Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

```
In [2]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
Загрузка и первичный анализ данных
In [3]:
# Будем использовать только обучающую выборку
data = pd.read csv('winemag-data-130k-v2.csv', sep=",")
In [4]:
# размер набора данных
data.shape
Out[4]:
(129971, 14)
In [5]:
# типы колонок
data.dtypes
Out[5]:
Unnamed: 0
                          int64
country
                         object
description
                        object
designation
                        object
                          int64
points
                       float64
price
                         object
province
region_1
                         object
region 2
                         object
taster_name
                         object
taster_twitter_handle
                         object
title
                         object
variety
                         object
winery
                         object
dtype: object
In [6]:
# проверим есть ли пропущенные значения
data.isnull().sum()
Out[6]:
                             0
Unnamed: 0
                            63
country
description
                             0
```

37465

8996

21247

63

designation points

price
province

region 1

```
region_2 79460
taster_name 26244
taster_twitter_handle 31213
title 0
variety 1
winery 0
dtype: int64
```

In [7]:

```
# Первые 5 строк датасета data.head()
```

Out[7]:

	Unnamed: 0	country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_h
0	0	Italy	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	NaN	Sicily & Sardinia	Etna	NaN	Kerin O'Keefe	@kerino
1	1	Portugal	This is ripe and fruity, a wine that is smooth	Avidagos	87	15.0	Douro	NaN	NaN	Roger Voss	@voss
2	2	US	Tart and snappy, the flavors of lime flesh and	NaN	87	14.0	Oregon	Willamette Valley	Willamette Valley	Paul Gregutt	@paul(
3	3	US	Pineapple rind, lemon pith and orange blossom	Reserve Late Harvest	87	13.0	Michigan	Lake Michigan Shore	NaN	Alexander Peartree	
4	4	US	Much like the regular bottling from 2012, this	Vintner's Reserve Wild Child Block	87	65.0	Oregon	Willamette Valley	Willamette Valley	Paul Gregutt	@paul(
4											Þ

In [8]:

```
total_count = data.shape[0]
print('Bcero ctpok: {}'.format(total_count))
```

Всего строк: 129971

Обработка пропусков в данных

Простые стратегии - удаление или заполнение нулями

```
In [9]:
```

0 1 501

```
# Удаление колонок, содержащих пустые значения data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape)
```

```
Out[9]:
((129971, 14), (129971, 5))
```

Удаление колонок, содержащих пустые значения приведет к сокращению колонок с 14 до 5

```
In [10]:
```

```
# Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)
```

Out[10]:

```
((129971, 14), (22387, 14))
```

Удаление строк, содержащих пустые значения приведет к сокращению строк с 129971 до 22387

In [11]:

```
data.head()
```

Out[11]:

	Unnamed: 0	country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_h
0	0	Italy	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	NaN	Sicily & Sardinia	Etna	NaN	Kerin O'Keefe	@kerino
1	1	Portugal	This is ripe and fruity, a wine that is smooth	Avidagos	87	15.0	Douro	NaN	NaN	Roger Voss	@voss
2	2	US	Tart and snappy, the flavors of lime flesh and	NaN	87	14.0	Oregon	Willamette Valley	Willamette Valley	Paul Gregutt	@paulį
3	3	US	Pineapple rind, lemon pith and orange blossom	Reserve Late Harvest	87	13.0	Michigan	Lake Michigan Shore	NaN	Alexander Peartree	
4	4	us	Much like the regular bottling from 2012, this	Vintner's Reserve Wild Child Block	87	65.0	Oregon	Willamette Valley	Willamette Valley	Paul Gregutt	@paul(
4											Þ

In [12]:

```
# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе категориальные колонки
data_new_3 = data.fillna(0)
data_new_3.head()
```

Out[12]:

Column		Unnamed?	country country		designation designation			province province	region_1 region_1	• =	_	taster_twitter_n _taster_twitter_b
and fruity, a wine that is smooth 2 2 2 US the flavors of lime flesh and Pineapple rind, lemon pith and orange blossom Reserve Harvest 4 4 US Much like the regular bottling from 2012, a Willow Willamette Willamette Valley Willamette Willamette Valley Willamette Willamette Willamette Paul @paule Willamette Willamette Paul Willamette Willamette Peartree 87 13.0 Michigan Shore Willamette Willamette Paul @paule @paule Willamette Willamette Valley Valley Valley Valley Gregutt	0	0	Italy	include tropical fruit, broom,		87	0.0	_	Etna	0		@kerino
2 2 US the flavors of lime flesh and Pineapple rind, lemon orange blossom Much like the regular from 2012, Wild Child Flock 87 14.0 Oregon Willamette Willamette Paul Valley Valley Gregutt Willamette Willamette Paul Gregutt Willamette Valley Valley Gregutt Willamette Willamette Paul Gregutt Willamette Valley Valley Gregutt Willamette Willamette Paul Willamette Paul Gregutt Willamette Willamette Paul Gregutt Willamette Willamette Paul Gregutt Willamette Valley Valley Gregutt Willamette Valley Valley Gregutt	1	1	Portugal	and fruity, a wine that is	Avidagos	87	15.0	Douro	0	0	Roger Voss	@voss
3 3 US rind, lemon Reserve pith and orange blossom Much like the regular from 2012, Reserve Wild Child Reserve Will Child Reserve Will Child Reserve Will Child Reserve Wild Child Reserve Wild Child Reserve Will Child Reserve Will Child	2	2	US	snappy, the flavors of lime	0	87	14.0	Oregon				@paul
the regular Reserve 87 65.0 Oregon Willamette Willamette Paul @paule from 2012, Block	3	3	US	rind, lemon pith and orange	Late	87	13.0	Michigan	Michigan	0		
	4	4	US	the regular bottling from 2012,	Reserve Wild Child	87	65.0	Oregon				@pauli

"Внедрение значений" - импьютация (imputation)

Обработка пропусков в числовых данных

```
In [13]:
```

```
# Выберем числовые колонки с пропущенными значениями

# Цикл по колонкам датасета

num_cols = []

for col in data.columns:

# Количество пустых значений

temp_null_count = data[data[col].isnull()].shape[0]

dt = str(data[col].dtype)

if temp_null_count>0 and (dt=='float64' or dt=='int64'):

num_cols.append(col)

temp_perc = round((temp_null_count / total_count) * 100.0, 2)

print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка price. Тип данных float64. Количество пустых значений 8996, 6.92%.

In [14]:

```
# Фильтр по колонкам с пропущенными значениями
data_num = data[num_cols]
data_num
```

Out[14]:

price0 NaN1 15.0

```
2 phbe
3 13.0
4 65.0
...
129966 28.0
129967 75.0
129968 30.0
129969 32.0
129970 21.0
```

129971 rows × 1 columns

In [15]:

```
# Гистограмма по признакам

for col in data_num:
    plt.hist(data[col], 50)
    plt.xlabel(col)
    plt.show()
```


In [16]:

```
data_num_price = data_num[['price']]
data_num_price.head()
```

Out[16]:

price 0 NaN

1 15.0

2 14.0

3 13.0

4 65.0

In [17]:

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
```

