Reinforcement Learning: Models and Hierarchy

Benjamin Rosman

benjros@gmail.com

School of Computer Science and Applied Mathematics
University of the Witwatersrand
South Africa

R A I L L A B

African Masters of Machine Intelligence (Kigali, Rwanda)

January 13-17 2020

Further reading...

- Reinforcement Learning: An Introduction (Sutton and Barto)
 - Chapter 8
- CS 294-122 (Sergey Levine)
 - Lecture 9
- COMPM050/COMPGI13 (David Silver)
 - Lecture 8
- CompSci 590.2 Hierarchical Robot Learning and Planning (George Konidaris)
- Taylor, M.E. and Stone, P., 2009. Transfer learning for reinforcement learning domains: A survey. *Journal of Machine Learning Research*, 10(Jul), pp.1633-1685.

Why is RL hard?

Sparse and delayed rewards

- Sparsity:
 - Most actions give no reward feedback

- Delayed:
 - Rewards may come after executing whole trajectories

Long action sequences

Benjamin Rosman

Addressing these issues?

- General ideas:
 - Make predictions of what may happen
 - Exploit structure of the problem
 - Representations of states and transitions
 - Action spaces
 - Rewards
 - Reuse knowledge

Addressing these issues?

- General ideas:
 - Make predictions of what may happen
 - Exploit structure of the problem
 - Representations of states and transitions
 - Action spaces
 - Rewards
 - Reuse knowledge

RL approaches

From Values to Environment Models

- Model based reinforcement learning
- Learn a model (T and R) from experience
 - $s' \sim \widehat{T}(s'|s,a)$
 - $r \sim \hat{R}(r|s,a)$
 - Simulator: ask questions about the domain
 - Supervised learning problem
- Models let you:
 - Predict next state and reward
 - Reason about uncertainty
 - Be more efficient in how you use data

Models

- Models can be:
 - Distribution models
 - Produces the distribution p(s', r|s, a)
 - Sample models
 - Produces a sample s', r given a current s, a
- What are the advantages/disadvantages of these kinds of models?
- How might you use these two kinds of models?

$$Q(s, a) \leftarrow \sum_{s', r} \hat{p}(s', r | s, a) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[R + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

Model Based RL

Learn a Transition and Reward Model

On receiving experience (s_t, a_t, r_t, s_{t+1})

$$R(s_t, a_t) \Leftarrow R(s_t, a_t) + \alpha(r - R(s_t, a_t))$$

$$T(s_t, a_t, s_{t+1}) \Leftarrow T(s_t, a_t, s_{t+1}) + \alpha \boxed{1 - T(s_t, a_t, s_{t+1})}$$

$$T(s_t, a_t, \hat{s}) \Leftarrow T(s_t, a_t, \hat{s}) + \alpha \boxed{0 - T(s_t, a_t, \hat{s})}$$

These can be thought of as regression problems

$$Q(s,a) = R(s,a,s') + \gamma \sum T(s,a,s')V(s')$$

Dyna-Q Algorithm

What can be parallelised here?

For each step *t* in episode:

- Choose a in s from Q
- Take a, observe r, s
- Update $Q: Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') Q(s,a)]$
- Given (s, a, r, s'):
 - Update *T* and *R*

model learning

Q-learning

- Repeat n times:
 - Sample previously observed s
 - Sample previously taken a (in s)
 - Get r and s' from model

• Update $Q: Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$

sample model to update Q: planning

Dyna-Q example

Learning models with Gaussian Processes

Gaussian processes

- Gaussian distribution over function space
- Regression with uncertainty

Learning models with GPs

```
Data: number of features D, initial training data
foreach episode do
   train GPs on accumulated data (minimize (11))
    linearise dynamics and constraints about x_0;
    solve (5) until convergence;
    while not terminal do
       shift previous trajectory;
       for i = 1 to max iterations do
           linearise about current trajectory;
           solve (5) to get step direction;
           update trajectory (4);
       end
       apply control to the system;
       update dynamics model (12);
    end
end
```

Algorithm 1: The complete GP-RHC algorithm

Minimise $J(\mathbf{x}_0) = h(\mathbf{x}(t_0 + T)) + \int_{t_0}^{t_0 + T} \mathcal{L}(\mathbf{x}(t), \mathbf{u}(t)) dt$ Subject to: $\mathbf{x}(t_0) = \hat{\mathbf{x}}_0$ $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)),$ $\mathbf{u} \leq \mathbf{u}(t) \leq \overline{\mathbf{u}},$ $\underline{\mathbf{x}} \leq \mathbf{x}(t) \leq \overline{\mathbf{x}},$ $\mathbf{g}(\mathbf{x}(t), \mathbf{u}(t)) \leq \mathbf{0},$ for all t in $[t_0, t_0 + T]$

Planning

- Computational process to use a model to create or improve a policy
 - E.g. Sampling the model to update the Q-function in Dyna Q
- Form of search over the state-action space
 - Using the model to simulate what may happen
- How else can planning be done?
 - Tree search
 - •

Why can't we just build a tree of the entire domain?

