画像処理・AIのための数学ノート

tomixy

February 18, 2025

Contents

1	微分	と積分	5
	1.1	1変数関数の微分	5
		1.1.1 接線:拡大したら直線に近似できる	5
		1.1.2 接線の傾きとしての導関数	7
		1.1.3 微分とその関係式	8
		1.1.4 不連続点と微分可能性	8
		1.1.5 導関数のさまざまな記法	10
		1.1.6 三角関数の微分	11
2	複素	数と複素関数	13
	2.1	複素平面	13
	2.2	複素数の絶対値	13
	2.3	複素数の極形式による表現	14
	2.4	偏角と主値	14
	2.5	共役複素数	15
	2.6	オイラーの公式	17
3	フー	- リエ解析	19
	3.1	波の2つの捉え方	19
		3.1.1 空間的に捉える波	19
		3.1.2 時間的に捉える波	20
	3.2	角周波数と正弦波	20
		3.2.1 角周波数と振動数の関係	21
		3.2.2 角周波数と周期の関係	21
	3.3	偶関数と奇関数	22
		3.3.1 偶関数と奇関数は異なる対称性を持つ	22
		3.3.2 積に関する性質	23
		3.3.3 和に関する性質	24
		3.3.4 偶関数・奇関数の積分	24
	3.4	フーリエ級数	25
		3.4.1 そもそも級数とは	25
		3.4.2 有限区間で定義された関数のフーリエ級数展開	26

4 CONTENTS

	3.4.3	フーリエ級数展開の周期関数への拡張	27
	3.4.4	不連続点におけるフーリエ級数の値	28
	3.4.5	フーリエ級数展開の意味	29
	3.4.6	フーリエ級数展開のさまざまな表現式	30
	3.4.7	奇関数のフーリエ級数(フーリエ正弦級数)	32
	3.4.8	偶関数のフーリエ級数(フーリエ余弦級数)	34
4	線形システ	· A	37
	4.1 線形性	E	37

Chapter 1

微分と積分

1.1 1変数関数の微分

微分とは、複雑な問題も「拡大して見たら簡単に見える (かもしれない)」という発想で、わずかな変化に着目して入力と出力の関係 (関数) を調べる手法といえる。

1.1.1 接線:拡大したら直線に近似できる

関数 y = f(x) について、引数の値を $x = x_0$ からわずかに増加させて、 $x = x_0 + \Delta x$ にした場合の出力の変化を考える。

このとき、増分の幅 Δx を狭くしていく(Δx の値を小さくしていく)と、 $x=x_0$ 付近において、関数 y=f(x) のグラフは直線にほとんど重なるようになる。

このように、関数 f(x) は、ある点 x_0 の付近では、

$$f(x) \simeq a(x - x_0) + b$$

という直線に近似することができる。

ここで、 $f(x_0)$ の値を考えると、

$$f(x_0) = a(x_0 - x_0) + b$$
$$= a \cdot 0 + b$$
$$= b$$

であるから、実は $b = f(x_0)$ である。

一方、*a* はこの直線の傾きを表す。

そもそも、傾きとは、xが増加したとき、yがどれだけ急に(速く)増加するかを表す量である。 関数のグラフを見ると、急激に上下する箇所もあれば、なだらかに変化する箇所もある。 つまり、ある点でグラフにぴったりと沿う直線(接線)を見つけたとしても、その傾きは場所によって異なる。 1.1. 1変数関数の微分 7

そこで、「傾きは位置 x の関数」とみなして、次のように表現しよう。

$$a = f'(x)$$

これで、先ほどの直線の式を完成させることができる。

1.1.2 接線の傾きとしての導関数

傾きは位置 x の関数 f'(x) としたが、この関数がどのような関数なのか、結局傾きを計算する方法がわかっていない。

直線の傾きはxとyの増加率の比として定義されているから、まずはそれぞれの増加率を数式で表現しよう。

この図から、yの増加率 Δy は次のように表せることがわかる。

$$\Delta y = f(x + \Delta x) - f(x)$$

この両辺を Δx で割ると、x の増加率 Δx と y の増加率 Δy の比率が表せる。

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

図では Δx には幅があるが、この幅を限りなく 0 に近づけると、幅というより点になる。 つまり、 $\Delta x \to 0$ とすれば、 $\frac{\Delta y}{\Delta x}$ は任意の点 x での接線の傾きとなる。 「任意の点 x での傾き」も x の関数であり、この関数を導関数と呼ぶ。

