Taller # 2 de Anillos y Campos

Julián Vera (Código: (20212167064)), Nicole Vargas (Código: (20212167015)), y Wilson Jerez (Código: 201181167034)

Universidad Distrital Francisco José de Caldas Facultad de Ciencias Matemáticas y Naturales Programa Académico de Matemáticas

Ejercicios

1. Sea $f(x) = x^6 + 3x^5 + 4x^2 - 3x + 2$ y $g(x) = x^2 + 2x - 3$ en $\mathbb{Z}_7[x]$. Encuéntrese q(x) y r(x) en $\mathbb{Z}_7[x]$ tal que f(x) = q(x) q(x) + r(x), con $\deg(r(x)) < 2$.

Solución: Aplicamos la división de polinomios en $\mathbb{Z}_7[x]$, cuidando la aritmética módulo 7.

• División inicial: Dividimos el término de mayor grado de f(x) entre el de mayor grado de g(x):

$$\frac{x^6}{x^2} = x^4.$$

Multiplicamos g(x) por x^4 y restamos:

$$f(x) - x^4 g(x) = (x^6 + 3x^5 + 4x^2 - 3x + 2) - (x^6 + 2x^5 - 3x^4)$$

= $(x^6 - x^6) + (3x^5 - 2x^5) + (0 - (-3x^4)) + 4x^2 - 3x + 2$
= $x^5 + 3x^4 + 4x^2 - 3x + 2$.

Denotamos este nuevo polinomio como

$$r_1(x) = x^5 + 3x^4 + 4x^2 - 3x + 2.$$

• Segundo paso: Dividimos el término de mayor grado de $r_1(x)$ entre x^2 :

$$\frac{x^5}{x^2} = x^3.$$

Multiplicamos g(x) por x^3 y restamos:

$$r_1(x) - x^3 g(x) = (x^5 + 3x^4 + 4x^2 - 3x + 2) - (x^5 + 2x^4 - 3x^3)$$

= $(x^5 - x^5) + (3x^4 - 2x^4) + (0 - (-3x^3)) + 4x^2 - 3x + 2$
= $x^4 + 3x^3 + 4x^2 - 3x + 2$.

Sea

$$r_2(x) = x^4 + 3x^3 + 4x^2 - 3x + 2.$$

• Tercer paso: Dividimos x^4 entre x^2 :

$$\frac{x^4}{x^2} = x^2.$$

Multiplicamos g(x) por x^2 y restamos de $r_2(x)$:

$$r_2(x) - x^2 g(x) = (x^4 + 3x^3 + 4x^2 - 3x + 2) - (x^4 + 2x^3 - 3x^2)$$

$$= (x^4 - x^4) + (3x^3 - 2x^3) + (4x^2 - (-3x^2)) - 3x + 2$$

$$= x^3 + (4x^2 + 3x^2) - 3x + 2$$

$$= x^3 + 7x^2 - 3x + 2$$

$$\equiv x^3 - 3x + 2 \pmod{7},$$

porque $7x^2 \equiv 0$ en \mathbb{Z}_7 . Denotamos

$$r_3(x) = x^3 - 3x + 2.$$

• Cuarto paso: Dividimos x^3 entre x^2 :

$$\frac{x^3}{x^2} = x.$$

Multiplicamos g(x) por x y restamos:

$$r_3(x) - x g(x) = (x^3 - 3x + 2) - (x^3 + 2x^2 - 3x)$$

$$= (x^3 - x^3) + (0 x^2 - 2x^2) + ((-3x) - (-3x)) + 2$$

$$= -2x^2 + 2 \equiv 5x^2 + 2 \pmod{7}.$$

Por tanto, ahora el resto es $5x^2 + 2$, que aún tiene grado 2, así que seguimos.

• Quinto paso: Dividimos $5x^2$ entre x^2 :

$$\frac{5x^2}{r^2} = 5.$$

Multiplicamos g(x) por 5 (en \mathbb{Z}_7 , $-2 \equiv 5$), y restamos:

$$5 \cdot g(x) = 5x^2 + 10x - 15 \equiv 5x^2 + 3x + 6 \pmod{7},$$

$$(5x^2 + 2) - (5x^2 + 3x + 6) = (5x^2 - 5x^2) + (0 - 3x) + (2 - 6)$$

$$= -3x - 4 \equiv 4x + 3 \pmod{7}.$$

El resto final es, por tanto,

$$r(x) = 4x + 3,$$

y satisface deg(r(x)) < 2.

Para hallar el cociente total q(x), sumamos todos los términos usados en cada división:

$$q(x) = x^4 + x^3 + x^2 + x + 5 \equiv x^4 + x^3 + x^2 + x - 2$$
, (en \mathbb{Z}_7).

Conclusión: Hemos obtenido

$$q(x) = x^4 + x^3 + x^2 + x - 2$$
 y $r(x) = 4x + 3$.

Verificando la igualdad f(x) = g(x) q(x) + r(x) en $\mathbb{Z}_7[x]$, se confirma la corrección de esta división.

2. Para factorizar el polinomio $x^4 + 4$ en $\mathbb{Z}_5[x]$, seguimos los siguientes pasos:

Paso 1: Expresión del polinomio en $\mathbb{Z}_5[x]$

Dado que estamos en el cuerpo finito \mathbb{Z}_5 , el número 4 es equivalente a -1, por lo que podemos reescribir:

$$x^4 + 4 \equiv x^4 - 1 \pmod{5}$$

Observamos que esto se asemeja a una diferencia de cuadrados:

$$x^4 - 1 = (x^2 - 1)(x^2 + 1).$$

Paso 2: Factorización de $x^2 - 1$ y $x^2 + 1$ en $\mathbb{Z}_5[x]$

En \mathbb{Z}_5 , las raíces de $x^2 - 1 = 0$ son los valores $x = \pm 1$. Esto nos da:

$$x^2 - 1 = (x - 1)(x + 1).$$

Ahora, examinemos $x^2 + 1$. En \mathbb{Z}_5 , buscamos raíces de $x^2 + 1 = 0$, lo que equivale a encontrar soluciones para $x^2 \equiv -1 \equiv 4 \pmod{5}$. Como $2^2 \equiv 4 \pmod{5}$, tenemos que $x^2 + 1$ tiene raíces en $x = \pm 2$, lo que nos da la factorización:

$$x^2 + 1 = (x - 2)(x + 2).$$

Paso 3: Factorización completa en factores lineales

Uniendo ambas factorizaciones, obtenemos:

$$x^4 + 4 = (x - 1)(x + 1)(x - 2)(x + 2)$$
 en $\mathbb{Z}_5[x]$.

