Report of IMDB Movie Dataset:

Data preprocessing, Linear regression modeling, and Data visualization.

NAME: - SRUSHTI.S.FULPAGAR

ROLL NO:- 3160

SUBJECT:- FOUNDATION OF DATA SCIENCE

CLASS:- DATA ANALYTICS

SOFTWARE USED:- R-STUDIO

ABSTRACT

The IMDb Movie Dataset is a comprehensive collection of data related to movies, encompassing a wide range of information on films released over several decades. This dataset offers valuable insights into the world of cinema, making it an essential resource for movie enthusiasts, researchers, and data analysts alike.

With details spanning from movie titles, release years, and runtimes to genre categorizations, IMDb ratings, and production company information, the dataset provides a rich and diverse set of attributes for each movie entry. It also includes data on cast and crew, allowing for exploration of the individuals involved in the filmmaking process.

This dataset serves as a versatile tool for conducting various analyses and investigations, enabling users to explore trends in movie production, popularity, and critical acclaim over time. Researchers can delve into questions related to genre preferences, the impact of directors and actors on movie success, and much more.

In summary, the IMDb Movie Dataset is a valuable resource for those interested in the cinematic world, offering a wealth of data that facilitates research, analysis, and a deeper understanding of the factors contributing to the success and diversity of movies in the global film industry.

1. Dataset Name: IMDB Movie Dataset Latest

2. Source: Kaggle

3. Dataset Link:

https://www.kaggle.com/datasets/ayushjain001/imdb-movie-dataset-latest?resource=download

4. Dataset contains 11 columns and 1000 rows

RESEARCH METHODOLOGY

Installing Libraries

```
#Installing packages
install.packages('ggplot2') #visualization
install.packages('caTools') #conditional analysis tools
install.packages('dplyr') #manipulation
```

Loading Libraries

```
# Load necessary libraries
library(ggplot2)
library(dplyr)
library(caTools)
```

Loading IMDB Dataset

```
> # Load your IMDb dataset
> imdb_data <- read.csv("C:/IMDB.csv")</pre>
```

Showing the dimension of dataset

dim() function is used to retrieve the dimensions of our dataset.

```
> dim(IMDB)
[1] 1000 11
```

tail() it is used to view last five rows of a dataset

		give us last value						
> ta	il(IMDB	s)						
	X	Name.of.mo∨ie	Year.of.relase	Watchtime	Movie.Rating	Metascore		
995	994	K.G.F: Chapter 1	2018	156	8.3	NaN		
996	995	Vikram Vedha	2017	147	8.3	NaN		
997	996	Drishyam	2013	160	8.3	NaN		
998	997	Jagten	2012	115	8.3	77		
999	998 Jo	daeiye Nader az Simin	2011	123	8.3	95		
1000	999	Incendies	2010	131	8.3	80		
Votes Gross.collection								
995	54,51	.5 Nan						
996	35,90	1 Nan						
997	39,57	0 #244						
998	313,64	7 \$0.69M						
999	238,13	0 \$7.10M						
1000	168,72							

head() it is used to view first five rows of a dataset

```
> #It will give first values
> head(IMDB)
              Name.of.movie Year.of.relase Watchtime Movie.Rating Metascore
 Χ
1 0
                   Jai Bhim
                                      2021
                                                 164
                                                              9.3
                                                                        NaN
2 1 The Shawshank Redemption
                                                              9.3
                                      1994
                                                 142
                                                                        80
              The Godfather
                                      1972
                                                 175
                                                              9.2
                                                                        100
4 3
            Soorarai Pottru
                                      2020
                                                 153
                                                              9.1
                                                                        NaN
5 4
            The Dark Knight
                                      2008
                                                 152
                                                              9.0
                                                                         84
6 5
     The Godfather: Part II
                                      1974
                                                 202
                                                              9.0
                                                                         90
     Votes Gross.collection
  173,295
                       #139
2 2,541,091
                   $28.34M
3 1,748,410
                   $134.97M
4 107,159
                        Nan
5 2,491,371
                   $534.86M
6 1,212,675
                    $57.30M
```

colnames() function is used to retrieve the column names.

is.na() is used to check for missing values in a dataset.

```
> #is.na() is used to check for missing values in a dataset.
> sum(is.na(IMDB))
[1] 220
```

Checking Duplicate Values

```
> #Checking Duplicate Values
> sum(duplicated(IMDB))
[1] 0
```

DATA EXPLORATION

str() function is used to display the structure of dataset.

view() function opens the dataset in a separate interactive viewer window, making it easier to examine data.

