

Alexandria/Arlington Resource Recovery Facility
Fiscal Year 2015
Annual Operating Report

FDR

July **2015**

Table of Contents

1.0		POSE OF REPORT4							
2.0		CUTIVE SUMMARY 4							
3.0	FAC	ILITY INSPECTION AND RECORDS REVIEW6							
4.0	FAC	ILITY PERFORMANCE9							
	4.1	Utility and Reagent Consumptions24							
	4.2	Safety & Environmental Training							
5.0	FAC	FACILITY MAINTENANCE							
	5.1	Availability27							
	5.2	Downtime Summary27							
	5.3	Facility Housekeeping30							
6.0	ENVIRONMENTAL								
	6.1	Nitrogen Oxide Emissions31							
	6.2	Sulfur Dioxide Emissions31							
	6.3	Carbon Monoxide Emissions							
	6.4	Opacity32							
	6.5	Daily Emissions Data							
	6.6	2015 Annual Stack Testing							
	6.7	Ash System Compliance35							
APP	ENDIX	A FACILITY CEMS DATA							
APP	ENDIX	B PHOTOS41							

Page No.

Section No.

List of Tables

Table No.	Page No.
Table 1: Summary of Audit Report Deficiencies	7
·	
Table 6: Boiler Downtime – Q4FY15	29
Table 8: Facility Housekeeping Ratings – May 2015	30
Table 12: Unit #2 Monthly Summary for Reportable Emissions Data	
Table 13. Office #3 Monthly Sufficially for Reportable Efficiency Data	40
List of Charts	
	Page No
onart No.	r age No.
	-
Chart 15: Stack Test Results through 2015	33
Chart 16: Ash Toxicity Characteristic Leaching Procedure (TCLP) Results	35
Chart 17: Quarterly Ash Test Results	36
able 1: Summary of Audit Report Deficiencies	
Figure No.	Page No.
Figure 1: Potary Spothlower Gears Exposed (typical of all 3 hollers) at Crane Pulnit Fleyation – New Deficiency	12
Figure 5: North stairwell (walls, stairs, hand railings, etc.) painting complete – All Elevations	42
Figure 6: New Emergency Eye Wash Station installed at Ammonia Storage Tank	42
Figure 7: Turbine Generators – No Issues Observed	43
3	
Figure 20: Facility Scales and new Fire Station on left	45
Figure 21: General Facility Photo from up (West of Facility) Eisenhower Avenue	45
Figure 24: General Facility Photo from northeast corner of property	15

Definition of Abbreviations & Acronyms

Definition Abbreviation/Acronym Air Pollution Control

April Apr Aug August Avg Average

British thermal unit Btu

CAAI Covanta Alexandria Arlington, Inc. **CEMS** Continuous Emissions Monitoring System

CO Carbon Monoxide Dec December

February Facility Monitoring Group **FMG**

FY Fiscal Year Gallon gal

Feb

ĞAT **Guaranteed Annual Tonnage** HCI Hydrochloric (Hydrogen Chlorides)

HDR HDR Engineering Inc Induced Draft ID

Jan January Jul July Jun June

Kilo-pounds (1,000 lbs) klbs

Kilowatt hours (1,000 watt-hours) kWhr

Pounds lbs

LOA Letter of Agreement

March Mar Max Maximum May May Min Minimum

MSW Municipal Solid Waste

MWhr Megawatt hours

Number No NOV Notice of Violation Nov November NO_x Nitrogen Oxide Oct

October

Occupational Safety and Health

OSHA Administration

Potomac Disposal Services **PDS**

Parts per million ppm

ppmdv Parts per million dry volume

Prevention of Significant Deterioration PSD

First Quarter Q1 Second Quarter Q2 Q3 Third Quarter Q4 Fourth Quarter Reportable Exempt RE Reportable Non-Exempt **RNE** Spray Dryer Absorber **SDA**

September Sep Sulfur Dioxide SO_2

TCLP Toxicity Characteristic Leaching Procedure

Virginia Department of Environmental

VADEQ Quality WL Warning Letter

Year

ÝTD Year to date

Alexandria/Arlington Waste-to-Energy Facility Fiscal Year 2015 Operating Report

1.0 Purpose of Report

HDR Engineering, Inc. (HDR) was authorized by the Facility Monitoring Group (FMG) to conduct quarterly inspections and provide quarterly reports regarding the operation and maintenance of the Covanta Alexandria/Arlington Waste-to-Energy Facility (Facility) for the 2015 calendar year. This report is prepared for the fourth quarter of the 2015 fiscal year and summarizes Facility operations between April 1, 2015 and June 30, 2015, as well as the entire fiscal year. This report identifies the fiscal year beginning on July 1, 2014 as FY15 and the quarter beginning on April 1, 2015 as Q4FY15.

This report is based upon HDR's experience in the waste-to-energy industry, upon site observation visits and previous reports provided by HDR, and upon data provided by Covanta Alexandria / Arlington, Inc. (CAAI), the Facility owner and operator.

2.0 Executive Summary

CAAI operated the Facility in an acceptable manner and in accordance with established waste-to-energy industry practices during Q4FY15. The operation of the Facility, maintenance, safety, and overall cleanliness continue to be above average. Environmental performance was excellent with no reportable environmental excursions throughout the quarter.

During Q4FY15, the Facility experienced no unscheduled downtime for the boilers, and two (2) instances of unscheduled downtime for the turbine generators totaling 456.7 hours. Beginning June 16, 2015, Boiler No. 3 experienced 35.5 hours of downtime for scheduled maintenance. No standby time was experienced by the Facility during the quarter. A detailed listing of downtime is provided in Section 5.2 of this report.

Average waste processed during the quarter was 1,029.6 tons per day, or 105.6% of nominal facility capacity. Waste deliveries averaged 1,017.3 tons per day, which is 1.2% lower than the burn rate. The capacity utilization of 105.6% compares favorably to industry averages, which are generally in the 88% to 92% range.

On an annual basis, average waste processed was 955.4 tons per day, or 98.0% of nominal facility capacity of 975 tons per day. Waste deliveries averaged 953.7 tons per day, which is 0.2% less than the annual burn rate. The annual capacity utilization of 98.0% compares very favorably to industry averages.

Performance trends for various measurements are presented in Section 4. In general, the Facility continues to demonstrate reasonable consistency in month to month performance throughout the most recent three-year period tracked for detailed comparisons.

During the quarter, MSW processed decreased 1.1% from the corresponding quarter in FY14; steam production increased 0.7%, and electricity generated (gross) decreased 7.1% from the corresponding quarter in FY14. The increase in steam generation was attributable to the increase (2.6%) in the calculated average waste heating value, as well as less downtime (130.4 fewer hours) experienced by the boilers. The decrease in gross electrical generation in Q4FY15 as compared to Q4FY14 is attributable to significantly more downtime (454.2 additional hours) experienced by the Turbine Generators.

During FY15, MSW processed decreased 0.1% from FY14; steam production increased 0.9%, and electricity generated (gross) increased 1.1% compared to FY14. The increase in steam generation was attributable to the increase (2.1%) in the calculated average waste heating value, as well as less (293.7 fewer hours) scheduled, unscheduled, and standby downtime experienced by the boilers, offset by throttling the boilers to remain below the steam permit monthly limits. The increase in gross electrical generation in FY15 as compared to FY14 is attributable to the increase in steam production, as well as less (449.5 fewer

hours) scheduled, unscheduled, and standby downtime experienced by the turbine generators.

