ga6

December 6, 2018

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    from datetime import datetime
    import re
    from clean_data import get_filenames, get_clean_data
    from Assignment6_functions import get_dummy_features, get_permute, get_prcp_features,
    import statsmodels.api as sm
    from cryptorandom.cryptorandom import SHA256
```

0.0.1 Please do not repeatedly run the code chuck below, reading and cleaning data is very time consuming.

Poisson Model for the Whole Alameda

```
In [2]: # get the data
       TMAX_data = pd.read_csv('../group_assignment3/TMAX_data.csv')
       # get the temp bins
       temp_bins = get_temp_features(TMAX_data)
       temp_bins.head()
Out[2]:
          30-39F 40-49F 50-59F 60-69F 70-79F 80-89F 90-99F >100F
       0
             0.0
                    0.0
                           34.0
                                   26.0
                                           0.0
                                                   0.0
                                                           0.0
                                                                 0.0
                                   41.0
       1
             0.0
                    0.0
                           16.0
                                                           0.0
                                           3.0
                                                   0.0
                                                                 0.0
       2
             0.0
                    0.0 12.0 36.0 13.0
                                                   0.0
                                                           0.0
                                                                 0.0
       3
             0.0
                    0.0
                         8.0 33.0
                                          18.0
                                                   2.0
                                                           0.0
                                                                 0.0
                            4.0
       4
             0.0
                    0.0
                                   31.0
                                          21.0
                                                   4.0
                                                           1.0
                                                                 0.0
In [3]: # get the data
       PRCP_data = pd.read_csv("../group_assignment3/PRCP_data.csv")
       # get the prcp bins
```

```
prcp_bins = get_prcp_features_whole(PRCP_data)
      prcp_bins.head()
Out[3]:
          Omm 1-4mm 5-14mm 15-29mm >30mm
      0 29.0
              13.0
                    10.0
                               7.0
                                     1.0
                               4.0
      1 32.0 14.0
                       9.0
                                     1.0
      2 34.0 22.0
                      4.0
                               1.0 0.0
      3 43.0 16.0
                     1.0
                               1.0 0.0
      4 54.0 6.0
                               0.0 0.0
                       1.0
In [4]: # dummy variables theta phi
      theta,phi = get_dummy_features(TMAX_data)
In [5]: # get independent variables
      variables = pd.concat([temp_bins, prcp_bins, theta, phi], axis=1)
      variables.head()
       # get the response variable
      df = pd.read_csv("all_alameda_crime.csv").iloc[:,1:3]
       crime = df['crime_sum']
       crime = crime.iloc[1:].reset_index(drop=True)
       # fit the model
      poisson_model = sm.GLM(crime, variables, family=sm.families.Poisson())
      poisson_results = poisson_model.fit()
       # show result
      poisson results.summary()
Out[5]: <class 'statsmodels.iolib.summary.Summary'>
                     Generalized Linear Model Regression Results
      Dep. Variable:
                               crime sum
                                         No. Observations:
                                                                        359
      Model:
                                    GLM Df Residuals:
                                                                        306
                                Poisson Df Model:
      Model Family:
                                                                         52
      Link Function:
                                    log Scale:
                                                                     1.0000
      Method:
                                   IRLS Log-Likelihood:
                                                                    -11604.
      Date:
                         Thu, 06 Dec 2018
                                         Deviance:
                                                                     19300.
