Cvičení 1

Příklad 1: Pro každý z následujících formálních zápisů množin uveďte (svými slovy), jaké prvky daná množina obsahuje:

- a) $\{1, 3, 5, 7, \ldots\}$
- b) $\{\ldots, -4, -2, 0, 2, 4, \ldots\}$
- c) $\{n \mid n = 2m \text{ pro nějaké } m \in \mathbb{N}\}\$
- d) $\{n \mid n = 2m \text{ pro nějaké } m \in \mathbb{N} \text{ a } n = 3k \text{ pro nějaké } k \in \mathbb{N} \}$
- e) $\{n \in \mathbb{Z} \mid n = n + 1\}$

Řešení:

- a) Lichá přirozená čísla
- b) Sudá celá čísla
- c) Přirozená čísla dělitelná dvěmi beze zbytku
- d) Přirozená čísla dělitelná šesti beze zbytku
- e) Žádné, jedná se o prázdnou množinu

Příklad 2: Popište vhodným formálním zápisem následující množiny:

- a) Množina obsahující čísla 1, 10 a 100.
- b) Množina obsahující všechna celá čísla větší než 5.
- c) Množina obsahující všechna přirozená čísla menší než 5.
- d) Množina neobsahující žádné prvky.
- e) Množina všech podmnožin dané množiny X.

Řešení:

- a) {1, 10, 100}.
- b) $\{n \in \mathbb{Z} \mid n > 5\}.$
- c) $\{n \in \mathbb{N} \mid n < 5\}$ nebo $\{0, 1, 2, 3, 4\}$.
- d) Ø
- e) $\{Y \mid Y \subseteq X\}$

Příklad 3: Uvažujme množiny $A = \{x, y, z\}$ a $B = \{x, y\}$.

- a) Je $A \subseteq B$?
- b) Je A \supseteq B?
- c) Co je $A \cup B$?
- d) Co je $A \cap B$?
- e) Co je $A \times B$?
- f) Co je $\mathcal{P}(B)$?

Řešení:

- a) Ne
- b) Ano
- c) A
- d) B
- e) $\{(x,x),(x,y),(y,x),(y,y),(z,x),(z,y)\}$
- f) $\{\emptyset, \{x\}, \{y\}, \{x, y\}\}$

Příklad 4: Rozhodněte, zda platí:

a) $\alpha \in \{\{\alpha\}, \{\alpha, \{\alpha\}\}\}\}$

Řešení: ne

b) $\{a,\{a\}\} \cap \mathcal{P}(\{a,\{a\}\}) = \emptyset$

 $\check{R}e\check{s}eni:$ ne

c) $\{\emptyset\} \in \{\{\emptyset\}\}\$

 $\check{R}e\check{s}en\acute{i}$: ano

Příklad 5: Určete všechny prvky následujících množin:

a) $\{a, \{a\}\} \cup \{a, \{b\}, c\}$

 $\check{R}e\check{s}en\acute{i}$: $a,\{a\},\{b\},c$

b) $\{a, \{a\}\} \cap \{a, \{b\}, c\}$

Řešení: a

c) $\{a, \{a\}\} - \{a, \{b\}, c\}$

 $\check{R}e\check{s}eni: \{a\}$

Příklad 6: Jestliže množina A má $\mathfrak a$ prvků a množina B má $\mathfrak b$ prvků, kolik prvků má množina $A \times B$? Vaši odpověď vysvětlete.

 $\check{R}e\check{s}en\acute{i}$: $a \cdot b$

Příklad 7: Jestliže množina C má c prvků, kolik prvků má množina $\mathcal{P}(C)$? Vaši odpověď vysvětlete.

Řešení: 2°

Příklad 8: Připomeňte si, co je to relace, a jaké znáte typy relací (homogenní vs. nehomogenní, unární, binární, atd.).

