Interestingly, under certain hypotheses, it is possible to prove that the sequence of approximate solutions $(u^k)_{k\geq 0}$ converges to the minimizer u of J over U, even if the sequence $(\lambda^k)_{k\geq 0}$ does not converge. We prove such a result when the constraints φ_i are affine.

Theorem 50.21. Suppose $J: \mathbb{R}^n \to \mathbb{R}$ is an elliptic functional, which means that J is continuously differentiable on \mathbb{R}^n , and there is some constant $\alpha > 0$ such that

$$\langle \nabla J_v - \nabla J_u, v - u \rangle \ge \alpha \|v - u\|^2$$
 for all $u, v \in \mathbb{R}^n$,

and that U is a nonempty closed convex subset given by

$$U = \{ v \in \mathbb{R}^n \mid Cv \le d \},$$

where C is a real $m \times n$ matrix and $d \in \mathbb{R}^m$. If the scalar ρ satisfies the condition

$$0 < \rho < \frac{2\alpha}{\|C\|_2^2},$$

where $||C||_2$ is the spectral norm of C, then the sequence $(u^k)_{k\geq 0}$ computed by Uzawa's method converges to the unique minimizer $u\in U$ of J.

Furthermore, if C has rank m, then the sequence $(\lambda^k)_{k\geq 0}$ converges to the unique maximizer of the Dual Problem (D).

Proof.

Step 1. We establish algebraic conditions relating the unique minimizer $u \in U$ of J over U and some $\lambda \in \mathbb{R}^m_+$ such that (u, λ) is a saddle point.

Since J is elliptic and U is nonempty closed and convex, by Theorem 49.8, the functional J is strictly convex, so it has a unique minimizer $u \in U$. Since J is convex and the constraints are affine, by Theorem 50.17(2) the Dual Problem (D) has at least one solution. By Theorem 50.15(2), there is some $\lambda \in \mathbb{R}^m_+$ such that (u, λ) is a saddle point of the Lagrangian L.

If we define the affine function φ by

$$\varphi(v) = (\varphi_1(v), \dots, \varphi_m(v)) = Cv - d,$$

then the Lagrangian $L(v,\mu)$ can be written as

$$L(v,\mu) = J(v) + \sum_{i=1}^{m} \mu_i \varphi_i(v) = J(v) + \langle C^{\top} \mu, v \rangle - \langle \mu, d \rangle.$$

Since

$$L(u,\lambda) = \inf_{v \in \mathbb{R}^n} L(v,\lambda),$$

by Theorem 40.13(4) we must have

$$\nabla J_u + C^{\mathsf{T}} \lambda = 0, \tag{*_1}$$