10.2 Limits (Continued)

* ONE SIDED LIMITS

b what is
$$\lim_{x\to 0} 2M = DNE$$

$$x \to 0^{+} \Phi(x) = -1$$

$\gamma = \frac{1}{\sqrt{2}}$

* INFINITY LIMITS

EX)
$$\lim_{K \to -1^+} \frac{2}{K+1} = -00$$

EX) LIM 62-4

$$E_X) \lim_{x\to 2} \frac{x+2}{x^2-4} = DNE \longrightarrow$$

* LIMIT AT INFINITY

$$\lim_{x\to\infty}\frac{4}{(x-5)^3}=0$$

$$X = 1000 - 9 - \frac{4}{(95)^3} = \frac{4}{(905)^3} = \frac{4}{(905)^3}$$

EX)
$$\lim_{x\to\infty} \frac{4x^2+5}{2x^2+1} = \lim_{x\to\infty} \frac{4x^2+5}{2x^2+1}$$

$$= \lim_{x \to \infty} \frac{4x^2 + 5}{2x^2 + 1}$$

$$\frac{5x}{100} \frac{5x}{x^2} = \lim_{x \to \infty} \frac{5}{x} = 0$$

$$\frac{5x^3}{x^2} = \lim_{x \to \infty} 5x = 0$$

$$\frac{5x^3}{x^2} = \lim_{x \to \infty} 5x = 0$$

=
$$\lim_{x \to -\infty} x^3 - \lim_{x \to -\infty} x^2 + \lim_{x \to -\infty} x - \lim_{x \to -\infty} 2 = \lim_{x \to -\infty} (x^3)$$

= $\lim_{x \to -\infty} (x^3)$

ONLY NEED TO THINK GREATEST POWER

GRAPH VALUE

	1		P It	inclasse	Sosta	then	X2
X	X²	χ_3		inclasse			
		-)				X	P A
-2	4	-8				1	H
-3	9	-27					G
-4	16	-64				-	G
•	•	•					
•	•	•					
0	0	•					
~00	∞	-∞					

ALWAYS!

HIGHEST EXPONENT MATTERS.

GRAPH CHANGES BY

GREATEST POWER