

4th list of exercises April  $15^{th}$ , 2024

Student: Jaider Torres

## RA: 241343

**Notation:** If  $\tau_X$  is a topology on X, then  $\overline{\tau}_X$  denotes the family of closed sets in the topology  $\tau_X$ . Again,  $[n] =: \mathbb{N} \cap [0,1]$ .

- 1) Let  $f:\mathbb{R} \to (0,\infty)$  satisfying the conditions. Let  $x,y\in f(\mathbb{R})\subset (0,\infty)$ . Como  $\mathbb{Q}$  is dense in  $\mathbb{R}$ , we can find  $q\in\mathbb{Q}$  such that x< q< y. Then  $(0,q)\cup (q,\infty)$  is a nontrivial split of  $f(\mathbb{R})$  that induces a nontrivial split on  $\mathbb{R}$ , contradicting the continuity of f. The only way such a function exist is that  $f\equiv e$ . This a continuous function that sends every real number to a transcendental number and f(e)=e. Thus,  $f(\pi)=f(\sqrt{2}^{\sqrt{2}})=f(e^{\sqrt{2}})=e$ .
- 2) a) We want to prove there exist  $A,B\in \tau_{\mathbb{R}^n}$  disjoints such that  $F\subset A$  and  $G\subset B$ . Note that f(x)=0 for every  $x\in F$  and f(x)=1 for every  $x\in G$ . Thus, Ran(f)=[0,1]. If we prove f is continuous, every opens on [0,1] of the forms [0,a),  $(a+\epsilon,1]$  would separate F and G, for  $a\in (0,1)$  and  $\varepsilon\in \mathbb{R}^+$ .

Let  $C \subset \mathbb{R}^n$ . Note that  $g: \mathbb{R}^n \to \mathbb{R}$  defined by  $x \mapsto dist(x,C)$  is continuous since

$$\begin{aligned} |g(x) - g(y)| dist(x, C) + dist(y, C) \\ &= \left| ||x - \hat{a}|| - ||y - \hat{b}|| \right| \\ &\leq ||x - y||, \end{aligned}$$

for every  $x, y \in \mathbb{R}^n$ . To see this, note that

$$d(x,z) \le d(x,y) + d(y,z)$$

for every  $z \in \mathbb{R}^n$ . Thus,

$$dist(x, C) \le d(x, y) + dist(y, C),$$

leading us to

$$dist(x, C) - dist(y, C) \le d(y, z).$$

Inverting the roles of x and y we get the desired conclusion.

This implies f is in fact uniformly continuous (taking  $\varepsilon = \delta$ ).

Now, as  $F,G\in \overline{\tau}_{\mathbb{R}^n}$ , then  $\partial F\subset F$  and  $\partial G\subset G$  and thus  $\partial F\cap \partial G=\emptyset$ . This implies  $dist(x,F)+dist(xG)\neq 0$  for every  $x\in \mathbb{R}^n$ . Given that  $f_1(x)=dist(x,F)$  and  $f_2(x)=dist(x,G)$  are continuous, then  $f(x)=\frac{f_1(x)}{f_1(x)+f_2(x)}$  is a continuous function since it's the product of continuous functions where the denominator  $f_1(x)+f_2(x)$  have no poles.

So, going back to the original question, let  $\varepsilon\in\mathbb{R}^+$  and  $a\in[0,1]$  such that  $(a-\varepsilon,a+\varepsilon)\subset(0,1)$ , and consider the opens subsets  $[0,a),(a+\varepsilon 1]\in\tau_{[0,1]}.$  As f is continuous,  $A=f^{-1}([0,a))$  and  $B=f^{-1}((a+\varepsilon,1])$  are opens such that  $F\subset A,G\subset B$  and  $A\cap B=\emptyset.$  Hence, f separates topologically F and G.

b) Let  $F,G\subset\mathbb{R}^n$  such that dist(F,G)>0. Let's prove f is uniformly continuous.

