Particle spectrograph

Wave operator and propagator

	$\Delta_{1}^{\#1}{}_{\alpha\beta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1}^{#1}{}_{\alpha}$	$\Delta_{1-lpha}^{\#2}$	$\Delta_{1}^{\#3}{}_{lpha}$	$\Delta_{1}^{\#4}{}_{\alpha}$	$\Delta_{1}^{\#5}{}_{lpha}$	$\Delta_{1^{-}\alpha}^{\#6}$	${\mathcal T}_1^{\sharp 1}{}_{lpha}$
$\Delta_1^{\#1} \dagger^{\alpha_i}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_1^{#2} \dagger^{\alpha_i}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2 \left(a_0^2 - 14 a_0 a_1 k^2 - 35 a_1^2 k^4\right)}{{a_0}^2 \left(a_0 - 29 a_1 k^2\right)}$	$\frac{1}{a_0^2 - 29 a_0 a_1 k^2}$	0	0	0	0	0	0	0
$\Delta_1^{#3} \dagger^{\alpha_i}$	0	$\frac{40\sqrt{2}a_1k^2}{a_0^2-29a_0a_1k^2}$	$\frac{4}{a_0-29a_1k^2}$	0	0	0	0	0	0	0
$\Delta_{1}^{#1}$ †	ο	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} a_0 (2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	0	$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$
Δ ₁ ^{#2} †	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{a_0^2 (4+k^2)^2 - 30 a_0 a_1 k^2 (4+k^2) (4+3 k^2) + a_1^2 k^4 (6416 + 7928 k^2 + 1901 k^4)}{2 a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{k^2 (2 a_0^2 (5 + 2 k^2) - a_0 a_1 (880 + 778 k^2 + 199 k^4) + a_1^2 k^2 (9440 + 1901 k^2 (4 + k^2)))}{2 \sqrt{3} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{i k (-30 a_0 a_1 k^4 + a_0^2 (4 + k^2) + 27 a_1^2 k^4 (-28 + 3 k^2))}{a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
Δ ₁ -3 †	0	0	0	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)} - a_0^2 (4+k^2) a_0^2 (4+k$	$\frac{a_0^2 (76+52 k^2+3 k^4)+4 a_0 a_1 k^2 (472+214 k^2+19 k^4)+4 a_1^2 k^4 (5120+7280 k^2+1901 k^4)}{12 a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + (3 a_0 - 328 a_1) k^2 - 62 a_1 k^4)}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{2 a_0^2 (-2+k^2) + a_0 a_1 k^2 (472 + 934 k^2 + 289 k^4) - 2 a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{i k (54 a_1^2 k^4 (40 + 3 k^2) + a_0^2 (6 + 5 k^2) - 3 a_0 a_1 k^2 (86 + 23 k^2))}{\sqrt{6} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
Δ ₁ -4 †	ο ο	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + k^2 (3 a_0 - 2 a_1 (164 + 31 k^2)))}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{1}{12 a_0 - 396 a_1 k^2}$	$\frac{\sqrt{\frac{5}{2}} (-2 a_0 + a_1 k^2 (164 + 31 k^2))}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
Δ ₁ . †	0	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{k^2 \left(2 a_0^2 \left(5+2 k^2\right)-a_0 a_1 \left(880+778 k^2+199 k^4\right)+a_1^2 k^2 \left(9440+1901 k^2 \left(4+k^2\right)\right)\right)}{2 \sqrt{3} a_0^2 \left(2+k^2\right)^2 \left(a_0-33 a_1 k^2\right)}$	$\frac{2 a_0^2 (-2+k^2) + a_0 a_1 k^2 (472 + 934 k^2 + 289 k^4) - 2 a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$\frac{4a_0^2(17+14k^2+3k^4)-4a_0a_1k^2(236+287k^2+77k^4)+a_1^2k^4(5120+7280k^2+1901k^4)}{6a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{i k (2 a_0^2 (3+k^2)-27 a_1^2 k^4 (40+3 k^2)+3 a_0 a_1 k^2 (34+7 k^2))}{\sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$
Δ ₁ †	0	0	0	0	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} \ a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
${\mathcal T}_1^{\sharp 1}$ †'	0	0	0	$\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$	$\frac{i(-30a_0a_1k^5 + a_0^2k(4+k^2) + 27a_1^2k^5(-28+3k^2))}{a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$-\frac{i\left(54a_{1}^{2}k^{5}(40+3k^{2})+a_{0}^{2}k(6+5k^{2})\cdot3a_{0}a_{1}k^{3}(86+23k^{2})\right)}{\sqrt{6}a_{0}^{2}(2+k^{2})^{2}(a_{0}-33a_{1}k^{2})}$	$\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$-\frac{i(2a_0^2k(3+k^2)-27a_1^2k^5(40+3k^2)+3a_0a_1k^3(34+7k^2))}{\sqrt{3}a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$\frac{2k^{2}(a_{0}^{2}+30a_{0}a_{1}k^{2}-459a_{1}^{2}k^{4})}{a_{0}^{2}(2+k^{2})^{2}(a_{0}-33a_{1}k^{2})}$

