Aaron Schade

1 Theoretical study

2 Numerical study

Omegas – normally distributed

2.1 $r_{\infty}(K)$ – simulated vs predicted

2.1.1 Euler method

Design and initiation My implementation of the Euler method is object-oriented. This may not be the computationally most efficient way, but I'm still somewhat of a beginner with code, so I appreciate the clarity that object-oriented programming affords.

The first type of object is simply an Oscillator with three variables: ω , θ_{t-1} and θ_t . A $\Delta t = 1$ is enough in the Euler method. An Oscillator gets initiated with its natural frequency and the current-period θ . The last-period θ is initiated as zero, since the first part of making an 'Euler step' forwards is to hand over θ_t to θ_{t-1} .

The other object type is the OscPopulation . It consists of a list of Oscillators and a construction mode, namely the distribution according to which the ω s are distributed. When an OscPopulation is initiated, for each Oscillator a natural frequency and initial phase are drawn from the respective type of random distribution. An Oscillator object is then initiated with those values and assigned to a place in the list within the OscPopulation object.

Running the simulation

2.1.2 Numerical integration

The strategy to integrate the consistency equation is to loop through different values of r and check which ones make the right-hand side approximately equal to one. In a loop around this one, we cycle through the different values for K to get the values of the desired $r_{\infty}(K)$ relationship.

2.2
$$r(t)$$
 for $K = [1, 2]$

Omegas – uniformly distributed

- 2.3 $r_{\infty}(K)$
- 2.4 r(t) for different initial conditions θ_0
- 2.5 r(t) for different initial conditions ω_0