第十九章 MMC/SD/SDIO 控制器

19.1 特点

- 兼容 SD 存储卡规格(1.0 版本)或 MMC 规格(2.11 版本)
- 兼容 SDIO 卡规格 (1.0 版本)
- 用于数据接收发送的 16 字 (64 字节) FIFO
- 40 位的命令寄存器
- 136 位的响应寄存器
- -8位的预定标器逻辑(频率=系统时钟/(P+1))
- 通常模式或 DMA 传输模式(字节、半字及字传输)
- DMA burst4 访问支持(仅字传输)
- 1 位/4 位 (宽总线)模式及模块/流模式开关支持

19.2 模块图

Figure 19-1. SD Interface block diagram

19.3 SD 操作

串行时钟线同步在五根数据线上的信息移位和采样。传输频率通过设定 SDIPRE 寄存器的相应位的设定来控制。你可以修改频率来调节波特率数据寄存器值。

19.3.1 编程过程(普通)

对 SDI 模块编程, 按以下基本步骤:

- (1) 设置 SDICON 寄存器来配置适当的时钟及中断使能
- (2) 设置 SDIPRE 寄存器配置适当的值。
- (3) 等待 74 个 SDCLK 时钟以初始化卡。

第十九章 MMC/SD/SDIO 控制器 Forum: http://embeddedlinux.thefreehoster.com/ 19.3.2 CMD 路径编程

- (1) 写命令参数 32 位到 SDICmdArg
- (2) 决定命令类型并通过设置 SDICmdCon 开始命令传输
- (3) 当 SDICmdSta 的特殊标志被置位,确认 SDICMD 路径操作的结束。
- (4) 如果命令类型是不相应,标志是 CmdSent。
- (5) 如果命令类型是相应,标志是 RspFin。
- (6) 通过对相应位写 1, 清除 SDICmdStaD 的标志。

19.3.3 数据路径编程

- (1) 写数据超时期间到 SDIDTimer
- (2) 写模块大小(模块长度) 到 SDIBSize (通常是 0x80 字)
- (3) 确定模块模式,宽总线,DMA 等且通过社子 SDIDatCon 来开始数据传输
- (4) 发送数据->写数据到数据寄存器(SDIDAT),当发送 FIFO 有效(TFDET 置位),或一半(TFHalf 置位),或空(TFEmpty 置位)。

MSN: zhuqi428@sina.com

- (5)接收数据->从数据寄存器(SDIDAT)读数据,当接收FIFO有效(RFDET置位),或满(RFFull置位)。或一半(RFHalf置位),或准备最后数据(RFLast置位)。
- (6) 当 SDIDatSta 寄存器的 DatFin 标志置位,确认 SDIDAT 路径操作结束。
- (7) 通过对相应位写 1,清除 SDIDatSta 的标志。

19.4 SDIO 操作

有 SDIO 操作的两个功能: SDIO 中断接收和读等待请求生成。当寄存器 SDICON 的 RevOInt 位和 RwaitEn 位分别被激活,这两个功能可以操作。两个功能的步骤与条件如下:

19.4.1SDIO 中断

在 SD1 位模式中,通过 RxDAT[1]引脚的所有范围,中断被接收。

在 SD4 位模式中, RxDAT[1]引脚由数据接收和中断接收共享。

当中断侦测范围(中断期间)是:

- (1) 单模块: A与B之间的时间
- A: 在一个数据包完成后的两个时钟
- B: 完成发送下一个 withdata 命令结束位
- (2) 多模块, PrdType=0: A 与 B 之间的时间, C 复位
- A: 在完成一个数据包后两个时钟
- B: A 后的两个时钟
- C: 在退出命令结束位相应后两个时钟
- (3) 多模块, PrdType=1: A 与 B 之间的时间, A 复位
- A: 在完成一个数据包后两个时钟
- B: A 后两个时钟
- 在最后一个时钟,中断期间开始于 A,但是不在 B 结束(CMD53)

