Fast Soccer Ball Detection using Deep Learning

Spring 2017

Problem Statement

- RoboCup Soccer League
 - NAO
 - HSL
- Field is no longer Color-Coded
- Unspecified Patterns (in HSL)
- NAO white robot in addition to all the problems

Intuition

- Image Acquisition
- Color Analysis
- Field Boundary
- Circle Detection
- Verification

First Things First!

• Circle Detection

First Things First!

- Circle Detection
 - CHT
 - RHT
 - FRHT

But What is 'R'?!!

Since distance effect on the 'R' value

But What is 'R'?!!

Multi Radius Hough Detection

 Very inefficient both in terms of processing power and memory

- Much Faster
- But does not have enough accurate
- Require lots of iteration to guarantee an acceptable result.

Probability of point on the circle: $P_r = \frac{EdgeArea(circle)}{EdgeArea(total\ edges)}$

Probability of three points on the circle: $P_c = P_1 * P_2 * P_3$

Probability of three everywhere else: $P_e = 1 - P_c$

- To solve the accuracy.
- Hence, reduce the maximum iteration required
- Thus, become even faster!

- There is an extracted circle for each iteration
- Here in our project:
 - Filter by size
 - Filter by green and non-green pixel percentage inside the circle

Edge Detection

Edge Detection

Edge Detection

Here is the magic

- Distributed of Random Points
- Very Efficient

Let's back-up a little bit!

- Field Boundary Detection
 - Ball is always inside the field
 - Outside of the field is usually crowded.

Field-Green Color

• When the robot is inside the field <u>usually</u> it see <u>mostly</u> green (When the image is cropped below the horizon).

Horizon

Thomas Reinhardt

Horizon

- "In graphical perspective, a vanishing point is a point in the image plane where the projections of a set of parallel lines in space intersect." -wikipedia
- Horizon is the projection of the infinity (or a very distanced point)

In our work

• The highest pixel for field boundary in image is when robot is at one corner and observing the diagonal corner of the field.

Again Field-Green Color

p = peak(histogram)

 $isGreen(P) = |P - p| < \delta$

255

127

Field Boundary

Run Ups Results

Andrew's monotone Results

- Size
- White Pixels Maximum
- Non-Green Pixels Limit
- Projected Size
- Pattern

- Size
- White Pixels Maximum
- Non-Green Pixels Limit
- Projected Size
- Pattern

- Size
- White Pixels Maximum
- Non-Green Pixels Limit
- Projected Size
- Pattern

- Size
- White Pixels Maximum
- Non-Green Pixels Limit
- Projected Size
- Pattern

Thanks To

- MRL Humanoid (MRL-HSL)
- MRL Biped Lab. (MRL-SPL)
- MRL3D Soccer Simulation Team

Any Questions?

- The code can be found on my github at:
 - http://github.com/arefmq
- The documentation is available on my profile at:
 - http://mrl-spl.ir/~moqadam
- You can also reach my by email via:
 - a.moqadam@mrl-spl.ir