© Copyright 2012 Jim Fox (tweaks by Daniel Halperin)

The Suitability of the LATEX Text Formatter for Thesis Preparation by Technical and Non-technical Degree Candidates

Jim Fox (tweaks by Daniel Halperin)

A dissertation[†] submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Washington

2012

Reading Committee:

Name of Chairperson, Chair

First committee member

Next committee member

etc

Program Authorized to Offer Degree: UW Information Technology

[†]an egocentric imitation, actually

University of Washington

Abstract

The Suitability of the LATEX Text Formatter for Thesis Preparation by Technical and Non-technical Degree Candidates

Jim Fox (tweaks by Daniel Halperin)

Chair of the Supervisory Committee: Title of Chair Name of Chairperson Department of Chair

This sample dissertation is an aid to students who are attempting to format their theses with LATEX, a sophisticated text formatter widely available at the University of Washington and other institutions of higher learning.

- It describes the use of a specialized macro package developed specifically for thesis production at the University. The macros customize LATEX for the correct thesis style, allowing the student to concentrate on the substance of his or her text. ¹
- It demonstrates the solutions to a variety of formatting challenges found in thesis production.
- It serves as a template for a real dissertation.

¹See Appendix A to obtain the source to this thesis and the style file.

TABLE OF CONTENTS

		Page
List of I	Figures	. ii
Glossary	y	. iii
Chapter	1: Introduction	. 1
1.1	The Purpose of This Sample Thesis	. 1
1.2	Conventions and Notations	. 1
1.3	Nota bene	. 2
Chapter	2: A Brief Description of TEX	. 3
2.1	What is it; why is it spelled that way; and what do really long section titles	
	look like in the text and in the Table of Contents? $\ \ldots \ \ldots \ \ldots \ \ldots$. 3
2.2	TEXbooks	. 4
2.3	Mathematics	. 4
2.4	Languages other than English	. 4
Chapter	3: The Thesis Unformatted	. 5
3.1	The Control File	. 5
3.2	The Text Pages	. 8
3.3	The Preliminary Pages	. 11
Chapter	4: Running IAT _E X(and printing if you must)	. 13
4.1	Running	. 13
4.2	Printing	. 13
Bibliogr	aphy	. 14
Append	ix A: Where to find the files	. 15

LIST OF FIGURES

Figure	Number	Pa	age
2.1	The beginning of the Chapter II text		3
3.1	A thesis control file		6
3.2	This text would create a double page figure in the two-side style		9
3.3	Generating a facing caption page		9
3.4	Generating a landscape table		10

GLOSSARY

ARGUMENT: replacement text which customizes a LATEX macro for each particular usage.

BACK-UP: a copy of a file to be used when catastrophe strikes the original. People who make no back-ups deserve no sympathy.

CONTROL SEQUENCE: the normal form of a command to LATEX.

DELIMITER: something, often a character, that indicates the beginning and ending of an argument. More generally, a delimiter is a field separator.

DOCUMENT CLASS: a file of macros that tailors LATEX for a particular document. The macros described by this thesis constitute a document class.

DOCUMENT OPTION: a macro or file of macros that further modifies LATEX for a particular document. The option [chapternotes] constitutes a document option.

FIGURE: illustrated material, including graphs, diagrams, drawings and photographs.

FONT: a character set (the alphabet plus digits and special symbols) of a particular size and style. A couple of fonts used in this thesis are twelve point roman and twelve point roman slanted.

FOOTNOTE: a note placed at the bottom of a page, end of a chapter, or end of a thesis that comments on or cites a reference for a designated part of the text.

FORMATTER: (as opposed to a word-processor) arranges printed material according to instructions embedded in the text. A word-processor, on the other hand, is normally controlled by keyboard strokes that move text about on a display.

LATEX: simply the ultimate in computerized typesetting.

MACRO: a complex control sequence composed of other control sequences.

PICA: an archaic unit of length. One pica is twelve points and six picas is about an inch.

POINT: a unit of length. 72.27 points equals one inch.

ROMAN: a conventional printing typestyle using serifs. the decorations on the ends of letter strokes. This thesis is set in roman type.

RULE: a straight printed line; e.g.,

SERIF: the decoration at the ends of letter strokes.

TABLE: information placed in a columnar arrangement.

THESIS: either a master's thesis or a doctoral dissertation. This document also refers to itself as a thesis, although it really is not one.

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to University of Washington, where he has had the opportunity to work with the TEX formatting system, and to the author of TEX, Donald Knuth, *il miglior fabbro*.

