# **Data Wrangling 2**

# DATA MANIPULATION WITH dplyr PACKAGE

- dplyr package was written by the most popular R programmer Hadley Wickham
- It contains a set of functions (or "verbs") that perform *common data* manipulation operations

# Some commonly used dplyr functions

| Function               | Description          |
|------------------------|----------------------|
| select()               | Selecting variables  |
| filter()               | Filter (subset) rows |
| group-by()             | Group the data       |
| <pre>summarise()</pre> | Summarise data       |
| arrange()              | Sort the data        |
| mutate()               | Create new variables |
| join()                 | Joining data tables  |

## Let's look into a practical approach:

In this tutorial, we are using the following data which contains income generated by states from year 2002 to 2015. This dataset contains 51 observations (rows) and 16 variables (columns)

**Note:** This data do not contain actual income figures of the states. To download the dataset, click on this link - **Dataset** and then right click and hit Save as option.

#### Load the Dataset

#### Create as "Tibble"

```
library(tibble)
data=as.tibble(data)
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## i Please use `as_tibble()` instead.
## [i] The signature and semantics have changed, see `?as tibble`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
head(data)
## # A tibble: 6 × 16
     Index State
                      Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
Y2010
                      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
     <chr> <chr>
<dbl>
## 1 A
                     1.30e6 1.32e6 1.12e6 1.49e6 1.11e6 1.44e6 1.95e6 1.94e6
           Alabama
1.24e6
## 2 A
          Alaska
                     1.17e6 1.96e6 1.82e6 1.45e6 1.86e6 1.47e6 1.55e6 1.44e6
1.63e6
                     1.74e6 1.97e6 1.38e6 1.78e6 1.10e6 1.11e6 1.75e6 1.55e6
## 3 A
          Arizona
1.30e6
           Arkansas 1.49e6 1.99e6 1.12e6 1.95e6 1.67e6 1.80e6 1.19e6 1.63e6
## 4 A
1.67e6
```

## Structure of the Dataset

```
str(data)
## tibble [51 x 16] (S3: tbl_df/tbl/data.frame)
## $ Index: chr [1:51] "A" "A" "A" "A" ...
## $ State: chr [1:51] "Alabama" "Alaska" "Arizona" "Arkansas" ...
## $ Y2002: num [1:51] 1296530 1170302 1742027 1485531 1685349 ...
## $ Y2003: num [1:51] 1317711 1960378 1968140 1994927 1675807 ...
## $ Y2004: num [1:51] 1118631 1818085 1377583 1119299 1889570 ...
## $ Y2005: num [1:51] 1492583 1447852 1782199 1947979 1480280 ...
## $ Y2006: num [1:51] 1107408 1861639 1102568 1669191 1735069 ...
## $ Y2007: num [1:51] 1440134 1465841 1109382 1801213 1812546 ...
## $ Y2008: num [1:51] 1945229 1551826 1752886 1188104 1487315 ...
## $ Y2009: num [1:51] 1944173 1436541 1554330 1628980 1663809 ...
## $ Y2010: num [1:51] 1237582 1629616 1300521 1669295 1624509 ...
## $ Y2011: num [1:51] 1440756 1230866 1130709 1928238 1639670 ...
## $ Y2012: num [1:51] 1186741 1512804 1907284 1216675 1921845 ...
## $ Y2013: num [1:51] 1852841 1985302 1363279 1591896 1156536 ...
## $ Y2014: num [1:51] 1558906 1580394 1525866 1360959 1388461 ...
## $ Y2015: num [1:51] 1916661 1979143 1647724 1329341 1644607 ...
```

#### (a) Selects variables from "Index" to "Y2005".

```
library(dplyr)

##

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

## filter, lag

## The following objects are masked from 'package:base':

##

## intersect, setdiff, setequal, union
```

```
data %>%
  select (Index:Y2005)
## # A tibble: 51 × 6
##
      Index State
                                   Y2002
                                           Y2003
                                                   Y2004
                                                           Y2005
##
      <chr> <chr>>
                                   <dbl>
                                           <dbl>
                                                   <dbl>
                                                            <dbl>
##
   1 A
            Alabama
                                 1296530 1317711 1118631 1492583
                                 1170302 1960378 1818085 1447852
##
  2 A
            Alaska
                                 1742027 1968140 1377583 1782199
## 3 A
            Arizona
## 4 A
                                 1485531 1994927 1119299 1947979
           Arkansas
## 5 C
                                 1685349 1675807 1889570 1480280
           California
## 6 C
           Colorado
                                 1343824 1878473 1886149 1236697
## 7 C
           Connecticut
                                 1610512 1232844 1181949 1518933
## 8 D
            Delaware
                                 1330403 1268673 1706751 1403759
## 9 D
            District of Columbia 1111437 1993741 1374643 1827949
## 10 F
            Florida
                                 1964626 1468852 1419738 1362787
## # [i] 41 more rows
```

