$$\frac{1}{f(x) = ax^{2} + bx + c} = \frac{r}{f(x) = ax^{2} + bx + c}$$

$$\frac{1}{5} + \frac{3}{6}$$

$$\frac{1}{5} + \frac{3}{6}$$

$$\frac{2}{3} + \frac{4}{6}$$

$$\frac{2}$$

<u>Lógica</u>:

a ciência da razão

Nos ajuda a entender e julgar afirmações.

Regras Lógicas:

nos dá ferramentas para provar a veracidade ou falsidade das afirmações de maneira precisa.

- Lógica Dedutiva
- Lógica Indutiva
- Lógica Modal
- Lógica Proposicional
- Lógica de Predicados
- Falácias Lógicas
- Paradoxos

Lógica Proposicional: área da lógica que busca maneiras de juntar(separar) e/ou modificar proposições simples para se tornarem proposições compostas (vice-versa) e assim julgar problemas da maneira fixa e consistente.

Esta área estuda as relações lógicas e propriedades derivadas destas proposições simples que estão unidas por conectivos lógicos e utiliza-se de regras para as modificar de maneira conveniente para julgá-las mais facilmente.

Proposições Lógicas

A Democracia é o poder do povo.

A Democracia é o poder do povo e o voto é facultativo.

Conectivos lógicos:

conjunção

• e - and - ^ - &&

disjunção

• ou - or - v - ||

 Implicação ou condicional

 $\bullet \rightarrow - =$

bicondicional

negação

Conjunção: acontecimentos simultâneos.

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Basta um ser falso para que a proposição composta seja falsa

<u>Disjunção</u>: pode ocorrer um ou outro ou ambos.

Só é falso quando ambos são falsos

\rightarrow

Condicional: se p então q.

P > 9

"Presunção De inocência"

Só é falso quando p é verdadeiro e q é falso

Condicional: se p então q.

"Presunção De inocência"

	р	q	p → q	
nção	V	V	V	p → q só é "julgável"
: ncia"		ode ser falso	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Daata		julgar q se p		eu?
Deste	modo p → q	não pode se Portanto, p	$ ightarrow$ q $\overset{v}{ ightarrow}$ q	do p e таїso

Só é falso quando p é verdadeiro e q é falso

"presunção de inocência lógica"

Se não pode ser julgado o todo FALSO,

presume-se VERDADEIRO

 $(p \rightarrow q) \land (q \rightarrow p)$ Bicondicional: p se e somente se q.

				y F
p -> q	р	q	$p \leftrightarrow q$	g > p
>	V	V	V	Y
F	V	F. when	F	V
Y	Fusher	Vera	F	F
V	F	F	V	V

p ↔ q é verdadeira quando ambas são verdadeiras ou ambas são falsas

Negação: nega o valor verdade de p.

р	¬р
V	F
F	V

¬p é verdadeiro quando p é falso

<u>Disjunção exclusiva</u>: pode ocorrer um ou outro EXCLUSIVAMENTE.

P	XOR		
р	q	р <u>v</u> q	p xor q
٧F	V	F	F
V V	F	V	V
F V	V	V	V
F F	F	F	F

DID

Para ser verdade ou p ou q precisam necessariamente ser verdadeiros, mas não ambos

<u>Falso</u>: Proposição inteiramente Falsa.

<u>Verdade</u>: Proposição inteiramente Verdadeira.

F F

Compostas

p ^ F	pvF	p XOR F	p → F	p ↔ F	¬F
p ^ V	p v V	p XOR V	$p \rightarrow V$	$p \leftrightarrow V$	¬V

<u>Lista</u>:

1. Construa 5 proposições lógicas formais e as declare Verdadeira ou Falsa.

2. Construa 5 frases que não são proposições lógicas e explique por que não são proposições.

3. Construa 5 proposições lógicas COMPOSTAS e as declare Verdadeira ou Falsa (explore ao menos duas possibilidades para cada proposição criada

Diga então se a resultante é verdadeira ou falsa).

