Parametrização de uma superfície Vetores normais e tangentes a uma superfície Área de uma superfície Integral de superfície de 1.ª espécie

Análise Matemática III Integrais de superfície

Ricardo Moura

Escola Naval

26 de novembro de 2021

Parametrização de uma superfície

Definição

O conjunto de pontos (x, y, z) dados por:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$

é chamada superfície parametrizada e x(u,v), y(u,v) e z(u,v) são as equações paramétricas da superfície que tem de ser contínuas em D no plano uv.

Parametrização de uma superfície

Exemplo

Identifique e desenhe a superfície parametrizada por

$$\mathbf{r}(u,v) = 3\cos(u)\mathbf{i} + 3\sin(u)\mathbf{j} + v\mathbf{k}$$

para
$$0 \le u \le 2\pi$$
 e $0 \le v \le 4$.

Exemplo

Identifique e desenhe a superfície parametrizada por

$$\mathbf{r}(u,v) = \sin(u)\cos(v)\mathbf{i} + \sin(u)\sin(v)\mathbf{j} + \cos(u)\mathbf{k}$$

para
$$0 \le u \le \pi$$
 e $0 \le v \le 2\pi$.

Parametrização de uma superfície

Exemplo

Escreva a equação paramétrica para o cone dado por

$$z = \sqrt{x^2 + y^2} \land z < 2$$

Vetores normais e tangentes a uma superfície

Tendo em conta de que estamos numa superfície, teremos de definir dois vetores tangentes à superfície

cada uma associada

a cada parâmetro da parametrização.

Vetores normais e tangentes a uma superfície

O plano tangente será definido pelas derivadas parciais de r, que corresponderão, numa perspetiva geométrica, aos vetores tangentes.

$$\mathbf{T}_{u}(u,v) = \left(\frac{\partial x(u,v)}{\partial u}, \frac{\partial y(u,v)}{\partial u}, \frac{\partial z(u,v)}{\partial u}\right)$$

е

$$\mathbf{T}_{v}(u,v) = \left(\frac{\partial x(u,v)}{\partial v}, \frac{\partial y(u,v)}{\partial v}, \frac{\partial z(u,v)}{\partial v}\right)$$

 $\mathbf{T}_{u}(u_{0}, v_{0})$ e $\mathbf{T}_{v}(u_{0}, v_{0})$ serão as coordenadas dos vetores tangentes à superfície em $\mathbf{r}(u_{0}, v_{0})$.

Vetores normais e tangentes a uma superfície

Seja S uma superfície regular (lisa) parametrizada por $\mathbf{r}(u,v)$ definida sobre uma região D no plano uv e seja (u_0,v_0) um ponto em D, o vetor normal à superfície no ponto $\mathbf{r}(u_0,v_0)$ será dado por

$$\mathbf{N} = \mathbf{T}_u(u_0, v_0) \times \mathbf{T}_v(u_0, v_0)$$

Área de uma superfície

No caso das áreas de superfícies podemos fazer uma dedução semelhante às que foram feitas para as outras integrações. A superfície dada pode ser dividida em n retângulos de dimensão muito reduzida. Ora as suas áreas $\Delta A_i = \Delta u_i \Delta v_i$ poderão ser substituídas pelas áreas de retângulos dos planos tangentes. Essa área será dada por

$$||\Delta u_i \mathbf{r}_u \times \Delta v_i \mathbf{r}_v|| = ||\mathbf{r}_u \times \mathbf{r}_v||\Delta u_i \Delta v_i$$

Área de uma superfície

Definição

Seja S uma superfície regular parametrizada por $\mathbf{r}(u,v)$ definida em D, um aberto no plano uv. Se $\mathbf{r}(u,v)$ é injetiva, então a área da superfície será dada por

$$\int \int_{S} dS = \int \int_{D} ||\mathbf{r}_{u} \times \mathbf{r}_{v}|| dA,$$

onde
$$\mathbf{r}_u = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}$$
 e $\mathbf{r}_v = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$

Nota: Numa superfície dada por z = f(x, y), temos que essa área se resume a

$$\int \int_{B} \sqrt{1 + [f_{x}(x,y)]^{2} + [f_{y}(x,y)]^{2}} dA$$

Parametrização de uma superfície Vetores normais e tangentes a uma superfície **Área de uma superfície** Integral de superfície de 1.ª espécie

Área de uma superfície

Exemplo

Calcule a área da superfície da esfera unitária.

Integral de superfície de 1.ª espécie

Definição

Seja S uma superfície e seja $\mathbf{r}(u,v)$ a sua parametrização, se as derivadas parciais de $\mathbf{r}(u,v)$ forem contínuas sobre R no plano uv, então o integral de superfície de uma função f(x,y,z) sobre S é dada por

$$\int \int_{S} f(x, y, z) dS = \int \int_{R} f(\mathbf{r}(u, v)) ||\mathbf{r}_{u} \times \mathbf{r}_{v}|| du dv$$

Nota:
$$dS = ||\mathbf{r}_u \times \mathbf{r}_v||dA = ||\mathbf{r}_u \times \mathbf{r}_v||dudv$$

Integral de superfície de 1.ª espécie

Exemplo

Uma lâmina S, com o formato de um cone, é descrita por

$$z = 4 - 2\sqrt{x^2 + y^2}, 0 \le z \le 4.$$

Em cada ponto a densidade (massa específica) é proporcional à distância do ponto ao eixo dos zz. Determine a sua massa.