```
*----
% sec. 4.1 some common used build-in functions
% help --> MATLAB --> mathematics --> elementary function -->
x = -1:.1:1;
figure, plot(x,abs(x),'o')
clear all;
x = [1 -1 -1 1];
y = [1 \ 1 \ -1 \ -1];
atan2(y,x) * 180/pi
atan(y./x) * 180/pi
x=-1;
y = -1;
atan2(y,x) * 180/pi
atan(y./x) * 180/pi
t = clock;
fprintf( ' %02.0f:%02.0f:%02.0f \n', t(4), t(5), t(6) );
cumsum(1:4)
date
realmax
realmin
rem(19, 5)
% The following statements convert 40 inches this way:
feet = fix(40/12)
inches = rem(40, 12)
ans =
   45
       135 -135
                -45
ans =
   45 -45
            45 -45
ans =
 -135
```

ans =

45

18:15:42

ans =

1 3 6 10

ans =

28-Mar-2018

ans =

1.7977e+308

ans =

2.2251e-308

ans =

4

feet =

3

inches =

4

Using hypot

```
[X,Y] = meshgrid(0:10, 0:10);
dist=hypot(X,Y);
% Script to compare the acos(x), asin(x), and atan(x)
% functions over the range -1 < x < 1. The values are
% converted to angles in degrees. The results are
% compared graphically.
% Script prepared by D. T. Valentine - September 2006.
% Comments modified by D.T.V. ..... 2008/2012/2016.
% The question raised is: What range of angles, i.e.,
% which of the four quadrents of the circle from 0 to
% 2*pi are the angular outputs of each of the functions?
% Assign the values of x to be examined:
x = -1:0.001:1;
% Compute the arc-functions:
y1 = acos(x);
y2 = asin(x);
```

```
y3 = atan(x);
% Convert the angles from radians to degrees:
y1 = 180*y1/pi;
y2 = 180*y2/pi;
y3 = 180*y3/pi;
% Plot the results:
plot(y1,x,y2,x,y3,x),grid
legend('asin(x)', 'acos(x)', 'atan(x)')
xlabel('\theta in degrees')
ylabel('x, the argument of the function')
% REMARKS: Note the following:
% (1) The acos(x) varies from 0 to 90 to 180 degrees.
% (2) The asin(x) varies from -90 to 0 to 90 degrees.
% (3) The atan(x) varies from -90 to 0 to 90 degrees.
% To check remark (3) try atan(10000000) *180/pi.
% Stop
% Sec. 4.2 Import and Export data by load & save commands
$_____$
A = [1 \ 2 \ 3]
   4 5 6]
save myData A % Export binary data
clear all;
load myData
save myData.txt A -ascii % Export ASCII data
B = load('myData.txt')
SS = ['A','B'; 'C', 'D']
save myData.txt SS -ascii
B = load('myData.txt')
A = [1 \ 2 \ 3; \ 4 \ 5 \ 6]
B = 3
C = [8 9 8]
```

```
save myData A B C
save myData1 A B % selective save
clear
clear all;
load myData
%-----
A =
   2 3
5 6
  1
B =
  1
        3
     5
        6
SS =
AB
CD
B =
  65
     66
  67
     68
A =
  1
     2
       3
B =
  3
```

5

C =

8 9 8

Published with MATLAB® R2016a

Table 4.1: (Common build-in functions (I) - Triangular functions)

