		授業計画	課題
04/06	第1回	微分方程式の離散化	前進・後退・中心差分、高次の差分を用いて
		Extra Ato Ato Ato	微分方程式を離散化し、誤差を評価できる
04/10	第2回	有限差分法	時間積分の安定性や高次精度の積分を理解し
			移流・拡散・波動方程式を解析できる
04/13	第3回	有限要素法	Galerkin 法,テスト関数,isoparametric 要素
			の概念を理解し,弾性方程式を解析できる
04/17	第4回	7 27 1 7 12	Fourier・Chebyshev・Legendre・Bessel などの
		Python ctypes	直交基底関数による離散化の利点を説明できる
04/20	第5回	接用再まと	逆行列と δ 関数・Green 関数の関係を理解し
		OpenMP	境界積分方程式を用いた解析ができる
04/24	第6回	人了動力學生	時間積分の symplectic 性や熱浴の概念を理解し
		MPI	分子間に働く保存力の動力学を解析できる
04/27	第7回	Smooth particle hydrodynamics (SPII) **	微分演算子の動径基底関数による離散化と
		SIMD	その保存性・散逸性を評価できる
05/01	第8回	Particle mesh 12	粒子と格子の両方の離散化を組み合わせる場合の
		GPU	離散点からの補間法と高次モーメントの保存法

並列プログラミング言語: SIMD, OpenMP, MPI, GPU 並列計算ライブラリ: BLAS, LAPACK, FFTW 高性能計算支援ツール: Compiler flags, Profiler, Debugger TSUBAME job submission

Single Instruction Multiple Data (SIMD)並列化

SSE

https://www.slideshare.net/FukushimaNorishige/simd-10548373

AVX512

http://pact2016.pactconf.org/files/2016/09/2016-PACT-Intel-AVX512-Tutorial-v3.0.pdf

行列積

http://int.main.jp/txt/matmul/

Haswell (microarchitecture)			
A Haswell wafer with a pin for scale			
CPUID code	0306C3h		
L1 cache	64 KB per core		
L2 cache	256 KB per core		
L3 cache	2-40 MB (shared)		

キャッシュ・ブロッキング

https://www.cs.utexas.edu/users/flame/pubs/blis3_ipdps14.pdf

PAPI

http://perfsuite.ncsa.illinois.edu/psprocess/metrics.shtml