《概率论与数理统计 A》

一、填空题

1、若 $A \supset B$, $A \supset C$, P(A)=0.9, $P(\overline{B} \cup \overline{C})=0.8$, 则P(A-BC)=

2、设随机变量 X 的概率密度为 $f(x) = \begin{cases} 4x^3, 0 < x < 1, \\ 0 & if \end{cases}$

则使 $P\{X > a\} = P\{X < a\}$ 成立的常数 $a = ____$ 。

3、设 $X \sim N(\mu, \sigma^2)$,其概率密度 $f(x) = \frac{1}{2\sqrt{\pi}} \exp\{-\frac{(x+3)^2}{4}\}$,则 $\mu = ____, \sigma = ____$ 。

4、向上抛掷一枚硬币n次,正面向上出现的次数为X,正面向下出现的次数为Y;则X与Y的 相关系数 ρ_{vv} = _____。

5、若 X 与 Y 独立, 而 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), 则 <math>X + Y \sim$ ______。

6、设 (X_1, X_2) 为 X 的一样本,则 $d_1 = \frac{1}{4}X_1 + \frac{3}{4}X_2$, $d_2 = \frac{1}{3}X_1 + \frac{2}{3}X_2$ 都是

E(X) 的 估计, 更有效。

7、设 (X_1,X_2,\cdots,X_n) 为总体 $N(\mu,\sigma^2)$ 的一个样本,未知 σ^2 ,则 μ 的置信度 为 $1-\alpha$ 的双侧置信区间是_____。

二、选择题

1、设事件 A 与 B 相互独立,且 P(A) > 0,P(B) > 0,则()一定成立。

(A)
$$P(\overline{A}|\overline{B}) = 1 - P(A)$$
;

(B)
$$P(A|B) = 0$$
;

(C)
$$P(A) = 1 - P(B)$$
;

(D)
$$P(A|B) = P(B)$$
.

2、设在10个同一型号的元件中有7个一等品,从中不放回地连续抽取3次,每次取 一件,则第三次取到一等品的概率是(

$$(A) \frac{5}{8}$$

(B)
$$\frac{5}{10}$$

(A)
$$\frac{5}{8}$$
; (B) $\frac{5}{10}$; (C) $\frac{6}{10}$; (D) $\frac{7}{10}$.

(D)
$$\frac{7}{10}$$
.

3、当常数 b=() 时, $p_k = \frac{b}{k(k+1)}(k=1,2,\cdots)$ 为某一离散型随机变量的概率 分布。

(A) 2; (B) 1; (C) 1/2; (D) 3.

- 4、设随机变量 $X \sim N(\mu, \sigma^2)$,则随 σ 的增大,则 $P\{|X \mu| < \sigma\}$ ()。
 - (A) 单调增加; (B) 单调减少; (C) 保持不变; (D) 增减不定.
- 5、设 $X \sim B(n,p)$, 且 E(X) = 2.4, D(X) = 1.44, 则 ()。
 - (A) n=4, p=0.6; (B) n=6, p=0.4; (C) n=8, p=0.3; (D) n=24, p=0.1.
- 6、设总体 $X \sim N(\mu, \sigma^2)$, μ 未知, 而 σ^2 已知, (X_1, X_2, \dots, X_n) 为一样本,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, 则以下样本的函数为统计量的是()。

(A)
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$$
; (B) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2$; (C) $\frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}}$; (D) $\frac{\overline{X} - \mu}{\sqrt{S^2/n}}$.

- 7、假设检验时,当样本容量一定,若缩小犯第一类错误的概率,则犯第二类错误的概 率()。

- (A) 变小; (B) 变大; (C) 不变; (D) 不确定.

