Algebra 1 Final

Jaden Wang

Please do NOT grade Problem 4.

Problem (1). Let |G:H| = n.

Case (1). If n is a prime, then it must be the smallest prime dividing |G| by assumption. Then |H| has index the smallest prime and therefore $H \leq G$ by Corollary 4.5.

Case (2). Suppose n is not a prime. Then the prime factors of |H| must be strictly larger than n. Consider the action representation $\phi: G \to S_n$ of G acting on cosets G/H by left multiplication. Per Homework 2 Problem 2 we know that $K:=\ker \phi$ is the largest normal subgroup contained in H. Therefore, |G:H|=n divides |G:K| divides |G|=|H|n. That is, |G:K|=dn where d||H|. But since we know that every prime dividing |H| is strictly larger than n, each prime factor of d is also greater than n as well. Moreover, $|\operatorname{im} \phi|$ divides $|S_n|=n!$, so by the definition of factorial, prime factors of $|\operatorname{im} \phi|$ must all be no greater than n. By the first isomorphism theorem, we know that $|G:K|=|\operatorname{im} \phi|$. However, if d>1, then |G:K| would contain prime factors strictly larger than any prime factor in $|\operatorname{im} \phi|$ so they wouldn't equal, a contradiction. It follows that d=1 and therefore |G:K|=|G:H|. This implies that H=K and therefore $H \subseteq G$ as K does.

Problem (2). By the class equation,

$$pq - p - q = |X| = |Z| + \sum_{a \in A} [G : G_a]$$

where Z is the set of elements with trivial orbits (*i.e.* fixed points) and A is the set consisting of one representative from each nontrivial orbit. Since |G| = pq, $[G:G_a]$ must divide |G| so $[G:G_a] = 1$, p, q or pq. If $[G:G_a] = 1$, then G fixes a and we are done. If $[G:G_a] = pq$, this violates that the sum is at most pq - p - q < pq. We are left of the cases where $[G:G_a] = pq$ or q. Then the sum can be written as

$$\sum_{a \in A} [G : G_a] = mp + nq$$

for some $m, n \in \mathbb{N}$ (note when $A = \emptyset$, m = n = 0). It follows that

$$pq - p - q = |Z| + mp + nq$$

 $|Z| = pq - (m+1)p - (n+1)q$

Suppose to the contrary that |Z| = 0, then pq = (m+1)p + (n+1)q. This implies that p|(m+1)p + (n+1)q and q|(m+1)p + (n+1)q which by the definition of primes implies p|n+1 and q|m+1. But since m+1, n+1>0, we must have $m+1 \ge q$ and $n+1 \ge p$, then $(m+1)p + (n+1)q \ge qp + pq = 2pq > pq$, a contradiction. This forces |Z| > 0. That is, there is at least one fixed point.

Problem (3). Given $P \in Syl_p(G)$ and $Q \in Syl_p(H)$, since $|Q| = p^k$ for some k and $Q \leq H \leq G$, Q is a p-subgroup of G. Thus by Sylow Theorem, there exists a $g \in G$ s.t. $Q \leq gPg^{-1}$. This establishes that $Q \leq gPg^{-1} \cap H$.

Let $|gPg^{-1}| = p^n$ for some $n \ge k$, and $|H| = p^k m$ where p doesn't divide m. We see that $gPg^{-1} \cap H$ must have order dividing both p^n and $p^k m$ and therefore must divide $p^k = |Q|$, i.e. $|gPg^{-1} \cap H| \le |Q|$. It follows that $Q = gPg^{-1} \cap H$.

