This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Express Mail No. <u>EL 452 482 635 US</u>

Application of: Sobek et al.

Group Art Unit: 1635

Serial No. 09/803,165

Examiner: Nguyen, L.

Filing Date: March 9, 2001

Attorney Docket No.: 5328

For: MUTANT B-TYPE POLYMERASES IMPROVED PERFORMANCE IN PCR

COMMUNICATION

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Applicants submit herewith a certified copy of European Patent Application No. 00105155.6.

Applicant believes that no fee is due with this paper. However, if it is determined that a fee is due, please charge the required fee to Pennie & Edmonds LLP Deposit Account No. 16-1150 (order no. 1803-280-999).

Respectfully submitted,

Dated: March 14, 2002

Rahul Pathak

(Reg. No.)

RECEIVED

MAR 2: 2: 2002

TECH CENTER 1600/2900

For: Jennifer Gordon (Reg. No. 30,753)

Pennie & Edmonds LLP 1155 Avenue of the Americas New York, New York 10036

(212) 790-9090

THIS PAGE BLANK (USPTO)

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

00105155.6

RECEIVED

MAR 2 2 2 2002

TECH CENTER 1600/2900

Der Präsident des Europäischen Patentamts;

For the President of the European Patent Office

Le Président de l'Office européen des brevets

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

27/11/00

THIS PAGE BLANK (USPTO)

Eur päisches **Patentamt**

European **Patent Office**

Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.: Application no.: Demande n*:

00105155.6

Anmelder: Applicant(s): Demandeur(s):

Roche Diagnostics GmbH

68298 Mannheim

GERMANY

Anmeldetag: Date of filing: Date de dépôt:

11/03/00

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

Mutant B-type DNA polymerases exhibiting improved performance in PCR

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:

Tag:

Aktenzeichen:

State: Pays:

Date:

File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

C12N15/52, C12N9/00

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/TR
Etats contractants désignés lors du depôt:

Bemerkungen: Remarks: Remarques:

THIS PAGE BLANK (USPTO)

EPO - Munich 5 .1 1 März 2008328/00/EP

Roche Diagnostics GmbH

Mutant B-type DNA polymerases exhibiting improved performance in PCR

FIELD OF THE INVENTION

Subject of the invention is a thermostable mutant B-type DNA-polymerase having a Y-GG/A amino acid motif between the N-terminal 3'-5'-exonuclease domain and the C-terminal polymerase domain in the wild type form whereas amino acids of this motif are substituted in the mutant form of the DNA polymerase and whereas these mutant DNA polymerases are suitable for PCR reactions. Thermostable mutants according to the present invention exhibit better performance in PCR reactions compared to the wild type DNA polymerase. A further embodiment of the present invention is the use of these thermostable mutants of the B-type DNA polymerase for polymerase chain reactions (PCR) and other nucleic acid synthesizing reactions. Another subject of the present invention is a method of producing the inventive mutants, vectors and cell lines comprising genes encoding the inventive mutants.

BACKGROUND OF THE INVENTION

DNA-dependent DNA polymerases containing proof-reading activity have to coordinate two catalytic activities: the DNA polymerase activity and the exonuclease activity. For polymerase I type DNA polymerases (*E. coli* Pol I) as well as for B-type DNA polymerases, these catalytic activities are located on structurally distinct protein domains (Truniger, V., Lázaro, J., Salas, M. and Blanco, L. (1996) *EMBO J.*, 15(13), 3430-3441; Pisani, F. M., De Felice, M. and Rossi, M. (1998) *Biochemistry*, 37(42), 15005-15012). In B-type (eukaryotic-type) DNA polymerases, the coordination of the two catalytic activities was proposed to take place intramolecularly in the conserved motif Y-GG/A located between the N-terminal 3'-5' exonuclease and the C-terminal polymerization domain (Truniger, V., Lázaro, J., Salas, M. and Blanco, L. (1996) *EMBO J.*, 15(13), 3430-3441; Pisani, F. M., De Felice, M. and Rossi, M. (1998) *Biochemistry*, 37(42), 15005-15012). For the Klenow fragment of *E.coli* DNA polymerase it was described, that the editing can

be an intermolecular or intramolecular process involving dissociation and reassociation of the DNA depending on the local context (Joyce, C. M. (1989) *JBC*, 264(18), 10858-10866). Truniger et al. (Truniger, V., Lázaro, J., Salas, M. and Blanco, L. (1996) *EMBO J.*, 15(13), 3430-3441) demonstrated for the mesophile replicative DNA polymerase of bacteriophage φ29 that mutations in the Y-GG/A motif can lead to phenotypes favoring either polymerisation or exonucleolysis compared to the wild type enzyme. They could show that this effect is related to altered (ss)DNA binding parameters and that the motif is important for the communication between the polymerase and exonuclease active site in a combination of structural and functional roles.

For the DNA polymerase of the thermophilic crenarchaeon Sulfolobus solfataricus (Sso) a region of 70 amino acids (region 1) involved in enzyme-DNA interaction was determined (Pisani, F. M., Manco, G., Carratore, V. and Rossi, M. (1996) Biochemistry, 35, 9158-9166). It is located in the connecting part between the exonuclease domain and the polymerase domain and contains the Y-GG/A motif. By mutational analysis of the amino acids in the Y-GG/A motif, it could be shown that the amino acids in this part of the enzyme determine the processivity of the proofreading function (Pisani, F. M., De Felice, M. and Rossi, M. (1998) Biochemistry, 37(42), 15005-15012). Based on the crystal structure of bacteriophage RB69 DNA polymerase, Truniger et al. proposed a direct interaction of the tyrosine with the phosphodiester bond between the two nucleotides preceding the one acting as template (Truniger, V., Blanco, L. and Salas, M. (1999) J. Mol. Biol., 286, 57-69).

DESCRIPTION OF THE INVENTION

The subject of the present invention was to provide thermostable DNA polymerases exhibiting an improved performance in PCR. Especially, thermostable mutants of a B-type DNA polymerase are provided which exhibit improved PCR performance. The inventive mutants of the B-type DNA polymerase have mutations in the Y-GG/A amino acid motif. Preferred mutations refer to the position of the tyrosine in the Y-GG/A amino acid motif. Other mutations affecting the motif could also influence the performance of B-type DNA polymerases in PCR.

According to the present invention an improved performance of a DNA polymerase in PCR is defined as a performance that results in higher yields of PCR product, or the amplification of

longer DNA targets. Additionally, improved PCR performance can be defined as improved fidelity during the amplification process.

Preferred mutant B-type DNA polymerases have mutations at the position of the tyrosine in the Y-GG/A amino acid motif. Preferred mutants of B-type DNA polymerases according to the present invention have phenylalanine, tryptophan or histidine at the position of the tyrosine. Other preferred mutants of B-type DNA polymerases according to the present invention have asparagine or serine at the position of the tyrosine. These mutant polymerases described here, in which the tyrosine of the Y-GG/A motif was substituted, exhibit an improved performance in PCR.

