

ROBOTICS

MCTE 4352 SECTION 1

MINI PROJECT

MUHAMMAD ZULKARNAIN BIN ZAKARIA 1723395

INTRODUCTION

Robotics is an industry that has been growing with the modernization of this era. It has been developed time by time to ease human work. In this course, learning how to determine the frame of the simple robot and how to generate a robot with some calculation is a very precious knowledge. These projects allow us to learn using the modern software to simulate the robot. This is very advanced knowledge for students to get their hand in this kind of chance. For this project, MATLAB and RTB Toolbox is used to simulate the robot. Starting from determining the robot joint and translating all the points to matrix, find inverse kinematic using the software and lastly create a trajectory path for the robot. Exposure to modern solutions is a good approach to learning robotics. Robotics industries surely will be more challenging and could be the main industry in the near future.

3DoF Planar Robot

RRR robots were chosen because we need all links to move to create. Three revolute joints.

Side View of the RRR robot.

Top View of the RRR robot.

D-H Table of the Robot

D-H	θ	a	d	alpha
1-2	θ_1	L1	0	0
2-3	θ_2	L2	0	0
3-Н	θ_3	L3	0	0

$$x = \theta_1$$
; $y = \theta_2$; $z = \theta_3$; $a = L1$; $b = L2$; $c = L3$

$$A_1^2 =$$

$$\begin{pmatrix} \cos(x) & -\sin(x) & 0 & a \cdot \cos(x) \\ \sin(x) & \cos(x) & 0 & a \cdot \sin(x) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_2^3 =$$

$$\begin{pmatrix}
\cos(y) & -\sin(y) & 0 & b \cdot \cos(y) \\
\sin(y) & \cos(y) & 0 & b \cdot \sin(y) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$A_3^H =$$

$$\begin{pmatrix} \cos(z) & -\sin(z) & 0 & c \cdot \cos(z) \\ \sin(z) & \cos(z) & 0 & c \cdot \sin(z) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_1^H =$$

$$\begin{pmatrix} \cos(x+y+z) & -\sin(x+y+z) & 0 & a \cdot \cos(x) + b \cdot \cos(x+y) + c \cdot \cos(x+y+z) \\ \sin(x+y+z) & \cos(x+y+z) & 0 & a \cdot \sin(x) + b \cdot \sin(x+y) + c \cdot \sin(x+y+z) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Inverse Kinematic

Next step is to find the inverse kinematic to determine the formula for θ_1 , θ_2 and θ_3 . The calculations will be done in Microsoft Excel using the formula below. Points x and y are points that we get from the image processing method. This is the example of calculating the theta by using analytical solution or inverse kinematic.

$$x^{2} = a \cdot \cos(x) + b \cdot \cos(x+y) + c \cdot \cos(x+y+z)$$

$$y^{2} = a \cdot \sin(x) + b \cdot \sin(x+y) + c \cdot \sin(x+y+z)$$

$$x^{2} + y^{2} = (L1)^{2} + (L2)^{2} + (L3)^{2} + 2(L1)(L2) \cos \theta_{2} + 2(L1)(L3) \cos(\theta_{2} - \theta_{3}) + 2(L2)(L3) \cos \theta_{3}$$

Here are the calculations from the excel for each letter. Using this formula above, this is the result of angles at each point. This is the example of calculating the theta by using analytical solution or inverse kinematic.

