Name:	Question 1	
	Question 2	
Exam 2	Question 3	
CSc 75010: Theoretical Computer Science	Question 4	
Graduate Center of CUNY	Question 5	
22 November 2002	Question 6	
(Yellow Version)	Total	

Do five of the following six problems. Write each answer on a separate piece of paper.

- 1. (a) Define *computable function* and give an example of a function that is not computable.
 - (b) Assume that the alphabet and tape alphabet are: $\Sigma = \Gamma = \{0,1\}$. Give an implementation level description of a Turing machine that takes as input a number in binary representation and mulitplies it by 2.
- 2. (a) Show that the set of all positive rational numbers is countable.
 - (b) Show that the set of all positive real numbers is uncountable.
- 3. (a) Show that the Halting Problem is undecidable, using the diagonalization method.
 - (b) Show that the set of all totally undefined computable functions (that is the set of all functions that diverge for all inputs) is not decidable.
- (a) Show that the set of Turing-recognizable languages is closed under star.
 - (b) Show that if A is decidable, then A and \bar{A} are Turing-recognizable.
- 5. (a) State the Post Correspondence Problem (PCP).

 \mathbf{C}

- (b) Show that PCP is decidable over the alphabet $\Sigma = \{1\}$.
- 6. (a) Show that for all A and B, $A \leq_m B$ implies $\bar{A} \leq_m \bar{B}$.
 - (b) Show for all A, B, there exists a set J such that $A \leq_T J$ and $B \leq_T J$.