# Decision Table Based Testing

Eike Neumann

March 2023

### Decision Table Based Testing

- Essentially a special case of equivalence class testing.
  - A special method for identifying equivalence classes.
  - A special mechanism for mitigating combinatorial explosion.
- Idea: try to capture the possible behaviours of a system using a decision table.

| Coursework completed? | Υ | Υ | Υ | Υ | N | Ν | N | N |
|-----------------------|---|---|---|---|---|---|---|---|
| Labs signed off?      | Υ | Υ | N | N | Υ | Υ | N | N |
| Elden Ring released?  | Υ | N | Υ | N | Υ | N | Υ | N |
| Work on coursework    |   |   |   |   |   | Χ |   | Χ |
| Work on labs          |   |   |   | Χ |   |   |   | Χ |
| Play Elden Ring       | Χ |   | Χ |   | Χ |   | Χ |   |

• Structured way of expressing actions based on conditions.



- Semantics of rules: for a given combination of conditions, take exactly those actions that are marked with an "X".
- This choice of semantics is tailored to the use of decision tables for testing.

| Coursework completed? | Υ | Υ | Υ | Υ | N | N | N | N |
|-----------------------|---|---|---|---|---|---|---|---|
| Labs signed off?      | Υ | Υ | N | N | Υ | Υ | N | N |
| Elden Ring released?  | Υ | N | Υ | N | Υ | N | Υ | N |
| Work on coursework    |   |   |   |   |   | Χ |   | Χ |
| Work on labs          |   |   |   | Χ |   |   |   | Χ |
| Play Elden Ring       | X |   | Χ |   | X |   | Χ |   |

- Observation: the actions in the first and fifth column are identical.
- The condition "Coursework Completed?" changes its value from "true" to "false" between those columns.
- ullet  $\Rightarrow$  The actions we take do not depend on this condition.

| Coursework completed? | - | Υ | Υ | Υ | N | N | N |
|-----------------------|---|---|---|---|---|---|---|
| Labs signed off?      | Υ | Υ | N | N | Υ | N | N |
| Elden Ring released?  | Υ | N | Υ | N | N | Υ | N |
| Work on coursework    |   |   |   |   | Χ |   | Χ |
| Work on labs          |   |   |   | Χ |   |   | Х |
| Play Elden Ring       | X |   | Χ |   |   | Χ |   |

- Table can be simplified by merging the two columns.
- The "-" means that the condition can take any value.

| Coursework completed? | - | Υ | Y | Υ | Ν | Ν | N |
|-----------------------|---|---|---|---|---|---|---|
| Labs signed off?      | Υ | Υ | N | N | Υ | N | N |
| Elden Ring released?  | Υ | N | Υ | N | N | Υ | N |
| Work on coursework    |   |   |   |   | Χ |   | Χ |
| Work on labs          |   |   |   | Χ |   |   | Χ |
| Play Elden Ring       | Χ |   | X |   |   | X |   |

| Coursework completed? | - | Υ | - | Υ | N | N |
|-----------------------|---|---|---|---|---|---|
| Labs signed off?      | Υ | Υ | N | N | Υ | N |
| Elden Ring released?  | Υ | N | Υ | N | N | N |
| Work on coursework    |   |   |   |   | Χ | Χ |
| Work on labs          |   |   |   | Χ |   | Χ |
| Play Elden Ring       | X |   | X |   |   |   |

| Coursework completed? | - | Υ | - | Υ | N | N |
|-----------------------|---|---|---|---|---|---|
| Labs signed off?      | Υ | Υ | N | N | Υ | N |
| Elden Ring released?  | Υ | N | Υ | N | N | N |
| Work on coursework    |   |   |   |   | Χ | Χ |
| Work on labs          |   |   |   | Χ |   | Χ |
| Play Elden Ring       | X |   | X |   |   |   |

