INTEGRATED DATABASE

Documentation Manual

Thahmina Ali, Lei Xie*
*Corresponding Author: lxie@iscb.org

Contents

1	Dat	ta Initial Input 1					
	1.1	UniProtKB fasta sequences:	1				
	1.2	RGD (disease ontology, chemical ontology, phenotype ontology, orthologs):	1				
		1.2.1 Disease ontology:	1				
		1.2.2 Drug ontology:	1				
		1.2.3 Phenotype ontology:	1				
		1.2.4 Rat gene orthologs to Human genes:	1				
	1.3	DisGeNET:	1				
	1.4	MGI:	1				
	1.5	IMPC:	2				
	1.6	Chebi:	2				
	1.7	Chembl:	2				
	1.8	MedGen:	2				
2	Data Process						
	2.1	Convert Uniprot data from fasta format to tabular:	2				
	2.2	Remove beginning comments of the data obtained from RGD:	2				
		2.2.1 Mouse Orthologs:	2				
		2.2.2 Disease Ontology:	3				
		2.2.3 Drug Ontology:	3				
		2.2.4 Phenotype Ontology:	3				
		2.2.5 RGD Rat orthologs to Human genes:	3				
		2.2.6 Chembl data:	3				
	2.3	0 1					
		gene-disease DisGeNET step):	3				
		2.3.1 Remove duplicates:	3				
	2.4	Label chebi ID to match labeling in RGD ontology files:	3				
	2.5	Convert IMPC mouse phenotype ontology csv file to tabular file:	4				
3	Dat	a Final Input:					
4	1 Database Tables						
4.1 Creating database of 17 tables:		Creating database of 17 tables:	4				
		4.1.1 Rat orthologs:	4				
		4.1.2 Mouse orthologs:	5				
		4.1.3 Uniprot data:	5				
		4.1.4 Chebi data:	5				
		4.1.5 Chembl data:	5				
		4.1.6 MedGen data:	5				
		4.1.7 DisGeNET data:	5				
		4.1.8 IMPC Mouse Phenotype Ontology:	5				
		4.1.9 Disease Ontology	6				

			Chemical Ontology	6 7
5	Data 5.1		Tables Input Load Option: insert_mysql.py code: Load Data Infile option	8 8 8 10
6	Que	ries		12
	6.1	Join Q 6.1.1 6.1.2	Join on common human genes to obtain rat and mouse orthologs: Join on human, mouse and rat gene symbol on uniprot file to obtain uniprot id:	12 12 12
		6.1.3	Join and combine all chebi ids with respective chembl ids based on its common chemical representation (InchI) and obtain smiles	
		6.1.4	notation:	12
			in respective organisms:	13
7			ociation Queries:	13
	7.1		Disease:	13
		7.1.1	Human:	13
		7.1.2	Mouse:	14
	7.2	7.1.3	Rat:	15
	1.2	Gene-I 7.2.1		16 16
		7.2.1 $7.2.2$	Human Mouse	16
		7.2.2 $7.2.3$	Rat	17
		7.2.4	Human	18
		7.2.4 $7.2.5$	Mouse	18
		7.2.6	Rat	18
		7.2.7	Human	19
		7.2.8	Mouse	19
		7.2.9	Rat	20
		7.2.10		21
		7.2.11		21
		7.2.12		22

1 Data Initial Input

Open up terminal and create a directory: 'database_initial_input'. Inside the directory obtain the starting data via their ftp links in the following. Note: wget and unzip if necessary all starting data.

1.1 UniProtKB fasta sequences:

 $wget\ ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz$

1.2 RGD (disease ontology, chemical ontology, phenotype ontology, orthologs):

1.2.1 Disease ontology:

Human: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/homo_terms_do Mouse: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/mus_terms_rdo Rat: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/rattus_terms_rdo

1.2.2 Drug ontology:

Human: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/homo_terms_chebi Mouse: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/mus_terms_chebi Rat: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/rattus_terms_chebi

1.2.3 Phenotype ontology:

Human: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/homo_terms_mp Mouse: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/mus_terms_mp Rat: wget ftp://ftp.rgd.mcw.edu/pub/data_release/with_terms/rattus_terms_mp

1.2.4 Rat gene orthologs to Human genes:

 $wget\ ftp://ftp.rgd.mcw.edu/pub/data_release/RGD_ORTHOLOGS_HomoloGene.txt$

1.3 DisGeNET:

Human:

wget www.disgenet.org/ds/DisGeNET/results/all_gene_disease_associations.tsv.gz gunzip all gene disease associations.tsv.gz

1.4 MGI:

Mouse gene orthologs to Human genes:

wget http://www.informatics.jax.org/downloads/reports/HMD HumanPhenotype.rpt

1.5 IMPC:

Mouse gene orthologs to Human genes:

 $wget\ ftp://ftp.ebi.ac.uk/pub/databases/impc/latest/csv/ALL_genotype_phenotype.csv.gz\ gunzip\ ALL_genotype_phenotype.csv.gz$

1.6 Chebi:

Chebi IDs:

wget ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/chebiId_inchi_3star.tsv gunzip chebiId_inchi_3star.tsv

1.7 Chembl:

Chembl IDs, smiles notation:

wget ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/chembl_23_chemreps.txt.gz gunzip chembl_23_chemreps.txt.gz

1.8 MedGen:

Concept IDs (CUI), MESH, OMIM: wget ftp://ftp.ncbi.nlm.nih.gov/pub/medgen/csv/MGSAT_1.csv.gz gunzip MGSAT_1.csv.gz wget ftp://ftp.ncbi.nlm.nih.gov/pub/medgen/csv/MGSAT_2.csv.gz gunzip MGSAT_2.csv.gz

2 Data Process

In order to make the various associations, all data is required to be in tabular form in columns which will require some preprocessing steps to format.

2.1 Convert Uniprot data from fasta format to tabular:

```
cat uniprot_sprot.fasta | sed 's/->/[]/g'| perl -pe 's/>(.*)/> \1 \t/g' | perl -pe 's/ \n//g' | perl -pe 's/\\n//g' | perl -pe 's/\\n//g' | sed 's/_/\\t/g' | sed 's/_/\\t/g' | cut -f 2,3,4,5 | sed 's/_/1' | sed 's/_/\\t/g' > uniprot_sprot.tab
```

2.2 Remove beginning comments of the data obtained from RGD:

2.2.1 Mouse Orthologs:

Remove extra spaces, column, commented lines:

 cut -f 1,2,3,4,5,6 HMD HumanPhenotype.rpt | sed 's/ /\t/g'> HMD HumanPhenotype.tab

2.2.2 Disease Ontology:

```
sed '1,28d' rattus_terms_rdo > rattus_terms_rdo.tab sed '1,28d' homo_terms_rdo > homo_terms_rdo.tab sed '1,28d' mus_terms_rdo > mus_terms_rdo.tab
```

