Lightweight structures and FEM - Lab 2

Names:			
	commercial FE code (AN Lab FE code, and with ana	~ /	uld be compared with
applied shear load not applied in the analytica torsional stiffness into Assume that the cross	sections are thin-walled in account will most likely de	entre. The corresponding to enter the correct be your analytical calculates.	g torque should be am bending and tions. Trying to take
	Horizontal displ. u(L)	Vertical displ. v(L)	Twist,, $\varphi(L)$
MatLab			
ANSYS/ABAQUS			
Analytical			
2.			
	gy from the commercial F	E code is:	
	olied load in the commercial		
c) The corresponding v	work in the MatLab code i	s:	
3 Plot and print the sh	ear stress distributions req	uested in task 7 in the la	ab instructions Add
•	lated shear stress distribut		
	ons. Please, try to incliude		
4. Plot and print the wa	arping and normal stress d	istributions requested in	tasks 8 and 9 in the
lab instructions. Add y	our analytical results and	compare the solutions.	
Comments or question	s (optional):		

The critical buckling load for the beam is estimated. Results are derived analytically, with the commercial FE code and with the MatLab code, which should be modified for this task. For the FE results, examine (at least) the 5 first critical buckling loads and try to distinguish which buckling modes they represent. In general try to find as many different buckling types as possible for each beam length.

Complete the following table:

$P_{cr}[N]$		L = 500 mm	L = 1000 mm	L = 2000 mm
Analytica	al, Euler (E)	(E)	(E)	(E)
	Torsion (T)	(T)	(T)	(T)
	Local (L)	(L)	(L)	(L)
	Combined (C)	(C)	(C)	(C)
FEM	P _{cr1} (mode) P _{cr2} (mode) P _{cr3} (mode) P _{cr4} (mode) P _{cr5} (mode)	() () () ()	() () () ()	() () () ()
MatLab	P _{cr1} (mode) P _{cr2} (mode) P _{cr3} (mode) P _{cr4} (mode) P _{cr5} (mode)	() () () ()	() () () ()	() () () ()

Comments or questions (optional):

Date and examiners	
signature:	