Άσκηση 4 Παράλληλα & Κατανεμημένα Υπολογιστικά Συστήματα 22 Ιανουαρίου 2019

Να υλοποιήσετε σε CUDA¹ αλγόριθμο για την εύρεση του πλήθους των τριγώνων σε μη-κατευθυνόμενο, απλό γράφο $G(\mathcal{V},\mathcal{E})$, όπου \mathcal{V} το σύνολο των κόμβων, πλήθους $N=|\mathcal{V}|$ και \mathcal{E} το σύνολο των ακμών, πλήθους $M=|\mathcal{E}|$. Το τρίγωνο \mathcal{C}_3 ορίζεται ως ο πλήρης μη-κατευθυνόμενος γράφος 3 κορυφών.

Η καταμέτρηση του αριθμού των τριγώνων μπορεί να υλοποιηθεί με βασικές πράξεις γραμμικής άλγεβρας χρησιμοποιώντας τον πίνακα γειτνίασης (adjacency matrix) ${\bf A}$ του γράφου G, μεγέθους $N\times N$. Το στοιχείο ${\bf A}_{ij}$ έχει τιμή TRUE αν υπάρχει ακμή μεταξύ των κόμβων i και j, αλλιώς έχει τιμή FALSE. Συγκεκριμένα, ο αριθμός των τριγώνων μπορεί να υπολογιστεί με τον παρακάτω αλγόριθμο:

Αλγόριθμος 1 Εύρεση πλήθους τριγώνων n_T σε γράφο $G(\mathcal{V}, \mathcal{E})$

Είσοδος: Πίνακας γειτνίασης \mathbf{A} του γράφου $G(\mathcal{V}, \mathcal{E})$

Έξοδος: Αριθμός τριγώνων n_T στον γράφο G

1: $\mathbf{C} = (\mathbf{A} \cdot \mathbf{A}) \odot \mathbf{A}$, · : γινόμενο πινάκων · \odot : γινόμενο Hadamard

2: $n_T = \frac{1}{6} \sum_{ij} \mathbf{C}_{ij}$

Ο πίνακας **A** πρέπει να αποθηκευτεί σε *αραιή* (sparse) μορφή, ώστε να είναι δυνατή η επεξεργασία μεγάλων δεδομένων. Σας δίνεται κώδικας MATLAB που υλοποιεί τον αλγόριθμο.

Το πρόγραμμά σας θα πρέπει να:

- $-\Delta$ ιαβάζει τον πίνακα γειτνίασης για έναν γράφο $G(\mathcal{V},\mathcal{E})$ σε αραιή μορφή, από αρχείο στον σκληρό δίσκο.
- Μεταφέρει τα δεδομένα που χρειάζονται στην GPU.
- Υπολογίζει το πλήθος των τριγώνων που υπάρχουν στον γράφο, με τον αλγόριθμο που περιγράφτηκε.
- Ελέγχει την ορθότητα των αποτελεσμάτων.
- Δουλεύει σωστά για: $M \le 2^{25}$, $N \le 2^{23}$.

Χρησιμοποιήστε πολλαπλά νήματα και shared memory για να αυξήσετε την ταχύτητα του προγράμματος σας. Χρησιμοποιήστε διαθέσιμες βιβλιοθήκες όπως η cuSPARSE². Για να αυξήσετε την απόδοση της υλοποίησής σας, υπολογίστε το γινόμενο των πινάκων μόνο στις μη-μηδενικές θέσεις του **A** (εξαιτίας του γινομένου Hadamard, μόνο αυτές οι θέσεις μπορεί να είναι μη μηδενικές στον πίνακα **C**). Επιπλέον, δεν απαιτείται να αποθηκεύσετε τον πίνακα **C**. Μπορείτε να υπολογίσετε απευθείας το τελικό άθροισμα.

Χρησιμοποιήστε τους εξής γράφους από την συλλογή SuiteSparse Matrix Collection 3 : i) auto, ii) great-britain_osm και iii) delaunay_n22 για τα πειράματά σας.

Παραδώστε:

- Αναφορά 3-4 σελίδων που να περιγράφει τη μέθοδο του παραλληλισμού καθώς και τους ελέγχους ορθότητας που χρησιμοποιήσατε.
- Σχόλια και συμπεράσματα για την ταχύτητα υπολογισμών συγκριτικά με την σειριακή έκδοση του αλγορίθμου, για το εύρος παραμέτρων που δουλεύει σωστά ο παράλληλος αλγόριθμος.
- Τον κώδικα του προγράμματος.

Δεοντολογία: Εάν χρησιμοποιήσετε κώδικες από το διαδίκτυο ή αλλού, να αναφέρετε την πηγή και τις αλλαγές που κάνατε.

Σημείωση: Ομαδικές εργασίες γίνονται δεκτές. Ο μέγιστος αριθμός φοιτητών που μπορούν να συνεργαστούν σε μία ομάδα είναι δύο, αρκεί κανένα ζευγάρι να μην έχει συνεργαστεί σε προηγούμενη εργασία.

Ημερομηνία παράδοσης: 19 Φεβρουαρίου 2019.

https://docs.nvidia.com/cuda/

² https://developer.nvidia.com/cuBLAS

³ https://sparse.tamu.edu