In a preferred embodiment the inventive mutant B-type DNA polymerase is a mutant of a B-type DNA polymerase obtainable from Euryarchaea, more preferrably from Thermococcus aggregans (Tag). Especially preferred is a mutant of a B-type DNA polymerase from Tag of about 94 kDa size with a temperature optimum of $\geq 80^{\circ}$ C and the ability to perform polymerase chain reactions.

The present invention is described in detail for the B-type DNA polymerase from *Thermococcus aggregans*, but the invention could also be applied to other B-type DNA polymerases. Preferrably to those B-type DNA polymerases showing a high degree of homology (≥80%) to the DNA polymerase from *Thermococcus aggregans*.

The B-type DNA polymerase from Thermococcus aggregans exhibits a high degree of amino acid sequence homology to B-type DNA polymerases of other Thermococcus species. The homology of the DNA polymerases was calculated using the programm Blast 2 (Tatusova, T.A. and Madden, T.L. (1999) FEMS Microbiol. Lett. 174, 247 – 250). The homology of the B-type DNA polymerase from Thermococcus aggregans to the homologue enzymes from Thermococcus species is: 93% (T. litoralis), 87% (T. gorgonarius), 86% (T. furiosus) and 87% (T. spec. 9N7). The homology of the Tag DNA polymerase to polymerases from Pyrococcus species is: 86% (P. abysii), 86% (P. horikoshii), 86% (P. spec KOD) and 85% (P. furiosus). A lower homology is calculated to other B-type DNA polymerase from different euryarchaeota: 59% (Methanococcus jannaschii), 56% (Methanococcus voltae), 51% (Methanobacterium thermoautotrophicum) and 56% (Archaeglobus fulgidus). To B-type DNA polymerases from crenarchaeota and bacteriophages the homology is found as follows: 46% (Sulfolobus solfataricus), 42% (Sulfolobus acidocaldarius), 41% (Sulfurisphera ohwakuensis), 51% (Aeropyrum pernix), 40% (Pyrodictium occultum), 43% (Cenarchaeum symbiosum), 38% (bacteriophage T4) and 39% (bacteriophage RB69).

As described above several mutations in the Y-GG/A motif were performed for the Sulfolobus solfataricus (Sso) and the ϕ 29 DNA polymerases. The observed effects on polymerase activity (pol) and exonuclease activity (exo) of these mutations do not completely correspond to the effects obtained for the Tag DNA polymerase. Thus the effect of the mutations on the performance of the mutants in PCR was not predictable.

The mutant Y387F of the Tag DNA polymerase exhibits a higher pol/exo ratio compared to the wild type Tag DNA polymerase. Similar results were described for Sso and $\phi29$ DNA polymerase. The mutant G389A displays the opposite effect than the corresponding mutant in $\phi29$ DNA polymerase: while $G\rightarrow A$ in Tag DNA polymerase almost knocks out polymerase activity, in $\phi29$ DNA polymerase $G\rightarrow A$ mutant this activity is clearly enhanced. For mutants of the Sso DNA polymerase a change of exonuclease processivity was described. Again, this was not observed for mutants of the B-type Tag DNA polymerases. Thus, a prediction of the effect of analogous mutants in the Y-GG/A motif could not be made.

In summary, although it has been described in the prior art that the Y-GG/A motif plays a role in the coordination of the DNA polymerase activity and the exonuclease activity, the observed changes of the pol/exo ratio of the prior art DNA polymerases do not strictly correlate to the changes observed for the inventive mutants of the *Tag* DNA polymerase. Furthermore, it has not been described that the Y-GG/A motif is important for the performance of B-type DNA polymerase in PCR. Additionally, there is no correlation between the changes of the pol/exo ratio and the improvement of the performance of DNA polymerases in PCR. For instance, the mutant Y387H does not exhibit a change of pol/exo ratio compared to the wild-type, but it exhibits improved performance in PCR. Furthermore, a significant enhancement of fidelity was observed for the mutants Y387N and Y387S of *Tag* DNA polymerase.

Results obtained for the mutants of Tag DNA polymerase are described in more detail below.

Enzymatic activities of wild type and mutant Tag DNA polymerases

The enzymatic activities of the wild type enzyme and the mutants of *Tag* DNA polymerase were determined and analyzed (Figure 1). The DNA polymerase activity was determined as described in Example 2. According to the effect of the mutations on the polymerase activity three groups of

mutants were defined: i) mutants with enhanced DNA polymerase activity (mutant Y387F), ii) mutants having a similar or slighlty reduced DNA polymerase activity compared to the wild type (mutants Y387W and Y387H) and iii) mutants with reduced DNA polymerase activity (mutants Y387N, Y387S, G389A).

The exonuclease activity was determined as described in Example 3. According to the effect of the mutations on the exonuclease activity two groups of mutants were defined: i) mutants with similar exonucleolytic activity as the wild type enzyme (mutants Y387F, Y387W, Y387H), ii) mutants with enhanced exonuclease activity (mutants Y387N, Y387S, G389A) in comparison to the wild type enzyme.

From the data obtained for polymerase activity and exonuclease activity the ratios of both activities (pol/exo) were calculated for the wild type enzyme and the mutants of *Tag* DNA polymerase (Figure 1). Three mutants showed a higher or similar pol/exo ratio as the wild type enzyme (mutants Y387F, Y387W, Y387H). Three mutants showed a clearly reduced pol/exo ratio in comparison to the wild type enzyme (mutants Y387N, Y387S, G389A).

PCR performance

Wild type and mutant enzymes were submitted to polymerase chain reactions on lambda DNA in a buffer optimized for this purpose. All mutants except for mutant G389A were able to perform PCR, but yielded different amounts of product with a constant amount of enzyme (1 pmol). With increasing length of the DNA target, differences in performance of the enzyme were shown (Fig. 2). With 1 pmol of the mutants Y387S, Y387N and G389A no PCR product could be obtained for the amplification of a 3.3 kb fragment. 1 pmol of the wild type DNA polymerase could not amplify fragments of 5.0 kb length. The mutants Y387W, Y387F and Y387H were able to amplify a fragment of 7.5 kb length. As control *Taq* DNA polymerase, *Pwo* DNA polymerase and ExpandTM High Fidelity PCR System (Roche Molecular Biochemicals) were used.

The differences in PCR performance were also shown by the amplification of a 2 kb fragment applying different elongation times in the PCR runs. Under these conditions, all enzymes tested except the mutant G389A were able to amplify a 2 kb fragment at an elongation time of 90 sec/cycle. The mutants Y387F, Y387W and Y387H were able to amplify the fragment at a reduced elongation time of 40 sec/cycle. The mutant Y387H was able to amplify the target in a elongation time of 30 sec/cycle (Fig. 3).

