# Mean Sensitivity Proofs

June 22, 2021

**Definition 1.** The sample mean of database X of size n is defined as

$$f(X) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

These are restricted-sensitivity proofs that only apply when N is known. The library makes use of the Resize component to guarantee this static property. If N is unknown, there is an argument on the DPMean component to estimate the mean by postprocessing plug-in estimates for the count and sum.

#### 1 Neighboring Definition: Change One

#### 1.1 $\ell_1$ -sensitivity

**Theorem 1.** Say the space of datapoints  $\mathcal{X}$  is bounded above by M and bounded below by m. Then  $f(\cdot)$  has  $\ell_1$ -sensitivity in the change-one model bounded above by

$$\frac{M-m}{n}$$
.

*Proof.* Say X and X' are neighboring databases which differ at data-point  $x_j$ , and let  $\Delta f$  indicate the  $\ell_1$ -sensitivity of  $f(\cdot)$ . Then

$$\Delta f = \max_{X,X'} \left| f(X) - f(X)' \right|$$

$$= \max_{X,X'} \frac{1}{n} \left| \left( \sum_{\{i \in [n] | i \neq j\}} x_i \right) + x_j - \left( \sum_{\{i \in [n] | i \neq j\}} x_i' \right) + x_j' \right|$$

$$= \max_{X,X'} \frac{1}{n} \left| x_j - x_j' \right|$$

$$\leq \frac{M - m}{n}.$$

#### 1.2 $\ell_2$ -sensitivity

**Theorem 2.** Say the space of datapoints  $\mathcal{X}$  is bounded above by M and bounded below by m. Then  $f(\cdot)$  has  $\ell_2$ -sensitivity in the change-one model bounded above by

$$\frac{M-m}{n}$$

*Proof.* This follows the same logic as the above proof.

## 2 NEIGHBORING DEFINITION: ADD/DROP ONE

### 2.1 $\ell_1$ -sensitivity

**Theorem 3.** Say the space of datapoints  $\mathcal{X}$  is bounded above by M and bounded below by m. Then  $f(\cdot)$  has  $\ell_1$ -sensitivity in the add/drop-one model bounded above by

$$\frac{M-m}{n}$$
.

*Proof.* For notational ease, let n always refer to the size of database x. We must consider both adding and removing an element from x. First, consider adding a point:

Let  $X' = X \cup \{x\}$ . Without loss of generality, assume the point added is the  $(n+1)^{\text{th}}$  element of database X'. Note that

$$|f(X) - f(X)'| = \left| \frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{n+1} \sum_{i=1}^{n+1} x_i \right|$$

$$= \left| \left( \frac{1}{n} - \frac{1}{n+1} \right) \sum_{i=1}^{n} x_i - \frac{x}{n+1} \right|$$

$$= \frac{1}{n+1} \left| \frac{1}{n} \sum_{i=1}^{n} x_i - x \right|$$

$$\leq \frac{|M-m|}{n+1}.$$

Second, consider removing a point:

Let  $X' = X \setminus \{x\}$ . Without loss of generality assume that the point subtracted is the  $n^{\text{th}}$  element of database X.

$$|f(X) - f(X')| = \left| \frac{1}{n-1} \sum_{i=1}^{n-1} x_i - \frac{1}{n} \sum_{i=1}^n x_i \right|$$

$$= \left| \left( \frac{1}{n-1} - \frac{1}{n} \right) \sum_{i=1}^{n-1} x_i - \frac{x}{n} \right|$$

$$= \frac{1}{n} \left| \frac{1}{n-1} \sum_{i=1}^{n-1} x_i - x \right|$$

$$\leq \frac{|M-m|}{n}.$$

Then, since  $\forall n > 0$ ,

$$\frac{1}{n+1} < \frac{1}{n},$$

the sensitivity of the mean in general is bound from above by

$$\frac{M-m}{n}$$
.

2.2  $\ell_2$ -sensitivity

**Theorem 4.** Say the space of datapoints  $\mathcal{X}$  is bounded above by M and bounded below by m. Then f has  $\ell_2$ -sensitivity in the add/drop-one model bounded above by

$$\frac{M-m}{n}$$
.

*Proof.* This follows the same logic as the above proof.