AMENDMENTS TO THE CLAIMS:

This listing of the claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method of treating a disorder by using a compound of formula (I)

$$R^3$$
 R^1
 R^2

wherein

(i) R^1 and R^2 are the same or different and are selected from H, $-CH_2-O-R^5$, $-CH_2-O-SO_2-R^5$, $-CH_2-S-R^5$, $-CH_2-O-CO-R^5$;

$$R^3$$
 is $=0$;

R⁴ and R⁵ are the same or different and are selected from H; substituted or non-substituted, unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; substituted or non-substituted benzyl; substituted or non-substituted mono- or bicyclic aryl; substituted or non-substituted mono-, bi- or tricyclic C1-C10 heteroaryl or non-aromatic C1-C10 heterocyclyl wherein the heteroatoms are independently selected from N, O and S; or R⁴ and R⁵ in -NR⁴R⁵ are bonded together and form, together with the nitrogen atom

to which they are bonded, a substituted or non-substituted non-aromatic C1-C10 mono- or bicyclic heterocyclyl optionally containing one or several further heteroatoms independently selected from N, O and S and optionally comprising one or several cyclic keto groups;

with the proviso that when R^1 and R^2 are both $-CH_2-OR^5$ then both R^5 is are not H; and

with the further proviso that $\ensuremath{R^1}$ and $\ensuremath{R^2}$ are not both H; or

(ii) R¹ and R² together with the carbon atom to which they are bonded form an substituted or non-substituted cyclic carbonate; wherein the substituents of the substituted groups are selected from unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; halogen; monoor bicyclic aryl; mono-, bi- or tricyclic C1-C10 heteroaryl and non-aromatic C1-C10 heterocyclyl wherein the heteroatoms are independently selected from N, O and S; C1-C10 alkyloxy; amino; C1-C10 alkylamino; COR⁶; CONR⁶R⁷; and COOR⁶;

 R^6 and R^7 are the same or different and are selected from H; unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; benzyl; mono- or bicyclic aryl; mono-, bi- or tricyclic heteroaryl or non-aromatic C1-C10 heterocyclyl wherein the hetero-atoms are independently selected from N, O and S; or

as well as of a pharmaceutically acceptable salts salt thereof,

for the treatment of a disorder selected from hyperproliferative diseases, by administering said compound in an effective amount for said disorder, to a patient in need thereof.

- 2. (Previously Presented) The method according to claim 1, wherein the disorder is a cancer.
 - 3. (Currently Amended) A compound of formula (I)

$$\mathbb{R}^3$$
 \mathbb{R}^1
 \mathbb{R}^2

wherein

(i) R^1 and R^2 are the same or different and are selected from H, -CH₂OH, -CH₂-O-CO-R⁵, -CH₂-O-CO-NR⁴R⁵ and -CH₂-O-CO-OR⁵;

 R^3 is =0, provided that at least one of R^1 and R^2 is selected from CH_2 O-CO- R^5 , CH_2 O-CO- NR^4R^5 and CH_2 O-CO- OR^5 ;

R⁴ and R⁵ are the same or different and are selected from H; substituted or non-substituted, unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; substituted or non-substituted benzyl; substituted or

non-substituted mono- or bicyclic aryl; substituted or non-substituted mono-, bi- or tricyclic C1-C10 heteroaryl or non-aromatic C1-C10 heterocyclyl wherein the heteroatoms are independently selected from N, O and S; or R⁴ and R⁵ in -NR⁴R⁵ are bonded together and form, together with the nitrogen atom to which they are bonded, a substituted or non-substituted non-aromatic C1-C10 mono- or bicyclic heterocyclyl optionally containing one or several further heteroatoms independently selected from N, O and S and optionally comprising one or several cyclic keto groups;

with the proviso that R^1 and R^2 are not both <u>selected</u> from H and $-CH_2OH$; or

(ii) R¹ and R² together with the carbon atom to which they are bonded form a substituted or non-substituted cyclic carbonate; wherein the substituents of the substituted groups are selected from unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; halogen; monoor bicyclic aryl; mono-, bi- or tricyclic C1-C10 heteroaryl or non-aromatic C1-C10 heterocyclyl wherein the heteroatoms are independently selected from N, O and S; C1-C10 alkyloxy; amino; C1-C10 alkylamino; COR⁶; CONR⁶R⁷; and COOR⁶;

R⁶ and R⁷ are the same or different and are selected from H; unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; benzyl; mono- or bicyclic aryl; mono-, bi- or tricyclic heteroaryl or non-aromatic C1-

C10 heterocyclyl wherein the hetero-atoms are independently selected from N, O and S; or

as well as \underline{a} pharmaceutically acceptable \underline{salts} \underline{salt} of the $\underline{compounds}$ compound of formula (I).

4. (Previously Presented) A process for the preparation of a compound according to claim 3 by reacting a compound of formula (I)

$$R^3$$
 R^2

(I)

wherein

 R^1 , R^2 and R^3 are as defined in claim 3, provided that at least one of R^1 and R^2 is -CH₂OH; or wherein both R^1 and R^2 are -CH₂OH and R^3 is as defined in claim 3;

with a compound of formula R^5 -CO-X, NR^4R^5 -CO-X, or R^5 O-CO-X; wherein X is a leaving group; under conditions suitable for transforming at least one of R^1 and R^2 into -CH₂-O-CO- R^5 , -CH₂-O-CO- R^4R^5 or -CH₂-O-CO- R^5 wherein R^4 and R^5 are as defined in claim 3;

or by reacting a compound of said formula (I) wherein both R^1 and R^2 are -CH₂OH; with a compound of formula

- 5. (Previously Presented) A compound according to claim 3 for use as a medicament.
- 6. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 3, or a pharmaceutically acceptable salt or prodrug thereof, and at least one pharmaceutically acceptable excipient.
- 7. (Original) A pharmaceutical composition according to claim 6, comprising at least one further, pharmaceutically active compound.

