Computational complexity

Tight bound Θ

$$\Theta(g) = \{ f; \exists c_1, c_2, n_0 > 0, \\ \forall n > n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

Upper bound $\mathcal O$

$$\mathcal{O}(g) = \{ f; \exists c, n_0 > 0, \\ \forall n > n_0 : \\ 0 \le f(n) \le cg(n) \}$$

Lower bound Ω

$$\Omega(g) = \{ f; \exists c, n_0 > 0, \\ \forall n > n_0 : \\ 0 \le cg(n) \le f(n) \}$$

Imprecise boundaries o and ω

$$\begin{split} o(g) &= \{f; \forall c > 0, \exists n_0 > 0, \forall n > n_0: 0 \leq f(n) < cg(n)\} \\ \omega(g) &= \{f; \forall c > 0, \exists n_0 > 0, \forall n > n_0: 0 \leq cg(n) < f(n)\} \end{split}$$

Properties

- transitivity $f \in \Theta(g) \land g \in \Theta(h) \Rightarrow f \in \Theta(h)$ (for all bounds)
- reflexivity $f \in \Theta(f)$ (for Θ , \mathcal{O} and Ω)
- symmetry $f \in \Theta(g) \Leftrightarrow g \in \Theta(f)$
- transpose symmetry $f \in \mathcal{O}(g) \Leftrightarrow g \in \Omega(f)$ $f \in o(g) \Leftrightarrow g \in \omega(f)$

Divide and conquer

- divide the problem into several (equal) parts
- (recursively) **conquer (solve)** each of the sub problems
- combine sub problem solutions

Simplified Masters

$$T(n) = aT(\frac{n}{b}) + \Theta(n^d)$$

$$a \ge 1$$

$$b > 1$$

$$d \ge 0$$

- $a > b^d \to T(n) = \Theta(n^{\log_b a})$
- $\bullet \ \ a = b^d \to T(n) = \Theta(n^d \log_b n)$
- $\bullet \ \ a < b^d \to T(n) = \Theta(n^d)$

Masters

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$a \ge 1$$
$$b > 1$$

- $f(n) = \mathcal{O}(n^{\log_b a \epsilon}) \to T(n) = \Theta(n^{\log_b a}), \epsilon > 0$
- $f(n) = \Theta(n^{\log_b a}) \to T(n) = \Theta(n^{\log_b a} \log(n))$
- $f(n)=\Omega(n^{\log_b a+\epsilon})\to T(n)=\Theta(f(n)), \epsilon>0$ and $af(\frac{n}{b})\le cf(n)$ for some c<1 and big enough n
- case2 ext: $f(n) = \Theta(n^{log_ba}log^k(n)) \rightarrow T(n) = \Theta(n^{log_ba}log^{k+1}(n))$

Akra-Bazzi

$$T(n) = \sum_{i=1}^{k} a_i T(b_i n) + f(n), n > n_0$$

- $n_0 \ge \frac{1}{b_i}$, $n_0 \ge \frac{1}{1-b_i}$ for each i,
- $a_i > 0$ for each i,
- $0 < b_i$ for each i,
- $k \ge 1$,
- f(n) is non-negative function,
- $c_1 f(n) \le f(u) \le c_2 f(n)$, for each u satisfying condition: $b_i n \le u \le n$

$$T(n) = \Theta(n^p(1 + \int_1^n \frac{f(u)}{u^{p+1}} du))$$

we get p from:

$$\sum_{i=1}^{k} a_i b_i^p = 1$$

Extended Akra-Bazzi

$$T(n) = \sum_{i=1}^{k} a_i T(b_i n + h_i(n)) + f(n), n > n_0$$

all of the conditions from Akra-Bazzi still hold plus:

$$|h_i(n)| = \mathcal{O}(\frac{n}{\log^2 n})$$

Annihilators

Steps:

- Write the recurrence in operator form.
- Extract the annihilator for the recurrence.
- Factor the annihilator (if necessary).
- Extract the generic solution form the annihilator.
- Solve for coefficients using base cases (if known).

Operator	Definition	
addition	(f+g)(n) := f(n) + g(n)	
subtraction	(f-g)(n) := f(n) - g(n)	
multiplication	$(a \cdot f)(n) := a \cdot (f(n))$	
shift	Ef(n) := f(n+1)	
k-fold shift	$E^k f(n) := f(n+k)$	
composition	(X+Y)f := Xf + Yf	
	(X - Y)f := Xf - Yf	
	XYf := X(Yf) = Y(Xf)	
distribution	X(f+g) = Xf + Xg	

Operator	Functions annihilated
E-1	α
E-a	αa^n
(E-a)(E-b)	$\alpha a^n + \beta b^n \qquad (a \neq b)$
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$ (a_i distinct)
$(E-1)^2$	$\alpha n + \beta$
$(E-a)^2$	$(\alpha n + \beta)a^n$
$(E-a)^2(E-b)$	$\left (\alpha n + \beta)a^n + \gamma b^n (a \neq b) \right $
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$

If X annihilates f, then X also annihilates Ef.

