Introduction to Student Projects

IE500 Data Mining

Outline

- 1. Requirements for the Student Projects
- 2. Requirements for the Project Reports
- 3. Final Exam
- 4. Team Formation + Start to work!

Student Projects

Goals

- Gain practical experience with the complete data mining process
- Get to know additional problem-specific
 - preprocessing methods
 - data mining methods

Expectation

- You select an interesting data mining problem of your choice
- You solve the problem using
 - the data mining methods that we have learned so far, including
 - proper hyperparameter optimization
 - problem-specific pre-processing and smart feature engineering
 - additional data mining methods which might be helpful for solving the problem and build on what we learned in class

Procedure

- Teams of five students
 - realize a data mining project
 - write a 12-page summary of the project and the methods employed in the project
 - present the project results to the other students
 - 10 minutes presentation + 5 minutes discussion
- Final mark for the course
 - 20 % written final report about the project
 - 5 % project presentation
 - 75 % written exam

Schedule

Week	Monday	Thursday		
30.09.2024	Introduction to student projects and formation of groups	Formation of Groups / Preparation of project outline		
07.10.2024	Lecture: Regression	Exercise: Regression		
14.10.2024	Lecture: Preprocessing	Exercise: Preprocessing		
Sunday, October 13th 2024, 23:59: Submission of Project Outlines				
21.10.2024	Feedback on Project Outlines	Project Work		
28.10.2024	Lecture: Clustering and Anomalies	Exercise: Clustering and Anomalies		
04.11.2024	Association Analysis	Exercise: Association Analysis		
11.11.2024	Project feedback session	Project Work		
18.11.2024	Project feedback session	Project Work		
25.11.2024	Project feedback session	Project Work		
Sunday, December 1st, 23:59: Submission of Presentation as PDF				
02.12.2024	Presentation of Project Results	Presentation of Project Results		
Sunday, December 8th, 23:59: Submission of Project Reports				
18.12.2023	Final Exam			

Data registries

- Datasets hosted on Amazon AWS https://registry.opendata.aws
- Google's Dataset Search: https://datasetsearch.research.google.com/
- Microsoft Datasets: https://msropendata.com/
- Yahoo Webscope Datasets: http://webscope.sandbox.yahoo.com/
- Dataset collection on Github:
 https://github.com/awesomedata/awesome-public-datasets
- Data Hub: http://datahub.io
- Linked Open Data Cloud: http://lod-cloud.net/
- Stanford Large Network Dataset Collection:
 http://snap.stanford.edu/data/index.html
- Huggingface: https://huggingface.co/datasets

- Public sector data
 - US government: https://www.data.gov
 - UK government: https://data.gov.uk
 - EU: https://www.europeandataportal.eu
 - CIA World Fact Book:
 https://www.cia.gov/library/publications/the-world-factbook/
 - Health data (over 125 years): https://www.healthdata.gov/

- Competitions
 - Kaggle: https://www.kaggle.com/
 - Data Mining Cup: http://www.data-mining-cup.de
 - KDD Cup: https://www.kdd.org/kdd-cup
 - DrivenData: https://www.drivendata.org
 - CrowdAnalytix: https://www.crowdanalytix.com
- If you use a competitions task:
 You have to compare your results to results from the competition's forum!

- Language resources
 - WordNet: https://wordnet.princeton.edu
 - EuroWordNet: http://projects.illc.uva.nl/EuroWordNet/
 - Project Gutenberg (36.000 ebooks): http://www.gutenberg.org/
 - New York Times (starts 1851): http://developer.nytimes.com/docs
 - Wikitionary: https://www.wiktionary.org
 as KG: https://kaiko.getalp.org/about-dbnary/

Knowledge graphs

- Wikidata: https://www.wikidata.org
- BabelNet: https://babelnet.org
- DBpedia: http://wiki.dbpedia.org

Where to Find Additional Information

- Pang-Ning Tan, Michael Steinbach, Vipin Kumar:
 Introduction to Data Mining, Pearson / Addison Wesley.
- Aurélien Géron: Hands-on Machine Learning with Scikit-Learn. O'Reilly.
- Bing Liu: Web Data Mining, 2nd Edition, Springer.

