Bike-share Case Study

Timur Rakhimyanov

2022-12-28

Dataset

Data, provided for this analysis, contains 12 months of Cyclistic's users bike-sharing history. Data has been made available under this license.

Questions

Questions, that were asked for this analysis are:

- 1. How do annual members and casual riders use Cyclistic bikes differently?
- 2. Why would casual riders buy Cyclistic annual memberships?
- 3. How can Cyclistic use digital media to influence casual riders to become members?

Preparation and procession of data

Loading libraries and reading data

To begin with, I'll load the libraries I'm going to use.

```
library(tidyverse)
library(janitor)
library(lubridate)
library(pivottabler)
```

Then let's read datasets.

Cleaning data

Now let's do standard cleaning and peak in the data.

```
clean_names(bike_trips_dataframe)
```

head(bike_trips_dataframe)

```
## # A tibble: 6 x 14
##
     file_name
                    ride_id ridea~1 started_at
                                                        ended at
                                                                             start~2
##
     <chr>
                                    <dttm>
                                                         <dttm>
                    <chr>
                            <chr>
                                                                             <chr>
## 1 datasets/2021~ 7C00A9~ electr~ 2021-11-27 13:27:38 2021-11-27 13:46:38 <NA>
## 2 datasets/2021~ 908548~ electr~ 2021-11-27 13:38:25 2021-11-27 13:56:10 <NA>
## 3 datasets/2021~ 0A7D10~ electr~ 2021-11-26 22:03:34 2021-11-26 22:05:56 <NA>
## 4 datasets/2021~ 2F3BE3~ electr~ 2021-11-27 09:56:49 2021-11-27 10:01:50 <NA>
## 5 datasets/2021~ D67B47~ electr~ 2021-11-26 19:09:28 2021-11-26 19:30:41 <NA>
## 6 datasets/2021~ 02F85C~ electr~ 2021-11-26 18:34:07 2021-11-26 18:52:49 Michig~
## # ... with 8 more variables: start_station_id <chr>, end_station_name <chr>,
      end_station_id <chr>, start_lat <dbl>, start_lng <dbl>, end_lat <dbl>,
       end_lng <dbl>, member_casual <chr>, and abbreviated variable names
## #
       1: rideable_type, 2: start_station_name
```

We can see, that there are values missing (shown as "NA"), let's check how much do we miss.

```
sapply(bike_trips_dataframe, function(x) sum(is.na(x)))
```

##	file_name	ride_id	rideable_type	started_at
##	0	0	0	0
##	ended_at	start_station_name	start_station_id	end_station_name
##	0	878177	878177	940010
##	end_station_id	start_lat	start_lng	end_lat
##	940010	0	0	5835
##	end_lng	member_casual		
##	5835	0		

Missing data is start and end stations, so our choices are:

- 1. Populate the missing values with averages.
- 2. Delete rows with data missing.
- ${\it 3. \ Create \ sub-data frames \ with \ no \ data \ missing \ for \ particular \ parts \ of \ analysis.}$

Third options is preferable, because resulting analysis would be more comprehensive.

So the plan is: we will look for insights in full dataset based on fields with no data missing, then we will create separate dataframes for stations insights.

Adding additional attributes

For now let's add durations of the trips.

```
bike_trips_dataframe <- transform(bike_trips_dataframe, duration = difftime(ended_at, started_at, units</pre>
```

Let's check if we have any errors - negative durations.

```
head(filter(bike_trips_dataframe, duration < 0))</pre>
```

```
## file_name ride_id rideable_type
## 1 datasets/202111-divvy-tripdata.csv B029250A1EFF2975 docked_bike
## 2 datasets/202111-divvy-tripdata.csv D631251FA9C7FC03 classic_bike
```

```
## 3 datasets/202111-divvy-tripdata.csv 021DC77C70A3E367 classic_bike
## 4 datasets/202111-divvy-tripdata.csv 235ACD294AFB837F electric_bike
## 5 datasets/202111-divvy-tripdata.csv 6A2DCA5CB1596CA6 classic_bike
## 6 datasets/202111-divvy-tripdata.csv E89DD4EBFBD231E3 classic_bike
              started at
                                    ended at
                                                     start_station_name
## 1 2021-11-07 01:40:02 2021-11-07 01:05:46
                                               Halsted St & Dickens Ave
## 2 2021-11-07 01:52:53 2021-11-07 01:05:22
                                                  Clark St & Newport St
## 3 2021-11-07 01:40:13 2021-11-07 01:00:29
                                                   New St & Illinois St
## 4 2021-11-07 01:34:03 2021-11-07 01:17:13 Sheridan Rd & Lawrence Ave
## 5 2021-11-07 01:54:25 2021-11-07 01:03:44
                                             Franklin St & Illinois St
## 6 2021-11-07 01:54:04 2021-11-07 01:25:57
                                                Orleans St & Hubbard St
                                          end_station_name end_station_id
##
     start_station_id
## 1
                13192
                                  Leavitt St & Division St
                                                                       658
## 2
                                                             TA1306000026
                  632
                                Racine Ave & Fullerton Ave
         TA1306000013
## 3
                                     Michigan Ave & 8th St
                                                                       623
## 4
         TA1309000041 Damen Ave & Thomas St (Augusta Blvd)
                                                             TA1307000070
## 5
                  RN- Mies van der Rohe Way & Chicago Ave
                                                                     13338
## 6
                  636
                                    Clark St & Drummond Pl
                                                             TA1307000142
                                    end_lng member_casual
##
     start_lat start_lng end_lat
                                                                duration
## 1
     41.91994 -87.64883 41.90300 -87.68382
                                                   casual -34.26667 mins
## 2 41.94454 -87.65468 41.92556 -87.65840
                                                   member -47.51667 mins
## 3 41.89085 -87.61862 41.87277 -87.62398
                                                   casual -39.73333 mins
## 4 41.96948 -87.65473 41.90143 -87.67743
                                                   member -16.83333 mins
     41.89102 -87.63548 41.89691 -87.62174
                                                   casual -50.68333 mins
## 6 41.89003 -87.63662 41.93125 -87.64434
                                                   casual -28.11667 mins
```