| Coursework completed? | - | Υ | Υ | N | N |
|-----------------------|---|---|---|---|---|
| Labs signed off?      | - | Υ | N | Υ | N |
| Elden Ring released?  | Υ | N | N | N | N |
| Work on coursework    |   |   |   | Χ | Χ |
| Work on labs          |   |   | Χ |   | Χ |
| Play Elden Ring       | X |   |   |   |   |

| Coursework completed? | - | Υ | Υ | N | N |
|-----------------------|---|---|---|---|---|
| Labs signed off?      | - | Υ | N | Υ | N |
| Elden Ring released?  | Υ | N | N | N | N |
| Work on coursework    |   |   |   | Χ | Χ |
| Work on labs          |   |   | Χ |   | Χ |
| Play Elden Ring       | Χ |   |   |   |   |

- Here, we take the actions "Play Elden Ring", "Do not work on labs", "Do not work on coursework" whenever the condition "Elden Ring Released?" is true.
- The actions do not depend on the values of the other conditions.

#### Rule Counts

| Coursework completed? | - | Υ | Υ | Ν | N |
|-----------------------|---|---|---|---|---|
| Labs signed off?      | - | Υ | N | Υ | N |
| Elden Ring released?  | Υ | N | N | N | N |
| Rule Count            | 4 | 1 | 1 | 1 | 1 |
| Work on coursework    |   |   |   | Χ | Χ |
| Work on labs          |   |   | Χ |   | Χ |
| Play Elden Ring       | Χ |   |   |   |   |
| 1 lay Liuch King      |   |   |   |   |   |

- "Rule Count" = number of rules encoded by a column with "don't-care"-entries.
- Summing up the rule counts for all columns must yield the size of the decision table that we obtain by expanding all columns with "don't-care" entries.

#### Rule Counts

| Coursework completed? | - | Υ | Υ | N | N |
|-----------------------|---|---|---|---|---|
| Labs signed off?      | - | Υ | N | Υ | N |
| Elden Ring released?  | Υ | N | N | N | N |
| Rule Count            | 4 | 1 | 1 | 1 | 1 |
| Work on coursework    |   |   |   | Χ | Χ |
| Work on labs          |   |   | Χ |   | Χ |
| Play Elden Ring       | Χ |   |   |   |   |

- Rule counts allow us to check that different columns don't contain the same rule.
- The expanded version of the above decision table has  $2^3 = 8$  entries.
- The rule counts sum up to 4+1+1+1+1=8.
- Hence, the table has the correct number of rules.

#### Decision Tables – An Inconsistent Table

| Coursework completed? | - | N | - |
|-----------------------|---|---|---|
| Labs signed off?      | - | - | N |
| Elden Ring released?  | Υ | - | - |
| Rule Count            | 4 | 4 | 4 |
| Work on coursework    |   | Χ |   |
| Work on labs          |   |   | Χ |
| Play Elden Ring       | Χ |   |   |

- The expanded table has  $2^3 = 8$  entries.
- The rule counts sum up to 4+4+4=12.
- Hence, there are columns which encode competing rules.

#### Decision Tables – An Inconsistent Table

| Coursework completed? | - | N | - |
|-----------------------|---|---|---|
| Labs signed off?      | _ | - | N |
| Elden Ring released?  | Y | - | - |
| Rule Count            | 4 | 4 | 4 |
| Work on coursework    |   | Χ |   |
| Work on labs          |   |   | Χ |
| Play Elden Ring       | Χ |   |   |

- Assume the labs are signed off, the coursework is not completed, and Elden Ring is released.
  - The first column says: play Elden ring, do not work on coursework, do not work on labs.
  - ► The second column says: do not play Elden ring, work on the coursework, do not work on labs.