Por lo tanto, la factorización completa en factores lineales en $\mathbb{Z}_5[x]$ es:

$$(x-1)(x+1)(x-2)(x+2)$$
.

3. ¿Es $x^3 + 2x + 3$ un polinomio irreducible de $\mathbb{Z}_5[x]$? ¿Por qué? Exprésese como producto de polinomios irreducibles de $\mathbb{Z}_5[x]$.

Vamos a revisar detalladamente la factorización del polinomio $f(x) = x^3 + 2x + 3$ en $\mathbb{Z}_5[x]$ y verificar si la factorización correcta es $(x-2)(x+1)^2$.

Paso 1: Comprobación de raíces en \mathbb{Z}_5

Buscamos valores en $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ que satisfagan f(x) = 0.

$$f(x) = x^3 + 2x + 3$$

Calculamos:

$$f(0) = 0^{3} + 2(0) + 3 = 3 \neq 0,$$

$$f(1) = 1^{3} + 2(1) + 3 = 1 + 2 + 3 = 6 \equiv 1 \pmod{5},$$

$$f(2) = 2^{3} + 2(2) + 3 = 8 + 4 + 3 = 15 \equiv 0 \pmod{5}, \checkmark$$

$$f(3) = 3^{3} + 2(3) + 3 = 27 + 6 + 3 = 36 \equiv 1 \pmod{5},$$

$$f(4) = 4^{3} + 2(4) + 3 = 64 + 8 + 3 = 75 \equiv 0 \pmod{5}, \checkmark$$

Encontramos que x=2 y $x=4\equiv -1 \pmod 5$ son raíces.

Paso 2: División de f(x) por (x-2)

Hacemos la división de f(x) entre (x-2) en \mathbb{Z}_5 .

El cociente es:

$$x^2 + 2x + 1.$$

Paso 3: Factorización de $x^2 + 2x + 1$

$$x^{2} + 2x + 1 = (x+1)(x+1) = (x+1)^{2}$$
.

Conclusión

La factorización completa de f(x) en $\mathbb{Z}_5[x]$ es:

$$(x-2)(x+1)^2.$$

Esto muestra que f(x) no es irreducible en $\mathbb{Z}_5[x]$ porque se descompone en factores de grado menor.

4. Pruebe que si F es un campo, todo ideal primo propio de F[x] es maximal.

Paso Previo: Necesidad del Teorema 27.24

Antes de proceder con la demostración, necesitamos el siguiente resultado fundamental:

4

Teorema 27.24 (Fraleigh, 7^{\underline{a}} Edición) Si F es un campo, entonces todo ideal en F[x] es principal.

Demostración del Teorema 27.24

Sea N un ideal de F[x].

- Si $N = \{0\}$, entonces $N = \langle 0 \rangle$, que es principal. - Supongamos que $N \neq \{0\}$, y tomemos un polinomio g(x) no nulo en N con grado mínimo. - Si $\deg(g(x)) = 0$, entonces $g(x) \in F$ y es una unidad. Por el **Teorema 27.5**, en este caso $N = F[x] = \langle 1 \rangle$, lo que muestra que N es principal. - Si $\deg(g(x)) \geq 1$, tomemos cualquier $f(x) \in N$. - Por el **Teorema 23.1**, aplicando la **división euclidiana**, existen $g(x), r(x) \in F[x]$ tales que

$$f(x) = g(x)q(x) + r(x),$$

donde r(x) = 0 o $\deg(r(x)) < \deg(g(x))$. - Como $f(x), g(x) \in N$, se tiene que $f(x) - g(x)q(x) = r(x) \in N$. - Como g(x) tiene grado mínimo en N, se deduce que r(x) = 0. - Así, f(x) = g(x)q(x), lo que muestra que $N = \langle g(x) \rangle$, probando que N es principal. \blacklozenge

Demostración del Teorema

Teorema: Si F es un campo, entonces todo ideal primo propio de F[x] es maximal.

Paso 1: Identificación de los ideales primos

Por el **Teorema 27.24**, todo ideal en F[x] es principal. Así, un ideal primo propio en F[x] es de la forma $\langle p(x) \rangle$ para algún polinomio $p(x) \in F[x]$.

Si $\langle p(x) \rangle$ es primo, entonces para cualquier $f(x), g(x) \in F[x]$, si $f(x)g(x) \in \langle p(x) \rangle$, se cumple que al menos uno de f(x) o g(x) pertenece a $\langle p(x) \rangle$.

Esto implica que p(x) debe ser **irreducible**, pues si fuera reducible, es decir, si

$$p(x) = f(x)g(x)$$

con deg f(x), deg $g(x) < \deg p(x)$, ninguno de los factores pertenecería a $\langle p(x) \rangle$, lo que contradice la primacidad del ideal.

Paso 2: Prueba de que es maximal

Supongamos que $\langle p(x) \rangle$ es un ideal primo propio y que existe un ideal N tal que

$$\langle p(x) \rangle \subsetneq N \subsetneq F[x].$$

Por el **Teorema 27.24**, N es principal, es decir, $N = \langle g(x) \rangle$ para algún $g(x) \in F[x]$. Como $p(x) \in N$, existe $q(x) \in F[x]$ tal que

$$p(x) = g(x)q(x).$$

Dado que p(x) es irreducible, g(x) debe ser un múltiplo de p(x) o una unidad en F[x].

- Si g(x) es una unidad en F[x], entonces N = F[x], lo que contradice que N es un ideal propio. - Si g(x) es un múltiplo de p(x), entonces $N = \langle p(x) \rangle$, lo que significa que $\langle p(x) \rangle$ es maximal.

