

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 5日

出 願 番 号 Application Number:

特願2003-407319

[ST. 10/C]:

[JP2003-407319]

出 願 人
Applicant(s):

富士写真フイルム株式会社

2003年12月18日

特許庁長官 Commissioner, Japan Patent Office

•

【書類名】特許願【整理番号】P28074JK【あて先】特許庁長官殿【国際特許分類】G06T 3/40

【発明者】

【住所又は居所】 神奈川県足柄上郡開成町宮台798番地 富士写真フイルム株式

会社内

【氏名】 亀山 祐和

【発明者】

【住所又は居所】 神奈川県足柄上郡開成町宮台798番地 富士写真フイルム株式

会社内

【氏名】 伊藤 渡

【特許出願人】

【識別番号】 000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】 100073184

【弁理士】

【氏名又は名称】 柳田 征史

【選任した代理人】

【識別番号】 100090468

【弁理士】

【氏名又は名称】 佐久間 剛

【先の出願に基づく優先権主張】

【出願番号】 特願2003- 4553 【出願日】 平成15年 1月10日

【手数料の表示】

【予納台帳番号】 008969 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9814441

【書類名】特許請求の範囲

【請求項1】

動画像から連続する2つのフレームをサンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出する相関値算出手段と、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記相関値が前記所定のしきい値以上となったときの分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する合成手段とを備えたことを特徴とする動画像合成装置。

【請求項2】

動画像から連続する2つのフレームをサンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出する相関値算出手段と、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において 推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内 の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応す る領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成 する合成手段とを備えたことを特徴とする動画像合成装置。

【請求項3】

前記制御手段は、前記所定のしきい値を、前記矩形領域の分割数が一定値となるまでは 該分割数の増加に応じて小さくし、さらに前記分割数が該一定値を超えて増加するに応じ

2/

て大きくする手段であることを特徴とする請求項1または2記載の動画像合成装置。

【請求項4】

前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段および 前記合成手段は、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の 算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を 用いて行う手段であることを特徴とする請求項1から3のいずれか1項記載の動画像合成 装置。

【請求項5】

動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域 を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の 1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように 、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および /または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前 記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定す る対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレ ームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出する相関値算出手段と、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座 標変換手段および前記相関値算出手段を制御する制御手段と、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応 関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記 基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間 合成フレームを取得し、全ての前記他のフレームについて、前記対応関係の推定、前記座 標変換済みフレームの取得、前記相関値の算出および前記中間合成フレームの取得を行い 、全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成するこ とにより合成フレームを作成する合成手段とを備えたことを特徴とする動画像合成装置。

【請求項6】

動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域 を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の 1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように 、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および /または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前 記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定す る対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレ ームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出する相関値算出手段と、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値 未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩 形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基 準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階におい て前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行う よう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制 御手段と、

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および前記中間合成フレームの取得を行い、全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する合成手段とを備えたことを特徴とする動画像合成装置。

【請求項7】

前記制御手段は、前記所定のしきい値を、前記矩形領域の分割数が一定値となるまでは 該分割数の増加に応じて小さくし、さらに前記分割数が該一定値を超えて増加するに応じ て大きくする手段であることを特徴とする請求項5または6記載の動画像合成装置。

【請求項8】

前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段および前記合成手段は、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記中間合成フレームの取得および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手段であることを特徴とする請求項5から7のいずれか1項記載の動画像合成装置。

【請求項9】

動画像から連続する2つのフレームをサンプリングし、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出し、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行い、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成することを特徴とする動画像合成方法。

【請求項10】

動画像から連続する2つのフレームをサンプリングし、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出し、 全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値 未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩 形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基 準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階におい て前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行い

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成することを特徴とする動画像合成方法。

【請求項11】

動画像から連続する3以上のフレームをサンプリングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出し、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行い、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応 関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記 基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間 合成フレームを取得し、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの 取得、前記相関値の算出および前記中間合成フレームの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とする動画像合成方法。

【請求項12】

動画像から連続する3以上のフレームをサンプリングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出し、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値 未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩 形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行い

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において 推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内 の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応す る領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを 取得し、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの 取得、前記相関値の算出および前記中間合成フレームの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とする動画像合成方法。

【請求項13】

動画像から連続する2つのフレームをサンプリングする手順と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出する手順と、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行う手順と、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【請求項14】

動画像から連続する2つのフレームをサンプリングする手順と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出する手順と、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値 未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩 形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基 準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階におい て前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行う

6/

手順と、

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【請求項15】

動画像から連続する3以上のフレームをサンプリングする手順と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出する手順と、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行う手順と、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得する手順と、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの 取得、前記相関値の算出および前記中間合成フレームの取得を行う手順と、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【請求項16】

動画像から連続する3以上のフレームをサンプリングする手順と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出する手順と、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値 未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩 形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基 準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階におい て前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行う 手順と、 前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得する手順と、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの 取得、前記相関値の算出および前記中間合成フレームの取得を行う手順と、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【書類名】明細書

【発明の名称】動画像合成装置および方法並びにプログラム

【技術分野】

[0001]

本発明は、動画像をサンプリングすることにより得られた連続する複数のフレームを合成して、サンプリングしたフレームよりも高解像度の1の合成フレームを作成する動画像合成装置および方法並びに動画像合成方法をコンピュータに実行させるためのプログラムに関するものである。

【背景技術】

[00002]

近年のデジタルビデオカメラの普及により、動画像を1フレーム単位で扱うことが可能となっている。このような動画像のフレームをプリント出力する際には、画質を向上させるためにフレームを高解像度にする必要がある。このため、動画像からサンプリングした複数のフレームから、これらのフレームよりも高解像度の1の合成フレームを作成する方法が提案されている(例えば、特許文献1参照)。この方法は、複数のフレーム間の動べクトルを求め、この動ベクトルに基づいて、複数のフレームから合成フレームを合成する際に、画素間に内挿する信号値を算出する方法である。とくに特許文献1に記載された方法では、各フレームを複数のブロックに分割し、フレーム間で対応するブロックの直交座標係数を算出し、この直交座標係数における高周波の情報を他のブロックにおける低周波の情報と合成して内挿される画素値を算出しているため、必要な情報が低減されることをよりもさらに細かい分解能にて動ベクトルを算出しているため、フレーム間の動きを正確に補償してより高画質の合成フレームを得ることができる。

[0003]

また、複数のフレームのうち1のフレームを基準フレームとし、基準フレームに複数の 矩形領域からなる基準パッチを、基準フレーム以外の他のフレームに基準パッチと同様の パッチを配置し、パッチ内の画像が基準パッチ内の画像と一致するようにパッチを他のフ レーム上において移動および/または変形し、移動および/または変形後のパッチおよび 基準パッチに基づいて、他のフレーム上のパッチ内の画素と基準フレーム上の基準パッチ 内の画素との対応関係を推定して複数フレームをより精度よく合成する方法も提案されて いる(例えば、非特許文献1参照)。

[0004]

非特許文献1の方法においては、基準フレームと他のフレームとの対応関係を推定し、 推定後、他のフレームと基準フレームとを、最終的に必要な解像度を有する統合画像上に 割り当てることにより、高精細な合成フレームを得ることができる。

【特許文献1】特開2000-354244号公報

【非特許文献1】中沢祐二、小松隆、斉藤隆弘,「フレーム間統合による高精細ディジタル画像の獲得」,テレビジョン学会誌,1995年,Vol.49,No.3,p299-308

