Capítulo 5

ANALISIS DE COMPONENTES PRINCIPALES

5.1 Definición y obtención de las componentes principales

Sea $\mathbf{X} = [X_1, \dots, X_p]$ una matriz de datos multivariantes. Lo que sigue también vale si \mathbf{X} es un vector formado por p variables observables.

Las componentes principales son unas variables compuestas incorrelacionadas tales que unas pocas explican la mayor parte de la variabilidad de \mathbf{X} .

Definició 5.1.1 Las componentes principales son las variables compuestas

$$Y_1 = \mathbf{X}\mathbf{t}_1, Y_2 = \mathbf{X}\mathbf{t}_2, \dots, Y_n = \mathbf{X}\mathbf{t}_n$$

tales que:

- 1. $var(Y_1)$ es máxima condicionado a $\mathbf{t}'_1\mathbf{t}_1=1$.
- 2. Entre todas las variables compuestas Y tales que $cov(Y_1, Y) = 0$, la variable Y_2 es tal que $var(Y_2)$ es máxima condicionado a $\mathbf{t}_2'\mathbf{t}_2 = 1$.
- 3. Y_3 es una variable incorrelacionada con Y_1, Y_2 con varianza máxima. Análogamente definimos las demás componentes principales.

Si $\mathbf{T} = [\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_p]$ es la matriz $p \times p$ cuyas columnas son los vectores que definen las componentes principales, entonces la transformación lineal $\mathbf{X} \to \mathbf{Y}$

$$Y = XT (5.1)$$

se llama transformación por componentes principales.

Teorema 5.1.1 Sean $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_p$ los p vectores propios normalizados de la matriz de covarianzas \mathbf{S} , es decir,

$$\mathbf{St}_i = \lambda_i \mathbf{t}_i, \quad \mathbf{t}_i' \mathbf{t}_i = 1, \quad i = 1, \dots, p.$$

Entonces:

- 1. Las variables compuestas $Y_i = \mathbf{Xt}_i$, i = 1, ..., p, son las componentes principales.
- 2. Las varianzas son los valores propios de S

$$var(Y_i) = \lambda_i, \quad i = 1, \dots, p.$$

3. Las componentes principales son variables incorrelacionadas:

$$cov(Y_i, Y_j) = 0, \quad i \neq j = 1, ..., p.$$

Demost.: Supongamos $\lambda_1 > \cdots > \lambda_p > 0$. Probemos que las variables $Y_i = \mathbf{X}\mathbf{t}_i$, $i = 1, \dots, p$, son incorrelacionadas:

$$cov(Y_i, Y_j) = \mathbf{t}_i' \mathbf{S} \mathbf{t}_j = \mathbf{t}_i' \lambda_j \mathbf{t}_j = \lambda_j \mathbf{t}_i' \mathbf{t}_j, cov(Y_j, Y_i) = \mathbf{t}_j' \mathbf{S} \mathbf{t}_i = \mathbf{t}_j' \lambda_j \mathbf{t}_i = \lambda_i \mathbf{t}_j' \mathbf{t}_i,$$

 $\Rightarrow (\lambda_j - \lambda_i)\mathbf{t}_i'\mathbf{t}_j = 0, \Rightarrow \mathbf{t}_i'\mathbf{t}_j = 0, \Rightarrow cov(Y_i, Y_j) = \lambda_j\mathbf{t}_i'\mathbf{t}_j = 0, \text{ si } i \neq j.$ Además:

$$var(Y_i) = \lambda_i \mathbf{t}_i' \mathbf{t}_j = \lambda_i.$$

Sea ahora $Y=\sum_{i=1}^p a_i X_i=\sum_{i=1}^p \alpha_i Y_i$ una variable compuesta tal que $\sum_{i=1}^p \alpha_i^2=1$. Entonces

$$\operatorname{var}(Y) = \operatorname{var}(\sum_{i=1}^{p} \alpha_i Y_i) = \sum_{i=1}^{p} \alpha_i^2 \operatorname{var}(Y_i) = \sum_{i=1}^{p} \alpha_i^2 \lambda_i \le (\sum_{i=1}^{p} \alpha_i^2) \lambda_1 = \operatorname{var}(Y_1),$$

5.2. VARIABILIDAD EXPLICADA POR LAS COMPONENTES PRINCIPALES65

que prueba que Y_1 tiene varianza máxima.

