Codification et Représentation de l'Information (CRI)

MI – USTHB – TD

abada.lyes@gmail.com

Décimal	Binaire	Octal	Hexadécimal	BCD
5	101	5	5	0101
13	1101	15	D	0001 0011
16	0001 0000	20	10	0001 0110
2595,75	101 0 00 100	5043,	A23,C09	0010 0101
2197	011, 110 000 001	6011		1001 0101,
	001			0111 0101
				0010
11,625	1011, 1010	13.5	В,А	0001
				0001,0110
				0010 0101
35	10 0011	43	23	0011 0101
19.90625	10011,11101	23.72	13,E8	0001 1001.1001
				0000 0110 0010
				0101
62	0011 1110	76	3E	0110 0010
85	1010101	125	55	1000 0101
89,0625	101 1001, 0001	131,0	59,1	1000 1001,
	00	4		0000 0110
				0010 0101

5

$$1* 2^{-1} + 1*2^{-2} \dots$$

-[

Exercice 1 - abada.lyes@gmail.com - lyes_sii@yahoo.fr

Décimal	Binaire	Octal	Hexadécimal	BCD
5	101	5	5	0101
13	1 101	15	D	0001 0011
16	0001 0000	2 0	10	0001 0110
2595,75	1010 0010 0011,	5043,	A23,C 09	
2197	1100 0000 1001	6011		
11,625	1 011,101	13.5	B,A	0001
				0001,0110
				0010 0101
35				
19,9062	10011,11101	23,72	13,E8	0001 1001, 1001 0000
5				0110 0010 0101
			3E	
				10000101
89,0625				
10922	10101010101010	25252	2AAA	0001 0000
				1001 0010
				0010

Soit $X = B_n B_{n-1} \dots B_0$ représenté en binaire Pour convertir X en code de Gray il faut suivre les règles suivantes :

$$G_n = Bn$$

$$G_i = 0$$
 si $B_i = B_{i+1}$

$$G_i = 0$$
 si $B_i = B_{i+1}$
 $G_i = 1$ si $B_i <> B_{i+1}$

$$31_{(10)} = 1 1 1 1 1_{(2)} = 1 0 0 0_{(gray)}$$

31 représente la dernière valeur sur 5 bits (en binaire et en BCD),

32 : représente la valeur réfléchée i.e. La même valeur sur 5 bit avec 1 en

sixième bit : **110000**

33 : représente la valeur suivante de 32 en changeant un seul bit à la fois et

en commençant par la droite : 110001

Donner les représentations en complément à deux des nombres décimaux suivants :

 $(122)_{10}$ sur un octet (8bits) $122_{(10)} = 0111 \ 1010_{(2)} = 0111 \ 1010_{(ca2)}$

 $(2025)_{10}$ sur 16 bits. Peut-on le coder sur 11 bits ? $2025_{(10)} = 00000111 \ 1110 \ 1001_{(2)} = 00000111 \ 1110 \ 1001_{(ca2)}$

 $2025 > 2^{11}-1$ donc la représentation sur 11 bit n'est pas possible,

Donner les représentations en complément à deux des nombres décimaux suivants.

```
(-78)_{10} sur deux octets

-78 = ca2(78) = ca2(0000\ 0000\ 0100\ 1110)

= ca1(0000\ 0000\ 0100\ 1110) + 1

= 10110010_{ca2}

(-700)_{10} = ca2(700) = ca2(0000\ 0010\ 1011\ 1100) = 1111\ 1101\ 0100\ 0100_{ca2}
```

```
Donner les représentations décimales des nombres binaires suivants codés en complément à 2 : 0011\ 0101_{(ca2)} (codé sur un octet) >>>> 0011\ 0101_{(ca2)} =
```

```
0111 0101 1000 1101_{(ca2)} (codé sur deux octets) >>> 0111 0101 1000 1101_{(ca2)} =
```

 $10100110_{(ca2)}$ (codé sur un octet). =

```
. Effectuer les additions suivantes des nombres relatifs (représentés en {\rm CA_2}) : (a) 0110 1011 + 1011 1101 (b) 1001 0110 + 1111 1011 (c) 0110 1111 + 0001 1001 (d) 1000 0010 + 1010 1011 vérifier le résultat des calculs en décimal. Indiquer le dépassement et la retenue. Que peut-on conclure ?
```

pas de déplacement

Il y a un déplacement

2. Réaliser les opérations suivantes sur 5 bits en utilisant le CA2 (étudier les cas de dépassement)

2. Réaliser les opérations suivantes sur 5 bits en utilisant le CA2 (étudier les cas de dépassement)

- 3. Donner la traduction à laquelle correspond le mot 8A50 codé en hexadécimal, selon qu'on le lit comme :
- 1- un entier signé :
- 2-un entier représenté en C2 :
- $8A50_{(16)} = 1000\ 1010\ 0101\ 0000$
- $1000\ 1010\ 0101\ 0000_{(sva)} = -2640_{(10)}$
- $1000\ 1010\ 0101\ 0000\ _{(ca2)} = -30128_{(10)}$
- $CA2(1000\ 1010\ 0101\ 0000) = CA1(1000\ 1010\ 0101\ 0000) + 1$
- = 0111 0101 1010 1111 + 1 = 0111 0101 1011 0000 = 30128

4. Effectuer les opérations suivantes sur 12 bits (y compris le bit du signe), avec la représentation des nombres négatifs en complément à 2. Préciser s'il y a débordement.

a)
$$(205)_8 - (8F5)_{16} = ?$$

b) $(84F)_{16} - (0F5)_{16} = ?$

Soit $X = G_n G_{n-1}....G_0$ représenté en code Gray Pour convertir X en binaire il faut suivre les règles suivantes :

Bn = Gn

$$B_i = 0 \operatorname{si} B_{i+1} = G_i$$

$$B_i = 1 \text{ si } B_{i+1} \iff G_i$$

Donner la valeur binaire de A et B :

$$A = (1110111)_{gray} = (1011010)_{(2)}$$

$$B = (1 \ 1 \ 0 \ 0 \ 1 \ 0)_{gray} = (1 \ 0 \ 0 \ 0 \ 1 \ 1)_{(2)}$$

Effectuer l'opération **C= - A - B** en **complément à 2** sur **8 bits** Préciser s'il y a dépassement de capacité ou non.

$$A = 01011010$$
 $-A = CA2(A) = CA1(A)+1 = 10100110$

$$B = 00100011$$
 $-B = CA2(B) = CA1(B)+1 = 11011101$