**|

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2021 - عناصر الإجابة –

BROKZH I HCYOLO TETROPISOLE TETO A SOCIHIT AXXILL

SSSSSSSSSSSSSSS

RR 26F

2h	مدة الإتجاز	الرياضيات	المادة
4	المعامل	مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغة الفرنسية)	الشعبة أو المسلك

Questions	n°1(5.5pts) Détails d'éléments de réponses et barème	Notes partielles	Total	Observations
	$u_0 = 4$ et $u_{n+1} = \frac{1}{4}u_n + 4$			
1.	$u_1 = 5$ et $u_2 = \frac{21}{4}$	0.25 + 0.25	0.5	
2.	Raisonnement par récurrence	1	1	
3.a.	$\forall n \in IN : u_{n+1} - u_n = -\frac{3}{4} \left(u_n - \frac{16}{3} \right)$	0.75	0.75	
3.b.	$(u_n)_{n\in\mathbb{N}}$ est une suite croissante	0.5	0.5	
3.c.	$(u_n)_{n\in\mathbb{N}}$ est convergente	0.25	0.25	
4.	$v_n = -\frac{16}{3} + u_n$			
4.a.	(v_n) est une suite géométrique de raison $\frac{1}{4}$	0.75	0.75	
	$v_0 = -\frac{4}{3}$	0.25		
4.b.	$v_n = -\frac{4}{3} \left(\frac{1}{4}\right)^n$	0.5	0.75	
4.c.	$u_n = -\frac{4}{3} \times \left(\frac{1}{4}\right)^n + \frac{16}{3}$	0.5	0.5	
4.d.	$\lim_{n\to+\infty}u_n=\frac{16}{3}$	0.5	0.5	On accordera au candidat la note entière pour une réponse correcte même sans justification.
Exercice 1	n°2:(5.5pts)			
	g(x) = 1 - lnx - x lnx			
1.a.	$\lim_{\substack{x\to 0\\x>0}} g(x) = +\infty$	1	1	0.5 Pour le résultat (même sans justification) 0.5 Pour la justification
1.b.	$\lim_{x\to+\infty}g(x)=-\infty$	1	1	0.5 Pour le résultat (même sans justification) 0.5 Pour la justification

الصفحة	ية 2021 – عناصر الإجابة لتدبير المحاسباتي (باللغة الفرنسية)	بكالوريا - الدورة الاستدراكي م الاقتصادية ومسلك علوم اا	الموحد لل سلك العلوم	الامتحان الوطني - مادة: الرياضيات- مه
2.a.	g(e) = -e	0.5	0.5	
	g(x) + x = (x+1)(-lnx+1)	0.5		
2.b.	L'ensemble des solutions de l'équation $g(x) = -x$ est $S = \{e\}$	1.5	2	0.5 pour la démarche correcte
3.	L'image de $[1;e]$ par g est $[-e;1]$	1	1	La justification n'est pas demandée
xercice	n°3:(4pts)			
	$f(x) = x - 1 + \frac{\ln x}{x}$			
1.	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$	0.75	1	0.75 pour le résultat avec justification.0.25 pour le résultat sans justification.
	L'interprétation géométrique du résultat	0.25		
2.	La droite (Δ) est une asymptote à (C_f) a voisinage de $+\infty$	au 1.5	1.5	$\lim_{x \to +\infty} (f(x) - (x-1)) = 0$ une réponse suffisante et correcte.
	a. La solution de l'équation $f(x) = 0$ est	0.5	0.5	
3.	b. $f(x)-(x-1)$ est positif sur $[1;+\infty[$	0.5		0.25 pour la justification
	f(x)-(x-1) est négatif sur $]0;1]$	0.5	1	0.25 pour la justification
xercice	n°4:(3pts)		1n	
	$h(x) = \left(\frac{1}{x} + 2\right)e^x$			
	$\lim_{x \to -\infty} h(x) = 0$	0.5	2	On tiendra compte de la justification
	$\lim_{x\to+\infty}h(x)=+\infty$	0.5		
1.	$\lim_{\substack{x \to 0 \\ x > 0}} h(x) = +\infty$	0.5		
	$\lim_{\substack{x\to 0\\x<0}} h(x) = -\infty$	0.5		
2.	$(\forall x \in \mathbb{R}^*); h'(x) = (2x^2 + x - 1)\frac{e^x}{x^2}$	1	1	
xercice	n°5:(2pts)			
1.	$S = \left\{ (1,3) \right\}$	1	1	0.5 pour la méthode et 0. pour le résultat.
2.	La déduction	1	1	0.5 pour la méthode et 0. pour le résultat.