Consideremos ahora las variables Y incorrelacionadas con Y_1 . Las podemos expresar como:

$$Y = \sum_{i=1}^{p} b_i X_i = \sum_{i=2}^{p} \beta_i Y_i \text{ condicionado a } \sum_{i=2}^{p} \beta_i^2 = 1.$$

Entonces:

$$var(Y) = var(\sum_{i=2}^{p} \beta_i Y_i) = \sum_{i=2}^{p} \beta_i^2 var(Y_i) = \sum_{i=2}^{p} \beta_i^2 \lambda_i \le (\sum_{i=2}^{p} \beta_i^2) \lambda_2 = var(Y_2),$$

y por lo tanto Y_2 está incorrelacionada con Y_1 y tiene varianza máxima. Si $p \ge 3$, la demostración de que Y_3, \dots, Y_p son también componentes principales es análoga. \square

5.2 Variabilidad explicada por las componentes principales

La varianza de la componente principal Y_i es $\text{var}(Y_i) = \lambda_i$ y la variación total es $\text{tr}(\mathbf{S}) = \sum_{i=1}^{p} \lambda_i$. Por lo tanto:

- 1. Y_i contribuye con la cantidad λ_i a la variación total tr(S).
- 2. Si $q < p, Y_1, \ldots, Y_q$ contribuyen con la cantidad $\sum_{i=1}^q \lambda_i$ a la variación total tr(S).
- 3. El porcentaje de variabilidad explicada por las m primeras componentes principales es

$$P_m = 100 \frac{\lambda_1 + \dots + \lambda_m}{\lambda_1 + \dots + \lambda_n}.$$
 (5.2)

En las aplicaciones cabe esperar que las primeras componentes expliquen un elevado porcentaje de la variabilidad total. Por ejemplo, si m=2 < p, y $P_2 = 90\%$, las dos primeras componentes explican una gran parte de la variabilidad de las variables. Entonces podremos sustituir X_1, X_2, \ldots, X_p por las componentes principales Y_1, Y_2 . En muchas aplicaciones, tales componentes tienen interpretación experimental.

5.3 Representación de una matriz de datos

Sea $\mathbf{X} = [X_1, \dots, X_p]$ una matriz $n \times p$ de datos multivariantes. Queremos representar, en un espacio de dimensión reducida m (por ejemplo, m = 2), las filas $\mathbf{x}'_1, \mathbf{x}'_2, \dots, \mathbf{x}'_n$ de \mathbf{X} . Necesitamos introducir una distancia (ver Sección 1.9).

Definició 5.3.1 La distancia euclídea (al cuadrado) entre dos filas de X

$$\mathbf{x}_i = (x_{i1}, \dots, x_{ip}), \quad \mathbf{x}_j = (x_{j1}, \dots, x_{jp}),$$

es

$$\delta_{ij}^2 = (\mathbf{x}_i - \mathbf{x}_j)'(\mathbf{x}_i - \mathbf{x}_j) = \sum_{h=1}^p (x_{ih} - x_{jh})^2.$$

La matriz $\Delta = (\delta_{ij})$ es la matriz $n \times n$ de distancias entre las filas.

Podemos representar las n filas de \mathbf{X} como n puntos en el espacio R^p distanciados de acuerdo con la métrica δ_{ij} . Pero si p es grande, esta representación no se puede visualizar. Necesitamos reducir la dimensión.

Definició 5.3.2 La variabilidad geométrica de la matriz de distancias Δ es la media de sus elementos al cuadrado

$$V_{\delta}(\mathbf{X}) = \frac{1}{2n^2} \sum_{i,j=1}^{n} \delta_{ij}^2.$$

 $Si \mathbf{Y} = \mathbf{XT}$ es una transformación lineal de \mathbf{X} , donde \mathbf{T} es una matriz $p \times q$ de constantes,

$$\delta_{ij}^2(q) = (\mathbf{y}_i - \mathbf{y}_j)'(\mathbf{y}_i - \mathbf{y}_j) = \sum_{h=1}^q (y_{ih} - y_{jh})^2$$

es la distancia euclídea entre dos filas de \mathbf{Y} . La variabilidad geométrica en dimensión $q \leq p$ es

$$V_{\delta}(\mathbf{Y})_{q} = \frac{1}{2n^{2}} \sum_{i,j=1}^{n} \delta_{ij}^{2}(q).$$

