SYMMETRIC MATRICES

DYLAN ANG

Recall: S is a symmetric matrix if $S = S^T$

Theorem 1. If S is a symmetric matrix, then all its eigenvalues are real values.

Proof. Let $S\vec{x} = \lambda \vec{x}$. Λ could be complex-valued: $\Lambda = a + ib$, $i = \sqrt{-1}$. We want to show that Λ is real-valued, i.e. b = 0.

Let $\bar{\Lambda} = a - ib$ be the conjugate of Λ and $\bar{\vec{x}}$ be the conjugate of \vec{x} .

Know: $\Lambda \vec{x} = \overline{\Lambda} X$

Also know: $S = \bar{S}$, since S is real-valued.

 $S\vec{x} = \lambda \vec{x}$, Now take conjugate on both sides

$$S\bar{x} = \bar{\lambda x}$$

 $\overline{S}\vec{x} = \overline{\lambda}\vec{x}$, S is real valued, so $\overline{S} = S$

 $S\vec{x} = \lambda \vec{x}$, Now take the transpose on both sides

$$(\bar{Sx})^T = (\bar{\lambda}x)^T$$

 $\vec{x}^T S^T = \vec{x}^T \bar{\lambda}$, S is symmetric, so $S = S^T$

 $\vec{x}^T S = \vec{x}^T \bar{\lambda}$, Now take product with \vec{x}

$$(1.1) \qquad \qquad \bar{\vec{x}}^T S x = \bar{\vec{x}}^T \bar{\lambda} x$$

Now consider $S\vec{x} = \lambda \vec{x}$ take dot product with \vec{x}

$$(1.2) \qquad \quad \bar{\vec{x}}^T S \vec{x} = \bar{\vec{x}}^T \lambda \vec{x}$$

Date: May 31, 2021.

Left sides of (1.1) and (1.2) are equal \Rightarrow right sides are equal.

$$\Rightarrow \overline{\vec{x}}^T \overline{\lambda} \vec{x} = \overline{\vec{x}} \lambda \vec{x}$$

$$\overline{\lambda} \underline{\vec{x}}^T \vec{x} = \lambda \underline{\vec{x}}^T \vec{x}$$
These terms are equal:
$$\overline{\vec{x}}^T = \sum_{k=1}^n \overline{x}_k x_k = \sum_{k=1}^n |x_k^2|$$

$$\Rightarrow \overline{\vec{x}}^T \vec{X} \neq 0$$

$$\Rightarrow \overline{\lambda} = \lambda$$

$$\Rightarrow a - ib = a + ib \Rightarrow b = 0 \Rightarrow \lambda \text{ is real}$$