Quelques inégalités classiques

On se propose de montrer, sous forme d'exercices, quelques inégalités classiques. Les preuves de ces inégalités ne nécessitent que quelques connaissances élémentaires.

2.1 Exercices classiques et moins classiques

L'inégalité suivante est souvent utilisée.

Exercice 2.1 Montrer que pour tous réels positifs a, b on a :

$$\sqrt{ab} \le \frac{1}{2} \left(a + b \right).$$

Dans quel cas l'égalité est-elle réalisée ?

Solution 2.1 Il suffit de remarquer que :

$$\left(\sqrt{a} - \sqrt{b}\right)^2 = a - 2\sqrt{ab} + b \ge 0$$

l'égalité étant réalisée si, et seulement si, a = b.

En en déduit la suivante.

Exercice 2.2 Montrer que pour tous réels strictement positifs a, b on a :

$$\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab}.$$

Dans quel cas l'égalité est-elle réalisée?

Solution 2.2 Cette inégalité s'écrit :

$$\sqrt{\frac{1}{a}\frac{1}{b}} \le \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$$

et l'égalité étant réalisée si, et seulement si, a = b.

Exercice 2.3 Montrer que:

1. pour tous réels positifs a et b on a $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$;

2. pour tous réels a et b on a $\sqrt{|a-b|} \ge \left| \sqrt{|a|} - \sqrt{|b|} \right|$. On étudiera les cas d'égalité.

Solution 2.3

1. On a:

$$\sqrt{a+b}^2 = a+b \le a+2\sqrt{ab}+b \le \left(\sqrt{a}+\sqrt{b}\right)^2$$

ce qui équivaut à $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ puisque toutes les quantités mises en jeux sont positives.

L'égalité est réalisée si, et seulement si, $a+b=a+2\sqrt{ab}+b$, ce qui équivaut à a=0 ou b=0.

2. En utilisant la question précédente, on a :

$$\left\{ \begin{array}{l} \sqrt{|a|} = \sqrt{|a-b+b|} \leq \sqrt{|a-b|} + \sqrt{|b|} \\ \sqrt{|b|} = \sqrt{|b-a+a|} \leq \sqrt{|a-b|} + \sqrt{|a|} \end{array} \right.$$

donc:

$$-\sqrt{|a-b|} \le \sqrt{|a|} - \sqrt{|b|} \le \sqrt{|a-b|}$$

ce qui équivaut à :

$$\sqrt{|a-b|} \ge \left| \sqrt{|a|} - \sqrt{|b|} \right|.$$

Exercice 2.4

1. Montrer que pour tous réels x, y on a :

$$(x+y)^2 \ge 4xy.$$

- 2. Montrer que pour tous réels strictement positifs a, b, c, on $a(b+c)(c+a)(a+b) \ge 8abc$.
- 3. En déduire que $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$.

Solution 2.4

1. Pour tous réels x, y on a :

$$(x+y)^2 - 4xy = (x-y)^2 \ge 0.$$

2. Donc, pour a, b, c positifs:

$$(b+c)^2 (c+a)^2 (a+b)^2 \ge 4bc4ca4ab = 8^2a^2b^2c^2$$

 $et (b+c) (c+a) (a+b) \ge 8abc.$

3. En notant S = a + b + c, on a:

$$(b+c) (c+a) (a+b) = (S-a) (S-b) (S-c)$$

= $S^3 - (a+b+c) S^2 + (ab+bc+ac) S - abc$
= $(ab+bc+ac) S - abc \ge 8abc$

soit:

$$(ab + bc + ac) S \ge 9abc$$

et divisant par abc > 0, on obtient :

$$\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)(a+b+c) \ge 9.$$

On peut aussi utiliser les inégalités entre moyennes harmonique, géométrique et arithmétique (paragraphe 2.4) :

$$\frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \le \sqrt[3]{abc} \le \frac{a+b+c}{3}$$

qui donne directement :

$$\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)(a+b+c) \ge 9.$$

Exercice 2.5 On se propose de généraliser les résultats l'exercice précédent. On se donne un entier $n \geq 2$ et des réels strictement positifs a_1, \dots, a_n .

- 1. Déterminer le nombre de couples (i, j) d'entiers tels que $1 \le i < j \le n$.
- 2. Montrer que, pour tout entier $n \geq 2$, on a :

$$\prod_{1 \le i < j \le n} a_i a_j = \left(\prod_{k=1}^n a_k\right)^{n-1}.$$

3. Montrer que :

$$\prod_{1 \le i < j \le n} (a_i + a_j) \ge \left(2^n \prod_{k=1}^n a_k\right)^{\frac{n-1}{2}}.$$

Solution 2.5

1. L'ensemble de ces couples est :

$$E = \{(1,2), (1,3), \cdots, (1,n), (2,3), \cdots, (2,n), \cdots, (n-1,n)\}$$

et le nombre d'éléments de E est :

$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2}$$

(pour i fixé entre 1 et n-1 il y a n-i possibilités pour j).