【発明の開示】

【発明が解決しようとする課題】

[0005]

しかしながら、非特許文献1に記載された方法においては、他のフレームに含まれる被写体の動きが非常に大きい場合や、局所的に含まれる被写体が複雑な動きをしていたり非常に高速で動いている場合には、被写体の動きにパッチの移動および/または変形が被写体の移動および/または変形に追随できないと、合成フレームの全体がほけたり、フレームに含まれる動きの大きい被写体がほけたりするため、高画質の合成フレームを得ることができないという問題がある。この場合、パッチをより多くの矩形領域に分割することにより、被写体の移動および/または変形にパッチの移動および/または変形を追随させることができる

[0006]

本発明は上記事情に鑑みなされたものであり、最適なパッチの分割数にて高画質の合成フレームを得ることを目的とする。

【課題を解決するための手段】

[0007]

本発明による第1の動画像合成装置は、動画像から連続する2つのフレームをサンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出する相関値算出手段と、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応 関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記 基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成 フレームを作成する合成手段とを備えたことを特徴とするものである。

[0008]

「分割数を段階的に増加する」とは、相関が所定のしきい値以上となるまで少ない分割数から徐々に分割数を大きくすることをいう。なお、分割数をあまりに大きくすると矩形領域が小さくなりすぎて、似たような画像を表す矩形領域が多く存在することとなり、却って被写体の移動および/または変形にパッチの移動および/または変形が追随できない場合がある。このため、分割数の上限値を設定しておくことが好ましい。

[0009]

「相関値」は、座標変換済みフレームの全体と基準フレームの基準パッチ内の画像の全体との相関を表すものとして算出すればよく、具体的には各画素の相関値のパッチ内の全画素についての平均値や加算値を用いることができる。

$[0\ 0\ 1\ 0\]$

「相関が所定のしきい値以上となる」とは、相関が相関値が大きいほど大きい値となるものの場合には、相関値をしきい値と比較し、相関値がそのしきい値以上となることをいう。逆に相関が相関値が大きいほど小さい値となるものの場合には、相関値をしきい値と比較し、相関値がそのしきい値以下となることをいう。

[0 0 1 1]

本発明による第2の動画像合成装置は、動画像から連続する2つのフレームをサンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を 有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフ レーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パ

3/

ッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出する相関値算出手段と、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において 推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内 の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応す る領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成 する合成手段とを備えたことを特徴とするものである。

$[0\ 0\ 1\ 2]$

「相関値」は、座標変換済みフレームと基準フレームの基準パッチ内の画像との相対応する矩形領域の相関を表すものとして算出すればよく、具体的には各画素の相関値の矩形領域内の全画素についての平均値や加算値を用いることができる。

[0013]

「全ての矩形領域のうち相関があらかじめ定めた一定値未満となった矩形領域」とは、 矩形領域同士の相関が非常に低く、分割数を大きくしても相関が所定のしきい値以上とな らないような矩形領域を意味する。

$[0\ 0\ 1\ 4]$

「所定数の矩形領域」とは「全ての矩形領域」または「全ての矩形領域のうち相関があらかじめ定めた一定値未満となった矩形領域以外の矩形領域」(以下対象となる矩形領域とする)のうちの少なくとも1つの矩形領域を意味するものであり、対象となる矩形領域のうちの1または複数の矩形領域であっても、対象となる矩形領域の全てであってもよい

$[0\ 0\ 1\ 5]$

なお、対象となる矩形領域のうち、相関が所定のしきい値以上となる矩形領域のパッチまたは基準パッチ内の領域に占める割合が所定の割合(例えば50%)以上となった場合における、相関が所定のしきい値以上となる矩形領域の数を所定数の矩形領域としてもよい。

[0016]

「所定位置にある矩形領域」とは、基準パッチまたはパッチ内において主要な被写体が含まれる位置にある矩形領域を意味する。具体的には、人物の顔、複雑なテクスチャ等の主要な被写体が含まれる位置にある矩形領域、基準パッチまたはパッチの中央付近に位置する矩形領域を用いることができる。

[0017]

「相関の代表値」とは、所定数の矩形領域または所定位置にある矩形領域の相関を代表する値であり、具体的には相関の平均値、メディアン値、最大値および最小値等を用いることができる。

[0018]

「全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定」

値未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある 矩形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記 基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行う」とは、分割数の各段階において、基準パッチおよびパッチ内の対象となる矩形領域の うちの所定数の矩形領域または所定位置にある矩形領域について相関または相関の代表値 が所定のしきい値以上となるまで相関値を算出するものであってもよく、ある分割数において基準パッチおよびパッチ内の対象となる矩形領域のうちの所定数の矩形領域または にある矩形領域の一部の矩形領域のみについて相関または相関の代表値が所定のし きい値以上となった場合には、次の段階の矩形領域の分割はその一部の矩形領域以外の他 の矩形領域についてのみ行い、他の矩形領域についてのみ分割数を増加して相関値を算出 するものであってもよい。後者の場合、前者と比較して相関値算出のための演算時間を短 縮することができる。

[0019]

ここで、本発明による第2の動画像合成装置においては、相関または相関の代表値が所定のしきい値以上となったときの分割数が基準パッチおよびパッチ内の局所領域で異なる場合がある。このため、「矩形領域に対応する領域単位で補間演算を施す」とは、相関が所定のしきい値以上となったときの分割数が基準パッチおよびパッチ内の局所領域で異なる場合に、基準パッチおよびパッチ内の局所領域が対応する矩形領域の分割数により推定された対応関係を用いて、基準パッチおよびパッチ内の矩形領域に対応する領域毎に異なる対応関係に基づいて補間演算を行うことを意味する。

[0020]

なお、本発明による第1および第2の動画像合成装置においては、前記制御手段を、前記所定のしきい値を、前記矩形領域の分割数が一定値となるまでは該分割数の増加に応じて小さくし、さらに前記分割数が該一定値を超えて増加するに応じて大きくする手段としてもよい。

[0021]

また、本発明による第1および第2の動画像合成装置においては、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段および前記合成手段を、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手段としてもよい。

[0022]

「フレームを構成する少なくとも1つの成分」とは、例えばフレームがRGBの3つの色データからなる場合においてはRGB各色成分のうちの少なくとも1つの成分であり、YCC輝度色差成分からなる場合には、輝度および色差の各成分のうちの少なくとも1つの成分、好ましくは輝度成分である。

[0023]

本発明による第3の動画像合成装置は、動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す

相関値を算出する相関値算出手段と、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座 標変換手段および前記相関値算出手段を制御する制御手段と、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および前記中間合成フレームの取得を行い、全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する合成手段とを備えたことを特徴とするものである。

[0024]

, '

/ .

