

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY

An International Journal

EDITOR: G. A. KERKUT (*Southampton*)

Author and Subject Indexes

Volumes 86-88 Parts A, B and C, 1987

PERGAMON PRESS

OXFORD · NEW YORK · BEIJING · FRANKFURT · SÃO PAULO
SYDNEY · TOKYO · TORONTO

Comparative Biochemistry and Physiology

Editor

Professor G. A. KERKUT, Department of Physiology and Biochemistry, University of Southampton, Southampton SO9 3TU, England (Executive Editor) (Tel: 0703-559122)

Members of the Honorary Editorial Advisory Board

T. H. BULLOCK (La Jolla)	C. MANWELL (Adelaide)
C. B. COWEY (Aberdeen)	H. S. MASON (Portland)
R. FÄNGE (Göteborg)	C. L. PROSSER (Urbana)
E. FLOREY (Konstanz)	J. ROCHE (Paris)
W. S. HOAR (Vancouver)	B. T. SCHEER (Santa Barbara)
H. KINOSITA (Saitama)	C. A. VILLEE (Massachusetts)
E. KREPS (Leningrad)	G. WALD (Harvard)
O. LOWENSTEIN (Birmingham)	J. H. WELSH (Maine)

Publishing, Subscription and Advertising Offices: Pergamon Journals Ltd, Headington Hill Hall, Oxford OX3 0BW, England (Tel: 0865-64881).

North America: Pergamon Journals Inc., Maxwell House, Fairview Park, Elmsford, NY 10523, USA.

Annual Subscription Rates 1988 (including postage and insurance)

Annual institutional subscription rate (1988): combined subscription, DM 5625.00. Part A, Comparative Physiology DM 2400.00; Part B, Comparative Biochemistry DM 2400.00; Part C, Comparative Pharmacology and Toxicology DM 1450.00.

2 year institutional rate (1988/89): combined subscription, DM 10687.50. Part A, DM 4560.00; Part B, DM 4560.00; Part C, DM 2755.00.

Personal subscription rate for those whose library subscribes at the regular rate (1988): combined subscription, DM 456.00. Part A, Comparative Physiology DM 214.00; Part B, Comparative Biochemistry DM 214.00; Part C, Comparative Pharmacology and Toxicology DM 171.00. Parts A and B: Three volumes of each part per year, four issues per volume. Part C: Three volumes per year, two issues per volume. Prices are subject to change without notice.

Microform Subscriptions and Back Issues

Back issues of all previously published volumes are available in the regular editions and on microfilm and microfiche. Current subscriptions are available on microfiche simultaneously with the paper edition and on microfilm on completion of the annual index at the end of the subscription year.

Copyright © 1988 Pergamon Journals Ltd

It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication. However, assignment of copyright is not required from authors who work for organizations which do not permit such assignment. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microform or any other reproductions of similar nature and translations. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holder.

Photocopying information for users in the USA. The Item-Fee Code for this publication indicates that authorization to photocopy items for internal or personal use is granted by the copyright holder for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service provided the stated fee for copying beyond that permitted by Section 107 or 108 of the United States Copyright Law is paid. The appropriate remittance of \$3.00 per copy per article is paid directly to the Copyright Clearance Center Inc., 27 Congress Street, Salem, MA 01970.

Permission for other use. The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the publisher for such copying.

The Item-Fee Code for this publication is: 0305-0491/88 \$3.00 + 0.00

AUTHOR INDEX

Volumes 86-88 A, B and C inclusive, 1987

- Abante, J. 86B, 89 Aleporou-Marinou, V. 88B, Anders, F. 88B, 481
Abdel Latife, H. A. 87C, 1027 Andersen, J. 86A, 403
297 Aldunate, J. 86B, 67; Anderson, J. F. 88A, 585
Abe, H. 88B, 507 87B, 73 Anderssohn, A. M. 88B,
Abe, K. 88C, 241 Al-Hassan, J. M. 87B, 875
Abelenda, M. 87A, 31 321; 88B, 813 Anderssohn, R. G. G. 88C,
Abramowitz, J. 86A, 453 Ali, J. S. 88A, 107 287
Abulgasim, A. O. 87B, Ali, M. 87B, 833 Ando, M. 88B, 497
335 Ali, M. F. 88B, 59 Ando, S. 87B, 411
Acevedo, C. G. 87C, 425 Al-Kassim, L. S. 87B, 79 Andre, R. G. 88C, 61
Acton, A. B. 86C, 399 Al-Lahham, A. 87B, 321 Andreev, St. N. 87B, 267
Adams, D. S. 88B, 425 Allen, P. C. 87B, 313 Andrews, E. B. 86A, 693
Agapito, M. T. 86A, 389 Allende, C. 88B, 581 Andrews, R. V. 87A, 345
Agar, N. S. 88B, 305 Alli, I. 86C, 45 Andrianov, G. N. 88A, 61
Agosin, M. 87B, 671 Almar, M. M. 87C, 433 Anger, K. 87B, 297; 88B,
Agren, J. 88B, 905 Almodovar-Cuevas, C. 777
Aguero, R. M. 86B, 7 86B, 607 Angioy, A. M. 88A, 455
Aiello, R. J. 88B, 193 Alonso, T. S. 86B, 167 Ankley, G. T. 87B, 671
Aikawa, T. 88B, 91, 491 Alonso-Bedate, M. 86A, 417 Anno, M. 86C, 375
Aikawa, Y. 88B, 91, 491 Alparslan, Z. N. 87A, 9 Antoine, B. 87B, 513
Ainol, L. 88B, 229 Al-Sadoon, M. K. 86A, 189 Aoki, F. Y. 86B, 493
Akaike, N. 86A, 269; Alsarha, A. 87C, 309 Aoki, H. 86B, 613
87C, 237 Alunda, J. M. 87B, 863 Aoki, T. 87B, 143, 655
Akasaka, K. 88B, 147 Alvizouri, A. M. 88B, Appel, A. G. 88A, 491
Akoev, G. N. 88A, 61 1213 ApSimon, J. W. 86B, 191
Alajoutsijarvi, A. 87B, Ambia, K. 86B, 191 Arai, S. 87A, 101
567 Amil, M. R. 86B, 245 Arakawa, N. 88B, 783
Alayash, A. I. 86B, 343 Amthauer, R. 86B, 663 Araujo, L. S. 87B, 593
Al-Balool, F. Y. 86A, Amundson, C. H. 88B, 737 Arauzo. S. 87B, 417
667 Anastassiades, T. P. 88B, Arce, C. A. 87B, 151
Alcalde, A. I. 86A, 63 529, 535, 541 Archbold, E. F. 88A, 491
Alemany, M. 87B, 91 Anderer, F. A. 87B, 309 Archibald, A.L. 88B, 963

- Ardawi, M. S. M. 87B, 469
 Arend, U. 86C, 73
 Arevalo, F. 88A, 447
 Arias, H. R. 86B, 623
 Ariyoshi, Y. 86C, 353; 87C, 51, 59; 88C, 325
 Arlot-Bonnemains, Y. 87A, 1051
 Armentano, L. E. 88B, 193
 Arroyo, O. 87B, 949
 Arruebo, P. 86A, 63
 Arsenault, P. 86B, 123
 Arumae, U. 87B, 329
 Asai, H. 87A, 565
 Asano, M. 86A, 485
 Asano, R. 86C, 443
 Asano, S. 87B, 195
 Ash, R. 88A, 507
 Ashizawa, K. 88A, 269
 Ashorn, R. 87B, 871
 Askmark, H. 86A, 177
 Astancolle, S. 88B, 475
 Attygalle, A. B. 88B, 59
 Aubree-Pelletier, A. 88A, 431, 437
 Audesirk, T. E. 87A, 969
 Augustynowicz, M. 86B, 519
 Aulie, A. 86A, 91
 Austic, R. E. 86A, 713; 87A, 587
 Avallone, L. 88B, 395
 Avila, A. 87B, 489
 Avila, J. L. 86C, 49; 87B, 489
 Awasthi, Y. C. 86B, 73
 Azanza, M. J. 86A, 275; 87C, 329, 335
 Azuma, H. 86C, 411
 Baanante, I. V. 88B, 983
 Babin, D. R. 88B, 341
 Bacci, B. 87B, 851
 Bacić, G. 88A, 235
 Back, J. F. 88B, 863
 Backus, R. C. 87A, 993
 Badia, P. 87A, 883; 88A, 405, 411
 Baerga-Santini, C. 87B, 125
 Baert, J. L. 88B, 1191
 Baeyens, D. A. 86B, 259
 Bagnall, D. 87B, 345
 Bagshaw, P. F. 87A, 509
 Baguet, F. 87C, 233;
 88A, 75
 Baich, A. 88B, 35
 Baikie, M. J. 88A, 239
 Bailey, C. J. 88B, 359
 Bailey, G. 87C, 275
 Bailly, L. 88B, 519
 Bain, P. 88C, 179
 Bairlein, F. 86A, 337
 Balana-Fouce, R. 87B, 863
 Baldissseroto, B. 88A, 21
 Ballas, S. K. 87B, 837
 Bally, R. 87A, 899
 Banas, T. 87B, 391
 Banner, S. E. 88C, 131,
 139
 Baransky, M. 87A, 603
 Barany, K. 87B, 271
 Barany, M. 87B, 271
 Barber, A. 87A, 573, 1055
 Barbosa, V. M. 88B, 563
 Barker, I. K. 86A, 423
 Barnekow, A. 87B, 663
 Barnes, A. 88A, 257
 Barnes, W. S. 86A, 229
 Barnola, F. V. 87B, 867
 Barra, H. S. 87B, 151
 Barrantes, F. J. 86B, 623
 Barre, H. 88B, 519
 Barrett, A. 88A, 325
 Barthelemy, L. 86A, 491
 Bartlett, G. R. 86C, 449
 Bartos, K. D. 87A, 561
 Bartrons, R. 86B, 11
 Bartyzel, M. 87A, 189
 Basaglia, F. 86B, 269;
 88B, 219
 Basova, N. 87A, 951
 Bassols, A. M. 88B, 843
 Bastidas-Ramirez, B. E.
 86B, 607
 Bate, A. J. 86B, 185
 Batlle, A. M. del C.
 87B, 593, 601, 607
 Batrel, Y. 86B, 525
 Battram, J. C. 86A, 245
 Baum, B. J. 88A, 307
 Baum, H. 88B, 1181
 Bauman, W. A. 86A, 241
 Baumrucker, C. R. 87B,
 649
 Bayne, B. L. 88A, 691
 Bayomy, M. F. 87A, 607

- Beale, D. 86B, 365 Bestwick, B. W. 87A, 171 Bonfigli, A. 86B, 749
 Bean, R. M. 87C, 355 Bettger, W. J. 87C, 445 Bonner, J. C. 87C, 437
 Bearman, C. H. 87B, 1017 Beynen, A. C. 87B, 41 Borg, E. 86A, 185
 Bechara, E. J. H. 87B, 755 Bhouyain, A. M. 88B, 243 Borgatti, A. R. 88B, 691
 Bechtel, P. J. 86A, 443 Bianchini, A. 88A, 21 Borgese, T. A. 86B, 155
 Beck, M. M. 88A, 391 Biegniewska, A. 86B, 731 Bornancin, M. 87A, 613
 Beenakkers, A. M. Th. 87A, 193; 88B, 523 Bikfalvi, A. 87B, 435 Boschmans, S.-A. 86C, 225
 Beis, A. 88B, 1175 Bikhazi, A. B. 87A, 1063 Bosquet, G. 86B, 501
 Beis, Is. 86C, 415; 88B, 1033 Billen, J. P. J. 88B, 59 Bot, G. 87B, 857
 Bilitett, D. S. M. 88A, 549 Bottke, W. 87B, 915
 Boucaud-Camou, E. 87B, 351
 Beitinger, H. 86B, 377 Bilski, J. 87A, 657 Boutin, J. A. 87B, 513
 Belanger, J. 86B, 191 Bintz, G. L. 87A, 1067 Bowen, C. E. 86B, 219
 Beleslin, B. 88A, 235 Biol, M-C. 87B, 725 Bowen, S. J. 86A, 137
 Belfiore, A. 88B, 395 Bisson, R. 87B, 851 Bowers, W. S. 86B, 571
 Bell, F. P. 87B, 587; 88A, 503 Bittar, E. E. 88B, 687 Bowman, C. E. 86B, 385
 Bell, J. U. 87A, 561 Bittorf, Th. 87B, 241 Boyd, P. J. 86C, 371
 Bell, M. V. 86B, 227; 87B, 875 Bjelland, S. 87B, 907 Boyle, A. G. 88B, 767
 Bjerke, M. 86C, 73 Bjønnes, P. O. 86A, 91 Boyle, P. R. 88B, 1117
 Benchetrit, G. 86A, 319 Black, D. 88B, 261 Bozal, J. 86B, 89, 95;
 Beneke, T. W. 88C, 99 Blasco, J. 87A, 57 87B, 403; 88B, 461, 1143
 Benjamin, R. 88A, 113 Bloemen, R. E. B. 87A, 193 Bozal X. 86B, 89; 88B,
 Bentley, P. J. 87A, 493 Blomquist, G. J. 88B, 869 461
 Beress, L. 87B, 435 Blum, M. S. 86B, 251 Bozinovic, F. 87A, 257
 Bergstrom, G. 88B, 631 Blum, V. 88A, 49 Brackenbury, J. H. 86A,
 Berman, D. M. 86A, 147 Blume, I. 86A, 653 209
 Bernard, J. 87A, 53 Bly, J. E. 88A, 65 Brady, F. O. 86C, 1
 Bernard-Griffiths, M. A. 86B, 791; 87B, 789 Boersma, D. 88C, 151 Brain, T. 87A, 911
 Bernasconi, A. M. 87B, 815 Bogdanowicz, W. 88A, 637 Brand, J. G. 86B, 135
 Berrocal, F. 86B, 547 Boitel, F. 86A, 255 Brenner, R. R. 87B, 233,
 Bertin, R. 87A, 1073 Bollands, A. D. 86C, 431 815
 Besancon, J. 88B, 1051 Bolt, S. R. L. 88B, 257 Breuer, H. 88B, 977
 Beslot, F. 87C, 83 Bonaventura, J. 87B, 361 Briand, J. 86B, 711
 Bone, L. W. 87C, 75; 88B, 81 Briceno, J. 87A, 1015
 Bright, J. E. 86B, 141

- Brindley, W. A. 86C, 343 Busch, C. 86A, 461 Carroll, M. 88B, 7
 Brittain, T. 86B, 473 Bustos, A. 88A 337 Carsia, R. V. 88A, 131
 Britvic, S. 86C, 17 Butler, D. G. 86A, 397 Carson, R. S. 86A, 361
 Brookhart, G. 87B, 783 Buttke, T. M. 88A, 65 Carter, N. D. 86A, 177
 Brown, A. C. 87A, 1059 Buursma, A. 88B, 251 Carter, S. R. 87A, 657
 Brown, C. R. 86A, 443 Carvajal, N. 88B, 229
 Brown, G. G. 87B, 285 Cabanac, M. 87A, 1017 Casey, T. M. 86A, 679
 Brown, K. M. 87C, 139 Cabezas, J. A. 88B, 757 Castagna, M. 86B, 405;
 Brown, M. W. 87C, 65 Cabrera-Saadoun, M. C. 87B, 703
 Brown, R. D. 88A, 495 86C, 395; 87A, 183 Castane, P. M. 86A, 697
 Brown, S. A. 88B, 535 Caglayan, S. H. 87B, 989 Castejon, C. P. 87C, 329
 Brown-Borg, H. M. 88A, 391 Calcaterra, N. B. 87B, 35 Castex, C. 88A, 33
 Callegarini, C. 86B, 269; Casti, A. 88B, 475
 Bruce, J. I. 87B, 459 88B, 219 Castiella, T. 87C, 329
 Bruch, R. C. 88B, 767 Calvayrac, R. 86B, 711 Castren, M. 86C, 357
 Brule, G. 86A, 581 Calvez, B. 86B, 501 Castro, E. 88C, 155
 Bryan, T. E. 86A, 575 Calvo, J. C. 86C, 295 Castroviejo, J. 87A, 381,
 Bryant, S. L. 88A, 239 Calvo, J. R. 87C, 95 1123; 88A, 663
 Brzezinska, Z. 87A, 915 Campbell, A. K. 86B, 411 Castrucci, A. M. de L.
 Bubenik, G. A. 86A, 767; Campbell, J. W. 86B, 755 88A, 15
 87A, 551 Campbell, P. G. 87B, 649 Cattani, O. 86C, 267
 Buck, M. 88A, 273 Canadas, S. 86B, 489; Cattell, K. J. 88C, 131,
 Budds, M. 87B, 497 88C, 155 139
 Bugaut, M. 86B, 439 Canales, J. 86B, 49 Cavadias, E. 87A, 275
 Bui, K. 87C, 107 Capanna, E. 87B, 975 Caviedes-Vidal, E. 87A,
 Bundy, D. A. P. 88A, 619 Cardellini, P. 86A, 85 257
 Burger, J. 87A, 727 Carefoot, T. H. 87A, 127, Cazzulo, J. J. 87B, 417;
 Burley, R. W. 88B, 863 989 88C, 193
 Burn, D. M. 88B, 47 Carlile, D. W. 87C, 355 Centelles, J. J. 86B, 95
 Burnett, L. E. 86A, 39 Carlson, M. P. 87C, 167 Cepon, G. 88A, 257
 Buron, I. 86B, 241 Carmody, T. 87B, 385 Cerda, J. J. 88B, 1135
 Burovina, I. V. 86A, 689 Caroff, J. 86A, 491 Cerdas, L. 87B, 949
 Burt, C. T. 86B, 537 Carpene, E. 86C, 267 Chaffey, G. 88B, 305
 Burton, D. 87A, 699 Carreras, J. 86B, 11, 547; Chambers, J. D. 88B, 869
 Burton, N. R. 88C, 47 87B, 117, 625; 88B, 843 Chan, W. L. 87B, 961
 Burton, R. F. 86A, 113; Carrillo, J. C. 87A, 381, Chapdelaine, P. 88B, 1051
 87A, 417 1123 Chapelle, S. 88B, 1

- Chapey, M. F. 87A, 197 Cifaldi, S. 88B, 395 Comis, A. 86A, 673
Chaplin, S. B. 88C, 201 Cirotto, C. 87B, 1025 Conte, F. S. 88B, 269
Chapman, J. E. 88A, 373 Cissik, J. H. 88A, 89, Contreras, E. 87C, 425
Chararas, C. 86B, 173 533 Cook, B. J. 88C, 27, 31
Charnock, J. S. 88B, 989 Cisternas, E. 87B, 793 Cook, J. P. 86B 253
Chauveau, J. 88B, 807 Clark, J. M. 86C, 135 Cook, M. E. 86A, 569
Chefurka, W. 88C, 213 Clark, M. W. 87A, 923 Coombs, G. H. 87B, 637
Chen, A. C. 88B, 897 Clark, S. B. 88B, 729 Cooper, D. W. 87B, 423
Chen, C. 88B, 949 Claussen, D. L. 87A, 73, Cooperstein, D. F. 87A,
Chen, C-P. 87A, 327 895 1119
Chen, C. T. 87B, 1011 Clem, L. W. 87A, 405; Cooreman, W. M. 88A, 179
Cheney, M. A. 88C, 293 88A, 65, 589 Coppes, Z. L. 88B, 203,
Cherry, D. S. 87C, 113 Clemens, E. T. 87C, 167 211, 1005
Chesnokova, Ye. G. 86A, Clermont, S. 86B, 173 Corchs, J. L. 86B, 7
689 Coadwell, J. 86B, 365 Cornish, D. A. 88A, 599
Cheung, A. 86A, 29 Cochran, D. G. 88B, 1023 Cornu, L. 88B, 655
Chew, S. F. 87B, 941 Cochrane, B. J. 88B, 39 Cortes, A. 86B, 89; 88B,
Chih, c. P. 86B, 541; Cockell, K. A. 87C, 445 461
87B, 767 Coe, E. L. 88B, 917 Cortesi, P. 86C, 267
Chinn, J. W. 87B, 999 Coenen, G. 87A, 551 Corti, A. 88B, 475
Chinzei, J. 86B, 213 Cohen, D. 86A, 373; 88A, Coston-Clements, 86A, 723
Chitwood, D. J. 86B, 103 113 Couch, E. F. 87A, 765
Cho, C. Y. 87C, 445 Cohen, E. 88B, 675 Coulson, R. A. 87A, 449;
Cho, K. W. 87A, 645 Cohen, Y. 87C, 83 87B, 207
Chotinski, D. 86A, 173 Coiffier, E. 88B, 187 Coulson, T. D. 87A, 449
Choubert, G. 87A, 717 Colares, E. P. 88A, 21 Counter, S. A. 86A, 185
Christensen, V. L. 86A, Colepicolo-Neto, P. 87B, Covens, L. 88B, 75
739, 745 755 Covens, M. 88B, 75
Christian, D. P. 88A, Colin, D. A. 88A, 431, Coviello, A. 86A, 147
695 437 Cox, R. T. L. 88C, 121
Christiansen, D. C. Collins, P. B. 87B, 697; Craigie, P. 88B, 541
88B, 701 88B, 547 Crawford, M. A. 86B, 575
Chu, K. H. 87A, 21 Colomb, C. 87B, 217 Crews, D. 87A, 1097;
Chua, Y. Y. 88B, 51 Colvin, H. W. Jr. 87A, 87B, 999
Ciancaglini, P. 87B, 921 993 Criddle, R. S. 87B, 321;
Ciereszko, A. 86B, 373 Comin, E. J. 87A, 1003 88B, 813

- Crisp, E. A. 88B, 923 Davalli, P. 88B, 475 del Castillo, J. 86A, 355
- Crnjar, R. 88A, 455 Davenport, J. 86A, 43; Delgado, D. 87B, 867
- Crupkin, M. 87A, 845 87A, 851 Delgado, M. J. 86A, 417
- Cryer, A. 86A, 515; 87C, Davenport, T. R. B. 86C, de Lisle, P. F. 88A, 369
- 65 425 De Loof, A. 87B, 821;
- Cryer, J. 86A, 515 Davies, M. H. 88C, 91 88B, 75
- Csabina, S. 87B, 271 Davies, P. E. 88C, 113 Del Ramo, J. 86C, 219
- Csengeri, I. 87B, 49 Davis, R. H. 86B, 129 del Rio, J. M. 86B, 291
- Cuchens, M. A. 88A, 65 Davy, M. 87C, 83 Demarne, Y. 86A, 755
- Cuello, M. E. 87A, 107 Day, F. A. 86C, 1 Demopoulos, C. A. 87C, 41
- Culik, B. 88A, 229 Day, W. W. 88B, 177 De Morales, M. H. 87B,
- Curti, C. 87B, 921 Dean, J. I. 87A, 573, 1055 125
- Cusso, R. 88B, 843 De Angelis, G. 88B, 619 Denac, M. 87C, 325
- Cymborowski, B. 87A, 771 de Bianchi, A. G. 86B, de Naville, L. E. P. 87A,
- Cyrus, R. V. 86A, 559 697 993
- Czarnecki, C. M. 86C, de Bruijne, J. J. 87B, 41 den Besten, P. J. 86C, 83
- 63, 67; 87C, 79 de Buitrago, G. G. 88B, Dendinger, J. E. 88B, 503
- Czolij, R. 88B, 923 791 Denzer, D. 86B, 555
- de Castro, S. L. 87C, 5 de Paula, E. 88A, 377
- Daabees, A. Y. 86C, Decleir, W. 88B, 285 Depeiges, A. 86B, 233
- 263; 87C, 297, 303, 309 Declerck, P. J. 88B, 575 Depledge, M. H. 87C, 15
- da Costa, C. P. 88C, De Clerck, D. 87B, 821 de Rivas, M. M. L. 86A,
- 275 de D'Angelo, A. M. P. 86B, 147
- Daikoku, T. 87A, 101 167 de Romanelli, I. C. B.
- Dalla Via, G-J. 88A, 299 de Frescheville, J. 88B, 86B, 167
- Dalton, T. 88C, 233 71 De Sadeleer, J. 88B, 181
- Dalvi, R. R. 87C, 421 Degani, G. 87A, 27, 733 De Sanctis, J. 87B, 137
- Dameto, C. 88A, 247 Degernes, L. A. 88C, 201 De Simone, S. G. 88B,
- Damodaran, R. 88A, 691 Dehn, P. F. 88A, 383 1091
- d'Angelo, A. 88B, 395 de Kooker, G. M. 87A, 603 De Souza, W. 88B, 1091
- Daniel, H. 88B, 655 Delaage, M. P. 88B, 807 Deura, S. 88C, 35
- Daniel, W. L. 87B, 385 Delacourte, A. 88B, 1057 Devaux, A. 88C, 83
- Daniels, C. B. 87A, 487; De la Cruz, P. 88A, 383 Devery, R. A. M. 87B,
- 88A, 187 Delahunty, T. 86A, 565 697; 88B, 547
- Da Silva, F. M. 87A, 143 Delamere, N. A. 88B, 847 de Villar, M. I. P. 87C,
- Dauble, D. D. 87C, 355 del Boccio, G. 86B, 749 367