2.2.3 Drug Ontology:

```
sed '1,28d' rattus_terms_chebi > rattus_terms_chebi.tab sed '1,28d' homo_terms_chebi > homo_terms_chebi.tab sed '1,28d' mus_terms_chebi > mus_terms_chebi.tab
```

2.2.4 Phenotype Ontology:

```
sed '1,28d' rattus_terms_mp > rattus_terms_mp.tab
sed '1,28d' homo_terms_mp > homo_terms_mp.tab
sed '1,28d' mus_terms_mp > mus_terms_mp.tab
```

2.2.5 RGD Rat orthologs to Human genes:

```
sed '1,54d' RGD ORTHOLOGS HomoloGene.txt > rgd orthologs.tab
```

2.2.6 Chembl data:

```
sed -i '1d' chembl 23 chemreps.txt
```

2.3 Obtain Medgen CUI terms with respective MESH/OMIM (for use in human gene-disease DisGeNET step):

```
\label{eq:sed_sol} $$ \sec 's/,/\t/g' MGSAT_1.csv > MGSAT_1.tab \\ \sec 's/,/\t/g' MGSAT_2.csv > MGSAT_2.tab \\ \cot MGSAT_1.tab MGSAT_2.tab > MGSAT_all.tab \\ \sec 's/''/g' MGSAT_all.tab | awk '$5=="NCBI_OMIM" {print $0}' > MGSAT_omim \\ \sec 's/''//g' MGSAT_all.tab | awk '$7=="MSH" print $0' > MGSAT_mesh \\ awk '{print $1"\t""MESH:"$4}' MGSAT_mesh > MGSAT_mesh2 \\ awk '{print $1"\t""OMIM:"$7}' MGSAT_mesh > MGSAT_omim2 \\ cat MGSAT_omim2 MGSAT_mesh2 > MGSAT_mesh_omim \\ \end{tabular}
```

2.3.1 Remove duplicates:

```
awk '!seen[$0]++' MGSAT mesh omim > MGSAT mesh omim final
```

2.4 Label chebi ID to match labeling in RGD ontology files:

```
awk '{print "CHEBI:"$1"\t"$2}' chebiId inchi 3star.tsv> chebi ids
```

2.5 Convert IMPC mouse phenotype ontology csv file to tabular file:

sed 's/,/\t/g' ALL genotype phenotype.csv > mouse phenotype impc.tab

3 Data Final Input:

Create a directory: 'database_final_input'. Inside the directory move all the following processed 17 inputs located in the database_initial_input into the database_final_input folder:

```
mv/path/to/database initial input/all gene disease associations.tsv/path/to/database final input
mv/path/to/database initial input/chebi ids/path/to/database final input
mv/path/to/database initial input/chembl 23 chemreps.txt/path/to/database final input
mv/path/to/database initial input/HMD HumanPhenotype.tab/path/to/database final input
mv/path/to/database initial input/homo terms chebi.tab/path/to/database final input
mv/path/to/database initial input/homo terms mp.tab/path/to/database final input
mv/path/to/database initial input/homo terms rdo.tab/path/to/database final input
mv/path/to/database initial input/MGSAT mesh omim final/path/to/database final input
my/path/to/database initial input/mouse phenotype impc.tab/path/to/database final input
mv/path/to/database initial input/mus terms chebi.tab/path/to/database final input
mv/path/to/database initial input/mus terms mp.tab/path/to/database final input
mv/path/to/database initial input/mus terms rdo.tab/path/to/database final input
mv/path/to/database initial input/rattus terms chebi.tab/path/to/database final input
mv/path/to/database initial input/rattus terms mp.tab/path/to/database final input
mv/path/to/database initial input/rattus terms rdo.tab/path/to/database final input
mv/path/to/database initial input/rgd orthologs.tab/path/to/database final input
mv/path/to/database initial input/uniprot sprot.tab/path/to/database final input
```

4 Database Tables

4.1 Creating database of 17 tables:

```
mysql> CREATE DATABASE integrated_database; mysql> USE integrated_database;
```

4.1.1 Rat orthologs:

```
mysql> CREATE TABLE rat_orthologs ( rat_gene_symbol VARCHAR(30), rat_rgd LONGTEXT, rat_ncbi LONGTEXT, human_orth_rat VARCHAR(30), human_orth_rgd LONGTEXT, human_orth_rat_ncbi LONGTEXT, human_orth_rat_source LONGTEXT, mouse_orth_rat LONGTEXT, mouse_orth_rat_rgd LONGTEXT, mouse_orth_rat_ncbi LONGTEXT, mouse_orth_rat_mgi LONGTEXT, mouse_orth_rat_source LONGTEXT, human_orth_rat_hgnc LONGTEXT);
```

4.1.2 Mouse orthologs:

mysql> CREATE TABLE mouse_orthologs (human_gene_symbol VARCHAR(30), entrez_id LONGTEXT, homolog_id LONGTEXT, hgnc_assoc VARCHAR(30), mouse_gene_symbol LONGTEXT, mouse_mgi_id LONGTEXT);

4.1.3 Uniprot data:

mysql> CREATE TABLE uniprot_data (uniprot_id VARCHAR(30), gene_symbol VARCHAR(30), organism_symbol VARCHAR(30), gene_desc LONGTEXT, sequence LONGTEXT, PRIMARY KEY(uniprot_id));

4.1.4 Chebi data:

mysql> CREATE TABLE chebi data (chebi id VARCHAR(30), inchi LONGTEXT);

4.1.5 Chembl data:

mysql> CREATE TABLE chembl_data (chembl_id VARCHAR(30), smiles LONGTEXT, inchi LONGTEXT, inchi key LONGTEXT);

4.1.6 MedGen data:

mysql> CREATE TABLE medgen_to_mesh_omim (medgen_id VARCHAR(30), mesh_omim_id VARCHAR(30));

4.1.7 DisGeNET data:

mysql> CREATE TABLE human_disgenet(gene_id LONGTEXT, gene_symbol VAR-CHAR(30), disease_id VARCHAR(30), disease_name LONGTEXT, score LONGTEXT, NofPmids LONGTEXT, NofSnps LONGTEXT, source LONGTEXT);

4.1.8 IMPC Mouse Phenotype Ontology:

mysql> CREATE TABLE mouse_phene_impc(mgi_id VARCHAR(30), gene_symbol VARCHAR(30), phenotyping LONGTEXT, colony_id LONGTEXT, sex VARCHAR(30), zygosity VARCHAR(30), allele_accession_id VARCHAR(30), allele_symbol LONGTEXT, allele_name LONGTEXT, strain_accession_id VARCHAR(30), strain_name VARCHAR(30), project_name VARCHAR(30), project_fullname LONGTEXT, pipeline_name LONGTEXT, pipeline_stable_id VARCHAR(30), procedure_stable_id LONGTEXT, procedure_name LONGTEXT, parameter_stable_id LONGTEXT, parameter_name LONGTEXT, top_level_mp_term_id VARCHAR(30), top_level_mp_term_name LONGTEXT, mp_term_name LONGTEXT, procedure_change LONGTEXT, mp_term_name LONGTEXT, procedure_change LONGTEXT, effect_size LONGTEXT, statistical_method LONGTEXT, resource_name LONGTEXT);

