Đại Học Đà Nẵng - Trường Đại học Bách Khoa Khoa Điện - Nhóm Chuyên môn Điện Công Nghiệp

MÁY ĐIỆN 1 Giáo trình

Biên soạn: Bùi Tấn Lợi

Chương 4

M.B.A LÀM VIỆC Ở TẢI ĐỐI XỨNG

Trong điều kiên làm việc bình thường của lưới điện, ta có thể phân phối đều phụ tải cho ba pha, lúc đó m.b.a làm việc với điện áp đối xứng và dòng điện trong các pha cũng đối xứng. Ta xét sư cân bằng năng lương và sư làm việc của mba trong điều kiện điện áp so cấp $U_1 = \text{const}$, và tần số f = const.

4.1. GỈAN ĐỒ NĂNG LƯƠNG CỦA M.B.A

Trong quá trình truyền tải năng lượng qua MBA, một phần công suất tác dung và phản kháng bị tiêu hao trong máy. Xét mba làm việc ở tải đối xứng, sự cân bằng năng lượng dựa trên sơ đồ thay thế chính xác hình 4.1.

Hình 4-1 Sơ đồ thay thế máy biến áp

Hình 4-2 Giản đồ năng lương mba

Gọi P_1 là công suất tác dụng đưa vào dây quấn sơ cấp mba:

$$P_1 = m_1 U_1 I_1 \cos \varphi_1 \tag{4.1}$$

Một phần công suất này bù vào:

- Tổn hao đồng trên điện trở của dây quấn sơ: $p_{cul} = m_1 r_1 I_1^2$
- Tổn hao sắt trong lõi thép mba : $p_{Fe} = m_1 r_m I_o^2$

Công suất còn lại gọi là công suất điện từ chuyến sang dây quấn thứ cấp:

$$P_{dt} = P_1 - (p_{cu1} + p_{Fe}) = m_2 E_2 I_2 cos \Psi_2$$
 (4.2)

Công suất ở đầu ra P_2 cuả mba sẽ nhỏ hơn công suất điện từ một lượng chính bằng tổn hao đồng trên điện trở của dây quấn thứ : $p_{cu2} = m_2 r_2 I_2^2 = m_1 r_2 I_2^2$:

$$P_2 = P_{dt} - p_{cu2} = m_2 U_2 I_2 \cos \varphi_2 \tag{4.3}$$

Cũng tương tự như vậy, ta có công suất phản kháng nhận vào dây quấn sơ cấp:

$$Q_1 = m_1 U_1 I_1 \sin \varphi_1 \tag{4.4}$$

Công suất này trừ đi công suất để tạo ra từ trường tản ở dây quấn sơ cấp $q_1 = m_1 x_1 I_1^2$ và từ trường trong lõi thép $q_m = m_1 x_m I_0^2$, phần còn lại là công suất phản kháng chuyển sang dây quấn thứ cấp:

$$Q_{dt} = Q_1 - (q_1 + q_m) = m_2 E_2 I_2 \sin \Psi_2$$
 (4.5)

Công suất phản kháng đưa đến phụ tải:

$$Q_2 = Q_{dt} - q_2 = m_2 U_2 I_2 \sin \varphi_2$$
 (4.6)

Trong đó $q_2 = m_2 x_2 I_2^2$ để tạo ra từ trường tản ở dây quấn thứ.

Tải có tính chất điện cảm $(\phi_2 > 0)$ thì $Q_2 > 0$, lúc đó $Q_1 > 0$ và công suất phản kháng truyền từ dây quấn sơ cấp sang dây quấn thứ cấp.

Tải có tính chất điện dung ($\phi_2 < 0$) thì $Q_2 < 0$, nếu $Q_1 < 0$, công suất phản kháng truyền từ dây quấn thứ sang dây quấn sơ hoặc $Q_1 > 0$, toàn bộ công suất phản kháng từ phía thứ cấp và sơ cấp đều dùng để từ hoá MBA.

Sự cân bằng công suất tác dụng và phản kháng trình bày trên hình 4.2

4.2 ĐỘ THAY ĐỔI ĐIỆN ÁP THỬ CẤP MBA

Độ thay đối điện áp thứ cấp mba ΔU là hiệu số số học giữa trị số điện áp thứ cấp lúc không tải U_{20} (điều kiện $U_1=U_{1dm}$) và lúc có tải U_2 .

$$\Delta \mathbf{U} = \frac{\mathbf{U}_{20} - \mathbf{U}_{2}}{\mathbf{U}_{20}} = \frac{\mathbf{U}_{20}^{'} - \mathbf{U}_{2}^{'}}{\mathbf{U}_{20}^{'}}$$

$$\Delta U = \frac{U_{1dm} - U_{2;}'}{U_{1dm}} = 1 - \frac{U_{2}'}{U_{1dm}} = 1 - U_{2*}'$$
 (4.7)

Xác định ΔU bằng phương pháp giải tích.

