

IE6600-Workshop

Visualizing with PCA

Zhenyuan Lu

1. Curse of dimensionality

True vs. Observed Dimensionality

What is the dimensionality of this dataset?

ID	Observed Value (x_1) - Height (cm)	Predictive Value (y) – Weight (kg)
1	170	65
2	187	80
3	175	75
4	160	45
5	159	56

True vs. Observed Dimensionality

What is the dimensionality of this dataset?

ID	Observed Value (x_1) - Height (cm)	Predictive Value (y) – Weight (kg)
1	170	65
2	187	80
3	175	75
4	160	45
5	159	56

Observed Dimensionality: 6

Features observed over time:

x₂: # of your waist (cm)

x₃: # of exams you have today

x₄: # of jokes you heard today

x₅: # of days left until summer

True vs. Observed Dimensionality

True Dimensionality: 3

ID	Observed Value (x ₁) - Height (cm)	Observed value (x_2) - Waist (cm)	Predictive Value (y) – Weight (kg)
1	170	67	65
2	187	86	80
3	175	76	75
4	160	59	45
5	159	66	56

Curse of Dimensionality

1x400

Example:

True Dimensionality

- 20x20 bitmap: {0, 1}⁴⁰⁰ potential events
- The handwritten number **THREE** may be only 2⁴⁰ events

Curse of Dimensionality

1x400

Example:

- 20x20 bitmap: {0, 1}⁴⁰⁰ potential events
- Randomly sampling 2400 events

Curse of Dimensionality

Data mining/Machine learning methods are statistical

- Use numbers to build up the predictor f(x)
- Use categorical variables to classify: {0, 1}

Dimensionality (d) increases, and fewer observations (n) per region In the case of d>>n

- 1d: 3 regions
- 2d: 3² regions
- 100d well...

IE6600 Visualization and Computation for Analytics, NEU | ©2021 Zhenyuan Lu

2.Methods of dealing with high dimensionality

Methods Dealing with high dimensionality

Use domain knowledge

- Feature engineering
- e.g. Testosterone -> Muscle building

Assumption on dimensions

- Independence: count along each dimension, e.g. Naïve bayes. When counting the frequency of x₁ ignore the x₂
- Smoothness: nearby region should have similar distribution of classes
- Symmetry: e.g. invariance to order of the dimensions: order doesn't matter

Reduce the dimensionality

Create a new set of variables

Dimensionality Reduction

Feature selection

- Select a subset of the original dimension:

$$x_1, x_2, x_3, x_4, x_5$$

- Discriminative: Select class as predictor

Feature extraction

- Construct a new set of dimensions:

$$E_i = f(x_1, x_2, x_3, x_4 x_5)$$

- e.g. Linear combination of original dimensions: PCA

3. Principal components analysis (PCA)

One of the most beautiful ALGORITHMs

Principal Components Analysis (PCA)

The goal of PCA is to find a new set of dimensions (attributes) that better captures the variability of the data.

Some Math

Standard Basis Vector

d-dimensional Cartesian coordinate space is specified via the d unit vectors, called the standard basis vectors, along each of the axes. The j-th standard basis vector e_j is the d-dimensional unit vector whose j-th component is 1 and the rest of the components are 0

$$e_j = \left(0, 1_j, \dots, 0\right)^T$$

Any other vector in \mathbb{R}^d can be written as linear combination of the standard basis vectors. For example, each of the points xi can be written as the linear combination

$$x_i = x_{i1}e_1 + x_{i2}e_2 + \dots + x_{id}e_d = \sum_{j=1}^{d} x_{ij}e_j$$

where the scalar value x_{ij} is the coordinate value along the j-th axis or attribute

Standard Basis Vector

For example:

