Predicting Taxi Fare Prices in NYC

David Estoque 11/30/2018

NYC Mobility Statistics

- Taxis are losing market share to Uber and Lyft [1]
 - Still important function of NYC Mobility
 - o 13,000 Taxicab medallions in NYC
 - 2nd in US- Chicago about 6,000

About the Data

	key	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0 2015-01-27 13:08:24	.0000002 20	15-01-27 13:08:24 UTC	-73,973	40.764	-73.981	40.744	1
1 2015-01-27 13:08:24	.0000003 20	15-01-27 13:08:24 UTC	-73.987	40.719	-73.999	40.739	1
2 2011-10-08 11:53:44	.0000002 20	11-10-08 11:53:44 UTC	-73.983	40.751	-73.980	40.746	1
3 2012-12-01 21:12:12	.0000002 20	12-12-01 21:12:12 UTC	-73.981	40.768	-73.990	40.752	1
4 2012-12-01 21:12:12	.0000003 20	12-12-01 21:12:12 UTC	-73.966	40.790	-73.989	40.744	1

1273.310

max

3439,426

- Obtained using NYC OpenData
- Over 55 million rows of cab rides
 - o Shortened to 2.75 million
- Cab ride data obtained from 2009-2015
- Average fare amount was \$11.34

		10.000	10.701	70.000	10.7 10		
TC		-73.981	40.768	-73.990	40.752		1
TC		-73.966	40.790	-73.989	40.744		1
		fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
	count	2749978.000	2749978.000	2749978.000	2749978.000	2749978.000	2749978.000
	mean	11.340	-72.517	39.926	-72.517	39.921	1.684
	std	9.828	13.153	8.513	12.808	10.155	1.325
	min	-62.000	-3426.609	-3488.080	-3408.430	-3488.080	0.000
	25%	6.000	-73.992	40.735	-73.991	40.734	1.000
	50%	8.500	-73.982	40.753	-73.980	40.753	1.000
	75%	12.500	-73.967	40.767	-73.964	40.768	2.000
		1222223	100000000000000000000000000000000000000	10000 0000	2000 2000	12.20.000000	2021202

2912.465

3414.307

3345.917

208.000

Fare Distribution

- Preprocessing for fare price
 - Included negative values
 - \circ Max = \$1,273
 - Set dataset max to \$100
- Rides to airport
 - Base fare of \$45

Taxi Cab Rides by Hour

Taxi Cab Rides by Day

Taxi Pickup/dropoff Locations

NYC Pick Ups

Data Processing

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	year	month	day	hour	distance_traveled
1045136	-73.976	40.752	-73.975	40.742	1	2013	10	26	7	0.011
342264	-73.993	40.748	-74.006	40.731	2	2011	9	16	19	0.021
2138657	-73.981	40.748	-73.989	40.737	2	2009	11	14	12	0.014
1480376	-73.951	40.810	-73.956	40.818	1	2012	1	28	21	0.008
1570444	-73.975	40.760	-73.993	40.768	1	2011	9	23	23	0.019

- Calculated Euclidean distance with coordinate data
- Stripped "pickup_datetime" to hour, day, weekday, month, and, year
 - Hot encoded weekday
- Training Set shape
 - o 1881700 rows
- Test Set Shape
 - 806443

Key Objectives

- What are the characteristics of clusters in the data?
- Predict Tax Fare price
 - Use prediction as a part of Mobility as a Service (Maas)
 - Enhance mobility through Maas

Cluster on Entire Dataset

	clusters_all_set	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	hour	weekday	distance_traveled
0	0	11,150	-73.975	40.751	-73.976	40.751	17.666	4.973	0.033
1	1	11.345	-73.974	40.752	-73.974	40.752	8.979	0.973	0.033
2	2	11.391	-73.977	40.749	-73.973	40.750	6.029	4.406	0.035
3	3	11.199	-73.975	40.751	-73.975	40.752	18.807	1.678	0.033

Cluster 1

Cluster 2

Geoclustering

Geocluster

	clusters_loc	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	month	hour	weekday	distance_traveled
0	0	9.995	-73.959	40.779	-73.966	40.767	6.252	13.459	2.985	0.029
1	1	10.253	-73.994	40.731	-73.983	40.739	6.260	12.855	3.300	0.030
2	2	10.809	-73.971	40.760	-73.972	40.757	6.263	14.044	2.892	0.032
3	3	13.307	-74.004	40.706	-73.984	40.729	6.315	13.508	3.100	0.042
4	4	20.661	-73.909	40.790	-73.956	40.767	6.342	13.927	2.966	0.071
5	5	11.359	-73.979	40.745	-73.977	40.748	6.270	13.549	2.991	0.034

Geocluster o

- Fare amount \$9.95
 - o \$2 below mean

Geo Cluster 4

- Fare Amount \$20.66
 - \$9 above mean

Day of Week and Hour Clusters

- Day of Week Cluster
 - Simply split clusters into days of the week as expected
- Hour Cluster Created 3 nonsense clusters
 - 7 pm
 - o 11 am
 - 2 am

Taxi Fare Prediction

Model Comparison

Model	RMSE Test	RMSE Train	Mean Absolute Percentage Error	Variance
Baseline	9.33	NA	NA	NA
Linear Regression	4.239	4.233	78.53%	-0.006
Gradient Boosting	3.71	3.7	83.76%	-0.009
Random Forest Regressor	3.52	1.49	81.17%	-2.026
XGBoost	3.35	3.27	82.19%	-0.084

Feature Importance

Conclusions

- Clustering worked fairly well
 - Geoclustering was able to pinpoint popular destinations
 - Time cluster developed clusters at odd hours
 - Perhaps investigate another method to cluster time of day
 - Cluster by time of day just clustered by day as expected
- A Taxi Fare prediction application could be useful for **consumers**
 - Budget and plan their trip
 - Compare prices with Uber
- Taxi Cab Owners could utilize fare prediction as well
 - Deploy drivers at optimum times to reduce costs
 - Allow taxi cab companies to adjust fares in regards to surge pricing

Conclusions

Developers

- Taxi fare prediction could be useful to to developers of MaaS (Mobility as a Service)
 - Combine transportation services from public and private transportation providers through a unified gateway that creates and manages the trip
 - Users pay for with a single account. Users can pay per trip or a monthly fee for a limited distance.
 - The key concept behind MaaS is to offer travelers mobility solutions based on their travel needs. [2]
 - i.e., Getting there cheaper or faster

Conclusions

- Next steps
 - Split train and test before running clusters
 - Then use clusters to predict!
 - Generate additional features to include popular destinations
 - Combine other datasets to increase exactness
 - Weather data
 - Combine information from other sources to develop MaaS App
 - Public transit data
 - Regional public transit
 - Uber
 - Airline data
 - Traffic data

Sources

- [1] https://www.statista.com/chart/13480/ride-hailing-apps-surpass-regular-taxis-in-nyc/
- [2] https://en.wikipedia.org/wiki/Mobility_as_a_service