M - 112 - 2012

배관지지물 설치 및 유지에 관한 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한국산업안전보건공단 임 대 식

ㅇ 개정자 : 안전연구실

○ 제·개정경과

- 1996년 10월 기계안전분야 제정위원회 심의
- 1996년 12월 총괄제정위원회 심의
- 2002년 6월 기계안전분야 제정위원회 심의
- 2002년 8월 총괄제정위원회 심의
- 2009년 9월 기계안전분야 제정위원회 심의
- 2009년 11월 총괄제정위원회 심의
- 2012년 4월 기계안전분야 제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - ANSI B 31.3(Process piping for chemical plants)
- 관련 법규·규칙·고시 등
- 산업안전보건 기준에 관한 규칙 별표 7(화학설비 및 그 부속 설비의 종류: 제227조부터 제229조까지, 제243조 및 제2편제2장제4절 관련)
- 0 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

배관 지지물 설치 및 유지에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에관한규칙(이하 "안전보건규칙"이라 한다) 별표 7의 "화학설비 및 그 부속설비의 종류" 중에 화학설비 배관계의 내압, 열응력, 자중, 바람, 지진 등에 의한 재해를 방지하기 위하여 배관 지지물 설치 및 유지에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 안전보건규칙 별표 7의 "화학설비 및 그 부속설비의 종류" 중 배관계의 안전성을 확보하기 위하여 배관지지물 선정, 설치 및 유지·보수 시에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
- (가) "배관 지지물"이란 배관계의 안전성을 유지시켜 주기 위하여 배관계에서 발생하는 배관의 자중, 열팽창에 의한 변형, 유체의 진동, 지진 및 그 밖의 외부 충격 등으로부터 배관계를 지지하거나 보호하기 위하여 설치하는 장 치를 말한다.
- (나) "배관 지지대"란 배관을 지지하는 철구조물을 말한다.
- (다) "배관 고정점"이란 배관의 이동 및 회전을 허용하지 않고, 배관을 일정 위치에 완전히 고정시키는 지점을 말한다.
- (라) "정지 설정값(Cold setting)"이란 배관이 운전되고 있지 않을 때 스프링식 행거 및 서포트의 변위지시기가 지시하는 값을 말한다.
- (마) "운전 설정값(Hot setting)"이란 배관이 운전 중일 때 스프링식 행거 및 서포트의 변위지시기가 지시하는 값을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이

M - 112 - 2012

있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행 규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 배관 지지물의 종류

4.1 행거 또는 서포트(Hanger & support)

배관의 자체중량을 지지하는 것을 목적으로 설치하는 장치로써 행거는 배관을 위에서 매다는 장치이며, 서포트는 배관을 아래에서 받치는 장치를 말한다.

(1) 고정식 행거

수평변위는 다소 발생하여도 수직변위는 거의 발생하지 않는 위치에 설치하며, 주로 로드를 사용하고 수평변위가 큰 방향으로 회전이 가능하도록 로드 상단을 핀 조인트로 한다.

(2) 고정식 서포트

배관이 열팽창에 의하여 수직변위가 발생하지 않는 위치에 설치하며, 배관하중을 지지한다.

(3) 스프링식 행거 및 서포트

배관의 자중을 지지함과 동시에 열팽창에 의한 배관의 수직변위를 허용하게 하는 것을 목적으로 하는 배관지지물로써, 하중 변동률에 따라 불변 스프링식 행거 및 서 포트(Constant spring hanger & support)와 가변 스프링식 행거 및 서포트 (Variable spring hanger & support)로 나눌 수 있다.

(가) 가변 스프링식 행거 및 서포트

식(1)에서의 정지 시와 운전 시의 하중 변동률이 25%이내의 범위에서 사용되는 스프링식 행거/서포트를 말한다.

β : 하중변동률(%) W_H : 운전 시의 운전하중 (kgf)

Wc : 정지 시의 하중 (kgf) K : 스프링 정수

δ : 배관 지지점의 이동량(mm)

(나) 불변 스프링식 행거 및 서포트

배관의 수직변위가 커지면 하중변동률이 25%를 초과하는 경우에는 가변스 프링식 행거 및 서포트를 사용할 수 없다. 따라서 지지점의 상하 수직변위 에 관계없이 항상 일정한 하중으로 배관을 지지할 필요가 있을 때에는 불 변 스프링식 행거 및 서포트를 사용한다.

4.2 배관의 구속(Restraint)

열팽창에 의한 배관의 이동을 구속 또는 제한하기 위한 장치로서 구속하는 방법에 따라 앵커(Anchor), 스토퍼(Stopper) 및 가이드(Guide)로 나눈다.

