Teoremi e Applicazioni convergenza

In questa sezione sono presenti gli enunciati di alcuni teoremi riguardanti la convergenza, studiati in parte nell'insegnamento di Analisi 3 e in parte in corsi precedenti. Per la dimostrazione e maggiori dettagli sono presenti le fonti su cui approfondire i vari argomenti.

Analisi 3

I primi due risultati sono criteri per mostrare la convergenza uniforme di successioni e serie di funzioni.

http://www-dimat.unipv.it/pier/teaching/note-longhi-mauri.pdf http://poincare.unile.it/campiti/tracce/02-serie-di-funzioni.pdf http://calvino.polito.it/~lucipan/materiale_html/Analisi-2-PANDOLFI.pdf

• Criterio di Cauchy

Data la successione di funzioni $f_n: I \subset \mathbb{R} \to \mathbb{R}$, si ha che f_n converge uniformemente a f su $I \iff \forall \epsilon > 0 \quad \exists N = N(\epsilon) \in \mathbb{N}$ tale che $\forall n \geq \mathbb{N} \quad \forall p \in \mathbb{N} \quad \text{vale} \quad |f_{n+p}(x) - f_n(x)| < \epsilon \quad \forall x \in I$ **OSS:** Il vantaggio di questo criterio è che non è necessario conoscere a priori la funzione limite f.

https://it.wikipedia.org/wiki/Criterio_di_convergenza_di_Cauchy "Analisi Matematica 2" - Pagani-Salsa, Paragrafo 2 Capitolo 3

• Criterio di Weierstrass

Data la successione di funzioni $f_n: I \subset \mathbb{R} \to \mathbb{R}$, se \exists una successione $c_n \in \mathbb{R}^+$ tale che:

- $-|f_n(x)| \le c_n \quad \forall x \in I \quad \forall n \ge 1 \quad (c_n \text{ maggiorazione uniforme})$
- la serie $\sum_{n=1}^{+\infty} c_n$ converge

Allora la serie $\sum_{n=1}^{+\infty} f_n(x)$ converge uniformemente su I

https://it.wikipedia.org/wiki/Criterio_di_Weierstrass
"Analisi Matematica 2" - Pagani Salsa, Proposizione 2.1 Capitolo 3

I teoremi seguenti invece sfruttano la teoria della misura e dell'integrazione di Lebsgue per ottenere il passaggio al limite sotto il segno di integrale e trovare relazioni fra i modi di convergenza studiati.

• Teorema di Convergenza Monotona (o di Beppo Levi)

Siano (X, \mathcal{M}, μ) uno spazio di misura e $f_n, f: X \to [0, +\infty]$ tali che:

- le f_n sono funzioni misurabili
- $-0 \le f_n \le f_{n+1} \qquad \forall n \ge 1$
- $-\lim_{n\to\infty} f_n(x) = f(x) \quad \forall x \in X$

Allora:

-fè misurabile

$$-\lim_{n\to\infty}\int_X f_n d\mu = \int_X f d\mu$$

 $\label{lem:https://it.wikipedia.org/wiki/Teorema_della_convergenza_monotona http://web.math.unifi.it/users/magnanin/Istit/a3gsm11.pdf - cap 4$

"Real and complex analysis" - Rudin, Teorema 1.26

• Teorema di Convergenza Dominata

Siano (X, \mathcal{M}, μ) uno spazio di misura e $f_n, f: X \to \mathbb{C}$ tali che:

- le f_n sono funzioni misurabili
- $-\lim_{n\to\infty} f_n(x) = f(x) \quad \forall x \in X$
- $-\exists g \in L^1(\mu)$ t.c. $|f_n(x)| \le g(x) \quad \forall n \ge 1, \quad \forall x \in X$

Allora:

$$- f \in L^{1}(\mu)$$

$$- \lim_{n \to \infty} \int_{X} |f_{n} - f| d\mu = 0$$

$$- \lim_{n \to \infty} \int_{X} f_{n} d\mu = \int_{X} f d\mu$$

https://it.wikipedia.org/wiki/Teorema_della_convergenza_dominata http://www.dmi.unict.it/~villani/Complementi%20di%20Analisi% 20matematica/CONVERGENZA%20DOMINATA.pdf

 $\verb|http://web.math.unifi.it/users/magnanin/Istit/a3gsm11.pdf-cap 4|$

"Real and complex analysis" – Rudin, Teorema 1.34

OSS: Si sottolinea come l'utilizzo dell'ipotesi di convergenza puntuale nei teoremi di convergenza monotona e dominata si può indebolire a convergenza q.o., consci di poter sempre attuare un completamento della misura qualora fosse necessario.

• Teorema

Siano (X, \mathcal{M}, μ) uno spazio di misura e $f_n, f: X \to \mathbb{R}$ tali che:

- $-f_n$ integrabile $\forall n$
- $-\ \exists f:X\to\mathbb{R}$ t.c. f_n converge a f uniformemente su X
- $-\mu(X) < +\infty$

Allora:

- -f è integrabile
- f_n converge a f in $L^1(\mu)$

"Real Analysis" - Folland, Paragrafo 2.4

• Teorema inverso della convergenza dominata

Siano (X, \mathcal{M}, μ) uno spazio di misura e $f_n, f: X \to \mathbb{C}$ tali che:

- f_n converge a f in $L^1(\mu)$

Allora esiste una sottosuccessione f_{n_k} tale che:

- $-f_{n_k}$ converge a f quasi ovunque su X
- $-\exists g \in L^1(\mu)$ t.c. $|f_{n_k}(x)| \leq g(x) \quad \forall n_k \quad \forall x \in X$

OSS: questo significa che a meno di sottosuccessioni la convergenza in L^1 implica quella quasi ovunque.

