Odds and ends

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information November 17, 2021

Outline

Last week:

- Linear dynamical systems and the Kalman filter
- Hidden Markov models

Today:

- Zero-inflated models
- A parametric functional model

Zero-inflated models

Example

Data file: fish.csv

Contains:

- Records of visits to national parks
- Each row is a visit
- Recorded:
 - Number of adults and children in the group
 - How long the group stayed in the park (hours)
 - Whether the group had a camper
 - Whether the group had live bait for fishing
 - Number of fish caught

A potential modeling problem

Suppose we want to assess whether live bait leads to more fish caught.

- Try a Poisson GLM
- Reasonable to assume that the number of people in the group influences fish caught, so add adults and children in as covariates
- Time-in-park should be accounted for using an offset

Offset in the Poisson model

Poisson RV models a count of events in a fixed time interval

- ullet Assumes constant rate of independently occurring events, λ events/unit time
- Linear model:

$$\log \lambda_i = \alpha + \beta_A A_i + \beta_C C_i + \beta_B B_i$$

• Take $\lambda = \frac{\mu_i}{ au_i}$, where au_i is time-in-park

$$\log \mu_i = \log \tau_i + \alpha + \beta_A A_i + \beta_C C_i + \beta_B B_i$$

ullet So we just need to add $\log au_i$ to our model equation

Offset in the Poisson model

On the outcome scale:

$$\mu_i = \tau_i \exp(\alpha + \beta_A A_i + \beta_C C_i + \beta_B B_i)$$

 so, for otherwise identical visits the expected fish caught is proportional to the time spent

Full model

So the full model is:

$$y_i \sim \text{Poisson}(\mu)$$

 $\mu = \log \tau_i + \alpha + \beta_A A_i + \beta_C C_i + \beta_B B_i$
 $\alpha \sim \text{Normal}(0, 0.5)$
 $\beta \sim \text{Normal}(0.5, 0.5)$

Let's write the code and sample it.

Full model code

```
with pm.Model() as offset_fish_model:
    alpha = pm.Normal('alpha', 0, 0.5)
   b_adults = pm.Normal('b_adults', 0.5, 0.5)
    b_children = pm.Normal('b_children', 0.5, 0.5)
   b_bait = pm.Normal('b_bait', 0.5, 0.5)
   rate = pm.math.exp(np.log(fish.hours.values)
                       + alpha
                       + b_bait * fish.livebait
                       + b_adults * fish.persons
                       + b_children * fish.child)
   fish_caught = pm.Poisson('fish_caught', rate, observed = fish.fish_caught)
```

Some results

After uneventful sampling:

	mean	sd	hdi_3%	hdi_97%
alpha	-2.798	0.130	-3.049	-2.560
b_adults	0.685	0.032	0.622	0.741
b_children	0.453	0.081	0.300	0.608
b_bait	0.428	0.120	0.199	0.649

Posterior predictive check

A routine posterior predictive check:

What's going on

- The data set is missing a key variable: whether the group attempted fishing
- Some groups visit the park to hike, camp, etc. but do not attempt to catch fish – obviously, these are guaranteed zeros
- Zero-inflated Poisson:
 - Mixture model: mix zeros with Poisson RVs
 - Two parameters: p, λ
 - With probability p, the random variable is a $Poisson(\lambda)$ RV
 - With probability 1 p, the random variable is 0

As a DAG

New model

$$y_i \sim \text{ZIPoisson}(\mu, p)$$

 $\mu = \log \tau_i + \alpha + \beta_A A_i + \beta_C C_i + \beta_B B_i$
 $\alpha \sim \text{Normal}(0, 0.25)$
 $\beta \sim \text{Normal}(0.5, 0.5)$
 $\rho \sim \text{Beta}(3, 2)$

Some results

	mean	sd	hdi_3%	hdi_97%
alpha	-2.074	0.149	-2.359	-1.813
b_adults	0.524	0.034	0.460	0.587
b_children	0.526	0.084	0.376	0.683
b_bait	0.342	0.133	0.089	0.597
fishing_p	0.720	0.045	0.636	0.806

Rerun the PPC

With zero-inflation:

Differences

- The new model is more trustworthy, based on the posterior predictive check
- New model shows a weaker live bait effect why?

