Section 2.5

Problems: 5

Problem 5

Proof. We will use a proof by contradiction. Assume that it is not the case that $\lim = a$. That is there exists $\epsilon > 0$, such that for all $N \in \mathbb{N}$, $n \geq N$ and $|a_n - a| \geq \epsilon$. And thus we can construct a subsequence of a_n such that $|a_{n_k} - a| \geq \epsilon$. We know that (a_n) is bounded, so (a_{n_k}) is bounded, since it is a subsequence of (a_n) . And from the Bolzano-Weierstrass theorem, we know that (a_{n_k}) contains a converging subsequence $(a_{n_{k_j}})$. And we know that there exists $\epsilon > 0$ such that for all $n \in \mathbb{N}$, $|a_{n_{k_k}} - a| \geq \epsilon$, therefore the subsequence does not converge to a. However, we see that $(a_{n_{k_j}})$ is all so a subsequence of a_n , so by assumption, it converges to a. And consequently, we have arrived at our contradiction, and thus establishing the validity of our original statement.

Section 2.6

Problems: 2

Problem 2

- a). We see that $(a_n) = (1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1}(\frac{1}{n}))$ is Cauchy, but it is not monotone $(a_1 > a_2 \text{ and } a_2 < a_3)$. Hence, we have found our example.
- b). Impossible, since we know that all Cauchy sequence is convergent, and all the subsequences of a convergent sequence is also convergent, and thus all convergent sequences are bounded, and so all the subsequences are bounded and an unbounded subsequence does not exists.
- c). Impossible. We name the squence (a_n) , and we know that it is a divergent monotone sequence. Hence it is not bounded, in addition, we know that $|a_n| \leq |a_{n+1}|$ (It would be bounded otherwise). Because a_n it is not bounded, $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$, such that $|a_N| \geq M$. And we see that $\forall n \geq N$, $|a_n| \geq M$. consequently, we see that all the subsequences of (a_n) is unbounded (when $k \geq N$, $n_k \geq k \geq N$). However, we know that there exists a Cauchy subsequence, hence it is convergent, hence it is bounded. But we know that all subsequences are unbounded, therefore we have arrived at our contradiction.
- d). $(a_n) = (1, 0, 2, 0, 4, 0, 5, ...)$ has subsequence (0, 0, 0, ...) which is Cauchy.

Section 2.7

Problems: 4, 7a

Problem 4

a). $\sum x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ diverges

$$\sum y_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 diverges

We see that

$$\sum x_n y_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$

which converges(in the form $\frac{1}{n^p}$, where p > 1).

- b). We know that $\sum x_n = 1 \frac{1}{2} + \frac{1}{3} \dots + (-1)^{n+1} (\frac{1}{n})$ converges. And we take a bounded sequence $(y_n) = (1, -1, 1, \dots, (-1)^n + 1)$. We see that $\sum x_n y_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, which diverges.
- c). The request is impossible. Since $\sum (x_n + y_n)$ and $\sum x_n$ converges, using the algebraic limit theorem, we know that $\sum (x_n + y_n) \sum x_n = \sum y_n$ converges. But we know that $\sum y_n$ diverges, hence we have arrived at our contradiction.
- d). We can let $x_n = (0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, \dots)$. We see that $\sum (-1)^n x_n = \sum \frac{1}{2n} = 2 \sum \frac{1}{n}$. We know that $\sum \frac{1}{n} = (2)(\frac{1}{2n})$ diverges, thus $2 \sum \frac{1}{n}$ diverges.

