NASA TECHNICAL NOTE

NASA ENGINEERING MODELS OF THE MARS ATMOSPHERE FOR ENTRY VEHICLE DESIGN

Edited by George M. Levin, Dallas E. Evans, and Victor Stevens

NASA ENGINEERING MODELS OF THE MARS ATMOSPHERE FOR ENTRY VEHICLE DESIGN

Edited by

George M. Levin, Dallas E. Evans,

and

Victor Stevens

NASA Headquarters Washington, D. C.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Commerce, Washington, D.C. 20230 -- Price \$1.50

This document was prepared by the ad hoc Planetary Atmospheres Committee

of the

Office of Advanced Research and Technology

George M. Levin, Chairman Goddard Space Flight Center

Fred DeMeritte
NASA Headquarters

Dallas E. Evans Manned Spacecraft Center

Edwin Pounder Jet Propulsion Laboratory

Robert E. Smith
Marshall Space Flight Center

Victor Stevens Ames Research Center

SUMMARY

In an effort to standardize atmosphere models used in Mars mission analyses and thus facilitate interpretation of such analyses, tentative engineering models for the Mars atmosphere are proposed. The emphasis here is on the entry aspect of the mission. Three models having pressures at the planet's surface of 10, 25, and 40 mb are presented in both tabular and graphic form. An atmosphere model for use in terminal descent calculations is also presented. The atmosphere models are presented in both english and metric units in terms of eight variables as a function of altitude. These model atmospheres are based, insofar as possible, on experimentally obtained data and are not envelopes drawn around existing models of the Mars atmosphere.

INTRODUCTION

Uncertainties in the structure and chemical composition of the Mars atmosphere present a problem of growing importance in Mars mission analyses. Lack of definitive data has permitted construction of numerous equally plausible models of the atmosphere. As a result, various analyses of entry into the Mars atmosphere are often based upon widely differing atmosphere models. Since it is well known that important results of such analyses, e.g., heating, loads, landing techniques, are functions of the atmosphere structure and composition, interpretation of the results and comparison with results of other analyses are often clouded by the choice of atmosphere.

Obviously additional observations and direct measurements of the Mars atmosphere are badly needed to define the structure and composition with accuracy. Such data are required for intelligent interpretation and refinement of mission analyses and, ultimately, for the design of vehicles to enter the Mars atmosphere. Unfortunately, acquisition of the required observations takes time. Until better scientific data become available, considerable benefit can be derived from standardizing on certain atmosphere models for entry analyses.

It is the purpose of this report to present three tentative models - a maximum, a minimum, and a mean. An atmosphere model for terminal descent calculations is also presented in Appendix D. It is not the intent to present new scientific models of the Mars atmosphere, but rather to present reasonable standardized models which will be useful in engineering studies.

DEVELOPMENT OF ENGINEERING MODELS

Atmosphere Parameters Important in Entry Analysis

Before establishing atmosphere parameters important in entry analysis, it is instructive to examine some of the current models of the Mars atmosphere. Twelve current atmosphere models are shown in Figure 1. Although this is not a comprehensive presentation of all existing models of the Mars atmosphere, it is representative and demonstrates the extremely wide differences in temperature, pressure, density, and composition for the various models. Each of these parameters has an influence on the Mars mission; however, certain of them may exert a critical influence and thus deserve special attention. For example:

- 1. The density structure (or density scale height which is an increment in altitude required to produce a change in density by a factor of e) is important in determining the heating experienced by the entry body. Scale height also strongly influences the entry guidance requirements and the entry loads.
- 2. The density and pressure near the surface of the planet are vital factors in determining the terminal descent and landing. The configuration of the entry vehicle may also be dictated by these factors.
- 3. The chemical composition of the atmosphere determines to a large extent the radiative heating experienced by the entry body. It may also significantly affect radio communications during entry.

It is thus evident that (1) density structure, surface pressure, and composition are key factors in entry analysis and (2) values of these parameters are widely different for the models shown in Figure 1.

Since little reliable data exist on which to base a scientifically accurate model, most of the existing models differ due to varied interpretations of the limited data. It therefore becomes exceedingly difficult to settle on any one model for the Mars atmosphere. Until more definitive data become available, it seems appropriate to develop models which represent reasonable

extremes and to conservatively design entry capsules to cope with these extremes. Accordingly, the atmosphere models presented herein were developed on the basis of current information to produce reasonable extremes in composition, surface pressure, and scale height. The development of these models was strongly influenced by the recent disclosures of Kaplan et al (Ref 1), and Kuiper (Ref 2) concerning the surface pressure and composition of the Mars atmosphere.

Calculation Procedure

Three models of the Mars atmosphere have been developed - two extremes and a mean. These models were generated by a computer program in use at the Manned Spacecraft Center. In principle, the temperature profile, the surface pressure, the composition, and the acceleration of gravity at the planet's surface were specified. The values of density, pressure, speed of sound, density scale height, mean free path, viscosity, and kinematic viscosity were calculated using the expressions in Appendix B.

The inputs to the computer program for the three models were as follows:

	Model 1	Model 2	Model 3
Surface Pressure, mb	40	25	10
Composition, % by mass CO ₂	7 1/2	16	6 0
N_2^2	$92 \ 1/2$	84	40
Surface Temp., OK	300	250	200
Troposphere Lapse Rate, OK/km	-3.64	-3.89	-4.55
Stratosphere Temp., OK	260	180	100
Top of Stratosphere, km	150	150	150
Thermosphere Lapse Rate, OK/km	2	2	
Surface Gravity, cm/sec ²	375	375	375

It should be noted that the pressures and compositions* quoted were derived from the same set of scientific measurements (Ref 1); however, the values given for the temperature structure were

The pressures of various constituents listed in Table 2 of Reference lare referred to in that paper as partial pressures even though it was made clear in the discussion of equation 11 of that paper that this partial pressure is the weight of a constituent in the atmosphere per unit area, and thus represents the mass density of the gas rather than the number density. For convenience both mass and volume compositions are listed in Table I of the present report.

derived independently from the literature. Combinations of pressure-composition data with temperature structure data were arbitrarily chosen to produce extreme models. For example, combining the highest surface pressure with the temperature structure giving the highest temperatures produces a model with the maximum pressure and density for any given altitude, and of course, a model with the maximum scale height—this is labeled maximum or model 1. It should be emphasized in choosing the inputs to the computer program that there is no physical basis for any correlation between surface temperature and surface pressure.

The surface pressures were based on the work of Kaplan, et al (Ref 1). Recent analysis by Kuiper (Ref 2) gives values of surface pressure in close agreement with the lower pressures published in Reference 1.

Although the evidence on chemical composition is not conclusive, it is generally agreed that carbon dioxide is the only gas detected in large quantities in the Mars atmosphere. The values given for carbon dioxide were taken from Reference 1. For the purposes of determining values of molecular weight and other constants required in the calculations, it is assumed the remainder of the gas is nitrogen. It is recognized that other gases such as argon (Ref 1), oxides of nitrogen (Refs 7 and 18), water vapor (Refs 1, 3, 8, 9, and 13), and oxygen (Ref 1), to name a few, may be present, but these quantities are probably small.

The surface temperatures chosen are representative of those given in the current literature and bracket known seasonal, diurnal, and latitudinal variations (Refs 4, 5, and 6). The lapse rates quoted for the troposphere are the dry adiabatic lapse rates for the compositions given for specific heats based on the average temperature in this region. The stratosphere temperatures given are representative values drawn from the current literature (for example, Refs 16 and 17). The height of the base of the thermosphere was based on values given by Goody in Reference 10. The thermosphere lapse rate was based on a representative value given by Vachon (Ref 11). The acceleration of gravity used is a representative value given in the literature (Refs 12 and 16).

PRESENTATION AND DISCUSSION OF

ENGINEERING MODELS

The proposed engineering models of the Mars atmosphere are presented in both tabular and graphical form. Summarized in Table I are the values of the primary parameters which characterize each model. The model atmospheres are presented in Tables II, III, and IV in both metric and english units. They are presented in terms of eight variables as a function of altitude in increments of one kilometer from the surface to one hundred kilometers; in increments of ten kilometers from one hundred to one thousand kilometers; and in increments of fifty kilometers above one thousand kilometers. Calculations and listings for these three tables were arbitrarily terminated at altitudes where the density fell to 10^{-14} gm/cm³ since densities of this order or less are of little interest in entry analyses.

The values for the reduced collision integral $[\Omega^{(2,2)*}]$ (Ref. 19) used in the calculation of the viscosity and the kinematic viscosity are not valid above temperatures of $300^{\rm o}$ K; thus values of viscosity and kinematic viscosity do not appear in the tables for altitudes corresponding to temperatures above this ambient value.

Profiles of temperature, pressure, and density are illustrated in Figures 2a,b,c. Figure 2d shows the three density profiles normalized to earth sea level density.

Figure 3 shows how these three models compare with previous models of the Mars atmosphere. The major differences between these models and previous models of the Mars atmosphere are the surface pressures and atmospheric compositions that were assumed. These new lower surface pressures cause the density at any given altitude to be lower than those given in previous model atmospheres, however, it should be noted that a minimum surface density using the parameters selected is not included in these models. From Figure 3 it can be seen that the maximum and minimum scale heights remain essentially unchanged.

If a surface pressure of 10 millibars is combined with a $300^{\rm O}{\rm K}$ surface temperature, a density of 50% less than that shown on model 3 would be derived. This atmosphere for use in terminal descent calculations is discussed in Appendix D and is shown in Figure 4.

It should be noted that in calculating the foregoing results the variation in gravity with altitude was included. When the atmosphere is relatively deep compared to the planet's radius, as it is in the case of Mars, then this variation of gravity can be important in determining the pressure and density structure over an extreme range of altitude. However, for many entry calculations it is only the lower atmosphere structure for a relatively small range of altitude that is important; hence assumptions of constant gravity for calculation of atmosphere structure should not introduce significant error. For this case, simple analytic expressions for the density structure in the troposphere and stratosphere regions can be derived from the basic equations of Appendix B. Since such expressions are often convenient to use in machine programmed entry calculations they are presented in Appendix C together with the pertinent constants for the three Mars atmospheres. Models were calculated using these expressions. plotted to the scale of Figure 2c the results are essentially coincident with those obtained using variable gravity.

The proposed atmosphere models should be useful in mission analysis and design studies provided proper consideration is given to their limitations. As stated previously, it was assumed (primarily for the purpose of calculating pressure and density profiles) that the chemical composition was limited to ${\rm CO_2-N_2}$ mixtures. Although argon has never been detected in the Mars atmosphere, Kaplan et al (Ref. 1) reason on the basis of abundance arguments that argon may be present in significant The presence of argon would have little effect on the density and pressure profile; however, it may importantly affect the plasma sheath surrounding a vehicle during entry, hence affect radiative heating and radio communications. In contrast, the assumed temperature profile directly affects the scale height and density profile. Temperatures near the surface of Mars are believed to be relatively accurate. Temperatures in the isothermal or even the assumption that an isothermal region exists are not so reliable. Due to these uncertainties quite extreme temperatures were chosen for the maximum and minimum profiles. It is reasonable to expect then that the density profiles and scale heights for the three atmosphere models will encompass the profile and scale height for the real Mars atmosphere. Despite these shortcomings, it is recommended that these models be accepted as a tentative standard until more definite data are available on the Mars atmosphere.

