# 74HC164; 74HCT164

# 8-bit serial-in, parallel-out shift register

Rev. 03 — 4 April 2005

**Product data sheet** 

## 1. General description

The 74HC164; 74HCT164 are high-speed Si-gate CMOS devices and are pin compatible with Low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC164; 74HCT164 are 8-bit edge-triggered shift registers with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (DSA or DSB); either input can be used as an active HIGH enable for data entry through the other input. Both inputs must be connected together or an unused input must be tied HIGH.

Data shifts one place to the right on each LOW-to-HIGH transition of the clock (CP) input and enters into Q0, which is the logical AND of the two data inputs (DSA and DSB) that existed one set-up time prior to the rising clock edge.

A LOW level on the master reset ( $\overline{\text{MR}}$ ) input overrides all other inputs and clears the register asynchronously, forcing all outputs LOW.

#### 2. Features

- Gated serial data inputs
- Asynchronous master reset
- Complies with JEDEC standard no. 7A
- ESD protection:
  - ◆ HBM EIA/JESD22-A114-B exceeds 2000 V
  - ◆ MM EIA/JESD22-A115-A exceeds 200 V.
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.

#### 3. Quick reference data

**Table 1:** Quick reference data  $GND = 0 \ V; T_{amb} = 25 \ ^{\circ}C; t_r = t_f = 6 \ ns.$ 

| , amb                               | , , ,             |                                                  |     |     |     |      |
|-------------------------------------|-------------------|--------------------------------------------------|-----|-----|-----|------|
| Symbol                              | Parameter         | Conditions                                       | Min | Тур | Max | Unit |
| <b>Type 74HC164</b>                 |                   |                                                  |     |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> | propagation delay |                                                  |     |     |     |      |
|                                     | CP to Qn          | $C_L = 15 pF;$<br>$V_{CC} = 5 V$                 | -   | 12  | -   | ns   |
|                                     | MR to Qn          | $C_L = 15 \text{ pF};$<br>$V_{CC} = 5 \text{ V}$ | -   | 11  | -   | ns   |



**Table 1:** Quick reference data ...continued  $GND = 0 \ V; T_{amb} = 25 \ ^{\circ}C; t_r = t_f = 6 \ ns.$ 

| o.t. o.t, ramb                      | =0 0, 1, 1, 0                             |                                                  |              |     |     |      |
|-------------------------------------|-------------------------------------------|--------------------------------------------------|--------------|-----|-----|------|
| Symbol                              | Parameter                                 | Conditions                                       | Min          | Тур | Max | Unit |
| f <sub>max</sub>                    | maximum clock frequency                   | $C_L = 15 pF;$<br>$V_{CC} = 5 V$                 | -            | 78  | -   | MHz  |
| C <sub>I</sub>                      | input capacitance                         |                                                  | -            | 3.5 | -   | pF   |
| C <sub>PD</sub>                     | power dissipation capacitance per package |                                                  | [1] <u> </u> | 40  | -   | pF   |
| Type 74HCT164                       |                                           |                                                  |              |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> | propagation delay                         |                                                  |              |     |     |      |
|                                     | CP to Qn                                  | $C_L = 15 pF;$<br>$V_{CC} = 5 V$                 | -            | 14  | -   | ns   |
|                                     | MR to Qn                                  | $C_L = 15 \text{ pF};$<br>$V_{CC} = 5 \text{ V}$ | -            | 16  | -   | ns   |
| f <sub>max</sub>                    | maximum clock frequency                   | $C_L = 15 \text{ pF};$<br>$V_{CC} = 5 \text{ V}$ | -            | 61  | -   | MHz  |
| C <sub>I</sub>                      | input capacitance                         |                                                  | -            | 3.5 | -   | pF   |
| C <sub>PD</sub>                     | power dissipation capacitance per package |                                                  | [1] <u> </u> | 40  | -   | pF   |
|                                     |                                           |                                                  |              |     |     |      |

<sup>[1]</sup>  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \sum{(C_L \times V_{CC}{}^2 \times f_o)}$  where:

 $f_i$  = input frequency in MHz

f<sub>o</sub> = output frequency in MHz

N = number of inputs switching

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ 

C<sub>L</sub> = output load capacitance in pF

 $V_{CC}$  = supply voltage in Volts

- [2] For HC the condition is  $V_I = GND$  to  $V_{CC}$ .
- [3] For HCT the condition is  $V_I = GND$  to  $V_{CC} 1.5 \text{ V}$ .

# 4. Ordering information

**Table 2: Ordering information** 

| Type number | Package           |         |                                                                                    |          |  |  |  |  |
|-------------|-------------------|---------|------------------------------------------------------------------------------------|----------|--|--|--|--|
|             | Temperature range | Name    | Description                                                                        | Version  |  |  |  |  |
| 74HC164N    | -40 °C to +125 °C | DIP14   | plastic dual in-line package; 14 leads (300 mil)                                   | SOT27-1  |  |  |  |  |
| 74HC164D    | –40 °C to +125 °C | SO14    | plastic small outline package; 14 leads; body width 3.9 mm; body thickness 1.47 mm | SOT108-2 |  |  |  |  |
| 74HC164DB   | –40 °C to +125 °C | SSOP14  | plastic shrink small outline package; 14 leads; body width 5.3 mm                  | SOT337-1 |  |  |  |  |
| 74HC164PW   | –40 °C to +125 °C | TSSOP14 | plastic thin shrink small outline package; 14 leads; body width 4.4 mm             | SOT402-1 |  |  |  |  |
| 74HCT164N   | –40 °C to +125 °C | DIP14   | plastic dual in-line package; 14 leads (300 mil)                                   | SOT27-1  |  |  |  |  |
| 74HCT164D   | –40 °C to +125 °C | SO14    | plastic small outline package; 14 leads; body width 3.9 mm; body thickness 1.47 mm | SOT108-2 |  |  |  |  |



| Type number | Package           |          |                                                                                                                                          |          |  |  |  |
|-------------|-------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
|             | Temperature range | Name     | Description                                                                                                                              | Version  |  |  |  |
| 74HCT164DB  | –40 °C to +125 °C | SSOP14   | plastic shrink small outline package; 14 leads; body width 5.3 mm                                                                        | SOT337-1 |  |  |  |
| 74HCT164PW  | –40 °C to +125 °C | TSSOP14  | plastic thin shrink small outline package; 14 leads; body width 4.4 mm                                                                   | SOT402-1 |  |  |  |
| 74HCT164BQ  | –40 °C to +125 °C | DHVQFN14 | plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm | SOT762-1 |  |  |  |