本発明による第4の動画像合成装置は、動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出する相関値算出手段と、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および前記中間合成フレームの取得を行い、全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する合成手段とを備えたことを特徴とするものである。

[0025]

なお、本発明による第3および第4の動画像合成装置においては、前記制御手段を、前記所定のしきい値を、前記矩形領域の分割数が一定値となるまでは該分割数の増加に応じて小さくし、さらに前記分割数が該一定値を超えて増加するに応じて大きくする手段としてもよい。

[0026]

また、本発明による第3および第4の動画像合成装置においては、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段および前記合成手段を、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記中間合成フ

[0027]

本発明による第1の動画像合成方法は、動画像から連続する2つのフレームをサンプリングし、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出し、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行い、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応 関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記 基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成 フレームを作成することを特徴とするものである。

[0028]

本発明による第2の動画像合成方法は、動画像から連続する2つのフレームをサンプリングし、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出し、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行い

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成することを特徴とするものである。

[0029]

なお、本発明による第1および第2の動画像合成方法においては、前記所定のしきい値を、前記矩形領域の分割数が一定値となるまでは該分割数の増加に応じて小さくし、さらに前記分割数が該一定値を超えて増加するに応じて大きくするようにしてもよい。

[0030]

また、本発明による第1および第2の動画像合成方法においては、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行ってもよい。

[0031]

本発明による第3の動画像合成方法は、動画像から連続する3以上のフレームをサンプリングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を算出し、

該相関が所定のしきい値以上となるまで、前記基準パッチおよび前記パッチ内の前記矩 形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換 済みフレームの取得および前記相関値の算出を行い、

前記相関が前記所定のしきい値以上となったときの分割数において推定された前記対応 関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記 基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間 合成フレームを取得し、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの 取得、前記相関値の算出および前記中間合成フレームの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とするものである。

[0032]

本発明による第4の動画像合成方法は、動画像から連続する3以上のフレームをサンプ リングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す 相関値を前記矩形領域単位で算出し、

全ての前記矩形領域または該全ての矩形領域のうち前記相関があらかじめ定めた一定値 未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩 形領域における前記相関または該相関の代表値が所定のしきい値以上となるまで、前記基 準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階におい て前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行い

前記相関または相関の代表値が前記所定のしきい値以上となったときの分割数において

8/

推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの 取得、前記相関値の算出および前記中間合成フレームの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とするものである。

[0033]

なお、本発明による第3および第4の動画像合成方法においては、前記所定のしきい値を、前記矩形領域の分割数が一定値となるまでは該分割数の増加に応じて小さくし、さらに前記分割数が該一定値を超えて増加するに応じて大きくするようにしてもよい。

[0034]

また、本発明による第3および第4の動画像合成方法においては、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記中間合成フレームの取得および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行ってもよい。

[0035]

なお、本発明による第1から第4の動画像合成方法をコンピュータに実行させるための プログラムとして提供してもよい。

【発明の効果】

[0036]

本発明の第1の動画像合成装置および方法によれば、動画像がサンプリングされて連続する複数のフレームが取得され、複数のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチが配置される。また、基準フレーム以外の他のフレーム上に、基準パッチと同様のパッチが配置される。そして、パッチ内の画像が基準パッチ内の画像と一致するように移動および/または変形され、移動および/または変形後のパッチおよび基準パッチに基づいて、他のフレームの上のパッチ内の画素と基準フレーム上の基準パッチ内の画素との対応関係が推定される。

[0037]

さらに、対応関係に基づいて他のフレームのパッチ内の画像が基準フレームの座標空間に座標変換されて座標変換済みフレームが取得され、座標変換済みフレームと基準フレームの基準パッチ内の画像との相関を表す相関が算出される。そして、相関が所定のしきい値以上となるまで、基準パッチおよびパッチ内の矩形領域の分割数が段階的に増加され、各段階において対応関係の推定、座標変換済みフレームの取得および相関値の算出が行われる。

[0038]

そして、相関が所定のしきい値以上となったときの分割数において推定された対応関係に基づいて、他のフレームのパッチ内の画像および基準フレームのパッチ内の画像に対して補間演算が施されて、各フレームよりも解像度が高い合成フレームが作成される。

[0039]

なお、本発明による第3の動画像合成装置および方法のように、フレームが3以上サンプリングされた場合には、基準フレーム以外の全ての他のフレームについて、相関が所定のしきい値以上となるまで対応関係の推定、座標変換済みフレームの取得および相関値の算出が行われ、基準フレームと他のフレームのそれぞれとから複数の中間合成フレームが取得され、さらに複数の中間合成フレームから合成フレームが作成される。

[0040]

このため、フレーム内における動いている被写体の移動および/または変形に追随可能な最適な分割数により合成フレームを作成することができ、これにより、フレームに含まれる被写体の動きに拘わらず、高画質の合成フレームを得ることができる。

[0041]

また、本発明による第2の動画像合成装置および方法によれば、動画像がサンプリングされて連続する複数のフレームが取得され、複数のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチが配置される。また、基準フレーム以外の他のフレーム上に、基準パッチと同様のパッチが配置される。そして、パッチ内の画像が基準パッチ内の画像と一致するように移動および/または変形され、移動および/または変形後のパッチおよび基準パッチに基づいて、他のフレームの上のパッチ内の画素と基準フレーム上の基準パッチ内の画素との対応関係が推定される。

[0042]

さらに、対応関係に基づいて他のフレームのパッチ内の画像が基準フレームの座標空間に座標変換されて座標変換済みフレームが取得され、座標変換済みフレームと基準フレームの基準パッチ内の画像との相関を表す相関が矩形領域単位で算出される。そして、全ての矩形領域または全ての矩形領域のうち相関があらかじめ定めた一定値未満となった矩形領域以外の矩形領域のうち、所定数の矩形領域または所定位置にある矩形領域における相関または相関の代表値が所定のしきい値以上となるまで、基準パッチおよびパッチ内の矩形領域の分割数が段階的に増加され、各段階において対応関係の推定、座標変換済みフレームの取得および相関値の算出が行われる。

[0043]

そして、相関または相関の代表値が所定のしきい値以上となったときの分割数において 推定された矩形領域毎の対応関係に基づいて、他のフレームのパッチ内の画像および基準 フレームのパッチ内の画像に対して矩形領域に対応する領域単位で補間演算が施されて、 各フレームよりも解像度が高い合成フレームが作成される。

[0044]

なお、本発明による第4の動画像合成方法および装置のように、フレームが3以上サンプリングされた場合には、基準フレーム以外の全ての他のフレームについて、相関が所定のしきい値以上となるまで対応関係の推定、座標変換済みフレームの取得および相関値の算出が行われ、基準フレームと他のフレームのそれぞれとから複数の中間合成フレームが取得され、さらに複数の中間合成フレームから合成フレームが作成される。

[0045]

このため、フレーム内の各部分に含まれる被写体の動きに追随した最適な分割数により 合成フレームを作成することができ、これにより、フレームに含まれる被写体の動きに拘 わらず、より高画質の合成フレームを得ることができる。

$[0\ 0\ 4\ 6]$

また、相関または相関の代表値と比較する所定のしきい値を、矩形領域の分割数が一定値となるまでは分割数の増加に応じて小さくし、さらに分割数が一定値を超えて増加するに応じて大きくすることにより、矩形領域の分割数を適切に設定することができる。

$[0\ 0\ 4\ 7]$

また、対応関係の推定、座標変換済みフレームの取得、相関値の算出、中間合成フレームの取得(3以上のフレームがサンプリングされた場合)および合成フレームの作成をフレームを構成する少なくとも1つの成分を用いて行うことにより、各成分毎に画質の劣化を低減した合成フレームを得ることができ、これにより、各成分毎の合成フレームからなる高画質の合成フレームを得ることができる。

【発明を実施するための最良の形態】

[0048]

以下図面を参照して本発明の実施形態について説明する。図1は本発明の第1の実施形態による動画像合成装置の構成を示す概略ブロック図である。図1に示すように、第1の実施形態による動画像合成装置は、入力された動画像データM0から複数のフレームをサンプリングするサンプリング手段1と、複数のフレームのうち、基準となる1の基準フレームの画素および基準フレーム以外の他のフレームの画素の対応関係を推定する対応関係推定手段2と、対応関係推定手段2において推定された対応関係に基づいて、他のフレー

