وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Analog IC Design

Lecture 11 Differential Amplifiers

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \Box Bulk effect: $g_m \to g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$
 $G_m = \frac{i_{out,sc}}{v_{in}}$
 $A_v = G_m R_{out}$
 $A_i = G_m R_{in}$

- Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

11: Differential Amplifiers

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D Vout Vin Vin iout,sc V _X iout,sc	R _D , V _{out} j _{out,sc} V _{in}	V _{in} V _x V _{out} V _{out} iout,sc
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb}) R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Have You Seen a Diff Amp Before?

- An op-amp is simply a high gain differential amplifier
- The gain can be increased by using cascodes and multi-stage amplifiers

09: 5T OTA 10

Single-Ended (SE) vs Differential

- \blacksquare SE: measured with respect to a fixed potential (usually the ground) $v_{out,SE} = V_o \sin \omega t + V_{CM}$
 - Single-ended peak-to-peak swing is 2Vo
- Diff: measured between two nodes that have equal and opposite signal around a common-mode (CM) level

$$v_{out,diff} = v_x - v_y$$

= $(V_o \sin \omega t + V_{CM}) - (-V_o \sin \omega t + V_{CM})$

Differential peak-to-peak swing is 4Vo

Single-Ended (SE) vs Differential

11: Differential Amplifiers [Razavi, 2014] **12**

Why Differential?

$$v_{out,SE} = V_o \sin \omega t + V_{CM} + V_{CMnoise}$$

$$\begin{aligned} v_{out,diff} &= v_{x} - v_{y} \\ &= (V_{o} \sin \omega t + V_{CM} + V_{CMnoise}) - (-V_{o} \sin \omega t + V_{CM} + V_{CMnoise}) \\ &= 2V_{o} \sin \omega t \end{aligned}$$

Why Differential?

$$v_{out,SE} = V_o \sin \omega t + V_{CM} + V_{CMnoise}$$

$$\begin{aligned} v_{out,diff} &= v_x - v_y \\ &= (V_o \sin \omega t + V_{CM} + V_{CMnoise}) - (-V_o \sin \omega t + V_{CM} + V_{CMnoise}) \\ &= 2V_o \sin \omega t \end{aligned}$$

Why Differential?

- ☐ Pros
 - Common-mode (CM) noise rejection
 - Larger maximum signal swing
 - Simpler biasing (no need for bypass or coupling capacitors)
 - Higher linearity (H.W.: Read Section 14.1.2 in Razavi)
- Cons
 - Doubling the area
 - Doubling the power consumption
- ☐ The advantages of differential operation by far outweigh the disadvantages
- Differential operation has become the de facto choice in today's high-performance analog and mixed-signal circuits

Diff Amp with Arbitrary Inputs

 $\frac{V_{\text{in1}} - V_{\text{in2}}}{2} \xrightarrow{+} \xrightarrow{+} \frac{V_{\text{in2}} - V_{\text{in1}}}{2} \xrightarrow{V_{\text{in1}} - V_{\text{in2}}} \frac{V_{\text{in1}} - V_{\text{in2}}}{2} \\
\frac{V_{\text{in1}} + V_{\text{in2}}}{2} \xrightarrow{-} \xrightarrow{+} \frac{V_{\text{in1}} - V_{\text{in2}}}{2} \\
V_{\text{in1}} + V_{\text{in2}} \xrightarrow{V_{\text{in2}}} \frac{V_{\text{in1}} - V_{\text{in2}}}{2} \\
V_{\text{in2}} + V_{\text{in2}} \xrightarrow{V_{\text{in3}}} \frac{V_{\text{in3}} - V_{\text{in3}}}{2} \\
V_{\text{in3}} + V_{\text{in3}} \xrightarrow{V_{\text{in3}}} \frac{V_{\text{in4}} - V_{\text{in4}}}{2} \\
V_{\text{in4}} + V_{\text{in4}} \xrightarrow{V_{\text{in4}}} \frac{V_{\text{in4}} - V_{\text{in4}}}{2} \\
V_{\text{in5}} + V_{\text{in6}} \xrightarrow{V_{\text{in6}}} \frac{V_{\text{in6}} - V_{\text{in6}}}{2} \\
V_{\text{in6}} + V_{\text{in6}} + V_{\text{in6}} \xrightarrow{V_{\text{in6}}} \frac{V_{\text{in6}} - V_{\text{in6}}}}{2} \\
V_{\text{in6}} + V_{\text{in6}} + V_{\text{in6}} \xrightarrow{V_{\text{in6}}} \frac{V_{\text{in6}} - V_{\text{in6}}}}$

