Proiectarea Algoritmilor

Greedy

Greedy

- Metodă de rezolvare eficientă a unor probleme de optimizare
- Se pleacă de la o soluție parțială elementară
- Există un criteriu de optim local
- Se extind soluțiile partiale pînă ce se obtine o soluție finală criteri de validare a soluției finale

Schema Greedy

```
Soluții-parțiale ← {Soluție-parțială-elementară<sub>1</sub>, Soluție-parțială-elementară<sub>2</sub>,...}
```

Repetă

```
Soluție-parțială←Alege-pentru-extindere (Soluții-parțiale,
Criteriu-de-optim)
```

```
Dacă Criteriu-de-finiș(Soluție-parțială)
atunci Întoarce Soluție-parțială
Soluții-parțiale ← Soluții-parțiale U {Soluție-parțială}
```

Comparație D&I și Greedy

• D&I: top-down; Greedy: bottom-up (top-down?)

• Criteriu de optim? D&I: nu; Greedy: da

Discuție:

Când merge prost Greedy?

Exemplu (I)

- Problema rucsacului
 - Trebuie să umplem un rucsac de capacitate maxima M kg cu obiecte care au greutatea m_i și valoarea v_i.
 - Putem alege mai multe obiecte din fiecare tip cu scopul de a maximiza valoarea obiectelor din rucsac.

Exemplu (II)

- Problema rucsacului
 - Trebuie să umplem un rucsac de capacitate maxima M kg cu obiecte care au greutatea m_i și valoarea v_i.
 - Putem alege mai multe obiecte din fiecare tip cu scopul de a maximiza valoarea obiectelor din rucsac.
 - Varianta 1: putem alege fracțiuni de obiect "problema continuă"
 - Varianta 2: nu putem alege decât obiecte întregi (număr natural de obiecte din fiecare tip), cu versiunea "problema 0-1"

Exemplu (III)

- varianta 1: algoritm greedy
 - sortăm obiectele după raportul v_i/m_i
 - adăugăm obiectele cu cele mai mari valori per kg şi apoi adăugăm fracţiuni din următorul
 - Exemplu:
 - M=10kg
 - $m_1=5kg, v_1=10, m_2=8kg, v_2=19, m_3=4kg, v_3=4$
 - Soluţie: (m₂, v₂) 8kg şi 2kg din (m₁,v₁)

Exemplu (IV)

- varianta 2: algoritmul greedy nu funcţionează
 - Contraexemplu:
 - rezultat corect 2 obiecte (m₁,v₁)
 - rezultat alg. greedy 1 obiect (m₂,v₂)

Arbori Huffman

Arbori Huffman

- Metoda de codificare folosita la compresia fisierelor
- Construcția unui astfel de arbore se realizează printr-un algoritm greedy
- Exemplu:
 - ana are mere 12*8 biti=96 biti
 - a 00; e -11; r 010; ' ' 011; m 100;
 - n 101 –
 - 6*2+6*3=12+18=30 biti
 - Compresie de 30/96 ~ 66%

Arbori Huffman – Definitii (I)

- K mulțimea de simboluri ce vor fi codificate
- Arbore de codificare a cheilor K este un arbore binar ordonat cu proprietățile:
 - Doar frunzele conțin cheile din K; nu exista mai mult de o cheie intr-o frunză
 - Toate nodurile interne au exact 2 copii
 - Arcele sunt codificate cu 0 si 1 (arcul din stânga unui nod codificat cu 0)
- k = Codul unei chei este șirul etichetelor de pe calea de la rădăcina arborelui la frunza care conține cheia k (k este din K).
- p(k) frecvenţa de apariţie a cheii k in textul ce trebuie comprimat.
- Ex pentru "ana are mere":
 - p(a) = p(e) = 0.25; p(n) = p(m) = 0.083; p(r) = p(r) = 0.166

Arbori Huffman – Definitii (II)

- A arborele de codificare a cheilor
- lg_cod(k) lungimea codului cheii k conform A
- nivel(k,A) nivelul pe care apare in A frunza ce conține cheia K
- Costul unui arbore de codificare A al unor chei K relativ la o frecventa p este:

$$Cost(A) = \sum_{k \in K} lg _cod(k) * p(k) = \sum_{k \in K} nivel(k, A) * p(k)$$

• Un arbore de codificare cu cost minim al unor chei K, relativ la o frecventa p este un arbore Huffman, iar codurile cheilor sunt coduri Huffman.

