EEG laborist väljas

KURSUS "SISSEJUHATUS PSÜHHOFÜSIOLOOGIA RAKENDUSTESSE"

DR. IIRIS TUVI

Kursuse loomist toetab Haridus- ja Noorteameti IT Akadeemia

wireless EEG

- Mis on aju-arvuti liides
- Millistes valdkondades kasutatakse
- EEG signaali kasutusetapid
- aju-arvuti liideste elektroodid
- Kontrollimissignaali tüübid ja näited nendega seotud liidestest
- Liideste kategoriseerimise viisid
- Artefaktid ja nende lahendused

Aju-arvuti liides (braincomputer interface) =

Aju-masina liides (brain-machine interface)

Tehnoloogia, mis võimaldab digitaalse seadme kontrollimist ilma keha liigutamata. Arendus toimub paljude valdkondade koostöös:

Neuroteadus Meditsiin Signaalitöötlus Tehisintellekt Elektroonika Aju-arvuti liidese disain

Aju-arvuti liideste kasutusvaldkonnad I

- Meditsiin (proteesikontroll; vaimse häire ravi, nt ADHD, Alzheimer, ärevus, depressioon)
- Meelelahutus (mängud, filmid nt "The Moment" (2018), Richard Ramchurn)
- Haridus (testiärevuse vähendamine, keskendumise jne jälgimine)
- Turvasüsteemid (pidev kasutaja tuvastus; turvaline "salasõna")
- Kommunikatsioon (nutitelefoni või TV äpi kontrollimine)

Aju-arvuti liideste kontrollimis signaali tüübid

Kõik kontrollimissignaali tüübid ülevaatlikult

Table 2. Summary of control signals.

Signal	Physiological phenomena	Number of choices	Training	Information transfer rate
VEP	Brain signal modulations in the visual cortex	High	No	60–100 bits/min
SCP	Slow voltages shift in the brain signals	Low (2 or 4, very difficult)	Yes	5–12 bits/min
P300	Positive peaks due to infrequent stimulus	High	No	20–25 bits/min
Sensorimotor rhythms	Modulations in sensorimotor rhythms synchronized to motor activities	Low (2, 3, 4, 5)	Yes	3–35 bits/mir

Fernando Nicolas-Alonso, L. and Gomez-Gil, J. (2012).

Aju arvuti liideste tüübid II

Passiivne vs aktiivne aju-arvuti liides

Passiivne aju-arvuti liides – kasutab sellist EEG signaali mis ei ole kasutaja poolt kontrollitult esile kutsutud

Aktiivne aju-arvuti liides – kasutaja kontrollib teatud EEG signaali, et juhtida arvutit Passiivses aju-arvuti liideses on kasutuses

EEG korrelaadid seoses:

- Emotsionaalse seisundiga
- Kasutaja ülesandega
- Vigade tegemisega seotud potentsiaale
- Vaimse koormusega

Passiivne ajuarvuti liides I

Emotsioonide jt seisundite sageduste mustrid

- Mõnu väheneb teeta, delta ja eriti beeta
- Tähelepanu beeta sagedus domineerib, alfa väheneb
- Negatiivne emotsioon suureneb gamma vasakus frontaalsagaras
- Stress suureneb teeta, beeta ja alfa; teeta/beeta suhe

See on reaktiivse aju-arvuti liidese näide:

https://www.engineering.columbia.ed u/press-releases/paul-sajdaneurofeedback-improved-performance

Passiivne ajuarvuti liides II

Kasutaja ülesandega seotud seisund

EEG abil on võimalik määrata:

- Videomängu tüüpi (mäng vaenlastega või ilma)
- Kas inimene mängib videomängu või puhkab
- Kui raskeks inimene mängu peab või kui frustreeritud ta on
- Kui kiiresti saavutab inimene mängus hea taseme (alfa sageduse power kõrgem) (Mathewson et al (2012))

https://beckman.illinois.edu/about/news/article/2013/10/15/dda01f96-a17b-4974-8d2f-df3c6efadcbb

jne

Passiivne ajuarvuti liides III

Vigadega seotud potentsiaalid

Error-Related Potentials (*ErRP*)

- "response ErRP" motoorse vea indikaator nt taipas, et vajutas vale nuppu
- "feedback ErRP" andis vale vastuse stiimulile
- "observation ErRP" nägi vale vastuse andmist
- "interaction ErRP" märkas, et app ei teinud õiget ülesannet nt kasutatakse P300 spelleriga tehtud vea leidmiseks

