Notizen | math341

Jonas Wortmann

October 13, 2023

1 CONTENTS

Contents

1	Kor	plexe Zahlen	2
	1.1	Komplexe Zahlen als Matrizen	2
	1.2	Polarkoordinaten	3
		1.2.1 Potenzen	3
		1.2.2 Beispiel	1

1 Komplexe Zahlen

Die komplexen Zahlen sind alle Terme der Form x + yi; $x, y \in \mathbb{R}$. i ist die imaginäre Einheit, mit $i^2 = -1$. Die Menge der komplexen Zahlen ist $\mathbb{C} := \{x + yi : x, y \in \mathbb{R}\}$.

Die komplexen Zahlen können auch als eine Ebene aufgefasst werden, $x + yi \equiv \begin{pmatrix} x \\ y \end{pmatrix}$.

Die Gleichheit ist definiert als, $x+y\mathbf{i}=a+b\mathbf{i} \Leftrightarrow x=a \wedge y=b.$

Folgende Operationen sind definiert

$$-(x+yi) + (a+bi) := (x+a) + (y+b)i$$

$$-(x+yi)\cdot(a+bi) := xa + xbi + yai + ybi^2 = (xa - yb) + (xb + ya)i$$
.

Sei $z = x + yi \in \mathbb{C}$. Dann ist die **komplex konjugierte** Zahl $\overline{z} := x - yi$. Praktisch ist dann, $z \cdot \overline{z} = (x + yi) \cdot (x - yi) = x^2 + y^2$. Zudem ist die **Norm** einer komplexen Zahl $||z|| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$.

Der **Kehrwert** einer komplexen Zahl $z = x + yi \neq 0 + 0i$ ist $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{||z||^2} = \frac{1}{x^2 + y^2} (x - yi)$. Folgende Rechenregeln sind gültig

- Kommutativität: $z_1 + z_2 = z_2 + z_1$ und $z_1 \cdot z_2 = z_2 \cdot z_1$
- Assoziativität: $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ und $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$
- Distributivität: $z_1(z_2+z_3)=z_1\cdot z_2+z_1\cdot z_3$
- Kehrwertregel: $\frac{1}{z_1 \cdot z_2} = \frac{1}{z_1} \cdot \frac{1}{z_2}$
- Konjugation: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ und $\overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}$

 $(\mathbb{C}, 0, 1, +, \cdot)$ ist ein Körper, der \mathbb{R} enthält.

1.1 Komplexe Zahlen als Matrizen

$$[(x+yi)(a+bi)]_{\mathbb{R}^2} = \begin{pmatrix} xa-yb\\xb+ya \end{pmatrix} = \begin{pmatrix} x&-y\\y&x \end{pmatrix} \begin{pmatrix} a\\b \end{pmatrix}.$$
 (1.1)

Eine komplexe Zahl kann also als Matrix dargestellt werden

$$[x+y\mathbf{i}]_{\mathbb{R}^{2\times 2}} := \begin{pmatrix} x & -y \\ x & y \end{pmatrix}. \tag{1.2}$$

Es gilt dann

$$[z_1 \cdot z_2]_{\mathbb{R}^2} = [z_1]_{\mathbb{R}^{2 \times 2}} \cdot [z_2]_{\mathbb{R}^2} \tag{1.3}$$

$$[z_1 + z_2]_{\mathbb{R}^2} = [z_1]_{\mathbb{R}^{2 \times 2}} + [z_2]_{\mathbb{R}^2}$$
(1.4)

$$\left[\frac{1}{z}\right]_{\mathbb{R}^{2\times 2}} = [z]_{\mathbb{R}^{2\times 2}}^{-1}.$$
 (1.5)

Also
$$\mathbb{C} \subseteq \mathbb{R}^{2\times 2}$$
, $\mathbb{C} \equiv \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \mathbb{R}^{2\times 2} : x, y \in \mathbb{R} \right\} = \operatorname{span} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right) = \left\{ x \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + y \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} : x, y \in \mathbb{R} \right\}.$

Jede Matrix $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ ist das Produkt einer Drehung $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ und einer Streckung $\begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix}$.

Für jede komplexe Zahl z=x+yi $\in \mathbb{C}\setminus\{0\}$, gibt es eindeutige $r>0, \theta\in[0,2\pi)$: $z=r\left(\cos\theta+\sin\theta\mathrm{i}\right)$.

Hier ist
$$r = \sqrt{x^2 + y^2} = ||z||$$
 und $\theta = \arg(z) = \begin{cases} \arctan \frac{y}{x} & ; x > 0, y \ge 0 \\ \frac{\pi}{2} & ; x = 0 < y \\ \pi + \arctan \frac{y}{x} & ; x < 0 \\ \frac{3\pi}{2} & ; x = 0 > y \\ 2\pi + \arctan \frac{y}{x} & ; y < 0 < x \end{cases}$

1.2 Polarkoordinaten

Die komplexen Zahlen können in Polarkoordinaten dargestellt werden

$$\mathbb{C} \ni z = re^{i\theta} \qquad e^{i\theta} = \cos\theta + \sin\theta i, \tag{1.6}$$

mit r > 0 und $\theta \in [0, 2\pi)$. Die Eindeutigkeit von r lässt sich zeigen durch

$$||z|| = \sqrt{x^2 + y^2} = ||re^{i\theta}|| = ||r|| \underbrace{||e^{i\theta}||}_{=1} = r.$$
 (1.7)

Die Eindeutigkeit von θ lässt sich zeigen durch

$$e^{i\theta_1} = e^{i\theta_2} \Leftrightarrow \theta_2 - \theta_1 \in 2\pi \mathbb{Z}.$$
 (1.8)

Die Multiplikation ist definiert durch

$$z_1 \cdot z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}; \tag{1.9}$$

und der Kehrwert

$$\frac{1}{e^{i\theta}} = e^{i(-\theta)}. ag{1.10}$$

1.2.1 Potenzen

Wird eine komplexe Zahl potenziert, gilt

$$k \in \mathbb{Z} : z^k = r^k e^{(i\theta)^k} = r^k e^{i(k\theta)}. \tag{1.11}$$

1.2.2 Beispiel

$$(1+i)^{100}$$
. (1.12)

In Polarkoordinaten ist 1 + i,

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$
 $\theta = \arg(1 + i) = \arctan\left(\frac{1}{1}\right) = \frac{\pi}{4}$ $1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$. (1.13)

Die Potenz ist dann

$$(1+i)^{100} = \sqrt{2}^{100} e^{i(100\frac{\pi}{4})}$$

$$= 2^{50} e^{i25\pi}$$

$$= 2^{50} e^{i\pi}$$

$$= -2^{50}.$$
(1.14)