> View(imdb_data)

^ X		Name.of.movie	Year.of.relase	Watchtime [‡]	Movie.Rating [‡]	Metascore	Votes [‡]	Gross.collection	Description	Director
1	0	Jai Bhim	2021	164	9.3	NaN	173,295	#139	When a tribal man is arrested for a case of alleged theft, his	T.J. Gnanavel
2	- 1	The Shawshank Redemption	1994	142	9.3	80	2,541,091	\$28.34M	Two imprisoned men bond over a number of years, finding	Frank Darabont
3	2	The Godfather	1972	175	9.2	100	1,748,410	\$134.97M	The aging patriarch of an organized crime dynasty in postw	Francis Ford Coppola
4	3	Soorarai Pottru	2020	153	9.1	NaN	107,159	Nan	Nedumaaran Rajangam "Maara" sets out to make the com	Sudha Kongara
5	4	The Dark Knight	2008	152	9.0	84	2,491,371	\$534.86M	When the menace known as the Joker wreaks havoc and ch	Christopher Nolan
6	5	The Godfather: Part II	1974	202	9.0	90	1,212,675	\$57.30M	The early life and career of Vito Corleone in 1920s New York	Francis Ford Coppola
7	6	12 Angry Men	1957	96	9.0	96	750,853	\$4.36M	The jury in a New York City murder trial is frustrated by a sin	Sidney Lumet
8	7	The Lord of the Rings: The Return of the King	2003	201	8.9	94	1,752,093	\$377.85M	Gandalf and Aragorn lead the World of Men against Sauron'	Peter Jackson
9	8	Pulp Fiction	1994	154	8.9	94	1,955,203	\$107.93M	The lives of two mob hitmen, a boxer, a gangster and his wif	Quentin Tarantino
0	9	Schindler's List	1993	195	8.9	94	1,297,426	\$96.90M	In German-occupied Poland during World War II, industrialis	Steven Spielberg
1	10	Inception	2010	148	8.8	74	2,231,967	\$292.58M	A thief who steals corporate secrets through the use of drea	Christopher Nolan
2	11	Fight Club	1999	139	8.8	66	1,999,930	\$37.03M	An insomniac office worker and a devil-may-care soap mak	David Fincher
3	12	The Lord of the Rings: The Fellowship of the Ring	2001	178	8.8	92	1,773,739	\$315.54M	A meek Hobbit from the Shire and eight companions set ou	Peter Jackson
4	13	Forrest Gump	1994	142	8.8	82	1,960,705	\$330.25M	The presidencies of Kennedy and Johnson, the Vietnam War	Robert Zemeckis
5	14	Il buono, il brutto, il cattivo	1966	161	8.8	90	733,443	\$6.10M	A bounty hunting scam joins two men in an uneasy alliance	Sergio Leone
6	15	Spider-Man: No Way Home	2021	148	8.7	71	446,741	#26	With Spider-Man's identity now revealed, Peter asks Doctor	Jon Watts
7	16	Dara iz Jasenovca	2020	130	8.7	NaN	80,317	Nan	Follows the story of a young girl named Dara who is sent to	Predrag Antonijevic
8	17	Shershaah	2021	135	8.7	NaN	112,894	Nan	The story of PVC awardee Indian soldier Capt. Vikram Batra,	Vishnuvardhan
9	18	Sardar Udham	2021	164	8.7	NaN	35,937	Nan	A biopic detailing the 2 decades that Punjabi Sikh revolutio	Shoojit Sircar
0	19	The Lord of the Rings: The Two Towers	2002	179	8.7	87	1,583,030	\$342.55M	While Frodo and Sam edge closer to Mordor with the help	Peter Jackson
1	20	The Matrix	1999	136	8.7	73	1,833,574	\$171.48M	When a beautiful stranger leads computer hacker Neo to a f	Directors:Lana Wachowski, Li
2	21	Goodfellas	1990	146	8.7	90	1.098.360	\$46.84M	The story of Henry Hill and his life in the mob, covering his r	Martin Scorsese
3	22	Star Wars: Episode V - The Empire Strikes Back	1980	124	8.7	82	1.232.350	\$290.48M	After the Rebels are brutally overpowered by the Empire on	Irvin Kershner
4	23	One Flew Over the Cuckoo's Nest	1975	133	8.7	84	971,935	\$112.00M	A criminal pleads insanity and is admitted to a mental instit	Milos Forman
5	24	Gisaengchung	2019	132	8.6	96	715,000	\$53.37M	Greed and class discrimination threaten the newly formed s	Bong Joon Ho

