Assignment Project Exam Help

https://powooder.com

Add WeChat powcoder

The Lambda Calculus

- The λ -calculus is a computational model based on the mathematical notion of a function.
- Defined by the mathemaliquen Alenzo Churck in the 1931's precise notation for anonymous functions. He noticed that a expression x + y was sometimes interpreted as:
 - the number x +
 - the function $g: y \mapsto x + y$ the function $g: y \mapsto x + y$

 - ▶ the function $h: x, y \mapsto x + y$

With the lambda calculus notation, these can be easily Chat nowcoder

- the number x + y is written just $x \neq y$
- the function $f: x \mapsto x + y$ is written $\lambda x.x + y$
- the function $g: y \mapsto x + y$ is written $\lambda y.x + y$
- the function $h: x, y \mapsto x + y$ is written $\lambda x, y.x + y$

The Lambda Calculus

Scient Project Exam Help to study computability (as an allernative to Turing Machines),

- to define models (denotational semantics) of programming
- to study strategies and implementation techniques for functional languages (abstract machines),
- to encode proofs in a variety of logics,
 to design automatic theorem basers 200 pwoCapidates

λ -calculus: Syntax

Definition:

Assume an infinite set \mathcal{X} of variables denoted by x, y, z, \ldots Assignment Project Exam Help

 $M := \mathcal{X} \mid (\lambda \mathcal{X}.M) \mid (MM)$

which are called variable, abstraction and application

• x, $(\lambda y.y)$, $(\lambda x.(\lambda y.x))$, $((\lambda z.z)(\lambda y.y))$

An intuition and an intuition of x y = x + y Weet That powcoder

- $f x = \lambda y.x + y$
- $f = \lambda x. \lambda y. x + y$

λ-calculus: Conventions

write as few parentheses as possible:

Assignment Project Exam Help

application associates to the *left*:

https://powcoder.com

abstractions bind as far as possible to the right

• abstractions can be abbreviated: Powcoder

$$\lambda x.\lambda y.M = \lambda xy.M$$

Examples of λ -terms

- x, $\lambda x.x$, xy, $\lambda x.z$, xz(yz), $\lambda x.\lambda y.yx$
- Assignment Project Exam Help
 - $(\lambda x.x)y$, $(\lambda x.\lambda y.xy)(\lambda x.x)$

 - $\lambda f. \lambda x. x. \lambda f. \lambda x. fx, \lambda f. \lambda x. f(fx), \lambda f. \lambda x. f(f(fx))$ $\lambda x. \text{https://powcoder.com}$

Note: Haskell syntax: Add WeChat powcoder

Exercise: Write the above examples in Haskell syntax. Are they all valid in Haskell?

Variables

A variable is *free* in a λ -term if it is not bound by a λ . More precisely, the set of free variables of a term is defined as:

Terms without free variables are called *closed terms*.

POWCOGET.COM

We can define:

Add
$$BV(N)$$
 = $BV(M) \cup BV(N)$

Question: What is BV defining?

Exercise: Check the FV and BV of the examples.

α -conversion

 λ -terms that differ only in the names of their bound variables will be equated. More precisely: If y is not free in M: Assignment Project Exam Help

where $M\{x\mapsto y\}$ is the term M where each occurrence of x is replaced by $\{x\mapsto y\}$ is the term M where each occurrence of x is replaced by $\{x\mapsto y\}$.

- MPORTANT: de Wechatypio, WC.Qaro, y are the SAME term.
 - α -equivalent terms represent the same computation (see below).

Computation

 Abstractions represent functions, which can be applied to arguments.

As The main computation the is a reduction which indicates how to find the result of the function for a given argument.

- A redex is a term of the form: $(\lambda x.M)N$
- It reduces to the term $M\{x \mapsto N\}$ where $M\{x \mapsto N\}$ is the term obtained when we substitute x by what x in the action to bound variables.