      Time:
                                10:21:54 Pearson chi2:
                                                                   2.08e+04
      No. Iterations:
                                      9
                                         Covariance Type:
                                                                  nonrobust
       ______
                                                           [0.025
                                                 P>|z|
                                                                     0.975
                            std err
       ______
       30-39F
                              0.003
                                      -5.422
                                                0.000
                                                          -0.020
                  -0.0148
                                                                     -0.009
                                      -3.614
       40-49F
                  -0.0053
                              0.001
                                               0.000
                                                          -0.008
                                                                     -0.002
                                     -0.518 0.604
-2.289 0.022
       50-59F
                  -0.0007
                              0.001
                                                          -0.004
                                                                     0.002
      60-69F
                  -0.0032
                            0.001
                                                          -0.006
                                                                     -0.000
      70-79F
                  -0.0005
                            0.001
                                      -0.334
                                               0.739
                                                          -0.003
                                                                     0.002
```

80-89F	-0.0010	0.001	-0.723	0.470	-0.004	0.002
90-99F	-0.0061	0.001	-4.195	0.000	-0.009	-0.003
>100F	0.0132	0.003	5.116	0.000	0.008	0.018
Omm	0.0006	0.002	0.292	0.770	-0.004	0.005
1-4mm	8.164e-06	0.002	0.004	0.997	-0.004	0.004
5-14mm	0.0001	0.002	0.061	0.952	-0.004	0.004
15-29mm	0.0024	0.002	1.107	0.268	-0.002	0.007
>30mm	-0.0216	0.002	-8.716	0.000	-0.026	-0.017
1980	2.7439	0.062	44.194	0.000	2.622	2.866
1981	2.7630	0.061	44.933	0.000	2.642	2.884
1982	2.7182	0.062	44.096	0.000	2.597	2.839
1983	2.6374	0.062	42.842	0.000	2.517	2.758
1984	2.6574	0.062	42.703	0.000	2.536	2.780
1985	2.6891	0.062	43.608	0.000	2.568	2.700
1986	2.7536	0.062	44.810	0.000	2.633	2.874
1987	2.7309	0.062	44.366	0.000	2.610	2.852
1988	2.7681	0.062	44.533	0.000	2.646	2.890
1989	2.7625	0.062	44.880	0.000	2.642	2.883
1990	2.6832	0.062	43.583	0.000	2.563	2.804
1991	2.8034	0.062	45.490	0.000	2.683	2.924
1992	2.7888	0.062	44.833	0.000	2.667	2.911
1993	2.8039	0.062	45.500	0.000	2.683	2.925
1994	2.7527	0.062	44.651	0.000	2.632	2.874
1995	2.2525	0.062	36.558	0.000	2.132	2.373
1996	2.6882	0.062	43.215	0.000	2.566	2.810
1997	2.6610	0.062	43.229	0.000	2.540	2.782
1998	2.6237	0.062	42.544	0.000	2.503	2.745
1999	2.4715	0.062	40.023	0.000	2.350	2.593
2000	2.3849	0.062	38.302	0.000	2.263	2.507
2001	2.4605	0.062	39.893	0.000	2.340	2.581
2002	2.4972	0.062	40.502	0.000	2.376	2.618
2003	2.4843	0.062	40.261	0.000	2.363	2.605
2004	2.4456	0.062	39.259	0.000	2.323	2.568
2005	2.4302	0.062	39.426	0.000	2.309	2.551
2006	2.4917	0.062	40.375	0.000	2.371	2.613
2007	2.4650	0.062	40.001	0.000	2.344	2.586
2008	2.4385	0.062	39.166	0.000	2.316	2.561
2009	2.3989	0.062	38.895	0.000	2.278	2.520
Jan	6.5599	0.159	41.290	0.000	6.249	6.871
Feb	6.4786	0.149	43.489	0.000	6.187	6.771
Mar	6.5685	0.149	44.190	0.000	6.277	6.860
Apr	6.5283	0.155	42.226	0.000	6.225	6.831
May	6.5416	0.154	42.345	0.000	6.239	6.844
Jun	6.4934	0.154	42.343	0.000	6.191	6.796
Jun Jul		0.154	42.039	0.000	6.207	
	6.5102					6.813
Aug	6.4967	0.158	41.067	0.000	6.187	6.807
Sep	6.4500	0.155	41.715	0.000	6.147	6.753
Oct	6.5238	0.154	42.231	0.000	6.221	6.827

Poisson Model for East Alameda

```
In [6]: TMAX_data_east = pd.read_csv('../group_assignment4/TMAX_data_east.csv').iloc[:,1:4]
        # drop 20-29F because this is not a feature in other models
        TMAX_data_east = TMAX_data_east.drop(TMAX_data_east[TMAX_data_east['temp_bins'] == '20-2'
        # get temp bins
        temp_bins = get_temp_features(TMAX_data_east)
        temp_bins.head()
Out[6]:
                                           70-79F
                                                   80-89F
           30-39F
                  40-49F
                          50-59F 60-69F
                                                           90-99F >100F
        0
              0.0
                      8.0
                             40.0
                                     12.0
                                               0.0
                                                       0.0
