

Course Name: Comp Arch LAb_____

Course Number and Section: 14:332:xxx:xx

Experiment: [Experiment # [3] – C Memory Management and Introduction to

RISC-V]

Lab Instructor: Mengmei Ye

Date Performed:October 12 2018

Date Submitted: October 26 2018

Submitted by: [Erika Jean-Pierre - 169008322]

Course Name:		
Course Number and Section: 14:332:xxx:xx		
! Important: Please include this page in your report if the submission is a		
paper submission. For electronic submission (email or Sakai) please omit this		
page.		
For Lab Instructor Use ONLY		
GRADE:		
COMMENTS:		

DATE SUBMITTED:

2 LAB REPORT FOR 14:332:XXX:XX;

Electrical and Computer Engineering Department School of Engineering Rutgers University, Piscataway, NJ 08854 ECE Lab Report Structure

Exercise 1

Static Variable	static
Local Variables	static
Global variables	static
Constants	code, static, stack
Machine Instructions	code
malloc()	Неар
String Literals	Static

Escercise 2

a.) An array of k integers

arr = (int*) malloc(sizeof (int) * k);

```
b.) A string str of length p
       str = (char *) malloc(sizeof(char) * (p + 1));
c.) An n x m Matrix mat of integers initialized to zeros
       mat = (int **) calloc(n, sizeof(int *));
                for (int i = 0; i < m; i++) {
                       mat[i] = (int *) calloc(m, sizeof(int));
               }
Exercise 3
a) lw t0, 12(s0)
This code loads arr[3] into address xt0.
b) slli t1, t0, 2 #multiplies the number in address t0 by 4
add t2, s0, t1 # adds t1 to s0
lw t3, 0(t2) #loads the array at arr[t2] to t3
addi t3, t3, 1 #add one to immediately to t3 and store it in t3 so now t3 has a new value
sw t3, 0(t2) #stores back into memory
This code ultimately increments arr[t2[ by 1
c) lw t0, 0(s0)
                       # loads arr[0] into address t0
xori t0, t0, 0xFFF
addi t0, t0, 1
Sets xt0 to the two's complement og arr[0] also known as the negative of arr[0];
```

4 LAB REPORT FOR 14:332:XXX:XX; DATE SUBMITTED:

Exercise 4

s0 < s1	s0<= s1	s0 > 1
slt t0, s0, s1	slt t0, s1, s0	sltiu t0, s0, 2
bne t0, 0, label	beq t0, 0, label	beq t0, 0, label

Exercise 5

- a. The register representing the variable k.
- t0 is representing the variable k
- b. The registers acting as pointers to the source and dest arrays.
- t1 is acting as a pointer to the source array and t2 is acting as a pointer to the dest array as we can see in the main section.
- c. The assembly code for the loop found in the C code.
- d. How the pointers are manipulated in the assembly code.

С	Riscv
// s0 -> a, s1 -> b // s2 -> c, s3 -> z int a = 4, b = 5, c = 6, z; z = a + b + c + 10;	addi s0 x0 4 addi s1 x0 5 addi s2 x0 6 add s3 so s1 add s3 s3 s2 addi s3 s3 10
// s0 -> int * p = intArr; // s1 -> a; *p = 0; int a = 2; p[1] = p[a] = a;	sw x0 0(s0) addi s1 x0 2 sw s1 4(s0) slli t0 s1 2 add t0 t0 s0 sw s1 0(t0)
// s0 -> a, s1 -> b int a = 5, b = 10; if(a + a == b) { a = 0; } else { b = a - 1; }	add s0 x0 5 addi s1 x0 10 add t0 s0 s0 bne t0 s1 else xor s0 x0 x0 jal x0 exit else: addi s1 s0 -1 exit:
computes $s1 = 2^30$ s1 = 1 for ($s0=0$, $s0 <$, $s++$) { s1 *= 2; }	addi s0, x0, 0 addi s1, x0, 1 addi t0, x0, 30 loop: beq s0, t0, exit add s1, s1, s1 addi s0, s0, 1 jal x0, loop exit
// s0 -> n, s1 -> sum // assume n > 0 to start int sum; for(sum=0;n>0;sum+=n);	addi s1 s1 0 loop: beq s0 x0 exit add s1 s1 so add s0 s0 -1

jal x0, loop exit:

Excercise 7