The FREQ Procedure

s=1

Frequency	Table of row by col			
Percent Row Pct	col			
Col Pct	row	1	2	Total
	1	38	1	39
		59.38	1.56	60.94
		97.44	2.56	
		92.68	4.35	
	2	3	22	25
		4.69	34.38	39.06
		12.00	88.00	
		7.32	95.65	
	Total	41	23	64
		64.06	35.94	100.00

Statistics for Table of row by col

Odds Ratio and Relative Risks				
Statistic Value 95% Confidence Limits				
Odds Ratio 278.6667 27.2958 2844.948				
Relative Risk (Column 1)	8.1197	2.8054	23.5007	
Relative Risk (Column 2)	0.0291	0.0042	0.2028	

Odds Ratio			
Odds Ratio	278.6667		
Asymptotic Conf Limits			
95% Lower Conf Limit	27.2958		
95% Upper Conf Limit	2844.9483		
Exact Conf Limits			
95% Lower Conf Limit	24.0073		
95% Upper Conf Limit	11765.0331		

Sample Size = 64

The FREQ Procedure

s=2

Frequency	7	able of	row by	col
Percent Row Pct	col			
Col Pct	row	1	2	Total
	1	18	7	25
		36.73	14.29	51.02
		72.00	28.00	
		69.23	30.43	
	2	8	16	24
		16.33	32.65	48.98
		33.33	66.67	
		30.77	69.57	
	Total	26	23	49
		53.06	46.94	100.00

Statistics for Table of row by col

Odds Ratio and Relative Risks					
Statistic Value 95% Confidence Limits					
Odds Ratio 5.1429 1.5220 17.					
Relative Risk (Column 1)	2.1600	1.1662	4.0006		
Relative Risk (Column 2)	0.4200	0.2108	0.8368		

Odds Ratio				
Odds Ratio	5.1429			
Asymptotic Conf Limits				
95% Lower Conf Limit	1.5220			
95% Upper Conf Limit	17.3775			
Exact Conf Limits				
95% Lower Conf Limit	1.3153			
95% Upper Conf Limit	20.8329			

Sample Size = 49

The FREQ Procedure

Frequency	Table 1 of row by col			
Percent Row Pct	Controlling for s=1			
Col Pct			col	
	row	1	2	Total
	1	38	1	39
		59.38	1.56	60.94
		97.44	2.56	
		92.68	4.35	
	2	3	22	25
		4.69	34.38	39.06
		12.00	88.00	

7.32 95.65

23

64.06 35.94 100.00

64

41

Statistics for Table 1 of row by col Controlling for s=1

Total

Statistic	DF	Value	Prob
Chi-Square	1	48.3007	<.0001
Likelihood Ratio Chi-Square	1	55.9439	<.0001
Continuity Adj. Chi-Square	1	44.6610	<.0001
Mantel-Haenszel Chi-Square	1	47.5460	<.0001
Phi Coefficient		0.8687	
Contingency Coefficient		0.6558	
Cramer's V		0.8687	

Fisher's Exact Test			
Cell (1,1) Frequency (F) 38			
Left-sided Pr <= F	1.0000		
Right-sided Pr >= F	<.0001		
Table Probability (P)	<.0001		
Two-sided Pr <= P	<.0001		

Odds Ratio and Relative Risks				
Statistic Value 95% Confidence Limits				
Odds Ratio 278.6667 27.2958 2844.948				
Relative Risk (Column 1)	8.1197	2.8054	23.5007	
Relative Risk (Column 2)	0.0291	0.0042	0.2028	

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table 2 of row by col

Controlling for s=2

col

row	1	2	Total
1	18	7	25
	36.73	14.29	51.02
	72.00	28.00	
	69.23	30.43	
2	8	16	24
	16.33	32.65	48.98
	33.33	66.67	
	30.77	69.57	
Total	26	23	49
	53.06	46.94	100.00

Statistics for Table 2 of row by col Controlling for s=2

Statistic	DF	Value	Prob
Chi-Square	1	7.3505	0.0067
Likelihood Ratio Chi-Square	1	7.5443	0.0060
Continuity Adj. Chi-Square	1	5.8800	0.0153
Mantel-Haenszel Chi-Square	1	7.2005	0.0073
Phi Coefficient		0.3873	
Contingency Coefficient		0.3612	
Cramer's V		0.3873	

Fisher's Exact Test				
Cell (1,1) Frequency (F)	18			
Left-sided Pr <= F	0.9988			
Right-sided Pr >= F	0.0072			
Table Probability (P)	0.0061			
Two-sided Pr <= P	0.0101			

Odds Ratio and Relative Risks					
Statistic	Value	95% Confide	nce Limits		
Odds Ratio	5.1429	1.5220	17.3775		
Relative Risk (Column 1)	2.1600	1.1662	4.0006		
Relative Risk (Column 2)	0.4200	0.2108	0.8368		

Sample Size = 49

The FREQ Procedure

Summary Statistics for row by col Controlling for s

Cod	Cochran-Mantel-Haenszel Statistics (Based on Table Scores)				
Statistic	Alternative Hypothesis	DF	Value	Prob	
1	Nonzero Correlation	1	47.1930	<.0001	
2	Row Mean Scores Differ	1	47.1930	<.0001	
3	General Association	1	47.1930	<.0001	

Common Odds Ratio and Relative Risks					
Statistic	Method	Value	95% Confide	nce Limits	
Odds Ratio	Mantel-Haenszel	15.9196	6.2963	40.2511	
	Logit	12.1564	4.1347	35.7411	
Relative Risk (Column 1)	Mantel-Haenszel	4.0036	2.2801	7.0299	
	Logit	3.0144	1.7687	5.1375	
Relative Risk (Column 2)	Mantel-Haenszel	0.1771	0.0940	0.3335	
	Logit	0.3114	0.1627	0.5963	

Breslow-Day Test for Homogeneity of Odds Ratios			
Chi-Square	10.8129		
DF	1		
Pr > ChiSq	0.0010		

Total Sample Size = 113

The FREQ Procedure

The FREQ Procedure

The GENMOD Procedure

Model Information				
Data Set	WORK.A			
Distribution	Poisson			
Link Function	Log			
Dependent Variable	count			
Number of Observations Read 8				

Number of Observations Read 8

Number of Observations Used 8

Class Level Information				
Class Levels Values				
s	2	12		
row	2	12		
col	2	12		

Criteria For Assessing Goodness Of Fit					
Criterion	DF	Value	Value/DF		
Deviance	0	0.0000			
Scaled Deviance	0	0.0000			
Pearson Chi-Square		0.0000			
Scaled Pearson X2		0.0000			
Log Likelihood		223.1721			
Full Log Likelihood		-16.2561			
AIC (smaller is better)		48.5123			
AICC (smaller is better)					
BIC (smaller is better)		49.1478			

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter		DF	Estimate	Standard Error	Confi	l 95% dence nits	Wald Chi-Square	Pr > ChiSq
Intercept		1	2.7726	0.2500	2.2826	3.2626	123.00	<.0001
s	1	1	0.3185	0.3286	-0.3255	0.9624	0.94	0.3324
s	2	0	0.0000	0.0000	0.0000	0.0000		
row	1	1	-0.8267	0.4532	-1.7149	0.0615	3.33	0.0681
row	2	0	0.0000	0.0000	0.0000	0.0000		
s*row	1 1	1	-2.2644	1.1184	-4.4564	-0.0723	4.10	0.0429
s*row	1 2	0	0.0000	0.0000	0.0000	0.0000		

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates Wald 95% Standard Confidence Wald Chi-Square Pr > ChiSq Parameter DF Estimate Error Limits 0.0000 s*row 2 1 0 0.0000 0.0000 0.0000 s*row 2 2 0 0.0000 0.0000 0.0000 0.0000 1 -0.6931 0.4330 -1.5418 0.1555 0.1094 col 1 2.56 2 col 0 0.0000 0.0000 0.0000 0.0000 s*col 1 1 -1.29930.7525 -2.7742 0.1756 2.98 0.0842 1 2 0 0.0000 0.0000 0.0000 0.0000 s*col 0.0000 0.0000 s*col 2 1 0 0.0000 0.0000 s*col 2 2 0 0.0000 0.0000 0.0000 0.0000 row*col 1 1 1 1.6376 0.6212 0.4200 2.8552 6.95 0.0084 1 2 0.0000 0.0000 0.0000 row*col 0 0.0000 row*col 2 1 0 0.0000 0.0000 0.0000 0.0000 2 2 0 0.0000 0.0000 0.0000 row*col 0.0000 1 1 1 3.9924 1.3383 1.3694 8.90 0.0029 s*row*col 1 6.6154 s*row*col 1 1 2 0 0.0000 0.0000 0.0000 0.0000 s*row*col 1 2 1 0 0.0000 0.0000 0.0000 0.0000 1 2 2 s*row*col 0 0.0000 0.0000 0.0000 0.0000 2 1 1 0 0.0000 0.0000 0.0000 s*row*col 0.0000 s*row*col 2 1 2 0 0.0000 0.0000 0.0000 0.0000 s*row*col 2 2 1 0 0.0000 0.0000 0.0000 0.0000 s*row*col 2 2 2 0 0.0000 0.0000 0.0000 0.0000 Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The GENMOD Procedure