Arbori Huffman – algoritm de constructie (I)

- 1. pentru fiecare k din K se construiește un arbore cu un singur nod care conține cheia k si este caracterizat de ponderea w = p(k).
 Subarborii construiți formează o mulțime numita Arb.
- 2. Se aleg doi subarbori a şi b din Arb astfel incât a şi b au pondere minima.

Arbori Huffman – algoritm de constructie (II)

- 3. Se construieste un arbore binar cu o radacina r care nu contine nici o cheie si cu descendentii a si b. Ponderea arborelui este definita ca w(r) = w(a) + w(b)
- 4. Arborii a si b sunt eliminati din Arb iar r este inserat in Arb.
- 5. Se repeta procesul de constructie descris de pasii 2-4 pana cand multimea Arb contine un singur arbore – Arborele Huffman pentru cheile K

Arbori Huffman – Exemplu

• Text: ana are mere

•
$$p(a) = p(e) = 0.25$$
; $p(n) = p(m) = 0.083$; $p(r) = p() = 0.166$

• Pasul 1

Pasii 2-4

Arbori Huffman – Exemplu(II)

W(r+)=0.32 W

W(m+n)=0.16

• Pasii 2-4 (II)

(W(a))

(W(e)) (

(W(r))

(W())

(W(m))

(W(n))

• Pasii 2-4 (III)

,

• Pasii 2-4 (IV)

Arbori Huffman – Exemplu (III)

• Pasii 2-4 (V)

- Codificare: a 00; e -11; r 010; ' ' 011; m 100; n 101;
- Cost(A) = 2 * 0.25 + 2 * 0.25 + 3 * 0.083 + 3 * 0.083 + 3 * 0.166 + 3 *
 0.166 = 1 + 1.2 = 2.2 biti.

Arbori Huffman – Construcție

```
\label{eq:huffman} \begin{split} &\text{Huffman}(K,p) \{\\ &\text{Arb} = \{k \in K \mid \text{frunza}(k,p(k))\};\\ &\text{while } (\text{card}(\text{Arb}) > 1)\\ &\text{fie } a_1 \text{ si } a_2 \text{ arbori din Arb a.i. } \forall a \in \text{Arb a} \neq a_1 \text{ si a} \neq a_2, \text{ avem}\\ & \quad w(a_1) \leq w(a) \wedge w(a_2) \leq w(a)); \quad // \text{ practic se extrage de doua ori minimul si se}\\ & \quad w(a_1) \leq w(a) \wedge w(a_2) \leq w(a); \quad // \text{ practic se extrage de doua ori minimul si se}\\ & \quad // \text{ salveaza in } a_1 \text{ si } a_2\\ & \quad \text{Arb} = \text{Arb} \setminus \{a_1, a_2\} \text{ U nod\_intern}(a_1, a_2, w(a_1) + w(a_2));\\ & \quad \text{if}(\text{Arb} = \Phi) \text{ return arb\_vid};\\ & \quad \text{else}\\ & \quad \text{fie A singurul arbore din multimea Arb};\\ & \quad \text{return A}; \end{split}
```

Notatii folosite:

```
a = frunza(k, p(k)) - subarbore cu un singur nod care contine cheia k, iar w(a) = p(k);

a = nod_intern(a_1, a_2, x) - subarbore format dintr-un nod intern cu descendentii a_1 si a_2 si w(a) = x
```