19.4.2 读等待请求

不管 1 位还是 4 位模式,在以下条件下,读等待请求信号发送到 TxDAT[2]引脚

- 在读多操作中, 在数据模块结束后两个时钟, 请求信号发送开始
- 当用户设置 SDIDatSta 寄存器的 RwaitReg 位,发送结束

19.5 SDI 特殊寄存器

- (1) SDI 控制寄存器 (SDICON)
- (2) SDI 波特率预定标器寄存器 (SDIPRE)
- (3) SDI 命令参数寄存器(SDICmdArg)
- (4) SDI 命令控制寄存器 (SDICmdCon)
- (5) SDI 响应寄存器 0 (SDIRSP0)
- (6) SDI 响应寄存器 1 (SDIRSP1)
- (7) SDI 响应寄存器 2 (SDIRSP2)
- (8) SDI 响应寄存器 3 (SDIRSP3)
- (9) SDI 数据/忙定时器寄存器
- (10) SDI 模块大小寄存器
- (11) SDI 数据控制寄存器
- (12) SDI 数据保留计数器寄存器
- (13) SDI数据状态寄存器
- (14) SDI FIFO状态寄存器
- (15) SDI中断屏蔽寄存器
- (16) SDI数据寄存器

19.5.1 SDI 控制寄存器

SDI Control Register (SDICON)

寄存器	地址	读写	描述	复位值
SDICON	0x5A000000	R/W	SDI控制寄存器	0x0

MSN: zhuqi428@sina.com

Forum: http://embeddedlinux.thefreehoster.com/

SDICON	位	描述	初始值
保留	[31:9]		
SDMMC Reset	[8]	复位整个sdmmc时钟。该位自动清零。	0
(SDreset)		0: 正常模式 1: SDMMC复位	
保留	[7:6]		0
Clock	[5]	确定哪个时钟类型用作SDCLK	0
Type (STPY)		0: SD类型 1: MMC类型	
Byte Order	[4]	当你使用字边界读(写)数据从(到)主FIFO,	0
Type(ByteOrder)		决定字节顺序类型。	
		0: A型 1: B型	
Receive SDIO	[3]	觉得是否SD主设备从卡接收SDIO中断	0
Interrupt from		0: 忽略 1: 接收SDIO中断	
card (RcvlOInt)			
Read Wait	[2]	决定读等待请求信号生成,当SD主设备在多模块	0
Enable(RWaitEn)		读模式下等待下一个时钟。该位需要延时到下一 个时钟由卡发出。	
		0: 无效 (不生成) 1: 读等待使能 (使用	
		SDIO)	
保留	[1]		
Clock Out Enable	[0]	确定是否SDCLK输出使能	0
(ENCLK)		0: 无效(预定标器关闭)1: 时钟使能	

^{*} Byte Order Type

- Type A: (Access byWord) $D[7:0] \rightarrow D[15:8] \rightarrow D[23:16] \rightarrow D[31:24]$

(Access by Halfword) D[7:0] -> D[15:8]

- Type B: (Access by Word) $D[31:24] \rightarrow D[23:16] \rightarrow D[15:8] \rightarrow D[7:0]$

(Access by Halfword) $D[15:8] \rightarrow D[7:0]$

19.5.2 SDI 波特率预定标器寄存器

SDI Baud Rate Prescaler Register (SDIPRE)

寄存器	地址	读写	描述	复位值
SDIPRE	0x5A000004	R/W	SDI波特率预定标器寄存器	0x01

MSN: zhuqi428@sina.com

Forum: http://embeddedlinux.thefreehoster.com/

SDIPRE	位	描述	初始值
Prescaler Value	[7:0]	按以上等式确定SDI时钟率(SDCLK)	0x01

19.5.3 SDI 命令参数寄存器

SDI Command Argument Register (SDICmdArg)

寄存器	地址	读写	描述	复位值
SDICmdArg	0x5A00000C	R/W	SDI命令控制寄存器	0x0

SDICmdCon	位	描述	初始值
保留	[31:13]		
Abort Command	[12]	决定是否命令类型用于退出(for SDIO).	0
(AbortCmd)		0 = 正常命令, 1 = 退出命令(CMD12, CMD52)	
Command with	[11]	决定是否命令类型有数据(for SDIO).	0
Data (WithData)		0 = 无数据, 1 =有数据	
LongRsp	[10]	决定是否主设备接收一个 136 位长的响应	0
		0 = 短响应, 1=长响应	
WaitRsp	[9]	决定是否主设备等待响应	0
		0 = 不响应, 1 = 等待响应	
Command	[8]	决定命令操作是否开始。该位自动清零。	0
Start(CMST)		0 = 命令准备好, 1 = 命令开始	
CmdIndex	[7:0]	有开始两位的命令索引(8bit)	0x00