Model Information						
Data Set	Data Set WORK.A					
Distribution	Poisso	n				
Link Function Log						
Dependent Variable count						
Number of Observations Read 8						
Number of Observations Used 8						

Class Level Information					
Class Levels Values					
s	2	12			
row	2	12			
col 2 12					

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	1	12.1490	12.1490			
Scaled Deviance	1	12.1490	12.1490			
Pearson Chi-Square	1	11.5855	11.5855			
Scaled Pearson X2	1	11.5855	11.5855			
Log Likelihood		217.0975				
Full Log Likelihood		-22.3307				
AIC (smaller is better)	58.6613					
AICC (smaller is better)						
BIC (smaller is better)		59.2174				

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter			DF	Estimate	Standard Error	Confi	l 95% dence nits	Wald Chi-Square	Pr > ChiSq
Intercept			1	2.9608	0.2219	2.5258	3.3957	178.02	<.0001
s	1		1	-0.0329	0.3079	-0.6363	0.5705	0.01	0.9149
s	2		0	0.0000	0.0000	0.0000	0.0000		
row	1		1	-1.6558	0.4735	-2.5838	-0.7278	12.23	0.0005
row	2		0	0.0000	0.0000	0.0000	0.0000		
s*row	1	1	1	0.1895	0.5078	-0.8058	1.1847	0.14	0.7091
s*row	1	2	0	0.0000	0.0000	0.0000	0.0000		

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates Wald 95% Standard Confidence Wald Parameter DF Estimate **Error** Limits Chi-Square Pr > ChiSq 2 1 0.0000 0.0000 0.0000 0.0000 s*row 0 s*row 2 2 0 0.0000 0.0000 0.0000 0.0000 -2.2892 1 1 -1.4158 0.4456 -0.5425 10.10 0.0015 col 2 0.0000 0.0000 0.0000 col 0 0.0000 0.42 s*col 1 1 1 0.3305 0.5114 -0.6718 1.3328 0.5181 1 2 0.0000 0.0000 0 0.0000 0.0000 s*col 2 1 0.0000 0.0000 s*col 0 0.0000 0.0000 s*col 2 2 0 0.0000 0.0000 0.0000 0.0000 row*col 1 1 1 3.1702 0.5110 2.1687 4.1716 38.50 <.0001 1 2 0 0.0000 0.0000 0.0000 row*col 0.0000 2 1 row*col 0 0.0000 0.0000 0.0000 0.0000 row*col 2 2 0 0.0000 0.0000 0.0000 0.0000 Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The LOGISTIC Procedure

s=1

Model Information							
WC	RK.B						
у							
m							
bina	ary logit						
ead	8						
sed	8						
	256						
	256						
	otal ocy						
1	64						
	92						
ion	•						
-							
1							
	WC y m bina ead sed To equen 1						

Exact Conditional Analysis

2

Exact Conditional Tests

p-Value

0

Effect	Test	Statistic	Exact	Mid
row	Score	192.4	<.0001	<.0001
	Probability	1.19E-49	<.0001	<.0001

Exact Odds Ratios						
95%						
Parameter		Estimate	Confide	nce Limits	p-Value	
row	1	262.784	80.927	>999,999	<.0001	

The LOGISTIC Procedure

s=2

3-2		
Model Information		
Data Set	WOR	K.B
Response Variable (Events)	у	
Response Variable (Trials)	m	
Model	binary	/ logit
Number of Observations Re	ead	8
Number of Observations Us	sed	8
Sum of Frequencies Read	1	196
Sum of Frequencies Used	1	196
Response Profile		_
Ordered Binary Value Outcome Fre	Tota equency	-
1 Event	104	<u> </u>
2 Nonevent	92	2
Class Level Informati	ion	
Desi Class Value Varial	_	
row 1	1	
2	0	

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect	Test	Statistic	Exact	Mid
row	Score	29.2522	<.0001	<.0001
	Probability	3.744E-8	<.0001	<.0001

Exact Odds Ratios

Parameter		Estimate	Confid	5% dence nits	p-Value
row	1	5.095	2.682	9.907	<.0001

The FREQ Procedure

s=1

Frequency Percent	Table of row by col				
Row Pct			col		
Col Pct	row	1	2	Total	
	1	38	1	39	
		59.38	1.56	60.94	
		97.44	2.56		
		92.68	4.35		
	2	3	22	25	
		4.69	34.38	39.06	
		12.00	88.00		
		7.32	95.65		
	Total	41	23	64	
		64.06	35.94	100.00	
		64.06	35.94	100.00	

Statistics for Table of row by col

Odds Ratio and Relative Risks						
Statistic	Value	95% Confid	dence Limits			
Odds Ratio	278.6667	27.2958	2844.9483			
Relative Risk (Column 1)	8.1197	2.8054	23.5007			
Relative Risk (Column 2)	0.0291	0.0042	0.2028			

Odds Ratio)
Odds Ratio	278.6667
Asymptotic Conf Limits	
95% Lower Conf Limit	27.2958
95% Upper Conf Limit	2844.9483
Exact Conf Limits	
95% Lower Conf Limit	24.0073
95% Upper Conf Limit	11765.0331

Sample Size = 64

The FREQ Procedure

s=2

Statistics for Table of row by col

Odds Ratio and Relative Risks					
Statistic Value 95% Confidence Limits					
Odds Ratio	5.1429	1.5220	17.3775		
Relative Risk (Column 1)	2.1600	1.1662	4.0006		
Relative Risk (Column 2)	0.4200	0.2108	0.8368		

Odds Ratio					
Odds Ratio	5.1429				
Asymptotic Conf Limits					
95% Lower Conf Limit	1.5220				
95% Upper Conf Limit	17.3775				
Exact Conf Limits					
95% Lower Conf Limit	1.3153				
95% Upper Conf Limit	20.8329				

Sample Size = 49

The FREQ Procedure

Frequency	Table 1 of row by col				
Percent Row Pct	Controlling for s=1				
Col Pct			col		
	row	1	2	Total	
	1	38	1	39	
		59.38	1.56	60.94	
		97.44	2.56		
		92.68	4.35		
	2	3	22	25	
		4.69	34.38	39.06	
		12.00	88.00		
		7.32	95.65		
	Total	41	23	64	
		64.06	35.94	100.00	

Statistics for Table 1 of row by col Controlling for s=1

Statistic	DF	Value	Prob
Chi-Square	1	48.3007	<.0001
Likelihood Ratio Chi-Square	1	55.9439	<.0001
Continuity Adj. Chi-Square	1	44.6610	<.0001
Mantel-Haenszel Chi-Square	1	47.5460	<.0001
Phi Coefficient		0.8687	
Contingency Coefficient		0.6558	
Cramer's V		0.8687	

Fisher's Exact Test				
Cell (1,1) Frequency (F)	38			
Left-sided Pr <= F	1.0000			
Right-sided Pr >= F	<.0001			
Table Probability (P)	<.0001			
Two-sided Pr <= P	<.0001			

Odds Ratio and Relative Risks					
Statistic Value 95% Confidence Limit					
Odds Ratio	278.6667	27.2958	2844.9483		
Relative Risk (Column 1)	8.1197	2.8054	23.5007		
Relative Risk (Column 2)	0.0291	0.0042	0.2028		

The FREQ Procedure

Frequency	Table 2 of row by col					
Percent Row Pct	C	Controlling for s=2				
Col Pct			col			
	row	1	2	Total		
	1	18	7	25		
		36.73	14.29	51.02		
		72.00	28.00			
		69.23	30.43			
	2	8	16	24		
		16.33	32.65	48.98		
		33.33	66.67			
		30.77	69.57			
	Total	26	23	49		

