

The Art of Training Deep Neural Networks

King Abdullah University of Science and Technology (KAUST)
KAUST Academy

Table of Contents

- 1. Introduction
- 2. Losses & Metrics
- 3. Hyperparameter Tuning
- 4. Reading & Debugging Loss Curves
- 5. Memory & Speed Optimisation

Introduction

- Training Al models is an iterative process of trying, failing, and refining.
- Success depends on empirical experimentation, not just theory.
- Practically, we can offer guidelines on what is likely to work, but there are no guarantees.

Introduction

- In this session, we'll explore the key components that influence deep learning training.
- What they are, why they matter, and how to optimize them.

Losses & Metrics

What You Optimize Is What You Get.

Loss vs Metric: spot the difference

Role	Used during	Differentiable?	Typical examples
Loss	?	?	Cross-Entropy, MSE, L1, Huber, Focal, Dice-Loss
Metric	?	?	Accuracy, F1, mAP, IoU, AUC-ROC, MAE

Loss vs Metric: spot the difference

Role	Used during	Differentiable?	Typical examples
Loss	Back-prop optimisation	Yes	Cross-Entropy, MSE, L1, Huber, Focal, Dice-Loss
Metric	Validation / reporting	No	Accuracy, F1, mAP, IoU, AUC-ROC, MAE

"Loss is for machines, metrics are for humans."

Loss	Minimises	Used for
Mean Squared Error (MSE)	L² distance between points/pixels	Regression / autoencoders
Mean Absolute Error (MAE)	?	Regression / autoencoders
Huber (Smooth L1) Loss	?	Regression / autoencoders
Dice / IoU Loss	?	Segmentation / Detection
Cross-Entropy (CE) / KL divergence	?	Classification / language models (LLMs)

Loss	Minimises	Used for
Mean Squared Error (MSE)	L² distance between points/pixels	Regression / autoencoders
Mean Absolute Error (MAE)	L¹ distance between points/pixels	Regression / autoencoders
Huber (Smooth L1) Loss	?	Regression / autoencoders
Dice / IoU Loss	?	Segmentation / Detection
Cross-Entropy (CE) / KL divergence	?	Classification / language models (LLMs)

Loss	Minimises	Used for
Mean Squared Error (MSE)	L² distance between points/pixels	Regression / autoencoders
Mean Absolute Error (MAE)	L¹ distance between points/pixels	Regression / autoencoders
Huber (Smooth L1) Loss	?	Regression / autoencoders
Dice / IoU Loss	?	Segmentation / Detection
Cross-Entropy (CE) / KL divergence	?	Classification / language models (LLMs)

Is MAE differentiable? No, but we can use a special type of gradient (subgradient) to minimize it.

Loss	Minimises	Used for
Mean Squared Error (MSE)	L² distance between points/pixels	Regression / autoencoders
Mean Absolute Error (MAE)	L¹ distance between points/pixels	Regression / autoencoders
Huber (Smooth L1) Loss	Piecewise L¹ & L² (quadratic near 0, linear beyond) distance between points/pixels	Regression / autoencoders
Dice / IoU Loss	?	Segmentation / Detection
Cross-Entropy (CE) / KL divergence	?	Classification / language models (LLMs)

Loss	Minimises	Used for
Mean Squared Error (MSE)	L² distance between points/pixels	Regression / autoencoders
Mean Absolute Error (MAE)	L¹ distance between points/pixels	Regression / autoencoders
Huber (Smooth L1) Loss	Piecewise L¹ & L² (quadratic near 0, linear beyond) distance between points/pixels	Regression / autoencoders
Dice / IoU Loss	Overlap ratio between masks/boxes	Segmentation / Detection
Cross-Entropy (CE) / KL divergence	?	Classification / language models (LLMs)

Loss	Minimises	Used for
Mean Squared Error (MSE)	L² distance between points/pixels	Regression / autoencoders
Mean Absolute Error (MAE)	L¹ distance between points/pixels	Regression / autoencoders
Huber (Smooth L1) Loss	Piecewise L¹ & L² (quadratic near 0, linear beyond) distance between points/pixels	Regression / autoencoders
Dice / IoU Loss	Overlap ratio between masks/boxes	Segmentation / Detection
Cross-Entropy (CE) / KL divergence	Information (entropy) difference between probability distributions	Classification / language models (LLMs)

Q: Can we optimize for multiple losses at the same time?

Scenario	Composite Loss	Purpose
Detection (Yolo)	BCE_obj + CE_cls + λ·IoU_reg	? + ? + ?
Segmentation (UNet)	CE + λ·Dice	? + ?
Generative (VAE)	Reconstruction_obj + β·KL	? + ?
Generative (GAN)	CE_adv + λ·Perceptual	<mark>?</mark> + ?

Scenario	Composite Loss	Purpose
Detection (Yolo)	BCE_obj + CE_cls + λ·IoU_reg	Objectness + class + boxes
Segmentation (UNet)	CE + λ·Dice	? + ?
Generative (VAE)	Reconstruction_obj + β·KL	? + ?
Generative (GAN)	CE_adv + λ·Perceptual	? + ?

