E40M Review - Part 1

Topics in Part 1 (Today): - KCL, KVL, Power

- Devices: V and I sources, R
- Nodal Analysis. Superposition
- Devices: Diodes, C, L
- Time Domain Diode, C, L Circuits

Topics in Part 2 (Wed): - MOSFETs, CMOS Circuits, Logic Gates

- Binary Numbers
- Time Division Multiplexing
- Frequency Domain Circuits, Impedance
- Filters, Bode Plots
- Op Amps

KCL and KVL

- KCL Sum of current flowing into node or device is zero
- KVL Sum of device voltages around any loop is zero

Using KCL and KVL

Find the current, and voltages for the circuit below

Power

- Power = iV Measured in Watts (= Volt *Amp)
 - It is the flow of energy
 - Energy is measured in Joules
 - Watts = Joules/sec
- For devices that absorb energy power flows into device
 - Current flows from higher to lower voltage
- For devices that supply energy, power flows out of device
 - Current flow from lower to higher voltage

Electrical Devices

Electrical Devices - Some Properties

- Charge neutral; i.e., charge entering = charge leaving
 - Batteries or power supplies separate charge but the overall device is still charge neutral
- The net current into any device is always zero, so i_{IN} = i_{OUT}
- Dissipate power (P = i·V)

Electrical Devices –Voltage Source, Current Source, Resistor

- Note that the energy is dissipated by the device in quadrants 1 and 3, and power is generated by the device in quadrants 2 and 4.
- Sketch the i-V curves for these devices.

Resistor Circuits

What is the resistance between nodes A and B?

The Power of Redrawing a Circuit

Nodal Analysis: The General Solution Method

- 1. Label all the nodes $(V_A, V_B, or V_1, V_2, etc.)$, after selecting the node you choose to be Gnd.
- 2. Label all the branch currents (i₁, i₂, etc.) and choose directions for each of them
- 3. Write the KCL equations for every node except the reference (Gnd)
 - Sum of the device currents at each node must be zero
- Substitute the equations for each device's current as a function of the node voltages, when possible
- 5. Solve the resulting set of equations

Example: Nodal Analysis

Example: Nodal Analysis

Compute the node voltages and branch currents.

At node A: $i_1 = i_2 + i_3$

1mA
$$\therefore 1. \quad \frac{5 - V_A}{1k\Omega} = \frac{V_A}{4k\Omega} + i_3$$

At node B: $i_3 = i_4 - 1mA$

Substituting 2. into 1.
$$\frac{5 - V_A}{1k\Omega} = \frac{V_A}{4k\Omega} + \frac{V_B}{2k\Omega} - 1mA$$
 $\therefore 2. i_3 = \frac{V_B}{2k\Omega} - 1mA$

$$\therefore 2. \quad i_3 = \frac{V_B}{2k\Omega} - 1mA$$

$$\frac{5-V_A}{1k\Omega} = \frac{V_A}{4k\Omega} + \frac{V_A-2V}{2k\Omega} - 1mA \quad \therefore \quad V_A\left(\frac{7}{4k\Omega}\right) = 7mA \quad \therefore \quad V_A = 4V \qquad \qquad 3. \quad V_A = V_B + 2V$$

3.
$$V_A = V_B + 2V$$

$$\therefore V_A = 4V, V_B = 2V, i_1 = 1mA, i_2 = 1mA, i_3 = 0, i_4 = 1mA$$

Superposition For Linear Circuits

- Calculate the response of the circuit for each independent source at a time, with the other's turned off
- What happens when we turn off a source?
 - Voltage sources: have 0 V (are shorted ... replace by a wire)
 - Current sources: have 0 current (are opened ... replace by a broken wire)

Example: Superposition

Example: Superposition

Compute V_A using superposition.

$$4K\Omega \parallel 2k\Omega = \frac{4}{3}k\Omega$$

$$V_{A1} = 5V \frac{\frac{4}{3}k\Omega}{\frac{4}{3}k\Omega + 1k\Omega} = \frac{20}{7}V$$

$$\begin{array}{c|c}
1k\Omega & 2V \\
\hline
4k\Omega & 1 \\
\hline
2k\Omega
\end{array}$$

$$4K\Omega || 1k\Omega = \frac{4}{5}k\Omega$$

$$i = \frac{2V}{2k\Omega + \frac{4}{5}k\Omega} = \frac{10}{14}mA = \frac{5}{7}mA$$

$$\therefore V_{A2} = \frac{5}{7}mA\left(\frac{4}{5}k\Omega\right) = \frac{4}{7}V$$

Example: Superposition

$$\therefore V_{A} = \frac{4}{7}V + \frac{4}{7}V + \frac{20}{7}V = 4V$$

Electrical Devices - Diodes

- Diode is a one-way street for current
 - Current can flow in only one direction

- An idealized diode model
 - Is a voltage source for positive current
 - Voltage drop is always equal to Vf for any current
 - Is an open circuit for negative current
 - Current is always zero for any voltage

Electrical Devices - Solar Cells

- Incoming photons create current.
- If no external current path (i = 0), current flows through diode.

