$10_{161} \ (K10n_{31})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -29u^5 + 62u^4 - 233u^3 - 17u^2 + 73b - 178u - 27, -15u^5 + 22u^4 - 118u^3 - 39u^2 + 73a - 228u - 19, u^6 - 2u^5 + 8u^4 + u^3 + 7u^2 - u - 1 \rangle$$

$$I_2^u = \langle u^2 + b + u, u^3 + u^2 + a - u, u^4 + u^3 - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 10 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -29u^5 + 62u^4 + \dots + 73b - 27, \ -15u^5 + 22u^4 + \dots + 73a - 19, \ u^6 - 2u^5 + 8u^4 + u^3 + 7u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.205479u^{5} - 0.301370u^{4} + \dots + 3.12329u + 0.260274 \\ 0.397260u^{5} - 0.849315u^{4} + \dots + 2.43836u + 0.369863 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.260274u^{5} - 0.315068u^{4} + \dots + 2.35616u + 1.86301 \\ 0.260274u^{5} - 0.315068u^{4} + \dots + 2.35616u + 0.863014 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.205479u^{5} + 0.301370u^{4} + \dots - 3.12329u - 0.260274 \\ -0.452055u^{5} + 0.863014u^{4} + \dots - 2.67123u - 0.972603 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -0.260274u^{5} + 0.315068u^{4} + \dots - 2.35616u - 0.863014 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -0.260274u^{5} + 0.315068u^{4} + \dots - 2.35616u - 0.863014 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.205479u^{5} - 0.301370u^{4} + \dots + 2.12329u + 0.260274 \\ 0.260274u^{5} + 0.315068u^{4} + \dots - 2.35616u - 0.863014 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.657534u^{5} + 1.16438u^{4} + \dots + 2.12329u + 0.260274 \\ -0.452055u^{5} + 0.863014u^{4} + \dots - 2.67123u - 0.972603 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{145}{73}u^5 \frac{310}{73}u^4 + \frac{1165}{73}u^3 + \frac{85}{73}u^2 + \frac{744}{73}u \frac{887}{73}u^3 + \frac{85}{73}u^3 + \frac{744}{73}u^3 + \frac{887}{73}u^3 + \frac{887}{73}u$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^6 - 6u^5 + 16u^4 - 21u^3 + 11u^2 + 2u - 4$
c_2, c_5, c_8	$u^6 - 2u^5 + 8u^4 + u^3 + 7u^2 - u - 1$
c_3, c_7, c_9	$u^6 + u^5 + 9u^4 - 11u^3 - 4u^2 - 2u - 1$
c_4	$u^6 - 3u^5 - 3u^4 + 15u^3 - 10u^2 + 1$
c_{10}	$u^6 + 4u^5 + 26u^4 + 73u^3 + 77u^2 + 92u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^6 - 4y^5 + 26y^4 - 73y^3 + 77y^2 - 92y + 16$
c_2, c_5, c_8	$y^6 + 12y^5 + 82y^4 + 105y^3 + 35y^2 - 15y + 1$
c_3, c_7, c_9	$y^6 + 17y^5 + 95y^4 - 191y^3 - 46y^2 + 4y + 1$
c_4	$y^6 - 15y^5 + 79y^4 - 163y^3 + 94y^2 - 20y + 1$
c_{10}	$y^6 + 36y^5 + 246y^4 - 2029y^3 - 6671y^2 - 6000y + 256$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.244201 + 0.971888I		
a = -0.24405 + 1.39509I	2.08576 + 2.67800I	-9.11994 - 5.42135I
b = 0.878332 - 0.695514I		
u = -0.244201 - 0.971888I		
a = -0.24405 - 1.39509I	2.08576 - 2.67800I	-9.11994 + 5.42135I
b = 0.878332 + 0.695514I		
u = 0.403945		
a = 1.70981	-7.78420	-6.88360
b = 1.58486		
u = -0.304480		
a = -0.689933	-0.637429	-15.6380
b = -0.449415		
u = 1.19447 + 2.58259I		
a = 0.234107 - 0.606474I	13.6396 - 5.6388I	-8.61921 + 2.01004I
b = 1.55395 + 1.43504I		
u = 1.19447 - 2.58259I		
a = 0.234107 + 0.606474I	13.6396 + 5.6388I	-8.61921 - 2.01004I
b = 1.55395 - 1.43504I		

II.
