Définitions

Fonction (relation fonctionnelle)

 $R_f \subseteq A \times B$ telle que

$$\forall a \in A \quad \forall b, c \in B \qquad a R_f \ b \text{ et } a R_f \ c \Longrightarrow b = c$$

Illustration

Définitions

Fonction (relation fonctionnelle)

 $R_f \subseteq A \times B$ telle que

$$\forall a \in A \quad \forall b, c \in B \qquad a R_f \ b \text{ et } a R_f \ c \Longrightarrow b = c$$

$$A := \{a, b, c\} \text{ et } B := \{1, 2, 3\}$$

- 1. $R_1 := \{(a,1), (b,2), (c,3)\}$ relation fonctionnelle sur $A \times B$
- 2. $R_2 := \{(a,1),(b,1),(c,3)\}$ relation fonctionnelle sur $A \times B$
- 3. $R_3 := \{(a,1),(b,2)\}$ relation fonctionnelle sur $A \times B$
- 4. $R_4 := \{(a,1), (b,2), (b,3)\}$ pas fonctionnelle

Définitions

Fonction (relation fonctionnelle)

 $R_f \subseteq A \times B$ telle que

$$\forall a \in A \quad \forall b, c \in B \qquad a R_f \ b \text{ et } a R_f \ c \Longrightarrow b = c$$

Notation / vocabulaire

- $ightharpoonup R_f$ graphe de la fonction f
- $ightharpoonup f: A o B :\Leftrightarrow R_f \subseteq A imes B$
- $ightharpoonup f(a) = b :\Leftrightarrow a R_f b$
- ▶ f(a) désigne l'unique $b \in B$ tel que f(a) = b
- b image de a par f
- **a antécédent** de *b* par *f*

Définitions

Soit $f: A \rightarrow B$

Domaine de f

$$Dom(f) := \{ a \in A \mid \exists b \in B \quad f(a) = b \}$$

Image de f

$$Im(f) := \{b \in B \mid \exists a \in A \mid f(a) = b\}$$

$$f_1, f_2, f_3: \mathbb{R} \to \mathbb{R}$$

$$f_1: x \mapsto \sqrt{x}$$

$$f_2: x \mapsto x^2$$

$$f_1: x \mapsto \sqrt{x}$$
 $f_2: x \mapsto x^2$ $f_3: x \mapsto \frac{1}{x}$

Définitions

Soit $f: A \rightarrow B$

Domaine de f

$$Dom(f) := \{ a \in A \mid \exists b \in B \quad f(a) = b \}$$

Image de f

$$Im(f) := \{ b \in B \mid \exists a \in A \quad f(a) = b \}$$

$$f_1, f_2, f_3: \mathbb{R} \to \mathbb{R}$$

$$f_1: x \mapsto \sqrt{x}$$
 $f_2: x \mapsto x^2$ $f_3: x \mapsto \frac{1}{x}$ $\operatorname{Dom}(f_1) = \mathbb{R}^+$ $\operatorname{Dom}(f_2) = \mathbb{R}$ $\operatorname{Dom}(f_3) = \mathbb{R} \setminus \{0\}$ $\operatorname{Im}(f_1) = \mathbb{R}^+$ $\operatorname{Im}(f_2) = \mathbb{R}^+$ $\operatorname{Im}(f_3) = \mathbb{R} \setminus \{0\}$

Définitions

Soit
$$f: A \rightarrow B$$

f totale / application

$$Dom(f) = A$$
 i.e. $\forall a \in A \ \exists b \in B \ f(a) = b$

 B^A ensemble des applications de A dans B

$$f_1, f_2, f_3: \mathbb{R} \to \mathbb{R}$$

$$f_1: x \mapsto \sqrt{x}$$
 $f_2: x \mapsto x^2$ $f_3: x \mapsto \frac{1}{x}$ $\operatorname{Dom}(f_1) = \mathbb{R}^+$ $\operatorname{Dom}(f_2) = \mathbb{R}$ $\operatorname{Dom}(f_3) = \mathbb{R} \setminus \{0\}$

Définitions

Soit $f: A \rightarrow B$

f totale / application

$$Dom(f) = A$$
 i.e. $\forall a \in A \ \exists b \in B \ f(a) = b$

 B^A ensemble des applications de A dans B

$$f_1, f_2, f_3: \mathbb{R} \to \mathbb{R}$$

$$f_1: x \mapsto \sqrt{x}$$
 $f_2: x \mapsto x^2$ $f_3: x \mapsto \frac{1}{x}$ $\operatorname{\mathsf{Dom}}(f_1) = \mathbb{R}^+$ $\operatorname{\mathsf{Dom}}(f_2) = \mathbb{R}$ $\operatorname{\mathsf{Dom}}(f_3) = \mathbb{R} \setminus \{0\}$

- $ightharpoonup f_2$ totale; f_2 application de $\mathbb R$ dans $\mathbb R$ (ou dans $\mathbb R^+$)
- $ightharpoonup f_1, f_3$ pas totales

