Содержание

1	Равномерная непрерывность. Примеры. Теорема Кантора	2
2	Дифференциал функции. Теорема Ферма. Теорема Ролля. Примеры.	4
3	Теорема Лагранжа. Необходимое и достаточное условие постоянства дифференцируемой функции на промежутке. Необходимое и достаточное условие монотонности дифференцируемой функции на промежутке.	6
4	Равномерная непрерывность. Примеры. Теорема Кантора о равномерной непрерывности.	9
5	Вывод рядов Тейлора для функций $y=\exp(x), y=\sin x, y=\cos x$ через следствие из теоремы Лагранжа. Формула Эйлера.	11
6	Теорема Коши. Правило Лопиталя (доказательство – только для случая $0/0$). Примеры, когда правило неприменимо.	14
7	Формула Тейлора для многочлена. Формула Тейлора с остатком в форме Пеано.	17
8	Достаточные условия существования экстремума (по второй производной).	19
9	Теорема Лиувилля. Пример трансцендентного числа.	21
10	Формулы Маклорена для функций у=exp(x), y=sinx, y=cosx, y=ln(1+x), y=pow((1+x),a).	23
11	Формула Тейлора с остатком в форме Лагранжа. Приближенные вычисления по формуле Тейлора.	26
12	Формула Стирлинга (с эквивалентностью).	28
13	Формула Стирлинга (с равенством).	30
14	Определение интеграла Римана. Отличие от «обычного» предела.	33
15	Формула Ньютона-Лейбница.	35

1 Равномерная непрерывность. Примеры. Теорема Кантора

Вспомогательные понятия

Компакт в \mathbb{R} . Множество $K \subset \mathbb{R}$ называется *компактным*, если оно замкнуто и ограничено.

Непрерывность (точечное определение). Функция f называется непрерывной в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Если это выполняется для любой точки множества X, то f непрерывна на X.

Теорема Больцано—**Вейерштрасса.** Любая ограниченная последовательность в \mathbb{R} имеет сходящуюся подпоследовательность. Если (x_n) лежит в компактном K, то любая подпоследовательность (x_{n_k}) содержит сходящуюся подпоследовательность с пределом в K.

Равномерная непрерывность. Функция f, определённая на $X \subset \mathbb{R}$, называется pas-номерно непрерывной, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0: \ \forall x_1, x_2 \in X, \ |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \varepsilon.$$

Важное отличие: величина δ зависит только от ε , а не от точки $x_0 \in X$.

Ответ на вопрос

Теорема (*Теорема Кантора*).

Если функция f непрерывна на компактном множестве $K \subset \mathbb{R},$ то f равномерно непрерывна на K.

План доказательства.

- 1. Допустим, что f непрерывна на K, но не является равномерно непрерывной.
- 2. Покажем, что существует $\varepsilon_0>0$, при котором нельзя «раз и навсегда» выбрать δ , подходящее всем точкам в K.
- 3. Используем компактность K и теорему Больцано–Вейерштрасса для извлечения сходящейся подпоследовательности, приводящей к противоречию с неравномерной непрерывностью.

4. Следовательно, f равномерно непрерывна.

Доказательство.

Пусть f непрерывна на K. Предположим, что f не равномерно непрерывна. Тогда

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 : \ \exists x, y \in K : \ |x - y| < \delta, \ |f(x) - f(y)| > \varepsilon_0.$$

2

Устанавливаем $\delta = 1/n$ и строим пары (x_n, y_n) . Поскольку K компактно, можно выделить сходящуюся подпоследовательность (x_{n_k}, y_{n_k}) с $x_{n_k} \to c$ и $y_{n_k} \to c$. Из непрерывности f следует

$$|f(x_{n_k}) - f(y_{n_k})| \to 0,$$

что противоречит условию $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon_0$. Следовательно, наше предположение было неверным, и f равномерно непрерывна на K.

Пример.

• Функция f(x) = kx + b равномерно непрерывна на всей \mathbb{R} , так как

$$|f(x_1) - f(x_2)| = |k| \cdot |x_1 - x_2|.$$

• Функция $g(x) = x^2$ не является равномерно непрерывной на \mathbb{R} , хотя непрерывна. Но на любом отрезке [a,b] она будет равномерно непрерывна (по Теореме Кантора).

2 Дифференциал функции. Теорема Ферма. Теорема Ролля. Примеры.

Вспомогательные понятия

Дифференциал функции. Пусть функция f задана в окрестности точки x_0 и дифференцируема в x_0 . Дифференциалом $df(x_0)$ называют

$$df(x_0) = f'(x_0)(x - x_0).$$

При малом приращении $dx = x - x_0$ это выражение можно записать как

$$df(x_0) = f'(x_0) dx,$$

где остаток $f(x_0 + dx) - f(x_0) - df(x_0)$ мал по сравнению с dx (обозначают o(dx)).

Локальный экстремум. Точка x_0 называется *локальным минимумом* (соответственно, максимумом) функции f, если существует $\delta > 0$ такое, что при $|x-x_0| < \delta$ выполняется

$$f(x) \ge f(x_0)$$
 (или $f(x) \le f(x_0)$ для макс.).

Теорема Вейерштрасса (о достижении экстремума). Если функция f непрерывна на отрезке [a,b], то

$$\exists x_{\min}, x_{\max} \in [a, b]: f(x_{\min}) \leq f(x) \leq f(x_{\max}) \ \forall x \in [a, b].$$

Производная. Напомним, что $f'(x_0)$ есть предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

если этот предел конечен. Если $f'(x_0)$ существует для всех x_0 из некоторого промежутка, говорят, что f дифференцируема на этом промежутке.

Ответ на вопрос

Теорема ($Tеорема \ Ферма$).

Если функция f дифференцируема в точке x_0 и имеет там локальный минимум или максимум, то $f'(x_0) = 0$.

- 1. Пусть x_0 точка локального минимума, тогда для x рядом с x_0 выполняется $f(x) \ge f(x_0)$.
- 2. Рассмотреть разность $\frac{f(x)-f(x_0)}{x-x_0}$ при $x>x_0$ и при $x< x_0$ и перейти к пределу.
- 3. Получить, что $f'(x_0) \ge 0$ и $f'(x_0) \le 0$, откуда $f'(x_0) = 0$.

4. Случай локального максимума аналогичен.

Доказательство.

Пусть x_0 — точка локального минимума. Тогда существует $\delta>0$, что при $|x-x_0|<\delta$ верно $f(x)\geq f(x_0)$. Для $x>x_0$ имеем

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Переходя к пределу при $x \to x_0^+$, получаем $f'(x_0) \ge 0$. Аналогично, если $x < x_0$, то $x - x_0 < 0$, и разность $f(x) - f(x_0)$ остаётся неотрицательной, что даёт $f'(x_0) \le 0$. Значит $f'(x_0) \ge 0$ и $f'(x_0) \le 0$, откуда $f'(x_0) = 0$. В случае локального максимума знак меняется, но рассуждение то же. Таким образом, если у f есть локальный экстремум в точке x_0 , то $f'(x_0) = 0$.

Теорема (Теорема Ролля).

Пусть f непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и при этом f(a)=f(b). Тогда существует хотя бы одна точка $c\in(a,b)$ такая, что

$$f'(c) = 0.$$

План доказательства.

- 1. Если f постоянна на [a,b], то f'(x)=0 на (a,b), и нужная точка c может быть любая.
- 2. Если f не постоянна, по Теореме Вейерштрасса достигаются минимум и максимум на [a,b] в точках x_{\min}, x_{\max} .
- 3. Поскольку f(a) = f(b), хотя бы один из экстремумов не может «жить» только на концах, значит есть локальный экстремум внутри (a,b).
- 4. По Теореме Ферма в точке локального экстремума c имеем f'(c) = 0.

Доказательство.

Предположим, что f не постоянна (иначе всё очевидно). По непрерывности и Теореме Вейерштрасса, функция f достигает своего минимума и максимума на отрезке [a,b] (в точках x_{\min} и x_{\max}). Поскольку f(a) = f(b), по крайней мере один из этих экстремумов не может приходиться только на границы; значит существует $c \in (a,b)$, где f имеет локальный экстремум. По Теореме Ферма это даёт f'(c) = 0.