CONCLUDING REMARKS

The engineering models of the Mars atmosphere presented in this report are based on the latest data on the Mars atmosphere known to the authors. They have been developed to represent reasonable extremes of the Mars atmosphere for entry analysis. It is therefore recommended that these models be used in any further NASA-sponsored analyses of Mars atmosphere entry.

Designing entry vehicles to the worst combination of conditions described by these models unfortunately leads to design compromises and weight penalties. It is evident that additional scientific data on the Mars atmosphere are needed to eliminate the need for these compromises and the attendant weight penalties. When improved observational data are obtained that significantly reduce the Mars atmosphere uncertainties, the models presented herein should be revised.

REFERENCES

- 1. Kaplan, Lewis D., Munch, Guido, and Spinrad, Hyron: An Analysis of the Spectrum of Mars. Astrophysical Journal, Vol. 139, No. 1, Jan. 1964.
- 2. Kuiper, Gerard P.: Fifth Semiannual Status Report to National Aeronautics and Space Administration Lunar and Planetary Laboratory, University of Arizona Research Grant No. NsG 161-61, Dec. 1963.
- 3. Spinrad, Hyron, Munch, Guido, and Kaplan, Lewis D.: The Detection of Water Vapor on Mars. Astrophysical Journal, Vol. 137, No. 4, May 1963.
- 4. Gifford, F.: The Surface Temperature Climate of Mars. Astrophysical Journal, Vol. 123, 1956, pp. 154-161.
- 5. Kellogg, William W., and Sagan, Carl: The Atmospheres of Mars and Venus. National Academy, of Sciences Publication 944, 1961.
- 6. Rasool, S. I., and Jastrow, Robert: The Atmospheres of Mars, Venus and Jupiter. Goddard Institute for Space Studies NASA, 1963.
- 7. Kiess, C. C., Karrer, S., Kiess, H. K.: A New Interpretation of Martian Phenomena. Astronomical Society of the Pacific, Vol. 27, No. 427, Aug. 1960, pp. 256-267.
- 8. Sagan, Carl: The Abundance of Water Vapor on Mars. Astron. J., 66: 52, 1961a.
- 9. de Vaucouleurs, G.: Physics of the Planet Mars. Farber and Farber, London, 1954.
- 10. Goody, R. M.: The Atmosphere of Mars. Weather, Vol. 12, 1957, pp. 3-15.
- 11. Vachon, D. N.: The Density Structure of the Upper Atmosphere of Mars. General Electric TIS R62SD58, May 1962.

REFERENCES (Cont'd)

- 12. Zimmerman, R. H., and Jones, C. D.: Flight Environment Design Parameters for Mars and Venus. Prepared for USAF Wright-Patterson by the Ohio State University Research Foundation, Technical Documentary Report No. ASD-TDR-62-805, Sept. 1962.
- 13. Kellogg, W. S.: Mars, International Science and Technology, Feb. 1964, pp. 40-48.
- 14. Evans, D. C., and Wasko, P. E.: Model Atmospheres for the Planet Mars. Douglas Aircraft Company Report SM-44552, August 1963.
- 15. Schilling, Gerhard, F.: A Note on the Upper Atmosphere of Mars. Journal of Geophysical Res. Vol. 68, No. 16, August 1963, pp. 4875-4876.
- 16. Schilling, Gerhard F.: Limiting Model Atmospheres of Mars. Rand Corp. R-402-JPL, August 1962.
- 17. Schilling, Gerhard F.: Extreme Model Atmospheres of Mars. Rand Corp. RM-2782-JPL, June 1961.
- 18. Sinton, William W.: An Upper Limit to the Concentration of NO2 and N_2O_4 in the Martian Atmosphere. Astronomical Society of the Pacific, Vol. 73, No. 431, April 1961, pp. 125-128.
- 19. Brokaw, Richard S.: Alignment Charts for Transport Properties Viscosity, Thermal Conductivity, and Diffusion Coefficient for Nonpolar Gases and Gas Mixtures at Low Density, NASA TR R-81, 1961.

APPENDIX A

LIST OF SYMBOLS

```
a
                 speed of sound
Cp
                 specific heat at constant pressure
                 specific heat at. constant volume
C_{\mathbf{v}}
                 local acceleration of gravity
g
Ηо
              - density scale height
L
                mean free path
                 molecular weight
m
N
                 Avagardro's number
                 pressure
p
                planet radius
\mathbf{r}_{\mathbf{o}}
R
                 Universal gas constant
\mathbf{T}
                 temperature
X
             - mole fractions of gas
\mathbf{z}
                 height above the surface
             - ratio of specific heats
Υ
                kinematic viscosity
η
             - viscosity
μ
             - number of gas components
                reference density (\rho = \rho_{ref} e^{-\frac{Z}{H\rho}})
ρ
 ref
σ
                 average effective collision diameter for gas mixture
                 zero energy collision diameter for a gas
σ
                 coefficients for calculating viscosity
\Omega^{(2,2)*}
                 reduced collisional integral
Subscripts
i,j
                 components i and j of a mixture
mix
             - entire mixture
                 denotes surface condition
0
                 denotes stratosphere condition
strat
0
                 earth
```

		•		
	•			
			~	
•				

APPENDIX B

SUMMARY OF METHOD OF COMPUTING MODEL ATMOSPHERE PARAMETERS

The results presented in Tables II, III and IV were calculated using the inputs from Table I and the equations presented here. The calculation of atmosphere parameters was based on a numerical integration of the hydrostatic equation:

$$dp = -g \rho dZ$$

The following assumptions were contained within the integration:

(1) Gravity varies as:

$$g = \left(\frac{r_0}{r_0 + 2}\right)^2 g_0$$

(2) The gas mixture follows the perfect gas equation of state:

$$\rho = \frac{pm}{RT}$$

(3) The temperature varies with altitude by a series of constant lapse rates (depending on the altitude range) as illustrated by Figure 2A.

With p, ρ and T thus determined as functions of altitude, the following additional quantities may be computed:

$$a = \left[\gamma \frac{R}{m} \ T \right]^{1/2}$$

$$H_{\rho} = \frac{RT}{mg + R\frac{\partial T}{\partial Z}}$$

APPENDIX B (Continued)

Mean Free Path

$$L = \frac{RT}{2^{1/2} \pi N_0^2} p$$

Viscosity (for the mixture)
$$\mu_{\text{mix}} = \sum_{\substack{i=1 \\ j=1 \\ j \neq i}}^{\nu} \frac{\mu_{i}}{1 + \sum_{\substack{j=1 \\ j \neq i}}^{\nu} \Phi_{i,j} \frac{x_{j}}{x_{i}}$$

where

$$\Phi_{i,j} = \frac{\left[1 + (\frac{\mu_{i}}{\mu_{j}})^{1/2} (\frac{m_{j}}{m_{i}})^{1/4}\right]^{2}}{2\sqrt{2} \left(1 + \frac{m_{i}}{m_{j}}\right)^{1/2}}$$

$$\mu_{i} \times 10^{6} = 26.693 \frac{\sqrt{mT}}{\sigma^{2}\Omega}$$

(Values of $\Omega^{(2,2)*}$ were obtained from ref. 19)

Kinematic Viscosity

$$\eta = \mu/\rho$$

APPENDIX C

ANALYTIC APPROXIMATIONS TO THE ENGINEERING MODELS

If the acceleration of gravity is assumed constant, then analytic expressions can be written for the density variation with altitude in the troposphere and the stratosphere regions. For the troposphere, the density is given by

$$\rho = \rho_{o} \left(1 + \frac{\Gamma Z}{T_{o}}\right)^{\frac{1}{\gamma - 1}}$$

where

$$\Gamma = - \frac{mg}{R} \left(\frac{\gamma - 1}{\gamma} \right)$$

For the stratosphere, the density is given by

$$\rho = \rho_{ref} e^{-Z/H} \rho_{strat}$$

where

$$\rho_{ref} = \rho_{o} \left(\frac{T_{strat}}{T_{o}} \right) e^{\frac{\gamma}{\gamma-1}} \left(\frac{T_{o}}{T_{strat}} - 1 \right)$$

and

$$H_{\rho_{strat}} = \frac{RT_{strat}}{mg_{strat}}$$

Values of the parameters in the above expressions chosen to represent the engineering models are as follows:

APPENDIX C (Continued)

Parameter	<u>Units</u>	Model 1	Model 2	Model 3
Molecular wt., m		28.8	29.7	35.8
Acceleration of gravity, g Troposphere (Value @ surface) Stratosphere (Value @ Z=75 km)	cm/sec ²	375 359	375· 359	375 359
Universal gas con- stant, R	m^2/sec^2 o_K	8315	8315	8315
Ratio of specific heats, γ Troposphere lapse rate, Γ Surface density, ρ_0	ok/km gm/cm ³	1.4 -3.64 4.62x10-5	1.4 -3.89 3.57x10-5	1.4 -4.55 2.15x10-5
Reference density, pref	gm/cm^3	5.28x10-5	5.69×10^{-5}	1.09×10^{-4}
Surface temperature, To	°K	300	250	200
Stratosphere temperature, T _{strat}	o _K	260	180	100
Density scale height, H pstrat	km	20.9	14.0	6. 5

APPENDIX D

AN ATMOSPHERE MODEL FOR TERMINAL DESCENT CALCULATIONS

An alternate model atmosphere for use in the design of a retardation system for terminal descent may also be postulated. This model is generated by substituting a surface temperature of 300°K in place of the 200°K surface temperature in model 3 and keeping the same surface pressure and the same composition. The result is a model that has a higher atmosphere density at altitudes above 15 km, but at altitudes below 15 km the atmosphere density is lower than that of model 3 (see Figure 4). Equations are given below for the density in the troposphere and stratosphere regions in both metric and english units. These were obtained by substituting the appropriate values in the equations of Appendix C.

