Chapter 22 Borne supérieure dans \mathbb{R}

Théorème de la borne supérieure 22.1

Exercice 22.1

Déterminer si les parties suivantes de R sont majorées, minorées. Puis déterminer, s'ils existent, le plus grand élément, le plus petit élément, la borne supérieure et la borne inférieure.

5.
$$\left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$$
,
6. $\left\{ x \in \mathbb{R} \mid x^2 \le 2 \right\}$,
7. $\left\{ x \in \mathbb{Q} \mid x^2 \le 2 \right\}$.

6.
$$\{x \in \mathbb{R} \mid x^2 \le 2\}$$

7.
$$\{x \in \mathbb{Q} \mid x^2 \le 2\}$$

Exercice 22.2

On considère

$$E = \left\{ (-1)^n + \frac{1}{p} \mid n \in \mathbb{N} \text{ et } p \in \mathbb{N}^* \right\}.$$

L'ensemble E admet-il une borne inférieure, une borne supérieure ? Si oui, les déterminer.

Exercice 22.3

Soit A une partie non vide et majorée de \mathbb{R} . On suppose que la borne supérieure M de A vérifie M= $\sup(A) > 0$. Montrer qu'il existe un élément de A strictement positif.

Exercice 22.4

Soient A et B deux parties non vides majorées de \mathbb{R} .

- **1.** Montrer que $A \subset B \implies \sup A \le \sup B$.
- **2.** Montrer que $A \cup B$ est majorée et déterminer sup $(A \cup B)$.

Exercice 22.5

Soient A et B deux parties non vides, majorées, de \mathbb{R} ; on définit

$$C = A + B = \{ z \in \mathbb{R} \mid \exists x \in A, \exists y \in B, z = x + y \};$$

Prouver que sup $C = \sup A + \sup B$.

Exercice 22.6

Soient A et B deux parties non vides, majorées, de \mathbb{R}_+ ; on définit

$$D = AB = \{ z \in \mathbb{R} \mid \exists x \in A, \exists y \in B, z = xy \};$$

Déterminer $\sup(D)$.

Exercice 22.7

Soient A et B deux parties non vides de \mathbb{R} telles que

$$\forall (a, b) \in A \times B, a \leq b.$$

Montrer que $\sup(A)$ et $\inf(B)$ existent et que $\sup(A) \le \inf(B)$.

Exercice 22.8

Soit A une partie bornée non-vide de \mathbb{R} . Montrer

$$\sup_{(x,y)\in A\times A}|x-y|=\sup(A)-\inf(A).$$

Exercice 22.9

Soit $f: \mathbb{R} \to \mathbb{R}$ un application croissante et $A \subset \mathbb{R}$ une partie non-vide majorée.

- **1.** Montrer que $\sup (f(A)) \le f(\sup A)$.
- 2. Trouvez un exemple où l'inégalité est stricte.

Exercice 22.10 Un théorème de point fixe

Soit une application croissante $f:[0,1] \to [0,1]$. On se propose de montrer que f admet un point fixe, c'est-à-dire

$$\exists \alpha \in [0, 1], f(\alpha) = \alpha.$$

On considère l'ensemble

$$A = \{ x \in [0,1] \mid f(x) \le x \}.$$

- **1.** Montrer que l'ensemble A est non vide et qu'il admet une borne inférieure $\alpha \in [0, 1]$.
- **2.** Démontrer que si $x \in [0, 1]$ est un minorant de A, alors f(x) est aussi un minorant de A. En déduire que $f(\alpha) \le \alpha$.
- 3. Démontrer que si $x \in [0, 1]$ est un élément de A, alors f(x) est aussi un élément de A. En déduire que $f(\alpha) \ge \alpha$.
- 4. Conclure.

22.2 Les dix types d'intervalles de \mathbb{R}

Exercice 22.11

Montrer que l'intersection de deux intervalles est un intervalle (éventuellement vide). Que peut-on dire de l'intersection de deux intervalles ouverts ? De deux intervalles fermés ?

22.3 La droite achevée $\overline{\mathbb{R}}$