- Дифференциал: Для $f(x) = x^2$ в точке $x_0 = 2$ получаем f'(2) = 4. Тогда при малом dx, df(2) = 4 dx. Если dx = 0.1, то df(2) = 0.4, а реальное f(2.1) f(2) будет 4.41 4 = 0.41, что близко к 0.4.
- Пример (Теорема Ферма): $f(x) = x^2$ имеет локальный минимум в x = 0, причём f'(0) = 0.
- Пример (Теорема Ролля): На [0,4] возьмём $f(x) = x^2 4x$. Тогда f(0) = f(4) = 0. Применяем Теорему Ролля: найдётся $c \in (0,4)$ с f'(c) = 0. И вправду, f'(x) = 2x 4, значит c = 2.

3 Теорема Лагранжа. Необходимое и достаточное условие постоянства дифференцируемой функции на промежутке. Необходимое и достаточное условие монотонности дифференцируемой функции на промежутке.

Вспомогательные понятия

Непрерывность на отрезке. Функция f называется непрерывной на отрезке [a,b], если для любой точки $x_0 \in [a,b]$ и любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для всех $x \in [a,b]$ с $|x-x_0| < \delta$ выполняется $|f(x)-f(x_0)| < \varepsilon$.

Дифференцируемость. Функция f называется $\partial u \phi \phi$ еренцируемой на интервале (a,b), если в каждой точке $x_0 \in (a,b)$ существует конечный предел

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Монотонность (возрастание, убывание). Говорят, что функция f возрастает на промежутке (a,b), если для любых $x_1,x_2\in(a,b)$ при $x_1< x_2$ выполняется $f(x_1)\leq f(x_2)$ (или < для строго возрастающей). Аналогично, f убывает, если $x_1< x_2 \implies f(x_1)\geq f(x_2)$.

Теорема Ролля (напоминание). Пусть f непрерывна на [a,b], дифференцируема на (a,b) и f(a) = f(b). Тогда существует точка $c \in (a,b)$, где f'(c) = 0.

Ответ на вопрос

Теорема (Теорема Лагранжа (о среднем значении)).

Пусть функция f непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b). Тогда существует точка $c \in (a,b)$ такая, что

$$f(b) - f(a) = f'(c) (b - a).$$

План доказательства.

- 1. Эта теорема является обобщением Теоремы Ролля (см. вспомогательные понятия).
- 2. Рассмотрим функцию $F(x) = f(x) \alpha x$, где $\alpha = \frac{f(b) f(a)}{b a}$.
- 3. Заметим, что F(a) = F(b), откуда по Теореме Ролля существует $c \in F'(c) = 0$.
- 4. Тогда $F'(c) = f'(c) \alpha = 0 \implies f'(c) = \alpha$, и α равна $\frac{f(b) f(a)}{b a}$.

Доказательство.

Обозначим $\alpha = \frac{f(b) - f(a)}{b - a}$. Рассмотрим $F(x) = f(x) - \alpha x$. Тогда

$$F(b) - F(a) = \left[f(b) - \alpha b \right] - \left[f(a) - \alpha a \right] = \left[f(b) - f(a) \right] - \alpha (b - a) = 0.$$

По условию, F непрерывна на [a,b] и дифференцируема на (a,b) (как разность таких же функций). Из F(a) = F(b) следует, что по Теореме Ролля существует $c \in (a,b)$ с F'(c) = 0. Но $F'(x) = f'(x) - \alpha$, значит

$$f'(c) - \alpha = 0 \implies f'(c) = \alpha = \frac{f(b) - f(a)}{b - a}.$$

Это и требовалось доказать.

Теорема (Условие постоянства дифференцируемой функции).

Пусть f дифференцируема на промежутке (a,b). Тогда f постоянна на (a,b) тогда и только тогда, когда

$$f'(x) = 0$$
 для всех $x \in (a, b)$.

План доказательства.

1. Если f'(x) = 0 всюду, по Теореме Лагранжа (или Ролля) разность $f(x_2) - f(x_1)$ оказывается равной нулю, значит f постоянна.

2. Если f постоянна, то очевидно f'(x) = 0.

Доказательство.

(Необходимость) Если f константа, тогда для любых x_1, x_2 выполняется $f(x_2) = f(x_1)$, откуда f'(x) = 0 в любой точке, где существует производная.

(Достаточность) Пусть f'(x) = 0 для всех $x \in (a,b)$. Возьмём любые $x_1 < x_2$ в (a,b). Применим Теорему Лагранжа на отрезке $[x_1,x_2]$: найдётся $c \in (x_1,x_2)$, что

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Но f'(c) = 0, значит $f(x_2) = f(x_1)$. Следовательно, f одно и то же число на всём (a,b).

Теорема (Условие монотонности дифференцируемой функции).

Пусть f дифференцируема на промежутке (a,b).

- f возрастает на $(a,b) \iff f'(x) \ge 0$ для всех $x \in (a,b)$ (причём множество нулей f'(x) = 0 не содержит интервалов).
- f убывает на $(a,b) \iff f'(x) \le 0$ для всех $x \in (a,b)$ (и множество нулей не содержит интервалов).

- 1. Если $f'(x) \ge 0$ на (a,b), то для $x_2 > x_1$ по Теореме Лагранжа $f(x_2) f(x_1) = f'(c) (x_2 x_1) \ge 0$.
- 2. Если f возрастает, то $\frac{f(x_2)-f(x_1)}{x_2-x_1} \ge 0$. Переходя к пределу, получаем $f'(x) \ge 0$.

3. Уточнение про то, что при равенстве нулю на целом подинтервале, функция фактически становится постоянной там, что «ломает» строгое возрастание.

Доказательство.

(Случай возрастания) Пусть $x_1 < x_2$. Если $f'(x) \ge 0$, по Теореме Лагранжа найдётся $c \in (x_1, x_2)$:

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0,$$

значит $f(x_2) \geq f(x_1)$ — неубывание. Обратное: если f возрастает, $\frac{f(x_2)-f(x_1)}{x_2-x_1} \geq 0$. Переходя к пределу при $x_2 \to x_1$, получаем $f'(x_1) \geq 0$. Аналогичные аргументы для убывания (меняются знаки).

Если f'(x) = 0 на целом подинтервале, там f постоянна, нарушая «строгое» возрастание.

- Функция, у которой $f'(x) \geq 0$, но есть точки с f'(x) = 0, будет возрастать (не строго), однако если такие нули идут целым отрезком, то там f постоянна.
- Пример: $f(x) = x^3$ на \mathbb{R} : $f'(x) = 3x^2 \ge 0$, значит f возрастает на всей оси. При этом f'(0) = 0, но это всего одна точка.

4 Равномерная непрерывность. Примеры. Теорема Кантора о равномерной непрерывности.

Вспомогательные понятия

Теорема (Теорема Кантора).

Если f непрерывна на komnakmhom множестве $X\subset\mathbb{R},$ то f равномерно непрерывна на X.

План доказательства.

- 1. Доказывать будем *от противного*: считаем, что f непрерывна на компакте, но **не** равномерно непрерывна.
- 2. Из этого следует существование $\varepsilon_0 > 0$, при котором нельзя подобрать «глобальное» δ , годящееся для всех точек в X.
- 3. Для каждой n, пусть $\delta = \frac{1}{n}$. Тогда находятся точки (x_n,y_n) с $|x_n-y_n|<\frac{1}{n}$, но $|f(x_n)-f(y_n)|\geq \varepsilon_0$.
- 4. Используем компактность X: извлекаем сходящуюся подпоследовательность $(x_{n_k}) \to c$. Поскольку $|x_{n_k} y_{n_k}| < 1/n_k \to 0$, получаем $y_{n_k} \to c$ тоже.
- 5. По непрерывности f имеем $f(x_{n_k}) \to f(c)$ и $f(y_{n_k}) \to f(c)$, значит $|f(x_{n_k}) f(y_{n_k})| \to 0$, что противоречит условию $\geq \varepsilon_0$.

Доказательство.

