1 Uvod v teorijo grup

Grupa permutacij 1.1

- Zapis s transpoziciji: $(i_1 i_2 \dots i_n) = (i_1 i_n)(i_1 I_{n-1}) \dots (i_1 i_3)(i_1 i_2)$ Inverz k-cikla: $(i_1 i_2 \dots i_k)^{-1} = (i_k i_{k-1} \dots i_2 i_1)$ Konjugiranje: $\pi \in S_n \implies \pi(i_1 i_2 \dots i_k) \pi^{-1} = (\pi(i_1) \pi(i_2) \dots \pi(i_k))$

- Generatorji:

$$-S_n = \langle (12), (13), (1n) \rangle = \langle (12)(23) \dots (n-1, n) \rangle = \langle (12), (12 \dots n) \rangle$$

1.2 Diedrska grupa D_{2n}

- $z^k r = r^{-k} z = r^{n-k} z$
- $r^k z$ so zrcaljenja, $(r^k z)^2 = 1$

Podgrupe 1.3

• $H, K \leq G \implies |HK| = \frac{|H||K|}{|H \cap K|}$.

1.4 Ciklične grupe

- Vsaka podgrupa ciklične grupe je ciklična
- Podgrupe v \mathbb{Z} so oblike $n\mathbb{Z}, n \in \mathbb{N}$
- Podgrupe v \mathbb{Z}_n so \mathbb{Z}_d , kjer $d \mid n$
- $G = \langle a \rangle, |G| < \infty \implies G = \langle a^k \rangle \iff \gcd(k, n) = 1$
- $k \in Z_n \implies \operatorname{red} k = \frac{n}{\gcd(n,k)}$
- Konjugiranje ohranja red elementa

1.5 Generatorji grup

• Oglejmo vsi možni produkti in poiščemo izomorfizem.

1.6 Splošno

- $f: X \to X$ preslikava. Velja:
 - -f ima levi inverz: $g \circ f = id$ natanko tedaj, ko je f injektivna. Če f tudi ni surjektivna, potem ima več levih inverzov.
 - -f ima desni inverz: $f \circ h = id$ natanko tedaj, ko je f surjektivna. Če f tudi ni surjektivna, potem ima več desnih inverzov.

$\mathbf{2}$ Uvod v teorijo kolobarjev

• Kolobar K je Boolov, če $\forall x \in K . x^2 = x$. Boolov kolobar je komutativen in ima karakteristiko 2.

2.1 Algebra kvaternionov

•
$$i^2 = j^2 = k^2 = ijk = -1$$

3 homomorfizem 2

3 homomorfizem

• Matrike so obrnljive? Morda to je \mathbb{H} ?

4 Splošno

4.1 Matrike

• Naj bo $A \in M_n(\mathbb{R})$, rang A = 1. Tedaj $\exists \lambda \in \mathbb{R} . A^2 = \lambda A$. Tako matriko lahko zapišemo tudi v obliki: stolpec krat vrstica.