- de Vincentiis, M. 88B, 85
Doong, Y-C, 87B, 459 Dunn, P. E. 87B, 783
- De Vlieger, T. A. 87A, 193, 1025 Dorsett, D. A. 87A, 161 Dosoretz, C. 87A, 733 Du Preez, H. H. 88A, 523
- de Vries, J. 87A, 1025 Dotson, R. L. 88A, 553 Dworkin, M. B. 88B, 743
- de Wit, C. A. 86A, 1 Douaire, M. 86B, 791; Dworkin-Rastil, E. 88B, 743
- de With, N. D. 87A, 671 87B, 789 Dyakonova, T. L. 87C, 153
- Deyrup-Olsen, I. 87A, 781 Dougan, D. F. H. 86C, 317 Dyball, D. 88B, 257
- Douglas, A. M. 86A, 113 Dye, A. H. 87A, 341, 695
- DiAngelo, C. R. 88B, 297 Dowling, P. 87C, 149
- Diaz, M. 87A, 883 Downing, D. T. 86B, 667, 671 Eagan, K. 88C, 269
- Diaz-Mayans, J. 86C, 219; 87C, 433 Drawbaugh, R. B. 86B, 307 Earle, B. 87A, 1015
- Dickens, J. C. 86B, 513 Drescher, D. G. 86A, 553; Ebara, A. 87A, 689; 88A, 221
- Dickson, A. J. 86B, 179, 87A, 305 Drescher, M. J. 86A, 553; Echternacht, A. C. 87A, 185
- Diederer, J. H. B. 87C, 227 Droba, B. 87B, 379 Edens, F. W. 86A, 465,
- Diez, J. M. 86A, 389 Droba, M. 87B, 379 469, 473, 739, 745; 87A,
- Di Ilio, C. 86B, 749 Droz, B. 88B, 713 261, 409
- Di Martino, D. 87B, 157 Duarte, D. P. F. 88C, 275 Edmonds, J. S. 87C, 345
- Dimitriadis, G. J. 87B, 179 Dube, J. Y. 88B, 1051 Edqvist, L-E. 86B, 327
- Dinsdale, D. 86C, 191 Dubis, A. 87A, 839 Edwards, J. 87B, 497
- Djamgoz, M. B. A. 87C, 211 Duce, I. R. 86C, 305 Edwards, J. K. 87B, 843
- Djondjurov, L. 88B, 829 Duchon, J. 87B, 709 Edwards, R. H. T. 87A, 349
- Dobrovsky, K. 86B, 531 Dufaure, J-P. 86B, 233 Edwards, R. M. 87A, 597
- Dockham, P. A. 87B, 171 Duff, D. 86A, 143 Eguchi, M. 86B, 201
- Doerner, D. 88C, 269 Duff, D. W. 87A, 393 Eguchi, S. 86A, 269
- Dogru, B. 87B, 575 Duffield, P. 86C, 317 Ehler, W. J. 88A, 89, 533
- Doherty, F. G. 87C, 113 Duffy, L. K. 87B, 189 Ehrenstrom, F. 87C, 193
- Dombradi, V. 87B, 857 Duggan, P. F. 86B, 701 Ehrhardt, M. M. 87B, 189
- Domenech, C. 88B, 461 Duke, G. E. 86C, 97; Eigenbrodt, E. 88B, 481
- Donahue, M. J. 87C, 23 88C, 201 Eizirik, D. L. 88A, 425
- Donaldson, W. E. 88C, 23 Duncan, M. 86A, 663; El-Banna, A. A. 86A, 189;
- Donner, K. 87A, 749 87B, 881 87A, 635

- Fouchereau-Peron, M. 87A, 1051
 Fourie, F. le R. 87A, 889, 1103
 Fournel, S. 87B, 513
 Fox, C. A. 86A, 509
 Fox, K. E. 87C, 245
 Fox, P. C. 88A, 307
 Fracek, S. P. Jr. 86B, 513
 Fraillé, A. 86C, 299
 Francesconi, K. A. 87C, 345
 Franco, R. 86B, 95
 Frandsen, J. C. 87C, 75
 Frankart, C. 88A, 75
 Frankel, J. S. 87B, 581
 Frankie, G. W. 86B, 311
 Franquinet, R. 86B, 405; 87B, 703
 Frazier, L. W. 88A, 281
 Freiburg, M. 86B, 655
 Freminet, A. 87B, 981
 Fresnel, J. 87B, 501; 88B, 929
 Frey, D. M. 87B, 649
 Fried, B. 86A, 663; 87B, 881
 Friedman, E. 88A, 349
 Friedrich, P. 87B, 857
 Friesen, A. D. 86B, 493
 Fritz, M. A. 88B, 595
 Frusic, M. 86A, 217
 Fuentes-Pardo, B. 86A, 523, 529; 87A, 111, 119; Garay, E. A. R. 87A, 1003
 88A, 213
 Fujita, T. 86B, 681
 Fujiwara, H. 88B, 761
 Fujiwara, S. 86B, 23; 88B, 467
 Fukuda, H. 86C, 437; 87C, 221
 Fukui, S. 86C, 339, 361
 Fukushima, H. 86B, 303
 Fukuzumi, R. 87B, 675
 Fumagalli, S. A. 87B, 601
 Funari, E. 88B, 619
 Funase, K. 87C, 51; 88A, 317, 707
 Funk, A. E. 86C, 1
 Furuhashi, H. 88C, 225
 Furuhashi, K. 88A, 625
 Furuichi, H. 86A, 589
 Fuster, J. F. 87A, 231
 Gabrielak, T. 87C, 217
 Gacesa, P. 87B, 497
 Gahne, B. 88B, 953
 Gainey, L. F. Jr. 87A, 151
 Gaitanaki, C. 88A, 683; 88B, 1033
 Galeazzi, S. A. 87A, 1003
 Galey, W. R. 86A, 429
 Galgani, F. 87B, 103, 889
 Gallego-Iniesta, M. 86C, 121, 289
 Galun, R. 87B, 567; 88C, 95
 Galvez, M. 86C, 289
 Galvin, M. J. 87A, 375
 Garay, E. A. R. 87A, 1003
 Garcera, M. D. 88B, 1157
 Garcia, F. 87A, 947
 Garcia, J. L. 86B, 321
 Garcia, K. B. 87B, 527
 Garcia, S. C. 87B, 593
 Garcia, T. 88A, 405, 411
 Garcia-Estrada, J. 86B, 607
 Garcia-Rodriguez, T. 87A, 381, 1123; 88A, 663
 Garcia-Segura, J. M. 87B, 31
 Garin, D. 87B, 981
 Garin, P. 87C, 335
 Garneau, F-X. 86B, 191
 Garnett, E. A. 87A, 161
 Garrido-Garrido, M. B.
 Garrison, N. E. 88B, 141
 Garzon, P. 86B, 607
 Gaskin, A. 88A, 311
 Gates, J. 88B, 277
 Gautron, J. 86C, 395
 Gavara, A. 88B, 1157
 Gavarron, F. F. 86B, 135
 Gavilanes, J. G. 87B, 31;
 Galeazzi, S. A. 87A, 1003
 Gee, J. H. 87A, 275
 Gelperin, A. 86C, 125
 Gemmell, R. T. 88A, 257
 Genaux, C. T. 87B, 189
 Gentle, M. J. 88A, 27
 George, J. C. 86C, 7;
 George, J. W. 87B, 953
 George, R. C. San
 86B, 155

- Gervitz, R. K. 86A, 503 Gole, D. 88C, 313 Grisley, M. S. 88B, 1117
 Gesse, J. M. 87A, 57 Golenda, C. F. 88C, 61 Gromadzka-Ostrowska, J.
 Gesser, H. 87A, 543 Gomez, T. 87A, 883; 88A, 86A, 109, 633
 Giacobino, J-P. 87B, 217 405, 411 Gromysz-Kalkowska, K. 87A,
 Gielens, C. 88B, 181 Gonzalez, I. 86C, 295, 299 497
 Giesecke, D. 88B, 999 Gonzalez, J. 87A, 13 Grosman, M. 87A, 1003
 Gil, J. 86B, 11 Gonzalez, M. P. 86B, 489; Grubb, B. R. 87A, 493
 Gilbert, L. I. 87B, 989 88C, 155 Grundstrom, N. 88C, 287
 Gilchrist, I. 88A, 543 Gonzalez, O. 86B, 245; Gubler, C. J. 87B, 833
 Gildersleeve, R. P. 86A, 86C, 163 Guerard, F. 88B, 823
 569, 575; 87A, 375, 409, Gonzalez, P. 88B, 513 Guerrero, J. M. 87C, 95
 533, 923, 933; 88A, 95 Gonzalez, T. 86A, 225 Guerrero, S. 87A, 649
 Gilles, R. 88A, 581 Gordon, C. J. 88A, 107 Guibert, E. 86B, 7
 Gimenez, A. 88C, 155 Goren, M. 87B, 17 Guilbault, P. 86A, 581
 Gingerich, W. H. 87A, Gorin, P. A. J. 86B, 593; Guillou, A. 87A, 717
 251 88B, 101 Guindon-Hammer, J. L.
 Giordana, B. 86A, 301 Gottlieb, M. 87B, 629 87B, 715
 Girard, J. 87A, 1041 Gotze, M. 88B, 661 Guo, Y-W. 87B, 559
 Girard, P. R. 88B, 687 Gourlet, V. 88A, 345 Gutierrez, J. 87A, 57
 Girdlestone, D. 86C, 55 Goven, A. J. 87A, 1015 Gutierrez, J. M. 87B, 949
 Glander, K. E. 88B, 729 Gower, S. M. 86C, 147 Gutierrez, P. 86A, 417
 Glass, H. J. 86B, 281 Grably, S. 86A, 319 Gutman, M. 88A, 113
 Glick, B. 86A, 709 Grace, A. 87A, 889
 Glinski, Z. 87A, 189 Grammerstorff, U. 87A, 333 Habbal, Z. M. 86A, 103
 Glonek, T. 88B, 969 Granneman, J. C. M. 87B, Haber, B. 86B, 73
 Glund, K. 88B, 943 687 Habermehl, G. 86B, 561
 Gnidec, E. P. P. 88C, 213 Grant, G. 88C, 179 Hack, M. H. 86B, 83
 Goad, L. J. 86B, 191 Grant, W. E. 86A, 751 Hadley, N. F. 88B, 875
 Goberna, R. 87C, 95 Green, B. 88B, 1083 Haefner, P. A. Jr. 87A,
 Gocha, N. 88A, 581 Green, C. 88B, 23 1045
 Gochfeld, M. 87A, 727 Gregory, J. F. 88B, 1135 Hageli, G. 88B, 237
 Goldemberg, A. L. 87A, Gregory, L. J. 87C, 211 Hagino, N. 87A, 765
 845 Gribakin, F. G. 86A, 689 Hailey, A. 88A, 201, 683
 Goldenberg, S. 86A, Griffith, R. W. 87A, 523 Haim, A. 88A, 179
 761; 88B, 1091 Grigoriev, N. G. 87C, 389 Haines, H. 87A, 597
 Goldman, P. H. 87B, 165 Grigg, G. C. 88B, 863 Halabi, O. H. 86A, 103

- Halarnkar, P. P. 88B, 869
 Harper, A. A. 88A, 595, 943
 Hall, T. R. 86A, 29 647
 Heldmaier, G. 86A, 639;
 Hallam, S. D. 86C, 379 Harrington, J. P. 86B,
 88A, 71
 Hallin, P. 86B, 327 155
 Helferich, W. G. 88C, 145
 Hamajima, F. 87B, 643 Harris, C. I. 86B, 273
 Hellgren, E. C. 86A, 751
 Hamazaki, H. 88B, 313 Harris, M. P. 87C, 415
 Hellstrand, E. 86A, 185
 Hamel-Jonsson, D. 88B, Hart, D. A. 88B, 277
 Helmy, F. M. 86B, 83
 977 Hartley, D. M. 88B, 471
 Helwig, J-J. 88A, 349
 Hamilton, M. G. 86B, Hartley, T. 86B, 705
 Hemila, S. 87A, 749
 641; 88B, 127 Harvey, S. 86A, 29; 87A,
 Hemon, B. 88B, 1057
 Hammes, C. S. 88B, 949 315
 Henderson, T. O. 88B,
 Hammock, B. D. 87B, 95; Hasekura, H. 86B, 303
 603, 969
 88C, 145 Hata, K. 87B, 747
 Hendricks, J. 87C, 275
 Hamre, K. 88B, 19 Hata, M. 87B, 747
 Heng, S-K. 87B, 373
 Hanaoka, K. 86B, 681; Hatakeyama, S. 87C, 87
 Henry, T. 88B, 751
 88C, 189 Hatanaka, Y. 88B, 569
 Hens, F. 88B, 285
 Hanessian, S. H. 87B, Hatano, M. 87B, 411
 Hentschel, H. 87A, 359
 341 Haudecoeur, G. 86A, 581
 Herbert, J. D. 87A, 449
 Hankins, G. D. 88A, 89, Haunerland, N. H. 86B,
 Herdugo, G. G. 86B, 241
 533 571
 Heredia, C. F. 86B, 291
 Hannapel, C. 88A, 383 Hause, B. 88B, 943
 Herkovits, J. 86A, 697
 Hanninen, O. 88B, 905 Hauth, J. C. 88A, 89
 Hernadi, L. 88A, 641
 Hannotheaux, M-H. 88B,
 655 Haux, C. 86A, 729
 Hernandez, D. 87A, 649
 Hanozet, G. M. 86A, 301 Hawkins, A. J. S. 88A,
 Hernandez, J. 87A, 1041
 Hernandez, Z. M. 86A, 355
 Hansen, H. J. M. 88B, Hayakawa, Y. 87B, 279
 Hernandez-Falcon, J.
 323 Hayashi, Y. 87A, 579
 87A, 111, 119
 Hanson, M. 86A, 169 Heath, A. G. 88B, 297;
 Hernandorena, A. 86B, 397
 Hanson, R. 86A, 143 88C, 307
 Herpin, P. 87A, 1073
 Hanyu, I. 86A, 485 Heatwole, H. 87A, 487;
 Herranen, J. 88B, 905
 Hara, A. 88B, 497 88A, 187
 Herrera, R. J. 88B, 415
 Harada-Azumi, K. 88B,
 375 Hebanowska, E. 88B, 681,
 Herring, P. J. 86B, 411
 Hardy, J. L. 87B, 773 911
 Herskovits, T. T. 86B,
 Harkness, D. R. 87B, 165 Heimburger, M. 87C, 83
 641; 88B, 127
 Haro, A. 86B, 321 Heisinger, J. F. 87C, 181 Herzog, H-U. 87A, 39, 47,
 Heiss, G. 88B, 999 427

Hettler, W. F.	86A, 723	87A, 261	137
Heyneman, R. A.	87B, 809	Holland, R. A. B.	86A,
Hibi, N.	88B, 497	673	Iazzetti, G.
Higashiyama, S.	88B, 429	Hollander, D.	86A, 565
Hilbig, R.	86B, 377	Holman, G. M.	88C, 27, 31
Hill, E. F.	87B, 933	Holt, D.	86C, 191
Hilmy, A. M.	86C, 247,	Holzer, Z.	88A, 113
255, 263; 87C,	297,	Hoo-Paris, R.	88A, 33
303, 309		Horgan, M. J.	87C, 149
Hilton, J. W.	87C, 445	Horovitz, A.	87B, 567;
Hincks, J. R.	86C, 343	88C, 95	Ilderton, E.
Hines, G. A.	88B, 309	Horrocks, L. A.	87B, 341
Hirai, H.	88B, 497	Hoskin, G. P.	87B, 881
Hiraichi, E.	86A, 503	Hoss, D. E.	86A, 723
Hiraide, K.	86B, 303	Hotta, K.	88B, 313
Hiramatsu, M.	86B, 651	Houk, E. J.	87B, 773
Hiramoto, K.	87B, 227	Hourmant, A.	86A, 491
Hirano, T.	87B, 615	Howard, C. L.	87A, 319
Hirayama, T.	86C, 339,	Huckerby, T. N.	88B, 1107
361		Hue, B.	86C, 349; 87C,
Hirche, H. J.	87B,	283, 287	Imai, S.
297; 88B,	777	Hueso, P.	88B, 757
Hishinuma, A.	87C, 9	Huggins, S. E.	88C, 275
Hitzig, B. M.	86B, 537	Hultin, H. O.	87B, 25
Hjalmarson, A.	87C, 269	Hung, S. S. O.	88B, 269
Hjerten, S.	88B, 953	Hunt, H.	86C, 97; 88C,
Hkycko, S.	86B, 191	201	Irving, S. N.
Hodgson, A. N.	87A, 143	Hunt, S.	88B, 1013, 1107
Hoeger, U.	87A, 63	Huntley, A. C.	86A, 325
Hoffman, D.	86B, 155	Huque, T.	86B, 135; 88B,
Hogan, E.	87B, 927	767	Isaacks, R. E.
Hoglund, L.	87A, 543	Hurley, P. C. F.	87A, 797
Hogue, D. E.	86B, 689	Huston, G. E.	86B, 635
Høiby, M.	86A, 91	Hutchison, V. H.	87A, 461
Hokari, S.	86C, 443	Huxtable, R. J.	88B, 457
Holladay, S. D.	86A, 465; Huybrechts,	L. M.	86A, 88B, 375

- Ishikawa, H. 88B, 761 Jarosz, J. 87A, 189 Junquera, C. 87C, 329,
Ishikawa, Y. 88C, 165 Jarzebski, A. 86B, 561; 335
Ishimoda-Takagi, T. 88B, 88B, 881 Jupe, D. M. D. 88A, 239
443 Jaskulska, B. 87A, 771 Jurgens, K. D. 88A, 361
Ito, H. 86B, 483; 87B, Jeffrey, D. A. 88C, 151 Jurjus, A. R. 86A, 103
367 Jennings, J. B. 86C, 425 Jurss, K. 87B, 241
Ito, J. 86B, 809 Jessen, C. 87A, 915 Juskevich, J. 87C, 421
Ito, Y. 86A, 703; 87A, Johansen, J. 86C, 405;
503 87B, 927 Kaciuba-Uscilko, H. 87A,
Itoko, M. 88B, 557 Johansen, K. 86A, 595; 915
Ivanov, N. 86A, 173 88A, 167 Kaczanowska, E. 87A, 497
Ivanova, E. 88B, 829 Johansson, P. 87C, 193 Kaise, T. 86B, 681; 88C,
Ivanovic, J. 86A, 217 John, T. M. 88A, 655 189
Ivy, M. T. 86C, 103, 111 Johnson, A. H. 87B, 697; Kamata, T. 86B, 587
Iwaasa, H. 88B, 783 88B, 547 Kamau, J. M. Z. 86A, 79,
Iwase, H. 88B, 313 Johnson, D. C. 86B, 537 403
Jaaskelainen, I. 86B, Johnson, I. 86A, 261 Kamermans, M. 88A, 461
117 Johnson, P. 87B, 715 Kameyama, Y. 87B, 741
Jabbar, A. 88B, 65 Jones, C. T. 86A, 67 Kaminsky, Y. G. 86B, 763
Jacklet, J. w. 86C, 27 Jones, G. 87A, 287 Kaneniwa, M. 87B, 1037
Jackson, M. J. 87A, 349; Jones, R. 87B, 473 Kanisawa, M. 88B, 589
88A, 511 Jones, S. L. 87C, 171 Kanno, N. 88B, 803
Jagt, D. L. V. 87B, 527 Jones, T. A. 88A, 391 Kapoulas, V. M. 87C, 41
Jahn, E. 86C, 125 Joosse, J. 87A, 607 Karaki, H. 86C, 387, 411
Jakubow, K. 86A, 109, Jordan, F. L. 87A, 215 Karasawa, Y. 87B, 799,
633 Jorgensen, D. 87C, 181 Kariya, K. 86C, 41
Jalaludin, S. 86B, 129 Josephson, R. V. 86B, 635 Karlsson, J. O. G. 88C,
Jamieson, J. C. 86A, Joss, J. 88B, 1209 287
15; 87B, 11 Jouin, C. 88B, 71 Karttunen, P. 86B, 815;
Jankovic-Hladni, M. 86A, Joy, J. E. 87A, 1097 88A, 161
217 Juarez, P. 87B, 233 Kase, F. 86A, 649; 87A,
Jannun, R. 88B, 917 Judd, W. 88B, 333 387; 88A, 451
Janse, C. 87A, 1025 Juknat, A. A. 87B, 601 Kashimata, M. 86B, 651
Jansen, W. F. 87C, 227 Julshamn, K. 88C, 209 Kasschau, M. R. 87A, 319
Janzen, R. 87B, 11 Juneja, R. K. 88B, 953 Katagiri, K. 87B, 161

- Katan, M. B. 87B, 41
 Katoh, K. 87A, 569
 Katsumata, Y. 88B, 651
 Katsuyama, M. 86B, 1
 Kaune, R. 87A, 359
 Kaushik, S. J. 87A, 157; 88A, 45
 Kay, J. 87C, 65
 Kayes, T. B. 88B, 737
 Kazemi, H. 86B, 537
 Kazimierczak, J. 88B, 713
 Keel, R. A. 86A, 575
 Keene, T. A. 86A, 575
 Kelley, J. K. 86A, 751
 Kelley, J. L. 87A, 863
 Kelley, S. 87B, 783
 Kemali, D. 86C, 421
 Kemali, M. 86C, 421
 Kemenes, Gy. 88A, 641
 Kern, M. D. 87A, 721
 Keshmirian, J. 86C, 329
 Kessi, E. 88B, 229
 Keung, W. M. 87B, 221
 Khan, M. M. 88B, 51
 Khoja, S. M. 87B, 335, 469
 Khoo, S. G. 87B, 465
 Kihan, K. 88B, 1057
 Kilgour, L. 87A, 711
 Kim, C. Y. 87B, 165
 Kim, H. R. 88B, 897
 Kim, K. H. 86C, 353; 87C, 59; 88C, 325
 Kim, K-I. 88B, 737
 Kim, S. H. 87A, 645
 Kim, S. Z. 87A, 645
 Kimura, I. 88B, 497
 Kimura, K. 88B, 399
 Kimura, S. 88B, 27, 409
 Kingan, T. G. 87C, 9
 Kinoshita, M. 87B, 1041
 Kishii, K. 86A, 589
 Kitasato, H. 86A, 331
 Kitazawa, T. 88C, 225
 Kitch, L. 87B, 783
 Klein, M. 87C, 149
 Kleinhaus, A. L. 86C, 405; 87B, 927
 Kleinow, W. 88B, 1097
 Kling, G. 87C, 251
 Klug, M. 88B, 855
 Klungsøyr, L. 88B, 701, 1125
 Knapp, R. 86A, 679
 Knowlton, K. 87A, 1021
 Knox, C. M. 87A, 603
 Ko, K. M. 87B, 221
 Kobayashi, E. 87C, 87
 Kobayashi, H. 88C, 189
 Kobayashi, M. 88B, 443; 88C, 301
 Kobayashi, T. 88B, 569
 Kobro, S. 86C, 73
 Kocer, Z. 87B, 575
 Koh, G. Y. 87A, 645
 Koh, K. 87B, 799, 803
 Kohlsdorfer, Ch. 88B, 1097
 Kohno, M. 88A, 317
 Kok, T. P. 87A, 671
 Kolinska, J. 86B, 531
 Komoda, T. 88B, 111
 Komori, T. 86B, 1
 Komori, Y. 88B, 643
 Kondo, H. 88C, 225
 Kong, Y. C. 87B, 221
 Konishi, K. 88A, 625; 88B, 1067
 Konjevic, d. 87C, 389
 Kono, T. 88B, 85
 Konturek, S. J. 87A, 657
 Korhonen, H. 86B, 117; 87A, 631, 983
 Korhonen, K. 88A, 677
 Kosaka, I. 86A, 537, 545
 Kosenko, E. A. 86B, 763
 Koshino, Y. 87B, 161
 Koskelainen, A. 87A, 749
 Kosmala, M. 87A, 657
 Kostelecka-Myrcha, A. 86A, 117
 Koteja, P. 87A, 205
 Kotler, M. L. 87B, 601
 Koueta, N. 87B, 351
 Koutcher, J. A. 86B, 537
 Kramer, K. J. 86B, 613
 Krauskopf, M. 86B, 663
 Krca, S. 86C, 17; 88C, 171
 Kreiman, M. 88C, 313
 Kriesten, K. 87A, 479
 Krill, J. 88A, 349
 Krohn, K. 87B, 871
 Krotkiewska, B. 87B, 391
 Kselikova, M. 86B, 531
 Kuehl, T. J. 88B, 233
 Kukielka, E. 87C, 409

- Kulkarni, A. P. 87B,
 1005
 Kullman, D. 87A, 393
 Kulomaa, M. 87B, 871
 Kumazawa, T. 88B, 727
 Kunitatsu, M. 88B, 429
 Kunimoto, M. 87A, 503
 Kuo, S-M. 86A, 713; 87A,
 587
 Kurelec, B. 86C, 17;
 88C, 171
 Kushak, R. 87A, 951
 Kusters, G. C. M. 86C,
 83
 Kwan, C-Y. 86B, 483;
 87B, 367
 Laasberg, T. 86C, 313
 Laborda-Santesteban, M.
 S. 88B, 613
 Laburn, H. 87A, 467,
 911
 Laburn, H. P. 87A, 959
 Lafitte, J-J. 88B, 655
 Lagerspetz, K. Y. H.
 87A, 873; 88A, 519
 Laging, C. 88B, 999
 Lai, C-C. 88B, 1151
 Laine, A. M. 87A, 873
 Lallier, F. 86A, 255
 Lambert, J. C. M. 87B,
 687
 Lambert, J. G. D. 88B,
 453
 Lambertsen, G. 88B, 697
 Lambropoulou, M. 88B, 133
 1009

