Statistics for Business and Economics 6th Edition

Chapter 4

Probability

Chapter Goals

After completing this chapter, you should be able to:

- Explain basic probability concepts and definitions
- Use a Venn diagram or tree diagram to illustrate simple probabilities
- Apply common rules of probability
- Compute conditional probabilities
- Determine whether events are statistically independent
- Use Bayes' Theorem for conditional probabilities

- Random Experiment a process leading to an uncertain outcome
- Basic Outcome a possible outcome of a random experiment
- Sample Space the collection of all possible outcomes of a random experiment
- Event any subset of basic outcomes from the sample space

(continued)

Intersection of Events – If A and B are two events in a sample space S, then the intersection, A ∩ B, is the set of all outcomes in S that belong to both A and B

(continued)

- A and B are Mutually Exclusive Events if they have no basic outcomes in common
 - i.e., the set A ∩ B is empty

(continued)

 Union of Events – If A and B are two events in a sample space S, then the union, A U B, is the set of all outcomes in S that belong to either A or B

(continued)

- Events E₁, E₂, ... E_k are Collectively Exhaustive events if E₁ U E₂ U . . . U E_k = S
 - i.e., the events completely cover the sample space
- The Complement of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted A

Examples

Let the Sample Space be the collection of all possible outcomes of rolling one die:

$$S = [1, 2, 3, 4, 5, 6]$$

Let A be the event "Number rolled is even"

Let B be the event "Number rolled is at least 4"

Then

$$A = [2, 4, 6]$$
 and $B = [4, 5, 6]$

Examples

(continued)

$$S = [1, 2, 3, 4, 5, 6] \mid A = [2, 4, 6] \mid B = [4, 5, 6]$$

$$A = [2, 4, 6]$$

$$B = [4, 5, 6]$$

Complements:

$$\overline{A} = [1, 3, 5]$$

$$\overline{B} = [1, 2, 3]$$

Intersections:

$$A \cap B = [4, 6]$$

$$\overline{A} \cap B = [5]$$

Unions:

$$A \cup B = [2, 4, 5, 6]$$

$$A \cup \overline{A} = [1, 2, 3, 4, 5, 6] = S$$

Examples

(continued)

$$S = [1, 2, 3, 4, 5, 6] \mid A = [2, 4, 6] \mid B = [4, 5, 6]$$

$$A = [2, 4, 6]$$

$$B = [4, 5, 6]$$

- Mutually exclusive:
 - A and B are not mutually exclusive
 - The outcomes 4 and 6 are common to both
- Collectively exhaustive:
 - A and B are not collectively exhaustive
 - A U B does not contain 1 or 3

Probability

 Probability – the chance that an uncertain event will occur (always between 0 and 1)

 $0 \le P(A) \le 1$ For any event A

Assessing Probability

There are three approaches to assessing the probability of an uncertain event:

1. classical probability

probability of event
$$A = \frac{N_A}{N} = \frac{\text{number of outcomes that satisfy the event}}{\text{total number of outcomes in the sample space}}$$

 Assumes all outcomes in the sample space are equally likely to occur

Counting the Possible Outcomes

 Use the Combinations formula to determine the number of combinations of n things taken k at a time

$$C_k^n = \frac{n!}{k!(n-k)!}$$

- where
 - n! = n(n-1)(n-2)...(1)
 - 0! = 1 by definition

Assessing Probability

Three approaches (continued)

2. relative frequency probability

probability of event
$$A = \frac{n_A}{n} = \frac{\text{number of events in the population that satisfy event } A}{\text{total number of events in the population}}$$

 the limit of the proportion of times that an event A occurs in a large number of trials, n

3. subjective probability

an individual opinion or belief about the probability of occurrence

Probability Postulates

1. If A is any event in the sample space S, then

$$0 \le P(A) \le 1$$

 Let A be an event in S, and let O_i denote the basic outcomes. Then

$$P(A) = \sum_{A} P(O_i)$$

(the notation means that the summation is over all the basic outcomes in A)

