UD1. Fundamentos de programación

Verónica Mascarós

Curs 23-24


```
e = m(b, " ");
-1 < e && b.splice(e, 1);
e = m(b, void 0);
-1 < e && b.splice(e, 1);
 e = m(b, "");
 -1 < e && b.splice(e, 1);
 for (c = 0;c < d && c < b.len
   a += b[c].b + ", ", n.push(
 for (g = 0;g < f;) {
    e = Math.floor(b.length *
    d.c + "</span>"), b[e
 for (;c < b.length;c++) {
    void 0 !== b[c] && ("para
             b);
ingle").h("mode_
```

- Un ALGORITMO es un conjunto ordenado y finito de operaciones que permiten resolver un problema.
 - Es independiente del lenguaje de programación y de los dispositivos en el que se ejecuta.

- Un algoritmo debe ser PRECIOSO, FINITO y DEFINIDO.
- **PRECISO**: debe tener instrucciones claras e indicar el orden de realización de cada paso
- **FINITO**: tiene un número finito de pasos, debe terminar en un tiempo finito. Si no terminara nunca, no se resolvería el problema.
- **DEFINIDO**: Todas las operaciones deben estar definidas de forma precisa y sin ambigüedad, de modo que si se sigue el algoritmo dos veces, se debe obtener el mismo resultado.

Para definir un algoritmo debemos tener en cuenta que consta de 3 partes: la ENTRADA, el PROCESO y la SALIDA.

Un algoritmo puede tener varios datos de entrada, y como

mínimo un dato de salida

- Un claro ejemplo de algoritmo es una receta de cocina, donde tenemos unos pasos a seguir en un orden y deben estar bien definidos, tiene un tiempo finito y tiene unos datos de entrada (ingredientes) y una salida (el plato).
- Por ejemplo, el algoritmo para freír un huevo podría ser el siguiente:
- Datos de entrada: Huevo, aceite, sartén, fuego.
- Datos de salida: huevo frito.
- Procedimiento:
- 1. Poner el aceite en la sartén.
- 2. Poner la sartén al fuego.
- 3. Cuando el aceite esté caliente, romper el huevo e introducirlo.
- 4. Cubrir el huevo de aceite.
- 5. Cuando el huevo esté hecho, retirarlo.

Programa

- La codificación de un ALGORITMO mediante un lenguaje de programación se llama PROGRAMA.
 - Por tanto, un programa informático no es más que un conjunto de instrucciones para un ordenador.
 - Los lenguajes de programación son un medio para expresar el algoritmo.

Elementos de un programa

- En un programa podemos encontrar principalmente:
- Constantes.
- Variables.
- Expresiones.
- Operadores.
 - Relacionales,
 - Aritméticos,
 - Lógicos o Booleanos,
 - Alfanuméricos y
 - · Paréntesis.

Elementos de un programa

- · Las constantes y variables podemos decir que son objetos.
- Llamamos OBJETO de un programa a todo lo que se puede manipular por diferentes instrucciones que forman parte del programa.
- En ellos se almacenarán tanto los datos de entrada como los de salida (resultados).

Elementos de un programa

- Todos los objetos tienen los siguientes atributos:
 - Nombre: el identificador del objeto.
 - **Tipo**: conjunto de valores que puede tomar. Por ejemplo: números enteros.
 - Valor: elemento del Tipo que se le asigna.
 - Por ejemplo: int miVariable = 2
 - (tipo) (nombre) (valor)

Constantes

- · Su valor no varía a lo largo de la ejecución del programa.
- Una constante es como ponerle un nombre a un valor concreto, por lo que se utiliza su nombre cada vez que queremos referenciar ese valor.
- Por ejemplo:
- IVA = 21
- pi = 3,14 --> Si queremos calcular la longitud de una circunferencia de radio=4, calcularíamos: 2*pi*radio

Constantes

- Las constantes se utilizan sobre todo para simplificar las modificaciones y mantenimientos de los programas.
 - Imagina que estamos escribiendo un programa contable o financiero, donde utilizamos muchas veces operaciones con el IVA.
 - Si en un futuro el importe cambia, sólo tendríamos que modificar el valor de la constante IVA una vez, en cambio, si utilizamos cada vez 0,21 debemos modificar ese valor en cada operación.