4.1.9 Disease Ontology-

Human:

mysql> CREATE TABLE human_disease_rgd (rgd_id INT(6), gene_symbol VAR-CHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), rdo_id VARCHAR(30), disease_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

Mouse:

mysql> CREATE TABLE mouse_disease_rgd (rgd_id LONGTEXT, gene_symbol VARCHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), rdo_id VARCHAR(30), disease_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

Rat:

mysql> CREATE TABLE rat_disease_rgd (rgd_id LONGTEXT, gene_symbol VAR-CHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), rdo_id VARCHAR(30), disease_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

4.1.10 Chemical Ontology-

Human:

mysql> CREATE TABLE human_chemical_rgd (rgd_id LONGTEXT, gene_symbol VARCHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), chebi_id VARCHAR(30), chemical_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

Rat:

mysql> CREATE TABLE rat_chemical_rgd (rgd_id LONGTEXT, gene_symbol VARCHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), chebi_id VARCHAR(30), chemical_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT,

association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original reference LONGTEXT);

Mouse:

mysql> CREATE TABLE mouse_chemical_rgd (rgd_id LONGTEXT, gene_symbol VARCHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), chebi_id VARCHAR(30), chemical_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

4.1.11 Phenotype Ontology-

Human:

mysql> CREATE TABLE human_phene_rgd (rgd_id LONGTEXT, gene_symbol VARCHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), phene_id VARCHAR(30), phene_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

Rat:

mysql> CREATE TABLE rat_phene_rgd (rgd_id LONGTEXT, gene_symbol VAR-CHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), phene_id VARCHAR(30), phene_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT, assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

Mouse:

mysql> CREATE TABLE mouse_phene_rgd (rgd_id LONGTEXT, gene_symbol VARCHAR(30), gene_desc LONGTEXT, gene_type VARCHAR(30), phene_id VARCHAR(30), phene_name LONGTEXT, qualifier LONGTEXT, evidence LONGTEXT, association VARCHAR(30), aspect LONGTEXT, ref LONGTEXT, created_date LONGTEXT assigned_by LONGTEXT, mesh_omim_id VARCHAR(30), curation_notes LONGTEXT, original_reference LONGTEXT);

5 Database Tables Input Load

Load the mysql tables with the input files either using a script which has accumulated the commands that uses the 'insert' option to load the data from the input files into the tables, or via the 'load data infile' option:

5.1 Insert Option:

Inside the data_final_input directory with all the inputs located copy and paste the following code into an editor and save the file as 'insert_mysql.py'. Change the username (user), password (passwd) and database name (db) to respective information. Run the following command inside the data final input:

```
$ python insert mysql.py
```

5.1.1 insert mysql.py code:

```
#!/usr/bin/env python
import MySQLdb, csv, sys
conn = MySQLdb.connect (host = "127.0.0.1", user = "testuser", passwd = "testuser", db
= "integrated database")
c = conn.cursor()
rat orthologs=csv.reader(file("rgd orthologs.tab"), delimiter='\t')
for row in rat orthologs:
  c.execute("INSERT INTO rat orthologs (rat gene symbol, rat rgd, rat ncbi, hu-
man orth rat, human orth rgd, human orth rat ncbi, human orth rat source,
mouse orth rat, mouse orth rat rgd, mouse orth rat ncbi, mouse orth rat mgi,
mouse orth rat source, human orth rat hgnc) VALUES (%s, %s, %s, %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s, %s)", row)
mouse orthologs=csv.reader(file("HMD HumanPhenotype.rpt"), delimiter='\t')
for row in mouse orthologs:
  c.execute("INSERT INTO mouse orthologs (human gene symbol, entrez id, ho-
molog id, hgnc assoc, mouse gene symbol, mouse mgi id) VALUES (%s, %s, %s,
%s, %s, %s)", row)
uniprot_data=csv.reader(file("uniprot_sprot.tab"),delimiter='\t')
for row in uniprot data:
  c.execute("INSERT INTO uniprot data (uniprot id, gene symbol, organism symbol,
gene desc, sequence) VALUES (%s, %s, %s, %s, %s, %s)", row)
chebi data=csv.reader(file("chebi ids"), delimiter='\t')
for row in chebi data:
  c.execute("INSERT INTO chebi data (chebi id, inchi) VALUES (%s, %s)", row)
chembl data=csv.reader(file("chembl 23 chemreps.txt"), delimiter='\t')
for row in chemble data:
  c.execute("INSERT INTO chemble data (chemble id, smiles, inchi, inchi key) VALUES
```

```
(\%s, \%s, \%s, \%s)", row)
medgen to mesh omim=csv.reader(file("MGSAT mesh omim final"), delimiter='\t')
for row in medgen to mesh omim:
 c.execute("INSERT INTO medgen to mesh omim (medgen id, mesh omim id)
VALUES (%s, %s)", row) human disgenet=csv.reader(file("all gene disease associations.tsv"),
delimiter='\t')
for row in human disgenet:
 c.execute("INSERT INTO human disgenet (gene id, gene symbol, disease id, dis-
ease name, score, NofPmids, NofSnps, source) VALUES (%s, %s, %s, %s, %s, %s, %s, %s,
%s),", row)
mouse phene impc=csv.reader(file("mouse phenotype impc.tab"), delimiter='\t')
for row in mouse phene impc:
 c.execute("INSERT INTO mouse phene impc (mgi id, gene symbol, phenotyping,
colony id, sex, zygosity, allele acession id, allele symbol, allele name, strain accession id,
strain name, project name, project fullname, pipeline name, pipeline stable id, pro-
cedure stable id, procedure name, parameter stable id, parameter name, top level mp term id,
top level mp term name, mp term id, mp term name, p value, percentage change,
effect size, statistical method, resource name) VALUES (%s, %s, %s, %s, %s, %s, %s, %s,
row)
human disease rgd=csv.reader(file("homo terms_rdo.tab"), delimiter='\t')
for row in human disease rgd:
 c.execute("INSERT INTO human disease rgd (rgd id, gene symbol, gene desc,
gene type, rdo id, disease name, qualifier, evidence, association, aspect, ref, cre-
ated date, assigned by, mesh omim id, curation notes, original reference) VALUES
mouse disease rgd=csv.reader(file("mouse terms rdo.tab"), delimiter='\t')
for row in mouse disease rgd:
  c.execute("INSERT INTO mouse disease rgd (rgd id, gene symbol, gene desc,
gene type, rdo id, disease name, qualifier, evidence, association, aspect, ref, cre-
ated date, assigned by, mesh omim id, curation notes, original reference) VALUES
rat disease rgd=csv.reader(file("rattus_terms_rdo.tab"), delimiter='\t')
for row in rat disease rgd:
 c.execute("INSERT INTO rat disease rgd (rgd id, gene symbol, gene desc, gene type,
rdo id, disease name, qualifier, evidence, association, aspect, ref, created date, as-
signed by, mesh omim id, curation notes, original reference) VALUES (%s, %s, %s,
human_chemical_rgd=csv.reader(file("homo terms chebi.tab"), delimiter='\t')
for row in human chemical rgd:
  c.execute("INSERT INTO human chemical rgd (rgd id, gene symbol, gene desc,
gene type, chebi id, chemical name, qualifier, evidence, association, aspect, ref, cre-
```

ated date, assigned by, mesh omim id, curation notes, original reference) VALUES

5.1.2 Load Data Infile option

for row in mouse chemical rgd:

