Dérivation et étude de fonctions numériques

Exercice 1: Étudier la dérivabilité de la fonction f en a dans les cas suivants :

- 1. f(x) = 5x + 1 et a = 1
- 2. $f(x) = \sqrt{4x-5}$ et a = 2
- 3. $f(x) = x^3$ et a = -2
- 4. $\begin{cases} f(x) = 1 \cos(x) \text{ si } x \ge 0 \\ f(x) = \sin(x) \text{ si } x < 0 \end{cases} \text{ et } a = 0$

Exercice 2 : On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = (1+x)^3$$

Donner l'approximation affine de f au voisinage de 0 et en déduire une valeur approchée du nombre $b = (1,0004)^3$.

Exercice 3: Préciser l'ensemble sur lequel la fonction f est dérivable et calculer f' lorqu'il existe dans chacun des cas suivants :

- 1. $f(x) = x^3 5x^2 + \sqrt{5}x + \frac{1}{\sqrt{2}}$
- 2. $f(x) = \sqrt{x^4 + x^2 + 1}$
- 3. $f(x) = \frac{2x+1}{x^2+x-2}$
- 4. $f(x) = x^4 \sqrt{x} + \frac{1}{\sqrt{x}}$
- 5. $f(x) = \frac{3\sin(x) 1}{\sin(x) 1}$
- 6. $f(x) = \left(\frac{x+1}{x^2+3x+1}\right)^2$
- 7. $f(x) = x^3 \sqrt{x} \tan(x) + \frac{\sin(x)}{x}$
- $8. \ f(x) = \cos\left(\sqrt{\frac{2x}{1+x^2}}\right)$

Exercice 4 : Soit f la fonction définie sur $[-1; +\infty[$ par : $f(x) = \sqrt[3]{1+x}$.

1. Montrer que f est dérivable en 0.

- 2. En déduire l'pproximation affine de la fonction *f* au voisinage de 0.
- 3. Déterminer des valeurs approchées des nombres : $\sqrt[3]{0,991}$ et $\sqrt[3]{1,007}$.

Exercice 5: Calculer les limites suivantes :

$$\lim_{x \to 3} \frac{(x-2)^{1986} - 1}{x-3} \; ; \; \lim_{x \to 2} \frac{x\sqrt{x+7} - 6}{x-2} \; ; \; \lim_{x \to 0} \frac{\sin(x)}{x}$$

$$\lim_{x \to -1} \frac{\frac{1}{x+2} - 1}{x+1} ; \lim_{x \to \frac{\pi}{2}} \frac{2\cos(x) - 1}{\tan(x) - \sqrt{3}} ; \lim_{x \to 1} \frac{x^4 \sqrt{x} + \frac{1}{\sqrt{x}} - 2}{\sqrt{x} - 1}$$

Exercice 6: Dresser le tableau de variations de la fonction f dans les cas suivants :

$$f(x) = x - \frac{1}{x} \; ; \; f(x) = 3x^4 - 2x^2 + 1 \; ; \; f(x) = \frac{4}{x^2 - 2x}$$
$$f(x) = \frac{x^2 + 4x + 1}{x + 1}$$

Exercice 7: Dans la figure ci-après (\mathscr{C}_f) est la courbe représentative d'une fonction f dans le repére orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1. Déterminer graphiquement f(-2), f'(-2) et f'(-1).
- 2. Déterminer graphiquement $f'_d(1)$ et $f'_g(1)$.
- 3. En déduire que f n'est pas dérivable en 1.
- 4. Dresser le tableau de variations de f sur [-3;3] (on donne $f(3) = \frac{25}{8}$).
- 5. En déduire le tableau de signe de f' sur [-3;3].

Année scolaire : 2024-2025 Niveau : 2BAC PC

Exercice 8 : Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 + x + 1$.