Metric Units

Troposphere region (below 46 km)

$$\rho = 1.44 \times 10^{-5} (1 - 0.0145 \text{ Z})^{2.50} \text{ gm/cm}^3$$

Stratosphere region (above 46 km)
$$\rho = 8.64 \times 10^{-4} \text{ e}^{-\frac{Z}{6.5}}$$
(note Z is in km)

English Units

Troposphere region (below 150,900 ft)

$$\rho = 2.79 \times 10^{-5} (1 - 4.41 \times 10^{-6} \text{ z})^{2.50} \text{ slugs/ft}^3$$

Stratosphere region (above 150,900 ft)

$$\rho = 2.0 \times 10^{-3} e^{\frac{-Z}{21,000}}$$
 slugs/ft³ (Note Z is in ft)

TABLE OF ATMOSPHERES FOR FIGURE 1

	•	
1.	Rand Report, Rm-2782-JPL (June 1961) Model Atm. I (Max) (convective equilib. throughout atm.)	p _o = 132.6 mb
2.	Manned Spacecraft Center Model II 9/25/63	$p_0 = 132.6 \text{ mb}$
3.	Rand Report, Rm-2782-JPL (June 1961 Model Atm. II (Max) (convective equilib. to tropopause + conductive equilib. above)	p _o = 132.6 mb
4.	Rand Report, Rm-2782-JPL (June 1961) Model Atm. III (conjectural atm.)	$p_0 = 85.125 \text{ mb}$
5.	Rand Report, Rm-2782-JPL (June 1961), Model Atm. I (Min) (convective equilib. through atm.)	$p_O = 41.04 \text{ mb}$
6.	Douglas Report, Sm-44552 (August 1963) Pressure Profile No. 8; M = 28.0	$p_{O} = 162 \text{ mb}$
7.	Douglas Report, Sm-44552 (August 1963) Pressure Profile No. 6; M = 28.0	$p_0 = 85 \text{ mb}$
8.	Rand Report, Rm-2782-JPL (June 1961) Model Atm. II (Min) (convective equilib. to tropopause & conductive equilib. above)	$p_0 = 41.04 \text{ mb}$
9.	Manned Spacecraft Center Model II $9/25/63$ Lower Limit $90\%N_2-10\%CO_2$	$p_0 = 41.04 \text{ mb}$
10.	A Note on the Upper Atmos. of Mars (August 1963) J. of Geophysical Research (G. F. Schilling) Vol. 68, No. 16 Extension of Model II Atmos. (Max)	$p_0 = 132.6 \text{ mb}$
11.	A Note on the Upper Atmos. of Mars (August 1963) J. of Geophysical Research (G. F. Schilling) Vol. 68, No. 16 Extension of Model II Atmos. (Min)	$p_O = 41.04 \text{ mb}$
12.	JPL Atmosphere "N" (Nov. 1963) 38.3% CO ₂ -61.7% N ₂	$p_0 = 15.0 \text{ mb}$

FIGURE I SOME CURRENT MODELS OF THE MARS ATMOSPHERE

b - ALTITUDE Vs DENSITY
FIGURE I (CONCLUDED)

G-ALTITUDE Vs TEMPERATURE
FIGURE 2 NASA ENGINEERING MODELS OF THE MARS ATMOSPHERE

d-DENSITY PROFILE NORMALIZED TO EARTH SEA LEVEL DENSITY FIGURE 2 (CONCLUDED)

FIGURE 3 COMPARISON OF NASA ENGINEERING MODELS OF THE MARS ATMOSPHERE WITH OTHER MODELS (ALTITUDE Vs. DENSITY)

FIGURE 4 COMPARISON OF TERMINAL DESCENT ATMOSPHERE WITH MODEL 3

TABLE I - SUMMARY OF STANDARD MODEL ATMOSPHERE PARAMETERS FOR MARS

Parameter	_Units	Maximum (Model 1)	Mean (Model 2)	Minimum (Model 3)
Surface	mb	40	25	0.145
Pressure	lbs/sq.in.	0.58	0,363	
Composition	CO ₂ % by Mass N ₂ % by Mass CO ₂ % by Volume N ₂ % by Volume		16 84 10.8 89.2	60 40 48.8 51.2
Molecular Weight	****	28.8	29.7	35.85
Acceleration of gravity at surface	cm/sec ²	375	375	375
	ft/sec ²	12.3	12.3	12.3
Surface Temp.	o _K	300	250	200
	o _R	540	450	360
Troposphere	OK/km	-3.636	-3.89	-4.55
lapse rate	OR/103 ft	-1.995	-2.134	-2.496
Tropopause	km	11	18	22
altitude	ft	36,100	59,100	72,200
Stratosphere temp.	o _K	260 468	180 324	100 180
Top of stratosphere	km	150	150	150
	ft	492,100	492,100	492,100
Thermosphere lapse rate	$^{ m o_{K/km}}_{ m o_{R/10^3ft}}$	$\overset{2}{1.097}$	$\begin{smallmatrix}2\\1.097\end{smallmatrix}$	
Surface density	gm/cm ³ slugs/ft ³	4.62x10-5 8.97x10-5	3.57×10^{-5} 6.94×10^{-5}	2.16x10 ⁻⁵ 4.19x10 ⁻⁵

TABLE II

NASA MARS ATMOSPHERE

MODEL 1 (Maximum) English Units

							107	
					scale height x 10 6		н	ţ.
. •					ei.		o	Kinematic viscosity ft [/] /sec
10-6			ω	nd	0 6	path	8 0	ဗ္
A	Φ	രൂ	ity slugs/ft	sound	녆디	pa T	osity slugs/ft	ւլ մ
_o ×	Temperature °R	, H	88			Kean free ft	38.54	
r Ide	rat R	su re 1bs/	ដ្ឋ	d oj ft/3	ىد ئې	t j	sî. Ju	(1) (1) (1) (1)
ii t	E. H	, SS	S.	ed F	Sit A	н Н	8 8	હું ધ ન
Altitude ft 2	em)	Pressure lbs/	Density slu	Speed of ft/se	Density ft	6	Viscosity slugs	ij
¥	E	ρ.,	А	ഗ	А	14	Δ	14
0.0000	540.0 533.5	5.80E-01 5.56E-01	g.978-05	1138. 1131.	0.105	೯. ७೯-೮७ 5. ८೯-೮७	3.98 3.93	4.4E-03 4.5E-03
0.0055	526.9	5.326-01	d.43L-05	1124.	0.103	6.05-00	3.87	4.6E-03
0.0098	520.4	5.07L=01	3.16t-05	1117.	0.102	6.2F-06	3.82	4.7E-03
0.0131	513.8	4.365-01	7.900-05	1110.	0.100	6.4E-06	3.76	4.8E-03
0.0164	507.3	4.6401	7・645-05 7・3)ヒーいち	1103.	0.038	6.6E-06 6.6E-06	3.71 3.65	4.9E-03 4.9E-03
0.0197	500.7 434.2	4.43c-01 4.23c-01	7.156-05	1096. 1087.	0.097	7.05-06	3.60	5.0E-03
0.0230	437.6	4.040-01	5.315-05	1082.	0.096	7.3F-06	3.55	5.18-03
0.0295	401.1	3.352-01	5.6705	1074.	0.094	7.5E-06	3.49	5.28-03
0.0328	474.0	3.56E-01	5.446-05	1067.	0.093	7.86-06	3.44	5.3E-03
0.0361	468.0	3.436-01	6.225-05	1060.	9.092	8.15-06	3.39	5.5E-03
0.0394	453.0	3.325-01	5.) 205	1060.	მ•966	8・5F-06	3.39	5.7E-03
0.0427	408.0	3.165-01	7.0305	1060.	0.065	3. JE+06	3.39	6.0E-03
0.0453	403.0	3.00e-01	5.3605	1060.	0.056	9.4L-06	3.39	6.3E-03
0.0492	463.0	2.362-01	5 • 1 Jř = 05 4 • 65F = 05	1060.	0.956 0.066	9.45-06 1.JE-05	3.39 3.39	6.7E-03 7.0E-03
0.0525 0.0558	463.0 460.0	ノ・721-01 2・595-01	4.62: -05	1060. 1060.	0.056	1.1E-05	3.39	7.4E-03
0.0531	469.0	2.4601	4.401-05	1050.	5.066	1.11-05	3.39	7.7E-03
0.0623	458.0	2.3501	4.1105	1060.	0.066	1.25-05	3.39	8.1E-03
0.3656	466.0	2.235-01	3.981-05	1060.	0.066	1.38-05	3.39	8.5E-03
0.063)	450.0	2.136-01	3.790-05	1060.	0.065	1.31-05	3.39	9.0E-03
0.0722	473.0	2.026-01	3.611-05	1060.	J.066	1.41-05	3.39	9.4E-03
0.0755	453.0	1.736-01	3.4405	1960.	0.067	1.55-05	3.39	9.9E-03
0.0787	463.0	1.0301	3.27:-05	1060.	0.667	1.54-05	3.39	1.0E~02
0.9020	468.0	1.745-01	3.11! - 05	1060.	0.067	1.01-05	3.39	1.1E-02
0.0853	4.7.7 • ()	1.36€-01	2.161-15	1060.	0.067	1.705	3.39	1.16-02
0.0386	465.13	1.55 -01	?.uZ -05	1060.	4.067	1.35-05 1.36-05	3.39	1.2E-02
0.0913	463.1	1.51 -01	2.690-15	1560. 1560.	∪•067 ⊍•967	2.06-05	3.39 3.39	1.3E-02 1.3E-02
0.0951 0.0934	46-66	1.43c=01 1.35c=01	2.561-05 2.436-05	1969.	9.967	2.15-05	3.39	1.48-02
0.1017	450.0	1.33:-01	7.436-05	1060.	1.067	2.25-05	3.39	1.5E-02
0.1757	40,000	1.24: -01	7.211-05	1060.	0.067	2.36-05	3.39	1.58-02
0.1033	450.0	1.1001	2.105-25	1050.	1.967	2 • 1F = 05	3.39	1.61-02
			•		-			