Пусть f непрерывна на компактном X, но, вопреки теореме, ne равномерно непрерывна. Тогда

$$\exists \varepsilon_0 > 0 \quad \forall \delta > 0, \ \exists x, y \in X : \quad |x - y| < \delta, \quad |f(x) - f(y)| \ge \varepsilon_0.$$

Выберем $\delta = 1/n$ и построим пары (x_n, y_n) с

$$|x_n - y_n| < \frac{1}{n}, \quad |f(x_n) - f(y_n)| \ge \varepsilon_0.$$

Так как X — компакт, последовательность (x_n) имеет сходящуюся подпоследовательность $(x_{n_k}) \to c \in X$. По условию $|x_{n_k} - y_{n_k}| < 1/n_k \to 0$, значит $y_{n_k} \to c$ тоже. Из непрерывности f в точке c следует

$$f(x_{n_k}) \to f(c), \quad f(y_{n_k}) \to f(c),$$

так что $|f(x_{n_k}) - f(y_{n_k})| \to 0$. Но по построению $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon_0 > 0$. Это даёт противоречие.

Следовательно, наша гипотеза о «неравномерной непрерывности» была ошибочной, и f действительно равномерно непрерывна на X.

- Пример (равномерная непрерывность на \mathbb{R}): Линейная функция f(x) = kx + b. Имеем $|f(x_1) f(x_2)| = |k| \cdot |x_1 x_2|$, что легко «контролируется» выбором $\delta = \frac{\varepsilon}{|k|}$.
- Пример (не равномерная на \mathbb{R}): $f(x) = x^2$. Несмотря на непрерывность на \mathbb{R} , не получается «глобально» связать $|x_1 x_2|$ с $|f(x_1) f(x_2)|$ единым $\delta(\varepsilon)$, поскольку при больших |x| влияние приращения аргумента сильно возрастает.
- Аналогично, e^x неравномерно непрерывна на всей оси: чем больше x, тем чувствительнее функция к малым изменениям x.

Ответ на вопрос

Теорема (Теорема Кантора).

Если f непрерывна на компактном множестве $X \subset \mathbb{R}$, то f равномерно непрерывна на X.

План доказательства.

- 1. Доказывать будем *от противного*: считаем, что f непрерывна на компакте, но **не** равномерно непрерывна.
- 2. Из этого следует существование $\varepsilon_0 > 0$, при котором нельзя подобрать «глобальное» δ , годящееся для всех точек в X.
- 3. Для каждой n, пусть $\delta = \frac{1}{n}$. Тогда находятся точки (x_n, y_n) с $|x_n y_n| < \frac{1}{n}$, но $|f(x_n) f(y_n)| \ge \varepsilon_0$.
- 4. Используем компактность X: извлекаем сходящуюся подпоследовательность $(x_{n_k}) \to c$. Поскольку $|x_{n_k} y_{n_k}| < 1/n_k \to 0$, получаем $y_{n_k} \to c$ тоже.
- 5. По непрерывности f имеем $f(x_{n_k}) \to f(c)$ и $f(y_{n_k}) \to f(c)$, значит $|f(x_{n_k}) f(y_{n_k})| \to 0$, что противоречит условию $\geq \varepsilon_0$.

Доказательство.

Пусть f непрерывна на компактном X, но, вопреки теореме, ne равномерно непрерывна. Тогда

$$\exists \varepsilon_0 > 0 \quad \forall \delta > 0, \ \exists x, y \in X : \quad |x - y| < \delta, \quad |f(x) - f(y)| \ge \varepsilon_0.$$

Выберем $\delta = 1/n$ и построим пары (x_n, y_n) с

$$|x_n - y_n| < \frac{1}{n}, \quad |f(x_n) - f(y_n)| \ge \varepsilon_0.$$

Так как X — компакт, последовательность (x_n) имеет сходящуюся подпоследовательность $(x_{n_k}) \to c \in X$. По условию $|x_{n_k} - y_{n_k}| < 1/n_k \to 0$, значит $y_{n_k} \to c$ тоже. Из непрерывности f в точке c следует

$$f(x_{n_k}) \to f(c), \quad f(y_{n_k}) \to f(c),$$

так что $|f(x_{n_k}) - f(y_{n_k})| \to 0$. Но по построению $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon_0 > 0$. Это даёт противоречие.

Следовательно, наша гипотеза о «неравномерной непрерывности» была ошибочной, и f действительно равномерно непрерывна на X.

- Пример (равномерная непрерывность на \mathbb{R}): Линейная функция f(x) = kx + b. Имеем $|f(x_1) f(x_2)| = |k| \cdot |x_1 x_2|$, что легко «контролируется» выбором $\delta = \frac{\varepsilon}{|k|}$.
- Пример (не равномерная на \mathbb{R}): $f(x) = x^2$. Несмотря на непрерывность на \mathbb{R} , не получается «глобально» связать $|x_1 x_2|$ с $|f(x_1) f(x_2)|$ единым $\delta(\varepsilon)$, поскольку при больших |x| влияние приращения аргумента сильно возрастает.
- Аналогично, e^x неравномерно непрерывна на всей оси: чем больше x, тем чувствительнее функция к малым изменениям x.

5 Вывод рядов Тейлора для функций у=exp(x), y=sinx, y=cosx через следствие из теоремы Лагранжа. Формула Эйлера.

Вспомогательные понятия

Ряд Маклорена. Пусть функция f имеет все производные в некоторой окрестности точки 0. Тогда pядом Маклорена для f называют

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

Если этот ряд сходится к f(x) при соответствующих значениях x, то мы получаем разложение f(x) в степенной ряд около 0.

Остаточный член в форме Лагранжа. В случае, когда у функции f есть (n+1)-я производная в окрестности 0, можно записать

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1},$$

где ξ — некоторая точка между 0 и x. Это называют *остаточным членом* (или недостающим звеном) в формуле Тейлора (Маклорена).

Идея применения Теоремы Лагранжа. Для доказательства формулы Тейлора с остатком в форме Лагранжа часто используют теорему Лагранжа о среднем значении для производных: если $P_n(x)$ — многочлен Тейлора степени n, то на отрезке [0,x] применяют теорему Лагранжа к функции $f(x) - P_n(x)$, чтобы получить вид « $f^{(n+1)}(\xi) \, x^{n+1}/(n+1)!$ ».

Комплексная экспонента. Функция e^{ix} , где i — мнимая единица, можно рассматривать как обобщение экспоненты на комплексную плоскость:

$$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}.$$

Из этого получается Формула Эйлера при разбиении на действительную и мнимую часть.

Ответ на вопрос

Теорема (Формула Тейлора (с остатком в форме Лагранжа)).

Пусть функция f имеет (n+1)-ю производную в окрестности 0. Тогда для x из этой окрестности справедливо разложение:

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}}_{R_n(x)},$$

где ξ — некоторая точка между 0 и x. Это и называют pядом Tейлора (Маклорена) с остаточным членом в форме Лагранжа.

- 1. Рассмотреть многочлен Тейлора $P_n(x)$, равный сумме первых n+1 членов (то есть до x^n).
- 2. Применить теорему Лагранжа к функции $f(x) P_n(x)$ на отрезке [0, x].
- 3. Показать, что «остаток» $R_n(x)$ принимает вид $\frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$.
- 4. Подставляя в эту схему конкретные f(x) (как e^x , $\sin x$, $\cos x$), получаем соответствующие ряды.

Доказательство.

Пусть f удовлетворяет условиям теоремы (все производные до порядка n+1 определены и непрерывны в окрестности 0). Определим

$$P_n(x) = f(0) + \frac{f'(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^n.$$

Тогда рассмотрим на промежутке [0,x] (предполагая x>0 для определённости) функцию

$$g(t) = f(t) - P_n(t).$$

Заметим, что g(0)=0. По построению, g непрерывна и дифференцируема. Применим теорему Лагранжа (о среднем значении): существует $\xi \in (0,x)$ такое, что

$$g(x) - g(0) = g'(\xi)(x - 0).$$

Так как g(0) = 0, получаем

$$g(x) = g'(\xi) x.$$

Но

$$g'(t) = f'(t) - \left[\frac{d}{dt}P_n(t)\right] = f'(t) - \left[f'(0) + \dots + \frac{f^{(n)}(0)}{(n-1)!}t^{n-1}\right].$$

Ещё раз применяя теорему Лагранжа к разности f'(t) и многочлена производных, доказывают, что это выражение сводится к $\frac{f^{(n+1)}(\eta)}{n!}\,t^n$ (или детально, если нужно). Таким образом, окончательно получается

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}.$$

Это и есть остаток $R_n(x)$. В итоге,

$$f(x) = P_n(x) + R_n(x), \quad R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}.$$

Пример.

