

MÀNG HAI CHIỀU (2D ARRAY)

NỘI DUNG

/01 Khai báo mảng

/02 Truy cập các phần tử trong mảng

/03 Nhập và duyệt mảng

/04 Một số bài toán cơ bản

/05 Kỹ thuật duyệt các ô liền kề

Khái quát về mảng hai chiều:

Mảng 2 chiều được sử dụng trong các bài toán liên quan tới ma trận, bảng số. Bạn có thể coi mảng 2 chiều chính là các mảng một chiều được xếp chồng lên nhau

- Chỉ số hàng
- Chỉ số cột

1. Khai báo mảng hai chiều

Khi khai báo mảng hai chiều, các bạn cần chỉ ra số hàng, số cột của ma trận.

```
#include <stdio.h>
int main(){
   //Mảng a gồm 3 hàng, mỗi hàng 3 cột
    int a[3][3] = {
       {1, 2, 3},
       {4, 5, 6},
       {7, 8, 9};
    //Mảng b có 10 hàng, mỗi hàng 10 cột
    int b[10][10];
```

a[3][3]			
1	2	3	
4	5	6	
7	8	9	

2. Truy cập phần tử trong mảng:

Để truy cập vào phần tử trong mảng, các bạn dùng chỉ số hàng và chỉ số cột.

	0	1	2
0	1	2	3
1	4	5	6
2	7	8	9

$$a[0][2] = 3$$

 $a[2][1] = 8$

Chỉ số hàng và cột của mảng 2 chiều được đánh số từ 0 như mảng 1 chiều.

3. Nhập và duyệt mảng hai chiều:

```
#include <stdio.h>
int main(){
    <u>int</u> n, m; scanf("%d%d", &n, &m);
    int a[n][m];
    for(int i = 0; i < n; i++){
       for(int j = 0; j < m; j++){
           scanf("%d", &a[i][j]);
    for(int i = 0; i < n; i++){
       for(int j = 0; j < m; j++){}
           printf("%d ", a[i][j]);
       printf("\n");
```

Tìm phần tử lớn nhất, nhỏ nhất

```
#include <stdio.h>
int main(){
   int n, m; scanf("%d%d", &n, &m);
   int a[n][m];
   int max_val = -1e9, min_val = 1e9;
   for(int i = 0; i < n; i++){
      for(int j = 0; j < m; j++){
         scanf("%d", &a[i][j]);
         max_val = fmax(max_val, a[i]);
         min_val = fmin(min_val, a[i]);
    printf("%d %d", min_val, max_val);
```

Tính tổng từng hàng của mảng 2 chiều

```
#include <stdio.h>
int main(){
    int n, m; scanf("%d%d", &n, &m);
    int a[n][m];
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            scanf("%d", &a[i][j]);
    for(int i = 0; i < n; i++){
        int sum = 0;
        for(int j = 0; j < m; j++){
            sum += a[i][j];
        printf("%d\n", sum);
```


Cộng trừ hai ma trận:

Trong đại số tuyến tính, ma trận tương tự như một mảng 2 chiều gồm n hàng và m cột. Để 2 ma trận có thể cộng hoặc trừ cho nhau thì chúng phải có cùng số hàng và số cột.

1	2	0	
0	4	1	

1	4	8	
9	2	3	

2	6	8	
9	6	4	

1	2	0
0	4	1

_

1	4	8
9	2	3

0	-2	-8
-9	2	-2

Cộng 2 ma trận cỡ n hàng m cột

```
#include <stdio.h>
int main(){
    int n, m; scanf("%d%d", &n, &m);
    int a[n][m], b[n][m];
    for(int i = 0; i < n; i++){}
        for(int j = 0; j < m; j++){}
            scanf("%d", &a[i][j]);
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            scanf("%d", &b[i][j]);
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            printf("%d ", a[i][j] + b[i][j]);
        printf("\n");
```

Trừ 2 ma trận cỡ n hàng m cột

```
#include <stdio.h>
int main(){
   int n, m; scanf("%d%d", &n, &m);
    int a[n][m], b[n][m];
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            scanf("%d", &a[i][j]);
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            scanf("%d", &b[i][j]);
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            printf("%d ", a[i][j] - b[i][j]);
        printf("\n");
```