Lammers, G. 87B, 11
 Lamy, M. 88A, 141
 Lane, S. F. 86B, 689
 Lanne, B. S. 88B, 631
 Larntz, K. 86C, 97
 Larson, R. J. 87A, 93
 Larsson, A. 86A, 729
 Lasiak, T. A. 87A, 341
 Latchman, D. S. 87B, 961
 La Thangue, N. B. 87B,
 961
 Latife, H. A. A. 86C, 263
 Latruffe, N. 88B, 797
 Lauber, J. K. 86A, 73
 Laudien, H. 86B, 555
 Laury, M. C. 87A, 197
 Lavoie, K. H. 86A, 289,
 295
 Lavras, A. A. C. 86A,
 503
 Lawrence, J. M. 86B, 693;
 87A, 327; 87B, 843
 Layne, J. R. Jr. 87A, 895
 Lazou, A. 86C, 415; 88B,
 1033
 Lea, M. A. 86B, 581
 Leal, A. M. 88C, 275
 Leatherland, J. F. 86A,
 383
 Leaver, C. E. L. 87B, 961
 LeBlanc, A. C. 87B, 895
 LeBlanc, G. A. 88B, 39
 Lecerf, J. 88B, 187
 Le Dividich, J. 87A, 1073
 Lee, C. G. L. 87A, 439,
 313; 87B, 885
 Li, L. 88B, 783
 Liappis, N. 87A, 47,
 427

Lee, E. 86C, 41
 Lee, J. C. 88B, 233
 Lee, J. W. 87A, 765
 Lee, K. J. 88B, 309
 Lee, R. F. 86A, 39
 Le Gal, Y. 88B, 823
 Le Gall, S. 86B, 393
 Le Goff, D. 87B, 501;
 88B, 929
 Legrand, P. 86B, 791;
 87B, 789
 Lemarchal, P. 86B, 791;
 87B, 789
 Le Mevel, J. C. 86A, 281
 Lemmens, A. G. 87B, 41
 Lener, J. 86B, 531
 Lengronne, C. 86B, 393
 Leonard, L. 87B, 385
 Leone, F. A. 87B, 921
 Leoty, C. 86B, 295
 Leret, M. L. 86C, 295,
 299
 Lerner, J. 87B, 443
 LeRoith, D. 86B, 55
 Lester, L. J. 86B, 253
 Letelier, M. E. 86B, 67;
 87B, 73
 Leusen, I. 87B, 821
 Leveson, J. E. 88A, 553
 Levy, H. 87B, 567; 88C,
 95
 Lewis, R. A. 88B, 939
 Li, L. 88B, 783
 Liaaen-Jensen, S. 86B,
 313; 87B, 885
 Liappis, N. 87A, 47,
 427

- | | | |
|-------------------------------------|--------------------------|--|
| Lie, Ø. 88B, 697 | Lopez-Tejero, D. 88B, | McFarlane, J. E. 86C, 45 |
| Lied, E. 88B, 697 | 719 | McGowan, C. 88C, 23 |
| Lifjeld, J. T. 87B, 885 | Lopez-Zabalza, M. J. | McGregor, R. W. 86B, 493 |
| Lim, A. K. 87B, 1011 | 88B, 613 | McKean, T. A. 86A, 381 |
| Lin, Y. M. 88B, 349 | Lorenzo, A. 87A, 883; | McKenna, T. M. 87A, 597 |
| Linn, J. A. M. 86A,
289, 295 | 88A, 405, 411 | McKeown, B. A. 87A, 267;
87C, 259; 88A, 147 |
| Lipke, D. W. 87A, 393 | Loretz, C. A. 86A, 367 | McLean, E. 88A, 507 |
| Lisboa, B. P. 88B, 977 | Lotshaw, D. P. 86C, 27 | McLennan, A. G. 86B, 315 |
| Liscia, A. 88A, 455 | Louisot, P. 87B, 725 | McLennan, P. L. 88B, 989 |
| Lithner, G. 86A, 729 | Lovas, M. 87C, 63 | McMurchie, E. J. 88B, 989 |
| Lo, L. L. H. 86A, 35 | Loveland, P. 87C, 275 | McMurtry, J. P. 86A, 309 |
| Lobel, P. B. 86C, 37;
87C, 47 | Lovero, N. 86C, 421 | McRee, D. I. 86A, 569,
575; 87A, 375, 923, 933; |
| Lobo, E. S. 88A, 83 | Low, W. P. 87A, 439 | 88A, 95 |
| Lochmiller, R. L. 86A,
751 | Lowe, K. C. 86C, 431; | McVey, A. S. 86C, 63, 67; |
| Lockwood, A. P. M. 88B,
257 | 87A, 825 | Lucas-Heron, B. 86B, 295; 87C, 79 |
| Loirat, M. J. 86B,
295; 88B, 421 | 88B, 421 | Maage, A. 88C, 209 |
| Lombardo, M. E. 87B,
593 | Lucu, C. 87A, 333, 807 | Mabin, D. 86A, 281 |
| Lombourdis, N. S. 88A,
683 | Luethy, P. 86A, 301 | Macari, M. 88A, 425 |
| Long, D. R. 87A, 81 | Lui, E. M. K. 86C, 173 | Macdonald, A. G. 88A,
481, 543, 595, 647 |
| Lontie, R. 88B, 181 | Luke, A. 86B, 581 | MacDonald, N. L. 86B, 281 |
| Loong, P. C. 87B, 1017 | Lundholm, E. 88C, 1 | Machado, A. 88B, 851 |
| Lopera, M. T. 86A, 625 | Luque, J. 87B, 553 | Mackie, A. M. 86A, 629 |
| Lopez, B. D. 88A, 55 | Lusby, W. R. 86B, 103 | Mackie, R. I. 87A, 311 |
| Lopez, J. M. 87A, 561 | Lutes, P. B. 88B, 269 | McArdle, B. H. 87A, 979 |
| Lopez-Luna, P. 88A, 447 | McClintock, J. B. 86B, | Mackow, M. C. 87B, 629 |
| Lopez-Moratalla, N. 88B,
613 | 1089 | Madej, A. 86B, 327 |
| Lopez-Soriano, F. J.
87B, 91 | McCrorie, P. 88B, 7 | Maeda-Martinez, A. N. |
| | 683 | McFarland, E. 86B, 537 |
| | 87A, 969 | Maekawa, H. 88B, 761 |
| | McFarland, E. 86B, 537 | Maher, F. 87A, 1107 |
| | McCrohan, C. R. 86C, 55; | Maher, W. A. 86C, 131 |
| | 87A, 969 | Mahle, C. D. 87B, 341 |
| | McFarland, E. 86B, 537 | Mahmoud, I. Y. 86A, 559 |

- Maj, M. 86C, 421 553 Matous, B. 87B, 709
Majundar, T. K. 88B, 81 Mariano, R. H. 88A, 183 Matsuda, K. 87B, 747
Makarewicz, W. 87B, 481 Marik, T. 86B, 531 Matsui, A. 87A, 877
Makihara, D. 87A, 345 Marker, P. F. 87A, 813 Matsui, Y. 87A, 877
Makinodan, Y. 86B, 99; Marks, V. 87A, 175 Matsumura, F. 86C, 135;
87B, 1041 Marmaras, V. J. 88B, 133 87C, 31, 187; 88C, 165
Makos, B. K. 87A, 761 Marmary, Y. 88A, 307 Matsuno, T. 86B, 1; 87B,
Malamed, S. 88A, 131 Marrs, T. C. 86B, 141, 161
Malarska, A. 87B, 391 307 Matsuoka, A. 88B, 783
Malinski, E. 86B, 519; Marsh, J. A. 86A, 137 Matsuoka, N. 88B, 637
87A, 839; 88B, 681, 911 Marszalek, J. 88B, 1077 Matsuoka, T. 88C, 35
Malizia, L. A. 87C, 37 Martelly, I. 86B, 405; Matsuura, A. 86A, 683
Mallard, J. 86B, 791; 87B, 703 Matsuura, M. 86B, 681
87B, 789 Martens, H. 86A, 653 Mattacks, C. A. 87B, 533,
Mallefet, J. 87C, 233 Martin, A. 87B, 725 543
Maloiy, G. M. O. 86A, 79, 403; 88A, 331 Martin, D. 86A, 319 Matthieu, J. M. 88B, 1209
Malotka, J. 88B, 1209 Martin, E. W. 88A, 443 Mattsoff, L. 88C, 263
Mampel, T. 86A, 481 Martin, M. 86B, 245; Maueler, W. 88B, 481
Mancha, V. M. 86A, 429 Martin, P. A. 87B, 285 Maurer, A. 86A, 301
Mangels, L. A. 88C, 159 Martin, R. E. 87C, 23 397 Mauro, N. A. 87C, 1; 88A,
Mangum, C. P. 86A, 39 Martinez, C. B. R. 88A, Mayzaud, P. 88B, 105
Manilla, A. 86B, 749 Manzanero, J. C. 87B, 83 Mazo, A. 88B, 461
403; 88B, 1143 Martinez, P. 88C, 155 Mead, R. W. 87A, 907;
Manzoni, G. C. 88A, 21 Martinez, R. 88B, 1157 87B, 827
Mao, S-H. 87B, 559 Marunaka, Y. 86A, 133, Meirelles, N. C. 88A, 377
Maoka, T. 87B, 161 331 Melrose, W. D. 88A, 239
Marangoni, S. 88A, 377 Marchalonis, J. J. 86B, Mashaly, M. M. 87A, 775 Meltzer, A. 88A, 113
737 Mason, A. D. Jr. 87C, 71 Menard, D. 86B, 123
Marciano, V. 86A, 319 Mason, R. T. 87B, 999 409; 87C, 393
Marcinkowska, A. 87B, 391 Masoni, A. 87A, 613 Mendonca-Previato, L.
Marcus, E. R. 87A, 603 Mathieu, M. 87B, 351 86B, 593; 88B, 101
Marengo-Rowe, A. J. 88A, 87C, 63, 217 Matkovics, B. 87B, 49; Menedez-Arias, L. 88B,
791

- Meneses, P. 88B, 969 Mintzer, A. C. 86B, 27 1143
 Menon, N. R. 88A, 691 Miranda, M. 86B, 749 Moraczewski, J. 86B, 405;
 Merchant, J. C. 88B, 1083 Mirande, C. M. 87B, 165 87B, 703
 Merritt, J. 88A, 443 Mitchell, D. 87A, 467, Morales, M. 86A, 355;
 911 87A, 649
 Meryn, S. 86A, 241 Mitchell, M. A. 86A, 209 Moreira, G. S. 87A, 399
 Messer, M. 88B, 923, Mitton, K. P. 87B, 79 Morel, L. 86B, 251
 1083 Miura, K. 86B, 719 Morello, A. 86B, 67; 87B,
 Messing, M. W. J. 86C, Miyajima, N. 88B, 761 73
 83 Miyamoto, T. 88A, 487 Moreno-Saenz, E. 87A,
 Mettrick, D. F. 88B, Miyauchi, Y. 88B, 27 111, 119; 88A, 213
 317 Mizobe, H. 88A, 557 Morgan, E. D. 88B, 59
 Metz, J. 88A, 171 Mizuno, M. 87B, 741 Mori, S. 88B, 651
 Meyer, H. A. 87B, 843 Mochida, K. 87C, 187 Morisawa, M. 88A, 539
 Meyer, K. L. 87C, 167 Modesti, N. M. 87B, 151 Morishita, F. 88C, 69
 Mezei, C. 87B, 895 Moe, A. J. 88A, 511 Moriyama, Y. 86A, 7
 Miceli, M. V. 88B, 603 Moens, L. 88B, 285 Morris, J. G. 88B, 551
 Michael, M. I. 86C, Mohamed, A. S. 87B, 157 Morris, R. J. 88B, 257
 255 Mohr, V. 88B, 157, 165 Morrison, S. M. 86A, 113
 Michaelidis, B. 88B, Moller, P. C. 86B, 73 Motokawa, T. 86C, 333;
 1033 Mommsen, T. P. 87A, 63 87A, 579
 Midol-Monnet, M. 87C, Mondola, P. 88B, 395 Moukhtar, M. S. 87A, 1051
 83 Monod, G. 88C, 83 Moussa, F. I. 87C, 303
 Mienie, L. J. 86A, 777 Montamat, E. E. 87B, 417 Muchlinski, A. E. 88A,
 Milhaud, G. 87A, 1051 Montecucco, C. 87B, 851 183
 Milici, N. 86C, 421 Montgomery, M. R. 86C, Muje, P. 88B, 905
 Milkova, Ts. S. 87B, 325 Muller, H. M. 87A, 433
 267 Montgomery, P. A. 86B, Muller, M. 88B, 575
 Miller, G. C. 87A, 907; 635 Muller, W. E. G. 86C, 17
 87B, 827 Monticelli, G. 88A, 119 Munday, L. 88C, 313
 Miller, S. K. 88B, 153 Monvoisin, J. L. 88A, 345 Munekata, E. 86C, 353;
 Milne, G. 86B, 273 Mony, L. 86C, 349; 87C, 87C, 59; 88C, 325
 Minami, Naomi. 86B, 651 283, 287 Muneoka, Y. 88C, 301
 Minami, Naoyuki. 86B, 651 Mooney, S. M. 86A, 367 Municio, A. M. 86B, 321
 Minamitani, K. 87B, 195 Moore, G. W. 87C, 1 Munster, D. J. 87A, 509
 Mintzas, A. C. 86B, 801 Mora, M. 87B, 403; 88B, Mura, U. 87B, 157

- Murakami, A. 86C, 273, 281 Nassar, C. F. 86A, 103 Noble, R. C. 87A, 583
Murakami, K. 88B, 651 Natochin, Yu. V. 86A, 689; 88A, 563 Nogrady, T. 86C, 329
Muramatsu, T. 87B, 227 Naude, R. J. 86B, 705 Noguchi, T. 86B, 23; 88B, 467
Murata, M. 87A, 101 Navarro, E. 86A, 233 Noiva, R. 88B, 341
Murawski, U. 87A, 479 Navarro-Ruiz, A. 86B, 607 Nomata, H. 86B, 99
Murdock, L. L. 87B, 783 Navas, P. 86B, 241 Nonnotte, G. 88A, 431,
Murgatroyd, J. E. 88B, 23 Nawrot, J. 86B, 519; 87A, 839; 88B, 681, 911 Nordlie, F. G. 86A, 57
Murillo, D. 86A, 63 Ndefru, M. 87C, 171 Norman, J. O. 88B, 897
Murray, H. C. 87B, 933 Nebioglu, S. 87B, 575 Nouvelot, A. 87B, 501;
Myers, A. A. 86B, 701 Nederstigt, L. J. A. 88A, 88B, 929
Myers, T. C. 88B, 603 461 Novak, F. 88A, 141
Neelin, J. M. 86B, 193 88A, 21 Nozawa, Y. 87C, 363
Nachman, R. J. 88C, 27, 31 Nelson, J. L. 87B, 1005 Nunez, A. 86C, 219
Nery, L. E. M. 87A, 1033; Nunez, B. S-M. 87B, 863
Nagahara, N. 88B, 589 Nettles, W. C. Jr. 86A, 88A, 21 Nunn, V. A. 87C, 421
Nagaoka, R. 86A, 269 Nagase, H. 86C, 387, 411 Nunomura, W. 88B, 497
Nagase, H. 86C, 387, 411 Neuman, T. 86C, 313; 87B, 349 Nuske, J. H. 86B, 37
Nagayama, F. 87B, 103, 889 Nwoga, J. 86A, 733 Nys, Y. 86C, 395
Newsome, R. 87C, 171
Nagel, R. L. 86B, 155 Newton, I. 86C, 379 Oakes, N. 87A, 487; 88A,
Nakae, H. 88B, 399 Ng, M. H. 87B, 221 187
Nakajima, T. 86C, 411; 87C, 287 Ng, S. L. 87C, 453 Oaknin, S. 86C, 23
Nakamura, T. 87C, 187 Ng, T. B. 86A, 35; 87C, 453 Obara, K. 86A, 703; 87A,
Nakanishi, H. 86C, 339, 361 Nicholas, K. R. 87A, 1107 Obinata, T. 88B, 399
Nakano, M. 88B, 563 Nichols, D. J. 87A, 703 Ocampos, D. 88B, 625
Nakashima, K. 88B, 467 Niemeyer, H. M. 87B, 35 Ochiai, T. 87A, 565
Namoto, S. 86C, 91; 88C, 75 Nihonmatsu, I. 86A, 643 Ochillo, R. T. 87C, 107
Nance, J. M. 87A, 613 Nikai, T. 86B, 643 Odell, D. K. 88B, 47
Nardon, C. 86B, 501 Ninaki, O. 88B, 761 O'Dor, R. 87A, 63
Nash, K. A. 86B, 31 Nishikata, M. 86B, 809 Oelofsen, W. 86B, 705
Nishimura, K. 86B, 149 Nishino, T. 88B, 589 Ogawa, T. 88B, 91, 491
Ogo, S. H. 86A, 683

- Ogura, T. 88C, 249 Oliver, P. 87B, 961 Pagliarani, A. 88B, 691
 Oh, S. Y. 86B, 129 Olivero, D. K. 86C, 63, Pagliuca, G. 88B, 1201
 O'Halloran, J. 86B, 701 67; 87C, 79 Pagni, S. 86B, 15
 Ohashi, H. 86B, 23 Ollevier, F. 88B, 75 Palatnik, C. B. 86B, 593
 Ohkawa, K. 88B, 497 Ollivier, B. 86B, 295; Palmer, W. K. 86A, 443
 Ohkoshi, N. 88C, 225 88B, 421 Palmer, R. M. 88C, 179
 Ohkubo, I. 88B, 429 Olsen, K. H. 87A, 641 Palmore, W. P. 87A, 515
 Ohmama, S. 88B, 507 Olson, K. R. 87A, 393 Panepucci, L. 87B, 199
 Ohno, Y. 88B, 27, 409 O'Meara, N. 87B, 697; Pang, P. K. T. 88A, 349
 Ohshika, H. 88C, 219 88B, 547 Panter, H. C. 88A, 373
 Oikari, A. 86C, 357; Onate, S. 86B, 663 Papadopoulos, A. 88B, 1033
 88C, 263 Onoagbe, I. O. 86B, 179 Paparo, A. A. 88A, 471,
 Oishi, T. 86A, 73 Onozuka, M. 86A, 589 475
 Oka, J-I. 86C, 437; Oota, I. 87A, 737, 791 Paquin, R. 88B, 1051
 87C, 221 Orban, L. 86A, 449 Parente, A. 87B, 1025
 Okada, A. 87B, 741 Orevi, M. 87B, 567; 88C, Parenti, P. 86A, 301
 Okada, Y. 88A, 487 95 Paris, R. 88B, 187
 Okamoto, J. 87B, 1037 Orozco, M. M. 87B, 31 Parish, E. J. 88B, 81
 Okano, T. 88B, 569 Ortega, M. M. 86A, 233 Park, Y. S. 88B, 767
 Okano, Y. 87C, 363 Orti, G. 87A, 107 Parker, D. B. 87A, 267;
 Okauchi, K. 88A, 269 Orvos, D. R. 88B, 141 87C, 259
 Okazaki, M. 87B, 507 Osborn, D. 87C, 415 Parker, G. R. 88B, 349
 O'Kelly, J. C. 87A, 677 Osborn, P. J. 86C, 147 Parkhurst, C. R. 86A,
 Okumura, J-i. 87B, 227 Osborne, R. H. 88C, 131, 569, 575; 87A, 375, 923
 Okuno, S. 86C, 41 139 Parnova, R. G. 88A, 563
 Olavesen, A. H. 87B, 497 Oset-Gasques, M. J. 86B, Paron, L. 87A, 845
 Oleaga, A. 87A, 13 489; 88C, 155 Parra, P. 87C, 335
 Oliphant, V. 86B, 581 O'Shea, J. E. 86C, 365 Partali, V. 87B, 885
 Oliva-Teles, A. 87A, Osman, A. M. 87B, 157 Partridge, L. D. 88C, 269
 157; 88A, 45 Osmanovic, S. 88A, 235 Pascual-Leone, A. M. 87A,
 Oliveira, A. R. 88A, Ota, M. 86B, 303 1041
 377 Ovadia, M. 87B, 17 Pasquarelli, P. 87C, 393
 Oliveira, B. 88A, 377 Oya, H. 87B, 143, 655 Pastor-Anglada, M. 88B,
 Oliveira, D. B. G. 87B, Ozaki, H. 86C, 387, 411 719
 87 Ozawa, Y. 88A, 269 Pataryas, T. A. 88B, 1027
 Oliveira, M. M. 87C, 5 Ozoe, Y. 87C, 187 Patel, R. 87B, 961

- Patnode, C. A. 88A, 503 Perez-Suarez, G. 88A, 447 Pityer, R. A. 87A, 251
Patnode, C. L. 87B, 587 Perianez, S. 86B, 321 Pizaura, J. M. 87B, 921
Patrinou-Georgoulas, M. Perkin, M. F. 86C, 225 Pizzuti, G. P. 88B, 395
87B, 179 Perramon, A. 88A, 345 Planas, B. 87A, 665; 88A,
Patronelli, D. L. 88A, Pertierra-Rimada, E. 86C, 247
337 121, 289 Planas, J. 87A, 947
Patten, G. S. 88B, 989 Pessin, M. F. 87C, 79 Plantevin, G. 86B, 501
Patterson, A. M. 88A, Pete, M. J. 88B, 341 Plaza, M. 88B, 581
55 Peters, W. 86B, 353 Plisetskaya, E. M. 87A,
Patton, S. 86B, 635 Petersen, T. A. 88A, 387 Polak, L. 86B, 561; 88B,
Paulson, B. K. 87A, 461 Petriella, S. 87A, 107; 881
Pavani, M. 86B, 15 88A, 571; 88C, 331 Polegre, M. A. 86C, 49
Paxton, R. 86B, 601 Petroff, O. A. C. 87B, Pollero, R. J. 88A, 577
Payne, J. F. 86C, 37, 927 Ponce, O. 87B, 793
233 Petronijevic, T. 88A, 207 Pond, C. M. 87B, 533, 543
Peakall, D. 87C, 375 Pfeifle, J. 87B, 309 Ponz, F. 87A, 573, 1055
Peakall, D. B. 88C, 151 Phelps, P. V. 86A, 739, Poplawski, J. 87A, 839
Pearse, A. M. 88A, 239 745; 87A, 409 Popov, S. S. 87B, 267
Pearse, J. S. 86B, 683 Phillips, D. 87A, 345 Popper, A. N. 88A, 37
Pedak, A. 86C, 313 Phleger, C. F. 86B, 509 Porchet, M. 86B, 393
Peg, M. T. 87C, 335 Piccialli, V. 88B, 293 Porter, E. L. 86C, 233
Pelhate, M. 87C, 283, Pico, G. 86B, 7 Portet, R. 87A, 197, 1073
287 Piek, T. 87C, 283, 287 Posner, I. 87B, 137
Pelissou, V. 88A, 141 Pierce, F. C. 87A, 1021 Pospischil, A. 88B, 999
Pellegrini, A. 88B, 237 Pierson, W. A. 88A, 89, Pospisil, J. 86A, 649;
Peltz, B. A. 86B, 493 533 87A, 387; 88A, 451
Pennec, J. P. 87C, 429; Pietra, P. 88A, 455 Poupa, O. 87C, 269
88A, 595, 647 Pihlaja, K. 88B, 681, 911 Powell, E. N. 86A, 509
Penney, D. G. 86A, 609 Pilo, B. 86C, 7 Pratviel-Sosa, F. 86B, 173
Penteado, C. H. S. 86A, Pineda, M. 87B, 553 Preaux, G. 88B, 181
163, 409 Pinilla, M. 87B, 553 Preller, A. 86A, 225
Penttila, I. 88B, 905 Pinto, A. 87C, 1 Prentø, P. 86B, 333; 87A,
Pequeux, A. 88B, 581 Pinto, R. M. 86B, 49 135
Percheron, F. 86B, 173 Piomelli, D. 87C, 21 Preston, R. L. 87B, 55,
Pereira, S. D. 86B, 697 Piretti, M. V. 88B, 1201 63 Preston, T. 88A, 291
Perez-Artes, E. 87B, 553 Pitkanen, A. 87A, 355

