		750um			
			其大小超越了细菌大小的理论极限,拥有前所未 有的多倍体基因组(基因组庞大并且约有超过五 十万份的这样基因组的拷贝)		
	摘要	研究发现有一种细菌(华丽硫珠菌)的平均细胞 长度超过了9000um(0.9cm),其裸眼可见	其生活周期具有二态性,通过不等的基因组分配 增殖		
			其拥有具膜细胞器,细胞器中基因表达十分活跃 并有遗传物质和核糖体 几十到数百微米		
		细菌与古菌并不总是很小──巨型细菌	701232021	生活在海洋的富硫环境中	
			华丽硫珠菌是一种需要附着基的丝状细菌	比其他的巨型细菌大50倍 通过对五个细胞进行基因组测序分析得到了其细 胞分裂与细胞延伸机制,这些细胞形态生物可以	
				使得个体长到巨大并且设法突破了细胞生长的物理与能量极限	
		一些大型硫细菌菌群可达到数厘米长但它们是由 上千个不超过200um长的细菌组成的			
		华丽硫珠菌附着在位于热带浅海的美洲红树的水下叶上生活,是一种形态多样,具有非遗传多型性的硫化γ变形菌			
	华丽硫珠菌是一种厘米长的单细胞细 菌	On Endow plants and the second is at million of the second in the second	与深海甲烷喷口附近的细菌相似	最尖端处会有完全闭合的结构以形成1-4个相互分 离的芽状细胞(代表着子细胞)	这些细胞平均长0.21±0.05mm
		Hard department and the second secon	绝大部分为柄状,在末尾处部分收缩形成芽孢	通过多种技术观察华丽硫珠菌菌丝表明其绝大部 分长度都是单独的没有隔膜的一个细胞,这个细 胞还包括尖端有收缩的一些部分	
		No the relation control of the co	菌丝柔软,没有共附生细菌和细胞壁外黏液层 芽丝平均长9.71±4.25mm	有些可以达到20.00mm	远大于先前描述的单细胞原核生物
		An advantage of the control of the c	万里 均入3.7 [□□.2311 □	可以最小化细胞比表面积限制(减少了细胞质的 体积),因为细菌缺乏细胞内的物质运输系统, 其更多依赖化学扩散	及2人了为6的可由发生的一个
			与其他巨型硫细菌一样具有中央大液泡	华丽硫珠菌的中央大液泡贯通整个菌丝,占据了细胞总体积的73.2±7.5%	
			细胞质厚度约为3.34±1.48um,被约束在细胞的 边缘区域,从而有效避免了化学扩散的速率限制	细胞质内有大量透明的囊泡,直径约为2.40±1. O3um,在光学显微镜下相当于一些可折射光的 小颗粒,它们代表着一些硫颗粒	
			细胞质内有许多电子密度很高的膜形成的封闭结	类似的结构偶尔也在其它巨型硫细菌中观察到, 被称为"blebs of cytoplasm"等等,有人认为这 些小泡时用来存储遗传物质和核糖体的,但目前	我们猜想这些小泡是用来储存分散的遗传物质
	DNA和核糖体在一个具膜的封闭区域中存储 华丽硫珠菌的能量转换膜结构在细胞质中的位置与翻译活动	长期以来人们认为细菌只是"一个装着各种酶的包	构,直径约为1.31±0.70um 没有已知的细菌和古菌像真核生物一样明确地将	它们的功能尚不明确	的,因为基因组的多倍性在巨型细菌中很常见 ————————————————————————————————————
		惠",但近期的研究发现,细菌具有各种各样的细胞器,可以执行铵的厌氧氧化、光合作用与趋磁性(磁小体)等功能	遗传物质区分开,但有证据表明一种暗黑菌具有 包含着DNA的具膜类核体,其占据了这种细菌的 绝大部分体积	一些平板菌的细胞质也具有类似的包含着DNA的结构,最近的工作表明这种结构类似于革兰氏阳性菌的质膜内陷,而不是一种封闭的具膜细胞器	
		目前尚未发现华丽硫珠菌的这种膜结构与胞外被 膜相关,它们的形成机制也尚未被研究,或许与	这种结构里还存有一些富含电子的结构(10-20nm),可能是核糖体的标志;通过对华丽硫珠菌的rRNA序列定位调查确定了RNA确实集中在这些具膜结构中,并被传播到整个细胞(包括		
/		质膜的内陷有关	尖端的芽孢)		
		ATP是细胞的通用能量货币,由ATP合成酶合成。ATP合成酶埋在能量转换膜内并且由氢离子浓度梯度能驱动.在细菌与古菌中这种酶通常在细胞膜上,这种位置分布会限制细菌细胞的大小因为比表面积需要满足细菌的能量需求,通常认为	观察到ATP合成酶在pepins周围的分配以及整个 细胞质内的复杂的膜网络系统;但是这些都没有		
		的最大细胞的理论体积量级为10^-14(m^3) 通过运用氨基酸标记,发现细菌中蛋白质的生物合成确实是在与pepin大小形状相似的球形小区	出现在细菌的外膜之中		
		域内完成的,但也不是所有的pepin都有了标记;标记点也出现在了细胞的尖端区域,表明这里的翻译活动更为活跃,新生成的蛋白质更为集中			
