

SCPS141I - SEPTEMBER 2006-REVISED JUNE 2014

PCA9534A

PCA9534A Remote 8-BIT I²C and SMBus Low-Power I/O Expander With Interrupt Output **And Configuration Registers**

Features

- Low Standby Current Consumption of 1 µA Max
- I²C to Parallel Port Expander
- Open-Drain Active-Low Interrupt Output
- Operating Power-Supply Voltage Range of 2.3 V to 5.5 V
- 5-V Tolerant I/O Ports
- 400-kHz Fast I²C Bus
- Three Hardware Address Pins Allow Up to Eight Devices on the I²C/SMBus
- Allows Up to 16 Devices on the I²C/SMBus When Used in Conjunction with the PCA9534 See *Device Comparison Table* for I²C Expander offerings
- Input/Output Configuration Register
- Polarity Inversion Register
- Internal Power-On Reset
- Power-Up With All Channels Configured as Inputs
- No Glitch on Power-Up
- Noise Filter on SCL/SDA Inputs
- Latched Outputs With High-Current Drive Maximum Capability for Directly Driving LEDs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Description

This 8-bit I/O expander for the two-line bidirectional bus (I^2C) is designed for 2.3-V to 5.5-V V_{CC} operation. It provides general-purpose remote I/O expansion for most microcontroller families via the I²C interface [serial clock (SCL), serial data (SDA)].

The PCA9534A consists of one 8-bit configuration (input or output selection), input port, output port, and polarity inversion (active high or active low) register. At power on, the I/Os are configured as inputs. However, the system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding input or output register. The polarity of the input port register can be inverted with the polarity inversion register. All registers can be read by the system master.

The system master can reset the PCA9534A in the event of a timeout or other improper operation by utilizing the power-on reset feature, which puts the registers in their default state and initializes the I²C/SMBus state machine.

The PCA9534A open-drain interrupt (INT) output is activated when any input state differs from its corresponding input port register state and is used to indicate to the system master that an input state has changed.

The PCA9534A and PCA9534 are identical, except for their fixed I2C address. This allows for up to 16 of these devices (8 of each) on the same I²C bus.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
PCA9534A	SSOP (16)	6.20 mm × 5.30 mm
	VQFN (16)	4.00 mm × 4.00 mm
	QFN (16)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

DB, DBQ, DGV, DW, OR PW PACKAGE

RGV PACKAGE (TOP VIEW) ۶ 4 15 14 13 I 11 ĪNT P0 10 P7 Р1 9 **P**4

Table of Contents

1	Features 1	9	Detailed Description	15
2	Description 1		9.1 Functional Block Diagram	15
3	Revision History2		9.2 Device Functional Modes	16
4	Description (Continued)3		9.3 Programming	17
5	Device Comparison Table 4	4.0	Application And Implementation	<mark>2</mark> 4
6	Pin Configuration and Functions5		10.1 Typical Application	24
7	Specifications	11	Power Supply Recommendations	26
•	7.1 Absolute Maximum Ratings		11.1 Power-On Reset Requirements	26
	7.2 Handling Ratings		11.2 Power-On Reset Errata	27
	7.3 Recommended Operating Conditions	42	Device and Documentation Support	28
	7.4 Electrical Characteristics		12.1 Trademarks	28
	7.5 I ² C Interface Timing Requirements		12.2 Electrostatic Discharge Caution	28
	7.6 Switching Characteristics		12.3 Glossary	28
0	7.7 Typical Characteristics 9	13	Mechanical, Packaging, and Orderable Information	28
8	Parameter Measurement Information 12			

3 Revision History

C	hanges from Revision H (June 2010) to Revision I					
•	Removed Ordering Information Table.	/				
•	Added Interrupt Errata section.	1				
•	Deleted the 100 kΩ resistor at V _{CC}	24				
•	Added Power-On Reset Errata section.	2 ⁻				

4 Description (Continued)

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C bus. Thus, the PCA9534A can remain a simple slave device.

The device's outputs (latched) have high-current drive capability for directly driving LEDs. It has low current consumption.

