## Университет ИТМО Факультет программной инженерии и компьютерной техники

### Домашняя работа №1

## «Проектирование гибридной интегральной схемы»

по дисциплине «Системы автоматизированного проектирования»

Выполнил:

Студент группы Р3331

Нодири Хисравхон

Преподаватель: Поляков Владимир Иванович

г. Санкт-Петербург

2025 г.

# Содержание

| C | Годержание                                       | 2 |
|---|--------------------------------------------------|---|
|   | Введение                                         |   |
|   | Вариант лабораторной работы                      |   |
|   | Расчет тонкопленочных резисторов                 |   |
|   | 3.1 Определение критерия оптимальности           |   |
|   | 3.2 Выбор материала резистивной пленки           | 4 |
|   | 3.3 Определение коэффициента формы кф            | 5 |
|   | 3.4 Определение ширины b для резисторов с kф<10  |   |
|   | 3.5 Определение длины I для резисторов с kф<10   | 6 |
| 4 | Расчет тонкопленочных конденсаторов              | 7 |
|   | 4.1 Определение материала                        | 7 |
|   | 4.2 Определение активной площади конденсаторов   |   |
|   | 4.3 Определение конструкции конденсаторов        | 8 |
| 5 | Итоговая схема                                   | 9 |
|   | 5.1 Итоговые параметры элементов                 | 9 |
|   | 5.2 Параметры располагаемых элементов в масштабе |   |
|   | 5.3 Топология гис ограничителя                   |   |

### 1 Введение

Целью работы является проектирование тонкопленочной гибридной интегральной схемы ограничителя.

### 2 Вариант лабораторной работы



Рис.1: Принципиальная схема совпадения по варианту 15-2

#### Дано:

R1 = 0.52 kOm;  $\Delta$ R1 = 10%; W1 = 0.01 Bm

R2 = 0.8 kOm;  $\Delta R2 = 10\%$ ; W2 = 0.01 Bm

R3 = 7 kOm;  $\Delta$ R3 = 10%; W3 = 0.005 Bm

R4 = 4.3 kOm;  $\Delta R4 = 10\%$ ; W4 = 0.01 Bm

R5 = 4.3 kOm;  $\Delta R4 = 20\%$ ; W4 = 0.005 Bm

 $C1 = 6300 \text{ n}\Phi$ ;

### 3 Расчет тонкопленочных резисторов

#### 3.1 Определение критерия оптимальности

$$p_{_{\mathrm{OIIT}}} = \sqrt{\frac{\sum\limits_{i=1}^{n}R_{_{i}}}{\sum\limits_{i=1}^{n}R_{_{i}}^{-1}}} = 2115.407 \approx 2100\,\mathrm{Om/d}$$

Для упрощения вычислений в качестве  $p_{_\square}$  выбирают округленное значение  $p_{_{\rm опт}}$ , следовательно получили удельное поверхностное сопротивление резистивной плёнки  $p_{_\square}$  = 2100 Ом/ $_\square$ 

#### 3.2 Выбор материала резистивной пленки

| Наименование<br>материала | р <sub>□</sub> , Ом/□ | Диапазон значений сопротивления, Ом | Удельная мощность рассеяния $W_0$ , $B_{7}/c_{10}$ |
|---------------------------|-----------------------|-------------------------------------|----------------------------------------------------|
| Сплав РС - 3001           | 800 - <u>3000</u>     | 50 - 30000                          | 2                                                  |

Заметка: Выбрал этот сплав, т.к. полученное  $p_{_{\square}}$  отлично входит в назначенный диапазон материала Сплав РС-3001.

## 3.3 Определение коэффициента формы $k_{_{\Phi}}$

$$k_{\Phi^1} = \frac{R_1}{p_{_{\square}}} = \frac{0.52 \cdot 10^3}{2100} \approx 0.248; \Rightarrow$$
 прямоугольная форма (l < b)  $k_{\Phi^2} = \frac{R_2}{p_{_{\square}}} = \frac{0.8 \cdot 10^3}{2100} \approx 0.381; \Rightarrow$  прямоугольная форма (l < b)  $k_{\Phi^3} = \frac{R_3}{p_{_{\square}}} = \frac{7 \cdot 10^3}{2100} \approx 3.333; \Rightarrow$  прямоугольная форма (l > b)  $k_{\Phi^4} = \frac{R_4}{p_{_{\square}}} = \frac{4.3 \cdot 10^3}{2100} \approx 2.048; \Rightarrow$  прямоугольная форма (l > b)  $k_{\Phi^4} = \frac{R_4}{p_{_{\square}}} = \frac{4.3 \cdot 10^3}{2100} \approx 2.048; \Rightarrow$  прямоугольная форма (l > b)

Если  $1 < k_{\phi} \le 10$ , то резистор рекомендуется выполнять прямоугольной формы, длина l которого больше ширины b. При  $0,1 \le k_{\phi} < l$  - то же, но l < b; если  $10 \le k_{\phi} \le 50$ , то резистору придают форму меандра.