(1) 앵커

배관 지지점의 이동 및 회전을 허용하지 않고 일정 위치에 완전히 고정하는 장치를 말하며, 배관계의 요동 및 진동 억제효과가 있으나 이로 인하여 과대 한 열응력이 생기기 쉽다.

(2) 스토퍼

한 방향 앵커라고도 하며, 배관 지지점의 일정 방향으로의 변위를 제한하는 장치이며, 열팽창으로부터의 기기 노즐의 보호, 안전변의 토출압력을 받는 곳 등에 사용한다.

M - 112 - 2012

(3) 가이드

지지점에서 축방향으로 안내면을 설치하여 배관의 회전 또는 축에 대하여 직 각방향으로 이동하는 것을 구속하는 장치이다.

4.3 완충기

배관계에 작용하는 동하중(바람, 지진, 진동 등)에 대하여 움직임을 조절하여 배관을 보호하기 위한 장치이다.

4.4 방진기

배관 자중 및 열팽창 하중 이외의 다른 하중에 의하여 발생한 변위 또는 진동을 억제시키는 장치이다.

5. 배관지지물 설계 및 선정시 필요한 자료

- (1) 공정흐름도(Process flow diagram)
- (2) 공정배관·계장도(Piping & instrumentation diagram)
- (3) 배관자재 사양서(Piping material specification)
- (4) 기기배치도(Equipment arrangement drawing)
- (5) 철구조물 도면(Steel structure drawing)
- (6) 배관도(Piping arrangement drawing)
- (7) 3차원 배관도(Isometric drawing)

M - 112 - 2012

6. 배관 지지물 설계 및 선정

- 6.1 배관 지지물 설계 및 선정에 대한 흐름도는 별표 1과 같다.
- 6.2 지지물 설계 및 선정절차는 아래와 같다.
 - (1) 지지물 설계대상 배관에 대하여 배관자재 사양서와 배관목록표(Pipe line list)를 검토하며, 주변기기와의 간섭사항, 배관의 형상 및 철구조물 도면을 충분히 이해하여야 한다.
 - (2) 지지물 설계 대상 배관에 대한 응력해석용 3차원 도면을 작성하며, 이때 고려하여야 할 하중 및 설계조건을 기입한다.
 - (3) 지지물의 위치를 선정한다. 위치선정 시 아래의 7.(배관지지점 선정방법)을 참조한다.
 - (4) 응력해석을 수행하며 지지점에서의 허용응력을 검토하여 최종 지지점을 확정한다. 배관 응력해석 절차 및 평가기준은 KOSHA CODE M-12-2007 (배관응력 해석에 관한 기술기준)을 참조한다.
 - (5) 응력해석결과 별표 2의 배관지지물 하중집계표를 작성하고, 배관지지물을 선정한다.
 - (6) 지지물 선정 후 배관도, 기기배치도, 철구조물 도면 및 3차원 도면을 참고 하여 배관 지지물 도면을 작성하며, 아래와 같은 사항이 포함되어야 한다.
 - (가) 가장 가까운 철구조물에 대한 배관지지물의 위치
 - (나) 배관 지지물과 보조 철구조물의 배치 및 상세도
 - (다) 배관지지물 자재목록표
 - (라) 3차원 도면
 - (마) 설계하중 및 지지점에서의 배관이동량

M - 112 - 2012

- (바) 배관의 계통명, 크기, 재질, 보온재 두께 등
- (7) 지지물 설치 후 정기적인 점검과 검사를 실시하여 항상 제 기능을 유지하도록 하여야 한다. 검사 시에는 아래의 9.(배관지지물 검사)을 참조한다.

7. 배관 지지점 선정 방법

- (1) 배관 형상을 검토하여 고정점을 우선 선정한다. 고정점을 경계로 양쪽 배관계의 열팽창이 달라지므로 배관계의 중간지점에 고정점을 선택하는 것이 좋다.
- (2) 배관지지폭은 〈부록 3〉을 참조하여 배관 자중에 의한 처짐이 2.54 mm이 하 이어야 하며, 양단 고정점에서의 굽힘응력이 과도하게 발생하지 않도록 하여야 한다.
- (3) 배관하중이 기기 노즐부위에 직접 전달되지 않도록 가능한 노즐부위에 가까이 선정한다.
- (4) 밸브, 플랜지 등 집중하중이 걸리는 곳은 집중하중이 걸린 곳 가까이 선정하며, 지지폭 결정 시 집중하중을 고려한다.
- (5) 수직배관에서는 상단에서 전체 길이의 ½되는 지점을 선정하며, 밸브 등의 집중질량이 위치해 있는 경우 집중질량하부에 지지점을 설정한다.
- (6) 건축물이나 철구조물 등을 고려하여 유지보수가 편리한 지점을 선정한다.
- (7) 열응력 해석 후 배관계의 수직이동이 최소가 되는 곳에 선정한다.
- (8) 고온배관일 경우 수직 배관에서의 지지점은 자유 팽창 변위가 0 인 곳을 선정한다.

