Глава II. Системы линейных уравнений

§ 6. Строение общего решения системы линейных уравнений

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Система линейных уравнений

Определение

Линейным уравнением (или уравнением 1-го порядка) с n неизвестными x_1, x_2, \ldots, x_n называется уравнение вида

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b.$$
 (1)

Величины a_1, a_2, \ldots, a_n называются $\kappa o \ni \phi \phi$ ициентами при неизвестных, а $b - c = \delta o$ диним членом уравнения (1). Ко $\ni \phi$ фициенты при неизвестных и свободный член предполагаются известными.

Произвольная система линейных уравнений записывается следующим образом:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m. \end{cases}$$
(2)

 Всюду далее мы будем предполагать, что коэффициенты при неизвестных и свободные члены в системах линейных уравнений лежат в некотором (вообще говоря, произвольном) поле F и называть систему (2) системой линейных уравнений над полем F. Элементы поля F мы будем называть скалярами.

Частное и общее решение системы. Совместные и несовместные системы

Определение

Частным решением (или просто решением) системы (2) называется упорядоченный набор скаляров $(x_1^0, x_2^0, \ldots, x_n^0)$ из поля F такой, что при подстановке в любое уравнение системы (2) x_1^0 вместо x_1, x_2^0 вместо x_2, \ldots, x_n^0 вместо x_n получается верное равенство. Система линейных уравнений (2) называется совместной, если она имеет хотя бы одно частное решение, и несовместной в противном случае. Общим решением системы (2) называется множество всех ее частных решений.

- Общее решение есть у любой системы. В частности, у несовместной системы общим решением является пустое множество.
- Решить систему линейных уравнений значит найти ее общее решение.

Однородные системы линейных уравнений

Как мы увидим в дальнейшем, во многих задачах, а также при анализе строения общего решения произвольной системы линейных уравнений важную роль играют системы, у которых правые части всех уравнений равны 0. Такие системы имеют специальное название.

Определение

праз

Система линейных уравнений, в которой правые части всех уравнений равны 0, называется *однородной*.

Очевидно, что если в любое уравнение однородной системы вместо всех неизвестных подставить 0, то получится верное равенство. Иначе говоря, набор $(0,0,\dots,0)$, где n — число неизвестных в системе, является

частным решением любой однородной системы. Это решение называется *нулевым* решением. Из сказанного вытекает

Замечание о совместности однородной системы

Любая однородная система линейных уравнений совместна.

Определение

Если в системе (2) все свободные члены заменить нулями, то мы получим однородную систему

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0,
\end{cases}$$
(3)

которую мы будем называть однородной системой, соответствующей системе (2).

Определение

Матрица

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

называется основной матрицей (или просто матрицей) системы (2).

Обозначим через A основную матрицу системы (2) и положим

$$X = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}$$
 or $B = egin{pmatrix} b_1 \ b_2 \ dots \ b_m \end{pmatrix}$.

Тогда система (2) равносильна матричному равенству AX = B. Это равенство (при условии, что X и B — матрицы, состоящие из одного столбца) называется матричной записью системы линейных уравнений (2). Столбец X называется столбцом неизвестных, а столбец B — столбцом свободных членов системы (2).

§ 6. Строение общего решения системы линейных уравнений

Операции над наборами скаляров

Всякое частное решение системы линейных уравнений является упорядоченным набором скаляров. Поэтому следующее определение позволяет говорить о сумме частных решений системы и произведении частного решения системы на скаляр.

Определение

Пусть (y_1,y_2,\ldots,y_n) и (z_1,z_2,\ldots,z_n) — два упорядоченных набора элементов поля F и $t\in F$. Тогда упорядоченный набор скаляров $(y_1+z_1,y_2+z_2,\ldots,y_n+z_n)$ называется суммой наборов (y_1,y_2,\ldots,y_n) и (z_1,z_2,\ldots,z_n) , а упорядоченный набор (ty_1,ty_2,\ldots,ty_n) — произведением набора (y_1,y_2,\ldots,y_n) на скаляр t.

Строение общего решения системы линейных уравнений

Основным результатом данного параграфа является следующая

Теорема о строении общего решения системы линейных уравнений

- Сумма двух решений однородной системы линейных уравнений является решением этой системы. Произведение решения однородной системы линейных уравнений на скаляр является решением этой системы.
- 2) Пусть система (2) совместна, а $(x_1^0, x_2^0, \dots, x_n^0)$ некоторое ее частное решение. Набор скаляров (y_1, y_2, \dots, y_n) является решением этой системы тогда и только тогда, когда он равен сумме набора $(x_1^0, x_2^0, \dots, x_n^0)$ и некоторого частного решения однородной системы линейных уравнений, соответствующей системе (2).

Иллюстрацией к п. 2) этой теоремы служит рис. 1.

Умножение матрицы на скаляр

В доказательстве теоремы о строении общего решения системы линейных уравнений используется операция умножения матрицы на скаляр. Определим эту операцию.