[0049]

サンプリング手段1は、動画像データM0から複数のフレームをサンプリングするが、本実施形態においては動画像データM0から2つのフレームFrNおよびフレームFrN + 1をサンプリングするものとする。なお、フレームFrNを基準フレームとする。ここで、動画像データM0はカラーの動画像を表すものであり、フレームFrN, FrN+1はY, Cb, Crの輝度色差成分からなるものとする。なお、以降の説明において、Y, Cb, Cr の各成分に対して処理が行われるが、行われる処理は全ての成分について同様であるため、本実施形態においては輝度成分Yの処理について詳細に説明し、色差成分Cb, Cr に対する処理については説明を省略する。

[0050]

対応関係推定手段2は、以下のようにしてフレームFrN+1と基準フレームFrNとの対応関係を推定する。図2はフレームFrN+1と基準フレームFrNとの対応関係の推定を説明するための図である。なお、図2において、基準フレームFrNに含まれる円形の被写体が、フレームFrN+1においては図面上右側に若干移動しているものとする

$[0\ 0\ 5\ 1]$

まず、対応関係推定手段2は、基準フレームFrN上に1または複数の矩形領域からなる基準パッチP0を配置する。図2(a)は、基準フレームFrN上に基準パッチP0が配置された状態を示す図である。図2(a)に示すように、本実施形態においては、基準パッチP0は2×2の矩形領域に分割されてなるものとする。次いで、図2(b)に示すように、フレームFrN+1の適当な位置に基準パッチP0と同様のパッチP1を配置し、基準パッチP0内の画像とパッチP1内の画像との相関を表す相関値を算出する。なお、相関値は下記の式(1)により平均二乗誤差として算出することができる。また、座標軸は紙面左右方向にx軸、紙面上下方向にy軸をとるものとする。

【数1】

$$E = \frac{1}{N} \sum_{i}^{N} (pi - qi)^{2}$$
 (1)

[0052]

但し、E:相関値

pi, qi:基準パッチPO, P1内にそれぞれ対応する画素の画素値

N:基準パッチP0およびパッチP1内の画素数

[0053]

次いで、フレームFrN+1上のパッチP1を上下左右の4方向に一定画素 $\pm \Delta x$, $\pm \Delta y$ 移動し、このときのパッチP1内の画像と基準フレームFrN上の基準パッチP0内の画像との相関値を算出する。ここで、相関値は上下左右方向のそれぞれについて算出さ

れ、各相関値をそれぞれE (Δ x, 0), E ($-\Delta$ x, 0), E (0, Δ y), E (0, $-\Delta$ y) とする。

[0054]

そして、移動後の4つの相関値E(Δ x, 0), E($-\Delta$ x, 0), E(0, Δ y), E(0, $-\Delta$ y) から相関値が小さく(すなわち相関が大きく)なる勾配方向を相関勾配として求め、この方向に予め設定した実数値倍だけ図2(c)に示すようにパッチP1を移動する。具体的には、下記の式(2)により係数C(Δ x, 0), C($-\Delta$ x, 0), C(0, Δ y), C(0, $-\Delta$ y) を算出し、これらの係数C(Δ x, 0), C($-\Delta$ x, 0), C(0, Δ y), C(0, Δ y), C(0, Δ y) から下記の式(0), C(0, 0), 00,

【数2】

$$c(\Delta x, \Delta y) = \sqrt{E(\Delta x, \Delta y)} / 255$$
 (2)

$$gx = \frac{c(\Delta x, 0) - c(-\Delta x, 0)}{2}$$
 (3)

$$gy = \frac{c(0, \Delta y) - c(0, -\Delta y)}{2}$$
 (4)

[0055]

[0056]

さらに、パッチP1の格子点を座標軸に沿った4方向に一定画素移動させる。このとき、移動した格子点を含む矩形領域は例えば図3に示すように変形する。そして、変形した矩形領域について基準パッチP0の対応する矩形領域との相関値を算出する。この相関値をそれぞれ $E1(\Delta x, 0)$, $E1(-\Delta x, 0)$, $E1(0, \Delta y)$, $E1(0, -\Delta y)$ とする。

[0057]

そして、上記と同様に、変形後の4つの相関値 $E1(\Delta x, 0)$, $E1(-\Delta x, 0)$, $E1(0, \Delta y)$, $E1(0, -\Delta y)$ から相関値が小さく(すなわち相関が大きく)なる勾配方向を求め、この方向に予め設定した実数値倍だけパッチP1の格子点を移動する。これをパッチP1の全ての格子点について行い、これを1回の処理とする。そして格子点の座標が収束するまでこの処理を繰り返す。

[0058]

これにより、パッチP1の基準パッチP0に対する移動量および変形量が求まり、これに基づいて基準パッチP0内の画素とパッチP1内の画素との対応関係を推定することができる。

[0059]

座標変換手段3は、推定された対応関係に基づいて、以下のようにしてフレームFrN+1を基準フレームFrNの座標空間に座標変換して座標変換フレームFrT0を取得する。なお、以降の説明においては、基準フレームFrNの基準パッチP0内の領域およびフレームFrN+1のパッチP1内の領域についてのみ変換および合成が行われる。

[0060]

本実施形態においては、座標変換は双1次変換を用いて行うものとする。双1次変換に よる座標変換は、下記の式(5), (6)により定義される。

【数3】

$$x = (1 - u)(1 - v)x1 + (1 - v)ux2 + (1 - u)vx3 + uvx4$$
 (5)

$$y = (1 - u)(1 - v)y1 + (1 - v)uy2 + (1 - u)vy3 + uvy4$$
 (6)

[0061]

式 (5), (6) は、2次元座標上の4点(x n, y n) ($1 \le n \le 4$) で与えられたパッチP1内の座標を、正規化座標系(u, v) ($0 \le u$, $v \le 1$) によって補間するものであり、任意の2つの矩形内の座標変換は、式 (5), (6) および式 (5), (6) の逆変換を組み合わせることにより行うことができる。

[0062]

ここで、図4に示すように、パッチP1(xn, yn)内の点(x, y)が対応する基準パッチP0(x′n, y′n)内のどの位置に対応するかを考える。まずパッチP1(xn, yn)内の点(x, y)について、正規化座標(u, v)を求める。これは式(5),(6)の逆変換により求める。そしてこのときの(u, v)と対応する基準パッチP0(x′n, y′n)を元に、式(5),(6)から点(x, y)に対応する座標(x′, y′)を求める。ここで、点(x, y)が本来画素値が存在する整数座標であるのに対し、点(x′, y′)は本来画素値が存在しない実数座標となる場合があるため、変換後の整数座標における画素値は、基準パッチP0の整数座標に隣接する8近傍の整数座標に思れた領域を設定し、この領域内に変換された座標(x′, y′)の画素値の荷重和として求めるものとする。

[0063]

具体的には、図5に示すように基準パッチP0上における整数座標b(x, y)について、その8近傍の整数座標b(x-1, y-1), b(x, y-1), b(x+1, y-1), b(x-1, y), b(x+1, y), b(x-1, y+1), b(x+1, y+1) に囲まれる領域内に変換されたフレームFrN+1の画素値に基づいて算出する。ここで、フレームFrN+1のm個の画素値が8近傍の画素に囲まれる領域内に変換され、変換された各画素の画素値を $Itj(x^o, y^o)$ ($1 \le j \le m$) とすると、整数座標b(x, y) における画素値 $It(x^o, y^o)$ は、下記の式(7)により算出することができる。なお、式(7)において $b(x^o, y^o)$ は、下記の式(7)により算出することができる。なお、式(7)において $b(x^o, y^o)$