Statistics for Table 2 of row by col Controlling for s=2

53.06 46.94 100.00

Statistic	DF	Value	Prob
Chi-Square	1	7.3505	0.0067
Likelihood Ratio Chi-Square	1	7.5443	0.0060
Continuity Adj. Chi-Square	1	5.8800	0.0153
Mantel-Haenszel Chi-Square	1	7.2005	0.0073
Phi Coefficient		0.3873	
Contingency Coefficient		0.3612	
Cramer's V		0.3873	

Fisher's Exact Test					
Cell (1,1) Frequency (F)	18				
Left-sided Pr <= F	0.9988				
Right-sided Pr >= F	0.0072				
Table Probability (P)	0.0061				
Two-sided Pr <= P	0.0101				

Odds Ratio and Relative Risks					
Statistic Value 95% Confidence Limits					
Odds Ratio 5.1429 1.5220 17.377					
Relative Risk (Column 1)	2.1600	1.1662	4.0006		
Relative Risk (Column 2)	0.4200	0.2108	0.8368		

The FREQ Procedure

Summary Statistics for row by col Controlling for s

Cod	Cochran-Mantel-Haenszel Statistics (Based on Table Scores)				
Statistic	Alternative Hypothesis	L)F	Value	Prob
1	Nonzero Correlation		1	47.1930	<.0001
2	Row Mean Scores Differ	r	1	47.1930	<.0001
3	General Association		1	47.1930	<.0001

Common Odds Ratio and Relative Risks					
Statistic	Method	Method Value 95% Confidence Lim			
Odds Ratio	Mantel-Haenszel	15.9196	6.2963	40.2511	
	Logit	12.1564	4.1347	35.7411	
Relative Risk (Column 1)	Mantel-Haenszel	4.0036	2.2801	7.0299	
	Logit	3.0144	1.7687	5.1375	
Relative Risk (Column 2)	Mantel-Haenszel	0.1771	0.0940	0.3335	
	Logit	0.3114	0.1627	0.5963	

Breslow-Day Test for Homogeneity of Odds Ratios				
Chi-Square	10.8129			
DF	1			
Pr > ChiSq	0.0010			

Total Sample Size = 113

The FREQ Procedure

The FREQ Procedure

The GENMOD Procedure

NORK.A
Poisson
Log
count

Number of Observations Read 8 Number of Observations Used 8

Class Level Information					
Class Levels Values					
s	2	12			
row	2	12			
col	2	12			

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value	Value/DF			
Deviance	1	12.1490	12.1490			
Scaled Deviance	1	12.1490	12.1490			
Pearson Chi-Square	1	11.5855	11.5855			
Scaled Pearson X2	1	11.5855	11.5855			
Log Likelihood		217.0975				
Full Log Likelihood		-22.3307				
AIC (smaller is better)	58.6613					
AICC (smaller is better)						
BIC (smaller is better)		59.2174				

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estima

Parametei	r	DF	Estimate	Standard Error	Confi	1 95% dence nits	Wald Chi-Square	Pr > ChiSq
Intercept		1	2.9608	0.2219	2.5258	3.3957	178.02	<.0001
s	1	1	-0.0329	0.3079	-0.6363	0.5705	0.01	0.9149
s	2	0	0.0000	0.0000	0.0000	0.0000		
row	1	1	-1.6558	0.4735	-2.5838	-0.7278	12.23	0.0005
row	2	0	0.0000	0.0000	0.0000	0.0000		
s*row	1 1	1	0.1895	0.5078	-0.8058	1.1847	0.14	0.7091

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates Wald 95% Standard Confidence Wald Parameter DF Estimate **Error** Limits Chi-Square Pr > ChiSq 1 2 0.0000 0.0000 0.0000 s*row 0 0.0000 0.0000 s*row 2 1 0 0.0000 0.0000 0.0000 2 2 0.0000 s*row 0.0000 0.0000 0.0000 1 1 -1.4158 0.4456 -2.2892 -0.5425 10.10 0.0015 col 2 col 0 0.0000 0.0000 0.0000 0.0000 1 1 0.3305 0.5114 -0.6718 0.42 0.5181 s*col 1 1.3328 s*col 1 2 0 0.0000 0.0000 0.0000 0.0000 s*col 2 1 0 0.0000 0.0000 0.0000 0.0000 2 2 0.0000 0.0000 0.0000 0.0000 s*col 0 row*col 1 1 1 3.1702 0.5110 2.1687 4.1716 38.50 <.0001 1 2 0.0000 row*col 0 0.0000 0.0000 0.0000 2 1 0 0.0000 0.0000 row*col 0.0000 0.0000 2 2 row*col 0 0.0000 0.0000 0.0000 0.0000 Scale 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The LOGISTIC Procedure

s=1

1
WORK.B
у
m
binary logit
ead 8
sed 8
256
256
Total equency
164
92
ion
ign bles
1
0

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect	Test	Statistic	Exact	Mid
row	Score	192.4	<.0001	<.0001
	Probability	1.19E-49	<.0001	<.0001

Exact Odds Ratios

		95%					
Parameter		Estimate	Confide	p-Value			
row	1	262.784	80.927	>999.999	<.0001		

The LOGISTIC Procedure

s=2

5-2	
Model Information	1
Data Set	WORK.B
Response Variable (Events)	у
Response Variable (Trials)	m
Model	binary logit
Number of Observations Re	ead 8
Number of Observations Us	sed 8
Sum of Frequencies Read	196
Sum of Frequencies Used	196
Response Profile	
Ordered Binary Value Outcome Fre	Total equency
1 Event	104
2 Nonevent	92
Class Level Informat	ion
Des Class Value Varia	•
row 1	1
2	0

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect	Test	Statistic	Exact	Mid
row	Score	29.2522	<.0001	<.0001
	Probability	3.744E-8	<.0001	<.0001

Exact Odds Ratios

Parameter		Estimate	95% Confidence ate Limits		p-Value
row	1	5.095	2.682	9.907	<.0001

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Variables

variable	LABEL
id	Study ID
n	Sample size
oddsratio	Odds ratio
or95cil	Odds ratio, 95% CI, lower limit
or95ciu	Odds ratio, 95% CI, upper limit
p1	Prevalence of + for rsfMRI
p2	Prevalence of + for comparative
se	SE of the log odds ratio

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Variables

variable	LABEL
id	Study ID
n	Sample size
oddsratio	Odds ratio
or95cil	Odds ratio, 95% CI, lower limit
or95ciu	Odds ratio, 95% CI, upper limit
p1	Prevalence of + for rsfMRI
p2	Prevalence of + for comparative
se	SE of the log odds ratio

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by id

Obs	id	n	р1	p2	oddsratio	or95cil	or95ciu
1	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10
2	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34
3	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27
4	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98
5	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71
6	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23
7	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28
8	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86
9	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88
10	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95
11	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90
12	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35
13	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66
14	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82
15	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94
16	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54
17	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87
18	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53
19	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22
20	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26
21	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87
22	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92
23	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53
24	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94
25	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by n

Obs	id	n	p1	p2	oddsratio	or95cil	or95ciu
1	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10
2	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87
3	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87
4	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26
5	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92
6	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28
7	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94
8	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53
9	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94
10	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88
11	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90
12	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35
13	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86
14	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53
15	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95
16	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88
17	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22
18	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34
19	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82
20	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54
21	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98
22	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23
23	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27
24	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66
25	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by odds ratio

Obs	id	n	p1	p2	oddsratio	or95cil	or95ciu
1	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88
2	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86
3	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98
4	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28
5	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54
6	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92
7	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82
8	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95
9	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10
10	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27
11	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53
12	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53
13	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66
14	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35
15	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87
16	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87
17	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26
18	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23
19	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34
20	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94
21	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94
22	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88
23	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90
24	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22
25	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by se

Obs	id	n	p1	p2	oddsratio	or95cil	or95ciu	se
1	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66	0.60468
2	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27	0.62425
3	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23	0.89936
4	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71	1.01134
5	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82	1.13798
6	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88	1.57762
7	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98	1.60303
8	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54	1.61447
9	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86	1.67142
10	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28	1.88562
11	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95	2.09547
12	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34	2.10868
13	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53	2.12256
14	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35	2.19089
15	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53	2.20193
16	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92	2.22539
17	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22	2.45897
18	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90	2.47339
19	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88	2.47656
20	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94	2.48069
21	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94	2.48069
22	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26	2.50713
23	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87	2.52982
24	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87	2.52982
25	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10	2.58199

g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

The NLMIXED Procedure

Specifications						
Data Set	WORK.A					
Dependent Variable	y1d					
Distribution for Dependent Variable	Binomial					
Random Effects	u					
Distribution for Random Effects	Normal					
Subject Variable	id					
Optimization Technique	Dual Quasi-Newton					
Integration Method	Adaptive Gaussian Quadrature					