11: Differ

(a)

16

(c) (d) [Razavi, 2017]

Separate CM and Diff by Superposition

$$v_{id} = v_{in1} - v_{in2}$$

$$v_{id1} = \frac{v_{id}}{2}$$
 and $v_{id2} = -\frac{v_{id}}{2}$

$$v_{iCM} = \frac{v_{in1} + v_{in2}}{2}$$

"Pseudo" Diff Amp Analysis

- A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
- B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis

$$\square \quad v_{in1} = \frac{v_{id}}{2} \qquad \text{and} \qquad$$

and
$$v_{in2} = -\frac{v_{id}}{2}$$

$$\Box A_{vd} = \frac{v_{od}}{v_{id}} = -g_m R_D = \frac{v_{out1}}{v_{in1}} = \frac{v_{out2}}{v_{in2}} = A_{v,SE}$$

$$\square \quad v_{in1} = v_{iCM} \qquad \qquad \text{and} \qquad v_{in2} = v_{iCM}$$

$$\square v_{oCM} = \frac{v_{out1} + v_{out2}}{2} = -g_m R_D(v_{iCM})$$

$$\Box A_{vCM} = \frac{v_{oCM}}{v_{iCM}} = -g_m R_D = A_{vd} \rightarrow A_{vd} / A_{vCM} = 1$$

- ☐ The output CM level is sensitive to the input CM level
- ☐ CM input is not "completely" rejected

B2. CM Large Signal Analysis

- The transistors are biased by the input CM level
- The OP point is sensitive to the input CM level

11: Differential Amplifiers

21

"True" Diff Amp (Diff Pair) Analysis

- A. Small signal analysis
 - 1. Diff small signal analysis
 - 2. CM small signal analysis
- B. Large signal analysis
 - 1. Diff large signal analysis
 - 2. CM large signal analysis

METHOD #1: Half-Circuit Principle (exploit symmetry)

- METHOD #2: Super-position (H.W.)
- \square For v_{in1} to v_{out1} : CS (M1) degenerated by M2
- \square For v_{in1} to v_{out2} : CD (M1) + CG (M2)
- lacksquare Similarly for v_{in2}
- Same result as half-circuit principle (H.W.)
- Lengthy analysis! (but may be necessary if not symmetric)

☐ Half-circuit principle does not work in this case

11: Differential Amplifiers [Razavi, 2017]

25

- METHOD #1: Half-Circuit Principle (exploit symmetry)
- \square $v_{out1} = 0$ and $v_{out2} = 0$
- $\square \quad v_{oCM} = \frac{v_{out1} + v_{out2}}{2} = 0$
- $\Box A_{vCM} = \frac{v_{oCM}}{v_{iCM}} = 0 = A_{v,half-circuit} \rightarrow A_{vd}/A_{vCM} \rightarrow \infty$
- ☐ The output CM level is NOT sensitive to the input CM level
- CM input is "completely" rejected (compare with pseudo diff amp)

11: Differential Amplifiers

- ☐ METHOD #2: Super-position (H.W.)
- \square For v_{in1} to v_{out1} : CS (M1) degenerated by M2
- \Box For v_{in1} to v_{out2} : CD (M1) + CG (M2)
- $oldsymbol{\square}$ Similarly for v_{in2}
- Same result as half-circuit principle (H.W.)
- Lengthy analysis! (but may be necessary if not symmetric)

11: Differential Amplifiers

■ METHOD #1: Half-Circuit Principle (exploit symmetry)

- $\Box A_{vd}/A_{vCM} \approx 2(g_m + g_{mb})R_{SS} \gg 1$
- CM input is "partially" rejected (compare with pseudo diff amp)

11: Differential Amplifiers

Recapping Small Signal Analysis

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} $ $\gg 1$

lacktriangle Assume symmetry and neglect body effect. Calculate A_{vd} .