Three hardware pins (A0, A1, and A2) are used to program and vary the fixed I²C address and allow up to eight devices to share the same I²C bus or SMBus.

The PCA9534A is pin-to-pin and I^2 C address compatible with the PCF8574A. However, software changes are required due to the enhancements in the PCA9534A over the PCF8574A.

The PCA9534A is a low-power version of the PCA9554A. The only difference between the PCA9534A and PCA9554A is that the PCA9534A eliminates an internal I/O pullup resistor, which dramatically reduces power consumption in the standby mode when the I/Os are held low.

5 Device Comparison Table

DEVICE	MAX FREQUE NCY	I ² C ADDRE SS	V _{CC} RANGE	NO. OF GPIOs	INTERRU PT OUTPUT	RESET INPUT	CONFIGURATIO N REGISTERS	5-V TOLER ANT	PUSH- PULL I/O TYPE	OPEN- DRAIN I/O TYPE	COMMENT
TCA6408	400	0100 00x	1.65 to 5.5	8	Yes	Yes	Yes	Yes	Yes	No	Power on reset, t _f (fall time) > 100 ms and t _f (ramp time) < 10 ms
TCA6408	400	0100 00x	1.65 to 5.5	8	Yes	Yes	Yes	Yes	Yes	No	Unrestricted power on reset ramp/fall time. Both t _t (fall time) and TRT (ramp time) can be between 0.1 ms and 2000 ms
TCA6416	400	0100 00x	1.65 to 5.5	16	Yes	Yes	Yes	Yes	Yes	No	Power on reset, t _f (fall time) > 100 ms and TRT (ramp time) < 10 ms
TCA6416 A	400	0100 00x	1.65 to 5.5	16	Yes	Yes	Yes	Yes	Yes	No	Unrestricted power on reset ramp/fall time. Both t _f (fall time) and TRT (ramp time) can be between 0.1 ms and 2000ms
TCA6424	400	0100 00x	1.65 to 5.5	24	Yes	Yes	Yes	Yes	Yes	No	Power on reset, t _f (fall time) > 100 ms and TRT (ramp time) < 10 ms
TCA9535	400	0100 xxx	1.65 to 5.5	16	Yes	No	Yes	Yes	Yes	No	
TCA9539	400	1110 1xx	1.65 to 5.5	16	Yes	Yes	Yes	Yes	Yes	No	
TCA9555	400	0100 xxx	1.65 to 5.5	16	Yes	No	Yes	Yes	Yes	No	
PCA6107	400	0011 xxx	2.3 to 5.5	8	Yes	Yes	Yes	Yes	Yes P1—P7 bits	Yes P0 bit	One open drain output; eight push pull outputs
PCA9534	400	0100 xxx	2.3 to 5.5	8	Yes	No	Yes	Yes	Yes	No	PCA9534 has a different slave address as the PCA9534A, allowing up to 16 devices '9534 type devices on the same I ² C bus
PCA9534 A	400	0111 xxx	2.3 to 5.5	8	Yes	No	Yes	Yes	Yes	No	PCA9534A has a different slave address as the PCA9534, allowing up to 16 devices '9534 type devices on the same I ² C bus
PCA9535	400	0100 xxx	2.3 to 5.5	16	Yes	No	Yes	Yes	Yes	No	
PCA9536	400	1000 001	2.3 to 5.5	4	No	No	Yes	Yes	Yes	No	
PCA9538	400	1110 0xx	2.3 to 5.5	8	Yes	Yes	Yes	Yes	Yes	No	
PCA9539	400	1110 1xx	2.3 to 5.5	16	Yes	Yes	Yes	Yes	Yes	No	
PCA9554	400	0100 xxx	2.3 to 5.5	8	Yes	No	Yes	Yes	Yes	No	
PCA9554 A	400	0111 xxx	2.3 to 5.5	8	Yes	No	Yes	Yes	Yes	No	
PCA9555	400	0100 xxx	2.3 to 5.5	16	Yes	No	Yes	Yes	Yes	No	
PCA9557	400	0011 xxx	2.3 to 5.5	8	No	Yes	Yes	Yes	Yes	Yes	
PCF8574	400	0100 xxx	2.5 to 6.0	8	Yes	No	No	Yes	Yes	No	PCA8574 has a different slave address as the PCA8574A, allowing up to 16 devices '9534 type devices on the same I ² C bus
PCF8574 A	400	0111 xxx	2.5 to 6.0	8	Yes	No	No	Yes	Yes	No	PCA8574A has a different slave address as the PCA8574, allowing up to 16 devices '9534 type devices on the same I ² C bus
PCF8575	400	0100 xxx	2.5 to 5.5	16	Yes	No	No	Yes	Yes	No	
PCF8575 C	400	0100 xxx	4.5 to 5.5	16	Yes	No	No	Yes	No	Yes	