β -reduction:

Add We@hat{powcoder

- Note that we use the word "reduce", but this does not mean that the term on the right is any simpler. Why?
- Notation: if $M \to_{\beta} M_1 \to_{\beta} M_2 \cdots M_n$ then we write $M \to_{\beta}^* M_n$

Substitution

Substitution is a special kind of replacement: $M\{x \mapsto N\}$ means replace all free occurrences of x in M by the term X and X in X are replace all occurrences? What happens if we replace all occurrences?

https://powcoder.com

A very useful property of substitution is the following, known as the Substitution Lemma:

If
$$x \notin FV(R)$$
: $M\{x \mapsto N\}$ $\{y \mapsto P\} = (M\{y \mapsto P\})\{x \mapsto N\{y \mapsto P\}\}$

Assignment Project Exam Help

- $\lambda x.x =_{\alpha} \lambda y.y$
- https://powcoder.com
- and β -reduction:
 - $\stackrel{\bullet}{\text{Add}} \stackrel{(\lambda x.\lambda y.xy)}{\text{WeChat powcoder}}$

Normal forms

When do we stop reducing?

- Assugement Project Exam Help
 - A normal form is a term that does not contain any redex.
 - A term that can be reduced to a term in normal form is said to be normal states://powcoder.com
 Example:

$$(\lambda x.a(\lambda y.xy)) b c \rightarrow_{\beta} a(\lambda y.by)c$$

- which is a normal form recall that application associates to the left).
- Weak Head Normal Form (WHNF). Stop reducing when there are no redexes left, but without reducing under an abstraction.

Exercises

Assignment Project Exam Help What is the difference between a term having a normal form, and

- being a normal form? Write down some example terms.
- If a dodd term is a weak head normal form, it has to be an abstraction $\lambda x.M$. Why?
- Does the term $(\lambda x.xx)(\lambda x.xx)$ have a normal form?

Add WeChat powcoder

Reduction graphs

The β -reduction graph of a term M, written $G_{\beta}(M)$, is the set:

Assignment Project Exam Help

directed by \rightarrow_{β} . If several redexes give rise to $M_0 \rightarrow_{\beta} M_1$, then that many directed arcs connect M_0 to M_1 .

Example https://powcoder.com $G_{\beta}(WWW)$ with $W \equiv \lambda x k \cdot xyy$ is:

Add We Chat powcoder
$$(\lambda y. Wyy)W \implies (\lambda y. (\lambda z. yzz)y)W$$

Reduction graph examples

Exercise: Draw the reduction graph for (II)(II), where $I = \lambda x.x$.

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Why is one arrow marked "*"?

Assignment Project Exam Help

https://powcoder.com

Exercise: Arada (Well hattepowcoder

Properties of Computations

- Confluence: If $M \to_{\beta}^* M_1$ and $M \to_{\beta}^* M_2$ then there exists a term $M_1 = M_2 = M_2 = M_1 = M_2 = M_2$
 - Strong Normalisation (or Termination): All reduction sequences terminate PS://POWCOGET.COM
 - The \(\lambda\)-calculus is confluent but not normalising (or strongly normalising).
 WeChat powcoder
 - Confluence implies unicity of normal forms: Each λ -term has at most one normal form.

Exercise:

Find a term that is not strongly normalising (i.e. a term that does not terminate).

Strategies for reduction

 There can be many different ways in which a term can be reduced assignment Project Exam Help The choice that we make can make a huge difference in how

- many reduction steps are needed.
- The offmost strategy finds the normal form, if there is one. But it may be inefficient.

Exercise:

- Indicate whether the following sterms have a normal form:

 $(\lambda x, \lambda x, Q, Q)_V$ We hat powcoder
 - \bullet $(\lambda x.xxy)(\lambda x.xxy)$

Remark

ssignment Project Exam Help

- o reduce to WHNF (do not reduce under an abstraction). Exercise:
- evaluation of the property pro

The difference between many functional languages lies in the choice

 $\begin{array}{c} \text{taken for the second point.} \\ Add \ We Chat \ powcoder \end{array}$

Evaluating Arguments

- As Gall by Value (Applicative order of reduction): am Help evaluate arguments first so that we substitute the reduced terms (avoid duplication of work).
 - 2 Call-by-name (Normal order of reduction): evaluate a companie of two the and edec of the companies and the companies of the
 - Lazy Evaluation: evaluate arguments at most once.