19.5.4 SDI 命令状态寄存器

SDI Command Status Register (SDICmdSta)

寄存器	地址	读写	描述	复位值
SDICmdSta	0x5A000010	R/W	SDI命令状态寄存器	0x0

SDICmdSta	位	描述	初始值
保留	[31:13]		
Response CRC	[12]	当收到命令响应,CRC校验失败。通过对该位置	0
Fail (RspCrc)		1,该标志被清除。 0:不侦测 1: CRC失败	
Command Sent	[11]	命令发送(不包括响应)。通过对该位置 1,该标	0
(CmdSent)		志被清除。0:不侦测 1: 命令结束	
Command Time	[10]	命令响应超时(64clk)。通过对该位置 1,该标志	0
Out (CmdTout)		被清除。0:不侦测 1:超时	
Response Receive	[9]	收到命令响应。通过对该位置 1,该标志被清除。	0
End (RspFin)		0: 不侦测 1: 响应结束	
CMD line progress	[8]	命令传输在过程中。	0
On (CmdOn)		0: 不侦测 1: 命令在过程中	
RspIndex	[7:0]	有开始两位(8位)的响应索引6位	0x00

19.5.5 SDI 响应寄存器 0

SDI Response Register 0(SDIRSP0)

寄存器	地址	读写	描述	复位值
SDIRSP0	0x5A000014	R	SDI响应寄存器 0	0x0

SDIRSP0	位	描述	初始值
Resonse0	[31:0]	Card status[31:0](short), card status[127:96](long)	0x00000000

19.5.6 SDI 响应寄存器 1

SDI Response Register1 (SDIRSP1)

•				
寄存器	地址	读写	描述	复位值
SDIRSP1	0x5A000018	R	SDI响应寄存器 1	0x0

SDIRSP1	位	描述	初始值
RCRC7	[31:24]	CRC7(有结束位,短), card status[95:88](long)	0x00
Resonse1	[23:0]	不使用(短),card status[87:64](long)	0x000000

19.5.7 SDI 响应寄存器 2

SDI Response Register 2 (SDIRSP2)

寄存器	地址	读写	描述	复位值
SDIRSP2	0x5A00001C	R	SDI响应寄存器 2	0x0

SDIRSP2	位	描述	初始值
Resonse2	[31:0]	unused(short), card status[63:32](long)	0x00000000

MSN: zhuqi428@sina.com

Forum: http://embeddedlinux.thefreehoster.com/

19.5.8 SDI 响应寄存器 3

SDI Response Register 3 (SDIRSP3)

-	•	-		
寄存器	地址	读写	描述	复位值
SDIRSP3	0x5A00001C	R	SDI响应寄存器 3	0x0

SDIRSP3	位	描述	初始值
Resonse3	[31:0]	unused(short), card status[31:0](long)	0x00000000

19.5.9 SDI 数据/忙定时器寄存器

SDI Data / Busy Timer Register (SDIDTimer)

寄左哭	地址	读写	描述	复位值
可付品			1用人上	交匹 區
SDIDTimer	0x5A000024	R/W	SDI数据/忙定时器寄存器	0x0

SDIDTimer	位	描述	初始值
保留	[31:23]		
DataTimer	[22:0]	Data / Busy timeout period	0x10000

19.5.10 SDI 模块大小寄存器

SDI Block Size Register (SDIBSize)

	寄存器	地址	读写	描述	复位值	
	SDIBSize	0x5A000028	R/W	SDI模块大小寄存器	0x0	

SDIBSize	位	描述	初始值
保留	[31:12]		
BlkSize	[11:0]	Block Size value(0~4095 byte),流模式下不考虑	0x10000

在多模块情况下,BlkSize 必须分配字大小(4 字节)。(BlkSize[1:0]=00)

19.5.11 SDI 数据控制寄存器

SDI Data Control Register (SDIDatCon)