3.
$$P(S) = 1$$

Probability Rules

The Complement rule:

$$P(\overline{A}) = 1 - P(A)$$
 i.e., $P(A) + P(\overline{A}) = 1$

i.e.,
$$P(A) + P(\overline{A}) = 1$$

- The Addition rule:
 - The probability of the union of two events is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

A Probability Table

Probabilities and joint probabilities for two events A and B are summarized in this table:

	В	B	
А	P(A∩B)	$P(A \cap \overline{B})$	P(A)
Ā	$P(\overline{A} \cap B)$	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
	P(B)	P(B)	P(S) = 1.0

Addition Rule Example

Consider a standard deck of 52 cards, with four suits:

Let event A = card is an Ace

Let event B = card is from a red suit

Addition Rule Example

(continued)

 $P(Red \cup Ace) = P(Red) + P(Ace) - P(Red \cap Ace)$

= **26**/52 + **4**/52 - **2**/52 = **28**/52

	Color		
Type	Red	Black	Total
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

Don't count the two red aces twice!

Conditional Probability

A conditional probability is the probability of one event, given that another event has occurred:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
The conditional probability of A given that B has occurred

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$
The conditional probability of B given that A has occurred

Conditional Probability Example

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.
- What is the probability that a car has a CD player, given that it has AC?

i.e., we want to find $P(CD \mid AC)$

Conditional Probability Example

(continued)

Of the cars on a used car lot, **70%** have air conditioning (AC) and **40%** have a CD player (CD). **20%** of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$P(CD \mid AC) = \frac{P(CD \cap AC)}{P(AC)} = \frac{.2}{.7} = .2857$$

Conditional Probability Example

(continued)

• Given AC, we only consider the top row (70% of the cars). Of these, 20% have a CD player. 20% of 70% is 28.57%.

	CD	No CD	Total				
AC	.2	.5	.7				
No AC	.2	.1	.3				
Total	.4	.6	1.0				
$(CD AC) = \frac{P(CD \cap AC)}{P(AC)} = \frac{.2}{.7} \Rightarrow .2857$							

Multiplication Rule

Multiplication rule for two events A and B:

$$P(A \cap B) = P(A \mid B)P(B)$$

also

$$P(A \cap B) = P(B \mid A)P(A)$$

Multiplication Rule Example

$$=\left(\frac{2}{4}\right)\left(\frac{4}{52}\right)=\frac{2}{52}$$

$$= \frac{\text{number of cards that are red and ace}}{\text{total number of cards}} = \frac{2}{52}$$

_	Color		
Туре	Red Black		Total
Ace	(2)	2	4
Non-Ace	24	24	48
Total	26	26	52

Statistical Independence

Two events are statistically independent if and only if:

$$P(A \cap B) = P(A)P(B)$$

- Events A and B are independent when the probability of one event is not affected by the other event
- If A and B are independent, then

$$P(A \mid B) = P(A)$$
 if P(B)>0
$$P(B \mid A) = P(B)$$
 if P(A)>0

Statistical Independence Example

Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD).

20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

Are the events AC and CD statistically independent?

Statistical Independence Example

(continued)

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$P(AC \cap CD) = 0.2$$

$$P(AC) = 0.7$$

 $P(CD) = 0.4$ $P(AC)P(CD) = (0.7)(0.4) = 0.28$

$$P(AC \cap CD) = 0.2 \neq P(AC)P(CD) = 0.28$$

So the two events are not statistically independent

Bivariate Probabilities

Outcomes for bivariate events:

	B ₁	B ₂		B_k
A ₁	$P(A_1 \cap B_1)$	$P(A_1 \cap B_2)$		$P(A_1 \cap B_k)$
A_2	$P(A_2 \cap B_1)$	$P(A_2 \cap B_2)$		$P(A_2 \cap B_k)$
		•	-	•
	-	-	-	-
	•	•	•	
A_h	$P(A_h \cap B_1)$	$P(A_h \cap B_2)$		$P(A_h \cap B_k)$

