libzahl

Unless specified otherwise, returns are void and all parameters are of type z_t .

Initialisation Initialise libzahl	zsetup(env)	must be called before any other function is used, env is a jmp_buf all functions will longjmp to — with value 1 — on error
Deinitialise libzahl Initialise a Deinitialise a	<pre>zunsetup() zinit(a) zfree(a)</pre>	will free any pooled memory call once before use in any other function must not be used again before reinitialisation
Error handling		
Get error code	zerror(a)	returns enum zerror, and stores description in const char **a
Print error description	zperror(a)	behaves like perror(a), a is a, possibly NULL or ε , const char *
Arithmetic		possibly woll of c, const char
$a \leftarrow b + c$	zadd(a, b, c)	
$a \leftarrow b + c$ $a \leftarrow b - c$	zsub(a, b, c)	
$a \leftarrow b - c$ $a \leftarrow b \cdot c$	zmul(a, b, c)	
$a \leftarrow b \cdot c$ $a \leftarrow b \cdot c \mod d$	zmodmul(a, b, c, d)	$0 \le a \operatorname{sgn} bc < d $
$a \leftarrow b \cdot c \mod a$ $a \leftarrow b/c$	zdiv(a, b, c)	$0 \le a \text{ sgn } bc < a $ rounded towards zero
$a \leftarrow c/c$ $a \leftarrow c/d$	zdiv(a, b, c) zdivmod(a, b, c, d)	rounded towards zero
$b \leftarrow c \mod d$	zdivmod(a, b, c, d) zdivmod(a, b, c, d)	$0 \le b \operatorname{sgn} c < d $
$a \leftarrow b \mod a$ $a \leftarrow b \mod c$	zmod(a, b, c)	$0 \le b \operatorname{sgn} c < a $ $0 \le a \operatorname{sgn} b < c $
$a \leftarrow b$ mod c $a \leftarrow b^2$	zmou(a, b, c) zsqr(a, b)	$0 \le a \operatorname{sgn} b < c $
$a \leftarrow b$ $a \leftarrow b^2 \mod c$	zmodsqr(a, b, c)	$0 \le a < c $
$a \leftarrow b^2$	zmodsqr(a, b, c) zsqr(a, b)	$0 \le a < c $
$a \leftarrow b^c$	zpow(a, b, c)	
$a \leftarrow b^c$	zpowu(a, b, c)	c is an unsigned long long int
$a \leftarrow b^c \mod d$	zmodpow(a, b, c, d)	$0 \le a \operatorname{sgn} b^c < d $
$a \leftarrow b^c \mod d$	zmodpowu(a, b, c, d)	ditto, c is an unsigned long long int
$a \leftarrow b $	zabs(a, b)	divio, o is an unsigned rong rong ring
$a \leftarrow -b$	zneg(a, b)	
Assignment		
$a \leftarrow b$	zset(a, b)	
$a \leftarrow b$	zseti(a, b)	b is an int64_t
$a \leftarrow b$	zsetu(a, b)	b is a uint64_t
$a \leftarrow b$	zsets(a, b)	b is a decimal const char *
$a \leftrightarrow b$	zswap(a, b)	
	• •	
Comparison		
Compare a and b	zcmp(a, b)	returns int $sgn(a-b)$
Compare a and b	zcmpi(a, b)	ditto, b is an int64_t
Compare a and b	zcmpu(a, b)	ditto, b is a uint64_t
Compare $ a $ and $ b $	zcmpmag(a, b)	returns int $sgn(a - b)$

D'		
$\begin{array}{l} \textbf{Bit operation} \\ a \leftarrow b \land c \end{array}$	zand(a, b, c)	bitwise
$a \leftarrow b \lor c$	zor(a, b, c)	bitwise
$a \leftarrow b \oplus c$	zxor(a, b, c)	bitwise
$a \leftarrow \neg b$	znot(a, b, c)	bitwise, cut at highest set bit
$a \leftarrow b \cdot 2^c$	zlsh(a, b, c)	c is a size_t
$a \leftarrow b/2^c$	zrsh(a, b, c)	ditto, rounded towards zero
$a \leftarrow b \mod 2^c$	ztrunc(a, b, c)	ditto, a shares signum with b
Get number of used bits	zbits(a)	returns size_t, 1 if $a = 0$
Get index of lowest set bit	zlsb(a)	returns size_t, SIZE_MAX if $a=0$
Is bit b in a set?	zbtest(a, b)	b is a size_t, returns int
$a \leftarrow b$, set bit c	zbset(a, b, c, 1)	c is a size_t
$a \leftarrow b$, clear bit c	zbset(a, b, c, 0)	ditto
$a \leftarrow b$, flip bit c	zbset(a, b, c, -1)	ditto
$a \leftarrow c/2^d$	zsplit(a, b, c, d)	d is a size_t, rounded towards zero
$b \leftarrow c \mod 2^d$	zsplit(a, b, c, d)	ditto, b shares signum with c
Conversion to string		
Convert a to decimal	zstr(a, b, c)	returns the resulting const char *
		— b unless b is NULL, — c must be
		either 0 or at least the length of the
		resulting string but at most the
C + + : 1 +1 C		allocation size of b minus 1
Get string length of a	zstr_length(a, b)	returns $size_t$ length of a in radix b
Marshallisation		
Marshal a into b	zsave(a, b)	returns size_t number of saved bytes,
		b is a void *
Get marshal-size of a	zsave(a, NULL)	returns size_t
Unmarshal a from b	zload(a, b)	returns size_t number of read bytes,
NT 1 41		b is a const void *
Number theory	:	
$a \leftarrow \operatorname{sgn} b$ Is $a \operatorname{even}$?	zsignum(a, b) zeven(a)	returns int 1 (true) or 0 (felse)
Is a even?	zeven(a) zeven_nonzero(a)	returns int 1 (true) or 0 (false) ditto, assumes $a \neq 0$
Is $a \text{ even}$. Is $a \text{ odd}$?	zodd(a)	returns int 1 (true) or 0 (false)
Is $a \text{ odd}$?	zodd_nonzero(a)	ditto, assumes $a \neq 0$
Is a zero?	zzero(a)	returns int 1 (true) or 0 (false)
$a \leftarrow \gcd(c, b)$	zgcd(a, b, c)	$a < 0$ if $b < 0 \land c < 0$
Is b a prime?	zptest(a, b, c)	c runs of Miller–Rabin, returns
_		enum zprimality NONPRIME (0)
		(and stores the witness in a unless
		a is NULL), PROBABLY_PRIME (1) , or
		PRIME(2)
$\mathop{ m Randomness}_{^{\mathop{rak c} olimits}}$		
$a \stackrel{\$}{\leftarrow} \mathbf{Z}_d$	<pre>zrand(a, b, UNIFORM, d)</pre>	b is a enum zranddev, e.g.

DEFAULT_RANDOM, FASTEST_RANDOM