Dimensions	
Observations Used	25
Observations Not Used	0
Total Observations	25
Subjects	25
Max Obs per Subject	1
Parameters	2
Quadrature Points	25

	Initial Parameters							
	Negative							
		Log						
beta	log_sigma	Likelihood						
2.1	0.33	46.5471807						

Iteration History									
		Negative Log	Maximum						
Iteration	Calls	Likelihood	Difference	Gradient	Slope				
1	5	46.3972952	0.149885	0.99921	-10.7322				
2	8	46.3397697	0.057525	0.11979	-6.36809				
3	10	46.3392704	0.000499	0.007571	-0.00106				
4	12	46.3392688	1.649E-6	0.000069	-3.31E-6				
5	14	46.3392688	8.79E-10	0.000011	-1.54E-9				

NOTE: GCONV convergence criterion satisfied.

g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

The NLMIXED Procedure

Fit Statistics						
-2 Log Likelihood	92.7					
AIC (smaller is better)	96.7					
AICC (smaller is better)	97.2					
BIC (smaller is better)	99.1					

Parameter Estimates

Parameter	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	959 Confid Lim	ence	Gradient
beta	2.3741	0.4890	24	4.85	<.0001	1.3648	3.3834	-8.17E-6
log_sigma	0.4625	0.2667	24	1.73	0.0957	-0.08791	1.0129	-0.00001

Covariance Matrix of Parameter
Estimates

	beta	log_sigma
beta	0.2391	0.07167
log_sigma	0.07167	0.07112

Correlation Matrix of Parameter Estimates

	beta	log_sigma
beta	1.0000	0.5495
log_sigma	0.5495	1.0000

The NLMIXED Procedure

Specifications			
Data Set	WORK.A		
Dependent Variable	yd1		
Distribution for Dependent Variable	Binomial		
Random Effects	u		
Distribution for Random Effects	Normal		
Subject Variable	id		
Optimization Technique	Dual Quasi-Newton		
Integration Method	Adaptive Gaussian Quadrature		

Dimensions	
Observations Used	25
Observations Not Used	0
Total Observations	25
Subjects	25
Max Obs per Subject	1
Parameters	2
Quadrature Points	25

Initial Parameters Negative Log Log Likelihood 2.1 0.33 48.4687264

	Iteration History				
Iteration	Calls	Negative Log Likelihood	Difference	Maximum Gradient	Slope
1	5	48.3458543	0.122872	1.13705	-9.72288
2	8	48.2771755	0.068679	0.12540	-7.76176
3	10	48.2763505	0.000825	0.010710	-0.00175
4	12	48.2763433	7.163E-6	0.000445	-0.00001
5	14	48.2763433	6.354E-9	1.161E-6	-1.27E-8

NOTE: GCONV convergence criterion satisfied.

The NLMIXED Procedure

Fit Statistics				
-2 Log Likelihood	96.6			
AIC (smaller is better)	100.6			
AICC (smaller is better)	101.1			
BIC (smaller is better)	103.0			

Parameter Estimates

Parameter	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	95 Confid Lim	dence	Gradient
beta	1.8878	0.3625	24	5.21	<.0001	1.1395	2.6360	1.135E-6
log_sigma	0.1986	0.2448	24	0.81	0.4253	-0.3068	0.7039	-1.16E-6

Covariance Matrix of Parameter
Estimates

	beta	log_sigma
beta	0.1314	0.04238
log_sigma	0.04238	0.05995

Correlation Matrix of Parameter Estimates

	beta	log_sigma
beta	1.0000	0.4774
log_sigma	0.4774	1.0000

The NLMIXED Procedure

Specifications			
Data Set	WORK.A		
Dependent Variable	yd1		
Distribution for Dependent Variable	Binomial		
Random Effects	u		
Distribution for Random Effects	Normal		
Subject Variable	id		
Optimization Technique	Dual Quasi-Newton		
Integration Method	Adaptive Gaussian Quadrature		

Dimensions	
Observations Used	25
Observations Not Used	0
Total Observations	25
Subjects	25
Max Obs per Subject	1
Parameters	2
Quadrature Points	25

	Initial Parameters			
		Negative		
		Log		
beta	log_sigma	Likelihood		
2.1	0.33	48.4687264		

Iteration History					
Iteration	Calls	Negative Log Likelihood	Difference	Maximum Gradient	Slope
1	5	48.3458543	0.122872	1.13705	-9.72288
2	8	48.2771755	0.068679	0.12540	-7.76176
3	10	48.2763505	0.000825	0.010710	-0.00175
4	12	48.2763433	7.163E-6	0.000445	-0.00001
5	14	48.2763433	6.354E-9	1.161E-6	-1.27E-8

NOTE: GCONV convergence criterion satisfied.

The NLMIXED Procedure

Fit Statistics				
-2 Log Likelihood	96.6			
AIC (smaller is better)	100.6			
AICC (smaller is better)	101.1			
BIC (smaller is better)	103.0			

Parameter Estimates

Parameter	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	95 Confid Lim	dence	Gradient
beta	1.8878	0.3625	24	5.21	<.0001	1.1395	2.6360	1.135E-6
log_sigma	0.1986	0.2448	24	0.81	0.4253	-0.3068	0.7039	-1.16E-6

Covariance Matrix of Parameter
Estimates

	beta	log_sigma
beta	0.1314	0.04238
log_sigma	0.04238	0.05995

Correlation Matrix of Parameter Estimates

	beta	log_sigma
beta	1.0000	0.4774
log_sigma	0.4774	1.0000

g004.sas: Separate mixed models for rsfMRI and comparative 2. Comparative

Oha	id		10 Orrover	m2	m 01	
Obs		n	p2raw	p2	p2l	p2u
1	Anzellotti 2010	1	1.00000	0.88660	0.40054	0.98919
2	Song 2006	2	1.00000	0.89915	0.45920	0.98943
3	Wang 2007	2	1.00000	0.89915	0.45920	0.98943
4	Tavares 2017	3	1.00000	0.90854	0.50567	0.98974
5	Weaver 2013	4	1.00000	0.91591	0.54359	0.99006
6	Gnanadas 2017	6	0.83333	0.85026	0.49613	0.97037
7	Morgan 2003	6	1.00000	0.92691	0.60219	0.99067
8	Stufflebeam 2011	6	1.00000	0.92691	0.60219	0.99067
9	Zhao 2019	6	1.00000	0.92691	0.60219	0.99067
10	vanHoudt 2015	7	1.00000	0.93116	0.62543	0.99096
11	Jann 2008	8	1.00000	0.93483	0.64573	0.99122
12	Kang 2003	8	0.87500	0.87222	0.55921	0.97350
13	Hunyadi 2014	10	0.70000	0.75224	0.44967	0.91858
14	Yang 2015	11	0.81818	0.83462	0.55218	0.95382
15	Hunyadi 2015b	12	0.75000	0.78365	0.50512	0.92782
16	Hunyadi 2015a	18	0.61111	0.65729	0.42286	0.83390
17	Su 2015	21	1.00000	0.95929	0.78442	0.99349
18	Barron 2014	23	0.91304	0.90301	0.72093	0.97106
19	Lee 2014	29	0.89655	0.89149	0.72839	0.96179
20	Reyes 2016	34	0.91176	0.90461	0.75906	0.96616
21	Boerwinkle 2017	36	0.80556	0.81332	0.65375	0.90953
22	Chen 2017	42	0.85714	0.85850	0.71910	0.93498
23	Bettus 2010	44	0.50000	0.52718	0.37684	0.67275
24	Khoo 2019	49	0.46939	0.49553	0.35461	0.63716
25	Boerwinkle 2019	64	0.35938	0.38416	0.26918	0.51373

g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

The NLMIXED Procedure

Specifications					
Data Set	WORK.A				
Dependent Variable	y1d				
Distribution for Dependent Variable	Binomial				
Random Effects	u				
Distribution for Random Effects	Normal				
Subject Variable	id				
Optimization Technique	Dual Quasi-Newton				
Integration Method	Adaptive Gaussian Quadrature				

Dimensions	
Observations Used	25
Observations Not Used	0
Total Observations	25
Subjects	25
Max Obs per Subject	1
Parameters	2
Quadrature Points	25