DEDICATION

to my dear wife, Joanna

Chapter 1

INTRODUCTION

The utility of a clean, professionally prepared thesis is well documented¹ but, until recently, a degree candidate had no recourse but to submit his or her thesis to a typist for completion. Revisions were difficult and time consuming, and even at its best the resultant thesis still looked typed. The advent of computerized typesetting has revolutionized thesis preparation, and T_EX in particular brings to the university student the power and flexibility of an 'industrial-strength' typesetter.

TEX is a flexible, complete, and professional typesetting system. It has been programmed to produce the same document on all machines, so a suitable printer can always be found for the final copy while drafts are made on more conventional and inexpensive printers. The 'suitable' standard is a 300 dot-per-inch laser printer, which is excellent for thesis production. Many such laser printers are available about the campus.

1.1 The Purpose of This Sample Thesis

This sample is both a demonstration of the quality and propriety of a LATEX² formatted thesis, and is documentation for the preparation of a thesis. It has made extensive use of a custom class file developed specifically for this purpose at the University of Washington. Chapter II discusses TeX and LATEX. Chapter III describes the additional macros and functions provided by the custom thesis class file. Finally, Chapter IV discusses some special problems due to the inherent differences among the various computers and printers that support LATEX.

It is impossible to predict all the formatting problems one will encounter and there will be problems that are best handled by a specialist. The Graduate School may be able to help you find help. Some departments may also be able to provide LATEX assistance.

1.2 Conventions and Notations

In this thesis the typist refers to the user of LATEX—the one who makes formatting decisions and chooses the appropriate formatting commands. He or she will most often be the degree

¹See, for example, W. Shakespeare[8] for a recent discussion.

²We mean the LATEX 2ε version of LATEX. Earlier versions, now called LATEX 2.10 were much different.

candidate.

This document deals with LATEX typesetting commands and their functions. Wherever possible the conventions used to display text entered by the typist and the resulting formatted output are the same as those used by the TeXbooks. Therefore, typewriter type is used to indicate text as typed by the computer or entered by the typist. It is quite the opposite of *italics*, which indicates a category rather than exact text. For example, alpha and beta might each be an example of a *label*.

1.3 Nota bene

This sample thesis was produced by the LATEX document class it describes and its format is consonant with the Graduate School's electronic dissertation guidelines[11]. However, use of this package does not guarantee acceptability of a particular thesis.

Chapter 2

A BRIEF DESCRIPTION OF T_EX

The TeX formatting program is the creation of Donald Knuth of Stanford University. It has been implemented on nearly every general purpose computer and produces exactly the same copy on all machines.

2.1 What is it; why is it spelled that way; and what do really long section titles look like in the text and in the Table of Contents?

TEX is a formatter. A document's format is controlled by commands embedded in the text. LATEX is a special version of TEX—preloaded with a voluminous set of macros that simplify most formatting tasks.

TEX uses control sequences to control the formatting of a document. These control sequences are usually words or groups of letters prefaced with the backslash character (\). For example, Figure 2.1 shows the text that printed the beginning of this chapter. Note the control sequence \chapter that instructed TEX to start a new chapter, print the title, and make an entry in the table of contents. It is an example of a macro defined by the LATEX macro package. The control sequence \TeX, which prints the word TEX, is a standard macro from the TEXbook. The short control sequence \\ in the title instructed TEX to break the title line at that point. This capability is an example of an extension to LATEX provided by the uwthesis document class.

Most of the time TEX is simply building paragraphs from text in your source files. No control sequences are involved. New paragraphs are indicated by a blank line in the input

\chapter{A Brief\\Description of \TeX}

The \TeX\ formatting program is the creation of Donald Knuth of Stanford University.

Figure 2.1: The beginning of the Chapter II text

¹ "Exactly" specifically excludes the inherent variety in print devices.

file. Hyphenation is performed automatically.

2.2 TeXbooks

The primary reference for LATEX is Lamport's second edition of the LATEX User's Guide[7]. It is easily read and should be sufficient for thesis formatting. See also the LATEX Companion[2] for descriptions of many add-on macro packages.

Although unnecessary for thesis writers, the T_EXbook is the primary reference for T_EX sperts worldwide.

2.3 Mathematics

The thesis class does not expand on TEX's or LATEX's comprehensive treatment of mathematical equation printing.² The $T_EXbook[3]$, LATEX User's Guide[7], and The LATEX Companion[2] thoroughly cover this topic.