【数4】

It
$$(x^{\hat{}}, y^{\hat{}}) = \phi (\text{It } j (x^{\circ}, y^{\circ}))$$

$$= \{ (W1 \times \text{It } 1 (x^{\circ}, y^{\circ}) + W2 \times \text{It } 2 (x^{\circ}, y^{\circ}) + \dots + Wm \times \text{Itm} (x^{\circ}, y^{\circ})) \} / (W1 + W2 + \dots + Wk)$$

$$= \frac{\sum_{j=1}^{m} W_{j} \times \text{It } j (x^{\circ}, y^{\circ})}{\sum_{j=1}^{m} W_{j}}$$

$$= \frac{(7)}{\sum_{j=1}^{m} W_{j}}$$

[0 0 6 4]

但し、W j $(1 \le j \le m)$: 画素値 I t j (x°, y°) が割り当てられた位置における近傍の整数画素から見た座標内分比の積

[0065]

ここで、簡単のため、図5を用いて8近傍の画素に囲まれる領域内にフレームFrN+ 1の2つの画素値It1, It2が変換された場合について考えると、整数座標b(x, y) における画素値 I t $(x^, y^)$ は下記の式 (8) により算出することができる。

【数5】

It
$$(x^{-}, y^{-}) = \frac{1}{W1 + W2} = (W1 \times lt1 + W2 \times It2)$$
 (8)

[0066]

但し、
$$W1 = u \times v$$
、 $W2 = (1-s) \times (1-t)$

[0067]

以上の処理をパッチP1内の全ての画素について行うことにより、パッチP1内の画像が基準フレームFrNの座標空間に変換されて、座標変換フレームFrT0が取得される

[0068]

相関値算出手段4は、座標変換フレームFrT0と基準フレームFrNとの相関値d0を算出する。具体的には下記の式(9)に示すように、座標変換フレームFrT0と基準フレームFrNとの対応する画素における画素値FrT0(x, y), FrN(x, y)との差の絶対値の基準パッチP0内の全画素mについての加算値を基準パッチP0内の画素数mで除した値、すなわち各画素毎の差の絶対値の基準パッチP0内の全画素についての平均値を相関値d0として算出する。なお、相関値d0は座標変換フレームFrT0と基準フレームFrNとの相関が大きいほど小さい値となる。

【数6】

$$d0 = \sum_{m=0}^{m} |FrT0(x, y) - FrN(x, y)| / m$$
 (9)

[0069]

なお、本実施形態では座標変換フレームFrT0と基準フレームFrNとの対応する画素における画素値の差の絶対値から相関値d0を算出しているが、差の二乗から相関値を算出してもよい。また、座標変換フレームFrT0と基準フレームFrNとの対応する画素における画素値の差の絶対値の加算値を相関値としてもよい。また、座標変換フレームFrT0および基準フレームFrNのヒストグラムをそれぞれ算出し、座標変換フレームFrT0および基準フレームFrNのヒストグラムの平均値、メディアン値または標準偏差の差分値、もしくはヒストグラムの差分値の累積和を相関値として用いてもよい。また、基準フレームFrNに対する座標変換フレームFrT0の動きを表す動きベクトルを基準フレームFrNの各画素または小領域毎に算出し、算出された動ベクトルの平均値、メディアン値または標準偏差を相関値として用いてもよく、動ベクトルのヒストグラムの累積和を相関値として用いてもよい。

[0070]

比較手段5は相関値d0をしきい値Th1と比較する。このしきい値Th1は予め定められて比較手段5の不図示のメモリに記憶されてなるものである。なお、しきい値Th1としては、動画像データM0が8ビットのデータである場合に10程度の値を用いることができる。そして、相関値d0がしきい値Th1以下となった場合に、相関値d0を算出した分割数を、後述するように合成手段6においてフレームFrN,FrN+1から合成フレームFrGを作成するために用いる対応関係を推定した合成分割数と決定する。

[0071]

一方、比較手段5は、相関値d0がしきい値Th1を越えた場合には、基準パッチP0 およびパッチP1の分割数を1段階増加して対応関係の推定、座標変換フレームFrT1 の取得および相関値の算出を行うように、対応関係推定手段2、座標変換手段3および相 関値算出手段4を制御する。

[0072]

具体的には、対応関係推定手段2において、図6(a)に示すように基準パッチP0およびパッチP1の分割数を2×2から4×4に増加して、基準パッチP0およびパッチP1を基準フレームFrNおよびフレームFrN+1の適当な位置に配置し、上記と同様にパッチP1の基準パッチP0に対する移動量および変形量を求め、基準パッチP0内の画素とパッチP1内の画素との対応関係を推定する。そして、座標変換手段3において、対応関係推定手段2により推定された対応関係に基づいてフレームFrN+1を基準フレームFrNの座標空間に座標変換して座標変換フレームFrT1を取得する。さらに、相関値算出手段4において、座標変換フレームFrT1と基準フレームFrNとの相関値d1を算出する。具体的には下記の式(10)に示すように、座標変換フレームFrT1と基準フレームFrNとの対応する画素における画素値FrT1(x, y), FrN(x, y)との差の絶対値の基準パッチP0内の全画素についての平均値を相関値d1として算出する。

【数7】

$$d1 = \sum_{m=1}^{m} |FrT1(x, y) - FrN(x, y)|/m$$
 (10)

[0073]

[0074]

なお、分割数があまりに大きくなると矩形領域が小さくなりすぎて、似たような画像を表す矩形領域が多く存在することとなり、却って被写体の移動および/または変形にパッチの移動および/または変形が追随できない場合がある。このため、分割数の上限値を設定しておくことが好ましい。

[0075]

【数8】

$$I1N+1(x^{\circ},y^{\circ})=\Pi(FrN+1(x,y))$$
 (11)

[0076]

但し、I 1 N + 1 (x $^{\circ}$, y $^{\circ}$) :統合画像上に割り当てられたフレームF r N + 1 σ 画素値

FrN+1 (x, y) : フレームFrN+1の画素値

[0077]

このように統合画像上にフレームFrN+1の画素値を割り当てることにより画素値 IN+1 (x° , y°) を得、各画素について I1 (x° , y°) (= I1N+1 (x° , y°)) の画素値を有する第1の補間フレームを取得する。

[0078]

ここで、画素値を統合画像上に割り当てる際に、統合画像の画素数とフレームF r N + 1 の画素数との関係によっては、フレームF r N + 1 上の各画素が統合画像の整数座標(すなわち画素値が存在すべき座標)に対応しない場合がある。本実施形態においては、統合画像の整数座標における画素値は、統合画像の整数座標に隣接する 8 近傍の整数座標に囲まれた領域を設定し、この領域内に割り当てられたフレームF r N + 1 上の各画素の画素値の荷重和として求める。

[0079]

すなわち、図8に示すように統合画像における整数座標 p(x, y) については、その8近傍の整数座標 p(x-1, y-1) , p(x, y-1) , p(x+1, y-1) , p(x-1, y) , p(x+1, y-1) , p(x+1, y) , p(x+1, y) , p(x+1, y+1) , p(x+1, y+1) , p(x+1, y+1) に囲まれる領域内に割り当てられたフレーム p(x+1) で p(x+1) に p(x