Exonuclease processivity

The exonuclease processivity of the enzymes was studied in an experiment based on the heparin trap method (Reddy, M. K., Weitzel, S. E. and von Hippel, P. H. (1992) *J. Biol. Chem.*, 267(20), 14157-14166; Pisani, F. M., De Felice, M. and Rossi, M. (1998) *Biochemistry*, 37(42), 15005-15012). A constant amount (1 pmol) of *Tag* DNA polymerase or its mutants was incubated for 4 minutes at 68 °C with a 5'-DIG-labelled 24mer oligonucleotide in the absence of nucleotides. In the absence of heparin, the oligonucleotide was continually degraded by the *Tag* enzymes (positive control, Fig. 4, lanes "-"). The function of the heparin trap method was demonstrated by addition of heparin and MnCl₂ before the binding of the enzyme (negative control, Figure 4, lanes B). Single turnover conditions (addition of heparin and MnCl₂ to start the reaction after the binding of enzyme) resulted in exonucleolytic degradation of the oligonucleotide by the *Tag* DNA polymerases (Fig. 4, lanes A). The enzymes showed differences in the exonucleolytic activity as shown by the different amounts of remaining oligonucleotide that was not degraded. However, for all enzymes tested the oligonucleotide was degraded to a similar extent (8 nt). This indicates a similar exonuclease processivity for the enzymes.

The Thermococcus gorgonarius DNA polymerase, which exhibits a strong exonuclease activity, was used as a positive control. It degraded the 24mer oligonucleotide in the absence of heparin to oligonucleotides of less than 15 bases length (Figure 4, lane "-"). Under single turnover conditions a strong degradation (11 nt) of the oligonucleotide is observed (Figure 4, lane "A").

Fidelity

The error rates in amplification were determined for the mutant enzymes and the wild type DNA polymerase. The PCR-based fidelity assay described by Frey and Suppman (Frey, M. and Suppmann, B. (1995) *Biochemica*, 2, 34-35) was used. This method is based on the amplification, circulation and transformation of the pUC19 derivative pUCQ17, which contains a functional *lacI*^q allele (Barnes, W. M. (1994) *Proc. Natl. Acad. Sci. USA*, 91, 2216-2220). PCR-derived mutations in *lacI* result in a de-repression of the expression of *lacZα* and subsequent formation of a functional β-galactosidase enzyme, which can be detected on X-Gal indicator plates.

In five independent runs, a mean error rate of 5.0x10⁻⁶ was found for the wild type Tag DNA polymerase. This value is in between the mean error rates of 1.8x10⁻⁶ for ExpandTMHigh Fidelity PCR System (Roche Molecular Biochemicals) and 1.3x10⁻⁵ for Tag DNA polymerase

(Roche Molecular Biochemicals) determined in the corresponding experiments. For a better comparison of the data, we plotted the quotient of the error rate determined for *Taq* DNA polymerase divided by the error rates determined for the *Tag*

DNA polymerase and its mutants. In the independent experiments the error rate for Taq DNA polymerase varied from 1.2 to 3.05×10^{-5} .

Figure 5 shows the quotients of the error rates of the wild type enzyme and mutants of *Tag* DNA polymerase. The error rates of the mutants showing improved PCR performance (Y387W, Y387F, Y387H) did not significantly differ from the values obtained for the wild type enzyme. The mutants with enhanced exonuclease activity (Y387N, Y387S) showed improved fidelity rates (Figure 5). For the mutants Y387N and Y387S mean error rates of 6.3x10⁻⁷ and 6.2x10⁻⁷ were determined.

In contrast to the ϕ 29 DNA polymerase and the *Sso* DNA polymerase, the *Tag* DNA polymerase, is suited for PCR. The mutant enzymes (Y387F, Y387W, Y387H) with an aromatic amino acid in the position of the tyrosine showed a similar or only slightly enhanced DNA polymerase activity (mutants Y387F, Y387W, Y387H) but an improvement in PCR performance.

In the fidelity assay it was found that the mutants Y387F; Y387W and Y387H showed no significant change in their error rate. By contrast, the mutants Y387N or Y387S showed higher exonuclease activity and displayed an improved fidelity.

Subject of the present invention is also a method of producing the inventive B-type mutants comprising the following steps: cloning and mutagenesis of the gene, followed by the expression and purification of the protein.

Subject of the present invention is a DNA encoding for a thermostable B-type DNA polymerase having a Y-GG/A amino acid motif between the N-terminal 3'-5' exonuclease domain and the C-terminal polymerase domain in the wild type enzyme whereas the tyrosine of this motif is substituted in the mutant enzyme of the polymerase and whereas this mutant DNA polymerase is suitable for PCR.

Preferably, said DNA in wild type form is obtainable from Euryarchaea, more preferably from *Thermococcus aggregans* (*Tag*). Subject of the present invention is also a vector containing the inventive DNA. Suitable vectors are e.g. the following: pET14b/15b/16b/19b (Novagen); pRSET

EP00105155.6

8

(Invitrogen); pTrcHis (Invitrogen); pHAT10/11/12 (Clontech); pPRO Tet.E/Lar.A (Clontech); pCALn/n-EK (Stratagene); pGEMEX-1/-2 (Promega).

Furthermore, subjects of the present invention are also cells comprising the above vector. Suitable cells are e.g. *E.coli* BL21, BL21(DE3), BL21(DE3)pLysS, BL21(DE3)pLysE, DH5∞PRO, JM109 (DE3), TOP10 in combination with the vectors recommended by the suppliers. The gene may have to be subcloned and the protein purification procedure may have to be adapted in the case of different expression vectors.

A sample of the recombinant strain expressing *Tag* DNA polymerase was deposited with the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) Mascheroder Weg 1b, D-38124 Braunschweig (DSM No. 13224).

A further subject of the invention is the use of the inventive mutant enzymes for synthesizing nucleic acids e.g. in PCR reactions.

ĖP00105155.6

9

DETAILED DESCRIPTION OF THE PREFERED EMBODIMENTS **EPO - Munich** 5

1 1. März 2000

Figures:

Figure 1.

Table showing the relative polymerase activities (Pol) and 3'-5'-exonuclease activities (Exo) of Tag DNA polymerase and its mutants on double-stranded DNA.

Assays were carried out as described in example 2 and 3, respectiviely. The activites are expressed as percentage of the activity obtained for the wild-type *Tag* DNA polymerase.

Figure 2.

PCR with Tag DNA polymerase mutants.