2. On procède par récurrence sur $n \ge 2$. Pour n = 2, on a :

$$\prod_{1 \le i < j \le n} a_i a_j = a_1 a_2$$

et supposant le résultat acquis au rang $n \geq 2$, on a :

$$\prod_{1 \le i < j \le n+1} a_i a_j = \prod_{1 \le i < j \le n} a_i a_j \prod_{i=1}^n a_i a_{n+1}$$

$$= \left(\prod_{k=1}^n a_k\right)^{n-1} a_1 \cdots a_n a_{n+1}^n = \left(\prod_{k=1}^{n+1} a_k\right)^n$$

3. Pour $1 \le i < j \le n$, on a:

$$(a_i + a_j)^2 \ge 4a_i a_j.$$

et:

$$\prod_{1 \le i < j \le n} (a_i + a_j)^2 \ge 4^{\frac{n(n-1)}{2}} \prod_{1 \le i < j \le n} a_i a_j = \left(2^n \prod_{k=1}^n a_k\right)^{n-1}$$

ce qui donne :

$$\prod_{1 \le i < j \le n} (a_i + a_j) \ge \left(2^n \prod_{k=1}^n a_k\right)^{\frac{n-1}{2}}.$$

Pour n=2, on a l'inégalité $a_1+a_2 \geq \sqrt{a_1a_2}$ et pour n=3, on retrouve l'exercice précédent.

4. En utilisant les inégalités entre moyennes harmonique, géométrique et arithmétique (paragraphe 2.4), on peut généraliser la deuxième inégalité de l'exercice précédent. De :

$$\frac{n}{\sum_{k=1}^{n} \frac{1}{a_k}} \le \sqrt[n]{\prod_{k=1}^{n} a_k} \le \frac{1}{n} \sum_{k=1}^{n} a_k$$

on déduit que :

$$\sum_{k=1}^{n} \frac{1}{a_k} \sum_{k=1}^{n} a_k \ge n^2.$$

On peut aussi utiliser l'inégalité de Cauchy-Schwarz (paragraphe 2.2) pour écrire que :

$$n^{2} = \left(\sum_{k=1}^{n} \frac{1}{\sqrt{a_{k}}} \sqrt{a_{k}}\right)^{2} \le \sum_{k=1}^{n} \frac{1}{a_{k}} \sum_{k=1}^{n} a_{k}.$$

Exercice 2.6 Montrer que pour tous réels a,b,c, on a $b^2c^2+c^2a^2+a^2b^2\geq abc$ (a+b+c).

Solution 2.6 On a:

$$0 \le a^{2} (b-c)^{2} + b^{2} (a-c)^{2} + c^{2} (a-b)^{2}$$
$$= 2 (b^{2} c^{2} + c^{2} a^{2} + a^{2} b^{2}) - 2abc (a+b+c)$$

Exercice 2.7 Montrer que pour tous réels strictement positifs a, b, c, on a :

$$\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a} \le \frac{a+b+c}{2}.$$

Quand y-a-t'il égalité?

Solution 2.7 Pour x, y réels strictement positifs, on a :

$$\frac{xy}{x+y} \le \frac{x+y}{4}$$

qui est équivalent à $(x+y)^2 - 4xy = (x-y)^2 \ge 0$. Il en résulte que :

$$\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a} \le \frac{a+b}{4} + \frac{b+c}{4} + \frac{a+c}{4} = \frac{a+b+c}{2}$$

Exercice 2.8 Soit x_1, x_2, \dots, x_n des réels dans [0, 1]. Montrer que :

$$\prod_{k=1}^{n} (1 - x_k) \ge 1 - \sum_{k=1}^{n} x_k.$$

Solution 2.8 Notons:

$$u_n = \prod_{k=1}^n (1 - x_k)$$
 et $v_n = 1 - \sum_{k=1}^n x_k$.

Pour n = 1, on a $u_1 = v_1$.

Supposant le résultat acquis au rang $n \ge 1$ et tenant compte de $1 - x_{n+1} \ge 0$, on a :

$$u_{n+1} = u_n (1 - x_{n+1}) \ge \left(1 - \sum_{k=1}^n x_k\right) (1 - x_{n+1})$$

$$\ge 1 - \sum_{k=1}^n x_k - x_{n+1} + x_{n+1} \sum_{k=1}^n x_k \ge 1 - \sum_{k=1}^{n+1} x_k = v_{n+1}.$$

puisque tous les x_k sont positifs.

Exercice 2.9 Montrer que si $a_1 \ge a_2 \ge \cdots \ge a_n > 0$ et $b_1 \ge b_2 \ge \cdots \ge b_n > 0$, alors :

$$\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} b_k\right) \le n \sum_{k=1}^{n} a_k b_k.$$

Solution 2.9 On procède par récurrence sur $n \geq 1$.

