```
In [1]:
```

!python --version

Python 3.7.6

In [5]:

import sklearn
sklearn.__version__

Out[5]:

'0.22.1'

In [6]:

import pandas
pandas.__version__

Out[6]:

'1.0.1'

In [1]:

import pandas as pd
import numpy as np

In [21]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
```

In [92]:

```
train_loan = pd.read_csv('loan-train.csv')
```

In [4]:

```
train_loan.head()
```

Out[4]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								•

```
In [5]:
```

```
test_loan = pd.read_csv('loan-test.csv')
```

In [6]:

```
test_loan.head()
```

Out[6]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
0	LP001015	Male	Yes	0	Graduate	No	5720	
1	LP001022	Male	Yes	1	Graduate	No	3076	
2	LP001031	Male	Yes	2	Graduate	No	5000	
3	LP001035	Male	Yes	2	Graduate	No	2340	
4	LP001051	Male	No	0	Not Graduate	No	3276	
4								•

In [8]:

```
train_loan.shape
```

Out[8]:

(614, 13)

In [9]:

```
test_loan.shape
```

Out[9]:

(367, 12)

In [10]:

```
train_loan.columns
```

Out[10]:

In [11]:

```
train_loan.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64
7	CoapplicantIncome	614 non-null	float64
8	LoanAmount	592 non-null	float64
9	Loan_Amount_Term	600 non-null	float64
10	Credit_History	564 non-null	float64
11	Property_Area	614 non-null	object
12	Loan_Status	614 non-null	object
	C1 (C4/4) * (c4/4\	

dtypes: float64(4), int64(1), object(8)

memory usage: 62.5+ KB

In [12]:

train_loan.describe()

Out[12]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

In [13]:

test_loan.describe()

Out[13]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	367.000000	367.000000	362.000000	361.000000	338.000000
mean	4805.599455	1569.577657	136.132597	342.537396	0.825444
std	4910.685399	2334.232099	61.366652	65.156643	0.380150
min	0.000000	0.000000	28.000000	6.000000	0.000000
25%	2864.000000	0.000000	100.250000	360.000000	1.000000
50%	3786.000000	1025.000000	125.000000	360.000000	1.000000
75%	5060.000000	2430.500000	158.000000	360.000000	1.000000
max	72529.000000	24000.000000	550.000000	480.000000	1.000000

In [14]:

import missingno as msno

In [15]:

msno.matrix(train_loan)

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4a1ecb88>

In [16]:

msno.matrix(test_loan)

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4a30df08>

In [17]:

train_loan.corr()

Out[17]:

. <u>.</u>	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Cr€
ApplicantIncome	1.000000	-0.116605	0.570909	-0.045306	
CoapplicantIncome	-0.116605	1.000000	0.188619	-0.059878	
LoanAmount	0.570909	0.188619	1.000000	0.039447	
Loan_Amount_Term	-0.045306	-0.059878	0.039447	1.000000	
Credit_History	-0.014715	-0.002056	-0.008433	0.001470	
4					•

In [19]:

corr_train = train_loan.corr()

In [18]:

import seaborn as sns

In [20]:

```
sns.heatmap(corr_train)
```

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4abf8848>

In [27]:

```
col_names = train_loan.columns
```

In [41]:

```
count = 0 # categorial features count
for i in col_names:
    if train_loan[i].dtype == 'object' :
        count = count + 1
print(count)
```

8

In [36]:

```
print(train_loan['Loan_ID'].dtype)
```

object

In [39]:

```
print(train_loan['ApplicantIncome'].dtype)
```

int64

In [40]:

msno.bar(train_loan)

