Лабораторная работа №17

Задания для самостоятельной работы

Ли Тимофей Александрович

Содержание

Цель работы	4
Выполнение лабораторной работы Ход работы	5 5
Выводы	10

Список иллюстраций

0.1	модель1	5
0.2	модель2	6
0.3	модель3.1	7
0.4	загрузка причалов	8
0.5	модель3.2	8
0.6	загрузка причалов	9

Цель работы

Выполнить задания по моделированию вычислительного центра, аэропорта и морского порта.

Выполнение лабораторной работы

Ход работы

17.1 Построил модель ЭВМ и запустил симуляцию: (рис. @fig:001):

lab17.1.gps		■ lab17.1.1.1 - F	REPORT										
ram STORAGE	2			1	GEN	ERATE			240	()	0	
GENERATE 20	,5			2	QUE	JE			240	4	1	0	
QUEUE a				3	ENT	ΣR			236	()	0	
ENTER ra	m,1			4	DEP	ART			236	()	0	
DEPART a				5	ADV	ANCE			236	1	L	0	
ADVANCE 20	,5			6	LEA	7E			235	()	0	
LEAVE ra	m,1			7	TER	MINATE			235	()	0	
TERMINATE				8	GEN	ERATE			236	()	0	
GENERATE 20	,10			9	QUE	JE			236		5	0	
QUEUE b				10	ENT	ΣR			231	()	0	
ENTER ra	m,1			11	DEP	ART			231	()	0	
DEPART b				12	ADV	ANCE			231	1	L	0	
ADVANCE 21	.,3			13	LEA	7E			230	()	0	
LEAVE ra	m,1			14	TER	MINATE			230	()	0	
TERMINATE				15	GEN	ERATE			172	()	0	
GENERATE 28	,5			16	QUE	JE			172	172	2	0	
QUEUE c				17	ENT	ΣR			0	()	0	
ENTER ra	m,2			18	DEP	ART			0	()	0	
DEPART c				19	ADV	ANCE			0	()	0	
ADVANCE 28				20	LEA	7E			0	()	0	
	m,2			21	TER	MINATE			0	()	0	
TERMINATE				22	GEN	ERATE			1	()	0	
GENERATE 48	800			23	TER	MINATE			1	()	0	
TERMINATE 1													
START 1													
		QUEUE	1						AVE.CONT.				
		A		7	4	240			3.288				
		В		7	5	236			3.280				
		С		172	172	172		0	85.786	2394.03	38	2394.038	0
		STORAGE		CAP.	REM.	MIN.	MAX. I	ENTI	RIES AVL.	AVE.C.	UTIL	. RETRY	DELAY
	E E	RAM		2	0	0	2		467 1	1.988	0.99	4 0	181

Рис. 0.1: модель1

Здесь мы видим, что загрузка ЭВМ составляет 99,4%. Также замечаем, что задачи

типа C не успевают занять память, поскольку первой поступает задача другого типа, а потом память полностью не освобождается, что необходимо для задач C.

17.2 Построил модель аэропорта и запустил симуляцию: (рис. @fig:002)

lab17.2.gps		■ lab17.2.4.1 - REPORT							×
GENERATE	10,5,,,1		1	GENERATE	145	0	0		^
ASSIGN	1,0		2	ASSIGN	145	0	0		
QUEUE	arrival		3	QUEUE	145	0	0		
attempt	GATE NU runway, round	ATTEMPT	4	GATE	188	0	0		
SEIZE	runway		5	SEIZE	145	0	0		
ADVANCE	2		6	ADVANCE	145	0	0		
RELEASE	runway		7	RELEASE	145	0	0		
TERMINATE			8	TERMINATE	145	0	0		
round	TEST L Pl,5,reserve	ROUND	9	TEST	43	0	0		
ADVANCE	5		10	ADVANCE	43	0	0		
ASSIGN	1+,1		11	ASSIGN	43	0	0		
TRANSFER	1.0,,attempt		12	TRANSFER	43	0	0		
reserve	SEIZE land	RESERVE	13	SEIZE	0	0	0		
DEPART	arrival		14	DEPART	0	0	0		
RELEASE	land		15	RELEASE	0	0	0		
TERMINATE	0		16	TERMINATE	0	0	0		
GENERATE	10,2,,,2		17	GENERATE	145	0	0		
QUEUE	departure		18	QUEUE	145	0	0		
SEIZE	runway		19	SEIZE	145	0	0		
DEPART	departure		20	DEPART	145	0	0		
ADVANCE	2		21	ADVANCE	145	1	0		
RELEASE	runway		22	RELEASE	144	0	0		
TERMINATE	0		23	TERMINATE	144	0	0		
GENERATE	1440		24	GENERATE	1	0	0		
TERMINATE	1		25	TERMINATE	1	0	0		
START	1								
		FACILITY	ENTRIES	UTIL. AVE	. TIME AVAIL. O	WNER PEND I	NTER RETRY	DELAY	
		RUNWAY	290	0.402	1.994 1	291 0	0 0	0	
		QUEUE	MAX C	ONT. ENTRY EN	TRY(0) AVE.CONT	. AVE.TIME	AVE.(-0)	RETRY	
		DEPARTURE	1	0 145	112 0.023	0.224	0.984	0	
		ARRIVAL	145	145 145	0 71.101	706.107	706.107	0	

Рис. 0.2: модель2

Количество взлетевших самолётов – это число самолетов, вошедших в блок 24, то есть 144. Также видим, что один самолет взлетает на момент окончания моделирования. Севшие – вошедшие в 9 блок, то есть 145. Ушедшие на запасной аэродром – вошедшие в 17 блок, то есть 0. Коэффициент загрузки взлётно-посадочной полосы равен 40,2%.