All things considered, FY15 overall plant performance was very similar to FY14, with minor deviations mainly associated with normal range changes in the average waste heating value.

3.0 Facility Inspection and Records Review

In May 2015, HDR met with the Facility management and other plant personnel to discuss Facility operations and maintenance, acquire Facility data and reports, perform an independent visual inspection of the operating Facility, photograph areas of interest, and perform a review of recent Facility activity. This visit was coordinated with the scheduled FMG meeting. At the time of the inspection, HDR reviewed CAAI records, discussed performance issues with CAAI staff, and provided a verbal report and performance statistics at the FMG meeting. HDR maintains a running tabulation of the status of corrective actions and plant performance trends. CAAI provides the following documents for each month:

- Facility Monthly Operating Reports
- Monthly Continuous Emissions Monitoring System (CEMS) Reports

Table 1 summarizes maintenance, repair, and plant condition issues reported during this and prior audit reporting periods. An "A" indicates an issue of the highest priority and worthy of immediate attention. Such items are usually safety or operability issues. A "B" indicates that the issue needs to be dealt with as quickly as possible, but is not urgent. These items will usually result in a process improvement or will help avoid future "urgent" issues. A "C" indicates that the issue should be dealt with at the earliest convenience, but is not a priority issue. This category might include issues related to aesthetics, non-urgent maintenance, or housekeeping improvements which are not safety related.

Table 1: Summary of Audit Report Deficiencies

*A is highest priority & demands immediate attention: B needs attention, but is not urgent; C can be addressed at earliest opportunity & is not

urgent.

	urgent.					
Item No.	Audit Report Deficiencies	Issue Reported	Priority*	HDR Recommendation	Status	Open / Closed
1	Concrete to roadway drain at truck entrance damaged – exposing reinforcing bar	May 2014	С	Repair damaged concrete	Status Unchanged	Open
2	Corrosion on ceiling panels in Turbine Generator Enclosure	August 2014	С	Sand, Prime, Paint and Preserve, and replace deteriorated panels as necessary	HDR observed the corroded/deteriorated sections had been primed, but no panels were replaced.	Open
3	Corrosion on ceiling panels in Turbine Generator Enclosure (Alternate Location)	August 2014	С	Sand, Prime, Paint and Preserve, and replace deteriorated panels as necessary	HDR observed the corroded/deteriorated sections had been primed, but no panels were replaced.	Open
4	Damaged Tipping Floor wall panels – Rainwater observed running from outside to inside	August 2014	С	Repair damaged Tipping Floor wall panels	Status Unchanged	Open
5	Deteriorated purlin east wall in Tipping Floor Enclosure	November 2014	С	Replace deteriorated purlin	Status Unchanged	Open
6	Damaged curbing northeast corner of Facility near Citizen's Drop-off	November 2014	С	Repair curbing	Status Unchanged	Open
7	Damaged curbing west side of Cooling Towers	November 2014	С	Repair curbing	Status Unchanged	Open
8	Pot-hole where pavement and concrete meet entering Tipping Floor Enclosure	November 2014	С	Repair pavement	Complete	Closed
9	Damaged curbing near Ash Trailer Parking Area	November 2014	С	Repair curbing		Open
10	Kick plates deteriorating on stairway east of Steam Coil Air Heaters	February 2015	С	Replace stairway kick plates	HDR observed that this item was in progress, and that new kick plates were being installed.	Open
11	Missing handle on door at south end of Firing Aisle	February 2015	С	Replace door handle	Complete	Closed
12	Parapet on north end of Charging Floor damaged with exposed rebar	February 2015	С	Repair concrete parapet	Status Unchanged	Open
13	Panels on east wall in Charging Floor damaged	February 2015	С	Replace damaged wall panels	Status Unchanged	Open
14	Gaitronics Communication Station not mounted properly outside Crane Pulpit Access Door	February 2015	С	Properly mount Gaitronics Communication Station	Complete	Closed

Item No.	Audit Report Deficiencies	Issue Reported	Priority*	HDR Recommendation	Status	Open / Closed
15	Missing Danger/Warning Sign (English Version) on Pit Column	February 2015	С	Install proper danger/warning sign	HDR observed an additional sign was missing during the May 2015 Site Walk-Through.	Open
16	Rotary Sootblower Gears Exposed (typical of all 3 boilers) at Crane Pulpit Elevation - See Figure 1 (Appendix B)	May 2015	А	Install protective cages around all sides of exposed gears.	Status Unchanged	Open
17	Induced Draft Fan No. 1 Lagging deteriorated, west side of CEMS Enclosure – See Figure 2 (Appendix B)	May 2015	С	Replace deteriorated Induced Draft Fan Lagging	Status Unchanged	Open

4.0 Facility Performance

Monthly operating data provided by CAAI indicates that 93,695 tons of MSW were processed during Q4FY15, and a total of 92,576 tons of MSW including 1,842 tons of Special Handling Waste were received. Total ash production during the quarter was 18,870 tons, which represents 20.1% of the waste processed. The average uncorrected steam production rate for Q4FY15 was 3.0 tons_{steam}/ton_{waste}, which is 1.8% more than the corresponding quarter in FY14. The increase in this metric is attributable to the increase (2.6%) in calculated average waste heating value that was experienced in Q4FY15, as compared to Q4FY14.

On an annual basis, 348,686 tons of MSW were processed during FY15, and a total of 348,105 tons of MSW and 5,413 tons of Special Handling Waste were received. Total ash production during FY15 was 71,019 tons, which represents 20.4% of the waste processed. The average uncorrected steam production rate for FY15 was 3.0 tons_{steam}/ton_{waste}, and 1.0% higher than the corresponding period last year. The increase in this metric is attributable to the increase (2.1%) in the calculated average waste heating value that was experienced in FY15, as compared to FY16.

Chart 1: Tons of Waste Processed

Chart 1 illustrates that Q4FY15 waste processed was lower (1.1%) than the corresponding quarter, Q4FY14.

CAAI reported that 433 tipping floor/MSW internal inspections were conducted during the quarter and CAAI issued four (4) notices of violation (NOVs) to the haulers for the following issues:

- April 2015 Five (2) NOVs were issued for:
 - Opening turnbuckles on Tipping Floor (2)
- May 2015 One (1) NOV was issued for:
 - Opening turnbuckles before entering the Tipping Floor
- June 2015 One (1) NOV was issued for:
 - Dragging debris onto the roadway

Chart 2: Tons of Ash Produced per Ton of Waste Processed

Chart 2 illustrates that ash production rates in Q4FY15 are identical at 20.1% of processed waste, compared to the corresponding quarter in FY14. Ash production remains in the 20.0% to 21.0% range, as a result of the installation of the "semi-dry" ash discharger spray system in May 2012, and represents less moisture in the ash residue shipped to disposal. Another contributing factor is increased metal recovery since the installation of a new ferrous magnet shell during Q2FY14 (December 2013).

The annual ash production rate for FY14 was slightly lower (0.2%) at 20.4% of processed waste, compared to FY13 when the rate was 20.6% of processed waste. The decrease in ash production (20.0% - 21.0% Range), which began in May 2012 is attributed to the installation of the "semi-dry" ash discharger spray system, and represents less moisture in the ash residue shipped to disposal. Another contributing factor is the aforementioned increase in ferrous metal recovery. CAAI installed a new ferrous magnet shell during the latter part of the fall outage season in December 2013 and ferrous metal recovery has remained higher to date.