1. Rat orthologs:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/rgd_ortho\ INTO\ TABLE\ rgd\ orthologs;$

2. Mouse orthologs:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/HMD_HurINTO\ TABLE\ mouse_orthologs;$

3. Uniprot data:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/uniprot_splinto\ TABLE\ uniprot_data;$

4. Chebi data:

 $mysql>LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/chebi_ids and the local properties of the local properties$

5. Chembl data:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/chembl_23\ INTO\ TABLE\ chembl_data;$

6. MedGen data:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/MGSAT_rINTO\ TABLE\ medgen\ to\ mesh\ omim;$

7. DisGeNET data:

mysql> LOAD DATA INFILE '/var/lib/mysql-files/integrated_database/database_final_input/all_gene_ INTO TABLE human_disgenet;

8. IMPC Mouse Phenotype Ontology:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/mouse_phINTO\ TABLE\ mouse_phene_impc;$

Disease Ontology-

9. Human:

mysql> LOAD DATA INFILE '/var/lib/mysql-files/integrated_database/database_final_input/homo_terrINTO TABLE human disease rgd;

10. Mouse:

 $mysql>LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/mouse_terINTO\ TABLE\ mouse_disease_rgd;$

11. Rat:

 $mysql>LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/rattus_terINTO\ TABLE\ rat_disease_rgd;$

Chemical Ontology-

12. Human:

mysql> LOAD DATA INFILE '/var/lib/mysql-files/integrated_database/database_final_input/homo_terrINTO TABLE human_chemical_rgd;

13. Rat:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/rattus_terINTO\ TABLE\ rat \ chemical\ rgd;$

14. Mouse:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/mus_term\ INTO\ TABLE\ mouse_chemical_rgd;$

Phenotype Ontology-

15. Human:

 $mysql > LOAD\ DATA\ INFILE\ '/var/lib/mysql-files/integrated_database/database_final_input/homo_terrINTO\ TABLE\ human \ phene\ rgd;$

16. Rat:

mysql> LOAD DATA INFILE '/var/lib/mysql-files/integrated_database/database_final_input/rattus_ter INTO TABLE rat_phene_rgd;

17. Mouse:

mysql> LOAD DATA INFILE '/var/lib/mysql-files/integrated_database/database_final_input/mouse_ter INTO TABLE mouse_phene_rgd;

6 Queries

6.1 Join Queries:

6.1.1 Join on common human genes to obtain rat and mouse orthologs:

 $mysql> CREATE\ TABLE\ mouse_rat_association\ SELECT\ DISTINCT\ rat_orthologs.human_orth_rat\\ as\ 'human_gene_symbol',\ rat_orthologs.rat_gene_symbol,\ mouse_orthologs.mouse_gene_symbol\\ from\ rat_orthologs,mouse_orthologs\ WHERE\ rat_orthologs.human_orth_rat=mouse_orthologs.human_gene_symbol\\ from\ rat_orthologs,mouse_orthologs\ WHERE\ rat_orthologs.human_orth_rat=mouse_orthologs.human_gene_symbol\\ from\ rat_orthologs\ which is a simple of the properties o$

6.1.2 Join on human, mouse and rat gene symbol on uniprot file to obtain uniprot id:

Obtain human uniprot ids:

mysql> CREATE TABLE mouse_rat_association_human SELECT DISTINCT mouse_rat_association.humauniprot_data.uniprot_id, 'NULL' as human_ortholog, 'HUMAN' as organism from mouse_rat_association, uniprot_data WHERE mouse_rat_association.human_gene_symbol=uniprot_data AND uniprot_data.organism_symbol='HUMAN';

Obtain mouse uniprot ids:

mysql> CREATE TABLE mouse_rat_association_mouse SELECT DISTINCT mouse_rat_association.mouse uniprot_data.uniprot_id, mouse_rat_association.human_gene_symbol as human_ortholog, 'MOUSE' as organism from mouse_rat_association, uniprot_data WHERE mouse_rat_association.mouse_generat

Obtain rat uniprot ids:

mysql> CREATE TABLE mouse_rat_association_rat SELECT DISTINCT mouse_rat_association.rat_gene uniprot_data.uniprot_id, mouse_rat_association.human_gene_symbol as human_ortholog, 'RAT' as organism from mouse_rat_association, uniprot_data WHERE mouse_rat_association.rat_gene_symbol uniprot_data.organism_symbol='RAT';

6.1.3 Join and combine all chebi ids with respective chembl ids based on its common chemical representation (Inchl) and obtain smiles notation:

mysql> CREATE TABLE chebi_to_chembl SELECT chembl_data.chembl_id, chembl_data.inchi, chebi_data.chebi_id, chembl_data.smiles from chembl_data, chebi_data WHERE chembl_data.inchi= chebi_data.inchi;

6.1.4 Join all chebi ids of human, mouse and rat files from RGD against the mapped chembl_to_chebi file to obtain the chembl version of the chebi ids and smiles notation for each of gene-chebi association in respective organisms:

Human:

mysql> CREATE TABLE human_chebi_chembl SELECT human_chemical_rgd.gene_symbol, human_chemical_rgd.chemical_name, chebi_to_chembl.chembl_id, chebi_to_chembl.smiles from human_chemical_rgd, chebi_to_chembl WHERE chebi_to_chembl.chebi_id= human_chemical_rgd.chebi_id;

Mouse:

mysql> CREATE TABLE mouse _chebi _chembl SELECT mouse _chemical _rgd.gene _symbol, mouse _chemical _rgd.chemical _name, chebi _to _chembl.chembl _id, chebi _to _chembl.smiles from mouse _chemical _rgd, chebi _to _chembl WHERE chebi _to _chembl.chebi _id= mouse _chemical _rgd.chebi _id;

Rat:

mysql> CREATE TABLE rat_chebi_chembl SELECT rat_chemical_rgd.gene_symbol, rat_chemical_rgd.chemical_name, chebi_to_chembl.chembl_id, chebi_to_chembl.smiles from rat_chemical_rgd, chebi_to_chembl WHERE chebi_to_chembl.chebi_id=rat_chemical_rgd.chebi_id

7 Entity Association Queries:

7.1 Gene-Disease:

7.1.1 Human:

Use the human genes from the mouse_rat_association_human table and associate it with the disgenet genes:

mysql> CREATE TABLE human_disgenet_genes SELECT DISTINCT mouse_rat_association_human.hum mouse_rat_association_human.uniprot_id, human_disgenet.disease_id, human_disgenet.score as disgenet_score from mouse_rat_association_human, human_disgenet WHERE mouse_rat_association_human.human_gene_symbol=human_disgenet.gene_symbol;

