Text Mining & Bioinformatics

Patrick Ruch
Bibliomics and Text Mining – BiTeM
HEG-HES-SO & SIB

patrick.ruch@sib.swiss

SIB Text Mining Group

- SIB Literature services
- https://sibils.org/

Biodiversity PMC

BiotXplorer

Variomes

SynVar

Celltriage

SPARQL endpoint

INTRODUCTION TO

Overview

- Introduction and objectives
- Metrics
- Words
- Tasks
- Methodologies
- Text Categorization...

Objectives

- Introduce how text mining can support bioinformatics tasks
- Explain how text mining operate with biological entities and the « biological » ecosystem
- Stimulate your interest into a satellite yet very lifeful bioscience field

Text Data Mining

- Text Mining is like Data Mining but works with textual contents
- So any statistical analysis can be performed with text mining provided the content is available in text?
- Answer: Jein!

Disciplines

- Natural language processing, computational linguistics (+)
- Machine learning / data mining (++)
- Information retrieval (+++)

Common application fields

- Information retrieval
- Biocuration support tools → tools to maintain KB
- Biological modelling, e.g. biotic interactions

User level tasks

- Search Foundations
- Triage (i.e., binary classification)
- Keyword assignment (i.e., multi-class classification)
- (Named-)Entity recognition
- Extract passages or more complex entities (e.g. protein protein interactions)

User level tasks

- Summarization
- Retrieval-augmented summarization/generation
- ChatBots

Metrics

- Precision
- Recall
- Other metrics...

Evaluation

Like most data mining tasks, information retrieval and text mining tasks are assessed using two dimensions metrics

Precision

Given 5 relevant documents in a collection for a given query, a search engine returns 10 documents, including 3, which are pertinent

$$P = 3/10 = 0.30 \text{ or } 30\%$$

Recall

- Given 5 relevant documents in a collection for a given query, a search engine returns 10 documents, including 3, which are pertinent
- Recall = 3/5 = 0.60 or 60%

Precision

- Given 8 relevant documents in a collection for a given query, a search engine returns 10 documents, including 8, which are pertinent
- Please compute the precision ?

Recall

- Given 8 relevant documents in a collection for a given query, a search engine returns 10 documents, including 8, which are pertinent
- Please compute the recall ?

[Example of "ground truth" or "benchmark collections; in such collections, the number of relevant papers is estimated a priori, see https://trec.nist.gov/]

Recall vs. Precision

- Precision is usually regarded as more important because redundancy is (usually) high in large collections...
- Exceptions are numerous
 - Looking for allergies of patients
 - Looking for rare variants
 - Looking for known items
 - **■** [...]

Exemple

Rare variants

https://variomes.text-analytics.ch/

SynVar (expansion engine)

https://goldorak.hesge.ch/synvar

Synthetic metrics

Rank

- Rth-1 is more important than Rth
- So, we compute average precision at different rank values (10, 20, ... 30%, ...)
- Mean average precision

F1 and related metrics

- Harmonic or geometric mean
- Utility metrics
 - E.g., 0.9 x Recall + 0.1 x Precision

Example

Feature normalization

- Words
- Subwords (character N-grams)
- Stems
- Word N-grams
- Syntactic entities (noun phrases, verb phrases, ...),
- Semantic entities (gene names, chem. compounds, diseases, ...)

Term normalization: database & ontology vs. reality!

Antigon NV CO 13	Decade in	SwissProt:P04637
Antigen NY-CO-13	Protein	
Cellular tumor antigen p53	Protein [preferred]	SwissProt:P04637
FLJ92943	Gene	EntrezGene:7157
LFS1	Gene	EntrezGene:7157
		HGNC:11998
Li-Fraumeni syndrome	Gene	HGNC:11998
p53	Gene	EntrezGene:7157
		HGNC:11998
P53	Gene	OMIM:191170
		SwissProt:P04637
p53 antigen	Gene	EntrezGene:7157
p53 transformation suppressor	Gene	EntrezGene:7157
p53 tumor suppressor	Gene	EntrezGene:7157
phosphoprotein p53	Gene	EntrezGene:7157
Phosphoprotein p53	Protein	SwissProt:P04637
TP53	Gene [preferred]	HGNC:11998
		SwissProt:P04637
	Gene	EntrezGene:7157
		OMIM:191170
transformation-related protein 53	Gene	EntrezGene:7157
TRANSFORMATION-RELATED PROTEIN 53	Gene	OMIM:191170
TRP53	Gene	EntrezGene:7157
		OMIM:191170
tumor protein p53	Gene [preferred]	HGNC:11998

Synonyms	#
p53	53362
trp53	23364
tp53	4156
li-fraumeni	775
lfs1	431

Transformations (ETL, reg. expressions, ...)