Letter Z

	x	y	Z	tan_Theta1	Theta1_rad	Theta1_deg	cos_Theta 3	Theta3_rad	Theta3_deg	L1 =	
Z	22	90	0	-0.0871835	-0.0869636	-4.98264756	-0.7564286	2.4286318	139.1503522	2 L3 =	
	29	95	0	-0.0996014	-0.099274	-5.68798225	-0.7182738	2.37211445	135.9121462	2	
	40	100	0	-0.1310531	-0.1303105	-7.46623919	-0.6666667	2.30052398	131.8103149)	
	47	105	0	-0.1262777	-0.1256128	-7.19708551	-0.6180357	2.23703795	128.1728334	1	
	54	107	0	-0.1440943	-0.1431093	-8.19955647	-0.584375	2.19490598	125.7588489)	
	64	106	0	-0.1977877	-0.1952675	-11.1880012	-0.5555952	2.15987502	123.7517231	L	
	70	103	0	-0.2497695	-0.2447617	-14.0238131	-0.5503274	2.15355261	123.3894756	5	
	69	100	0	-0.2766601	-0.2699089	-15.4646431	-0.5725893	2.18045698	124.9309826	j	
	69	98	0	-0.2975313	-0.2891904	-16.5693887	-0.584375	2.19490598	125.7588489	9	
	66	95	0	-0.3181943	-0.3080641	-17.6507742	-0.6136607	2.23148495	127.8546697	7	
	63	91	0	-0.3502755	-0.3369202	-19.3041077	-0.6473214	2.27486131	130.3399522	2	
	59	89	0	-0.3548289	-0.3409702	-19.536154	-0.6725595	2.30845832	132.2649188	3	
	53	85	0	-0.3708027	-0.3550858	-20.3449161	-0.7132738	2.36495447	135.5019096	5	
	51	84	0	-0.3713129	-0.3555342	-20.3706089	-0.724494	2.38109641	136.4267748	3	
	49	82	0	-0.3839262	-0.3665734	-21.0031063	-0.7403274	2.40435355	137.7593109	9	
	41	78	0	-0.3791059	-0.3623655	-20.7620154	-0.7808036	2.46674729	141.3342086	5	
	35	71	0	-0.424984	-0.4018571	-23.0247163	-0.8254167	2.54173621	145.6307577	7	
	44	74	0	-0.457623	-0.4291751	-24.5899219	-0.7913095	2.48374415	142.3080575	5	
	52	75	0	-0.4990552	-0.4628914	-26.5217263	-0.7640179	2.44031404	139.8196952	2	
	58	72	0	-0.5814355	-0.5266573	-30.1752402	-0.7575	2.43027144	139.2442963	3	
	60	69	0	-0.6426635	-0.5712005	-32.7273755	-0.7630655	2.43883921	139.7351939	9	
	57	60	0	-0.8031267	-0.6766446	-38.7688785	-0.8080655	2.5116571	143.9073515	5	
	56	66	0	-0.6739907	-0.5930559	-33.979602	-0.7889286	2.47985975	142.0854973	3	
	54	49	0	-1.0873435	-0.8272181	-47.3961066	-0.8536607	2.59377027	148.6120897	7	
				2011205	0.045504	50 4554		24250		454 044040	
45		42		.3011396	-0.915524					154.044848	
40		39	0 -1	.4095022	-0.953742	7 -54.6454	1296 -0.91	190179 2.	73637815	156.782919	€1
30		33	0 -1	.7134152	-1.0425008	-59.7308	3946 -0.95	27083 2.	83282352	162.308831	L5
24		31	0 -1	.7789221	-1.0586818	-60.6579	9977 -0.96	561607 2.	88070235	165.052086	54
25		36	0 -1	.3241972	-0.923991	7 -52.9408	3266 -0.95	547321 2.	83955434	162.694479	95
29		46	0 -0	.9043667	-0.735222	4 -42.125	1427 -0.92	238988 2.	74894395	157.502886	54
38		53	0 -0	.8129274	-0.682574	4 -39.1086	5072 -0.88	353274 2.	65799396	152.291835	59
41		54	0 -0	.8194123	-0.686466	-39.3316	5108 -0.87	750893	2.6364166	151.055544	13
50		62	0 -0	.7120703	-0.61878	1 -35.4535	5384 -0.82	230952	2.5376363	145.395850)1
66		70	0 -0	0.6543367	-0.5794178	-33.198	1967 -0.73	364286 2.	39857225	137.428066	58
				-							_