Consider the Iris data

$$x_1 = (5.9, 3.0, 4.2)$$

	sepal length X_1	$\begin{array}{c} \mathbf{sepal} \\ \mathbf{width} \\ X_2 \end{array}$	$egin{array}{c} \mathbf{petal} \ \mathbf{length} \ X_2 \end{array}$	$\begin{array}{c} \mathbf{petal} \\ \mathbf{width} \\ X_4 \end{array}$	class X_5
\mathbf{x}_1	5.9	3.0	4.2	1.5	Iris-versicolor
X 2	6.9	3.1	4.9	1.5	Iris-versicolor
\mathbf{x}_3	6.6	2.9	4.6	1.3	Iris-versicolor
\mathbf{x}_4	4.6	3.2	1.4	0.2	Iris-setosa
\mathbf{x}_5	6.0	2.2	4.0	1.0	Iris-versicolor
\mathbf{x}_6	4.7	3.2	1.3	0.2	Iris-setosa
\mathbf{x}_7	6.5	3.0	5.8	2.2	Iris-virginica
\mathbf{x}_8	5.8	2.7	5.1	1.9	Iris-virginica
1	:	÷	:	÷	:
x_{149}	7.7	3.8	6.7	2.2	Iris-virginica
$\sqrt{\mathbf{x}_{150}}$	5.1	3.4	1.5	0.2	Iris-setosa

$$x_1 = 5.9e_1 + 3.0e_2 + 4.2e_3 = 5.9 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 3.0 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4.2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5.9 \\ 3.0 \\ 4.2 \end{pmatrix}$$

Geometric View

For example:

$$x_1 = (5.9, 3.0)$$
$$x_1 \in \mathbb{R}^2$$

Let the data **D** consist of n points over d attributes, i.e., it is an $n \times d$ matrix, given as

$$\mathbf{D} = \begin{pmatrix} & X_1 & X_2 & \cdots & X_d \\ \mathbf{x}_1 & x_{11} & x_{12} & \cdots & x_{1d} \\ \mathbf{x}_2 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

Each point $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})^T$ is a vector in the ambient d-dimensional vector space spanned by the d standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d$, where \mathbf{e}_i corresponds to the i-th attribute X_i . Recall that the standard basis is an orthonormal basis for the data space, i.e., the basis vectors are pair-wise orthogonal, $\mathbf{e}_i^T \mathbf{e}_j = 0$, and have unit length $\|\mathbf{e}_i\| = 1$.

As such, given any other set of d orthonormal vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_d$, with $\mathbf{u}_i^T \mathbf{u}_j = 0$ and $\|\mathbf{u}_i\| = 1$ (or $\mathbf{u}_i^T \mathbf{u}_i = 1$), we can re-express each point \mathbf{x} as the linear combination

$$x = a_1 u_1 + a_2 u_2 + \dots + a_d u_d$$

where the vector $\mathbf{a} = (a_1, a_2, \dots, a_d)^T$ represents the coordinates of \mathbf{x} in the new basis. The above linear combination can also be expressed as a matrix multiplication

$$x = Ua$$

where **U** is the $d \times d$ matrix, whose *i*-th column comprises the *i*-th basis vector \mathbf{u}_i

$$U = \begin{pmatrix} | & | & | \\ u_1 u_2 \cdots u_d \\ | & | & | \end{pmatrix}$$

The matrix **U** is an *orthogonal* matrix, whose columns, the basis vectors, are *orthonormal*, i.e., they are pairwise orthogonal and have unit length

$$\mathbf{u}_i^T \mathbf{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Since U is orthogonal, this means that its inverse equals its transpose

$$\mathbf{U}^{-1} = \mathbf{U}^T$$

which implies that $\mathbf{U}^T\mathbf{U} = \mathbf{I}$, where \mathbf{I} is the $d \times d$ identity matrix.

$$x = Ua$$

$$U^{T}x = U^{T}Ua$$

$$a = U^{T}x$$

For example:

Mohammed J. Zaki, Wagner Meira, Jr., 2014

x = Ua $a = U^T x$

For example:

$$u_1 = \begin{pmatrix} -0.390 \\ 0.089 \\ -0.916 \end{pmatrix} \quad u_2 = \begin{pmatrix} -0.639 \\ -0.742 \\ 0.200 \end{pmatrix} \quad u_3 = \begin{pmatrix} -0.663 \\ 0.664 \\ 0.346 \end{pmatrix}$$