#### Extended Decision Tables

|                        |         |     |      | )       |     |      |         |     |      |
|------------------------|---------|-----|------|---------|-----|------|---------|-----|------|
| Coursework completed?  |         | -   | -    | N       | N   | N    | Y       | Y   | Y    |
| Which labs signed off? | Neither | One | Both | Neither | One | Both | Neither | One | Both |
| Elden Ring released?   | Y       | Υ   | Y    | N       | N   | N    | N       | N   | N    |
| Rule Count             | 2       | 2   | 2    | 1       | 1   | 1    | 1       | 1   | 1    |
| Work on coursework     |         |     |      | Х       | Х   | Х    |         |     |      |
| Work on labs           | Х       |     |      | Х       |     |      | X       | Х   |      |
| Play Elden Ring        | Х       | X   | Х    | J       |     |      |         |     |      |

- Here, the condition "Which labs signed off?" can take the values "Neither", "One", or "Both".
- More generally:
  - ► In a limited-entry decision table every condition can only have two values ("Yes"/"No" or "True"/"False").
  - In an extended decision table every condition can have finitely many values.

# Decision Tables for Testing

- Let  $f: X \to Y$  be a function.
- A boolean condition on the input domain defines a partition of X into two disjoint subsets.
- An "extended" condition with n values defines a partition of X into n disjoint subsets.
- Outputs or properties of outputs can be expressed as actions of a decision table.
- Example. The absolute value function  $f: \mathbb{Q} \to \mathbb{Q}, x \mapsto |x|$ .

| Input non-negative? | Υ | Ν |
|---------------------|---|---|
| Return Input        | Χ |   |
| Return Minus Input  |   | Χ |

## A Decision Table for the Triangle Problem

| Triangle?      | N | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ |
|----------------|---|---|---|---|---|---|---|---|---|
| a = b?         | - | Υ | Υ | Υ | Υ | N | N | N | N |
| a = c?         | - | Υ | Υ | N | N | Υ | Υ | N | N |
| b = c?         |   | Υ | Ν | Υ | N | Υ | N | Υ | N |
| Rule Count     | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Not a Triangle | X |   | ? | ? |   | ? |   |   |   |
| Scalene        |   |   | ? | ? |   | ? |   |   | Χ |
| Isosceles      |   |   | ? | ? | Χ | ? | Χ | Χ |   |
| Equilateral    |   | Χ | ? | ? |   | ? |   |   |   |

- Problem: some rules are infeasible the set of inputs they define is empty.
- To keep track of this, add a row that indicates that the combination of conditions is impossible.

## A Decision Table for the Triangle Problem

| Triangle?      | N | Υ | Υ | Υ | Y | Υ | Υ | Υ | Υ |
|----------------|---|---|---|---|---|---|---|---|---|
| a = b?         | - | Υ | Υ | Υ | Υ | N | N | N | N |
| a = c?         | - | Υ | Υ | N | N | Υ | Υ | N | N |
| b = c?         | - | Υ | N | Υ | N | Υ | N | Υ | N |
| Rule Count     | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Not a Triangle | Χ |   |   |   |   |   |   |   |   |
| Scalene        |   |   |   |   |   |   |   |   | Χ |
| Isosceles      |   |   |   |   | Χ |   | Χ | Χ |   |
| Equilateral    |   | Χ |   |   |   |   |   |   |   |
| Impossible     |   |   | Χ | X |   | X |   |   |   |

- The columns that aren't labelled "impossible" form a partition of the input domain.
- ~ Employ Equivalence Class Testing to obtain a test suite: one test case per feasible column.

#### A Test Suite Derived from the Decision Table

| Case | а  | b  | С  | Expected Output |
|------|----|----|----|-----------------|
| 1    | 50 | 10 | 10 | Not a Triangle  |
| 2    | 50 | 50 | 50 | Equilateral     |
| 3    | 50 | 50 | 40 | Isosceles       |
| 4    | 50 | 40 | 50 | Isosceles       |
| 5    | 40 | 50 | 50 | Isosceles       |
| 6    | 40 | 30 | 50 | Scalene         |

- The expanded decision table has 16 columns, 3 of which are infeasible.
- We only have 6 test cases, because 8 columns of the expanded table have been combined into one.

