DSP Assignment 1

Q.1. Two discrete time systems T1 and T2 are cascaded to form a new system T.

If T1 and T2 are non-linear, then T is non-linear (True/False). Prove it?

A.1.

False. For example, consider

$$T_1: y(n) = x(n) + b$$
 and

$$T_2: y(n) = x(n) - b$$
, where $b \neq 0$.

Then,

$$T[x(n)] = T_2[T_1[x(n)]] = T_2[x(n) + b] = x(n).$$

Hence \mathcal{T} is linear.

Q.2. Show that the energy (power) of a real-valued energy (power) signal is equal to the sum of energies (powers) of its even and odd components.

A.2.

First, we prove that

$$\sum_{n=-\infty}^{\infty} x_e(n)x_o(n) = 0$$

$$\sum_{n=-\infty}^{\infty} x_e(n)x_o(n) = \sum_{m=-\infty}^{\infty} x_e(-m)x_o(-m)$$

$$= -\sum_{m=-\infty}^{\infty} x_e(m)x_o(m)$$

$$= -\sum_{n=-\infty}^{\infty} x_e(n)x_o(n)$$

$$= \sum_{n=-\infty}^{\infty} x_e(n)x_o(n)$$

$$= 0$$

Then,

$$\sum_{n=-\infty}^{\infty} x^{2}(n) = \sum_{n=-\infty}^{\infty} [x_{e}(n) + x_{o}(n)]^{2}$$

$$= \sum_{n=-\infty}^{\infty} x_{e}^{2}(n) + \sum_{n=-\infty}^{\infty} x_{o}^{2}(n) + \sum_{n=-\infty}^{\infty} 2x_{e}(n)x_{o}(n)$$

$$= E_{e} + E_{o}$$

Q.3. Show that average power Px of a real valued sequence x[n] is given by the sum of the average powers, P_ev and P_odd, of the even and odd parts of x[n] respectively.

A.3.

The stronger powers of even and odd signals (parts)

Sum of average powers of
$$\frac{1}{2}$$
 [$x^2(n) + x^2(n)$]

Sum of average powers of $\frac{1}{2}$ [$x^2(n) + x^2(n)$]

Sum of average powers of even and odd signals (parts)

Peven + Padd = $\lim_{N \to \infty} \frac{1}{2N+1} = \lim_{n \to \infty} \frac{1}{$

- **Q.4.** A discrete time signal g[n] is given by g[n] = u[n+3] u[n-5].
 - a. What is the energy of the signal g[n]?
 - b. What is the power of the signal g[2n]?

A.4.

Q.5. Find out the convolution: u[n+3]*u[n-3].

A.5.

Q.6. The impulse response of a discrete LTI system is given by $h(n) = (0.5)n \ u(n)$ the input of which is $x(n) = 2\delta(n) + \delta(n-3)$. Find the output at n = 1 and n = 4.

A.6.

y(n) = x(n) * h(n) =
$$(2\delta[n] + \delta[n-3])$$
 * $((0.5)^n u[n])$
y(n)= $2(0.5)^n$ (n) + $(0.5)^{n-3}$ u[n-3] [utilizing sifting property]
y(1) = $2*(0.5)^1$ u[1] + 0 = 1
y(4) = $2*(0.5)^4$ u[4] + $(0.5)^{4-3}$ u[1] = $(0.5)^3$ + (0.5) = $\frac{5}{8}$

Q.7. Consider a discrete-time system:

$$y[n] = \prod_{k=-\infty}^{n} e^{x[k]}$$

Is this a linear or a non-linear system?

A.7.

We have,
$$y_1[n] = \prod_{k=-\infty}^n e^{x_1[k]}$$
 and $y_2[n] = \prod_{k=-\infty}^n e^{x_2[k]}$
So, $y_1[n] + y_2[n] = \prod_{k=-\infty}^n e^{x_1[k]} + \prod_{k=-\infty}^n e^{x_2[k]}$

$$= e^{\sum_{k=-\infty}^n x_1[k]} + e^{\sum_{k=-\infty}^n x_2[k]}$$

To prove superposition, $y_3[n] = \prod_{k=-\infty}^n e^{x_1[k]+x_2[k]}$

$$\Rightarrow y_3[n] = \prod_{k=-\infty}^n e^{x_1[k]} \cdot e^{x_2[k]} \Rightarrow y_3[n] = e^{\sum_{k=-\infty}^n x_1[k] + \sum_{k=-\infty}^n x_2[k]}$$
$$y_3[n] \neq y_1[n] + y_2[n]$$

Therefore, the system is non-linear.

Q.8. Let g[n] = x1[n] * x2[n] * x3[n] and h[n] = x1[n-N1] * x2[n-N2] * x3[n-N3]. Express h[n] in terms of g[n]. (Note * indicates convolution operation)

A.8.

```
given g(m) = ×1(m) * ×5(m) * ×5(m)
(2)
                                              h(n) = x, (m-N) + x2[n-N2] * x8[n-N3]
                 a we know any discrete signal can be him
                      Worth as
                                        x(m) = \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\)
                                                           Sum of impulsers have a lot how
              by sh shift invariant property of Convolution sum
                                            X[m-N] = X(n) * S[n-N]
                           where "N" is constant (some)
                                                         \Rightarrow h(m) = x_1(n-N_1) * x_2(n-N_2) * x_3(m-N_3)
                                             = x(n) (shift - m vamant property
         (m) = X, (m] * & (m-n) 2 * [m] * × (m) 2 * (m) 3 * (m) 3 *
                            turby commutative property and in
                                                              i.e. \times Lu\lambda + p(u) = p'(u) * \times (u)
       >> h(m) = X1(m) & X2(m) & X3(m) & S[m-N] & S[n-N3] & S(n-N3)
       [e^{(n-n)}] * [e^{(n-n)}] *
```

Q.9 Consider the following signal:

$$x(t) = u(t-1) + r(t-1) - r(t+1) + u(t+1); -1 \le t \le 2$$

Sketch x(t - kT), where T=3 and $k \in (-\infty, \infty)$

A.9.

Given x(t),

Hence, **x(t-kT)** for different values of k is,

Q.10. Find whether the following systems are causal:-

a.
$$y[n] = x[n] - x[n+1]$$

b.
$$y[n] = x[-n]$$

A.10.

a. y[n] = x[n] - x[n+1] is **non causal** because the output for all time depends on future value of the input.

b. y[n] = x[-n] the output for any positive value of n, say n_o , depends on input value at $n = -n_o$ which are past values.

But for negative value of n, say $-n_o$, the output depends on input values at n = n_o which are future values.

So the system is **non causal.**