#### (b) Drop variables "Index", and "State" variables from data.

```
data %>%
 select (-Index, -State)
## # A tibble: 51 × 14
##
       Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011
Y2012
##
       <dbl>
## 1 1296530 1.32e6 1.12e6 1.49e6 1.11e6 1.44e6 1.95e6 1.94e6 1.24e6 1.44e6
1.19e6
## 2 1170302 1.96e6 1.82e6 1.45e6 1.86e6 1.47e6 1.55e6 1.44e6 1.63e6 1.23e6
1.51e6
## 3 1742027 1.97e6 1.38e6 1.78e6 1.10e6 1.11e6 1.75e6 1.55e6 1.30e6 1.13e6
1.91e6
## 4 1485531 1.99e6 1.12e6 1.95e6 1.67e6 1.80e6 1.19e6 1.63e6 1.67e6 1.93e6
## 5 1685349 1.68e6 1.89e6 1.48e6 1.74e6 1.81e6 1.49e6 1.66e6 1.62e6 1.64e6
1.92e6
## 6 1343824 1.88e6 1.89e6 1.24e6 1.87e6 1.81e6 1.88e6 1.75e6 1.91e6 1.67e6
1.49e6
## 7 1610512 1.23e6 1.18e6 1.52e6 1.84e6 1.98e6 1.76e6 1.97e6 1.97e6 1.95e6
## 8 1330403 1.27e6 1.71e6 1.40e6 1.44e6 1.30e6 1.76e6 1.55e6 1.37e6 1.32e6
1.98e6
## 9 1111437 1.99e6 1.37e6 1.83e6 1.80e6 1.60e6 1.19e6 1.74e6 1.71e6 1.35e6
1.98e6
## 10 1964626 1.47e6 1.42e6 1.36e6 1.34e6 1.28e6 1.76e6 1.82e6 1.20e6 1.50e6
1.13e6
```

```
## # [i] 41 more rows
## # [i] 3 more variables: Y2013 <dbl>, Y2014 <dbl>, Y2015 <dbl>
```

### (c) Filter rows in which Index is equal to C.

```
data %>%
 filter(Index == "C")
## # A tibble: 3 × 16
    Index State
                  Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
##
Y2010
               ##
   <chr> <chr>
<dbl>
         Californ... 1.69e6 1.68e6 1.89e6 1.48e6 1.74e6 1.81e6 1.49e6 1.66e6
## 1 C
1.62e6
## 2 C
      Colorado 1.34e6 1.88e6 1.89e6 1.24e6 1.87e6 1.81e6 1.88e6 1.75e6
1.91e6
         Connecti... 1.61e6 1.23e6 1.18e6 1.52e6 1.84e6 1.98e6 1.76e6 1.97e6
## 3 C
1.97e6
## # [i] 5 more variables: Y2011 <dbl>, Y2012 <dbl>, Y2013 <dbl>, Y2014 <dbl>
## # Y2015 <dbl>
```

### (d) Filter rows having 'D' and 'F' in column 'Index'.

```
data %>%
         filter(Index %in% c("D", "F"))
## # A tibble: 3 × 16
                                                                                                   Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
##
                      Index State
Y2010
                      <chr> <chr>
                                                                                              <dbl> <
##
<dbl>
## 1 D
                                                  Delaware 1.33e6 1.27e6 1.71e6 1.40e6 1.44e6 1.30e6 1.76e6 1.55e6
1.37e6
                                                 District... 1.11e6 1.99e6 1.37e6 1.83e6 1.80e6 1.60e6 1.19e6 1.74e6
## 2 D
1.71e6
                                                                                                 1.96e6 1.47e6 1.42e6 1.36e6 1.34e6 1.28e6 1.76e6 1.82e6
## 3 F
                                                  Florida
1.20e6
## # [i] 5 more variables: Y2011 <dbl>, Y2012 <dbl>, Y2013 <dbl>, Y2014 <dbl>
## # Y2015 <dbl>
```

