Imagerie par résonance magnétique et Compressed Sensing

Dinh Phong Nguyen et Rémy Garnier

Université Paris-Sud

25 mars 2018

- Introduction et Position du Problème
- Reconstruction
- Importance de l'échantillonnage
- Exemple d'application

Contexte

- La théorie du Compressed Sensing a de nombreuses applications dans le monde médical, et notamment pour l'Imagerie par Résonance Magnétique (IRM)
- Réduire le temps d'acquisition en réduisant le nombre de données à collecter présente un grand attrait étant donnée la durée importante de certaines acquisitions IRM

Impose un champ magnétique de gradient spatial \vec{G} sur un objet *m*.

Reconstruction

Signal:

$$s(t) = \int m(\vec{r})e^{-i2\pi k(t)\cdot\vec{r}}dr$$

avec $k(\vec{t}) \propto \int_0^t \vec{G}(t)$

- Transformée de Fourier spatiale de $m(\vec{r})$
- Fréquence d'échantillonnage $k(\vec{t})$ contrôlable

k-space

k-space : Ensemble des valeurs de $\vec{k(t)}$:

Possibilité d'une reconstruction par transformée de Fourier inverse

k-space

- Acquisition de l'ensemble des coefficients de Fourier coûteuse
- On peut choisir un petit ensemble de vecteur de mesures et acquérir le signal a ces fréquences.
- Comment reconstruire l'image à partir d'un petit nombre de coefficients de Fourier?
- Comment choisir l'ensemble des vecteurs de mesures?

Iterative Soft Thresholding

- y : Signal ayant un support S
- F: Transformée de Fourier

On souhaite résoudre le problème suivant : U

$$\min_{x} \|x\|_1$$
 tel que $\|(\mathcal{F} \cdot x)_{\mathcal{S}} - y\|_2 < \epsilon$

L'algorithme du **seuillage doux itératif** permet de résoudre ce problème de manière itérative.

Exemple d'application

$$\hat{x} = \underset{x}{\operatorname{Argmin}} \frac{1}{2} ||(\mathcal{F} \cdot x)_{\mathcal{S}} - y||_{2}^{2} + \lambda ||x||_{1}$$

Algo:

- On part de $X_0 = y$ et $x_0 = \mathcal{F}^{-1}X_0$
- Tant que que $||x_{i+1} x_i||_2 < \epsilon$:
 - Transformée de Fourier inversée pour obtenir $x_i = \mathcal{F}^{-1} \cdot X_i$
 - Seuillage de x_i. On annule toutes les composantes de x_i inférieures à λ
 - Transformée de Fourier $X_{i+1} = \mathcal{F} \cdot x_i$
 - On impose les conditions sur le support $(X_{i+1})_S = y$

Reconstruction

Reconstruction du signal d'origine par seuillage doux itératif

Exemple d'application

Incohérence

Conditions d'application du Compressed Sensing

- Sparsité du signal
- Incohérence des mesures
- Reconstruction non-linéaire

Incohérence

Soit $\mathcal{B}_e = (e_j)_{j=1}^N$ et $\mathcal{B}_f = (f_j)_{j=1}^N$ deux bases orthonormales de \mathbb{R}^N . On dit qu'elles sont **incohérentes** quand $\forall i, j$ on a

$$|\langle e_i|f_j\rangle|\leq rac{Cst}{\sqrt{N}}$$

- C'est le cas de la base de Fourier avec la base canonique (et également avec le couple base de Fourier/base des ondelettes)
- Les vecteurs de mesure X_i doivent être incohérents avec la base dans laquelle s'exprime la sparsité des signaux

Incohérence

La théorie du CS nous dit que les **mesures aléatoires** ont, avec grande probabilité, cette propriété d'incohérence

Compressed Sensing et IRM

En IRM, plusieurs avantages

- données acquises directement dans l'espace de Fourier
- données sparse dans une certaine base (dans l'espace image ou dans une base d'ondelettes)

On a donc un cadre idéal pour le Compressed Sensing

Sous-échantillonnage Cartésien

mesures : 70%itérations : 100

Sous-échantillonnage Cartésien

Cependant

- Structure de parcimonie du signal non-respectée
- En pratique, on doit échantillonner de façon plus dense les basses fréquences : échantillonnage à densité variable

Sous-échantillonnage Gaussien

mesures : 15%itérations : 100

Sous-échantillonnage Gaussien

- Difficile à implémenter en pratique (contraintes machine)
- Recherche active sur des schémas d'échantillonnage optimaux, combinant maximisation de l'incohérence et praticité d'acquisition

Références

- [1] Lustig, Mike, D. L. Donoho, J. M. Santos and J. M. Pauly. "Compressed Sensing MRI." IEEE Signal Processing Magazine 25 (2008): 72-82.
- [2] Lustig, M., Donoho, D. and Pauly, J. M. (2007), Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med., 58: 1182-1195. doi:10.1002/mrm.21391
- [3] Nicolas Chauffert, Philippe Ciuciu, Jonas Kahn, Pierre Weiss. Variable density sampling with continuous trajectories. Application to MRI.. SIAM Journal of Imaging Sciences, 2014, 7 (4), pp.1962-1992.