Chart 3: Ferrous Recovery Rate

Chart 3 depicts the monthly ferrous metal recovery rate as a percentage of processed MSW tonnage. In Q4FY15, 2,541 tons of ferrous metals were recovered, which is 0.6% lower than the corresponding quarter in FY14 and equivalent to 2.7% of processed waste.

In FY15, 9,864 tons of ferrous metals were recovered, which is 10.6% higher than FY14 and equivalent to 2.8% of processed waste. As depicted in Chart 3, the first half of FY15 had an increased ferrous recovery rate, compared to the first half of FY14, which was before the new magnet shell was installed.

Chart 4: Steam Production

In Chart 4, the total steam production for Q4FY15 was 559,721 klbs., and 0.7% higher than the corresponding quarter in FY14. The increase in steam production is attributable to the increase (2.6%) in the calculated average waste heating value, as well as less downtime (130.4 fewer hours) experienced by the boilers.

Annual steam production for FY15 was 2,109,442 klbs., or 0.9% higher than FY14 which produced 2,091,123 klbs. The increase in annual steam production was attributable to the increase (2.1%) in the calculated average waste heating value, as well as less (293.7 fewer hours) scheduled, unscheduled, and standby downtime experienced by the boilers, offset by throttling the boilers to remain below the steam permit monthly limits.

Chart 5: 12-Month Rolling Steam Production

Chart 5 depicts the 12-month rolling steam production total for the period ending in June 2015. According to the Title V permit, the annual steam production for the Facility shall not exceed 1,170,400 tons on the basis of an average value of 3.34 lbs of steam per lb of MSW processed, calculated monthly as the sum of each consecutive 12 month period. The Facility was in compliance with the 12-month rolling steam production total every month in the quarter. The 12-month rolling total for steam production ending in June 2015 was 1,164,611 tons which is 99.5% of the limit. Chart 5 clearly shows that Facility throughput, and in turn, steam and electricity production are being throttled to stay ever so slightly below the steam production limit nearly every month.

Chart 6: Steam Production Rate

In Chart 6, the conversion of raw waste tonnages into "reference tons" is another way of analyzing steam production, and helps to determine whether changes are related to boiler performance or to fuel issues. "Reference tons" are adjusted to account for the calculated average fuel heating value, so that lower Btu fuel raw tonnages are adjusted upwards and vice versa. In Q4FY15, this metric tracked lower (0.8%) at 2.9 tons_{steam/tonref}, compared to the corresponding quarter in FY14.

The annual steam production rate for FY15 was 2.8 tons_{steam/}ton_{ref}, which is lower (1.1%) than FY14. This chart shows that for much of FY15, a downtrend was experienced in the normalized steam production rate compared to the same period during the prior two (2) years. This trend should continue to be monitored to determine if it is indicative of poorer boiler performance, an aberration during scheduled outage periods, or some other currently unexplained cause.

Chart 7: Calculated Waste Heating Value

Chart 7 illustrates that Q4FY15 calculated average waste heating value was higher (2.6%) at 4,710 Btu/lb than the corresponding quarter Q4FY14, which averaged 4,590 Btu/lb.

In FY15, the annual average waste heating value was higher (2.1%) at 4,819 Btu/lb than FY14, which averaged 4,720 Btu/lb. Note that the FY15 annual average heating value of 4,819 Btu/lb is very close to the facility design value of 4,800 Btu/lb.

Table 2: Quarterly Performance Summaries

	Month	Waste Processed (tons)	Waste Diverted (tons)	Ash Shipped (tons)	Special Handling (Supplemental) (tons)	Ferrous Recovered (tons)	Steam Produced (klbs)	Net Electrical Generation (MWhr)
	Quarterly Totals	95,680	0	19,826	955	2,238	570,212	41,391
Q4FY13	April -13	32,147	0	6,844	403	731	196,219	14,536
Q4F113	May -13	32,682	0	6,817	281	775	193,668	14,186
	June -13	30,851	0	6,165	271	732	180,325	12,669
	Quarterly Totals	94,734	0	19,035	514	2,556	555,969	39,409
Q4FY14	April -14	31,317	0	6,454	253	873	189,568	13,568
Q41 1 14	May -14	32,873	0	6,585	151	897	190,394	13,515
	June -14	30,544	0	5,996	110	786	176,007	12,326
	Quarterly Totals	93,695	0	18,870	1,842	2,541	559,721	36,175
Q4FY15	April -15	30,646	0	6,182	613	848	179,434	12,784
Q4F113	May -15	31,160	0	6,701	531	889	195,150	11,786
	June -15	31,889	0	5,987	698	804	185,137	11,605
F`	Y15 Totals	348,686	0	71,019	5,413	9,864	2,109,442	145,085
F'	Y14 Totals	349,118	0	72,071	3,549	8,922	2,091,123	143,064
F'	Y13 Totals	347,790	0	73,446	2,665	9,063	2,154,201	148,366

Table 2 presents the production data provided to HDR by CAAI for Q4FY15 on both a monthly and quarterly basis. For purposes of comparison, data for Q4FY13 and Q4FY14 are also shown, as well as FY13, FY14 and FY15 totals.

In comparing quarterly totals, the data shows:

- Less waste was processed in Q4FY15 than Q4FY14 and Q4FY13
- More steam was generated in Q4FY15 than Q4FY14 and less than Q4FY13
- Less electricity was generated in Q4FY15 than Q4FY14 and Q4FY13
- Significantly more supplemental waste was received in Q4FY15 than Q4FY14 and Q4FY13.

Please note that the total steam generation figures presented in Table 2 do not correlate with the annual steam production limit from the Facility Permit; such limits apply on a 12-month rolling average monthly basis, and not a fiscal year basis. It is also worth noting that the quantity of waste processed during Q4FY15 and FY15 continues to be limited by the steam production permit restrictions (refer to Chart 5).

