Permutationsgruppen¹

Dozent: Dr. Friedrich Martin Schneider LAT_EX: rydval.jakub@gmail.com Version: 11. November 2016 Technische Universität Dresden

¹Math Ba ALGSTR: Permutationsgruppen, WS 2015/16

Inhaltsverzeichnis

0	Einleitung	1
1	Permutationen und Permutationsgruppen	4
2	Gruppenwirkungen und Darstellungen	10
3	Erzeugendensysteme & Sims-Ketten	12
4	${\bf Automorphismen, invariante\ Relationen\ und\ die\ S\"{a}tze\ von\ KRASNER}$	17
5	k-Abgeschlossene Permutationsgruppen, primitive Gruppen, Automorphismengruppen von Graphen	25
6	POLYAsche Abzähltheorie	36
7	Operationen auf Permutationsgruppen	44
8	Die Sätze von CAUCHY und SYLOW	52
9	Einfache Gruppen	63

0 Einleitung

Definition. Gruppe $\langle G, \cdot, ^{-1}, e \rangle$, wobei G Menge

- · binäre Operation (Multiplikation) auf G,
- e neutrales Element,
- x^{-1} inverses Element zu $x \in G$.

mit folgenden Axiomen:

- $\begin{aligned} \forall x,y,z \in G: (xy)z &= x(yz), \\ \forall x \in G: ex &= xe = x, \\ \forall x \in G: x^{-1}x &= xx^{-1} = e. \end{aligned}$ (Assoziativität)
- (Neutrales Element) (Inverses Element)

Wichtige Beispiele:

- Symmetrie-bzw. Isometriegruppen (geometrisch),
- Automorphismengruppen (algebraisch/kombinatorisch).

Konkret:

- Zu (a): Isometrische Abbildungen der Ebene, die $\stackrel{\circ}{\underset{a}{\bigtriangleup}}$ in Drehung bringen: Drehungen um 0°, 120°, 240°. Spiegelungen um Achsen durch $0,1,2 \implies 6$ Symmetrien. Genauer: $G \cong S_3$ (volle symmetrische Gruppe).
- Zu (b): Betrachte $\stackrel{c}{\overset{c}{\wedge}}_{a}$ als Graphen (Punkte & Knoten). Automorphismus ist 1-1-Abbildung auf Punkten, die Knoten in Kanten überführt $\implies \operatorname{Aut}\left(\stackrel{\operatorname{c}}{\overset{\operatorname{c}}{\bigwedge}} \right) = S_3.$

Anderes Beispiel:

- Zu (a): triviale Symmetrie & Spiegelung an der horizontalen Achse
- Zu (b): Es gibt zahlreiche Automorphismen von Γ . Fixpunkte: 1, 2, 3, 4, 5. Vertauschen der H-Nachbarn von:

$$\begin{array}{ccc} 3 \colon & 7 \longleftrightarrow 10 \\ 4 \colon & 8 \longleftrightarrow 11 \end{array} \right\} \implies \operatorname{Aut} \Gamma \cong S_2 \times S_3 \times S_3 \\ 5 \colon & 6, 9, 12 \end{array} \implies \left| \operatorname{Aut} \Gamma \right| = 24$$

Beobachtung: Γ und Γ' sind "im Prinzip" gleiche Graphen, d.h. es existiert ein Isomorphismus $f:\Gamma\to\Gamma'$.

Isomorphieproblem: Wann sind zwei Strukturen im wesentlichen gleich d.h. isomorph? Bemerkung: Isomorphieproblem ist zurückführbar auf Bestimmung der Automorphismengruppe:

$$\left.\begin{array}{l} f:\Gamma\to\Gamma'\\ f^{-1}:\Gamma'\to\Gamma\end{array}\right\}$$
ist als Automorphismus von $\Gamma\uplus\Gamma'$ interpretierbar

Spezialität von Symmetrie-/Automorphismengruppen: ihre Elemente bilden selbst eine algebraische Struktur \longrightarrow Permutationsgruppen.

Nochmal zum Beispiel: (zum Isomorphieproblem, chemische Isomere) Frage: Wie viele verschiedenen Alkohole mit Strukturformel C_3H_7OH gibt es? Antwort: Γ (siehe oben, Siedepunkt 97.1°C) und Γ'' (siehe unten, Siedepunkt 82.4°). Γ und Γ'' sind nicht isomorph! (Übungsaufgabe: Bestimmung von Aut Γ'').

Bemerkung: Zur Strukturformel C_3H_8O gibt es noch einen weiteren Bindungsgraphen Γ^* (kein Alkohol):

Allgemeine Lösung: Anzahl lässt sich als Anzahl von "Bahnen" einer Permutationsgruppe beschreiben (bestimmbar mit Lemma von Cauchy–Frobenius–Burnside)

 \longrightarrow Abzähltheorie (POLYA). Anderes Beispiel für POLYAsche Abzähltheorie: Wie viele wesentlich verschiedene Ketten mit 3 Sorten Perlen und fester Anzahl n_i von Perlen der Sorte $i \in \{1, 2, 3\}$ gibt es?

Einordnung:

- Permutationsgruppen sind spezielle "und trotzdem mehr als" Gruppen (jede Gruppe ist isomorph zu einer Permutationsgruppe).
- Automorphismengruppen (z.B. algebraische Strukturen) sind besonders wichtig!
- historische Bemerkung: Gruppentheorie ist aus dem Studium von Permutationsgruppen entstanden.

Ziele der Vorlesung:

- Permutationsgruppen & Gruppenwirkungen
- Konstruktionen mit Permutationsgruppen
- POLYAsche Abzähltheorie
- Automorphismengruppen von Relationen, speziell von Graphen
- "Paradoxe" unendliche Gruppen und paradoxe Zerlegungen bzgl. Permutationsgruppen
- "Invariantes Messen" bzgl. (nicht–paradoxen) Permutationsgruppen

1 Permutationen und Permutationsgruppen

Permutationen einer endlichen Menge M können unterschiedlich definiert werden:

– Als lineare Anordnung der Elemente von M, z.B. für M=a,b,c:

 $\pi_1: abc$ $\pi_4: bca$ $\pi_2: acb$ $\pi_5: cab$ $\pi_3: bac$ $\pi_6: cba$

– Als bijektive Abbildungen in 2-zeilen-Darstellung, z.B.:

$$\pi_1 = \begin{pmatrix} a & b & c \\ a & b & c \end{pmatrix} \longleftarrow \text{Argumentenzeile}$$

$$\pi_2 = \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix}$$

$$\vdots$$

$$\pi_6 = \begin{pmatrix} a & b & c \\ c & b & a \end{pmatrix}$$

Allgemein für $M = \{a_1, ..., a_n\}$:

$$\pi = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_{i_1} & a_{i_2} & \cdots & a_{i_n} \end{pmatrix}$$

bezeichnet $\pi: M \to M$, $a_k \mapsto a_{i_k}$ (Reihenfolge der Spalten spielt keine Rolle).

1.1 Definition. Eine Permutation auf einer Menge M ist eine bijektive Abbildung $f: M \to M$. $S_M := S(M) :=$ Menge aller Permutationen auf M. Bezeichnung für Bild f(a) eines Elements $a \in M$ unter $f \in S_M : a^f$.

Also ist

$$\pi = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1^f & a_2^f & \cdots & a_n^f \end{pmatrix}$$

für $M = \{a_1, ..., a_n\}.$

1.2 Satz. Für |M| = n gibt es n! viele Permutationen auf M.

Beweis. Übungsaufgabe.

1.3 Definition. Der Graph einer Permutation $f: M \to M$:

$$- f^{\bullet} := \{(a, b) \in M \times M \mid a^f = b\} \text{ ist } Graph \text{ } von \text{ } f.$$

– Die Paare $(a,b) \in f^{\bullet}$ sind gerichtete Kanten eines Graphen (M,f^{\bullet}) mit Knotenmenge M.

Beispiel.

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 5 & 7 & 13 & 2 & 9 & 4 & 11 & 8 & 1 & 6 & 12 & 10 \end{pmatrix}$$

 f^{\bullet} :

Fakt: Vorausgesetzt M ist endlich. Der Graph f^{\bullet} einer Permutation f ist ein Kreis (Zyklus) oder eine Vereinigung von paarweise disjunkten Kreisen (Zyklen). (Folgt aus Bijektivität: Jeder Punkt ist Ausgangs- bzw. Endpunkt genau einer Kante.)

Ab jetzt: M endliche Grundmenge (bis auf Weiteres, falls nicht anders erwähnt).

1.4 Definition. Die Zyklendarstellung einer Permutation $f \approx$ "lineares Aufschreiben von f":

$$f = (a_1 \ a_1^f \ a_1^{ff} \ \cdots \ a_1^{f_{k_1}}) \cdots (a_l \ a_l^f \ a_l^{ff} \ \cdots \ a_l^{f_{k_l}}),$$

wobei $(a_1^{f^{k_1}})^f = a_1, ..., (a_l^{f^{k_l}})^f = a_l$. Falls M fest, lässt man Zyklen der Länge 1 weg $(verk \ddot{u}rzte\ Zyklen darstellung)$.

Beispiel. Sei f wie oben, dann:

$$f = \begin{pmatrix} 1 & 3 & 7 & 4 & 13 & 10 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 6 & 9 & 8 & 11 \end{pmatrix} \begin{pmatrix} 12 \end{pmatrix}.$$

 $Zyklische\ Permutation :=$ Permutation mit genau einem Zyklus in der verkürzten Zyklendarstellung.

Identische Permutation: $e: x \mapsto x$ (andere Bez.: ε , id_M), Zyklendarstellung: (1) für $M = \{1, ..., n\}$.

Beachte: $(a \ b \ c)$, $(b \ c \ a)$, $(c \ a \ b)$ bezeichnen dieselbe Permutation (nur Reihenfolge ist wichtig, nicht der Anfangselement).

1.5 Definition. Multiplikation (Produkt) von Permutationen = Hintereinanderausführung (Komposition) von Abbildungen $a \xrightarrow{f} M \xrightarrow{g} M$, $a \mapsto a^f \mapsto a^{fg}$. Produkt fg wird definiert durch

$$a^{(fg)} := (a^f)^g$$

(alternative Schreibweise: $f; g, f \cdot g$, ist wieder eine Permutation, falls $fg \in S^M$).

Beispiel zum Produkt von Permutationen:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

Fakt: Sei f Permutation mit (verkürzten) Zyklendarstellung

$$f = (-c_1 -)(-c_2 -) \cdots (-c_k -)$$

(k Zyklen) und sei g_j jeweils die Permutation mit verkürzten Zyklendarstellung $(-c_j-)$, dann $f = g_1 \cdot ... \cdot g_k$ (d.h. jede Permutation ist Produkt von zyklischen Permutationen).

1.6 Satz. Die Menge S_M bildet mit der Multiplikation eine Gruppe – die volle Symmetrische Gruppe (vom Grad |M|, falls M endlich ist).

Beweis. Übungsaufgabe!

Bemerkung. Alle gruppentheoretische Begriffe sind daher insbesondere für Permutationsgruppen definiert, z.B. die Ordnung ord $(f) := \inf\{m \in \mathbb{N} \setminus \{0\} \mid f^m = e\}$, Untergruppe (UG), Normalteiler (NT), konjugierte Elemente etc.

1.7 Definition. Eine Permutationsgruppe G vom Grad n ist eine Untergruppe einer vollen symmetrischen Gruppe S_M vom Grad n.

Bezeichnung: (G, M) oder $G \leq S_M$ falls G Untergruppe. (Permutationsgruppen sind also Paare bestehend aus einer Menge & Gruppe von Permutationen auf dieser).

Meist:
$$M = \{0, 1, ..., n-1\} =: n$$
, d.h. S_n , $M = \{1, 2, ..., n\} =: \underline{n}$, d.h. $S_{\underline{n}}$. Weitere Notation: für $U, V \subseteq S_M$:

$$UV := \{uv \mid u \in U, v \in V\},\$$

für $a \in M$, $B \subseteq M$, $g \in S_M$:

$$a^U := \{a^u \mid u \in U\}, \ B^g := \{b^g \mid b \in B\}, \ B^U := \{b^u \mid b \in B, u \in U\}.$$

1.8 Satz (Untergruppenkriterium). (Voraussetzung: M ist endlich) $U \subseteq S_M$ ist Gruppe $gdw. U \neq \emptyset$ und $UU \subseteq U$.

Beweis. Übungsaufgabe!

1.9 Beispiel. Symmetriebildungen eines Rechtecks in der Ebene können durch Permutationen der Eckpunkte beschrieben werden.

Identische Abbildung: (1) =: e, Drehung um 180°: (1 3)(2 4) =: g_1 , Spiegelung an I: (1 4)(2 3) =: g_2 , Spiegelung an II: (1 2)(3 4) =: g_3 . $G := \{e, g_1, g_2, g_3\}$ ist Permutationsgruppe vom Grad 4. $G \cong$ Symmetriegruppe des Rechtecks genannt die $kleinsche\ Vierergruppe\ (\cong \mathbb{Z}_2 \times \mathbb{Z}_2)$.

1.10 Definition. (G, M) Permutationsgruppe, $a \in M$. Dann ist:

(a) $G_a := \{g \in G \mid a^g = a\}$ Stabilisator von a. Verallgemeinerung:

$$G_{a_1,\dots,a_m} := \bigcap_{i=1}^m G_{a_i}$$

ist punktweise Stabilisator von $\{a_1, ..., a_m\}$.

- (b) $a^G := \{a^g \mid g \in G\}$ Bahn von a (auch 1-Bahn, Orbit), 1-Orb(G, M) := Menge aller 1-Bahnen.
- (c) $B \subseteq M$ invariant (bzgl. G) : $\iff B^G = B$ ($\iff B \subseteq B$).
- (d) G transitiv : $\iff \exists a \in M : a^G = M \iff |1\text{-Orb}(G, M)| = 1 \iff \forall a \in M : a^G = M.$

Bedeutung: Alle Elemente von M haben gleiche "Eigenschaften" in der Struktur, falls G = Aut (Struktur auf M).

1.11 Lemma. Sei $G \leq S_M$, $a \in M$. Es gilt:

- (i) G_a ist Untergruppe von G.
- (ii) $G_{ag} = g^{-1}G_ag$ für jedes $g \in G$.
- (iii) Durch $a \sim b :\iff a^G = b^G$ ist eine $\ddot{A}R$ auf M definiert und 1-Orb $(G,M) = M/\sim \implies$ die Menge 1-Orb (G,M) bildet Partition der Menge M. (Zwei Bahnen sind entweder gleich oder disjunkt, beachte: $b \in a^G \iff a \in b^G \ddot{U}$ bungsaufgabe!)
- (iv) Jede invariante Menge $B \subseteq M$ ist Vereinigung von 1-Bahnen:

$$B=B^G=\bigcup_{b\in B}b^G.$$

Beweis. Übungsaufgabe!

 $^{^2\}mathrm{D.h.}$ Menge aller Permutationen in G für die a ein Fixpunkt ist.

Bemerkung. Ein Repräsentantensystem einer Partition (z.B. 1-Orb (G, M)) heißt auch Transversale.

Wiederholung Algebra:

1.12 Satz von LAGRANGE. Die Ordnung |U| jeder Untergruppe U einer endlichen Gruppe G ist Teiler der Gruppenordnung |G|. Es gilt:

$$|G| = \underbrace{[G:U] \cdot |U|}_{Index\ v.\ U\ in\ G}$$

Beweis. $G/U = \{Ug \mid g \in G\}$ ist Partition der Menge G. Nach Definition ist k := [G : U] = |G/U| = Anzahl der Nebenklassen von <math>U in G. Also $G = Ug_1 \uplus ... \uplus Ug_k$ für beliebige Transversale $g_1, ..., g_k \in G$. Da $|U| = |Ug_i|$ für jedes $i \in \{1, ..., k\}$ folgt Behauptung.

1.13 Lemma. Sei $a \in M$, $G \leq S_M$. Durch $a^G \to G/G_a$, $a^g \mapsto G_a g$ ist eine bijektive Abbildung zwischen Elementen der von a erzeugten Bahn und Nebenklassen des Stabilisators G gegeben. Insbesondere gilt: $|a^G| = [G:G_a] = |G/G_a|$.

Beweis. Kette von Äquivalenzen:

$$a^g = a^{g^i} \iff a = a^{g^i g^{-1}} \iff g^i g^{-1} \in G_a \iff g^i \in G_a g \iff G_a g^i = G_a g.$$

Die Hinrichtungen zeigen, dass die Abbildung wohldefiniert ist, die Rückrichtungen zeigen, dass die Abbildung injektiv ist. Surjektivität klar.

Aus 1.12 und 1.13 folgt:

1.14 Folgerung. Permutationsgruppentheoretische Umformulierung des Satzes von Lagrange: Für $a \in M$, $G \leq S_M$ gilt:

$$|G| = |G_a| \cdot |a^G|.$$

Beweis. $|G| \stackrel{1.12}{=} [G:G_a] \cdot |G_a| \stackrel{1.13}{=} |a^G||G_a|.$

- **1.15 Beispiel.** $G := S_{\underline{4}}$ (d.h. $M = \{1, 2, 3, 4\}$). $1^G = \{1, 2, 3, 4\} \implies |G_1|^{\frac{1.14}{2}} = \frac{|G|}{|1^G|} = \frac{4!}{4} = 6$. Auflistung der Elemente von G_1 : $G_1 = \{(1), (2\ 3), (2\ 4), (3\ 4), (2\ 3\ 4), (2\ 4\ 3)\}$. Iteration führt zu: $|G_{1,2}| = \frac{|G_1|}{|2^{G_1}|} = \frac{6}{3} = 2$. Auflistung: $G_{1,2} = \{(1), (3\ 4)\}$. Ein weiterer Schritt: $|G_{1,2,3}| = \frac{|G_{1,2}|}{|3^{G_{1,2}}|} = \frac{2}{2} = 1$. Auflistung: $G_{1,2,3} = \{(1)\}$.
- **1.16 Definition.** Zwei Permutationsgruppen (G, M), (H, N) heißen *ähnlich*, wenn eine bijektive Abbildung $f: M \to N$ und ein Gruppenisomorphismus $\varphi: G \to H$ existieren, so dass gilt:

$$\forall a \in M \forall g \in G : f(a^g) = f(a)^{\varphi(g)},$$

d.h. $gf = f\varphi(g)$ für jedes $g \in G$. D.h.: für jedes $g \in G$ ist das Diagramm

kommutativ.

Bemerkung: Durch f und G ist H vollständig festgelegt. Für $g \in G$, $y \in M$ sei $a := f^{-1}(y)$. Dann $y^{\varphi(g)} = f(a)^{\varphi(g)} = f(a^g) = f(f^{-1}(y)^g) = y^{f^{-1}gf}$. Also $H = \{\varphi(g) \mid g \in G\} = \{f^{-1}gf \mid g \in G\}$. Beobachtung: Sogar φ ist durch f und G eindeutig bestimmt. Beachte: Ähnlichkeit \Longrightarrow Isomorphie (\Longleftrightarrow gilt i.a. nicht).

- **1.17 Beispiel.** (a) S_M ähnlich zu $S_N \iff |M| = |N|$.
- (b) $(\{e,(1\ 2)\},\{1,2\})$ ist ähnlich zu $(\{e,(\alpha\ \beta)\},\{\alpha,\beta\})$, aber nicht zu $(\{e,(1\ 2)\},\{1,2,3\})$, obwohl $G\cong G'$ (als abstrakte Gruppen).
- **1.18 Definition.** (a) Zwei Permutationen $g_1, g_2 \in S_M$ heißen *ähnlich*, wenn in ihrer Zyklendarstellung gleich viele Zyklen gleicher Länge vorkommen. Z.B.: $g_1 = (1)(2)(3 \ 4 \ 5)(6 \ 7)(8 \ 9)$ und $g_2 = (3)(7)(1 \ 4 \ 9)(2 \ 8)(5 \ 6)$ sind ähnlich.
- (b) Sei $G \leq S_M$. Dann heißt $g_2 \in S_M$ konjugiert zu $g_1 \in S_M$ in G, wenn ein $f \in G$ existiert, sodass $g_2 = f^{-1}g_1f$. (Sprechweise: g_1 und g_2 sind konjugiert in G).
- **1.19 Lemma.** (a) Konjugiertheit und Ähnlichkeit sind ÄR in S_M .
- (b) Aus der Darstellung

$$g = (a_1 \ a_2 \ \cdots)(b_1 \ b_2 \ \cdots)(\cdots) \in S_M$$

erhält man die Zyklendarstellung von $f^{-1}gf$ für $f \in S_M$ wenn man f auf jedes Element in jedem Zyklus anwendet:

$$f^{-1}gf = (a_1^f \ a_2^f \ \cdots)(b_1^f \ b_2^f \ \cdots)(\cdots).$$

- (c) g_1 konjugiert zu g_2 in $G \Longrightarrow g_1$ und g_2 sind ähnlich (\iff gilt i.a. nicht). Aber: g_1 konjugiert zu g_2 in $S_M \iff g_1$ und g_2 sind ähnlich.
- (d) $g_1, g_2 \in S_M$ ähnlich \iff die erzeugten (zyklischen) Uuntergruppen ($\langle g_1 \rangle, M$) und ($\langle g_2 \rangle, M$) sind ähnlich im Sinne von 1.16.

Beweis. Übungsaufgabe!

2 Gruppenwirkungen und Darstellungen

- **2.1 Definition.** Ein (Gruppen-)Homomorphismus $\psi: G \to S_M$ einer (abstrakten) Gruppe G in eine symmetrische Gruppe S_M heißt Permutations darstellung von G (vom Grad |M|).
- ψ und die dazugehörige Gruppenwirkung, vgl. unten, heißen $treu :\iff \psi$ ist injektiv.

Bemerkung: ψ treu \iff Ker $\psi = \{g \in G \mid \psi(g) = e\} = \{e_G\} \implies G \cong \psi(G) \leq S_M$ (Homomorphiesatz, eigentlich $G/\text{Ker }\psi$, aber Ker $\psi = \{e_G\} \implies G/\text{Ker }\psi = G\}$.

2.2 Definition. Sei G Gruppe und M Menge. Eine Abbildung $\varphi: G \times M \to M, (x,g) \mapsto \varphi(x,g) =: xg$ heißt Gruppenwirkung von G auf M, falls gilt:

$$\varphi(x,e_G)$$

- (i) $xe_G = x \ \forall x \in M$,

Sprechweise: G wirkt (operiert) auf M.

Schreibweise: (G, M) Gruppenwirkung.

Bemerkung: Jede Permutationsgruppe $G \leq S_M$ operiert in natürlicher Weise auf M: $\varphi(x,g) := x^g \ (x \in M, g \in G)$.

2.3 Satz. Jeder Gruppenwirkung entspricht in eindeutiger Weise eine Permutationsdarstellung $\psi: G \to S_M$ und umgekehrt. Und zwar in folgender Weise: $x^{\psi(g)} = \varphi(x,g)$. (:= falls φ gegeben, =: falls ψ gegeben.)

Beweis. Übungsaufgabe!

Hinweis:

- Falls φ gegeben, so ist $\psi(g)$ (definiert wie oben) eine Permutation auf M (für jedes $g \in G$), und ψ ist Homomorphismus.
- Falls ψ gegeben, so erfüllt φ (i) und (ii).
- **2.4 Lemma.** (a) Ist G (abstrakte) Gruppe, so ist durch $h^{g^*} := hg$ (Rechtsmultiplikation mit g) für $g \in G$ eine Permutation $g^* \in S_G$ gegeben für $h \in G$.
- (b) $\psi: G \to S_G$ ist Permutationsdarstellung (Homo.), $\psi: g \mapsto g^*$.
- (c) $\varphi: G \times G \to G$, $(h, g) \mapsto hg$ ist zugehörige Gruppenwirkung.
- (d) ψ oben ist treu (und heißt rechtsreguläre Darstellung v. G.
- **2.5 Satz (CAYLEY).** Für beliebige Gruppe G ist $G^* := \{g^* \mid g \in G\} \leq S_G$ zu G isomorphe Permutationsgruppe, (G^*, G) heißt rechtsreguläre Darstellung von G.

Beweis von Lemma 2.4. (a) und (b) folgen wegen 2.3 aus (c). Zu (c):

- (i) $\varphi(h,e) = he = h$,
- (ii) $\varphi(h, gg') = h(gg') = (hg)g' = \varphi(\varphi(h, g), g').$

Noch zu zeigen ist (d): Seien $g_1, g_2 \in G$ mit $g_1^* = g_2^*$. Dann ist $g_1 = e^{g_1^*} = e^{g_2^*} = g_2$.

- **2.6 Bemerkungen.** (a) Ist $g \in G \setminus \{e\}$, dann hat $g^* : M \to M$ keinen Fixpunkt.
- (b) Jedes g* zerfällt in Produkt von Zyklen der Länge ord (g). (Zum Beweis: Die Zyklen von g* sind alle von der Form $(h \ hg \ hg^2 \cdots hg^{n-1})$ für $h \in G$ und $n := \operatorname{ord}(g)$.)
- (c) G^* hat Grad |G|.
- (d) G^* ist transitiv (d.h. es gibt nur eine Bahn, $G = e^{G^*}$).
- (e) Die Eigenschaften (a)-(d) charakterisieren die Regularität von G* (vgl. 5.4).
- **2.7 Beispiele.** (1) Wirkung durch Konjugation: $\varphi: G \times G \to G$, $(h,g) \mapsto g^{-1}hg$, $\psi: G \to S_G, g \mapsto \psi(g)$ mit $h^{\psi(g)} := g^{-1}hg$.

Menge aller Untergruppen von G

- (2) Wirkung auf Untergruppen: $U \leq G$, $\varphi : \operatorname{Sub}(G) \times G \to \operatorname{Sub}(G)$, $(U,g) \mapsto g^{-1}Ug$.
- (3) Wirkung auf Rechtsnebenklassen: $G/U = \{Uh \mid h \in G\}$ Faktorgruppe einer Untergruppe $U \leq G$, $\varphi: G/U \times G \to G/U$, $(Uh, g) \mapsto Uhg$.
- **2.8 Satz.** Wirkungen von Permutationsgruppen (G, M) auf anderen Mengen:
- (a) Induzierte Wirkung von G auf $\mathfrak{P}(M): \varphi: \mathfrak{P}(M) \times G \to \mathfrak{P}(M), (B,g) \mapsto B^g = \{b^g \mid b \in B\}.$ Bezeichnung: $(G,\mathfrak{P}(M)).$
- (b) (Einschränkung von (a)) Wirkung von G auf $\mathfrak{P}_n(M) := Menge$ aller n-elementigen Teilmengen von $M \colon \varphi \colon \mathfrak{P}_n(M) \times G \to G, \ (B,g) \mapsto B^g.$ Bezeichnung: $(G^{\{n\}}, \mathfrak{P}_n(M)).$
- (b) Induzierte Wirkung von G auf M^n : $\varphi: M^n \times G \to M^n$; $((a_1,...,a_n,g) \mapsto (a_1^g,...,a_n^g)$. Bezeichnung: $(G^{[n]},M^n)$.

3 Erzeugendensysteme & Sims-Ketten

Problem: Beschreibung von Permutationsgruppen. Aufzählung aller Elemente ist selten möglich bzw. nötig. (S_{100} hat 100! Elemente!)

Ausweg:

- Beschreibung als Automorphismengruppe (s. Kapitel 4,5)
- oder durch Erzeugendensysteme

Wiederholung aus Algebra

3.1 Definition. $U \subseteq G$ heißt Erzeugendensystem einer Gruppe $G :\iff$ jedes $g \in G$ ist als Produkt $g = u_1 \cdots u_m$ mit $u_i \in U$ oder u_i^{-1} $(i \in \{1, ..., m\}, m \in \mathbb{N})$ darstellbar. Bezeichnung: $G = \langle U \rangle_G$. Für große G kennt man manchmal nur ein Erzeugendensystem U.