2.4 Languages other than English

Most LaTeX implementations at the University are tailored for the English language. However, LaTeX will format many other languages. Consult your department or contact the Center for Advanced Research Technology in the Arts and Humanities (CARTAH),

for assistance with non-English formatting.

Unusual characters can be defined via the font maker METAFONT (documented by Knuth[6]). The definitions are not trivial. Students who attempt to print a thesis with custom fonts may soon proclaim,

" $\alpha \pi o \theta \alpha \nu \epsilon i \nu \theta \epsilon \lambda \omega$."

Assume a universe E and a symmetric function \$ defined on E, such that for each $\yy there exists a $\$^{\overline{y}\overline{y}}$, where $\$^{yy} = \$^{\overline{y}\overline{y}}$. For each element i of E define $S(i) = \sum_i \$^{yy} + \$^{\overline{y}\overline{y}} + 0$. Then if \mathcal{RR} is that subset of E where 1 + 1 = 3, for each i

$$\lim_{\$ \to \infty} \int \mathcal{S} di = \begin{cases} 0, & \text{if } i \notin \mathcal{RR}; \\ \infty, & \text{if } i \in \mathcal{RR}. \end{cases}$$

²Although many TEX-formatted documents contain no mathematics except the page numbers, it seems appropriate that this paper, which is in some sense about TEX, ought to demonstrate an equation or two. Here then, is a statement of the *Nonsense Theorem*.

Chapter 3

THE THESIS UNFORMATTED

This chapter describes the uwthesis class (uwthesis.cls, version dated 2011/06/27) in detail and shows how it was used to format the thesis. A working knowledge of Lamport's LATEX manual[7] is assumed.

3.1 The Control File

The source to this sample thesis is contained in a single file only because ease of distribution was a concern. You should not do this. Your task will be much easier if you break your thesis into several files: a file for the preliminary pages, a file for each chapter, one for the glossary, and one for each appendix. Then use a control file to tie them all together. This way you can edit and format parts of your thesis much more efficiently.

Figure 3.1 shows a control file that might have produced this thesis. It sets the document style, with options and parameters, and formats the various parts of the thesis—but contains no text of its own.

The first section, from the \documentclass to the \begin\{document\}, defines the document class and options. This thesis has specified two-sided formatting, which is now allowed by the Graduate School. Two sided printing is now actually IATEX's default. If you want one sided printing you must specify oneside. This sample also specified a font size of 11 points. Possible font size options are: 10pt, 11pt, and 12pt. Default is 12 points, which is the preference of the Graduate School. If you choose a smaller size be sure to check with the Graduate School for acceptability. The smaller fonts can produce very small sub and superscripts.

Include most additional formatting packages with \usepackage, as describe by Lamport[7]. The one exception to this rule is the natbib package. Include it with the natbib document option.

Use the \includeonly command to format only a part of your thesis. See Lamport[7, sec. 4.4] for usage and limitations.

Figure 3.1: A thesis control file (thesis.tex). This file is the input to LATEX that will produce a thesis. It contains no text, only commands which direct the formatting of the thesis. This is also an example of a 'facing page' caption. It is guaranteed to appear on a lefthand page, facing the figure contents on the right. See the text.

```
% LaTeX thesis control file
\documentclass[11pt,twoside]{uwthesis}
\begin{document}
% preliminary pages
\prelimpages
\include{prelim}
% text pages
\textpages
\include{chap1}
\include{chap2}
\include{chap3}
\include{chap4}
% bibliography
\bibliographystyle{plain}
\bibliography{thesis}
\% appendices
%
\appendix
\include{appxa}
\include{appxb}
\include{vita}
\end{document}
```

3.2 The Text Pages

A chapter is a major division of the thesis. Each chapter begins on a new page and has a Table of Contents entry.

3.2.1 Chapters, Sections, Subsections, and Appendices

Within the chapter title use a \\ control sequence to separate lines in the printed title (recall Figure 2.1.). The \\ does not affect the Table of Contents entry.

Format appendices just like chapters. The control sequence \appendix instructs LaTeX to begin using the term 'Appendix' rather than 'Chapter'.

Sections and subsections of a chapter are specified by \section and \subsection, respectively. In this thesis chapter and section titles are written to the table of contents. Consult Lamport[7, pg. 176] to see which subdivisions of the thesis can be written to the table of contents. The \\ control sequence is not permitted in section and subsection titles.

3.2.2 Footnotes

Footnotes format as described in the LaTeX book. You can also ask for end-of-chapter or end-of-thesis notes. The thesis class will automatically set these up if you ask for the document class option chapternotes or endnotes.

