Bound for preperiodic hypersurfaces and preperiodic points

Sebastian Troncoso

Birmingham-Southern College

January 10, 2018.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Periodic point: $\phi^m(P) = P$ for some $m \ge 1$.

2 / 13

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Periodic point: $\phi^m(P) = P$ for some $m \ge 1$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic.

The set of K-rational preperiodic points is denoted by $PrePer(\phi, K)$.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over a number field K.

Periodic point: $\phi^m(P) = P$ for some $m \ge 1$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic.

The set of K-rational preperiodic points is denoted by $PrePer(\phi, K)$.

Tail point: A point that is preperiodic but not periodic.

Examples:

We can view $\mathbb{P}^1(K)$ as $K \cup \infty$ and endomorphism of \mathbb{P}^1 as rational functions.

 \mathbb{Q} -rational tail points (red) and \mathbb{Q} -rational periodic points (green) of $\phi_c(z)=z^2+c$.

• Is the set $PrePer(\phi, K)$ finite?

• Is the set $PrePer(\phi, K)$ finite? **Yes**.

• Is the set $PrePer(\phi, K)$ finite? **Yes**.

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree ≥ 2 defined over a number field K. Then ϕ has only finitely many preperiodic points in $\mathbb{P}^n(K)$.

• Is the set $PrePer(\phi, K)$ finite? **Yes**.

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree ≥ 2 defined over a number field K. Then ϕ has only finitely many preperiodic points in $\mathbb{P}^n(K)$.

We can deduce from the original proof of Northcott's theorem a bound for $|\operatorname{PrePer}(\phi, K)|$ depending on

- $D = [K : \mathbb{Q}]$
- The dimension *n* of the projective space
- The degree d of ϕ .
- height of the coefficients of ϕ

The Dream:

Give explicit bounds for $|\operatorname{PrePer}(\phi, K)|$ in terms of:

The Dream:

Give explicit bounds for $|\operatorname{PrePer}(\phi, K)|$ in terms of:

- $D = [K : \mathbb{Q}]$
- The dimension *n* of the projective space
- The degree d of ϕ .

The Dream:

Give explicit bounds for $|\operatorname{PrePer}(\phi, K)|$ in terms of:

- $D = [K : \mathbb{Q}]$
- The dimension *n* of the projective space
- The degree d of ϕ .

Conjecture (Uniform Boundedness Conjecture - Morton-Silverman 1994)

There exists a bound B=B(D,n,d) such that if K/\mathbb{Q} is a number field of degree D, and $\phi:\mathbb{P}^n\to\mathbb{P}^n$ is an endomorphism of degree $d\geq 2$ defined over K, then

$$|\mathsf{PrePer}(\phi, K)| \leq B$$
.

Goal:

• Give an explicit bound for $|\operatorname{PrePer}(\phi, K)|$.

• To do so we need an extra parameter.

 \bullet Instead of the height of ϕ we use a weaker and more natural parameter.

ullet This parameter is the number of places of bad reduction of ϕ

• For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.

- For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, $\mathfrak p$ a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak p}$ the local ring at $\mathfrak p$.

- For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, \mathfrak{p} a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak{p}}$ the local ring at \mathfrak{p} .
- Write ϕ in normal form:

$$\phi([x:y]) = [F(x,y): G(x,y)],$$

where F(x, y) and G(x, y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

- For simplicity in the notation we will defined good reduction only for rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, \mathfrak{p} a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak{p}}$ the local ring at \mathfrak{p} .
- Write ϕ in normal form:

$$\phi([x:y]) = [F(x,y): G(x,y)],$$

where F(x,y) and G(x,y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

• We say ϕ has **good reduction** at \mathfrak{p} if F and G do not have a common zero module \mathfrak{p} in \mathbb{P}^1 .

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

• $|PrePer(K, \phi)| \le d^{2^{16s}(s \log(s))^D}$ J.K. Canci and L. Paladino (2015).

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

- $|PrePer(K, \phi)| \le d^{2^{16s}(s \log(s))^D}$ J.K. Canci and L. Paladino (2015).
- $|PrePer(K, \phi)| \le 5 \left(2^{16sd^3}\right) + 3$ S. Troncoso (2017).