# 5. Functional diagram





3 of 24



## 6. Pinning information

## 6.1 Pinning



## 6.2 Pin description

Table 3: Pin description

| Symbol | Pin | Description |
|--------|-----|-------------|
| DSA    | 1   | data input  |
| DSB    | 2   | data input  |
| Q0     | 3   | output      |
| Q1     | 4   | output      |
| Q2     | 5   | output      |
| Q3     | 6   | output      |

9397 750 14693

 Table 3:
 Pin description ...continued

| Symbol          | Pin | Description                               |
|-----------------|-----|-------------------------------------------|
| GND             | 7   | ground (0 V)                              |
| СР              | 8   | clock input (LOW-to-HIGH, edge-triggered) |
| MR              | 9   | master reset input (active LOW)           |
| Q4              | 10  | output                                    |
| Q5              | 11  | output                                    |
| Q6              | 12  | output                                    |
| Q7              | 13  | output                                    |
| V <sub>CC</sub> | 14  | positive supply voltage                   |

# 7. Functional description

#### 7.1 Function selection

Table 4: Function table [1]

| Operating modes | Input |            |     |     | Output |          |  |
|-----------------|-------|------------|-----|-----|--------|----------|--|
|                 | MR    | СР         | DSA | DSB | Q0     | Q1 to Q7 |  |
| Reset (clear)   | L     | X          | X   | X   | L      | L to L   |  |
| Shift           | Н     | $\uparrow$ | I   | I   | L      | q0 to q6 |  |
|                 | Н     | $\uparrow$ | I   | h   | L      | q0 to q6 |  |
|                 | Н     | $\uparrow$ | h   | I   | L      | q0 to q6 |  |
|                 | Н     | $\uparrow$ | h   | h   | Н      | q0 to q6 |  |

<sup>[1]</sup> H = HIGH voltage level

# 8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                      | Conditions                                                    | Min  | Max  | Unit |
|----------------------|--------------------------------|---------------------------------------------------------------|------|------|------|
| $V_{CC}$             | supply voltage                 |                                                               | -0.5 | +7   | V    |
| I <sub>IK</sub>      | input diode current            | $V_I < -0.5 \text{ V or} $<br>$V_I > V_{CC} + 0.5 \text{ V} $ | -    | ±20  | mA   |
| I <sub>OK</sub>      | output diode current           | $V_O < -0.5 \text{ V or} $<br>$V_O > V_{CC} + 0.5 \text{ V} $ | -    | ±20  | mA   |
| I <sub>O</sub>       | output source or sink current  | $V_O = -0.5 \text{ V}$ to $V_{CC} + 0.5 \text{ V}$            | -    | ±25  | mA   |
| $I_{CC}$ , $I_{GND}$ | V <sub>CC</sub> or GND current |                                                               | -    | ±50  | mA   |
| T <sub>stg</sub>     | storage temperature            |                                                               | -65  | +150 | °C   |

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition

q = lower case letters indicate the state of the referenced input one set-up time prior to the LOW-to-HIGH clock transition

<sup>↑ =</sup> LOW-to-HIGH clock transition

 Table 5:
 Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions | Min   | Max | Unit |
|------------------|-------------------------|------------|-------|-----|------|
| P <sub>tot</sub> | total power dissipation |            |       |     |      |
|                  | DIP14 package           |            | [1]   | 750 | mW   |
|                  | SO14;                   |            | [2] _ | 500 | mW   |
|                  | SSOP14; TSSOP14;        |            |       |     |      |
|                  | DHVQFN14 package        |            |       |     |      |

<sup>[1]</sup> For DIP14 packages:  $P_{tot}$  derates linearly with 12 mW/K above 70 °C.

## 9. Recommended operating conditions

Table 6: Recommended operating conditions

| Symbol                             | Parameter                | Conditions               | Min | Тур | Max      | Unit |
|------------------------------------|--------------------------|--------------------------|-----|-----|----------|------|
| Type 74H                           | IC164                    |                          |     |     |          |      |
| V <sub>CC</sub>                    | supply voltage           |                          | 2.0 | 5.0 | 6.0      | V    |
| VI                                 | input voltage            |                          | 0   | -   | $V_{CC}$ | V    |
| Vo                                 | output voltage           |                          | 0   | -   | $V_{CC}$ | V    |
| t <sub>r</sub> , t <sub>f</sub> in | input rise and fall time | $V_{CC} = 2.0 \text{ V}$ | -   | -   | 1000     | ns   |
|                                    |                          | V <sub>CC</sub> = 4.5 V  | -   | 6.0 | 500      | ns   |
|                                    |                          | $V_{CC} = 6.0 \text{ V}$ | -   | -   | 400      | ns   |
| T <sub>amb</sub>                   | ambient temperature      |                          | -40 | -   | +125     | °C   |
| Type 74H                           | ICT164                   |                          |     |     |          |      |
| V <sub>CC</sub>                    | supply voltage           |                          | 4.5 | 5.0 | 6.0      | V    |
| VI                                 | input voltage            |                          | 0   | -   | $V_{CC}$ | V    |
| Vo                                 | output voltage           |                          | 0   | -   | $V_{CC}$ | V    |
| t <sub>r</sub> , t <sub>f</sub>    | input rise and fall time | $V_{CC} = 4.5 \text{ V}$ | -   | 6.0 | 500      | ns   |
| T <sub>amb</sub>                   | ambient temperature      |                          | -40 | -   | +125     | °C   |

## 10. Static characteristics

Table 7: Static characteristics for 74HC164

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Parameter                                | Conditions               | Min                                                                              | Тур                                                                                             | Max                                                                                              | Unit |
|------------------------------------------|--------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|
| 5 °C                                     |                          |                                                                                  |                                                                                                 |                                                                                                  |      |
| V <sub>IH</sub> HIGH-level input voltage | $V_{CC} = 2.0 \text{ V}$ | 1.5                                                                              | 1.2                                                                                             | -                                                                                                | V    |
|                                          | V <sub>CC</sub> = 4.5 V  | 3.15                                                                             | 2.4                                                                                             | -                                                                                                | V    |
|                                          | V <sub>CC</sub> = 6.0 V  | 4.2                                                                              | 3.2                                                                                             | -                                                                                                | V    |
|                                          | 5 °C                     | HIGH-level input voltage $\frac{V_{CC} = 2.0 \text{ V}}{V_{CC} = 4.5 \text{ V}}$ | HIGH-level input voltage $ V_{CC} = 2.0 \text{ V} $ $ 1.5 $ $ V_{CC} = 4.5 \text{ V} $ $ 3.15 $ | 5 °C HIGH-level input voltage $V_{CC} = 2.0 \text{ V}$ 1.5 1.2 $V_{CC} = 4.5 \text{ V}$ 3.15 2.4 |      |

9397 750 14693

<sup>[2]</sup> For SO14 packages: P<sub>tot</sub> derates linearly with 8 mW/K above 70 °C.
For SSOP14 and TSSOP14 packages: P<sub>tot</sub> derates linearly with 5.5 mW/K above 60 °C.
For DHVQFN14 packages: P<sub>tot</sub> derates linearly with 4.5 mW/K above 60 °C.

