Department of Computer Science University of Cyprus

EPL342 – Databases

Lecture 14: SQL DML I SQL Structured Query Language (Chapter 6.4, Elmasri-Navathe 5ED)

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/courses/EPL342

Περιεχόμενο Διάλεξης

Κεφάλαιο 6.4: SQL DML I

- Εισαγωγή στην SQL-DML (Διαφορές SQL-DML με Σχεσιακό Μοντέλο / Άλγεβρα).
- Άπλες Εκφράσεις σε SQL (SELECT-FROM-WHERE)
- Απλές Συνενώσεις σε SQL
- Διφορούμενα Ονόματα Γνωρισμάτων και το Γνώρισμα *
- Περίπτωση **Μη-προσδιορισμένου WHERE**
- Χρήση DISTINCT σε γνωρίσματα.
- Πράξεις Συνόλων με SQL

Εισαγωγή στη SQL

- Στις προηγούμενες δυο διαλέξεις ξεκινήσαμε την μελέτη μιας πραγματική γλώσσα βάσεων δεδομένων την SQL (Structured Query Language).
 - Γλώσσα Ορισμού Δεδομένων (Data Definition Language, SQL-DDL)
 - Γλώσσα Επεξεργασίας Δεδομένων (Data Manipulation Language,
 SQL-DML)
- Εάν και θα αναφερόμαστε στο πρότυπο SQL:99-DML, αυτό υλοποιείται σε μεγάλο βαθμό από τους κατασκευαστές βάσεων δεδομένων (π.χ., στην TSQL)
 - Αυτό είναι σε αντίθεση με την SQL-DDL η οποία αντιμετωπίζει αρκετά προβλήματα συμβατότητας μεταξύ κατασκευαστών.
- Σε επερωτήσεις SQL συνιστάται η συμβατότητα με το πρότυπο ANSI/ISO SQL:99
 - Παρόλο που πολλές φορές θα σας δημιουργείται ένα δίλλημα μεταξύ Επίδοσης (Performance) και Μεταφερσιμότητας (Portability) του κώδικα.

Διαφορές της SQL και του Σχεσιακού Μοντέλου/Άλγεβρας:

Διαφορές SQL και Σχεσιακού Μοντέλου / Άλγεβρας

- A) Η SQL στηρίζεται σε Σύνολα-μη-Διακριτών-Τιμών ή αλλιώς Πολυσύνολα (Multi-set), ενώ το Σχεσιακό Μοντέλο / Άλγεβρα σε Απλά Σύνολα (διακριτών-τιμών).
 - Συνεπώς, η SQL επιτρέπει τα διπλότυπα (duplicates) σε σχέσεις και αποτελέσματα επερωτήσεων ενώ το Σχεσιακό Μοντέλο / Άλγεβρα όχι.
 - Σημειώστε ότι οι **σχέσεις SQL** μπορούν να **περιοριστούν** έτσι ώστε να **συμπεριφέρονται ως μαθηματικά σύνολα**
 - κάνοντας χρήση περιορισμών **PRIMARY KEY**, **UNIQUE**, ή με χρήση του **DISTINCT** το οποίο θα δούμε σε λίγο
- **Β) Σχέσεις** SQL και **αποτελέσματα** έχουν **διάταξη (order)** ενώ στο Σχεσιακό Μοντέλο / Άλγεβρα δεν έχουν, δηλ.,
 - **Επίπεδο Σχέσης:** Σειρά αποθήκευσης στοιχείων στον δίσκο
 - Επίπεδο Επερώτησης: Αύξουσα Σειρά / Φθίνουσα Σειρά

Διαφορές της SQL και του Σχεσιακού Μοντέλου/Άλγεβρας:

- Ένα πολυσύνολο (multi-set or bag) είναι ένα μηδιατεταγμένο σύνολο στοιχείων, όπου ένα στοιχείο μπορεί να εμφανίζεται περισσότερο από μια φορά.
 - Παράδειγμα: {A, B, C, A} είναι ένα **πολυσύνολο**, ενώ το {A, B, C} είναι **πολυσύνολο** και **απλό σύνολο**.
 - Η SQL παράγει πολυσύνολα στα οποία υπάρχει διάταξη (κάποια σειρά) στα αποτελέσματα (ουσιαστικά λίστες).