Convert cui from the disgenet genes ids to mesh/omim using the medgen to mesh omim table:

mysql> CREATE TABLE human_disgenet_m_o SELECT DISTINCT human_disgenet_genes.human_gene human_disgenet_genes.uniprot_id, medgen_to_mesh_omim.mesh_omim_id, 'MedGen' as source_id, human_disgenet_genes.disgenet_score, 'DisGeNET' as source_attr from medgen_to_mesh_omim, human_disgenet_genes WHERE medgen_to_mesh_omim.medgen_id=hum

Compare the human_disease_rgd against the mouse_rat_association_final to obtain uniprot ids of the human genes presented in the human disease rgd.

mysql> CREATE TABLE human_disease_rgd_uniprot SELECT human_disease_rgd.gene_symbol as human_gene_symbol, mouse_rat_association_human.uniprot_id, human_disease_rgd.mesh_omim_id, 'NULL' as source_id, 'NULL' as disease_score, 'RGD' as source_attr from human_disease_rgd, mouse rat association human WHERE human disease rgd.gene symbol= mouse rat association human was recommended.

Compare the human_disgenet_m_o genes with the human_disease_rgd_uniprot genes to capture any missing associations from the RGD database:

 $mysql> CREATE\ TABLE\ human_disease_rgd_disgenet\ SELECT\ DISTINCT\ *\ from\ human_disease_rgd_uniprot;$

mysql> CREATE TABLE human_gene_disease_final SELECT human_gene_symbol, uniprot_id, mesh_omim_id, source_id, 'NULL 'as human_ortholog, 'NULL' as mouse_rat_assoc, disgenet_score, source_attr from human_disease_rgd_disgenet GROUP BY human_gene_symbol, mesh_omim_id;

7.1.2 Mouse:

Use the mouse genes from the mouse _rat_association_final table and join on common mouse genes against the RGD disease ontology file and obtain the mesh/omim ids associations:

mysql> CREATE TABLE mouse _gene _disease _final SELECT DISTINCT mouse _rat _association _mouse.m mouse _rat _association _mouse.uniprot _id, mouse _disease _rgd.mesh _omim _id, 'NULL' as source _id, mouse _rat _association _mouse.human _ortholog, ' ' as mouse _rat _assoc, 'NULL' as disgenet _score, ' RGD' as source _attr from mouse _rat _association _mouse, mouse _disease _rgd WHERE mouse _rat _association _mouse.mouse _gene _symbol = mouse _disease _rgd.gene _symbol;

Same Mouse genes with Human:

mysql> CREATE TABLE human_mouse_same_disease SELECT * from mouse_gene_disease_final WHERE EXISTS (SELECT * from human_gene_disease_final WHERE mouse_gene_disease_final.mesh_or AND human_gene_disease_final.human_gene_symbol=mouse_gene_disease_final.human_ortholog);

Distinct Mouse genes from Human:

mysql> CREATE TABLE human _mouse _distinct _disease SELECT * from mouse _gene _disease _final WHERE NOT EXISTS (SELECT * from human _gene _disease _final WHERE mouse _gene _disease _final.me AND human _gene _disease _final.human _gene _symbol=mouse _gene _disease _final.human _ortholog);

7.1.3 Rat:

Use the rat genes from the mouse_rat_association_final table and join on common rat genes against the rdo file and obtain the mesh and omim ids associations:

```
mysql> CREATE TABLE rat_gene_disease_final SELECT DISTINCT mouse_rat_association_rat.rat_gene mouse_rat_association_rat.uniprot_id, rat_disease_rgd.mesh_omim_id, 'NULL' as source_id, mouse_rat_association_rat.human_ortholog, ' ' as mouse_rat_assoc, 'NULL' as disgenet_score, 'RGD' as source_attr from mouse_rat_association_rat, rat_disease_rgd WHERE mouse_rat_association_rat.rat_gene_symbol = rat_disease_rgd.gene_symbol;
```

Same Rat genes with Human:

```
mysql> CREATE TABLE human_rat_same_disease SELECT * from rat_gene_disease_final WHERE EXISTS (SELECT * from human_gene_disease_final WHERE rat_gene_disease_final.mesh_omin AND human_gene_disease_final.human_gene_symbol=rat_gene_disease_final.human_ortholog);
```

Distinct Rat genes from Human:

```
mysql> CREATE TABLE human_rat_distinct_disease SELECT * from rat_gene_disease_final WHERE NOT EXISTS (SELECT * from human_gene_disease_final WHERE rat_gene_disease_final.mesh_AND human_gene_disease_final.human_gene_symbol=rat_gene_disease_final.human_ortholog);
```

Inserting values for columns that will distinguish matched and unmatched mouse and rat genes against human genes:

```
mysql> UPDATE human_rat_same_disease SET mouse_rat_assoc =' direct_assoc '; mysql> UPDATE human_rat_distinct_disease SET mouse_rat_assoc =' indirect_assoc '; mysql> UPDATE human_mouse_same_disease SET mouse_rat_assoc =' direct_assoc '; mysql> UPDATE human_mouse_distinct_disease SET mouse_rat_assoc =' indirect_assoc '; mysql> UPDATE human_mouse_distinct_disease SET mouse_rat_assoc =' indirect_assoc ';
```

Unify all of the tables of the mouse and rat that have direct and indirect disease associations with humans, along with the human gene-disease association table: human_rat_same_disease, human_rat_distinct_disease, human_mouse_same_disease, human_mouse_distinct_disease, human_gene_disease final:

mysql> CREATE TABLE gene_disease_final (SELECT uniprot_id, mesh_omim_id, source_id, human_ortholog, mouse_rat_assoc, disgenet_score, source_attr, 'human' as organism from human_gene_disease_final) UNION ALL (SELECT uniprot_id, mesh_omim_id, source_id, human_ortholog, mouse_rat_assoc, disgenet_score, source_attr, 'rat' as organism from human_rat_same_disease) UNION ALL (SELECT uniprot_id, mesh_omim_id, source_id, human_ortholog, mouse_rat_assoc, disgenet_score, source_attr, 'rat' as organism from human_rat_distinct_disease) UNION ALL (SELECT uniprot_id,

mesh_omim_id, source_id, human_ortholog, mouse_rat_assoc, disgenet_score, source_attr, 'mouse' as organism from human_mouse_distinct_disease) UNION ALL (SELECT uniprot_id, mesh_omim_id, source_id, human_ortholog, mouse_rat_assoc, disgenet_score, source_attr, 'mouse' as organism from human_mouse_same_disease);

