ADABOOST

Boosting is a powerful technique to combine several 'weak' classifiers into a 'strong' classifier. *AdaBoost*, short for 'Adaptive Boosting' is one of the most frequently used boosting algorithms.

1 Weak and Strong Learners

A weak learner is a classification algorithm which is only slightly better than random guessing. On the other hand, a strong learner is one which almost always provides the true classification. Given training data of the form (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) where $y_i \in \{+1, -1\} \ \forall \ x_i \in \mathbf{X}$ [1] and a learner h the error ϵ is defined as,

$$\epsilon = \frac{1}{N} \times \left\{ \begin{array}{l} 0 \ if \ y_i = h(x_i) \\ 1 \ if \ y_i \neq h(x_i) \end{array} \right.$$

The error rate ϵ is related to the strength of a learner as shown below:

2 Algorithm

Given training data of the form [1] in the preceding section and weak learners $h_1, h_2, \dots h_m$, the goal is to iteratively come up with a strong learner H. AdaBoost's algorithmic flowchart is as follows:

3 Example

Following weak classifiers are considered. Their error points are shown below:

Weak Classifier	Error Points
x >= 2	A, D, E, F
x < 2	\mathbf{B}, \mathbf{C}
x >= 4	A, B, D, F
x < 4	\mathbf{C},\mathbf{E}
x >= 6	A, B, C, D
x < 6	\mathbf{E},\mathbf{F}
y >= 2	D
y < 2	A, B, C, E, F
y >= 4	A, B, C, D
y < 4	\mathbf{E},\mathbf{F}

3.1 Iteration 1

At the start, each point has an equal weight of 1/6 since there are 6 points.

Point	A	В	$ \mathbf{C} $	D	\mathbf{E}	F
Error	1/6	1/6	1/6	1/6	1/6	1/6

The error points and their corresponding weights determine the error rate of a particular weak classifier. The error rate for each classifier is shown below.

Weak Classifier	Error Rate
x >= 2	2/3
x < 2	1/3
x >= 4	2/3
x < 4	1/3
x >= 6	2/3
x < 6	1/3
y >= 2	(1/6)
y < 2	5/6
y >= 4	2/3
y < 4	1/3

y>=2 is chosen as the best weak classifier since it has the minimum error rate. α_1 is calculated as follows:

$$\alpha_1 = \frac{1}{2} \times ln(\frac{1 - 1/6}{1/6})$$
$$= \frac{1}{2} \times ln(5)$$

3.2 Iteration 2

The weights are now updated as per flow chart above,

Point	A	В	$ \mathbf{C} $	D	${f E}$	\mathbf{F}
Error	1/10	1/10	1/10	1/2	1/10	1/10

An interesting fact is that the sum of updated weights of the points misclassified by the chosen classifier y >= 2 (**D**) is equal to 1/2 and so the sum of updated weights of the points correctly classified (**A**, **B**, **C**, **E**, **F**) is also 1/2.

$$Error(\mathbf{D}) = 1/2$$

$$\sum_{P \in \{\mathbf{A, B, C, E, F}\}} Error(P) = 1/10 + 1/10 + 1/10 + 1/10 + 1/10$$

$$= 1/2$$

Error rates are updated as follows:

Weak Classifier	Error Rate
x >= 2	4/5
x < 2	$\left(1/5\right)$
x >= 4	4/5
x < 4	1/5
x >= 6	4/5
x < 6	1/5
y >= 2	1/2
y < 2	1/2
y >= 4	4/5
y < 4	1/5

x < 2 is chosen as the best weak classifier since it has the minimum error rate (for breaking tie, classifier occurring first in the above list is chosen). α_2 is calculated as follows,

$$\alpha_2 = \frac{1}{2} \times ln(\frac{1 - 1/5}{1/5})$$
$$= \frac{1}{2} \times ln(4)$$

3.3 Iteration 3

Weights are again updated as follows:

Point	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}
Error	1/16	1/4	1/4	5/16	1/16	1/16

Given that (\mathbf{B}, \mathbf{C}) are misclassified by x < 2 and points $(\mathbf{A}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ are correctly classified; notice again that,

$$\sum_{P \in \{\mathbf{B, C}\}} Error(P) = 1/4 + 1/4$$

$$= 1/2$$

$$\sum_{P \in \{\mathbf{A, D, E, F}\}} Error(P) = 1/16 + 5/16 + 1/16 + 1/16$$

$$= 1/2$$

Updated error rates look like this,

Weak Classifier	Error Rate
x >= 2	1/2
x < 2	1/2
x >= 4	11/16
x < 4	5/16
x >= 6	7/8
x < 6	(1/8)
y >= 2	5/16
y < 2	11/16
y >= 4	7/8
y < 4	1/8

x < 6 is chosen as the best weak classifier since it has the minimum error rate. α_3 is calculated as follows,

$$\alpha_3 = \frac{1}{2} \times ln(\frac{1 - 1/8}{1/8})$$
$$= \frac{1}{2} \times ln(7)$$

