MODELO DE CORREÇÃO DE ERROS

Barros et al (2018) indicou que a estacionariedade das variáveis econômicas do sistemas do VAR foi largamente imposta em diversos trabalhos empíricos de forma a possibilitar utilização do MQO.

Entretanto, a maioria das deduções de longo prazo em modelos macroeconômicos surge de modelos com variáveis em nível, o que impõe um grande desafio em avaliar resultados empíricos a partir de variáveis diferenciadas.

Modelos lineares não estacionários estimados por MQO podem levar a problemas sérios, como o caso das regressões espúrias.

Engle & Granger (1987) apresentaram uma solução para o problema.

Eles mostraram que é possível que combinação linear de processos possam ser estacionários.

Os componentes de um vetor X_t são ditos cointegrados de ordem (d,b) se:

- Todos componentes são integrados de ordem d
- ii. Existe um vetor não nulo β tal que $u_t = X_t \beta \sim I(d-b) b>0$

Ou seja, segundo Bueno (2012):

"O vetor β , chamado de vetor de cointegração, define uma combinação linear entre os elementos de X_t perfeita no sentido de seguir uma tendência comum no longo prazo. Se a tendência estocástica for comum a todas variáveis, diz-se que existe um equilíbrio de longo prazo."

Essa combinação se diz perfeita quando $X_t^{\circ}\beta=0$

Segundo Barros et al (2018):

De maneira simplificada a solução prática é a inclusão dos resíduo $oldsymbol{Z}_t$

$$y_t = \sum_{i=1}^k \beta_i X_{t,i} + Z_t$$

Como $\widehat{\boldsymbol{Z}}_t$ representa oscilações em relação ao comportamento de equilíbrio de longo prazo das variáveis, em teoria espera-se que sejam estacionários.

O resultado final é o Modelo de Correção de Erros:

$$\Delta y_{t} = \emptyset_{1} + \lambda_{1} z_{t} + \sum_{i=2}^{k} \beta_{1,i} \Delta y_{t-1} + \sum_{i=2}^{l} \delta_{1,i} \Delta x_{t-i} + \varepsilon_{1,t}$$

$$\Delta x_{t} = \emptyset_{2} + \lambda_{2} z_{t} + \sum_{i=2}^{p} \beta_{2,i} \Delta y_{t-1} + \sum_{i=2}^{q} \delta_{2,i} \Delta x_{t-i} + \varepsilon_{2,t}$$

VECM - Modelo Vetorial de Correções de Erros

Uma limitação da abordagem de Engle-Granger se dá quando existem mais de duas variáveis (n). Como medir a cointegração entre elas?

A cointegração passa assumir n-1 relações possíveis, quando maior número de variáveis maio a relação entre elas.

Engle-Granger, Campbell e Shiller definem cointegração de uma maneira mais generalizada:

"Um vetor Y_t de dimensão n é dito cointegrado se existir pelo menos um vetor B de mesma dimensão tal que $B`Y_t$ é tendência-estacionário. Se existirem r vetores cointegrantes dizemos que Y_t cointegrado com o posto de integração r e definimos a matriz $B=(B_1,B_2...B_r)$ com dimensão (n x r) de vetores cointegrantes, de maneira que os r elementos do vetor $B`Y_t$ são tendência estacionários"

Método de Johansen

Estatística do traço ou posto:

$$-2ln(Q) = -T\sum_{i=r+1}^{n} (1-\hat{\lambda}_i)$$

Estatística do máximo autovalor:

$$-2ln(Q;r\backslash r+1)=-Tln(1-\widehat{\lambda}_{r+1})$$

Hipótese nula: r=0

Comando no R:

```
ca.jo (x, type=c("eigen", "trace"), ecdet=c("none", "const", "trend"), k=2, spec=c("longrun", "transitory"), season=NULL, dumvar=NULL)
```

x: objeto contendo séries temporais a serem testadas;

type: o tipo do teste;

ecdet: componentes determinísticos;

K: ordem de defasagem do teste

spec: tipo de estrutura de representação

season: frequência das dummies sazonais

dumvar: variáveis dummy arbitrárias


```
suppressMessages(require(forecast))
suppressMessages(require(dplyr))
suppressMessages(require(vars))
suppressMessages(require(urca))
suppressMessages(require(pwt8))
data("pwt8.0")
View(pwt8.0)
br1 <- subset(pwt8.0, country=="Brazil",</pre>
             select = c("rgdpna","emp","xr","ctfp","hc"))
#Transformando em Variação
br <- data.frame()</pre>
    for (i in 1:62) {
      for (i in 1:5) {
        br[i,j] <- br1[i+1,j]/br1[i,j]
br <- br[1:61.]
colnames(br) <- c("PIB","Emprego","Cambio", "PTF","KHumano")</pre>
BR <- br[45:61,1:5]
```

