ORCO UGA & ENSIMAG

DECISION SUPPORT SYSTEM FOR CARPOOLING TO REDUCE CAR TRAFFIC IN GRENOBLE AREA

Romain NAVARRO June, 29th 2018

Supervisor: Prof. Van-Dat CUNG, G-SCOP & UGA

Jury members: PROF. Nadia BRAUNER

Goal

 $\operatorname{Prof.}$ Van-Dat CUNG

DR. Vassilissa LEHOUX PROF. Matej STEHLIK

- Goal
- 2 Problem's presentation
- Originalities
- 4 Modeling
- 6 Experiments

- Goal
- 2 Problem's presentation
- Originalities
- 4 Modeling
- 5 Experiments

Satisfaction of the users

- Flexibility
- Schedules
- Detours

- Goa
- Problem's presentation
- Originalities
- 4 Modeling
- 5 Experiments

Presentation of the problem

rigure. Same workplace

Different workplaces

Outline

Goal

- 2 Problem's presentation
 - Different workplaces
 - Time windows
 - Objective
 - NP Completeness

Different workplaces

Goal

Presentation of the problem Different workplaces

Figure: Different workplaces

- 2 Problem's presentation
 - Different workplaces
 - Time windows
 - Objective
 - NP Completeness

Presentation of the problem

- Different workplaces
- Time windows
- Objective
- NP Completeness

Presentation of the problem Objective

Figure: Minimization of the costs

- 2 Problem's presentation
 - Different workplaces
 - Time windows
 - Objective
 - NP Completeness

NP Completeness

Goal

Presentation of the problem **NP** Completeness

0000000000

A NP-hard problem Yes-Certificate from the Hamiltonian Path Problem with polynomial time = This is a NP problem Being NP and NP-hard, the problem is therefore NP-complete

⁰NP-hard part of the report

⁰Proof that Hamiltonian Path is NP-Complete https://www.geeksforgeeks.org/

- Goa
- 2 Problem's presentation
- Originalities
- 4 Modeling
- 5 Experiments

Goal

- Originalities
 - Return management
 - Multiple places
 - Waiting time management
 - The case of Grenoble

Return management

Goal

Originalities Return management

Figure: Return management

- Originalities
 - Return management
 - Multiple places
 - Waiting time management
 - The case of Grenoble

Multiple places

Goal

Originalities Multiple places

Figure: Multiple workplaces

Goal

- Originalities
 - Return management
 - Multiple places
 - Waiting time management
 - The case of Grenoble

Waiting time management

Goal

Originalities

Waiting time management

Figure: Arrival to work waiting time

Goal

- Return management
- Multiple places
- Waiting time management
- The case of Grenoble

The case of Grenoble

Goal

Originalities

The case of Grenoble

Figure: Mountains around Grenoble city

- 1 Goa
- 2 Problem's presentation
- Originalities
- Modeling
- Experiments

- 4 Modeling
 - Data
 - Decision variables
 - Scheduling
 - Resolution process

- $\forall i, j \in V, C_{ij}$ Cost matrices for commuting arc(i, j).
- $\forall n \in O, Q_n$ Car's capacity of the user n.
- $\forall v \in D, B_v$ Hour: Beginning of work for the user n.
- $\forall v \in K, E_v$ Hour: End of work for the user n.
- ullet γ Percentage of the initial travel time added.
- ullet δ Constant value added to the max travel time.
- ullet α Allowed waiting time to get to work early.
- β Allowed waiting time to leave work.
- M A large enough constant.

Modeling Data

Decision variables

Goal

- 4 Modeling
 - Data
 - Decision variables
 - Scheduling
 - Resolution process

Modeling Decision variables

- $\forall k \in O, \forall i, j \in V, x_{ij}^k = 1$ if the travel of the arc(i, j) is deserved by the driver k.
- $\forall k \in O, y^k = 1$ if the user k is a driver.
- $\forall k \in O, \forall v \in V, z_v^k = 1$ if the user k is picking or delivering the vertex v.
- $\forall k \in O, \forall v \in V, b_v^k$ Estimated passage time of the driver k to the vertex v.
- $\forall k \in O, \forall v \in V, q_v^k$ Number of persons in the car k at the vertex v.