8. 배관 지지물 설치 시 유의사항

M - 112 - 2012

- (1) 지지물 설치 시 지지물의 부품이 도면과 일치하는지 반드시 확인한 후 설치하여야 한다.
- (2) 지지물은 배관계에서 계산된 이동량을 만족하여야 하며 모든 부재는 배관의 이동에 의하여 이탈되지 않도록 설치되어야 한다.
- (3) 자동밸브 주위에서의 배관지지물 설치는 자동밸브 상류측 또는 하류측에 가능하면 앵커 또는 가이드를 설치하여야 한다.
- (4) 고정식 행거 설치 시 수평이동이 발생하는 위치에서 로드는 수직선상에서 4°이하가 되도록 한다.
- (5) 고정식 행거 설치 시 행거설치 후 로드의 조정을 위해 최소 50 mm 이상의 조절길이를 확보하여야 한다.
- (6) 열팽창 신축이음이 설치되어 있는 배관의 양단에 설치되는 앵커는 내압에 의한 추력과 스프링에 의한 힘의 반력을 충분히 견딜 수 있어야 하며, 신축이음으로부터 배관양단에 배관크기의 4배, 14배의 위치에 각각 가이드를 설치한다.
- (7) 가변 스프링식 행거 또는 서포트는 설치 시 아래사항을 확인하고 설치하여야 하며, 설치 작업 완료 후 조정너트를 이용하여 설치길이를 조정한다.
- (가) 운전 시와 정지 시의 설계 하중 표시
- (나) 정지 설정값과 운전 설정값 표시
- (다) 변위지시가 정지 설정값의 위치에 있을 것
- (8) 불변 스프링식 행거 또는 서포트는 설치 시 이동정지판(Travel stop)이 부착 되어 있는지를 확인하고, 하중조절볼트(Load adjusting bolt)를 이용하여 하 중을 조절할 수 있으나 현장조절은 정격하중의 최소 ±10 %를 초과하지 않 도록 한다..

M - 112 - 2012

- (9) 완충기는 동하중만을 지지하고 열팽창에 의한 이동을 허용하여야 하며, 인장과 압축의 동적인 하중에 견딜 수 있고 조절너트를 이용하여 설치 길 이를 조정 할 수 있어야 한다.
- (10) 보온 배관의 보온두께별 받침대 높이는 표 1에 따르며, 운전 중 배관의 열팽창으로 인하여 받침대 판이 지지보로부터 이탈되지 않도록 열팽창으로 인한 변위량을 고려하여 충분한 길이를 확보하여 설치하여야 한다.

<표 1> 보온두께별 배관받침대의 높이

[단위 : mm]

보 온 두 께	배관받침대의 높이		
75 이하	100		
76 ~ 125	150		
126 ~ 175	200		
176 ~ 225	250		
226 ~ 275	320		
276 ~ 325	370		

- (11) 진동이 있는 배관은 어떠한 경우에도 주위의 다른 배관과 함께 지지하지 않도록 한다.
- (12) 아래와 같은 곳에 지지물을 설치하지 않도록 한다.
- (가) 층 바닥 통과부위의 배관용 슬리브
- (나) 콘크리트 블록으로 쌓은 벽
- (다) 기기 지지용 강재
- (라) 층에 설치되어 있는 철판구조물(Grating & Checked plate)
- (13) 지지물 설치 시 다음 사항을 확인하여야 한다.
- (가) 배관과 배관사이 또는 배관과 강재 사이가 배관의 열팽창에 의하여 접촉되지 않는지를 확인하다.
- (나) 가이드는 코너로부터 6 m 이상의 거리에 설치한다.

M - 112 - 2012

- (다) 신축이음이 없는 직관부에서의 가이드는 6 m~15 m 간격으로 설치한다.
- (14) 강재를 이용한 박스형태의 지지물을 설치할 경우에는 배관의 열팽창을 고려하여 배관과 강재 사이에 간극을 주어 설치하여야 한다.
- (15) 지지물은 다른 배관에 용접하여 지지하지 않도록 한다.

9. 배관 지지물 검사

9.1 검사주기

- (1) 배관지지물 설치 후, 1년 주기로 검사를 실시한다.
- (2) 운전 중 행거 및 서포트에 이상이 있을 경우에는 즉시 검사를 실시한다.
- (3) 운전이 중지될 경우, 반드시 배관지지물의 검사를 실시한다.

9.1.1 운전 전 검사

- (1) 스프링식 행거 및 서포트는 변위고정장치가 제거되었는지를 확인한 후, 반드시 변위 지시기가 정지하중위치에 있는가를 확인한다.
- (2) 배관지지물 설치 후, 배관계의 수압시험 및 시운전 후에는 반드시 볼트, 너트의 상태를 확인하여야 한다.

