1. Basic Results — Inverse Transform Method

We want to use $\mathcal{U}(0,1)$ numbers to generate observations (variates) from other distributions.

Let X be a random variable with c.d.f. $F(\cdot)$. Then

$$U = F(X) \sim \mathcal{U}(0, 1).$$

Proof: Let Y = F(X) and suppose that Y has c.d.f. G(y). Then (for the continuous case),

$$G(y) = P(Y \le y) = P(F(X) \le y)$$

= $P(X \le F^{-1}(y)) = F(F^{-1}(y))$
= y . \diamondsuit

In the above, we defined the inverse c.d.f. by

$$F^{-1}(u) = \inf[x : F(x) \ge u] \quad u \in [0, 1].$$

Let $U \sim \mathcal{U}(0,1)$. Then the random variable $F^{-1}(U)$ has the same distribution as X.

- 1. Sample U from $\mathcal{U}(0,1)$.
- 2. Return $X = F^{-1}(U)$.

2. Acceptance-Rejection Method

Example 14 (Baby example, which you would usually do via inverse transform, but what the heck!)

Generate a U(2/3,1) RV. Here's the A-R algorithm:

- 1. Generate $U \sim U(0,1)$.
- 2. If $U \ge 2/3$, ACCEPT $X \leftarrow U$. Otherwise, REJECT and go to 1.

Motivation: The majority of c.d.f.'s cannot be inverted efficiently.

Suppose we want to simulate a continuous RV with p.d.f. f(x), but that it's difficult to generate directly. Also suppose that we can easily generate a RV having p.d.f. $h(x) \equiv t(x)/c$, where t(x) majorizes f(x), i.e.,

$$t(x) \ge f(x), \quad x \in \mathbb{R},$$

and

$$c \equiv \int_{-\infty}^{\infty} t(x) dx \ge \int_{-\infty}^{\infty} f(x) dx = 1,$$

where we assume that $c < \infty$.

Then f can be written as

$$f(x) = c \times \frac{f(x)}{t(x)} \times \frac{t(x)}{c} = cg(x)h(x),$$

where

$$\int_{-\infty}^{\infty} h(x) dx = 1 \quad (h \text{ is a density})$$

and

$$0 \le g(x) \le 1.$$

Theorem 15 (von Neumann, 1951) Let $U \sim \mathcal{U}(0,1)$, and let Y a random variable with density h. If $U \leq g(Y)$, then Y has (conditional) density f.

This suggests the following "acceptance-rejection" algorithm ...

Algorithm A-R

Repeat

Generate U from $\mathcal{U}(0,1)$

Generate Y from h

until $U \leq g(Y)$

Return $X \leftarrow Y$

There are two main issues:

- The ability to quickly sample from h.
- ullet c must be small (t must be "close" to f) since

$$\Pr[U \le g(Y)] = \frac{1}{c}$$

and the mean number of trials until "success" $[U \leq g(Y)]$ is equal to c.

Example 16 (Law & Kelton) Generate a RV with p.d.f. $f(x) = 60x^3(1-x)^2$, $0 \le x \le 1$. Can't invert this analytically.

Note that the maximum occurs at x = 0.6, and f(0.6) = 2.0736.

Using the majorizing function

$$t(x) = 2.0736, \quad 0 \le x \le 1$$

(which isn't actually too efficient), we get $c = \int_0^1 f(x) dx = 2.0736$, and therefore

 $h(x)=1, \quad 0 \leq x \leq 1 \quad \text{(i.e., a U(0,1) p.d.f.)}$ and

$$g(x) = 60x^3(1-x)^2/2.0736.$$

E.g., if we generate U=0.13 and Y=0.25, then it turns out that $U \leq g(Y)=\frac{60Y^3(1-Y)^2}{2.0736}$, so we take $X \leftarrow 0.25$.

Example 17 (Ross) The standard half-normal distribution with density

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2}, \quad x \ge 0.$$

Using the majorizing function

$$t(x) = \sqrt{\frac{2e}{\pi}}e^{-x}$$

we get

$$c = \sqrt{\frac{2e}{\pi}} \int_0^\infty e^{-x} dx = \sqrt{\frac{2e}{\pi}} = 1.3155,$$

$$h(x) = e^{-x}$$
 [exponential($\lambda = 1$) density],

and

$$g(x) = e^{-(x-1)^2/2}.$$

How can we generate from N(0,1)?

