

FORMULÁRIO DE INTRODUÇÃO AOS SISTEMAS ELETROMAGNÉTICOS - ENGª BIOMÉDICA

Cálculo vetorial

Produto escalar	Produto vetorial						
$\vec{a} \cdot \vec{b} = ab\cos(\theta)$ $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$	$\begin{vmatrix} \vec{a} \wedge \vec{b} \end{vmatrix} = ab \operatorname{sen}(\theta)$ $\vec{a} \wedge \vec{b} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = (a_y b_z - a_z b_y) \hat{x} + (a_z b_x - a_x b_z) \hat{y} + (a_x b_y - a_y b_x) \hat{z}$						

Eletromagnetismo

Eletromagnetismo											
$q_e = -1,6 \times 10^{-19} C$		m _e =	$n_e = 9.1 \times 10^{-31} kg$		$\varepsilon_0 \simeq 8,854 \times 10^{-12} Fm^{-1}$			-1	$u_0 = 4 \pi \times 10^{-7} H m^{-1}$		
$k = \frac{1}{4\pi \varepsilon_0} \approx 8,988 \times 10^9 \text{ N} \cdot \text{m}^2\text{C}^{-2}$				$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 299792458 m/s$							
Cargas pontuais	$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r}$			$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} + C$							
	$\overrightarrow{F_{12}} = \frac{1}{4 \pi \varepsilon_0} \frac{q_1 \ q_2}{r_{12}^2} \hat{r}_{12}$			$U_{12} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r_{12}} + C$							
$V_c = \frac{Q}{C}$			$U_C = \frac{1}{2}$	QV	$V_C = Ed$		1		$C = \varepsilon \frac{A}{d}$		
$i = \frac{dq}{dt} \iff q = \int i dt$		dt	$V_R = 1$	Ri	$P_R = Ri^2$		2	ρ =	$R = \rho \frac{L}{A}$ $\rho_0 + \alpha \rho_0 (T - T_0)$		
$V_L = L \frac{di}{dt}$			$U_L = \frac{1}{2}$	$U_L = \frac{1}{2}Li^2 \qquad \mathcal{H} = \mathcal{H}_O + \mathcal{V}_{\mathcal{H}} + \frac{1}{2}$				int ²			
$\vec{B} = \int \frac{\mu_0 i \vec{dl} \wedge \hat{r}}{4 \pi r^2}$			$ec{B}_{\!\scriptscriptstyle{ ext{Ce}}}$	$= \frac{\mu_0 Ni}{2a} \hat{z} \qquad \qquad \vec{B}_{eix}$		$_{\text{ko bobine}} = \frac{\mu_0 \text{Ni} a^2}{2 \left(a^2 + L^2 \right)^{3/2}} \hat{z}$					
$\vec{B}_{\text{fio rectilineo infinito}} = \frac{\mu_0 i}{2 \pi r} \hat{\theta}$			B _{inter}	rior solenóide	$B_{ir} = \frac{\mu_0 N i}{L} \qquad B_{ir}$			3 interior to	$\frac{\mu_0 Ni}{2\pi r}$		
$\vec{F}_{\scriptscriptstyle m} = q \; \vec{v} \; \wedge \; \vec{B}$				$R = \frac{n}{c_i}$	ıv B		$R = \frac{mv_{\perp}}{qB}; Passo = v_{\parallel}T$				
$\overrightarrow{F} = \int_{L} I \overrightarrow{dl} \wedge \overrightarrow{B}$ $\overrightarrow{F}_{L} =$			$\vec{F_e} + \vec{F_m} =$	$\vec{v} \wedge \vec{B}$	m	m̃=Ni AÂ		$\vec{\tau} = \vec{m} \wedge \vec{B}$			
$\phi = \iint \overrightarrow{B} \bullet \overrightarrow{dA}$			$\phi = L_{ extsf{ iny FH}} i$				$\phi_2 = M i_1$				
fem	fem = -L di dt					$fem_2 = -M \frac{di_1}{dt}$					
$\begin{cases} E = E_0 sen(kx - \omega t) \\ B = B_0 sen(kx - \omega t) \end{cases} k$			$=\frac{2\pi}{\lambda} \qquad \omega=2\pi$			$f \qquad \qquad \vec{S} = \frac{1}{\mu_0} \vec{E} \wedge \vec{B}$		$\overline{S} = \frac{E_0^2}{2\mu_0 c}$			

$$\Delta V = E \cdot \Delta S \qquad |\Delta U_{an}| = |\Delta U_p + \Delta U_c| = |q \Delta V + \frac{4}{3} m (v_c^2 - v_c^2)|$$