MATH 644

Chapter 2

SECTION 2.4: ANALYTIC FUNCTIONS

Contents

Definition	2
Where Is A Power Series Analytic?	3
Uniqueness Of Power Series Expansion	5
Consequences On the Zeros	7

Created by: Pierre-Olivier Parisé Spring 2023

DEFINITION

We consider Ω to be an open subset of \mathbb{C} , meaning that

 $\forall z \in \Omega$, there is an r > 0 such that $\{w : |w - z| < r\} \subset \Omega$.

DEFINITION 1. Let $f: \Omega \to \mathbb{C}$.

• f is **analytic** at $z_0 \in \Omega$ if there is an r > 0 and a power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converging in $B = \{z : |z - z_0| < r\}$ such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad (\forall z \in B).$$

• f is analytic on Ω if f is analytic at each $z_0 \in \Omega$.

Notes:

- The power series is not necessarily the same for each $z_0 \in \Omega$.
- A function f is analytic on a set E (not necessarily open), if there is an open set $\Omega \supset E$ and an analytic function g on Ω such that f = g.

THEOREM 2. If f is analytic in Ω , then f is continuous on Ω .

Proof.

Where Is A Power Series Analytic?

THEOREM 3. If $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges on $\{z : |z - z_0| < r\}$, then f is analytic on $\{z : |z - z_0| < r\}$.

Proof.

Uniqueness Of Power Series Expansion

THEOREM 4. Suppose

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

for all complex numbers in $\{z : |z - z_0| < r\}$. Then $a_n = b_n$ for all $n \ge 0$.

Proof.

Note:

- The proof actually shows also that if f is analytic at z_0 , then for some $\delta > 0$, either
 - $f(z) \neq 0 \text{ for any } 0 < |z z_0| < \delta;$
 - or f(z) = 0 for any $|z z_0| < \delta$.
- The proof also shows that if f is analytic at z_0 , then there is a r > 0, an integer $m \ge 1$ and an analytic function g at z_0 such that
 - $-g(z) \neq 0$ for any z such that $|z z_0| < r$;
 - $f(z) f(z_0) = (z z_0)^m g(z).$

Consequences On the Zeros

- A set $\Omega \subset \mathbb{C}$ is called a **region** if it is
 - open;
 - connected, meaning that we can't write $\Omega = U \cup V$, where U and V are open sets in \mathbb{C} such that $V \cap U = \emptyset$.

Fact: Ω is connected if and only if Ω and \emptyset are the only open and closed subsets of Ω .

• A zero a of a function $f: \Omega \to \mathbb{C}$ is called **isolated** if there is an open disk B centered at a such that $f(z) \neq 0$ for any $z \in B \setminus \{a\}$.

COROLLARY 5. If f is analytic on a region Ω , then either $f \equiv 0$ or the zeros of f are isolated.

Proof.

Note:

- A consequence of the last Corollary is the **Identity principle**: If f and g are two analytic functions in a region Ω that agree on a set with an accumulation point in Ω , then they must be identical (see Problem 18).
- The last Corollary is not true for continuous functions: $f(x) = x \sin(1/x)$ is an example.