Theorem

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over a number field K and $[K:\mathbb{Q}] = D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s = |S|. Then

- $|PrePer(K, \phi)| \le d^{2^{16s}(s \log(s))^D}$ J.K. Canci and L. Paladino (2015).
- $|PrePer(K, \phi)| \le 5\left(2^{16sd^3}\right) + 3$ S. Troncoso (2017).
- $|\mathit{PrePer}(K, \phi)| \leq \alpha d^2 + \beta d + \gamma$ where α , β and γ are roughly 2^{78s} .

 J.K. Canci, S. Troncoso and S. Vishkautsan (submitted).

Tools

- Logarithmic *v*-adic distance between points in $\mathbb{P}^1(K)$.
- Study the distance between tail point and periodic.

- Logarithmic v-adic distance between a point and a hypersurface in \mathbb{P}^n .
- Study the distance between tail hypersurfaces and periodic points.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over K and H an irreducible hypersurface defined over K of degree e.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over K and H an irreducible hypersurface defined over K of degree e.

Periodic hypersurface: $\phi^n(H) = H$ for some $n \ge 1$.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over K and H an irreducible hypersurface defined over K of degree e.

Periodic hypersurface: $\phi^n(H) = H$ for some $n \ge 1$.

Preperiodic hypersurface: $\exists m \geq 0$ such that $\phi^m(H)$ is periodic

The set of K-rational preperiodic hypersurface (of degree e) is denoted by $HPrePer(\phi, K)$ ($HPrePer(\phi, K, e)$).

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over K and H an irreducible hypersurface defined over K of degree e.

Periodic hypersurface: $\phi^n(H) = H$ for some $n \ge 1$.

Preperiodic hypersurface: $\exists m \geq 0$ such that $\phi^m(H)$ is periodic

The set of K-rational preperiodic hypersurface (of degree e) is denoted by $HPrePer(\phi, K)$ ($HPrePer(\phi, K, e)$).

Tail hypersurface: A hypersurface that is preperiodic but not periodic.

• Is the set $HPrePer(\phi, K)$ finite?

• Is the set $HPrePer(\phi, K)$ finite?

No.

• Is the set $HPrePer(\phi, K)$ finite?

No.

• Is the set $HPrePer(\phi, K, e)$ finite?

• Is the set $HPrePer(\phi, K)$ finite?

No.

• Is the set $HPrePer(\phi, K, e)$ finite?

Yes.

• Is the set $HPrePer(\phi, K)$ finite?

No.

• Is the set $HPrePer(\phi, K, e)$ finite?

Yes.

Theorem (B. Hutz 2016)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree ≥ 2 defined over a number field K. Then there are only finitely many preperiodic K-rational subvarieties of degree at most e.

Goal

Just like the one dimensional case, we would like to give explicit bounds for the cardinality of the set $HPrePer(\phi, K, e)$. In terms of:

Goal

Just like the one dimensional case, we would like to give explicit bounds for the cardinality of the set $HPrePer(\phi, K, e)$. In terms of:

- The degree of the endomorphism.
- The degree of the number field.
- The dimension of the projective space.
- The degree *e* of the hypersurface.
- The number of places of bad reduction of ϕ .

Partial result in \mathbb{P}^2

Theorem (S. Troncoso 2017)

Let ϕ be an endomorphism of \mathbb{P}^2 , defined over K and suppose ϕ has good reduction outside S. Let $\{P_i\}_{i=1}^{2N+1}$ be a set of K-rational periodic points of \mathbb{P}^2 . Assume that no N+1 of them lie in a curve of degree e.

Partial result in \mathbb{P}^2

Theorem (S. Troncoso 2017)

Let ϕ be an endomorphism of \mathbb{P}^2 , defined over K and suppose ϕ has good reduction outside S. Let $\{P_i\}_{i=1}^{2N+1}$ be a set of K-rational periodic points of \mathbb{P}^2 . Assume that no N+1 of them lie in a curve of degree e.

Then there is a set *large subset* of K-rational tail hypersurfaces such that its cardinality is bounded by

$$(2^{33} \cdot (2N+1)^2)^{(N+1)^3(s+2N+1)}$$

where $N = \binom{e+2}{e} - 1$.