Teorema 5.3.1 La variabilidad geométrica de la distancia euclídea es la traza de la matriz de covarianzas

$$V_{\delta}(\mathbf{X}) = tr(\mathbf{S}) = \sum_{h=1}^{p} \lambda_h.$$

Demost.: Si x_1, \dots, x_n es una muestra univariante con varianza s^2 , entonces

$$\frac{1}{2n^2} \sum_{i,i=1}^{n} (x_i - x_j)^2 = s^2.$$
 (5.3)

En efecto, si \overline{x} es la media

$$\frac{\frac{1}{n^2} \sum_{i,j=1}^{n} (x_i - x_j)^2}{= \frac{1}{n^2} \sum_{i,j=1}^{n} (x_i - \overline{x} - (x_j - \overline{x}))^2}
= \frac{\frac{1}{n^2} \sum_{i,j=1}^{n} (x_i - \overline{x})^2 + \frac{1}{n^2} \sum_{i,j=1}^{n} (x_j - \overline{x})^2
+ \frac{2}{n^2} \sum_{i,j=1}^{n} (x_i - \overline{x})(x_j - \overline{x}))^2
= \frac{1}{n} ns^2 + \frac{1}{n} ns^2 + 0 = 2s^2.$$

Aplicando (5.3) a cada columna de X y sumando obtenemos

$$V_{\delta}(\mathbf{X}) = \sum_{j=1}^{p} s_{jj} = \operatorname{tr}(\mathbf{S}).\square$$

Una buena representación en dimensión reducida q (por ejemplo, q=2) será aquella que tenga máxima variabilidad geométrica, a fin de que los puntos estén lo más separados posible.

Teorema 5.3.2 La transformación lineal \mathbf{T} que maximiza la variabilidad geométrica en dimensión q es la transformación por componentes principales (5.1), es decir, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_q]$ contiene los q primeros vectores propios normalizados de \mathbf{S} .

Demost.: Aplicando (5.3), la variabilidad geométrica de $\mathbf{Y} = \mathbf{X}\mathbf{T}$, donde \mathbf{T} es cualquiera, es

$$V_{\delta}(\mathbf{Y})_q = \sum_{j=1}^p s^2(Y_j) = \sum_{j=1}^p \mathbf{t}_j' \mathbf{S} \mathbf{t}_j,$$

siendo $s^2(Y_j) = \mathbf{t}_j' \mathbf{S} \mathbf{t}_j$ la varianza de la variable compuesta Y_j . Alcanzamos la máxima varianza cuando Y_j es una componente principal: $s^2(Y_j) \leq \lambda_j$. Así:

$$\max {V}_{\delta}(\mathbf{Y})_q = \sum_{j=1}^p \lambda_j. \square$$

El porcentaje de variabilidad geométrica explicada por \mathbf{Y} es

$$P_q = 100 \frac{V_{\delta}(\mathbf{Y})_q}{V_{\delta}(\mathbf{X})_p} = 100 \frac{\lambda_1 + \dots + \lambda_q}{\lambda_1 + \dots + \lambda_p}.$$

Supongamos ahora q=2. Si aplicamos la transformación (5.1), la matriz de datos ${\bf X}$ se reduce a

$$\mathbf{Y} = \left(egin{array}{ccc} y_{11} & y_{12} \ dots & dots \ y_{i1} & y_{i2} \ dots & dots \ y_{n1} & y_{n2} \ \end{array}
ight).$$

Entonces, representando los puntos de coordenadas $(y_{i1}, y_{i2}), i = 1, \ldots, n$, obtenemos una representación óptima en dimensión 2 de las filas de X.

5.4 Inferencia

Hemos planteado el ACP sobre la matriz S, pero lo podemos también plantear sobre la matriz de covarianzas poblacionales Σ . Las componentes principales obtenidas sobre S son, en realidad, estimaciones de las componentes principales sobre Σ .

Sea **X** matriz de datos $n \times p$ donde las filas son independientes con distribución $N_p(\mu, \Sigma)$. Recordemos que:

- 1. $\overline{\mathbf{x}}$ es $N_p(\mu, \Sigma/n)$.
- 2. $\mathbf{U} = n\mathbf{S}$ es Wishart $W_p(\Sigma, n-1)$.
- 3. $\overline{\mathbf{x}}$ y \mathbf{S} son estocásticamente independientes.