"Real Analysis" - Folland, Paragrafo 2.4

• Teorema di Egorov

Siano (X, \mathcal{M}, μ) uno spazio di misura e $f_n, f: X \to \mathbb{C}$ tali che:

- $-f_n$ misurabile $\forall n \geq 1$
- $-f_n$ converge a f quasi ovunque
- $-\mu(X) < +\infty$

Allora: $\forall \epsilon > 0 \quad \exists E \subset X \text{ t.c. } \mu(E) < \epsilon \text{ e } f_n \text{ converge a } f \text{ uniformemente su } E^c.$

"Real Analysis" - Folland, Teorema 2.33

Calcolo delle Probabilità e Statistica

Anche in probabilità e statistica è molto importante il concetto di convergenza di variabili aleatorie e si differenziano vari modi. Ecco riportati alcuni risultati fondamentali. Per questa parte oltre ai link specifici per i vari teoremi si può fare riferimento a:

G. Grimmett, D. Stirzaker "Probability and Random Processes", Third Edition, Oxford Un. Press, 2001

 $\label{lem:http://www.tlc.unipr.it/bononi/didattica/TSA/beucher/EntwurfVorlesung.} \\ pdf (p. 11-12)$

http://oldwww.unibas.it/utenti/dinardo/sedicilezio.pdf http://boccignone.di.unimi.it/SAD_2017_files/lez10.pdf

• Leggi dei grandi numeri

Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie indipendenti e identicamente distribuite con valore atteso $\mu = \mathbb{E}[X_1]$, sia $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ la media empirica. Allora valgono:

- Legge debole dei grandi numeri (o teorema di Bernoulli)

$$\forall \eta > 0$$
 $\lim_{n \to +\infty} \mathbb{P}\left(|\overline{X}_n - \mu| > \eta\right) = 0$

- Legge forte dei grandi numeri

$$\mathbb{P}\left(\lim_{n\to+\infty}\overline{X}_n=\mu\right)=1$$

https://it.wikipedia.org/wiki/Legge dei grandi numeri

- Data una variabile aleatoria X e una successione di variabili aleatorie $(X_n)_{n\in\mathbb{N}}$ a valori in \mathbb{R} con funzioni di distribuzione F_{X_n} , abbiamo studiato 3 tipi di convergenza:
 - si dice che $(X_n)_n$ converge a X in probabilità (e si indica con $X_n \stackrel{\mathbb{P}}{\to} X$) se $\forall \eta > 0$ $\lim_{n \to \infty} \mathbb{P}(|X_n X| > \eta) = 0$.
 - si dice che $(X_n)_n$ converge **in distribuzione** (o in legge) a X con funzione di distribuzione F_X (e si indica con $X_n \stackrel{d}{\to} X$) se $\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \quad \forall$ punto di continuità di F_X .
 - si dice che $(X_n)_n$ converge a X quasi certamente (e si indica con $X_n \stackrel{q.c.}{\to} X$) se $\mathbb{P}(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = 1$.

OSS: anche qua come per le funzioni alcuni modi di convergenza sono più forti di altri. In particolare vale:

convergenza $q.c. \Rightarrow$ convergenza in $\mathbb{P} \Rightarrow$ convergenza in d.

Si osserva inoltre come la convergenza in distribuzione o in legge sia la più debole delle tre, ma è ampiamente utilizzata: si pensi già solo al toerema del limite centrale.

https://it.wikipedia.org/wiki/Convergenza_di_variabili_casuali https://www.mat.unical.it/~gianfelice/didattica/P&PS/appti_ P&PS.pdf - capitolo 2

• Teorema di Levy

Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie con funzione caratteristica $\varphi_{X_n}(\theta)$ tale che $X_n \stackrel{d}{\to} X$, sia φ_X la funzione caratteristica di X. Allora:

$$\varphi_{X_n}(\theta) \to \varphi_X(\theta) \quad \forall \theta \in \mathbb{R}$$

• Teorema del limite centrale

Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie a valori in \mathbb{R} indipendenti e identicamente distribuite con $\mathbb{E}[X_i] = \mu$ e $\operatorname{Var} X_i = \sigma^2 \quad \forall i$. Allora:

$$S_n = \frac{\frac{1}{n} \sum_{j=1}^n (X_j - \mu)}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{d} Z \sim N(0, 1)$$

https://it.wikipedia.org/wiki/Teoremi_centrali_del_limite http://users.dma.unipi.it/~flandoli/StatI_TLC.pdf

Analisi Numerica

In Analisi Numerica il concetto di convergenza dei vari metodi alla soluzione che si vuole approssimare è fondamentale per capire quali metodi sono migliori e quante iterazioni sono necessarie.

R.L. Burden, J.D. Faires, "Numerical Analysis", 9th edition, Thomson Brooks/Cole, 2011

Collegato alle nozioni presentate nel corso di Analisi 3 si può citare il fondamentale:

• Teorema di approssimazione di Weierstrass

Data $f: [a, b] \to \mathbb{R}$ una funzione continua definita sull'intervallo [a, b], esiste una successione di polinomi $(p_n)_{n\geq 1}$ tale che:

 $\lim_{x\to\infty} p_n(x) = f(x), \forall x \in [a,b]$

OSS: Si osservi che il limite è da intendersi non solo come limite puntuale, ma anche uniforme. Ne consegue che la convergenza della successione dei polinomi approssimanti la funzione f è uniforme.

https://it.wikipedia.org/wiki/Teorema_di_approssimazione_di_ Weierstrass