Gọi
$$\beta = \frac{I_2}{I_{2dm}} = \frac{I_2^{'}}{I_{2dm}^{'}}$$
: hệ số tải của mba.

 $cos\phi_2$: hệ số công suất của mba.

$$Ta \ c\acute{o} : \quad BC = \frac{r_{n} I_{2}^{'}}{U_{1dm}^{'}} = \frac{r_{n} I_{2dm}^{'}}{U_{1dm}} \frac{I_{2}^{'}}{I_{2dm}^{'}} = \beta U_{nr^{*}}$$

Hình 4-3 Xác định ∆U của mba

$$AB = \frac{x_{n}I_{2}'}{U_{1dm}} = \frac{x_{n}I_{2dm}'}{U_{1dm}} \frac{I_{2}'}{I_{2dm}'} = \beta U_{nx}^{*}$$

Từ A hạ đường thẳng góc AP xuống $0U'_{2*}$ và gọi AP = n và CP = m, ta có:

$$U'_{2*} = \sqrt{1 - n^2} - m$$

$$U'_{2*} \approx 1 - \frac{n^2}{2} - m$$

$$\Delta U_* = 1 - U'_{2*} = m + \frac{n^2}{2}$$
(4.7)

Tính m và n, ta được:

$$\begin{split} m &= CK + KB = \beta(U_{nr*}cos\phi_2 + U_{nx*}sin\phi_2) \\ n &= AH - HP = \beta(U_{nx*}cos\phi_2 - U_{nr*}sin\phi_2) \\ V_{q}^2y \quad \Delta U_* &= \beta(U_{nr*}cos\phi_2 + U_{nx*}sin\phi_2) + \beta^2 \left(U_{nx*}cos\phi_2 - U_{nr*}sin\phi_2\right)^2/2 \end{split}$$

Số hang sau rất nhỏ có thể bỏ qua nên:

$$\Delta U_* = \beta (U_{nr} \cdot \cos \varphi_2 + U_{nx} \cdot \sin \varphi_2) \tag{4.8}$$

Tính ΔU_* theo %, ta viết lại biểu thức trên:

$$\Delta U_*\% = \beta (u_{nr}\% \cos \varphi_2 + u_{nx}\% \sin \varphi_2)$$
 (4.9)

hoặc

$$\Delta U_*\% = \beta u_n\% (\cos \varphi_n \cdot \cos \varphi_2 + \sin \varphi_n \cdot \sin \varphi_2)$$
 (4.10)

 $\begin{array}{c} \text{Hình 4-4} \\ \text{a.Quan hệ } \Delta \text{U=f(}\beta\text{)} \mid_{\cos\phi~2~=~const} \\ \text{b. Quan hệ } \Delta \text{U=f(}\cos\phi_2\text{)} \mid_{~\beta~=~const} \end{array}$

Hình 4.4 cho biết các quan hệ $\Delta U=f(\beta)$ khi $cos\phi_2=C^{te}$ và $\Delta U=f(cos\phi_2)$ khi $\beta=C^{te}$.

4.3 CÁC PHUƠNG PHÁP ĐIỀU CHỈNH ĐIỆN ÁP CỦA M.B.A.

Ta thấy $\Delta U=f(\beta,\cos\varphi_2)$ như vậy U_2 phụ thuộc vào β và $\cos\varphi_2$, để giữ cho $U_2=$ const khi tăng tải thì tỉ số biến áp k phải thay đổi, nghĩa là ta phải thay đổi số vòng dây N.

Một cuộn dây có hai đầu ra, ở giữa hoặc cuối cuộn dây ta đưa ra một số đầu dây ứng với các vòng dây khác nhau để thay đổi điện áp.

4.3.1. Thay đổi số vòng dây khi máy ngừng làm việc:

Dùng cho các máy biến áp hạ áp khi điện áp thứ cấp thay đổi hoặc khi điều chỉnh điện áp theo đồ thị phụ tải hàng năm.

Đối với mba công suất nhỏ : một pha có 3 đầu phân nhánh : \pm 5% U_{dm} .

