Design and Analysis of Algorithms

The allotted time is 75 minutes. Solve any two problems. All problems carry equal marks.

Problems

- I. Consider the searching problem:
 - Input: A sequence of n numbers $A = \langle a_1, a_2, \dots, a_n \rangle$ and a value v.
 - Output: An index i such that A[i] = v, or the special value NIL if v does not appear in A.
 - (i) Write pseudocode for linear search, which scans through the sequence looking for v. Using a loop invariant, prove that your algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties.
 - (ii) Derive a good upper bound on the running time of your algorithm, assuming that each array operation and the comparison of two numbers takes constant time.
- 2. We can express insertion sort as a recursive procedure as follows. In order to sort $A[1 \dots n]$, we recursively sort A[1...(n-1)] and then insert A[n] into the sorted array A[1...(n-1)].
 - (i) Write pseudocode for this recursive version of insertion sort. You don't have to provide a proof of correctness.
 - (ii) Write a recurrence for the worst-case running time of this procedure and solve it to get a good upper bound.
- 3. State the basic definition of the Θ notation, in terms of the existence of certain constants etc., which was taught in class. Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.
- 4. Solve the following recurrences. In each case your solution should be of the form T(n) = $\Theta(f(n))$. Applying the Master Theorem will not, by itself, count as a solution.

(i)
$$T(n) = 4T(n/3) + n$$

(ii)
$$T(n) = 4T(n/2) + n^2$$

(iii)
$$T(n) = 2T(\sqrt{n}) + \log n$$

(i) T(n) = 4T(n/3) + n(ii) $T(n) = 4T(n/2) + n^2$ (iii) $T(n) = 3T(\sqrt{n}) + \log n$ (iii) $T(n) = 3T(\sqrt{n}) + \log n$ (ival) Sort (arr)

(ival) So