- 4 Modeling
 - Data
 - Decision variables
 - Scheduling
 - Resolution process

Sequencing the hours of passages.

$$b_{j}^{k} \geq b_{i}^{k} - B_{k+n} + (C_{ij} + B_{k+n}) \times x_{ij}^{k} + (B_{k+n} - C_{ij}) \times x_{ji}^{k}$$
$$b_{j}^{k} \geq b_{i}^{k} - M + (C_{i-2n,j-2n} + M) \times x_{ij}^{k} + (M - C_{i-2n,j-2n}) \times x_{ji}^{k}$$

⁰Ismail Karaoglan and Fulya Altiparmak. A memetic algorithm for the capacitated location-routing problem with mixed backhauls. Computers & Operations Research, 55:200216, March 2015.

⁰Hossein Karimi. The capacitated hub covering location-routing problem for simultaneous pickup and delivery systems. Computers & Industrial Engineering, 116:4758, February 2018. 4 D > 4 B > 4 B > 4 B > 9 Q P

- 4 Modeling
 - Data
 - Decision variables
 - Scheduling
 - Resolution process

Resolution process

Goal

Modeling

Resolution process

Figure: Flowchart of the LP's parameters variations

- Goa
- 2 Problem's presentation
- Originalities
- 4 Modeling
- 5 Experiments

Goal

- 5 Experiments
 - Experimental protocol
 - Generator
 - Limits of the model
 - Same and different user pool
 - The case of Grenoble

The PC used for the experiments:

- Operating System: Windows 10 Professional 64-bit version.
- Code language: JAVA
- Solver: CPLEX
- RAM quantity: 8GB
- CPU: Intel Core i5-4690 CPU 3.50 GHz

All available at the following web address:

https://github.com/NeoKa4ra/CarPoolingInternship

Goal

Outline

- 5 Experiments
 - Experimental protocol
 - Generator
 - Limits of the model
 - Same and different user pool
 - The case of Grenoble

Generator

Goal

Experiments Generator

Allowed advance to work: 30 minutes

Allowed waiting time after job: 15 minutes

Allowed travel time: + = 5 + 20% of the direct trip

Outline

Goal

- Experimental protocol
- Generator
- Limits of the model
- Same and different user pool
- The case of Grenoble

Limits of the model

Goal

Experiments Limits of the model

Working hours randomly generated from 8:00 to 9:00 and from 16:00 to 21:00 Less than 2% of GAP on 1 hour for 25 users.

Less than 10% of GAP on 1 hour for 30 users.

Outline

Goal

- 5 Experiments
 - Experimental protocol
 - Generator
 - Limits of the model
 - Same and different user pool
 - The case of Grenoble

Goal

Experiments

Difference between same and different user pool

Figure: The same user pool makes the trip to work

Goal

Experiments

Difference between same and different user pool

Figure: The same user pool makes the return trip

Goal

Experiments

Difference between same and different user pool

Much higher execution time without the same pool.

5 users: 2.20% difference; 10 users: 7.5% difference.

Table: Objective value with 5 users

	Name of the data	LP	LPSP
ĺ	Mean	48.96	50.04
	Standard deviation	15.26	15.32
	Median	48.5	50.5

Table: Objective value with 10 users

Name of the data	LP	LPSP
Mean	92.00	98.90
Standard deviation	19.32	20.58
Median	88.00	95.5

Outline

Goal

- 5 Experiments
 - Experimental protocol
 - Generator
 - Limits of the model
 - Same and different user pool
 - The case of Grenoble

The case of Grenoble

Goal

Experiments

The case of Grenoble

Figure: Home-to-work: VIZILLE PONT-DE-CLAIX VIF

The case of Grenoble

Goal

Experiments

The case of Grenoble

Figure: Home-to-work: VOIRON VINAY SAINT-LAURENT-DU-PONT

The case of Grenoble

Goal

Experiments

The case of Grenoble

Figure: Home-to-work: PONTCHARRA LE-TOUVET CROLLES

Conclusion

Thank you for listening