Résumé de cours de Math Sup : structures

I. I. Lois de composition interne (ou opérations).

- 1) Définition. Soit E un ensemble non vide. Une loi de composition interne sur E (ou encore une opération dans
- E) est une application de $E \times E$ dans E.
- 2) Propriétés éventuelles des lois de composition interne. Soient E un ensemble non vide et * une loi de composition interne sur E. * peut avoir ou non une ou plusieurs des propriétés suivantes :
- a) Commutativité. * est commutative $\Leftrightarrow \forall (x,y) \in E^2, \ x * y = y * x.$
- **b)** Associativité. * est associative $\Leftrightarrow \forall (x, y, z) \in E^3, (x * y) * z = x * (y * z).$
- Si * est associative, les expressions (x * y) * z et x * (y * z) peuvent se noter tout simplement x * y * z.
- c) Distributivité d'une loi sur une autre. Soient E un ensemble non vide et * et T deux lois de composition internes sur E. T est distributive sur $* \Leftrightarrow \forall (x,y,z) \in E^3$, $x \top (y*z) = (x \top y)*(x \top z)$ et $(y*z) \top x = (y \top x)*(z \top x)$. Si on sait que T est commutative, une et une seule des deux égalités ci-dessus suffit.
- 3) Eléments particuliers.

Soient E un ensemble non vide et * une loi interne sur E.

- a) Elément neutre. Soit $e \in E$. e est élément neutre pour $* \Leftrightarrow \forall x \in E$, e * x = x * e = x.
- * admet un élément neutre dans $E \Leftrightarrow \exists e \in E / \forall x \in E, \ x * e = e * x = x.$

Si on sait que la loi * est commutative, une et une seule des deux égalités suffit.

Théorème. Si * admet un élément neutre, celui-ci est unique.

- b) Elément absorbant. Soit $a \in E$. a est élément absorbant pour $* \Leftrightarrow \forall x \in E, \ a * x = x * a = a$.
- c) Elément symétrique d'un élément. Soit $x \in E$. x admet un symétrique pour $* \Leftrightarrow \exists x' \in E / x * x' = x' * x = e$.

Si on sait que la loi * est commutative, une et une seule des deux égalités ci-dessus suffit.

Théorème. Soit x un élément de E. Si * est associative (et admet un élément neutre) et si x admet un symétrique pour *, celui-ci est unique.

d) Elément simplifiable. Soit $x \in E$. x est simplifiable à gauche pour $* \Leftrightarrow \forall (y,z) \in E^2$, $(x*y=x*z\Rightarrow y=z)$. De même, x est simplifiable à droite pour $* \Leftrightarrow \forall (y,z) \in E^2$, $(y*x=z*x\Rightarrow y=z)$. Enfin, x est simplifiable si et seulement si x est simplifiable à gauche et à droite.

Théorème. Si * est associative, tout élément symétrisable est simplifiable.

4) Parties stables.

Définition. Soit (E, *) un ensemble non vide muni d'une l.d.c.i. Soit F une partie non vide de E. F est stable pour $* \Leftrightarrow \forall (x, y) \in F^2, x * y \in F$.

Dans ce cas, la restriction de * à F × F est une l.d.c.i. sur F appelée loi induite par * sur F.

II. Groupes.

1) Groupes.

Définition. Soit G un ensemble non vide muni d'une loi de composition interne (notée *). (G,*) est un **groupe** si et seulement si

- 1) * est associative,
- 2) * possède un **élément neutre** dans G
- 3) tout élément de G possède un symétrique dans G.

De plus, (G,*) est commutatif (ou abélien) si et seulement si * est commutative.

Théorème. Dans un groupe, tout élément est simplifiable.

Théorème. Dans un groupe (G,*), l'équation a*x=b a une solution et une seule à savoir x=a'*b.