【数9】

 $I1N + 1(x^{\circ}, y^{\circ}) = \Phi(I1N + 1(x^{\circ}, y^{\circ}))$

 $= \{(M1 \times I1N + 11(x^{\circ}, y^{\circ}) + M2 \times I1N + 12(x^{\circ}, y^{\circ}) + \dots + Mk \times I1N + 1k(x^{\circ}, y^{\circ}))\}/(M1 + M2 + \dots + Mk)\}$

$$= \frac{\sum_{i=1}^{k} Mi \times I1N + 1i (x^{o}, y^{o})}{\sum_{i=1}^{k} Mi}$$

$$= \frac{\sum_{i=1}^{k} Mi}{\sum_{i=1}^{k} Mi}$$

$$= \frac{1}{\sum_{i=1}^{k} Mi}$$

$[0 \ 0 \ 8 \ 0]$

但し、Mi ($1 \le i \le k$) :画素値 I 1 N+1i (x°, y°) が割り当てられた位置における近傍の整数画素から見た座標内分比の積

[0081]

ここで、簡単のため、図 8 を用いて 8 近傍の画素に囲まれる領域内にフレーム FrN+1 の 2 つの画素値 I1N+11, I1N+12 が割り当てられた場合について考えると、整数座標 p(x,y) における画素値 $I1N+1(x^{,y^{,y^{,z}}})$ は下記の式(13)により算出することができる。

【数10】

$$I1N + 1(x^{,}y^{)} = \frac{1}{M1 + M2} = (M1 \times I1N + 11 + M2 \times I1N + 12)$$
 (13)

[0082]

但し、 $M1 = u \times v$ 、 $M2 = (1-s) \times (1-t)$

[0083]

そして、統合画像の全ての整数座標について、フレームFrN+1の画素値を割り当てることにより画素値I1N+1(x^n , y^n)を得ることができる。この場合、第1の補間フレームの各画素値I1(x^n , y^n)はI1N+1(x^n , y^n)となる。

[0084]

[0085]

そして、第1および第2の補間フレームの対応する画素における画素値 I 1 (x ^ , y ^) および I 2 (x ^ , y ^) を加算または重み付け加算することにより、画素値 F r G (x ^ , y ^) を有する合成フレーム F r G を作成する。なお、画素値 I 1 (x ^ , y ^) のみから画素値 F r G (x ^ , y ^) を有する合成フレーム F r G を作成してもよい。

[0086]

なお、統合画像の全ての整数座標に画素値を割り当てることができない場合がある。このような場合は、割り当てられた画素値または基準フレームの画素値(割り当てられていない座標に対応する)に対して線形補間演算、スプライン補間演算等の種々の補間演算を施して、画素値が割り当てられなかった整数座標の画素値を算出すればよい。

[0087]

また、上記では輝度成分 Y についての合成フレーム F r G を求める処理について説明したが、色差成分 C b, C r についても同様に合成フレーム F r G が取得される。そして、輝度成分 Y から求められた合成フレーム F r G (Y) および色差成分 C b, C r から求められた合成フレーム F r G (C r) を合成することにより、最終的な合成フレームが得られることとなる。なお、処理の高速化のためには、輝度成分 Y についてのみ基準フレーム F r N とフレーム F r N + 1 との対応関係を推定し、色差成分 C b, C r については輝度成分 Y について推定された対応関係に基づいて処理を行うことが好ましい。

[0088]

次いで、第1の実施形態の動作について説明する。図9は第1の実施形態において行われる処理を示すフローチャートである。まず、サンプリング手段1に動画像データM0が入力され(ステップS1)、ここで、動画像データM0から基準フレームFrNおよびフレームFrN+1がサンプリングされる(ステップS2)。続いて、対応関係推定手段2により、基準フレームFrNとフレームFrN+1との対応関係が推定される(ステップS3)。

[0089]

そして、推定された対応関係に基づいて、座標変換手段3によりフレームFrN+1が基準フレームFrNの座標空間に変換されて座標変換フレームFrT0が取得される(ステップS4)。そして、相関値算出手段4により座標変換フレームFrT0と基準フレームFrNとの相関値d0が算出され(ステップS5)、比較手段5により相関値d0がしきい値Th1以下であるか否かが判定される(ステップS6)。

[0090]

ステップS6が否定されると、基準パッチP0およびパッチP1の分割数が1段階増加されて(ステップS7)ステップS3に戻り、増加された分割数によりステップS3からステップS6の処理が繰り返される。

[0091]

ステップS6が肯定されると、その相関値を得た基準パッチP0およびパッチP1の分割数が合成分割数に決定され(ステップS8)、決定された合成分割数により推定された対応関係に基づいて、合成手段6により基準フレームFrNおよびフレームFrN+1から合成フレームFrGが作成され(ステップS9)、処理を終了する。

[0092]

このように、第1の実施形態においては、しきい値Thl以下となる相関値を算出した 分割数により推定された対応関係に基づいて、フレームFrNおよびフレームFrN+1 から合成フレームFrGを作成しているため、フレーム内における動いている被写体の移 動および/または変形に追随可能な最適な分割数により合成フレームFrGを作成するこ とができ、これにより、フレームに含まれる被写体の動きに拘わらず、高画質の合成フレームFrGを得ることができる。

[0093]

1

次いで、本発明の第2の実施形態について説明する。上記第1の実施形態においては、相関値がしきい値Th1以下となる分割数により推定されたフレームFrN,FrN+1のパッチ内の画像全体の対応関係に基づいて合成フレームFrGを作成しているが、第2の実施形態においては、基準パッチP0およびパッチP1を分割することにより得られる矩形領域毎に相関値を算出し、矩形領域毎の相関値をしきい値Th1と比較して合成分割数を矩形領域単位で決定して合成フレームFrGを作成するようにしたものである。なお、第2の実施形態においては、上記式(9)を用いて、矩形領域毎に座標変換フレームFrT0と基準フレームFrNとの対応する画素における画素値FrT0(x,y),FrN(x,y)との差の絶対値の矩形領域内の全画素mについての加算値を矩形領域内の画素数mで除した値、すなわち各画素毎の差の絶対値の矩形領域内の全画素についての平均値を矩形領域毎の相関値として算出する。

[0094]

図10は矩形領域毎の相関値の算出を説明するための図である。図10(a)に示すように分割数が 2×2 の基準パッチP0およびパッチP1の各矩形領域を矩形領域A1~A4とする。一方、図10(b)に示すように分割数が 4×4 の基準パッチP0およびパッチP1の各矩形領域を矩形領域A11~A14,A21~A24,A31~A34,A41~A44とする。なお、矩形領域A1が矩形領域A1~A14に、矩形領域A2が矩形領域A21~A24に、矩形領域A3が矩形領域A31~A34に、矩形領域A4が矩形領域A41~A44にそれぞれ対応する。

[0095]

そして、分割数が 2×2 の場合には、矩形領域 $A1\sim A4$ 毎に基準フレームFrNとフレームFrN+1との相関値を算出する。矩形領域 $A1\sim A4$ のそれぞれにおける相関値をd01, d02, d03, d04とする。

[0096]

