STAT 500

Model Diagnostics for the SLR analysis of Forbes data

/* Compute least squares estimates of regression coefficients and output the residuals and predicted values to a file that can be used used by other SAS procedures.

The following code includes the plots=diagnostics(unpack) option that outputs diagnostic plots as individual graphs, If you want to put the diagnostic plots into a panel of plots, remove this option. */

```
proc reg data=set1 plots=diagnostics(unpack);
  model y = x / p clm cli;
  output out=set2 p=yhat r=residual student=stdres stdp=stdp;
  run;
```

The REG Procedure Dependent Variable: y Log(Atm. pressure)

Number of Observations Read	17
Number of Observations Used	17

Analysis of Variance							
Source	DF	Sum of Squares		F Value	Pr > F		
Model	1	0.22573	0.22573	2961.55	<.0001		
Error	15	0.00114	0.00007622				
Corrected Total	16	0.22688					

Root MSE	0.00873	R-Square	0.9950
Dependent Mean	3.21450	Adj R-Sq	0.9946
Coeff Var	0.27160		

Parameter Estimates						
Variable	Label	DF	Parameter Estimate		t Value	Pr > t
Intercept	Intercept	1	-0.97087	0.07694	-12.62	<.0001
X	Boiling Point (deg. F)	1	0.02062	0.00037895	54.42	<.0001


```
/* Plot residuals against the explanatory variable to check
    for homogeneity of variance and patterns in the residuals
    that would suggest that the model is inadequate */
title h=2 'Residuals vs Estimated Means';
proc sgplot data=set2;
  scatter x=x y=residual /
    markerattrs=(size=12 symbol=CircleFilled color=black);
  refline 0 / axis=y;
  xaxis label="Boiling Point of Water (degrees F)"
           labelattrs=(size=14) valueattrs=(size=13);
  yaxis label="Logarithm of Atmospheric Pressure"
           labelattrs=(size=14) valueattrs=(size=13);
  run;
```



```
/* Compute normal probability plot for residuals */
title " ";
proc univariate data=set2 normal;
  var residual;
  qqplot;
  run;
```

The UNIVARIATE Procedure Variable: residual

Moments					
N	17	Sum Weights	17		
Mean	0	Sum Observations	0		
Std Deviation	0.00845323	Variance	0.00007146		
Skewness	3.49882176	Kurtosis	13.5869581		
Uncorrected SS	0.00114331	Corrected SS	0.00114331		
Coeff Variation		Std Error Mean	0.00205021		

Tests for Normality					
Test	Statistic		p Value		
Shapiro-Wilk	W	0.548298	Pr < W	< 0.0001	
Kolmogorov-Smirnov	D	0.377899	Pr > D	< 0.0100	
Cramer-von Mises	W-Sq	0.496863	Pr > W-Sq	< 0.0050	
Anderson-Darling	A-Sq	2.736351	Pr > A-Sq	< 0.0050	