Théorème. Soient $(G_1, *_1), \ldots, (G_n, *_n)$ des groupes puis $G = \prod_{k=1}^n G_k$. Sur G, on définit * par $(x_1, \ldots, x_n) * (y_1, \ldots, y_n) = (x_1 *_1 u_1, \ldots, x_n *_n y_n)$. (G, *) est un groupe (groupe produit).

1

2) Groupes connus.

- $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +) \text{ et } (\mathbb{C}, +).$
- (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) .
- $\bullet \ (U,\times) \ ({\rm nombres \ complexes \ de \ module \ 1}) \ {\rm et} \ (U_n,\times) \ ({\rm racines \ } n\text{-\`emes \ de \ l'unit\'e}).$
- $(\mathbb{K}^{D}, +)$ (fonctions de D dans \mathbb{K}) et en particulier $(\mathbb{K}^{\mathbb{N}}, +)$.
- $(S(E), \circ)$ et en particulier (S_n, \circ) (groupe des permutations de l'ensemble E (groupe symétrique)).
- $(\mathbb{K}^n, +)$.

- $(\mathcal{L}(\mathsf{E}),+)$ et $(\mathsf{M}_{\mathsf{n},\mathsf{p}}(\mathbb{K}),+)$.
- $(GL(E), \circ)$, $(O(E), \circ)$, $(SL(E), \circ)$ et $(O^+(E), \circ)$.
- $(GL_n(\mathbb{K}), \times)$, $(O_n(\mathbb{R}), \times)$, $(SL_n(\mathbb{K}), \times)$ et $(O_n^+(\mathbb{R}), \times)$.
- $(\mathbb{K}[X], +)$ et $(\mathbb{K}(X), +)$.
- $(\mathbb{K}(X) \setminus \{0\}, \times)$.

3) Sous-groupes.

Soient (G,*) un groupe et H une partie de G. H est un sous-groupe de (G,*) si et seulement si H est **non vide**, **stable** pour * (c'est à dire $\forall (x,y) \in H^2$, $x*y \in H$) et, muni de la loi induite (c'est à dire de la restriction à H^2 de la loi *), est un groupe.

 $\{e\}$ et G sont des sous-groupes de (G,*) appelés sous-groupes triviaux du groupe (G,*). Les autres sous-groupes, s'il en existe, sont appelés sous-groupes propres de (G,*).

Théorème (en général).

$$\text{H est un sous-groupe de } (G,*) \Leftrightarrow \left\{ \begin{array}{l} 1) \ H \subset G \\ 2) \ e \in H \\ 3) \ \forall (x,y) \in H^2, \ x * y \in H \\ 4) \ \forall x \in H, \ x' \in H \end{array} \right. \\ \text{(I)} \Leftrightarrow \left\{ \begin{array}{l} 1) \ H \subset G \\ 2) \ e \in H \\ 3) \ \forall (x,y) \in H^2, \ x * y' \in H \end{array} \right.$$

Théorème (en notation additive).

$$\text{H est un sous-groupe de } (\mathsf{G}, +) \Leftrightarrow \left\{ \begin{array}{l} 1) \ \mathsf{H} \subset \mathsf{G} \\ 2) \ \mathsf{0} \in \mathsf{H} \\ 3) \ \forall (\mathsf{x}, \mathsf{y}) \in \mathsf{H}^2, \ \mathsf{x} + \mathsf{y} \in \mathsf{H} \\ 4) \ \forall \mathsf{x} \in \mathsf{H}, \ -\mathsf{x} \in \mathsf{H} \end{array} \right. \\ (\mathrm{I}) \Leftrightarrow \left\{ \begin{array}{l} 1) \ \mathsf{H} \subset \mathsf{G} \\ 2) \ \mathsf{0} \in \mathsf{H} \\ 3) \ \forall (\mathsf{x}, \mathsf{y}) \in \mathsf{H}^2, \ \mathsf{x} - \mathsf{y} \in \mathsf{H} \end{array} \right.$$