Now let's clear the errors.

```
bike_trips_dataframe <- filter(bike_trips_dataframe, duration >= 0)
```

Let's add days of week too, Monday would be 1, Sunday would be 7 and so on.

```
bike_trips_dataframe <- transform(bike_trips_dataframe, day_of_week = wday(started_at, week_start = 1))</pre>
```

Analysis

Total

The goal of analysis is to find behavior patters of casual members.

I'd like to find some correlations between **membership type** and following attributes: **bike types**, **trip durations** and **days of week**.

Bike types correlations

Let's make a pivot table on membership type vs. bike type.

2352972 3402610

```
qpvt(bike_trips_dataframe, "rideable_type", "member_casual", "n()")
##
                  casual
                            member
                                     Total
                   897411
                           1740493
## classic_bike
                                     2637904
## docked_bike
                   182200
                                      182200
## electric_bike
                 1273361
                           1662117
                                     2935478
```

5755582

Two insights I could see are:

- 1. Casual users tend to use electric bikes much more than classic ones, where members prefer the other option.
- 2. There are no data of member's usage of docked bikes which can be explained in a way that there are no such thing as docks for subscribers.

Let's visualize it.

```
ggplot(data=bike_trips_dataframe)+
  geom_bar(mapping=aes(x=member_casual, fill=rideable_type))+
  scale_fill_brewer(type = "div")+
  labs(x="membership type", y="amount", fill="rideable type", title="Membership type vs. rideable type"
```

Membership type vs. rideable type

Days of week correlations

Let's make a pivot table on membership type vs. day of week.

```
qpvt(bike_trips_dataframe, "day_of_week", "member_casual","n()")

## casual member Total
## 1 284967 489683 774650
## 2 264384 523703 788087
```

```
## 6 485276 454383 939659
## 7 397048 395829 792877
## Total 2352972 3402610 5755582
```

Key insight I could see is:

Casual users tend to use bikes much more on weekends as opposed to members that are using bikes on weekdays more frequently.

Let's visualize it.

```
ggplot(data=bike_trips_dataframe)+
  geom_bar(mapping=aes(x=member_casual, fill=factor(day_of_week)))+
  scale_fill_brewer(type = "div")+
  labs(x="membership type", y="amount", fill="day of week", title="Membership type vs. day of week")
```

Membership type vs. day of week

Days of week and mean duration correlations

12.1

16.8

26.0

2

Let's make a pivot table on membership type vs. day of week but this time include mean duration.

```
qpvt(bike_trips_dataframe, "day_of_week", "member_casual", "mean(as.numeric(duration))", format="%.1f")
## casual member Total
## 1 29.3 12.3 18.5
```

```
12.1
## 3
             24.9
                              16.5
## 4
             25.5
                      12.2
                              17.1
## 5
             27.9
                      12.5
                              18.9
                      14.2
                              23.7
## 6
             32.6
## 7
             33.9
                      14.1
                              24.0
## Total
             29.2
                      12.7
                              19.4
```

Two insight I could see are:

- 1. Average trip duration is much higher for casual members.
- 2. Distribution of duration on days of week is similar with subscribed members with pretty high increase on Mondays and Sundays.

