Duckbergs

QuEra Challenge

Nikola Dimitrov, Noah Mugan, Yilian Liu, Zirui Zhang, Kunal Sinha

Quantum Circuits VS Hardware Implementations

Compiler Approach

Optimization? We saw something bigger!

- A chance to prototype a **neutral-atom quantum compiler**.
- Automating neutral-atom quantum circuit compilation

Neutral Atom Quantum Compiler

Input: Arbitrary Quantum Circuit

Compilation Pipeline

- Qubit mapping and register initializationInitializing atoms to registers
 - Minimize atom movement to the gate zone
 - Ensure connectivity constraints
- 2. Hardware aware decompositionConvert circuits to native gate representations
 - Parallelize single-qubit gates

 Minimize gate depth while preserving logical fidelity
 - 3. Swap optimization and gate schedulingReduce swap count using heuristic-based movement strategies
 - Schedule mutually commuting gates in parallel
 Balance fidelity loss due to atom transport

Generate optimized circuit in Blogade-compatible format

- 4. Intermediate representation and blogade integration

Challenge Solutions

Challenge #1.1

Challenge #1.2

Challenge #2

Challenge #3

Challenge #4

Challenge #5

Solution Costs

	Time	Touches	Moves	Overall
Challenge 1.1	5.40	4	2	8.27
Challenge 1.2	18.40	10	8	23.18
Challenge 2	7.43	6	3	15.40
Challenge 4	26.51	14	8	30.22
Challenge 5	21.24	17	7	34.40

Circuit 3

Recreated Circuit in Qiskit

Optimized Circuit

Using the original circuit's effective unitary as a target, the optimized circuit unitary has fidelity of 1 up to numerical roundoff error.

Intermediate Representation (IR)

```
ir_code = {
    "Position": [[0,1,2,3],[0,1,50,51],[0,1,50,51],[0,1,50,51]],
    "operator":[("move", [], True), ("move", [], True), ("rxy", [0,1], False,
    np.pi/2, np.pi/2), ("cz", [], True)]
}
```

- Efficient representation of circuit
- Enables a full compiler pipeline integrates:
 - Decomposition
 - Scheduling
 - Routing
 - Mapping