Théorème (en notation multiplicative).

$$\text{H est un sous-groupe de } (G,\times) \Leftrightarrow \left\{ \begin{array}{l} 1) \ H \subset G \\ 2) \ 1 \in H \\ 3) \ \forall (x,y) \in H^2, \ x \times y \in H \\ 4) \ \forall x \in H, \ x^{-1} \in H \end{array} \right. \\ \text{(I)} \Leftrightarrow \left\{ \begin{array}{l} 1) \ H \subset G \\ 2) \ 1 \in H \\ 3) \ \forall (x,y) \in H^2, \ x \times y^{-1} \in H \end{array} \right.$$

Théorème (avec la loi ∘).

$$\text{H est un sous-groupe de } (G, \circ) \Leftrightarrow \left\{ \begin{array}{l} 1) \ H \subset G \\ 2) \ \text{Id} \in H \\ 3) \ \forall (f,g) \in H^2, \ f \circ g \in H \\ 4) \ \forall f \in H, \ f^{-1} \in H \end{array} \right. \\ \text{(I)} \Leftrightarrow \left\{ \begin{array}{l} 1) \ H \subset G \\ 2) \ \text{Id} \in H \\ 3) \ \forall (f,g) \in H^2, \ f \circ g^{-1} \in H \end{array} \right.$$

Remarque. L'élément neutre d'un groupe appartient toujours à un sous-groupe. Mais si (E,*) possède un élément neutre e et si $E' \subset E$ est stable pour * et possède un élément neutre e', il est possible que $e' \neq e$. Par exemple, si E est un ensemble quelconque, E est élément neutre pour \cap dans $\mathscr{P}(E)$. Soit E une partie stricte de E. $\mathscr{P}(E)$ est stable pour E0 et E1 est possède un élément neutre dans E2 est élément neutre n'est pas l'élément neutre de E3 equi est E4.

Théorème. Si H et K sont des sous-groupes de (G,*), $H \cap K$ est un sous-groupe de (G,*) (une intersection de sous-groupes est un sous-groupe).

4) Morphismes de groupes.

Définition. Soient (G, *) et (G', *') deux groupes puis f une application de G vers G'. f est un morphisme de groupes si et seulement si $\forall (x, y) \in G^2$, f(x * y) = f(x) *' f(y).

Théorème. Par un morphisme de groupes, l'image directe d'un sous-groupe de (G,*) est un sous-groupe de (G',*') et l'image réciproque d'un sous-groupe de (G',*') est un sous-groupe de (G,*).

Définition. Le noyau et l'image d'un morphisme de groupes f sont : $Ker(f) = \{x \in G/ f(x) = e'\} = f^{-1}(\{e'\})$ et $Im(f) = \{f(x), x \in G\} = f(G)$.

Théorème. Ker(f) est un sous-groupe de (G,*) et Im(f) est un sous-groupe de (G',*').

Théorème. Soit f un morphisme de groupes. f est injectif \Leftrightarrow Ker(f) = $\{e\}$. f est surjectif \Leftrightarrow Im(f) = G'.

Définition. Un isomorphisme de groupes est un morphisme de groupes bijectif. Deux groupes (G, *) et (G', *') sont isomorphes si et seulement si il existe un isomorphisme de l'un sur l'autre.

Théorème. La réciproque d'un isomorphisme de groupes est un isomorphisme de groupes.

Exemples de morphismes connus.

- $x \mapsto e^x$ est un isomorphisme du groupe $(\mathbb{R}, +)$ sur le groupe $(]0, +\infty[, \times)$. $x \mapsto \ln(x)$ est un isomorphisme du groupe $(]0, +\infty[, \times)$ sur le groupe $(\mathbb{R}, +)$.
- L'application $\sigma \mapsto \epsilon(\sigma)$ est un morphisme du groupe (\mathscr{S}_n, \circ) sur le groupe $(\{-1, 1\}, \times)$. Son noyau est \mathscr{A}_n (groupe alterné).
- L'application $A \mapsto \det(A)$ est un morphisme du groupe $(GL_n(\mathbb{K}, \times)$ sur le groupe (\mathbb{R}^*, \times) . Son noyau est $SL_n(\mathbb{R}$ (matrices de déterminant 1).

