Problem Solving with AI Techniques Machine Learning

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018

- 1 Introduction to (Supervised) Machine Learning
- Supervised Learning

Introduction

What is Machine Learning?

- Machine learning: technique that gives a computer system the ability to learn to perform a given task
- learn = improve itself as it sees more data, observations, interactions
- machine learning = "programming with data"

Why do we need Machine Learning?

- Some tasks are difficult to program
- Hand-coded programs are not adaptive

Applications

 Smart keyboard: Predict next word

Credit scoring in finance:
 Predict financial health

 Visual search: Caption for an image

A large bus sitting next to a very tall building.

Project 3: Recognizing Handwritten Digits

- Cleaned, normalized dataset of 70k images
- Hello world problem in machine learning
- One of the early success of artificial neural networks

High-level framework

The high-level framework is described as follows:

- ullet Goal: learn a mapping from an input set ${\mathcal X}$ to an output set ${\mathcal Y}$
- Given $\mathbf{X} = (\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^N)^{\mathsf{T}}, \mathbf{y} = (y^1, y^2, \dots, y^N)^{\mathsf{T}}$
- Assumption: X, y (statistically) representative of elements in \mathcal{X} , \mathcal{Y}

• What are **x** and **y** in the previous examples?

Classes of Learning Problems

Different classes of problems that depend on how much supervision is provided:

- Supervised Learning (X, y)
- Weakly-supervised Learning (inexact or inaccurate y)
- Semi-supervised Learning $(y^k \text{ known only for some } k)$
- Reinforcement Learning
- Unsupervised Learning (X only!)

 Many other problems: active learning, transfer learning, multi-task learning, life-long learning....

- Introduction to (Supervised) Machine Learning
- Supervised Learning
 - Overview
 - Examples of Hypothesis Classes
 - Formalization

Supervised Learning

Different classes of supervised learning depending on \mathcal{Y} :

- Regression: For each x, predict a continuous y
- Classification: For each x, predict a discrete y
 - binary classification if $|\mathcal{Y}| = 2$
 - multi-class classification otherwise
 - Classification can be turned into regression by prediction
 P(Y|X)
- Structured prediction: For each x, predict a structured object y (e.g., sequence, tree, graph, policy...)

Formal Framework

- Input set \mathcal{X} e.g., \mathbb{R}^n , images, words
- Output set \mathcal{Y} e.g., \mathbb{R} , $\{0,1\}$, sentences, actions
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ e.g., squared error, 0,1-loss
- Concept class $\mathcal{C} \subset \mathcal{Y}^{\mathcal{X}}$ e.g., linear functions from \mathcal{X} to \mathcal{Y} , Bayes nets
- Hypothesis class $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ e.g., linear functions from \mathcal{X} to \mathcal{Y} , Bayes nets
- ullet Generative models $\mathcal{P}=$ set of probability distributions over $\mathcal{X} imes\mathcal{Y}$
- Why do we need a loss function? concept class? generative model?

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> 3	y	# consistent concepts
0	0	0	1	
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> 3	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> ₃	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1	1	
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>x</i> ₃	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1	1	2^{6}
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> ₃	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1	1	2^{6}
0	1	0	1	
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> ₃	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1	1	2^{6}
0	1	0	1	2 ⁵
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> ₃	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1	1	2^{6}
0	1	0	1	2^{5}
0	1	1	1	2^{4}
1	0	0	1	2^{3}
1	0	1	1	2^{2}
1	1	0	1	
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> ₃	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1	1	2^{6}
0	1	0	1	2 ⁵
0	1	1	1	2 ⁴
1	0	0	1	2^3
1	0	1	1	2^{2}
1	1	0	1	2^{1}
1	1	1		

- Assume $x \in \{0,1\}^3$ and $y \in \{0,1\}$
- How many functions $f:\{0,1\}^3 \rightarrow \{0,1\}$ are there?
- Assume we have seen the following examples. Can we generalize?