RGT PACKAGE

6 Pin Configuration and Functions

RGV PACKAGE

Pin Functions

	PIN		
NAME	QSOP (DBQ), SOIC (DW), SSOP (DB), TSSOP (PW), AND TVSOP (DGV)	QFN (RGT) AND QFN (RGV)	DESCRIPTION
A0	1	15	Address input. Connect directly to V _{CC} or ground.
A1	2	16	Address input. Connect directly to V _{CC} or ground.
A2	3	1	Address input. Connect directly to V _{CC} or ground.
P0	4	2	P-port input/output. Push-pull design structure.
P1	5	3	P-port input/output. Push-pull design structure.
P2	6	4	P-port input/output. Push-pull design structure.
P3	7	5	P-port input/output. Push-pull design structure.
GND	8	6	Ground
P4	9	7	P-port input/output. Push-pull design structure.
P5	10	8	P-port input/output. Push-pull design structure.
P6	11	9	P-port input/output. Push-pull design structure.
P7	12	10	P-port input/output. Push-pull design structure.
ĪNT	13	11	Interrupt output. Connect to V _{CC} through a pullup resistor.
SCL	14	12	Serial clock bus. Connect to V _{CC} through a pullup resistor.
SDA	15	13	Serial data bus. Connect to V _{CC} through a pullup resistor.
V _{CC}	16	14	Supply voltage

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6	V
VI	Input voltage range (2)		-0.5	6	V
Vo	Output voltage range (2)		-0.5	6	V
I _{IK}	Input clamp current	V _I < 0		-20	mA
I_{OK}	Output clamp current	V _O < 0		-20	mA
I_{IOK}	Input/output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
I_{OL}	Continuous output low current	$V_O = 0$ to V_{CC}		50	mA
I _{OH}	Continuous output high current	$V_O = 0$ to V_{CC}		-50	mA
	Continuous current through GND			-250	A
I _{CC}	Continuous current through V _{CC}			160	mA
		DB package		82	
		DBQ package		90	
		DGV package		86	
0	Dockson thermal impadence (3)	DW package		46	°C/W
θ_{JA}	Package thermal impedance (3)	N package		67	C/VV
		PW package		88	
		RGT package		TBD	
		RGV package		51	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range		-65	150	°C
V _(ESD) E	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	0	2000	V
	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	0	1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.3	5.5	V
V _{IH}	High level input veltage	SCL, SDA	0.7 × V _{CC}	5.5	V
	High-level input voltage	A2-A0, P7-P0	2	5.5	V
.,	Low-level input voltage	SCL, SDA	-0.5	0.3 × V _{CC}	V
V _{IL}		A2-A0, P7-P0	-0.5	0.8	V
I _{OH}	High-level output current	P7-P0		-10	mA
I _{OL}	Low-level output current	P7-P0		25	mA
T _A	Operating free-air temperature		-40	85	°C