# A Decision Table for the Triangle Problem – Feasibility of Columns

| Triangle?      | N | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ |
|----------------|---|---|---|---|---|---|---|---|---|
| a = b?         | - | Υ | Υ | Υ | Υ | N | N | N | N |
| a = c?         | _ | Υ | Υ | N | N | Υ | Υ | N | N |
| b = c?         | - | Υ | N | Υ | N | Υ | N | Υ | N |
| Rule Count     | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Not a Triangle | Х |   |   |   |   |   |   |   |   |
| Scalene        |   |   |   |   |   |   |   |   | Χ |
| Isosceles      |   |   |   |   | Χ |   | Χ | Χ |   |
| Equilateral    |   | X |   |   |   |   |   |   |   |
| Impossible     |   |   | Χ | Χ |   | Χ |   |   |   |

• Observe that the first column is feasible, but it contains feasible as well as infeasible rules.

# A Decision Table for the Triangle Problem – The First Column Expanded

| Triangle?                 | N | N | N | N | N | N | N | Ζ |
|---------------------------|---|---|---|---|---|---|---|---|
| a = b?                    | N | N | N | N | Υ | Υ | Υ | Υ |
| a = c?                    | N | N | Υ | Υ | N | N | Υ | Υ |
| b = c?                    | N | Υ | N | Υ | N | Υ | N | Υ |
| Rule Count                | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Y |
|                           |   |   |   |   |   |   |   |   |
| Not a Triangle            | X | X | X |   | X |   |   | * |
|                           | X | X | X |   | X |   |   | * |
| Not a Triangle            | X | X | X |   | X |   |   | * |
| Not a Triangle<br>Scalene | X | X | X |   | X |   |   | * |

• We can combine these columns into a single column, because all feasible columns have the same actions.

### Decision Table Based Testing

- Identify relevant characteristics of the problem's input make them into conditions of a decision table.
- Identify relevant characteristics of the problem's output make them into actions of a decision table.
- Oescribe the relation between inputs and outputs by a decision table.
- Reduce the number of columns by using "don't care"-entries.
- Create a test suite:
  - Add one test case per feasible rule/column.
  - Pick an input that satisfies the conditions of the rule.
  - The expected output is described by the actions.

# A Refined Decision Table for the Triangle Problem

| $a \ge b + c$ ?                  | Υ  | N  | N | N | N | N | N | N | N | N | N |
|----------------------------------|----|----|---|---|---|---|---|---|---|---|---|
| $b \ge a + c$ ?                  | -  | Υ  | N | N | N | N | N | N | N | N | N |
| <i>c</i> ≥ <i>a</i> + <i>b</i> ? | -  | -  | Y | N | N | N | N | N | N | N | N |
| a = b?                           | -  | -  | - | Υ | Υ | Υ | Υ | N | N | N | N |
| a = c?                           | -  | -  | - | Υ | Υ | N | N | Υ | Υ | N | N |
| b = c?                           | _  | _  | _ | Υ | N | Υ | N | Υ | N | Υ | N |
| Rule Count                       | 32 | 16 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Not a Triangle                   | X  | Χ  | X |   |   |   |   |   |   |   |   |
| Scalene                          |    |    |   |   |   |   |   |   |   |   | Χ |
| Isosceles                        |    |    |   |   |   |   | Χ |   | Χ | Χ |   |
| Equilateral                      |    |    |   | Χ |   |   |   |   |   |   |   |
| Impossible                       |    |    |   |   | Х | Χ |   | Χ |   |   |   |

#### A Test Suite for the Refined Decision Table

| Case | a  | b  | С  | Expected Output |
|------|----|----|----|-----------------|
| 1    | 20 | 13 | 5  | Not a Triangle  |
| 2    | 13 | 20 | 5  | Not a Triangle  |
| 3    | 13 | 5  | 20 | Not a Triangle  |
| 4    | 23 | 23 | 23 | Equilateral     |
| 5    | 42 | 42 | 23 | Isosceles       |
| 6    | 42 | 23 | 42 | Isosceles       |
| 7    | 42 | 42 | 23 | Isosceles       |
| 8    | 2  | 3  | 5  | Scalene         |