Tag DNA polymerase mutants (1 pmol) were incubated in a 50 μl total volume with 10 ng of lambda DNA as template and 30 pmoles of a primer set designed to yield the indicated fragment lengths, 200 μM dNTPs and the suitable PCR buffer. Reactions were performed with 10 cycles of 10 sec 94 °C, 30 sec 57 °C and 3.0 min (A), 4.3 min (B) or 7.0 (C) min of elongation time at 72 °C followed by 20 cycles with elongation times increasing by 20 sec/cycle. After the PCR 5 μl sample were submitted to electrophoresis on a 1% agarose gel. For the control reaction 2.5 U of Taq DNA polymerase, Pwo DNA polymerase or ExpandTM High Fidelity PCR System were used. The labeling of the lanes is described in the legend of figure 6.

Figure 3.

Time-dependent polymerase chain reaction.

1% agarose gels showing 2 kb PCR products from reactions performed with different elongation time (90 sec, 40 sec, 30 sec as indicated) to determine the minimal elongation time.

1 pmol of each Tag DNA polymerase mutant or wild type enzyme was added to a mix of 10 ng lambda DNA and primers designed to yield 2 kb DNA fragments. Labeling of the lanes is described in the legend of figure 6. For each mutant duplicate reactions were performed. Right lane of each gel Pwo: 2.5 U Pyrococcus woesei DNA polymerase (Roche Molecular Biochemicals) as control reaction. Left lane of each gel: Molecular weight marker VI (Roche Molecular Biochemicals). In the 40 sec reaction, mutant GA was omitted. In the 30 sec reaction, for the mutant YS only one reaction was run on the gel.

EP00105155.6

10

Figure 4.

3'-5'-exonuclease processivity.

The Tag DNA polymerase mutants tested are indicated on top of the figure. Tgo DNA polymerase was used as a control reaction (incubation for 30 sec). Reactions for wild type and mutants of Tag DNA polymerase were performed for 4 minutes at 68 °C after preincubation for 1 minute at 68°C. Lane "P" is the control reaction (24 mer 5'-DIG-labelled primer without incubation), lane "-": reaction without heparin (positive control); lane "B": reaction with heparin and MnCl₂ added before addition of the enzyme (negative control); lane "A": heparin and MnCl₂ added after the enzyme (reaction under single turnover conditions).

Figure 5.

Fidelity of Tag DNA polymerase mutants.

The fidelity of Tag DNA polymerase and its mutants was expressed in relation to the fidelity of Taq DNA polymerase. A quotient of 1 means that the polymerase has the same error rate as Taq DNA polymerase (mean value 1.3×10^{-5}). Values >1 reflect the factor by which a polymerase shows less errors than Taq DNA polymerase. The bars correspond to to mean values calculated from 2-5 independent experiments, error bars missing are smaller than 0.36. Abbreviations for enzymes are as indicated in legend to figure 6. As controls Pyrococcus woesei DNA polymerase (Roche Molecular Biochemicals) and Expand High Fidelity PCR System (Roche Molecular Biochemicals) were used ("Taq/Pwo" and "Taq/HiFi").

Figure 6.

SDS-PAGE gel analysis of purified mutant proteins.

1 μg of each mutant was submitted to electrophoresis on an 10% SDS-PAGE gel. Left: MW, molecular weight marker; WT, *Thermococcus aggregans* wild type DNA polymerase; YF, YW, YS, YN, YH are the corresponding mutants with an exchange at the position of tyrosine 387 to phenylalanine, tryptophan, serine, asparagine, histidine, respectively. GA, mutation of glycine 389 to alanine in the gene of the *Thermococcus aggregans* DNA polymerase. All mutants showed the same chromatographic behaviour and solubility as the wild type enzyme.

Figure 7.

Qualitative exonuclease assay.

A DNA molecular weight marker was used as substrate to test the exonucleolytic activity (DNA molecular weight marker II (MW II), Roche Molecular Biochemicals). 1 μ g of MW II was incubated for 6 h at 65 °C with 1 pmol of each variant of Tag DNA polymerase in the presence (A) or absence (B) of 200 μ M dNTP. Tag mutants are named as explained in legend of figure 6. Exonucleolytic degradation take place only in the absence of deoxynucleotides. The qualitative ranking of the proteins in terms of exonuclease activity is GA > YN > YS > YH > YF = YW = WT.

Figure 8.

Consensus sequence motif for B-type DNA polymerases from the order of *Thermococcales* derived from a multiple alignment of amino acid sequences of euryarchaeal and crenarchaeal B-type DNA polymerases.

A region of 24 amino acids containing the Y-GG/A motif was analyzed with the ClustalW Software program (Higgins, EMBL Heidelberg, Germany). In addition to the amino acids conserved in all archaeal B-type DNA polymerases (like the Y-GG/A motif), a consensus sequence "E--RR-R-----G(Y)-KE-EE--LWE-" can be defined. This sequence is found in the sequence of all DNA polymerases belonging to the order of the *Thermococcales* and coincides with a homology of >80% of the DNA polymerases.

The sequences of the crenarchaeal species Sulfolobus solfataricus, Sulfolobus acidocaldarius, Pyrobaculum islandicum, Pyrodictium occultum, Aeropyrum pernix, Sulfurisphaera ohwakuensis and the sequences of several euryarchaeal species Thermococcus ("T."), Pyrococcus ("P.") and Methanococcus ("M.") were aligned.

Figure 9.

DNA sequence and deduced amino acid sequence of recombinant wild type *Tag* DNA polymerase.

Three inteins found in the native gene (Acc. No. Y13030) were deleted by PCR (Niehaus, F., Frey, B., Antranikian, A. (1997) Gene, 204, 153-158). Four mutations leading to amino acid exchanges were introduced during PCR. The amino acid exchanges (native—recombinant) are: L3F, A404T, S410C and L492H.

Example 1

Site-directed mutagenesis and expression of Tag DNA polymerase mutants

The cloning of the gene of *Tag* DNA Polymerase (polTY) was described earlier (Niehaus, F., Frey, B., Antranikian, A. (1997) *Gene*, 204, 153-158). Overexpression of *Tag* DNA Polymerase in *E. coli* was achieved by subcloning its encoding gene into the IPTG-inducible pET15b vector (Novagen) containing an N-terminal His-Tag for purification (the resulting plasmid was named pET15b-TagPol).

