Notebook

October 11, 2024

1 Q3

2 Wine Quality Dataset

2.0.1 Step 1: Load the Wine Quality Dataset

We will load both red and white wine datasets, which contain 11 features and quality labels ranging from 0 to 10.

```
# # Display the first few rows of the white wine data
# print("Wine White Data Sample:\n", wine_white.head())
```

Wine Red Dataset Shape: (1599, 12) Wine White Dataset Shape: (4898, 12)

```
[15]: import numpy as np
      import pandas as pd
      from scipy.stats import multivariate normal
      from sklearn.metrics import confusion_matrix, accuracy_score
      # Helper function to compute class priors, means, and covariances
      def estimate_statistics(X, y):
          classes = np.unique(y)
          class_priors = []
          class_means = []
          class_covariances = []
          for cls in classes:
              X_class = X[y == cls]
              prior = len(X class) / len(X)
              mean = np.mean(X class, axis=0)
              covariance = np.cov(X_class, rowvar=False)
              class_priors.append(prior)
              class_means.append(mean)
              class_covariances.append(covariance)
          return np.array(class_priors), np.array(class_means), np.
       ⇔array(class_covariances)
      # Load the Wine Quality data (red wine for this example)
      wine_red = pd.read_csv('/mnt/localssd/ee5644/hw1/wine_quality/winequality-red.
       ⇔csv', sep=';')
      # Extract features and labels
      wine_red_X = wine_red.drop(columns='quality').values
      wine_red_y = wine_red['quality'].values
      # Debug: Print the unique values and range of the true labels
      print("True Labels (Wine Red):", np.unique(wine_red_y))
      print(f"True Labels Range: {wine_red_y.min()} to {wine_red_y.max()}")
      # Estimate priors, means, and covariances for Wine Red dataset
      priors_red, means_red, covs_red = estimate_statistics(wine_red_X, wine_red_y)
```

```
# Regularization function for covariance matrices
def regularize_covariance(cov_matrix, lambda_value):
    I = np.eye(cov_matrix.shape[0])
    regularized_cov = cov_matrix + lambda_value * I
    return regularized_cov
# Apply regularization to the covariance matrices with lambda = 0.01
lambda_reg = 0.01
covs red reg = [regularize covariance(cov, lambda reg) for cov in covs red]
# Function to apply minimum-probability-of-error classification
def classify_min_error(X, priors, means, covs):
    n_samples = X.shape[0]
    n_classes = len(priors)
    posteriors = np.zeros((n_samples, n_classes))
    for i in range(n_classes):
        likelihood = multivariate_normal.pdf(X, mean=means[i], cov=covs[i])
        posteriors[:, i] = likelihood * priors[i]
    predicted_labels = np.argmax(posteriors, axis=1)
    return predicted_labels + 3
# Apply minimum-probability-of-error classification
predicted_red = classify_min_error(wine_red_X, priors_red, means_red,_u
 ⇔covs_red_reg)
# Debug: Print the unique values and range of the predicted labels after the fix
print("Predicted Labels (Wine Red) After Fix:", np.unique(predicted red))
print(f"Predicted Labels Range After Fix: {predicted_red.min()} to_u
 →{predicted_red.max()}")
# Compute confusion matrix and error probability for Wine Red
conf_matrix_red = confusion_matrix(wine_red_y, predicted_red)
error_prob_red = 1 - accuracy_score(wine_red_y, predicted_red)
# Print confusion matrix and error probability
print("Confusion Matrix (Wine Red):\n", conf_matrix_red)
print("Error Probability (Wine Red):", error_prob_red)
True Labels (Wine Red): [3 4 5 6 7 8]
True Labels Range: 3 to 8
Predicted Labels (Wine Red) After Fix: [3 4 5 6 7 8]
Predicted Labels Range After Fix: 3 to 8
Confusion Matrix (Wine Red):
```

```
[[ 5 0 3 2 0 0]
        2
             6 28 15
                         2
                             0]
        5 13 486 165 12
                            0]
      Γ 1
            6 188 394 45
                             4]
      0 ]
             0 11 119
                             31
                        66
      Γ
                 1
                     7
                         5
                            511
     Error Probability (Wine Red): 0.39837398373983735
[16]: from sklearn.decomposition import PCA
     import matplotlib.pyplot as plt
      # Function to visualize the dataset using PCA
     def visualize_pca(X, y, predicted_labels, title):
         pca = PCA(n_components=2)
         X_pca = pca.fit_transform(X)
         plt.figure(figsize=(8, 6))
         scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=predicted_labels,__

cmap='coolwarm', alpha=0.6)

         plt.title(title)
         plt.xlabel('Principal Component 1')
         plt.ylabel('Principal Component 2')
         plt.colorbar(scatter)
         plt.show()
      # Visualize the original wine data and the predicted labels (Wine Red)
     visualize_pca(wine_red_X, wine_red_y, predicted_red, "Wine Red Dataset_
       ⇔Classification (PCA)")
```


2.0.2 Results and Discussion

1. Confusion Matrix:

- The confusion matrix shows how well the classifier performed for each class.
- The classifier performed reasonably well on the middle classes (4-7), but there are still some misclassifications, particularly for the more extreme classes (3 and 8).