Problem (4). (DO NOT GRADE). For any $a \in \mathbb{Z}$, denote $a_m := a \mod m$ and $a_n := a \mod n$. Since $\mathbb{Z}_n = \langle 1_n \rangle$ and $\mathbb{Z}_m = \langle 1_m \rangle$ as abelian groups, we can define an abelian group (or \mathbb{Z} -module) homomorphism ϕ by mapping generator to generator: $\phi : \mathbb{Z}_n \to \mathbb{Z}_m, 1_n \mapsto 1_m$. Note $\phi(a_n) = a_m$. This is well-defined since m|n and $1_m \cdot n = 1_m \cdot m \cdot k = 0 \cdot k = 0$ satisfies the relation on the generator 1_n . Surjectivity is clear from that the generator 1_m is hit. It remains to check that ϕ respects multiplication: given $a_n, b_n \in \mathbb{Z}_n$, we have

$$\phi(a_n b_n) = \phi((ab)_n)$$

$$= (ab)_m$$

$$= a_m b_m$$

$$= \phi(a_n)\phi(b_n)$$

Hence ϕ is a ring homomorphism.

Given $a_n \in \mathbb{Z}_n^{\times}$, we know that $\gcd(a,n) = 1$. Since m|n, we have $\gcd(a,m) = 1$ so $a_m = \phi(a_n) \in \mathbb{Z}_m^{\times}$. Thus the restriction $\overline{\phi} : \mathbb{Z}_n^{\times} \to \mathbb{Z}_m^{\times}$ of ϕ is well-defined and clearly remains a

homomorphism. Let n = km for some $k \in \mathbb{Z}_+$. Consider $\ker \overline{\phi} = \{a_n \in \mathbb{Z}_n^{\times} : \overline{\phi}(a_n) = a_m = 1_m\} = \{a_n \in \mathbb{Z}_n^{\times} : a = 1 + \ell m, \ell \in \mathbb{Z}\} = \{a_n : a = 1 + \ell m, 0 \le \ell \le k - 1, \gcd(1 + \ell m, km) = 1\}.$ Since it is clear that $\gcd(1 + \ell m, km) = 1 =$, we finally simplify to

$$\ker \overline{\phi} = \{a_n : a = 1 + \ell m, 0 \le \ell \le k - 1, \gcd(a, k) = 1\}.$$

Problem (5). It doesn't seem like commutativity is required?

First I show an elementary proof. Suppose we have a multiplication \times structure with identity on \mathbb{Q}/\mathbb{Z} . Let the identity be $[p/q] \neq [0]$, i.e. $q \neq 0$ and $p/q \notin \mathbb{Z}$, as \mathbb{Q}/\mathbb{Z} is not the trivial ring. Then by the axiom of identity, $[p/q] \times [1/2] = [1/2] \neq [0]$. However,

$$\begin{split} [p/q] \times [1/2] &= [p/2q + p/2q] \times [1/2] \\ &= ([p/2q] + [p/2q]) \times [1/2] \\ &= [p/2q] \times [1/2] + [p/2q] \times [1/2] \qquad \text{distributivity} \\ &= [p/2q] \times ([1/2] + [1/2]) \qquad \text{distributivity} \\ &= [p/2q] \times [1] \\ &= [p/2q] \times [0] \\ &= [0], \end{split}$$

a contradiction. Hence no such ring structure exists.

Here I also show a similar proof using the language of tensor products as a bonus.

It suffices to show that no compatible multiplication can be defined on \mathbb{Q}/\mathbb{Z} . Suppose that we have an associative and distributive binary operation (demanded by a ring multiplication) $m: \mathbb{Q}/\mathbb{Z} \times \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ defined on the \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} , with a multiplicative identity 1. Then by distributivity laws, m is a \mathbb{Z} -bilinear map. By the universal property of tensor products of modules over a commutative ring (\mathbb{Z}) (Theorem 10.10 and Corollary 10.12), we have the commutative diagram:

$$\mathbb{Q}/\mathbb{Z} \times \mathbb{Q}/\mathbb{Z} \xrightarrow{\iota} \mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$$

$$\downarrow^{\phi}$$

$$\mathbb{Q}/\mathbb{Z}$$

However, since $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$ (Example 4 under Corollary 10.12), this forces $\iota = 0$ so m is the zero \mathbb{Z} -module homomorphism as well. But this violates the axiom for the identity $m(\mathbb{I}, [1/2]) = [1/2] \neq [0]$ (since $1/2 \notin \mathbb{Z}$), a contradiction. Hence no such ring structure exists for the abelian group \mathbb{Q}/\mathbb{Z} so there is no such isomorphic ring either.