Note that

$$|f(x) - f(y)| = \left| \frac{dist(x, F)}{dist(x, F) + dist(x, G)} - \frac{dist(y, F)}{dist(y, F) + dist(y, G)} \right|.$$

Let  $a_1 = dist(x, F)$ ,  $b_1 = dist(x, G)$ ,  $a_2 = dist(y, G)$  and  $b_2 dist(y, G)$ . From the right hand of the previous equality we get

$$\left| \frac{a_1}{a_1 + b_1} - \frac{a_2}{a_2 + b_2} \right| = \left| \frac{a_1 a_2 + a_1 b_2 - a_2 a_1 - a_2 b_1}{(a_1 + b_1)(a_2 + b_2)} \right|$$

$$= \left| \frac{a_1 b_2 - a_2 b_1 + a_1 b_1 - a_1 b_1}{(a_1 + b_1)(a_2 + b_2)} \right|$$

$$= \left| \frac{a_1 (b_2 - b_1) + b_1 (a_1 - a_2)}{(a_1 + b_1)(a_2 + b_2)} \right|$$

$$\leq \frac{a_1 |b_2 - b_1| + b_1 |a_1 - a_2|}{(a_1 + b_1)(a_2 + b_2)}$$

$$= \frac{a_1 |dist(y, G) - dist(x, G)| + b_1 |dist(x, F) - dist(y, F)|}{(a_1 + b_1)(a_2 + b_2)}$$

From the previous item we get

$$\frac{a_1\|x - y\| + b_1\|x - y\|}{(a_1 + b_1)(a_2 + b_2)} \le \frac{\|x - y\|}{a_2 + b_2}$$
$$\le \frac{\|x - y\|}{dist(F, G)}.$$

Thus, given  $\varepsilon\in\mathbb{R}^+$ , take  $\delta=dist(F,G)\varepsilon$ . Then, for every  $x,y\in\mathbb{R}^n$  such that  $\|x-y\|<0$ , we have that

$$|f(x) - f(y)| \le \frac{||x - y||}{dist(F, G)}$$

$$< \frac{\delta}{dist(F, G)}$$

$$= \frac{dist(F, G)\varepsilon}{dist(F, G)}$$

$$= \varepsilon.$$

Hence, f is uniformly continuous.

c) Suppose f is uniformly continuous. We want to prove dist(F,G) > 0.

By contradiction, suppose dist(F,G)=0. So, there exist  $a\in G\backslash F$  such that  $\lim_{X\to a}dis(x,F)=0$ . Let  $(x_n)_{n\in\mathbb{N}}\subset F$  such that  $x_n\to x$  as  $n\to\infty$ . Let  $\varepsilon\in(0,1)$ . As f is continuous, there exist  $\delta\in\mathbb{R}^+$  such that if  $\|x-a\|<\delta$  then  $|f(x)-f(a)|<\varepsilon$ . Also, as  $x_n\to x$ , there exist  $N\in\mathbb{N}$  such that  $\|x_n-x\|<\delta$  whenever  $n\ge N$ . However, we get that

$$|f(x_n) - f(a)| \le |f(x_n) - 1|$$

$$= \left| \frac{dist(x_n, F)}{dist(x_n, F) + dist(x_n, G)} - 1 \right|$$

$$= |-1| > \varepsilon$$

This contradicts the continuity of f. Hence F, G are geometrically disjoint, i.e., dist(F, G) > 0.

d) Note that, as B[0,r] and  $\partial B[0,R]$  are centered at the origin, for every  $x\in\mathbb{R}^n$ ,  $dist(x,B[0,r])=\|x\|-r$  and  $dist(x,\partial B[0,R])=\|x\|-R$ . Thus, the Urysohn function for B[0,r] and  $\partial B[0,R]$ ,  $f:\mathbb{R}^n\to[0,1]$ , is given by

$$\begin{split} x \mapsto \frac{\operatorname{dist}(x, \partial B[0, R])}{\operatorname{dist}(x, \partial B[0, R]) + \operatorname{dist}(x, B[0, r])} \\ &= \frac{\|x\| - R}{2\|x\| - (R + r)}. \end{split}$$

Note that f(x) = 0 if  $x \in \partial B[0, R]$  and f(x) = 1 if  $x \in B[0, r]$ 

3) Before we proceed with the solution, we'll show that every  $\emptyset \neq U \subset \mathbb{R}^n$  open and connected, U is path-connected