Letter U

U	76	106	0	-0.2395381	-0.2351082	-13.4707066	-0.5055952	2.10086807	120.3708736
	93	111	0	-0.2303665	-0.2264164	-12.9727042	-0.3877976	1.96903735	112.8175301
	102	113	0	-0.2235726	-0.2199554	-12.6025176	-0.3222321	1.89888278	108.7979693
	105	108	0	-0.2728307	-0.2663483	-15.2606334	-0.3366369	1.91413938	109.6721081
	100	100	0	-0.3472181	-0.3341944	-19.1479263	-0.4166667	2.00057176	114.6243184
	94	97	0	-0.3713339	-0.3555527	-20.37167	-0.4688988	2.05883995	117.9628396
	91	91	0	-0.4330715	-0.4086874	-23.4160623	-0.5189881	2.11646303	121.2643994
	84	87	0	-0.4672792	-0.43713	-25.0457066	-0.5766369	2.18540262	125.2143464
	78	75	0	-0.6154005	-0.5516665	-31.6081632	-0.6634226	2.29618006	131.5614265
	81	76	0	-0.6078843	-0.5461966	-31.2947601	-0.6447321	2.27146915	130.1455954
	76	68	0	-0.7242338	-0.6268058	-35.9133266	-0.702381	2.3495333	134.618341
	79	67	0	-0.7493556	-0.6430885	-36.8462597	-0.6925595	2.33582755	133.833060
	90	66	0	-0.7820951	-0.6637276	-38.0287888	-0.6411905	2.26684494	129.880647
	95	71	0	-0.7022444	-0.6122307	-35.0782339	-0.5932738	2.20591594	126.389673
	102	79	0	-0.5902047	-0.533186	-30.5493058	-0.5165179	2.11357566	121.098964
	107	83	0	-0.5396961	-0.4948979	-28.3555631	-0.466131	2.05570883	117.783439
	113	91	0	-0.4468621	-0.4202414	-24.0780583	-0.3854167	1.96645566	112.669609
	115	94	0	-0.4143903	-0.3928499	-22.5086417	-0.3553274	1.93406061	110.813510
	122	100	0	-0.3508252	-0.3374098	-19.3321552	-0.2713095	1.84554965	105.74220
	127	106	0	-0.2907645	-0.2829625	-16.2125562	-0.1974702	1.769573	101.389064
	126	99	0	-0.3574866	-0.3433288	-19.6712904	-0.2477083	1.82111048	104.341944
	120	90	0	-0.4537971	-0.4260071	-24.4084098	-0.3422619	1.92011947	110.014741
	117	87	0	-0.4888062	-0.4546525	-26.0496719	-0.3792262	1.9597562	112.285759
	114	81	0	-0.5607067	-0.5110262	-29.2796432	-0.4298512	2.01512428	115.458116
	112	78	0	-0.5995472	-0.5400865	-30.9446756	-0.4575	2.045978	117.225904
	108	70	0	-0.7123514	-0.6189675	-35.464226	-0.5189286	2.1163934	121.260409

108	65	0	-0.7888264	-0.6678905	-38.267309	-0.5390179	2.14006697	122.6168051
111	60	0	-0.8654037	-0.713369	-40.8730326	-0.5380655	2.13893668	122.5520443
116	61	0	-0.835549	-0.6960445	-39.8804108	-0.5006845	2.0951857	120.0452981
120	63	0	-0.7931169	-0.6705298	-38.4185276	-0.4652083	2.05466627	117.7237059
122	65	0	-0.7580816	-0.6486533	-37.1650983	-0.4431845	2.02994434	116.3072435
127	69	0	-0.6896489	-0.6037451	-34.5920442	-0.3901786	1.97162186	112.9656111
129	72	0	-0.6461854	-0.573689	-32.8699563	-0.3623512	1.94158561	111.2446611