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

7.4 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input diode clamp voltage	I _I = -18 mA	2.3 V to 5.5 V	-1.2			V
√ _{POR}	Power-on reset voltage	$V_I = V_{CC}$ or GND, $I_O = 0$	V _{POR}		1.5	1.65	V
			2.3 V	1.8			
			3 V	2.6			
		$I_{OH} = -8 \text{ mA}$	4.5 V	4.1			
	_ (2)		4.75 V	4.1			
/он	P-port high-level output voltage ⁽²⁾	2)	2.3 V	1.7			V
			3 V	2.5			
		$I_{OH} = -10 \text{ mA}$	4.5 V	4			
			4.75 V	4			
	SDA	V _{OL} = 0.4 V	2.3 V to 5.5 V	3	8		
		OL 1	2.3 V	8	10		
			3 V	8	14		
		$V_{OL} = 0.5 V$	4.5 V	8	17		
			4.75 V	8	35		
OL	P port ⁽³⁾		2.3 V	10	13		mA
			3 V	10	19		
		V _{OL} = 0.7 V	4.5 V	10	24		
			4.75 V	10	45		
	ĪNT	V _{OL} = 0.4 V	2.3 V to 5.5 V	3	10		
	SCL, SDA	VOL — 3.1 V	2.0 1 10 0.0 1	•		±1	
	A2–A0	$V_I = V_{CC}$ or GND	2.3 V to 5.5 V			±1	μΑ
H.	P port	$V_{I} = V_{CC}$	2.3 V to 5.5 V			1	μA
H L	P port	$V_1 = GND$	2.3 V to 5.5 V			-1	μΑ
L	Port	VI - GIVD	5.5 V		104	175	μΛ
		$V_I = V_{CC}$ or GND, $I_O = 0$,	3.6 V		50	90	
		$I/O = inputs, f_{scl} = 400 \text{ kHz}$	2.7 V		20	65	
	Operating mode		5.5 V		60	150	
		$V_I = V_{CC}$ or GND, $I_O = 0$,	3.6 V		15		
CC		$V_I = V_{CC}$ or GND, $I_O = 0$, I/O = inputs, $f_{scl} = 100$ kHz	2.7 V		8	40	μA
						20	
	Standby made	$V_I = GND, I_O = 0,$	5.5 V		0.25	1	
	Standby mode	$I/O = inputs, f_{scl} = 0 \text{ kHz}$	3.6 V		0.2	0.9	
	Additional company in the R	One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND	2.7 V 2.3 V to 5.5 V		0.1	0.8 1.5	
ΛI _{CC}	Additional current in standby mode	All LED I/Os at $V_1 = 4.3 \text{ V}$, $f_{scl} = 0 \text{ kHz}$	5.5 V			1	mA
 ગ	SCL	$V_I = V_{CC}$ or GND	2.3 V to 5.5 V		4	5	pF
1	SDA		2.0 V 10 0.0 V		5.5	6.5	Pi
io	P port	$V_{IO} = V_{CC}$ or GND	2.3 V to 5.5 V		8	9.5	pF

All typical values are at nominal supply voltage (2.5-V, 3.3-V, or 5-V V_{CC}) and T_A = 25°C. The total current sourced by all I/Os must be limited to 85 mA.

Each I/O must be externally limited to a maximum of 25 mA, and the P port (P7-P0) must be limited to a maximum current of 200 mA.

7.5 I²C Interface Timing Requirements

over operating free-air temperature range (unless otherwise noted) (see Figure 14)

			STANDARD I ² C BU		FAST MOD I ² C BUS	E	UNIT
			MIN	MAX	MIN	MAX	
f _{scl}	I ² C clock frequency		0	100	0	400	kHz
t _{sch}	I ² C clock high time		4		0.6		μs
t _{scl}	I ² C clock low time		4.7		1.3		μs
t _{sp}	I ² C spike time			50		50	ns
t _{sds}	I ² C serial-data setup time		250		100		ns
t _{sdh}	I ² C serial-data hold time	0		0		ns	
t _{icr}	I ² C input rise time			1000	20 + 0.1C _b ⁽¹⁾	300	ns
t _{icf}	I ² C input fall time			300	20 + 0.1C _b ⁽¹⁾	300	ns
t _{ocf}	I ² C output fall time	10-pF to 400-pF bus		300	20 + 0.1C _b ⁽¹⁾	300	ns
t _{buf}	I ² C bus free time between stop and	start	4.7		1.3		μs
t _{sts}	I ² C start or repeated start condition	setup	4.7		0.6		μs
t _{sth}	I ² C start or repeated start condition	hold	4		0.6		μs
t _{sps}	I ² C stop condition setup		4		0.6		μs
t _{vd(data)}	Valid data time	SCL low to SDA output valid	300		50		ns
t _{vd(ack)}	Valid data time of ACK condition	ACK signal from SCL low to SDA (out) low	0.3	3.45	0.1	0.9	μs
C _b	I ² C bus capacitive load			400		400	ns