• Παράδειγμα:

- $\{A, B\} = \{B, A, A\}$ ως Σύνολα
- $\{A, B, A\} = \{B, A, A\}$ ως Πολυσύνολα
- [A, B, A] ≠ [B, A, A] ως Λίστες (που παράγονται στην SQL)

Απλές Επερωτήσεις σε SQL

Η βασική έκφραση SQL για διατύπωση επερωτήσεων ονομάζεται SELECT-FROM-WHERE μπλοκ (ή mapping)

SELECT <attribute list> FROM

[WHERE <condition>]

- **<attribute list>** Είναι μια **λίστα γνωρισμάτων** των οποίων η τιμή πρέπει να ανακτηθεί από μια επερώτηση.
 - Αντίστοιχο του τελεστή προβολής π.
- είναι μια λίστα από ονόματα σχέσεων από τα οποία θα γίνει η ανάκτηση των αποτελεσμάτων.
 - Αντίστοιχο της σχέσης που συμμετέχει σε ένα Σχεσιακό Τελεστή.
- <condition> είναι μια λογική έκφραση (Boolean) ή οποία πρέπει να αποτιμηθεί για να επιστραφούν τα αποτελέσματα
 - Αντίστοιχο του τελεστή επιλογής σ.
- Τα αποτελέσματα επιστρέφονται κάποτε σε αύξουσα σειρά του attribute list (όχι σε SQL Server).
 - Θα μιλήσουμε περισσότερο για το Ordering στην επόμενη διάλεξη L342: Databases Demetris Zeinalipour (University of Cyprus) ©

Άπλες Επερωτήσεις SQL (Simple SQL Queries)

- Η SQL μπορεί να χρησιμοποιηθεί για να δηλωθούν πολύ σύνθετες και περίπλοκες επερωτήσεις.
- Σήμερα θα επικεντρωθούμε μόνο στα bold μέρη:

SELECT attribute list

FROM table list

WHERE selection-condition

GROUP BY grouping attribute(s)

HAVING grouping condition

ORDER BY ASC | DESC

- Το απλό **SELECT-FROM-WHERE** μπλοκ θα επεκταθεί αργότερα με έννοιες **ομαδοποίησης**, **συναθροιστικών συναρτήσεων**, **εμφωλευμένων επερωτήσεων**, κ.α.
- TSQL SELECT-FROM-WHERE Reference:

http://msdn.microsoft.com/en-us/library/ms189499.aspx

Απλές Επερωτήσεις (Επερώτηση σε 1 Σχέση)

 Query 0: Ανάκτηση το birthdate και address των employee των οποίων το name είναι 'John B. Smith'.

Q0: SELECT

BDATE, ADDRESS

FROM EMPLOYEE WHERE FNAME='Jo

FNAME='John' AND MINIT='B'

AND LNAME='Smith'

• Αντίστοιχο με την έκφραση σχεσιακής άλγεβρας

T1 $\leftarrow \sigma_{\text{(FNAME='John' AND MINIT='B' AND LNAME='Smith')}}(\text{EMPLOYEE})$

 $T2 \leftarrow \pi_{BDATE, ADDRESS}(T1)$

- Η προβολη (π) παρουσιάζεται με Μπλε ενώ οι επιλογή (σ) με Κόκκινο.
- Σημειώστε ότι στο Q0 μπορεί να εμπεριέχονται διπλότυπα ενώ στην αντίστοιχη έκφραση Σχεσιακής Άλγεβρας δεν υπάρχουν ο cyprus) ©

Απλές Επερωτήσεις (Επερώτηση σε 2 Σχέσεις)