Probleme:

- (P1) Entscheide $g \in \langle U \rangle$ für $g \in S_{\underline{n}}$ und $U \subseteq S_{\underline{n}}$.
- (P2) Beschreibe Bahnen von $\langle U \rangle$, also $a^{\langle U \rangle}$ für gegebenes $a \in \underline{n}$.
- (P3) Beschreibung der Untergruppen von $\langle U \rangle$.

Methode (Charles Sims)

Für "große" Gruppen: Man benutzt Mengen T_i (i=1,...,r), sodass $G=T_r\cdot T_{r-1}\cdot ...\cdot T_1$ (Komplexprodukt) und die Darstellung $g=t_r\cdot t_{r-1}\cdot ...\cdot t_1$ (ist eindeutig!) für jedes $g\in G$ (wichtige Anwendung in der Kodierungstheorie!). "Speicheraufwand": $\sum_{i=1}^r |T_i|$ (im Vergleich zu $|G|=\prod_{i=1}^r |T_i|$). Beispiel: $G=S_n \implies |G|=n!$. Aber $\sum_{i=1}^r |T_i| \le n(n+1)/2$ ist möglich. Jede Permutation benötigt Speicheraufwand n, also wächst Speicherbedarf insgesamt wie n^3 .

3.2 Definition. Die Sims-Kette einer Permutation $G \leq S_M$ mit $M = \{a_1, ..., a_n\}$: Für punktweise Stabilisatoren (vgl. 1.10)

$$U_1 = G_{a_1}, U_2 := G_{a_1,a_2}, ..., U_{n-1} = G_{a_1,...,a_{n-1}} = G_{a_1,...,a_n} = \{e\}$$

gilt $\{e\} = U_{n-1} \leq U_{n-2} \leq ... \leq U_2 \leq U_1 := G$. Sei $r := \min\{i \mid U_i = \{e\}\}$ (hängt von Reihenfolge der Elemente a_i ab). Dann heißt $(a_1, ..., a_r)$ Sims-Basis von G und $\{e\} = U_r \nleq U_{r-1} \leq ... \leq U_1 \leq U_0 = G$ heißt die Sims-Kette von G (zur Basis $(a_1, ..., a_r)$) der Länge r.

Für Nebenklassenzerlegung $U_{i-1}/U_i = U_i g_{i_1} \uplus U_i g_{i_2} \uplus ... \uplus U_i g_{i_{n_i}}$ wird Repräsentantensystem (Transversale) $T_i := \{g_{i_1}, ..., g_{i_{n_i}}\} \subseteq U_{i-1}$ gewählt (i = 1, ..., r). (Meist $g_{i_1} = e$). Beachte: $U_{r-1}/U_r \cong U_{r-1} \Longrightarrow T_r = U_{r-1}$.

Bemerkung: Bei Umnummerierung der Elemente von M entstehen möglicherweise kürzere Basen!

- **3.3 Satz.** Seien $G, T_1, ..., T_r$ wie in 3.2. Dann gilt:
- (a) Jede Permutation $g \in G$ lässt sich eindeutig in der Form

$$g = h_r h_{r-1} \cdots h_1$$

mit $h_i \in T_i$ ($i \in \{1,...,r\}$) darstellen. Insbesondere gilt $G = T_1T_{r-1} \cdots T_1$ und $|G| = \prod_{i=1}^r |T_i|$.

(b) Jede Permutation $g \in G$ ist eindeutig durch die Bilder der Basis festgelegt, d.h. durch $(a_1^g, ..., a_r^g)$

Bemerkung. (a) $\implies T_1 \cup ... \cup T_r$ ist ein (spezielles) Erzeugendensystem für G.

Beweis. Zu (a): Sei $g \in G$

$$\xrightarrow[\text{von } G/U_1]{\text{Transversale}} \quad \exists ! h_1 \in T_1 : g \in U_1 h_1 \quad \Longrightarrow g h_1^{-1} \in U_1$$

$$\xrightarrow[\text{von }]{T_2 \text{ Transversale}} \quad \exists ! h_2 \in T_2 : gh_1^{-1} \in U_2h_2 \quad \Longrightarrow \quad gh_1^{-1}h_2^{-1} \in U_2$$

:

$$\implies gh_1^{-1}h_2^{-1}...h_r^{-1} \in U_r = \{e\}.$$

 \Rightarrow $g=h_rh_{r-1}\cdots h_2h_1$ (Existenz der Darstellung). Eindeutigkeit: Annahme: $g=h_r\cdots h_1=h'_r\cdots h'_1$ mit $h_i,h'_i\in T_i$ $(i\in\{1,...,r\})$. Es gilt $\underbrace{h_r\cdots h_2}_{\in U_1}h_1=\underbrace{h'_r\cdots h'_2}_{\in U_1}h'_1$ \Rightarrow $h_1\in U_1h'_1$

$$\xrightarrow{T_1 \text{ Transversale}}_{\text{von } G/U_1} h_1 = h'_1 \implies \underbrace{h_r \cdots h_2}_{\in U_2} = \underbrace{h'_r \cdots h'_2}_{\in U_2} \implies h_2 = h'_2$$

$$\vdots$$

 $\implies h_i = h'_i \text{ für jedes } i \in \{1, ..., r\}.$

3.4 Beispiel. $G = S_{\underline{4}}$ mit $M = \{1, 2, 3, 4\}$. Es gilt $G_1 \cong S_{\underline{3}}, G_{1,2} \cong S_{\underline{2}}, G_{1,2,3} = \{e\}$. $T_1 = \{e, g_1, g_1^2, g_1^3\}$ für $g_1 := (1\ 2\ 3\ 4), T_2 = \{e, g_2, g_2^2\}$ für $g_2 := (2\ 3\ 4), T_3 = \{e, g_3\}$ für $g_3 := (3\ 4) \stackrel{3.3}{\Longrightarrow} \text{ Jedes } g \in S_{\underline{4}} \text{ ist eindeutig (!) in der Form } g = g_3^{\alpha_3} \cdot g_2^{\alpha_2} \cdot g_1^{\alpha_1} \text{ mit } \alpha_1 \in \{0, 1, 2, 3\}, \ \alpha_2 \in \{0, 1, 2\}, \ \alpha_3 \in \{0, 1\} \text{ darstellbar.}$

3.5 Folgerung (Testalgorithmus). Für G seien $T_1, ..., T_r$ wie in 3.2 gegeben. Sei $g \in S_M$. Test für $g \in G$:

Problem: Wie findet man die Repräsentantensysteme $T_1, ..., T_r$ für die Untergruppen falls nur Erzeugendensystem U für G gegeben ist? (vgl Problem 3.1 (P3)) Antwort gibt ein Resultat von SCHREIER:

3.6 Satz (SCHRIER). Sei G Gruppe und $U = \{g_1, ..., g_m\}$ endliches Erzeugendensystem für G. Sei $V \leq G$ Untergruppe mit Nebenklassenzerlegung $G = Vh_1 \uplus Vh_2 \uplus ... \uplus Vh_s$ (oBdA $h_1 = e$), $T := \{h_1, ..., h_s\}$ Transversale für G/V. Für $g \in G$ sei $\varphi(g) \in T$ der Repräsentant der Nebenklasse Vg (d.h. $g \in V\varphi(g)$, $\varphi : G \to T$ Repräsentantenabb.). Dann ist

$$X := \{h_i g_j^k \varphi(h_i g_j^k)^{-1} \mid i \in \{1, ..., s\}, j \in \{1, ..., m\}, \underbrace{k \in \{-1, 1\}}_{entfällt \ falls} \}$$

$$ein \ Erzeugendensystem \ f\"{u}r \ die \ Gruppe \ V.$$

Beweis. (1) $X \subseteq V$, denn $h_i g_j^k \in V \varphi(h_i g_j^k) \implies h_j g_j^k \varphi(h_i g_j^k)^{-1} \in V$ für $j \in \{1, ..., m\}, i \in \{1, ..., m\}, k \in \{-1, 1\}.$

(2) Bemerkung: Ist G endlich, dann gilt $\forall g \in G: g^{-1} = g^{n-1}$ mit $n := \operatorname{ord}(g)$. Sei

 $g \in V$. Dann gibt es Darstellung $g = g_{i_1}^{k_1} \cdots g_{i_t}^{k_t}$ mit $k_1, ..., k_t \in \{-1, 1\}$. Es gilt:

$$g = h_1 g_{i_1}^{k_1} \cdots g_{i_t}^{k_t} = \underbrace{h_1 g_{i_1}^{k_1} \varphi(h_1 g_{i_1}^{k_1})^{-1} \varphi(h_1 g_{i_1}^{k_1})}_{\in X} g_{i_2}^{k_2} \cdots g_{i_t}^{k_t}$$

$$= \underbrace{h_{j_1} g_{i_2}^{k_2} \varphi(h_{j_1} g_{i_2}^{k_2})^{-1} \varphi(h_{j_1} g_{i_2}^{k_2})}_{\in X} g_{j_3}^{k_3} \cdots g_{j_t}^{k_t}$$

$$\vdots$$

$$= \underbrace{\varphi(h_{j_{t-1}} g_{i_t}^{k_t})}_{\in X}$$

 $\implies \varphi(h_{j_{t-1}}g_{i_t}^{k_t}) = e \implies g \text{ ist Produkt von Elementen aus } X.$

3.7 Satz (Erzeugendensysteme der Gruppe S_n). Folgende Mengen erzeugen S_n :

- (a) $\{(i \ j) \mid i, j \in \underline{n}\},\$
- (b) $\{(1\ 2), (2\ 3), (3\ 4), ..., (n-1\ n)\},\$
- (c) $\{(1\ 2), (1\ 3), (1\ 4), ..., (1\ n)\},\$
- (d) $\{(1\ 2), (1\ 2\ 3\ \cdots\ n)\}.$

Beweis. Zu (a): Für Zyklen gilt $(a_1 \cdots a_k) = (a_1 \ a_2)(a_1 \ a_3) \cdots (a_1 \ a_k)$ (ohne Beweis). Jede Permutation ist Produkt von Zyklen.

Zu (b): Sei i < j. Dann gilt: $(i \ j) = (i \ i+1)(i+1 \ i+2) \cdots (j-1 \ j)(j-2 \ j-1)(j-3 \ j-2) \cdots (i+1 \ i+2)(i \ i+1)$.

Zu (c): $(i \ j) = (1 \ i)(1 \ j)(1 \ i)$. Weiter mit (a).

Zu (d): $g = (1\ 2), h = (1\ 2\ 3\ \cdots\ n), (2\ 3) = h^{-1}gh, (3\ 4) = h^{-1}(2\ 3)h,...,(n-1\ n) = h^{-1}(n-2\ n-1)h$. Weiter mit (b).

Bemerkung: Zerlegung in Transpositionen ist nicht eindeutig (im Gegensatz zu Sims-Ketten-Zerlegung 3.3).

- **3.9 Definition.** Sei $g \in S_{\underline{n}}$. Eine *Inversion* von g ist ein Paar $(i, j) \in \underline{n} \times \underline{n}$ mit i < j und $i^g > j^g$. Beispiel:
- Die Permutation $(1\ 2)(3\ 4)$ hat die Inversionen (1,2), (3,4).
- Die Permutation $(1\ 3)(2)$ hat die Inversionen (1,3), (1,2), (2,3).

Definiere Signum von g:

 $\operatorname{sgn}\left(g\right) := \left\{ \begin{array}{ll} 1 & \text{falls die Anzahl der Inversionen von } g \text{ gerade ist,} \\ -1 & \text{falls die Anzahl der Inversionen von } g \text{ ungerade ist.} \end{array} \right.$

g hei§t $gerade\ Permutation$, falls $\mathrm{sgn}\,(g)=1$ und $ungerade\ Permutation$, falls $\mathrm{sgn}\,(g)=-1$.

Bemerkungen. Für $g \in S_n$ gilt:

- $\begin{array}{l} \operatorname{sgn}\left(g\right) = \prod_{i < j} \frac{j^g i^g}{j i} = \prod_{i < j} \frac{j^{gh} i^{gh}}{j^h i^h} \text{ für jedes } h \in S_{\underline{n}}.\\ \operatorname{sgn}\left(gh\right) = \operatorname{sgn}\left(g\right) \operatorname{sgn}\left(h\right) \forall g, h \in G. \text{ Begründung:} \end{array}$
- (2)

$$\operatorname{sgn}\left(g\right)\operatorname{sgn}\left(h\right) = \prod_{i < j} \frac{j^g - i^g}{j - i} \cdot \prod_{i < j} \frac{j^h - i^h}{j - i} \stackrel{\text{(1)}}{=} \prod_{i < j} \frac{j^{gh} - i^{gh}}{j^h - i^h} \cdot \frac{j^h - i^h}{j - i} = \operatorname{sgn}\left(gh\right).$$

- $\operatorname{sgn}(e) = 1$, $\operatorname{sgn}(g^{-1}) = \operatorname{sgn}(g)$. Begründung: $1 = \operatorname{sgn}(e) \stackrel{(2)}{=} \operatorname{sgn}(g)\operatorname{sgn}(g^{-1})$.
- sgn : $S_n \rightarrow \{-1,1\}$ ist ein Homomorphismus auf die multiplikative Gruppe $\{-1,1\}.$
- (5)Die geraden Permutationen bilden Untergruppe von S_n . Diese Bezeichnen wir mit A_n , die alternierende Gruppe.
- $g \in S_n$ gerade (ungerade) \iff für jede Darstellung von g als Produkt von Trans-(6)positionen $g = t_1 t_2 \cdots t_q$ ist g gerade (ungerade). Begründung: $g = t_1 t_2 \cdots t_q \implies$ $\operatorname{sgn}(g) = \operatorname{sgn}(t_1) \cdots \operatorname{sgn}(t_q) = (-1)^q.$
- **3.10 Satz.** Die alternierende Gruppe $A_{\underline{n}} \leq S_{\underline{n}}$ besteht aus allen Permutationen auf \underline{n} , die sich als Produkt einer geraden Anzahl von Transpositionen darstellen lassen. $A_{\underline{n}}$ ist Normalteiler von S_n und enthält n!/2 Elemente.

Beweis. Erster Teil gilt wegen 3.9.(b): sgn : $S_{\underline{n}} \to \{-1,1\}$ ist Homomorphismus \implies $A_{\underline{n}}=\{g\in S_{\underline{n}}\mid {\rm sgn}\,(g)=1\}={\rm Ker}\,({\rm sgn}\,)$ ist ein Normalteiler von $S_{\underline{n}}.$ Homomorphiesatz: $S_{\underline{n}}/A_{\underline{n}}\cong\{-1,1\}$, da sgn surjektiv ist. Also $2=|S_{\underline{n}}/A_{\underline{n}}|\implies |A_{\underline{n}}|=|S_{\underline{n}}|/2=n!/2$.

3.11 Beispiel. $G = S_{\underline{n}}, V = A_{\underline{n}}$. Dann $S_{\underline{n}} = \langle g_1, g_2 \rangle$ mit $g_1 := (1\ 2), g_2 := (1\ 2\ \cdots\ n)$ (vgl. 3.7.(d)). $S_{\underline{n}} = Vh_1 \uplus Vh_2 = A_{\underline{n}} \underbrace{e}_{=:h_1} \underbrace{\forall A_{\underline{n}}}_{=:h_2=g_1} \underbrace{(1\ 2)}_{=:h_2=g_1}$. Satz 3.6: $A_{\underline{n}}$ wird erzeugt von:

- $h_1g_1\varphi(h_1g_1)^{-1} = e(1\ 2)(1\ 2) = e.$
- $h_1 g_2 \varphi(h_1 g_2)^{-1} = \begin{cases} g_2(1 \ 2) & \text{falls } n \text{ ungerade,} \\ g_2 e & \text{falls } n \text{ gerade.} \end{cases}$ $h_2 g_1 \varphi(h_2 g_1)^{-1} = (1 \ 2)(1 \ 2)e = e.$
- $h_2 g_2 \varphi(h_2 g_2)^{-1} = \begin{cases} (1 \ 2)(1 \ 2 \ \cdots \ n)(1 \ 2) = (2 \ 1 \ 3 \ 4 \ \cdots \ n) & \text{falls } n \text{ ungerade,} \\ (1 \ 2)(1 \ 2 \ \cdots \ n)e = (1 \ 3 \ 4 \ \cdots \ n) & \text{falls } n \text{ gerade.} \end{cases}$
- \implies Erzeugendensystem für A_n :

4 Automorphismen, invariante Relationen und die Sätze von KRASNER

Wiederholung. 2.8 (c): $g \in S_M$ induziert $\tilde{g} \in S_{M^n}$ durch

$$(a_1,...,a_n)^{\tilde{g}} := (a_1^g,...,a_n^g).$$

Bezeichnung der Wirkung (\tilde{G}, M^n) auch mit (G, M^n) . 2.8 (a): Wirkung von G auf $\mathfrak{P}(M^n)$ für $G \leq S_M$:

$$\Phi^{\tilde{g}} := \{ \underline{a}^{\tilde{g}} \mid \underline{a} \in \Phi \}$$

für $\Phi \subset M^n$ (vgl. 1.7).

- **4.1 Definition.** $g \in S_M$, $\Phi \subset M^n$ n-stellige Relation.
- $g \text{ bewahrt } \Phi \ (\Phi \text{ invariant unter } g, \text{ Bezeichnung: } g \triangleright \Phi) : \iff \Phi^g \subset \Phi \overset{M \text{ endl.}}{\iff} \Phi^g = \Phi \iff g \text{ Automorphismus v. } \Phi.$

D.h. $g \triangleright \Phi \iff \forall a_1, ..., a_n \in M : (a_1, ..., a_n) \in \Phi \iff (a_1^g, ..., a_n^g) \in \Phi.$

- Bezeichnung:

$$R_M := \{ \Phi \mid \Phi \subset M^n, \ n = 1, 2, ... \} = \bigcup_{n=1}^{\infty} \mathfrak{P}(M^n)$$

ist Menge aller endlich-stelligen Relationen auf M. Setze

$$\operatorname{Aut} \Phi := \operatorname{Aut}_M \Phi := \{ g \in S_M \mid \Phi^g = \Phi \}$$

für $\Phi \in R_M$.

Für $Q \subseteq R_M$:

$$\operatorname{Aut} Q := \bigcap_{\Phi \in Q} \operatorname{Aut} \Phi$$

 $Automorphismen\ von\ Q.$

- Für $G \subseteq S_M$:

$$n\text{-Inv}(G, M) := n\text{-Inv}_M G := \{\Phi \subset M^n \mid \forall g \in G : \Phi^g = \Phi\},$$

$$\operatorname{Inv}_M(G) := \bigcup_{n=1}^{\infty} n\operatorname{-Inv} G$$

Invarianten von G.

Einschub:

- (1) Sei X Menge. $H: \mathfrak{P}(X) \to \mathfrak{P}(X)$ heißt $H\"{u}llenoperator} :\Longleftrightarrow$
 - (i) H ist monoton, d.h. $H(A) \subset H(B)$ für alle $A \subset B \subset X$,
 - (ii) H ist extensiv, d.h. $A \subset H(A) \forall A \subset X$

$4\,\,$ AUTOMORPHISMEN, INVARIANTE RELATIONEN UND DIE SÄTZE VON KRASNER

- (iii) H ist idempotent, d.h. $H(H(A)) = H(A) \forall A \subset X$.
- (2) Sei X Menge. $\mathcal{H} \subset \mathfrak{P}(X)$ ist $H\ddot{u}llensystem : \iff$
 - (i) $\forall \emptyset \neq \mathcal{H}_0 \subset \mathcal{H} : \bigcap \mathcal{H}_0 \in \mathcal{H}$,
 - (ii) $X \in \mathcal{H}$ (mit Konvention $X = \bigcap \emptyset$ kann man (ii) streichen).
- Ist \mathcal{H} Hüllensystem auf X, dann ist $H: \mathfrak{P}(X) \to \mathfrak{P}(X)$ mit

$$H(A) := \bigcap \{ H \in \mathcal{H} \mid A \subseteq H \}$$

Hüllenoperator auf X.

- Ist H Hüllenoperator auf X, dann ist

$$\mathcal{H} := \{ H(A) \mid A \subseteq X \}$$

Hüllensystem auf X.

(3) Ist $R \subseteq X \times Y$ Relation zwischen Mengen X und Y, so heißt das Paar (φ, ψ) eine (die von R erzeugte) Galoisverbindung:

$$\varphi: \mathfrak{P}(X) \to \mathfrak{P}(Y), A \mapsto \{y \in Y \mid \forall x \in A : (x,y) \in R\},\$$

$$\psi: \mathfrak{P}(Y) \to \mathfrak{P}(X), B \mapsto \{x \in X \mid \forall y \in B : (x,y) \in R\}.$$

Jede Relation induziert eine Galoisverbindung, also auch

$$\{(g,\Phi)\in S_M\times R_M\mid \Phi^g=\Phi\}\subseteq S_M\times R_M.$$

4.2 Fakt. Durch Aut und Inv ist eine Galoisverbindung gegeben:

$$\varphi = \operatorname{Aut} : \mathfrak{P}(R_M) \to \mathfrak{P}(S_M), Q \mapsto \operatorname{Aut}(Q),$$

 $\psi = \operatorname{Inv} : \mathfrak{P}(S_M) \to \mathfrak{P}(R_M), G \mapsto \operatorname{Inv}(G).$

Insbesondere gelten die folgenden Eigenschaften: (für alle $G, G' \leq S_M, Q, Q' \subset R_M$):

- (I) $G \subseteq G' \implies \operatorname{Inv} G \supseteq \operatorname{Inv} G'$.
- (II) $Q \subseteq Q' \implies \operatorname{Aut} Q \supseteq \operatorname{Aut} Q'$.
- (III) $G \subseteq \operatorname{Aut} \operatorname{Inv} G$.
- (IV) $Q \subseteq \text{Inv Aut } Q$.
- (V) Aut Inv Aut Q = Aut Q.
- (VI) Inv Aut Inv G = Inv G.
- (VII) $G \mapsto \operatorname{Aut} \operatorname{Inv} G$ ist Hüllenoperator auf S_M .
- (VIII) $Q \mapsto \text{Inv Aut } Q \text{ ist Hüllenoperator auf } R_M.$
- (IX) $G \subseteq \operatorname{Aut} Q \iff \operatorname{Inv} G \supseteq Q$.
- (X) Aut und Inv induzieren Bijektionen zwischen den Mengen der Galoishüllen:

$$\{G \subseteq S_M \mid \operatorname{Aut}\operatorname{Inv} G\}$$

$$\underbrace{\operatorname{Aut}}_{\operatorname{Inv}} \{Q \subseteq R_M \mid \operatorname{Inv}\operatorname{Aut} Q\}$$

(Es gilt: "Was links groß ist, wird rechts klein und umgekehrt.")

Beweis. Übung!

4.3 Definition. Eine Relation der Form

$$(a_1, ..., a_n)^G = \{(a_1, ..., a_n)^g \mid g \in G\}$$

heißt n-Bahn (n-Orbit) von $G \leq S_M$. Bezeichnung: n-Orb(G, M) := Menge aller n-Bahnen von $G = \{a^G \mid a \in M^n\}$.

Bemerkung. Für $\Phi \subseteq M^n$:

$$\begin{split} \Phi \in n\text{-}\mathrm{Orb}\,(G,M) &\iff \Phi \in 1\text{-}\mathrm{Orb}\,(\tilde{G},M^n), \\ \Phi \in n\text{-}\mathrm{Inv}\,(G,M) &\iff \Phi \text{ ist invariante Menge von }(\tilde{G},M^n), \\ & \text{vgl. } 1.10c. \end{split}$$

4.4 Satz. Sei $G \leq S_M$. Dann gilt:

- (a) Jede n-Bahn ist invariante Relation, d.h. n-Orb $(G, M) \subseteq n$ -Inv (G, M).
- (b) Jede n-stellige invariante Relation von (G, M) ist (disjunkte) Vereinigung von n-Bahnen von (G, M).

(c)

$$|n\text{-Inv}(G, M)| = 2^{|n\text{-Orb}(G, M)|}.$$

Beweis. Zu (a): Sei $\mathbf{a} \in M^n$. Z.z.: \mathbf{a}^G ist invariant für jedes $g \in G$. Offenbar: $\left(\mathbf{a}^G\right)^g = \mathbf{a}^{Gg} = \mathbf{a}^G$ für alle $g \in G$.

Zu (b): Folgt aus 1.11(iv) und Bemerkung zu 4.3.

Zu (c): Folgt aus (b). (Hinweis: Nach (b) ist $f : \mathfrak{P}(n\text{-}\mathrm{Orb}\,(G,M)) \to n\text{-}\mathrm{Inv}\,(G,M), B \mapsto \bigcup B$ bijektiv).

Folgerung aus 1.4 (Satz von LAGRANGE für Permutationsgruppen):

4.5 Lemma. Für $\Phi \in n\text{-Orb}(G, M)$ und $(a_1, ..., a_n) \in \Phi$ gilt:

$$|\Phi| = [G: G_{a_1,...,a_n}].$$

Beweis.
$$\Phi = (a_1, ..., a_n)^{\tilde{G}} = \boldsymbol{a}^{\tilde{G}}, \ \tilde{G}_{\boldsymbol{a}} = G_{a_1, ..., a_n} \text{ für Wirkung } (\tilde{G}, M^n). \ 1.14 \implies |G| = |\tilde{G}| = |\tilde{G}_{\boldsymbol{a}}| \cdot |\boldsymbol{a}^{\tilde{G}}| \implies \text{Behauptung.}$$

Galoisverbindung Aut-Inv (vgl. 4.2). Was sind die Galois-Hüllen?

Probleme:

$4\,\,$ AUTOMORPHISMEN, INVARIANTE RELATIONEN UND DIE SÄTZE VON KRASNER

- Welche (Permutations-)Gruppen sind Automorphismengruppen von geeigneten invarianten Relationen? (Z.B. Graphen)
- Welche Relationenmengen sind die Invariantenmengen für geeignete Gruppe $G \leq S_M$?

Antwort: Sätze von Marc KRASNER (hier nur für endliche Grundmenge M). Vorbemerkung:

4.6 Satz. Sei $Q \subseteq R_M$. Dann ist Aut Q eine Gruppe (Untergruppe von S_M).

Beweis. Übung!

- **4.7 Theorem (1. Satz von KRASNER).** $M = \{a_1, ..., a_n\}$ endliche (!) Menge. Dann:
- (a) Jede Permutationsgruppe $G \leq S_M$ ist Automorphismengruppe einer geeigneten Menge von Relationen. Es gilt:

$$G = \operatorname{Aut} \operatorname{Inv} G = \operatorname{Aut} \operatorname{Orb} G = \operatorname{Aut} m\operatorname{-Orb} G = \operatorname{Aut} \boldsymbol{a}^G$$

 $f\ddot{u}r\ a := \{a_1, ..., a_m\}.$

(b) Für Teilmenge $G \subseteq S_M$ gilt

$$\frac{\langle G \rangle_{S_M}}{\text{interne}} = \underbrace{\text{Aut Inv } G}_{\text{externe}}$$
Beschreibung der von G
erzeugten Untergruppe

Beweis. Zu (a): Wir zeigen zunächst: Aut $\Phi \subset G$ für $\Phi := \mathbf{a}^G$ (die von $\mathbf{a} = (a_1, ..., a_n)$) erzeugte m-Bahn). Sei $f \in \text{Aut }\Phi$. Dann $(a_1, ..., a_m)^f \in \Phi = \mathbf{a}^G$,

ich wirke auf jedem Element
$$\longrightarrow (a_1^f, ..., a_m^f)$$

also $\exists g \in G : (a_1,...,a_m)^f = (a_1,...,a_m)^g$, d.h. $f = g \in G$. Das heißt Aut $\Phi \subset G$. Rest:

$$G \overset{4.2 \text{ (III)}}{\subseteq} \operatorname{Aut} \operatorname{Inv} G \overset{4.2 \text{ (II)}}{\subseteq} \operatorname{Aut} \operatorname{Orb} G$$
$$\overset{4.2 \text{ (II)}}{\subseteq} \operatorname{Aut} m\text{-}\operatorname{Orb} G \overset{4.2 \text{ (II)}}{\subseteq} \operatorname{Aut} \Phi \subseteq G.$$

Damit folgen alle Gleichungen in (a).

