HW10 PHYS4260 Quantum Mechanics II.

Due date: Thu April 24

- 1. Solve Problem 11.17 of Ch 11 of the textbook.
- 2. Show the relation between the Field strength $F^{\mu\nu}$ and the components of the electric and magnetic fields respectively.
- 3. Prove the following equality

$$rac{d^4k}{(2\pi)^4}(2\pi)\delta(k^2-m^2) heta(k_0) = rac{d^3ec k}{(2\pi)^3}rac{1}{2\sqrt{|ec k|^2+m^2}}$$

4. In the radiation-field quantization procedure, we have introduced the functions

$$f_k(r) = \frac{e^{-ikr}}{\left[(2\pi)^3 2k_0 \right]^{1/2}}$$

and its complex conjugate $f_k^*(r)$. The product $kr=k_0r^0-\vec k\cdot\vec r$ is between 4-vectors. Prove that they satisfy the orthonormality condition below

$$\int f_k^*(r) i \stackrel{\leftrightarrow}{\partial_0} f_{k'}(r) d^3 \vec{r} = \delta^{(3)} (\vec{k} - \vec{k}')$$

5. In the quantization procedure for the radiation field, the vector potential is expressed in terms of plane waves and polarization vectors as follows:

$$\vec{A}(r) = \int \frac{d^3k}{\left[(2\pi)^3 2k_0 \right]^{1/2}} \sum_{\lambda=0}^{2} \vec{\varepsilon}^{(\lambda)}(k) \left[f_k(r) a_k^{(\lambda)} + f_k^*(r) a_k^{(\lambda)\dagger} \right]$$

where the coefficients $a_k^{(\lambda)}=a^{(\lambda)}(k)$ and $a_k^{(\lambda)\dagger}=a^{(\lambda)\dagger}(k)$ are functions of the wave number k and the functions $f_k(r)$ which contain the plane waves are defined as

$$f_k(r) = \frac{e^{-ikr}}{\left[(2\pi)^3 2k_0 \right]^{1/2}}$$

The product $kr=k_0r^0-\vec{k}\cdot\vec{r}$ is between 4-vectors. Use the orthonormality condition for the f_k functions:

$$\int f_k^*(r) i \stackrel{\leftrightarrow}{\partial_0} f_{k'}(r) d^3 \vec{r} = \delta^{(3)}(\vec{k} - \vec{k}')$$

(see Problem 4.), and the orthonormality of the polarization vectors

$$\vec{\varepsilon}^{(\lambda)}(k) \cdot \vec{\varepsilon}^{(\lambda')}(k) = \delta_{\lambda \lambda'}$$

to calculate the coefficient $a_k^{(\lambda)\dagger}$. (NB.: you are allowed to use natural units here $\hbar=c=1$.)