Subject Code: 22EC204ES

SET-II

7 HT NO: R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. II Sem Supply End Examinations, January-2024 Basic Electrical and Electronics Engineering Common to ECE, AIML, CSM, CSC

Time: 3 Hours

Max. Marks: 60

Note

i. This Question paper contains Part- A and Part- B.

ii. All the Questions in Part A are to be answered compulsorily.

iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 01 = 10 \text{ Marks}$

			Marks	CO	BL
1.	a	State Kirchhoff's law.) 	G04	
	Ъ	Obtain expressions for the equivalent star network resistances	1	CO1 CO1	L1 L3
		for a given delta network.	-	COI	כם
	С	Thoreman and Control of the Control			
	d	The r.m.s. value of a sine wave is 100 A. Find its peak value.	1	CO2	L3
	u	How much r.m.s. current does a 300 W 200 V bulb take from the 200 V, 50 Hz power line?	1	CO2	L3
•	e	State the condition for maximum efficiency in a transformer.	1	CO3	L2
	f	Express the torques equation of D.C. motor.	1	CO3	L2
	~	What is made investor and the O			-
	g h	What is peak inverse voltage?	1	CO4	L2
	п	Sketch the bridge rectifier circuit.	1	CO4	L1
	i	What are the different configurations of BJT?	•	~	
	i	Show how α and β are related to each other.	1	CO5	L2
	,	one is now a und p are related to each other.	1	CO ₅	L3

PART-B

5 X 10 = 50 Marks

		Marks	CO	BL
2	Demonstrate the nodal voltage method for solving networks. How are the nodal equations written?	10	CO1	L4
	OR			
3	A resistance of 10 ohms is connected in series with a combination of two resistances arranged in parallel each of value 20 ohms. Determine the resistance R_3 which should be shunted across the parallel combination so that current drawn by the circuit is 1.5 A with applied voltage of 20 V	10	CO1	L3

6.7				
Subject	Code: 22EC204ES SET-II HT NO:	7 1	R	
4	A circuit is made of two branches in parallel, one having a resistance of 10 ohms, in series with an inductive reactance of 20 ohms, the other having a resistance of 15 ohms in series with a capacitive reactance of 15 ohms. The supply voltage is 200 V. Find the total current, power and power factor	10	CO2	L3
5	OR Analyse the current relationship and the voltage relationship in a 3-phase star connected system. Also derive the equation for power is such a system.	10	CO2	L4
6	Develop the equivalent circuit of a single phase transformer. OR	10	CO3	L4
7	Describe the working of a three phase induction motor. What are its applications?	10	CO3	L2
8	Plot the V–I characteristic of zener diode and explain its operation. OR	10	CO4	L2
9	Derive expressions for rectification efficiency, ripple factor, transformer utilisation factor and peak factor of a half wave rectifier with resistive load.	10	CO4	L3
10	With the help of V-I characteristics describe the working principle of an SCR. OR	10	CO5	L2
11.	Compare and contrast CE, CB and CC configurations of transistors.	10	CO5	L4
СО	: Course Outcomes			
BL	: Bloom's Taxonomy Levels L 1 : Remembering L 2 : Un	derstandi	ng	

1

L 4 : Analysing

L 6 : Creating

L 3 : Applying

L 5 : Evaluating

HT NO: R

CMR TECHNICAL CAMPUS UGC AUTONOMOUS

B. Tech. I Semester Supply End Examinations, September-2023 **Basic Electrical & Electronics Engg** Common to CSE, IT & CSD

Time: 3 Hours

Max. Marks: 60

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 01 = 10 \text{ Marks}$

			Marks	CO	BL
1.	a b	Define KCL, KVL? What are the different types of electrical elements?	1 1	CO1	L2 L2
	c d	Define Form factor and peak factor? What is real power and reactive power?	1 1	CO2 CO2	L2 L2
	e f	What is principle of transformer? Define Slip?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO3 CO3	L2 L2
	g h	What is diode current equation? What are the characteristics of Zener Diode?	1 1	CO4 CO4	L2 L2
	i j	What is SCR? What is transistor?	1	CO5 CO5	L2 L2
		PART- B	5 X 10 =	50 Marks	

			Marks	CO	BL
2. a	a	For the given circuit, determine the current in 5Ω resistor?	5	CO1	L3
		16 V			Ŋ.