The mutants presented in this study were prepared in polymerase chain reactions using primers containing the desired mutations as a mismatch. The forward primer was universally "Kpn-fw", matching to a sequence about 100 bp upstream of the mutation site and contained a KpnI restriction site of the polTy gene. The reverse primers contained a SnaBI restriction site and additionally the desired mutation. The sequences of the oligonucleotides were as follows (mismatch sites for mutagenesis underlined):

Kpn-Fw	5'-GCAACCTTGTAGAGTAGAGTGGTACCTGTTAAGGG-3';
TagY387F	5'-GCCTCTTTCCGGCTCTTTTACGTATCCTCCCAGGAAAGTAGTCC-3',
TagY387H	5'-GCCTCTTTCCGGCTCTTTTACGTATCCTCCCAGGTGAGTAGTCC-3',
TagY387N	5'-GCCTCTTTCCGGCTCTTTTACGTATCCTCCCAGG <u>TT</u> AGTAGTCC-3',
TagY387S	5'-GCCTCTTTCCGGCTCTTTTACGTATCCTCCCAGGGAAGTAGTCC-3',
TagY387W	5'-GCCTCTTTCCGGCTCTTTTACGTATCCTCCCAG <u>CC</u> AAGTAGTCC-3',
TagG389A	5'-GCCTCTTTCCGGCTCTTTTACGTATCCAGCCAGGTAAGTAGTCC-3'.

PCR reactions were carried out with ExpandTM High Fidelity PCR System (Roche Molecular Biochemicals) using the following program: 2 min 94 °C, 30 cycles of 10 sec 94 °C, 30 sec 55 °C, 30 sec at 72 °C. The resulting 139 bp fragments were digested with the restriction enzymes *KpnI* and *SnaBI* yielding a 101 bp fragment that was ligated into pET15b-TagPol linearized with the restriction enzymes *KpnI* and *SnaBI*. The cloned DNA fragments were sequenced to confirm the presence of the desired mutations.

For protein expression, E. coli BL21 (DE3) cells were transformed with the expression vector pET15b-TagPol. Three to five colonies were inoculated in 15 ml of LB medium supplemented with 100 µg Ampicillin per ml and grown to OD600nm 0.3. An aliquot (10 ml) of the preculture was used to inoculate 500 ml of LB medium and incubated while shaking at 37°C. At OD600nm= 0.6 expression was induced by addition of IPTG (final concentration: 1 mM). After incubation

EP00105155.6

13

for 3 hours cells were harvested by centrifugation and suspended in 50 mM Tris-HCl/pH 7.5, 10 mM KCl, 0.5 mM EDTA, 4 mM MgCl₂, 5 mM DTT. Cells were sonicated on ice and the crude extract was heated for 15 min to 80 °C. Cell debris was removed by centrifugation (30 min, 30 000 x g at 4 °C).

The supernatant was applied to a Blue Sepharose 3G-A column (Pharmacia) equilibrated with buffer A (50 mM Tris-HCl/ pH 7.5, 10 mM KCl, 4 mM Mg Cl₂). The protein was eluted with a gradient of 0.01-1.5 M KCl. Active fractions were pooled and dialyzed against 20 mM Tris-HCl /pH 7.9, 5 mM imidazole, 500 mM NaCl. The sample was applied to a Ni-chelate column (Novagene) equilibrated in the same buffer and eluted with a gradient of 0.005 - 1 M imidazole. Active fractions were pooled and dialyzed against storage buffer (50 mM Tris-HCl/pH 7.5, 100 mM KCl, 0.5 mM EDTA, 5 mM DTT, 50% glycerol). The enzymes were pure as shown by SDS gel electrophoresis (Figure 6).

Example 2

DNA polymerase assay

The DNA polymerase activity was determined by measuring the incorporation of α -(32 P)dCTP in a DNA substrate. The test mix (50 µl) contained 5 µl 10x *Tag* reaction buffer (100 mM Tris-HCl /pH 8.9, 750 mM KCl, 15 MgCl2, 100 mM CHAPS), 200 µM of each dATP, dGTP, dTTP, 100 µM dCTP, 1 mCi α -(32 P)dCTP, 1 µg of M13mp9 ssDNA annealed with 0.3 µg M13 primer. Assays were performed with 2 and 3 µl of enzyme in three different dilutions (final amount of enzyme 2.5 to 15 fmoles) yielding six reactions to calculate a mean value. As a reference *Pwo* DNA polymerase was used. The DNA/primer mix was prepared by heating 277.2 µg M13mp9 ssDNA (Roche Molecular Biochemicals) and 156 µg M13 sequencing primer (17mer forward primer, Roche Molecular Biochemicals) for 30 minutes to 55 °C and then cooling it for 30 minutes to room temperature.

Assay reactions were incubated for 30 minutes at 65 °C, stopped on ice by addition of 500 μ l of 10% TCA (4 °C) and kept on ice for another 10 minutes. Samples were filtered over GFC-filter (Whatman), filters washed three times with 5% TCA, dried and submitted to β -counting in 2 ml of scintillation fluid. One unit is defined as the amount of enzyme necessary to incorporate 10 nM dNTP into acid insoluble material at 65 °C in 30 minutes.

Example 3

Exonuclease Assays

Activity Assay

3 μl (300 ng) of enzyme (approximately 5 Units of polymerase activity) were incubated with 5 μg of 3H-labelled calf thymus DNA for 4 hours at 65 °C in a buffer containing 10 mM Tris-HCl/pH 8.9, 75 mM KCl, 1.5 MgCl₂, 10 mM CHAPS. Radioactivity liberated from calf thymus DNA was measured in a scintilation counter.

The assay used does not discriminate between the 3'-5' exonuclease activity and the 5'-3' exonuclease activity. 5'-3'-exonuclease activity has not been detected pheno- or genotypically in B-type polymerases of *Thermococcales* (Perler, F. B., Kumar, S. and Kong, H. (1996) *Adv. Prot. Chem.*, 48, 377-435). Thus the values obtained can be regarded as 3'-5'-exonuclease activity.

In another assay, 1 μ g of molecular weight marker II (Roche Molecular Biochemicals) were incubated in same buffer as above with 5 U of the indicated protein with or without 200 μ M dNTP in a final volume of 50 μ l for 6 hours at 65 °C. The reaction products were separated by electrophoresis on 1% agarose gels.

3'-5' Exonuclease processivity assay

The previously described heparin trap method was used (Reddy, M. K., Weitzel, S. E. and von Hippel, P. H. (1992) *J. Biol. Chem.*, 267(20), 14157-14166; Pisani, F. M., De Felice, M. and Rossi, M. (1998) *Biochemistry*, 37(42), 15005-15012). A reaction mix (10 μl) containing 10 mM Tris-HCl/pH 8.9, 75 mM KCl, 10 mM CHAPS and 0.5 pmoles of a 5'-DIG-labeled 24mer oligonucleotide was prewarmed for 1 minute at 68 °C in a thermocycler. Unless otherwise noted, 1 pmol of the enzyme was preincubated for 1 minute at 68 °C with the substrate. The reaction was started by addition of MnCl₂ (final concentration: 4 mM) and heparin (final concentration:1 mg/ml) to ensure single turnover conditions. After incubation for 4 minutes, the reaction was stopped by the addition of 5 μl of formamide buffer (80% formamide, 10 mM EDTA, 1 mg/ml bromophenol blue, 1 mg/ml xylene xyanol). The efficiency of the heparin trap was checked in a control reaction by adding heparin and MnCl₂ prior to the addition of the enzyme. The samples were denaturated for 3 minutes at 90 °C and subjected to denaturing gel electrophoresis on a 17.5 % polyacrylamide/8 M urea gel. Gels were blotted to a positively charged nylon membrane (Roche Molecular Biochemicals) and the blots developed with CPD-Star (Roche Molecular Biochemicals) according to the manufacturers instructions.