1.1.3 微分とその関係式

微分 関数 f(x) から、その導関数 f'(x) を求める操作を微分という。

関数のグラフから離れて、微分という「計算」を考えるにあたって、先ほどの導関数の定義式よりも都合の良い表現式がある。

 $x \to 0$ とした後の Δx を dx と書くことにして、 $\lim_{\Delta x \to 0}$ を取り払ってしまおう。

$$f'(x) = \frac{f(x+dx) - f(x)}{dx}$$

$$f'(x)dx = f(x+dx) - f(x)$$

$$f'(x)dx + f(x) = f(x+dx)$$

$$f(x) \in \mathfrak{F}$$

$$f(x) \in \mathfrak{F}$$

1.1.4 不連続点と微分可能性

点 x において連続な関数であれば、幅 Δx を小さくすれば、その間の変化量 Δy も小さくなるはずである。

しかし、不連続な点について考える場合は、そうはいかない。

下の図を見ると、 Δx の幅を小さくしても、 Δy は不連続点での関数の値の差の分までしか小さくならない。

このような不連続点においては、どんなに拡大しても、関数のグラフが直線にぴったりと重なる ことはない。

「拡大すれば直線に近似できる」というのが微分の考え方だが、不連続点ではこの考え方を適用 できないのだ。

関数の不連続点においては、微分という計算を考えることがそもそもできない。

ある点での関数のグラフが直線に重なる (微分可能である) ためには、 $\Delta x \to 0$ としたときに $\Delta y \to 0$ となる必要がある。

1.1.5 導関数のさまざまな記法

微分を考えるときは、 $\Delta x \rightarrow 0$ としたときに $\Delta y \rightarrow 0$ となる前提のもとで議論する。

 Δx を $x \to 0$ としたものを dx、同様に Δy を $y \to 0$ としたものを dy とすると、ある点 x での接線の傾きは、次のようにも表現できる。

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

この接線の傾きがxの関数であることを表現したいときは、次のように書くこともある。

$$\frac{dy}{dx}(x)$$

これも一つの導関数 (位置に応じた接線の傾きを表す関数) の表記法である。 この記法は、どの変数で微分しているかがわかりやすいという利点がある。

次のような記号はいずれも、関数 $y = f(x)$ の導関数を表	表す。
dy dy	d
$\frac{dy}{dx} = \frac{dy}{dx}(x) = \frac{dy}{dx} = \frac{dy}{dx}$	$\frac{a}{f}(x)$
dx dx dx	dx°

特に、 $\frac{d}{dx}f(x)$ という記法は、 $\frac{d}{dx}$ の部分を微分操作を表す演算子として捉えて、「関数 f(x) に微分という操作を施した」ことを表現しているように見える。

微分	分淨	算	子																				
盟	数な	· 紻.	分す	る	とい	う	操作	を	表張	1す.	ろ消	省.	子な	. 独	分消	筲	ヱノ	. L.V	う				
												> /F	, ,	· 1/-/	/-J 15	\	, –		- 0				
1917 2	K Va		火0.) L	フィ	品口	号で	衣	3 11	<i>、</i> る。	,												
													d										
													dx										

ところで、これまで使ってきた f'(x) という導関数の記法にも、名前がついている。

1.1. 1変数関数の微分 11

この記法は、「f という関数から導出された関数が f' である」ことを表現している。 導関数はあくまでも関数 f から派生したものであるから、f という文字はそのまま、加工されたことを表すために ' をつけたものと解釈できる。

1.1.6 三角関数の微分

Chapter 2

複素数と複素関数

2.1 複素平面

複素数は、実部(Real Part)と虚部(Imaginary Part)という2つの数から成る。 そのため、実部を横軸に、虚部を縦軸にとった平面を考え、1つの複素数をこの平面上の1点として表すことができる。

複素平面実部を横軸、虚部を縦軸にとった平面を複素平面と呼ぶ。

2.2 複素数の絶対値

複素数の絶対値 複素平面において、原点から複素数zまでの距離を複素数zの絶対値と定義する。

2.3 複素数の極形式による表現

2.4 偏角と主値

 $x = r\cos\theta$ 、 $y = r\sin\theta$ に、 $r = \sqrt{x^2 + y^2}$ を代入して整理した関係式から、偏角を改めて定義する。

2.5. 共役複素数 15

ここで、 θ を整数回 2π シフトさせても(何周回っても)、複素数 z の値は変わらない。 つまり、1 つの複素数に対して偏角の値は複数考えられるので、次のような主値を定義する。

