

TCP

TCP (Transmission Control Protocol):

- Protocolo de Transporte.
- Ofrece un servicio orientado a conexión y fiable.
- Unidad de datos: Segmento.
- Se encapsula dentro de IP.
- También ofrece un servicio de puertos (como UDP).

©2008 GSyC

Fundamentos de Redes de Ordenadores: Nivel de Transporte

Servicio Orientado a Conexión

128

Servicio Orientado a Conexión

- La transmisión de datos de nivel de transporte presenta las fases:
 - establecimiento de la conexión
 - intercambio de datos
 - liberación de la conexión.
- Peculiaridad: Ambos extremos pueden transmitir y recibir datos simultáneamente.
- Los datos de la aplicación son troceados en segmentos del tamaño que TCP considera adecuado (¡diferente a UDP!).

Servicio Fiable

- Éste es el primer nivel en el que se proporciona fiabilidad.
- Objeto: Recuperarse de pérdidas y desorden producido por IP.
- Idea básica:
 - Los segmentos con datos llevan un número de secuencia.
 - El receptor de los datos debe mandar asentimientos (ACKs).
 - Para cada segmento con datos transmitido se espera un plazo de tiempo a que llegue su asentimiento. Si vence el plazo, se retransmite el segmento.
 - Para asentimientos y retransmisiones se utiliza un protocolo de ventana.
 - El receptor reordena segmentos y descarta los duplicados.
- Como ambos extremos pueden transmitir datos, cada lado usa sus propios números de secuencia.

©2008 GSyC

Fundamentos de Redes de Ordenadores: Nivel de Transporte

Segmentos TCP

130

Segmentos TCP

Establecimiento de conexión

Es necesario ponerse de acuerdo en el número de secuencia inicial de los dos sentidos de transmisión («triple apretón de manos», *three-way handshake*).

©2008 GSyC

Fundamentos de Redes de Ordenadores: Nivel de Transporte

Liberación de conexión

132

Liberación de conexión

Como la conexión permite la transmisión bidireccional de datos (*full duplex*), es necesario "cerrar" cada sentido de la transmisión (por separado).

Plazos de retransmisión

Cuando se envía un segmento, se arranca un temporizador para esperar su asentimiento. Problema: ¿Qué plazo le ponemos?

Se utiliza un algoritmo adaptativo para optimizar lo más posible la transmisión de datos.

Para cada segmento se calcula el tiempo de ronda (round-trip time, RTT): tiempo entre que se envía el segmento y se recibe el asentimiento. Se va tomando su media en el tiempo.

Normalmente se elige un plazo de dos veces el tiempo de ronda medio, teniendo cuidado con la varianza.

Consideraciones:

- Los números de secuencia identifican bytes individuales y no segmentos.
- Las líneas horizontales indican los tics de reloj.
- Plazo de retransmisión: 5 tics de reloj.
- El segmento que A envía en el tic 14 corresponde al reenvío del enviado en el tic 9, para el que aún no ha llegado ACK.
- El ACK que B envía en el tic 15 engloba todos los datos que ya tiene B
- A no reenvía el segmento con el byte 2402 pues le llega un ACK que lo engloba, en plazo.
- Los dos últimos segmentos que envía B pueden agruparse en uno solo.