

Vishay Siliconix

HALOGEN

FREE

8-Ch/Dual 4-Ch High-Performance CMOS Analog Multiplexers

DESCRIPTION

The DG408 is an 8 channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address (A_0 , A_1 , A_2). The DG409 is a dual 4 channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (A_0 , A_1). Break-before-make switching action protects against momentary crosstalk between adjacent channels.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, address (A_x) and enable (EN) are TTL compatible over the full specified operating temperature range.

Applications for the DG408, DG409 include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.

Designed in the 44 V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 V. Additionally, single supply operation is also allowed. An epitaxial layer prevents latchup.

For additional information please see Technical Article TA201.

FEATURES

- Low on-resistance $R_{DS(on)}$: 100 Ω
- Low charge injection Q: 20 pC
- Fast transition time t_{TRANS}: 160 ns
- Low power I_{SUPPLY}: 10 μA
- Single supply capability
- 44 V supply max. rating
- TTL compatible logic
- Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details.

BENEFITS

- · Reduced switching errors
- Reduced glitching
- Improved data throughput
- Reduced power consumption
- Increased ruggedness
- Wide supply ranges
 - Single supply: +5 V to 36 V
 - Dual supplies: ± 5 V to ± 20 V

APPLICATIONS

- Data acquisition systems
- Audio signal routing
- ATE systems
- · Battery powered systems
- Single supply systems
- Medical instrumentation

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

www.vishay.com

Vishay Siliconix

TRUTH TABLE (DG408)						
A ₂	A ₁	A_0	EN	ON SWITCH		
Х	Х	X	0	None		
0	0	0	1	1		
0	0	1	1	2		
0	1	0	1	3		
0	1	1	1	4		
1	0	0	1	5		
1	0	1	1	6		
1	1	0	1	7		
1	1	1	1	8		

TRUTH TABLE (DG409)						
A ₁	A ₀	EN	ON SWITCH			
Х	Х	0	None			
0	0	1	1			
0	1	1	2			
1	0	1	3			
1	1	1	4			

Notes

- Logic "0" = $V_{AL} \le 0.8 \text{ V}$
- Logic "1" = V_{AH} ≥ 2.4 V
- X = Do not care

ORDERING INFORMATION (Commercial)							
PART	CONFIGURATION	TEMP. RANGE	PACKAGE	ORDERING PART NUMBER			
			40 distributio DID	DG408DJ			
			16-pin plastic DIP	DG408DJ-E3			
				DG408DY			
DC 400	8:1 x 1	-40 °C to 85 °C	16 min COIC	DG408DY-E3			
DG408	0.1 X 1		16-pin SOIC	DG408DY-T1			
				DG408DY-T1-E3			
			16-pin TSSOP	DG408DQ-E3			
				DG408DQ-T1-E3			
		40.00 1.05.00	16 pin plactic DID	DG409DJ			
			16-pin plastic DIP	DG409DJ-E3			
			40 0010	DG409DY			
DG409	4:1 x 2			DG409DY-E3			
DG409	4.1 X Z	-40 °C to 85 °C	16-pin SOIC	DG409DY-T1			
				DG409DY-T1-E3			
			16 pin TCCOD	DG409DQ-E3			
			16-pin TSSOP	DG409DQ-T1-E3			

Note

• -T1 indicates Tape and Reel, -E3 indicates Lead-Free and RoHS Compliant, NO -E3 indicates standard Tin/Lead finish.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Voltages Referenced to V	V+ to V- e	44	V			
Voltages Referenced to V-	GND to V-	-25				
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 20 mA, whichever occurs first				
Current (any terminal)		30	^			
Peak Current, S or D (pulsed at 1 ms	, 10 % duty cycle max.)	100	mA mA			
Storage Temperature (DJ, DY suffix)		-65 to 125	°C			
Davier Dissipation (Daskage) h	16-pin plastic DIP ^c	450	m1/1/			
Power Dissipation (Package) b	16-pin narrow SOIC and TSSOP d	600	mW			

Notes

- $a. \quad \text{Signals on } S_X, \, D_X \, \text{or IN}_X \, \text{exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.}$
- b. All leads soldered or welded to PC board.
- c. Derate 6 mW/°C above 75 °C.
- d. Derate 7.6 mW/°C above 75 °C.
- e. Also applies when V- = GND.