三角函數指令	說 明
sin(x)	正弦函數 sin(x) 值。
cos(x)	餘弦函數 cos(x) 值。
tan(x)	正切函數 tan(x) 值。
cot(x)	餘切函數 cot(x) 值。
sec(x)	正割函數 sec(x) 值。
csc(x)	餘割函數 csc(x) 值。
asin(x)	反正弦函數 sin ⁻¹ (x) 值。
acos(x)	反餘弦函數 cos ⁻¹ (x) 值。
atan(x)	反正切函數 tan ⁻¹ (x) 值。
acot(x)	反餘切函數 cot ⁻¹ (x) 值。
asec(x)	反正割函數 sec ⁻¹ (x) 值。
acsc(x)	反餘割函數 csc ⁻¹ (x) 值。
sinh(x)	雙曲正弦函數 sinh(x) 值。
cosh(x)	雙曲餘弦函數 cosh(x) 值
tanh(x)	雙曲正切函數 tanh(x) 值。
coth(x)	雙曲餘切函數 coth(x) 值。
sech(x)	雙曲正割函數 sech(x) 值。
csch(x)	雙曲餘割函數 csch(x) 值。
asinh(x)	反雙曲正弦函數 $sinh^{-1}(x)$ 值。
acosh(x)	反雙曲餘弦函數 $\cosh^{-1}(x)$ 值。
atanh(x)	反雙曲正切函數 $tanh^{-1}(x)$ 值。
acoth(x)	反雙曲餘切函數 $\coth^{-1}(x)$ 值。
asech(x)	反雙曲正割函數 $\operatorname{sech}^{-1}(x)$ 值。
acsch(x)	反雙曲餘割函數 $\operatorname{csch}^{-1}(x)$ 值。

Table 4.1: (Common build-in functions (II) - Some other math. functions)

函數指令	說明
abs(x)	絕對值。註:其用法另有二,請見本書 3.2 及 7.2 節之説明。
sign(x)	取正負號。 即, $sign(x) = \begin{cases} x/abs(x), & x \neq 0 \\ 0, & x = 0 \end{cases}$
ceil(x)	取最接近且大於原數的整數。
floor(x)	取最接近且小於原數的整數。
round(x)	四捨五入,取至整數。
fix(x)	無條件捨去,取至整數。
exp(x)	自然指數 (exponential),即 e ^x 。
log(x)	自然對數 $\log_e x$,即 $\ln x$ 。
log10(x)	對數 log ₁₀ x °
log2(x)	對數 log ₂ x。
sqrt(x)	開根號 \sqrt{x} 。
nthroot(x, n)	開 n 次方函數, √x 。
rem(x, y)	x/y 的餘數。
factor(n)	求出整數 n 的所有質因數。
primes(n)	求出小於等於整數 n 的所有質數。
isprime(n)	檢查整數 n 是否為質數?若是,則回應 1,否則回應 0。
factorial(n)	計算 n!。
gcd(n, m)	求出整數 n 和 m 的最大公因數。
lcm(n, m)	求出整數 n 和 m 的最小公倍數。
nchoosek(n, k)	求出 C_k^n ,即 $\frac{n!}{(n-k)!k!}$ 之值。

Table 4.1: (Common build-in functions (III) - Some other math. functions)

函數指令	函數名稱
erf(x)	誤差函數 (error function)
erfc(x)	補誤差函數 (complementary error function)
gamma(x)	gamma 函數 (gamma function)
beta(z, w)	beta 函數 (beta function)
zeta(x)	zeta 函數 (zeta function)
sinint(x)	sine 積分函數 (sine integral)
cosint(x)	cosine 積分函數 (cosine integral)
heaviside(x)	Heaviside 階梯函數 (Heaviside step function)
dirac(x)	脈衝函數 (impulse function)
fft(x)	離散傅立葉轉換 (discrete Fourier transfer)
ifft(X)	離散傅立葉逆轉換 (inverse discrete Fourier transfer)
besselj(v, z)	Bessel 函數第一型 (Bessel function of first kind)
besseli(v, z)	修飾 Bessel 函數第一型 (Modified Bessel function of first kind)
bessely(v, z)	Bessel 函數第二型 (Bessel function of second kind)
besselk(v, z)	修飾 Bessel 函數第二型 (Modified Bessel function of second kind)
besselh(v, z, k)	Bessel 函數第三型 (Bessel function of third kind)