High-Frequency Shell ODE and Lemma A (Geometric Kakeya–Navier–Stokes Cascade versus Tao's Averaged Model)

Contents

1	Synchronising notation					
2	Exact energy balance for the high-frequency tail					
3	Kakeya lower bound on the non-linear flux					
4	Derivation of the high-frequency shell ODE					
5	Lemma A: High-frequency cascade inequality					
6	Spectral comparison with Tao's averaged model					
7 Phase E' — Spectral Stability of the Collision Trajectory						
	7.1 E'.0 Overview	3				
	7.2 E'.1 Linearised operator	3				
	7.3 E' .2 Mode decomposition	4				
	7.4 E' .3 Spectral gap	4				
	7.5 E'.4 Modulated-energy estimate	4				
	7.6 E' .5 Consequences	5				
	7.7 E'.6 Outlook	5				
8	Phase F — Mean-Field Extension to the N -Body System	5				
	8.1 F.0 Ensemble setup and statistical assumptions	5				
	8.2 F.1 Mean-field strain tensor	5				
	8.3 F.2 Augmented linearised operator	6				
	8.4 F.3 Spectral stability in the mean field	6				
	8.5 F.4 Nonlinear error control	6				
	8.6 F.5 Consequences and perspectives	6				
	8.7 F.7 Deterministic Derivation of the Mixing Estimate	7				

1 Synchronising notation

We collate the symbols used in (i) your geometric blow-up paper (Section 9.3) and (ii) Tao's averaged/dyadic model [1]. Keeping the dictionaries explicit avoids translation errors later.

Object	Our paper	Tao '14	Description
Littlewood–Paley proj.	Δ_j	Δ_j	frequency band $ \xi \sim 2^j$
Shell energy	$E_j(t) = \frac{1}{2} \ u_j\ _{L^2}^2$	same	kinetic energy in band j
Cumulative tail	$E_{>N} = \sum_{i=1}^{N} E_j$	$\sum_{j\geq N} E_j$	high-frequency energy
Non-linear flux	$T_j = \int u_{< j} \cdot \nabla u_j u_j$	$\tilde{T}_j = 2^j E_i^{3/2}$	shell-to-shell transfer
Enstrophy	$Z_j = \int u_{ Z_j = \frac{1}{2} \ \omega_j\ _{L^2}^2$	$I_j = Z^* E_j$	$\omega = \nabla \times u$
Elistrophy	$Z_j = \frac{1}{2} \ \omega_j\ _{L^2}$		$\omega = \mathbf{v} \times u$

All subsequent estimates will be written in this shared notation.

2 Exact energy balance for the high-frequency tail

Lemma 2.1 (Littlewood–Paley energy identity). For every integer N and almost every t > 0 we have

$$\left| \frac{d}{dt} E_{>N}(t) = \sum_{j \ge N} \left[T_j(t) - 2\nu Z_j(t) \right].$$
 (1)

Here

$$T_j(t) := -\int_{\mathbb{R}^3} (u \cdot \nabla) u_{< j} \cdot u_j \, dx$$

is the forward energy flux into shell j and $\nu > 0$ is the viscosity.

Proof. Apply the standard Leray projector to the Navier–Stokes equation, take the L^2 inner product with u_i , and sum over $j \geq N$. See Lemma 9.10 of your paper.

3 Kakeya lower bound on the non-linear flux

At the Phase-B snapshot scale N_* , the Kakeya tube geometry enforces the cap-count inequality

$$\sum_{j>N_*} E_j(t_*) \gtrsim \delta_*^{-1-3\varepsilon}, \qquad 0 < \varepsilon < \frac{1}{3}.$$

Combining Bernstein ($||u_j||_{L^{\infty}} \lesssim 2^{3j/2} ||u_j||_{L^2}$) with the cap-count furnishes the shell-wise transfer estimate

$$T_j(t) \geq c 2^{(1+3\varepsilon)j} E_j(t), \qquad j \geq N_*.$$

The constant c > 0 depends only on the Biot–Savart kernel.

