

فیزینگ سریع دومرحلهای دادههای توالی بزرگمقیاس

پروژه نهایی ژنومیک محاسباتی

جواد راضي

استاد درس: دکتر مطهری

زمستان ۱٤٠١

فهرست مطالب

• مقدمه

۰ روشها

۰ نتایج

• جمعبندی

• دادەھاى ژنوتايپ

- عموما فيزنشده
- نياز به استفاده از متدهاي آماري براي استنتاج توالي اللهاي والدين

• فِيزينگ هپلوتايپ

- تخمین هپلوتایپهایی که از هریک از والدین به ارث رسیدهاند
- تحلیلها و مطالعات متعدد متکی به دادههای فیزینگ هپلوتایپ

مقدمه

• دقت فیزینگ

- رابطه مستقیم با اندازه نمونه
- جهشهای اصلی در روشهای فیزینگ
- ابزارهای نوآور: HAPI-UR, SHAPEIT, EAGLE23
 - خطیبودن زمان محاسباتی و حافظه مصرفی با اندازه نمونه
 - امکان آنالیز دیتاستهای بسیار بزرگتر

روشها

- ۰ پیادهسازی روش مقاله در نسخه ۵/۲ ابزار Beagle
 - مدل HMM برای فیزینگ
 - پنل مرجع: پنل مرجع مرکب هپلوتایپ
 - الگوريتم فيزينگ تكرارشونده پيشرو
- حالت «در حال پیشرفت» یا «پایانیافته» برای هر ژنوتایپ هتروزایگوس
- تغییر حالت یک هتروزایگوس «در حال پیشرفت» به «پایانیافته» در پایان هر چرخه
 - تخصیص یک نسبت اطمینان به هر هتروزایگوس در حالت پیشرفت
 - انتخاب هتروزایگوس با بیشترین نسبت اطمینان برای تغییر حالت

- الگوریتم دو مرحلهای برای دیتاست با درصد بالای هپلوتایپهای کمفرکانس
 - فیزینگ مارکرهای ژنتیکی پرفرکانس در مرحله اول
 - استفاده از هپلوتایپهای فیزشده برای جانهی (Imputation) ژنوتایپها
 - استنتاج هپلوتایپ مارکرهای ژنتیکی کمفرکانس با استفاده از اللهای جانهیشده
 - پنجره مارکرهای ژنتیکی
 - اندازه قابل کنترل
 - تقسیم توالی به بخشهای کوچکتر
 - فیزینگ مستقل هریک با مدل HMM
 - ترکیب اطلاعات هپلوتایپها از پنجرههای مجاور در مرحله دوم، برای افزایش دقت

• دیتاستهای مورد استفاده

- داده آرایههای SNP دیتاست
 - داده توالی ژنوم دیتاست TOPMed

• ارزیابی مدل

- ابزار مورد استفاده برای مقایسه عملکرد: SHAPEIT
 - از رایجترین ابزارهای مورد استفاده برای فیزینگ
- قابلیت فیزینگ دیتاستهای بزرگ، و مقیاسپذیری

• سنجه نرخ خطا

- نرخ خطای سوییچ (SER)
- نتیجه جابجایی نادرست در اختصاص هپلوتایپها برای SNPهای مجاور هم
 - حاصل تقسیم تمام خطاهای سوییچ، بر تمام SNPهای فیزشده

• نتایج ارزیابی با دیتاست UK Biobank

• عملكرد يكسان از لحاظ خطاى SER و سرعت محاسباتي

• نتایج ارزیابی با دیتاست TOPMed

- عملكرد يكسان از لحاظ خطا
- سرعت بیش از ۲۰ برابری Beagle 5.2 نسبت به SHAPEIT 4.2.1 روی این دیتاست

• کنترل میزان حافظه مصرفی با تغییر اندازه پنجره مارکر

- كوتاه كردن اندازه پنجره
- امکان فیزینگ دیتاستهای بزرگتر با کاهش حافظه مصرفی
 - Trade-off: افزایش زمان محاسباتی
 - عدم وجود تاثیر محسوس تغییر اندازه پنجره در نرخ خطا

• اندازه جمعیت موثر

- تعریف «جمعیت موثر»: جمعیتی که از لحاظ گونهگونی ژنتیکی، مشابه جمعیت واقعی باشد.
 - پارامتر ورودی مدل
 - تاثیر در محاسبات احتمالات گذار در HMM
 - تاثیر مقدار اولیه اندازه جمعیت موثر
 - ۰ مدل SHAPEIT
 - نوسانات در دقت هنگام دور شدن مقدار اولیه از مقدار واقعی
 - مدل Beagle
 - مستقل از مقدار اولیه جمعیت موثر
 - عدم تاثیر نادرستی پارامتر ورودی در دقت مدل

- فیزینگ هپلوتایپ: تخمین هپلوتایپها از دادههای ژنوتایپ
 - مزیتهای مدل ارائهشده
 - سریع، دقیق، استفاده بهینه از حافظه
 - مقیاسپذیری بالا و قابلیت فیزینگ دیتاستهای بزرگ
 - دادههای مناسب مدل
 - دادههای با تعداد بالای مارکرهای ژنتیکی کمفرکانس
 - استفاده از الگوریتم دومرحلهای فیزینگ
 - عدم فیزینگ دادههای کمفرکانس در مرحله نخست
 - افزایش سرعت محاسباتی

جمعبندي

- پیادہسازی مدل
- پیادهسازی در نسخه 5.2 نرمافزار Beagle
 - ارزیابی مدل
 - مقايسه با ابزار SHAPEIT 4.2.1
- دیتاستهای مورد استفاده برای جمعیت نمونه
 - **UK Biobank**
 - TOPMed •
- سرعت محاسباتی بیش از ۲۰ برابر در فیزینگ با دادههای TOPMed

مراجع

Browning BL, Tian X, Zhou Y, Browning SR. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet. 2021 Oct 7;108(10):1880-1890. doi: 10.1016/j.ajhg.2021.08.005.
Epub 2021 Sep 2. PMID: 34478634; PMCID: PMC8551421

سپاس از توجهتان