1

Abstract Algebra

CONTENTS

1	Things	s Familiar and Less Familiar
	1.1	Introduction
	1.2	Set Theory
	1.3	Mappings
	1.4	The Integers
	1.5	Mathematical Induction
	1.6	Complex Numbers

1 THINGS FAMILIAR AND LESS FAMILIAR

1.1 Introduction

- 1. let S be a set having an operation * which assigns an element a*b of S for any $a, b \in S$. Let us assume that the following two rules hold:
 - a) If a, b are any objects in S, then a * b = a.
 - b) If a, b are any objects in S, then a*b = b*a.

Show that S can have at most one object. **Solution:** From condition 1.1.1a, interchanging a, b,

$$b * a = b \tag{1.1.1}$$

and from condition 1.1.1b,

$$b * a = a * b$$
 (1.1.1)

But from condition 1.1.1a,

$$a * b = a \implies a = b \tag{1.1.1}$$

Thus, S can have at most one object.

2. Let *S* be the set of all integers $0, \pm 1, \pm 2, \dots, \pm n, \dots$ For $a, b \in S$, define * by

$$a * b = a - b \tag{1.1.2}$$

Verify the following

- a) $a * b \neq b * a$ unless a = b
- b) $(a*b)*c \neq a*(b*c)$ in general. Under what conditions on a, b, c is

$$(a*b)*c \neq a*(b*c)$$
 ? (1.1.2)

- c) The integer a has the property that a * 0 = a for every $a \in S$.
- d) For $a \in S$, a * a = 0.

Solution:

a)

$$a * b = b * a \tag{1.1.2}$$

$$\implies a - b = b - a \tag{1.1.2}$$

or,
$$a = b$$
 (1.1.2)

b) Let a = 1, b = 2, c = 4. Then,

$$a * b = -1, (a * b) * c = -1 - 4 = -5$$
(1.1.2)

$$b*c = -2, a*(b*c) = 1 + 2 = 3 \neq -5$$
(1.1.2)

Thus, for the given condition to be satisfied,

$$(a-b)-c = a - (b-c)$$
 (1.1.2)

$$\implies c = 0 \tag{1.1.2}$$

c)

$$a * 0 = a - 0 = a \tag{1.1.2}$$

d)

$$a * a = a - a = 0 \tag{1.1.2}$$

- 3. Let S consist of the two objects \square and \triangle . We define the operatin * on S by subjecting \square and \triangle to the following conditions.
 - a) $\square * \triangle = \triangle = \triangle * \square$
 - b) □ * □ = □
 - c) $\triangle * \triangle = \square$

Verify by explicit calculation that if a, b, c are any elements of S, (i.e. a, b, c can be any of \square or \triangle), then

- a) a * b is in S
- b) (a * b) * c = a * (b * c)
- c) a * b = b * a
- d) There is a particular a in S such that a*b = b*a = b for all $b \in S$
- e) Given $b \in S, b * b = a$, where a is the particular element in Part 1.1.3d.

Solution: Let $\Box = 1, \triangle = -1$. These satisfy all the given conditions.

- a) $a * b \in [1, -1] \in S$.
- b) Writing the truth table, (a * b)*c = a*(b * c).
- c) a * b = b * a can be verified by writing the truth table.
- d) For a = 1, a * b = b * a = b, for all $b \in S$.
- e) For a = 1, if b = -1, b * b = 1 = a. This can be shown to be true for b = 1 as well.

1.2 Set Theory

- 1. Describe the following sets verbally
 - a) $S = \{Mercury, Venus, Earth, ..., Pluto\}$
 - b) $S = \{Andhra Pradesh, Uttar Pradesh, ..., Assam\}$

Solution:

- a) Planets
- b) Indian states
- 2. Describe the following sets verbally
 - a) $S = \{2, 4, 6, 8, \dots\}$
 - b) $S = \{2, 4, 8, 16, \dots\}$
 - c) $S = \{1, 4, 9, 16, 25, 36 \dots \}$

Solution:

- a) Even numbers
- b) Powers of 2
- c) Squares of positive integers
- 3. If A is the set of all residents of India, B the set of all Sri Lankan citizens, and C the set of all women in the world, describe the sets ABC, A B, A C, C A verbally.

Solution:

- a) ABC is the set of all women residents of India who are citizens of Sri Lanka.
- b) A B = AB' is the set of all residents of India who are not Sri Lankan citizens.
- c) A C = AC' is the set of all male residents of India.
- d) C A = CA' is the set of all women who are not residing in India.
- 4. If $A = \{1, 4, 7, a\}$ and $B = \{3, 4, 9, 11\}$ and you have been told that $AB = \{4, 9\}$, then what must a be?

Solution: a = 9

5. If $A \subset B, B \subset C$, prove that $A \subset C$

Solution: From the given information,

$$A + P = B, AP = 0, B + Q = C, BQ = 0$$

$$(1.2.5.1)$$

$$\implies B + Q = A + P + Q = C,$$

$$(1.2.5.2)$$

BO = 0,

$$AQ + PQ = 0 \implies AQ = 0, PQ = 0$$
(1.2.5.3)

Hence,

$$A(P+Q) = 0 \implies A \subset C \tag{1.2.5.4}$$

6. If $A \subset B$ prove that $A \cup C \subset B \cup C$ for any set C.

Solution: From the given information, there exists *P* such that

$$A + P = B, AP = 0$$
 (1.2.6.1)

Also,

$$B + C = A + P + C \tag{1.2.6.2}$$

$$\implies A + C \subset B + C$$
 (1.2.6.3)

