MANUFACTURE OF DEUTERIZED ORGANIC COMPOUND

Patent number:

JP63198638

Publication date:

1988-08-17

Inventor:

BEETERU UEEGENERU

Applicant:

HOECHST AG

Classification:

- international: E

B01J23/44; B01J23/74; C07B59/00; C07C5/00; C07C13/39; C07C15/46; C07C29/00; C07C31/38; C07C37/00; C07C39/04;

C07C57/04; C07C69/54; C07C121/48

- european:

Application number: JP19880006732 19880114 Priority number(s): DE19873701302 19870117

Abstract not available for JP63198638 Abstract of correspondent: **EP0276675**

The process for the preparation of deuterated acrylic acid or methacrylic acid by direct exchange of hydrogen by deuterium from D2O in the presence of a catalyst, which is hitherto known, is time-consuming and requires a large excess of D2O. Deuterated compounds are obtained in good yield with small amounts of D2O in a very short reactic time by using hydrogenation or (de)hydrating catalysts based on palladium, nickel and copper and high reaction temperature. The novel process can also be used for readily-polymerisable monomers without it being necessary for a polymerisation inhibitor to be present.

Data supplied from the esp@cenet database - Worldwide

Also published as:

EP0276675 (A: EP0276675 (A: DE3701302 (A

®日本国特許庁(JP)

⑩ 特許 出 閱 公 開

⑩公開特許公報(A)

昭63-198638

DInt Cl.4

識別記号

庁内整理番号

❷公開 昭和63年(1988)8月17日

C 07 B 59/00 B 01 J 23/44 23/74 7457-4H Z-7918-4G Z-7918-4G

審査請求 未請求 請求項の数 4 (全7頁)

の発明の名称

重水素化した有機化合物の製造方法

②特 顧 昭63-6732

@出 願 昭63(1988) 1月14日

優先権主張

❷1987年1月17日❷西ドイツ(DE)劉P3701302.5

の発明 者

ベーテル・ウエーゲネ

ドイツ連邦共和国、ケーニツヒシユタイン/タウヌス、ア

ル

ム・アイヒコプフ、4

砂出 顋 人

ヘキスト・アクチエン ゲゼルシヤフト ドイツ連邦共和国、フランクフルト・アム・マイン(番地

なし)

20代 理 人

弁理士 江崎 光好

外1名

最終頁に続く

明和 署

- 発明の名称 重水素化した有機化合物の製造方法
- 2. 特許請求の範囲
- 1)水素を触媒の存在下に被相または気相中で度水素に変えることによって重水素化した有機化合物を製造するに当たって、この変換を 150~350 での温度のもとで、水素化または(数) 水和化反応で触媒作用をする能力のある金銭を基礎とする金属触媒または金属担持触媒の存在下にDEO によって実施することを特徴とする、上記方法。
- 2) 変換を気相中で 200~300 ℃で実施する請求 項 1に配載の方法。
- 3) 変換をパラジウム、ニッケル、網または個/ クロム-酸化物を基礎とする担持触媒の存在下 に実施する請求項 1に配載の方法。
- 4) アクリル酸、メタクリル酸、そのエステル、 ビシクロヘプテン、ビシクロヘプタジエン、フェノール、スチレンおよびそれらの誘導体並び

に弗素化アルコール類を重水素化する簡求項 1 に配載の方法。

3. 発明の詳細な展明

本発明は、不飽和有機化合物において水素を 重水素に重水素酸化物によって接触的に変換する方法並びにこの方法によって製造される特定 の化合物に関する。

白金族の元素の接触的作用のもとでメタクリレートまたはメチルメタクリレートにおいて水素を重水素酸化物からの重水素に直接的に変換することができることは公知である(ローロッパ特許第186、106 号明細書参照)。この変換は好ましくは50~150 での温度のもとで被相中で16~62時間の間に重合抑制剤の添加下に行い、そしてメチルメタクリレートの場合に24倍モル量過剰の重水素酸化物の場合に58%の重水素化度が得られる。

本発明の課題は迅速でありそしてそれ故に経 済的である重水業化方法を見出すことである。 かゝる方法はできるだけ安価な触媒を用いて実 施することができるべきである。

本発明者はこの課題が、重水素化を被相または気相中で 150でより高い温度のもとで、金属・- 、合金- または担持触媒の存在下に実施した場合に解決できることを見出した。

従って本発明は、水素を触媒の存在下に液相または気相中で重水素に変えることによって重水素化した有機化合物を製造するに当たって、この変換を 150~350 での温度のもとで、水素化または(脱)水和化反応で触媒作用をする能力のある金属を基礎とする金属触媒または金属担持触媒の存在下にD=0 によって実施することを特徴とする、上記方法に関する。