Scenario	Composite Loss	Purpose
Detection (Yolo)	BCE_obj + CE_cls + λ·IoU_reg	Objectness + class + boxes
Segmentation (UNet)	CE + λ·Dice	Pixels + mask overlap
Generative (VAE)	Reconstruction_obj + β·KL	? + ?
Generative (GAN)	<pre>CE_adv + λ·Perceptual</pre>	? + ?

Scenario	Composite Loss	Purpose
Detection (Yolo)	BCE_obj + CE_cls + λ·IoU_reg	Objectness + class + boxes
Segmentation (UNet)	CE + λ·Dice	Pixels + mask overlap
Generative (VAE)	Reconstruction_obj + β·KL	Rebuild + Gaussian latent
Generative (GAN)	<pre>CE_adv + λ·Perceptual</pre>	? + ?

Scenario	Composite Loss	Purpose
Detection (Yolo)	BCE_obj + CE_cls + λ·IoU_reg	Objectness + class + boxes
Segmentation (UNet)	CE + λ·Dice	Pixels + mask overlap
Generative (VAE)	Reconstruction_obj + β·KL	Rebuild + Gaussian latent
Generative (GAN)	<pre>CE_adv + λ·Perceptual</pre>	Realism + texture & color details

Hyperparameters Tuning

Loss tells us where to climb Hyper-params decide how fast and which path.

Hyperparameters

What are Hyper-parameters?

⇒ values you set before training (not learned).

Role?

⇒ steer optimisation speed, capacity & generalisation.

How to set them?

 \Rightarrow pick sensible starters \rightarrow train \rightarrow inspect \rightarrow iterate.

Hyperparameters Tuning

Hyperparameter	Quick rule-of-thumb	
Optimiser	Usually Adam/AdamW works the best.	
LR	CNNs-based: (1e-3–1e-4)-ish ↔ Transformers-based: (1e-5–1e-6)-ish. Usually used with a scheduler (learning rate decay).	
Batch size	Vision: (4–32)-ish ↔ Text: (1–16)-ish keep fixed; scale only if needed.	
Epochs	Vision ≈ 5–300; NLP ≈ 1-10; LLMs ≈ 1 (up to 3).	
Img size / sequence length	prototype small (e.g. img_size ≈ 224*224, seq_len ≈ 256) → upscale when everything else is stable.	
Backbone family & size	start tiny → scale up once pipeline is stable (e.g. EfficientNetV2-Small → EfficientNetV2-Large, BERT-base → BERT-large, etc.).	

Hyperparameters Tuning

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Tip: Scale batch size when adjusting learning rate.

But by how much?

Hyperparameters Tuning

Tip: Scale batch size when adjusting learning rate.

1. SGD: Use linear scaling rule*

$$ext{LR}_{new} = ext{LR}_{old} imes rac{ ext{Batch Size}_{new}}{ ext{Batch Size}_{old}}$$

Adam/AdamW: Square-root scaling rule*

$$ext{LR}_{new} = ext{LR}_{old} imes \sqrt{rac{ ext{Batch Size}_{new}}{ ext{Batch Size}_{old}}}$$

Early Stopping

- Goal: stop training just after validation metric flattens or degrades.
- How: monitor val-loss / val-metric → patience=N epochs.
- Helps auto-select optimal epochs value.

Schedulers

- A scheduler is the rule that automatically adjusts the learning rate during training.
- They help speed convergence, escape plateaus, and reach a better optimum.
- Most teams now default to cosine decay.

Schedulers Types

Scheduler Type	How It Triggers	Typical Use-case
Step-based	After every optimiser step	When low number of epochs used (e.g. NLP)
Epoch-based	After every epoch	When a high number of epochs used (e.g. Vision, Audio,etc)

Warm-up

- Problem:
 - O large initial LR + random weights
 - \Rightarrow gradients explode.
 - large initial LR + Pretrained weights
 - ⇒ Forget previous knowledge.

Warm-up

- Solution: gradually increase LR from 0 → base LR over some steps/epochs (or 3-5 % of total steps/epochs).
- Usually used with Transformers.

Early-Stopping vs Fixed Epochs

- Which one is better:
 - Many epochs + Early stopping.
 - Fixed epochs + Learning rate scheduler.

Early-Stopping vs Fixed Epochs

- Which one is better:
 - O Many epochs + Early stopping.
 - O Fixed epochs + Learning rate scheduler.

⇒ Recommended:

- 1. Use early stopping initially to discover optimal epoch range.
- 2. Then, set a fixed number of epochs and apply a scheduler to smoothly decay the learning rate within that range.

Augmentations

 Data augmentation is generating new training examples from existing ones through various transformations.

Types:

Random
Augmentations: Flip,
Crop, Noise,...

Augmentations

- Data augmentation is generating new training examples from existing ones through various transformations.
- Types:

Mix Augmentations: MixUp, CutMix,...

Augmentations

- Data augmentation is generating new training examples from existing ones through various transformations.
- Types:

Random

Augmentations: Flip,

Crop, Noise,...