 Table 7:
 Static characteristics for 74HC164 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| V <sub>IL</sub>       | LOW-level input voltage                          | $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$               | -            | 0.8               | 0.5              | V          |
|-----------------------|--------------------------------------------------|-----------------------------------------------------------------|--------------|-------------------|------------------|------------|
| / <sub>ОН</sub>       |                                                  | V <sub>CC</sub> = 4.5 V                                         |              |                   |                  |            |
| V <sub>OH</sub>       |                                                  | 00 -                                                            | -            | 2.1               | 1.35             | V          |
| V <sub>OH</sub>       |                                                  | V <sub>CC</sub> = 6.0 V                                         | -            | 2.8               | 1.8              | V          |
|                       | HIGH-level output voltage                        | $V_I = V_{IH}$ or $V_{IL}$                                      |              |                   |                  |            |
|                       |                                                  | $I_O = -20 \mu A; V_{CC} = 2.0 V$                               | 1.9          | 2.0               | -                | V          |
|                       |                                                  | $I_{O} = -20 \mu A; V_{CC} = 4.5 V$                             | 4.4          | 4.5               | -                | V          |
|                       |                                                  | $I_{O} = -20 \mu A; V_{CC} = 6.0 V$                             | 5.9          | 6.0               | -                | V          |
|                       |                                                  | $I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                 | 3.98         | 4.32              | -                | V          |
|                       |                                                  | $I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$               | 5.48         | 5.81              | -                | V          |
| V <sub>OL</sub>       | LOW-level output voltage                         | $V_I = V_{IH}$ or $V_{IL}$                                      |              |                   |                  |            |
|                       |                                                  | $I_O = 20 \mu A; V_{CC} = 2.0 V$                                | -            | 0                 | 0.1              | V          |
|                       |                                                  | $I_{O} = 20 \mu A; V_{CC} = 4.5 V$                              | -            | 0                 | 0.1              | V          |
|                       |                                                  | $I_{O} = 20 \mu A; V_{CC} = 6.0 V$                              | -            | 0                 | 0.1              | V          |
|                       |                                                  | $I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                  | -            | 0.15              | 0.26             | V          |
|                       | $I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$ | -                                                               | 0.16         | 0.26              | V                |            |
| I <sub>LI</sub>       | input leakage current                            | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$                 | -            | -                 | ±0.1             | μΑ         |
| I <sub>CC</sub>       | quiescent supply current                         | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 6.0 \text{ V}$ | -            | -                 | 8.0              | μΑ         |
| Cı                    | input capacitance                                |                                                                 | -            | 3.5               | -                | pF         |
| T <sub>amb</sub> = -4 | 10 °C to +85 °C                                  |                                                                 |              |                   |                  |            |
| V <sub>IH</sub> F     | HIGH-level input voltage                         | V <sub>CC</sub> = 2.0 V                                         | 1.5          | -                 | -                | V          |
|                       |                                                  | V <sub>CC</sub> = 4.5 V                                         | 3.15         | -                 | -                | V          |
|                       |                                                  | V <sub>CC</sub> = 6.0 V                                         | 4.2          | -                 | -                | V          |
| V <sub>IL</sub>       | LOW-level input voltage                          | V <sub>CC</sub> = 2.0 V                                         | -            | -                 | 0.5              | V          |
|                       |                                                  | V <sub>CC</sub> = 4.5 V                                         | -            | -                 | 1.35             | V          |
|                       |                                                  | V <sub>CC</sub> = 6.0 V                                         | -            | -                 | 1.8              | V          |
| V <sub>OH</sub>       | HIGH-level output voltage                        | $V_I = V_{IH}$ or $V_{IL}$                                      |              |                   |                  |            |
|                       |                                                  | $I_O = -20 \mu A; V_{CC} = 2.0 V$                               | 1.9          | -                 | -                | V          |
|                       |                                                  | $I_O = -20 \mu A; V_{CC} = 4.5 V$                               | 4.4          | -                 | -                | V          |
|                       |                                                  | $I_O = -20 \mu A; V_{CC} = 6.0 V$                               | 5.9          | -                 | -                | V          |
|                       |                                                  | $I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                 | 3.84         | -                 | -                | V          |
|                       |                                                  | $I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$               | 5.34         | -                 | -                | V          |
| V <sub>OL</sub>       | LOW-level output voltage                         | $V_I = V_{IH}$ or $V_{IL}$                                      |              |                   |                  |            |
|                       |                                                  | $I_O = 20 \mu A; V_{CC} = 2.0 V$                                | -            | -                 | 0.1              | V          |
|                       |                                                  | $I_O = 20 \mu A; V_{CC} = 4.5 V$                                | -            | -                 | 0.1              | V          |
|                       |                                                  | $I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$                        | -            | -                 | 0.1              | V          |
|                       |                                                  | $I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                  | -            | -                 | 0.33             | V          |
|                       |                                                  | $I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$                | -            | -                 | 0.33             | V          |
| ILI                   | input leakage current                            | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$                 | -            | -                 | ±1.0             | μΑ         |
| I <sub>CC</sub>       | quiescent supply current                         | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 6.0 \text{ V}$ | -            | -                 | 80               | μA         |
| 397 750 14693         |                                                  |                                                                 | © Koninklijk | e Philips Electro | onics N.V. 2005. | All rights |



