Joint distribution function of random variable (X,Y)

$$F(x,y) = P(X \le x, y \le y), \text{ for } x, y \in \mathbb{R}$$
 (1)

Properties

- $F(x, \infty) = \lim_{y \to \infty} F(x, y)$
- $F(\infty, y) = \lim_{x \to \infty} F(x, y)$

Marginal cdf of (X, Y)

$$F_X(x) = F(x, \infty)$$

$$F_Y(y) = F(\infty, y)$$

If X and Y are independent then

$$F(x,y) = F_X(x)F_X(y) \tag{2}$$

Proposition

Let $X_1 \sim \text{Poi}(\lambda_1)$ and $X_2 \sim \text{Poi}(\lambda_2)$. Then

$$X_1$$
 and X_2 are independent $\Leftrightarrow \{X_1 + X_2 \sim \text{Poi}(\lambda_1 + \lambda_2) \text{ and } X_1(X_1 + X_2) = n \sim \text{Bin}(n, \frac{\lambda_1}{\lambda_1 + \lambda_2})\}$
(3)

Continuouss stochastic vector

X and Y are continuous random variables with pdf f_x and f_y respectively.

Definition X and Y are jointly continuous if there exists a function f from \mathbb{R}^2 into \mathbb{R} such that

$$P((X,Y) \in B) = \iint_B f(x,y) \, dx \, dy, \text{ for all } B \subset \mathbb{R}^2$$
 (4)

- f is called the joint pdf og (X,Y)
- the conditional pdf of Y given X = x is

$$f_y(y/x) = \begin{cases} \frac{f(x,y)}{f_x(x)} & \text{if } f_x(x) > 0\\ 0 & \text{if else} \end{cases}$$
 (5)

 \bullet the conditional cdf of Y given X is given by

$$F_y(y/x) = \int_{\infty}^{y} f_y(t/x) dt$$
 (6)

• the conditional distribution of Y given X = x is

Proposition Let (X,Y) be jointly continuous

1. If
$$Area(B) = 0$$
. $(f_x a line) \Rightarrow P((X; Y) \in B) = 0$

2.
$$f$$
 is positive valued and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) = 1$

3. For all
$$x, y \in \mathbb{R}$$
. $F(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s, t) dt ds$

4.
$$f(x,y) = \frac{d^2}{dxdx}F(x,y) = \frac{\partial^2}{\partial x\partial y}F(x,y)$$

5.
$$f_x(a) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{-\infty}^{\infty} f_x(x/y) f_y(y) \, dy$$

6. For
$$B \subset \mathbb{R}$$
. $P(Y \in B) = \int_{-\infty}^{\infty} P(Y \in B)/X = x) f_x(x) dx$

7. For
$$B \subset \mathbb{R}$$
. $P((x,y) \in B) = \int_{-\infty}^{\infty} P((x,y) \in B/X = x) f_x(x) dx$

8.
$$X$$
 and Y are independent $\Leftrightarrow F(x,y) = F_x(x)F_y(y) \Leftrightarrow f(x,y) = f_x(x)f_y(y) \Leftrightarrow f_y(y/x) = f_y(y)$