- 1. Montrer que f admet une fonction réciproque f^{-1} définie sur J à déterminer.
- 2. Montrer que f^{-1} est dérivable sur J.
- 3. Calculer f(1) et f(-2). En déduire $\left(f^{-1}\right)'(3)$ et $\left(f^{-1}\right)'(-9)$

Exercice 9: Soit f la fonction définie sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ par $f(x) = \tan(x)$

- 1. Montrer que f admet une fonction réciproque f^{-1} définie sur J à déterminer.
- 2. Déterminer l'ensemble de dérivabilité de f^{-1} .
- 3. Montrer que : $(\forall x \in \mathbb{R})$; $(f^{-1})'(x) = \frac{1}{1+x^2}$.

Exercice 10 : Soit g la fonction définie sur \mathbb{R} par

$$g(x) = x^5 + x^3 + x + 1$$

- 1. Etudier les variations de g.
- 2. Montrer que l'équation g(x) = 0 admet une solution unique α dans \mathbb{R} et $-1 < \alpha < 0$.
- 3. Donner le tableau de sign de g.

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{x^6}{6} + \frac{x^4}{4} + \frac{x^2}{2} + x$$

- 4. Calculer f'(x) pour tout $x \in \mathbb{R}$.
- 5. En déduire les variations de f.
- 6. Écrire une équation de la tangente à (\mathscr{C}_f) au point d'abscisse 0.

Exercice 11 : Soit f la fonction numérique définie par :

$$f(x) = x - 1 + \sqrt{x - 1}$$

1. Vérifier que : $D_f = [1; +\infty[$, puis calculer $\lim_{x \to +\infty} f(x)$.

- 2. Déterminer la branche infinie de (\mathscr{C}_f) au voisinage de $+\infty$.
- 3. Étudier la position relative de (\mathscr{C}_f) et la première bissectrice du repère.
- 4. Étudier la dérivabilité de f à droite en 1, puis interpréter le résultat graphiquement.
- 5. (a) Montrer que

$$(\forall x \in D_f - \{1\}); \ f'(x) = \frac{2\sqrt{x-1}+1}{\sqrt{x-1}}$$

- (b) En déduire les variations de f.
- 6. Montrer que (\mathscr{C}_f) coupe la première bissectrice du repère en un unique point à déterminer.
- 7. Tracer (\mathscr{C}_f) dans un repère orthonormé.
- 8. Montrer que f admet une fonction réciproque f^{-1} définie sur J à déterminer.
- 9. Tracer avec une autre couleur et dans le même repère précédent $(\mathscr{C}_{f^{-1}})$.

Exercice 12: Soit f la fonction numérique définie par : $f(x) = \frac{x}{\sqrt{x} - 1}$.

- 1. Vérifier que : $D_f = [0,1[\cup]1,+\infty[$, puis calculer les limites de f aux bornes de D_f .
- 2. Déterminer les deux branches infinies de (\mathscr{C}_f) .
- 3. Étudier la dérivabilité de f à droite en 0, puis interpréter le résultat graphiquement.
- 4. (a) Montrer que $\forall x \in D_f \{0\}$, $f'(x) = \frac{\sqrt{x} 2}{2(\sqrt{x} 1)^2}$.
 - (b) Dresser le tableau de variations de f.
- 5. Étudier la concavité de *f* .
- 6. Tracer (\mathscr{C}_f) dans un repère orthonormé. Soit g la restriction de la fonction f sur l'intevalle [0;1[.
- 7. Montrer que *g* admet une fonction réciproque définie sur un intervalle *J* à déterminer.
- 8. Tracer avec une autre couleur et dans le même repère précédent $(\mathscr{C}_{g^{-1}})$.

Exercice 13: Soit f la fonction numérique définie sur $[1, +\infty[$ par : $f(x) = x\sqrt{x-1}$.

