Schrödinger Bridge Problem

Bangyan Liao liaobangyan@westlake.edu.cn

Oct 2024

Outline

- 1. Background Knowledge Revisit
- 2. Schrödinger Bridge Problem
- 3. Optimality Condition of SBP
- 4. Solvers for SBP
- 5. SBP with General Prior
- 6. SBP with General Energy and Dynamics

Outline

- Background Knowledge Revisit
 Girsanov Theorem
 Path Measure
 Nelson's Duality
 SOC Perspective of OT
- 2. Schrödinger Bridge Problem
- Optimality Condition of SBF

- 4. Solvers for SBP
- 5. SBP with General Prior
- 6. SBP with General Energy and Dynamic

Theorem (Girsanov Theorem)

Given two Itô processes with the same constant volatility: $d\mathbf{x}(t) = \mathbf{b}_1(t) + \sigma \, d\beta(t)$, $\mathbf{x} = \mathbf{x}_0$ and $d\mathbf{y}(t) = \mathbf{b}_2(t) + \sigma \, d\beta(t)$, $\mathbf{y} = \mathbf{x}_0$, the RN derivative of their respective path measures \mathbb{P}, \mathbb{Q} is given by

$$\frac{d\mathbb{P}}{d\mathbb{Q}}(\cdot) = \exp\left(-\frac{1}{2\sigma^2} \int_0^t \|\mathbf{b}_1(s) - \mathbf{b}_2(s)\|^2 ds + \frac{1}{\sigma^2} \int_0^t (\mathbf{b}_1(s) - \mathbf{b}_2(s))^\top d\beta(s)\right) \quad (1)$$

where the type signature of this RN derivative is $\frac{d\mathbb{P}}{d\mathbb{O}}$: $C(T, \mathbb{R}^d) \to \mathbb{R}$.

Path Measure

Background Knowledge Recall

Definition (Path Measure)

For an Itô process of the form $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ defined in [0, T], we call $\mathbb P$ the path measure of the above process, with outcome space $\Omega = C([0, T], \mathbb R^d)$, if the distribution $\mathbb P$ describes a weak solution to the above SDE.

Nelson's Duality

Background Knowledge Recall

Let us define a forward process X_t that solves $dX_t = \mu_+(t, X_t) dt + \sigma(t, X_t) dW_t$ and a backward process $X_{\tilde{t}}$ that solves $dX_{\tilde{t}} = \mu_-(\tilde{t}, X_{\tilde{t}}) d\tilde{t} + \sigma(\tilde{t}, X_{\tilde{t}}) dW_{\tilde{t}}$. We can also define the corresponding probability measure as $p_t(x)$ and $p_{\tilde{t}}(x)$ respectively. Then, if $p_{T-t}(x) = p_{\tilde{t}}(x)$. The Nelson's Duality tells us that

$$\mu_{+}(t,x) - \mu_{-}(\tilde{t},x) = \sigma^{2} \nabla_{x} \log p_{\tilde{t}}(x) = \sigma^{2} \nabla_{x} \log p_{t}(x)$$
 (2)

Eularian & Lagrangian Formalism

SOC Perspective of OT

Theorem (Brenier-Benamou Formulation (Eularian Formalism))

$$\inf_{(\mu,\nu)} \int_0^1 \int_{\mathbb{R}^n} \frac{1}{2} \|\nu(t,x)\|^2 d\mu_t(x) dt$$

$$s.t. \quad \frac{\partial \mu_t}{\partial t} + \nabla \cdot (\nu \mu_t) = 0,$$

$$\mu_{t=0} = \mu_0, \quad \mu_{t=1} = \mu_1,$$

Theorem (SOC Formulation (Lagrangian Formalism))

$$\begin{split} \inf_{\nu} \quad \mathbb{E}\left\{\int_{0}^{1} \frac{1}{2} \|\nu(t, X_{t})\|^{2} \, \mathrm{d}t\right\} \\ s.t. \quad \mathrm{d}X_{t} &= \nu(t, X_{t}) \, \mathrm{d}t, \\ \quad X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1}, \end{split}$$

(4)

(3)

Eularian & Lagrangian Formalism

SOC Perspective of OT

Proof. (From OT to Brenier-Benamou Formulation).

Please refer the Sec. 3.3 in Stochastic control liaisons: Richard sinkhorn meets gaspard monge on a schrödinger bridge.

Proof. (From Brenier-Benamou to SOC Formulation).

Notice that

$$\mathbb{E}_{\mathbf{x}}\left\{\int_{0}^{1} \frac{1}{2} \|\nu(t, X_{t}(\mathbf{x}))\|^{2} dt\right\} = \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{1}{2} \|\nu(t, X_{t}(\mathbf{x}))\|^{2} d\mu_{0}(\mathbf{x}) dt$$
 (5)

Then, by applying the definition of push-forward operator $X_{t\#}$

$$\int f(X_t(x))d\mu_0(x) = \int f(x)d\mu_t(x)$$
 (6)

we can get the equivalent transformation.

Optimality Condition for SOC-OT

SOC Perspective of OT

Theorem (Optimality Condition for SOC-OT)

Let $\mu_t^*(x)$ with $t \in [0,1]$ and $x \in \mathbb{R}^n$, satisfy

$$\frac{\partial \mu_t^*}{\partial t} + \nabla \cdot (\mu_t^* \nabla \lambda) = 0, \quad \mu_{t=0}^* = \mu_0, \tag{7}$$

where λ is a solution of the Hamilton-Jacobi equation

$$\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 = 0 \tag{8}$$

for some boundary condition $\lambda(1,x) = \lambda_1(x)$. If $\mu_{t=1}^* = \mu_1$, then the pair (μ^*, ν^*) with $\nu^*(t,x) = \nabla \lambda(t,x)$ is the solution.

Optimality Condition for SOC-OT

SOC Perspective of OT

Proof. (Optimality Condition for SOC-OT).

Consider the unconstrained minimization of the Lagrangian

$$\mathcal{L}(\mu,\nu) = \int_0^1 \int_{\mathbb{R}^n} \left[\frac{1}{2} \|\nu(t,x)\|^2 \mu_t(x) + \lambda(t,x) \left(\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\nu \mu_t) \right) \right] dx dt$$
 (9)

where μ_t satisfies the boundary condition. Then, integrating by parts, assuming that limits for $||x|| \to \infty$ are zero, we get

$$\int_{0}^{1} \int_{\mathbb{R}^{n}} \left[\frac{1}{2} \| \nu(t, x) \|^{2} + \left(-\frac{\partial \lambda}{\partial t} - \nabla \lambda \cdot \nu \right) \right] \mu_{t}(x) dx dt
+ \int_{\mathbb{R}^{n}} \int_{0}^{1} \frac{\partial \lambda(t, x) \mu_{t}(x)}{\partial t} dt dx + \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial \lambda(t, x) \nu(t, x) \mu_{t}(x)}{\partial x} dx dt$$
(10)

Optimality Condition for SOC-OT

SOC Perspective of OT

Proof. (Optimality Condition for SOC-OT).

