JrPhy

- The image in computer is stored as a matrix, for a colorful image, there is one more vector for RGB, so we just discuss the gray image.
- Load a binary image A is m by n and m > n, then decompose it by SVD, then get U, Σ , V^* , the elements in Σ ordered $\sigma_1 > \sigma_2 > ... > \sigma_n$,
- U is m by m, Σ is m by n, V^* is n by n.

- Choose *U*' is *m* by k, Σ ' is k by k, V'* is k by n. $k \le n$, so the reconstructed A' is also m by n.
- Size of A is mn, size of A' is mk+k+nk=k(1+m+n) (we just need the singular value), so the ratio of compression R is

$$R = \frac{k(1+m+n)}{mn}$$

Only needs orange parts, it can reduce memory and time cost, but still costs much memory and time.

$$\forall A \in M_{m \times n}(F)$$
, $\exists ! U, S$ and V s.t. $U \Sigma V^T$

- The original image is 960×540 , so there are 540 singular values, choose $k \le 540$ to compress.
- By the formula, k should be smaller than some number that we can compress the image, in this example, $k \le 345$.

k	345	270	200	150	100
Ratio	0.998929	0.781771	0.57909	0.434317	0.289545

Original

http://www.tabletwallpapers.org/download/nature-lake-and-mountains-4k-hd-wallpaper_3840x2160.jpg

