

Anfängerpraktikum 2015/2016

Versuch

Durchführung: TT.MM.JJ

Clara RITTMANN 1 Anja BECK^2

 $Betreuer: \\ {\bf Max\ Mustermann}$

 $^{^{1}} clara.rittmann@gmail.com\\$

²anja.beck@tu-dortmund.de

Inhaltsverzeichnis

1	Theorie		2		
2	Aufbau und Ablauf des Experiments		3		
3 Auswertung					
	3.1 Berechnung von Kugelvolumen und -dichte		4		
	3.2 Bestimmung der Apparatekonstante für die große Kugel		5		
	3.3 Konstantenbestimmung der Andradeschen Gleichung		7		
	3.4 Die Reynoldsche Zahl		9		
4	Diskussion		11		

1 Theorie

In diesem Versuch geht es darum die Temperaturabhängigkeit der Viskosität von destilliertem Wasser zu bestimmen.

Die **dynamische Viskosität** η ist ein Maß für die Zähigkeit eines Materials, die auf innere Reibungen zurückzuführen ist. Wenn eine Kugel unter Einwirkung der Gravitationskraft durch eine Flüssigkeit fällt, ist sie in einem zäheren Medium d.h. einem Medium mit einer höheren dynamischen Viskosität langsamer. Die Fallzeit t ist entsprechend größer. Die Viskosität ist des weiteren abhängig von der Geometrie des fallendem Körpers K und dessen effektive Dichte $(\rho_{\rm K} - \rho_{\rm Fl})$.

$$\eta = K \cdot (\rho_{K} - \rho_{Fl}) \cdot t \tag{1}$$

Als Innere Reibung wird die **Stokesche Reibung** abgenommen, die proportional zur Geschwindigkeit v und dem Radius d einer fallenden Kugel ist.

$$F_{\rm R} = 6\pi \eta v d \tag{2}$$

Eine solche Strömung um die Kugel ist laminar und im Gegensatz zu turbulenten Strömungen wirbelfrei. Eine laminare Strömung in einem Zylinder liegt vor, wenn die charakteristische

Reynoldsche Zahl sehr klein ist.¹

$$RE = \frac{\rho_F vd}{\eta} , \qquad (3)$$

d ist der Durchmesser des Zylinders.

Da die Innere Reibung destillierten Wassers vor allem auf Wasserstoffbrückenbindungen zurückzuführen ist, die bei höheren Temperaturen aufbrechen, sinkt die dynamische Viskosität bei zunehmender Temperatur.² Dieses Verhalten beschreibt die **Andradesche Gleichung**

$$\eta(T) = A \exp\left(\frac{B}{T}\right) \quad . \tag{4}$$

Hier hattest du r statt d stehen. Das habe ich geändert.

d ist auch gut. Ich meinete zwar wirklich r mit dem Radius der Kugel, aber jetzt habe ich darüber auch in d geändert, so dass es einheitlich ist.

Dann muss in der Kraft aber auch der Faktor zu 12 geändert werden.

D. Getschke, Physikalisches Praktikum, Teubner Verlagsgesellschaft, 9. Auflage, 1992, S. 86

²R.Winter, Basiswissen Physikalische Chemie, Vieweg + Teubner, 4. Auflage, 2010, S. 31

2 Aufbau und Ablauf des Experiments

In einem Höppler-Viskosimeter (siehe Abb. 1) sinkt eine Kugel durch einem mit einer Flüssigkeit befüllten Zylinder. Hier ist es destilliertes Wasser. Beim Befüllen des Zylinders mit der Flüssigkeit und der Kugel ist darauf zu achten, dass sich keine Luftblasen an der Kugel bilden. Die Kugel fällt nicht, sondern sie rutscht an der Innenwand des leicht schräg stehenden Zylinders herab. Das ist wichtig, um das Anschlagen der Kugel an den Innenwänden und dadurch entstehende Turbulenzen zu verhindern.

Die Zeit, die die Kugel braucht, um zwei Markierungen im Abstand von 10 cm zu passieren ist die Fallzeit. Diese wird für zwei verschieden große Kugeln zehn Mal bei Raumtemperatur gemessen. In einer zweiten Messreihe wird das destillierte Wasser erhitzt und die Fallzeit der größeren Kugel bei zehn verschiedenen Temperaturen je zwei Mal gemessen. Beide Kugeln werden vor Versuchsbeginn vermessen und gewogen.

Abbildung 1: Höppler-Viskosimeter mit Heizung

Das ist alles super kurz, aber was haben wir denn sonst noch gemacht?!