⁽¹⁾ $C_b = total capacitive of one bus in pF$

7.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted) (see Figure 15 and Figure 16)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	STANDARD I ² C BUS		FAST M I ² C BI		UNIT
		(INFOT)	(OUTPUT)	MIN	MAX	MIN	MAX	
t _{iv}	Interrupt valid time	P port	ĪNT		4		4	μs
t _{ir}	Interrupt reset delay time	SCL	ĪNT		4		4	μs
t _{pv}	Output data valid	SCL	P7-P0		200		200	ns
t _{ps}	Input data setup time	P port	SCL	100		100		ns
t _{ph}	Input data hold time	P port	SCL	1		1		μs

7.7 Typical Characteristics

Figure 1. Supply Current vs Temperature

Figure 2. Quiescent Supply Current vs Temperature

Figure 3. Supply Current vs Supply Voltage

Figure 4. Supply Current vs Number Of I/Os Held Low

Figure 5. I/O Output Low Voltage vs Temperature

Figure 6. I/O Sink Current vs Output Low Voltage

TEXAS INSTRUMENTS

Typical Characteristics (continued)

Figure 7. I/O Sink Current vs Output Low Voltage

Figure 8. I/O Sink Current vs Output Low Voltage

Figure 9. I/O Output High Voltage vs Temperature

Figure 10. I/O Source Current vs Output High Voltage

Figure 11. I/O Source Current vs Output High Voltage

Figure 12. I/O Source Current vs Output High Voltage

Submit Documentation Feedback

Copyright © 2006–2014, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 13. Output High Voltage vs Supply Voltage

Submit Documentation Feedback

8 Parameter Measurement Information

SDA LOAD CONFIGURATION

VOLTAGE WAVEFORMS

BYTE	DESCRIPTION
1	I ² C address
2, 3	P-port data

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r/t_f~\leq$ 30 ns.
- C. All parameters and waveforms are not applicable to all devices.

Figure 14. I²C Interface Load Circuit And Voltage Waveforms

Submit Documentation Feedback

Parameter Measurement Information (continued)

INTERRUPT LOAD CONFIGURATION

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_t/t_f ≤ 30 ns.
- C. All parameters and waveforms are not applicable to all devices.

Figure 15. Interrupt Load Circuit And Voltage Waveforms

Parameter Measurement Information (continued)

P-PORT LOAD CONFIGURATION

WRITE MODE $(R/\overline{W} = 0)$

- A. C_L includes probe and jig capacitance.
- B. t_{pv} is measured from 0.7 x V_{CC} on SCL to 50% I/O (Pn) output.
- C. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r/t_f \leq$ 30 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 16. P-Port Load Circuit And Voltage Waveforms

Submit Documentation Feedback

9 Detailed Description

9.1 Functional Block Diagram

- A. Pin numbers shown are for DB, DBQ, DGV, DW, or PW package.
- B. All I/Os are set to inputs at reset.

Figure 17. Logic Diagram (Positive Logic)

Functional Block Diagram (continued)

A. At power-on reset, all registers return to default values.

Figure 18. Simplified Schematic Of P0 To P7

9.2 Device Functional Modes

9.2.1 Power-On Reset

When power (from 0 V) is applied to V_{CC} , an internal power-on reset holds the PCA9534A in a reset condition until V_{CC} has reached V_{POR} . At that point, the reset condition is released and the PCA9534A registers and $I^2C/SMBus$ state machine initialize to their default states. After that, V_{CC} must be lowered to below 0.2 V and then back up to the operating voltage for a power-reset cycle.

Refer to the *Power-On Reset Errata* section.

