Метод	Оценка	Год создания	Автор	Фотка автора	Описание
Метод наимень- ших квадратов (OLS)	$(X^TX)^{-1}X^Ty$	1795	Carl Friedrich Gauss Лежандр		Метод оценивания параметров эконометрической модели, состоящий в минимизации суммы квадратов расхождений между наблюдаемыми значениями зависимой переменной и значениями этой переменной, вычисленными для наблюдаемых значений независимых переменных по оценённой модели связи.
Обобщённый метод наименьших квадратов (GLS)	$(X^T\Omega^{-1}X)^{-1}X^T\Omega^{-1}y$	1934	Alexander Aitken	не нашёл	Теоретическая процедура оценивания коэффициентов линенйиной модели регрессии в ситуации, когда случайные ошибки имеют разные дисперсии и коррелированы между собой, при этом предполагается, что ковариационная матрица вектора ошибок невырождена и все ее элементы известны.
Взвешенный метод наименьших квадратов (WLS)	$(X^T\Omega^{-1}X)^{-1}X^T\Omega^{-1}y$ при этом $\Omega = \operatorname{diag}(\sigma_1, \sigma_2, \sigma_n)$	он же	он же	не нашел	Процедура, состоящая в минимизации определённым образом взвешенной суммы квадратов отклонений наблюдаемых значений зависиммой переменной от значений, вычисляемых по подбираемой модели связи.
Доступный обоб- щённый метод наименьших квад- ратов (FGLS)	$(X^T\hat{\Omega}^{-1}X)^{-1}X^T\hat{\Omega}^{-1}y$	тот же	он же	не нашел	Практически реализуемая процедура оценивания коэффициентов линейной модели регрессии в ситуации, когда случайные ошибки имеют разные дисперсии и коррелированы между собой, повторяющая процедуру обобщенного метода наисеньших квадратов, но импользующая оцененную ковариационную матрицу вектора ошибок.
Косвенный метод наименьших квадратов (ILS)		В 1928 начали за- ниматься проблемой инструмен- тальных переменных	Philip Wright Sewall Wright (отец и сын)		Метод получения оценок параметров i —го стохастического уравнения структурной формы через оценки наименьших квадратов коэффициентов уравнений приведенной формы. Метод применим в случае точной идентифицируемости i —го структурного уравнения.
Двухшаговый метод наименьших квадратов (2SLS)	$(X^T Z (Z^T Z)^{-1} Z^T X)^{-1} \times X^T Z (Z^T Z)^{-1} Z^T y$	1953 1957	Henri Theil Robert Basmann	не нашёл	Метод оценивания коэффициентов уравнения структурной формы, состоящий в предварительной очистке стохастической объясняющей переменой от коррелированности с ошибкой в этом уравнении с использованием инструментальных переменных и в последующем оценивании уравнения, в котором исходная объясняющая переменная заменяется ее очищенным вариантом.
Трёхшаговый метод наименьших квадратов (3SLS)	$(\hat{Z}^{T}(\hat{\Lambda}^{-1} \otimes I_{g})\hat{Z})^{-1} \times \\ \times \hat{Z}^{T}(\hat{\Lambda}^{-1} \otimes I_{g})y$	они же	они же	они же	Доступный обобщённый метод наименьших квадратов, применённый к системе одновременных уравнений. Принимает во внимание наличие коррелирванности между ошибками в разных структурных уравнениях.