If selected, chapternotes will print automatically. If you choose endnotes however you must explicitly indicate when to print the notes with the command \printendnotes. See the style guide for suitable endnote placement.

3.2.3 Figures and Tables

Standard IATEX figures and tables, see Lamport[7, sec. C.9], normally provide the most convenient means to position the figure. Full page floats and facing captions are exceptions to this rule.

If you want a figure or table to occupy a full page enclose the contents in a fullpage environment. See figures 3.2.

Facing page captions are described in the Style Manual[11]. They have different meanings depending on whether you are using the one-side or two-side thesis style.

If you are using the two-side style, facing captions are full page captions for full page figures or tables and must face the illustration to which they refer. You must explicitly format both pages. The caption part must appear on an even page (left side) and the figure or table must come on the following odd page (right side). Enclose the float contents for the caption in a leftfullpage environment, and enclose the float contents for the figure

```
\begin{figure}[p]% the left side caption
  \begin{leftfullpage}
    \caption{ . . . }
  \end{leftfullpage}
\end{figure}
\begin{figure}[p]% the right side space
  \begin{fullpage}
    . . .
    ( note.. no caption here )
  \end{fullpage}
\end{figure}
```

Figure 3.2: This text would create a double page figure in the two-side style.

```
\begin{figure}[p]
  \begin{leftfullpage}
    \caption{ . . . }
  \end{leftfullpage}
\end{figure}
\begin{figure}[p]% the right side space
  \begin{xtrafullpage}
    . . .
    ( note.. no caption here )
  \end{xtrafullpage}
\end{figure}
```

Figure 3.3: This text would create a facing caption page with the accompanying figure in the one-side style.

or table in a fullpage environment. Figure 3.1, for example, required a full page so its caption (on a facing caption page) would have been formatted as shown in figure 3.2a. The first page (left side) contains the caption. The second page (right side) could be left blank. A picture or graph might be pasted onto this space.

If instead you are using the one-side style, facing caption pages are still captions for full page figures or tables that appear on the left-hand page (facing the illustration on the right-hand page). However, the page number and binding offset are reversed from their normal positions. Format these captions by enclosing the float contents in a leftfullpage environment. Because you are printing on only one side of each sheet, you must manually turn over this caption sheet. You then have the choice of inserting a preprinted illustration or formatting one to print with the thesis. In either case no page number should appear on the illustration page, nor should the page number increment. Enclose your figure's text in an xtrafullpage environment, which will cause the page numbers to come out right.

```
\begin{sidewaystable}
    ...
    \caption{ . . . }
\end{sidewaystable}
```

Figure 3.4: This text would create a landscape table with caption.

You can, of course, leave out the illustration and insert a preprinted copy later. Figure 3.2b shows how to format a facing caption page in the one-side style. Note that, in this case, the illustration was also printed.

In the two-side style the xtrafullpage environment acts just like the fullpage environment. It does not produce a numberless page.

3.2.4 Horizontal Figures and Tables

Figures and tables may be formatted horizontally (a.k.a. landscape) as long as their captions appear horizontal also. IATEX will format landscape material for you if a couple of conditions are met. You have to have a printer and printer driver that allow rotations and you have to have a couple of add-on IATEX packages.

Include the rotating package

```
\usepackage[figuresright]{rotating}
```

and read the documentation that comes with the package.

Figure 3.4 is an example of how a landscape table might be formatted.

3.2.5 Figure and Table Captions

Most captions are formatted with the \caption macro as described by Lamport [7, sec. C.9].

```
\caption[toc]{text}
```

The *text* field is the text of the caption. The optional argument *toc* controls the caption as it will appear in the List of Figures, Tables, etc.

To include multiple figures that are part of the same figure, use the **subfigure** package. This produces figures numbered such as 3.3(a), 3.3(b), etc.

3.3 The Preliminary Pages

These are easy to format only because they are relatively invariant among theses. Therefore the difficulties have already been encountered and overcome by LATEX and the thesis document classes.

Start with the definitions that describe your thesis. This sample thesis was printed with the parameters:

```
\Title{The Suitability of the \LaTeX\ Text Formatter\\
    for Thesis Preparation by Technical and\\
    Non-technical Degree Candidates}
\Author{Jim Fox}
\Program{UW Information Technology}
\Year{2012}
\Chair{Name of Chairperson}{title}{Chair's department}
\Signature{First committee member}
\Signature{Next committee member}
\Signature{etc}
```

Use two or more \Chair lines if you have co-chairs.

3.3.1 Copyright page

Print the copyright page with \copyrightpage.