Where to Find Additional Information

- Check out the solutions to your problem that other people have tried.
 - by looking into the Kaggle discussion groups and code
 - by investigating the state-of-the-art for your your task on Papers with Code
 - by looking at submissions of the KDD Cup or Data Mining Cup
 - or search for relevant scientific papers using Google Scholar, search term:

"task name + survey"

State of the Art for Specific Tasks

Some Project Ideas (not binding)

- Web Log Mining
 - Learn a classifier for the categorizing the visitors of your website.
 - Which features matter? Number of pages visited, time on site, ...
 - Learn and evaluate classifier
- Wikipedia Contributors / Hoax Articles
 - Examine the edit history of Wikipedia contributors
 - Cluster users by different attributes (no of edits, edits/day, topic, ...)
 - Or learn a classifier for categorizing Wikipedia contributors
- Sentiment Analysis for Discussion Forum / Rating Site / Tweets
 - Are people positive or negative about topic / product? (Bing Liu 11.x)
- SPAM Detection
 - eMail, blog or discussion forum (Bing Liu 6.10, 11.9)
 - You Tube comments

Some Projects realized in previous Semesters

- Twitter data
 - humor / hate speech detection
 - Sentiment Analysis of Tweets about Movies
 - Learned classifier from IMDB movie reviews
 - Applied and tested with tweets afterwards
- Airbnb (done very often)
 - predict the prices of new apartments
- Bundesliga Betting Rules
 - Find rules that help you to predict the outcome of a Bundesliga game
- last.fm Playlist Analysis
 - Cluster last.fm users according to the style of the songs they are listening to
 - Find commons sets of songs for the different clusters
- Analysis of Training Data of a Fitness Center
 - Find different customer groups by clustering exercise data
 - Find frequent combinations of exercises
- Sentiment Analysis of Tweets about Movies

Some Projects realized in previous Semesters

- Twitter data
 - humor / hate speech detection
 - Sentiment Analysis of Tweets about Movies
 - Learned classifier from IMDB movie reviews
 - Applied and tested with tweets afterwards
- Airbnb (done very often)
- Choose a task/dataset where you have a ground truth Bundes (or can easily generate one)
 - Find rules that new ve
- last.fm Playlist Analysis
 - Cluster last.fm users according to the style of the songs they are listening to
 - Find commons sets of songs for the different clusters
- Analysis of Training Data of a Fitness Center
 - Find different customer groups by clustering exercise data
 - Find frequent combinations of exercises
- Sentiment Analysis of Tweets about Movies

Team Formation

- You are allowed to form teams of 5 students as you like!
 - You enter your team consisting of 5 students into the Group Formation Google spreadsheet (see last slide) until Sunday, October 6th 23:59
 - If you are still looking for a team, enter yourself to the respective section of the spreadsheet also until Sunday, October 6th 23:59
 - Ilias message board can also be used to find teams (see corresponding channel)
 - We will form teams out of the remaining students who did not find a team by themselves on Monday, October 7th
 - We send an information in Ilias message board once the assignment is done
 - If you already formed a team, you can start writing the project outline
- Meet with your team after the group formation session to organize your work!
 - Decide project topic
 - Organize writing of project outline

Project Outlines

- Maximum 4 pages (sharp!) including title page
 - Using DWS master thesis layout (PDF!)
 - Include a project name, your team number and name on the first page!
- Due Sunday, October 13th, 23:59
- Send by eMail to Andreea & Franz (together, not separate)
- Feedback about your project outlines if required:
 Monday, 21.10.2024, lecture time (13:45-15:15)
 - We will inform you Friday, 18.10.2024 with some feedback via mail and let you know if you need to show up on Monday, 21.10.2024

