Régularisation du calcul de bases de Gröbner pour des systèmes avec poids et déterminantiels, et application en imagerie médicale (erratum)

Thibaut Verron

May 16, 2018

1 Algebra and geometry

• **Def. 1.13:** the map • h is not a morphism. For a counter-example, in $\mathbb{K}[X]$, consider $f = X^2 + X$, $g = -X^2 + X$, then $f^h = X^2 + XH$, $g^h = -X^2 + XH$, and $f^h + g^h = 2XH$. But f + g = 2X is homogeneous, so $(f + g)^h = 2X$.

What is always true is that $f^h + g^h = H^k(f+g)^h$ for some $k \in \mathbb{N}$, and that $(cf)^h = cf^h$ if $c \in \mathbb{K}$.

2 Gröbner bases

- **Proof of Prop. 2.16, item 3:** if NF(f) NF(g) = 0, then $NF(f) NF(g) \in I$ so $f g \in I$.
- 3 Weighted homogeneous systems
- 4 Real roots classification for determinants Application to contrast optimization
 - **Proof of Prop. 4.2, 4 lines after Eq. 4.5:** a subideal of a radical ideal may not be radical, since any ideal is included in its radical. In order to prove that the ideal defined by the entries of M/A is radical, we need a stronger hypothesis $\mathcal{H}6$: "for any $r_1, r_2 \in \{0, \ldots, k-1\}$ such that $r_1 \leq r_2$, and for any submatrix A of M with size $r_1 \times r_1$, the ideal defined by the r_2 -minors of M containing A is radical". This property is generic as well.