MA4702 Programación Lineal Mixta: Teoría y

Laboratorio.
Profesor: Martín Matamala.

Auxiliares: Benjamín Jauregui y Cristian Palma.

Fecha: 13 de abril de 2022.

Laboratorio 2: Parte Presencial

Generación de Columnas

El objetivo de este laboratorio es experimentar con la solución de problemas lineales de gran tamaño, para ello se utilizará la técnica de generación de columnas. Dados $A \in \mathbb{R}^{m \times n}$ y $g, d \in \mathbb{R}^m$, el problema que queremos resolver es:

$$(\mathcal{P}) \qquad \max_{s.a.} \qquad g^T A x \\ s.a. \qquad A x \leq d \\ \sum_{j=1}^n x_j = 1 \\ x \geq 0$$

Para resolver el problema (\mathcal{P}) aplicaremos el algoritmo de generación de columnas, esto es, un método iterativo que consiste en considerar problemas truncados:

$$(\mathcal{P}^K)$$
 máx $g^T A^K x^K$
 $s.a.$ $A^K x^K \leq d$
 $\sum_{j \in K} x_j = 1$
 $x^K > 0$

donde K es un subconjunto de $\{1,\ldots,n\}$, el cual identificará las columnas que serán utilizadas en una iteración del algoritmo, $A^K=(A_{\bullet j})_{j\in K}$ y $x^K=(x_j)_{j\in K}$.

Los códigos tienen que ser entregados en un archivo *Jupyter*, es decir, en formato **ipynb**, usando *Julia* como lenguaje de programación y *Gurobi* como solver asociado. Asegúrese de que su código funcione en las instancias indicadas en cada pregunta. Pueden modificar los parámetros sugeridos para funciones en caso de considerarlo necesario.

- **P1.** Implemente la función resolverProblemaMaestro(m,A,g,d,K) que cree un modelo para (\mathcal{P}^K) , lo resuelva y retorne el valor objetivo, las variables primales y duales en el óptimo. Es importante que K sea un parámetro para que permita ir agregando columnas.
- **P2.** Pruebe la función anterior aplicándola a las instancias de prueba usadas en la tarea individual, tomando K como los índices pares menores o iguales a i_j . Puede obtener dichas instancias llamando crearInstancias(j), que retorna la matriz A de i_j filas y $2i_j$ columnas y los vectores g, d de tamaño i_j para $j \in [11]$. Presente ordenadamente los resultados.

El dual de (P) está dado por

$$\begin{aligned} (\mathcal{D}) & & & \min & & \theta + d^T y \\ & & s.a. & & (A^T y)_j + \theta \geq (A^T g)_j, & \forall j \in [n] \\ & & & y \geq 0, & \theta \in \mathbb{R} \end{aligned}$$

El dual de (\mathcal{P}^K) está dado por

$$\begin{array}{ll} (\mathcal{D}^K) & \quad \min & \quad \theta + d^T y \\ s.a. & \quad (A^T y)_j + \theta \geq (A^T g)_j, \quad \forall j \in K \\ y \geq 0, \quad \theta \in \mathbb{R} \end{array}$$

y se sabe que una solución óptima $(\overline{y}, \overline{\theta})$ de (\mathcal{D}^K) es factible para (\mathcal{D}) si y sólo si el valor del siguiente problema (\mathcal{E}) es al menos $-\overline{\theta}$.

$$(\mathcal{E}) \qquad \min_{j \ \in \ [n]} \quad (A^T(\overline{y} - g))_j$$

- **P3.** Considere el caso en el que A es la matriz cuyas columnas son todas las indicatrices de un emparejamiento perfecto de un grafo bipartito con partes de tamaño N. Reformule (\mathcal{E}) como un programa lineal entero. Indique una cota para la cantidad de columnas de A en función de N. ¿Qué dice esto de la resolución directa de (P)?
- **P4.** Implemente la función resolverProblemaPricing(m,E,g,y), con E las aristas del grafo, que cree el modelo lineal entero de la pregunta anterior, lo resuelva y retorne el valor objetivo y las variables primales.
- **P5.** Pruebe la función en la instancia consistente en el grafo dado por crearGrafoBipartito, el vector \overline{y} dado por crearTestY y g = 0.
- P6. Implemente la función resolverGeneracionColumnas(m,E,g,d,K_0), que ejecute el siguiente método:
 - a) Asignar $K = K_0$.
 - b) Resolver (\mathcal{P}^K) .
 - c) Si la solución dual es factible para (\mathcal{D}) , entonces el proceso termina.
 - d) En otro caso, la solución del problema (\mathcal{E}) nos da una columna j de A, y el conjunto K crece agregándole el índice j. Volver a b).

Retorne las columnas usadas, el valor objetivo y las variables primales en el óptimo.

Indicación: Se recomienda tratar a K como un conjunto de emparejamientos, no como índices de columnas de una matriz. Para ello, deberá adaptar la función resolverProblemaMaestro(m,A,g,d,K).

P7. Pruébelo en la instancia dada por el grafo anterior, g,d dados por crearParametros y K_0 dado por crearColumnasIniciales.

Laboratorio 2: Post Laboratorio

Demuestre las afirmaciones usadas durante el laboratorio, esto es:

- **P1.** Demuestre que el dual de (P) está dado por (D) y que éste es factible y acotado.
- **P2.** Justifique brevemente que (\mathcal{D}^K) es a la vez el dual del problema (\mathcal{P}^K) y una relajación del problema (\mathcal{D}) . Demuestre además que una solución óptima $(\overline{y}, \overline{\theta})$ de (\mathcal{D}^K) es factible para (\mathcal{D}) si y sólo si el valor de (\mathcal{E}) es al menos $-\overline{\theta}$.