Table 3: Waste Delivery Classification

		<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	Oct	<u>Nov</u>	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Totals</u>	% of Total
	Jurisdiction Waste	18,201	19,320	18,100	18,244	17,812	17,394	16,316	15,212	18,279	18,596	20,355	19,382	217,213	62.20%
FY11	Spot Waste tons	13,996	13,917	11,696	9,336	10,177	11,441	12,968	7,016	8,459	10,177	12,947	9,657	131,786	37.74%
Ē	Supplemental Waste	8	17	12	13	6	13	14	34	25	29	26	6	203	0.06%
	MSW Totals	32,205	33,254	29,808	27,593	27,995	28,848	29,298	22,262	26,763	28,803	33,328	29,044	349,202	100.00%
	Jurisdiction Waste	18,112	20,021	19,304	17,796	17,523	17,211	16,202	14,952	17,430	18,338	20,138	18,361	215,381	61.89%
FY12	Spot Waste tons	8,901	13,623	13,303	9,788	11,976	11,900	10,276	10,697	10,283	10,029	11,333	10,177	132,295	38.01%
Ē	Supplemental Waste	10	10	34	15	15	21	12	22	15	23	68	91	336	0.10%
	MSW Totals	27,023	33,654	32,641	27,599	29,514	29,132	26,490	25,672	27,729	28,390	31,539	28,629	348,012	100.00%
	Jurisdiction Waste	19,413	18,357	16,632	17,625 ⁽	18,838	16,195	-	-	-	-	-	-	107,058	30.76%
	Spot Waste tons	10,516	11,326	10,610	10,317	9,330	9,558	-	-	-	-	-	-	61,656	17.72%
က	City Waste	-	-	-	-	-	-	1,683 ⁽¹⁾	1,287	1,444	2,382	2,286	1,919	11,000	3.16%
FY13	County Waste	-	-	-	-	-	-	2,442 ⁽¹⁾	2,100	2,372	3,381	3,932	3,309	17,536	5.04%
	Municipal Solid Waste	-	-	-	-	-	-	25,019 ⁽¹⁾	23,637	21,661	27,066	25,794	24,930	148,107	42.56%
	Supplemental Waste	151	11	80	25	234	405	363	365	76	403	281	271	2,665	0.77%
	MSW Totals	29,928	29,683	27,241	27,942	28,167	25,753	29,507	27,388	25,552	33,231	32,293	30,429	348,022	100.00%
	City Waste	2,065	1,693	1,702	1,924	1,566	1,780	1,529	1,231	1,556	2,256	2,203	1,883	21,389	6.11%
4	County Waste	3,459	3,079	2,784	3,091	2,707	2,802	2,568	1,957	2,272	3,326	3,987	3,387	35,419	10.12%
FY14	Municipal Solid Waste	26,167	23,604	22,034	23,354	21,879	25,531	23,869	22,523	23,198	25,414	27,206	24,812	289,590	82.75%
	Supplemental Waste	546	676	248	410	188	268	275	192	231	253	151	110	3,548	1.01%
	MSW Totals	32,237	29,053	26,768	28,779	26,340	30,380	28,241	25,903	27,256	31,249	33,546	30,193	349,946	100.00%
	City Waste	1,814	1,497	1,699	1,737	1,518	1,770	1,411	1,209	1,648	2,155	2,059	2,045	20,562	5.91%
2	County Waste	3,297	2,868	2,973	3,095	2,508	2,852	2,358	1,833	2,411	3,269	3,652	3,572	34,687	9.96%
FY15	Municipal Solid Waste	26,661	24,466	21,887	21,241	21,678	27,906	24,611	20,915	24,094	25,189	23,126	25,667	287,442	82.57%
	Supplemental Waste	141	275	329	521	764	529	389	351	272	613	531	698	5,413	1.55%
	MSW Totals e (1): Beginning January 2	31,913	29,106	26,888	26,595	26,468	33,057	28,769	24,308	28,424	31,225	29,369	31,982	348,105	100.00%

Chart 8: Cumulative Total Waste Delivery

As depicted in Table 3 and Chart 8, for the period ending in June 2015; cumulative total waste delivery was 0.5% less compared to the same period in FY14.

Chart 9: Gross Electrical Generation

During Q4FY15, the Facility generated 43,162 MWhrs (gross) of electricity compared to Q4FY14 generation of 46,444 MWhrs (gross), a 7.1% decrease. The decrease in gross electrical generation in Q4FY15 as compared to Q4FY14

is attributable to significantly more downtime (454.2 additional hours) experienced by the Turbine Generators. The majority of the unscheduled downtime was experienced by Turbine Generator No. 1, beginning on May 18th, 2015 lasting 424.7 hours, and was to repair an exciter failure in the generator. Evidence of this downtime is apparent in Chart Nos. 10 through 14, with sharp spikes in the trends for the months of May and June 2015.

During FY15, the Facility generated 173,145 MWhrs (gross) of electricity compared to the FY14 generation of 171,320, a 1.1% increase. The increase in gross electrical generation in FY15 as compared to FY14 is attributable to the increase in steam production, as well as less (449.5 fewer hours) scheduled, unscheduled, and standby downtime experienced by the turbine generators. Note that the 3-year low of gross electrical production experienced in October 2012 was due to Turbine Generator No. 1 experiencing 494.5 hours of downtime for scheduled maintenance and again in November 2013 when Turbine Generator No. 2 had a major overhaul and experienced 494.8 hours of downtime. Evidence of the downtime experienced by the Turbine Generators is also apparent in Chart Nos. 10 through 14, including sharp spikes in the trends for the months of October 2012 and November 2013 when the Overhauls were conducted on Turbine Generator Nos. 1 and 2, respectively.

Chart 10: Gross Conversion Rate

As shown in Chart 10, the average gross electrical generation per reference ton of refuse processed during Q4FY15 was 441 kWhr, which is 8.3% lower than the corresponding quarter in FY14, and is attributable to the exciter failure experienced by Turbine Generator No. 1 in May 2015. Since this calculated value uses reference or normalized tonnages of waste, it should cancel the effect of MSW heating value (Btu content) variability.

During FY15, the average gross electrical generation per reference ton of refuse processed was 465 kWhr, which is higher (1.2%) than FY14.

Chart 11: Net Conversion Rate

Chart 11 depicts the normalized net power (gross minus in-house usage) generation history. In Q4FY15, the average net electrical generation per reference ton was 373 kWhr, which is 8.6% lower than the corresponding quarter in FY14, and attributable to the exciter failure experienced by Turbine Generator No. 1 in May 2015.

In FY15, the average net electrical generation per reference ton was 392 kWhr, which is 0.1% higher than FY14.

Chart 12: Net Conversion Rate

Chart 12 depicts the net power generation per processed ton. The net electrical generation per processed ton in Q4FY15 was 386 kWhr, which is 7.1% lower than the corresponding quarter in FY14.

In FY15, the net electrical generation per processed ton was 417 kWhr which is 1.8% higher than FY14.

Chart 13: Gross Turbine Generator Conversion Rate

Charts 13 and 14 illustrate the quantities of steam required to generate one kWhr of electricity, gross and net respectively. This measure is a turbine generator performance indicator, where lower steam rates indicate superior performance. For simplification, this calculated rate is based on the average for the two turbine generators. In Q4FY15 the average lbs of steam consumed per gross kWhr was 13.0, which is higher (8.3%) than the corresponding quarter Q4FY14, and indicative of poorer performance as a result of the significant downtime experienced by Turbine Generator No. 1 during May 2015. The average lbs of steam consumed per net kWhr was 15.5, which is higher (9.7%) than the corresponding quarter in FY14. The average steam temperature during the quarter was 681.0° F, which is 0.1% lower than the average steam temperature of the corresponding quarter last year and 19.0° F lower than design temperature of 700° F.

In FY15, the average lbs of steam consumed per gross kWhr was 12.2, which is identical to FY14. The average lbs of steam consumed per net kWhr in FY15 was 14.5, which is 0.5% lower than FY14. The average steam temperature for FY15 was 680.0° F, which is 0.2% lower than FY14 and 20.0° F lower than the design temperature of 700° F. It is noted that steam consumption per kWhr, both gross and net, are adversely affected by the very high levels associated with the aforementioned Turbine Generator No. 1 major overhaul in September/October 2012, and Turbine Generator No. 2 in November 2013. CAAI reported that during the Turbine Generator No. 2 overhaul in November 2013, some cracking was observed on the Stage 9 blades of the rotor, and the blading in that row was removed as a precautionary measure. CAAI originally indicated that a new set of blades would be manufactured and installed during a Turbine Generator No. 2 Outage in 2016, but advised in May 2015, that the implementation of the replacement blades installation would be delayed.