The last two integrals are constant for a fixed λ and can therefore be discarded. Then, we consider doing this in two stages, starting from minimization with respect to ν for a fixed flow of probability densities μ_t . Pointwise minimization of the integral at each time gives that

$$\nu_{\mu_t}^*(t,x) = \nabla \lambda(t,x) \tag{9}$$

Then, substituting this expression for the optimal control, we obtain

$$J(\mu) = -\int_{\mathbb{R}^n} \int_0^1 \left[\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 \right] \mu_t(x) dt dx$$
 (10)

In view of this, if λ satisfies the Hamilton-Jacobi equation $\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 = 0$, then $J(\mu)$ is identically zero.

SOC Perspective of OT with Prior Drift

SOC Perspective of OT

The generalization to non-trivial underlying dynamics of the form $\dot{x} = f(t,x) + \nu$ leads in a similar manner to

Theorem (SOC with Prior Drift (Eularian Formalism))

$$\inf_{(\mu,\nu)} \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{1}{2} \|\nu(t,x) - f(t,x)\|^{2} d\mu_{t}(x) dt$$
s.t.
$$\frac{\partial \mu_{t}}{\partial t} + \nabla \cdot (\nu \mu_{t}) = 0,$$

$$\mu_{t=0} = \mu_{0}, \quad \mu_{t=1} = \mu_{1},$$
(11)

Theorem (SOC with Prior Drift (Lagrangian Formalism))

$$\inf_{
u} \quad \mathbb{E}\left\{\int_{0}^{1} rac{1}{2} \|
u(t, X_{t})\|^{2} \, \mathrm{d}t
ight\}$$

$$\inf_{\nu} \mathbb{E} \left\{ \int_{0}^{\infty} \frac{1}{2} \|\nu(t, X_{t})\|^{2} dt \right\}$$
s.t. $dX_{t} = (f(t, X_{t}) + \nu(t, X_{t})) dt, \quad X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1},$

(12)

SOC Perspective of OT with Prior Drift

SOC Perspective of OT

The generalization to non-trivial underlying dynamics of the form $\dot{x} = f(t,x) + \nu$ leads in a similar manner to

Theorem (Optimality Condition for SOC-OT with prior drift)

If λ satisfies the Hamilton-Jacobi equation

$$\frac{\partial \lambda}{\partial t} + f \cdot \nabla \lambda + \frac{1}{2} \|\nabla \lambda\|^2 \tag{13}$$

and is such that the solution μ^* to

$$\frac{\partial \mu_t^*}{\partial t} + \nabla \cdot [(f + \nabla \lambda)\mu_t^*] = 0, \quad \mu_{t=0}^* = \mu_0, \tag{14}$$

satisfies the end-point condition $\mu_{t=1}^* = \mu_1$ as well, then the pair $(\mu_t^*, \nu_t^* = f_t + \nabla \lambda)$ is the solution, provided $\lambda \mu_t^*$ vanishes as $\|x\| \to \infty$ for each fixed t.

Outline

- 1. Background Knowledge Revisit
- Schrödinger Bridge Problem
 Dynamic Schrödinger Bridge Problem
 Static Schrödinger Bridge Problem
 Solution Structure of SBP
 Equivalent SBP Formulations
 Half Bridge Property
- 3. Optimality Condition of SBP

- 4. Solvers for SBP
- 5. SBP with General Prior
- 6. SBP with General Energy and Dynamic

Dynamic Schrödinger Bridge Problem Formulation

Schrödinger Bridge Problem

Definition (Dynamic Schrödinger Bridge Problem)

$$P_{\mathsf{SBP}} := \arg\min_{P \in \mathcal{D}(\mu_0, \mu_1)} \mathbb{D}(P||W^{\varepsilon}) \tag{15}$$

where W^{ε} represents the prior path measure induced by the Wiener process $\mathrm{d}X=\sqrt{\varepsilon}\mathrm{d}W$ and

$$\mathbb{D}(P||Q) = \mathbb{E}_P \left\{ \log \frac{\mathrm{d}P}{\mathrm{d}Q} \right\}, \quad \text{if } P \ll Q$$
 (16)

denotes the relative entropy (KL divergence), and

$$\mathcal{D}(\mu_0, \mu_1) = \{ P \in \mathcal{C}([0, 1], \mathbb{R}^n) | P_{t=0} = \mu_0, P_{t=1} = \mu_1 \}$$
(17)

denotes a path measure has marginal measure μ_0 and μ_1 at time t=0 and t=1, respectively.

Static Schrödinger Bridge Problem Formulation

Schrödinger Bridge Problem

Definition (Static Schrödinger Bridge Problem)

$$\{P_{\mathsf{SBP}}\}_{01} := \arg\min_{P_{01} \in \Pi(\mu_0, \mu_1)} \mathbb{D}(P_{01} || W_{01}^{\varepsilon}) \tag{18}$$

where W_{01}^{ε} represents the Wiener process induced prior path measure marginalized at time t=0 and t=1. Besides, the set of product measure defines as

$$\Pi(\mu_0, \mu_1) = \left\{ P_{01} : \mathbb{R}^n \times \mathbb{R}^n \to [0, 1] \middle| \int_{y} dP_{01}(x, y) = \mu_0(x), \int_{x} dP_{01}(x, y) = \mu_1(y) \right\}$$
(19)

Proof from Dynamic SBP to Static SBP

Schrödinger Bridge Problem

Proof. (From Dynamic SBP to Static SBP).

By applying the disintegration theorem

$$\mathbb{D}(P||W^{\varepsilon}) = \int \log\left(\frac{\mathrm{d}P}{\mathrm{d}W^{\varepsilon}}\right) \mathrm{d}P = \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W_{01}^{\varepsilon}} \frac{\mathrm{d}P_{\cdot|01}}{\mathrm{d}W_{\cdot|01}^{\varepsilon}}\right) \mathrm{d}P_{01} \mathrm{d}P_{\cdot|01}
= \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W_{01}^{\varepsilon}}\right) \mathrm{d}P_{\cdot|01} \mathrm{d}P_{01} + \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{\cdot|01}}{\mathrm{d}W_{\cdot|01}^{\varepsilon}}\right) \mathrm{d}P_{\cdot|01} \mathrm{d}P_{01}
= \int_{01} \log\left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W_{01}^{\varepsilon}}\right) \mathrm{d}P_{01} + \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{\cdot|01}}{\mathrm{d}W_{\cdot|01}^{\varepsilon}}\right) \mathrm{d}P_{\cdot|01} \mathrm{d}P_{01} \tag{20}$$

Proof from Dynamic SBP to Static SBP

Schrödinger Bridge Problem

Proof. (From Dynamic SBP to Static SBP).

notice that $\mathrm{d}P_{\cdot|01}=\mathrm{d}W^{arepsilon}_{\cdot|01}$ realizes the so-called Brownian Bridge which defined as

$$dX_{t} = \frac{1}{1-t}(x_{1} - X_{t})dt + \sqrt{\varepsilon}dW, \quad X_{t=0} = x_{0}$$

$$P(X_{t}|X_{0}) = N((1-t)x_{0} + tx_{1}, t(1-t))$$
(20)

After canceling out the last term in the dynamic SBP, we can complete the proof.