DATA VISUALIZATION

<u>Filter out rows with missing or non-numeric Movie.Rating</u> values.

```
> # Filter out rows with missing or non-numeric Movie.Rating values
> imdb_data <- imdb_data %>%
+ filter(!is.na(Movie.Rating), is.numeric(Movie.Rating))
```

Histogram of Movie Ratings:

```
> ggplot(data = imdb_data, aes(x = Movie.Rating)) +
+ geom_histogram(binwidth = 0.5, fill = "blue", color = "black") +
+ labs(title = "Distribution of Movie Ratings",
+ x = "Movie Rating",
+ y = "Frequency")
```


- **Conclusion:** The histogram of movie ratings shows a roughly normal distribution with a peak around the 6.5 to 7.0 range.
- What we understand: Most movies in the dataset have ratings clustered around the 6.5 to 7.0 range, indicating that a significant number of movies have moderate to good ratings.

Scatterplot of Votes vs. Movie Ratings:

Scatterplot of Votes vs. Movie Ratings

- **Conclusion:** There seems to be a positive correlation between the number of votes a movie receives and its rating. As the number of votes increases, movies tend to have higher ratings.
- What we understand: Movies with higher ratings tend to attract more votes, suggesting that popular or critically acclaimed movies tend to have a larger audience.

Boxplot of Movie Ratings by Year of Release:

Boxplot of Movie Ratings by Year of Release

- Conclusion: The boxplot of movie ratings by year of release shows that the median movie rating remains relatively stable over the years. However, there are outliers on both ends, indicating that there are exceptional movies with very high and very low ratings in each year.
- What we understand: While the median rating remains consistent, the presence of outliers suggests that there are both outstanding and poorly received movies produced every year.

Bar chart of Directors with the most movies(Top 10) based on movie count.

- **Conclusion:** The bar chart identifies the top 10 directors with the most movies in the dataset. Director frequencies vary, with one director having significantly more movies than the others in the top 10.
- What we understand: This chart provides insights into which directors have the most extensive filmographies. It could be used to explore further questions about the success or influence of these directors.

MODEL BUILDING

It filters the dataset to create a subset d_subset containing movies released after 2000 with a Movie Rating of 7 or higher.

```
> # Linear regression for single variable
> d_subset <- imdb_data %>%
+ filter(Year.of.relase >= 2000 & Movie.Rating >= 7.0)
```

Viewing the filtered subset

> # View the filtered subset
> View(d_subset)

Splitting the dataset into training and test sets

```
> ssplit <- caTools::sample.split(imdb_data$Movie.Rating, SplitRatio = 0.75)
> table(ssplit)
ssplit
FALSE TRUE
249 751
```

- **FALSE**: There are 249 rows with FALSE values, which likely corresponds to the number of rows in the testing set.
- **TRUE:** There are 751 rows with TRUE values, which likely corresponds to the number of rows in the training set.

By splitting your data into training and testing sets, you can use the d_train dataset to train your machine learning model and the d_test dataset to evaluate its performance.

```
> d_train <- subset(imdb_data, ssplit == TRUE)
> d_test <- subset(imdb_data, ssplit == FALSE)</pre>
```

View dimensions of training and testing sets

```
> # View dimensions of training and testing sets
> dim(d_train)
[1] 751  11
> dim(d_test)
[1] 249  11
```

MULTIPLE LINEAR REGRESSION

It makes predictions on the test dataset and combines actual and predicted values into final_data.