2. Error Probability:

• The overall error probability is **39.8**%, which suggests that the Gaussian assumption might not perfectly capture the true class-conditional distributions of the data.

3. Visualization Using PCA:

- The PCA visualization shows the separation of different wine quality classes in a 2D projection.
- If the classes overlap significantly in the PCA projection, this suggests that the Gaussian model may not be able to fully separate the classes, leading to higher misclassification rates.

4. Suitability of the Gaussian Model:

• The assumption that the features follow a Gaussian distribution for each class might not fully hold for the Wine Quality dataset.

• Given the error probability and the PCA visualization, we can infer that a more flexible model (e.g., non-parametric models or mixture models) could potentially perform better.

5. Conclusion:

- While the Gaussian class-conditional model provides a good baseline, it may not be the best fit for this dataset due to the complex nature of the feature distributions.
- Further improvements could be achieved by exploring models that relax the Gaussian assumption or by incorporating feature transformations to make the data more amenable to Gaussian modeling.

3 Human Activity Recognition Using Smartphones Dataset

3.0.1 Step 1: Load the Human Activity Recognition (HAR) Dataset

We will load the HAR dataset's training data ($X_{train.txt}$) and the corresponding labels ($y_{train.txt}$).

```
[17]: import pandas as pd
      import numpy as np
      # Load the training data for HAR dataset
      X_train = pd.read_csv('/mnt/localssd/ee5644/hw1/
       ⇔human_activity_recognition_using_smartphones/UCI HAR Dataset/train/X_train.
       stxt', delim_whitespace=True, header=None)
      y_train = pd.read_csv('/mnt/localssd/ee5644/hw1/
       whuman activity recognition using smartphones/UCI HAR Dataset/train/y train.
       otxt', delim_whitespace=True, header=None)
      # Convert to numpy arrays
      X_train = X_train.values
      y_train = y_train.values.flatten()
      # Display shape and basic information
      print("X_train shape:", X_train.shape)
      print("y_train shape:", y_train.shape)
      print("Unique labels in y_train:", np.unique(y_train))
```

/tmp/ipykernel_3182837/2131676244.py:5: FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` instead

 $\label{eq:csv} $$X_{\tau in} = pd.read_csv('/mnt/localssd/ee5644/hw1/human_activity_recognition_using_smartphones/UCI HAR Dataset/train/X_train.txt', delim_whitespace=True, header=None)$

```
X_train shape: (7352, 561)
y_train shape: (7352,)
Unique labels in y_train: [1 2 3 4 5 6]
```

/tmp/ipykernel_3182837/2131676244.py:6: FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version.

```
ng smartphones/UCI HAR Dataset/train/y train.txt', delim whitespace=True,
     header=None)
[19]: # Helper function to compute class priors, means, and covariances
     def estimate_statistics(X, y):
         classes = np.unique(y)
         class priors = []
         class_means = []
         class covariances = []
         for cls in classes:
             X_{class} = X[y == cls]
            prior = len(X_class) / len(X)
            mean = np.mean(X_class, axis=0)
             covariance = np.cov(X_class, rowvar=False)
             class_priors.append(prior)
             class_means.append(mean)
             class_covariances.append(covariance)
         return np.array(class_priors), np.array(class_means), np.
      →array(class covariances)
     # Estimate priors, means, and covariances for HAR training dataset
     priors_har, means_har, covs_har = estimate_statistics(X_train, y_train)
     # Print estimated statistics for HAR
     print("Class Priors (HAR):", priors_har)
     # print("Mean Vectors (HAR) - Class 1:\n", means_har[0])
     print("Covariance Matrix (HAR) - Class 1:\n", covs_har[0])
     Class Priors (HAR): [0.16675734 0.14594668 0.13411317 0.17491839 0.18688792
     0.1913765 ]
     Covariance Matrix (HAR) - Class 1:
      1.83172712e-05 -1.52433104e-04]
      4.37971757e-05 -9.74079500e-05]
      [-1.73625491e-04 9.60152451e-05 1.05206402e-03 ... 2.24479930e-06
       2.87508524e-05 7.62211531e-05]
     [-4.95972723e-05 -2.31419170e-05 2.24479930e-06 ... 9.72430979e-03
       3.20320771e-03 7.49682841e-03]
      [ 1.83172712e-05  4.37971757e-05  2.87508524e-05  ...  3.20320771e-03
       3.19049432e-03 1.59055320e-03]
      [-1.52433104e-04 -9.74079500e-05 7.62211531e-05 ... 7.49682841e-03
```