Nhân hai ma trận:

Giả sử có 2 ma trận a cỡ nxm, ma trận b cỡ pxq, để ma trận a có thể nhân với ma trận b thì số cột của ma trận a, tức là m phải bằng số hàng của ma trận b, tức là p.

$$a[n][m] \times b[p][q] = c[n][q]$$

Khi đó m = p thì ma trận tích của a với b sẽ là ma trận c có cỡ nxq. Phần tử ở chỉ số (i, j) của ma trận tích c được tính bằng cách nhân từng cặp phần tử ở hàng i của ma trận a với các phần tử ở cột j của ma trân b.

Nhân hai ma trận:

Nhập 2 ma trận:

```
int n, m, p;
scanf("%d%d%d", &n, &m, &p);
int a[n][m], b[m][p], c[n][p];
for(int i = 0; i < n; i++){
   for(int j = 0; j < m; j++){
        scanf("%d", &a[i][j]);
for(int i = 0; i < m; i++){
   for(int j = 0; j < p; j++){
        scanf("%d", &b[i][j]);
```

Tính ma trận tích và in kết quả

```
for(int i = 0; i < n; i++){
   for(int j = 0; j < p; j++){
       c[i][j] = 0;
       for(int k = 0; k < m; k++){
          c[i][j] += a[i][k] * b[k][j];
for(int i = 0; i < n; i++){
   for(int j = 0; j < p; j++){
       printf("%d ", c[i][j]);
   printf("\n");
```

i-1, j-1	i-1, j	i-1, j+1
i, j-1	i, j	i, j+1
i+1, j-1	i+1, j	i+1, j+1

Duyệt 4 ô chung cạnh với ô [i][j]

```
#include <stdio.h>
int dx[4] = \{-1, 0, 0, 1\};
int dy[4] = \{0, -1, 1, 0\};
int main(){
    int a[3][3] = {
        {1, 2, 3},
        {4, 5, 6},
        {7, 8, 9}
   };
    int i = 1, j = 1;
    for(int k = 0; k < 4; k++){
        int i1 = i + dx[k], j1 = j + dy[k];
        printf("%d ", a[i1][j1]);
         OUTPUT: 2468
```

Duyệt 8 ô chung đỉnh với ô [i][j]

```
#include <stdio.h>
int dx[8] = \{-1, -1, -1, 0, 0, 1, 1, 1\};
int dy[8] = \{-1, 0, 1, -1, 1, -1, 0, 1\};
int main(){
    int a[3][3] = {
        {1, 2, 3},
        {4, 5, 6},
        {7, 8, 9}
    };
    int i = 1, j = \overline{1};
    for(int k = 0; k < 8; k++){
        int i1 = i + dx[k], j1 = j + dy[k];
        printf("%d ", a[i1][j1]);
          OUTPUT: 1 2 3 4 6 7 8 9
```

1	2	3	4	5	6
7	8	9	1	2	5
1	2	1	0	3	5
1	2	1	3	4	9
1	2	1	3	0	4
1	8	7	6	2	9

Duyệt 8 ô xung quanh nước đi của quân mã

```
#include <stdio.h>
int dx[8] = \{-2, -2, -1, -1, +1, +2, +2\};
int dy[8] = \{-1, +1, -2, +2, -2, +2, -1, +1\};
int main(){
    int a[6][6] = {
        \{1, 2, 3, 4, 5, 6\},\
        \{7, 8, 9, 1, 2, 5\},\
        \{1, 2, 1, 0, 3, 5\},\
        \{1, 2, 1, 3, 4, 9\},\
        \{1, 2, 1, 3, 0, 4\},\
        \{1, 8, 7, 6, 2, 9\}
    int i = 2, j = 3;
    for(int k = 0; k < 8; k++){
        int i1 = i + dx[k], j1 = j + dy[k];
        printf("%d ", a[i1][j1]);
          OUTPUT: 3 5 8 5 2 9 1 0
```