GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: DCS and SCADA

(Course Code: 4361701)

Diploma programmer in which this course is offered	Semester in which offered
Instrumentation and control	sixth

1. RATIONALE

In present global scenario of manufacturing, industries are moving towards more and more automation. Small scale and medium scale industries require PLC and SCADA technology, but large scale and very large scale industries require DCS. So, it is very necessary for instrumentation engineers to have knowledge of both DCS and SCADA. So this course attempts to provide basic configurationally knowledge of these technologies to develop operational competency. Hence this course is very important for instrumentation engineers who want to specialize in industrial automation.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

Configure and maintain DCS and SCADA system related to instrumentation and control for industrial automation.

3. COURSE OUTCOMES (COs)

- 1. Describe the structure of DCS.
- 2. Operate Human Interface system.
- 3. Simulate Industrial processes with the help of SCADA Software.
- 4. Identify the Structure of MTU and RTU

4. TEACHING AND EXAMINATION SCHEME

Teaching		Total Credits	Examination Scheme							
Scheme (In Hours)			(L+T+P/2)	Theory Marks Prac		Theory Marks		Practical Marks		Total Marks
L T P		P	C	CA	ESE	CA	ESE	Marks		
3	3 0 4		5	30	70	25	25	150		

5. SUGGESTED PRACTICAL EXERCISES:

Sr.	Practicals/Exercises (Outcomes in	Unit	Approx.Hours
No.	Psychomotor Domain)	No.	Required
1	To measure Temperature using thermocouple	I	2
2	To measure Liquid Level by Capacitive Level	I	2
	Transducer		
3	Understand Hardware structure of DCS	I	4
4	Identify and select system elements of DCS	I	2
5	Determine the reliability of given DCS system.	I	2
6	Interface control subsystem with Instrumentation subsystem.	II	2
7	Interface control subsystem with human	II	2
	interface subsystem.		
8	Identify elements of SCADA.	III	2
9	Use various functions of SCADA simulation	IV	4
	editor to develop various application		
10	To simulate Discrete control (Switch and Lamp) using available SCADA software.	IV	2
11	To simulate tank filling and emptying process using SCADA	IV	4
12	To simulate Tank Level control using SCADA	IV	4
13	To simulate temperature control process by heater using SCADA	IV	4
14	Develop SCADA mimic diagram for tank temperature control	IV	4
15	Develop SCADA mimic diagram for bottle filling plant.	IV	4
16	To simulate mixing process in the tank using available SCADA system	IV	4
17	Develop SCADA mimic diagram to create an	IV	2
	alarm.		
18	To study about HDLC protocol	IV	2
19	To study about ANSI IEEE C37.1 Protocol	IV	2
20	Develop application for real time trend Configuration in SCADA software.	IV	4
	and Outnomed (DrOs).		

Practical Outcomes(PrOs):

21	Develop scada application to learn Recipe	IV	4
	management feature		
22	Identify and list various components of RTU	V	2
23	To understand configuration of MTU	V	2
	-		

Upon the completion of DCS & SCADA practical course, the student will be able to:

- 1. Measure particular process parameter such as tank level or temperature of the liquid inside the closed tank.
- 2. Understand various system elements of DCS
- 3. Interface various subsystems of Automation system i.e. DCS.
- 4. To construct mimic diagram of basic processes such as automatic tank filling and emptying, Tank level and temperature control, bottle filling etc.
- 5. To develop and run the SCADA program by writing proper script and executing the program such that mimic diagram represents the actual process going on in the field.
- 6. To understand configuration of RTU and MTU.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
1	DCS trainer KIT:	2, 3
	DCS shall be based on "open" system architecture. That is the system shall maximize the use of general purpose computing hardware and software products and have inherent capability to integrate and exchange information with other brand software packages, system devices and platforms via industry standard communications, platforms and protocols.	
	The DCS conceptual system architecture shall include operator workstations, engineering workstations, controllers, I/O networks, bulk storage devices, e.g. hard drives, and backup storage devices Communication Network	

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
	High speed redundant networks shall be provided for connectivity of all the components of the DCS to perform real time and historical information transfer between various components.	
	Digital input module(at least 16 digital inputs), Digital output module(at least 16 digital outputs), Analog Input module(at least 4 analog inputs), Analog output module(at least 2 analog outputs)	
2	SCADA software:	4,5
	Mimic diagram based software. Mimic diagram of any process can be created easily by using inbuilt symbol directory. Any process can be simulated by writing appropriate script. Also ther must be facility to interface any branded PLC with SCADA software so that PLC controlled process can be visualized on mimic diagram and manual control should also be possible.	
3	level switch, temperature switch, flow switch	1
4	3" conveyor system operated 12V DC motor with digital shaft encoder	4,5
5	Proximity switch (Inductive, Optical, motion, light etc.)	4,5
6	12 V DC motor with digital shaft encoder	2,3,4,5
7	Flow, temperature, level control setup for DCS based automation using Flow, temperature, level switches	1,2,3,4,5

