

Multi Level MCMC methods

Andrea Boselli

Carlo Ghiglione

Eleonora Spizzi

Erica Manfrin

Randeep Singh

January 10th 2022

Politecnico di Milano,

joint project Bayesian Statistics - Computational Statistics

Tutors:

Prof. Alessandra Guglielmi - Department of Mathematics, Politecnico di Milano

Prof. Andrea Manzoni - Department of Mathematics, Politecnico di Milano

The framework: differential problem

Consider an equation (PDE/ODE) depending on some unknown parameters $\underline{\theta} \in \Theta$, defined in a domain Ω .

Let u be the **solution** of such equation:

$$u: \Theta \times \Omega \to \mathbb{R}$$

 $(\underline{\theta}, \underline{x}) \mapsto u(\underline{\theta}, \underline{x})$

Suppose we observe $\{(\underline{x}_i, y_i)\}_{i=1}^N$ with:

- $\underline{x}_i \in \Omega$
- $y_i = u(\underline{\theta}, \underline{x}_i) + \epsilon_i$, $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \tau^2)$ \Rightarrow **likelihood:** $y_i | \theta, \tau \stackrel{\text{ind}}{\sim} \mathcal{N}(u(\theta, x_i), \tau^2)$ with $\tau^2 > 0$

Model a priori knowledge about $\underline{\theta}$ through a **prior** distribution $\pi(\underline{\theta})$, and estimate the **posterior** $\pi(\underline{\theta}|y)$.

The method: Multi Level MCMC

Computing **likelihood** $L(\underline{\theta}^*, \underline{x})$ requires solution $u(\underline{\theta}^*, \underline{x})$ (or an approximation $u^{(\ell)}(\underline{\theta}^*,\underline{x})$: this is **computationally intensive**.

MLMCMC solves the equation at different levels of accuracy.

At each level ℓ , being $u^{(\ell)}(\theta,x)$ the numerical solution computed at that level, we set the following likelihood:

$$\begin{array}{c} y_i|\underline{\theta},\tau \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(u^{(\ell)}(\underline{\theta},\underline{x}_i),\tau) \\ \\ \mathsf{COARSE\ LEVEL} & \xrightarrow{} & \mathsf{FINE\ LEVEL} \end{array}$$

- fast
- less accurate

- slow
 - more accurate

Achieve more efficient samplings:

- higher ESS and ESS/sec
- less correlated samples

It is implemented in PyMC3 Python library through MLDA algorithm.

Case studies

A. PDE: Comet Equation

- A.1 Coarse and fine model differ in the mesh refinement
- A.2 Coarse level features a NN as a surrogate model

B. ODE: SEIR Epidemiological Model

- B.1 Coarse and fine model differ in the solver time-step
- $B.2\,$ Coarse level merges two compartments of the fine model (E,I)
 - \Rightarrow SIR model

A. Comet Equation

It is a linear **advection-diffusion PDE**, featuring **2 parameters**, each with a clear physical interpretation:

Comet Equation

$$\begin{cases} -\mu \Delta u + 10(\cos\theta, \sin\theta) \cdot \nabla u = 10 \mathrm{e}^{-50\|\underline{x} - \underline{x}_0\|_2} & \underline{x} \in \Omega = [0, 1]^2 \\ u = 0 & \underline{x} \in \partial\Omega \end{cases}$$

- $\mu \in (0, \infty)$: **diffusion** parameter
- $\theta \in (0, 2\pi)$: angle of **advection** term
- $\underline{x}_0 = (0.5, 0.5)$: centre of the **forcing bump**

Data is produced through **simulation** with fixed and known values of parameters and error scale:

$$\mu^*=2$$

$$\theta^* = \pi$$

$$au^*=10^{-4}$$

A1. Comet with Different Grids

 $u(\underline{\theta},\underline{x})$ is approximated through *Finite Element Method* (FEM). The **mesh refinement** affects the **accuracy** of the numerical solution.

In MLDA, coarse and fine model differ for the mesh refinement.

Comparison of:

• Metropolis: 32x32 grid

MLDA:

Coarse model: 16x16 gridFine model: 32x32 grid

A1. Comet with Different Grids

 $u(\underline{\theta},\underline{x})$ is approximated through *Finite Element Method* (FEM). The **mesh refinement** affects the **accuracy** of the numerical solution.

In MLDA, coarse and fine model differ for the mesh refinement.

Comparison of:

• Metropolis: 32x32 grid

MLDA:

Coarse model: 16x16 gridFine model: 32x32 grid

Metropolis overcomes **MLDA** evidently. Indeed, computing the coarse solution in MLDA is too **time consuming**.

Hence, we place at coarse level a **surrogate model**, implemented through a **Neural Network**:

$$u_{\mathsf{NN}}: (\mu, \theta, \mathsf{x}, \mathsf{y}) \mapsto u_{\mathsf{NN}}(\mu, \theta, \mathsf{x}, \mathsf{y})$$

- Long training time
- + Small execution time

 $u_{\rm NN}$ is **trained** on a dataset of **900 PDE solutions**, each corresponding to a different (μ_i, θ_i) , evaluated on a grid of Ω .