寄存器	地址	读写	描述	复位值
SDIDatCon	0x5A00002C	R/W	SDI数据控制寄存器	0x0

SDIBSize	位	描述	初始值
保留	[31:25]		
Burst4 enable	[24]	在DMA模式下使能Burst4。仅当数据大小是字时该	0
(Burst4)		位被置位。0: 无效 1: Burst4 使能	
Data Size	[23:22]	指出用FIFO传输的大小,哪个类型,半字或字。	0
(DataSize)		00 = 字节传输, 01 = 半字传输	
		10 = 字传输, 11 = 保留	
SDIO Interrupt	[21]	决定SDIO的中断周期是2个周期还是外部更多周	0
Period Type		期,当数据块最后被发送(对SDIO)。	
(PrdType)		0=正好两个周期 1=更多周期(像单周期)	
Transmit After	[20]	决定数据传输在响应收到后开始或不开始。	0
Response		0= 在DatMode设置后直接	
(TARSP)		1= 在响应收到后(假定设置DatMode设为 2b11)	
Receive After	[19]	决定数据传输在命令发出后开始或不开始	0
Command		0= 在DatMode设置后直接	
(RACMD)		1= 在命令发出后(假定设置DatMode设为 2b10)	
Busy After	[18]	决定忙接收在命令发出后开始或不开始	0
Command		0= 在DatMode设置后直接	
(BACMD)		1= 在命令发出后(假定设置DatMode设为 2b01)	
Block mode	[17]	数据传输模式	0
(BlkMode)		0=流数据传输 1=模块数据传输	
Wide bus	[16]	决定使能宽总线模式	0
enable		0:标准总线模式(仅使用SDIDAT[0])	
(WideBus)		1: 宽总线模式 (使用SDIDAT[3])	
DMA Enable	[15]	使能DMA(当DMA操作完成时,该位应该无效)	0
(EnDMA)		0: 无效(查询) 1: DMA使能	
Data Transfer	[14]	决定数据传输是否开始,该位自动清除。	0
Start(DTST)		0: 数据准备好, 1: 数据开始	
Data Transfer	[13:12]	决定数据传输的方向	00
Mode (DatMode)		00 =无操作, 01 = 仅忙检测模式	
		10 =数据接收模式,11 =数据发送模式	
BlkNum	[11:0]	模块数(0~4095),当流模式时不考虑	0x000

如果你想对TARSP, RACMD, BACMD位(SDIDatCon[20:18])中的一个位置 1,你需要在写SDICmdCon寄存器之前写SDIDatCon寄存器。(对SDIO总是需要)

MSN: zhuqi428@sina.com

C/SD/SDIO 控制器 Forum: http://embeddedlinux.thefreehoster.com/

19.5.12 SDI 数据保留计数器寄存器

SDI Data Remain Counter Register (SDIDatCnt)

寄存器	地址	读写	描述	复位值
SDIDatCnt	0x5A000030	R	SDI数据保留计数器寄存器	0x0

SDIDatCnt	位	描述	初始值
保留	[31:24]		
BlkNumCnt	[23:12]	保留模块数	0x000
BlkCnt	[11:0]	1 个模块的保留数据字节	0x000

19.5.13 SDI数据状态寄存器

SDI Data Status Register (SDIDatSta)

