Сетевой уровень

Основы сетей передачи информации

Кирилл Андреев

Перегрузка

Причины перегрузки

- Перегрузка на некоторой выходной линии:
 - сброс пакетов при переполнении очереди
 - Задержка в длинных очередях ведет к повторам пакетов
- Конечная скорость обработки процессором
- «Узкие» каналы передачи

Борьба с перегрузкой

- Борьба с перегрузкой, в отличие от управления потоком, распространяется на всю сеть
- Оба механизма основаны в основном на обратной связи

Механизмы борьбы с перегрузкой

- С обратной связью
 - Наблюдение за системой и определение возникновения перегрузок
 - о Передача информации о перегрузках
 - Принятие мер по устранению перегрузки
- Без обратной связи
 - Механизмы разрешений и запретов передачи, отвержения пакетов
 - Расписание передач для различных участков сети

Механизмы борьбы с перегрузкой

- С обратной связью
 - Явная обратная связь: нотификация отправителя
 - Неявная обратная связь: локальное выявление перегрузки (возрастание времени получения подтверждения)
- Без обратной связи
 - Работающие у отправителя
 - о Работающие у получателя

Основные измеряемые величины (EWMA)

- Процент пакетов, отвергаемых из-за переполненной очереди
- Средняя длина очереди
- Процент пакетов, переданных повторно из-за отсутствия подтверждения
- Среднее время задержки и среднеквадратичное отклонение величины задержки пакетов

Механизмы нотификации о перегрузках

- Передача специальных пакетов, что нежелательно из-за дополнительной нагрузки
- Выделение отдельных битовых полей в заголовках пакетов
- Периодическая посылка пробных пакетов и измерение характеристик сети

Борьба с перегрузкой: транспортный уровень

- Политика повторной передачи
- Политика кэширования пакетов, пришедших в неверном порядке
- Политика подтверждений
- Определение тайм-аутов

Борьба с перегрузкой: сетевой уровень

- Виртуальные каналы против дейтаграмм в составе подсети
- Политика очередей пакетов и обслуживания
- Политика игнорирования пакетов
- Алгоритм маршрутизации
- Управление временем жизни пакета

Борьба с перегрузкой: канальный уровень

- Политика повторной передачи
- Политика кэширования пакетов, приходящих в неверном порядке
- Политика подтверждений
- Политика управления потоком

Сети виртуальных каналов

- Запрет новых соединений через перегруженный маршрутизатор (телефонные сети)
- Жесткое резервирование ресурсов при установлении соединения
- Прокладка новых каналов в обход перегруженных узлов

Сети виртуальных каналов

Биты предупреждения

- Включение бита-предупреждения в кадр подтверждения: уведомление источника
- Включение бита-предупреждения во все проходящие мимо пакеты
- Источники, уведомленные о перегрузке, снижают скорость передачи

Поскольку бит предупреждения может быть выставлен любым маршрутизатором, увеличение интенсивности возможно только если ни один маршрутизатор на всем пути не перегружен

Сдерживающие пакеты

- Явная отправка уведомления о перегрузке источнику данных при получении пакета – реакция на принятый пакет
- Тот пакет, по принятии которого отправлен сдерживающий, помечается
- Отправитель снижает скорость передачи по получении сдерживающего пакета
- Если в течение длительного времени не было сдерживающих пакетов, скорость передачи восстанавливается
- Ограничение скорости на всех маршрутизаторах пути

Сброс нагрузки

- Отказ от передачи любых пакетов или случайный выбор пакетов
- Винная стратегия: старое лучше нового
 - о Характерно при передаче файлов
- Молочная стратегия: новое лучше старого
 - Характерно при передаче приложений реального времени
- Приоритезация с учетом отправителя

Случайное раннее обнаружение

- Система без обратной связи
- Игнорирование части пакетов случайным образом, если средняя длина очереди «зашкаливает»
- Протоколы транспортного уровня автоматически среагируют и понизят скорость передачи данных, уменьшив размер окна (TCP)

Борьба с флуктуациями

Качество обслуживания

Таблица 5.3. Строгие требования некоторых приложений к качеству обслуживания

Приложение	Надежность	Задержка	Флуктуации	Пропускная способность
Электронная почта	Высокая	Низкая	Слабые	Низкая
Передача файлов	Высокая	Низкая	Слабые	Средняя
Веб-доступ	Высокая	Средняя	Слабые	Средняя
Удаленный доступ	Высокая	Средняя	Средние	Низкая
Аудио по заказу	Низкая	Низкая	Сильные	Средняя
Видео по заказу	Низкая	Низкая	Сильные	Высокая
Телефония	Низкая	Высокая	Сильные	Низкая
Видеоконференции	Низкая	Высокая	Сильные	Высокая

Качество обслуживания

- Избыточное обеспечение
- Буферизация
- Формирование трафика
- Резервирование ресурсов
- Управление доступом

Буферизация данных на приеме

Формирование трафика

- Регулирование средней и пиковой скорости передачи данных
- Соглашение об уровне обслуживания договоренность о параметрах потока между клиентом и сервером
- Политика трафика слежение за выполнением клиентом обязательств

Алгоритм дырявого ведра

Алгоритм дырявого ведра

Резервирование ресурсов

- Пропускная способность
- Буферное пространство
- Время центрального процессора

Спецификация потока (RFC 2210 – 2211)

- Скорость маркерного ведра
 - Число байт в секунду, поступающих в маркерное ведро
- Размер маркерного ведра
 - Максимальное число байт в маркерном ведре
- Пиковая скорость передачи данных
 - Максимальная скорость передачи в короткий промежуток времени
- Минимальный размер пакета
- Максимальный размер пакета

RSVP (RFC 2205)

- Многоадресная маршрутизация и связующие деревья
- Каждый приемник посылает вверх по дереву запрос на резервирование
- На каждом транзитном участке резервируются необходимые ресурсы (или отправляется отказ)
- Резервировать ресурсы дважды в одной группе не нужно

Интегральное обслуживание

Рис. 5.32. Сеть (a); связующее дерево многоадресной рассылки для хоста 1 (б); связующее дерево многоадресной рассылки для хоста 2 (в)

Интегральное обслуживание

Рис. 5.33. Хост 3 запрашивает канал к хосту 1 (a); затем хост 3 запрашивает второй канал к хосту 2 (б); хост 5 запрашивает канал к хосту 1 (e)

Дифференциальное обслуживание

- Ориентированное на классы качество обслуживания
- Наличие административного домена, определяющего классы и правила обслуживания
- Механизмы обслуживания децентрализованы

Пример классов обслуживания

- Срочная пересылка (RFC 3246)
 - о Два класса пакетов и две очереди
 - о Срочных пакетов много меньше
 - Срочным пакетам выделяется больше пропускной способности
- Гарантированная пересылка (RFC 2597)
 - 4 класса обслуживания
 - 3 уровня вероятности отброса пакета при заторе
 - 12 итоговых классов. Маркировка по IP-TOS

Срочная пересылка

Рис. 5.34. Срочные пакеты движутся по свободной от трафика сети

Гарантированная пересылка

Рис. 5.35. Возможная реализация гарантированной пересылки потока данных

MPLS

- Коммутация каналов
- Использование меток
- Отдельный заголовок (независимость от IP)
- Смена меток при смене подсети на пути пакета
- Класс эквивалентности пересылок (FEC) объединение нескольких потоков на общем участке пути
- Метод, управляемый данными: текущий маршрутизатор контактирует только со следующим
- «Цветные потоки» предотвращение петель. FEC имеет идентификатор