

Projeto de Redes

Ficha de trabalho Nº1

Elaborado por:

André Mateus Nº 11319

Pedro Ferreira № 17986

Pedro Nunes № 16290

Índice

1.	Introdução	2
2.	Determinar linha de vista e cálculo da largura de banda disponível na	
Ca	amada de rede	3
	1.1. Paços do Concelho - Bombeiros	4
	1.2. Bombeiros - Piscinas	5
	1.2.1. Paços do Concelho - Piscinas	. 6
	1.3. Piscinas - Oficinas	7
	1.4. Paços do Concelho – Centro de Interpretação do Alviela	8
	1.4.1. Paços do Concelho – Monte (Repetidor)	.9
	1.4.2. Monte (Repetidor) — Centro de Interpretação do Alviela	.9
3.	Link Budget das Ligações1	0
4.	Desafios 1	1

1. Introdução

As redes wireless são usadas para satisfazer muitas necessidades. Talvez o seu uso mais comum seja ligar os utilizadores dos computadores portáteis que viajam de local para local. Outro dos usos comuns será a ligação de redes móveis que se ligam via satélite. Um método de transmissão sem fios é uma escolha lógica para ligar uma ligação LAN que frequentemente muda de local.

As seguintes situações justificam o uso da tecnologia sem fios:

- Para abranger uma distância além das capacidades por cabo;
- Para fornecer uma ligação de comunicação para backup em caso de falha de rede normal;
- Para fazer a ligação de estações de trabalho portáteis ou temporárias;
- Para superar situações onde a ligação por cabo é difícil ou financeiramente inviável;
- Para ligar remotamente utilizadores móveis ou redes.

Os desenvolvedores devem considerar alguns fatores a ter em conta no planeamento de redes wireless:

- Fontes de interferência:
- Desvanecimento do sinal;
- Propagação do sinal;
- Número de nós que se pretendem ligar;
- Tipo de topologia (ponto-a-ponto; ponto-multiponto; multiponto-multiponto);
- Serviços a suportar (voz, dados, streaming de vídeo, etc..);
- Distâncias;
- Segurança;
- Linha de vista.

O cálculo do link budget serve para aferir acerca da viabilidade das ligações sem fios por rádio frequência entre o site Paços do Concelho e CIN Alviela e Paços do Concelho Bombeiros, Piscina e Oficina. Este cálculo pode ser decomposto nos passos seguintes:

- Determinar se existe linha de vista, ou seja se o elipsoide de Fresnel de primeira ordem está desobstruído. No caso de não haver linha de vista, o link não é viável. Aumentar o comprimento do mastro de uma das antenas pode ser suficiente para que passe a haver linha de vista. Outra solução passa por encontrar um ponto intermédio com linha de vista para os pontos a ligar onde se possa instalar um repetidor.
- Determinar o valor do EIRP tendo em conta a potência do transmissor, as perdas dos cabos que ligam o emissor à antena externa e o ganho da antena.
- Determinar as perdas em espaço aberto de acordo com a fórmula de Friis.
- Determinar a diferença entre a potência recebida e a sensibilidade do receptor. Nota: a sensibilidade depende do equipamento e da largura de banda pretendida.

Solução

2. Determinar linha de vista e cálculo da largura de banda disponível na camada de rede

De forma a determinarmos se existe linha de vista entre os dois pontos é necessário analisar a existência de algum terreno ou edifício ou qualquer outra obstrução que possa causar quebras de ligação ou causar velocidades indesejadas no destino.

Deverá ser tido em conta a altura do edifício de origem e destino assim como a distância entre os 2 pontos.

Uma das formas usadas para calcular a área em redor da linha de vista das ondas wireless após deixarem a antena é através do calcula da zona de Fresnel, recorrendo à seguinte formula:

$$r(em\ metros) = 17.32X\sqrt{-\left(\frac{d\ (em\ KM)}{4f\ (em\ GHZ)}\right)}$$

Os resultados da zona de fresnel são obtidos em unidades de metros, decidimos optar por devolver também os resultados a 80% da zona de fresnel de forma a conseguirmos uma ligação estável e desobstruída, porém a zona de fresnel é apenas eficiente quando o elipsoide esta obstruído até 20%.

A obtenção dos valores da largura de banda disponível na camada de rede é obtida através da divisão por 2 do valor da largura de banda da camada de rádio, devido ao *overhead* protocolar introduzido pelo protocolo de comunicação sem fios utilizado

largura de banda camada rede = 2 * largura de banda de rádio

1.1. Paços do Concelho - Bombeiros

Zona de fresnel =
$$17.32 x \sqrt{\frac{0.154}{4x2.4}} = 2.2m$$

Distância	154 Metros		
Altura do prédio	107,7 Metros		
Altura do Obstáctulo	~95 Metros		
Zona de Fresnel	2.2 Metros		
Zona de Fresnel (80%)	1.8 Metros		
Linha de Vista?	Existente		

1.2. Bombeiros - Piscinas

$$r = 17.32 \, x \sqrt{\frac{0.195}{4x2.4}} = 2.5m$$

Linha de Vista?	Existente		
Zona de Fresnel (80%)	2 Metros		
Zona de Fresnel	2.5 Metros		
Altura do Obstáctulo	100.6 Metros		
Altura do prédio	~103 Metros		
Distância	195 Metros		

1.2.1. Paços do Concelho - Piscinas

$$r = 17.32 \, x \sqrt{\frac{0.349}{4x2.4}} = 3.3m$$

Distância	349 Metros
Zona de Fresnel	3.3 Metros
Zona de Fresnel (80%)	2.6 Metros
Linha de Vista?	Existente