Initial Parameters Negative Log beta log_sigma Likelihood 2.1 0.33 46.5471807

Iteration History							
		Maximum					
Iteration	Calls	Likelihood	Difference	Gradient	Slope		
1	5	46.3972952	0.149885	0.99921	-10.7322		
2	8	46.3397697	0.057525	0.11979	-6.36809		
3	10	46.3392704	0.000499	0.007571	-0.00106		
4	12	46.3392688	1.649E-6	0.000069	-3.31E-6		
5	14	46.3392688	8.79E-10	0.000011	-1.54E-9		

NOTE: GCONV convergence criterion satisfied.

g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

The NLMIXED Procedure

Fit Statistics	
-2 Log Likelihood	92.7
AIC (smaller is better)	96.7
AICC (smaller is better)	97.2
BIC (smaller is better)	99.1

Parameter Estimates

Parameter	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	959 Confid Lim	ence	Gradient
beta	2.3741	0.4890	24	4.85	<.0001	1.3648	3.3834	-8.17E-6
log_sigma	0.4625	0.2667	24	1.73	0.0957	-0.08791	1.0129	-0.00001

Covariance Matrix of Parameter
Estimates

	beta	log_sigma
beta	0.2391	0.07167
log_sigma	0.07167	0.07112

Correlation Matrix of Parameter Estimates

	beta	log_sigma
beta	1.0000	0.5495
log_sigma	0.5495	1.0000

g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

Obs	id		p1raw	p1	p1l	 p1u
1	Anzellotti 2010		1.00000	0.92796	0.34818	0.99679
2	Song 2006	2	1.00000	0.93665	0.41690	0.99674
3	Wang 2007	2	1.00000	0.93665	0.41690	0.99674
4	Tavares 2017	3	1.00000	0.94297	0.47123	0.99675
5	Weaver 2013	4	0.75000	0.82892	0.36427	0.97617
	Gnanadas 2017	6	0.83333	0.86658	0.46774	0.97959
6						
7	Morgan 2003	6	1.00000	0.95500	0.58313	0.99690
8	Stufflebeam 2011	6	0.83333	0.86658	0.46774	0.97959
9	Zhao 2019	6	1.00000	0.95500	0.58313	0.99690
10	vanHoudt 2015	7	1.00000	0.95772	0.60976	0.99696
11	Jann 2008	8	1.00000	0.96007	0.63289	0.99703
12	Kang 2003	8	1.00000	0.96007	0.63289	0.99703
13	Hunyadi 2014	10	0.70000	0.75048	0.42928	0.92323
14	Yang 2015	11	1.00000	0.96549	0.68722	0.99720
15	Hunyadi 2015b	12	1.00000	0.96692	0.70163	0.99726
16	Hunyadi 2015a	18	0.61111	0.64979	0.40951	0.83233
17	Su 2015	21	1.00000	0.97537	0.78675	0.99765
18	Barron 2014	23	1.00000	0.97660	0.79905	0.99772
19	Lee 2014	29	0.79310	0.80608	0.62055	0.91354
20	Reyes 2016	34	0.91176	0.91216	0.76228	0.97112
21	Boerwinkle 2017	36	0.94444	0.94024	0.80411	0.98369
22	Chen 2017	42	0.76190	0.77276	0.61810	0.87723
23	Bettus 2010	44	0.59091	0.60834	0.45295	0.74448
24	Khoo 2019	49	0.48980	0.50873	0.36596	0.65008
25	Boerwinkle 2019	64	0.39063	0.40765	0.28984	0.53713

g004.sas: Separate mixed models for rsfMRI and comparative 2. Comparative

The NLMIXED Procedure

Specifications					
Data Set	WORK.A				
Dependent Variable	yd1				
Distribution for Dependent Variable	Binomial				
Random Effects	u				
Distribution for Random Effects	Normal				
Subject Variable	id				
Optimization Technique	Dual Quasi-Newton				
Integration Method	Adaptive Gaussian Quadrature				

Dimensions	
Observations Used	25
Observations Not Used	0
Total Observations	25
Subjects	25
Max Obs per Subject	1
Parameters	2
Quadrature Points	25

Initial Parameters					
		Negative			
		Log			
beta	log_sigma	Likelihood			
2.1	0.33	48.4687264			

	Iteration History							
Iteration	Slope							
1	5	48.3458543	0.122872	1.13705	-9.72288			
2	8	48.2771755	0.068679	0.12540	-7.76176			
3	10	48.2763505	0.000825	0.010710	-0.00175			
4	12	48.2763433	7.163E-6	0.000445	-0.00001			
5	14	48.2763433	6.354E-9	1.161E-6	-1.27E-8			

NOTE: GCONV convergence criterion satisfied.

g004.sas: Separate mixed models for rsfMRI and comparative 2. Comparative

The NLMIXED Procedure

Fit Statistics				
-2 Log Likelihood	96.6			
AIC (smaller is better)	100.6			
AICC (smaller is better)	101.1			
BIC (smaller is better)	103.0			

Parameter Estimates

Parameter	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	95 Confid Lim	dence	Gradient
beta	1.8878	0.3625	24	5.21	<.0001	1.1395	2.6360	1.135E-6
log_sigma	0.1986	0.2448	24	0.81	0.4253	-0.3068	0.7039	-1.16E-6

Covariance Matrix of Parameter
Estimates

	beta	log_sigma
beta	0.1314	0.04238
log_sigma	0.04238	0.05995

Correlation Matrix of Parameter Estimates

	beta	log_sigma
beta	1.0000	0.4774
log_sigma	0.4774	1.0000

g004.sas: Separate mixed models for rsfMRI and comparative 2. Comparative

Obs	id	n	p2raw	p2	p2l	<u>р</u> 2и
1	Anzellotti 2010	1	1.00000	0.88660	0.40054	0.98919
2	Song 2006	2	1.00000	0.89915	0.45920	0.98943
3	Wang 2007	2	1.00000	0.89915	0.45920	0.98943
4	Tavares 2017	3	1.00000	0.90854	0.50567	0.98974
5	Weaver 2013	4	1.00000	0.91591	0.54359	0.99006
6	Gnanadas 2017	6	0.83333	0.85026	0.49613	0.97037
7	Morgan 2003	6	1.00000	0.92691	0.60219	0.99067
8	Stufflebeam 2011	6	1.00000	0.92691	0.60219	0.99067
9	Zhao 2019	6	1.00000	0.92691	0.60219	0.99067
10	vanHoudt 2015	7	1.00000	0.93116	0.62543	0.99096
11	Jann 2008	8	1.00000	0.93483	0.64573	0.99122
12	Kang 2003	8	0.87500	0.87222	0.55921	0.97350
13	Hunyadi 2014	10	0.70000	0.75224	0.44967	0.91858
14	Yang 2015	11	0.81818	0.83462	0.55218	0.95382
15	Hunyadi 2015b	12	0.75000	0.78365	0.50512	0.92782
16	Hunyadi 2015a	18	0.61111	0.65729	0.42286	0.83390
17	Su 2015	21	1.00000	0.95929	0.78442	0.99349
18	Barron 2014	23	0.91304	0.90301	0.72093	0.97106
19	Lee 2014	29	0.89655	0.89149	0.72839	0.96179
20	Reyes 2016	34	0.91176	0.90461	0.75906	0.96616
21	Boerwinkle 2017	36	0.80556	0.81332	0.65375	0.90953
22	Chen 2017	42	0.85714	0.85850	0.71910	0.93498
23	Bettus 2010	44	0.50000	0.52718	0.37684	0.67275
24	Khoo 2019	49	0.46939	0.49553	0.35461	0.63716
25	Boerwinkle 2019	64	0.35938	0.38416	0.26918	0.51373

