Notations (common)

Each row is the recording for neuron i, $y_i = (y_{i1}, ..., y_{iT})'$, i = 1, ... N. Denote the cluster index for neuron i as $z_i \in \{1, ...\}$. The number of neurons in cluster j is $n_j = \sum_{i=1}^N I(z_i = j)$, and $\sum_{j=1,2,...} n_j = N$.

Model

Denote the latent vector in cluster j as $\mathbf{x}_t^{(j)} \in R^{p_j}$. For simplicity, assume all $p_j = p$. Each observation follows a Poisson distribution as follows:

$$\log \lambda_{it} = d_i + c_i' x_t^{(z_i)}$$

$$y_{it} \sim Poisson(\lambda_{it})$$

Where $c_i \in R^p$ and $x_t^{(z_i)} \in R^p$.

In this version, the loading d_i and c_i are also cluster dependent. That is,

$$(d_i, \mathbf{c}'_i)' \sim N(\boldsymbol{\mu}_{dc}^{(z_i)}, \boldsymbol{\Sigma}_{dc}^{(z_i)})$$

Denote all latent states as $x_t = \left(x_t^{(1)}, x_t^{(2)}, \dots\right)'$ and they evolve linearly with Gaussian noise:

$$x_1 \sim N(x_0, \boldsymbol{Q}_0)$$

$$x_{t+1}|x_t \sim N(Ax_t + \boldsymbol{b}, \boldsymbol{Q})$$

To simplify, assume Q_0 is known (e.g. $Q_0 = I$).

If we assume block diagonal (as in Joshua et al., 2020) for process noise covariance, we can write things as:

$$x_{t+1}^{(j)}|x_t^{(1)},x_t^{(2)},...\sim N(\sum_{l=1...}A_{j\leftarrow l}x_t^{(l)}+b_j,Q^{(j)})$$

Notice $\{A_{j\leftarrow l}\}$ forms the full transition matrix as:

$$A = \begin{pmatrix} A_{1\leftarrow 1} & A_{1\leftarrow 2} & \dots \\ A_{2\leftarrow 1} & A_{2\leftarrow 2} & \dots \end{pmatrix}$$

If the j^{th} row block of \pmb{A} is $\pmb{A}_j = (\pmb{A}_{j\leftarrow 1} \quad \pmb{A}_{j\leftarrow 2} \quad ...)$. Then, $\sum_{l=1,...} \pmb{A}_{j\leftarrow l} \; \pmb{x}_t^{(l)} + \pmb{b}_j = \pmb{A}_j \pmb{x}_t + \pmb{b}_j$.

If we further let Q be diagonal: denote the k^{th} row of x_t , A, b as x_{kt} , a_k , b_k . The corresponding process noise variance as q_k . Then:

$$x_{k,t+1}|x_{kt} \sim N(\boldsymbol{a}_k'\boldsymbol{x}_t + b_k, q_k)$$

The parameters need to estimate:

- (1) Latent vectors: x_t
- (2) Initials: x_0

(3) Linear mapping for latent vectors: $\{d_i\}_{i=1}^N$ and $\{c_i\}_{i=1}^N$

(4) Mean and covariance for linear mapping in each cluster: $\left\{ \boldsymbol{\mu}_{dc}^{(j)} \right\}_{i}$ and $\left\{ \boldsymbol{\Sigma}_{dc}^{(j)} \right\}_{i}$

(5) Linear dynamics for latent vectors: \mathbf{A} and \mathbf{b}

(6) Process noise: Q

Since the progress noise is independent in the model, $f(y_i|\mathbf{\Theta}_j) = \prod_{t=1}^T P(y_{it}|\mathbf{\Theta}_j)$, where $P(\cdot)$ is the Poisson density and $\mathbf{\Theta}_i$ is the parameters in cluster j.

Conditional Priors

Others are the same as v3, but modify loading related ones, i.e. mean and covariance for linear mapping in each cluster $\left\{ \pmb{\mu}_{dc}^{(j)} \right\}_i$ and $\left\{ \pmb{\Sigma}_{dc}^{(j)} \right\}_i$:

$$\boldsymbol{\mu}_{dc}^{(j)} \sim N(\boldsymbol{\delta}_{dc0}, \mathbf{T}_{dc0})$$

Where $oldsymbol{\delta}_{dc0} = oldsymbol{0}_{p+1}$ and $oldsymbol{ extbf{T}}_{dc0} = 0.1 oldsymbol{I}_{p+1}$

$$\boldsymbol{\Sigma}_{dc}^{(j)} \sim W^{-1}(\Psi_{dc0}, \nu_{dc0})$$

Where $v_{dc0}=p+1+2$ and $\Psi_{dc}=I_{p+1}\times 10^{-2}$

MCMC iteration

Others are the same as v3, but modify loading related ones.