Ich finds spitze:)

Viskosimeter Auswertung

3 Auswertung

3.1 Berechnung von Kugelvolumen und -dichte

	groß	klein
	15.802	15.651
	15.796	15.652
	15.804	15.650
Mittelwert	15.801 ± 0.002	15.651 ± 0.001

Tabelle 1: Durchmesser d der beiden Kugeln in 10^{-3} m

Aus den Durchmessern der zwei Glaskugeln (siehe Tabelle 1) ergeben sich die Volumina

$$V_{\rm kl} = (2.0074 \pm 0.0002) \cdot 10^{-6} \,\mathrm{m}^3$$
 und (5)

$$V_{\rm gr} = (2.0655 \pm 0.0008) \cdot 10^{-6} \,\mathrm{m}^3 \,.$$
 (6)

Die kleinere Kugel wiegt

$$m_{\rm kl} = 4.44 \cdot 10^{-3} \, \rm kg$$

und die größere

$$m_{\rm gr} = 4.63 \cdot 10^{-3} \, \rm kg \; ,$$

damit können auch die Dichten

$$\rho_{\rm kl} = (2211.9 \pm 0.2) \,\frac{\rm kg}{\rm m}^3 \quad \text{und}$$
(7)

$$\rho_{\rm gr} = (2241.6 \pm 0.8) \,\frac{\rm kg}{\rm m^3} \tag{8}$$

berechnet werden. Die Fehler ergeben sich hierbei durch die Gaußsche Fehlerfortpflanzung

Super! Mit Fehlerfortpflanzung:-)

$$V(d) = \frac{4}{3}\pi \left(\frac{d}{2}\right)^3: \qquad \sigma_V = \left|\frac{\partial V}{\partial d}\sigma_d\right| = 2\pi \left(\frac{d}{2}\right)^2 \sigma_d \tag{9}$$

$$\rho(d) = \frac{m}{\frac{4}{3}\pi \left(\frac{d}{2}\right)^3} : \qquad \qquad \sigma_{\rho} = \left|\frac{\partial \rho}{\partial d}\sigma_d\right| = \frac{9m}{2\pi \left(\frac{d}{2}\right)^4}\sigma_d \ . \tag{10}$$

3.2 Bestimmung der Apparatekonstante für die große Kugel

Ich meine, Lena hätte gesagt, dass die Aperatkonstante überhaupt nicht mehr stimmt. Ich würde daher die Viskosität von Wasser bei 20 Grad nachschlagen (1.005 mPa s) und daraus die Konstante berechnen. Und die Viskosität gibt man standartmäßig in Pa s an. Abgesehen davon ist der Wert η_{20} in der falschen Größenordnung. Als ich in gerade nachgerechnet habe, kam 1.79 mPa s heraus.

Ah ja, das mit der Apparatekonstante stimmt. Das hatte ich vergessen.

Oh ja. Bei dem η_{20} ist das milli verloren gegangen.

Die Einheit würde ich gerne beibehalten, weil Pascal keine SI-Einheit ist.

Gegenargument: Newton ist auch keine SI-Einheit und ich würde trotzdem nicht kg m/s² schreiben. Ich glaube Einheiten sind viel mehr eine Frage der Gewohnheit (solange sie sich aus SI-Einheiten zusammensetzen). Sehr wichtig ist mir das jetzt aber ehrlich gesagt nicht wirklich ;-)

Die Messung der Fallzeit ergibt die Werte in Tabelle 2.

Fallzeit in Sekunden

	klein	groß
	12.91	92.62
	12.87	92.35
	13.00	92.44
	12.78	92.07
	12.59	93.31
	12.73	92.72
	12.93	93.71
	12.76	91.91
	12.85	92.25
	12.70	91.95
Mittelwerte	12.81 ± 0.04	92.5 ± 0.2

Tabelle 2: Fallzeiten für ein 0.10 m langes Rohr

Mit der Viskosiät von Wasser bei 20 °C bzw. 293.15 K³

$$\eta_{20} = 1.002 \cdot 10^{-3} \frac{\text{kg}}{\text{m s}}$$

und der Dichte von Wasser bei derselben Temperatur³

$$\rho_{\rm W} = 992.8 \, \frac{\rm kg}{\rm m^2}$$

können durch Umstellen und Einsetzen in Formel (1) die Apparatekonstanten für die kleine

$$K_{\rm kl} = \frac{\eta_{20}}{(\rho_{\rm kl} - \rho_{\rm W})t_{\rm kl}} = (6.41 \pm 0.02) \cdot 10^{-8} \, \frac{\rm m^2}{\rm s^2} \tag{11}$$

und die große Kugel

$$K_{\rm gr} = (8.67 \pm 0.02) \cdot 10^{-9} \,\frac{\rm m^2}{\rm s^2}$$
 (12)