寄存器	地址	读写	描述	复位值
SDIDatSta	0x5A000034	R	SDI数据状态寄存器	0x0

SDIDatSta	位	描述	初始值
保留	[31:12]		
No Busy	[11]	仅在忙检测模式下cmd包发送后,在 16 个周期间	0
(NoBusy)		忙不激活。通过对该位置1清除标志。	
		0:不侦测 1: 无忙信号	
Read Wait	[10]	读等待请求信号发送到sd卡。请求信号停止	0
Request Occur		且通过对该位置 1 清除标志。	
(RWaitReq)		0: 不出现 1: 读等待请求出现	
SDIO Interrupt	[9]	SDIO中断侦测。通过对该位置 1 清除标志。	0
Detect (IOIntDet)		0:不侦测 1: SDIO中断侦测	
保留	[8]		
CRC Status	[7]	当数据块发送后(CRC校验失败)CRC状态	0
Fail (CrcSta)		错误。通过对该位置 1 清除标志。	
		0:不侦测 1: CRC状态失败	
Data Receive	[6]	数据模块接收到错误(CRC校验失败)。通	0
CRC Fail (DatCrc)		过对该位置 1 清除标志。	
		0: 不侦测 1: 接收CRC失败	
Data Time	[5]	数据/忙接收超时。通过对该位置1清除标	0
Out (DatTout)		志。	
		0: 不侦测 1: 超时	
Data Transfer	[4]	数据传输结束(数据计数器为0)。通过对	0
Finish (DatFin)		该位置 1 清除标志。	
		0:不侦测 1:数据完成侦测	
Busy Finish	[3]	仅忙检查完成。通过对该位置1清除标志。	0
(BusyFin)		0:不检测 1: 侦测忙完成	
保留	[2]		0
Tx Data progress	[1]	数据发送在过程中	0
On (TxDatOn)		0:不激活 1:数据发送在过程中	
Rx Data Progress	[0]	数据接收在过程中	0
On (RxDatOn)		0:不激活 1:数据接收在过程中	

19.5.14 SDI FIFO 状态寄存器

SDI FIFO Status Register (SDIFSTA)

寄存器	地址	读写	描述	复位值
SDIFSTA	0x5A000038	R	SDI FIFO状态寄存器	0x0

SDIFSTA	位	描述	初始值
保留	[31:16]		
FIFO	[16]	FIFO值复位。该位会自动清楚	0
Reset(FRST)		0: 正常模式 1: FIFO复位	
FIFO Fail error	[15:14]	当FIFO出现溢出或低估数据保存是,FIFO	00
(FFfail)		失败错误。该位通过置位清除。	
		00: 不侦测 01: FIFO失败 10 在最后传输	
		中FIFO失败(仅FIFO复位需要)11: 保留	
FIFO available	[13]	该位指出FIFO数据对发送有效,当DatMode	0
Detect for Tx		是数据发送模式。如果DMA模式有效,SD	
(TFDET)		主设备请求DMA操作。	
		0: 不侦测(FIFO满)1: 侦测	
		(1 <fifo<63)< td=""><td></td></fifo<63)<>	
FIFO available	[12]	该位指出FIFO数据对接收有效,当DatMode	0
Detect for Rx		是数据接收模式,如果DMA模式有效,SD	
(RFDET)		主设备请求DMA操作。	
		0:不侦测(FIFO空)1: 侦测	
		(1 <fifo<64)< td=""><td></td></fifo<64)<>	
Tx FIFO Half Full	[11]	只要发送FIFO小于 33 字节,该位置 1。	0
(TFHalf)		0: 33 <tx 1:="" 1<tx="" fifo<32<="" fifo<64="" td=""><td></td></tx>	
Tx FIFO Empty	[10]	只要发送FIFO为空,该位置 1。	0
(TFEmpty)		0: 1 <fifo<64 1:="" td="" 空(0字节)<=""><td></td></fifo<64>	
Rx FIFO Last	[9]	当接收FIFO出现操作所有模块的最后数据,	0
Data Ready (RFLast)		该位置 1。通过置 1 清除该标志	
,		0: 还没收到 1: 接收FIFO得到最后数据	
Rx FIFO Full	[8]	只要接收FIFO满,该位置 1。	0
(RFFull)		0: 1 <rx 1:="" fifo<63="" td="" 字节)<="" 满(64=""><td></td></rx>	
Rx FIFO Half Full	[7]	只要接收FIFO大于 31 个字节,该位置 1。	0
(RFHalf)		0: 1 <fifo<31 1:="" 32<fifo<64<="" td=""><td></td></fifo<31>	
FIFO Count	[6:0]	FIFO中的数据个数	0000000
(FFCNT)			

MSN: zhuqi428@sina.com

第十九章 MMC/SD/SDIO 控制器 Forum: http://embeddedlinux.thefreehoster.com/

19.5.15 SDI 中断屏蔽寄存器

SDI Interrupt Mask Register (SDIIntMsk)