3.3.2 Title page

Print the title page with \titlepage. The title page of this thesis was printed with¹

```
\titlepage
```

You may change default text on the title page with these macros. You will have to redefine \Degreetext, for instance, if you're writing a Master's thesis instead of a dissertation.²

\Degree{degree name} defaults to "Doctor of Philosophy"

¹Actually, it wasn't. I added a footnote—something you would not do.

 $^{^2{\}rm If}$ you use these they can be included with the other information before copyright page".

\School{school name} defaults to "University of Washington"

\Degreetext{degree text} defaults to "A dissertation submitted ..."

These definitions must appear <u>before</u> the \titlepage command.

3.3.3 Abstract

Print the abstract with \abstract. It has one argument, which is the text of the abstract. All the names have already been defined. The abstract of this thesis was printed with

```
\abstract{This sample . . . 'real' dissertation.}
```

3.3.4 Tables of contents

Use the standard LATEX commands to format these items.

3.3.5 Acknowledgments

Use the \acknowledgments macro to format the acknowledgments page. It has one argument, which is the text of the acknowledgment. The acknowledgments of this thesis was printed with

\acknowledgments{The author wishes . . . {\it il miglior fabbro}.\par}}

3.3.6 Dedication

Use the \dedication macro to format the dedication page. It has one argument, which is the text of the dedication.

3.3.7 Vita

Use the \vita macro to format the curriculum vitae. It has one argument, which chronicles your life's accomplishments.

Note that the Vita is not really a preliminary page. It appears at the end of your thesis, just after the appendices.

Chapter 4

RUNNING LATEX (AND PRINTING IF YOU MUST)

TEX has been designed to produce exactly the same document on all computers and on all printers. *Exactly the same* means that the various spacings, line and page breaks, and even hyphenations will occur at the same places when the document is formatted on a variety of computers. However, the way you edit text files and run LATEX varies from system to system.

4.1 Running

Unfortunately, the author is woefully out of water where TEX on Windows is concerned. Google would be his resource. On a UNIX system he types

\$ pdflatex uwthesis

and it generally works. However, TEX updates its metadata for the Table of Contents, references to figures, etc., in stages. To ensure that all these fields are up to date, including the bibliography, the following sequence of commands usually works.

- \$ pdflatex uwthesis
- \$ pdflatex uwthesis
- \$ bibtex uwthesis
- \$ pdflatex uwthesis

4.2 Printing

All implementations of T_EX provide the option of **pdf** output, which is all the Graduate School now wants. Even if you intend to print a copy or two of your thesis—the best way to admire it—create a **pdf** anyway. It will print anywhere.

BIBLIOGRAPHY

- [1] Editor. Hyphenation exception log. TUGboat, 7(3):145, 1986.
- [2] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion. Addison-Wesley, 1994.
- [3] Donald E. Knuth. The T_EX book. Addison-Wesley, 1984.
- [4] Donald E. Knuth. TeX: The Program. Addison-Wesley, 1986.
- [5] Donald E. Knuth. Computer Modern Typefaces. Addison-Wesley, 1986.
- [6] Donald E. Knuth. The Metafont book. Addison-Wesley, 1986.
- [8] William Shakespeare. *Hamlet*. F.S. Crofts & Co., Inc., NY, 1946. Act I, Scene 3, Lines 70-72, are apropos.
- [9] Spivak, M.D., Ph.D. PCTEX Manual. Personal TeX, Inc., CA, 1985.
- [10] Spivak, M.D., Ph.D. The Joy of TeX. American Mathematical Society, RI, 1986.
- [11] Graduate School University of Washington. Format guidelines for theses and dissertations, 2012.

Appendix A

WHERE TO FIND THE FILES

The uwthesis class file, uwthesis.cls, contains the parameter settings, macro definitions, and other TeXnical commands which allow LATeX to format a thesis. The source to the document you are reading, uwthesis.tex, contains many formatting examples which you may find useful. The bibliography database, uwthesis.bib, contains instructions to BibTeX to create and format the bibliography. You can find the latest of these files on:

• My page.

http://staff.washington.edu/fox/tex/uwthesis.html

• CTAN

http://tug.ctan.org/tex-archive/macros/latex/contrib/uwthesis/ (not always as up-to-date as my site)

VITA

Jim Fox is a Software Engineer with UW Information Technology at the University of Washington. His duties do not include maintaining this package. That is rather an avocation which he enjoys as time and circumstance allow.

He welcomes your comments to fox@uw.edu. But please don't bug him about the tweaks; send those to dhalperi@cs.washington.edu.