 \blacksquare Assume symmetry and neglect body effect. Calculate A_{vd} .

Assume symmetry and neglect Channel Length Modulation (CLM) (ro). Calculate A_{vd} .

Assume symmetry, assume R_{SS} is large, and neglect CLM (ro). Calculate A_{vd} .

Assume symmetry, and assume all transistors have the same g_m and r_o . Calculate A_{vd} .

B1. Diff Large Signal Analysis

B1. Diff Large Signal Analysis

Analysis using square law (H.W., see Razavi Section 4.2.2)

$$I_{D1} = \frac{I_{SS}}{2} + \frac{V_{id}}{4} \sqrt{\mu C_{ox} \frac{W}{L} \left(4I_{SS} - \mu C_{ox} \frac{W}{L} V_{id}^{2}\right)}$$

$$I_{D2} = \frac{I_{SS}}{2} - \frac{V_{id}}{4} \sqrt{\mu C_{ox} \frac{W}{L} \left(4I_{SS} - \mu C_{ox} \frac{W}{L} V_{id}^{2}\right)}$$

$$\Delta V_{in,max} = \sqrt{2} V_{ov,eq}$$

B1. Diff Large Signal Analysis

If tail current is doubled

If aspect ratio is doubled

B1. Diff Large Signal Analysis

Degeneration extends linear range

$$\Delta V_{in2} = \Delta V_{in1} + I_{SS}R_S$$

But headroom is reduced

B2. CM Large Signal Analysis

- The tail current source suppresses the effect of input CM level variations on OP point of M1 and M2 and output CM level
 - But all transistors must be in saturation

M3 in sat

$$V_{inCM} \ge V_{TH} + V_{ov1} + V_{ov3}$$

M1,2 in sat

$$V_{inCM} \le V_{DD} - \frac{I_{SS}}{2}R_D + V_{TH}$$

B2. CM Large Signal Analysis

- □ The tail current source suppresses the effect of input CM level variations on OP point of M1 and M2 and output CM level
 - But all transistors must be in saturation

Max Allowable Signal Swing

- Max output is VDD, min output is set by keeping M1,2 in sat $max \ pk2pk \ swing = 2 \times \left(V_{DD} \left(V_{inCM} V_{TH}\right)\right)$
- If V_{inCM} is set to its min value: $V_{inCM} = V_{TH} + V_{ov1} + V_{ov3}$ $max \ pk2pk \ swing = 2 \times (V_{DD} - V_{ov1} - V_{ov3})$
 - Can be deduced intuitively by noting that M1 and M3 are vertically stacked
- \Box For SE amp: $max \ pk2pk \ swing = (V_{DD} V_{ov1})$

Effect of Mismatch (in Load)

- Most dangerous effect: CM to diff conversion
- ☐ Example #1: Mismatch in load resistance

$$\begin{split} A_{vCM2d} &= \frac{v_{od}}{v_{iCM}} = \frac{v_{out1} - v_{out2}}{v_{iCM}} = -\left(\frac{g_m R_D}{1 + 2g_m R_{SS}} - \frac{g_m (R_D + \Delta R_D)}{1 + 2g_m R_{SS}}\right) \\ &= \frac{g_m \Delta R_D}{1 + 2g_m R_{SS}} \approx \frac{\Delta R_D}{2R_{SS}} \end{split}$$

Effect of Mismatch (in Load)

☐ Example #1: Mismatch in load resistance

$$A_{vCM2d} \approx \frac{\Delta R_D}{2R_{SS}}$$

Common-mode rejection ration (CMRR) (@low frequency!)

$$CMRR = \frac{A_{vd}}{A_{vCM2d}} \approx 2g_m R_{SS} \frac{R_D}{\Delta R_D}$$

Effect of Mismatch (in Input Pair)