Attempt: As  $U \subset \mathbb{R}^n$  is open, for every  $x \in U$  there exist  $\varepsilon \in \mathbb{R}^+$  such that  $B_\varepsilon(x) \subset U$ . Let  $x,y \in U$  be any. Since U is open, we can choose a collection  $\{x_i\}_{i \in [m]} \subset U$  such that there is a collection  $\{\varepsilon_i\}_{i \in [m]} \subset \mathbb{R}^+$  satisfying  $B_{\varepsilon_i}(x_i) \subset U$ ,  $x \in B_{\varepsilon_1}(x_1)$ ,  $y \in B_{\varepsilon_m}(x_m)$  and  $B_{\varepsilon_i}(x_i) \cap B_{\varepsilon_{i+1}}(x_{i+1}) \neq \emptyset$  for every  $i \in [m]$ . As each  $B_{\varepsilon_i}(x_i)$  is convex, for every  $x_i', y_i' \in B_{\varepsilon_i}(x_i)$  we have that  $tx_i' + (1-t)y_i' \in B_{\varepsilon_i}(x_i)$  for every  $t \in [0,1]$ . Now, let  $\hat{x}_i \in B_{\varepsilon_i}(x_i) \cap B_{\varepsilon_{i+1}}(x_{i+1})$ . Let  $\gamma_i : [0,1] \to B_{\varepsilon_i}(x_i)$  defined by  $\gamma_i(t) = t\hat{x}_i + (1-t)\hat{x}_{i-1}$  for  $i \in [m] \setminus \{1,m\}$ , and  $\gamma_1 : [0,1] \to B_{\varepsilon_1}(x_1)$  defined by  $\gamma_1(t) = t\hat{x}_1 + (1-t)\hat{x}_{m-1}$ . Then  $\gamma : [0,1] \to U$  defined by

$$\gamma(t) = \begin{cases} \gamma_1(mt) & \text{for } 0 \le t \le \frac{1}{m} \\ \gamma_2(m(m-1)t - (m+1)) & \text{for } \frac{1}{m} \le t \le \frac{1}{m-1} \\ \vdots \\ \gamma_m(h(m,t)) & \text{for } \frac{1}{m-(m-2)} \le t \le 1, \end{cases}$$

where h(m,t) is such that  $h(m,\frac{1}{2})=0$  and h(m,1)=1. Then  $\gamma$  is a piece-wise continuous map from joining x and y in U. As  $x,y\in U$  are arbitrary, we conclude U is path-connected.

Now, if U is closed and  $\operatorname{int}(U)$  is connected, then U is path-connected since  $\operatorname{int}(U)$  is path-connected by the same argument.

2

ullet Let's prove  $GL_n^\pm(\mathbb{R})$  is path-connected. For that, remember that we defined previously the linear function

$$\begin{split} f_{\mathsf{det}} \, : & \, \mathbb{R}^{n^2} \to \mathbb{R} \\ X = (x_{11}, \dots, x_{nn}) \mapsto f_{\mathsf{det}}(X) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}. \end{split}$$

Then  $GL_n^\pm=f_{\mathsf{det}}^{-1}((-\infty,0))\cup f_{\mathsf{det}}^{-1}((0,\infty))$ , i.e.,  $GL_n^-=f_{\mathsf{det}}^{-1}((-\infty,0))$  and  $GL_n^+=f_{\mathsf{det}}^{-1}((0,\infty))$ . As each one of the are open since  $f_{\mathsf{det}}$  is continuous, we have that  $GL_n^+$  and  $GL_n^-$  are path-connected.

■ Let  $Diag_n(\mathbb{R})$  be the set of all diagonalizable matrices of order n with real entries. Given Any  $A \in Diag_n(\mathbb{R})$ , there exist a Diagonal matrix

$$D_A = \begin{pmatrix} d_1 & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & d_n \end{pmatrix} := [d_1, \cdots, d_n]$$

and a invertible matrix  $P_A \in GL_n(\mathbb{R})$  such that  $A = P^{-1}DP$ . Define  $\gamma:[0,1] \to Diag_n(\mathbb{R})$  by  $\gamma(t) = P_A^{-1}[t+(1-t)d_1,\cdots,t+(1-t)d_n]P$ . Then  $\gamma(0) = P_A^{-1}AP_A = A$  and  $\gamma(1) = Id_n$ , and  $\gamma(t) \in Diag_n(\mathbb{R})$  for every  $t \in [0,1]$ . Thus, given any other matrix  $B \in Diag_n(\mathbb{R})$ , we compose the path to the identity and the reverse path of the other to join both of the matrix with a path. This proves  $Diag_n(\mathbb{R})$  is path-connected.