7.2 Gene-Drug:

7.2.1 Human

Use the human genes from the mouse_rat_association_final table and join on common human genes against the RGD chebi file and obtain the chembl chemical associations:

mysql> CREATE TABLE human_gene_drug_final SELECT DISTINCT mouse_rat_association_human.humanuse_rat_association_human.uniprot_id, human_chebi_chembl.chembl_id, 'chembl' as source_id, 'NULL' as human_ortholog, 'NULL' as mouse_rat_assoc, 'RGD' as source_attr from mouse_rat_association_human, human_chebi_chembl WHERE mouse_rat_association_human_chebi_chembl.gene_symbol;

7.2.2 Mouse

Use the mouse genes from the mouse _rat_association_final table and join on common mouse genes against the RGD chebi file and obtain the chembl chemical associations:

mysql> CREATE TABLE mouse_gene_drug_final SELECT DISTINCT mouse_rat_association_mouse.mou , mouse_rat_association_mouse.uniprot_id, mouse_chebi_chembl.chembl_id, 'chembl' as source_id, mouse_rat_association_mouse.human_ortholog, ' 'as mouse_rat_assoc, 'RGD' as source_attr from mouse_rat_association_mouse, mouse_chebi_chembl WHERE mouse_rat_association_mouse gene_symbol = mouse_chebi_chembl.gene_symbol;

Same Mouse genes with Human:

mysql> CREATE TABLE human_mouse_same_drug SELECT * from mouse_gene_drug_final WHERE EXISTS (SELECT * from human_gene_drug_final WHERE mouse_gene_drug_final.chembl_id=hAND human_gene_drug_final.human_gene_symbol=mouse_gene_drug_final.human_ortholog);

Distinct Mouse genes from Human:

mysql> CREATE TABLE human_mouse_distinct_drug SELECT * from mouse_gene_drug_final WHERE NOT EXISTS (SELECT * from human_gene_drug_final WHERE mouse_gene_drug_final.chembl_AND human_gene_drug_final.human_gene_symbol=mouse_gene_drug_final.human_ortholog);

7.2.3 Rat

Use the rat genes from the mouse_rat_association_final table and join on common rat genes against the RGD chebi file and obtain the chembl chemical associations:

```
\label{eq:mysql} mysql> CREATE TABLE \ rat\_gene\_drug\_final \ SELECT \ DISTINCT \ mouse\_rat\_association\_rat.rat\_gene\_mouse\_rat\_association\_final.uniprot\_id, \ rat\_chebi\_chembl.chembl\_id, \ åÄŸchemblåÄŹ \ as \ source\_id, \ mouse\_rat\_association\_rat.human\_ortholog, \ åÄŸ \ åÄŹ \ as \ mouse\_rat\_assoc, \ åÄŸRGDåÄŹ \ as \ source\_attr \ from \ mouse\_rat\_association\_rat, \ rat\_chebi\_chembl \ WHERE \ mouse\_rat\_association\_rat.rat\_gene\_symbol = \ rat\_chebi\_chembl.gene\_symbol;
```

Same Rat genes with Human:

mysql> CREATE TABLE human_rat_same_drug SELECT * from rat_gene_drug_final WHERE EXISTS (SELECT * from human_gene_drug_final WHERE rat_gene_drug_final.chembl_id=human_buman_gene_drug_final.human_gene_drug_final.human_ortholog);

Distinct Rat genes from Human:

```
mysql> CREATE TABLE human_rat_distinct_drug SELECT * from rat_gene_drug_final WHERE NOT EXISTS (SELECT * from human_gene_drug_final WHERE rat_gene_drug_final.chembl_id AND human_gene_drug_final.human_gene=rat_gene_drug_final.human_ortholog);
```

Inserting values for columns that will distinguish matched and unmatched mouse and rat genes against human genes:

```
mysql> UPDATE human_rat_same_drug SET mouse_rat_assoc =' direct_assoc'; mysql> UPDATE human_rat_distinct_drug SET mouse_rat_assoc =' indirect_assoc'; mysql> UPDATE human_mouse_same_drug SET mouse_rat_assoc =' direct_assoc'; mysql> UPDATE human_mouse_distinct_drug SET mouse_rat_assoc =' indirect_assoc';
```

Unify all of the tables of the human, mouse and rat (direct and indirect disease associations with humans): human_gene_drug_final, human_rat_same_drug, human_rat_distinct_drug, human_mouse_same_drug, human_mouse_distinct_drug:

mysql> CREATE TABLE gene_drug_final (SELECT human_gene_drug_final.* , âĂŸhumanâĂŹ as organism from human_gene_drug_final) UNION ALL (SELECT human_rat_same_disease.* , âĂŸratâĂŹ as organism from human_rat_same_drug) UNION ALL (SELECT human_rat_distinct_drug.*, âĂŸratâĂŹ as organism from human_rat_distinct_drug) UNION ALL (SELECT human_mouse_same_drug.* , âĂŸ-mouseâĂŹ as organism from human_mouse_same_drug) UNION ALL (SELECT human_mouse_distinct_drug.* , âĂŸmouseâĂŹ as organism human_mouse_distinct_drug); Drug-Disease:

For the human, mouse and rat, join based on common gene from the gene _disease _final and gene _drug _final tables to grab the mesh/omim and chebi ids which will show drug-disease associations.

7.2.4 Human

mysql> CREATE TABLE human_drug_disease_final SELECT DISTINCT human_gene_disease_final.mesh human_gene_disease_final.source_id as disease_source, human_gene_drug_final.chembl_id, human_gene_drug_final.source_id as chemical_source, 'NULL' from human_gene_disease_final, human_gene_drug_final WHERE human_gene_drug_final.uniprot_id = human_gene_disease_final.uniprot_id = human

7.2.5 Mouse

mysql> CREATE TABLE mouse _drug_disease _same SELECT DISTINCT human _mouse _same _disease.mehuman _mouse _same _disease.source_id, human _mouse _same _drug.chembl_id, human _mouse _same _drug.source_id, human _mouse _same _disease.human _ortholog, âĂŸ âĂŸ as mouse _rat _assoc from human _mouse _same _disease, human _mouse _same _drug
WHERE human _mouse _same _disease.uniprot _id = human _mouse _same _drug.uniprot _id
AND human _mouse _same _disease.human _ortholog = human _mouse _same _drug.human _ortholog;
 mysql> CREATE TABLE mouse _drug_disease _distinct SELECT DISTINCT human _mouse _distinct _disease.mesh _omim _id, human _mouse _distinct _disease.source _id, human _mouse _distinct _drug.chembl _id, human _mouse _distinct _drug.source _id human _mouse _distinct _disease.human _ortholog, âĂŸ âĂŸ as mouse _rat _assoc, from human _mouse _distinct _disease, human _mouse _distinct _drug.uniprot _id AND human _mouse _distinct _disease.human _ortholog = human _mouse _distinct _drug.human _ortholog;