- Query 1: Ανάκτησε τα names και addresses όλων των υπαλλήλων που δουλεύουν για το 'Research' department.
- Q1:SELECT FROM WHERE

FNAME, LNAME, ADDRESS EMPLOYEE, DEPARTMENT DNAME='Research' AND DNUMBER=DNO

- Αντίστοιχο με την έκφραση σχεσιακής άλγεβρας
 Τ1 ← EMPLOYEE ⊗_{DNO=Dnumber} (σ_{DNAME='Research'}Department))
 T2 ← π_{FNAME, LNAME, ADDRESS}(T1)
 - **DNAME='Research':** Συνθήκη Επιλογής (σ)
 - DNUMBER=DNO: Συνθήκης Συνένωσης (⊗)
 - FNAME,LNAME,ADDRESS: Γνωρίσματα Προβολής (π)

Απλές Επερωτήσεις (Επερώτηση σε 3 Σχέσεις)

Query 2: Για κάθε project στην πόλη 'Stafford', παρουσίασε το project number, το τμήμα που ελέγχει το project και τα ακόλουθα: επίθετο (last name) του department manager, διεύθυνση (address) και ημερομηνία γέννησης (birthdate).

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND PLOCATION='Stafford'

```
Σχεσιακή Άλγεβρα
T1 \leftarrow \pi_{Pnumber, Dnum}(\sigma_{PLOCATION='Stafford'}Project))
T2 \leftarrow \pi_{Pnumber, Dnum, Mgr\_ssn}(Department⊗_{Dnumber=DNum}T1)
T2 \leftarrow \pi_{Pnumber, Dnum, Lname, Bdate, Address}(Employee⊗_{SSN=Mgr\_ssn}T2)
```

Διφορούμενα Ονόματα Γνωρισμάτων (Ambiguous Attribute Names)

- Στην SQL, μπορούμε να χρησιμοποιήσουμε το ίδιο όνομα για δυο ή περισσότερα γνωρίσματα εφόσον τα γνωρίσματα αυτά ανήκουν σε διαφορετικές σχέσεις
 - Π.χ., Employee(ssn, name, dno) και Department(dno, name)
- Για να αποφευχθούν διφορούμενες καταστάσεις σε περιπτώσεις πολλαπλών σχέσεων (στις οποίες δεν θα είναι γνωστό σε πιο ακριβώς γνώρισμα αναφέρεται η επερώτηση), χρησιμοποιούμε ως πρόθεμα (prefix) το όνομα της σχέσης, π.χ.,
 - EMPLOYEE.Name, DEPARTMENT.Name
 - ή ακόμη καλύτερα να χρησιμοποιήσουμε ένα alias (δες επομένη₄διαφάνεια) emetris Zeinalipour (University of Cyprus) ©

Διφορούμενα Ονόματα Γνωρισμάτων (Ambiguous Attribute Names)

Aliases για μετονομασία Σχέσεων/Γνωρισμάτων

- Ακόμη και εάν **δεν υπάρχουν διφορούμενα** ονόματα, είναι καλό να χρησιμοποιείται το Alias γιατί έτσι γίνεται πιο ευανάγνωστος ο κώδικας SQL.
- Για μετονομασία γνωρισμάτων (όχι σε TSQL)

FROM Employee AS E(Fn,Mi,Ln,Ssn,Bd,Addr,Sex,Sal,Sssn,Dno) 14-12

Διφορούμενα Ονόματα Γνωρισμάτων (Ambiguous Attribute Names)

- Μερικές επερωτήσεις αναφέρονται στην ίδια σχέση πολλαπλές φορές.
 - Σε αυτή την περίπτωση, ανατίθενται διαφορετικά aliases στο όνομα της σχέσης έτσι ώστε να δίνεται η εντύπωση ότι υπάρχουν διαφορετικά στιγμιότυπα.
- Query 8: Για κάθε employee, ανάκτησε το όνομα του employee, και το όνομα του άμεσα προϊσταμένου του.

- Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
 FROM EMPLOYEE E, EMPLOYEE S
 WHERE E.SUPERSSN=S.SSN
 - Ε: ρόλος υφιστάμενου (supervisee)
 - S: ρόλος ΣΤροϊσταμένου (Supervisor) rsity of Cyprus) ©

Μη-προσδιορισμένο WHERE

• Ο όρος WHERE είναι προαιρετικός σε μια επερώτηση SQL.

SELECT <attribute list>

FROM

[WHERE <condition>]

- Η μη-ύπαρξη ενός τέτοιου όρου υποδηλώνει ότι ΔΕΝ υπάρχει συνθήκη επιλογής.
 - Ουσιαστικά, είναι αντίστοιχο της συνθήκης WHERE TRUE
- Συνεπώς, όλες οι πλειάδες μιας σχέσης επιλέγονται σε μια τέτοια περίπτωση.
- Query 9: Ανάκτησε το SSN όλων των υπαλλήλων.

– Q9: SELECT SSN

FROM EMPLOYEE

Μη-προσδιορισμένο WHERE (Περίπτωση Καρτεσιανού Γινομένου)

- Εάν ορίζονται περισσότερο από μια σχέσεις στον όρο FROM, τότε αυτό υποδηλώνει τον τελεστή Καρτεσιανού Γινομένου (Cartesian Product)
- Παράδειγμα:

Q10: SELECT SSN, DNAME

FROM EMPLOYEE, DEPARTMENT

- Είναι πολύ σημαντικό να μην παραβλέπεται ο ορισμός συνθηκών επιλογής (WHERE) σε συνενώσεις για να μην δημιουργούνται μη-επιθυμητά μεγάλα αποτελέσματα.
- Κάποιες βάσεις υλοποιούν **εξειδικευμένους τελεστές** καρτεσιανού γινομένου
 - Π.χ. στην TSQL υπάρχει η εντολή CROSS JOIN
 SELECT SSN, DNAME FROM EMPLOYEE CROSS JOIN DEPARTMENT
 - Καλύτερα ωστόσο να χρησιμοποιείται η ANSI/ISO εντολή (Q10)

Χρήση Γνωρίσματος-*

 Για να ανακτήσουμε ΌΛΑ τα γνωρίσματα μιας πλειάδας σε μια επερώτηση κάνουμε χρήση του γνωρίσματος * (all attributes)

• Παραδείγματα:

Q1C: SELECT *

FROM EMPLOYEE

WHERE DNO=5

Q1D: SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME='Research' AND

DNO=DNUMBER

Χρήση DISTINCT σε Γνωρίσματα «DISTINCT *: όλες οι στήλες μαζί να είναι

μοναδικές (ίδιο με «*» όταν μια σχέση έχει PK)

- Όπως είχαμε αναφέρει νωρίτερα, η SQL χειρίζεται τις σχέσεις ως Πολυσύνολα με διάταξη, συνεπώς είναι δυνατό να υπάρχουν διπλότυπα (duplicate tuples).
- Για να εξαλείψουμε τα διπλότυπα σε μια επερώτηση, κάνουμε χρήση της λέξης DISTINCT στον όρο SELECT.

Παράδειγμα

Q11: SELECT SALARY

FROM EMPLOYEE

Q11A: SELECT DISTINCT SALARY

FROM EMPLOYEE

Employee:

Employee:										
EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

Q11: Q11A:

	Salary	
	30000	
	40000	
<	25000	
	43000	
	38000	
	25000	,
	25000)
	55000	

Salary
30000
40000
25000
43000
38000
55000

14-17

Χρήση DISTINCT σε Γνωρίσματα

- Σημειώστε ότι πέρα από το **SELECT DISTINCT** υπάρχει και το **SELECT ALL**, το οποίο ΔΕΝ αφαιρεί τα διπλότυπα.
- Συγκεκριμένα,

```
SELECT [DISTINCT | ALL] <attribute-list> FROM <table-list>
```

- Το SELECT ALL αντιπροσωπεύει ουσιαστικά την εξορισμού λειτουργία του SELECT.
- Όπως αναφέραμε και σε προηγούμενες διαλέξεις, στην
 SQL πολλά πράγματα δηλώνονται ρητά γιατί έτσι:
 - Ξεκαθαρίζει η πρόθεση του σχεδιαστή
 - Αποφεύγονται προβλήματα συμβατότητας που μπορεί να προκύψουν από την μεταφορά της υλοποίησης σε άλλη βάση δεδομένων.