Joint and Marginal Probabilities

The probability of a joint event, A ∩ B:

$$P(A \cap B) = \frac{\text{number of outcomes satisfying A and B}}{\text{total number of elementary outcomes}}$$

Computing a marginal probability:

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \cdots + P(A \cap B_k)$$

Where B₁, B₂, ..., B_k are k mutually exclusive and collectively exhaustive events

Marginal Probability Example

P(Ace)

= P(Ace
$$\cap$$
 Red) + P(Ace \cap Black) = $\frac{2}{52} + \frac{2}{52} = \frac{4}{52}$

_	Color		
Туре	Red	Black	Total/
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

Using a Tree Diagram

Odds

- The odds in favor of a particular event are given by the ratio of the probability of the event divided by the probability of its complement
- The odds in favor of A are

odds =
$$\frac{P(A)}{1-P(A)} = \frac{P(A)}{P(\overline{A})}$$

Odds: Example

Calculate the probability of winning if the odds of winning are 3 to 1:

$$odds = \frac{3}{1} = \frac{P(A)}{1 - P(A)}$$

■ Now multiply both sides by 1 — P(A) and solve for P(A):

$$3 \times (1-P(A)) = P(A)$$

$$3 - 3P(A) = P(A)$$

$$3 = 4P(A)$$

$$P(A) = 0.75$$

Overinvolvement Ratio

The probability of event A₁ conditional on event B₁ divided by the probability of A₁ conditional on activity B₂ is defined as the overinvolvement ratio:

$$\frac{P(A_1 \mid B_1)}{P(A_1 \mid B_2)}$$

An overinvolvement ratio greater than 1 implies that event A₁ increases the conditional odds ration in favor of B₁:

$$\left| \frac{P(B_1 | A_1)}{P(B_2 | A_1)} > \frac{P(B_1)}{P(B_2)} \right|$$

Bayes' Theorem

$$P(E_{i} | A) = \frac{P(A | E_{i})P(E_{i})}{P(A)}$$

$$= \frac{P(A | E_{i})P(E_{i})}{P(A | E_{1})P(E_{1}) + P(A | E_{2})P(E_{2}) + ... + P(A | E_{k})P(E_{k})}$$

where:

E_i = ith event of k mutually exclusive and collectively exhaustive events

A = new event that might impact P(E_i)

Bayes' Theorem Example

- A drilling company has estimated a 40% chance of striking oil for their new well.
- A detailed test has been scheduled for more information. Historically, 60% of successful wells have had detailed tests, and 20% of unsuccessful wells have had detailed tests.
- Given that this well has been scheduled for a detailed test, what is the probability that the well will be successful?

Bayes' Theorem Example

(continued)

Let S = successful well

U = unsuccessful well

- P(S) = .4, P(U) = .6 (prior probabilities)
- Define the detailed test event as D
- Conditional probabilities:

$$P(D|S) = .6$$
 $P(D|U) = .2$

Goal is to find P(S|D)

Bayes' Theorem Example

(continued)

Apply Bayes' Theorem:

$$P(S|D) = \frac{P(D|S)P(S)}{P(D|S)P(S) + P(D|U)P(U)}$$
$$= \frac{(.6)(.4)}{(.6)(.4) + (.2)(.6)}$$
$$= \frac{.24}{.24 + .12} = 667$$

So the revised probability of success (from the original estimate of .4), given that this well has been scheduled for a detailed test, is .667

Chapter Summary

- Defined basic probability concepts
 - Sample spaces and events, intersection and union of events, mutually exclusive and collectively exhaustive events, complements
- Examined basic probability rules
 - Complement rule, addition rule, multiplication rule
- Defined conditional, joint, and marginal probabilities
- Reviewed odds and the overinvolvement ratio
- Defined statistical independence
- Discussed Bayes' theorem