At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                | Parameter                                                                                                                                                                            | Conditions                                                      | Min  | Тур | Max  | Unit |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|-----|------|------|
| T <sub>amb</sub> = -4 | 0 °C to +125 °C                                                                                                                                                                      |                                                                 |      |     |      |      |
| $V_{IH}$              | Parameter  -40 °C to +125 °C  HIGH-level input voltage  LOW-level input voltage  HIGH-level output voltage  LOW-level output voltage  input leakage current quiescent supply current | V <sub>CC</sub> = 2.0 V                                         | 1.5  | -   | -    | V    |
|                       |                                                                                                                                                                                      | V <sub>CC</sub> = 4.5 V                                         | 3.15 | -   | -    | V    |
|                       |                                                                                                                                                                                      | V <sub>CC</sub> = 6.0 V                                         | 4.2  | -   | -    | V    |
| V <sub>IL</sub>       | LOW-level input voltage                                                                                                                                                              | V <sub>CC</sub> = 2.0 V                                         | -    | -   | 0.5  | V    |
|                       |                                                                                                                                                                                      | V <sub>CC</sub> = 4.5 V                                         | -    | -   | 1.35 | V    |
|                       |                                                                                                                                                                                      | V <sub>CC</sub> = 6.0 V                                         | -    | -   | 1.8  | V    |
| V <sub>OH</sub>       | HIGH-level output voltage                                                                                                                                                            | $V_{I} = V_{IH}$ or $V_{IL}$                                    |      | -   |      |      |
|                       |                                                                                                                                                                                      | $I_{O} = -20 \mu A; V_{CC} = 2.0 V$                             | 1.9  | -   | -    | V    |
|                       |                                                                                                                                                                                      | $I_{O} = -20 \mu A; V_{CC} = 4.5 V$                             | 4.4  | -   | -    | V    |
|                       |                                                                                                                                                                                      | $I_{O} = -20 \mu A; V_{CC} = 6.0 V$                             | 5.9  | -   | -    | V    |
|                       |                                                                                                                                                                                      | $I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                 | 3.7  | -   | -    | V    |
|                       |                                                                                                                                                                                      | $I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$               | 5.2  | -   | -    | V    |
| V <sub>OL</sub>       | LOW-level output voltage                                                                                                                                                             | $V_{I} = V_{IH}$ or $V_{IL}$                                    |      | -   |      |      |
|                       |                                                                                                                                                                                      | $I_O = 20 \mu A; V_{CC} = 2.0 V$                                | -    | -   | 0.1  | V    |
|                       |                                                                                                                                                                                      | $I_{O} = 20 \mu A; V_{CC} = 4.5 V$                              | -    | -   | 0.1  | V    |
|                       |                                                                                                                                                                                      | $I_O = 20 \mu A; V_{CC} = 6.0 V$                                | -    | -   | 0.1  | V    |
|                       |                                                                                                                                                                                      | $I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                  | -    | -   | 0.4  | V    |
|                       |                                                                                                                                                                                      | $I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$                | -    | -   | 0.4  | V    |
| I <sub>LI</sub>       | input leakage current                                                                                                                                                                | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$                 | -    | -   | ±1.0 | μΑ   |
| I <sub>CC</sub>       | quiescent supply current                                                                                                                                                             | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 6.0 \text{ V}$ | -    | -   | 160  | μΑ   |

Table 8: Static characteristics for 74HCT164

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                | Parameter                                         | Conditions                                                                                                                                 | Min          | Тур               | Max              | Unit              |
|-----------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------------|-------------------|
| T <sub>amb</sub> = 25 | °C                                                |                                                                                                                                            |              |                   |                  |                   |
| V <sub>IH</sub>       | HIGH-level input voltage                          | V <sub>CC</sub> = 4.5 V to 5.5 V                                                                                                           | 2.0          | 1.6               | -                | V                 |
| V <sub>IL</sub>       | LOW-level input voltage                           | V <sub>CC</sub> = 4.5 V to 5.5 V                                                                                                           | -            | 1.2               | 0.8              | V                 |
| V <sub>OH</sub>       | HIGH-level output voltage                         | $V_I = V_{IH}$ or $V_{IL}$                                                                                                                 |              |                   |                  |                   |
|                       |                                                   | $I_{O} = -20 \mu A; V_{CC} = 4.5 V$                                                                                                        | 4.4          | 4.5               | -                | V                 |
|                       |                                                   | $I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                                            | 3.98         | 4.32              | -                | V                 |
| V <sub>OL</sub>       | LOW-level output voltage                          | $V_I = V_{IH}$ or $V_{IL}$                                                                                                                 |              |                   |                  |                   |
|                       |                                                   | $I_{O} = 20 \mu A; V_{CC} = 4.5 V$                                                                                                         | -            | 0                 | 0.1              | V                 |
|                       |                                                   | $I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                                             | -            | 0.15              | 0.26             | V                 |
| ILI                   | input leakage current                             | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$                                                                                            | -            | -                 | ±0.1             | μΑ                |
| I <sub>CC</sub>       | quiescent supply current                          | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 5.5 \text{ V}$                                                                            | -            | -                 | 8.0              | μΑ                |
| $\Delta I_{CC}$       | additional quiescent supply current per input pin | $V_I = V_{CC} - 2.1 \text{ V}$ ; other inputs<br>$V_I = V_{CC} \text{ or GND}$ ;<br>$V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$ | -            | 100               | 360              | μΑ                |
| C <sub>I</sub>        | input capacitance                                 |                                                                                                                                            | -            | 3.5               | -                | pF                |
| 9397 750 14693        |                                                   |                                                                                                                                            | © Koninklijk | e Philips Electro | onics N.V. 2005. | All rights reserv |

