Amendments to the Specification:

Please replace paragraphs [0020]-[0021] as follows:

[0020] In addition, and advantageously, the mobile terminal also receives an interactive channel from a cellular or other transmission network 274 at a cellular transceiver_206. The cellular transceiver 206 allows both the reception and transmission of signals between the mobile terminal 200 and the cellular network 274. The cellular network may be a GSM network, a general packet radio service (GPRS), third generation (3G) or other suitable network.

[0021] SI data generated by the 51 generator 260 is also supplied to a profiler 262 of the cellular network 274. The profiler contains a database of information about each of the subscribers to the cellular network 274. The profiler may contain information such as, demographic data, income level, sports leisure interests, etc.

Please replace paragraph [0023]-[0024] as follows:

[0023] According to the prior art, if a user wishes to receive a video clip each time his favourite favorite football team scores during a football match, it is necessary that the DVB-T receiver 100 in the DVB-T set-top-box 106 is constantly powered up and is constantly receiving SI data. This is since the exact timing of when a goal will be scored is not known in advance. Accordingly, no schedule will exist in the SI data for this event. A DVB-T receiver must therefore wait for the SI data to indicate when the video clip will be broadcast. If the user is only interested in receiving video clips of

the football match, this is particularly inefficient in terms of power consumption, especially for mobile terminals, since the DVB-T receiver just waiting, consuming power, for a specific video clip to be broadcast.

According to a first embodiment of The present invention, as exemplified in Figure Fig. 2, the subscriber registers his interest in receiving video clips with the profiler 262 of the cellular network 274. The DVB-T receiver 202 of the mobile terminal 200 may then be powered down. When a goal is scored, and a video clip is available for broadcast, the broadcaster must schedule the video clip to be included in the existing DVB-T multiplex signal. This may involve rescheduling existing programs, and updating the SI data accordingly. Once a scheduled time has been established for the broadcast of the video blip clip, a service announcement is sent by the cellular network 274 to the cellular transceiver 206. The service announcement is received by the cellular transceiver 206 and is processed by the controller 204. The controller informs the DVB-T receiver 202 of when the video clip will be broadcast and other relevant associated data, such as channel location, encryption parameters etc. The DVB-T receiver can be powered up and configured in time to receive and decode the video clip. The video clip may also be stored in a memory 208. Once the desired video clip, or other data, has been received, the DVB-T receiver 202 can be once again powered down.