第2の実施形態においては、まず分割数が 2×2 の場合に算出された相関値 d 0 1, d 0 2, d 0 3, d 0 4 をしきい値 T h 1 と比較し、相関値がしきい値 T h 1 以下となった矩形領域に対応する基準パッチ P 0 およびパッチ P 1 内の領域については、その分割数(すなわち 2×2)を合成分割数と決定する。一方、相関値がしきい値 T h 1 を越えた矩形領域については分割数を 1 段階増加して、対応関係の推定、座標変換フレームの取得および相関値の算出を再度行う。そして、基準パッチ P 0 およびパッチ P 1 内の全ての領域について相関値がしきい値 T h 1 以下となるまで分割数を段階的に増加して相関値を算出し、相関値がしきい値 T h 1 以下となったときの分割数を、その矩形領域に対応する基準パッチ P 0 およびパッチ P 1 内の領域についての合成分割数と決定する。

[0097]

例えば、分割数が2×2の場合における矩形領域A1, A2については相関値d01,d02がしきい値Th1以下となり、矩形領域A3, A4については相関値d03、d04がしきい値Th1を越えた場合には、基準パッチP0およびパッチP1の矩形領域A1, A2に対応する領域についてはその分割数(すなわち2×2)を合成分割数に決定する

[0098]

そして、基準パッチP0およびパッチP1を4×4に分割した場合と同様の分割数となるように矩形領域A3,A4を分割し、その分割数により、基準パッチP0およびパッチP1の矩形領域A3,A4に対応する領域についてのみ、対応関係の推定、座標変換フレームの取得および相関値の算出を行う。そして、矩形領域A3に対応する矩形領域A31~A34のそれぞれの相関値および矩形領域A4に対応する矩形領域A41~A4のそれぞれの相関値をしきい値Th1と比較し、全ての矩形領域A31~A34,A41~A4の相関値がしきい値Th1以下となった場合には、基準パッチP0およびパッチP1

[0099]

この場合、基準パッチP 0 およびパッチP 1 内の画像の合成分割数は、図11に示すように左半分の領域は2×2に、右半分の領域は4×4となる。なお、矩形領域A 3 1~A 3 4, A 4 1~A 4 4 の相関値が再度しきい値T h 1を越えた場合には、基準パッチP 0 およびパッチP 1 内の全領域について、相関値がしきい値T h 1 以下となるまで、相関値がしきい値T h 1を越えた矩形領域に対応する基準パッチP 0 およびパッチP 1 の領域について、段階的に分割数を増加して対応関係の推定、座標変換フレームの取得および相関値の算出を行う。

[0100]

次いで、第2の実施の形態の動作について説明する。図12は、第2の実施形態において行われる処理を示すフローチャートである。まず、サンプリング手段1に動画像データM0が入力され(ステップS11)、ここで、動画像データM0から基準フレームFrN およびフレームFrN+1がサンプリングされる(ステップS12)。続いて、対応関係推定手段2により、基準フレームFrNとフレームFrN+1との対応関係が推定される(ステップS13)。

[0101]

そして、推定された対応関係に基づいて、座標変換手段3によりフレームFrN+1が基準フレームFrNの座標空間に変換されて座標変換フレームが取得される(ステップS14)。そして、相関値算出手段4により座標変換フレームFrT0と基準フレームFrNとの相関値が矩形領域毎に算出され(ステップS15)、比較手段5により複数の矩形領域のうちの1の矩形領域について、相関値がしきい値Th1以下であるか否かが判定される(ステップS16)。

[0102]

ステップS16が否定されると、その矩形領域について基準パッチP0およびパッチP1の分割数が1段階増加され(ステップS17)、後述するステップS19に進む。一方、ステップS16が肯定されると、その矩形領域については相関値を算出した分割数が合成分割数に決定される(ステップS18)。そして全ての矩形領域についてステップS16の判定が終了したか否かが判定され(ステップS19)、ステップS19が否定されると次の矩形領域に判定の対象が変更され(ステップS20)、ステップS16に戻りそれ以降の処理が繰り返される。

[0103]

ステップS19が肯定されると、基準パッチP0およびパッチP1内の全領域について合成分割数が決定されたか否かが判定され(ステップS21)、ステップS21が否定されるとステップS13に戻り、基準パッチP0およびパッチP1内において合成分割数が決定されていない領域についてのみ、ステップS13以降の処理が繰り返される。一方、ステップS21が肯定されると、決定された合成分割数により推定された対応関係に基づいて、合成手段6により基準フレームFrNおよびフレームFrN+1から合成フレームFrGが作成され(ステップS22)、処理を終了する。

[0104]

このように、第2の実施形態においては、合成フレームFrGの作成に用いる対応関係を矩形領域毎に決定しているため、基準パッチおよびパッチ内における分割された矩形領域に対応する領域単位で合成フレームFrGが作成されることとなる。このため、フレーム内の各部分に含まれる被写体の動きに追随した最適な分割数により合成フレームFrGを作成することができ、これにより、フレームに含まれる被写体の動きに拘わらず、より高画質の合成フレームFrGを得ることができる。

[0105]

なお、上記第2の実施形態においては、基準パッチP0およびパッチP1内の全領域に ついて、分割により得られる全ての矩形領域の相関値がしきい値Th1以下となるまで分

[0106]

また、上記第2の実施形態においては、基準パッチP0およびパッチP1内の全領域について分割により得られる全ての矩形領域の相関値がしきい値Th1以下となるまで分割数を段階的に増加しているが、1つの矩形領域について相関値がしきい値Th1以下となったときの基準パッチP0およびパッチP1内の矩形領域の分割数を合成分割数と決定してもよい。例えば、 2×2 に分割した初期の段階において1つの矩形領域(例えばA1)においてのみ相関値 d 0 1 がしきい値Th1以下となった場合には 2×2 を合成分割数とすればよい。

[0107]

また、相関値がしきい値Th1以下となる矩形領域の基準パッチP0およびパッチP1内の領域に占める割合が所定の割合(例えば50%)以上となった場合における分割数を合成分割数と決定してもよい。例えば図13に示すように分割数が4×4の場合において、16の矩形領域のうち斜線で示す9の矩形領域について相関値がしきい値Th1以下となった場合に、4×4を合成分割数と決定してもよい。

[0108]

また、基準パッチP0およびパッチP1において、人物の顔や複雑なテクスチャ等の主要な被写体が含まれる領域あるいは主要な被写体が含まれる可能性が高い中央付近の領域(以下主要領域とする)に位置する矩形領域について、相関値がしきい値Th1以下となったときの基準パッチP0およびパッチP1内の矩形領域の分割数を合成分割数と決定してもよい。例えば、図14に示すように分割数が4×4の場合において、中央付近の4つの矩形領域が人物の顔の部分に位置する場合には、この4つの矩形領域についてのみ相関値がしきい値Th1以下となったときの分割数を合成分割数と決定すればよい。なお、この場合、主要領域に位置する矩形領域について算出された相関値の平均値を算出し、この平均値をしきい値Th1と比較するようにしてもよい。

[0109]

また、相関値の平均値を算出する場合、下記の式(14)に示すように、主要領域に位置する各矩形領域における主要な被写体が占める割合に応じて、各矩形領域において算出された相関値を重み付けし、重み付けした相関値の平均値dmを算出してもよい。

【数11】

$$dm = \frac{\sum Si \cdot d0i}{n}$$
 (14)

[0110]