How to efficiently search the tree?

- Monte-Carlo Tree Search (MCTS)
 - Build a tree incrementally
 - Get around limitation of large state space
 - Run simulations (from a model/simulator)
 - Get around limitation of perfect knowledge
 - Keep estimates of the values of actions
 - Approximate value functions
 - Continue planning (simulating) for as long as we have time
 - Anytime algorithm

Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search (MCTS)

Selection

- Starting from the root of the tree, select actions until an expandable leaf node is reached (tree policy)
- Choose nodes to maximise $UCT = \overline{X_j} + 2C_p \sqrt{\frac{2 \ln n}{n_j}}$ Number of times parent selected Number of times this node selected Number of times this node selected
- Exploration/exploitation

Estimated value of action *j*

Expansion

Add a new child node to that leaf node, corresponding to a new action

Simulation

 Run a simulation from that new node until termination with an outcome (default policy) – usually random

Backup

Propagate that outcome up through the tree

MCTS illustration

In this example:

- For each node: total wins/total playouts
- Alternating white and black player

Models – generalising knowledge

• Don't need to learn T and R monolithically

- Learn local models
 - Tells you something about specific regions of space
- Plan in an abstracted space with portable knowledge

Scaling up

- Learn local rules in small problems (e.g. with object oriented representations – OOMDPs)
 - Transfer to larger ones

 $\sim 8k$ states

 $\sim 1M$ states

(Marom and Rosman, NeurlPS 2018)

Addressing these issues

- General ideas:
 - Make predictions of what may happen
 - Exploit structure of the problem
 - Representations of states and transitions
 - Action spaces
 - Rewards
 - Reuse knowledge

How do humans do it?

Hierarchies of skills

- Structure hierarchical control around skills
 - Components of behaviour
 - Performs continuous, low-level control
 - Can treat as discrete action

Behaviour is modular and compositional

Hierarchical RL

- RL typically solves a single problem monolithically
- Hierarchical RL:
 - Create and use higher-level macro-actions
 - Problem now contains subproblems
 - Each subproblem is also an RL problem
- Several major frameworks look at this problem
 - Options Framework: theoretical basis for skill acquisition, learning and planning using higher-level actions (options)

The options framework

- Basic idea:
 - Define a *temporally extended action* as a *policy*
- A (Markov) option o is a policy unit:

Initiation set

$$I_o: S \rightarrow \{0,1\}$$

A termination probability

$$\beta_o: S \to [0,1]$$

A policy

$$\pi_o: S \times A \rightarrow [0,1]$$

Non-Markov options

- Non-Markov policy:
 - Not *solely* functions of state
 - Also function of execution history
- Examples of non-Markov options:
 - Run for at most *n* steps
 - Repeat something n times
 - Any internal state
- Not often used, but can be very useful

Actions are options

• A primitive action *a* can be represented by an option:

•
$$I_a(s) = 1, \forall s \in S$$

•
$$\beta_a(s) = 1, \forall s \in S$$

•
$$\pi_a(s,b) = \begin{cases} 1 & a=b \\ 0 & otherwise \end{cases}$$

• A primitive action can be executed anywhere, lasts exactly one time step, and always chooses action α

Options as actions

Option

Problem

Questions

- Given an MDP: (S, A, R, T, γ)
- Replace A with a set of options O (some may be primitive actions)
 - How do we characterise the resulting problem?
 - How do we plan using options?
 - How do we learn using options?
 - How do we characterise the resulting policies?
 - How do we learn the options?