- | | | | | | |
|-------------------|--------------------|--------------------|----------------|----------------------|----------------|
| Preto, P. | 86B, 15 | Rakic, L. | 87C, 389 | 813 | |
| Previanto, J. O. | 86B, 593; 88B, 101 | Rakowski, G. | 87A, 771 | Richmond, M. | 86A, 213 |
| Price, N. R. | 86C, 33 | Ram, J. L. | 88C, 313 | Riddle, W. A. | 86A, 497 |
| Priebe, J. C. | 88A, 495 | Ramakrishna, M. | 87B, 25 | Ridgway, R. L. | 87A, 295 |
| Probst, W. | 86B, 377 | Rane, S. G. | 87C, 121, 131 | Riekkinen, P. J. | 87A, 355 |
| Profirov, Y. | 86A, 173 | Rashatwar, S. | 88C, 165 | Rigbi, M. | 87B, 567; 88C, |
| Pronzato, R. | 88B, 293 | Ratzlaff, K. | 88B, 35 | 95 | |
| Prothero, J. | 88A, 361 | Raymond, T. L. | 87B, 587; | Rina, M. D. | 86B, 801 |
| Proux, J. P. | 88B, 807 | 88A, 503 | | Risher, J. F. | 87A, 73 |
| Pruitt, B. A. Jr. | 87C, 71 | Reboreda, J. C. | 88A, 571 | Riviere, J. L. | 88C, 83 |
| Psachoulia, C. | 88B, 133 | Recio, F. | 88A, 663 | Rizk, A. M. | 87B, 335 |
| Puerta, M. L. | 87A, 31 | Recio, J. M. | 86A, 389 | Rizzotti, M. | 86B, 15 |
| Punzo, F. | 88C, 255 | Reddy, K. P. | 87A, 863 | Robbins, I. J. | 87A, 171 |
| Pusztais, A. | 88C, 179 | Reeves, J. P. | 88C, 197 | Robbins, R. E. | 87B, 303 |
| Putman, M. S. | 87B, 165 | Regnault, M. | 86B, 525 | Robel, E. J. | 86B, 265 |
| Quesada, P. | 87B, 473 | Rehemtulla, A. | 88B, 277 | Roberts, J. | 88B, 305 |
| Quincey, D. | 88B, 929 | Reid, T. M. | 87A, 1067 | Roberts, M. H. Jr. | 88A, 369 |
| Rabinowitz, J. L. | 86B, 135 | Reiter, R. J. | 86C, 23 | Robertson, D. R. | 88A, 701 |
| Rabourdin, B. | 88B, 949 | Remesar, X. | 88B, 719 | Robertson, J. D. | 87A, 363 |
| Rach, J. J. | 87A, 251 | Renlund, S. | 86B, 327 | Rennebeck, G. M. | 88A, 377 |
| Racicot, W. F. | 87B, 25 | Repetto, Y. | 86B, 67; | Robins, R. K. | 86C, 49 |
| Radi, A. A. R. | 87B, 49 | Revilla, E. | 88B, 851 | Robinson, B. S. | 88A, 283 |
| Radtke, R. L. | 87A, 797 | Reynolds, S. A. | 88A, 503 | Robitaille, P. A. | 87B, |
| Radulovic, L. L. | 87B, 1005 | Rhodes, D. H. | 86A, 213 | Robitaille, P-M. L. | 87B, |
| Raffin, J. P. | 88B, 1071 | Rhodes, R. C. III. | 87A, 627 | 285 | |
| Rahimtula, A. D. | 86C, 233 | Rial, R. V. | 87A, 665; 88A, | Roda, L. G. | 87B, 485 |
| Rahmann, H. | 86B, 377 | Rodrigo, M. | 88B, 757 | Rodino, E. | 86B, 15 |
| Rainbow, P. S. | 87C, 203 | Rodrigues, E. | 88B, 625 | | |
| Raizada, M. | 86B, 55 | Rice, S. D. | 87C, 177 | Rodriguez, A. | 88A, 405, |
| | | Richard, M. | 87B, 725 | Rodriguez, J. | 87A, 1015 |
| | | Richards, K. S. | 86B, 209 | Richardson, A. M. M. | 87A, 791 |
| | | Richardson, A. | 87B, 725 | Rodriguez, R. | 88B, 791 |

- Rodriguez-Horche, P. 87B, Rusenko, K. W. 87B, 953 Santos, M. do C. F. 88A,
553 Rusin, J. 87A, 171 83
- Rogener, W. 86B, 347 Russeil, P. 86B, 791 Sargent, J. R. 86B, 227;
Rogers, Q. R. 88B, 551 Russell, N. J. 87C, 245 87B, 733, 875
- Rogers, W. P. 88A, 207 Rust, M. K. 88A, 491 Sargent, P. A. 88A, 325
- Rojas, M. 86A, 225 Rutledge, P. S. 88B, 13 Sarjan, R. 87B, 465
- Roldan, B. M. 86C, 201 Rzymkiewicz, D. M. 88B, Sasaki, H. 88B, 147
- Roman-Maldonado, S. 289 Sasaki, M. 88B, 429
86B, 607 Satchell, D. G. 87C, 439
- Rombaut, A. 87B, 981 Saarma, M. 87B, 329 Sato, M. 88B, 557, 803
- Romero, F. J. 87C, 433 Sable-Amplis, R. 86B, 725 Sato, T. 86C, 375; 88A,
Ronald, K. 88A, 655 Sacchi, F. V. 86A, 301 487
- Ronis, M. J. J. 86C, Sadler, D. 87B, 533 Sato, Y. 88B, 803
379; 87C, 375 Saether, O. 88B, 157, 165 Sattelle, D. B. 87C, 99
- Roodman, G. D. 88B, 233 Sagawa, S. 86C, 437 Satterlee, D. G. 86A, 569
- Rosa, C. D. 88B, 625 Saidel, W. M. 88A, 37 Saunders, M. O. 86B, 73
- Rosa, R. 88B, 625 Sakagishi, Y. 88B, 111 Sauveur, B. 86C, 395;
Roscetti, G. 87B, 485 Sakaguchi, M. 87A, 101 87A, 183
- Rosebrough, R. W. 86A, Sala, M. 86A, 85 Savory, C. J. 88A, 101
309; 88B, 1041 Salanki, J. 88A, 641 Sawaya, P. 87C, 393
- Rosell, J. 88B, 983 Saleh, J. A. 87B, 833 Sayer, M. D. J. 87A, 851
- Rosenmann, M. 87A, 257 Saleuddin, A. S. M. 88B, Scanes, C. G. 86A, 137;
Rosenshein, I. L. 86B, 243 87A, 315; 88A, 131 Schafer, R. 86B, 513
737 Salibian, A. 86A, 697 Schams, D. 86A, 767; 87A,
Rossetti, M. V. 87B, 593 Salt, T. A. 86B, 103 551
- Rossetti, Y. 87A, 1017 Sanchez, J. 87A, 947 Scharfman, A. 88B, 655
- Rossi, A. 86A, 319 Sanchez-Chiang, L. 87B, Scharrer, E. 86A, 251;
Rosso, J. P. 87B, 949 793 Rossouw, G. J. 86B, 785 Sangster, N. C. 88B, 317 87C, 325; 88A, 127
- Rouanet, J. L. 88B, 519 Sannino, C. 87C, 21 Schartl, M. 87B, 663;
Rougraaff, P. M. 86B, 601 Santangelo, F. 88B, 395 88B, 481
- Roussel, P. 88B, 655 Santiago, E. 88B, 613 Schellart, N. A. M. 88A,
Roveri, O. A. 87B, 35 Santillo, M. 88B, 395 461
- Rowe, A. F. 88B, 223 Santos, E. A. 87A, 1033; Schiavo, G. 87B, 851
- Royer, F. 86A, 319 88A, 21 Schiff, H. 88A, 1
Rugangazi, B. M. 88A, 331 Santos, C. A. Z. 86A, 409 Schindler, S. L. 87A,

- 533, 933; 88A, 95 Sedrani, S. H. 87A, 635 Shikama, K. 88B, 783
 Schipp, R. 87C, 251 Segawa, M. 86B, 303 Shimada, H. 88B, 147
 Schirf, V. R. 88A, 383 Segil, N. 88B, 743 Shimizu, I. 86B, 719
 Schjeide, O. A. 87A, 863 Segura, E. T. 87A, 107; Shimizu, Y. 86B, 99
 Schjeide, S. 87A, 863 88A, 571; 88C, 331 Shimomura, O. 86B, 361
 Schlichter, D. 88A, 273 Seidel, A. 88A, 71 Shiroya, T. 88B, 147
 Schmidtmann, W. 87A, 479 Sekeri-Pataryas, K. T. Shivers, R. R. 86C, 201
 Schneider, N. R. 87C, 88B, 1027 Shoji, S. 88A, 341
 167 Selby, L. 88A, 383 Shukle, R. H. 87B, 783
 Schnell, R. C. 88C, 91 Selivonchick, D. P. 88B, Shukri, R-P. Z. 87A, 1063
 Schniepp, H. C. 87A, 369 Shull, L. R. 88C, 145
 863 Sellers, C. M. Jr. 88B, Shumway, S. E. 87A, 1021
 Schoonen, W. G. E. J. 141 Shurben, D. 87C, 65
 87B, 687 Sempere, A. J. 86A, 767 Siau, H. 88B, 119
 Schulz, F. 88A, 71 Serrazanetti, G. P. 86C, Sica, D. 88B, 293
 Schulz, R. 88A, 49 267 Sicart, R. 86B, 725
 Schwantes, A. R. 86C, Setchell, B. P. 88A, 283 Siebers, D. 87A, 333, 807
 449; 87B, 199; 88B, 203; Seul, K. H. 87A, 645 Siegel, M. R. 87C, 171
 211, 1005 Seymour, R. S. 88A, 167 Siest, G. 87B, 513
 Schwantes, M. L. 87B, Shade, R. E. 87B, 783 Sigafos, J. F. 86A, 453
 199 Shakmatova, Ye. I. 86A, Siigur, E. 87B, 329
 Schwantes, M. L. B. 88B, 689 Siigur, J. 87B, 329
 203, 211, 1005 Shand, J. H. 87A, 583 Sikes, C. S. 87B, 953
 Schwippert, W. W. 88C, Shanks, V. 86C, 147 Silanikove, N. 88A, 113
 99 Sharman, D. F. 86C, 151 Silberzahn, P. 87B, 501
 Scippa, S. 88B, 85 Shaver, J. R. 87C, 139 Sillero, A. 86B, 49
 Scott, G. K. 87B, 1 Shay, C. E. 86B, 193 Sillero, M. A. G. 86B, 49
 Scott, L. 87B, 697; Sheedy, J. W. 87A, 547 Silva, M. H. 87B, 95;
 88B, 547 Shelton, C. J. 88A, 481 88C, 145
 Scott, R. H. 86C, 305 Shemer, J. 86B, 55 Simon, E. 87B, 1033
 Scott, T. R. 86A, 569; Shephard, K. L. 86C, 383; Simpson, K. L. 86B, 587
 87A, 375 88A, 659 Singh, S. V. 86B, 73
 Seals, R. G. 88B, 939 Sherby, S. M. 87C, 99 Sirvio, J. 87A, 355
 Sebert, P. 86A, 491 Sherma, J. 86A, 663; 87B, Sjobeck, M-L. 86A, 729
 Seccacini, E. 87C, 367 881 Skinner, E. R. 88B, 261
 Sedlmeier, D. 87A, 423 Shick, J. M. 87B, 303 Skorkowski, E. F. 86B,

- 731 Soria, M. O. 86A, 147 Suadicani, S. O. 88A, 83

Slagsvold, T. 87B, 885 Sorribas, V. 86A, 63 Subias, E. 87B, 417

Slaweta, R. 87B, 523 Souliotis, B. L. 87B, 179 Suda, M. 87B, 747

Sloley, B. D. 87C, 315 Souza, S. C. R. 87A, 399 Sugano, M. 88B, 363

Slomczynska, M. 87B, 681 Spaargaren, D. H. 87A, Sugihara, H. 88B, 643

Slomiany, A. 87A, 657 1045 Suleiman, M. S. 88C, 197

Slomiany, B. L. 87A, 657 Spasic, V. 86A, 217 Sumiko, M. 86A, 683

Slomianny, M. C. 88B, Spicer, J. I. 88A, 243 Summers, B. 88B, 813

1191 291 Sun, X. P. 87C, 363; 88A,

Smith, A. C. 87B, 659; Spik, G. 88B, 953 317, 707

88B, 1087 Spotila, J. R. 88B, 13 Sunaga, H. 87C, 87

Smith, B. R. 87A, 907; Spry, D. J. 87C, 445 Sutter, B. Ch. J. 88A, 33

87B, 827 Spychala, J. 87B, 481; Suyama, M. 87B, 615

Smith, D. A. S. 88C, 47 88B, 1077 Suzuki, H. 88B, 637

Smith, D. D. Jr. 86B, S.-Rosza, K. 87C, 153 Suzuki, K. 87B, 195

755 St. Alexandrov, 86A, 173 Suzuki, K. T. 87C, 87

Smith, D. S. 86A, 355 Stark, J. R. 86B, 281 Suzuki, O. 88B, 727

Smith, J. R. 86C, 215 Station, M. A. 87A, 449 Suzuki, T. 87C, 221; 87B,

Smith, L. A. 86B, 693 Steele, N. C. 86A, 309; 615

Smith, R. V. 87C, 439 88B, 1041 Swain, R. 87A, 813

Snoswell, A. M. 88A, Steffensen, J. F. 87A, 35 Swain, S. D. 86A, 439

283; 88B, 383 Stein, J. M. 87A, 711 Swank, P. 87A, 319

Snowden, R. 86C, 191 Stenersen, J. 86C, 73 Swann, G. S. 86A, 575

Snyder, G. K. 87A, 819, Stephens, C. A. 88B, 541 Swanson, J. A. 88A, 503

859 Stern, S. 86A, 373 Swanston-Flatt, S. K. 87A,

Snyder, R. R. 88A, 533 Stewart, M. E. 86B, 667 175

Snyman, E. 87A, 889, Steyn, G. J. 86A, 315 Sweeting, R. M. 88A, 147

1103 Stich, H. F. 86C, 399 Swiecka, M. 88B, 911

Soares, M. J. 88B, 1091 Stone, T. W. 88C, 47 Swinehart, J. H. 88C, 293

Sola, F. 87A, 613 Strang, R. H. C. 88B, 65 Sykes, A. H. 86B, 129

Solbe, J. F. de L. G. Stratil, A. 86B, 113; Synak, E. 88B, 681

87C, 65 88B, 953 Szabo, L. 87C, 63, 217

Solves, A. G. 86B, 489 Strzezek, J. 86B, 373 Szabo, T. 88A, 61

Someya, A. 87B, 969 Studier, E. H. 86A, 289, Szafranek, J. 86B, 519;

Song, M. K. 87A, 223 295 87A, 839; 88B, 681, 911

Sørensen, P. G. 87B, 109 Stupfel, M. 88A, 345 Szubartowska, E. 87A, 497

- Tacconi, S. 86C, 267 Tasaki, I. 87B, 227 Thomas, R. E. 87C, 177
 Tagawa, S. 86B, 681; Tatrai, I. 86A, 449 Thomas, W. E. 86A, 199;
 88C, 189 Tauler, A. 86B, 11; 87A, 215
 Taha, H. M. 86C, 185 87B, 117, 625 Thompson, L. E. 87B, 79
 Tahri, A. 88A, 33 Taylor, A. C. 88A, 243 Thompson, S. N. 87B, 357
 Taioli, F. 88B, 1201 291 Thomson, A. W. 86B, 31
 Takabatake, I. 88C, Taylor, E. W. 87A, 1 Thomson, M. 87B, 321;
 301, 319 Taylor, P. M. 86A, 693 88B, 813
 Takabayashi, A. 88B, Taylor, R. E. L. 87B, 827 Thong, K-W. 87B, 637
 651 Taylor, S. M. 86C, 11 Thornell, L.-E. 87C, 269
 Takada, N. 88B, 761 Taylor, W. A. 87B, 341 Thuillier-Bruston, F.
 Takagi, T. 87B, 1037; Tazawa, H. 86A, 595 86B, 711
 88B, 783 Teitelbaum, M. 87B, 567; Tillinghast, E. K. 88B,
 Takahara, M. 88B, 803 88C, 95 457
 Takahashi, K. 87B, 741 Tejwani, G. A. 87B, 341 Timmers, R. J. M. 88B,
 Takahashi, K. P. 87A, Temma, K. 88C, 225 453
 745 Teo, L-H. 87B, 373 Tintemann, H. 88B, 943
 Takahashi, S. Y. 87B, Terayama, H. 87B, 675 Tirri, R. 88A, 161
 255 Terblanche, S. E. 86C, Tocher, D. R. 87B, 733
 Takayanagi, H. 88A, 263 225 Toledo, C. 87C, 275
 Takeda, N. 88A, 263 Tercyak, A. M. 88B, 729 Tom, M. 87B, 17
 Takei, T. 88A, 557 Terra, W. R. 87B, 755 Tomasic, J. 87B, 761
 Takemura, H. 88C, 219 Terwilliger, N. B. 87A, Tomasko, D. A. 87B, 843
 Takeuchi, A. 88B, 569 683 Tomassini-Barbarossa, I.
 Takeuchi, H. 86C, 353; Terwilliger, R. C. 87A, 88A, 455
 87C, 51, 59, 363; 88A, 683 Tomic, S. 87B, 761
 317, 707; 88C, 35, 325 Testai, E. 88B, 619 Tomkin, G. H. 87B, 697;
 Takiguchi, K. 88B, 783 Tetteh-Lartey, N. 88A, 88B, 547
 Takito, J. 88B, 1067 595 Toncheva, E. 86A, 173
 Tan, K. S. 87A, 175 Thaxton, J. P. 87A, 375, Torre-Blanco, A. 86C,
 Tanaka, T. 88B, 399 923, 933; 88A, 95 219; 88B, 1213
 Tanaka, Y. 88B, 363 Thebault, M. T. 88B, 1071 Torres, P. 86C, 169; 87C,
 Tani, Y. 88B, 429 Theophilidis, G. 88A, 201 349
 Tankikawa, M. 86B, 63 Thines-Sempoux, D. 88A, Torii, M. 88B, 569
 Tanimoto, Y. 88B, 111 75 Tornback, B. 88B, 631
 Tardent, P. 88B, 855 Tho, Y. P. 87B, 465 Tort, L. 86C, 169; 87C,

- | | | | | |
|-----------------|---------------------|-----------------|--------------------|------------------------|
| 349 | Tulp, O. L. | 86A, 67 | Valles, A. M. | 87B, 125 |
| Tota, B. | 86A, 319; 87C, | Tunnicliff, G. | 87C, 37 | van Aardt, W. J. |
| 21 | | Tunon, M. J. | 88B, 513 | 88A, 671 |
| Toulmond, A. | 88B, 71 | Tur, J. | 87A, 665; 88A, | Vanatta, J. C. |
| Townley, M. A. | 88B, 457 | 247 | 847 | 88A, 281 |
| Townsel, J. G. | 86C, 103, 111; 86A, | Tur, J. A. | 87A, 665; 88A, | van Beeumen, J. J. |
| 199; 87A, | 215 | 247 | 847 | 87B, 87B, |
| Toyohara, H. | 86B, 99; 87B, | Turner, J. C. | 86C, 147 | 19 |
| 1041 | | Turner, P. | 88A, 383 | van der Horst, D. J. |
| Tranque, P. | 86C, 295, 299 | Turpaev, T. M. | 87C, 389 | 88B, 523 |
| Tremblay, R. R. | 88B, 1051 | Turrens, J. F. | 88C, 193 | van der Merwe, J. V. |
| Trescec, A. | 87B, 761 | Twin, J. E. | 88A, 239 | 87A, 1103 |
| Trigari, G. | 88B, 691 | Tyler, P. A. | 88A, 549 | van der Schors, R. C. |
| Trimbach, B. | 88A, 345 | Ubelaker, J. E. | 88A, 553 | 87A, 671 |
| Troiani, M. E. | 86C, 23 | Uchida, N. | 88B, 27 | van der Straeten, E. |
| Trombetti, F. | 88B, 691 | Uesaka, H. | 87A, 689; 88A, 221 | 88B, 171, 253 |
| Troyer, K. | 87A, 623 | Ueyama, A. | 86B, 63 | van Doorn, J. M. |
| Truchot, J. P. | 86A, 255 | Uglow, R. F. | 86A, 261 | 88B, 523 |
| Trueman, E. R. | 87A, 1059 | Ugrar, E. | 87A, 9 | van Elk, R. |
| Tsai, C. S. | 87B, 79 | Uhlenbruck, G. | 86B, 347 | 87A, 607 |
| Tsao, S. W. | 87B, 221 | Ukhanov, K. Yu. | 86A, 689 | van Es. C. |
| Tselepis, A. D. | 87C, 41 | Ulian, G. B. | 86A, 155 | 87B, 79 |
| Tsoukatos, D. | 87C, 41 | Ultsch, G. R. | 88A, 585 | van Heusden, M. C. |
| Tsuchiya, T. | 88A, 557 | Umezawa, K. | 88C, 225 | 88B, |
| Tsuda, T. | 86C, 339, 361; 87A, | Unakami, S. | 88B, 111 | 523 |
| 569 | | Urakawa, N. | 86C, 387, 411 | van Oordt, P. G. W. J. |
| Tsugawa, K. | 87A, 745 | Uzoegwu, P. N. | 88B, 1181 | 87B, |
| Tsukada, T. | 86B, 565 | | | 687 |
| Tsukada, Y. | 88B, 497 | Vaatainen, T. | 88A, 519 | van Vuren, J. H. J. |
| Tsuru, A. | 87C, 401 | Vachtenheim, J. | 87B, 709 | 86A, 423 |
| Tsuruoka, M. | 87A, 877 | Vahala, J. | 86A, 649; 87A, | van Zutphen, L. F. M. |
| Tsushima, K. | 88B, 589 | Varanka, I. | Varank, I. | 86C, 157 |
| Tucker, E. M. | 87A, 711 | 387; 88A, 451 | 387; 88A, 451 | Vargas, O. |
| Tudiver, B. | 86A, 761 | Val, A. L. | 86C, 449 | 87B, 949 |
| | | Vallejo, M. | 88B, 513 | Varndell, I. M. |
| | | | | 86C, 425 |
| | | | | Varney, D. R. |
| | | | | 87C, 171 |

- Varsavsky, A. 88C, 331 687 Warren, L. M. 87A, 171
 Vaughan, G. K. 86C, 23; Viviani, R. 88B, 475 Washio, H. 86A, 643;
 87C, 71 Voinova, R. 86A, 173 87C, 401
 Vaughan, M. K. 86C, 23 Vokler, Th. 87B, 241 Wassgren, A-B. 88B, 631
 Vega, F. V. 88A, 337 von Fellenberg, R. 88B, Wasternack, C. 88B, 943
 Veith, W. J. 88A, 599 237 Watanabe, M. 88B, 111
 Venables, B. J. 87A, Voogt, P. A. 86C, 83 Watanabe, S. 88C, 319
 1015 Vorger, P. 88A, 603, 613 Watford, M. 86B, 689
 Ventrella, V. 88B, 691 Vornanen, M. 86B, 815 Watkins, J. B. III. 88C,
 Venturelli, F. 87B, 485 Vriend, J. 86A, 73 159
 Venturini, G. 87B, 975; Wacke, R. 87B, 241 Watson, S. 88A, 581
 87C, 321 Wade, D. N. 86C, 317 Watson, W. H. III. 88B,
 Verdina, A. 88B, 619 Waehneldt, T. V. 88B, 457
 Vermeulen, N. P. E. 87A, 1209 Watts, S. A. 88B, 309
 1025 Wafford, K. A. 87C, 99 Weber, J. 88B, 855
 Vernay, M. 86A, 657 Wakayama, E. J. 88B, 869 Webb, M. 86C, 191
 Via, G. J. D. 87A, 471 Waldenstrom, A. 87C, 269 Webber, D. 87A, 63
 Viale, A. A. 87B, 607 Walker, C. H. 86C, 379; Webster, J. D. 87A, 175
 Vidaver, G. A. 87B, 171 87C, 375 Weiner, J. 86A, 639
 Vieira, G. H. F. 88B, Walker, C. W. 88B, 309 Weiss, M. 86A, 361
 977 Walker, M. 88A, 549 Weldon, P. J. 87B, 345
 Villalobos-Hiriart, N. Walker, R. J. 86C, 371; Wellington, J. E. 88B,
 88A, 213 86A, 785; 88C, 121 863
 Villaroya, F. 86A, 481 Walter, C. M. 86C, 33 Wells, M. B. 87C, 437
 Vinardell, M. P. 86A, Walton, D. G. 86C, 399 Wells, R. M. G. 88A, 417
 617, 625 Warashina, A. 88C, 249 Wenne, R. 88B, 881
 Vincent, R. 86A, 209 Warburg, M. R. 86A, 433, Wershana, K. 86C, 247,
 Vindlacheruvu, S. 87B, 761 Wertz, P. W. 86B, 671
 87 Ward, J. 87A, 393 Weselake, R. J. 86B, 493
 Vinson, C. R. 87B, 361 Wardle, C. S. 88A, 543, Westerberg, H. 86A, 169
 Vinson, S. B. 86B, 27, 595, 647 Westrom, B. R. 86A, 1
 311 Wares, W. D. II. 86A, 289, Wheeler, A. P. 87B, 953
 Viscor, G. 87A, 231 Warnke, Z. 86B, 519; Whitaker, B. D. 88B, 887
 Viswanathan, M. 86C, 7 295 White, J. H. 87B, 79
 Vittozzi, L. 88B, 619 Viveen, W. J. A. R. 87B, 88B, 911 Whitehead, C. C. 86B,