7. Show that

$$A \cup B = B \cup A \tag{1.2.7.1}$$

$$A \cap B = B \cap A \tag{1.2.7.2}$$

8. Prove that

$$(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$
(1.2.8.1)

Solution: Since

$$A - B = AB'$$
, (1.2.8.2)

$$(A - B) \cup (B - A) = AB' + BA'$$
 (1.2.8.3)

Also,

$$(A \cup B) - (A \cap B) = (A + B)(AB)'$$
 (1.2.8.4)
= $(A + B)(A' + B')$ (1.2.8.5)

$$= AB' + BA'$$
 (1.2.8.6)

9. Prove that

$$(A) \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 (1.2.9.1)

Solution:

$$LHS = A(B + C) = AB + AC = RHS$$
 (1.2.9.2)

10. Prove that

$$(A) \cup (B \cap C) = (A \cup B) \cap (A \cup C) \quad (1.2.10.1)$$

Solution:

$$LHS = A + BC \tag{1.2.10.2}$$

$$RHS = (A + B)(A + C)$$
 (1.2.10.3)

$$= A + A(B + C) + BC$$
 (1.2.10.4)

$$= A(1 + B + C) + BC \qquad (1.2.10.5)$$

$$= LHS$$
 (1.2.10.6)

- 11. Write down all the subsets of $S = \{1, 2, 3, 4\}$. **Solution:** Write a program for this.
- 12. If C is a subset of S, let C' denote the complement of C in S. Prove the De Morgan Rules for subsets A, B of S, namely,
 - a) $(A \cup B)' = A' \cap B'$
 - b) $(A \cap B)' = A' \cup B'$

Solution:

a)

$$(A + B)A'B' = AA'B' + BA'B'$$
 (1.2.12.1)
= 0 (1.2.12.2)

- b) Substituting A = A', B = B' in the above, the second result is obtained.
- 13. Let S be a set. For any to subsets of S, we define

$$A \oplus B = (A - B) \cup (B \cup A)$$
 (1.2.13.1)

Prove that

- a) $A \oplus B = B \oplus A$.
- b) $A \oplus \Phi = A$.
- c) $A \cdot A = A$.
- d) $A \oplus A = \Phi$.
- e) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.
- f) If $A \oplus B = A \oplus C$, then B = C.
- g) $A \cdot (B + C) = A \cdot B + A \cdot C$.

Solution: All can be proved using boolean logic.

14. If C is a finite set, let m(C) denote the number of elements in C. If A, B are finite sets, prove

that

$$m(A \cup B) = m(A) + m(B) - m(A \cap B)$$
(1.2.14.1)

Solution:

$$A'B' = (A+B)'$$
 (1.2.14.2)

$$\implies m(A'B') = m((A+B)') \qquad (1.2.14.3)$$

$$= 1 - m(A + B)$$
 (1.2.14.4)

$$A + B = A(B + B') + B$$
 (1.2.14.5)

$$= B(A+1) + AB'$$
 (1.2.14.6)

$$= B + AB'$$
 (1.2.14.7)

$$\implies m(A + B) = m(B + AB')$$
 (1.2.14.8)

$$= m(B) + m(AB')$$
 (1.2.14.9)

$$B(AB') = 0$$
 (1.2.14.10)

$$A = A(B + B') = AB + AB'$$
 (1.2.14.11)

and

$$(AB)(AB') = 0, :: BB' = 0$$
 (1.2.14.12)

Hence, AB and AB' are mutually exclusive and

$$m(A) = m(AB) + m(AB')$$
 (1.2.14.13)

$$\implies m(AB') = m(A) - m(AB) \quad (1.2.14.14)$$

Substituting (1.2.14.14) in (1.2.14.10),

$$m(A + B) = m(A) + m(B) - m(AB)$$
(1.2.14.15)

- 15. For three finite sets A, B, C, find a formula for $m(A \cup b \cup C)$. **Solution:** Extend the above.
- 16. Take a shot at finding $m(\bigcup_{i=1}^{n} A_i)$.
- 17. Show that if 80% of all Indians have gone to high school and 70% of all Indians read a daily newspaper, then *at least* 50% of all Indians have both gone to high school and read a daily newspaper.

Solution: Let *A* represent high school and *B* represent newspaper. Then,

$$Pr(AB) = Pr(A) + Pr(B) - Pr(A + B)$$
(1.2.17.1)

Since

$$\Pr(A + B) \le 1,$$
 (1.2.17.2)
 $\Pr(A) + \Pr(B) - \Pr(A + B) \ge \Pr(A) + \Pr(B) - 1$ (1.2.17.3)
 $\implies \Pr(AB) \ge 0.8 + 0.7 - 1$ (1.2.17.4)
 $= 0.5$ (1.2.17.5)

18. A public opinion poll shows that 90% of the population agreed with the government on the first decision, 84% on the second, and 74% on the third, for three decisions made by the government. At least what percentage of the population agreed with the government on all three decisions.