Solution Structure of SBP

Schrödinger Bridge Problem

Remarks.

► For simplicity, we can represent the path measure *P* as a distribution which evolves according to the solution of an SDE of the form

$$\mathrm{d}X_t = v_t \,\mathrm{d}t + \sqrt{\varepsilon} \mathrm{d}W \tag{21}$$

The disintegration theorem tells us that, if we have the optimal dynamic path measure P^* , then the static path measure P^*_{01} is just the start-end time marginal of the dynamic path measure. If we have the static path measure P^*_{01} , then we can always infer the dynamic path measure by applying the Brownian bridge.

Entropic OT Perspective

Equivalent SBP Formulations

Corollary (EntropicOT-SBP)

The SBP has a close connection in the optimal transport community, where the static SBP is actually equivalent to the entropic optimal transport problem as

$$\min_{\pi \in \Pi(\mu_0, \mu_1)} \int \int \frac{\|x - y\|^2}{2\varepsilon} d\pi(x, y) + \int \int \log \pi(x, y) d\pi(x, y)$$
 (22)

Entropic OT Perspective

Equivalent SBP Formulations

Proof. (EntropicOT-SBP).

Let us define the W_{01}^{ε} as a decomposition $dW_{01}^{\varepsilon}(x,y) = dq_0(x)N(y|x,\varepsilon)$. Then,

$$\begin{split} \mathbb{D}(P_{01}||W_{01}^{\varepsilon}) &= \int_{01} \log \left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W_{01}^{\varepsilon}}\right) \mathrm{d}P_{01} = \int_{01} \left(\log \mathrm{d}P_{01}\right) \, \mathrm{d}P_{01} + \int_{01} \left(\log \mathrm{d}W_{01}^{\varepsilon}\right) \, \mathrm{d}P_{01} \\ &= \int_{01} \left(\log \mathrm{d}P_{01}\right) \, \mathrm{d}P_{01} - \int_{01} \left(\log \mathrm{d}q_{0}(x)\right) \, \mathrm{d}P_{01} - \int_{01} -\frac{\|x-y\|^{2}}{2\varepsilon} \mathrm{d}P_{01} \\ \min \mathbb{D}(P_{01}||W_{01}^{\varepsilon}) &= \min \int \int \left(\log \mathrm{d}P_{01}\right) \, \mathrm{d}P_{01} + \int \int \frac{\|x-y\|^{2}}{2\varepsilon} \mathrm{d}P_{01} + \mathrm{const} \end{split}$$

Let the π represents the P_{01} , which completes the proof.

(23)

SOC Perspective

Equivalent SBP Formulations

Corollary (SOC-SBP)

Besides the entropic OT perspective, we can also view the dynamic SBP from the stochastic optimal control perspective

$$\inf_{v} \mathbb{E} \left\{ \int_{0}^{1} \frac{1}{2\varepsilon} \|v(t, X_{t})\|^{2} dt \right\}$$
s.t.
$$dX_{t} = v(t, X_{t}) dt + \sqrt{\varepsilon} dW_{t}, \quad X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1},$$
(24)

SOC Perspective

Equivalent SBP Formulations

Proof. (SOC-SBP).

By applying the Girsanov Theorem.

$$\frac{\mathrm{d}P}{\mathrm{d}W^{\varepsilon}}(\cdot) = \exp\left(\frac{1}{2\varepsilon} \int_{0}^{1} \|v_{t}(\cdot)\|^{2} \,\mathrm{d}t + \frac{1}{\varepsilon} \int_{0}^{1} v_{t}(\cdot)^{\top} \,\mathrm{d}W_{t}\right) \tag{25}$$

we have that

$$\mathbb{D}(P||W^{\varepsilon}) = \int \log\left(\frac{\mathrm{d}P}{\mathrm{d}W^{\varepsilon}}\right) \mathrm{d}P = \int \log\left(\frac{\mathrm{d}P_{0}}{\mathrm{d}W_{0}^{\varepsilon}} \frac{\mathrm{d}P_{\cdot|0}}{\mathrm{d}W_{\cdot|0}^{\varepsilon}}\right) \mathrm{d}P$$

$$= \int \log\left(\frac{\mathrm{d}P_{0}}{\mathrm{d}W_{0}^{\varepsilon}}\right) \mathrm{d}P_{0} + \int \frac{1}{2\varepsilon} \int_{0}^{1} \|v_{t}(\cdot)\|^{2} \, \mathrm{d}t + \frac{1}{\varepsilon} \int_{0}^{1} v_{t}(\cdot)^{\top} \, \mathrm{d}W_{t} \mathrm{d}P \quad (26)$$

$$= \mathbb{D}(P_{0}||W_{0}^{\varepsilon}) + \int \frac{1}{2\varepsilon} \int_{0}^{1} \|v_{t}(\cdot)\|^{2} \, \mathrm{d}t + \frac{1}{\varepsilon} \int_{0}^{1} v_{t}(\cdot)^{\top} \, \mathrm{d}W_{t} \mathrm{d}P$$

SOC Perspective

Equivalent SBP Formulations

Proof. (SOC-SBP).

Since

$$\mathbb{E}\left[\int_0^1 v_t(\cdot)^\top \,\mathrm{d}W_t\right] = 0,\tag{25}$$

then

$$\arg\min \mathbb{D}(P_{01}||W_{01}^{\varepsilon}) = \arg\min \mathbb{E}\left[\frac{1}{2\varepsilon} \int_{0}^{1} \|v_{t}(\cdot)\|^{2} dt\right]$$
 (26)

which completes the proof.

Backward SOC Perspective

Equivalent SBP Formulations

Corollary (Backward SOC-SBP)

Besides the entropic OT perspective, we can also view the dynamic SBP from the stochastic optimal control perspective

$$\inf_{v^{-}} \mathbb{E} \left\{ \int_{0}^{1} \frac{1}{2\varepsilon} \|v^{-}(t, X_{t})\|^{2} dt \right\}$$

$$s.t. \quad dX_{t} = v^{-}(t, X_{t}) dt + \sqrt{\varepsilon} dW_{t}, \quad X_{1} \sim \mu_{0}, \quad X_{0} \sim \mu_{1},$$

$$(27)$$

Fluid Dynamic Perspective

Equivalent SBP Formulations

Corollary (FD-SBP)

The stochastic optimal control perspective of SBP leads an equivalent fluid dynamic perspective.

$$\min_{(\mu_t, v)} \int_0^1 \int_{\mathbb{R}^n} \frac{1}{2\varepsilon} \|v(t, x)\|^2 d\mu_t(x) dt,$$

$$s.t. \frac{\partial \mu_t}{\partial t} + \nabla \cdot (v\mu_t) - \frac{\varepsilon}{2} \Delta \mu_t = 0, \quad \mu_{t=0} = \mu_0, \ \mu_{t=1} = \mu_1,$$
(28)