Arbori Huffman - Decodificare

Se incarca arborele si se decodifica textul din fisier conform algoritmului:

```
Decodificare (in, out)

A = restaurare_arbore (in) // reconstruiesc arborele

while(! terminare_cod(in)) // mai am caractere de citit

nod = A // pornesc din radacina

while (! frunza(nod)) // cat timp nu am determinat caracterul

if (bit(in) = 1) nod = dreapta(nod) // avansez in arbore

else nod = stanga(nod)

write(out, cheie(nod)) // am determinat caracterul si il scriu
```

Demonstrația corectitudinii aplicării schemei greedy (I)

- Arborele de codificare construit trebuie să aibă cost minim pentru a fi arbore Huffman
- Lema 1. Fie K mulțimea cheilor dintr-un arbore de codificare, card(K) ≥ 2, x, y două chei cu pondere minimă. ∃ un arbore Huffman de înălțime h in care cheile x şi y apar pe nivelul h fiind descendente ale aceluiași nod intern.

Demonstrația corectitudinii aplicării schemei greedy (II)

Demonstratie Lema 1:

 Se interschimbă a cu x şi b cu y şi din definiţia costului arborelui => cost(A'') ≤ cost(A') ≤ cost(A) => A'' arbore Huffman

Demonstratie (III)

Lema 2. Fie A un arbore Huffman cu cheile K, iar x şi y două chei direct descendente ale aceluiaşi nod intern a. Fie K' = K \ {x,y} U {z} unde z este o cheie fictivă cu ponderea w(z) = w(x) + w(y). Atunci arborele A' rezultat din A prin inlocuirea subarborelui cu rădăcina a si frunzele x, y cu subarborele cu un singur nod care conţine frunza z, este un arbore Huffman cu cheile K'.

Demonstratie

- 1) analog $Cost(A') \le Cost(A)$ (Cost(A) = Cost(A') + w(x) + w(y))
- 2) pp există A'' a.i. Cost(A'') < Cost(A') =>
 - Cost(A'') < Cost(A) (w(x) + w(y));
 - Cost(A'') + w(x) + w(y) < Cost(A); => A nu este Huffman (contradicţie)

Demonstrație (IV)

- Teoremă Algoritmul Huffman construiește un arbore Huffman.
- Demonstrație prin inducție după numărul de chei din mulțimea K.
- n ≤ 2 => evident
- n > 2
 - Ip. Inductivă: algoritmul Huffman construiește arbori Huffman pentru orice mulțime cu n-1 chei
 - Fie K = $\{k_1, k_2, ..., k_n\}$ a.i. $w(k_1) \le w(k_2) \le ... \le w(k_n)$

Demonstrație (V)

- Cf. Lema 1, \exists Un arbore Huffman unde cheile k_1 , k_2 sunt pe același nivel și descendente ale aceluiași nod.
- A_{n-1} arborele cu n-1 chei $K' = K \{k_1, k_2\} \cup z$ unde $w(z) = w(k_1) + w(k_2)$
- A_{n-1} rezultă din A_n prin modificările prezentate in Lema 2 => A_{n-1} este Huffman, şi cf. ipotezei inductive e construit prin algoritmul Huffman(K',p')
- => Algoritmul Huffman(K, p) construiește arborele format din k_1 si k_2 si apoi lucrează ca şi algoritmul Huffman(K', p') ce construiește A_{n-1} => construieste arborele Huffman(K, p)

Model abstract al algoritmilor greedy

- Fie E o mulţime finită nevidă şi I $\subset \mathcal{P}(E)$ a.i. :
 - $\emptyset \in I$,
 - $\forall X \subseteq Y \text{ si } Y \in I \Rightarrow X \in I$.
- Atunci spunem ca (E,I) este un sistem accesibil
- Submulţimile din I sunt denumite submulţimi independente:

• Exemple:

- Ex1: E = $\{e_1, e_2, e_3\}$ si I = $\{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_1, e_2\}, \{e_2, e_3\}\}$ mulțimile ce nu conțin e_1 si e_3 .
- Ex2: E muchiile unui graf neorientat şi I mulţimea mulţimilor de muchii ce nu conţin un ciclu (mulţimea arborilor).
- Ex3: E set de vectori dintr-un spaţiu vectorial, I mulţimea mulţimilor de vectori linear independenţi.
- Ex4: E muchiile unui graf neorientat şi I mulţimea mulţimilor de muchii în care oricare 2 muchii nu au un vârf comun.