- Finally, let's show that  $SL_n(\mathbb{R})$  is path-connected. Define  $f:GL_n^+(\mathbb{R})$  by  $A\mapsto \frac{1}{\det A}A$ . Note that f is continuous since, letting  $A=(a_{ij})_{i,j\in[n]}\in SL_n(\mathbb{R})$ , the coordinate functions of f are  $\frac{a_{ij}}{\det(A)}$ , for  $i,j\in[n]$ , and  $f_{\det}(A)\neq 0$  for every  $A\in GL_n^+(\mathbb{R})$ , implying this each one of them are continuous. Hence, given that  $GL_n^+(\mathbb{R})$  is path-connected and path-connected is a topological invariant over continuous functions, we deduce  $SL_n(\mathbb{R})$  is path-connected.
- 4) a) Let  $\gamma:[0,1]\to C$  defined by  $t\mapsto t\hat x+(1-t)\hat y$ . Note that

$$\|\hat{x} - x + t(y - \hat{x})\| = \|(1 - t)\hat{x} + t\hat{y} - x\|$$
  
  $\ge \|x - \hat{x}\|,$ 

for every  $t \in [0,1]$  since  $\gamma(t) \in C$ .

Considering the squares of the previous expressions, we get

$$\langle a, a \rangle \le \langle a + tb, a + tb \rangle$$
  
=  $\langle a, a \rangle + 2t \langle a, b \rangle + t^2 \langle b, b \rangle$ ,

and thus  $t\left(2\langle a,b\rangle+t\|b\|^2\right)\geq 0$  for every  $t\in[0,1]$ , where  $a=\hat{x}-x$  and  $b=y-\hat{x}$ . Note that we took a in this form since  $\langle a,b\rangle=\langle\hat{x}-x,y-\hat{x}\rangle$  and thus proving  $\langle a,b\rangle\geq 0$  would be enough to prove our result. Suppose, by contradiction, that  $\langle a,b\rangle<0$ . Then, for  $0\leq t<-\frac{2\langle a,b\rangle}{\|b\|^2}$ , we have that  $t(2\langle a,b\rangle+t\|b\|^2)<0$ , contradicting that  $t(2\langle a,b\rangle+t\|b\|^2)\geq 0$  for every  $t\in[0,1]$ . Thus, we must have  $\langle a,b\rangle\geq 0$ , i.e.,  $\langle \hat{x}-x,y-\hat{x}\rangle=-\langle x-\hat{x},y-\hat{x}\rangle\geq 0$ . Hence, for every  $y\in C$ ,  $\langle x-\hat{x},y-\hat{x}\rangle\leq 0$ .

b) As C is closed, for every  $x \in \mathbb{R}^n$  there is  $\hat{x} \in C$  such that  $\|x - \hat{x}\| = dist(x, C)$ . Let  $x, y \in \mathbb{R}$ . From a) we know that  $\langle x - \hat{x}, \hat{y} - \hat{x} \rangle \leq 0$  and  $\langle y - \hat{y}, \hat{x} - \hat{y} \rangle \leq 0$ , since  $\hat{x}, \hat{y} \in C$ . Then

$$\begin{split} \langle x - \hat{x}, \hat{y} - \hat{x} \rangle + \langle y - \hat{y}, \hat{x} - \hat{y} \rangle &= \langle x - \hat{x}, \hat{y} - \hat{x} \rangle + \langle \hat{y} - y, \hat{y} - \hat{x} \rangle \\ &= \langle (x - y) + (\hat{y} - \hat{x}), \hat{y} - \hat{x} \rangle \\ \langle x - y, \hat{y} - \hat{x} \rangle + \|\hat{y} - \hat{x}\|^2 &\leq 0. \end{split}$$

Thus we get

$$\begin{split} \|\hat{y} - \hat{x}\|^2 &\leq \langle y - x, \hat{y} - \hat{x} \rangle \\ &\overset{\mathsf{Cauchy-Schwarz}}{\leq} \|x - y\| \|\hat{y} - \hat{x}\|. \end{split}$$

Hence  $||f(x) - f(y)|| = ||\hat{x} - \hat{y}|| \le ||x - y||$ , as desired.