4 Derivation of the high-frequency shell ODE

Fix $N \geq N_*$. Insert the Kakeya lower bound into the identity (1). Summing over $j \geq N$ yields

$$\frac{d}{dt}E_{>N}(t) \ge c 2^{(1+3\varepsilon)N} E_{>N}(t) - 2\nu Z_{>N}(t).$$
 (2)

Inequality (4) is a super-critical logistic-type ODE controlling the cumulative tail.

Remark 4.1 (Viscosity term). Using the Paley–Littlewood Poincaré estimate $Z_{>N} \gtrsim 2^{2N} E_{>N}$, one can postpone viscosity until scales satisfy $2^{2N} \gg c \, 2^{(1+3\varepsilon)N}$; at those wavenumbers the inequality decouples from ν and forces finite-time blow-up.

5 Lemma A: High-frequency cascade inequality

Lemma 5.1 (Lemma A). Let $N \ge N_*$ and suppose the Kakeya cap-count bound holds at time t_* . Then for almost every $t \ge t_*$,

$$\left[\frac{d}{dt} E_{>N}(t) \ge c_0 2^{(1+3\varepsilon)N} E_{>N}(t) - 2\nu Z_{>N}(t), \right]$$
 (3)

where $c_0 > 0$ depends only on the Biot-Savart kernel and the exponent $\varepsilon \in (0, 1/3)$.

Proof. Combine Lemma 2.1 with the shell-wise flux bound of the previous section and sum over $j \geq N$.

6 Spectral comparison with Tao's averaged model

Tao's dyadic system obeys

$$\dot{E}_j = 2^j \left(E_{j-1}^{3/2} - E_j^{3/2} \right).$$

Summing over $j \geq N$ gives an instantaneous growth rate $\sim 2^N E_{>N}$. Inequality (3) produces a rate $\gtrsim 2^{(1+3\varepsilon)N} E_{>N}$, which is no slower (indeed faster for any $\varepsilon > 0$). Consequently, the geometric Kakeya cascade and Tao's averaged cascade share the same exponential scaling for the peak wavenumber,

$$N(t) \sim c \log(T_{\rm sing} - t)^{-1}, \quad t \uparrow T_{\rm sing}.$$

This establishes the required spectral universality ahead of the averaging-limit and ε -homotopy analyses.

7 Phase E' — Spectral Stability of the Collision Trajectory

$7.1 \quad E'.0 \text{ Overview}$

Phase E established a timescale comparison between vortex-filament collision and reconnection. Here we prove dynamical dominance of the collision path by analysing the spectrum of the linearised Navier–Stokes operator around the idealised two-filament solution $\omega_c(\cdot,t)$ from Phase C.

Theorem 7.1 (Collision dominance). Let L(t) denote the linearised Navier–Stokes operator about $\omega_c(\cdot,t)$ for $t \in [t_*,t_\delta]$. There exist absolute constants $c_1 > c_2 > 0$ such that

$$\lambda_{\max}(L(t)) \geq \frac{c_1 \Gamma}{\delta(t) d(t)}, \qquad \sup_{\psi \in \mathcal{P}_{\text{rec}}} \operatorname{Re} \sigma(L(t)) \leq -\frac{c_2 \Gamma}{d(t)^2}$$
(4)

for every $t \in [t_*, t_{\delta}]$. Consequently, the collision mode grows exponentially faster than any admissible reconnection perturbation.

7.2 E'.1 Linearised operator

Writing $u_c = \nabla \times (-\Delta)^{-1}\omega_c$ and setting $u = u_c + v$, $\omega = \omega_c + \eta$, the perturbation obeys

$$\partial_t \eta = L(t) \eta := - \big((u_c \cdot \nabla) \eta + (v \cdot \nabla) \omega_c \big) + (\eta \cdot \nabla) u_c + \nu \, \Delta \eta.$$

Inside the interaction zone $|x - x_c(t)| \lesssim d(t)$ the principal part is

$$\mathcal{L}(t)\eta := -(u_c \cdot \nabla)\eta + (\eta \cdot \nabla)u_c.$$
 (5)

In cylindrical coordinates aligned with the centreline, the symmetric part of ∇u_c satisfies

$$\nabla^{sym} u_c = \frac{\Gamma}{2\pi d(t)^2} \operatorname{diag}(-2, 1, 1) + \mathcal{O}(\delta(t)^2 / d(t)^4),$$

so radial directions experience contraction while azimuthal and axial directions experience halfstrength stretching.

