Roll No.

MCA/D09 5418

Discrete Mathematical Structures

Paper: MCA-I03

Time: Three Hours Maximum Marks: 80

Note:- Attempt **FIVE** questions in all Question No.1 is compulsory and attempt **FOUR** more questions by selecting **ONE** question from each unit.

- 1. (a) Prove that subgroup of an abelian group is normal.
 - (b) Find order of each element of the group (Z_6, t_6) .
 - (c) Draw complete bipartite graphs $K_{2,3}$, $K_{3,3}$, $K_{2,4}$. Which graph contains Hamiltonian circuit?
 - (d) Define isomorphism of graphs. What are conditions that the graphs must hold?
 - (e) Let $A = \{a, b, c\}$ and P(A) be power set of A. Prove that is a partial order relation on P(A).
 - (f) Let (L, \vee, \wedge) be a complemented and distributive lattice, then prove that complement a of an element a \in L is unique.
 - (g) Show that the polynomial $x^4 + x + 1$ is redouble over (Z_3, X_3, t_3) .
 - (h) Show that (Z_8, t_8, X_8) has zero divisors.

3*8

UNIT-I

- 2 (a) Let $(S_3, 0)$ be a permutation group over $A = \{1, 2, 3\}$. Find all subgroups of $(S_3, 0)$ and their generators also.
 - (b) Write cosets of (5Z, t) in (Z, t).

4

- 3 (a) Find the language L (G) over A= {a, b, c} generated by the grammar G with productions:-
 - $S \rightarrow aSb$, $aS \rightarrow Aa$, $Aab \rightarrow c$. Determine the type of grammar.
 - (b) Find a content free grammar G which generates the language L consists of all words of the form $a^rb^sc^t$, r, s, t>0. Draw the diagram of the finite state machine for the language, if possible.

UNIT-II

- 4 (a) State and prove Euler's formula for a connected planar graph G. Which complete graph is a planar graph?
 - (b) What is minimal spanning tree? Write an algorithm for finding a minimal spanning tree. Explain it for the following graph:

Write an algorithm for finding shortest path from the node a to the node z in a weighted digraph D. Find shortest path from A to D in the digraph.

Determine source and sink in this digraph.

14

14

UNIT-III

- 6 (a) State basic Boolean algebra laws and principle of duality. 6 (b) Define Boolean algebra. Verify whether B = {1, 2, 4, 6, 8, 12, 24} w.r.t. the relation divides is a Boolean algebra or not. 8
- 7 Consider the Boolean expression E = xz'+y'z+xyz'.
 - (i) Simplify E algebraically.
 - (ii) Draw the switching circuit for E and for the simplified E.
 - (iii) Draw the circuit (gate) diagram for E and for simplified E.

UNIT-IV

- 8 Find splitting field of polynomial x^3+x+1 over (Z_2,t_2,x_2) .
- 9 (a) Prove that a finite integral domain is a field. 7
 - (b) Prove that (Z,t,x) is an integral domain but not a field.