419			
Wicker, C.	87C, 161	Wolfersberger, M. 86A, 301	
Wicker, Ca.	88C, 185	Wolff, J. M. 87B, 309	
Wicker, Cl.	88C, 185	Wolffram, S. 86A, 251;	
Wider, E. A.	87B, 607	88A, 127	
Wiechetek, M.	87B, 523	Wolfson, J. L. 87B, 783	
Wieland, S. J.	86C, 125	Wolk, E. 88A, 637	
Wightman, J.	88B, 305	Wolmarans, C. T. 86A, 773, 777; 87A, 785, 963;	
Wilbrink, M.	87A, 1025	88A, 671	
Wilcox, J.	87C, 275	Woloski, B. M. R. N. J. 86A, 15; 87B, 11	
Wille, H.	87A, 333	Wong, L-J. C. 87B, 459	
Williams, A. R.	88A, 373	Williams, D. F. 87A, 797 Williams, G. 86B, 575 Williams, H. J. 86B, 27, 311 Williams, J. A. 87A, 1037; 88A, 311 Williams, R. N. 88B, 847 Williams, V. J. 87A, 547 Williamson, J. 88B, 1181 Wilson, J. G. 87A, 509 Wilson, J. X. 88C, 57 Wilson, M. A. 87A, 757 Wilson, M. T. 86B, 343 Winkler, A. 87A, 333 Winkler, P. 87A, 69 Winlow, W. 86C, 55 Wirtz, R. A. 88C, 61 Wistrand, P. J. 86A, 177 Witas, H. 87C, 217 Witkus, R. 87C, 149 Wix, M. A. 86B, 671 Wolf, G. 88B, 285	Yagil, R. 86A, 49 Yamada, H. 88A, 355 Yamada, K. 86C, 91 Yamagishi, H. 87A, 689; 88A, 221 Yamaguchi, T. 87C, 401 Yamakami, K. 87B, 643 Yamamoto, K-i. 87A, 1083 Yamamoto, I. 88B, 363 Yamamoto, M. 88B, 363 Yamamoto, T. 86C, 375 Yamashita, M. 86B, 201; 88B, 557 Yamashita, S. 86A, 269 Yamashita, T. 87A, 737, 791; 87B, 969 Yamauchi, Y. 88B, 643 Yanagawa, M. 88C, 301 Yanaihara, N. 86C, 353; 87C, 59; 88C, 325 Yancheva, N. 88B, 829 Yano, I. 86B, 213 Yardley, H. J. 86B, 209 Yashiro, K. 87B, 741 Yasugi, S. 86B, 675 Yasuhara, T. 87C, 287 Yin, F-Y. 87B, 559 Yip, T. T. 87B, 221 Yokosawa, H. 86B, 809; 88B, 375 Yokota, Y. 87B, 741 Yokoyama, I. 87B, 747 Yokoyama, Y. 87B, 1041 Yonemura, I. 86B, 303

- Yong, H-S. 86B, 797; 151
87B, 465 Zijlstra, W. G. 88B, 251
Yongsiri, A. 86C, 353; Zimmermann, D. 86B, 353
87C, 59; 88C, 35, 325 Zinkler, D. 88B, 661
Yoshinaka, R. 88B, 557 Zlotnick, G. W. 87B, 629
Yoshino, M. 86B, 109, Zummo, G. 86A, 319
565; 88B, 651 Zurovsky, Y. 87A, 467,
Young, L. E. 88A, 619 911, 959
Young, R. E. 88A, 619 Zychlinski, L. 86C, 325
Young, W. J. 87C, 425 Zylbersztein, C. 86A, 697
Youson, J. H. 87A, 761;
88A, 325
Yoyama, A. 87C, 187
Yu, P. H. 87C, 315
Yu, S. J. 87B, 621
Yurchenko, O. P. 87C,
389

Zachariassen, K. E. 86A,
79, 403
Zacharopoulou, A. 88B,
133
Zahn, R. K. 86C, 17
Zak, Z. 87B, 681
Zamer, W. E. 87B, 303
Zamorano, D. M. 88B,
177
Zamponi, M. 88A, 337
Zappalorti, R. T. 87A,
727
Zarivi, O. 86B, 749
Zavos, P. M. 87C, 171
Zenker, W. G. E. 86A,
423
Zerba, E. N. 87C, 367
Zerbst-Boroffka, I. 86A,

SUBJECT INDEX

Volumes 86-88 A, B and C inclusive, 1987

- A23187, 87B, 733

AAT, 86B, 373

ABRM, 88A, 557

Absorption of sodium, 86A, 653

Acanthephysa purpurea, 86B, 313

Acanthoscelides obtectus, 88B, 681

Acartia clausi, 88B, 105

ACAT, 87B, 697

Accipiter nisus, 86C, 379

Acclimatization, 86A, 217

Acebutolol, 87C, 83

ACE-I, 87A, 645

Acetaldehyde, 87C, 409

N-acetyl-galactosamine, 88B, 375

ACh, 86C, 103, 313; 87C, 335, 393, 440; 88C, 35, 121, 131, 249, 301

ACh (ABRM), 88A, 557

Achatina fulica, 86C, 353; 87C, 51, 59, 363; 88A, 263, 317, 707; 88C, 35

AChE, 87C, 335

Acheta domesticus, 87C, 161; 88B, 875; 88C, 185

Acid-base balance, 86A, 261

Acidic amino acid transport, 87B, 443

Acid phosphatase, 86B, 254; 87A, 845; 87B, 773

Acid stimuli, 88A, 487

Acinonox jubatus, 87A, 387

Acipenser transmontanus, 88B, 269

Aconitine, 86C, 11

Acris crepitans, 87A, 81

Acropora hebes, 87B, 507

ACTH, 88A, 131

Actin, 86B, 532; 87B, 171

Actinaria, 87B, 267

Actinia equina, 86A, 233; 87B, 267

Acyl CoA, 87B, 217

Acyl-CoA dehydrogenase, 88B, 19

O-acylglucopyranosides, 87B, 761

Adaptation, 88A, 119

Adenine, 86A, 703

Adenosine, 86A, 755; 86C, 415

Adenosine deaminase, 86B, 95; 88B, 91, 491

Adenosine-5-monophosphate, 87B, 481

Adenosine receptors, 88C, 75, 121

Adenosine triphosphatase (also see ATP), 86A, 693

S-adenosylmethione decarboxylase, 87B, 863

Adenylate cyclase, 86A, 453; 86C, 91; 88A, 349; 88B, 989

Adenylate-degrading enzymes, 86B, 109

Adenylate energy charge, 87A, 171

ADH, 87B, 417

Adipocyte, 86A, 515, 755; 88A, 33

Adipocyte metabolism, 87B, 537, 543

Adipose tissue, 87B, 533, 543; 88A, 33

Adonis aestivalis, 86B, 587

ADP-ribosylation, 87B, 473

Adrenalectomy, 86A, 397

Adrenal-gonadal systems, 86C, 295

Adrenaline (also see NA), 86C, 7; 87C, 31, 233, 425, 429

- Adrenal medulla, 88C, 155
 Adrenergic receptors, 88C, 69
 Adrenocortical special zone, 86A,
 361
Aedes aegypti, 88B, 595
Aeshna cyanea, 87A, 39, 47, 427
Aethomys namaquensis, 87A, 311
 Aflatoxin B₁, 86C, 399; 87C, 275
 Ageing, 86A, 617; 88B, 929
Agelaius phoeniceus, 87B, 933
 AGEPC, 87C, 41
 Age pigments, 88B, 777
 Aging rat, 88B, 177
Agkistrodon acutus, 88B, 643
Agkistrodon halys, 87B, 329
 Agonistic behavior, 86A, 473
 Air-breathing in crab, 87A, 1
 AKH, 87A, 193
 Alanine, 87A, 171
 β -alanopine, 88B, 803
 Albumen, 88B, 863
Alca torda, 87C, 375
 Alcian blue, 87A, 295
 Alcohol dehydrogenase, 87B, 79
Alcyonium digitatum, 86A, 629
 Aldehyde oxidase, 86B, 254
 Aldolase, 87A, 27
 Aldosterone, 86A, 697
 Aldrin, 87C, 375
Alectis ciliaris, 86B, 509
 Alkaline phosphatase, 86B, 483; 87A,
 551; 87B, 367; 88B, 111, 133
 Alkaline proteinase, 86B, 99; 87B,
 1041
 n-alkanes, 87B, 233; 88B, 681, 875,
 911
 O-alkylglycerophospholipids, 88B, 1
 Alkylphosphonic acid, 88B, 603
 Allelochemicals, 87B, 621
 Alligator, 87A, 449
 Alligator brain, 86B, 55
Alligator mississippiensis, 86B, 55,
 755; 87A, 449
 Allopurinol, 86B, 397; 86C, 63, 67;
 87B, 489; 87C, 79
 Alloxan induced diabetes, 88B, 547
Alnus incana, 87B, 885
Alouatta palliata, 88B, 729
 Alpha_1 -acid glycoprotein, 86B, 493
 Alphaglucosidase, 88B, 1051
Ambystoma tigrinum, 86A, 429
Amia calva, 86A, 143
 Amiloride, 87A, 333, 873, 885
 Amines, 87C, 251
 Amino acids, 86A, 173, 349, 553, 773;
 87A, 319, 427; 88B, 65, 1013; 88C, 255
 Amino acid levels, 87A, 57
 Amino acid metabolism, 88B, 719
 Amino acid transport, 86A, 301; 87A,
 1055
 4 amino crotonic acid, 86C, 305
 2-aminoethylphosphonic, 88B, 969
 2-aminofluorene, 88C, 171
 P-aminohippurate , 86A, 713
 Aminopeptidase, 87B, 755
 Amino transferases, 88B, 223
 Ammonia, 86A, 449; 86B, 689; 87A, 157,
 851
 Ammonia excretion, 87C, 1
 Ammoniogenesis, 87B, 941
Ammotragus lervia, 87A, 711
 AMP, 86B, 49, 109

- AMP deaminase, 86B, 109; 88B, 1071, 1077
Amphibian, 86B, 167
AMP phosphodiesterase, 88B, 349
Ampullae of Lorenzini, 88A, 61
Ampullaria, 86B, 565
Amyda japonica, 87A, 645
Amygdala, 88A, 56
Amylase, 87B, 297, 755; 88B, 963
Anadara ovalis, 86B, 155
Anaerobic metabolism, 86A, 91; 87A, 1089; 88B, 651
Anaerobiosis, 87A, 171
Anarhichas lupus, 86A, 170
Anas barbariae, 88B, 519
Anas boschas, 86B, 675
Anas platyrhynchos, 86A, 397; 87C, 421; 88A, 229; 88C, 57
Anas sp. 88B, 563
Androstenedione, 87A, 775; 87B, 687, 821
Anemonia sulcata, 88A, 273
Anesthesia, 88C, 331
Angiotensin I-Converting Enzyme, 87A, 645
Angiotensin II, 86A, 147; 88C, 57
Anguilla anguilla, 86A, 170, 491; 86B, 15; 87A, 27, 733; 87B, 664; 88A, 595, 543; 88B, 323,
Anguilla japonica, 88B, 507, 667, 1151
Aniline hydroxylase, 87C, 422
Anodonta californiensis, 88C, 293
Anodonta cygnea, 86C, 157
Anolis carolinensis, 87A, 757
Anolis pulchellus, 87B, 125
Anoxia, 86C, 33; 88B, 65, 297
ANS, 86B, 7
Anser anser, 87C, 421
Anserine, 86B, 275; 87B, 615
Antelope, 87C, 167; 88A, 495
Anthonomus grandis, 87B, 783
Anthopleura elegantissima, 87B, 303
Antiandrogen, 87A, 551
Antiarrhythmic Na current blocker, 87C, 237
Antidepressant drugs, 86C, 225
Antidiuretic responses, 87A, 107
Antilipolytic, 86A, 755
Antilocapra americana, 87C, 167
Antioxidant enzyme, 87B, 49; 87C, 63
Antiplasmin, 86A, 1
Antithrombin III, 87B, 435
Antler, 86A, 767
APB, 87C, 99
Apis mellifera L. 86A, 689
Apis mellifera adansonii, 86A, 95
Apis mellifera capensis, 86A, 95
Aplysia, 86C, 27; 87C, 389; 88C, 313
Aplysia depilans, 87C, 389
Apo ferritin, 87B, 915
APPR, 87B, 489
APU, 87C, 99
Apyrase, 87B, 567
Aquila heliaca, 87A, 1123
Arachidonate, 86B, 623; 87B, 733
Arachidonic acid, 86B, 575; 87B, 815
Arbacia punctata, 87C, 139
Aremonium coenophialum, 87C, 171
Arenicola cristata, 88B, 349
Arginase, 88B, 229
Arginine, 86A, 559; 87A, 366

- Argiope aurantia, 88B, 457
- Argopecten irradians concentricus, 87B, 767
- Argyropelecus, 88A, 75
- Argyrosomus argentatus, 86B, 99
- Arius thalassinus, 87B, 321; 88B, 813
- Armadilidium vulgare, 87C, 149
- Armadillo officinalis, 86A, 433
- Arochlor-1254, 86C, 343, 399
- Aromatase, 88B, 453
- Aromatic hydrocarbons, 86C, 399
- Arrhenius plots, 88A, 68
- Arsenobetaine, 86B, 681; 87C, 345; 88C, 189
- Artemia, 86B, 49, 291, 397; 88B, 285
- Artemia salina, 88B, 285
- Arvicanthis niloticus, 86C, 185
- Arylamidase, 86C, 425
- Arylamine N-acetyltransferase, 86B, 601
- Arylsulfatase, 87B, 385; 88B, 147
- Ascaris, 88B, 399
- Ascaris lumbricoides, 88B, 399
- Ascaris suum, 87A, 803; 87C, 23
- Ascidian body-wall muscle, 88A, 625
- Ascidians, 88B, 85
- Ascorbic acid, 86B, 531; 87B, 575; 88B, 847
- Asparagine, 87B, 827
- Aspartate, 87C, 121
- Aspartate transcarbamylase, 87B, 351; 88B, 369
- Aspergillus melleus, 86B, 201
- Asp T, 87B, 241, 417
- Astacopsis franklinii, 87A, 813
- Astacus leptodactylus, 86B, 37
- Astaxanthin, 86B, 1, 313
- Astaxanthin diester, 86B, 587
- Asterias rubens, 86C, 83
- Asterias vulgaris, 88B, 309
- ATP, 88A, 455
- ATP:AMP phosphotransferase, 88B, 575
- ATPase, 88B, 243
- ATPase activities, 86B, 815
- Atropine, 88C, 225
- Auditory responses, 88A, 391
- Auricle, 87A, 689
- Autonomic drugs, 88C, 275
- Avermectin, 87C, 23
- Avian growth hormone, 86A, 29
- Avidin, 86B, 265; 87B, 871
- B₁₂, 88A, 253; 88B, 869
- Baboon erythrocytes, 88B, 233
- Baboon oocytes, 87A, 1103
- Baclofen, 87C, 211; 88C, 155
- Bacteria thuringiensis, 87A, 189
- Balanoglossus clavigerus, 87A, 363
- Balanus nubilis, 86A, 733; 88B, 687
- Balearica pavonina, 87B, 165
- Balenine, 86B, 273
- Barbitone sodium, 86C, 185
- Barbus oligolepis, 87B, 581
- Barium spikes, 86A, 355
- Barnacle muscle fibers, 86A, 733; 88B, 687
- Bats, 86C, 365; 88A, 447
- BAY K8644, 88C, 219
- Beef cattle, 88A, 113
- Beetles, 86A, 403

- Belching, 87A, 993
Benthothuria funebris, 88A, 549
1,2 benzanthracene, 86C, 399
Benzodiazepines, 87C, 187
Benzopyrene, 86C, 17, 399
Benzoxazolin-2-one, 87B, 35
Benzylamine, 86C, 325
Beta-adrenergic receptors, 87C, 5
Beta-adrenergic receptor adenylyl cyclase, 88B, 989
Bicuculline, 86C, 305; 87C, 211; 88C, 155
Bile acid, 87A, 15; 87B, 46
Bile choline, 88A, 283
Bile salts, 86A, 367
Biliary cirrhosis, 88B, 1181
Bilirubin, 87A, 761, 1003; 87B, 527; 88B, 667
Bilirubin toxicity, 87A, 1003
Biliverdin, 87A, 761
Biliverdin reductase, 88B, 1151
Bioenergetics, 86A, 289
Biogenic amines, 87C, 75
Biomphalaria glabrata, 86A, 663, 773, 777; 87A, 785, 963; 87B, 357; 88B, 969
Biotin, 86B, 265
Bird flight, 87A, 231
Bird genome, 87B, 975
Bison bison, 87C, 167
2,3-bisphosphoglycerate, 86B, 11
Bivalves, 88B, 443
Blatella germanica, 86B, 519; 88A, 491
Blattabacterium cuenoti, 88B, 1023
Blennius pholis, 87A, 851
Blepharipa sericata, 87B, 279
Block of synaptic transmission, 87C, 287
Blood, 87A, 497
Blood changes, 87A, 461
Blood chemistry, 87A, 1123
Blood coagulation, 87B, 435
Blood flow uphill, 88A, 167
Blood glucose regulation, 87A, 1033; 88A, 101
Blood serum chemistry, 88A, 589
Blood volume, 87A, 393
Blowfly, 88A, 455
BMR, 87A, 205
Bobwhites, 87B, 933
Bodianus diplotaenia, 86B, 509
Body mass of birds, 87A, 287
Body weight, 86A, 337
Bohr effect, 86B, 473
Boleophthalmus boddaerti, 87A, 1009; 87B, 941; 88B, 119
Bombesin, 87C, 59; 88B, 359
Bombyx mori, 86B, 201, 501, 719; 87B, 255; 88B, 414, 761
Bone demineralization, 87A, 267
Bone lipids, 86B, 509
Bone marrow, 86A, 709; 87A, 497
Bone matrix, 87B, 921
Bos bovis, 86B, 37; 87B, 523
Boselaphus tragocamelus, 88A, 495
Bothrops jararaca, 86A, 503
Bovine pituitary gland, 86B, 327
Bovine serum albumin, 87B, 137
Brachionus plicatilis, 86C, 329
Bradykinin, 87C, 287
Bradyplus tridactylus, 88C, 275

- Brain, 86B, 73
- Branchiostoma lanceolatum, 87A, 363
- Brevoortia tyrannus, 86A, 723
- Brij-58, 86C, 281
- Broilers, 87A, 665
- Bromoperoxidase, 88B, 917
- Bronchoalveolar fluid, 88B, 655
- Brown adipose tissue, 86A, 481; 87A, 31, 197; 87B, 91
- Brush border membrane, 86A, 301
- Brycon melanopterum, 86C, 449
- Bubalus bubalis, 88B, 395
- Buccal ganglia, 87A, 162
- Buccal motor output, 87A, 969
- Bufo arenarum, 86A, 147, 697; 86B, 167; 87A, 107; 87B, 151; 88A, 571; 88C, 571
- Bufo bufo, 86B, 749
- Bufo chilensis, 86A, 225
- Bufo cognatus, 87A, 461
- Bufo ictericus, 87C, 393; 88A, 15
- Bufo japonicus, 86B, 149
- Bufo marinus, 87A, 493, 1119; 87C, 107
- Bufo woodhousei, 87A, 81
- Bufotenidin, 87C, 393
- Bufoxin, 87C, 393
- Bulinus globosus, 86A, 773, 777; 87A, 963
- Bulinus tropicus, 86A, 773, 777
- Bulinus truncatus, 87A, 607
- Bullia rhodostoma, 87A, 143
- Bumble bees, 88B, 631
- Bundosoma cavernata, 87A, 319
- Bungarus caeruleus, 87B, 329, 559
- Buoyancy, 87A, 275
- Burrowing, 86A, 461
- Busycon contrarium, 86B, 541
- Buteo buteo, 87A, 381, 1123
- Butyrate, 87A, 569
- Butyrate absorption, 86A, 657
- Butyrylcholinesterase, 88B, 153
- Buzzards, 88A, 663
- C test, 87A, 979
- Ca-ATPase, 88B, 421
- Ca⁺-binding phospholipid, 87B, 507
- Cadmium, 86C, 1, 83, 357; 87C, 87, 113, 433; 88C, 209
- Cadmium-metallothionein, 86C, 267
- Caecal size, 87A, 311
- Caenorhabditis elegans, 86B, 103; 87B, 847
- Caffeine, 86A, 703; 88C, 313
- Cage density, 87A, 261
- Ca-ionophore, 88A, 471
- Calanus finmarchicus, 86B, 313
- Calciferin, 87B, 675
- Calcitonin, 87A, 1051; 88A, 701
- Ca²⁺ release, 86A, 703
- Calcium, 86A, 545; 86B, 295; 87A, 267, 305, 493, 579, 785; 88C, 165
- Calcium binding, 87B, 953
- Calcium channels, 86A, 581; 88C, 219
- Calcium-dependent potassium channel, 86A, 589
- Calcium deposition, 86A, 21
- Calcium-induced contraction, 87A, 565
- Calcium loading, 86A, 545
- Callinectes sapidus, 86A, 39; 87A, 21; 88B, 503, 1087
- Calliphora erythrocephala, 86B, 353;

- 88C, 233
Callithrix jacchus, 86B, 307
Calmodulin, 86A, 589; 86B, 423
Calpains, 87B, 715
Calpastatins, 87B, 715
Cambarellus montezumae, 88A, 213
Camelus dromedarius, 86B, 343; 87B, 157, 335
cAMP, 86B, 321; 86C, 27, 273; 87A, 1009; 88A, 409, 455
Camponotus vagus, 86B, 251
Campsomeris sexmaculata venom, 87C, 283
Cancer pagurus, 86B, 313
Canidae, 86A, 649
Canis familiaris, 87A, 657
Canis lupus, 86A, 649
Canthaxanthin, 87A, 717
Capillary growth, 87A, 859
Caponization, 86A, 465
Capra hircus, 86A, 633; 87A, 9, 915; 88A, 451, 533; 88B, 145, 194, 513
Captopril, 87A, 647
Carassius auratus, 86B, 19, 553; 86C, 267
Carassius auratus gibelio, 87A, 359
Carassius auratus langsdorfi, 87C, 97 269
Carbachol, 86A, 537, 545
Carbamoyl-phosphate synthetase, 87B, 143
Carbamoyl-phosphate synthetase II, 87B, 655
Carbamyl phosphate, 87B, 353
Carbohydrases, 86B, 283
Carbohydrate metabolism, 87A, 785
Carbonic anhydrase, 86A, 177, 673; 87A, 327; 88B, 713
Carbon turnover, 87A, 93
Carboxylesterase, 86B, 67
Carboxypeptidase, 87B, 151, 889
Carcharhine sharks, 86B, 737
Carcharhinus plumbeus, 86B, 737
Carcinogenic aromatic amines, 86C, 17
Carcinus gill epithelia, 87A, 807
Carcinus maenas, 86A, 255, 261, 581; 87A, 333; 87C, 203, 333; 88A, 311
Cardiac muscle, 88B, 421
Cardiac output, 88A, 89
Cardiac pacemaker, 87A, 649
Cardiac responses, 88A, 201
Cardioprotectant, 86C, 67
Cardiovascular systems, 86A, 595
Carnitine, 87B, 587; 88A, 503
Carnitine palmitoyl-transferase, 87A, 1041
Carnosine, 86B, 275
Carotenoids, 87B, 161, 411, 885
Carybdea rastonii, 86C, 411
Cassava, 86B, 129
Castration, 86A, 361
Catalase, 86C, 33; 87A, 135
Catecholamines, 86C, 7, 295, 299; 87C, 193
Catechols, 87C, 193
Catfish, 87B, 671; 88A, 589; 88B, 727
Catfish brain, 87C, 37
Cathepsin, 87B, 675
Caudal photoreceptors, 86A, 523, 529
Caudiverbera caudiverbera, 87A, 649
Cavia porcellus, 86A, 381, 565; 86B, 83, 89, 630; 86C, 11, 173; 87A, 569; 87B, 533, 575, 821, 969; 87C, 237, 269

- Cell membrane fluidity, 87A, 873
 Cellulose digestion, 88B, 661
 Central shunts, 86A, 595
 Cephalopods, 87A, 63
Ceratitis capitata, 86B, 321; 87B,
 31; 88B, 133
Ceratodidae lepidosirenidae, 88B, 1209
 Cercal chordotonal inhibitory organ, 87A, 53
Cercaria caribbea, 88A, 619
 Ceruloplasmin, 87A, 561
Ceuthophilus stygius, 86A, 289, 295
Chaetoditerus faber, 88B, 625
Chalcides ocellatus, 86A, 189
Chasmagnathus granulata, 87A, 1033;
 88A, 21
Chelodina longicollis, 87C, 439
Chelon labrosus, 87A, 1051
Chelydra serpentina, 86A, 559;
 87A, 73
 Chemical defenses, 86A, 629
 Chemoattraction, 87A, 641
 Chemotaxis, 86B, 425
 Chick embryos, 86A, 91; 86B, 185;
 86C, 313
 Chickens, 86A, 73, 173, 443; 86B,
 791; 86C, 121, 289; 88A, 247, 391;
 88B, 783
 Chicken kidney, 88B, 1077
 Chick hearing, 88A, 391
Chinchilla laniger, 86A, 109
 Chitin, 86B, 353
 Chitinase, 86B, 613; 87A, 189
 Chitinolytic enzymes, 86B, 613
 Chlopropham, 88C, 99
 Chloragog tissue, 87A, 135
 Chloride, 88A, 437
 Chloride balance, 86A, 143
 Chloride-fluxes, 87A, 807
 Chloride uptake, 86A, 245
Chlorohydra viridissima, 87C, 321
 Chlorothalonil, 88C, 113
 Chlorpromazine, 87C, 23
 Cholecystokinin, 86C, 97
Cholesta-5,7,24-trien-3B-ol, 88B, 293
 Cholesterol, 86B, 103, 725; 87B, 109,
 587, 697; 88A, 577; 88B, 23, 547
 Cholesterol acyltransferase, 88B, 363
 Cholesterol metabolism, 87B, 41
 Choline, 86C, 111
 Cholinergic control, 86C, 333
 Cholinesterase, 87C, 107
Chondrostoma nasus, 88C, 83
 Chorda tympani, 88A, 355
 Chromatophore, 87A, 699
Chrysemys picta dorsalis, 87A, 73
Chrysemys picta marginata, 87A, 73
 Chymosin, 88B, 823
 Chymotrypsin, 87B, 25, 303
 Ciliary beat frequency, 86C, 273, 281
 Ciliary/decarboxylase, 88A, 471
Ciona intestinalis, 87A, 363; 88B, 85
Cirrhitus rivulatus, 86B, 509
Citellus lateralis, 86A, 241
Citellus parryii, 87B, 189
 CK, 88B, 203
Clarias gariepinus, 86A, 315; 87B,
 687; 88B, 453
Clarias lazera, 86C, 247, 255, 263;
 87C, 297, 303, 309; 88C, 259
Clinus dorsalis, 88A, 599
Clithon oualaniensis, 87A, 341

