UMD Data Challenge

David Tonne and Ariana Bryant DC21049

Introduction

- First year students with no experience in data science
- Decided to participate because it sounded like an interesting challenge
- Used MATLAB because it was the only data processor we have any experience with

Problem Statement

We set out to answer the questions:

- What are the most popular ingredient in each meal category?
- What are the common combinations appearing together?

In order to:

 Help food scientists improve health and longevity of packaged foods

Dataset

- Spreadsheet with messy ingredients formatting
- Mixed capitalization and a variety of list formatting
- No quantitative data on the ingredient makeup
- We made all ingredients lowercase
- Removed parentheses, brackets, semicolons, and varieties of "contains 2% or less of:"

Common Ingredients (Breakfast Sandwiches and Meals)

238 food items

• 10612 total ingredients

Salt	720
Water	410
Sugar	265
Enzymes	220
Citric acid	188

Common Ingredients (Entrees, Sides, and Small Meals)

- 1410 food items
- 27354 total ingredients

Salt	1746 6.4%
Water	1094 4.0%
Sugar	440 1.6%
Citric acid	430 1.6%
Maltodextrin	365 1.3%

Common Ingredients (Frozen Vegetarian Meals)

- 227 food items
- 10388 total ingredients

Water	487 4.7%
Salt	448 4.3%
Wheat gluten	212 2.0%
Spices	157 1.5%
Garlic Powder	149 1.4%

Conclusions

- High amounts of salt and sugar can be harmful
- Water is ubiquitous
- Common flavorings include citric acid and garlic
- Methodology is limited in ability to clean up data
- Lacking in specific quantities of ingredients

Common Ingredient Pairs (Dairy Based Products)

- 29 food items
- 11690 total ingredient pairs

Color, Sulfate	36 0.3%
Egg white, Sulfate	36 0.3%
Beta carotene, Sulfate	36 0.3%
Onion powder, Sulfate	36 0.3%
Salt, Sulfate	36 0.3%

Common Ingredient Pairs (Savoury Dough Meals Not Ready to Eat)

- 8 food items
- 14183 total ingredient pairs

Salt, Salt	73 0.5%
Salt, Enzymes	67 0.5%
Salt, Cheese cultures	51 0.4%
Salt, Folic acid	44 0.3%
Salt, Niacin	44 0.3%

Conclusions

- Used nested for loops, processing time increases with n!
- Limited to performing analysis on smallest categories
- Data seems to suggest that there are not any common combinations to target
- Small categories may also mean these results are not useful

Future Possibilities

- Standardized data collection would greatly expedite analysis
- Quantitative data on ingredients would allow for more in depth conclusions
- Possibly develop less cumbersome method for ingredient combinations, or use more computing power
- Get more information on food science to make more informed conclusions

Thank you for your time! Any questions?

Extraneous Slides

Ingredient

250 300

Ingredient

Unique Ingredient Code

```
function [] = uniqueIng(a, xscale, yscale)
🗏 % Determines most common individual ingredients in a single category of
 % food type
 raw = importfile('Packaged Meals Dataset, xlsx'); % Importing data
 % Extracting the categories of food types
 categories = unique(raw.branded food category);
 % Pulling out the relevant data to the specific category
 section = raw(raw.branded food category == categories(a), :);
 % Creating a cell of string arrays for each ingredients list
 ing = cell(size(section.ingredients));
for i = 1:size(section.ingredients)
     ing{i} = split(section.ingredients(i),',');
 end
 % Separating each cell into a long array of all ingredients
 ingtot = strings(1, 177277);
 k = 1:
for i = 1:size(ing)
     for j = 1:size(ing{i})
         ingtot(k) = ing\{i\}(j);
         k = k + 1;
     end
 end
 ingtot = ingtot(~(ingtot==''));
 % Checking list of all ingredients against unique ingredient array and
 % counting the number of occurences
 uniqueIngreds = unique(ingtot);
 count = zeros(size(uniqueIngreds));
for i = 1:size(uniqueIngreds, 2)
     count(i) = sum(strcmp(uniqueIngreds(i), ingtot));
 end
```

```
function [] = combos(a, xscale, yscale)
9% Determines the frequency of unique combinations of ingredients from
 % single food items in a category
 raw = importfile('Packaged Meals Dataset.xlsx'); % Importing data
 categories = unique(raw.branded food category); % Extracting the categories of food types
 % Pulling out the relevant data to the specific category
 section = raw(raw.branded food category == categories(a), :);
 % Creating a cell of string arrays for each ingredients list
 ing = cell(size(section.ingredients));
for i = 1:size(section.ingredients)
     ing{i} = split(section.ingredients(i),',');
 end
 % Creating array of all combination of ingredients in each food
 combo = strings(1, nchoosek(length(ing)*10, 2));
 k = 1;
for i = 1:length(ing)
     transient = ing{i};
     for j = 1:length(transient)
         for w = j+1:length(transient)
             combo(k) = transient(j) + transient(w);
             k = k+1;
         end
     end
 end
 combo = combo (\sim (combo == ''));
 % Checking the list of combinations against the array of unique
 % combinations and counting the number of occurences
 uniqueCombo = unique(combo);
 count = zeros(size(uniqueCombo));
for i = 1:size(uniqueCombo, 2)
     count(i) = sum(strcmp(uniqueCombo(i), combo));
```

end