PH231 Session 3

Introduction to Lab 3 – BJT's!

The BJT's Silicon device structure

IN FORWARD ACTIVE MODE

NOTE: Although an NPN BJT schematically appears to be two diode junctions NP (CB) and PN(BE), it is NOT ACTUALLY two diodes connected back to back!! The thickness of N, P, N regions inside the silicon determines the characteristics as explained below

PRACTICALLY, BJT AMPLIFIES CURRENT

Send small Base current IN. Get LARGE current out

Necessary conditions to be in the blue:

$$V_{BE} > 0.7V (= 0.7V)$$

 $V_C > V_B$

BJT in a circuit:

some source is injecting I_B , some load is taking I_C I_B & I_C may change as a function of t

Q – point "quiet" DC operating point: When I_B and $I_C = \beta I_B$ constant in t V_{CE} is restricted to $< V_{CC}$ $\frac{V_{CC}}{R_L} = I_C$: constrains the BJT's node voltages and currents: "load line" setup the circuit so that V_{CE} is at $0.5V_{CC}$ – then V_{CE} can swing between V_{CC} and 0

BJT AMPLIFICATION "ACTION"

Base current changes in time: how does Collector current respond?

Lab 3

Node voltages and currents restricted to be on Load Line

 I_{BQ} and hence $I_{CQ} = \beta I_{BQ}$ have been set at the Q-point

Time variation: $I_{BQ} \pm i_B \rightarrow I_{CQ} \pm i_C$

But notice difference in scale!

$$I_B = 50 \pm 30 \,\mu A \rightarrow I_C = 5 \pm 3 mA$$

SCRATCH-PAD