#### Discussion

- Decision tables yield a specific method for choosing equivalence classes.
- Rationale: Feasible columns in the decision table correspond to different (high-level) behaviours of the system.
- Adding a new condition at least doubles the size of the table.
- "don't care"-entries constitute a mechanism for reducing the number of test cases.
- Columns can only be combined using "don't care"-entries if their set of actions is completely independent from one condition.
- In general, the size of the decision table can grow quite fast in the number of conditions.

# The Next Date Problem

#### The Next Date Problem

- The Next Date Problem.
- Input: Three integers day, month, year.
- Output:
  - Out of Range if any of the inequalities  $1842 \le year \le 2042$ ,  $1 \le month \le 12$ ,  $1 \le day \le 31$  is violated.
  - ► Invalid Date if the given date is not a valid calendar date.
  - Otherwise: The calendar date of the day after the given date.

#### • Examples:

- On input day = 29, month = 2, year = 2022 the output is Invalid Date.
- On input day = 28, month = 2, year = 2022 the output is day = 1, month = 3, year = 2022.
- On input day = 28, month = 2, year = 2024 the output is day = 29, month = 2, year = 2024.

#### Next Date - Conditions

- Interesting properties of months:
  - Even or odd.
  - In the range January to July or in the range August to December
  - ► Equal to February.
  - Equal to December.
- Interesting days: 28, 29, 30, 31.
- Interesting years:
  - Leap years.
  - ► Non-leap-years.

#### Next Date - Conditions

- The above suggests to use an extended decision table with the following conditions:
  - ▶ Day  $\in$  {1 27, 28, 29, 30, 31}.
  - Month ∈ {February, December, Rest}.
  - Month even? ∈ {Yes, No}.
  - Month ≤ 7? ∈ {Yes, No}.
  - Leap year? ∈ {Yes, No}.

#### Next Date – Actions

- We can either output "Invalid Date"....
- ...or compute the next date.
- The latter involves a combination of the following:
  - Increment day.
  - Increment month.
  - Increment year.
  - Reset day to 1.
  - Reset month to 1.
- Thus, we have six possible actions: invalid, day++, month++, year++, reset day, reset month.
- Since the combination of our conditions contains infeasible combinations of conditions, we may need a seventh action, impossible.

# Next Date - "Ordinary" days

| Column               | 1    | 2    | 3    | 4   | 5   |
|----------------------|------|------|------|-----|-----|
| Day                  | 1–27 | 28   | 29   | 28  | 29  |
| Month                | -    | Rest | Rest | Dec | Dec |
| Month even?          | -    | -    | -    | -   | -   |
| Month ≤ 7?           | -    | -    | -    | -   | -   |
| Leap year?           |      | -    | -    | -   | -   |
| Rule Count           | 24   | 8    | 8    | 8   | 8   |
| invalid              |      |      |      |     |     |
| IIIVatIu             |      |      |      |     |     |
| day++                | X    | Х    | Х    | X   | X   |
|                      | X    | X    | X    | X   | X   |
| day++                | X    | X    | X    | X   | X   |
| day++<br>month++     | X    | X    | X    | X   | X   |
| day++ month++ year++ | X    | X    | X    | X   | X   |

- Again, we have combined infeasible rules with feasible ones using "don't care"-entries.
- Total number of rules encoded so far: 56.