Pour n = 1, on a l'égalité $a_1b_1 = a_1b_1$.

Supposons le résultat acquis au rang $n \ge 1$. On se donne deux suites croissantes $(a_k)_{1 \le k \le n+1}$ et $(b_k)_{1 < k < n+1}$ de réels positifs. On a :

$$\left(\sum_{k=1}^{n+1} a_k\right) \left(\sum_{k=1}^{n+1} b_k\right) = \left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} b_k\right)$$

$$+ a_{n+1} \sum_{k=1}^{n+1} b_k + b_{n+1} \sum_{k=1}^{n} a_k + a_{n+1} b_{n+1}$$

$$\leq n \sum_{k=1}^{n} a_k b_k + a_{n+1} \sum_{k=1}^{n+1} b_k + b_{n+1} \sum_{k=1}^{n} a_k + a_{n+1} b_{n+1}$$

et l'inégalité :

$$\left(\sum_{k=1}^{n+1} a_k\right) \left(\sum_{k=1}^{n+1} b_k\right) \le (n+1) \sum_{k=1}^{n+1} a_k b_k$$

sera réalisée si :

$$a_{n+1} \sum_{k=1}^{n} b_k + b_{n+1} \sum_{k=1}^{n} a_k + a_{n+1} b_{n+1} \le \sum_{k=1}^{n} a_k b_k + (n+1) a_{n+1} b_{n+1}$$

soit si:

$$a_{n+1} \sum_{k=1}^{n} b_k + b_{n+1} \sum_{k=1}^{n} a_k \le \sum_{k=1}^{n} a_k b_k + n a_{n+1} b_{n+1}$$

$$ou$$
:

$$\sum_{k=1}^{n} a_{n+1}b_k + \sum_{k=1}^{n} b_{n+1}a_k \le \sum_{k=1}^{n} a_k b_k + \sum_{k=1}^{n} a_{n+1}b_{n+1}$$

ou:

$$\sum_{k=1}^{n} (a_{n+1} - a_k) b_k \le \sum_{k=1}^{n} b_{n+1} (a_{n+1} - a_k)$$

ou:

$$\sum_{k=1}^{n} (b_{n+1} - b_k) (a_{n+1} - a_k) \ge 0$$

qui est bien vérifiée.

2.2 L'inégalité de Cauchy-Schwarz

Pour tout entier $n \ge 1$, on note x_1, x_2, \dots, x_n les coordonnées d'un vecteur x de \mathbb{R}^n . Un tel vecteur sera noté $x = (x_i)_{1 \le i \le n}$.

L'inégalité de Cauchy-Schwarz se démontre classiquement comme suit.

Exercice 2.10 On se donne un entier $n \geq 2$, des réels strictement positifs $\omega_1, \omega_2, \cdots, \omega_n$ et on désigne par φ la fonction définie sur $\mathbb{R}^n \times \mathbb{R}^n$ par :

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \ \varphi(x,y) = \sum_{k=1}^n \omega_k x_k y_k$$

On associe à cette fonction φ la fonction q définie sur \mathbb{R}^n par :

$$\forall x \in \mathbb{R}^n, \ q(x) = \varphi(x, x) = \sum_{k=1}^n \omega_k x_k^2$$

- 1. Exprimer, pour tout réel t et tous vecteurs x, y dans \mathbb{R}^n la quantité q(x + ty) en fonction de t, $\varphi(x, y)$, q(x) et q(y).
- 2. Rappeler à quelle condition portant sur les réels a, b, c, le réel a étant non nul, un polynôme de degré 2, $P(t) = at^2 + 2bt + c$, est à valeurs positives ou nulles.
- 3. En remarquant que pour x, y fixés dans $\mathbb{R}^n \setminus \{0\}$, la fonction :

$$P: t \mapsto q(x+ty)$$

est polynomiale de degré 2, montrer l'inégalité de Cauchy-Schwarz :

$$\left| \sum_{k=1}^{n} \omega_k x_k y_k \right|^2 \le \left(\sum_{k=1}^{n} \omega_k x_k^2 \right) \left(\sum_{k=1}^{n} \omega_k y_k^2 \right)$$

Préciser dans quel cas l'égalité est réalisée.

4. En déduire l'inégalité de Minkowski :

$$\left(\sum_{k=1}^{n} \omega_k (x_k + y_k)^2\right)^{\frac{1}{2}} \le \left(\sum_{k=1}^{n} \omega_k x_k^2\right)^{\frac{1}{2}} + \left(\sum_{k=1}^{n} \omega_k y_k^2\right)^{\frac{1}{2}}$$

Préciser dans quel cas l'égalité est réalisée.

Solution 2.10 Laissée au lecteur.