Example 4

lacI-based PCR fidelity assay

We used the *lac*I-based PCR fidelity assay described by Frey and Suppmann (Frey, M. and Suppmann, B. (1995) *Biochemica*, 2, 34-35). This method is based on the amplification, circularization and transformation of the pUC19 derivative pUCQ17, which contains a functional *lac*I^q allele (Barnes, W. M. (1994) *Proc. Natl. Acad. Sci. USA*, 91, 2216-2220). PCR-derived mutations in *lac*I result in a de-repression of the expression of *lac*Zα and subsequent formation of a functional β-galactosidase enzyme, which can be easily detected on X-Gal indicator plates.

The truncated *lac*I gene of pUC19 was substituted by a functional copy of *lac*I^q. A 178 bp *Pvu II-Afl III* fragment was replaced by a 1121 bp DNA fragment encoding *lac*I^q. The α-complementing *E. coli* strain DH5α, once transformed with the resulting plasmid pUCIQ17 (3632 bp), produces white (LACI⁺) colonies on LB plates containing ampicillin (100 μg/ml) and X-Gal (0,004% w/v). For the PCR, pUCIQ17 was linearized by digestion with *Dra* II and used as a template in an amount of 1 or 10 ng. Both primers have *Cla* I cleavage sites at their 5' ends. Oligonucleotide Cla33 (34mer, 24 matches: 5'-AGC TTA TCG ATG GCA CTT TTC GGG GAA ATG TGC G-3') and Oligonucleotide Cla55 (36mer, 26 matches: 5'- AGC TTA TCG ATA AGC GGA TGC CGG GAG CAG ACA AGC-3') resulted in a PCR product of 3493 bp.

The reactions were performed with 1 or 5 pmol of protein in the *Tag* polymerase PCR buffer described below or for the control reactions in the manufacturers PCR buffers with 2.5 U of enzyme. The cycle conditions were 10 sec denaturation at 94 °C, 30 sec annealing at 57 °C and 4 min elongation at 72 °C for 18, 24 or 30 cycles depending on the enzyme.

After PCR, the yield of amplification product was determined at (OD_{260nm} or in agarose gel) and the DNA fragments submitted to phenol/chloroform extraction to eliminate any protein. After digestion with *ClaI*, the DNA fragments were purified from a preparative agarose gel. Ligation reactions were carried out with the Rapid Ligation Kit (Roche Molecular Biochemicals), the reactions contained 30 ng DNA. The resulting circular plasmids were transformed in *E. coli* DH5α as described by Hanahan (Hanahan, D. (1983) *J. Mol. Biol.*, 166, 557-580) and plated on LB Amp/X-Gal plates described above. After incubation overnight at 37 °C, blue and white colonies were counted. The error rate (f) per bp was calculated with a rearranged equation published by Keohavong and Thilly (Keohavong, P. and Thilly, W. G. (1989) *Proc. Natl. Acad. Sci. USA*, 86, 9253-9257): f = -lnF / d x b bp.

Where F is the fraction of white colonies (white colonies/ total colonies); d is the number of DNA duplications: 2^d = output DNA/input DNA and b is the effective target size (1080 bp) of the *lacI* gene. There are 349 phenotypically identified (by colour screening) single-base substitutions (non-sense and mis-sense) at 179 codons (approximately 50% of the coding region) within the *lacI* gene. (Provost, G. S., Kretz, P. L., Hamner, R. T., Matthews, C. D., Rogers, B. J., Lundberg, K. S., Dycaico, M. J. and Short, J. M. (1993) *Mut. research*, 288, 133-149). Frameshift errors which may occur at every position in the 1080 bp open reading frame of *lacI*, are not taken into account because little information is available for the specific polymerases used in PCR systems except for *Taq* DNA polymerase.

Example 5

Polymerase Chain Reactions

PCR was performed in a buffer optimized for Tag DNA polymerase and its mutants: 10 mM Tris-HCl/pH 8.9, 75 mM KCl, 1.5 MgCl₂, 10 mM CHAPS, 200 μ M dNTP. 10 ng of λ DNA were used as a template and 30 pmol of each primer (20 bp, designed to yield the products of the desired length):

Lambda 1, universal forward primer: 5'-GAT GAG TTC GTG TCC GTA CAA CA-3',

Lambda 3.3: 5'-CTC ATC AGC AGA TCA TCT TCA GG-3',

Lambda 8: 5'-ACT CCA GCG TCT CAT CTT TAT GC-3',

Lambda 9: 5'-GAT GGT GAT CCT CTC TCG TTT GC-3'.

Lambda 3.3, 8 and 9 were used as reverse primers for the amplification of 3 kb, 3.5 kb and 7.5 kb fragments respectively.

Template, primers and nucleotides were prepared in mix 1 in a volume of 25 μl. Then 25 μl of mix 2 containing the buffer and enzyme (1 pmol *Tag* wild type or mutant; or 2.5 U control enzyme) were added. All reactions were prepared in duplicate. The amplification was performed in a 2400 GeneAmp thermocycler (Perkin Elmer). The cycle conditions were: 2 min at 94 °C, 10 cycles with 10 sec denaturation at 94 °C, 30 sec annealing at 58 °C and elongation at 72 °C. Elongation times depended on the length of the product (3 min for 3.3 kb, 4.3 min for 5 kb and 7 min for 7,5 kb). Another 20 cycles were performed with increasing the elongation times by 20 sec/cycle. The reaction was finished by 7 minutes at 72 °C. The tubes were kept at 4 °C until separation by electrophoresis on 1% agarose gels.

The improvement of the PCR performance of the mutants was also studied in a "time-dependent PCR". A 2 kb fragment was amplified from lambda DNA as described above. In these studies the

elongation time of the PCR was stepwise reduced (90 sec, 40 sec, 30 sec) to determine for each enzyme the minimal elongation time that was sufficient to amplify the 2 kb fragment. The following primers were used:

Lambda 1, universal forward primer: 5'-GAT GAG TTC GTG TCC GTA CAA CA-3',

Lambda 6, reverse primer: 5'-CTT CAT CAT CGA GAT AGC TGT CG-3'.

The temperature profile was as described above. The elongation times were kept constant over 30 cycles.

