

Composition des matériaux :

Tuiles 45 daN/m² Liteaux 3x4 (cm) tous les 30cm Chevrons 80x100 mm tous les 600 mm Isolation 200 mm (pois volumique 30 daN/m3) Plâtre BA13 Panne 10x25 cm tous les 1,60 m

Charges de neige (angle toiture 30°)

36 daN/m²h

Charge de vent

-45 daN/m²

a)	Charge G en kN/m² de toiture			
	Tuiles		0.45 kN/m ²	
	Liteaux	(0.03 m x 0.04 m x 5 kN/m3) / 0.3 m	0.02 kN/m ²	
	Isolant	0.3 kN/m3 x 0.2 m	0.06 kN/m ²	
	BA13	1 kN/m3 x 0.013	0.13 kN/m ²	
			\rightarrow	0.66 kN/m ²
	Chevrons et pannes en équivalent kN/m²			
	Chevrons	(0.08 m x 0.10 m x 5 kN/m3) / 0.6 m	0.07 kN/m ²	
	Pannes	(0.10 m x 0.25 m x 5 kN/m3) / 1.6 m	0.08 kN/m ²	
	Chevrons et pannes en kN/m			
	Chevrons	0.08 m x 0.10 m x 5 kN/m3	0.04 kN/m	
	Pannes	0.10 m x 0.25 m x 5 kN/m3	0.13 kN/m	

k

chargement sur les chevrons x entraxe) + poids propre $[0.66 \text{ kN/m}^2 \times 0.6 \text{ m (entraxe)}] + 0.04 \text{ kN/m} = 0.44 \text{ kN/m}$

c) Charge G en kN/m de panne

G = (poids du chargement sur les pannes x entraxe) + poids propre de la panne $(0.66 \text{ kN/m}^2 + 0.07 \text{ kN/m}^2) \times 1.6 \text{ m (entraxe)}] + 0.13 \text{ kN/m} = 1.3 \text{ kN/m}$

Charge S en kN/m de chevron d)

S = (poids de la neige en kN/m²h x cos angle de la toiture) x entraxe

 $0.36 \text{ kN/m}^2\text{h x cos } 30^\circ\text{x } 0.6 \text{ m} = 0.19 \text{ kN/m}$ S=

Charge S en kN/m de panne e)

S =(poids de la neige en kN/m²h x cos angle de la toiture) x entraxe

 $0.36 \text{ kN/m}^2\text{h x cos } 30^\circ\text{x } 1.6 \text{ m} = 0.50 \text{ kN/m}$

f)

Charge W en kN/m de chevron W = pression du vent en kN/m² x entraxe

W = $-0.45 \text{ kN/m}^2 \times 0.6 \text{ m} = -0.27 \text{ kN/m}$

Charge W en kN/m de panne g)

 $W = pression du vent en kN/m^2 x entraxe$

W = $-0.45 \text{ kN/m}^2 \text{ x } 1.6 \text{ m} = -0.72 \text{ kN/m}$