Применение к e^x , $\sin x$, $\cos x$.

• Функция $f(x) = e^x$. Все её производные равны e^x , значит в точке 0 они все равны 1. Отсюда ряд:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + R_n(x),$$

где $R_n(x) = \frac{e^{\xi}}{(n+1)!} x^{n+1}$ с некоторой $\xi \in (0, x)$.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + R_n(x).$$

• **Функция** $f(x) = \cos x$. Аналогично,

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + R_n(x).$$

Пример.

Формула Эйлера.

$$e^{ix} = \cos x + i \sin x.$$

Если в ряде для e^x подставить $x\mapsto ix$, раскрыв степенные множители i^n (где $i^2=-1$, $i^3=-i$, и т.д.), происходит естественное разбиение на действительную часть (совпадающую с рядом $\cos x$) и мнимую часть (совпадающую с рядом $\sin x$). Это даёт знаменитую тождественность Эйлера.

6 Теорема Коши. Правило Лопиталя (доказательство – только для случая 0/0). Примеры, когда правило неприменимо.

Вспомогательные понятия

Проколотая окрестность. Окрестность точки a называют npoколотой, если в ней учитывают все точки, кроме, возможно, самой a. Формально, это множество

$$\{x: 0 < |x-a| < \delta\},\$$

где $\delta > 0$. Функции f и g говорят «дифференцируемы в проколотой окрестности a», если они имеют производные для всех x этого множества (кроме, возможно, самой точки a).

Теорема Ролля (напоминание). Пусть h непрерывна на [p,q], дифференцируема на (p,q) и h(p)=h(q). Тогда существует $c\in(p,q)$ с h'(c)=0. Часто используется для построения доказательств Лагранж-типа.

Неопределённости вида 0/0 и ∞/∞ . Правило Лопиталя применимо только к случаям, когда $\lim_{x\to a} f(x)$ и $\lim_{x\to a} g(x)$ одновременно равны нулю, либо одновременно стремятся к $\pm\infty$. Во всех остальных случаях правило не даёт результата.

Условия дифференцируемости. Если функции f, g дифференцируемы в некоторой проколотой окрестности a, то мы можем говорить о f'(x) и g'(x) при $x \to a$, даже если f(a) или g(a) не определены (или не дифференцируемы) строго в точке a.

Ответ на вопрос

Теорема (*Теорема Коши (обобщённая теорема Лагранжа*)). Пусть функции f(x) и g(x) удовлетворяют условиям:

- непрерывны на [a, b],
- \bullet дифференцируемы на (a,b),
- $g'(x) \neq 0$ для всех $x \in (a, b)$.

Тогда существует точка $c \in (a, b)$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

- 1. Сконструировать вспомогательную функцию $\Phi(t) = f(t) f(a) \frac{f(b) f(a)}{g(b) g(a)} [g(t) g(a)].$
- 2. Показать, что $\Phi(a) = \Phi(b) = 0$.

- 3. Применить Теорему Ролля, найти $c \in (a, b)$ с $\Phi'(c) = 0$.
- 4. Вывести оттуда $f'(c) = \frac{f(b) f(a)}{g(b) g(a)} g'(c)$.
- 5. Получить требуемое равенство $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

Доказательство.

Предположим f,g удовлетворяют условиям: непрерывны на [a,b], дифференцируемы на (a,b), причём $g'(x) \neq 0$ на (a,b). Определим

$$\Phi(t) = f(t) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(t) - g(a)].$$

Нетрудно проверить, что $\Phi(a) = 0$ и

$$\Phi(b) = f(b) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(b) - g(a)] = 0.$$

Поскольку Φ непрерывна на [a,b] и дифференцируема на (a,b), по Теореме Ролля существует $c \in (a,b)$, где $\Phi'(c) = 0$. Но

$$\Phi'(t) = f'(t) - \frac{f(b) - f(a)}{g(b) - g(a)} g'(t).$$

Тогда $\Phi'(c)=0\implies f'(c)=\frac{f(b)-f(a)}{g(b)-g(a)}\,g'(c).$ Поделив обе части на g'(c) (отлично от 0), получаем

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Это и доказывает обобщённую Теорему Лагранжа (Коши).

Теорема (Правило Лопиталя (случай 0/0)).

Пусть f(x) и g(x) дифференцируемы в проколотой окрестности точки a. Предположим, что

$$\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0,$$

и $g'(x) \neq 0$ в этой окрестности. Если существует конечный или бесконечный предел

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L,$$

то существует и $\lim_{x \to a} \frac{f(x)}{g(x)}$, причём

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

- 1. Рассмотреть отношение $\frac{f(x)}{g(x)}$ при $x \to a$ (обе функции стремятся к 0).
- 2. Применить Теорему Коши к f и g на отрезке [a,x], используя f(a)=g(a)=0.

- 3. Утверждается, что $\frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}$ для некоторого $c_x \in (a, x)$.
- 4. Переходя к пределу $x \to a$, если $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, то получаем $\lim_{x \to a} \frac{f(x)}{g(x)} = L$.

Доказательство.

По условию $\lim_{x\to a} f(x) = 0$, $\lim_{x\to a} g(x) = 0$, и $g'(x) \neq 0$ в проколотой окрестности. Предположим, что $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$.

Для x>a (или x<a, в зависимости от ситуации) рассмотрим отрезок [a,x]. Тогда f(a)=g(a)=0. По Теореме Коши (см. выше) существует $c_x\in(a,x)$, где

$$\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c_x)}{g'(c_x)}.$$

Ho f(a) = g(a) = 0, значит

$$\frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}.$$

При $x \to a$, точка $c_x \to a$. Если $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, то $\frac{f'(c_x)}{g'(c_x)} \to L$. Следовательно,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Пример.

Примеры, когда правило Лопиталя неприменимо:

- Нет неопределённости 0/0: $\lim_{x\to 0}\frac{\sin x}{x+1}=\frac{0}{1}=0$ здесь всё очевидно, правило Лопиталя не нужно.
- Предел $\frac{f'(x)}{g'(x)}$ не существует: $\lim_{x\to 0} \frac{\sin(1/x)}{1/x}$ поведение непредсказуемо; производные f'(x) и g'(x) «скачут».
- f или g не дифференцируемы (хотя бы в проколотой окрестности): f(x) = |x|, g(x) = x при $x \to 0$: f не дифференцируема в 0.

7 Формула Тейлора для многочлена. Формула Тейлора с остатком в форме Пеано.

Вспомогательные понятия

Многочлен и его производные. Пусть P(x) — многочлен степени n, то есть

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

Все производные $P^{(k)}(x)$ существуют на \mathbb{R} , причём для k>n эти производные тождественно равны нулю.

Малое «о» и запись $o\big((x-x_0)^n\big)$. Говорят, что $r_n(x) = o\big((x-x_0)^n\big)$ при $x \to x_0$, если

$$\lim_{x \to x_0} \frac{r_n(x)}{(x - x_0)^n} = 0.$$

Иными словами, функция $r_n(x)$ «уходит в ноль» быстрее, чем $(x-x_0)^n$, когда x приближается к x_0 .

Общее представление о разложении Тейлора. Формула Тейлора обычно записывается в виде

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x),$$

где $R_n(x)$ — остаточный член, который может принимать разные формы (например, форма Лагранжа или форма Пеано).

Ответ на вопрос

Теорема (Формула Тейлора для многочлена).

Пусть P(x) — многочлен степени n. Тогда его разложение в окрестности x_0 совпадает со стандартным полиномом Тейлора степени n, а $ocmamo\kappa$ (производные порядка выше n) равен 0.

План доказательства.

- 1. Заметим, что для m > n, $P^{(m)}(x) \equiv 0$ (у многочлена).
- 2. Построить формулу Тейлора $T_n(x)$ до степени n, сослаться на нулевые старшие производные.
- 3. Показать, что фактически $P(x) = T_n(x)$, поскольку коэффициенты полностью совпадают.

