CDF (cumulative distributed fund)

$$-\left[F_{X}(\pi)\right] = P(X \leqslant \pi)$$

$$-\left[F_{X}(\pi)\right] = P(X \leqslant \pi)$$

$$-\left[F_{X}(\pi)\right] = P(X \leqslant \pi)$$

$$-\left[F_{X}(\pi)\right] = P(\pi)$$

$$F_{X}(\pi) = P(\pi)$$

$$F_{X}(\pi) = P(\pi)$$

$$F_{X}(\pi) = P(\pi) + P(\pi)$$

$$F_{X}(\pi) = P(\pi) + P(\pi) + P(\pi)$$

$$F_{X}(\pi) = P(\pi) + P(\pi) + P(\pi)$$

$$F_{X}(\pi) = P(\pi) + P(\pi) + P(\pi)$$

$$P(\pi) + P(\pi) + P(\pi) + P(\pi)$$

$$P(\pi) + P(\pi)$$

Scanned by CamScanner

$$f^{X}(x) = \int_{+\infty}^{-\infty} f^{X}(x) dx. - (5)$$

$$f^{X}(x) = gf^{X}(x) - (0)$$

Proportie & PDF

- 2 total area of PDF = 1 = fx(x)dx

Example

en an experiment, a boall consusting three successive tasks of own. Et me define random Variable & as the number of heads appearing the hall. Determine Px(x) and Fx(x).

Randon Val	P(x)	000 - No head-0
X	1/8	TTT 001-one head-1
0	3/8	THH 111- Three head 1-3
2_	318	H97 P04
3	18	AAL MITTING

Scanned by CamScanner