Zu (b): $G \subseteq \operatorname{Aut \, Inv} G$ (vgl. 4.2 (III)) \Longrightarrow $\langle G \rangle \subseteq \langle \operatorname{Aut \, Inv} G \rangle \stackrel{4.6}{=} \operatorname{Aut \, Inv} G \stackrel{4.2 \text{ (V)}}{\subseteq} \operatorname{Aut \, Inv} G \stackrel{(a)}{=} \langle G \rangle$.

20

Erinnerung: Prädikatenkalkül erster Stufe

Sei X Variablenmenge, $R_1,...,R_n$ Prädikate, wobei R_i r_i -stellig ist mit $r_i \geq 1$ (i = 1,...,n). Wir definieren die Menge $\mathcal{F} = \mathcal{F}(X,R_1,...,R_n)$ der Formeln des $Pr\ddot{a}dikatenkalk\ddot{u}ls$ erster Stufe über X und $R_1,...,R_n$ als die kleinste Menge \mathcal{F} mit folgenden Eigenschaften:

- Für je zwei $x, y \in X$ ist $x = y \in \mathcal{F}, \ FV(x = y) := \{x, y\}$
- Für jedes $i \in \{1,...,n\}$ und $x_1,...,x_n \in X$ ist

$$R_i(x_1,...,x_n) \in \mathcal{F}, \ FV(R_i(x_1,...,x_n)) := \{x_1,...,x_n\}.$$

- Für $\varphi_1, \varphi_2 \in \mathcal{F}$ ist $\varphi_1 \wedge \varphi_2 \in \mathcal{F}$, $\varphi_1 \vee \varphi_2 \in \mathcal{F}$, $\neg \varphi_1 \in \mathcal{F}$, wobei $FV(\varphi_1 \wedge \varphi_2) :=$ $FV(\varphi_1 \vee \varphi_2) := FV(\varphi_1) \cap FV(\varphi_2)$ und $FV(\neg \varphi_1) := FV(\varphi_1)$.
- Für jedes $\varphi \in \mathcal{F}$ und $x \in FV(\varphi)$ ist $\forall x, \varphi \in \mathcal{F}, \exists x, \varphi \in \mathcal{F}, \text{ wobei } FV(\forall x, \varphi) :=$ $FV(\exists x, \varphi) := FV(\varphi) \setminus \{x\}.$
- 4.8 Definition (Operationen auf Relationen). Jede Formel φ des Prädikatenkalküls 1. Stufe mit Relationensymbolen (Prädikaten) $R_1,...,R_q$ (R_i sei r_i -stellig, i=1,...,q) und freien Variablen $x_1, ..., x_n$ definiert eine q-stellige Operation:

$$F_{\omega}: \mathfrak{P}\left(M^{r_1}\right) \times ... \times \mathfrak{P}\left(M^{r_q}\right) \to \mathfrak{P}\left(M^n\right)$$

(genannt logische Operation), die q Relationen $\Phi_1 \subseteq M^{r_1}, ..., \Phi_q \subseteq M^{r_q}$ eine n-stellige Relation $F_{\varphi}(\Phi_1,...,\Phi_q)$ zuordnet:

$$\Phi_q)$$
 zuordnet: es gilt
$$F_\varphi(\Phi_1,...,\Phi_q):=\{(a_1,...,a_n)\in M^n\mid \ \models \varphi(\Phi_1,...,\Phi_q,a_1,...,a_n)\}.$$

4.9 Beispiele logischer Operationen. (i) $\varphi := \exists z : R_1(x,z) \land R_2(z,y),$

$$F_{\varphi}(\Phi_1, \Phi_2) = \{(x, y) \in M^2 \mid \exists z \in M : (x, z) \in \Phi_1 \land (z, y) \in \Phi_2\}$$

=: $\Phi_1 \circ \Phi_2$ (Relation en produkt).

- (ii) $\varphi_1(R_1, R_2; x, y) :\equiv R_1(x, y) \wedge R_2(x, y), F_{\varphi_1} = \Phi_1 \cap \Phi_2.$
- (iii) $\varphi(R_1; x_1, ..., x_n) :\equiv \neg R_1(x_1, ..., x_n),$

$$F_{\varphi}(\Phi) = \{(a_1, ..., a_n) \in M^n \mid \neg((a_1, ..., a_n) \in \Phi)\} = M^n \setminus \Phi.$$

- $\begin{array}{ll} \text{(iv)} & \varphi(x_1,...,x_4) :\equiv x_1 = x_2 \vee x_3 = x_4, \, F_\varphi = \{(a_1,a_2,a_3,a_4) \in M^4 \mid a_1 = a_2 \vee a_3 = a_4\}. \\ \text{(v)} & \varphi(x_1,x_2) :\equiv x_1 = x_2, \, F_\varphi = \{(a_1,a_2) \in M^2 \mid a_1 = a_2\} =: \triangle_M \,\, (\textit{Diagonal relation}). \end{array}$
- (vi) $\varphi(R_1; x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) :\equiv \exists x_i : R_1(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n),$

$$F_{\varphi}(\Phi) = \{(a_1, ..., a_{i-1}, a_{i+1}, ..., a_n) \in M^{n-1} \mid \exists a_i \in M : (a_1, ..., a_{i-1}, a_i, a_{i+1}, ..., a_n) \in \Phi\}$$
$$= \operatorname{pr}_{n \setminus \{i\}}(\Phi)$$

 $(\operatorname{pr}_K:M^n\to M^{|K|} \text{ für } K\subseteq\underline{n}, \text{ d.h. Projektion von }\Phi\subseteq M^n \text{ auf die von }i$ verschiedene Koordinaten).

4.10 Definition (Krasner-Algebren). Für $Q \subseteq R_M$ sei

$$[Q] := \{ F_{\varphi}(\Phi_1, ..., \Phi_q) \mid n \in \mathbb{N} \setminus \{0\}, \ q \in \mathbb{N}, \ \Phi_1, ..., \Phi_q \in Q, \ \varphi \text{ Formel}$$
 wie in 4.8 über q Prädikaten und n freien Variablen $\}$

der Abschluss gegen logische Operationen.

Bemerkung 1. Die Abbildung $\mathfrak{P}(R_M) \to \mathfrak{P}(R_M), Q \mapsto [Q]$ ist ein Hüllenoperator.

Bemerkung 2. Die gegen logische Operationen abgeschlossenen Mengen $Q \subset R_M$ (d.h. [Q] = Q) heißen auch *Krasner-Algebren*. Aus algebraischer Sicht sind dies genau die Unteralgebren von $\langle R_M, (R_{\varphi})_{\varphi \text{ Formel}} \rangle$.

4.11 Satz. Sei $G \subseteq S_M$. Dann ist Inv G eine Krasner-Algebra (d.h. [Inv G] = Inv G).

Beweis. Sei $\Phi_1, ..., \Phi_q \in \text{Inv } G$, d.h. $\Phi_i^g = \Phi_i$ für alle $g \in G$ und $i \in \{1, ..., q\}$. Sei φ Formel in q Prädikaten und n Variablen, $n \geq 1$. Dann gilt:

$$(F_{\varphi}(\Phi_1, ..., \Phi_g))^g = F_{\varphi}(\Phi_1^g, ..., \Phi_g^g)$$

für jedes $g \in S_M$. (Übungsaufgabe! Hinweis: Durch Induktion über den Aufbau von Formeln des Prädikatenkalküls erster Stufe.) Es folgt:

$$(F_{\varphi}(\Phi_1,...,\Phi_q))^g = F_{\varphi}(\Phi_1^g,...,\Phi_q^g) = F_{\varphi}(\Phi_1,...,\Phi_q)$$

für alle $g \in G$. Also $F_{\varphi}(\Phi_1, ..., \Phi_q) \in \text{Inv } G$.

4.12 Theorem (2. Satz von KRASNER). Sei M endliche Menge. Dann gilt:

(a) Jede Krasner-Algebra $Q \subseteq R_M$ ist Invariantenmenge einer geeigneten Menge von Permutationen. Es gilt:

$$Q = \text{Inv Aut } Q.$$

(b) Für jede beliebige Teilmenge $Q \subseteq R_M$ gilt

$$\underbrace{[Q]}_{\text{interne}} = \underbrace{\text{Inv Aut } Q}_{\text{externe}}$$
Beschreibung der von Q
erzeugten Krasner-Algebra

Beweis. (b) folgt aus (a) und 4.11:

$$Q \stackrel{\text{4.2 (IV)}}{\subseteq} \text{Inv Aut } Q \implies [Q] \subseteq [\text{Inv Aut } Q] \stackrel{\text{4.11}}{=} \text{Inv Aut } Q$$

$$\subseteq \text{Inv Aut } [Q] \stackrel{\text{(a)}}{=} [Q].$$

Zu (a): Sei $M = \{a_1, ..., a_m\}, \mathbf{a} := \{a_1, ..., a_m\}, G := \text{Aut } Q, [Q] = Q \subseteq R_M.$

$4\,\,$ AUTOMORPHISMEN, INVARIANTE RELATIONEN UND DIE SÄTZE VON KRASNER

1. Schritt: $\mathbf{a}^G \in Q$ (Lemma 4.13),

2. Schritt: Inv $G \subseteq [\boldsymbol{a}^G]$ (Lemma 4.14).

Dann folgt:

$$Q \overset{\text{4.2 (IV)}}{\subseteq} \operatorname{Inv} \operatorname{Aut} Q \implies [Q] \subseteq \operatorname{Inv} \operatorname{Aut} Q = \operatorname{Inv} G$$

$$\overset{\text{2. S.}}{\subseteq} [\boldsymbol{a}^G] \overset{\text{1. S.}}{\subseteq} [Q] = Q.$$

4.13 Lemma. Sei $[Q] = Q \subseteq R_M$, G = Aut Q, $M = \{a_1, ..., a_m\}$, $\boldsymbol{a} = (a_1, ..., a_m)$. Dann gilt $\boldsymbol{a}^G \in Q$.

Beweis. Definiere

$$\gamma := \bigcap \{ \varrho \in Q \mid \boldsymbol{a} \in \varrho \}. \tag{*}$$

Nach 4.9 (ii) ist Q = [Q] gegen (endliche) Durchschnitte angeschlossen. Da M endlich ist, ist auch $Q \cap M^n$ endlich $\Longrightarrow \gamma$ ist endlich. Es folgt: $\gamma \in Q$.

Plan: Wir zeigen $\mathbf{a}^G = \gamma$.

Beobachtung (**): Alle m-Tupel aus γ bestehen aus paarweise verschiedenen Komponenten, denn

$$\mathbf{a} \in F_{\varphi_0} = \{(b_1, ..., b_m) \in M^m \mid \forall i, j \in \{1, ..., m\}, i \neq j, b_i \neq b_j\}$$

für $\varphi_0(x_1,...,x_m) := \bigwedge_{i\neq j} \neg (x_i = x_j)$. Nun $\gamma \subseteq F_{\varphi_0}$ wegen (*) und $F_{\varphi_0} \in [Q] = Q$.

- $a \in \gamma \implies a^G \subseteq \gamma^G = \gamma \text{ da } \gamma \in Q \subseteq \text{Inv Aut } Q = \text{Inv } G. \text{ Also } a^G \subseteq \gamma.$

Noch zu zeigen: $\gamma \subseteq \boldsymbol{a}^G$. Indirekt: Angenommen, es gibt $\boldsymbol{r} = (r_1, ..., r_m) \in \gamma$ mit $\boldsymbol{r} \notin \boldsymbol{a}^G$. Dann ist die Funktion (Permutation) $f: M \to M$, $a_i \mapsto r_i$ kein Element von G (wegen (**), es gilt $\boldsymbol{a}^f = \boldsymbol{r}$). Also $f \notin \operatorname{Aut} Q$, d.h. $\exists \varrho_0 \in Q: f \notin \operatorname{Aut} \varrho_0$, d.h. $\exists \boldsymbol{s} \in \varrho_0: \boldsymbol{s}^f \notin \varrho_0$. Sei ϱ_0 t-stellig. Dann gibt es $j_1, ..., j_t \in \{1, ..., m\}$ mit $\boldsymbol{s} = (a_{j_1}, ..., a_{j_t})$. Betrachte die Formel

$$\varphi(R, S; x_1, ..., x_m) := R(x_1, ..., x_m) \land S(x_{j_1}, ..., x_{j_t})$$

und weiter

$$\sigma := F_{\varphi}(\gamma, \varrho_0) = \{(x_1, ..., x_m) \in M^m \mid (x_1, ..., x_m) \in \gamma \land (x_{j_1}, ..., x_{j_t}) \in \varrho_0\}.$$

Also $\sigma \in [Q] = Q$ und $\sigma \subseteq \gamma$. Wegen $\boldsymbol{a} \in \gamma$ und $\boldsymbol{s} \in \varrho$ folgt $\boldsymbol{a} \in \sigma$. Aber $\boldsymbol{r} = \boldsymbol{a}^f \notin \sigma$, weil $(a_{j_1},...,a_{j_k}^f)^f = \boldsymbol{s}^f \notin \varrho$. Das heißt: $\boldsymbol{r} \notin \gamma \backslash \sigma \implies \gamma \nsubseteq \sigma$.

Anderseits: $\mathbf{a} \in \sigma \in Q \stackrel{(*)}{\Longrightarrow} \gamma \subseteq \sigma \implies \text{Widerspruch. Also } \mathbf{a}^G = \gamma \in Q.$

4.14 Lemma. Sei $M = \{a_1, ..., a_m\}$, $[Q] = Q \subseteq R_M$, G = Aut Q, $\boldsymbol{a} = (a_1, ..., a_m)$. Dann gilt:

$$\operatorname{Inv} G \subseteq [\boldsymbol{a}^G].$$

(Bemerkung: Es gilt sogar die Gleichheit, weil [Inv G] = Inv G.)

4 AUTOMORPHISMEN, INVARIANTE RELATIONEN UND DIE SÄTZE VON KRASNER

Beweis. Da Q = [Q] abgeschlossen gegen Vereinigungen (4.9 (ii)) und jede invariante Relation Vereinigung von Bahnen ist (4.4 (b)), ist es ausreichend Folgendes zu zeigen:

$$n$$
-Orb $G \subseteq [\boldsymbol{a}^G] \forall n \in \mathbb{N} \setminus \{0\}.$

(Dann folgt: $\operatorname{Inv} G = [\bigcup_{n=1}^{\infty} n\operatorname{-Orb} G] \subseteq [\boldsymbol{a}^G] \stackrel{4.13}{\subseteq} [Q] \subseteq [\operatorname{Inv} G] \stackrel{4.11}{=} \operatorname{Inv} G.$) Also sei $\Phi \in n\operatorname{-Orb} G$, d.h. $\Phi = \boldsymbol{b}^G$ für ein $\boldsymbol{b} = (b_1, ..., b_n) \in M^n$. Dann gibt es eine (eindeutig bestimmte) Abbildung $\pi:\{1,...,n\} \to \{1,...,m\}$, sodass $b_i=a_{\pi(i)}$ für alle $i\in I$ $\{1,...,n\}$. (Genauer: betrachte die Abbildungen $\boldsymbol{a}:\{1,...,m\}\to M,\,\boldsymbol{b}:\{1,...,n\}\to M$ und definiere π durch $\pi(i) := a^{-1}(b(i))$ $(i \in \{1, ..., n\})$.) Definiere nun

$$\varphi(R; x_1, ..., x_n) :\equiv \exists z_1, ..., z_m : R(z_1, ..., z_m) \bigwedge_{i=1}^n x_i = z_{\pi(i)}.$$

Dann:

$$F_{\phi}(\boldsymbol{a}^{G}) = \{(y_{1},...,y_{n}) \in M^{n} \mid \exists (c_{1},...,c_{m}) \in \boldsymbol{a}^{G} : \forall i \in \{1,...,n\} : y_{i} = c_{\pi(i)}\}$$

$$= \{(y_{1},...,y_{n}) \in M^{n} \mid \exists g \in G \forall i \in \{1,...,n\} : y_{i} = a_{\pi}^{g}\}$$

$$= \{(y_{1},...,y_{n}) \in M^{n} \mid \exists g \in G \forall i \in \{1,...,n\} : y_{i} = b_{i}^{g}\}$$

$$= \{(b_{1}^{g},...,b_{n}^{g}) \in M^{n} \mid g \in G\} = \boldsymbol{b}^{G},$$

d.h.
$$\Phi = \boldsymbol{b}^G = F_{\varphi}(\boldsymbol{a}^G) \in [\boldsymbol{a}^G].$$

k-Abgeschlossene Permutationsgruppen, primitive 5 Gruppen, Automorphismengruppen von Graphen

1. Satz von KRASNER: $G = \text{Aut Inv } G \text{ für } G \leq S_M$. Frage: Wann gilt G = Aut k-Inv für ein vorgegebenes k?

5.1 Definition. Sei $G \leq S_M$, $k \in \mathbb{N} \setminus \{0\}$. Die Permutationsgruppe

$$G^{(k)} := \operatorname{Aut} k\operatorname{-Inv} G$$

heißt k-Abschluss von G. G ist k-abgeschlossen $\iff G^{(k)} = G$.

Zwei Gruppen $G_1, G_2 \leq S_M$ heißen k-äquivalent (Bez. $G_1 \approx_k G_2$), wenn k-Inv $G_1 =$ k-Inv G_2 .

5.2 Satz. Es gilt:

(Aut, k-Inv) bildet eine Galoisverbindung (induziert von der Relation

$$\{(g,\Phi) \mid \Phi^g = \Phi\} \subseteq S_M \times R_M^{(k)},$$

wobei $R_M^{(k)} := \mathfrak{P}\left(M^k\right)$, vgl. 4.2).

- (ii) $G_1 \approx_k G_2 \iff G_1^{(k)} = G_2^{(k)}$. (iii) $G \approx_k G^{(k)}$. Unter allen zu G äquivalenten Gruppen ist $G^{(k)}$ die größte $(G \approx_k H) \iff H \subseteq H^{(k)} = G^{(k)}$.
- (iv) Die Abbildung $G \mapsto G^{(k)}$ ist ein Hüllenoperator auf $\mathfrak{P}(S_M)$.
- $G^{(k)} = \operatorname{Aut} k\operatorname{-Inv} G = \operatorname{Aut} k\operatorname{-Orb} G.$

Beweis. Übungsaufgabe!

5.3 Satz. Sei $G \leq S_M$.

- (a) $G^{(k)}$ hat die "k-Interpolationseigenschaft", d.h. für alle $h \in S_M$ gilt: $h \in G^{(k)} \iff \forall a_1, ..., a_k \in M \exists g \in G : (a_1, ..., a_k)^h = (a_1, ..., a_k)^g \ (d.h. \ \boldsymbol{a}^h = \boldsymbol{a}^g).$
- k-Abschlusskriterium (hinreichend):

$$(\exists a_1, ..., a_{k-1} \in M : G_{a_1, ..., a_{k-1}} = \{e\}) \implies G = G^{(k)}.$$

Charakterisierung: (c)

$$\exists Q \subseteq R_M^{(k)} : G = \text{Aut } Q \iff G = G^{(k)}.$$

Beweis. Zu (a):

$$h \in G^{(k)} \overset{5.2 \text{ (v)}}{\Longleftrightarrow} h \in \operatorname{Aut} k ext{-}\operatorname{Orb} G$$
 $\iff \forall \boldsymbol{a} \in M^k : (\boldsymbol{a}^G)^h = \boldsymbol{a}^G$
 $\iff \forall \boldsymbol{a} \in M^k : \boldsymbol{a}^h \in \boldsymbol{a}^G$

5~ K-Abgeschlossene Permutationsgruppen, Primitive Gruppen, Automorphismengruppen von Graphen

("—" gilt auch, denn:
$$\boldsymbol{b} \in \boldsymbol{a}^G \implies \exists g \in G : \boldsymbol{b} = \boldsymbol{a}^g$$
. Es folgt $\boldsymbol{b}^h \in \boldsymbol{b}^G = \boldsymbol{a}^G$.)

$$\iff \forall a_1, ..., a_k \in M \exists g \in G : \mathbf{a}^h = \mathbf{a}^g.$$

Zu (b): Zu zeigen: $h \in G^{(k)} \implies h \in G$. Sei $h \in G^{(k)}$. Nach (a) gilt: $\forall b \in M \exists g_b \in G : (a_1, ..., a_{k-1}, b)^h = (a_1, ..., a_{k-1}, b)^{g_b}$. Sind $b, b' \in M$, dann ist $g_b g_{b'}^{-1} \in G_{a_1, ..., a_{k-1}} = \{e\}$ und somit $g_b = g_{b'}$. Definiere $g := g_b$ (für irgendein $b \in M$). Nun ist $\forall c \in M : c^h = c^{g_c} = c^{g_b} = c^g \implies h = g \in G$.

Zu (c): "
⇒" Sei $Q\subseteq R_M^{(k)}$ mit $G=\operatorname{Aut} Q.$ Dann folgt:

$$G = \operatorname{Aut} Q \overset{4.2 \text{ (II)}}{\supseteq} \operatorname{Aut} k\text{-Inv} G = G^{(k)} \supseteq G.$$

" \Leftarrow " Setze einfach Q := k-Inv G. Dann klar.

Ab jetzt betrachten wir den (besonders interessanten) Spezialfall k=2:

5.4 Definition. $G \leq S_M$ heißt

semi-regulär :
$$\iff \forall a \in M : G_a = \{e\},$$

regulär : $\iff G$ ist semi-regulär und transitiv (vgl. 1.10 (d)).

Bemerkung: G regulär \iff G transitiv und $\exists a \in M : G_a = \{e\}.$

5.5 Satz. Sei $G \leq S_M$ semi-regulär. Dann:

- (a) G ist 2-abgeschlossen $(G^{(2)} = G)$.
- (b) Für jede Permutation $g \in G$ gilt: Alle Zyklen der vollständigen (d.h. der nichtverkürzten) Zyklendarstellung von g haben die gleiche Länge.
- (c) $\forall a \in M : |a^G| = |G|$.
- (d) Ist G regulär so gilt |G| = |M|.

Beweis. (a) folgt aus 5.3 (b).

Zu (b): Sei $g \in G$. Hätte g Zyklen der Länge $l_1 < l_2$, so wäre $g^{l_1} \neq e$ und g^{l_1} besäße Fixpunkte (nämlich alle Elemente aus Zyklen der Länge l_1). Widerspruch, da $G_a = \{e\}$ für alle $a \in M$.

Zu (c):
$$|G| \stackrel{1.14}{=} |G_a||a^G| = |a^G|$$
.

Zu (d): G transitiv, d.h. $\exists a \in M : a^G = M$. Nach (c) ist $|M| = |a^G| = |G|$.

5.6 Beispiele. (i) $\{e, (1\ 2)(3\ 4)\} \le S_{\underline{4}}$ semi-regulär, aber nicht regulär, da nicht transitiv.

5~K-ABGESCHLOSSENE PERMUTATIONSGRUPPEN, PRIMITIVE GRUPPEN, AUTOMORPHISMENGRUPPEN VON GRAPHEN

- (ii) Die rechtsreguläre Darstellung $G^* \leq S_G$ jeder Gruppe G ist regulär (vgl. 2.5, Satz von CAYLEY). Für $g \in G : g^* : G \to G, x \mapsto xg$.
- **5.7 Definition.** Ein gerichteter Graph ist ein Paar $\Gamma = (V, E)$, wobei V Menge (endlich)—Elemente heißen Knoten, $E \subseteq V \times V$ Relation—Elemente heißen Kanten.
- $(a,b) \in E$ heißt gerichtete Kante von a nach b bzw. Schlinge falls a = b.
- $(a,b) \in E$ heißt ungerichtete Kante von a nach b, falls $\{(a,b),(b,a)\} \subseteq E$.
- Automorphismenmenge von Γ :

Aut
$$\Gamma := \operatorname{Aut}_V E$$
 (vgl. 4.1, wobei E binäre Relation).

- Ein gefärbter Graph ist ein Paar (Γ, γ) , wobei:
 - $\Gamma = (V, E)$ Graph,
 - $\gamma: E \to C$ Abbildung in eine Menge C (γ ist Färbungsfunktion und C Menge der Farben).
- $(a,b) \in E$ heißt gerichtete Kante von a nach b mit Farbe $r \in C$, wenn $\gamma((a,b)) = r$. (Häufig wird γ als surjektiv vorausgesetzt.)
- ein Automorphismus von (Γ, γ) ist eine Permutation $f: V \to V$, so dass:
 - $f \in \operatorname{Aut} \Gamma$,
 - für alle $(a,b) \in E$ gilt $\gamma((a,b)) = \gamma((a^f,b^f))$. (Kanten werden auf Kanten gleicher Farbe abgebildet.)
- Automorphismengruppe von (Γ, γ) : Aut (Γ, γ) (ist tatsächlich eine Gruppe—Übungsaufgabe!).

- **5.8 Satz.** Sei (Γ, γ) gefärbter Graph. Für jedes $r \in C$ definiere $\Gamma_r := (V, E_r)$ mit $E_r := \{(a, b) \in E \mid \gamma(a, b) = r\} = \gamma^{-1}(r)$. Dann:
- (a) Aut $(\Gamma, \gamma) = \bigcap_{r \in C} \operatorname{Aut}(\Gamma_r)$.
- (b) Sei M Menge. Genau dann ist $G \leq S_M$ 2-abgeschlossen, wenn G die Automorphismengruppe eines gefärbten Graphen mit Knotenmenge M ist.

Beweis. Zu (a): Behauptung folgt aus Definitionen (Übung!).

- - "⇒" Annahme: G ist 2-abgeschlossen. Dann $G = G^{(2)} \stackrel{5.2(v)}{=}$ Aut 2-Orb G. Sei 2-Orb $G = \{\Phi_1, ..., \Phi_q\}$. Definiere $C := \{1, ..., q\}$, $E_r := \Phi_r$, $\Gamma_r := (M, E_r)$ $(r \in \{1, ..., q\})$. Beachte: $E_r \cap E_s = \emptyset$ oder E_r für alle $r, s \in \{1, ..., q\}$ und $M \times M = \bigcup_{r=1}^q E_r$. Setze $\gamma : M \times M \to \{1, ..., q\}$ mit $\gamma(a, b) = r \iff (a, b) \in \Phi_r$. Dann gilt $G = \text{Aut 2-Orb } G = \bigcap_{r \in C} \text{Aut } \Phi_r = \bigcap_{r \in C} \text{Aut } \Gamma_r \stackrel{\text{(a)}}{=} \text{Aut } (\Gamma, \gamma)$.

5.9 Definition. Sei G Gruppe, $U, V \leq G$ Untergruppen. Für $g \in G$ heißt

$$UgV := \{ugv \mid u \in U, v \in V\}$$

Doppelnebenklasse von g (bzgl. U und V).

$$U \backslash G/V := \{UgV \mid g \in G\}$$

ist Menge der Doppelnebenklassen.

Es gilt: $U \setminus G/V$ ist Partition von G.

Beweis. Offenbar $G = \bigcup U \backslash G/V$. Zwei Elemente von $U \backslash G/V$ sind entweder disjunkt oder gleich, denn:

$$\begin{split} h \in UgV \cap Ug'V &\iff \exists u, u' \in U, \ v, v' \in V : ugv = u'g'v' \\ &\implies g = u^{-1}u'g'v'v^{-1} \\ &\implies UgV = \underbrace{Uu^{-1}u'g'\underline{v'v^{-1}V}}_{=V} = Ug'V. \end{split}$$

5.10 Lemma. $G \leq S_M, x \in M$. Dann:

- (a) Sei G transitiv. Dann enthält jede 2-Bahn von G ein Element der Form (x, x^g) für ein geeignetes $g \in G$.
- (b) $(x, x^g)^G = (x, x^{g'})^G \iff G_x g G_x = G_x g' G_x \text{ für alle } g, g' \in G.$

Beweis. Zu (a): Sei $(a,b) \in M^2$. Da G transitiv ist, existieren $g \in G$ mit $a^g = x$ und $g' \in G$ mit $x^{g'} = b^g$. Es folgt $(x, x^{g'}) = (a^g, b^g) \in (a, b)^G$.