Solution: Let the decisions be A, B, C. Then,

$$Pr(AB) \ge Pr(ABC)$$
, (1.2.18.1)

$$Pr(BC) \ge Pr(ABC)$$
, (1.2.18.2)

$$Pr(CA) \ge Pr(ABC) \tag{1.2.18.3}$$

Since

$$Pr(A + B + C) = \sum Pr(A)$$

$$- \sum Pr(AB) + Pr(ABC),$$

$$\implies Pr(A + B + C) + \sum Pr(AB)$$

$$= \sum Pr(A) + Pr(ABC), \quad (1.2.18.4)$$

from (1.2.18.1),

$$\Pr(A + B + C) + 3\Pr(ABC)$$

$$\geq \sum \Pr(A) + \Pr(ABC),$$

$$\implies 2\Pr(ABC) \geq \sum \Pr(A) - \Pr(A + B + C)$$
(1.2.18.5)

Since

$$\Pr(A + B + C) \le 1, \qquad (1.2.18.6)$$

$$-\Pr(A + B + C) \ge -1 \qquad (1.2.18.7)$$

$$\implies 2\Pr(ABC) \ge \sum \Pr(A) - 1 \qquad (1.2.18.8)$$

$$\operatorname{or} \Pr(ABC) \ge \frac{\sum \Pr(A) - 1}{2} \qquad (1.2.18.9)$$

$$= 0.74 \qquad (1.2.18.10)$$

19. In his book *A Tangled Tale*, Lewis Caroll proposed the following riddle about a group of disabled veterans. "Say that 70% have lost

an eye, 75% an ear, 80% an arm, 85% a leg. What percentage, at least, must have lost all four?" Solve Lewis Caroll's problem.

Solution: Let A_i represent the events. Then,

$$\Pr\left(\sum_{i=1}^{4} A_i\right) = \sum_{i=1}^{4} \Pr(A_i) - \sum_{i,j} \Pr(A_i A_j)$$
$$+ \sum_{i,j,k} \Pr(A_i A_j A_k) - \Pr\left(\prod_{i=1}^{4} A_i\right) \quad (1.2.19.1)$$

Now,

$$\Pr(A_1 A_2) \ge \Pr(A_1 A_2 A_3) \ge \Pr(A_1 A_2 A_3 A_4)$$

$$(1.2.19.2)$$

which, upon substitution in (1.2.19.1) yields

$$\Pr\left(\sum_{i=1}^{4} A_i\right) \ge \frac{\sum_{i=1}^{4} \Pr(A_i) - 1}{1 + {}^{4}C_2 - {}^{4}C_3} \qquad (1.2.19.3)$$
$$= 70\% \qquad (1.2.19.4)$$

20. Show, for finite sets A, B, that $m(A \times B) = m(A) \times m(B)$.

Solution: Basic principle of counting.

- 21. If S is a set having five elements,
 - a) How many subsets does S have?
 - b) How many subsets having four elements does S have?
 - c) How many subsets having two elements does S have?

Solution:

- a) $2^5 = 32$.
- b) ${}^5C_4 = 5$.
- c) ${}^5C_2 = 10$.
- 22. a) Show that a set having n elements has 2^n subsets.
 - b) If 0 < m < n, how many subsets are there that have exactly m elements?

Solution:

a) The number of subsets is

$$\sum_{k=0}^{n} {}^{n}C_{k} = 2^{n} \tag{1.2.22.1}$$

using the binomial theorem.

b) The number of subsets having exactly m elements are ${}^{n}C_{m}$.

1.3 Mappings

- 1. For the given sets S, T determine if a mapping $f: S \rightarrow T$ is clearly and unambiguously defined; if not, say why not.
 - a) S = set of all women, T = set of all men, f(s) = husband of s.

1.4 The Integers

- 1. Find (a, b) and express (a, b) as ma + nb for
 - a) (116, -84)
 - b) (85,65)
 - c) (72, 26)
 - d) (72, 25)

Solution:

a) Using the extended Euclid algorithm,

$$\begin{pmatrix} 116 & 1 & 0 \\ -84 & 0 & 1 \end{pmatrix} \tag{1.4.1.1}$$

$$\stackrel{R_3 \leftarrow R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} 32 & 1 & 1 \end{pmatrix} \tag{1.4.1.2}$$

$$\stackrel{R_4 \leftarrow R_2 + 2R_3}{\longleftrightarrow} \begin{pmatrix} -20 & 2 & 3 \end{pmatrix} \tag{1.4.1.3}$$

$$\stackrel{R_5 \leftarrow R_4 + R_3}{\longleftrightarrow} \begin{pmatrix} 12 & 3 & 4 \end{pmatrix} \tag{1.4.1.4}$$

$$\stackrel{R_6 \leftarrow R_5 + R_4}{\longleftrightarrow} \begin{pmatrix} -8 & 5 & 7 \end{pmatrix} \tag{1.4.1.5}$$

$$\stackrel{R_7 \leftarrow R_6 + R_5}{\longleftrightarrow} \begin{pmatrix} 4 & 8 & 11 \end{pmatrix} \tag{1.4.1.6}$$

$$\stackrel{R_8 \leftarrow R_7 + 2R_6}{\longleftrightarrow} \begin{pmatrix} 0 & 21 & 29 \end{pmatrix} \tag{1.4.1.7}$$

Thus,

$$4 = (8)116 + 11(-84)$$
 (1.4.1.8)

b)

$$\begin{pmatrix} 85 & 1 & 0 \\ 65 & 0 & 1 \end{pmatrix} \tag{1.4.1.9}$$

$$\stackrel{R_3 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 20 & 1 & -1 \end{pmatrix} \qquad (1.4.1.10)$$

$$\stackrel{R_4 \leftarrow R_2 - 3R_3}{\longleftrightarrow} \left(5 \quad -3 \quad 4 \right) \tag{1.4.1.11}$$

$$\stackrel{R_5 \leftarrow R_3 - 4R_4}{\longleftrightarrow} \begin{pmatrix} 0 & 13 & -17 \end{pmatrix} \qquad (1.4.1.12)$$