ь	Derive the equations	for star	to	delta	and	delta to	star
	transformation?					-	

CO1 L4 5

Using node voltage method to find the current in the 10Ω 3 a resistance of the following circuit shown in below figure

CO₁ L3

100 V + 20 N 30 N (+ 30V

Determine the current in all the branches of the network b using analysis.

CO₁

R

5

5

L3

4Ω WWW

Derive the expression for RMS value, AVG value, Form 4 factor and Peak factor of a sawtooth wave?

10 CO₂

L4

L3

5 A 100 Ωresistor, 20 μF capacitor and a 2H inductor are connected in series. At what frequency is the phase angle 45°.

CO₂

5 CO₂ L3

b A wire carries a current, which is a combination of a d.c current of 10A and a sinusoidal current with a peak value of 10A. Determine RMS value of the resultant.

> CO3 10 L2

6 What is principle of DC generator and With a neat diagram Explain the Construction of DC machine?

7 What is principle of transformer and derive its emf equation? а b Derive the torque equation of DC Motor?

CO3 5 L2 5 CO₃ L2

8 а Explain the operation of PN junction diode and draw its V-I characteristics?

CO4 L2

With a neat diagram explain the operation of Half wave b rectifier?

5 CO4 L2

OR

Compare the characteristics of centre tapped transformer type 9 а and bridge type full wave Rectifiers.

5 CO₄ L4

Define the terms dynamic resistance of a diode and

5 CO₄ L2

Diffusion capacitance of a diode

Explain the construction and operation of SCR 10

5 CO₅ L2

Compare CE, CB and CC characteristics of a BJT b

L2 CO₅

Explain the construction and operation of CC amplifier? 11 а Explain the construction and operation of CE amplifier? b

CO₅ L2 CO₅ L2

 \mathbf{CO} : Course Outcomes

b

BL: Bloom's Taxonomy Levels L 1: Remembering

L 2: Understanding

5

5

L 3: Applying

L 4: Analysing

L 5: Evaluating

L 6: Creating

Subject Code: 19EE203ES

SET-II

HT NO: 7 R

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. II Sem Supply End Examinations, January-2024
Basic Electrical Engineering
Department of ECE

Time: 3 Hours

Max. Marks: 70

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $10 \times 02 = 20 \text{ Marks}$

			Marks	CO	BL
1.	a	Write the volt-ampere relations of R, L, C parameters.	2	CO1	L2
	b	State Thevenin's Theorem?	2	CO1	L1
	С	Define real and Reactive power?	2	CO2	L1
	d	Define form factor?	2	CO2	L1
	е	Draw No load phasor diagram of single-phase transformer.	2	CO3	L2
	f	What is an auto-transformer?	2	CO3	L2
	g	List the basic requirements to produce e.m.f.	2	CO4	L2
	h	What is the necessity of starter for DC motor?	2	CO4	L1
	i	Write the full forms of (i) MCB, (ii) MCCB and (iii) ELCB	2	CO5	L1
	j	What is the purpose of earthing?	2	CO5	L2

PART-B

5 X 10 = 50 Marks

CO

BL

Marks

2.	a b	State and explain Kirchoff's laws. Determine the current flowing through the 10Ω resistor using Thevenin's theorem.	5 5	CO1	L2 L5

OR 5		
a Discuss independent and dependent sources briefly? b Derive the transient DC response of series RL circuit?	CO1	