The new coordinates of the centered point

$$x = (-0.343, -0.754, 0.241)^T$$
 can be computed as:

$$a = U^{T}x = \begin{pmatrix} -0.390 & 0.089 & -0.916 \\ -0.639 & -0.742 & 0.200 \\ -0.663 & 0.664 & 0.346 \end{pmatrix} \begin{pmatrix} -0.390 \\ 0.089 \\ -0.916 \end{pmatrix} = \begin{pmatrix} -0.154 \\ 0.828 \\ -0.190 \end{pmatrix}$$

x can be written as the linear combination

$$x = -0.154u_1 + 0.828u_2 - 0.190u_3$$

PCA

- 1. Find the first dimension to capture as much of the variability as possible
- 2. The second dimension is orthogonal to the first, and subject to that constraint, captures as much of the remaining variability.
- 3. And so on...until the dth dimension.

PCA Why find greatest variability?

Example:

We have a 2 dimensional data here to project all the data points to 1 dimension axis u_1 , u_2 : $\{x_1, x_2\} \rightarrow u_1$, u_2

The data points in u_1 -space are more expanded (greater variability) than in u_2 -space.

- 1. Points are close in u_2 -space but far in (x_1, x_2) -space which is not so ideal to represent the original dataset
- 2. The overall distances in u_1 -space, with the highest variability, can represent the original distribution and variability

PCA Find mean and center the data

1. Center the data at zero: $Z = D - 1 \cdot \mu^T$

$$\mathbf{Z} = \mathbf{D} - \mathbf{1} \cdot \boldsymbol{\mu}^T = \begin{pmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix} - \begin{pmatrix} \boldsymbol{\mu}^T \\ \boldsymbol{\mu}^T \\ \vdots \\ \boldsymbol{\mu}^T \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1^T - \boldsymbol{\mu}^T \\ \mathbf{x}_2^T - \boldsymbol{\mu}^T \\ \vdots \\ \mathbf{x}_n^T - \boldsymbol{\mu}^T \end{pmatrix} = \begin{pmatrix} \mathbf{z}_1^T \\ \mathbf{z}_2^T \\ \vdots \\ \mathbf{z}_n^T \end{pmatrix}$$

Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press

Direction

- Center the data at zero: $Z = D 1 \cdot \mu^T$
- 2. Covariance matrix $\sum = \frac{1}{n}(Z^TZ)$
 - covariance of x_1, x_2 :
 - x_1, x_2 increase or decrease together or when one decreases the other one increases

Example

$$cov(x_i, x_j) = \frac{(x_i - \mu_i)^T (x_j - \mu_j)}{n}$$
, After data centered: $\mu = 0$, $cov(x_i, x_j) = \frac{x_i^T x_j}{n}$

Say we have two sets of attributes
$$\sigma_1^2 = 2$$
, $\sigma_2^2 = 0.6$ $\times_2^{x_1}$ $\times_2^{x_2}$ $\times_2^{x_1}$ $\times_2^{x_2}$ $\times_2^{x_2}$ $\times_2^{x_2}$ $\times_$

3. Multiply a vector $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ by $\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix}$:

a.
$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1.2 \\ -0.2 \end{pmatrix}$$
 b. $\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} -1.2 \\ -0.2 \end{pmatrix} = \begin{pmatrix} -2.6 \\ -1.0 \end{pmatrix}$

c.
$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} -2.6 \\ -1.0 \end{pmatrix} = \begin{pmatrix} -6.0 \\ -2.7 \end{pmatrix} \rightarrow \begin{pmatrix} -14.1 \\ -6.4 \end{pmatrix} \rightarrow \begin{pmatrix} -33.3 \\ -15.1 \end{pmatrix}$$

Slope: 0.45 0.454 0.454

Towards the greatest variance direction

PCA Direction

- 4. Look for a vector always keep in the same direction: $\sum u = \lambda u$
 - u: eigenvectors
 - Σ : covariance matrix
 - λ : scalar variable
 - Principal components = eigenvectors with largest eigenvalues