Thus,

$$5 = (-3)85 + 4(65)$$
 (1.4.1.13)

$$\begin{pmatrix} 72 & 1 & 0 \\ 26 & 0 & 1 \end{pmatrix} \qquad (1.4.1.14)$$

$$\stackrel{R_3 \leftarrow R_1 - 2R_2}{\longleftrightarrow} \begin{pmatrix} 20 & 1 & -2 \end{pmatrix} \qquad (1.4.1.15)$$

$$\stackrel{R_4 \leftarrow R_2 - R_3}{\longleftrightarrow} \begin{pmatrix} 6 & -1 & 3 \end{pmatrix} \tag{1.4.1.16}$$

$$\stackrel{R_5 \leftarrow R_3 - 3R_4}{\longleftrightarrow} \begin{pmatrix} 2 & 4 & -11 \end{pmatrix} \qquad (1.4.1.17)$$

$$\stackrel{R_6 \leftarrow R_4 - 3R_5}{\longleftrightarrow} \begin{pmatrix} 0 & -13 & 36 \end{pmatrix} \qquad (1.4.1.18)$$

Thus,

$$2 = (4)72 + (-11)26$$
 (1.4.1.19)

d)

c)

$$\begin{pmatrix} 72 & 1 & 0 \\ 25 & 0 & 1 \end{pmatrix} \qquad (1.4.1.20)$$

$$\stackrel{R_3 \leftarrow R_1 - 2R_2}{\longleftrightarrow} \begin{pmatrix} 22 & 1 & -2 \end{pmatrix} \tag{1.4.1.21}$$

$$\stackrel{R_4 \leftarrow R_2 - R_3}{\longleftrightarrow} (3 \quad -1 \quad 3) \tag{1.4.1.22}$$

$$\stackrel{R_5 \leftarrow R_3 - 7R_4}{\longleftrightarrow} \begin{pmatrix} 1 & 8 & -23 \end{pmatrix} \tag{1.4.1.23}$$

Thus,

$$1 = (8)72 + (-23)25$$
 (1.4.1.24)

- 2. Show that the following are true
 - a) $1 \mid n$ for all n.
 - b) If $m \neq 0$, then $m \mid 0$.
 - c) If $m \mid n$ and $n \mid q$, then $m \mid q$.
 - d) If $m \mid n$ and $n \mid q$, then $m \mid (un + vq)$ for all v, u.
 - e) If m | 1, then m = 1 or m = -1.
 - f) If $m \mid n$, and $n \mid m$, then $m = \pm n$.

Solution:

- a) $n = 1 \times n$.
- b) $0 = 0 \times m$.
- c) Let

$$n = cm, q = dn.$$
 (1.4.2.1)

Then

$$q = (cdn)m \implies m \mid q$$
 (1.4.2.2)

d) Let

$$n = cm, q = dn.$$
 (1.4.2.3)

Then

$$un + vq = ucm + vdn \quad (1.4.2.4)$$

$$= (uc + vdc)m (1.4.2.5)$$

$$\implies m \mid (un + vq) \tag{1.4.2.6}$$

e) If

$$1 = cm, (1.4.2.7)$$

$$c = 1, m = 1$$
 (1.4.2.8)

$$c = -1, m = -1$$
 (1.4.2.9)

f)

$$n = cm, m = dn$$
 (1.4.2.10)

$$\implies mn = cdmn$$
 (1.4.2.11)

or,
$$cd = 1$$
 (1.4.2.12)

Thus, either

$$c = d = 1, \implies n = m,$$
 (1.4.2.13)

or,
$$c = d = -1$$
, $\implies n = -m$ (1.4.2.14)

3. Show that

$$(ma, mb) = m(a, b)$$
 $m > 0$. (1.4.3.1)

Solution: Let

$$(a,b) = xa + yb$$
 (1.4.3.2)

Then,

$$(ma, mb) = xma + ymb = m(xa + yb)$$

(1.4.3.3)
 $= m(a, b)$ (1.4.3.4)

4. Show that if $a \mid m$ and $b \mid m$, and (a,b) = 1, then $(ab) \mid m$.

Solution: From the given information,

$$m = ac,$$

$$m = bd.$$
(1.4.4.1)

$$ax + by = 1$$
 (1.4.4.2)

Multiplying both sides of (1.4.4.2) by m

$$max + mby = m ag{1.4.4.3}$$

$$\implies ab(dx + cy) = m$$
 (1.4.4.4)

upon substituting from (1.4.4.1). Hence, $(ab) \mid m$

- 5. Factor the following into primes
 - a) 36

- b) 120
- c) 720
- d) 5040

Solution:

- a) $36 = 2^2 \times 3^2$.
- b) $120 = 2^3 \times 3 \times 5$.
- c) $720 = 2^4 \times 3^2 \times 5$.
- d) $5040 = 2^2 \times 3^2 \times 5 \times 7$.
- 6. If $m = p_1^{a_1} \dots p_k^{a_k}$, and $n = p_1^{b_1} \dots p_k^{b_k}$, where p_i are distinct primes and a_i, b_i are nonnegative, express (m, n) as $p_1^{c_1} \dots p_k^{c_k}$ by describing the cs in terms of the as and bs.

Solution: Let

$$m = 36 = 2^2 \times 3^2 \tag{1.4.6.1}$$

$$n = 720 = 2^4 \times 3^2 \times 5 \tag{1.4.6.2}$$

Then,

$$k = 3$$
 (1.4.6.3)

$$p_1 = 2, p_2 = 3, p_3 = 5$$
 (1.4.6.4)

$$a_1 = 2, a_2 = 2, a_3 = 0$$
 (1.4.6.5)

$$b_1 = 4, b_2 = 2, b_3 = 1$$
 (1.4.6.6)

and

$$(36,720) = 2^2 \times 3^2$$
 (1.4.6.7)

$$\implies c_i = \min(a_i, b_i)$$
 (1.4.6.8)

- 1.5 Mathematical Induction
 - 1. Prove that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
(1.5.1.1)

by induction.

