National University of Computer and Emerging Sciences Lahore Campus

Operations Research (MT 4031)

Date:

Course Instructor(s)

Dr. Misbah Irshad, Dr. Uzma Bashir, Mr. Yasir Yasin

Roll No Section

Sessional-I Exam

Total Time (Hrs.): 1
Total Marks: 30
Total Questions: 3

Student Signature

Do not write below this line

Attempt all the questions.

CLO #: CLO statement for question Q1

Q1:

a. Formulate the following problem as a linear mathematical model. Find its solution graphically .

A farmer has 20 hectares to grow barley and swedes. The farmer has to decide to decide how much of each to grow. The cost per hectare for barley is \$30 and swedes is \$20. The farmer has budgeted \$480. Barley requires 1 man-day per hectare and swedes require 2 man-days per hectare. There are 36 man-days available. The profit of barley is \$100 per hectare and on swedes is \$120 per hectare.

SOLUTION

$$\max z = 100x_1 + 120x_2$$
 subject to
$$x_1 + x_2 \le 20$$

$$30x_1 + 20x_2 \le 480$$

$$x_1 + 2x_2 \le 36$$

$$x_1, x_2 \ge 0.$$

1 mark

Corner points:

A(0,0), B(16,0), C(8,12), D(4,16), E(0,18).

2 marks.

Z(A)=0, z(B)=1600, z(C)=2240, z(D)=2320, z(E)=2160.

1 mark

Conclusion: z is maximum at D.

National University of Computer and Emerging Sciences

Lahore Campus

2 marks

What will be the optimality range of the model. i.

Consider a general objective function

$$\operatorname{Max} Z = c_1 x_1 + c_2 x_2$$

 $\operatorname{Max} Z = c_1 x_1 + c_2 x_2$ The optimality range is determined by $\frac{c_1}{c_2}$

For constraint 1----
$$\frac{c_1}{c_2} = 1$$

For constraint 2-----
$$\frac{c_1}{c_2} = 3/2$$

For constraint 1---
$$\frac{c_1}{c_2}=1$$

For constraint 2---- $\frac{c_1}{c_2}=3/2$
For constraint 3---- $\frac{c_1}{c_2}=1/2$

Thus
$$0.5 \le \frac{c_1}{c_2} \le 1.5$$
.

3 marks

ii. Suppose that the unit revenues for products barley and swedes are changed to \$150 and \$95, respectively. Will the current optimum remain the same.

The solution will not remain optimal as $\frac{c_1}{c_2} = \frac{150}{95} = 1.57$ falls outside the optimality range.

CLO #: CLO statement for question Q2

Q2: Solve the following model using an appropriate method.

$$\text{Max } z = 3x_1 + 2x_2 + 3x_3$$

subject to

$$2x_1 + x_2 + x_3 \le 2$$
$$3x_1 + 4x_2 + 2x_3 \ge 8$$

$$x_1, x_2, x_3 \geq 0.$$

SOLUTION:

Expressing the problem in standard form by adding, slack, surplus and artificial variables.

National University of Computer and Emerging Sciences

Lahore Campus

$$\text{Max } z = 3x_1 + 2x_2 + 3x_3$$

subject to

$$2x_1 + x_2 + x_3 + x_4 = 2$$
$$3x_1 + 4x_2 + 2x_3 + x_5 + R = 8$$
$$x_1, x_2, x_3, x_4, x_5, R \ge 0.$$

1 mark

By using M method and assigning a penalty M to artificial variable in objective function

$$z = 3x_1 + 2x_2 + 3x_3 - MR$$

Taking M=100, and eliminating R

$$z = 303x_1 + 402x_2 + 203x_3 - 100x_5 - 800$$

2 marks

Basic	x_1	x_2	x_3	x_5	x_4	R	sol
Z	-303	-402	-203	100	0	0	-800
x_4	2	1	1	0	1	0	2
R	3	4	2	-1	0	1	8

2 marks

Basic	x_1	x_2	x_3	x_5	x_4	sol
\boldsymbol{z}	-3/2	0	-2	-1/2	0	4
x_4	5/4	0	1/2	1/4	1	0
x_2	3/4	1	1/2	-1/4	0	2

2 marks

Basic	x_1	x_2	x_3	x_5	x_4	sol
Z	7/2	0	0	1/2	4	4
x_3	5/2	0	1	1/2	2	0
x_2	-1/2	1	0	-1/2	-1	2

2 marks 1 mark

Optimal and feasible solution is:

$$x_1 = 0, x_2 = 2, x_3 = 0, z = 4$$

CLO #: CLO statement for question Q3

Q3: Solve the following LPP and comment on the solution.

$$\operatorname{Max} z = x_1 + 2x_2$$

subject to

$$x_1 + x_2 \le 3$$

$$x_2 \le 2$$

$$\frac{1}{2}x_1 + x_2 \le \frac{5}{2}$$

 $x_1, x_2 \ge 0$

SOLUTION:

a. Expressing the problem in standard form by adding slack variables.

1 mark

National University of Computer and Emerging Sciences

Lahore Campus

Max
$$z = x_1 + 2x_2$$

 $x_1 + x_2 + x_3 = 3$
 $x_2 + x_4 = 2$
 $\frac{1}{2}x_1 + x_2 + x_5 = \frac{5}{2}$
all vars ≥ 0 .

Basic	x_1	x_2	x_3	x_4	x_5	sol
Z	-1	-2	0	0	0	0
x_3	1	1	1	0	0	3
x_4	0	1	0	1	0	2
<i>x</i> ₅	1/2	1	0	0	1	5/2

2 mark

Basic	x_1	x_2	x_3	x_4	x_5	sol
\boldsymbol{z}	-1	0	0	2	0	4
x_3	1	0	1	-1	0	1
x_2	0	1	0	1	0	2
x_5	1/2	0	0	-1	1	1/2

2 marks

Basic	x_1	x_2	x_3	x_4	x_5	sol
\boldsymbol{Z}	0	0	1	1	0	5
x_1	1	0	1	-1	0	1
x_2	0	1	0	0	0	2
<i>x</i> ₅	0	0	-1/2	-1/2	1	0

2 marks

b. In iteration 2, there is tie in the leaving variable, as a result basic variable $x_5=0$ in the next iteration which indicates that the solution is degenerate. 3 marks

National University of Computer and Emerging Sciences Lahore Campus