## 3.4 Определение ширины b для резисторов с $k_{_{\Phi}} < 10$

Расчётное значение ширины каждого резистора в должно удовлетворять условию:  $b \geq max[b_{_{\text{точн}}},\ b_{_{W}}]$ 

, где  $b_{_{
m TOЧH}}$  определяется заданной точностью изготовления:

$$b_{_{
m TOЧH}} = egin{array}{l} 0.2 \,_{
m MM} \,_{
m IDH} \,_{\delta}R = \pm 20\% \ 0.3 \,_{
m MM} \,_{
m IDH} \,_{\delta}R = \pm 10\% \end{array}$$
 , а  $b_w = \sqrt{\frac{p_{_{
m I}} \cdot w}{R \cdot w_{_0}}}$  b\_1 =  $\underline{1.5 \,_{
m MM}} >= \max[bw_1 = 1.421 \,_{
m MM}; \,_{
m b\_movh} = 0.3 \,_{
m MM}]$  b\_2 =  $\underline{1.2 \,_{
m MM}} >= \max[bw_2 = 1.146 \,_{
m MM}; \,_{
m b\_movh} = 0.3 \,_{
m MM}]$  b\_3 =  $\underline{0.3 \,_{
m MM}} >= \max[bw_2 = 0.274 \,_{
m MM}; \,_{
m b\_movh} = 0.3 \,_{
m MM}]$  b\_4 =  $\underline{0.5 \,_{
m MM}} >= \max[bw_1 = 0.494 \,_{
m MM}; \,_{
m b\_movh} = 0.3 \,_{
m MM}]$  b\_5 =  $\underline{0.4 \,_{
m MM}} >= \max[bw_1 = 0.349 \,_{
m MM}; \,_{
m b\_movh} = 0.2 \,_{
m MM}]$ 

## 3.5 Определение длины l для резисторов с $k_{_{\rm d}} < 10$

Расчётное значение 
$$l=rac{R}{r_p}\cdot\,b\,=k_{\dot{\Phi}}\cdot\,b$$

За длину резистора принимают ближайшее к l расчётное значение, кратное <u>шагу координатной сетки H, выбранному как 0.1 мм</u>. При округлении l рекомендуется оценить погрешность, вызванную округлением и если  $\Delta R' > \Delta R$ , то увеличить ширину резистора и пересчитать l

$$\Delta R' = \frac{\left| R - R' \right|}{R} \cdot 100\%,$$

L1 = 0.4 mm; R'\_1 = 560.0 Om; 
$$\Delta$$
R' = 8.0% <  $\Delta$ R = 10% ✓

L2 = 0.5 mm; R'\_2 = 875.0 Om; 
$$\Delta$$
R' = 9.0% <  $\Delta$ R = 20% ✓

L3 = 1.0 mm; R'\_3 = 7000.0 Om; 
$$\Delta$$
R' = 0.0% <  $\Delta$ R = 20% ✓

L4 = 1.0 mm; R'\_4 = 4200.0 Om; 
$$\Delta$$
R' = 2.0% <  $\Delta$ R = 10% ✓

L5 = 0.8 mm; R'\_4 = 4200.0 Om; 
$$\Delta$$
R' = 2.0% <  $\Delta$ R = 10% ✓

Как видим, <u>для всех</u> резисторов значения  $\Delta R' < \Delta R$ . Это показывает, что расчётные значения тонкопленочных резисторов <u>соответствуют заданным техническим требованиям</u>, в пределах допустимой погрешности (10%).

### 4 Расчет тонкопленочных конденсаторов

#### 4.1 Определение материала

Для повышения точности и надежности конденсаторов необходимо выбирать наиболее простую форму обкладок. Суммарная площадь, занимаемая конденсатором на микроплате, не должна превышать  $2~{\rm cm}^2$ , минимальная площадь Smin конденсатора равна  $0.5 \cdot 0.5~{\rm mm}^2$ .

