

Instituto Tecnológico Superior de Occidente del Estado de Hidalgo

Ingeniería en Tecnologías de la Información y Comunicaciones

Asignatura:

Interacción Humano-Computadora

Tema:

Tema 4

Docente:

Mtro. Saul Isaí Soto Ortíz

Entregable:

Documentación

Semestre:

6°A

Elaborado por:

- Edwin Álvarez Hernández 220111015
- Adolfo Martínez Acosta 22011221
- Alinne Hernández López 22011607
- Adrián Moreno Méndez 22011747

29 de mayo del 2025

Problemática

En las zonas cercanas a las industrias del estado de Hidalgo, la calidad del aire representa un riesgo significativo tanto para la salud de la población como para el medio ambiente, debido a la emisión constante de contaminantes. La ausencia de sistemas de medición impide la detección oportuna de niveles peligrosos, lo que incrementa la exposición a agentes tóxicos y limita la capacidad de respuesta rápida y eficaz. Esta situación no solo pone en riesgo la salud pública, sino que también acelera el deterioro ambiental y dificulta la generación de información confiable para la toma de decisiones preventivas.

Objetivo general

Desarrollar un prototipo de monitoreo integral para medir y analizar los niveles de contaminación del aire en zonas industriales.

Objetivos específicos

- Incorporar sensores específicos al prototipo de circuito para realizar mediciones de la calidad del aire.
- Establecer un sistema de comunicación que permita la transmisión de los datos recolectados desde los sensores hasta un panel de control para su visualización.
- Crear un panel de control o dashboard interactivo que permita visualizar, almacenar y analizar los datos recolectados, facilitando la interpretación de los niveles de contaminación.
- Diseñar e implementar un circuito electrónico que integre los sensores de calidad del aire, garantizando precisión en las mediciones.

Arquitectura del prototipo

1. Arduino UNO

La placa Arduino UNO gestiona la funcionalidad de los tres sensores implementados: MQ-2, MQ-135 y ARD-371. Realiza las lecturas de calidad del aire y agrupa los datos recolectados en un objeto JSON, que se transmite a través de comunicación serial (UART) hacia la placa Heltec WiFi LoRa 32 (V3).

2. Heltec WiFi LoRa 32 (V3) – Primer Nodo

Esta placa recibe el JSON a través de UART desde la placa Arduino UNO para después utilizar LoRa, una tecnología de comunicación de largo alcance, para enviarlos de forma inalámbrica a un segundo nodo Heltec WiFi LoRa 32 (V3).

3. Heltec WiFi LoRa 32 (V3) – Segundo Nodo

El segundo nodo Heltec WiFi LoRa 32 (V3) recibe los datos vía LoRa y posteriormente los retransmite utilizando ESP-NOW, un protocolo inalámbrico de baja latencia entre dispositivos ESP32, hacia la placa LILYGO TTGO T-SIM7070G ESP32.

_

4. LILYGO TTGO T-SIM7070G ESP32

Esta placa recibe el JSON mediante ESP-NOW desde el segundo nodo de Heltec WiFi LoRa 32 (V3) y a través de su módulo SIM7070, se conecta a una red móvil 4G. Utilizando el protocolo MQTT, envía el JSON a un broker en la nube para su posterior procesamiento.

5. Node-RED

Node-RED se conecta al broker MQTT para recibir los datos transmitidos y los representa visualmente a través del dashboards, permitiendo el monitoreo en tiempo real de las condiciones de calidad del aire cerca de las industrias.

Figura 1. Arquitectura del sistema para la captura y transmisión de datos sobre la calidad del aire.

Protocolos de comunicación

1. UART:

Protocolo de comunicación serial utilizado para transmitir los datos de los sensores MQ-2, MQ-135 y DHT11 desde el Arduino UNO hacia el primer nodo Heltec LoRa 32 V3 mediante las líneas físicas TX y RX.

2. LoRa:

Tecnología de comunicación inalámbrica de largo alcance y bajo consumo, empleada para enviar los datos capturados desde el primer nodo Heltec hacia el segundo nodo Heltec, garantizando la transmisión en zonas amplias cercanas a las industrias.

3. ESP-NOW:

Protocolo de comunicación directa y de baja latencia entre dispositivos ESP32, utilizado para transferir de forma rápida los datos del segundo Heltec LoRa 32 V3 hacia la placa LILYGO TTGO T-SIM7070G.

4. 3G-GRPS:

Tecnología de comunicación móvil utilizada por la placa LILYGO TTGO T-SIM7070G para enviar los datos recibidos hacia un servidor remoto a través de redes celulares, permitiendo la transmisión de información desde ubicaciones sin acceso a Wi-Fi mediante servicios de datos móviles.

5. MQTT:

Protocolo ligero de mensajería ideal para entornos IoT, empleado para enviar los datos desde el HiveMQ a través del MQTT. Posteriormente, Node-RED recupera esta información con el topic para su visualización en dashboards actualizados.

Figura 2. Diagrama de comunicación inalámbrica.