

Redpine Signals, Inc.

2107 N. First Street, #680

San Jose, CA 95131.

Tel: (408) 748-3385

This project is applicable to all the WiSeConnect variants like WiSeConnect Plus, WiSeMCU and WYZBEE. The term WiSeConnect refers to its appropriate variant.

Application Overview:

Wired Equivalent Privacy (WEP) is a security protocol for wireless networks that encrypts transmitted data . The disadvantage is that without any security, your data can be intercepted without difficulty.

WEP has three settings: Off (no security), 64-bit (weak security), 128-bit (a bit better security). WEP is not difficult to crack, and using it reduces performance slightly.

However, WEP was an early attempt to secure wireless networks, and better security is now available such as DES, VPN, and WPA

The WEP security application demonstrates how to connect to a WEP secured Access point and open a standard TCP client socket and sends data on server socket with WiSeConnect device. Following are the procedure steps

- Configure an Access point in wep secured mode.
- Connect the Wise connect device to the wep secured AP and get IP through DHCP
- Server socket at Access point has to be opened by means of application program like iperf.
- TCP client socket would be connected to the server socket that is opened.
- Once the connection is established, Data is sent to the TCP server.

Setup required:

- 1. Windows PC with Coocox IDE
- 2. WiSeConnect device
- 3. Access Point with WEP security
- 4. Application program like iperf

Description:

This application is used to demonstrate WEP connectivity and open a TCP client socket in WiSeConnect device.

Once it is configured as TCP client it can establish and maintain a network conversation by means of application program for exchanging of data.

Configuring the Application:

Edit the rsi wep security.c file in the following path.

sapis/examples/wlan/wep security/

1. From given configuration,

SSID refers to the name of the Access point to connect.

CHANNEL_NO refers to particular channel used to scan by the device. If channel is 0 then it will scan all channels.

SECURITY TYPE refers to type of security WEP (RSI_WEP)

wep_index refers to the one of the four keys to be used for connection

wep_key0, wep_key1, wep_key2, wep_key3 are the keys, they
can be 10 bytes or 26 bytes.

#define	SSID	" <ap_name>"</ap_name>
#define	CHANNEL_NO	<channel_num></channel_num>
#define	SECURITY_TYPE	RSI_WEP
#define	WEP_INDEX	" <index>"</index>
#define	WEPKEY0	" <wep 0="" key="">"</wep>
#define	WEPKEY1	" <wep 1="" key="">"</wep>
#define	WEPKEY2	" <wep 2="" key="">"</wep>
#define	WEPKEY3	" <wep 3="" key="">"</wep>

- 1. Enable/Disable DHCP mode
 - 1 Enables DHCP mode (gets the IP from DHCP server)
 - 0 Disables DHCP mode

#define	DHCP_MODE	<dhcp mode=""></dhcp>

2. To configure static IP address

IP address to be configured to the device should be in long format and in little endian byte order.

Example: To configure "192.168.10.1" as IP address, update the macro DEVICE_IP as 0x010AA8CO.

#define DEVICE IP 0X010AA8C0

IP address of the gateway should also be in long format and in little endian byte order

Example: To configure "192.168.10.1" as Gateway, update the macro GATEWAY as 0x010AA8C0

#define GATEWAY 0x010AA8C0

IP address of the network mask should also be in long format and in little endian byte order

Example: To configure "255.255.25.0" as network mask, update the macro **NETMASK** as **0x00ffffff**

#define NETMASK 0x00FFFFFF

3. To establish TCP connection and transfer data to the remote socket configure the below macros

Internal device port number

#define DEVICE_PORT	<pre><internal_port_num></internal_port_num></pre>
Port number of the remote server	
#define SERVER_PORT	<pre><remote_port_num></remote_port_num></pre>

IP address of the remote server

#de:	fine SERVER_IP_ADDRESS	0x640AA8C0	
Nur	nber of packet to send		
#de	fine NUMBER_OF_PACKETS	<num_of_packets></num_of_packets>	
Application memory length which is required by the driver			
#de:	fine GLOBAL_BUFF_LEN	8000	

Update the Wlan configuration file:

sapis/include/rsi_wlan_config.h

CONCURRENT_MODE	DISABLE
RSI_FEATURE_BIT_MAP	FEAT_SECURITY_OPEN
RSI_TCP_IP_BYPASS	DISABLE
RSI_TCP_IP_FEATURE_BIT_MAP	(TCP_IP_FEAT_DHCPV4_CLIENT)
RSI_CUSTOM_FEATURE_BIT_MAP	0
RSI_BAND	RSI_BAND_2P4GHZ

Executing the Application:

- 1. Connect WiSeConnect device to the Windows PC running Cocoox IDE.
- 2. Configure the macros in the files located at

3. Open an iperf TCP server listening on port SERVER_PORT on remote machine in the following format.

- 4. Build and launch the application.
- 5. After the program gets executed, WiSeConnect Device would be connected to Access point having the configuration same that of in the application and get IP.
- 6. The Device which is configured as TCP client will connect to iperf server and sends number of packets configured in NUMBER OF PACKETS