Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

Математический анализ Расчетно-графическая работа №1 "Интеграл функции одной переменной" Вариант 1

Выполнили: Жуйков А. С. Лопатенко Г. В.

Преподаватель: Возианова А. В.

Апрель, 2022

Содержание

1	Инт	егральная сумма.	2
	1.1	Ступенчатая фигура	2
		1.1.1 Построение ступенчатой фигуры	2
		1.1.2 Заключение по построению	7
	1.2	Последовательность интегральных сумм	7
		1.2.1 Точное значение интеграла	7
		1.2.2 Заключение	9
2	Pac	чёт площади фигуры	10
	2.1	1 7 1 9 1	١0
	2.2	1 0 1	10
3	Hec	обственный интеграл	l 1
	3.1	Формулировка задачи	1
	3.2		1
	3.3		1
	3.4	Признаки сравнения для определения сходимости несоюствен-	
			12
	3.5	•	13
			13
		· · · · · · · · · · · · · · · · · · ·	13
			4
			4
		· ·	4
	3.6	· ·	15
4	При	ложение определенного интеграла	16
	4.1	Формулировка задачи	16
	4.2	- · · -	16
5	При	ближенные вычисления определенного интеграла	17
	5.1	Формулировка задачи	17
	5.2	1 V 1	17
			18
			18
	5.3	· · · · · · · · · · · · · · · · · · ·	9

1 Интегральная сумма.

Исследованть интегральную сумму функции f(x) = sinx, $x \in \left[0; \frac{3\pi}{2}\right]$.

- 1) изобразить график функции, криволинейную трапецию, ограниченную графиком функции, вертикальными прямыми через концы отрезка и осью 0X;
- 2) разбить отрезок на n элементарных отрезков, точками отметить их концы на рисунке;
- 3) выбрать по одной точке внутри каждого элементарного отрезка, отметить их на рисунке;
- 4) вычислить значения функции в выбранных точках, отметить их на рисунке;
- 5) изобразить ступенчатую фигуру на основе выбранного разбиения и точек внутри элементарных отрезков.

1.1 Ступенчатая фигура

Рис. 1: График функции и криволиненая трапеция

1.1.1 Построение ступенчатой фигуры

При разбиении отрезка $[a;b]=\left[0;\frac{3\pi}{2}\right]$ на n равных частей, шаг разбиения находится по формуле:

$$h = \frac{b - a}{n}$$

Точки разбиения могут быть найдены соотношением:

$$x_k = a + (k-1) \cdot h, \ k \in [1; n]$$

Для выбора точек внутри отрезков введем параметр $t \in [0; 1]$:

$$\xi_k = a + (k - t) \cdot h$$

Рассмотрим конфигурации ξ_k от параметра t:

- 1) $t=1\Rightarrow \xi_k=x_k$ левая сумма Дарбу 2) $t=0\Rightarrow \xi_k=x_{k+1}$ правая сумма Дарбу 3) $t=0.5\Rightarrow \xi_k=\frac{x_k+x_{k+1}}{2}$

Рис. 2: График функции и криволиненая трапеция

1.1.2 Заключение по построению

- 1. Без аналитически вычисленного значения интеграла нельзя однозначно определить, при каких значениях параметров (при каком положении точек внутри отрезков разбиения) фигура наиболее точно приближает криволинейную трапецию.
- 2. Можно предположить, что значения правой и левой сумм Дарбу не будут равны. Если бы график был симметричен относительно середины интервала интегрирования, то этот факт подтверждался бы аналитически.
- 3. Можно сделать вывод, что при уменьшении значения мелкоты разбиения (при увеличении n) точность приближения криволинейной трапеции увеличивается.

1.2 Последовательность интегральных сумм

Рассмотрим последовательность интегральных сумм, соответствующих различным значениям n, и установим ее поведение относительно истинного значения определенного интеграла исследуемой функции отрезке.