9.2.2 I/O Port

When an I/O is configured as an input, FETs Q1 and Q2 (in Figure 18) are off, creating a high-impedance input. The input voltage may be raised above V_{CC} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the output port register. In this case, there are low-impedance paths between the I/O pin and either V_{CC} or GND. The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

Submit Documentation Feedback

Device Functional Modes (continued)

9.2.3 Interrupt Output (INT)

An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, t_{iv} , the signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting, data is read from the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal.

Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT. Writing to another device does not affect the interrupt circuit, and a pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input Port register. Because each 8-pin port is read independently, the interrupt caused by port 0 is not cleared by a read of port 1 or vice versa.

The $\overline{\text{INT}}$ output has an open-drain structure and requires pull-up resistor to V_{CC} .

9.2.3.1 Interrupt Errata

Description

The INT will be improperly de-asserted if the following two conditions occur:

1. The last I²C command byte (register pointer) written to the device was 00h.

NOTE

This generally means the last operation with the device was a Read of the input register. However, the command byte may have been written with 00h without ever going on to read the input register. After reading from the device, if no other command byte written, it will remain 00h.

2. Any other slave device on the I²C bus acknowledges an address byte with the R/W bit set high

System Impact

Can cause improper interrupt handling as the Master will see the interrupt as being cleared.

System Workaround

Minor software change: User must change command byte to something besides 00h after a Read operation to the PCA9534A device or before reading from another slave device.

NOTE

Software change will be compatible with other versions (competition and TI redesigns) of this device.

9.3 Programming

9.3.1 I²C Interface

The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply through a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I²C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 19). After the start condition, the device address byte is sent, MSB first, including the data direction bit (R/W).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. The address inputs (A0–A2) of the slave device must not be changed between the start and the stop conditions.

Programming (continued)

On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see Figure 20).

A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 19).

Any number of data bytes can be transferred from the transmitter to receiver between the start and the stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 21). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation.

A master receiver will signal an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition.

Figure 19. Definition Of Start And Stop Conditions

Figure 20. Bit Transfer

Submit Documentation Feedback

Programming (continued)

Figure 21. Acknowledgment On I²C Bus

9.3.2 Register Map

Table 1. Interface Definition

ВҮТЕ				В	IT			
	7 (MSB)	6	5	4	3	2	1	0 (LSB)
I ² C slave address	L	Н	Н	Н	A2	A1	A0	R/W
Px I/O data bus	P7	P6	P5	P4	P3	P2	P1	P0

9.3.2.1 Device Address

Figure 22 shows the address byte of the PCA9534A.

Figure 22. Pca9534a Address

Table 2. Address Reference

	INPUTS		I ² C BUS SLAVE ADDRESS
A2	A1	A0	I C BUS SLAVE ADDRESS
L	L	L	56 (decimal), 38 (hexadecimal)
L	L	Н	57 (decimal), 39 (hexadecimal)
L	Н	L	58 (decimal), 3A (hexadecimal)
L	Н	Н	59 (decimal), 3B (hexadecimal)
Н	L	L	60 (decimal), 3C (hexadecimal)
Н	L	Н	61 (decimal), 3D (hexadecimal)
Н	Н	L	62 (decimal), 3E (hexadecimal)
Н	Н	Н	63 (decimal), 3F (hexadecimal)

The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read is selected, while a low (0) selects a write operation.

9.3.2.2 Control Register And Command Byte

Following the successful acknowledgment of the address byte, the bus master sends a command byte which is stored in the control register in the PCA9534A. Two bits of this command byte state the operation (read or write) and the internal register (input, output, polarity inversion or configuration) that will be affected. This register can be written or read through the I²C bus. The command byte is sent only during a write transmission.

Once a command byte has been sent, the register that was addressed continues to be accessed by reads until a new command byte has been sent.