Model al algoritmilor greedy (II)

 Un sistem accesibil este un matroid daca satisface proprietatea de interschimb:

 Teorema. Pentru orice subset accesibil (E,I) algoritmul Greedy rezolvă problema de optimizare dacă şi numai dacă (E,I) este matroid.

Verificăm exemplele

• Ex1:
$$I = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_1, e_2\}, \{e_2, e_3\}\}$$

Fie $Y = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_1, e_2\}\} \text{ si } X = \{\{e_1\}, \{e_3\}\}$
 $\rightarrow Y \setminus X = \{\{e_2\}, \{e_1, e_2\}\} \rightarrow X \cup \{e_2\} \in I \rightarrow \text{matroid}$

• Ex4:

Algoritmul Greedy

Algoritmul generic Greedy devine:

```
X = \emptyset

sortează elementele din E în ordinea descrescătoare a ponderii pentru fiecare element e \in E (sortat) repetă

X = X \cup \{e\} dacă şi numai dacă (X \cup \{e\}) \in I

Întoarce X
```

Programare dinamica

Programare dinamică

- Programare dinamica
 - Descriere generala
 - Algoritm generic
 - Caracteristici
- Arbori optimi la cautare (AOC)
 - Definitii
 - Constructia AOC

Programare dinamică

- Descriere generală
 - Soluţii optime construite iterativ asamblând soluţii optime ale unor subprobleme (probleme similare de dimensiune mai mică)
- Algoritmi "clasici"
 - Problema rucsacului discretă (0-1)
 - Algoritmul Floyd-Warshall determină drumurile de cost minim dintre toate perechile de noduri ale unui graf
 - AOC
 - Înmulţirea unui şir de matrici
 - Numere catalane
 - Viterbi
 - Distanta de editare

Algoritm generic

 $Soluții-parțiale^0 \leftarrow \{Soluție-parțială-elementară_1, Soluție-parțială-elementară_2, ...\}$

Pentru i=1 la n repetă

Soluții-parțialeⁱ =combină(Soluții-parțiale^{j<i},Criteriu-de-optim)

Întoarce Soluții-parțialeⁿ

Caracteristici

- O solutie optima a unei probleme contine solutii optime ale subproblemelor
- O solutie recursiva contine un numar mic de subprobleme distincte ce se repeta de multe ori

Diferente greedy – programare dinamică

Greedy

- Sunt mentinute solutiile partiale curente din care evolueaza solutiile partiale urmatoare
- Solutiile partiale anterioare sunt eliminate (ele sunt deja inglobate in solutiilor curente)

Programare dinamică

 Se pastreaza toate solutiile partiale

 La constructia unei solutii noi poate contribui orice alta solutie partiala generata anterior

Diferențe programare dinamică – divide et impera

Divide et impera

- abordare top-down –
 problema este descompusă
 în subprobleme care sunt
 rezolvate independent
- putem rezolva aceeaşi problemă de mai multe ori (dezavantaj potenţial foarte mare)

Programare dinamică

- abordare bottom-up se porneşte de la sub-soluţii elementare şi se combină sub-soluţiile mai simple în sub-soluţii mai complicate, pe baza criteriului de optim
- se evită calculul repetat al aceleiaşi subprobleme prin memorarea rezultatelor intermediare

