

Digital Communication

1

G V V Sharma*

CONTENTS

1	Modulation and Demodulation		1
	1.1	BPSK	1
	1.2	Coherent BFSK	2
	1.3	QPSK	3
	1.4	<i>M</i> -PSK	3

Abstract—This book provides a computational approach to digital communication through a practical end to end implementation of the receiver for the Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) standard. Basic concepts like framing, channel coding, modulation and synchronization are introduced in the process.

Download python codes using

svn co https://github.com/gadepall/school/trunk/linalg/book/codes

1 Modulation and Demodulation

1.1 BPSK

1. The *signal constellation diagram* for BPSK is given by Fig. 1.1.1. The symbols s_0 and s_1 are equiprobable. $\sqrt{E_b}$ is the energy transmitted per bit. Assuming a zero mean additive white gaussian noise (AWGN) with variance $\frac{N_0}{2}$, obtain the symbols that are received.

Solution: The possible received symbols are

$$y|s_0 = \sqrt{E_b} + n {(1.1.1.1)}$$

$$y|s_1 = -\sqrt{E_b} + n (1.1.1.2)$$

where the AWGN $n \sim \mathcal{N}\left(0, \frac{N_0}{2}\right)$.

2. From Fig. 1.1.1 obtain a decision rule for BPSK

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.1.1

Solution: The decision rule is

$$y \underset{s_1}{\stackrel{s_0}{\gtrless}} 0$$
 (1.1.2.1)

- 3. Repeat the previous exercise using the MAP criterion.
- 4. Using the decision rule in Problem 1.1.2, obtain an expression for the probability of error for BPSK.

Solution: Since the symbols are equiprobable, it is sufficient if the error is calculated assuming that a 0 was sent. This results in

$$P_e = \Pr(y < 0|s_0) = \Pr(\sqrt{E_b} + n < 0)$$

$$= \Pr(-n > \sqrt{E_b}) = \Pr(n > \sqrt{E_b})$$

$$(1.1.4.2)$$

since *n* has a symmetric pdf. Let $w \sim \mathcal{N}(0, 1)$. Then $n = \sqrt{\frac{N_0}{2}}w$. Substituting this in (1.1.4.2),

$$P_e = \Pr\left(\sqrt{\frac{N_0}{2}}w > \sqrt{E_b}\right) = \Pr\left(w > \sqrt{\frac{2E_b}{N_0}}\right)$$
(1.1.4.3)

$$=Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \tag{1.1.4.4}$$

where $Q(x) \stackrel{\triangle}{=} \Pr(w > x), x \ge 0$.

5. The PDF of $w \sim \mathcal{N}(0, 1)$ is given by

$$p_w(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty$$
(1.1.5.1)

and the complementary error function is defined as

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt.$$
 (1.1.5.2)

Show that

$$Q(x) = \frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right) \tag{1.1.5.3}$$

6. Verify the bit error rate (BER) plots for BPSK through simulation and analysis for 0 to 10 dB. **Solution:** The following code

codes/modulation/bpsk ber.py

yields Fig. 1.1.6

Fig. 1.1.6

7. Show that

$$Q(x) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} e^{-\frac{x^2}{2\sin^2\theta}} d\theta$$
 (1.1.7.1)

1.2 Coherent BFSK

1. The signal constellation for binary frequency shift keying (BFSK) is given in Fig. 1.2.1. Obtain the equations for the received symbols. **Solution:** The received symbols are given by

$$\mathbf{y}|s_0 = \begin{pmatrix} \sqrt{E_b} \\ 0 \end{pmatrix} + \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}, \tag{1.2.1.1}$$

Fig. 1.2.1

and

$$\mathbf{y}|s_1 = \begin{pmatrix} 0\\\sqrt{E_b} \end{pmatrix} + \begin{pmatrix} n_1\\n_2 \end{pmatrix},\tag{1.2.1.2}$$

where $n_1, n_2 \sim \mathcal{N}\left(0, \frac{N_0}{2}\right)$ and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

2. Obtain a decision rule for BFSK from Fig. 1.2.1.

Solution: The decision rule is

$$y_1 \underset{s_1}{\stackrel{s_0}{\gtrless}} y_2 \tag{1.2.2.1}$$

Definition 1. The joint PDF of X, Y is given by

$$p(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}\right]$$

$$\times \left\{\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right\}$$
(1.2.2.2)

where

$$\mu_{x} = E[X], \sigma_{x}^{2} = var(X), \rho = \frac{E\left[(X - \mu_{x})\left(Y - \mu_{y}\right)\right]}{\sigma_{x}\sigma_{y}}.$$
(1.2.2.3)

3. For equiprobably symbols, the MAP criterion is defined as

$$p(\mathbf{y}|s_0) \underset{s_1}{\overset{s_0}{\gtrless}} p(\mathbf{y}|s_1) \tag{1.2.3.1}$$

Use (1.2.2.2) in (1.2.3.1) to obtain (1.2.2.1). **Solution:** According to the MAP criterion,

assuming equiprobably symbols,

$$p(\mathbf{y}|s_0) \underset{s_1}{\stackrel{s_0}{\gtrless}} p(\mathbf{y}|s_1) \tag{1.2.3.2}$$

4. Derive and plot the probability of error. Verify through simulation.

Solution: Given that s_0 was transmitted, the received symbols are

$$\mathbf{y}|s_0 = \begin{pmatrix} \sqrt{E_b} \\ 0 \end{pmatrix} + \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}, \tag{1.2.4.1}$$