THIS PAGE BLANK (USPTO)

5 1 1. März 2000

18

Claims

- 1. A thermostable mutant B-type DNA polymerase having a Y-GG/A amino acid motif between the N-terminal 3'-5'-exonuclease domain and the C-terminal polymerase domain in the wild-type form of the polymerase whereas preferrably the tyrosine of this motif is substituted in the mutant form of the polymerase and whereas this mutant DNA polymerase is suitable for polymerase chain reactions.
- 2. A mutant B-type DNA polymerase according to claim 1 having an amino acid with an aromatic side chain at the position of the tyrosine.
- A mutant thermostable B-type DNA polymerase according to claim 1 having a Y→F,Y→W
 or Y→H mutation.
- 4. A mutant B-type DNA polymerase according to claim 1 having an amino acid with an hydrophilic side chain at the position of the tyrosine.
- A mutant thermostable B-type DNA polymerase according to claim 1 having a Y→N or Y→S mutation.
- 6. A mutant thermostable B-type DNA polymerase according to claims 1-5 whereas the wild type form is obtainable from Euryarchaea.
- 7. A mutant thermostable B-type DNA polymerase according to claims 1-6 whereas the wild type form is obtainable from *Thermococcus aggregans*.
- A mutant of a thermostable B-type DNA polymerase according to claims 1-6 whereas the amino acid sequence of the wild type form is ≥80% homologue to the amino acid sequence of wild type Tag DNA polymerase.
- 9. A DNA encoding a thermostable mutant DNA polymerase according to claims 1-8.
- 10. A vector containing a DNA according to claim 9.

- 11. A transformed host cell comprising a vector according to claim 10.
- 12. A process for obtaining a polymerase according to claim 1-8 comprising the steps of cloning and mutagenesis of the gene, followed by the expression and purification of the protein.
- 13. Use of a polymerase according to claim 1-8 for synthesizing nucleic acids.
- 14. Use of a polymerase according to claims 1-8 for PCR reactions.

EPO - Munich 5 1 1. März 2000

Abstract

Claimed are thermostable mutants of B-type DNA polymerases having a Y-GG/A amino acid motif between the N-terminal 3'-5'-exonuclease domain and the C-terminal polymerase domain whereas the tyrosine of the Y-GG/A amino acid motif is mutated and whereas these mutant DNA polymerases are suitable for PCR.

THIS PAGE BLANK (USPTO)

EPO - Munich 5 **1 1. März 2000**

Figure 1.

Pol activity and Exo activity in %

	WT	Y387F	Y387W	Y387H	Y387N	Y387S	G389A
Pol	100	160	92	93,6	6,4	17,8	10,7
Exo	100	90	71	98	205	187	236
Pol/Exo	- 1	1,77	1,29	0,96	0,03	0,09	0,04

EPO - Munich 5 1 1 März 2000

Figure 2

Figure 3

Figure 4

Seite 1 von 1

Figure 5

DRAW

Figure 6

MW WT YF YW GA YS YN YH

114—97—66—45—-

Figure 7

	ε	a a	8		G (Y)	KΕ	Ε	LWE	consensus
aggregans interatis v furnicolans spec. 9N7 gergonarius spec. NCO abysii furnosus nonkosnii Mannaschii				G Y A G G Y A G G Y A G G Y A G G Y A G G Y E G G Y E G	G Y!Y G Y!Y G Y!Y G Y!Y G Y!Y G Y!Y	XXXXXXXX mmmmmmmm			Euryamnaea
3 sonataricus 3 acidecalearius 3 islandicum 4 cernix 5 chwakuenss	ΞK.	. L : K	GK	BIAIKIB KIAISIB KIAISIB KIAIKIB KIAIKIB	A VIV A VIV A LIV A IV				Cranarchaea

Figure 2

ĒP00105155.6

Figure 9/1

```
: :
  ATO ATA TIT GAG ACT GAG TAG ATA AGA AAG GAG GGT AAA GGG ATA ATT GGA ATT TIT AAG
  Med the one asp our asp oyr the our hys asp giv hys pro the the arg the goe hys
  . 21
  ANA DAD AND DOD DAN TITT ANA ATH DAN SITT DAT CON CAT TITT DAD COS THE ATT THE DOT
  lis giù ash guy glu phe lys ile glu leu asp pro his phe gin pro two ile two ala
  TIT OTO ARA GAT GAC TOO GOT ATT GAT BAR ATA ARA GOD ATA ARA GOD GAG AGA CAC GOA
  law sew sys asp asp ser ala sie asp gil sie sys asa sie sys giy giw arg mis giy
  AND THE ADA DEC BYT THE ANA DAG STE AND STE AND BY STE ADA DEC BY STE STE THE
  is the rathary wall wall asphala wall its valities live live phe law guy and aspival
  1-1 3-
  SAU OTO TOS AAU CTT ATA TTT GAG CAT COS SAA GAG STS COS GCG CTA AGG GGG AAG ATA
  gil val tro lys leu ile one glu his pro gin asp val pro ala leu arg gly lys ile
 :::':::
  ACO CAA CAT CON COT CTC ATT DAC ATT THE CAG THE CAC ATA COC TIT GOD AAG COC THC
 and gir his pro ala valuate aspute our gir our aspute pro one atallys and byn
 OTO ATA CAC AAD GOO TTO ATO COT ATO GAG GAG GAG GAG GAG GTT AAD CTA ATO GOO TTO
 le aso ina gly lew the gro med glu gly asp glu glu lew lys lew med ala pne الرداء،
 CAC ATT CAG ACC TIT TAC CAC GAG GGA GAC GAG TIT GGG AAG GGC GAG ATA ATA ATG ATA
 aso the gut one one over his glu guy asp glu one gly lys gly glu the the med the
 431, 151
 AGO TAO DOO DAY GAG GAA GAG GCA AGG GTA ATY AGA TOO AAG AAY ATY GAY CYY DOO TAO
 ser by ala asp 944 914 914 ala arg wal tile our bro lys asm tile asp led pro by-
 STT CAT STT STA TOO AAC GAA AGG GAG ATS ATA AAG CSS TTT STG CAA ATT STG AGG GAA
 val asp val val ser asm glu arg glu men tile lys arg one val gim tile val arg glu
 ANA GAC COG GAT GTG GTG ATA ACT TAC AAT GGA GAC AAC TIT GAT TTG COG TAC CTT ATA
 Lys asploto asplyal leu tie thrityt ash gly asplash one asplieu pro tyt leu tie
 WAR AGE ICA GAG AAG TTA GGA GTT ACT STT STG TTG GGG AGG GAG AAA GAA GAE GGS BAG
 is any ala-gid lws leu-gly wal our leu leu leu-giy any asp lys-giu his pro-giu
DID AND ATT CAC AGA ATG GGC GAT AGG TITT GGC GTG GAA ATT AAA GGC AGA ATT CAC TITT
pro lys tie his any met gly asp ser phe ala val gil tie lys gly ang tie his one
CAT CTC TTC CCG GTT GTG CGG AGA ACC ATA AAC CTC CCA ACA TAC ACG CTT GAG GCA GTT
asp let pne pro val val arg arg thrile ash let pro thrityr thrilet glz als val
TAT GAA GCC GTC TTG GGA AAA ACC AAA AGC AAG CTC GGT GCG GAG GAA ATC GCC GCC ATC
over gil ala wal less gly lys one lys ser lys less gly ala gly gly lie ala ala lie
TIS SAA RIA GAG CAG AGC ATS AAG AAG CTS GCC CAG TAC TOS ATS GAA GAT GCT AGG GCA
try glu thr glu glu ser med lys lys leu ala gin tyr ser met glu asp ala ary ala
FOR THE SHA CTC GOA AAA GAG TIT TITC CCC ATG GAG CCA GAG CTA GCA AAG CTA ATA GGC
ttr for gil law gly lys glu pre pre pro med glu ala glu lau ala lys law ile gly
.:::. 3-.
THE AGO OFF TOO DAG OFF TOA AGE AGO AGO AGO OFF STA GAG TOO THE STE
gun ser mau trg asp wal ser arg ser ser thr gly ash leu wal glu trg two leu leu
```