Définitions

Soit $f: A \rightarrow B$, $X \subseteq A$

Image d'un ensemble

$$f(X) := \{b \in B \mid \exists a \in X \quad f(a) = b\}$$

Intuition

$$f_3: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{1}{x}$$

$$f_3([0;1]) = [1; +\infty[$$

 $f_3([1; +\infty[) =]0; 1]$

Définitions

Soit
$$f: A \rightarrow B$$
, $Y \subseteq B$

Antécédent d'un ensemble

$$f^{-1}(Y) := \{a \in A \mid \exists b \in Y \quad f(a) = b\}$$

Intuition

$$f_2:\mathbb{R}\to\mathbb{R}$$

$$f_2^{-1}([0;1]) = [-1;1]$$

 $f_2^{-1}([1;+\infty[) =]-\infty;-1] \cup [1;+\infty[$

Définitions

Soit $f: A \rightarrow B$ application

Injection / surjection / bijection

► f injective :

$$\forall a, b \in A \quad f(a) = f(b) \implies a = b$$

(one-to-one)

Définitions

Soit $f: A \rightarrow B$ application

Injection / surjection / bijection

► f surjective :

(onto)

$$\forall b \in B \quad \exists a \in A \quad f(a) = b$$

Définitions

Soit $f: A \rightarrow B$ application

Injection / surjection / bijection

▶ *f* bijective : *f* injective et surjective

$$\forall b \in B \quad \exists! a \in A \quad f(a) = b$$

Cardinaux

Ensemble fini

E fini:

$$\exists n \in \mathbb{N} \quad \exists f : [[1, n]] \to E \quad f \text{ bijective}$$

Cardinal fini

un tel n est alors le cardinal de E, notations :

$$n = |E| = Card(E) = \#E$$

Intuition

f compte les éléments de E

$$E = \{f(1), f(2), \dots, f(n)\}\$$

Cardinaux

Soient A et B des ensembles finis

Propriétés

- $|\emptyset| = 0$
- ▶ si $A \cap B = \emptyset$ alors $|A \cup B| = |A| + |B|$
- ► $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \times B| = |A| \times |B|$
- $|\mathcal{P}(A)| = 2^{|A|}$
- ▶ |A| = |B| \Leftrightarrow $\exists f : A \to B$ bijective
- ▶ $|A| \le |B|$ \Leftrightarrow $\exists f : A \to B$ injective
- ▶ $|A| \ge |B|$ \Leftrightarrow $\exists f : A \to B$ surjective

Cardinaux

Ensemble infini

E infini:

 $\exists F \subset E \quad \exists f : E \to F \quad f \text{ injective}$

Exemple

 $f: \mathbb{N} \to P$ avec P les entiers naturels pairs $n \mapsto 2n$

 $f: \mathbb{N} \to P$ injective avec $P \subset \mathbb{N}$ donc \mathbb{N} infini

Cardinaux

Soient A, B ensembles infinis

Comparaison cardinaux infinis

- ▶ |A| = |B| : \Leftrightarrow $\exists f : A \to B$ bijective
- ▶ $|A| \le |B|$: \Leftrightarrow $\exists f : A \to B$ injective
- ▶ $|A| \ge |B|$: \Leftrightarrow $\exists f : A \to B$ surjective
- ▶ A dénombrable $:\Leftrightarrow |A| = |\mathbb{N}|$

Théorème de Cantor-Bernstein

$$|A| \le |B|$$
 et $|A| \ge |B|$ \Rightarrow $|A| = |B|$

Cardinaux

Propriété :
$$|\mathbb{N}| < |\mathbb{R}|$$

$$|\mathbb{N}| \leq |\mathbb{R}|$$
: Posons

$$f: \mathbb{N} \to \mathbb{R}$$
 $n \mapsto n$

Soit $a, b \in \mathbb{N}$ tels que f(a) = f(b). Par définition de f on a alors a = b. Donc f est injective.

Cardinaux

Propriété : $|\mathbb{N}| < |\mathbb{R}|$

 $|\mathbb{N}| \neq |\mathbb{R}|$: Supposons $|\mathbb{N}| = |\mathbb{R}|$, i.e. on a $f : \mathbb{N} \to \mathbb{R}$ bijection. On note x_i la i^e décimale de $x \in \mathbb{R}$ (la 0^e est la partie entière).

On construit $r \in \mathbb{R}$ tel que

$$r_i := f(i)_i + 1 \mod 10$$

Cardinaux

Propriété : $|\mathbb{N}| < |\mathbb{R}|$

$$|\mathbb{N}| \neq |\mathbb{R}|$$
: Supposons $|\mathbb{N}| = |\mathbb{R}|$, i.e. on a $f : \mathbb{N} \to \mathbb{R}$ bijection.
On note x_i la i^e décimale de $x \in \mathbb{R}$ (la 0^e est la partie entière).
On construit $r \in \mathbb{R}$ tel que

$$r_i := f(i)_i + 1 \mod 10$$

Comme $r \in \mathbb{R}$ on a $k \in \mathbb{N}$ tel que f(k) = r. Or

$$r_k = f(k)_k + 1 \mod 10$$
$$= r_k + 1 \mod 10$$

ce qui est impossible!