INTRODUCTION A LA THERMODYNAMIQUE

Exercice n°1

On considère 3 dispositifs expérimentaux A, B et C qui contiennent de l'hélium.

- A est une enceinte hermétiquement fermée aux parois rigides.
- B est une enceinte thermostatée (c'est-à-dire dans laquelle la température est régulée de façon à ne pas varier) fermée par un piston hermétique mais qui peut coulisser.
- C est une enceinte rigide, thermostatée, reliée à une bouteille d'hélium par un robinet. Initialement dans tous les récipients le gaz parfait occupe un volume de 246L, à P_0 = 1 atm et 27°C.
- a) Déterminer la quantité de matière d'hélium présent dans chacune des enceintes.
- b) On veut doubler la pression dans chaque enceinte. Que vaudront alors les grandeurs d'état ? Comment réaliser chaque opération ?
- c) Que vaut l'énergie interne initiale et finale dans chaque enceinte ?

Exercice n°2

On place dans les deux compartiments d'une enceinte la même quantité n de deux gaz parfaits monoatomiques identiques. Ces deux compartiments sont séparés par un piston mobile de section $S=200~cm^2$. Initialement, les deux gaz ont même température $T_0=300K$, même volume $V_0=10.0L$ et même pression $P_0=10.0$ bars, et le piston est au centre de l'enceinte, à l'abscisse x=0.

- 1°) Calculer la quantité de matière n de gaz dans chacun des compartiments.
- 2°) On élève la température du gaz du compartiment de gauche jusqu'à T_F = 350K, tout en maintenant la température du compartiment de droite à T_0 . Calculer l'abscisse x du piston une fois le nouvel état d'équilibre atteint.

Exercice n°3

Principe de la cocotte – minute (ou "auto-cuiseur").

Nous disposons d'une cocotte - minute de 8 litres dans laquelle nous plaçons 1 litre d'eau pure (m \approx 1kg). On donne la masse molaire atomique de l'hydrogène $M_H \approx 1$ g/mole, la masse molaire atomique de l'oxygène : $M_O \approx 16$ g/mole et la constante des gaz parfaits $R \approx 8,31 J.K^{-1}.mol^{-1}$. L'air de la pièce est à 20 °C.

1. Calculez la masse molaire de l'eau (H_2O) , déduisez-en le nombre de moles d'eau n_{eau} contenues dans 1 litre.

On ferme la cocotte - minute. Etant donné que l'air enfermé est d'une composition chimique différente de l'eau, la pression de la vapeur d'eau est initialement de 0 bar (On suppose alors que l'air est sec et ne contient pas de trace d'eau (0% d'humidité, et donc que la pression partielle de la vapeur est de 0 bar).

On place la cocotte-minute sur le feu. La pression de vapeur saturante de l'eau est donnée par la relation de Duperray :

 $P_{sat} = P_o(t/100)^4$ où $P_o = 1$ atm (1013,25 mbar) et t = température en °C.

On rappelle que $n_{eau} = n_{gaz} + n_{liq}$.

Le diagramme P(T) de l'eau est donné

- 2. Quelle est la température d'ébullition de l'eau sous 1 bar ?
- 3. La cocotte possède une soupape différentielle de 1 bar (La soupape se déclenche lorsque la différence de pression totale entre l'extérieur et l'intérieur de la cocotte est de 1 bar): pour quelle pression des gaz (air + vapeur d'eau) se déclenche t elle ?
- 4. On rappelle que l'eau liquide est soumise à la pression des gaz. Donnez la température atteinte par l'eau bouillante lorsque la soupape se déclenche. Pourquoi ne met-on pas de soupape réglée pour une pression plus élevée ?
- 5. Quelle est la pression de l'air dans la cocotte lorsque la soupape se déclenche ?

- 6. Pour une masse m d'eau de 1kg, calculez le nombre de moles de vapeur contenu dans la cocotte lorsque la soupape se déclenche, déduisez-en la masse de vapeur d'eau.
- 7. Déduisez-en le volume d'eau liquide qui reste dans la cocotte-minute au moment où la soupape se déclenche.

Exercice n°4

Les valeurs expérimentales de l'énergie interne massique de la vapeur d'eau sont les suivantes :

T(K)	523	573	623	673
A P= 10 Bars	2711	2793	2874	2956
AP = 20 Bars	2683	2773	2859	2944

- 1. Tracer les courbes donnant l'énergie interne en fonction de la température.
- 2. A-t-on un gaz parfait?
- 3. Comparer la capacité thermique à volume constant à celle d'un gaz parfait monoatomique.

Exercice n°5

Un réservoir de volume V = 100 L contient de l'air comprimé sous la pression P_0 = 10 bar et à la température ambiante θ_0 = 20°C. Ce réservoir est fermé par un robinet R. Sur l'embout de ce robinet, on fixe un récipient de volume v = 10 L contenant de l'air ambiant, à la température θ_0 et à la pression p = 1 bar. Ce récipient est muni d'une soupape S initialement fermée.

On ouvre le robinet. Que se passe-t-il ?
Exprimer puis calculer la pression P₁ obtenue dans le réservoir.
Le robinet est ensuite refermé, puis la soupape ouverte et enfin on referme la soupape.

- 2. On ouvre à nouveau le robinet. Exprimer puis calculer la pression P_2 obtenue dans le réservoir. La suite des manipulations précédentes est à nouveau effectuée
- 3. Exprimer la relation entre les pressions P_{n+1} et P_n . En déduire la pression limite P_{∞} atteinte dans le réservoir.