Dynamic Entropic OT Perspective

Equivalent SBP Formulations

Corollary (DynamicEOT-SBP)

We can also present a dynamic version for entropic optimal transport SBP as

$$\inf_{(\mu_t, \nu)} \int_0^1 \int_{\mathbb{R}^n} \left[\frac{1}{2\varepsilon} \| \nu(t, x) \|^2 + \frac{\varepsilon}{8} \| \nabla \log \mu_t \|^2 \right] d\mu_t(x) dt,$$

$$\text{s.t.} \frac{\partial \mu_t}{\partial t} + \nabla \cdot (\nu \mu_t) = 0, \quad \mu_{t=0} = \mu_0, \ \mu_{t=1} = \mu_1,$$
(29)

Half Bridge Property

Half Bridge Property

Definition (Forward Half Schrödinger Bridge Problem)

$$P_{\mathsf{FH-SBP}} := \arg\min_{P \in \mathcal{D}(\mu_0, \cdot)} \mathbb{D}(P||W^{\varepsilon}) \tag{30}$$

Definition (Backward Half Schrödinger Bridge Problem)

$$P_{\mathsf{BH-SBP}} := \arg\min_{P \in \mathcal{D}(\cdot, \mu_1)} \mathbb{D}(P||W^{\varepsilon}) \tag{31}$$

Theorem (Forward Half SBP Solution Structure)

$$\mathbb{P}^*(A_0 \times A_{(0,1]}) = \int_{A_0 \times A_{(0,1]}} \frac{d\mu_0}{d\rho_0^{W^{\varepsilon}}} dW^{\varepsilon}.$$
 (32)

Theorem (Backward Half SBP Solution Structure)

$$\mathbb{P}^*(A_{[0,1)} \times A_1) = \int_{A_{[0,1)} \times A_1} \frac{d\mu_1}{d\rho_1^{W^{\varepsilon}}} dW^{\varepsilon}. \tag{33}$$

Proof for Half SBP Solution Structure

Half Bridge Property

Proof for Forward Half SBP Solution Structure.

Via the disintegration theorem, we have the following decomposition of KL:

$$\mathbb{D}(P\|W^{\varepsilon}) = \mathbb{D}(p_0^P\|p_0^W) + \mathbb{E}_p[\mathbb{D}(P(\cdot|x)\|W^{\varepsilon}(\cdot|x))]. \tag{34}$$

Thus, via matching terms accordingly, we can construct P^* by setting $P(\cdot|x) = W^{\varepsilon}(\cdot|x)$ and matching the constraints:

$$P^{*}(A_{0} \times A_{(0,1]}) = \int_{A_{0} \times A_{(0,1]}} W^{\varepsilon}(A_{(0,1]}|x) d\mu_{0}(x),$$

$$P^{*} = \int_{A_{0}} \frac{d\mu_{0}}{dp_{0}^{W^{\varepsilon}}}(x) W^{\varepsilon}(\cdot|x) dp_{0}^{W^{\varepsilon}(x)} = \int_{A_{0} \times A_{(0,1]}} \frac{d\mu_{0}}{dp_{0}^{W^{\varepsilon}}}(x) dW^{\varepsilon}.$$
(35)

27 / 54

Outline

- 1. Background Knowledge Revisit
- 2. Schrödinger Bridge Problem
- 3. Optimality Condition of SBP
 Optimality Condition (SOC)
 Optimality Condition (Lagrange Function)
 Schrödinger System
 Optimality Condition (SDE)
 Optimality Condition (SS-SDE)
 Optimality Condition (FB-SDE)

- 4. Solvers for SBP
- 5. SBP with General Prior
- 6. SBP with General Energy and Dynamic

Optimality Condition (SOC)

Optimality Condition of SBP

Theorem (Optimality Condition of SBP (SOC))

In the following, we give the optimality condition for SBP.

$$\begin{aligned} &\frac{\partial V_t}{\partial t} - \frac{\varepsilon}{2} \|\nabla V_t\|^2 + \frac{\varepsilon}{2} \Delta V_t = 0\\ &\frac{\partial \mu_t}{\partial t} + \nabla \cdot (v_t \mu_t) - \frac{\varepsilon}{2} \Delta \mu_t = 0 \end{aligned}$$

where the optimal policy (control)

$$v_t^* = -\sqrt{\varepsilon} \, \nabla V_t(X_t) \tag{37}$$

(36)

Optimality Condition of SBP

Proof.

Recall the Itô Lemma for SDE $dX_t = u(X_t, t) dt + \sqrt{\varepsilon} dW_t$:

$$dV(X_t, t) = \frac{\partial V(X_t, t)}{\partial t} dt + \frac{\partial V(X_t, t)}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 V(X_t, t)}{\partial x^2} (dX_t)^2$$

$$= \frac{\partial V_t}{\partial t} dt + \mathcal{L}V(x, t) dt + \nabla V_t(x) \cdot \sqrt{\varepsilon} dW_t$$
(38)

where the $\mathcal{L}V(x,t)$ is the generator which defines as

$$\mathcal{L}V(x,t) = \nabla V_t(x) \cdot u(X_t,t) + \frac{\varepsilon}{2} \operatorname{Trace}\left[\nabla^2 V_t(x)\right]$$
 (39)

Optimality Condition of SBP

Proof.

Recall the proof of HJB equation in the optimal control section. The key step is

$$V(s, \mathbf{z}) = \inf_{\theta} \left\{ \int_{s}^{s+\Delta s} L(t, \mathbf{x}(t), \theta(t)) dt + V(s + \Delta s, \mathbf{x}(s + \Delta s)) \right\}$$

$$\approx \inf_{\theta} \left\{ L(s, \mathbf{z}, \theta(s)) \Delta s + V(s + \Delta s, \mathbf{x}(s + \Delta s)) \right\}$$

$$\approx \inf_{\theta} \left\{ L(s, \mathbf{z}, \theta(s)) \Delta s + V(s, \mathbf{x}(s)) + \partial_{s} V(s, \mathbf{z}) \Delta s + [\nabla_{\mathbf{z}} V(s, \mathbf{z})]^{\top} f(s, \mathbf{z}, \theta(s)) \Delta s \right\}$$

$$\dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t), \theta(t)), \quad t \in [s, \tau], \quad \mathbf{x}(s) = \mathbf{z}$$

$$(38)$$

Optimality Condition of SBP

Proof.

Similarly, we can derive the HJB equation for SOC as:

$$V(X_{s}, s) = \inf_{u} \mathbb{E} \left\{ \int_{s}^{s+\Delta s} w(X_{t}, u, t) dt + V(X_{s+\Delta s}, s + \Delta s) \right\}$$

$$\approx \inf_{u} \mathbb{E} \left\{ w(X_{s}, u, s) \Delta s + V(X_{s+\Delta s}, s + \Delta s) \right\}$$

$$\approx \inf_{u} \mathbb{E} \left\{ w(X_{t}, u, t) \Delta s + V(X_{s}, s) + \partial_{s} V(\mathbf{z}, s) \Delta s + \mathcal{L} V(\mathbf{z}, s) \Delta s + \nabla V_{s}(\mathbf{z}) \cdot \sqrt{\varepsilon} \Delta dW_{s} \right\}$$

$$dX_{t} = u(X_{t}, t) dt + \sqrt{\varepsilon} dW_{t}, \quad t \in [s, \tau], \quad X_{s} = \mathbf{z}$$

$$(38)$$

Optimality Condition of SBP

Proof.