Solving Diode Circuits

- Look at the circuit, guess the voltages and/or currents
 - From this, guess whether the diode will be on or off
 - If you can't estimate anything, just guess the diode state(s)
- Assume your guess was right
 - Solve for the voltages in the circuit
- Then check your answer
 - If you guessed the diode was off,
 - Look at the resulting diode voltage
 - Check to make sure it is less than V_f
 - If you guessed that the diode was on
 - You fixed the voltage to be V_f
 - So check to make sure the current is positive
- If your guess was wrong, change the guess and resolve

Example: Diode Circuit

Example: Diode Circuit

The current source is in the right direction to forward bias the diodes, so we might "guess" that

$$10mA = i_1 + i_2$$

$$V_A = 1V + i_1(50\Omega) = 2V + i_2(50\Omega)$$

$$\therefore i_1 = \frac{1V + i_2(50\Omega)}{50\Omega} = \frac{1V}{50\Omega} + i_2$$

∴
$$10\text{mA} = \frac{1\text{V}}{50\Omega} + 2\text{i}_2 = 20\text{mA} + 2\text{i}_2$$
 so that $\text{i}_2 = -5\text{mA}$

Clearly this is incorrect, so i_2 must = 0,

$$i_1 = 10mA$$
 and $V_A = 1V + (10mA)(50\Omega) = 1.5V$.

Example 2: Diode Circuit

Don't really want to randomly choose diode state in this case

Example 2: Diode Circuit

- Don't really want to randomly choose diode state in this case.
- The red line shows a reasonable guess as to the current path since this is through 3 forward biased diodes.
- If the forward voltage on each diode is 0.6V, then the node voltages are
- $V_A = 5.8V$, $V_B = 5.2V$, $V_C = 4.2V$, $V_D = 3.6V$, $V_F = 0.6V$.
- The other three diodes are all reverse biased so this is a self-consistent solution.

Electrical Devices - Capacitors

- What is a capacitor?
 - It is a new type of two terminal device
 - It is linear
 - It doesn't dissipate energy

- Rather than relating i and V
 - Relates Q, the charge stored on each plate, to Voltage

$$-Q=CV$$

$$- i = C dV/dt$$

• $Z_C = 1/j * 2\pi FC$ so at low F it is an open circuit, at high F it is a wire.

Electrical Devices - Inductors

- An inductor is a new type of two terminal device
 - It is linear double V and you will double i
 - Like a capacitor, it stores energy
 - Ideal inductors don't dissipate energy

- Defining equation: V = L di/dt L is inductance (in Henrys)
- For very small ∆t inductors look like current sources
 - They can supply very large voltages (+ or -)
 - And not change their current
- $Z_L = j * 2\pi FL$ so at low F, it looks like a wire, at high F an open circuit.

Example: Asymptotic Circuit Analysis

$$i(t) = (2 A) \cos(2\pi F t)$$

Find the power provided by the 2A current source when F = 0 Hz and when $F \rightarrow$ infinity

Example: Asymptotic Circuit Analysis: F = 0 Hz

 $F = 0 Hz \rightarrow current source is 2 A, DC$

Example: Asymptotic Circuit Analysis: $F \rightarrow \infty$ Hz

A CMOS inverter is driven with a 1 GHz square wave input. Assume the transistor R_{on} = 250 Ω and C = 5 pF. Will the inverter produce "1" and "0" values at its output, if "1" means > 4V and "0" means < 1V?

A CMOS inverter is driven with a 1 GHz square wave input. Assume the transistor R_{on} = 250 Ω and C = 5 pF. Will the inverter produce "1" and "0" values at its output, if "1" means > 4V and "0" means < 1V?

$$i_{RES} = V_{out}/R_1$$
 $i_{CAP} = CdV_{out}/dt$

$$\frac{dV_{out}}{dt} = -\frac{V_{out}}{R_1C}$$

The output waveform will be symmetric. We need to see if it can reach 4V in $\frac{1}{2}$ of the input period. F = 1 GHz, so $\frac{1}{2}$ period = 0.5 nsec

$$V_{out} = 5V \left(1 - e^{-t/R_1C}\right) = 5V \left(1 - e^{-\frac{0.5 \times 10^{-9}}{(250)(5 \times 10^{-12})}}\right) = 1.64V$$

So the answer is NO.

If the switch opens at t = 0 after being closed for a long time, what is the voltage at node A at t = 0⁺?

If the switch opens at t = 0 after being closed for a long time, what is the voltage at node A at t = 0⁺?

When the switch is closed, the current flows through the $1k\Omega$ resistor.

$$i = \frac{5V}{1k\Omega} = 5mA$$

When the switch opens this current has no where to go except through the $10k\Omega$ resistor, so the voltage across the $10k\Omega$ resistor will need to be

$$V_{10k\Omega}(t = 0^+) = (5mA)(10k\Omega) = 50V$$

So the voltage at node A will need to be 55 V.

After the switch opens at t = 0, how long does it take the voltage at node A to decrease to within 1V of its final value?

After the switch opens at t = 0, how long does it take the voltage at node A to decrease to within 1V of its final value?

$$V_R + V_L = 0$$

$$Ri(t) + L\frac{di(t)}{dt} = 0$$
 \therefore $\frac{L}{R}\frac{di}{dt} + i(t) = 0$

$$\therefore i(t) = I_0 e^{-\frac{R}{L}t} = 5e^{-\frac{R}{L}t} mA$$

$$V_{10k\Omega} = 1V$$
 when $i = 0.1mA$, so $0.1 = 5e^{-\frac{10^4}{10^{-3}}t}$ or $ln\frac{0.1}{5} = -\frac{10^4}{10^{-3}}t$

$$\therefore = 1.609 = -10^{-7} \text{t}$$
 or $t = 1.6 \times 10^{-7} \text{ sec} = 0.16 \mu \text{sec}$