Analiza 2 - definicije, trditve in izreki

Oskar Vavtar 2020/21

Kazalo

1	NE	DOLOČENI INTEGRAL IN POJEM
	DIE	FERENCIALNE ENAČBE
	1.1	Primitivna funkcija in nedoločeni integral
	1.2	Uvedba nove spremenljivke v nedoločeni integral
	1.3	Integracija po delih v nedoločenem integralu
	1.4	Diferencialne enačbe 1.reda
2	Dol	očeni integral
	2.1	Motivacija za določeni integral
	2.2	Riemannova vsota in Riemannov integral
	2.3	Integrabilne funkcije
	2.4	Osnovni izrek analize
	2.5	Pravila za integriranje in Leibnizova formula
	2.6	Posplošeni integral na omejenem intervalu
	2.7	Posplošeni integral na neomejenem intervalu

1 NEDOLOČENI INTEGRAL IN POJEM DIFERENCIALNE ENAČBE

1.1 Primitivna funkcija in nedoločeni integral

Definicija 1.1 (Primitivna funkcija). Naj bo f funkcija ene spremenljivke. Če \exists odvedljiva funkcija $F: A \to \mathbb{R}$, za katero velja F' = f, imenujemo F primitivna funkcija funkcije f na A.

Definicija 1.2 (Nedoločeni integral). *Nedoločeni integral* funkcije f je skupek vseh njenih primitivnih funkcij. Označimo ga z $\int f(x)dx$, funkcijo f pa imenujemo integrand.

Posledica. Naj boFneka primitivnafunkcija za fna intervaluJ. Potem je za $x \in J$

$$\int f(x)dx = F(x) + C,$$

kjer je $C \in \mathbb{R}$ poljubna konstanta, ki jo imenujemo splošna ali integracijska konstanta.

1.2 Uvedba nove spremenljivke v nedoločeni integral

1.3 Integracija po delih v nedoločenem integralu

1.4 Diferencialne enačbe 1.reda

Definicija 1.3. *Navadna diferencialna enačba* 1.reda je enačba za neznano funkcijo

$$y = g(x),$$

ki vsebuje tudi odvod y' funkcije y.

Splošna oblika diferencialne enačbe 1.reda je

$$F(x, y, y') = 0,$$

kjer je ${\cal F}$ funkcija treh spremenljivk, ki je res odvisna od zadnje spremenljivke.

Splošna rešitev diferencialne enačbe 1.reda je funkcija

$$y = g(x, C)$$

(lahko podana implicitno),
ki je odvisna od splošne konstante C in reši dano diferencialno enačbo za pol
jubno izbiro vrednosti konstante $C \in \mathbb{R}$, poleg tega pa za pol
juben začetni pogoj \exists vrednost konstante C, pri kateri rešitev zadošča izbranemu začetnemu pogoju.

Rešitev, ki ne vsebuje splošnih konstant, imenujemo tudi posebna ali partikularna rešitev.

Definicija 1.4 (LDE 1.reda). *Linearna diferencialna enačba* 1.reda ima obliko

$$r_1(x)y' + r_0(x)y = s(x),$$

kjer so $r_0, r_1, s: J \to \mathbb{R}$ funkcije, definirane na nekem intervalu J. Če je s ničelna funkcija, rečemo, da je enačba homogena. Če sta funkciji r_0, r_1 konstantni, pa rečemo, da ima enačba konstante koeficiente.

Standardna oblika linearne diferencialne enačbe 1.reda je

$$y' + p(x)y = q(x),$$

kjer sta $p, q: J \to \mathbb{R}$ funkciji, definirani na intervalu J.

2 DOLOČENI INTEGRAL

2.1 Motivacija za določeni integral

Definicija 2.1. Naj bo $f:[a,b] \to \mathbb{R}$ nenegativna funkcija, torej $f(x) \ge 0$ za vse $x \in [a,b]$. Rečemo, da graf funkcije f določa območje $A \subset \mathbb{R}^2$ nad intervalom [a,b]. Množica A je navzgor omejena z grafom funkcije f, na levi s premico x=a in na desni s premico x=b.

2.2 Riemannova vsota in Riemannov integral

Definicija 2.2 (Riemannova vsota). *Delitev D* intervala [a, b] na podintervale je dana z izbiro *delilnih točk* x_i :

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

kjer je $n \in \mathbb{N}$. Dolžino *i*-tega podintervala $[x_{i-1}, x_i]$ (za i = 1, 2, ..., n) označimo z $\delta_i := x_i - x_{i-1}$. Velikost delitve D je dolžina najdaljšega podintervala delitve D, torej

$$\delta(D) = \max \{ \delta_i \mid i = 1, 2, ..., n \}.$$

Na vsakem od podintervalov, na katere delitev D razdeli interval [a, b], izberemo $testno točko t_i \in [x_{i-1}, x_i]$ in s $T_D = (t_1, t_2, \ldots, t_n)$ označimo nabor teh točk; nabor testnih točk je usklajen z delitvijo D, ker smo na vsakem podintervalu $[x_{i-1}, x_i]$, določenem z D, izbrali natanko eno testno točko t_i .