# (e) Filter rows 'D' and 'F' from 'Index' and income greater than 1.2 million in Year 2004.

```
data %>%
  filter(Index %in% c("D", "F")& Y2004 >= 1200000)
## # A tibble: 3 × 16
                     Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
##
     Index State
Y2010
                    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
    <chr> <chr>
<dbl>
           Delaware 1.33e6 1.27e6 1.71e6 1.40e6 1.44e6 1.30e6 1.76e6 1.55e6
## 1 D
1.37e6
          District... 1.11e6 1.99e6 1.37e6 1.83e6 1.80e6 1.60e6 1.19e6 1.74e6
## 2 D
1.71e6
## 3 F
                     1.96e6 1.47e6 1.42e6 1.36e6 1.34e6 1.28e6 1.76e6 1.82e6
           Florida
1.20e6
## # [i] 5 more variables: Y2011 <dbl>, Y2012 <dbl>, Y2013 <dbl>, Y2014 <dbl>
## # Y2015 <dbl>
```

# (f) Filter rows 'D' and 'F' from 'Index' or income greater than 1.2 million in Year 2004.

```
data %>%
      filter(Index %in% c("D", "F") | Y2004 >= 1200000)
## # A tibble: 42 × 16
##
                  Index State
                                                                   Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
Y2010
##
                  <chr> <chr>
                                                               <dbl> <dbl  <dbl> <dbl  <d><dbl  <dbl  </d> </d> <dbl  </d> <dbl  <
<dbl>
                                                                 1.17e6 1.96e6 1.82e6 1.45e6 1.86e6 1.47e6 1.55e6 1.44e6
## 1 A
                                    Alaska
1.63e6
                                    Arizona 1.74e6 1.97e6 1.38e6 1.78e6 1.10e6 1.11e6 1.75e6 1.55e6
## 2 A
1.30e6
## 3 C
                                    Califor... 1.69e6 1.68e6 1.89e6 1.48e6 1.74e6 1.81e6 1.49e6 1.66e6
1.62e6
## 4 C
                                    Colorado 1.34e6 1.88e6 1.89e6 1.24e6 1.87e6 1.81e6 1.88e6 1.75e6
1.91e6
## 5 D
                                     Delaware 1.33e6 1.27e6 1.71e6 1.40e6 1.44e6 1.30e6 1.76e6 1.55e6
1.37e6
## 6 D
                                    Distric... 1.11e6 1.99e6 1.37e6 1.83e6 1.80e6 1.60e6 1.19e6 1.74e6
1.71e6
## 7 F
                                     Florida 1.96e6 1.47e6 1.42e6 1.36e6 1.34e6 1.28e6 1.76e6 1.82e6
1.20e6
                                     Georgia 1.93e6 1.54e6 1.81e6 1.78e6 1.33e6 1.22e6 1.77e6 1.63e6
## 8 G
1.15e6
## 9 H
                                    Hawaii 1.46e6 1.20e6 1.21e6 1.25e6 1.46e6 1.43e6 1.92e6 1.93e6
```

```
1.33e6

## 10 I Idaho 1.35e6 1.44e6 1.74e6 1.54e6 1.12e6 1.77e6 1.34e6 1.75e6

1.44e6

## # i 32 more rows

## # i 5 more variables: Y2011 <dbl>, Y2012 <dbl>, Y2013 <dbl>, Y2014 <dbl>,

## # Y2015 <dbl>
```

### (g) Find the mean and median for the variable Y2012.

```
data %>%
   summarise(mean2012 = mean(Y2012), median2012=median(Y2012))

## # A tibble: 1 × 2

## mean2012 median2012

## <dbl> <dbl>
## 1 1591135. 1643855
```

## (h) Find mean and median of Y2010 and Y2015.

## (i) Arrange variable Y2014 by variable Index in ascending order.

```
data %>%
          arrange(Index, Y2014)
## # A tibble: 51 × 16
##
                                Index State Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
Y2010
##
                                <chr> <chr>
                                                                                                                        <dbl> <
<dbl>
                                                                 Arkansas 1.49e6 1.99e6 1.12e6 1.95e6 1.67e6 1.80e6 1.19e6 1.63e6
## 1 A
1.67e6
## 2 A
                                                                 Arizona 1.74e6 1.97e6 1.38e6 1.78e6 1.10e6 1.11e6 1.75e6 1.55e6
1.30e6
## 3 A
                                                                 Alabama 1.30e6 1.32e6 1.12e6 1.49e6 1.11e6 1.44e6 1.95e6 1.94e6
1.24e6
```

```
## 4 A
           Alaska
                    1.17e6 1.96e6 1.82e6 1.45e6 1.86e6 1.47e6 1.55e6 1.44e6
1.63e6
## 5 C
           Colorado 1.34e6 1.88e6 1.89e6 1.24e6 1.87e6 1.81e6 1.88e6 1.75e6
1.91e6
           Califor... 1.69e6 1.68e6 1.89e6 1.48e6 1.74e6 1.81e6 1.49e6 1.66e6
## 6 C
1.62e6
## 7 C
           Connect... 1.61e6 1.23e6 1.18e6 1.52e6 1.84e6 1.98e6 1.76e6 1.97e6
1.97e6
## 8 D
           Distric... 1.11e6 1.99e6 1.37e6 1.83e6 1.80e6 1.60e6 1.19e6 1.74e6
1.71e6
## 9 D
            Delaware 1.33e6 1.27e6 1.71e6 1.40e6 1.44e6 1.30e6 1.76e6 1.55e6
1.37e6
## 10 F
            Florida 1.96e6 1.47e6 1.42e6 1.36e6 1.34e6 1.28e6 1.76e6 1.82e6
1,20e6
## # [i] 41 more rows
## # [i] 5 more variables: Y2011 <dbl>, Y2012 <dbl>, Y2013 <dbl>, Y2014 <dbl>
## # Y2015 <dbl>
```