- Η SQL:99 υλοποιεί αρκετές πράξεις συνόλων τις οποίες ορίσαμε στα πλαίσια της Σχεσιακής Άλγεβρας.
- Συγκεκριμένα, υποστηρίζονται οι ακόλουθες πράξεις:
 - Ένωση: UNION [ALL]
 - Τομή: INTERSECT
 - Διαφορά Συνόλων: EXCEPT
- Προϋποθέτουν ότι τα σύνολα είναι i) συμβατά-προς-τοντύπο και ii) η διάταξη των γνωρισμάτων είναι η ίδια (δεν χρειάζεται να έχουν το ίδιο όνομα)
- Διαφορά Πράξεων Συνόλων από άλλες πράξεις SQL:
 - Τα αποτελέσματα είναι ΣΥΝΟΛΑ όχι ΠΟΛΥΣΥΝΟΛΑ(συνεπώς δεν υπάρχουν διπλότυπα στις πράξεις αυτές)
 - Θα δούμε πως παράγονται Πολυσύνολα σε λίγο.

Query 4: Δημιουργήστε μια λίστα από projects τα οποία περιλαμβάνουν ένα υπάλληλο με το επίθετο "Smith", ως υπάλληλο ή* ως manager του τμήματος που ελέγχει το εν λόγω project.

Q4: (SELECT W.Pno

FROM

EMPLOYEE E, WORKS ON W

W.ESSN=E.SSN AND E.LNAME='Smith') WHERE

(SMITH WOR KER PROJS)

UNION

(SELECT P.Pnumber

FROM PROJECT P, DEPARTMENT D, EMPLOYEE E

P.DNUM=D.DNUMBER AND WHERE

D.MGRSSN=E.SSN AND

(SMITH MGR _PROJS)

14-21

ELNAME='Smith')EPL342: Databases - Demetris Zeinalipour (University of Cyprus) ©

Για να επιστραφούν αποτελέσματα Πολυσυνόλων, αντί αποτελέσματα συνόλων, μπορεί να γίνει χρήση των ακόλουθων εντολών:

```
- UNION ALL, υποστηρίζεται και σε TSQL
  \Pi.\chi., {(1,Pet), (2,Cat)} UNION ALL {(2,Cat),(1, Pet)}
  Επιστρέφει: { (1,Pet), (2,Cat), (2,Cat), (1, Pet) }
- INTERSECT ALL (δεν υλοποιείται σε TSQL)
  \Pi.\chi., {(1,Pet), (2,Cat)} INTERSECT ALL {(1, Pet)}
  Επιστρέφει: { (1,Pet), (1, Pet) }
- EXCEPT ALL (δεν υλοποιείται σε TSQL)
  Π.χ., {(1,Pet), (2,Cat), (2,Cat)} EXCEPT ALL {(2, Cat)}
  Επιστρέφει:{(1,Pet), (2,Cat) }
```

• Συνεπώς, με τις πιο πάνω πράξεις δεν διαγράφονται τα διπλότυπα από ένα αποτέλεσμα 14-22 EPL342: Databases - Demetris Zeinalipour (University of Cyprus) ©

- Στην συνέχεια θα δούμε ότι υπάρχουν πολλές
 άλλες πράξεις σύγκρισης με σύνολα που χρησιμοποιούνται για διατύπωση επερωτήσεων σε SQL
 - IN, ANY, ALL, CONTAINS, EXISTS, NOT EXISTS, κτλ.