Then, the HJB equation for this problem is

$$\frac{\partial V(x,t)}{\partial t} + \min_{u \in \mathcal{U}} \left\{ \mathcal{L}V(x,t) + \frac{\|u(x,t)\|^2}{2\varepsilon} \right\} = 0, V(x,T) = 0.$$
 (38)

Then, the optimal $u_t = -\varepsilon \nabla V_t$, substitute this optimal control, we can complete the proof.

Optimality Condition (Lagrange Function)

Optimality Condition of SBP

Theorem (Optimality Condition of SBP (Lagrange Function))

In the following, we give the optimality condition for SBP.

$$\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda = 0$$

$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (v_t \mu_t) - \frac{\varepsilon}{2} \Delta \mu_t = 0$$
(39)

where the optimal policy (control)

$$v_t^* = \nabla \lambda(X_t) \tag{40}$$

Proof from Lagrange Function

Optimality Condition of SBP

Proof.

We can also prove the same results from the Lagrange function. Consider the unconstrained minimization of the Lagrangian

$$\mathcal{L}(\mu, \nu) = \int_{0}^{1} \int_{\mathbb{R}^{n}} \left[\frac{1}{2} \| \nu(t, x) \|^{2} \mu_{t}(x) + \lambda(t, x) \left(\frac{\partial \mu_{t}}{\partial t} + \nabla \cdot (\nu \mu_{t}) - \frac{\varepsilon}{2} \Delta \mu_{t} \right) \right] dx dt$$
(41)

where μ_t satisfies the boundary condition. Then, integrating by parts, assuming that limits for $\|x\| \to \infty$ are zero, we get

Proof from Lagrange Function

Optimality Condition of SBP

Proof.

where μ_t satisfies the boundary condition. Then, integrating by parts, assuming that limits for $||x|| \to \infty$ are zero, we get

$$\int_{0}^{1} \int_{\mathbb{R}^{n}} \left[\frac{1}{2} \| v(t,x) \|^{2} - \left(\frac{\partial \lambda}{\partial t} + \nabla \lambda \cdot \nu + \frac{\varepsilon}{2} \Delta \lambda \right) \right] \mu_{t}(x) dx dt
+ \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\mu_{t}(x)]}{\partial t} dx dt + \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\nu(t,x)\mu_{t}(x)]}{\partial x} dx dt
- \frac{\varepsilon}{2} \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\partial\mu_{t}(x)]}{\partial x} dx dt + \frac{\varepsilon}{2} \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\mu_{t}(x)]}{\partial x} dx dt$$
(41)

Proof from Lagrange Function

Optimality Condition of SBP

Proof.

The last four integrals are constant for a fixed λ and can therefore be discarded. Then, we consider doing this in two stages, starting from minimization with respect to ν for a fixed flow of probability densities μ_t . Pointwise minimization of the integral at each time gives that

$$\nu_{\mu_t}^*(t,x) = \nabla \lambda(t,x) \tag{41}$$

Then, substituting this expression for the optimal control, we obtain

$$J(\mu) = -\int_{\mathbb{R}^n} \int_0^1 \left[\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda \right] \mu_t(x) dt dx \tag{42}$$

In view of this, if λ satisfies the Hamilton-Jacobi equation $\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda = 0$, then $J(\mu)$ is identically zero.

Schrödinger System

Optimality Condition of SBP

Theorem (Schrödinger System)

$$\begin{cases} \frac{\partial \Phi}{\partial t} = -\frac{\varepsilon}{2} \Delta \Phi \\ \frac{\partial \Phi}{\partial t} = \frac{\varepsilon}{2} \Delta \hat{\Phi} \end{cases} \quad \text{s.t.} \quad \Phi(0, \cdot) \hat{\Phi}(0, \cdot) = \mu_0, \quad \Phi(1, \cdot) \hat{\Phi}(1, \cdot) = \mu_1. \tag{43}$$

where

$$\hat{\Phi}(1,y) = \int p(0,x,1,y) \,\hat{\Phi}(0,x) \,\mathrm{d}x, \quad \Phi(0,x) = \int p(0,x,1,y) \,\Phi(1,y) \,\mathrm{d}y \qquad (44)$$

Optimality Condition of SBP

Proof.

By applying the Hopf-Cole transform $(\lambda, \mu_t) \to (\Phi, \hat{\phi})$,

$$\Phi = \exp\left(\frac{\lambda}{\varepsilon}\right) \quad \text{and} \quad \hat{\Phi} = \mu_t \exp\left(\frac{-\lambda}{\varepsilon}\right),$$
 (45)

1) For the first equation,

$$\frac{1}{\varepsilon} \exp\left(\frac{\lambda}{\varepsilon}\right) \frac{\partial \lambda}{\partial t} = -\frac{1}{2\varepsilon} \exp\left(\frac{\lambda}{\varepsilon}\right) \|\nabla \lambda\|^2 - \frac{1}{2} \exp\left(\frac{\lambda}{\varepsilon}\right) \Delta \lambda
\frac{\partial \lambda}{\partial t} = -\frac{1}{2} \|\nabla \lambda\|^2 - \frac{\varepsilon}{2} \Delta \lambda$$
(46)

Optimality Condition of SBP

Proof.

2) For the second equation,

$$\begin{split} \frac{\partial \mu_t}{\partial t} & \exp\left(-\frac{\lambda}{\varepsilon}\right) + \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \frac{\partial \lambda}{\partial t} \\ & = \frac{\varepsilon}{2} \frac{\partial}{\partial x} \left[\nabla \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) + \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \nabla \lambda \right] \\ & = \frac{\varepsilon}{2} \Delta \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) + \frac{\varepsilon}{2} \nabla \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \nabla \lambda \\ & + \frac{\varepsilon}{2} \nabla \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \nabla \lambda + \frac{\varepsilon}{2} \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(\frac{1}{\varepsilon^2}\right) \|\nabla \lambda\|^2 \\ & + \frac{\varepsilon}{2} \mu_t \, \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \Delta \lambda \end{split}$$

34 / 54

Optimality Condition of SBP

Proof.

$$\frac{\partial \mu_{t}}{\partial t} + \mu_{t} \left(-\frac{1}{\varepsilon} \right) \frac{\partial \lambda}{\partial t} =$$

$$\frac{\varepsilon}{2} \Delta \mu_{t} + \frac{\varepsilon}{2} \nabla \mu_{t} \left(-\frac{1}{\varepsilon} \right) \nabla \lambda + \frac{\varepsilon}{2} \nabla \mu_{t} \left(-\frac{1}{\varepsilon} \right) \nabla \lambda$$

$$+ \frac{\varepsilon}{2} \mu_{t} \left(\frac{1}{\varepsilon^{2}} \right) \|\nabla \lambda\|^{2} + \frac{\varepsilon}{2} \mu_{t} \left(-\frac{1}{\varepsilon} \right) \Delta \lambda$$
(45)

substitute the equation $\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda = 0$ into the above equation

