Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3111 e MTM5512 - Geometria Analítica

Lista de exercícios 1.3 - Determinantes e propriedades

Semana 1

Ultima atualização: 26 de janeiro de 2021

1. Considere as matrizes

$$A = [3], B = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}, C = \begin{bmatrix} -3 & 2 & 1 \\ 2 & -4 & 1 \\ -2 & -3 & 0 \end{bmatrix},$$

$$D = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 5 & -7 \\ -2 & 3 & 2 \end{bmatrix} \quad e \quad E = \begin{bmatrix} 2 & 3 & -3 & -2 \\ 0 & -1 & 1 & 4 \\ 3 & 2 & -1 & 0 \\ 0 & 2 & -2 & -4 \end{bmatrix}.$$

Sem usar escalonamento, calcule os determinantes abaixo.

- (a) $\det(A)$.
- **(b)** $\det(B)$.
- (c) $\det(C)$.
- (d) $\det(D)$.
- (e) $\det(E)$.

- **2.** Considere a matriz $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 0 & 2 \\ 1 & 2 & 5 & 2 \end{bmatrix}$.
 - (a) Determine a matriz A_1 que é obtida a partir de A substituindo-se a linha 2 pela soma da linha 2 com menos 3 vezes a linha 1.
 - (b) Determine a matriz A_2 que é obtida a partir de A_1 substituindo-se a linha 3 pela soma da linha 3 com menos 4 vezes a linha 1.
 - (c) Determine a matriz A_3 que é obtida a partir de A_2 substituindo-se a linha 4 pela linha 4 menos a linha 1.
 - (d) Determine a matriz A_4 que é obtida a partir de A_3 dividindo-se a linha 2 por -7.
 - (e) Determine a matriz A_5 que é obtida a partir de A_4 substituindo-se a linha 3 pela linha 3 mais 9 vezes a linha 2.
 - (f) Note que a matriz A_5 é triangular superior. Usando as propriedades de determinantes, calcule os determinantes das matrizes A, A_1 , A_2 , A_3 , A_4 e A_5 .
- **3.** Sabendo que $\left| \begin{array}{ccc} d & e & f \\ g & h & i \end{array} \right| = 3$, calcule os determinantes a seguir.

(a)
$$\begin{vmatrix} d & e & f \\ a & b & c \\ g & h & i \end{vmatrix}$$

(b)
$$\begin{vmatrix} d & e & f \\ g & h & i \\ a & b & c \end{vmatrix}$$

(c)
$$\begin{vmatrix} a & b & c \\ 0 & 0 & 0 \\ g & h & i \end{vmatrix}$$

$$\begin{array}{c|cccc}
\mathbf{(d)} & 2a & b & c \\
2d & e & f \\
2g & h & i
\end{array}$$

(a)
$$\begin{vmatrix} d & e & f \\ a & b & c \\ g & h & i \end{vmatrix}$$
 (b) $\begin{vmatrix} d & e & f \\ g & h & i \\ a & b & c \end{vmatrix}$
 (c) $\begin{vmatrix} a & b & c \\ 0 & 0 & 0 \\ g & h & i \end{vmatrix}$

 (d) $\begin{vmatrix} 2a & b & c \\ 2d & e & f \\ 2g & h & i \end{vmatrix}$
 (e) $\begin{vmatrix} 2a & 2b & 2c \\ d & e & f \\ -g & -h & -i \end{vmatrix}$
 (f) $\begin{vmatrix} b & a & 4c \\ e & d & 4f \\ h & g & 4i \end{vmatrix}$

$$\begin{array}{c|cccc}
\mathbf{(f)} & b & a & 4c \\
e & d & 4f \\
h & g & 4i
\end{array}$$