Доказательство.

Пусть P(x) — многочлен степени n. Рассмотрим «полином Тейлора» порядка n вокруг x_0 :

$$T_n(x) = \sum_{k=0}^n \frac{P^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Так как производные $P^{(k)}(x)$ для k > n тождественно равны нулю, в формуле не возникает никаких членов выше n-го порядка, и «остаток» $R_n(x)$ отсутствует.

Кроме того, само определение производной многочлена показывает, что $P^{(k)}(x_0)$ являются соответствующими коэффициентами, и $T_n(x)$ на самом деле совпадает с исходным многочленом P(x) (коэффициенты совпадают). Значит

$$P(x) = T_n(x),$$

и никакого дополнительного остатка нет.

Теорема (Формула Тейлора с остатком в форме Пеано).

Пусть функция f n раз дифференцируема в точке x_0 . Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$

План доказательства.

- 1. Написать классическую формулу Тейлора (с формой Лагранжа для остатка).
- 2. Показать, что если $f^{(n)}$ непрерывна, то этот остаток становится $o((x-x_0)^n)$.
- 3. Использовать аргумент, что $(x-x_0)^{n+1}$ «уходит» быстрее, чем $(x-x_0)^n$ при $x\to x_0$.

Доказательство.

Предположим, f имеет непрерывные производные вплоть до порядка n. По классической Формуле Тейлора с остатком в форме Лагранжа,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

для некоторой ξ между x_0 и x. Поскольку $f^{(n+1)}$ непрерывна в x_0 , при $x \to x_0$ значение $f^{(n+1)}(\xi)$ остаётся ограниченным, а $(x-x_0)^{n+1}$ «уходит» быстрее, чем $(x-x_0)^n$. Таким образом

$$\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} = o((x - x_0)^n).$$

Значит вся формула переписывается в виде

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n),$$

что и требовалось доказать.

Пример.

Примеры:

- Многочлен P(x). Для P(x) степени n справедлива формула Тейлора, где nem остатка, потому что $P^{(m)}(x) \equiv 0$ при m > n.
- $f(x) = e^x$. Не является многочленом, но при разложении вокруг 0:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n), \quad x \to 0.$$

Остаточный член именно «форма Пеано», показывающая, что остаток делится на x^n с показателем n и уходит в ноль.

8 Достаточные условия существования экстремума (по второй производной).

Вспомогательные понятия

Локальный минимум и максимум. Точка x_0 внутри промежутка (a,b) называется локальным минимумом функции f, если существует $\delta > 0$ такое, что при $|x - x_0| < \delta$ выполняется $f(x) \geq f(x_0)$. Аналогично, x_0 называется локальным максимумом, если в некоторой окрестности x_0 верно $f(x) \leq f(x_0)$.

Вторая производная. Пусть f дифференцируема на интервале (a,b), и f'(x) тоже дифференцируема на (a,b). Тогда в точках, где это возможно, определена *вторая производная* f''(x) = (f'(x))'.

Теорема Ферма (напоминание). Если функция f дифференцируема в точке x_0 и имеет там локальный минимум или максимум, то $f'(x_0) = 0$. Это — необходимое условие экстремума (без второй производной).

Ответ на вопрос

Теорема (Достаточные условия экстремума по второй производной).

Пусть f дифференцируема на (a,b) и $x_0 \in (a,b)$ — такая точка, где $f'(x_0) = 0$. Предположим, что у f существует непрерывная в x_0 вторая производная $f''(x_0)$. Тогда:

- 1. Если $f''(x_0) > 0$, то x_0 точка локального минимума.
- 2. Если $f''(x_0) < 0$, то x_0 точка локального максимума.
- 3. Если $f''(x_0) = 0$, вывод о виде экстремума не делается (нужен дополнительный анализ).

План доказательства.

- 1. Исходя из Теоремы Ферма, имеем $f'(x_0) = 0$.
- 2. Случай $f''(x_0) > 0$: показывает, что f'(x) возрастает вблизи x_0 , отсюда x_0 становится локальным минимумом.
- 3. Случай $f''(x_0) < 0$: говорит, что f'(x) убывает вблизи x_0 , получаем локальный максимум.

4. Если $f''(x_0) = 0$, дополнительно надо исследовать ситуацию (пример x^3).

Доказательство.

Пусть $f'(x_0) = 0$ и $f''(x_0)$ существует и непрерывна в x_0 .

Случай $f''(x_0) > 0$. Из непрерывности f'' около x_0 следует, что при x достаточно близком к x_0 , вторая производная f''(x) остаётся положительной. Это значит, что f'(x)

строго возрастает вблизи x_0 . Так как $f'(x_0) = 0$, то при $x > x_0$ значения f'(x) становятся положительными, а при $x < x_0$ — отрицательными. Следовательно,

$$x>x_0\implies f'(x)>0\implies f$$
 возрастает справа,
$$x< x_0\implies f'(x)<0\implies f$$
 убывает слева.

Значит x_0 — локальный минимум.

Случай $f''(x_0) < 0$. Аналогично, теперь f'(x) убывает при x около x_0 . Поскольку $f'(x_0) = 0$, при $x > x_0$ значения f'(x) оказываются отрицательными, а при $x < x_0$ положительными. Тогда

$$x < x_0 \implies f'(x) > 0 \implies f$$
 возрастает слева,
$$x > x_0 \implies f'(x) < 0 \implies f$$
 убывает справа.

Следовательно, x_0 — локальный максимум.

Случай $f''(x_0) = 0$. Здесь нельзя сделать однозначный вывод об экстремуме (например, $f(x) = x^3$ при x = 0 даёт f'(0) = 0, f''(0) = 0, но это не экстремум). Нужны другие способы анализа (см. более высокие производные, графический анализ и т. п.).

- Пример: $f(x) = x^2$. Имеем f'(0) = 0, f''(0) = 2 > 0, значит в x = 0 локальный минимум.
- Пример: $f(x) = x^3$. Имеем f'(0) = 0, но f''(0) = 0, что не даёт никакого вывода о минимуме/максимуме. На практике x = 0 это точка перегиба без экстремума.
- Пример: $f(x) = -x^2$. Имеем f'(0) = 0, f''(0) = -2 < 0, стало быть x = 0 локальный максимум.

9 Теорема Лиувилля. Пример трансцендентного числа.

Вспомогательные понятия

Алгебраическое и трансцендентное число.

- Алгебраическое число корень некоторого ненулевого многочлена с рациональными (или целыми) коэффициентами. Например, $\sqrt{2}$, $\sqrt[3]{7}$.
- Трансцендентное число не является алгебраическим. Примеры: e, π , а также специальные конструкции (числа Лиувилля).

Приближение чисел рациональными дробями. Говорят, что действительное число α *допускает «слишком хорошие» рациональные приближения*, если существуют бесконечные наборы дробей $\frac{p}{a}$, для которых

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^n}$$

при некоторых больших q и n > 1 (как правило n существенно больше 1).

Минимальный многочлен (напоминание). Для алгебраического числа α его минимальным многочленом называют многочлен P(x) наименьшей степени d (со старшим коэффициентом 1, без общих делителей), у которого $P(\alpha) = 0$.

Если α было бы таким, что у него «слишком хорошие» приближения, то анализ $P\left(\frac{p}{q}\right)$ приводит к противоречию, используемому в доказательстве теоремы Лиувилля.

Ответ на вопрос

Теорема (Теорема Лиувилля).

Пусть действительное число α удовлетворяет следующему условию: существует n>1 и бесконечно много рациональных дробей $\frac{p}{q}$, для которых

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^n}.$$

Тогда α не алгебраично (то есть оно трансцендентно).

- 1. Предположим противное: α алгебраическое, корень некоторого целочисленного многочлена P(x) степени d.
- 2. Допустим, есть бесконечно много $\frac{p}{q}$, дающих $|\alpha \frac{p}{q}| < \frac{1}{q^n}$, причём n > d.
- 3. Рассмотреть $|P(\frac{p}{q}) P(\alpha)|$ и использовать свойства многочлена P (его степень, целые коэффициенты).
- 4. Получить противоречие из «слишком хорошего» приближения, показывая, что $P(\frac{p}{q})$ оказывается «слишком близко» к нулю, но не равно нулю.
- 5. Заключить, что α не может быть алгебраическим, значит трансцендентно.