### (j) Calculate count and mean of variables Y2005 and Y2008 by variable Index.

```
data %>%
 group_by(Index) %>%
 summarise(n = n(), mean2005=mean(Y2005), mean2008=mean(Y2008)
## # A tibble: 19 × 4
                n mean2005 mean2008
##
     Index
##
      <chr> <int>
                     <dbl>
                              <dbl>
               4 1667653. 1609511.
## 1 A
## 2 C
                3 1411970 1708973.
## 3 D
               2 1615854 1477670.
## 4 F
               1 1362787 1756185
## 5 G
                1 1779091 1773090
## 6 H
               1 1245931 1919423
## 7 I
               4 1348852. 1416165
## 8 K
               2 1391309 1625663
## 9 L
               1 1751920 1185085
## 10 M
               8 1597524. 1515155.
## 11 N
               8 1464692. 1541591.
## 12 0
               3 1534168 1418718.
## 13 P
               1 1122030 1274168
## 14 R
               1 1961923 1151409
## 15 S
               2 1437666 1211184.
## 16 T
               2 1532192. 1806196
## 17 U
               1 1241662 1939284
## 18 V
               2 1716560 1463448.
## 19 W
               4 1592654 1587891
```

### (k) Calculate the variable rate=Y2006/Y2010.

```
data %>%
     mutate(rate=Y2006/Y2010)
## # A tibble: 51 × 17
                                                            Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009
##
                Index State
Y2010
##
                                                        <dbl> <dbl  <dbl> <dbl  <d><dbl  <dbl  </d> </d> <dbl  </d> <dbl  <br  </
                <chr> <chr>
<dbl>
## 1 A
                                Alabama 1.30e6 1.32e6 1.12e6 1.49e6 1.11e6 1.44e6 1.95e6 1.94e6
1.24e6
## 2 A
                                Alaska
                                                         1.17e6 1.96e6 1.82e6 1.45e6 1.86e6 1.47e6 1.55e6 1.44e6
1.63e6
                                Arizona 1.74e6 1.97e6 1.38e6 1.78e6 1.10e6 1.11e6 1.75e6 1.55e6
## 3 A
1.30e6
                                Arkansas 1.49e6 1.99e6 1.12e6 1.95e6 1.67e6 1.80e6 1.19e6 1.63e6
## 4 A
1.67e6
## 5 C
                                Califor... 1.69e6 1.68e6 1.89e6 1.48e6 1.74e6 1.81e6 1.49e6 1.66e6
1.62e6
                                 Colorado 1.34e6 1.88e6 1.89e6 1.24e6 1.87e6 1.81e6 1.88e6 1.75e6
## 6 C
1.91e6
## 7 C
                                Connect... 1.61e6 1.23e6 1.18e6 1.52e6 1.84e6 1.98e6 1.76e6 1.97e6
1.97e6
## 8 D
                                Delaware 1.33e6 1.27e6 1.71e6 1.40e6 1.44e6 1.30e6 1.76e6 1.55e6
1.37e6
## 9 D
                                Distric... 1.11e6 1.99e6 1.37e6 1.83e6 1.80e6 1.60e6 1.19e6 1.74e6
1.71e6
## 10 F
                                 Florida 1.96e6 1.47e6 1.42e6 1.36e6 1.34e6 1.28e6 1.76e6 1.82e6
1.20e6
## # [i] 41 more rows
## # [i] 6 more variables: Y2011 <dbl>, Y2012 <dbl>, Y2013 <dbl>, Y2014 <dbl>
## # Y2015 <dbl>, rate <dbl>
```

