Lógica Aula 7

Leliane Nunes de Barros

2018

leliane@ime.usp.br

Valores Verdade (recordando)

T: "verdadeiro"

F: "falso"

Valoração:

$$v: \mathcal{P} \to \{T, F\}$$

Exemplo: valorações para $p \lor \neg q$

•
$$v(\neg \alpha) = T$$
 sse $v(\alpha) = F$

•
$$v(\neg \alpha) = T$$
 sse $v(\alpha) = F$

•
$$v(\alpha \land \beta) = T$$
 sse $v(\alpha) = T$ e $v(\beta) = T$

•
$$v(\neg \alpha) = T$$
 sse $v(\alpha) = F$

•
$$v(\alpha \land \beta) = T$$
 sse $v(\alpha) = T$ e $v(\beta) = T$

•
$$v(\alpha \lor \beta) = T$$
 sse $v(\alpha) = T$ ou $v(\beta) = T$

•
$$v(\neg \alpha) = T$$
 sse $v(\alpha) = F$

•
$$v(\alpha \land \beta) = T$$
 sse $v(\alpha) = T$ e $v(\beta) = T$

•
$$v(\alpha \lor \beta) = T$$
 sse $v(\alpha) = T$ ou $v(\beta) = T$

•
$$v(\alpha \rightarrow \beta) = T$$
 sse se $v(\alpha) = T$ então $v(\beta) = T$

•
$$v(\neg \alpha) = T$$
 sse $v(\alpha) = F$

•
$$v(\alpha \land \beta) = T$$
 sse $v(\alpha) = T$ e $v(\beta) = T$

•
$$v(\alpha \lor \beta) = T$$
 sse $v(\alpha) = T$ ou $v(\beta) = T$

•
$$v(\alpha \rightarrow \beta) = T$$
 sse $v(\alpha) = F$ ou $v(\beta) = T$

•
$$v(\neg \alpha) = F$$
 sse $v(\alpha) = T$

•
$$v(\alpha \land \beta) = F$$
 sse $v(\alpha) = F$ ou $v(\beta) = F$

•
$$v(\alpha \lor \beta) = F$$
 sse $v(\alpha) = F$ e $v(\beta) = F$

•
$$v(\alpha \rightarrow \beta) = F$$
 sse $v(\alpha) = T$ e $v(\beta) = F$

Tabelas Verdade (recordando)

Consequência Lógica

$$\varphi_1,\varphi_2,\varphi_3,...,\varphi_n \vDash \psi$$

$$\updownarrow$$

Se
$$v(\varphi_i)$$
 = T , então $v(\psi)$ = T

"Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula. Teve greve. João não atrasou para a aula."

Podemos concluir que:

"Havia taxi na estação."

$$(p \land \neg q) \rightarrow r, \neg r, p \vDash q$$

"Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula. Teve greve. João não atrasou para a aula."

Podemos concluir que:

"Havia taxi na estação."

$$(p \land \neg q) \rightarrow r, \neg r, p \vDash q$$

$$(p \land \neg q) \to r, \neg r, p \vDash q$$

$$(p \land \neg q) \to r, \neg r, p \vDash q$$

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
F	F	F				
F	F	Т				
F	Т	F				
F	Т	Т				
Т	F	F				
Т	F	Т				
Т	Т	F				
Т	Т	Т				

$$(p \land \neg q) \to r, \neg r, p \vDash q$$

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
F	F	F	Т			
F	F	Т	F			
F	Т	F	Т			
F	Т	Т	F			
Т	F	F	Т			
Т	F	Т	F			
Т	Т	F	Т			
Т	Т	Т	F			

$$(p \land \neg q) \rightarrow r, \neg r, p \vDash q$$

р	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
F	F	F	Т	Т		
F	F	Т	F	Т		
F	Т	F	Т	F		
F	Т	Т	F	F		
Т	F	F	Т	Т		
Т	F	Т	F	Т		
Т	Т	F	Т	F		
Т	Т	Т	F	F		

$$(p \land \neg q) \to r, \neg r, p \vDash q$$

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \rightarrow r$
F	F	F	Т	Т	F	
F	F	Т	F	Т	F	
F	Т	F	Т	F	F	
F	Т	Т	F	F	F	
Т	F	F	Т	Т	Т	
Т	F	Т	F	Т	Т	
Т	Т	F	Т	F	F	
Т	Т	Т	F	F	F	