更に本発明はこの方法によって製造される重 水素化化合物に関する。

本発明の方法は、並水素化するべき化合物を 重水素酸化物と一緒に触媒と接触させるように して実施する。これは被相または気相、殊に気 相中で行う。反応成分は反応容器中に集めるか または加熱された皆に案内する。その腹触媒を

硬であり且つ容易に入手できるDaO を用いる。

本発明の方法は簡単に且つ迅速に実施することができる。容易に重合できる化合物、例えばスチレン、アクリルーおよびメタクリル酸およびそれらのエステル、または高い反応温度のもとで重合しないしまた――エステルの場合には一一加水分解しないビニルアセテートの為に用いることができる。従って重合抑制剤の存在は必要ない。重水素化された化合物が高収率で得られる。

反応条件のもとでの触機によるいずれの反応の場合にも重水業化するべき化合物および水中の全ての水素原子および強水素原子の合計について、これらの原子がほど均一に分散するので、一方においては重水素化された化合物が、もう一方においては重水素の減少した水が得られる。 重水素の減少した水と新鮮な未重水素化有機化合物との多敗回の繰り返し反応によって強水の含物との多敗回の繰り返し反応によって強水の含有重水素が消費され係る。

逆に、弱い重水素化度の有機化合物を更に高

反応パッチ中に分散させてもよいしまたは固体 状態の相として反応容器または反応管中に配置 してもよい。反応温度は 150~350 で、殊に20 0 ~300 でである。

本発明で用いる触媒は金属触媒、合金触媒または、金属が担体に担持されている担持触媒である。通する金属は、(脱)水和化反応または水素化反応で接触的作用をすることのできる金属、例えばパラジウム、ニッケル、銅または亜クロム酸制でありそして担体はSiO₂、カーボンブラック、哲性炭および珪酸塩である。合金としては例えば真鍮が通している。

担持触媒は例えば金属塩の溶液に担体を浸漬させ、固体に乾燥しそして担体に担持された金属塩を金属に選元することによって製造できる。 水素化の目的のこの種の担持触媒は市販されており、購入することができる。

反応温度での滞留時間は 5~120 秒、殊に10 ~20秒である。

重水業化剤としては、価格的に有利な重水素

い* 合有量のB:0 にて更に重水常化することもできる。

このようにして、90% 以上の重水素をD=0 から有機化合物に移動させることが可能である。

(メタ) アクリル酸、そのエステル並びにピシクロ-2,2,1- ヘプテン-2、ピシクロ-2,2,1- ヘプテン-2、ピシクロ-2,2,1- ヘプタジエン-2.5、フェノール、スチレンおよびそれらの誘導体および患素化アルコール、例えばヘキサフルオルイソプロパノールを用いるのが有利である。

重水業化したアクリル酸およびメタクリル酸 並びにそれらと完全にまたは部分的に重水業化 されたアルコール類とのエステルは、透明な材料、特に光ファイバーに加工できる非晶質ポリ マーの為のモノマーとして非常に重要である。

本発明を以下の実施例によって更に詳細に説 明する。

実施例 1~15

全ての実験を以下のように実施した: 電気的に加熱できる長さ30cmで直径1cm のガ ラス製管に触媒を25cmの長さに渡って充塡し、 D₀0 に溶解したまたは懸濁させた物質をこの管 に案内し、その後に冷却トラップに集める。

同じ体積の重水素化用化合物およびD=0 を例えばメチル-メタクリレート(=HHA)の場合には、5.85倍モル量過剰のD=0 を、ノルボルナジエン(=HBD)の場合には5.67倍モル量過剰にそしてメタクリル酸(=HA) の場合には4.7 倍モル量過剰に用いる。溶留時間は全ての実験において20秒である。

MAおよびフェノールはジメチルエーテルで抽出することによって反応溶液から分離する。 量水素化度は全ての場合に、相応する未重水素化化合物と比較することによる質量分析によって測定し、C-13合有量について補正する。

表から、特にPd/CおよびNi/SiO。が良好な変 換速度を示すことが判る。

重水素化度はそれぞれの化合物における重水素に変換される水素原子の百分率である。理論 的重水素化度はD₂O のモル比に相応する最大限 に可能な重水素含有量を示している。

実施例	原料	独 媒	選り度(で)	枚率	DzO / 原料 - モル比	重水 測定値	常化度 理論値
1	MBA	55XHI/SiG.	200	70	5.8	40	59
2		12X81/S10.	250	7 5		41	
3		30%Cu/ 担体	250	75		13	
4	メチルメタ クリレート	12XNi/SiO.	250	82	4.7	27	61
5	. #	5%Pd/C	350	50		58	
6	•	52Pd/アスペ**	250	88	•	30	
7	スチレン	122Ni/Si0.	250	85	6.3	12	61
8		30%Cm/ 担体	250	100		9	
9	フェノール	1%Pd/モレ ²⁾	300	100	4.8	39	60
10	ノルボルナ ジェン ^い	12%N1/Si0:	250	90 -	5.6	35	58
11		321Ce:301Cr	250	90		18	
12	シアンノルボ ルナジエン	5%Pd/C	350	50	6.9	36	60
13	(CF ₂) ₂ CH-OH	•	250	90	5.8	5	85
14	アクリル酸	•	250	80	3.7	37	65
15		•	350	70		63	