							្ដែ	
					Density scale height ft x 10-5			>
					٠ <u>٢</u>		н	Kinematic viscosity ft ² /sec
10-6				~	င္မာ	~4	890	S _O
Ŕ			sity slugs/ft³	Speed of sound ft/sec	မ္ 'ဝ	path	ŭ	ဗ
Altitude ft x :	စ္	ssure lbs/in ²	<u>₹</u>	ğ o	<u> </u>	č.	osity slugs/ft	Έg
್ಥ×	Temperature ° R	• , -7	%	of sc /sec	ığ X	Kean free ft	≥ 8	ပုိစ္က
t E	er ca	អ្នក (ទ	ង្គ	9 😤	5.0	Ĕ.	ig ig	±24
13 Ft	<u> </u>	Pressure lbs/	Density slu	ed o ft/	.ig € i	ध स	Viscosity slugs	麗君
Ħ	5	စ္	en	Ď.	en	ଜୃ	Š	ŗ
⋖	EH	P4	Ω	Ω.	Ω	Z	>	됬
0.1115	403.0	1.121-01	2.00: -05	1060.	0.067	2.5E-05	3.39	1.7E-02
0.1148	468.0	1.0/01	1.111-05	1.50.	0.067	2.61-05	3.39	1.8E-02
0.1161 0.1214	402.0	1.02a=01	1.31L-05 1.73h-05	1.760	0.967	2 - 3E - 05	3.39	1.9E-02
0.1214	408.J 408.J	9.68E-02 9.222-02	1.6505	1950. 1960.	0.067 0.067	2.16-05 3.15-05	3.39 3.39	2.0E-02 2.1E-02
0.1280	468.0	d./65-02	1.577-05	1060.	0.067	3.25-05	3.39	2.2E-02
0.1312	468.0	1.36L-02	1.495-05	1060.	0.067	3.48-05	3.39	2.3E-02
0.1345 0.137d	468.0 468.0	7・37ドー02 7・57ビー02	1 • 42 c = 05 1 • 35 E = 05	1060. 1060.	0.067 0.067	3.5E-05	3.39 3.39	2.4E-02
0.1411	453.0	7.23E-02	1.295-05	1060.	0.067	3.1E-05 3.9F-05	3.39	2.5E-02 2.6E-02
0.1444	468.0	6.48E-02	1.231-05	1060.	0.067	4.1F-05	3.39	2.8E-02
0.1476	468.0	6.556-02	1.176-05	1060.	0.967	4.36-05	3.39	2.9E-02
0.1509 0.1542	468.0 468.0	5.24F-02 5.35L-02	1.112-05 1.060-05	1960. 1960.	0.067 0.067	4.5[-05 4.1[-05	3.39 3.39	3.0E-02 3.2E-02
0.1575	455.0	5.665-02	1.01:-05	1 160.	0.068	5.08-05	3.39	3.4E-02
0.1608	40%.0	1.40E-02	3.53c=00	1760.	0.068	5.21-05	3.39	3.5E-02
0.1640	458.0	5.14c=02	9.17:-36	1060	0.068	5.50-05	3.39	3.7E-02
0.1673 0.1706	468.U 468.U	4.30E-02 4.67E-02	8.32E-06	1060. 1060.	0.063 0.063	5.aF-05 6.UF-05	3.39 3.39	3.9E-02 4.1E-02
0.1739	498.0	4.446-02	7.436-06	1060.	0.068	6.36-05	3.39	4.3E-02
0.1772	468.0	4.231-02	7.556-06	1060.	0.06R	6.7F-05	3.39	4.5E-02
0.1805 0.1837	468.0 468.0	4.03E-02 3.84E-02	7.20F-06 6.86F-06	1060.	0.068 0.063	7.JE-05 7.JE-05	3.39 3.39	4.7E-02 5.0E-02
0.1870	468.0	3.66L-02	6.53E-06	1060.	0.068	7. /F-05	3.39	5.2E-02
0.1903	458.0	3.41=02	6.23 = -06	1060.	0.068	8.10-05	3.39	5.5E-02
0.1936 0.1969	463.U 468.0	3.33E-02 3.17E-02	5.935-06 5.655-06	1060.	0.068 0.068	8.5E-05	3.39	5 • 7E - 02
0.2001	458.0	3.02E-02	5.39E-06	1.)60.	0.068	8.9[-05 9.3E-05	3.39 3.39	6.0E-02 6.3E-02
0.2034	463.0	2.883-02	> • 13€ −06	1060.	0.058	9.88-05	3.39	6.6E-02
0.2067	468.0	2.74=-02	4.898-76	1060.	0.068	1.UF-04	3.39	6.9E-02
0.2100	468.0 468.0	2.61E-02 2.47E-02	4.66L-06 4.44E-05	1060.	0.068 0.068	1.1E-04 1.1F-04	3.39 3.39	7.3E-02 7.6E-02
0.2165	408.0	2.376-02	4 • 231 - 06	1050.	0.068	1.2F-04	3.39	8.0E-02
0.2198	468.0	2.26c-02	4.34F-06	1 266.	0.068	1.2F-04	3.39	8.4E-02
0.2231 0.2264	463.0 452.0	2.16E-02 2.05E-02	3.45E-06 3.67L-06	1960. 1960.	830.0 0.068	1.3F-04 1.4L-04	3.39 3.39	8.8E-02
0.2237	468.0	1.766-02	3.4 35 -06	1060.	0.068	1.4F-04	3.39	9.3E-02 9.7E-02
0.2330	468.0	1.876-02	3.335-16	1060.	0.068	1.5F-04	3.39	1.0E-01
0.2362	458.)	1.745-02 1.704-02	3.17F-16 3.03c-06	1060.	0.068	1.61-04	3.39	1.1E-01
0.2395 0.2428	455.U 406.0	1.622-02	2.885-06	1960. 1960.	J.068 J.067	1.75-04 1.75-04	3.39 3.39	1.1E-01 1.2E-01
0.2461	400.0	1.544-02	2.751-16	1560.	0.061	1.35-04	3.39	1.2E-01
0.2494	463.0	1.4/102	2.62106	1960.	0.061	1. JE-04	3.39	1.3E-01
0.2526 0.2559	455.J 463.U	1.496-02 1.346-02	2.50; -06 2.38; -06	1960. 1960.	0.069 9.069	2.UL-04 2.1[-04	3.39 3.39	1.4E-01
0.25 +2	468.0	1.276-02	2.27 -06	1560.	0.069	2./E-04	3.39	l•4E-01 l•5E-01
0.2625	40%+0	1.215-02	2.171-96	1350.	9.063	2.35-04	3.39	1.6E-01
0.2653 0.2690	463.0 453.0	1.15E-02 1.15E-02	2.0695 1.7706	1060. Iu60.	0.369 3.369	2.40+04	3.39	1.6E-01
0.2723	453.0	1.05:-02	L.38 - 16	1060.	0.063	2.65-04 2.75-04	3.39 3.39	1.7E-01 1.8E-01
0.2755	450.1	1.996-02	1.79 - 30	1050.	0.069	2.3E-04	3.39	1.9E-01
0.273)	408.0	1.576-03	1.71 -06	1.760	0.061	2.3F-04	3.39	2.0E-01
0.2322 0.2354	458.0 468.0	7.12:-03 7.70:-03	1.63 -05 1.55 -06	1 760 • 1 750 •	0.069 0.069	3.25-04 3.25-04	3.39 3.39	2.1E-01
0.2557	46.3.3	3.301-33	1.431 -06	1 /6//•	0.009	3.4r-04	3.39	2.2E-01 2.3L-01
0.2320	400.	1.71603	1 - 41 6	1.760.	0.069	3.01 -04	3.39	2.4E-01
0•2353 0•2736	455.) 451.)	7.55 = 93 7.265 = 93	1.35 - 16 1.26 - 16	1960.	0.067 0.067	3.75-04	3.39	2.5E-01
0.3019	410.0	7.200=03 7.200=03	1.22 - 15	1050.	6.067	3.95-04 4.1r-04	3.39 3.39	2.6E-01 2.8E-01
0.3051	463.	0.15 -93	1-17 (5	1 16).	1.069	4.3 -04	3.39	2.9F-01

Altitude ft \times 10-6	Temperature R	Pressure lbs/in²	Density slugs/ft ³	Speed of sound ft/sec	Density scale height ft x 10-6	Mean free path ft	Viscosity slugs/ft sec x l	Kinematic viscosity ft/sec
0.3084 0.3117 0.3183 0.3215 0.3183 0.3248 0.3281 0.3609 0.3937 0.4593 0.47921 0.5256 0.6234 0.6569 0.7218 0.7546 0.78746 0.78746 0.78746 0.7818 0.7918 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.7546 0.7818 0.781	463.0 463.0 463.0 463.0 463.0 463.0 463.0 463.0 463.0 463.0 504.0 514.0 6143.0 6144.0 6144.0 6144.0 6144.0 6144.0 6146.0 61	0.241-03 0.241-03 0.001-03 0.001-03 0.421-03 1.711-03 1.701-03 1.471-03 1.471-04 1.471-04 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-05 1.471-06 1.461-06 1.461-06 1.461-06 1.461-06 1.461-06 1.461-06 1.461-06 1.461-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07 1.471-07	1.11: -06 1.06E-06 1.01: -06 1.6667 1.22: -07 3.74E-07 3.23: -07 2.06E-07 1.30E-07 1.30E-08 3.0E-08 1.21E-08 3.0E-09 1.21E-09 1.27E-09 1.27E-09 1.27E-09 1.27E-09 1.27E-09 1.27E-10 2.46E-10 3.76E-10 2.46E-10 3.76E-11 3.76E-11 4.35E-11 4.20E-11 3.36E-11 7.70E-11 4.35E-11 4.20E-11 1.44E-11 1.0E-11 1.44E-11	1060. 1060.	0.069 0.069 0.069 0.069 0.070 0.070 0.071 0.077 0.071 0.077 0.087 0.1087 0.128 0.138 0.147	4.5E-04 4.7E-04 5.0F-04 5.0F-04 5.0F-04 5.5F-04 6.7E-04 6.7E-03 3.7E-03 6.1F-03 1.0F-02 2.6E-02 3.7E-02 8.3E-01 1.6F-01 3.7E-01 1.6F-01	3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39	3.0E-01 3.2E-01 3.4E-01 3.7E-01 3.9E-01 4.0E-01 6.5E-01 1.0E 00 2.6E 00 4.1E 00 7.5E 00 1.3E 01

Altitude ft x 10-6 Temperature	Pressure lbs/in	Density slugs/ft ³	Speed of sound ft/sec	Density scale height ft x 10-0	Mean free path ft
2.0998	7.26 - 08 7.26 - 08 7.36 - 08 7.36 - 08 7.37 - 09 7.37 -	3.715-12 3.39L-12 3.11"-12 2.85c-12 2.65F-12 2.42L-12 2.73'-12 1.90E-12 1.76F-12 1.63L-12 1.21E-12 1.31E-12 1.31E-12 1.31E-12 1.31E-12 1.31E-12 1.31E-13 3.36F-13 3.36F-13 3.36F-13 3.36F-13 3.36F-13 3.372E-13 3.372E-13 3.372E-13 3.72E-13 4.55E-13 4.55E-14 4.56E-14 4.66E-14	43.1.3.6.4.2.9.7.4.1.8.6.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	0.361 0.371 0.371 0.371 0.371 0.371 0.371 0.371 0.491 0.491 0.442 0.442 0.447	1.4E 02 1.6F 02 1.6F 02 1.6F 02 1.1E 02 2.1E 02 2.3C 02 2.3C 02 2.3F 03 3.3F 04 4.3F 04 4.3

