4 Tour into non-Riemannian grametries
Nenton-Carton geometrall
Trajectories un Newtonian physics: $\dot{x} = -\nabla \phi$, $\phi: \mathbb{R}^3 \to \mathbb{R}$; $\phi: gravitational potential (N)$
Can me inhappert N as a greature eq in rane 4-dim spacetime m/a torrion-free connection?
Let $x^{n} = (t, \underline{x}) = (x^{0}, \underline{x})$.
$d_{\tau z}^2 \times^r + \Gamma^r_{\nu \rho} \dot{\chi}^{\nu} \dot{\chi}^{\rho} = 0$; tolu $\tau = \dot{t} = x^{\circ}$, $d\tau = \dot{t}$
Define 0, Too! = 542j &, other components vanish
$\int_{t^2}^{2} \chi^i + \Gamma_{\infty}^i \left(\frac{dt}{dt}\right)^2 = 0 \iff N.$
Exercise: Show o not the Levi-Civita connection of any metric.
Defn A Newton-Carton structure in a tuple (h, D, O) (on an n-mfd) s.t.
le a diagnerate (2.0) tensor (vank u-1)
· I closed 1-form θ_a s.t. $h^{ab}\theta_a = 0$ · I tomion-free connection $\nabla s.t. \nabla_a \theta_b = 0$, $\nabla_a h^{bc} = 0$
· I tomion - free connection 85.6. Va 0 = 0, Va h = 0
$\nabla [a \theta_{0}] = 0 \text{locally } \exists t : \mathcal{M} \rightarrow \mathbb{R} \text{ s.t. } \theta = dt$ $\text{h. non-degenerate on } t = \text{const. shices} \text{for } \theta = dt$ $\text{2.9. in } 4D, \text{ h. = } \text{diag}(0,1,1,1), \text{ $\theta = dt$} \text{t.c.} \mathbb{R}$
h non-dymente on t = const shices
e.g. in 40, h= diag(0,1,1,1), 0=dt tcR
Γοσ = hij duy φ , Γος = { Fig where
F= \frac{1}{2}Fij(x) dxi \dxi + Ei dxi \dt , dF=0
Projective structures
Projective structures Two formion-free connections of, of are projectively equivalent if they share the same emparameterized geoderics.
$\ddot{x}r + \Gamma r_{\nu\rho} \dot{x}^{\nu} \dot{x}^{\rho} = \dot{x}^{n}, \ddot{x}^{\kappa} = (x',, x'')$
e.g. line in \mathbb{R}^2 (x,y) $\{\ddot{x}=0 = 7 \ x = \alpha t + \beta \ \} = 3 d_{x^2}^2 y = 0 = 7 \ y = A x + B$