¹⁾ ビシクロ-2,2,1- ヘアタジエン-2,5 、 2) アスペスト、 3) モレキュラシープ 。

第1頁の続き

@Int_Cl_4	識別記号	广内整理番号		
// C 07 C 5/00 13/39 15/46 29/00 31/38 37/00 39/04 57/04 69/54		6692-4H 6692-4H 6692-4H 7457-4H 7457-4H 7457-4H 7457-4H 6692-4H Z-6917-4H		
121/48	•	D-7327-4H		

手統補正書

- 5. 補正の対象
 - (1) 明細書の全文

昭和63年 3月11日

6. 補正の内容

- 特許庁長官 小川邦 夫 散
- 1. 事件の表示

昭和63年特許顯第6732号

(1) 明福書全文を別紙の通り補正致します (発明の名称は変更なし)

- 発明の名称
 「重水素化した有機化合物の製造方法」
- 3. 補正をする者

……事件との関係 出願人……

名称 ヘキスト・アクチェンゲゼルシャフト

4. 代理人

住所 ●105東京都港区虎ノ門二丁目8番1号

(虎の門電気ビル)

[電話03(502)1476(代表)]

氏名 弁理士(4013) 在 梅 先 好於河

明編書

免明の名称 重水素化した有機化合物の製造方法

2. 特許請求の疑囲

- 1)水素を触媒の存在下に被相または気相中で重水素に変えることによって重水素化した有機化合物を製造するに当たって、この変換を 150~350 ℃の温度のもとで、水素化または(IN) 水和化反応で触媒作用をする能力のある金属を基礎とする金属触媒または金属担持触媒の存在下にD₂0 によって実施することを特徴とする、上記方法。
- 2) 変換を気相中で 200~300 ℃で実施する請求 項 1に記載の方法。
- 3) 変換をパラジウム、ニッケル、網または銅/ クロム-酸化物を基礎とする担持触媒の存在下 に実施する請求項 1に記載の方法。
- 4) アクリル酸、メタクリル酸、それらのエステル、ビシクロヘプテン、ビシクロヘプタジエン、フェノール、スチレンおよびそれらの誘導体並

済的である重水素化方法を見出すことである。 かゝる方法はできるだけ安価な触媒を用いて実 施することができるべきである。

本発明者はこの課題が、重水素化を被相また は気相中で 150℃より高い温度のもとで、金属 - 、合金- または扭持触媒の存在下に実施した 場合に解決できることを見出した。

従って本発明は、水素を触媒の存在下に液相 または気相中で重水素に変えることによって重 水素化した有機化合物を製造するに当たって、 この変換を 150~350 での温度のもとで、水素 化または(膜) 水和化反応で触媒作用をする能 力のある金属を基礎とする金属触媒または金属 担持触媒の存在下に0±0 によって実施すること を特徴とする、上記方法に関する。

更に本発明はこの方法によって製造される 水素化化合物に関する。

本発明の方法は、重水素化するべき化合物を 重水素酸化物と一緒に触媒と接触させるように して実施する。これは液相または気相、殊に気 びに弗索化アルコール類を放水素化する請求項 1に記載の方法。

- 5) ビシクロヘブテン-D。
- 6) ビシクロヘアタジエン-0。

3. 発明の詳細な説明

本発明は、不飽和有機化合物において水素を 塩水素に重水素酸化物によって接触的に変換する方法並びにこの方法によって製造される特定 の化合物に関する。

白金族の元素の接触的作用のもとでメタクリレートまたはメチルメタクリレートにおいて水素を重水素酸化物からの重水素に直接的に変換することができることは公知である(コーロッパ特許第186,106 号明細書参照)。この変換は好ましくは50~150 ℃の温度のもとで流相中で16~62時間の間に重合抑制剤の添加下に行い、そしてメチルメタクリレートの場合に24倍モル最過剰の重水素酸化物の場合に58%の重水素化度が得られる。

本発明の課題は迅速でありそしてそれ故に経

相中で行う。反応成分は反応容器中に集めるかまたは加熱された皆に案内する。その際触媒を反応パッチ中に分散させてもよいしまたは固体状態の相として反応容器または反応管中に配置してもよい。反応温度は 150~350 で、殊に20 g ~300 でである。

