Data Valorization: Introduction and Data Description

Lionel Fillatre

fillatre@unice.fr

Jalon website

Class website

https://lms.univ-cotedazur.fr/course/view.php?id=4098

- Password for the course registration: wmg578GTA
- You must register yourself!

Teachers

- Lecture (english): M. Lionel FILLATRE
- Labs EIT-Digital (english): M. Lionel FILLATRE (today in E-105)
- Labs MAM4-IMAFA (french): M. Cyprien GILET
- Labs MAM4-SD (french): M. Ayoud BADIA
- Labs SI4 (french): M. Cyprien GILET

Topics

- Introduction
- Examination
- What is R?
- What is Data?
- Data Sets
- Conclusion

1 Introduction

Big Data Era

●~1 trillion webpages

(http://googleblog.blogspot.dk/2008/07/we-knew-web-was-big.html)

One hour of video is uploaded to youtube every second resulting in 10 years of content every day
 (source: youtube)

- ullet We have sequenced more than 1000 peoples genome of 3.8·10 9 base pairs (source: K. P. Murphy "Machine Learning")
- ●Walmart handles more than 1 mio. transactions per hour and has databases containing more than 2.5·10¹⁵ bytes of information (source: K. P. Murphy "Machine Learning") WAL*MART
- ullet Each night the worlds astronomy laboratories store high-resolution of the night sky of around a terabyte (10 12)

(source: Stephen Marsland "Machine Learning An Algorithmic Perspective")

- •In total, the four main detectors at the Large Hadron Collider (LHC) produced 13 petabytes (10¹⁵) of data in 2010 (source: wikipedia "Big Data")
- Facebook handles 40 billion photos from its user base. (source: wikipedia "Big Data")
- •FICO Falcon Credit Card Fraud Detection System protects 2.1 billion active accounts world-wide (source: wikipedia "Big Data")

Applications

Chemistry

Spectrometry, Chemical sensors

Audio processing

 Spoken digit classification, Music genre classification

Image processing

 Hand-written digit recognition, Image tagging and classification, Number plate recognition

Informatics

Collaborative filtering, Text corpus Analysis,
 Spam filters, Computer games

amazon.com

Biomedical

Micro-array gene analysis, Medical Imaging

Financial data mining

Market predictions

Climate data

Weather forecast

Deluge of information

Every day, we create 2.5 quintillion (10^{18}) bytes of data — so much that 90% of the data in the world today has been created in the last two years alone. This data comes from everywhere: sensors used to gather climate information, posts to social media sites, digital pictures and videos, purchase transaction records, and cell phone GPS signals to name a few.

Source: http://www-01.ibm.com/software/data/bigdata/

"If data had mass, the earth would be a black hole"

Stephen Marsland

"We are drowning in information and starving for knowledge"

John Naisbitt

Statistical Inference in a Nutshell

Gather Data

- Define a statistical objective/goal
- Define a population
- Determine a sampling strategy

Summarize Data

- Descriptive statistics (e.g. mean, variance)
- Sampling distributions of the data

Infer from Data

- Point Estimation, collaborative filtering, ...
- Hypothesis testing, logistic regression, ...
- Model the data and make predictions

Topics Covered

3 parts: basics in data manipulation with R (1-4), basics in statistics inference (5-9), applications (10-11)

- 1. Introduction and Data Description 06/02/2019
- 2. Data Gathering and Sampling 13/02/2019 => Kaggle team registration
- 3. Data Visualization 27/02/2019 => 1st written exam (no official lecture)
- 4. Shiny Application 06/03/2019
- 5. Point Estimation 13/03/2019
- 6. Logistic Regression 20/03/2019
- 7. Hypothesis Testing 27/03/2019 => 1st Kaggle delivery
- 8. Naïve Bayes Test 03/04/2019
- 9. Correspondence Analysis 10/04/2019
- 10. Recommendation System 24/04/2019 => 2nd written exam (no official lecture)
- 11. Reinforcement Learning 15/05/2019 => 2nd Kaggle delivery

Prerequisites

- "Fluency" with basic probability and analysis
 - Random variables
 - Probability distributions, joint distributions, conditional probability
 - Independence/Correlation/Covariance
 - Law of Large Numbers
 - Central Limit Theorem
- Multivariable calculus together with linear algebra are required.
- R is not required.

2 Examination

Examination

- Written examination
 - 1 hour per exam during the lecture (no lecture the weeks of the exam)
 - 2 exams: 1 midterm and 1 final

- Kaggle Challenge: 2 deliveries in R
- Final grade based on an overall assessment of the deliveries in R and written exams (4 grades, 25% each one).

