

Clustering Algorithms

Le Song

Machine Learning CS 7641,CSE/ISYE 6740, Fall 2016

Cluster images

Goal of clustering:

Divide object into groups, and objects within a group are more similar than those outside the group

Cluster handwritten digits

Before clustering, a bunch of vectors

After clustering, group assigned

How to represent objects?

See demo kmeans_digit.m

Formal statement and goal of k-means

- Given m data points, $\{x^1, x^2, ..., x^m\} \in \mathbb{R}^n$
- Find k cluster centers, $\{c^1, c^2, \dots, c^k\} \in \mathbb{R}^n$
- And assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$

K-means algorithm

- Initialize k cluster centers, $\{c^1, c^2, ..., c^k\}$, randomly
- Do
 - Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center (cluster assignment)

$$\pi(i) = \operatorname{argmin}_{j=1,\dots,k} \|x^i - c^j\|^2$$

Adjust the cluster centers (center adjustment)

$$c^{j} = \frac{1}{|\{i: \pi(i) = j\}|} \sum_{i: \pi(i) = j} x^{i}$$

While any cluster center has been changed

See demo kmeans_animation.m

Questions

- Will different initialization lead to different results?
 - Yes
 - No
 - Sometimes

- Will the algorithm always stop after some iteration?
 - Yes
 - No (we have to set a maximum number of iterations)
 - Sometimes

Formal statement of k-means objective

- Given m data points, $\{x^1, x^2, ... x^m\} \in \mathbb{R}^n$
- Find k cluster centers, $\{c^1, c^2, \dots, c^k\} \in \mathbb{R}^n$
- And assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$
- Such that the averaged square distances from each data point to its respective cluster center is small

$$\min_{c,\pi} \frac{1}{m} \sum_{i=1}^{m} \|x^i - c^{\pi(i)}\|^2$$

Clustering is NP-hard in general

• Find k cluster centers, $\{c^1, c^2, ..., c^k\} \in \mathbb{R}^n$, and assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$, to minimize

$$\min_{c,\pi} \frac{1}{m} \sum_{i=1}^{m} \|x^{i} - c^{\pi(i)}\|^{2}$$
NP-harc

- A search problem over the space of discrete assignments
 - For all m data point together, there are k^m possibility
 - The cluster assignment determines cluster centers, and vice versa

Convergence of kmeans algorithm

Will kmeans objective oscillate?

$$\frac{1}{m} \sum_{i=1}^{m} \|x^i - c^{\pi(i)}\|^2$$

- The minimum value of the objective is finite
- Each iteration of kmeans algorithm decrease the objective
 - Cluster assignment step decreases objective

•
$$\pi(i) = argmin_{j=1,\dots,k} \|x^i - c^j\|^2$$
 for each data point i

Center adjustment step decreases objective

•
$$c^{j} = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x^{i} = argmin_{c} \sum_{i:\pi(i)=j} ||x^{i} - c||^{2}$$

How many clusters?

- Fixed a-priori? Data-driven approach?
- Silhouette value: $S_i = \frac{b_i a_i}{\max(a_i, b_i)}$ (one heuristic)
 - a_i : the average distance from the i-th point to the other points in the same cluster as i,
 - b_i : the minimum average distance from the i-th point to points in a different cluster, minimized over clusters.
- No gold standard method
 - Often determine by trial-and-error

What else needs to be considered?

What is consider similar/dissimilar?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

You pick your similarity/dissimilarity

So what is clustering in general?

- You pick your similarity/dissimilarity function
- The algorithm figures out the grouping of objects based on the chosen similarity/dissimilarity function
 - Points within a cluster is similar
 - Points across clusters are not so similar

Images of different sizes

Objects in real life

What similarity/dissimilarity function?

- Desired properties of dissimilarity function
 - Symmetry: d(x, y) = d(y, x)
 - Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
 - Positive separability: d(x, y) = 0, if and only if x = y
 - Otherwise there are objects that are different, but you cannot tell apart
 - Triangular inequality: $d(x,y) \le d(x,z) + d(z,y)$
 - Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very unlike Carl"

Distance functions for vectors

- Suppose two data points, both in \mathbb{R}^n
 - $x = (x_1, x_2, ..., x_n)^T$
 - $y = (y_1, y_2, ..., y_n)^T$
- Euclidian distance: $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Minkowski distance: $d(x,y) = \sqrt[p]{\sum_{i=1}^{n} (x_i y_i)^p}$
 - Euclidian distance: p=2
 - Manhattan distance: p = 1, $d(x, y) = \sum_{i=1}^{n} |x_i y_i|$
 - "inf"-distance: $p = \infty$, $d(x, y) = \max_{i=1}^{n} |x_i y_i|$

Distance example

- Euclidian distance: $\sqrt{4^2 + 3^2} = 5$
- Manhattan distance: 4 + 3 = 7
- "inf"-distance: $max{4,3} = 4$

Hamming distance

- Manhattan distance is also called Hamming distance when all features are binary
 - Count the number of difference between two binary vectors
 - Example, $x, y \in \{0,1\}^{17}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
												1					
y	0	1	1	1	0	0	0	0	1	1	1	1	1	1	0	1	1

$$d(x,y)=5$$

Edit distance

 Transform one of the objects into the other, and measure how much effort it takes

d: deletion (cost 5)

$$d(x, y) = 5 \times 1 + 3 \times 1 + 1 \times 2 = 10$$

s: substitution (cost 1)

i: insertion (cost 2)

Generalization of K-means

- Given m data points, $\{x^1, x^2, ..., x^m\} \in \mathbb{R}^n$
- Find k cluster centers, $\{c^1, c^2, \dots, c^k\} \in \mathbb{R}^n$
- And assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$
- Such that the sum of the squared distances from each data point to its respective cluster center is minimized

$$\min_{c,\pi} \sum_{i=1}^{m} d(x^i, c^{\pi(i)})^2$$
NP-hard!

Generalized K-means algorithm

- Initialize k cluster centers, $\{c^1, c^2, ..., c^k\}$, randomly
- Do
 - Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center

$$\pi(i) = argmin_{j=1,...,k} \ d(x^i, c^j)$$
 squared Eclidian distance:
$$c^j = \frac{1}{\#\{\pi(i) = j\}} \sum_{i:\pi(i) = j} x^i$$
 cluster centers

Adjust the cluster centers

$$c^{j} = argmin_{v \in \mathbb{R}^{n}} \sum_{i:\pi(i)=j} d(x^{i}, v)^{2}$$

While any cluster center has been changed

Cluster other things ...

Hierarchical clustering

- Organize data in a hierarchical fashion (dendrogram)
- Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

How to do it?

Bottom up hierarchical clustering

- Assign each data point to its own cluster, $g_1=\{x_1\}$, $g_2=\{x_2\}$, ..., $g_m=\{x_m\}$, and let $G=\{g_1,g_2,\ldots,g_m\}$
 - $D(g_i, g_j) = \min_{x \in g_i, y \in g_j} d(x, y)$

- Do
 - Find two clusters to merge: $i, j = argmin_{1 \le i,j \le |G|} D(g_i,g_j)$
 - Merge the two clusters to a new cluster: $g \leftarrow g_i \cup g_j$
- keep track of relations
- Remove the merged clusters: $G \leftarrow G \setminus g_i$, $G \leftarrow G \setminus g_j$
- Add the new cluster: $G \leftarrow G \cup \{g\}$

 g_i g_j

• While |G| > 1

Hierarchical clustering: step-2

Hierarchical clustering: step-3

