

Oxygen isotopic ratios in RGB & AGB stars

Ghina M. Halabi

American University of Beirut Beirut, Lebanon

8th European Summer School on Experimental Nuclear Astrophysics September, 13-20, 2015, Santa Tecla, Sicily.

Outline

- 1. How stellar models are constructed and the main uncertainties in stellar evolution calculations.
- 1. Powerful constraints on our parameter choices: ¹⁶O/¹⁷O surface abundances of low-mass Red Giant stars.
- 1. Investigating standard vs non-standard calculation.
- 2. Sensitivity of $^{16}O/^{17}O$ to the uncertainties in nuclear reaction rates.
- 3. What about ${}^{16}O/{}^{18}O$?
- 4. Comparison with other calculations.
- 5. Conclusions.

Evolutionary Code

- Models are constructed using a Lagrangian 1D hydrodynamic evolutionary
 code that solves the partial differential equations describing stellar structure &
 evolution on an adaptive grid.
- Updated input physics (equation of state, opacities, nuclear reaction rates..)

Uncertainties

- Convection is described within the framework of the local 1D MLT. So the treatment of convective boundaries includes free parameters which need to be constrained by observations.
- Existing uncertainties in the experimental evaluation of certain key nuclear reaction rates at the low energies encountered in stars. These uncertainties propagate into the stellar models affecting their fidelity and the nucleosynthesis yields.

Masses & Surface Abundances (I): Observational data

Halabi, G. M. & El Eid, M. MNRAS 451, 2957 (2015)

Masses & Surface Abundances (II): Mass Determination

- Mass-loss taken into account
- Lower error bars than Tusji (2008)

Masses & Surface Abundances (III): Surface Abundance of ¹⁶O/¹⁷O

Standard Calculation

Masses & Surface Abundances (IV): Surface Abundance of ¹⁶O/¹⁷O

Standard Calculation

Masses & Surface Abundances (V): Abundance Profiles

Abundance profiles after H-burning, before FDUP

Treatment of convective boundaries: Overshooting

$$\frac{dX_i}{dt} = \frac{\partial}{\partial M_r} \left[(4\pi r^2 \rho)^2 D \frac{\partial X_i}{\partial M_r} \right]$$

D = 0 in radiative zones

D ≠ 0 in convective zones calculated according to the MLT

D at convective boundaries given by:

$$D_{os}(z) = D_c e^{\frac{-2z}{fH_p}}$$
 $z = \left|r_0 - r\right|$ (Freytag et al. 1996)

f is dependent on the stellar parameters and the evolutionary phase

Masses & Surface Abundances (VI): Surface Abundance of ¹⁶O/¹⁷O

with envelope overshooting

Direct evidence that overshooting is needed in low mass stars

Masses & Surface Abundances (VII): Surface Abundance of ¹⁶O/¹⁷O: Rate uncertainties

The Sallaska et al. (2013) compilation of p-capture reaction rates is based on a Monte Carlo simulation.

The rates have statistically well-defined uncertainties (Longland 2012; Iliadis et al. 2014).

Standard case

Fig. 4. $^{16}\text{O}/^{17}\text{O}$ ratios after the first dredge-up versus stellar mass in M_{\odot} . Lines represent the theoretical predictions, and the red squares are observations. Blue solid line: reference model (R). Blue dashed lines: ^{17}O proton capture rate modified within the suggested upper and lower rates (O17L and O17H). Solid black line: theoretical predictions as obtained by reducing the initial ^{16}O to $[^{16}\text{O/H}]$ =-0.22 (C16OL).

mass (solar)

2500

Masses & Surface Abundances (VIII): Surface Abundance of ¹⁶O/¹⁸O

Conclusions

- A sample of observed red giants was considered and their masses were obtained using extended evolutionary tracks.
- Overshooting is needed to reconcile observational oxygen abundances with model predictions, particularly in low mass red giants.
- The spread in the observational data can be attributed to the inherent difficulties in analysing the spectra of these relatively cool stars and the uncertainties involved in measuring faint lines.
- The effect of recent evaluations of the reaction rates on the production and destruction of ¹⁷O was explored. The experimentally suggested uncertainty of these rates provides a better fit of the ¹⁶O/¹⁷O observed in low-mass stars, yet does not exclude the need to invoke overshooting.