How to choose? do error analysis

→ add augs that mimics real mistakes.

• Note: heavy augs \Rightarrow add more epochs.

Mix Augmentations:

MixUp, CutMix,...

Tuning Order (practical)

- 1. LR & Epochs: lock batch size unless GPU forces change.
- 2. Scheduler: cosine is usually the best.
- 3. Augmentations: add gradually, re-train.
- **4. Model / Input complexity:** scale backbone, image size, sequence length.

Tuning Order (practical)

- Tips:
 - Make one change at a time.
 - O Start with small experiments, then scale up.
 - Always ensure the loss behaves normally and check for common bugs (e.g., exploding loss, NaNs, unstable curves).

Reading & Debugging Loss Curves

See the Signal, Catch the Bug

Debugging Loss Curves

Let's have a look at some plots...

Case 1: Diverging

Case 1: Diverging

- High LR
- Exploding gradient
- Bad data
- No normalization

Case 2: Slow Decline

Case 2: Slow Decline

- Very small LR
- Vanishing gradients

Case 3: Oscillating

Case 3: Oscillating

- High LR
- Small batch size
- Poor shuffle
- A lot of bad samples

Case 4: Val flat

Case 4: Val flat

- Coding bug in data preparation (e.g. wrong labels)
- Very hard val (distribution shift)
- Significant imbalance

Case 5: Both flat

Case 5: Both flat

- Wrong loss
- Arch mismatch
- Bad labels
- Frozen grads
- Very small LR
- No normalization

Case 6: NaN Loss

Case 6: NaN Loss

- Grad explode
- Log/Div 0

Case 7: Sharp jump

Case 7: Sharp jump

- NaNs/Inf
- Outliers
- Poor shuffling

Case 8: Val rises, train falls

Case 8: Val rises, train falls

Why did this happen?

 Overfitting (Big Model, many epochs, few data, weak aug,...)

Memory & Speed Optimisation

Train Faster, Fit Bigger.

Mixed Precision

- Mixed precision combines the use of both FP32 and lower bit floating points (FP16) to reduce memory footprint during model training.
- It halves GPU memory use and often boosts training throughput by 1.5-2x.
- Implementation.

Mixed Precision

- How it works?
 - 1. FP32 original weights are kept for full-precision updates.
 - 2. Cast to FP16 for forward/backward.
 - 3. Compute FP16 gradients, then cast back to FP32.
 - 4. Optimizer updates the FP32 "original" copy.

Quantization

- Convert the weights of a trained model from FP32 → INT8/4.
- Why?
 - O Model size ↓ 4–8×
 - O Inference speed † 2–4×
 - O Minimal accuracy drop |

Mixed Precision vs Quantization

	Mixed Precision	Quantization
Data type	FP32 ↔ FP16 (floats)	FP32 → INT8/4 (integers)
When to use	Training	Inference
Benefit	½ memory & 1.5–2× training speed	4–8× smaller model & 2–4× faster inference
Drawback	Needs GPU support (AMP)	Possible small accuracy drop

Why not training on INT8/4 to make training even faster/lighter? 🗯

Mixed Precision vs Quantization

	Mixed Precision	Quantization
Data type	FP32 ↔ FP16 (floats)	FP32 → INT8/4 (integers)
When to use	Training	Inference
Benefit	½ memory & 1.5–2× training speed	4–8× smaller model & 2–4× faster inference
Drawback	Needs GPU support (AMP)	Possible small accuracy drop

Why not training on INT8/4 to make training even faster/lighter? unstable or no learning.

Gradient Accumulation

- Simulate large-batch training on limited GPU memory.
- How: accumulate gradients over k mini-batches before optimizer step.
- Result:
 - Stable updates
 - O Bigger effective batch size without OOM.

Freezing Backbone

- Freeze pretrained backbone and train only head or adapter layers.
- Benefits:
 - Faster training
 - O Lower memory
 - Less overfitting on small data

Knowledge Distillation (Teacher-Student Models)

- Knowledge distillation is a machine learning technique that aims to transfer the learnings of a large pre-trained model (teacher) to a smaller model (student).
- Why?
 - \bigcirc ≈ 95 % accuracy with < ½ parameters.
 - \bigcirc Memory & latency $\downarrow \rightarrow$ deploy on edge/phone.
 - O Decrease inference cost significantly.

Knowledge Distillation (Teacher-Student Models)

- Knowledge distillation is a machine learning technique that aims to transfer the learnings of a large pre-trained model (teacher) to a smaller model (student).
- Why?
 - \bigcirc ≈ 95 % accuracy with < ½ parameters.
 - \bigcirc Memory & latency $\downarrow \rightarrow$ deploy on edge/phone.
 - O Decrease inference cost significantly.

Example: GPT-o3 → GPT-o3-mini

Knowledge Distillation (Teacher-Student Models)

There are many ways of doing distillation, but simplest way is:

- 1. Inference teacher on large unlabeled pool → soft logits.
- 2. Consider these logits as labels.
- 3. Train student on these labels with loss:

KLDiv(Student logits | Teacher logits)

Thanks for Attending!