Game Theory with Applications

Homework #3 – Due Thursday, November 10

1. Let

$$x_n = \frac{1}{n}, n \ge 1$$

By the definition of sequence convergence, prove the sequence x_n converges to 0.

- 2. Let *X* and *Y* be sequences in \mathbb{R}^p that converge to \underline{x} and \underline{y} respectively. Prove that X + Y converges to $\underline{x} + y$.
- 3. Closed set
 - (a) True or False? $\{x \in \mathbb{R} : 0 \le x \le 1\}$ is closed in \mathbb{R} .
 - (b) True or False? $\{x \in \mathbf{R} : x \ge 0\}$ is closed in \mathbf{R} .
 - (c) True or False? $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ is closed in \mathbb{R}^2 .
 - (d) True or False? $\{x \in \mathbb{R} : 0 \le x < 1\}$ is closed in \mathbb{R} .
- 4. Please give an example of the sequence and closed set to demonstrate that a set S is closed if and only if for any convergent sequence of points $\{x_k\}$ contained in S with limit point x, we also have that $x \in S$.
- 5. Disprove that $\left\{x \in \mathbf{R}^n : \sum_{i=1}^n x_i^2 = 1\right\}$ is convex.