VE401 RECITATION CLASS NOTE

Final Part3

Chen Siyi siyi.chen_chicy@sjtu.edu.cn

1 Basic Model of ANOVA

Population		Re	Total	Mean		
1 2		$Y_{12} Y_{22}$			T ₁ . T ₂ .	$\frac{\overline{Y}_1}{\overline{Y}_2}$.
: k	:	Y_{k2}	:	Y_{kn_k}	: : T _k .	$\frac{1}{\overline{Y}_{k}}$
Overall					T	<u>Y</u>

1.1 Settings

Goal:

Testing H_0 : $\mu_1 = \cdot \cdot \cdot = \mu_k$

Notation:

- 1. k populations, Y | i = Y_i N(μ_i, σ^2), i = 1,...,k.
- 2. Sample sizes n_i . Totally $N = n_1 + \cdots + n_k$ observations.
- 3. Y_{ij} is the jth response (measurement) for the i th population.
- 4. $T_{i.} = \sum_{j=1}^{n_i} Y_{ij} \quad \overline{Y}_{i.} = \frac{T_{i.}}{n_i}$
- 5. $T_{i\cdots} = \sum_{i=1}^{k} T_{i\cdots} \overline{Y_{i\cdots}} = \frac{T_{\cdots}}{N}$

Assumption:

 Y_{ij} are independent, normally distributed random variables with mean μ_i and variance σ^2 (independent of i and j).

1.2 Model

$$Y_{ij} = \mu_{ij} + E_{ij} = \mu + \alpha_i + E_{ij}$$

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$$

Unbiased Estimators:

$$\widehat{\mu} = \overline{Y_{..}}, \quad \widehat{\mu}_i = \overline{Y_{i.}}, \quad \widehat{\alpha}_i = \widehat{\mu}_i - \widehat{\mu}$$

Then

$$Y_{ij} = \overline{Y}_{..} + (\overline{Y}_{i.} - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_{i.})$$

= $\widehat{\mu} + \widehat{\alpha}_i + e_{ij}$

1.3 Sum of Squares(SS) and Mean Square(MS)

Error Sum of Squares:

$$SS_{E} := \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} e_{ij}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{i})^{2}$$

Total Sum of Squares:

$$SS_{T} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}..)^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\overline{Y}_{i.} - \overline{Y}..)^{2} + \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{i.})^{2}$$

$$= SS_{Tr} + SS_{E}$$

Treatment Sum of Squares:

$$SS_{Tr} = \sum_{i=1}^{n_i} \left(\overline{Y}_{i.} - \overline{Y}.. \right)^2$$

Analysis on SS_E :

Since

$$S_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2, \quad SS_E := \sum_{i=1}^k \sum_{j=1}^{n_i} e_{ij}^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$$

hence

$$SS_E = \sum_{i=1}^{k} (n_i - 1) S_i^2$$

Since

$$\chi_{n_i - 1}^2 = \frac{(n_i - 1) S_i^2}{\sigma^2}$$

hence

$$\chi_{N-k}^2 = \frac{SS_E}{\sigma^2}$$

Error Mean Square:

$$MS_{E} = \frac{SS_{E}}{N - k}$$

 $E[MS_E] = \sigma^2$, is an unbiased estimator for the variance.(Why?)

Treatment Mean Square:

$$MS_{Tr} := \frac{SS_{Tr}}{k-1}$$

1.4 Statistic

Theorem1:

$$\frac{(N-k)MS_{E}}{\sigma^{2}} = \frac{SS_{E}}{\sigma^{2}}$$

follows a chi-squared distribution with N - k degrees of freedom. (Why?)

Theorem2:

If
$$\alpha_1 = \cdot \cdot \cdot = \alpha_k = 0$$
, then

$$\frac{\mathrm{SS}_{\mathrm{Tr}}}{\sigma^2} = \frac{(k-1)\mathrm{MS}_{\mathrm{E}}}{\sigma^2}$$

follows a chi-squared distribution with k-1 degrees of freedom.

Theorem3:

 SS_E and SS_{Tr} are independent.

Statistic:

If
$$\alpha_1 = \cdot \cdot \cdot = \alpha_k = 0$$
, then

$$F_{k-1,N-k} = \frac{MS_{Tr}}{MS_E}$$

follows an F -distribution with k-1 and N-k degrees of freedom.

1.5 ANOVA F-Test

Suppose $Y_1,...,Y_k$ are normally distributed random variables with common variance σ^2 . Suppose that samples of size $n_1, ..., n_k$ are taken from each population and $N = n_1 + ... + n_k$. Then we reject

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

in favor of

 $H_1: \mu_i \neq \mu_j$ for at least one pair $(i, j), 1 \leq i < j \leq k$

at significance level α if the test statistic

$$F_{k-1,N-k} = \frac{MS_{Tr}}{MS_E}$$

satisfies $F_{k-1,N-k} > f_{\alpha,k-1,N-k}$. (Or when the P-value is small enough.)

