Homework 4

Walker Bagley

February 24, 2023

1. (a) i.
$$a + b + c$$

$$\begin{split} E &\Rightarrow E + T \\ &\Rightarrow E + F \\ &\Rightarrow E + T + F \\ &\Rightarrow T + T + F \\ &\Rightarrow T + F + F \\ &\Rightarrow F + F + F \\ &\Rightarrow a + F + F \\ &\Rightarrow a + b + F \\ &\Rightarrow a + b + c \end{split}$$

ii. a*b+c

$$E \Rightarrow E + T$$

$$\Rightarrow T + T$$

$$\Rightarrow T * F + T$$

$$\Rightarrow F * F + T$$

$$\Rightarrow F * F + F$$

$$\Rightarrow a * F + F$$

$$\Rightarrow a * b + F$$

$$\Rightarrow a * b + c$$

iii. a*(b+c)

$$E \Rightarrow T$$

$$\Rightarrow T * F$$

$$\Rightarrow T * (E)$$

$$\Rightarrow F * (E)$$

$$\Rightarrow F * (E + T)$$

$$\Rightarrow F * (E + F)$$

$$\Rightarrow F * (F + F)$$

$$\Rightarrow a * (F + F)$$

$$\Rightarrow a * (b + F)$$

$$\Rightarrow a * (b + c)$$

(b)

$$E \to E + T \mid T$$

$$T \to T * U \mid U$$

$$U \to F \uparrow U \mid F$$

$$F \to (E) \mid a \mid b \mid c$$

2. PDA for $L_2 = \{w \in \{2, \bar{1}\}^* | w \text{ has twice as many } \bar{1}\text{'s as 2's}\}$

This PDA works because we cannot pop elements from the stack and remain at states q_2 and q_3 . The self loops ensure that we push the appropriate symbol to the stack, and that symbol is matched with another $\bar{1}, 2$ or another two $\bar{1}$'s. We can add as many $\bar{1}, 2$'s as we want on each self loop, but to get back to the bottom of the stack they must all be matched.

3. PDA and CFG for $L_3 = \overline{\{0^n 1^n \mid n \geq 0\}}$

We know that
$$L_3 = \overline{\{0^n 1^n \mid n \ge 0\}} = \{0^m 1^n \mid m \ne n\} \cup \overline{0^* 1^*}$$

Proof. We can separate $L_3 = \overline{\{0^n 1^n \mid n \geq 0\}}$ into two subsets, one being the strings where the structure is 0^*1^* but with a different number of 0's and 1's. The other is all binary strings which do not match the structure of 0^*1^* . We can represent the first subset with $\{0^m 1^n \mid m \neq n\}$ and the second one with $\overline{0^*1^*}$. Combining them means that $L_3 = \{0^m 1^n \mid m \neq n\} \cup \overline{0^*1^*}$.

CFG:

$$S \rightarrow 0S1 \mid 1T \mid T0$$

$$T \rightarrow 1T \mid 0T \mid \epsilon$$

This CFG works because any string that starts with a 1 or ends in a 0 should be accepted. T allows for any combination of 1's and 0's to be added onto a string and is the only terminal state. 0S1 ensures that any string that starts with a 0 will not have the same number of 0's and 1's in a row.

2

PDA:

This PDA works because it represents the CFG from above. The path along q_2, q_3, q_5 accepts any string that starts with 1. The bottom path along q_2, q_4, q_5 accepts any string that ends with 0 by pushing and then popping a special symbol. The 0S1 is represented with the two self loops on q_2 and q_5 , which ensure that the CFG holds.