

André Pinho 1º semestre 2019

Série de Fourier

Decomposição de um sinal periódico em harmônicas:

Série de Fourier

Jean Baptiste Joseph Fourier (21/03/1768 - 16/05/1830) $4 \sin \theta$

"Qualquer função periódica pode ser reescrita como uma soma ponderada de senos e 4 sin70 co-senos de diferentes 77 frequências." Fourier J. B. J. (1807).

 $4 \sin 3\theta$ $4 \sin 5\theta$

https://www.facebook.com/integrandoconhecimento

Série Trigonométrica de Fourier

• Todo sinal periódico x(t) com período T_0 pode ser representado como uma combinação linear de senos e cossenos, conforme definição a seguir:

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t) \right]$$

$$a_k = \frac{2}{T_0} \int_t^{t+T_0} x(t) \cos(k\omega_0 t) dt$$

$$b_k = \frac{2}{T_0} \int_t^{t+T_0} x(t) \sin(k\omega_0 t) dt$$

Série Trigonométrica de Fourier

• x(t) PAR:

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(k\omega_0 t)]$$

• x(t) **IMPAR**:

$$x(t) = \sum_{k=1}^{\infty} [b_k \sin(k\omega_0 t)]$$

Série Exponencial Complexa de Fourier

• Todo sinal periódico x(t) com período T_0 pode ser representado como uma combinação linear de exponenciais complexas, conforme definição a seguir:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \, e^{jk\omega_0 t}$$

$$c_{k} = \frac{1}{T_{0}} \int_{t}^{t+T_{0}} x(t) e^{-jk\omega_{0}t} dt$$

Série de Fourier

 Relação entre os coeficientes da Série Trigonométrica e Exponencial complexa de Fourier

$$c_{0} = \frac{a_{0}}{2}$$

$$c_{k} = \frac{1}{2}(a_{k} - jb_{k})$$

$$c_{-k} = \frac{1}{2}(a_{k} + jb_{k})$$

• Quando x(t) real $a_k = 2\mathcal{R}e[c_k], \qquad b_k = 2Im[c_k]$

Série de Fourier em forma harmônica

$$x(t) = c_0 + \sum_{k=1}^{\infty} \left[c_k \cos(k\omega_0 t - \theta_k) \right]$$

• Os coeficientes c_k e θ_k se relacionam com a_k e b_k da seguinte forma:

$$c_0 = \frac{a_0}{2}$$

$$|c_k| = \sqrt{a_k^2 + b_k^2}$$

$$\theta_k = \tan^{-1}\left(\frac{b_k}{a_k}\right)$$

$$c_k = |c_k|e^{j\theta_k}$$

- Espectro de Amplitude:
 - Gráfico $|c_k|$ versus f
- Espectro de Fase:
 - Gráfico θ_k versus f
- Como os valores de k são inteiros, gráficos de Amplitude e Fase são representados por impulsos nas frequências discretas $k\omega_0$, por isso também são conhecidos como Espectros de Linha.

Série de Fourier

Decomposição de um sinal periódico em harmônicas:

Série de Fourier (Propriedades)

/	Propriedade S	eção	Sinal periódico	Coeficie	ntes da série de Fourier
			$x(t)$ Periódicos com período T e $y(t)$ frequência fundamental $\omega_0 = 2\pi/T$	a _t b _t	
	Linearidade	3.5.1	Ax(t) + By(t)		Aa _k + Bb _k
	Deslocamento no tempo	3.5.2	$x(t-t_0)$		$a_1 e^{-jk\omega_0 t_0} = a_1 e^{-jk(2\pi/T)t_0}$
	Deslocamento em frequência		$e^{jM\omega_0t}x(t)=e^{jM(2\pi/T)t}x(t)$		a _{k-M}
	Conjugação	3.5.6	x'(t)		a_t
	Reflexão no tempo	3.5.3	x(-t)		a_t
	Mudança de escala no tempo	3.5.4	$x(\alpha t)$, $\alpha > 0$ (periódico com período $T/$	$ \alpha $	ak
	Convolução periódica		$\int_T x(\tau)y(t-\tau)d\tau$		$Ta_k b_k$
	Multiplicação	3.5.5	x(t)y(t)		$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$

Série de Fourier (Propriedades)