•	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF ‡	KHumano [‡]
45	1.0422359	1.0134818	1.3806069	1.0943210	1.018128
46	1.0215053	0.9763511	1.0952779	1.1580114	1.020528
47	1.0337525	1.0063349	1.0725218	0.9252626	1.020528
48	1.0003535	1.0110555	1.0765544	0.8882415	1.020528
49	1.0025407	1.0140536	1.5630390	0.9066425	1.020527
50	1.0430620	1.0574127	1.0085396	0.9381537	1.020528
51	1.0131312	1.0071050	1.2843566	0.9627153	1.013767
52	1.0265809	1.0373310	1.2429025	0.9598251	1.013767
53	1.0114662	1.0143850	1.0537988	0.9552369	1.013767
54	1.0571229	1.0531012	0.9504933	0.9811777	1.013767
55	1.0315967	1.0282393	0.8322361	0.9889952	1.013767
56	1.0395704	1.0209492	0.8935818	1.0103331	1.007783
57	1.0609141	1.0121827	0.8950648	1.0245924	1.007783
58	1.0516250	1.0324375	0.9418139	1.0182609	1.007783
59	0.9966869	1.0063951	1.0903395	0.9933127	1.007783
60	1.0753361	1.0325215	0.8798649	0.9975997	1.007783
61	1.0273288	1.0197677	0.9508887	0.9871948	1.000000


```
#Transformando em Variação
22
    br <- data.frame()</pre>
24
25 -
        for (i in 1:62) {
         for (j in 1:5) {
26 -
             br[i,j] <- br1[i+1,j]/br1[i,j]
27
28
29
   br <- br[1:61,]
    colnames(br) <- c("PIB","Emprego","Cambio", "PTF","KHumano")</pre>
    BR \leftarrow br [45:61,1:5]
33
```

19-Previsao e Função Impulso em VA × BR ×									
$\Leftrightarrow \Rightarrow$									
*	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF [‡]	KHumano [‡]				
1	1.0489710	1.0266462	1.0045249	0.9608383	1.0069859				
2	1.0950908	1.0268261	1.0000000	1.0576892	1.0069860				
3	1.0508191	1.0270094	1.0795796	0.9785900	1.0069860				
4	1.0820352	1.0271960	1.5299026	1.0820572	1.0069859				
5	1.0645515	1.0273860	1.3636363	1.0013568	1.0069859				
6	1.0363008	1.0275796	1.1533334	0.9951280	1.0079469				
7	1.1004056	1.0277763	1.0578034	1.0507208	1.0079469				
8	1.0638197	1.0279767	1.2622951	1.0367908	1.0079469				
9	1.0771102	1.0281805	1.5800867	0.9721293	1.0079469				
10	1.0776185	1.0283876	1.8630137	1.0115239	1.0079469				
11	1.1407323	1.0231487	1.4411764	1.1029970	1.0087088				
12	1.0517305	1.0236216	1.4387756	1.0063758	1.0087089				
13	1.0644619	1.0241057	1.4822695	1.0226775	1.0087088				
14	1.0416311	1.0246004	2.1770336	0.9856143	1.0087089				
15	1.0696989	1.0251060	1.5164834	1.0028955	1.0087088				
16	1.0396388	1.0256225	1.1695652	0.9871906	1.0116851				
17	1.0573383	1.0261497	1.1995044	1.0470258	1.0116851				
18	1.1119982	1.0266876	1.2706612	1.0447176	1.0116851				
19	1.0641514	1.0272363	1.2032520	0.9637215	1.0116852				
20	1.1092334	1.0277953	1.1280676	1.0688871	1.0116851				
21	1.1134000	1.0485250	1.1511012	1.0557489	0.9935697				
22	1.1194000	1.0460604	1.1222518	1.0395163	0.9935697				

```
#Separando as variáveis
                         #Cria o vetor para variável PIB
36
37
    PIb \leftarrow ts(br\PIB, start = 1950, frequency = 1)
    Emprego <- ts(br$Emprego, start = 1950, frequency = 1)</pre>
38
    Cambio <- ts(br$Câmbio, start = 1950, frequency = 1)
    PTF \leftarrow ts(br$PTF, start = 1950, frequency = 1)
    KHumano \leftarrow ts(br\$KHumano, start = 1950, frequency = 1)
41
42
43
    Brasil <- cbind(BR$PIB,BR$Emprego,BR$Cambio,BR$PTF,BR$KHumano)</pre>
44
    Anos <- seq(from=1994, to=2011, by=1) #Cria um vetor para o tempo em anos de 1994 até 2011
45
    BRA \leftarrow ts(Brasil, start = 1994, frequency = 1)
    plot(BRA, main="Variação do PIB, Emprego, Cambio, PTF, Capital
46
         col=c("Blue","Black","Red","Green","Purple"), plot.type="
47
    grid(lty = "dotted",col = "lightgray")
```


52 correlacao <- cor(BR) 53 View(correlacao)

•	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF [‡]	KHumano [‡]
PIB	1.0000000	0.4916812	-0.5281227	0.3135041	-0.3032975
Emprego	0.4916812	1.0000000	-0.2830392	-0.3876761	-0.1507691
Cambio	-0.5281227	-0.2830392	1.0000000	-0.1239067	0.5143638
PTF	0.3135041	-0.3876761	-0.1239067	1.0000000	-0.1519149
KHumano	-0.3032975	-0.1507691	0.5143638	-0.1519149	1.0000000


```
#Teste de Joahansen
TJ <- ca.jo(BR, type=c("eigen", "trace"),
      ecdet = c("none", "const", "trend"), K=2, spec = c("longrun", "transitory"),
      season = NULL, dumvar=NULL)
summary(TJ)
# Johansen-Procedure #
##########################
Test type: maximal eigenvalue statistic (lambda max), with linear trend
Eigenvalues (lambda):
[1] 1.00000000 0.91781840 0.85991247 0.75314351 0.03427349
Values of teststatistic and critical values of test:
         test 10pct 5pct 1pct
r <= 4 | 0.52 6.50 8.18 11.65
r <= 3 | 20.98 12.91 14.90 19.19
r <= 2 | 29.48 18.90 21.07 25.75
r <= 1 | 37.48 24.78 27.14 32.14
r = 0 | NaN 30.84 33.32 38.78
```