			这并不与先前的研究结果冲突并且这样的生物模 型扩充了细菌的结构适应性(内膜系统、低生长 率等等),这些结构上的适应都有助于细胞体积		
		数据表明,华丽硫珠菌的活跃代谢的生物容积比 最大细胞的理论体积量级高了两个数量级	增大 一般的细菌分裂一次需要数分钟或几小时,而华	细胞的理论最大体积是对于一般的二分分裂而言 的,而华丽硫珠菌在分裂前并不需要使其体积增	
			丽硫珠菌域其他硫珠菌类似,需要花费最多两周 来生产子细胞	大两倍因为只有尖端极小的一部分从父细胞中分裂出去形成子细胞	
		巨型细菌都具有多倍性,它们的细胞拥有大量的 基因组拷贝,范围从数十个到数万个不等。这些 基因拷贝分散在整个细胞中用以支持局部区域对 于分子机器的需求和整个细胞的生长	一些巨型硫细菌中极高的基因多样性		
			多倍性也可能基因组的拷贝在类似的重新组合之 中达到一个平衡并且形成一个高等级的基因组保 护		
		华丽硫珠菌也一样具有多倍性,平均每毫米有 36880±7956份基因组拷贝(一个2cm的完全成 熟的细胞平均有737,598±159,115份)	艾		
		对5个来自同一个水下叶的华丽硫珠菌细胞进行 DNA测序发现,它们的基因组高度相似(平均标似度>99.5%)			
	华丽硫珠菌是一个拥有着极大基因组 的高倍体细胞	华丽硫珠菌的DNA测序已完成91.0%-93.7%,,列全长介于11.5Mb-12.2Mb,是唯一一种已被测序的硫珠菌的两倍,而细菌基因组的平均长度为4.21±1.77Mb	有约一半具有明确的功能,这个数量比原核细胞		
		华丽硫珠菌的绝大部分基因都是用于硫的氧化和 碳的固定的,表明其为化能自养型生物(硫自 养)			
		与其近亲相同,华丽硫珠菌拥有大量增强代谢能力的基因,但有一点显著不同:其几乎没有编码任何能够对同化或异化得到的硝酸盐进行脱硝作	}		
		用的基因,除了Nar与Nap硝酸盐还原酶(基因)	这意味着硝酸盐只能被用作电子受体并被还原为 亚硝酸盐,之后便不能再被还原 25.9%的DNA序列是编码生物合成的基因,因组	_	
		华丽硫珠菌缺少外附生的细菌可以用来解释其拥 有大量编码次级代谢的基因	中编码了大量的非核糖体环肽合成酶和聚酮合成 酶系统,这些都表明华丽硫珠菌拥有大量的次级		
			华丽硫珠菌中许多编码细胞分裂核心蛋白的基因(包括Z环核心组分的装配与调控基因、FtsA, ZipA,FtsE-FtsX蛋白基因)缺失,但保留下了编		
		巨型细菌调整它们的细胞分裂方式以适应其巨大			
	华丽硫珠菌的二态性发育周期	的体积,华丽硫珠菌也是如此,其拥有着非典型 的控制细胞分裂与伸长的基因	体蛋白基因在所有华丽硫珠菌基因组中均缺失 所有与细胞伸长有关的基因都保留了下来		
		与新月柄杆菌和一些多细胞细菌菌丝的发育周期 类似,尽管它们大小不同,但是都是固定着的父 细胞生产出自由的子细胞			
		由于这种不对称的分裂模式,在绝大部分尖端芽 孢中只有极少的一部分在pepin中的基因组拷贝	显然这样只有基因组的一部分(种系基因)传给 了后代。如果这些末端芽孢确实是子细胞的话, 那么这种循环的发育周期有助于扩大个体的相似		
		会转移到子细胞中 对于病毒大小的偏见阻碍了巨型病毒发现长达一	性,可能代表着某种趋同演化		
		对于病毒大小的偏见阻碍了巨型病毒发现长达一个多世纪,并且巨型病毒的存在已经被人们广泛 承认。华丽硫珠菌的发现意味着更大更复杂的细 菌可能还未被发现			
			细胞内缺少转运机制,依赖只在微米级有效的化学扩散 细胞达到最大后,核糖体的数量会限制细胞继续		
		一些解释细菌古菌极限大小的理论	细胞达到最大后,核糖体的数量会限制细胞继续 增长 如果认为ATP合成酶存在于质膜上,那么不匹配 的比表面积会降低能量的利用效率		
	总结	已知的第二大的原核细胞已经接近了许多理论上 的细胞极限大小(有效代谢体积、膜表面积等 等);而华丽硫珠菌突破了这些极限	可比表面积会降低能量的利用效率 或许改变细胞内部物质的组织(例如DNA和核糖 体区室化和生物能量膜系统重组)使得华丽硫珠 菌突破了极限大小		
		录/,Ⅲ十四州WINA本图大W J 区空放区	国突破了极限大小 蓝藻可以形成多细胞体并且具有细胞分化;浮霉 状菌具有特殊的能量转化细胞器厌氧氨氧化体和 区室化的细胞结构;一些细菌甚至可以进行吞噬		
		在已知的分散至少在23个门的19种细菌细胞器中,只有7中是具有封闭膜的	区室化的细胞结构;一些细菌甚至可以进行吞噬作用;粘细菌具有很大的基因组和复杂的发育周期,并且可以成群进行移动和捕食		
		华丽硫珠菌最为显著和重要的结构是pepin,这种包裹着遗传物质的具膜细胞器挑战着我们对于细菌概念的认知	华丽硫珠菌说明细菌已经进化出了高等级的复杂形态		

一般的细菌长度约为2um,最长可以达到

750um

厘米级细菌的发现