                                                               0.0
                                                                      0.0
        1
              0.0
                      0.0
                             31.0
                                     28.0
                                               1.0
                                                       0.0
                                                               0.0
                                                                      0.0
        2
              0.0
                      0.0
                             17.0
                                     32.0
                                              9.0
                                                               0.0
                                                                      0.0
                                                       3.0
        3
                                                               1.0
              0.0
                      0.0
                              8.0
                                     26.0
                                              20.0
                                                       6.0
                                                                      0.0
        4
              0.0
                      0.0
                              2.0
                                     21.0
                                                      11.0
                                                               3.0
                                                                      0.0
                                              24.0
In [7]: # get the data
        PRCP_data_east = pd.read_csv("../group_assignment4/PRCP_data_east.csv").iloc[:,1:4]
        # get prcp bins
        prcp_bins = get_prcp_features(PRCP_data_east)
        prcp_bins.head()
           Omm 1-4mm 5-14mm
Out [7]:
        0.0
                 60.0
                          0.0
        1 0.0
                 60.0
                          0.0
        2 0.0
                 61.0
                          0.0
        3 0.0
                 61.0
                          0.0
        4 0.0
                 61.0
                          0.0
In [8]: # dummy variables theta phi
        theta,phi = get_dummy_features(TMAX_data_east)
In [9]: # get independent variables
        variables = pd.concat([temp_bins, prcp_bins, theta, phi], axis=1)
        # get the response variable
        df_east = pd.read_csv("east_alameda_crime.csv").iloc[:,1:3]
        crime_east = df['crime_sum']
        crime_east = crime_east.iloc[1:].reset_index(drop=True)
        # fit the model
        east_poisson_model = sm.GLM(crime_east,variables,family=sm.families.Poisson())
        east_poisson_results = east_poisson_model.fit()
        crime_east_hat = east_poisson_results.predict(variables)
        # show result
        east_poisson_results.summary()
```

Out[9]: <class 'statsmodels.iolib.summary.Summary'>

Generalized Linear Model Regression Results

	======= ,	:=======:	.======= 			250
Dep. Variab	Te:	crime	_	Observations	359	
Model:		D		Df Residuals:		307
Model Family	Po		Model:		51	
Link Function	on:		•	ile:		1.0000
Method: Date:	т	hu 06 Doc		g-Likelihood: viance:		-11651. 19394.
Time:	1	hu, 06 Dec		rance. arson chi2:		2.08e+04
No. Iteration	ong:	10.2		variance Type:		nonrobust
========		=======	4 600	======================================	========	
	coef	std err		z P> z	[0.025	0.975]
30-39F	-0.0030	0.002	-1.320	0.187	-0.008	0.001
40-49F	-0.0034	0.002	-1.708	0.088	-0.007	0.000
50-59F	-0.0013	0.002	-0.659	0.510	-0.005	0.003
60-69F	-0.0025	0.002	-1.264	0.206	-0.006	0.001
70-79F	-0.0017	0.002	-0.872	0.383	-0.006	0.002
80-89F	0.0012	0.002	0.623	0.533	-0.003	0.005
90-99F	-0.0024	0.002	-1.193	0.233	-0.006	0.002
>100F	-0.0039	0.002	-1.924	0.054	-0.008	7.43e-05
Omm	-0.1288	0.008	-16.725	0.000	-0.144	-0.114
1-4mm	0.0007	0.004	0.183	0.856	-0.007	0.008
5-14mm	-0.0903	0.008	-11.259	0.000	-0.106	-0.075
1980	2.7345	0.061	44.548	0.000	2.614	2.855
1981	2.7494	0.061	45.238	0.000	2.630	2.868
1982	2.7061	0.061	44.597	0.000	2.587	2.825
1983	2.6387	0.061	43.430	0.000	2.520	2.758
1984	2.6535	0.061	43.249	0.000	2.533	2.774
1985	2.7001	0.061	44.462	0.000	2.581	2.819
1986	2.7421	0.061	45.206	0.000	2.623	2.861
1987	2.7260	0.061	44.941	0.000	2.607	2.845
1988	2.7606	0.061	45.027	0.000	2.640	2.881
1989	2.7548	0.061	45.399	0.000	2.636	2.874
1990	2.6753	0.061	44.084	0.000	2.556	2.794
1991	2.7942	0.061	46.033	0.000	2.675	2.913
1992	2.7872	0.061	45.473	0.000	2.667	2.907
1993	2.7892	0.061	45.950	0.000	2.670	2.908
1994	2.7465	0.061	45.262	0.000	2.628	2.865
1995	2.2527	0.061	37.094		2.134	2.372
1996	2.6565	0.061	43.334	0.000	2.536	2.777
1997	2.6397	0.061	43.506	0.000	2.521	2.759
1998	2.6148	0.061	43.032		2.496	2.734
1999	2.4715	0.061	40.70		2.353	2.591
2000	2.3730	0.061	38.708		2.253	2.493
2001	2.4483	0.061	40.311		2.329	2.567

0000	0 4047	0 004	44 000	0 000	0.070	0 011
2002	2.4917	0.061	41.030	0.000	2.373	2.611
2003	2.4931	0.061	40.997	0.000	2.374	2.612