 $Riemannova\ vsota$ funkcije $f:[a,b]\to\mathbb{R}$, pridružena delitvi D in usklajenemu naboru testnih točk T_D je

$$R(f, D, T_D) := \sum_{i=1}^{n} f(t_i)\delta_i.$$

Definicija 2.3 (Riemannov integral). Riemannov integral ali določeni integral funkcije $f:[a,b] \to \mathbb{R}$ je limita Riemannovih vsot $R(f,D,T_D)$, kjer limito vzamemo po \forall delitvah D intervala [a,b] in usklajenih naborih testnih

točk T_D , ko pošljemo velikost delitev $\delta(D)$ proti 0, če ta limita \exists (torej je končna in neodvisna od izbire delitev in testnih točk). Pišemo

$$\int_{a}^{b} f(x)dx := \lim_{\delta(D) \to 0} R(f, D, T_D).$$

Če zgornja limita \exists , rečemo, da je funkcija f integrabilna na [a, b].

Definicija 2.4.

$$\lim_{\delta(D)\to 0} R(f, D, T_D) = I,$$

če za $\forall \epsilon>0$ $\exists \delta>0$, da za poljubno delitev D z $\delta(D)<\delta$ in poljuben usklajen nabor testnih točk T_D velja

$$|R(f, D, T_D) - I| < \epsilon.$$

2.3 Integrabilne funkcije

Definicija 2.5 (Zožitev). Naj bo $f:A\to\mathbb{R}$ funkcija in $B\subset A$. Tedaj $f|_B:B\to\mathbb{R}$ označuje funkcijo z definicijskim območjem B, ki $\forall x\in B$ preslika v f(x). Funkcijo $f|_B$ imenujemo zožitev funkcije f na B.

Definicija 2.6 (Enakomerna zveznost). Naj bo $A \subseteq \mathbb{R}^n$. Funkcija $f: A \to \mathbb{R}$ je enakomerno zvezna na A, če za $\forall \epsilon > 0 \ \exists \delta = \delta_{\epsilon} > 0$, da za poljubna $x, y \in A$, ki zadoščata $|x - y| < \delta$, velja

$$|f(x) - f(y)| < \epsilon$$
.

Definicija 2.7 (Odsekoma zvezna funkcija). Funkcija $f: J \to \mathbb{R}$, definirana na omejenem intervalu J, je odsekoma zvezna, če je zvezna v \forall točkah intervala razen morda v končno mnogo točkah, kjer ima skoke.

Funkcija f ima skos v točki $c \in J$, če f ni zvezna v c, ima pa (končno) levo in desno limito c (če je c krajišče intervala, zahtevamo le obstoj limite na tisti strani c, ki leži v J).

Posledica. Če je $f:[a,b]\to\mathbb{R}$ odsekoma zvezna, potem je integrabilna. Vrednosti funkcije f v skokih ne vplivajo niti na integrabilnost niti na integral funkcije f na [a,b].

Dogovor. • Integral po izrojenemu intervalu [a, a] je nič:

$$\int_{a}^{a} f(x)dx = 0.$$

• Če je a < b, je $\int_b^a f(x) dx = - \int_a^b f(x) dx.$

Definicija 2.8 (Povprečna vrednost). Povprečna vrednost integrabilne funkcije f na intervalu [a,b] je

$$\mu := \frac{1}{b-a} \int_a^b f(x) dx.$$

2.4 Osnovni izrek analize

Definicija 2.9. Naj bo $f:[a,b]\to\mathbb{R}$ integrabilna funkcija. Funkcijo $F:[a,b]\to\mathbb{R}$, definirano s predpisom

$$F(x) = \int_{a}^{x} f(t)dt,$$

imenujemo integral kot funkcija zgornje meje.

2.5 Pravila za integriranje in Leibnizova formula

2.6 Posplošeni integral na omejenem intervalu

Definicija 2.10 (Posplošeni integral). Naj bo $f:(a,b]\to\mathbb{R}$ funkcija, ki je integrabilna na intervalu [t,b] za $\forall t\in(a,b)$. Potem je posplošeni integral funkcije f na intervalu [a,b]

$$\int_{a}^{b} f(x)dx := \lim_{t \to a} \int_{t}^{b} f(x)dx,$$

če ta limita \exists .

Če limita \exists , rečemo, da je f posplošeno integrabilna na [a,b] in da je $\int_a^b f(x)dx$ konvergenten, sicer pa rečemo, da je integral divergenten.

2.7 Posplošeni integral na neomejenem intervalu

Definicija 2.11 (Posplošena integrabilnost). • Naj bo $f:[a,\infty) \to \mathbb{R}$ integrabilna na [a,s] za $\forall s>a$. Potem je posplošeni integral funkcije f na $[a,\infty)$

$$\int_{a}^{\infty} f(x)dx := \lim_{s \to \infty} \int_{a}^{s} f(x)dx,$$

če ta limita \exists . Če limita \exists , rečemo, da je posplošeni integral konvergenten, sicer pa, da je divergenten.

• Naj bo $f:(-\infty,b] \to \mathbb{R}$ integrabilna na [t,b] za $\forall t < b$. Potem je posplošeni integral funkcije f na $(-\infty,b]$

$$\int_{-\infty}^{b} f(x)dx := \lim_{t \to -\infty} \int_{t}^{b} f(x)dx,$$

če ta limita \exists . Če limita \exists , rečemo, da je posplošeni integral konvergenten, sicer pa, da je divergenten.

• Funkcija $f:(-\infty,\infty)\to\mathbb{R}$ je posplošeno integrabilna, če sta posplošeno integrabilni zožitvi $f|_{(-\infty,a]}$ in $f|_{[a,\infty)}$ za $\forall a\in\mathbb{R}$.