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a. Work as a leader/a team member (while doing a micro-project).
- b. Follow safety practices while using D.C. and AC supply and electrical equipment.
- c. Work as a group member (while performing experiments and taking readings)
- d. Practice environmentally friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- a. 'Valuing Level' in 1st year.
- b. 'Organization Level' in 2nd year.
- c. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN:

Unit	Major Learning Outcomes (In	Topics and Sub-topics		
	Cognitive Domain)			
	1a. Sketch and explain hierarchical	1.1 DCS architecture		
	architecture of DCS	1.2 Database organization in DCS		
	1b. Explain database organization	1.3 System elements of DCS		
	in DCS with sketch.	1.4 Reliability parameters of DCS		
	1c.Explain functions of system	1.5 Classification of alarms in DCS		
	elements of DCS	1.6 section criteria for DCS system		
	1d. Define reliability parameters of			
	DCS and determine			
Unit – I	interrelationship between them.			
DCS Structure	1e. Apply major voting technique			
	to determine reliability of DCS			
	1f. Classify different types of			
	alarms and briefly describe each of			
	them 1g. Describe section criteria for			
	DCS system.			
	2a. Sketch and explain in brief	2.1Automation system structure		
	basic structure of Automation	2.2 Instrumentation subsystem		
	system.	,		
	2b. Determine information	2.2.1 input Instrumentation subsystem		
	acquisition and transfer of control	2.2.2 output Instrumentation subsystem		
	commands for Instrumentation	2.2.2 output instrumentation subsystem		
	subsystem.	2.3 Control subsystem		
	2c. Classify various types of	2.4 Harris a Luta of a constant		
	devices connected to	2.4 Human Interface subsystem		
Unit– II	Instrumentation subsystem.	2.4.1 Operator Panel		
HMI in	2d. Identify functional steps	2.4.2. Construction of the name!		
Automation	performed by control subsystem.	2.4.2. Construction of the panel		
	2e. Describe interface mechanism	2.4.3. Interfacing with control subsystem		
	to interface control subsystem with	2.4.4 Types of mimic panels		
	other subsystems.	2.7.7 Types of filling panels		
	2f. Explain interfacing of control	2.5 Advance Human Interface System		
	subsystem with Instrumentation	2.5.1.Intelligent Operator Panel		
	subsystem with the help of suitable	-		
	example.	2.5.2. Operator Station		

	2g. Explain interfacing of control	2.5.3. Data logging Station
	subsystem with human interface	
	subsystem with the help of suitable	
	example.	
	2h. Explain Human Interface	
	subsystem in brief with sketch.	
	2i. Identify and select active	
	display elements and active control	
	elements of operator panel.	
	2j. Compare basic approach and	
	mimic approach for the	
	construction of HMI panel.	
	_	
	2k. Sketch interfacing of mimic	
	panel with control subsystem.	
	21. State and compare types of	
	mimic panels.	
2m. Explain Intelligent operator		
panel of HMI.		
2n. Explain operator station of		
	advanced human interface with	
	suitable example.	
	3a. Define SCADA.	3.1 Definition of SCADA
Unit– III	3b. Enumerate application areas of	3.2 Application area of SCADA
Introduction to	SCADA.	3.3 Major elements of SCADA
SCADA	3c. Sketch architecture of SCADA	3.4 Advantages and disadvantages of
	and Describe Major Elements of	SCADA
	SCADA.	3.5 Comparison of SCADA,DCS AND
	3d. Compare given automation	PLC
	systems.	
	4a. Describe the terms that deal	4.1 Definition and Introduction of real
	with time response.	time control
	4b. Describe real time control for	4.2 Real time control for Continuous
	continuous process with suitable	process
	example and bar-graph.	4.3 Communication Access and Master-
	4c. Describe master-slave	Slave concept
Unit– IV	communication access method in	4.4 Determination of Scan Interval
Real Time	brief.	4.5 SCADA software components
Systems and	4d. Determine scan interval for	4.6 Concept of FBD technique
SCADA	SCADA	4.7 Comparison of centralized and
Software	4e. Enlist SCADA software	distributed processing
	components.	4.8 HDLC Protocol
		4.9 ANSI/IEEE C37.1 Protocol

