Assignment 5

Details

Author : Varad Mashalkar
 Roll Number : 33337

3. Batch : M11 4. Class : TE11

Problem Statement

Perform the following operations using Python on the Air quality and Heart Diseases data sets

- 1. Data cleaning
- 2. Data integration
- 3. Data transformation
- 4. Error correcting
- 5. Data model building

Implementation details

Dataset URL: https://archive.ics.uci.edu/ml/datasets/Heart+Disease)

2. Python version: 3.7.4

3. Imports:

- A. pandas
- B. numpy
- C. matplotlib.pyolot
- D. seaborn
- E. sklearn.linear_model.LogisticRegression

Dataset details

- 1. This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them. In particular, the Cleveland database is the only one that has been used by ML researchers to this date.
- 2. The "goal" field refers to the presence of heart disease in the patient.
- 3. It is integer valued from 0 (no presence) to 4. Experiments with the Cleveland database have concentrated on simply attempting to distinguish presence (values 1,2,3,4) from absence (value 0).
- 4. The names and social security numbers of the patients were recently removed from the database, replaced with dummy values.

Importing required libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Loading the dataset

```
In [2]:
```

In [3]:

oldpeak

dtype: int64

slope

thal num

ca

0

0

0

```
dataset = pd.read_csv("./preprocessed_data.csv", index_col=0)
```

Displaying metadata for dataset (Statistical)

```
dataset.shape
Out[3]:
(682, 14)
In [4]:
dataset.isnull().sum()
Out[4]:
               0
age
               0
sex
chest_pain
trestbps
               0
cholestrol
               0
               0
fbs
restecg
               0
               0
thalach
               0
exang
```

In [5]:

dataset.head(15)

Out[5]:

	age	sex	chest_pain	trestbps	cholestrol	fbs	restecg	thalach	exang	oldpeak	
0	0.714286	1	1	0.541667	0.386401	1.0	2.0	0.633803	0.0	0.890909	
1	0.795918	1	4	0.666667	0.474295	0.0	2.0	0.338028	1.0	0.745455	
2	0.795918	1	4	0.333333	0.379768	0.0	2.0	0.485915	1.0	0.945455	
4	0.265306	0	2	0.416667	0.338308	0.0	2.0	0.788732	0.0	0.727273	
5	0.571429	1	2	0.333333	0.391376	0.0	0.0	0.830986	0.0	0.618182	
7	0.591837	0	4	0.333333	0.587065	0.0	0.0	0.725352	1.0	0.581818	
8	0.714286	1	4	0.416667	0.421227	0.0	2.0	0.612676	0.0	0.727273	
10	0.591837	1	4	0.500000	0.318408	0.0	0.0	0.619718	0.0	0.545455	
11	0.571429	0	2	0.500000	0.487562	0.0	2.0	0.654930	0.0	0.709091	
12	0.571429	1	3	0.416667	0.424544	1.0	2.0	0.577465	1.0	0.581818	
13	0.326531	1	2	0.333333	0.436153	0.0	0.0	0.795775	0.0	0.472727	
14	0.489796	1	3	0.766667	0.330017	1.0	0.0	0.718310	0.0	0.563636	
15	0.591837	1	3	0.583333	0.278607	0.0	0.0	0.802817	0.0	0.763636	
16	0.408163	1	2	0.250000	0.379768	0.0	0.0	0.760563	0.0	0.654545	
17	0.530612	1	4	0.500000	0.396352	0.0	0.0	0.704225	0.0	0.690909	

Observations:

- 1. There are 682 data points with 14 columns (including target column)
- 2. Null values are removed / replaced and dataset is scaled for numerical variables

A) Feature selection

In [6]:

```
# Displaying heatmap for correlation matrix
fig = plt.figure(figsize=(15, 15))

# Adds subplot on position 1
ax = fig.add_subplot(111)

sns.heatmap(dataset.corr())
plt.show()
```


In [7]:

dataset.corr()

Out[7]:

	age	sex	chest_pain	trestbps	cholestrol	fbs	restecg	thal
age	1.000000	-0.023624	0.145740	0.247017	-0.089696	0.154740	0.223164	-0.340
sex	-0.023624	1.000000	0.163370	0.003323	-0.199176	0.037774	-0.036257	-0.148
chest_pain	0.145740	0.163370	1.000000	-0.009134	-0.182046	-0.026207	-0.002091	-0.334
trestbps	0.247017	0.003323	-0.009134	1.000000	0.066543	0.120023	0.074495	-0.111
cholestrol	-0.089696	-0.199176	-0.182046	0.066543	1.000000	0.097576	0.143226	0.272
fbs	0.154740	0.037774	-0.026207	0.120023	0.097576	1.000000	0.113193	0.027
restecg	0.223164	-0.036257	-0.002091	0.074495	0.143226	0.113193	1.000000	0.082
thalach	-0.340013	-0.148256	-0.334507	-0.111419	0.272218	0.027782	0.082551	1.000
exang	0.146912	0.147096	0.415408	0.118941	-0.054860	0.036641	0.024909	-0.351
oldpeak	0.246984	0.056113	0.229230	0.106618	0.039519	0.062684	0.098591	-0.186
slope	-0.024984	0.063177	0.074927	0.000372	-0.058404	0.001531	-0.104784	-0.295
ca	0.321673	0.025315	0.093902	0.037259	0.148186	0.173009	0.289584	-0.006
thal	0.222136	0.233270	0.239361	0.084489	-0.125926	0.084525	0.147006	-0.152
num	0.225453	0.279127	0.434501	0.067330	-0.533687	0.019112	-0.000813	-0.450
4								•