Chart 14: Net Turbine Generator Conversion Rate

4.1 Utility and Reagent Consumptions

Table 4: Facility Utility and Reagent Consumptions

Utility	Units	Q4FY15 Total	Q4FY14 Total	Q4FY15"Per Processed Ton" Consumption	Q4FY14"Per Processed Ton" Consumption	FY15 Total	FY14 Total
Purchased Power	MWhr	5,477	5,409	0.06	0.06	22,001	22,724
Fuel Oil	Gal.	5,640	13,340	0.06	0.14	35,920	54,350
Boiler Make-up	Gal.	2,090,000	2,352,000	22.31	24.83	8,501,000	8,629,000
Cooling Tower Make-up	Gal.	44,595,720	38,098,539	475.97	402.16	143,594,395	131,237,906
Pebble Lime	Lbs.	1,386,000	1,336,000	14.79	14.10	5,254,000	5,090,000
Ammonia	Lbs.	159,000	181,000	1.70	1.91	632,000	648,000
Carbon	Lbs.	102,000	106,000	1.09	1.12	408,000	406,000
Dolomitic Lime	Lbs.	294,000	244,000	3.14	2.58	984,000	1,084,000

Fuel oil usage during the quarter represents approximately 0.10% of the total heat input to the boilers, which compares favorably with industry averages, and slightly lower than the percentage of heat input in Q4FY14 which was 0.22%. Fuel oil is used to stabilize combustion of wet fuel, as well as during start-up and shut-down of the boilers for maintenance. Boiler makeup water usage during the quarter represents 3.1% of steam flow, and is acceptable. Pebble lime usage, at

1,386,000 lbs. is higher (3.7%) than the corresponding quarter last year, and the quarterly consumption rate of 14.8 lbs/ton is less than historical levels (16-18 lbs/ton).

In comparing Q4FY15 to Q4FY14 on a per processed ton consumption basis:

- the purchased power consumption rate was 2.4% higher
- the total fuel oil consumption rate was 57.3% lower
- the boiler make-up water consumption rate was 10.2% lower
- the cooling tower make-up water consumption rate was 18.4% higher
- the total pebble lime consumption rate was 4.9% higher
- the ammonia consumption rate was 11.2% lower
- the carbon consumption rate was 2.7% lower
- the total dolomitic lime consumption rate was 21.8% higher

The significant decrease in fuel oil consumption during the quarter is attributable to less startup/shutdown activities with the boilers, as well as not having any environmental excursions that require the use of auxiliary burners to control excess emissions.

4.2 **Safety & Environmental Training**

The Facility had no recordable accidents during the quarter and has operated 1,685 days without an OSHA recordable incident through the end of June 2015. Safety and Environmental training was conducted during the quarter with themes as follows:

April 2015

- Safety:
 - Mobile Equipment
 - Hand Tool Safety
 - Machine Guarding
- Environmental:
 - Environmental Metrics
 - Most Advanced Control Technology (MACT)

May 2015

- Safety:
 - Peer Support Hazard Communication
 - Globally Harmonized System (GHS)
 - Corrosives
 - Compressed Gases
 - Flammable Liquids
- Environmental:
 - Environmental Upsets
 - Carbon Monoxide (CO) Causes and Responses

June 2015

- Safety:
 - Emergency Action Plan
 - Fire Protection Equipment
 - Bloodborne Pathogens
- Environmental:
 - Environmental Upsets
 - Opacity
 - Nitrogen Oxides (NO_x)
 - Sulfur Dioxide (SO₂)

5.0 Facility Maintenance

Throughout the quarter, significant routine and preventative maintenance was performed. HDR considers that the Facility is implementing an effective maintenance regimen, and is performing routine and preventative maintenance, along with selected equipment replacements in a timely manner. CAAI monthly maintenance reports provide a detailed account of maintenance performed.

Beginning June 16, Boiler No. 3 experienced 35.5 hours of downtime for scheduled cleaning. In addition to the scheduled cleaning outage, CAAI reports that 813 preventative maintenance actions were completed during the quarter.

5.1 **Availability**

Facility availabilities for Q4FY15 are shown in Table 5. According to CAAI reports, the average unit availabilities for Boiler Nos. 1, 2, and 3 for Q4FY15 were 100.0%, 100.0%, and 98.4%, respectively. The three-boiler average availability during the quarter was 99.5%, which is good.

During Q4FY15, the average availability for Turbine Generator Nos. 1 and 2 was 80.8%, and 98.5%. The two-turbine generator average availability during the quarter was 89.7%, which is indicative of the significant downtime experienced by Turbine Generator No. 1 in May and June for the exciter failure.

Overall boiler availability for FY15 was 96.3%, and overall turbine generator availability was 96.8%. Overall availabilities for the boilers are highly acceptable and above industry averages, noting that these reported availability metrics exclude standby time experienced during the fiscal year which amounted to 395.3 hours for the boilers and 195.1 hours for the turbine generators. Annual turbine-generator availability was negatively impacted by the Turbine Generator No. 1 exciter failure.

Table 5: Quarterly Facility Unit Availabilities

Availability	Q1FY15 Average	Q2FY15 Average	Q3FY15 Average	Q4FY15 Average	FY15 Average
Boiler No. 1	93.8%	100.0%	92.4%	100.0%	96.6%
Boiler No. 2 100.0%		93.6%	93.1%	100.0%	96.7%
Boiler No. 3 96.2%		93.9%	93.8%	98.4%	95.6%
Avg.	96.7%	95.8%	93.1%	99.5%	96.3%
Turbine No. 1	100.0%	95.0%	100.0%	80.8%	94.0%
Turbine No. 2	100.0%	99.6%	100.0%	98.5%	99.5%
Avg.	100.0%	97.3%	100.0%	89.7%	96.8%

5.2 **Downtime Summary**

During the quarter, the Facility experienced no unscheduled downtime for the boilers, and two (2) instances of unscheduled downtime for the turbine

generators totaling 456.7 hours. Beginning June 16, 2015, Boiler No. 3 experienced 35.5 hours of downtime for scheduled maintenance. No standby time was experienced by the Facility during the quarter. Details of downtime events experienced during the quarter are portrayed in Tables 6 and 7:

Table 6: Boiler Downtime - Q4FY15

Boiler Number	Outage Begin Date	Outage End Date	Hours Unavailable	Downtime Classification	Reason Unavailable				
3	6/16/15	6/17/15	35.5	5.5 Scheduled Scheduled Boiler Cleaning					
Total Unso	cheduled Do	owntime			0.0 Hours				
Total Sche	duled Dow	ntime			35.5 Hours				
Total Stan	dby Downti	me			0.0 Hours				
Total Downtime					35.5 Hours				

Table 7: Turbine Generator Downtime - Q4FY15

Turbine Generator Number	Outage Begin Date	Outage End Date	Hours Unavailable	Downtime Classification	Reason Unavailable						
2	4/27/15	4/28/15	32.0	Unscheduled	Repair of a condenser tube leak and troubleshooting an issue with closing the breaker						
1	5/18/15	6/5/15	424.7	Unscheduled	Exciter Failure						
Total Unsch	neduled Do	wntime			456.7 Hours						
Total Sched	luled Dowr	itime			0.0 Hours						
Total Stand	by Downtir	ne			0.0 Hours						
Total Downtime					456.7 Hours						

5.3 Facility Housekeeping

CAAI is performing Facility housekeeping and maintaining plant cleanliness in accordance with acceptable industry practices. A site inspection was conducted in May 2015. At the time of the inspection, new deficiencies were recorded and prior deficiencies were given a status update. Photos of interest from the inspection are depicted in Appendix B. The Facility housekeeping ratings from the May 2015 inspection are presented in Table 8.