g004.sas: Separate mixed models for rsfMRI and comparative Both

Obs	id	n	p1raw	p1	p1I	p1u	p2raw	p2	p2l	p2u
1	Anzellotti 2010	1	1.00000	0.92796	0.34818	0.99679	1.00000	0.88660	0.40054	0.98919
2	Song 2006	2	1.00000	0.93665	0.41690	0.99674	1.00000	0.89915	0.45920	0.98943
3	Wang 2007	2	1.00000	0.93665	0.41690	0.99674	1.00000	0.89915	0.45920	0.98943
4	Tavares 2017	3	1.00000	0.94297	0.47123	0.99675	1.00000	0.90854	0.50567	0.98974
5	Weaver 2013	4	0.75000	0.82892	0.36427	0.97617	1.00000	0.91591	0.54359	0.99006
6	Gnanadas 2017	6	0.83333	0.86658	0.46774	0.97959	0.83333	0.85026	0.49613	0.97037
7	Morgan 2003	6	1.00000	0.95500	0.58313	0.99690	1.00000	0.92691	0.60219	0.99067
8	Stufflebeam 2011	6	0.83333	0.86658	0.46774	0.97959	1.00000	0.92691	0.60219	0.99067
9	Zhao 2019	6	1.00000	0.95500	0.58313	0.99690	1.00000	0.92691	0.60219	0.99067
10	vanHoudt 2015	7	1.00000	0.95772	0.60976	0.99696	1.00000	0.93116	0.62543	0.99096
11	Jann 2008	8	1.00000	0.96007	0.63289	0.99703	1.00000	0.93483	0.64573	0.99122
12	Kang 2003	8	1.00000	0.96007	0.63289	0.99703	0.87500	0.87222	0.55921	0.97350
13	Hunyadi 2014	10	0.70000	0.75048	0.42928	0.92323	0.70000	0.75224	0.44967	0.91858
14	Yang 2015	11	1.00000	0.96549	0.68722	0.99720	0.81818	0.83462	0.55218	0.95382
15	Hunyadi 2015b	12	1.00000	0.96692	0.70163	0.99726	0.75000	0.78365	0.50512	0.92782
16	Hunyadi 2015a	18	0.61111	0.64979	0.40951	0.83233	0.61111	0.65729	0.42286	0.83390
17	Su 2015	21	1.00000	0.97537	0.78675	0.99765	1.00000	0.95929	0.78442	0.99349
18	Barron 2014	23	1.00000	0.97660	0.79905	0.99772	0.91304	0.90301	0.72093	0.97106
19	Lee 2014	29	0.79310	0.80608	0.62055	0.91354	0.89655	0.89149	0.72839	0.96179
20	Reyes 2016	34	0.91176	0.91216	0.76228	0.97112	0.91176	0.90461	0.75906	0.96616
21	Boerwinkle 2017	36	0.94444	0.94024	0.80411	0.98369	0.80556	0.81332	0.65375	0.90953
22	Chen 2017	42	0.76190	0.77276	0.61810	0.87723	0.85714	0.85850	0.71910	0.93498
23	Bettus 2010	44	0.59091	0.60834	0.45295	0.74448	0.50000	0.52718	0.37684	0.67275
24	Khoo 2019	49	0.48980	0.50873	0.36596	0.65008	0.46939	0.49553	0.35461	0.63716
25	Boerwinkle 2019	64	0.39063	0.40765	0.28984	0.53713	0.35938	0.38416	0.26918	0.51373

The NLMIXED Procedure

Specifications				
Data Set	WORK.A			
Dependent Variable	y00			
Distribution for Dependent Variable	General			
Random Effects	u1 u2 u3			
Distribution for Random Effects	Normal			
Subject Variable	id			
Optimization Technique	Dual Quasi-Newton			
Integration Method	Adaptive Gaussian Quadrature			

Dimensions				
Observations Used	25			
Observations Not Used	0			
Total Observations	25			
Subjects	25			
Max Obs per Subject	1			
Parameters	6			
Quadrature Points	25			

Initial Parameters Negative Log sta 3 log g 11 log g 22 log g 33 Likelihood

						Log
beta1	beta2	beta3	log_g11	log_g22	log_g33	Likelihood
2.331	1.8631	0.006937	0.8691	0.3527	2.1988	415.450772

Iteration History										
			Negative Log		Maximum					
It	eration	Calls	Likelihood	Difference	Gradient	Slope				
	1	6	415.4508	1.62E - 8	0.000125	-0.00004				
	2	10	415.4508	9.67E-10	0.000066	-1.03E-6				

NOTE: GCONV convergence criterion satisfied.

Fit Statistics	
-2 Log Likelihood	830.9
AIC (smaller is better)	842.9
AICC (smaller is better)	847.6
BIC (smaller is better)	850.2

The NLMIXED Procedure

Parameter	Estimates
raiaiiicici	Louinateo

Parameter	Estimate	Standard Error	DF	t Value	95% Confidence Pr > t Limits Gradie					
beta1	2.3310	0.4790	22	4.87	<.0001	1.3375	3.3244	-0.00006		
beta2	1.8631	0.3567	22	5.22	<.0001	1.1234	2.6027	-0.00007		
beta3	0.006939	1.2507	22	0.01	0.9956	-2.5868	2.6007	-1.62E-6		
log_g11	0.8691	0.5374	22	1.62	0.1201	-0.2454	1.9837	0.000030		
log_g22	0.3527	0.4923	22	0.72	0.4812	-0.6682	1.3736	0.000019		
log_g33	2.1988	0.8008	22	2.75	0.0118	0.5380	3.8597	-0.00003		

	Covariance Matrix of Parameter Estimates												
	beta1 beta2 beta3 log_g11 log_g22 log_g												
beta1	0.2295	0.005943	-0.03974	0.1422	0.008841	0.000977							
beta2	0.005943	0.1272	-0.02649	0.006804	0.08421	0.000869							
beta3	-0.03974	-0.02649	1.5642	-0.03087	-0.02811	-0.4254							
log_g11	0.1422	0.006804	-0.03087	0.2888	0.01141	-0.00084							
log_g22	0.008841	0.08421	-0.02811	0.01141	0.2423	-0.00085							
log_g33	0.000977	0.000869	-0.4254	-0.00084	-0.00085	0.6414							

	Correlation Matrix of Parameter Estimates												
	beta1 beta2 beta3 log_g11 log_g22 log_g												
beta1	1.0000	0.0348	-0.0663	0.5524	0.0375	0.0025							
beta2	0.0348	1.0000	-0.0594	0.0355	0.4796	0.0030							
beta3	-0.0663	-0.0594	1.0000	-0.0459	-0.0457	-0.4247							
log_g11	0.5524	0.0355	-0.0459	1.0000	0.0431	-0.0019							
log_g22	0.0375	0.4796	-0.0457	0.0431	1.0000	-0.0022							
log_g33	0.0025	0.0030	-0.4247	-0.0019	-0.0022	1.0000							

Additional Estimates

Label	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	Alpha	Lower	Upper
g11:	2.3848	1.2817	22	1.86	0.0762	0.05	-0.2732	5.0429
g22:	1.4230	0.7005	22	2.03	0.0545	0.05	-0.02974	2.8757
g33:	9.0143	7.2191	22	1.25	0.2249	0.05	-5.9572	23.9858

The NLMIXED Procedure

Covariance Matrix of Additional Estimates

Label	Cov1	Cov2	Cov3
g11:	1.6427	0.03871	-0.01800
g22:	0.03871	0.4907	-0.01096
g33:	-0.01800	-0.01096	52.1156

Correlation Matrix of Additional Estimates

Label	Corr1	Corr2	Corr3
g11:	1.0000	0.0431	-0.0019
g22:	0.0431	1.0000	-0.0022
g33:	-0.0019	-0.0022	1.0000