$$I_2^u = \langle u^2 + b + u, u^3 + u^2 + a - u, u^4 + u^3 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} - u^{2} + u \\ -u^{2} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + u \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} + u^{2} - u \\ -u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u - 1 \\ -u^{3} - u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^3 7u^2 7u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 2u^2 + u + 1$
c_2, c_8	$u^4 + u^3 - 1$
c_3,c_9	$u^4 + u - 1$
c_4	$u^4 + 4u^3 + 4u^2 + u + 1$
<i>c</i> ₅	$u^4 - u^3 - 1$
<i>C</i> ₆	$u^4 - 2u^2 - u + 1$
<i>C</i> ₇	$u^4 - u - 1$
c_{10}	$u^4 - 4u^3 + 6u^2 - 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^4 - 4y^3 + 6y^2 - 5y + 1$
c_2, c_5, c_8	$y^4 - y^3 - 2y^2 + 1$
c_3, c_7, c_9	$y^4 - 2y^2 - y + 1$
c_4	$y^4 - 8y^3 + 10y^2 + 7y + 1$
c_{10}	$y^4 - 4y^3 - 2y^2 - 13y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.219447 + 0.914474I		
a = 0.02868 + 1.94846I	3.04135 + 1.96274I	-4.02709 - 2.32656I
b = 1.007550 - 0.513116I		
u = -0.219447 - 0.914474I		
a = 0.02868 - 1.94846I	3.04135 - 1.96274I	-4.02709 + 2.32656I
b = 1.007550 + 0.513116I		
u = 0.819173		
a = -0.401572	-8.36260	-21.5310
b = -1.49022		
u = -1.38028		
a = -0.655786	-4.29983	-8.41490
b = -0.524889		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^4 - 2u^2 + u + 1)(u^6 - 6u^5 + 16u^4 - 21u^3 + 11u^2 + 2u - 4) $
c_2, c_8	$(u^4 + u^3 - 1)(u^6 - 2u^5 + 8u^4 + u^3 + 7u^2 - u - 1)$
c_3,c_9	$(u^4 + u - 1)(u^6 + u^5 + 9u^4 - 11u^3 - 4u^2 - 2u - 1)$
c_4	$(u^4 + 4u^3 + 4u^2 + u + 1)(u^6 - 3u^5 - 3u^4 + 15u^3 - 10u^2 + 1)$
<i>C</i> ₅	$(u^4 - u^3 - 1)(u^6 - 2u^5 + 8u^4 + u^3 + 7u^2 - u - 1)$
c_6	$(u^4 - 2u^2 - u + 1)(u^6 - 6u^5 + 16u^4 - 21u^3 + 11u^2 + 2u - 4)$
	$(u^4 - u - 1)(u^6 + u^5 + 9u^4 - 11u^3 - 4u^2 - 2u - 1)$
c_{10}	$(u^4 - 4u^3 + 6u^2 - 5u + 1)(u^6 + 4u^5 + \dots + 92u + 16)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^4 - 4y^3 + 6y^2 - 5y + 1)(y^6 - 4y^5 + \dots - 92y + 16)$
c_2, c_5, c_8	$(y^4 - y^3 - 2y^2 + 1)(y^6 + 12y^5 + 82y^4 + 105y^3 + 35y^2 - 15y + 1)$
c_3, c_7, c_9	$(y^4 - 2y^2 - y + 1)(y^6 + 17y^5 + 95y^4 - 191y^3 - 46y^2 + 4y + 1)$
c_4	$(y^4 - 8y^3 + 10y^2 + 7y + 1)(y^6 - 15y^5 + \dots - 20y + 1)$
c_{10}	$(y^4 - 4y^3 - 2y^2 - 13y + 1)$ $\cdot (y^6 + 36y^5 + 246y^4 - 2029y^3 - 6671y^2 - 6000y + 256)$