Защита лабораторной работы №8

Информационная безопасность

Данзанова С. 3.

2024

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Данзанова Саяна Зоригтоевна
- Студентка группы НПИбд-01-21
- Студ. билет 1032217624
- Российский университет дружбы народов

Цель лабораторной работы

 Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Теоретическая справка (1)

Исходные данные.

Две телеграммы Центра:

- Р1 = НаВашисходящийот1204
- Р2 = ВСеверныйфилиалБанка

Ключ Центра длиной 20 байт:

• K = 05 0C 17 7F 0E 4E 37 D2 94 10 09 2E 22 57 FF C8 OB B2 70 54

Теоретическая справка (2)

Режим шифрования однократного гаммирования одним ключом двух видов открытого текста реализуется в соответствии с так называемой «схемой шифрования двух различных текстов одним ключом».

Шифротексты обеих телеграмм можно получить по формулам режима однократного гаммирования:

$$C1 = P1 \square K, C2 = P2 \square K (8.1)$$

Теоретическая справка (3)

Открытый текст можно найти в соответствии с (8.1), зная шифротекст двух телеграмм, зашифрованных одним ключом. Для это оба равенства (8.1) складываются по модулю 2. Тогда с учётом свойства операции XOR

$$1 \Box 1 = 0, 1 \Box 0 = 1 (8.2)$$

Предположим, что одна из телеграмм является шаблоном — т.е. имеет текст фиксированный формат, в который вписываются значения полей. Допустим, что злоумышленнику этот формат известен. Тогда он получает достаточно много пар С1 □ С2 (известен вид обеих шифровок). Тогда зная Р1 и учитывая (8.2), имеем:

C1
$$\square$$
 C2 \square P1 = P1 \square P2 \square P1 = P2 (8.3)

Теоретическая справка (4)

Таким образом, злоумышленник получает возможность определить те символы сообщения Р2, которые находятся на позициях известного шаблона сообщения Р1. В соответствии с логикой сообщения Р2. злоумышленник имеет реальный шанс узнать ещё некоторое количество символов сообщения Р2. Затем вновь используется (8.3) с подстановкой вместо Р1 полченных на предыдущем шаге новых символов сообщения Р2. И так далее. Действуя подобным образом. злоумышленник даже если не прочитает оба сообщения, то значительно уменьшит пространство их поиска.

Задача лабораторной работы

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста.

Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P1 и P2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C1 и C2 обоих текстов P1 и P2 при известном ключе;

Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

Решение задачи лабораторной работы

Для решения задачи написан программный код:

```
[31] # Импорт библиотек
       import random
       import string
[19] # ФУНКЦИЯ СЛОЖЕНИЯ ДВУХ СТРОК ПО МОДУЛЮ
       def xor text f(text1, text2):
            if len(text1) != len (text2): return "Ошибка: тексты разной длины"
           xor text = ''
           for i in range(len(text1)):
               xor text symbol = ord(text1[i]) ^ ord(text2[i])
               xor text += chr(xor text symbol)
           return xor text
  [32] P1 = "НаВашисходящийот1204"
       Р2 = "ВСеверныйфилиалБанка"
       print("Исходный текст Р1:", Р1)
       print("Исходный текст Р2:", Р2)

→ Исходный текст Р1: НаВашисходящийот1204

       Исходный текст Р2: ВСеверныйфилиалБанка
```

Рис. 1: Программный код приложения, реализующего режим однократного

Решение задачи лабораторной работы

```
[33] random.seed(20)
        key = ''.join(random.choice(string.ascii letters + string.digits) for in range(len(P1)))
        print("Ключ:", kev)
   → Ключ: 5URYX45jqRO25g3uK5kb
  [34] C1 = xor text f(P1, key)
       C2 = xor text f(P2, kev)
        print("Зашифрованный текст С1:", С1)
        print("Зашифрованный текст С2:", С2)
   → Зашифрованный текст С1: ШюрмАКУЯяАЁоЙўЙзz™[V
        Зашифрованный текст С2: ЧVАХЖVJСШЖѶЉЙїЈЮОЈЁТ
   \bigcirc P1 xor P2 = xor text f(C1, C2)
        print("Результат сложения исходных текстов P1 и P2:", P1 xor P2)
   → Результат сложения исходных текстов P1 и P2: @2'2\x | @2pwr
                                                                        ESËLIHE
```

Рис. 2: Программный код приложения, реализующего режим однократного гаммирования)

Вывод

В ходе выполнения данной лабораторной работы было освоено на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Список литературы. Библиография

[0] Методические материалы курса