### Praktikum Kecerdasan Buatan

Fitri Nuraeni, M.Kom

PS Teknik Informatika (S1) - Jurusan Ilmu Komputer

Institut Teknologi Garut

2024



# Mempraktekan Konsep *Searching* pada Kecerdasan Buatan

Tahapan Pembelajaran Minggu ke-2

### Capaian Pembelajaran

Mahasiswa mampu mempraktekan kinerja berbagai algoritma searching baik blind search maupun heuristic search (L2: C3, A2, P1)

- [2.1] Ketepatan mempraktekan kinerja algoritma blind search
- [2.2] Ketepatan mempraktekan kinerja algoritma *heuristic* search

# Soal 1

### **Illustrasi Kasus Soal 1**

Anda diberikan dua buah jerigen tanpa skala ukuran, yang satu (A) berkapasitas maksimum 4 galon dan lainnya (B) berkapasitas maksimum 3 galon. Terdapat sebuah kran yang dapat mengalirkan air dengan jumlah tidak terbatas untuk mengisi jerigen tersebut.

Bagaimana langkah anda untuk
mendapatkan tepat 2 galon air didalam
jerigen berkapasitas 3 galon (B)?



# Ruang Masalah, Initial State dan Goal State

Ruang masalah jerigen air dapat digambarkan dengan himpunan pasangan bilangan bulat (x, y) yang terurut sedemikian sehingga x = 0, 1, 2, 3, atau 4 dan y = 0, 1, 2, atau 3.

Keadaan awal (initial state) dimana kedua jerigen masih kosong dinyatakan (x,y) = (0,0).

Keadaan yang diinginkan (goal state), dimana terdapat 2 galon air pada jerigen B (tidak peduli berapa galon air yang ada pada jerigen A), dinyatakan (x,y) = (n, 2).

## Aturan Produksi Kasus Jerigen

| Aturan<br>Produksi | State Awal                              | State Akhir    | Operasi                                                        |
|--------------------|-----------------------------------------|----------------|----------------------------------------------------------------|
| 1                  | (x, y); if x < 4                        | (4, y)         | <b>Isi penuh</b> jerigen A                                     |
| 2                  | (x, y); if y < 3)                       | (x, 3)         | <b>Isi penuh</b> jerigen B                                     |
| 3                  | (x, y); if x > 0                        | (0, y)         | <b>Kosongkan</b> jerigen A                                     |
| 4                  | (x, y); if y > 0                        | (x, 0)         | <b>Kosongkan</b> jerigen B                                     |
| 5                  | (x, y); if $x + y \ge 4$ and $y > 0$    | (4, y - (4-x)) | <b>Tuangkan</b> air dari jerigen B ke A sampai jerigen A penuh |
| 6                  | $(x, y)$ ; if $x + y \ge 3$ and $x > 0$ | (x - (3-y), 3) | <b>Tuangkan</b> air dari jerigen A ke B sampai jerigen B penuh |
| 7                  | $(x, y)$ ; if $x + y \le 4$ and $y > 0$ | (x+y, 0)       | Tuangkan seluruh air jerigen B ke A                            |
| 8                  | $(x, y)$ ; if $x + y \le 3$ and $x > 0$ | (0, y+x)       | Tuangkan seluruh air jerigen A ke B                            |

## Ruang Masalah dalam Bentuk Pohon



### Intruksi soal 1

- 1. Pilihlah 2 algoritma *blind searching* yang dapat menyelesaikan kasus jerigen ini.
- 2. Carilah code program untuk setiap algoritma yang sudah dipilih pada no 1 diatas. (dalam bahasa python)
- 3. Gunakan code program diatas untuk menyelesaikan masalah kasus jerigen dengan ruang masalah berupa struktur pohon pada slide sebelumnya.
- 4. Tentukan manakah algortima yang lebih baik hasil no 3, berdasarkan completeness, time & space complexity, serta optimality!

# Soal 2

# Ruang Masalah & Tambahan Informasi



Jarak antar kota di Sumatera Utara (h)

Jarak garis lurus kota **Asahan** 

| Kota Asal   | h(n) |
|-------------|------|
| Balige      | 250  |
| Parapat     | 245  |
| Raya        | 230  |
| Siantar     | 145  |
| Tebing      | 120  |
| Perdagangan | 85   |
| Sipirok     | 78   |
| Tanjung     | 81   |
| Binjai      | 100  |
| Medan       | 88   |
| Kisaran     | 66   |

### Intruksi soal 2

- 1. Pilihlah 2 algoritma heuristic searching yang dapat menyelesaikan pencarian jalur terpendek dari Parapat ke Asahan berdasarkan jarak (h) dan estimasi jarak lurus (h(n)/tambahan informasi).
- 2. Carilah code program untuk setiap algoritma yang sudah dipilih pada no 1 diatas. (dalam bahasa python)
- 3. Gunakan code program diatas untuk menyelesaikan masalah pencarian jalur terpendek dengan ruang masalah berupa struktur *graph* pada slide sebelumnya.
- 4. Tentukan manakah algortima yang lebih baik hasil no 3, berdasarkan completeness, time & space complexity, serta optimality!

#### **Penilaian**

Silakan minta 2 orang (intruktur dan/ atau asdos) untuk menilai hasil pekerjaan anda.

Dokumentasikan pekerjaan anda dalam bentuk PDF lalu submit ke LMS

- Hasil pekerjaan disubmit oleh setiap mahasiswa dengan mencantumkan nama & nim seluruh anggota kelompok
- Tidak disubmit berarti nilai praktikum DIBATALKAN.

Memecahkan masalah pencarian pada model graph dan tree dengan tepat menggunakan algoritma searching

Next