Problem Set 1 Algebra III

Bennett Rennier bennett@brennier.com

Ex 1. Let R be a ring and n a natural number.

- a) Show that $Z(M_n(R)) = Z(R)$.
- b) Show that the ring $M_n(R)$ is simple if R is a skew field.
- c) Show that $M_n(R)$ is isomorphic to its opposite ring $M_n(R)^o$ if R is commutative.

Proof.

a) Let $A = \sum_{i,j} a_{ij} e_{ij}$ be in the center of $M_n(R)$. Then

$$\sum_{j} a_{\ell j} e_{\ell j} = \sum_{i,j} a_{ij} \delta_{\ell i} e_{\ell j} = \sum_{i,j} a_{ij} e_{\ell \ell} e_{ij} = e_{\ell \ell} A = A e_{\ell \ell} = \sum_{i,j} a_{ij} e_{ij} e_{\ell \ell} = \sum_{i,j} a_{ij} \delta_{j\ell} e_{i\ell} = \sum_{i} a_{i\ell} e_{i\ell}.$$

Since the first term only has entries on the ℓ th row and the last term only has entries on the ℓ th row, we see that this means that $a_{i\ell} = a_{\ell i} = 0$ for $i \neq \ell$. As ℓ was arbitrary, we get that $a_{ij} = 0$ for all $i \neq j$, i.e. A is a diagonal matrix. This means A is of the form $\sum_i a_i e_{ii}$. Furthermore, we see that

$$a_k e_{jk} = \sum_i a_i \delta_{ki} e_{ji} = \sum_i a_i e_{jk} e_{ii} = e_{jk} A = A e_{jk} = \sum_i a_i e_{ii} e_{jk} = \sum_i a_i \delta_{ij} e_{ik} = a_j e_{jk}$$

proving that all the diagonal entries of A must be the same constant, i.e. $A = \lambda \operatorname{Id}_n$ for some $\lambda \in R$. If $\lambda \notin Z(R)$, then there's some ρ such that $\lambda \rho \neq \rho \lambda$. This means that

$$(\lambda \operatorname{Id}_n)(\rho \operatorname{Id}_n) = \lambda \rho \operatorname{Id}_n \neq \rho \lambda \operatorname{Id}_n = (\lambda \operatorname{Id}_n)(\rho \operatorname{Id}_n).$$

which is a contradiction to $A \in Z(M_n(R))$. Thus, it must be that $A = \lambda \operatorname{Id}_n$ for some $\lambda \in Z(R)$. Conversely, if $A = \lambda \operatorname{Id}_n \in Z(R)$, then for all matrices $B \in M_n(R)$ we get that

$$BA = B\lambda \operatorname{Id}_n = \sum_{i,j} b_{ij} \lambda e_{ij} = \sum_{i,j} \lambda b_{ij} e_{ij} = \lambda \operatorname{Id}_n B = AB.$$

This proves that $Z(M_n(R)) = \{\lambda \operatorname{Id}_n : \lambda \in Z(R)\}$ which we can identify simply as Z(R).

b) Let I be a nonzero ideal of $M_n(R)$ and let $A = \sum_{i,j} a_{ij} e_{ij}$ be a nonzero element of I, where $a_{\ell k} \neq 0$. Then we have that

$$e_{\ell\ell}Ae_{kk} = \sum_{i,j} a_{ij}e_{\ell\ell}e_{ij}e_{kk} = \sum_{i,j} a_{ij}\delta_{\ell i}e_{\ell j}e_{kk} = \sum_{i,j} a_{ij}\delta_{\ell i}\delta_{jk}e_{\ell k} = a_{\ell k}e_{\ell k}$$

is in I. From here we see that for any $1 \le s, t \le n$

$$e_{s\ell}(a_{\ell k}e_{\ell k})e_{kt} = a_{\ell k}\delta_{\ell\ell}e_{sk}e_{kt} = a_{\ell k}\delta_{\ell\ell}\delta_{kk}e_{st} = a_{\ell k}e_{st}$$

is also in I. Since R is a skew field, there is a $b \in R$ such that $ba_{\ell k} = 1$. Using this, we get that $(b \operatorname{Id}_n)(a_{\ell k}e_{st}) = (ba_{\ell k})e_{st} = e_{st}$ is in I. Since every matrix in $M_n(R)$ is generated by elementary matrices and I contains all the elementary matrices, we have that I = R, proving that $M_n(R)$ is simple.

