Statystyczna analiza wyników badań

✓ Estymatory parametrów zmiennej losowej

- Wartość średnia
- $\overline{X} = \frac{1}{N} \sum_{i=1}^N x_i$

• Wariancja

- $S_x^2 = \frac{\displaystyle\sum_{i=1}^N (x_i \overline{x})^2}{N-1} = \frac{\left(\displaystyle\sum_{i=1}^N x_i^2\right) N \cdot \overline{x}^2}{N-1}$
- Odchylenie standardowe
- $\boldsymbol{S}_{\boldsymbol{X}} = \sqrt{\frac{\sum\limits_{i=1}^{N} \left(\boldsymbol{x}_{i} \overline{\boldsymbol{x}}\right)^{2}}{N-1}} = \sqrt{\frac{\left(\sum\limits_{i=1}^{N} \boldsymbol{x}_{i}^{2}\right) N \cdot \overline{\boldsymbol{x}}^{2}}{N-1}}$
- Współczynnik zmienności
- $V_{x}=\frac{S_{x}}{\overline{X}}$

✓ Typ rozkładu zmiennej losowej

 Dystrybuanta empiryczna zmiennej losowej, arkusz probabilistyczny rozkładu normalnego.

Zadanie

Określić parametry zmiennej losowej X na podstawie 100 wyników pomiarów.

Rozwiązanie

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x_i = 29,9$$

$$S_{x}^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}{N - 1} = \frac{\left(\sum_{i=1}^{N} x_{i}^{2}\right) - N \cdot \overline{x}^{2}}{N - 1} = 13,0$$

$$S_{x} = \sqrt{\frac{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}{N-1}} = 3,6$$

$$V_{\chi} = \frac{S_{\chi}}{\overline{X}} = 0.12$$

Arkusz probabilistyczny rozkładu normalnego

- Każda linia prosta na arkuszu probabilistycznym reprezentuje dystrybuantę rozkładu normalnego.
- Parametry rozkładu:

$$Z = \frac{X - \mu_X}{\sigma_X}$$

$$X = \mu_x + Z\sigma_x$$

$$\begin{array}{lll} gdy & z=0, & x=\mu_X \\ gdy & z=+1, & x=\mu_X+\sigma_X \\ gdy & z=-1, & x=\mu_X-\sigma_X \end{array}$$

Dystrybuanta empiryczna

Algorytm ("ręczny"):

- 1. Wyniki pomiarów posortować niemalejąco: x_1, x_2, \dots, x_N gdzie $x_1 \le x_2 \le \dots \le x_N$
- Dla każdego x_i obliczyć prawdopodobieństwo tego że X ≤ x_i zakładając liczbę wyników N+1

$$p_i = \frac{I}{N+1}$$

 Sporządzić wykres p_i od x_i na arkuszu probabilistycznym rozkładu normalnego.

Algorytm ("komputerowy"):

- 1. Wyniki pomiarów posortować niemalejąco: $x_1, x_2, ..., x_N$ gdzie $x_1 \le x_2 \le ... \le x_N$
- 2. Dla każdego x_i obliczyć prawdopodobieństwo tego że $X \leq x_i$ zakładając liczbę wyników N+1

$$p_i = \frac{i}{N+1}$$

 Dla każdego p_i wyznaczyć odwrotność dystrybuanty rozkładu normalnego standardowego

$$\boldsymbol{z}_i = \boldsymbol{\Phi}^{-1} \big(\boldsymbol{p}_i \big)$$

4. Sporządzić wykres z_i od x_i.

Zadanie

Określić typ rozkładu i parametry zmiennej losowej X na podstawie 9 wyników pomiarów: 33,35 32,80 31,17 32,71 32,01 30,67 32,52 28,14 23,54

Rozwiązanie

i	\mathbf{x}_{i}	$p_i = i/(N+1)$
1	23,54	0,1
2	28,14	0,2
3	30,57	0,3
4	31,17	0,4
5	32,01	0,5
6	32,52	0,6
7	32,71	0,7
8	32,80	0,8
9	33,35	0,9

Zadanie

Określić typ rozkładu i parametry zmiennej losowej X na podstawie 9 wyników pomiarów: 33,35 32,80 31,17 32,71 32,01 30,67 32,52 28,14 23,54

Rozwiązanie

	i	\mathbf{x}_{i}	$p_i = i/(N+1)$ $z_i = \Phi^{-1}(p_i)$	
1	L	23,54	0,1	-1,282
2	2	28,14	0,2	-0,842
3	3	30,57	0,3	-0,524
4	1	31,17	0,4	-0,253
5	5	32,01	0,5	0,000
6	5	32,52	0,6	0,253
7	7	32,71	0,7	0,524
8	3	32,80	0,8	0,842
c)	33.35	0.9	1.282