 Table 8:
 Static characteristics for 74HCT164 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                | Parameter                                         | Conditions                                                                                                                                  | Min  | Тур | Max   | Unit |
|-----------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|------|
| T <sub>amb</sub> = -4 | 0 °C to +85 °C                                    |                                                                                                                                             |      |     |       |      |
| V <sub>IH</sub>       | HIGH-level input voltage                          | V <sub>CC</sub> = 4.5 V to 5.5 V                                                                                                            | 2.0  | -   | -     | V    |
| V <sub>IL</sub>       | LOW-level input voltage                           | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$                                                                                                  | -    | -   | 0.8   | V    |
| V <sub>OH</sub>       | HIGH-level output voltage                         | $V_I = V_{IH}$ or $V_{IL}$                                                                                                                  |      |     |       |      |
|                       |                                                   | $I_{O} = -20 \mu A; V_{CC} = 4.5 V$                                                                                                         | 4.4  | -   | -     | V    |
|                       |                                                   | $I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                                             | 3.84 | -   | -     | V    |
| V <sub>OL</sub>       | LOW-level output voltage                          | $V_I = V_{IH}$ or $V_{IL}$                                                                                                                  |      |     |       |      |
|                       |                                                   | $I_{O} = 20 \mu A; V_{CC} = 4.5 V$                                                                                                          | -    | -   | 0.1   | V    |
|                       |                                                   | $I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                                              | -    | -   | 0.33  | V    |
| I <sub>LI</sub>       | input leakage current                             | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$                                                                                             | -    | -   | ±1.0  | μΑ   |
| I <sub>CC</sub>       | quiescent supply current                          | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 5.5 \text{ V}$                                                                             | -    | -   | 80.0  | μΑ   |
| Δl <sub>CC</sub>      | additional quiescent supply current per input pin | $V_I = V_{CC} - 2.1 \text{ V}$ ; other inputs<br>$V_I = V_{CC} \text{ or GND}$ ;<br>$V_{CC} = 4.5 \text{ V to 5.5 V}$ ; $I_O = 0 \text{ A}$ | -    | -   | 450   | μΑ   |
| T <sub>amb</sub> = -4 | 0 °C to +125 °C                                   |                                                                                                                                             |      |     |       |      |
| V <sub>IH</sub>       | HIGH-level input voltage                          | V <sub>CC</sub> = 4.5 V to 5.5 V                                                                                                            | 2.0  | -   | -     | V    |
| V <sub>IL</sub>       | LOW-level input voltage                           | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$                                                                                                  | -    | -   | 0.8   | V    |
| V <sub>OH</sub>       | HIGH-level output voltage                         | $V_I = V_{IH}$ or $V_{IL}$                                                                                                                  |      |     |       |      |
|                       |                                                   | $I_{O} = -20 \mu A; V_{CC} = 4.5 V$                                                                                                         | 4.4  | -   | -     | V    |
|                       |                                                   | $I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                                             | 3.7  | -   | -     | V    |
| V <sub>OL</sub>       | LOW-level output voltage                          | $V_I = V_{IH}$ or $V_{IL}$                                                                                                                  |      |     |       |      |
|                       |                                                   | $I_O = 20 \mu A; V_{CC} = 4.5 V$                                                                                                            | -    | -   | 0.1   | V    |
|                       |                                                   | $I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                                              | -    | -   | 0.4   | V    |
| ILI                   | input leakage current                             | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$                                                                                             | -    | -   | ±1.0  | μΑ   |
| I <sub>CC</sub>       | quiescent supply current                          | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 5.5 \text{ V}$                                                                             | -    | -   | 160.0 | μΑ   |
| Δl <sub>CC</sub>      | additional quiescent supply current per input pin | $V_I = V_{CC} - 2.1 \text{ V}$ ; other inputs<br>$V_I = V_{CC} \text{ or GND}$ ;<br>$V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$  | -    | -   | 490   | μΑ   |

# 11. Dynamic characteristics

**Table 9: Dynamic characteristics for 74HC164**  $GND = 0 \ V$ ;  $t_r = t_f = 6 \ ns$ ;  $C_L = 50 \ pF$ ; test circuit see Figure 10; unless otherwise specified

| Symbol                              | Parameter                                                                                                                                                                                                        | Conditions               | Min | Тур | Max | Unit |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|-----|-----|------|
| T <sub>amb</sub> = 25               | °C                                                                                                                                                                                                               |                          |     |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> |                                                                                                                                                                                                                  | see Figure 7             |     |     |     |      |
|                                     | 25 °C  LH propagation delay CP to Qn  propagation delay MR to Qn  LH output transition time  clock pulse width; HIGH or LOW  master reset pulse width LOW  removal time MR to CP  set-up time DSA, and DSB to CP | $V_{CC} = 2.0 \text{ V}$ | -   | 41  | 170 | ns   |
|                                     | Propagation delay CP to Qn  propagation delay MR to Qn  clock pulse width; HIGH or LOW  master reset pulse widt LOW  removal time MR to CP  set-up time DSA, and DSB to CP  hold time DSA and DSB to CP          | $V_{CC} = 4.5 \text{ V}$ | -   | 15  | 34  | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | -   | 12  | 29  | ns   |
| t <sub>PHL</sub>                    |                                                                                                                                                                                                                  | see Figure 8             |     |     |     |      |
|                                     | MR to Qn                                                                                                                                                                                                         | $V_{CC} = 2.0 \text{ V}$ | -   | 39  | 140 | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 4.5 \text{ V}$ | -   | 14  | 28  | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | -   | 11  | 24  | ns   |
| t <sub>THL</sub> , t <sub>TLH</sub> | output transition time                                                                                                                                                                                           | see Figure 7             |     |     |     |      |
|                                     |                                                                                                                                                                                                                  | V <sub>CC</sub> = 2.0 V  | -   | 19  | 75  | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 4.5 \text{ V}$ | -   | 7   | 15  | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | -   | 6   | 13  | ns   |
| t <sub>W</sub>                      |                                                                                                                                                                                                                  | see Figure 7             |     |     |     |      |
|                                     | HIGH or LOW                                                                                                                                                                                                      | V <sub>CC</sub> = 2.0 V  | 80  | 14  | -   | ns   |
|                                     |                                                                                                                                                                                                                  | V <sub>CC</sub> = 4.5 V  | 16  | 5   | -   | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | 14  | 4   | -   | ns   |
|                                     | master reset pulse width;                                                                                                                                                                                        | see Figure 8             |     |     |     |      |
|                                     | LOW                                                                                                                                                                                                              | V <sub>CC</sub> = 2.0 V  | 60  | 17  | -   | ns   |
|                                     |                                                                                                                                                                                                                  | V <sub>CC</sub> = 4.5 V  | 12  | 6   | -   | ns   |
|                                     |                                                                                                                                                                                                                  | V <sub>CC</sub> = 6.0 V  | 10  | 5   | -   | ns   |
| t <sub>rem</sub>                    | removal time MR to CP                                                                                                                                                                                            | see Figure 8             |     |     |     |      |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 2.0 \text{ V}$ | 60  | 17  | -   | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 4.5 \text{ V}$ | 12  | 6   | -   | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | 10  | 5   | -   | ns   |
| t <sub>su</sub>                     |                                                                                                                                                                                                                  | see Figure 9             |     |     |     |      |
|                                     | DSA, and DSB to CP                                                                                                                                                                                               | $V_{CC} = 2.0 \text{ V}$ | 60  | 8   | -   | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 4.5 \text{ V}$ | 12  | 3   | -   | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | 10  | 2   | -   | ns   |
| t <sub>h</sub>                      |                                                                                                                                                                                                                  | see Figure 9             |     |     |     |      |
|                                     | to CP                                                                                                                                                                                                            | $V_{CC} = 2.0 \text{ V}$ | +4  | -6  | -   | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 4.5 \text{ V}$ | +4  | -2  | -   | ns   |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | +4  | -2  | -   | ns   |
| f <sub>max</sub>                    | maximum clock pulse                                                                                                                                                                                              | see Figure 7             |     |     |     |      |
|                                     | frequency                                                                                                                                                                                                        | $V_{CC} = 2.0 \text{ V}$ | 6   | 23  | -   | MHz  |
|                                     |                                                                                                                                                                                                                  | V <sub>CC</sub> = 4.5 V  | 30  | 71  | -   | MHz  |
|                                     |                                                                                                                                                                                                                  | $V_{CC} = 6.0 \text{ V}$ | 35  | 85  | -   | MHz  |

