Gabarito da AD2 - Fundamentos de Algoritmos para Computação - 2008/02

1. (1.0) Usando o Teorema das colunas calcule a seguinte soma:

$$S = 10 \cdot 11 \cdot 12 + 11 \cdot 12 \cdot 13 + 12 \cdot 13 \cdot 14 + \dots \cdot 50 \cdot 51 \cdot 52$$

Resposta: Notemos que:

$$10 \cdot 11 \cdot 12 + 11 \cdot 12 \cdot 13 + \dots + 50 \cdot 51 \cdot 52 =$$

$$(1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + 50 \cdot 51 \cdot 52) - (1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + 9 \cdot 10 \cdot 11)$$

Isto é,

$$\sum_{k=10}^{50} k(k+1)(k+2) = \sum_{k=1}^{50} k(k+1)(k+2) - \sum_{k=1}^{9} k(k+1)(k+2)$$

Pelo desenvolvimento do exemplo 4, na aula 13, slide número 29, temos que:

$$\sum_{k=1}^{50} k(k+1)(k+2) = 6 \cdot C_{53}^4$$

Com raciocínio análogo, temos que:

$$\sum_{k=1}^{9} k(k+1)(k+2) = 6 \cdot C_{12}^{4}$$

Portanto,

$$\sum_{k=10}^{50} k(k+1)(k+2) = 6 \cdot C_{53}^4 - 6 \cdot C_{12}^4 = 6(C_{53}^4 - C_{12}^4)$$

Obs.: Na avaliação a distância deve ser colocada a explicaçãon de $\sum_{k=1}^{50} k(k+1)(k+2) = 6 \cdot C_{53}^4$ e $\sum_{k=1}^{9} k(k+1)(k+2) = 6 \cdot C_{12}^4$. Para acompanhá-las, consulte o material das aulas.

2. (1.5) Usando o Teorema do binômio de Newton calcule:

$$\sum_{k=0}^{n} kC(n,k)(-3)^{k}$$

Resposta:

$$\sum_{k=0}^{n} k \cdot C(n,k) \cdot (-3)^k = \sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} \cdot (-3)^k =$$

$$= \underbrace{0}_{k=0} + \sum_{k=1}^{n} k \cdot \frac{n(n-1)!}{k \cdot (k-1)!(n-k)!} (-3)^k = \sum_{k=1}^{n} \frac{n(n-1)!}{(k-1)!(n-k)!} (-3)^k$$

Fazendo mudança de variável, k-1=j, temos que k=j+1 e para k=n, j=n-1. Daí, segue:

$$\sum_{k=1}^{n} \frac{n(n-1)!}{(k-1)!(n-k)!} (-3)^k = \sum_{j=0}^{n-1} \frac{n(n-1)!}{j!(n-j-1)!} (-3)^{j+1} =$$

$$= n \sum_{j=0}^{n-1} \frac{(n-1)!}{j!((n-1)-j)!} (-3)^j (-3) = (-3)n \sum_{j=0}^{n-1} C(n-1,j) (-3)^j 1^{n-1-j}$$

Pelo Teorema Binomial, temos:

$$(-3)n\sum_{j=0}^{n-1} 1^{n-1-j} (-3)^j C(n-1,j) = (-3)n(1-3)^{n-1} = n(-3)(-2)^{n-1}$$

3. (1.5) Uma pessoa deve pintar uma sequência de n blocos, $n \geq 1$, com as cores vermelha, azul e branca, cada bloco com uma única cor tal que blocos consecutivos não podem ser pintados de branco. Encontre uma relação de recorrência para o número de sequências possíveis ($a_n = 0$ número de sequências de n blocos pintados com as cores vermelha, azul e branca tal que blocos consecutivos não podem ser pintados de branco). Justifique.

Resposta: Para pintar uma sequência de n blocos, $n \ge 1$, com as cores vermelha, azul e branca, cada bloco com uma única cor tal que blocos consecutivos não podem ser pintados de branco, devemos proceder da seguinte forma:

Se existe um único bloco, ou seja, se n=1, ele pode ser pintado de 3 maneiras: vermelho, ou azul, ou branco, ou seja, $a_1=3$.

Se existem dois blocos, ou seja, se n=2, podemos pintá-los da seguinte maneira:

- Se pintarmos o primeiro bloco de vermelho, restam três cores para pintarmos o segundo bloco: vermelho, ou azul, ou branco;
- Se pintarmos o primeiro bloco de azul, restam três cores para pintarmos o segundo bloco: vermelho, ou azul, ou branco;
- Se pintarmos o primeiro bloco de branco, restam duas cores para pintarmos o segundo bloco: vermelho, ou azul. Não podemos pintar de branco, pois não é permitido que blocos consecutivos sejam pintados de branco

Daí,
$$a_2 = 8$$

Se existem 3 blocos, isto é, n=3 então poderemos pintar o primeiro de vermelho e nos restam dois blocos para serem pintados, e poderemos pintá-los de acordo com

a sequência anterior. Analogamente se pintarmos o primeiro de azul. Agora, se pintarmos de branco, restam dois blocos para serem pintados, mas o segundo só pode ser pintado de vermelho ou azul. Desta forma temos: $a_3 = 2a_2 + 2a_1$.