1.2.1 Точное значение интеграла

$$\int_{0}^{\frac{3\pi}{2}} \sin x \, dx = -\cos x \Big|_{0}^{\frac{3\pi}{2}} = 0 + 1 = 1$$

Значение интегральной суммы при разбиении:

$$\sum_{k=1}^{n} f(a + (k-t) \cdot h) \cdot h; \ h = \frac{b-a}{n}$$

1.2.2 Заключение

- 1. Вычислено точное значение определенного интеграла на заданном отрезке, что говорит об аналитическом подтверждении сходимости интеграла.
- 2. Элементы последовательностей левых, правых интегральных сумм, а также сумм, где значение ξ_k находится в серединах соответсвующих отрезков разбиения $[x_k; x_{k+1}]$ и прямая y=1 изображены на координатной плоскости. При увеличении значения n элементы последовательности будут располагаться все ближе к искомой прямой со значением интеграла, посчитанного ранее.

Таким образом, сходимость ряда интегральных сумм показана аналитически и графически.

2 Расчёт площади фигуры

2.1 Формулировка задачи

Найти площадь фигуры, ограниченной функциями:

$$\begin{cases} \rho = 6 \sin(3x) \\ \rho = 3 \ (\rho \ge 3) \end{cases} \tag{1}$$

Подзадачи:

- 1. Построить графики функций и тело, ограниченное ими
- 2. Предложить метод нахождения площади фигуры, ограниченной этими функциями
- 3. Подсчитать площадь и сверить со здравым смыслом

2.2 Ход работы

Решим уравнение для поиска точек пересечения графиков:

$$6 \sin 3x = 3$$

$$x_k = \frac{\arcsin(\frac{1}{2})}{3} + 2\pi k, \ k \in \mathbb{Z}$$
$$x_l = \frac{\pi}{3} - \frac{\arcsin(\frac{1}{2})}{3} + 2\pi l, \ l \in \mathbb{Z}$$

Тогда при k=l=0 значения аргументов соответственно равны $x_{0k}=\frac{\pi}{18}$ и $x_{0l}=\frac{5\pi}{18}$. Эти значения будут нижним и верхним пределами интегрирования.

$$\int_{\frac{\pi}{18}}^{\frac{5\pi}{18}} 6\sin 3x dx - \int_{\frac{\pi}{18}}^{\frac{5\pi}{18}} 3dx =$$

$$\left(-2\cos\frac{15\pi}{18} + 2\cos\frac{3\pi}{18}\right) - 3\left(\frac{5\pi}{18} - \frac{\pi}{18}\right) =$$

$$2\sqrt{3} - \frac{2\pi}{3}$$

Рис. 3: Область между кривыми.

3 Несобственный интеграл

3.1 Формулировка задачи

Исследовать несобственный интеграл на сходимость при параметрах α

$$\int_{1}^{\infty} \frac{\ln x}{x^{\alpha}} dx$$

3.2 Первичный анализ

- 1. Особые точки $x_1=1$ и $x_2=\infty$
- 2. Тип: Несобственный интеграл первого рода
- 3. Функция неотрицательная на промежутке интегрирования

3.3 Графики

Построим графики при различных значениях α

Рис. 4: $\alpha = 0$

Рис. 5: $\alpha = 1$

Рис. 6: $\alpha = -1$

3.4 Признаки сравнения для определения сходимости несоюственных интегралов

Признак 1. Пусть функции f(x) и g(x) определены на промежутке (A,B) и удовлетворяют неравенству $f(x) \leq |g(x)|$. Тогда:

- 1. Из сходимости $\int\limits_A^B g(x)\,dx$ следует сходимость $\int\limits_A^B f(x)\,dx$.
- 2. Расходимость $\int\limits_A^B f(x)\,dx$ влечет расходимость $\int\limits_A^B g(x)\,dx$.