$$(p \land \neg q) \rightarrow r, \neg r, p \vDash q$$

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \to r$
F	F	F	Т	Т	F	Т
F	F	Т	F	Т	F	Т
F	Т	F	Т	F	F	Т
F	Т	Т	F	F	F	Т
Т	F	F	Т	Т	Т	F
Т	F	Т	F	Т	Т	Т
Т	Т	F	Т	F	F	Т
Т	Т	Т	F	F	F	Т

$$(p \land \neg q) \rightarrow r, \neg r, p \vDash q$$

p	q	r	$\neg r$	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) \to r$
F	F	F	Т	Т	F	Т
F	F	Т	F	Т	F	Т
F	Т	F	Т	F	F	Т
F	Т	Т	F	F	F	Т
Т	F	F	Т	Т	Т	F
Т	F	Т	F	Т	Т	Т
Т	Т	F	Т	F	F	Т
Т	Т	Т	F	F	F	Т

Exemplo (derivação sintática)

Também podemos provar a validade do sequente:

$$(p \land \neg q) \rightarrow r, \neg r, p \vdash q$$

através de uma prova de derivação sintática, isto é, aplicando as regras da dedução natural!

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

significa:

Existe uma derivação de ψ usando as regras da dedução natural, a partir das premissas $\varphi_1,\dots,\varphi_n$.

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

significa:

Existe uma derivação de ψ usando as regras da dedução natural, a partir das premissas $\varphi_1,\dots,\varphi_n$.

$$\varphi_1,\ldots,\varphi_n \vDash \psi$$

significa:

Toda valoração que torna $\varphi_1,\dots,\varphi_n$ verdadeiras, também faz com que ψ seja verdadeira.

A dedução natural é **correta** em relação à semântica ("*tudo que é derivável é verdade*"):

A dedução natural é **correta** em relação à semântica (" *tudo que é derivável é verdade*"):

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

A dedução natural é **correta** em relação à semântica (" *tudo que é derivável é verdade*"):

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

A dedução natural é **correta** em relação à semântica (" *tudo que é derivável é verdade*"):

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

A dedução natural é **correta** em relação à semântica (" tudo que é derivável é verdade"):

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

A dedução natural é **correta** em relação à semântica (" tudo que é derivável é verdade"):

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

A dedução natural é **correta** em relação à semântica (" *tudo que é derivável é verdade*"):

A dedução natural é **correta** em relação à semântica (" *tudo que é derivável é verdade*"):

$$\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi$$

A dedução natural é **correta** em relação à semântica ("tudo que é derivável é verdade"):

$$\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, ..., \varphi_n \models \psi$$

A dedução natural é **correta** em relação à semântica (" *tudo que é derivável é verdade*"):

$$\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, ..., \varphi_n \models \psi$$

Explicação:

- "tudo que é derivável é verdade": Se ψ é sintaticamente derivável de $\varphi_1, \varphi_2, ..., \varphi_n$ então toda valoração que torna as premissas $\varphi_1, \varphi_2, ..., \varphi_n$ verdadeiras também torna a conclusão ψ verdadeira.
- Dessa forma o valor verdade é preservado na derivação sintática.
- As regras de derivação sintática são corretas uma vez que não é possível derivar conclusões falsas a partir de premissas verdadeiras.

Teorema da completude (completeness)

Teorema da completude (completeness)

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Teorema da completude (completeness)

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

Teorema da completude (completeness)

A dedução natural é **completa** em relação à semântica (" *tudo que é verdade é derivável*"):

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

Explicação:

- "tudo que é verdade é derivável": Se ψ é consequência lógica (semântica) de φ₁, φ₂, ..., φ_n então ψ pode ser sintaticamente derivada das premissas φ₁, φ₂, ..., φ_n.
- Isso significa que as regras de derivação sintática são capazes de derivar toda e qualquer conclusão semântica.
- Assim, o sistema de dedução natural é completo (isto é, usando o conjunto de 12 regras básicas definidas anteriormente ou regras alternativas que também tornem o sistema completo).

Teorema da Dedução

A dedução natural é **correta e completa** em relação à semântica:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \iff \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Indução matemática:

• Queremos provar uma propriedade M(n) que vale para todo $n \in \mathbb{N}$.

