# $Nonlinear\ Optimization\ Lecture\ 5$ Garrick Aden-Buie

Tuesday, January 26, 2016

## **Taylor Expansion**

#### First-order mean value theorem

(1) Let  $f: \mathbb{R} \to \mathbb{R}$  and f is differentiable, then there exists  $\hat{x} = \lambda x' + (1 - \lambda)x^2$  for some  $\lambda \in (0, 1)$  such that

$$f'(\hat{x}) = \frac{f(x') - f(x^2)}{x' - x^2}$$

$$\Rightarrow f(x') = f(x^2) + (x' - x^2)f'(\hat{x})$$

or x' = x and  $x^2 = \bar{x}$ , then

$$f(x) = f(\bar{x}) + (x - \bar{x})f'(\hat{x})$$

(2) Let  $f: \mathbb{R}^n \to \mathbb{R}$  and f is differentiable, then there exists  $\hat{x} = \lambda x + (1 - \lambda)\bar{x}$  for some  $\lambda \in (0, 1)$  such that

$$f(x) = f(\bar{x}) + (x - \bar{x})^T \nabla f(\hat{x})$$

#### Second-order Mean Value Theorem

Let  $f: \mathbb{R}^n \to \mathbb{R}$  and f is twice-differentiable,  $f \in C^2$ , then there exists  $\hat{x} = \lambda x + (1 - \lambda)\bar{x}$  for some  $\lambda \in (0, 1)$  such that

Class notes:

$$f(x) = f(\bar{x}) + (x - \bar{x})^T \nabla f(\bar{x}) + (x - \bar{x})^T H(\hat{x})(x - \bar{x})$$
  

$$f(x) = f(\bar{x}) + (x - \bar{x})^T \nabla f(\bar{x}) + (x - \bar{x})^T H(\bar{x})(x - \bar{x})$$
  

$$= \cdots + \bar{x} + \cdots$$

As stated in the book, Appendix 1.

The second-order form of Taylor's Theorem is stated as for every  $x, \bar{x} \in S$  we must have

<sup>1</sup>C<sup>0</sup> is the set of continuous functions,  $C^1$  is the set of differentiable functions, and  $C^2$  is the set of twice-differentiable functions.

$$f(x) = f(\bar{x}) + (x - \bar{x})^T \nabla f(\bar{x}) + \frac{1}{2} (x - \bar{x})^T \mathbf{H}(\hat{x}) (x - \bar{x})$$

where  $\mathbf{H}(\hat{x})$  is the Hessian of f at  $\hat{x}$  and where  $\hat{x} = \lambda x + (1 - \lambda)\bar{x}$  for some  $\lambda \in (0, 1)$ .

### Subgradient

Let  $S \subset \mathbb{R}^n$  be convex,  $S \neq \emptyset$  and  $f: S \to \mathbb{R}$  be convex.

**Definition:** A vector  $\xi \in \mathbb{R}^n$  is a subgradient of f at  $\bar{x} \in S$  if  $f(x) \geq f(\bar{x}) + \xi^T(x - \bar{x}), \ \forall x \in S$ .

**Theorem.** For  $S \subset \mathbb{R}^n$ ,  $S \neq \emptyset$  and  $f: S \to \mathbb{R}$  (convex).

For  $\bar{x} \in \text{Int} S$ , there exists a vector  $\xi$  such that the hyperplane

$$H = \{(x, y) : y = f(\bar{x})\xi^T(x - \bar{x})\}\$$

supports the epigraph of  $f - epif - at(\bar{x}, f(\bar{x}))$ .

In particular,

$$f(x) \ge f(\bar{x}) + \xi^T(x - \bar{x}) \ \forall x \in S$$

that is,  $\xi$  is a subgradient of f at  $\bar{x}$ .



Figure 1:

Note that  $\bar{x}$  is in the interior of S and we can always find a supporting hyperplane for the epigraph of f, as long as f is convex, but that if you have a differentiable function, you can find only one supporting hyperplane.

**Theorem.**  $S \subset \mathbb{R}^n$  is a convex, nonempty set.  $f \colon S \to \mathbb{R}$  is convex, differentiable. Then  $\nabla f(\bar{x})$  is the unique subgradient for all  $\bar{x} \in \text{Int} S$ .

*Proof.* (Proof by contradiction). Suppose that  $\xi$  is another subgradient at  $\bar{x} \in \text{Int} S$  and  $\xi \neq \nabla f(\bar{x})$ .

$$f(x) \ge f(\bar{x}) + \xi^T(x - \bar{x}) \ \forall x \in S$$

 $x = \bar{x} + \lambda d$  for a certain vector d and a small constant  $\lambda$ .

Side note: Many algorithms look like this: start a point, choose a direction, move in a step size. From the new point, choose another direction, move again in a given step size  $(d \text{ and } \lambda)$ .

$$\Rightarrow f(\bar{x} + \lambda d) \ge f(\bar{x}) + \xi^T(\lambda d)$$
 for all  $d \in \mathbb{R}^n$  and sufficiently small  $\lambda > 0$ .



Figure 2: Demonstration of why this theorem is limited to IntS. Because otherwise f may not be differentiable at the boundary points.



Figure 3: Note that  $\lambda$  must be sufficiently small to stay inside S.

Let's look at the **Taylor Expansion** (which gives equality and then we subtract it from the inequality above):

$$f(\bar{x} + \lambda d) = f(\bar{x}) + \lambda \nabla f(\bar{x})^T d + \lambda \|d\| \alpha(\bar{x}; \lambda d)$$
  

$$\Rightarrow f(\bar{x} + \lambda d) - f(\bar{x} + \lambda d)$$
  

$$0 \ge \lambda \left[ \xi - \nabla f(\bar{x}) \right]^T d - \lambda \|d\| \alpha(\bar{x}; \lambda d)$$

Then let  $\lambda \to 0^+$  and pick  $d = \xi - \nabla f(\bar{x})$ :

$$[\xi - \nabla f(\bar{x})]^T [\xi - \nabla f(\bar{x})] \le 0$$
  
$$\Rightarrow \|\xi - \nabla f(\bar{x})\|^2 \le 0$$

The result is that if the function is smooth and differentiable, then the subgradient is unique.

