### **Announcement:**

There will be a quiz over sections 9.1-9.4 on Wednesday, May 2

#### Homework Review - 9.2





$$A = (x+1)(x+1) = x^{2} + x+x+1$$

$$A = (x-1) \cdot 5 = 5x-35$$

$$+ -5x+35$$

$$x^{2} - 3x + 36$$

Multiplying polynomials horizontally:  $(h^2 + h - 7)(3h - 4)$   $\rightarrow$  this is the technique we've used Multiplying polynomials vertically:

$$h^{2} + 6h - 7$$

$$3h - 4$$

$$-4h^{2} - 24h + 128$$

$$3h^{3} + 48h^{2} - 21h$$

$$3h^{3} + 44h^{2} - 45h + 128$$

$$455 2$$
Use the same technique as when you multiply numbers with more than one digit:
$$428 \times 34$$

$$1712$$

$$1284$$

$$1455 2$$

Section 9.3 043012.notebook

## Multiply polynomials using a table:

$$(x-4)(3x^2+3x+2)$$

| 0  | 3/2     | 3x     | 2  |
|----|---------|--------|----|
| *  | 3x3     | 1 3x2  | 2x |
| -4 | -12x2 K | -12x c | -8 |

$$3x^3 - 9x^2 - 10x - 8$$

FOIL method for multiplying two binomials:



#### Find the product.

- **1.**  $-8y^3(2y^4 5y^2 + 3)$  **2.**  $(b+3)(3b^2 2b + 1)$  **3.** (6w-3)(4-3w) (FOIL)

# Square of a binomial pattern:

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
Basic pattern:
$$(a+b)^{2} = (a+b)(a+b)$$
Why:
$$a^{2} + ab + ab + b^{2}$$
Examples:
$$(x+4)^{2} = x^{2} + 8x + 16$$

$$(2x+3)^{2} = 4x^{2} + 12x + 9$$

### Sum and Difference Pattern (binomials only):

$$(a+b)(a-b) = a^{2} - b^{2}$$
Basic pattern:

$$(x^{2} - ab + ab - b^{2})$$
Why:
$$a^{2} - b^{2}$$
Examples:
$$(x+2)(x-2) = x^{2} - 4$$

$$(3x+7)(3x-7) = 9x^{2} - 49$$

$$(11x-12)(11x+12) = 121x - 144$$

(Works with numbers too...)  $\int (x-a)(x+a)^2$ (x+a)<sup>2</sup>  $205 \times 195$  (200+5)(200-5) 40000-25=39975

Find the product of the square of the binomial.

1. 
$$(x-9)^2$$
  $(a+b)^2 = 3+3+4$ 

**2.** 
$$(m+11)^{2}$$

Find the product of the square of the binomial. (5s) 
$$^{3} = 55.55 = 255^{3}$$
  
1.  $(x-9)^{2}$   $(3+1)^{2}$  2.  $(m+11)^{2}$  3.  $(5s+2)^{2}$   
 $(x^{2}+24)+1^{3}$   $(x^{2$ 

$$(5s)^{\lambda} = 55.5s = 2.5s^{\lambda}$$

3. 
$$(5s + 2)^2$$

Find the product of the sum and difference.

**11.** 
$$(z-20)(z+20)$$

**12.** 
$$(5r+1)(5r-1)$$

2.55.2=205

$$(x+a)(x-a)=x^2-a^2$$

**Pea Plants** In pea plants, the gene S is for spherical seed shape, and the gene s is for wrinkled seed shape. Any gene combination with an S results in a spherical seed shape. Suppose two pea plants have the same gene combination Ss.

- **a.** Make a Punnett square that shows the possible gene combinations of an offspring pea plant and the resulting seed shape.
- **b.** Write a polynomial that models the possible gene combinations of an offspring pea plant.
- **c.** What percent of the possible gene combinations of the offspring results in a wrinkled seed shape?

## Homework:

- p. 572, 4-40 even
- p. 574, 1-9 odd