Propriedade	Seção	Sinal periódico	Coeficientes da série de Fourier
		$x(t)$ Periódicos com período T e $y(t)$ frequência fundamental $\omega_0 = 2\pi/T$	a _t b _t
Diferenciação	************	dx(t) dt	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Integração		$\int_{-\infty}^{t} x(t) dt$ (com valor finito e periódica somente se $a_0 = 0$)	$\left(\frac{1}{jk\omega_{g}}\right)a_{k} = \left(\frac{1}{jk(2\pi/T)}\right)a_{k}$
Simetria conjugada para : reais	sinais 3.5.6	x(t) real	$\begin{cases} a_{k} = a_{-k}^{*} \\ \operatorname{Re} \{a_{k}\} = \operatorname{Re} \{a_{-k}\} \\ \operatorname{Im} \{a_{k}\} = -\operatorname{Im} \{a_{-k}\} \\ a_{k} = a_{-k} \\ 4a_{k} = -4a_{-k} \end{cases}$
Sinais reais e pares	3.5.6	x(t) real e par	a, real e par
Sinais reais e împares	3.5.6	x(t) real e impar	a puramente imaginário e impar
Decomposição par-impar sinais reais	de	$\begin{cases} x_e(t) = \mathcal{E} v \{x(t)\} & [x(t) \text{ real}] \\ x_0(t) = \Theta d \{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re e[a_k]$ $j(a_k)$

• Exercício: determine a série Trigonométrica de Fourier do sinal abaixo:

 Exercício: determine a série Trigonométrica de Fourier e os respectivos espectros de linha do sinal abaixo:

• Exercício: determine a série Trigonométrica de Fourier e os respectivos espectros de linha dos sinais abaixo:

Potência de Sinais Periódicos

$$P = \frac{1}{T_0} \int_{t}^{t+T_0} |x(t)|^2 dt$$

• Se x(t) for representado pela série exponecial complexa de Fourier:

$$P = \sum_{k=-\infty}^{\infty} |c_k|^2$$

(Teorema de Parseval da Série de Fourier)

- Idealmente, os sinais alternados dos sistemas de potência devem ser compostos apenas por uma componente de frequência
- Cargas não lineares (inversores de tensão, inversores de corrente, etc...), saturação de transformadores, entre outros fatores produzem componentes harmônicas que contaminam o sinal original
- A distorção harmônica é uma métrica de qualidade dos sistemas de energia

Distorção Harmônica Total (THD)

$$THD = \frac{\sqrt{\sum_{n=2}^{H} G_n^2}}{G_1},$$

- $-\mathit{G}_n$ é o valor RMS da n-ésima componente harmônica
- H é a máxima ordem de componente harmônica presente (tipicamente 50)

$$G_n = \frac{c_n}{\sqrt{2}}$$

 $-\,c_n$ é a amplitude da n -ésima harmônica (coeficientes da Série de Fourier) T_0

 O valor da THD traz uma estimativa de quanto os equipamentos da rede estão aquecendo em função da referida distorção

O valor RMS de um sinal distorcido é dado por

$$S_{RMS} = \sqrt{\sum_{n=1}^{H} G_n^2} = G_1 \sqrt{1 + THD^2}$$

• Exercício: uma linha monofásica de 127V e 60Hz alimenta uma sala de equipamentos que tem comportamento não linear, gerando 20% de THD. Considerando uma carga com $Z=10 \pm 30~\Omega$, calcule a potência aparente desperdiçada devido a THD.

Série de Fourier em tempo discreto

Sinal periódico em tempo discreto:

$$x[n] = x[n+N]$$

 O período fundamental é o menor inteiro positivo N que valida a expressão acima.

A frequência fundamental é dada por:

$$\omega_0 = \frac{2\pi}{N}$$

Série de Fourier em tempo discreto

Considerando uma exponencial complexa:

$$f_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}$$

- É fato que existam apenas N sinais distintos, uma vez que exponenciais complexas de tempo discreto cujas frequências diferem de múltiplos de 2π , são idênticas
- A representação em série de Fourier de um sinal periódico de tempo discreto é uma série finita.

Série de Fourier em tempo discreto

• As equações de análise e síntese para a série de Fourier em tempo discreto são respectivamente:

$$x[n] = \sum_{k=\langle N \rangle} c_k e^{jk\omega_0 n} = \sum_{k=\langle N \rangle} c_k e^{jk(2\pi/N)n}$$

$$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

Decomposição de um sinal não periódico:

• Seja um sinal não periódico x(t) com duração finita:

• Seja um sinal y(t), periódico, como repetição de x(t)

$$\lim_{T_0\to\infty}y(t)=x(t)$$

 Tomando a expansão em série de exponenciais complexas:

$$y(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

$$c_k = \frac{1}{T_0} \int_t^{t+T_0} y(t) e^{-jk\omega_0 t} dt$$

• Como y(t) = x(t), para $|t| < \frac{T_0}{2}$ e x(t) = 0, for a desse intervalo:

$$c_k = \frac{1}{T_0} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_0 t} dt$$