Arbori optimi la căutare

- Def 2.1: Fie K o multime de chei. Un arbore binar cu cheile K este un graf orientat si aciclic A=(V,E) a.i.:
 - Fiecare nod contine o singura cheie k(u)∈K iar cheile din noduri sunt distincte
 - Exista !r∈V a.i. i-grad(r)=0 si ∀u!=r i-grad(u)=1
 - ∀u∈V e-grad(u)≤2; S(u)= succesorul stanga si D(u)=succesorul dreapta

Arbori optimi la căutare

- Def 2.1: Fie K o mulţime de chei. Un arbore binar cu cheile K este un graf orientat si aciclic A = (V,E) a.i.:
 - Fiecare nod u ∈ V conține o singură cheie k(u) ∈ K iar cheile din noduri sunt distincte.
 - Există un nod unic $r \in V$ a.i. i-grad(r) = 0 si $\forall u \neq r$, i-grad(u) = 1.
 - $\forall u \in V$, e-grad(u) ≤ 2 ; S(u) / D(u) = subarbore stânga / dreapta.
- Def 2.2: Fie K o mulțime de chei peste care exista o relație de ordine ≺
 . Un arbore binar de căutare satisface:
 - $\forall u,v,w \in V$ avem $(v \in S(u) => cheie(v) \times cheie(u)) \wedge (w \in D(u) => cheie(u) \times cheie(w))$

Căutare

```
Caută(elem, Arb)

dacă Arb = null

întoarce null

dacă elem = Arb.val // valoarea din nodul crt.

întoarce Arb

dacă elem Arb.val

întoarce Caută(elem, Arb.st)

întoarce Caută(elem, Arb.dr)

<
```

Complexitate: Θ(logn)

Inserţie în arbore de căutare

```
Inserare(elem, Arb)

daca Arb=vid

nod_nou(elem, null, null)

daca elem=Arb.val

întoarce Arb

daca elem<Arb.val

întoarce nod_nou(Arb.val, Inserare(elem, Arb.st), Arb.dr)

întoarce nod_nou(Arb.val, Arb.st, Inserare(elem, Arb.dr)) 
nod Dreapta
```

Exemplu de arbori de căutare

• Cu aceleaşi chei se pot construi arbori distincţi

Exemplu (I)

- presupunem cheile din A1 și A2 au probabilități de căutare egale
 - numărul de comparații pentru A1 va fi (1+2+2+3+3+3+4)/7=2.42
 - numărul mediu de comparaţii pentru A2 va fi (1+2+2+3+3+4+4)/7=2.71

Exemplu (II)

- presupunem că elementele au următoarele probabilități:
 - 8:0.2; 15:0.01; 39:0.1; 23:0.02; 28:0.25; 32:0.2; 41:0.22;
 - numărul mediu de comparaţii pentru A1:
 - 0.02*1+0.01*2+0.2*2+0.2*3+0.25*3+0.22*3+0.1*4=2.85
 - numărul mediu de comparaţii pentru A2:
 - 0.25*1+0.02*2+0.22*2+0.2*3+0.2*3+0.01*4+0.1*4=2.37

Probleme

costul căutării depinde de frecvenţa cu care este căutat fiecare termen =>ne dorim ca termenii cei mai des căutaţi să fie cât mai aproape de vârful arborelui pentru a micşora numărul de apeluri recursive dacă arborele este construit prin sosirea aleatorie a cheilor putem avea o simplă listă cu n elemente

Definiţie AOC

• **Definitie:** Fie A un arbore binar de cautare cu chei intr-o multime K, fie $\{x_1, x_2, ... x_n\}$ cheile continute in A, iar $\{y_0, y_1, ... y_n\}$ chei reprezentante ale cheilor din K ca<u>re</u> nu sunt in A astfel incat:

$$y_{i-1} \prec x_i \prec y_i, i = 1, n$$

• Fie p_i , i = 1, n probabilitatea de a cauta cheia x_i si q_j , j = 0, n probabilitatea de a cauta o cheie reprezentata de y_j . Vom avea relatia: $\sum_{i=1}^{n} x_i + \sum_{j=1}^{n} x_j = 1$

 $\sum_{i=1}^{n} p_i + \sum_{j=0}^{n} q_j = 1$

• A- arbore de căutare probabilistică cu costul:

$$Cost(A) = \sum_{i=1}^{n} (nivel(x_i, A) + 1) * p_i + \sum_{j=0}^{n} nivel(y_j, A) * q_j$$

• **Definitie:** Un arbore de cautare probabilistica avand cost minim este un *arbore optim la cautare (AOC)*.