c) If $A = \sum_{i,j} a_{ij} e_{ij}$, then define $A^T = \sum_{i,j} a_{ji} e_{ij}$. I claim that the map $\varphi : M_n(R) \to M_n(R)^o$ where $\varphi(A) = A^T$ is an isomorphism. We see pretty easily from the definition of A^T that this map is injective and surjective. To prove that φ is multiplicative, let $B = \sum_{ij} b_{ij} e_{ij}$ and check that

$$\varphi(AB) = (AB)^T = \left(\left(\sum_{i,j} a_{ij} e_{ij} \right) \left(\sum_{i,j} b_{ij} e_{ij} \right) \right)^T = \left(\sum_{i,j} \sum_{k} a_{ik} b_{kj} e_{ij} \right)^T = \sum_{i,j} \sum_{k} a_{jk} b_{ki} e_{ij}$$
$$= \sum_{i,j} \sum_{k} b_{ki} a_{jk} e_{ij} = \left(\sum_{i,j} b_{ji} e_{ij} \right) \left(\sum_{i,j} a_{ji} e_{ij} \right) = B^T A^T = \varphi(A) \cdot_{opp} \varphi(B).$$

To prove that φ is linear, we see that

$$\varphi(\alpha A + B) = (\alpha A + B)^T = \left(\sum_{i,j} (\alpha a_{ij} + b_{ij})e_{ij}\right)^T = \sum_{i,j} (\alpha a_{ji} + b_{ji})e_{ij}$$
$$= \alpha A^T + B^T = \alpha \varphi(A) + \varphi(B).$$

This proves that φ is an isomorphism.

Ex 2. Let V be a k-vector space, $R = \operatorname{End}_k(V)$ and f an element of R.

- a) Show that the following statements are equivalent:
 - (i) f has a right inverse in R.
 - (ii) f is not a right zero divisor in R.
 - (iii) f is surjective.

If V is infinite-dimensional, given an example of such an f which is not in R^* .

- b) Show that the following statements are equivalent:
 - (i) f has a left inverse in R.
 - (ii) f is not a left zero divisor in R.
 - (iii) f is injective.

If V is infinite-dimensional, given an example of such an f which is not in R^* .

c) Show that R is not simple if V is infinite-dimensional.

Proof.

a) i \Longrightarrow ii) Suppose f has a right inverse g, that is $f \circ g = \mathrm{Id}_V$. If $h \circ f = 0$ for some $h \in R$, then

$$h = h \circ \operatorname{Id}_V = h \circ f \circ g = 0 \circ g = 0$$

which proves that f is not a right zero divisor.

ii \Longrightarrow iii) Suppose contrapositively that f is not surjective. Let $\{e_i\}_{i\in I}$ be a basis of f(V) (possibly an infinite basis). Since f is not surjective, this is not a basis of V itself. Extend this basis with the elements $\{d_j\}_{j\in J}$ to form a basis of V. Let g be the linear map such that $g(e_i) = 0$ and $g(d_j) = d_j$. We see then that $g \neq 0$ and $g \circ f = 0$. This means f is a right zero divisor. By the contrapositive, if f is not a right zero divisor, then f is surjective.

iii \Longrightarrow i) Let $\{e_i\}_{i\in I}$ be a basis of V. Since f is surjective, there exists a $v_i \in V$ such that $f(v_i) = e_i$. We define $g(e_i) = v_i$, which uniquely defines g as we know what it does on basis elements. This means that $(f \circ g)(e_i) = f(g(e_i)) = f(v_i) = e_i$. Since $f \circ g$ is the identity on the basis elements, it must be that $f \circ g = \mathrm{Id}_V$. This proves f has a right inverse.