Viscosity slugs/ft sec x 10⁷

Kinematic viscosity ft/sec

TABLE II

NASA MARS ATMOSPHERE MODEL 1 (Maximum) Metric Units

Altitude km.	Temperature °K	Pressure mb	Density 3 gm/cm	Speed of sound $z=z/z$	Density scale neight	Mean free path cm	Viscosity kg/m sec x 10 ⁵
01 23 45 67 89 10 11 12 13 14 15 16 17 18 12 21 22 23 24 25 26 27 28	300.0 296.4 292.7 289.1 285.5 281.3 274.5 274.5 274.5 267.3 267.3 260.0	4.00E 01 3.83E 01 3.66E 01 3.50E 01 3.35E 01 3.20E 01 2.78E 01 2.52E 01 2.40E 01 2.52E 01 2.40E 01 2.18E 01 2.18E 01 1.77E 01 1.77E 01 1.78E 01 1.70E 01	4. 52 \$ - 05 4. 48 \$ - 05 4. 48 \$ - 05 4. 48 \$ - 05 4. 07 \$ - 05 3. 93 \$ - 05 3. 68 \$ - 05 3. 43 \$ - 05 3. 20 \$ - 05 3. 20 \$ - 05 2. 63 \$ - 05 2. 64 \$ - 05 1. 77 \$ - 05 1. 86 \$ - 05 1. 68 \$ - 05 1.	345. 341. 341. 336. 337. 327.	32.0 31.7 31.3 30.6 30.2 29.9 29.5 29.1 28.8 28.4 28.0 20.2 20.2 20.2 20.2 20.2 20.2 20.3 20.3	1.7E 04 1.8E-04 1.9E-04 1.9F-04 2.0E-04 2.1E-04 2.1E-04 2.4E-04 2.5E-04 2.5E-04 2.5E-04 2.7E-04 3.9E-04 3.9E-04 3.9E-04 4.9E-04	1.90 1.88 1.85 1.83 1.80 1.77 1.75 1.70 1.67 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
31 32 33	260+0 260+0 260+0 260+0 260+0 260+0	1.04 ° 01 9.13 ° 00 9.40 ° 00 3.95 ° 00 5.92 ° 00 5.12 ° 00	1.32: -05 1.25: -05 1.25: -05 1.14 -05 1.38(-05)	323 - 323 - 323 - 323 - 323 -	29.3 29.4 21.4 21.4 20.4	6.0E-04 6.3L-04 6.6E-04 6.3E-04 7.3E-04	1.62 1.62 1.62 1.62 1.67

9	ature	æ	/cm ³	Speed of sound	y scale height	Mean free path cm	ity /m sec x 10 ⁵
Altitude lam.	Temperature K	Pressure mb	Density gm/	Speed m/	Density km	Mean fr	Viscosity kg/m
35 35 35 36 37 38 39 44 45 45 45 45 45 45 45 45 45 45 45 45	260.0 260.0	7.73: 00 7.36: 00 7.36: 00 7.36: 00 7.37: 00 7.36: 00 7.37: 01	1.03E-05).00F-06 9.34F-06 0.39F-06 0.39F-06 3.47E-06 0.68F-06 7.3E-06 0.76E-06 0.76E-06 0.76E-06 0.76E-06 0.76E-06 0.76E-06 0.76E-06 0.76E-06 0.76E-06 0.77E-06	323. 323.	20.4 20.4 20.4 20.4 20.5 20.5 20.5 20.5 20.5 20.6 20.6 20.6 20.6 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.8 88888 20.9	7.7E-04 8.0E-04 8.0E-04 8.7E-04 9.3E-04 9.3E-04 9.3E-03 1.1E-03 1.1E-03 1.1E-03 1.2E-03 1.2E-03 1.3E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.6E-03	1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
82 83 84 85 86 87 88 89 90 91 92 93	260.0 260.0 260.0 260.0 260.0 260.0 260.0 260.0 260.0 260.0	7.60 ± -01 7.25 T -01 6.71 T -01 6.5 E = 01 5.29 t -01 5.72 T -01 5.72 T -01 5.45 C -01 5.20 -01 4.75 T -01 4.73 F -01 4.51 t -01	1.01:-06 7.66:-07 9.21:-07 8.78:-07 8.38:-07 7.39:-07 7.6:-07 6.73:-07 6.61:-07 6.71:-07	323. 323. 323. 323. 323. 323. 323. 323.	21.0 21.0 21.0 21.0 21.0 21.0 21.1 21.1	7.85-03 8.2C-03 8.6E-03 9.0E-03 9.4F-03 1.0E-02 1.1E-02 1.1E-02 1.2E-02 1.3E-02 1.3E-02	1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

Altitude ^{lam.}	Temperature $^{\circ}$ K	Pressure mb	Density 3 gm/cm	Speed of sound m/sec	Density scale height	liean free path cn	Viscosity $kg/m \sec x = 10^5$
94 95 97 98 99 110 120 130 140 150 160 170 180 190 210 220 230 240 250 270 280 270 280 270 280 270 280 270 280 290 310 320 330 340 400 440 450 450 450 450 450 550 570 570 570 570 570 570 570 570 5	260.9 260.0	4.30%-01 4.10%-01 3.9%-01 3.73%-01 3.73%-01 3.73%-01 3.73%-01 3.73%-01 3.74%-01 3.24%-01 1.27%-01 7.97%-02 3.17%-02 2.04%-02 1.36%-03 4.08%-03 4.08%-03 4.08%-03 4.08%-03 4.08%-03 1.15%-03 1.15%-03 1.48%-03 1.48%-03 1.48%-03 1.48%-03 1.48%-03 1.48%-03 1.48%-03 1.5%-04 1.5%-04 1.5%-04 1.5%-04 1.5%-04 1.5%-05 1.1%-05 3.19%-04 1.36%-05 5.11%-06 5.11%-05 5.	5.73=-J7 5.475-J7 5.21C-J7 4.745-J7 6.21C-J7 4.745-J7 4.745-J7 4.745-J7 1.065-J7 1.0	\$23333333 \$2333333333 \$23333333333	21.1 21.2 21.2 21.2 21.2 21.3 21.6 21.3 21.6 21.3 21.6 21.3 21.6 21.3 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	1.4F-02 1.4E-02 1.5E-02 1.7E-02 1.7E-02 1.7E-02 1.7E-02 1.7E-02 1.7E-01 1.9E-02 2.9E-02 2.9E-02 2.9E-02 2.9E-02 2.9E-02 2.9E-02 2.9E-02 2.9E-03 3.9	1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

Altitude km.	Temperature K	Pressure mb	Density 3 gm/cm	Speed of sound m/sec	Density scale height km	Mean free path on
640 653 660 673 680	1240.7 1250.0 1250.0 1300.0 1320.0	0.04 = 0 0.30 = 30 0.70 = 0 0.01 = 0 0.15 = 0 0.15 = 0	1.71 - 12 1.75 - 12 1.75 - 12 1.75 - 12 1.35 - 12	705- 711- 717- 727- 726-	110.6 113.1 115.3 117.6 117.7	4.1F 03 4.5E 03 4.9E 03 5.4F 03 5.4E 03
690 700	1340.c 1360.u	1.21 10	1.24c-12 1.15c-12	733.	122.2	6.3F 03 6.3E 03
710 720	1340 1400.j	4.221-16 3.157-16	1.065-12 1.79L-13	744. 750.	126.7	7.45 03 8.18 03
733 740	1426.) 1440.)	3.72L-06 3.30L-34	J.U7⊢-13 3.4113	755. 760.	131.6 134.0	9.76 03 9.48 03
75⊍ 760	1450.7 1430.3	3.297-06 3.101-05	7.31~13 7.271-13	755. 771.	136.4	1.05 04 1.16 04
770 780	1500.0 1520.0	2.331-35 2.7760	6.31-13	776. 781.	141.2 143.7	1.2L 04 1.3E 04
19a 800	1540.0	2.62°~16 2.47_=05	3.47 -13 3.50€-13	736. 731.	146.1 144.6	1.3F 04 1.4E 04
310	15ac.a 1600.u	2.35L=06	5.14c=13 4.3213	796. 901.	151.1	1.55 U4 1.65 U4
820 330	1520.	7.11	4.527-13	:)5.	150.1	1.71 04 1.7E 04
840 850	1540. /	2.01: -06 1.016-06	3.7813	811.	158.6 161.2	2.UF U4
860 870	1530.0 1700.1	1.32 -06 1.73 -06	3.7413 3.5213	421. 826.	163.7 165.3	2.1F 04 2.2E 04
880 890	1720.0 1740.0	1.651 -116 1.57c -116	3.32=-13 3.13L-13	431. 336.	163.7 171.5	2.4F 04 2.5F 04
300	1760.0	1.50c-06 1.4336	2.75~-13 2.79′13	54.). 849.	174.2	2.7E 04 2.0E 04
910 920	1300.0	1.375-06	2.645-13	35.J·	17).4	3.UE 04
933 940	1320.1 1340.6	1.31r-06 1.26 -06	2.50H-13 2.365-13	955. 45∮.	182.1	3.2E 04 3.3E 04
95) 960	1360.0 1380.7	1 • 2 0/ = 76 1 • 155 = 75	2.24 ⁻ -13 2.130-13	854. 369.	187.5 190.2	3.5F 04 3.7E 04
97 0	1900.7	1.11c=96 1.06[=16	2.02=-13	373.	192.7	3. JE 04 4.15 04
99) 98)	1949.3	1.32 -05	1.321-13	887.	193.5	4.3F U4
1000 1050	136(-) 2363-9	3.1) -17	1./35-13	337. 307.	201.2 215.3	4.6E 04 5.8E 04
1100 1150	2160.0	5.7) -)/ 5.75 -)/	1.001-13	131. 152.	229.8 244.7	7.2E 04
1200	2350.0	++ 75 17	1.23E-14 6.10 -14	373. 334.	259.9 275.6	1.1E 05
1250 1300	2467.0 2563.0	4.265-17 3.72 -57	つ・ひろにーL4	1014.	291.6	1.65 05
1350 1400	2660• ; 2760• ;	3.2111 2.3391	4.265-14 3.035-14	10).	305.J 324.7	1.7F 05 2.2L 05
1450 1500	2350•1 2360•0	え・5ペニング と・32、ール7	3.13 -14 2.11 -14		341.7 359.4	2.5F 05 2.9F 05
1550	3150.7	2.001-07 1.005-07	2.31:-14	1105.	3/7.3	3. 3F 05
1600 1650	3250.)	1.73 -07	1.3414	1144.	414.5	4.35 05
170∪ 1750	3360.7 3460.7	1.53 -97	1.6314 1.46-14	117 .	433.3 452.7	4. dE () 5
1800 1850	356)., 3667.,	1.35! - 17	1.31:-14		+12•3 492•7	6.0F 05 6.10 05
1900	3761.1	1.15 - 1	1.7 -14	1220.	514.7	7.45 05

 $\begin{array}{ccc} \text{Viscosity} & \text{5}\\ \text{kg/m sec} & \text{x} & \text{10} \end{array}$

