

SEM 1-4 (RC 2016-17)

F.E. Semester – I (RC 2016-17) Examination, Nov./Dec. 2016 FUNDAMENTALS OF ELECTRICAL ENGINEERING (New)

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any two questions from Part - A.

- 2) Answer any two questions from Part B.
- 3) Answer any one question from Part C.
- 4) Assume suitable data, if required.

PART-A

- 1. a) Explain with the help of schematic/Block diagram the working of a thermal power plant.
 - b) Draw a single line diagram representing electrical power system. Write typical values of voltages at different levels.
 - c) When one coil of a magnetically coupled pair has a current 5A the resulting fluxes ϕ_{11} and ϕ_{12} are 0.2 mWb and 0.4mWb, respectively. If the turns are 500 and 1500, find L_1 , L_2 , M and coefficient of coupling K.
- 2. a) Define the following terms:
 - i) Ideal and practical current source
 - ii) Planar circuits.
 - b) Using superposition theorem find the current i_v in the circuit of fig. 2(b)

8

7

5

4

8

8

c) The venize the bridge circuit across a - b in fig. 2(c).

Fig.2(c)

- 3. a) State and explain Norton's theorem.
 - b) In the fig. 3(b), let $L_1 = 0.4$ H; $L_2 = 2.5$ H; K = 0.6 and $i_1 = 4$, $i_2 = 20$ cos (500 t 20°) mA. Evaluate the following quantities at t = 0.
 - 1) i2
 - 2) V₁
 - 3) The total energy stored in the system.

c) Find the value of R_L such that maximum power transfer takes place from the current sources to the load R_L in fig. 3(c). Obtain the amount of power transfer.

8

4

8

6

6

8

10

10

PART-B

- 4. a) Define the following terms:
 - i) Average value
 - ii) Form factor
 - iii) Active power
 - iv) Power factor.
 - b) A 4 ohm resistor is connected to a 10 mH inductor a 100 V, 50Hz voltage source. Find
 - i) Power factor of the circuit
 - ii) Total power supplied.
 - c) A 10Ω resistor is connected in parallel with a $100\,\mu$ F capacitor. Supply being 5A, 50 Hz current source, find the rms and instantaneous branch currents through the capacitor and resistor.
- 5. a) Is three phase system preferred over single phase system? Why?
 - b) Explain the working of a single phase transformer.
 - c) Three similar coils, each having a resistance of 3Ω and an inductive reactance of 4Ω are connected in i) Y and ii) Δ , across a 400 V, three-phase supply. Calculate for each connection the readings on each of the two wattmeters connected to measure the power by the two-wattmeters method.
- 6. a) In the circuit shown in fig. 6(a) if the supply frequency is 60 Hz, find :
 - i) drop across each circuit element
 - ii) total resistive and capacitive drop
 - iii) supply voltage
 - iv) impedance angle of each branch
 - v) power factor of the circuit.

8-2 8004F V(AC) 3.52 2504F V 10 A

Fig. 6(a)

 Explain how the various losses and efficiency of a single phase transformer are measured/calculated without loading the transformer.

5

6

4

5

6

5

PART-C

- 7. a) Differentiate between conventional and non conventional sources of energy. 5
 - b) Find current I in the network shown in fig. 7(b).

Fig. 7(b)

- c) A coil takes current of 160° A (lag) from 100 V, 60 Hz, supply. Calculate its inductances, resistance and impedance.
- d) Draw the equivalent circuit of a transformer.
- 8. a) Define the following terms:
 - i) Reluctance
 - ii) Ampere's law.
 - b) Find R_{xy} in the circuit shown in fig. 8(b)

Fig. 8(b)

- Derive an expression for current in series RLC-circuit excited from a sinusoided source.
- d) Derive the condition for maximum efficiency in a single phase transformer.