Optimality Condition of SBP

Proof.

$$\frac{\partial \mu_{t}}{\partial t} + \mu_{t} \left(-\frac{1}{\varepsilon} \right) \frac{\partial \lambda}{\partial t} =$$

$$\frac{\partial \mu_{t}}{\partial t} + \frac{\mu_{t}}{\varepsilon} \left(\frac{1}{2} \|\nabla \lambda\|^{2} + \frac{\varepsilon}{2} \Delta \lambda \right) = \frac{\varepsilon}{2} \Delta \mu_{t} + \frac{\varepsilon}{2} \nabla \mu_{t} \left(-\frac{1}{\varepsilon} \right) \nabla \lambda + \frac{\varepsilon}{2} \nabla \mu_{t} \left(-\frac{1}{\varepsilon} \right) \nabla \lambda$$

$$+ \frac{\varepsilon}{2} \mu_{t} \left(\frac{1}{\varepsilon^{2}} \right) \|\nabla \lambda\|^{2} + \frac{\varepsilon}{2} \mu_{t} \left(-\frac{1}{\varepsilon} \right) \Delta \lambda$$

$$\frac{\partial \mu_{t}}{\partial t} = \frac{\varepsilon}{2} \Delta \mu_{t} - \nabla \mu_{t} \nabla \lambda - \mu_{t} \Delta \lambda$$
(45)

which completes the proof.

Optimality Condition of SBP

Proof.

3) The Lagrangian function of static SBP has the form

$$\mathcal{L}(P_{01}, \lambda, \mu) = \int \int \log \left(\frac{P_{01}(x, y)}{W_{01}^{\varepsilon}(x, y)} \right) P_{01}(x, y) dx dy$$

$$+ \int \lambda(x) \left[\int P_{01}(x, y) dy - \mu_0(x) \right] dx + \int \mu(y) \left[\int P_{01}(x, y) dx - \mu_1(y) \right] dy$$
(45)

Setting the first variation equal to zero, we get the sufficient optimality condition

$$1 + \log P_{01}^*(x, y) - \log q_0(x) - \log p(0, x, 1, y) + \lambda(x) + \mu(y) = 0$$
 (46)

where we have used the expression $W_{01}^{\varepsilon}(x,y)=q_0(x)\,p(0,x,1,y).$

Optimality Condition of SBP

Proof.

Then, we get

$$\frac{P_{01}^{*}(x,y)}{p(0,x,1,y)} = \exp\left[\log \mu_{0}^{W}(x) - 1 - \lambda(x) - \mu(y)\right]
= \exp\left[\log \mu_{0}^{W}(x) - 1 - \lambda(x)\right] \exp\left[-\mu(y)\right]
= \hat{\Phi}(x)\Phi(y)$$
(45)

Then, the optimal $P_{01}^*(x,y)$ has then the form

$$P_{01}^{*}(x,y) = \hat{\Phi}(x) \, p(0,x,1,y) \, \Phi(y) \tag{46}$$

Optimality Condition of SBP

Proof

with Φ and $\hat{\Phi}$ satisfying

$$\hat{\Phi}(x) \int p(0, x, 1, y) \, \Phi(y) \, dy = \mu_0(x), \quad \Phi(y) \int p(0, x, 1, y) \, \hat{\Phi}(x) \, dx = \mu_1(y) \quad (45)$$
Let $\hat{\Phi}(0, x) = \hat{\Phi}(x), \Phi(1, y) = \Phi(y)$ and

et
$$\Phi(0,x) = \Phi(x), \Phi(1,y) = \Phi(y)$$
 and

with the boundary conditions

$$\hat{\Phi}(0,x) = \Phi(x), \Phi(1,y) = \Phi(y)$$
 and $\hat{\Phi}(1,y) = \int p(0,x,1,y) \,\hat{\Phi}(0,x) \,\mathrm{d}x, \quad \Phi(0,x) = \int p(0,x,1,y) \,\Phi(1,y) \,\mathrm{d}y$

 $\Phi(0,x) \cdot \hat{\Phi}(0,x) = \mu_0(x), \quad \Phi(1,y) \cdot \hat{\Phi}(1,y) = \mu_1(y).$

Optimality Condition (SDE)

Optimality Condition of SBP

Theorem (Optimality Condition of SBP (SDE))

$$dX_t = \varepsilon \nabla \log \Phi \, dt + \sqrt{\varepsilon} \, dW_t, \quad X_0 \sim \mu_0, \quad X_1 \sim \mu_1 \tag{48}$$

$$d\bar{X}_s = \varepsilon \nabla \log \hat{\Phi} \, ds + \sqrt{\varepsilon} \, d\bar{W}_s, \quad \bar{X}_0 \sim \mu_1, \quad \bar{X}_1 \sim \mu_0 \tag{49}$$

where \bar{X} and \bar{W} represents the reverse process. In fact, the stochastic processes in Eq. 48 and Eq. 49 share the same marginal densities $p_t^{(48)} = p_s^{(49)} = p_t^{SB}$. Besides, its marginal density obeys a factorization principle $p_t^{SB}(X_t) = \Phi(t, X_t) \hat{\Phi}(s, X_s)$.

Optimality Condition (Schrödinger System SDE)

Optimality Condition of SBP

Theorem (Optimality Condition of SBP (SS-SDE))

We can get the SDE-based interpretation of the Schrödinger System as

$$dX_t = \sqrt{\varepsilon} \, dW_t, \quad X_0 \, \sim \, \Phi(0), \tag{50}$$

$$d\bar{X}_s = \sqrt{\varepsilon} \, d\bar{W}_s, \quad \bar{X}_1 \sim \hat{\Phi}(1).$$
 (51)

where \bar{X} and \bar{W} represents the reverse process. In fact, the score functions of stochastic processes in Eq. 50 and Eq. 51 are $\nabla \log \Phi$ and $\nabla \log \hat{\Phi}$, respectively.

Optimality Condition (FB-SDE)

Optimality Condition of SBP

Theorem (Optimality Condition (FB-SDE))

Consider the following equations

$$dX_{t} = (gZ_{t})dt + gdW_{t} \quad dY_{t} = \frac{1}{2}Z_{t}^{\top}Z_{t}dt + Z_{t}^{\top}dW_{t}$$

$$d\hat{Y}_{t} = \left(\frac{1}{2}\hat{Z}_{t}^{\top}\hat{Z}_{t} + \nabla_{x} \cdot (g\hat{Z}_{t}) + \hat{Z}_{t}^{\top}Z_{t}\right)dt + \hat{Z}_{t}^{\top}dW_{t}$$
(52)

where the boundary condition are given by $X_0 = x_0$ and $Y_T + \hat{Y}_T = \log p_{prior}(X_T)$. Then, the nonlinear Feynman-Kac relations are given by

$$Y_{t} = \log \Phi(t, X_{t}), \quad Z_{t} = g \nabla_{x} \log \Phi(t, X_{t})$$

$$\hat{Y}_{t} = \log \hat{\Phi}(t, X_{t}), \quad \hat{Z}_{t} = g \nabla_{x} \log \hat{\Phi}(t, X_{t})$$
(53)

Furthermore, (Y_t, \hat{Y}_t) obey that $Y_t + \hat{Y}_t = \log p_t^{SB}(X_t)$.