Algoritm AOC naiv

- generarea permutărilor x₁,...,x_n
- construcţia arborilor de căutare corespunzători
- calcularea costului pentru fiecare arbore
- complexitate: Θ(n!) (deoarece sunt n! permutări)
- =>căutăm altă variantă

Construcţia AOC – Notaţii

- Ai,j desemneaza un AOC cu cheile {xi+1, xi+2, ... xj} in noduri si cu cheile {yi, yi+1, ... yj} in frunzele fictive
- Ci,j = Cost (Ai,j)
- Ri,j este indicele α al cheii $x\alpha$ din radacina arborelui Ai,j

•
$$w_{i,j} = \sum_{k=i+1}^{j} p_k + \sum_{k=i}^{j} q_k$$

Observatie: A0,n este chiar arborele A, C0,n = Cost (A) iar w0,n = 1

Construcția AOC - Demonstrație

- **<u>Lemă:</u>** Pentru orice 0 ≤ i ≤ j ≤ n există relaţiile:
 - Ci,j = 0 , daca i = j

•
$$C_{i,j} = \min_{i \le \alpha \le j} \{C_{i,\alpha-1} + C_{\alpha,j}\} + w_{i,j}$$

- Ci,j depinde de indicele α al nodului rădăcină
- dacă Ci, α -1şi C α ,j sunt minime (costurile unor AOC) => Ci,j este minim

Construcţia AOC

- 1. In etapa d, d = 1, 2, ... n se calculeaza costurile si indicele cheilor din radacina arborilor AOC Ai,i+d, I = 0, n-d cu d noduri si d+1 frunze fictive
- Arborele Ai,i+d contine in noduri cheile {xi+1, xi+2, ... xi+d}, iar in frunzele fictive sunt cheile {yi, yi+1, ... yi+d}. Calculul este efectuat pe baza rezultatelor obtinute in etapele anterioare
- Conform lemei avem

$$C_{i,i+d} = \min_{i \le \alpha \le i+d} \{C_{i,\alpha-1} + C_{\alpha,i+d}\} + w_{i,i+d}$$

- radacina Ai,i+d are indicele Ri,j = α care minimizeaza Ci,i+d.
- 2. Pentru d = n, C0,n corespunde arborelui AOC A0,n cu cheile {x1, x2, ... xn} in noduri si cheile {y0, y1, ... yn} in frunzele fictive

Algoritm AOC

```
AOC(x, p, q, n){
   // initializare costuri AOC vid Ai,i
   for( i = 0; i \le n; i++)
        {Ci,i = 0, Ri,i = 0, wii = qi}
   for( d = 1; d \le n; d++){
         for( i = 0; i \le n-d; i++){
                  // calcul indice radacina si cost pentru Ai,i+d
                 j = i + d, Ci, j = \infty, wi, j = wi, j-1 + pj + qj
                 // ciclul critic – operatii intensive
                  for (\alpha = i + 1; \alpha \leq j; \alpha++)
                           if (Ci,\alpha-1 + C\alpha,j < Ci,j)
                                    { Ci,j = Ci,\alpha-1 + C\alpha,j ; Ri,j = \alpha}
                                    Ci,i = Ci,i + wi,i
// constructie efectiva arbore A0,n cunoscand indicii
   return gen AOC(C, R, x, 0, n)
```

AOC – Corectitudine (I)

