Time Series Forecasting Using Python

*Novri Suhermi, Suhartono, Dedy Dwi Prastyo

Department of Statistics - Institut Teknologi Sepuluh Nopember

Presented in PyCon Indonesia 2017 December 9, 2017 PENS, Surabaya

1 / 34

Outline

- Motivation
- 2 Time Series and Stochastic Processes
- Time Series Models
- 4 Time Series Real Examples

Outline

- Motivation
- 2 Time Series and Stochastic Processes
- Time Series Models
- 4 Time Series Real Examples

Time Series Plot of Los Angeles Annual Rainfall

4 / 34

Scatterplot of LA Rainfall versus Last Year's LA Rainfall

Hare Abundance versus Previous Year's Hare Abundance

Monthly Oil Filter Sales with Special Plotting Symbols

Outline

- Motivation
- 2 Time Series and Stochastic Processes
- Time Series Models
- 4 Time Series Real Examples

Formal Definitions

A stochastic process is a collection of time indexed random variables

$$(Z_t, t \in T) = (Z_t(\omega), t \in T, \omega \in \Omega)$$

defined on some space Ω .

Suppose that

- for a fixed $t \to Z_t(\omega)$, $Z_t : \Omega \to \mathbb{R}$ This is just a random variable.
- for fixed $\omega \to Z_\omega : \mathcal{T} \to \mathbb{R}$ This is a realization or sample function.

Changing the time index, we can generate several random variables:

$$Z_{t_1}(\omega), Z_{t_2}(\omega), ..., Z_{t_n}(\omega)$$

From which a realization is:

$$Z_{t_1}, Z_{t_2}, ..., Z_{t_n}$$

This collection of random variables is called a **stochastic process**A realization of the stochastic process is called a **time series**

Novri Suhermi PyCon Indonesia 2017 December 9, 2017 11 / 34

Example of stochastic processes

Example 1

Let the index set be $T = \{1, 2, 3\}$ and let the space of outcomes (Ω) be the possible outcomes associated with tossing one dice:

$$\Omega = \{1,2,3,4,5,6\}$$

Define

$$Z(t,\omega) = t + [\text{value on dice}]^2 t$$

Therefore for a particular ω , say $\omega_3 = \{3\}$, the realization or path would be (10, 20, 30).

Example of stochastic processes

Example 2

A Brownian Motion $B = (B_t, t \in [0, \infty])$:

- it starts at zero, $B_0 = 0$
- It has stationary, independent increments
- For every t > 0, B_t has a normal N(0, t) distribution
- It has continuous sample paths: no jumps.

Means, Autocovariances, and autocorrelations

For a stochastic process $\{Y_t: t=0,\pm 1,\pm 2,...\}$:

• Mean function:

$$\mu_t = \mathbb{E}[Y_t]$$

for $t = 0, \pm 1, \pm 2, ...$

• Autocovariance function:

$$\gamma_{t,s} = Cov(Y_t, Y_s)$$

for $t, s = 0, \pm 1, \pm 2, ...$

• Autocorellation function:

$$\rho_{t,s} = Corr(Y_t, Y_s)$$

for $t, s = 0, \pm 1, \pm 2, ...$

White Noise Processes

A process $\{a_t\}$ is called a **white noise process** if it is a sequence of uncorrelated random variables from a fixed distribution with constant mean $\mathbb{E}[a_t] = \mu_a$, usually assumed to be 0, constant variance $Var(a_t) = \sigma_a^2$, and $\rho_k = Cov(a_t, a_{t+k}) = 0$ for all $k \neq 0$. By definition, white noise process $\{a_t\}$ is **stationary**.

The Random Walk

Let a_1, a_2, \ldots be a sequence of independent, identically distributed random variables each with zero mean and variance σ_a^2 . The observed time series, $\{Y_t: t=1,2,\ldots\}$, is constructed as follows:

$$Y_1 = a_1$$

 $Y_2 = a_1 + a_2$
...
 $Y_t = a_1 + a_2 + ... + a_t$

Alternatively, we can write:

$$Y_t = Y_{t-1} + a_t$$

The Random Walk

Stationarity

A process $\{Y_t\}$ is said to be **strictly stationary** if the joint distribution of $Y_{t_1}, Y_{t_2}, ..., Y_{t_n}$ is the same as the joint distribution of $Y_{t_1-k}, Y_{t_2-k}, ..., Y_{t_n-k}$.