1.6 Afterwards Comments

- 1. Remember to give a conclusion.
- 2. When the sample size is reasonably large, if Y_{ij} are not strictly normally distributed, the result of the F-test is still reliable
- 3. But it is essential for the F-test that all populations have equal variance.
- 4. To determine specifically which seams have a higher sulphur content requires pairwise comparisons of means.

2 Test for Equality of Variances

Goal:

We wish to test

$$H_0: \sigma_1^2 = \cdots = \sigma_k^2$$

Define:

$$Q := (N - k) \ln MS_E - \sum_{i=1}^{k} (n_i - 1) \ln S_i^2$$

$$h := 1 + \frac{1}{3(k-1)} \left(\sum_{i=1}^{k} \frac{1}{n_i - 1} - \frac{1}{N-k} \right)$$

Bartlett statistic:

$$B := \frac{Q}{h}$$

follows approximately a chi-squared distribution with k-1 degrees of freedom.

Bartlett's Test:

Suppose Y_1, \ldots, Y_k are normally distributed random variables. Suppose that samples of size n_1, \ldots, n_k are taken from each population and $N = n_1 + \cdots + n_k$. Then we reject

$$H_0: \sigma_1^2 = \cdots = \sigma_k^2$$

in favor of

 $H_1: \sigma_i^2 \neq \sigma_j^2$ for at least one pair $(i,j), 1 \leq i < j \leq k$

at significance level α if the test statistic

$$B = \frac{Q}{h}$$

satisfies

$$B > \chi^2_{\alpha,k-1}$$

3 Pairwise Comparisons (Post hoc Tests)

Assuming we have established the equality of variances and obtained an ANOVA table showing a significant difference in the k treatment means, we would like to know which particular treatment means differ and which are statistically similar.

The canonical strategy is to then perform pairwise tests.

$$H_0: \mu_i = \mu_j, \quad H_1: \mu_i \neq \mu_j$$

3.1 Fisher's Least Significant Difference(LSD) Test

Statistic

Compared with the statistic in the pooled T-Test:

$$T_{n_i+n_j-2} = \frac{\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}}{S_p \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}}$$

With the estimator $\widehat{\sigma^2} = MS_E$, we have:

$$T_{N-k} = \frac{\overline{Y}_{i.} - \overline{Y}_{j.}}{\sqrt{MS_E \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

Fisher's LSD Test:

Suppose that $Y_{i.}$, i = 1, ..., k, are the populations means in an ANOVA that yielded a significant F-test. Then for each i, j = 1, ..., k we reject

$$H_0: \mu_i = \mu_j$$
 in favor of $H_1: \mu_i \neq \mu_j$

at significance level α if

$$\left|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}\right| > \tau_{ij} := t_{\alpha/2, N-k} \cdot \sqrt{\mathrm{MS}_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Here τ_{ij} is called the least significant difference (LSD).

3.2 Bonferroni's Test

When perform Fisher LSD tests for all possible combinations of means.

Error Rates:

- 1. α is the comparisonwise error rate,
- 2. α' is the overall or experimentwise error rate.

If the test are independent:

$$\alpha' = 1 - (1 - \alpha)^m$$

No matter whether the tests are independent:

$$\alpha' < m\alpha$$

m is the total number of tests, $\frac{k(k-1)}{2}$.

Bonferroni's Test:

A Fisher LSD Test of k means performed at a comparisonwise error rate of

$$\alpha = \frac{\alpha'}{k(k-1)/2}$$

is said to be a Bonferroni test with controlled experimentwise error rate α' .

The least significant differences τ_{ij} are sometimes called Bonferroni critical points.

3.3 Tukey's Honestly Significant Difference (HSD) Test

Studentized Sample Range:

$$R_n = \frac{\max\{X_1, \dots, X_n\} - \min\{X_1, \dots, X_n\}}{\hat{\sigma}}$$

where $\widehat{\sigma}^2$ is an estimator for σ^2 . For example, one could take the usual sample standard deviation $\hat{\sigma} = S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$.

Least Significant Studentized Ranges $r_{n,\alpha,\gamma}$:

$$P[R_n > r_{n,\alpha,\gamma}] = \alpha$$

R_n in ANOVA and Tests:

Suppose $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ is true and $n_1 = n_2 = \cdots = n_k$, then $\overline{Y_i}$ has variance $\frac{\sigma^2}{n}$. And we estimate:

$$\frac{\widehat{\sigma^2}}{n} = \frac{MS_E}{n}$$

$$R_n = \frac{\max\left\{\overline{Y}_{1\cdot}, \dots, \overline{Y}_{k\cdot}\right\} - \min\left\{\overline{Y}_{1\cdot}, \dots, \overline{Y}_{k\cdot}\right\}}{\sqrt{MS_E/n}}$$

With probability $1 - \alpha$, all means will satisfy

$$\left|\overline{Y}_{i.} - \overline{Y}_{j.}\right| \le r_{k,\alpha,N-k} \sqrt{MS_E/n}$$

Further we extend this method to unequal sample sizes by set:

$$\frac{1}{n^*} = \frac{1}{2} \left(\frac{1}{n_i} + \frac{1}{n_j} \right) \quad \Leftrightarrow \quad n^* = \frac{2n_i n_j}{n_i + n_j}$$