 $^{^3\}mathrm{W}.$ Walcher: Praktikum der Physik, Teubner Studienbücher, 1985, Tabellen-Anhang 1.7

bestimmt werden. Auch bei diesen Werten ergibt sich der Fehler durch die Gaußsche Fehler fortp flanzung

$$K = \frac{\eta}{(\rho - \rho_{\rm W})t}: \qquad \sigma_K = \sqrt{\left(\frac{\partial K}{\partial \rho}\sigma_\rho\right)^2 + \left(\frac{\partial K}{\partial t}\sigma_t\right)^2}$$

$$= \sqrt{\left(\frac{\eta\sigma_\rho}{(\rho - \rho_{\rm W})^2 t}\right)^2 + \left(\frac{\eta\sigma_t}{(\rho - \rho_{\rm W})t^2}\right)^2}.$$
(13)

$$= \sqrt{\left(\frac{\eta \sigma_{\rho}}{(\rho - \rho_{W})^{2} t}\right)^{2} + \left(\frac{\eta \sigma_{t}}{(\rho - \rho_{W}) t^{2}}\right)^{2}}.$$
 (14)

3.3 Konstantenbestimmung der Andradeschen Gleichung

Bei der Fallzeit-Messung mit ansteigender Wasser-Temperatur werden die Werte in Tabelle 3 gemessen. Eingesetzt in Gleichung (1) kann so die Viskosität des Wassers in Abhängigkeit der Temperatur berechnet werden. Diese Werte finden sich in derselben Tabelle. Wieder berechnet sich der Fehler der Viskosität nach Gauß (K und ρ sind dabei die Werte der großen Kugel):

$$\eta = K(\rho - \rho_{\rm W})t: \qquad \sigma_{\eta} = \sqrt{\left(\frac{\partial \eta}{\partial K}\sigma_{K}\right)^{2} + \left(\frac{\partial \eta}{\partial \rho}\sigma_{\rho}\right)^{2} + \left(\frac{\partial \eta}{\partial t}\sigma_{t}\right)^{2}}$$
(15)

$$= \sqrt{((\rho - \rho_{W})t)^{2} + (Kt\sigma_{\rho})^{2} + (K(\rho - \rho_{W})t\sigma_{t})^{2}}.$$
 (16)

T in $^{\circ}\mathrm{C}$	Fallze	it in s	Mittelwert der Zeitmessungen	Viskosität $\eta(T)$ in $10^{-3} \mathrm{m}^2/\mathrm{s}^2$
20	92.25	91.95	92 ± 1	0.997 ± 0.002
28	83.25	78.72	81 ± 2	0.88 ± 0.02
31	74.78	73.89	74.3 ± 0.4	0.805 ± 0.005
35	67.97	76.66	72 ± 4	0.78 ± 0.05
40	62.19	62.64	62.4 ± 0.2	0.676 ± 0.003
45	57.69	56.56	57.1 ± 0.6	0.619 ± 0.006
51	51.68	51.78	51.73 ± 0.05	0.560 ± 0.001
55	48.21	49.78	49.0 ± 0.8	0.531 ± 0.009
60	45.63	45.06	45.3 ± 0.3	0.491 ± 0.003
65	42.47	41.50	42.0 ± 0.5	0.455 ± 0.005

Tabelle 3: Fallzeiten der großen Kugel für ein $0.10\,\mathrm{m}$ langes Rohr bei verschiedenen Wassertemperaturen und daraus berechnete Viskositäten

Wird nun Gleichung (4) auf beiden Seiten logarithmiert, ergibt sich

$$\ln \eta = \ln A + \frac{B}{T} \ ,$$

mit

$$X = \frac{1}{T}$$
 und $Y = \ln \eta$

kann so eine lineare Ausgleichsrechung mit den Werten in Tabelle 4 durchgeführt werden. Mit Hilfe von Python errechnen sich die Konstanten

$$B = (1775 \pm 42) \ln s^2 / m^2 \tag{17}$$

$$B = (1775 \pm 42) \,\text{ms/m}$$

$$\ln A = (-13.0 \pm 0.1) \ln \text{m}^2/\text{s}^2 \quad \Rightarrow \quad A = (2.4 \pm 0.3) \cdot 10^{-6} \, \frac{\text{m}^2}{\text{s}^2} \,.$$
(18)