x_1	x_2	<i>X</i> ₃	y	# consistent concepts
0	0	0	1	2 ⁷
0	0	1	1	2^{6}
0	1	0	1	2^{5}
0	1	1	1	2^{4}
1	0	0	1	2^{3}
1	0	1	1	2^{2}
1	1	0	1	2^1
1	1	1	1	2^{0}

- Introduction to (Supervised) Machine Learning
- Supervised Learning
 - Overview
 - Examples of Hypothesis Classes
 - Formalization

Graphical Models

For example, using Bayes nets:

- Choose a structure (or learn from data)
- Learn parameters from data
- Use Bayes net for inference
- Issue: structure hard to define/learn, inference may be hard to compute for complex structure

Naive Bayes:

- Idea: assume that all the X^i 's are independent
- Works surprisingly well

k-Nearest Neighbors

- Principle: for new x, compute response as function of k nearest neighbors of x in dataset $\mathcal{D} = \{(x^i, y^i)\}$
 - Classification: majority vote
 - Regression: average
- Issues:
 - High computational/space requirements if dataset large
 - Doesn't scale in high dimension
 - Which distance to use?

from Hastie et al.

Paul Weng (UM-SJTU JI)

Machine Learning VE593, Fall 2018

Linear Models

from Hastie et al.

Artificial Neural Networks

- Introduction to (Supervised) Machine Learning
- Supervised Learning
 - Overview
 - Examples of Hypothesis Classes
 - Formalization

Learning Problem

- Expected risk or error: $R_{\mu}(h) = \mathbb{E}_{(X,Y) \sim \mu}[\ell(h(X),Y)]$ with $\mu \in \mathcal{P}$
- Ideally, $h^* = \arg\min_h R_{\mu}(h)$
- Bayes risk: $\min_h R_{\mu}(h)$
- h is Bayes optimal if $R_{\mu}(h)$ is equal to the Bayes risk
- Hard to solve because
 - \bullet μ is not known
 - ullet optimization is over any h

Bayes Classifier

- Expected Loss with 0-1 Loss $\ell(h(\mathbf{x}), y) = [h(\mathbf{x}) \neq y]$
- Expected loss is the probability of error: $R_{\mu}(h) = \mathbb{P}(h(X) \neq Y)$
- Theorem. The Bayes classifier defined as $h^*(\mathbf{x}) = \arg\max_y \mathbb{P}(y \mid \mathbf{x})$ reaches the Bayes error.

Bayes Classifier

- Expected Loss with 0-1 Loss $\ell(h(\mathbf{x}), y) = [h(\mathbf{x}) \neq y]$
- Expected loss is the probability of error: $R_{\mu}(h) = \mathbb{P}(h(X) \neq Y)$
- Theorem. The Bayes classifier defined as $h^*(\mathbf{x}) = \arg\max_y \mathbb{P}(y \mid \mathbf{x})$ reaches the Bayes error.
- Proof. For simplicity written in the discrete case:

$$\begin{split} h^* &= \arg\min_{h} R_{\mu}(h) = \arg\min_{h} \sum_{\mathbf{x}} \sum_{y} \ell(h(\mathbf{x}), y) \mu(\mathbf{x}, y) \\ h^*(\mathbf{x}) &= \arg\min_{y'} \sum_{y} \ell(y', y) \mu(\mathbf{x}, y) \\ h^*(\mathbf{x}) &= \arg\min_{y'} \sum_{y \neq y'} \mu(\mathbf{x}, y) \\ h^*(\mathbf{x}) &= \arg\max_{y'} \mu(\mathbf{x}, y') = \arg\max_{y} \mathbb{P}(\mathbf{x}, y) / \mathbb{P}(\mathbf{x}) \end{split}$$

Bayes Regressor

- Expected Loss with squared error loss $\ell(h(x), y) = (h(x) y)^2$
- Expected loss is mean squared error: $R_{\mu}(h) = \mathbb{E}[(h(X) Y)^2]$

• Theorem. The Bayes regressor defined as $h^*(\mathbf{x}) = \arg\max_y \mathbb{E}(y \mid \mathbf{x})$ reaches the Bayes error.

