

Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur

Assignment-I

B.Tech. / Semester: III/V Branch: CSE Subject: Information Theory & Coding Subject Code: 5CS3-01

Date of submission: 6-9-25 MM: 10

SET-12

Q1. The second order extension of a DMS X, denoted by X^2 , is formed by taking the source symbols two at a time. The coding of this extension has been shown in Table 1. Find the efficiency η and the redundancy γ of this extension code. [CO2, BL3]

a_i	$P(a_i)$	Code
$a_1 = x_1 x_1$	0.81	0
$a_2 = x_1 x_2$	0.09	10
$a_3 = x_2 x_1$	0.09	110
$a_{4=x_2x_2}$	0.01	111

Q2.Prove that the upper bound on Entropy is given as $H_{max} \leq log_2 m$. Here m is the number of messages emitted by the source.

[CO1, BL3]

Q3. Consider a BSC with $P(x1) = \alpha$. Show that the mutual information I(X;Y) is given by:

$$I(X;Y) = H(Y) + p \log_2 p + (1-p)\log_2 (1-p).$$

Also calculate I(X;Y) for $\alpha=0.5$ and p=0.1

[CO2, BL3]

- Q4. A DMS X has five symbols x_1 , x_2 , x_3 , x_4 and x_5 with $P(x_1)=0.2$, $P(x_2)=0.15$, $P(x_3)=0.05$, $P(x_4)=0.10$ and $P(x_5)=0.50$
 - (a) Construct a Shannon Fano code for X, and calculate the efficiency of the code.
 - (b)Repeat for the Huffman code and compare the results.

[CO2, BL3]