Признак 2. Если существует предел:

$$\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| = \lambda$$

- 1. При $0<\lambda<\infty$ интегралы $\int\limits_A^\infty g(x)\,dx$ и $\int\limits_A^\infty f(x)\,dx$ имеют одинаковый характер сходимости.
- 2. При $\lambda = \infty$ из расходимости $\int\limits_A^\infty g(x)\,dx$ следует расходимость $\int\limits_A^\infty f(x)\,dx$.
- 3. При $\lambda=0$ из сходимости $\int\limits_A^\infty g(x)\,dx$ следует сходимость $\int\limits_A^\infty f(x)\,dx.$
- 3.5 Анализ сходимости интеграла при разных значениях lpha
- 3.5.1 Случай 1: $\alpha < 0$

Если значение α отрицательное, то интеграл принимает вид:

$$\int_{1}^{\infty} \frac{\ln x}{x^{\alpha}} dx = \int_{1}^{\infty} x^{\beta} \ln x \, dx, \ \beta > 0$$

Так как $\lim_{\substack{x\to\infty\\ \text{значениях}}} x^{\beta} \ln x = \infty$, можно с уверенностью сказать, что при отрицательных значениях α интеграл расходится.

3.5.2 Случай 2: $\alpha = 0$

Интеграл принимает вид:

$$\int_{1}^{\infty} \frac{\ln x}{x^0} dx = \int_{1}^{\infty} \ln x \, dx$$

Применяя формулу интегрирования по частям, получаем следующее выражение:

$$\lim_{b \to \infty} (x \ln x - x) |_1^b = \lim_{b \to \infty} (x(\ln x - 1)) |_1^b = \infty$$

Можно сделать вывод, что при $\alpha = 0$ интеграл расходится.

3.5.3 Случай $3: 0 < \alpha < 1$

В данном случае можно воспользоваться 2 признаком сравнения, где:

$$f(x) = \frac{\ln x}{x^{\alpha}}, \alpha \in (0, 1)$$
$$g(x) = \frac{1}{x}$$

И рассмотреть предел:

$$\lim_{x \to \infty} \left| \frac{\frac{\ln x}{x^{\alpha}}}{\frac{1}{x}} \right| = \lim_{x \to \infty} \left| \frac{\ln x}{x^{\alpha - 1}} \right| = \lim_{x \to \infty} |x^{\gamma} \ln x| = \infty, \ \gamma \in (0, 1)$$

Так как $\int\limits_{1}^{\infty} \frac{1}{x}$ расходится, то и наш интеграл при $0<\alpha<1$ будет расходиться.

3.5.4 Случай 4: $\alpha = 1$

Интеграл принимает вид:

$$\int_{1}^{\infty} \frac{\ln x}{x^{1}} dx = \int_{1}^{\infty} \frac{\ln x}{x} dx$$

Занося $\frac{1}{x}$ под знак дифференциала, получаем следующее выражение:

$$\int_{1}^{\infty} \ln x \, d(\ln x) = \lim_{b \to \infty} \frac{\ln^2 x}{2} \Big|_{1}^{b} = \infty$$

Можно сделать вывод, что при $\alpha = 1$ интеграл расходится.

3.5.5 Случай $5: \alpha > 1$

Рассмотрим предел:

$$\lim_{x \to \infty} \left| \frac{\frac{\ln x}{x^{\alpha}}}{\frac{1}{x^{p}}} \right| = \lim_{x \to \infty} \left| \frac{\ln x}{x^{\alpha - p}} \right|, p \in (1, \alpha)$$
 (*)

Применяя правило лопиталя, получаем следующее выражение:

$$\frac{1}{\alpha - p} \cdot \lim_{x \to \infty} \frac{\frac{1}{x}}{x^{\alpha - p - 1}} = \frac{1}{\alpha - p} \cdot \lim_{x \to \infty} \frac{1}{x^{\alpha - p}} = 0$$

Согласно 2 признаку сравнения, если предел * равен 0, то из сходимости знаменателя следует сходимость числителя. Так как $\int\limits_1^\infty \frac{1}{x^p}$ сходится при $\forall p>1$, то и исходный интеграл будет сходиться.

