

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática

RELATÓRIO

1. GRUPO

Nome: Lívia Negrucci Cantowitz

RA: 10389419

Nome: Pedro Moniz Canto

RA: 10426546

2. INTRODUÇÃO E DESCRIÇÃO DA ESTRATÉGIA DE PARALELIZAÇÃO

A análise de logs é essencial para detectar problemas de desempenho, segurança e comportamento de usuários. Com o grande volume de dados gerados por servidores e aplicações, processar logs se tornou um desafio de Big Data. Nesse cenário, usar paralelismo é fundamental para acelerar a extração de informações.

A paralelização foi feita dividindo o arquivo em partes, cada uma processada por uma thread. A thread principal cria as demais, que analisam suas linhas e atualizam estatísticas pedidas, sendo os erros 404 e bytes transferidos. Para evitar condições de corrida, o acesso a esses dados é protegido por um mutex.

3. TABELA COM OS RESULTADOS DE DESEMPENHO

N° de Threads(N)	Tempo de Execução (s)	Speedup (S)	Eficiência (E)
1	0.1542 segundos	1,9319	1,9319
2	0.1335 segundos	2,2315	1,11575
4	0.1292 segundos	2,3057	0,576425
8	0.1289 segundos	2,3111	0,2888875

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática

4. GRÁFICO DE SPEEDUP vs. Nº DE THREADS

5. CONCLUSÃO

O gráfico de speedup mostrou ganhos claros, mas não lineares. Isso acontece porque parte do trabalho é sequencial, como a leitura inicial do arquivo, e porque o uso do mutex gera overhead de sincronização entre as threads.

Mesmo assim, o paralelismo trouxe bons resultados, confirmando a eficácia da abordagem. Porém, a Lei de Amdahl mostra que o desempenho sempre terá limites práticos, mesmo com mais threads.