	$\Gamma_{1}^{\#1}{}_{\alpha\beta}$	$\Gamma_{1}^{\#2}_{\alpha\beta}$	$\Gamma_{1}^{\#3}{}_{lphaeta}$	$\Gamma_{1-\alpha}^{\#1}$	Γ ₁ -α	Γ ₁ ⁻³ α	$\Gamma_{1}^{\#4}{}_{\alpha}$	Γ ₁ ^{#5} α	$\Gamma_{1}^{\#6}$	$h_1^{\#1}{}_{\alpha}$
$\Gamma_1^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a_0 - 15 a_1 k^2 \right)$	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0
$\Gamma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{\#3} \dagger^{\alpha\beta}$	$5a_1k^2$	0	$\frac{1}{4}(a_0-29a_1k^2)$	0	0	0	0	0	0	0
$\Gamma_1^{#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} a_1 k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$
$\Gamma_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1}^{#3} + \alpha$	0	0	0	$\frac{5}{2} \sqrt{3} a_1 k^2$	0	- <u>a₀</u> 3	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$\frac{i a_0 k}{4 \sqrt{6}}$
$\Gamma_{1}^{\#4} + \alpha$	0	0	0	$-\frac{5}{2} \sqrt{\frac{5}{3}} a_1 k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$\frac{1}{3}(a_0 + 7 a_1 k^2)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$
$\Gamma_{1}^{#5} +^{\alpha}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	<u>a₀</u> 3	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$
$\Gamma_1^{\#6} \uparrow^{\alpha}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12} (a_0 - 17 a_1 k^2)$	<u>ia₀ k</u> 4 √6
$h_1^{\#1} + \alpha$	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0

Quadratic (free) Lagrangian density $\frac{1}{2}a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2}a_0 \Gamma^{\alpha}_{\alpha\beta} \Gamma^{\chi}_{\chi\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2}a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2}a_0 \Gamma^{\alpha}_{\alpha} \Gamma^{\chi}_{\chi\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha} + \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha} - \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha} + \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha} + \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha} - \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\beta} \nabla^{\alpha}_{\alpha} - \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\beta}^{\chi} \nabla^{\alpha}_{\alpha} - \frac{1}{2}a_0 \partial_{\chi}^{\chi} \partial_{\gamma}^{\chi} $
--

0 ⁻ 1 †	η ₀ #2 †	7 ₀ ^{#1} †	-#4 0+ †	-#3 0+ +	-#2 0+ †	0 ^{#1} +		
0	0	$\frac{i a_0 k}{2 \sqrt{2}}$	$-\frac{10 a_1 k^2}{\sqrt{3}}$	$10\sqrt{\frac{2}{3}} a_1 k^2$	0	$\frac{1}{2}\left(-a_0+25a_1k^2\right)$	Γ#1 0+	
0	0	0	$-\frac{a_0}{2\sqrt{2}}$	$\frac{a_0}{2}$	0	0	Γ ₀ ^{#2}	
0	1 a 0 k	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$	23 <i>a</i> 1 k ²	^a 0 2	$10\sqrt{\frac{2}{3}}a_1k^2$	Γ#3 0+	
0		$\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{6} (3 a_0 + 23 a_1 k^2)$	- <u>.</u> 3		$-\frac{10 a_1 k^2}{\sqrt{3}}$	Γ#4 0+	
0	0	0	$-\frac{ia_0k}{4\sqrt{6}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	0	$-\frac{ia_0k}{2\sqrt{2}}$	$h_{0+}^{#1}$	
0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{1}{4}\bar{l}a_0k$	0	0	$h_{0}^{#2}$	
$\frac{1}{2} \left(-a_0 + a_1 k^2 \right)$	0	0	0	0	0	0	Γ#1	