Letter L

L	172	84	0	-0.3795449	-0.3627493	-20.7840046	0.07857143	1.49214383	85.49354387
	176	94	0	-0.279373	-0.2724272	-15.6089269	0.17297619	1.39694571	80.03909364
	180	103	0	-0.1905599	-0.1883023	-10.7889263	0.268125	1.29935009	74.44727616
	183	108	0	-0.1383632	-0.1374903	-7.87761321	0.33193452	1.23244269	70.61376466
	185	113	0	-0.0898793	-0.0896385	-5.13590619	0.38672619	1.17371741	67.24905384
	180	114	0	-0.1021502	-0.1017971	-5.83254263	0.33916667	1.22476541	70.17388896
	174	110	0	-0.1564966	-0.1552375	-8.89445336	0.24928571	1.31885371	75.56475153
	170	106	0	-0.2026019	-0.1998961	-11.4532048	0.18261905	1.38714669	79.47765077
	167	103	0	-0.2370302	-0.232735	-13.3347342	0.13386905	1.43652418	82.30677251
	162	97	0	-0.3031844	-0.2943757	-16.8664862	0.04919643	1.52158003	87.18011401
	160	92	0	-0.3528796	-0.3392379	-19.4368983	0.00190476	1.56889156	89.89086512
	153	84	0	-0.448124	-0.4212928	-24.1382981	-0.1052083	1.67619972	96.03916966
	149	77	0	-0.5304841	-0.4877365	-27.9452417	-0.1747024	1.74639982	100.061339
	147	74	0	-0.5688186	-0.5171764	-29.6320225	-0.2058036	1.77808111	101.8765434
	144	69	0	-0.6350372	-0.5657845	-32.417066	-0.2530655	1.82664389	104.6589857
	138	64	0	-0.7182398	-0.6228628	-35.6874113	-0.3232143	1.89992045	108.8574231
	135	63	0	-0.7427823	-0.6388657	-36.6043096	-0.351369	1.92982932	110.5710751
	126	60	0	-0.8187244	-0.6860545	-39.3080246	-0.4322619	2.01779596	115.6111922
	131	66	0	-0.7171943	-0.6221728	-35.6478748	-0.3715179	1.95143969	111.809258
	143	69	0	-0.6386983	-0.5683892	-32.5663	-0.2616071	1.83548329	105.1654457
	151	68	0	-0.6189847	-0.554262	-31.7568746	-0.1956845	1.76775175	101.2847143
	168	63	0	-0.5920187	-0.5345302	-30.6263245	-0.0537798	1.62460205	93.08284066
	172	61	0	-0.5903571	-0.5332989	-30.5557789	-0.0206845	1.59148233	91.18522044
	174	59	0	-0.5986512	-0.5394272	-30.9069005	-0.0072321	1.57802853	90.41437487
	176	59	0	-0.5871023	-0.5308819	-30.4172937	0.01360119	1.55719472	89.22068516

The shape of the plotted points manually using Microsoft Excel.

MATLAB CODING EXPLANATION

For the first step, declaring the joint of the robot and put in the values from DH Table into the code. In this code, the length of the joint is declared and the type of the robot is set up. From the code below, the robot will be set up as an RRR robot which has three revolute joints.

```
L1 = 65; % Length for joint1
L2 = 80; % Length for joint2
L3 = 70; % length for joint3

%Set up DH parameter for the robot
L(1) = Link([0 0 L1 0 0]); % L = Link([Theta d a alpha 0/1]) >> 0 for revolute and 1 for prismatic
L(2) = Link([0 0 L2 0 0]);
L(3) = Link([0 0 L3 0 0]);
Rob = SerialLink([L(1) L(2) L(3)], 'name', 'RRR'); % name the robot RRR
```

To check on the DH table from this code whether it is the same as what has been calculated, put the SerialLink in the command window.