Variables

- Son objetos cuyo **valor puede ser modificado** a lo largo de la ejecución de un programa.
- Por ejemplo: una variable para calcular el área de una determinada circunferencia, una variable para calcular el importe de una factura, etc.

Operadores

- Son los símbolos que hacen de enlace entre los argumentos de una expresión:
- 1.- Relacionales.
- 2.- Aritméticos.
- 3.- Lógicos o Booleanos.
- 4.- Operador Alfanumérico (+).
- 5.- Paréntesis ().

Operadores relacionales

• Se utilizan para formar expresiones que al ser evaluadas devuelven un valor booleano (Verdadero o Falso).

Operación	Operador	Ejemplo	Comparación	Resultado/Binario
Mayor que	>	X > Y	¿Es X mayor que Y?	Verdadero (1)
Menor que	<	X < Y	¿Es X menor que Y?	Falso (0)
Mayor o igual que	>=	X >= Y	¿Es X mayor o igual que Y?	Verdadero (1)
Menor o igual que	<=	X <= Y	¿Es X menor o igual que Y?	Falso (0)
Igual a	==	X == Y	¿Es X igual a Y?	Falso (0)
Diferente a	!=	X != Y	¿Es X diferente a Y?	Verdadero (1)

Operadores aritméticos

Se utilizan para realizar operaciones aritméticas:

Operador	Definición
+	Suma
-	Resta
*	Multiplicación
٨	Potencia
/	División
%	Resto de la división

Ejemplos:

Expresión	Resultado
3+5-2	6
24 % 3	0

Operadores lógicos o booleanos

- Se utilizan con expresiones booleanas (V o F). Los más habituales:
 - · Operador NOT (No lògico o negación): invierte el valor
 - Operador AND (Y lógica o conjunción): devuelve Verdadero si todos los valores son verdaderos, en caso contrario devuelve Falso
 - Operador OR (O lógica o disyunción): devuelve Verdadero si algún valor es verdadero

Operadores lógicos o booleanos

Los operadores lógicos NOT, AND y OR se evalúan según las tablas de verdad, siendo X e Y expresiones booleanas cuyo resultado de las operaciones lógicas viene determinado por dichas tablas:

Operador NOT		
Χ	NOT X	
F	٧	
٧	F	

Operador AND				
Χ	Υ	X AND Y		
F	F	F		
F	٧	F		
٧	F	F		
٧	٧	V		

Operador AND

Ejemplos

Expresión	Resultado
9 = (3*3)	Verdadero
3 <> 2	Verdadero
9 = (3*3) Y 3 <> 2	Verdadero
3 > 2 Y b < a	Verdadero Y Falso = Falso
3 > 2 0 b < a	Verdadero O Falso = Verdadero
no(a < b)	No Verdadero = Falso
5 > 1 Y NO(b < a)	Verdadero Y no Falso = Verdadero

Operador alfanumèrico

- Une datos de tipo alfanumérico (texto). También se llama concatenación.
- Ejemplos:

Expresión	Resultado
"Ana" + "López"	Ana López
"saca" + "puntas"	sacapuntas

Paréntesis

- Sirve para agrupar o anidar expresiones. Ejemplo:
- -(3*2) + (6/2) --> Resultado: 9

Orden de evaluación de los operadores

A la hora de resolver una expresión, el orden a seguir es el siquiente:

1. Paréntesis (comenzando por los más internos)

- 2. Signo
- Potencias
- 4. Producto y divisiones
- 5. Sumas y Restas
- 6. Concatenación
- 7. Relacionales
- 8. Negación
- 9. Conjunción
- 10. Disyunción
- La evaluación de operadores de igual orden se realiza de izquierda a derecha