7.2.6 Rat

```
mysql> CREATE TABLE rat_drug_disease_same SELECT DISTINCT human_rat_same_disease.mesh_or human_rat_same_disease.source_id, human_rat_same_drug.chembl_id, human_rat_same_drug.source_id human_rat_same_disease.human_ortholog, âĂŸ âĂŸ as mouse_rat_assoc, from human_rat_same_disease, human_rat_same_drug WHERE human_rat_same_disease.uniprot_id = human_rat_same_drug.uniprot_id AND human_rat_same_disease.human_ortholog = human_rat_same_drug.human_ortholog; mysql> CREATE TABLE rat_drug_disease_distinct SELECT DISTINCT human_rat_distinct_disease.nhuman_rat_distinct_disease.source_id, human_rat_distinct_drug.chembl_id, human_mouse_distinct_druhuman_rat_distinct_disease.human_ortholog, âĂŸ âĂŸ as mouse_rat_assoc, from human_rat_distinct_disease, human_rat_distinct_drug WHERE human_rat_distinct_disease.uniprot_id = human_rat_distinct_drug.uniprot_id AND human_rat_distinct_disease.human_ortholog = human_rat_distinct_drug.human_ortholog;
```

Inserting values for columns that will distinguish matched and unmatched mouse genes against human genes:

```
mysql> UPDATE rat_drug_disease_same SET mouse_rat_assoc =' direct_assoc'; mysql> UPDATE rat_drug_disease_distinct SET mouse_rat_assoc =' indirect_assoc'; mysql> UPDATE mouse_drug_disease_distinct SET mouse_rat_assoc =' direct_assoc'; mysql> UPDATE mouse_drug_disease_same SET mouse_rat_assoc =' indirect_assoc';
```

unify-

$$\begin{split} & \text{mysql}{>} \text{ CREATE TABLE drug_disease_final (SELECT human_drug_disease_final.* }, \\ & \text{\^{a}\Bar{A}\Bar{Y}} \text{human}\Bar{A}\Bar{Z} \text{ as organism from human_drug_disease_final) UNION ALL (SELECT rat_drug_disease_same) }, \\ & \text{\^{a}\Bar{Y}} \text{rat}\Bar{A}\Bar{Z} \text{ as organism from rat_drug_disease_same)} \\ & \text{UNION ALL (SELECT rat_drug_disease_distinct.*}, \\ & \text{\^{a}\Bar{Y}} \text{rat}\Bar{A}\Bar{Z} \text{ as organism from rat_drug_disease_distinct.}}, \\ & \text{\^{a}\Bar{Y}} \text{mouse}\Bar{A}\Bar{Z} \text{ as organism from mouse_drug_disease_distinct)}}, \\ & \text{\r{a}\Bar{Y}} \text{mouse_drug_disease_same.*}, \\ & \text{\r{a}\Bar{Y}} \text{mouse}\Bar{A}\Bar{Z} \text{ as organism mouse_drug_disease_same)}; \\ & \text{\r{a}} \text{\r{a}}} \text{\r{a}} \text{\r{a}}} \text{\r{a}} \text{\r{a}}} \text{\r{a}} \text{$$

7.2.7 Human

Use the human genes from the mouse rat association final table and join on common human genes against the RGD phenotype file and obtain the phenotype associations:

```
mysql> CREATE\ TABLE\ human\_gene\_phene\_final\ SELECT\ DISTINCT\ mouse\_rat\_association\_human.human\_phene\_rgd.phene\_id,\ \hat{a}\Breve{A}\Breve{Y}\NUL-L\hat{a}\Breve{A}\Breve{Z}\ as\ mouse\_rat\_assoc,\ \hat{a}\Breve{A}\Breve{Y}\RGD\hat{a}\Breve{A}\Breve{Z}\ as\ source\_attr\ from\ mouse\_rat\_association\_human,\ human\_phene\_rgd\ WHERE\ mouse\_rat\_association\_human.human\_phene\_rgd.gene\_symbol;}
```

7.2.8 Mouse

Use the mouse genes from the mouse_rat_association_final table and join on common mouse genes against the RGD phenotype file and obtain the phenotype associations:

```
mysql> CREATE TABLE mouse_gene_phene_rgd SELECT DISTINCT mouse_rat_association_mouse.mouse_rat_association_mouse.mouse_rat_association_mouse.hu âAŸ âAŹ as mouse_rat_assoc, âAŸRGDâAŹ as source_attr from mouse_rat_association_mouse, mouse_phene_rgd WHERE mouse_rat_association_mouse.mouse_gene_symbol = mouse_phene_rgd.gene_symbol;
```

impc

 $mysql> CREATE\ TABLE\ mouse_gene_phene_impc\ SELECT\ DISTINCT\ mouse_rat_association_mouse.m$ $mouse_rat_association_mouse.uniprot_id,\ mouse_phene_impc.mp_term_name\ as$ $\mathring{a} \ \mathring{A} \ \mathring{p}hene_id \mathring{a} \ \mathring{A} \ \mathring{z},\ mouse_rat_association_mouse.human_ortholog,\ \mathring{a} \ \mathring{A} \ \mathring{z}\ \mathring{a} \ \mathring{A} \ \mathring{z}\ as\ mouse_rat_assoc,$ $\mathring{a} \ \mathring{A} \ \mathring{Y} \ IMPC \ \mathring{a} \ \mathring{A} \ \mathring{z}\ as\ source_attr\ from\ mouse_rat_association_mouse,\ mouse_phene_impc$ $WHERE\ mouse_rat_association_mouse.mouse_gene_symbol=\ mouse_phene_impc.gene_symbol;$

distinct impc

mysql> CREATE TABLE mouse _gene _phene _impc _distinct SELECT * from mouse _gene _phene _impc WHERE NOT EXISTS (SELECT * from mouse _gene _phene _rgd WHERE mouse _gene _phene _rgd.phene _ mouse _gene _phene _impc.phene _id AND mouse _gene _phene _impc.human _ortholog= mouse _gene _phene _rgd.human _ortholog);

combine rgd and impc mouse gene-phenes:

 $mysql> CREATE\ TABLE\ mouse_gene_phene_final\ (SELECT\ *\ from\ mouse_gene_phene_rgd)$ UNION ALL (SELECT *\ from\ mouse_gene_phene_impc_distinct)

same

mysql> CREATE TABLE human _mouse _same _phene SELECT * from mouse _gene _phene _final WHERE EXISTS (SELECT * from human _gene _phene _final WHERE mouse _gene _phene _final.phene _id= human _gene _phene _final.phene _id AND mouse _gene _phene _final.human _ortholog= human _gene _phene _final.human _ortholog);

distinct

 $\label{lem:mysql} mysql> CREATE\ TABLE\ human_mouse_distinct_phene\ SELECT\ *\ from\ mouse_gene_phene_final\ WHERE\ mouse_gene_phene_final.phene\ human_gene_phene_final.phene_id\ AND\ mouse_gene_phene_final.human_ortholog= human_gene_phene_final.human_ortholog);$