Zu (b):
$$G_x g G_x = G_x g' G_x \iff g' \in G_x g G_x \iff \exists h_1, h_2 \in G_x : g' = h_1 g h_2 | \iff (x, x^g)^G \iff (x, x^g)^G = (x, x^g)^G.$$

$$(x, x^{g'}) = (x, x^{h_1gh_2}) \stackrel{h_1 \in G_x}{=} (x, x^{gh_2}) \stackrel{h_2 \in G_x}{=} (x^{h_2}, x^{gh_2}) = (x, x^g)^{h_2} = (x, x^g)^G.$$

$$\stackrel{\text{Less Sei}}{=} \text{Sei } (x, x^{g'}) \in (x, x^g)^G \implies \exists h_2 \in G : (x, x^{g'}) = (x, x^g)^{h_2} = (x^{h_2}, x^{gh_2}) \implies h_2 \in G_x. \text{ Definiere } h_1 := g'h_2^{-1}g^{-1}. \text{ Dann } x^{h_1} = x^{g'h_2^{-1}g^{-1}} = x^{gh_2h_2^{-1}g^{-1}} = x \implies x \in G_x. \text{ Außerdem ist } h_1gh_2 = g'.$$

5.11 Satz. Sei $G \leq S_M$ transitiv, $x \in M$. Dann:

(a) 2-Bahnen $\stackrel{\text{1:1}}{\longleftrightarrow}$ Doppelnebenklassen. Die Abbildung

$$\alpha: 2\text{-}\mathrm{Orb}\,(G,M) \to G_x \backslash G/G_x, \ (x,x^g)^G \mapsto G_x gG_x$$

ist eine Bijektion.

5~ K-Abgeschlossene Permutationsgruppen, Primitive Gruppen, Automorphismengruppen von Graphen

(b) Elemente von 2-Bahn $\stackrel{1:1}{\longleftrightarrow}$ Rechtsnebeklassen nach "Doppelstabilisator". Die Abbildung

$$\alpha': (x, x^g)^G \to G \backslash G_{x, x^g}, \ (x^h, x^{gh}) \mapsto G_{x, x^{gh}}$$

ist eine Bijektion (für jedes $g \in G$). Bemerkung: $G_{x,x^g} = G_x \cap G_{x^g} \stackrel{\text{1.11(ii)}}{=} G_x \cap g^{-1}$

(c) Wirkung φ von G auf 2-Bahnen \cong Wirkung φ' von G auf Rechtsnebenklassen. Die Wirkung von G auf 2-Bahnen

$$\varphi:(x,x^g)^G\times G\to (x,x^g)^G, ((x^h,x^{gh}),f)\mapsto (x^{hf},x^{ghf})$$

und die Wirkung von G auf den zugehörigen Nebenklassen (gemäß (b))

$$\varphi': G/G_{x,x^g} \times G \to G/G_{x,x^g}, \ (G_{x,x^{gh}}, f) \mapsto G_{x,x^g} hf$$

sind ähnlich (für jedes $g \in G$).

- **Beweis.** Zu (a): α ist auf allen 2-Bahnen definiert wegen 5.10(a). Außerdem ist α wohldefiniert und injektiv nach 5.10(b). Surjektivität: Für jedes $g \in G$ ist $(x, x^g)^G \in 2\text{-Orb}(G, M)$ und $\alpha((x, x^g)^G) = G_x g G_x$.
- Zu (b): Behauptung folgt aus 1.13 (Abbildung $a^G \to G/G_a$, $a^h \mapsto G_a h$ ist injektiv) angewendet auf induzierte Wirkung (G, M^2) (dann $G_a = G_{x,x^g}$ für $a = (x, x^g) \in M^2$).
- Zu (c): φ ist Wirkung wegen 2.8(c), φ' ist Wirkung wegen 2.7(3). Ähnlichkeit von φ und φ' (vgl. 1.16):

(mit $\varphi = id$ in 1.16) kommutiert für jedes $f \in G$.

- **5.12 Satz.** $G \leq S_M$ transitiv, $x \in M$. Dann:
- (a) Die Abbildung $\kappa : 2\text{-Orb}(G, M) \to 1\text{-Orb}(G_x, M), (x, x^g)^G \mapsto (x^g)^{G_x}$ ist bijektiv. Dabei gilt:

$$\kappa(\Phi) = \{ y \in M \mid (x, y) \in \Phi \} \ (\Phi \in 2\text{-}\mathrm{Orb}(G, M)),$$

$$\kappa^{-1}(B) = \{ (x^h, y^h) \mid y \in B, h \in G \} \ (B \in 1\text{-}\mathrm{Orb}(G_x, M)).$$

Speziell für $\triangle_M \in 2\text{-Orb}(G, M) : \kappa(\triangle_M) = \{x\}.$

$5~~K ext{-}ABGESCHLOSSENE PERMUTATIONSGRUPPEN, PRIMITIVE GRUPPEN, AUTOMORPHISMENGRUPPEN VON GRAPHEN$

(b) Ist T Transversale (Repräsentantensystem) der Doppelnebenklassen $G_x \backslash G/G_x$, dann ist $\tilde{T} := x^T = \{x^g \mid g \in T\}$ Transversale für die Zerlegung 1-Orb (G_x, M) (und $\hat{T} = \{(x, x^g) \mid g \in T\}$ Transversale für 2-Orb(G, M)).

Beweis. Zu (a): κ ist wohldefiniert und injektiv: $(x, x^g)^G = (x, x^{g'})^G \iff \exists h \in G : (x, x^g) = (x, x^g)^h \iff \exists h \in G_x : x^g = x^{g'h} \iff x^g \in (x^{g'})^{G_x} \iff (x^g)^{G_x} = (x^g)^{G_x}.$ Surjektivität: für jedes $B \in 1$ -Orb (G_x, M) gibt es $y \in M$ mit $B = y^{G_x}$. Da G transitiv: $\exists g \in G : y = x^g$. Also $B = (x^g)^{G_x}$. Dann $(x, x^g)^G \in 2$ -Orb (G, M) und $\kappa((x, x^g)^G) = (x^g)^{G_x} = B$. Restliche Gleichungen: Übung!

Zu (b): T Transversale von $G_x \setminus G/G_x \stackrel{5.11(a)}{\Longrightarrow} \hat{T}$ Transversale von 2-Orb $(G, M) \stackrel{(a)}{\Longrightarrow} \tilde{T}$ Transversale von 1-Orb (G_x, M) .

Wichtiges Prinzip zur Reduktion von Problemen: Das Homomorphieprinzip:

- Vergröberung der betrachteten Struktur durch Homomorphismus,
- Problem in grober Struktur behandeln.

5.13 Definition (Homomorphismen und Wirkungen). (Speziell Permutationsgruppen, Verallg. von 1.16) Seien (G,M), (H,N) Gruppenwirkungen. Abbildungspaar (φ,f) mit $\varphi:G\to H$ Gruppenhomomorphismus, $f:M\to N$ heißt Homomorphismus von (G,M) nach (H,N), falls folgende Verträglichkeitsbedingung erfüllt ist:

$$\forall m \in M \forall g \in G : f(m^g) = f(m)^{\varphi(g)}, \tag{*}$$

d.h. das Diagramm

$$\begin{array}{cccc} m & & M & \xrightarrow{f} & N & n \\ \hline & & g & & & \downarrow \varphi(g) & \\ & & & M & \xrightarrow{f} & N & n^{\varphi(g)} \end{array}$$

kommutiert (für jedes $g \in G$).

Häufiger Spezialfall: G = H, $\varphi : G \to G$ ist identische Abbildung. Dann meistens f surjektiv und oBdA $f : M \to M/\Theta$ für ÄR Θ auf M.

5.14 Lemma. Sei $G \leq S_M, \Theta \in \ddot{A}q(M)$. Dann ist durch

$$M/\Theta \times G \to M/\Theta$$
, $([m]_{\Theta}, q) \mapsto [m^g]_{\Theta}$

genau dann eine Gruppenwirkung von G auf $^{M}/\Theta$ gegeben, wenn $\Theta \in 2\text{-Inv}(G,M)$. In diesem Fall ist (φ, f) mit $\varphi = \text{id} : G \to G$ und $f : M \to ^{M}/\Theta, m \mapsto [m]_{\Theta}$ ein Homomorphismus von (G, M) nach $(G, ^{M}/\Theta)$.

Beweis. Die Abbildung $([m]_{\Theta}, g) \mapsto [m^g]_{\Theta}$ ist genau dann wohldefiniert, wenn $[m]_{\Theta} = [m']_{\Theta} \implies [m^g]_{\Theta} = [m'^g]_{\Theta}$, d.h. $(m, m') \in \Theta \implies (m^g, m'^g) \in \Theta$ (d.h. Θ ist invariant für jedes $g \in G$). Die Eigenschaften 2.2(i),(ii) (Gruppenwirkung) folgen dann aus den Definitionen (Übung!). Ebenso 5.13(*): $[m^g]_{\Theta} = [m]_{\Theta}^g$ (Übung!).

5~ K-ABGESCHLOSSENE PERMUTATIONSGRUPPEN, PRIMITIVE GRUPPEN, AUTOMORPHISMENGRUPPEN VON GRAPHEN

5.15 Definition. Sei $G \leq S_M$.

(1) $B \subseteq M$ heißt Block von G, falls gilt:

$$\forall g \in G : B^g = B \text{ oder } B^g \cap B = \emptyset,$$

M und $\{a\}$ $(a \in M)$ heißen triviale Blöcke.

- (2) Eine Partition \mathcal{B} von M heißt verträgliches Blocksystem, wenn $\forall g \in G \forall B \in \mathcal{B}$: $B^g \in B$.
- (3) G heißt imprimitiv, falls G einen nichttrivialen Block besitzt. Anderenfalls heißt G primitiv.

Bemerkungen:

- (a) $G \leq S_M$ primitiv \Longrightarrow G ist transitiv oder $G = \{e\}$ (da jeder Orbit von (G, M) ein Block ist).
- (b) $F\ddot{u}r \Theta \in \ddot{A}q(M)$ gilt:

$$\Theta \in 2\text{-Inv}(G, M) \iff M/\Theta \text{ ist verträgliches Blocksystem (Übung!)}.$$

5.16 Folgerung. Sei $G \leq S_M$. Die folgenden Aussagen sind äquivalent:

- (a) G ist imprimitiv.
- (b) Es gibt eine nichttriviale Äquivalenzrelation $\Theta \in \text{Äq}(M) \cap \text{Inv}(G, M)$ (d.h. $\triangle_M \neq \Theta \neq M^2$).
- (c) Es gibt ein nichttriviales verträgliches Blocksystem für G.

Beweis. (a) \Longrightarrow (c): Sei $B \subseteq M$ nichttrivialer Block. Dann ist

$$\mathcal{B} := \{B^g \mid g \in G\} \cup \{M \backslash \bigcup_{g \in G} B^g\}$$

ein nichttriviales verträgliches Blocksystem. Für $g,h\in G$:

$$B^g \cap B^h \neq \emptyset \iff B^{gh^{-1}} \cap B \neq \emptyset \overset{\operatorname{Block}}{\Longrightarrow} B^{gh^{-1}} = B \iff B^g = B^h.$$

Es folgt: \mathcal{B} ist Partition. Verträglichkeit:

$$B^{gh} \cap B^g \neq \emptyset \iff B^{gh} = B^g.$$

 $(c) \Longrightarrow (b)$: Sei \mathcal{B} nichttriviales Blocksystem, verträglich. Dann ist

$$\Theta := \{(x, y) \in M^2 \mid \exists B \in \mathcal{B} : \{x, y\} \subseteq B\}.$$

Außerdem:

 \mathcal{B} verträglich \iff M/Θ verträglich \iff Θ invariant.

Da \mathcal{B} nichttrivial: $\triangle_M \neq \Theta \neq M^2$.

5~K-ABGESCHLOSSENE PERMUTATIONSGRUPPEN, PRIMITIVE GRUPPEN, AUTOMORPHISMENGRUPPEN VON GRAPHEN

- (b) \Longrightarrow (a): $\Theta \in \text{Äq}(M) \setminus \{\triangle_M, M^2\}$ invariant. Dann gibt es $x \in M$ mit $\{x\} \neq [x]_{\Theta} \neq M$. Da Θ invariant, ist $B := [x]_{\Theta}$ Block. Auch: $\{x\} \subsetneq B \subsetneq M \Longrightarrow B$ nichttrivial.
- **5.17 Definition (Mengenstabilisatoren).** Sei $G \leq S_M$, $B \subseteq M$. $G_{[B]} := \{g \in G \mid B^g = B\} = G \cap \operatorname{Aut}_M B \text{ heißt } Mengenstabilisator \text{ von } B \text{ in } G.$

 $G_{[B]}$ (einfacher G_B) bildet eine Gruppe (Übung!) und durch $B \times G_B \to B$, $(b,g) \mapsto b^g$ ist Gruppenwirkung (G_B, B) auf B gegeben (Übung!).

5.18 Satz. Sei (G, M) Gruppenwirkung und $\Theta \in \text{Äq}(M)$ invariant $(d.h. \mathcal{B} := M/\Theta)$ ist verträgliches Blocksystem) (Bemerkung: Dann ist (id_G, f) Homomorphismus von (G, M) nach $(G, M/\Theta)$ mit $f : M \to M/\Theta$, $x \mapsto [x]_{\Theta}$). Sei \mathcal{T} Transversale der 1-Bahnen von $(G, M/\Theta)$ und, für jedes $B \in \mathcal{T}$, \mathcal{T}_B Transversale der 1-Bahnen von (G, M).

Beweis. Übung!

- **5.19 Bemerkungen.** Seien (G, M), (H, N) Gruppenwirkungen, $(\varphi, f): (G, M) \rightarrow (H, N)$ morphismus. Dann gilt:
- (i) $\Theta := \ker f$ ist G-invariant, d.h. M/Θ ist verträgliches Blocksystem.
- (ii) $G_{f^{-1}(b)} = \varphi^{-1}(H_b)$ für jedes $b \in N$.
- (iii) $\forall a \in M, g \in G, b \in N : a, a^g \in f^{-1}(b) \implies g \in \varphi^{-1}(H_b) \ (d.h. \ f(a) = f(a^g) = b \implies b^{\varphi(g)} = b).$

Beweis. Übung!

Vorbemerkungen zum nächsten Satz:

Sei $R \subseteq M \times M$. Setze:

- $R^{\text{ref}} := R \cup \triangle_M \text{ ist } reflexiver Abschluss,$
- $R^{\text{sym}} := R \cup R^{-1}$ ist symmetrischer Abschluss, wobei $R^{-1} = \{(b, a) \mid (a, b) \in R\},\$
- $R^{\text{trans}} := \bigcup_{n \in \mathbb{N} \setminus \{0\}} R^n$ ist transitiver Abschluss, wobei $R^n := R \circ ... \circ R$ für $n \ge 1$ und

$$R \circ S = \{(a, c) \in M^2 \mid \exists b \in M : (a, b) \in R, (b, c) \in S\},\$$

- $R^{\ddot{a}q} := \bigcup \{S \in \ddot{A}q(M) \mid R \subseteq S\}$ die von R erzeugte \ddot{A} quivalenzrelation auf M (bzgl. \subseteq kleinstes Element von $\ddot{A}q(M)$, das R enthält).

Es gilt:

$$R^{\mathrm{\ddot{a}q}} = \left(\left(R^{\mathrm{ref}} \right)^{\mathrm{sym}} \right)^{\mathrm{trans}} \tag{*}$$

(Übung!)

Begiffe:

- $R \ antireflexiv : \iff R \cap \triangle_M = \emptyset.$

- Graph (M,R) heißt $zusammenhängend :\iff \forall a,b \in M, a \neq b \exists a=a_0,a_1,...,a_n=b \in M: \forall i \in \{0,...,n-1\}: (a_i,a_{i+1}) \in R \text{ oder } (a_{i+1},a_i) \in R \overset{(*)}{\iff} R^{\ddot{a}q} = M \times M.$
- **5.20** Satz (Charakterisierungssatz für primitive Permutationsgruppen). Sei(G, M) transitiv. Dann:
- (A) (G, M) imprimitiv $\iff \exists a \in M \exists U \leq G : G_a \nleq U \nleq G \ (\iff \forall a \in M ... \ da \ (G, M) \ transitiv).$
- (B) (G, M) primitiv $\iff \forall a \in M : G_a = G \text{ oder } G_a \text{ ist maximale } UG \text{ von } G$ $(\iff \exists a \in M \dots \text{ da } (G, M) \text{ transitiv}).$
- (C) Satz von HIGMAN:

(G, M) primitiv \iff Für jede antireflexive 2-Bahn $\varrho \in$ 2-Orb (G, M) ist der Graph (M, ϱ) zusammenhängend.

Beweis. (B) ist Umformulierung von (A).

- Zu (A): " \Longrightarrow " (G, M) imprimitiv $\stackrel{5.12(c)}{\Longrightarrow} \exists$ nichttrivialer Block $B \subseteq M$. Sei $a \in B$ und $U := G_{[B]}$. Dann gilt:
 - (i) U ist nicht transitiv $(B^U = B \subsetneq M)$, also $U \not\subseteq G$ (da G transitiv).
 - (ii) $G_a \subseteq U$, denn $g \in G_a \implies a = a^g \in B^g \implies B \cap B^g \neq \emptyset \stackrel{B \text{ Block}}{\Longrightarrow} B^g = B \iff g \in G_B = U$.
 - (iii) $G_a \nleq U : G \text{ transitiv}, |B| \geq 2 \implies \exists b \in B, a \neq b \exists h \in G : b = a^h, d.h.$ $h \notin G_a. \ b = a^h \in B^h \stackrel{b \in B}{\Longrightarrow} B \cap B^h \neq \emptyset \stackrel{B \text{ Block}}{\Longrightarrow} B = B^h \implies h \in G_B = U.$
 - " —" Sei $a \in M, U \leq G$ mit $G_a \nleq U \nleq G$. Behauptung: $B := a^U$ ist ein nichttrivialer Block von G. (Damit (G, M) imprimitiv.)
 - Blockeigenschaft: Sei $b \in B \cap B^g$, $g \in G \implies \exists h, h' \in U : b = a^h$, $b = a^{h'g} \implies h'gh^{-1} \in G_a \subseteq U \implies g \in (h')^{-1}Uh = U \implies B^g = a^{Ug} \stackrel{g \in U}{=} a^U = B$.
 - B nicht trivial: $G_a \nleq U \implies \exists h \in U : a^h \neq a \implies |B| = |a^U| \geq 2$. $U \nleq G \implies \exists g \in G \backslash U \implies B \cap B^g = \emptyset \text{ (denn } B = B^g \stackrel{\text{s.o.}}{\Longrightarrow} g \in U)$ $\implies |B| \leq \frac{|M|}{2}$. Also $B \neq M$.
- Zu (C): " \Longrightarrow " Sei (G, M) primitiv. Sei $\varrho \in 2$ -Orb (G, M) antireflexiv (d.h. $\triangle_M \cap \varrho = \emptyset$ $\stackrel{\varrho}{\Longleftrightarrow} \varrho \not\subseteq \triangle_M$). Setze:

$$\Theta := \varrho^{\mathrm{\ddot{a}q}} \stackrel{(*)}{=} \left((\varrho^{\mathrm{ref}})^{\mathrm{sym}} \right)^{\mathrm{trans}} = \left((\triangle_M \cup \varrho) \cup \varrho^{-1} \right)^{\mathrm{trans}}.$$

Da Inv (G, M) Krasneralgebra ist (vgl. 4.11) folgt $\Theta \in \text{Inv}(G, M) \cap \ddot{\text{Aq}}(M)$. Da (G, M) primitiv, ist $\Theta = \Delta_M$ oder $\Theta = M^2$ (5.16). Weil $\varrho \subseteq \Theta$ und $\varrho \not\subseteq \Delta_M$, ist $\Theta = M \times M$.

" —" Annahme: (G, M) imprimitiv. Dann gibt es nichtriviale Äquivalenzrelation $\Theta \in 2\text{-Inv}(G, M)$. Sei $(a, b) \in \Theta \backslash \Delta_M$. Dann ist $\varrho := (a, b)^G$ antireflexive 2-Bahn. (M, ϱ) ist nicht zusammenhängend, da $\varrho^{\ddot{a}q} = \underbrace{((a, b)^G)}_{\subseteq \Theta}^{\ddot{a}q} \subseteq \Theta^{\ddot{a}q} = \Theta \neq M^2$ (vgl. Vorbemerkung).

5 K-ABGESCHLOSSENE PERMUTATIONSGRUPPEN, PRIMITIVE GRUPPEN, AUTOMORPHISMENGRUPPEN VON GRAPHEN

5.21 Folgerung. Jede 2-fach transitive Permutationsgruppe G (d.h. 2-Inv (G, M) = $\{\triangle_M, M^2 \setminus \triangle_M\}$) ist primitiv.

Beweis. 2-fach transitiv \iff 2-Orb $(G, M) = \{ \triangle_M, M^2 \setminus \triangle_M \} \implies$ es gibt keine nichttriviale Äquivalenzrelation für (G, M).

Neues Problem: Wie bestimmt man eigentlich Automorphismengruppen von Graphen?

5.22 Verfahren. Bestimmung der Automorphismengruppe Aut Γ bzw. der Anzahl $|\operatorname{Aut}\Gamma|$ für einen Graphen $\Gamma=(V,E)$. Sei $G:=\operatorname{Aut}\Gamma$.

- Wähle $a_1 \in V$ und bestimme eine Menge $T_1 = \{g_{11},...,g_{1n_1}\}$ mit $a_1^G = \{a^{g_{11}},...,a_1^{g_{1n_1}}\}, \ n_1 = |a_1^G|$. Dann gilt $G = G_{a_1T_1}$ (und $|G| = |G_{a_1}| \cdot n_1$). Bemerkung: Die Darstellung hg_1 ($h \in G_{a_1}, g_1 \in T_1$) ist eindeutig!
- Wenn Elemente von G_{a_1} bzw. $|G_{a_1}|$ noch nicht bekannt sind, wiederhole (1) mit G_{a_1} statt G: Wähle $a_2 \in V$, $a_2 \neq a_1$, bestimme $T_2 = \{g_{21}, ..., g_{2n_2}\}$ mit $a_2^{G_{a_1}} = \{a_2^{g_{21}}, ..., a_2^{g_{2n_2}}\}$, $n_2 = |a_2^{G_{a_1}}|$. Dann gilt: $G = G_{a_1, a_2}T_2T_1$ und $|G| = |G_{a_1, a_2}|n_1n_2$. Wiederhole solange, bis Stabilisator $G_{a_1, ..., a_r}$ bekannt ist (spätestens bist
- $G_{a_1,...,a_r} = \{e\}$).
- Ergebnis: $G = G_{a_1,\dots,a_r}T_r\cdots T_1$ bzw. $|G| = |G_{a_1,\dots,a_r}|n_r\cdots n_1$. Jede Permutation (4)ist eindeutig in der Form $g = ht_r \cdots t_1 \ (h \in G_{a_1,...,a_r}, t_i \in T_i \text{ für } i \in \{1,...,r\})$ darstellbar.

Bemerkung: Falls $G_{a_1,...,a_r} = \{e\}$, so ist $(a_1,...,a_r)$ Sims-Basis (vgl. 3.2) und T_i sind Transversalen für die zugehörige Sims-Kette $U_i = G_{a_1,...,a_i}, i = 1,...,r$. Zum Beweis siehe 3.3.

5.23 Beispiel. Automorphismengruppe des Würfelgraphen Γ_W :

Anzahl der Automorphismen:

$$a_2 := 2$$
: $n_2 = |a_2^{G_{a_1}}|$. Kandidaten $\{2,4,8\}$ und \exists Automorphismus $h := \begin{pmatrix} 2 & 8 & 4 \end{pmatrix} \begin{pmatrix} 5 & 7 & 3 \end{pmatrix}$ (Rotation um Achse 1-6).

5~K-ABGESCHLOSSENE PERMUTATIONSGRUPPEN, PRIMITIVE GRUPPEN, AUTOMORPHISMENGRUPPEN VON GRAPHEN

$$a_3 := 3$$
: $n_3 = |a_3^{G_{a_1,a_2}}| = 2$. Kandidaten $\{3,5\}$ und \exists Automorphismus $k := (3 \ 5)(4 \ 8)$ (Spiegelung an der Ebene durch $1,2,6,7$). Nun $G_{a_1,a_2,a_3} = \{e\} \stackrel{5.22}{\Longrightarrow} |G| = n_1 n_2 n_3 = 48$.

Bestimmung der Automorphismengruppe:

$$a_{1} = 1: \ a_{1}^{G} = \{1, ..., 8\} = \{a_{1}^{e}, a_{1}^{f}, a_{1}^{f^{2}}, a_{1}^{f^{3}}, a_{1}^{fgf}, a_{1}^{fgf^{2}}, a_{1}^{fgf^{3}}\},$$

$$T_{1} = \{e, f, f^{2}, f^{3}, fg, fgf, fgf^{2}, fgf^{3}\}.$$

$$a_{2} = 2: \ a_{2}^{G_{a_{1}}} = \{2, 4, 8\} = \{a_{2}^{e}, a_{2}^{h}, a_{2}^{h^{2}}\}, T_{2} = \{e, h, h^{2}\}.$$

$$a_{3} = 3: \ a_{3}^{G_{a_{1}, a_{2}}} = \{3, 5\} = \{a_{3}^{e}, a_{3}^{k}\}, T_{3} = \{e, k\}.$$

Jeder Automorphismus von Γ_W ist eindeutig in der Form $t_3t_2t_1$ mit $t_3 \in T_3, t_2 \in T_2, t_1 \in T_1$ darstellbar (nach 5.22). Insbesondere: $T_1 \cup T_2 \cup T_3$ ist ein Erzeugendensystem von $G \implies$ einfacheres Erzeugendensystem: $\{f, g, h, k\}$.

5.24 Bemerkung. Satz von KRASNER \Longrightarrow Jede Relation der Form $F_{\varphi}(\Phi)$, die sich aus $\Phi \subset V \times V$ durch logische Operation F_{φ} ergibt $(\varphi(R, x_1, ..., x_m)$ Formel des Prädikatenkalküls erster Stufe) ist wieder invariant bzgl. Aut Φ $(F_{\varphi}(\Phi) \in \text{Inv Aut } \Phi = [\Phi])$.

Folgerung: Ist φ eine Eigenschaft von Punkten, Punktepaaren (z.B. Kanten), Punktentripeln (z.B. Dreiecke), usw. eines Graphen, die sich durch eine Formel des Prädikatenkalküls erster Stufe beschreiben lässt (ausschließlich unter Verwendung der Relation Φ), dann bleibt die Eigenschaft Φ unter Automorphismen erhalten $(a \models \varrho \implies a^g \models \varrho, (a,b) \models \varrho \implies (a^g,b^g) \models \varrho, (a_1,...,a_n) \models \varrho \implies (a^g_1,...,a^g_n) \models \varrho).$

Beispiele für ϱ :

- Knoten a hat Valenz k,
- a hat genau einen Nachbarn mit Valenz 3,
- je zwei Nachbarn von a sind nicht durch eine Kante verbunden,

6 POLYAsche Abzähltheorie

6.1 Beispiele (Isomorphietypen von Graphe). Graph $\Gamma = (V, E)$ ohne Schlingen, d.h. $E \subseteq (V \times V) \setminus \triangle_M =: M$. Sei $V := \{1, ..., n\}$. Dann $E \subseteq M \iff E \in \mathfrak{P}(M) \implies$ Es gibt $|\mathfrak{P}(M)| = 2^{|M|}$ viele solcher Graphen mit fester Knotenmenge V.