> predicted <- predict(model_train, newdata = d_test)</pre>

Combine actual and predicted values

> final_data <- cbind('Actual' = d_test\$Movie.Rating, 'Predicted' = predicted)
> View(final_data)

↓ □	₽ Fil	ter		
^	Actual [‡]	Predicted [‡]		
6	9.0	9.0		
8	8.9	8.9		
14	8.8	8.8		
19	8.7	8.7		
26	8.6	8.6		
28	8.6	8.6		
29	8.6	8.6		
33	8.6	8.6		
39	8.5	8.5		
40	8.5	8.5		
41	8.5	8.5		
44	8.5	8.5		
54	8.5	8.5		
75	8.4	8.4		
Showing 1 to 15 of 249 entries, 2 total co				

It builds a linear regression model (multi) to predict Movie Ratings based on Watchtime, Votes, and Year of Release.

```
> multi <- lm(Movie.Rating ~ Watchtime + Votes + Year.of.relase, data = d_train)</pre>
```

It predicts Movie Ratings on the test dataset

> multi_p <- predict(multi, newdata = d_test)</pre>

Combine columns by using cbind function, actual and predicted values.

> multi_data <- cbind('Actual' = d_test\$Movie.Rating, 'Predicted' = multi_p)
> View(multi_data)

	æ ₹ Filt	ter	
*	Actual [‡]	Predicted [‡]	
6	9.0	9.0	
8	8.9	8.9	
14	8.8	8.8	
19	8.7	8.7	
26	8.6	8.6	
28	8.6	8.6	
29	8.6	8.6	
33	8.6	8.6	
39	8.5	8.5	
40	8.5	8.5	
41	8.5	8.5	
44	8.5	8.5	
54	8.5	8.5	
75	8.4	8.4	
Showing 1 to 15 of 249 entries, 2 total c			

Convert to a data frame

```
> multi_data <- as.data.frame(multi_data)</pre>
```

Finding error

```
> multi_data$m_error <- multi_data$Actual - multi_data$Predicted</pre>
```

<u>It calculates the root mean square error (RMSE) as a measure of model performance.</u>

```
> rmse2 <- sqrt(mean(multi_data$m_error^2))</pre>
> rmse2
[1] 5.976144e-14
> fit<-lm(Predicted ~ Actual ,data= multi_data)</pre>
> summary(fit)
Call:
lm(formula = Predicted ~ Actual, data = multi_data)
Residuals:
                         Median
                  1Q
                                        30
                                                  Max
-1.720e-13 -1.921e-15 -4.890e-16 4.484e-15 2.546e-14
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.233e-13 4.604e-14 4.851e+00 2.17e-06 ***
           1.000e+00 5.383e-15 1.858e+14 < 2e-16 ***
Actual
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.837e-14 on 247 degrees of freedom
Multiple R-squared:

    Adjusted R-squared:

F-statistic: 3.451e+28 on 1 and 247 DF, p-value: < 2.2e-16
```

```
> # Create a scatter plot with Actual vs. Predicted
> scatter_plot <- plot_ly(data = multi_data, x = ~Actual, y = ~Predicted, type = 'scatter', mode = 'markers', name = 'Scatter') %>%
+ add_trace(x = ~Actual, y = ~Predicted, mode = 'lines', name = 'Regression Line',
+ line = list(color = 'orange'),
+ marker = list(color = 'green')) # Change scatter point color here
> # Customize the layout
> layout <- list(
+ title = "Scatterplot with Regression Line",
+ xaxis = list(title = "Actual"),
+ yaxis = list(title = "Predicted")
+ )
> # Combine the scatter plot and layout
> scatter_plot <- scatter_plot %>% layout(layout)
> # Display the combined plot
> scatter_plot
```


CONCLUSION

This project is a comprehensive data analysis and modeling exercise using an IMDb dataset. It involves several key steps, including data loading, data exploration, model building, model evaluation, and data visualization.

- The dataset contains valuable information about movies, which can be used to build predictive models and gain insights.
- Linear regression models can predict Movie Ratings based on various features, with different levels of accuracy.
- Data visualization is an essential tool for exploring and communicating patterns and trends within the dataset.
- Careful data preprocessing, model building, and evaluation are critical for creating reliable predictive models.

The project provides a structured example of how to work with real-world data, conduct predictive modeling, and visualize findings, which can be applied to similar datasets and analytical tasks.