

OpenShift Architecture

As Part of OpenShift Architecture Workshop

OPENSHIFT CONTAINER PLATFORM | Architectural Overview

OpenShift and Kubernetes core concepts

a container is the smallest compute unit

containers are created from container images

container images are stored in an image registry

an image repository contains all versions of an image in the image registry

containers are wrapped in pods which are units of deployment and management

ReplicationControllers & ReplicaSets ensure a specified number of pods are running at any given time

Deployments and DeploymentConfigurations define how to roll out new versions of Pods

a daemonset ensures that all (or some) nodes run a copy of a pod

configmaps allow you to decouple configuration artifacts from image content

secrets provide a mechanism to hold sensitive information such as passwords

services provide internal load-balancing and service discovery across pods

apps can talk to each other via services

routes make services accessible to clients outside the environment via real-world urls

projects isolate apps across environments, teams, groups and departments

Need a Break?

Welcome back!

OpenShift 4 Architecture

your choice of infrastructure

COMPUTE NETWORK STORAGE

workers run workloads

masters are the control plane

everything runs in pods

state of everything

core kubernetes components

core OpenShift components

internal and support infrastructure services

run on all hosts

integrated image registry

cluster monitoring

log aggregation

integrated routing

dev and ops via web, cli, API, and IDE

Persistent Storage

Connecting real-world storage to your containers to enable stateful applications

A broad spectrum of static and dynamic storage endpoints

PV Consumption

Static Storage Provisioning

Dynamic Storage Provisioning

What is it?

Add-On for OpenShift for running stateful apps

Highly scalable, production-grade persistent storage

- For stateful applications running in Red Hat® OpenShift
- Optimized for Red Hat OpenShift Infrastructure services
- Developed, released and deployed in synch with Red Hat OpenShift
- Supported via a single contract with Red Hat OpenShift
- Complete persistent storage fabric across hybrid cloud for OCP

Complete Storage for Container Platform

Provides Storage for All Apps and infrastructure Services in their native interfaces

#redhat #rhsummit

OCS 4.X - Focus Areas

Presenter's Name

Title

OpenShift Networking

Presenter's

Name

Title

OPENSHIFT NETWORKING

OPENSHIFT SDN - OVS PACKET FLOW

Container to Container on the Same Host

OPENSHIFT SDN - OVS PACKET FLOW

Container to Container on the Different Hosts

OPENSHIFT SDN - OVS PACKET FLOW

Container Connects to External Host

BUILT-IN SERVICE DISCOVERY INTERNAL LOAD-BALANCING

BUILT-IN SERVICE DISCOVERY INTERNAL LOAD-BALANCING

ROUTE EXPOSES SERVICES EXTERNALLY

ROUTING AND EXTERNAL LOAD-BALANCING

- Pluggable routing architecture
 - HAProxy Router
 - o F5 Router
- Multiple-routers with traffic sharding
- Router supported protocols
 - o HTTP/HTTPS
 - WebSockets
 - TLS with SNI
- Non-standard ports via cloud
 load-balancers, external IP, and NodePort

ROUTE SPLIT TRAFFIC

Split Traffic Between Multiple Services For A/B Testing, Blue/Green and Canary Deployments

EXTERNAL TRAFFIC TO A SERVICE ON A RANDOM PORT WITH NODEPORT

- NodePort binds a service to a unique port on all the nodes
- Traffic received on any node redirects to a node with the running service
- Ports in 30K-60K range which usually differs from the service
- Firewall rules must allow traffic to all nodes on the specific port

OPENSHIFT NETWORKING

- Built-in internal DNS to reach services by name
- Split DNS is supported via CoreDNS
 - Master answers DNS queries for internal services
 - Other name servers serve the rest of the queries
- Software Defined Networking (SDN) for a unified cluster network to enable pod-to-pod communication
- OpenShift follows the Kubernetes
 Container Networking Interface (CNI) plug-in model

OPENSHIFT NETWORK PLUGINS

^{*} Coming as default in OCP 4.4

^{**} Flannel is minimally verified and is supported only and exactly as deployed in the OpenShift on OpenStack reference architecture

OPENSHIFT CONTAINER PLATFORM | Architectural Overview

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

in linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

f facebook.com/redhatinc

twitter.com/RedHat