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4acc9c08>


```
In [38]:
```

```
train_loan.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
     Column
                        Non-Null Count
                                         Dtype
     Loan ID
 0
                         614 non-null
                                         object
 1
     Gender
                         601 non-null
                                         object
 2
     Married
                         611 non-null
                                         object
 3
     Dependents
                         599 non-null
                                         object
 4
     Education
                         614 non-null
                                         object
 5
     Self_Employed
                         582 non-null
                                         object
 6
     ApplicantIncome
                         614 non-null
                                         int64
 7
                                         float64
     CoapplicantIncome
                        614 non-null
 8
     LoanAmount
                         592 non-null
                                         float64
 9
     Loan_Amount_Term
                                         float64
                         600 non-null
 10 Credit_History
                         564 non-null
                                         float64
 11
     Property_Area
                         614 non-null
                                         object
     Loan_Status
                         614 non-null
                                         object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

Fill null values

```
In [63]:
```

```
train_loan.notnull().sum()
Out[63]:
Loan_ID
                      614
Gender
                      601
Married
                      611
Dependents
                      599
Education
                      614
Self_Employed
                      582
ApplicantIncome
                      614
CoapplicantIncome
                      614
LoanAmount
                      592
Loan_Amount_Term
                      600
Credit_History
                      564
Property_Area
                      614
Loan_Status
                      614
dtype: int64
In [61]:
```

```
train_loan['Gender'].isna().sum()
Out[61]:
```

13

In [47]:

test_loan.notnull().count()

Out[47]:

Loan_ID 367 Gender 367 Married 367 Dependents 367 Education 367 Self_Employed 367 ApplicantIncome 367 CoapplicantIncome 367 LoanAmount 367 Loan_Amount_Term 367 Credit_History 367 Property_Area 367 dtype: int64

In [52]:

msno.matrix(train_loan)

Out[52]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4ae8ad08>


```
In [56]:
train_loan.isnull().any()
Out[56]:
Loan_ID
                      False
Gender
                       True
Married
                       True
Dependents
                       True
Education
                      False
Self_Employed
                       True
ApplicantIncome
                      False
CoapplicantIncome
                      False
LoanAmount
                       True
Loan_Amount_Term
                       True
Credit_History
                       True
Property_Area
                      False
Loan_Status
                      False
dtype: bool
In [57]:
train_loan['Gender'].isnull().any()
Out[57]:
True
In [59]:
train_loan['Gender'].isnull().sum()
Out[59]:
13
In [60]:
train_loan.isnull().sum()
Out[60]:
Loan ID
                       0
Gender
                      13
                       3
Married
Dependents
                      15
Education
                       0
Self_Employed
                      32
ApplicantIncome
                       0
CoapplicantIncome
                       0
LoanAmount
                      22
Loan_Amount_Term
                      14
                      50
Credit History
Property_Area
                       0
Loan_Status
                       0
```

dtype: int64

```
In [64]:
```

```
test_loan.isnull().sum()
Out[64]:
Loan_ID
                       0
Gender
                      11
Married
                       0
Dependents
                      10
Education
                       0
Self_Employed
                      23
ApplicantIncome
                       0
CoapplicantIncome
                       0
LoanAmount
                       5
Loan_Amount_Term
                       6
                      29
Credit_History
Property_Area
                       0
dtype: int64
In [69]:
count = 0 # Null columns count
for i in col_names:
    if train_loan[i].isnull().any() == True :
        count = count + 1
print(count)
7
In [71]:
def null_feature(data):
    count= 0
    col_names = data.columns
    for i in col_names:
        if data[i].isnull().any() == True :
            count = count + 1
    print(count)
data = train_loan
null_feature(data)
7
In [73]:
null_feature(test_loan)
6
In [96]:
def fill null(data):
    col_names = data.columns
    for i in col_names:
        if data[i].isnull().any() == True :
            data[i] = data[i].fillna(method = 'ffill')
    print(data.isnull().sum())
```

In [97]:

```
fill_null(train_loan)
Loan_ID
                      0
                      0
Gender
Married
                      0
Dependents
                      0
Education
                      0
Self_Employed
                      0
ApplicantIncome
                      0
CoapplicantIncome
                      0
LoanAmount
                      1
Loan_Amount_Term
                      0
Credit_History
                      0
                      0
Property_Area
Loan_Status
                      0
dtype: int64
```

In [98]:

```
train_loan.isnull().sum()
```

Out[98]:

```
0
Loan_ID
Gender
                      0
Married
                      0
Dependents
                      0
Education
                      0
Self_Employed
                      0
ApplicantIncome
                      0
CoapplicantIncome
                      0
LoanAmount
                      1
Loan_Amount_Term
                      0
Credit_History
                      0
                      0
Property_Area
Loan_Status
                      0
dtype: int64
```

In [99]:

```
train_loan['LoanAmount'].fillna(train_loan['LoanAmount'].mean(),inplace =True)
```

In [100]:

```
train_loan.isnull().sum()
```

Out[100]:

Loan_ID 0 Gender 0 Married 0 Dependents 0 Education 0 Self_Employed 0 0 ApplicantIncome CoapplicantIncome 0 LoanAmount 0 Loan_Amount_Term 0 Credit_History 0 Property_Area 0 0 Loan_Status dtype: int64

In [94]:

```
null_feature(train_loan)
```

7

In [93]:

```
train_loan.isnull().sum()
```

Out[93]:

Loan_ID 0 Gender 13 Married 3 Dependents 15 Education 0 Self Employed 32 ApplicantIncome 0 CoapplicantIncome 0 LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 Property_Area 0 0 Loan_Status dtype: int64

In [86]:

<pre>fill_null(test_loan)</pre>

Loan_ID 0 Gender 0 Married 0 Dependents 0 Education 0 Self_Employed 0 ApplicantIncome 0 CoapplicantIncome 0 LoanAmount 0 Loan_Amount_Term 0 Credit_History 0 0 Property_Area dtype: int64

In [87]:

```
msno.matrix(test_loan)
```

Out[87]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4c2c8048>

In [101]:

msno.matrix(train_loan)

Out[101]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4cc77048>

In [102]:

msno.bar(train_loan)

Out[102]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4ccecd48>

In [103]:

msno.bar(test_loan)

Out[103]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4ccecb08>


```
In [104]:
```

```
train_loan['Loan_Status'].unique
Out[104]:
<bound method Series.unique of 0</pre>
                                        Υ
2
       Υ
       Υ
3
       Υ
4
609
       Υ
610
       Υ
611
       Υ
612
       Υ
       N
613
Name: Loan_Status, Length: 614, dtype: object>
In [105]:
train_loan['Loan_Status'] = np.where(train_loan['Loan_Status']=='Y',1,0)
In [106]:
train_loan['Loan_Status']
Out[106]:
0
       1
1
       0
2
       1
3
       1
       1
4
609
       1
610
       1
611
       1
612
       1
613
Name: Loan_Status, Length: 614, dtype: int32
```

```
In [113]:
```

```
test_loan['Loan_Status'] = np.where(test_loan['Loan_Status']=='Y',1,0)
test_loan['Loan_Status']
```

```
Traceback (most recent call last)
KevError
~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, k
ey, method, tolerance)
   2645
                    try:
-> 2646
                        return self._engine.get_loc(key)
   2647
                    except KeyError:
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHa
shTable.get item()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHa
shTable.get_item()
KeyError: 'Loan_Status'
During handling of the above exception, another exception occurred:
KeyError
                                           Traceback (most recent call last)
<ipython-input-113-fdfff870b8fe> in <module>
---> 1 test_loan['Loan_Status'] = np.where(test_loan['Loan_Status']=='Y',1,
0)
      2 test_loan['Loan_Status']
~\anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
   2798
                    if self.columns.nlevels > 1:
   2799
                        return self._getitem_multilevel(key)
-> 2800
                    indexer = self.columns.get loc(key)
   2801
                    if is integer(indexer):
   2802
                        indexer = [indexer]
~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, k
ey, method, tolerance)
   2646
                        return self. engine.get loc(key)
   2647
                    except KeyError:
-> 2648
                        return self._engine.get_loc(self._maybe_cast_indexer
(key))
   2649
                indexer = self.get_indexer([key], method=method, tolerance=t
olerance)
                if indexer.ndim > 1 or indexer.size > 1:
   2650
pandas\ libs\index.pyx in pandas. libs.index.IndexEngine.get loc()
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\ libs\hashtable class helper.pxi in pandas. libs.hashtable.PyObjectHa
shTable.get item()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHa
shTable.get item()
```