On peut aussi démontrer simplement cette inégalité, dans le cas où tous les ω_k valent 1, comme suit.

Exercice 2.11

1. Montrer que pour tous réels x, y, on a :

$$xy \le \frac{1}{2} \left(x^2 + y^2 \right).$$

- 2. On se donne un entier $n \ge 1$, des réels x_1, \dots, x_n non tous nuls et des réels y_1, \dots, y_n non tous nuls. On note $A = \sqrt{\sum_{k=1}^n x_k^2}$ et $B = \sqrt{\sum_{k=1}^n y_k^2}$.
 - (a) Montrer que pour tout entier k compris entre 1 et n, on a:

$$x_k y_k \le \frac{1}{2} \left(\frac{B}{A} x_k^2 + \frac{A}{B} y_k^2 \right).$$

(b) En déduire l'inégalité de Cauchy-Schwarz :

$$\sum_{k=1}^{n} x_k y_k \le \sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} y_k^2}.$$

Solution 2.11

- 1. Résulte de $(x-y)^2 = x^2 + y^2 2xy \ge 0$ pour tous réels x, y.
- 2. Comme les x_k [resp. les y_k] ne sont pas tous nuls, on a A > 0 et B > 0.
 - (a) Prenant $(x,y) = \left(\frac{x_k}{A}, \frac{y_k}{B}\right)$ dans l'inégalité précédente, on a :

$$\frac{x_k}{A}\frac{y_k}{B} \le \frac{1}{2} \left(\frac{x_k^2}{A^2} + \frac{y_k^2}{B^2} \right)$$

et multipliant cette inégalité par AB > 0, on en déduit que $x_k y_k \le \frac{1}{2} \left(\frac{B}{A} x_k^2 + \frac{A}{B} y_k^2 \right)$.

(b) En additionnant ces inégalités, on obtient :

$$\sum_{k=1}^{n} x_k y_k \le \frac{1}{2} \left(\frac{B}{A} \sum_{k=1}^{n} x_k^2 + \frac{A}{B} \sum_{k=1}^{n} y_k^2 \right)$$

avec $\sum_{k=1}^{n} x_{k}^{2} = A^{2}$ et $\sum_{k=1}^{n} y_{k}^{2} = B^{2}$, ce qui donne :

$$\sum_{k=1}^{n} x_k y_k \le \frac{1}{2} \left(\frac{B}{A} A^2 + \frac{A}{B} B^2 \right) = AB = \sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} y_k^2}.$$

Exercice 2.12 On se donne un entier $n \ge 1$ et des réels x_1, \dots, x_n tous non nuls. Montrer que :

$$\left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} \frac{1}{x_k^2}\right) \ge n^2.$$

En déduire que :

$$\sum_{k=1}^{n} \frac{1}{k^2} \ge \frac{6n}{(n+1)(2n+1)}.$$

Solution 2.12

1. L'inégalité de Cauchy-Schwarz nous donne :

$$n = \sum_{k=1}^{n} x_k \frac{1}{x_k} \le \sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} \frac{1}{x_k^2}}$$

encore équivalent à l'inégalité proposée.

2. Prenant $x_k = k$ pour tout k compris entre 1 et n, on en déduit que :

$$\left(\sum_{k=1}^{n} k^2\right) \left(\sum_{k=1}^{n} \frac{1}{k^2}\right) \ge n^2$$

et avec $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, on en déduit que :

$$\sum_{k=1}^{n} \frac{1}{k^2} \ge \frac{6n}{(n+1)(2n+1)}.$$

Exercice 2.13 Montrer que pour tout entier $n \geq 1$, on a :

$$\sum_{k=1}^{n} k\sqrt{k} \le \frac{n(n+1)}{2\sqrt{3}}\sqrt{2n+1}$$

Solution 2.13 L'inégalité de Cauchy-Schwarz nous donne :

$$\sum_{k=1}^{n} k\sqrt{k} \le \sqrt{\sum_{k=1}^{n} k^2} \sqrt{\sum_{k=1}^{n} k}$$

avec $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ et $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, ce qui donne :

$$\sum_{k=1}^{n} k\sqrt{k} \le \sqrt{\frac{n^2 (n+1)^2 (2n+1)}{12}} = \frac{n (n+1)}{2\sqrt{3}} \sqrt{2n+1}.$$

2.3 Inégalité de Bernoulli

Exercice 2.14 Montrer que pour tout réel a > -1 et tout entier naturel n, on $a (1+a)^n \ge 1 + na$ (inégalité de Bernoulli). Préciser dans quel cas l'égalité est réalisée.

Solution 2.14 Pour n = 0 ou n = 1, on $a (1 + a)^n = 1 + na$ pour tout réel a.

On suppose donc que $n \geq 2$.