Towards the greatest variance direction

PCA Find eigenvalues, eigenvector, and PCs

1. Find eigenvalues by solving : $\sum u = \lambda u \rightarrow |\sum -\lambda I| = 0$. (*NOTE*: *Determinant of matrix A*: |A|)

$$-\begin{vmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{vmatrix} = (2 - \lambda)(0.6 - \lambda) - 0.8 * 0.8 = \lambda^2 - 2.6\lambda + 0.56 = 0$$

-
$$\{\lambda_1, \lambda_2\} = \frac{1}{2} (2.6 \pm \sqrt{2.6^2 - 4 * 0.56}) = \{2.36, 0.23\}$$

2. Find i^{th} eigenvector by solving: $\sum u_i = \lambda_i u_i$

$$- \begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{12} \end{pmatrix} = 2.36 \begin{pmatrix} u_{11} \\ u_{12} \end{pmatrix}$$

$$\Rightarrow \frac{2u_{11} + 0.8u_{12} = 2.36u_{11}}{0.8u_{11} + 0.6u_{12} = 2.36u_{12}} \Rightarrow u_{11} = 2.2u_{12} \Rightarrow u_1 \sim {2.2 \choose 1},$$

$$\rightarrow$$
 make $||u_1|| = 1$, $u_1 \frac{1}{\sqrt{2.2^2 + 1}}$, then $u_1 = {0.91 \choose 0.41}$, slope = 0.454

$$- \begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} u_{21} \\ u_{22} \end{pmatrix} = 0.23 \begin{pmatrix} u_{21} \\ u_{22} \end{pmatrix} \Rightarrow then \ u_2 = \begin{pmatrix} -0.41 \\ 0.91 \end{pmatrix}$$

3.
$$1^{st}$$
 $PC: \binom{0.91}{0.41}$, 2^{nd} $PC: \binom{-0.41}{0.91}$

PCA Fraction of total variance, and choose dimensionality

Often we may not know how many dimensions, r, to use for a good approximation. One criteria for choosing r is to compute the fraction of the total variance captured by the first r principal components, computed as

$$f(r) = \frac{\lambda_1 + \lambda_2 + \dots + \lambda_r}{\lambda_1 + \lambda_2 + \dots + \lambda_d} = \frac{\sum_{i=1}^r \lambda_i}{\sum_{i=1}^d \lambda_i} = \frac{\sum_{i=1}^r \lambda_i}{var(D)}$$

Given a certain desired variance threshold, say α , starting from the first principal component, we keep on adding additional components, and stop at the smallest value r, for which $f(r) \ge \alpha$ (α can be 0.9, 0.95 as purposes).

In practice, α is usually set to 0.9 or higher, so that the reduced dataset captures at least 90% of the total variance.

PCA (D, α):

- 1 $\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ // compute mean
- 2 $\mathbf{Z} = \mathbf{D} \mathbf{1} \cdot \boldsymbol{\mu}^T$ // center the data
- $\mathbf{3} \ \mathbf{\Sigma} = \frac{1}{n} \left(\mathbf{Z}^T \mathbf{Z} \right) / /$ compute covariance matrix
- 4 $(\lambda_1, \lambda_2, \dots, \lambda_d) = eigenvalues(\Sigma)$ // compute eigenvalues
- 5 $\mathbf{U} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_d) = \mathrm{eigenvectors}(\mathbf{\Sigma}) \ / / \ \mathtt{compute} \ \mathtt{eigenvectors}$
- $_{\mathbf{6}}$ $f(r) = \frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$, for all $r = 1, 2, \cdots, d$ // fraction of total variance
- 7 Choose smallest r so that $f(r) \ge \alpha$ // choose dimensionality
- $\mathbf{8} \ \mathbf{U}_r = egin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \end{pmatrix} / / \ ext{reduced basis}$
- 9 $\mathbf{A} = \{\hat{\mathbf{a}}_i \mid \mathbf{a}_i = \mathbf{U}_r^T \mathbf{x}_i, \text{ for } i = 1, \cdots, n\}$ // reduced dimensionality data

PCA

e.

