Exploring Algorithms for Optimal Play in Wordle

Max Van Fleet, Vasishta Tumuluri, Jun Ikeda

Introduction

What is Wordle?

- 5 letter word guessing game with 6 attempts
- Green Tile
 - Letter is in the solution word and in the right position
- Yellow Tile
 - Letter is in the solution word but not in the right position
- Gray Tile
 - Letter is not in the solution word

Wordle Dictionary

- Using Wordle Dictionary derived from the 2022 version of the game
 - 2315 possible solution words
 - S
 - 10357 exclusively guess words
 - 12672 total possible guesses
 - G

Methods

Framing and Metrics

"Guess-indifferent"

- Guess-indifferent reward function:
 - Solution is guessed
 - r=1
 - Solution not guessed
 - r = 0

"Guess-biased"

- Guess-biased reward function:
 - Solution is guessed
 - r = (number of guesses used)
 - Solution is not guessed
 - $r = -\alpha$ where $\alpha \ge 7$
- We additionally consider execution time as a metric to compare different approaches

Exact Dynamic Programming Solution

- In 2022, Bertsimas and Paskov found an exact dynamic programming solution to Wordle
- This approach guarantees guessing the solution within the allotted guesses, guaranteeing a a guess-indifferent reward of 1
- On average, it takes 3.421 attempts to guess the solution, so the average guess-biased reward is -3.421
- Took several days to run their algorithm to solve the game, even with an efficient C++ implementation parallelized across a 64-core computer

Elimination Algorithm

- Starting with the set of all possible solutions S, when we make guesses, we learn from their colorings that some of the words in S can't be the solution anymore
- Need some way to determine which words are ruled out and which could still potentially be the solution
- We use elimination algorithm elim(Z, g, coloring_g); input is current set Z
 of all possible solutions, the guess g just made, and the coloring
 coloring_g of that guess
- Iterates through each word $z \in Z$ and uses the information learned from the g and coloring_g to eliminate/not eliminate z from Z
- Time complexity O(|Z|) i.e. runtime is linear in the cardinality of Z

Random Algorithm

- "Gold standard of badness"
- At each stage (each time we have to make a guess), this algorithm picks a random guess from the current Z
 - o i.e. at start of game, picks a random guess from S
- Then runs elimination algorithm elim(Z, g, coloring_g) to rule out words from Z before moving onto the next stage
- Linear time complexity O(|S|)

Minimax and Minex

- Cardinality of the set of remaining possible solutions could be a useful heuristic for optimality
- At each stage, minimax attempts to minimize maximum size of the next
 Z, and minex attempts to minimize expected size of next
- Must consider every possible guess in G, and for each of those, condition on every possible solution in S, to determine which guess g* in G has the least minimum/expected cardinality of next Z
- Very computationally heavy; instead we restrict guesses to solution set S, choose $\Gamma|S|/2001$ random guesses from S, and condition on $\Gamma|S|/2001$ random solutions in S
- Cubic time complexity O(|S|³)

Representing Solutions as a Matrix

- We can convert any 5-letter word into a unique column vector of length
 130 containing exactly 5 entries of 1 with remaining 125 entries 0
- For example, if we were dealing with two-letter words, the word AZ would be the following 52-component vector:

$$AZ := [1,0,0\dots,0,0,1]^T$$

- We do this for the whole solution set S and concatenate them all into a $(130 \times |S|)$ matrix A
- We want to find vectors (words) in G that are "good representations" of the matrix A. How do we do this?

Application of Rank-One Approximation

- Consider the SVD A = $U\Sigma V^T$, where Σ is a diagonal matrix whose diagonal entries are the singular values of A in descending order
- Closest rank-one approximation to A is $u_1 \sigma_1 v_1^T$ where σ_1 is the largest singular value of A, and u_1 and v_1 are the associated left and right singular vectors
- Therefore, u₁ can be considered the column vector that "best represents" A
- σ_1 is the largest singular value of A, so σ_1^2 must be the largest magnitude eigenvalue (called the dominant eigenvalue) of AA^T, with associated dominant eigenvector u_1 as AA^T = $U\Sigma^2U^T$ is an eigendecomposition.
- Thus, the dominant eigenvector u₁ of AA^T is the column vector that best represents A

Dominant Eigenvectors & Latent Semantic Indexing

- 1. Vectorize words in solution space into $(130 \times |Z|)$ matrix A
- 2. Find dominant eigenvector u associated with dominant eigenvalue of AA^T
- 3. Use cosine similarity to find the word in the action space closest to the eigenvector

$$\hat{g} = rg \; \min igg(heta = \; rccos igg(rac{u^{ au} \cdot g}{||g|| \cdot ||u||} igg) igg) \; .$$

- 4. Guess ĝ and eliminate impossible solutions in solution space by running elim(Z, ĝ, coloring ĝ)
- 5. Repeat steps 1-4

Cubic time complexity $O(|S|^3)$

Adapted from Michael Bonthron's 2022 approach

PCA & 90 - Cosine Similarity

- 1. Vectorize words in solution space into $(130 \times |Z|)$ matrix A
- 2. Find the SVD of A and select the 3 best rank 1 approximations
- 3. Find percent variance explained by rank 1 approximation matrix
- 4. Use cosine similarity to find smallest distance from rank 1 approximation to closest word
- 5. Find the best word that maximizes percent variance explained multiplied by (90 cosine similarity)
- 6. Eliminate solution space based on best word
- 7. Repeat till solution is found

Results & Conclusion

Graphs & Tables

	Success Rate	Avg No. of Attempts	Avg Guess Biased Reward	Avg Game Runtime
Random	0.973	4.08	- (4.08 + 0.027 α) ≤ - 4.269	0.381 sec
Minimax	0.984	3.92	- (3.92 + 0.016 α) ≤ - 4.032	3.45 sec
Minex	0.981	3.93	- (3.93 + 0.019 α) ≤ - 4.063	3.45 sec
Dominant Eigenvector	0.771	3.72	- (3.72 + 0.229 α) ≤ - 5.323	0.996 sec
PCA & 90 - Cosine Similarity	0.989	3.79	- (3.79 + .011 α) ≤ -3.867	2.63 sec

Conclusions

- Random algorithm performs surprisingly well given its simplicity
- Dominant Eigenvector is good at guessing quickly when it succeeds but also has a very high failure rate
- PCA & 90 Cosine Similarity performs the best
- Improvements upon the Bonthron approach.
 - Alternating 1st and 2nd singular vectors
 - Removing guessed word from action space
 - Restricting guess space to solution space, at least for the last
 1-2 guesses
- Very applicable at beating your friends in Wordle
 - All code will be public on GitHub!