$\Delta_{0}^{#1}$ †	T ₀ ^{#2} †	${\cal T}_{0}^{\#1} \dagger$	$\Delta_{0^{+4}}^{#4}$ †	Δ ₀ ^{#3} †	$\Delta_{0^{+}}^{#2}$ †	$\Delta_{0^{+}}^{#1}$ †	
0	$\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	2 i √2 a ₀ k	$-\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	0	$\Delta_{0}^{\#1}$
0	$-\frac{24ik(3a_0+197a_1k^2)}{{a_0}^2(16+3k^2)^2}$	$\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{48 (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$\Delta_{0}^{\#2}$
0	$\frac{8ik(19a_0 + (3a_0 + 197a_1)k^2)}{{a_0}^2(16 + 3k^2)^2}$	$-\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$-\frac{16(35a_0+(6a_0+197a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{{a_0}^2(16 + 3k^2)^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	Δ#3 0+
0	$-\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{32(13a_0 + (3a_0 - 197a_1)k^2)}{3a_0^2(16 + 3k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	$\Delta_{0}^{\#4}$
0	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	$\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{2i\sqrt{2}}{a_0k}$	${\mathcal T}^{\sharp 1}_{0^+}$
0	$-\frac{12k^2(3a_0+197a_1k^2)}{{a_0}^2(16+3k^2)^2}$	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	$\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8ik(19a_0+(3a_0+197a_1)k^2)}{{a_0}^2(16+3k^2)^2}$	$\frac{24ik(3a_0+197a_1k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	${\cal T}_{0^+}^{#2}$
$-\frac{2}{a_0 - a_1 k^2}$	0	0	0	0	0	0	$\Delta_{0^{\bar{-}}}^{\#1}$

	$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta^{\#2}_{2}{}^{+}\alpha \beta$	$\Delta^{\#3}_{2}{}^{+}\alpha\beta$	${\cal T}^{\#1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$	$\Delta_{2-\alpha\beta\chi}^{\#2}$
$\Delta_{2}^{\#1} \dagger^{\alpha k}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{\sqrt{3} a_0}$	$\frac{4i\sqrt{2}}{a_0k}$	0	0
$\Delta_{2}^{\#2} \dagger^{\alpha \beta}$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8(a_0+13a_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$	$-\frac{4i(a_0+31a_1k^2)}{\sqrt{3}a_0^2k}$	0	0
$\Delta_{2}^{#3}$ † $^{\alpha \beta}$	$\frac{4}{\sqrt{3} a_0}$	$-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$	$\frac{8(a_0-26a_1k^2)}{3a_0^2}$	$-\frac{4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)}{{a_0}^2k}$	0	0
$\mathcal{T}_{2}^{\sharp 1}\dagger^{lpha k}$	$-\frac{4i\sqrt{2}}{a_0k}$	$\frac{4i(a_0 + 31a_1k^2)}{\sqrt{3}a_0^2k}$	$\frac{4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)}{a_0^2k}$	$-\frac{8(a_0+11a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta}$	0	0	0	0	$\frac{4}{a_0 - a_1 k^2}$	0
$\Delta_2^{\#2} \dagger^{\alpha\beta}$	0	0	0	0	0	$\frac{4}{a_0-5a_1k^2}$

$\Gamma_{2}^{+2} + \alpha \beta \chi$	$\Gamma_{2^{-}}^{#1} \uparrow^{\alpha\beta\chi}$	$h_{2+}^{#1} \dagger^{\alpha\beta}$	$\Gamma_{2+}^{#3} \uparrow^{\alpha\beta}$	$\Gamma_{2+}^{#2} \uparrow^{\alpha\beta}$	$\Gamma_{2+}^{#1} + \alpha \beta$	
0	0	$-\frac{i a_0 k}{4 \sqrt{2}}$	$\frac{5 a_1 k^2}{\sqrt{3}}$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\uparrow^{\alpha\beta} \left[\frac{1}{4} \left(a_0 + 11 a_1 k^2 \right) \right]$	$\Gamma_{2}^{\#1}{}_{lphaeta}$
0	0	$-\frac{ia_0k}{4\sqrt{3}}$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{6} \left(-3 a_0 + a_1 k^2 \right)$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\Gamma_{2+\alpha\beta}^{#2}$
0	0	$\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{12} (3 a_0 + a_1 k^2)$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{5a_1k^2}{\sqrt{3}}$	$\Gamma_{2}^{#3} + \alpha \beta$
0	0	0	$-\frac{ia_0k}{4\sqrt{6}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	$h_{2}^{\#1}\alpha\beta$
0	$\frac{1}{4} (a_0 - a_1 k^2)$	0	0	0	0	$\Gamma_{2^-}^{\#1} \alpha \beta \chi$
$\frac{1}{4}(a_0-5a_1k^2)$	0	0	0	0	0	$\Gamma_{2}^{\#2}\alpha\beta\chi$

Massive	and	mass	less	spectra

** MassiveAnalysisOfSector...Null

Unitarity conditions