	4f. Implement FBD technique with	
	suitable examples.	4.10 Interfacing of SCADA system with
	4g. Compare centralized and	PLC
		PLC
	distributed processing.	
	4h. Explain HDLC protocol used	
	in SCADA	
	4i. Describe ANSI/IEEEC37.1	
	protocol in brief.	
	4j explain interfacing of SCADA	
	system with PLC	
	5a. Explain Hardware structure of	5.1 Remote Terminal Unit (RTU)
	RTU.	5.1.1 Structure of RTU
	5b. Test the given RTU.	• CPU
	5c. Explain Maintenance	Analog I/O
	procedure of RTU.	• Pulse I/P
Unit– V	5d. List the typical requirements	• Digital I/Os
SCADA	for the RTU system.	Communication Interface
Hardware	5f. Explain hardware structure of	Power supply
	MTU.	RTU Rack and Enclosure
	5g. Describe functions of MTU in	5.1.2. Test and maintenance of RTU
	brief.	5.1.3. Requirements for RTU system
	5h. Configure MTU with suitable	5.2 Master Terminal Unit
	example.	5.2.1. Hardware structure
	5i. Explain redundancy concept in	5.2.2. Functions of MTU
	MTU system	5.2.3. Configuration of MTU
	-	
		5.2.4. Redundant MTU system

U			Distribution of Theory Marks				
ni t N o.	Unit Title	Teachi ng Hours	R Lev el	U Lev el	A Level	Total Mark s	
I	DCS Structure	8	07	04	03	14	
II	HMI in Automation	10	04	05	05	14	
III	Introduction to SCADA	4	02	03	02	07	
IV	Real time system and SCADA software	10	03	07	07	17	
V	SCADA Hardware	10	07	07	04	18	
	Total	42	23	26	21	70	

10. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- Do the internet survey and make a list of leading manufacturers of DCS,SCADA,HMI and other industrial automation tool with their brand name.
- Prepare journals based on practical performed in laboratory.
- Prepare poster of SCADA based automation system
- Present seminar on various topics from course content
- Simulate various components of SCADA
- Analyze the specifications for various types of DCS.
- Find practical applications of DCS and SCADA in various industries.
- Guide the students for steps to be followed to configure available scada software

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation film on related topic
- ii. Arrange a visit to nearby big industry.
- iii. Use flash/animations to explain the working of different control devices.
- iv. Give mini projects to students.
- v. Arrange expert lecture by engineers working in industry on DCS and SCADA technology.

12. SUGGESTED PROJECT LIST

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, in the fifth and sixth semesters, the number of students in the group should *not exceed three*.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about **12-14** (*fourteen to sixteen*) *student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- Prepare a PLC and SCADA based system for prototype bottle filling station
- Prepare a PLC and SCADA based system to open or close the prototype railway gate automatically.
- Prepare a PLC and SCADA based system to control drip irrigation.

- Prepare PLC and SCADA based prototype home automation.
- Prepare PLC and SCADA based prototype traffic light controller.
- Prepare PLC and SCADA based prototype water distribution system.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN	
1.	Distributed Computer Control for Industrial Automation	Dobrivoje Popovic and Vijay Bhatkar.	Marcel Dekker Inc.,1990	
2	Overview of Industrial Process Automation	KLS Sharma	Elsevier Publication	
3	Instrumentation Engineer's Handbook Power Electronics	Liptak B.G.	Chilton Book Co., Philadelphia	
4	Practical SCADA for Industry	David Bailey, Edwin Wright	Newnes, (an imprint of Elsevier), 2003	
5	SCADA-Supervisory Control and Data Acquisition System	Stuart A. Boyer	ISA publication (3rd Edition)	
6	Practical Distributed Control System for Engineers and Technicians		IDC Technologies	
7	Computer based Industrial Control	Krishnakant.	PHI, New Delhi,5th Edition or latest	

14. SOFTWARE/LEARNING WEBSITES

1.https://youtu.be/c7UV4xMNOgg

- 2. https://youtu.be/ITiazU2RADs
- 3. https://youtu.be/B3YVpgs9RY4

15. PO-COMPETENCY-CO MAPPING:

Semester VI	DCS and SCADA (Course Code: 4361701)							
Semester vi	POs							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
Competency & Course Outcomes	Basic & Discipline specific knowledge	Analysis	solution	Engineering Tools, Experimentati on & Testing	& environment		Life- long learning	
<u>Competency</u>	Configure a control for i			SCADA system	m related to in	strumentatio	on and	
CO1	3	-	-	-	1	-	-	
CO2	1	-	-	2	-	-	1	
CO3	1	3	2	-	-	2	2	
CO4	3	-	-	-	1	-	-	

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Member - Board of Studies (GTU), Electrical and Allied branches

Prof. Suresh Z. Shyara, IC Engineering, AVPTI, Rajkot.

Prof. Mahesh J. Vadhavaniya, IC Engineering, Government Polytechnic, Palanpur.

GTU Resource Persons

Prof. N.B.Mehta, IC Engineering, Government Polytechnic, Ahmedabad.

Prof. P.R.Thumar, IC Engineering, AVPTI, Rajkot.