```
KeyError: 'Loan_Status'
```

```
In [107]:
train_loan.Gender = train_loan.Gender.replace({"Male":1, "Female":0})
In [108]:
train_loan.Gender
Out[108]:
0
       1
1
       1
2
       1
3
       1
4
       1
609
       0
610
       1
611
       1
       1
612
613
Name: Gender, Length: 614, dtype: int64
In [112]:
train loan.Married = train loan.Married.replace({"Yes": 1, "No" : 0})
test loan.Married = test loan.Married.replace({"Yes": 1, "No" : 0})
train_loan.Self_Employed = train_loan.Self_Employed.replace({"Yes": 1, "No" : 0})
test_loan.Self_Employed = test_loan.Self_Employed.replace({"Yes": 1, "No" : 0})
test loan.Gender = test loan.Gender.replace({"Male":1,"Female":0})
~\anaconda3\lib\site-packages\pandas\core\internals\managers.py in replace
_list(self, src_list, dest_list, inplace, regex)
                    return compare or regex search(values, s, regex)
    612
--> 613
                masks = [comp(s, regex) for i, s in enumerate(src_list)]
    614
                result blocks = []
    615
~\anaconda3\lib\site-packages\pandas\core\internals\managers.py in <listco
mp>(.0)
    611
                    return _compare_or_regex_search(values, s, regex)
    612
                masks = [comp(s, regex) for i, s in enumerate(src_list)]
--> 613
    614
                result blocks = []
    615
~\anaconda3\lib\site-packages\pandas\core\internals\managers.py in comp(s,
```

maybe_convert_objects(values), s.asm8, regex

regex)
609

```
In [114]:
```

```
test_loan.head()
```

Out[114]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
0	LP001015	1	1	0	Graduate	0	5720	
1	LP001022	1	1	1	Graduate	0	3076	
2	LP001031	1	1	2	Graduate	0	5000	
3	LP001035	1	1	2	Graduate	0	2340	
4	LP001051	1	0	0	Not Graduate	0	3276	
4								•

In [115]:

train_loan.head()

Out[115]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
0	LP001002	1	0	0	Graduate	0	5849	
1	LP001003	1	1	1	Graduate	0	4583	
2	LP001005	1	1	0	Graduate	1	3000	
3	LP001006	1	1	0	Not Graduate	0	2583	
4	LP001008	1	0	0	Graduate	0	6000	
4								•

In [118]:

test_loan["Gender"].unique()

Out[118]:

array([1, 0], dtype=int64)

In [119]:

```
train_loan["Gender"].unique()
```

Out[119]:

array([1, 0], dtype=int64)

In [116]:

train_loan.shape,test_loan.shape

Out[116]:

((614, 13), (367, 12))

In [121]:

```
from sklearn.preprocessing import LabelEncoder
col_feature = ['Property_Area','Education', 'Dependents']
le = LabelEncoder()
for col in col_feature:
    train_loan[col] = le.fit_transform(train_loan[col])
    test_loan[col] = le.fit_transform(test_loan[col])
```

In [122]:

train_loan.head()

Out[122]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
0	LP001002	1	0	0	0	0	5849	
1	LP001003	1	1	1	0	0	4583	
2	LP001005	1	1	0	0	1	3000	
3	LP001006	1	1	0	1	0	2583	
4	LP001008	1	0	0	0	0	6000	
4								•

In [123]:

test_loan.head()

Out[123]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
0	LP001015	1	1	0	0	0	5720	
1	LP001022	1	1	1	0	0	3076	
2	LP001031	1	1	2	0	0	5000	
3	LP001035	1	1	2	0	0	2340	
4	LP001051	1	0	0	1	0	3276	
4								•

In [125]:

```
new_train_corr = train_loan.corr()
new_train_corr
```

Out[125]:

	Gender	Married	Dependents	Education	Self_Employed	Applicantlnco
Gender	1.000000	0.371532	0.164475	0.049480	0.011676	0.046;
Married	0.371532	1.000000	0.333841	0.014097	-0.000257	0.0490
Dependents	0.164475	0.333841	1.000000	0.054909	0.044505	0.1150
Education	0.049480	0.014097	0.054909	1.000000	-0.008734	-0.140
Self_Employed	0.011676	-0.000257	0.044505	-0.008734	1.000000	0.122
ApplicantIncome	0.046230	0.049052	0.115036	-0.140760	0.122728	1.0000
CoapplicantIncome	0.086991	0.077760	0.026683	-0.062290	-0.021807	-0.1160
LoanAmount	0.100652	0.132982	0.141705	-0.151960	0.099377	0.533
Loan_Amount_Term	-0.080085	-0.099170	-0.085453	-0.080674	-0.035485	-0.042
Credit_History	-0.008501	0.007358	-0.070299	-0.084637	-0.010803	-0.020
Property_Area	-0.019854	0.004415	0.005131	-0.065243	-0.037106	-0.009
Loan_Status	0.012213	0.089072	-0.003361	-0.085884	0.009035	-0.004

In [126]:

```
new_test_corr = test_loan.corr()
new_test_corr
```

Out[126]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncor
Gender	1.000000	0.282828	0.114665	0.022330	0.063326	0.0767
Married	0.282828	1.000000	0.349000	0.049443	0.034823	0.0512
Dependents	0.114665	0.349000	1.000000	0.107078	-0.026532	0.1361
Education	0.022330	0.049443	0.107078	1.000000	-0.014850	-0.1363
Self_Employed	0.063326	0.034823	-0.026532	-0.014850	1.000000	0.0748
ApplicantIncome	0.076782	0.051265	0.136139	-0.136369	0.074877	1.0000
CoapplicantIncome	0.075561	0.032548	-0.055212	-0.057318	-0.032769	-0.1103
LoanAmount	0.090628	0.180853	0.112094	-0.144555	0.073917	0.4965
Loan_Amount_Term	-0.054391	0.034637	-0.082404	0.049807	-0.021512	0.0254
Credit_History	0.042770	0.026262	-0.035999	-0.035509	0.055642	0.0537
Property_Area	-0.008124	0.010921	0.062643	-0.028660	-0.097807	0.0394
4						•

In [127]:

sns.heatmap(new_train_corr)

Out[127]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4d9c2c08>

In [128]:

sns.heatmap(new_test_corr)

Out[128]:

<matplotlib.axes._subplots.AxesSubplot at 0x24c4d61b6c8>

In [129]:

import matplotlib.pyplot as plt
%matplotlib inline

In [130]:

```
sns.set_style('dark')
train_loan.plot(figsize= (18,8))
plt.show()
```


In [131]:

```
plt.figure(figsize=(18, 6))
plt.subplot(1, 2, 1)

train_loan['ApplicantIncome'].hist(bins=10)
plt.title("Loan Application Amount ")

plt.subplot(1, 2, 2)
plt.grid()
plt.hist(np.log(train_loan['LoanAmount']))
plt.title("Log Loan Application Amount ")

plt.show()
```


In [132]:

```
plt.figure(figsize=(18, 6))
plt.title("Relation Between Application Income vs Loan Amount ")

plt.grid()
plt.scatter(train_loan['ApplicantIncome'] , train_loan['LoanAmount'], c='k', marker='x')
plt.xlabel("Applicant Income")
plt.ylabel("Loan Amount")
plt.show()
```


In [133]:

```
plt.figure(figsize=(12, 6))
plt.plot(train_loan['Loan_Status'], train_loan['LoanAmount'])
plt.title("Loan Application Amount ")
plt.show()
```


In [135]:

```
plt.figure(figsize=(12,8))
sns.heatmap(new_train_corr.corr(), cmap='coolwarm', annot=True, fmt='.1f', linewidths=.1)
plt.show()
                            0.6
                                   0.3
                                           0.0
                                                          -0.0
                                                                  0.1
                                                                         0.0
                                           -0.0
                                                          -0.0
                                                                         0.1
                                                                                                       -0.1
                    0.6
                                   0.5
                                                                 0.0
           Married
                                                                                                                      - 0.8
                    0.3
                            0.5
                                                  -0.1
                                                          0.1
                                                                 -0.0
       Dependents
                                                                                                                      - 0.6
                                   0.0
                    0.0
                            -0.0
                                                                         -0.4
                                   -0.1
                                                          0.2
                                                                         0.1
     Self_Employed
                                                                                                                      - 0.4
                            -0.0
                                   0.1
    ApplicantIncome
                                                                         0.2
  CoapplicantIncome
                    0.1
                           0.0
                                   -0.0
                                                                                               -0.1
                                                                                                                      - 0.2
                            0.1
                                   0.1
                                                  0.1
                                                                 0.2
                                                                                -0.1
       LoanAmount
                    0.0
                                                                         -0.1
 Loan Amount Term
                                                                                                -0.0
      Credit_History
                                                                                                                      - -0.2
                                                                 -0.1
                                                                                        -0.0
                                                                                                       -0.0
      Property_Area
```

In [136]:

from sklearn.linear_model import LogisticRegression

In [138]:

from sklearn.metrics import accuracy_score,classification_report

In [154]:

```
logistic_model = LogisticRegression()
```

In [146]:

```
train_features = ['Credit_History', 'Education', 'Gender']

x_train = train_loan[train_features].values
y_train = train_loan['Loan_Status'].values

x_test = test_loan[train_features].values
```

In [150]:

```
x_train.shape
```

Out[150]:

(614, 3)

```
In [151]:
y_train.shape,x_test.shape
Out[151]:
((614,), (367, 3))
In [155]:
logistic_model.fit(x_train,y_train)
Out[155]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='12',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
In [156]:
predicted = logistic_model.predict(x_test)
In [157]:
score = logistic_model.score(x_train,y_train)
score
Out[157]:
0.8061889250814332
In [162]:
logistic_model.coef_
Out[162]:
array([[ 2.91106078, -0.28742646, 0.12535932]])
In [165]:
logistic_model.intercept_
Out[165]:
array([-1.62744319])
In [166]:
score = logistic_model.score(x_train, y_train)
print('accuracy_score overall :', score)
print('accuracy_score percent :', round(score*100,2))
accuracy_score overall : 0.8061889250814332
accuracy_score percent: 80.62
In [171]:
x1_train = train_loan.drop(['Loan_Status'],axis = 1)
```

```
In [172]:
x1_train.shape
Out[172]:
(614, 12)
In [173]:
x1_train.head()
Out[173]:
    Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome Coapr
 0 LP001002
                          0
                                     0
                                                0
                                                             0
                                                                          5849
 1 LP001003
                                                                          4583
                  1
                                     1
                                                0
                                                              0
 2 LP001005
                  1
                                     0
                                                0
                                                                          3000
                                                                          2583
 3 LP001006
                  1
                          1
                                     0
                                                              0
 4 LP001008
                  1
                                                                          6000
                          0
                                     0
                                                0
                                                             0
In [175]:
y1_train = train_loan['Loan_Status']
In [177]:
y1_train.shape
Out[177]:
(614,)
In [179]:
test_loan.shape
Out[179]:
(367, 12)
In [185]:
from sklearn.ensemble import RandomForestRegressor
In [186]:
rfc = RandomForestRegressor()
```

In [188]:

```
rfc.fit(x_train,y_train)
```

Out[188]:

In [189]:

```
rfc.score(x_train,y_train)
```

Out[189]:

0.2799027116322771