5.4. INFERENCIA 69

Sea $\Sigma = \Gamma \Lambda \Gamma'$ la diagonalización de Σ . Indiquemos

$$\Gamma = [\gamma_1, \dots, \gamma_p], \quad \lambda = [\lambda_1, \dots, \lambda_p], \quad \Lambda = diag(\lambda_1, \dots, \lambda_p),$$

los vectores propios y valores propios de Σ . Por otra parte, sea $\mathbf{S} = \mathbf{G}\mathbf{L}\mathbf{G}'$ la diagonalización de \mathbf{S} . Indiquemos:

$$\mathbf{G} = [\mathbf{g}_1, \dots, \mathbf{g}_p], \quad \mathbf{l} = [l_1, \dots, l_p], \quad \mathbf{L} = \operatorname{diag}(l_1, \dots, l_p)$$

los vectores propios y valores propios de S. A partir de ahora supondremos

$$\lambda_1 \geq \ldots \geq \lambda_p$$
.

5.4.1 Estimación y distribución asintótica

Teorema 5.4.1 Se verifica:

1. Si los valores propios son diferentes, los valores y vectores propios obtenidos a partir de S son estimadores máximo-verosímiles de los obtenidos a partir de Σ

$$\widehat{\lambda}_i = l_i, \quad \widehat{\gamma}_i = \mathbf{g}_i \quad , i = 1, \dots, p.$$

2. Cuando k > 1 valores propios son iguales a λ

$$\lambda_1 > \ldots > \lambda_{p-k} = \lambda_{p-k+1} = \ldots = \lambda_p = \lambda,$$

el estimador máximo verosímil de λ es la media de los correspondientes valores propios de ${\bf S}$

$$\widehat{\lambda} = (l_{p-k+1} + \ldots + l_p)/k$$

Demost.: Los valores y vectores propios están biunívocamente relacionados con Σ y por lo tanto 1) es consecuencia de la propiedad de invariancia de la estimación máximo verosímil. La demostración de 2) se encuentra en Anderson (1959). \square

Teorema 5.4.2 Los vectores propios $[\mathbf{g}_1, \dots, \mathbf{g}_p]$ y valores propios $\mathbf{l} = [l_1, \dots, l_p]$ verifican asintóticamente:

1. l es $N_p(\lambda, 2\Lambda^2/n)$. En particular:

$$l_i$$
 es $N(\lambda_i, 2\lambda_i^2/n)$, $cov(l_i, l_i) = 0$, $i \neq j$,

es decir, l_i , l_j son normales e independientes.

2. $\mathbf{g}_i \ es \ N_p(\boldsymbol{\gamma}_i, \mathbf{V}_i/n) \ donde$

$$\mathbf{V}_i = \lambda_i \sum_{j
eq i} rac{\lambda_i}{(\lambda_i - \lambda_j)^2} \gamma_i \gamma_i'$$

3. 1 es independiente de G.

Demost.: Anderson (1959), Mardia, Kent y Bibby (1979).□

Como consecuencia de que l_i es $N(\lambda_i, 2\lambda_i^2/n)$, obtenemos el intervalo de confianza asintótico con coeficiente de confianza $1 - \alpha$

$$\frac{l_i}{(1+az_{\alpha/2})^{1/2}} < \lambda_i < \frac{l_i}{(1-az_{\alpha/2})^{1/2}}$$

siendo $a^2=2/(n-1)$ y $P(|Z|>z_{\alpha/2})=\alpha/2$, donde Z es N(0,1).

Se obtiene otro intervalo de confianza como consecuencia de que $\log l_i$ es $N(\log \lambda_i, 2/(n-1))$

$$l_i e^{-az_{\alpha/2}} < \lambda_i < l_i e^{+az_{\alpha/2}}.$$

5.4.2 Tests de hipótesis

Determinados tests de hipótesis relativos a las componentes principales son casos particulares de un test sobre la estructura de la matriz Σ .