Conclusión

Hemos probado que todo ideal primo propio en F[x] es maximal. \square

5. Si D es un dominio de ideales principales (DIP), entonces D[x] es un DIP.

Demostración.

Sea D un dominio de ideales principales, es decir, un dominio integral en el cual todo ideal es principal. Debemos demostrar que todo ideal de D[x] es principal.

- Reducción a ideales no nulos. Sea I un ideal de D[x]. Si $I = \{0\}$, entonces I es principal pues $I = \langle 0 \rangle$. Asumamos que $I \neq \{0\}$.
- Elección de un polinomio de grado mínimo. Dado que I es no nulo, existe un polinomio $f(x) \neq 0$ en I con grado mínimo, es decir, para todo $g(x) \in I$ con $g(x) \neq 0$, se cumple $\deg(f) \leq \deg(g)$.
- Generación del ideal con f(x). Sea $\langle f(x) \rangle = \{ f(x)h(x) \mid h(x) \in D[x] \}$. Queremos probar que $I = \langle f(x) \rangle$, es decir, que f(x) genera I.
- División en D[x]. Para cualquier $g(x) \in I$, usamos la división euclídea en D[x]:

$$g(x) = q(x) f(x) + r(x)$$
, donde $deg(r) < deg(f)$.

Como I es un ideal, tanto g(x) como q(x)f(x) pertenecen a I, de donde r(x) = g(x) - q(x)f(x) también está en I. La elección de f(x) con grado mínimo implica que no puede existir un $r(x) \neq 0$ con $\deg(r) < \deg(f)$ dentro de I, pues esto contradiría la minimalidad de f(x). Por tanto, r(x) = 0, con lo que $g(x) = q(x)f(x) \in \langle f(x) \rangle$. Así, $I \subseteq \langle f(x) \rangle$.

- Conclusión. Por construcción, $\langle f(x) \rangle \subseteq I$. De 1) y 4) se concluye $I = \langle f(x) \rangle$. Con ello, todo ideal de D[x] es principal, y por ende D[x] es un dominio de ideales principales.
- 6. Indique cuáles de las funciones dadas ν son evaluaciones euclidianas para los dominios enteros dados.
 - (a) La función ν para \mathbb{Z} dada por $\nu(n) = n^2$ para $n \in \mathbb{Z}$ distinto de cero. **Solución:** Por lo visto en clase |.| es una evaluación euclideana para \mathbb{Z} Sean $a \neq b$, se tiene que existen $r, c \in \mathbb{Z}$ tal que :

$$a = bc + r,$$
 $r = 0 \quad \lor \quad \nu(r) < \nu(b)$

Tomando |r| < |b| $|r|^2 < |b|^2 \quad \text{el cuadrado de un numero entero, es un numero entero}$ $r^2 < b^2 \quad \text{esto ya que:} |n|^2 = n^2$

como $a, b \notin (-1, 1)$. Entonces:

$$\nu(a) = a^2 \le a^2 b^2 = \nu(ab)$$

6

Con lo cual ν es una evaluación euclideana para \mathbb{Z} .

(b) La función ν para \mathbb{Q} dada por $\nu(a) = a^2$ para $a \in \mathbb{Q}$ distinto de cero. **Solución:** Nótese que **NO** es una evaluación euclideana.

Contra ejemplo:

Tómese $a = \frac{1}{4}$ y $b = \frac{1}{5}$. Así:

$$\nu(a) = \frac{1}{16} > \frac{1}{400} = \nu\left(\frac{1}{20}\right) = \nu(ab)$$

Con lo cual **No** es una evaluación euclideana.

7. Encuéntrese el mcd de los polinomios

$$f(x) = x^{10} - 3x^9 + 3x^8 - 11x^7 + 11x^6 - 11x^5 + 19x^4 - 13x^3 + 8x^2 - 9x + 3,$$

$$g(x) = x^6 - 3x^5 + 4x^4 - 9x^3 + 5x^2 - 5x + 2$$

en $\mathbb{Q}[x]$.

Solución:

Aplicamos el algoritmo de Euclides siguiendo la sucesión típica de divisiones:

$$f(x) = q_1(x) g(x) + r_1(x),$$

$$g(x) = q_2(x) r_1(x) + r_2(x),$$

$$r_1(x) = q_3(x) r_2(x) + r_3(x),$$

$$\vdots$$

$$r_{n-1}(x) = q_n(x) r_n(x) + 0,$$

donde el último residuo no nulo, $r_n(x)$, es el **máximo común divisor**.

En nuestro caso concreto, los pasos de división se especifican como sigue:

$$f(x) = (x^{4} - 2x) \cdot g(x) + \underbrace{\left(-2x^{7} + 6x^{6} - 6x^{5} + 6x^{4} - 13x^{3} + 8x^{2} - 9x + 3\right)}_{r_{1}(x)},$$

$$g(x) = (x^{2} + 6x - 19) \cdot r_{1}(x) + \underbrace{\left(19x^{4} + 57x^{3} + 38x^{2} - 23x + 2\right)}_{r_{2}(x)},$$

$$r_{1}(x) = (x - 3) \cdot r_{2}(x) + \underbrace{\left(x^{3} + 2x - 1\right)}_{r_{3}(x)},$$

$$r_{2}(x) = (19x + 57) \cdot r_{3}(x) + 0.$$

Tras la última división, el proceso de Euclides concluye porque el residuo es cero y, por tanto, el último resto distinto de cero es

$$r_3(x) = x^3 + 2x - 1.$$

En un anillo de polinomios sobre un campo $\mathbb{Q}[x]$, los divisores máximos comunes son únicos salvo un factor constante no nulo. Así, concluimos:

$$\gcd(f(x), g(x)) = x^3 + 2x - 1.$$

Observación: Cada coeficiente se maneja sobre \mathbb{Q} , por lo que las operaciones de división de polinomios se realizan sin restricciones, y no necesitamos normalizar factores adicionales más allá de un posible factor multiplicativo no cero. Así queda verificado el resultado final.

