Newton's and Quasi-Newton Methods

Axel Böhm

September 29, 2021

- Introduction
- 2 Newton's method
- Convergence analysis
- Quasi-Newton methods

Convergence analysis

1-dimensional case: Newton-Raphson method

Objective: Find zero of differentiable $f: \mathbb{R} \to \mathbb{R}$.

Strategy: Solve

$$f(x_k)+f'(x_k)(x-x_k)=0.$$

Method: Gives

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

The Babylonian method

- ⋄ compute square root of $R \in \mathbb{R}_+$
- $\diamond \text{ find zero of } f(x) = x^2 R$
- use Newton-Raphson:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - R}{2x_k} = \frac{1}{2} \left(x_k + \frac{R}{x_k} \right)$$

 \diamond Starting from $x_0 > 0$ we have

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{R}{x_k} \right) \ge \frac{x_k}{2}.$$

⋄ Starting from $x_0 = R \ge 1$, it takes $\mathcal{O}(\log R)$ steps to get to $x_k - \sqrt{R} < \frac{1}{2}$.

The Babylonian method - Takeoff

Note that

$$x_{k+1} - \sqrt{R} = \frac{1}{2} \left(x_k + \frac{R}{x_k} \right) - \sqrt{R} = \frac{x_k}{2} + \frac{R}{2x_k} - \sqrt{R} = \frac{1}{2x_k} \left(x_k - \sqrt{R} \right)^2$$

For simplicity $R \ge 1/4$, then $x_k \ge \sqrt{R} \ge 1/2$. Hence

$$x_{k+1} - \sqrt{R} = \frac{1}{2x_k} \left(x_k - \sqrt{R} \right)^2 \le \left(x_k - \sqrt{R} \right)^2$$

If $x_0 - \sqrt{R} < \frac{1}{2}$ (ensured after $\mathcal{O}(\log R)$ steps).

$$x_k - \sqrt{R} \le \left(x_0 - \sqrt{R}\right)^{2^k} \le \left(\frac{1}{2}\right)^{2^k}$$

To achieve $x_k - \sqrt{R} < \epsilon$ we only need $k = \log \log(\epsilon^{-1})$ steps!

The Babylonian method - Example

R = 1000, in double arithmetic

- ⋄ 7 steps to get to $x_7 \sqrt{1000} < 1/2$
- \diamond 3 steps to get to $\sqrt{1000}$ up to machine precision
- ♦ First phase: ≈ one more correct digit per iteration
- \diamond Second phase: \approx double the number of correct digits per iteration

In practice: $\log \log x \le 5$.

Newton's method for optimization

Goal: Find global minimum x^* of convex, differentiable function f. Strategy: Search for zero of derivative.

1-dimensional case: Apply Newton-Raphson method to f':

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} = x_k - f''(x_k)^{-1}f(x_k)$$

(requires twice differentiable and f'' > 0)

d-dimensional case: Newtons methods for minimizing convex

$$f: \mathbb{R}^d \to \mathbb{R}$$
:

$$x_{k+1} = x_k - \nabla^2 f(x_k) \nabla f(x_k)$$

Newton's method as adaptive gradient descent

General update scheme:

$$x_{k+1} = x_k - H(x_k) \nabla f(x_k)$$

for some matrix $H(x) \in \mathbb{R}^{d \times d}$.

- \diamond Newton's method: $H = \nabla^2 f(x_k)^{-1}$.
- \diamond Gradient descent: $H = \alpha \operatorname{Id}$

Newton's methods **adapts** to the local geometry of f at $x_k \rightarrow no$ need for choosing a stepsize.

Convergence in one step on quadratic functions

A quadratic function

$$f(x) = \frac{1}{2}x^T M x + q^T x + c$$

is called *nondegenerate* if $M \in \mathbb{R}^{d \times d}$ is invertible.

- $\diamond x^* := M^{-1}q$ is the unique solution of $\nabla f(x) = 0$
- $\diamond x^*$ is the unique global minimum if f is convex

Lemma

On nondegenerate quadratic functions with arbitrary starting point x_0 , Newtons method yields $x_1 = x^*$

Proof.

We have $\nabla f(x) = Mx - q$ and $\nabla^2 f(x) = M$. Therefore

$$x_1 = x_0 - \nabla^2 f(x_0) \nabla f(x_0) = x_0 - M^{-1} (Mx_0 - q) = M^{-1} q = x^*.$$

Affine Invariance

Newton's method is affine invariant (invariant under any invertible affine transformation): Denote the Newton step for h by

$$N_h(x) := x - \nabla^2 h^{-1} \nabla h(x).$$

Lemma

Let $f : \mathbb{R}^d \to \mathbb{R}$ be twice differentiable, $A \in \mathbb{R}^{d \times d}$ an invertible matrix and $b \in \mathbb{R}^d$.

$$g(x) = Ax + b.$$

Then

$$N_{f \circ g} = g^{-1} \circ N_f \circ g$$

Minimizing the second-order Taylor approximation

Alternative interpretation of Newton's method: Minimize (local) quadratic model of f.