On désigne par P_n la fonction polynomiale définie par :

$$P_n(x) = x^n - 1 - n(x - 1) = x^n - nx + n - 1.$$

On a $P_n(1) = 0$ et, en posant x = a + 1, il s'agit de montrer que $P_n(x) > 0$ pour tout $x \in D = \mathbb{R}^{+,*} \setminus \{1\}$.

Avec $P_2(x) = (x-1)^2 > 0$ et:

$$P_{n+1}(x) = P_n(x) + (x-1)(x^n - 1) = P_n(x) + (x-1)^2 \sum_{k=0}^{n-1} x^k > P_n(x)$$

pour tout $n \ge 2$ et tout $x \in D$, le résultat se déduit par récurrence sur $n \ge 2$.

Une autre démonstration consiste à remarquer que pour tout $x \in]0,1[$ [resp. $x \in]1,+\infty[]$, on a $P'_n(x) = n(x^{n-1}-1) < 0$ [resp. $P'_n(x) > 0$]. La fonction P_n est strictement décroissante sur]0,1[et strictement croissante sur $]1,+\infty[$ avec $P_n(1) = 0$, ce qui implique $P_n(x) > 0$ pour tout $x \in D$.

On peut aussi écrire que pour tout $x \in D$ on a :

$$P_n(x) = x^n - 1 - n(x - 1) = (x - 1) \sum_{k=0}^{n-1} (x^k - 1)$$
$$= (x - 1)^2 \left(\sum_{k=1}^{n-1} \sum_{j=0}^{k-1} x^j \right) > 0.$$

Pour $n \ge 1$ et $a \ge 0$, cette inégalité peut se montrer très facilement en utilisant la formule du binôme de Newton comme suit :

$$(1+a)^n = \sum_{k=0}^n C_n^k a^k \ge C_n^0 a^0 + C_n^1 a = 1 + na.$$

L'inégalité de Bernoulli peut être généralisée comme suit.

Exercice 2.15 Pour tout entier $n \geq 2$, on désigne par D_n la partie de \mathbb{R}^n définie par :

$$D_n = (]-1,0[)^n \cup (]0,+\infty[)^n.$$

Montrer que :

$$\forall a = (a_1, \dots, a_n) \in D_n, \ \prod_{k=1}^n (1 + a_k) > 1 + \sum_{k=1}^n a_k.$$

Solution 2.15 En posant $x_k = 1 + a_k$ pour tout entier k compris entre 1 et n et :

$$\Delta_n = (]0,1[)^n \cup (]1,+\infty[)^n$$

il s'agit de montrer que :

$$\forall x = (x_1, \dots, x_n) \in \Delta_n, \ P_n(x) = \prod_{k=1}^n x_k - \sum_{k=1}^n x_k + n - 1 > 0.$$

Avec:

$$P_2(x) = x_1x_2 - (x_1 + x_2) + 1 = (x_1 - 1)(x_2 - 1) > 0$$

pour tout $x \in D_2$ (si $x \in (]0,1[)^2$ alors $x_1 - 1$ et $x_2 - 1$ sont strictement négatifs et si $x \in (]1,+\infty[)^2$ alors $x_1 - 1$ et $x_2 - 1$ sont strictement positifs) et :

$$P_{n+1}(x, x_{n+1}) = (x_{n+1} - 1) \left(\prod_{k=1}^{n} x_k - 1 \right) + P_n(x) > P_n(x)$$

pour tout $(x, x_{n+1}) \in D_{n+1}$ le résultat se déduit par récurrence sur $n \ge 2$.

2.4 L'inégalité de Cauchy

Pour tout entier $n \ge 1$ et tout $x = (x_1, \dots, x_n) \in (\mathbb{R}^{+,*})^n$, on note respectivement :

$$A_n(x) = \frac{1}{n} \sum_{k=1}^{n} x_k, \ G_n(x) = \sqrt[n]{\prod_{k=1}^{n} x_k} = \left(\prod_{k=1}^{n} x_k\right)^{\frac{1}{n}}, \ H_n(x) = \frac{n}{\sum_{k=1}^{n} \frac{1}{x_k}}$$

les moyennes arithmétique, géométriques et harmoniques des réels x_1, \ldots, x_n .

Pour n = 1, on a $A_1(x) = G_1(x) = H_1(x) = x_1$ pour tout réel non nul x_1 .

On suppose donc dans ce qui suit que $n \geq 2$.

Remarque 2.1 On a:

$$H_n\left(x\right) = \frac{1}{A_n\left(y\right)}$$

$$où y = \left(\frac{1}{x_k}\right)_{1 \le k \le n}.$$

Le théorème qui suit va nous permettre de comparer ces trois moyennes.

Théorème 2.1 (Cauchy) Pour tout entier $n \ge 2$, et tout n-uplet de réels strictement positifs (x_1, \dots, x_n) , on a:

$$\sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k$$

avec égalité si, et seulement si, $x_1 = \cdots = x_n$.