Solution: P(n+1) is

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

$$= (n+1)\left(\frac{2n^{2} + 7n + 7}{6}\right)$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} \quad (1.5.1.2)$$

which is true. Hence, the given proposition is true for all $n \ge 1$

2. Prove that

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$
(1.5.2.1)

by induction.

Solution: P(n + 1) is

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} + (n+1)^{3}$$

$$= \left[\frac{n(n+1)}{2}\right]^{2} + (n+1)^{3}$$

$$= (n+1)^{2} \left(\frac{n^{2} + 4n + 4}{4}\right)$$

$$= \left[\frac{(n+1)(n+2)}{2}\right]^{2} \quad (1.5.2.2)$$

which is true. Hence, the given proposition is true for all $n \ge 1$.

- 3. Prove that a set having $n \ge 2$ elements has $\frac{n(n-1)}{2}$ subsets having exactly 2 elements.
- 4. Prove that a set having $n \ge 3$ elements has $\frac{n(n-1)(n-2)}{3}$ subsets having exactly 3 elements.
- 5. If $n \ge 4$ and S is a set having n elements, guess how many subsets having exactly 4 elements are there in S. Then verify your guess using mathematical induction.
- 6. If p is a prime and $p \mid (a_1a_2a_3...a_n)$, then prove using induction that $p \mid a_i$ for some i with $1 \le i \le n$.
- 7. If $a \neq 1$, prove that

$$1 + a + a^{2} + \dots + a^{n} = \frac{\left(a^{n+1} - 1\right)}{a - 1} \quad (1.5.7.1)$$

by induction.

Solution: P(n+1) can be expressed as

$$1 + a + a^{2} + \dots + a^{n} + a^{n+1}$$

$$= \frac{\left(a^{n+1} - 1\right)}{a - 1} + a^{n+1}$$

$$= \frac{\left(a^{n+2} - 1\right)}{a - 1} \quad (1.5.7.2)$$

upon simplification. Hence, the given proposition is true for all $n \ge 1$.

8. By induction, show that

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1} \quad (1.5.8.1)$$

Solution: P(n + 1) can be expressed as

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1) \cdot (n+2)}$$

$$= \frac{1}{n+1} \left[n + \frac{1}{n+2} \right]$$

$$= \frac{n+1}{n+2} \quad (1.5.8.2)$$

upon simplification. Hence, the given proposition is true for all $n \ge 1$.

- 9. Suppose that P(n) is a proposition about positive integers n such that $P(n_0)$ is valid, and if P(k) is true, so must be P(k+1). What can you say about P(n)? Prove your statement.
- 10. Let P(n) be a proposition about integers n such that P(1) is true and such that if P(j) is true for all positive integers j < k, then P(k) is true. Prove that P(n) is true for all positive integers n.
- 11. Given an example of a proposition that is *not* true for any positive integer, yet for which the induction step holds.
- 12. Prove by induction that a set having n elements has exactly 2^n subsets.

Solution: Let $S = \{1, 2\}$. Then the subsets are

$$\{\phi\},\{1\},\{2\},\{1,2\}$$
 (1.5.12.1)

For $S = \{1, 2, 3\}$, the subsets are

$$\{\phi\},\{1\},\{2\},\{1,2\}$$
 (1.5.12.2)

$${3}, {1,3}, {2,3}, {1,2,3}$$
 (1.5.12.3)

Thus P(n + 1) can be expressed as

$$2^n + 2^n = 2^{n+1} (1.5.12.4)$$

Hence, the given proposition is true for all $n \ge 1$.

13. Prove by induction on n that $n^3 - n$ is always divisible by 3.

(1.6.2.1)

(1.6.2.2)

(1.6.2.3)

Solution: P(n+1) can be expressed as

$$(n+1)^{3} - (n+1) = n^{3} + 3n^{2} + 3n + 1 - n - 1$$

$$(1.5.13.1)$$

$$= n^{3} - n + 3(n^{2} + n)$$

$$(1.5.13.2)$$

which is divisible by 3. Hence, the given proposition is true for all $n \ge 1$.

14. If p is a prime number, then prove that $n^p - n$ is always divisible by p.

Solution: P(n + 1) can be expressed as

$$(n+1)^{p} - (n+1) = n^{p} - n + p \sum_{k=1}^{n-1} {}^{n}C_{k}p^{k-1}$$

$$\implies p \mid [(n+1)^{p} - (n+1)]$$
(1.5.14.2)

Hence, the given proposition is true for all $n \ge$

15. Prove by induction that for a set having n elements the number of 1-1 mappings of this set onto itself is n!.

Solution: Let $S = \{a, b, c\}$. Then the possible 1-1 onto mappings are

$$\begin{cases} a \mapsto b \\ b \mapsto c \\ c \mapsto a \end{cases} \begin{cases} a \mapsto b \\ b \mapsto a \\ c \mapsto a \end{cases} \begin{cases} a \mapsto c \\ b \mapsto b \\ c \mapsto a \end{cases} \begin{cases} a \mapsto a \\ b \mapsto c \\ c \mapsto b \end{cases} \begin{cases} a \mapsto a \\ b \mapsto b \\ c \mapsto c \end{cases} \begin{cases} a \mapsto a \\ b \mapsto c \\ c \mapsto b \end{cases} z^{-1} = \frac{1-1}{\sqrt{2}}$$

b)

c)

a)

b)

2. Find z^{-1} for a) z = 6 + 81b) z = 6 - 8j

c) $z = \frac{1}{\sqrt{2}} (1 + j)$ **Solution:**

$$(z^*)^{-1} = (z^{-1})^*$$
 (1.6.3.1)

Solution: Since

$$zz^{-1} = 1,$$
 (1.6.3.2)

$$\left(zz^{-1}\right)^* = 1$$
 (1.6.3.3)

$$\implies (z)^* (z^{-1})^* = 1$$
 (1.6.3.4)

yielding (1.6.3.1).