# (l) Calculate the cumulative sum of Y2014 and assign it to total, and select variables index, Y2014 and total.

```
data %>%
  mutate(total=cumsum(Y2014))%>%
  select(Index,Y2014, total)
## # A tibble: 51 × 3
      Index
##
              Y2014
                       total
##
      <chr>
              <dbl>
                       <dbl>
## 1 A
            1558906
                     1558906
## 2 A
            1580394 3139300
```

```
##
   3 A
           1525866 4665166
  4 A
##
           1360959 6026125
## 5 C
           1388461 7414586
## 6 C
           1383978 8798564
## 7 C
           1503156 10301720
## 8 D
           1803169 12104889
## 9 D
           1782169 13887058
## 10 F
           1407784 15294842
## # [i] 41 more rows
```

## **RELATIONAL DATA**

- Data tables which are related to each other called *relational data*
- This concept is similar to the *relational* database management systems (RDBMS)
- When working with relational data we may want to combine information from different data tables

## **Primary Key and Foreign Key**

To connect each pair of tables we use unique identifiers called keys

- **primary key** uniquely identifies an observation in its own table
- foreign key uniquely identifies an observation in another table

#### **NOTE:**

A primary key and the corresponding foreign key in another table form a *relation* 

# **Work with Relational Data using R**

- **dplyr** package is a powerful tool to work with relational data using R
- To get the details about relational data set we can use **dm** package

## Let's look into a practical approach:

Here we use the data tables in the *nycflights13* package for this example

```
# Check variables in each tibble
library(tidyverse)
## — Attaching core tidyverse packages —
                                                              - tidyverse 2.
0.0 -
## ✓ forcats
                1.0.0
                          √ purrr
                                       1.0.1
## √ ggplot2

✓ stringr

                3.4.2
                                       1.5.0
## ✓ lubridate 1.9.2
                          ✓ tidyr
                                       1.3.0
## -- Conflicts -
                                                         tidyverse conflict
s() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag()
                     masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force a
ll conflicts to become errors
library(nycflights13)
flights
## # A tibble: 336,776 × 19
      year month day dep_time sched_dep_time dep_delay arr_time sched_arr_
##
time
                          <int>
##
      <int> <int> <int>
                                         <int>
                                                   <dbl>
                                                            <int>
                                                                           <
int>
                                                       2
## 1 2013
               1
                     1
                            517
                                           515
                                                              830
819
                     1
                            533
                                           529
                                                       4
                                                              850
## 2 2013
               1
830
## 3 2013
               1
                     1
                            542
                                           540
                                                       2
                                                              923
850
## 4 2013
               1
                     1
                            544
                                           545
                                                      -1
                                                             1004
1022
## 5 2013
               1
                     1
                            554
                                           600
                                                              812
                                                      -6
837
```

```
## 6 2013
                1
                      1
                              554
                                             558
                                                         -4
                                                                 740
728
                              555
##
   7
       2013
                1
                      1
                                             600
                                                         -5
                                                                 913
854
## 8
                      1
                              557
                                             600
                                                                 709
       2013
                1
                                                         - 3
723
## 9
       2013
                1
                      1
                              557
                                             600
                                                         -3
                                                                 838
846
                      1
                                                         -2
## 10 2013
                1
                              558
                                             600
                                                                 753
745
## # i 336,766 more rows
## # (i) 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #
       tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl
>,
## #
       hour <dbl>, minute <dbl>, time_hour <dttm>
airlines
## # A tibble: 16 × 2
      carrier name
##
##
      <chr>>
              <chr>>
              Endeavor Air Inc.
##
   1 9E
##
   2 AA
              American Airlines Inc.
##
  3 AS
              Alaska Airlines Inc.
              JetBlue Airways
##
   4 B6
##
  5 DL
              Delta Air Lines Inc.
##
  6 EV
              ExpressJet Airlines Inc.
##
  7 F9
              Frontier Airlines Inc.
              AirTran Airways Corporation
## 8 FL
##
  9 HA
              Hawaiian Airlines Inc.
## 10 MQ
              Envoy Air
## 11 00
              SkyWest Airlines Inc.
## 12 UA
              United Air Lines Inc.
## 13 US
              US Airways Inc.
              Virgin America
## 14 VX
## 15 WN
              Southwest Airlines Co.
## 16 YV
              Mesa Airlines Inc.
airports
## # A tibble: 1,458 × 8
##
      faa
                                              lat
                                                      lon
                                                            alt
                                                                   tz dst
            name
                                                                            tzo
ne
                                                   <dbl> <dbl> <chr> <ch
##
      <chr> <chr>
                                            <dbl>
r>
## 1 04G
            Lansdowne Airport
                                                   -80.6 1044
                                             41.1
                                                                   -5 A
                                                                            Ame
rica/…
            Moton Field Municipal Airport
## 2 06A
                                                   -85.7
                                                            264
                                                                   -6 A
                                                                            Ame
                                             32.5
rica/...
            Schaumburg Regional
## 3 06C
                                             42.0
                                                   -88.1
                                                            801
                                                                   -6 A
                                                                            Ame
```