After three iterations, the resultant strong classifier is

$$\begin{split} H = &sign(\frac{1}{2} \times ln(5) \times (y >= 2) \\ &+ \frac{1}{2} \times ln(4) \times (x < 2) \\ &+ \frac{1}{2} \times ln(7) \times (x < 6)) \end{split}$$

The classification of H for each point is as follows,

Point	Calculation	Classification
A	$sign(1/2 \times ln(5 \times 4 \times 7))$	+
В	$sign(1/2 \times ln((5 \times 7)/4))$	+
С	$sign(1/2 \times ln((5 \times 7)/4))$	+
D	$sign(1/2 \times ln((4 \times 7)/5))$	+
E	$sign(1/2 \times ln(7/(5 \times 4)))$	_
F	$sign(1/2 \times ln(7/(5 \times 4)))$	_

It is evident the H classifies each point correctly after 3 iterations. Further iterations are hence terminated.

4 Mathematics

4.1 Upper bound on training error

4.1.1 Step 1

$$Error(H_T) = \frac{1}{N} \times \sum_{i} \begin{cases} 1 \text{ if } y_i \neq H_T(x_i) \\ 0 \text{ else} \end{cases}$$

Let
$$H_T(x_i) = sign(f_T(x_i))$$
 where $f_T(x_i) = \sum_t \alpha_t \times h_t(x_i)$

$$Error(H_T) = \frac{1}{N} \times \sum_{i} \begin{cases} 1 \text{ if } y_i \times f_T(x_i) <= 0 \\ 0 \text{ else} \end{cases}$$

$$Error(H_T) \le \frac{1}{N} \times \sum_{i} e^{-y_i \times f_T(x_i)}$$
 (1)

4.1.2 Step 2

$$w_{t+1}(i) = \frac{1}{2} \times w_t(i) \begin{cases} \frac{1}{1-\epsilon_t} & \text{if } y_i = h_t(x_i) \\ \frac{1}{\epsilon_t} & \text{else} \end{cases}$$

$$w_{t+1}(i) = \frac{w_t(i)}{2 \times \sqrt{\epsilon_t \times (1 - \epsilon_t)}} \begin{cases} \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} & \text{if } y_i = h_t(x_i) \\ \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} & \text{else} \end{cases}$$

$$w_{t+1}(i) = \frac{w_t(i)}{2 \times \sqrt{\epsilon_t \times (1 - \epsilon_t)}} \times e^{-\alpha_t \times y_i \times h_t(x_i)}$$

$$w_{t+1}(i) = \frac{1}{2 \times \prod_{t} \sqrt{\epsilon_t \times (1 - \epsilon_t)}} \times e^{-y_i \times f_t(x_i)} \times \frac{1}{N}$$

Transposing and replacing t by T,

$$\frac{1}{N} \times e^{-y_i \times f_T(x_i)} = 2 \times w_{T+1}(i) \times \prod_t \sqrt{\epsilon_t \times (1 - \epsilon_t)}$$

Summing over i,

$$\sum_{i} \frac{1}{N} \times e^{-y_i \times f_T(x_i)} = 2 \times \prod_{t} \sqrt{\epsilon_t \times (1 - \epsilon_t)} \times \sum_{i} w_{T+1}(i)$$

Since sum of weights is one at every round,

$$\frac{1}{N} \times \sum_{i} e^{-y_i \times f_T(x_i)} = 2 \times \prod_{t} \sqrt{\epsilon_t \times (1 - \epsilon_t)}$$
 (2)

4.1.3 Step 3

Using (1) and (2)

$$Error(H_T) \le 2 \times \prod_t \sqrt{\epsilon_t \times (1 - \epsilon_t)}$$

Using $\gamma_t = (1/2 - \epsilon_t)$

$$Error(H_T) \le 2 \times \prod_t \sqrt{1/4 - \gamma_t^2}$$

$$Error(H_T) \le \prod_t \sqrt{1 - 4\gamma_t^2}$$

Since $e^x \ge (1+x)$ for all real values of x,

$$Error(H_T) \le \prod_t e^{-2\gamma_t^2}$$

$$Error(H_T) \le e^{-2\sum_{t} \gamma_t^2}$$

Since $\sum_{t} \gamma_t^2$ monotonically increases with each iteration, $Error(H_t)$ monotonically decreases exponentially.