7.2.9 Rat

Use the rat genes from the mouse rat association final table and join on common rat genes against the RGD phenotype file and obtain the phenotype associations:

mysql> CREATE TABLE rat_gene_phene_final SELECT DISTINCT mouse_rat_association_rat.rat_gene mouse_rat_association_rat.uniprot_id, rat_phene_rgd.phene_id, mouse_rat_association_rat.human_orthaÄŸ âĂŹ as mouse_rat_assoc, âĂŸRGDâĂŹ as source_attr from mouse_rat_association_rat, rat_phene_rgd WHERE mouse_rat_association_rat.rat_gene_symbol = rat_phene_rgd.gene_symbol;

same-

mysql> CREATE TABLE human_rat_same_phene SELECT * from rat_gene_phene_final WHERE EXISTS (SELECT * from human_gene_phene_final WHERE rat_gene_phene_final.phene_id=human_gene_phene_final.phene_id AND rat_gene_phene_final.human_ortholog= human_gene_phene_final.human_ortholog);

distinct-

mysql> CREATE TABLE human_rat_distinct_phene SELECT * from rat_gene_phene_final WHERE NOT EXISTS (SELECT * from human_gene_phene_final WHERE rat_gene_phene_final.phene_i human_gene_phene_final.phene_id AND rat_gene_phene_final.human_ortholog= human_gene_phene_final.human_ortholog);

Inserting values for columns that will distinguish matched and unmatched mouse genes against human genes:

```
mysql> UPDATE human_rat_phene_same SET mouse_rat_assoc =' direct_assoc '; mysql> UPDATE human_rat_phene_distinct SET mouse_rat_assoc =' indirect_assoc'; mysql> UPDATE human_mouse_phene_same SET mouse_rat_assoc =' direct_assoc '; mysql> UPDATE human_mouse_phene_same SET mouse_rat_assoc =' indirect_assoc';
```

unify-

mysql> CREATE TABLE gene_phene_final (SELECT * from human_phene_gene_final) UNION ALL (SELECT * from human_rat_phene_same) UNION ALL (SELECT * from human_rat_phene_distinct) UNION ALL (SELECT * from human_mouse_phene_same) UNION ALL (SELECT * from human_mouse_phene_same); Phenotype-Disease:

For the human, mouse and rat, join based on common gene from the gene_disease_final and phene_gene_final tables to grab the mesh/omim and phene ids which will show drug-disease associations.

7.2.10 Human

```
mysql> CREATE TABLE human_phene_disease_final SELECT DISTINCT human_gene_disease_final.meshuman_gene_disease_final.source_id as âĂŸsource_id_diseaseâĂŹ, human_phene_gene_final.phene_id, human_phene_gene_final.source_attr as âĂŸsource_id_pheneâĂŹ, âĂŸNULLâĂŹ as human_ortholog, âĂŸNULLâĂŹ as mouse_rat_assoc from human_gene_disease_final, human_phene_gene_final WHERE human_phene_gene_final.uniprot_id = human_gene_disease_final.uni
```

7.2.11 Mouse

 $mysql> CREATE\ TABLE\ mouse_phene_disease_same\ SELECT\ DISTINCT\ human_mouse_same_disease.ruman_mouse_same_disease.source_id\ as\ a\~A\'Ysource_id_diseasea\~A\'Z,\ human_mouse_phene_same.p$

human _mouse _phene _ same .source _ attri as â\A'\dec{Y}source _ id _phene\a'\dec{A}\dec{Z}, human _mouse _ same _ disease.human _\a'\dec{A}\dec{Y}\a'\a'\dec{A}\dec{Y}\as mouse _rat _assoc from human _mouse _same _disease, human _mouse _phene _same .WHERE , human _mouse _same _disease.uniprot _ id = human _mouse _phene _same.uniprot _ id AND human _mouse _same _disease.human _ortholog = human _mouse _phene _same.human _ortholog; mysql> CREATE TABLE mouse _phene _disease _distinct SELECT DISTINCT human _mouse _distinct _disease.mesh _omim _id, human _mouse _distinct _disease.source _id as â\dec{A}\dec{Y}\source _id _disease\dec{A}\dec{Z}, human _mouse _phene _distinct.phene _id, human _mouse _phene _distinct.sou as â\dec{A}\dec{Y}\source _id _phene\dec{A}\dec{Z}, human _mouse _distinct _disease.human _ortholog, \dec{A}\dec{Y}\dec{Y}\dec{A}\dec{Y}\dec

7.2.12 Rat

mysql> CREATE TABLE rat phene disease same SELECT DISTINCT human rat same disease.mesh of human_rat_same_disease.source_id as âĂŸsource_id_diseaseâĂŹ, human_rat_phene_same.phene_id, human_rat_phene_same.source_attr as âĂŸsource_id_pheneâĂŹ, human_rat_same_disease.human_ortho $\hat{a}\ddot{A}\ddot{Y}\,\hat{a}\ddot{A}\ddot{Y}\,$ as mouse rat assoc from human rat same disease, human rat phene same WHERE, human rat same disease.uniprot id = human rat phene same.uniprot id AND human rat same disease.human ortholog = human rat phene same.human ortholog; mysql> CREATE TABLE rat_phene_disease_distinct SELECT DISTINCT human rat distinct disease.mesh omim id, human rat distinct disease.source id as âĂŸsource id diseaseâĂŹ, human rat phene distinct.phene id, human rat phene distinct.source attr as âĂŸsource id pheneâĂŹ, human rat distinct disease.human ortholog, âĂŸ âĂŸ as mouse _rat _assoc from human _rat _distinct _disease, human _rat _phene _distinct WHERE, human rat distinct disease.uniprot id = human rat phene distinct.uniprot id AND human_rat_distinct_disease.human_ortholog = human_rat_phene_distinct.human_ortholog; mysql> CREATE TABLE rat phene disease final SELECT DISTINCT human rat same disease.mesh human rat same disease.source id as âĂŸsource id diseaseâĂŹ, human rat phene same.phene id, human rat phene same.source attri as âĂŸsource id pheneâĂŹ, human rat same disease.human orth $\hat{a}\ddot{A}\ddot{Y}\,\hat{a}\ddot{A}\ddot{Y}\,as\,mouse\,rat\,assoc\,from\,human\,rat\,same\,disease,\,human\,rat\,phene\,same$ WHERE, human_rat_same_disease.uniprot_id = human_rat_phene_same.uniprot_id

Inserting values for columns that will distinguish matched and unmatched mouse and rat genes against human genes:

AND human rat same disease.human ortholog = human rat phene same.human ortholog;

```
mysql> UPDATE rat_phene_disease_same SET mouse_rat_assoc =' direct_assoc'; mysql> UPDATE human_rat_phene_distinct SET mouse_rat_assoc =' indirect_assoc'; mysql> UPDATE human_mouse_phene_same SET mouse_rat_assoc =' direct_assoc'; mysql> UPDATE human_mouse_phene_same SET mouse_rat_assoc =' indirect_assoc';
```

unify-

mysql> CREATE TABLE drug_gene_final (SELECT * from human_drug_disease_final) UNION ALL (SELECT * from rat_drug_disease_same) UNION ALL (SELECT * from rat_drug_disease_distinct) UNION ALL (SELECT * from mouse_drug_disease_distinct) UNION ALL (SELECT * from mouse_drug_disease_same);