$\tau_d := \{A \mid A \text{ is open in } X\} = \{A \subseteq X \mid \text{for all } x \text{ in } A \text{ there exists an } \epsilon \text{ such that } B_\epsilon(x) \subseteq A\}$

 $A, B, S \in \mathcal{C}$ and $f: A \to B$

$$- \times S = \begin{cases} A \times S & \# A \in \mathcal{C} \\ f \times \operatorname{id}_S : A \times S \to B \times S & \# (a, s) \mapsto (f(a), s) \end{cases}$$

$$A \xrightarrow{f_1} B \xrightarrow{g} C$$

For sets a mapping $g: B \to C$ is said to be *injective* if for $b_1, b_2 \in B$ we have $g(b_1) = g(b_2) \Rightarrow b_1 = b_2$.

Not a good definition because it looks inside the objects. Rather, in category theory we define a more general concept, monomorphism. A morphism $g: B \to C$ is said to be a monomorphism if for all $f_i: A \to B$ we have $gf_1 = gf_2 \Rightarrow f_1 = f_2$.

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\uparrow^{\eta_A} \qquad \qquad \downarrow^{\eta_B}$$

$$G(A) \xrightarrow{G(f)} G(B)$$

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\eta_A \downarrow \qquad \qquad \downarrow \eta_B$$

$$G(A) \xrightarrow{G(f)} G(B)$$

$$G(\bullet\bullet\bullet) \xrightarrow{n = \langle \bigcirc, \bigcirc \rangle} \bigcap_{i=1}^n H_i(\bullet)$$

Figure 1: Happy Halloween!

$$A \Rightarrow \underbrace{\begin{array}{c} f_1 + \dots + f_n \\ A \Rightarrow \\ abc \dots z \end{array}} B \Rightarrow \underbrace{\begin{array}{c} f_1 + \dots + f_n \\ B \Rightarrow \\ abc \dots z \end{array}} D$$

Figure 2: Happy Halloween!

0.6249999121401877

Figure 3: The line U is a linear subspace of \mathbb{R}^2

Figure 4: The Bloch Sphere

Figure 5: Geometric interpretation of $\langle \mathbf{x}, \mathbf{y} \rangle$

Figure 6: Potential Energy of a Simple Harmonic Oscillator

Figure 7: The transformed parallelogram is a rectangle in the uv-plane

Figure 8: Equations of the Sides of the Parallelogram

Figure 9: Parallelogram in the xy-plane

Figure 10: 3D

Figure 11: f(x), ds and the Pythagorean Theorem

Figure 12: Wave Functions

Figure 13: Wave Functions

9^{2}	=	81	\longrightarrow	8 + 1	=	9	
45^{2}	=	2025	\longrightarrow	20 + 25	=	45	
703^2	=	494209	\longrightarrow	494 + 209	=	703	
7777^2	=	60481729	\longrightarrow	6048 + 1729	=	7777	
857143^2	=	734694122449	\longrightarrow	734694 + 122449	=	857143	

Figure 14: A Few Example Kaprekar Numbers

Figure 15: The Triangle Inequality

Figure 16: X, x and y

Figure 17: $B_{\epsilon}(x)$ is an open epsilon ball centered at x with radius ϵ

Figure 18: The Bloch Sphere

Figure 19: f(x), ds and the Pythagorean Theorem

Figure 20: f(x), ds and the Pythagorean Theorem