Démonstration. En utilisant la stricte concavité de la fonction ln sur $\mathbb{R}^{+,*}$, on a :

$$\ln (G_n(x)) = \sum_{k=1}^n \frac{1}{n} \ln (x_k) \le \ln \left(\sum_{k=1}^n \frac{1}{n} x_k \right) = \ln (A_n(x)),$$

l'égalité étant réalisée si, et seulement si tous les x_i sont égaux. En utilisant la croissance stricte de la fonction exp, on déduit que $G_n(x) \leq A_n(x)$, l'égalité étant réalisée si, et seulement si tous les x_i sont égaux.

Pour n=2 on retrouve l'inégalité $\sqrt{x_1x_2} \leq \frac{x_1+x_2}{2}$ conséquence de la positivité de $\left(\sqrt{x_1}-\sqrt{x_2}\right)^2$.

Corollaire 2.1 Pour tout entier $n \geq 2$, et tout n-uplet de réels strictement positifs (x_1, \dots, x_n) , on a:

$$H_n(x) \le G_n(x) \le A_n(x)$$

l'une des égalités $H_n(x) = G_n(x)$ ou $G_n(x) = A_n(x)$ étant réalisée si, et seulement si, tous les x_i sont égaux.

Démonstration. En utilisant la remarque 2.1, on a :

$$H_n\left(x\right) = \frac{1}{A_n\left(y\right)} \le \frac{1}{G_n\left(y\right)} = G_n\left(x\right) \le A_n\left(x\right).$$

L'égalité $H_n(x) = G_n(x)$ équivaut à $A_n(y) = G_n(y)$ soit à l'égalité de tous les x_i .

Exercice 2.16 Déduire l'inégalité de Bernoulli de celle de Cauchy.

Solution 2.16 Pour a > -1 et $a \neq 0$, on a:

$$1 + a = A_n(1, 1, \dots, 1 + na) > G_n(1, 1, \dots, 1 + na) = (1 + na)^{\frac{1}{n}}$$

ou encore $(1+a)^n > 1 + na$.

L'inégalité de Cauchy peut aussi se montrer sans référence à la stricte concavité de la fonction ln comme suit : tout d'abord on montre l'inégalité $G_n(x) \leq A_n(x)$ pour les entiers de la forme $n = 2^p$ en procédant par récurrence sur $p \geq 1$, puis on en déduit le cas général. Cette démonstration, due à Cauchy, est détaillée avec l'exercice qui suit.

Exercice 2.17

- 1. Montrer que, pour tout $x = (x_1, x_2) \in (\mathbb{R}^{+,*})^2$, on a $G_2(x) \leq A_2(x)$, l'égalité étant réalisée si, et seulement si, $x_1 = x_2$.
- 2. Soit $n=2^p$ avec $p \geq 2$ et $x=(x_1,\ldots,x_n)$ donné dans $(\mathbb{R}^{+,*})^n$. On définit $y=(y_1,\ldots,y_{\frac{n}{2}})$ et $z=(z_1,\ldots,z_{\frac{n}{2}})$ dans $(\mathbb{R}^{+,*})^{\frac{n}{2}}$ par :

$$\begin{cases} y_k = \frac{x_{2k-1} + x_{2k}}{2} = A_2(x_{2k-1}, x_{2k}) \\ z_k = \sqrt{x_{2k-1}x_{2k}} = G_2(x_{2k-1}, x_{2k}), \end{cases} \quad \left(1 \le k \le \frac{n}{2} = 2^{p-1}\right)$$

soit:

$$\begin{cases} y = \left(\frac{x_1 + x_2}{2}, \frac{x_3 + x_4}{2}, \dots, \frac{x_{n-1} + x_n}{2}\right) \\ z = \left(\sqrt{x_1 x_2}, \sqrt{x_3 x_4}, \dots, \sqrt{x_{2n-1} x_{2n}}\right) \end{cases}.$$

Montrer que $A_n(x) = A_{\frac{n}{2}}(y)$ et $G_n(x) = G_{\frac{n}{2}}(z)$.

- 3. On suppose que $n=2^p$ avec $p\geq 2$ et que l'inégalité de Cauchy est vérifiée avec son cas d'égalité pour $\frac{n}{2}=2^{p-1}$.
 - (a) En utilisant la question précédente, montrer que $G_n(x) \leq A_n(x)$.
 - (b) Étudier le cas d'égalité dans l'inégalité précédente.
- 4. Si n est un entier supérieur ou égal à 2, on désigne par p un entier naturel non nul tel que $n < 2^p$ et on définit le vecteur $y = (y_k)_{1 \le k \le 2^p}$ dans $(\mathbb{R}^{+,*})^{2^p}$ par :

$$y_k = \begin{cases} x_k & \text{si } 1 \le k \le n, \\ A_n(x) & \text{si } n+1 \le k \le 2^p. \end{cases}$$

- (a) Exprimer $G_{2^{p}}(y)$ et $A_{2^{p}}(y)$ en fonction de $G_{n}(x)$ et $A_{n}(x)$.
- (b) Déduire de ce qui précède le théorème de Cauchy dans le cas général.

