x_{k,2}, ···, x_{k,nk} ~ D_k.
- The local objective is defined by $F_k(w) \triangleq \frac{1}{n_k} \sum_{i=1}^{n_k} \ell(w; x_{k,j})$ where $\ell(\,\cdot\,\,;\,\cdot\,\,)$ is a loss function.

- Consider the distributed optimization: $\min_{w} F(w) \triangleq \sum_{k=1}^{N} p_k F_k(w)$ where N is # of devices and p_k is the weight of the k-th device.
- The k-th device holds n_k training data: x_{k,1}, x_{k,2}, ···, x_{k,nk} ~ D_k.
- The local objective is defined by $F_k(w) \triangleq \frac{1}{n_k} \sum_{i=1}^{n_k} \ell(w; x_{k,j})$ where $\ell(\,\cdot\,\,;\,\cdot\,\,)$ is a loss function.
- Note that (i) N could be very large; (ii) $\mathcal{D}_i \neq \mathcal{D}_j$ with $i \neq j$ due to heterogeneity; (iii) $p_k = \frac{n_k}{n}$.

- Consider the distributed optimization: $\min_{w} F(w) \triangleq \sum_{k=1}^{N} p_k F_k(w)$ where N is # of devices and p_k is the weight of the k-th device.
- The k-th device holds n_k training data: x_{k,1}, x_{k,2}, ···, x_{k,nk} ~ D_k.
- The local objective is defined by $F_k(w) \triangleq \frac{1}{n_k} \sum_{i=1}^{n_k} \ell(w; x_{k,j})$ where $\ell(\cdot; \cdot)$ is a loss function.
- Note that (i) N could be very large; (ii) $\mathcal{D}_i \neq \mathcal{D}_j$ with $i \neq j$ due to heterogeneity; (iii) $p_k = \frac{n_k}{n}$.

 First, the central server activates a random small set (say S_I) of devices and then broadcasts the latest model w_I to the activated devices;

- First, the central server activates a random small set (say S₁) of devices and then broadcasts the latest model w, to the activated devices;
- Second, every activated device (say the k-th and k ∈ S_t) performs E(≥ 1) local updates: w^k_{t+i+1} ← w^k_{t+i} − η_{t+i} ∇F_k(w^k_{t+i}, ξ^k_{t+i}), i = 0,1,···, E − 1 where η_{t+i} is the learning rate and ξ^k_{t+i} is a sample uniformly chosen from the k-th local dataset.

- First, the central server activates a random small set (say S₁) of devices and then broadcasts the latest model w, to the activated devices;
- Second, every activated device (say the k-th and $k \in \mathcal{S}_l$) performs $E(\geq 1)$ local updates: $w_{t+i+1}^k \longleftarrow w_{t+i}^k \eta_{t+i} \nabla F_k(w_{t+i}^k, \xi_{t+i}^k), i = 0, 1, \cdots, E-1$ where η_{t+i} is the learning rate and ξ_{t+i}^k is a sample uniformly chosen from the k-th local dataset.
- Last, the server aggregates the local models, {w_{t+E}^k}_{k∈S_t} to produce the new global model, w_{t+E} ← Aggregate({w_{t+E}^k}_{k∈S}).

Previous Work

- If data are iid and all devices are active, FedAvg = LocalSGD, while the latter has been analyzed by many work [Coppola (2015); Zhou and Cong (2017); Stich (2018); Lin et al (2018); Wang and Joshi (2018); Yu et al. (2019); Khaled et al. (2019)].
- FedProx [Sahu (2018)] doesn't require the two assumptions. It incorporates FedAvg as a special cases. But their theory couldn't to cover FedAvg.
- We focus the theoretical understanding on FedAvg under more realistic settings.

Under some regularity conditions and decaying the learning rate, we have

 E [F(w_T) − F*] ≤ Ø ((B + C)/T), where B = Γ + (E − 1)².

Under some regularity conditions and decaying the learning rate, we have

 □ [F(w_T) - F*] ≤ Ø ((B + C)/T), where B = Γ + (E - 1)².

• The non-iid is measured by $\Gamma = F^* - \sum_{k=1}^N p_k F_k^*$.

- Under some regularity conditions and decaying the learning rate, we have

 E [F(w_T) − F*] ≤ Ø ((B + C)/T), where B = Γ + (E − 1)².
- The non-iid is measured by $\Gamma = F^* \sum_{k=1}^N p_k F_k^*$.
- C is a term related with the way \mathcal{S}_t is formed. If $\mathcal{S}_t = [N]$, C = 0.

- Under some regularity conditions and decaying the learning rate, we have

 E [F(w_T) − F*] ≤ Ø ((B + C)/T), where B = Γ + (E − 1)².
- . The non-iid is measured by $\Gamma = F^* \sum_{k=1}^N p_k F_k^*$.
- C is a term related with the way \mathcal{S}_t is formed. If $\mathcal{S}_t = [N]$, C = 0.
- The number of required communication rounds is roughly $\left(1 + \frac{1}{K}\right)E + \frac{\Gamma}{E}$.

If the learning rate doesn't decay, then \tilde{w}^* (produced by FedAvg) is away from the optimal w^* (the optimal point): $\|\tilde{w}^* - w^*\|_2 = \Omega((E-1)\eta) \cdot \|w^*\|_2$.

- If the learning rate doesn't decay, then \tilde{w}^* (produced by FedAvg) is away from the optimal w^* (the optimal point): $\|\tilde{w}^* w^*\|_2 = \Omega((E-1)\eta) \cdot \|w^*\|_2$.
- The gradients are non-random and S₁ = [N].

- If the learning rate doesn't decay, then \tilde{w}^* (produced by FedAvg) is away from the optimal w^* (the optimal point): $\|\tilde{w}^* w^*\|_2 = \Omega((E-1)\eta) \cdot \|w^*\|_2$.
- The gradients are non-random and $\mathcal{S}_t = [N]$.
- Diminishing learning rates is crucial.

- If the learning rate doesn't decay, then \tilde{w}^* (produced by FedAvg) is away from the optimal w^* (the optimal point): $\|\tilde{w}^* w^*\|_2 = \Omega((E-1)\eta) \cdot \|w^*\|_2$.
- The gradients are non-random and $\mathcal{S}_t = [N]$.
- · Diminishing learning rates is crucial.
- Motivate alternatives.

Take-away

- · FedAvg converges when data are non-iid. (Assume convexity, smoothness, etc.)
- Convergence rate is affected by the degree of non-iid.
- The decay of learning rate is necessary.

Thank You