In [18]:

```
# Фильтр для проверки заполнения пустых значений indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_price)
mask_missing_values_only
```

```
Out[18]:
array([[ True],
       [False],
       [False],
       [False],
       [False],
       [False]])
Попробуем заполнить пропущенные значения в колонке price значениями, вычисленными по среднему
арифметическому, медиане и моде.
In [20]:
strategies=['mean', 'median', 'most frequent']
In [23]:
def test num impute(strategy_param):
    imp num = SimpleImputer(strategy=strategy param)
    data_num_imp = imp_num.fit_transform(data_num_price)
    return data num imp[mask missing values only]
In [24]:
strategies[0], test num impute(strategies[0])
Out[24]:
('mean',
array([35.36338913, 35.36338913, 35.36338913, ..., 35.36338913,
        35.36338913, 35.36338913]))
In [25]:
strategies[1], test num impute(strategies[1])
Out[25]:
('median', array([25., 25., 25., ..., 25., 25., 25.]))
In [26]:
strategies[2], test num impute(strategies[2])
Out[26]:
('most frequent', array([20., 20., 20., 20., 20., 20., 20.]))
In [27]:
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test num impute col(dataset, column, strategy param):
    temp data = dataset[[column]]
    indicator = MissingIndicator()
    mask missing values only = indicator.fit transform(temp data)
    imp num = SimpleImputer(strategy=strategy_param)
    data num imp = imp num.fit transform(temp data)
    filled data = data num imp[mask missing values only]
    return column, strategy param, filled data.size, filled data[0], filled data[filled
data.size-1]
In [29]:
data[['price']].describe()
Out[29]:
```

```
mean
         35.363389
         41.022218
  std
          4.000000
  min
         17.000000
 25%
 50%
         25.000000
         42.000000
 75%
        3300.000000
 max
In [30]:
test num impute col(data, 'price', strategies[0])
Out[30]:
('price', 'mean', 8996, 35.363389129985535, 35.363389129985535)
In [31]:
test num impute col(data, 'price', strategies[1])
Out[31]:
('price', 'median', 8996, 25.0, 25.0)
In [32]:
test num impute col(data, 'price', strategies[2])
Out[32]:
('price', 'most frequent', 8996, 20.0, 20.0)
Получили вычисления по среднему арифметическому, медиане и моде, которые немного отличаются
```

Обработка пропусков в категориальных данных

price

count 120975.000000

```
In [34]:

# Выберем категориальные колонки с пропущенными значениями

# Цикл по колонкам датасета

cat_cols = []

for col in data.columns:

    # Количество пустых значений

    temp_null_count = data[data[col].isnull()].shape[0]

    dt = str(data[col].dtype)

    if temp_null_count>0 and (dt=='object'):

        cat_cols.append(col)

        temp_perc = round((temp_null_count / total_count) * 100.0, 2)

        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))

Колонка country. Тип данных object. Количество пустых значений 37465, 28.83%.
```

Колонка taster_twitter_handle. Тип данных object. Количество пустых значений 31213, 24.02

• Колонки солержание менее 30% пропусков выбираем пла построениа молели

Колонка variety. Тип данных object. Количество пустых значений 1, 0.0%.

Колонка province. Тип данных object. Количество пустых значений 63, 0.05%. Колонка region_1. Тип данных object. Количество пустых значений 21247, 16.35%. Колонка region_2. Тип данных object. Количество пустых значений 79460, 61.14%. Колонка taster name. Тип данных object. Количество пустых значений 26244, 20.19%.

```
- полония, оодоржащие менее от и пропуское высирасм для постросния модели.
```

• Колонки, содержащие более 30% пропусков не выбираем для построения модели.

```
In [35]:
cat temp data = data[['region 1']]
cat temp data.head()
Out[35]:
           region_1
0
              Etna
1
              NaN
     Willamette Valley
2
3 Lake Michigan Shore
     Willamette Valley
In [36]:
cat temp data['region 1'].unique()
Out[36]:
array(['Etna', nan, 'Willamette Valley', ..., 'Del Veneto',
       'Bardolino Superiore', 'Paestum'], dtype=object)
In [37]:
cat temp data[cat temp data['region 1'].isnull()].shape
Out[37]:
(21247, 1)
In [38]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent')
data imp2 = imp2.fit transform(cat temp data)
data_imp2
Out[38]:
array([['Etna'],
       ['Napa Valley'],
       ['Willamette Valley'],
       ['Alsace'],
       ['Alsace'],
       ['Alsace']], dtype=object)
In [39]:
# Пустые значения отсутствуют
np.unique(data imp2)
Out[39]:
array(['Abruzzo', 'Adelaida District', 'Adelaide', ...,
       'Yorkville Highlands', 'Yountville', 'Zonda Valley'], dtype=object)
In [40]:
# Импьютация константой
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill value='NA')
data imp3 = imp3.fit transform(cat temp data)
data imp3
```

Out[40]:

Таким образом, в колонку region_1 вставлено 21247 "NA", вместо пропущенных значений.

