A lista deverá ser enviada ao MOODLE até o prazo final. Uma cópia IMPRESSA deverá ser levada para a aula no dia marcado. A correção será feita pelo aluno e a lista com a correção preliminar deve ser ENTREGUE ao professor, para que depois seja dada a NOTA FINAL.

1ª Lista de Exercícios

- 1) O modelo de Von Neumann representou uma quebra de paradigma na computação da sua época. Com relação a isso responda: **(0,8 ponto)**
 - a) Qual a inovação proposta por Von Neumann para o modelo de funcionamento dos computadores?
 - b) O que é arquitetura Harvard?
 - c) Qual o novo elemento introduzido no modelo de barramento de sistema? Detalhe.
 - d) O modelo de barramento de sistema permanece o mesmo até hoje? Explique.
- 2) O desempenho de um processador está associado a diversas variáveis, entre elas o número médio de instruções executadas por ciclo. Com relação a isso responda: **(0,6 ponto)**
 - a) Qual a equação que define o tempo total de execução de um programa?
 - b) Qual a diferença de estratégia entre as arquiteturas RISC e CISC para diminuir o tempo de execução de um programa?
 - c) Se um processador gasta 2.000.000 de ciclos para executar um total de 2.400.000 instruções, qual o IPC médio obtido? E o CPI médio?
- 3) As arquiteturas de processador podem se diferenciar bastante quanto à sua forma de construção, o que vai influenciar em diversas características finais desses processadores. Com relação a isso responda: **(0,6 ponto)**
 - a) Qual a principal vantagem da máquina de pilha? Onde encontramos exemplos de sua aplicação?
 - b) Qual a principal característica das arquiteturas de registrador? Onde encontramos exemplos de sua aplicação?
 - c) Quais as diferenças e similaridades entre arquiteturas pilha e acumulador?
- 4) O relógio é um sinal elétrico que cadencia as operações do processador. Com relação a isso responda: **(0,8 ponto)**
 - a) Qual o principal fator limitante da frequência de operação de um processador?
 - b) Qual o tempo de ciclo de máquina de um processador com um sinal relógio com frequência de 400 MHz?
- 5) Os números podem ser representados de diferentes maneiras no computador, dependendo se expressam valores reais ou inteiros. Com relação a isso responda: (1,0 ponto)
 - a) Qual o formato mais utilizado para representar os números reais? Exemplifique com formato de precisão simples.
 - b) Qual o formato mais utilizado para representar os números inteiros? Exemplifique com dados de 16 bits.
- 6) Os dados maiores que um byte podem ser armazenados com diferentes ordenações na memória do computador. Com relação a isso responda: **(1,0 ponto)**
 - a) Qual a diferença entre elas? Qual o tamanho dos dados em bytes a partir do qual elas se aplicam?

- b) Exemplifique pelo menos uma arquitetura para cada um dos modos de ordenação.
- c) Existem arquiteturas que podem utilizar os 2 modos? Em caso positivo, exemplifique.
- d) Computadores com ordenação diferente podem trocar dados diretamente? Como eles fazem para se comunicar, por exemplo, pela internet?
- e) Na tabela abaixo, os números da linha superior representam os endereços da memória de um computador. Preencha essa tabela com o número DC1290BA₁₆ utilizando a ordenação *big-endian*.

1000	1001	1002	1003

- 7) Um processador pode buscar os operandos de suas instruções de diversas maneiras. Com relação a isso responda: (**1,0 ponto**)
 - a) Quais os modos de endereçamento que precisam de mais de um acesso à memória para buscar o operando? Exemplifique com uma instrução do Sapiens.
 - b) Qual a diferença entre modo indexado e modo deslocamento de endereçamento?
 - c) Quais modos de endereçamento podem ter os operandos implícitos, ou seja, não estão especificados claramente na instrução? Exemplifique com uma instrução do Sapiens.
 - d) Qual a diferença entre modo indireto e modo imediato de endereçamento?
 - e) Quais as instruções no Sapiens que utilizam o modo pilha de endereçamento?
- 8) A figura abaixo mostra o formato da instrução LDA 30 em linguagem de máquina do Sapiens. Como ficaria este formato se a instrução fosse SUB @200? (0,6 ponto)

00100000	_
00011110	

9) No trecho em linguagem de montagem a seguir, identifique os diversos modos de endereçamento (imediato, registrador/acumulador, direto, indireto, relativo ao PC) existentes. Note que uma instrução pode ter MAIS de um modo de endereçamento. (1,0 ponto)

```
a) OUT
           VISOR
b) PUSH
c) JSR
           ROTINA
d) LDA
           #100
e) ADD
           @UM
f) XOR
g) SBC
           @PONTEIRO
h) NOT
i) JN
           IMPARES
j) NOP
```

10) Traduza o trecho seguinte de programa em linguagem "C" para linguagem de montagem. As variáveis e cada elemento do vetor possuem 2 bytes de tamanho. Não esqueça de atribuir valores iniciais ao vetor A. (1,0 ponto)

11) Qual será o conteúdo do apontador de instruções (PC), do acumulador e da variáveis após a execução do seguinte trecho de programa? Justifique. **(0,6 ponto)**

ORG 100

A: DW Y B: DS 2 Y: DB 20

ORG 0

INICIO:

LDA #80 ADD @A STA B NOT HLT

- 12) Considere um vetor na memória, cuja posição inicial é 100h, com os seguintes dados em notação hexadecimal mostrados no quadro. O código à esquerda, em linguagem de montagem do Sapiens, é executado. Com relação a isso responda: **(1,0 ponto)**
 - a) Qual o valor final do apontador de instruções?
 - b) Qual o conteúdo final do vetor na memória?
 - c) Qual o valor do dado no topo da pilha?
 - d) Qual o valor final do acumulador?

LDA	#80H	
ADD	@100H	
STA	102H	
LDA	@104H	
PUSH		
ADD	106H	
STA	@108H	
HLT		

100	10	01
102	60	02
104	12	01
106	70	02
108	14	01
10A	10	02
10C	20	55
10E	24	44
110	40	40
112	66	33
114	28	35
116		