Lemma

Let f be conve, twice differentiable and $\nabla^2 f(x) \succ 0$. Then x_{k+1} resulting from **Newton's step** satisfies

$$x_{k+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle x - x_k, \nabla^2 f(x_k)(x - x_k) \rangle$$

Local Convergence

We will prove:

Under suitable conditions on f and close to the minimum Newton's method approximates solution up to an error ϵ in $\log \log (1/\epsilon)$ iterations.

- much faster than anything so far...
- only locally

We call this a local convergence result.

Global convergence statements are more difficult to obtain (some only recently).

Theorem + Technical conditions

Theorem

Let f be convex with unique global minimum x^* , and X a ball around x^* s.t.

(i) Bounded inverse Hessians: There exists $\mu > 0$

$$\|\nabla^2 f(x)^{-1}\| \le \frac{1}{\mu}, \quad \forall x \in X$$

(ii) Lipschitz continuous Hessians: There exists B > 0

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le B\|x - y\|, \quad \forall x, y \in X$$

Then, for $x_{k+1} = N_f(x_k)$ we have

$$||x_{k+1} - x^*|| \le \frac{B}{2u} ||x_k - x^*||^2$$

Super-exponential speed

Corollary

In the setting of previous theorem, if

$$||x_k - x^*|| \le \frac{\mu}{B},$$

then

$$||x_k - x^*|| \le \frac{\mu}{B} \left(\frac{1}{2}\right)^{2^k - 1}$$

Close to the global minimum, we will reach distance to the minumum less than ϵ in at most $\log\log(1/\epsilon)$ steps. As for the last phase of Babylonian method.

Super-exponential speed - intuition

- Almost constant Hessians close to optimality...
- ⋄ so f behaves almost like a quadratic
- on which Newton's converge in one step

Lemma

Ιf

$$||x_0-x^*||\leq \frac{\mu}{B}$$

the Hessians in Newton's method satisfy the relative error bound

$$\frac{\|\nabla^2 f(x_k) - \nabla^2 f(x^*)\|}{\|\nabla^2 f(x^*)\|} \le \left(\frac{1}{2}\right)^{2^k - 1}.$$

Proof of convergence theorem

We abbreviate
$$H = \nabla^2 f(x_k)$$
, $x = x_k$, $x^+ = x_{k+1}$
 $x^+ - x^* = x - x^* - H^{-1} \nabla f(x)$
 $= x - x^* + H^{-1} (\nabla f(x^*) - \nabla f(x))$
 $= x - x^* + H^{-1} \int_0^1 H(x + t(x^* - x))(x^* - x) dt$,

where we used the fundamental theorem of calculus

$$\int_a^b h'(t) \, \mathrm{d}t$$

with

$$h(t) = \nabla f(x + t(x^* - x))$$

$$h'(t) = \nabla^2 f(x + t(x^* - x))(x^* - x)$$

Proof of convergence theorem

We abbreviate
$$H = \nabla^2 f(x_k)$$
, $x = x_k$, $x^+ = x_{k+1}$
 $x^+ - x^* = x - x^* - H^{-1} \nabla f(x)$
 $= x - x^* + H^{-1} (\nabla f(x^*) - \nabla f(x))$
 $= x - x^* + H^{-1} \int_0^1 H(x + t(x^* - x))(x^* - x) dt$,

where we used the fundamental theorem of calculus

$$\int_a^b h'(t)\,\mathrm{d}t$$

with

$$h(t) = \nabla f(x + t(x^* - x))$$

$$h'(t) = \nabla^2 f(x + t(x^* - x))(x^* - x).$$

Proof of convergence theorem II

So far

$$x^{+} - x^{*} = x - x^{*} + H^{-1} \int_{0}^{1} H(x + t(x^{*} - x))(x^{*} - x) dt$$

With

$$x - x^* = H(x)^{-1} \int_0^1 -H(x)(x^* - x)$$

we get

$$x^{+} - x^{*} = H^{-1} \int_{0}^{1} (H(x + t(x^{*} - x)) - H(x))(x^{*} - x) dt.$$

Using norms

$$||x^+ - x^*|| \le ||H^{-1}|| \left\| \int_0^1 H(x + t(x^* - x)) - H(x)(x^* - x) dt \right\|$$

Proof of convergence theorem III

$$||x^{+} - x^{*}|| = ||H^{-1}|| \left\| \int_{0}^{1} (H(x + t(x^{*} - x)) - H(x))(x^{*} - x) dt \right\|$$

$$\leq ||H^{-1}|| ||x^{*} - x|| \int_{0}^{1} ||(H(x + t(x^{*} - x)) - H(x))|| dt$$

Use **bounded inverse Hessians** and **Lipschitz continuity** of the Hessian to conclude

$$||x^{+} - x^{*}|| \le \frac{1}{\mu} ||x^{*} - x|| \int_{0}^{1} B||t(x^{*} - x)|| dt$$
$$= \frac{B}{\mu} ||x^{*} - x||^{2} \int_{0}^{1} t dt = \frac{B}{2\mu} ||x - x^{*}||^{2}.$$

Downside of Newton's method

Computational bottleneck in every step:

- compute Hessian
- \diamond invert Hessian or solve $\nabla^2 f(x_k) \Delta x = -\nabla f(x_k)$

Matrix has size $d \times d$, taking $\mathcal{O}(d^3)$ to invert. In many applications the dimension d is large (too large to even store Hessian).