Преобразование категориальных признаков в числовые

```
In [43]:

cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
Out[43]:
```

c1

0	Etna
1	Napa Valley
2	Willamette Valley
3	Lake Michigan Shore
4	Willamette Valley
129966	Napa Valley
129967	Oregon
129968	Alsace
129969	Alsace
129970	Alsace

129971 rows x 1 columns

Кодирование категорий целочисленными значениями - <u>label</u> <u>encoding</u>

```
In [44]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [45]:
```

```
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
In [46]:
cat enc['c1'].unique()
Out[46]:
array(['Etna', 'Napa Valley', 'Willamette Valley', ..., 'Del Veneto',
       'Bardolino Superiore', 'Paestum'], dtype=object)
In [47]:
np.unique(cat enc le)
Out[47]:
        0, 1, 2, ..., 1226, 1227, 1228])
array([
Кодирование категорий наборами бинарных значений - <u>one-hot</u>
encoding
In [48]:
ohe = OneHotEncoder()
cat enc ohe = ohe.fit transform(cat enc[['c1']])
In [49]:
cat_enc.shape
Out[49]:
(129971, 1)
In [50]:
cat enc ohe.shape
Out[50]:
(129971, 1229)
In [51]:
cat enc ohe
Out[51]:
<129971x1229 sparse matrix of type '<class 'numpy.float64'>'
with 129971 stored elements in Compressed Sparse Row format>
In [52]:
cat enc ohe.todense()[0:10]
Out[52]:
matrix([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]]
In [53]:
cat enc.head(10)
Out[53]:
```

	c1
0	Etna
1	Napa Valley
2	Willamette Valley
3	Lake Michigan Shore
4	Willamette Valley
5	Navarra
6	Vittoria
7	Alsace
8	Napa Valley
9	Alsace

Pandas get dummies - быстрый вариант one-hot кодирования

In [54]:

```
pd.get_dummies(cat_enc).head()
```

Out[54]:

	c1_Abruzzo	c1_Adelaida District	c1_Adelaide	c1_Adelaide Hills	c1_Adelaide Plains	c1_Aglianico d'Irpinia	c1_Aglianico del Beneventano	c1_Aglianico del Taburno	c1_Aglianico del Vulture	c 1
0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	

5 rows × 1229 columns

1

In [55]:

pd.get_dummies(cat_temp_data, dummy_na=True).head()

Out[55]:

	region_1_Abruzzo	region_1_Adelaida District	region_1_Adelaide	region_1_Adelaide Hills	region_1_Adelaide Plains	region_1_Aglianico d'Irpinia	region_1 del Be
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	

5 rows × 1230 columns

Масштабирование данных

• MinMax масштабирование:

$$x_{ ext{новый}} \ x_{ ext{старый}} \ = rac{-min(X)}{max(X)} \ -min(X)$$

В этом случае значения лежат в диапазоне от 0 до 1.

• Масштабирование данных на основе **Z**-оценки:

$$x_{ ext{новый}} \ x_{ ext{старый}} \ = rac{-AVG(X)}{\sigma(X)}$$

В этом случае большинство значений попадает в диапазон от -3 до 3.

где X - матрица объект-признак, AVG(X) - среднее значение, σ - среднеквадратичное отклонение.

In [56]:

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
```

MinMax масштабирование

```
In [57]:
```

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['price']])
```

```
In [58]:
```

```
plt.hist(data['price'], 50)
plt.show()
```


In [59]:

```
plt.hist(sc1_data, 50)
plt.show()
```


Таким образом, получили значения из начальных 0-3000 в конечные 0-1.

Масштабирование данных на основе Z-оценки - StandardScaler

```
In [60]:
```

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['price']])
```

In [62]:

```
plt.hist(sc2_data, 50)
plt.show()
```


Таким образом, получили значения из начальных 0-3000 в конечные 0-80.