A. Supongamos que queremos decidir si la matriz Σ es igual a una matriz determinada Σ_0 . Sea **X** un matriz $n \times p$ con filas independientes $N_p(\mu, \Sigma)$. El test es:

$$H_0: \Sigma = \Sigma_0 \quad (\mu \quad \text{desconocida})$$

Si L es la verosimilitud de la muestra, el máximo de $\log L$ bajo H_o es

$$\log L_0 = -\frac{n}{2}\log|2\pi\Sigma_0| - \frac{n}{2}tr(\Sigma_0^{-1}\mathbf{S}).$$

El máximo no restringido es

$$\log L = -\frac{n}{2}\log|2\pi\mathbf{S}| - \frac{n}{2}p.$$

5.4. INFERENCIA 71

El estadístico basado en la razón de verosimilitud λ_R es

$$-2\log \lambda_R = 2(\log L - \log L_0)$$

= $n\operatorname{tra}(\Sigma_0^{-1}\mathbf{S}) - n\log |\Sigma_0^{-1}\mathbf{S}| - np.$ (5.4)

Si L_1, \ldots, L_p son los valores propios de $\Sigma_0^{-1} \mathbf{S}$ y a, g son las medias aritmética y geométrica

$$a = (L_1 + \ldots + L_p)/p, \quad q = (L_1 \times \ldots \times L_p)^{1/p},$$
 (5.5)

entonces, asintóticamente

$$-2\log \lambda_R = np(a - \log g - 1) \sim \chi_q^2, \tag{5.6}$$

siendo $q = p(p+1)/2 - par(\Sigma_0)$ el número de parámetros libres de Σ menos el número de parámetros libres de Σ_0 .

B. Test de independencia completa.

Si la hipótesis nula afirma que las p variables son estocásticamente independientes, el test se formula como

$$H_0: \Sigma = \Sigma_d = \operatorname{diag}(\sigma_{11}, \cdots, \sigma_{pp}) \quad (\mu \quad \operatorname{desconocida}).$$

Bajo H_0 la estimación de Σ_d es $\mathbf{S}_d = \operatorname{diag}(s_{11}, \dots, s_{pp})$ y $\mathbf{S}_d^{-1}\mathbf{S} = \mathbf{R}$ es la matriz de correlaciones. De (5.4) y de $\log |2\pi \mathbf{S}_d| - \log |2\pi \mathbf{S}| = \log |\mathbf{R}|$, $\operatorname{tra}(\mathbf{R}) = p$, obtenemos

$$-2\log\lambda_R = -n\log|\mathbf{R}| \sim \chi_a^2$$

siendo q = p(p+1)/2 - p = p(p-1)/2. Si el estadístico $-n \log |\mathbf{R}|$ no es significativo, entonces podemos aceptar que las variables son incorrelacionadas y por lo tanto, como hay normalidad multivariante, independientes.

C. Test de igualdad de valores propios.

Este es un test importante en ACP. La hipótesis nula es

$$H_0: \lambda_1 > \ldots > \lambda_{p-k} = \lambda_{p-k+1} = \ldots = \lambda_p = \lambda.$$

Indicamos los valores propios de S y de S_0 (estimación de Σ si H_0 es cierta)

$$\mathbf{S} \sim (l_1, \dots, l_k, l_{k+1}, \dots, l_p), \quad \mathbf{S}_0 \sim (l_1, \dots, l_k, a_0, \dots, a_0),$$

donde $a_0 = (l_{k+1} + \ldots + l_p)/(p-k)$ (Teorema 5.4.1). Entonces

$$\mathbf{S}_0^{-1}\mathbf{S} \sim (1, \dots, 1, l_{k+1}/a_0, \dots, l_p/a_0),$$

Figura 5.1: Ejemplo de representación de los valores propios, que indicaría 3 componentes principales.

las medias (5.5) son a = 1 y $g = (l_{k+1} \times ... \times l_p)^{1/p} a_0^{(k-p)/p}$ y aplicando (5.6)

$$-2\log \lambda_R = n(p-k)\log(l_{k+1} + \ldots + l_p)/(p-k) - n(\sum_{i=k+1}^p \log l_i) \sim \chi_q^2, (5.7)$$

donde
$$q = (p - k)(p - k + 1)/2 - 1$$
.

5.5 Número de componentes principales

En esta sección presentamos algunos criterios para determinar el número m < p de componentes principales.