If X annihilates both f and g,
then X also annihilates $f \pm g$.

If X annihilates f, then X also annihilates αf ,
for any constant α .

If X annihilates f and Y annihilates g, then XY annihilates $f \pm g$.

Randomization

To avoid bad input sequences, the input can be intentionally randomized.

${\bf Pseudo\ random\ generator}$

Linear congruential generators

$$x_i = (ax_{i-1} + c) \mod m$$

- RANDU: $x_i = 65539x_{i-1} \pmod{2^{31}}$
- MINSTD $x_i = 16807x_{i-1} \pmod{2^{31} 1}$
- Combinations of linear congruential generators. Addition, subtraction, bit mixing. Better randomness, small period.
- higher order recursions

Blum-Blum-Shrub

- $p, q \in \mathbb{P}$, large (at least 40 decimal places)
- $\bullet \ m=pq$
- $\bullet \ X_i = X_{i-1}^2 \ (\text{mod } m)$
- b_i = parity(X_i)

Amortized analysis

Aggregated analysis

Determine upper bound T(n) for the total cost of a sequence of n operations. Amortized cost per operation is $\frac{T(n)}{n}$.

Accounting method

Some operations are overcharged to pay for other opera-

Potential method

Potential function is tied to a data structure.

NP-complete problems

- CSAT logical circuit satisfiability
- FSAT logical formula satisfiability
- 3CNF-SAT formula in 3-conjuctive normal form satisfiability
- CLIQUE existence of cliques in a graph
- VERTEX COVER a minimal set of vertices that cover all the edges of a graph
- HAM Hamiltonian cycle of a graph
- TSP travelling salesman problem
- \bullet SUBSET-SUM the subset of numbers equal to a given number
- BIN-TREE optimal binary decision tree
- SUBGRAPH-ISOMORPHISM

Linear programming Standard LP

- given n real numbers c_1, c_2, \ldots, c_n
- m real numbers b_1, b_2, \ldots, b_m
- $m \times n$ real numbers a_{ij} for i = 1, ..., m and j = 1, ..., n
- we wish to find n real numbers x_1, \ldots, x_n that

maximize $\sum_{j=1}^{n} c_j x_j$ subject to

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \forall i = 1, \dots, m$$

$$x_j \ge 0$$

Approximation

LP relaxation, 0-1 integer programming

Local search

- State space: $S = \{S; S_Z \longrightarrow S\}$
- starting state: S_0
- quality of state: q(S)
- global optimum: $S_{\text{best}} = \arg\min_{s \in S} q(s)$
- local optima: $S_{\text{local}} = \{S; \forall S \to S': q(S) \leq q(S')\}$

Problems

- local extremes
- plato
- ridge

Metroplis algorithm

- If better neighbour exists, move to it.
- Otherwise choose a random neighbour, but accept better neighbours with larger probability.
- Decrease the probability of acceptance.
- In time, stohastic search turns into deterministic LS.

Simulated annealing

- Start with a random state S.
- Select random neighbour St
- If q(S') < q(S), move to S'.
- \bullet Otherwise, move with probability $e^{\frac{-(q(S\prime)-q(S))}{T}}$

Decrease temperature while it's not close to zero. Usually a geometrical rule is used: $T' = \lambda T$, $0 < \lambda < 1$ (typically $\lambda = 0.95$)

Metaheuristics

Guided local search

Tabu search

Idea: to prevent returning back to the same local extreme, supress (parts of) solutions.

Metaheuristics which guide local search and helps it avoid

local extremes.

• define properties (attributes) of solutions

- define properties (attitiones) of solution
- $\bullet\,$ penalize attributes, which occur too often in local extrema
- $\bullet\,$ auxiliary objective function

$$h(s) = g(s) + \lambda \cdot \sum_{i \text{ is a feature}} (p_i \cdot I_i(s))$$

Utility of punishment for property i in local extreme s*

$$\operatorname{util}_{i}(s*) = I_{i}(s*) \cdot \frac{c_{i}}{1 + n}$$

 c_i is cost, p_i is current punishment for property i In local extreme we punish the property with the largest utility (we increment p_i by 1).

Variable neighbourhood search

Idea: define several neighbourhood structures and change neighbourhood when reaching local extreme in one of them. Order neighbourhoods by the efficiency of computation.