TABLE III

NASA MARS ATMOSPHERE

MODEL 2 (Mean) English Units

Altitude ft \times 10 ⁻⁶	Temperature ° R	Pressure lbs/in ²	Density slugs/ft ³	Speed of sound ft/sec	Density scale height ft x 10-6	liean free path ft	Viscosity slugs/ft sec x 10 ⁷	Kinemațic viscosity ft ² /sec
0:0033	450. 0 443.0	3.43E-01 3.44E-01	4,94 E-05 6.68E-05	1027 1019•	0.086 0.085	7.4E-06 7.7E-06	3.19 3.14	4. 65-03 4.7E-03
0.0066	436.0	3.25E-01	5.43E-05	1011.	0.084	8.0E-06	3.09	4.8E-03
0.0098	429.0	3.08E-01	5.18E-05	1003.	0.082	8.3E-06	3.04	4.9E-03
0.0131	422.0	2.911-01	5.931-05	¥95•	0.081	8.75-06	2.99	5.0E-03
0.0164	415.0	2.756-01	5.70E-05	987.	0.080	9.0E-06	2.94	5.2E-03
0.0197	408.0	2.59E-01	5.47E-05	978.	0.077	9.4E-06	2.89	5.3E-03
0.0230	401.0	2.446-01	5.24L-05	970.	0.077	9.86-06	2.84	5.4E-03
0.0262	394.0	2.305-01	5.02E-05 4.81E-05	961. 953.	0.076 0.075	1.0E-05	2.79	5.6E-03
0.0295	387.0	2.16E-01 2.03E-01	4.60E-05	944.	0.073	1.16-05	2.74	5.7E-03
0.0328	380.0 373.0	1.90E-01	4.401-05	944.	0.072	1•1E-05 1•2E-05	2.69	5.9E-03 6.0E-03
0.0394	366.0	1.788-01	4.205-05	926.	0.071	1.2E-05	2•64 2•59	6.2E-03
0.0427	359.0	1.678-01	4.01E-05	913.	0.070	1.3F-05	2.55	6.4E-03
0.0459	352.0	1.568-01	3.820-05	909.	0.068	1.36-05	2.50	6.5E-03
0.0492	345.0	1.46E-01	3.648-05	900.	0.067	1.46-05	2.45	6.7E-03
0.0525	338.0	1.365-01	3.462-05	890.	0.066	1.5E-05	2.40	7.0E-03
0.0558	331.0	1.27E-01	3.29E-05	381.	0.064	1.6E-05	2.36	7.2E-03
0.0591	324.0	1.186-01	3.13E-05	872•	0.063	1.6E-05	2.31	7.4E-03
0.0623	324.0	1.096-01	2.912-05	372•	0.045	1.80-05	2.31	8.0E-03
0.0656	324.0	1.025-01	2.70E-05	372.	0.045	1.98-05	2.31	8.6E-03
0.0689	324.0	9.44L-02	2.518-05	872·	0.045	2.08-05	2.31	9.2E-03
0.0722	324.0	8.77E-02	2.33E-05	v72•	0.045	2.2E-05	2.31	9.9E-03
0.0755	324.0	8.1502	2.176-05	v 72•	0.045	2.4E-05	2.31	1.1E-02
0.0787	324.0	7.576-02	2.015-05	372 -	0.045	2.6F-05	2.31	1.2E-02
0.0820	324.0	7.04E+02	1.376-05	872 •	0.045	2.75-05	2.31	1.2E-02
0.0853 0.0886	324.0	6.54E-02 6.08E-02	1.74±-05 1.61E-05	872. 872.	U.045 U.045	3.08-05	2.31	1.3E-02
0.0919	324.0 324.0	5.655-02	1.502-05	672.	0.045	3.2 E -05 3.4E-05	2.31 2.31	1.4E-02 1.5E-02
0.0919	324.0	5.255-02	1.395-05	672 ·	0.045	3.4L-05	2.31	1.7E-02
0.0984	324.0	4.48E-02	1.306-05	372.	0.045	4.JE-05	2.31	1.8E-02
0.1017	324.0	4.531-02	1.20t -05	372.	0.045	4.35-05	2.31	1.9E-02
0.1050	324.0	4.215-02	1.120-05	d72.	0.045	4.6F-05	2.31	2.1E-02
0.1083	324.0	3. 325-02	1.044:-05	ى 77 م	0.045	4.7E-05	2.31	2.2E-02

Altitude ft x 10-6	Temperature R	Pressure lbs/in²	Density slugs/ft ³	Speed of sound it/sec	Density scale height ft x 10 0	Mean free path ft		<pre>slugs/ft sec x 10' Kinematic viscosity ft / sec</pre>
0.1116 0.1148 0.1181 0.1214 0.1247 0.1280 0.1312 0.1345 0.1375 0.1411 0.1444 0.1476 0.1509 0.1542 0.1575 0.1608 0.1673 0.1706 0.1739 0.1673 0.1706 0.1739 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1870 0.1837 0.1903 0.1969 0.2034 0.2067 0.2133 0.2165 0.2231 0.2264 0.2237 0.2335 0.2461 0.2494 0.2559 0.2625 0.2658 0.26590 0.2723 0.2756 0.2872 0.2854 0.2872 0.2953	374.0 374.0 324.0	3.64L-02 3.39E-02 2.72E-02 2.35L-02 2.72E-02 2.35L-02 2.35L-02 2.35L-02 2.35L-02 2.35L-02 2.35L-02 2.35L-02 1.76E-02 1.64L-02 1.62L-02 1.42C-02 1.42C-02 1.42C-02 1.42C-03 1.7L-03 2.36L-03 7.34E-03 7.34E-03 7.34E-03 7.34E-03 7.34E-03 7.34E-03 7.34E-03 7.37E-03	J. 68 F - 06 J. 00 E - 06 J. 00 E - 06 J. 36 E - 06 J. 36 E - 06 J. 36 E - 06 J. 25 E - 06 J. 25 E - 06 J. 26 E - 06 J. 27 E - 06 J. 37 E - 07 J. 10	\$72. \$72. \$72. \$72. \$72. \$72. \$72. \$72.	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	5.36-05 5.46-05 6.66-05 7.16-05 6.66-05 7.16-05 8.26-05 8.26-05 8.26-05 8.36-05 9.06-04 1.16-04 1.36-04 1.36-04 1.36-04 1.46-04 2.16-04 2.16-04 2.16-04 2.16-04 3.26-04 3.26-04 3.26-04 4.06-04 4.06-04 4.06-04 4.06-04 4.06-04 4.16-04 5.46-04 5.46-04 5.46-04 6.76-04 7.76-04 6.76-04 7.76-04 7.76-04 8.76-04 8.76-04 8.76-04 7.76-03 7.7	2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	2.4E-02 2.6E-02 3.0E-02 3.2E-02 3.7E-02 4.0E-02 4.0E-02 5.0E-02 5.0E-02 5.7E-02 6.6E-02 7.7E-02 8.2E-02 8.2E-02 1.0E-01 1.4E-01 1.5E-01 1.4E-01 1.5E-01 1.6E-01 2.1E-01 2.1E-01 2.1E-01 2.1E-01 2.1E-01 2.1E-01 2.1E-01 2.1E-01 3.1E-01 3.1E-01 4.1E-01
0.2320	324.0	7.91~-04	1.865-07	872.	0.046 0.046 0.046 0.046	2.8F-03	2.31	1.2E 00

Altitude ft x 10-6	Temperature "R	Pressure lbs/in ²	Density slugs/ft ³	Speed of sound ft/sec	Density scale height ft x 10-0	Mean free path ft	Viscosity slugs/ft sec x 10 ⁷	Kinematic viscosity ft // sec
0.3034 0.3117 0.3150 0.3183 0.3218 0.3281 0.3609 0.3937 0.4921 0.5250 0.5234 0.5250 0.5734 0.6562 0.66390 0.7218 0.7374 0.8202 0.8531 0.8859 0.9187 0.9515 0.9843 1.017 1.0499 1.0827 1.1156 1.14436 1.24408 1.2796 1.3124 1.3452 1.3760 1.4436 1.4764 1.5093 1.4764 1.5749 1.6077 1.6405 1.7389 1.7717 1.6405 1.7389 1.7061 1.7389 1.7061 1.7389 1.7061 1.7389 1.7061 1.7389 1.7061 1.7389 1.7061 1.7389 1.7061 1.7389 1.7061 1.7389 1.7061	324.0 327.0 329.0 32	4.3 t - 04 4.5 t - 04 4.5 t - 04 3.7 t - 05 3.1 t - 05 1.01 t - 05 1.01 t - 05 1.01 t - 06 1.01 t - 06 1.01 t - 07 3.14 t - 08 3.3 t - 09 3.4 t - 09 3.7 t - 09 4.4 t - 09 3.7 t - 09 3.7 t - 09 4.4 t - 09 3.7 t - 09 3.7 t - 09 4.4 t - 09 3.7 t - 09 3.7 t - 09 4.4 t - 09 3.7 t - 09 3.7 t - 09 4.4 t - 09 3.7 t - 09	1.31E-07 1.225-07 1.14 -07 1.06E-07 1.08E-07 1.08E-08 1.21E-08 8.53E-08 4.26E-08 1.06E-09 1.27E-09 1.27E-09 1.27E-09 1.27E-10 1.39E-10 1.39E-11 1.45E-11 1.46E-11 1.47E-12 1.48E-14 1.46E-13 1.12E-13 1.12E-13 1.12E-13 1.12E-13 1.12E-13 1.12E-14 1.46E-14 1.76E-14	372. 372. 372. 372. 372. 372. 372. 372.	0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.048 0.048 0.048 0.051 0.056 0.056 0.056 0.071 0.076 0.086 0.071 0.071 0.076 0.086 0.071 0.086 0.071 0.086 0.097 0.107 0.113 0.113 0.114 0.129 0.135 0.141 0.152 0.153 0.141 0.152 0.153 0.153 0.170 0.175 0.181 0.175 0.181 0.175 0.181 0.175 0.181 0.175 0.181 0.175 0.181 0.175 0.181 0.175 0.181 0.175 0.181 0.175 0.187 0.193 0.175 0.187 0.193 0.290 0.277 0.293 0.277 0.293 0.277 0.293 0.297 0.277 0.293 0.297 0.277 0.293 0.297 0.277 0.293 0.297 0.297 0.293 0.297 0.293 0.297 0.293 0.297 0.293 0.297 0.293 0.297 0.394 0.311 0.311 0.313 0.325	3. JE - 03 4. JE - 03 4. JE - 03 4. JE - 03 5. JE - 03 5. JE - 03 6. JE - 03 1. JE - 02 4. JE - 01 4. JE - 01 1. JE - 02 2. JE - 02 3. JE - 02 3. JE - 03 1. JE - 03 1. JE - 03 1. JE - 03 1. JE - 03 2. JE - 03 3. JE - 04 1. JE	2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	1.8E UO 1.9E 00 2.0E 00 2.3E 00 2.5E 00 2.7E 00 5.4E 01 2.2E 01 4.3E 01 8.6E 01 2.0E 02 1.7E 03 3.1E 03 5.3E 03