- Issue: We don't know μ , Bayes risk cannot be reached generally
- Idea: given $\mathcal{D} = \{(\mathbf{x}^i, y^i) \mid i = 1, \dots, N\}$ where $(\mathbf{x}^i, y^i) \sim \mu \in \mathcal{P}$, find $H : \mathcal{X} \to \mathcal{Y} \in \mathcal{H}$ that approximately minimizes the loss $\ell(H(X), Y)$ for $(X, Y) \sim \mu$
- Empirical Risk Minimization: solve:

$$H^* = \underset{H \in \mathcal{H}}{\operatorname{arg \, min}} R_{\mathcal{D}}(H) \text{ where } R_{\mathcal{D}}(H) = \sum_{i=1}^{N} \ell(H(\mathbf{x}^i), y^i)$$

• What are the possible issues with this approach?

- Issue: We don't know μ , Bayes risk cannot be reached generally
- Idea: given $\mathcal{D} = \{(\mathbf{x}^i, y^i) \mid i = 1, \dots, N\}$ where $(\mathbf{x}^i, y^i) \sim \mu \in \mathcal{P}$, find $H : \mathcal{X} \to \mathcal{Y} \in \mathcal{H}$ that approximately minimizes the loss $\ell(H(X), Y)$ for $(X, Y) \sim \mu$
- Empirical Risk Minimization: solve:

$$H^* = \operatorname*{arg\,min}_{H \in \mathcal{H}} R_{\mathcal{D}}(H) \text{ where } R_{\mathcal{D}}(H) = \sum_{i=1}^N \ell(H(\mathbf{x}^i), y^i)$$

- What are the possible issues with this approach?
 - Empirical risk is only an approximation of the true risk

- Issue: We don't know μ , Bayes risk cannot be reached generally
- Idea: given $\mathcal{D} = \{(\mathbf{x}^i, y^i) \mid i = 1, \dots, N\}$ where $(\mathbf{x}^i, y^i) \sim \mu \in \mathcal{P}$, find $H : \mathcal{X} \to \mathcal{Y} \in \mathcal{H}$ that approximately minimizes the loss $\ell(H(X), Y)$ for $(X, Y) \sim \mu$
- Empirical Risk Minimization: solve:

$$H^* = \operatorname*{arg\,min}_{H \in \mathcal{H}} R_{\mathcal{D}}(H) \text{ where } R_{\mathcal{D}}(H) = \sum_{i=1}^N \ell(H(\mathbf{x}^i), y^i)$$

- What are the possible issues with this approach?
 - Empirical risk is only an approximation of the true risk
 - More complex hypothesis class can lead to smaller empirical risk

- Issue: We don't know μ , Bayes risk cannot be reached generally
- Idea: given $\mathcal{D} = \{(\mathbf{x}^i, y^i) \mid i = 1, \dots, N\}$ where $(\mathbf{x}^i, y^i) \sim \mu \in \mathcal{P}$, find $H : \mathcal{X} \to \mathcal{Y} \in \mathcal{H}$ that approximately minimizes the loss $\ell(H(X), Y)$ for $(X, Y) \sim \mu$
- Empirical Risk Minimization: solve:

$$H^* = \operatorname*{arg\,min}_{H \in \mathcal{H}} R_{\mathcal{D}}(H) \text{ where } R_{\mathcal{D}}(H) = \sum_{i=1}^N \ell(H(\mathbf{x}^i), y^i)$$

- What are the possible issues with this approach?
 - Empirical risk is only an approximation of the true risk
 - More complex hypothesis class can lead to smaller empirical risk
 - We are in fact interested in $\sum_{\mathbf{x},\mathbf{y}\in\mathcal{D}'}\ell(H(\mathbf{x}),y)$ where \mathcal{D}' new data set