De M(1) e supondo M(k) provamos M(k+1), então M(n) vale para qualquer natural n.

Indução matemática:

• Queremos provar uma propriedade M(n) que vale para todo $n \in \mathbb{N}$.

De M(1) e supondo M(k) provamos M(k+1), então M(n) vale para qualquer natural n.

Exemplo: $\sum_{i=1}^{n} i = n * (n+1)/2$

Indução matemática:

• Queremos provar uma propriedade M(n) que vale para todo $n \in \mathbb{N}$.

De M(1) e supondo M(k) provamos M(k+1), então M(n) vale para qualquer natural n.

Exemplo: $\sum_{i=1}^{n} i = n * (n+1)/2$

Indução estrutural:

 Queremos provar uma propriedade M(n) que vale para toda fórmula (ou prova).

Para isso, precisamos encontrar a relação entre fórmulas (ou provas) e os naturais.

Indução matemática:

• Queremos provar uma propriedade M(n) que vale para todo $n \in \mathbb{N}$.

De M(1) e supondo M(k) provamos M(k+1), então M(n) vale para qualquer natural n.

Exemplo: $\sum_{i=1}^{n} i = n * (n+1)/2$

Indução estrutural:

 Queremos provar uma propriedade M(n) que vale para toda fórmula (ou prova).

Para isso, precisamos encontrar a relação entre fórmulas (ou provas) e os naturais.

Exemplo: Provar que toda fbf tem o mesmo número de "(" e ")".

Indução matemática:

• Queremos provar uma propriedade M(n) que vale para todo $n \in \mathbb{N}$.

De M(1) e supondo M(k) provamos M(k+1), então M(n) vale para qualquer natural n.

Exemplo: $\sum_{i=1}^{n} i = n * (n+1)/2$

Indução estrutural:

 Queremos provar uma propriedade M(n) que vale para toda fórmula (ou prova).

Para isso, precisamos encontrar a relação entre fórmulas (ou provas) e os naturais.

Exemplo: Provar que toda fbf tem o mesmo número de "(" e ")".

Usar altura da árvore de análise sintática!

Provas por indução estrutural (exemplo)

 $\mathsf{M}(\mathsf{n})$: Provar que toda fbf tem o mesmo número de "(" e ")".

Provas por indução estrutural (exemplo)

```
M(n): Provar que toda fbf tem o mesmo número de "(" e ")". 
\underline{Base:}\ n=1 (átomo)
```

Provas por indução estrutural (exemplo)

 $\mathsf{M}(\mathsf{n})$: Provar que toda fbf tem o mesmo número de "(" e ")".

Base: n = 1 (átomo)

Fórmulas bem formadas (fbf)

- Átomos
- Se φ é fbf, então $(\neg \varphi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \lor \psi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \wedge \psi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \to \psi)$ é fbf

Backus Naur Form (BNF)

$$\varphi ::= p|(\neg \varphi)|(\varphi \lor \varphi)|(\varphi \land \varphi)|(\varphi \to \varphi)$$

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

Ideia: indução no comprimento das provas!

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \quad \implies \quad \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Ideia: indução no comprimento das provas!

Base: Provas de 1 linha

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

Ideia: indução no comprimento das provas!

Base: Provas de 1 linha

Passo indutivo: $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$ tem prova de tamanho k.

Suponha que vale correção para provas de tamanho < k.

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

Ideia: indução no comprimento das provas!

Base: Provas de 1 linha

Passo indutivo: $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$ tem prova de tamanho k.

Suponha que vale correção para provas de tamanho < k.

Qual a última regra aplicada?

Resumo - regras

$$\frac{\phi \quad \psi}{\phi \land \psi} \land_{i} \quad \frac{\phi \land \psi}{\phi} \land_{e_{1}} \quad \frac{\phi \land \psi}{\psi} \land_{e_{2}} \quad \frac{\phi}{\phi \lor \psi} \lor_{i_{1}} \quad \frac{\psi}{\phi \lor \psi} \lor_{i_{2}}$$

$$\frac{\neg \neg \phi}{\phi} \neg \neg e \qquad \frac{\phi}{\bot} \neg e \qquad \frac{\bot}{\neg \phi} \neg i \qquad \frac{\bot}{\phi} \bot e$$