Divide and longuer Approach A divide and longuer method coaks by recursively breaking down a problem into two os more Sub-problems of the Same type, until these become Simple enough to be Solved directly. In general, divide & longuer technique involves three Steps!- Divide 2) Combine			
A divide and larguer method works by recursively breaking down a problem into two cs more Sub-problems of the Same type, until these become Simple enough to be Solved directly. In general, divide & languer technique involves three Steps!- Divide 2) languer			J. J
A divide and larguer method works by recursively breaking down a problem into two cs more Sub-problems of the Same type, until these become Simple enough to be Solved directly. In general, divide & languer technique involves three Steps!- Divide 2) languer	_		Divide and Conquer Abbroach
by xecursively breaking down a problem into two os more Sub-problems of the Same type, until these become Simple enough to be Solved directly. In general, divide & Conquer technique involves three Steps!- Divide 2) Conquer			
or more Sub-problems of the Same type, until these become Simple enough to be Salved directly. In general, divide & Conquer technique involves three Steps!- Divide 2) Conquer	_		
these become Simple enough to be Solved directly. In general, divide & Conquer technique involves three Steps!- Divide 2 Conquer			or more Sub-broblems of the Same type, until
In general, divide & longuer technique involves three Steps!- Divide 2) Conquer		1	hese become Simble enough to be Solved
In general, divide & longuer technique involves three Steps! - Divide 2) Longuer			
involves three Steps! - Divide 2) Conquer			
1) Divide 2) Longuer		in	
2) Conquer			
	- Company		
5) combine	The second second second		
	L		3) Combine

)	10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100 100 100
	low=6, high=10 6<=10 True mid=6+10 = 16 = 8
	$\frac{90 \times 80}{90 \times 80} = \frac{190}{100} = \frac{100}{100} = \frac{100}$
	96 = 10 True mid = $9+10 = 19 = 95$ $1 mid = 90 = 90$ True // Search Successful
* *	lence, element found at indon 9.

Quide Sort (A, P, r) J (PKY) g = Partition (A, P, x) quidesort (A, P, 2-1); quickSof (A, qt1, x), Partition (A, P, r) for (j=P; j <= x-1; j++) Sip (AI;] <= A[r]) enchange (AI:3 LAI;7) enchange (A[iti] | A[x])
Yeturn (iti); 10 70 80 30 30 80 70 50 60 170 Pivot Als, 8] A[1,3]

		magazitire ra
	P=1, 8=8	
	i=0 j=1, j<=8-1=7	
·	1 A[] (= A[8]	
<u>.</u>	20 < = 40 True	
	FI AII] & ACIT	
	J=7 A[7] < = A[8]	
<u> </u>	2 A[27 <= A[8] 60 <= 40 Fel	
	80 L= 40 False	
	enchange A[4] LA[8	1
	3 A[3] (=A[8] return ;+1	
	70 K = 40 Fulse 3+1=4	
J=	4 A[4] <= A[8]	
	10 <= 40 True	
	[= <u>)</u>	
	AGJ & ACYJ	<u> </u>
5.6		
J-5	A(S) (= A18]	
	30 <= 40 True	
	1=3 A[3] LA[5]	
7- /	05.7 (05.2	
J=6		
ANALYS STORY	50 1 = 40 False	

/__/ A 20/10/30/ 20 <=30 True i=1 ACIJ & ACIJ A[1,2] A[2] <= A[3] 1=0 j=1 , xx=1 10 <= 30 True ALI7 KA[2] 1=2 A[2] & A[2] 20 12 10 false enchage A[3] & A[3] enchange ACIJ & ACZ] return 3; return iti; return an1; for(j=5, j <=7) j=5 N[5] <= N[8] 70 2=80 1=5 A[5] & A[5] 126 AEG) <=A[8] 50 6= 80 True 126 AECT & ATCT

j	7 A[7] <= A[8]
	60 <= 80 True
	E-7 A[7] & A[7]
	enchange A[8] & A[8] return 8;
3 .5	return 8;
70 50 60	0 -
	P=5, 8=\$7, 124
56 701	j=5, j < = 6
20 60	J-5 A[5] <=A[7]
Se 60 70	70 K= 60 fuse 126 A[6] K= A[7]
50 9 70	50 L= 60 True
P, 5 TO P, 8	125 A[5] & A[6]
3	0. d. nr.7 118-7
50 60 70	80 return AFB;
2	
	10/20/30/40/50/60/70/80/
3	
2	
3	
1	
3	
3	