寄存器	地址	读写	描述	复位值
SDIIntMsk	0x5A00003C	R/W	SDI中断屏蔽寄存器	0x0

SDIFSTA	位	描述	初始值
保留	[31:19]	**	
NoBusy Interrupt	[18]	如果忙信号不激活,决定SDI产生中断。	0
Enable (NoBusyInt)		0=无效,1= 中断使能	
RspCrc Interrupt	[17]	如果响应CRC校验失败,决定SDI产生中断	0
Enable (RspCrcInt)		0=无效,1= 中断使能	
CmdSent Interrupt	[16]	如果命令发出,决定SDI产生中断	0
Enable (CmdSentInt)		0=无效,1= 中断使能	
CmdTout Interrupt	[15]	如果命令响应超时,决定SDI产生中断	0
Enable (CmdToutInt)		0=无效,1= 中断使能	
RspEnd Interrupt	[14]	如果收到命令响应,决定SDI产生中断	0
Enable (RspEndInt)		0=无效,1= 中断使能	
RWaitReq Interrupt	[13]	如果出现读等待请求,决定SDI产生中断	0
Enable (RWReqInt)		0=无效, 1= 中断使能	
IOIntDet Interrupt	[12]	如果sd主设备从卡收到SDIO中断,决定SDI	0
Enable (IntDetInt)		产生中断。0=无效,1= 中断使能	
FFfail Interrupt	[11]	如果出现FIFO失败错误,决定SDI产生中	0
Enable (FFfailInt)		断。 0 =无效, 1 = 中断使能	
CrcSta Interrupt	[10]	如果出现CRC状态错误,决定SDI产生中	0
Enable (CrcStaInt)		断。 0 =无效, 1 = 中断使能	
DatCrc Interrupt	[9]	如果数据接收CRC失败,决定SDI产生中	0
Enable (DatCrcInt)		断。 0 =无效, 1 = 中断使能	
DatTout Interrupt	[8]	如果数据接收超时出现,决定SDI产生中	0
Enable (DatToutInt)		断。 0 =无效, 1 = 中断使能	
DatFin Interrupt	[7]	如果数据计数器为 0,决定SDI产生中断。	0
Enable (DatFinInt)		0 = 无效, 1 = 中断使能	
BusyFin Interrupt	[6]	如果仅忙检测完成,决定SDI产生中断。	0
Enable(BusyFinInt)		0=无效,1= 中断使能	
保留	[5]		0
TFHalf Interrupt	[4]	如果发送FIFO半填满,决定SDI产生中断。	0
Enable (TFHalfInt)		0=无效, 1= 中断使能	
TFEmpty Interrupt	[3]	如果发送FIFO空,决定SDI产生中断。	0
Enable(TFEmptInt)		0=无效,1= 中断使能	
RFLast Interrupt	[2]	如果接收FIFO有最后数据,决定SDI产生中	0
Enable (RFLastInt)		断。 0 = 无效, 1 = 中断使能	
RFFull Interrupt	[1]	如果接收FIFO填满,决定SDI产生中断。	0
Enable (RFFullInt)		0=无效,1= 中断使能	
RFHalf Interrupt	[0]	如果接收FIFO半满,决定SDI产生中断。	0
Enable (RFHalfInt)		0=无效,1= 中断使能	

S3C2440A 中文 Datasheet 第十九章 MMC/SD/SDIO 控制器 MSN: zhuqi428@sina.com

Forum: http://embeddedlinux.thefreehoster.com/

19.5.16 SDI 数据寄存器

SDI Data Register (SDIDAT)

	• ,			
寄存器	地址	读写	描述	复位值
SDIDAT	0x5A000040, 44, 48, 4C(Li/W, Li/HW, Li/B,	R/W	SDI数据寄存器	0x0
	Bi/W)			
	0x5A000041(Bi/HW),			
	0x5A000043(Bi/B)			

SDIDAT	SDIDAT 位 描述		初始值
Data Register	[31:19]	该区域包括通过SDI通道发送或接收的数据	0x00000000

^{* (}Li/W, Li/HW, Li/B): 小端模式下通过字、半字、字节访问。

^{* (}Bi/W): 大端模式下通过字单元访问。

^{* (}Bi/HW): 大端模式下通过半字单元访问。

^{* (}Bi/B): 大端模式下通过字节单元访问。