Problem 7

a). Proof. Because $\lim(na_n) = l$, we know that l > 0 (The proof is trivial employing conradiction and the definition is limit, assume l < 0 and set $\epsilon = \frac{|l|}{2}$, show a is negative, hence contradiction). $\forall \epsilon > 0$, $N \in \mathbb{N}$, $n \geq N \Longrightarrow |n(a_n) - l| < \epsilon$. We can set $\epsilon = \frac{l}{2}$, we see that $\frac{l}{2} < n(a_n) < \frac{3l}{2}$. And we see that $\frac{l}{2n} < a_n$. Because $\sum \frac{l}{2n} = \frac{l}{2} \sum \frac{1}{n}$, and we know the harmonic series diverges, so it also diverges. And we know $\frac{l}{2n} < a_n$ and $0 < \frac{l}{2n} < a_n$ so by the comparison test, we know that $\sum a_n$ diverges.

Section 3.2

Problems: 2, 4a, 8ab, 11a

Problem 2

- a). limit points: For set A: -1 and 1. For set B: [0,1].
- b). Both sets are not closed, as they both don't contain all of their limit points. We see that set A doesn't contain -1, which is a limit point. And we see that for all $\epsilon > 0$, $V_e(\frac{\sqrt{2}}{2}) \cap B \neq \emptyset$ or $\frac{\sqrt{2}}{2}$ (rationals are dense), thus $\frac{\sqrt{2}}{2}$ is a limit point not contained. And we see that both A and B are not open, because we know that irrationals are dense, and so irrationals are contained in any $V_{\epsilon}(x)$ for A. consequently, causing $V_{\epsilon}(x)$ to not be a subset of A. The reasoning for B is the same.
- c). For set A, we see that all points except for 1 is an isolated point. Because we know that for any other arbitrary point, a_n , $\exists \epsilon > 0$ such that $V_{\epsilon}(a) \cap A = \emptyset$, namely, let $\epsilon = \frac{1}{n} \frac{1}{n+2}$. We see that B does not contain any limit point, as the rationals are also dense, hence in any ϵ interval, there exists rationals.
- d). We see that $\bar{A} = A \cup \{-1\}$, and we see that $\bar{B} = \{x \in \mathbb{R} : 0 \le x \le 1\}$

Problem 4

a). Proof. We see that if s = a for some $a \in A$, then we see that $s \in A \subseteq \bar{A}$, thus we are done. And for $s \neq a$ for some $a \in A$, we know that for all $\epsilon > 0$, $s - \epsilon < a_1 < s < s + \epsilon$ for some $a_1 \in A$. We see that for all $\epsilon > 0$, $V_{\epsilon}(s) \cap A \neq \emptyset$ or equal to s (since $s \notin A$). Consequently, s is a limit point of A, $s \in L$, and thus $s \in \bar{A}$.

Problem 8

We know that the only sets that are both open and close are \mathbb{R} and \emptyset .

- a). We know that the closure of any set, in this case $A \cup B$, is closed. Thus, definitly closed
- b). We know that A B is equivalent to $A \cap B^{\complement}$. And because B is closed, so we know that B^{\complement} is open. The intersection of an finite number of open sets is open. Thus, we see that A B is open.

Problem 11

a). Proof. We will show that $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A \cup B} \supseteq \overline{A} \cup \overline{B}$, thus they are equivalent. We know that $\overline{A} = A \cup L_A$, and same for B. So we see that $A \cup B \subseteq \overline{A} \cup \overline{B}$ (unions of sets are commutative). And it is easy to see from definition that $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$ ($\forall \epsilon > 0, \ V_{\epsilon}(x) \cap (A \cup B) \neq \{x\}$ and not empty $\Longrightarrow V_{\epsilon}(x) \cap (\overline{A} \cup \overline{B}) \neq \{x\}$ and not empty). We know that the union of two close set is a closed set, thus $\overline{A} \cup \overline{B}$ is a close set, and so $\overline{\overline{A} \cup \overline{B}} = \overline{A} \cup \overline{B}$. Thus, $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$. To show that the other way is true, we see that $\overline{A} \subseteq \overline{A} \cup \overline{B}$, and $\overline{B} \subseteq \overline{A} \cup \overline{B}$ (can be easily seen through definition of

limit point, like above). Thus, $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. And finally we have shown that they are equivalent.