Let V be a vector space with countably infinite basis $\{e_i\}_{i\geq 0}$. Let $f:V\to V$ be the linear map

$$f(e_i) = \begin{cases} 0 & \text{if } i = 0 \\ e_{i-1} & \text{if } i > 0 \end{cases}$$

We see then that f is surjective (as $f(e_{i+1}) = e_i$ for $i \ge 0$). However, since $f(e_0) = 0 = f(0)$, we also see that f is not injective. By part (b) this means f does not have a left inverse, proving f is not invertible.

b) i \Longrightarrow ii) Suppose f has a left inverse g, that is $g \circ f = \mathrm{Id}_V$. If $f \circ h = 0$ for some $h \in R$, then

$$h = \operatorname{Id}_{V} \circ h = a \circ f \circ h = a \circ 0 = 0$$

which proves that f is not a left zero divisor.

ii \Longrightarrow iii) Suppose contrapositively that f is not injective. Let $\{e_i\}_{i\in I}$ be a basis of $\ker(V)$ (possibly an infinite basis). Since f is not injective, this basis has at least one non-zero vector in it. Extend this basis with the elements $\{d_j\}_{j\in J}$ to form a basis of V. Let g be the linear map such that $g(e_i) = e_i$ and $g(d_j) = 0$. We see then that $g \neq 0$ and $f \circ g = 0$. This means f is a left zero divisor. By the contrapositive, if f is not a left zero divisor, then f is injective.

iii \Longrightarrow i) Let $\{e_i\}_{i\in I}$ be a basis of V. Since f is injective, $\{f(e_i)\}_{i\in I}$ is linearly independent. Extend this linearly independent set into a basis of V with the elements $\{d_j\}_{j\in J}$. Let g be the linear map such that $g(f(e_i)) = e_i$ and $g(d_j) = d_j$. Thus we have that $(g \circ f)(e_i) = g(f(e_i)) = e_i$. Since $g \circ f$ is the identity on all the basis elements, it must be that $g \circ f = \mathrm{Id}_v$, proving that f has a left inverse.

Let V be a vector space with countably infinite basis $\{e_i\}_{i\geq 0}$. Let $f:V\to V$ be the linear map where $f(e_i)=e_{i+1}$. We see then that f is injective as it's injective on the basis elements. Since f is injective, the elements $\{f_{e_i}\}_{i\geq 0}$ are linearly independent and form a basis of $\operatorname{im}(f)$. However, $\{f(e_i)\}_{i\geq 0}=\{e_i\}_{i\geq 1}$. As e_0 is linearly independent from this set, it cannot be in the image of f. Thus, f is not surjective and by part (a), f does not have a right inverse; that is $f\notin R^*$.

c) Let $R = \operatorname{End}_k(V)$ where V is an infinite-dimensional k-vector space. Let $I = \{f \in R : \operatorname{rank}(f) < \infty\}$. I claim that this is an ideal of R. We see that if $f, g \in I$, then the image

of f+g is contained in $\operatorname{im}(f)+\operatorname{im}(g)$. Since both of these are finite dimensional, we have that $\operatorname{rank}(f+g)<\infty$, so $f+g\in I$. Additionally, if $f\in I$ and $g\in R$, then the image of $f\circ g$ is contained in the image of f, which is finite-dimensional, so $f\circ g\in I$. Lastly, since the image of $g\circ f$ is simply $g(\operatorname{im}(f))$, we see that it's also finite-dimensional as it's the image of a finite-dimensional subspace. Thus, $g\circ f\in I$. This proves that I is an ideal. We note that $I\neq R$ as $\operatorname{Id}_V\not\in I$ and $I\neq\{0\}$ as for any $v\in V$ we have that $p_v\in I$ where p_v is the projection map onto v.

Ex 3.

- a) If R is a 3-dimensional k-algebra which is not commutative, show that Z(R) = k.
- b) Construct an example of a non-commutative 3-dimensional k-algebra R.

Proof.

