Ecuaciones Diferenciales I (2020/2)

Profesor: Dr. Josué Manik Nava Sedeño

Tarea I

Fecha de entrega: 7 de Febrero de 2020 a las 10:10 hrs.

- 1. En cada inciso, dibuja el campo de pendientes. Basado en el campo de pendientes, determina el comportamiento de y cuando $t \to \infty$. Si el comportamiento depende del valor inicial de y en t=0, describe esta dependencia.
 - **a** $\dot{y} = 3 2y$
 - **b** $\dot{y} = -y(5-y)$
 - $\mathbf{c} \ \dot{y} = 3\sin t + 1 + y$
- 2. Encuentra la ecuación diferencial de la forma $\dot{y} = f(y)$ satisfecha por la función $y(t) = 8e^{5t} \frac{2}{5}$.
- 3. Encuentra las constantes a y b tales que $y(t)=(t+3)e^{2t}$ es la solución al problema de valor inicial

$$\dot{y} = ay + e^{2t},\tag{1}$$

$$y(0) = b. (2)$$

- 4. Una gota esférica se evapora a una tasa proporcional al área de su superficie. Escribe una ecuación diferencial para el volumen de la gota como función del tiempo.
- 5. Resuelve el problema de valor inicial

$$\dot{y} = -y + 5 \tag{3}$$

$$y(0) = y_0 \tag{4}$$

y grafica las soluciones para varios valores de y_0 .

6. La población de ratones de campo satisface la ecuación diferencial

$$\dot{p} = \frac{p}{2} - 450.$$

- a Calcula el tiempo al cual la población se extiguirá si p(0) = 850.
- **b** Encuentra el tiempo de extinción si $p(0) = p_0$, donde $0 < p_0 < 900$.
- \mathbf{c} Encuentra la población inicial p_0 si la población se extingue en un año.
- 7. De acuerdo a la ley de enfriamiento de Newton, la temperatura u(t) de un objeto satisface la ecuación diferencial

$$\dot{u} = -k\left(u - T\right),\,$$

donde T es la temperatura ambiente constante y k es una constante positiva. Supoń que la temperatura inicial del objeto es $u(0) = u_0$.

- a Encuentra la temperatura del objeto a cualquier tiempo.
- **b** Sea τ el tiempo al cual la diferencia de temperaturas $u_0 T$ se ha reducido a la mitad. Enuentra la relación entre k y τ .