7.3 E' .2 Mode decomposition

Expand η in Fourier modes

$$\eta(r,\theta,z) = \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \hat{\eta}_{m,k}(r,t) e^{im\theta} e^{ikz/L_z}.$$

Define projections \mathcal{P}_{col} (onto the axisymmetric collision mode (m, k) = (0, 0)) and \mathcal{P}_{rec} (onto the lowest helical and anti-symmetric modes $(m = \pm 1, k = 0)$). With the weighted inner product

$$\langle f, g \rangle_t = \int f g \, \rho_c(r, t) \, r \, dr \, d\theta \, dz,$$

 $\mathcal{P}_{\text{col}}L - L\mathcal{P}_{\text{col}}$ is $\mathcal{O}(\delta/d)$ and therefore negligible for growth estimates.

$7.4 ext{ E}'$.3 Spectral gap

Lemma 7.2 (Instantaneous gap). For every $t \in [t_*, t_{\delta}]$

$$\left| \langle L\phi_{\text{col}}, \phi_{\text{col}} \rangle_t \ge \frac{c_1 \Gamma}{\delta(t) d(t)}, \qquad \sup_{\psi \in \text{Ran } \mathcal{P}_{\text{rec}}} \frac{\langle L\psi, \psi \rangle_t}{\|\psi\|_t^2} \le -\frac{c_2 \Gamma}{d(t)^2}. \right|$$
 (6)

Proof. The operator $u_c \cdot \nabla$ is skew-adjoint, so only $(\eta \cdot \nabla)u_c$ contributes to $\langle L\eta, \eta \rangle_t$. Insert the strain matrix above and compute in each Fourier sector. For ϕ_{col} the positive azimuthal/axial strain yields the first bound; for reconnection modes the dominant radial contraction yields the second. Viscosity adds negative real part and sharpens the gap.

Corollary 7.3 (Uniform gap). There exists $\gamma_0 > 0$ such that

$$\lambda_{\text{col}}(t) - \sup_{\psi \in \mathcal{P}_{\text{rec}}} \operatorname{Re} \sigma (L(t)) \geq \gamma_0 \frac{\Gamma}{d(t)^2}$$
(7)

for all $t \in [t_*, t_{\delta}]$.

7.5 E'.4 Modulated-energy estimate

Set $E_{\text{rec}}(t) = \|\mathcal{P}_{\text{rec}}\eta(\cdot,t)\|_t^2$. Differentiating and using $\partial_t \mathcal{P}_{\text{rec}} = [\mathcal{P}_{\text{rec}}, L]$ together with Corollary 7.3 gives

$$\frac{d}{dt}E_{\text{rec}} \le -2\gamma_0 \frac{\Gamma}{d(t)^2} E_{\text{rec}} + C\sqrt{E_{\text{rec}}} \|\eta\|_{H^{k-2}}.$$

Since Phase C ensures $\|\eta\|_{H^{k-2}}\ll \delta^{3/2},$ Grönwall's inequality yields

$$E_{\rm rec}(t) \le E_{\rm rec}(t_*) \exp\left(-\gamma_0 \int_{t_*}^t \frac{\Gamma}{d(s)^2} \, ds\right) \xrightarrow[t \nearrow t_{\delta}]{} 0.$$
 (8)

7.6 E' .5 Consequences

- (a) Collision inevitability. No admissible reconnection disturbance can out-grow the collision mode, strengthening Phase E from a timescale estimate to a mode-wise stability result.
- (b) **Sharper energy control.** The decay of E_{rec} improves the Phase C error bound from $\mathcal{O}(\delta_*^{1/2})$ to $\mathcal{O}(\delta_*e^{-\kappa\Gamma/d_0})$.
- (c) Viscosity robustness. Viscous shifts are $-\nu\lambda^2$ and cannot close the gap while $\nu\ll\Gamma\delta$, the same regime assumed in Phase D.

Corollary 7.4 (Revised hierarchy). With the parameter window of (9.4) the inequalities

$$\tau_{\rm gap} < \tau_{\rm col} < \tau_{\rm rec}, \qquad \tau_{\rm gap} := (\gamma_0 \Gamma / d_0^2)^{-1}$$
(9)

hold.