Written Exams

- First exam
 - Essentially based on the refresher training (related to the probability theory and the statistical theory)
 - At least one exercise related to « Data Valorization »
 - Rather simple if you work carefully the refresher training
- Second exam
 - All the exercises related to « Data Valorization »

Kaggle

- Kaggle is a platform for predictive modelling and analytics competitions
- Companies and researchers post their data
- Statisticians, data miners, data scientists (and others) from all over the world compete to produce the best models.
- Website: https://www.kaggle.com/

Kaggle website

Kaggle website

Competitions

The competition host prepares the data and a description of the problem

Datasets

With or without competition

Kernels

- Kernels contain both the code needed for an analysis, and the analysis itself. It's the core of a work, what it needs to make it reproducible, to make it grow, and to invite collaboration.
- **Discussion**: forum of discussions
- Jobs: Hiring? Seeking?
- **Learn**: learn the basics to confidently start a new career or upgrade your skills.
- **Blog**: official blog of Kaggle.com
- **User rankings**: ranking of Kaggle users
- Tags: to find pages associated to a specific tags
- **Host a competition**: Kaggle can help you solve difficult problems, recruit strong teams, and amplify the power of the data science talent.

Kaggle Challenge

- Work in group of 4 students maximum (3 students minimum)
- You have to choose one dataset (each team must have its own dataset; no duplication; Titanic dataset is not allowed)
- Choose the challenge according to your skills (decide the balance between mathematics and computer science)
- Team registration:
 - Fill in the shared file on the class website: name of the students and name of the challenge
 - Once a given challenge is written in the shared file, the remaining teams must choose an other challenge

Kaggle Challenge

- You have to define the question you aim to answer (classification, dimension reduction, regression, etc.)
- You have to provide numerical and theoretical justification of your analysis
- I encourage you to reuse an existing Kaggle Kernel
- You can write, run, and view best practice code and visualizations of this dataset on Kaggle Kernels.
- You must exploit the theoretical tools and practical methods presented in this course!

Deliveries of the challenge

1st delivery:

 Recorded oral presentation (10 minutes in video) of the chosen challenge (business goal, technical goal, data description, statistical analysis of data, data preprocessing in R to extract relevant information, brief description of the future analysis which will be detailed in the 2nd delivery, etc.)

2nd delivery:

- Recorded oral presentation (10 minutes in video) of the chosen Kernel in R (you can create your own notebook by merging several notebooks)
- You must promote an advanced analysis (see next slide)
- Present the method with theoretical explanations and the results
- Run the notebook with explanations
- The final notebook must be uploaded on the class website. It must be easy to follow (well commented).
- For each presentation, all team members must talk and you can use a slideshow.
- For each video, record the video and post it somewhere (YouTube, etc.). Send an email with the URL of the video to your labs professor.

20

Management is the key

- Nothing to invent, just discover and UNDERSTAND!
- Many tasks already identified:
 - R to discover
 - Dataset to understand
 - Data to load and to analyze
 - Data to preprocess
 - Choose only one advanced data analysis method and use it correctly:
 - Logistic regression
 - Random forest
 - Deep learning
 - •
 - Results to produce and to analyze
 - Presentation to prepare and to record

Important dates

- Kaggle: three deadlines at 21h00 (-1 per day late)
- Written exams: possible change in case of unexpected issues
- 1. Introduction and Data Description 06/02/2019
- 2. Data Gathering and Sampling 13/02/2019 => Kaggle team registration
- 3. Data Visualization 27/02/2019 => 1st written exam (no official lecture)
- 4. Shiny Application 06/03/2019
- Point Estimation 13/03/2019
- Logistic Regression 20/03/2019
- 7. Hypothesis Testing 27/03/2019 => 1st Kaggle delivery
- 8. Naïve Bayes Test 03/04/2019
- Correspondence Analysis 10/04/2019
- 10. Recommendation System 24/04/2019 => 2nd written exam (no official lecture)
- 11. Reinforcement Learning 15/05/2019 => 2nd Kaggle delivery

3 What is R?

Useful programming languages in Data Science and Big Data

- SQL (1970): querying and namaging data
- Python (1991): data processing, productivity, good learning curve
- R (1995): data analysis, oriented toward statistical analysis, more difficult to learn, free alternative to SAS, huge community
- And others: Java, Scala, SAS, Matlab

History of R

- S: language for data analysis developed at Bell Labs circa 1976
- Licensed by AT&T/Lucent to Insightful Corp.
- R: initially written and released as an open source software by Ross Ihaka and Robert Gentleman at U Auckland during 90s (R plays on name "S")
- Since 1997: international R-core team ~15 people & 1000s of code writers and statisticians happy to share their libraries!