Assim, define-se:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

• Voltando a C_k

$$C_k = \frac{1}{T_0} X(jk\omega_0)$$

Assim

$$y(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T_0} X(jk\omega_0) e^{jk\omega_0 t}$$

$$y(t) = \sum_{k=-\infty}^{\infty} \frac{\omega_0}{2\pi} X(jk\omega_0) e^{jk\omega_0 t}$$

• Quando $T_0 \to \infty$, $\omega_0 \to 0 \ (d\omega)$

$$\lim_{T_0 \to \infty} y(t) = \lim_{d\omega \to 0} \sum_{k=-\infty}^{\infty} \frac{1}{2\pi} X(jkd\omega) e^{jkd\omega t} d\omega$$

$$\lim_{T_0 \to \infty} y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega = x(t)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
 (análise)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad \text{(síntese)}$$

- A transformada de Fourier de um sinal em tempo contínuo é uma função contínua de valores no domínio dos complexos.
- A resposta em frequência é obtida em função da magnitude e fase desta função

 Exercício: determine a Transformada de Fourier do pulso retangular abaixo:

• Exercício: determine a resposta em frequência do sinal abaixo:

$$f(t) = \begin{cases} e^{-at}, t > 0 \\ 0, & cc \end{cases}, a > 0$$

Transformada de Fourier: propriedades

Seção	Propriedade	Sinal aperiódico	Transformada de Fourier
	,	r(t)	X(jω)
		y(t) -	Υ(jω)
4.3.1	Linearidade	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Deslocamento no tempo	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Deslocamento em frequência	$e^{i\omega t}x(t)$	$X(j(\omega-\omega_0))$
4.3.3	Conjugação	x*(t)	X*(-jω)
4.3.5	Reflexão no tempo	x (-t)	$X(-j\omega)$
4.3.5	Mudança de escala no tempo e na frequência	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolução	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplicação	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) \ Y(j(\omega-\theta)) d\theta$

Transformada de Fourier: propriedades

Seção	Propriedade	Sinal aperiódico	Transformada de Fourier
		x(t)	X (jω)
		y(t)	Υ (<i>j</i> ω)
4.3.4	Diferenciação no tempo	$\frac{d}{dt}x(t)$	<i>j</i> ωX(<i>j</i> ω)
4.3.4	Integração	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega)+\pi X(0)\delta(\omega)$
4.3.6	Diferenciação em frequência	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
4.3.3	Simetria conjugada para sinais reais	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re \{X(j\omega)\} = \Re \{X(-j\omega)\} \\ \Im \{X(j\omega)\} = -\Im \{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \measuredangle X(j\omega) = -\measuredangle X(-j\omega) \end{cases}$

Transformada de Fourier: propriedades

Seção	Propriedade	Sinal aperiódico	Transformada de Fourier	
		x(t)	Χ(jω)	
		y(t)	Υ (jω)	
4.3.3	Simetria para sinais reais e pares	x(t) real e par	X(jω) real e par	
4.3.3	Simetria para sinais reais e ímpares	x(t) real e impar	X(jω) puramente imaginário e ímpar	
4.3.3	Decomposição par- -ímpar para sinais reais	$x_{e}(t) = \mathcal{E} \mathcal{V}\{x(t)\} [x(t) \text{ real}]$ $x_{o}(t) = \mathcal{O} \mathcal{A}\{x(t)\} [x(t) \text{ real}]$	(Re{X(jw)} j9m{X(jw)}	
4.3.7	Relação de Parseval para sinais aperiódicos			
		$\int_{-\infty}^{+\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty}$	$\int_{\infty}^{+\infty} X(j\omega) ^2 d\omega$	

• A relação da transformada de Fourier e Sistemas LIT definidos por equações diferenciais segue o mesmo modelo da Transformada de Laplace, substituindo-se s por $j\omega$

 Determine a resposta a resposta ao impulso de um sistema LIT, caracterizado pela seguinte equação diferencial:

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

Filtragem:

— A magnitude da frequência de corte ocorre quando o nível de tensão do sinal de saída está $3\ dB$ abaixo do sinal de entrada:

$$|X(j\omega)|_{\omega=\omega_c} = \frac{1}{\sqrt{2}} = 0,707$$

 Para filtros passivos, a frequência central ocorre quando a magnitude da resposta em frequência é unitária, ou seja, na própria frequência de ressonância.

$$|X(j\omega)|_{\omega=\omega_r}=1$$

Transformada de Fourier

- Filtragem:
 - Exemplo 1: obtenha a resposta em frequência do filtro abaixo:

Transformada de Fourier

- Filtragem:
 - Exemplo 2: obtenha a resposta em frequência do filtro abaixo:

Transformada de Fourier

- Filtragem:
 - Exemplo 2: obtenha a resposta em frequência do filtro abaixo:
 - L = 0.1H; C = 10uF; $R = 10\Omega$

Filtros

- Largura de faixa e seletividade:
 - Largura de faixa ou banda passante é definida como a faixa de frequência onde o filtro atua (relacionada às frequências de corte): BW
 - Seletividade é a medida de qualidade do filtro:
 - Fator de qualidade: F_q

$$F_q = \frac{f_R}{BW}$$

Filtros

- Exercício:
 - Dado o circuito abaixo, determine:
 - a) A frequência de ressonância
 - b) O fator de qualidade
 - c) A banda passante
 - d) A frequência de corte

• Considere a sequência discreta x[n] que representa as amostras de um sinal analógico $x_a(t)$:

$$x[n] = x_a(nT_s)$$

$$X_a(j\omega) = \int_{-\infty}^{\infty} x_a(t) e^{-j\omega t} dt$$

• Pela propriedade seletiva da função impulso unitário:

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_s)$$

$$x_p(t) = x_a(t)p(t) = \sum_{n = -\infty}^{\infty} x_a(nT_s) \delta(t - nT_s)$$

$$x_p(t) = \sum_{n=-\infty}^{\infty} x_a(nT_s) \, \delta(t - nT_s)$$

Aplicando a transformada de Fourier:

$$X_{p}(j\omega) = \sum_{n=-\infty}^{\infty} x_{a}(nT_{s}) \Im\{\delta(t - nT_{s})\}$$

$$X_{p}(j\omega) = \sum_{n=-\infty}^{\infty} x_{a}(nT_{s})e^{-j\omega nT_{s}}$$

$$X_{p}(j\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega nT_{s}}$$

 Como o trem de impulsos unitários é um sinal periódico, ele pode ser expresso pela série de Fourier:

$$p(t) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} e^{jk\omega_s t}$$

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \, e^{jk\omega_0 t}$$

$$c_k = \frac{1}{T_0} \int_t^{t+T_0} x(t) e^{-jk\omega_0 t} dt$$

$$c_k = \frac{1}{T_0} \int_t^{t+T_0} \delta(t) e^{-jk\omega_0 t} dt = \frac{1}{T_0}$$

$$x_p(t) = x_a(t)p(t) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} e^{jk\omega_s t} x_a(t)$$

$$x_p(t) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} e^{jk\omega_s t} x_a(t)$$

 Usando a propriedade de deslocamento na frequência da Transformada de Fourier:

$$X_p(j\omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_a(j\omega - jk\omega_s)$$

• Conclui-se que $X_p(j\omega)$ é uma função periódica de período $\omega_{\mathcal{S}}$

$$X_p(j\omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_a(j\omega - jk\omega_s)$$

- A frequência de amostragem deve ser, no mínimo, o dobro da maior componente de frequência do sinal analógico a ser amostrado. (Frequência de Nyquist)
- Sinais amostrados com frequência de amostragem inferior à frequência de Nyquist geram sobreposição espectral (ALIASING)

- Exercícios:
 - 1. (7.3)Determine a frequência de Nyquist correspondente a cada um dos sinais abaixo:

a)
$$x(t) = 1 + \cos(2000\pi t) + \sin(4000\pi t)$$

$$b) x(t) = \frac{\sin(4000\pi t)}{\pi t}$$

$$c) x(t) = \left(\frac{\sin(4000\pi t)}{\pi t}\right)^2$$

- Exercícios:
 - 2. (7.4) Seja x(t) um sinal com taxa de Nyquist ω_0 . Determine a taxa de Nyquist para os seguintes sinais:

a)
$$x(t) + x(t-1)$$

b)
$$\frac{dx(t)}{dt}$$

c)
$$x^2(t)$$

d)
$$x(t) \cos \omega_0 t$$

• Exercício (7.9):

$$x(t) = \left(\frac{\sin 50\pi t}{\pi t}\right)^2$$

3. Deseja-se amostrar o sinal acima com a taxa de amostragem $\omega_s=150\pi$ para obter um sinal g(t) com transformada de Fourier $G(j\omega)$. Determine o valor máximo de ω_0 para o qual se pode garantir que

$$G(j\omega) = 75X(j\omega) \ para \ |\omega| \le \omega_0$$

ou seja, o máximo valor de ω_0 para que não haja sobreposição espectral (aliasing)