Table 8: Facility Housekeeping Ratings - May 2015

Table of Fac	mity Houdonoop	ning Katings - W	May 2010	
Facility Area	Acceptable	Needs Improvement	Unacceptable	
Tipping Floor		√ ⁽¹⁾		
Citizen's Drop-off Area		√ ⁽²⁾		
Tipping Floor Truck Exit	$\sqrt{}$			
Front Parking Lot	$\sqrt{}$			
Rear Parking Lot	$\sqrt{}$			
Boiler House Pump Room	$\sqrt{}$			
Lime Slurry Pump Room	$\sqrt{}$			
Switchgear Area	$\sqrt{}$			
Ash Load-out Area	$\sqrt{}$			
Vibrating Conveyor Area	$\sqrt{}$			
Ash Discharger Area	$\sqrt{}$			
Cooling Tower Area	$\sqrt{}$			
Truck Scale Area	$\sqrt{}$			
SDA/FF Conveyor Area	$\sqrt{}$			
SDA Penthouses	$\sqrt{}$			
Lime Preparation Area				
Boiler Drum Levels	$\overline{\hspace{1cm}}\sqrt{\hspace{1cm}}$			
Turbine Room		√ ⁽³⁾		
Electrical Room	V			

Note (1): Tipping Floor – Needs Improvement

Wall panels damaged

Deteriorated Purlin

Note (2): Citizen's Drop-off Area – Needs Improvement

Damaged Curbing

Note (3): Turbine Room - Needs Improvement

• Ceiling panels corroded

6.0 Environmental

The retrofit air pollution control equipment maintained emission concentrations well within the established regulations. Average Continuous Emission Monitoring System (CEMS) data collected for each monthly period during Q4FY15 are summarized in Appendix A. The Facility experienced no environmental exceedances during the quarter.

On August 8, 2014, CAAI requested via letter to the Virginia Department of Environmental Quality (VADEQ) relief from the steam permit limit requirements in the Facility's Title V and PSD permits. These requested changes relate to the permit values established for the steam to waste ratio, the result of which is a reduction in MSW throughput than would be the case with different value(s) for this established ratio. In recent discussions, CAAI indicated that it is reevaluating options to the proposed permit changes, and will provide further updates on this issue.

6.1 Nitrogen Oxide Emissions

During Q4FY15, the monthly emission concentrations of nitrogen oxides (NO_x) averaged 163.3 ppmdv, 159.3 ppmdv and 161.7 ppmdv for Boiler Nos. 1, 2, and 3, respectively. CAAI continues to operate the units at the lower (160 ppmdv) set-points, except immediately following a scheduled outage and associated boiler cleaning.

6.2 Sulfur Dioxide Emissions

During Q4FY15 the monthly emission concentration of stack sulfur dioxide (SO₂) averaged 1.3 ppmdv, 1.3 ppmdv, and 0.3 ppmdv for Boiler Nos. 1, 2, and 3, respectively. All of these stack SO₂ concentrations are significantly below the 40 CFR Subpart Cb requirement of 29 ppmdv @ 7% O₂.

6.3 Carbon Monoxide Emissions

During Q4FY15, the average CO emission concentrations on Boiler Nos. 1, 2, and 3 were 33.3 ppmdv, 33.7 ppmdv, and 31.0 ppmdv, respectively, and all are well within permit limits (100 ppmdv, hourly average).

6.4 **Opacity**

During Q4FY15, the average opacity for Boiler Nos. 1, 2, and 3 was 0.0%, 0.4%, and 0.2% respectively. All of these averages are significantly below the 10% (6-minute) average permit limit.

6.5 **Daily Emissions Data**

Appendix A, Tables 11, 12, and 13 tabulate the monthly average, maximum, and minimum emissions data for each unit during Q4FY15. Excursions, if any, would appear in bold print. It should be noted that these tabulations of monthly averages, reported here for informational purposes, are based on tabulations of daily averages. These averages do not correlate with official reports to the regulatory agencies because of differences in averaging times and other technical differences required by agency report formats.

6.6 **2015 Annual Stack Testing**

Annual stack testing was conducted March 23^{rd} through March 26^{th} , 2015 by Testar Inc. Ten years of stack test data including 2015 results are summarized in Chart 15 and Table 9. The 2015 test results demonstrate compliance well within the permit limits for all parameters. In addition to the tests required by the Facility permit, additional tests for small particulate matter (PM < 2.5) were conducted. While there are no current regulatory limits established for PM < 2.5, average results for 2015 were 0.003 Gr/DSCF (grains per dry standard cubic foot) corrected to 7% O_2 , compared to the 2014 Annual Stack Testing PM <2.5 Results which averaged 0.004 Gr/DSCF corrected to 7% O_2 .

Chart 15: Stack Test Results through 2015

Note (1): Lead emissions have been decreased by a factor of 10 for trending purposes

Note (2): Mercury emissions have been decreased by a factor of 100 for trending purposes

Note (3): CO emissions have been decreased by a factor of 10 for trending purposes

Note (4): NO_x emissions have been decreased by a factor of 10 for trending purposes