Question:

Which is the petiwork stelled that earning to the claims.

Arithmetic in the λ -calculus: Church Numerals

We can define the natural numbers as follows:

- \bullet $\overline{0} = \lambda x. \lambda y. y$
- $\overline{1} = \lambda x. \lambda y. x y$

Assignment Project Exam Help

- $\overline{3} = \lambda x. \lambda y. x(x(x y))$

Using this terresentation would be a to let of the let Example, $\overline{n} \mapsto \overline{n+1}$, is defined by the λ -term S:

Add We'Chat powcoder

To check it:

- $S\overline{n} = (\lambda x. \lambda y. \lambda z. y((x y)z))(\lambda x. \lambda y. x...(x(x y)))$
- $\bullet \rightarrow_{\beta} \lambda y.\lambda z.y((\lambda x.\lambda y.x...(x(x y)) y)z)$
- $\rightarrow_{\beta}^* \lambda y.\lambda z.y(y...(y(yz)) = \overline{n+1}$

In general, to define an arithmetic function

$$f: Nat^k \mapsto Nat$$

we will use a λ -term $\lambda x_1 \dots x_k M$, which will be applied to k numbers:

Assignment Project Exam Help

For example, the following term defines addition:

Exercise:

Check that this term and lied to the numbers computes the irsum. Hint: reduce the term $\lambda x. \lambda y. \lambda a. \lambda b. (x.a)(y.a.b) n.m$ Exercises:

- Show that the λ -term MULT = $\lambda x.\lambda y.\lambda z.x(yz)$ applied to two Church numerals m and n computes their product $m \times n$.
- ② What does the term $\lambda n.\lambda m.m$ (MULT n) $\overline{1}$ compute?

Booleans

We can represent Boolean values:

- False = $\lambda x.\lambda y.y$
- True = $\lambda x.\lambda y.x$

Assignmente Project Fram Help

 $NOT = \lambda x.(x \ False) \ True$

We can det postiis apowise oder.com

- NOT False = $(\lambda x.(x^T False))$ True)False
- ullet $ightarrow_{eta}$ (False False)True
- -* Add WeChat powcoder

and

- NOT True = $(\lambda x.(x \text{ False}) \text{ True})$ True
- ullet \rightarrow_{eta} (True False)True
- $\bullet \to_{\beta}^* False$

Conditionals

The following term implements an if-then-else:

$$IF = \lambda x. \lambda y. \lambda z. (x y)z$$

Assignment Project Exam Help

IF $B E_1 E_2 \rightarrow_{\beta}^* E_2$ if B = False

https://powcoder.com

Example:

The function is-zero? can be defined as:

Add WeGhatepowcoder

Then is-zero? $\overline{0} \to_{\beta}^*$ True and is-zero? $\overline{n} \to_{\beta}^*$ False if n > 0.

The cost of computing

As We large septemp different eduction for the green property of the computation (also termination)

• We can transform algorithms into more efficient versions. We look at one way in this course:

Coder.Com

**Transform algorithms into more efficient versions. We look at one way in this course:

**Transform algorithms into more efficient versions. We look at one way in this course:

Note: tail recursive, or accumulating parameter style.

• Program transformation is a very rich topic. Many open research topics of the Wechat powcoder

Continuations

 Continuations were originally introduced in the study of semantics of programming languages: to allow the formal definition of control structures

Assignment Project Examily (difficult to reasop about)

- Many constructs allow controlled jumps (conditional, loops, case,
- Continuations allow some of these features to be captured in a "clean" way:
 - ► Callac allows a point in the program to be "marked. throw
 - callcc allows a point in the program to be "marked". throw returns to that point to continue the evaluation.
- They are an advanced control construct available in some functional languages (notably Standard ML and Scheme).