1.3. Piscinas - Oficinas

$$r = 17.32 \, x \sqrt{\frac{0.364}{4x2.4}} = 3.4m$$

Distância	364 Metros		
Altura do prédio	93.7 Metros		
Altura do Obstáctulo	~83 Metros		
Zona de Fresnel	3.4 Metros		
Zona de Fresnel (80%)	2.7 Metros		
Linha de Vista?	Existente		

1.4. Paços do Concelho - Centro de Interpretação do Alviela

$$r = 17.32 \, x \sqrt{\frac{3.974}{4x2.4}} = 11.1$$

Distância	3974 Metros		
Altura do prédio	107.7 Metros		
Altura do Monte	~94 Metros		
Zona de Fresnel	11.1 Metros		
Zona de Fresnel (80%)	8.9 Metros		
Linha de Vista?	Inexistente		

Conclui-se que a ligação *wireless* entre o ponto de Paços do Concelho até Centro de Interpretação do Alviela não é possível pois a 500 metros do destino encontra-se um monte que obstrui por completo a linha de vista entre ambos os pontos, como tal foi decidido que a solução ideal seria a montagem de um repetidor em cima do monte para que a ligação fosse devidamente efetuada entre os 2 pontos.

1.4.1. Paços do Concelho - Monte (Repetidor)

$$r = 17.32 \, x \sqrt{\frac{3.474}{4x2.4}} = 10.4m$$

Distância	3474 Metros
Altura do prédio	107.7 Metros
Altura do Monte	~94 Metros
Zona de Fresnel	10.4 Metros
Zona de Fresnel (80%)	8.9 Metros
Linha de Vista?	Existente

1.4.2. Monte (Repetidor) - Centro de Interpretação do Alviela

$$r = 17.32 \, x \sqrt{\frac{0.5}{4x2.4}} = 4m$$

Distância	500 Metros		
Altura do prédio	97.7 Metros		
Altura do Obstáctulo	Inexistente		
Zona de Fresnel	4 Metros		
Zona de Fresnel (80%)	8.9 Metros		
Linha de Vista?	Existente		

3. Link Budget das Ligações

Fotooão	TX Power (dB)	Ganho da Antena (dBi)	Comp do cabo (m)	EIRP (dBm)	Estação receptora (B)	Ganho da antena recetora (dBi)	Comp do cabo (m)	Pot. Recebida (dBm)	Ligação wireless		
Estação emissor (A)									Dist (m)	Modo (Mbps)	Marg em (dB)
P. Concelho	14	8	10	19.8	Bombeiros	8	20	-60,4	154	54	12.59
P. Concelho	16	8	10	19.8	Piscinas	8	6	-64.4	349	54	8.57
Bombeiros	16	8	20	19.6	Piscinas	8	6	-59.57	195	54	13.43
Piscinas	13	8	6	19.68	Oficinas	8	1	-63.81	364	18	9.18
P. Concelho	14	8	10	19.8	Monte	8	1	-83.29	3474	18	1.71
Monte	12	8	1	19.78	CIN	8	30	-72.85	500	18	12.15

4. Desafios

4.1. As normas IEEE 802.11n e IEEE 802.11ac são neste momento as normas usadas em redes sem fios por rádio frequência em ambientes indoor. Compare o princípio de funcionamento destas normas com as normas IEEE 802.11 a/b/q.

A norma IEEE 802.11a foi lançada primeiro que a norma b e g, oferecia frequências elevadas e permitia grandes distâncias em campo aberto assim como velocidades de 54 Mbits, a norma a não era afetada geralmente por outro tipo de dispositivos como micro-ondas pois usava uma frequência de 5 GHZ é diversa dos restantes equipamentos, porém embora fosse uma norma standart, acabou por ser uma norma não totalmente adoptada, pois o seu preço era elevado.

No mesmo espaço temporal foi também lançada a norma IEEE 802.11b que embora tivesse enormes desvantagens como menor velocidade, frequência, alcance e canais disponíveis assim como mais conflitos, o seu preço era inegavelmente mais barato o que provocou uma maior adoção do que a norma 802.11a.

Apenas em 2003 as decisões foram mais facilitadas com o lançamento da norma IEEE 802.11g que apesar de usar frequências menores e menos canais e menos alcance comparado com a 802.11a, possuía o extra que conseguir a mesma largura de banda que a norma a e o preço baixo da norma G, sendo fortemente adotado.

Norma	Frequência	Velocidade	Conflitos	Channels (US)	Interferências entre outros objectos	Alcançe	Preço
802.11a	5 GHZ	54 Mbits/s	Reduzidos	23	Reduzidas	5 KM	Elevedo
802.11b	2.4 GHZ	11 Mbits/s	Elevados	11	Elevado	140 M	Reduzido
802.110	2.4 GHZ	54 Mbits/s	Elevados	11	Elevado	140 M	Reduzido

4.2. Quais os cuidados a ter durante o projeto quando se pretende usar as normas IEEE 802.11n e ac?

As normas 802.11n e ac suportam uma frequência de 5Ghz, em alguns países não é permitido o uso em ambientes outdoor, pois a certos países teem essas frequências já atribuidas.

Deve-se ter tem conta tambem os equipamentos e ligados aos acess points e as suas larguras de banda, para não existir desperdícios de largura de banda.

Lista de equipamento necessário:

10 antenas:

Modelo:AIR-ANT2588P3M-N

Ganho: 8dbi

10 Access Points:

Modelo: Cisco Aironet 1572EC Outdoor Access Point

Sensibilidade: 2.4 GHz 802.11g

-93 dBm @ 6 Mbps

-93 dBm @ 9 Mbps

-93 dBm @ 12 Mbps

-92 dBm @ 18 Mbps

-89 dBm @ 24 Mbps

-87 dBm @ 36 Mbps

-82 dBm @ 48 Mbps

-81 dBm @ 54 Mbps