Generate U from $\mathcal{U}(0,1)$

Generate X from the half-normal distribution

Return

$$Z = \begin{cases} -X & \text{if } U \le 1/2\\ X & \text{if } U > 1/2. \end{cases}$$

How can we generate from $N(\mu, \sigma^2)$?

Use the transformation $\mu + \sigma Z$.

Example 18 The gamma distribution with density

$$f(x) = \frac{(x/\alpha)^{\beta - 1}}{\alpha \Gamma(\beta)} e^{-(x/\alpha)^{\beta}}, \quad x > 0.$$

If the shape parameter $\beta < 1$, we use the following A-R algorithm with $c \le 1.39$:

Algorithm GAM1

 $b \leftarrow (e + \beta)/e$ (e is the base of the natural logarithm)

While (True)

Generate U from $\mathcal{U}(0,1)$; $W \leftarrow bU$

If W < 1

 $Y \leftarrow W^{1/\beta}$; Generate V from $\mathcal{U}(0,1)$

If $V \leq e^{-Y}$: Return $X = \alpha Y$

Else

$$Y \leftarrow -\ln[(b-W)/\beta]$$

Generate V from $\mathcal{U}(0,1)$

If $V < Y^{\beta-1}$: Return $X = \alpha Y$

If $\beta \geq 1$, the value of c for the following A-R algorithm decreases from 4/e=1.47 to $\sqrt{4/\pi}=1.13$ as β increases from 1 to ∞ .

Algorithm GAM2

$$a \leftarrow (2\beta - 1)^{-1/2}$$
; $b \leftarrow \beta - \ln 4$; $c \leftarrow \beta + a^{-1}$; $d \leftarrow 1 + \ln 4.5$

While (True)

Generate U_1 , U_2 from $\mathcal{U}(0,1)$

$$V \leftarrow a \ln[U_1/(1-U_1)]$$

$$Y \leftarrow \beta e^V$$
; $Z \leftarrow U_1^2 U_2$

$$W \leftarrow b + cV - Y$$

If
$$W + d - 4.5Z > 0$$
: Return $X = \alpha Y$

Else

If
$$W > \ln Z$$
: Return $X = \alpha Y$

Example 19 The Poisson distribution with probability function

$$Pr(X = n) = e^{-\lambda} \frac{\lambda^n}{n!}, \quad n = 0, 1, \dots$$

Define A_i as the *i*th interarrival time from a Pois(λ) process. Then

$$X = n$$

 \Leftrightarrow See exactly n PP(λ) arrivals by t=1

$$\Leftrightarrow \sum_{i=1}^{n} A_i \le 1 < \sum_{i=1}^{n+1} A_i$$

$$\Leftrightarrow \sum_{i=1}^{n} \left[\frac{-1}{\lambda} \ell \mathsf{n}(U_i) \right] \leq 1 < \sum_{i=1}^{n+1} \left[\frac{-1}{\lambda} \ell \mathsf{n}(U_i) \right]$$

$$\Leftrightarrow \frac{-1}{\lambda} \ln \left(\prod_{i=1}^n U_i \right) \le 1 < \frac{-1}{\lambda} \ln \left(\prod_{i=1}^{n+1} U_i \right)$$

$$\Leftrightarrow \prod_{i=1}^{n} U_i \ge e^{-\lambda} > \prod_{i=1}^{n+1} U_i. \tag{5}$$

The following A-R algorithm samples U(0,1)'s until (5) becomes true.

Algorithm POIS1

$$a \leftarrow e^{-\lambda}$$
; $p \leftarrow 1$; $X \leftarrow -1$

Until $p \leq a$

Generate U from $\mathcal{U}(0,1)$

$$p \leftarrow pU$$
; $X \leftarrow X + 1$

Return X

Example 20 Apply Algorithm POIS1 to obtain a Pois($\lambda = 2$) variate.

Sample until $e^{-\lambda} = 0.1353 > \prod_{i=1}^{n+1} U_i$.

n	U_{n+1}	$\prod_{i=1}^{n+1} U_i$	Stop?
0	0.3911	0.3911	No
1	0.9451	0.3696	No
2	0.5033	0.1860	No
3	0.7003	0.1303	Yes

Thus, we take X = 3.