2004	2.4343	0.061	39.696	0.000	2.314	2.555
2005	2.4175	0.061	39.821	0.000	2.299	2.537
2006	2.4974	0.061	41.070	0.000	2.378	2.617
2007	2.4646	0.061	40.620	0.000	2.346	2.584
2008	2.4171	0.061	39.397	0.000	2.297	2.537
2009	2.3708	0.061	39.049	0.000	2.252	2.490
Jan	6.5601	0.156	42.027	0.000	6.254	6.866
Feb	6.4663	0.146	44.149	0.000	6.179	6.753
Mar	6.5548	0.146	44.789	0.000	6.268	6.842
Apr	6.5140	0.152	42.769	0.000	6.215	6.813
May	6.5160	0.152	42.791	0.000	6.218	6.814
Jun	6.4644	0.152	42.429	0.000	6.166	6.763
Jul	6.4811	0.153	42.472	0.000	6.182	6.780
Aug	6.4644	0.156	41.378	0.000	6.158	6.771
Sep	6.4125	0.153	42.018	0.000	6.113	6.712
Oct	6.4940	0.152	42.614	0.000	6.195	6.793
Nov	6.4982	0.152	42.668	0.000	6.200	6.797
Dec	6.5752	0.152	43.128	0.000	6.276	6.874

11 11 11

Poisson Model for West Alameda

```
In [10]: # get the data
        TMAX_data_west = pd.read_csv('../group_assignment4/TMAX_data_west.csv').iloc[:,1:4]
         # get temp bins
        temp_bins = get_temp_features(TMAX_data_west)
        temp_bins.head()
Out[10]:
           30-39F 40-49F
                          50-59F 60-69F 70-79F 80-89F 90-99F >100F
              0.0
                      0.0
                             32.0
                                     28.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                     0.0
        1
              0.0
                      0.0
                             16.0
                                     42.0
                                              2.0
                                                      0.0
                                                              0.0
                                                                     0.0
        2
              0.0
                             14.0
                                     41.0
                                                      0.0
                                                                     0.0
                      0.0
                                              6.0
                                                              0.0
        3
              0.0
                      0.0
                              9.0
                                     44.0
                                              8.0
                                                      0.0
                                                              0.0
                                                                     0.0
        4
              0.0
                      0.0
                              4.0
                                     43.0
                                             12.0
                                                      2.0
                                                              0.0
                                                                     0.0
In [11]: #get the data
        PRCP_data_west = pd.read_csv("../group_assignment4/PRCP_data_west.csv").iloc[:,1:4]
         # get prcp bins
        prcp_bins = get_prcp_features(PRCP_data_west)
        prcp_bins.head()
Out[11]:
           Omm 1-4mm 5-14mm
        0.0
                59.0
                          1.0
        1 0.0
                59.0
                          1.0
```

```
3 0.0
                61.0
                        0.0
        4 0.0
                61.0
                        0.0
In [12]: # dummy variables theta phi
        theta,phi = get_dummy_features(TMAX_data_west)
In [13]: # get independent variables
        variables = pd.concat([temp_bins, prcp_bins, theta, phi], axis=1)
        # get the response variable
        df_west = pd.read_csv("west_alameda_crime.csv").iloc[:,1:3]
        crime west = df['crime sum']
        crime_west = crime_west.iloc[1:].reset_index(drop=True)
        # fit the model
        west_poisson model = sm.GLM(crime west, variables, family=sm.families.Poisson())
        west_poisson_results = west_poisson_model.fit()
        crime_west_hat = west_poisson_results.predict(variables)
        # show result
        west_poisson_results.summary()
Out[13]: <class 'statsmodels.iolib.summary.Summary'>
        11 11 11
                       Generalized Linear Model Regression Results
        _____
        Dep. Variable:
                                 crime sum
                                            No. Observations:
                                                                            359
                                       GLM Df Residuals:
        Model:
                                                                            308
        Model Family:
                                   Poisson Df Model:
                                                                             50
        Link Function:
                                                                         1.0000
                                       log
                                            Scale:
        Method:
                                      IRLS Log-Likelihood:
                                                                        -11715.