- i, ii, iii → 1, 2, 3 (e.g. histone deacetylase iii)
- Greek letters (e.g α-tubulin)
- Hyphenation «-»: {alphatubulin, alpha, tubulin}
- Chemistry
 - Inchi
 - SMILES
 - PubChem, chEBI, DrugBank...

Stemming vs. Lemmatization (needs syntactic analysis)

Original	Stemming	Lemmatization
New	New	New
York	York	York
is	is	be
the	the	the
most	most	most
densely	dens	densely
populated	popul	populated
city	citi	city
in	in	in
the	the	the
United	Unite	United
States	State	States

Byte Pair Encoding (BPE) → Embeddings

```
"This is a superduper complicatted sequence,
Sequence to encode
                                                                     but this sequence can be encoded."
                                   Dictionary state at iteration<sub>i</sub> -
                                                                       Encoded sequence at iteration,
        (unk>, <s>, </s>, e, _, c, s, u, d, i, n, t, a, p, b, h, o, q, r, ,, ., T, l, m) -
                                                 [_, T, h, i, s, _, i, s, _, a, _, s, u, p, e, r, d, u, p, e, r, _, c, o, m, p, l, i, c, a,
                                             t, t, e, d, _, s, e, q, u, e, n, c, e, ,, _, b, u, t, _, t, h, i, s, _, s, e, q, u, e, n, c,
                                             e, _, c, a, n, _, b, e, _, e, n, c, o, d, e, d, .]
        [<unk>, <s>, </s>, en, e, _, c, s, u, d, i, n, t, a, p, b, h, o, q, r, ,, ., T, 1, m]-
                                                 [_, T, h, i, s, _, i, s, _, a, _, s, u, p, e, r, d, u, p, e, r, _, c, o, m, p, l, i, c, a,
                                             t, t, e, d, _, s, e, q, u, en, c, e, ,, _, b, u, t, _, t, h, i, s, _, s, e, q, u, en, c, e,
                                             _, c, a, n, _, b, e, _, en, c, o, d, e, d, .]
            [<unk>, <s>, </s>, en, is, _s, enc, e, _, c, s, u, d, i, n, t, a, p, b, h, o, q, r,
        ,, ., T, 1, m
                                                 [_, T, h, is, _, is, _, a, _s, u, p, e, r, d, u, p, e, r, _, c, o, m, p, 1, i, c, a, t,
                                             t, e, d, _s, e, q, u, enc, e, ,, _, b, u, t, _, t, h, is, _s, e, q, u, enc, e, _, c, a, n,
                                             _, b, e, _, enc, o, d, e, d, .]
            [<unk>, <s>, </s>, en, is, _s, enc, ca, ed, eq, er, up, _b, equ, his, ence,
        uper, _sequ, _sequence, co, li, mp, od, tt, ut, _T, _a, _t, can, _be, _co, _is,-
        catt, e, _, c, s, u, d, i, n, t, a, p, b, h, o, q, r, ,, ., T, 1, m]
                                                 [_T, his, _is, _a, _s, uper, d, uper, _co, mp, li, catt, ed, _sequence, ,, _b,
                                             ut, _t, his, _sequence, _, can, _be, _, enc, od. ed. .
            [<unk>, <s>, </s>, en, is, _s, enc, ca, ed, eq, er, up, _b, equ, his, ence,
         uper, _sequ, _sequence, co, li, mp, od, tt, ut, _T, _a, _t, can, _be, _co, _is,
         catt, mpli, oded, _but, _can, _enc, duper, _This, _this, catted, _super,
         _compli, _encoded, _superduper, _complicatted, e, _, c, s, u, d, i, n, t, a, p,
        b, h, o, q, r, ,, ., T, 1, m
                                                 _This, _is, _a, _superduper, _complicatted, _sequence, _, _but, _this,
                                             _sequence, _can, _be, _encoded, .
```

Impact of normalization and expansion?

Recall

Precision

Normalization and expansion impact

Recall

Normalization/expansion improves recall

Precision

Normalization/expansion degrades precision

→ No free lunch and fine-tuning are needed!

[HERE]

Thank you for your attention!