三、计算题

1. 设 X 的分布律为:

X	-3	-2	-1	0	1	2
P	1/8	1/8	1/4	1/4	1/8	1/8

- 求(1) E(X), D(X); (2). P(X < 0), P(X > 2)。
- 2. 已知随机变量 X 的概率密度函数为 $f_X(x)$, 求 Y=2X+1 的概率密度函数 $f_Y(y)$ 。
- 3. 设 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} x^2 + axy, & 0 \le x \le 1, & 0 \le y \le 2, \\ 0, & \text{ \sharp } \text{ \circlearrowleft}, \end{cases}$$

试求(1) a; (2) $P{X+Y \ge 1}$; (3) X = Y 是否相互独立?

- 4. 某网站的电子邮件系统有 1000 个用户, 在同一时刻每一邮箱的使用率为 0.05, 试 求在同一时刻有 40~60 个邮箱被使用的概率(利用中心极限定理,需要数据在试卷尾 部)。
- 5. 设总体 X 服从 $[0,\theta]$ 的均匀分布($\theta>0$,未知), (X_1,X_2,X_3,\cdots,X_n) 是来自于总体 X的样本,试求未知参数 θ 的矩估计值与极大似然估计值。

6. 设机床生产的某种零件的尺寸(mm)服从正态分布,规定零件的标准长度为 **32.50**,; 现从某日生产的零件中抽取 **6** 件,测得尺寸为:

问:该日机床生产零件的长度工作是否符合要求?

$$(\bar{x} = 31.127, s^2 = 1.26 (s \approx 1.123) \alpha = 0.01)$$

四、证明题

设随机事件A与B满足0<P(A)<1,0<P(B)<1,且P(A|B)+ $P(\overline{A}|\overline{B})$ =1,证明:事件A和B相互独立。

分布表:

$$\Phi(1) = 0.8413$$
,, $\Phi(1.645) = 0.95$, $\Phi(1.45) = 0.9265$, $t_{0.005}(5) = 4.032$,

$$t_{0.005}(6) = 3.707$$
, $t_{0.01}(5) = 3.365$, $\chi^{2}_{0.025}(35) = 53.2033$, $\chi^{2}_{0.975}(35) = 20.5694$

参考答案

一、填空题

1,
$$0.7$$
; 2, $\sqrt[4]{\frac{1}{2}}$; 3, $\mu = -3, \sigma = \sqrt{2}$; 4, -1 ;

5、
$$N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
; 6、无偏, d_2 ; 7、 $(\bar{x} + t_{\underline{\alpha}}(n-1)\sqrt{\frac{s^2}{n}})$

二、选择题

1	2	3	4	5	6	7
A	D	В	C	В	В	В

三、计算题

1. **A**: (1)
$$E(X) = (-3) \times \frac{1}{8} + (-2) \times \frac{1}{8} + (-1) \times \frac{1}{4} + 0 \times \frac{1}{4} + 1 \times \frac{1}{8} + 2 \times \frac{1}{8} = -\frac{1}{2}$$

$$E(X^{2}) = (-3)^{2} \times \frac{1}{8} + (-2)^{2} \times \frac{1}{8} + (-1)^{2} \times \frac{1}{4} + 0^{2} \times \frac{1}{4} + 1^{2} \times \frac{1}{8} + 2^{2} \times \frac{1}{8} = \frac{5}{2}$$

$$D(X) = E(X^2) - E^2(X) = \frac{9}{4}$$

(2)
$$P(X < 0) = \frac{1}{2}, P(X > 2) = 0$$

2. **解:**
$$\forall y \in R, Y$$
 的分布函数为 $F_Y(y) = P(Y \le y) = P(2X + 1 \le y) = P(X \le \frac{y-1}{2})$

$$\therefore F_Y(y) = F_X(\frac{y-1}{2})$$

所以, Y的概率密度函数

$$f_Y(y) = F_Y'(y) = (F_X(\frac{y-1}{2}))' = f_X(\frac{y-1}{2})(\frac{y-1}{2})' = \frac{1}{2}f_X(\frac{y-1}{2})$$