ERPe ja EEG sagedusi kasutatakse:

- Alarmeerimiseks
- Töö efektiivsuse tõstmiseks ja vigade vähendamiseks
- Uute toodete kasutuskogemuse hindamiseks

 inimene muudab/kontrollib teatud enda EEG signaali ja selle abil kontrollib ka arvutit

Ping-pongi mängimine

https://www.youtube.com/watch?v =suKTlrzaU9g&t=64s

Artefaktid

- Vahelduvvoolu sagedus -Shilding (kaablite isolatsioon), Common-mode rejection ratio (CMRR) of the amplifier (50/60 Hz)
- Elektroodide ja juhtmete probleemid - elektroodid ei ole hästi nahaga kontaktis (kõrge takistus), juhtmete liigutamine, vale elektroodide (eriti maanduse) paigutus
- Müra liigutustest jt füsioloogilistest muutustest (silmaliigutused, teiste lihaste liigutamine, südameaktiivsus, sügav hingamine, higistamine)
- **Stress** sellest, et peab kandma mingit elektroodide võru

https://www.bitbrain.com/blog/eeg-technical-features

EEG hariduses, Hiina näide:

https://www.youtube.com/watch?v
=JMLsHI8aVog (5:43)

(25

Grupiarutelu:

Millised eetilisi probleeme te näete EEG tehnoloogia kasutamisel lajatarbekauba osana?

Meditsiin, haridus, meelelahutus, neuromarketing, turvasüsteemid, kommunikatsioon

Viited I

- Aggensteiner, P.-M., Brandeis, D., Millenet, S., Hohmann, S., Ruckes, C., Beuth, S., Albrecht, B., Schmitt, G., Schermuly, S., Wörz, S., Gevensleben, H., Freitag, C. M., Banaschewski, T., Rothenberger, A., Strehl, U., & Holtmann, M. (2019). Slow cortical potentials neurofeedback in children with ADHD: comorbidity, self-regulation and clinical outcomes 6 months after treatment in a multicenter randomized controlled trial. *European Child & Adolescent Psychiatry*, 28(8), 1087–1095. https://doi.org/10.1007/s00787-018-01271-8
- Bajwa, G., & Dantu, R. (2016). Neurokey: Towards a new paradigm of cancelable biometrics-based key generation using electroencephalograms. *Computers and Security*, 62, 95–113. https://doi.org/10.1016/j.cose.2016.06.001
- Fernando Nicolas-Alonso, L., & Gomez-Gil, J. (2012). Brain Computer Interfaces, a Review. Sensors, 12, 1211–1279. https://doi.org/10.3390/s120201211

Viited II

- Ferrari, L. M., Ismailov, U., Badier, J. M., Greco, F., & Ismailova, E. (2020). Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. *Npj Flexible Electronics*, 4(1), 1–9. https://doi.org/10.1038/s41528-020-0067-z
- Hsu, W. Y. (2017). A wireless brainwave-driven system for daily-life analyses and applications. *Telematics and Informatics*, *34*(8), 1793–1801. https://doi.org/10.1016/j.tele.2017.09.001
- Mathewson, K. E., Basak, C., Maclin, E. L., Low, K. A., Boot, W. R., Kramer, A. F., Fabiani, M., & Gratton, G. (2012). Different slopes for different folks: Alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks. *Psychophysiology*, 49(12), 1558–1570. https://doi.org/10.1111/j.1469-8986.2012.01474.x
- Rabbi, A. F., Ivanca, K., Putnam, A. V., Musa, A., Thaden, C. B., & Fazel-Rezai, R. (2009). Human performance evaluation based on EEG signal analysis: A prospective review. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 1879–1882. https://doi.org/10.1109/IEMBS.2009.5333877

Viited III

- Solnais, C., Andreu-Perez, J., Sánchez-Fernández, J., & Andréu-Abela, J. (2013). The contribution of neuroscience to consumer research: A conceptual framework and empirical review. *Journal of Economic Psychology*, 36, 68–81. https://doi.org/10.1016/j.joep.2013.02.011
- Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., & Birbaumer, N. (2006). Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. *Pediatrics*, 118(5), e1530–e1540. https://doi.org/10.1542/peds.2005-2478

14