Project Outlines

- Answer the following questions:
 - 1. What is the problem you are solving?
 - 2. What data will you use?
 - Where will you get it?
 - How will you gather it?
 - 3. How will you solve the problem?
 - What preprocessing steps will be required?
 - Which algorithms do you plan to use? Be as specific as you can!
 - 4. How will you measure success? (Evaluation method)
 - 5. What do you expect your results to look like? (Model/Clusters/Patterns)

Coaching Sessions

- We will give you tips and answer questions concerning your project.
- At the time of the lecture (Mondays)
- Registration via email is mandatory!
 - Via mail to Andreea & Franz (together, not separate)
 - Until Thursday night (23:59)!
 - Including the questions that you like to discuss
- We will assign you a time slot afterwards and inform you about the slot via email
- Every team has to attend at least one coaching session!

Some Project Management Hints

- Organize your project in multiple iterations
 - Every artefact will be improved over time!
- Get a simple process running early on to have a baseline
- Parallelize tasks while keeping centrally track of results
 - e.g. one central document with results plus reference to exact version of the notebooks/datasets that produced these results
 - sub-groups should explore specific ideas for a specified amount of time

Some Project Management Hints

- Define concrete milestones: When should what be finished?
 - e.g. 18.10.24 Data exploration results collected in single document
 - e.g. 01.11.24 Subgroup on sentiment lexica adds results to central document

Infrastructure

- use shared folder for result document, versions of data,
 processes, slideset (e.g. MS Teams, Google Drive, github)
- use ChatGPT for inspiration about additional methods as well as coding

Tasks within the Iterations of the Project

- 1. Data Exploration and Visualization
- 2. Data Preprocessing: value normalization, deal with outliers, deal with missing values, feature generation, balance training data if necessary
- 3. Establish/update baseline (majority class, predict mean value)
- 4. Try different learning methods using different feature creation methods and feature combinations
- 5. Perform error analysis in order to understand what is going on!
- 6. Later iteration:
 - run automatic hyperparameter optimization and attribute selection
 - employ more sophisticated evaluation setup: x-val + holdout vs. nested x-val

Project Presentation

- Present the project results to the other students
 - 10 minutes presentation + 5 minutes discussion
 - During lecture/exercise slot
 - Everyone
- Send your presentation in PDF format
 - Via mail to Andreea & Franz (together, not separate)
 - Until Sunday, December 1st, 23:59

Project Report

- Max. 12 pages including title/toc page and reference page
 - max. 10 pages content, no appendix
 - Each extra page and each day of late submission downgrades your mark by 0.3!
- due Sunday, December 8th, 23:59
- send by email to Andreea & Franz (together, not separate)

Project Report

- Outline for project report:
 - Application area and goals (0.5 pages)
 - Profile (structure and size) of your data set (minimum 1 page)
 - Preprocessing
 - Data Mining
 - Describe different approaches and parameter settings/optimizations that you tried
 - Evaluation
 - Including description of evaluation setup (split, x-val, nested-x-val?)
 - Including an analysis of the errors still made by the best method, a discussion of the results, and a comparison to state-of-the-art results (together: minimum 2 pages)
 - Results

Project Report

- Requirements
 - You have to use the latex template of the DWS Thesis
 - Please cite sources properly and use your references page
 - Also submit your Python code and (a subset) of your data
 - Include your names and your team number on the first page!
- Usage of AI Tools needs to be declared

Declaration of Used AI Tools

Tool	Purpose	Where?	Useful?
ChatGPT	Rephrasing	Throughout	+
DeepL	Translation	Throughout	+
ResearchGPT	Summarization of related work	Sec. 2.2	-
Dall-E	Image generation	Figs. 2, 3	++
GPT-4	Code generation	functions.py	+
ChatGPT	Related work hallucination	Most of bibliography	++

- Business Understanding
 - What is the actual problem (in the domain)?
 - What is the target variable?
 - Classification/Regression/Cluster Analysis?
- Data Understanding
 - What is the distribution of labels / target variable?
 - Are all attributes and their types listed and important attributes explained?
 - What is the quality of the data? Wrong values? Outdated?
 - What does correlation analysis reveal about attribute importance?