Figure 23. Control Register Bits

Table 3. Command Byte

	TROL ER BITS	COMMAND BYTE (HEX)	REGISTER	PROTOCOL	POWER-UP DEFAULT
B1	В0	BITE (HEX)			DEFAULT
0	0	0x00	Input Port	Read byte	XXXX XXXX
0	1	0x01	Output Port	Read/write byte	1111 1111
1	0	0x02	Polarity Inversion	Read/write byte	0000 0000
1	1	0x03	Configuration	Read/write byte	1111 1111

9.3.2.3 Register Descriptions

The input port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the configuration register. It only acts on read operation. Writes to these registers have no effect. The default value, X, is determined by the externally applied logic level.

Before a read operation, a write transmission is sent with the command byte to let the I²C device know that the input port register will be accessed next.

Table 4. Register 0 (Input Port Register)

BIT	17	16	15	14	13	12	I1	10
DEFAULT	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

The output port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.

Table 5. Register 1 (Output Port Register)

BIT	07	O6	O5	O4	О3	O2	O1	00
DEFAULT	1	1	1	1	1	1	1	1

The polarity inversion register (register 2) allows polarity inversion of pins defined as inputs by the configuration register. If a bit in this register is set (written with 1), the corresponding port pin polarity is inverted. If a bit in this register is cleared (written with a 0), the corresponding port pin original polarity is retained.

Table 6. Register 2 (Polarity Inversion Register)

BIT	N7	N6	N5	N4	N3	N2	N1	N0
DEFAULT	0	0	0	0	0	0	0	0

The configuration register (register 3) configures the directions of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as an input with high-impedance output driver. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

Table 7. Register 3 (Configuration Register)

BIT	C7	C6	C5	C4	C3	C2	C1	C0
DEFAULT	1	1	1	1	1	1	1	1

9.3.2.4 Bus Transactions

Data is exchanged between the master and PCA9534A through write and read commands.

9.3.2.4.1 Writes

Data is transmitted to the PCA9534A by sending the device address and setting the least-significant bit to a logic 0 (see Figure 22 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte (see Figure 24 and Figure 25). There is no limitation on the number of data bytes sent in one write transmission.

Figure 24. Write To Output Port Register

Figure 25. Write To Configuration Or Polarity Inversion Registers

9.3.2.4.2 Reads

The bus master first must send the PCA9534A address with the least-significant bit set to a logic 0 (see Figure 22 for device address). The command byte is sent after the address and determines which register is accessed. After a restart, the device address is sent again but, this time, the least-significant bit is set to a logic 1. Data from the register defined by the command byte then is sent by the PCA9534A (see Figure 26 and Figure 27). After a restart, the value of the register defined by the command byte matches the register being accessed when the restart occurred. Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limitation on the number of data bytes received in one read transmission, but when the final byte is received, the bus master must not acknowledge the data.

Figure 26. Read From Register

- A. This figure assumes that the command byte has previously been programmed with 00h.
- B. Transfer of data can be stopped at any moment by a stop condition.
- C. This figure eliminates the command byte transfer, a restart and slave address call between the initial slave address call and the actual data transfer from the P Port. See Figure 26 for these details.

Figure 27. Read Input Port Register

10 Application And Implementation

10.1 Typical Application

Figure 28 shows an application in which the PCA9534A can be used.

- A. Device address is configured as 0111100 for this example.
- B. P0, P2, and P3 are configured as outputs.
- C. P1, P4, and P5 are configured as inputs.
- D. P6 and P7 are not used and must be configured as outputs.

Figure 28. Typical Application

Submit Documentation Feedback

Typical Application (continued)

10.1.1 Design Requirements

10.1.1.1 Minimizing I_{CC} When The I/O Controls Leds

When the I/Os are used to control LEDs, they normally are connected to V_{CC} through a resistor as shown in Figure 28. Because the LED acts as a diode, when the LED is off, the I/O V_{IN} is about 1.2 V less than V_{CC} . The supply current, I_{CC} , increases as V_{IN} becomes lower than V_{CC} and is specified as ΔI_{CC} in *Electrical Characteristics*.

For battery-powered applications, it is essential that the voltage of the I/O pins is greater than or equal to V_{CC} when the LED is off to minimize current consumption. Figure 29 shows a high-value resistor in parallel with the LED. Figure 30 shows V_{CC} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_{IN} at or above V_{CC} and prevents additional supply-current consumption when the LED is off.

