Tutorial I

- 1. Show that a complex polynomial of degree n has exactly n roots. (Assuming the fundamental theorem of algebra)
- 2. Show that a real polynomial that is irreducible has degree at most two i.e., if

$$f(x) = a_0 + a_1 x + \dots + a_n x^n, \quad a_i \in \mathbb{R},$$

then there are non-constant real polynomials g and h such that f(x) = g(x)h(x) if $n \ge 3$.

- 3. Check for differentiability and holomorphicity:
 - (i) $f(z) = c, c \in \mathbb{C}$;
 - (ii) f(z) = z;
 - (iii) $f(z) = z^n, n \in \mathbb{N};$
 - (iv) $f(z) = \operatorname{Re}(z)$;
 - (v) $f(z) = |z|^2$;
 - (vi) $f(z) = \bar{z}$;

(vii)
$$f(z) = \begin{cases} \frac{z}{\bar{z}} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$

4. If f(z) is a real valued function in a domain $\Omega \subseteq \mathbb{C}$, then show that for any $z \in \Omega$ either f'(z) = 0 or f'(z) does not exist. Hence, conclude that a real valued function f defined on a domain is holomorphic if and only if it is constant.