Calculus I Lecture 5 Limits Involving Infinity

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Limits Involving Infinity
 - Infinite Limits
 - Limits at Infinity; Horizontal Asymptotes
 - Infinite Limits at Infinity

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Infinite Limits

Example

Find $\lim_{x\to 0} \frac{1}{x^2}$ if it exists.

X	$\frac{1}{x^2}$
±1	1
± 0.5	4
±0.2	25
±0.1	100
± 0.05	400
±0.01	10,000
± 0.001	1,000,000

- As x gets close to 0, so does x^2 , so $\frac{1}{x^2}$ gets large.
- $\frac{1}{x^2}$ can be made arbitrarily large by taking x close enough to 0.

Lecture 5

• f(x) doesn't approach a number, so $\lim_{x\to 0} \frac{1}{x^2}$ doesn't exist.

Definition (Infinite Limit)

Let f be a function defined on both sides of a, except perhaps at a. Then

$$\lim_{x\to a} f(x) = \infty$$

means the values of f(x) can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

- Other notation: $f(x) \to \infty$ as $x \to a$.
- In such cases, the limit does not exist.
- ∞ is not a number. The notation $\lim_{x\to a} f(x) = \infty$ expresses the particular way in which the limit doesn't exist.

Lecture 5

Definition (Infinite Limit)

Let f be a function defined on both sides of a, except perhaps at a. Then

$$\lim_{x\to a} f(x) = -\infty$$

means the values of f(x) can be made arbitrarily negative by taking x sufficiently close to a, but not equal to a.

mean the number is negative with large absolute value.

Here, by "arbitrarily negative" we

- In such cases, the limit does not exist.
- $-\infty$ is not a number. The notation $\lim_{x\to a} f(x) = -\infty$ expresses the particular way in which the limit doesn't exist.

There are similar definitions for one-sided limits:

$$\lim_{x\to a^-} f(x) = \infty$$

$$\lim_{x\to a^+}f(x)=\infty$$

$$\lim_{x\to a^-} f(x) = -\infty$$

$$\lim_{x\to a^+}f(x)=-\infty$$

Lecture 5

 $x \rightarrow a^-$ means we only consider x < a.

 $x \rightarrow a^+$ means we only consider x > a.

Definition (Vertical Asymptote)

The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{\substack{x \to a \\ x \to a}} f(x) = \infty \qquad \lim_{\substack{x \to a^{-} \\ x \to a^{-}}} f(x) = \infty \qquad \lim_{\substack{x \to a^{+} \\ x \to a^{+}}} f(x) = \infty$$

Find
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x\to 3^-} \frac{2x}{x-3}$.

$$\lim_{x \to 3^+} \frac{2x}{x-3} = \infty.$$

$$\lim_{x \to 3^-} \frac{2x}{x-3} = -\infty.$$

- If x is near 3 but larger than 3, the denominator x-3 is a small positive number and 2x is close to 6.
- So the quotient $\frac{2x}{x-3}$ is a large positive number.
- If x is near 3 but smaller than 3, the denominator x - 3 is a negative number with small absolute value and 2x is close to 6.
- So $\frac{2x}{x-3}$ is a negative number with large absolute value.
- x = 3 is a vertical asymptote for $f(x) = \frac{2x}{x^2}$.

$$\lim_{x\to a} f(x)$$

If we plug in a and get

$$f(a) = \frac{\text{something different from 0}}{0}$$

then the limit will be DNE, ∞ , or $-\infty$.

To determine what the answer is, this is what we do:

- Factor.
- Determine if each factor is positive or negative.
- **3** An odd number of negative factors means the limit is $-\infty$.
- **4** An even number of negative factors means the limit is ∞ .
- § For a two-sided limit, the answer is DNE unless the left limit and the right limit are either both ∞ or both $-\infty$.

Limits Involving Infinity Infinite Limits 12/27

Example (Infinite Limit)

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

The numerator is non-zero and the denominator is zero. Therefore the answer is DNE, ∞ , or $-\infty$.

Example (Infinite Limit)

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

The numerator is non-zero and the denominator is zero. Therefore the answer is DNE, ∞ , or $-\infty$.

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$
$$\to \frac{(+)(+)}{(-)(+)}$$
$$= (-)$$
Therefore
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} =$$

$$\lim_{x\to 0^+}\ln x=-\infty$$

$$\lim_{\mathbf{X} \to \frac{\pi}{2}^+} \tan \mathbf{X} = -\infty$$

$$\lim_{X\to\frac{\pi}{2}^-}\tan X=\infty$$

$$\lim_{x\to\frac{\pi}{2}}\tan x=\mathsf{DNE}$$

Limits at Infinity; Horizontal Asymptotes

X	f(x)
0	-1
±1	0
±2	0.600000
±3	0.800000
± 4	0.882353
±5	0.923077
±10	0.980198

- Consider $f(x) = \frac{x^2 1}{x^2 + 1}$ as x becomes large.
- The values of f(x) get closer and closer to 1.
- We express this by writing $\lim_{x\to\infty} f(x) = 1$.
- When x is very negative, f(x) is also near 1.
- We express this by writing $\lim_{x \to -\infty} f(x) = 1$.

Definition (Limit at Infinity)

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x\to\infty}f(x)=L$$

means that the values of f can be made arbitrarily close to L by taking x sufficiently large.

