7.8 声波

对声波(sound wave)要求搞清声压、声强、声级等概念。

(sound pressure), ΔP $P = P_0 + \Delta P$

$$P = P_0 + \Delta P$$

平面声波沿x轴传播

$$\frac{\Delta V}{V} = \frac{S \frac{\partial y}{\partial x} dx}{S dx} = \frac{\partial y}{\partial x}$$

$$\Delta P = -K \frac{\Delta V}{V} = -K \frac{\partial y}{\partial x}$$
 (2)

$$\frac{\partial \left(\Delta P\right)}{\partial x} = -K \frac{\partial^2 y}{\partial x^2} \tag{3}$$

$$\frac{\partial^2 y}{\partial t^2} = \frac{K}{\rho} \frac{\partial^2 y}{\partial x^2} \tag{4}$$

这就是流体中平面声波的波动方程,由此得声速为

书p. 220, (7.23)式
$$u = \sqrt{\frac{\Lambda}{\rho}}$$
 (5)

(1)式对x求偏导数,得

$$\frac{\partial^3 y}{\partial t^2 \partial x} = -\frac{1}{\rho} \frac{\partial^2 (\Delta P)}{\partial x^2}$$
 (6)

(2)式对t求两次偏导数,得
$$\frac{\partial^2 (\Delta P)}{\partial t^2} = -K \frac{\partial^3 y}{\partial t^2 \partial x}$$
 (7)

由(6)、(7)式得

$$\frac{\partial^2 \left(\Delta P\right)}{\partial t^2} = \frac{K}{\rho} \frac{\partial^2 \left(\Delta P\right)}{\partial x^2} \tag{8}$$

声压ΔP也满足波动方程,就像振动位移y一样。当 一处压强P在平衡压强P。附近变化时,声压是以波的形 式在流体中传播的,传播速度 $u = \sqrt{\frac{K}{a}}$ 即声速。

气体 (参考: 书p. 345, 例10.6)

等温过程
$$PV = C$$

$$VdP + PdV = 0$$

$$K_{\mathfrak{B}} = -V \frac{dP}{dV} = P \qquad \qquad u = \sqrt{\frac{P}{\rho}}$$

$$u = \sqrt{\frac{P}{\rho}}$$

绝热过程 $PV^{\gamma} = C$

$$V^{\gamma}dP + \gamma P V^{\gamma - 1}dV = 0$$

$$VdP + \gamma PdV = 0$$

$$K_{\text{4.4}} = -V \frac{dP}{dV} = \gamma P \qquad u = \sqrt{\frac{\gamma P}{\rho}}$$

$$u = \sqrt{\frac{\gamma P}{\rho}}$$

起初牛顿认为声波的传播是等温过程,PV=常量 ,或

$$P/\rho$$
=常量 , $u = \sqrt{\frac{P}{\rho}} = \sqrt{\frac{P_0}{\rho_0}} = 298.4 \text{m/s}$

1816年法国数学家拉普拉斯(P.S.M. Laplace)指出了牛顿的错误,认为声波传播很快,来不及与外界交换热量,应视作绝热过程。

利用
$$u = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma RT}{M}}$$
 计算, $\gamma = 1.4$,

$$M = 0.029 Kg/mol$$
 , $T = 273.15 K$, $R = 8.31 J/(mol \cdot K)$,

可求得0°C干燥空气中的声速为331.0m/s,与实验测得结果(331.5 m/s)很好地符合。

平面简谐声波
$$y = A \cos \omega \left(t - \frac{x}{u} \right)$$

由(2) 式得

$$\Delta P = -K \frac{\partial y}{\partial x} = -K \frac{\omega}{u} A \sin \omega \left(t - \frac{x}{u} \right) = -\rho u \omega A \sin \omega \left(t - \frac{x}{u} \right)$$

声压振幅: $p_m = \rho u A \omega$

$$I = \frac{1}{2} \frac{p_m^2}{\rho u} = \frac{p_m^2}{2Z}$$

声强 (intensity of sound)
$$I = \frac{1}{2} \rho u \omega^2 A^2$$

标准声强: $I_0 = 10^{-12} \text{ W/m}^2$

(在1000Hz下,这个声强人能够勉强听到)

$$L = \lg \frac{I}{I_0} \text{(Bel)} = 10 \lg \frac{I}{I_0} \text{(dB)}$$

(sound intensity level)

正常说话~60dB, 噪声>70dB, 炮声~120dB。

例7.10 两人轻声说话时声强级约为40分贝,热闹市 场中的声强级约为80分贝,所以热闹市场中的声强是 两人轻声谈话时的声强的 倍。

A. 2

B. 10

 $C. 10^2$

 $D.10^4$

#:
$$40 = 10 \lg \frac{I_1}{I_0}$$

$$\Rightarrow I_1 = 10^4 I_0$$

$$80 = 10 \lg \frac{I_2}{I_0}$$

$$I_2 = 10^8 I_0$$

$$\Rightarrow$$
 $I_2 = 10^4 I_1$

例7.11 两声波的振幅相同,频率各为 ω_1 、 ω_2 ,则二 者强度之比是。

A. 1:1 B. $\omega_1:\omega_2$

C. $\theta_{1}^{2} : \theta_{2}^{2}$ **D.** $\theta_{2} : \theta_{1}$

解:

$$I = \frac{1}{2} \rho u \omega^2 A^2$$

选C。

声阈

不同人群的发声频率

人群。	频率范围/赫兹。	人群。	频率范围/赫兹。
男低音↩	82-293	女低音。	164-696₽
男中音。	87-370₽	女中音。	174-870₽
男高音。	109-435₽	女高音。	218-1044

常遇声音的声强级

声 源	声 强 级 (分贝) 120	响度	声 源	声强级 (分贝) ——60——	响 度
喷气飞机锅炉工厂	110	震耳	住 宅(闹时) 办公室(平均) 交 谈(平均) 无线电(轻)	50	正常
市 声(闹时) 工 厂(较响) 卡 车 管 笛	90	极响	住 宅(静) 办公室(静) 礼 堂(平均) 交 谈(轻)	30	轻
办公室(乱时) 市 声(平均) 无线电(平均) 工 厂(平均)	70	响	村田御高川	10	极轻

超声波

v>20000Hz的声波

胎儿的超 声波影象 (假彩色)

7.9 地震波

唐山市于 1976 年发生大地震. 当地幸存者对最初震感的描述,有说"先是上下颠簸,接着横向筛摇"; 又有说"先是横向摇晃,接着又来上下颠颤". 两种感受均为实情.原来震源同时激发纵波和横波,记作 p 波和 s 波,两者传播速度不同,纵波相速大于横波相速,vp>vs. 在震中距近区域,直达纵波震动方向几乎垂直地面,而在震中距远区域,首先到达的纵震动其主要成分沿水平方向.

7.10 *水波

小小的蜻蜓轻触水面, 即见波澜壮阔。