Tests

Índice

1.	Test 1: Conju	ntos		1

2. Test 2: Relaciones y aplicaciones 3

1. Test 1: Conjuntos

- 1. Dado el conjunto $A = \{-1, 0, 1\}$, ¿cuál de los siguientes conjuntos coincide con A?
 - a) $\{x \in \mathbb{N} : x^3 x = 0\}$
 - $b) \ \{x \in \mathbb{Q} : x^2 \le 1\}$
 - c) $\{x \in \mathbb{R} : x^2 1 = 0\}$
 - $d) \ \{x \in \mathbb{Z} : x^2 \le 1\}$
- 2. Sabiendo que $A=\{a,\{a\},\{a,\{a\}\}\}\}$ y $B=\{\{a\}\},$ ¿cuál de las siguientes afirmaciones es falsa?
 - $a) B \subset A$
 - $b) \ a \in B$
 - $c) \{a\} \subset A$
 - $d) \ \{a, \{a\}\} \in A$
- 3. Dado el conjunto $A = \{a, \{a\}\}\$, ¿cuál de las siguientes afirmaciones es falsa?
 - $a) \{\{a\}\} \subset \mathcal{P}(A)$
 - $b) \ \{a\} \in \mathcal{P}(A)$
 - $c) \ \{\emptyset\} \subset \mathcal{P}(A)$
 - $d) \{a, \{a\}\} \in \mathcal{P}(A)$
- 4. Dado el conjunto referencial $E=\{1,2,3,4,5,6\}$ y los subconjuntos $A=\{x\in E:x \text{ es par}\}, B=\{x\in E:x \text{ es múltiplo de 3}\}$ y $C=\{x\in E:2\leq x\leq 6\},$ entonces
 - $a) \ A \cap B \cap C = \emptyset$

- b) $(A \cup B) \cap C = C$
- c) $\overline{A \cup B \cup C} = \{1\}$
- $d) A \cup (B \cap C) = C$
- 5. Dado el conjunto referencial E y los subconjuntos A, B y C. Al simplificar la expresión

$$[(A \cap B) \cap C] \cup [(A \cap B) \cap \overline{C}] \cup (\overline{A} \cap B)$$

se obtiene:

- a) A
- *b*) *B*
- c) C
- d) E
- 6. En el conjunto de los números naturales se consideran las siguientes relaciones

$$x R_1 y \iff x + y = 10$$

$$x R_2 y \iff x < y$$

$$x R_3 y \iff x, y \text{ son primos entre si}$$

¿Cuál de las siguientes afirmaciones es verdadera?

- a) R_1 y R_3 son transitivas
- b) R_1 es simétrica y R_3 es antisimétrica
- c) R_1 y R_3 son reflexivas
- d) R_2 es antisimétrica y R_3 es simétrica
- 7. En el conjunto de los números reales se consideran las siguientes relaciones

$$x R_1 y \iff x^2 = y^2$$

 $x R_2 y \iff x(x+1) = y(y+1)$

¿cuál de las siguientes afirmaciones es falsa?

- a) R_1 y R_2 son relaciones de equivalencia
- b) La clase de equivalencia de 0, según R_1 , es $[0]_1 = \{0\}$ y, según R_2 , es $[0]_2 = \{0\}$
- c) La clase de equivalencia de 1, según R_1 , es $[1]_1=\{1,-1\}$ y, según R_2 , es $[1]_2=\{1,-2\}$
- d) R_1 no es una relación de equivalencia y R_2 sí lo es
- 8. En el conjunto de los números naturales ordenado por la relación "ser divisor de"se consideran los conjuntos $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y $B = \{3, 4, 6, 12\}$. Entonces, ¿cuál de las siguientes afirmaciones es falsa?
 - a) 3 y 4 son elementos minimales de B

- b) Los elementos maximales de A son 6,8 y 9
- c) $\sup A = 2520$
- $d) \max B = 12$
- 9. En el conjunto de los números reales ordenado según la relación de orden usual
 ≤ se considera el conjunto

$$A = \left\{ x \in \mathbb{R} : x^2 + 6x + 5 < 0 \right\}$$

Entonces, ¿cuál de las siguientes afirmaciones es verdadera?

- a) $\sup A = -1$
- b) -3 es cota inferior de A
- c) $\max A = -1$
- d) mín A = -5
- 10. En el conjunto de los número enteros se considera la relación siguiente

$$x \equiv y \iff x - y \text{ es múltiplo de } 7$$

Si designamos por [x] la clase del elemento x según \equiv , entonces ¿cuál de las siguientes afirmaciones es verdadera?