Obs	id	y11	y10	y01	y00	n	eta1	StdErrPred	DF	tValue	Probt	Alpha	eta1l	eta1u
1	Anzellotti 2010	1	0	0	0	1	2.50866	1.50555	22	1.66627	0.10984	0.05	-0.61367	5.63099
2	Song 2006	2	0	0	0	2	2.64316	1.43709	22	1.83924	0.07942	0.05	-0.33720	5.62351
3	Wang 2007	2	0	0	0	2	2.64316	1.43709	22	1.83924	0.07942	0.05	-0.33720	5.62351
4	Tavares 2017	3	0	0	0	3	2.75260	1.38883	22	1.98196	0.06011	0.05	-0.12765	5.63285
5	Weaver 2013	3	0	1	0	4	1.58766	1.02996	22	1.54148	0.13746	0.05	-0.54834	3.72367
6	Gnanadas 2017	4	1	1	0	6	1.85827	0.95876	22	1.93819	0.06554	0.05	-0.13009	3.84662
7	Morgan 2003	6	0	0	0	6	2.99811	1.29828	22	2.30929	0.03070	0.05	0.30564	5.69059
8	Stufflebeam 2011	5	0	1	0	6	1.87028	0.96785	22	1.93240	0.06629	0.05	-0.13692	3.87749
9	Zhao 2019	6	0	0	0	6	2.99811	1.29828	22	2.30929	0.03070	0.05	0.30564	5.69059
10	vanHoudt 2015	7	0	0	0	7	3.06282	1.27758	22	2.39737	0.02544	0.05	0.41329	5.71235
11	Jann 2008	8	0	0	0	8	3.12175	1.25964	22	2.47829	0.02135	0.05	0.50942	5.73408
12	Kang 2003	7	1	0	0	8	3.13003	1.24763	22	2.50878	0.01998	0.05	0.54260	5.71747
13	Hunyadi 2014	4	3	3	0	10	1.04014	0.67114	22	1.54980	0.13546	0.05	-0.35172	2.43200
14	Yang 2015	9	2	0	0	11	3.28084	1.20516	22	2.72232	0.01244	0.05	0.78148	5.78019
15	Hunyadi 2015b	9	3	0	0	12	3.32306	1.19492	22	2.78098	0.01090	0.05	0.84494	5.80119
16	Hunyadi 2015a	4	7	7	0	18	0.52171	0.47480	22	1.09881	0.28373	0.05	-0.46296	1.50639
17	Su 2015	21	0	0	0	21	3.62048	1.13488	22	3.19018	0.00423	0.05	1.26688	5.97409
18	Barron 2014	21	2	0	0	23	3.67978	1.11506	22	3.30007	0.00326	0.05	1.36729	5.99227
19	Lee 2014	21	2	5	1	29	1.42168	0.45090	22	3.15300	0.00461	0.05	0.48658	2.35678
20	Reyes 2016	28	3	3	0	34	2.33956	0.56622	22	4.13191	0.00044	0.05	1.16530	3.51382
21	Boerwinkle 2017	27	7	2	0	36	2.73953	0.64640	22	4.23810	0.00034	0.05	1.39897	4.08009
22	Chen 2017	30	2	6	4	42	1.22657	0.35674	22	3.43827	0.00235	0.05	0.48673	1.96640
23	Bettus 2010	16	10	6	12	44	0.47179	0.30466	22	1.54860	0.13574	0.05	-0.16003	1.10362
24	Khoo 2019	16	8	7	18	49	0.07620	0.28276	22	0.26948	0.79008	0.05	-0.51021	0.66260
25	Boerwinkle 2019	22	3	1	38	64	-0.28643	0.24982	22	-1.14654	0.26389	0.05	-0.80454	0.23167

Obs		y11	y10	y01	y00	n	eta2	StdErrPred	DF	tValue		Alpha	eta2l	eta2u
1	Anzellotti 2010	1	0	0	0	1	2.02759	1.16926	22	1.73409	0.09690	0.05	-0.39730	4.45248
2	Song 2006	2	0	0	0	2	2.15582	1.12014	22	1.92459	0.06731	0.05	-0.16721	4.47886
3	Wang 2007	2	0	0	0	2	2.15582	1.12014	22	1.92459	0.06731	0.05	-0.16721	4.47886
4	Tavares 2017	3	0	0	0	3	2.26169	1.08468	22	2.08512	0.04887	0.05	0.01220	4.51118
5	Weaver 2013	3	0	1	0	4	2.35119	1.05625	22	2.22598	0.03657	0.05	0.16066	4.54172
6	Gnanadas 2017	4	1	1	0	6	1.71691	0.84098	22	2.04157	0.05337	0.05	-0.02717	3.46099
7	Morgan 2003	6	0	0	0	6	2.50214	1.01710	22	2.46007	0.02222	0.05	0.39280	4.61148
8	Stufflebeam 2011	5	0	1	0	6	2.50539	1.01271	22	2.47395	0.02156	0.05	0.40516	4.60561
9	Zhao 2019	6	0	0	0	6	2.50214	1.01710	22	2.46007	0.02222	0.05	0.39280	4.61148
10	vanHoudt 2015	7	0	0	0	7	2.56593	1.00158	22	2.56188	0.01778	0.05	0.48878	4.64308
11	Jann 2008	8	0	0	0	8	2.62413	0.98814	22	2.65562	0.01444	0.05	0.57485	4.67342
12	Kang 2003	7	1	0	0	8	1.90883	0.81082	22	2.35421	0.02790	0.05	0.22730	3.59036
13	Hunyadi 2014	4	3	3	0	10	1.05728	0.63639	22	1.66137	0.11082	0.05	-0.26251	2.37706
14	Yang 2015	9	2	0	0	11	1.61580	0.68237	22	2.36793	0.02710	0.05	0.20066	3.03095
15	Hunyadi 2015b	9	3	0	0	12	1.29021	0.61525	22	2.09705	0.04770	0.05	0.01426	2.56617
16	Hunyadi 2015a	4	7	7	0	18	0.57586	0.46602	22	1.23570	0.22960	0.05	-0.39060	1.54232
17	Su 2015	21	0	0	0	21	3.11878	0.89555	22	3.48254	0.00211	0.05	1.26153	4.97604
18	Barron 2014	21	2	0	0	23	2.21967	0.62053	22	3.57707	0.00168	0.05	0.93277	3.50656
19	Lee 2014	21	2	5	1	29	2.10661	0.53941	22	3.90536	0.00076	0.05	0.98793	3.22528
20	Reyes 2016	28	3	3	0	34	2.24182	0.53086	22	4.22302	0.00035	0.05	1.14089	3.34275
21	Boerwinkle 2017	27	7	2	0	36	1.47457	0.40384	22	3.65134	0.00141	0.05	0.63705	2.31209
22	Chen 2017	30	2	6	4	42	1.82495	0.41613	22	4.38554	0.00024	0.05	0.96195	2.68794
23	Bettus 2010	16	10	6	12	44	0.13024	0.29628	22	0.43958	0.66453	0.05	-0.48420	0.74468
24	Khoo 2019	16	8	7	18	49	0.01268	0.28113	22	0.04510	0.96444	0.05	-0.57036	0.59571
25	Boerwinkle 2019	22	3	1	38	64	-0.41159	0.25329	22	-1.62497	0.11841	0.05	-0.93688	0.11370

Obs	id	y11	y10	y01	y00	n	eta3	StdErrPred	DF	tValue	Probt	Alpha	eta3l	eta3u
1	Anzellotti 2010	1	0	0	0	1	0.09050	3.34868	22	0.02703	0.97868	0.05	-6.85424	7.03524
2	Song 2006	2	0	0	0	2	0.14362	3.42680	22	0.04191	0.96695	0.05	-6.96313	7.25038
3	Wang 2007	2	0	0	0	2	0.14362	3.42680	22	0.04191	0.96695	0.05	-6.96313	7.25038
4	Tavares 2017	3	0	0	0	3	0.18003	3.49040	22	0.05158	0.95933	0.05	-7.05862	7.41868
5	Weaver 2013	3	0	1	0	4	-0.20746	3.03151	22	-0.06844	0.94606	0.05	-6.49442	6.07949
6	Gnanadas 2017	4	1	1	0	6	-0.79538	2.52819	22	-0.31460	0.75603	0.05	-6.03852	4.44776
7	Morgan 2003	6	0	0	0	6	0.23919	3.62044	22	0.06607	0.94792	0.05	-7.26914	7.74753
8	Stufflebeam 2011	5	0	1	0	6	-0.11450	3.10318	22	-0.03690	0.97090	0.05	-6.55011	6.32110
9	Zhao 2019	6	0	0	0	6	0.23919	3.62044	22	0.06607	0.94792	0.05	-7.26914	7.74753
10	vanHoudt 2015	7	0	0	0	7	0.24974	3.64942	22	0.06843	0.94606	0.05	-7.31870	7.81818
11	Jann 2008	8	0	0	0	8	0.25761	3.67325	22	0.07013	0.94472	0.05	-7.36024	7.87547
12	Kang 2003	7	1	0	0	8	0.01925	3.25709	22	0.00591	0.99534	0.05	-6.73554	6.77404
13	Hunyadi 2014	4	3	3	0	10	-2.02408	2.05035	22	-0.98719	0.33428	0.05	-6.27626	2.22809
14	Yang 2015	9	2	0	0	11	-0.04807	3.18606	22	-0.01509	0.98810	0.05	-6.65556	6.55942
15	Hunyadi 2015b	9	3	0	0	12	-0.11157	3.14009	22	-0.03553	0.97198	0.05	-6.62371	6.40057
16	Hunyadi 2015a	4	7	7	0	18	-3.28298	1.78891	22	-1.83518	0.08004	0.05	-6.99295	0.42699
17	Su 2015	21	0	0	0	21	0.26969	3.76041	22	0.07172	0.94347	0.05	-7.52891	8.06830
18	Barron 2014	21	2	0	0	23	0.06543	3.32946	22	0.01965	0.98450	0.05	-6.83944	6.97031
19	Lee 2014	21	2	5	1	29	0.61683	1.23949	22	0.49764	0.62367	0.05	-1.95372	3.18737
20	Reyes 2016	28	3	3	0	34	-0.98890	2.34863	22	-0.42105	0.67780	0.05	-5.85966	3.88186
21	Boerwinkle 2017	27	7	2	0	36	-1.23414	2.24258	22	-0.55032	0.58764	0.05	-5.88497	3.41668
22	Chen 2017	30	2	6	4	42	2.08867	0.91980	22	2.27078	0.03330	0.05	0.18111	3.99623
23	Bettus 2010	16	10	6	12	44	1.12055	0.62781	22	1.78486	0.08808	0.05	-0.18144	2.42255
24	Khoo 2019	16	8	7	18	49	1.57895	0.60706	22	2.60099	0.01631	0.05	0.31999	2.83792
25	Boerwinkle 2019	22	3	1	38	64	4.98846	1.01540	22	4.91282	0.00007	0.05	2.88266	7.09427