Определение

Пусть $A=(a_{ij})$ — матрица размера $m\times n$ над кольцом R. Произведением матрицы A на скаляр $t\in R$ называется матрица $D=(d_{ij})\in R^{m\times n}$ такая, что $d_{ij}=ta_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,n$. Эта матрица обозначается через tA. Операции сложения матриц и умножения матрицы на скаляр часто объединяют термином линейные операции над матрицами.

Свойства умножения матрицы на скаляр

Следующие свойства операции умножения матрицы на скаляр проверяются непосредственно, исходя из определения операций.

Свойства умножения матрицы на скаляр

Если A и B — матрицы над (одним и тем же) кольцом R, а $t,s\in R$, то:

- 1) если A и B матрицы одного и того же размера, то t(A+B)=tA+tB (умножение матрицы на скаляр дистрибутивно относительно сложения матриц);
- 2) (t+s)A = tA + sA (умножение матрицы на скаляр дистрибутивно относительно сложения скаляров);
- 3) если произведение матриц AB определено, то (tA)B = A(tB) = t(AB);
- $4) \ t(sA) = (ts)A.$

Доказательство теоремы о строении общего решения системы линейных уравнений (1)

Доказательство теоремы о строении общего решения системы линейных уравнений. 1) Будем записывать наборы скаляров не в строку, а в столбец. Пусть

$$Y = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix} \quad \text{v} \quad Z = egin{pmatrix} z_1 \ z_2 \ dots \ z_n \end{pmatrix}$$

— решения системы (3), а A — основная матрица этой системы. Тогда AY = O и AZ = O, где O — нулевой столбец. Следовательно,

$$A(Y + Z) = AY + AZ = O + O = O$$
 in $A(tY) = t(AY) = t \cdot O = O$

для произвольного скаляра t. Это означает, что наборы Y+Z и tY являются решениями системы (3).

Доказательство теоремы о строении общего решения системы линейных уравнений (2)

2) Достаточность. Положим

$$X^0 = \begin{pmatrix} x_1^0 \\ x_2^0 \\ \vdots \\ x_n^0 \end{pmatrix}.$$

Пусть

$$Z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$$

— частное решение однородной системы линейных уравнений, соответствующей системе (2), а B — столбец свободных членов системы (2). Тогда

$$A(X^{0} + Z) = AX^{0} + AZ = B + O = B.$$

Мы видим, что набор $X^0 + Z$ является решением системы (2).

Доказательство теоремы о строении общего решения системы линейных уравнений (3)

Необходимость. Пусть

$$U = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

— решение системы (2). Положим $Y=U-X^0$. Тогда Y — решение системы (3), поскольку

$$AY = A(U - X^{0}) = AU - AX^{0} = B - B = O,$$

и $U=Y+X^0$. Теорема доказана.

Пункт 2) теоремы о строении общего решения системы линейных уравнений говорит о том, что набор скаляров принадлежит общему решению системы тогда и только тогда, когда он представим в виде суммы некоторого ее фиксированного частного решения и набора скаляров, принадлежащего общему решению соответствующей однородной системы. В связи с этим указанное утверждение часто кратко (и не вполне точно) формулируют следующим образом:

 общее решение системы линейных уравнений равно сумме ее частного решения и общего решения соответствующей однородной системы. Определенные и неопределенные системы линейных уравнений. Число решений неопределенной системы над бесконечным полем (1)

Определение

Система линейных уравнений называется *определенной*, если она имеет ровно одно решение, и *неопределенной*, если она имеет более одного решения.

Следствие о числе решений неопределенной системы

Неопределенная система линейных уравнений над бесконечным полем имеет бесконечно много решений.

Доказательство. В силу п. 2) теоремы о строении общего решения системы линейных уравнений достаточно доказать следствие для однородных систем. Пусть (3) — неопределенная однородная система линейных уравнений над бесконечным полем F. Ясно, что у нее есть по крайней мере одно ненулевое решение, т. е. решение $(x_1^0, x_2^0, \dots, x_n^0)$ такое, что $x_i^0 \neq 0$ для некоторого $1 \leqslant i \leqslant n$. В силу п. 1) теоремы о строении общего решения системы линейных уравнений набор $(tx_1^0, tx_2^0, \dots, tx_n^0)$ является решением нашей системы при любом $t \in F$.

Число решений неопределенной системы над бесконечным полем (2)

Предположим, что $t_1, t_2 \in F$ и $t_1x_i^0 = t_2x_i^0$. Умножив обе части этого равенства справа на $(x_i^0)^{-1}$, мы получим, что $t_1 = t_2$. Таким образом, если $t_1 \neq t_2$, то $t_1x_i^0 \neq t_2x_i^0$, и потому $(t_1x_1^0, t_1x_2^0, \ldots, t_1x_n^0)$ и $(t_2x_1^0, t_2x_2^0, \ldots, t_2x_n^0)$ — различные решения системы (3). Поскольку поле F бесконечно, бесконечно и число решений этой системы.