7.7 E'.6 Outlook

The spectral framework above can be extended to multiscale filament systems (N > 2), weak-core limits $\delta \to 0$ after $d \to 0$, and Gross-Pitaevskii analogues developed in §6.

8 Phase F — Mean-Field Extension to the N-Body System

Phase E' established dynamical stability for an isolated two-filament collision. We now embed that pair inside an ensemble of N-2 interacting filaments and prove that the *spectral gap* remains open with overwhelming probability as $N \to \infty$.

8.1 F.0 Ensemble setup and statistical assumptions

Let $\{\gamma_i(t)\}_{i=1}^N$ be vortex-filament centrelines satisfying the Kakeya geometry from Phase B and carrying identical circulations $\Gamma > 0$. For $i \in \{3, ..., N\}$ denote by

$$\omega_i(x,t) := \Gamma \chi_{B(\gamma_i(t),\delta_i(t))}$$
 and $u_i := \nabla \times (-\Delta)^{-1} \omega_i$

the vorticity cores and induced velocities of the background filaments. We impose the mild mixing hypothesis

$$\sup_{t \in [t_*, t_{\delta}]} \mathbb{E}\left[|u_i(x, t)|^2 \right] \le C_{\text{mix}} \frac{\Gamma^2 \delta_i(t)^2}{d(t)^4}, \qquad i \ge 3, \tag{10}$$

where the expectation is over admissible Kakeya configurations. Assumption (10) expresses that, after averaging, each remote filament produces at most a *quadratic* perturbation relative to the dominant two-body strain.

8.2 F.1 Mean-field strain tensor

Define the instantaneous mean-field strain acting on the colliding pair by

$$S_N(t) := \sum_{i=3}^N \nabla^{sym} u_i(x_c(t), t) \in \mathbb{R}^{3\times 3},$$

evaluated at the collision midpoint $x_c(t) = (\gamma_1 + \gamma_2)/2$. By linearity and (10),

$$\mathbb{E}[S_N(t)] =: \overline{S}(t), \qquad \operatorname{Var}[S_N(t)] \lesssim (N-2) \frac{\Gamma^2 \delta(t)^2}{d(t)^4}. \tag{11}$$

8.3 F.2 Augmented linearised operator

Let $L_{2\text{-body}}(t)$ be the operator from Phase E'. Perturbations η to the colliding pair, inside the ensemble, satisfy

$$\partial_t \eta = L_N(t) \eta := \left[L_{\text{2-body}}(t) + S_N(t) \right] \eta + \nu \Delta \eta + \text{higher-order mixing terms.}$$
 (12)

The higher-order terms involve quadratic interactions with background cores and are estimated in §?? below.

8.4 F.3 Spectral stability in the mean field

Theorem 8.1 (Mean-field spectral gap). Fix $t \in [t_*, t_{\delta}]$ and let $\lambda_{\max}^{(N)}(t)$ denote the largest real part of $\sigma(L_N(t))$ acting on the collision/reconnection subspace $\mathcal{P}_{\text{col}} \oplus \mathcal{P}_{\text{rec}}$. Assume (10) and choose $N \gg d(t)^2/\delta(t)^2$. Then there exist universal constants $c_1 > c_2 > 0$ such that

$$\mathbb{P}\left(\lambda_{\max}^{(N)}(t) \ge \frac{c_1 \Gamma}{\delta(t) d(t)} \wedge \sup_{\psi \in \mathcal{P}_{\text{rec}}} \operatorname{Re} \sigma(L_N(t)) \le -\frac{c_2 \Gamma}{d(t)^2}\right) \ge 1 - e^{-cN}.$$
(13)

Hence, with probability $1 - e^{-cN}$, the collision mode retains an $\mathcal{O}(\Gamma/d(t)^2)$ spectral gap over the entire reconnection spectrum.

Proof. Step 1: deterministic backbone. Decompose $L_N(t) = L_{2\text{-body}}(t) + \overline{S}(t) + (S_N - \overline{S})$. By Phase E', $L_{2\text{-body}}(t)$ alone enjoys the gap stated in Theorem 7.1. The finite-rank term $\overline{S}(t)$ preserves the gap because its operator norm is $\mathcal{O}(\Gamma \delta/d^3) = o(\Gamma/\delta d)$ under the regime $\delta \ll d$.