Remark 21 How many U's are required to generate one realization of X? Easy argument says that the expected number you'll need is $E[X+1] = \lambda + 1$.

Algorithm POIS2 (For $\lambda \ge 20$)

$$a \leftarrow \pi \sqrt{\lambda/3}$$
; $b \leftarrow a/\lambda$; $c \leftarrow 0.767 - 3.36/\lambda$; $d \leftarrow \ln c - \ln b - \lambda$

Repeat

Repeat

Generate U from $\mathcal{U}(0,1)$

$$Y \leftarrow [a - \ln((1 - U)/U]/b]$$

until
$$Y > -1/2$$

$$X \leftarrow |Y + 1/2|$$

Generate V from $\mathcal{U}(0,1)$

until
$$a - bY + \ln[V/(1 + e^{a-bY})^2] \le d + X \ln \lambda - \ln(X!)$$

Return X

Alternatively, we can use the normal approximation

$$\frac{X-\lambda}{\sqrt{\lambda}} \approx N(0,1).$$

Algorithm POIS3 (For $\lambda \ge 20$)

$$\alpha \leftarrow \sqrt{\lambda}$$

Generate Z from N(0,1)

Return $X = \max(0, \lfloor \lambda + aZ + 0.5 \rfloor)$ (Note that this employs a "continuity correction."

3 Generating Poisson Arrivals

When the arrival rate is constant, say λ , the interarrival times are i.i.d. exponential(λ) and the arrival times are generated recursively:

$$T_0 = 0$$

$$T_i = T_{i-1} - \frac{1}{\lambda} \ln U_i, \quad i \ge 1$$

How can we generate a fixed number n of arrivals in a time interval [a,b]?

Generate U_1, \ldots, U_n from $\mathcal{U}(0,1)$

Sort the U_i 's: $U_{(1)} < U_{(2)} < \cdots < U_{(n)}$

Set the arrival times to $T_i = a + (b - a)U_{(i)}$

4 Special-Case Techniques

4.1. Box-Müller Method

Nice way to generate standard normals.

Theorem 23 If U_1, U_2 are i.i.d. U(0,1), then

$$Z_1 = \sqrt{-2\ell n(U_1)} \cos(2\pi U_2)$$

 $Z_2 = \sqrt{-2\ell n(U_1)} \sin(2\pi U_2)$

are i.i.d. Nor(0,1).

Note that the trig calculations must be done in radians.

Proof Someday soon. \Diamond

Some cool corollaries from Box-Müller.

Example 24 Note that

$$Z_1^2 + Z_2^2 \sim \chi^2(1) + \chi^2(1) \sim \chi^2(2)$$
.

But

$$Z_1^2 + Z_2^2$$

= $-2\ell n(U_1)(\cos^2(2\pi U_2) + \sin^2(2\pi U_2))$
= $-2\ell n(U_1)$
 $\sim \text{Exp}(1/2).$

Thus, we've just proven that

$$\chi^2(1) + \chi^2(1) \sim \text{Exp}(1/2).$$

Example 25 Note that

$$Z_1/Z_2 \sim \text{Nor}(0,1)/\text{Nor}(0,1) \sim \text{Cauchy}.$$

But

$$Z_1/Z_2 = \frac{\sqrt{-2\ell n(U_1)}\sin(2\pi U_2)}{\sqrt{-2\ell n(U_1)}\cos(2\pi U_2)}$$

= $\tan(2\pi U_2)$.

Thus, we've just proven that

$$tan(2\pi U) \sim Cauchy.$$

Similarly,

$$\cot(2\pi U) \sim \text{Cauchy}.$$

Similarly,

$$Z_1^2/Z_2^2 = \tan^2(2\pi U) \sim F(1,1).$$

(Did you know that?)

Polar Method — a little faster than Box-Müller:

1. Generate U_1, U_2 i.i.d. U(0,1).

Let
$$V_i = 2U_i - 1$$
, $i = 1, 2$, and $W = V_1^2 + V_2^2$.

2. If W > 1, reject and go back to step 1.

Otherwise, let
$$Y = \sqrt{-2(\ln W)/W}$$
, and accept $Z_i \leftarrow V_i Y$, $i = 1, 2$.