Zadania z Matematyki Dyskretnej – Moce zbiorów

1. Dowieść, że następujące zbiory A i B są równoliczne:

$$A = \{x \in \mathbb{N} : x < 7\}, B = \{x \in \mathbb{N} : 1 < x^2 < 100\}$$

- 2. Jaką moc mają następujące zbiory?
 - (a) $\{x \in \mathbb{N} : 10|x\}$
 - (b) $\{x \in \mathbb{N} : \exists_{y \in \mathbb{R}} x = \sin y\}$
 - (c) $\{x \in \mathbb{N} : \exists_{y \in \mathbb{N}} x = \ln y\}$
 - (d) $\{x \in \mathbb{N} : \exists_{y \in \mathbb{R}} x = \operatorname{tg} y\}$
- 3. Dowieść, że dla dowolnych zbiorów $A_1,\ A_2,\ B_1$ i B_2 : jeśli $A_1\sim B_1$ i $A_2\sim B_2,$ to $A_1\times A_2\sim B_1\times B_2.$
- 4. Dowieść, że jeśli zbiory A i B są przeliczalne, to $A \cup B$ też jest zbiorem przeliczalnym. Wywnioskować stąd, że zbiór liczb całkowitych jest zbiorem przeliczalnym.
- 5. Dowieść, że jeśli zbiory A i B są przeliczalne, to $A \times B$ też jest zbiorem przeliczalnym. Wywnioskować stąd, że zbiór liczb wymiernych jest zbiorem przeliczalnym.
- 6. Dowieść, że dla każdego n zbiór wielomianów stopnia $\leq n$ o współczynnikach wymiernych jest przeliczalny.
- 7. Dowieść, że jeśli $\{A_n\}_{n\in\mathbb{N}}$ jest rodziną zbiorów przeliczalnych, to $\bigcup_{n\in\mathbb{N}}A_n$ też jest zbiorem przeliczalnym. Wywnioskować stąd, że zbiór wszystkich wielomianów o współczynnikach wymiernych jest zbiorem przeliczalnym.
- 8. Dowieść, że $A \sim B$, jeśli:
 - (a) A,B dowolne dwa odcinki otwarte.
 - (b) A odcinek otwarty, B odcinek jednostronnie domknięty.
 - (c) A,B dowolne dwa okręgi.
 - (d) A,B dowolne dwa koła.
 - (e) A prosta, B odcinek otwarty.
 - (f) A prosta, B odcinek domkniety.

- (g) A prosta, B półprosta domknięta.
- 9. Sprawdzić, czy następujące zbiory mają moc \mathfrak{c} :
 - (a) $\{x \in \mathbb{R} : \exists_{n \in \mathbb{N}} x^n \in \mathbb{Q}\}$
 - (b) $\{x \in \mathbb{R} : \exists_{y \in \mathbb{R}} x = 2y\}$
 - (c) $\{(x,y): x \in \mathbb{R} \land y \in \mathbb{R} \land x = y\}$
 - (d) $\{(x,y) : x \in \mathbb{R} \land y \in \mathbb{R} \land x^2 + y^2 = 1\}$
 - (e) $\{(x,y): x \in \mathbb{R} \land y \in \mathbb{R} \land x y = 3\}$
- 10. Dowieść, że zbiór wszystkich zerojedynkowych ciągów skończonych jest zbiorem mocy \aleph_0 .
- 11. Dowieść, że zbiór wszystkich zerojedynkowych ciągów nieskończonych (czyli zbiór wszystkich funkcji $f: \mathbb{N} \to \{0,1\}$) jest zbiorem mocy \mathfrak{c} .