From (1.2.2.1), the probability of error is given by

$$P_e = \Pr(y_1 < y_2 | s_0) = \Pr(\sqrt{E_b} + n_1 < n_2)$$
(1.2.4.2)

$$= \Pr\left(n_2 - n_1 > \sqrt{E_b}\right) \tag{1.2.4.3}$$

Note that $n_2 - n_1 \sim \mathcal{N}(0, N_0)$. Thus,

$$P_e = \Pr\left(\sqrt{N_0}w > \sqrt{E_b}\right) = \Pr\left(w > \sqrt{\frac{E_b}{N_0}}\right)$$
(1.2.4.4)

$$\implies P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \tag{1.2.4.5}$$

where $w \sim \mathcal{N}(0, 1)$. The following code plots the BER curves in Fig. 1.2.4

codes/modulation/fsk ber.py

Fig. 1.2.4

1.3 QPSK

1. Let

$$\mathbf{y} = \mathbf{s} + \mathbf{n} \tag{1.3.1.1}$$

where $s \in \{s_0, s_1, s_2, s_3\}$ and

$$\mathbf{s}_0 = \begin{pmatrix} \sqrt{E_s} \\ 0 \end{pmatrix}, \mathbf{s}_1 = \begin{pmatrix} 0 \\ \sqrt{E_s} \end{pmatrix},$$
 (1.3.1.2)

$$\mathbf{s}_2 = \begin{pmatrix} -\sqrt{E_s} \\ 0 \end{pmatrix}, \mathbf{s}_3 = \begin{pmatrix} 0 \\ -\sqrt{E_s} \end{pmatrix}, \quad (1.3.1.3)$$

$$E[\mathbf{n}] = \mathbf{0}, E[\mathbf{n}\mathbf{n}^T] = \sigma^2 \mathbf{I}$$
 (1.3.1.4)

2. Show that the MAP decision for detecting \mathbf{s}_0 results in

$$|y_2| < y_1 \tag{1.3.2.1}$$

3. Express Pr ($\hat{\mathbf{s}} = \mathbf{s}_0 | \mathbf{s} = \mathbf{s}_0$) in terms of r_1, r_2 . Let $X = n_2 - n_1, Y = -n_2 - n_1$, where $\mathbf{n} = (n_1, n_2)$. Their correlation coefficient is defined as

$$\rho = \frac{E\left[(X - \mu_x) \left(Y - \mu_y \right) \right]}{\sigma_x \sigma_y} \tag{1.3.3.1}$$

X and Y are said to be uncorrelated if $\rho = 0$

- 4. Show that *X* and *Y* are uncorrelated. Verify this numerically.
- 5. Show that *X* and *Y* are independent, i.e. $p_{XY}(x, y) = p_X(x)p_Y(y)$.
- 6. Show that $X, Y \sim \mathcal{N}(0, N_0)$.
- 7. Show that

$$\Pr(\hat{\mathbf{s}} = \mathbf{s}_0 | \mathbf{s} = \mathbf{s}_0) = \Pr(X < \sqrt{E_s}, Y < \sqrt{E_s}).$$
(1.3.7.1)

8. Show that

$$\Pr\left(X < \sqrt{E_s}, Y < \sqrt{E_s}\right) = \left(1 - Q\left(\sqrt{\frac{E_s}{N_0}}\right)\right)^2 \tag{1.3.8.1}$$

9. Verify the above through simulation. **Solution:** This is shown in Fig. 1.3.9 through the following code.

codes/modulation/qpsk.py

10. Modify the above script to obtain the probability of symbol error.

1.4 M-PSK

1. Consider a system where $\mathbf{s}_i = \begin{pmatrix} \cos\left(\frac{2\pi i}{M}\right) \\ \cos\left(\frac{2\pi i}{M}\right) \end{pmatrix}, i = 0, 1, \dots M - 1$. Let

$$\mathbf{y}|s_0 = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \sqrt{E_s} + n_1 \\ n_2 \end{pmatrix}$$
 (1.4.1.1)

where $n_1, n_2 \sim \mathcal{N}\left(0, \frac{N_0}{2}\right)$.

Fig. 1.3.9

2. Substituting

$$y_1 = R \cos \theta$$
 (1.4.2.1)
 $y_2 = R \sin \theta$ (1.4.2.2)

$$y_2 = R\sin\theta \tag{1.4.2.2}$$

show that the joint pdf of R, θ is

$$p(R,\theta) = \frac{R}{\pi N_0} \exp\left(-\frac{R^2 - 2R\sqrt{E_s}\cos\theta + E_s}{N_0}\right)$$
(1.4.2.3)

3. Show that

$$\lim_{\alpha \to \infty} \int_0^\infty (V - \alpha) e^{-(V - \alpha)^2} dV = 0 \qquad (1.4.3.1)$$

$$\lim_{\alpha \to \infty} \int_0^\infty e^{-(V - \alpha)^2} dV = \sqrt{\pi} \quad (1.4.3.2)$$

4. Using the above, show that

$$\int_0^\infty V \exp\left\{-\left(V^2 - 2V\sqrt{\gamma}\cos\theta + \gamma\right)\right\} dV$$
$$= e^{-\gamma\sin^2\theta}\sqrt{\gamma\pi}\cos\theta \quad (1.4.4.1)$$

for large values of γ .

5. Find a compact expression for

$$I = 1 - \sqrt{\frac{\gamma}{\pi}} \int_{-\frac{\pi}{4d}}^{\frac{\pi}{M}} e^{-\gamma \sin^2 \theta} \cos \theta \, d\theta \quad (1.4.5.1)$$

6. Show that

$$P_{e|\mathbf{s}_0} = 2Q\left(\sqrt{2\left(\frac{E_s}{N_o}\right)}\sin\frac{\pi}{M}\right) \qquad (1.4.6.1)$$

7. Verify the SER through simulation.