3、解: (1) 由归一性得
$$\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\mathrm{d}x\mathrm{d}y$$

$$= \int_0^1 dx \int_0^2 (x^2 + kxy) dy = \int_0^1 (2x^2 + 2kx) dx = \frac{2}{3} + k = 1, \quad \text{(fig. 4)}$$

(2)
$$P{X+Y \ge 1} = \iint_{x+y \ge 1} f(x,y) dx dy = \int_0^1 dx \int_{1-x}^2 (x^2 + \frac{xy}{3}) dy$$

$$= \int_0^1 \left(\frac{x}{2} + \frac{4x^2}{3} + \frac{5x^3}{6}\right) dx = \frac{65}{72};$$

(3)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^2 (x^2 + \frac{xy}{3}) dy = 2x^2 + \frac{2x}{3}, & 0 \le x \le 1, \\ 0, & \text{ A.E.} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{0}^{1} (x^{2} + \frac{xy}{3}) dx = \frac{1}{3} + \frac{y}{6}, & 0 \le y \le 2, \\ 0, & \text{ 其它.} \end{cases}$$

在 f(x,y) 的非零区域内 $f(x,y) \neq f_X(x) f_Y(y)$, 故 X 与 Y 不独立。

4. 解:设X为同一时刻被使用的邮箱数,则 $X \sim B$ (1000, 0.05),

由 De Moivre-Laplace 中心极限定理得 $\frac{X-50}{\sqrt{47.5}}$ 近似服从N(0,1),

所求概率为

$$P\{40 \le X \le 60\} = P\{\frac{-10}{\sqrt{47.5}} \le \frac{X - 50}{\sqrt{47.5}} \le \frac{10}{\sqrt{47.5}}\} \approx 2\Phi(\frac{10}{\sqrt{47.5}}) - 1 \approx 2\Phi(1.45) - 1 = 0.853$$

5. **解**: (1)
$$E(X) = \frac{1}{2}\theta$$
, 则 $\theta = 2E(X)$,所以 θ 的矩估计为 $\hat{\theta} = 2\bar{x}$;

(2) 似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \begin{cases} \frac{1}{\theta^n}, & 0 < x_1, x_2, \dots, x_n < \theta, \\ 0, & others. \end{cases}$$

由于 $L(\theta)$ 是 θ 的单调递减函数,故 θ 最大似然估计为 $\hat{\theta} = \max(x_1,...,x_n)$

6. 解: 设该种零件的尺寸为 X, $X \sim N(\mu, \sigma^2)$, 未知 μ 及 σ^2 ,

需检验 $H_0: \mu = 32.50$, $H_1: \mu \neq 32.50$;

取检验统计量
$$t = \frac{\overline{X} - 32.50}{S/\sqrt{6}} \sim t(5)$$
,

在 $\alpha = 0.01$ 下, H_0 的拒绝域为{ $|t| > t_{\alpha/2}(n-1) = t_{0.005}(5) = 4.032$ };

由样本值算得 $\bar{x}=31.127$, $s^2=1.26$ ($s\approx1.123$), $t\approx-2.995$,没有落在拒绝域中,故在 $\alpha=0.01$ 不能拒绝 H_0 ,即认为该日机床生产零件的长度工作符合要求。

四、证明题

证: 因为
$$P(A|B)+P(\overline{A}|\overline{B})=1$$
,所以 $\frac{P(AB)}{P(B)}+\frac{P(\overline{A}\overline{B})}{P(\overline{B})}=1$;

$$\therefore \frac{P(AB)}{P(B)} + \frac{P(\overline{A \cup B})}{1 - P(B)} = \frac{P(AB)}{P(B)} + \frac{1 - P(A \cup B)}{1 - P(B)} = 1$$

:.
$$P(AB)(1-P(B))+P(B)(1-P(A\cup B))=P(B)1-P(B)$$
;

$$\therefore P(AB) = P(A)P(B)$$
, 即事件 A 和 B 相互独立