

Scenargie®2.1 Visual Lab ユーザガイド

Space-Time Engineering, LLC

2016年9月

<u>目次</u>

はじめに		1
1. 概要	ē	2
1.1.	システム構成	2
1.2.	操作概要	2
1.2.1	. 起動方法	2
1.2.2	?. メインウィンドウ	4
1.3.	シナリオ概要	5
1.3.1	. シナリオとケース	5
1.3.2	?. オブジェクト	5
2. シナ	-リオ操作機能	6
2.1.	新規作成(New)	6
2.2.	シナリオ読み込み (Open)	6
2.3.	シナリオ作成ウィザード(Scenario Wizard)	6
2.4.	シナリオ保存機能 (Save / Save As)	10
2.5.	外部入力機能(Import)	10
2.5.1	. OpenStreetMap の利用方法	10
2.6.	外部出力機能(Export)	11
3. シナ	-リオ編集機能	12
3.1.	コントロールパネル	12
3.1.1	. マウスモード (Mouse Mode)	13
3.1.2	2. カーソル位置(Cursor)	14
3.1.3	3. 実行制御 (Simulation)	14
3.1.4	l. シミュレーションメッセージ(Message)	14
3.2.	ツールバー	15
3.3.	複数オブジェクト配置機能(Multiple Objects Placement)	16
3.3.1	. 通信オブジェクトの複数配置	16
3.3.2	2. 建物の複数配置	17
3.4.	右クリックメニュー	17
4. 表示	·制御機能	19
4.1.	マウス操作による表示制御	19
4.2.	メニューバーによる表示制御	19
4.3.	ヒートマップの色表示制御	20
5. Obje	ect Properties 表示編集機能	21
5.1.	Object Property の表示編集	21
5.2.	スプレッドシート形式での表示編集	25

5.3.	インスタンスをまとめての表示編集	27
5.4.	Object Properties での Object 編集	29
5.4	.1. Object Type の変更	29
5.4	.2. Object の削除	30
5.4	.3. Application の削除	30
5.5.	アンテナパターンファイルの設定	32
5.6.	ビットエラーテーブル/ブロックエラーテーブルの設定	36
6. Sta	atic Routes 表示編集機能	37
6.1.	操作概要	37
6.2.	Static Routes を使用したシナリオ作成例	39
7. マ.	ルチエージェント設定機能	42
7.1.	エージェントプロファイル設定機能	42
7.2.	エージェント行動設定機能	42
7.3.	エージェントタイムテーブル設定機能	43
8. 電	波伝搬解析機能	45
8.1.	電波伝搬モデル	45
8.2.	解析方法	45
9. 才	プション設定機能	55
10.	レイヤー編集機能	57
11.	オブジェクトタイプ編集機能	58
11.1.	操作概要	59
11.2.	Object Type の編集	61
11.3.	Model Instance の編集	61
11.4.	Component の編集	63
11.5.	Property の編集	66
12.	バッチ処理機能	68
12.1.	バッチ変数登録機能	68
12.2.	バッチ処理設定機能	68
12.3.	バッチ処理実行機能	71
13.	統計值解析機能	73
13.1.	統計值設定機能	73
13.2.	グラフ表示機能	73
13.	2.1. シミュレーション実行中のグラフ作成	73
13.	2.2. 統計値ファイルを使用したグラフ作成	78
13.	2.3. 複数の統計値を使用したグラフ作成	81
13.	2.4. 複数の結果をまとめたグラフ作成	84

14.	トレー	ス機能	89
14.1	. トレ	ース設定	89
14.2	. トレ	ースの可視化設定	90
15.	ビデオ	·クリップ作成機能 (Export)	93
16.	シナリ	オ構成ファイル	94
16.1	・・シナ	-リオディレクトリ	94
16.2	・・シナ	-リオファイル一覧	95
16.3	. シミ	ュレーション結果ファイルー覧	95
16.4	. Ехр	ort 機能の出力ファイル	95
17.	プロバ	ティ	97
17.1	. プロ	パティー覧	97
17	7.1.1.	Common	97
17	7.1.2.	Simulation	97
17	7.1.3.	GIS	98
17	7.1.4.	Antenna/Propagation	99
17	7.1.5.	Channel	99
17	7.1.6.	Position	105
17	7.1.7.	Simulation Object	106
17	7.1.8.	Building	106
17	7.1.9.	Entrance	106
17	7.1.10.	Wall	107
17	7.1.11.	Road	107
17	7.1.12.	TrafficLight	107
17	7.1.13.	BusStop/Park/Station	107
17	7.1.14.	POI	107
17	7.1.15.	Communication Object	108
17	7.1.16.	Point Object	108
17	7.1.17.	Gis Object	108
17	7.1.18.	Mobility	108
17	7.1.19.	Transport	109
17	7.1.20.	Routing	113
17	7.1.21.	Antenna	115
17	7.1.22.	Network (Interface)	116
17	7.1.23.	Network(Node)	120
17	7.1.24.	CBR	120
17	7 1 25	VBR	120

	17.1.26.	FTP	121
	17.1.27.	Multi FTP	121
	17.1.28.	VoIP	122
	17.1.29.	VideoStreaming	122
	17.1.30.	HTTP	123
	17.1.31.	Flooding	124
	17.1.32.	IperfUdp	124
	17.1.33.	IperfUdp Client	125
	17.1.34.	IperfUdp Server	126
	17.1.35.	IperfTcp	126
	17.1.36.	IperfTcp Client	127
	17.1.37.	IperfTcp Server	127
	17.1.38.	Bundle Protocol	128
	17.1.39.	Bundle Message	128
	17.1.40.	Sensing	128
	17.1.41.	TraceBasedApp	130
	17.1.42.	CBRwithQoS	130
	17.1.43.	VBRwithQoS	131
	17.1.44.	FTPwithQoS	132
	17.1.45.	MultiFTPwithQoS	132
	17.1.46.	VoIPwithQoS	133
	17.1.47.	VideoStreamingwithQoS	133
	17.1.48.	HTTPwithQoS	134
	17.1.49.	IperfUdpWithQos	135
	17.1.50.	IperfTcpWithQos	136
	17.1.51.	AbstractNetworkMac	137
	17.1.52.	Aloha	137
18.	Appen	dix	139

はじめに

本書は、離散事象シミュレータ Scenargie2.1 Visual Lab の操作方法を示すものです。

Scenargie は、通信システムや地理情報システムを統合したシステムシミュレーションフレームワークです。画面上に表示された地図や建物を見ながら通信ノードの配置や通信パラメータの設定、移動パターンの設定など、シミュレーションを行う上で必要な情報を容易に設定できるユーザインターフェース(Scenargie Visual Lab)と、通信システムやノードの移動のシミュレーションを行うシミュレーションエンジン(Scenargie Base Simulator)から構成されています。通常、シミュレーションシナリオの作成作業は、M&S(Modeling & Simulation)プロセスにおいて多大な時間を要する部分の一つとなっておりますが、Scenargie Visual Lab のシナリオ作成機能により、システムデザインや分析と評価を担当するエンジニアの負荷を大幅に低減します。Scenargie Base Simulator は、通信のプロトコルモデルや建物情報をオブジェクト化した C++のプログラムアーキテクチャフレームワークであり、通信モデルは全てソースコードとして提供しています。

Scenargie は、これまでは独立したツールとして存在していた様々な機能的構成要素を統合することでより現実的なシミュレーションを可能としております。Scenargie では次のような要素を統合してシミュレーション可能です。

- 無線周波数利用計画とパケットレベルのシミュレーションの統合
- シミュレーションシナリオ構成と地理情報システム(GIS)の統合
- マルチエージェントシミュレーション(歩行者で乗物の機動性を含むネットワークユーザ行動モデリング)とネットワークシステムシミュレーションの統合

関連ドキュメント

インストレーションガイド		
プログラマーズガイド		
Base Simulator ユーザガイド		
Base Simulator モデルリファレンス		
Dot Eleven Module ユーザガイド		
LTE Module ユーザガイド		
ITS Extension Module ユーザガイド		
Multi-Agent Extension Module ユーザガイド		
Multi-Agent Extension Module モデルリファレンス		
Fast Urban Propagation Module ユーザガイド		
High Fidelity Propagation Module ユーザガイド		
Trace Analyzer ユーザガイド		

1. 概要

1.1. システム構成

Scenargie Visual Lab(以後 Visual Lab)は Scenargie Base Simulator およびオプションモジュールと ともに Scenargie を構成します(図 1-1 に示す部分)。 Visual Lab は、シミュレーションのシナリオ編集、実行制御、ログ再生および種々の解析作業をグラフィカルに行うインターフェースを提供します。

図 1-1 Scenargie システム構成

1.2. 操作概要

Visual Lab では、シミュレーション実施におけるシナリオ編集・シミュレーション実行・シミュレーションログ再生をメインウィンドウ内の地図とコントロールパネルを使用して作業を進められるよう設計されています。また、詳細な設定作業、解析作業等はダイアログボックスにより操作を行います。

1.2.1.起動方法

Visual Lab の起動は以下のように行います。

なお、Visual Lab のインストール方法については、「Scenargie インストレーションガイド」を参照してください。

Linux 環境の場合

アーカイブを展開して作成される visuallab ディレクトリ内の起動スクリプト Scenargie を実行します。

コマンド例

\$ cd visuallab
\$./Scenargie

終了は[File]-[Quit] または Window 右上の <x 印> をクリックします。

Windows 環境の場合

インストーラにより作成されるショートカットから起動します。

終了は[File]-[Quit] または Window 右上の <x 印> をクリックします。

MacOS 環境の場合

アプリケーションフォルダの Scenargie より起動します。

終了は[File]-[Quit] または Window 左上の <x 印> をクリックします。

1.2.2.メインウィンドウ

Visual Lab のメインウィンドウの各部を説明します。

図 1-2 Visual Lab メインウィンドウ

タイトルバー:(1)

読み込まれているシナリオ名およびケース名が表示されます。

メニューバー:②

マウスのクリックにより各機能を実行します。

ツールバー: ③

New/Open/Save/Undo/Redo/Cut/Copy/Paste/Zoom In/Zoom Out/Fit to Window/Object Properties/Object Layer Editor/RF Propagation Analyzer などの各ボタンが配置されます。

メインマップ:④

読み込まれている地図情報を表示します。シナリオ作成では、メインマップに表示された地図上に通信オブジェクトを配置することが可能です。シミュレーション再生では、通信オブジェクトの移動の様子、通信状態の変化を表示します。地図情報全体の表示、拡大表示が可能です。

コントロールパネル: ⑤

メインマップの右にはコントロールパネルが配置されます。コントロールパネルはメインウィンドウから取り外すことや、非表示にすることが可能です。

プログレスバー:⑥

メインウィンドウの下部にはプログレスバーが配置されます。シミュレーション実行時およびログ再生時の進捗状況をバーの位置で表します。

1.3. シナリオ概要

Visual Lab におけるシナリオの管理方法を説明します。

1.3.1.シナリオとケース

Visual Lab では、シナリオはシミュレーションを行うために必要なファイル群を意味し、任意のディレクトリの下に格納されます。また、ひとつのシナリオにはバリエーションを持たせることが可能で、これをケースと呼びます。シナリオを構成するファイルは拡張子「case」のケースファイルとプロパティファイルや地図情報ファイルとなります。シナリオディレクトリの中にはケースファイルを複数保存可能です。

1.3.2.オブジェクト

シナリオとして配置される、建物、道路、公園や通信装置などをオブジェクトと呼びます。オブジェクトは下記のように構成されます。

オブジェクト	シナリオの構成要素
プロパティ	オブジェクトの性質を示すデータを意味します。
	例) 送信電力などのシミュレーションパラメータ
コンポーネント	機能毎に分類された部品を意味し、一つ以上のプロパティにより構成されます。
	例) Dot11Mac などの dot11mac に対するプロパティ群
インスタンス	コンポーネントをまとめてグループ化したものを意味します。
オブジェクトタイ	オブジェクトの型を意味し、一つ以上のコンポーネントにより構成されます。
プ	例) dot11g ノードなど dot11g プロトコルを利用する通信ノードの型

Visual Lab ではプロパティ表示編集機能を[Tools]-[Object Properties...]で提供します。

2. シナリオ操作機能

Visual Lab では新規作成などのシナリオ操作を[File]メニューから選択して行います。以下にシナリオ操作に関する機能項目を記述します。

2.1. 新規作成 (New)

シナリオの新規作成は[File]-[New...] またはツールバーの O <New>のクリックにより実行します。

2.2. シナリオ読み込み (Open)

.case を選択してシナリオを読み込みます。

シナリオ名はタイトルバーに表示されます。

2.3. シナリオ作成ウィザード (Scenario Wizard)

対話型インターフェースによりシナリオを作成する機能で、[File]-[Wizard] により実行します。

Scenario Wizard は、シナリオ作成作業のうちの地図情報設定、通信システムとモビリティ設定、通信オブジェクト配置の3つの作業に関する対話型インターフェースを提供します。

STEP1: Map setting

シナリオの作成方法を下記より選択します。

- a) 道路網テンプレートの利用 (Road Network Topology)
- b) セルラーシステムテンプレートの利用 (Cellular System Evaluation)
- c) 地図情報の作成 (Coordinate System (free space))
- d) GIS データのインポート (Import GIS (shape file))

a) 道路網テンプレートの利用 (Road Network Topology)

Regular Grid、Cross Road、Straight Road の3種の道路網から選択できます。

Regular Grid
 碁盤の目状の道路網を作成します。

- Cross Road
 - 1つまたは複数の交差点で構成される道路を作成します。
- Straight Road

縦または横のみの交差しない直線道路を作成します。

- b) セルラーシステムテンプレートの利用 (Cellular System Evaluation) 7 または 19 のセルから構成されるセルラーシステムを選択します。
- c) 地図情報の作成 (Coordinate System (free space))

ユーザが地図座標の設定(エリア指定)と、GIS オブジェクトの配置を行うことにより地図情報を作成します。

領域を中心からの x 座標、y 座標で設定します。

- d) GIS データのインポート (Import GIS (shape file))
 - ユーザが shape 形式の地図情報を読み込むことにより地図情報を作成します。

STEP2: Communication system & mobility setting

通信システムを一覧より選択します。ご利用の拡張モジュールに応じて、表示される通信システムが異なります。 (例: Dot11 モジュールをご利用の場合)

- dot11a
- dot11g
- dot11p

モビリティモデルをリストボックスより選択します。

モビリティモデル:

Visual Lab では移動するオブジェクトを含むシミュレーションシナリオ作成を容易に行うために、下記のようにモビリティモデルを実現しています。モビリティモデルの設定は「Object Properties 表示編集機能」でも設定、変更できます。

1) Random Waypoint

移動範囲(矩形)と速度範囲(最大、最小)を指定し、通過位置(Waypoint)と速度の設定は Simulator により算出し、実行されます。

2) GIS-Based Random Waypoint

移動範囲となる GIS レイヤ(道路)と速度範囲(最大、最小)を指定し、通過位置(Waypoint)と速度の 設定は Simulator により算出し、実行されます。

3) Trace File

ファイルで指定した通過位置と通過時刻の情報をもとに、ノードを移動させる方法。
Trace File を選択した場合、Scenario Wizard 終了後、Object Properties を開き通信オブジェクト

の Component: Mobility でファイル名を指定する必要があります。

4) Stationary

オブジェクトが移動しない場合のモデルです。

STEP3: Communication objects lay down

- 1) Objects To Be Placed ブロックで配置する通信シス テムのオブジェクトタイプを選択し、配置するオブジェクトの数またはオブジェクトの密度を指定します。
- GIS Objects ブロックの GIS Object Type 欄で通信 オブジェクトを配置する GIS Object Type を選択し ます。
- Select From Screen ボタンをクリックするとメイン マップ上で配置する範囲を設定できます。
- 4) Place Rule ブロックの Seed for Random Position Calculation 欄では、ランダム配置のために計算で 使用する乱数の「種」を指定します。
- 5) Add Objects ボタンをクリックして通信オブジェクトをメインマップ上に配置します。通信オブジェクトを配置すると Skip ボタンが Next ボタンに変化します。

操作完了

Scenario Wizard で行った作業内容の概要が表示されます。

<Finish ボタン>をクリックして Scenario Wizard を終了 します。

設定を変更する場合<Back ボタン>をクリックして前の操作に戻ります。

設定を破棄する場合<Cancel ボタン>をクリックします。

2.4. シナリオ保存機能 (Save / Save As)

Open 中のシナリオを保存する機能で、[File]-[Save]または[File]-[Save As...]により実行します。

Save:

読み込み元のシナリオに上書き保存します。

Save As...:

別名でシナリオを保存します。

2.5. 外部入力機能 (Import)

外部データを読み込む機能で、[File]-[Import]により実行します。

以下に対応しています。

- Simulation Configuration File (.config):シミュレーションコンフィギュレーションファイル
- Shape Files (.shp): Shape 形式の地図情報
- Open Street Map XML (.osm, .xml) OpenStreetMap の地図情報
- Background Image Files (.png, .jpeg, .gif, .tiff, .bmp):背景画像
- Chart File (.chart):グラフデータ
- Wavefront.obj File (.obj): 三次元データ(三角形ポリゴンの.obj ファイルに対応)

2.5.1.OpenStreetMap の利用方法

OpenStreetMap のWebサイトから世界中の地図データをダウンロードすることができます。地図データは XML 形式 (拡張子 .osm) で提供され、ブラウジングを用いて自由に地図を閲覧・ダウンロードすることが可能です。また、ダウンロードした地図データは Visual Lab で利用可能です。

ダウンロード手順

- 1) Open Street Map の Web サイト (http://www.openstreetmap.org) へのアクセス 世界地図が表示されるので、ブラウジングや検索を利用してダウンロードしたい地図と範囲を表示します。
- 2) エクスポート範囲の設定

ページ上部の「エクスポート」タブを選択します。ページ右側に地図が表示され、左側にエクスポート範囲が緯度経度で表示されます。また、「ドラッグして別の領域を選択」をクリックすると、切り出したい範囲をドラッグ操作で自由に選択することが可能です。

3) .osm ファイルのダウンロード

エクスポート範囲を選択した状態で「エクスポート」ボタンをクリックすると、「map.osm」のダウンロードが開始されます。(ダウンロードデータのサイズは、1km 四方の地図で 1.5MB から 2.0MB 程度)

Visual Lab への Import

Visual Lab を起動し、New ボタンなどで初期化を行う。GIS データのインポートができるようになるので、メニューバーから[File]-[Import]-[Open Street Map XML]を選択し、ダウンロードした OSM ファイルを読み込みます。

注意) Mac OS 環境の Safari でダウンロードした場合、ファイルの拡張子は「.osm.xml」となります。 Visual Lab で読込む場合は、「.osm」に変更します。

2.6. 外部出力機能 (Export)

外部データを出力する機能で、[File]-[Export]により実行します。 以下に対応しています。

- Simulation Configuration File (.config):シミュレーションコンフィギュレーションファイル
- Simulation Configuration File with Initialized Values (.config):シミュレーション開始時に初期化される値を入力としたシミュレーションコンフィギュレーションファイル
 (自動配置される Agent の初期位置、自動生成される Entrance の位置などのシミュレーション開始時に初期化される値をシナリオの入力として設定します。Multi-Agent Extension Moduleを用いたシミュレーションでのみ有効)
- Screen Capture (.png):メインマップの画像
- Video Clip (.mp4):ログ再生時のメインマップの動画