TABLE III

NASA MARS ATMOSPHERE

MODEL 2 (Mean) Metric Units

Altitude Am.	Temperature $^{\circ}K$	Pressure mb	Density 3 gm/cm	Speed of sound	Density scale height	Mean free path cm	Viscosity $_{ m kg/m}$ sec x $_{ m 10}^5$
o 1	250. 1 246•1	2.50E OI 2.37L 01	3.578-05 3.44E-05	314.	24.3 25.7	2. 2E - 04 2.3E-04	1, 5 4 1.51
2	242.2	2.246 01	3.3105	308.	25.5	2.4E-04	1.48
3	238.3	2.125 01	3.184-05	306.	25.1	2.5E-04	1.46
4	234.4	2.000 01 1.8% 01	3.05F-05 2.93E-05	303. 301.	24.1	2.6E-04	1.43 1.41
5 6	230•5 226•7	1.876 01 1.785 01	2.81=05	298.	24.3	2.8E-04 2.9E-04	1.38
7	222.8	1.68F 01	2.707-05	296.	23.6	3.0E-04	1.36
a	218.3	1.5ar Ul	2.585-05	273.	23.2	3.1E-04	1.33
4	215.0	1.49: 01	2.471-05	270.	22.3	3.3F-04	1.31
10	211.1	1.401 61	2.375-05	285.	22.4	3.4E-04	1.29
11	207•2 203•3	1.31/ 01 1.23b 01	2.265-05 2.165-05	235. 232.	22.0 21.6	3.6E-04 3.7E-04	1.26 1.24
12 13	179.4	1.152 01	2.06:-05	280.	21.2	3.95-04	1.22
14	195.5	1.085 01	1.977-05	271.	20.8	4.1E-04	1.20
15	101.6	10 00.1	1.575-05	274.	20.4	4.3E-04	1.17
16	177.5	3.37⊾ 00	1.7805	271.	20.)	4.5E-04	1.15
17	183.9 180.9	8.720 00 3.110 00	1.70L-05 1.617-09	269. 266.	19.6	4.8F-04	1.13 1.11
18 19	180.0	러•111 00 7•545 00	1.50105	266.	13.6	5.4E-04	1.11
20	180.0	7.JOE 70	1.395-05	266.	13.5	5.8E-04	1.11
21	180.0	5.50L 00	1.29 -05	266.	13.5	6.28-04	1.11
22	180.7	5.045 00	1.201-05	265.	13.6	6.7F-04	1.11
23	180.0	5.625 00	1.116-05	266	13.6	7.2E-04	1.11
24	130.5	5.22 00	1.046-05	266.	13.6	7.8E-04	1.11
25	180.	4.85L 00 4.51 00	9.621-06 9.941-06	256. 266.	13.6	8.4E-04	1.11
26 27	180.9 180.9	4.132 00	8.31L-U5	256.	13.6	9.0E-04 9.7E-04	1.11
28	180.5	3 . d Jt. 10	7.726-06	256	13.7	1.06-03	1.11
29	130.7	3.62 00	7 - 181, -06	266.	13.7	1.15-03	1.11
30	180.7	3.36- 06	6.671 -06	11/10	13.7	1.2F-03	1.11
31	180.0	3.126 00	6.20L-06	265.	13.7	1.3E-03	1.11
32	180.7	2.90(5.761-06	260.	13.7	1.4F-03	1.11
33	180.5	2.7 0. 00	5.36 -06	266.	13.7	1.55-03	1.11

Altítud e km.	Temperature •K	Pressure mb	Density 3 gm/cm3	Speed of sound m/sec	Density scale height	Mean free path	Viscosity ${ m kg/m~sec}$ x 10^5
335 337 3390 4423 445 447 449 551 555 555 555 555 666 667 667 777 777 777	180.0 180.0	2.51= 00 2.33= 00 2.17= 00 2.02= 00 1.67= 00 1.67= 00 1.61= 00 1.51= 00 1.51= 00 1.30= 00 1.30= 00 1.05= 01 3.44=-01 7.85=-01 3.44=-01 5.32=-01 5.32=-01 5.47=-01 5.47=-01 5.32=-01 5.47=-01 5.32=-01 5.32=-01 5.32=-01 5.32=-01 5.32=-01 7.85=-01 4.41=-01 4.41=-01 4.41=-01 4.41=-01 4.41=-01 4.42=-01 2.48=-01 2.48=-01 2.48=-01 2.48=-01 2.48=-01 1.30=-01 2.31=-01 3.31=-01	4.98F-06 4.00F-06 4.00F-06 3.72E-06 3.72E-06 3.46L-06 3.22E-06 2.99E-06 2.41E-06 2.41E-06 2.41E-06 1.96E-06 1.96E-06 1.96E-06 1.95E-06 1.95E-07 4.95E-07 4.16E-07 7.65E-07 6.16E-07 6.16E-07 6.17E-07 3.7E-07 3.7E-07 3.7E-07 1.05E-07	260. 260. 260. 260. 260. 260. 260. 260.	13.77 13.77 13.77 13.33 14.40 14.00	1.6E-03 1.7E-03 1.7E-03 1.7E-03 2.0E-03 2.0E-03 2.3E-03 2.3E-03 2.3E-03 3.4E-02 1.2E-02 1.2E-02 1.2E-02 2.2E-02 2.3E-02 2.3E-02 2.3E-02 2.3E-02 2.3E-02 2.3E-02 2.3E-02 2.5E-02	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1

Altitude km.	Temperature • K	Pressure mb	Density 3	Speed of sound m/sec	Density scale height	Mean free path	Viscosity kg/m sec x 10 ⁵
94 95 96 97 98 100 110 120 140 150 160 170 180 1200 2210 220 220 220 220 220 220 220	180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 200.0 240.0 240.0 240.0 240.0 340.0 340.0 340.0 340.0 350.0 360.0 360.0 560.0 660.0 660.0 660.0 660.0 660.0 720.0 740.0 780.0 780.0 880.0 980.0 980.0 980.0 980.0	3.39E-02 3.16E-02 2.95C-02 2.39E-02 2.39E-02 2.39E-02 2.39E-03 1.38E-03 2.76E-03 1.38E-04 2.05F-04 1.21E-04 7.47C-05 3.18E-05 2.17E-05 1.52E-05 1.08E-05 1.08E-06 1.07E-06 1.07E-06 1.07E-06 1.07E-06 1.07E-07 1.07E-08 3.07E-08 3.07E-08 3.07E-08 3.07E-08	6.74E-08 6.78F-08 5.48E-08 5.48E-08 5.48E-08 5.48E-08 4.74E-08 4.74E-08 4.72E-09 2.75E-09 1.30E-10 1.30E-10 1.30E-11 1.59E-11 1.59E-11 1.59E-11 1.08E-12 3.78E-12 2.76E-12 2.76E-12 3.78E-12 2.76E-12 3.78E-12 2.76E-12 1.18E-12 1.18E-12 1.18E-13 1.37E-13 2.37E-13 2.37E-13 2.37E-13 2.37E-13 2.37E-14 7.73E-14	266. 266. 266. 266. 266. 266. 266. 266.	144.22222222222222222222222222222222222	1.2E-01 1.3E-01 1.4E-01 1.5E-01 1.5E-01 1.7E-01 1.7E-01 1.7E-01 1.7E-01 1.7E-01 1.7E-01 1.7E-01 1.7E-01 1.5E 00 2.9E 00 2.9E 00 2.9E 01 2.1E 02 3.3E 02 2.1E 02 3.3E 02 2.1E 03 3.7E-01 3.7E-0	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1

TABLE IV

NASA MARS ATMOSPHERE MODEL 3 (Minimum) English Units

Altitude ft x 10 ⁻⁶	Temperature . R	Pressure lbs/in ²	Density $_{ m slugs}/{ m ft}^3$	Speed of sound ft/sec	Density scale height $ft \times 10^{-9}$	Mean free path ft	Viscosity slugs/ft sec x 107	Kinematic viscosity ft/sec
0.0000	360.0	1.45[-Q] 1.34[-0]	-4.198-05 3.958-05	834. 824.	0.056 0.055	1.4F~05	2.30 2.24	5.56-03 5.7E-03
0.0033	351.8 343.6	1.236-01	3.72E-05	814.	0.054	1.6E-05	2.24	5.9E-03
0.0098	335.4	1.134-01	3.508-05	804.	0.053	1.7E-05	2.13	6.1E-03
0.0131	327.2	1.036-01	3.28E-05	795.	0.051	1.8E-05	2.08	6.4E-03
0.0164	319.0	9.458-02	3.08E-05	785.	0.050	1.9E-05	2.03	6.6E-03
0.0197	310.9	8.62E-02	2.98E-05	774.	0.049	2.0E-05	1.98	6.9E-03
0.0230	302.7	7.8402	2.698-05	764.	0.048	2.28-05	1.94	7.2E-03
0.0262	2 74.5	7.12E-02	2.518-05	754.	0.046	2.3E-05	1.89	7.5E-03
0.0295	246.3	5.44E-02	2.346-05	743.	().045	2.5E-05	1.84	7.9E-03
0.0328	278.1	5.81E-02	2 • 175 - 05	732.	0.044	2.7E-05	1.79	8.3E-03
0.0361	269.9	5.236-02	2.015-05	122.	0.043	2.98-05	1.75	8.7E-03
0.0394	261.7	4.59E-02	1.868-05	711.	0.041	3.2E-05	1.70	9.1E-03
0.0427	253.5 245.3	4.19E-02 3.74E-02	1 • 72E - 05 1 • 58E - 05	699. 688.	0.040	3.4E-05 3.7E-05	1.65	9.6E-03
0.0459	237.1	3.31t-02	1.45=-05	676.	0.039	4.0E-05	1.61 1.56	1.0E-02 1.1E-02
0.0525	229.0	2.935-02	1.336-05	665.	0.036	4.4E-05	1.52	1.1E-02
0.0558	220.8	2.58E-02	1.21E-05	653 .	0.035	4.8E-05	1.47	1.2E-02
0.0591	212.6	2.261-02	1.106-05	640.	0.034	5.35-05	1.43	1.3E-02
0.0623	204.4	1.968-02	9.795-06	62B.	0.033	5.75-05	1.38	1.4E-02
0.0656	136.2	1.705-02	7.01E-06	615.	0.031	6.5E-05	1.34	1.5E-02
0.0689	188.0	1.466-02	8-105-06	602.	0.030	7.3E-05	1.30	1.6E-02
0.0722	179.8	1.25=-02	7.24F-06	589.	0.029	8.15-05	1.25	1.7E-02
0.0755	179.0	1.075-02	5.17E-06	589.	0.021	9.50-05	1.25	2.0E-05
0.0787	1/9.8	3.105-03	5.26E-06	589.	0.021	1.1E-04	1.25	2.4E~02
0.0820	179.8	7.76E-03	4.485-06	589.	0.021	1.35-04	1.25	2.8E~02
0.0853	177.3	6.626-03	3.821-06	589.	0.021	1.50-04	1.25	3.3E-02
0.0886	177.8	5.646-03	3.265-06	589. 589.	0.021	1.dE-04 2.1E-04	1.25	3.9E-02
0.0919 0.0951	179.8 179.8	4.81E-03 4.10E-03	2.7dE-06 2.37l-06	28 J.	0.021	2.16-04	1.25 1.25	4.5E-02 5.3E-02
0.0991	177.3	3.500-03	2.02e-06)d).	0.021	2.36-04	1.25	6.2E~02
0.1017	179.8	2.185-03	1.72F=06	589.	0.021	3.48-04	1.25	7.3E-02
0.1050	179.8	7.552-03	1.471-06	589.	0.021	4.UE-04	1.25	8.5E~02
0.1083	179.8	2.17t-03	1.266-06	581.	0.021	4.15-04	1.25	1.0E-01