Problem: Wie viele Isomorphietypen gibt es? (D.h. wie viele bis auf Isomorphie verschiedene Graphen.)

Seien $\Gamma = (V, E), \Gamma' = (V', E')$ Graphen. Dann:

$$\Gamma \cong \Gamma' : \iff \exists \text{ Bijektion } f: V \to V' \forall v_1, v_2 \in V: (v_1, v_2) \in E \iff (f(v_1), f(v_2)) \in E'.$$

Umformulierung: oBdA $V = V' = \{1, ..., n\}$, d.h. $f \in S_n$. Dann:

$$f: \Gamma \to \Gamma'$$
 Isomorphismus $\iff \Gamma' = (V, E^{\tilde{f}}) \text{ mit } E^{\tilde{f}} = \{(a, b)^{\hat{f}} \mid (a, b) \in E\}$

wobei $(a,b)^{\hat{f}} = (a^f,b^f)$ (Wirkungen auf Paaren, vgl. 2.8(c) bzw. auf Potenzmenge, vgl. 2.8(a)). Also:

$$(V, E) \cong (V, E') \iff \exists f \in S_n : E' = E^{\tilde{f}} \iff E' \in E^{\tilde{S}_n}.$$

Dabei ist $E^{\tilde{S}_{\underline{n}}}$ 1-Bahn (von E erzeugt) der Gruppenwirkung $(\tilde{S}_n, \mathfrak{P}(M))$.

$$(V, E) \cong (V, E') \iff E \text{ und } E' \text{ sind in gleicher Bahn.}$$

Das heißt:

#Isomorphietypen =
$$\underbrace{\left(\text{Anzahl der Bahnen}\right)}_{\left(\text{1-Orb}\left(\tilde{S}_{n},\mathfrak{P}\left(M\right)\right)\right)\right]}.$$

Feinere Klassifizierung möglich, z.B. für festes $k \ge 0$:

#Isomorphietypen von Graphen
$$\Gamma = (V, E) \text{ mit } |E| = k$$

$$= |1 - \operatorname{Orb}\left(\tilde{S}_{\underline{n}}^{[k]}, \mathfrak{P}_k(M)\right)|.$$
 Einschränkung der Wirkung
$$(\tilde{S}_{\underline{n}}, \mathfrak{P}(M)) \text{ auf } \mathfrak{P}_k(M)$$
 Menge der k -elementigen Teilmengen von M

Darstellung oft durch erzeugende Funktion (Polynom):

$$\gamma(x) = \sum_{k=0}^{|M|} t_k x^k \overset{\text{Satz von}}{\underset{\text{POLYA}}{=}} Z(\hat{S}_{\underline{n}}).$$
sog. Zyklenzeiger $Z(\hat{S}_{\underline{n}})$ (aus $Z(S_{\underline{n}})$ bestimmbar)

6.2 Definition. Sei (G, M) Gruppenwirkung. Für $g \in G$ sei $M_g := \{m \in M \mid m^g = m\}$ (Menge aller Fixpunkte). Setze $\chi(g) := |Mg|$ der *Charakter* von g.

6.3 Lemma von CAUCHY–FROBENIUS–BURNSIDE. ("3-Männer–Lemma".) Sei~(G,M)~Gruppenwirkung.~Dann~gilt:

$$\underbrace{|1\text{-Orb}(G,M)|}_{\text{\#1-Bahnen}} = \underbrace{\frac{1}{|G|} \sum_{g \in G} \chi(g)}_{\text{Arithmetisches Mittel}}$$

$$\underbrace{\text{Arithmetisches Mittel}}_{\text{der Charaktere}}$$

Beweis. Betrachte Graph $\Gamma = (M \uplus G, E)$ mit $E = \{(g, m) \in G \times M \mid m^g = m\} \stackrel{(*)}{=} \{(g, m) \in G \times M \mid m \in M_g\} \stackrel{(**)}{=} \{(g, m) \in G \times M \mid g \in G_m\}$. Nun gilt:

$$E \stackrel{(*)}{=} \sum_{g \in G} |Mg| = \sum_{g \in G} \chi(g).$$

Anderseits:

$$|E| \stackrel{(**)}{=} \sum_{m \in M} |G_m| \stackrel{\text{1.14}}{=} \sum_{\text{LAGR.}} \sum_{m \in M} \frac{|G|}{|m^G|} = |G| \sum_{m \in M} \frac{1}{|m^G|}$$

$$= |G| \sum_{B \in 1\text{-Orb}(G,M)} \sum_{m \in B} \underbrace{\frac{1}{|m^G|}}_{=\frac{1}{|B|}} = |G| \sum_{B \in 1\text{-Orb}(G,M)} 1$$

$$= |G| \cdot |1\text{-Orb}(G,M)|.$$

6.4 Definition. (a) Sei $g \in S_M$. Es sei $j_k(g)$ (= j_k , falls keine Verwechslungsgefahr) die Anzahl der Zyklen der Länge k in der vollständigen (also unverkürzten) Zyklendarstellung von g ($k \in \{1,...,n\}$, n := |M|) Das Polynom (in unbestimmten $x_1,...,x_n$)

$$Z(g) := x_1^{j_1(g)} \cdot x_2^{j_2(g)} \cdots x_n^{j_n(g)}$$

heißt Zyklentyp (Zyklenindex) von g. (Falls $j_k(g) = 0$, so wird $x_k^{j_k(g)} = 1$ auch weggelassen.)

(b) Für $G \leq S_M$ heißt das Polynom

$$Z(G) = \frac{1}{|G|} \sum_{g \in G} Z(g)$$

der Zyklenzeiger (Zyklenindex) von G.

(c) POLYA-Substitution: Ersetzee von x_k durch $(1+x^k)$ im Zyklentyp bzw. Zyklenzeiger $(k \in \{1,...,n\})$. Bezeichnung für die durch Substitution entstehenden Polynome: Z(g, 1+x) bzw. Z(G, 1+x).

Bemerkung: Ähnliche Permutationen habe den gleichen Zyklentyp (vgl. 1.18). Genauer:

$$q_1, q_2$$
 ähnlich $\iff Z(q_1) = Z(q_2)$.

Daher Zusammenfassung ähnlicher Permutationen im Zyklenzeiger möglich! (→ Normalform.)

6.5 Beispiele. (a)

$$G := C_4 = \{g_0, g_1, g_2, g_3\} = \{e, \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 3 & 2 \end{pmatrix}\} \text{ auf }$$

$$\underbrace{4 = \{1, 2, 3, 4\}.}_{\{G_1\}} Z(G) = \underbrace{\frac{1}{4}(x_1^4 + x_4^1 + x_2^2 + x_4^1)}_{\{G_2\}} = \underbrace{\frac{1}{4}(x_1^4 + x_2^2 + 2x_4).}_{\{G_3\}}$$

$$G := S_{\underbrace{3}_{\{G_3\}}} \text{ auf } \underbrace{3 = \{1, 2, 3\}.}_{\{G_3\}} |S_{\underline{3}}| = 3! = 6. \text{ Dann gilt: } Z(G) = \underbrace{\frac{1}{6}(x_1^3 + 3x_1x_2 + 2x_3).}_{\{G_3\}}$$

- $G := S_3^{[2]}$ induzierte Wirkung von S_3 auf der Menge

$$M := \{(a,b) \in \underline{3} \times \underline{3} \mid a \neq b\} = (\underline{3} \times \underline{3}) \setminus \triangle_3.$$

Dann gilt: (Übung!) $Z(G) = \frac{1}{6}(x_1^6 + 3x_2^3 + 2x_3^2)$. Das heißt: G besitzt 1 Permutation mit 6 Fixpunkten, 3 Permutationen mit 3 Zyklen der Länge 2, 2 Permutationen mit 2 Zyklen der Länge 3.

6.6 Bemerkung. Wegen 6.3 erhält man die Zahl |1-Orb(G, M)| aus Z(G), wenn man alle Exponenten $j_1(g)$ von x_1 (Fixpunkte \approx Zyklen der Länge 1) aufsummiert (ergibt Arithmetisches Mittel wegen Faktor $\frac{1}{|G|}$ in Z(G)). Formal:

$$|1\text{-Orb}(G, M)| = \frac{1}{|G|} \sum_{g \in G} \chi(g) = \frac{1}{|G|} \sum_{g \in G} j_1(g).$$

Beispiel. $G = \{e, (1 \ 2), (3 \ 4), (1 \ 2), (3 \ 4)\}, M = \underline{4}.$ Dann: $Z(G) = \frac{1}{4}(x_1^4 + x_1^2x_2 + x_2^2x_3 + x_1^2x_4 + x_2^2x_3 + x_2^2x_4 + x_1^2x_4 + x_2^2x_4 + x_2^2x_4 + x_2^2x_4 + x_1^2x_4 + x_1^2x_5 +$ $x_1^2x_2+x_2^2$ \Longrightarrow $|1-\text{Orb}(G,M)|=\frac{1}{4}(1\cdot 4+2\cdot 2)=2$. Diese ist aber gleich dem Koeffizienten $\operatorname{coef}_1(Z(G,1+x))$ von x im Polynom Z(G,1+x) (vgl. POLYA–Substitution, 6.4).

Beweis. Übungsaufgabe!

Definition. coef $_k(\sum_{i=0}^m a_i x^i) := a_k \ (k \in \{0,...,m\}).$

Beispiel. Sei G wie oben. $Z(G,1+x)=\frac{1}{4}((1+x^4)+2(1+x^2)(1+x^2)+(1+x^2)^2) \Longrightarrow coef_1(Z(G,1+x))=\frac{1}{4}(4+2\cdot 2)=\frac{8}{4}=2.$

Für Beispiel (c) aus 6.5 ergibt die POLYA-Substitution

$$Z(S_{\underline{3}}^{[2]}, 1+x) = \frac{1}{6}((1+x)^6 + 3(1+x^2)^3 + 2(1+x^3)^2)$$

 \implies $\operatorname{coef}_1(Z(S_{\underline{3}}^{[2]},1+x))=\frac{1}{6}\cdot 6=1$. Das heißt: $S_{\underline{3}}^{[2]}$ hat nur eine Bahn, also $S_3^{[2]}$ transitiv auf M (vgl. 6.5).

(Abzähltheorie—allgemeine Aufgabestellung). Abzählung "kombinatorischer" Objekte durch Einteilung in Klassen (\approx Eigenschaften). A Menge, \sim Äquivalenzrelation auf $A, k: A \to \mathbb{N}^r$ mit $\sim = \ker k$. (D.h. jede Äquivalenzklasse $[a]_{\sim}$ (mit $a \in A$) ist eindeutig durch Zahlentupel $k(a) = (k_1(a), ..., k_r(a))$ charakterisiert.) Dann heißt das Polynom (in Variablen $x_1,...,x_r$)

$$t(x_1, ..., x_r) = \sum_{[a]_{\sim} \in A/_{\sim}} |[a]_{\sim}| \cdot x_1^{k_1(a)} \cdots x_r^{k_r(a)}$$

erzeugende Funktion für die Zerlegung A/\sim .

Problem: Bestimmung der erzeugenden Funktion.

Wiederholung: Für $f:A\to B$ ist $\ker f:=\{(a,b)\in A^2\mid f(a)=f(b)\}$ (vgl. lineare Algebra).

Die POLYAsche Abzähltheorie berechnet erzeugende Funktionen für (zunächst komplizierte) Zerlegungen, die durch Gruppenwirkungen induziert werden—und zwar aus dem Zyklenzeiger der gegebenen Gruppe.

Beispiel.

- **6.8 Vorbereitung auf Satz von POLYA.** Sei (G, M) Permutationsgruppe (bzw. allgemeiner: Gruppenwirkung), m := |M|.
- Induzierte Gruppenwirkung von G auf k-elementigen Teilmengen von M $(0 \le k \le m)$: $(G^{\{k\}}, \mathfrak{P}_k(M))$, vgl. 2.8(b).
- Induzierte Gruppenwirkung von G auf Potenzmenge: $(\tilde{G}, \mathfrak{P}(M))$, vgl. 2.8(a).
- ⇒ Zerlegung der 1-Bahnen:

$$1\text{-}\mathrm{Orb}\left(\tilde{G},\mathfrak{P}\left(M\right)\right)=\biguplus_{k=0}^{m}1\text{-}\mathrm{Orb}\left(G^{\left\{k\right\}},\mathfrak{P}_{k}(M)\right).$$

Erzeugende Funktion für diese Zerlegung:

$$t_G(x) := \sum_{k=0}^m t_k x^k \text{ mit } t_k := |1\text{-Orb}(G^{\{k\}}, \mathfrak{P}_k(M))|.$$

Beachte:

$$t_G(1) = \sum_{k=0}^{m} t_k = |1 - \text{Orb}(\tilde{G}, \mathfrak{P}(M)), \ t_1 = |1 - \text{Orb}(G, M)| \ (= |1 - \text{Orb}(G^{\{1\}}, \mathfrak{P}_1(M))|).$$

6.9 Satz von POLYA. (Für eine Variable.) Sei (G, M) Permutationsgruppe (bzw. Gruppenwirkung). Dann gilt

$$t_G(x) = Z(G, 1+x).$$

Speziell erhält man $t_G(a) = |1\text{-Orb}(\tilde{G}, \mathfrak{P}(M))|$, wenn alle Variablen in Z(G) mit dem Wert 2 belegt werden $(t_G(1) = Z(G, 1+x)(1) = Z(G)(2, ..., 2))$.

Beweis. $Z(G, 1+x) = \frac{1}{|G|} \sum_{g \in G} Z(g, 1+x).$

 $Z(g,1+x)=(1+x)^{j_1(g)}\cdot(1+x^2)^{j_2(g)}\cdots(1+x^m)^{j_m(g)}$. Für jedes $k\in\{0,...,m\}$ sei $c_k := \operatorname{coef}_k(Z(g, 1+x)), \text{ d.h. } Z(g, 1+x) = \sum_{k=0}^m c_k(g)x^k. \text{ Dann ist:}$

$$Z(G, 1+x) = \frac{1}{|G|} \sum_{g \in G} \left(\sum_{k=0}^{m} c_k(g) x^k \right) = \sum_{k=0}^{m} \left[\left(\frac{1}{|G|} \sum_{g \in G} c_k(g) \right) \right]_k^{x^k}.$$

Zu Zeigen: $\square_{k}^{\text{vgl. 6.8}}$ für alle $k \in \{0,...,m\}$.

Lemma. Für alle $k \in \{0,...,m\}$ gilt $c_k(g) = \chi(g^{\{k\}})$ mit

$$g^{\{k\}}: \mathfrak{P}_k(M) \to \mathfrak{P}_k(M), \ B \mapsto B^g.$$

Mit obigem Lemma folgt:

$$\square_k \stackrel{6.10}{=} \frac{1}{|G|} \sum_{g \in G} \chi(g^{\{k\}}) = \frac{1}{|G^{\{k\}}|} \sum_{h \in G^{\{k\}}} \chi(h) \stackrel{6.3}{=} |1 - \operatorname{Orb}(G^{\{k\}}, \mathfrak{P}_k(M))| \stackrel{6.8}{=} t_k.$$

Somit:

$$Z(G, 1+x) = \sum_{k=0}^{m} t_k x^k = t_G(x).$$

6.10 Lemma. (Notation wie in 6.8 und 6.9)

- $c_k(g) \stackrel{\mathrm{Def.}}{=} \mathrm{coef}_k(Z(g,1+x)))$ ist die Anzahl der k-elementigen Teilmengen von M, die invariant sind unter g, d.h. $c_k(g) = |\{B \in \mathfrak{P}_k(M) \mid B^g = B\}|$. $c_k(g) = \chi(g^{\{k\}})$ (wobei $g^{\{k\}} : \mathfrak{P}_k(M) \to \mathfrak{P}_k(M), B \mapsto B^g$).

Beweis. (b) ist nur Umformulierung von (a), denn

B invariant unter $q \iff B^g = B \iff B^{g^{\{k\}}} = B \iff B$ Fixpunkt von $q^{\{k\}}$ für alle $B \in \mathfrak{P}_k(M)$.

Zu (a): Vorbemerkung: Für $B \subseteq M$ gilt:

$$B^g = B \stackrel{\text{1.11(iv)}}{\iff} B \text{ ist Vereinigung von Zyklen von } g.$$
 (*)

Wir betrachten die (vollständige) Zyklendarstellung von q:

Anzahl der Elemente in Zyklen
$$M_1$$
 M_2 M_s $g=(\cdots)(\cdots)(\cdots)\cdots(\cdots)$ Menge der Elemente in Zyklen m_1 m_2 m_s

mit $m_1 = |M_1|$, $m_2 = |M_2|$, ..., $m_s = |M_s|$, $s := \# \mathbb{Z}$ yklen von g. Beachte: $\sum_{i=1}^s m_i = m = |M|$. Nun ist $j_l(g) := |\{i \in \{1,...,s\} \mid m_i = l\}|$ für alle $l \in \{1,...,m\}$. Es folgt:

$$Z(g, 1+x) = (1+x)^{j_1(g)} (1+x^2)^{j_2(g)} \cdots (1+x^m)^{j_m(g)}$$
$$= (1+x^{m_1})(1+x^{m^2}) \cdots (1+x^{m_s}).$$

Nun gilt:

$$Z(g, 1+x) = \prod_{l=1}^{m} (1+x^{l})^{j_{l}(g)} = \prod_{i=1}^{s} (1+x^{m_{i}})$$

$$\stackrel{(**)}{=} \sum_{T \subset \{1, \dots, s\}} \prod_{i \in T} x^{m_{i}} = \sum_{T \subset \{1, \dots, s\}} x^{\sum_{i \in T} m_{i}},$$

wobei allgemein gilt (Übung!):

$$\prod_{i=1}^{s} (1+z_i) = \sum_{T \subset \{1,\dots,s\}} \prod_{i \in T} z_i. \tag{**}$$

$$\implies \operatorname{coef}_k(Z(g, 1+x)) = |\{T \subseteq \{1, ..., s\} \mid k = \sum_{i \in T} m_i\}|.$$

Bemerkung: Die Abbildung

$$\Phi: \mathfrak{P}\left(\left\{1,...,s\right\}\right) \to \mathfrak{P}\left(M\right), \ T \mapsto \biguplus_{i \in T} M_i$$

ist injektiv, und es gilt $|\Phi(T)| = \sum_{i \in T} m_i$ für alle $T \subseteq \{1, ..., s\}$.

$$\begin{aligned} \operatorname{coef}_{k}(Z(g, 1+x)) &\overset{\Phi \text{ inj.}}{=} | \{ \Phi(T) \mid T \subseteq \{1, ..., s\}, \ k = \sum_{i \in T} m_{i} \} | \\ &= | \{ \Phi(T) \mid T \subseteq \{1, ..., s\}, \ k = | \Phi(T) | \} | \\ &= | \{ B \in \mathfrak{P}_{k}(M) \mid \exists T \subseteq \{1, ..., s\} : B = \Phi(T) \} | \\ &= | \{ B \in \mathfrak{P}_{k}(M) \mid B^{g} = B \} |. \end{aligned}$$

6.11 Folgerung. Sei $g \in S_M$, $s := \#Zyklen \ von \ g \ (in \ vollst. \ Zyklendarstelung)$, und sei $\tilde{g} : \mathfrak{P}(M) \to \mathfrak{P}(M)$, $B \mapsto B^g$. Dann gilt $\chi(\tilde{g}) = 2^s$.

Beweis. Aus Beweis von 6.10: $\Phi: \mathfrak{P}(\{1,...,s\}) \to \mathfrak{P}(M)$, $T \mapsto \bigcup_{i \in T} M_i$ ist injektiv, und $\operatorname{Im}(\Phi) = \{B \subseteq M \mid B^g = M\}$. Damit folgt:

$$\chi(\tilde{g}) = |\{B \subseteq M \mid B^g = M\}| = |\operatorname{Im}(\Phi)| \stackrel{\Phi \text{ inj.}}{=} 2^s. \quad \blacksquare$$

6.12 Bemerkung. $\mathfrak{P}(M) \cong 2^M \leadsto \text{Verallgemeinerung}$:

$$K^M := \{f \mid f: M \to K \text{ Abbildung}\}\$$

für beliebige Menge K. Es gibt eine Version des Satzes von Polya für mehrere Variablen: beschreibt Bahnen für Wirkung von $G \leq S_M$ auf der Menge K^M .

6.13 Beispiel (Isomorphie von Graphen). (vgl. 6.1) Sei $\Gamma = (V, E)$ Graph ohne Schlingen, d.h. $E \subseteq M := (V \times V) \setminus \triangle_V$. $\Gamma \cong \Gamma' \stackrel{\text{6.1}}{\Longleftrightarrow} E' \in E^{\tilde{S_n}} (|V| := \tilde{S}_n, \Gamma' = (V, E'))$.

#Isomorphietypen = $|1\text{-Orb}\left(\tilde{S}_{\underline{n}}, \mathfrak{P}\left(M\right)\right)|$,

#Isomorphietypen von Graphen mit k Kanten = $|1\text{-Orb}(S_n^{\{k\}}, \mathfrak{P}_k(M))| = t_k$.

Gemäß Vorbereitung 6.8 ist die erzeugende Funktion von $(\tilde{S}_{\underline{n}}, \mathfrak{P}(M))$ gegeben durch $t_G(x) = \sum_{k=0}^M t_k x^k$, wobei (G, M) Wirkung von $S_{\underline{n}}$ auf M ist, d.h. $(G, M) := (S_{\underline{n}}^{[2]}, M)$. Berechnung von $t_G(x)$, d.h. $t_{S_{\underline{n}}^{[2]}}(x)$, mit dem Satz von POLYA (6.9):

$$t_{S_n^{[2]}}(x) = Z(S_{\underline{n}}^{[2]}, 1+x).$$

Man muss also Zyklenzeiger von $S_{\underline{n}}^{[2]}$ bestimmen (Übung für n=3!). Hier am Beispiel n=4: $|S_4|=4$!, aber nur 5 Ähnlichkeitsklassen:

Repräsentanten	Anzahl der Elemente in Ähnlichkeitsklassen
$g_1 = e = (1)(2)(3)(4)$	# = 1
$g_2 = \left(12\right)\left(3\right)\left(4\right)$	$\# = \binom{4}{2} = 6$
$g_3 = \left(12\right)\left(34\right)$	$\# = \frac{1}{2} \binom{4}{2} = 3$
$g_4 = (123)(4)$	$\# = 2\binom{4}{3} = 8$
$g_5 = (1234)$	# = 3! = 6

Da ähnliche Permutationen den gleichen Zyklentyp haben (vgl. 6.4), ergibt sich $Z(S_{\underline{4}})=\frac{1}{4!}(Z(e)+6Z(g_2)+3Z(g_3)+8Z(g_4)+6Z(g_5))=\frac{1}{4!}(x_1^4+6x_1^2x_2+3x_2^2+8x_1x_3+6x_4).$ Nun Übergang zu $S_{\underline{4}}^{[2]}$. In $S_{\underline{4}}$: Ähnlichkeit = Konjugiertheit \Longrightarrow Konjugiertheit bleibt beim Übergang zu $S_{\underline{4}}^{[2]}$ erhalten:

$$\varphi(\tilde{g}) = \varphi(h^{-1}gh) = \varphi(h)^{-1}\varphi(g)\varphi(h).$$

Also

$$Z(S_{\underline{4}}^{[2]}) = \frac{1}{4!}(Z(\hat{e}) + 6Z(\hat{g}_2) + 3Z(\hat{g}_3) + 8Z(\hat{g}_4) + 6Z(\hat{g}_5)),$$

wobei $\tilde{g}: M \to M$, $(a,b) \mapsto (a^g,b^g)$ induzierte Wirkung von $g \in S_M$ auf $M = (V \times V) \setminus \Delta_V$, |M| = 12. Insbesondere $\hat{e} = e \implies Z(\hat{e}) = x_1^{12}$. $g_2 = (12)(3)(4) \implies$

$$\hat{g}_2 = \Big((1,2)(2,1) \Big) \, \Big((1,3)(2,3) \Big) \, \Big((1,4)(2,4) \Big) \, \Big((3,1)(3,2) \Big) \, \Big((4,1)(4,2) \Big) \, \Big((3,4)(4,3) \Big)$$

 $\implies Z(\hat{g}_2) = x_1^2 x_2^5$. Analog berechnet man: $Z(\hat{g}_3) = x_2^6$, $Z(\hat{g}_4) = x_3^4$, $Z(\hat{g}_5) = x_4^3$. Also $Z(S_4^{[2]}) = \frac{1}{4!}(x_1^{12} + 6x_1^2x_2^5 + 3x_2^6 + 8x_3^4 + 6x_4^3)$. POLYA–Substitution:

$$Z(S_{\underline{4}}^{[2]}, 1+x) = \frac{1}{4!}((1+x)^{12} + 6(1+x)^2(1+x^2)^5 + 3(1+x^2)^6 + 8(1+x^3)^4 + 6(1+x^4)^3)$$

$$= 1 + x + 5x^2 + 13x^3 + 27x^4 + 38x^5 + 48x^6 + 38x^7 + 27x^8 + 13x^9 + 5x^{10}$$

$$+ x^{11} + x^{12}.$$

Wie viel bis auf Isomorphie verschiedene Graphen mit 4 Knoten und 5 Kanten gibt es? Antwort: 38. Fun-fact: Wiederholung der Zahlen wegen Komplementbildung von Graphen.

7 Operationen auf Permutationsgruppen

7.1 Definition. Das direkte Produkt $(G, M) \times (H, N)$ zweier Permutationsgruppen (G, M), (H, N) ist definiert als $(G \times H, M \times N)$ mit Wirkung

$$(a,b)^{(g,h)} := (a^g, b^h)$$

für $(a,b) \in M \times N$, $(g,h) \in G \times H$. Übung: Nachrechnen, dass dies eine Wirkung definiert!

Andere Wirkung der gleichen abstrakten Gruppe:

7.2 Definition. Die *direkte Summe* $(G, M) \oplus (H, N)$ zweier Permutationsgruppen (G, M), (H, N) ist definiert als $(G \times H, M \uplus N)$ mit Wirkung gemäß

$$x^{(g,h)} := \begin{cases} x^g \text{ falls } x \in M, \\ x^h \text{ falls } x \in N \end{cases}$$

für $x \in M \uplus N$, $(g,h) \in G \times H$. Übung: Nachrechnen, dass dies Wirkung ist!

Bemerkung: Falls M und N nicht disjunkt sind, werden sie künstlich disjunkt gemacht mittels $M \uplus N := (M \times \{0\}) \uplus (N \times \{1\})$.

7.3 Satz und Definition. Es sei G eine (beliebige) Gruppe und (H, N) eine Permutationsgruppe. Dann ist die Menge

$$G^N \times H = \{(\alpha, h) \mid \alpha : N \to G, h \in H\}$$

zusammen mit der Operation $(\alpha', h') \cdot (\alpha'', h'')$ mit $\alpha(i) := \alpha'(i)\alpha''(i^{h'})$ $(i \in N)$ und h := h'h'' eine Gruppe, das sogenannte Kranzprodukt (engl. $Wreath\ Product)$ $G \wr (H, N)$ (auch $G \operatorname{Wr}(H, N), G \wr_N H$).

Beweis. – Assoziativität von · : Nachrechnen (Übung!)

- neutrales Element bzgl. $\cdot : (\varepsilon, e_H)$ mit $\varepsilon : N \to G, i \mapsto e_G$
- inverses Element zu $(\alpha, h) \in G^{N} \times H : (\overline{\alpha}, h^{-1})$ mit $\overline{\alpha}(i) := \alpha(i^{h^{-1}})^{-1}$ $(i \in N)$.