- a) Přesně definujte, co to znamená, že relace je reflexivní, ireflexivní, symetrická, asymetrická, antisymetrická, tranzitivní, funkční.
- b) Uvědomte si souvislost mezi binárními relacemi a orientovanými grafy (které mohou být i nekonečné) a popište, co jednotlivé vlastnosti uvedené v předchozím bodě znamenají z hlediska grafu reprezentujícího příslušnou relaci.
- c) Připomeňte si, co to znamená, že relace je ekvivalence. Jak pojem ekvivalence souvisí s pojmem rozkladu?

Příklad 9: Uveď te příklad binární relace, která je:

a) Reflexivní a symetrická, ale není tranzitivní.

 $\check{R}e\check{s}en\acute{i}$: Například následující relace na množině \mathbb{R} :

$$\{(x,y)\in\mathbb{R}\times\mathbb{R}\mid |x-y|\leq 1\}$$

Nebo následující relace na množině $\{a, b, c\}$:

$$\{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}$$

b) Reflexivní a tranzitivní, ale není symetrická.

 $\dot{R}e\check{s}eni$: Například relace \leq na množině $\mathbb N$ nebo relace

$$\{(a,a), (b,b), (c,c), (a,b), (a,c), (b,c)\}$$

na množině $\{a, b, c\}$.

c) Symetrická a tranzitivní, ale není reflexivní.

Řešení: Například relace

$$\{(a,a), (b,b), (c,c), (a,b), (b,a), (b,c), (c,b), (a,c), (c,a)\}$$

na množině $\{a, b, c, d\}$ nebo prázdná relace \emptyset nad jakoukoliv neprázdnou množinou.

Příklad 10: Připomeňte si, co to znamená, že relace je uspořádání. Jaké znáte typy uspořádání? Uveď te příklad uspořádání na množině přirozených čísel, které není úplným uspořádáním.

Řešení: Například relace dělitelnosti na přirozených číslech.

Příklad 11: Nechť $X = \{1, 2, 3, 4, 5\}$ a $Y = \{6, 7, 8, 9, 10\}$. Unární funkce $f: X \to Y$ a binární funkce $g: X \times Y \to Y$ jsou popsány následujícími tabulkami:

n	f(n)	g	6	7	8	9	10
1	6	1	10	10	10	10	10
2	7	2	7	8	9	10	6
3	6	3	7	7	8	8	9
4	6 7	4	9	8	7	6	10
	6	5	6	10 8 7 8 6	6	6	6

- a) Jaká je hodnota f(2)?
- b) Co je definičním oborem a oborem hodnot funkce f?
- c) Jaká je hodnota g(2, 10)?
- d) Co je definičním oborem a oborem hodnot funkce g?
- e) Jaká je hodnota g(4, f(4))?

Řešení:

- a) 7
- b) Definiční obor je $\{1, 2, 3, 4, 5\}$, obor hodnot je $\{6, 7\}$.
- c) 6
- d) $\{(x,y) | x \in X, y \in Y\}$
- e) 8

Příklad 12: Připomeňte si, co to znamená, že funkce je injektivní (prostá), surjektivní (na) a bijektivní. Je funkce f(x) = x + 1 injektivní, surjektivní a/nebo bijektivní na množině přirozených čísel \mathbb{N} ? A na množině celých čísel \mathbb{Z} ?

 $\check{R}e\check{s}en\acute{i}$: Na množině \mathbb{Z} je funkce f injektivní, surjektivní i bijektivní, na množině \mathbb{N} je injektivní, ale není surjektivní ani bijektivní (pro žádné $x \in \mathbb{N}$ není f(x) = 0).

Příklad 13: Připomeňte si pojem binární operace na množině a co to znamená, že daná operace je asociativní, a co to znamená, že je komutativní. Uveď te příklad operace, která:

- a) je asociativní, ale není komutativní,
- b) je komutativní, ale není asociativní.
- c) není asociativní ani komutativní.