Novembre, John et al. "Genes mirror geography within Europe." Nature vol. 456,7218 (2008): 98-101. doi:10.1038/nature07331

$$\sum = \begin{pmatrix} 0.681 & -0.039 & 1.265 \\ -0.039 & 0.187 & -0.320 \\ 1.265 & -0.32 & 3.092 \end{pmatrix}$$

Question

$$\lambda_1 = 3.662$$

$$\lambda_1 = 3.662$$
 $\lambda_2 = 0.239$ $\lambda_3 = 0.059$

$$\lambda_3 = 0.059$$

$$u_1 = \begin{pmatrix} -0.39\\ 0.089\\ -0.916 \end{pmatrix}$$

$$u_2 = \begin{pmatrix} -0.639 \\ -0.742 \\ 0.200 \end{pmatrix}$$

$$u_1 = \begin{pmatrix} -0.39 \\ 0.089 \\ -0.916 \end{pmatrix} \qquad u_2 = \begin{pmatrix} -0.639 \\ -0.742 \\ 0.200 \end{pmatrix} \qquad u_3 = \begin{pmatrix} -0.663 \\ 0.664 \\ 0.346 \end{pmatrix}$$

What is the total variance? What is the fraction of total variance for each PC? If let $\alpha = 0.95$ how many PCs we need to keep?

4.PCA Implementation in R

```
PCA (\mathbf{D}, \alpha):

1 \mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} // compute mean

2 \mathbf{Z} = \mathbf{D} - \mathbf{1} \cdot \mu^{T} // center the data

3 \mathbf{\Sigma} = \frac{1}{n} \left( \mathbf{Z}^{T} \mathbf{Z} \right) // compute covariance matrix

4 (\lambda_{1}, \lambda_{2}, \cdots, \lambda_{d}) = \text{eigenvalues}(\mathbf{\Sigma}) // compute eigenvalues

5 \mathbf{U} = \left( \mathbf{u}_{1} \quad \mathbf{u}_{2} \quad \cdots \quad \mathbf{u}_{d} \right) = \text{eigenvectors}(\mathbf{\Sigma}) // compute eigenvectors

6 f(r) = \frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}, for all r = 1, 2, \cdots, d // fraction of total variance

7 Choose smallest r so that f(r) \geq \alpha // choose dimensionality

8 \mathbf{U}_{r} = \left( \mathbf{u}_{1} \quad \mathbf{u}_{2} \quad \cdots \quad \mathbf{u}_{r} \right) // reduced basis

9 \mathbf{A} = \left\{ \mathbf{a}_{i} \mid \mathbf{a}_{i} = \mathbf{U}_{r}^{T} \mathbf{x}_{i}, for i = 1, \cdots, n \right\} // reduced dimensionality data
```

```
# Fraction of the total variance
    fr <- ie/sum(ie)
     # Choose number of dimensionality
     threshold <- function(x, th) {
       sum <- 0
       seq <- 0
       for (i in 1:length(x)) {
         sum <- sum + x[i]
         if (sum >= th) {
           seq <- i
 9
           break
10
11
12
       return (seq)
13
14
15
16
     threshold(x=fr, 0.95)
```

$\overline{\mathbf{PCA}}$ (\mathbf{D}, α) :

- 1 $\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ // compute mean
- $\mathbf{Z} = \mathbf{D} \mathbf{1} \cdot \boldsymbol{\mu}^T$ // center the data
- $\mathbf{3} \ \mathbf{\Sigma} = rac{1}{n} \left(\mathbf{Z}^T \mathbf{Z}
 ight) \ extstyle / ext{compute covariance matrix}$
- 4 $(\lambda_1, \lambda_2, \cdots, \lambda_d) = \text{eigenvalues}(\Sigma)$ // compute eigenvalues
- 5 $\mathbf{U} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_d) = \mathrm{eigenvectors}(\mathbf{\Sigma}) \ / / \ \mathtt{compute} \ \mathtt{eigenvectors}$
- $_{\mathbf{6}}$ $f(r) = \frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$, for all $r = 1, 2, \cdots, d$ // fraction of total variance
- 7 Choose smallest r so that $f(r) \geq \alpha$ // choose dimensionality
- 8 $\mathbf{U}_r = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r) \ // \ \mathsf{reduced} \ \mathsf{basis}$
- 9 $\mathbf{A} = {\{\mathbf{a}_i \mid \mathbf{a}_i = \mathbf{U}_r^T \mathbf{x}_i, \text{ for } i = 1, \cdots, n\}}$ // reduced dimensionality data