- Clonidine, 87C, 251
 Clotting factors, 88B, 643
Clupea harengus, 86A, 170
 Cobalamin deficiency, 88A, 171
 Cobalt impregnation, 86A, 275
 Cobra plasma albumins, 87B, 559
 Cockroach, 86C, 135; 87A, 53
 Cod heart, 86B, 731
 Coelenterate respiration, 87A, 93
 Coelenterazine, 86B, 361
 Coformycin, 88B, 91
 Colchicine, 86A, 667
 Cold acclimation, 87A, 31, 73; 88A, 425
 Cold-hardiness, 86A, 497
 Cold-tolerance, 88A, 425
Colineus virginianus, 87C, 421
Colinus virginianus, 87B, 933
 Collagen, 88B, 1213
 Collagen Type I, 88B, 27, 409
 Collagenase, 86A, 1; 87B, 103, 889
 Colon, 86A, 251
 Colostrum, 86B, 635
Columbia livia, 86B, 149; 86C, 7; 87A, 959; 87B, 171; 87C, 375
 Con A, 87A, 407
 Conotoxin, 87C, 363
 Cooling, 87A, 487
 Copper, 86C, 1, 37, 147, 169, 173, 443; 87A, 561; 87C, 149, 309, 445; 88A, 269; 88C, 259, 307
 Copper toxicity, 87C, 15
Corbicula fluminea, 87B, 881; 87C, 113
Corbicula manilensis, 88B, 471
Coregonus albula, 88B, 905
 Core temperature, 87A, 345
 Corneal epithelium, 87A, 1119
 Coronary ligation, 87A, 35
 Coronary muscle cells, 87B, 217
 Corpora, 86A, 453
 Corticosterone, 86A, 73, 569; 86C, 7
 Corticotropin, 86A, 15; 87C, 453
 Cortisol, 87A, 405
Coturnix coturnix, 87A, 375, 497
Coturnix coturnix japonica, 86A, 465, 469, 473, 569, 575; 86B, 149, 675; 87A, 261, 375, 923, 933, 947; 88A, 95, 161, 345
 Crabs, 88A, 83
Crangon crangon, 86B, 525; 87B, 1045
Crassostrea gigas, 86A, 21; 87A, 689; 88A, 221; 88B, 369
Crassostrea virginica, 87B, 953; 88A, 471, 475
 Crayfish, 87A, 877; 88A, 213
 Crayfish circadian rhythm, 87A, 111, 119
 Creatine, 87A, 366; 87B, 615
Crepidula fornicata, 86A, 21; 86B, 393
Crithidea cingulata, 87A, 341
Crithidia fasciculata, 87B, 143, 655
Crithidia guilhermei, 88B, 1091
 Critical thermal minimum, 87A, 757
Crocodylus porosus, 88B, 863
 Crude oil, 87C, 177
 Crustacean skeletal muscle fiber, 86A, 581
 Crystalline style proteins, 88B, 333
Ctenomys, 86A, 461
Ctenomys australis, 86A, 461
Ctenomys talarum, 86A, 461

- Culex tarsalis, 87B, 773
- Cuticular hydrocarbons, 86B, 519; 87A, 839; 88B, 681, 875, 911
- Cyanhemoglobin, 86B, 701
- Cyanide, 86B, 129, 141
- Cyclodiene, 87C, 375
- Cynomys ludovicianus, 88A, 387
- Cynops pyrrhogaster, 86A, 537, 545; 86B, 149
- Cyprinid, 87A, 1083
- Cyprinodon variegatus, 86A, 57
- Cyprinus carpio, 86A, 35, 170, 449; 86B, 663; 87B, 49, 391; 87C, 217; 88C, 171, 225
- Cysteamine-induced duodenal ulcer, 86A, 103
- Cytochrome c oxidase, 87B, 851
- Cytokine, 86A, 15
- Cytosolic epoxide hydrolase, 87B, 95
- Cytosol 5'-nucleotidase, 86B, 49
- D₃, 88B, 569
- DA, 86A, 465; 86C, 125; 87A, 261; 87C, 193, 251, 322, 389; 88C, 35
- DA antagonists, 87C, 322
- Dace, 88B, 507
- Dacus dorsalis, 86B, 797
- DAG, 86B, 227
- DALA, 86B, 245; 87B, 607
- D-alanine, 87B, 63
- DALD, 87A, 135
- D-amino acids, 87B, 55
- DAO, 87B, 55
- Daphnia magna, 88B, 39
- Dasyurus viverinus, 88A, 239
- Dasyurus viverrinus, 88B, 1083
- Davus oleae, 87B, 179
- DBS, 86C, 339
- DDE, 87C, 415, 437; 88C, 1
- DDT, 87C, 437; 88C, 1, 213
- Deacylations, 87B, 761
- Deaminase, 87B, 601
- Dedifferentiation, 87A, 863
- Deer, 87A, 551; 87C, 167; 88C, 145
- Dehydroepiandrosterone, 88A, 153
- Dehydrogenases, 87A, 135
- Deltamethrin, 86C, 349; 87C, 31
- Denervated cockroach muscles, 87C, 401
- Denervated neuromuscular junction, 86A, 643
- Denervation, 86A, 177
- Deoxyadenosine deamination, 88B, 939
- Dermestes maculatus, 87A, 771
- Desiccation, 88A, 83
- Desmognathus monticola, 87A, 895
- Desmognathus ochrophaeus, 87A, 895; 88B, 13
- Desmognathus quadramaculatus, 87A, 895
- Detergent, 86C, 339
- Dextroamphetamine, 86C, 317
- DFP, 88C, 61
- Diabetes, 87A, 1063
- Diabetic rats, 88A, 425
- Diacylglycerol, 86B, 227
- Diadema antillarum, 86A, 355
- Diapause, 86B, 719
- Dibenzazepine, 86C, 225
- Dicentrarchus labrax, 87B, 981; 88B, 475
- Dictyostelium discoideum, 86B, 37
- Dieldrin, 86C, 121, 289; 87C, 375
- Diet, 87A, 989

- Dietary fat, 87A, 677
 Diet quality, 87A, 127
 Digestion, 86B, 385; 87A, 623
 Digestive enzymes, 86A, 217
 Digestive enzyme activities, 87B, 297
 Dihalogeinated biphenyls, 87A, 1025
 Dihydro-alprenolol, 87C, 5
 Dihydrotestosterone, 87A, 775
 3,4-dihydroxyphenylacetalddehyde, 86C, 151
 Diltiazem, 88C, 219
 Dimer-tetramer transition, 86A, 683
 4-dimethylaminophenol, 86B, 141
 Dimethyl sulfoxide, 86B, 95
 Dipeptides, 88B, 507
Diplodon delodontus, 88A, 577
Dipsosaurus dorsalis, 86A, 325
 Diptera, 88B, 1027
Discopyge tschudii, 86B, 623
 Diuretic hormone, 88B, 807
 Diving reptiles, 86B, 259
 DNA-binding, 87C, 275
 DNA polymerase, 86B, 315
 DNA repair synthesis, 86C, 399
 DOCA, 86A, 269
 Dog, 88A, 89
 Dogfish, 86C, 169; 87A, 57
 Dogfish haematology, 87C, 349
Donax serra, 87A, 1059
 DOPA, 87C, 75, 193
 L-DOPA decarboxylase, 87C, 315
 Dopamine (also see DA), 86C, 151, 185, 215, 297, 299, 317, 329; 87C, 389
 Dorsal root ganglia, 88B, 713
 2,3-DPG, 88B, 305
 Drinking sea-water, 86A, 49
Drosophila melanogaster, 86B, 63; 87B, 857; 88B, 289
 Ducks, 86A, 389; 88B, 519
 Dufour gland, 88B, 59
Dugesia gonocephala, 86B, 405; 87B, 703
 Dwarf chickens, 86A, 137
 Dy/Dy, 87A, 349
Dysidea avara, 88B, 293
 Dystrophic mice, 86B, 295
 Eagle owls, 88A, 663
 Ecdysteroids, 87A, 803
 ECG, 87C, 41
Echinococcus granulosus, 86B, 209
 Echinoderms, 86B, 683
Echinostrephus molaris, 88B, 637
Echinostrephus aciculatus, 88B, 637
 Ectotherm overwintering strategies, 86A, 609
Edwardsia sp, 87B, 267
 EEG of iguana, 86A, 327
 EGF, 86B, 123, 651; 87B, 221
 Egg proteins, 87B, 125
 Eggshell formation, 88C, 7
 Eglin, 87B, 567
 Ehrlich cell transport, 87B, 451
 Eicosapentaenoate, 87B, 733
Eimeria acervulina, 87B, 313
Eimeria stiedai, 87B, 863
Elaphe obsoleta, 86B, 259
 Electrocardiogram, 87A, 73
 Electrolytes, 86A, 251
 Electroplax, 86B, 623
Elephantulus myurus, 87A, 311

- Endocrine peptides, 88A, 183
- Endophyte infected tall fescue seed, 87C, 171
- Endotoxin, 88A, 519
- Energy economy, 87A, 983
- Energy metabolism, 87B, 35; 88A, 383
- Energy substrate, 86A, 439; 87A, 81
- Enkephalin, 87C, 221
- Enterocytes, 88A, 431
- Entomopathogenic fungal, 88A, 491
- Environmental pH, 87C, 1
- EOG, 86B, 513
- Eosinophils, 87B, 969
- Epidermal growth factor, 86B, 123, 651
- Epilachna varivestis, 87B, 783
- Epinephrine merra, 86B, 509
- Epitheliocytes, 86A, 173
- Epoxide hydrolase, 86C, 379
- Equine plasma lipoproteins, 87B, 501
- Equus asinus, 86A, 633
- Equus caballus, 86A, 633; 88B, 363
- Erythizon dorsatum, 86B, 671; 88A, 695
- ERG, 86A, 523; 87A, 119
- ERG circadian rhythm, 88A, 213
- Erinaceus europaeus, 86A, 1
- Eriocheir sinensis, 88A, 581
- Eructation, 87A, 993
- Erythrocytokeratin, 87B, 1017; 88A, 377
- Erythrocytes, 88A, 397
- Erythrocyte biochemistry, 88B, 305
- Erythrocyte membrane proteins, 87B, 171
- Escherichia coli, 87B, 961
- n-6 essential fatty acids, 86B, 575
- Esterases, 87B, 45, 761
- Esterification, 86B, 725
- Estradiol, 87A, 765; 88A, 248
- Estrogen, 88C, 18
- Estrogen challenges, 87A, 863
- Ethacrynic acid, 87A, 1063; 88B, 39
- Ethanol, 86B, 95; 86C, 63; 87C, 79, 409
- N-ethylmaleimide, 87B, 969
- Ethylmorphine N-demethylase, 88B, 619
- Eucelatoria bryani, 86A, 349
- Euglena gracilis, 86B, 711; 87B, 593; 88B, 943
- Euhadra neurones, 86A, 589
- Eukaryotic cell growth, 87B, 1
- Eukephalins, 87B, 485
- Euphausia superba, 86B, 313
- Eurycea bislineata, 88B, 13
- Eurydice longicornis, 87A, 899
- Eurypelma californicum, 86B, 571
- Evolution of the invertebrate lung, 87A, 1
- Excitatory amino acids, 88C, 47
- Excretion, 87B, 803
- Exercise, 87A, 915, 1083, 1089
- Exocirolana natalensis, 87A, 899
- Exocytotic secretion, 86B, 431
- Exolaminarinase, 88B, 105
- Eye lens proteins, 88B, 219
- Falco tinnunculus, 86C, 379
- Farnesine, 86B, 251
- Farnesol, 86B, 311
- Fasting, 88A, 677

- Fat deposition, 86A, 337
Fat pad, 86A, 69
Fatty acid, 86B, 227; 86C, 45; 87B, 1037; 88B, 47, 1201
Felidae blood, 87A, 387
Felis domesticus, 88B, 551
Fenoxy carb, 87C, 367
Ferredoxin, 87B, 637
Ferritin, 86A, 389; 87B, 915
Festuca arundinacea, 87C, 171
 α -fetoprotein, 87B, 527
Fever, 87A, 467
Fever in snails, 87A, 1017
Fibroblast transport, 87B, 452
Fiddler crabs, 87A, 341
Fish, 86A, 491; 88A, 659
Fish liver, 88B, 569
Flavin, 87B, 35
Flavokinase, 87B, 681
Flavone, 87B, 621
Flounder, 87A, 543
Fluid compartmentation, 87A, 597
Fluid secretion, 88A, 307
Fluid volumes, 87A, 703
Fluorescent protein, 86B, 411
Fluoride excretion, 88A, 229
Fluosol-DA, 86C, 431
FMRF-amide, 86C, 353, 371, 425; 87C, 59, 153; 88A, 263
Follicular fluid, 88A, 599
Food deprivation, 87B, 241
Food-restricted rats, 87A, 31
Foregut, 88C, 131, 139
Formica fusca, 88B, 59
Formica lemani, 88B, 59
Formycin B, 87B, 489
Forskolin, 86C, 91
Fowl, 86A, 209; 88A, 101
Fratercula artica, 87C, 375, 415; 88C, 151
Free amino acids, 87A, 47
Fright-shock, 87B, 321
Frogs, 86C, 437; 88A, 349
Frog epidermis, 86B, 241
Frog gustatory responses, 88A, 487
Frog retinal pigment, 86C, 421
Frog retinal rods, 87A, 749
Frog skeletal muscle, 86A, 229, 331
Frog skin, 87A, 873
Frog spinal cord, 87C, 221
Fructolysis, 87B, 523
Fructose-1,6-bisphosphate, 87B, 553
Fructose 2,6-bisphosphate, 88B, 843
Fruit bat, 88A, 171, 253
FSH, 87A, 551
Fucosyltransferase, 87B, 725
Fulica ferussac, 88C, 325
Fulmarus glacialis, 87C, 415
Fungal protease, 86B, 201
Furosemide, 87A, 885
Fuscobalteata, 87B, 465
Fyfanon, 86C, 157
G6PD, 88B, 471
GABA, 86B, 489; 87C, 23, 37, 211; 88C, 155
Gabaculine, 87C, 211
GABamide, 88B, 457
GABA receptors, 86C, 305
Gadus morhua, 86B, 731; 87C, 193; 88A, 543; 88B, 697
Galactose, 88A, 411

- D-galactose, 86A, 63

Galactose-rich glycoprotein, 88B, 101

α -galactosidase, 87B, 379; 88B, 923

Galeocerdo cuvieri, 86B, 737

Galleria mellonella, 87A, 189

Gallotia galloti, 87A, 883; 88A, 405

Gallus domesticus, 86A, 515; 87A, 587; 87B, 313, 803; 88A, 27; 88C, 23

Gamete release, 86C, 215

Gammarus duebeni, 88B, 257

Gangliosides, 86B, 377; 88B, 757

Garter snakes, 87B, 999

GDH, 87A, 139; 87B, 941

Gekko japonica, 86B, 675

Genypterus maculatus, 88B, 229

Geochelone pardalis, 87A, 467

Geodia cydonium, 86C, 17

Gerbil, 88A, 153

GFR, 87A, 359, 515

GH, 87A, 315

Gills, 86A, 245

Glis glis, 88A, 33

-globulin, 86A, 109

Glossoscolex paulistus, 88A, 377

Glucagon, 86A, 209; 87A, 175

Glucanases, 86B, 173

Gluconeogenesis, 86B, 185; 87B, 208; 88B, 193

Glucose, 86A, 173, 309; 86B, 689; 87A, 1045; 88A, 411; 88B, 1041

Glucose 1,6-bisphosphate, 88B, 843

Glucose oxidation, 86A, 381; 88A, 33

Glucose phosphate isomerase, 86B, 255; 87B, 465

Glucose transport, 88B, 51

Glucose turnover, 87B, 981

Glucose uptake, 88A, 341

Glucosidase, 87B, 755

α -1,2-glucosidase, 88B, 313

β -glucuronidase, 86B, 565; 87B, 303

Glutamate, 87B, 799, 803; 87C, 9, 121, 401; 88C, 301

Glutamate dehydrogenase, 86B, 255, 525; 87A, 63; 88B, 737

Glutamate receptors, 87C, 99

Glutamine, 87C, 9

Glutamine amide-N, 87B, 803

Glutamine synthetase, 86B, 755

γ -glutamyltranspeptidase, 87B, 73

Glutathione, 86B, 749; 87B, 523, 907; 88B, 177

Glutathione S-transferase, 86B, 73; 87B, 527, 671, 1005; 88B, 39, 675; 88C, 91

Glutathione transferase, 86C, 41, 73

Glycera, 88A, 397

Glycera dibranchiata, 87B, 55, 63

Glyceraldehyde-3-phosphate dehydrogenase, 87B, 391, 837, 843; 88B, 563

Glycerate 2,3-P₂, 86B, 547; 87B, 117

Glycerol lipases, 87B, 341

α -glycerophosphate dehydrogenase, 86B, 117

Glycoconjugates, 86B, 593

Glycogen, 86B, 719; 87A, 423

Glycogen phosphorylase, 87B, 747; 88B, 983

Glycolysis, 87B, 208

Glycolytic activity, 86B, 693

α -B-glycoprotein, 88B, 953

- Glycoprotein, 86B, 555; 87A, 509; 88B, 7 GTH, 88A, 49
Glycosaminoglycans, 88B, 541 GTP, 88B, 1077
Glycosidases, 86B, 173 Guanine, 87B, 157
Glycosylated haemoglobin, 86B, 343 Guinea pig (see also Cavia), 86A, 381; 86B, 83; 86C, 173; 87A, 569; 87C, 237
Glycosylation, 86B, 233 Guinea-pig taenia coli, 86A, 703; 86C, 387
Glyoxylate cycle, 88B, 851 Gukensia demissa, 87A, 1021
c GMP, 86C, 313 Gyps fulvus, 87A, 1123
GMP, 86B, 49
Gnathonemus petersi, 86A, 170
Gnathopogon caerulescens, 86C, 339, 361 Hadenoecus subterraneus, 86A, 295
Gn-RH, 86A, 767 Haemanchus contortus, 88A, 207
Goat (see also Capra), 88C, 145 Haematological values, 86A, 569, 649; 87A, 479; 88A, 239, 451
Goat blood, 88A, 533 Haementeria ghilianii, 86C, 405
Goat hepatocytes, 88B, 193 Haemocytes, 88B, 133
Goldfish brain, 86B, 555 Haemolymph, 86A, 255; 86B, 201; 87A, 603; 88A, 563
Gonadotropin, 86A, 453; 88A, 49 Haemolymph osmolality, 86A, 433
Goniopsis cruentata, 88A, 83 Haemopis marmorata, 86C, 405
GOT, 86C, 255; 88A, 589 Haemopis sanguisuga, 88A, 235
Gout, 86A, 713 Hair, 86B, 671
G3PDH, 86B, 693 Haliotis, 86B, 219
G-6-phosphate, 86B, 117 Halocynthia roretzi, 86B, 809; 88B, 375
GPT, 86C, 255; 88A, 589 Halothane, 86C, 55
Gracilaria verrucosa, 87B, 843 Ham's F10 culture medium, 87A, 1103
Granulocytes, 86A, 109 Hamsters, 87B, 715; 87C, 71
Graomys griseoflavus, 87A, 257 Hamster melanoma, 87B, 709
Growth, 87A, 547 Harmaline, 88C, 197
Growth hormone, 86A, 29, 137; 87A, 315; 88A, 147 HCE, 87C, 375
Grus canadiensis, 87B, 165 HCG, 87A, 627
Grus grus, 87B, 165 " HCO_3^- " from pH and PCO_2 , 87A, 417
Gryllus bimaculatus, 86B, 63 HDL, 87B, 195, 313, 501
GSH, 86C, 443; 88B, 305 HDLP, 87B, 313
GSH receptor, 87C, 321 Heart, 86A, 121
GSH S-transferase, 87C, 433

- Heart tissue, 87A, 543
- Heating, 87A, 487
- Heat shock proteins, 88B, 13
- Heat stress, 87A, 461
- Helisoma duryi, 86A, 773, 777; 87A, 963; 88B, 243
- Helisoma sp, 88B, 603
- Helix aspersa, 86A, 113; 87A, 573, 1055; 88B, 181
- Helix neurons, 86C, 371; 88C, 121
- Helix pomatia, 87C, 153; 88A, 641
- Helix pomatia neurons, 88A, 119
- Helostoma temincki, 88A, 37
- Hematocrit, 87A, 1123
- Heme catabolism, 88B, 667
- Hemicentrotus pulcherrimus, 88B, 147
- Hemicholinium, 86C, 117
- Hemilepistus reaumuri, 86A, 433
- Hemocyanin, 86B, 641; 87A, 683; 88B, 71, 127, 181
- Hemodynamics, 88A, 169
- Hemoglobin, 86A, 85, 683; 86B, 15, 155, 473, 701; 87B, 361, 1011; 88B, 251, 285
- Hemoglobin α -chain, 87B, 189
- Hemolytic protein, 87B, 321
- Hemopexin, 86B, 113; 88B, 341
- Hemorrhage, 87A, 533
- Hemorrhaged Japanese quail, 87A, 923, 933; 88A, 95
- Henderson-Hasselbalch, 87A, 417
- Hens (also see chicken), 86C, 97, 395; 87B, 227
- Heparin cofactor II, 87B, 435
- Hepatectomy, 87A, 13
- Hepatic lipids, 86B, 785
- Hepatic ribosomes, 88B, 141
- Hepatic uricase, 88B, 999
- Hepatocytes, 86B, 7
- Hepatopancreas, 88A, 383
- Herbicides, 88C, 99
- Hexane, 86B, 27
- n-Hexanol, 87A, 873
- H^+ excretion, 87A, 671
- Hexokinase, 86B, 541; 87B, 533, 543
- Hexose monophosphate pathway, 86B, 629
- HGH, 88A, 311
- 5HIAA, 87C, 75
- Hibernation, 86A, 241; 87A, 1097
- High altitude, 88B, 651
- High hydrostatic pressure, 88A, 481
- Hill plot, 86B, 157
- Hippoglossus hippoglossus, 86B, 281
- Hirudin, 87B, 567
- Hirudo medicinalis, 86A, 151; 86C, 405; 87B, 497, 567; 88C, 95
- Hirudonine, 87B, 927
- Histamine, 86C, 395
- L-histidine, 88B, 507
- Histone H4, 87B, 847
- Histone variants, 88B, 1027
- Histrionicotoxin, 88C, 249
- HK, 86B, 693; 87A, 9, 711
- HMGCoA, 87B, 697
- (HMG) proteins, 87B, 423
- Holothuria leucospilota, 86C, 333; 87A, 579
- Holothurians, 88A, 549
- Holothurian body wall, 86C, 333
- Holothurian catch connective tissue, 87A, 579
- Homarus americanus, 87A, 69, 765

- Hormonal modulation, 87A, 1037
Horse (also see *Equus*), 87A, 561
Horse plasma, 88B, 237
HRP, 88A, 507
5HT, 86A, 465; 86C, 125, 215, 273, 281, 325; 87A, 261; 87C, 75; 251, 393; 88B, 317; 88C, 35, 131, 139, 233
5-HT₂, 88C, 139
Hyaena hyaena, 86A, 649
Hyaenidae, 86A, 649
Hyaluronidases, 87B, 497, 567
Hyas araneus, 87B, 297; 88B, 777
Hycanthone-resistance, 87B, 459
Hydra attenuata, 87C, 321; 88B, 855
Hydra feeding, 87C, 321
Hydrocarbons, 87B, 233
Hydrogen cyanide, 86C, 33
Hydrogen peroxide, 86B, 31
Hydrogen sulfide, 88B, 949
Hydrolases, 87B, 755; 88B, 655
Hydrophis cyanocinctus, 87B, 559
Hydrostatic pressure, 86A, 491
3-hydroxybutyrate, 86B, 454
D-B-hydroxybutyrate, 88B, 797
5-hydroxyindoleacetic acid, 86C, 185
Hydroxyproline, 86C, 395
Hydroxysteroid oxidoreductases, 88B, 977
Hylesia metabus, 88A, 141
Hymenolepis diminuta, 88B, 51, 317
Hyosine, 87c, 440
Hyperbilirubinaemia, 88C, 263
Hypercalcemia, 87A, 1051
Hypercholesterolemia, 86B, 725
Hyperglycemic hormone, 87A, 423; 88A, 311
Hyperlipidemic rabbit, 88A, 503
Hyperphosphataemia, 86C, 395; 87A, 183
Hypertensive rats, 87C, 83
Hyperthermia, 87A, 677
Hypophthalmichthys matrix, 87B, 49
Hypophysectomy, 86A, 143
Hypothalamus, 88A, 56
Hypoxanthine, 86B, 397
Hypoxia, 86A, 261, 319; 87A, 813, 819; 88A, 345; 88B, 651
Ibotenate, 87C, 99
ICD, 87B, 465
Ictalurids, 88B, 219
Ictalurus marmoratus, 86B, 269
Ictalurus melas, 87C, 181
Ictalurus nebulosus, 88B, 297
Ictalurus punctatus, 86B, 269; 87A, 405; 87B, 671; 87C, 37; 88A, 65, 589; 88B, 767
Iguana iguana, 87A, 623
Illex illecebrosus, 87A, 63
Imidazole, 87B, 615
Imipramine, 86C, 225
Immunoglobulins, 86B, 365, 737
IMP, 86B, 49
Incubating canaries, 87A, 721
Incubation temperature, 87A, 727
Indomethacin, 87A, 635, 657
Inducer pretreatment, 86C, 343
Inflammation, 86A, 15; 86B, 493; 87B, 11
Inosine, 87B, 403
Inositol-P5, 87B, 165