Continuation Passing Style (CPS)

As special part of the property of the symmetry of the symmetr

- A continuation is a function which consumes the result of a function and produces the final answer
- Thus, a continuation represents the remainder of the current computation.

The simplest way to understand CPS is to think about evaluating a simple functional application. The simple function of the control of the co

Example CPS: Factorial

```
fact n = if n==0 then 1 else n*fact(n-1)
Ssignment Project Exam Help
```

```
factcps n k = if n==0 then k 1
\underset{\text{factops 4}}{\text{https://powcoder.com}} ^{\text{https://powcoder.com}}
```

The second argument k is the continuation.

Exercise: Add WeChat powcoder What is the relationship between:

What is one main difference between fact and factcps?

Factorial: evaluation

```
fact 4 = if 4==0 then 1 else 4*fact(4-1)
                                                              = 4*fact(3)
Assignment Project Exam Help
                                                              = 4*(3*(2*(1*1)))
          factcp 4
                         = factor property of the factor of the facto
                          = factcps 3 (\rdot{r} \rightarrow (4*r))
                          = factcps 2 (\r \rightarrow (\r \rightarrow (4*r)) (3*r))
                          = factcps 0 (\r -> (4*(3*(2*(1*r)))))
                          = (\r -> (4*(3*(2*(1*r)))))
                          = (4*(3*2*(1*1)))
```

Tail Recursion

- It is generally well-understood in compiler technology that tail recursive programs can be implemented more efficiently (because AS bely abbetters drive in the light of X am Help
 - A well known example: Compare the following two functions:

```
revhttps://powcoder.com
```

```
revacc [] acc = acc
revacc (hit) magc = invacc t (h:acc)
```

- Nothing definition of ++).
- Formally, we can show that rev 1 = revacc 1 []

Continued...

Assignment, Project Exam Help

```
revcps [] k = k [] revcps https://powcoder.com
```

```
Exercise: Verify that rev = revcps = (x -> x)
Note that all the contrivations have an beginning lists: x -> x++1 for some list 1. Thus revcps can be simplified to revacc.
```

As spening and a large of the water of the system of the s

- Many advanced compilers perform this transformation automatically (when possible).
 In addition to eliminating recursion, these transformations add
- In addition to eliminating recursion, these transformations add additional control in the form of strategies.
- On a negative nete, programs become higher-order, and we might loose tendination probetties 12t powcoder

Worked Example: factorial again

```
Assignment Project Exam Help
Consider now the CPS form:
```

```
factops n = if n=0 then k = 1 factops 4 (x -> x) then k = 1 factops 4 (x -> x)
```

```
We can simplify the continuation:

factacc n acc = if n=0 then acc

else factacc (n-1) (n*acc)
```

Other uses of CPS

Many programming languages have features like:

Assignment Project Exam Help

exceptions in Java, Haskell, SML, etc.

which allow for the change of control of a program (to exit the current block). https://powcoder.com

- Continuations are a way of expressing these issues
- Achieved by passing a stack as a value to functions: this stack allows the state of the computation to be reinstated at any point—we can move to any past state in a safe way.
- Such stacks are known as reified control stacks.

However, this is beyond the scope of this course...

Summary of CPS

Assignment Project Exam Help

- Some continuations have nice representations as accumulating parameters.
- Tail actism sinction at the condition of the condition
- Many other program transformation techniques for functional programming WeChat powcoder

Summary

Assignment for the formation of the foundation of many programming concepts).

- It is possible to program using only the λ -calculus, but easier if we allow plata types (pattern matching richar syntax etc.)

 Test out examples in the notes, and do exercises.
- Try writing some of the λ -terms in Haskell
- Can Audrith a Wata type in Haskell for representing therms?