5) Note that  $f:(0,1]\to\mathbb{R}$  defined by  $x\mapsto\cos\left(\frac{1}{x}\right)$  is continuous since it's the composition of two continuous functions on (0,1]. Thus, the graph of  $f,\mathfrak{A}$ , is path-connected since for any two elements  $a,b\in\mathfrak{A}$  there exits  $t_0,t_1\in(0,1]$  such that  $f([t_0,t_1])$  is a continuous path joining a and b. We'll use this to prove  $\mathfrak{A}$  is connected (i.e., a particular case of path-connected implies connected). Suppose, by contradiction, that  $\mathfrak{A}=\mathfrak{A}_1\cup\mathfrak{A}_2$ , with  $\mathfrak{A}_1,\mathfrak{A}_2\subsetneq\mathfrak{A}$  opens such that  $\mathfrak{A}_1\cap\mathfrak{A}_2=\emptyset$ . Let  $a\in\mathfrak{A}_1$  and  $b\in\mathfrak{A}_2$  any. Since  $\mathfrak{A}$  is path-connected, there exist a continuous map  $\gamma:[0,1]\to X$  such that  $\gamma(0)=a$  and  $\gamma(1)=b$ , i.e., a continuous path joining a and

b in  $\mathfrak A$ . By the continuity of  $\gamma$  we get that  $[0,1]=\gamma^{-1}(X_1)\cup\gamma^{-1}(X_2)$ , where  $\gamma^{-1}(X_1)\cap\gamma^{-1}(X_2)=\emptyset$ . This contradicts that the interval [0,1] connected. Hence  $\mathfrak A$  is connected.

Now, denoting  $l=\{(0,y)\in\mathbb{R}^2: -1\leq y\leq 1\}$  the set of accumulation points of  $\mathfrak A$  and, given that  $\mathfrak A$  is connected, we must have that  $L=\overline{\mathfrak A}=\mathfrak A\cup l$  is connected. Explicitly, suppose  $L=A\cup B$ , for  $A,B\in\tau_{\mathbb{R}^2}$  disjoint and nonempty. As  $\mathfrak A$  is connected, from  $\mathfrak A=(A\cap\mathfrak A)\cup(B\cap\mathfrak A)$  we must have  $\mathfrak A=A\cap\mathfrak A$  or  $\mathfrak A=A\cap\mathfrak B$ . Assuming  $\mathfrak A=A\cap\mathfrak A$ , B should be and open containing an accumulation point of  $\mathfrak A$  and so  $B\cap\mathfrak A\neq\emptyset$ , which is a contradiction.

Let's prove L is not path-connected. Suppose  $\gamma:[0,1]\to L$  is a continuous map joining such that  $\gamma(0)=(0,0)\in l$  and  $\gamma(1)=p\in\mathfrak{A}$ . As  $\gamma$  is continuous, it is continuous in (0,1), and there exist  $\delta\in\mathbb{R}^+$   $t\in B(0,\delta)$  implies  $\gamma(t)\in B(\gamma(0),\frac{1}{2})$ . As  $\cos(2k\pi)=1$  and  $\cos((2k+1)\pi)=-1$  for every  $k\in\mathbb{Z}$ , we have  $(x,\cos(1/x))=(x,1)$  if  $x=\frac{1}{2k\pi}$  and  $(x,\cos(1/x))=(x,-1)$  if  $x=\frac{1}{\pi(2k+1)}$ , for every  $k\in\mathbb{Z}$ . This values of x approaches arbitrarily to 0 when k tends to infinity, and so there are values of this form in  $B(0,\delta)$ . Let  $t',t''\in B(0,\delta)$  such that p(t')=(b,1) y p(t'')=(c,-1), with  $b,c\in B(0,\delta)$ . As  $\|p(t')\|>\frac{1}{2}$  y  $\|p(t'')\|>\frac{1}{2}$ , we get a contradiction since  $\gamma$  is continuous. Hence, L is not path-connected.