偏角の主値																					
$0 \le \theta \le 2\pi$	もしく	は –π <	< θ ≤	πの	範囲	にあ	うるイ	扁角	を(扁角	の言	È値	2 ح	呼び	٤.	次の	ょ	うに	こ表	す。	
					Λ	40.00		•—	0												
					A	rg	Z	.=	Ð												

2.5 共役複素数

Proof

複素数 z = x + iy とその共役複素数 $\bar{z} = x - iy$ の積を計算する。

$$z\overline{z} = (x + iy)(x - iy)$$

$$= x^2 - ixy + ixy - i^2y^2$$

$$= x^2 + y^2$$

$$= |z|^2$$

2.6. オイラーの公式 17

2.6 オイラーの公式

Chapter 3

フーリエ解析

3.1 波の2つの捉え方

波は2つの捉え方ができる。

- 空間的に捉える波:波の形そのもの
- 時間的に捉える波:波の振動

3.1.1 空間的に捉える波

波とは、一定の間隔で同じ形が繰り返されるものである。 空間的に捉える波は、まさにその波の形そのもので、波の形を位置 x の関数として表す。

3.1.2 時間的に捉える波

波を時間軸から見たとき、波を構成する最小パターンは幅ではなく時間である。 その最小パターンを周期と呼ぶ。

周期は、波を時間軸から見たときの「波長」の言い換えともいえる。

3.2 角周波数と正弦波

 $\sin\theta$ や $\cos\theta$ は、 $\theta = \omega t$ の関係を用いると、動径 θ ではなく角周波数 ω の関数とみることができる。

正弦波 sin ωt や cos ωt を、角周波数 ω の正弦波と呼ぶ。

3.2.1 角周波数と振動数の関係

円の1周は 2π であり、単位時間あたりに進む円周は角周波数 ω である。

(角周波数は「角」の大きさとして定義したが、弧度法のおかげで、「円周」の長さとしても捉えられる。) ここで、単位時間あたりに進む円周 ω は、1 周 2π のうちのどれくらいだろうか? その答えは、 ω を「1 周あたりの量」 2π で割ったものになる。

ここで、三角関数は円関数とも呼ばれるように、円の1周は三角関数の1振動に対応する。 振動を円周上の回転として表す三角関数のおかげで、「どれくらい回るか?」を「どれくらい振動 するか?」とみることができる。

つまり、動径が単位時間に $\frac{\omega}{2\pi}$ だけ回転するということは、単位時間に $\frac{\omega}{2\pi}$ だけ振動するということだ。

3.2.2 角周波数と周期の関係

ここまでで、振動数 v は 2 通りの表し方ができることがわかった。

- $\nu = \frac{1}{T}$ (周波数:単位時間に含まれる、最小波の時間幅)
- $v = \frac{\omega}{2\pi}$ (振動数:単位時間に含まれる、振動の回数)