Table 9: Stack Test Results through 2015

		NOx(4)	HCL	SO ₂	CO(3)	Mercury(2)	Cadmium	Dioxins/Furans	Lead(1)	Particulates	P.M. 2.5
		(ppmdv)	(ppmdv)	(ppmdv)	(ppmdv)	(ug/dscm)	(ug/dscm)	(ng/dscm)	(ug/dscm)	(mg/dscm)	(gr/dscf)
	Boiler 1	187	1.86	2	47	0.4	0.40	0.382	6.8	0.5	
2005	Boiler 2	186	1.83	1	48	0.4	0.2		4.9	0.8	
20	Boiler 3	188	1.68	2	39	0.4	0.2		1.9	0.7	
	AVERAGE	187.00	1.79	1.67	44.67	0.40	0.27	0.38	4.53	0.67	
	Boiler 1	187	0.85	1	43	0.38	0.4		7.79	4.84	
2006	Boiler 2	185	0.483	1	47	0.4	0.19		2.51	2.15	
7(Boiler 3	189	0.529	1	42	0.4	0.57	2.48	12.4	2	
	AVERAGE	187.0	0.62	1.00	44.00	0.39	0.39	2.48	7.57	3.00	-
	Dellar 4	407	0.00	4	24	0.20	0.05		0.04	0.00	
_	Boiler 1	187 185	0.82 0.68	1	31 36	0.38 0.39	0.25 0.19	1.42	2.31 2.12	2.03 2.04	
2007	Boiler 2			1	34			1.42			-
Ñ	Boiler 3 AVERAGE	189	0.84			0.59	0.16	4.40	1.55	1.33	
	AVERAGE	187.0	0.78	1.00	33.67	0.46	0.20	1.42	1.99	1.80	
	Boiler 1	181	2.96	2	37	0.45	6.60	1.25	9.4	1.46	
&	Boiler 2	182	3.52	2	30	0.45	0.50	1.20	2.6	0.82	
2008	Boiler 3	186	2.43	1	24	1.03	0.16		0.23	0.48	
N	AVERAGE	183.0	3.0	1.67	30.3	0.63	2.4	1.25	4.1	0.9	
	ATENAGE	100.0	0.0	1.07	00.0	0.00	2.7	1,20	711	0.0	
	Boiler 1	159	1.40	2	28	0.184	0.191		2.260	0.483	
6	Boiler 2	158	2.12	1	25	0.271	0.143		0.894	0.068	
2009	Boiler 3	163	3.53	1	29	0.198	0.256	1.54	3.030	0.155	
	AVERAGE	160	2.35	1.33	27.33	0.22	0.20	1.54	2.061	0.235	-
							0.00			0.200	
	Boiler 1	159	2.69	1	29	5.76	0.120		1.33	3.690	0.00410
0_	Boiler 2	158	0.67	1	28	29.50	0.032	0.35	3.00	0.914	0.00630
2010	Boiler 3	168	2.85	3	38	34.70	0.241		8.71	0.336	0.00990
	AVERAGE	161.7	2.07	1.67	31.67	23.32	0.13	0.35	4.347	1.647	0.007
	Boiler 1	167	2.15	2	28	0.36	0.140	2.67	1.72	0.130	0.00570
7	Boiler 2	159	1.14	1	38	0.44	0.140		1.46	0.350	0.00690
2011	Boiler 3	161	2.40	2	37	0.36	0.110		1.47	0.350	0.00170
	AVERAGE	162.3	1.90	1.67	34.33	0.39	0.13	2.67	1.550	0.277	0.005
	Boiler 1	163	1.14	2	23	0.30	0.310		1.34	0.640	0.00932
2012	Boiler 2	156	2.02	2	29	0.34	0.250	0.75	6.52	1.280	0.00782
70	Boiler 3	161	1.66	1	27	0.37	0.590		47.80	1.020	0.00679
	AVERAGE	160.0	1.61	1.67	26.33	0.34	0.38	0.75	18.553	0.980	0.008
	D-21 4	401	4 40		60	0.00	0.404		4 45	0.007	0.00007
· ·	Boiler 1	164	1.48	1	28	0.36	0.134	4.00	1.45	0.637	0.00637
2013	Boiler 2	158	1.98	1	25	0.37	0.112	1.66	1.05	0.737	0.00475
7	Boiler 3	159	1.52	1	22	0.42	0.137	4.00	3.03	0.733	0.00471
	AVERAGE	160.3	1.66	1.00	25.00	0.38	0.13	1.66	1.843	0.702	0.005
	Boiler 1	167	1.13	2	35	0.33	0.270	0.16	3.82	0.282	0.00337
4	Boiler 1 Boiler 2	157	1.13	1	35	0.33	0.270	0.16	2.52	1.240	0.00337
2014	Boiler 3	161	1.02	1	17	0.35	0.163		2.52	0.520	0.00415
~	AVERAGE	161.7	1.22	1.33	29.00	0.49	0.228	0.16	3.063	0.681	0.00425
	AVENAGE	101.7	1.22	1.00	23.00	0.00	0.23	0.10	3.003	0.001	0.004
	Boiler 1	164	1.80	2	25	0.32	0.102		1.00	0.513	0.00540
2	Boiler 2	157	1.99	1	29	0.32	0.102		1.30	0.532	0.00340
2015	Boiler 3	159	1.71	1	27	0.39	0.409	1.21	3.04	0.499	0.00074
, ,	AVERAGE	160.0	1.83	1.33	27.00	0.36	0.21	1.21	1.778	0.515	0.003
	EPA EMISSIONS LIMIT	205	29	29	100	80	40	30	440	27	
	Percent of Limit for 2015	78.9%	4.2%	4.6%	29.0%	0.5%	0.6%	0.5%	0.7%	2.5%	

6.7 **Ash System Compliance**

The dolomitic lime feed rate is adjusted periodically in order to maintain a desired ash pH level in the range of 8.0 to 11.0. Since initial startup, the feed rate has varied from between 1 to 9 lbs per ton. Ash Toxicity (TCLP) tests were performed for field samples collected over a seven (7) day period in May 2015, and results indicate that the average pH during testing was 9.4. Results from the TCLP testing conducted in May 2015 are depicted in Table 10 and Chart 16 below.

Table 10: Comparison of Statistical Results and Regulatory Thresholds for Metal Analytes

Metals	90% Upper Confidence (May 2015)	90% Upper Confidence (August 2014)	Regulatory Threshold (mg/L)	% of Threshold (May 2015)	% of Threshold (August 2014)	
Arsenic	enic 0.250 0.250		5.0	5.00%	5.00%	
Barium	arium 0.783 0.92		100.0	0.78%	0.92%	
Cadmium	admium 0.050 0.0		1.0	5.00%	5.00%	
Chromium	nromium 0.250		5.0	5.00%	5.00%	
Lead	ad 0.250 0		5.0	5.00%	5.00%	
Mercury	cury 0.0002 0.00024		0.2	0.10%	0.12%	
Selenium	nium 0.050 0.050		1.0	5.00%	5.00%	
Silver	ilver 0.250 0.2		5.0	5.00%	5.00%	

Chart 16: Ash Toxicity Characteristic Leaching Procedure (TCLP) Results

Note: The regulatory threshold for Barium is 100 mg/L

CAAI also samples ash monthly in-house, and documents pH reading to adjust dolomitic lime feed rate. The results for the ash pH tests are found below in Chart 17 where each quarter is represented by the average of the respective monthly readings. During Q4FY15, the average ash pH for in-house tests was 10.9, which is approaching the high end of the designed pH range.

APPENDIX A FACILITY CEMS DATA

Table 11: Unit #1 Monthly Summary for Reportable Emissions Data

Group#-Channel#		G8-C35	G8-C28	G8-C8	G8-C4	G8-C12	G8-C34	G8-C37	G8-C40	G8-C39
Long Descrip.		U-1 Steam	U-1 Econ	U-1 Stack	U-1 Stack	U-1 Stack	U-1 Opaci	U-1 FF In	U-1 Carbo	U-1 Lime
Short Descrip.		SteamFl	SO ₂ ec	SO ₂ sc	COsc	NO _x sc	Opacity	FF InTemp	Carblnj	LimeFlow
Units		K#/Hr	ppmc	ppm	ppmc	ppmc	%	deg F	#/hr	gpm
Range		0-100	0-2000	0-500	0-4000	0-1000	0-100	100-500	0-50	0-20
	AVG	82.8	58.0	2.0	35.0	166.0	0.0	299.0	16.3	3.4
Apr-15	Max	87.0	84.0	5.0	44.0	169.0	0.2	304.0	17.5	3.9
	Min	73.8	27.0	0.0	24.0	164.0	0.0	297.0	16.0	3.1
May-15	AVG	87.3	36.0	1.0	33.0	161.0	0.0	298.0	17.0	3.2
	Max	89.2	61.0	3.0	44.0	166.0	0.0	298.0	20.6	3.5
	Min	78.4	16.0	0.0	21.0	158.0	0.0	297.0	16.1	2.5
	AVG	86.6	36.0	1.0	32.0	163.0	0.0	299.0	16.6	3.1
Jun-15	Max	90.4	55.0	3.0	45.0	185.0	0.6	300.0	20.5	3.6
	Min	67.1	24.0	0.0	13.0	159.0	0.0	298.0	16.2	2.9
Quarter Average		85.6	43.3	1.3	33.3	163.3	0.0	298.7	16.6	3.2
Quarter Max Value		90.4	84.0	5.0	45.0	185.0	0.6	304.0	20.6	3.9
Quarter N	/lin Value	67.1	16.0	0.0	13.0	158.0	0.0	297.0	16.0	2.5
Limits:		98	NA	29	100	205	10	333	16(a)	

⁽a) Carbon flow limit is a minimum value

^{*} Note: The data reported herein represent 24 hour average data for all parameters. Emissions excursions that are measured on shorter time intervals (ie., 4-hour block averages for CO) do not correlate with the 24 hour average data reported above.