Die Gerade ist mit den Regressionswerten in Abbildung 2 zu sehen. Die Andradesche Gleichung ist somit

$$\eta(T) = 2.4 \cdot 10^{-6} \exp\left(\frac{1775}{T}\right) .$$
(19)

$X = \frac{1}{T}$ in 10^{-3} /K	$Y = \ln \eta \text{ in } \ln m^2/s^2$
3.41	-6.91
3.32	-7.04
3.29	-7.12
3.25	-7.15
3.19	-7.30
3.14	-7.39
3.08	-7.49
3.05	-7.54
3.00	-7.62
2.96	-7.70

Tabelle 4: Werte, mit denen die Regression durchgeführt wird

Abbildung 2: Regressiongerade mit Regressionswerten nach (4)

3.4 Die Reynoldsche Zahl

In meinem Buch (Fußnote oben) steht wirklich, dass der Kugelradius, nicht der Durchmesser relevant ist. In dem Altprotokoll von der Fachschaft nehmen die jedoch den Radius. Im Prinzip ist es ja auch egal. Ich finde nur, wir sollten eine Quelle zur Formel haben.

Zuletzt soll die Reynoldsche Zahl berechnet werden. Dafür wird benötigt

• die Dichte von Wasser, sie ist eigentlich von der Temperatur abhängig, schwankt aber kaum im betrachteten Temperaturbereich, sodass weiterhin

$$\rho_{\rm W} = 992.8 \, \frac{\rm kg}{\rm m^3}$$

angenommen wird;

• die Fließgeschwindigkeit des Wassers, welche gleich der Fallgeschwindigkeit

$$v = \frac{s}{t}, \quad s = 0.10 \,\mathrm{m}$$

der Kugel ist;

• der Durchmesser des Zylinders, welcher gleich dem Durchmesser der Kugel

$$d = 15.801 \cdot 10^{-3} \,\mathrm{m}$$

angenommen werden kann; und

• die temperaturabhängige Viskosität η .

Eingesetzt in (3) ergeben sich so die Werte in Tabelle 5, die Fehler wiederum mit Gauß:

$$RE = \frac{\rho_{W}sd}{\eta t}: \qquad \sigma_{RE} = \sqrt{\left(\frac{\partial RE}{\partial t}\sigma_{t}\right)^{2} + \left(\frac{\partial RE}{\partial d}\sigma_{d}\right)^{2} + \left(\frac{\partial RE}{\partial \eta}\sigma_{\eta}\right)^{2}}$$
(20)

$$= \sqrt{\left(-\frac{\rho_{W}sd}{\eta t^{2}}\sigma_{t}\right)^{2} + \left(\frac{\rho_{W}s}{\eta t}\sigma_{d}\right)^{2} + \left(-\frac{\rho_{W}sd}{\eta^{2}t}\sigma_{\eta}\right)^{2}}.$$
 (21)

Temperatur in °C	RE
20	17.08 ± 0.06
28	22.1 ± 1.2
31	26.2 ± 0.3
35	27.7 ± 3.3
40	37.2 ± 0.3
45	44.4 ± 0.9
51	54.1 ± 0.1
55	60.3 ± 1.9
60	70.5 ± 0.9
65	82.2 ± 1.9

Tabelle 5: Errechnete Reynolds-Zahlen bei verschiedenen Temperaturen

Viskosimeter Diskussion

4 Diskussion

Die Messung der Fallzeiten ist die Grundlage aller Berechnungen. Durch systematische Fehler kann sie verfälscht werden. Das könnte einerseits durch beim Verschließen im Rohr verbliebene Luftblasen geschehen. Sie wirken durch ihren Auftrieb der Schwerkraft entgegen und verlängern somit die Fallzeiten. Denselben negativen Effekt hat auch der (in den Rechnungen vernachlässigte) Reibungseffekt zwischen Kugel und Wand.

Die Abweichung der Konstanten in der Andrade-Gleichung von Literaturwerten 3 ist in Tabelle 6 zu sehen.

	Literatur	Berechnet	Abweichung
\overline{A}	$9.644 \cdot 10^{-4}$	$2.4 \cdot 10^{-6}$	-99.8%
B	2036.8	1775	-12.9%

Tabelle 6: Abweichung der Konstanten der Andrade-Gleichung

Ich sehe leider nicht, wo die Abweichungen her kommen können. In dem Altprotokoll sahen die Werte auf den ersten Blick jedoch noch schlechter aus.

 $^{^3}$ http://www.chemie.de/lexikon/Andrade-Gleichung.html, abgerufen am $28.01.2016~\mathrm{um}$ $14:00~\mathrm{Uhr}$