        Date:
                           Thu, 06 Dec 2018
                                            Deviance:
                                                                          19521.
        Time:
                                  10:21:57
                                            Pearson chi2:
                                                                        2.09e+04
        No. Iterations:
                                            Covariance Type:
                                         4
                                                                       nonrobust
        ______
                                                     P>|z|
                                                               [0.025
                                                                          0.975
                       coef
                               std err
        30-39F
                    -0.0107
                                0.003
                                         -4.248
                                                    0.000
                                                               -0.016
                                                                         -0.006
        40-49F
                    -0.0056
                                0.001
                                         -5.010
                                                    0.000
                                                              -0.008
                                                                         -0.003
        50-59F
                     0.0013
                                0.001
                                          1.208
                                                    0.227
                                                              -0.001
                                                                          0.003
        60-69F
                    -0.0012
                                0.001
                                         -1.118
                                                    0.263
                                                               -0.003
                                                                          0.001
        70-79F
                     0.0010
                                0.001
                                         0.941
                                                    0.347
                                                              -0.001
                                                                          0.003
        80-89F
                    -0.0003
                                0.001
                                         -0.277
                                                    0.782
                                                              -0.002
                                                                          0.002
        90-99F
                    -0.0052
                                0.001
                                         -4.410
                                                    0.000
                                                              -0.008
                                                                         -0.003
        >100F
                     0.0302
                                0.003
                                          9.670
                                                    0.000
                                                               0.024
                                                                          0.036
        Omm
                     0.0042
                                0.003
                                          1.618
                                                    0.106
                                                              -0.001
                                                                          0.009
        1-4mm
                     0.0039
                                0.003
                                          1.480
                                                    0.139
                                                              -0.001
                                                                          0.009
```

2 0.0

5-14mm

61.0

0.0

0.485

0.628

-0.004

0.007

0.003

0.0014

1980	2.6652	0.062	42.904	0.000	2.543	2.787
1981	2.6756	0.062	43.501	0.000	2.555	2.796
1982	2.6229	0.062	42.591	0.000	2.502	2.744
1983	2.5515	0.062	41.391	0.000	2.431	2.672
1984	2.5661	0.062	41.277	0.000	2.444	2.688
1985	2.6005	0.062	42.174	0.000	2.480	2.721
1986	2.6666	0.061	43.394	0.000	2.546	2.787
1987	2.6387	0.062	42.887	0.000	2.518	2.759
1988	2.6850	0.062	43.238	0.000	2.563	2.807
1989	2.6879	0.062	43.654	0.000	2.567	2.809
1990	2.5948	0.062	42.137	0.000	2.474	2.715
1991	2.7133	0.062	44.074	0.000	2.593	2.834
1992	2.7086	0.062	43.579	0.000	2.587	2.830
1993	2.7253	0.062	44.209	0.000	2.604	2.846
1994	2.6655	0.062	43.230	0.000	2.545	2.786
1995	2.1533	0.062	34.928	0.000	2.032	2.274
1996	2.5906	0.062	41.611	0.000	2.469	2.713
1997	2.5693	0.062	41.694	0.000	2.449	2.690
1998	2.5262	0.062	40.908	0.000	2.405	2.647
1999	2.3927	0.062	38.716	0.000	2.272	2.514
2000	2.2845	0.062	36.707	0.000	2.162	2.406
2001	2.3751	0.062	38.482	0.000	2.254	2.496
2002	2.4026	0.062	38.941	0.000	2.282	2.524
2003	2.3968	0.062	38.852	0.000	2.276	2.518
2004	2.3580	0.062	37.837	0.000	2.236	2.480
2005	2.3357	0.062	37.893	0.000	2.215	2.457
2006	2.4003	0.062	38.885	0.000	2.279	2.521
2007	2.3837	0.062	38.693	0.000	2.263	2.504
2008	2.3542	0.062	37.820	0.000	2.232	2.476
2009	2.2898	0.062	37.147	0.000	2.169	2.411
Jan	6.2982	0.159	39.649	0.000	5.987	6.609
Feb	6.2334	0.149	41.837	0.000	5.941	6.525
Mar	6.3333	0.149	42.588	0.000	6.042	6.625
Apr	6.2950	0.155	40.699	0.000	5.992	6.598
May	6.3254	0.155	40.940	0.000	6.023	6.628
Jun	6.2899	0.154	40.730	0.000	5.987	6.593
Jul	6.3115	0.154	40.861	0.000	6.009	6.614
Aug	6.2920	0.158	39.807	0.000	5.982	6.602
Sep	6.2523	0.155	40.458	0.000	5.949	6.555
Oct	6.3246	0.154	40.936	0.000	6.022	6.627
Nov	6.2920	0.155	40.706	0.000	5.989	6.595
Dec	6.3326	0.155	40.857	0.000	6.029	6.636

11 11 11

PRNG random number generator

```
# set seed
r = SHA256(seed=123456)
```

Test Statistics: RMS Error

Permutation Test

Null Hypothesis: East/West Alameda are consistent with a single model that show the relationship between crime and whether.