Differences

- The new model is more trustworthy, based on the posterior predictive check
- New model shows a weaker live bait effect why?
- Without zero-inflation, live bait is a proxy variable for fishing

Parametric functional model

Cracking nuts

- Panda nuts a kind of nut primates like to eat
- Chimpanzees crack them open using tools
- Want to study/model chimpanzees learning the skill
 - Have observations of nut-opening "sessions"
 - Age, sex, tool used, time spent, nuts opened

A naive GLM

As a chimp gets older, it gets larger/stronger and thus is more able to open nuts.

We can attempt to model this with a naive Poisson GLM:

$$y_i \sim \text{Poisson}(\mu)$$

 $\log \mu_i = \log \tau_i + \alpha + \beta_A A_i$
 $\alpha \sim \text{Normal}(0, 0.1)$
 $\beta_A \sim \text{Normal}(0.1, 0.05)$

Result

After some uneventful sampling:

Result

- Fit appears mediocre, and there is a clear problem at 0
- Model predicts a baby chimpanzee will take about 3 seconds to crack a nut
- Probably, baby chimps cannot crack any nuts at all!

Problem: GLM not constrained to pass through 0

Better: use a little scientific intuition to design the model

Deriving a crude model

We'll derive a very simple and not very good model from an ODE – but still better than the GLM!

In animals that grow to a stable adult size, growth rate is proportional to the growth remaining.

Mathematically,

$$\frac{dM}{dt} = k(M_{max} - M(t))$$

As a result,

$$M(t) = M_{max}(1 - \exp(-kt))$$

Thinking about the effect of mass

Imagine that strength S is proportional to mass M:

- $S = \beta M$
- Higher strength helps with nut opening in multiple ways, so we expect nut opening rate to be proportional to S^{θ} for some θ :

$$\mu = \alpha (\beta M_{\text{max}} (1 - \exp(-kt)))^{\theta}$$

A lot of parameters, but we can scale some of them out

Thinking about the effect of mass

Starting from:

$$\mu = \alpha (\beta M_{max} (1 - \exp(-kt)))^{\theta}$$

Mass measurement scale is arbitrary, so we set $M_{max} = 1$:

$$\mu = \alpha \beta^{\theta} (1 - \exp(-kt))^{\theta}$$

The factor in front is overparameterized; set $\phi = \alpha \beta^{\theta}$:

$$\mu = \phi(1 - \exp(-kt))^{\theta}$$

Writing down the model

Now we can write down a model:

$$y_i \sim \text{Poisson}(\mu_i)$$

 $\mu_i = \tau_i \phi (1 - \exp(-kt))^{\theta}$

Priors should take into account some reasonable biological and physical assumptions:

- Most importantly, the growth rate k should have the growth flattening off around 12 years (when chimpanzees reach adult mass)
- The prior for ϕ should have a mean near the maximum nut opening rate (maybe around one nut/second?)

Writing down the model

$$y_i \sim \text{Poisson}(\mu_i)$$

 $\mu_i = \tau_i \phi (1 - \exp(-kt))^{\theta}$
 $\phi \sim \text{LogNormal}(\log(1), 0.1)$
 $k \sim \text{LogNormal}(\log(2), 0.25)$
 $\theta \sim \text{LogNormal}(\log(5), 0.25)$

Log-normal:

Constrained to be positive and zero-avoiding

The model code

Model code is little different from any other model:

```
with pm.Model() as model:
    # Priors
    phi = pm.Lognormal('phi', np.log(1), 0.1)
   k = pm.Lognormal('k', np.log(2), 0.25)
   theta = pm.Lognormal('theta', np.log(5), 0.25)
    # Model equation
   rate = (data.seconds.values
            * phi
            * (1 - pm.math.exp(-k*data.age.values))
            ** theta)
    # Likelihood
   y_ = pm.Poisson('y', rate, observed = data.nuts_opened)
   trace = pm.sample()
```

Results

With the new model:

ODE models in general

- This model was built on an ODE but a pretty trivial one
- More complex ODEs: solve numerically
- Section 16.4 of Rethinking: Lotka-Volterra equations
- ODE module in PyMC3 seems a bit rusty

Summary

Today:

- Simple models can be improved by more carefully considering the data generating process
 - Mixture models for when there are two processes combined
 - Parameterized functional models (e.g. from ODEs) when the linear model does not make sense

Next week:

- Modeling missing data
- Grab bag topics