Solution 2.17

1. Pour n = 2, on a:

$$G_2^2(x) = x_1 x_2 = \left(\frac{x_1 + x_2}{2}\right)^2 - \left(\frac{x_1 - x_2}{2}\right)^2 \le \left(\frac{x_1 + x_2}{2}\right)^2 = A_2^2(x)$$

l'égalité étant réalisée si, et seulement si, $\left(\frac{x_1-x_2}{2}\right)^2=0$, ce qui équivaut à $x_1=x_2$.

2. Pour $n = 2^p$ avec $p \ge 2$, on a:

$$A_n(x) = \frac{1}{2^{p-1}} \left(\frac{x_1 + x_2}{2} + \frac{x_3 + x_4}{2} + \dots + \frac{x_{n-1} + x_n}{2} \right)$$
$$= \frac{1}{2^{p-1}} \sum_{k=1}^{2^{p-1}} A_2(x_{2k-1}, x_{2k}) = A_{\frac{n}{2}}(y).$$

et:

$$G_n^n(x) = \prod_{k=1}^{2^{p-1}} x_{2k-1} x_{2k} = \prod_{k=1}^{2^{p-1}} G_2^2(x_{2k-1}, x_{2k}),$$

soit:

$$G_n\left(x\right) = \left(\prod_{k=1}^{2^{p-1}} G_2^2\left(x_{2k-1}, x_{2k}\right)\right)^{\frac{1}{2^p}} = \left(\prod_{k=1}^{2^{p-1}} G_2\left(x_{2k-1}, x_{2k}\right)\right)^{\frac{1}{2^{p-1}}} = G_{\frac{n}{2}}\left(z\right)$$

3.

(a) En utilisant l'hypothèse de récurrence, on a :

$$G_n\left(x\right) = G_{\frac{n}{2}}\left(z\right) \le A_{\frac{n}{2}}\left(z\right)$$

avec:

$$A_{\frac{n}{2}}(z) = \frac{1}{2^{p-1}} \sum_{k=1}^{2^{p-1}} G_2(x_{2k-1}, x_{2k}) \le \frac{1}{2^{p-1}} \sum_{k=1}^{2^{p-1}} A_2(x_{2k-1}, x_{2k}) = A_{\frac{n}{2}}(y)$$

(le cas n = 2) et $A_{\frac{n}{2}}(y) = A_n(x)$, ce qui donne $G_n(x) \leq A_n(x)$.

(b) Avec :

$$G_n(x) = G_{\frac{n}{2}}(z) \le A_{\frac{n}{2}}(z) \le A_{\frac{n}{2}}(y) = A_n(x),$$

on déduit que si l'égalité $G_n(x) = A_n(x)$ est réalisée, on a alors d'une part $A_{\frac{n}{2}}(z) = A_{\frac{n}{2}}(y)$, soit :

$$\sum_{k=1}^{2^{p-1}} \left(A_2 \left(x_{2k-1}, x_{2k} \right) - G_2 \left(x_{2k-1}, x_{2k} \right) \right) = 0$$

avec $A_2(x_{2k-1},x_{2k}) - G_2(x_{2k-1},x_{2k}) \ge 0$ pour tout k compris entre 0 et n, ce qui équivaut à $A_2(x_{2k-1},x_{2k}) = G_2(x_{2k-1},x_{2k})$ et en conséquence $x_{2k-1} = x_{2k}$ (le cas d'égalité pour n=2) pour tout k compris entre 0 et n et d'autre part $G_{\frac{n}{2}}(z) = A_{\frac{n}{2}}(z)$ qui équivaut à l'égalité de tous les $z_k = \sqrt{x_{2k-1}x_{2k}}$ (l'hypothèse de récurrence) avec $z_k = x_{2k-1} = x_{2k}$. Les x_k sont donc tous égaux si $G_n(x) = A_n(x)$. La réciproque est évidente.

4.

(a) On a:

$$G_{2^{p}}^{2^{p}}(y) = \prod_{k=1}^{2^{p}} y_{k} = \prod_{k=1}^{n} x_{k} \prod_{k=n+1}^{2^{p}} A_{n}(x) = (G_{n}(x))^{n} (A_{n}(x))^{2^{p}-n},$$

soit:

$$G_{2^{p}}(y) = (G_{n}(x))^{\frac{n}{2^{p}}} (A_{n}(x))^{\frac{2^{p}-n}{2^{p}}}$$

et:

$$2^{p} A_{2^{p}}(y) = \sum_{k=1}^{2^{p}} y_{k} = \sum_{k=1}^{n} x_{k} + \sum_{k=n+1}^{2^{p}} A_{n}(x)$$
$$= n A_{n}(x) + (2^{p} - n) A_{n}(x) = 2^{p} A_{n}(x),$$

 $soit A_{2^{p}}(y) = A_{n}(x).$

(b) En utilisant l'inégalité $G_{2^p}(y) \leq A_{2^p}(y)$ et les calculs précédents, on obtient :

$$(G_n(x))^{\frac{n}{2p}} (A_n(x))^{1-\frac{n}{2p}} = G_{2p}(y) \le A_{2p}(y) = A_n(x),$$

qui entraîne $G_n(x) \leq A_n(x)$.

