E1 222 Stochastic Models and Applications Problem Sheet 4–1

1. Given $P[X_n = 0] = 1 - n^{-2}$, $P[X_n = e^n] = n^{-2}$. Show that X_n converge almost surely but not in r^{th} mean.

Answer: An obvious candidate for limit is zero. Define events $A_k^{\epsilon} = [|X_k - 0| > \epsilon]$ By definition, $X_n \stackrel{a.s.}{\longrightarrow} 0$ iff $P[\limsup A_k^{\epsilon}] = 0$, $\forall \epsilon > 0$. For this we can use Borel-Cantelli lemma. For all $\epsilon > 0$, we have $P[A_k^{\epsilon}] = P[X_k \neq 0] = k^{-2}$. Hence $\sum_k P[A_k^{\epsilon}] < \infty$ and hence $P[\limsup A_k^{\epsilon}] = 0$ thus showing convergence with probability one.

For r^{th} mean convergence, $E[|X_k|^r] = e^{kr}k^{-2}$ which goes to ∞ as $k \to \infty$ and hence the sequence does not converge in r^{th} mean.

2. Given $P[X_n = 0] = 1 - 1/n$, $P[X_n = n^{1/2r}] = 1/n$, X_n are independent. Show that $E|X_n|^r \to 0$ but the sequence does not converge to zero almost surely.

Answer: $E|X_n|^r = \left(n^{1/2r}\right)^r \frac{1}{n} = \frac{1}{\sqrt{n}} \to 0$, as $n \to \infty$.

Taking $A_n^{\epsilon} = [|X_n - 0| > \epsilon]$, we have $P[A_n^{\epsilon}] = \frac{1}{n}$. Hence, $\sum_k P[A_k^{\epsilon}] = \infty$. Since X_n are given to be independent, by Borel Cantelli lemma, $P[\limsup A_k^{\epsilon}] = 1$ thus showing that the sequence does not converge almost surely.

3. Let $\Omega = [0, 1]$ and let P be the usual length measure. Let $X_n = n^{0.25}I_{[0, 1/n]}$, $n = 1, 2, \dots$, where I_A denotes indicator of event A. Does the sequence converge in (i) probability, (ii) r^{th} mean for some r?

Answer: It is easy to see that the distribution of X_n is: $P[X_n = n^{0.25}] = 1/n$ and $P[X_n = 0] = 1 - 1/n$. Hence obvious candidate for limit is zero.

$$P[|X_n - 0| > \epsilon] = 1/n \rightarrow 0$$
, as $n \rightarrow \infty$

and hence it converges in probability to zero. We have $E[|X_n|^r = n^{0.25r-1}]$. It goes to zero if r < 4.

4. Let X_1, X_2, \dots , be random variables with distributions

$$F_{X_n}(x) = 0$$
 if $x < -n$
 $= \frac{x+n}{2n}$ if $-n \le x \le n$
 $= 1$ if $x \ge n$

Does $\{X_n\}$ converge in distribution?

Hint: It is easy to see that X_n is uniform over [-n, n]. Since we cannot have a uniform density over the entire real line, intuitively, we do not expect the sequence to converge in distribution.

Here, the sequence of functions F_{X_n} converges pointwise to the constant function 0.5. That is, $\lim_{n\to\infty} F_{X_n}(x) = 0.5$, $\forall x$. The limit function is not a distribution function and hence the X_n does not converge in distribution. You can get an idea of the limit function by plotting F_{X_n} for a couple of large n values.

To show that F_{X_n} converges to the constant function you can proceed as follows. Fix x. Now, given any $\epsilon > 0$ we should show that there is an N such that $|F_{X_n}(x) - 0.5| < \epsilon$ if n > N.

5. Let $\Omega = [0, 1]$. Consider a sequence of binary random variables: X_{nk} , $k = 1, \dots, n, n = 1, 2, \dots$ That is, the sequence is $X_{11}, X_{21}, X_{22}, X_{31}, X_{32}, X_{33}, \dots$ These random variables are defined by

$$X_{nk}(\omega) = 1 \text{ iff } \frac{k-1}{n} \le \omega < \frac{k}{n}, \ 1 \le k \le n, n = 1, 2, \dots$$

Show that the sequence converges to zero in probability but it does not converge with probability one

Hint: The distribution of X_{nk} is $P[X_{nk} = 1] = \frac{1}{n} = 1 - P[X_{nk} = 0]$. Hence it is easy to see the sequence converges to 0 in probability.

Hence the only candidate for limit for almost sure convergence is 0.