Доказательство.

Пусть, ради противного, α — корень целого многочлена P(x) степени d (приведённого, без общих делителей). Предположим, что существуют бесконечно многие дроби $\frac{p}{q}$ с

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^n}$$

для некоторого n > d. Тогда $|q\alpha - p| < q^{1-n}$.

Рассмотрим $P(\frac{p}{q}) - P(\alpha) = P(\frac{p}{q})$ (ведь $P(\alpha) = 0$). С помощью разложения многочлена (по формуле Тейлора или биному), учитывая целые коэффициенты и тот факт, что $|\frac{p}{q} - \alpha| < \frac{1}{q^n}$, при достаточно больших q получаем оценку $|P(\frac{p}{q})|$ слишком малой для ненулевого целочисленного P. Например, высшие степени $(\frac{p}{q} - \alpha)^d$ дают вклад порядка $\frac{1}{q^{dn}}$, что при n > d «умирает» так быстро, что невозможно без $P(\frac{p}{q})$ быть нулём. Иными словами, получаем противоречие с тем, что $P(\frac{p}{q})$ — целая комбинация, не может быть «чересчур» малой, если $\frac{p}{q} \neq \alpha$.

Следовательно, наше допущение о «слишком хороших» приближениях алгебраического α ложно. Значит α — трансцендентное.

Пример.

Число Лиувилля. Рассмотрим

(десятичная запись имеет единицы в позициях 1!, 2!, 3!,...). Нетрудно проверить, что для любого n>1 существует рациональная дробь $\frac{p}{q}$ (с $q=10^{n!}$) приближающая β с точностью $\frac{1}{q^n}$. По Теореме Лиувилля, такое β не алгебраично, значит **трансцендентно**.

10 Формулы Маклорена для функций $y=\exp(x)$, $y=\sin x$, $y=\cos x$, $y=\ln(1+x)$, y=pow((1+x),a).

Вспомогательные понятия

Ряд Маклорена (частный случай ряда Тейлора). Пусть функция f бесконечно дифференцируема в окрестности x=0. Тогда её ряд Маклорена — это разложение вида

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n,$$

если данный ряд сходится к f(x) для соответствующих значений x. Радиус и область сходимости могут быть разными в зависимости от особенностей f.

Производные порядка n **и значения в точке 0.** Если f имеет все производные (бесконечно дифференцируема) у x=0, тогда

$$f^{(n)}(0) - n$$
-я производная в точке 0.

Эти значения формируют коэффициенты при x^n в ряде Маклорена.

Обобщённая биномиальная формула. Для произвольного действительного a и |x| < 1:

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \dots$$

Этот ряд сходится при |x| < 1 и является расширением классического бинома Ньютона (в котором a – целое неотрицательное число).

Ответ на вопрос

Теорема (Φ ормулы Маклорена).

Пусть f бесконечно дифференцируема в некоторой окрестности 0. Тогда для каждой из нижеуказанных функций верны следующие ряды Маклорена (при своих радиусах сходимости):

1.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R}.$$

2.
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}.$$

3.
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}.$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \quad |x| < 1.$$

5.
$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \dots, |x| < 1.$$

План доказательства.

- 1. Для e^x , $\sin x$, $\cos x$ вычислить все производные в точке 0, получить $f^{(n)}(0)$.
- 2. Подставить в общий вид $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$.
- 3. Показать (или сослаться на известные результаты) о радиусе сходимости: e^x , $\sin x$, $\cos x$ сходятся на всей $\mathbb R$.
- 4. Для $\ln(1+x)$ разложить в степенной ряд при |x|<1, найти формулы производных, увидеть знакочередующиеся коэффициенты.
- 5. Для $(1+x)^a$ использовать бином Ньютона (обобщённый) или вывести через производные.

Доказательство.

(1) Функция e^x . Все производные $f^{(n)}(x) = e^x$, значит в точке 0 они равны 1. По определению:

$$e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Радиус сходимости — неограничен (по признаку д'Аламбера).

(2) Функция $\sin x$. Производные идут по циклу: $f'(x) = \cos x$, $f''(x) = -\sin x$, В точке 0 они чередуются: 0, 1, 0, -1, Поэтому

$$\sin x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$$

Ряд сходится для всех $x \in \mathbb{R}$.

(3) **Функция** $\cos x$. Аналогично, если в $\sin x$ заменить фазы производных, получаем

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

Тоже сходится на всей \mathbb{R} .

(4) **Функция** $\ln(1+x)$. Для |x|<1, последовательно вычисляются $f^{(n)}(0)$, давая чередующиеся коэффициенты:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

При x=1 получается « $\ln(2)$ »-ряд, который сходится условно.

(5) **Функция** $(1+x)^a$. Применяем обобщённую биномную формулу (или дифференцируемость порядка n) — получаем:

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \dots, \quad |x| < 1.$$

Это ряд сходящийся в круге |x| < 1. Таким образом, все 5 функций имеют свой ряд Маклорена, рассчитываемый из $f^{(n)}(0)$, и каждый сходится в определённой области (свой радиус сходимости).

Пример.

Примеры использования рядов:

- Подстановка $x=\pi$ в $\sin x$ даёт $\sin \pi=0$, а ряд: $0-\frac{\pi^3}{3!}+\frac{\pi^5}{5!}-\cdots=0$ (знакочередующаяся сумма).
- Для $\ln(1+\frac{1}{2}) = \ln(\frac{3}{2}) \approx 0.40536$ можно использовать разложение $\frac{1}{2} \frac{(\frac{1}{2})^2}{2} + \frac{(\frac{1}{2})^3}{3} \dots$

11 Формула Тейлора с остатком в форме Лагранжа. Приближенные вычисления по формуле Тейлора.

Вспомогательные понятия

Формула Тейлора и остаточный член. Пусть f имеет (n+1)-ю производную в окрестности точки x_0 . Тогда можно представить f(x) в виде:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n(x),$$

где $R_n(x)$ — остаточный член.

Форма Лагранжа для остаточного члена. Существует точка ξ между x_0 и x такая, что

 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}.$

Это часто доказывают, используя обобщённую Teopemy Лагранэнса (или Коши) и идеи, связанные с «нулевыми» значениям производных при замене на многочлен Тейлора до порядка n.

Приближённые вычисления. Чтобы приблизительно вычислить f(x), берут полином Тейлора

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

оценивая погрешность через

$$|R_n(x)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right|.$$

Если $|f^{(n+1)}(t)| \leq M$ на $[x_0, x]$, то

$$|R_n(x)| \le \frac{M|x-x_0|^{n+1}}{(n+1)!},$$

что даёт верхнюю границу ошибки.

Ответ на вопрос

Теорема (Формула Тейлора с остатком в форме Лагранжа).

Пусть f непрерывно дифференцируема на отрезке $[x_0, x]$ (или $[x, x_0]$) до порядка (n+1). Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$
многочлен Тейлора порядка n

где ξ лежит между x_0 и x.

- 1. Построить многочлен Тейлора $P_n(t)$ степени n вокруг x_0 .
- 2. Рассмотреть функцию $F(t) = f(t) P_n(t)$ и показать, что все её производные до n-го порядка в x_0 равны 0.
- 3. Применить обобщённую теорему Ролля (либо Коши) на отрезке $[x_0, x]$, чтобы найти точку ξ , где (n+1)-я производная F равна 0.

4. Учитывая, что $F^{(n+1)}(t) = f^{(n+1)}(t)$, получаем остаток в форме Лагранжа.

Доказательство.

Шаг 1. Определим

$$P_n(t) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k.$$

Тогда P_n — многочлен, согласующийся с f до порядка n в точке x_0 .

Шаг 2. Рассмотрим

$$F(t) = f(t) - P_n(t).$$

Проверяем, что для $k = 0, 1, \dots, n$ имеем

$$F^{(k)}(x_0) = f^{(k)}(x_0) - P_n^{(k)}(x_0) = 0,$$

поскольку P_n «копирует» f в производных до порядка n.