Lista:

- 4. Angelina, Benedito e Carlos são três estudantes que fizeram a prova de lógica. Considere as seguintes proposições:
 - A= "Angelina tirou uma boa nota na prova";
 - B= "Benedito tirou uma boa nota na prova";
 - C= "Carlos tirou uma boa nota na prova".

Formalize as seguintes sentenças?

- 1. Carlos foi o único a tirar uma boa nota na prova.
- 2. Angelina é o único que não tirou uma boa nota na prova.
- 3. Somente um dos três tirou uma boa nota na prova.
- 4. Ao menos dois dos três tiraram uma boa nota na prova.
- 5.No máximo dois dos três tiraram uma boa nota na prova.
- 6. Exatamente dois dos três tiraram uma boa nota na prova.

Lista:

- 4. Angelina, Benedito e Carlos são três estudantes que fizeram a prova de lógica. Considere as seguintes proposições:
 - A= "Angelina tirou uma boa nota na prova";
 - B= "Benedito tirou uma boa nota na prova";
 - C= "Carlos tirou uma boa nota na prova".

Formalize as seguintes sentenças?

- 1. Carlos foi o único a tirar uma boa nota na prova.
- 2. Angelina é o único que não tirou uma boa nota na prova.
- 3. Somente um dos três tirou uma boa nota na prova.
- 4. Ao menos dois dos três tiraram uma boa nota na prova.
- 5.No máximo dois dos três tiraram uma boa nota na prova.
- 6. Exatamente dois dos três tiraram uma boa nota na prova.

Lógica: Tabelas da Verdade

Construindo uma Tabela Verdade

Tabela Verdade

Uma tabela da verdade para uma declaração composta é uma lista da verdade ou falsidade da declaração para cada possível combinação de verdade e falsidade de seus componentes.

Em outras palavras, uma tabela da verdade ajuda a mostrar se uma declaração é verdadeira ou falsa.

<u>Linhas</u>

Para encontrar o número de linhas usadas em uma tabela da verdade, leve o número 2 elevado ao poder do número de variáveis.

Por exemplo, se houvesse uma declaração p e uma declaração q, haveria 2 variáveis, 2^2 é 4.

Se houvesse três declarações, seriam 2^3, ou 8 linhas.

Colunas

 As colunas sob os conectivos /\, e \/, representam a conjunção e a disjunção da expressão nos dois lados desse conectivo.

Tabela de duas proposições

p		q	
V	Metade verdade	V	Linhas alternam V, F
V		F	O resultado virá
F	Metade falso	V	De uma das possibilidades
F		F	VV, VF, FV, FF

Tabela de duas proposições

p	q	COMPOSTA
V	V	
V	F	
F	V	
F	F	

Tabela de três proposições

p		q		r	
V	Metade V	V	Alterna VV	V	Alterna
V		V		F	V e F
V		F	e FF	V	O resultado
V		F		F	virá de uma das
F	Metade F	V		V	possibilidades
F		V		F	VVV, VVF, VFV, VFF,
F		F		V	FVV, FVF, FFV, FFF
F		F		F	

Tabela de três proposições

p	q	r	COMPOSTA
F	F	F	
F	F	V	
F	V	F	
F	V	V	
V	F	F	
V	F	V	
V	V	F	
V	V	V	

Tabela de três proposições

p	q	r	COMPOSTA
V	V	V	
V	V	F	
V	F	V	
V	F	F	
F	V	V	
F	V	F	
F	F	V	
F	F	F	

Preenchendo uma Tabela Verdade

$\sim p$	p	q	p ∨ q	p /\ q	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$	~p \/ q
	V	V	V				
	V	F	V	F			
	F	V				F	
	F	F	F				

Preenchendo uma Tabela Verdade

p	q	p ∨ q	p ∧ q	$p \rightarrow q$	$\mathbf{q} \rightarrow \mathbf{p}$	~p	~p \/ q
V	V	V					
V	F						
F	V		F		F		
F	F	F					

Use a coluna final da Tabela Verdade para determinar:

	Tautologia	Contradição	Contingencia	
Resultado	Sempre Verdade	Sempre Falso	Sometimes true, sometimes false	
p∨q			X	
p∧q			X	
p∨¬p	X			
p		X		