For almost sure convergence Borel-cantelli would not be useful.

Fix a $\omega \in [0, 1]$. No matter how far down the sequence you go, there would be some n, k such that $X_{nk}(\omega) = 1$. So, for no ω the sequence converges to zero.

6. Let X_1, X_2, \cdots be iid Gaussian random variables with mean zero and variance unity. Let $\bar{X}_n = (X_1 + \cdots + X_n)/n$. Let F_n be the distribution function of \bar{X}_n . Find Lim F_n . Is this a distribution function?

Hint: By law of large numbers we know \bar{X}_n converges to 0 (the mean). A constant is like a discrete random variables that takes only one value. Hence, the distribution function of the constant 0 is F(x) = 0 for x < 0

and F(x) = 1 for $x \ge 0$. Since convergence in probability or almost sure convergence implies convergence in distribution, the sequence $F_{\bar{X}_n}$ converges to the df F which is given above

This completes the the answer to the question. But since X_i are iid Gaussian, we know that \bar{X}_n is Gaussian with zero mean and variance 1/n. Hence we know the sequence of distribution functions. It is instructive to look at this sequence of distribution functions and show that the limit is the function F defined above

7. Let X_1, X_2, \cdots be a sequence of discrete random variables with X_n being uniform over the set $\{\frac{1}{n}, \frac{2}{n}, \cdots, \frac{n}{n}\}$. Does the sequence $\{X_n\}$ converge in distribution?

Hint: The sequence here converges to the uniform distribution over [0, 1] You can see this easily by drawing the functions. The df of X_n is a staircase function that starts at the origin has equal height jumps at 1/n, 2/n, and so on and reaches 1. Now draw the df of X_{2n} . Now you would be able to see the sequence converges to df of uniform density. Now prove that the sequence of df's converges point-wise. Fix any x in (0, 1). You want to show that $|F_{X_n}(x) - x| < \epsilon$ if n is large.

8. Let $\{X_n\}$ be a sequence of random variables converging in distribution to a continuous random variable X. Let a_n be a sequence of positive numbers such that $a_n \to \infty$ as $n \to \infty$. Show that X_n/a_n converges to zero in probability.

Hint: We are given $a_n > 0$ and they go to infinity.

$$P\left[\left|\frac{X_n}{a_n} - 0\right| > \epsilon\right] = P\left[\left|X_n\right| > a_n\epsilon\right] = F_{X_n}(-a_n\epsilon) - P\left[X_n = -a_n\epsilon\right] + 1 - F_{X_n}(a_n\epsilon)$$

So, we essentially need to show $\lim_{n\to\infty} F_{X_n}(a_n\epsilon) = 1$ (and similarly $F_{X_n}(-a_n\epsilon) \to 0$, $P[X_n = -a_n\epsilon] \to 0$).

We know that $\lim_{n\to\infty} F_{X_n}(x) = F(x)$, $\forall x$ where F is the limit distribution function. This is true for all x because we are given that the sequence converges to a continuous rv and hence the limit df F is continuous at all x and hence the pointwise converges holds for all x. We also know the $a_n \epsilon \to \infty$ because we are given a_n goes to infinity. Hence you can conclude $F_{X_n}(a_n) \to F(\infty) = 1$. This is the expected answer.

However, there is an important issue here. The question is if $F_{X_n}(x) \to F(x)$, $\forall x$ and if $a_n \to \infty$, does $F_{X_n}(a_n) \to F(\infty) = 1$? In general, if $y_n \to y$ and $g_n(x) \to g(x)$, it does not necessarily imply $g_n(y_n) \to g(y)$. For that you need the sequence of functions to converge uniformly. But in our case since the sequence is of distribution functions, it can be shown that this holds.

- 9. Find the characteristic function of X when X has (i) Poisson distribution, (ii) Geometric distribution
- 10. Let X_1, X_2, \cdots be independent normally distributed random variables having mean zero and variance σ^2 .
 - (a). What is the mean and variance of X_1^2 ?
 - (b). How should $P[X_1^2 + X_2^2 + \dots + X_n^2 \le x]$ be approximated in terms of standard normal distribution?
 - (c). Suppose $\sigma^2=1$. Find (approximately) $P[80 \le X_1^2+\cdots+X_{100}^2 \le 120]$.
 - (d). Find c such that (approximately) $P[100-c \le X_1^2+\cdots+X_{100}^2 \le 100+c]=0.95$.

