Example 6.35 (Frequency response to differential equation). A LTI system with input x and output y has the frequency response

$$H(\omega) = \frac{-7\omega^2 + 11j\omega + 3}{-5\omega^2 + 2}.$$

Find the differential equation that characterizes this system.

Solution. From the given frequency response H, we have

esponse
$$H$$
, we have
$$\frac{Y(\omega)}{X(\omega)} = \frac{-7\omega^2 + 11j\omega + 3}{-5\omega^2 + 2}.$$

$$\frac{Y(\omega)}{X(\omega)} = \frac{X(\omega)}{X(\omega)} + \frac{X(\omega)}{X(\omega)}$$

Multiplying both sides by $(-5\omega^2 + 2)X(\omega)$, we have

$$-5\omega^2 Y(\omega) + 2Y(\omega) = -7\omega^2 X(\omega) + 11j\omega X(\omega) + 3X(\omega).$$

Applying some simple algebraic manipulation yields

$$5(j\omega)^2 Y(\omega) + 2Y(\omega) = 7(j\omega)^2 X(\omega) + 11(j\omega)X(\omega) + 3X(\omega).$$

Taking the inverse Fourier transform of the preceding equation, we obtain

$$\left\{ \left(\frac{d}{dt} \right)^n \chi(t) \stackrel{\text{FT}}{\longleftrightarrow} (jw)^n \chi(w) \right\}$$

$$5y''(t) + 2y(t) = 7x''(t) + 11x'(t) + 3x(t).$$

Example 6.38 (Bandpass filtering). Consider a LTI system with the impulse response

$$h(t) = \frac{2}{\pi}\operatorname{sinc}(t)\cos(4t).$$

$$x(t) = \frac{-1}{44} + 2\cos(2t) + \cos(4t) - \cos(6t)$$

 $h(t) = \frac{2}{\pi} \operatorname{sinc}(t) \cos(4t).$ from FT table: $1 \rightleftharpoons 2\pi \delta(\mathbf{w})$ Using frequency-domain methods, find the response y of the system to the input $x(t) = \frac{-1}{2\pi} + 2\cos(2t) + \cos(4t) - \cos(6t).$ $\cos(\omega_0 t) \rightleftharpoons \pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right]$

Solution. Taking the Fourier transform of x, we have

$$X(\omega) = -2\pi\delta(\omega) + 2(\pi[\delta(\omega-2) + \delta(\omega+2)]) + \pi[\delta(\omega-4) + \delta(\omega+4)] - \pi[\delta(\omega-6) + \delta(\omega+6)]$$
 +2king FT
$$= -\pi\delta(\omega+6) + \pi\delta(\omega+4) + 2\pi\delta(\omega+2) - 2\pi\delta(\omega) + 2\pi\delta(\omega-2) + \pi\delta(\omega-4) - \pi\delta(\omega-6).$$

The frequency spectrum X is shown in Figure 6.22(a). Now, we compute the frequency response H of the system. Using the results of Example 6.36, we can determine H to be

Example 6.36 found the

FT pair

$$\frac{2w_b}{\pi} \sin(w_b t) \cos(w_a t) \stackrel{\text{FT}}{\longleftrightarrow} \frac{\pi}{2w_b}$$

rect $\left(\frac{w - w_a}{2w_b}\right) + \text{rect}\left(\frac{w + w_a}{2w_b}\right)$

Example 6.36 found the FT pair
$$= \text{rect}(\frac{\omega - \omega_{3}}{2\omega_{b}}) + \text{rect}(\frac{\omega + \omega_{3}}{2\omega_{b}}) + \text{rect}(\frac{\omega + \omega_{3}}{2\omega_{b}})$$
 where the determine H to be
$$H(\omega) = \mathcal{F}\{\frac{2}{\pi}\operatorname{sinc}(t)\cos(4t)\}\{\omega\}$$
 using result from Example 6.36 with $\omega_{b} = 1$, $\omega_{b} = 1$

The frequency response H is shown in Figure 6.22(b). The frequency spectrum Y of the output is given by

$$Y(\omega) = H(\omega)X(\omega)$$

= $\pi\delta(\omega+4) + \pi\delta(\omega-4)$.