この2式を組み合わせて、次のような関係が得られる。

$$\omega = 2\pi \nu = \frac{2\pi}{T}$$

角周波数と周期の	関係		
角周波数をω、馬	期を T とすると	、次のような関係が成	り立つ。
		$\omega = 2\pi$	
		T	

3.3 偶関数と奇関数

sin 関数と cos 関数は、どちらも正弦波と呼ばれるが、その性質は異なる。 sin は奇関数であり、cos は偶関数である。

この違いが、後に議論するフーリエ級数展開においても重要な役割を果たす。

3.3.1 偶関数と奇関数は異なる対称性を持つ

3.3. 偶関数と奇関数 23

1つの関数が、この両方の性質を持つことはない。 つまり、偶関数であり奇関数でもある関数は存在しない。

3.3.2 積に関する性質

偶関数と奇関数の積 偶関数と奇関数の積は、奇関数となる。

Proof

f(x) を奇関数、g(x) を偶関数とすると、

$$f(x)g(x) = -f(-x)g(-x)$$

 $f(-x)g(-x) = -f(x)g(x)$
 両辺 -1 倍して両辺入れ替え

となり、引数を-1倍すると符号が反転するため、f(x)g(x)は奇関数である。

奇関数どうしの積 奇関数と奇関数の積は、偶関数となる。

Proof

f(x), g(x)を奇関数とすると、

$$f(x)g(x) = -f(-x) \cdot \{-g(-x)\}$$
$$= f(-x)g(-x)$$

となり、引数を-1倍しても符号がそのままなので、f(x)g(x)は偶関数である。

偶関数どうしの積 偶関数と偶関数の積は、偶関数となる。

Proof

f(x), g(x) を偶関数とすると、

$$f(x)g(x) = f(-x)g(-x)$$

 $f(-x)g(-x) = f(x)g(x)$
 両辺入れ替え

となり、引数を-1倍しても符号がそのままなので、f(x)g(x)は偶関数である。

3.3.3 和に関する性質

奇関数どうしの和 奇関数と奇関数の和は、奇関数となる。

Proof

f(x), g(x)を奇関数とすると、

$$f(x) + g(x) = -f(-x) - g(-x)$$

= $-\{f(-x) + g(-x)\}$
 $f(-x) + g(x) = -\{f(x) + g(x)\}$ 両辺 -1 倍して両辺入れ替え

となり、引数を-1倍すると符号が反転するため、f(x) + g(x)は奇関数である。

偶関数どうしの和 偶関数と偶関数の和は、偶関数となる。

Proof

f(x), g(x) を偶関数とすると、

$$f(x) + g(x) = f(-x) + g(-x)$$

となり、引数を-1倍しても符号がそのままなので、f(x) + g(x)は偶関数である。

3.3.4 偶関数・奇関数の積分

偶関数の積分公式

3.4. フーリエ級数

原点に関して対称な区間 $-a \le x \le a$ において、f(x) が偶関数なら、次の式が成り立つ。 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

25

3.4 フーリエ級数

3.4.1 そもそも級数とは

幻		ケ展	盟													
गिर्ग.	X Y	X/IX	נדלו													

級数展開は、近似や性質の分析に役立つ。

代表的な級数展開:マクローリン展開

f(x) が無限回微分可能なとき、f(x) は多項式関数 $\{x^0, x^1, x^2, \dots\}$ を使って級数展開できる。

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

このような級数展開をマクローリン展開という。

代表的な級数展開:フーリエ級数展開

f(x) が特定の条件を満たすとき、f(x) は三角関数を使って級数展開できる。 このような級数展開をフーリエ級数展開といい、これからの議論の対象となる。

3.4.2 有限区間で定義された関数のフーリエ級数展開

3.4. フーリエ級数 27

3.4.3 フーリエ級数展開の周期関数への拡張

元の関数 f(t) には区間の制限を設けていたが、フーリエ級数を構成する三角関数は、無限区間で定義されている。

そして、三角関数は、区間幅Tだけずらしても同じ値をとる、周期Tの周期関数である。

つまり、特定の区間内の関数 f(t) の形を、無限区間内で T ずつずらしていっても、それを表現するフーリエ級数の式は変わらない。

関数 f(t) が、区間の制限をなくしても同じ形を繰り返すだけ(周期関数)であれば、先ほどのフーリエ級数展開がそのまま成り立つことになる。

が成り立つとしたら、フーリエ係数
$$a_0, a_n, b_n$$
 は次のようになる。
$$a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

3.4.4 不連続点におけるフーリエ級数の値

次のような矩形波 f(t) では、 $t = \frac{T}{n}$ が不連続な点となる。

$$f(t) = \begin{cases} 0 & (-\pi \le t < 0) \\ 1 & (0 \le t < \pi) \end{cases}$$

この関数をフーリエ級数展開し、k項までの和を求めた結果が、 s_k のような波形となる。

k が大きくなるほど、 s_k は元の矩形波 f(t) に近づいていることがわかる。 ここで、元の関数の不連続点である $t=\frac{T}{n}$ において、 s_k は不連続点を通過している。 例えば、t=0 において、t=0 より左側では -A に近い値、右側では A に近い値をとる。

- t=0 に右から近づいていくと、 s_k は A に近づいていく(右極限は A)
- t=0 に左から近づいていくと、 s_k は -A に近づいていく(左極限は -A)

そして、t=0 において、 s_k は A と -A の間の値(原点)を通過している。 一般に、不連続となる t において、フーリエ級数展開の値は、その点での左右の極限値の平均値となる。 3.4. フーリエ級数 29

3.4.5 フーリエ級数展開の意味

フーリエ級数展開の式は、

- 1の係数が a₀
- $\cos\left(\frac{2\pi nt}{T}\right)$ の係数が a_n
- $\sin\left(\frac{2\pi nt}{T}\right)$ の係数が b_n

となっていた。

フーリエ級数展開は、次の基本関数系を使った級数展開といえる。

$$\left\{1,\cos\left(\frac{2\pi nt}{T}\right),\sin\left(\frac{2\pi nt}{T}\right)\right\}$$

ここで、

REVIEW

 $\sin \omega t$ や $\cos \omega t$ は、角周波数 ω の正弦波と呼ばれる

ことを思い出すと、フーリエ級数展開を構成する基本関数系は、角周波数 $\omega_n = \frac{2\pi n}{T}$ の正弦波である。

 $(1 \text{ ld } \cos \frac{2\pi nt}{T} \text{ における}, n = 0 \text{ の場合だと考えることができる}_{\circ})$