(1) Update $\{d_i\}_{i=1}^N$ and $\{\boldsymbol{c}_i\}_{i=1}^N$: Denote $(d_i, \boldsymbol{c}_i')' = \boldsymbol{\zeta}_i \in R^{p+1}$ and $\left(1, \boldsymbol{x}_t^{(z_i)'}\right) = \widetilde{\boldsymbol{x}}_t^{(z_i)'}$.

$$P\left(\boldsymbol{\zeta}_{i} \middle| \boldsymbol{y}_{i}, \left\{\boldsymbol{x}_{t}^{(z_{i})}\right\}_{t=1}^{T}, \dots\right) = \exp f(\boldsymbol{\zeta}_{i}) \approx N\left(\boldsymbol{\zeta}_{i} \middle| \boldsymbol{\mu}_{\boldsymbol{\zeta}_{i}}, \boldsymbol{\Sigma}_{\boldsymbol{\zeta}_{i}}\right)$$

$$\frac{\partial f}{\partial \boldsymbol{\zeta}_{i}} = \frac{\partial l}{\partial \boldsymbol{\zeta}_{i}} - \boldsymbol{\Sigma}_{dc}^{(z_{i})^{-1}}\left(\boldsymbol{\zeta}_{i} - \boldsymbol{\mu}_{dc}^{(z_{i})}\right) = \left[\sum_{t=1}^{T} \widetilde{\boldsymbol{x}}_{t}^{(z_{i})}\left(\boldsymbol{y}_{it} - \boldsymbol{\lambda}_{it}\right)\right] - \boldsymbol{\Sigma}_{dc}^{(z_{i})^{-1}}\left(\boldsymbol{\zeta}_{i} - \boldsymbol{\mu}_{dc}^{(z_{i})}\right)$$

$$\frac{\partial^{2} f}{\partial \boldsymbol{\zeta}_{i} \partial \boldsymbol{\zeta}_{i}'} = \frac{\partial^{2} l}{\partial \boldsymbol{\zeta}_{i} \partial \boldsymbol{\zeta}_{i}'} - \boldsymbol{\Sigma}_{dc}^{(z_{i})^{-1}} = -\left[\sum_{t=1}^{T} \lambda_{it} \widetilde{\boldsymbol{x}}_{t}^{(z_{i})} \widetilde{\boldsymbol{x}}_{t}^{(z_{i})'}\right] - \boldsymbol{\Sigma}_{dc}^{(z_{i})^{-1}}$$

Where l is Poisson log-likelihood.

Use Newton-Raphson to find $\boldsymbol{\mu}_{\boldsymbol{\zeta}_i} = argmax_{\boldsymbol{\zeta}_i} \left(f(\boldsymbol{\zeta}_i) \right)$ and $\boldsymbol{\Sigma}_{\boldsymbol{\zeta}_i} = - \left[\frac{\partial^2 f}{\partial \boldsymbol{\zeta}_i \partial \boldsymbol{\zeta}_i'} |_{\boldsymbol{\zeta}_i = \boldsymbol{\mu}_{\boldsymbol{\zeta}_i}} \right]^{-1}$

(2) Update $\left\{ \boldsymbol{\mu}_{dc}^{(j)} \right\}_{j}$ and $\left\{ \boldsymbol{\Sigma}_{dc}^{(j)} \right\}_{j}$:

Again, denote $(d_i, c'_i)' = \zeta_i \in \mathbb{R}^{p+1}$.

Mean $\left\{ m{\mu}_{dc}^{(j)}
ight\}_{i}$: by conjugacy, $m{\mu}_{dc}^{(j)} \sim N(m{\delta}_{dc}, \mathbf{T}_{dc})$

$$\mathbf{T}_{dc}^{-1} = \left(\mathbf{T}_{dc0}^{-1} + n_j \mathbf{\Sigma}_{dc}^{(j)^{-1}}\right)^{-1}$$

$$\boldsymbol{\delta}_{dc} = \mathbf{T}_{dc} \left(\mathbf{T}_{dc0}^{-1} \boldsymbol{\delta}_{dc0} + \boldsymbol{\Sigma}_{dc}^{(j)^{-1}} \sum_{i: z_i = j} \boldsymbol{\zeta}_i \right)$$

Covariance: by conjugacy, $\mathbf{\Sigma}_{dc}^{(j)} \sim W^{-1}(\Psi_{dc}, \nu_{dc})$

$$\Psi_{dc} = n_j + \nu_{dc0}$$

$$\Psi_{dc} = \Psi_{dc0} + \sum_{i:z_i=j} \left(\zeta_i - \mu_{dc}^{(j)} \right) \left(\zeta_i - \mu_{dc}^{(j)} \right)'$$

If assume $\mathbf{\Sigma}_{dc}^{(j)} = \mathbf{\Sigma}_{dc}$, then $\mathbf{\Sigma}_{dc} \sim W^{-1}(\Psi_{dc}, \nu_{dc})$

$$\begin{aligned} \nu_{dc} &= N + \nu_{dc} \\ \Psi_{dc} &= \Psi_{dc} + \sum_{i=1}^{N} \left(\boldsymbol{\zeta}_{i} - \boldsymbol{\mu}_{dc}^{(z_{i})} \right) \left(\boldsymbol{\zeta}_{i} - \boldsymbol{\mu}_{dc}^{(z_{i})} \right)' \end{aligned}$$