4. Find

$$(\cos\theta + \jmath\sin\theta)^{-1} \tag{1.6.4.1}$$

Solution:

$$(\cos \theta + \jmath \sin \theta)^{-1} = \cos \theta - \jmath \sin \theta \quad (1.6.4.2)$$

5. Verify the following

a)
$$(z^*)^* = z$$

b)
$$(z + w)^* = z^* + w^*$$

1.6 Complex Numbers

1. Multiply

a)
$$(6-7j)(8+j)$$

b) $(\frac{2}{3}+\frac{3}{2}j)(\frac{2}{3}-\frac{3}{2}j)$
c) $(6+7j)(8-j)$

c)
$$(3 + 23)(3 - 23)$$

Solution:

a)

$$(6-7J)(8+J) = \begin{pmatrix} 6 & 7 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$
 (1.6.1.1)
= $\begin{pmatrix} 53 \\ -50 \end{pmatrix} = 53 - 50J$ (1.6.1.2)

$$\left(\frac{2}{3} + \frac{3}{2}J\right)\left(\frac{2}{3} - \frac{3}{2}J\right) = \left(\frac{2}{3} - \frac{3}{2}\right)\left(\frac{2}{3} - \frac{3}{2}\right)$$

$$= \left(\frac{97}{36}\right) = \frac{97}{36} \quad (1.6.1.4)$$

$$(6+7j) 8 - j = [(6-7j) 8 + j]^* (1.6.1.5)$$
$$= (53-50j)^* = 53+50j$$
$$(1.6.1.6)$$

 $z^{-1} = \frac{z^*}{|z|^2} = \frac{6 - 8j}{100}$

 $z^{-1} = \frac{6 + 8j}{100}$

c)
$$z + z^* = 2 \text{Re}(z)$$

d)
$$z - z^* = 2 Im(z)$$

Solution:

a) For

$$z = a + 1b, (1.6.5.1)$$

$$z^* = a - 1b, \tag{1.6.5.2}$$

$$\implies (z^*)^* = a + 1b = z$$
 (1.6.5.3)

b) For

$$z = z_1 + y_2$$
 (1.6.5.4)

$$w = w_1 + \mathbf{j}w_2,$$

$$(z+w)^* = (z_1 + 1z_2 + w_1 + 1w_2)^*$$
 (1.6.5.5)

$$= (z_1 - yz_2) + (w_1 - yw_2) \quad (1.6.5.6)$$

$$= z^* + w^* \tag{1.6.5.7}$$

c) For

$$z = a + 1b, (1.6.5.8)$$

$$z^* = a - 1b, \tag{1.6.5.9}$$

$$\implies (z + z^*) = a + yb + a - jb \quad (1.6.5.10)$$

$$= 2a = 2\text{Re}(z)$$
 (1.6.5.11)

d) For

$$z = a + yb,$$
 (1.6.5.12)

$$z^* = a - 1b, \tag{1.6.5.13}$$

$$\implies (z - z^*) = a + jb - a + jb \quad (1.6.5.14)$$

$$= 21b = 2\text{Im}(z)$$
 (1.6.5.15)

6. Show that z is real if and only if $z^* = z$ and is purely imaginary if and only if $z^* = -z$. **Solution:** Let

$$z = a + 1b.$$
 (1.6.6.1)

Then

$$z^* = a - 1b. (1.6.6.2)$$

If

$$z^* = z, (1.6.6.3)$$

$$a + 1b = a - 1b \tag{1.6.6.4}$$

$$\implies b = 0 \tag{1.6.6.5}$$

and z is real. If z is real,

$$z = a$$
 (1.6.6.6)

$$\implies z^* = a \tag{1.6.6.7}$$

or,
$$z = z^*$$
 (1.6.6.8)

Similarly, the other property can be proved.

7. Verify the commutative law of multiplication zw = wz in \mathbb{C} .

Solution: Let

$$z = a + 1b \tag{1.6.7.1}$$

$$w = x - 1y \tag{1.6.7.2}$$

Then

$$zw = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{1.6.7.3}$$

$$= \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \tag{1.6.7.4}$$

$$= wz$$
 (1.6.7.5)

8. Show that for $z \neq 0$, $|z|^{-1} = \frac{1}{|z|}$.

Solution: Let

$$z = re^{j\theta}. (1.6.8.1)$$

Then

$$z^{-1} = \frac{1}{r}e^{-J\theta} \tag{1.6.8.2}$$

$$\implies \left| z^{-1} \right| = \frac{1}{r} \tag{1.6.8.3}$$

9. Find

a)
$$|6 - 4_1|$$
.

a)
$$\begin{vmatrix} 6 - 4j \end{vmatrix}$$
.
b) $\begin{vmatrix} \frac{1}{2} + \frac{2}{3}j \end{vmatrix}$.

c)
$$\left| \frac{1}{\sqrt{2}} \left(1 + \mathfrak{J} \right) \right|$$

Solution:

a)

$$|6 - 4_1| = \sqrt{6^2 + 4^2} = 2\sqrt{13}$$
 (1.6.9.1)

b)

$$\left| \frac{1}{2} + \frac{2}{3} J \right| = \frac{5}{6} \tag{1.6.9.2}$$

c)

$$\left| \frac{1}{\sqrt{2}} (1+j) \right| = \frac{1}{\sqrt{2}} \left| (1+j) \right| = 1 \quad (1.6.9.3)$$