y_train = pd.read_csv('/mnt/localssd/ee5644/hw1/human_activity_recognition_usi

Use ``sep='\s+'`` instead

1.59055320e-03 1.30640909e-02]]

```
[20]: # Regularization function for covariance matrices
     def regularize_covariance(cov_matrix, lambda_value):
         I = np.eye(cov_matrix.shape[0])
         regularized_cov = cov_matrix + lambda_value * I
         return regularized_cov
     # Apply regularization to the covariance matrices with lambda = 0.01
     lambda_reg = 0.01
     covs har reg = [regularize covariance(cov, lambda reg) for cov in covs har]
     # Print the regularized covariance matrix for one class
     print("Regularized Covariance Matrix for Class 1 (HAR):\n", covs_har_reg[0])
    Regularized Covariance Matrix for Class 1 (HAR):
      1.83172712e-05 -1.52433104e-04]
      4.37971757e-05 -9.74079500e-05]
      [-1.73625491e-04 9.60152451e-05 1.10520640e-02 ... 2.24479930e-06
       2.87508524e-05 7.62211531e-05]
     [-4.95972723e-05 -2.31419170e-05 2.24479930e-06 ... 1.97243098e-02
       3.20320771e-03 7.49682841e-03]
      [ 1.83172712e-05  4.37971757e-05  2.87508524e-05 ...  3.20320771e-03
       1.31904943e-02 1.59055320e-03]
      [-1.52433104e-04 -9.74079500e-05 7.62211531e-05 ... 7.49682841e-03
       1.59055320e-03 2.30640909e-02]]
[21]: from scipy.stats import multivariate_normal
     # Function to apply minimum-probability-of-error classification
     def classify_min_error(X, priors, means, covs):
         n_samples = X.shape[0]
         n_classes = len(priors)
         posteriors = np.zeros((n_samples, n_classes))
         for i in range(n classes):
             likelihood = multivariate_normal.pdf(X, mean=means[i], cov=covs[i])
            posteriors[:, i] = likelihood * priors[i]
         predicted_labels = np.argmax(posteriors, axis=1) + 1 # HAR class labels_u
      ⇔start from 1
         return predicted_labels
     # Apply classification to the HAR training dataset
```

```
predicted_har = classify_min_error(X_train, priors_har, means_har, covs_har_reg)
# Print some predicted labels for HAR
print("Predicted Labels (HAR):", predicted_har[:10])
Predicted Labels (HAR): [5 5 5 5 5 5 5 5 5 5]
```

[22]: from sklearn.metrics import confusion_matrix, accuracy_score

Compute confusion matrix and error probability for HAR
conf_matrix_har = confusion_matrix(y_train, predicted_har)
error_prob_har = 1 - accuracy_score(y_train, predicted_har)

Print confusion matrix and error probability
print("Confusion Matrix (HAR):\n", conf_matrix_har)
print("Error Probability (HAR):", error_prob_har)

```
Confusion Matrix (HAR):
 ΓΓ1226
         0
             0
                          0
                               07
                         0
                              ſΩ
    0 1073
               0
                    0
    0
          1 985
                    0
                         0
                              07
 Γ
          0
               0 1197
                              ſΩ
    0
                        89
 0
                    1 1373
                              07
    0
          0
 Γ
          0
               0
                    0
                         0 1407]]
```

Error Probability (HAR): 0.012377584330794389

```
[23]: from sklearn.decomposition import PCA
      import matplotlib.pyplot as plt
      # Function to visualize the dataset using PCA
      def visualize_pca(X, y, predicted_labels, title):
         pca = PCA(n_components=2)
         X_pca = pca.fit_transform(X)
         plt.figure(figsize=(8, 6))
         scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=predicted_labels,__
       ⇔cmap='coolwarm', alpha=0.6)
         plt.title(title)
         plt.xlabel('Principal Component 1')
         plt.ylabel('Principal Component 2')
         plt.colorbar(scatter)
         plt.show()
      # Visualize the HAR training data using PCA
      visualize_pca(X_train, y_train, predicted_har, "HAR Dataset Classification∪
```


3.0.2 Discussion of Results for HAR Dataset

1. Confusion Matrix:

- The classifier performs very well on most classes.
- Most samples are correctly classified, with only slight errors between some activity classes (e.g., Class 3 and 4).

2. Error Probability:

- The overall error probability is 1.23%, indicating strong performance.
- This suggests that the Gaussian assumption works well for the HAR dataset.

3. PCA Visualization:

- The PCA plot shows two clear clusters of classes.
- Some overlap exists between adjacent classes (like Class 3 and 4), which explains minor misclassifications.

4. Suitability of Gaussian Model:

- The Gaussian model appears suitable for this dataset due to its structured features.
- The low error rate and well-formed PCA projection support this assumption.

5. Model Assumptions:

• The multivariate Gaussian assumption for each class seems valid here.

• Regularization was necessary due to the high dimensionality (561 features).

6. Conclusion:

- The Gaussian class-conditional model works very well for the HAR dataset.
- While the performance is strong, further improvements could be explored using non-parametric or more complex models.