- a) Let R be a 3-dimensional k-algebra. Suppose that Z(R) contained an element not in k, call this element e_2 . This means we can extend to a basis $\{e_1, e_2, e_3\}$ of R where we identify ke_1 as simply k and $\langle e_1, e_2 \rangle \subseteq Z(R)$. However, since both e_1 and e_2 are in the center, we have that $e_1e_3 = e_3e_1$ and that $e_2e_3 = e_3e_2$. This proves that $e_3 \in Z(R)$ as well as it commutes with all basis elements. Thus $\langle e_1, e_2, e_3 \rangle = R \subseteq Z(R)$; proving that R = Z(R). By the contrapositive, if R is non-commutative 3-dimensional k-algebra, then Z(R) = k.
- b) Take for example the set of upper triangular 2×2 matrices over some field k, that is matrices of the form

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$

where $a, b, c \in k$. We can clearly see that this is three-dimensional; it can be generated by $\{e_{11}, e_{12}, e_{22}\}$ where e_{ij} is an elementary matrix. We also see that

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

which proves that this k-algebra is non-commutative.

Ex 4. Give an example (including arguments) of a group G such that the center Z(k[G]) of the group algebra k[G] is strictly bigger than the subalgebra k[Z(G)].

Proof. For this we'll obviously need a non-abelian group to begin with, so let $G = D_3$ (the Dihedral group of order 6). We note that with the representation $D_3 = \langle r, s \mid r^3 = s^2 = 1, sr = r^{-1}s \rangle$ the conjugacy classes of D_3 are simply $\{e\}$, $\{r, r^2\}$, and $\{s, sr, sr^2\}$. I claim that the element $r + r^2 \in k[D_3]$ is in the center of the algebra but is not in the subalgebra $k[Z(D_3)]$. It is easy to see that the latter is true as the center of D_3 is trivial, meaning $k[Z(D_3)]$ is actually just the field k in $k[D_3]$ (or technically what we've identified as k in the algebra). To prove that $r + r^2$ is in the center, we need only to show that it commutes with all the basis elements. Furthermore, since every element of D_3 can be written in the form $s^i r^j$ where $i \in \{0,1\}$ and $j \in \{0,1,2\}$, we only need to show that $r + r^2$ commutes with s and r. We can prove this directly as

$$(r+r^2) \cdot r = rr + r^2r = rr + rr^2 = r \cdot (r+r^2)$$

and that

$$(r+r^2) \cdot s = rs + r^2s = sr^{-1} + sr^{-2} = sr^2 + sr^1 = sr + sr^2 = s \cdot (r+r^2).$$

This proves what was claimed. Thus, $r + r^2$ is an element of the center of $k[D_3]$ that is not in the subalgebra $k[Z(D_3)]$.

Ex 5. Let a, b be elements $a, b, a', b' \in k^*$ and (a, b) the corresponding quaternion algebra over k.

- a) Prove that (a, b) is central k-algebra.
- b) Prove that (a, b) is a simple k-algebra.

Proof.

a) Let $x = k_1 + k_2e_2 + k_3e_3 + k_4e_4$ be an arbitary element in the center of (a, b). That would mean that

$$0 = e_2x - xe_2 = e_2(k_1 + k_2e_2 + k_3e_3 + k_4e_4) - (k_1 + k_2e_2 + k_3e_3 + k_4e_4)e_2$$

= $e_2(k_3e_3 + k_4e_4) - (k_3e_3 + k_4e_4)e_2 = (ak_4e_3 + k_3e_4) - (-ak_4e_3 - k_4e_3) = 2ak_4e_3 + 2k_3e_4.$

As $char(k) \neq 2$, we can divide by 2 and get that

$$ak_4e_3 + k_3e_4 = 0.$$

As our basis elements are invertible and thus have no zero divisors, this proves that $k_3 = k_4 = 0$. Using a similar trick, we get that

$$0 = e_3x - xe_3 = e_3(k_1 + k_2e_2) - (k_1 + k_2e_2)e_3 = (k_1e_3 - k_2e_4) - (k_1e_3 + k_2e_4) = -2k_2e_4.$$

Again, since $\operatorname{char}(k) \neq 2$, we have that $k_2 = 0$. This proves that $x \in k$ and thus that (a, b) is a central k-algebra.