Altitude ft \times 10-6	Temperature , R	Pressure lbs/in ²	Density slugs/ft3	Speed of sound ft/sec	Density scale height ft x 10-6	Mean free path ft	Viscosity slugs/ft sec x 10	Kinematic viscosity ft ² /sec
0.1116 0.1148 0.1148 0.1148 0.1247 0.1247 0.1280 0.1345 0.1378 0.1345 0.1378 0.1509 0.1575 0.1608 0.1673 0.1706 0.1673 0.1706 0.1673 0.1772 0.1805 0.1837 0.1772 0.1805 0.1837 0.1969 0.2031 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2034 0.2035 0.2035 0.2036 0.2036 0.2036 0.2036 0.2037 0.2036 0.2037 0.2036 0.2037 0.2036 0.2037 0.2036 0.2037 0.2037 0.2038 0.2039	179.8 179.8	1. dbg-03 1.5bg-03 1.3bg-03 1.3bg-03 1.3bg-04 8.3bg-04 8.3bg-04 6.11b-04 5.2b-04 4.4bg-04 3.2bg-04 2.7bg-04 2.37F-04 2.37F-04 1.48F-04 1.26E-04 1.26E-04 1.26E-05 3.3F-05 5.77E-05 4.93E-05 3.61E-05 3.09E-05 3.61E-05 3.09E-05 1.65E-05 1.41E-05 1.21E-05 1.46E-04 1.21E-05 1.46E-06 1.3Bg-06 1.3Bg-06 1.3Bg-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-07 1.44E-07 1.44	1.07, -067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.4067 7.407 1.476-07 1.476-07 1.476-07 1.476-07 1.476-08 1.486-08 1.486-08 1.486-08 1.486-08 1.486-08 1.486-09	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.021 0.021	5.5F-04 6.4E-04 7.5E-04 8.6E-04 1.0E-03 1.2E-03 1.7E-03 1.7E-03 1.9E-03 2.7E-03 3.1E-03 3.1E-03 3.1E-03 3.1E-03 3.1E-03 3.1E-03 4.3E-02 1.1E-02 1.3E-02 1.4E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 2.1E-02 3.9E-02 2.1E-02 2.1E-02 3.9E-02 3.9E-02 4.5E-02 1.1E-01 2.1	1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	1.2E-01 1.4E-01 1.9E-01 2.2E-01 2.2E-01 3.0E-01 3.0E-01 4.2E-01 5.7E-01 6.7E-01 6.7E-01 6.7E-01 6.7E-01 6.7E-01 6.7E-01 1.1E 00 2.4E 00 2.4E 00 2.4E 00 2.4E 00 3.8E 00 3.8E 00 3.8E 00 3.8E 00 3.8E 00 3.8E 00 3.8E 00 3.8E 01 1.1E 01 1.3E 01 2.9E 01 3.3E 01 3.3E 01 4.4E 02 1.4E 0
0.2986 0.3019 0.3051	177.3 177.3 177.3	2.53E-07 2.17e-07 1.36L-07	1.46E-10 1.26E-10 1.08E-10	589. 589. 589.	0.021 0.021 0.021	4.0E 00 4.7E 00 5.5E 00	1.25 1.25 1.25 1.25	8.6E 02 1.0F 03 1.2E 03

Altitudo $ft \times 10^{-6}$	Temperature R	Pressure 1bs/in ²	Density $_{ m slugs/ft}^3$	Speed of sound ft/sec	Density scale height ft x 10 ⁻⁵	Nean fros path ft		Rinematic viscosity ft / sec
0.3084	179.8	1.60F-07	9.241-11	587.	0.021	6.4E 00	1.25	1.4E 03
0.3117	179.8	1.37=-07	7.43L-11	54).	0.021	7.4E 00	1.25	1.6F 03
0.3150	177.3	1.182-07	P • 80F - 11	5 H).	0.021	8.6F 00	1.25	1.8E 03
0.3183	179.8	1.012-07	5.845-11	587.	0.021	1.08 01	1.25	2.2E 03
0.3215	179.8	3.571-06	5.010-11	587.	0.021	1.2E 01	1.25	2.5E 03
0.3248	177.8	7.446-08	4-301-11	537.	0.021	1.4F 01	1.25	2.9E 03
0.3281	179.3 179.8	6.39E-08	3.69L-11 8.05E-12	589. 589.	0.021	1.6E 01 7.3E 01	1.25	3.4E 03 1.6E 04
0.3937	179.8	3.06E-09	1.776-12	589.	0.022	7.3E 01 3.3E 02	1.25 1.25	1.6E 04 7.1E 04
0.4265	179.8	6.74E-10	3.936-13	587.	0.022	1.5F 03	1.25	3.2E 05
0.4593	179.8	1.52t-10	8.795-14	589.	0.022	6.7E 03	1.25	1.4E 06
0.4921	179.8	3.43t-11	1.985-14	587.	0.022	3.0E 04	1.25	6.3E 06

TABLE IV

NASA MARS ATMOSPHERE

MODEL 3 (Minimum) Metric Units

Altitude km.	Temperature .K	Pressure mb	Density gr/cm	Speed of sound m/sec	Density scale height	Mean free path cm	Viscosity kg/m sec x 10 ⁵
Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	200.0 195.4 190.9 186.3 181.8 177.2 172.7 168.1 163.6 159.0 154.5 149.9 145.4 140.6 136.3 131.7 127.2 122.6 118.1 113.5 109.0 104.4 99.9 97.9 99.9	1.00 E 01 9.21 E 00 8.48 E 00 7.78 E 00 6.51 E 00 5.94 F 00 5.94 F 00 4.90 E 00 4.90 E 00 4.91 E 00 2.89 E 00 2.57 E 00 2.89 E 00 2.57 E 00 1.78 E 00 1.78 E 00 1.75 E 00 1.35 E 00	2.14E-05 2.03E-05 1.91E-05 1.80E-05 1.60E-05 1.58E-05 1.39E-05 1.20E-05 1.20E-05 1.20E-05 1.20E-05 1.20E-05 1.4E-06 6.34E-06 6.34E-06 6.24E-06 5.67E-06 5.67E-06 4.17E-06 3.73E-06 2.71E-06 2.31E-06	251. 248. 245. 247. 239. 236. 230. 227. 223. 217. 213. 210. 203. 199. 195. 191. 184. 180. 180. 180.	17.2 16.8 16.4 16.1 15.3 14.9 14.5 13.8 13.4 13.0 12.2 11.9 11.5 11.1 10.7 10.3 9.9 9.5 9.1 8.3 6.3 6.3	4.2F-04 4.5E-04 5.5E-04 5.5E-04 5.5E-04 6.2E-04 6.2E-04 7.7E-04 8.2E-04 8.2E-04 8.2E-04 1.0E-03 1.1E-03 1.2E-03 1.5E-03 1.5E-03 1.5E-03 2.2E-03 2.2E-03 2.2E-03 2.2E-03 2.4E-03 4.0E-03 4.0E-03	1.10 1.07 1.05 1.02 1.00 0.97 0.95 0.93 0.98 0.86 0.84 0.77 0.75 0.77 0.75 0.71 0.68 0.66 0.64 0.60
26 27 28 29 30 31 32	99.9 99.3 99.3 99.3 99.4 99.9 99.3	4.56E-01 3.89E-51 3.31E-01 2.83E-01 2.41E-01 2.06E-91 1.75E-01 1.50E-01	1.976-06 1.685-96 1.437-06 1.225-06 1.04E-06 4.08E-07 7.57-07 6.46E-07	180. 180. 180. 180. 180. 180. 180.	6 · 3 6 · 3 6 · 3 6 · 3 6 · 3 6 · 3	4.7E-03 5.5E-03 6.4E-03 7.6E-03 8.9E-03 1.0E-02 1.2E-02 1.4E-02	0.60 0.60 0.60 0.60 0.60 0.60 0.60

Altitude km.	Temperature .K	Pressure nb	Density 3 gm/cm	Speed of sound	Density scale height	Mean free path cm	Viscosity $kg/m \sec x = 10^5$
34 35 37 38 39 41 42 43 45 45 55 55 55 55 55 55 56 66 66 67 77 77 77 77 77 77 77 77 77 77	99999999999999999999999999999999999999	1.28E-01 1.096-02 2.39E-02 5.77E-02 5.78E-02 4.21E-02 3.60E-02 2.62E-02 2.62E-02 1.91E-02 1.02E-02 1.19E-02 1.02E-03 2.42E-03 2.42E-03 1.19E-03 2.41E-03 2.41E-04 2.41E-05 3.21E-04 1.71E-04 2.41E-05 3.71E-05 3.71E-05 3.71E-05 3.71E-05 3.71E-05 3.71E-05	5.516-07 4.70F-07 4.01C-07 3.43E-07 2.50F-07 2.13F-07 1.35E-07 1.35E-07 1.35E-08 4.40C-08 3.76E-08 4.40C-08 3.76E-08 2.75E-08 2.15E-08 4.40C-08 3.76E-08 2.75E-08 2.75E-09 4.20E-08 1.77E-08 1.26C-08 1.77E-08 1.26C-08 1.77E-08 1.26C-08 1.77E-08 1.26C-08 1.77E-08 1.26C-08 1.77E-09 3.08E-09 2.26E-09 1.35E-09 4.21E-09 3.08E-09 2.26E-09 1.35E-09 4.21E-09 1.45E-09 1.45E-10 1.59E-10 1.59E-10 1.59E-10 1.59E-10	180. 180. 180. 180. 180. 180. 180. 180.	66666666666666666666666666666666666666	1.7F-02 2.0F-02 2.3F-02 3.2E-02 3.2E-02 3.2E-02 3.2E-02 4.3E-02 5.9E-02 1.1E-02 5.9E-02 1.1E-01 1.3E-01 1.5E-01 1.6E-01	0.60 0.60
92 93	99.9 99.9	1.50E-05 1.285-05	6.46E-11 5.54E-11	180. 180.	6 • 5 6 • 5	1.4E 02 1.7E 02	0.60 0.60

Altitude km.	Temperature °K	Pressure mb	Density 3 gn/cm	Speed of sound m/sec	Density scale height km	Mean free path cm	Viscosity kg/m sec x 10 ⁵
94	99.9	1.107-05	4.76°-11	180.	6.5	1.9E 02	0.60
95	79. 7).45E-06	4.085-11	180.	6.5	2.3E 02	0.60
96	99.9	3.11E-06	3.500-11	180.	6.5	2.6E 02	0.60
97	99.9 99.9	6.96E-06 5.97E-06	3.00I-11 2.58E-11	180. 180.	6.5	3.1E 02 3.6E 02	0.60
98 99	99.9	5.13E-06	2.215-11	180.	6.5 6.5	3.6E 02 4.2E 02	0.60 0.60
100	99.9	+.40E-06	1.906-11	180.	6.5	4.9E 02	0.60
110	99.9	1.500-07	4.145-12	180.	6.6	2.2E 03	0.60
120	99.1	2.117-07	9.115-13	180.	6.6	1.0E 04	0.60
130	99.)	4.681-08	2.021-13	180.	6.7	4.6E 04	0.60
140	99.9	1.058-08	4.528-14	180.	6.7	2.0E 05	0.60
150	49.4	2.366-09	1.025-14	180.	5.7	9.UE 05	0.60

47

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

2/11/6

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546