Alternative Hypothesis: East/West Alameda have different relationship between crime and whether.

```
In [18]: obs = []
                       # get 1000 observed rms error from the permuted models
                       for i in range(1000):
                                  # generate permutation index
                                  r.setstate(baseseed=123456, counter = 2*i)
                                  p = get_permute(360, r=r)
                                  extras = get_permute(152,r=r) # throwing out the rest bits in that counter to ge
                                  permute_yearmonth = TMAX_data_east['YearMonth'].unique()[p]
                                  permute_crime = np.arange(0,359,1)[p[1:]] # because we are fitting model from 198
                                  # make a copy of the TMAX PRCP and crime data for permutation
                                  TMAX_data_east_per = TMAX_data_east.copy()
                                  TMAX_data_west_per = TMAX_data_west.copy()
                                  PRCP_data_east_per = PRCP_data_east.copy()
                                 PRCP_data_west_per = PRCP_data_west.copy()
                                  crime_east_per = crime_east.copy()
                                  crime_west_per = crime_west.copy()
                                  # permute
                                  for i in permute_yearmonth:
                                             TMAX_data_east_per[TMAX_data_east_per['YearMonth']==i] = TMAX_data_west[TMAX_data_west]
                                             TMAX_data_west_per[TMAX_data_west_per['YearMonth']==i] = TMAX_data_east[TMAX_data_east]
                                            PRCP_data_east_per[PRCP_data_east_per['YearMonth']==i] = PRCP_data_west[PRCP_data_west[PRCP_data_west]] = PRCP_data_west[PRCP_data_west]
                                            PRCP_data_west_per[PRCP_data_west_per['YearMonth']==i] = PRCP_data_east[PRCP_data_east[PRCP_data_east]] = PRCP_data_east[PRCP_data_east[PRCP_data_east]] = PRCP_data_east[PRCP_data_east] = PRCP_data_east[PRCP_data_east[PRCP_data_east] = PRCP_data_east[PRCP_data_east[PRCP_data_east] = PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east] = PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_east[PRCP_data_eas
                                  for i in permute_crime:
                                             crime_east_per[i] = crime_west[i]
                                             crime_west_per[i] = crime_east[i]
                                  # fit east model
                                  temp_bins = get_temp_features(TMAX_data_east_per)
                                  prcp_bins = get_prcp_features(PRCP_data_east_per)
```

theta,phi = get_dummy_features(TMAX_data_east_per)

```
variables = pd.concat([temp_bins, prcp_bins, theta, phi], axis=1)
             east_poisson_model = sm.GLM(crime_east_per,variables,family=sm.families.Poisson()
             east_poisson_results = east_poisson_model.fit()
             # get predicted east crime
             crime_east_hat = east_poisson_results.predict(variables)
             # fit west model
             temp_bins = get_temp_features(TMAX_data_west_per)
             prcp_bins = get_prcp_features(PRCP_data_west_per)
             theta,phi = get_dummy_features(TMAX_data_west_per)
             variables = pd.concat([temp_bins, prcp_bins, theta, phi], axis=1)
             west_poisson_model = sm.GLM(crime_west_per,variables,family=sm.families.Poisson()
             west_poisson_results = west_poisson_model.fit()
             # get predicted west crime
             crime_west_hat = west_poisson_results.predict(variables)
             # calculate and append observed test statistics: rms error
             obs.append(rms(crime_east_per.append(crime_west_per),crime_east_hat.append(crime_
         pvalue = (sum(obs \le exp for obs in obs)+1)/(1000+1)
         pvalue
Out[18]: 0.012987012987012988
In [26]: obs[-20:]
Out [26]: [688.5458473764135,
          688.814814938401,
          687.090532883382,
          688.712486093707,
          689.0062780009308,
          689.7139500708561,
          681.7039233501821,
          688.5581783187492,
          688.4389995154324,
          686.7163316517501,
          684.7979763281726,
          687.657083823286,
          689.0783637798638,
          683.8960976179711,
          684.1749806022849,
          688.1411285824455,
          688.5087375195724,
          689.3625395694486,
          687.2377299957112,
          689.686652266526]
```

The P value keeps shrinking and is about 0.013 after 1000 runs, which is significant(<0.05).