Based on this, we reject $H_0: \mu_i = \mu_j$ for any i , j if

$$|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}| > r_{k,\alpha,N-k} \sqrt{MS_E/n^*}$$

Summary-Tukey's HSD Test:

Suppose that $Y_{i\cdot}$, $i=1,\ldots,k$, are the populations means in an ANOVA that yielded a significant F-test. Then for each i, $j=1,\ldots,k$ we reject

$$H_0: \mu_i = \mu_j$$
 in favor of $H_1: \mu_i \neq \mu_j$

at an experimentwise error rate α' if

$$\left|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}\right| > r_{k,\alpha',N-k} \sqrt{\frac{MS_E}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

3.4 Duncan's New Multiple Range Test

Duncan's test modifies Tukey's test as follows: instead of conducting pairwise comparisons, we compare groups of means at once. For this reason it is said to be a multiple range test.

Also Duncan's test use a modification of the least significant range $r'_{p,\alpha'}N - k$. p is the number of means in the chosen group, k is the number of means in total.

We try to link as much \overline{Y}_i and \overline{Y}_j as we can. Linking means small difference. We link from large groups to small groups so that we can perform less comparisons.

Requirements:

- 1. All treatment sample sizes are equal
- 2. Order sample means from smallest to largest

Steps/Example:

32.8. Example. Suppose we have the following data:

Population i	Response Y_{ij}						
1	0.30	0.64	0.68	0.53	0.78	0.84	
2	0.69	1.08	1.30	1.11	0.51	0.96	
3	0.96	0.93	1.02	1.19	0.89	1.33	
4	1.21	0.96	1.02	1.17	1.28	1.36	
5	1.70	1.16	0.95	1.18	1.56	1.07	
6	1.52	1.34	1.58	1.41	1.39	1.46	

We find

$$\overline{Y}_{1.}=0.63, \qquad \overline{Y}_{2.}=0.94, \qquad \overline{Y}_{3.}=1.05, \ \overline{Y}_{4.}=1.17, \qquad \overline{Y}_{5.}=1.27, \qquad \overline{Y}_{6.}=1.45.$$

and

$$MS_E = 0.0450.$$

We have k=6 populations with n=6 measurements each, so N=36 and N-k=30. The least significant ranges for $\alpha=0.01$ and 30 degrees of freedom are given by

$$r'_{2,0.01,30} = 3.889,$$
 $r'_{3,0.01,30} = 4.056,$ $r'_{4,0.01,30} = 4.168,$ $r'_{5,0.01,30} = 4.250,$ $r'_{6,0.01,30} = 4.314.$

The critical differences are given by $d_p = r'_{p,0.01,30} \sqrt{\mathsf{MS_E}\,/n}$, i.e.,

$$d_2 = 0.337$$
, $d_3 = 0.351$, $d_4 = 0.361$, $d_5 = 0.368$, $d_6 = 0.373$. $\overline{Y}_6 - \overline{Y}_1 = 1.45 - 0.63 = 0.82 > d_6 = 0.373$

so we conclude that there is a significant difference among the means.

Next, we consider two groups of five means,

$$\overline{Y}_5$$
. $-\overline{Y}_1$. = 1.27 $-$ 0.63 = 0.64 $> d_5$ = 0.368, \overline{Y}_6 . $-\overline{Y}_2$. = 1.45 $-$ 0.94 = 0.51 $> d_5$ = 0.368,

so there significant differences in these groups also. We next test groups of four means,

$$\overline{Y}_4$$
. $-\overline{Y}_1$. = 1.17 - 0.63 = 0.64 > d_4 = 0.361,
 \overline{Y}_6 . $-\overline{Y}_3$. = 1.45 - 1.05 = 0.40 > d_4 = 0.361,
 \overline{Y}_5 . $-\overline{Y}_2$. = 1.27 - 0.94 = 0.33 $\neq d_4$ = 0.361.

We stop testing those groups were there are no significant differences among the means. This leaves

$$\overline{Y}_6$$
. $-\overline{Y}_4$. = 1.45 - 1.17 = 0.28 \Rightarrow d_3 = 0.337,
 \overline{Y}_3 . $-\overline{Y}_1$. = 1.05 - 0.63 = 0.42 \Rightarrow d_3 = 0.337,
 \overline{Y}_2 . $-\overline{Y}_1$. = 1.05 - 0.94 = 0.11 \Rightarrow d_2 = 0.337.

We summarize by underlining those groups of means that are not significantly different:

$$\overline{Y}_1$$
. \overline{Y}_2 . \overline{Y}_3 . \overline{Y}_4 . \overline{Y}_5 . \overline{Y}_6 .

We conclude: there is evidence that μ_1 is significantly smaller that μ_3 , μ_4 , μ_5 and μ_6 . Furthermore, μ_2 and μ_3 are significantly smaller than μ_6 . There is no significant difference between any other means.

4 Tips for Final

- 1. Prepare certain mma codes, but don't rely on it. Horst says all the problems can be solved without mma.
- 2. If you use mma or other tools, zip your codes, and write certain explanations.
- 3. Understand essential concepts, be flexible.