- There are many ways that this can happen.
- Other notation: $f(x) \to L$ as $x \to \infty$.
- ∞ is not a number.

Definition (Limit at Minus Infinity)

Let f be a function defined on some interval $(-\infty, b)$. Then

$$\lim_{x\to-\infty}f(x)=L$$

means that the values of f can be made arbitrarily close to L by taking x sufficiently negative.

Definition (Horizontal Asymptote)

The line y = L is called a horizontal asymptote of f if either

$$\lim_{x \to \infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$.

- For example, y = 1 is a horizontal asymptote for $f(x) = \frac{x^2 1}{x^2 + 1}$.
- Can a function have two horizontal asymptotes? Yes.

$$\frac{\frac{1}{100} = 0.01, \qquad \frac{1}{10,000} = 0.0001}{\frac{1}{1,000,000} = 0.000001}$$

Find $\lim_{x\to\infty}\frac{1}{x}$ and $\lim_{x\to-\infty}\frac{1}{x}$.

- When x is large, $\frac{1}{x}$ is small.
- By taking x large enough, we can make $\frac{1}{x}$ as small as we like.
- Therefore $\lim_{x\to\infty}\frac{1}{x}=0$.
- Similarly, $\lim_{x \to -\infty} \frac{1}{x} = 0$.
- v = 0 (the x-axis) is a horizontal asymptote for the curve $y = \frac{1}{y}$.

We can generalize the previous example to other powers of x:

Theorem (Infinite Limits of $\frac{1}{x^r}$)

If r > 0 is a rational number, then

$$\lim_{x\to\infty}\frac{1}{x^r}=0.$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x\to -\infty}\frac{1}{x^r}=0.$$

Evaluate
$$\lim_{x\to\infty} \frac{3x^2-x-2}{5x^2+4x+1}$$
.

A similar calculation shows that the limit as $x \to -\infty$ is also $\frac{3}{5}$.

Standard approach: divide top and bottom by the highest power of x in the denominator.

$$\lim_{x \to \infty} \frac{\left(3x^2 - x - 2\right)}{\left(5x^2 + 4x + 1\right)} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2 \lim_{x \to \infty} \frac{1}{x^2}$$

$$= \lim_{x \to \infty} 5 + 4 \lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}$$

$$= \frac{3 - 0 - 0}{5 + 0 + 0} = \frac{3}{5}$$

Todor Milev

Lecture 5

Limits Involving Infinity

Find the horizontal and vertical asymptotes of $f(x) = \frac{\sqrt{3x^2+1}}{2x-3}$.

If x > 0 then $x = \sqrt{x^2}$. If x < 0 then $x = -\sqrt{x^2}$. Vertical Asymptote: $x = \frac{3}{2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{-1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$\vdots$$

$$= \lim_{x \to -\infty} -\frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = -\frac{\sqrt{3}}{2}$$

Evaluate
$$\lim_{x \to \infty} \sqrt{x^2 + 1} - x$$
.

- $\sqrt{x^2+1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.
- Divide top & bottom by x.

 Standard approach: multiply top and bottom by ±conjugate radical.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to \infty} \frac{\left(x^2 + 1 \right) - x^2}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to \infty} \frac{1}{\left(\sqrt{x^2 + 1} + x \right)} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{\sqrt{1 + \frac{1}{x^2} + 1}}$$

$$= \frac{0}{\sqrt{1 + 0 + 1}} = 0$$

Infinite Limits at Infinity

We write

$$\lim_{x\to\infty}f(x)=\infty$$

to mean that f(x) becomes large as x becomes large. We attach similar meaning to

$$\lim f(x) = -\infty,$$

$$\lim_{x \to \infty} f(x) = -\infty, \qquad \lim_{x \to -\infty} f(x) = \infty, \qquad \lim_{x \to -\infty} = -\infty$$

$$\lim_{x \to -\infty} = -\infty$$

Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

- When x is large, so is x^3 .
- By taking x large enough, we can make x³ arbitrarily large.
- Therefore $\lim_{x\to\infty} x^3 = \infty$.
- Similarly, $\lim_{x \to -\infty} x^3 = -\infty$.

$$10^3 = 1000, \qquad 100^3 = 1,000,000, \\ 1000^3 = 1,000,000,000$$

Lecture 5

Find $\lim_{x\to\infty} (x^2-x)$.

- WRONG: $\lim_{x \to \infty} (x^2 x) = \lim_{x \to \infty} x^2 \lim_{x \to \infty} x = \infty \infty = 0.$
- The limit laws don't apply here as the limits on the right don't exist (recall: limits equal to ∞ don't exist).
- Furthermore arithmetics with ∞ is not allowed: ∞ isn't a number.
- Instead: $\lim_{x \to \infty} (x^2 x) = \lim_{x \to \infty} x(x 1) = \infty$.
- This is because x and x-1 both become arbitrarily large as $x \to \infty$.

Find the limits as $x \to \infty$ and $x \to -\infty$ of

$$y = \frac{1}{24}(x-2)^4(x+1)^3(x-1).$$

$$\lim_{x \to \infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) = \infty$$
(+) (+) (+)

$$\lim_{x \to -\infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) = \infty$$
(+) (-) (-)