- Année scolaire : 2024-2025
- 1. Calculer $\lim_{x \to +\infty} f(x)$.
- 2. Étudier la continuité de f sur $[1, +\infty[$.
- 3. Déterminer la branche infinie de (\mathscr{C}_f) au voisinage de $+\infty$.
- 4. Étudier la dérivabilité de f à droite en 1, puis interpréter le résultat graphiquement.
- 5. (a) Montrer que

$$(\forall x \in]1, +\infty[); f'(x) = \frac{3x-2}{2\sqrt{x-1}}$$

- (b) En déduire les variations de f.
- 6. (a) Montrer que

$$(\forall x \in]1, +\infty[); f''(x) = \frac{3x-4}{4\sqrt{(x-1)^3}}$$

- (b) En déduire que (\mathscr{C}_f) admet un point dinflexion A dont on déterminera ses coordonnées.
- 7. Étudier la position relative de (\mathscr{C}_f) et la première bissectrice du repère.
- 8. Tracer (\mathscr{C}_f) dans un repère orthonormé.
- 9. (a) Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
 - (b) Montrer que f^{-1} est dérivable en 2, puis déterminer $(f^{-1})'(2)$.
- 10. Tracer avec une autre couleur et dans le même repère précédent $(\mathscr{C}_{f^{-1}})$.

Exercice 14 : Partie A:

Soit u la fonction numérique définie sur \mathbb{R}_+^* par :

$$u(x) = 3 - \frac{2}{\sqrt{x}} - \frac{1}{x^2}$$

- 1. Calculer u'(x) pour tout $x \in \mathbb{R}_+^*$.
- 2. En déduire que u est strictement croissante sur \mathbb{R}_+^* .
- 3. (a) Calculer u(1).
 - (b) En déduire que $u(x) \ge 0$ pour tout $x \in [1; +\infty[$ et que $u(x) \le 0$ pour tout $x \in]0; 1]$.

Partie B:

Soit f la fonction définie sur \mathbb{R}_+^* par :

$$f(x) = 4\sqrt{x} - 3x - \frac{1}{x}$$

et soit \mathscr{C}_f , sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- a) Calculer les limites : $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- b) Étudier les branches infinies de la courbe \mathscr{C}_f .
- 2) a) Justifier la dérivabilité de f sur \mathbb{R}_+^* puis montrer que :

$$(\forall x \in \mathbb{R}_+^*) \ f'(x) = -u(x)$$

- b) Étudier le signe de f'(x) puis dresser le tableau de variations de la fonction f.
- 3) a) Calculer f'(x) pour tout $x \in D_f$.
 - b) Étudier le signe de f'(x) puis dresser le tableau de variations de la fonction f.
 - c) En déduire que :

$$(\forall x \in \mathbb{R}_+^*) \ 4\sqrt{x} \le 3x + \frac{1}{x}$$

4) Construire la courbe \mathscr{C}_f .

Exercice 15:

Partie A:

Soit g la fonction numérique sur \mathbb{R} par : $g(x) = x^3 - x^2 + 3x + 1$.

- 1. Calculer les limites de g en $+\infty$ et en $-\infty$.
- 2. Étudier les variations de g sur \mathbb{R} .
- 3. Montrer que léquation g(x) = 0 admet une seule solution α sur \mathbb{R} , et que : $-1 < \alpha < 0$.
- 4. Déterminer le signe de g(x) suivant les valeurs de x.

Partie B:

Soit *f* la fonction numérique définie par :

$$f(x) = x - \frac{2}{x^2 + 1}$$

1. Déterminer D_f , puis calculer les limites de f en $+\infty$ et en $-\infty$.

Année scolaire : 2024-2025 Niveau : 2BAC PC

- 2. Étudier la continuité de f sur D_f .
- 3. Montrer que : $\forall x \in D_f$, $f'(x) = \frac{(x+1)g(x)}{(x^2+1)^2}$.
- 4. Étudier les variations de *f* , puis dresser son tableau de variations.
- 5. Vérifier que la première bissectrice du repère est lasymptote oblique de (\mathscr{C}_f) au voisinage de $-\infty$ et de $+\infty$.
- 6. Étudier la position relative de (\mathcal{C}_f) et la première bissectrice du repère.
- 7. Soit h la restriction de f sur lintervalle $I = [0, +\infty[$.
 - (a) Montrer que h admet une fonction réciproque h^{-1} définie sur un intervalle J à déterminer.
 - (b) Dresser le tableau de variations de h^{-1} .