3. シナリオ編集機能

Visual Lab では、インポートした地図上にオブジェクトを配置するなどのシナリオ編集機能を有します。 編集機能はコントロールパネルに配置されたマウスモード、ツールバーに配置されたボタン群およびマウス操作により行います。

3.1. コントロールパネル

コントロールパネルには、以下のボタンおよび情報表示部が配置されます。

- Mouse Mode
- Cursor
- Simulation
- Message

コントロールパネルは のクリックによりメインウィンドウより取り外せ、タイトルバーのダブルクリックによりメインウィンドウに格納されます。また、[View]-[Control Panel]でコントロールパネルの表示/非表示を設定できます。× のクリックでも非表示にできます。

メインウィンドウから取り外された状態の コントロールパネル

メインウィンドウに格納された状態のコントロールパネル

3.1.1.マウスモード (Mouse Mode)

<Select>:

メインマップ上のオブジェクトを選択する場合に使用します。

オブジェクトの上でクリックすると選択されます。また、メインマップ上で左クリック+ドラッグで矩形領域を指定した場合、領域内の全ての通信オブジェクトが選択されます。選択された通信オブジェクトはアイコンが縁取られます。

Ctrl キーを押しならがクリックすると複数の通信オブジェクトを選択します。

ノードにアプリケーションを追加した後、アプリケーションのラベルをクリックすることで、ノード間のつながりを表示させることができます。(矢印の色は[Tools]-[Options]で変更可能)

<Grab>:

メインマップ上に描かれた地図の表示位置を移動させる場合に使用します。 マウスカーソルをメインマップ上でドラッグすると地図を移動させることができます。

<Measure>:

メインマップ上の距離[m]を確認するために使用します。

マップ上にマウスカーソルを移動させクリックするとそこが始点となります。再びマウスカーソルを移動させるとポップアップで始点からの距離が表示されます。再びクリックすると、始点からの合計距離、最後にクリックした地点からの距離、最後にクリックした地点を頂点とした角度が表示されます。

<Place a New Communication Object>:

通信オブジェクトを配置します。「Place a New Communication Object」が選択された状態でメインマップ上にマウスカーソルを移動させクリックすると通信オブジェクトが配置されます。

<Place a New GIS Object>:

GIS オブジェクトを配置します。

鉄道、道路など線で表現される GIS オブジェクトの場合「Place a New GIS Object」が選択された状態でメインマップ上にマウスカーソルを移動させクリックするとそこが始点となります。再びマウスカーソルを移動してクリックするとそこが終点となります。

建物などポリゴンで表現される GIS オブジェクトの場合「Place a New GIS Object」が選択された状態でメインマップ上にマウスカーソルを移動させるとそこが始点となり、クリックした位置を頂点とする多角形を描くようにします。始点と同じ位置(赤いマーカー内)でクリックすると一つのオブジェクトが完成します。

<Add a New Application>:

アプリケーションを通信オブジェクト上に配置します。「Add a New Application」が選択された状態でメインマップ上にマウスカーソルを移動させ、任意の通信オブジェクトをクリックするとアプリケーションが送信元として設定されます。続いて送信先の通信オブジェクトをクリックし、アプリケーションの配置が完了します。

3.1.2.カーソル位置 (Cursor)

マウスカーソルがメインマップ上にあるとき、(X,Y)座標を原点からの距離で表示します。

3.1.3. 実行制御 (Simulation)

シミュレーションまたはログ再生の実行制御を行います。

- SimulatePlaybackシミュレーションかログ再生かを選択します。
- をクリックするとシミュレーション/ログ再生を実行します。一度 をクリックすると に変化します。
- をクリックするとシミュレーション/ログ再生を終了します。

Heat Map Propagation Propagation を選択した状態でシミュレーション/ログ再生を実行すると、電波伝搬のヒートマップ表示を行いながらシミュレーションが実行されます。 注) 事前に RF Propagation Analyzer での設定が必要です。

3.1.4.シミュレーションメッセージ (Message)

シミュレータからの標準出力および標準エラー出力メッセージを表示します。

をクリックすると表示内容をクリアします。

3.2. ツールバー

ツールバーには、メインマップ上に配置したオブジェクトの編集用ボタンおよび、表示操作用ボタンが配置されます。また、編集操作は Edit メニューからも行えます。

□ <New>: 新規にシナリオを作成します。

「<Open>: シナリオを開きます。

くSave>: シナリオを上書き保存します。

<Undo>:直前の操作を取り消します。

<Redo>: 取り消した操作を元に戻します。

<Cut>: 選択されたオブジェクトを切り取り、内部バッファに保持します。

Copy>: 選択されたオブジェクトをコピーし、内部バッファに保持します。

| | <Paste>: 内部バッファに保持されているオブジェクトを貼り付けます。

貼り付け位置は元の位置の近傍となります。

<Zoom In>: メインマップを拡大表示します。

<Zoom Out>: メインマップを縮小表示します。

<Fit to Window>: 読み込んだ地図の全域を表示します。

<Object Properties>: Object Properties を起動します。

<Object Layer Editor>: Object Layer Editor を起動します。

RF Propagation Analyzer>: RF Propagation Analyzer を起動します。

3.3. 複数オブジェクト配置機能 (Multiple Objects Placement)

複数のオブジェクトをメインマップ上に配置するには [Tools]-[Multiple Objects Placement...]をクリックして、「Multiple Objects Placement」ダイアログを起動して行います。

3.3.1.通信オブジェクトの複数配置

- Objects To Be Placed ブロックで配置する 通信システムのオブジェクトタイプを選択 し、配置するオブジェクトの数またはオブジェクトの密度を指定します。
- GIS Objects ブロックの GIS Object Type 欄で通信オブジェクトを配置する GIS Object Type を選択します。
- 3) Select From Screen ボタンをクリックする とメインマップ上で配置する範囲を設定でき ます。
- 4) Place Rule ブロックの Seed for Random Position Calculation 欄では、ランダム配置 のために計算で使用する乱数の「種」を指定します。
- 5) Add Objects ボタンをクリックして通信オブ ジェクトをメインマップ上に配置します。

3.3.2.建物の複数配置

「Multiple Objects Placement」ダイアログの Object Type で Building を選択した場合、道路で囲まれた領域を埋めるように建物を配置することができます。

- 1) Objects To Be Placed ブロックの Object Type で"Building"を選択します。
- 2) GIS Objects ブロックの Select From Screen をクリックして建物を配置する範囲を設定します。
- 3) Add Objects ボタンをクリックして建物を配置します。

3.4. 右クリックメニュー

マウスカーソルをメインマップ上に移動させ、右クリックするとメニューが表示されます。この時表示されるメニューには以下の内容が含まれます。オブジェクトを選択せずに右クリックした場合、Object Properties のみが有効となり、オブジェクトを選択した状態の場合、全ての項目が有効となります。

- Object Properties...
- RF Propagation Analyzer...
- Add Application
- Label

Object Properties については「6章 Object Properties 表示編集機能」を、RF Propagation Analyzer については「7章 電波伝搬解析機能」をそれぞれ参照ください。

Add Application:

通信オブジェクトを選択して右クリック メニューより[Add Application]を選択し ます。

Application を選択して通信オブジェクトに追加します。

追加後、「Object Properties 表示編集機能」により編集を行います。

送信先が「* (Any Objects)」になりますので、ブロードキャストが可能なアプリケーション(CBR、VBR、Flooding、Bundle Protocol、BundleMessage)以外のアプリケーションを設定したい場合は、「Object Properties 表示編集機能」により別途、送信先ノードを指定してください。尚、Control Panel の「Place a New Application」でアプリケーションを追加する場合は、送信元と送信先が指定されます。

Label:

[Label]をクリックするとチェックマークが付き、オブジェクトのラベルが表示が ON になります。チェックマークが付いている状態でクリックするとチェックマークが消え、オブジェクトのラベル表示が OFF になります。

4. 表示制御機能

メインマップに表示されている地図情報は表示の拡大縮小が可能です。

4.1. マウス操作による表示制御

マウス操作による表示制御では、メインマップ内で右クリック+ドラッグで矩形領域を指定すると、指定された領域がマップ全体になるように表示されます。ドラッグ操作中に左クリックするとキャンセルされます。また、マウスカーソルがメインマップ内にある場合、マウスホイールによる拡大縮小が可能です。 Ctrl キーを押しながらマウスホイールを操作すると拡大縮小の粒度が細かくなります。

4.2. メニューバーによる表示制御

表示拡大:

[View]-[Zoom In]のクリックによりメインマップの表示倍率が上がります。

表示縮小:

[View]-[Zoom Out]のクリックによりメインマップの表示倍率が下がります。

全領域表示:

[View]-[Fit to Window]のクリックにより読み込んだシナリオの地図情報全領域をメインマップに表示します。

またこれらの操作はツールバーの Zoom In/Zoom Out/Fit to Window ボタンでも同様の操作ができます。

グリッド、ツールバー、コントロールパネルの表示制御:

グリッドのチェックによりメインマップにグリッドが表示され、Building などの GIS オブジェクトはグリッドに沿って配置されます。グリッド間隔は Tools; Options で変更可能です。

[View] Tool Bar、Control Panel のチェックによりそれぞれの表示/非表示を制御できます。

4.3. ヒートマップの色表示制御

電波伝搬解析結果のヒートマップの表現方法は「Color Properties」ダイアログにより変更可能です。

「Color Properties」ダイアログはマウスカーソルをヒートマップ上に移動させ、ダブルクリックすると表示されます。

ヒートマップの色表示制御は RF Propagation Analyzer による電波伝搬解析実行後可能となります。

以下の項目が設定可能です。

Color Scale Type:

グラデーションとディスクリート(ステップ表示)から選択します。

Number of Colors:

表示色数を設定します。1~10 が設定可能です。

Number of Steps:

ディスクリート表示の場合の表示ステップ数を設定します。1~30 が設定可能です。

Transparency:

ヒートマップの透過率をスライドバーで設定します。

上限値:

色表示の上限値を設定します。上限値より大きい場合は最上位の色になります。

下限値:

色表示の下限値を設定します。下限値未満の場合は灰色になります。

色変更:

グラデーションやディスクリート表示する色の設定はのように色表示部分を

クリックして行います。 全をクリックすると初期設定色に戻ります。 しをクリックすると無色になります。

5. Object Properties 表示編集機能

5.1. Object Property の表示編集

オブジェクトプロパティの表示編集は「Object Properties」ダイアログボックスで行います。

「Object Properties」ダイアログボックスはメニューバーの[Tools] -[Object Properties...]をクリックする

か、メインマップ内で右クリックし[Object Properties...]をクリックするか、またはツールバー Cobject Properties>のクリックにより表示されます。

「Object Properties」ダイアログの操作は、以下のように行います。

1) 左のリストよりオブジェクトを選択します。

2) 右のプロパティー覧より、Component の選択し + マークをクリックして展開しプロパティ毎の設定値を確認します。

また、右上の検索窓に「プロパティ名」や「シミュレーションパラメータ名」を入力し、 をクリックすることで、ObjectTree で表示されるオブジェクトのプロパティを検索できます。

を連続してクリックすることで、次の候補に移動します。また、F3 で次の候補に、Shift+F3 で前の候補に移動します。

3) 値の欄をクリックして変更を行います。

OK のクリックで、変更を反映し Object Properties を終了します。

Cancel のクリックで変更をキャンセルし Object Properties を終了します。

Apply のクリックで変更を反映し編集を続けます。

- 4) 値の欄をクリックした時、右端にボタンが表示されます。
 - 「Select Object」ダイアログボックスを表示します
 - ☑ ファイルブラウザを表示します
 - ☑ デフォルト値に戻します
 - 「Property Details」ダイアログボックスが表示され、シミュレータでのパラメータ名を確認できます。

また、バッチ処理の対象パラメータでは、バッチ変数への追加が行えます。

ボタンの表示例

5) Application の Destination 変更は「Select Object」ダイアログにより行います。値の欄をクリックして、■ボタンをクリックすると「Select Object」ダイアログが表示されます。 Destination を選択して OK をクリックします。

ここではブロードキャストを意味する「Any Objects」を選択しています。「Object Properties」では「*」と表示されます。

5.2. スプレッドシート形式での表示編集

Object Properties のデフォルトの設定では、ツリー形式で表示編集を行います。スプレッドシート形式で表示編集を行う場合、以下のように行います。この表示形式では複数のオブジェクトの全ての Property を表示し編集することが可能です。

デフォルトの表示 (View in Tree)

スプレッドシート形式での表示 (View in Spreadsheet)

スプレッドシート形式ではセル単位でのカット・コピー・ペーストが可能です。

この機能を使って、複数のセルを同じ値に変更する操作が容易にできます。

1) 「on」となっているセルを選択して右クリックし、Copyを選択する。

以下のショートカットキーが有効です。

Cut Ctrl + x

Copy Ctrl + c

Paste Ctrl + v

2) 変更したいセルを選択して右クリックし、Paste を選択する。

5.3. インスタンスをまとめての表示編集

Object Properties のデフォルトの設定では、インスタンス毎に表示編集を行います。インスタンスをまとめて編集を行う場合、以下のように行います。この方法は複数のアプリケーションに対して同じ設定変更を行うような場合に有効です。

デフォルトの表示 (Classify by instance)

インスタンスをまとめて表示・編集する場合、中央上の Classify で Integrated を選択します。

インスタンスをまとめて表示(Classify Integrated)

インスタンスをまとめて表示した状態で、End Time など、CBR のプロパティを変更すると、全ての CBR の プロパティが変更されます。

5.4. Object Properties での Object 編集

「Object Properties」ダイアログボックスの Object List でオブジェクトタイプの変更、オブジェクトやアプリケーションの削除が可能です。ただし、Global オブジェクトや、Channel オブジェクトの削除は対象外です。

5.4.1.Object Type の変更

オブジェクトタイプの変更はオブジェクトタイプを選択し、右クリックメニューにより行います。 ここではオブジェクトタイプ Dot11g から Dot11a への変更を例に説明します。

- 1) Object List でオブジェクトタイプ Dot11g を選択します。
- 2) 右クリックして Change Object Type to を選択します。
- 3) 変更するオブジェクトタイプを選択します。

注意) オブジェクトタイプ変更時、オブジェクト名は変更されません。

オブジェクトを選択して同様の操作を行った場合、選択されたオブジェクトのオブジェクトタイプが変更されます。

5.4.2.Object の削除

オブジェクトの削除はオブジェクトを選択し、右クリックメニューにより行います。

ここではオブジェクト Dot11g2 の削除を例に説明します。

- 1) Object List でオブジェクト Dot11g2 を選択します。
- 2) 右クリックして Delete Object を選択します。

5.4.3. Application の削除

アプリケーションの削除は、オブジェクトタイプ、オブジェクト、またはアプリケーションを選択し、右クリックメニューにより行います。オブジェクトタイプを選択して行う場合、そのオブジェクトタイプのオブジェクトに割り当てられている全てのアプリケーションが削除されます。オブジェクトを選択して行う場合、そのオブジェクトに割り当てられている全てのアプリケーションが削除されます。アプリケーションを選択して行う場合、そのアプリケーションが削除されます。

ここではオブジェクト Dot11g2 のアプリケーション CBR の削除を例に説明します。

- Object List でオブジェクト Dot11g2 の Application/CBR2 を 選択します。
- 右クリックして Delete Application
 を選択します。

5.5. アンテナパターンファイルの設定

アンテナパターンファイルを Visual Lab より指定する場合、Object Properties ダイアログを使用して 以下のように行います。

アンテナパターンファイルのフォーマットについては、「Scenargie Base Simulator ユーザガイド」を参照ください。

1) アンテナパターンファイルの指定

Global オブジェクトのコンポーネント: Antenna/Propagation、プロパティ: Custom Antenna File でアンテナパターンファイルを指定します。

2) アンテナ名の指定

通信オブジェクトのコンポーネント: Antenna/Propagation (Interface)、プロパティ: Antenna Modelを確認します。 デフォルトは OMNIDIRECTIONAL です。

Antenna Model を Object Type Editor で編集します。

Antenna Model は Component: Antenna/Propagation (Interface)に含まれます。

Object Type Editor については「11.オブジェクトタイプ編集機能」を参照してください。

Candidates (CSV) 欄の最後に区切り記号カンマ "," を入力し、使用するアンテナ名を入力します。 OK をクリックすると登録されます。

アンテナ名はアンテナパターンファイルの NAME と一致させます。

Dependency に項目を追加し、Property Value には追加したアンテナ名を、Dependet Child Properties には Property Value: CUSTOM と同じものを選択します。

追加したアンテナ名が Object Properties のリストに追加され、選択可能となります。

<アンテナパターンファイル例>

作成したアンテナパターンは、Anttena Pattern Viewer により表示することができます。Anttena Pattern Viewer は、[Tools]-[File Viewer]-[Antenna Pattern Viewer]をクリックすることで起動します。

Anttena Pattern Viewer の表示例

5.6. ビットエラーテーブル/ブロックエラーテーブルの設定

ビットエラーテーブル/ブロックエラーテーブルを Visual Lab より指定する場合、Object Properties ダイアログを使用して以下のように行います。

ビットエラーテーブル/ブロックエラーテーブルのフォーマットについては、「Scenargie Base Simulator ユーザガイド」を参照ください。

ビットエラーテーブル/ブロックエラーテーブルの指定
 Global オブジェクトのコンポーネント: <通信システム名>、プロパティ: Bit Error Rate Curve Input
 File でビットエラーテーブルを指定します。

ブロックエラーテーブルの場合、プロパティ: Block Error Rate Curve Input File で指定します。

サンプルビットエラーテーブルは dot11 などのオプションモジュールの visuallab/sample 内、または、サンプルシナリオ内に格納して提供されています。ファイル名はビットエラーテーブルの場合、<通信システム名>modes.ber、ブロックエラーテーブルの場合、<通信システム名>modes.bler です。

例) dot11modes.ber、Itemodes.bler

詳細は各オプションモジュールのユーザガイドを参照ください。

設定したビットエラーテーブル/ブロックエラーテーブルは、[Tools]-[File Viewer]-[BER/BLER Curve Viewer]から BER/BLER Curve Viewer を起動することでグラフ表示することができます。

6. Static Routes 表示編集機能

Static Routes 表示編集機能はスタティックルーティング設定ファイルの表示編集を Visual Lab 上で行うものです。

6.1. 操作概要

Static Routes 表示編集の[Tools]-[Static Routes Editor...]をクリックし、「Static Routes Editor」を起動して行います。

Object: 通信オブジェクトの Node ID

入力フィールドのダブルクリックにより入力可能になります。

■ をクリックして Object List を表示させ、通信オブジェクトを 選択します。

この方法では、「Node ID(通信オブジェクト名)」の形式で表示されます。スタティックルーティング設定ファイルには Node ID のみが記録されます。

直接入力する事も可能です。

Destination: 宛先 IP アドレス

Netmask: 宛先 IP アドレスマスク

Next Hop: 次ホップアドレス

入力フィールドのダブルクリックにより入力可能に なります。

■ をクリックして Object List を表示させ、インターフェースを選択します。

この方法では、「90.2.0.0 + \$n」と定義されている IPアドレスが自動計算され、「90.2.0.2(インターフェース名)」の形式で表示されます。 スタティックルーティング設定ファイルには計算後の IP アドレス のみが記録されます。

OK をクリックして終了します。

6.2. Static Routes を使用したシナリオ作成例

StaticRoutes を使用した典型的なシナリオの作成として、Wired Network において、ネットワークが異なる端末間の通信をスタティックルーティングにより経路を設定するシナリオを作成します。(本シナリオは BaseSimulator のサンプルシナリオに含まれています。)

シナリオ概要

ApplicationServer:1 台

Client:2 台 GateWay:1 台

1) ノードの配置とアプリケーションの追加

ApplicationServer と Client は Wired オブジェクト配置しリネームしたものになります。 Gateway は Object Type Editor で、interface/wiredを2つ備えたオブジェクトタイプを新たに作成し配置したものになります。

ApplicationServer は Client1 に FTP でファイルを送信し、ApplicationServer と Client2 は VoIP でお互い通信するようにアプリケーションを追加します。

2) ネットワークの設定

各ノードの interface/wired を[Tools]-[Object Properties]を用いて設定します。ここでは、ApplicationServerのInterface/wired1とGatewayのInterface/wired1、ClientのInterface/wired1とGatewayのInterface/wired2がそれぞれ同一ネットワークに属するように設定しています。

ApplicationServer, Client

Gateway

Interface	Interface/wired2						
⊕-Routing	Routing						
Network	Network (Interface)						
	Interface Netwo	Network Addre	Subnet Addres	Network Addre	Allow Routing E	Ignore Unregist	Gateway Addre
Gateway	192.168.0.0 + \$n	16	false	false	true	false	

3) StaticRoutes の設定

Gateway を介して Application Server と Client 間の通信を行うようにスタティックルーティングを設定します。

Object に ApplicationServer を選択し、Destination と Netmask として Client が属するネットワークを設定します。NextHop として、Gateway の interface/wired1 を選択します。

OK をクリックするとスタティックルートが表示されます。ルートの矢印をマウスオーバーすることでルートの設定が表示されます。

7. マルチエージェント設定機能

Scenargie Multi-Agent Extension Module で使用する設定ファイルの編集を Visual Lab 上で行います。

- エージェントプロファイル定義ファイル
- エージェント行動設定ファイル
- エージェントタイムテーブル定義ファイル

7.1. エージェントプロファイル設定機能

エージェントプロファイル設定は[Tools]-[Multi-Agent Settings]-[Agent Profile Editor...]より起動される Agent Profile Editor により行います。

タブの名称が Profile Type を表します。

タブ上で右クリックにより、Rename、Delete が可能です。

"+"タブのクリックにより Profile Type を追加します。

Profile Type の"Bus"、"Taxi"は予約語です。

各欄上でダブルクリック、または、F2 キーを押すことで、直接入力が可能です。

設定後、OKまたはApplyにより反映されます。 設定項目の詳細については Multi-Agent Extension Module ユーザガイドを参照してく ださい。

7.2. エージェント行動設定機能

エージェント行動設定は[Tools]-[Multi-Agent Settings]-[Agent Behavior Editor...]より起動される Agent Behavior Editor により行います。

タブの名称が Behavior Type を表します。

Condition 欄が空欄の場合、上の行からの継続行であることを意味します。

Action 欄、Value 欄ともに設定のある行を有効行とみなします。

各欄上でダブルクリック、または、F2キーを押すことで直接入力が可能です。

Set Object Name From Main Screen をクリックすると、Main Map 上の Building および Area オブジェクトをクリックすることで、そのオブジェクトを Value 欄に設定できます。Action 欄の設定は手動にて行います。

設定後、OK または Apply により反映されます。

設定項目の詳細については Multi-Agent Extension Module ユーザガイドを参照してください。

7.3. エージェントタイムテーブル設定機能

エージェントタイムテーブル設定は[Tools]-[Multi-Agent Settings]-[Vehicle Time Table Editor...]より 起動される Vehicle Time Table Editor により行います。

タブの名称が路線名を表します。

Stop Name には Station または Bus Stop のラベル名を入力します。

Stoppage Time は秒で記入します。コロンは使用できません。

Intersections to Go Through は経由する Intersection のラベル名を入力します。

Travel は秒または、時刻で記入します。

各欄上でダブルクリック、または、F2 キーを押すことで直接入力が可能です。

Set Object Name From Main Screen をクリックすると、Main Map 上の Station および Bus Stop オブジェクトをクリックすることでそのオブジェクトを Stop Name に設定できます。また、Intersections to Go Through に設定する Intersection ラベルに関しても、 Set Object Name From Main Screen をクリックし、Intersection オブジェクトをクリックすることで設定できます。 設定後、OK または Apply により反映されます。

成足域、ON なたは Apply にあり及収される 9。

設定項目の詳細については Multi-Agent Extension Module モデルリファレンスを参照してください。

8. 電波伝搬解析機能

電波伝搬解析では、シナリオ内に配置された通信オブジェクトを基点とし解析結果をヒートマップやレイパスにより表示します。

8.1. 電波伝搬モデル

電波伝搬モデルは、[Tools]-[Object Properties]の Channel の Propagation Model のリストから選択します。

また、使用するモデルにより必要な項目を設定します。

なお、以下のモデルについては、別途オプションモジュールが必要です。

● LTE_Macro LTE Module が必要

• LTE_Pico LTE Module が必要

• FUPM Fast Urban Propagation Module が必要

• HFPM High Fidelity Propagation Module が必要

8.2. 解析方法

電波伝搬解析は電波伝搬モデル選択を除き、解析は RF Propagation Analyzer を使用して行います。

1) RF Propagation Analyzer の起動

RF Propagation Analyzer は以下のいずれかの方法により起動します。

- [Tools]-[RF Propagation Analyzer...]をクリックする
- 通信オブジェクトを選択後、メインマップ上で右クリックし、[RF Propagation Analyzer...]をクリックする
- ツールバーの <RF Propagation Analyzer>をクリックする

2) 解析項目の選択

本バージョンでは下記項目の解析が実施可能です。

● Pathloss: 伝搬損失

RSSI: 受信信号強度

Estimated PER: 推定パケットエラー率

● Interference:干渉強度

SIR:信号電力対干渉電力比

● SINR:信号電力対雑音干渉比

3) 送信点、受信点の設定

送信点はメインマップ上に配置された通信オブジェクトから1つまたは複数を選択します。送信役の通信オブジェクトを送信ノードとします。送信ノードは Signal と Interference があり、解析項目に応じて設定します。

受信点の設定方法は「Horizontal Grid」、「Vertical Grid」、「Line」、および「Object」の 4 種類があります。

「Horizontal Grid」は、メインマップ上に設定される解析エリアをグリット状に分割し、各グリッドセルの中心を受信点とする方法です。

「Vertical Grid」は、メインマップ上に設定される2点を通る直線上の垂直断面を解析エリアとして設定します。解析エリアをグリッド上に分割し、各グリッドセルの中心を受信点とする方法です。

「Line」は、メインマップ上の2点間の直線を解析エリアとして設定します。

「Object」は、メインマップ上に配置された通信オブジェクトから1つまたは複数を選択し、これを受信点とする方法です。受信役の通信オブジェクトを受信ノードとします。Object の場合、受信ノードの設定は、Object Properties で設定された各通信オブジェクトの設定内容が反映されます。

4) 計算結果の確認

メインマップ中央の通信オブジェクトを送信ノードとして、Horizontal GridでPathlossを計算した結果は以下のようになります。

ヒートマップ上にマウスを移動させ、左クリックするとその地点 の値が表示されます。

Vertical Grid で Pathloss を計算した結果は、Vertical Propagation Grid ウィンドウに表示されます。以下は、メインマップに2つの通信オブジェクトを配置し、それぞれの座標を解析エリアとして、 Vertical Grid で Pathloss を計算した表示例になります。Aloha1 を送信ノードとしております。

Vertical Propagation Grid ウィンドウのボタンは以下の通りです。

- 🕮:Vertical Propagation Grid ウィンドウの表示倍率をメインマップの表示倍率に合わせます。
- ■: ヒートマップ表示をウィンドウ最大になるように表示します。
- Vertical Propagation Grid ウィンドウをメインウィンドウより取り外します。

■: Vertical Propagation Grid ウィンドウを非表示にします。再表示する場合は、RF Propagation Analyzer の Result リストより Vertical Grid での結果を選択します。

Line で Pathloss を計算した結果は、Propagation Chart ウィンドウに表示されます。以下は、メインマップに1つの通信オブジェクトを配置し、送信ノードの座標から 100 メートル離れた座標までの、距離に対する Pathloss の変化を計算した表示例になります。

3 つの通信オブジェクトの内、左の1つの送信ノード、右の 2 つを受信ノードとして、オブジェクト選択で Pathloss を計算した結果は以下のようになります。

伝搬パス上にマウスを移動させ、左クリックすると送受信点と反射、回折位置の情報が非表示となります。もう一度左クリックすると再表示されます。(表示される情報は、使用する伝搬モデルに依存します)

表示される情報は以下の通りです。

- 中継点番号:送信点を0とする整数
- 中継点の意味: Tx、Rx、Reflection、Diffraction
- X、y、Z 座標
- 解析値

RF Propagation Analyzer

Analysis Type:

解析のタイプをリストより選択します。

Tx Settings

Object:

通信オブジェクトのリストから送信ノードを選択します。

Interference、SIR、SINR の解析を行う場合、Interference タブでも送信ノードを選択します。このノードが干渉源となります。

Analysis Type が EstimatedPER の場合には、以下の項目の設定も行います。

PHY Data Length

データ長(単位:bit)

Rx Settings:

Horizontal Grid/Vertical Grid/Line/Object

受信点として、Horizontal Grid、Vertical Grid、Line、および Object のいずれを使用するかを選択します。

Horizontal Grid の場合の受信点の設定を以下の項目で行います。

Number of Cells:

解析エリアのグリッドセル数

Cell Size:

解析エリアのグリッドセルサイズ。(正方形のグリッドセルー辺の長さ:単位 m)

Antenna Height:

受信ノードのアンテナの高さ (単位 m)

Antenna Gain:

受信アンテナ利得 (単位 dBi)

Noise Figure:

熱雑音係数

Temperature:

熱雑音発生源の温度 (単位 K)

Vertical Grid の場合の受信点の設定を以下の項目で行います。

Number of Cells:

解析エリアのグリッドセル数

Cell Size:

解析エリアのグリッドセルサイズ。(正方形のグリッドセルー辺の長さ:単位 m)

Antenna Gain:

受信アンテナ利得 (単位 dBi)

Noise Figure: 熱雑音係数 Temperature: 熱雑音発生源の温度 (単位 K) Left Point: 解析エリアの左座標 (X,Y) 🔁 🔲 に直接座標を入力します。あるいは、 🖳 をクリックして通 0.00 0.00 信オブジェクトを選択し、その座標を解析エリアの座標とすることも可能です。 Right Point: 解析エリアの右座標 (X,Y) 🔁 🔲 に直接座標を入力します。あるいは、 🔲 をクリックして通 0.00 0.00 信オブジェクトを選択し、その座標を解析エリアの座標とすることも可能です。 Bottom: 解析エリアの底辺の高さ (単位 m) Height from Bottom: 解析エリアの底辺からの高さ (単位 m) Margin for Left/Right: 解析エリアの左座標、右座標からのマージン (単位 m) Line の場合の受信点の設定を以下の項目で行います。 Number of Cells: 解析エリアのグリッドセル数 Cell Size: 解析エリアのグリッドセルサイズ。(正方形のグリッドセルー辺の長さ:単位 m) Antenna Height: 受信ノードのアンテナの高さ (単位 m) Antenna Gain: 受信アンテナ利得 (単位 dBi) Noise Figure: 熱雑音係数 Temperature: 熱雑音発生源の温度 (単位 K) Left Point

解析エリアの始点座標 (X,Y)

信オブジェクトを選択し、その座標を解析エリアの座標とすることも可能です。

Right Point

解析エリアの終点座標 (X,Y)

Analysis Type が EstimatedPER の場合には、以下の項目の設定も行います。

Preamble Detection Threshold [dBm]

プリアンブルを検出するための電波強度の閾値

Preamble Detection Probability Table

プリアンブルを検出できる可能性を表すテーブル

Set Analysis Area:

電波伝搬解析の対象となる、解析エリアを設定します。解析エリアを設定するには Set Analysis Area をクリックして解析エリア設定ダイアログを開きます。解析エリアの設定には以下の3つの方法があります。

1) マウス操作による設定

解析エリア設定ダイアログが開いている状態で、マウスモードを<選択>にしマウスカーソルをメインマップ上に移動させ左クリックでドラッグさせると赤の実線で矩形領域が描かれ、これが解析エリアとなります。

2) Select Entire Area による設定

Select Entire Area をクリックすると現在メインマップ上に表示されている領域の全体が解析エリアとなります。

3) 中心点の経度緯度と範囲の入力によ る設定

中心点の経度と緯度および、横幅と縦幅を入力して解析エリアを設定します。

Show Analysis Area をチェックすると、解析エリアの境界線を常時表示します。

Compute : 電波伝搬の計算を開始します。

Time Prediction : 解析に要する時間を予測し表示します。

Open CSV : CSV ファイル形式の電波伝搬の計算結果を読み込み表示します。

Propagation Result

解析結果は計算毎に記憶され、Propagation Result に一覧表示されます。

選択された結果が画面上に表示されます。

Propagation Result はマウスの右クリックで表示されるDelete、またはDelete All で削除することができます。

Propagation Result の空白部分でマウスの左クリックを行うと無選択状態となり、メインマップ上のヒートマップは非表示となります。

注意)

Dot11Phyコンポーネントを持つ通信オブジェクトをTxに設定した場合、送信電力は以下のように取り扱われます。

Tx Power Specified By の設定が PhyLayer の	Tx Power で指定される送信電力が使用されま	
場合(Wave、GeoNetを除くDot11Phyコンポーネ	す。	
ントを持つ通信オブジェクトのデフォルト値)		
Tx Power Specified By の設定が UpperLayer	Default Tx Power When Not Spcified で指定さ	
の場合(Wave、GeoNet のデフォルト値)	れる送信電力が使用されます。	

9. オプション設定機能

Visual Lab のオプション設定を行います。

オプション設定は、[Tools]-[Options...] をクリックして起動される「Options」ダイアログにより行います。

General

VisualLab のシステムに関する設定ができます。設定可能な項目は以下の通りです。

- User Home Directory: Sceneargie ホームディレクトリのパス
- Object Type File Directory: オブジェクトタイプの定義ファイルのパス
- Default GIS Object Mode: GIS オブジェクトの初期モード Edit/Display より選択
- Restore Defaults: Options の設定を初期化

Display

VisualLab の表示方法に関する設定ができます。設定可能な項目は以下の通りです。

- Display Update Interval [Sec.]: メインマップの表示更新間隔 (秒)
- Time View: シミュレーション時間の表記形式

- Grid Interval [m]: グリッド表示の間隔
- Label Fonts: オブジェクト名を表示するラベルのフォント
- Application Label: 通信オブジェクトに配置されているアプリケーションの表示/非表示
- Static Routes: スタティックルートの表示/非表示
- Building Shadow: 建物の影の表示/非表示および影の向き

Default Color

通信オブジェクトや GIS オブジェクトのデフォルト色およびグラフ等のデフォルト色を設定できます。

Simulator

- Simulator Port Number 1: シミュレータとの通信ポート1
- Simulator Port Number 2: シミュレータとの通信ポート2

10. レイヤー編集機能

Visual Lab では、オブジェクトタイプ毎にレイヤーに割り当ててあります。レイヤー編集機能では、各レイヤーの表示順、編集の可否の選択、表示非表示の選択が可能です。

レイヤー編集機能は、[Tools]-[Object Layer Editor...] またはツールバーの 🕡 < Object Layer Editor>のクリックにより「Object Layer Editor」ダイアログを起動して行います。

Object Type List:

Apply

Object Type List は Visual Lab で定義されているオブジェクトタイプの一覧表です。 Object Type List での表示順がメインマップ上での表示順と一致します。

Name: オブジェクトタイプ名を表示します。

Edit Display Hide: オブジェクトタイプの状態を設定します。

Edit:メインマップ上でのオブジェクトの Select、Cut、Copy、Paste、Delete 操作が可能となります。(メインマップ上でオブジェクトが選択された場合は、Object Layer Editor での設定内容に関わらず、最上位に表示されます)

Display:オブジェクトがメインマップ上に表示されます。 Hide:オブジェクトがメインマップ上に表示されません。

Object Layer Editor での変更内容は、Undo/Redo の対象になります。

<Apply>変更内容をメインマップ上に反映させます。

11. オブジェクトタイプ編集機能

オブジェクトタイプ編集機能は、通信オブジェクトや GIS オブジェクトのオブジェクトタイプの編集機能を提供します。オブジェクトタイプの編集は、[Tools]-[Object Type Editor...]をクリックし、「Object Type Editor」ダイアログを起動して行います。Scenargie Visual Lab が標準で提供する Object Type と Model Instance の複製、変更、削除と追加が可能です。Component と Property は変更、削除と追加が可能です。また、Object Type 毎のデフォルト値の設定も可能です。新規追加された通信オブジェクトは Control Panel の Add a New Communication Object のリストに追加されます。

11.1. 操作概要

Object Type Editor は Edit Mode、検索、新規追加ボタン、ツリー、絞込み条件、実行ボタンから構成されます。

Edit Mode: 編集モードを選択します。"Object Type" または"Component"

検索: 入力フィールドに1文字以上の文字を入力し、ボタンをクリックします。

検索対象は Object Type 名または Component 名です。

新規追加ボタン: Object Type、または Component を新規に追加します。

Edit Mode が Object Type の場合 Create New Object Type が、Component の場合

Create New Component がそれぞれ有効です。

ツリー: Object Type、または Component がツリー表示され、"+"のクリックまたは項目

名のダブルクリックにより展開表示されます。

Edit Mode: Object Type の場合

Object Type

Model Instance

Component

Property

Edit Mode: Component の場合

Component

Property

編集項目を選択し、右クリックにより編集メニューが表示されます。選択状態に

応じ、実施可能な操作ボタンのみが有効となります。

絞込み条件: ツリーに表示される Object Type、または Component の種類をチェックボック

スにより絞込みます。"Global/Channel"、"Communication"、"GIS"の3種類で

す。

実行ボタン: のクリックで、変更をシナリオに反映し終了します。

Cancel のクリックで変更をキャンセルしを終了します。

Set as Default のクリックで変更をデフォルト値としてファイルに反映し編集を続けま

す。

注意)

- Set as Default をクリックせず、 の のクリックで終了した場合、 編集した Object Type は当該 シナリオでのみ有効です。

- 一度 Set as Default をクリックした後に、Dot Eleven Module などのオプションモジュールを追加 (Visual Lab 用データファイルのコピー)した場合は、追加内容はそのままで反映されません。 そ

の場合、[Options] General タブ; Object Type File Directory を一旦初期値に戻し、再度オブジェクトタイプの編集を行った後、Set as Default を行います。

- 編集前に配置した通信オブジェクトには反映されません。
- 標準提供の Component を編集した場合、編集した Component の内容は、同一の Component を使用している全ての Object Type に反映されます。

11.2. Object Type の編集

Object Type の編集を行う場合、Edit Mode: Object Type を選択します。

Object Type の追加:

Create New Object Type をクリックし、Create New Object Type ダイアログを起動します。

Object Type の変更:

名称を変更する Object Type を選択し、マウスを右クリックし、Edit Object Type を選択して、Edit Object Type ダイアログを起動します。

Object Type の複製:

複製する Object Type を選択し、マウスを右クリックし、Duplicate Object Type を選択します。 < Object Type 名(2)>のような名称で複製されます。

Object Type の削除:

削除する Object Type を選択し、マウスを右クリックし、Delete Object Type を選択します。通信オブジェクトの Object Type のみ削除可能です。

11.3. Model Instance の編集

Model Instance の編集を行う場合、Edit Mode: Object Type を選択します

Model Instance の追加:

Object Type を選択し、マウスを 右 クリックし、Add Model Instance を選択して、Attach Model Instance ダイアログを起 動します。

Layer と Instance 名を選択します。既存の Instance 名を変更する場合は Edit をクリックして任意の名称を設定可能です。また新規に Instance を追加する場合は New をクリックして任意の名称を設定可能です。

注意) Model Instance を追加した場合、1 つ以上の Component を追加する必要があります。
Component を追加せずに をクリックした場合、追加した Model Instance は保存されません。

Model Instance の変更:

Model Instance を選択し、マウスを 右クリックし、Edit Model Instance を選択して、Edit Model Instance ダ イアログを起動します。

Instance 名を選択するか Edit または New をクリックして任意の名称を設定します。既存の Instance 名を変更する場合は Edit をクリックして任意の名称を設定可能です。また新規に Instance を追加する場合は New をクリックして任意の名称を設定可能です。

Model Instance の複製:

複製する Model Instance を選択し、マウスを右クリックし、Duplicate Model Instance を選択します。 <インスタンス名_2>のような名称で複製されます。

複製禁止の Model Instance の場合 Duplicate は選択できません。

Model Instance の削除:

削除する Model Instance を選択し、マウスを右クリックし、Delete Model Instance を選択します。

Component O Attach/Detach:

Edit Mode: Object Type で Component の Model Instance への組込、および Model Instance からの取り外しが可能です。

Model Instance への組込は、Model Instance を選択し、マウスを右クリックし、Attach Component を選択します。

Model Instance からの取り外しは、Component を選択し、マウスを右クリックし、Detach Component を選択します。

Component の内容表示:

Edit Mode: Object Type で Component の内容表示が可能です。

内容表示は、Component を選択し、マウスを右クリックし、View Component を選択します。

Property の初期値設定:

Edit Mode: Object Type で Property の初期値変更が可能です。Property の初期値変更は、Property を選択し、マウスを右クリックし、Edit Default Value を選択します。

11.4. Component の編集

Component の編集を行う場合、Edit Mode: Component を選択します

Component の追加:

Create New Component をクリックし、Create New Component ダイアログを起動して行います。

Component の変更:

Component を選択し、マウスを右クリックし、Edit Component を選択して、Edit Component ダイアログを起動して行います。

Component の削除:

削除する Component を選択し、マウスを右クリックし、Delete Component を選択します。

ユーザ定義の統計値の Component への追加:

Component 追加機能を利用してユーザが独自に定義した統計値を Componet への追加可能です。 追加された統計値は Statistics Settings からも利用可能となります。

ここでは、コンポーネント Network(Node)にユーザ定義の統計値 NetworkLayer_New を追加する例を示します。

1) Object Type Editor の Edit Mode: Componet で、コンポーネント Network(Node)を選択し 右クリックメニューから Edit Component を選択します。

2) Statistics フィールドで右クリックメニューから Add Statistics を選択します。

3) NetworkLayer_New と入力します。

4) Value Type を選択します。

Value Type を以下の2種類より選択します。

Counter: 値(整数)を積算する性質の情報 (例) 受信パケット数

Real: イベントの発生毎に得られる値が変化する性質の情報 (例) 受信電力

ここでは、Counterを選択しています。

5) Conversion Type を選択します。

Conversion Type を以下の2種類より選択します。

No Conversion: 値をそのまま出力

dB : 値をdB変換して出力

ここでは、No Conbersion を選択しています。

- 6) OK をクリックし終了します。
- 7) Object Type Editor で OK をクリックし終了します。デフォルト値として使用する場合は、OK の前に Save as Default をクリックしておきます。
- 8) Statistics Settings で追加した統計値を確認します。

11.5. Property の編集

Property の追加:

Component を選択し、マウスを右クリックし、Add Property を選択して、Add Property ダイアログを起動します。

Property の変更:

Property を選択し、マウスを右クリックし、Edit Property を選択して、Edit Property ダイアログを起動します。

Property の削除:

削除するPropertyを選択し、マウスを右クリックし、Delete Propertyを選択します。

Property は Type により編集項目が異なります。編集項目は以下の通りです。

共通の項目

Name:	Object Properties ダイアログに表示されるプロパティ名	
Simulation Input:	Simulator で読み込む際のパラメータ名	
Value Type:	プロパティのタイプ	
	Integer, Double, Bool, String, Enum, Input File, Output File, Object Type,	
	Object, ObjectName, Instance、Check List、Brush、Pen により入力項目が	
	変化する。	
Default Value:	初期値	

Value Type 毎の項目

Value Type:	Integer
Simulation Input	シミュレーションパラメータで渡される際の単位
Unit:	None, Distance (cm, m, km), Speed (m/s, m/h, km/s, km/h), Power (dBm,
	mW, W),

Size (bit, byte, KB, MB), Rate (bps, Kbps, Mbps), Frequency (Hz, MHz,
GHz),
Time (ns, us, ms, s, inf_time), Angle (degree, rad.)

Value Type:		Double
Simulation	Input	
Unit:		None, Distance (cm, m, km), Speed (m/s, m/h, km/s, km/h), Power (dBm,
		mW, W),
		Size (bit, byte, KB, MB), Rate (bps, Kbps, Mbps), Frequency (Hz, MHz,
		GHz),
		Time (ns, us, ms, s, inf_time), Angle (degree, rad.)

Value Type:	Bool
Bool Type:	True/False、Yes/No、On/Off

Value Type:	Enum
Candidates (CSV):	候補 デリミッタ ","(カンマ)

Value Type:	Object Type
Object Feature:	Communication, GIS, System

Value Type:	Object
Object Feature:	Communication, GIS, System

Value Type:	Check List
Chek List Items:	チェックリストアイテム(文字列)の候補(デリミッタ""(スペース)

12. バッチ処理機能

複数ケースを選択し、自動的に連続実行を行います。バッチ変数(値を変化させてバッチ処理が可能な プロパティ)の設定により特定のプロパティを変化させながら連続実行させることが可能です。 バッチ処理は、バッチ変数の登録、バッチ処理の設定、バッチ処理の実行の手順で行います。

12.1. バッチ変数登録機能

バッチ変数の登録は、以下のように行います。

- 1) Object Properties からバッチ処理で変更したい項目の Property Value 欄をクリックします。
- 2) **ふ**をクリックして Property Details ダイアログを表示させます。

複数のオブジェクトに対して同時にプロパティ(バッチ変数)の値を変更するには、Object List で対象とする複数のオブジェクトを選択した状態で、 をクリックします。

3) Add To Batch Variable をクリックして、バッチ設定にバッチ変数を追加します。現在、バッチ変数として設定可能なのは数値プロパティのみです。

12.2. バッチ処理設定機能

バッチ処理設定は、バッチ変数の設定とバッチ実行用ケース群の作成を行います。

バッチ処理設定は、以下のように行います。

- 1) [Tools]-[Batch Processing]-[Batch Settings...]より Batch Settings を起動します。
- 2) バッチ変数を選択し、設定を行います。変数が Seed の場合は"Random Series"、それ以外は"Range"で行います。
- 3) バッチ変数一覧の中から、バッチ処理の対象となるバッチ変数のチェックボックスをチェックします。 複数のバッチ変数がある場合は、各バッチ変数同士の全ての組み合わせに対してバッチ実行が

可能です。表示されているバッチ変数の順番によって、階層的なディレクトリが作成されます。順番の変更には、(矢印アイコン)を使用します。

Seed と Tx Power をバッチ変数に登録した場合以下のように表示されます。

● のクリックにより選択されているバッチ変数(ここでは Seed)の位置が変更されます。

Seed、Tx Power の順の場合のディレクトリ構造

```
seed_txpower
seed_123
    dot11-tx-power-dbm_0
    dot11-tx-power-dbm_1
seed_124
    dot11-tx-power-dbm_0
    dot11-tx-power-dbm_1
seed_125
    dot11-tx-power-dbm_0
    dot11-tx-power-dbm_0
```


Tx Power、Seed の順の場合のディレクトリ構造

```
txpower-seed

dot11-tx-power-dbm_0

seed_123
```

```
seed_124
seed_125
dot11-tx-power-dbm_1
seed_123
seed_124
seed_125
```

4) Create Batch Cases (Directory) をクリックしてバッチ実行用ケース群(ディレクトリ) を作成します。

12.3. バッチ処理実行機能

バッチ処理実行は、Scenargie Batch Consol よりバッチ処理を開始します。

バッチ処理の実行は以下のように行います。

1) [Tools]-[Batch Processing]-[Batch Console...]より Scenargie Batch Console を起動します。

をクリックしてバッチ処理設定機能で作成したバッチケース群(ディレクトリ)を選択します。バッチケースが複数選択された場合、上から順に実行されます。

2) Number of Concurrent Execution でバッチ処理の同時実行数を設定します。Base Simulator および使用するオプションモジュールのライセンスを最大設定数分必要とします。

3) **い**のクリックによりバッチ処理が開始されます。 **のクリックにより一時停止、** のクリックにより一時停止、 のクリックにより停止します。

シミュレーションエラーが発生した場合には、失敗数(Failure)右側のボタンをクリックすることで、失敗したシナリオ番号を確認することができます。

13. 統計值解析機能

シミュレーション実行時に出力する統計値に関する設定を行います。

13.1. 統計值設定機能

統計値の設定は「Statistics Settings」ダイアログにより行います。「Statistics Settings」ダイアログは [Tools]-[Statistics Setting...] により実行されます。

Name: 統計値名を意味しチェックされた項目がシミュレーション実行時の出力対象となります。

Objects:対象の通信オブジェクトを「*(Any Objects)」で全てを指定するか個別に指定します。

Start Time: 統計値の取得開始時間を指定します。

End Time: 統計値の取得終了時間を指定します。「inf_time」の場合、シミュレーション終了までとなります。

Aggregation Interval:統計値の取得間隔を指定します。

「inf_time」の場合、最終値のみ記録されます。

「0(ゼロ)」の場合、イベント発生毎の値が記録されます。

13.2. グラフ表示機能

通信オブジェクトの統計値をシミュレーション実行に同期してグラフ表示、または、シミュレーション実行後の統計値(.stat)をグラフ表示します。

グラフ表示機能の実行は[Tools]- [Chart Creator...]より「Chart Creator」ダイアログを表示して行います。

13.2.1. シミュレーション実行中のグラフ作成

「Chart Creator」ダイアログによりグラフ作成を行います。

1) Data Source の設定

Data Source ブロック

データの入力方法を指定します。

Online(Simulation): シミュレーション実行中の結果を時系列にプロットしていきます。

Offline: シミュレーション実行後の統計値ファイルをグラフ化します。

Single Case: 単一のケースの統計値ファイルをグラフ化します。

Multiple Cases: 複数のケースの統計値ファイルをグラフ化します。

Case File: ケースファイル(.case)をデータ ソースとしてグラフ化します。

Statistic File: 統計値ファイル(.stat)をデータソースとしてグラフ化します。

Data Source

C Online (Simulation)
C Single Case
C Case File (.case)
C Statistics File (stat)

Back Next Cancel

🗐 Chart Creator

ここでは、Online(Simulation)を選択します。

2) グラフ種類の設定

Chart ブロック グラフの種類を指定します。 リストボックスより選択します。

ここでは、Line を選択します。

3) 対象項目と描画方法の設定

Statistics: のリストから、対象の項目を選択します。

Objects: のリストから通信オブジェクトを選択します。

対象とする通信オブジェクトを Object List より選択します。

Ctrl キーを押しながら複数の通信オブジェクトを選択することで、個々のオブジェクトに対する統計値や複数のオブジェクトの統計値を集計して表示するように設定可能です。

集計タイプを選択します。

Individual、Average、Median、Total より選択します。

Individual:

選択された複数のオブジェクトの個々のオブジェクトの統計値が Bar/Line 表示されます。

Average:

選択された複数のオブジェクトの平均値が Bar/Line 表示されます。

Median:

選択された複数のオブジェクトの中央値が Bar/Line 表示されます。

Total:

選択された複数のオブジェクトの合計値が Bar/Line 表示されます。

高低線表示を選択します。

Upper and Lower Limits、95% Confidence Limits、99% Confidence Limits より選択します。尚、 高低線表示は、線グラフで、集計タイプが Average、または、Median の場合有効です。 Add をクリックして凡例を表示させます。凡例を右クリックすると、プロット色や線種、凡例名の変更、および、凡例の削除が行えます。

Create をクリックするとグラフ出力画面が表示されます。

更にグラフを作成する場合は、統計値の選択等を繰り返します。

Back をクリックする事により、
Data Source の選択に戻ることも可能です。これ以上作成しない場合は、
Chart Creator ダイアログを終了します。

Chart Creator ダイアログ終了後、シミュレーションの実行によりグラフが表示されます。

シミュレーション実行中のグラフ表示の例です。

グラフ表示後、以下の操作が可能です。

グラフの保存: [File]-[Save As]でグラフデータを保存できます。

グラフデータは拡張子.chartファイルとして保存され、外部入力機能により再表示できます。グラフの 再表示は Visual Lab のメインウィンドウの[File]-[Import]-[Chart File (.chart)...] により行います。

画像として保存: [File]-[Save As Picture]でグラフを画像(.png)として保存できます。

グラフ表示の調整: [Settings]-[Chart Properties...]で「Chart Properties」ダイアログを起動し、グラフタイトルや、軸の調整ができます。グラフ上にマウスカーソルを移動させ右クリックでも Chart Properties ダイアログを起動できます。

凡例で右クリックすると、プロット色や線種、凡例名を変更できます。

13.2.2. 統計値ファイルを使用したグラフ作成

「Chart Creator」ダイアログによりグラフ作成を行います。統計値ファイルを使用してグラフ作成を行うには、シミュレーション実行前に統計値設定機能を用いて取得する統計値の設定を行っておく必要があります。

1) Data Source の設定

Data Source ブロック

データの入力方法を指定します。

Online(Simulation): シミュレーション実行中の結果を時系列にプロットしていきます。

Offline: シミュレーション実行後の統計値ファイルをグラフ化します。

Single Case: 単一のケースの統計値ファイルをグラフ化します。

Multiple Cases: 複数のケースの統計値ファイルをグラフ化します。

Case File: ケースファイル(.case)をデータ ソースとしてグラフ化します。

Statistic File: 統計値ファイル(.stat)をデータソースとしてグラフ化します。

ここでは、Offline(Playback), Single Case, CaseFile(.case)を選択します。

2) グラフ種類の選択

グラフの種類を指定します。 リストボックスより選択します。

ここでは、Barを選択します。

3) 対象項目と描画方法の選択

Statistics: のリストから、対象の項目を選択します。

Objects: のリストから通信オブジェクトを選択します。

対象とする通信オブジェクトを Object List より選択します。

Ctrl キーを押しながら複数の通信オブジェクトを選択することで、個々のオブジェクトに対する統計値や複数のオブジェクトの統計値を集計して表示するように設定可能です。

集計タイプを選択します。

Individual、Average、Median、Total より選択します。

高低線表示を選択します。

Upper and Lower Limits、95% Confidence Limits、99% Confidence Limits より選択します。尚、 高低線表示は、線グラフで、集計タイプが Average、Median の場合有効です。

Add をクリックして凡例を表示させます。凡例を右クリックすると、プロット色や凡例名の変更、および、凡例の削除が行えます。

<u>Create</u>をクリックするとグラフ出力画面が表示されます。

グラフ下部の Time[s]にチェックを入れ、シークバーを動かすと時間ごとの統計値を表示させることが可能です。

Offline(Playback)でグラフを表示した状態でログ再生を行うと時系列のグラフ表示が可能です。 以下は線グラフでログ再生を行った例です。

ログ再生時のグラフ表示例

13.2.3. 複数の統計値を使用したグラフ作成

「Chart Creator」ダイアログによりグラフ作成を行います。ここでは統計値ファイルを使用してグラフ作成を行います。統計値ファイルを使用してグラフ作成を行うには、シミュレーション実行前に統計値設定機能を用いて取得する統計値の設定を行っておく必要があります。

1) Data Source の設定

Data Source ブロック

データの入力方法を指定します。

Online(Simulation): シミュレーション実行中の結果を時系列にプロットしていきます。

Offline: シミュレーション実行後の統計値ファイルをグラフ化します。

Single Case: 単一のケースの統計値ファイルをグラフ化します。

Multiple Cases: 複数のケースの統計値ファイルをグラフ化します。

Case File: ケースファイル(.case)をデータ ソースとしてグラフ化します。

Statistic File: 統計値ファイル(.stat)をデータソースとしてグラフ化します。

ここでは、Offline(Playback), Single Case, CaseFile(.case)を選択します。

2) グラフ種類の設定

Chart ブロック

グラフの種類を指定します。

リストボックスより選択します。

ここでは、Bar を選択します。

3) 対象項目と描画方法の選択

Statistics: のリストから、対象の項目を選択します。

Ctrl キーを押しながら複数の統計値を選択可能です。

複数の統計値を使用する場合には、統計値の集計タイプを選択します。

Individual、Total(選択した統計値を合算) より選択します。

Objects: のリストから通信オブジェクトを選択します。

対象とする通信オブジェクトを Object List より選択します。

Ctrl キーを押しながら複数の通信オブジェクトを選択することで、個々のオブジェクトに対する統計値や複数のオブジェクトの統計値を集計して表示するように設定可能です。

オブジェクトの集計タイプを選択します。

Individual、Average、Median、Total より選択します。

高低線表示を選択します。

Upper and Lower Limits、95% Confidence Limits、99% Confidence Limits より選択します。尚、 高低線表示は、線グラフで、集計タイプが Average、Median の場合有効です。

ここでは、統計値の集計タイプとして、Total を選択し、オブジェクトの集計タイプとして Average を選択します。

Add をクリックして凡例を表示させます。統計値やオブジェクトの選択と Add のクリックを繰り返すことで、複数の凡例を表示させることができます。

凡例を右クリックすると、プロット色や凡例名の変更、および、凡例の削除が行えます。

Create をクリックするとグラフ出カ画面が表示されます。

グラフ表示の調整: [Settings]-[Chart Properties...]で「Chart Properties」ダイアログを起動し、グラフタイトルや、軸の調整ができます。グラフ上にマウスカーソルを移動させ右クリックでも Chart Properties ダイアログを起動できます。

凡例で右クリックすると、プロット色や線種、凡例名を変更できます。

13.2.4. 複数の結果をまとめたグラフ作成

「Chart Creator」ダイアログによりグラフ作成を行います。

ここでは、10、15、20dBm の送信電力をバッチ変数として設定し、それぞれの送信電力に対して乱数 の seed をバッチ変数に設定してバッチ処理を行い、得られた結果をまとめてグラフ表示させる場合を 例に説明します。

一つのシナリオで複数の.case を作成し、それぞれ実行した結果をまとめてグラフ表示する場合は、バッチケースを.case と読み替えます。X 軸の説明が表示できない場合は、Chart Properties、および X Label で入力します。

1) Data Source の設定

Data Source ブロック

データの入力方法を指定します。

Online(Simulation): シミュレーション実行中の結果を時系列にプロットしていきます。

Offline: シミュレーション実行後の統計値ファイルをグラフ化します。

Single Case: 単一のケースの統計値ファイルをグラフ化します。

Multiple Cases: 複数のケースの統計値ファイルをグラフ化します。

Case File: ケースファイル(.case)をデータ ソースとしてグラフ化します。

Statistic File: 統計値ファイル(.stat)をデータソースとしてグラフ化します。

ここでは、Offline(Playback), Multiple Cases, Case File(.case)を選択します。

2) グラフ種類の選択

グラフの種類を指定します。

リストボックスより選択します。

ここでは、Bar を選択します。

3) 対象項目と描画方法の選択

X Axis: からグルーピング方法として、Group by Object / Group by Case のどちらかを選択します。

ここでは、Group by Case を選択します。

Statistics: のリストから、対象の項目を選択します。

Ctrl キーを押しながら複数の統計値を選択することで、一つの通信オブジェクトに対して複数の統計値を表示するように設定可能です。

Objects: のリストから通信オブジェクトを選択します。

対象とする通信オブジェクトを Object List より選択します。

Cases: のリストからケースを選択します。

対象とするケースを Case List より選択します。

Objects、Cases それぞれについて集計タイプを選択します。

Objects については Individual、Average、Median、Total より選択します。

Cases については Individual、Average、Median、Individual - Average、Individual - Median より選択します。

Individual-Average、Individual-Median は、複数の階層があるバッチケースをグラフ表示する際に使用し、選択した一番上の階層について Individual、その下の全ての階層に対して Average または Median が適用されます。

ここでは、Individual-Average を選択し、送信電力ごとの平均値を表示するようにします。

Objects、Cases それぞれについて高低線表示を選択します。

Upper and Lower Limits、95% Confidence Limits、99% Confidence Limits より選択します。尚、 高低線表示は、集計タイプが Average、Median の場合有効です。

Add をクリックして凡例を表示させます。凡例を右クリックすると、プロット色や凡例名の変更、および、凡例の削除が行えます。

Create をクリックするとグラフ出力画面が表示されます。

[File]-[Save As Picture]でグラフを画像ファイルとして保存可能です。

表示後にグラフタイトルや、軸の調整を行う場合は、グラフ上にマウスカーソルを移動させ右クリック します。

表示される<Chart Properties>をクリックして、グラフ表示の Property を調整します。

Thousands Separator:

4 桁ごとにカンマ区切りを入れることができます。

Conversion:

Value の値を指定する方法で変換して表示することができます。

None(×1),、×1000、×1/1000、×8、×1/8 より選択できます。

統計値が実数型の場合、dB->Non-dB、Non-dB->db、Log10 からも選択できます。

Counting:

Value の集計方法を選択できます。(統計値がカウンタ型の場合のみ有効)

Cumulative(累積値)、Average(直前の単位区間の平均値)から選択できます。

Horizontal Axis Cross Point:

横軸との交点(縦軸の座標)

14. トレース機能

シミュレーション実行時に出力するトレースに関する設定を行います。

14.1. トレース設定

トレース出力設定

トレース出力設定は「Object Properties」の[Global]-[General]-[Simulation]の「Trace Output Mode」で行います。デフォルトは Binary(結果を Binary Trace File に出力します)で、トレース出力を使用したオブジェクトの色表示を行う場合は Binary にする必要があります。トレース結果をテキストファイルで出力する場合は、Text にします。

トレース項目設定

トレース項目設定は「Object Properties」の各通信オブジェクトや GIS オブジェクトの[Simulation Object]-[Trace Tags]にトレースタグを入力して行います。トレースタグの詳細は、「Scenargie Base Simulator ユーザガイド」を参照してください。

14.2. トレースの可視化設定

トレースの可視化はシミュレーション実行およびログ再生時、トレース情報に基づいてオブジェクトの色やオブジェクト間のリンクで可視化する機能です。オブジェクトの内側部分(Fill)と縁取り部分(Border)、オブジェクト間リンク(Link)の3箇所で色表示することが可能です。Application、Network Layer、Mac Layer などではTraffic のイベントに対する可視化設定を行うことで、送受信オブジェクト間のリンクを表示します。シミュレーション実行時にトレースの色表示を行う場合、[Tools]-[Trace Visualization Settings]のOnline Trace をチェックします。

トレースの可視化設定は「Trace Visualization Settings」により行います。「Trace Visualization Settings」ダイアログは[Tools]-「Trace Visualization Settings...]により実行されます。

オブジェクトの色表示の設定は、対象とするトレースイベントの Fill または Border を選択して行います。 Fill または Border を選択すると「Color Properties」 ダイアログが表示され上限値、下限値などを設定します。一度色設定を行ったトレースイベントについては、Colorをクリックすると「Color Properties」ダイアログが表示されます。 Traffic イベントの場合は Border/Link を選択します。

表示設定例 1: Fill に RxFrame(Packet Sequence)

シミュレーションおよびログ再生の実行により通信オブジェクト がトレースの値に応じた色で表示されます。

表示設定例 2: Link に Dot11Mac の Traffic(packets/sec)

シミュレーション実行およびログ再生により送受信オブジェクト間のリンクがトレースの値に応じた色で表示されます。

「Trace Output」では、シミュレーション実行およびログ再生によりトレースが表示されます。「Trace Output」ダイアログは、「Tools]-「Trace Output...」より起動します。

15. ビデオクリップ作成機能 (Export)

ビデオクリップを作成します。

シミュレーションまたはログ再生からビデオクリップを作成し保存します。ビデオクリップのフォーマットは mpeg4 です。

ビデオクリップの作成は[File]-[Export]-[Video Clip (mp4)]をクリックし「Video Clip Creator」ダイアログにより行います。

- 1) 「Output File」で出力ファイル名を指定します。
- 2) 「Resolution (width, height)」で作成する Video Clip のサイズを指定します。
- 3) 「Frame Rate」でフレームレートを設定します。
- 4) 「Quality」で Video Clip の画質を設定します。スライドバーを High に近づけると画質が向上しますが、Video Clip のファイルサイズも大きくなります。
- 5) 「OK」ボタンをクリックするとシミュレーションまたはログ再生が開始され、Video Clip の作成も始まります。
- 6) Video Clip の作成が正常に終了すると、「Completed video clip creation.」のメッセージが表示されます。

注意) Linux 64bit で Video Clip の出力機能を使用する場合、Scenarige Installation Guide に 従って必要な 32bit ライブラリをインストールしてください。

16. シナリオ構成ファイル

Visual Lab におけるシナリオは、シナリオディレクトリとシナリオディレクトリ下に出力されるケースファイル等のシナリオファイルー式を意味します。また、Visual Lab よりシミュレーションを実行する場合、統計値、トレースファイル等のシミュレーション結果ファイルもシナリオディレクトリ下に出力されます。

16.1. シナリオディレクトリ

シナリオを作成し保存する際にディレクトリを作成または指定します。このディレクトリがシナリオディレクトリとなります。シナリオディレクトリに出力されるファイルは以下の通りです。

シナリオ構成

シナリオディレクトリ/

<ケース名>.case

<ケース名>. property

<ケース名> <オブジェクトタイプ名>.layer

シナリオファイル

<ケース名>.mob.trace.bin

<ケース名>trace[.bin]

<ケース名>.stat

<ケース名>_SimOutput.log

<ケース名>_GuiNodeMap.txt

シミュレーション結果ファイル

また、Visual Lab 起動中は、テンポラリディレクトリが作成され、シナリオ編集時およびシミュレーション 実行時に一時的にファイルが保管されます。

テンポラリディレクトリ名:

scentemp<YYYY-MM-DDThh-mm-ss-[pid]>

例) scentmp2012-01-01T12-10-04-4308

作成場所:

Options の User Home Directry で指定したディレクトリ

初期値は以下の通りです。

Linux 環境: Visual Lab パッケージを展開したディレクトリ

Windows 環境: VisualLab インストールフォルダ

MacOS 環境:ディスクトップ

16.2. シナリオファイル一覧

ファイル種別	ファイル名	説明
ケースファイル	<ケース名>.case	シナリオケースファイル
レイヤーファイル	<ケース名>_<オブジェクトタイプ名	オブジェクトタイプの定義
	>.layer	
プロパティファイル	<ケース名>.property	オブジェクトプロパティの定
		義

16.3. シミュレーション結果ファイル一覧

ファイル種別	ファイル名	説明
モビリティトレースファイル	<ケース名>.mob.trace.bin	移動情報のトレースが出力
		される
トレースファイル	<ケース名>.trace[.bin]	Trace Tags で設定されたト
		レースが出力される
統計値出力ファイル	<ケース名>.stat	統計値が出力される
シミュレーションログ	<ケース名>_SimOutput.log	シミュレーションログが出力
		される
ノードマップファイル	<ケース名>_GuiNodeMap.txt	通信オブジェクトの名前と
		シミュレーションにおけるノ
		ード番号の関連付けが出
		力される
エージェントプロファイル	< ケ ー ス 名	シミュレーションで実際に使
	>_AgentProfileValues.txt	われたエージェントプロファ
		イルの設定値が出力される
		(Multi Agent Extension
		Module を使用した場合の
		み出力)

16.4. Export 機能の出力ファイル

Export > Simulation Configuration File (.config) により出力されるファイルは以下の通りです。

ファイル種別	ファイル名(括弧内は初期値)	説明
コンフィギュレーションファイル	<任意>.config	プロパティの設定内容に対

		応しシミュレーションパラメ
		一タが記述される
アンテナパターンファイル	<任意>.ant	Global;
		Antenna/Propagation;
		Custom Antenna File で指
		定されるファイル
材質定義ファイル	<任意>.material	Global;
		Antenna/Propagation;
		Material File で指定される
		ファイル
ポジションファイル	<任意>.pos	通信オブジェクトの初期位
		置が記述される
統計値取得設定ファイル	<任意>. statconfig	Tools; Statistics Setting
		の設定内容が記述される
ビットエラーテーブル/ブロック	<任意>.ber/.bler	Global; <通信システム名
エラーテーブル		>; Bit/Block Error Rate
		Curve Input File で指定さ
		れるファイル
スタティックルーティング設定フ	<任意>.routes	Global; Simulation; Static
アイル		Route File で指定されるフ
		アイル
Shape ファイル	shapes/*.shp、*.shx、*.dbf	Shape 形式の GIS ファイル

17. プロパティ

17.1. プロパティ一覧

17.1.1. Common

プロパティ	型	説明
Name	String	オブジェクト名
Label	Bool	オブジェクトラベルの表示属性(表示/非表示)
Fill	Brush	オブジェクトの本体の色
Border	Pen	オブジェクトの輪郭の色

17.1.2. Simulation

プロパティ	型	説明
Seed	Integer	乱数の種
Mobility Seed	Integer	モビリティ用の乱数の種
Simulation Time	Time	シミュレーション時間
Simulation Base Time		シミュレーション開始時の基準日時
Synchronization Event Time	Time	タイムステップベースのイベントとの同期間隔
Step		(タイムステップベースのイベント : Multi-Agent
		Extension Module 使用時のエージェント間の
		相互作用、Fast Urban Propagation Module 使
		用時の移動体形状の位置更新など)
Position Type	Enum	座 標 タ イ プ (Cartesian ま た は
		Longitude/Latitude)
Executable Name	Input File	シミュレーション実行ファイル
Trace Analyzer Lib	Input File	ログ再生で使用する Trace Analyzer のライブラ
Trace Analyzer Lib	Input File	ログ再生で使用する Trace Analyzer のライブラ リファイル
Trace Analyzer Lib Trace Output Mode	Input File Enum	·
		リファイル
Trace Output Mode	Enum	リファイル トレースの出力モード(Binary/Text)
Trace Output Mode Output Trace Index	Enum Bool	リファイル トレースの出力モード(Binary/Text) トレースのインデックスファイルの出力設定
Trace Output Mode Output Trace Index Trace Output File	Enum Bool Output File	リファイル トレースの出力モード(Binary/Text) トレースのインデックスファイルの出力設定 トレース出力ファイル
Trace Output Mode Output Trace Index Trace Output File Statistics Output File	Enum Bool Output File Output File	リファイル トレースの出力モード(Binary/Text) トレースのインデックスファイルの出力設定 トレース出力ファイル 統計値出力ファイル
Trace Output Mode Output Trace Index Trace Output File Statistics Output File Output A Line for No Data	Enum Bool Output File Output File	リファイル トレースの出力モード(Binary/Text) トレースのインデックスファイルの出力設定 トレース出力ファイル 統計値出力ファイル 値がない場合に統計値の出力行を出すか否か
Trace Output Mode Output Trace Index Trace Output File Statistics Output File Output A Line for No Data Statistics	Enum Bool Output File Output File Bool	リファイル トレースの出力モード(Binary/Text) トレースのインデックスファイルの出力設定 トレース出力ファイル 統計値出力ファイル 値がない場合に統計値の出力行を出すか否か の設定

Terminate Simulation When	Bool	ルートが見つからない場合に、シミュレータを停
Routing Fails		止させるか否かの設定
Trace File for Playback	Input File	ログ再生で使用するトレースのバイナリ出力ファ
		イル
Mobility File for Playback	Input File	ログ再生で使用するモビリティのバイナリ出カフ
		アイル
Statistics File for Playback	Input File	ログ再生で使用する統計値出力ファイル
Simulation Progress Output	Double	シミュレーションの進捗表示を行う間隔 (シミュレ
Interval [%]		ーション時間に対する割合[%])
Enable Unused Parameter	Bool	使用されなかったパラメータの警告表示を行うか
Warnings		否かの設定

17.1.3. GIS

プロパティ	型	説明
Driving Side of Road	Enum	道路の右側通行、左側通行の区別: right、left
Break Down Curved Road into	Bool	カーブのある道路を交差点で結ばれた直線道路
Straight Roads		に変換するか否か(Multi-Agent Extension
		Module 使用時は、false に設定する必要があり
		ます)
Number of Building Entrances	Interger	建物の最小の入り口の数
Number of Station Entrances	Integer	駅の最小の入り口の数
Number of Bus Stop Entrances	Integer	バス停の最小の入り口の数
Number of Park Entrances	Integer	公園の最小の入り口の数
Add Intersection Margin	Bool	道路に対して交差点分のマージンを取るか否か
		(Multi-Agent Extension Module 使用時は、true
		に設定する必要があります)
Traffic Light Pattern Definition	Input File	信号パターン設定ファイル
File		
GIS Data Source for Simulation	String	シミュレーションで使用する GIS データの選択
		(InternalGisData: VisualLab で開いているシナ
		リオ内の GIS データを利用
		ExternalShapeFiles: Shape File Directory で指
		定したディレクトリ内の Shape 形式(.shp)のファ
		イルを利用)
Shape File Directory	Input File	シミュレーションに利用する Shape 形式 (.shp)
		の GIS ファイルパス(ディレクトリパス)

		(GIS Data Source for Simulation が
		ExternalShapeFiles の場合にのみ有効)
Latlong-based Position	Bool	Shape ファイルに含まれる座標が緯度経度座標
		か否か
Latitude Origin [degree]	Double	緯度経度座標から平面直角座標への変換時の
		基準点(緯度)
Longitude Origin [degree]	Double	緯度経度座標から平面直角座標への変換時の
		基準点(経度)

17.1.4. Antenna/Propagation

プロパティ	型	説明
Number of Threads for Prop	Integer	電波伝搬計算時のスレッド数
Custom Antenna File	Input File	カスタムアンテナのパターンファイル
2.5D to 3D Interpolation	Enum	カスタムアンテナファイルで 2.5D パターンを指定
Algorithm Number for Custom		する際の 3D パターンへの補完アルゴリズム番
Antenna File		号
		(1 または 2)
Legacy Antenna Pattern	Bool	カスタムアンテナファイルが旧アンテナパターン
Format for Custom Antenna		か否か(Scenargie 1.7 r13769 以前にサポートさ
		れていたパターンを使用する場合は、true に設
		定)
Material File	Input File	材質定義ファイル
Moving Object Shape File	Input File	移動体形状設定ファイル

17.1.5. Channel

プロパティ	型	説明
Frequency	Double	チャネルの周波数
Bandwidth	Double	チャネルの帯域幅
MIMO Channel File Name	Input File	MIMO チャネルファイル
MIMO Channel File Looping	Bool	チャネルファイルを時系列的に繰り返し再利用
		するか否か
Frequency Selective Channel	Input File	周波数選択性チャネルファイルの名前
File Name		
Number of Channels	Integer	マルチチャネル使用時のチャネル数

Channel <number> Frequency</number>	Double	チャネル <number>の周波数</number>
Channel <number> Bandwidth</number>	Double	チャネル <number>の帯域幅</number>
Channel <number> MIMO File</number>	Input File	チャネル <number>の MIMO チャネルファイル</number>
Name		
Frequency Selective Channel	Input File	マルチチャネル使用時のチャネル <number>に</number>
<number> File Name</number>		対する周波数選択性チャネルファイルの名前
Channel <number> Spectral</number>	String	チャネル間干渉係数計算用のスペクトラムマス
Mask MHz dBr		クの形状の座標(中心周波数からの距離(MHz)
		とそのときの相対電力(dB)
		2.4GHz 20MHz 幅チャネルの際の場合の例
		9.0 0.0 11.0 -20.0 20.0 -28.0 30.0 -40.0
Channel <number> Nominal</number>	Double	チャネル間干渉係数計算用の名目送信帯域幅
Trasmit Width		
Channel <number> Receive</number>	Double	チャネル間干渉係数計算用の受信帯域幅
Width		
Enable Mask Calculated	Bool	スペクトラムマスクベースのチャネル間干渉を行
Channel Interference		うか否か
Channel Interference Matrix	String	チャネル間の干渉係数行列
		2チャネル使用し、お互いの干渉係数が0.5の場
		合の例:1 0.5 0.5 1
		(それぞれチャネル 0 からチャネル 0 への干渉、
		チャネル 0 からチャネル 1 への干渉、チャネル 1
		からチャネル 0 への干渉、チャネル 1 からチャネ
		ル1への干渉)
Propagation Model	Enum	電波伝搬モデル:
		FreeSpace , TwoRayGround ,
		OkumuraHata 、 COST231Hata 、
		COST231Indoor、WallCount、ITU-R_P.1411、
		Taga、ITM、TwoTier、Trace、TGaxIndoor、
		ITU-UMi、LTE_Macro、LTE_Pico、FUPM、
		HFPM
		(LTE_Macro、LTE_Pico、FUPM、HFPM は、
		別途オプションモジュールが必要)
Okumura-Hata Environment	Enum	OkumuraHata モデルにおける想定環境
		(Urban_LargeCity .
		Urban_MediumOrSmallCity 、 Suburban 、

		Rural)
COST231 Hata Environment	Enum	COST231Hata モデルにおける想定環境
		(Suburban, Metropolitan)
Indoor Breakpoint Distance	Double	COST231Indoor モデルにおけるブレークポイン
		トの距離 単位:m
Baseline Propagation Model	Enum	WallCount モデルにおけるベースのパスロスモ
		デル
Penetration Loss (dB)	Double	WallCount モデルにおける壁あたりの損失
LoS Calculation policy	Enum	ITU-R_P.1411 モデルにおける LOS 式の計算
		方法
		median, lower, ,upper
Max Diffraction Count	Enum	ITU-R_P.1411 モデルにおける最大回折回数
LoS Angle Threshold	Double	ITU-R_P.1411 モデル使用時に LoS として認識
		する道路の角度 単位:度
Max NLoS Distance	Double	ITU-R_P.1411 モデルにおける最大の NLoS 距
		離
		単位:m
Enable Building based LoS	Bool	ITU-R_P.1411 モデル使用時に実際の建物配
Calculation		置を考慮して LoS 計算を行うか
NLoS1 Calculation Policy	Enum	ITU-R_P.1411 モデルにおける NLOS1 式の計
		算方法
		urban、suburban
NLoS2 Calculation Policy	Enum	ITU-R_P.1411 モデルにおける NLOS2 式の計
		算方法
		urban, residential
NLoS2 Loss Direction	Enum	ITU-R_P.1411 モデルにおける伝搬計算の方向
		の考慮の仕方
		(Directional 、 BidirectionalLargeLoss 、
		BidirectionalSmallLoss ,
		SmallNodeIdToLargeNodeIdLoss ,
		LargeNodeIdToSmallNodeIdLoss)
		Directional:Tx から Rx への伝搬損失値を利用
		BidirectionalLargeLoss: Tx から Rx、Rx から
		Tx の伝搬損失値のうち値の大きい方を利用
		BidirectionalSmallLoss:TxからRx、RxからTx
		の伝搬損失値のうち値の小さい方を利用

		SmallNodeldToLargeNodeldLoss:ノード ID の
		小さい方から大きい方への伝搬損失値を利用
		LargeNodeldToSmallNodeldLoss:ノード ID の
		大きい方から小さい方への伝搬損失値を利用
NLoS2 Use Policy	Enum	ITU-R_P.1411 モデルにおける NLOS2 の計算
NEOSZ OSE I Olicy	Liidiii	式 default/
		AlwaysUse800To2000MHzCalculation/
		AlwaysUse2To16GHzCalculation
		default の場合には周波数に応じた計算式を適
		用
NLoS2 Extension	Enum	//- ITU-R_P.1411 モデルにおける NLOS2 の計算
NEOSZ EXTERISION	Liidiii	オプション off/UseInverseLargerLoss
Use Larger Loss Value at LoS	Bool	ITU-R_P.1411 モデル使用時に NLoS の計算結
and NLoS2 Bound	B001	果が LoS の計算結果よりも小さい場合に、LoS
and NEOSZ Bound		未が LOS の計算和未よりも小さい場合に、LOS 値を採用するかどうか
NI of Coloulation Policy 900 to	Enum	ITU-R P.1411 モ デ ル に お け る
NLoS Calculation Policy 800 to	Enum	_
2GHz		800MHz-2000MHz 用 NLOS 式計算方法
5 11 015 D	5 .	lower, upper, geometricmean
Enable SHF Propagation	Bool	ITU-R_P.1411 モデルにおける SHF 帯の伝搬
Model		計算モデルを利用するか否か
SHF Effective Road Height	Double	ITU-R_P.1411 モデルにおける SHF 帯における
		道路の Effective Height
SHF Short Distance	Double	ITU-R_P.1411 モデルにおける SHF 帯の Short
		Distance 正の実数:m
Enable Propagation Between	Bool	ITU-R_P.1411 モデル使用時に UHF 帯で建物
Terminals Located Below		高よりも低いTerminal間での伝搬計算を有効に
Roof-Top Height at UHF		するか
Height Differ Threshold	Double	ITU-R_P.1411 モデルにおける建物高にばらつ
		きがあるかを判定する閾値
		0 以上:m
Below Roof-Top Calculation	Enum	ITU-R_P.1411 モデルにおける Below RoofTop
Policy		での計算方法
		urban, suburban, dense, high-rise
Well Below Roof-Top Height	Double	ITU-R_P.1411 モデルにおける建物高から十分
		に低い相対の高さ 0以上:m
Below Roof-top Location	Enum	ITU-R_P.1411 モデルにおける Below RoofTop

Percentage		配置割合 1,10,50,90,99 のいずれか
Roof-Top Transition Region	Double	ITU-R_P.1411 モデルにおける遷移領域
		0 以上:m
LoS consts CSV	String	Taga モデルにおける LOS 式中の係数(CSV)
NLoS1 consts CSV	String	Taga モデルにおける NLOS1 式中の係数(CSV)
NLoS2 consts CSV	String	Taga モデルにおける NLOS2 式中の係数(CSV)
Enable Building based LoS	Bool	Taga モデルにおける実際の建物配置を考慮し
Calculation		て LoS 計算を行うか
NLoS Loss Direction	Enum	Taga モデルにおける伝搬計算の方向の考慮の
		仕方
		(Directional 、 BidirectionalLargeLoss 、
		BidirectionalSmallLoss ,
		SmallNodeIdToLargeNodeIdLoss ,
		LargeNodeIdToSmallNodeIdLoss)
		Directional:Tx から Rx への伝搬損失値を利用
		BidirectionalLargeLoss: Tx から Rx、Rx から
		Tx の伝搬損失値のうち値の大きい方を利用
		BidirectionalSmallLoss:TxからRx、RxからTx
		の伝搬損失値のうち値の小さい方を利用
		SmallNodeIdToLargeNodeIdLoss:ノード ID の
		小さい方から大きい方への伝搬損失値を利用
		LargeNodeIdToSmallNodeIdLoss:ノード ID の
		大きい方から小さい方への伝搬損失値を利用
Calculation Point Division	Double	ITM モデルにおける計算の最大分解能
Length		
Earth Dielectric Constant	Double	ITM モデルにおける大地誘電率
Earth Conductivity	Double	ITM モデルにおける大地導電率
Atmospheric Bending Constant	Double	ITM モデルにおける大気屈折
Fraction of Time	Double	ITM モデルにおける Fraction of Time の値
Fraction of Situations	Double	ITM モデルにおける Fraction of Situations の値
Radio Climate	Enum	ITM モデルにおける気候
		(Equatorial, Continental-Subtropical,
		Maritime-Tropical, Desert,
		Continental-Temperate,
		Maritime-Temperate-Over-Land,
		Maritime-Temperate-Over-Sea)

Polarization	Enum	ITM モデルにおける分極
		(Horizontal, Vertical)
Enable Foliage Loss	Bool	ITM モデル使用時に樹木による損失を考慮する
Eliable Foliage Loss		か否か
Enable Vertical Diffraction Path	Bool	ITM モデル使用時に垂直方向回折パスに対して
Calculation		ITM の計算を適用した損失値が、通常の ITM の
		伝搬計算より得られる損失値より小さい場合に、
		垂直方向回折パスの伝搬損失値を利用するか
		否か
Primary Propagation Model	Enum	TwoTier モデルにおけるプライマリ伝播損失モ
		デル
Secondary Propagation Model	Enum	TwoTier モデルにおけるセカンダリ伝播損失モ
		デル
Nodes Running Secondary	Object	TwoTier モデルにおけるセカンダリ伝播損失モ
Prop Model		デルを使用する通信オブジェクト
Default Propagation Model	Enum	Trace モデルにおけるデフォルト(トレースがない
		場合)の電波伝播モデル
Freespace Breakpoint	Double	TGaxIndoor モデルにおけるブレークポイントま
		での距離単位:m
Floor Attenuation [dB]	Double	TGaxIndoor モデルにおける床(天井)での減衰
		単位:dB
Wall Attenuation [dB]	Double	TGaxIndoor モデルにおける壁での減衰
		単位∶dB
Enable Shadowing Loss	Bool	LTE_Macro、LTE_Pico モデル使用時にシャド
		ーイングロスを有効にするか否か
Cross Correlation Factor for	Double	LTE_Macro、LTE_Pico モデルにおけるシャドー
Shadowing		イングロスの相互相関係数(0~1)
Shadowing Map File	Input File	LTE_Macro、LTE_Pico モデルにおけるシャドー
		イングロス用のシャドーイングマップファイル名
Enable Penetration Loss	Bool	LTE_Macro、LTE_Pico モデル使用時に壁によ
		る損失を有効にするか否か
Penetration Loss (dB)	Double	LTE_Macro、LTE_Pico モデルにおける壁 1 枚
		に対する損失量
		単位:dB
Pathloss Calculation Model	Enum	FUPM、HFPM モデルにおける Pathloss 計算
		モデル

		FUPM: Hata 、 COST_hata 、
		Walfisch_Ikegami 、OPAR 、FreeSpace 、
		VPUP、TPGeodesic
		HFPM: FULL3D
Propagation Trace File	Output File	電波伝搬のトレースファイル。
		Propagation Model が Trace の場合入力ファイ
		ル、それ以外の場合出力ファイル。
		(出カファイルとしての使用は、現在、Dot
		Eleven Module およびITS Extension Module
		でのみ有効)
Enable Propagation Delay	Bool	電波伝搬遅延の(有効/無効)設定
		(LteDownlink、および、LteUplink では、false に
		設定してください)
Max Signal	Double	電波伝搬計算時の最大シグナル到達距離
Propagation(optimization)		
Allow Multiple Interfaces on	Bool	複数インターフェースで同一チャネルを利用する
Same Channel		か否か
Fading Model	Enum	フェージングモデル(Off、Rayleigh, Nakagami)
Shape Factor m	Integer	Nakagami フェージングモデルにおける m ファク
		タ
Enable Selection Combining	Bool	ダイバーシティ(選択型)を有効にするか否かの
Diversity		設定
Enable Fixed Velocity	Bool	ドップラ周波数算出時に固定速度を使用
Fixed Velocity	Double	固定速度使用時に使用する速度
Velocity Update Interval	Time	動的速度使用時の速度の更新間隔
Minimum Velocity	Double	動的速度使用時に使用する最低相対速度
Number of Sub Path	Integer	フェージング波形生成のためのサブパス数
Shadowing Model	Enum	シャドーイングモデル(SimpleLogNormal)
Standard Deviation	Double	LogNormal シャドーイングの標準偏差
		(Shadowing Model が SimpleLogNormal の場

17.1.6. Position

プロパティ	型	説明
X Coordinate [m]	Double	位置 x [m]

Y Coordinate [m]	Double	位置 y [m]
Z Coordinate [m]	Double	位置 z [m]
Longitude	Double	経度
Latitude	Double	緯度
Rotation	Double	向き

17.1.7. Simulation Object

プロパティ	型	説明
Simulation Node ID	Interger	シミュレータで使用されるノード ID
Trace Tags	Check List	トレース設定項目(Mobility、Application、
		Transport、Network、Routing、Mac、Phy、
		PhyInterference、Gis、Mas)(チェックボックス
		から選択)
Trace Start Time	Time	トレース出力の開始時間

17.1.8. Building

プロパティ	型	説明
Height [m]	Double	建物高 [m]
People Capacity [people]	Integer	建物の収容人数
Vehicle Capacity [vehicle]	Integer	建物の収容車両数
Building Material for FUPM /	String	FUPM 使用時の建物の材質名、または、HFPM
Roof Material for HFPM		使用時の天井の材質名
Wall Material for HFPM	String	HFPM 使用時の壁の材質名
Floor Material for HFPM	String	HFPM 使用時の床の材質名

17.1.9. Entrance

プロパティ	型	説明
People Flow Rate [people/s]	Integer	入口での一秒当たりの最大流入可能人数 [人
		/s]
Queue Type	Enum	入口待ちのキュー種別
Number of People per Row	Integer	入口待機での列あたりの人数 [人/列]
[people/row]		
Row Separation [m]	Double	入口待機列の間隔 [m]
Column Separation [m]	Double	入口待機行の間隔 [m]

17.1.10. Wall

プロパティ	型	説明
Material	String	材質名
Wall Thickness [m]	Double	壁の厚さ [m]
Height [m]	Double	壁の高さ[m]

17.1.11. Road

プロパティ	型	説明
Width [m]	Double	道路幅 [m]
Speed Limit [km/h]	Double	制限速度 [km/h]
Number of Lanes (Src -> Dest)	Integer	始点から終点方向のレーン数
Number of Lanes (Dest -> Src)	Integer	終点から始点方向のレーン数
Pedestrian Capacity	Double	歩行者の単位面積当たりの最大収容数
[people/m^2]		
Road Type	Enum	道路種別
		Road:歩行者/車共用、Pedestrian:歩行者専
		用、Motorway:車専用

17.1.12. TrafficLight

プロパティ	型	説明
Switching Pattern Type	Enum	信号切り替えパターン(Predefined:自動設定、
		Manual:個別設定)
Predefined Pattern Name	String	自動設定時のパターン名
Start Time Offset	Time	信号開始時刻オフセット
Green Duration	Time	青信号の時間
Yellow Duration	Time	黄信号の時間
Red Duration	Time	赤信号の時間

17.1.13. BusStop/Park/Station

プロパティ	型	説明
Capacity [people]	Integer	建物の収容人数

17.1.14. POI

プロパティ	型	説明
Capacity [people]	Integer	バス停の収容人数

POI Information	String	POIに関する情報	
-----------------	--------	-----------	--

17.1.15. Communication Object

プロパティ	型	説明
Display	Enum	表示タイプ (Rectangle、StaticRectangle、Icon)
X Length [m]	Double	X 軸方向の長さ [m] (Rectangle 時有効)
Y Length [m]	Double	Y 軸方向の長さ [m] (Rectangle 時有効)
Icon Path	Input File	アイコンファイル (Icon 時有効)
Moving Object Shape Type	String	Moving Object の形状名

17.1.16. Point Object

プロパティ	型	説明
Display	Enum	表示タイプ(Circle、Icon)
Radius [m]	Double	半径 [m](Clrcle 時有効)
Icon Path	Input File	アイコンファイル (Icon 時有効)

17.1.17. Gis Object

プロパティ	型	説明
Disabled Time	Time	GIS オブジェクトが無効になる時刻
Enabled Time	Time	GIS オブジェクトが有効になる時刻
Z Coordinate Reference	Enum	GIS オブジェクトの Z 座標の基準点
		SeaLevel, GroundLevel

17.1.18. Mobility

プロパティ	型	説明
Mobility Model	Enum	モビリティモデル:
		Stationary、Random-Waypoint、
		Gis-Based-Random-Waypoint、Trace-File
Granularity Meters	Double	位置更新粒度 [m]
Pause Time	Time	Random-Waypoint ,
		Gis-Based-Random-Waypoint 利用時の停止
		時間
Minimum Speed	Double	Random-Waypoint .
		Gis-Based-Random-Waypoint 利用時の最小

		移動速度
Maximum Speed	Double	Random-Waypoint ,
		Gis-Based-Random-Waypoint 利用時の最大
		移動速度
Use Rectangle Movable Area	Bool	矩形で移動範囲を指定するか否か(矩形ではな
		い場合は、ポリゴン指定)
Movable Area GIS Object	String	移動範囲を規定する GIS オブジェクト(ポリゴン)
Movable Area Min x,y Max x,y	String	Random-Waypoint 利用時のノードの移動範囲
		例) -250,-250,250,250
Ground GIS Object Type	Enum	Gis-Based-Random-Waypoint 利用時に使用
		する GIS 種別
		(現在、Road のみ有効)
Mobility File	Input File	トレースファイルモビリティモデルにおけるトレー
		スファイル名
Dynamic Object Creation	Bool	ノードの動的な生成消滅機能のサポート
Position Initialization File	Input File	Random-Waypoint .
		Gis-Based-Random-Waypoint 利用時のノード
		の初期位置ファイル名
Lane Offset Meters	Double	Gis-Based-Random-Waypoint 利用時の移動
		体の車線オフセット
Route Search Based Algorithm	Bool	Gis-Based-Random-Waypoint におけるルート
		検索ベースのアルゴリズムの使用
Need To Add Ground Height	Bool	モビリティモデルで Z 座標に標高を加算するか
		否か

17.1.19. Transport

プロパティ	型	説明
TCP Settings	Enum	TCP の設定方法:
		Default, Manual
Congestion Control Module	Enum	使用する輻輳制御モジュール名:
Name		NewReno 、CUBIC 、H-TCP 、Vegas 、
		Hamilton-Delay、
		CAIA-Hamilton-Delay、CAIA-Delay-Gradient
Enabled H-TCP Adaptive	Bool	adaptive backoff を有効にするか否か
Backoff		

Vegas AlphaIntegerアルファしきい値 単: MSSVegas BetaIntegerベータしきい値 単位: MSSHD QthreshInteger遅延時間のしきい値 単位: 10msHD QminInteger最小遅延時間のしきい値 単位: 10msHD PmaxInteger最大バックオフ確率
Vegas BetaIntegerベータしきい値 単位: MSSHD QthreshInteger遅延時間のしきい値 単位: 10msHD QminInteger最小遅延時間のしきい値 単位: 10ms
単位:MSS HD Qthresh Integer 遅延時間のしきい値 単位:10ms HD Qmin Integer 最小遅延時間のしきい値 単位:10ms
HD Qthresh
単位:10ms HD Qmin Integer 最小遅延時間のしきい値 単位:10ms
HD Qmin Integer 最小遅延時間のしきい値 単位:10ms
単位:10ms
HD Pmax Integer 最大バックオフ確率
Integer ACC 1773 7 HT
単位:%
CHD Qmin Integer 最大バックオフ確率
単位:%
CHD Pmax Integer 最大バックオフ確率
単位:%
Enabled CHD Loss Fair Bool shadow window を有効にするか否か
Enabled CHD Use Max Bool 最大 RTT を RTT として使用するか否か
CHD Qthresh Integer 遅延時間のしきい値
単位:10ms
CDG Wif Integer 輻輳回避時のウィンドウ増加係数
単位:RTT
(0 の場合は、常に 1RTT で 1MSS 増加する)
CDG Wdf Integer ウィンドウ減少係数
単位:%
CDG Loss Wdf Integer パケットロスによるウィンドウ減少係数
単位:%
CDG Smoothing Factor Integer 移動平均のサンプル数
CDG Exp Backoff Scale Integer 指数バックオフのスケーリング係数
CDG Consec Cong Integer 連続した輻輳シグナルの最大数
CDG Hold Backoff Integer 連続した輻輳シグナル:
tcp-cc-cdg-consec-congを越えた場合に輻輳
グナルを無視する回数
Host Cache Hash Size Integer ホストキャッシュのハッシュテーブルのスロット数
Host Cache Bucket Limit Integer ホストキャッシュのハッシュテーブルの 1 スロッ
当たりの最大レコード数

Enabled Blackhole	Bool	オープンしていないポートに届いたパケットを無
		視するか否か(false の場合は RST を送信す
		る)
Enabled Delayed ACK	Bool	遅延応答確認を有効にするか否か
Timer Delayed ACK Time	Time	遅延確認応答が有効な場合の最大遅延時間
Enabled Drop SYN+FIN	Bool	SYN フラグと FIN フラグの両方が設定されてい
		るときにパケットを無視するか否か
Enabled RFC3042	Bool	RFC3042 を有効にするか否か
Enabled RFC3390	Bool	RFC3390 を有効にするか否か
Slow Start Flight Size	Integer	スロースタート時の輻輳ウィンドウサイズ
Segments		単位:MSS
		(RFC3390 が有効な場合には使用されない)
Slow Start Local Flight Size	Integer	通信先がローカルな場合のスロースタート時の
Segments		輻輳ウィンドウサイズ
		単位:MSS
		(RFC3390 が有効な場合には使用されない)
Enabled RFC3465 ABC	Bool	RFC3465 を有効にするか否か
RFC3465 ABC L Var	Integer	RFC3465 が有効な場合にスロースタート時の輻
		輳ウィンドウが増加するサイズの上限値
		単位:MSS
Enabled Insecure RST	Bool	シーケンス番号が正しくない RST パケットを受け
		取るか否か
Enabled Auto Receive Buffer	Bool	受信バッファサイズを自動的に変更するか否か
Auto Receive Buffer Increment	Integer	受信バッファサイズを自動的に変更する場合の
Bytes		増加バイト数
Auto Receive Buffer Max Bytes	Integer	受信バッファサイズを自動的に変更する場合の
		最大バイト数
Enabled Auto Send Buffer	Bool	送信バッファサイズを自動的に変更するか否か
Auto Send Buffer Increment	Integer	送信バッファサイズを自動的に変更する場合の
Bytes		増加バイト数
Auto Send Buffer Max Bytes	Integer	送信バッファサイズを自動的に変更する場合の
		最大バイト数
Timer Keep Init Time	Time	接続要求のタイムアウト時間
Enabled Keep Alive	Bool	キープアライブを有効にするか否か
Timer Keep Idle Time	Time	キープアライブ検査開始までのアイドル時間

	T	
Timer Keep Interval Time	Time	キープアライブ検査の間隔
Timer Keep Count	Integer	コネクションが切断されるまでのキープアライブ
		検査の最大回数
Timer MSL Time	Time	最大セグメント生存時間
Timer Retransmit Min Time	Time	最小再送時間
Timer Retransmit Slop Time	Time	計算された再送時間に常に足される定数値
Enabled Timer Fast	Bool	TFIN_WAIT_2 状態のタイムアウトを早くするか
FIN_WAIT_2 Timeout		否か
Timer FIN_WAIT_2 Timeout	Time	TFIN_WAIT_2 状態のタイムアウトを早くした場
Time		合のタイムアウト時間
Timer Max Persist Idle Time	Time	コネクションが切断されるまでのゼロウィンドウ
		状態でのアイドル時間
Reassemble Max Segments	Integer	リアセンブルキューに保持できる最大セグメント
		数
Enabled RFC2018 SACK	Bool	RFC2018 を有効にするか否か
RFC2018 SACK Max Holes	Integer	コネクション毎の最大 SACK ホール数
RFC2018 SACK Global Max	Integer	ノード毎の最大 SACK ホール数
Holes		
Max TIME_WAIT Count	Integer	TIME_WAIT 状態のコネクション端点の最大数
Max Segment Size	Integer	最大セグメントサイズ
Min MSS	Integer	最小セグメントサイズ
Enabled RFC1323	Bool	RFC1323 を有効にする
ISN Reseed Interval Time	Time	初期シーケンス番号を生成するための乱数の種
		を再設定する間隔
		(0を指定した場合は、再設定は行われない)
Enabled SYN Cookies	Bool	SYN クッキーを有効にするか否か
Enabled SYN Cookies Only	Bool	SYN クッキーが有効の場合に SYN クッキーの
		みを使うか否か
		(true のときは SYN キャッシュを使わない)
SYN Cache Hash Size	Integer	SYN キャッシュのハッシュテーブルのスロット数
SYN Cache Bucket Limit	Integer	SYN キャッシュのハッシュテーブルの 1 スロット
		当たりの最大レコード数
Enabled RST Sock Fail	Bool	新しいソケットを作れないときに RST を送信する
		か否か
Send Buffer Bytes	Integer	送信バッファサイズ
· ·		

Receive Buffer Bytes	Integer	受信バッファサイズ
Max Sockets	Integer	最大ソケット数
Buffer Max Bytes	Integer	最大バッファサイズ
Enabled Nagle	Bool	Nagle アルゴリズムを有効にするか否か
Enabled Options	Bool	TCP オプションを有効にするか否か
V6 Max Segment Size	Integer	IPv6 の最大セグメントバイト数

17.1.20. Routing

プロパティ	型	説明
Routing Protocol	Enum	ルーティングプロトコルの選択
		(Kernel_AODV、NRL_OLSR、NU_OLSRv2を選
		択可能)
Active Route Timeout Time	Time	他端末用経路のタイムアウト期間
		(Kernel_AODV 使用時)
Allowed Hello Loss Packets	Integer	許可する HELLO パケットの損失回数
		(Kernel_AODV 使用時)
Hello Interval Time	Time	HELLO の送信間隔
		(Kernel_AODV 使用時)
My Route Timeout Time	Time	自端末用経路のタイムアウト期間
		(Kernel_AODV 使用時)
Hop Limit	Integer	許可する最大ホップ数
		(Kernel_AODV 使用時)
Node Traversal Time	Time	ノード間横断時間
		(Kernel_AODV 使用時)
RREQ Retries	Integer	RREQ のリトライ回数
		(Kernel_AODV 使用時)
Flooding Method	Enum	フラッディング方法
		(off/s-mpr/ns-mpr/not-sym/simple/ecds/mpr-cds)
		(NRL_OLSR 使用時)
Maximum Forward Delay	Time	OLSR パケットの送信ジッタ
		(NRL_OLSR 使用時)
Hello Interval	Time	HELLO の送信間隔
		(NRL_OLSR 使用時)
Hello Jitter	Double	HELLO の送信ジッタ
		(NRL_OLSR 使用時)

Hello Timeout Factor	Double	隣接ノードホールドタイム計算用の係数
		(NRL_OLSR 使用時)
Shortest Path Algorithm	Enum	最短経路計算アルゴリズム
		(shortesthop/spf/
		minmax/robustroute)
		(NRL_OLSR 使用時)
TC Interval	Time	TC の送信間隔
		(NRL_OLSR 使用時)
TC Jitter	Double	TC の送信ジッタ
		(NRL_OLSR 使用時)
TC Timeout Factor	Double	トポロジーホールドタイム計算用の係数
		(NRL_OLSR 使用時)
Willingness	Integer	パケットの再送信の積極度
		(NRL_OLSR 使用時)
Attached Network Address	String	外部ネットワークの IP アドレスのリスト(空白区切
List		り)
Attached Network Mask List	String	外部ネットワークのサブネットマスクの長さ(単位:ビ
		ット)のリスト(空白区切り)
Attached Network Distance	String	外部ネットワークまでのホップ数のリスト(空白区切
List		り)
Hello Interval	Time	HELLO メッセージ送信間隔の最大値
		(NU_OLSRv2 使用時)
Hello Max Jitter	Time	HELLO メッセージ送信時の最大ジッタ時間
		(NU_OLSRv2 使用時)
Hello Start Time	Time	HELLO メッセージの送信開始時間
		(NU_OLSRv2 使用時)
Link Quality Type	String	リンククオリティの設定(no, hello から選択)
		(NU_OLSRv2 使用時)
LQ Hyst Accept	Double	等しくなるか上回るとリンクが使用可能になるリン
		ククオリティの閾値
		(NU_OLSRv2 使用時)
LQ Hyst Reject	Double	下回るとリンクが使用不能になるリンククオリティの
		閾値
		(NU_OLSRv2 使用時)
LQ Initial Quality	Double	リンククオリティの初期値
		(NU_OLSRv2 使用時)

LQ Initial Pending	Bool	リンクの初期状態
		(NU_OLSRv2 使用時)
LQ Hyst Scale	Double	リンククオリティを更新する際の定数
		(NU_OLSRv2 使用時)
LQ Loss Detect Scale	Double	HELLO メッセージの LOSS 検出のための待ち時
		間を計算する際の定数
		(NU_OLSRv2 使用時)
Link Metric Type	String	リンクメトリックの設定 (no/etx/static)
		(NU_OLSRv2 使用時)
LM Etx Memory Length	Integer	リンクメトリックの計算のために過去の情報を保持
		しておく記録領域の長さ
		(NU_OLSRv2 使用時)
LM Etx Metric Interval	Time	リンクメトリックを再計算する間隔
		(NU_OLSRv2 使用時)
LM Metric List File	String	リンクメトリックの一覧を記述したファイルの名前
		(NU_OLSRv2 使用時)
TC Interval	Time	TC メッセージ送信間隔の最大値
		(NU_OLSRv2 使用時)
TC Max Jitter	Time	TC メッセージ送信時の最大ジッタ時間
		(NU_OLSRv2 使用時)
TC Start Time	Time	TC メッセージの送信開始時間
		(NU_OLSRv2 使用時)
TC Hop Limit	Integer	TC メッセージのホップ限界値
		(NU_OLSRv2 使用時)
Willingness	Integer	MPR の選ばれ易さを表す値
		(NU_OLSRv2 使用時)
Broadcast Priority	Integer	nuOLSRv2 モジュールの制御用メッセージのプラ
		イオリティ
		(NU_OLSRv2 使用時)

17.1.21. Antenna

プロパティ	型	説明
Channel Instance ID	Enum	チャネルインスタンス名
Antenna Model	Enum	アンテナモデル (Omnidirectional、Sectored、
		FUPM/HFPM、Custom)
Gain dBi	Double	Omnidirectional アンテナパタンにおけるアンテ

		ナゲイン [dBi]
Max Gain dBi	Double	Sectored アンテナパタンにおける最大アンテナ
		ゲイン [dBi]
Quasi-Omni Mode Gain dBi	Double	Quasi-Omni モードでのアンテナゲイン
Height	Double	ノード位置からの相対的なアンテナ高
Azimuth from North Clockwise	Double	ノード向きからの相対的なアンテナ方位(時計回
		り)
Elevation from Horizontal	Double	ノード向きからの相対的なアンテナ仰角(+が上
		向き)
Offset Distance	Double	ノード位置からのアンテナオフセット(距離)
Offset Angle	Double	ノード位置からのアンテナオフセット(方位)(時計
		回り)
Tx Antenna Pattern File	Input File	FUPM/HFPM における送信アンテナのパターン
		ファイル(.uan)
Tx Antenna Bearing	Double	FUPM/HFPM における送信アンテナの z 軸の回
		転角度(y 軸の正の方向を基準とする時計回り)
Tx Antenna Pitch	Double	FUPM/HFPM における送信アンテナの x 軸の回
		転角度(z 軸の正の方向を基準とする時計回り)
Tx Antenna Roll	Double	FUPM/HFPM における送信アンテナの y 軸の回
		転角度(x 軸の正の方向を基準とする反時計回
		り)
Rx Antenna Pattern File	Input File	FUPM/HFPM における受信アンテナのパターン
		ファイル(.uan)
Rx Antenna Bearing	Double	FUPM/HFPM における受信アンテナの z 軸の回
		転角度(y 軸の正の方向を基準とする時計回り)
Rx Antenna Pitch	Double	FUPM/HFPM における受信アンテナの x 軸の回
		転角度(z 軸の正の方向を基準とする時計回り)
Rx Antenna Roll	Double	FUPM/HFPM における受信アンテナの y 軸の回
		転角度(x 軸の正の方向を基準とする反時計回
		り)

17.1.22. Network (Interface)

プロパティ	型	説明
Interface Network Address	String	ノードのネットワークアドレス
		サブネットアドレス+\$n 表記すると\$n 部分にノー

		ド ID が自動的に設定される。(例:192.169.0.0
		+ \$n)
Network Address Prefix Length	Integer	ネットワークアドレスのビット数 [Bit]
[bit]		
Subnet Address Is Multihop	Bool	マルチホップ用インターフェースの ON/OFF
Network Address Is Primary	Bool	プライマリのネットワークアドレスか否か
Allow Routing Back Out Same	Bool	受信したインターフェースと同一インターフェース
Interface		からのパケット送信許可
Ignore Unregistered Protocol	Bool	未登録のプロトコル番号のパケットを受信した場
		合に無視するか否か
Gateway Address	String	ゲートウェイのネットワークアドレス
MAC Protocol	String	使用する MAC プロトコル名
Max Packets per Queue	Integer	送信キューのサイズ(パケット数)
		(値が0の場合は、キュー長は無限)
Max Bytes per Queue	Integer	送信キューのサイズ(バイト数)
		(値が0の場合は、キュー長は無限)
Max Packets per Sub-Queue	Integer	送信サブキューのサイズ(パケット数)
		(値が0の場合は、キュー長は無限)
Max Bytes per Sub-Queue	Integer	送信サブキューのサイズ(バイト数)
		(値が0の場合は、キュー長は無限)
DHCP Client	Bool	DHCP クライアントを有効にする
DHCP Server	Bool	DHCP サーバを有効にする
DHCP Model	Enum	DHCP のモデルを選択する
		abstract: abstract モデル
		isc: ISC DHCP
DHCP Client Packet Priority	Integer	DHCP クライアントのパケットプライオリティ
		(DHCP Client が true の場合のみ有効)
		(DHCP Model が abstract の場合のみ有効)
DHCP Server Packet Priority	Integer	DHCP サーバのパケットプライオリティ
		(DHCP Server が true の場合のみ有効)
		(DHCP Model が abstract の場合のみ有効)
DHCP Server Use Server	Bool	デフォルトゲートウェイアドレスとしてサーバのア
Address As Default Gateway		ドレスを使用する
Address		(DHCP Server が true の場合のみ有効)
		(DHCP Model が abstract の場合のみ有効)

DHCP Server Default Gateway	String	デフォルトゲートウェイアドレス
Address To Offer		(DHCP Server が true の場合のみ有効)
		(DHCP Model が abstract の場合のみ有効)
		(DHCP Server Use Server Address As
		Default Gateway Address が false の場合のみ
		有効)
ISC DHCP Client Config File	Input File	DHCP クライアントの設定ファイル
		(DHCP Client が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
ISC DHCP Client Input Lease	Input File	DHCP クライアントのリースファイル(入力用)
File		(DHCP Client が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
ISC DHCP Client Output Lease	Output File	DHCP クライアントのリースファイル(出力用)
File		(DHCP Client が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
ISC DHCP Client Packet	Integer	DHCP クライアントのパケットプライオリティ
Priority		(DHCP Client が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
ISC DHCP Server Config File	Input File	DHCP サーバの設定ファイル
		(DHCP Server が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
ISC DHCP Server Input Lease	Input File	DHCP サーバのリースファイル(入力用)
File		(DHCP Server が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
ISC DHCP Server Output	Output File	DHCP サーバのリースファイル(出力用)
Lease File		(DHCP Server が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
ISC DHCP Server Packet	Integer	DHCP サーバのパケットプライオリティ
Priority		(DHCP Server が true の場合のみ有効)
		(DHCP Model が isc の場合のみ有効)
Enabled NDP	Bool	NDP を有効にする
		(IPv6 使用時のみ有効)
NDP Mode	Enum	NDP のモードを選択する
		host: ホストとして動作
		router: ルータとして動作
		(Enabled NDP が true の場合のみ有効)

		(IPv6 使用時のみ有効)
Address Resolution	Bool	アドレス解決を有効にする
		(Enabled NDP が true の場合のみ有効)
		(IPv6 使用時のみ有効)
Address Autoconfiguration	Bool	アドレス自動設定を有効にする
		(Enabled NDP が true の場合のみ有効)
		(NDP Mode が host の場合のみ有効)
		(IPv6 使用時のみ有効)
Gateway Autoconfiguration	Bool	ゲートウェイアドレス自動設定を有効にする
		(Enabled NDP が true の場合のみ有効)
		(NDP Mode が host の場合のみ有効)
		(IPv6 使用時のみ有効)
Router Advertisement Interval	Double	ルータ広告の送信間隔(Enabled NDP が true の
		場合のみ有効)
		(NDP Mode が router の場合のみ有効)(IPv6 使
		用時のみ有効)
Router Advertisement Jitter	Double	ルータ広告の送信ジッタ(Enabled NDP が true
		の場合のみ有効)
		(NDP Mode が router の場合のみ有効)(IPv6 使
		用時のみ有効)
Enabled ARP	Bool	ARP を有効にする
Enabled Proxy ARP	Bool	Proxy ARP を有効にする
ARP Probe Wait	Double	アドレス探知(Probe)開始までの最大時間
ARP Probe Num	Integer	アドレス探知の回数
ARP Probe Min	Double	アドレス探知の間隔の最小値
ARP Probe Max	Double	アドレス探知の間隔の最大値
ARP Announce Wait	Double	アドレス通知(Announce)開始までの最大時間
ARP Announce Num	Integer	アドレス通知の回数
ARP Announce Interval	Double	アドレス通知の間隔
ARP Max Conflicts	Integer	アドレス探知を制限するまでのアドレス競合検出
		回数
ARP Rate Limit Interval	Double	制限時のアドレス探知の間隔
ARP Packet Priority	Integer	ARP モジュールのパケットプライオリティ

17.1.23. Network (Node)

プロパティ	型	説明
Hop Limit	Integer	IP ヘッダの TTL(Time To Live)フィールドの初期
		値。最大ホップ数。
Loopback Delay	Double	ループバック時の遅延時間

17.1.24. CBR

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Destination is Multicast Group	Bool	IP マルチキャストを使用するかどうか
Destination Multicast Group	Integer	IP マルチキャストの宛先グループ番号
Number		
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Payload Size	Integer	ペイロードサイズ
Traffic defined by	Enum	トラフィック 量 指 定 方 法(Interval 、
		PacketsPerSecond, BitsPerSecond)
Packet Interval	Time	送信間隔
Traffic Volume (bit)	Integer	1 秒あたりの送信バイト数(トラフィック量定義
		BitsPerSecond の場合)
Traffic Volume (packet)	Double	1 秒あたり送信パケット数(トラフィック量定義
		PacketsPerSecond の場合)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.25. VBR

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Destination is Multicast Group	Bool	IP マルチキャストを使用するかどうか
Destination Multicast Group	Integer	IP マルチキャストの宛先グループ番号
Number		
Start Time	Time	開始時間

End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Payload Size	Integer	ペイロードサイズ
Traffic defined by	Enum	トラフィック 量 指 定 方 法(Interval 、
		PacketsPerSecond, BitsPerSecond)
Mean Packet Interval	Time	平均送信間隔
Traffic Volume (bit)	Integer	1 秒あたりの送信バイト数(トラフィック量定義
		BitsPerSecond の場合)
Traffic Volume (packet)	Double	1 秒あたり送信パケット数(トラフィック量定義
		PacketsPerSecond の場合)
Minimum Packet Interval	Time	最小送信間隔
Maximum Packet Interval	Time	最大送信間隔
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.26. FTP

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Flow Size	Integer	フローサイズ
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.27. Multi FTP

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値

Max Flow Size	Integer	最大フローサイズ
Mean Flow Size	Integer	平均フローサイズ
Standard Deviation Flow Size	Integer	フローサイズの標準偏差
Mean Reading Time	Time	平均読込時間
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.28. VoIP

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Mean Active/Inactive State	Time	平均 Active/Inactive 状態間隔
Duration		
State Transition Probability	Double	状態遷移確率
Mean Packet Arrival Delay	Time	平均パケット到達遅延ジッタ
Jitter		
Jitter Buffer Window	Time	ジッタバッファウィンドウ
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.29. VideoStreaming

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Minimum Inter-Arrival Time	Time	最小パケット到着間隔(パレート分布)
between Packets		
Maximum Inter-Arrival Time	Time	最大パケット到着間隔(パレート分布)

between Packets		
Mean Inter-Arrival Time	Time	平均パケット到着間隔(パレート分布)
between Packets		
Jitter Buffer Window	Time	ジッタバッファウィンドウ
Frame Rate	Double	フレームレート
Number of Packets in a Frame	Integer	フレーム内パケット数
Minimum Packet Size	Integer	最小パケットサイズ(パレート分布)
Maximum Packet Size	Integer	最大パケットサイズ(パレート分布)
Mean Packet Size	Integer	平均パケットサイズ(パレート分布)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.30. HTTP

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Minimum Main Object Size	Integer	メインオブジェクトの最小サイズ
Maximum Main Object Size	Integer	メインオブジェクトの最大サイズ
Mean Main Object Size	Integer	メインオブジェクトの平均サイズ
Standard Deviation Main	Integer	メインオブジェクトサイズの標準偏差
Object Size		
Minimum Number of	Integer	組み込みオブジェクトの最小数
Embedded Objects		
Maximum Number of	Integer	組み込みオブジェクトの最大数
Embedded Objects		
Mean Number of Embedded	Integer	組み込みオブジェクトの平均数
Objects		
Minimum Embedded Object	Integer	最小組み込みオブジェクトサイズ
Size		
Maximum Embedded Object	Integer	最大組み込みオブジェクトサイズ
Size		

Mean Embedded Object Size	Integer	平均組み込みオブジェクトサイズ
Standard Deviation Embedded	Integer	組み込みオブジェクトサイズの標準偏差
Object Size		
Mean Page Reading Time	Time	平均読込時間
Mean Embedded Reading	Time	平均組み込みオブジェクト読み込み時間
Time		
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.31. Flooding

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Payload Size	Integer	ペイロードサイズ
Interval	Time	送信間隔
Max Hop Count	Integer	最大ホップ数
Min Waiting Period	Time	最小待機時間
Max Waiting Period	Time	最大待機時間
Counter Threshold	Integer	カウンタ閾値
Distance Threshold	Double	距離閾値
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.32. IperfUdp

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
Time Mode	Bool	データの送信モード
		true: 送信時間を指定してデータを送信する

		(Total Time)
		送信バイト数を指定してデータを送信する Total
		Size)
Total Time	Time	データの送信時間
		(Time Mode が true の場合のみ有効)
Total Size	Integer	データの送信バイト数
		(Time Mode が false の場合のみ有効)
UDP Payload Size	Integer	UDP パケットのペイロード長(バイト)
UDP Rate	Integer	データレート(ビット/秒)
UDP Use System Time	Bool	シミュレーション時間の代わりにシステム時間(リ
		アルタイム)を使用するかどうか
Priority	Integer	優先度
Auto Address Mode	Bool	送信先の指定方法
		true: ノード ID で指定する(Destination)
		false: アドレスで指定する(Destination
		Address)
Destination Address	String	送信先アドレス
		(Auto Address Mode が false の場合のみ有効)
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.33. IperfUdp Client

プロパティ	型	説明
Destination Address	String	送信先アドレス
		(Auto Address Mode が false の場合のみ有効)
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Start Time	Time	開始時間
Time Mode	Bool	データの送信モード
		true: 送信時間を指定してデータを送信する
		(Total Time)
		送信バイト数を指定してデータを送信する Total
		Size)
Total Time	Time	データの送信時間
		(Time Mode が true の場合のみ有効)

Total Size	Integer	データの送信バイト数
		(Time Mode が false の場合のみ有効)
UDP Payload Size	Integer	UDP パケットのペイロード長(バイト)
UDP Rate	Integer	データレート(ビット/秒)
UDP Use System Time	Bool	シミュレーション時間の代わりにシステム時間(リ
		アルタイム)を使用するかどうか
Priority	Integer	優先度
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.34. IperfUdp Server

プロパティ	型	説明
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Start Time	Time	開始時間
UDP Payload Size	Integer	UDP パケットのペイロード長(バイト)
UDP Use System Time	Bool	シミュレーション時間の代わりにシステム時間(リ
		アルタイム)を使用するかどうか
Priority	Integer	優先度
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.35. lperfTcp

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
Time Mode	Bool	データの送信モード
		true: 送信時間を指定してデータを送信する
		(Total Time)
		送信バイト数を指定してデータを送信する Total
		Size)
Total Time	Time	データの送信時間
		(Time Mode が true の場合のみ有効)
Total Size	Integer	データの送信バイト数
		(Time Mode が false の場合のみ有効)
TCP Buffer Size	Integer	送信バッファサイズ(バイト)
Priority	Integer	優先度
Auto Address Mode	Bool	送信先の指定方法

		true: ノード ID で指定する(Destination)
		false: アドレスで指定する(Destination
		Address)
Destination Address	String	送信先アドレス
		(Auto Address Mode が false の場合のみ有効)
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.36. IperfTcp Client

プロパティ	型	説明
Destination Address	String	送信先アドレス
		(Auto Address Mode が false の場合のみ有効)
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Start Time	Time	開始時間
Time Mode	Bool	データの送信モード
		true: 送信時間を指定してデータを送信する
		(Total Time)
		送信バイト数を指定してデータを送信する Total
		Size)
Total Time	Time	データの送信時間
		(Time Mode が true の場合のみ有効)
Total Size	Integer	データの送信バイト数
		(Time Mode が false の場合のみ有効)
TCP Buffer Size	Integer	送信バッファサイズ(バイト)
Priority	Integer	優先度
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.37. IperfTcp Server

プロパティ	型	説明
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Start Time	Time	開始時間
TCP Buffer Size	Integer	送信バッファサイズ(バイト)
Priority	Integer	優先度
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.38. Bundle Protocol

プロパティ	型	説明
Max Storage Size	Integer	バンドルを保存可能なストレージサイズ
		単位:バイト
Data Transport Mode	Enum	バンドル転送時のトランスポートプロトコル
		(TCP, UDP)
Routing Algorithm	Enum	ルーティングアルゴリズム(Epidemic、
		Spray-And-Wait、Direct-Delivery, MaxProp)
Max Number of Copies	Integer	最大コピー回数(Spray-And-Wait 使用時)
Binary Mode	Bool	Spray-And-Wait アルゴリズムにおけるバイナリ
		モードの使用 ON/OFF
Enable Delivery Ack	Bool	ACK(到達通知)の送受信を行うか否か
Hello Interval	Time	Hello メッセージ送信間隔
Hello Max Jitter	Double	Hello メッセージ送信開始ジッタ
Request Resend Interval	Time	バンドルリクエスト再送間隔
Control Packet Max Jitter	Double	制御パケットの最大送信ジッタ
Data Packet Priority	Integer	バンドルデータパケット優先度
Control Packet Priority	Integer	制御パケット優先度
Max Control Packet Size	Integer	制御用 UDP パケットの最大サイズ
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.39. Bundle Message

プロパティ	型	説明
Message Destination	Object	送信先ノード ID
Message Start Time	Time	開始時刻
Message End Time	Time	終了時刻
Message Max Jitter	Double	開始時刻の最大ジッタ
Message Size	Integer	メッセージサイズ
		単位:バイト
Message Send Interval	Time	送信間隔
Message Lifetime	Time	メッセージ生存時間

17.1.40. Sensing

プロパティ	型	説明
Sensing Start Time	Time	開始時刻

Sensing End Time	Time	終了時刻
Sensing Interval	Time	センシング周期
Coverage Shape Type	Enum	センシングエリアの 形 状(FanShape 、
		GISObject)
Coverage Distance	Double	水平方向の計測距離[m] (Coverage Shape
		Type が FanShape の場合のみ有効)
Horizontal Coverage Angle	Double	水平方向のカバー角度
		(sensing-coverage-shape-type が FanShape
		の場合のみ有効)
Vertical Coverage Angle	Double	垂直方向のカバー角度
		(sensing-coverage-shape-type が FanShape
		の場合のみ有効)
Height from Platform	Double	垂 直 方 向 の 計 測 距 離
		(sensing-coverage-shape-type が FanShape
		の場合のみ有効)[m]
Azimuth from Platform	Double	センシングの方位
Direction		(sensing-coverage-shape-type が FanShape
		の場合のみ有効)
		単位∶度
Elevation from Platform	Double	センシングの仰角
Direction		(sensing-coverage-shape-type が FanShape
		の場合のみ有効)
		単位∶度
Coverage Area Gis Object	Object Name	センシングエリア名 (Building、Park、Area、
Name		Road の GIS オブジェクトのみ指定可能)
		(sensing-coverage-shape-type が GISObject
		の場合のみ有効)
Coverage Area Height	Double	垂 直 方 向 の 計 測 距 離
		(sensing-coverage-shape-type が GISObject
		の場合のみ有効)[m]
Detection Accurancy	Double	検出粒度(GIS オブジェクトを検知する分解能と
Granularity		して利用)[m]
Position Error Standard	Double	検査点の位置誤差[m]
Deviation Distance		
Detection Condition	Enum	LoS のみを検出するか、LoS/NLoS の両方を検
		出するか

Detection Target	Check List	センシング対象(CommunicationObject、
		Building、Wall、Road、Intersection、Railroad、
		Station、TrafficLight、BusStop、Area、Park、
		Entrance、POI の中から複数指定可能)
Detection Error Rate	Double	誤検出率
Transmission Condition	Enum	検出した通信ノードとの通信を送信のみ可能に
		するか、送受信を可能にするか (Simplex、
		Duplex)
Transmission Data Error Rate	Double	送信エラーレート

17.1.41. TraceBasedApp

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Input File Type	Enum	読み込むファイルのタイプ(.pcap のみ対応)
Pcap Input File	Input File	pcap ファイルのパス
Pcap First Packet Time	Time	pcap ファイルの最初のパケットの送信時間に対
		応するシミュレーション時間
Pcap Trimming Header Size	Integer	pcapファイルに保存されているパケットからトリミ
[byte]		ングするパケットサイズ(パケットに udp(8)、
		ipv4(20)、ethernet(14)へッダが含まれる場合
		は 42 バイトと指定) 単位:バイト
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.42. CBRwithQoS

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値

Payload Size	Integer	ペイロードサイズ
Traffic defined by	Enum	トラフィック 量 指 定 方 法(Interval 、
		PacketsPerSecond, BitsPerSecond)
Packet Interval	Time	送信間隔
Traffic Volume (bit)	Integer	1 秒あたりの送信バイト数(トラフィック量定義
		BitsPerSecond の場合)
Traffic Volume (packet)	Double	1 秒あたり送信パケット数(トラフィック量定義
		PacketsPerSecond の場合)
Baseline Bandwidth	Integer	最小帯域幅
Maximum Bandwith	Integer	最大帯域幅
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.43. VBRwithQoS

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Payload Size	Integer	ペイロードサイズ
Traffic defined by	Enum	トラフィック 量 指 定 方 法(Interval 、
		PacketsPerSecond, BitsPerSecond)
Mean Packet Interval	Time	平均送信間隔
Traffic Volume (bit)	Integer	1 秒あたりの送信バイト数(トラフィック量定義
		BitsPerSecond の場合)
Traffic Volume (packet)	Double	1 秒あたり送信パケット数(トラフィック量定義
		PacketsPerSecond の場合)
Minimum Packet Interval	Time	最小送信間隔
Maximum Packet Interval	Time	最大送信間隔
Baseline Bandwidth	Integer	最小帯域幅
Maximum Bandwith	Integer	最大帯域幅
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)

Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.44. FTPwithQoS

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Flow Size	Integer	フローサイズ
Baseline Bandwidth	Integer	最小帯域幅
Max Bandwidth	Integer	最大帯域幅
Baseline Reverse Bandwidth	Integer	QoS 保証用最小帯域幅(フィードバック用)
Maximum Reverse Bandwidth	Integer	QoS 保証用最大帯域幅(フィードバック用)
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.45. MultiFTPwithQoS

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Max Flow Size	Integer	最大フローサイズ
Mean Flow Size	Integer	平均フローサイズ
Standard Deviation Flow Size	Integer	フローサイズの標準偏差
Mean Reading Time	Time	平均読込時間
Baseline Bandwidth	Integer	最小帯域幅
Max Bandwidth	Integer	最大帯域幅
Baseline Reverse Bandwidth	Integer	QoS 保証用最小帯域幅(フィードバック用)

Maximum Reverse Bandwidth	Integer	QoS 保証用最大帯域幅(フィードバック用)
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.46. VolPwithQoS

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Mean Active/Inactive State	Time	平均 Active/Inactive 状態間隔
Duration		
State Transition Probability	Double	状態遷移確率
Mean Beta for Packet Arrival	Time	平均パケット到達遅延ジッタ
Delay Jitter		
Jitter Buffer Window	Time	ジッタバッファウィンドウ
Baseline Bandwidth	Integer	最小帯域幅
Max Bandwidth	Integer	最大帯域幅
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.47. VideoStreamingwithQoS

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Frame Rate	Double	フレームレート
Number of Packets in a Frame	Integer	フレーム内パケット数

Minimum Packet Size	Integer	最小パケットサイズ(パレート分布)
Maximum Packet Size	Integer	最大パケットサイズ(パレート分布)
Mean Packet Size	Integer	平均パケットサイズ(パレート分布)
Jitter Buffer Window	Time	ジッタバッファウィンドウ
Minimum Inter-Arrival Time	Time	最小パケット到着間隔(パレート分布)
between Packets		
Maximum Inter-Arrival Time	Time	最大パケット到着間隔(パレート分布)
between Packets		
Mean Inter-Arrival Time	Time	平均パケット到着間隔(パレート分布)
between Packets		
Baseline Bandwidth	Integer	最小帯域幅
Max Bandwidth	Integer	最大帯域幅
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.48. HTTPwithQoS

プロパティ	型	説明
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
End Time	Time	終了時間
Start Time Max Jitter	Time	開始時間に加算するジッタの最大値
Minimum Main Object Size	Integer	メインオブジェクトの最小サイズ
Maximum Main Object Size	Integer	メインオブジェクトの最大サイズ
Mean Main Object Size	Integer	メインオブジェクトの平均サイズ
Standard Deviation Main	Integer	メインオブジェクトサイズの標準偏差
Object Size		
Minimum Number of	Integer	組み込みオブジェクトの最小数
Embedded Objects		
Maximum Number of	Integer	組み込みオブジェクトの最大数
Embedded Objects		
Mean Number of Embedded	Integer	組み込みオブジェクトの平均数
Objects		

Minimum Embedded Object	Integer	最小組み込みオブジェクトサイズ
Size		
Maximum Embedded Object	Integer	最大組み込みオブジェクトサイズ
Size		
Mean Embedded Object Size	Integer	平均組み込みオブジェクトサイズ
Standard Deviation Embedded	Integer	組み込みオブジェクトサイズの標準偏差
Object Size		
Mean Page Reading Time	Time	平均読込時間
Mean Embedded Reading	Time	平均組み込みオブジェクト読み込み時間
Time		
Baseline Bandwidth	Integer	最小帯域幅
Max Bandwidth	Integer	最大帯域幅
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.49. IperfUdpWithQos

プロパティ	型	説明
J 17 () 1	五	武功
Destination	Object	送信先 通信オブジェクト
Start Time	Time	開始時間
Time Mode	Bool	データの送信モード
		true : 送信時間を指定してデータを送信する
		(Total Time)
		false:送信バイト数を指定してデータを送信する
		(Total Size)
Total Time	Time	データの送信時間
		(Time Mode が true の場合のみ有効)
Total Size	Integer	データの送信バイト数
		(Time Mode が false の場合のみ有効)
UDP Payload Size	Integer	UDP パケットのペイロード長(バイト)
UDP Rate	Integer	データレート(ビット/秒)
UDP Use System Time	Bool	シミュレーション時間の代わりにシステム時間(リ
		アルタイム)を使用するかどうか

Baseline Bandwidth	Integer	QoS 保証用最小帯域幅
Max Bandwidth	Integer	QoS 保証用最大帯域幅
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Address Mode	Bool	送信先の指定方法
		true: ノード ID で指定する(Destination)
		false: アドレスで指定する(Destination
		Address)
Destination Address	String	送信先アドレス
		(Auto Address Mode が false の場合のみ有効)
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.50. lperfTcpWithQos

プロパティ	型	説明
Destination	Object	送信先通信オブジェクト
Start Time	Time	開始時間
Time Mode	Bool	データの送信モード
		true : 送信時間を指定してデータを送信する
		(Total Time)
		false:送信バイト数を指定してデータを送信する
		(Total Size)
Total Time	Time	データの送信時間
		(Time Mode が true の場合のみ有効)
Total Size	Integer	データの送信バイト数
		(Time Mode が false の場合のみ有効)
TCP Buffer Size	Integer	送信バッファサイズ(バイト)
Baseline Bandwidth	Integer	QoS 保証用最小帯域幅
Max Bandwidth	Integer	QoS 保証用最大帯域幅
Baseline Reverse Bandwidth	Integer	QoS 保証用最小帯域幅(フィードバック用)
Maximum Reverse Bandwidth	Integer	QoS 保証用最大帯域幅(フィードバック用)
Schedule Scheme	Enum	QoS 保証用スケジューリング方式(PriBased)
Priority	Integer	優先度
Auto Address Mode	Bool	送信先の指定方法

		true: ノード ID で指定する(Destination)
		false: アドレスで指定する(Destination
		Address)
Destination Address	String	送信先アドレス
		(Auto Address Mode が false の場合のみ有効)
Auto Port Mode	Bool	宛先ポート番号自動設定モード
Destination Port	Integer	宛先ポート番号手動設定時のポート番号
Use Virtual Payload	Bool	仮想ペイロード機能の ON/OFF

17.1.51. AbstractNetworkMac

プロパティ	型	説明
Output Bandwidth	Integer	簡易有線ネットワークにおける帯域幅
		単位:bps
Minimum Latency	Double	簡易有線ネットワークにおける最小遅延時間
Maximum Latency	Double	簡易有線ネットワークにおける最大遅延時間
Packet Drop Rate	Double	簡易有線ネットワークにおけるパケットロス率

17.1.52. Aloha

プロパティ	型	説明
Aloha Model	Enum	プロトコルモデルの選択(unslotted、slotted)
Datarate	Double	データレート
Aloha Tx Power	Double	送信電力
Aloha Minimum Data	Time	最小フレーム送信間隔
Transmission Interval		
Aloha Maximum Data	Time	最大フレーム送信ジッタ
Transmission Jitter		
Aloha Slot Time	Time	slotted モデル使用時のスロット時間
Aloha Minimum Retry Interval	Time	再送待ち時間の最小値
Aloha Maximum Retry Interval	Time	再送待ち時間の最大値
Aloha Retry Limit	Integer	MAC レイヤフレーム再送の最大回数
Aloha Signal Rx Power	Double	最低受信感度
Threshold		
Aloha Phy Frame Data	Integer	物理層におけるパッディングサイズ
Padding [bit]		
Aloha Phy Delay Until Airborne	Time	物理層における送信処理遅延

18. Appendix

本製品には、GNU Lesser General Public License (LGPL) に基づきライセンスされる下記のソフトウェアが含まれています。本製品のユーザは、当該ソフトウェアのソースコードを入手し、LGPL に従い、複製、頒布及び改変することができます。LGPL ライセンスファイルはパッケージに含まれています。ソースコードは本製品のダウンロードページより入手可能です。(本製品の使用に関してはソースコードを入手する必要はありません)

Qt LGPL 版

FFmpeg version SVN-r17655, Copyright (c) 2000-2009 Fabrice Bellard, et al.

