CSCD94 Week 10 Update

Dominik Luszczynski

Slope-Based Attacks

 As we have seen in previous weeks, current versions of targeted attacks tend to simply move the entire forecast above or below the true adjusted price.

Slope-Based Attacks

- Rather than choosing a target adjprc, and reducing the loss between the target and the forecasted predictions, we instead:
 - Define a slope-based loss function based on a target direction
 - Try to minimize this loss function by creating x_adv (same algorithm as TIM/BIM)
 - Clip x_adv to be within the epsilon-neighbourhood

Sloped-Based Loss Function

Slope-based Loss Function (slope = 0)

Algorithm

- 1. $x_i = adjprc$
- 2. For i in range of num_iterations:
 - 1. x_i.requires_grad_(True)
 - model.zero_grad()
 - 3. pred = get_predictions(x_i)
 - 4. slope = (pred[-1] pred[0]) / len(pred)
 - 5. loss = slope loss(slope)
 - 6. loss.backward()
 - 7. With no gradients:
 - 1. grad = loss.grad.data
 - 2. sign_grad = grad.sign()
 - 3. noise = step_size * sign_grad
 - 4. $x_i = x_i noise$ # Want to move in direction of gradient to minimize the loss
 - 5. $x_i = clamp(x_i, adjprc epsilon, adjprc + epsilon)$
 - 8. x_i.detach()

Note: Given that Adjprc tends to increase, Slope (Down) and Slope (0) tend to produce the same output.

Note: Given that Adjprc tends to increase, Slope (Down) and Slope (0) tend to produce the same output.

Slope-Based Attack Adjprc

Adjprc for different attacks on ADBE

Slope-Based Attack Adjprc

Adapting the Slope-Based Attack into the GAN (Doesn't work too well)

Adapting the Slope-Based Attack into the GAN (Doesn't work too well)

Adapting the Slope-Based Attack into the GAN (Doesn't work too well)

Possible Problems/Fixes

- Currently I have a saved GAN which I preload; however, the critic has
 probably learnt that the generated sequence should match the
 condition, thus when the generator tries to make perturbations, the
 critic "flags" it and gives a high loss to the generator.
- A 20-day forecast may not be enough time to get a meaningful slope, as the Slope-Based Attack generates the attack over a 300-day forecast.

What About Just Maximizing MAE?

 The generator always learns to simply change the mean of the log return

Could add a "Mean-loss" to the generator, like I did for the slope-based version of the GAN

Next Steps

- Experiment with different training set-ups for the GANs
 - Possibly generate longer segments
 - Recursively generate segments to have a large enough forecast for a meaningful slope
 - Add similarity losses such as mean-losses if maximizing MAE.
- Perform the epsilon experiment on the Slope-Based Attacks and generate meaningful comparisons with the TIM/Stealthy Attacks.
 - Also look for ways to make the attacks more stealthy/less noticeable.