Name: _____

Homework 7 | Math 253 | Cruz Godar

Due Wednesday of Week 8 at the start of class

Complete the following problems and submit them as a pdf to Canvas. 8 points are awarded for thoroughly attempting every problem, and I'll select three problems to grade on correctness for 4 points each. Enough work should be shown that there is no question about the mathematical process used to obtain your answers.

In problems 1–3, find a power series for the function using power series multiplication and determine its interval of convergence.

1.
$$\left(\frac{1}{1-x}\right)\left(\frac{1}{1+x}\right)$$
.

$$2. \left(\frac{1}{1-x}\right) \left(\frac{1}{(1+x)^2}\right).$$

3.
$$\left(\frac{1}{(1-x)^2}\right)\left(\frac{1}{(1+x)^2}\right)$$
.

In problems 4–5, find a power series for the given function using calculus and determine its interval of convergence.

4.
$$\ln(1+x^2)$$
.

$$5. \ \frac{1}{(1+2x)^4}.$$

6. Let $f(x) = \sum_{n=0}^{\infty} c_n x^n$ on (-R, R), so that the series does not converge at x = R. Is it possible for the series for f'(x) to converge at x = R? Give an example of a series where this is true or justify why no such series can exist.

7. Let $f(x) = \sum_{n=0}^{\infty} c_n x^n$ on (-R, R), so that the series does not converge at x = R. Is it possible for the series for $\int f(x) dx$ to converge at x = R? Give an example of a series where this is true or justify why no such series can exist.

- 8. Let $f(x) = \sin(x)$.
 - a) What are f(0) and f'(0)?
 - b) Suppose $f(x) = \sum_{n=0}^{\infty} c_n x^n$. What are c_0 and c_1 ?
 - c) Since $f''(x) = -\sin(x) = -f(x)$, the coefficient sequence (c_n) satisfies a recurrence. Write that recurrence down.
 - d) Find an explicit formula for c_n . (Hint: handle even and odd n separately).
 - e) What is the interval of convergence for $\sum_{n=0}^{\infty} c_n x^n$?