10. Show that $|z^*| = |z|$.

Solution: Let

$$z = re^{j\theta} \tag{1.6.10.1}$$

Then

$$z^* = re^{-j\theta} {(1.6.10.2)}$$

$$\implies |z^*| = r = |z|.$$
 (1.6.10.3)

11. Find the polar form for

a)
$$z = \frac{\sqrt{2}}{2} - \frac{1}{\sqrt{2}} \mathbf{j}$$
.

b)
$$z = 41$$
.

c)
$$z = \frac{6}{\sqrt{2}} + \frac{6}{\sqrt{2}} \mathbf{j}$$

a)
$$z = \frac{\sqrt{2}}{2} - \frac{1}{\sqrt{2}} J$$
.
b) $z = 4j$.
c) $z = \frac{6}{\sqrt{2}} + \frac{6}{\sqrt{2}} J$.
d) $z = -\frac{13}{2} + \frac{39}{2\sqrt{3}} J$.

a)

$$|z| = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2}$$
. (1.6.11.1)

$$= 1$$
 (1.6.11.2)

and

$$\angle z = -\tan^{-1} \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \tag{1.6.11.3}$$

$$=\frac{\pi}{4}$$
 (1.6.11.4)

b)

$$|z| = 4, \angle z = \frac{\pi}{2}.$$
 (1.6.11.5)

c)

$$|z| = \frac{6}{\sqrt{2}}, \ \angle z = \frac{\pi}{4}.$$
 (1.6.11.6)

d)

$$|z| = \frac{13}{2}\sqrt{1+3} \tag{1.6.11.7}$$

$$= 13$$
 (1.6.11.8)

and

$$\angle z = \pi - \tan^{-1} \frac{\frac{39}{2\sqrt{3}}}{\frac{13}{2}}$$
 (1.6.11.9)

$$= \pi - \tan^{-1} \sqrt{3} = \frac{2\pi}{3} \qquad (1.6.11.10)$$

12. Prove that

$$\left(\cos\left(\frac{\theta}{2}\right) + \jmath\sin\left(\frac{\theta}{2}\right)\right)^2 = \cos(\theta) + \jmath\sin(\theta)$$
(1.6.12.1)

Solution: The L.H.S can be expressed as

$$\left(e^{\mathrm{J}\theta}\right)^2 = e^{\mathrm{J}\theta} \tag{1.6.12.2}$$

13. Show that

$$\left(\frac{1}{2} + \frac{\sqrt{3}}{2}J\right)^3 = -1\tag{1.6.13.1}$$

Solution:

$$\frac{1}{2} + \frac{\sqrt{3}}{2} J = e^{\frac{1\pi}{3}}$$
 (1.6.13.2)

$$\implies \left(e^{\frac{j\pi}{3}}\right)^3 = e^{j\pi} = -1$$
 (1.6.13.3)

14. Show that

$$(\cos(\theta) + \jmath \sin(\theta))^m = \cos(m\theta) + \jmath \sin(m\theta)$$
(1.6.14.1)

for all integers m. **Solution:** It is easy to verify that

$$(\cos(\theta) + \jmath \sin(\theta))^2 = \cos(2\theta) + \jmath \sin(2\theta)$$
(1.6.14.2)

Then

$$(\cos(\theta) + \jmath \sin(\theta))^{k+1} = (\cos(\theta) + \jmath \sin(\theta))^{k}$$
$$(\cos(m\theta) + \jmath \sin(m\theta))$$
$$= \cos[(k+1)\theta + \jmath \sin((k+1)\theta)] \quad (1.6.14.3)$$

By induction, (1.6.14.1) is proved.

15. Show that

$$(\cos(\theta) + \jmath \sin(\theta))^r = \cos(r\theta) + \jmath \sin(r\theta)$$
(1.6.15.1)

for all rational numbers r. Solution: Let

$$r = \frac{m}{n}, (\cos(\theta) + J\sin(\theta))^{\frac{1}{n}} = \cos(\alpha) + J\sin(\alpha)$$
(1.6.15.2)

Then

$$(\cos(\alpha) + \jmath \sin(\alpha))^n = (\cos(\theta) + \jmath \sin(\theta))$$
(1.6.15.3)

$$\implies \cos(n\alpha) + \jmath \sin(n\alpha) = (\cos(\theta) + \jmath \sin(\theta))$$
(1.6.15.4)

or,
$$\alpha = \frac{\theta}{n}$$
 (1.6.15.5)

yielding

$$(\cos(\theta) + \jmath \sin(\theta))^{\frac{1}{n}} = \cos\left(\frac{\theta}{n}\right) + \jmath \sin\left(\frac{\theta}{n}\right)$$
(1.6.15.6)

Using (1.6.14.1) and (1.6.15.6),

$$(\cos(\theta) + \jmath \sin(\theta))^{\frac{m}{n}} = \cos\left(\frac{m\theta}{n}\right) + \jmath \sin\left(\frac{m\theta}{n}\right)$$
(1.6.15.7)

16. If $z \in \mathbb{C}$ and $n \ge 1$ is any positive integer, show that there are n distinct complex numbers such that $z = w^n$. **Solution:** Let

$$z = \cos(\theta) + j\sin(\theta) \qquad (1.6.16.1)$$

then using (1.6.15.6),

$$w = \cos\left(\frac{2\pi k + \theta}{n}\right) + \Im\sin\left(\frac{2\pi k + \theta}{n}\right), k = 0, \dots, n - 1$$
(1.6.16.2)

which are the distinct roots.