So we reject the null. The relationships between crime and weather in east and west Alameda are different

0.1 Analytical Questions

randomization: I used getrandbits(k) in cryptorandom which generates k BINARY bits at one shot that approximate I.I.D. Bernoulli trails with p = 1/2. These binary bits indicate whether in YearMonth n, west/east would get their original data or they have to exchange their data. With package cryptorandom, we reset the counter to 2i and generate 360 binary bits in each 1000 loops. To make the result reproducible, we threw away the rest 512-360=152 bits in that counter for each loop.

assumption: We fitted the same model as Ranson did. Ranson assumed that the number of crimes C_{iym} in month m of year y in county i of state s has a Poisson distribution with probability density function given by

$$f(C_{iym}|X_{iym}) = exp(-\mu(X_{iym}))\mu(X_{iym})^{(C_{iym})}/C_{iym}!$$

where X_{iym} is the set of all observed covariates and $\mu(X_{iym}) \equiv E[C_{iym}|X_{iym}]$ is a link function that provides a parametric form for the conditional mean of C_{iym} given X_{iym} . Following the standard practice, Ranson assumes that $\mu(X_{iym})$ takes an exponential form:

$$\mu(X_{iym}) = exp(\sum_{j=1}^{11} \alpha_0^j T_{iym}^j + \sum_{k=1}^{5} \beta_0^k P_{iym}^k + \sum_{j=1}^{11} \alpha_0^j T_{i,y,m-1}^j + \sum_{k=1}^{5} \beta_0^k P_{i,y,m-1}^k + \phi_{sm} + \theta_{iy})$$

(From Ranson2014, P279) In our model, we did not include bins less than 30 for T_MAX because we don't have any tmax below 30 in our data In our model for the east/west part of Alameda, we did not include bins greater than 14mm for PRCP because we don't have any prcp above 14mm in both east and west data set.

justification for null hypothesis: To test whether it is necessary to fit two models for two parts of Alameda, we cannot compare the performace of a single model and that of two models directly becuase two models have more parameters. Therefore, we instead compare the RMS error of the east/west models with many randomly assigned east/west models. It's assumed that whether west/east would assigned with their original weather and crime or they have to exchange their data of YearMonth n is a bernoulli trail with probability p=1/2. After we permute the data many times, we refit the models and compare RMS errors with the original RMS error. If the RMS error of the permuted models is typically greater than the original models, we can say that the relationship between weather and crime in the east/west Alameda is different. If the RMS error of the permuted models is typically greater than the original model, it evidents that the models are different, implying that changing some of the weather and crime pairs altered the relationship between weather and crime. If the relationship of two parts is the same, inter-changing weather and crime as a pair won't change the performace of the model a lot.

When estimated the pvalue we used this method

 $((\#random\ permutations\ with\ test\ statistic\ >=\ threshold\)+1)/(\#random\ permutations\ generated\ +1)$

. If the null hypothesis is true, the original data are one of the equally likely permutations of the data–exactly as likely as the permutations you generate. So you really have n+1 permutations, not n (where n is the number of permutations you generated deliberately); nature gave you one more permutation. With that choice, the estimated p-value is never smaller than 1/(n+1). (From prof. Stark's email on Nov 18, 2018)