5.5.1 Criterio del porcentaje

El número m de componentes principales se toma de modo que P_m sea próximo a un valor especificado por el usuario, por ejemplo el 80%. Por otra parte, si la representación de $P_1, P_2, \ldots, P_k, \ldots$ con respecto de k prácticamente se estabiliza a partir de un cierto m, entonces aumentar la dimensión apenas aporta más variabilidad explicada.

5.5.2 Criterio de Kaiser

Obtener las componentes principales a partir de la matriz de correlaciones **R** equivale a suponer que las variables observables tengan varianza 1. Por lo tanto una componente principal con varianza inferior a 1 explica menos variabilidad que una variable observable. El criterio, llamado de Kaiser, es entonces:

Retenemos las m primeras componentes tales que $\lambda_m \geq 1$, donde $\lambda_1 \geq \ldots \geq \lambda_p$ son los valores propios de \mathbf{R} , que también son las varianzas de las componentes. Estudios de Montecarlo prueban que es más correcto el punto de corte $\lambda^* = 0.7$, que es más pequeño que 1.

Este criterio se puede extender a la matriz de covarianzas. Por ejemplo, m podría ser tal que $\lambda_m \geq v$, donde $v = \text{tra}(\mathbf{S})/p$ es la media de las varianzas. También es aconsejable considerar el punto de corte $0.7 \times v$.

5.5.3 Test de esfericidad

Supongamos que la matriz de datos proviene de una población normal multivariante $N_p(\mu, \Sigma)$. Si la hipótesis

$$H_0^{(m)}: \lambda_1 > \ldots > \lambda_m > \lambda_{m+1} = \ldots = \lambda_p$$

es cierta, no tiene sentido considerar más de m componentes principales. En efecto, no hay direcciones de máxima variabilidad a partir de m, es decir, la distribución de los datos es esférica. El test para decidir sobre $H_0^{(m)}$ está basado en el estadístico ji-cuadrado (5.7) y se aplica secuencialmente: Si aceptamos $H_0^{(0)}$ no hay direcciones principales, pero si rechazamos $H_0^{(0)}$, entonces repetimos el test con $H_0^{(1)}$. Si aceptamos $H_0^{(1)}$ entonces m=1, pero si rechazamos $H_0^{(1)}$ repetimos el test con $H_0^{(2)}$, y así sucesivamente. Por ejemplo, si p=4, tendríamos que m=2 si rechazamos $H_0^{(0)}$, $H_0^{(1)}$ y aceptamos $H_0^{(2)}$: $\lambda_1 > \lambda_2 > \lambda_3 = \lambda_4$.

5.5.4 Criterio del bastón roto

Los valores propios suman $V_t = \text{tr}(\mathbf{S})$, que es la variabilidad total. Imaginemos un bastón de longitud V_t , que rompemos en p trozos al azar (asignando p-1 puntos uniformemente sobre el intervalo $(0, V_t)$) y que los trozos ordenados

son los valores propios $l_1 > l_2 > \ldots > l_p$. Si normalizamos a $V_t = 100$, entonces el valor esperado de l_j es

$$E(L_j) = 100 \times \frac{1}{p} \sum_{i=1}^{p-j} \frac{1}{j+i}.$$

Las m primeras componentes son significativas si el porcentaje de varianza explicada supera claramente el valor de $E(L_1) + \ldots + E(L_m)$. Por ejemplo, si p = 4, los valores son:

Porcentaje
$$E(L_1)$$
 $E(L_2)$ $E(L_3)$ $E(L_4)$
Esperado 52.08 27.08 14.58 6.25
Acumulado 52.08 79.16 93.74 100

Si $V_2 = 93.92$ pero $V_3 = 97.15$, entonces tomaremos sólo dos componentes.

5.5.5 Un ejemplo

Exemple 5.5.1

Sobre una muestra de n=100 estudiantes de Bioestadística, se midieron las variables

$$X_1 = \text{peso (kg)}, X_2 = \text{talla (cm.)}, X_3 = \text{ancho hombros (cm.)}, X_4 = \text{ancho caderas (cm.)},$$

con los siguientes resultados:

- 1. medias: $\overline{x}_1 = 54.25, \overline{x}_2 = 161.73, \overline{x}_3 = 36.53, \overline{x}_4 = 30.1.$
- 2. matriz de covarianzas:

$$\mathbf{S} = \begin{pmatrix} 44.7 & 17.79 & 5.99 & 9.19 \\ 17.79 & 26.15 & 4.52 & 4.44 \\ 5.99 & 4.52 & 3.33 & 1.34 \\ 9.19 & 4.44 & 1.34 & 4.56 \end{pmatrix}$$