Шаг 3. Применим теорему Ролля (или Коши) в подходящей форме: поскольку $F^{(k)}(x_0) = 0$ для $k \leq n$, по индукции доказывают, что найдётся ξ между x_0 и x, где

$$F^{(n+1)}(\xi) = 0.$$

Но $F^{(n+1)}(t) = f^{(n+1)}(t) - P_n^{(n+1)}(t)$, а старшие производные P_n равны нулю, значит $F^{(n+1)}(t) = f^{(n+1)}(t)$.

Шаг 4. Следовательно,

$$F(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Перенося $P_n(x)$, получаем:

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Это и есть остаточный член в форме Лагранжа.

Пример.

Приближённые вычисления. Предположим, надо вычислить f(x) при x близком к x_0 , зная производные $f^{(k)}(x_0)$.

- Строим полином $P_n(x)$ и считаем $P_n(x)$ за «главный вклад».
- Ошибка $|R_n(x)|$ можно оценить сверху, если есть ограничение $|f^{(n+1)}(t)| \leq M$ для t между x_0 и x.
- Тогда $|R_n(x)| \leq \frac{M|x-x_0|^{n+1}}{(n+1)!}$.

Таким образом, зная M и нужный порядок n, можно оценить, сколько членов нужно взять, чтобы добиться требуемой точности вычислений.

12 Формула Стирлинга (с эквивалентностью).

Вспомогательные понятия

Факториал n!. Для натурального n вводится произведение:

$$n! = 1 \cdot 2 \cdot \cdots \cdot n.$$

Формула Стирлинга (эквивалентность). При $n \to \infty$ говорят, что

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

если

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$$

Часто эту эквивалентность доказывают, сравнивая сумму $\sum_{k=1}^n \ln k$ с интегралом $\int_1^n \ln x \, dx$ и уточняя оценку через формулу Эйлера–Маклорена.

Ответ на вопрос

Теорема (Формула Стирлинга (эквивалентность)).

При $n \to \infty$ справедливо

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \iff \lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$$

План доказательства.

- 1. Рассмотреть логарифм факториала: $\ln(n!) = \sum_{k=1}^{n} \ln k$.
- 2. Сравнить $\sum_{k=1}^{n} \ln k$ с интегралом $\int_{1}^{n} \ln x \, dx$, получить приближение $n \ln n n + 1$ (плюс поправка).
- 3. Использовать более точный учёт (например, формулу Эйлера—Маклорена) для уточнения поправки: $\frac{1}{2} \ln n + O(1)$.

4. Экспоненцировать результат, получая $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + o(1)\right)$.

Доказательство.

Шаг 1: Логарифмы. Пусть $L_n = \ln(n!) = \sum_{k=1}^n \ln k$.

Шаг 2: Сравнение с интегралом. Замечаем, что

$$\sum_{k=1}^{n} \ln k \approx \int_{1}^{n} \ln x \, dx = n \ln n - n + 1.$$

Разница между суммой и интегралом даёт эффект порядка $\ln(n)$.

Шаг 3: Уточнение (Эйлера–Маклорена). Более детальный анализ (или полная формула Эйлера–Маклорена) показывает:

$$\ln(n!) = n \ln n - n + \frac{1}{2} \ln(n) + O(1).$$

Иными словами,

$$L_n = n \ln n - n + \frac{1}{2} \ln n + O(1).$$

Шаг 4: Экспоненцирование. Тогда

$$n! = \exp(L_n) = \exp(n \ln n - n + \frac{1}{2} \ln n + O(1)) = \sqrt{n} \left(\frac{n}{e}\right)^n \exp(O(1)).$$

Поскольку $\exp(O(1))$ означает некий постоянный множитель в пределе, тщательный учёт показывает, что этот множитель есть $\sqrt{2\pi}$, т. е.

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Следовательно, при $n \to \infty$ факториал n! эквивалентен $\sqrt{2\pi\,n}\, \big(n/e\big)^n$.

Пример.

Сравнение значений. Уже при $n=10,\ 10!=3\,628\,800,\$ а по формуле Стирлинга $\sqrt{2\pi\cdot 10}\left(\frac{10}{e}\right)^{10}\approx 3\,598\,695,\$ что даёт небольшое расхождение. С ростом n относительная ошибка убывает очень быстро.

13 Формула Стирлинга (с равенством).

Вспомогательные понятия

Факториал n!. Для натурального числа n вводится произведение

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$$
.

Известно, что при больших n факториал растёт очень быстро.

Формула Стирлинга (классическое приближение). Ранее было рассмотрено *эквивалентность*:

 $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, kak $n \to \infty$.

Однако можно записать и более точную форму с *остаточным* (корректирующим) множителем, чтобы иметь «равенство» с некоторым уточнением:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot \exp(\epsilon_n),$$

где ϵ_n — небольшая поправка, про которую известны конкретные оценки.

Ответ на вопрос

Теорема (Формула Стирлинга с остаточным множителем).

Для любого натурального n справедливо:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp(\theta_n),$$

где поправка θ_n удовлетворяет некоторому неравенству вида

$$\frac{1}{12n+1} < \theta_n < \frac{1}{12n}.$$

В частности,

$$\theta_n \to 0$$
, при $n \to \infty$,

и мы получаем строгую «формулу Стирлинга с равенством» и контролируем остаток.

- 1. Переход к логарифмам: $\ln(n!) = \sum_{k=1}^{n} \ln k$.
- 2. Сравнение суммы $\sum \ln k$ с интегралом $\int \ln x \, dx$ и далее точная оценка (формула Эйлера–Маклорена), дающая экспоненциальный вид остатка.
- 3. Получение не только эквивалентности, но и точных границ для «ошибки» θ_n (или эквивалентно e^{θ_n}).
- 4. Экспоненцирование результата и проверка, что $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp(\theta_n)$, при θ_n в указанных границах.

Доказательство.

1. Переход к логарифмам. Аналогично стандартному выводу формулы Стирлинга (см. «эквивалентность»),

$$\ln(n!) = \sum_{k=1}^{n} \ln k.$$

Мы хотим получить ne просто асимптотику, а точное равенство вида $\ln(n!) = \ln(\sqrt{2\pi n}(\frac{n}{e})^n) + \theta_n$.

2. Применение формулы Эйлера—**Маклорена (укороченный вид).** Более полная форма Эйлера—Маклорена гласит, что

$$\sum_{k=1}^{n} \ln k = \int_{1}^{n} \ln x \, dx + \frac{1}{2} [\ln 1 + \ln n] + R(n),$$

где R(n) оценивается с помощью ряда Бернулли, давая интервальные границы, например

$$\frac{1}{12(n+1)} < R(n) < \frac{1}{12n}.$$

При более аккуратной записи получается

$$\ln(n!) = n \ln n - n + \frac{1}{2} \ln n + \theta_n,$$

с оценкой θ_n между $\frac{1}{12(n+1)}$ и $\frac{1}{12n}$ (с разными знаками, в зависимости от формы записи).

3. Экспоненцирование. Пусть

$$L_n = n \ln n - n + \frac{1}{2} \ln(2\pi n)$$
 (здесь $\sqrt{2\pi n}$ уже включено).

Тогда

$$\ln(n!) = L_n + \left(\theta_n - \frac{1}{2}\ln(2\pi)\right),\,$$

или, эквивалентно,

$$n! = \exp(L_n) \cdot \exp(\theta'_n),$$

где θ_n' есть скорректированная «ошибка». Развитие показывает, что

$$\exp(L_n) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

В итоге

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp(\theta'_n),$$

и формула даёт более тонкий контроль над θ'_n , в частности

$$0 < \theta'_n < \frac{1}{12n}$$
, или другие варианты.

4. Итог. Таким образом, получается «формула Стирлинга с равенством»:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp(\theta_n),$$

с конкретными узкими границами для θ_n . Например, одно из классических утверждений

$$\frac{1}{12n+1} < \theta_n < \frac{1}{12n}.$$

Это завершает доказательство.

Пример.

Сравнение при n = 5 или n = 10.

• 5! = 120. По формуле Стирлинга (с равенством),

$$5! = \sqrt{2\pi \cdot 5} \left(\frac{5}{e}\right)^5 \exp(\theta_5).$$

Можно вычислить левую часть (120) и сравнить с $\sqrt{10\pi} \left(\frac{5}{e}\right)^5$, оценив $\exp(\theta_5)$.