つまり、フーリエ級数展開は、関数 f(t) を角周波数 ω_n の正弦波に分解することである。

関数 f(t) がどのような周波数成分で構成されているか?を解き明かすのがフーリエ級数展開で、フーリエ係数は時間領域から周波数領域へのマッピングの役割を果たしている。

3.4.6 フーリエ級数展開のさまざまな表現式

フーリエ級数展開の式は、文献によって異なるいくつかの形で表現される。

定数項をまとめた表現

定数項 a_0 を、 a_n の n=0 の場合として考えることができる。 その場合、フーリエ級数展開は次のように表される。

3.4. フーリエ級数 31

が成り立つとしたら、フーリエ係数
$$a_n, b_n$$
 は次のようになる。
$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

角周波数を使った表現

角周波数 $\omega_0 = \frac{2\pi}{T}$ を使って、フーリエ級数展開の式を書き換えることもできる。

区間を0始まりにずらした表現

有限区間 $-\frac{T}{2} \le t \le \frac{T}{2}$ で定義された関数のフーリエ級数展開を考えてきたが、その有限区間は区間幅が T であればなんでもよい。

特に、 $0 \le t \le T$ で定義された関数のフーリエ級数展開を考えることも多い。

区間を変えても、周期関数への拡張は同様の議論により成り立ち、次のことがいえる。

このフーリエ係数の式は、区間 $-\frac{T}{2} \le t \le \frac{T}{2}$ の場合の式を平行移動+置換積分することで示される。

3.4.7 奇関数のフーリエ級数(フーリエ正弦級数)

f(t) が奇関数の場合、それを表現するフーリエ級数には、奇関数しか入らない。 奇関数と奇関数の和が奇関数になることから、そう予想できる。

偶関数 cos の項が消え、奇関数 sin の項だけが残ることを確かめるため、各フーリエ係数を計算してみよう。

定数項 an

原点に対して対称な範囲での奇関数の積分は0になるから、

$$a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$$
$$= 0$$

 \cos の項の係数 a_n

∫の中身を見ると、奇関数と偶関数の積は奇関数になるので、積分結果は0になる。

3.4. フーリエ級数 33

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

$$= 0$$

 \sin の項の係数 b_n

「の中身を見ると、奇関数と奇関数の積は偶関数になるので、

REVIEW

偶関数の積分公式

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$

を使って計算する。

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{2}{T} \cdot 2 \int_{0}^{\frac{T}{2}} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

まとめ:フーリエ正弦級数

以上より、 a_0 、 a_n は 0 になるため、奇関数のフーリエ級数は、 \sin の項だけで表現される。 奇関数のフーリエ級数は、フーリエ正弦級数と呼ばれる。

3.4.8 偶関数のフーリエ級数(フーリエ余弦級数)

f(t) が偶関数の場合、それを表現するフーリエ級数には、偶関数しか入らない。

偶関数と偶関数の和が偶関数になることから、そう予想できる。

奇関数 sin の項が消え、偶関数 cos の項だけが残ることを確かめるため、各フーリエ係数を計算してみよう。

定数項 a₀

偶関数の積分公式を使って計算する。

$$a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$$
$$= \frac{1}{T} \cdot 2 \int_{0}^{\frac{T}{2}} f(t) dt$$
$$= \frac{2}{T} \int_{0}^{\frac{T}{2}} f(t) dt$$

 \cos の項の係数 a_n

「の中身を見ると、偶関数と偶関数の積は偶関数になるので、偶関数の積分公式を使って計算する。

3.4. フーリエ級数 35

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{2}{T} \cdot 2 \int_{0}^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

sin の項の係数 b_n

∫の中身を見ると、偶関数と奇関数の積は奇関数になるので、積分結果は0になる。

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{f(t)}{\int_{-\frac{T}{2}}^{\frac{T}{2}}} \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= 0$$

まとめ:フーリエ余弦級数

以上より、 b_n は 0 になるため、偶関数のフーリエ級数は、 \cos の項だけで表現される。 偶関数のフーリエ級数は、フーリエ余弦級数と呼ばれる。

が成り立つとしたら、フーリエ係数 a_0, a_n は次のようになる。
$a_0 = \frac{2}{T} \int_0^{\frac{T}{2}} f(t)dt$
$a_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$
$T J_0 J_0 J_0 J_0 J_0 J_0 J_0 J_0 J_0 J_0$

Chapter 4

線形システム

4.1 線形性