(Si dim(E) $< +\infty$,) l'application $f \mapsto \det(f)$ est un morphisme du groupe (GL(E), \circ) sur le groupe (\mathbb{R}^* , \times). Son noyau est SL(E) (endomorphismes de déterminant 1).

2

III. Anneaux et corps.

1) Anneaux

Soit A un ensemble non vide ayant au moins deux éléments muni de deux lois de composition interne (notées + et *).

$$(A,+,\times) \text{ est un anneau} \Leftrightarrow \left\{ \begin{array}{l} 1) \ (A,+) \text{ est un groupe commutatif} \\ 2) \ a) * \text{ est associative} \\ b) * \text{ possède un élément neutre dans A} \\ 3) * \text{ est distributive sur} + \end{array} \right..$$
 Si * est commutative, l'anneau est dit commutatif.

commutatif.

Deux exemples fondamentaux d'anneaux commutatifs sont $(\mathbb{Z}, +, \times)$ et $(\mathbb{K}[X], +, \times)$. Deux exemples importants d'anneaux non commutatifs sont $(L(E), +, \circ)$ et $(\mathcal{M}_n(\mathbb{K}), +, \times)$.

Dans un anneau, on a les deux identités, valables si a et b sont deux éléments de A qui commutent :

$$\forall n \in \mathbb{N}^*, \ \alpha^n - b^n = (\alpha - b) \sum_{k=0}^{n-1} \alpha^k b^{n-1-k} \ \mathrm{et} \ \forall n \in \mathbb{N}, \ (\alpha + b)^n = \sum_{k=0}^n \binom{n}{k} \alpha^k b^{n-k} \ \mathrm{(binôme \ de \ Newton.)}$$

2) Sous-anneaux

Définition. Soient (A, +, *) un anneau et B une partie de A. On note ε l'élément neutre pour *.

B est un sous-anneau de (A, +, *) si et seulement si B est non vide, contient e, est stable pour + et * (c'est à dire $\forall (x,y) \in B^2, x+y \in B \text{ et } x*y \in B) \text{ et, muni des lois induites, est un anneau.}$

Théorème. (Si
$$B \subset A$$
), B est un sous-anneau de $(A, +, *) \Leftrightarrow \begin{cases} e \in B \\ \forall (x, y) \in B^2, \ x - y \in B \\ \forall (x, y) \in B^2, \ x * y \in B \end{cases}$.

3) Morphismes d'anneaux

Définition. Soient (A, +, *) et (A', +', *') deux anneaux d'éléments neutres e et e' pour * et *' respectivement. Soit f une application de A vers A'. f est un morphisme d'anneaux si et seulement si : 1) $\forall (x,y) \in A^2$, f(x+y) = f(x) + f(y), 2) $\forall (x,y) \in A^2$, f(x*y) = f(x)*'f(y), 3) f(e) = e'.

Un isomorphisme d'anneaux est un morphisme d'anneaux bijectif. Deux anneaux sont isomorphes si et seulement si il existe un isomorphisme d'anneaux de l'un sur l'autre.

4) Corps

Soit $(\mathbb{K}, +, \times)$ un anneau. $(\mathbb{K}, +, \times)$ est un corps si et seulement si tout élément non nul de K admet un inverse (pour $\times)$ dans K. Si \times est commutative, le corps est dit commutatif.

3

 $(\mathbb{Q},+,\times)$, $(\mathbb{R},+,\times)$ et $(\mathbb{C},+,\times)$ sont des corps commutatifs.