+					
jΙ	theta	d	a	alpha	offset
1	ql	0	65	0	(
2	q2	0	80	0	(
3	q3	0	70	0	(

Next step is to translate all the points to matrix form. 91 points is translated to the matrix since the name have 91 coordinates Below is the code.

```
T0=trans1(22,90,30);
T1=trans1(29,95,0);
T2=transl(40,100,0);
T3=transl(47,105,0);
T4=transl(54,107,0);
T5=transl(64,106,0);
T6=trans1(70,103,0);
T7=transl(69,100,0);
T8=transl(69,98,0);
T9=transl(66,95,0);
T10=transl(63,91,0);
Tll=transl(59,89,0);
T12=trans1(53,85,0);
T13=transl(51,84,0);
T14=trans1(49,82,0);
T15=transl(41,78,0);
T16=transl(35,71,0);
T17=transl(44,74,0);
T18=trans1(52,75,0);
T19=transl(58,72,0);
T20=transl(60,69,0);
T21=transl(57,60,0);
T22=transl(56,66,0);
T23=transl(54,49,0);
T24=transl(45,42,0);
T25=transl(40,39,0);
T26=transl(30,33,0);
T27=transl(24,31,0);
```

Next step is to get the inverse kinematic from the matrix. The inverse kinematic will be used to animate the trajectory of the robot. The list goes for all 91 points. P0 is the initial angle for all three joints. T represents the matrix, P represents the angle and [1,1,1,0,0,0] is a function to mask the matrix.

```
%Inverse Kinematic
P0=[0 0 0]; % Initial Coordinate of Robot
P1 = Rob.ikine(T0, P0, [1, 1, 1, 0, 0, 0]);
P2 = Rob.ikine(T1,P1,[1,1,1,0,0,0]);
P3 = Rob.ikine(T2, P2, [1, 1, 1, 0, 0, 0]);
P4 = Rob.ikine(T3, P3, [1, 1, 1, 0, 0, 0]);
P5 = Rob.ikine(T4, P4, [1, 1, 1, 0, 0, 0]);
P6 = Rob.ikine(T5, P5, [1, 1, 1, 0, 0, 0]);
P7 = Rob.ikine(T6, P6, [1, 1, 1, 0, 0, 0]);
P8 = Rob.ikine(T7, P7, [1, 1, 1, 0, 0, 0]);
P9 = Rob.ikine(T8, P8, [1, 1, 1, 0, 0, 0]);
P10 = Rob.ikine(T9, P9, [1, 1, 1, 0, 0, 0]);
P11 = Rob.ikine(T10,P10,[1,1,1,0,0,0]);
P12 = Rob.ikine(T11,P11,[1,1,1,0,0,0]);
P13 = Rob.ikine(T12, P12, [1, 1, 1, 0, 0, 0]);
P14 = Rob.ikine(T13,P13,[1,1,1,0,0,0]);
P15 = Rob.ikine(T14,P14,[1,1,1,0,0,0]);
P16 = Rob.ikine(T15,P15,[1,1,1,0,0,0]);
P17 = Rob.ikine(T16, P16, [1, 1, 1, 0, 0, 0]);
P18 = Rob.ikine(T17,P17,[1,1,1,0,0,0]);
P19 = Rob.ikine(T18, P18, [1, 1, 1, 0, 0, 0]);
P20 = Rob.ikine(T19, P19, [1, 1, 1, 0, 0, 0]);
P21 = Rob.ikine(T20, P20, [1, 1, 1, 0, 0, 0]);
P22 = Rob.ikine(T21, P21, [1,1,1,0,0,0]);
P23 = Rob.ikine(T22, P22, [1, 1, 1, 0, 0, 0]);
P24 = Rob.ikine(T23, P23, [1, 1, 1, 0, 0, 0]);
```

