LINEAR SYSTEMS CONTROL

Solutions to Problems

Problem 3.8

1. The eigenvalues may be determined from:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = 0 \Rightarrow \begin{vmatrix} \lambda - 1 & 1 \\ 3 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2) - 3$$
$$= \lambda^2 - 3\lambda - 1 = 0 \quad \text{for} \quad \lambda = \begin{cases} -0.303 \\ 3.30 \end{cases}$$

One eigenvalue in the right half plane and thus the system is unstable.

2. From Matlab one finds that: $\lambda = \begin{cases} 0 \\ 0 \\ -3 \end{cases}$

There is a double eigenvalue on the imagining axis. The system is unstable.

3. Again from Matlab one finds that $\lambda = \begin{cases} -3 \pm j \\ 0 \end{cases}$.

LINEAR SYSTEMS CONTROL

Solutions to Problems

Problem 3.8 (continued)

One eigenvalue on the imagining axis and two in the left half plane. The system is Lyapunov stable.

4. The eigenvalues in this case are: $\lambda = \begin{cases} -1 \pm j2 \\ 2 \end{cases}$

One eigenvalue is in the right half plane and two in the left half plane. The system is unstable.