8. Muestresé que $\{a+xf(x)|a\in\mathbb{Z},f(x)\in\mathbb{Z}[x]\}$ es un ideal de $\mathbb{Z}[x]$

Demostración: Sea $I = \{a + xf(x) | a \in \mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$, entonces

- 1. I es subgrupo aditivo
 - a) Cerrado bajo la suma: Sean $p(x), q(x) \in \mathbb{Z}[x]$ y $a, b \in \mathbb{Z}$, así

$$(a + xp(x)) + (b + xq(x)) = (a + b) + x(p(x) + q(x))$$

Dónde $a + b \in \mathbb{Z}$ y $p(x) + q(x) \in \mathbb{Z}[x]$

b) Inverso y Neturo: Note que $0 \in I$ pues 0 = 0 + x(0), dónde $0 \in \mathbb{Z}$ y $0 \in \mathbb{Z}[x]$. Además, para un elemento a + xp(x) existe $-a \in \mathbb{Z}$ y $-p(x) \in \mathbb{Z}[x]$ tal que

$$a + xp(x) + (-a) + x(-p(x)) = 0$$

Así el elemento inverso y neturo pertenecen a ${\cal I}$

2. Cerrado bajo la multiplicación: Sea $h(x) \in \mathbb{Z}[x]$ y $a + xp(x) \in I$, así se tiene que

$$h(x)(a + xp(x)) = ah(x) + xp(x)h(x)$$

Luego, el polinomio ah(x) tiene termino constante en \mathbb{Z} , y además $p(x)h(x) \in \mathbb{Z}[x]$, por lo tango $ah(x) + xp(x)h(x) \in I$

Así, I es un ideal de $\mathbb{Z}[x]$

9. Sea D un dominio euclidiano y sea ν una evaluación euclidiana en D. Muéstrese que si a y b son asociados en D, entonces $\nu(a) = \nu(b)$.

Solución:

Sean a y b asociados en D. Con una evaluación euclideana ν , con lo cual existe una unidad u en D tal que:

$$a = bu \iff au' = b$$

ya que ν es una valuación euclideana:

$$\nu(b) \le \nu(bu) = \nu(a) \le \nu(au') = \nu(b)$$

Con lo cual se tiene $\nu(a) = \nu(b)$.

10. Sea D un DFU. Un elemento $c \in D$ es un **mínimo común multiplo** (mcm) **de dos elementos** $a, b \in D$ si a|c y b|c y si c divide a todo elemento de D que sea divisible entre a y b. Muestrese que todos dos elementos distintos de cero a, b de un dominio euclidiano D tienen algún mcm en D

Demostración.

Sean $a, b \in D$ con $a \ y \ b$ distintos de cero, entonces, sabemos que el conjunto de todos los multiplos de a forma el ideal principal generado por $\langle a \rangle$, de la misma forma el conjunto de todos los multiplos de b forma el ideal principal generado por $\langle b \rangle$.

Como la intersección de ideales también es un ideal, tenemos que $\langle a \rangle \cap \langle b \rangle$ es también un ideal, que consta de todos los multiplos comunes de a y b. Por otro lado, como D es dominio euclidiano, en particular, es DIP, por lo tanto el ideal $\langle a \rangle \cap \langle b \rangle = \langle c \rangle$ para algún $c \in D$. Así, $c \mid a y \mid c \mid b$ pues es multiplo común de $a y \mid b$.

Como $\langle c \rangle$ genera a todos los multiplos comunes de a y b, estos son de la forma dc, es decir, que todo multiplo común de a y b es multiplo de c, y así por definición, c es el **mínimo** común multiplo de a y b

11. Considerando $\mathbb{Z}[\sqrt{-5}]$ como subanillo de los Complejos, defina para $z \in \mathbb{Z}[\sqrt{-5}]$ la función $N(z) = z\bar{z}$ y use esto para mostrar que 6 no se factoriza de manera única (sin considerar asociados) en irreducibles en $\mathbb{Z}[\sqrt{-5}]$. Exhíbanse dos factorizaciones diferentes.

Solución:

1. El anillo y la norma

Recordemos que

$$\mathbb{Z}[\sqrt{-5}] \ = \ \{\, a+b\sqrt{-5} \ \mid \ a,b\in\mathbb{Z}\},$$

y que para cada $z = a + b\sqrt{-5}$ definimos la norma como

$$N(z) = z\overline{z} = (a+b\sqrt{-5})(a-b\sqrt{-5}) = a^2+5b^2.$$

Esta norma resulta crucial porque es multiplicativa, es decir,

$$N(z_1 z_2) = N(z_1) N(z_2),$$

lo que nos ayudará a analizar la irreducibilidad de varios elementos.

2. Dos factorizaciones distintas de 6

En $\mathbb{Z}[\sqrt{-5}]$, el número entero 6 tiene las siguientes dos factorizaciones:

$$6 = 2 \cdot 3$$
 y $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.

Vamos a ver que los factores que aparecen en una y otra expresión son *irreducibles* y no se pueden relacionar por unidades (asociados). De este modo, comprobamos que la factorización de 6 en este anillo *no* es única (hasta unidades).

3. Verificación de irreducibilidad de los factores

3.1. Irreducibilidad de 2

- Norma de 2: N(2) = 4.
- Si 2 fuera reducible, existiría una factorización

$$2 = (a + b\sqrt{-5})(c + d\sqrt{-5}),$$

con ninguno de los dos factores igual a ± 1 (los únicos posibles valores de las unidades en este anillo).

• Tomando la norma,

$$4 = N(2) = N(a + b\sqrt{-5}) N(c + d\sqrt{-5}).$$

Eso implica que el par de normas debe multiplicarse para dar 4. En particular, podría pensarse en factorizar 4 como 1×4 , 2×2 o 4×1 .

- Norma 2 imposible: No hay solución en enteros para $a^2 + 5b^2 = 2$, pues revisando casos sencillos (a, b) no aparece ninguna pareja que cumpla esa ecuación.
- De modo que, si uno de los factores tuviera norma 4, el otro forzosamente tendría norma 1 (es decir, sería unidad). Esto demuestra que no podemos factorizarlos ambos como no unidades. Por lo tanto, 2 es irreducible.