Open source

- Free but also much more:
- o Provides full access to algorithms and their implementation
- Gives you the ability to fix bugs and extend software
- Provides a forum allowing researchers to explore and expand the methods used to analyze data
- Ensures that scientists around the world and not just ones in rich countries - are the co-owners to the software tools needed to carry out research
- o Promotes reproducible research by providing open and accessible tools
- Most of R is written in... R! This makes it quite easy to see what functions are actually doing.

What is it?

- •R is an interpreted computer language.
 - Most user-visible functions are written in R itself, calling upon a smaller set of internal primitives.
 - It is possible to interface procedures written in C, C+, or FORTRAN languages for efficiency, and to write additional primitives.
 - System commands can be called from within R
- •R is used for data manipulation, statistics, and graphics. It is made up of:
 - operators (+ <- * %*% ...) for calculations on arrays & matrices
 - -large, coherent, integrated collection of functions
 - facilities for making unlimited types of publication quality graphics
 - user written functions and sets of functions (packages); 800+ contributed packages so far and growing

R for Practical Works

• We will use R with R-Studio Desktop (an interactive R development environment).

- Please visit the page https://cran.r-project.org/
- Please visit the page https://www.rstudio.com/
- Install R-Studio

R for the Labs

- You can use either R Notebook or Jupyter Notebook with R
- R Notebook is contained in RStudio
- How to use the Jupyter notebook with R?
 - If necessary, install the Jupyter Notebook. An easy way is to install Anaconda (a Python distribution) which already contains the Jupyter Notebook.
 - Please visit the page https://www.anaconda.com/
 - Once Jupyter Notebook is installed, please visit the following page to run R in the Jupyter Notebook
 - https://irkernel.github.io/installation/
 - Then just create a Jupyter Notebook associated to the R kernel, and fill in the notebook with R commands.

Web links

- http://www.cyclismo.org/tutorial/R/
- https://www.tutorialspoint.com/r/
- http://www.statmethods.net/index.html
- http://zoonek2.free.fr/UNIX/48_R/all.html

4 What is Data?

What is data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object (also known as variable, field, characteristic, or feature)
- Collection of attributes describe an object (also known as record, point, case, sample, entity, or instance)

Attributes							
ID	Age	Gender	Name				
1	31	F	Alex				
2	24	M	Ben				
3	52	F	Cindy				
4	35	M	Dan				
5	58	M	Eric				
6	46	F	Fay				
7	42	M	George				
	1 2 3 4 5	ID Age 1 31 2 24 3 52 4 35 5 58 6 46	ID Age Gender 1 31 F 2 24 M 3 52 F 4 35 M 5 58 M 6 46 F				

Data Classification

- Data/Sample: $(X_1, ..., X_n)$
- Dimension of X_i (i.e. the number of measurements per unit i)
 - Univariate: one measurement for unit *i* (height)
 - Multivariate: multiple measurements for unit *i* (height, weight, gender)
- For each dimension, X_i can be numerical or categorical
- Numerical variables
 - Discrete: human population, natural numbers, (0,5,10,15,20,25,etc..)
 - Continuous: height, weight
- Categorical variables
 - Nominal: categories have no ordering (gender: male/female)
 - Ordinal: categories are ordered (grade: A/B/C/D/F, rating: high/low)

Data Types

Summaries for numerical data

- **Center/location:** measures the "center" of the data
 - Examples: sample mean and sample median
- **Spread/Dispersion:** measures the "spread" or "fatness" of the data
 - Examples: sample variance, interquantile range
- Order/Rank: measures the ordering/ranking of the data
 - Examples: order statistics and sample quantiles

	Summary	Type of Sample	Formula	Notes		
	Sample mean, $\hat{\mu}, \bar{X}$	Continuous	$\frac{1}{n}\sum_{i=1}^{n}X_{i}$	Summarizes the "center" of the dataSensitive to outliers		
	Sample variance, $\widehat{\sigma}^2$, S^2	Continuous	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$	 Summarizes the "spread" of the data Outliers may inflate this value 		
	Order statistic, $X_{(i)}$	Continuous	i th largest value of the sample	• Summarizes the order/rank of the data		
	Sample median, $X_{0.5}$	Continuous	If n is even: $\frac{\left(X\left(\frac{n}{2}\right) + X\left(\frac{n}{2} + 1\right)\right)}{2}$ If n is odd: $X\left(\frac{n}{2} + 0.5\right)$	Summarizes the "center" of the dataRobust to outliers		
	Sample α quartiles, X_{α} $0 \le \alpha \le 1$	Continuous	If $\alpha = \frac{i}{n+1}$ for $i = 1,, n$: $X_{\alpha} = X_{(i)}$ Otherwise, do linear interpolation	 Summarizes the order/rank of the data Robust to outliers 		
	Sample Interquartile Range (Sample IQR)	Continuous	$X_{0.75} - X_{0.25}$	Summarizes the "spread" of the dataRobust to outliers₃₆		