**Table 9: Dynamic characteristics for 74HC164** ...continued  $GND = 0 \ V$ ;  $t_r = t_f = 6 \ ns$ ;  $C_L = 50 \ pF$ ; test circuit see Figure 10; unless otherwise specified

| Symbol                              | Parameter                        | Conditions               | Min | Тур | Max | Unit |
|-------------------------------------|----------------------------------|--------------------------|-----|-----|-----|------|
| T <sub>amb</sub> = -4               | 0 °C to +85 °C                   |                          |     |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> | propagation delay                | see Figure 7             |     |     |     |      |
|                                     | CP to Qn                         | V <sub>CC</sub> = 2.0 V  | -   | -   | 215 | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | -   | -   | 43  | ns   |
|                                     |                                  | V <sub>CC</sub> = 6.0 V  | -   | -   | 37  | ns   |
| PHL                                 | propagation delay                | see Figure 8             |     |     |     |      |
|                                     | MR to Qn                         | V <sub>CC</sub> = 2.0 V  | -   | -   | 175 | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | -   | -   | 35  | ns   |
|                                     |                                  | V <sub>CC</sub> = 6.0 V  | -   | -   | 30  | ns   |
| THL, t <sub>TLH</sub>               | output transition time           | see Figure 7             |     |     |     |      |
|                                     |                                  | V <sub>CC</sub> = 2.0 V  | -   | -   | 95  | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | -   | -   | 19  | ns   |
|                                     |                                  | V <sub>CC</sub> = 6.0 V  | -   | -   | 16  | ns   |
| w                                   | clock pulse width;               | see Figure 7             |     |     |     |      |
|                                     | HIGH or LOW                      | V <sub>CC</sub> = 2.0 V  | 100 | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | 20  | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 6.0 V  | 17  | -   | -   | ns   |
|                                     | master reset pulse width;        | see Figure 8             |     |     |     |      |
|                                     | master reset pulse width;<br>LOW | V <sub>CC</sub> = 2.0 V  | 75  | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | 15  | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 6.0 V  | 13  | -   | -   | ns   |
| rem                                 | removal time MR to CP            | see Figure 8             |     |     |     |      |
|                                     |                                  | V <sub>CC</sub> = 2.0 V  | 75  | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | 15  | -   | -   | ns   |
|                                     |                                  | $V_{CC} = 6.0 \text{ V}$ | 13  | -   | -   | ns   |
| su                                  | set-up time                      | see Figure 9             |     |     |     |      |
|                                     | DSA and DSB to CP                | V <sub>CC</sub> = 2.0 V  | 75  | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | 15  | -   | -   | ns   |
|                                     |                                  | $V_{CC} = 6.0 \text{ V}$ | 13  | -   | -   | ns   |
| h                                   | hold time DSA and DSB            | see Figure 9             |     |     | -   |      |
|                                     | to CP                            | V <sub>CC</sub> = 2.0 V  | 4   | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | 4   | -   | -   | ns   |
|                                     |                                  | V <sub>CC</sub> = 6.0 V  | 4   | -   | -   | ns   |
| max                                 | maximum clock pulse              | see Figure 7             |     |     |     |      |
|                                     | frequency                        | V <sub>CC</sub> = 2.0 V  | 5   | -   | -   | MHz  |
|                                     |                                  | V <sub>CC</sub> = 4.5 V  | 24  | -   | -   | MHz  |
|                                     |                                  | V <sub>CC</sub> = 6.0 V  | 28  | -   | -   | MHz  |

**Table 9: Dynamic characteristics for 74HC164** ... continued  $GND = 0 \ V$ ;  $t_r = t_f = 6 \ ns$ ;  $C_L = 50 \ pF$ ; test circuit see Figure 10; unless otherwise specified

| Symbol                              | Parameter                                                                                                      | Conditions               | Min | Тур | Max | Unit |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|-----|-----|-----|------|
| T <sub>amb</sub> = -4               | 0 °C to +125 °C                                                                                                |                          |     |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> |                                                                                                                | see Figure 7             |     |     |     |      |
|                                     | CP to Qn                                                                                                       | V <sub>CC</sub> = 2.0 V  | -   | -   | 255 | ns   |
|                                     | Propagation delay CP to Qn  propagation delay MR to Qn  output transition time  clock pulse width; HIGH or LOW | V <sub>CC</sub> = 4.5 V  | -   | -   | 51  | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | -   | -   | 43  | ns   |
| t <sub>PHL</sub>                    |                                                                                                                | see Figure 7             |     |     |     |      |
|                                     | MR to Qn                                                                                                       | V <sub>CC</sub> = 2.0 V  | -   | -   | 210 | ns   |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | -   | -   | 42  | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | -   | -   | 36  | ns   |
| t <sub>THL</sub> , t <sub>TLH</sub> | output transition time                                                                                         | see Figure 7             |     |     |     |      |
|                                     |                                                                                                                | $V_{CC} = 2.0 \text{ V}$ | -   | -   | 110 | ns   |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | -   | -   | 22  | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | -   | -   | 19  | ns   |
| tw                                  |                                                                                                                | see Figure 7             |     |     |     |      |
|                                     | HIGH or LOW                                                                                                    | $V_{CC} = 2.0 \text{ V}$ | 120 | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | 24  | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | 20  | -   | -   | ns   |
|                                     | master reset pulse width;                                                                                      | see Figure 7             |     |     |     |      |
|                                     |                                                                                                                | $V_{CC} = 2.0 \text{ V}$ | 90  | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | 18  | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | 15  | -   | -   | ns   |
| rem                                 | removal time $\overline{\text{MR}}$ to CP                                                                      | see Figure 8             |     |     |     |      |
|                                     |                                                                                                                | $V_{CC} = 2.0 \text{ V}$ | 90  | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | 18  | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | 15  | -   | -   | ns   |
| t <sub>su</sub>                     |                                                                                                                | see Figure 9             |     |     |     |      |
|                                     | DSA and DSB to CP                                                                                              | $V_{CC} = 2.0 \text{ V}$ | 90  | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | 18  | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | 15  | -   | -   | ns   |
| t <sub>h</sub>                      | hold time DSA and DSB                                                                                          | see Figure 9             |     |     |     |      |
|                                     | to CP                                                                                                          | $V_{CC} = 2.0 \text{ V}$ | 4   | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | 4   | -   | -   | ns   |
|                                     |                                                                                                                | $V_{CC} = 6.0 \text{ V}$ | 4   | -   | -   | ns   |
| max                                 | maximum clock pulse                                                                                            | see Figure 7             |     |     |     |      |
|                                     | frequency                                                                                                      | $V_{CC} = 2.0 \text{ V}$ | 4   | -   | -   | MHz  |
|                                     |                                                                                                                | $V_{CC} = 4.5 \text{ V}$ | 20  | -   | -   | MHz  |
|                                     |                                                                                                                | V <sub>CC</sub> = 6.0 V  | 24  | -   | -   | MHz  |