7.4 Definition. Spezialfall: Seien G, H (abstrakte) Gruppen, (H^*, H) rechtsreguläre Darstellung von H (vgl. 2.4, 2.5) durch Rechtsmultiplikation $(h^*: H \to H, x \mapsto xh)$.

$$G \wr_r H := G \wr (H^*, H)$$

heißt $reguläres\ Kranzprodukt\ von\ G\ und\ H.$

Bemerkung. Sei $N \subseteq G$. Es gibt eine Einbettung $\Phi: G \to N \wr_r (G/N)$. Wähle dazu Abb. $f: G/N \to G$, sodass H = Nf(H) für alle $H \in G/N$ (Repräsentantenauswahl). Definiere nun $\Phi: G \to N \wr_r G/N$ durch $\Phi(g) := (\alpha_g, Ng) \ (g \in G), \ \alpha_g := G/N \to N, H \mapsto f(h)gf(Hg)^{-1}$. Beobachtung: Nach Wahl von f ist H = Nf(H), also $f(H)g \in Nf(Hg)$ für alle $H \in G/N$ und $g \in G$. Damit ist α_g wohldefiniert für jedes $g \in G$. Nachrechnen: Φ ist injektiver Gruppenhomomorphismus.

7.5 Satz. Sei G Gruppe, $H \leq S_N$, |N| = n. Dann:

- (a) $|G \wr (H, N)| = |G|^{|N|} \cdot |H| = |G|^n |H|$.
- (b) $D := \{\alpha, e_H\} \mid \alpha \in G^N\}$ ist Normalteiler von $G \wr (H, N)$. Für jedes $i \in N$ ist $D_i := \{(\alpha, e_H) \mid \alpha \in G^N \forall j \in N \setminus \{i\} : \alpha(j) = e_G\}$ Untergruppe von $G \wr (H, N)$ und isomorph zu G. Isomorphismus: $G \ni g \mapsto (\alpha_{i,g}, e_H) \in D_i$ mit

$$\alpha_{i,g}(j) := \begin{cases} g & \text{, falls } i = j, \\ e_G & \text{, sonst.} \end{cases}$$

Außerdem ist D inneres direktes Produkt der Gruppen $D_1,...,D_n$ und $G^N \cong D$.

- (c) $H^* := \{(\varepsilon, h) \mid h \in H\} \cong H \text{ und es gilt } G \wr (H, N) = H^*D \text{ und } |D \cap H^*| = 1.$
- (d) $\Delta(G) := \{(c_g, e_H) \mid g \in G\} \leq D \leq G \wr (H, N) \text{ (mit } c_g : N \to G, i \mapsto g). \text{ Es gilt } \Delta(G) \cong G \text{ und } |\Delta(G) \cap H^*| = 1 \text{ und } H^*\Delta(G) \cong H \times G.$
- **7.6 Definition und Satz.** Das Kranzprodukt $(G,N) \wr (H,N)$ zweier Permutationsgruppen (G,M), (H,N) ist die Wirkung $(G \wr (H,N), M \times N)$ auf dem kartesischen Produkt $M \times N$ gemäß $(a,b)^{(\alpha,h)} := (a^{\alpha(b)},b^h)$ für $(a,b) \in M \times N$, $(\alpha,h) \in G^N \times H$. Ist $M \neq \emptyset$, dann ist diese Wirkung treu (vgl. 2.1).

Beweis. Es gilt $(a,b)^{(\varepsilon,e)} = (a^{\varepsilon(b)},b^{e_H}) = (a,b),$

$$\left((a,b)^{(\alpha',h')}\right)^{(\alpha'',h'')} = (a^{\alpha(b)},b^{h'})^{(\alpha'',h'')} = (a^{\alpha'(b)\alpha''(b^{h'})},b^{h'h''}) \stackrel{7.3}{=} (a^{\alpha(b)},b^h) = (a,b)^{(\alpha,h)}$$

für $(\alpha, h) = (\alpha', h')(\alpha'', h'')$. Treue: Sei $(\alpha, h) \in G^N \times H$ mit $(\alpha, h) \neq (\varepsilon, e)$.

- 1. Fall: $h \neq e \implies \exists b \in N : b^h \neq b$. Wähle $a \in M \neq \emptyset$. Dann $(a,b)^{(\alpha,h)} = (a^{\alpha(b)},b^h) \neq (a,b)$.
- 2. Fall: $\alpha \neq \varepsilon \implies \exists b \in N : \alpha(b) \neq e \implies \exists a \in M : a^{\alpha(b)} \neq a \implies (a,b)^{(\alpha,h)} = (a^{\alpha(b)}, b^h) \neq (a,b).$

7.7 Beispiele. (a) Seien M, N (endliche) nicht-leere Mengen. Definiere Äquivalenz-relation

$$\theta := \{ ((a,b), (a',b')) \in (M \times N)^2 \mid b = b' \}$$

auf $M \times N$. Dann ist $(\operatorname{Aut} \theta, M \times N) \cong (S_M, M) \wr (S_N, N)$ (Ähnlichkeit, vgl. 1.6).

Beweis. Die Wirkung von $S_M \wr (S_N, N)$ auf $M \times N$ gem. 7.6 definiert Homomorphismus

$$\varphi: S_M \wr (S_N, N) \to S_{M \times N}, \ (a, b)^{\varphi(\alpha, h,)} := (a, b)^{\alpha, h} \stackrel{7.6}{=} (a^{\alpha(b)}, b^h).$$

Da die Wirkung treu ist, ist φ injektiv (vgl. 2.1). Zu Zeigen ist: $\text{Im}\varphi = \text{Aut}\,\theta$

(1) $\operatorname{Im}\varphi \subseteq \operatorname{Aut}\theta : \operatorname{F\"{u}r}(\alpha,h) \in (S_M)^N \times S_N$:

$$((a,b),(a',b')) \in \theta \iff b = b' \iff^{h \in S_N} b^h = (b')^h$$
$$\iff ((a,b)^{(\alpha,h)},(a',b')^{(\alpha,h)}) \in \theta,$$

d.h. $\varphi(\alpha, h) \in \operatorname{Aut} \theta$.

(2) Aut $\theta \subseteq \text{Im}\varphi : \text{Sei } g \in \text{Aut }\theta$. Betrachte

$$\operatorname{pr}_M: M \times N \to M, \ (a,b) \mapsto a, \ \operatorname{pr}_N: M \times N \to M, \ (a,b) \mapsto b.$$

Definiere $\alpha: N \to S_M$ durch

$$a^{\alpha(b)} := \operatorname{pr}_{M}((a,b)^{g})$$

 $(a \in M, b \in N)$. Sei $b \in N$. Dann ist $\alpha(b) : M \to M$ wirklich eine Permutation: Für $a, a' \in M$ gilt:

$$a \neq a' \iff (a,b) \neq (a',b)$$

$$\stackrel{g \in S_{M \times N}}{\iff} (a,b)^g \neq (a',b)^g$$

$$\stackrel{g \in \text{Aut } \theta}{\iff} \text{pr}_M((a,b)^g) \neq \text{pr}_M((a',b)^g)$$

 $\Longrightarrow \alpha(b)$ ist injektiv $\stackrel{M \text{ endlich}}{\Longrightarrow} \alpha(b) \in S_M$. Wähle nun $a_0 \in M \neq \emptyset$. Definiere $h: N \to N, b \mapsto \operatorname{pr}_N((a_0, b)^g)$. Auch h ist Permutation: Für $b, b' \in N$:

$$b \neq b' \iff (a_0, b) \neq (a_0, b')$$

 $\iff (a_0, b) \neq (a_0, b')^g$

$$\stackrel{g \in \operatorname{Aut} \theta}{\iff} \operatorname{pr}_N((a_0, b)^g) \neq \operatorname{pr}_N((a_0, b')^g)$$

 $\implies h$ ist injektiv $\stackrel{N \text{ endl.}}{\Longrightarrow} h \in S_N$. Schließlich folgt für alle $(a,b) \in M \times N$:

$$(a,b)^g = (\operatorname{pr}_M((a,b)^g), \operatorname{pr}_N((a,b)^g)$$

$$\stackrel{g \in \operatorname{Aut} \theta}{=} (a^{\alpha(b)}, \operatorname{pr}_N(a_0,b)^g)$$

$$= (a^{\alpha(b)}, b^h) = (a,b)^{\alpha,h}$$

$$\implies \varphi(\alpha, h) = g.$$

(b) Seien $\Gamma_0 = (N, \Phi_0)$, $\Gamma_1 = (M, \Phi_1)$ endliche, nichtleere Graphen, definiere Graph $\Gamma := (M \times N, \Phi)$ mit

$$\Phi := \{ ((a,b), (a',b')) \in (M \times N)^2 \mid (b,b') \in \Phi_0 \lor ((a,a') \in \Phi_1 \land b = b') \}.$$

Die Wirkung aus 7.6 definiert einen (injektiven) Homomorphismus φ : Aut $\Gamma_1 \wr (\operatorname{Aut} \Gamma_0, N) \to \operatorname{Aut} \Gamma$.

Beweis. Sei $(\alpha, h) \in (\operatorname{Aut} \Gamma_1)^N \times (\operatorname{Aut} \Gamma_0)$. Wir zeigen: $\varphi(\alpha, h) \in \operatorname{Aut} \Gamma$. Betrachte eine Kante $((a, b), (a', b')) \in \Phi$ in Γ .

$$- (b,b') \in \Phi_0 \stackrel{h \in \operatorname{Aut} \Gamma_0}{\Longleftrightarrow} (b^h,(b')^h) \in \Phi_0 \implies ((a,b)^{(\alpha,h)},(a',b')^{(\alpha,h)}) \in \Phi.$$

$$- (a, a') \in \Phi_1 \wedge b = b' \stackrel{\alpha(b) \in \operatorname{Aut} \Gamma_1}{\Longleftrightarrow} (a^{\alpha(b)}, (a')^{\alpha(b)}) \in \Phi_1 \wedge b^h = (b')^h$$
$$\Longrightarrow ((a, b)^{(\alpha, h)}, (a', b')^{(\alpha, h)}) \in \Phi.$$

Also $\varphi(\alpha, h) \in \operatorname{Aut} \Gamma$.

Konkret: $\Gamma_0 := (N, (N \times N) \setminus \Delta_N)$ mit $N := \{1, 2\}$ und $\Gamma_1 := (M, \Phi_1)$ mit $M := \{a, b, c\}, \Phi_1 := \{(a, b), (b, c), (c, a)\}$. Bild:

Dann gilt: Aut $\Gamma_0 = S_2$, Aut $\Gamma_1 \cong \mathbb{Z}_3$ und $\varphi : H := \operatorname{Aut} \Gamma_1 \wr (\operatorname{Aut} \Gamma_0, N) \to \operatorname{Aut} \Gamma =: G$ ist ein Isomorphismus. Denn:

$$|G| = |(a,1)^G| \cdot |G_{(a,1)}| = G \cdot |(a,2)^{G_{(a,1)}}| \cdot |G_{(a,1),(a,2)}|$$

= $6 \cdot 3 = 18 = 3^2 \cdot 2 = |\mathbb{Z}_3|^2 \cdot |S_2| = |H|$

und φ ist eine Einbettung nach dem ersten Teil von (b).

7.8 Definition und Satz. Die $Exponentiation (G, M) \uparrow (H, N)$ ist die Wirkung $(G \wr (H, N), M^N)$ gemäß

$$f^{(\alpha,h)} := f(b^{h-1})^{\alpha(b^{h-1})}$$

(Kranzprodukt, vgl. 7.3), d.h.

$$f^{(\alpha,h)}(b^h) = f(b)^{\alpha(b)}$$

für alle $(\alpha, h) \in G^N \times H$, $f \in M^N$ und $b \in N$. Diese ist treu, falls $|M| \ge 2$.

Beweis. Es gilt $f^{(\varepsilon,e)} = f(b^e)^{\varepsilon(b^e)} = f^b$

$$\begin{split} \left(f^{(\alpha',h')}\right)^{(\alpha'',h'')} &= f^{(\alpha',h')} \left(b^{(h'')^{-1}}\right)^{\alpha''} \left(b^{(h'')^{-1}}\right) \\ &= f \left(b^{(h'')^{-1}}(g')^{-1}\right)^{\alpha'} \left(b^{(h'')^{-1}}(h')^{-1}\right) \alpha'' \left(b^{(h'')^{-1}}\right) \\ &= f \left(b^{(h'h'')^{-1}}\right)^{\alpha'} \left(b^{(h''h'')^{-1}}\right) \alpha'' \left(b^{(h'')^{-1}}\right) \\ &= f \left(b^{h^{-1}}\right)^{\alpha'} \left(b^{h^{-1}}\right)^{\alpha''} \left(\left(b^{h^{-1}}\right)^{h'}\right) \\ &= f \left(b^{h^{-1}}\right)^{\alpha} \left(b^{h^{-1}}\right) = f^{(\alpha,h)}(b) \end{split}$$

für

$$(\alpha, h) \stackrel{\text{Def.}}{=} \underbrace{(\alpha', h')(\alpha'', h'')}_{\in G^N \times H}. \tag{7.3}$$

Diese Wirkung ist treu (falls $|M| \ge 2$). Denn sei $(\alpha, h) \in G^N \times H$ mit $(\alpha, h) \ne (\varepsilon, e)$.

- 1. Fall: $h \neq e$. Dann gibt es $b \in N$ mit $b^h \neq b$. Da $|M| \geq 2$, gibt es $f \in M^N$ mit $f(b)^{\alpha(b)} \neq f(b^h)$. Es folgt $f^{(\alpha,h)(b^h)} = f(b)^{\alpha(b)} \neq f(b^h)$ und daher $f^{(\alpha,h)} \neq f$.
- 2. Fall: $h = e_H$. Dann $\alpha \neq \varepsilon$. Also gibt es $b \in N$ mit $\alpha(b) \neq e_G$. Dann gibt es $a \in M$ mit $a^{\alpha(b)} \neq a$. Setze nun $f: N \to M$, $x \mapsto a$ (konstant). Dann ist $f(\alpha, h) = a^{\alpha(b)} \neq a = f(b)$ und daher $f^{(\alpha,h)} \neq f$.

7.9 Bemerkung. Schreibweise von $(\alpha, h) \in G^N \times H = G \wr (H, N)$ in *Tabellenform*, falls $N = \{1, ..., n\}$:

$$((g_1,...,g_n),h)$$
 mit $g_i := \alpha(i) \in G, i = 1,...,n$.

Kranzproduktmultiplikation in dieser Schreibweise:

- Einselement: $((e_G, ..., e_G)), e_H),$
- Inverses von $(g_1, ..., g_n), h$: $(g_{1h}^{-1}, ..., g_{nh}^{-1}), h^{-1}$,

Multiplikation:

$$((g'_1,...,g'_n),h')\cdot((g''_1,...,g''_n),h'')=((g'_1g''_{1h'},...,g'_ng''_{nh'}),h'h'')$$

Insbesondere lässt sich jedes Element zerlegen in ein Produkt der Form

$$((g_1, ..., g_n), h) = ((g_1, e, ..., e), e) \cdot ... \cdot ((e, ..., e, g_n), e) \cdot ((e, ..., e), h)$$
$$= ((g_1, ..., g_n), e) \cdot ((e, ..., e), h),$$

vgl. auch 7.5.

7.10 Bemerkung. Für $N = \{1, ..., n\}$. Schreibw. für $f \in M^N$: $f = \overbrace{(f(1), ..., f(n))}^{=:(a_1, ..., a_n)} \in M^n$. Die Wirkung der Exponentiation (vgl. 7.8) lässt sich wie folgt beschreiben: Für $(\alpha, h) = ((g_1, ..., g_n), h) = ((g_1, ..., g_n), e_H) \cdot ((e_G, ..., e_G), h) \in G^N \times H$ (Zerlegung wie in 7.9) ist:

$$(a_{1},...,a_{n})^{((g_{1},...,g_{n}),e_{H})} = (a_{1}^{g_{1}},...,a_{n}^{g_{n}}),$$

$$(a_{1},...,a_{n})^{((e_{G},...,e_{G}),h)} = (a_{1}^{h^{-1}},...,a_{n}^{h^{-1}}),$$

$$(a_{1},...,a_{n})^{(\alpha,h)} = (a_{1}^{g_{1}^{h^{-1}}},...,a_{n}^{g_{n}^{h^{-1}}}).$$

7.11 Beispiel (der *n*-dimensionale Würfel). Sei $B = \{0, 1\}, n \ge 1$. Der *n*-dimensionale Würfel ist der Graph $(B^n, \Phi_1(n))$ mit der Kantenmenge

$$\Phi_1(n) := \{ (a, b) \in B^n \times B^n \mid d(a, b) = 1 \},$$

wobei $d: B^n \times B^n \to \mathbb{N}$ Hamming-Metrik, d.h.

$$d(\boldsymbol{a}, \boldsymbol{b}) := \{i \in \underline{n} \mid a_i \neq b_i\} \ (\boldsymbol{a}, \boldsymbol{b} \in B^n).$$

Mengentheoretische Beschreibung: $N = \{1, ..., n\}$:

Teilmengen
$$\stackrel{1-1}{\longleftrightarrow}$$
 Elemente von B^n
 $A \subseteq N$ \mapsto $\chi(A) = (a_1, ..., a_n)$ mit

$$a_i := \begin{cases} 1 & \text{falls } i \in A, \\ 0 & \text{sonst.} \end{cases}$$

Für $A, B \in \mathfrak{P}(N)$ gilt dann: $d(\chi(A), \chi(B)) = |A\Delta B|$, wobei $A\Delta B := (A \cup B) \setminus (A \cap B)$ (symm. Differenz). Insbesondere gilt: $d(\chi(A), \chi(B)) = 1 \iff |A\Delta B| = 1$. Für $i \in \{0, ..., n\}$ definieren wir

$$\Phi_i(n) := \{ (\boldsymbol{a}, \boldsymbol{b}) \in B^n \times B^n \mid d(\boldsymbol{a}, \boldsymbol{b}) = i \}.$$

Zerlegung: $B^n \times B^n = \biguplus_{i=0}^n \Phi_i(n)$.

7.12 Satz. Die Automorphismengruppe des n-dimensionalen Würfels:

Aut
$$\Phi_1(n) \cong S_2 \uparrow S_n$$
.

Genauer: (Aut $\Phi_1(n), B^n$) \cong $(S_2, B) \uparrow (S_{n,n})$ (im Sinne von Ähnlichkeit).

Beweis. Die Wirkung von $S_{\underline{2}} \wr (S_{\underline{n}}, \underline{n})$ auf B^n gemäß 7.8 definiert einen Homomorphismus $\varphi: S_2 \wr (S_n, \underline{n}) \to S_{B^n}$. Da die Wirkung treu ist (vgl. 7.8), ist φ injektiv (vgl. 2.1). Das heißt: φ induziert einen Isomorphismus von $S_2 \wr (S_n, \underline{n})$ auf $\varphi(S_2 \wr (S_n, \underline{n})) = \text{Im}\varphi$. Zu zeigen: $\operatorname{Im}\varphi = \operatorname{Aut}\Phi_1(n)$. Zunächst: $\operatorname{Im}\varphi \subseteq \operatorname{Aut}\Phi_1(n)$. Sei $(\alpha,h) = ((g_1,...,g_n),h) \in$ $S_2^n \times S_n$

 $(a, b) \in \Phi_1(n) \iff a \text{ und } b \text{ unterscheiden sich in genau einer Koordinate.}$

- $\implies (a_1^{g_1},...,a_n^{g_n}) \text{ und } (b_1^{g_1},...,b_n^{g_n}) \text{ unterscheiden sich in genau einer Koordinate} \\ \iff (\boldsymbol{a}^{((g_1,...,g_n),e)},\boldsymbol{b}^{((g_1,...,g_n),e)}) \in \Phi_1(n) \implies \varphi(((g_1,...,g_n),e)) \in \operatorname{Aut}\Phi_1(n). \\ \iff (a_1^{h^{-1}},...,a_n^{h^{-1}}) \text{ und } (b_1^{h^{-1}},...,b_n^{h^{-1}}) \text{ unterscheiden sich in genau einer Koordinate} \\ \iff \varphi(((e,...,e),h)) \in \operatorname{Aut}\Phi_1(n).$

Es folgt: $\varphi(\alpha, h) \stackrel{\varphi \text{ ist}}{\underset{\text{Hom.}}{=}} \varphi(((g_1, ..., g_n), e)) \varphi(((e, ..., e), h)) \in \text{Aut } \Phi_1(n).$

7.13 Zwischenbemerkungen. Für $i \in \{0, ..., n\}$ definiere

$$\Gamma_i(\boldsymbol{a}) := \{ \boldsymbol{b} \in B^n \mid d(\boldsymbol{a}, \boldsymbol{b}) = i \} \ (\boldsymbol{a} \in B^n).$$

Dann gilt:

$$\Gamma_i(\boldsymbol{a})^f = \Gamma_i(\boldsymbol{a}^f)$$
 für alle $\boldsymbol{a} \in B^n, \ i \in \{0, ..., n\} \text{ und } f \in \operatorname{Aut} \Phi_1(n),$ (*)

$$\{\boldsymbol{b}\} = \bigcap \{\Gamma_1(\boldsymbol{a}) \mid \boldsymbol{a} \in \Gamma_1(\boldsymbol{b}) \cap \Gamma_i(\boldsymbol{0})\}.$$
 (**)

Beweis. Übungsaufgabe. Hinweis für (**): " \subseteq " ist klar, " \supseteq " ist einfach für $i \in \{1, ..., n-1\}$ 1}, $b \in \Gamma_{i+1}(0)$.

Nach (*) folgt $\Gamma_1(\mathbf{0})^f = \Gamma_1(\mathbf{0}^f) = \Gamma_1(\mathbf{0})$ für alle $f \in G_0$ (von jetzt an ist $G := \operatorname{Aut} \Phi_1(n)$, d.h. jedes $f \in G_0$ permutiert die Nachbarn von **0**. Wir erhalten eine Abbildung $\psi: G_{\mathbf{0}} \to S_N, \ f \mapsto f|_N$, wobei $N := \Gamma_1(\mathbf{0}) = \{(1, 0, ..., 0), ..., (0, ..., 0, 1)\}.$ Offenbar ist ψ Homomorphismus, außerdem ist ψ surjektiv.

Sei $g \in S_N$. Da die Abbildung $\theta : \{1, ..., n\} \to N, i \mapsto (0, ..., 0, 1, 0, ..., 0)$ (1 an der i-ten Stelle) bijektiv ist, können wir ein $h \in S_{\underline{n}}$ durch $i^h := \theta^{-1}(\theta(i)^g)$ $(i \in \underline{n})$ definieren. Es folgt nun für jedes $i \in \underline{n}$:

$$(0,...,0,\overbrace{1}^{i\text{-te Stelle}},0,...,0)^g = \theta(i)^g = \theta(i^h) = (0,...,0,\overbrace{1}^{i\text{-te Stelle}},0,...,0)$$

$$\stackrel{7.10}{=} (0,...,0,\underbrace{1}_{i\text{-te Stelle}},0,...,0)^{((e,...,e),h)}.$$

$$\stackrel{i\text{-te Stelle}}{=} (0,...,0,\underbrace{1}_{i\text{-te Stelle}},0,...,0)^{((e,...,e),h)}.$$

Wir zeigen nun: ψ ist auch injektiv. Es genügt zu zeigen: $\ker \psi = \{e\}$. Dazu sei $f \in \operatorname{Ker} \psi$, d.h. $f \in G_0$ und $f|_N = \operatorname{id}_N$. Wir zeigen $f|_{\Gamma_i(\mathbf{0})} = \operatorname{id}|_{\Gamma_i(\mathbf{0})}$ per Induktion über $i \in \{1, ..., n\}.$

- (IA) Nach Voraussetzung.
- (IS) Gelte $f|_{\Gamma_i(\mathbf{0})} = \mathrm{id}|_{\Gamma_i(\mathbf{0})}$ fur ein $i \in \{1, ..., n-1\}$. Für alle $\mathbf{b} \in \Gamma_{i+1}(\mathbf{0})$:

$$\{\boldsymbol{b}^f\} = \{\boldsymbol{b}\}^f \stackrel{(**)}{=} \bigcap \{\Gamma_1(\boldsymbol{a})^f \mid \boldsymbol{a} \in \Gamma_1(\boldsymbol{b}) \cap \Gamma_i(\boldsymbol{0})\}$$

$$\stackrel{(*)}{=} \bigcap \{\Gamma_1(\boldsymbol{a}^f) \mid \boldsymbol{a} \in \Gamma_1(\boldsymbol{b}) \cap \Gamma_i(\boldsymbol{0})\}$$

$$\stackrel{(\text{IV})}{=} \bigcap \{\Gamma_1(\boldsymbol{a}) \mid \boldsymbol{a} \in \Gamma_1(\boldsymbol{b}) \cap \Gamma_i(\boldsymbol{0})\}$$

$$\stackrel{(**)}{=} \{\boldsymbol{b}\}, \text{ also } \boldsymbol{b}^f = \boldsymbol{b}$$

$$\implies f|_{\Gamma_{i+1}(\mathbf{0})} = \mathrm{id}|_{\Gamma_{i+1}(\mathbf{0})}.$$

Wegen $B^n = \bigcup_{i=0}^n \Gamma_i(\mathbf{0})$ folgt $f = \mathrm{id}_{B^n}$. Also ist ψ injektiv und damit ein Isomorphismus. Insbesondere gilt: $|G_{\mathbf{0}}| = |S_N| = n!$.

Außerdem: $\mathbf{a}^G = B^n$ (d.h. G ist transitiv). Für jedes $(a_1,...,a_n) \in B^n$ gibt es $g_1,...,g_n \in S_2$ mit $a_1 = 0^{g_1},...,a_n = 0^{g_n}$ und es folgt $(a_1,...,a_n) = (0^{g_1},...,0^{g_n}) = (0,...,0)^{((g_1,...,g_n),e)} \in \mathbf{0}^G$.

Finale: Nach 1.14 gilt $|G| = |G_0| \cdot |\mathbf{0}^G| = n! \cdot |B^n| = n! \cdot 2^n$.

Da φ injektiv ist: $|\mathrm{Im}\varphi|=|S_{\underline{2}}\wr(S_{\underline{n}},\underline{n})|\stackrel{7.5}{=}2^nn!$. Wegen $\mathrm{Im}\varphi\subseteq G$ folgt $\mathrm{Im}\varphi=G$. Also: φ ist Isomorphismus von $S_{\underline{n}}\wr(S_{\underline{n}},\underline{n})$ nach G.

8 Die Sätze von CAUCHY und SYLOW

Erinnerung: Satz von LAGRANGE, vgl. 1.12:

$$G$$
 Gruppe (endlich), H Untergruppe $\Longrightarrow |G| = H \cdot [G:H]$,

insbesondere |H| |G|.

Nahliegende Frage: Gibt es für jede endliche Gruppe G und jeden Teiler $d \mid |G|$ stets eine Untergruppe $H \leq G$ mit d = |H|?

Antwort: Nein. Beispiel: A_4 hat keine Untergruppe der Ordnung $6 \mid |A_4| = \frac{|S_4|}{[S_4:A_4]} = 12$ (Übung).

Bemerkung: Obige Aussage ist allerdings wahr, wenn man zusätzlich voraussetzt dass d Primzahl ist \longrightarrow Satz von CAUSCHY.

Definition. Sei p Primzahl. Eine Gruppe G heißt p-Gruppe : $\iff \exists n \in \mathbb{N} : |G| = p^n$.

Definition. Für eine Gruppenwirkung (G, M) definieren wir

$$Fix (G, M) := \{ a \in M \mid \forall g \in G : a^g = a \}$$

(Menge aller Fixpunkte).