3.2. Irreducibilidad de 3

- Norma de 3: N(3) = 9.
- Si 3 fuera reducible, al tomar la norma veríamos que la única forma de factorizar 9 con factores mayores que 1 es 3×3 . Sin embargo, no existe elemento en $\mathbb{Z}[\sqrt{-5}]$ con norma 3, porque la ecuación $a^2 + 5b^2 = 3$ tampoco tiene soluciones en enteros.
- Luego, si uno de los factores de la factorización hipotética de 3 no fuera unidad, su norma tendría que ser 3, lo cual no es posible. Así, no hay factorización no trivial. De ahí se concluye que 3 es irreducible.

3.3. Irreducibilidad de $1+\sqrt{-5}$ y $1-\sqrt{-5}$

• Normas:

$$N(1+\sqrt{-5}) = 1^2 + 5 \cdot 1^2 = 6$$
, $N(1-\sqrt{-5}) = 1^2 + 5 \cdot 1^2 = 6$.

- Para factorizar, por ejemplo, $1+\sqrt{-5}$ en un producto no trivial (x)(y), las normas de x e y tendrían que multiplicarse para dar 6. Por tanto, una de las normas debería ser 2 o 3 (porque $6=2\times3$), o bien 1 y 6. Pero ya hemos visto que no puede haber un factor con norma 2 ni con norma 3, y si uno de los factores tuviera norma 1, sería una unidad.
- Por lo tanto, $1 + \sqrt{-5}$ no admite factorizaciones no triviales (análogamente para $1 \sqrt{-5}$). Esto prueba su irreducibilidad.

4. Diferencia esencial entre las dos factorizaciones de 6

Hemos verificado que 2, 3, $1+\sqrt{-5}$ y $1-\sqrt{-5}$ son irreducibles. Ahora, para ver que las dos factorizaciones

$$6 = 2 \cdot 3$$
 y $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$

no son "la misma" (ni difieren sólo por una unidad), basta notar que no podemos convertir, por ejemplo, 2 en $1 + \sqrt{-5}$ multiplicándola por ± 1 . Si existiera $u \in \{\pm 1\}$ tal que

$$2 = u\left(1 + \sqrt{-5}\right),$$

se obtendría una contradicción al comparar partes reales e imaginarias. Por tanto, estas factorizaciones no se relacionan por asociados, lo que confirma que $\mathbb{Z}[\sqrt{-5}]$ no tiene factorización única.

5. Conclusión

Así, el elemento 6 en $\mathbb{Z}[\sqrt{-5}]$ admite dos descomposiciones distintas en irreducibles:

$$6 = 2 \cdot 3$$
 y $6 = (1 + \sqrt{-5})(1 - \sqrt{-5}),$

sin que los factores aparecidos en una factorización sean meramente asociados a los de la otra. Con esto finalizamos la demostración de que $\mathbb{Z}[\sqrt{-5}]$ no es un dominio de factorización única.

12. Use el algoritmo euclideano en $\mathbb{Z}[i]$ para encontrar el máximo común divisor de 8+6i y 5-15i.

Solución:

Sean $\alpha_1 = 5 - 15i \text{ y } \beta_1 = 8 + 6i \text{ en } \mathbb{Z}[i]$:

$$\frac{5-15i}{8+6i} = \frac{5-15i}{8+6i} * \frac{8-6i}{8-6i} = \frac{(40-90) + (-30-120)i}{8^2+6^2} = \frac{-50-150i}{100} = -\frac{1}{2} - \frac{3}{2}i$$

Tómese $q_1, q_2 \in \mathbb{Z}$ tal que:

$$\left| -\frac{1}{2} - q_1 \right| \le \frac{1}{2} \qquad y \qquad \left| -\frac{3}{2} - q_2 \right| \le \frac{1}{2}$$

Donde $\theta = q_1 + q_2 i$. Entonces $q_1 = 0$ y $q_2 = -1$, con lo cual $\theta = -i$. Por el algoritmo de euclides $\alpha_1 = \beta_1 \theta + p$ entonces

$$p = \alpha_1 - \theta \beta_1 = (5 - 15i) - (-i)(8 + 6i) = -1 - 7i$$

Entonces 5 + 15i = (8 + 6i)(-i) + (-1 - 7i).

Siguiendo con el algoritmo euclideano, tómese:

$$\alpha_2 = 8 + 6i$$
 y $\beta_2 = -1 - 7i$

$$\frac{8 + 6i}{-1 - 7i} = \frac{8 + 6i}{-1 - 7i} * \frac{-1 + 7i}{1 + 7i} = \frac{-50 + 50i}{50} = -1 + i$$

Como $-1+i\in\mathbb{Z}[i]$, así terminese el proceso. En conclusión el maximo común divisor entre 5+15i y 8+6i es -1-7i

Además multiplicando -1 - 7i por las unidades de $\mathbb{Z}[i]$:

$$(-1-7i)(-1) = 1+7i$$
$$(-1-7i)(-i) = -7+i$$
$$(-1-7i)(i) = 7-i$$

Con lo cual 1+7i, -7+i, 7-i también son mcd de 5-15i y 8-6i

- 13. Sea $\langle \alpha \rangle$ un ideal principal distinto de cero en $\mathbb{Z}[i]$.
 - a) Muéstrese que $\mathbb{Z}[i]/\langle \alpha \rangle$ es un anillo finito
 - b) Muéstrese que si π es un irreducible de $\mathbb{Z}[i]$ entonces $\mathbb{Z}[i]/\langle \pi \rangle$ es un campo.
 - c) Con respecto a b), encuéntrese el orden y característica de cada uno de los campos siguientes:
 - 1) $\mathbb{Z}[i]/\langle 3 \rangle$
 - 2) $\mathbb{Z}[i]/\langle 1+i \rangle$
 - 3) $\mathbb{Z}[i]/\langle 1+2i\rangle$

Solución: a) Sea $\beta + \langle \alpha \rangle$ una clase lateral de $\mathbb{Z}[i]/\langle \alpha \rangle$, luego, como $\beta \in \mathbb{Z}[i]$ entonces aplicando el algoritmo de la división existen σ, δ tales que $\beta = \alpha \sigma + \delta$ dónde $\delta = 0$ ó $N(\delta) < N(\alpha)$.