Multivariate numerical data

- Each dimension in multivariate data is univariate and hence, we can use the numerical summaries from univariate data (e.g. sample mean, sample variance)
- However, to study two measurements and their relationship, there are numerical summaries to analyze it: Sample Correlation and Sample Covariance

Sample Covariance and Correlation

- Measures **linear relationship** between two measurements, X_{i1} and X_{i2} , where $X_i = (X_{i1}, X_{i2})$
- Sample covariance: $\hat{\sigma}_{X_1,X_2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} \bar{X}_1)(X_{i2} \bar{X}_2) = \hat{\rho} \hat{\sigma}_{X_1} \hat{\sigma}_{X_2}$
- Sample correlation: $\hat{\rho} = \frac{\sum_{i=1}^{n} (X_{i1} \bar{X}_1)(X_{i2} \bar{X}_2)}{(n-1)\hat{\sigma}_{X_1}\hat{\sigma}_{X_2}}$
 - $-1 \le \hat{\rho} \le 1$
 - Sign indicates proportional (positive) or inversely proportional (negative) relationship
 - If X_{i1} and X_{i2} have a maximum or minimum sample correlation $(\hat{\rho} = 1 \text{ or } -1)$, then $X_{i2} = aX_{i1} + b$

Correlation

Summaries for categorical data

- **Frequency/Counts:** how frequent is one category
- Generally use tables to count the frequency or proportions from the total

Example: class composition

	Undergrad	Graduate	Staff
Counts	17	1	2
Proportions	0.85	0.05	0.1

Data Sets

Main Types of data sets

- Record data
 - Collection of data objects and their attributes
 - Representation: Table
- Ordered data
 - Ordered collection of data objects
 - Representation: Sequence
- Relational data
 - Collection of data objects and their relation
 - Representation: Graph

Record data example: Market basket data

Transaction data table

ID	Items		
1	Bread, Soda, Milk		
2	Beer, Bread		
3	Beer, Soda, Diaper, Milk		
4	Beer, Bread, Diaper, Milk		
5	Soda, Diaper, Milk		

Matrix

ID	Bread	Soda	Milk	Beer	Diaper
1	1	1	1	0	0
2	1	0	0	1	0
3	0	1	1	1	1
4	1	0	1	1	1
5	0	1	1	0	1

Ordered data example: Time series

Matrix

Time	Value			
0	1.3			
1	1.8			
2	2.5			
3	3.6			
4	4.4			
5	4.7			
6	4.6			
7	4.3			
8	2.4			
9	2.1			
10	2.0			
11	2.3			
12	3.1			

Relational data example:

Who knows who?

	• Matrix							
		Α	В	С	D	Е	F	G
A	١	0	1	0	0	1	0	0
В	}	1	0	0	0	1	1	0
C	,	0	0	0	1	0	0	1
D)	0	0	1	0	0	0	1
E		1	1	0	0	0	0	0
F		0	1	0	0	0	0	1
G	;	0	0	1	1	0	1	0

Data quality

- Data is of high quality if they
 - Are fit for their intended use
 - Correctly represent the phenomena they correspond to
- Examples of quality problems
 - Noise
 - Outliers
 - Missing values

Noise

- Definition
 - Unwanted perturbation to a signal
 - Unwanted data
- Reasons for noise
 - Fundamental limits in measurement accuracy
 - Interference from other signals
 - Measurement of attributes not related to the data modeling task
- Handling noise
 - Exclude noisy attributes
 - Remove noise by filtering
 - Include a model of the noise

Outliers

- Definition
 - Data objects which are significantly different from most others
- Reasons for outliers
 - Measurement error
 - Natural property of data
- Handling outliers
 - Identify outliers
 - Exclude anomalous outliers
 - Model the outliers

Missing values

- Definition
 - No value is stored for an attribute in a data object
- Reasons for missing values
 - Information is not collected
 - People decline to give their age
 - Attribute is not applicable
 - Annual income is not applicable to children
- Handling missing values
 - Eliminate data objects
 - Estimate missing values
 - Ignore the missing value in analysis
 - Replace with an average value

ID	Age	Gender	Name
1	31	F	Alex
2	(?)	M	Ben
3	52	F	Cindy
4	35	(?)	Dan
5	(?)	M	Eric
6	(?)	F	Fay
7	42	М	(?)
0.000.000.00			

6 Conclusion

Conclusion

- Data must be clean or cleaned
- Statistics is necessary to clean the data, then to analyze it
- Analysis depends on data types
- Data summaries are very useful to clean the data and verify the quality of observations