- ☐ Most dangerous effect: CM to diff conversion
- ☐ Example #2: Mismatch in input pair (M1 and M2)

$$A_{vCM2d} = \frac{v_{od}}{v_{iCM}} = \frac{v_{out1} - v_{out2}}{v_{iCM}} = -\frac{g_{m1}R_D}{1 + g_{m1}\left(\frac{1}{g_{m2}}||R_{SS}\right)} + \frac{g_{m2}R_D}{1 + g_{m2}\left(\frac{1}{g_{m1}}||R_{SS}\right)}$$

$$= -\frac{\Delta g_m R_D}{1 + (g_{m1} + g_{m2})R_{SS}} \approx -\frac{\Delta g_m R_D}{(g_{m1} + g_{m2})R_{SS}}$$

Effect of Mismatch (in Input Pair)

Example #2: Mismatch in input pair (M1 and M2)

$$A_{vCM2d} \approx \frac{\Delta g_m R_D}{(g_{m1} + g_{m2}) R_{SS}}$$

Common-mode rejection ration (CMRR) (@low frequency!)

$$CMRR = \frac{A_{vd}}{A_{vCM2d}} \approx 2g_m R_{SS} \frac{g_m}{\Delta g_m}$$

Diff Frequency Response

- The freq response of the diff amp is itself the freq response of the half-circuit
- Note that the number of poles/zeros in the diff amp is the same as the number of poles/zeros in the half-circuit
 - The two halves are added, not multiplied

- Ex:
$$A(s) = \frac{A_o}{1 + \frac{S}{\omega_p}} + \frac{A_o}{1 + \frac{S}{\omega_p}} = \frac{2A_o}{1 + \frac{S}{\omega_p}}$$
 (what if there is mismatch?)

Diff Frequency Response

- The freq response of the diff amp is itself the freq response of the half-circuit
- Note that the number of poles/zeros in the diff amp is the same as the number of poles/zeros in the half-circuit
 - The two halves are added, not multiplied

- Ex:
$$A(s) = \frac{A_o}{1 + \frac{S}{\omega_p}} + \frac{A_o}{1 + \frac{S}{\omega_p}} = \frac{2A_o}{1 + \frac{S}{\omega_p}}$$
 (what if there is mismatch?)

11: Differential Ampiniers

- \square C_P degrades tail CS impedance at high frequency
- $\Box \quad C_P \approx C_{db3} + C_{gd3} + C_{sb1} + C_{sb2}$
- Trade-off between headroom and CMRR
 - M1-M3 are made wide to decrease V_{ov} and increase headroom
 - But C_P increases, and degrades CMRR

oxdot Mismatch in input pair (M1 and M2)

@Low frequency:
$$A_{vCM2d} \approx \frac{\Delta g_m R_D}{1 + (g_{m1} + g_{m2})R_{SS}}$$

@High frequency:
$$A_{vCM2d} \approx \frac{\Delta g_m \left(R_D / / \frac{1}{sC_L}\right)}{1 + (g_{m1} + g_{m2}) \left(R_{SS} / / \frac{1}{sC_P}\right)}$$

Mismatch in input pair (M1 and M2)

@Low frequency:
$$CMRR = \frac{A_{vd}}{A_{vCM2d}} \approx (1 + 2g_m R_{SS}) \frac{g_m}{\Delta g_m}$$

@High frequency:
$$CMRR = \frac{A_{vd}(s)}{A_{vCM2d}(s)} \approx \left[1 + 2g_m \left(R_{SS} / / \frac{1}{sC_P}\right)\right] \frac{g_m}{\Delta g_m}$$

Mismatch in input pair (M1 and M2)

$$CMRR = \frac{A_{vd}(s)}{A_{vCM2d}(s)} \approx \left[1 + 2g_m \left(R_{SS} / / \frac{1}{sC_P}\right)\right] \frac{g_m}{\Delta g_m}$$
$$\approx \frac{1 + s\frac{C_P}{2g_m}}{1 + sR_{SS}C_P} \cdot 2g_m R_{SS} \frac{g_m}{\Delta g_m}$$

 $\square \quad @\omega \uparrow \uparrow : CMRR \approx \frac{g_m}{\Delta g_m}$

- ☐ High frequency supply noise is a very serious issue
- Again: There is a trade-off between headroom and CMRR
 - More serious for low supply voltage

Thank you!