Así, tenemos que $\beta + \langle \alpha \rangle = (\alpha \sigma + \delta) + \langle \alpha \rangle$, y como $\sigma \alpha \in \langle \alpha \rangle$ entonces ocurre que $\beta + \langle \alpha \rangle = \delta + \langle \alpha \rangle$, por lo tanto, la clase lateral de $\langle \alpha \rangle$ contiene un representante cuya norma es menor que $N(\alpha)$.

Como $N(\alpha)$ es un número entero positivo, quiere decir que existe un número finito de elementos en $\mathbb{Z}[i]$ cuya norma es menor que $N(\alpha)$. Por lo tanto el conjunto $\mathbb{Z}[i]/\langle \alpha \rangle$ es un anillo finito.

- b) Sea π un irreducible en $\mathbb{Z}[i]$, se afirma que $\langle \pi \rangle$ es máximal. En efecto, supongasé que existe un ideal $\langle \mu \rangle$ de $\mathbb{Z}[i]$ tal que $\langle \pi \rangle \subseteq \langle \mu \rangle$. Luego, esto es que π es de la forma $\pi = \mu \delta$, luego como π es irreducible, ocurre que μ es una unidad, así $\langle \mu \rangle = \mathbb{Z}[i]$, por otro lado si δ es unidad, entonces $\mu = \pi \delta^{-1}$, es decir $\mu \in \langle \pi \rangle$, así $\langle \pi \rangle = \langle \mu \rangle$, es decir $\langle \pi \rangle$ es máximal, y por lo tanto $\mathbb{Z}[i]/\langle \pi \rangle$ es campo.
- c) [1.] Note que $\langle 3 \rangle$ contiene a 3 y 3i, luego para cualquier número de la forma $a + bi \in \mathbb{Z}[i]$ las clases laterales distintas son los elementos a, b del conjunto $\{0, 1, 2\}$. Luego, las cantidad de posibles combinaciones para una pareja de numeros (a, b) con elementos de ese conjunto es $3 \times 3 = 9$, por lo tanto, el orden de $\mathbb{Z}[i]/\langle 3 \rangle$ es 9.

Por otro lado, como cualquier clase lateral multiplicada con 3 es equivalente a 0, entonces la característica es 3.

[2.] Por el item a) sabemos que cada clase lateral contiene un representante tal que su norma es menor que N(1+i)=2, por lo tanto los únicos elementos de $\mathbb{Z}[i]$ que cumplen esto son

 ± 1 y $\pm i$. Por otro lado, note que i = -1 + (1 + i) y -i = 1 - (1 + i), por ende $i \equiv -1$ y $-i \equiv 1$, así, el orden de $\mathbb{Z}[i]/\langle 1+i \rangle$ es 2, y por ende, su caracteristica es 2.

c) Usando nuevamente el item a), tenemos que los elementos cuya norma es menor que N(1+2i)=5 son ± 1 , ± 2 , $\pm i$, $1\pm i$, -1+i, -1-i, $\pm 2i$. Por otro lado note que

$$i = 2 + (1 + 2i)i$$

$$-i = -2 + (1 + 2i)(-i)$$

$$2i = -1 + (1 + 2i)$$

$$-2i = 1 - (1 + 2i)$$

$$1 + i = -2 + (1 + 2i)(1 - i)$$

$$1 - i = -1 + (1 + 2i)(-i)$$

$$-1 + i = 1 + (1 + 2i)i$$

$$-1 - i = 2 + (1 + 2i)(-1 + i)$$

Por lo tanto tenemos que $i \equiv 2$, $-i \equiv -2$, $2i \equiv -1$, $-2i \equiv 1$, $1+i \equiv -2$, $-1-i \equiv 2$, $1-i \equiv -1$ y $-1+i \equiv 1$, así, cada clase lateral tiene como representante a los elementos ± 1 , ± 2 y 0, por lo tando el orden de $\mathbb{Z}[i]/\langle 1+2i\rangle$ es 5. Por lo tanto su caracteristica es 5

- 14. Sea $n \in \mathbb{Z}^+$ libre de cuadrado, esto es, no es divisible por el cuadrado de ningún primo. Sea $\mathbb{Z}[\sqrt{-n}] = \{ a + b\sqrt{-n} \mid a, b \in \mathbb{Z} \}.$
 - a) Defínase la norma N dada por $N(a + b\sqrt{-n}) = a^2 + nb^2$, identificándola como una norma multiplicativa en $\mathbb{Z}[\sqrt{-n}]$.
 - b) Muéstrese que $N(\alpha) = 1$ para $\alpha \in \mathbb{Z}[\sqrt{-n}]$ si y solo si α es una unidad en $\mathbb{Z}[\sqrt{-n}]$.
 - c) Muéstrese que todo $\alpha \in \mathbb{Z}[\sqrt{-n}]$ que sea distinto de cero y no sea unidad tiene factorización en irreducibles en $\mathbb{Z}[\sqrt{-n}]$. [Sugerencia: úsese (b).]

Solución

(a) Definición de la norma y multiplicatividad

Sea $\alpha = a + b\sqrt{-n}$ en $\mathbb{Z}[\sqrt{-n}]$. Definimos la norma

$$N(\alpha) = a^2 + n b^2.$$

Queremos ver que, dadas $\alpha = a + b\sqrt{-n}$ y $\beta = c + d\sqrt{-n}$, se cumple

$$N(\alpha\beta) = N(\alpha) N(\beta).$$

En efecto, si multiplicamos

$$\alpha\beta = (a + b\sqrt{-n})(c + d\sqrt{-n}) = (ac - bdn) + (ad + bc)\sqrt{-n},$$

entonces, al calcular

$$N(\alpha\beta) = (ac - bdn)^2 + n(ad + bc)^2,$$

y tras expandir con cuidado, podemos comprobar que

$$(a^2 + nb^2)(c^2 + nd^2) = (ac - bdn)^2 + n(ad + bc)^2.$$

Así, $N(\alpha\beta) = N(\alpha) N(\beta)$, confirmando que N es un morfismo multiplicativo.

