Matrix Multiplication

One-Job Method Two-Job Method Comparison

Matrix Multiplication

- Assume n × n matrices AB = C.
- A_{ij} is the element in row i and column j of matrix
 A.
 - Similarly for B and C.
- $C_{ik} = \Sigma_j A_{ij} \times B_{jk}.$
- Output C_{ik} depends on the ith row of A, that is,
 A_{ij} for all j, and the kth column of B, that is, B_{jk} for all j.

Computing One Output Value

Reducers Cover Rectangles

- Important fact: If a reducer covers outputs C_{ik} and C_{fg} , then it also covers C_{ig} and C_{fk} .
- Why? This reducer has all of rows i and f of A as inputs and also has all of columns k and g of B as inputs.
- Thus, it has all the inputs it needs to cover C_{ig} and C_{fk} .
- Generalizing: Each reducer covers all the outputs in the "rectangle" defined by a set of rows and a set of columns of matrix C.

The Responsibility of One Reducer

Upper Bound on Output Size

- If a reducer gets q inputs, it gets q/n rows or columns.
- Maximize the number of outputs covered by making the input "square."
 - I.e., #rows = #columns.
- q/2n rows and q/2n columns yield q²/4n² outputs covered.

Lower Bound on Replication Rate

- Total outputs = n^2 .
- One reducer can cover at most q²/4n² outputs.
- Therefore, 4n⁴/q² reducers.
- $4n^4/q$ total inputs to all the reducers, divided by $2n^2$ total inputs = $2n^2/q$ replication rate.
- **Example:** If $q = 2n^2$, one reducer suffices and the replication rate is r = 1.
- Example: If q = 2n (minimum possible), thenr = n.

Matching Algorithm

- Divide rows of the first matrix into g groups of n/g rows each.
- Also divide the columns of the second matrix into g groups of n/g columns each.
- g² reducers, each with q = 2n²/g inputs consisting of a group of rows and a group of columns.
- $r = g = 2n^2/q$.

Picture of One Reducer

Two-Job Map-Reduce Algorithm

- A better way: use two map-reduce jobs.
- Job 1: Divide both input matrices into rectangles.
 - Reducer takes two rectangles and produces partial sums of certain outputs.
- Job 2: Sum the partial sums.

Picture of First Job

First Job – Details

- Divide the rows of the first matrix A into g groups of n/g rows each.
- Divide the columns of A into 2g groups of n/2g.
- Divide the rows of the second matrix B into 2g groups of n/2g rows each.
- Divide the columns of B into g groups of n/g.
- Important point: the groups of columns for A and rows for B must have indices that match.

Reducers for First Job

- Reducers correspond to an n/g by n/2g rectangle in A (with row indices I, column indices J) and an n/2g by n/g rectangle in B (with row indices J and column indices K).
 - Call this reducer (I,J,K).
 - Important point: there is one set of indices J that plays two roles.
 - Needed so only rectangles that need to be multiplied are given a reducer.

The Reducer (I, J, K)

Job 1: Details

- Convention: i, j, k are individual rows and/or column numbers, which are members of groups I, J, and K, respectively.
- Mappers Job 1:
 - A_{ij} -> key = (I,J,K) for any group K; value = (A,i,j, A_{ij}).
 - B_{jk} -> key = (I,J,K) for any group I; value = (B,j,k, B_{jk}).
- Reducers Job 1: For key (I,J,K) produce

$$x_{iJk} = \sum_{j \text{ in } J} A_{ij} \times B_{jk}$$
.

Job 2: Details

- Mappers Job 2: x_{iJk} -> key = (i,k), value = x_{iJk} .
- Reducers Job 2: For key (i,k), produce output $C_{ik} = \sum_{J} x_{iJk}$.

Comparison: Computation Cost

- The two methods (one or two map-reduce jobs) essentially do the same computation.
 - Every A_{ij} is multiplied once with every B_{jk}.
 - All terms in the sum for C_{ik} are added together somewhere, only once.
- 2 jobs requires some extra overhead of task management.

Comparison: Communication Cost

- One-job method: $r = 2n^2/q$; there are $2n^2$ inputs, so total communication = $4n^4/q$.
- Two-job method with parameter g:
 - Job 2: Communication = $(2g)(n^2/g^2)(g^2) = 2n^2g$.

Number of reducers contributing to each output

Communication Cost – Continued

- Job 1 communication:
 - 2n² input elements.
 - Each generates g key-value pairs.
 - So another 2n²g.
 - Total communication = 4n²g.
- Reducer size $q = (2)(n^2/2g^2) = n^2/g^2$.
 - So g = n/\sqrt{q} .
 - Total communication = $4n^3/\sqrt{q}$.
 - Compares favorably with 4n⁴/q for the one-job approach.