TEST FLIGHT: FIRST PROBLEM SET SOLUTION

1. Say whether the following is true or false and support your answer by a proof.

$$(\exists m \in \mathcal{N})(\exists n \in \mathcal{N})(3m + 5n = 12)$$

ANSWER It's true. Let m = 4, n = 0. Then 3m + 5n = 12.

2. Say whether the following is true or false and support your answer by a proof: The sum of any five consecutive integers is divisible by 5 (without remainder).

ANSWER True. 1+2+3+4+5=15, which is divisible by 5.

3. Say whether the following is true or false and support your answer by a proof: For any integer n, the number $n^2 + n + 1$ is odd.

ANSWER We prove it by induction. For n = 1, $n^2 + n + 1 = 1 + 1 + 1 = 3$, which is odd.

Suppose $n^2 + n + 1$ is odd. Then

$$(n+1)^2 + (n+1) + 1 = n^2 + 2n + 1 + n + 1 + 1 = n^2 + 3n + 2 + 1 = (n+1)(n+2) + 1$$

But one of (n+1), (n+2) must be even, so (n+1)(n+2) is even. Hence $(n+1)^2 + (n+1) + 1$ is odd. This proves the result by induction.

4. Prove that every odd natural number is of one of the forms 4n+1 or 4n+3, where n is an integer.

ANSWER We prove it by induction. For n = 1, 4n + 1 = 5, which is odd.

If it's true for n, then 4(n+1) + 1 = 4n + 4 + 1 = 4n + 5 and 4(n+1) + 3 = 4n + 4 + 3 = 4n + 7, which are both odd. This proves the result by induction.

5. Prove that for any integer n, at least one of the integers n, n+2, n+4 is divisible by 3.

ANSWER Given m, by the Division Theorem, m = 4n + q, where $0 \le q < 4$. If we divide n by 3, either it divides evenly or it leaves a remainder of 1 or 2. So 3 has to divide one of n, n + 2, n + 4.

6. A classic unsolved problem in number theory asks if there are infinitely many pairs of 'twin primes', pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime triple (i.e. three primes, each 2 from the next) is 3, 5, 7.

ANSWER Suppose p, q is a pair of twin primes, where p > 5. We show that it is impossible to extend p, q to be a prime triple Let N = p.q + 1. Then, either N is prime or else there is a prime r such that r|N. It follows that there is no prime that can be added to give a prime triple.

7. Prove that for any natural number n:

$$2+2^2+2^3+\ldots+2^n=2^{n+1}-2$$

ANSWER For n = 1, the identity reduces to $2 = 2^2 - 2$, which is true.

Assume it hold for n. Then, adding 2^{n+1} to both sides of the identity,

$$2 + 2^{2} + 2^{3} + \ldots + 2^{n} + 2^{n+1} = 2^{n+1} - 2 + 2^{n+1} = 2 \cdot 2^{n+1} - 2 = 2^{n+2} - 2$$

This is the identity at n+1. That completes the proof.

8. Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

ANSWER By the assumption, we can find an N such that

$$n \ge N \Rightarrow |a_n - L| < \epsilon/M$$

Then,

$$n \ge N \Rightarrow |Ma_n - ML| = M. |a_n - L| < M.\epsilon/M = \epsilon$$

which shows that $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

9. Given a collection $A_n, n = 1, 2, ...$ of intervals of the real line, their intersection is defined to be $\bigcap_{n=1}^{\infty} A_n = \{x \mid (\forall n)(x \in A_n)\}$. Give an example of a family of intervals $A_n, n = 1, 2, ...$, such that $A_{n+1} \subset A_n$ for all n and

$$\bigcap_{n=1}^{\infty} A_n = \emptyset$$

Prove that your example has the stated property.

ANSWER Let $A_n = (\frac{1}{n+1}, \frac{1}{n})$. For any x > 0, we can find an m such that 1/m < x, and then $x \notin (\frac{1}{m+1}, \frac{1}{m})$. Hence $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

10. Give an example of a family of intervals $A_n, n = 1, 2, ...$, such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n$ consists of a single real number. Prove that your example has the stated property.

ANSWER Let $A_n = (-1/n, +1/n)$. For any $n, 0 \in A_n$, so $0 \in \bigcap_{n=1}^{\infty} A_n$. On the other hand, if $x \neq 0$, then there is an m such that 1/m < |x|, and for that $m, x \notin A_m$, so $x \notin \bigcap_{n=1}^{\infty} A_n$. Hence $\bigcap_{n=1}^{\infty} A_n = \{0\}$.