b) Let I be some non-zero ideal of (a, b) and let $x = k_1 + k_2e_2 + k_3e_3 + k_4e_4$ be some non-zero element of I. By similar calculations as in part (a), we know that

$$e_2x - xe_2 = 2ak_4e_3 + 2k_3e_4$$

and that

$$e_2x + xe_2 = e_2(k_1 + k_2e_2 + k_3e_3 + k_4e_4) + (k_1 + k_2e_2 + k_3e_3 + k_4e_4)e_2$$

$$= (k_1 + k_2e_2 - k_3e_3 - k_4e_4)e_2 + (k_1 + k_2e_2 + k_3e_3 + k_4e_4)e_2$$

$$= (k_1 + k_2e_2)2e_2 = 2ak_2 + 2k_1e_2.$$

Both of these calculations are in I and since at least one $k_j \neq 0$, we know that at least one of them is non-zero. We note that if $2ak_4e_3 + 2k_3e_4$ is the non-zero element, then we have that

$$e_3(2ak_4e_3 + 2k_3e_4) = 2abk_4 - 2bk_3e_2$$

is in I. Thus, we can assume without loss of generality that x is of the form $k_1 + k_2 e_2$. By a similar trick, we see that either

$$e_3x + xe_3 = e_3(k_1 + k_2e_2) + (k_1 + k_2e_2)e_3 = (k_1e_3 - k_2e_4) + (k_1e_3 + k_2e_4) = 2k_1e_3$$

or

$$e_3x - xe_3 = e_3(k_1 + k_2e_2) - (k_1 + k_2e_2)e_3 = (k_1e_3 - k_2e_4) - (k_1e_3 + k_2e_4) = -2k_2e_4$$

is a non-zero element of I. If it's the former, then $e_3(2k_1e_3) = 2k_1b \in I$ and if it's the latter, then $e_4(-2k_2e_4) = 2abk_2 \in I$. Either way, I contains a non-zero element of k. As all non-zero elements of k are invertible, this means that $1 \in I$, proving that I is the whole algebra. Thus, (a, b) is a simple k-algebra.

Ex 6. For elements $a, b, a', b' \in k^*$, prove that

- a) (a, b) and (b, a) are isomorphic k-algebras.
- b) (a,b) and (a',b') are isomorphic k-algebras if the quotients a'/a and b'/b are squares in k.
- c) Now classify, up to isomorphism, all quaternion algebras over field $k = \mathbb{R}$ of real numbers.

Proof. We recall that the algebra (a, b) can be uniquely determined by the equations $e_2^2 = a$, $e_3^2 = b$, and $e_2e_3 = -e_3e_2 = e_4$.

a) Let φ be the linear map on (a, b) such that

$$\varphi(e_i) = \begin{cases} e_1 & \text{if } i = 1\\ -e_3 & \text{if } i = 2\\ -e_2 & \text{if } i = 3\\ -e_4 & \text{if } i = 4. \end{cases}$$

We then see that

$$\varphi(e_2)\varphi(e_2) = (-e_3)(-e_3) = e_3e_3 = b$$

$$\varphi(e_3)\varphi(e_3) = (-e_2)(-e_2) = e_2e_2 = a$$

$$\varphi(e_2)\varphi(e_3) = (-e_3)(-e_2) = e_3e_2 = -e_4 = \varphi(e_4)$$

$$\varphi(e_3)\varphi(e_2) = (-e_2)(-e_3) = e_2e_3 = e_4 = -\varphi(e_4)$$

This means that φ is a linear map where $\varphi(e_2)\varphi(e_2) = b$, $\varphi(e_3)\varphi(e_3) = a$, and $\varphi(e_2)\varphi(e_3) = -\varphi(e_3)\varphi(e_2) = \varphi(e_4)$. We see that these equations uniquely defined the image of φ to be the algebra (b, a). Thus, φ is an isomorphism from (a, b) to (b, a).

