Post's Correspondence Problem (PCP)

Textbook: Chapter 5.2

Intro

- Imagine we have some set of dominos, each with a top and bottom section
- ▶ We want to arrange them (repetition allowed) so that the top and bottom match when read left to right

$$\left\{ \begin{bmatrix} \frac{ab}{a} \end{bmatrix}, \begin{bmatrix} \frac{c}{bc} \end{bmatrix} \right\}$$
$$\left[\frac{ab}{a} \end{bmatrix} \begin{bmatrix} \frac{c}{bc} \end{bmatrix} \to \frac{abc}{abc}$$

Some sets of dominos have possible matches, and some don't

Def. Post's Correspondence Problem. Does a given set of dominos have a possible match?

As a language:

 $PCP = \{w : w \text{ encodes a set of dominos which match } \}$

Undecidability

Thm. *PCP* is undecidable.

Pf. By reduction from the decision problem A_{TM} . We will assume PCP is decidable and show that this implies A_{TM} is decidable (a contradiction).

- We can construct an instance of PCP which simulates a TM
 - Can design it so it matches iff the TM accepts
- ► Therefore a *PCP* decider would decide *A*_{TM}

Next up: Nondeterministic Turing Machines