Vishay Siliconix

			TEST CONDITIONS UNLESS OTHERWISE SPECIFIED			D SUFFIX -40 °C to 85 °C		
			V+ = 15 V, V- = -15 V					
PARAM		SYMBOL	$V_{AL} = 0.8 \text{ V}, V_{AH} = 2.4 \text{ V}^{f}$	TEMP. b	TYP. c	MIN. d	MAX. d	UNIT
Analog		1			l	1	1	
	Signal Range e	V _{ANALOG}		Full	-	-15	15	V
Drain-Sc		R _{DS(on)}	$V_D = \pm 10 \text{ V}, I_S = -10 \text{ mA}$	Room	40	-	100	1
On-Resi		BO(OII)	, ,	Full	-	-	125	Ω
R _{DS(on)} M Channels	latching Between s ^g	$\Delta R_{DS(on)}$	$V_D = \pm 10 \text{ V}$	Room	-	-	15	
Source (Off Leakage Current	I _{S(off)}	$V_{S} = \pm 10 V$,	Room	-	-0.5	0.5	
	on Loanago ourront	15(011)	$V_D = \pm 10 \text{ V}, V_{EN} = 0 \text{ V}$	Full	-	-5	5	
DG408				Room	-	-1	1	
DG408	Drain Off Leakage	I _{D(off)}	$V_D = \pm 10 \text{ V},$ $V_S = \pm 10 \text{ V},$	Full	-	-20	20	
DG409	Current	·D(OII)	$V_{EN} = 0 \text{ V}$	Room	-	-1	1	nA
DG409				Full	-	-10	10	
DG408				Room	-	-1	1	
DG408	Drain On Leakage	1	$V_S = V_D = \pm 10 \text{ V}$ sequence each	Full	-	-20	20	
DG409	Current	I _{D(on)}	switch on	Room	-	-1	1]
DG409				Full	=.	-10	10	
Digital C	Control							
Logic High Input Voltage Logic Low Input Voltage		V_{INH}		Full	=.	2.4	-	v
		V_{INL}	NL NL	Full	-	-	0.8	
Logic High Input Current Logic Low Input Current		I _{AH}	V _A = 2.4 V, 15 V	Full	-	-10	10	
		I _{AL}	V _{EN} = 0 V, 2.4 V, V _A = 0 V	Full	-	-10	10	μA
Logic Inp	out Capacitance	C _{in}	f = 1 MHz	Room	8	-	-	pF
Dynamic	Characteristics							•
Transitio	n Time	t _{TRANS}	see figure 2	Full	160	-	250	
Break-B	efore-Make Interval	t _{OPEN}	see figure 4	Room	-	10	-	1
				Room	115	-	150	ns
Enable I	urn-On Time	t _{ON(EN)}	see figure 3	Full	-	-	-	
Enable T	urn-Off Time	t _{OFF(EN)}		Room	105	-	150	1
Charge I	njection	Q	$C_L = 10 \text{ nF}, V_S = 0 \text{ V}$	Room	20	-	-	рС
Off Isola	tion ^h	OIRR	$V_{EN} = 0 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega,$ $f = 1 \text{ MHz}$	Room	-75	-	-	
Source 0	Off Capacitance	C _{S(off)}	$V_{EN} = 0 \text{ V}, V_{S} = 0 \text{ V},$ f = 1 MHz	Room	3	-	-	
DG408	Drain Off			Room	26	-	-	pF
DG409	Capacitance	C _{D(off)}	$V_{EN} = 0 V$	Room	14	-	-	1
DG408 Drain On DG409 Capacitance C _{D(on)}		$V_D = 0 V$, $f = 1 MHz$	Room	37	-	-	1	
		G _{D(on)}		Room	25	-	-	1
Power S	Supplies							
	Supply Current	l+		Full	10	-	75	
	Supply Current	l-	$V_{EN} = V_A = 0 \text{ V or 5 V}$	Full	1	-75	-	μA
				Room	0.2	-	0.5	
Positive	Supply Current	l+	$V_{EN} = V_A = 0 \text{ V or 5 V}$	Full	_	_	2	mA
Negative Supply Current		I-		Full	-	-500	-	μΑ

Vishay Siliconix

SPECIFICATIONS ^a (Single Supply)							
		TEST CONDITIONS UNLESS OTHERWISE SPECIFIED			D SUFFIX -40 °C to 85 °C		
		V+ = 12 V, V- = 0 V					
PARAMETER	SYMBOL	$V_{AL} = 0.8 \text{ V}, V_{AH} = 2.4 \text{ V}^f$	TEMP. b	TYP. c	MIN. d	MAX. d	UNIT
Analog Switch							
Drain-Source On-Resistance ^{e,f}	R _{DS(on)}	V _D = 3 V, 10 V, I _S = -1 mA	Room	90	-	-	Ω
Dynamic Characteristics							
Switching Time of Multiplexer ^e	t _{TRANS}	$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, V_{IN} = 2.4 \text{ V}$	Room	180	-	-	
Enable Turn-On Time ^e	t _{ON(EN)}	$V_{INH} = 2.4 \text{ V}, V_{INL} = 0 \text{ V}, V_{S1} = 5 \text{ V}$	Room	180	-	-	ns
Enable Turn-Off Time ^e	t _{OFF(EN)}		Room	120	-	-	
Charge Injection e	Q	$C_L = 1 \text{ nF}, V_S = 0 \text{ V}, R_S = 0$	Room	5	-	-	рС