Расчет пленочных конденсаторов сводится таким образом к определению их активной площади. Эта площадь рассчитывается по формуле.

$$S = \frac{C}{C_0} (cM^2).$$

Следовательно, прикинем удельную ёмкость конденсаторов:

$$C_{0_{1}}^{*} = \frac{C_{1}}{S_{min}} = \frac{6300 \, \text{m}\Phi}{0.5 \cdot 0.5 \cdot 0.01 \, \text{cm}^{2}} = 2520 \, \cdot \, 10^{3} \, \Pi \phi / \text{cm}^{2}$$

Кроме материалов, приведенных в этой таблице, для изготовления тонкопленочных конденсаторов могут применяться окислы тантала, двуокись титана, титанат бария и др. Эти материалы имеют большее значение диэлектрической проницаемости, чем окись кремния SiO или окись германия GeO и на их основе можно изготовлять конденсаторы большой емкости. Однако, из-за больших диэлектрических потерь добротность таких конденсаторов низка, в связи с чем их можно применять только в низкочастотных цепях и цепях постоянного тока. Все большее применение для изготовления

При выборе материала у меня возникли трудности, так как верхний порог удельной ёмкости пятиокиси тантала достигает лишь 200\*10^3, т.е. Отличается более чем в 12 раз от той величины,

которую мы прикинули для конденсатора. Я изучил вопрос, выбрав двуокиси титана, титанаты бария, и другие элементы, однако сделал вывод, что добротность результирующих конденсаторов будет низка, следовательно, я возьму материал пятиокись тантала, и сделаю на нём конденсатор.

$$=> \Pi$$
ятиокись тантала:  $C_0 = 200 \cdot 10^3 \, \Pi \phi / cm^2$ 

| Наименование | Материал   | Удельная                 | Рабочее     | Диэлектрическая                |
|--------------|------------|--------------------------|-------------|--------------------------------|
| материала    | обкладок   | емкость $C_0$ ,          | напряжение, | проницаемость $\varepsilon$ на |
|              |            | $\pi\Phi/cM^2$           | В           | частоте $f$ = 1к $\Gamma$ ц    |
| Пятиокись    | Тантал ТВЧ | (60-200)*10 <sup>3</sup> | 15 - 10     | 23                             |
| тантала      |            | (00 200) 10              |             |                                |

### 4.2 Определение активной площади конденсаторов

$$S_1 = \frac{C_1}{C_0} = 3.15 \text{ mm}^2$$

#### 4.3 Определение конструкции конденсаторов

Исходя из рассчитанных площадей,  $0.1 \le S_1$ ,  $S_2 \le 1~{
m MM}^2$ 

Следовательно, выбирается конструкция с последовательным соединением конденсаторов:



Рис.2: Выбранная конструкция конденсаторов

## 5 Итоговая схема

## 5.1 Итоговые параметры элементов

|    | Длина элемента, | Ширина       | Материал                       |
|----|-----------------|--------------|--------------------------------|
|    | MM              | элемента, мм |                                |
| R1 | 0.4             | 1.5          | Сплав РС - 3001                |
| R2 | 0.5             | 1.2          |                                |
| R3 | 1               | 0.3          |                                |
| R4 | 1               | 0.5          |                                |
| R5 | 0.8             | 0.4          |                                |
| C1 | 1.77            | 1.77         | Обкладки - Тантал ТВЧ          |
|    |                 |              | Диэлектрик - Пятиокись тантала |

### 5.2 Параметры располагаемых элементов в масштабе



<sup>\*</sup> Шаг координатной сетки, т.е. масштаб: Н = 0.1 мм



<sup>\*</sup> Растянутые компоненты для корректного перекрытия

#### 5.3 Топология гис ограничителя



<sup>\*</sup> Компоненты размещены на подложке 56х38. Делал по принципу максимально полезно используемого места, при этом сохраняя все нужные отступы, избегая пересечения проводов навесных элементов и емкостных (конденсатор С1). Также сделал посреди платы контактные площадки, обозначив зелёным штрихом. Решение с целью компактности - удобно так соединить транзисторы, ничего не мешает технически это реализовать, и доп. контактная площадка для вывода также имеется.