但し、d0 i:各矩形領域の相関値

Si:各矩形領域において主要被写体の割合に比例して増加する重み係数

また、上記第2の実施形態においては、分割の各段階において得られる全ての矩形領域について相関値をしきい値Th1と比較しているが、基準パッチP0およびパッチP1内の局所的な領域において、相関値が非常に大きく、その領域については分割数を大きくしても分割の各段階において得られる矩形領域同士の相関値がしきい値Th1以下とならないような場合がある。このため、基準パッチP0およびパッチP1における初期の分割数(2×2)において、矩形領域の相関値をあらかじめ定めた一定値と比較し、相関値が一定値を超える場合には、その矩形領域についてはそれ以降は相関値の算出には使用しないようにしてもよい。これにより、演算量を低減して処理を高速に行うことができる。なお、一定値はしきい値Th1の数倍の値とすればよい。

[0111]

また、上記第1および第2の実施形態において、分割数に応じて相関値と比較するしきい値Th1を変化させるようにしてもよい。具体的には、図15に示すように、分割数の増加に応じて小さくなり、さらに分割数が一定値(ここでは2⁶)を超えると分割数が増加するに応じて大きくなるようにしきい値Th1を変化させればよい。これにより、分割数を適切に設定することができる。なお、分割数が一定値を超えた場合にしきい値Th1を大きくするのは、分割数があまりに大きくなると矩形領域が小さくなりすぎて、似たような画像を表す矩形領域が多く存在することとなり、却って被写体の移動および/または変形にパッチの移動および/または変形が追随できない場合があるからである。

[0112]

../

なお、上記第1および第2の実施形態においては、基準フレームFrNおよびフレームFrN+1の輝度色差成分Y,Cb,Cr毎に合成フレームFrGを取得しているが、輝度成分Yについてのみ合成フレームFrGを取得し、色差成分Cb,Crについては、基準フレームFrNの色差成分Cb,Crを線形補間して色差成分の合成フレームを求めてもよい。

[0113]

また、フレームFrN,FrN+1がRGBの色データからなる場合には、RGB各色 データ毎に処理を行って合成フレームFrGを作成してもよい。

[0114]

また、上記第1および第2の実施形態においては、輝度色差成分Y, C b, C r 毎に相関値 d i を算出しているが、下記の式(15)に示すように、例えば相関値 d i について、輝度成分の相関値 d i Y、色差成分の相関値 d i C b, d i C r を重み係数 a 1, b 1, c 1により重み付け加算することにより、1の相関値 d i d を算出してもよい。

【数12】

$$di' = a1 \cdot diY + b1 \cdot diCb + c1 \cdot diCr$$
 (15)

$[0\ 1\ 1\ 5\]$

【数13】

$$di''(x, y) = \{a2 (FrTiY(x, y) - FrNY(x, y))^2 + b2 (FrTiCb(x, y) - FrNCb(x, y))^2 + c2 (FrTiCr(x, y) - FrNCr(x, y))^2\}^{0.5}$$
(16)

[0116]

また、上記第1および第2の実施形態においては、2つのフレームFr N,Fr N + 1 から合成フレームFr G を作成しているが、3以上の複数のフレームから合成フレームFr G を作成してもよい。例えば、第1の実施形態において、3以上のT個のフレームFr N + t ′ (0 \leq t ′ \leq T - 1) から合成フレームFr G を作成する場合、基準フレームFr N (= Fr N + 0) 以外の他のフレームFr N + t (1 \leq t \leq T - 1) のそれぞれについて、基準フレームFr N との対応関係を推定し、さらに推定された対応関係に応じて座標変換フレームを取得し、座標変換フレームと基準フレームFr N との相関値を算出する。そして相関値がしきい値Th1以下となるまで対応関係の推定、座標変換フレームの取得および相関値の算出を行い、相関値がしきい値Th1以下となったときの分割数により推定された対応関係に基づいて合成フレームを作成する。この合成フレームを中間合成フ

レームFrGtとする。なお、中間合成フレームFrGtの統合画像の整数座標における画素値をFrGt(x , y)とする。

[0117]

そして、全ての他のフレームFrN+tについて中間合成フレームFrGtを取得し、下記の式(17)により中間合成フレームFrGtを対応する画素同士で加算することにより、画素値F $rG(x^n, y^n)$ を有する合成フレームFrGを作成する。

【数14】

FrG (x[^], y[^]) =
$$\sum_{t=1}^{T-1}$$
 FrGt (x[^], y[^]) (17)

[0118]

なお、統合画像の全ての整数座標に画素値を割り当てることができない場合がある。このような場合は、割り当てられた画素値または基準フレームの画素値(割り当てられていない座標に対応する)に対して線形補間演算、スプライン補間演算等の種々の補間演算を施して、画素値が割り当てられなかった整数座標の画素値を算出すればよい。

[0119]

また、3以上の複数のフレームから合成フレームFrGを作成する場合において、中間合成フレームFrGtを取得する際に、上記第2の実施形態と同様に、パッチを構成する矩形領域毎に相関値を算出し、矩形領域に対応する領域単位で推定された対応関係に基づいて中間合成フレームFrGtを作成してもよい。

【図面の簡単な説明】

[0120]

- 【図1】本発明の第1の実施形態による動画像合成装置の構成を示す概略ブロック図
- 【図2】フレームFrN+1と基準フレームFrNとの対応関係の推定を説明するための図
- 【図3】パッチの変形を説明するための図
- 【図4】パッチP1と基準パッチP0との対応関係を説明するための図
- 【図5】双1次内挿を説明するための図
- 【図6】分割数が異なるパッチを示す図
- 【図7】フレームF r N+1の統合画像への割り当てを説明するための図
- 【図8】統合画像における整数座標の画素値の算出を説明するための図
- 【図9】第1の実施形態において行われる処理を示すフローチャート
- 【図10】本発明の第2の実施形態において行われる処理を説明するための図(その1)
- 【図11】本発明の第2の実施形態において行われる処理を説明するための図(その 2)
- 【図12】第2の実施形態において行われる処理を示すフローチャート
- 【図13】本発明の第2の実施形態において行われる他の処理を説明するための図 (その1)
- 【図14】本発明の第2の実施形態において行われる他の処理を説明するための図 (その2)
- 【図15】分割数としきい値との関係を示す図

【符号の説明】

[0121]

- 1 サンプリング手段
- 2 対応関係推定手段
- 3 座標変換手段
- 4 相関値算出手段
- 5 比較手段

6 合成手段

【書類名】図面【図1】

【図2】

...

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

A11	A13	A31	A33	P0,P1
A12	A14	A32	A34	
A21	A23	A41	A43	
A22	A24	A42	A44	

【図14】

【図15】

【書類名】要約書

【要約】

【課題】 動画像データからサンプリングされた複数のフレームから1の高解像度フレームを得るに際し、フレームに含まれる被写体の動きに拘わらず画質の劣化を抑えた高解像度フレームを得る。

【解決手段】 複数のフレームFr N,Fr N+1に1以上の矩形領域に分割されたパッチを配置し、パッチを移動および/または変形させて各フレームの対応関係を推定し、推定された対応関係に基づいてフレームFr N+1を座標変換し、これとフレームFr Nとの相関値を算出する。相関値をしきい値と比較し、相関値がしきい値以下となるまで分割数を増加して同様に相関値を算出する。しきい値以下となった相関値を算出した分割数により推定された対応関係に基づいて、フレームFr N,Fr N+1から合成フレームFr Gを作成する。

【選択図】

図 1

特願2003-407319

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 [変更理由]

住 所氏 名

1990年 8月14日 新規登録

神奈川県南足柄市中沼210番地

富士写真フイルム株式会社