(b) Caracterización de las unidades mediante la norma

Queremos mostrar que $N(\alpha) = 1$ si y sólo si α es una unidad en $\mathbb{Z}[\sqrt{-n}]$.

 \implies Si $N(\alpha)=1$, consideramos la inversa de $\alpha=a+b\sqrt{-n}$ en el campo de fracciones $\mathbb{Q}(\sqrt{-n})$. Se sabe que

$$\alpha^{-1} = \frac{a - b\sqrt{-n}}{a^2 + n b^2}.$$

Dado que $a^2 + n b^2 = 1$, la inversa se simplifica a $a - b\sqrt{-n}$, que está de nuevo en $\mathbb{Z}[\sqrt{-n}]$. Esto prueba directamente que α es invertible (es decir, es una unidad) en el anillo.

 \iff Si α es unidad, existe alguna $\beta \in \mathbb{Z}[\sqrt{-n}]$ tal que $\alpha\beta = 1$. Aplicando la norma y usando su multiplicatividad,

$$N(\alpha\beta) = N(\alpha) N(\beta) = N(1) = 1.$$

Dado que $N(\alpha)$ y $N(\beta)$ son números enteros positivos (excepto si fueran cero, en cuyo caso no tendríamos una unidad), la única forma de que su producto sea 1 es que ambos valgan 1. Así, $N(\alpha) = 1$.

En resumen, las unidades son exactamente aquellos elementos con norma igual a 1.

(c) Factorización de elementos no nulos ni unidades en irreducibles

Para demostrar la factorización en irreducibles en $\mathbb{Z}[\sqrt{-n}]$, usamos el **principio de buena ordenación** en la norma.

- Si α no es una unidad, entonces $N(\alpha) > 1$. Si α no es irreducible, se puede escribir como $\alpha = \beta \gamma$ con β, γ no unidades.
- Como la norma es multiplicativa, tenemos que $N(\alpha) = N(\beta)N(\gamma)$, y por ser enteros positivos, se tiene $N(\beta), N(\gamma) < N(\alpha)$.
- Procedemos por inducción en la norma. Si todo elemento de norma menor que $N(\alpha)$ tiene factorización en irreducibles, entonces también lo tiene α , pues sus factores β y γ se pueden descomponer en irreducibles.
- Aplicando el principio de buena ordenación, concluimos que todo elemento distinto de cero y no unidad en $\mathbb{Z}[\sqrt{-n}]$ se puede descomponer en irreducibles.

Con esto, queda demostrada la factorización en irreducibles.

Ejercicios de la clase

1. Sea D un dominio entero y F su campo de fracciones. Entonces, para cualquier polinomio $f(X) \in F[X]$, existe un polinomio $f_0(X) \in D[X]$ y un elemento $a \in D$ tal que:

$$f(X) = \frac{f_0(X)}{a}.$$

• Dado que D es un dominio entero, su campo de fracciones F consiste en todas las fracciones de la forma $\frac{a}{b}$, donde $a, b \in D$ y $b \neq 0$. Consideremos el anillo de polinomios F[X], cuyos elementos son expresiones de la forma:

$$f(X) = \sum_{i=0}^{n} c_i X^i, \quad \text{con } c_i \in F.$$

Queremos demostrar que cualquier polinomio en F[X] puede escribirse como $f(X) = \frac{f_0(X)}{a}$, donde $f_0(X) \in D[X]$ y $a \in D$.

• Construcción de $f_0(X)$: Dado un polinomio $f(X) \in F[X]$, podemos escribir cada coeficiente c_i en términos de elementos de D:

$$c_i = \frac{a_i}{b_i}$$
, con $a_i, b_i \in D$, $b_i \neq 0$.

Sea a el **mínimo común múltiplo** de los denominadores b_0, b_1, \ldots, b_n , es decir,

$$a = \operatorname{mcm}(b_0, b_1, \dots, b_n) \in D.$$

Por la propiedad del mínimo común múltiplo, sabemos que a es un múltiplo de cada b_i , lo que significa que existe $k_i \in D$ tal que:

$$a = k_i b_i$$
.

Multiplicamos ambos lados por a_i , obteniendo:

$$aa_i = k_i b_i a_i$$
.

Ahora, dividiendo por b_i (que es distinto de cero en D):

$$\frac{aa_i}{b_i} = k_i a_i.$$

Dado que $k_i, a_i \in D$ y D es un anillo, el producto $k_i a_i$ también pertenece a D. Definiendo $d_i = k_i a_i$, obtenemos:

$$d_i = \frac{aa_i}{b_i} \in D.$$

Definimos entonces el polinomio $f_0(X)$ en D[X] como:

$$f_0(X) = \sum_{i=0}^n d_i X^i.$$

Por construcción, tenemos:

$$f(X) = \sum_{i=0}^{n} c_i X^i = \sum_{i=0}^{n} \frac{a_i}{b_i} X^i = \sum_{i=0}^{n} \frac{d_i}{a} X^i = \frac{1}{a} \sum_{i=0}^{n} d_i X^i = \frac{f_0(X)}{a}.$$

• Conclusión: Hemos demostrado que cualquier polinomio en F[X] puede escribirse como $f(X) = \frac{f_0(X)}{a}$ con $f_0(X) \in D[X]$ y $a \in D$. Esto implica que D[X] es un subanillo de F[X], ya que cada polinomio en F[X] se obtiene como un polinomio en D[X] dividido por un elemento de D.

2. Muestre que el polinomio $p(x) = x^2 + x + 3$ es irreducible en $\mathbb{Q}[x]$.

Solución:

Para demostrar la irreducibilidad del polinomio $p(x) = x^2 + x + 3$ en $\mathbb{Q}[x]$, utilizamos el siguiente resultado:

Teorema 23.10 (Fraleigh, 7ma edición)

Sea $f(x) \in F[x]$ y supongamos que f(x) tiene grado 2 o 3. Entonces f(x) es reducible sobre F si y solo si tiene una raíz en F.