- Insects, 88A, 563
 Insect CNS, 87C, 211
 Insecticides, 86C, 157
 Insecticide resistance, 88C, 165
 Insect myosin ATPase, 86B, 63
 Insect tissue culture, 87A, 215
 Insulin, 86A, 15, 331; 86B, 55; 87A, 175, 781; 87B, 803; 88B, 701
 Insulin-binding, 87B, 649
 Insulin metabolism, 86A, 309
 Insulinoma, 87A, 175
 Insulin-stimulated Na,K-pump, 86A, 133
 Intestinal permeability, 86A, 565
 Intestinal sugar absorption, 86A, 617
 Intestinal transport, 87B, 447
 Intraperoxisomal localization, 86B, 23
 Intraportal ammonia, 87B, 799
 Invertebrate neurons, 87A, 215
In vitro fertilization, 87A, 889, 1103
 Ion-exchange, 88A, 659
 Ionic currents, 88A, 317
 Ionic regulation, 88A, 243
 Ion pumps, 88A, 75
 Ion transport, 88A, 405
Ircinia pipetta, 88B, 293,
 Iridophores, 88C, 319
 Iris-ciliary body, 88B, 847
 Iron, 86A, 389; 86C, 201; 87C, 149
 Iron concentration, 88A, 325
 Iron metabolism, 87A, 947
Irradiation in ovo, 87A, 923
Ischikauia steenackeri, 87A, 1083
 Isoenzymes, 86B, 73, 252
 Isolated perfused gills, 87A, 333
 Isopods, 86A, 433; 87A, 899
 Isoprenaline, 87C, 251, 269
 Isopropyl palmitate, 86B, 27
 Isoproterenol, 86C, 91; 87C, 71
 Jaw movements, 86A, 7
 Jejunum, 86A, 251
 Jellyfish toxin, 86C, 411
Junco hyemalis, 88A, 443
 Juvenile hormone, 86B, 501; 87A, 771; 88B, 1157
 Juvenile hormone biosynthesis, 87C, 161
 Kainic acid, 88A, 61
 Kanamycin, 87C, 245
 Kangaroo, 88B, 923
Katharina tunicata, 87A, 683
kdr, 88C, 165
 Ketanserin, 88C, 131
 Ketotestosterone, 88A, 49
 Kidney, 87C, 47
 Kidney transport, 87B, 449
 Kidney tubules, 86A, 713
 Kinase activity, 87B, 663
 Kininogen, 88B, 429
 Koelliker hemoglobin, 87B, 1025
 Kontes well, 87A, 583
 Krait, 87B, 559
 Krill, 88B, 157, 165
Kuma sp, 86A, 509
Lacerta vivipara, 86B, 233; 87A, 1089
 LA-corpulent rat, 86A, 67

- α lactalbumin, 87A, 1107
Lactate, 86A, 229, 255; 87A, 171
Lactate metabolism, 86A, 91
Lactation, 87A, 1107; 87B, 649; 88A, 695; 88B, 1083
Lactic acid, 86C, 45
Lactose absorption, 88B, 923
Lagopus l. lagopus, 88A, 677
Lama guanicoe, 86A, 633
Lama lama, 86A, 633
Lambs, 86A, 251; 86B, 689
Lampetra japonica, 86B, 149
Lamprophis fulignosus, 87A, 911
Larus argentatus, 88C, 151
Lateral-line organ, 86A, 553; 87A, 305
Laticauda semifasciata, 87B, 559
LDH, 86B, 219, 259, 333; 87B, 199, 581, 833; 88B, 119, 1005
LDL, 87B, 195, 317, 501
Lead, 86C, 163, 201, 219; 88C, 23
Lectin, 86B, 241; 88B, 375; 88C, 179
Leech, 87B, 497
Leech segmental ganglia, 86C, 405
Leirus quinquestriatus, 87B, 867
Leishmania donovani, 87B, 629
Leishmania mexicana, 88C, 193
Leishmania tarentolae, 88B, 101
Lema trilineata, 87B, 783
Length-tension relation, 87A, 503
Lens calinaris, 86B, 233
Lepisma saccharina, 88C, 255
Lepomis macrochirus, 87B, 671
Lepomis megalotis, 87B, 386
Leporinus friderici, 87B, 199
Leptinotarsa decemlineata Say, 87A, 839
Leptomonas samueli, 86B, 593
Leucine, 86B, 515
Leucine aminopeptidase, 87B, 103, 889; 88B, 133
Leuciscus hakonensis, 88B, 507
Leucokinins V, 88C, 27
Leucokinins VII and VIII, 88C, 31
Leucophaea maderae, 88C, 27, 31
Leucophores, 88C, 75
Leucotriene metabolism, 87B, 733
Leukocytes, 87B, 809
Leukocyte numbers, 87A, 923
Leydig cells, 86A, 35
LH, 86A, 453; 86B, 327; 87A, 551
Lichia amia, 88A, 523
Lifespan in bats, 88A, 361
Ligia pallasii, 87A, 127, 989
Limax, 86C, 125
Limnaea auricularia, 87A, 1017
Limnodynastes tasmaniensis, 88A, 373
Limpets, 87A, 695
Limulus polyphemus, 86C, 103, 111; 87C, 121, 131
Linoleic acid, 86B, 575
Lipase, 88B, 187, 261
Lipids, 86A, 663; 86B, 209; 88B, 881, 1041
Lipid biosynthesis, 86B, 791
Lipid composition, 86C, 339
Lipid digestion, 88B, 697
Lipid fatty acids, 88B, 905
Lipid metabolism, 86B, 167; 88B, 323
Lipid peroxidation, 88B, 177
Lipid transport, 87B, 279

- Lipofuschin, 88B, 777
Lipogenesis, 87B, 789
Lipoproteins, 86B, 571; 88B, 261, 729
Lipoprotein lipase, 87B, 137; 88B, 523
Lithium, 86C, 91
Lithodes aequispinus, 87B, 103
Littorina littorea, 86A, 693
Liver, 86B, 179; 87A, 863
Liver carbohydrate metabolism, 86B, 763
Liver glycogen, 88A, 387
Liver protein F antigen, 87B, 87
Liver regeneration, 87A, 13
Lizards, 87A, 1089; 87B, 345; 88A, 683
Lizard colon, 87A, 883; 88A, 405
Lizard skin lipids, 87B, 345
LK, 87A, 9, 711
Lobster, 88B, 983
Locust, 88B, 523, 807
Locusta migratoria, 86B, 37; 87A, 193; 88B, 523, 807, 1097
Locust nervous system, 88B, 65
Loligo pealei, 87C, 31
Longevity, 88A, 361
Long-term fasting, 87A, 381
Lonidamine, 88C, 193
Luciferin, 86B, 361
Lumbricus rubellus, 87B, 1011
Lumbricus terrestris, 86B, 333; 87A, 135, 1015; 87C, 63
Luminescence, 87C, 233
Luidia clathrata, 86B, 693
Lung, 87C, 439
Lycaon pictus, 86A, 649
Lymantria dispar, 86A, 679
Lymnaea natalensis, 86A, 773
Lymnaea stagnalis, 86C, 55; 87A, 671, 969; 87B, 915
B lymphocytes, 88A, 65
Lymphocytes, 86A, 109
Lymphoid tissue, 86C, 431
Lysine-rich histones, 86B, 193
Lysozyme, 86A, 109; 87A, 189
Lysozymes type C, 88B, 791
Lytechinus variegatus, 87A, 327
MAB, 87B, 329, 871, 961; 88A, 65
Macaca fascicularis, 88B, 467
Macaca mulatta, 87B, 95
Macacus cynomolgus, 88B, 655
Maccaca fuscicularis, 86B, 671
Macoma balthica, 86B, 561; 88B, 881
Macrobdella decora, 86C, 405; 87B, 927
Macrobrachium olfersii, 87A, 399
Macrobrachium rosenbergii, 86A, 373; 87A, 907; 87B, 827
Macroglobulins, 87A, 1; 87B, 435
Macropus eugenii, 87A, 1107; 87B, 423
Magnetic material in teleosts, 86A, 169
Malacosoma americanum, 86A, 679
Malacosteus niger, 86B, 411
Malate dehydrogenases, 86B, 89, 797; 87B, 465; 88B, 119, 203, 461, 1033
Malic enzyme, 86B, 731
Malonyl-CoA, 87A, 1041
Mandibular gland, 86B, 251
Manduca sexta, 87B, 989; 87C, 9
Mangrove sediments, 87A, 341

- Mannose, 86B, 593
- Maoridrilus montanus, 87B, 1017
- Marmoset, 88B, 989
- Matrigenin, 88B, 529, 535, 541
- Maurolicus muelleri, 87C, 233
- MCH, 88A, 15
- Measurement of $^{14}\text{CO}_2$, 87A, 583
- Mechanoreceptors, 87A, 161
- Medusae, 87A, 93
- Meganyctiphanes norvegica, 88B, 157, 165
- Megascolia flavifrons, 87C, 287
- Melampus bidentatus, 87A, 295
- Melanin, 87C, 329; 88C, 69
- α -melanocyte, 86C, 23
- Melanophores, 88C, 69
- Melanosome, 88C, 287
- Melatonin, 86A, 417; 86C, 23; 87C, 71; 88A, 55
- Meleagris gallopavo, 86C, 63, 67; 87A, 409; 87C, 421; 88C, 201
- Mellein, 86B, 251
- Membrane proteins, 88B, 233
- Membrane vesicles, 88A, 511
- Mercenaria mercenaria, 87B, 953
- Mercury, 86C, 1, 37; 87C, 181, 303
- Mercury-203, 86C, 37
- Meriones unguiculatus, 88A, 153
- Merluccius hubbsi, 87A, 845
- Mesocricetus auratus, 86A, 565; 86B, 726; 86C, 23; 87B, 709, 715; 87C, 71
- Mesothuria lactea, 88A, 549
- Metabolic adaptations, 88A, 21
- Metabolic rate in mammals, 87A, 205
- Metabolic utilization, 88A, 45
- Metabolic water, 86A, 79
- Metabolism, 86A, 403; 86B, 281; 88A, 113
- Metallothionein, 86C, 1, 37; 87C, 65, 113
- Metamorphosis, 86A, 429
- Metenkephalin, 87C, 59
- Methemoglobin, 86B, 141; 86C, 449
- Methemoglobin reductase, 86B, 629
- Methionine, 88A, 443; 88B, 551, 1013
- 3-methylalkanes, 86B, 519
- Methyl-glucose, 88A, 341; 88B, 51
- 3-O-methylglucose, 86A, 331
- Methylglyoxal bis(guanylhydrazone), 87B, 863
- Methyl group metabolism, 88B, 383
- N-methyl histidine, 86B, 273, 419
- Metridium senile, 87B, 303
- Mg^{2+} , 86A, 113, 689; 86C, 163; 87A, 305
- Mg^{2+} -ATPase, 87B, 109; 88B, 1067, 1125
- Mg^{2+} -dependent Na^+ -stimulated ATPase, 88B, 691
- Mianserin, 86C, 225; 88C, 139
- Miconazole, 88A, 77
- Micropterus salmoides, 87B, 386
- Microsomal enzymes, 86C, 379
- Microtubular drug binding, 88B, 1057
- Microtubule, 87A, 745
- Microtus montanus, 86C, 343
- Microtus pinetorum, 86A, 213
- Microtus townsendii, 87A, 345
- Microwave irradiation, 87A, 375
- Micruurus nigrocinctus, 87B, 949
- Midgut, 87A, 21

- mIg, 88A, 65
- Milk, 86B, 635
- Milvus migrans, 87A, 1123
- Miniopterus schreibersii, 86C, 365; 88A, 447
- Mitochondria, 86B, 541; 86C, 375; 87B, 851
- Mitochondrial membranes, 88B, 797
- Mitogenic activity, 87B, 309
- Mixed-function oxidase, 86C, 233; 88C, 151
- Mn, 88A, 269
- Modiolus modiolus, 87A, 1021
- Molluscan larvae, 86A, 21
- Molluscan neurobiology, 86A, 785
- Molluscan shell, 87B, 953
- Molybdenum, 86B, 531
- Monoamines, 86A, 465; 86C, 125; 87A, 261
- Monoamine oxidase, 86C, 325
- Monocyte factor, 87B, 11
- Monokines, 87B, 11
- Morimus asper funereus, 86A, 217
- Morphine, 87C, 425
- Mouse, 86B, 123; 88A, 519
- Mouse kidney, 86B, 651
- Mouse L-cells, 88B, 277
- Mouse tumor cells, 87B, 309
- M_r 90,000 heat shock protein, 87B, 961
- mRNA, 87B, 179
- a-MSH, 88A, 15
- Mucin, 87A, 657
- Mucus, 87A, 657
- Mugil lisa, 88B, 625
- Murex trunculus, 88B, 917
- Murinoglobulin, 86A, 1
- Musca domestica, 87C, 187; 88C, 165, 233
- Musca domestica vitellogenin, 86B, 697
- Muscarinic receptor, 86C, 313, 365
- Muscimol, 87C, 211; 88C, 155
- Muscles, 86A, 443; 86B, 109; 87A, 349
- Muscle capillarity, 87A, 819
- Muscle cell membrane, 88C, 99
- Muscle fiber types, 86A, 185
- Muscle glycogen, 87B, 209
- Muskrat, 86A, 381
- Mus musculus, 87A, 597
- Mussels, 86C, 157
- Mustela putorius, 86B, 117
- Mustelus manazo, 86B, 681; 88C, 189
- Myocardial calcium, 87C, 79
- Myosin, 88B, 613, 1067
- Myosin light chain phosphorylation, 87B, 271; 87C, 23
- Myotis daubentonii, 88A, 637
- Myotis natterei, 88A, 447
- Myotropic peptides, 88C, 27
- Mysidopsis bahia, 88A, 369
- Mytilus, 86C, 273
- Mytilus californianus, 86C, 215; 88C, 293
- Mytilus edulis, 86C, 37; 87A, 151, 1021; 87C, 47; 88A, 557; 88B, 91
- Mytilus galloprovincialis, 88C, 171
- NA, 86A, 133, 465, 481; 86C, 185, 299, 325, 329, 411; 87A, 197, 700; 87C, 75, 193, 227, 251, 269, 339, 393; 88C, 35, 287
- Na⁺ and Cl⁻ regulation, 86A, 57

- Na^+-K^+ -ATPase, 87A, 1119; 88A, 75; 88B, 85 Neutrophils, 86B, 31
Na-NH₄-ATPase, 87C, 1 Newt, 86A, 537, 545
Na⁺ transport, 88A, 431 NGF, 87B, 329
NAD kinase, 87B, 809 Nicardipine, 88C, 219
NADPH/NADP, 88B, 851 Nipecotic acid, 87C, 37
Naja naja, 87B, 329, 559 Nippostrongylus brasiliensis, 88B, 81
Naloxone, 87C, 221 Nitrate, 88A, 127
 β naphthoflavone, 86C, 343 Nitrite, 86C, 247, 255, 449; 88A, 127
Narcosis, 86A, 113 Nitrogen excretion, 87A, 63
Nasal glands, 86A, 397 Nitrogen metabolism, 86A, 449
Nassarius reticulatus, 86A, 21 p nitrophenol, 86C, 357
Natriuresis, 87A, 1063 NMDA, 87C, 99; 88C, 47
Nauplii, 87B, 305 NMR, 86B, 537; 87B, 285
NECA, 88C, 121 Nociceptive stimulation, 88A, 27
Nematocysts, 88B, 855 Noemacheilus barbatulus, 87C, 65
Nematodes, 88A, 207 Noetia, 88A, 397
Nemerteans, 86C, 425 Nonspecific immunity, 86A, 633
Neocortical slice, 88C, 47 NPO, 86A, 281
Neofelis nebulosa, 87A, 387 Nucleolar phosphoprotein, 87B, 309
Neolithides nipponensis, 87B, 103 Nucleolytic activity, 87B, 31
Nephridia, 86A, 151 3'-nucleotidase, 87B, 629
Nerodia rhombifera, 86B, 259 Nucula hanleyi, 88B, 71
Neural pooling, 88A, 3 Nutrients, 88B, 701
Neuroendocrine control, 87A, 399 Nyctereutes procyonoides, 86B, 117;
Neuroendocrine mitogenic factor, 86B, 393 87A, 631, 983
Neurohypophysial principles, 86A, 225 Obesity, 86A, 67
Neuromuscular synaptic transmission, 87C, 121, 131 (ob/ob) mice, 88B, 359
Neurons in tissue culture, 86A, 199 n-octacosane, 86B, 519
Neurosecretory cells, 87A, 295 Octopamine, 86C, 325; 87C, 75, 251;
Neurotensin, 87C, 59, 325 88C, 335
Neutral amino acid transport, 87A, 573 Octopus rubescens, 87A, 63
Octopus saliva, 88B, 1117
Octopus vulgaris, 86B, 347
Ocypode quadrata, 88A, 83
Odocoileus hermionus, 88C, 145

- Odocoileus virginianus, 86A, 767; 87A, 551; 87C, 167
- Odontobutis obscura, 88C, 319
- Odors, 86B, 513
- Oesophagus, 87A, 959
- Oestradiol, 87A, 635
- Oil pollution, 88C, 151
- 5-olefinic acids, 87B, 1037
- Oleic acid, 86B, 623; 87B, 137
- Olfactory cilia, 88B, 767
- Onchorhynchus keta, 86B, 99
- Oncogenes, 87B, 663
- Oncorhynchus keta, 87A, 101; 87B, 411, 793
- Oncorhynchus kisutch, 87C, 177; 88A, 147
- Oncorhynchus nerka, 87C, 259
- Oncorhynchus tshawytscha, 87A, 35
- Ondatra zibethicus, 86A, 381
- Oocytes, 86B, 167; 88B, 743
- Ophisaurus apodus, 88A, 201
- Opsonization, 86B, 31
- Optic nerve section, 88A, 311
- Orchestia gammarellus, 88A, 243
- Orchidectomy, 87A, 627
- Orconectes limosus, 87A, 423
- Orconectes propinquus, 86C, 201
- Orconectes rusticus, 87C, 1
- Organic acids, 87A, 963
- Organic acid content, 86A, 777
- Origin of the vertebrates, 87A, 523
- ornithine aminotransferase, 88B, 35
- Orotate uptake, 86B, 581
- Oryctolagus cuniculus, 86A, 109; 87B, 95, 587, 837, 929; 88A, 503
- Oryzias latipes, 86C, 91; 87C, 275;
- 88C, 75
- Osmo-ionic concentrations, 88A, 83
- Osmolality, 88A, 563
- Osmolarity, 87A, 433
- Osmoregulation, 88A, 291, 369
- Osmotic constituents, 87A, 363
- Osmotic hysteresis, 87A, 151
- Osmotic pressure, 87A, 39
- Osmotic regulation, 86A, 79
- Othrin, 86C, 157
- Ouabain, 86A, 133, 717, 733; 86C, 113; 87A, 807, 1063
- Ouabain-insensitive sodium efflux, 86A, 733
- Ovarian steroids, 86A, 559
- Ovary, 86B, 213
- Ovis aries, 87A, 993; 88C, 145
- β -oxidations, 87B, 217
- Oxygen, 86A, 255, 509
- Oxygen consumption, 86A, 189, 233, 381; 87A, 69, 127, 471, 695; 87C, 233; 88A, 373
- Oxygen debt, 87B, 214
- Oxygen equilibrium, 87B, 361
- Oxygen tension, 86A, 155
- Oxygen-transport fluids, 87A, 825
- Oxygen uptake, 87A, 63
- 3-oxy-methyl-D-glucose, 86A, 625
- Oxymyoglobin, 88B, 783
- Oxytocin, 86C, 353; 87C, 59
- PII, 88B, 1157
- P-450, 87C, 375, 421; 88C, 83
- Pachygrapsus, 86A, 761
- PAF, 87C, 41
- Pagothenia borchgrevinki, 88A, 417

- PAH, 87A, 359, 587
Palaemon elegans, 88A, 291
Palaemonetes antennarius, 87A, 471; 88A, 299
Palytoxin, 86C, 387
Panagrellus redivivus, 86B, 103
Pancreas, 86B, 83; 88B, 557
Pancreatic hormones, 86A, 241
Panthera leo, 87A, 387
Panthera onca, 87A, 387
Panthera tigris, 87A, 387
Panulirus japonicus, 87B, 889
Panulirus regius, 88B, 983
Papain, 86A, 1
Papio cyanocephalus, 88B, 233
Papio papio, 87B, 95
Papio ursinus, 87A, 889, 1103
Paragonimus westermani, 87B, 643
Paralithodes camtschaticus, 87B, 103
Paramecium tetraurelia, 88B, 887
Paraoxon, 86B, 67
Parapenaeus longirostris, 87B, 17
Paraquat, 86C, 375; 87C, 217
Parasilurus asotus, 86A, 485; 88B, 557
Parastacoides tasmaniensis, 87A, 813
Parathyroid hormone, 88A, 349
Parbolasia corrugatus, 87B, 55
Parotid cells, 88C, 219
Parotid glands, 88A, 307
Parotid venom, 87C, 393
Paruroctonus mesaensis, 86A, 121
Parus major, 87B, 885
Patella caerulea, 88B, 1033
Patinopecten yessoensis, 87B, 747
PBG-synthase, 86C, 163
PCB, 87C, 415
Peck order, 87A, 261
Pellina semitubulesa, 86C, 17
Pelodytes punctatus, 86A, 85
Penaeus, 86B, 253
Penaeus duorarum, 87B, 659
Penaeus japonicus, 86B, 213; 87B, 161
Penaeus latisulcatus, 87C, 345
Penicillin, 86C, 405
Penicillin G, 86C, 305, 405
Pennatula phosphorea, 86A, 629
Pentazocine, 88B, 757
Pentobarbitone, 86C, 305
Pentose pathway, 88A, 397
PEP, 88B, 119
PEPCK, 88B, 119
Peppermint oil, 87B, 621
Pepsin, 87A, 509; 87B, 793
Pepsinogen, 86B, 675
Peptic erosion, 87A, 509
Peptidergic innervation, 87C, 335
Peptides, 86C, 353; 88C, 185, 325
Perca fluviatilis, 86A, 170, 729; 86C, 383; 88B, 905
Percina caprodes, 87A, 275
Percina maculata, 87A, 275
Percina shumardi, 87A, 275
Perfluorocarbon, 86C, 431; 87A, 825
Pergamasus longicornis, 86B, 385
Perinereis cultrifera, 88B, 1191
Periophthalmus chrysospilos, 87A, 439, 1009
Periophthalmodon schlosseri, 87B, 941; 88B, 119
Peripheral nerve conduction, 88A, 253
Periplaneta americana, 86A, 643; 86C,

- 45, 135, 349; 87A, 53; 87C, 315, 401 Phosphodiesterases, 88B, 581
- Peritrophic membranes, 86B, 353 Phosphoglucomutase, 86B, 255
- Perna viridis, 88A, 691 Phosphoglycolate phosphatase, 87B, 625
- Peroxidase, 88B, 655 Phospholipase A₂, 87B, 949
- Peroxisomes, 88B, 467 Phospholipase C, 88B, 767
- Petromyzon marinus, 87A, 761; 88A, 325 Phospholipid, 87B, 741; 88B, 51, 257
- PFK, 86B, 541; 87B, 317, 335, 469, 533, 543, 767 Phospholipid fatty acids, 87B, 49
- PG, 87A, 635 Phosphorylase, 86B, 541
- 6PGDH, 87B, 241, 417 Phosphorylated metabolic intermediates, 87B, 165
- PGI, 88B, 211, 751 Phosphorylation, 86C, 27; 87B, 255
- pH, 86C, 383; 87A, 267, 433, 683; 87C, 259 Photinus pyralis, 87B, 783
- Phagocata gracilis, 87C, 437 Photodieldrin, 86C, 121
- Phallusia mammillata, 88B, 85 Photoperiodicity, 86A, 417; 87A, 551, 775
- Phenobarbital, 86C, 343; 88C, 91, 269 Photophores, 87C, 233; 88A, 75
- Phenothiazine, 86C, 226 Photophore oxygen consumption, 87C, 233
- Phentolamine, 87C, 251 Photoresponses, 87A, 749
- Phenylethanolamine, 86C, 317 Phrynocolus petrosus, 86A, 79
- N-β-phenylpropionyl-L-tyrosine, 87C, 51 Phymactis clematis, 88A, 337
- Philine aperta, 87A, 161 Phytosphingosine, 86B, 149
- Philosamia cyntheia, 87B, 279 Picrotoxin, 87C, 211
- Phlebotomy, 88A, 95 Pieris brassicae, 86A, 301
- Phlorizin, 86A, 63 Pig, 88A, 511
- Phoca groenlandica, 88A, 655 Pig liver, 88B, 19
- Phodopus sungorus, 86A, 639; 86B, 377; 88A, 71 Pigeon, 86C, 7; 87A, 959; 88B, 589
- Phorbol myristate acetate, 88B, 277 Pigeon brains, 87C, 453
- Phosphatidylethanolamine, 88B, 323 Piglets, 87A, 1073
- Phosphatidylserine, 86B, 227; 87B, 875 Pillar cell replacement, 86A, 423
- Phosphine, 86C, 33 Pilocarpine, 88A, 307
- Phosphoarginine, 88A, 383 Pineal, 87C, 71; 88A, 55
- αpinene, 87B, 621
- Piperazine, 87C, 23
- Pipistrellus pipistrellus, 88A, 447

