Teoría de números. Ejercicios

Números enteros. Números primos. Divisibilidad

- 1. ¿Existen $x, y, z \in \mathbb{Z}$ tales que cumplen?
 - 1.1 $x, y, z \in \mathbb{Z}$ con 3x + 6y + 9z = 1000
 - $1.2 \ x, y, z \in \mathbb{Z} \ \text{con} \ 6x + 9y + 15z = 107$
 - 1.3 $x, y, z \in \mathbb{Z}$ con 5x + 10y + 20z = 1003
- 2. Sean $a, b, c \in \mathbb{Z}^+$ trś números enteros positivos.
 - 2.1 Busca los valores de a, b y c que cumplan la condición: $31 \mid (5a + 7b + 11c)$
 - 2.2 Sabiendo que a, b y c cumplen $31 \mid (5a + 7b + 11c)$ demuestra que se cumplen:
 - $\blacksquare 31 \mid (21a + 17b + 9c)$
 - $\blacksquare 31 \mid (6a + 27b + 7c)$
- 3. Sean $a, b \in \mathbb{Z}^+$. Si $b \mid a \neq b \mid (a+2)$, demuestra que b=1 o b=2.
- 4. Sean $a, b \in \mathbb{Z}^+$ y ambos impares. Demuestra que $a^2 + b^2$ es últiplo de 2 pero no de cuatro, es decir, $2 \mid (a^2 + b^2)$ pero $4 \nmid (a^2 + b^2)$.
- 5. Sea $n \in \mathbb{Z}^+$ entero y positivo.
 - 5.1 Demuestra que si $n \geq 2$ es compuesto, entonces existe algún p primo tal que $p \mid n$ y $p \leq \sqrt[2]{n}$.
 - 5.2 Utilizando lo demostrado en el anterior ejercicio analiza si los siguientes números son primos: n=811, n=467, n=911.
- 6. Sea $n \in \mathbb{Z}^+$, y tomemos la representación en base 10 del número r

$$r = r_0 + r_1 10 + \dots + r_{n-1} 10^{n-1} + r_n 10^n$$

donde $0 \le r_i \le 9$ para $1 \le i \le n-1$ y donde $0 < r_n \le 9$. Demuestra, utilizando las propiedades de divisibilidad $9 \mid r$ si y solo si $9 \mid r_n + r_{n-1} + \cdots + r_0$.

7. Sea $n \in \mathbb{Z}^+$, y tomemos su representación en base 10 :

$$n = r_k 10^k + r_{k-1} 10^{k-1} + \dots + r_1 10 + r_0$$

Demuestra, utilizando las propiedades de divisibilidad, las siguientes afirmaciones:

- 7.1 2 | n si y solo si 2 | r_0 .
- 7.2 $4 \mid n \text{ si y solo si } 4 \mid (r_1 10 + r_0).$

División de Euclides. Máximo común divisor

- 8. Sean $a, b \in \mathbb{Z}$, si a + b = 60 y si mcd(a, b) = 12, calcula los números a y b. Otro tanto para el caso a + b = 75.
- 9. Para cada par $a, b \in \mathbb{Z}^+$ calcula con el algoritmo de Euclides mcd(a, b). Y represéntalo como combinación lineal de a y b. Determina si a y b son primos relativos.
 - 9.1 a = 231, b = 1820; 9.2 a = 1369, b = 2597;
 - 9.3 a = 2689, b = 4001; 9.4 a = 7982, b = 7983;
 - $9.5 \ a = 102, b = 28.$
- 10. Mediante el algoritmo de Euclides calcula mcd(-187, 154).
- 11. Sean $a, b, c \in \mathbb{Z}^+$, con a y b primos relativos, es decir, zkh(a, b) = 1.
 - 11.1 Demuestra que si $a \mid bc$, entonces se cumple $a \mid c$.
 - 11.2 Si $mcd(a, b) \neq 1$, ¿Puedes demostrar lo mismo?
- 12. Sean $a, b, d \in \mathbb{Z}^+$, con $d = \operatorname{mcd}(a, b)$. Demuestra que $\operatorname{mcd}(\frac{a}{d}, \frac{b}{d}) = 1$.
- 13. Si a y b son números primos relativos, demuestra que se cumple una de las dos siguientes condiciones, o bien mcd(a b, a + b) = 1 o bien mcd(a b, a + b) = 2.
- 14. Sea $n \in \mathbb{Z}^+$, calcula mcd(n, n + 1) y mcm(n, n + 1).
- 15. Sean $a, b, c \in \mathbb{Z}^+$.
 - 15.1 Supongamos que a y b son números primos relativos. Demuestra que si c es múltiplo común de a y de b, entonces también lo es de ab, es decir, $a \mid c$ y $b \mid c$ entonces $ab \mid c$.
 - 15.2 Si $mcd(a,b) \neq 1$, con $a \mid c \neq b \mid c$, ξ Es posible llegar a la conclusión de que $ab \mid c$?
- 16. Calcula mcm(500, 120) utilizando el teorema fundamental de la aritmética, (descomponiendo en multiplicación de números primos).
- 17. Sean $a, b, c \in \mathbb{Z}^+$. Demuestra que si d = a + bc, entonces $\operatorname{mcd}(b, d) = \operatorname{mcd}(a, b)$.
- 18. Sean $a, b, k \in \mathbb{Z}^+$. Demuesra que $mcd(ka, kb) = k \ zkh(a, b)$.
- 19. Sean $a, b \in \mathbb{Z}^+$ enteros positivos.
 - 19.1 Si $p \in \mathbb{Z}^+$ es primo, demuestra que:

$$p \mid ab$$
 bada, $p \mid a \text{ edo } p \mid b$.

19.2 Si $p \in \mathbb{Z}^+$ no es primo, ¿Se puede llegar a la misma conclusión? Si no es así busca un contraejemplo.