- a) $231 \in [1]$
- b) [-2] = [4]
- $c) -5 \in [2]$
- d) Ninguna de las anteriores

2. Test 2: Relaciones y aplicaciones

- 1. ¿Cuál de las siguientes relaciones R entre A y B es una aplicación de A en B?
 - a) $A = \{1, 2, 3, 4, 5\}, B = \{1, 2\} \text{ y } R = \{(1, 1), (3, 2), (5, 1), (4, 1)\}$
 - b) $A = B = \mathbb{R} \ y \ R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x + y^3 = 0\}$
 - c) $A = B = \mathbb{R} \text{ y } R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : xy = 1\}$
 - $d) \ A=B=\mathbb{R} \ \mathbf{y} \ R=\left\{(x,y)\in\mathbb{R}\times\mathbb{R}: y=\sqrt{x-1}\right\}$
- 2. Se define la aplicación $f: \mathbb{R} \longrightarrow \mathbb{R}$ mediante $f(x) = x^2 + 4$. Entonces,

3

- a) $f^{-1}(\{0\}) = \{-2, 2\}$
- b) f([0,1]) = [0,1]
- c) $f^{-1}((0,4)) = (0,2)$
- d) Ninguna de las anteriores es cierta
- 3. La gráfica de una aplicación $f: \mathbb{R} \longrightarrow \mathbb{R}$ es

entonces:

a) f es inyectiva

b) f es exhaustiva

c) $f:[0,+\infty) \longrightarrow [0,1]$ es biyectiva

 $d) \ f:[0,+\infty) \longrightarrow \mathbb{R}$ es exhaustiva

4. Consideremos las aplicaciones: $f: \mathbb{R} - \{-2\} \longrightarrow \mathbb{R} - \{3\}$ definida por

$$f(x) = \frac{3+3x}{x+2}$$

y $g: \mathbb{R} - \{3\} \longrightarrow \mathbb{R}$ definida por $g(x) = x^3$. Entonces, ¿cuál de las siguientes afirmaciones es falsa?

- a) f es biyectiva y $f^{-1}(x) = \frac{3-2x}{x-3}$
- b) g es biyectiva y $g^{-1}(x) = \sqrt[3]{x}$
- $c)\ f\circ g$ no es aplicación
- d) $g \circ f$ es inyectiva y $(g \circ f)(x) = \left(\frac{3+3x}{x+2}\right)^3$

5. Sea $f:A\longrightarrow B$ una aplicación y supongamos que Card A=n y Card B=m. Entonces:

- a) Si fes inyectiva, entonces $n \leq m$
- b) Si f es exhaustiva, entonces $n \leq m$
- c) Si n = m, entonces f es biyectiva
- d) No puede ocurrir que n < m

6. Si f, g son aplicaciones de $\mathbb R$ en $\mathbb R$ tales que $g(x)=x^3$ y $(g\circ f)(x)=x^3-3x^2+3x-1$. Entonces:

- $a) \ f(x) = x + 1$
- b) f(x) = 1 x
- $c) \ f(x) = x 1$
- $d) \ f(x) = -1 x$

- 7. Sea $f:A\longrightarrow B$ una aplicación y consideremos $X,Y\subset A$ y $Z,T\subset B$, entonces
 - $a) \ f(X \cap Y) = f(X) \cap f(Y)$
 - b) $f^{-1}(f(X)) = X$
 - c) $f^{-1}(Z \cap T) = f^{-1}(Z) \cap f^{-1}(T)$
 - d) $f(f^{-1}(Z)) = Z$
- 8. Efectuando una muestra de 1000 individuos se observa que comen pescado y carne pero no huevos 60, pescado y huevos pero no carne 40, carne y huevos pero no pescado 30, sólo pescado 50, sólo carne 40 y sólo huevos 30. Todos comen carne, huevos o pescado. ¿Cuántos comen pescado?
 - a) 900
 - b) 750
 - c) 800
 - d) Ninguna de las anteriores
- 9. En una clase de 100 alumnos que se han examinado de Matemáticas y Física se conocen los siguientes resultados: No han aprobado ninguna asignatura 20 alumnos. Han aprobado las dos asignaturas 25 alumnos. Han aprobado el doble de alumnos Matemáticas que Física. ¿Cuántos alumnos han aprobado Matemáticas?
 - a) 10
 - b) 20
 - c) 35
 - d) 45
- 10. En el conjunto de los números naturales menores que 500, ¿cuántos números hay que no sean múltiplos de 2, ni de 3, ni de 5?
 - a) 120
 - b) 134
 - c) 100
 - $\boldsymbol{d})$ Ninguna de las anteriores