• При больших n (например, n=10) точность заметно выше, и можно видеть, что θ_n становится ближе к 0 (около 0.03...0.02, в зависимости от формы оценки).

14 Определение интеграла Римана. Отличие от «обычного» предела.

Вспомогательные понятия

Интеграл Римана. Пусть f задана на отрезке [a,b]. Разобьём [a,b] на промежутки:

$$a = x_0 < x_1 < \dots < x_n = b, \quad \Delta x_i = x_i - x_{i-1}, \quad \xi_i \in [x_{i-1}, x_i].$$

Определяется интегральная сумма:

$$S = \sum_{i=1}^{n} f(\xi_i) \, \Delta x_i.$$

Если при $\max_i \Delta x_i \to 0$ все такие суммы S стремятся к одному и тому же числу I, независимо от выбора точек ξ_i внутри отрезков, то говорят, что f интегрируема по Pиману, а I есть её uнтеграл:

$$I = \int_a^b f(x) \, dx.$$

Непрерывность и критерий Дарбу. Если f непрерывна на [a,b], то по теореме о непрерывных функциях и равномерной непрерывности на компактном промежутке интеграл Римана существует. Критерий Дарбу: интеграл существует тогда и только тогда, когда верхние и нижние суммы (Darbo sums) сближаются при мелкости разбиения $\to 0$.

Отличие от «обычного» предела. Обычный предел $\lim_{x \to x_0} f(x)$ — локальный (точечный) анализ поведения функции в одной точке. Интеграл Римана рассматривает «глобальное» поведение f на всём отрезке [a,b] и определяется как предел интегральных сумм, когда число разбиений возрастает (шаги уменьшаются).

Ответ на вопрос

Теорема (Интеграл Римана).

Пусть функция f задана на [a,b]. Если при всех возможных способах разбиения [a,b] на малые отрезки, и выборе точек ξ_i внутри этих отрезков, интегральные суммы

$$S = \sum_{i=1}^{n} f(\xi_i) \, \Delta x_i$$

стремятся к одному и тому же числу I по мере $\max_i \Delta x_i \to 0$, то f интегрируема по **Риману**, а I называется интегралом Pимана:

$$I = \int_{a}^{b} f(x) \, dx.$$

План доказательства.

1. Рассмотреть любые два разбиения D и D' на отрезке [a,b] с мелкостью $\|D\| \to 0$, $\|D'\| \to 0$.

- 2. Построить общее уточнённое разбиение D'', включающее все точки из D и D'.
- 3. Оценить разницу сумм S(f,D) и S(f,D') через равномерную непрерывность (или ограниченность) f на [a,b].
- 4. Показать, что эта разница становится сколь угодно малой при $||D|| \to 0$ и $||D'|| \to 0$.

5. Вывод: предел един, определение интеграла однозначно.

Доказательство.

Шаг 1: Два разбиения. Пусть $D=\{a=x_0< x_1<\cdots< x_n=b\}$ и $D'=\{a=y_0< y_1<\cdots< y_m=b\}$ — любые разбиения отрезка [a,b]. Предположим, что $\|D\|=\max_i(x_i-x_{i-1})$ и $\|D'\|=\max_j(y_j-y_{j-1})$ оба стремятся к нулю.

Шаг 2: Уточнение. Построим «общее» разбиение D'', содержащее все точки из D и D'. То есть объединим набор $\{x_i\}$ с $\{y_j\}$ в одну возрастающую последовательность. Теперь можно рассмотреть интегральные суммы относительно D''.

Шаг 3: Оценка разницы. На каждом элементе разбиения $[z_{k-1}, z_k]$ из D'' значения $f(\xi_i)$ меняются незначительно, если f равномерно непрерывна (или ограничена). Тогда можно показать, что разность сумм S(f,D) и S(f,D') не превосходит некоторой малой величины, зависящей от $\|D''\|$, которая стремится к нулю, когда и $\|D\| \to 0$, $\|D'\| \to 0$.

Шаг 4: Вывод. Таким образом, любая интегральная сумма при мелкости разбиения стремится к одной и той же границе. Значит определение интеграла Римана корректно, и этот предел называется $\int_a^b f(x) \, dx$.

- Если $f(x) \equiv C$ константа, любая интегральная сумма = $C \cdot (b-a)$. При любом разбиении ответ один: $\int_a^b C \, dx = C \, (b-a)$.
- Сравнение с обычным пределом: $\lim_{x\to x_0} f(x)$ локальный анализ окрестности x_0 . $\int_a^b f(x)\,dx$ «суммарный» (глобальный) взгляд на отрезок [a,b].

15 Формула Ньютона-Лейбница.

Вспомогательные понятия

Определённый интеграл по Риману. Функция f называется *интегрируемой по Риману* на [a,b], если предел

$$\sum_{i=1}^{n} f(\xi_i) \, \Delta x_i$$

(где [a,b] разбит на n подотрезков, ξ_i лежит в i-м подотрезке, и $\Delta x_i = x_i - x_{i-1}$) существует и не зависит от выбора точек ξ_i при $\max_i \Delta x_i \to 0$. Этот предел называют $\int_a^b f(x) \, dx$.

Первообразная (примитив). Говорят, что F — nepsoofpaзная (или npumumus) функции f на промежутке (a,b), если F'(x) = f(x) для всех $x \in (a,b)$. При этом важно, чтобы F была дифференцируема на (a,b) и непрерывна (как минимум) на [a,b].

Ответ на вопрос

Теорема (Формула Ньютона-Лейбница).

Пусть f непрерывна на [a,b] и F — её первообразная на [a,b], то есть F'(x)=f(x) на (a,b). Тогда

$$\int_a^b f(x) dx = F(b) - F(a).$$

План доказательства.

- 1. Рассмотреть разбиение отрезка [a, b] и интегральную сумму S.
- 2. Применить теорему о среднем значении к приращению $F(x_i) F(x_{i-1})$, показав, что $f(\eta_i) \Delta x_i$ совпадает с этим приростом.
- 3. Просуммировать (телескопическая сумма) и получить $\sum [F(x_i) F(x_{i-1})] = F(b) F(a)$.

4. Переход к пределу при мелкости разбиения даёт равенство с $\int_a^b f(x) \, dx$.

Доказательство.

- **1. Разбиение.** Пусть $a = x_0 < x_1 < \dots < x_n = b$ произвольное разбиение отрезка [a,b] с $\Delta x_i = x_i x_{i-1}$. Возьмём точки $\xi_i \in [x_{i-1},x_i]$.
 - 2. Интегральная сумма. По определению,

$$S = \sum_{i=1}^{n} f(\xi_i) \, \Delta x_i.$$

Мы хотим связать это с приращением F.

3. Прирост первообразной (теорема о среднем значении). На каждом отрезке $[x_{i-1},x_i]$ существует η_i (похожа на ξ_i) такая, что

$$F(x_i) - F(x_{i-1}) = F'(\eta_i) (x_i - x_{i-1}) = f(\eta_i) \Delta x_i.$$

Таким образом,

$$\sum_{i=1}^{n} [F(x_i) - F(x_{i-1})] = \sum_{i=1}^{n} f(\eta_i) \, \Delta x_i.$$

Заметим, что $\sum_{i=1}^{n} [F(x_i) - F(x_{i-1})]$ — телескопическая сумма:

$$F(x_n) - F(x_0) = F(b) - F(a).$$

4. Предел. Если $||D|| = \max_i \Delta x_i \to 0$, то, поскольку f непрерывна, $\sum f(\eta_i) \Delta x_i$ стремится к $\int_a^b f(x) \, dx$. Но мы выяснили, что это же $\sum f(\eta_i) \, \Delta x_i = F(b) - F(a)$. Следовательно,

$$\int_a^b f(x) dx = F(b) - F(a).$$

Пример.

Применение к $f(x)=x^2$. У функции x^2 есть примитив $F(x)=\frac{x^3}{3}$. По формуле Ньютона–Лейбница получаем

$$\int_0^2 x^2 \, dx = \frac{x^3}{3} \bigg|_0^2 = \frac{2^3}{3} - 0 = \frac{8}{3}.$$