- <u>Teorema:</u> Algoritmul AOC construieste un arbore AOC A cu cheile x = {x1, x2, ... xn} conform probabilitatilor de cautare pi, i = 1,n si qj, j = 0,n
- Demonstratie: prin inductie dupa etapa de calcul al costurilor arborilor cu d noduri
- <u>Caz de baza:</u> d = 0. Costurile Ci,i ale arborilor vizi Ai,i, i = 0,n sunt 0, asa cum sunt initializate de algoritm

AOC – Corectitudine (II)

- Pas de inductie: d ≥ 1.
- Ip. ind. pentru orice d' < d, algoritmul AOC calculeaza costurile Ci,i+d' si indicii Ri,i+d', ai radacinilor unor AOC Ai,i+d', i = 0,n-d' cu cheile {xi+1, xi+2, ... xi+d'}. Trebuie sa aratam ca valorile Ci,i+d si Ri,i+d corespund unor AOC Ai,i+d, i = 0,n-d cu cheile {xi+1, xi+2, ... xi+d}.
- Pentru d si i fixate, algoritmul calculeaza unde costurile Ci, α -1 si C α ,i+d corespund unor arbori cu un numar de noduri d'= α 1 i in cazul Ci, α -1 si d'= 1 + d α in cazul C α ,i+d.
- 0 ≤ d' ≤ d − 1 → aceste valori au fost deja calculate in etapele d' < d si conform ipotezei inductive → sunt costuri si indici ai radacinilor unor AOC.
- Conform Lemei anterioare, Ci,j este costul unui AOC. Conform algoritmului → radacina acestui arbore are indicele r = Ri,j, iar cheile sunt {xi+1, xi+2, ... xr-1} {xr} {xr+1, xr+2, ... xj} = {xi+1, xi+2, ... xj}.
- Pentru d = n, costul C0,n corespunde unui AOC A0,n cu cheile x si cu radacina de indice R0,n.

Exemplu de Programare Dinamică: Înmulțirea unui șir de matrice (Chain Matrix Multiplication)

- Se dă un şir de matrice: A₁, A₂, ..., A_n.
- Care este numărul minim de înmulţiri de scalari pentru a calcula produsul:

$$A_1 \times A_2 \times ... \times A_n$$
?

• Să se determine una dintre parantezările care minimizează numărul de înmulţiri de scalari.

Înmulţirea matricilor

- A(p, q) x B (q, r) => pqr înmulţiri de scalari.
- Dar înmulţirea matricilor este asociativă (deşi nu este comutativă).
- A(p, q) x B (q, r) x C(r, s)
 (AB)C => pqr + prs înmulţiri
 A(BC) => qrs + pqs înmulţiri
- Ex: p = 5, q = 4, r = 6, s = 2
 (AB)C => 180 înmulţiri
 A(BC) => 88 înmulţiri
- Concluzie: Parantezarea este foarte importantă!

Soluţia banală

- Matrici: A₁, A₂, ..., A_n.
- Vector de dimensiuni: p_0 , p_1 , p_2 , ..., p_n .
- $A_i(p_{i-1}, p_i) \rightarrow A_1(p_0, p_1), A_2(p_1, p_2), ...$
- Dacă folosim căutare exhaustivă şi vrem să construim toate parantezările posibile pentru a determina minimul: $\Omega(4^n / n^{3/2})$.
- Vrem o soluţie polinomială folosind P.D.

Descompunere în subprobleme

• Încercăm să definim subprobleme identice cu problema originală, dar de dimensiune mai mică.

