Modelo de regresión lineal múltiple

 Los modelos de regresión estudian la relación estocástica cuantitativa entre una variable de interés y un conjunto de variables explicativas. La formulación matemática de estos modelo es la siguiente

$$Y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k + \varepsilon$$

donde e es el error de observación debido a variables no controladas

La expresión matricial de este modelo viene dada de la forma

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

El modelo de regresión lineal múltiple es útil

- Cuando la respuesta depende de varias variables explicativas cuantitativas
- La regresión múltiple es mejor que la simple porque se mejora la predicción de la variable respuesta
- Cuando la respuesta depende de más de una variable, la regresión simple las considera una a una y se pueden producir fácilmente sesgos en la estimación de los efectos que tienen cada una de ellas en la respuesta
- Las ideas de la regresión simple se extienden casi automáticamente a la regresión múltiple

Hipótesis del modelo

- 1. Normalidad: los errores tienen una distribución Normal $(e_i \sim N(0; \sigma^2))$
- 2. Linealidad: Le esperanza de los errores es cero $(E(e_i)=0)$
- 3. Homocedasticidad: La varianza de los errores son iguales
- 4. Independencia: los errores son independientes

Requisitos adicionales de la regresión múltiple

- a) Hay más datos que parámetros desconocidos
- b) n es igual o mayor que k+2
- c) Ninguna de las variables explicativas es combinación lineal exacta de las restantes (colinealidad)

$$y_i = \alpha_0 + \alpha_1 x_{1i} + \alpha_2 x_{2i} + + \alpha_k x_{ki} + e_i$$

Interpretación de los parámetros:

 α_0 :Representa el valor medio de la respuesta (y) cuando todas las variable explicativas (x) valen cero

 α_i : Representa el incremento de la respuesta media (y) cuando la variable explicativa (x_i) aumenta en una unidad y el resto de las variables explicativas permanecen constantes

Estimación de los parámetros

$$\hat{\alpha} = (XX)^{-1}XY$$

$$e_i = y_i - \hat{y}_i = y_i - (\alpha_0 + \alpha_1 x_{i1} + \alpha_2 x_{i2} + \dots + \alpha_k x_{ik})$$

$$\hat{\sigma}^2 = S_R^2 = \frac{1}{n - k - 1} \sum_{i=1}^n e_i^2$$

Contrastes de los coeficientes

Dado que se conoce la distribución del vector de estimación α , es posible realizar los contrastes siguientes, en los que se comprueba si la respuesta no depende linealmente de cada una de las variables regresoras x_i

 H_0 : $\alpha_i = 0$ (la respuesta no depende linealmente de x_i)

 $H_1: \alpha_i \neq 0$ (la respuesta sí depende linealmente de x_i)

Contraste de regresión

 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$

 H_1 : existe algún $\alpha_i \neq 0$ para algún i

Tabla ANOVA

Razonando como en el modelo de regresión lineal simple y en base a las propiedades geométricas del modelo, podemos efectuar la siguiente descomposición

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
Suma de cuadrados
Total (SCT)
g.l=n-1
Suma de cuadrados
explicadaporel
modelo(SCX)
g.l=n-(k+1)

Tabla ANOVA

	Tabla ANOVA del modelo de regresión múltiple			
Fuentes de variación	SUMA DE CUADRADOS	g.l.	MEDIAS DE CUADRADOS	F _R
Por el modelo	$SCX = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$	k	$\hat{S}_X^2 = MCX = \frac{SCX}{k}$	$F_R = \frac{MCX}{MCR} \approx F_{k,n-(k+1)}$
Residual	$SCR = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n-(k+1)	$\hat{S}_R^2 = MCR = \frac{SCR}{n - (k+1)}$	
Total	$SCT = \sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1	$\hat{S}_Y^2 = \frac{SCT}{n-1}$	

Caso	Contraste conjunto	Contraste individual
1	Significativo	Todos significativos
2	Significativo	Alguno significativo
3	Significativo	Ninguna significativo
4	No Significativo	Todos significativos
5	No Significativo	Alguno significativo
6	No Significativo	Ninguna significativo

Caso 1: Todas las variables explicativas influyen en la variable respuesta

Caso 2: Influyen algunas variables explicativas, otras no

Caso 3: Las variables explicativas son dependientes entre sí. Entonces influyen de forma conjunta. Multicolinealidad. Se soluciona eliminando algunas variables regresoras (Análisis de Componentes Principales)

Caso 4: Multicolinealidad. Las variables presentan una correlación fuerte y negativa

Caso 5: Igual que el caso anterior

Caso 6: Ninguna de las variables regresoras influye en la variable de respuesta o la influencia no la detecta la muestra tomada

Coeficiente de determinación – R²

¿Cómo evaluamos la fuerza del ajuste de un modelo de regresión?

El **COEFICIENTE DE DETERMINACIÓN** es la proporción de variabilidad explicada por la regresión

$$R^2 = \frac{SCX}{SCT} = 1 - \frac{SCR}{SCT}$$

Inconveniente de R²:

Siempre aumenta cuando introducimos nuevas variables, aunque no sirvan para explicar la respuesta

Coeficiente de determinación CORREGIDO R²

Se corrige R² por los grados de libertad

$$\overline{R}^{2} = 1 - \frac{MCR}{MCT} = 1 - \frac{\frac{SCR}{n - (k+1)}}{\frac{SCT}{n-1}}$$

Lo usaremos únicamente para comparar modelos con distinto número de variables (siempre es más pequeño que R^2 y puede ser negativo)

Multicolinealidad

- •Cuando las variables explicativas están muy correlacionadas
- •El caso extremo es cuando una variable es combinación lineal exacta de otras
- •Intuitivamente, el problema que se presenta es que cada variable que incluimos en el modelo supone un parámetro nuevo a estimar y necesitamos más información. Si los datos no aportan casi nada nuevo es difícil estimar los parámetros

Presenta algunos inconvenientes que pueden ser importantes:

- Gran varianza de los estimadores α
- Cambio importante en las estimaciones al eliminar o incluir regresores en el modelo
- Cambio de los contrastes al eliminar o incluir regresores en el modelo
- Contradicciones entre el contraste F y los contrastes individuales