Đối với mba công suất lớn: một pha có 5 đầu phân nhánh: ±2x 2.5%U_{dm}

Việc thực hiện đổi nối khi máy ngừng làm việc, nên thiết bị đổi nối đơn giản, rẻ tiền, đặt trong thùng dầu và tay quay đặt trên nắp thùng.

Các đầu phân áp đưa ra cuối cuộn dây thì việc cách điện chúng dễ dàng hơn (hình 4.5a).

Các đầu phân áp đưa ra giữa cuộn dây thì lực điện từ đối xứng và từ trường tản phân bố sẽ đều (hình 4.5b).

Hình 4-5 Các kiểu điều chính điện áp của mba

4.4.1. Thay đổi số vòng dây khi máy đang làm việc (điều áp dưới tải)

Trong hệ thống điện lực công suất lớn, nhiều khi cần phải điều chỉnh điện áp khi máy biến áp đang làm việc để phân phối lại công suất tác dụng và phản kháng giữa các phân đoạn của hệ thống. Các MBA này có tên gọi là MBA điều chỉnh dưới tải. Điện áp thường được điều chỉnh từng 1% trong phạm vi $\pm 10\%$ U_{dm}.

Hình 4-6 Thiết bị đổi nối và quá trình điều chính điện áp của mba điều chính dưới tải

Việc đổi nối các đầu phân áp trong MBA điều chỉnh dưới tải phức tạp hơn và phải có cuộn kháng K (hình 4.6) để hạn chế dòng điện ngắn mạch của bộ phận dây quấn bị nối ngắn mạch khi thao tác đổi nối. Hình 4.6 cũng trình bày quá trình thao tác đổi nối từ đầu nhánh X_1 sang đầu nhánh X_2 , trong đó T_1 , T_2 là các tiếp xúc trược; C, C_2 là công-tắc-tơ. Ở vị trí (a và c) dòng qua cuộn kháng K theo hai chiều ngược nhau, nên từ thông trong lõi thép gần bằng không, điện kháng X của cuộn kháng rất bé. Trong vị trí trung gian (b) dòng ngắn mạch chạy qua K cùng chiều nên có từ thông ϕ và X lớn, làm giảm dòng ngắn mạch I_n .

Công-tắc-tơ C_1 , C_2 đặt riêng trong thùng dầu phụ gắn vào vách thùng dầu, vì quá trình đóng cắt công-tắc-tơ làm bẩn đầu.

Trên hình 4.7 trình bày sơ đồ nguyên lý của bộ điều áp dưới tải dùng điện trở R. Điện trở R làm chức năng hạn chế dòng điện ngắn mạch. Còn hinh 4.8 cho ta thấy việc bố trí bộ điều áp dưới tải trong thùng mba.

Hình 4-7 Nguyên lý điều áp dưới tải dùng điện trở R

4.4. HIỆU SUẤT CỦA M.B.A

Hiệu suất của mba là tỉ số giữa công suất đầu ra P_2 và công suất đầu vào P_1 :

$$\eta\% = \frac{P_2}{P_1} 100 \tag{4.11}$$

Hình 4-8 Vị trí bộ điều áp dưới tải trong thùng MBA

Hiệu suất mba nhỏ hơn 1 vì quá trình truyền tải công suất qua mba có tổn hao đồng và tổn hao sắt. Ngoài ra còn kể đến tổn hao do dòng điện xoáy trên vách thùng đầu và bu lông lắp ghép.

Như vậy biểu thức (4.11), có thể viết lại:

$$\eta\% = (1 - \frac{\sum p}{P_2 + \sum p})100 \tag{4.12}$$

$$v\acute{o}i\; \Sigma p = p_{cu1} + p_{cu2} + p_{Fe}$$

Ta đã có phần trước:

$$\begin{split} p_{Fe} &= P_0 \\ p_{cu1} + p_{cu2} &= r_1 I_1^2 + r_2^{'} I_2^{'2} = r_n I_2^{'2} = r_n I_{2dm}^{'2} (\frac{I_2^{'}}{I_{2dm}^{'}})^2 = P_n \beta^2 \\ P_2 &= U_2 I_2 \cos \phi_2 \approx U_{2dm} I_{2dm} \frac{I_2}{I_{2dm}} \cos \phi_2 = \beta S_{dm} \cos \phi_2 \end{split}$$

Thế vào (4.12), ta có:

$$\eta\% = \left(1 - \frac{P_0 + \beta^2 P_n}{\beta S_{dm} \cos \varphi_2 + P_0 + \beta^2 P_n}\right) 100 \tag{4.13}$$

Thường thì các tổn hao rất nhỏ so với công suất truyền tải nên hiệu suất η mba rất cao. Đối với mba dung lượng lớn, hiệu suất đạt tới trên 99%.