- \forall 1 \leq i \leq j \leq n:
 - Notăm $A_{i,j} = A_i \times ... \times A_j$. $A_{i,j}$ are p_{i-1} linii si p_j coloane: $A_{i,j}(p_{i-1}, p_j)$
 - m[i, j] = numărul optim de înmulţiri pentru a rezolva subproblema A_{i,j}
 - s[i, j] = poziţia primei paranteze pentru subproblema A_{i,i}
 - Care e parantezarea optimă pentru A_{i, i}?
- Problema iniţială: A_{1.n}

Combinarea subproblemelor

- Pentru a rezolva A_{i,i}
 - trebuie găsit acel indice i ≤ k < j care asigură parantezarea optimă:

$$A_{i, j} = (A_i \times ... \times A_k) \times (A_{k+1} \times ... \times A_j)$$

 $A_{i, j} = A_{i, k} \times A_{k+1, j}$

Alegerea optimală

- Căutăm optimul dintre toate variantele posibile de alegere (i ≤ k < j)
- Pentru aceasta, trebuie însă ca şi subproblemele folosite să aibă soluție optimală

(adică $A_{i, k}$ și $A_{k+1, j}$)

Rezolvare - iniţializare

Rezolvare – pas intermediar

Rezolvare – final

Pseudocod

```
Matrix-Chain(p, n)
   for (i = 1 \text{ to } n) m[i, i] = 0;
   for (l=2 \text{ to } n)
       for (i = 1 \text{ to } n - l + 1)
           j = i + l - 1;
           m[i,j] = \infty;
           for (k = i \text{ to } j - 1)
               q = m[i, k] + m[k + 1, j] + p[i - 1] * p[k] * p[j];
               if (q < m[i, j])
                   m[i,j] = q;
                   s[i,j] = k;
    return m and s;
```

Complexitate

- Spaţială: $\Theta(n^2)$
 - Pentru memorarea soluțiilor subproblemelor
- Temporală: O(n³)
 - Ns: Număr total de subprobleme: O(n²)
 - Na: Număr total de alegeri la fiecare pas: O(n)
 - Complexitatea este de obicei egala cu Ns x Na

Concluzii

- Caracteristici ale P.D.
 - Substructura optimală
 - Suprapunerea problemelor
- Substructura optimală
 - O alegere (un criteriu de alegere)
 - Una sau mai multe subprobleme ce rezultă din alegerea facută
 - Considerând că la pasul curent construim o soluție optimală pentru problemă, trebuie sa arătăm că și soluțiile subproblemelor folosite pentru rezolvarea sa sunt la rândul lor optimale
- Este foarte important spaţiul ales pentru reprezentarea subproblemelor:
 - De ce nu am folosit pentru AOC un spaţiu A1,j?
 - Incercand sa determinam r optim intre 1 si j, am obtine doua subprobleme A1,r și Ar+1,j, care nu pot fi reprezentate în acest spațiu => trebuie sa permitem ca ambii indici sa varieze Ai,j

Concluzii (II)

- Câte subprobleme sunt folosite în soluția optimală?
 - AOC: 2 subprobleme
- Câte variante de ales avem de făcut pentru determinarea alegerii optimale ?
 - AOC: j-i+1 candidați pentru rădăcină
- Informal, complexitatea = #total subprobleme x #alegeri
 - AOC:
 - O primă aproximație: $O(n^2) * O(n) = O(n^3)$
 - Se poate arăta însă că este O(n²)

Concluzii (III)

- Observatie! Nu toate problemele de optimizare posedă substructură optimală!
 - Ex: drumul cel mai lung in grafuri
- Suprapunerea problemelor
 - Memoizare
 - Se foloseşte un tablou pentru salvarea soluţiilor subproblemelor pentru a nu le recalcula (în special când folosim varianta recursivă a P.D.)
 - De obicei, construim soluţiile direct *bottom-up*, de la subprobleme la probleme

Bibliografie

- http://www.cs.umass.edu/~barring/cs611/lecture/4.pdf
- http://thor.info.uaic.ro/~dlucanu/cursuri/tpaa/resurse/Curs6.pps
- http://www.math.fau.edu/locke/Greedy.htm
- http://en.wikipedia.org/wiki/Greedoid
- Cormen Introducere în Algoritmi cap. 15,16
- Giumale C. Introducere în Analiza Algoritmilor Algoritm de construcție AOC + Demonstrație