8.1 Lemma. Sei (G, M) Gruppenwirkung und G eine p-Gruppe für eine Primzahl p. Dann gilt:

$$|M| \equiv |\text{Fix}(G, M)| \mod p.$$

Beweis. Bemerkung: Für jedes $a \in M$ ist entweder $G_a = G$ und damit $a \in \text{Fix}(G, M)$ oder $G_a \neq G$ und daher $p \mid \frac{|G|}{|G_a|} \stackrel{1.14}{=} |a^G|$. Sei nun T Transversale von 1-Orb(G, M). Dann gilt Fix $(G, M) \subseteq T$, und daher

t Fix
$$(G, M) \subseteq T$$
, und daher
$$|M| = \sum_{a \in T} |a^G| = \sum_{\substack{a \in \text{Fix } (G, M) \\ =|\text{Fix } (G, M)|}} |a^G| + \sum_{\substack{a \in T \setminus \text{Fix } (G, M) \\ p| \cdot}} |a^G| \equiv |\text{Fix } (G, M)| \mod p.$$

- **8.2 Folgerung.** Sei(G, M) Gruppenwirkung und G p-Gruppe für eine Primzahl p. Dann gilt:
- (1) $p \nmid |M| \implies \operatorname{Fix}(G, M) \neq \emptyset$.
- (2) $p \mid |M| \implies p \mid |\operatorname{Fix}(G, M)|$.
- 8.3 Definition und Sätzchen. Sei G Gruppe. Dann ist das Zentrum

$$Z(G) := \{g \in G \mid \forall h \in G : gh = hg\}$$

von G ein Normalteiler (insbesondere eine Untergruppe) von G.

Beweis. Übungsaufgabe!

8.4 Satz. Sei G p-Gruppe für eine Primzahl p und sei $\{e\} \neq N \subseteq G$. Dann gilt:

$$p \mid |N \cap Z(G)|$$

(insbesondere $N \cap Z(G) \neq \{e\}$).

Beweis. Wir betrachten die Wirkung (G, N) gegeben durch Konjugation, d.h. $x^g := g^{-1}xg$ $(x \in N, g \in G)$. Dies ist tatsächlich eine Wirkung nach 2.7(1). Beobachtung:

$$Fix (G, N) = \{x \in N \mid \forall g \in G : x^g = x\}$$
$$= \{x \in N \mid \forall g \in G : xg = gx\}$$
$$= N \cap Z(G).$$

Mit Lemma 8.1 folgt:

$$|N| \equiv |N \cap Z(G)| \mod p. \tag{*}$$

Weil |N| > 1 und $|N| \mid |G|$ nach Satz von LAGRANGE (1.12), gilt auch $p \mid |N|$. Daher $p \mid |N \cap Z(G)|$ nach (*). Zur Aussage in Klammern: Da $e \in N \cap Z(G)$ ist $|N \cap Z(G)| \neq \{e\}$.

8.5 Folgerung. Ist p Primzahl und G nicht-triviale p-Gruppe, dann gilt: $p \mid |Z(G)|$ (insbesondere $Z(G) \neq \{e\}$).

Beweis. Folgt aus 8.4 für N = G.

8.6 Satz (kleine Anwendung). Sei p Primzahl. Jede endliche Gruppe der Ordnung p^2 ist abelsch, und daher entweder isomorph zu $\mathbb{Z}_p \times \mathbb{Z}_p$ oder zu \mathbb{Z}_{p^2} .

Der Beweis von 8.6 benötigt folgende Vorüberlegung:

8.7 Lemma. Sei G Gruppe. Ist die Gruppe G/Z(G) zyklisch, so ist G abelsch.

Beweis. Sei $a \in G$, sodass $G/Z(G) = \{Z(G)a^n \mid n \in \mathbb{Z}\}$. Seien $g, h \in G$. Dann gibt es $m, n \in \mathbb{Z}$ und $x, y \in Z(G)$ mit $g = xa^m$ und $h = ya^n$. Es folgt:

$$gh = xa^m ya^n \stackrel{x,y \in Z(G)}{=} a^m a^n xy = a^{m+n} xy$$

$$\stackrel{x,y \in Z(G)}{=} a^n a^m yx \stackrel{x,y \in Z(G)}{=} ya^n xa^m = hg.$$

Beweis von 8.6. Sei G Gruppe mit $|G| = p^2$. Nach 8.5 gilt: $p \mid |Z(G)|$. Wegen Satz von LAGRANGE: $|Z(G)| \mid p^2$. Fallunterscheidung:

- 1. Fall: $|Z(G)| = p^2 \implies Z(G) = G$, d.h. G abelsch.
- 2. Fall: $|Z(G)| = p \implies |G/Z(G)| \stackrel{1.12}{=} |G|/|Z(G)| = p \implies |G/Z(G)| \stackrel{8.7}{=} |G|$ abelsch, d.h. Z(G) = G. Widerspruch.

Also G = Z(G) zyklisch. Rest folgt nach dem Klassifikationssatz über endliche abelsche Gruppen.

Nun zum angekündigten Satz:

8.8 Satz (Causchy). Sei G endliche Gruppe und p Primzahl mit $p \mid |G|$. Dann enthält G ein Element (eine Untergruppe) der Ordnung p.

Beweis. Betrachte die Wirkung (\mathbb{Z}_p, G^p) gegeben durch

$$(g_0,...,g_{p-1})^l:=(g_l,...,g_{p-1},g_0,...,g_{l-1})=(g_{l\mod p},g_{l+1\mod p},...,g_{l+p-1\mod p})$$

für alle $g_0,...,g_{p-1} \in G$ und $l \in \mathbb{Z}_p = \{0,...,p-1\}$. Man sieht leicht, dass (\mathbb{Z}_p,G^p) tatsächlich eine Wirkung ist (Übungsaufgabe). Die Teilmenge

$$M := \{(g_0, ..., g_{p-1}) \in G^p \mid g_0 \cdots g_{p-1} = e\}$$

ist invariant unter dieser Wirkung:

$$(g_0, ..., g_{p-1}) \in M \iff g_0 \cdots g_{p-1} = e$$

$$\iff g_l \cdots g_{p-1} = g_{l-1}^{-1} \cdots g_0^{-1}$$

$$\iff g_l \cdots g_{p-1} g_0 \cdots g_{l-1} = e$$

$$\iff (g_0, ..., g_{p-1})^l \in M.$$

Da \mathbb{Z}_p eine p-Gruppe ist, können wir Lemma 8.1 auf die (eingeschränkte) Wirkung (\mathbb{Z}_p, M) anwenden und erhalten.

$$|M| = |\operatorname{Fix}(\mathbb{Z}_p, M)| \mod p.$$
 (*)

Beobachtung 1:

Fix
$$(\mathbb{Z}_p, M) = \{(g_0, ..., g_{p-1}) \in M \mid g_0 = ... = g_{p-1}\}$$

= $\{(g, ..., g) \mid g \in G, g^p = e\}$

$$\implies |\operatorname{Fix}(\mathbb{Z}_p, M)| = |\{g \in G \mid g^p = e\}| =: t.$$

Beobachtung 2: Die Abbildung $f:G^{p-1}\to M,\ (g_0,...,g_{p-2})\mapsto (g_0,...,g_{p-2},(g_0\cdots g_{p-2})^{-1})$ ist eine Bijektion $\Longrightarrow |M|=|G|^{p-1}.$

Da $p \mid |G|$ folgt $p \mid |M|$ nach Behauptung 2, und daher $p \mid t$ nach (*) und Behauptung 1. Wegen $l^p = l$ ist t > 0, und somit $t \geq p \geq 2$. Also enthält G ein Element $g \neq e$ mit $g^p = e$. Es folgt ord $(G) \mid p$ (vgl. ALGZTH) und daher ord (g) = p (da p Primzahl).

8.9 Satz (Anwendung). Jede (endliche) Gruppe der Ordnung 6 ist entweder isomorph zu $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$) oder isomorph zu S_3 .

Beweis. Sei G Gruppe mit |G| = 6. Nach Satz von CAUCHY (8.8) existieren $a, b \in G$ mit ord (a) = 2 und ord (b) = 3. Fallunterscheidung:

1. Fall: $ab \neq ba$. Nach Satz von LAGRANGE ist |G/H| = 3 für $H := \langle a \rangle \mathfrak{t}\{e, a\}$. Nun ist $f: G \to S_{G/H} \ (\cong S_3)$ mit

$$(Hx)^{f(g)} := Hxg$$

 $(g, x \in G)$ eine Isomorphismus.

Beweis dazu: f ist Homomorphismus (klar, vgl. 2.4). Wir zeigen, dass f injektiv ist. Sei dazu $g \in \text{Ker } f$, d.h. $f(g) = \text{id}_{G/H}$. Dann gilt:

- Hg = H, d.h. $g \in H = \{e, a\}$,
- $-Hbg = Hb \iff Hbgb^{-1} = H \iff bgb^{-1} \in H \iff g \in b^{-1}Hb = \{e, b^{-1}ab\}. \text{ Da}$ $ab \neq ba \text{ ist auch } a \neq b^{-1}ab. \text{ Somit: } H \cap b^{-1}Hb = \{e\} \implies g = e. \text{ Also } f \text{ injektiv}$ $\stackrel{|G|=6=|S_{G/H}|}{\Longrightarrow} f \text{ ist Ismomorphismus.}$
- 2. Fall: ab = ba. Dann folgt gh = hg für alle $g \in \langle a \rangle$ und $h \in \langle b \rangle \implies G$ ist abelsch

Klassifikations-
-satz für endl. abelsche Gruppen
$$G\cong \mathbb{Z}_6\cong \mathbb{Z}_2\times \mathbb{Z}_3$$
.

Bemerkung: Im 2. Fall kann man auch direkt zeigen: $f: \mathbb{Z}_2 \times \mathbb{Z}_3 \to G$, $(k, l) \mapsto a^k b^l$ ist Isomorphismus (Übung).

Wir kommen nun zu einer Verfeinerung des Satzes von CAUCHY: den (drei) Sätzen von SYLOW.

Definition. Sei G endliche Gruppe und p Primzahl. Eine Untergruppe $H \leq G$ heißt:

- p-Untergruppe von $G : \iff H$ p-Gruppe,
- p-Sylow-Untergruppe von $G :\iff |H| = p^{\nu_p(|G|)}$.

Wir bezeichnen mit:

- $\operatorname{Sub}_{p}(G)$ die Menge der p-Untergruppen von G.
- $\operatorname{Syl}_n(G)$ die Menge der p-Sylow-Untergruppen von G.

Wiederholung (aus elementaren Zahlentheorie (1.44) bekannt): Für $n \in \mathbb{N} \setminus \{0\}$ und Primzahl p sei

$$\nu_n(n) := \max\{m \in \mathbb{N} \mid p^m \mid n\}.$$

8.10 Definition und Sätzchen. Sei G Gruppe und $H \leq G$. Dann heißt $N(H) := N_G(H) := \{g \in G \mid g^{-1}Hg = H\}$ der $N \circ r m \circ l i \circ a \circ r \circ v \circ n \circ H$ (in G). Es gilt:

$$H \subseteq N(H) \subseteq G$$
.

Beweis. Übungsaufgabe!

8.11 Satz. Sei G endliche Gruppe, p Primzahl und H p-Untergruppe von G, sodass $p \mid [G:H]$. Dann gilt:

$$p\mid [N(H):H].$$

Insbesondere ist $N(H) \neq H$.

Beweis. Betrachte die Wirkung $(H, {}^{G}/H)$ gegeben durch $(Hg)^{h} := Hgh \ (g \in G, h \in H)$. Man sieht leicht, dass dies tatsächlich eine Wirkung ist (vgl. 2.7, Übung). Da H p-Gruppe ist, folgt nach Lemma 8.1:

$$|G/H| \equiv |\text{Fix}(H, G/H)| \mod p.$$
 (*)

Beobachtung: Für alle $g \in G$ gilt:

$$Hg \in \text{Fix}(H, G/H) \iff \forall h \in H : Hgh = Hg$$

 $\iff \forall h \in H : ghg^{-1} \in H$
 $\iff gHg^{-1} = H \iff g^{-1}Hg = H$
 $\iff g \in N(H).$

Daher: $|\text{Fix}(H, G/H)| = |\{Hg \mid g \in N(H)\}| = |N(H)/H| = [N(H): H]$. Aus (*) ergibt sich damit:

$$[G:H] \equiv [N(H):H] \mod p. \tag{**}$$

Nach Voraussetzung des Satzes: $p \mid [G:H]$. Daher $p \mid [N(H):H]$ nach (**). Zur letzten Aussage:

$$p \mid [N(H):H] > 0 \implies [N(H):H] \ge p \ge 2 \implies N(H) \ne H.$$

8.12 Folgerung. Sei G p-Gruppe für eine Primzahl p. Ist $H \leq G$ und [G:H] = p, dann ist $H \leq G$.

Wiederholung aus ALGZTH (5.32): Ist G Gruppe und $U \leq V \leq G$, dann gilt:

$$[G:U] = [G:V][V:U].$$

Beweis. Übungsaufgabe!

Beweis von Folgerung 12. Nach Formel oben:

$$[G:H] = [G:N(H)][N(H):H].$$

Ist [G:H]=p, dann $p\mid [N(H):H]$ nach Satz 8.11 und daher [G:N(H)]=1, also N(H)=G. D.h. $H\overset{8.10}{\unlhd}N(H)=G$.

8.13 Satz. Sei G endliche Gruppe, p Primzahl, $H \in \operatorname{Sub}_p(G)$ mit $p \mid [G : H]$ (\iff $|H| < p^{\nu_p(|G|)}$). Dann gibt es $H' \leq G$ mit $H \leq H'$ und $|H'| = |H| \cdot p$.

Beweis. Nach 8.10 ist $H \leq N(H)$. Betrachte die Gruppe N(H)/H. Nach Satz 8.11:

$$p | [N(H) : H] = |N(H)/H|.$$

Nach Satz von CAUCHY (8.8):

$$\exists K \le N(H)/H : |K| = p.$$

Betrachte den Homomorphismus

$$\pi: N(H) \to N(H)/H, \ g \mapsto Hg.$$

Dann ist $H' := \pi^{-1}(K)$ Untergruppe von N(H) und somit von G. Weiter:

$$|H'| = |\pi^{-1}(K)| = |\biguplus_{k \in K} \pi^{-1}(k)| = \sum_{k \in K} \underbrace{|\pi^{-1}(k)|}_{=|H|} = |K||H| = p|H|.$$

Offenbar $H = \operatorname{Ker} \pi \subseteq \pi^{-1}(K) = H'$.

8.14 Folgerung. Sei G endliche Gruppe und $H \in \operatorname{Sub}_p(G)$ für eine Primzahl p. Sei $m := \nu_p(|H|)$ $(d.h. |H| = p^m)$ und $n := \nu_p(|G|)$. Dann gibt es eine Kette von Untergruppen $H = H_m \leq H_{m+1} \leq \ldots \leq H_n \leq G$, sodass $|H_i| = p^i$ für jedes $i \in \{m, \ldots, n\}$.

Beweis. Induktion Über $i \in \{m, ..., n\}$:

Induktionsanfang: Fall i = m ist klar.

Induktionsschritt: Sei $i \in \{m, ..., n-1\}$ und seien $H = H_m \le H_{m+1} \le ... \le H_i \le G$, sodass $|H_j| = p^j$ für jedes $j \in \{m, ..., i\}$. Dann $|H_i| = p^i < p^n = p^{\nu_p(|G|)}$. Nach Satz 8.13 gibt es $H_{i+1} \le G$ mit $H_i \le H_{i+1}$ und $|H_{i+1}| = |H_i| \cdot p = p^{i+1}$.

8.15 Satz (SYLOW I). Sei G endliche Gruppe und p eine Primzahl. Dann gilt:

- (a) Jede p-Untergruppe von G ist in einer p-Sylow-Untergruppe von G enthalten. Insbesondere ist $\operatorname{Syl}_p(G) \neq \emptyset$.
- (b) $\operatorname{Syl}_p(G) = \max(\operatorname{Sub}_p(G), \subseteq)$, d.h. die p-Sylow-Untergruppen von G sind genau die maximalen p-Untergruppen von G.

Beweis. Zu (a): Erste Aussage folgt unmittelbar aus Folgerung 8.14. Zur zweiten Aussage in (a): Da $\{e\}$ (trivialerweise) p-Untergruppe von G ist, besitzt G nach erster Aussage von (a) eine p-Sylow-Untergruppe (die $\{e\}$ enthält).

Definition. Sei G Gruppe. Zwei Untergruppen $U, V \leq G$ heißen $konjugiert : \iff \exists g \in G : g^{-1}Ug = V$.

8.16 Satz (SYLOW II). Sei G endliche Gruppe, p Primzahl. Dann sind je zwei p-Sylow-Untergruppen von G konjugiert.

Beweis. Seien $H, K \in \text{Sub}_p(G)$. Betrachte die Wirkung (H, G/K) gegeben durch

$$(Kg)^h := Kgh$$

 $(g \in G, h \in H)$. Da K p-Sylow-Untergruppe von G ist:

$$p \nmid \frac{|G|}{|K|} \stackrel{\text{LAGR.}}{=} [G:K] = |G/K|.$$

Da H p-Gruppe ist, können wir Folgerung 8.12 anwenden, und schließen: Fix $(H, G/K) \neq \emptyset$. Sei $g \in G$ mit $Kg \in Fix(H, G/K)$, d.h. Kgh = Kg für alle $h \in H$. Dann $ghg^{-1} \in K$ für alle $h \in H$. Also $gHg^{-1} \subseteq K$. Weiter:

$$|H| = |gHg^{-1}| \le |K| = |H| \implies gHg^{-1} = K.$$

8.17 Folgerung. Sei G endliche Gruppe und p Primzahl. Dann sind folgende Aussagen äquivalent:

- (a) $|\text{Syl}_n(G)| = 1$.
- (b) $\exists H \in \operatorname{Syl}_n(G) : H \trianglelefteq G$.
- (c) $\forall H \in \operatorname{Syl}_n(G) : H \trianglelefteq G$.

Beweis. Die Menge $\operatorname{Syl}_p(G)$ ist abgeschlossen unter Konjugation, d.h. $\forall H \in \operatorname{Syl}_p(G)$ $\forall g \in G : g^{-1}Hg \in \operatorname{Syl}_p(G)$. Daher gilt: (a) \Longrightarrow (c). Klar: (c) \Longrightarrow (b), da $\operatorname{Syl}_p(G) \neq \emptyset$ nach Satz 8.15. Außerdem: (b) \Longrightarrow (a) nach Satz 8.16.

8.18 Satz (SYLOW III). Sei G endliche Gruppe und p Primzahl. Dann gilt:

- (a) $|\operatorname{Syl}_n(G)| \equiv 1 \mod p$.
- (b) Ist H p-Sylow-Untergruppe von G, dann gilt:

$$|\mathrm{Syl}_p(G)| = [G:N(H)] \mid [G:H] = \frac{|G|}{p^{\nu_p(|G|)}}.$$

Beweis. Betrachte die Wirkung $(G, \mathrm{Syl}_p(G))$ gegeben durch $H^g := g^{-1}Hg$ $(H \in \mathrm{Syl}_p(G), g \in G).$

Zu (a): Sei $P \in \operatorname{Syl}_p(G)$ ($\neq \emptyset$ nach Satz 8.15, SYLOW I). Da P p-Gruppe ist, können wir Lemma 8.1 auf die eingeschränkte Wirkung $(P, \operatorname{Syl}_p(G))$ anwenden und erhalten:

$$|\mathrm{Syl}_p(G)| \equiv |\mathrm{Fix}(P,\mathrm{Syl}_p(G))| \mod p.$$

Wir zeigen: Fix $(P, \operatorname{Syl}_p(G)) = \{P\}$. Offenbar: $P \in \operatorname{Fix}(P, \operatorname{Syl}_p(G))$, da $g^{-1}Pg = P$ für alle $g \in P$. Sei $H \in \operatorname{Fix}(P, \operatorname{Syl}_p(G))$. Dann $g^{-1}Hg = H$ für alle $g \in P$ und daher $P \subseteq N(H)$. Da nun $H \leq N(H) \leq G$, folgt $|H| \mid |N(H)|$ und $|N(H)| \mid |G|$ nach Satz von LAGRANGE. Somit $\nu_p(|G|) \geq \nu_p(|N(H)|) \geq \nu_p(|H|) = \nu_p(|P|) = \nu_p(|G|)$. Es folgt: $P, H \in \operatorname{Syl}_p(N(H))$. Nach Satz 8.16, SYLOW II sind P und H konjugiert in

N(H), d.h. es gibt $g \in N(H)$ mit $P = g^{-1}Hg \stackrel{g \in N(H)}{=} H$. Das zeigt die Behauptung. Aus (*) folgt: $|\mathrm{Syl}_p(G)| \equiv 1 \mod p$.

Zu (b): Nach Satz 8.16, SYLOW II ist $(G, \mathrm{Syl}_p(G))$ transitiv. Sei $H \in \mathrm{Syl}_p(G)$. Dann gilt:

$$G_H = \{ g \in G \mid g^{-1}Hg = H \} = N(H).$$

Daher $|G| \stackrel{1.14}{=} |H^G| \cdot |G_H| = |\operatorname{Syl}_p(G)| \cdot |N(H)|$. Es folgt:

$$|\operatorname{Syl}_p(G)| = \frac{|G|}{|N(H)|} [G : N(H)].$$

Letzte Aussage: $|\operatorname{Syl}_p(G)| \cdot [N(H):H] = [G:N(H)] \cdot [N(H):H] \stackrel{\operatorname{ALGZTH}}{=} [G:H].$ Also $|\operatorname{Syl}_p(G)| = [G:N(H)] \mid [G:H] \stackrel{\operatorname{LAGR.}}{=} \frac{|G|}{|H|} = \frac{|G|}{p^{\nu_p(|G|)}}.$

8.19 Satz. Sei G endliche Gruppe und seien p und q verschiedene Primzahlen mit $|\operatorname{Syl}_p(G)| = 1 = |\operatorname{Syl}_q(G)|$. Dann kommutiert jedes Element der p-Sylow-Untergruppe von G mit jedem Element der q-Sylow-Untergruppe von G.

Beweis. Sei P die p-Sylow-Untergruppe von G und Q die q-Sylow-Untergruppe von G. Da $P\cap Q$ sowohl Untergruppe von P als auch von Q ist, folgt $|P\cap Q|\mid |P|$ und $|P\cap Q|\mid |Q|$ nach Satz von LAGRANGE. Da |P| und |Q| teilerfremd sind, ist $|P\cap Q|=1$, d.h. $P\cap Q=\{e\}$. Nach Folgerung 8.17 sind P und Q Normalteiler von G. Für $g\in P$, $h\in Q$ folgt:

$$\underbrace{g^{-1}h^{-1}g}_{\in Q}h \in P \cap Q \implies g^{-1}h^{-1}gh = e, \text{ d.h. } gh = hg.$$

8.20 Satz. Sei G endliche Gruppe, $p_1, ..., p_n$ seien die paarweise verschiedene Primteiler von |G|. Gilt $\operatorname{Syl}_{p_i}(G) = \{P_i\}$ für jedes $i \in \{1, ..., n\}$, dann ist die Abbildung

$$\varphi: P_1 \times ... \times P_n \to G, \ (g_1, ..., g_n) \mapsto g_1 \cdots g_n$$

ein Gruppenisomorphismus.

Vorbemerkung zum Beweis. Sei G endliche Gruppe und seien $g_1, ..., g_n \in G$, sodass $g_i g_j = g_j g_i$ und $\operatorname{ggT} \left(\operatorname{ord} (g_i), \operatorname{ord} (g_j)\right) = 1$ für je zwei $i, j \in \{1, ..., n\}$ mit $i \neq j$. Dann gilt:

$$\operatorname{ord}(g_1 \cdots g_n) = \operatorname{ord}(g_1) \cdots \operatorname{ord}(g_n).$$

Beweis. Sei $m_1 := \operatorname{ord}(g_1), ..., m_n := \operatorname{ord}(g_n), m := m_1 \cdots m_n$. Dann $(g_1 \cdots g_n)^m \stackrel{\text{komm.}}{=} g_1^m \cdots g_n^m \stackrel{m_i|m}{=} e$. Daher $k := \operatorname{ord}(g_1 \cdots g_n) \mid m$. Für $i \in \{1, ..., n\}$:

$$e = (g_1 \cdots g_n)^{km_1 \cdots m_{i-1} m_{i+1} \cdots m_n}$$

$$\stackrel{\text{komm}}{=} g_1^{km_1 \cdots m_{i-1} m_{i+1} \cdots m_n} \cdots g_n^{km_1 \cdots m_{i-1} m_{i+1} \cdots m_n}$$

$$= g_i^{km_1 \cdots m_{i-1} m_{i+1} \cdots m_n}$$

 $\implies m_i \mid km_1 \cdots m_{i-1}m_{i+1} \cdots m_n \stackrel{m_1, \dots, m_n}{\underset{\text{teilerfremd}}{\Longrightarrow}} m_i \mid k$. Nochmal Teilerfremdheit liefert: $m = m_1 \cdots m_n \mid k$. Also m = k.

Beweis von Satz 8.20. φ ist Homomorphismus:

$$\varphi((g_1, ..., g_n)(h_1, ..., h_n)) = \varphi((g_1 h_1, ..., g_n h_n))$$

$$= g_1 h_1 \cdots g_n h_n \stackrel{8.19}{=} g_1 \cdots g_n h_1 \cdots h_n$$

$$= \varphi((g_1, ..., g_n)) \cdot ((h_1, ..., h_n))$$

für alle $(g_1, ..., g_n), (h_1, ..., h_n) \in P_1 \times ... \times P_n$.

Injektivität von φ : Sei $(g_1, ..., g_n) \in \text{Ker } \varphi$. Für $i \in \{1, ..., n\}$: ord $(g_i) \mid |P_i|$ (Satz von LAGRANGE),

$$\operatorname{ord}(g_{i}) \stackrel{g_{1} \cdots g_{n} = e}{=} \operatorname{ord}(g_{1}^{-1} \cdots g_{i-1}^{-1} g_{i+1}^{-1} \cdots g_{n}^{-1})$$

$$\stackrel{\text{Vorbem.}}{=} \operatorname{ord}(g_{1}^{-1}) \cdots \operatorname{ord}(g_{i-1}^{-1}) \operatorname{ord}(g_{i+1}^{-1}) \cdots \operatorname{ord}(g_{n}^{-1}) \mid |P_{1}| \cdots |P_{i-1}| |P_{i+1}| \cdots |P_{n}|$$

$$\stackrel{\text{Vorbem.}}{=} \operatorname{ord}(g_{1}^{-1}) \cdots \operatorname{ord}(g_{i-1}^{-1}) \operatorname{ord}(g_{i+1}^{-1}) \cdots \operatorname{ord}(g_{n}^{-1}) \mid |P_{1}| \cdots |P_{i-1}| |P_{i+1}| \cdots |P_{n}|$$

(Satz von LAGRANGE) $\Longrightarrow_{\text{teilerfremd}}^{|P_1|,...,|P_n|}$ ord $(g_i)=1$, d.h. $g_i=e$. Das zeigt: $(g_1,...,g_n)=(e,...,e)$. Also ist φ injektiv.

Surjektivität von φ :

$$|P_1 \times ... \times P_n| = |P_1| \cdots |P_n| = p_1^{\nu_{p_1}(|G|)} \cdots p_n^{\nu_{p_n}(|G|)} = |G|$$

$$\stackrel{\varphi \text{ ist}}{\Longrightarrow} G = \varphi(P_1 \times ... \times P_n).$$

Somit ist φ ein Isomorphismus.

8.21 Satz (Anwendung). Seien p und q Primzahlen mit p < q und $p \nmid (q-1)$. Dann ist jede (endliche) Gruppe der Ordnung $p \cdot q$ zyklisch.