| /                                                                  |                                |             |          |             |         |             |       |  |
|--------------------------------------------------------------------|--------------------------------|-------------|----------|-------------|---------|-------------|-------|--|
| rica/<br>## 4 06N                                                  | Randall Airport                | 4           | 1 1      | -74.4       | 523     | -5 A        | Ame   |  |
| rica/                                                              | validati Ati.boi.c             |             | 1.4      | -/4.4       | 223     | -J A        | Allic |  |
| ## 5 09J                                                           | Jekyll Island Airport          |             | 1.1      | -81.4       | 11      | -5 A        | Ame   |  |
| rica/                                                              | sekyll Island Alipore          |             |          |             |         |             |       |  |
| ## 6 0A9                                                           | Elizabethton Municipal Airport |             | 6.4      | -82.2       | 1593    | -5 A        | Ame   |  |
| rica/…                                                             |                                |             |          |             |         |             |       |  |
| ## 7 0G6                                                           | 0G6 Williams County Airport    |             | 1.5      | -84.5       | 730     | -5 A        | Ame   |  |
| rica/…                                                             |                                |             |          |             |         |             |       |  |
| ## 8 0G7                                                           | 0 1                            |             | 2.9      | -76.8       | 492     | -5 A        | Ame   |  |
| rica/…                                                             |                                |             |          |             | 1000    |             |       |  |
| ## 9 0P2                                                           | Shoestring Aviation Airfield   |             | 9.8      | -76.6       | 1000    | -5 U        | Ame   |  |
| rica/<br>## 10 0S9                                                 | ica/                           |             | 0 1      | 122         | 100     | -8 A        | Amo   |  |
|                                                                    | Jefferson County Intl          | 4           | 8.1 -    | 123.        | 108     | -6 A        | Ame   |  |
| rica/                                                              |                                |             |          |             |         |             |       |  |
| ## # i 1,448 more rows                                             |                                |             |          |             |         |             |       |  |
| planes                                                             |                                |             |          |             |         |             |       |  |
|                                                                    |                                |             |          |             |         |             |       |  |
|                                                                    | le: 3,322 × 9                  |             |          |             | _       |             |       |  |
|                                                                    | um year type                   | manufac     | turer    | model       | engines | seats       | speed |  |
| engine                                                             | dinte delen                    | د مام م     |          |             |         |             |       |  |
| ## <chr></chr>                                                     | <int> <chr></chr></int>        | <chr></chr> |          | <chr></chr> | <1nt>   | <int></int> | <1nt> |  |
| <chr> ## 1 N1015</chr>                                             | 6 2004 Fixed wing multi        | EMRDAED     | ,        | EMB         | 2       | 55          | NA    |  |
| Turbo                                                              | 0 2004 Tixed Will multi        | LIIDNALN    | <u>.</u> | LIID        | 2       | ))          | IVA   |  |
| ## 2 N102U                                                         | W 1998 Fixed wing multi        | ATRBUS      | INDU     | A320        | 2       | 182         | NA    |  |
| Turbo                                                              |                                |             |          | 7.5_0       | _       |             |       |  |
| ## 3 N103U                                                         | S 1999 Fixed wing multi        | AIRBUS      | INDU     | A320        | 2       | 182         | NA    |  |
| Turbo                                                              | J                              |             |          |             |         |             |       |  |
| ## 4 N104U                                                         | W 1999 Fixed wing multi        | AIRBUS      | INDU     | A320        | 2       | 182         | NA    |  |
| Turbo                                                              |                                |             |          |             |         |             |       |  |
| ## 5 N1057                                                         | 5 2002 Fixed wing multi        | EMBRAER     | 2        | EMB         | 2       | 55          | NA    |  |
| Turbo                                                              |                                |             |          |             | •       | 400         |       |  |
| ## 6 N105U                                                         | W 1999 Fixed wing multi        | ATKBUS      | TNDO     | A320        | 2       | 182         | NA    |  |
| Turbo<br>## 7 N107U                                                | S 1999 Fixed wing multi        | ATDDIIC     | TNDLL    | <b>V330</b> | 2       | 182         | NA    |  |
| Turbo                                                              | 3 1999 Fixed Wing Multi        | AINDUS      | TINDO    | A320        | 2       | 102         | IVA   |  |