75

3. vectores y valores propios (columnas):

4. Número de componentes:

- a. Criterio de Kaiser: la media de las varianzas es $v = \text{tr}(\mathbf{S})/p = 19.68$. Los dos primeros valores propios son 58.49 y 15.47, que son mayores que $0.7 \times v$. Aceptamos m = 2.
- b. Test de esfericidad.

$$\begin{array}{c|cccc} m & \chi^2 & \text{g.l.} \\ \hline 0 & 333.9 & 9 \\ 1 & 123.8 & 5 \\ 2 & 0.39 & 2 \\ \end{array}$$

Rechazamos m = 0, m = 1 y aceptamos m = 2.

- c. Test del bastón roto: Puesto que $P_2 = 93.92$ supera claramente el valor esperado 79.16 y que no ocurre lo mismo con P_3 , aceptamos m = 2.
- 5. Components principales:

$$Y_1 = .8328X_1 + .5029X_2 + .1362X_3 + .1867X_4,$$

 $Y_2 = .5095X_1 - .8552X_2 - .0588X_3 + .0738X_4.$

6. Interpretación: la primera componente es la variable con máxima varianza y tiene todos sus coeficientes positivos. La interpretamos como una componente de tamaño. La segunda componente tiene coeficientes positivos en la primera y cuarta variable y negativos en las otras dos. La interpretamos como una componente de forma. La primera componente ordena las estudiantes según su tamaño, de la más pequeña a la más grande, y la segunda según la forma, el tipo pícnico en contraste con el tipo atlético. Las dimensiones de tamaño y forma están incorrelacionadas.

5.6 Complementos

El Análisis de Componentes Principales (ACP) fué iniciado por K. Pearson en 1901 y desarrollado por H. Hotelling en 1933. Es un método referente a una población, pero W. Krzanowski y B. Flury han investigado las componentes principales comunes a varias poblaciones.

El ACP tiene muchas aplicaciones. Una aplicación clásica es el estudio de P. Jolicoeur y J. E. Mosimann sobre tamaño y forma de animales, en términos de la primera, segunda y siguientes componentes principales. La primera componente permite ordenar los animales de más pequeños a más grandes, y la segunda permite estudiar su variabilidad en cuanto a la forma. Nótese que tamaño y forma son conceptos "independientes".

El ACP puede servir para estudiar la capacidad. Supongamos que la caparazón de una tortuga tiene longitud L, ancho A, y alto H. La capacidad sería $C = L^{\alpha}A^{\beta}H^{\gamma}$, donde α, β, γ son parámetros. Aplicando logaritmos, obtenemos

$$\log C = \alpha \log L + \beta \log A + \gamma \log H = \log(L^{\alpha} A^{\beta} H^{\gamma}),$$

que podemos interpretar como la primera componente principal Y_1 de las variables $\log L$, $\log A$, $\log H$, y por tanto α , β , γ serían los coeficientes de Y_1 .

Por medio del ACP es posible efectuar una regresión múltiple de Y sobre X_1,\ldots,X_p , considerando las primeras componentes principales Y_1,Y_2,\ldots como variables explicativas, y realizar regresión de Y sobre Y_1,Y_2,\ldots , evitando así efectos de colinealidad, aunque las últimas componentes principales también pueden influir (Cuadras, 1993). La regresión ortogonal es una variante interesante. Supongamos que se quieren relacionar las variables X_1,\ldots,X_p (todas con media 0), en el sentido de encontrar los coeficientes β_1,\ldots,β_p tales que $\beta_1X_1+\ldots+\beta_pX_p\cong 0$. Se puede plantear el problema como var $(\beta_1X_1+\ldots+\beta_pX_p)=$ mínima, condicionado a $\beta_1^2+\ldots+\beta_p^2=1$. Es fácil ver que la solución es la última componente principal Y_p .

Se pueden definir las componentes principales de un proceso estocástico y de una variable aleatoria. Cuadras y Fortiana (1995), Cuadras y Lahlou (2000) han estudiado las componentes principales de las variables uniforme, exponencial y logística.