Table 10: Dynamic characteristics for 74HCT164

 $GND = 0 \ V$ ;  $t_r = t_f = 6 \ ns$ ;  $C_L = 50 \ pF$ ; test circuit see Figure 10; unless otherwise specified

| Symbol                              | Parameter                         | Conditions                                       | Min | Тур | Max | Unit |
|-------------------------------------|-----------------------------------|--------------------------------------------------|-----|-----|-----|------|
| T <sub>amb</sub> = 25               | °C                                |                                                  |     |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> | propagation delay<br>CP to Qn     | $V_{CC} = 4.5 \text{ V};$<br>see <u>Figure 7</u> | -   | 17  | 36  | ns   |
| t <sub>PHL</sub>                    | propagation delay MR to Qn        | $V_{CC} = 4.5 \text{ V};$<br>see Figure 8        | -   | 19  | 38  | ns   |
| t <sub>THL</sub> , t <sub>TLH</sub> | output transition time            | $V_{CC} = 4.5 \text{ V};$<br>see Figure 7        | -   | 7   | 15  | ns   |
| t <sub>W</sub>                      | clock pulse width;<br>HIGH or LOW | $V_{CC} = 4.5 \text{ V};$<br>see Figure 7        | 18  | 7   | -   | ns   |
|                                     | master reset pulse width;<br>LOW  | $V_{CC} = 4.5 \text{ V};$<br>see Figure 8        | 18  | 10  | -   | ns   |
| t <sub>rem</sub>                    | removal time MR to CP             | $V_{CC} = 4.5 \text{ V};$<br>see Figure 8        | 16  | 7   | -   | ns   |
| t <sub>su</sub>                     | set-up time<br>DSA, and DSB to CP | $V_{CC} = 4.5 \text{ V};$<br>see Figure 9        | 12  | 6   | -   | ns   |
| t <sub>h</sub>                      | hold time DSA, and DSB to CP      | $V_{CC} = 4.5 \text{ V};$<br>see Figure 9        | +4  | -2  | -   | ns   |
| f <sub>max</sub>                    | maximum clock pulse frequency     | $V_{CC} = 4.5 \text{ V};$<br>see Figure 7        | 27  | 55  | -   | MHz  |
| $T_{amb} = -4$                      | 0 °C to +85 °C                    |                                                  |     |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> | propagation delay<br>CP to Qn     | $V_{CC} = 4.5 \text{ V};$<br>see Figure 7        | -   | -   | 45  | ns   |
| t <sub>PHL</sub>                    | propagation delay MR to Qn        | $V_{CC} = 4.5 \text{ V};$<br>see Figure 8        | -   | -   | 48  | ns   |
| t <sub>THL</sub> , t <sub>TLH</sub> | output transition time            | $V_{CC} = 4.5 \text{ V};$<br>see Figure 7        | -   | -   | 19  | ns   |
| t <sub>W</sub>                      | clock pulse width;<br>HIGH or LOW | $V_{CC} = 4.5 \text{ V};$<br>see Figure 7        | 23  | -   | -   | ns   |
|                                     | master reset pulse width;<br>LOW  | $V_{CC} = 4.5 \text{ V};$<br>see Figure 8        | 23  | -   | -   | ns   |
| t <sub>rem</sub>                    | removal time MR to CP             | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 8</u>  | 20  | -   | -   | ns   |
| t <sub>su</sub>                     | set-up time<br>DSA, and DSB to CP | $V_{CC} = 4.5 \text{ V};$<br>see Figure 9        | 15  | -   | -   | ns   |
| t <sub>h</sub>                      | hold time DSA, and DSB to CP      | $V_{CC} = 4.5 \text{ V};$<br>see Figure 9        | 4   | -   | -   | ns   |
| f <sub>max</sub>                    | maximum clock pulse frequency     | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 7</u>  | 22  | -   | -   | MHz  |
| $T_{amb} = -4$                      | 0 °C to +125 °C                   |                                                  |     |     |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub> | propagation delay<br>CP to Qn     | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 7</u>  | -   | -   | 54  | ns   |
| t <sub>PHL</sub>                    | propagation delay MR to Qn        | $V_{CC} = 4.5 \text{ V};$<br>see <u>Figure 8</u> | -   | -   | 57  | ns   |
| t <sub>THL</sub> , t <sub>TLH</sub> | output transition time            | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 7</u>  | -   | -   | 22  | ns   |

**Table 10: Dynamic characteristics for 74HCT164** ...continued  $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF; \ test \ circuit \ see Figure 10; \ unless \ otherwise \ specified$ 

| Symbol           | Parameter                              | Conditions                                      | Min | Тур | Max | Unit |
|------------------|----------------------------------------|-------------------------------------------------|-----|-----|-----|------|
| t <sub>W</sub>   | clock pulse width;<br>HIGH or LOW      | $V_{CC} = 4.5 \text{ V};$<br>see Figure 7       | 27  | -   | -   | ns   |
|                  | master reset pulse width; LOW          | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 8</u> | 27  | -   | -   | ns   |
| t <sub>rem</sub> | removal time $\overline{\rm MR}$ to CP | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 8</u> | 24  | -   | -   | ns   |
| t <sub>su</sub>  | set-up time<br>DSA and DSB to CP       | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 9</u> | 18  | -   | -   | ns   |
| t <sub>h</sub>   | hold time DSA and DSB to CP            | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 9</u> | 4   | -   | -   | ns   |
| f <sub>max</sub> | maximum clock pulse frequency          | V <sub>CC</sub> = 4.5 V;<br>see <u>Figure 7</u> | 18  | -   | -   | MHz  |



74HCT164: V<sub>M</sub> = 1.3 V; V<sub>I</sub> = GND to 3 V.

Fig 7. Waveforms showing the clock (CP) to output (Qn) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency



Fig 8. Waveforms showing the master reset (MR) pulse width, the master reset to output (Qn) propagation delays and the master reset to clock (CP) removal time





Definitions test circuit.

 $R_T$  = termination resistance should be equal to output impedance  $Z_o$  of the pulse generator.

 $C_L$  = Load capacitance including jig and probe capacitance.