Table 12: Unit #2 Monthly Summary for Reportable Emissions Data

Group#-Channel#		G8-C35	G8-C28	G8-C8	G8-C4	G8-C12	G8-C34	G8-C37	G8-C40	G8-C39
Long Descrip.		U-2 Steam	U-2 Econ	U-2 Stack	U-2 Stack	U-2 Stack	U-2 Opaci	U-2 FF In	U-2 Carbo	U-2 Lime
Short Descrip.		SteamFl	SO₂ec	SO ₂ sc	COsc	NO _x sc	Opacity	FF InTemp	Carblnj	LimeFlow
Units		K#/Hr	ppmc	ppm	ppmc	ppmc	%	deg F	#/hr	gpm
Range		0-100	0-2000	0-500	0-4000	0-1000	0-100	100-500	0-50	0-20
	AVG	84.4	57.0	2.0	37.0	158.0	0.4	300.0	16.4	3.2
Apr-15	Max	88.6	73.0	5.0	50.0	166.0	1.1	302.0	17.4	3.6
	Min	72.6	41.0	0.0	21.0	151.0	0.0	292.0	16.1	2.7
	AVG	89.1	45.0	1.0	35.0	160.0	0.4	301.0	16.2	3.1
May-15	Max	91.2	68.0	4.0	45.0	165.0	1.1	302.0	16.5	3.6
	Min	80.2	31.0	0.0	25.0	158.0	0.0	301.0	16.1	2.6
	AVG	89.2	41.0	1.0	29.0	160.0	0.3	301.0	16.2	3.0
Jun-15	Max	92.8	68.0	4.0	37.0	177.0	2.0	302.0	16.9	3.4
	Min	68.8	28.0	0.0	22.0	156.0	0.0	301.0	16.0	2.7
Quarter Average		87.6	47.7	1.3	33.7	159.3	0.4	300.7	16.3	3.1
Quarter Max Value		92.8	73.0	5.0	50.0	177.0	2.0	302.0	17.4	3.6
Quarter Min Value		68.8	28.0	0.0	21.0	151.0	0.0	292.0	16.0	2.6
Limits:		96	NA	29	100	205	10	330	16(a)	

⁽a) Carbon flow limit is a minimum value

^{*} Note: The data reported herein represent 24 hour average data for all parameters. Emissions excursions that are measured on shorter time intervals (ie., 4-hour block averages for CO) do not correlate with the 24 hour average data reported above.

Table 13: Unit #3 Monthly Summary for Reportable Emissions Data

Group#-Channel#		G8-C35	G8-C28	G8-C8	G8-C4	G8-C12	G8-C34	G8-C37	G8-C40	G8-C39
Long Descrip.		U-3 Steam	U-3 Econ	U-3 Stack	U-3 Stack	U-3 Stack	U-3 Opaci	U-3 FF In	U-3 Carbo	U-3 Lime
Short Descrip.		SteamFl	SO₂ec	SO ₂ sc	COsc	NO _x sc	Opacity	FF InTemp	Carblnj	LimeFlow
Units		K#/Hr	ppmc	ppm	ppmc	ppmc	%	deg F	#/hr	gpm
Range		0-100	0-2000	0-500	0-4000	0-1000	0-100	100-500	0-50	0-20
	AVG	83.4	39.0	0.0	31.0	159.0	0.1	302.0	16.3	3.3
Apr-15	Max	87.1	57.0	1.0	41.0	171.0	0.6	304.0	17.4	3.5
	Min	73.9	25.0	0.0	19.0	158.0	0.0	298.0	16.1	2.8
	AVG	87.7	35.0	0.0	34.0	160.0	0.2	303.0	16.4	3.2
May-15	Max	89.9	59.0	2.0	46.0	166.0	2.7	304.0	17.4	3.9
	Min	78.6	22.0	0.0	22.0	156.0	0.0	301.0	16.2	2.5
	AVG	87.2	56.0	1.0	28.0	166.0	0.2	303.0	16.4	3.2
Jun-15	Max	92.0	111.0	4.0	41.0	180.0	1.1	306.0	17.0	3.6
	Min	68.1	30.0	0.0	10.0	90.0	0.0	302.0	16.0	2.9
Quarter Average		86.1	43.3	0.3	31.0	161.7	0.2	302.7	16.4	3.2
Quarter Max Value		92.0	111.0	4.0	46.0	180.0	2.7	306.0	17.4	3.9
Quarter Min Value		68.1	22.0	0.0	10.0	90.0	0.0	298.0	16.0	2.5
Limits:		98	NA	29	100	205	10	327	16(a)	

⁽a) Carbon flow limit is a minimum value

^{*} Note: The data reported herein represent 24 hour average data for all parameters. Emissions excursions that are measured on shorter time intervals (ie., 4-hour block averages for CO) do not correlate with the 24 hour average data reported above.

APPENDIX B SITE PHOTOS – MAY 2015

Figure 1: Rotary Sootblower Gears Exposed (typical of all 3 boilers) at Crane Pulpit Elevation – New Deficiency

Figure 2: Induced Draft Fan No. 1 Lagging deteriorated, west side of CEMS Enclosure – New Deficiency

Figure 3: Primer coat applied on roof panels in Turbine Generator Enclosure – Existing Deficiency

Figure 4: Deteriorated kick plate repair in progress – New replacement plates welded to stairwell

Figure 5: North stairwell (walls, stairs, hand railings, etc.) painting complete – All Elevations

Figure 6: New Emergency Eye Wash Station installed at Ammonia Storage Tank

Figure 7: Turbine Generators – No Issues Observed

Figure 8: Deaerator - No Issues Observed

Figure 9: Cooling Tower/Ash Trailer Canopy – Photo from SDA Penthouse – No Issues Observed

Figure 10: Refuse Pit – Photo from south end of Charging Floor

Figure 11: Ferrous Recovery Magnet – No Issues Observed

Figure 12: New Economizer Access Decks – Painting/Preservation in Progress

Figure 13: Ash/Ferrous Metal Load-Out Area – No Issues Observed

Figure 14: Main Vibrating Conveyor – No Issues Observed

Figure 15: Dolomitic Lime Silo/APC Area – Photo from west side of Cooling Towers

Figure 16: Cooling Towers - No Issues Observed

Figure 17: Ash Trailer Canopy - No Issues Observed

Figure 18: Supplemental Waste Loading Dock – No Issues Observed

Figure 19: White Goods Roll-Off

Figure 20: Facility Scales and new Fire Station on left

Figure 21: General Facility Photo from up (West of Facility) Eisenhower Avenue

Figure 22: Boiler Feedwater Pumps – No Issues Observed

Figure 23: Condensate Pumps – No Issues Observed

Figure 24: General Facility Photo from northeast corner of property