Faça as seguintes tabelas verdade:

	р^	F		p v F		p XOR F			p →	F	$p \leftrightarrow F$			
р	F	p ^ F	р	F	pvF	р	F	p XOR F	р	F	$P \rightarrow F$	р	F	$p \leftrightarrow F$
V	F	F	V	F	V	V	F	V	V	F	F	V	F	F
F	F	F	F	F	F	F	F	F	F	F	V	F	F	V
	p ^	V		p v	V		р ХОГ	RV		$p \rightarrow$	V		$p \leftrightarrow$	V
р	V	p ^ V	р	V	pνV	р	V	p XOR V	р	V	p → V	р	V	p↔V
V	V	V	V	V	V	V	V	F	V	V	V	V	V	V
F														

Use a coluna final da Tabela Verdade para determinar:

Resultado	Tautologia Sempre Verdade	Contradição Sempre Falso	Contingência Falsos e verdades na tabela
p ^ F		X	
pνF			X
p XOR F			X
$p \rightarrow F$			X
$p \leftrightarrow F$			X
¬F	X		
p ^ V			X
pνV	X		
p XOR V			X
$p \rightarrow V$	X		
$p \leftrightarrow V$			X
¬V		X	

р	q	¬р	¬q	p↔q	p↔¬q	¬p ↔ ¬q
V	V	F	F	V	F	V
V	F	F	V	F	V	F
F	V	V	F	F	V	F
F	F	V	V	V	F	V

р	q	¬р	¬q	p↔q	p↔¬q	¬p↔¬q
V	V	F	F	V	F	V
V	F	F	V	F	V	F
F	V	V	F	F	V	F
F	F	V	V	V	F	V

р	q	r	pvq	p & q	p→q	p^r	p ↔ (p v q)	p ⇔ (p → q)	(p→q)→ (p^r)
V	V	V	V	F	V	V	V	V	V
V	V	F	V	F	V	F	V	V	F
V	F	V	V	V	F	V	V	F	V
V	F	F	V	V	F	F	V	F	V
F	V	V	V	V	V	F	F	F	F
F	V	F	V	V	V	F	F	F	F
F	F	V	F	F	V	F	V	F	F
F	F	F	F	F	V	F	V	F	F

Р	Q	R	¬R	P^Q	Q^R	(P^Q) v (Q^R)	Q <mark>v</mark> ¬R	((P^Q)v(Q^R))→(Qv¬R)
V	V	V	F	V	V	V	V	V
V	V	F	V	V	F	V	V	V
V	F	V	F	F	F	F	F	V
V	F	F	V	F	F	F	V	V
F	V	V	F	F	V	V	V	V
F	V	F	V	F	F	F	V	V
F	F	V	F	F	F	F	F	V
F	F	F	V	F	F	F	V	V

Р	Q	¬R	R	P^Q	Q^R	(P^Q) v (Q^R)	Qv¬R	((P^Q)v(Q^R))→(Qv¬R)
V	V	F	V	V	V	V	V	V
V	V	V	F	V	F	V	V	V
V	F	F	V	F	F	F	F	V
V	F	V	F	F	F	F	V	V
F	V	F	V	F	V	V	V	V
F	V	V	F	F	F	F	V	V
F	F	F	V	F	F	F	F	V
F	F	V	F	F	F	F	V	V

Construa as tabelas verdade e indique se é Tautologia, Contradição ou Contingência.

Resultado	Tautologia	Contradição	Contingência Sometimes true, sometimes false	
	Sempre Verdade	Sempre Falso	Sometimes true, sometimes raise	
$\mathbf{p} \rightarrow (\mathbf{p} \rightarrow \mathbf{q})$			X	
p∧q			X	
p∨¬p	X			
p /\ ¬p		X		

Tabela Verdade do slide 37

p	q	¬p	p → q	$p \rightarrow (p \rightarrow q)$	p ^ q	p v ¬p	p ^ ¬p
V	V	F	V	V	V	V	F
V	F	F	F	F	F	V	F
F	V	V	V	V	F	V	F
F	F	V	V	V	F	V	F