Outline

- 1. Background Knowledge Revisit
- 2. Schrödinger Bridge Problen
- 3. Optimality Condition of SBP

- 4. Solvers for SBP
 Fortet's Iterative Procedure
 IPFP
 g-IPFP
- 5. SBP with General Prior
- 6. SBP with General Energy and Dynamics

Fortet's Iterative Procedure

Solvers for SBP

```
Algorithm 2: Fortet's Iterative Procedure
     input: \pi_0(\boldsymbol{x}), \pi_1(\boldsymbol{y}), p(\boldsymbol{y}|\boldsymbol{x})
1 Initialise \phi_0^{(0)}(\boldsymbol{x}) such that \phi_0^{(0)}(\boldsymbol{x}) \ll \pi_0(\boldsymbol{x})
2 repeat
         \hat{\phi}_0^{(i)}(oldsymbol{x}) := rac{\pi_0(oldsymbol{x})}{\phi_0^{(i)}(oldsymbol{x})}
\mathbf{4} \qquad \hat{\phi}_1^{(i)}(\mathbf{y}) := \int p(\mathbf{y}|\mathbf{x}) \hat{\phi}_0^{(i)}(\mathbf{x}) d\mathbf{x}
\phi_1^{(i)}(oldsymbol{y}) := rac{\pi_1(oldsymbol{y})}{\hat{\phi}_1^{(i)}(oldsymbol{y})}
\phi_0^{(i+1)}(\boldsymbol{x}) := \int p(\boldsymbol{y}|\boldsymbol{x})\phi_1^{(i)}(\boldsymbol{y})d\boldsymbol{y}
              i := i + 1
s until convergence;
9 return \hat{\phi}_0^{(i)}(\boldsymbol{x}), \phi_1^{(i)}(\boldsymbol{y})
```

Figure: Fortet's Iterative Procedure

Alternating half bridges (Kullback (1968) IPFP)

Solvers for SBP

```
Algorithm 3: Alternating half bridges (Kullback (1968) IPFP)
         input: \pi_0(\boldsymbol{x}), \pi_1(\boldsymbol{y}), p(\boldsymbol{y}|\boldsymbol{x})
   1 Initialise:
  2 p_1^{\mathbb{W}^{\gamma}}(\boldsymbol{y}) such that p_1^{\mathbb{W}^{\gamma}}(\boldsymbol{y}) << \pi_1(\boldsymbol{y})
  g_0^*(oldsymbol{x},oldsymbol{y}) := p^{\mathbb{W}^\gamma}(oldsymbol{x},oldsymbol{y})
  4 i = 0
   5 repeat
  6 i := i + 1
   \begin{array}{c|c} \mathbf{7} & p_i^*(\boldsymbol{x}, \boldsymbol{y}) = \inf_{p(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}(\cdot, \pi_1)} D_{\mathrm{KL}}(p(\boldsymbol{x}, \boldsymbol{y}) || p_{i-1}^*(\boldsymbol{x}, \boldsymbol{y})) \\ \mathbf{8} & q_i^*(\boldsymbol{x}, \boldsymbol{y}) = \inf_{q(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}(\pi_0, \cdot)} D_{\mathrm{KL}}(q(\boldsymbol{x}, \boldsymbol{y}) || p_i^*(\boldsymbol{x}, \boldsymbol{y})) \end{array} 
  9 until convergence:
10 return q_i^*(\boldsymbol{x}, \boldsymbol{y}), p*_i(\boldsymbol{x}, \boldsymbol{y})
```

Figure: Alternating half bridges (Kullback (1968) IPFP)

g-IPFP (Cramer, 2000)

Solvers for SBP

```
Algorithm 4: g-IPFP (Cramer, 2000)
    input: \pi_0(\boldsymbol{x}), \pi_1(\boldsymbol{y}), \mathbb{W}^{\gamma}
1 Initialise:
\mathbb{Q}_0^* = \mathbb{W}^{\gamma}
i = 0
4 repeat
i := i + 1
\mathbf{6} \mid \mathbb{P}_i^* = \inf_{\mathbb{P} \in \mathcal{D}(\cdot, \pi_1)} D_{\mathrm{KL}}(\mathbb{P}||\mathbb{Q}_{i-1}^*)
7 \mathbb{Q}_i^* = \inf_{\mathbb{Q} \in \mathcal{D}(\pi_{0},\cdot)} D_{\mathrm{KL}}(\mathbb{Q}||\mathbb{P}_i^*)
s until convergence;
9 return \mathbb{Q}_i^*, \mathbb{P}_i^*
```

Figure: g-IPFP (Cramer, 2000)

Outline

- 1. Background Knowledge Revisit
- 2. Schrödinger Bridge Problem
- 3. Optimality Condition of SBP

- 4. Solvers for SBP
- SBP with General Prior SBP with General Prior Optimality Condition
- 6. SBP with General Energy and Dynamics

SBP with General Prior

SBP with General Prior

Definition (Dynamic SBP)

$$P_{\mathsf{SBP}} := \mathit{arg} \min_{P \in \mathscr{D}(\mu_0, \mu_1)} \mathbb{D}(P || ilde{P})$$

(54)

(55)

(56)

43 / 54

where \hat{P} represents the prior path measure induced by the stochastic differential equation $\mathrm{d}X_t = f(t,X_t)\,\mathrm{d}t + \sqrt{\varepsilon}\,\mathrm{d}W_t$ and

$$\mathbb{D}(P|| ilde{P}) = \mathbb{E}_P \left\{ \log rac{\mathrm{d}P}{\mathrm{d} ilde{P}}
ight\}, \quad \mathsf{if}P \ll ilde{P}$$

denotes the relative entropy (KL divergence), and

denotes a path measure has marginal measure μ_0 and μ_1 at time t=0 and t=1, respectively.