Then, create the trajectory array using all coordinates of our points. This step is to initialize the size of the trajectory.

```
%Create trajectory path for the robot
trajectory = [
22 90 30;
22 90 30;
29 95 0;
40 100 0;
47 105 0;
54 107 0;
64 106 0;
70 103 0;
69 100 0;
69 98 0;
66 95 0;
63 91 0;
59 89 0;
53 85 0;
51 84 0;
49 82
      0;
41 78
       0;
35
   71
       0;
44 74 0;
52 75
      0;
58 72
       0;
60
   69
       0;
57 60 0;
56 66 0;
54 49 0;
45 42 0;
```

Below is the code to set up the size of the trajectory path that will be use in plotting the coordinates.

```
[nx,ny] = size(trajectory);
```

Then, all the points in the array of trajectory will be used in the code below to plot all the points. The for loop is used to make sure the trajectory path goes through all the points and neither exceeds nor less. The axis part is to declare the workspace or the Cartesian range that the plot will take place. The axis should be larger than any coordinates of the points. Then, labels the axis and set view for the animation.

```
figure
hold on

for i = 1:nx-1
    v=[trajectory(i,:);trajectory(i+l,:)];
    plot3(v(:,1),v(:,2),v(:,3),'g');
    plot3(v(:,1),v(:,2),v(:,3),'g.')
end

axis([-50 200 -50 200 -50 200]);
xlabel('X-Axis');
ylabel('Y-Axis');
zlabel('Z-Axis');
view(0,90);
```

And for the last part is the code to declare the trajectory of the robot from one point to the next point. The command 'jtraj' is to connect all the angles of joints from one point to another point and move the robot. Then use the Rob.plot to show the robot and declare it workspace.

```
t=[0:3:3];
%Animate
A1 = jtraj(P0, P1, t);
Rob.plot(A1, 'workspace', [-50 200 -50 200 -50 200]);
A2 = jtraj(P1,P2,t);
Rob.plot(A2, 'workspace', [-50 200 -50 200 -50 200]);
A3 = jtraj(P2,P3,t);
Rob.plot(A3, 'workspace', [-50 200 -50 200 -50 200]);
A4 = jtraj(P3, P4, t);
Rob.plot(A4, 'workspace', [-50 200 -50 200 -50 200]);
A5 = jtraj(P4, P5, t);
Rob.plot(A5, 'workspace', [-50 200 -50 200 -50 200]);
A6 = jtraj(P5,P6,t);
Rob.plot(A6, 'workspace', [-50 200 -50 200 -50 200]);
A7 = jtraj(P6, P7, t);
Rob.plot(A7, 'workspace', [-50 200 -50 200 -50 200]);
A8 = jtraj(P7, P8, t);
Rob.plot(A8, 'workspace', [-50 200 -50 200 -50 200]);
A9 = jtraj(P8, P9,t);
Rob.plot(A9, 'workspace', [-50 200 -50 200 -50 200]);
A10 = jtraj(P9,P10,t);
Rob.plot(Al0, 'workspace', [-50 200 -50 200 -50 200]);
```

The result of the plotted points by using the simulation tools in RTB Toolbox.

DISCUSSION AND CONCLUSION

Settling up the robot using two methods which is manually and using the RTB Toolbox is surely different. However, the first step is to identify the robot and in this project RRR robots were chosen. Next is to construct DH Table parameters from the robot. Then, find the transformation matrix from the DH Table. Next is to find the inverse kinematic for the robot. By using the software, we could easily find the inverse kinematic for software. But for the manual method, calculations need to be done. However, inverse kinematic for the manual method cannot be done as the formula could not be obtained as the value of the angles remain unknown and lack of equations. The software part runs smoothly and manages to plot all the points. For the manual method, a line graph was created to compare it with the software method. However, the plot is not very smooth. This is because smaller points are plotted. The greater the number of points, the smoother the plot will be. The plot that has been obtained from both methods is the same. The value of the inverse kinematic could not be compared as the manual method cannot be done.

In conclusion, both methods are good, but the software method is easier and faster to do compared to the manual method.