- biPCA <- prcomp(iris[1:4], scale = TRUE)</pre>
- biPCA\$sdev^2/sum(biPCA\$sdev^2)
- 3 biPCA\$rotation

```
barplot(
       fr,
       ylim = c(0, 1),
       col = "sandybrown",
      xlab = "Principal Component",
       ylab = "Explained Variances",
       axes = TRUE
     axis(1, c(0.7, 1.9, 3.1, 4.3),
 9
          labels = sprintf("PC%d", 1:4))
10
     lines(cumsum(fr), type = 's', col = "darkgreen")
     legend(
13
      x = 2.5
      v = 0.5
       legend = c("Explained Variance", "Cumulative
     Explained Variance"),
16
17
      pch = c(15, 15),
       col = c("sandybrown", "darkgreen"),
19
       btv = 'n'
```


PCA (D, α):

- 1 $\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ // compute mean
- $\mathbf{Z} \cdot \mathbf{Z} = \mathbf{D} \mathbf{1} \cdot \boldsymbol{\mu}^T$ // center the data
- 3 $\mathbf{\Sigma} = rac{1}{n} \left(\mathbf{Z}^T \mathbf{Z}
 ight)$ // compute covariance matrix
- 4 $(\lambda_1, \lambda_2, \cdots, \lambda_d) = \text{eigenvalues}(\Sigma)$ // compute eigenvalues
- 5 $\mathbf{U} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_d) = \mathrm{eigenvectors}(\mathbf{\Sigma}) \ / / \ \mathtt{compute} \ \mathtt{eigenvectors}$
- $_{\mathbf{6}}$ $f(r) = \frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$, for all $r = 1, 2, \cdots, d$ // fraction of total variance
- 7 Choose smallest r so that $f(r) \geq \alpha$ // choose dimensionality
- 8 $\mathbf{U}_r = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r) \ // \ \mathsf{reduced} \ \mathsf{basis}$
- 9 $\mathbf{A} = {\{\mathbf{a}_i \mid \mathbf{a}_i = \mathbf{U}_r^T \mathbf{x}_i, \text{ for } i = 1, \cdots, n\}}$ // reduced dimensionality data

Exercise:

- 1. Try three datasets: mpg, BostonHousing (mlbench), BreastCancer (mlbench) on two scale methods: a) mean=0, b)mean=0, variance=1.
- 2. Compare to the built-in PCA function prcomp()

PCA VS Linear Discriminant Analysis

© Ricardo Gutierrez-Osuna

5.PCA: Pros and Cons

PCA Pros and Cons

Pros

- 1. Good performance on processing speed
- 2. Reflects intuition on the data
- 3. Efficient reduction in size of data

Cons

- 1. Doesn't consider class separability since it doesn't take into account the class labels
- 2. PCA simply performs a coordinate rotation that aligns the transformed axes with the directions of maximum variance
- 3. There is no guarantee that the directions of maximum variance will contain good features for discrimination
 - PCA cannot recognize the class lables

Resources

Resource

Textbook:

Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl Jr., Data Mining for Business Analytics: Concepts, Techniques, and Applications in R (DMBA), Wiley, 1st Edition, ISBN-10: 1118879368, ISBN-13: 978-1118879368.

Additional Textbooks:

R For Data Science (open license, R4DS), Wickham, Hadley, and Garrett Grolemund

R Markdown (open license, RMD), Xie, Yihui, et al.

James, Gareth, et al. An Introduction to Statistical Learning: with Applications in R. Springer, 2017. (open license, ISL)

Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, May 2014. ISBN: 9780521766333.

David Hand, Heikki Mannila, Padhraic Smyth. Principles of Data Mining, The MIT Press, 2001, ISBN-10: 026208290X, ISBN-13: 978-0262082907.

Tan, Pang-Ning, et al. Introduction to Data Mining (DM). Pearson Education, 2006.

Materials

@Victor Lavrenko