

The A(MC) Team:

Jakob Krzyston

PhD Student @ GT, Research Engineer, GTRI jakobk@gatech.edu

Dr. Rajib Bhattacharjea Principal Engineer, DeepSig Inc raj@deepsig.ai

Dr. Andrew Stark
Senior Research Engineer, GTRI
andy.stark@gtri.gatech.edu

CLASSIFICATION

Background

- Ever increasing demand for wireless data
 - Improved spectrum sensing improves spectral allocation
- Automatic Modulation Classification (AMC)
 - Traditionally methods were statistical/expert-derived

Background

- Ever increasing demand for wireless data
 - Improved spectrum sensing improves spectral allocation
- Automatic Modulation Classification (AMC)
 - Traditionally methods were statistical/expert-derived
 - Recently, neural networks outperform traditional methods

Background

- Ever increasing demand for wireless data
 - Improved spectrum sensing improves spectral allocation
- Automatic Modulation Classification (AMC)
 - Traditionally methods were statistical/expert-derived
 - Recently, neural networks outperform traditional methods

- Deep learning has shown to yield improved results, but:
 - Memory intensive
 - Computationally expensive
 - Are not developed for specialized hardware (FPGAs)

Problem Statement

- Develop efficient deep learning approaches for AMC
 - ≥ 56% Accurate on RadioML 2018 dataset (DeepSig)
 - Neural network compression methods:
 - Efficient architectures
 - Quantization
 - Pruning
 - Custom training paradigms

Possible Approaches

- Modify the provided architecture [Speed]
- Reduce the quantization with Brevitas [Speed]
 - Four bits for both weights and activations
- Prune weights [Speed]
 - L1 unstructured Iterative Magnitude Pruning (IMP)
 - Prune when accuracy threshold reached
- Adjust training paradigm [Accuracy]
 - Learning Rate Scheduler -> Reduce LR on Plateau

Methods

Architecture

IMP (Simplified)

for number of pruning epochs do

for number of training epochs do

Train model;
Evaluate model;
if model accuracy> 56% then

Save model;
Prune 20% of the weights;
Break
end
end
end

Alex Renda @alex_renda_ 1) Train to completion. 2) Globally prune the 20% of weights with the lowest magnitudes. 3) Retrain with learning rate rewinding for the original training time. 4) Iteratively repeat steps 2 and 3 until the desired sparsity is reached. That's it. 11:03 AM · Mar 10, 2020 · Twitter Web App 6 Retweets 2 Quote Tweets 36 Likes

Algorithm 1: IMP with Accuracy Criterion

Compression Summary

Quantity	Original	Final
Bit Ops	807,699,904	24,436,576
Weight Bits	1,244,936	68,072
Compression	1x	9.313x
Sparsity	0%	89.26%

Notes

- Sparsity $\% = 1 (0.8 ^ 10)$
- Compression = 1 / (0.8 ^ 10)

Submission Results

- Inference Cost Score:
 - 0.042467

Overall Test Accuracy:

• 0.5625

Feedback Magnitude Pruning

- Feedback Magnitude Pruning (FMP)
 - IMP with pruning rate adjustment
 - Feedback mechanism dictates change
 - Similar to learning rate scheduling
- In this work:
 - L1 Unstructured pruning
 - Pune % = 20
 - Decay factor = 2
 - Stop at 5% pruning threshold

- Variables
 - Pruning method
 - None
 - IMP
 - FMP
 - Bits

Bits	Compression Ratio	Cost	Pruning
8	1	1	None
8	5,821.527	0.0583	FMP
7	5,821.527	0.0482	FMP
6	3,072.602	0.0465	FMP
5	1,621.719	0.0434	FMP
4	9.313	0.0424	IMP
4	813.147	0.0419	FMP

- Variables
 - Pruning method
 - None
 - IMP
 - FMP
 - Bits

Bits	Compression Ratio	Cost	Pruning
8	1	1	None
8	5,821.527	0.0583	FMP
7	5,821.527	0.0482	FMP
6	3,072.602	0.0465	FMP
5	1,621.719	0.0434	FMP
4	9.313	0.0424	IMP
4	813.147	0.0419	FMP

- Variables
 - Pruning method
 - None
 - IMP
 - FMP
 - Bits

Bits	Compression Ratio	Cost	Pruning
8	1	1	None
8	5,821.527	0.0583	FMP
7	5,821.527	0.0482	FMP
6	3,072.602	0.0465	FMP
5	1,621.719	0.0434	FMP
4	9.313	0.0424	IMP
4	813.147	0.0419	FMP

- Variables
 - Pruning method
 - None
 - IMP
 - FMP
 - Bits

Bits	Compression Ratio	Cost	Pruning
8	1	1	None
8	5,821.527	0.0583	FMP
7	5,821.527	0.0482	FMP
6	3,072.602	0.0465	FMP
5	1,621.719	0.0434	FMP
4	9.313	0.0424	IMP
4	813.147	0.0419	FMP

- Variables
 - Pruning method
 - None
 - IMP
 - FMP
 - Bits

Bits	Compression Ratio	Cost	Pruning
8	1	1	None
8	5,821.527	0.0583	FMP
7	5,821.527	0.0482	FMP
6	3,072.602	0.0465	FMP
5	1,621.719	0.0434	FMP
4	9.313	0.0424	IMP
4	813.147	0.0419	FMP

Conclusion

- We demonstrate the effectiveness of integrating feedback into IMP
 - Feedback Magnitude Pruning (FMP)
- FMP compresses networks further than IMP
 - 813x vs 9.313x

Inference cost of FMP and four bit quantization = 0.0419