Note:

- 1. The above heatmap and the correlation table suggests that all of the data features are significantly correlated with the target variables
- 2. The following features are negatively correlated with the target variable:
 - A. cholestrol
 - B. thalach

Further action:

- 1. No feature drop is necessary due to significant correlation with target variable
- 2. The target variable is considered to be "num" (last column of the dataset)

B) Building the data model

1) Understanding the target variable

In [8]:

```
# checking the unique values (categories in the dataset)
dataset.num.unique()
Out[8]:
```

Note:

1. The values beyond 0 are indicative of the fact that there is presence of heart disease

Further action:

array([0, 1, 3, 2, 4])

1. Binarize the target variable for the classes as presence or absence of heart disease

2) Binarizing the target variable

```
In [9]:
dataset["num"] = dataset["num"].replace([2, 3, 4], 1)

In [10]:
dataset.num.unique()

Out[10]:
array([0, 1])
```

3) Checking distribution of target variable

In [11]:

```
# Plotting the count plot for target variable
fig = plt.figure(figsize=(8, 8))

# Adds subplot on position 1
ax = fig.add_subplot(111)

plt.xlabel("num", fontsize=20)
plt.ylabel("count", fontsize=20)

sns.countplot(x=dataset.num)
plt.show()
```


In [12]:

```
# creating subsets for target variables for fair distribution in training and testi
dataset target 0 = dataset[dataset.num == 0]
dataset target 1 = dataset[dataset.num == 1]
print("Shape of target 1 data : ", dataset_target_1.shape)
print("Shape of target 0 data : ", dataset_target_0.shape)
Shape of target 1 data :
                               (326, 14)
Shape of target 0 data: (356, 14)
In [13]:
# Shuffling the data subsets
dataset_target_1 = dataset_target_1.sample(frac=1)
dataset target 0 = dataset target 0.sample(frac=1)
# Confirming shapes for no value loss
print("Shape of target 1 data : ", dataset_target_1.shape)
print("Shape of target 0 data : ", dataset_target_0.shape)
Shape of target 1 data:
                               (326, 14)
Shape of target 0 data :
                               (356, 14)
```

4) Creating training and testing data with 80:20 ratio

In [14]:

```
# Calculating 80 percent mark
target_0_mark = int(dataset_target_0.shape[0]*0.8)
target 1 mark = int(dataset target 1.shape[0]*0.8)
# Generating train data
train data = pd.concat(
    objs=[
        dataset target 0.iloc[:target 0 mark, :],
        dataset_target_1.iloc[:target_1_mark, :]
    ],
    axis=0
)
# Generating test data
test data = pd.concat(
    objs=[
        dataset target 0.iloc[target 0 mark:, :],
        dataset target 1.iloc[target 1 mark:, :]
    axis=0
)
# Shuffling the training and testing data
train data = train data.sample(frac=1)
test data = test data.sample(frac=1)
# Checking data shapes
print("Training data shape : ", train_data.shape)
print("Testing data shape : ", test data.shape)
```

Training data shape : (544, 14) Testing data shape : (138, 14)

5) Splitting training and testing inputs and targets

In [15]:

```
# Splitting training data
train_inputs = train_data.iloc[:, :-1]
train_targets = train_data.iloc[:, -1]

# Splitting testing data
test_inputs = test_data.iloc[:, :-1]
test_targets = test_data.iloc[:, -1]

# Checking shape of data
print("Train inputs shape : ", train_inputs.shape)
print("Train targets shape : ", train_targets.shape)
print("Test inputs shape : ", test_inputs.shape)
print("Test targets shape : ", test_targets.shape)
```

Train inputs shape : (544, 13)
Train targets shape : (544,)
Test inputs shape : (138, 13)
Test targets shape : (138,)

6) Building the data model

```
In [16]:
```

```
# Importing model
from sklearn.linear_model import LogisticRegression
```

In [17]:

```
logReg_model = LogisticRegression()
```

In [18]:

```
# Training the model
logReg_model.fit(train_inputs, train_targets)
print("Model trained")
```

Model trained

7) Checking accuracy of model on testing data

```
In [19]:
```

```
logReg_model.score(test_inputs, test_targets)
```

Out[19]:

0.8985507246376812

In [20]:

```
logReg_model.score(train_inputs, train_targets)
```

Out[20]:

0.8253676470588235

Conclusion

- 1. The logistic regression model was fit on the given dataset
- 2. The model gave 89.85% accuracy on testing data and 82.53% accuracy on testing data

End of Notebook