*Example.* Find the set of subgradients at  $\bar{x} = 2$ , where  $f: \mathbb{R} \to \mathbb{R}$ ,

$$f(x) = \max\{x^2, x+2\}$$

The set of subgradients  $\partial f(\bar{x})$  at  $x=2 \to \partial f(2)$ 

$$\begin{aligned} \partial f(2) \\ &= \{ \xi \in \mathbb{R} \colon f(x) \ge f(2) + \xi(x - 2), \ \forall x \in \mathbb{R} \} \\ &= \{ \xi \in \mathbb{R} \colon 1 \le \xi \le 4 \} \end{aligned}$$

Note: the subgradient must support the epigraph, that is the main thing we are discussing here.



Figure 4: Illustration of f(x) for example

## Some characteristics of convex functions

The idea is to list some properties of convex functions that we can use to demonstrate optimality.

1

 $f: \mathbb{R}^n \to \mathbb{R}$ . f is **convex** on S if and only if

$$f(\lambda \bar{x} + (1 - \lambda)\hat{x}) \le \lambda f(\bar{x}) + (1 - \lambda)f(\hat{x})$$

for all  $\bar{x}, \hat{x} \in S$  and  $\lambda \in [0, 1]$ .

f is **strictly convex** on S if and only if

$$f(\lambda \bar{x} + (1 - \lambda)\hat{x}) < \lambda f(\bar{x}) + (1 - \lambda)f(\hat{x})$$

where we have simply removed the inequality, but we also need to limit  $\lambda \in (0,1)$  and  $\bar{x} \neq \hat{x}$ .

 $\mathbf{2}$ 

When  $f: S \to \mathbb{R}$ , and  $S \subset \mathbb{R}^n$ ,  $S \neq \emptyset$  is convex.

Then f is convex on S if and only if epif is convex.

3

When  $f: S \to \mathbb{R}$ ,  $S \subset \mathbb{R}^n$ , S is open convex, then f is differentiable on  $S^2$ .

f is convex on  $S^3$  if and only if for all  $\bar{x} \in S$ 

$$f(x) \ge f(\bar{x}) + (x - \bar{x})^T \nabla f(\bar{x}) \ \forall x \in S$$

*Proof* ( $\Rightarrow$ ). If f is convex, then second condition is true.

*Proof* ( $\Leftarrow$ ). If second condition is true, then f must be convex.

<sup>&</sup>lt;sup>2</sup> Have to say: f is differentiable on open S.

<sup>&</sup>lt;sup>3</sup>Note: some people use this definition for convex functions if the function is differentiable.

4

For  $f \colon S \to \mathbb{R}$  and  $S \subset \mathbb{R}^n$  open, convex, nonepty,  $f \in C^1(S)$ .

Then f is convex if and only iff

$$\left[\nabla f(x) - \nabla f(\bar{x})\right]^T (x - \bar{x}) \ge 0$$

 $\forall x, \bar{x} \in S \text{ (or } \nabla f(x) \text{ is monotone}^4 \text{ on } S.)$ 



Figure 5: Demonstration with  $\mathbb{R}^2$  function.

*Proof* ( $\Rightarrow$ ).  $\bar{x}, \hat{x} \in S$ , f is convex means that

$$f(\hat{x}) \ge f(\bar{x}) + \left[\nabla f(\bar{x})\right]^T (\hat{x} - \bar{x})$$
$$f(\bar{x}) \ge f(\hat{x}) + \left[\nabla f(\hat{x})\right]^T (\bar{x} - \hat{x})$$

Sum these two...

$$0 \ge \left[\nabla(f(\bar{x})) - \nabla f(\hat{x})\right]^T (\hat{x} - \bar{x})$$
  
$$\Rightarrow \left[\nabla(f(\hat{x})) - \nabla f(\bar{x})\right]^T (\bar{x} - \hat{x}) \ge 0$$

Proof  $(\Leftarrow)$ .  $\bar{x}, \hat{x} \in S$ , invoking the FOMVT tells us that there exists an  $\tilde{x} = \lambda \bar{x} + (1 - \lambda)\hat{x}$  for  $\lambda \in (0, 1)$  such that  $f(\bar{x}) = f(\hat{x}) + [\nabla f(\tilde{x})]^T(\bar{x} - \tilde{x})$ .

We know that  $\tilde{x} \in S$ .

$$\begin{split} \left[\nabla f(\tilde{x}) - \nabla f(\hat{x})\right]^T (\bar{x} - \hat{x}) &\geq 0 \\ \Rightarrow \left[\nabla f(\tilde{x})\right]^T (\bar{x} - \hat{x}) &\geq \left[\nabla f(\bar{x})\right]^T (\bar{x} - \hat{x}) \\ \Rightarrow f(\tilde{x}) - f(\hat{x}) &\geq \left[\nabla f(\bar{x})\right]^T (\bar{x} - \hat{x}) \\ \Rightarrow f(\tilde{x}) &\geq f(\hat{x}) + \left[\nabla f(\hat{x})\right]^T (\bar{x} - \hat{x}) \\ \Rightarrow f \text{is convex.} \end{split}$$

<sup>&</sup>lt;sup>4</sup>In 2D we say monotonically increasing, but in vector form we can only really say that the function is monotone – how could we define increasing?