17.3 1) Построил модель морского порта и запустил симуляцию: (рис. @fig:003)

ort STORAGE 10												
ENERATE 20,5		START T			END TIME							
UEUE ships		0.	000		4320.000	9		0	1			
NTER port,3												
EPART ships		NAME				VALUE						
DVANCE 10,3		PORT				000.000						
EAVE port, 3		SHIPS				001.000						
ERMINATE 0												
ENERATE 24	LABEL		TOC	BIOCE	TYPE	ENTRY CO	IINT CI	UDDENT C	OHNT	DETDV		
ERMINATE 1	LADEL		1		ATE		ONI C	ORKENI C		0		
TART 180			2		AIL	215		0		0		
			3	_)	0		
			4	DEPART	Γ	215		0)	0		
			5	ADVANO	CE	215		1		0		
			6	LEAVE		214		0)	0		
			7	TERMIN	NATE	214		0)	0		
					ATE	180)	0		
			9	TERMIN	NATE	180		C)	0		
	SHIPS											
	SHIPS		1	U	215 21	.5 0.	000	0.00	,,,	0.000	0	
	STOPAGE		CVD	DEM MI	ги мач	FNTDIFS	7.377	AVE C	IITT.	DETDV	DELYA	
	PORT) 3							
	FEC XN	PRI	BD'	Γ 2	ASSEM CUR	RENT NE	XT P	ARAMETER	₹ ₹	ALUE		
	395	0		.260		5 6						
		0			396	0 1						
lab17.1.gps	图 397	0	4344	.000	397	0 8						

Рис. 0.3: модель3.1

Коэффициент загрузки - 14,8%. Очевидно, для повышения коэффициента надо перебирать случаи, когда число причалов кратно трем, поскольку прибывающие корабли занимают и освобождают по три причала одновременно. Я проверил модель с 9 причалами, и коэффициент составил 16,5%. Далее решил проверить 6 и 3 и получил соответственно 24,7% и 49,5%. Видим увеличение продуктивности по мере уменьшения числа причалов, значит варианты более 10 причалов смотреть не будем, а меньше трех - невозможно. Значит, оптимальное число - 3 причала.

Данные для 9, 6 и 3 причалов соответственно: (рис. @fig:004)

STORAGE	CAP.	REM.	MIN.	MAX.	ENTRIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY	
PORT	9	6	0	3	645	1	1.485	0.165	0	0	
STORAGE	CAP.	REM.	MIN.	MAX.	ENTRIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY	
PORT	6	3	0	3	645	1	1.485	0.247	0	0	
STORAGE	CAP.	REM.	MIN.	MAX.	ENTRIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY	
PORT	3	0	0	3	645	1	1.485	0.495	0	0	

Рис. 0.4: загрузка причалов

17.3 2) Построил модель морского порта и запустил симуляцию: (рис. @fig:005)

lab17.3.1.gps	lab17.3.1.5.1	- REPORT					
port STORAGE 6		START TIME	END T		FACILITIES	STORAGES	
GENERATE 30,10		0.000	4320.0	000 9	0	1	
QUEUE ships							
ENTER port,	? 						
DEPART ships		NAME		VALUE			
ADVANCE 8,4 LEAVE port.2		PORT		10000.000			
LEAVE port,2 TERMINATE 0		SHIPS		10001.000			
GENERATE 24	LABEL	LO	C BLOCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY	
TERMINATE 1		1	GENERATE	143	0	0	
START 180		2	QUEUE	143	-	0	
		3	ENTER		-	0	
		_	DEPART		_	0	
		5	ADVANCE		_	0	
		_	LEAVE	142		0	
			TERMINATE		-	0	
			GENERATE		-	0	
		9	TERMINATE	180	0	0	
	QUEUE	MAX	CONT. ENTRY EN	TRY(0) AVE.C	ONT. AVE.TIM	E AVE.(-0) RE	TRY
	SHIPS	1	0 143	143 0.0	0.00	0.000	0
	STORAGE	CAP	. REM. MIN. MAX	. ENTRIES A	VL. AVE.C.	UTIL. RETRY DEL	AY
	PORT	6	4 0 2	286	1 0.524	0.087 0 0	
	FEC XN	PRI B	DT ASSEM (CURRENT NEX	T PARAMETER	VALUE	
	322		5.892 322				
	324	0 433	6.699 324	0 1			
lab17.1.gps	325	0 434	4.000 325	0 8			

Рис. 0.5: модель3.2

Загрузка - 8,7%. По той же логике, что и прошлом пункте, проверяет варианты, кратные двум. Я решил проверить варианты меньше шести, и здесь это так же работает, при 4 и 2 причалах загрузка увеличилась, и при двух она максимальная -

26,2%.

Данные для 4 и 2 причалов: (рис. @fig:006)

STORAGE	CAP.	REM.	MIN.	MAX.	ENTRIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY
PORT	4	2	0	2	286	1	0.524	0.131	0	0
STORAGE	CAP.	REM.	MIN.	MAX.	ENTRIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY
PORT	2	0	0	2	286	1	0.524	0.262	0	0

Рис. 0.6: загрузка причалов

Вообще загрузка увеличивается с уменьшением числа причалов, но без увеличения очереди, потому что у нас максимальное время обработки корабля меньше, чем минимальное время прибытия, соответственно причалы простаивают в любом случае. Во втором пункте разница минимального прибытия и максимальной обработки больше, чем в первом, и из-за этого загрузка меньше.

Выводы

Выполнил поставленные задачи, используя GPSS.