Subject Code: 19EE203ES

SET-II

HT NO: | 7 R

10	∼	1
	1	

4	a b	Describe the generation of sinusoidal signal with neat sketch. Obtain the phase relation between current & voltage when RC series circuit is connected across sinusoidal voltage. OR	5 5	CO2 CO2	L2 L2
5	a b	Explain the concept of Average value and RMS value. Derive the relation between line and phase voltages and currents for a balanced STAR connected system.	5 5	CO2 CO2	L2 L2
6	a b	Explain operation of transformer on No load? Explain various losses in single phase transformer. OR	5 5	CO3 CO3	L2 L2
7	a b	Develop equivalent circuit of 1-phase transformer? Draw the connection diagrams of Y-Y, Y- Δ three-phase transformer connections.	5 5	CO3 CO3	L2 L2
8	a	Explain in brief the functions of the following parts of a DC Machine (i) Field Poles (ii) Armature (iii) Brushes and (iv) Commutator.	5	CO4	L2
	Ъ	Explain with sketches the constructional features of synchronous generator. OR	5	CO4	L2
9	a b	Explain working principle of 3-phase induction motor. Describe briefly torque-slip characteristics of induction motor.	5 5	CO4 CO4	L2 L2
10	a b	Explain construction and operation of MCB? Discuss the important characteristics of batteries? OR	5 5	CO5 CO5	L2 L2
11	a b	Explain different types of wiring system. Discuss the power factor improvement methods briefly.	5 5	CO5 CO5	L2 L2

HT NO: | 7 R |

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech. I Semester Regular & Supply End Examinations, January-2024
Basic Electrical & Electronics Engineering
(Common to CSE, IT, CSIT &CSD)

Time: 3 Hours

Max. Marks: 60

Note

- i. This Question paper contains Part- A and Part- B.
- ii. All the Questions in Part A are to be answered compulsorily.
- iii. All Questions from Part B are to be answered with internal choice among them.

PART-A

		PART-A		$10 \times 01 = 10 \text{ Marks}$		
			Marks	CO	BL	
1	a b	Differentiate between ideal and practical energy sources. Write the types of elements.	1M 1M	CO1 CO1	L2 L1	
	c d	Define Apparent power. What are the three types of power used in AC circuits?	1M 1M	CO2 CO2	L2 L1	
	e f	Give some applications of transformer. List the types of DC generators.	1M 1M	CO3 CO3	L3 L2	
	g h	List the applications of the diode. Define Transformer utilization factor.	1M 1M	CO4 CO4	L2 L2	
	i	Draw the V-I characteristics of SCR. What is amplifying? PART-B	1M 1M	CO5 CO5	L3 L1	
	j		$5 \times 10 = 50 \text{ Marks}$			
			Marks	CO	BL	
2	a b	State Ohms law. Discuss the limitations of ohms law. Two resistances of 20 ohms and 30 ohms respectively are connected in parallel. These two parallel resistances are further connected in series with a resistance of 15 ohms. If the current through the 15 ohms resistance is 3A. Find (i) the voltage across the whole circuit	3 7	CO1 CO1	L2 L3	
		(ii) the total power consumed OR Deduce the expressions to convert star to delta configuration	5	CO1	L5	
3	a b	and vice-versa. Calculate the mesh currents i_1 and i_2 in the circuit of Figure.	5	CO1	L3	

b

configurations.

5

CO₅

L4

4 Define Average value, RMS value, Form factor & Peak 3 CO₂ L2 factor. For the waveform shown in Figure below determine for each b 7 CO₂ L3 (i) the frequency (ii) the average value over half a cycle (iii) the RMS value (iv) the form factor (v) the peak factor.

5	a	Explain the response of series RL circuit for a sinusoidal voltage source.	5	CO2	L1
	b	Discuss the voltage and current relationship in Balanced star connection.	5	CO2	L3
6	a	Develop an equation for induced e.m.f in a transformer winding in terms of flux and frequency.	5	CO3	L3
	b	Describe various types of DC generators with their field and armature connections.	5	CO3	L4
		OR			
7	a	With a neat circuit diagram explain the construction of DC motor.	5	CO3	L3
	b	Explain working principle of three phase induction motor.	5	CO3	L1
8	a	Explain the operation of diode and deduce its current equation.	5	CO4	L2
	b	Discuss the operation of full wave rectifier with relevant waveforms.	5	CO4	L1
		OR			
9	a	Write a short notes on; (i) Transformer Utilisation Factor (ii) Peak Inverse Voltage	3	CO4	L2
	b	Explain the operation of zener diode with required circuit and characteristics.	7	CO4	L1
10	a	Describe about Bipolar Junction Transistor?	5	CO5	L1
	b	Explain the working of CB configuration of a BJT and draw its input, output characteristics.	5	CO5	L2
		OR			
11	a	With neat sketch explain the constructional details of SCR.	5	CO5	L2

Compare the differences between CE, CB and CC