- Pirardixanthin derivatives, 87B, 161 Pomacea lineata, 86A, 409
Pituophis melanoleucus, 87A, 727 Pontogeloides latipes, 87A, 899
PK, 86B, 219, 541, 696; 87B, 553; Pooecetes gramineus, 86A, 439
88B, 119, 625, 743 PO protein, 87B, 895
Planarians, 87C, 437 Porites nigrescens, 87B, 507
Planarian regeneration, 87B, 703 Porphobilinogenase, 87B, 593
Plasma, 87A, 251 Porphyra sp, 87A, 127
Plasma aldosterone, 86A, 657 Porphyrin biosynthesis, 87B, 593, 601,
Plasmalogens, 86B, 135; 88B, 1 607
Plasma peptides, 87B, 485 Postsynaptic potentials, 86A, 121
Plasma protease inhibitors, 86A, 1 Post-tetanic potentiation, 87A, 737,
Plasmin, 86A, 1 791
Plasminogen activator, 88B, 277 Potamon warreni, 88A, 671
Platelet aggregation, 88C, 95 Potassium inactivation, 88C, 269
Platelet transport, 87B, 451 Potassium transport, 87A, 711
Platichthys flesus, 87B, 109 Potorous tridactylus, 88A, 257
Plautus alle, 86A, 117 pQDPFLRF-amide, 86C, 371
Plecotus austriacus, 88A, 447 Prazosin, 88B, 651
Plethodon jordani, 87A, 895 Precipitins, 88B, 1087
Pleuronectes flesus, 87A, 543 Pregnancy, 87B, 649
Pleuronectes platessa, 86B, 31; 87B, Pregnant goat, 88A, 533
733; 88A, 481, 543 Pregnenolone, 87B, 687
Plusioporus setiger, 86A, 163 Preoptic neurosecretory cell, 86A, 281
pNPP, 87B, 367 Pressure, 88A, 543, 595
Podarcis hispanica, 87A, 1089 Pressure tolerance, 88A, 647
Podarcis muralis, 87A, 1089 PRL, 88A, 131
Podocnemis expansa, 88B, 977 Procaine, 86C, 405
Poecilia reticulata, 88B, 619 Procambarus bouvieri, 86A, 523, 529
Polar lipid composition, 86B, 671 Procambarus clarkii, 86C, 219; 87A,
Polecats, 86B, 117 111, 119, 877; 87C, 1, 433; 88A, 213,
Pollutants, 88C, 293 383
Polyamines, 88B, 309, 475 Procambarus fallax, 87C, 1
Polyamine oxidase, 88B, 727 Proctolin, 86C, 353; 87C, 59; 88C, 131
Polyhormonal regulation, 88A, 131 Progesterone, 86B, 607; 87A, 635, 765;
Polypeptides, 88B, 237 87B, 821; 87C, 425; 88A, 248
Pomacea canaliculata, 86A, 693 Prolactin, 87A, 551, 1009, 1107

- Proline, 87C, 9; 88B, 1213
- Prolyl endopeptidase, 86B, 809
- Prophysaon foliotatum, 87A, 781
- Propranolol, 87C, 251; 88B, 651
- Propylthiouracil, 86C, 41; 87A, 665
- Prostaglandins, E₂ and F₂ alpha, 87C, 21
- Proteases, 86B, 281; 88B, 237, 349, 503, 655
- Proteinases, 87B, 1, 103, 783, 889
- Proteinase inhibitors, 87B, 435
- Proteins, 86B, 635
- Protein carboxyl methylation, 86B, 423
- Protein-disulphide oxidoreductase, 87B, 907
- Protein kinase C, 86B, 227, 405; 87B, 703, 875; 88B, 687
- Protein kinases, 86B, 321
- Protein methylase II, 86B, 37
- Protein nutrition, 87A, 449
- Protein phosphatases, 87B, 857
- Protein requirements, 88A, 495
- Protein secretion, 88C, 241
- Protein starvation, 87A, 227
- Protein synthesis, 86B, 513; 88C, 179
- Protein turnover, 87B, 227
- Proteoglycans, 88B, 1107
- Proteolipid protein, 88B, 1209
- Protogonyaulax tamarensis, 87A, 1021
- Proton magnetic resonance, 87B, 927
- Psammophis phillipsii, 87A, 911
- Pseudemys scripta, 86B, 259; 87A, 73
- Pseudolabrus japonicus, 86B, 675
- Pseudomonas aeruginosa, 87A, 189
- Pseudomyrmex ferruginea, 86B, 27
- Pseudopleuronectes americanus, 87A, 699
- Pseudothelphusa garmani, 87A, 1
- Psolus phantapus, 86B, 191
- PSTH, 88A, 235
- Pteropus poliocephalus, 88B, 305
- Pteroylpolyglutamate hydrolase, 88B, 1135
- PTH, 88A, 349
- PTZ, 88A, 471
- Puffinus puffinus, 87C, 415
- Puma concolor missoulensis, 87A, 387
- Purines, 86B, 397
- Purine nucleoside phosphorylase, 87B, 403; 88B, 589, 1143
- Purine riboside, 88B, 91
- Puromycin, 86B, 516
- Putrescine, 88B, 309
- Pygoscelis adeliae, 88A, 229
- Pyloric caeca, 86B, 693
- Pyrazolopyrimidine, 86C, 49
- Pyrazolopyrimidine ribosides, 87B, 489
- Pyrene, 86C, 399
- Pyrethroids, 86C, 135
- Pyrimidine degradation, 88B, 943
- Pyrogens, 87A, 467, 911
- Pyrophorus divergens, 87B, 755
- Pyruvate kinase (see PK)
- Pyruvate metabolism, 86B, 219
- Quail, 86A, 465, 469, 473, 569, 575; 87A, 947; 88A, 345
- Quinidine, 86C, 11
- Quinoline, 87C, 355

- Quinone reductase, 87B, 621 RBC transport, 87B, 451
Quiscalus quiscula, 87B, 933 Recombinant DNA, 86A, 29; 88B, 761
Quisqualate, 87C, 99 Red and white muscle, 86A, 269
Rabbits, 86A, 453; 87A, 479 Red blood cell potassium types, 87A,
Rabbit cornea, 86B, 607 9
Rabbit proximal colon, 86A, 657 Red fluorescence, 86B, 411
Raccoon dogs, 86B, 117; 87A, 983 Redifferentiation, 87A, 863
Radiation, 88A, 373 Refeeding, 87A, 607
Radio frequency radiation, 88A, 107 Regeneration, 87A, 781
Rainbow trout, 86B, 1; 87A, 745, Regulatory sites, 88B, 613
1051; 88A, 437, 461; 88B, 507 129 ReJ dystrophic mouse, 87A, 349
Raja raja, 88A, 61 Renal circulation, 87A, 515
Rana catesbeiana, 86A, 331; 86B, Renal phosphate secretion, 87A, 359
23, 149; 87C, 221, 245; 88A, 487 Renin-angiotensin system, 86A, 503
Rana esculenta, 86C, 421; 87C, 21, Repetitive DNA, 87B, 975
227; 88A, 349 Respiration, 86A, 229, 497; 87A, 93,
 899
Rana pipiens, 86A, 229; 86B, 514; Respiration of antarctic fish, 88A,
87B, 386; 88A, 281, 701 417
Rana ridibunda, 86B, 241; 86C, 415; Respiratory gas concentrations, 88A,
87C, 329, 335; 88B, 1175 585
Rana temporaria, 87A, 749, 873; Respiratory function, 86A, 117
87B, 481 Respiratory metabolism, 86A, 155
Rapana thomasiiana, 88C, 301 Respiratory responses, 86A, 163, 409
Rats, 86A, 453, 481; 86C, 295, Reticulocytes, 86A, 575; 87B, 553
375; 88A, 341 Retzius cells, 88A, 235
Rat fetus, 88B, 719 Rh blood groups, 86B, 303
Rat heart, 86B, 815 Rhinobatos annulatus, 86B, 785
Rat kidneys, 87A, 1063 Rhodanese, 86B, 307
Rat liver, 87A, 13 Rhodopseudomonas palustris, 87B, 601
Rat liver innervation, 86A, 275 607
Rat liver mitochondria, 88B, 939 Rhynchoragus kirkii, 88A, 331
Rat soleus muscle, 87A, 737 Rhyzopertha dominica, 86C, 33
Rattus norvegicus, 87C, 269; 88A, Riboflavin, 87B, 681
179 Ribonuclease, 88B, 595
Rattus rattus, 86C, 191 Ribosomal proteins, 88B, 1097

- Richardson's ground squirrels, 87A, 1067
Ricinus communis, 86B, 233
Riparia riparia, 87A, 287
 RNA/DNA ratio, 87B, 241
 RNA polymerase, 86B, 655
 Root effect, 86B, 473
 Rotifer neuropharmacology, 86C, 329
Rousettus aegyptiacus, 88A, 171, 253
 rRNA, 87B, 1033
Rudaris ercodes, 86B, 675
 Rumen contraction, 87A, 993
 Rumen of sheep, 86A, 653
Rutilus rutilus, 87C, 65; 88C, 83
 Saline drinking, 88A, 331
 Salinities, 86A, 373, 761; 87A, 471, 1033; 88A, 299, 475
 Salinity changes, 86A, 723
 Salinity effects, 87A, 399
 Saliva, 87B, 567; 88A, 307
 Salivary glands, 87B, 741; 88C, 241
Salmo gairdneri, 86A, 281, 383, 423, 491; 86B, 1, 245; 86C, 163, 357, 399; 87A, 157, 251, 267, 393, 543, 613, 703, 717, 745, 1051; 87B, 241, 875; 1033; 87C, 355, 375, 429, 445; 88A, 45, 49, 431, 437, 461, 507, 603; 88B, 141, 261, 297, 497, 507, 737, 1033, 1125; 88C, 263
Salmo salar, 88A, 543
Salmo trutta, 86A, 245; 88A, 349; 88B, 751
 Salmon muscle, 86B, 99
 Salt depletion, 86A, 225
 Salt excretion, 88A, 331
Salvelinus alpinus, 87A, 641
Sanguisuga granulosa, 87B, 497
 Saponin, 86C, 281
 Sarcolemma, 88B, 421
Sarcophaga bullata, 87B, 821
Sardinops melanostictus, 87B, 615
 Satterthwaite's correction, 87A, 979
Scalopus aquaticus, 86B, 667
Scapharca broughtonii, 88B, 803
Scapharca inaequivalvis, 88B, 1201
 Scaphognathite, 87A, 1
Scarus sordidus, 86B, 509
Schistocerca gregaria, 86C, 305; 88B, 65; 88C, 131, 139
Schistosoma mansoni, 87B, 357, 459
Schizidium festai, 86A, 433
Sciaena schlegeli, 87B, 1041
Sciliorhinus canicula, 87B, 664; 87C, 349
 Scleractinian coral skeletons, 87B, 507
Scomber japonicus, 87B, 615
Scomber scombrus, 86A, 170
Scyliorhinus canicula, 86C, 169; 87A, 57; 87B, 875; 88B, 823
Scylla serrata, 86A, 43
 Seabirds, 88C, 151
 Sea snakes, 87B, 559
 Sea urchin embryos, 87C, 139
 Secretin, 86C, 97
 Secretory component, 86B, 365
Selenarctos thibetianus, 86A, 649
 Selenium, 86C, 37, 131; 87C, 167, 181
 Selenium deficiency, 88C, 23

- Semaprochilodus insignis, 86C, 449
Semen, 86A, 315; 86B, 373
Seminal plasma, 88B, 1051
Sensitivity to electricity, 86A, 485
Sepia officinalis, 87B, 351; 87C, 251
Serine proteinase, 88B, 557
Serinus canarius, 87A, 287, 721
Serotonin (see also 5HT), 86C, 23, 27, 185; 87C, 139
Serratia marescens, 87A, 189
Serum lipids, 86A, 39
Serum lipoproteins, 87B, 195; 88B, 395
Serum protein, 88B, 497
Sex hormones, 88A, 247
Sexual differentiation, 86C, 299
Sexual maturation, 87A, 613
Sexual processes, 88A, 55
Sheep, 86B, 113; 86C, 147; 88A, 283; 88C, 145
Short chain fatty acids, 86B, 439
Short circuit current, 88A, 405, 411
Sialo-glycoconjugates, 86B, 377
Sialyltransferase, 87B, 11
Sigmodon hispidus blood, 88A, 553
Silurus glanis, 87B, 49
Silver, 86C, 37
Sinus gland, 87A, 111, 119
Siphonaria capensis, 87A, 695
Siphonaria concinna, 87A, 695
Sitosterol, 86B, 103
Skates, 88A, 61
Skeletal muscles, 88B, 519, 843
Skeletal muscle necrosis, 87B, 949; 88B, 273
Skin, 88A, 281
Skin lipids, 87B, 345, 999
Skinned single smooth muscle, 86A, 703
Skin surface lipids, 86B, 667
Sleep, 86A, 325
Sleeping plate, 87A, 631
Small intestine, 86A, 63
U-small nuclear RNA, 88B, 415
Smooth muscle membranes, 86B, 483
Snail, 87A, 963
Social stress, 86A, 469
SOD, 87A, 135; 87C, 63
Sodium, 86A, 225; 88A, 437; 88C, 165
Sodium dodecylbenzenesulfonate, 86C, 361
Sodium stearate, 86C, 361
Sodium transport, 87A, 21, 873
Solemya velum, 88B, 949
Soleno filospha funilis, 86A, 509
Somatostatin, 86A, 63; 87A, 315, 355
Sound reception, 88A, 37
Spanish goat breeds, 88B, 513
Sparus aurata, 88A, 411
Spectrins, 86B, 531; 87B, 171
Sperm, 86B, 233
Sperm motility, 88A, 539
Spermatozoa, 87B, 285, 523; 88A, 269
Spermidine, 88B, 309
Spermine, 88B, 309
Spermophilus lateralis, 88A, 183
Spermophilus richardsonii, 87A, 1067
Sphenomorphus quoyii, 87A, 487; 88A, 187
Spiders, 88B, 457

- Spilostethus pandurus, 88B, 1157
Spinachia spinachia, 87B, 664
 Spinal pathways, 86C, 437
 Spleen, 87A, 1083
Spodoptera frugiperda, 87B, 621
 Sponges, 86C, 17
 Squalene, 86B, 667
Squalus acanthias, 87B, 25
Squalus brevirostris, 86B, 681; 88C, 189
 Squid optic lobes, 87C, 31
 Squirrel, 86A, 241
src proto-oncogene, 87B, 663
 SRIF, 87A, 315, 355
 Statistical analysis, 87A, 979
 Starvation, 87A, 381, 607, 613; 88B, 507
Stenoplax conspicua, 88B, 127
Sterna paradisaea, 86A, 117
Sternotherus odoratus, 87A, 73
 Steroid, 86C, 83; 87B, 687, 821
 Steroid analogs, 88B, 81
 Sterols, 86B, 191, 561; 87B, 267, 881; 88B, 293, 1201
 Sterol metabolism, 86B, 103, 607
 Stigmasterol, 88B, 887
 Stinging hairs, 88A, 141
 Stomach, 86A, 537, 545
 Stomach gland cells, 86B, 675
Stomoxys calcitrans, 88B, 897
 Streptoxotocin, 88C, 159
 Stress, 86B, 555; 88C, 259
 Stressors, 86A, 569
Struthio camelus, 86B, 705
 Strychnine, 86C, 405
Sturnus vulgaris, 87B, 933
Styela plicata, 88B, 85
 Substance P, 87C, 440
 Succinate, 87A, 171
 Succinic semialdehyde dehydrogenase, 86B, 489
 Sulfide, 86A, 509
Sulfopromophthalein, 87A, 13
 Sulfurtransferase, 86B, 307
 SUN 1165, 87C, 237
 Supercooling, 86A, 497
 Superoxide, 87B, 969
 Superoxide anion, 86B, 31
 Swine erythrocytes, 86C, 443
Sylvia borin, 86A, 337
 Sympathetic ganglia, 88C, 249
 Sympathetic nervous system, 87A, 197
Synaphrobranchus kaupi, 88A, 543
 Synaptic transmission, 88A, 61
 Synovial cells, 88B, 541
 Synthetic peptides, 87C, 59

 T_3 , 86A, 137; 87A, 1009; 88A, 1
 T_4 , 87A, 1009; 88A, 71
t-test, 87A, 979
Taenia solium, 88B, 1213
Talitrus pacificus, 86A, 155
Talitrus saltator, 87A, 1037
Talpa europaea, 88A, 179
Tapes, 86C, 317
Taste epithelium, 86B, 135
Taurine, 87A, 57, 907; 87B, 615, 827
Taurocholate, 86A, 367
Tayassu tajacu, 86A, 751
Tegenaria atrica, 87A, 433
Teleost immunity, 88A, 65
Teleost intestine, 86A, 367

- Terebella lapidaria, 87A, 171
Terpenes, 86B, 311
Terrapene carolina, 87A, 73
Temperature, 86A, 155, 255; 87A, 623, 733; 87B, 241; 88A, 299; 88C, 331
Testis nuclei, 87B, 473
Testosterone, 87A, 551, 627, 775; 88A, 49, 248
Testudo hermanni, 86A, 319
Tethya aurantium, 86C, 17
Tetrahymena pyriformis, 86B, 655; 88B, 851
Tetrodotoxin, 87A, 649; 86C, 11
Thalassema mellita, 87B, 361
Thamnophis sirtalis, 87B, 999
Thamnophis sirtalis parietalis, 87A, 1097
Thaumetopoea pityocampa, 86B, 173; 88A, 141
Theophylline, 88A, 405
Theraga chalcogramma, 88B, 409
Thermal acclimation, 87A, 895, 1015
Thermal adaptation, 86A, 679
Thermal freedom, 87A, 257
Thermal protection, 87A, 631
Thermobia domestica, 88B, 661; 88C, 255
Thermogenesis, 87A, 1073; 88A, 425
Thermoregulation, 86A, 95, 639; 88A, 257
Thermoregulatory consequences, 87A, 345
Thermoregulatory response, 88A, 107
Thinning of eggshells, 88C, 1
Thiobiotic meiofauna, 86A, 509
Thiocyanate, 86B, 129
Thiol group, 88B, 1057
Thiol protease, 87B, 643
Thiol proteinase inhibitor, 88B, 429
Thiopental sodium, 86C, 185
Thunnus obesus, 87B, 615, 851
Thunnus thynnus, 87A, 797
Thridopteryx ephemeraeformis, 86A, 497
Thyroid, 86A, 15, 383
Thyroidal state, 87A, 665
Thyroid hormones (also see T_3 T_4), 88A, 71, 655
Thyrotropin, 86A, 383
Thyroxine, 86A, 189
Thysanoessa inermis, 88B, 157, 165
Thysanovessia inermis, 86B, 313
Tilapia nilotica, 86B, 1
Tilapia zilli, 86C, 263; 87C, 297
Tissue contaminant concentration, 87C, 415
Tissue culture, 87A, 215
Toad, 88A, 571
Torpedo marmorata, 86B, 37; 87B, 664
Tortoise, 86A, 319
Toxic secretion, 87B, 321
Toxin II α , 87B, 867
TPI, 86B, 693
Trachealis muscle, 86C, 11
Trachus japonicus, 87B, 615
Trachyscorpia cristulata, 88A, 543
Tralomethrin, 86C, 349
Transaminases, 86C, 255
Transfer RNA nucleotidyl transferase, 86B, 291
Transketolase, 87B, 833
Trazodone, 86C, 225

- Treadmill exercise, 86A, 209
- Trehalase, 87B, 373, 755
- Trehalose, 86B, 333; 87A, 193
- Trematomus centronotus, 88A, 417
- TRH, 87A, 315
- Triaenostreptus triodus, 87A, 603
- Triatoma infestans, 87B, 815; 87C, 367
- Triatoma pallidipennis, 87B, 233
- Tribolium castaneum, 86B, 613; 87B, 783; 88B, 675
- Tribolodon hakonesis, 87A, 1083
- Trichechus manatus, 88B, 47
- Trichogaster trichopterus, 88A, 37
- Trichomonas vaginalis, 87B, 637; 88B, 223, 575
- Trichostrongylus colubriformis, 87C, 75
- Trichosurus vulpecula, 86A, 361
- Triglyceride, 86B, 719; 87B, 587
- Triglyceride lipase, 88B, 187
- Trigona, 87B, 465
- Trimethylamine, 87A, 101
- Trimethylamine oxide, 87A, 101
- Triton, 86A, 39, 100
- tRNA, 86B, 663
- Trogoderma granarium, 88B, 911
- Tropomyosin, 88B, 443
- Troponin, 88B, 399
- Trout (also see Salmo), 87A, 543; 88A, 431
- Trypanosoma, 86B, 67, 593; 87B, 73
- Trypanosoma cruzi, 86C, 49; 87B, 489; 87C, 5
- Trypanosoma cruzi clones, 87B, 417
- Trypanosomes, 88B, 7, 1181
- Trypsin, 86B, 705; 87B, 103, 279, 755, 889
- Tryptamine, 86C, 325
- Tryptophan, 87A, 951; 88B, 737
- Tumorous tissue, 88B, 481
- Tupia tana, 86B, 575
- Turbatrix aceti, 86B, 103
- Turbellarians, 86C, 425
- Turkey, 86A, 309; 86B, 265; 86C, 63, 67; 87C, 79; 88C, 201
- Turkey poult, 86A, 739, 745; 87A, 409
- Turtles, 87A, 73; 88B, 977
- Tyramine, 87C, 251
- Tyrosinase, 87B, 709
- Tyrosination-detyrosination, 87B, 151
- Tyrosine aminotransferase, 86B, 179
- p-tyrosine decarboxylase, 87C, 315
- Tyrosine transaminase, 88B, 289
- Ubiquinone, 87B, 35
- Uca polita, 87A, 341
- Uca vocans, 87A, 341
- Ucides cordatus, 88A, 83
- UDP-glucuronosyltransferase, 86C, 357; 87B, 513, 671
- Ulva lactuca, 87A, 127
- Unio pictorum, 86C, 157
- Unitox, 86C, 157
- Urate, 86A, 255, 713; 87A, 587
- Urea, 86B, 99; 87A, 851
- Uric acid, 86C, 63
- Uricase, 86B, 23; 88B, 467
- Urine, 87A, 641; 88A, 179
- Urine production, 87A, 107; 88A, 571
- Urokinase, 88B, 277
- Ursidae, 86A, 649

- Urticating apparatus, 88A, 141
Uteri, 87C, 425
- Vagotomy, 86C, 7
Valanga nigricornis, 87B, 373
- Vanadate, 88B, 85
Vapam, 86C, 357
Vas deferens, 86B, 483
Vasotocin, 86A, 559
Ventricle, 87A, 689
Ventricular myocytes, 87C, 237
Venus gallina, 88B, 1201
Verapamil, 88C, 219
Verongia aerophoba, 86C, 17
Vesicle transport, 88A, 511
VIP, 86C, 97; 87C, 95
Vipera lebetina, 87B, 329
Visual fibres, 88A, 1
Visual processing, 88A, 6
Visual processing in Crustacea,
88A, 1
Vitamin A, 86A, 751
Vitamin D, 87A, 635
Vitellin, 87B, 17, 255; 88B, 1191
Vitellogenesis, 88B, 897
Vitellogenic gonadotropin, 86A, 35
Vitellogenin, 86B, 213, 801; 87A,
267; 88B, 75
Viviparus contectus, 86A, 693
VLDL, 87B, 195, 317, 501
VO₂, 87A, 1015
Volume regulation, 87A, 439
Vorticella convallaria, 87A, 565
- Water balance, 86A, 79
Water budgets, 86A, 295
Water metabolism, 86A, 213
Water permeability, 86A, 429
Weight loss, 87A, 1067
WHHL, 87B, 587
White adipose tissue, 87A, 1073
Winter acclimatized carp, 86B, 663
Workload, 88B, 273
- Xanthine dehydrogenase, 88B, 589, 1023
Xenopus laevis, 86A, 417, 553; 86B,
167; 87A, 305; 88A, 539; 88B, 581,
743
Xiphias gladius, 87B, 615, 851
Xiphophorus, 88B, 481
Xiphophorus helleri, 87B, 664
Xylocopa species, 86B, 311
Xylose, 86B, 593
- Zacco platypus, 87A, 1083
Zeaxanthin, 87B, 411
Zinc, 86C, 1, 83, 163, 173, 263, 357;
87A, 561; 87C, 47, 149, 203, 309, 445;
88A, 269; 88C, 307
Zinc-binding ligand, 87A, 223
Zinc toxicity, 87C, 297
Zinc transport, 87A, 223
Zizyphus jujuba, 88A, 355
Zoarces viviparus, 86A, 170
Zucker rats, 87B, 341
- Wallaby, 88B, 923
Water, 86A, 403