Kondensatoren

Spannung [V]	$U = -\int_{Unterseite-Kondensator}^{Oberseite-Kondensator} \vec{E} d\vec{r} = \frac{QL}{A\varepsilon_0}$	
Kapazität [F]	$C = \frac{A\varepsilon_0}{L} = \frac{Q}{U}$	
E-Feld	$ec{E}_{platte} = rac{\sigma}{2arepsilon_0} ec{n} = rac{Q}{2Aarepsilon_0} ec{n}$	
Energie des K.	$E_{elek} = \frac{Q^2}{2C} = \frac{CU^2}{2}$	
	$E_{pot} = \frac{\varepsilon_0 A L^2 E^2}{2L} = V \frac{\varepsilon_0 E^2}{2}$, falls E-Feld konst.	
Energiedichte	$W_E = \frac{E_{pot}}{V} = \frac{\varepsilon_0 E^2}{2}$	

Q=	Ladung	Coulomb
L=	Distanz der Platten	
ε_0		
A=	Fläche der Platte	
\vec{n}		