SMDPs

- The resulting problem is a *Semi-Markov Decision Process (SMDP)*
- This consists of:

• *S* Set of states

• *O* Set of options

• P(s', t | o, s) Transition model

• R(s', s, t) Reward function

• γ Discount factor (per step)

• In this case:

- All times are integers
- "Semi" here means transitions can last t>1 timesteps
- Transition and reward functions involve time taken for option to execute

The Bellman Equation for SMDPs

Return to the Bellman equation:

$$Q^{\pi}(s,o) = \mathbb{E}_{t,s'}[R(s',s,t)] + \mathbb{E}_{t,s'}[\gamma^t \pi(s',o') Q^{\pi}(s',o')]$$
 value of o in s immediate expected future next o' in value of value next s'

• where:

$$\mathbb{E}_{t,s'}[R(s',s,t)] = \sum_{t,s'} P(s',t|o,s)R(s',s,t)$$

Note we are averaging over time: how long does the option run for?

$$\mathbb{E}_{t,s'}[\gamma^t \pi(s',o')Q^{\pi}(s',o')] = \sum_{t,s'} P(s',t|o,s)\gamma^t \pi(s',o')Q^{\pi}(s',o')$$

Learning and planning

$$Q^{\pi}(s,o) = \mathbb{E}_{t,s'}[R(s',s,t)] + \mathbb{E}_{t,s'}[\gamma^t \pi(s',o')Q^{\pi}(s',o')]$$

- For learning:
 - Stochastic samples
 - Use SMDP Bellman equation

- For planning:
 - Synchronous Value Iteration
 - Value Iteration using the SMDP Bellman Equation

4 stochastic primitive actions

8 multi-step options (to each room's 2 hallways)

Target Hallway

Primitive options $\mathcal{O}=\mathcal{A}$

Hallway options \mathcal{O} = \mathcal{H}

Initial Values

Iteration #1

Iteration #2 (Sutton, Precup and Singh, AIJ 1999)

Primitive and hallway options $\mathcal{O}=\mathcal{A}\cup\mathcal{H}$

A note on policies

• A policy over an MDP with primitive actions is a *Markov policy*:

$$\pi: S \times A \to [0,1]$$

A policy over an MDP with options could also be Markov:

$$\pi: S \times O \to [0,1]$$

 This could imply a policy in the original MDP that is not, because the probability of taking an action at a state depends on the option currently running.

• Consider where two options overlap in s but disagree on a

Semi-Markov policies

 A Markov policy for an SMDP may result in a semi-Markov policy for the underlying MDP

(Even if the options are Markov options!)

 Here, semi-Markov means that the probability of taking a primitive action at each step depends on more than the current state

Summary

- Original problem: MDP
- MDP + Options = SMDP
- Options framework allows us to both *express a low-level policy,* and *plan and learn using the higher-level SMDP*
- Additionally, the ability to:
 - Create new options
 - Update option policies
 - Learn with options
 - Interrupt them ...

What are skills for?

- Adding an option changes the connectivity of the MDP
- This affects:
 - Learning and planning
 - Exploration
 - State-visit distribution
 - Branching factor

(Sutton, Precup and Singh, AIJ 1999)

Hierarchies of skills

(Earle, Saxe and Rosman, ICLR 2018)

Addressing these issues?

- General ideas:
 - Make predictions of what may happen
 - Exploit structure of the problem
 - Representations of states and transitions
 - Action spaces
 - Rewards
 - Reuse knowledge

Transfer

- Use experience gained while solving one problem to improve performance in another
 - Map from one (or more) source task to one (or more) target task
 - Assume tasks drawn from some distribution
- Skill transfer:
 - Use options as mechanism for transfer
 - Transfer *components* of solution
 - Can drastically improve performance
 - Bootstrapping performance
- General principle: subtasks recur across problems

- Tasks drawn from parametrized family
 - Common features present
 - Options defined using only common features

(a) Learning curves for agents with problem-space options.

(b) Learning curves for agents with agent-space options, with varying numbers of training experiences.

(Konidaris and Barto, IJCAI 2007)

Why do we need transfer?

- Improve performance over "regular" learning
 - Sample complexity
 - Jumpstart
 - Learning speed
 - Time to threshold
 - Asymptotic performance

Transferred knowledge

Structural Transfer

Task Representation

Experience Transfer

- Task representation
 - –Action space (e.g., options, task decomposition)
 - –Reward function
- Solution representation
 - -Basis functions

- Samples
 - Collected through direct exploration
- Value function / policy
 - –Solution initialisation

Why structure and transfer?

- Multitask learning
 - Multipurpose (robot) systems
- Solving large scale problems
 - Decompose into a curriculum

Why structure and transfer?

- Long term benefits
- Life-long learning

Conclusion

- Difficulties of delayed rewards, long action sequences, ...
- Model-based RL
 - Dyna-Q
 - MCTS
- Action abstraction
 - Options framework
- Transfer and multitask learning