Taking the inverse Fourier transform, we obtain

$$y(t) = \mathcal{F}^{-1} \left\{ \pi \delta(\omega + 4) + \pi \delta(\omega - 4) \right\} (t)$$

$$= \mathcal{F}^{-1} \left\{ \pi \left[\delta(\omega + 4) + \delta(\omega - 4) \right] \right\} (t)$$

$$= \cos(4t).$$
For table of FT pairs

 $=\pi\delta(\omega+4)+\pi\delta(\omega-4).$ any two shifted delta functions are nonzero when $H(\omega)\neq 0$ (see Figures 6.22(a) and (b).] $y(t)=\mathcal{F}^{-1}\left\{\pi\delta(\omega+4)+\pi\delta(\omega-4)\right\}(t)$ taking inverse FT $=\mathcal{F}^{-1}\left\{\pi[\delta(\omega+4)+\mathcal{F}(\omega$

$$\cos(\omega_0 t) \stackrel{\text{ET}}{\longleftrightarrow} \Pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$$

Figure 6.22: Frequency spectra for bandpass filtering example. (a) Frequency spectrum of the input x. (b) Frequency response of the system. (c) Frequency spectrum of the output y.

Example 6.40 (Simple RL network). Consider the resistor-inductor (RL) network shown in Figure 6.26 with input v_1 and output v_2 . This system is LTI, since it can be characterized by a linear differential equation with constant coefficients. (a) Find the frequency response H of the system. (b) Find the response v_2 of the system to the input $v_1(t) = \operatorname{sgn} t$.

Figure 6.26: Simple RL network.

Solution. (a) From basic circuit analysis, we can write

$$v_1(t) = Ri(t) + L\frac{d}{dt}i(t) \quad \text{and}$$
 (6.35)

$$v_2(t) = L\frac{d}{dt}i(t). \tag{6.36}$$

(Recall that the voltage v across an inductor L is related to the current i through the inductor as $v(t) = L \frac{d}{dt} i(t)$.) Taking the Fourier transform of (6.35) and (6.36) yields

From (6.37) and (6.38), we have

Since System is LT1,

$$V_2(\omega) = V_1(\omega) H(\omega) \Rightarrow$$

 $H(\omega) = \frac{V_2(\omega)}{V_1(\omega)}$

$$V_1(\omega) = RI(\omega) + j\omega LI(\omega)$$

$$= (R + j\omega L)I(\omega) \text{ and}$$
(6.37)

$$V_2(\omega) = j\omega LI(\omega). \tag{6.38}$$

$$H(\omega) = \frac{V_2(\omega)}{V_1(\omega)}$$
Substitute (6.38) in numerator and (6.37) in denominator
$$= \frac{j\omega L}{R + j\omega L}.$$
Cancel I's (6.39)

Thus, we have found the frequency response of the system.

(b) Now, suppose that $v_1(t) = \operatorname{sgn} t$ (as given). Taking the Fourier transform of the input v_1 (with the aid of Table 6.2), we have

$$= F \left\{ \text{sgn t} \right\} (\omega)$$

$$V_1(\omega) = \frac{2}{j\omega}.$$

$$(6.40)$$

From the definition of the system, we know
$$V_2(\omega) = H(\omega)V_1(\omega). \tag{6.41}$$
 Substituting (6.40) and (6.39) into (6.41), we obtain
$$V_2(\omega) = \left(\frac{j\omega L}{R+j\omega L}\right)\left(\frac{2}{j\omega}\right)$$
 cancel factors of jw
$$= \frac{2L}{R+j\omega L}.$$
 Edition 2020-04-11