EXERCISES 6.1

In Problems 1–12, use known results to expand the given function in a Maclaurin series. Give the radius of convergence R of each series.

1.
$$f(z) = \frac{z}{1+z}$$

3.
$$f(z) = \frac{1}{(1+2z)^2}$$

5.
$$f(z) = e^{-2z}$$

7.
$$f(z) = \sinh z$$

9.
$$f(z) = \cos \frac{z}{2}$$

11.
$$f(z) = \sin z^2$$

2.
$$f(z) = \frac{1}{4 - 2z}$$

4.
$$f(z) = \frac{z}{(1-z)^3}$$

6.
$$f(z) = ze^{-z^2}$$

8.
$$f(z) = \cosh z$$

10.
$$f(z) = \sin 3z$$

12.
$$f(z) = \cos^2 z$$
 [*Hint*: Use a trigonometric identity.]

In Problems 13 and 14, use the Maclaurin series for e^z to expand the given function in a Taylor series centered at the indicated point z_0 . [Hint: $z = z - z_0 + z_0$.]

13.
$$f(z) = e^z$$
, $z_0 = 3i$

14.
$$f(z) = (z-1)e^{-3z}, z_0 = 1$$

In Problems 15-22, expand the given function in a Taylor series centered at the indicated point z_0 . Give the radius of convergence R of each series.

15.
$$f(z) = \frac{1}{z}, \ z_0 = 1$$

16.
$$f(z) = \frac{1}{z}$$
, $z_0 = 1 + i$,

17.
$$f(z) = \frac{1}{3-z}$$
, $z_0 = 2i$

18.
$$f(z) = \frac{1}{1+z}$$
, $z_0 = -i$,

19.
$$f(z) = \frac{z-1}{3-z}, \ z_0 = 1$$

20.
$$f(z) = \frac{1+z}{1-z}$$
, $z_0 = i$

21.
$$f(z) = \cos z$$
, $z_0 = \pi/4$

22.
$$f(z) = \sin z$$
, $z_0 = \pi/2$