PENGDA MAO

XueYuan Road No.37, HianDian District, Beijing, 100191, P.R.China → +86-15652576519

maopengda@buaa.edu.cn Google Scholar

Education

Ph.D. Candidate in Guidance, Navigation and Control

Department of Automation, Beihang University, Beijing, China

Master in Guidance, Navigation and Control

Department of Automation, Beihang University, Beijing, China

B.S. in Automation

Shen Yuan Honors College, Beihang University, Beijing, China

Research Interest

Robotics, Trajectory Planning, Optimization Control, Swarm Robotics

Publications

- 1 **Pengda Mao**, Rao Fu, and Quan Quan, "Optimal Virtual Tube Planning and Control for Swarm Robotics," *International Journal of Robotics Research* (**IJRR**), Vol 43, No 5, 2024, https://doi.org/10.1177/02783649231210012 (Cover Paper).
- 2 Pengda Mao, and Quan Quan, "Making Robotics Swarm Flow More Smoothly: A Regular Virtual Tube Model," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4498-4504, 2022, 10.1109/IROS47612.2022.9981842.
- 3 Pengda Mao, Yan Gao, Bo Wang, An Yan, Xiaoyu Chi, and Quan Quan, "Fast Light Show Design Platform for K-12 Children," *IEEE International Conference on Robotics and Automation* (ICRA), pp. 9396-9402, 2021, 10.1109/ICRA48506.2021.9561445.

Research Experience

Trajectory Planning and Control for Swarm Robotics

Apr. 2022

Sep. 2022 - Present

Advisor: Prof. Quan Quan

Advisor: Prof. Quan Quan
Sep. 2016 – July 2020

Sep. 2020 - July 2022

- $\bullet \ \, \text{Introduced the concept of the "optimal virtual tube" for swarm robotics passing through obstacles-dense environment.}$
- Proposed a method for generating a set including infinite homotopic optimal trajectories.
- Combined with model predictive control (MPC), simulations and experimental validations were conducted to confirm the effectiveness of the proposed method.

Unmanned Aerial Vehicle (UAV) Intelligent Racing Competition

Oct. 2021

- Implemented YOLO for circular object detection in Airsim simulated environments, and employing estimation algorithms to predict the motion state of dynamic circular objects.
- Implemented visual servo control for autonomous landing and crossing diagonal gaps during actual flight of unmanned aerial vehicles.
- In the simulation competition, achieved first place; in the actual flight competition, secured second place.

Fast Light Show Platform Design

Aug. 2020

- Responsible for the research and development of algorithms for drone swarms, employing a model-based approach and utilizing the artificial potential field method to achieve collision avoidance and trajectory generation.
- Completed the design, construction, and testing of the platform prototype, and conducted actual flight experiments.

Selected Awards

The First Prize Scholarship

Top 15%, awarded by Beihang University

Sep. 2022

Beihang Outstanding Graduates

Top 10%, awarded by Beihang University

July 2020

Beihang Outstanding Student

Top 10%, awarded by Beihang University

Mar. 2017

Technical Skills

Languages: English at academic and daily communication level (CET-6)

Programming: Matlab, C++, Python, LaTeX