Yet again let's visualize it.

```
ggplot(bike_trips_dataframe,aes(color=member_casual))+
  stat_summary(fun="mean", geom="line", mapping=aes(x=day_of_week, y=as.numeric(duration)))+
  scale_x_continuous(breaks = c(1, 2, 3, 4, 5, 6, 7))+
  facet_wrap(~member_casual)+
  labs(x="day of week", y="mean duration", color="membership type", title="Membership type vs. day of w
```

Membership type vs. day of week vs. mean duration

Additional analysis on stations

Now I'll get back to stations data and create sub-dataframes without any missing values.

```
no_start_missing <- filter(bike_trips_dataframe, !is.na(start_station_id))
no_end_missing <- filter(bike_trips_dataframe, !is.na(end_station_id))</pre>
```

Let's limit dataframes to include only 10 most popular stations in both cases.

```
most_popular_starts <- c(head(no_start_missing %% count (start_station_name, sort=TRUE), 10)['start_st popular_starts_df <- filter(no_start_missing, start_station_name %in% most_popular_starts$start_station most_popular_ends <- c(head(no_end_missing %% count (end_station_name, sort=TRUE), 10)['end_station_name popular_ends_df <- filter(no_end_missing, end_station_name %in% most_popular_ends$end_station_name)
```

Start stations correlations

Let's make a pivot table on membership type vs. start stations.

```
qpvt(popular_starts_df, "start_station_name", "member_casual", "n()")
```

##	casual	member	Total
## Clark St & Elm St	13198	22665	35863
## DuSable Lake Shore Dr & Monroe St	32598	9595	42193
## DuSable Lake Shore Dr & North Blvd	23792	16554	40346
## Kingsbury St & Kinzie St	8776	25800	34576
## Michigan Ave & Oak St	25327	14515	39842
## Millennium Park	25989	9559	35548
## Streeter Dr & Grand Ave	58382	17248	75630
## Theater on the Lake	18574	14635	33209
## Wells St & Concord Ln	16391	21896	38287
## Wells St & Elm St	12768	19426	32194
## Total	235795	171893	407688

Key insights would be stations that tend to be a trip start more frequently (relatively) for casual member; these would be following stations:

- 1. Streeter Dr & Grand Ave with great increase.
- 2. DuSable Lake Shore Dr & Monroe St with great increase.
- 3. Millennium Park with high increase.
- 4. Michigan Ave & Oak St with slight increase.

Let's visualize it.

```
ggplot(data=popular_starts_df)+
  geom_bar(mapping=aes(x=member_casual, fill=start_station_name))+
  scale_fill_brewer(type = "div")+
  labs(x="membership type", y="amount", fill="start station", title="Membership type vs. start stations")
```


End stations correlations

Let's make a pivot table on membership type vs. end stations.

```
qpvt(popular_ends_df, "end_station_name", "member_casual", "n()")
```

##	casual	member	Total
## Clark St & Elm St	12317	23045	35362
## DuSable Lake Shore Dr & Monroe St	30012	10719	40731
## DuSable Lake Shore Dr & North Blvd	26252	16066	42318
## Kingsbury St & Kinzie St	7714	25277	32991
## Michigan Ave & Oak St	26599	13799	40398
## Millennium Park	27184	8714	35898
## Streeter Dr & Grand Ave	60254	15746	76000
## Theater on the Lake	19563	13667	33230
## Wells St & Concord Ln	15646	22490	38136
## Wells St & Elm St	11745	19080	30825
## Total	237286	168603	405889

Key insights would be stations that tend to be a trip end more frequently (relatively) for casual member; these would be following stations:

- 1. Streeter $Dr \ \mathcal{E}$ Grand Ave with great increase.
- 2. Millennium Park with high increase.
- 3. DuSable Lake Shore Dr & Monroe St with high increase.

- 4. DuSable Lake Shore Dr & North Blvd with slight increase.
- 5. Michigan Ave & Oak St with slight increase.

Let's visualize it.

```
ggplot(data=popular_ends_df)+
  geom_bar(mapping=aes(x=member_casual, fill=end_station_name))+
  scale_fill_brewer(type = "div")+
  labs(x="membership type", y="amount", fill="end station", title="Membership type vs. end stations")
```

Membership type vs. end stations

Answering questions

How do annual members and casual riders use Cyclistic bikes differently?

Key findings are:

- 1. Casual users tend to use electric bikes much more than classic ones, where members prefer the other option.
- 2. Casual users tend to use bikes much more on weekends as opposed to members that are using bikes on weekdays more frequently.
- 3. Average trip duration is much higher for casual members.
- 4. Distribution of duration on days of week is similar with subscribed members with pretty high increase on Mondays and Sundays.
- 5. Streeter Dr & Grand Ave, DuSable Lake Shore Dr & Monroe St, Millennium Park and Michigan Ave & Oak St are much more popular stations for casual members.

Why would casual riders buy Cyclistic annual memberships?

Based on findings, my suggestions would be:

- 1. Some benefits on electric bikes usage for subscribed members.
- 2. Better plans on weekend trips for subscribed members.
- 3. Profitable offers on longer trips (let's say, more than 15 or 20 minutes) for subscribed members.

How can Cyclistic use digital media to influence casual riders to become members?

If promoted via app itself, advertisements will be more successful on weekends and Mondays than on week-days.

If promoted via street screens or banners, advertisements will be more useful in following areas: Streeter Dr & Grand Ave, DuSable Lake Shore Dr & Monroe St, Millennium Park and Michigan Ave & Oak St.