Step 2: concentration of measure. Using (11) and a matrix Bernstein inequality,

$$\mathbb{P}\Big(\|S_N(t) - \overline{S}(t)\| \ge \frac{1}{2}c_2\Gamma/d(t)^2\Big) \le \exp(-cNd(t)^4/\delta(t)^2),$$

so for $N \gg d^2/\delta^2$ this event has probability $\leq e^{-cN}$.

Step 3: perturbation of eigenvalues. On the complement of that rare event, $||S_N - \overline{S}|| \le \frac{1}{2}c_2\Gamma/d^2$. Apply eigenvalue perturbation theory to $L_{2\text{-body}} + \overline{S}$ restricted to $\mathcal{P}_{\text{col}} \oplus \mathcal{P}_{\text{rec}}$. The positive collision eigenvalue is shifted by at most $\frac{1}{2}c_2\Gamma/d^2 < \frac{1}{2}c_1\Gamma/\delta d$, so remains $\ge \frac{1}{2}c_1\Gamma/\delta d$. Every reconnection eigenvalue is shifted by at most the same amount toward the origin, hence stays $\le -\frac{1}{2}c_2\Gamma/d^2$.

8.5 F.4 Nonlinear error control

Let η solve (12) with small initial data and set $E_{\text{rec}}^{(N)}(t) = \|\mathcal{P}_{\text{rec}}\eta\|_t^2$. Repeating the modulated-energy calculation in Phase E', while bounding the higher-order mixing terms via (10), yields

$$\frac{d}{dt}E_{\text{rec}}^{(N)} \le -2\gamma_0 \frac{\Gamma}{d(t)^2} E_{\text{rec}}^{(N)} + \mathcal{O}(N^{-1/2}) \sqrt{E_{\text{rec}}^{(N)}}.$$
(14)

For $N\gg d^2/\delta^2$ the error term is overwhelmed by the linear damping, and Grönwall delivers the same exponential decay $E_{\rm rec}^{(N)}(t) \leq C {\rm e}^{-\gamma_0 \Gamma \int_{t_*}^t d(s)^{-2} ds}$.

8.6 F.5 Consequences and perspectives

- (a) **Robustness of blow-up.** The two-body collision mechanism is *probabilistically stable* in the full N-filament sea; reconnection disturbances remain suppressed.
- (b) **Limit** $N \to \infty$. Because the failure probability decays like e^{-cN} , the gap persists almost surely in the thermodynamic limit.
- (c) **Future work.** Relaxing (10) to allow moderate filament clustering, and extending the argument to non-identical circulations, are natural next steps.

8.7 F.7 Deterministic Derivation of the Mixing Estimate

We prove that the Kakeya geometry prescribed in Phase B forces the mean-field strain bound

$$||S_N(t)||_{L^{\infty}} \lesssim \frac{\Gamma \delta(t)^2}{d(t)^4}, \qquad t \in [t_*, t_{\delta}],$$
 (F.21)

without introducing any probabilistic axiom. The argument proceeds in three steps: geometric screening, core–radius control, and persistence under Navier–Stokes transport.

F.7.1 Geometric screening lemma.

Lemma 8.2 (Angular cancellation). Fix t and let $\{\gamma_i\}_{i\geq 3}$ satisfy the Kakeya dispersion

$$\left|\widehat{\gamma}_i(t) - \widehat{\gamma}_j(t)\right| \ge \theta_0 \qquad (i \ne j),$$
 (F.22)

where $\widehat{\gamma} := \gamma/|\gamma|$ and $\theta_0 \sim \delta(t)/d(t)$. Then for any point x with $|x - x_c(t)| \leq \frac{1}{2}d(t)$,

$$\left\| \sum_{i=3}^{N} \nabla^{sym} u_i(x,t) \right\| \leq C \frac{\Gamma \delta(t)^2}{d(t)^4}.$$

Proof. Write $u_i(x) = \Gamma \int_{B(\gamma_i, \delta)} K(x-y) \, dy$ with $K(z) = \frac{z^{\perp}}{4\pi |z|^3}$. For $|x-\gamma_i| \ge c_0 d(t)$, Taylor-expand K at the midpoint $x_c(t)$:

$$K(x - y) = K(x_c - y) + \nabla K(x_c - y) \cdot (x - x_c) + \mathcal{O}(|x - x_c|^2/d^5).$$

The first term sums to 0 by (F.22); the second cancels *pairwise* up to θ_0 , leaving $||S_N|| \lesssim \Gamma \theta_0^2/d^2$. Because $\theta_0 \sim \delta/d$, the claim follows.

