Problem List 3 (Ramsey theory)

Graph Theory, Winter Semester 2022/23, IM UWR

- 1. (a) By constructing a suitable colouring of K_8 , show that $R(3,4) \geq 9$.
 - (b) Show that if R(s-1,t) and R(s,t-1) are both even, then we actually have $R(s,t) \leq R(s-1,t) + R(s,t-1) 1$.
 - (c) Deduce that R(3, 4) = 9.
- Consider the red/blue colouring of K₁₇ such that the edge ij is coloured red if i j ≡ ±1, ±2, ±4 or ±8 (mod 17), and blue otherwise. Show that with this colouring K₁₇ has no monochromatic K₄, and therefore R(4,4) > 17.
 [Hint: in order to simplify your proof, start by showing that the map [17] → [17] sending i to 3i (modulo 17) swaps the red edges with the blue edges.]
- 3. Show that $R(s,t) \leq {s+t-2 \choose s-1}$ and that $R(s,t) \leq 2^{s+t-3}$ for all $s,t \geq 2$. Deduce that $R(s,s) = O(4^s)$.
- 4. Given two graphs G and H, we write R(G, H) for the smallest $n \geq 2$ such that any red/blue colouring of K_n has either a red subgraph isomorphic to G, or a blue subgraph isomorphic to H.
 - (a) Why does R(G, H) exist?
 - (b) Show that $R(K_{1,t}, K_{r+1}) = rt + 1$ for all $r, t \ge 1$. [Hint: use Turán's Theorem.]
 - (c) For $k \geq 1$, let I_k be the "set of k disjoint edges"—that is, a graph with $V(I_k) = \{v_i \mid i \in [k]\} \sqcup \{w_i \mid i \in [k]\}$ and $E(I_k) = \{v_i w_i \mid i \in [k]\}$. Show that $R(I_k, K_r) = 2k + r 2$ for all $k \geq 1$ and $r \geq 2$.
- 5. Let $k \geq 1$.
 - (a) Show that every red/blue colouring of the edges of $K_{2k-1,2k-1}$ contains a monochromatic tree of order 2k with two vertices of degree k.
 - (b) Give a red/blue colouring of the edges of $K_{2k,2k}$ with no connected monochromatic subgraphs of order 2k + 1.
- 6. Given $k, s \geq 2$, we write $R_k(s)$ for the Ramsey number $R(s, \ldots, s)$.
 - (a) By exhibiting a suitable colouring of $K_{(s-1)^2}$, show that $R(s,s) = \Omega(s^2)$.
 - (b) Show that $R_k(s) = \Omega(s^k)$ for any fixed $k \geq 2$.

- 7. (a) Show that $R_k(3) \leq k \cdot R_{k-1}(3)$ for all $k \geq 3$, and deduce that $R_k(3) \leq 3 \cdot k!$ for all $k \geq 2$.
 - (b) Let $x_1, \ldots, x_n \in \mathbb{R}^2$ be points such that no three of them lie on a straight line, where $n = 3 \cdot k!$ for some $k \geq 2$. Show that some three of these points form an angle $> \pi \left(1 \frac{1}{k}\right)$.
 - (c) Show that if $G_1, \ldots, G_k \leq K_n$ are bipartite subgraphs and $E(K_n) = \bigcup_{i=1}^k E(G_i)$, then $n \leq 2^k$. Deduce that in the previous part of the problem we could take $n = 2^k + 1$ instead of $n = 3 \cdot k!$.
- 8. Show that every sequence $(x_n)_{n=1}^{\infty}$ of real numbers has a monotone (that is, non-increasing or non-decreasing) subsequence.
- 9. Let $g_1, \ldots, g_n : \mathbb{R} \to \mathbb{R}$ be bounded functions, and let $\varepsilon, \delta > 0$. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is such that for all $x, y \in \mathbb{R}$ with $|f(x) f(y)| > \delta$ we have $|g_i(x) g_i(y)| > \varepsilon$ for some i. Show that f is bounded.
- 10. (Ramsey's Theorem for hypergraphs). Let $k \geq 2$.
 - (a) Let $s,t \geq k$. Show that there exists $n \geq k$ with the following property: given any red/blue colouring of all k-element subsets of a set V with |V| = n, there exists either a subset $W_1 \subseteq V$ with $|W_1| = s$ all of whose k-element subsets are red, or a subset $W_2 \subseteq V$ with $|W_2| = t$ all of whose k-element subsets are blue. [Hint: letting $R^{(k)}(s,t)$ be the smallest such integer n, show that we have $R^{(k)}(s,t) \leq R^{(k-1)} \left(R^{(k)}(s-1,t), R^{(k)}(s,t-1)\right) + 1$.]
 - (b) Show that for any red/blue colouring of all k-element subsets of \mathbb{N} , there exists an infinite subset $W \subseteq \mathbb{N}$ all of whose k-element subsets have the same colour.
 - (c) Deduce that for any infinite subset $A \subseteq \mathbb{R}^2$, there exists an infinite subset $B \subseteq A$ such that either B is contained in a line, or no three points in B are collinear.
 - (d) Suppose we have a red/blue colouring of all infinite subsets of \mathbb{N} . Is there always an infinite subset $W \subseteq \mathbb{N}$ all of whose infinite subsets have the same colour? [Hint: could we have such a red/blue colouring so that A and $A \cup \{n\}$ have different colours whenever $n \notin A$? Feel free to use the Axiom of Choice.]