9.1.2 운전 중 검사

- (1) 운전 중 변위지시기가 제대로 지시하고 있는지를 주기적으로 확인한다.
- (2) 운전 중 변위지시기가 운전하중 위치에 있지 않을 경우에는 배관계의 응력 해석을 재검토하여 다른 배관지지물의 지지점 위치와 지지물 동작 상황을 확인한 후 재조정한다.

M - 112 - 2012

- (3) 스프링식 행거 및 서포트의 작동에 악영향을 미칠 수 있는 먼지, 그을음 이물질을 제거하여야 한다.
- (4) 특히, 옥외에 설치된 배관지지물 부품에 부식 및 녹이 발생하였을 경우에는 도 장을 실시하여야 한다.

9.2 검사항목

9.2.1 육안검사

- (1) 고정식 행거 및 서포트, 레스트레인트, 앵커, 스토퍼 및 가이드에 대하여는 아래와 같은 항목을 검사한다.
 - (가) 고정식 행거 및 서포트 파손상태
 - (나) 용접상태
 - (다) 행거 및 서포트 로드의 휨상태
 - (라) 보조강재의 부식상태
 - (마) 지지보로부터 배관 받침대판의 이탈여부
- (2) 스프링식 행거 및 서포트는 아래와 같은 항목을 검사한다.
 - (가) 스프링 및 스프링 통의 부식상태
 - (나) 볼트·너트에 대한 부식 및 변형상태
 - (다) 행거 로드의 부식상태
 - (라) 구속 핀의 제거 유무
 - (마) 이름판 및 변위 지시기의 부착상태
 - (바) 운전하중 및 정지하중의 위치상태

9.2.2 비파괴검사

육안검사결과 필요하다고 판단하는 경우 선택적으로 실시한다.

M - 112 - 2012

9.3. 검사 판정기준 및 조치방안

검사항목	판정기준	조치방안
- 볼트·너트 부식 및 변형	- 부식으로 나사산을 구분할	- 교체한다.
	수 없을 때	
- 보조강재의 부식 및 변형	- 손상·변형·탈락 등이 발	- 교체한다.
	생될 때	
- 로드 부식 및 변형	- 로드가 휘어져 있을 때	- 정비 또는 교체한다.
- 구속핀의 제거유무	- 운전 중 구속핀이 채워진	- 구속핀을 제거한 후 하중 지시
	상태로 있을 때	계를 운전상태로 조정한다.
- 스프링 부식	- 스프링 부식으로 작동이 원활	- 교체한다.
	하지 못할 때	
	- 스프링 부식은 있으나 허용	- 녹 제거 후 방식용으로 그
	범위 이내일 때	리스를 발라둔다.
- 스프링통 부식 및 이름판	- 스프링통 부식이 심할 때	- 녹 제거 후 도장한다.
	- 탈락되었을 때	- 재 제작하여 부착한다.
- 스프링 변위 지시기의 위치	- 지시치를 벗어나거나 범위를	- 배관계의 열팽창을 재검토한
	벗어날 때	후 스프링식 행거/서포트의
		사용여부를 결정한다.
- 받침대판 이탈시	- 지지보로부터 배관받침대판의	- 받침대판을 보강 또는 재
	이탈이 일어날 때	제작하여 사용한다.

9.4. 기록 보관

9.3항의 검사 판정기준에 의한 검사결과를 작성하며, 배관 지지물 폐기 시까지 보관하도록 한다.

M - 112 - 2012

<별표 1>

배관지지물 설계 순서

KOSHA CODE

M - 112 - 2012

<별표 2>

배관지지물 하중 집계표

배관지지물	방 향	힘(kgf) 및	E는 모멘트	(kgf·m)	열	<u> </u> 팽창(□	nm)	 고
종 류	70 95	자중	열팽창	지진	△ X	△ Y	Δ ,	خالب
앵커 (Anchor)	X							
	Y							
	Z							
	$M_{\rm X}$							
	$M_{ m Y}$							
	M_Z							
스프링식 행거/서포트 (Spring hanger & support)	Y							
고정식 행거/서포트 (Rigid hanger &	X							
support)	Y							
	Z							

KOSHA CODE M - 112 - 2012

<별표 3>

배관크기별 배관지지폭

유체종류	최대 배관지지폭 (m)		
배관크기 (mm)	물 계통	증기, 가스, 공기 계통	
25	2.1	2.7	
50	3.0	4.0	
80	3.7	4.6	
100	4.3	5.2	
150	5.2	6.4	
200	5.8	7.3	
300	7.0	9.1	
400	8.2	10.7	
500	9.1	11.9	
600	9.8	12.8	