| ## 8 N108U                                                         | W 1999 Fixed wing multi        | ΔTRRUS      | TNDU     | Δ320        | 2       | 182         | NA    |  |
| Turbo                                                              | w 1999 Fixed Wing marci        | /\I\DOS     | 11100    | 71320       | _       | 102         | 10.   |  |
| ## 9 N109U                                                         | W 1999 Fixed wing multi        | AIRBUS      | INDU     | A320        | 2       | 182         | NA    |  |
| Turbo                                                              | 5                              |             |          |             |         |             |       |  |
| ## 10 N110U                                                        | W 1999 Fixed wing multi        | AIRBUS      | INDU     | A320        | 2       | 182         | NA    |  |
| Turbo                                                              | _                              |             |          |             |         |             |       |  |
| ## # i 3,3                                                         | 312 more rows                  |             |          |             |         |             |       |  |
|                                                                    |                                |             |          |             |         |             |       |  |
| weather                                                            |                                |             |          |             |         |             |       |  |
| ## # A tibble: 26,115 × 15                                         |                                |             |          |             |         |             |       |  |
| ## origin year month day hour temp dewp humid wind_dir wind_speed  |                                |             |          |             |         |             |       |  |
| ## or.f&tu hear mourn day non, remb demb unwid miua_air miua_sbeed |                                |             |          |             |         |             |       |  |

```
<int> <int> <int> <int> <dbl> <dbl> <dbl> <</pre>
##
                                                          <dbl>
                                                                     <dbl>
##
   1 EWR
              2013
                      1
                            1
                                   1
                                     39.0
                                           26.1
                                                  59.4
                                                            270
                                                                     10.4
   2 EWR
              2013
                      1
                            1
                                   2
                                     39.0
                                           27.0
                                                 61.6
                                                            250
                                                                     8.06
##
##
  3 EWR
              2013
                      1
                            1
                                   3
                                     39.0
                                           28.0
                                                 64.4
                                                            240
                                                                     11.5
  4 EWR
             2013
                            1
                                  4 39.9
                                           28.0
                                                 62.2
##
                      1
                                                            250
                                                                     12.7
  5 EWR
             2013
                      1
                            1
                                   5
                                     39.0
                                           28.0
                                                  64.4
                                                                     12.7
##
                                                            260
##
  6 EWR
             2013
                      1
                            1
                                   6
                                     37.9
                                           28.0
                                                 67.2
                                                            240
                                                                     11.5
   7 EWR
             2013
                            1
                                  7
                                     39.0
                                           28.0
                                                 64.4
                                                                     15.0
##
                      1
                                                            240
                            1
                                  8 39.9
##
  8 EWR
             2013
                      1
                                           28.0
                                                 62.2
                                                            250
                                                                     10.4
## 9 EWR
             2013
                      1
                            1
                                  9
                                     39.9
                                           28.0
                                                 62.2
                                                            260
                                                                     15.0
## 10 EWR
             2013
                            1
                                  10 41
                                           28.0 59.6
                                                            260
                                                                     13.8
## # i 26,105 more rows
## # [i] 5 more variables: wind gust <dbl>, precip <dbl>, pressure <dbl>,
## # visib <dbl>, time hour <dttm>
```