b) Suppose $a'/a = \alpha^2$ and $b'/b = \beta^2$. Let φ be the linear map on (a,b) such that

$$\varphi(e_i) = \begin{cases} e_1 & \text{if } i = 1\\ \alpha e_2 & \text{if } i = 2\\ \beta e_3 & \text{if } i = 3\\ \alpha \beta e_4 & \text{if } i = 4. \end{cases}$$

We then see that

$$\varphi(e_{2})\varphi(e_{2}) = (\alpha e_{2})(\alpha e_{2}) = \alpha^{2} e_{2} e_{2} = \alpha^{2} a = a'$$

$$\varphi(e_{3})\varphi(e_{3}) = (\beta e_{3})(\beta e_{3}) = \beta^{2} e_{3} e_{3} = \beta^{2} b = b'$$

$$\varphi(e_{2})\varphi(e_{3}) = (\alpha e_{2})(\beta e_{3}) = \alpha \beta e_{2} e_{3} = \alpha \beta e_{4} = \varphi(e_{4})$$

$$\varphi(e_{3})\varphi(e_{2}) = (\beta e_{3})(\alpha e_{2}) = \beta \alpha e_{3} e_{2} = -\alpha \beta e_{4} = -\varphi(e_{4}).$$

This means that φ is a linear map where $\varphi(e_2)\varphi(e_2) = a'$, $\varphi(e_3)\varphi(e_3) = b'$, and $\varphi(e_2)\varphi(e_3) = -\varphi(e_3)\varphi(e_2) = \varphi(e_4)$. We see that these equations uniquely defined the image of φ to be the algebra (a',b'). Thus, φ is an isomorphism from (a,b) to (a',b').

c) Let (a, b) be a quaternion algebra over \mathbb{R} . If we let sign(x) = x/|x| from \mathbb{R} to $\{-1, 1\}$, then a/sign(a) and b/sign(b) are both positive and thus both squares. By part (b), this proves that $(a, b) \simeq (sign(a), sign(b))$. Thus all quaternion algebras over \mathbb{R} are isomorphic to either

(1,1), (-1,1), (1,-1), or (-1,-1). By part (a), $(-1,1) \simeq (1,-1).$ Now let φ be a linear map on (1,-1) such that

$$\varphi(e_i) = \begin{cases} e_1 & \text{if } i = 1\\ e_2 & \text{if } i = 2\\ e_4 & \text{if } i = 3\\ e_3 & \text{if } i = 4. \end{cases}$$

We then see that

$$\varphi(e_2)\varphi(e_2) = e_2e_2 = a = 1$$

$$\varphi(e_3)\varphi(e_3) = e_4e_4 = -ab = -(1)(-1) = 1$$

$$\varphi(e_2)\varphi(e_3) = e_2e_4 = e_2(e_2e_3) = (e_2e_2)e_3 = ae_3 = e_3 = \varphi(e_4)$$

$$\varphi(e_3)\varphi(e_2) = e_4e_2 = (e_2e_3)e_2 = (-e_3e_2)e_2 = -e_3(e_2e_2) = -e_3a = -e_3 = -\varphi(e_4).$$

This means that φ is a linear map where $\varphi(e_2)\varphi(e_2) = 1$, $\varphi(e_3)\varphi(e_3) = 1$, and $\varphi(e_2)\varphi(e_3) = -\varphi(e_3)\varphi(e_2) = \varphi(e_4)$. We see that these equations uniquely defined the image of φ to be the algebra (1,1). Thus, φ gives us an isomorphism between (1,-1) and (1,1).

Finally, we note that the quaternion norm on (-1,-1) is $N(x)=x_1^2+x_2^2+x_3^2+x_4^2$, which is anisotropic over \mathbb{R} . This proves that (-1,-1) has no zero divisors, making (-1,-1) into a division ring. On the other hand the quaternion norm on (1,1) is $N(x)=x_1^2-x_2^2-x_3^2+x_4^2$, which is definitely not anisotropic. This means (1,1) is not a division ring, proving that (-1,-1) can't be isomorphic to (1,1). Thus, all quaternion algebras over the field \mathbb{R} are isomorphic to one of the distinct algebras (-1,-1) or (1,1).