A process $\{Y_t\}$ is said to be **weakly stationary** if

- **1** The mean function (μ_t) is constant for all t, $\mu_t = \mu$
- ② The variance function (σ_t^2) is constant for all t, $\sigma_t^2 = \sigma^2$
- **3** The autocovariance function between Y_{t_1} and Y_{t_2} only depends on the interval t_1 and t_2

Outline

- Motivation
- 2 Time Series and Stochastic Processes
- Time Series Models
- 4 Time Series Real Examples

Moving Average Processes

A general linear process, $\{Y_t\}$, is one that can be represented as a weighted linear combination of present and past white noise terms as:

$$Y_t = a_t + \Psi_1 a_{t-1} + \Psi_2 a_{t-2} + \dots$$

where $\sum_{i=0}^{\infty} \Psi_i^2 < \infty$

In the case where only a finite number of the Ψ -weights are nonzero, we have what is called a **moving average process**:

$$Y_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots$$

Novri Suhermi PyCon Indonesia 2017 December 9, 2017

Autoregressive Processes

Autoregressive processes are as their name suggests —regressions on themselves. Specifically, a pth-order **autoregressive process** $\{Y_t\}$ satisfies the equation

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

21 / 34

ARIMA Model

ARIMA Model

General form of ARIMA model:

$$\phi_p(B)(1-B)^d Y_t = \theta_0 + \theta_q(B)a_t$$

where,

$$\theta_{0} = \mu(1 - \phi_{1} - \phi_{2} - \dots - \phi_{p})$$

$$\phi_{p}(B) = 1 - \phi_{1}B - \phi_{2}B^{2} - \dots - \phi_{p}B^{p}$$

$$\theta_{q}(B) = 1 - \theta_{1}B - \theta_{2}B^{2} - \dots - \theta_{q}B^{q}$$

$$BY_{t} = Y_{t-1}$$

 Y_t : actual value, B: backshift operator, a_t : white noise, $a_t \sim WN(0, \sigma^2)$, $\phi_i(i=1,2,...,p), \theta_j(j=1,2,...,q)$, μ : model parameters, d: differencing order.

Autocorrelations and Partial Autocorrelations

ACF:

$$\rho_k = \frac{Cov(Y_t, Y_{t-k})}{Var(Y_t)} = \frac{\gamma_k}{\gamma_0}$$

Sample ACF:

$$\hat{\rho}_{k} = \frac{\sum_{t=k+1}^{T} (Y_{t} - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{T} (Y_{t} - \bar{Y})^{2}}$$

Partial autocorrelation (PACF) between Y_t and Y_{t-k} is defined as the correlation between Y_t and Y_{t-k} after the intervening variables $Y_{t-1}, Y_{t-2}, ..., Y_{t-(k-1)}$ have been removed. The conditional correlation

$$Corr(Y_t, Y_t - k \mid Y_{t-1}, ..., Y_{t-(k-1)})$$

is called partial autocorrelation.

Autocorrelations and Partial Autocorrelations

Sample PACF:

$$\hat{\phi}_{11} = \hat{\rho}_1$$

$$\hat{\phi}_{k+1,k+1} = \frac{\hat{\rho}_{k+1} - \sum_{j=1}^{k} \hat{\phi}_{kj} \hat{\rho}_{k+1-j}}{1 - \sum_{j=1}^{k} \hat{\phi}_{kj} \hat{\rho}_{j}}$$

Build ARIMA Model: Box-Jenkins Procedure

The Box-Jenkins method refers to the iterative application of the following three steps:

- Identification. Using plots of the data, autocorrelations, partial autocorrelations, and other information, a class of simple ARIMA models is selected. This amounts to estimating appropriate values for p, d, and q.
- ② **Estimation**. The ϕ and θ of the selected model are estimated using conditional least square, maximum likelihood techniques, backcasting, etc.
- Oliagnostic Checking. The fitted model is checked for inadequacies by considering the autocorrelations of the residual series (the series of residual, or error, values).

ACF and PACF Patterns

Model	ACF	PACF
ARIMA(p, d, 0)	Infinite. Tails off.	Finite.
		Cuts off after p lags.
ARIMA(0, d, q)	Finite. Cuts off after q lags.	Infinite. Tails off.
ARIMA(p, d, q)	Infinite. Tails off.	Infinite. Tails off.

ANN Model

General form of single hidden layer feedforward network:

$$Y_{t} = \alpha_{0} + \sum_{j=1}^{q} \alpha_{j} g \left(\beta_{0j} + \sum_{i=1}^{p} \beta_{ij} Y_{t-i} \right) + \varepsilon_{t}$$

where $\alpha_j(j=0,1,2,...,q)$, $\beta_{ij}(i=0,1,2,...,p;j=1,2,...,q)$ are model parameters (connection weights), p is the number of nodes in input layer, q is the number of nodes in hidden layer, and g(.) is the hidden layer activation function.

Neural Architecture

Outline

- Motivation
- 2 Time Series and Stochastic Processes
- Time Series Models
- 4 Time Series Real Examples

Prediction of Roll Motion

Data Set: series of rolling motion (degree) of a Floating Production Unit Number of observation: 3250 time points

Figure: Time series plot of roll motion

Ship motions

Figure: Translation motions

Ship motions

Figure: Rotation motions

Methodology

- Partitioning the data: 3000 in-sample, 250 out-of-sample
- in-sample: modeling the data
- out-of-sample: forecast evaluation
- Measuring forecast accuracy: Root Mean Squared Error (RMSE)

RMSE =
$$\sqrt{\frac{1}{L} \sum_{l=1}^{L} (Y_{n+l} - \hat{Y}_n(l))^2}$$

L: size of out-of-sample

 Y_{n+1} : *I*-th actual value of out-of-sample data

 $\hat{Y}_n(I)$: *I*-th forecast

DEMO http://bit.ly/TSPyConID2017