Use dm package to get some details about the data set.

## **Visual Representation of the Relationships**

```
library(dm)
##
## Attaching package: 'dm'
## The following object is masked from 'package:stats':
##
## filter

dm <- dm_nycflights13(cycle = TRUE)
dm %>%
    dm_draw()
```



### Get details all primary keys

```
dm %>%
  dm_get_all_pks()
## # A tibble: 4 × 3
##
    table
              pk col
                                autoincrement
##
     <chr>
              <keys>
                                <lgl>
## 1 airlines carrier
                                FALSE
## 2 airports faa
                                FALSE
## 3 planes
             tailnum
                                FALSE
## 4 weather origin, time_hour FALSE
```

### Check the suitability of each variable of a data set to serve as a primary key

```
dm %>%
  dm_enum_pk_candidates(airports)
## # A tibble: 8 × 3
     columns candidate why
     <keys> <lgl>
                        <chr>>
##
## 1 faa
             TRUE
## 2 name
             TRUE
                        11 11
## 3 lat
             TRUE
                        ....
## 4 lon
             TRUE
                        "has duplicate values: 30 (4), 13 (3), 9 (2), 19 (2),
## 5 alt
             FALSE
26 (2...
                        "has duplicate values: -5 (48), -6 (21), -8 (12), -7 (
## 6 tz
             FALSE
4)"
## 7 dst
                        "has duplicate values: A (84), N (2)"
             FALSE
## 8 tzone
                        "has duplicate values: America/New_York (48), America/
             FALSE
Chica...
```

### **Identify foreign keys**

```
dm %>%
  dm_enum_fk_candidates(flights, airlines)
## # A tibble: 19 × 3
##
      columns
                     candidate why
##
      <keys>
                     <lgl>
                                <chr>>
                     TRUE
## 1 carrier
## 2 year
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
incom...
```

```
## 3 month
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
incom...
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
## 4 day
incom...
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
## 5 dep_time
incom...
                                "Can't join `x$value1` with `y$value1` due to
## 6 sched dep time FALSE
incom...
                                "Can't join `x$value1` with `y$value1` due to
## 7 dep_delay
                     FALSE
incom...
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
## 8 arr_time
incom...
                                "Can't join `x$value1` with `y$value1` due to
## 9 sched arr time FALSE
incom...
## 10 arr_delay
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
incom...
## 11 flight
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
incom...
## 12 tailnum
                                "values of `flights$tailnum` not in `airlines$
                     FALSE
carri...
                                "values of `flights$origin` not in `airlines$c
## 13 origin
                     FALSE
arrie...
## 14 dest
                     FALSE
                                "values of `flights$dest` not in `airlines$car
rier`…
                                "Can't join `x$value1` with `y$value1` due to
                     FALSE
## 15 air time
incom...
                                "Can't join `x$value1` with `y$value1` due to
## 16 distance
                     FALSE
incom...
## 17 hour
                     FALSE
                                "Can't join `x$value1` with `y$value1` due to
incom...
                                "Can't join `x$value1` with `y$value1` due to
## 18 minute
                     FALSE
incom...
                                "Can't join `x$value1` with `y$value1` due to
## 19 time hour
                     FALSE
incom...
```

#### Extract a summary of all foreign key relations

```
dm %>%
  dm_get_all_fks()
## # A tibble: 5 × 5
##
     child_table child_fk_cols
                                    parent_table parent_key_cols
                                                                     on_delete
##
     <chr>>
                  <keys>
                                    <chr>
                                                  <keys>
                                                                     <chr>>
## 1 flights
                                    airlines
                                                  carrier
                  carrier
                                                                     no_action
## 2 flights
                                                  faa
                 origin
                                    airports
                                                                     no action
## 3 flights
                                                  faa
                 dest
                                    airports
                                                                     no action
```

```
## 4 flights tailnum planes tailnum no_action
## 5 flights origin, time_hour weather origin, time_hour no_action
```

## **Joins**

**Joins** are used to access data from multiple tables based on logical relationships between them

dplyr has several types of *Joins* 

## Types of joins in dplyr

Suppose we have two data tables x and y.

- **inner\_join(x,y)** keeps observations common to xand y.
- **left\_join(x,y)** keeps all observations in x.
- right\_join(x,y) keeps all observations in y.
- **full\_join(x,y)** keeps all observations in x and y.
- **semi\_join(x, y)** keeps all observations in **x** that have a match in **y**.
- anti\_join(x, y) drops all observations in x that have a match in y.

## Let's look into a practical approach:

For this Tutorial let's create two tables *data1* and *data2* 

## inner\_join

• keeps observations common to data1 and data2

```
inner_join(data1, data2)
## Joining with `by = join_by(ID)`
## ID X1 X2
## 1 2 a2 b1
```



## left\_join

• keeps all observations in left table (*data1*)



## right\_join

keeps all observations in right table (data2)

```
right_join(data1, data2)

## Joining with `by = join_by(ID)`

## ID X1 X2
## 1 2 a2 b1
## 2 3 <NA> b2
```



## full\_join

keeps all observations in data1 and data2

```
full_join(data1, data2)

## Joining with `by = join_by(ID)`

## ID X1 X2

## 1 1 a1 <NA>

## 2 2 a2 b1

## 3 3 <NA> b2
```



## semi\_join

keeps all observations in data1 that have a match in data2

```
semi_join(data1, data2)

## Joining with `by = join_by(ID)`

## ID X1
## 1 2 a2
```



## anti\_join

• Drops all observations in *data1* that have a match in *data2* 

```
anti_join(data1, data2)
## Joining with `by = join_by(ID)`
## ID X1
## 1 1 a1
```