When training a ML model d is the number or parameters of our ML model (number of features for linear model).

The secant method

Another iterative method for finding zeros in 1-d. Recall Newton-Raphson:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Convergence analysis

Use finite difference approximation of $f'(x_k)$:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

We obtain the secant method:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}.$$

The secant method II

Constructs the line through $(x_{k-1}, f(x_{k-1}))$ and $(x_k, f(x_k))$

The secant method III

- is a derivative-free version of the Newton-Raphson method.
- \diamond For optimization: Apply secant method to f' to optimize f:

$$x_{k+1} = x_k - f'(x_k) \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})}.$$

vields a second-derivative free version of Newton's method.

What abouthigher dimensions? Can't divide vectors.

The secant method III

- ♦ is a *derivative-free* version of the Newton-Raphson method.
- \diamond For optimization: Apply secant method to f' to optimize f:

$$x_{k+1} = x_k - f'(x_k) \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})}.$$

vields a second-derivative free version of Newton's method.

What abouthigher dimensions? Can't divide vectors..

The secant condition

In 1-d:

$$H_{k} := \frac{f'(x_{k}) - f'(x_{k-1})}{x_{k} - x_{k-1}} \approx f''(x_{k})$$

$$\Leftrightarrow f'(x_{k}) - f'(x_{k-1}) = H_{k}(x_{k} - x_{k-1}),$$

the secant condition.

- \diamond Newton's method: $x_{k+1} = x_k f''(x_k)^{-1} f'(x_k)$
- \diamond Secant method: $x_{k+1} = x_k H_k^{-1} f'(x_k)$

Quasi-Newton methods

$$\nabla f(x_k) - \nabla f(x_{k-1}) = H_k(x_k - x_{k-1}) \approx \nabla^2 f(x_k)(x_k - x_{k-1})$$

We therefore hope that $H_k \approx \nabla^2 f(x_k)$.

Secant:
$$x_{k+1} = x_k = H_k^{-1} \nabla f(x_k)$$

- $\diamond d = 1$: unique number H_k satisfying the secant condition
- ♦ d > 0: secant condition $\nabla f(x_k) \nabla f(x_{k-1}) = H_k(x_k x_{k-1})$ has infinitely many symmetric solutions

Any scheme of choosing in each step of the secant method a symmetric H_k that satisfies the secant condition defines a Quasi-Newton method.

Quasi-Newton methods II

- Newton's method is a Quasi-Newton method if and only if f is a nondegenerate quadratic function.
- I Hence, Quasi-Newton methods do not generalize Newton's method but form a family of related algorithms.
- The first Quasi-Newton method by William C. Davidon in 1956;
- But the paper got rejected for lacking a convergence analysis,
- was finally officially published in 1991, with a foreword giving the historical context
- methods of choice in a number of relevant machine learning applications

Developing a Quasi-Newton method

- \diamond We want to avoid matrix inversion \Rightarrow directly deal with the inverse H_{ν}^{-1}
- \diamond Given: iterates x_{k-1}, x_k and matrix H_{k-1}^{-1}
- \diamond Seeking: next matrix H_k^{-1} needed in next Quasi-Newton step

$$x_{k+1} = x_k = H_k^{-1} \nabla f(x_k)$$

- \diamond How to choose H_k^{-1} ?
- ♦ Newton's method: $\nabla^2 f(x_k)$ fluctuates only very little in the region of very fast convergence.
- \diamond Makes sense to have $H_k \approx H_{k-1}$ or $H_k^{-1} \approx H_{k-1}^{-1}$

Greenstadt's family of Quasi-Newton methods

Greenstadt [Gre70]: Update

$$H_k^{-1} = H_{k-1}^{-1} + E_k,$$

with E_k an error matrix.

⋄ Try to minimize error subject to H_k satisfying the secant condition!

Simple error measure: Frobenius norm

$$||E||_F^2 := \sum_{i=1}^d \sum_{j=1}^d E_{ij}^2$$

BFGS method

- special version of Greenstadt
- is named after Broyden, Fletcher, Goldfarb and Shanno who all came up with it independently around 1970. Greenstadt's name is mostly forgotten.
- \diamond Newton's method needs to compute and invert Hessians \to cost of $\mathcal{O}(d^3)$ per iteration
- any method in Greenstadt's family avoids computation of Hessian. Only gradients are needed.
- \diamond In the BFGS method, the cost per iteration drops to $\mathcal{O}(d^2)$.
- \diamond even this can be prohibitive \rightarrow limited memory BFGS
- \diamond uses observation that we do not need H_k^{-1} , only $H_k^{-1} \nabla f(x_k)$