L'égalité étant réalisée si, et seulement si, tous les y_k , et donc tous les x_k , sont égaux.

Les exercices qui suivent nous donnent quelques exemples d'utilisation des inégalités entre moyennes harmoniques, géométriques et arithmétiques.

Exercice 2.18 Soit x un réel non nul. Montrer, sans utiliser la fonction \ln et en utilisant l'inégalité de Cauchy, que la suite $u = (u_n)_{n>1}$ définie par :

$$\forall n \geq 1, \ u_n = \left(1 + \frac{x}{n}\right)^n$$

est strictement croissante à partir d'un certain rang.

Solution 2.18 Pour x = 0, la suite u est stationnaire sur 1.

Pour $x \in \mathbb{R}^*$, il existe un entier naturel non nul n_x tel que $n_x + x > 0$ (pour x > 0, $n_x = 1$ et pour x < 0 prendre $n_x > -x = |x|$). En notant $n_x = E(|x|) + 1$, où E désigne la fonction partie entière, on a $1 + \frac{x}{n} > 0$ pour tout $n \ge n_x$ et :

$$G_{n+1} = u_n^{\frac{1}{n+1}} = \left(\left(1 + \frac{x}{n} \right)^n \right)^{\frac{1}{n+1}} = \left(1 \cdot \left(1 + \frac{x}{n} \right) \cdots \left(1 + \frac{x}{n} \right) \right)^{\frac{1}{n+1}}$$
$$= G_{n+1} \left(1, 1 + \frac{x}{n}, \dots, 1 + \frac{x}{n} \right)$$

avec :

$$G_{n+1} < A_{n+1} = A_{n+1} \left(1, 1 + \frac{x}{n}, \dots, 1 + \frac{x}{n} \right)$$

(comme $x \neq 0$, on a $1 + \frac{x}{n} \neq 1$ et l'inégalité de Cauchy est stricte), et :

$$A_{n+1} = \frac{1}{n+1} \left(1 + \left(1 + \frac{x}{n} \right) + \dots + \left(1 + \frac{x}{n} \right) \right)$$
$$= 1 + \frac{1}{n+1} n \frac{x}{n} = 1 + \frac{x}{n+1} = u_{n+1}^{\frac{1}{n+1}}.$$

On a donc $u_n^{\frac{1}{n+1}} < u_{n+1}^{\frac{1}{n+1}}$ pour tout $n \ge n_x$, ce qui équivaut à $u_n < u_{n+1}$ pour tout $n \ge n_x$ puisque la fonction $t \mapsto t^{n+1}$ est strictement croissante. La suite $(u_n)_{n \ge n_x}$ est donc strictement croissante.

Exercice 2.19 Montrer que :

$$n\left(\sqrt[n]{n+1}-1\right) < \sum_{k=1}^{n} \frac{1}{k} < n\left(1-\frac{1}{\sqrt[n]{n+1}}+\frac{1}{n+1}\right).$$

Solution 2.19 L'inégalité $G_n(x) < A_n(x)$ pour $x = \left(\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \cdots, \frac{n+1}{n}\right)$ s'écrit :

$$\sqrt[n]{n+1} = \left(\prod_{k=1}^{n} \frac{k+1}{k}\right)^{\frac{1}{n}} < \frac{1}{n} \sum_{k=1}^{n} \frac{k+1}{k} = 1 + \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k}$$

qui donne $n(\sqrt[n]{n+1}-1) < H_n = \sum_{k=1}^{n} \frac{1}{k}$.

De même l'inégalité $G_n(x) < A_n(x)$ pour $x = \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}\right)$ s'écrit :

$$\frac{1}{\sqrt[n]{n+1}} = \left(\prod_{k=1}^{n} \frac{k}{k+1}\right)^{\frac{1}{n}} < \frac{1}{n} \sum_{k=1}^{n} \frac{k}{k+1} = 1 - \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k+1}$$
$$< 1 - \frac{1}{n} \left(H_n + \frac{1}{n+1} - 1\right) = 1 - \frac{1}{n} H_n + \frac{1}{n+1}$$

qui donne $H_n < n\left(1 - \frac{1}{\sqrt[n]{n+1}} + \frac{1}{n+1}\right)$.