g006.sas: Three random effects per study Prediction

Obs	id	n	р1	p2	oddsratio	p1I	p1u	p2l	p2u	or95pil	or95piu
1	Anzellotti 2010	1	0.92475	0.88366	1.095	0.35122	0.99643	0.40196	0.98848	0.0011	1135.97
2	Song 2006	2	0.93359	0.89621	1.154	0.41649	0.99640	0.45829	0.98878	0.0009	1408.63
3	Wang 2007	2	0.93359	0.89621	1.154	0.41649	0.99640	0.45829	0.98878	0.0009	1408.63
4	Tavares 2017	3	0.94006	0.90565	1.197	0.46813	0.99643	0.50305	0.98913	0.0009	1666.84
5	Weaver 2013	4	0.83029	0.91303	0.813	0.36625	0.97642	0.54008	0.98946	0.0015	436.81
6	Gnanadas 2017	6	0.86509	0.84773	0.451	0.46752	0.97909	0.49321	0.96956	0.0024	85.44
7	Morgan 2003	6	0.95249	0.92429	1.270	0.57582	0.99663	0.59696	0.99016	0.0007	2315.84
8	Stufflebeam 2011	6	0.86649	0.92452	0.892	0.46582	0.97972	0.59993	0.99010	0.0014	556.18
9	Zhao 2019	6	0.95249	0.92429	1.270	0.57582	0.99663	0.59696	0.99016	0.0007	2315.84
10	vanHoudt 2015	7	0.95533	0.92864	1.284	0.60188	0.99671	0.61982	0.99046	0.0007	2485.37
11	Jann 2008	8	0.95778	0.93240	1.294	0.62467	0.99678	0.63988	0.99075	0.0006	2631.92
12	Kang 2003	8	0.95811	0.87089	1.019	0.63242	0.99672	0.55658	0.97315	0.0012	874.84
13	Hunyadi 2014	10	0.73888	0.74217	0.132	0.41296	0.91923	0.43475	0.91506	0.0019	9.28
14	Yang 2015	11	0.96377	0.83422	0.953	0.68600	0.99692	0.55000	0.95395	0.0013	705.86
15	Hunyadi 2015b	12	0.96521	0.78418	0.894	0.69951	0.99699	0.50356	0.92865	0.0013	602.19
16	Hunyadi 2015a	18	0.62755	0.64011	0.038	0.38628	0.81853	0.40357	0.82380	0.0009	1.53
17	Su 2015	21	0.97393	0.95766	1.310	0.78021	0.99746	0.77929	0.99315	0.0005	3191.67
18	Barron 2014	23	0.97539	0.90200	1.068	0.79694	0.99751	0.71764	0.97087	0.0011	1064.55
19	Lee 2014	29	0.80560	0.89154	1.853	0.61930	0.91347	0.72868	0.96177	0.1417	24.22
20	Reyes 2016	34	0.91210	0.90394	0.372	0.76229	0.97108	0.75784	0.96587	0.0029	48.51
21	Boerwinkle 2017	36	0.93932	0.81375	0.291	0.80202	0.98338	0.65409	0.90987	0.0028	30.47
22	Chen 2017	42	0.77322	0.86116	8.074	0.61934	0.87722	0.72351	0.93631	1.1986	54.39
23	Bettus 2010	44	0.61581	0.53251	3.067	0.46008	0.75094	0.38126	0.67802	0.8341	11.27
24	Khoo 2019	49	0.51904	0.50317	4.850	0.37514	0.65984	0.36115	0.64467	1.3771	17.08
25	Boerwinkle 2019	64	0.42888	0.39853	146.711	0.30906	0.55766	0.28153	0.52840	17.8617	1205.04

g006.sas: Three random effects per study Prediction. eta3 is the log odds ratio

Obs	id	n	p1	p2	eta3	p1I	p1u	p2l	p2u	eta3l	eta3u
1	Anzellotti 2010	1	0.92475	0.88366	0.09050	0.35122	0.99643	0.40196	0.98848	-6.85424	7.03524
2	Song 2006	2	0.93359	0.89621	0.14362	0.41649	0.99640	0.45829	0.98878	-6.96313	7.25038
3	Wang 2007	2	0.93359	0.89621	0.14362	0.41649	0.99640	0.45829	0.98878	-6.96313	7.25038
4	Tavares 2017	3	0.94006	0.90565	0.18003	0.46813	0.99643	0.50305	0.98913	-7.05862	7.41868
5	Weaver 2013	4	0.83029	0.91303	-0.20746	0.36625	0.97642	0.54008	0.98946	-6.49442	6.07949
6	Gnanadas 2017	6	0.86509	0.84773	-0.79538	0.46752	0.97909	0.49321	0.96956	-6.03852	4.44776
7	Morgan 2003	6	0.95249	0.92429	0.23919	0.57582	0.99663	0.59696	0.99016	-7.26914	7.74753
8	Stufflebeam 2011	6	0.86649	0.92452	-0.11450	0.46582	0.97972	0.59993	0.99010	-6.55011	6.32110
9	Zhao 2019	6	0.95249	0.92429	0.23919	0.57582	0.99663	0.59696	0.99016	-7.26914	7.74753
10	vanHoudt 2015	7	0.95533	0.92864	0.24974	0.60188	0.99671	0.61982	0.99046	-7.31870	7.81818
11	Jann 2008	8	0.95778	0.93240	0.25761	0.62467	0.99678	0.63988	0.99075	-7.36024	7.87547
12	Kang 2003	8	0.95811	0.87089	0.01925	0.63242	0.99672	0.55658	0.97315	-6.73554	6.77404
13	Hunyadi 2014	10	0.73888	0.74217	-2.02408	0.41296	0.91923	0.43475	0.91506	-6.27626	2.22809
14	Yang 2015	11	0.96377	0.83422	-0.04807	0.68600	0.99692	0.55000	0.95395	-6.65556	6.55942
15	Hunyadi 2015b	12	0.96521	0.78418	-0.11157	0.69951	0.99699	0.50356	0.92865	-6.62371	6.40057
16	Hunyadi 2015a	18	0.62755	0.64011	-3.28298	0.38628	0.81853	0.40357	0.82380	-6.99295	0.42699
17	Su 2015	21	0.97393	0.95766	0.26969	0.78021	0.99746	0.77929	0.99315	-7.52891	8.06830
18	Barron 2014	23	0.97539	0.90200	0.06543	0.79694	0.99751	0.71764	0.97087	-6.83944	6.97031
19	Lee 2014	29	0.80560	0.89154	0.61683	0.61930	0.91347	0.72868	0.96177	-1.95372	3.18737
20	Reyes 2016	34	0.91210	0.90394	-0.98890	0.76229	0.97108	0.75784	0.96587	-5.85966	3.88186
21	Boerwinkle 2017	36	0.93932	0.81375	-1.23414	0.80202	0.98338	0.65409	0.90987	-5.88497	3.41668
22	Chen 2017	42	0.77322	0.86116	2.08867	0.61934	0.87722	0.72351	0.93631	0.18111	3.99623
23	Bettus 2010	44	0.61581	0.53251	1.12055	0.46008	0.75094	0.38126	0.67802	-0.18144	2.42255
24	Khoo 2019	49	0.51904	0.50317	1.57895	0.37514	0.65984	0.36115	0.64467	0.31999	2.83792
25	Boerwinkle 2019	64	0.42888	0.39853	4.98846	0.30906	0.55766	0.28153	0.52840	2.88266	7.09427