17. Find the necessary and sufficient condition on *k* such that

$$\left(\cos\left(\frac{2\pi k}{n}\right) + \jmath\sin\left(\frac{2\pi k}{n}\right)\right)^n = 1 \quad \text{and} \quad (1.6.17.1)$$

$$\left(\cos\left(\frac{2\pi k}{n}\right) + \jmath\sin\left(\frac{2\pi k}{n}\right)\right)^m \neq 1 \quad 0 < m < n$$
(1.6.17.2)

Solution: From the above equations, using (1.6.14.1),

$$\frac{mk}{n} \notin \mathbb{Z} \tag{1.6.17.3}$$

18. Viewing the x-y plane as the set of all complex numbers x + y, show that multiplication by j induces as 90° rotation of the x - y plan in counterclockwise direction.

Solution: The given multiplication can be expressed using matrices as

$$\begin{pmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (1.6.18.1)

which is the multiplication of $\begin{pmatrix} x \\ y \end{pmatrix}$ with a 90° rotation matrix.

19. In problem (1.6.18), interpret geometrically what multiplication by the complex number a + yb does to the x - y plane.

Solution: The multiplication can be represented as

$$\sqrt{a^2 + b^2} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (1.6.19.1)

where

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}} \sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$$
(1.6.19.2)

Geometrically, multiplication by a + jb results in rotation by θ and scaling by $\sqrt{a^2 + b^2}$.

20. Prove that

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$$
 (1.6.20.1)

Solution: Since

$$|z + w|^2 = (z + w)^* (z + w)$$
 (1.6.20.2)

$$= |z|^2 + |w|^2 + 2z^*w (1.6.20.3)$$

and

$$|z - w|^2 = (z + w)^* (z - w)$$
 (1.6.20.4)

$$= |z|^2 + |w|^2 - 2z^*w, \qquad (1.6.20.5)$$

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$$
 (1.6.20.6)

- 21. Consider the set $A = a + b_J$, $a, b \in \mathbb{Z}$. Prove that there is 1-1 correspondence of A onto \mathbb{N} .
- 22. If a is a (complex) root of the polynomial

$$x^{n} + \alpha_{1}x^{n-1} + \dots + \alpha_{n-1}x + \alpha_{n}, \quad (1.6.22.1)$$

where the α_i are real, show that \bar{a} must also be a root.

Solution: From the given information,

$$\bar{a}^n + \alpha_1 \bar{a}^{n-1} + \dots + \alpha_{n-1} \bar{a} + \alpha_n = 0$$
 (1.6.22.2)

Thus, \bar{a} is also a root of the given polynomial.

23. Find the necessary and sufficient conditions on z and w in order that

$$|z + w| = |z| + |w|$$
 (1.6.23.1)

Solution:

$$|z + w|^2 = |z|^2 + |w|^2 + 2z^*w$$
 (1.6.23.2)

$$(|z| + |w|)^2 = |z|^2 + |w|^2 + 2|z||w|$$
 (1.6.23.3)

If the above expressions are equal,

$$z^* w = |z| |w| \tag{1.6.23.4}$$

which is the desired condition.

24. Find the necessary and sufficient conditions on z_i in order that

$$\left| \sum_{i=1}^{k} z_i \right| = \sum_{i=1}^{k} |z_i| \tag{1.6.24.1}$$

Solution:

$$\left| \sum_{i=1}^{k} z_i \right|^2 = \sum_{i=1}^{k} |z_i|^2 + 2 \sum_{i=1,j=1 \atop i \neq i}^{k} z_i^* z_j \quad (1.6.24.2)$$

$$\left(\sum_{i=1}^{k} |z_i|\right)^2 = \sum_{i=1}^{k} |z_i|^2 + 2 \sum_{\substack{i=1,j=1\\i\neq j}}^{k} |z_i| |z_j| \quad (1.6.24.3)$$

From (1.6.24.2) and (1.6.24.3),

$$\sum_{i=1}^{k} |z_{i}|^{2} + 2 \sum_{\substack{i=1,j=1\\i\neq j}}^{k} z_{i}^{*} z_{j}$$

$$= \sum_{i=1}^{k} |z_{i}|^{2} + 2 \sum_{\substack{i=1,j=1\\i\neq j}}^{k} |z_{i}| |z_{j}|$$

$$\implies \sum_{\substack{i=1,j=1\\i\neq j}}^{k} z_{i}^{*} z_{j}$$

$$= \sum_{\substack{i=1,j=1\\i\neq j}}^{k} |z_{i}| |z_{j}| \quad (1.6.24.4)$$

which is the desired condition.

25. The complex number θ is said to have *order* $n \ge 1$ if $\theta^n = 1$ and $\theta^m \ne 1$ for 0 < m < n. Show that if θ has order n and $\theta^k = 1$, where k > 0, then n|k.

Solution: From the given information,

$$\theta^n = \theta^k = 1, k \ge n \tag{1.6.25.1}$$

If $n \nmid k, k = mn + p, 0 , Then,$

$$\theta^k = \theta^{mn+p} = \theta^p \neq 1, \qquad (1.6.25.2)$$

which is a contradiction, Hence, $n \mid k$.

26. Find all complex numbers θ having order n.

Solution: If

$$\theta^n = 1, (1.6.26.1)$$

$$\theta^n = e^{j2\pi r}, 0 \le r < n \tag{1.6.26.2}$$

yielding

$$\theta = \exp\left(J\frac{2\pi r}{n}\right)0 \le r < n \tag{1.6.26.3}$$