Fig 10. Load circuitry for switching times

16 of 24

# 12. Package outline

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1



| UNIT   | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | С              | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | e <sub>1</sub> | L            | ME           | Мн           | w     | Z <sup>(1)</sup><br>max. |
|--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|--------------|-------|--------------------------|
| mm     | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.13   | 0.53<br>0.38   | 0.36<br>0.23   | 19.50<br>18.55   | 6.48<br>6.20     | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80 | 10.0<br>8.3  | 0.254 | 2.2                      |
| inches | 0.17      | 0.02                   | 0.13                   | 0.068<br>0.044 | 0.021<br>0.015 | 0.014<br>0.009 | 0.77<br>0.73     | 0.26<br>0.24     | 0.1  | 0.3            | 0.14<br>0.12 | 0.32<br>0.31 | 0.39<br>0.33 | 0.01  | 0.087                    |

#### Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

| OUTLINE |                         | REFER  | RENCES     | EUROPEAN   | ISSUE DATE                      |
|---------|-------------------------|--------|------------|------------|---------------------------------|
| VERSION | VERSION IEC JEDEC JEITA |        | PROJECTION | ISSUE DATE |                                 |
| SOT27-1 | 050G04                  | MO-001 | SC-501-14  |            | <del>99-12-27</del><br>03-02-13 |

Fig 11. Package outline SOT27-1 (DIP14)



SOT108-2



| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С                | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | HE             | L     | Lp             | v    | w    | у     | z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|------|------|-------|------------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.55<br>1.40   | 0.25           | 0.49<br>0.36 | 0.25<br>0.19     | 8.75<br>8.55     | 4.0<br>3.8       | 1.27 | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.25 | 0.25 | 0.1   | 0.7<br>0.3       | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.061<br>0.055 | 0.01           |              | 0.0100<br>0.0075 | 0.35<br>0.34     | 0.16<br>0.15     | 0.05 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 | 0.01 | 0.01 | 0.004 | 0.028<br>0.012   | 0° |

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

|     | REFER  | ENCES     | EUROPEAN        | ISSUE DATE                      |
|-----|--------|-----------|-----------------|---------------------------------|
| IEC | JEDEC  | JEITA     | PROJECTION      | ISSUE DATE                      |
|     | MS-012 |           |                 | <del>01-05-29</del><br>03-02-19 |
|     | IEC    | IEC JEDEC | IEC JEDEC JEITA | IEC JEDEC JEITA PROJECTION      |

Fig 12. Package outline SOT108-2 (SO14)

9397 750 14693



SOT337-1



|   |      |           |                |                |                |              | ٠-,          |                  |                  |      |            |      |              |            |     |      |     |                  |          |
|---|------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------|
| ι | JNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С            | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | HE         | L    | Lp           | Q          | v   | w    | у   | Z <sup>(1)</sup> | θ        |
|   | mm   | 2         | 0.21<br>0.05   | 1.80<br>1.65   | 0.25           | 0.38<br>0.25 | 0.20<br>0.09 | 6.4<br>6.0       | 5.4<br>5.2       | 0.65 | 7.9<br>7.6 | 1.25 | 1.03<br>0.63 | 0.9<br>0.7 | 0.2 | 0.13 | 0.1 | 1.4<br>0.9       | 8°<br>0° |

#### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                 |  |
|----------|-----|--------|----------|------------|------------|---------------------------------|--|
| VERSION  | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |  |
| SOT337-1 |     | MO-150 |          |            |            | <del>99-12-27</del><br>03-02-19 |  |

Fig 13. Package outline SOT337-1 (SSOP14)

9397 750 14693

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1



|    |       |   |                |                |                |              | -,         |                  |                  |      |            |   |              |            |     |      |     |                  |          |
|----|-------|---|----------------|----------------|----------------|--------------|------------|------------------|------------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------|
| UN | IT Ma |   | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С          | D <sup>(1)</sup> | E <sup>(2)</sup> | е    | HE         | L | Lp           | Q          | v   | w    | у   | Z <sup>(1)</sup> | θ        |
| m  | m 1.  | 1 | 0.15<br>0.05   | 0.95<br>0.80   | 0.25           | 0.30<br>0.19 | 0.2<br>0.1 | 5.1<br>4.9       | 4.5<br>4.3       | 0.65 | 6.6<br>6.2 | 1 | 0.75<br>0.50 | 0.4<br>0.3 | 0.2 | 0.13 | 0.1 | 0.72<br>0.38     | 8°<br>0° |

#### Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                  |  |  |
|----------|-----|--------|----------|------------|------------|----------------------------------|--|--|
| VERSION  | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                       |  |  |
| SOT402-1 |     | MO-153 |          |            |            | <del>-99-12-27</del><br>03-02-18 |  |  |
|          | •   | •      | •        | •          |            | •                                |  |  |

Fig 14. Package outline SOT402-1 (TSSOP14)

9397 750 14693

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1



Fig 15. Package outline SOT762-1 (DHVQFN14)



# 13. Revision history

### Table 11: Revision history

| Document ID       | Release date                 | Data sheet status      | Change notice        | Doc. number      | Supersedes            |
|-------------------|------------------------------|------------------------|----------------------|------------------|-----------------------|
| 74HC_HCT164_3     | 20050404                     | Product data sheet     | -                    | 9397 750 14693   | 74HC_HCT164_<br>CNV_2 |
| Modifications:    | information                  | emiconductors          | oly with the current | presentation and |                       |
|                   | <ul> <li>Added SO</li> </ul> | T762-1 and Ordering in | nformation           |                  |                       |
| 74HC_HCT164_CNV_2 | 19901201                     | Product specification  | -                    | -                | -                     |



| Level | Data sheet status [1] | Product status [2] [3] | Definition                                                                                                                                                                                                                                                                                     |
|-------|-----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I     | Objective data        | Development            | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.                                                                                                    |
| II    | Preliminary data      | Qualification          | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.             |
| III   | Product data          | Production             | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

#### 15. Definitions

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### 16. Disclaimers

**Life support** — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## 17. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

# Philips Semiconductors 74HC164; 74HCT164





| 1   | General description                |
|-----|------------------------------------|
| 2   | Features 1                         |
| 3   | Quick reference data               |
| 4   | Ordering information               |
| 5   | Functional diagram 3               |
| 6   | Pinning information                |
| 6.1 | Pinning                            |
| 6.2 | Pin description                    |
| 7   | Functional description 5           |
| 7.1 | Function selection 5               |
| 8   | Limiting values                    |
| 9   | Recommended operating conditions 6 |
| 10  | Static characteristics 6           |
| 11  | Dynamic characteristics            |
| 12  | Package outline                    |
| 13  | Revision history                   |
| 14  | Data sheet status                  |
| 15  | Definitions 23                     |
| 16  | Disclaimers                        |
| 17  | Contact information                |



All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 4 April 2005 Document number: 9397 750 14693