## Next Date - February

| Column           | 6   | 7   | 8   | 9   | 10  | 11  |
|------------------|-----|-----|-----|-----|-----|-----|
| Day              | 28  | 28  | 29  | 29  | 30  | 31  |
| Month            | Feb | Feb | Feb | Feb | Feb | Feb |
| Month even?      | -   | -   | -   | -   | -   | -   |
| Month $\leq 7$ ? | -   | -   | -   | -   | -   | -   |
| Leap year?       | Y   | N   | Y   | N   | -   | -   |
| Rule Count       | 4   | 4   | 4   | 4   | 8   | 8   |
| invalid          |     |     |     | X   | X   | X   |
| day++            | Х   |     |     |     |     |     |
| month++          |     | Х   | Х   |     |     |     |
| year++           |     |     |     |     |     |     |
| reset day        |     | Х   | Х   |     |     |     |
| reset month      |     |     |     |     |     |     |
| impossible       |     |     |     |     |     |     |

• Total number of rules encoded so far: 56 + 32 = 88.

#### Next Date - 30th and 31st

| Column           | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Day              | 30  | 30  | 30  | 30  | 31  | 31  | 31  | 31  | 30  | 31  |
| Month            | Rst | Dec | Dec |
| Month even?      | Y   | Y   | N   | N   | Y   | Y   | N   | N   | -   | -   |
| Month ≤ 7?       | Y   | N   | Y   | N   | Y   | N   | Υ   | N   | -   | -   |
| Leap year?       | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| Rule Count       | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 8   | 8   |
| invalid          |     |     |     |     | Х   |     |     | Х   |     |     |
| day++            |     | Х   | Х   |     |     |     |     |     | Х   |     |
| month++          | X   |     |     | Х   |     | Х   | Х   |     |     |     |
| year++           |     |     |     |     |     |     |     |     |     | Х   |
| reset day        | Х   |     |     | Х   |     | Х   | Х   |     |     | Х   |
| reset month      |     |     |     |     |     |     |     |     |     | X   |
| 1 C3CC IIIOITCII |     |     |     |     |     |     |     |     |     |     |

- Total number of rules encoded so far: 56 + 32 + 32 = 120.
- The fully expanded decision table has  $5 \times 3 \times 2 \times 2 \times 2 = 120$  entries.
- Actual rule count matches the expected rule count.

#### A Test Suite Derived from the Decision Table

| Case | day | month | year | Expected Output |
|------|-----|-------|------|-----------------|
| 1    | 23  | 06    | 1912 | 24/06/1912      |
| 2    | 28  | 04    | 1906 | 29/04/1906      |
| 3    | 29  | 03    | 1873 | 30/03/1873      |
| 4    | 28  | 12    | 1903 | 29/12/1903      |
| 5    | 29  | 12    | 1861 | 30/12/1861      |
| 6    | 28  | 02    | 2022 | 01/03/2022      |
| 7    | 28  | 02    | 2024 | 29/02/2024      |
| 8    | 29  | 02    | 2022 | Invalid Date    |
| 9    | 29  | 02    | 2024 | 01/03/2024      |
| 10   | 30  | 02    | 2022 | Invalid Date    |
| 11   | 31  | 02    | 2022 | Invalid Date    |
| 12   | 30  | 06    | 2022 | 01/07/2022      |
| 13   | 30  | 80    | 2022 | 31/08/2022      |
| 14   | 30  | 07    | 2022 | 31/07/2022      |
| 15   | 30  | 09    | 2022 | 01/10/2022      |
| 16   | 31  | 06    | 2022 | Invalid Date    |
| 17   | 31  | 80    | 2022 | 01/09/2022      |
| 18   | 31  | 07    | 2022 | 01/08/2022      |
| 19   | 31  | 09    | 2022 | Invalid Date    |
| 20   | 30  | 12    | 2022 | 31/12/2022      |
| 21   | 31  | 12    | 2022 | 01/01/2023      |

## Decision Table Based Testing – Summary

- Structured way of constructing Equivalence Class Testing test suites.
- Good for problems with prominent branching.
- Offer a (limited) mechanism for reducing complexity.
- Despite this, they do not (easily) scale up.