Answer: (a). Since $EX_1 = 0$, we have $EX_1^2 = \text{Var}(X_1) = \sigma^2$. To find variance of X_1^2 we need to find EX_1^4 . Since X_1 is Gaussian with mean zero and variance σ^2 , its moment generating function is given by $M_{X_1}(t) = \exp(0.5t^2\sigma^2)$. By differentiating this four times (which is easy to do if you expand it in Taylor series), we get $EX_1^4 = 3\sigma^4$. Hence, $\text{Var}(X_1^2) = E[(X_1^2)^2] - (E[X_1^2])^2 = 2\sigma^4$.

(b). Let $S_n = \sum_{i=1}^n X_i^2$. Since X_i are iid, $ES_n = n\sigma^2$ and $Var(S_n) = 2n\sigma^4$. Hence

$$P[S_n \le x] = P\left[\frac{S_n - n\sigma^2}{\sigma^2 \sqrt{2n}} \le \frac{x - n\sigma^2}{\sigma^2 \sqrt{2n}}\right] \approx \Phi\left(\frac{x - n\sigma^2}{\sigma^2 \sqrt{2n}}\right)$$

(c). From the above it is easy to see that

$$P[a \le S_n \le b] \approx \Phi\left(\frac{b - n\sigma^2}{\sigma^2 \sqrt{2n}}\right) - \Phi\left(\frac{a - n\sigma^2}{\sigma^2 \sqrt{2n}}\right)$$

Here, we are given, $\sigma^2 = 1$, n = 100, a = 80 and b = 120. Hence

$$P[80 \le S_{100} \le 120] \approx \Phi\left((120 - 100)/10\sqrt{2}\right) - \Phi\left((80 - 100)/10\sqrt{2}\right)$$

Hence

$$P[80 < S_{100} < 120] \approx 2\Phi(\sqrt{2}) - 1 \approx 2\Phi(1.41) - 1 = 0.84$$

(d). As above, we have

$$P[100 - c \le S_{100} \le 100 + c] \approx 2\Phi\left(c/10\sqrt{2}\right) - 1$$

Equating this to 0.95 we get $c/10\sqrt{2} = \Phi^{-1}(0.975) = 1.96$. Hence $c = 19.6 * \sqrt{2} = 27.7$.

11. Candidates A and B are contesting an election and 55% of the electorate favour B. What is the (approximate) probability that in a sample of size 100 at least one-half of the people sampled favour A.

Answer: Let X_i be iid random variables with $P[X_i = 1] = 0.45 = 1 - P[X_i = 0]$. Thus, X_i is an indicator of whether i^{th} person sampled favours A. Let $S_{100} = \sum_{i=1}^{100} X_i$. Hence what we want is $P[S_{100} > 50]$. Since S_{100} is integer-valued and we are using a CLT approximation, this probability is often written as $P[S_{100} > 50.5]$. (This is used for better approximation whenever we are approximating binomial distribution with normal distribution). Note that $ES_{100} = 45$ and $Var(S_{100}) = 100 * 0.45 * (1 - 0.45) = 24.75$ (We have $\sqrt{24.75} = 4.97 \approx 5$).

$$P[S_{100} > 50.5] = P\left[\frac{S_{100} - 45}{0.497} > \frac{50.5 - 45}{4.97}\right] \approx 1 - \Phi(1.11) = 1 - 0.86 = 0.14$$

Comment: In an exam it is alright if you use $P[S_{100} > 50]$ instead of $P[S_{100} > 50.5]$

12. A fair coin is tossed until 100 heads appear. Find (approximately) the probability that atleast 230 tosses will be necessary.

Answer: The event of at least 230 tosses being needed is same as the event that in 229 tosses the number of heads is less than or equal to 99. Let X_i be iid random variables taking values 0 and 1 with equal probability. Let $S_n = \sum_{i=1}^n X_i$. Now, S_n represents the number of heads in n tosses of a

fair coin. Note that $EX_i = 0.5$ and $Var(X_i) = 0.25$. Hence $ES_n = 0.5n$ and $Var(S_n) = 0.25n$. Hence, the probability we need is

$$P[S_{229} \le 99] = P\left[\frac{S_{229} - 0.5 * 229}{\sqrt{229 * 0.25}} \le \frac{99 - 0.5 * 229}{\sqrt{229 * 0.25}}\right]$$
$$\approx \Phi\left(\frac{99 - 0.5 * 229}{\sqrt{229 * 0.25}}\right) = \Phi(-2.05) = 0.02$$

Comment: Once again, it is alright if you do not use the 99-0.5. You can simply use 99