Seminar 9

- 1. Are the following sets subrings of the field \mathbb{C} :
- (i) $A = \{bi \mid b \in \mathbb{R}\};$
- (ii) $B = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\};$
- (iii) $C = \{z \in \mathbb{C} \mid |z| \le 1\}$?
- **2.** Show that the set $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is a subring of the field \mathbb{C} , called the ring of Gauss integers. Determine its invertible elements.
 - **3.** Are the following sets subrings of the ring $M_2(\mathbb{R})$:

(i)
$$\mathcal{A} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\};$$

(ii)
$$\mathcal{B} = \left\{ \begin{pmatrix} a & a \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\};$$

(iii)
$$C = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$
?

- **4.** Are the following sets subrings of the ring $\mathbb{R}[X]$:
- (i) $A = \{ f \in \mathbb{R}[X] \mid \text{the free term of } f \text{ is } 0 \};$
- (ii) $B = \{ f \in \mathbb{R}[X] \mid \text{the free term of } f \text{ is } 1 \};$
- (iii) $C = \{ f \in \mathbb{R}[X] \mid \text{the coefficient of the term of degree 1 of } f \text{ is 0} \}$?
- **5.** Give examples of:
- (i) subring without identity of a ring with identity.
- (ii) subring with identity of a ring with identity, which have different identities.
- (iii) non-commutative finite ring.
- **6.** Show that the set $\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2} \mid a,b \in \mathbb{Q}\}$ is a subfield of the field \mathbb{R} . Generalization.
- 7. Is the set $A = \{a + b\sqrt[3]{2} \mid a, b \in \mathbb{Q}\}$ a subring of the field \mathbb{R} ?
- **8.** Let $m, n \in \mathbb{N}$. Show that $n\mathbb{Z}$ is a subring of the ring $m\mathbb{Z} \Leftrightarrow m|n$.
- **9.** Let $(R, +, \cdot)$ be a ring. Show that:

$$Z(R) = \{ a \in R \mid a \cdot r = r \cdot a, \forall r \in R \}$$

is a subring of R, called the *center of R*. When does the equality Z(R) = R hold?

10. Show that:

$$Z(M_2(\mathbb{R}), +, \cdot) = \{a \cdot I_2 \mid a \in \mathbb{R}\},\$$

where I_2 is the identity matrix. Generalization for $M_n(\mathbb{R})$ with $n \in \mathbb{N}$, $n \geq 2$.