Project report

1.RLC Filter

.ac dec 100 2K 10K
9th Order Butterworth Lowpass
Shunt First
Cutoff Frequency = 4600 Hz

Figure 1. RLC passive filter [filter.asc]

Normalized Values		R	f	Denormalized Values	
c1	0.35			C1	242.19nF
12	1			L2	1.73mH
c3	1.53			C3	1.059uF
14	1.87			L4	3.235mH
c5	2	50Ω	4600Hz	C5	1.384uF
16	1.88			L6	3.235mH
c7	1.53			C7	1.059uF
18	1			L8	1.73mH
c9	0.35			C9	242.19nF

Table 1. Normalized and denormalized values

Figure 2. Module characteristic [filter.asc]

Figure 3. Phase characteristic [filter.asc]

Figure 4. Group Delay [filter.asc]

Parameter	Goal	Measured
Frequency [Hz]	4600	4599

Table 2. Measured parameters

.lib bipolar.txt

.step param Ib 10u 100u 10u

2. BJT transfer characteristic

Figure 1. Circuit for the transfer characteristic of the BJT transistor [caracteristica_bjt.asc]

Figure 2. Transfer characteristic [caracteristica_bjt.asc]

q2	q1
p449	n449
-1.00e-05	1.00e-05
2.04e-06	-9.77e-06
-7.22e-01	6.30e-01
-7.21e-01	6.29e-01
-9.05e-04	9.05e-04
-2.04e-01	-9.77e-01
1.68e-04	6.83e-06
9.13e+03	6.72e+05
6.48e+01	7.96e+01
2.28e+02	6.25e+03
6.41e-13	2.92e-13
4.59e-12	1.02e-13
1.23e-13	1.23e-13
1.54e+00	4.59e+00
5.95e-13	5.55e-13
3.49e+06	1.12e+06
	p449 -1.00e-05 2.04e-06 -7.22e-01 -7.21e-01 -9.05e-04 -2.04e-01 1.68e-04 9.13e+03 6.48e+01 2.28e+02 6.41e-13 4.59e-12 1.23e-13 1.54e+00 5.95e-13

Figure 3. SPICE Error Log with BJT parameters [caracteristica_bjt.asc]

Ib [μA]	Ic_min [mA]	Ic_max [mA]
20	1.1	2.1
30	1.98	3.69
40	2.89	4.9
50	3.66	5.89
60	4.37	6.7
70	5.67	7.98
80	6.28	8.5
90	6.83	8.96
100	7.36	9.4

Table 1. Minimum and maximum current values

3. Active circuit synthesis

	0.057	2.857	0	0	0	0	0	0	0]		[0.057]
	-1	0	1	0	0	0	0	0	0		0
	0	-0.654	0	0.654	0	0	0	0	0		0
	0	0	-0.535	0	0.535	0	0	0	0		0
$A := Cinv \cdot G =$	0	0	0	-0.5	0	0.5	0	0	0	$b \coloneqq Cinv \cdot W =$	0
	0	0	0	0	-0.532	0	0.532	0	0		0
	0	0	0	0	0	-0.654	0	0.654	0		0
	0	0	0	0	0	0	-1	0	1		0
	0	0	0	0	0	0	0	-2.857	0.057		0
									1		
$c \coloneqq \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0	1		d = 0							

Figure 1. A, b, c, d matrixes

Figure 2. Nonlinear circuit

Figure 2. Nonlinear circuit

Parameter	Value
I_{A11}	85.881 nA
I_{A12}	4.294 μΑ
I_{A21}	1.503 μΑ
I_{A23}	1.503 μΑ
I_{A32}	982.32 nA
I_{A34}	982.32 nA
I_{A43}	803.771 nA
I_{A45}	803.771 nA
I _{A54}	751.469 nA
I _{A56}	751.469 nA
I _{A65}	799.413 nA
I _{A67}	799.413 nA
I _{A76}	982.32 nA
I_{A78}	982.32 nA
I_{A87}	1.503 μΑ
I_{A89}	1.503 μΑ
I_{A98}	4.294 μΑ
I_{A99}	85.881 nA
I_{C9}	85.904 nA
I_L	85.904 nA
$I_{\rm E}$	85.904 nA
С	1 nF

Table 1. Polarization currents and the capacitor

4. Polarization circuit

Figure 1. BJT Current mirrors [polarizare.asc]

5. ELIN circuit

Figure 1. Exponential cell P_BJT [metoda_sinteza_state_space.asc]

Figure 2. Circuit for P_BJT exponential cell [metoda_sinteza_state_space.asc]

Figure 3. Exponential cell N_BJT [metoda_sinteza_state_space.asc]

Figure 4. Circuit for N_BJT exponential cell [metoda_sinteza_state_space.asc]

Parameter	Current source	Value
I_{A11}	I1, I3	85.881 nA
I_{A12}	I2, I4	4.294 μΑ
I_{A21}	I7, I8	1.503 μΑ
I_{A23}	I11, I12	1.503 μΑ
I_{A32}	I13, I14	982.32 nA
I_{A34}	I15, I16	982.32 nA
I_{A43}	I5, I6	803.771 nA
I_{A45}	I9, I10	803.771 nA
I_{A54}	I17, I18	751.469 nA
I_{A56}	I25, I26	751.469 nA
I_{A65}	I27, I28	799.413 nA
I_{A67}	I29, I30	799.413 nA
I_{A76}	I31, I32	982.32 nA
I_{A78}	I33, I34	982.32 nA
I_{A87}	I35, I36	1.503 μΑ
I_{A89}	I37, I38	1.503 μΑ
I_{A98}	I39, I40	4.294 μΑ
I_{A99}	I41, I42	85.881 nA
I_{C9}	-	85.904 nA
$I_{\rm L}$	-	85.904 nA
$I_{\rm E}$	-	85.904 nA
C1->C8	-	1 nF

Table 1. Current sources and capacitors.

Figure 5. Active circuit [metoda_sinteza_state_space.asc]