هما بدیعی

AES گزارش پروژه

در معماری زیر، ورودی های input و input بیتی می باشند. رجیستر input و input بیتی می باشند. الگوریتم شامل 10 راند است که در راند اولیه تنها ورودی های input و input باهم xor می شیوند و در d_n به عنوان ورودی راند دوم قرار می گیرد. در 9 راند بعدی عملیات shiftrows و shiftrows و mix columns و Add Round Key انجام می شیود که در این معماری ، داده ها به صورت 8 بیتی های با ترتیب خاص (shiftrows) انتخاب شده و به ماژول Sbox فرستاده می شوند سپس خروجی این ماژول به ماژول و Round Key است و پس از معماری ، ماژول به ماژول و بستاده می شود. خروجی این ماژول به ماژول d_n نوشته شود. در کلاک نتیجه صحیح را بر روی خروجی قرار می گیرد. خروجی این ماژول به ماژول d_n نوشته شود. در فرستاده می شود تا خروجی 23 بیتی به صورت 8 بیتی در دسترس قرار بگیرد و در d_n نوشته شود. در مرحله آخر از این راند، d_n با کلید همان راند که توسط ماژول d_n در d_n تولید می شود تا می شود و در d_n با کلید همان راند که توسط ماژول d_n در این راند، d_n نوشته می شود و در این راند بعد مورد استفاده قرار بگیرد. در راند آخر نیز تمامی این مراحل انجام می شوند به عنوان داده ورودی برای راند بعد مورد استفاده قرار بگیرد. در راند آخر نیز تمامی این مراحل انجام می شوند و خروجی d_n مستقیما در d_n قرار می گیرد.

تصویر 1- معماری AES

نحوه خواندن و نوشتن بایت ها در رجیسترهای d_next و d_out از شکل زیر ایده گرفته شده است (مقاله

تصویر 2- نمایش نحوه خواندن بایت ها از ورودی و نوشتن آن ها در خروجی

مربوطه در پیوست قرار دارد) و معماری کلی نیز از شکل زیر ایده گرفته شده است (مقاله مربوطه در پیوست

قرار دارد) تعداد منابع مصرفی در فایل aes_util.rpt به طور کامل قابل مشاهده هستند. جدول زیر بخشی از آن است که تعداد فلیپ فلاپ های لازم، اسلایس ها و جداول جستجو را نمایش می دهد.

Site Type	Used	Fixed	Available	 Util%
Slice LUTs*	912	0	3750	24.32
LUT as Logic	912	0	3750	24.32
LUT as Memory	0	0	2400	0.00
Slice Registers	495	0	7500	6.60
Register as Flip Flop	495	0	7500	6.60
Register as Latch	0	0	7500	0.00
F7 Muxes	64	0	4000	1.60
F8 Muxes	32	0	2000	1.60
+	+	+		++

تصویر 4- نمایش تعداد منابع مصرفی

اطلاعات مربوط به کلاک (از جمله فرکانس مدار) در جدول زیر قابل مشاهده است.

Cloc	k Summary		
Clock	Waveform(ns)	Period(ns)	Frequency(MHz)
clk	{0.000 50.000}	100.000	10.000

تصویر 5- نمایش خلاصه اطلاعات کلاک

مطابق اطلاعات جدول زیر فرکانس کاری مدار می تواند به $F=rac{1}{2.15}=465MH$ افزایش بیابد.

Pulse Width Checks

Clock Name: clk

Waveform(ns): { 0.000 50.000 }

Period(ns): 100.000 Sources: { clk }

Check Type Corner Lib Pin Reference Pin Required(ns) Actual(ns) Slack(ns) Location Pin

clk_IBUF_BUFG_inst/I Min Period n/a BUFG/I n/a 2.155 100.000 97.845 Low Pulse Width FDRE/C n/a 0.500 50.000 49.500 d_next_reg[50]/C Slow High Pulse Width Fast FDRE/C n/a 0.500 50.000 49.500 d_next_reg[50]/C

تصوير6- نمايش اطلاعات بررسي pulse width

پس از 215 کلاک نتیجه حاصل می شود.