Problem (8). Since G is finitely generated, we can apply the structure theorem for \mathbb{Z} -modules. In particular, we wish to diagonalize the presentation represented by the relation matrix via the Smith Normal Form.

$$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & -1 & 3 \\ 0 & 3 & -6 \end{pmatrix}$$
$$\xrightarrow{C_2 + C_1, C_3 - 3C_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & -6 \end{pmatrix}$$
$$\xrightarrow{C_3 + 2C_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$

Thus we obtain a new set of generators x', y', z' with the relations x' = 0, 3y' = 0, 0z' = 0. Therefore, $\operatorname{Ann}_{\mathbb{Z}}(\langle x' \rangle) = \mathbb{Z}$, $\operatorname{Ann}_{\mathbb{Z}}(\langle y' \rangle) = \langle 3 \rangle$, and $\operatorname{Ann}_{\mathbb{Z}}(\langle z' \rangle) = 0$ since z' has no relation. This implies that

$$G \cong \mathbb{Z}/\operatorname{Ann}_{\mathbb{Z}}(\langle x' \rangle) \oplus \mathbb{Z}/\operatorname{Ann}_{\mathbb{Z}}(\langle y' \rangle) \oplus \mathbb{Z}/\operatorname{Ann}_{\mathbb{Z}}(\langle z' \rangle)$$
$$= \mathbb{Z}/\mathbb{Z} \oplus \mathbb{Z}/\langle 3 \rangle \oplus \mathbb{Z}/0$$
$$\cong \mathbb{Z} \oplus \mathbb{Z}_{3}$$

Problem (9). The number of possible JCF (up to permutation of Jordan blocks) over \mathbb{C} is the same as the number of possible RCF over \mathbb{C} . First we see that the minimal polynomial m(x) must be divisible by $x(x^2 - 1)(x^2 + 1) = x(x + 1)(x - 1)(x + i)(x - i)$. Then Cayley-Hamilton yields the following possible invariant factors over \mathbb{C} :

(1)
$$x(x^2+1)|x(x^2-1)(x^2+1) = m(x)$$
.

(2)
$$x^2 + 1|x^2(x^2 - 1)(x^2 + 1) = m(x)$$
.

(3)
$$x|x(x^2-1)(x^2+1)^2 = m(x)$$
.

(4)
$$x^2(x^2-1)(x^2+1)^2 = m(x)$$
.

Therefore the number is 4.

Problem (11). By Eisenstein p = 5, we see that 5|20 but 25 does not divide 20 so $x^{15} + 20$ is irreducible.

$$x^{15} + 20 = 0$$

$$x^{15} = -20$$

$$x = -\sqrt[15]{20}e^{(2k\pi i)/15}$$

Let $\gamma := \sqrt[15]{20}$ and $\zeta = e^{2\pi i/15}$. Clearly ζ, γ generate all the roots.

Since $-\gamma$ is a root of $x^{15} + 20$ which is irreducible, $[\mathbb{Q}(\gamma) : \mathbb{Q}] = 15$. Since ζ is a primitive 15th roots of unit, by Corollary 13.42, $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(15) = \phi(3)\phi(5) = 2 \cdot 4 = 8$. Since $\gcd(15,8) = 1$, by Lagrange $[\mathbb{Q}(\gamma,\zeta) : \mathbb{Q}] = 15 \cdot 8 = 120$. Since any field that $x^{15} + 20$ splits must contain γ, ζ , and $\mathbb{Q}(\gamma,\zeta)$ is the smallest field containing γ,ζ by definition, we conclude that it is the splitting field of $x^{15} + 20$ with degree 120.