





College of Liberal Arts & Sciences **Department of Statistics** 

# Optimizing IVR: Machine Learning for **Smarter Voice Interactions**

#### **Team members:**

Jialong (Mark) Li, Yuhong Shao, Yi (Grace) Xie, Zhitao Zeng

## **Main Topics**



- 1. EDA & Pattern Discovery
- 2. ML Understand `resolve`
- 3. ML Understand `reason`
- 4. Suggestions & ROI Analysis

#### **Before EDA - Feature Engineering (1/2)**

We have 2 snapshot time -> March 13 March 18

Concerns: multicollinearity (corr > 0.99), similar distribution



Plus, we add length\_of\_mos -> represent customers who struggling with the IVR menu

### **Before EDA - Feature Engineering (2/2)**

| serial | mos      |
|--------|----------|
| 1      | IA PP TR |

#### **One-hot Encode**

Capture the mos code frequencies

| serial | IA | PP | TR |
|--------|----|----|----|
| 1      | 1  | 1  | 1  |

#### **Bigram**

Capture mos code relations

| serial | IA PP | PP TR |
|--------|-------|-------|
| 1      | 1     | 1     |

192 additional new binary features

#### **EDA** – why linear models are not trustworthy

#### ALE (Accumulated Local Effects) plot

- SOTA machine learning interpretation method.
- It is unbiased more robust to multicollinearity compared to PD plot.
- You can read the relative effect of changing the feature on the prediction.





Non-linear relationship

linear relationship

### **EDA** - Association Mining Rule

#### MOS path:

- Length & Items
- Hard to Feature Engineering



## Pattern Discovery - Association Mining Rule

#### - Sankey Diagram (1/2)

Sankey Diagram of Item Transitions (Floor call)



- 1. NLU Menu (nl)
- 2. Proactive Income (PI)
- 3. Pre-Transfer Menu (mt)
- 4. Global Router (RS)

### **Pattern Discovery - Association Mining Rule**

- Sankey Diagram (2/2)

Sankey Diagram of Item Transitions(Resolved call)



# Pattern Discovery – retailer\_code & reason





#### ML – on 'resolved' (1/2)

| Test Statistics | Value |
|-----------------|-------|
| f1              | 0.635 |
| accuracy        | 0.890 |
| precision       | 0.795 |



### ML - on resolved (2/2)

| Test Statistics | Value |
|-----------------|-------|
| f1              | 0.582 |
| accuracy        | 0.898 |
| precision       | 0.797 |



### **ROI** Analysis – an example

**Customer Service:** 

\$25 per hour

**Average Time:** 

3 mins and 26 sec

Cost per call:

\$1.5

- Given that 1% improvement saves 200,000 agent/floor calls per month, that is, \$300,000.
- Then we can conclude, if you use \$300,000 gift cards to increase the number of users joining the "e-service" for example, and increase the success rate by 1%, then the investment is worthwhile.