8. (Cancelled)

9. (Previously Presented) A pharmaceutical composition according to claim 7, wherein the at least one further active compound *in vivo* is susceptible of reacting with glutathione.

- 10. (Currently Amended) A pharmaceutical composition according to, claim 7 or claim 9, wherein the further pharmaceutically active compound is selected from adriamycin, melphalan and cisplatin.
- 11. (Currently Amended) A method of treatment of a disease selected from hyperproliferative diseases, by administration of a therapeutically effective amount of a compound of formula (I)

$$R^3$$
 R^1
 R^2

(I)

wherein

(i) R^1 and R^2 are the same or different and are selected from H, $-CH_2-O-R^5$, $-CH_2-O-SO_2-R^5$, $-CH_2-S-R^5$, $-CH_2-O-CO-R^5$;

$$R^3$$
 is $=0$,:

R⁴ and R⁵ are the same or different and are selected from H; substituted or non-substituted, unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; substituted or non-substituted benzyl; substituted or non-substituted aryl; substituted or non-substituted mono- or bicyclic aryl; substituted or non-

substituted mono-, bi- or tricyclic C1-C10 heteroaryl or non-aromatic C1-C10 heterocyclyl wherein the heteroatoms are independently selected from N, O and S; or R⁴ and R⁵ in -NR⁴R⁵ are bonded together and form, together with the nitrogen atom to which they are bonded, a substituted or non-substituted non-aromatic C1-C10 mono- or bicyclic heterocyclyl optionally containing one or several further heteroatoms independently selected from N, O and S and optionally comprising one or several cyclic keto groups;

with the proviso that when R^1 and R^2 are both $-CH_2-OR^5$ then both R^5 is are not H; and

with the further proviso that when one of R^1 and R^2 is H and the other one is $-CH_2-NR^4R^5$, then R^4 and R^5 are not substituted or non-substituted monocyclic aryl; or

(ii) R¹ and R² together with the carbon atom to which they are bonded form a substituted or non-substituted cyclic carbonate; wherein the substituents of the substituted groups are selected from unbranched or branched, saturated or unsaturated C3-C12 cycloalkyl or C1-C10 alkyl; halogen; monoor bicyclic aryl; mono-, bi- or tricyclic C1-C10 heteroaryl or non-aromatic C1-C10 heterocyclyl wherein the heteroatoms are independently selected from N, O and S; C1-C10 alkyloxy; amino; C1-C10 alkylamino; COR⁶; CONR⁶R⁷; and COOR⁶;

 ${
m R}^6$ and ${
m R}^7$ are the same or different and are selected from H; unbranched or branched, saturated or unsaturated C3-

C12 cycloalkyl or C1-C10 alkyl; benzyl; mono- or bicyclic aryl; mono-, bi- or tricyclic heteroaryl or non-aromatic C1-C10 heterocyclyl wherein the heteroatoms are independently selected from N, O and S; or

as well as of a pharmaceutically acceptable salts or prodrugs salt or prodrug thereof,

to a patient in the need of such treatment.

12. (Original) The method according to claim 11 wherein the compound of formula (I) is administered together with a further, pharmaceutically active compound.

13. (Cancelled)

- 14. (Currently Amended) The method according to the claim 12 wherein the further, pharmaceutically active compound in vivo is susceptible of reacting with glutathione.
- 15. (Previously Presented) The method according to claim 12 or claim 14, wherein the further pharmaceutically active compound is selected from adriamycin, melphalan, cisplatin.

16. (Currently Amended) A method of treating a mammal suffering from a hyperproliferative disease,

comprising administering to said mammal in need thereof a therapeutically effective amount of a compound selected from the group consisting of:

H ₂ N O O HO		
	LN LOOPO	
	THE ONLY	

		LN CO
S S S	IN CONTRACTOR S	
LN COL	LN COOLOA	LN LO
		OH OH
O=S=O		

	A CO O O O O O O O O O O O O O O O O O O	
CI CI CI CI ,	ON NO ON NO N	ONH ₂ ONH ₂
and		

17. (Previously Presented) The method according to claim 16, wherein the disorder is cancer.

18. (Currently amended) A compound selected from the group consisting of:

О ОН О ГО ОН ГО О		OH
F O O O O O O O O O O O O O O O O O O O	H ₂ N O HO	
	LN COLO	LN LOO O

A CONTRACTOR OF THE PROPERTY O	A CO O O O O O O O O O O O O O O O O O O	S S
		The olong
INTO O		
	CI CI CI CI ,	A CONTON

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array}$$

- 19. (Previously Presented) The process according to claim 4, wherein ${\tt X}$ is ${\tt Cl}$.
- 20. (Previously Presented) The compound according to claim 3, wherein R^1 and R^2 are the same or different and are both selected from the group consisting of $-CH_2-O-CO-R^5$, $-CH_2-O-CO-NR^4R^5$ and $-CH_2-O-CO-OR^5$.