Preprocessing

- Are missing values replaced (in case needed)?
- Checked for outliers (and handled them)?
- Validity tests of attributes (Height above sea level < 9000)?
- Check for inconsistencies (age=42, birthday=03/07/1997)
- Check for duplicates
- Performed data normalization (e.g. US vs United States)
- Additional features generated?
- Has binning been tried out?
- Feature subset selection necessary?

External Knowledge:

– Are additional datasets used?

ML approaches

- How many different ML approaches were tried out?
- Do you have at least one symbolic and one non symbolic approach?
- Do you have at least one baseline (majority class / mean value / domain specific ...)?

Evaluation

- Is there a train test split or 10-fold cross validation implemented
- Is the evaluation stratified?
- Cost matrix or not?
- Are the hyper parameters tuned (in which range / which attributes) ?
- Are the tests systematic?
- Analyse a symbolic model (how does the decision tree / rules /... looks like)
- What features do have a high impact on the result?

- Result
 - Is the result <u>critically</u> evaluated
 - Is the result analyzed against the baseline
 - What does the result mean given the problem (could you use it)

Get Additional Advice from a Stanford Professor

- How to evaluate your model?
 - https://www.youtube.com/watch?v=TxTblROT9lY

Christopher Potts

- How to structure your project report?
 - https://www.youtube.com/watch?v=DZNwO-p5PGY
- How to present the results of your project?
 - https://www.youtube.com/watch?v=GGx7klcahzY

Severe Errors to Avoid

 Normalize numeric data before calculating any similarity metrics # import min-max scaler
from sklearn import preprocessing.MinMaxScaler()

create scaler
scaler = MinMaxScaler()

normalize the relevant attributes
dataset[['Att1', 'Att2']] = scaler.fit_transform(datas)

 Implement the recommendations concerning model evaluation, hyperparameter selection and feature selection given on the summary slides

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

# Specify hyperparameter combinations for search
parameter_grid = {"C": [1, 10, 100, 1000], "gamma": [.001, .01, .1, 1]}

# Create SVM
estimator_svm = SVC(kernel='rbf')

# Create the grid search for model selection
estimator_gs = GridSearchCV(estimator_svm, parameter_grid, scoring='acc
# Run nested cross-validation for model evaluation
accuracy_cv = cross_val_score(estimator_gs, dataset, labels, cv=5, score)
```

Final Exam

Date: Wednesday, 18th December 2024, time tba.

Duration: 60 minutes

Location: tba

- Structure: open questions that
 - Check whether you have understood the content of the lecture
 - We try to cover all major chapters of the lecture: cluster analysis, classification, evaluation, regression, association analysis, and text mining
 - Require you to describe the ideas behind algorithms or apply the methods
 - What is the advantage or problem of X compared to Y?
 - How do methods react to this special pattern in the data?
 - Given the following data. What happens?
- Might require you to do some simple calculations
 - You need to be able to use the most relevant formulas
 - You are not allowed to use a calculator (calculations are simple)

Deadlines - Overview

- Team formation until Sunday, October 6th 23:59
 - Either enter your whole team or
 - Enter your name if you are looking for a team (team assignment on Monday, October 7th)
- Project outline until Sunday, October 13th, 23:59
- Coaching Sessions
 - Every team has to attend at least one coaching session
- Project presentation in PDF until Sunday, December 1st, 23:59
- Project report until Sunday, December 8th, 23:59

Questions?

Team Assignment

- Find your team now!
- Enter your group in "Team Setup" in Google Sheet
 - In case you do not have a team, fill in your details in "Looking for a team"
 - => then you will be assigned to a team after the registration period
- Do so until the end of week (Sunday October 6th 23:59)

https://docs.google.com/spreadsheets/d/1Luy7aV8FIRu nyf6mh8LAyZHo7IJ CkCcvWtVh75MYY/edit?usp=sharing

Thank you