 $\mathcal{D}(\mu_0, \mu_1) = \{ P \in \mathcal{C}([0, 1], \mathbb{R}^n) | P_{t=0} = \mu_0, P_{t=1} = \mu_1 \}$

SBP with General Prior

SBP with General Prior

Corollary (SOC-SBP)

$$\inf_{\mathbf{v}} \mathbb{E} \left\{ \int_{0}^{1} \frac{1}{2\varepsilon} \|\mathbf{v}(t, X_{t})\|^{2} dt \right\}$$
s.t.
$$dX_{t} = [f(t, X_{t}) + \mathbf{v}(t, X_{t})] dt + \sqrt{\varepsilon} dW_{t}, \quad X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1},$$

$$(57)$$

44 / 54

Corollary (DynamicEOT-SBP)

Let

$$\tilde{v}(t,x) = f(t,x) - \frac{\varepsilon}{2} \nabla \log \tilde{\mu}_t(t,x)$$
 (58)

be the velocity of the prior process. We can also present a dynamic version for entropic optimal transport SBP as

$$\inf_{(\mu_t, v)} \int_0^1 \int_{\mathbb{R}^n} \left[\frac{1}{2\varepsilon} \|v(t, x) - \tilde{v}(t, x)\|^2 + \frac{\varepsilon}{8} \|\nabla \log \frac{\mu(t, x)}{\tilde{\mu}(t, x)}\|^2 \right] d\mu_t(x) dt,$$

$$s.t. \frac{\partial \mu_t}{\partial t} + \nabla \cdot (v\mu_t) = 0, \quad \mu_{t=0} = \mu_0, \, \mu_{t=1} = \mu_1,$$
(59)

Theorem (Optimality Condition)

let us consider a general Markovian prior measure \tilde{P} which induced by a forward SDE $dX_t = f(t, X_t) dt + \sqrt{\varepsilon} dW_t$. Then the corresponding optimality condition defines as

$$\begin{cases} \frac{\partial \Phi}{\partial t} = -\frac{\varepsilon}{2} \Delta \Phi - f \cdot \nabla \Phi \\ \frac{\partial \hat{\Phi}}{\partial t} = \frac{\varepsilon}{2} \Delta \hat{\Phi} - \nabla \cdot (f \hat{\Phi}) \end{cases} \quad \text{s.t.} \quad \Phi(0, \cdot) \hat{\Phi}(0, \cdot) = \mu_0, \quad \Phi(1, \cdot) \hat{\Phi}(1, \cdot) = \mu_1. \quad (60)$$

Theorem (Optimality Condition (SDE))

$$dX_t = [+f + \varepsilon \nabla \log \Phi] dt + \sqrt{\varepsilon} dW_t, \quad X_0 \sim \mu_0, \quad X_1 \sim \mu_1$$
 (61)

$$d\bar{X}_s = [-f + \varepsilon \nabla \log \hat{\Phi}] ds + \sqrt{\varepsilon} d\bar{W}_s, \quad \bar{X}_0 \sim \mu_1, \quad \bar{X}_1 \sim \mu_0$$
 (62)

where \bar{X} and \bar{W} represents the reverse process. In fact, the stochastic processes in Eq. 61 and Eq. 62 share the same marginal densities $p_t^{(61)} = p_s^{(62)} = p_t^{SB}$. Besides, its marginal density obeys a factorization principle $p_t^{SB}(X_t) = \Phi(t, X_t) \hat{\Phi}(s, X_s)$.

Optimality Condition

SBP with General Prior

Theorem (Optimality Condition (FB-SDE))

Consider the following equations

$$egin{aligned} dX_t &= (f+gZ_t)dt + gdW_t \quad dY_t = rac{1}{2}Z_t^ op Z_t dt + Z_t^ op dW_t \ d\hat{Y}_t &= \left(rac{1}{2}\hat{Z}_t^ op \hat{Z}_t +
abla_ imes (g\hat{Z}_t - f) + \hat{Z}_t^ op Z_t
ight) dt + \hat{Z}_t^ op dW_t \end{aligned}$$

where the boundary condition are given by $X_0=x_0$ and $Y_T+\hat{Y}_T=\log p_{prior}(X_T)$. Then, the nonlinear Feynman-Kac relations are given by

$$Y_{t} = \log \Phi(t, X_{t}), \quad Z_{t} = g \nabla_{x} \log \Phi(t, X_{t})$$

$$\hat{Y}_{t} = \log \hat{\Phi}(t, X_{t}), \quad \hat{Z}_{t} = g \nabla_{x} \log \hat{\Phi}(t, X_{t})$$
(64)

Furthermore, (Y_t, \hat{Y}_t) obey that $Y_t + \hat{Y}_t = \log p_t^{SB}(X_t)$.

(63)

Outline

- 1. Background Knowledge Revisit
- 2. Schrödinger Bridge Problem
- 3. Optimality Condition of SBP

- 4. Solvers for SBP
- 5. SBP with General Prior
- 6. SBP with General Energy and Dynamics General Energy and Dynamics SBP with General Energy and Dynamics Optimality Condition

General Energy and Dynamics

General Energy and Dynamics

Consider a more general dynamics

$$dX_t = f(t, X_t) dt + \sigma(t, X_t) dW_t,$$
(65)

which are absorbed at some rate by the medium in which they travel or, if the sign of V is negative, are created out of this same medium.

And the corresponding transport-diffusion equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (f(t, x)\rho) + V(t, x)\rho = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2}(a_{ij}(t, x)\rho)}{\partial x_{i}\partial x_{j}}$$

$$a_{ij}(t, x) = \sum_{k} \sigma_{ik}(t, x)\sigma_{kj}(t, x)$$
(66)

Definition (FD-SBP with General Energy and Dynamics)

$$\inf_{(\rho,u)} \int_{\mathbb{R}^n} \int_0^1 \left[\frac{1}{2} ||u||^2 + V(t,x) \right] \rho(t,x) dt dx,$$
s.t.
$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left((f + \sigma u)\rho \right) = \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 (a_{ij}\rho)}{\partial x_i \partial x_j},$$

$$\rho(0,x) = \rho_0(x), \qquad \rho(1,x) = \rho_1(x).$$
(67)

Lagrange Function

Optimality Condition

If ρ^* satisfies

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left((f + a \nabla \lambda) \rho \right) = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} (a_{ij} \rho)}{\partial x_{i} \partial x_{j}}, \tag{68}$$

with λ a solution of the HJB-like equation

$$\frac{\partial \lambda}{\partial t} + f \cdot \nabla \lambda + \frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(t,x) \frac{\partial^{2} \lambda}{\partial x_{i} \partial x_{j}} + \frac{1}{2} \nabla \lambda \cdot a \nabla \lambda - V = 0, \tag{69}$$

and $\rho^*(1,\cdot)=\rho_1(\cdot)$, then the pair (ρ^*,u^*) with $u^*=\sigma'\nabla\lambda$ is an optimal solution.

Forward-Backward System

Optimality Condition

$$\frac{\partial \varphi}{\partial t} + f \cdot \nabla \varphi + \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}} = V \varphi, \tag{70a}$$

$$\frac{\partial \hat{\varphi}}{\partial t} + \nabla \cdot (f\hat{\varphi}) - \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2}(a_{ij}\hat{\varphi})}{\partial x_{i}\partial x_{j}} = -V\hat{\varphi}, \tag{70b}$$

nonlinearly coupled through their boundary values as

$$\varphi(0,\cdot)\hat{\varphi}(0,\cdot) = \rho_0(\cdot), \qquad \varphi(1,\cdot)\hat{\varphi}(1,\cdot) = \rho_1(\cdot). \tag{71}$$

Reference

- ► Machine-learning approaches for the empirical Schrodinger bridge problem
- Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schroedinger bridge
- Optimal Transport in Systems and Control
- On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint