

EP00/03442

PCT/EP 0 0 / 0 9 4 4 2

REC'D 0 3 2000
WIPO PCT

The Patent Office Concept House Cardiff Road Newport South Wales

10/089013

NP10 8QQ

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 14 September 2000

THIS PAGE BLANK (USPTO)

THIS PACE TELEVIL (USPTO)

Patents Form 1/77

Patents Act 1977 (Rule 16)

The Patent Office

- 7JUN 2000

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form) The Patent Office Cardiff Road Newport Gwent NP9 1RH

1. Your reference

ADS/HG/P32589

2. Patent application number (The Patent Office will fill in his part)

0013873.5

27 JUN 2000

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

SmithKline Beecham p.l.c. New Horizons Court, Brentford, Middx TW8 9EP, Great Britain

5776299002

United Kingdom

4. Title of the invention

Novel Compounds

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Patents ADP number (if you know it)

CORPORATE INTELLECTUAL PROPERTY

SMITHKLINE BEECHAM PLC TWO NEW HORIZONS COURT BRENTFORD MIDDLESEX TW8 9EP

580-97400-

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or each of these earlier applications and (if you know it) the or each application number

Country

Priority application number Date of filing (if you know it) (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer yes if:

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is named as an applicant, or

c) any named applicant is a corporate body See note (d)

Patents Form 1/77

). Enter the number of sheets for any of the following items you are fili th this form. Do not count copies of the same document

Continuation sheets of this form

Description

26 4 1

Abstract

Claim(s) **Drawings**

10. If you are also filing any of the following, state how many against each item.

Priority Documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 1/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

> Any other documents (please specify)

11.

We request the grant of a patent on the basis of this

application

Signature

Date 6-Jun-00

12. Name and daytime telephone number of person to contact in the United Kingdom

D M Waters 01279 644283

After an application for a Patent has beeen filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed tf it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission unless an application has been filed at least six weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

N tes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- f) For details of the fee and ways to pay please contact the Patent Office.

Patents Form 1/77

NOVEL COMPOUNDS

The present invention relates to novel piperazine derivatives, processes for their preparation, and pharmaceutical compositions containing them.

5

WO 95/06637 discloses a series of piperazine derivatives which are said to possess 5-HT_{1D} receptor antagonist activity. These compounds are alleged to be of use in the treatment of various CNS disorders such as depression. The human 5-HT_{1D} receptor is now known to be encoded by two distinct genes initially designated 5-HT_{1D α} and 5-HT_{1D β} and subsequently redesignated as 5-HT_{1D} and 5-HT_{1B} respectively (P.R Hartig et al Trends in Pharmacological Science, 1996, 17, 103 - 105). WO 98/50538 and WO 98/47885 disclose a series of piperazine derivatives that are said to exhibit combined 5-HT_{1A}, 5-HT_{1B} and 5-HT_{1D} receptor antagonist activity.

15

10

A structurally distinct class of compounds has now been found to exhibit 5-HT_{1B} receptor activity. It is expected that such compounds will be useful for the treatment and prophylaxis of various CNS disorders. In a first aspect, the present invention therefore provides a compound of formula (I) or a salt thereof:

$$R^{a}$$
 Y C N R^{b} R^{b}

20

in which R^a is a group of formula (i)

$$(R^2)$$
 a
 (i)

25

wherein P¹ is phenyl, naphthyl or heteroaryl;

 R^1 is hydrogen, halogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl, $COC_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, hydroxy, hydroxy $C_{1\text{-}6}$ alkyl, nitro, CF3, cyano, SR9, SOR9, SO2R9, SO2NR 10 R11, CO2R 10 , CONR 10 R11, OCONR 10 R11, NR 10 R11, NR 10 CO2R 11 , NR 10 CO2R 11 , NR 10 CONR 10 R11, CR 10 =NOR 11 where R9, R10 and R11 are independently hydrogen or $C_{1\text{-}6}$ alkyl;

R² is halogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkenyl, C₁₋₆alkoxy, COC₁₋₆alkyl, hydroxy, nitro, CF₃, cyano, CO₂R¹⁰, CONR¹⁰R¹¹, NR¹⁰R¹¹ where R¹⁰ and R¹¹ are as defined above;

a is 0, 1, 2 or 3;

10 or R^a is a group of formula (ii)

wherein

P² is phenyl, naphthyl, heteroaryl or a 5- to 7- membered heterocyclic ring; P³ is phenyl, naphthyl or heteroaryl;

A is a bond or oxygen, carbonyl, CH_2 or NR^4 where R^4 is hydrogen or $C_{1\text{-}6}$ alkyl; R^1 is as defined above for formula (i) or R^1 is heteroaryl optionally substituted by $C_{1\text{-}6}$ alkyl, halogen or $COC_{1\text{-}6}$ alkyl;

20 R² and R³ are independently halogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₁₋₆alkoxy, COC₁₋₆alkyl, hydroxy, nitro, CF₃, cyano, CO₂R¹⁰, CONR¹⁰R¹¹, NR¹⁰R¹¹ where R¹⁰ and R¹¹ are as defined above;

and a and b are independently 0, 1, 2 or 3;

Y is a bond, CH₂, O or NR⁵ where R⁵ is hydrogen or C₁₋₆alkyl;
W is (CR¹⁶R¹⁷)_t where t is 2, 3 or 4 and R¹⁶ and R¹⁷ are independently hydrogen or C₁₋₆alkyl or W is a group CH=CH;
R^b is hydrogen, halogen, hydroxy, C₁₋₆alkyl, CF₃ or C₁₋₆alkoxy;
R^c is hydrogen or C₁₋₆alkyl.

30 R^d and R^e are both independently C_{1-4} alkyl.

10

15

25

30

35

Alkyl groups, whether alone or as part of another group, may be straight chain or branched. The term 'halogen' is used herein to describe, unless otherwise stated, a group selected from fluorine, chlorine, bromine or iodine.

Where used herein the term naphthyl is intended, unless otherwise stated, to denote both naphth-1-yl and naphth-2-yl groups.

The term "heteroaryl" is intended to mean an aromatic or a benzofused aromatic ring containing 1 to 3 heteroatoms selected from oxygen, nitrogen and sulphur. Suitable examples of such aromatic rings include thienyl, furyl, pyrrolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, oxadiazolyl, isothiazolyl, isoxazolyl, thiadiazolyl, pyrimidyl, pyridazinyl, pyrazinyl and pyridyl. Suitable examples of such benzofused aromatic rings include quinolinyl, isoquinolinyl, indolyl, benzofuryl and benzothienyl.

The term "5 - 7 membered heterocyclic ring" is used herein to mean a non aromatic ring containing 1 to 3 heteroatoms selected from oxygen, nitrogen and sulphur. Suitable examples of such non aromatic rings include piperidinyl, piperazinyl, pyrrolidinyl, 2-oxo pyrrolidinyl and morpholinyl.

The heteroaryl and 5 - 7 membered heterocyclic rings, as described above, can be linked to the remainder of the molecule via a carbon atom or, when present, a suitable nitrogen atom.

20 Within the definition of R^a formula (i)

When P¹ is heteroaryl a preferred example is quinolinyl. Preferably P¹ is phenyl or naphthyl.

 R^1 is preferably hydrogen, nitro, halogen (particularly chloro) or a C_{1-6} alkyl group (particularly methyl).

When a is not 0, R^2 is preferably halogen (particularly chloro) or a C_{1-6} alkyl group (particularly methyl). When a is 2 or 3 the groups R^2 may be the same or different. a is preferably 0, 1 or 2, most preferably 0 or 1.

Within the definition of R^a formula (ii)

A is preferably a bond or oxygen, most preferably a bond.

When P³ is heteroaryl a preferred example is quinolinyl (particularly 4-quinolinyl). P³ is preferably phenyl or naphthyl. A preferred substitution arrangement for naphthyl groups is 1,4 or 1,5, that is to say, a naphth-1-yl group in which the group A is attached at the 4 or 5 position respectively.

 P^2 is preferably a heteroaryl group such as pyridyl, oxadiazolyl or oxazolyl or a 5-7 membered heterocycle such as piperidinyl.

15

When R^1 is heteroaryl a preferred group is oxadiazolyl. A preferred optional substituent for such a group is C_{1-6} alkyl (particularly methyl).

When a and/or b is not 0, R^2 and/or R^3 are each preferably halogen (particularly chloro), or a $C_{1\text{-}6}$ alkyl group (particularly methyl). When a and/or b is 2 or 3 the groups R^2 and/or R^3 may be the same or different.

a and b are each preferably 0, 1 or 2, most preferably 0 or 1.

The most preferred compounds of formula (ii) are those in which P^2 is pyridyl, (particularly 2-pyridyl) and P^3 is naphthyl.

10 Y is preferably a bond, CH₂ or a NH group.

It will be appreciated that when W is a group CH=CH an indole ring is formed. Within the definition of the group W, the groups R^{16} and R^{17} are each preferably hydrogen and t is preferably 2 or 3, most preferably 2.

Rb is preferably a C1-6alkoxy group, most preferably methoxy.

R^c is preferably a C₁₋₆alkyl group, most preferably methyl.

The groups R^d and R^e can be the same or different. A preferred $C_{1\text{--}4}$ alkyl group is methyl.

Particularly preferred compounds according to the invention include:-

- 20 *cis*-5-methoxy-1-[4-(6-methylpyridin-2-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
 - *cis*-5-methoxy-1-[5-(6-methylpyridin-2-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
 - cis-5-methoxy-1-[5-(5-methyloxazol-2-yl)naphth-1-ylcarbonyl]-6-(3,4,5-
- 25 trimethylpiperazin-1-yl)indoline,
 - cis-1-(2,3-dichlorobenzoyl)-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline, cis-5-methoxy-1-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-carbonyl]-6-
 - (3,4,5-trimethylpiperazin-1-yl)indoline, cis-5-methoxy-1-[4-(6-methylpyridin-2-yl)naphth-1-ylaminocarbonyl]-6-(3,4,5-
- 30 trimethylpiperazin-1-yl)indoline,
 - *cis*-5-methoxy-1-[5-(6-methylpyridin-2-yl)naphth-1-ylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
 - cis-5-methoxy-1-[5-(5-methyloxazol-2-yl)naphth-1-ylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
- 35 *cis*-1-(2,3-dichlorophenylaminocarbonyl)-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
 - cis-5-methoxy-1-[(3-nitrophenyl)acetyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

15

20

25

cis-5-methoxy-1-[4-(1-methylpiperidin-4-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

cis-6-(3,5-dimethylpiperazin-1-yl)-5-methoxy-1-[4-(6-methylpyridin-2-yl)naphth-1-ylcarbonyl]indoline

5 or a pharmaceutically acceptable salts thereof.

Other preferred examples of this invention include E10 and E14 - E40 as described below.

Preferred salts of the compounds of formula (I) are pharmaceutically acceptable salts. These include acid addition salts such as hydrochlorides, hydrobromides, phosphates, acetates, fumarates, maleates, tartrates, citrates, oxalates, methanesulphonates and p-toluenesulphonates.

Certain compounds of formula (I) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses all geometric and optical isomers of the compounds of formula (I) and the mixtures thereof including racemates.

Compounds of the invention can be prepared using procedures known in the art. In a further aspect the present invention also provides a process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof which comprises:

(a) Y is NH, coupling a compound of formula (II):

$$R^{a}-N-(C=O)$$
(II)

in which R^a are as defined in formula (I) or a protected derivative thereof with a compound of formula (III):

in which W, R^b and R^c, R^d and R^e are as defined in formula (I), or a protected derivative thereof; or

(b) where Y is NR⁵, reacting a compound of formula (IV)

Ra-NR5H

5

30

35

(IV)

in which R^a and R⁵ are as defined in formula (I) with a compound of formula (III) together with an appropriate urea forming agent;

10 (c) where Y is a bond, CH₂ or O, reacting a compound of formula (V)

$$R^a - Y - (C=O) - L^2$$
(V)

- in which R^a is as defined in formula (I) and L² is an appropriate leaving group, with a compound of formula (III); and optionally thereafter
 - removing any protecting groups,
 - converting a compound of formula (I) into another compound of formula (I),
- forming a pharmaceutically acceptable salt.

The reaction in process (a) is conveniently effected in an organic solvent such as dichloromethane.

In process (b) the urea forming agent can be carbonyl diimidazole, triphosgene or phosgene, and carried out in an inert organic solvent such as dimethylformamide, tetrahydrofuran or dichloromethane at ambient or elevated temperature in the presence of a base such as triethylamine or pyridine.

In process (c) the leaving group L^2 may be a halogen e.g. chloro group and the reaction may be carried out in an inert organic solvent such as tetrahydrofuran or dichloromethane at ambient or elevated temperature in the presence of a base such as triethylamine or pyridine.

Compounds of formula (I) can be converted into further compounds of formula (I) using standard techniques. For example, in the case wherein R^c is hydrogen, it is possible to introduce a C_{1-6} alkyl group by conventional alkylation using 1 molar equivalent of a C_{1-6} alkyl halide and 1 molar equivalent of a suitable base in an inert solvent.

10

15

20

25

30

35

Intermediate compounds of formula (II), (III), (IV) and (V) can be prepared using standard procedures described herein or by methods known to those skilled in the art.

It will be appreciated to those skilled in the art that it may be necessary to protect certain reactive substituents during some of the above procedures. Standard protection and deprotection techniques can be used. For example, primary amines can be protected as phthalimide, benzyl, benzyloxycarbonyl or trityl derivatives. These groups can be removed by conventional procedures well known in the art.

Carboxylic acid groups can be protected as esters. Aldehyde or ketone groups can be protected as acetals, ketals, thioacetals or thioketals. Deprotection is achieved using standard conditions.

The involvement of serotonin (5-hydroxytryptamine; 5HT) receptors in a number of pharmacological effects has been reviewed by R. A. Glennon in "Serotonin Receptors: Clinical Implications", Neuroscience and Behavioural Reviews, 1990, 14, 35 and by L.O.Wilkinson and C.T. Dourish in "Serotonin Receptor Subtypes: Basic and Clinical Aspects" S. Peroutka Ed., John Wiley and Sons, New York, 1991 p.147.

Serotonin receptors have been implicated in pharmacological effects such as mood disorders including depression, seasonal affective disorder and dysthymia, anxiety disorders, including generalised anxiety, panic disorder, agoraphobia, social phobia, obsessive compulsive disorder and post-traumatic stress disorder; memory disorders, including dementia, amnesic disorders and age-associated memory impairment; disorders of eating behaviours, including anorexia nervosa and bulimia nervosa, sleep disorders (including disturbances of Circadian rhythm), motor disorders such as Parkinson's disease, dementia in Parkinson's disease, neuroleptic-induced Parkinsonism and tardive dyskinesias, as well as other psychiatric disorders. Serotonin receptor ligands have been shown to be of use in the treatment of emesis and nausea and may also be of use in endocrine disorders such as hyperlactinaemia, vasospasm (particularly in the cerebral vasculature), cerebellar ataxia and hypertension, as well as disorders of the gastrointestinal tract where changes in motility and secretion are involved. They may also be of use in the treatment of sexual dysfunction and hypothermia.

Ligands with high affinity for the 5-HT₁ receptors are well recognised as having therapeutic utility for the treatment of the above conditions. It has been suggested that a selective 5-HT_{1B} receptor antagonist should act as a fast onset antidepressant (P Blier Trends Pharmacol. Sci. 1994, 15, 220).

The present invention also provides a compound of general formula (I) or a pharmacologically acceptable salt or solvate thereof for use in the treatment of the aforementioned disorders.

10

15

20

25

30

35

In a further aspect the invention provides a method of treating the aforementioned disorders which comprises administering an effective amount to a patient in need of such treatment of a compound of general formula (I) or a pharmaceutically acceptable salt or solvate thereof.

In particular the invention provides a compound of general formula (I) or a physiologically acceptable salt or solvate thereof for use in the treatment or prophylaxis of depression.

In another aspect, the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment or prophylaxis of the above disorders.

The affinities of the compounds of this invention for the 5-HT_{1B} receptor can be determined by the following radioligand binding assay. CHO cells expressing 5-HT_{1B} receptors (4 x 10⁷ cells/ml) are homogenised in Tris buffer Mg²⁺ and stored in 1.0 ml aliquots. 0.4 ml of a cell suspension is incubated with [³H]-5-HT (4nM) in Tris Mg HCl buffer (pH 7.7) and test drug, at 37°C for 45 minutes. Each test drug is tested at 10 concentrations (0.01 mM to 0.3 nM final concentration), with non-specific binding defined using 0.01 mM 5-HT. The total assay volume is 0.5 ml. Incubation is stopped by rapid filtration using a Tomtec Harvester (filters pre-washed in 0.3% polyethylenimine) and radioactivity measured by Topcount scintillation counting. pKi values are calculated from the IC₅₀ generated by an iterative least squares curve fitting programme.

The intrinsic activity of the compounds of this invention can be determined according to the following procedure. CHO cell membranes stably expressing human 5-HT_{1B} receptors are homogenised in HEPES/EDTA buffer and stored in 1ml aliquots, and [35S]GTPγS binding studies are carried out essentially as described by Lazareno *et al.*, (Life Sci., 1993, **52**, 449) with some minor modifications. Membranes from 10⁶ cells are pre-incubated at 30°C for 30 min in 20 mM HEPES buffer (pH 7.4) in the presence of MgCl₂ (3 mM), NaCl (100 mM), GDP (10 μM) and ascorbate (0.2 mM), with or without compounds. The reaction is started by the addition of 50 μl of [35S]GTPγS (100pm, assay concentration) followed by a further 30 minutes incubation at 30°C. Non-specific binding was determined using non-radiolabelled GTPγS (20 μM) added prior to the membranes. The reaction is terminated by rapid filtration through Whatman GF/B grade filters followed by 5 x 1 ml washes with ice cold HEPES (20 mM) /MgCl₂ (3 mM) buffer. Radioactivity is measured using liquid scintillation spectrometry. This procedure is hereafter referred to as the [35S]GTPγS functional assay.

10

15

20

25

30

35

The compounds of formula (I) show high affinity for the 5-HT_{1B} receptor. It has been found, using the [35S]GTPγS functional assay, that certain compounds of formula (I) show varying levels of intrinsic efficacy, which is defined by a scale ranging from 1.0 to 0 (1 defines the maximum response elicited by the agonist 5-HT, 0 defines antagonism). The difficulties in describing intrinsic activity of drugs acting at G protein coupled receptors is recognised in the art (Hoyer and Boddeke, Trends in Pharmacological Sciences, July 1993, [Vol. 14], page 270-275). We believe that however these ligands are classified according to this functional assay, the compounds of this invention will be useful antidepressants *in vivo*. It is believed that the preferred compounds of this invention will display 5-HT_{1B} antagonist activity *in vivo* and that such compounds will have a rapid onset of action. A rapid onset of action is particularly advantageous for antidepressant compounds: by 'rapid onset of action' we mean that a therapeutic response is seen within 7 days from first administration of the compound, as opposed to a period of about 21 days or more which is typical of SSRI's, tricyclic antidepressants and buspirone.

Compounds of formula (I) which have an intrinsic activity of 0.5 or less in the $[^{35}S]GTP\gamma S$ functional assay are particularly preferred, as these compounds are more likely to be full antagonists in vivo.

It will be appreciated by those skilled in the art that the compounds according to the invention may advantageously be used in conjunction with one or more other therapeutic agents, for instance, different antidepressant agents.

The present invention also provides a pharmaceutical composition, which comprises a compound of formula (I) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

A pharmaceutical composition of the invention, which may be prepared by admixture, suitably at ambient temperature and atmospheric pressure, is usually adapted for oral, parenteral or rectal administration and, as such, may be in the form of tablets, capsules, oral liquid preparations, powders, granules, lozenges, reconstitutable powders, injectable or infusible solutions or suspensions or suppositories. Orally administrable compositions are generally preferred.

Tablets and capsules for oral administration may be in unit dose form, and may contain conventional excipients, such as binding agents, fillers, tabletting lubricants, disintegrants and acceptable wetting agents. The tablets may be coated according to methods well known in normal pharmaceutical practice.

Oral liquid preparations may be in the form of, for example, aqueous or oily suspension, solutions, emulsions, syrups or elixirs, or may be in the form of a dry product

10

15

20

25

for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), preservatives, and, if desired, conventional flavourings or colorants.

For parenteral administration, fluid unit dosage forms are prepared utilising a compound of the invention or pharmaceutically acceptable salt thereof and a sterile vehicle. The compound, depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions, the compound can be dissolved for injection and filter sterilised before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, preservatives and buffering agents are dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. Parenteral suspensions are prepared in substantially the same manner, except that the compound is suspended in the vehicle instead of being dissolved, and sterilisation cannot be accomplished by filtration. The compound can be sterilised by exposure to ethylene oxide before suspension in a sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.

The composition may contain from 0.1% to 99% by weight, preferably from 10 to 60% by weight, of the active material, depending on the method of administration.

The dose of the compound used in the treatment of the aforementioned disorders will vary in the usual way with the seriousness of the disorders, the weight of the sufferer, and other similar factors. However, as a general guide suitable unit doses may be 0.05 to 1000 mg, more suitably 1.0 to 200 mg, and such unit doses may be administered more than once a day, for example two or three a day. Such therapy may extend for a number of weeks or months.

The following Examples illustrate the preparation of compounds of the invention.

Description 1

1-Acetyl-6-bromo-5-methoxyindoline (D1)

A stirred solution of 1-acetyl-6-bromoindolin-5-ol (Tetrahedron 1973, 29(8), 1115; 40g, 0.15mole) in DMF (500ml) was treated with K₂CO₃ (61g, 0.45mole) and iodomethane (11.7ml, 0.19mole) and maintained at room temperature for 20h, then concentrated under vacuum to 200ml. The residue was treated with water (200ml) and the precipitate filtered off, dried and recrystallised from EtOAc to afford the title compound as a white solid (35.7g, 85%).

Description 2

cis-1-Acetyl-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D2)

A mixture of palladium (II) acetate (500mg), 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (2.0g) and cesium carbonate (10.3g) in dry degassed 1,4-dioxane (120ml) under argon was sonicated at 28°C for 0.5h producing a pink heterogeneous mixture. This was treated with D1 (6.0g, 22mmole) followed by cis-1,2,6-trimethylpiperazine (J. Med. Chem. 1968, 11, 592; 4.8g, 38mmole) and heated with rapid stirring at reflux for 70h. The mixture was allowed to cool, then concentrated under vacuum. The residue was treated with water and extracted with EtOAc. The organic solution was then extracted with 1M HCl acid and the aqueous extract was basified by addition of K₂CO₃ and extracted with EtOAc. The extract was dried (Na₂SO₄) and concentrated under vacuum to leave an orange solid, which was chromatographed on silica gel eluting with 0-10% MeOH/DCM to afford the required product as a pale yellow solid (1.6g, 23%).

Description 3

15 cis-5-Methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D3)

A stirred solution of D2 (1.6g, 5mmole) in 2M HCl acid (50ml) was heated under reflux for 2h, then the solution was allowed to cool, basified with K₂CO₃ and extracted with DCM. The extract was dried (Na₂SO₄) and concentrated under vacuum to afford the title compound as a pale orange solid (1.4g, 100%).

20

5

10

Description 4

cis-1-Acetyl-6-(4-benzyl-3,5-dimethylpiperazin-1-yl)-5-methoxyindoline (D4)
The title compound was prepared in 43% yield from cis-1-benzyl-2,6-dimethylpiperazine (Org. Prep. Proc. 1976, 8, 19) and D1 using a similar procedure to Description 2.

25

Description 5

cis-6-(4-Benzyl-3,5-dimethylpiperazin-1-yl)-5-methoxyindoline (D5)

The title compound was prepared from D4 by a similar procedure to Description 3 as a beige solid (100%)

30

35

Description 6

cis-6-(4-Benzyl-3,5-dimethylpiperazin-1-yl)-5-methoxy-1-[4-(6-methylpyridin-2-yl)-1-naphthoyl]indoline (D6)

The title compound was prepared from D5 and D13 following a similar procedure to Example 1 as a white solid (85%).

Description 7

Methyl 4-(trimethylstannyl)-1-naphthoate (D7)

A stirred solution of methyl 4-bromo-1-naphthoate (Collect. Czech. Chem. Commun. 1997, 62(11), 1737; 7.3g, 28mmole) in degassed toluene (300ml) was treated with hexamethylditin (10g, 31mmole) and tetrakis(triphenylphosphine)palladium(0) (720mg) and heated at reflux under argon for 3h. On cooling, the mixture was filtered through Celite, concentrated under vacuum and the residue chromatographed on silica gel eluting with 0-3% ether/60-80 petrol to afford the title compound as a colourless oil (9.06g, 94%).

10 Description 8

15

20

Methyl 4-(pyridin-4-yl)-1-naphthoate (D8)

A stirred solution of D7 (9.06g, 26mmole) in dry degassed DMF (150ml) was treated with copper (I) iodide (495mg, 2.6mmole), dichlorobis(triphenylphosphine)palladium(II) (1.52g, 2.2mmole) and 4-bromopyridine (prepared by suspending the HCl salt (6.07g, 31mmole) in 40% KOH solution, extracting with toluene and adding the dried toluene solution to the reaction). The mixture was heated at reflux under argon for 5h and allowed to cool before removing the DMF under vacuum. The residue was partitioned between EtOAc and 10% NaHCO₃ solution and the organics dried (Na₂SO₄) and chromatographed on silica gel eluting with EtOAc to afford the title compound as a white solid (4.1 g, 60%).

Description 9

Methyl 4-(1-methylpiperidin-4-yl)-1-naphthoate (D9)

A stirred solution of D8 (2.0 g, 7.6 mmole) in acetone (20 ml) was treated with methyl iodide (1.0ml, 15mmole), stirred for 0.5h and then allowed to stand at room temperature for 2 days. The resultant yellow precipitate was filtered off to afford the pyridinium salt as yellow crystals (2.87g). This was dissolved in EtOH (30 ml) and DMF (90 ml) and was hydrogenated at 50 psi (344.8KPa) and room temp over PtO, for 24h. The mixture was filtered through Celite (Diatomaceous Earth) and the filtrate concentrated under vacuum to a brown oil. This was partitioned between DCM and 10% NaHCO₃ solution and the organic solution separated, dried (Na₂SO₄) and concentrated under vacuum to afford the title compound as a brown oil (1.82 g, 91%).

Description 10

35 Methyl 4-(piperidin-4-yl)-1-naphthoate (D10)

A solution of D9 (0.39g, 1.4mmole) in DCM (30ml) was treated with iPr₂EtN (0.26g, 2mmole) followed by 1-chloroethyl chloroformate (0.29g, 2mmole) and stirred at room

20

35

temperature for 3h, then concentrated under vacuum and the residue treated with MeOH (30ml) and heated under reflux for 1h. The mixture was allowed to cool and the solid filtered off, washed with Et₂O and dried. This was treated with 10% Na₂CO₃ solution, extracted with DCM and the extract dried and concentrated under vacuum to afford the title compound as a colourless oil (0.33g, 88%).

Description 11

4-(1-tert-Butoxycarbonylpiperidin-4-yl)-1-naphthoic acid (D11)

A solution of D10 (0.33g, 1.2mmole) in DCM (30ml) was treated with di-tert-butyl dicarbonate (0.28g, 1.25mmole) and stirred at room temperature for 20h, then concentrated under vacuum to leave a white solid (0.44g). This was dissolved in THF (15ml) and MeOH (15ml), treated with LiOH (85mg) in water (10ml) and stirred at room temperature for 20h, then concentrated under vacuum to approx. 10ml. The residue was treated with excess 10% aqueous citric acid and extracted with EtOAc. The extract was dried and concentrated under vacuum to afford the title compound as a white solid (0.41g, 97%).

Description 12

cis-1-[4-(1-*tert*-Butoxycarbonylpiperidin-4-yl)-1-naphthoyl]-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D12)

The title compound was prepared from D11 and D3 using a similar procedure to Example 21 as a pink solid (52%).

Description 13

25 4-(6-Methylpyridin-2-yl)-1-naphthoic acid (D13)

The title compound was prepared from D7 and 2-bromo-6-methylpyridine using a similar method to Description 8 (45%), followed by hydrolysis of the methyl ester using 1M NaOH solution (69%) to afford a white solid.

30 Description 14

Methyl 4-(trimethylstannyl)1-naphthylacetate (D14)

The title compound was prepared from methyl 4-bromo-1-naphthylacetate (Zh. Org. Khim. 1966, 2, 1852) using a similar procedure to Description 7 as a colourless oil (69%).

Description 15

4-(6-Methylpyridin-2-yl)-1-naphthylacetic acid (D15)

The title compound was prepared from D14 and 2-bromo-6-methylpyridine using a similar method to Description 8 (32%), followed by hydrolysis of the methyl ester using 1M NaOH solution (80%) to afford a white solid.

5 Description 16

10

15

20

25

30

35

4-Formyl-1-naphthylboronic acid (D16)

A mixture of K10 montmorillonite clay (75g) and trimethylorthoformate (75ml) in methanol (75ml) was stirred at room temperature for 0.5h, then filtered. The solid was added to a stirred solution of 4-bromo-1-naphthylcarboxaldehyde (JP 01113354 [1989], 25.70g, 0.11mole) in DCM (300ml). After 18h the mixture was filtered, washed with 20% K₂CO₃ solution (100ml), dried and concentrated *in vacuo* to afford the dimethyl acetal as a yellow oil (29.05g 95%), which was dissolved in anhydrous THF (300ml) at -70°C and treated with a 1.6M solution of n-butyllithium in THF (78ml, 0.12mole). After 1h triisopropyl borate (24.4g, 0.13mole) was added over 0.25h, the mixture stirred for 1h at -70°C then poured into 2M HCl (500ml). The mixture was concentrated to 50% volume *in vacuo*, and extracted with EtOAc. The organic solution was then extracted with 10% NaOH solution (4x50ml) and the combined aqueous solution acidified with 6M HCl and extracted with DCM (3x100ml). The extract was dried and concentrated to dryness *in vacuo* to afford the title compound as a yellow-green powder (13.15g, 64%).

Description 17

4-Carboxy-1-naphthylboronic acid (D17)

To a stirred solution of D16 (0.25g, 1.25mmole) and NaOH (0.15g, 3.75mmole) in water (5ml) at 0°C was added dropwise a solution of KMnO₄ (0.19g. 0.120mmole) in water (5ml). After 0.25h sodium metabisulphite (excess) was added and the mixture acidified with 6M HCl and extracted with EtOAc (3x 15ml). The extracts were dried and concentrated to dryness to afford the title compound as cream powder (0.21g, 78%).

Description 18

4-(2,6-Dimethylpyridin-3-yl)-1-naphthoic acid (D18)

A stirred mixture of D17 (0.32g, 1.5 mmole), 3-bromo-2,6-dimethylpyridine hydrochloride (Synthesis 1974, 4, 293; 0.37g, 1.6mmole), Na₂CO₃ (0.48g, 5.6mmole) and tetrakis(triphenylphosphine) palladium (0) (0.08g, 0.07mmole) in 50% DME/water (20ml) was heated at reflux under argon for 18h. The mixture was concentrated *in vacuo* to 50% volume, diluted with water (20ml), washed with EtOAc (2x10ml), acidified with 2M HCl to pH 4 and extracted with DCM (3x25ml). The combined extract was dried and

evaporated to dryness. The residue was triturated in Et₂O to afford the title compound as a buff powder (0.29g, 69%).

Description 19

5 4-(3,6-Dimethylpyrazin-2-yl)-1-naphthoic acid (D19)

The title compound was prepared from D17 and 2-chloro-3,6-dimethylpyrazine using a similar procedure to Description 18 as a cream powder (50%).

Description 20

10 4-(1-Methyl-6-oxo-1,6-dihydropyridin-3-yl)-1-naphthoic acid (D20)

The title compound was prepared from 3-bromo-1-methyl-6-oxo-1,6-dihydropyridine (Khim.Geterotsikl. soedin. 1982 12,1662) and D17 using a similar procedure to Description 18 as a buff powder (78%).

15 Description 21

cis-7-(4-Benzyl-3,5-dimethylpiperazin-1-yl)-6-methoxyquinoline (D21)

The title compound was prepared from *cis*-1-benzyl-2,6-dimethylpiperazine (Org. Prep. Proc. 1976, 8, 19) and 7-bromo-6-methoxyquinoline (J. Org. Chem. 1990, 55, 2019) using a similar procedure to Description 2 (75%).

20

35

Description 22

cis-7-(3,5-Dimethylpiperazin-1-yl)-6-methoxy-1,2,3,4-tetrahydroquinoline (D22)

A solution of D21 (6.8g, 19 mmole) in EtOH (200ml) and THF (200ml) was hydrogenated over 10% Pd-C (1g) at ambient temperature and pressure for 48h, then

filtered through Kieselguhr and the filtrate hydrogenated over Pt (1.5g of PtO₂) at ambient temperature and 50psi for 20h. The mixture was filtered through Kieselguhr and the filtrate concentrated under vacuum to afford the title compound as a colourless oil (3.3g, 63%).

30 Description 23

cis-1-Acetyl-7-(3,5-dimethylpiperazin-1-yl)-6-methoxy-1,2,3,4-tetrahydroquinoline (D23)

A stirred solution of D22 (2.4g, 8.7mmole) in DCM (100ml) at 0°C was treated with acetic anhydride (0.92g, 9mmole) and maintained at 0°C for 6h, then treated with excess 10% Na₂CO₃ solution, stirred for 0.5h, then extracted with DCM. The extract was dried and concentrated under vacuum to afford the title compound as a yellow gum (2.7g, 98%).

Description 24

cis-1-Acetyl-6-methoxy-1,2,3,4-tetrahydro-7-(3,4,5-trimethylpiperazin-1-yl)quinoline (D24)

- A stirred solution of D23 (2.7g, 8.5mmole) in MeOH (60ml) at room temperature under Ar was treated with aqueous formaldehyde (3.2ml of 37% w/v, 40mmole), followed by portionwise addition of NaBH₃CN (1.1g, 17mmole). The pH of the mixture was adjusted to 6 by addition of formic acid and stirred at room temperature for 6h, then concentrated under vacuum and the residue treated with 10% Na₂CO₃ solution and extracted with
- DCM. The extract was dried, concentrated under vacuum and the residue chromatographed on silica gel eluting with 0-20% MeOH/EtOAc to afford the title compound as a yellow solid (1.4g, 50%).

Description 25

cis-6-Methoxy-1,2,3,4-tetrahydro-7-(3,4,5-trimethylpiperazin-1-yl)quinoline (D25)
The title compound was prepared from D24 using a similar procedure to Description 3 as a yellow solid (86%).

Description 26

20 cis-1-Acetyl-6-(4-benzyl-3,5-dimethylpiperazin-1-yl)indoline (D26)

The title compound was prepared from *cis*-1-benzyl-2,6-dimethylpiperazine (Org. Prep. Proc. 1976, 8, 19) and 1-acetyl-6-bromoindoline (Heterocycles 1987, 26, 2817) using a similar procedure to Description 2 as an off-white solid (53%).

25 Description 27

cis-1-Acetyl-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D27)

The title compound was prepared from D26 by hydrogenation over 10% Pd-C using a similar procedure to Example 13, followed by N-methylation using a similar procedure to Description 24 to afford a white solid (59%).

30

Description 28

cis-6-(3,4,5-Trimethylpiperazin-1-yl)indoline (D28)

The title compound was prepared from D27 using a similar procedure to Description 3 to afford an off-white solid (96%).

35

Description 29

cis-1-Acetyl-5-chloro-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D29)

A solution of D27 (1.0g, 3.5mmole) in DCM (20 ml) under argon was treated with *N*-chlorosuccinimide (929mg, 7.0mmole) and stirred at room temp. for 3h. The mixture was washed with water, dried and evaporated under vacuum to a buff solid. Column chromatography on silica gel eluting with 5% MeOH/DCM afforded the title compound as a white solid (670mg, 60%).

Description 30

cis-5-Chloro-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D30)

The title compound was prepared from D29 using a similar procedure to Description 3 to afford an off-white solid (72%).

Description 31

cis-1-Acetyl-5-bromo-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D31)

A solution of D27 (884mg, 3.1mmole) in DCM (15 ml) at 0°C under argon was treated with *N*-bromosuccinimide (819mg, 4.6mmole) and stirred at room temp. for 2 days. Additional NBS was added (150mg, 0.84mmole) and stirring continued for 16h. The mixture was washed with 10% Na₂CO₃ solution, dried and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluting with 5% MeOH/DCM to afford the title compound as a beige solid (440mg, 39%).

20

5

10

15

Description 32

cis-5-Bromo-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D32)

A solution of D28 (250mg, 1.0mmole) in DCM (40 ml) under argon was treated with trifluoroacetic anhydride (0.15ml, 1.1mmole) and stirred at room temp for 2h.

Evaporation *in vacuo* afforded a yellow oil (100%) which was redissolved in DCM (10 ml) and treated immediately with *N*-bromosuccinimide (356mg, 2.0 mmole). The mixture was stirred under argon at room temp. for 16h, washed with water, dried and evaporated *in vacuo* to afford a yellow solid (100%), which was dissolved in methanol (30 ml) under argon and treated with Na₂CO₃ (500mg, 4.7mmole) and stirred at room temp for 2 days. The mixture was evaporated *in vacuo* and partitioned between water and DCM. The organics were dried and evaporated to afford the title compound as a beige solid (264mg, 80%).

Description 33

35 cis-1-Acetyl-5-ethyl-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D33)

A stirred suspension of D31 (200mg, 0.55mmole) in dry DMF (5 ml) was treated with tributyl(vinyl)tin (0.24ml, 0.83mmole) and the mixture degassed by bubbling argon

through for 40 mins. To the mixture was added Et₃N (0.15ml, 1.1 mmole) and tetrakis(triphenylphosphine)palladium (0) (64mg, 0.06mmole) and the mixture heated under argon at reflux for 18h. On cooling, the mixture was diluted with EtOAc (100 ml) and extracted with 0.5M HCl (2x). The aqueous was basified (K₂CO₃), extracted with DCM, dried and evaporated to a buff solid, which was dissolved in EtOH (10 ml) and hydrogenated over 10% Pd/C (20 mg) at room temp. and atmospheric pressure for 2 days. Filtration through Celite and evaporation *in vacuo* afforded the title compound as a buff solid (100 mg, 62%).

10 Description 34

cis-5-Ethyl-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D34)

The title compound was prepared from D33 using a similar procedure to Description 3 to afford a buff solid (84%).

15 Description 35

cis-6-(3,5-Dimethylpiperazin-1-yl)-5-methoxyindoline (D35)

The title compound was prepared from D4 by hydrogenation over 10% Pd/C using a similar procedure to Example 13 (98%), followed by hydrolysis in 2M HCl using a similar procedure to Description 3 (80%) to afford the product as a pale brown solid

20

Description 36

cis-1-Acetyl-5-methyl-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D36)

The title compound was prepared from D31 and tetramethyltin using a similar procedure to Description 33 (20%).

25

Description 37

cis-5-Methyl-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D37)

The title compound was prepared from D36 using a similar procedure to Description 3 (86%).

30

Description 38

cis-5-Fluoro-6-(3,4,5-trimethylpiperazin-1-yl)indoline (D38)

The title compound was prepared from 1-acetyl-6-bromo-5-fluoroindoline by reaction with cis-3,5-dimethylpiperazine using similar procedure to Description 2 (82%), followed

by N-methylation using procedure similar to Description 24 (69%), followed by hydrolysis as in Description 3 (96%). The product was isolated as a pale yellow solid.

Example 1

cis-5-Methoxy-1-[4-(6-methylpyridin-2-yl)-1-naphthoyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E1)

A suspension of D13 (92mg, 0.35 mmole) in DCM (10ml) was treated with oxalyl chloride (75mg, 0.60mmole) and stirred at room temperature for 18h, then concentrated under vacuum to leave the acid chloride as a yellow solid. This was redissolved in DCM (10ml) and added to a stirred solution of D3 (100mg, 0.38mmole) and pyridine (47mg, 0.60mmole) in DCM (10ml) at 0°C under argon. The reaction mixture was allowed to warm to room temperature and stir for 3h, then treated with polystyrene bound methylisocyanate (100mg of 1.2mmole/g) and stirred for 18h, then filtered through 10 Kieselguhr. The filtrate was washed with 10% Na₂CO₃ solution, dried (Na₂SO₄), concentrated under vacuum and the residue purified by chromatography on basic alumina eluting with EtOAc to afford the title compound as a yellow solid (110mg, 60%). ¹H NMR (250MHz, CDCl₃) - spectrum highly complex due to hindered rotation with most peaks doubled up. Major peaks discernible: δ 6.75 & 6.68 (2xs, together 1H = 4H), 15 3.87 & 3.75 (2xs, together 3H = OMe), 3.16 & 3.00 (2xt, together 2H, = indoline CH_2), 2.69 (s, 3H, = pyridyl Me), 2.34 & 2.12 (2xs, together 3H, = piperazine N-Me), 1.17 & 0.85 & 0.79 (3xd, together 6H, = 3 and 5-piperazine Me). MH⁺ 521.

The following compounds were prepared by a similar method to that of Example 1 using D3 and an appropriate acid chloride derivative:

Example	MH+
cis-5-methoxy-1-[5-(6-methylpyridin-2-yl)-1-naphthoyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E2)	521 .
cis-5-methoxy-1-[5-(2-methyloxazol-5-yl) -1-naphthoyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E3)	511
cis-1-(2,3-dichlorobenzoyl)-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E4)	448/450
cis-5-methoxy-1-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-carbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E5)	552

Example 6

25 cis-5-Methoxy-1-[4-(6-methylpyridin-2-yl)-1-naphthylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E6)

A stirred mixture of D13 (87mg, 0.33mmole), triethylamine (40mg, 0.40mmole) and diphenylphosphoryl azide (96mg, 0.35mmole) in toluene was heated at reflux under argon for 0.5h, then allowed to cool to room temperature and treated with a solution of D3 (70mg, 0.25mmole) in DCM (10ml). The mixture was stirred at room temperature for 4h, then treated with polystyrene bound trisamine (80mg of 3.6mmole/g) and polystyrene bound methylisocyanate (60mg of 1.2mmole/g) and stirred at room temperature for 70h, then filtered through Kieselguhr. The filtrate was washed with 10% Na₂CO₃ solution, dried (Na₂SO₄), concentrated under vacuum and purified by chromatography on basic alumina eluting with EtOAc, followed by trituration with Et₂O to afford the title compound as a yellow solid (70mg, 52%).

1H NMR (250MHz, CDCl₃) δ 8.13 (d, 1H), 7.98 (d, 1H), 7.90 (d, 1H), 7.78-7.70 (m,

¹H NMR (250MHz, CDCl₃) δ 8.13 (d, 1H), 7.98 (d, 1H), 7.90 (d, 1H), 7.78-7.70 (m, 2H), 7.61 (d, 1H), 7.60-7.45 (m, 2H), 7.34 (d, 1H), 7.21 (d, 1H), 6.76 (s, 1H), 6.75 (s, 1H), 4.25 (t, 2H), 3.85 (s, 3H), 3.38-3.21 (m, 4H), 2.67 (s, 3H), 2.55-2.40 (m, 4H), 2.30 (s, 3H), 1.09 (d, 6H). MH⁺ 536.

15

10

5

The following compounds were prepared by a similar method to that of Example 6.

Example	MH+
cis-5-methoxy-1-[5-(6-methylpyridin-2-yl)-1-	536
naphthylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E7)	
cis-5-methoxy-1-[5-(2-methyloxazol-5-yl)-1-	526
naphthylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E8)	
cis-1-(2,3-dichlorophenylaminocarbonyl)-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E9)	465/465
cis-1-(3-Chloro-2-fluorophenylaminocarbonyl)-5-methoxy-6- (3,4,5-trimethylpiperazin-1-yl)indoline (E10)	447/449

Example 11

20 cis-5-Methoxy-1-[(3-nitrophenyl)acetyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E11)

The title compound was prepared from 3-nitrophenylacetic acid and D3 using a similar procedure to Example 1 as an orange solid (21%).

¹H NMR (250MHz, CDCl₃) δ 8.20-8.12 (m, 2H), 7.91 (s, 1H), 7.68 (d, 1H), 7.60-7.50 (m, 1H), 6.72 (s, 1H), 4.15 (t, 2H), 3.88 (s, 2H), 3.84 (s, 3H), 3.37-3.25 (m, 2H), 3.20 (t, 2H), 2.55-2.40 (m, 4H), 2.30 (s, 3H), 1.10 (d, 6H). MH⁺ 439.

5 Example 12

10

15

cis-5-Methoxy-1-[4-(1-methylpiperidin-4-yl)-1-naphthoyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E12)

A stirred solution of D3 (58mg, 0.21mmole) in toluene (5ml) under argon was treated with a 2M trimethylaluminium in toluene (0.13ml, 0.25mmole), then stirred at room temperature for 0.75h. A solution of D9 (60mg, 0.21mmole) in toluene (5ml) was added and the mixture was heated under reflux for 3.5h, then allowed to cool to room temperature. The mixture was added to a 5g silica gel column and eluted with 0-10% MeOH/DCM to afford a yellow oil. This was further purified by preparative plate TLC on silica gel eluting with 9:1:0.1 DCM/MeOH/0.88 NH₃ to afford the title compound as a white solid (39mg, 35%). MH+ 527.

Example 13

cis-6-(3,5-Dimethylpiperazin-1-yl)-5-methoxy-1-[4-(6-methylpyridin-2-yl)-1-naphthoyl]indoline (E13)

A solution of D6 (380mg, 0.64mmole) in EtOH (50ml) and THF (50ml) was treated with 10% Pd-C (300mg) and stirred under a hydrogen atmosphere at ambient temperature and pressure for 70h. The mixture was filtered through Kieselguhr and concentrated under vacuum. The residue was purified by chromatography on basic alumina eluting with EtOAc followed by crystallisation from Et₂O to afford the title compound as a yellow solid (320mg, 98%). MH+ 507.

Example 14

cis-1-[(2,3-Dichlorophenyl)acetyl]-6-(3,5-dimethylpiperazin-1-yl)-5-methoxyindoline (E14)

30 The title compound was prepared from 2,3-dichlorophenylacetic acid and D35 using a similar procedure to Example 22 as a white solid (30%).

¹H NMR (250MHz, CDCl₃) δ 7.95 (s, 1H), 7.42 (dd, 1H), 7.30-7.16 (m, 2H), 6.73 (s, 1H), 4.18 (t, 2H), 3.93 (s, 2H), 3.84 (s, 3H), 3.34 (br d, 2H), 3.27-3.10 (m, 4H), 2.35 (br s, 1H), 2.29 (t, 2H), 1.10 (d, 6H). MH⁺ 448/450.

Example 15

35

cis-6-Methoxy-1-[4-(6-methylpyridin-2-yl)-1-naphthoyl]-1,2,3,4-tetrahydro-7-(3,4,5-trimethylpiperazin-1-yl)quinoline (E15)

The title compound was prepared from D13 and D25 using a similar procedure to Example 1 as an off-white solid (42%). MH+ 535.

Example 16

5

10

 ${\it cis-1-(2,3-Dichlorophenylaminocarbonyl)-6-(3,4,5-trimethylpiperazin-1-yl)} indoline \ (E16)$

A solution of D28 (10mg, 0.04mmole) in DCM (1ml) was treated with 2,3-dichlorophenyl isocyanate (10mg, 0.05mmole) and stirred at room temp for 16h. The mixture was applied to an SCX resin cartridge (500mg) and the resin eluted with DCM (x2), MeOH (x3) and the washings discarded. Final elution with 1M NH, in MeOH (x2) afforded the title compound as an off white solid (12mg, 69%). MH+ 433/435.

15 The following compounds were prepared by a similar method to that of Example 16 using the appropriate phenyl isocyanate and indoline (D3, D30, D32 D34).

Example	MH+
cis-1-(2,3-Dichlorophenylaminocarbonyl)-5-chloro-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E17)	467/469
cis-1-(2,3-Dichlorophenylaminocarbonyl)-5-bromo-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E18)	513/515
cis-1-(2,3-Dichlorophenylaminocarbonyl)-5-ethyl-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E19)	461/463
cis-5-Methoxy-1-[2-(trifluoromethyl)phenylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E20)	433
cis-1-[2-Fluoro-3-(trifluoromethyl)phenylaminocarbonyl]-5- methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E21)	480

Example 22

25

20 cis-1-[(3-Chloro-2-fluorophenyl)acetyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E22)

A mixture of D28 (20mg, 0.08mmole), 3-chloro-2-fluorophenylacetic acid (30mg, 0.16mmole), diisopropylcarbodiimide (0.025ml, 0.16mmole) and 1-hydroxybenzotriazole hydrate (25mg, 0.16mmole) in THF (2ml) was shaken in a screw capped vial for 3h. The mixture was then partitioned between 10% Na₂CO₃ solution and DCM and the organic

layer applied (without drying) to an SCX resin cartridge (500mg) and the resin eluted with DCM (x2), MeOH (x3) and the washings discarded. Final elution with 1M NH₃ in MeOH (x2) afforded the title compound as an off white solid (22mg, 69%). MH⁺ 416/418.

5

The following compounds were prepared by a similar method to that of Example 22 using the appropriate carboxylic acid and indoline (D3, D28 and D30).

Example	MH+
cis-1-[(2,3-Difluorophenyl)acetyl]-6-(3,4,5-trimethylpiperazin-1-	400
yl)indoline (E23)	
cis-1-[(2,3-Dichlorophenyl)acetyl]-6-(3,4,5-trimethylpiperazin-	432/434
1-yl)indoline (E24)	
cis-1-[(2-Trifluoromethylphenyl)acetyl]-6-(3,4,5-	432
trimethylpiperazin-1-yl)indoline (E25)	
cis-1-[(2,3-Dichlorophenyl)acetyl]-5-methoxy-6-(3,4,5-	462/464
trimethylpiperazin-1-yl)indoline (E26)	
cis-1-[(2-Trifluoromethylphenyl)acetyl]-5-methoxy-6-(3,4,5-	462
trimethylpiperazin-1-yl)indoline (E27)	
cis-1-[(2-Fluoro-3-trifluoromethylphenyl)acetyl]-5-methoxy-6-	480
(3,4,5-trimethylpiperazin-1-yl)indoline (E28)	
cis-1-[(2-Chloro-3-trifluoromethylphenyl)acetyl]-5-methoxy-6-	496/498
(3,4,5-trimethylpiperazin-1-yl)indoline (E29)	,
cis-1-[(3-Chloro-2-fluorophenyl)acetyl]-5-methoxy-6-(3,4,5-	446/448
trimethylpiperazin-1-yl)indoline (E30)	
cis-1-[(2,3-Difluorophenyl)acetyl]-5-methoxy-6-(3,4,5-	430
trimethylpiperazin-1-yl)indoline (E31)	
cis-5-Methoxy-1-[4-(6-methylpyridin-2-yl)-1-naphthylacetyl]-6-	535
(3,4,5-trimethylpiperazin-1-yl)indoline (E32)	
cis-5-Chloro-1-[4-(6-methylpyridin-2-yl)-1-naphthoyl]-6-(3,4,5-	525/527
trimethylpiperazin-1-yl)indoline (E33)	<u>.</u> . <u> </u>
cis-1-[4-(2,6-Dimethylpyridin-3-yl)-1-naphthoyl]-5-methoxy-6-	535
(3,4,5-trimethylpiperazin-1-yl)indoline (E34) from D18	
cis-1-[4-(3,6-Dimethylpyrazin-2-yl)-1-naphthoyl]-5-methoxy-6-	536
(3,4,5-trimethylpiperazin-1-yl)indoline (E35) from D19	
cis-5-Methoxy-1-[4-(1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-1-	536

naphthoyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E36)	3
(from D20)	

Example 37

cis-5-Methoxy-1-[4-(piperidin-4-yl)-1-naphthoyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E37)

A solution of D12 (45mg, 0.074mmole) in DCM (10ml) was treated with trifluoroacetic acid (3ml) and stirred at room temperature for 3h, then concentrated under vacuum. The residue was dissolved in DCM and washed with 10% Na₂CO₃ solution, dried and concentrated under vacuum. The residue was purified by silica gel chromatography followed by trituration with Et₂O to afford the title compound as a pale brown solid (23mg, 61%). MH⁺ 513.

Example 38

cis-1-[(2-Fluoro-3-trifluoromethylphenyl)acetyl]-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indole (E38)

- A solution of E27 (84mg, 0.17mmole) and DDQ (53mg, 0.20mmole) in toluene (10ml) was heated at 112°C under argon with stirring for 1h. The mixture was cooled and partitioned between aqueous Na₂CO₃ and EtOAc. The organic phase was washed with water, dried (K₂CO₃) and evaporated *in vacuo* gave a brown gum. Chromatography on a silica 5g Sep Pak in 10% MeOH/DCM afforded a pink gum which on trituration with Et₂O gave the title compound as a pink powder (49mg, 60%).
 - ¹H NMR (250MHz, CDC1₃) δ: 8.05 (s, 1H), 7.68-7.52 (m, 2H), 7.28 (m, 1H), 6.99 (s, 1H), 6.60 (d, J=3Hz, 1H), 4.33 (s, 2H), 3.92 (s, 3H), 3.47-3.32 (m, 2H), 2.60-2.40 (m, 4H), 2.34 (s, 3H), 1.13 (d, J=7Hz, 6H); ^m/, (ES⁺): MH⁺478.0 (100%).
- The following compounds were prepared by a similar method to that of Example 38.

Example	MH+
cis-1-(2,3-Dichlorophenylaminocarbonyl)-5-methoxy-6-(3,4,5-	461
trimethylpiperazin-1-yl)indole (E39) (from E9)	
cis-5-Methoxy-1-[4-(6-methylpyridin-2-yl)-1-naphthylacetyl]-6-	533
(3,4,5-trimethylpiperazin-1-yl)indole (E40) (from E31)	
cis-1-[(3-Chloro-2-fluorophenyl)acetyl]-6-(3,5-	430/432
dimethylpiperazin-1-yl)-5-methoxyindole (E41) (from E51)	
cis-1-[(2,3-Dichlorophenyl)acetyl]-6-(3,5-dimethylpiperazin-1-	446/448/449

yl)-5-methoxyindole (E42) (from E14)	
cis-1-[(2-Chloro-3-trifluoromethylphenyl)acetyl]-6-(3,4,5-	464/466
trimethylpiperazin-1-yl)indole (E43) (from E52)	
cis-1-[(2-Fluoro-3-trifluoromethylphenyl)acetyl]-5-fluoro-6-	466
(3,4,5-trimethylpiperazin-1-yl)indole (E44) (from E53)	

The following compounds were prepared by a similar method to that of Example 22 using the appropriate carboxylic acid and indoline.

Example	MH+
cis-1-[(2-Fluoro-3-trifluoromethylphenyl)acetyl]-5-methyl-6-	464
(3,4,5-trimethylpiperazin-1-yl)indoline (E45) (from D37)	
cis-1-[(2-Chloro-3-fluorophenyl)acetyl]-5-methoxy-6-(3,4,5-	446/448
trimethylpiperazin-1-yl)indoline (E46) (from D3)	
cis-1-[(2-Bromo-3-fluorophenyl)acetyl]-5-methoxy-6-(3,4,5-	490/492
trimethylpiperazin-1-yl)indoline (E47) (from D3)	
cis-1-[(2-Bromo-3-chlorophenyl)acetyl]-5-methoxy-6-(3,4,5-	508/509
trimethylpiperazin-1-yl)indoline (E48) (from D3)	
cis-1-[(2-Fluoro-3-trifluoromethylphenyl)acetyl]-6-(3,5-	466
dimethylpiperazin-1-yl)-5-methoxyindoline (E49) (from D35)	
cis-1-[(2-Chloro-3-trifluoromethylphenyl)acetyl]-6-(3,5-	482/484
dimethylpiperazin-1-yl)-5-methoxyindoline (E50) (from D35)	
cis-1-[(3-Chloro-2-fluorophenyl)acetyl]-6-(3,5-	432/434
dimethylpiperazin-1-yl)-5-methoxyindoline (E51) (from D35)	
cis-1-[(2-Chloro-3-trifluoromethylphenyl)acetyl]-6-(3,4,5-	466/468
trimethylpiperazin-1-yl)indoline (E52) (from D28)	
cis-1-[(2-Fluoro-3-trifluoromethylphenyl)acetyl]-5-fluoro-6-	468
(3,4,5-trimethylpiperazin-1-yl)indoline (E53) (from D38)	

5

The following compounds were prepared by a similar method to that of Example 6 using the appropriate carboxylic acid and indoline.

Example	MH+
cis-1-[2-Chloro-3-trifluoromethylphenyl)aminocarbonyl]-5-	497/499
methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E54) (from	
D3)	

cis-1-[2-Chloro-3-methylphenyl)aminocarbonyl]-5-methoxy-6-	443/445
(3,4,5-trimethylpiperazin-1-yl)indoline (E55) (from D3)	
cis-1-[2-Chloro-3-trifluoromethylphenyl)aminocarbonyl]-5-	481/483
methyl-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E56) from D37	

Example 57

cis-1-[(2-Chloro-3-trifluoromethyl)phenoxycarbonyl]-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline (E57)

Triphosgene (40mg, 0.13mmole) was added to a stirred solution of D3 (100mg, 0.36mmole) in DCM (10ml) which was maintained at room temperature for 1h, then treated with 2-chloro-3-(trifluoromethyl)phenol (78mg, 0.40mmole) and triethylamine (0.062ml, 0.44mmole). The mixture was heated under reflux for 4h, additional phenol (78mg) and triethylamine (0.062ml) added and heating continued for a further 8h. The mixture was washed with 10% K₂CO₃ solution, dried and concentrated under vacuum. The title compound was purified by chromatography on silica gel (84mg, 47%). MH⁺ 498/500.

15 Pharmacological Data

All examples had pKi values > 7.3 at 5-HT $_{1B}$ receptors and examples 1-3, 6, 9-11, 14–17, 20–40, 43–48 and 52–57 had pKi values >8.0 at 5-HT $_{1B}$ receptors.

20

CLAIMS

1. A compound of formula (I) or a salt thereof:

$$R^{a}$$
 Y C N R^{b} R^{c} R^{b}

in which Ra is a group of formula (i)

$$(R^2)$$
 (R^2)
 (R^3)
 (R^3)

10

15

5

wherein P1 is phenyl, naphthyl or heteroaryl;

 R^1 is hydrogen, halogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl, $COC_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, hydroxyC $_{1\text{-}6}$ alkyl, nitro, CF $_3$, cyano, SR 9 , SOR 9 , SO2 R 9 , SO2 NR 10 R 11 , CO2 R 10 , CONR 10 R 11 , OCONR 10 R 11 , NR 10 R 11 , NR 10 CO2 R 11 , NR 10 CONR 10 R 11 , CR 10 =NOR 11 where R 9 , R 10 and R 11 are independently hydrogen or C1-6alkyl; R 2 is halogen, C1-6alkyl, C3-6cycloalkyl, C3-6cycloalkenyl, C1-6alkoxy, COC1-6alkyl, hydroxy, nitro, CF3, cyano, CO2 R 10 , CONR 10 R 11 , NR 10 R 11 where R 10 and R 11 are as defined above;

a is 0, 1, 2 or 3;

20

or Ra is a group of formula (ii)

wherein

P² is phenyl, naphthyl, heteroaryl or a 5- to 7- membered heterocyclic ring;

P³ is phenyl, naphthyl or heteroaryl;

A is a bond or oxygen, carbonyl, CH₂ or NR⁴ where R⁴ is hydrogen or C₁₋₆alkyl;

- R¹ is as defined above for formula (i) or R¹ is heteroaryl optionally substituted by C₁₋₆alkyl, halogen or COC₁₋₆alkyl;
 - R^2 and R^3 are independently halogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl, $C_{1\text{-}6}$ alkoxy, $COC_{1\text{-}6}$ 6alkyl, hydroxy, nitro, CF_3 , cyano, CO_2R^{10} , $CONR^{10}R^{11}$, $NR^{10}R^{11}$ where R^{10} and R^{11} are as defined above;
- and a and b are independently 0, 1, 2 or 3;

Y is a bond, CH₂, O or NR⁵ where R⁵ is hydrogen or C₁₋₆alkyl; W is $(CR^{16}R^{17})_t$ where t is 2, 3 or 4 and R¹⁶ and R¹⁷ are independently hydrogen or C₁₋₆alkyl or W is a group CH=CH;

- Rb is hydrogen, halogen, hydroxy, C₁₋₆alkyl, CF₃ or C₁₋₆alkoxy;
 R^c is hydrogen or C₁₋₆alkyl;
 R^d and R^e are both independently C₁₋₄alkyl.
- 2. A compound according to claim 1 in which R^a is a group of formula (i) wherein P^1 is phenyl or naphthyl.
 - 3. A compound according to claim 1 in which R^a is a group of formula (ii) wherein P³ is phenyl or naphthyl.
- 25 4. A compound according to claim 3 in which P² is pyridyl.
 - 5. A compound according to any of the preceding claims in which R^d and R^e are both methyl
- 6. A compound according to claim 1 which is:
 cis-5-methoxy-1-[4-(6-methylpyridin-2-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
 cis-5-methoxy-1-[5-(6-methylpyridin-2-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
 cis-5-methoxy-1-[5-(5-methyloxazol-2-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
- 35 cis-5-methoxy-1-[5-(5-methyloxazol-2-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline, cis-1-(2,3-dichlorobenzoyl)-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

15

25

cis-5-methoxy-1-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-carbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

cis-5-methoxy-1-[4-(6-methylpyridin-2-yl)naphth-1-ylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

5 cis-5-methoxy-1-[5-(6-methylpyridin-2-yl)naphth-1-ylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,
cis-5-methoxy-1-[5-(5-methyloxazol-2-yl)naphth-1-ylaminocarbonyl]-6-(3,4,5-

cis-5-methoxy-1-[5-(5-methyloxazol-2-yl)naphth-1-ylaminocarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

cis-1-(2,3-dichlorophenylaminocarbonyl)-5-methoxy-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

cis-5-methoxy-1-[(3-nitrophenyl)acetyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline, cis-5-methoxy-1-[4-(1-methylpiperidin-4-yl)naphth-1-ylcarbonyl]-6-(3,4,5-trimethylpiperazin-1-yl)indoline,

cis-6-(3,5-dimethylpiperazin-1-yl)-5-methoxy-1-[4-(6-methylpyridin-2-yl)naphth-1-ylcarbonyl]indoline

or a pharmaceutically acceptable salts thereof.

- 7. A process for the preparation of a compound of formula (I) according to claim 1 or a pharmaceutically acceptable salt thereof which comprises:
- 20 (a) Y is NH, coupling a compound of formula (II):

$$R^{a}-N-(C=O)$$
(II)

in which R^a are as defined in formula (I) or a protected derivative thereof with a compound of formula (III):

in which W, R^b and R^c, R^d and R^e are as defined in formula (I), or a protected derivative thereof; or

(b) where Y is NR⁵, reacting a compound of formula (IV)

Ra-NR5H

5

(IV)

in which R^a and R⁵ are as defined in formula (I) with a compound of formula (III) together with an appropriate urea forming agent;

10 (c) where Y is a bond, CH₂ or O, reacting a compound of formula (V)

$$R^a - Y - (C=O) - L^2$$

(V)

- in which R^a is as defined in formula (I) and L² is an appropriate leaving group, with a compound of formula (III); and optionally thereafter:
 - · removing any protecting groups,
 - converting a compound of formula (I) into another compound of formula (I),
- forming a pharmaceutically acceptable salt.
 - 8. A compound according to any of claims 1 to 6 for use in therapy.
- 9. A compound according to any one of claims 1 to 6 for use in the treatment of anxiety and/or depression.
 - 10. A pharmaceutical composition which comprises a compound according to any of claims 1 to 6 and a pharmaceutically acceptable carrier.

ABSTRACT

Novel piperazine derivatives, processes for their preparation, and pharmaceutical compositions containing them

THIS PAGE BLANK (USPTO)