For the estimation problem $y_k = x + e_k$, where $e_k \sim \mathcal{U}[0, b]$, we want to find the MVU estimator. We first represent the PDF of the data as

$$p(y_k; x, b) = \begin{cases} \frac{1}{b} & x < y_k < x + b \\ 0 & \text{otherwise} \end{cases}$$
 (1a)

or alternatively

$$p(y_k; x, b) = \frac{1}{b} \left[\sigma(y_k - x) - \sigma(y_k - (x+b)) \right]$$
 (1b)

Hence,

$$p(\mathbf{y}; x, b) = \frac{1}{b^N} \prod_{k=1}^{N} \left[\sigma(y_k - x) - \sigma(y_k - x - b) \right]$$
$$= \frac{1}{b^N} \left[\sigma(\min y_k - x) - \sigma(\max y_k - x - b) \right]$$
(1c)

Since we cannot approach the problem of finding MVU using CRLB, I use the Rao-Blackwell-Lehmann-Scheffe theorem. The theorem gives that for any unbiased estimator $\tilde{\theta}$ and sufficient statistics T(y), $\hat{\theta} = \mathrm{E}(\tilde{\theta} \mid T(y))$ is unbiased and $\mathrm{Var}(\hat{\theta}) \leq \mathrm{Var}(\tilde{\theta})$. Additionally, if T(y) is complete, then $\hat{\theta}$ is MVU.

It is also shown in [1] that if the dimension of the sufficient statistics is equal to the dimension of the parameter, then the MVU estimator is given by $\hat{\theta} = g(T(y))$ for any function $g(\cdot)$ that satisfy

$$E(g(T)) = \theta \tag{2}$$

Hence, if we can find the sufficient statistics, and if we can show that it is complete, then we can find the MVU estimator. For that, we can use the Neyman-Fisher theorem that gives the sufficient statistic T(y) if we can factorize the PDF as

$$p(\mathbf{y}; \theta) = g(T(\mathbf{y}), \theta)h(\mathbf{y}) \tag{3}$$

In our problem, from (1c) for $\theta = [x, b]^{\top}$ we can say h(y) = 1 and

$$T(y) = \begin{bmatrix} \min y \\ \max y \end{bmatrix} = \begin{bmatrix} T_1(y) \\ T_2(y) \end{bmatrix}$$
 (4a)

and

$$E(T(y)) = \begin{bmatrix} x + \frac{b}{N+1} \\ x + \frac{Nb}{N+1} \end{bmatrix}$$
(4b)

Then, any function $g(\cdot)$ that makes (4) unbiased would be MVU.

1 Known b

At this point, I am not sure if the same line of reasoning holds. Since now, b is not a parameter anymore. However, if it holds, since we know b, we can say that both

$$\hat{x}_{min} = \min y - \frac{b}{N+1} \tag{5}$$

$$\hat{x}_{max} = \max y - \frac{Nb}{N+1} \tag{6}$$

are MVU estimators. In other words, the MVU estimator is not unique.

2 Unknown b

This case fits better to the theorem. Since we are only interested in x, I try to make a function that makes T_1 unbiased. Let

$$g(T(y)) = \begin{bmatrix} T_1 - \frac{1}{N}T_2 \\ T_2 \end{bmatrix}$$
 (7a)

this gives

$$E(\boldsymbol{g}(\boldsymbol{T}(\boldsymbol{y}))) = \begin{bmatrix} \frac{N-1}{N}x\\ \times \end{bmatrix}$$
 (7b)

Hence, an unbiased estimate of x would be given by multiplying first row by $\frac{N}{N-1}$

$$\hat{x}_{MVU} = \frac{N}{N-1} \left(T_1 - \frac{1}{N} T_2 \right) = \frac{N}{N-1} T_1 - \frac{1}{N-1} T_2$$

$$= \frac{N}{N-1} \min y_k - \frac{1}{N-1} \max y_k$$
(7c)

References

[1] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.