本発明で用いる触媒は金属触媒、合金触媒でたは、金属が組体に担持されている担持触媒である。適する金属は、(脱)水和化反応または水業化反応で接触的作用をすることのできる金属、例えばパラジウム、ニッケル、鋼または延クロム酸鋼でありそして担体はSiOa、カーボンブラック、活性炭および珪酸塩である。合金としては例えば真鍮が適している。

担持触媒は例えば金属塩の溶液に担体を浸液させ、固体に乾燥しそして担体に担持された金 薬塩を金属に選元することによって製造できる。 水素化の目的のこの種の担持触媒は市販されて おり、購入することができる。

反応温度での滞留時間は 5~120 秒、殊に10

特開昭63-198638 (6)

~20秒である。

重水素化剤としては、価格的に有利な重水素 源であり且つ容易に入手できるD₂O を用いる。

本発明の方法は簡単に且つ迅速に実施することができる。容易に重合できる化合物、例えばスチレン、アクリル・およびメタクリル酸およびそれらのエステル、または高い反応温度のもとで重合しないしまた――エステルの場合には一一加水分解しないピニルアセテートの為に用いることができる。従って重合抑制剤の存在は必要ない。重水素化された化合物が高数率で得られる。

反応条件のもとでの触媒によるいずれの反応の場合にも重水業化するべき化合物および水中の全ての水業原子および重水業原子の合計について、これらの原子がほど均一に分散するので、一方においては重水業化された化合物が、もう一方においては重水業の減少した水が得られる。 重水業の減少した水と新鮮な未重水業化有機化合物との多数回の繰り返し反応によって重水の

全ての実験を以下のように実施した:

電気的に加熱できる長さ30cmで度径1cm のガラス製管に触媒を25cmの長さに渡って充塡し、 D=0 に将解したまたは懸濁させた物質をこの管に案内し、その後に冷却トラップに集める。

同じ体積の重水素化用化合物およびB=0 を例えばメチル-メタクリレート(=HHA)の場合には、5.85倍モル量過剰のD=0 を、ノルボルナジエン(=HBD)の場合には5.67倍モル量過剰にそしてメタクリル酸(=HA) の場合には4.7 倍モル量過剰に用いる。溶留時間は全ての実験において20秒である。

MAおよびフェノールはジメチルエーテルで抽出することによって反応溶液から分離する。 重水素化度は全ての場合に、相応する未重水素化化合物と比較することによる質量分析によって 選定し、C-13合有量について補正する。

表から、特にPd/CおよびNI/SIO。が良好な変 換速度を示すことが判る。

重水素化度はそれぞれの化合物における重水

合有無水業が消費され得る。

逆に、弱い重水素化度の有機化合物を更に高い** 含有量のD=O にて更に重水素化することもできる。

このようにして、90%以上の重水素をD_{*}O から有機化合物に移動させることが可能である。

(メタ) アクリル酸、モのエステル並びにピシクロ-2,2,1- ヘプテン-2、ピシクロ-2,2,1- ヘプテン-2、ピシクロ-2,2,1- ヘプタジエン-2,5、フェノール、スチレンおよびそれらの誘導体および勇素化アルコール、例えばヘキサフルオルイソプロパノールを用いるのが有利である。

重水素化したアクリル酸およびメタクリル酸 並びにそれらと完全にまたは部分的に重水素化 されたアルコール類とのエステルは、透明な材料、特に光ファイバーに加工できる非品質ポリ マーの品のモノマーとして非常に重要である。

本発明を以下の実施例によって更に詳細に説明する。

実施例 1~15

素に変換される水素原子の百分率である。理論 的重水素化度はD₂D のモル比に相応する最大限 に可能な重水素合有量を示している。

実施例 番号	原料	触 练	温 度 (T)	收率 (1)	B:0 / 原料 - モル比	堂水 測定値	業化度 理論値
1	MMA	552N1/S10.	200	70	5.8	40	59
2	•	123N1/S10:	250	75		41	
3	•	30%Ca/ 担体	250	75		13	
4	メチルメタ クリレート	12%N1/SIO:	250	82	4.7	27	61
5	•	5%Pd/C	350	50		58	
6	•	5%Pd/アスペ*)	250	88		30	
7	スチレン	12XNi/S10.	250	85	6.3	12	61
8	•	30XCu/ 担体	250	100		9	
9	フェノール	1%Pd/モレ*)	300	100	4.8	39	60
18	ノルポルナ ジエンロ	123Ni/SiO.	250	90	5.6	35	58
11	•	32XC+:30XCr	250	90		18	
12	シアンノルボ ルナジエン	52Pd/C	350	50	6.9	36	60
13	(CF=) ±CH-OH	-	250	90	5.8	5	85
14	アクリル酸	•	250 -	80	3.7	37	65
15	•	•	350	70	•	63	

ピシクロ-2,2,1- ヘアタジエン-2,5 、 2) アスペスト、 3) モレキュラシープ 。