Ta thấy $\eta = f(\beta, \cos\varphi_2)$, cho $\cos\varphi_2 =$ const, ta tìm hiệu suất cực đại η_{max} :

$$\frac{d\eta}{d\beta} = 0 \rightarrow \beta_{\text{max}}^2 P_n = P_0$$

$$\rightarrow \beta_{\text{max}} = \sqrt{\frac{P_0}{P_n}}$$
(4.14)

Hiệu suất m.b.a đạt giá trị cực đại khi tổn hao không đổi bằng tổn hao biến đổi hay tổn hao sắt bằng tổn hao đồng.

$$\frac{P_0}{P_n} = 0.2 \rightarrow 0.25$$

$$\Rightarrow \beta_{\text{max}} = 0.45 \rightarrow 0.5$$

Trên hình 4.9 trình bày quan hệ hiệu suất $\eta = f(\beta)$ khi $\cos \varphi_2 = \text{const.}$

4.5 MÁY BIẾN ÁP LÀM VIỆC SONG SONG

- Lý do nối mba làm việc song song:
 - 1. Cung cấp điện liên tục cho các phụ tải
 - 2. Vân hành các mba một cách kinh tế nhất.
 - 3. Máy quá lớn thì việc chế tao và vân chuyển sẽ khó khăn.
- Thế nào là làm việc song song?

Dây quấn sơ cấp các mba nối chung vào một lưới điện và dây quấn thứ cấp cùng cung cấp cho một phụ tải.

- Điều kiện để nối mba làm việc song song:
 - 1. Cùng tỉ số biến áp.
 - 2. Cùng tổ nối dây.
 - 3. Cùng điện áp ngắn mạch.

4.5.1. Điều kiện cùng tổ nối dây:

Cùng tổ nối dây điện áp thứ cấp sẽ trùng pha nhau. Khác tổ nối dây đ/áp thứ cấp sẽ lệch pha nhau, và sự lệch pha nầy phụ thuộc vào tố nối dây.

VÍDU 4.1

Nối hai mba: Máy thứ nhất I nối Y/Δ -11 và máy thứ hai II nối Y/Y-12 làm việc song song. Vậy điện áp thứ cấp hai máy sẽ lệc pha nhau một góc 30° , trong mạch nối liền dây quấn thứ sẽ xuất hiện một sđđ:

$$\Delta E = 2E \sin 15^{\circ} = 0.518E$$

Khi máy không tải, trong đây quấn sẽ có dòng điện cân bằng:

$$I_{cb} = \frac{\Delta E}{Z_{nI} + Z_{nII}} \tag{4.15}$$

Giả thử
$$Z_{nI}$$
= Z_{nII} =0.05, I_{cb} = $\frac{0.518}{0.05 + 0.05}$ = 5.18 lần I_{dm}

Như vậy đòng điện $I_{cb} = 5{,}18I_{dm}$ sẽ làm hỏng máy biến áp.

Hình 4-11. Đồ thị vectơ điện áp và dòng điện của các mba có tổ nối dây khác nhau làm việc song song

4.5.2. Điều kiện cùng tỉ số biến đổi điện áp:

Nếu tỉ số biến đối điện áp của hai máy khác nhau mà hai điều kiện còn lại thỏa mãn thì khi mba làm việc song song, điện áp thứ cấp không tải sẽ bằng nhau ($E_{2I} = E_{2II}$), trong mạch nối liền dây quấn thứ của mba sẽ không có dòng điện chạy qua.

Giả thử $k_I \neq k_{II}$ thì $E_{2I} \neq E_{2II}$ và khi không tải, trong mạch nối liền quấn thứ của mba sẽ có dòng điện I_{cb} chạy qua được sinh ra bởi điện áp :

$$\Delta E = E_{II} - E_{2II} \tag{4.16}$$

$$\Rightarrow I_{cb} = \frac{\Delta E}{Z_{nI} + Z_{nII}}$$
 (4.17)

Dòng điện nầy sẽ chạy trong dây quấn mba theo hai chiều ngược nhau và chậm pha một góc 90° vì r << x. Lúc nầy điện áp rơi trên dây quấn sẽ bù trừ với sđđ, kết quả là trên mạch thứ có điện áp thống nhất U_2 .