A first training with *Adam* optimizer is followed by a second training with *Stochastic Gradient Descent* (SGD).

Within this framework for MLDA, we investigate the performance of **Metropolis**, **DEMetropolisZ** and **MLDA** for different:

- frequencies of subsampling (nsubs) of proposed samples from coarse level to fine level in MLDA
- 2. grids of physical points where data is available
- 3. choices of the **priors** for (μ, θ)

Comparison of Metropolis, DEMetropolisZ and MLDA (nsubs = 5, 20):

Comparison of Metropolis, DEMetropolisZ and MLDA (nsubs = 5, 20):

B. SEIR Epidemiological Model

It is a compartmental model, often used as a backbone in the analysis of infectious diseases. We have four compartments: **Susceptible**, **Exposed**, **Infectious**, **Recovered**.

SEIR Differential Model

$$\begin{cases} S'(t) = -\beta SI \\ E'(t) = \beta SI - \sigma E \\ I'(t) = \sigma E - \gamma I \\ R'(t) = \gamma I \\ S(0) = S_0, E(0) = E_0, I(0) = I_0, R(0) = R_0 \\ S(t) + E(t) + I(t) + R(t) = 1 \end{cases}$$

- $\beta \in (0, \infty)$: Infection rate
- $\sigma \in (0, \infty)$: Incubation rate
- $\gamma \in (0, \infty)$: **Recovery** rate

B. SEIR Framework

Let us consider:

- $\underline{\theta} := (\beta, \sigma, \gamma)$ model parameters (unknown)
- $t \in [0, T] \subset [0, \infty)$ time observation window
- $\underline{u}(\underline{\theta},t) := (E(\underline{\theta},t),I(\underline{\theta},t),R(\underline{\theta},t))$ solution of the differential system

Data are (t_i, y_i) where:

- $t_i \in [0, T]$
- $\underline{y}_i = \underline{u}(\underline{\theta}, t) + \underline{\epsilon}_i$, $\underline{\epsilon}_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \tau^2 \mathbb{I}_3) \Rightarrow \underline{y}_i | \underline{\theta} \stackrel{\text{ind}}{\sim} \mathcal{N}(\underline{u}(\underline{\theta}, t_i), \tau^2 \mathbb{I}_3)$ where τ^2 is the random noise variance

Data are generated through **simulation** with known values for the parameters and the error scale, and are observed on a specific time grid $\{t_i\}_{i=1}^n$ uniformly distributed on [0,T] with time step Δt . We set:

$$\underline{\theta}^* = (0.27, 0.2, 0.1), T^* = 100, \Delta t^* = 0.2, \tau^* = 0.01$$

B1. SEIR MLMCMC setting

The goal is to perform bayesian inference on the **model parameters** $\underline{\theta}$ and on the **error scale** τ .

We fix a **Uniform prior** for each model parameter and a **Half-Cauchy prior** for τ .

In **MLDA**, coarse and fine models differ in the **time step** Δt . Our standard setting is:

- $\Delta t_{\text{fine}} = 0.2$
- $\Delta t_{\text{coarse}} = 2\Delta t_{\text{fine}}$

B1. SEIR MLMCMC Setting

Within this framework, we investigate the performance of **Metropolis**, **DEMetropolisZ** and **MLDA** for different:

- 1. **frequencies of subsampling** (nsubs) of proposed samples from coarse level to fine level in MLDA
- 2. **ratio** between coarse and fine **time steps** Δt in MLDA
- 3. choices of the **priors** for $\underline{\theta}, \tau$

B1. Comparison nsubs=5,20

B1. Posteriors and Trace plots

Posteriors and *trace plots* for β using respectively **Metropolis**, **DEMetropolisZ**, **MLDA(nsubs=5)**, **MLDA(nsubs=20)**.

Conclusive steps

The conclusive steps we are investigating are:

- 1. use of **historically informed priors** for the epidemiological model for **data scarcity frameworks**;
- use of different mathematical models for the levels of the MLDA algorithm.

Bibliography

T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup, *Multilevel Markov Chain Monte Carlo* SIAM Review 61(3), pp. 509–545, 2019.

T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup, A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow SIAM/ASA J. Uncertainty Quantification 3, pp. 1075–1108, 2015.

Parth Vipul Shah, *Prediction of the Peak, Effect of Intervention, and Total Infected by COVID-19 in India.* Cambridge University Press: 09 September 2020

Heng, K., Althaus, C.L. *The approximately universal shapes of epidemic curves in the Susceptible-Exposed-Infectious-Recovered (SEIR) model.* Sci Rep 10, 19365 (2020).

Bibliography

- Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3), 218-229.
- Python PyMC3 package (providing an implementation for MLMCMC and a few examples)
- FEniCS (providing an easy implementation for the discretization and solution of PDEs through Finite Element Methods (FEM))

Appendix: B1. Artificial Data