Exercice 16: Soit f la fonction numérique définie par : $f(x) = x - 1 - \sqrt{\frac{x}{x-1}}$ et soit \mathscr{C}_f , sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1. Vérifier que : $D_f =]-\infty;0]\cup]1;+\infty[$.
- 2. Calculer $\lim_{x \to +\infty} f(x)$ et interpréter le résultat obtenu.
- 3. (a) Montrer que la droite (*D*) : y = x 2 est une asymptote oblique de \mathcal{C}_f au voisinage de $+\infty$ et $-\infty$.
 - (b) Étudier la position relative de la courbe \mathscr{C}_f par rapport à la droite (D).
- 4. Étudier la dérivabilité à gauche en 0 de la fonction f, puis interpréter graphiquement le résultat obtenu.
- 5. (a) Calculer f'(x) pour tout $x \in D_f \{0\}$.
 - (b) Étudier le signe de f'(x) puis dresser le tableau de variations de la fonction f.
- 6. Écrire l'équation de la tangente (T) à la courbe \mathscr{C}_f au point d'abscisse 2.
- 7. (a) Montrer que la courbe \mathscr{C}_f coupe l'axe des abscisses en un unique point et dont l'abscisse α appartient à l'intervalle $2; \frac{5}{2}$.

- (b) Montrer que : $\alpha \sqrt[3]{\alpha} = 1$.
- 8. Construire la courbe \mathscr{C}_f .
- 9. Soit *g* la restriction de la fonction f sur]1; $+\infty$ [.
 - (a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
 - (b) Montrer que g^{-1} est dérivable sur J.
 - (c) Montrer que $(g^{-1})'(0) = \frac{2(\alpha 1)^3}{1 + 2(\alpha 1)^3}$.
 - (d) Tracer la courbe $\mathscr{C}_{g^{-1}}$ dans le repère $(O; \vec{i}; \vec{j})$.

Exercice 17: Soit f la fonction numérique définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x - 1 + 2\sqrt{1 - x} & \text{si } x < 1\\ \frac{x^3 - 1}{x^3 + 1} & \text{si } x \ge 1 \end{cases}$$

et soit \mathscr{C}_f sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1. Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 2. (a) Montrer que la fonction f est continue en 1.
 - (b) Étudier la dérivabilité à gauche et à droite de la fonction f en 1 puis interpréter graphiquement les résultats obtenus.
- 3. (a) Montrer que la fonction f est strictement croissante sur l'intervalle $]1;+\infty[$.
 - (b) Montrer que pour tout x ∈] -∞; 1[:

$$f'(x) = \frac{-x}{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}$$

- (c) Dresser le tableau de variations de f.
- 4. Étudier les branches infinies de la courbe \mathscr{C}_f .
- 5. Tracer la courbe \mathscr{C}_f dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$.
- 6. Soit g la restriction de la fonction f sur $[1; +\infty[$.
 - (a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
 - (b) Calculer $g^{-1}(x)$ pour tout $x \in J$.

Lycée: Zitoun

Exercice 18: Soit f une fonction deux fois dérivables sur l'intervalle [-6;5]. On donne dans le repère ci-dessous, la courbe \mathscr{C}' , représentative de la fonction f', dérivée de f.

Niveau: 2BAC PC

- 1. Dresser le tableau de variations de f sur l'intervalle [-6;5].
- 2. Étudier la concavité de f sur l'intervalle [-6;5] et préciser les abscisses des points d'inflexion de la courbe $\mathscr C$ représentative de la fonction f.

Exercice 19: La figure en-dessous représente les courbe représentative \mathscr{C}_f et \mathscr{C}_g des fonctions numériques f et g respectivement.

- 1. Résoudre graphiquement l'équation g(x) = 0.
- 2. Résoudre graphiquement les inéquation $g(x) \ge 0$; $g(x) \le 0$; f(x) > 0 et f(x) < 0.
- 3. Résoudre graphiquement l'équation f(x) = g(x).
- 4. Résoudre graphiquement les inéquation $f(x) \ge g(x)$ et $f(x) \le g(x)$.