Se existem n blocos, $n \leq 3$ então poderemos pintar o primeiro de vermelho e nos restam n-1 blocos para serem pintados, e poderemos pintá-los de acordo com a sequência anterior. Analogamente se pintarmos o primeiro de azul. Agora, se pintarmos de branco, restam n-1 blocos para serem pintados, mas o segundo só pode ser pintado de vermelho ou azul. Sendo assim, $a_n = 2a_{n-1} + 2a_{n-2}$ para $n \geq 3$, $a_1 = 3$ e $a_2 = 8$, ou seja:

$$a_n = \begin{cases} 2a_{n-1} + 2a_{n-2} &, n \ge 3\\ 3 &, n = 1\\ 8 &, n = 2 \end{cases}$$

4. (1.0) Para quais valores de r e s o grafo bipartido completo $K_{r,s}$ é euleriano? Justifique.

Resposta: O grafo bipartido completo $K_{r,s}$, por definição possui bipartição (X,Y), sendo |X| = r e |Y| = s. Como temos todas as arestas entre X e Y segue que para cada $v \in X$, temos que d(v) = s e para cada $w \in Y$, temos d(w) = r. Portanto, $K_{r,s}$ é euleriano se, e somente se seus vértices têm grau par, o que implica que r e s são números pares.

- 5. (1.5) Para quais valores de r e s o grafo bipartido completo $K_{r,s}$ é planar? Justifique. Resposta:
 - (a) Para r = 1 e s qualquer, $K_{r,s}$ é planar. Veja Figura 1
 - (b) Para r=2 e s qualquer, $K_{r,s}$ é planar. Veja Figura 2
 - (c) Para r=3, s=1 ou s=2, $K_{r,s}$ é planar (casos anteriores), caso $s\geq 3$, temos como subgrafo induzido o $K_{3,3}$. O $K_{3,3}$ não é planar. Logo, pelo Teorema de Kuratowsky, $K_{r,s}$ não é planar

Figura 1: Representação plana

Figura 2: Representação plana

Conclusão: o grafo $K_{r,s}$ é planar se $r \leq 2$ e s pode assumir qualquer valor ou vice-versa e não é planar se r > 2 e s > 2.

6. (3.5) Considere os grafos G_1 e G_2 dados abaixo:

(Respostas sem justificativas não serão consideradas).

Figura 3: G_1 Figura 4: G_2

(a) Mostre que G_1 e G_2 são isomorfos (isto é, exiba um isomorfismo entre os grafos). Resposta: Seja $f: V(G_1) \to V(G_2)$, dada pela seguinte tabela:

v	f(v)
1	С
4	d
2	a
3	b
5	е
6	f

f é uma função injetora e sobrejetora por construção,

Precisamos verificar para todo par $(v, w) \in E(G_1) \Leftrightarrow (f(v), f(w)) \in E(G_2)$:

- $(1,4) \in E(G_1) \Leftrightarrow (c,d) \in E(G_2)$
- $(1,2) \in E(G_1) \Leftrightarrow (c,a) \in E(G_2)$
- $(1,3) \in E(G_1) \Leftrightarrow (c,b) \in E(G_2)$
- $(2,3) \in E(G_1) \Leftrightarrow (a,b) \in E(G_2)$
- $(4,5) \in E(G_1) \Leftrightarrow (d,e) \in E(G_2)$
- $(4,6) \in E(G_1) \Leftrightarrow (d,f) \in E(G_2)$
- $(5,6) \in E(G_1) \Leftrightarrow (e,f) \in E(G_2).$

Logo, f é um isomorfismo. Portanto, G_1 e G_2 são isomorfos.

(b) G_1 é hamiltoniano? Justifique.

Resposta: Um grafo é hamiltoniano se possui um ciclo hamiltoniano, ou seja, um ciclo que passa por todos os vértices do grafo, sem repetir vértices. Portanto, G_1 não é hamiltoniano, pois o grafo G_2 , que é isomorfo a G_1 , mostra que não existe possibilidade de conseguirmos obter tal ciclo, pois ele é constituído de dois ciclos conectados por uma única aresta, o qual não pertence a nenhum ciclo.

(c) Determine o centro de G_1 .

Resposta: O centro do grafo $C(G_1) = \{w \in V; e(v) \text{ \'e mínimo }\}$, onde $e(v) = \max_{w \in V} \{d(v, w)\}$. Vamos calcular e(v) para cada $v \in V$:

e(1) =2 e(2) =3 e(3) =3 e(4) =2 e(5) =3 e(6) =3		
e(3) = 3 $e(4) = 2$ $e(5) = 3$	e(1)	=2
e(4) = 2 e(5) = 3	e(2)	=3
e(5) = 3	e(3)	=3
	e(4)	=2
e(6) = 3	e(5)	=3
	e(6)	=3

Portanto, $C(G_1) = \{1, 4\}.$