Notes

- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on channel 4 due to proximity to the drain pin.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Source/Drain Capacitance vs. Analog Voltage

Drain Leakage Current vs. Source/Drain Voltage

Input Switching Threshold vs. Supply Voltage

Drain Leakage Current vs. Source/Drain Voltage (Single 12 V Supply)

Source Leakage Current vs. Source Voltage

Negative Supply Current vs. Switching Frequency

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Positive Supply Current vs. Switching Frequency

I_{SUPPLY} vs. Temperature

Positive Supply Current vs. Temperature (DG408)

Charge Injection vs. Analog Voltage

R_{DS(on)} vs. V_D and Supply

R_{DS(on)} vs. V_D and Supply (Single Supply)

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

R_{DS(on)} vs. V_D and Temperature

Off Isolation and Crosstalk vs. Frequency

Switching Time vs. Bipolar Supply

R_{DS(on)} vs. V_D and Temperature (Single Supply)

Insertion Loss vs. Frequency

Switching Time vs. Single Supply

SCHEMATIC DIAGRAM (Typical Channel)

TEST CIRCUITS

Fig. 2 - Transition Time

TEST CIRCUITS

Fig. 3 - Enable Switching Time

Fig. 4 - Break-Before-Make Interval

TEST CIRCUITS

Fig. 5 - Charge Injection

Fig. 7 - Crosstalk

Fig. 8 - Insertion Loss

Fig. 9 - Source Drain Capacitance

APPLICATION HINTS

Overvoltage Protection

A very convenient form of overvoltage protection consists of adding two small signal diodes (1N4148, 1N914 type) in series with the supply pins (see figure 10). This arrangement effectively blocks the flow of reverse currents. It also floats the supply pin above or below the normal V+ or V- value. In this case the overvoltage signal actually becomes the power

supply of the IC. From the point of view of the chip, nothing has changed, as long as the difference VS - (V-) does not exceed + 44 V. The addition of these diodes will reduce the analog signal range to 1 V below V+ and 1 V above V-, but it preserves the low channel resistance and low leakage characteristics.

Fig. 10 - Overvoltage Protection Using Blocking Diodes

8-Channel Sequential Multiplexer/Demultiplexer

Differential 4-Channel Sequential Multiplexer/Demultiplexer

Fig. 11

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70062.

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

	MILLIMETERS		INC	HES	
Dim	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.38	0.51	0.015	0.020	
С	0.18	0.23	0.007	0.009	
D	9.80	10.00	0.385	0.393	
E	3.80	4.00	0.149	0.157	
е	1.27	BSC	0.050	BSC	
Н	5.80	6.20	0.228	0.244	
L	0.50	0.93	0.020	0.037	
0	0°	8°	0°	8°	
ECN: S-03946—Rev. F, 09-Jul-01					

DWG: 5300

PDIP: 16-LEAD

	MILLIN	IETERS	INC	HES	
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.150	0.200	
A ₁	0.38	1.27	0.015	0.050	
В	0.38	0.51	0.015	0.020	
B ₁	0.89	1.65	0.035	0.065	
С	0.20	0.30	0.008	0.012	
D	18.93	21.33	0.745	0.840	
E	7.62	8.26	0.300	0.325	
E ₁	5.59	7.11	0.220	0.280	
e ₁	2.29	2.79	0.090	0.110	
e _A	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
Q ₁	1.27	2.03	0.050	0.080	
S	0.38	1.52	.015	0.060	
ECN: S-03946—Rev. D, 09-Jul-01					

DWG: 5482

Document Number: 71261 www.vishay.com 06-Jul-01

TSSOP: 16-LEAD

	DIMENSIONS IN MILLIMETERS					
Symbols	Min	Nom	Max			
A	-	1.10	1.20			
A1	0.05	0.10	0.15			
A2	-	1.00	1.05			
В	0.22	0.28	0.38			
С	-	0.127	-			
D	4.90	5.00	5.10			
E	6.10	6.40	6.70			
E1	4.30	4.40	4.50			
е	-	0.65	-			
L	0.50	0.60	0.70			
L1	0.90	1.00	1.10			
у	-	-	0.10			
θ1	0°	3°	6°			
FCN: S-61920-Bey D 23-Oct-06						

ECN: S-61920-Rev. D, 23-Oct-06

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06 1

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.