Week 3 (part 1): Sept 12 - Sept 14

The binomial model

Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for performance enhancing drugs. Let $Y_i = 1$ if athlete i tests positive and $Y_i = 0$ otherwise. A total of 13 athletes tested positive.

Write the sampling model $p(y_1, ..., y_{37}|\theta)$.

Assume a uniform prior distribution on $p(\theta)$. Write the pdf for this distribution.

In what larger class of distributions does this distribution reside? What are the parameters?

Beta distribution. Recall, $\theta \sim Beta(\alpha, \beta)$ if:

$$E[\theta] =$$

$$Var[\theta] =$$

Now compute the posterior distribution, $p(\theta \boldsymbol{y})$, where $\boldsymbol{y} = \sum_{i}^{n} y_{i}$.
$p(heta oldsymbol{y}) =$
Compute the posterior expectation, $E[\theta \boldsymbol{y}] =$
Note that this a function of prior information and the data.
Conjugate Priors
We have shown that a beta prior distribution and a binomial sampling model lead to a beta posterior distribution. This class of beta priors is conjugate for the binomial sampling model.
Def: Conjugate
Conjugate priors make posterior calculations simple, but might not always be the best representation of prior beliefs.
STAT 532: Bayesian Data AnalysisPage 2

Predictive Distributions

An important element in Bayesian statistics is the predictive distribution, in this case let Y^* be the outcome of a future experiment. We are interested in computing:

$$Pr(Y^* = 1|y_1, ..., y_n) = \int Pr(Y^* = 1|\theta, y_1, ..., y_n)p(\theta|y_1, ..., y_n)d\theta$$

Note that the predictive distribution does not depend on any unknown quantities, but rather only the observed data. Furthermore, Y^* is not independent of $Y_1, ..., Y_n$ but depends on them through θ .

Posterior Intervals

With a Bayesian framework we can compute **credible intervals**.

Credible Interval:

Recall in a frequentist setting

$$Pr(l(y) < \theta < u(y)|\theta) =$$

Note that in some settings Bayesian intervals can also have frequentist coverage probabilities, at least asymptotically.

Quanti	le	hased	interva	lc
Ouanu	ı	vascu	mitti va	12

Quantile based intervals are typically easy to compute.

Highest posterior density (HPD) region

A $100 \times (1-\alpha)\%$ HPD region consists of a subset of the parameter space, $s(y) \subset \Theta$ such that 1.

2.

All points in the HPD region have higher posterior density than those not in region. Additionally the HPD *region* need not be a continuous interval. HPD regions are typically more computationally intensive to compute than quantile based intervals.

Exercise. Sketch a distribution where the HPD and "equal" quantile based intervals do not agree.

The Poisson Model

Recall, $Y \sim Poisson(\theta)$ if

Properties of the Poisson distribution:

- \bullet E[Y] =
- Var(Y) =
- $\sum_{i=1}^{n} Y_{i} \sim$ if $Y_{i} \sim Poisson(\theta_{i})$

Conjugate Priors for Poisson

Recall conjugate priors for a sampling model have a posterior model from the same class as the prior. Let $y_i \sim Poisson(\theta)$, then

$$p(\theta|y_1,...,y_n) \propto p(\theta)\mathcal{L}(\theta|y_1,...,y_n)$$
 \propto

Thus the conjugate prior class will have the form

A positive quantity θ has a

distribution if:

$$p(\theta) =$$

Properties of

•
$$E[\theta] =$$

•
$$Var(\theta) =$$

Posterior Distribution

Let
$$Y_1,...,Y_n \sim Poisson(\theta)$$
 and $p(\theta) \sim$, then

$$p(\theta|y_1,...,y_n) = \frac{p(\theta)p(y_1,...,y_n|\theta)}{p(y_1,...,y_n)}$$

$$= \infty$$

So
$$\theta|y_1,...,y_n \sim$$

Note that

$$E[\theta|y_1, ..., y_n] = \frac{a + \sum y_i}{b + n}$$

So now a bit of intuition about the prior distribution. The posterior expectation of θ is a combination of the prior expectation and the sample average:

- b in interpreted as
- a is interpreted as

When n >> b the information from the data dominates the prior distribution.

Predictive distribution

The predictive distribution, $p(y^*|y_1,...,y_n)$, can be computed as:

$$p(y^*|y_1, ..., y_n) = \int p(y^*|\theta, y_1, ..., y_n) p(\theta|y_1, ..., y_n) d\theta$$

$$= \int$$

$$= \int$$

$$= ...$$

$$= ...$$

You can (and likely will) show that $p(y^*|y_1,...,y_n) \sim$

Exponential Families

The binomial and Poisson models are examples of one-parameter exponential families. A distribution follows a one-parameter exponential family if it can be factorized as:

(1)

where ϕ is the unknown parameter and t(y) is the sufficient statistic.

The using the class of priors, where $p(\phi) \propto$ are similar considerations to the Poisson case where and is a "prior guess."

, is a conjugate prior. There can be thought of as a "prior sample size"