Hình 4-11. Đồ thị vectơ và sự phân phối tải của các mba làm việc song song với K khác nhau. a/ Khi không tải. b/ Khi có tải

Kết quả khi mba mang tải, dòng điện tải I_t sẽ cộng với dòng cân bằng làm cho điều kiện làm việc của máy sẽ xấu đi, nghĩa là dòng trong máy không tỉ lệ với công suất của chúng, ảnh hưởng tới sự lợi dụng công suất của chúng.

Chú ý: Cho phép $K \le khác$ nhau 0.5% so với trị số trung bình của nó.

4.5.3. Điều kiện điện áp ngắn mạch bằng nhau:

Trị số ngắn mạch của các máy bằng nhau thì phụ tải sẽ phân bố tỉ lệ với công suất của chúng. Thật vậy, xét ba mba làm việc song song có điện áp ngắn mạch u_{nI}, u_{nII}, u_{nII}.Nếu bỏ qua dòng điện từ hoá thì mạch điện có dạng như hình 4- 12.

Tổng trở tương đương mạch điện:

$$Z = \frac{1}{\frac{1}{Z_{nI}} + \frac{1}{Z_{nII}} + \frac{1}{Z_{nIII}}} = \frac{1}{\sum \frac{1}{Z_{ni}}}$$

Điện áp rơi trên mạch tương đương:

$$\Delta \dot{\mathbf{U}} = \dot{\mathbf{U}}_1 - \dot{\mathbf{U}}_2' = \mathbf{Z}.\dot{\mathbf{I}}$$

Hình 4-12 Mạch điện thay thế của mba làm việc song song

(4.18)

trong đó $\dot{I}=\dot{I}_1=\dot{I}_2^{'}$ dòng điện tổng các mba, do đó dòng điện tải của mỗi mba :

$$\dot{I}_{2I} = \frac{Z.\dot{I}}{Z_{nI}} = \frac{\dot{I}}{Z_{nI} \sum \frac{1}{Z_{ni}}}$$
 (4.19a)

$$\dot{I}_{2II} = \frac{Z.\dot{I}}{Z_{nII}} = \frac{\dot{I}}{Z_{nII}};$$
 (4.19b)

$$\dot{I}_{2III} = \frac{Z.\dot{I}}{Z_{nIII}} = \frac{\dot{I}}{Z_{nIII} \sum \frac{1}{Z_{ni}}}$$
 (4.19c)

Thường thì $\phi_{nI} \approx \phi_{nII} \approx \phi_{nII}$ nên chuyển tính từ số phức sang tính môđun: Ta có :

$$z_n = u_n \frac{U_{dm}}{I_{dm}}$$

Từ dòng mba I, ta có :

$$I_{2I} = \frac{I}{\frac{u_{nI}}{I_{dmI}} \sum \frac{I_{dmi}}{u_{ni}}},$$
(4.20)

nhân hai vế cho $\frac{U_{dm}}{S_{dm}} = \frac{U_{dm}}{U_{dm}I_{dm}}$, ta có hệ số tải của các máy :

$$\beta_{\rm I} = \frac{\rm S}{\rm u_{\rm nI} \sum \frac{\rm S_{\rm dmi}}{\rm u_{\rm ni}}} \tag{4.21a}$$

$$\beta_{\rm II} = \frac{S}{u_{\rm nII} \sum \frac{S_{\rm dmi}}{u_{\rm res}}}$$
 (4.21b)

$$\beta_{\text{III}} = \frac{S}{u_{\text{nIII}} \sum \frac{S_{\text{dmi}}}{u_{\text{ni}}}}$$
(4.21c)

Như vậy, từ (4.21a,b và c) ta thấy hệ số tải của các MBA làm việc song song tỉ lệ nghịch với điện áp ngắn mạch của chúng:

$$\beta_{\rm I}: \beta_{\rm II}: \beta_{\rm III} = \frac{1}{u_{\rm nI}}: \frac{1}{u_{\rm nII}}: \frac{1}{u_{\rm nIII}}$$
 (4.22)

Như vậy, các mba làm việc song song, có điện áp ngắn mạch u_n bằng nhau, tải sẽ phân bố tỉ lệ với công suất của máy. Nếu u_n khác nhau MBA nào có u_n lớn, β nhỏ còn u_n nhỏ, β lớn. Khi máy có u_n nhỏ làm việc ở định mức thì MBA có u_n lớn sẽ hụt tải, kết quả là không tận dụng hết công suất thiết kế của mỗi máy.

Chú ý: Cho phép u_n khác nhau 10% và công suất MBA có tỉ lệ: 3:1