Figure 29. High-Value Resistor In Parallel With The Led

Figure 30. Device Supplied By A Lower Voltage

Submit Documentation Feedback

11 Power Supply Recommendations

11.1 Power-On Reset Requirements

In the event of a glitch or data corruption, PCA9534A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in Figure 31 and Figure 32.

Figure 31. V_{CC} Is Lowered Below 0.2 V Or 0 V And Then Ramped Up To V_{CC}

Figure 32. V_{CC} Is Lowered Below The Por Threshold, Then Ramped Back Up To V_{CC}

Table 8 specifies the performance of the power-on reset feature for PCA9534A for both types of power-on reset.

Table 8. Recommended Supply Sequencing And Ramp Rates (1)

	PARAMETER		MIN	TYP MAX	UNIT
V _{CC_FT}	Fall rate	See Figure 31	1	100	ms
V _{CC_RT}	Rise rate	See Figure 31	0.01	100	ms
V _{CC_TRR_GND}	Time to re-ramp (when V _{CC} drops to GND)	See Figure 31	0.001		ms
V _{CC_TRR_POR50}	Time to re-ramp (when V_{CC} drops to $V_{POR_MIN} - 50 \text{ mV}$)	See Figure 32	0.001		ms
V _{CC_GH}	Level that V_{CCP} can glitch down to, but not cause a functional disruption when V_{CCX_GW} = 1 μs	See Figure 33		1.2	. V
V _{CC_GW}	Glitch width that will not cause a functional disruption when $V_{CCX_GH} = 0.5 \times V_{CCX}$	See Figure 33			μs
V _{PORF}	Voltage trip point of POR on falling V _{CC}		0.767	1.14	V
V _{PORR}	Voltage trip point of POR on fising V _{CC}		1.033	1.428	V

(1) $T_A = -40$ °C to 85°C (unless otherwise noted)

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 33 and Table 8 provide more information on how to measure these specifications.

Figure 33. Glitch Width And Glitch Height

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I^2C/SMB us state machine are initialized to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. Figure 34 and Table 8 provide more details on this specification.

Figure 34. V_{POR}

11.2 Power-On Reset Errata

A power-on reset condition can be missed if the VCC ramps are outside specification listed above.

System Impact

If ramp conditions are outside timing allowances above, POR condition can be missed, causing the device to lock up.

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: PCA9534A

Copyright © 2006-2014, Texas Instruments Incorporated

12-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
PCA9534ADB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD534A	Samples
PCA9534ADBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD534A	Samples
PCA9534ADGVR	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD534A	Samples
PCA9534ADW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCA9534A	Samples
PCA9534ADWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCA9534A	Samples
PCA9534APW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD534A	Samples
PCA9534APWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD534A	Samples
PCA9534APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD534A	Samples
PCA9534ARGTR	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZVJ	Samples
PCA9534ARGTRG4	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZVJ	Sample
PCA9534ARGVR	ACTIVE	VQFN	RGV	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PD534A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

12-Jun-2014

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Jun-2014

TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PCA9534ADBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
PCA9534ADGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
PCA9534ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
PCA9534APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
PCA9534ARGTR	QFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
PCA9534ARGVR	VQFN	RGV	16	2500	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 12-Jun-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCA9534ADBR	SSOP	DB	16	2000	367.0	367.0	38.0
PCA9534ADGVR	TVSOP	DGV	16	2000	367.0	367.0	35.0
PCA9534ADWR	SOIC	DW	16	2000	367.0	367.0	38.0
PCA9534APWR	TSSOP	PW	16	2000	367.0	367.0	35.0
PCA9534ARGTR	QFN	RGT	16	3000	367.0	367.0	35.0
PCA9534ARGVR	VQFN	RGV	16	2500	367.0	367.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RGT (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- This drawing is subject to change without notice.
- Quad Flatpack, No-leads (QFN) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGT (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206349-2/Z 08/15

NOTE: All linear dimensions are in millimeters

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. Falls within JEDEC MO-220.

RGV (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206351-2/L 05/13

NOTE: All linear dimensions are in millimeters

RGV (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.