IMAGE PROCESSING

Разминка, найди кота

Разминка, найди кота

Разминка, какого цвета?

Разминка, павлины одного цвета или нет?

Разминка, А и В – одного цвета или нет?

TL;DR:

- Первая лекция про изображения, что это, как и почему
- Язык Python
- Задание на следующее занятие знакомство с классическими методами обработки изображений в OpenCV
- Код писать в соответствии с РЕР8

PYTHON?

AGENDA

- Что такое изображение?
- Типы изображений
- Источники изображений
- Зачем анализировать изображения?
- Цветовые модели и каналы
- Необходимые пакеты Python

Что такое изображение?

Цифровое изображение — двумерное изображение, представленное в цифровом виде. В зависимости от способа описания, изображение может быть растровым или векторным.

Типы изображений. Векторные изображения

Векторная графика — способ представления объектов и изображений (формат описания) в компьютерной графике, основанный на математическом описании элементарных геометрических объектов, обычно называемых примитивами, таких как: точки, линии, сплайны, кривые Безье, круги и окружности, многоугольники.

Главный плюс: можно зумить сколько угодно Главный минус: не могут в изображения, насыщенные цветами

Векторные изображения в этом курсе нам не интересны

Типы изображений. Векторные изображения

Типы изображений. Растровые изображения

Растровое изображение — изображение, представляющее собой сетку пикселей — цветных точек (обычно прямоугольных) на мониторе, бумаге и других отображающих устройствах.

Типы изображений. Растровые изображения

Полноцветное (цветное)

Полутоновое (grayscale)

Бинарное (binary)

Источники изображений

110-125 млн палочек (яркость)

- пик чувствительности 498нм
- 2-3 фотонов достаточно
- инерционны
- периферическое зрение

6-7 млн колбочек (цвет)

- в 100 раз менее
- чувствительны
 - менее инерционны
 - 3 вида:

S	443 нм	синий
\mathbf{M}	544 нм	зелёный
L	$570 \; \text{HM}$	красный

- Системы безопасности
- Биометрия и аутентификация
- Управление производством и контроль качества
- Обработка медицинских данных
- 3D моделирование
- Захват движения (тосар)
- Цифровое фото: HDR, Создание панорамных фотографий

0 ...

Нидерландец придумал систему распознавания морды соседского кота, чтобы пускать его домой

https://birdinflight.com/ru/novosti/20180301-facial-recognition-diy-pets-cats-dogs.html

FindClone

Поможем найти Вашего двойника.

https://findclone.ru/

https://www.kaggle.com/c/understanding_cloud_organization

 \circ 2009 - 2012

 \circ 2012 – 2015

○ 2015 − ...

Reference

Reference

Цифровое представление изображения

R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	X	X
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	X	X
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	X	X
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	X	X
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	X	X
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	X	X
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	X	X

Цветовое представление изображения

• Изображение − 3D матрица:

ширина X высота X число каналов

- Каждый пиксел вектор, в зависимости от цветовой модели может быть от 1 до 4 элементов (чаще всего 3), реже более вырожденные случаи. Число зависит от количества каналов в изображении.
- Чаще всего каждый элемент это uint8 (0..255) 8 бит на значение, реже встречаются float и другие (24 бита, 48 бита)
- Канал изображения строго одноканальное изображение, того же размера, что и изображение, в которое он включен, то есть 2D матрица:

ширина Х высота

Цветовая модель RGB

Цветовая модель RGB

black	silver	gray	white
(#000000)	(#C0C0C0)	(#808080)	(#FFFFFF)
maroon	red	purple	fuchsia
(#800000)	(#FF0000)	(#800080)	(#FF00FF)
green	lime	olive	yellow
(#008000)	(#00FF00)	(#808000)	(#FFFF00)
navy	blue	teal	aqua
(#000080)	(#0000FF)	(#008080)	(#00FFFF)

Цветовая модель СМҮК

Цветовая модель HSB

Где мы с ними сталкиваемся?

А СКОЛЬКО ЦВЕТОВЫХ МОДЕЛЕЙ?

Пакеты в Рутном

- Python 3.6+
- NumPy библиотека с мат функциями, главное, что нам понадобиться изображения в OpenCV представлены в виде NumPy array, то есть все операции будут выполняться с ними
- OpenCV библиотека компьютерного зрения, содержит много функций для обработки изображений

Могут пригодиться:

- MatPlotLib библиотека для построения графиков
- Scikit-learn библиотека с большим спектром методов, в основном про обработку разного рода данных
- SciPy аналогично Scikit-learn

Задание на следующие занятие

- 1) Найти объект по цвету на изображении. преобразовать изображение в одну из HSx цветовых моделей (cv2.cvtColor), добавить на форму ползунок (cv2.createTrackbar) для порогов канала Hue, в зависимости от выставленных значений, оставлять только интересующий цвет (cv2.threshold)
- 2) Трекинг объекта по форме или цвету (красный мячик или квадрат). Необходимо получить видео с веб камеры, найти объект методами OpenCV (на основе первой части задания) и обвести его прямоугольником (cv2.rectangle).

Контакты для связи:

+7 988 011-62-19 (TELEGRAM)

ПОЧТА: ALEKSEEV.YESKELA@GMAIL.COM