9/11

EP00105155.6

Figure 9/2

1381/36.

AGG GTG SCA TAT GAG AGG AAT GAG CTC GCT CCS AAC AAG CCS GAT GAA GAA GAG TAC AGA arg val ala tyr glu arg asn glu leu ala pro asn lys pro asp glu glu gru tyr arg 1141/331

AGG CGT TTA AGG ACT ACT TAC CTS GGA GGA TAC STA AAA GAG CCS GAA AGA GGC TTA TGG arg arg leu arg thr thr tyr leu gly gly tyr val lys glu pro glu arg gly leu srp 1201/40.

CAG AAC ATC ACC TAT TTA GAC TTT AGG TGC CTA TAC CCC TCA ATT ATA GTT ACC CAC AAC glu asn lie thr tyr leu asp pne arg dys leu tyr pro ser lle ile val thr his asn 1281/401

ITO TOO COT GAC ACT TTA GAA AGA GAA GGC TGC AAG AAT TAO CAT GTT GGC CCC ATA GTA value or oro ago con leu giu ang glu gly dyo lus aan our dap valuala pro ile val

COT TAX SAU THE TOO AAU DAY THY COO GOT THE SET CON TOY ATA CHO GOS CAN THA AND GLY CUY LUS pine CUY LUS asp pine pro gry pine the pro ser the lew gry glu lew the

1331/45. ACA ATO AGO CAA GAA ATA AAG AAG AAG ATO RAA GOT ACA ATT GAC COA ATA GAA AAG AAA Enr met arg gin giu 11e lys lys lys met lys ala enr 11e asp pro 11e gil lys lys

1441/431 4TO CTT DAT TAT AGG CAA AGA GCT GTT AAA TTG DAD DCA AAC AGG TAT TAG DGT TAT ATG Teb leu asc bir arg gin arg ala wal lys leu bis ala asb ser byr byr gly byr meb

LEDE TAT DOD AND DOD AND TOO TAC TOO AND DAN TOT DOD DAN AGO OFT AGO DOD TOO DON

gry byr pro rys ala arg bry byr ser lys gru bys ala gru ser val thr ala bry gly.

AGG CAC TAG ATA GAA ATG ACC ATA AAA GAG ATA GAG GAG AAA TIT GGA TIT AAG GTG CTA ang his byn ile glu med thr ile lys glu ile glu glu lys gne gly gne lys val leu

1521/541
TAT GCC GAC ACT GAT GGT TTT TAC GCC ACA ATA CCG GGA GAA AAA CCT GAA ACA ATC AAA
Syr ala asp thr asp gly phe tyr ala thr ile pro gly glu lys pro glu thr ile lys

1531/551 AND ANA GCT AND GAN TTO TTN ANN THO ATH AND TOO MAN CTT CCC GGT CTG CTC GAG CTT

lys lys ala lys glu pne leu lys tyr ile ash ser lys leu pro gly leu lei glu leu

GAG TAT GAG GGC TIT TAC TITS AGA GGA TIT TITC GTC CCA AAG AAG CGC TAT CCC GTT ATA gui dyr gui gly pne dyr leu arg gly pne pne val ala lys lys arg dyr ala val lle

1301/501 SAC SAA SAA GST AGG ATA ACG ACA AGG GGT CTG GAA GTT CTA AGG AGG GAC TOS AGC GAA asp giu gil gily arg lie onr onr arg gily leu gil val val arg arg asp orp ser giu

1951/521 ATA GCC AAA GAG ACC CAG GCT AAA GTC TTG GAG GCA ATA CTT AAA GAA GAT ACT STC GAA

the ala lys glu the gln ala lys val leu glu ala the leu lys glu asp ser val glu

ANA GCT STO GAA ATC GTT AAG GAC GTT GTT GAG GAG ATA GCA AAA TAG GAA GTT GGG GTT lys ala val glu ile val lys asp val val glu glu ile ala lys gyr gin val gro leu

1981/661 GAA AAG CTT GTT ATC CAG GAG CAG ATT ACC AAG GAT CTA AGT GAA TAC AAA GCC ATT GGG gli lys leu val ile nis glu gin lie onr lys asp leu ser glu byr lys ala ile gly

TOWNSEL COT CAT COA ATA GOA AAG AGG COT COT GOA AAG SOA ATA AAA GOG AGA COO GGG AGG

out dat one dea and dea and add ent cen see and see and and des add ent ode act on pro his valuate and lie and lies are less and and by gly the lys wall are pro gly the

ATA ATA AUD TAT ATC OTC CTC AGG GGA AGC GGA AAG ATA AGT GAC AGG GTA ATT TTG CTT lie lie ser tyr lie wal leu arg gly ser gly lys lie ser asp arg wal lie leu leu

ÉP00105155.6

DRAW

Figure 9/3

TIGHT TOTAT GAT CCG AAA AAA CAC AAG TAC GAC CCC GAC TAC TAC ATA GAA AAC CAA GTT ser gil tir asp pro lys lys his livs tyr asp pro asp tyr live gil ash gin val color tac got one ctt agg atd ctt gaa gcc tto ggc tac aga was gad gad tta waa tac leu pro ala val leu arg lie leu gil ala pne gil tir arg lys gil asb leu lys tyr caa agg tota aaa cag gil color ctt gaa got tir agg and abo leu lys tyr caa agg tota aaa cag gil color ctt gaa agg tota aab tog gil asb leu lys tyr gar ser ser lyg gin val gil leu asp ala tro leu lys bys axis

THIS PAGE BLANK (USPTO)