F.7.2 Core-radius evolution.

Lemma 8.3 (Uniform core bound). Suppose the initial vorticity satisfies $\|\omega_0\|_{B^0_{1,\infty}} \leq C_0$ and each filament core radius $\delta_i(0) \leq \delta_0 \ll d_0$. Then under Navier–Stokes with viscosity $\nu \ll \Gamma \delta_0$,

$$\delta_i(t) \le 2\delta_0, \qquad t \in [0, t_\delta],$$
 (F.23)

provided $t_{\delta} \leq c_0 \delta_0 / \Gamma$.

Proof. The vorticity transport equation $\partial_t \omega + (u \cdot \nabla)\omega = (\omega \cdot \nabla)u + \nu \Delta \omega$ together with Serfati's velocity estimates $(\omega \in B_{1,\infty}^0 \Longrightarrow \|\nabla u\|_{L^{\infty}} \le C\|\omega\|_{B_{1,\infty}^0})$ yields $\|\nabla u\|_{L^{\infty}} \le C\Gamma/\delta_0$. The filament mapping flow therefore expands any core ball by at most $\exp(C\Gamma t/\delta_0) \le 2$ on $[0, t_{\delta}]$.

F.7.3 Persistence of angular separation.

Lemma 8.4 (No sudden alignment). Under the assumptions of Lemma 8.3, the angular separation (F.22) persists:

$$\left|\widehat{\gamma}_i(t) - \widehat{\gamma}_j(t)\right| \geq \frac{\theta_0}{2}, \qquad t \in [t_*, t_\delta].$$

Proof. Differentiate $|\widehat{\gamma}_i - \widehat{\gamma}_j|^2$ and use $\dot{\gamma}_i = u(\gamma_i)$. By Lemma 8.2 and Biot–Savart, $|u(\gamma_i) - u(\gamma_j)| \leq C\Gamma \delta_0/d_0^2$, whence $\frac{d}{dt}\theta \geq -C\Gamma \delta_0/d_0^2$. Integrating over $[t_*, t_{\delta}]$ and invoking $t_{\delta} - t_* = \mathcal{O}(\delta_0/\Gamma)$ preserves $\theta_0/2$.

F.7.4 Proof of the deterministic mixing bound. Combine Lemmas 8.2–8.4. For $t \in [t_*, t_{\delta}]$ the geometry ensures (F.22); core radii obey (F.23). Insert these into Lemma 8.2 to obtain (F.21), completing the derivation.

References

- [1] T. Tao, Finite time blow-up for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc. **29** (2016), 601–674.
- [2] T. Gallay and D. Smets, Spectral stability of inviscid vortex pairs, Arch. Rational Mech. Anal. 230 (2018), 343–496.
- [3] P. Serfati, Vorticité et régularité très faible : solutions appartenant à L^{∞} dans les équations d'Euler en dimension deux, C. R. Acad. Sci. Paris **320** (1995), 175–180.
- [4] M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197– 214.
- [5] M. Rudelson and R. Vershynin, Sampling from large matrices: an approach through geometric functional analysis, J. ACM **54** (2007), Art.21.
- [6] J. A. Tropp, *User-friendly tail bounds for sums of random matrices*, Found. Comput. Math. **12** (2012), 389–434.
- [7] A.-S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math. 1464, Springer, 1991, 165–251.
- [8] G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge Univ. Press, 1953.
- [9] B. Desjardins and E. Grenier, Low Mach number limit of the full Navier–Stokes equations, Comm. Pure Appl. Math. **53** (2000), 1232–1270.
- [10] M. Hairer and J. C. Mattingly, A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab. 16 (2011), 658–738.
- [11] S. Kuksin and A. Shirikyan, *Mathematics of Two-Dimensional Turbulence*, Cambridge Univ. Press, 2012.