Population Genomics Analyses on pangenome graphs

Flavia Villani

Consiglio Nazionale delle Ricerche | Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso" | Napoli

NETTAB / BBCC 2020 Meeting November 16-18, 2020

Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy.

Population Genetics

4.3 M differences on average between two individuals

Pangenomics approach for identification structural variants

Genomic versus pangenomic

Eizenga, Jordan & Novak, Adam & Sibbesen, Jonas & Heumos, Simon & Ghaffaari, Ali & Hickey, Glenn & Chang, Xian & Seaman, Josiah & Rounthwaite, Robin & Ebler, Jana & Rautiainen, Mikko & Garg, Shilpa & Paten, Benedict & Marschall, Tobias & Sirén, Jouni & Garrison, Erik. (2020). Pangenome Graphs. Annual Review of Genomics and Human Genetics.

Genomic versus pangenomic

Eizenga, Jordan & Novak, Adam & Sibbesen, Jonas & Heumos, Simon & Ghaffaari, Ali & Hickey, Glenn & Chang, Xian & Seaman, Josiah & Rounthwaite, Robin & Ebler, Jana & Rautiainen, Mikko & Garg, Shilpa & Paten, Benedict & Marschall, Tobias & Sirén, Jouni & Garrison, Erik. (2020). Pangenome Graphs. Annual Review of Genomics and Human Genetics.

Graphic representation of a pangenome

Genetic variants in the linear and graphical model

Genomics standard analyses are based on linear representation of genomes

Goal

To develop a library of functions (vgpop) for population genetic analysis on pangenomic models

bubblepop

	posl	pos2	pos3	pos4
PATH1	Т	Т	Т	Т
PATH2	А	G	А	Т
РАТН3	Т	А	Т	А
PATH4	А	Т	А	А

Segregation sites and sequences

Allele frequencies

2N = 20 chromosomes (APLOID)

ALLELE	A	а		
ALLELE COUNTS		n _a = 13		
ALLELE FREQUENCIES	$f_A = \frac{n_A}{2N} = 0.35$	$f_a = \frac{n_a}{2N} = 0.65$		

Wright's fixation index (F_{st})

Format conversion

Pangenomic model (GFA)

gfa2vcf

Linear model (VCF)

#CHROM POS ID REF INFO TYPF=snv Χ 10 TYPE=snv

Simulation sequences (Seq-Gen)

210 Taxon1 ATCTTTGTAG Taxon2 ATCCTAGTAG

seggen2gfa+vcf

Pangenomic model (GFA)

VN:Z:1 CACTA ATTA + 0M 1+,2+ OM Χ

Linear model (VCF)

#CHROM POS ID REF ALT INFO TYPE=snv TYPE=snv Χ

Implementation of vgpop in Rust

Rust is a programming language focused on performance and safety.

- Great **ecosystem** (Cargo, crates.io, docs.rs).
- Much **safer** than C++ while having a similar **speed.**
- Friendly and helpful community.
- Used in many open source projects, such as Firefox.

F_{st} on simulated data

Workflow

vgpop code

Existent code

Workflow

F_{ST} on 100 replicate use *vgpop* e *vcftools*

Allele frequencies on HLA

Gene HLA-E

GENE	PANGENOME	POSITION	REF	ALT	FREQ
HLA-E	HLAE-3133	551	Т	С	0.67

Variant discovery in HLA with rust implementation

From 12 sequences

❖ Size: 163416 nucleotides

❖ Run time: ~0.1s

Variants found: 7505

Variant discovery in Sars-Cov2 with rust implementation

- From 15127 genomes
- 1.2 Gbytes
- ♦ 78571 fragments
- Run time: ~16m
- Variants found: 294626

Data available at

http://covid19.genenetwork.org/

Andrea Guarracino Pjotr Prins

Conclusion and next steps

vgpop

Software for population genetics analyses on pangenomes

Rust

Adding parallel computing to increase performances

https://crates.io/crates/gfautil

Structural variation

Little considered in the standard population genetics analysis

Population genomics analyses

Based on haplotype and on the differentiation of frequencies between populations

IGB-CNR (US)

Vincenza Colonna Silvia Buonaiuto Gianluca Damaggio Giuliana D'Angelo

University of Milano Bicocca (Italy)

Francesco Porto Gianluca Della Vedova

University of Rome Tor Vergata (Italy)

Andrea Guarracino

Department of Genetics, Genomics and Informatics (UTHSC)

Pjotr Prins Robert W. Williams Christian Fischer

UCSC (US)

Erik Garrison

THANKS FOR YOUR ATTENTION!