Beweis. Sei G Gruppe mit $|G| = p \cdot q$. Nach Satz 8.18 (SYLOW III):

$$|\operatorname{Syl}_p(G)| \mid \frac{|G|}{p} = q$$

(Teil (b), 8.18). Wäre nun $|\operatorname{Syl}_p(G)| = q$, dann $q \equiv 1 \mod p$ nach Teil (a) von 8.18, also $p \mid (q-1)$. Widerspruch. Also ist $|\operatorname{Syl}_p(G)| = 1$. Analog: Nach 8.18, Teil (a): $|\operatorname{Syl}_q(G)| \mid \frac{|G|}{q} = p$. Wäre $|\operatorname{Syl}_q(G)| = p$, dann $p \equiv 1 \mod q$ nach Teil (a) von 8.18, daher $q \mid (p-1)$. Widerspruch zu p < q. Also $|\operatorname{Syl}_q(G)| = 1$. Sei nun $\operatorname{Syl}_p(G) = \{P\}$ und $\operatorname{Syl}_q(G) = \{Q\}$. Nach 8.20:

$$G \cong P \times Q \cong \mathbb{Z}_p \times \mathbb{Z}_q \cong Z_{pq}$$
.

Daher ist G zyklisch (letzte Isomorphie wegen Teilerfremdheit von p und q).

8.22 Satz (Anwendung). Seien p und q Primzahlen mit p < q und $p \nmid (q-1)$. Dann ist jede Gruppe der Ordnung p^2q abelsch.

Beweis. Sei G Gruppe mit $|G|=p^2q$. Nach 8.18: $|\mathrm{Syl}_p(G)|$ $|\frac{|G|}{p^2}=q$. Es folgt wie oben (Beweis von 8.21): $|\mathrm{Syl}_p(G)|=1$. Nach 8.18, Teil (b): $|\mathrm{Syl}_q(G)|$ $|\frac{|G|}{q}=p^2$. Fallunterscheidung:

 $(1) \quad |\mathrm{Syl}_q(G)| = p \underset{\mathrm{Teil}\ (\mathbf{a})}{\overset{8.18}{\Longrightarrow}} p \equiv 1 \mod q \iff q \mid (p-1). \text{ Widerspruch.}$

$$(2) \quad |\operatorname{Syl}_{q}(G)| = p^{2} \overset{8.18}{\Longrightarrow} p^{2} \equiv 1 \mod q$$

$$\iff q \mid (p^{2} - 1) = (p + 1)(p - 1)$$

$$\iff q \mid (p + 1) \lor q \mid (p - 1).$$

Widerspruch.

Also $|\operatorname{Syl}_p(G)|=1$. Sei $\operatorname{Syl}_p(G)=\{P\}$ und $\operatorname{Syl}_q(G)=\{Q\}$. Da |Q|=q Primzahl ist, ist $Q\cong \mathbb{Z}_q$ zyklisch (insbesondere abelsch). Da $|P|=p^2$, ist P abelsch nach 8.6. Nach 8.20: $G\cong P\times Q$ ist abelsch.

Die SYLOW-Sätze werden häufig so verwendet: Einen Satz (den man für alle endliche Gruppen beweisen möchte) zeigt man zunächst für *p*-Gruppen und schließt dann (mithilfe der SYLOW-Sätze) auf die allgemeine Situation. Es folgen zwei Beispiele für dieses Vorgehen.

8.23 Satz. Sei G endliche Gruppe. Gilt $|\{H \leq G \mid |H| = d\}| \leq 1$ für jeden Teiler $d \mid |G|$, dann ist G Zyklisch.

Beweis. Schritt 1: Sei G p-Gruppe für eine Primzahl p. Sei $g \in G$ mit ord $(g) = \max\{\operatorname{ord}(h) \mid h \in G\}$. Zu zeigen: $G = \langle g \rangle$. Sei dazu $h \in G$. Nach dem Satz von LAGRANGE: $\exists m, n \in \mathbb{N} : \operatorname{ord}(g) = p^m$, ord $(h) = p^n$. Maximalität: $p^n \leq p^m$, also $p^n \mid p^m = |\langle g \rangle|$. Dann hat $\langle g \rangle$ eine Untergruppe der Ordnung p^n (nämlich explizit $\langle g^{p^{m-n}} \rangle$ —Übung, oder nach Folgerung 8.14). Auch $\langle h \rangle$ hat die Ordnung p^n . Also stimmen diese beiden Untergruppen nach Voraussetzung überein. Somit $\langle h \rangle \subseteq \langle g \rangle$. D.h. $h \in \langle g \rangle$.

Schritt 2: Seien $p_1, ..., p_n$ die paarweise verschiedene Primteiler von |G|. Nach Voraussetzung: $|\operatorname{Syl}_{p_i}(G)| = 1$ für jedes $i \in \{1, ..., n\}$. Sei $i \in \{1, ..., n\}$ und $\operatorname{Syl}_{p_i}(G) = \{P_i\}$. Nach Schritt 1: P_i ist zyklisch, d.h. $P_i = \langle g_i \rangle$ für ein $g_i \in P_i$ und daher ord $(g_i) = |P_i| = p_i^{\nu_{p_i}}(|G|)$. Nach Satz 8.20:

$$G \cong P_1 \times \dots \times P_n \overset{\text{Schritt 1}}{\cong} \mathbb{Z}_{p_1^{\nu_{p_1}(|G|)}} \times \dots \times \mathbb{Z}_{p_n^{\nu_{p_n}(|G|)}}$$
teilerfr.
$$\underset{p_1^{\nu_{p_1}(|G|)} \dots p_n^{\nu_{p_n}(|G|)}}{\cong} \mathbb{Z}_{p_1^{\nu_{p_1}(|G|)} \dots p_n^{\nu_{p_n}(|G|)}} . \tag{\blacksquare}$$

Anderes Argument: Nach 8.19 ist $g_ig_j=g_jg_i$ für $i,j\in\{1,...,n\},\ i\neq j$. Nach Vorbemerkung zum Beweis von Satz 8.20:

ord
$$(g_1 \cdots g_n) = \text{ord}(g_1) \cdots \text{ord}(g_n) = p_1^{\nu_{p_1}(|G|)} \cdots p_n^{\nu_{p_n}(|G|)} = |G|$$

 \implies G ist zyklisch.

8.24 Satz. Sei G endliche Gruppe. Gilt $|\{x \in G \mid x^n = e\}| \le n$ für jeden Teiler $n \mid |G|$, dann ist G zyklisch.

Beweis. Schritt 1: Sei G p-Gruppe für eine Primzahl p. Sei $g \in G$ mit ord $(g) = \max\{\operatorname{ord}(h) \mid h \in G\}$. Für alle $h \in \langle g \rangle$ ist $h^{\operatorname{ord}(g)} = e$ (da ord $(h) \mid \operatorname{ord}(g)$ nach dem Satz von LAGRANGE). Nach Voraussetzung (für $n := \operatorname{ord}(g) = |\langle g \rangle|$):

$$\{x \in G \mid x^{\operatorname{ord}(g)} = e\} = \langle g \rangle. \tag{*}$$

Für jedes $h \in G$ ist ord (h) eine p-Potenz (da G eine p-Gruppe ist) und ord $(h) \le$ ord (g). Daher ord $(h) \mid \operatorname{ord}(g)$, also $h^{\operatorname{ord}(g)} = e \stackrel{(*)}{\Longrightarrow} h \in \langle g \rangle$. Also ist $H = \langle g \rangle$ zyklisch.

Schritt 2: Sei p Primteiler von $|G|, P \in \mathrm{Syl}_p(G)$. Dann $g^{|P|} = e$ für jedes $g \in P$. Nach Voraussetzung:

$${x \in G \mid x^{|P|} = e} = P.$$
 (**)

Sei $P' \in \operatorname{Syl}_p(G)$. Dann $g^{|P|} = g^{|P'|} = e$ und daher nach (**): $g \in P$ für jedes $g \in P'$. Also $P' \subseteq P$ und somit P' = P (da $|P'| = p^{\nu_p(|G|)} = |P|$). Das Zeigt: $|\operatorname{Syl}_p(G)| = 1$. Rest wie letzter Teil im Schritt 2 im Beweis von 8.23. Erinnerung:

$$\begin{split} G \overset{8.20}{\cong} P_1 \times \ldots \times P_n &\overset{\text{Schritt 1}}{\cong} \mathbb{Z}_{p_1^{\nu_{p_1}(|G|)}} \times \ldots \times \mathbb{Z}_{p_n^{\nu_{p_n}(|G|)}} \\ &\overset{\text{teilerfr.}}{\cong} \mathbb{Z}_{p_1^{\nu_{p_1}(|G|)} \ldots p_n^{\nu_{p_n}(|G|)}} = \mathbb{Z}_{|G|}. \end{split}$$

9 Einfache Gruppen

9.1 Definition und Sätzchen. Sei G Gruppe.

$$G \ ist \ einfach :\iff \{e\} \ und \ G \ sind \ die \ einzigen \ Normalteiler \ von \ G$$

$$:\iff \forall H \ Gruppe \forall h: G \rightarrow H \ Homomorphismus:$$

$$h \ ist \ injektiv \ oder \ konstant.$$

9.2 Bemerkungen. (1) Für endliche abelsche Gruppe G gilt:

$$G$$
 ist einfach \iff $\{e\}$ und G sind die einzigen Untergruppen von G \iff $^4|G|=1$ oder $|G|$ ist eine Primzahl \iff $^5|G|=1$ oder $G\cong \mathbb{Z}_p$ für eine Primzahl p .

- (2) Klassifikationssatz.⁶ Jede nicht-triviale endliche einfache Gruppe ist isomorph zu einer der folgenden:
 - $zyklische Gruppen \mathbb{Z}_p \text{ für } p \in \mathbb{P},$
 - alternierende Gruppen A_n für $n \geq 5$,
 - einfache Gruppen vom Lie-Typ über einem endlichen Körper,
 - 26 sporadische Gruppen.

Einfache Gruppen bilden "Bausteine" der endlichen Gruppen.

9.3 Satz. Sei G endliche Gruppe. Dann existiert Kette von Untergruppen:

$$\{e\} = G_0 \not\supseteq G_1 \not\supseteq \dots \not\supseteq G_{n-1} \not\supseteq G_n = G,$$

sodass G_i/G_{i-1} einfach ist für jedes $i \in \{1,..,n\}$.

Beweis. Da G endlich ist, ist $n := \sup\{m \in \mathbb{N} \mid \exists \{e\} \neq G_1 \not\supseteq G_2 \not\supseteq \dots \not\supseteq G_{m-1} \not\supseteq G\} < \infty$. Sei $\{e\} = G_0 \not\supseteq G_1 \not\supseteq \dots \not\supseteq G_{n-1} \not\supseteq G_n = G$. Behauptung: $\forall i \in \{1, ..., n\}$: G_i/G_{i-1} einfach. Sei $i \in \{1, ..., n\}$. Annahme: G_i/G_{i-1} nicht einfach. Dann:

$$\exists N \nleq G_i/G_{i-1} : N \neq \{e_{G_i/G_{i-1}}\} = \{G_{i-1}\}.$$

Dann $\pi^{-1}(N) \underset{\neq}{\triangleleft} G_i$ (sonst $N = \pi(\pi^{-1}(N)) = \pi(G_i) = \frac{G_i}{G_{i-1}}$ und $G_{i-1} = \operatorname{Ker} \pi \underset{=}{\triangleleft} \pi^{-1}(N)$). Also:

$$\{e\} = G_0 \nsubseteq G_1 \nsubseteq \dots \nsubseteq G_{i-1} \nsubseteq \pi^{-1}(N) \nsubseteq G_i \nsubseteq \dots \nsubseteq G_{n-1} \nsubseteq G_n = G.$$

Diese Kette hat ein Glied mehr als die ursprüngliche. Widerspruch zur Definition von n. Daher ist G_i/G_{i-1} einfach.

³Hinweis: Für eine Richtung den Kern anschauen, für die andere Richtung Faktorgruppe benutzen.

⁴Hinweis: Eine Richtung mit dem Satz von LAGRANGE (1.12), die andere mit dem Satz von CAUCHY (8.8.)

⁵Hinweis: Beweis mit dem Klassifikationssatz oder direkt.

 $^{^6\}mathrm{Fun}$ Fact: Letzte Lücke im Beweis wurde 2002 geschlossen.

Die entstehenden Faktoren G_i/G_{i-1} $(i \in \{1,...,n\})$ sind (bis auf Isomorphie und Permutation der Reihenfolge) eindeutig bestimmt:

9.4 Satz (Jordan-Hölder). Sei G endliche Gruppe. Sind

$$\{e\} = G_0 \nleq G_1 \nleq \dots \nleq G_{n-1} \nleq G_n = G,$$

$$\{e\} = H_0 \nleq H_1 \nleq \dots \nleq H_{m-1} \nleq H_m = G,$$

sodass $\forall i \in \{1,...,n\}$: G_i/G_{i-1} einfach und $\forall j \in \{1,...,m\}$: G_j/G_{j-1} einfach, dann gilt: G_j/G_{j-1} einfach und es gibt G_j/G_{j-1} einfach und G_j/G_{j-1} einfach, dann gilt: G_j/G_{j-1} einfach, dann gilt:

$$\forall i \in \{1, ..., n\} : G_i/G_{i-1} \cong H_{i^{\pi}}/H_{i^{\pi}-1}.$$

Beweis. Eventuell später.

Nächstes Ziel: Einfachheit alternierender Gruppen.

9.5 Lemma. Sei $n \in \mathbb{N}$ mit $n \geq 3$. Die Gruppe A_n wird erzeugt von der Menge

$$E := \{ (a \ b \ c) \mid a, b, c \in \underline{n}, \ |\{a, b, c\}| = 3 \}.$$

Beweis. Zunächst: $E \subseteq A_n$. Denn: $(a \ b \ c)(b \ a) = (a)(b \ c)$, daher

$$\operatorname{sgn}\left((a\ b\ c)\right) = \operatorname{sgn}\left((a\ b\ c)(b\ a)(b\ a)\right)$$

$$\stackrel{\operatorname{sgn}}{=} \operatorname{sgn}\left((a\ b\ c)(b\ a)\right) \cdot \operatorname{sgn}\left((b\ a)\right) = 1,$$

$$= -1$$

d.h. $(a \ b \ c) \in A_n$ für alle $(a \ b \ c) \in E$. Zu zeigen:

$$\forall a, b, c, d \in \underline{n}, \ a \neq b, \ c \neq d : (a \ b)(c \ d) \in \langle E \rangle. \tag{*}$$

Fallunterscheidung:

$$\begin{pmatrix}
a & b \end{pmatrix} \begin{pmatrix} a & b \end{pmatrix} = e \in \langle E \rangle, \\
- & \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} a & c \end{pmatrix} = \begin{pmatrix} a & b & c \end{pmatrix} \in E \subseteq \langle E \rangle, \\
- & \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} c & d \end{pmatrix} = \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} a & d & c \end{pmatrix} \in \langle E \rangle.$$

Aussage des Lemmas: Sei $g \in A_{\underline{n}}$. Dann gibt es Transpositionen $h_1,h_2,...,h_{2t-1},h_{2t}$ mit

$$g = \underbrace{h_1 h_2}_{\substack{\in \langle E \rangle \\ \text{nach (*)}}} \underbrace{\cdots \underbrace{h_{2t-1} h_{2t}}_{\substack{\in \langle E \rangle \\ \text{nach (*)}}}} \in \langle E \rangle.$$

9.6 Lemma. Sei $n \in \mathbb{N}$ mit $n \geq 5$. Je zwei Elemente von

$$E:=\{\left(a\ b\ c\right)\ |\ a,b,c\in\underline{n},\ |\{a,b,c\}|=3\}$$

sind konjugiert in A_n .

Beweis. Sei $\begin{pmatrix} a & b & c \end{pmatrix} \in E$. Zeige: $\begin{pmatrix} a & b & c \end{pmatrix}$ ist konjugiert zu $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ in $A_{\underline{n}}$. Aussage des Lemmas folgt dann mit 1.19 (a). Da $\begin{pmatrix} a & b & c \end{pmatrix}$ und $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ ähnlich sind, sind sie konjugiert in $S_{\underline{n}}$ (vgl. 1.19 (c)), d.h. $\exists h \in S_{\underline{n}} : \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = h \begin{pmatrix} a & b & c \end{pmatrix} h^{-1}$. Ist $h \in A_{\underline{n}}$, dann fertig. Annahme: $h \notin A_{\underline{n}}$, d.h. $\operatorname{sgn}(h) = -1$. Setze $\tilde{h} := \begin{pmatrix} 4 & 5 \end{pmatrix} h$. Dann $\operatorname{sgn}(\tilde{h}) = \operatorname{sgn}(\begin{pmatrix} 4 & 5 \end{pmatrix}) \cdot \operatorname{sgn}(h) = 1$, also $\tilde{h} \in A_{\underline{n}}$, und

$$\tilde{h} \begin{pmatrix} a & b & c \end{pmatrix} \tilde{h}^{-1} = \begin{pmatrix} 4 & 5 \end{pmatrix} h \begin{pmatrix} a & b & c \end{pmatrix} h^{-1} \begin{pmatrix} 4 & 5 \end{pmatrix}$$

$$\stackrel{(*)}{=} \begin{pmatrix} 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}.$$

9.7 Folgerung. $A_{\underline{5}}$ ist einfach.

Erinnerung (vgl. 3.8): Ein Zyklus ist genau dann eine gerade Permutation, wenn er ungerade Länge hat, denn:

$$\begin{pmatrix} a_1 & \cdots & a_k \end{pmatrix} \stackrel{3.9}{=} \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} a_1 & a_3 \end{pmatrix} \cdots \begin{pmatrix} a_1 & a_{k-1} \end{pmatrix} \begin{pmatrix} a_1 & a_k \end{pmatrix}$$

$$= \begin{pmatrix} a_k & a_{k-1} \end{pmatrix} \begin{pmatrix} a_{k-1} & a_{k-2} \end{pmatrix} \cdots \begin{pmatrix} a_3 & a_2 \end{pmatrix} \begin{pmatrix} a_2 & a_1 \end{pmatrix}$$

$$k - 1) \text{ Faktoren.}$$

. Beweis von 9.7 Jedes Element von $A_{\underline{5}}$ ist von einem der folgenden Typen (für $\{a,b,c,d,e\}=\{1,2,3,4,5\}$).

Maximum der Zyklen- längen in Zyklendarstellung	Typ (Zyklendarstellung)
1	e = (a)(b)(c)(d)(e)
2	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} c & d \end{pmatrix} \begin{pmatrix} e \\ c \end{pmatrix} \longrightarrow \text{Typ (I)} $ $ \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} d \end{pmatrix} \begin{pmatrix} e \end{pmatrix} \begin{pmatrix} e \end{pmatrix} \longrightarrow \text{Typ (II)} $
3	$(a \ b \ c) (d) (e) \longrightarrow \text{Typ (II)}$
4	
5	$\begin{pmatrix} a & b & c & d & e \end{pmatrix} \longrightarrow \text{Typ (III)}$

Sei $\{e\} \neq N \subseteq A_{\underline{5}}$.

Behauptung: N enthält ein Element von $E := \{ (a \ b \ c) \mid a,b,c \in \underline{5}, \mid \{a,b,c\} \mid = 3 \}.$

Beweis. Sei $g \in N \setminus \{e\}$. Fallunterscheidung:

Fall 1: g hat Typ (I), also $g = (a \ b)(c \ d)$. Dann

$$\underbrace{\left(\left(\begin{array}{ccc} a & b & e \end{array}\right)g\left(\begin{array}{ccc} a & b & e \end{array}\right)^{-1}\right)}_{=\left(\begin{array}{ccc} a & e & b \end{array}\right)\left(c\right)\left(d\right) \in E} g \in N \ (\text{da } N \leq A_{\underline{5}}).$$

Also $N \cap E \neq \emptyset$.

Fall 2: g hat Typ (II), also $g \in E \implies N \cap E \neq \emptyset$.

Fall 3: g hat Typ (III), also $g = (a \ b \ c \ d \ e)$. Dann

$$\underbrace{\left(\left(\begin{array}{ccc} a & b & e \end{array}\right)g\left(\begin{array}{ccc} a & b & e \end{array}\right)^{-1}\right)}_{=\left(a\right)\left(\begin{array}{ccc} b & c & e \end{array}\right)\left(\begin{array}{ccc} da & N & \leq A_{\underline{5}}\right).$$

Also $N \cap E \neq \emptyset$.

Nach Behauptung: $N\cap E\neq\emptyset$. Wegen Lemma 9.6 und $N\unlhd A_{\underline{5}}$, folgt $E\subseteq N$. Daher $N=A_{\underline{5}}$ nach Lemma 9.5 (und da $N\le A_{\underline{5}}$). Also ist $A_{\underline{5}}$ einfach.

9.8 Lemma. Sei $n \in \mathbb{N}$, $n \geq 5$. Dann: $\forall g \in A_{\underline{n}} : \forall A_{\underline{n}} \setminus \{e\} \exists n \in A_{\underline{n}} \setminus \{g\} :$

- (i) g und h sind konjugiert in A_n , und
- (ii) $\exists i \in \{1, ..., n\} : i^g = i^h.$

Beweis. Sei $g \in A_{\underline{n}} \setminus \{e\}$. Sei m die maximale Länge eines Zyklus in der Zyklendarstellung von g. Klar: $m \geq 2$. Fallunterscheidung:

 $m \geq 3$: Sei $g = \left(a_1 \cdots a_m\right) g'$ Zyklendarstellung von g. Wähle $b,c \in \{1,...,n\} \backslash \{a_1,a_2,a_3\}, \ b \neq c$. Dann $\left(a_3 \ b \ c\right) \in A_{\underline{n}}$ (vgl. 9.5) und daher $h := \left(a_3 \ b \ c\right) g \left(a_3 \ b \ c\right)^{-1} \in A_{\underline{n}}$ konjugiert zu g in $A_{\underline{n}}$. Nun:

$$a_1^h = a_1^{(a_3 \ b \ c)g(a_3 \ b \ c)^{-1}} = a_2 = a_1^g,$$

$$a_2^h = a_2^{(a_3 \ b \ c)g(a_3 \ b \ c)^{-1}} = c \neq a_3 = a_2^g \implies g \neq h.$$

m=2: Dann $h=\left(a_{11}\ a_{12}\right)\left(a_{21}\ a_{22}\right)\left(a_{31}\ a_{32}\right)\cdots\left(a_{k1}\ a_{k2}\right)$ für paarweise verschiedene $a_{11},a_{12},...,a_{k1},a_{k2}\in\underline{n}$. Fallunterscheidung $(k\geq 2,\ \mathrm{da}\ g\ \mathrm{gerade}\ \mathrm{Permutation}\ \mathrm{ist})$:

 $k \geq 3$: Dann $\begin{pmatrix} a_{11} & a_{12} \end{pmatrix} \begin{pmatrix} a_{21} & a_{31} \end{pmatrix} \in A_{\underline{n}}$ und daher

$$h := (a_{11} \ a_{12}) (a_{21} \ a_{31}) g (a_{11} \ a_{12}) (a_{21} \ a_{32}) \in A_{\underline{n}}$$

konjugiert zu g in A_n . Und:

$$- a_{11}^{h} = a_{12} = a_{11}^{g}, - a_{21}^{h} = a_{32} \neq a_{22} = a_{21}^{g} \implies g \neq h.$$

 $k = 2: \text{ Dann } g = \begin{pmatrix} a_{11} & a_{12} \end{pmatrix} \begin{pmatrix} a_{21} & a_{22} \end{pmatrix}. \text{ Dann } \begin{pmatrix} a_{11} & a_{21} & a_{12} \end{pmatrix} \in A_{\underline{n}} \text{ (vgl. 9.5), also}$ $h := \begin{pmatrix} a_{11} & a_{21} & a_{12} \end{pmatrix} h \begin{pmatrix} a_{11} & a_{12} & a_{21} \end{pmatrix} \in A_{\underline{n}} \text{ konjugiert zu } g \text{ in } A_{\underline{n}}. \text{ Und:}$ $- a_{11}^h = a_{22} \neq a_{12} = a_{11}^g \implies g \neq h,$ $- b^h = b = b^g \text{ für jedes } b \in \{1, ..., n\} \setminus \{a_{11}, a_{12}, a_{21}, a_{22}\}.$

9.9 Lemma. Sei $n \in \mathbb{N}$ mit $n \geq 3$, und $i \in \{1, ..., n\}$. Dann gilt: $(A_{\underline{n}})_i \cong A_{\underline{n-1}}$.

Beweis. Betrachte Injektion $f: \{1, ..., n-1\} \rightarrow \{1, ..., n\}$ mit

$$f(j) := \left\{ \begin{array}{ll} j & \text{falls } j < i, \\ j+1 & \text{falls } j \geq i \ (j \in \{1,...,n-1\}). \end{array} \right.$$

Dann $\text{Im}(f)=\{1,...,n\}\backslash\{i\}$. Betrachte injektiven Homomorphismus $\Phi:S_{\underline{n-1}}\to S_{\underline{n}}$ mit

$$j^{\Phi(g)} := \begin{cases} f(f^{-1}(j)^g) & \text{falls } j \neq i, \\ i & \text{sonst,} \end{cases}$$

für $j \in \{1,...,n\}$ und $g \in S_{\underline{n-1}}$. Dann $\operatorname{Im}(\Phi) = \left(S_{\underline{n}}\right)_i$. Und: Φ bildet Transpositionen auf Transpositionen ab. Genauer:

$$\Phi(\left(j\ k\right)) = \left(f(j)\ f(k)\right)$$

für alle $j, k \in \{1, ..., n-1\}, j \neq k$. Folgerung:

 $g \in A_{\underline{n-1}} \iff g$ ist produkt einer geraden Anzahl von Transpositionen $\Longrightarrow \Phi(g)$ ist Produkt einer geraden Anzahl von Transpositionen $\iff \Phi(g) \in A_n.$

Also $\Phi(A_{n-1}) \subseteq A_n \cap (S_n)_i = (A_n)_i$. Und:

$$|(A_{\underline{n}})| = \frac{|A_{\underline{n}}|}{|i^{A_{\underline{n}}}|} \stackrel{A_{\underline{n}} \text{ ist}}{\underset{\text{transitiv}}{=}} \frac{\frac{n!}{2}}{n} = \frac{(n-1)!}{2} = |A_{\underline{n-1}}|.$$

Also $\Phi(A_{\underline{n-1}}) = (A_{\underline{n}})_i$. Damit ist $A_{\underline{n-1}} \cong (A_{\underline{n}})_i$.

9.10 Satz. Sei $n \in N$ mit $n \geq 5$. Dann ist A_n einfach.

Beweis. Induktion über $n \geq 5$:

Induktionsanfang: Folgerung 9.7.

Induktionsschritt: Sei $n \geq 6$ und Einfachheit von $A_{\underline{n-1}}$ vorausgesetzt. Sei $\{e\} \neq N \leq A_{\underline{n}}$. Sei $g \in N \setminus \{e\}$. Nach Lemma 9.8: $\exists h \in A_{\underline{n}} \setminus \{g\}$:

(i) g und h konjugiert in A_n ,

(ii) $\exists i \in \{1, ..., n\} : i^g = i^h$.

Wegen (i) und $N \subseteq A_{\underline{n}}$ ist $h \in N$. Wegen (ii) ist $gh^{-1} \in (A_{\underline{n}})_i =: H_i$ für ein $i \in \{1,...,n\}$. Also: $e \neq gh^{-1} \in N \cap H_i \implies N \cap H_i \neq \{e\}$. Wegen $N \subseteq A_{\underline{n}}$ ist $(N \cap H_i) \subseteq H_i$ (ganz allgemein gilt $N \subseteq G, H \subseteq G \implies N \cap H \subseteq H$). Weil $H_i = (A_{\underline{n}})_i \cong A_{\underline{n-1}}$ einfach nach Induktionshypothese: $N \cap H_i = H_i$, d.h. $H_i \subseteq N$. Da H_i Zyklus der Länge 3 enthält, enthält auch N einen solchen. Wegen Lemma 9.6 und $N \subseteq A_{\underline{n}}$ enthält N jeden Zyklus der Länge 3. Mit Lemma 9.5 folgt: $N = A_{\underline{n}}$. Das zeigt: A_n ist einfach.