Demostración:

Supongamos que f(x) es reducible sobre F. Entonces puede escribirse como el producto de dos polinomios no constantes en F[x], es decir,

$$f(x) = g(x) h(x),$$

donde $\deg g(x) < \deg f(x)$ y $\deg h(x) < \deg f(x)$. Dado que f(x) tiene grado 2 o 3, uno de los factores (por ejemplo, g(x)) debe ser de grado 1. Por lo tanto,

$$g(x) = x - a$$
, para algún $a \in F$.

Como g(a) = 0, concluimos que a es una raíz de f(x). De esta manera, si f(x) es reducible sobre F[x], necesariamente tiene una raíz en F.

Recíprocamente, si existe $a \in F$ tal que f(a) = 0, entonces x - a es un factor de f(x), lo que muestra que f(x) es reducible.

Aplicación al ejercicio:

Para comprobar que $p(x) = x^2 + x + 3$ es irreducible en $\mathbb{Q}[x]$, basta con verificar que no tiene raíces racionales. Resolviendo la ecuación cuadrática asociada,

$$x = \frac{-1 \pm \sqrt{1 - 12}}{2} = \frac{-1 \pm \sqrt{-11}}{2},$$

se observa que $\sqrt{-11} \notin \mathbb{Q}$. Por lo tanto, p(x) no posee raíces en \mathbb{Q} y, de acuerdo con el Teorema 23.10, es irreducible sobre \mathbb{Q} .

3. Determine los elementos de $\mathbb{Q}[x]/\langle p(x)\rangle$.

• Los elementos de $\mathbb{Q}[x]/\langle p(x)\rangle$ están dados por las clases de equivalencia de los polinomios en $\mathbb{Q}[x]$ módulo p(x). Formalmente, podemos describir estos elementos como sigue: El conjunto de clases de equivalencia es

$$\mathbb{Q}[x]/\langle p(x)\rangle = \{f(x) + \langle p(x)\rangle \mid f(x) \in \mathbb{Q}[x]\}.$$

Es decir, dos polinomios f(x) y g(x) representan el mismo elemento si su diferencia es un múltiplo de p(x), es decir, si $f(x) \equiv g(x) \mod p(x)$.

Como p(x) tiene grado n, cada clase de equivalencia tiene un representante único de la forma:

$$a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$
,

donde $a_i \in \mathbb{Q}$. Esto se debe a que cualquier polinomio f(x) en $\mathbb{Q}[x]$ puede reducirse módulo p(x) mediante la división euclidiana, dejando un residuo de grado menor que n.

- Si p(x) es irreducible sobre \mathbb{Q} , entonces $\mathbb{Q}[x]/\langle p(x)\rangle$ es un **cuerpo** y se puede interpretar como una extensión de \mathbb{Q} de grado n.
- Si p(x) es reducible, el cociente es un **anillo con divisores de cero**, no necesariamente un cuerpo.

Para $p(x) = x^2 + 1$, los elementos del cociente son de la forma:

$$a + bx$$
, $a, b \in \mathbb{Q}$.

En este caso, $\mathbb{Q}[x]/\langle x^2+1\rangle$ es isomorfo a $\mathbb{Q}(i)$, donde $i^2=-1$, representando la extensión \mathbb{Q} con la unidad imaginaria.

4. Encontrar el inverso multiplicativo de a + bt en $\mathbb{Q}[x]/\langle p(x)\rangle$, donde p(x) es irreducible en $\mathbb{Q}[x]$ y t es la clase de x en el cociente.

Solución: Como $\mathbb{Q}[x]/\langle p(x)\rangle$ es un cuerpo, todo elemento no nulo tiene inverso. Se busca q(t) tal que:

$$(a+bt)q(t) \equiv 1 \pmod{p(t)}.$$

Dado que p(x) es irreducible y de grado n, se cumple $\gcd(a+bx,p(x))=1$. Aplicando el algoritmo de Euclides extendido, existen $q(x), k(x) \in \mathbb{Q}[x]$ tales que:

$$(a+bx)q(x) + k(x)p(x) = 1.$$

Reduciendo módulo p(x):

$$(a+bx)q(x) \equiv 1 \pmod{p(x)}.$$

Por lo tanto, q(t) es el inverso de a + bt.

Cálculo explícito para deg(p) = 2: Sea $p(x) = x^2 + cx + d$, buscamos q(t) = u + vt tal que:

$$(a+bt)(u+vt) \equiv 1 \pmod{p(t)}.$$

Multiplicando:

$$(a+bt)(u+vt) = au + (av + bu)t + bvt^{2}.$$

Sustituyendo $t^2 = -ct - d$:

$$bvt^{2} = -bvct - bvd.$$

$$(au - bvd) + (av + bu - bvc)t \equiv 1.$$

Sistema de ecuaciones:

$$\begin{cases} au - bvd = 1, \\ av + bu - bvc = 0. \end{cases}$$

Resolviendo:

$$v = \frac{b}{abc - a^2 - b^2d}, \quad u = \frac{bc - a}{abc - a^2 - b^2d}.$$

Inverso:

$$q(t) = u + vt = \frac{bc - a}{abc - a^2 - b^2d} + \frac{b}{abc - a^2 - b^2d}t.$$

Caso general deg(p) = n: El inverso $q(t) = c_0 + c_1 t + \dots + c_{n-1} t^{n-1}$ se obtiene resolviendo el sistema de n ecuaciones que surge al imponer $(a + bt)q(t) \equiv 1 \pmod{p(t)}$, expresando t^k en términos de $1, t, \dots, t^{n-1}$ usando p(t) = 0. Esto se resuelve mediante eliminación gaussiana o el algoritmo de Euclides extendido.

Conclusión: El inverso de a + bt en $\mathbb{Q}[x]/\langle p(x)\rangle$ existe y es único, dado que el cociente es un cuerpo. Se obtiene aplicando el algoritmo de Euclides extendido o resolviendo un sistema de ecuaciones.