3.6 Результаты

В результате применения признаков сравнения и различных методов вычисления несобетсвенных интегралов было установлено, что

$$\int_{1}^{\infty} \frac{\ln x}{x^{\alpha}} dx$$

расходится при $\alpha \leq 1$ и сходится при $\alpha > 1$.

4 Приложение определенного интеграла

4.1 Формулировка задачи

Найти давление воды на поверхность цилиндра диаметром 4 м и высотой 6 м, если его верхнее основание находится на уровне свободной поверхности воды.

4.2 Ход решения

Рис. 7: Разбиение боковой площади цилиндра

При разбиении боковой площади цилиндра на элементарные компоненты

$$dS = 2\pi R dx$$

И если теперь найти интеграл $dp = \rho gx dS$ на промежутке интегрирования, получаем:

$$P = \int dp = \int_{0}^{H} \rho gx \cdot 2\pi R \, dx$$

$$P = \int_{0}^{H} \rho gx \cdot 2\pi R \, dx = \rho gx^{2} \cdot \pi R \Big|_{0}^{H} = \rho g\pi R H^{2}$$

Таким образом, мы явно нашли зависимость значения давления на боковую поверхность цилиндра от геометрических характеристик тела, явно его задающих.

Однако заметим, что полное давление на поверхность цилиндрического тела еще не определено, потому что необходимо добавить компоненту силы Архимеда, действующую на нижнюю крышку цилиндра:

$$P_{\Sigma} = P + P_A = \rho g \pi R H^2 + \rho g V = \rho g \pi R H^2 + \rho g H \left(\pi R^2 \right)$$

$$P_{\Sigma} = \rho g \pi R H \cdot (H + R)$$

$$P_{\Sigma} = 1000 * 10 * \pi * 4 * 6 * 10 = 24\pi \cdot 10^5 Pa$$

Ответ: $24\pi \cdot 10^5$ Па

- 5 Приближенные вычисления определенного интеграла
- 5.1 Формулировка задачи

Вычислить значения интеграла $I_0^2 = \int_0^2 f(x) dx$ по формулам трапеций и парабол при h=1 и сравнить полученные результаты с точными значениями. В качестве подынтегральных функций рассматриваются f(x) = 1 + x и $f(x) = 1 + x^3$.

5.2 Ход решения

Воспользуемся формулами для приближенного вычисления определенного интеграла методами трапеций и парабол:

5.2.1 Метод трапеций

Заметим, что при шаге разбиения h=1 получается два элементарных отрезка [0,1] и [1,2] и три узла разбиения, то есть общая формула

$$\int_{a}^{b} f(x) dx \approx h \cdot \left[\frac{f(x_0) + f(x_n)}{2} + \sum_{i=1}^{n-1} f(x_i) \right]$$

сводится к записи:

$$\int_{0}^{2} f(x) dx \approx h \cdot \left[\frac{f(x_0) + f(x_2)}{2} + f(x_1) \right] = \frac{f(0) + f(2)}{2} + f(1)$$

Тогда вычислим для рассматриваемых функций:

$$\int_{0}^{2} (1+x) dx \approx \frac{1+3}{2} + 2 = 4 \qquad \int_{0}^{2} (1+x^{3}) dx \approx \frac{1+9}{2} + 2 = 7$$

Найдем абсолютные значения искомых определенных интегралов:

$$\int_{0}^{2} (1+x) \, dx = \left(x + \frac{x^{2}}{2}\right) \Big|_{0}^{2} = 4 \qquad \int_{0}^{2} (1+x^{3}) \, dx = \left(x + \frac{x^{4}}{4}\right) \Big|_{0}^{2} = 6$$

5.2.2 Метод Симпсона (парабол)

Для начала стоит сказать, что метод Симпсона применим, так как имеется четное количество отрезков разбиения. Раньше это не отмечалось, но подынтегральные выражения являются непрерывными элементарными функциями на выделенных интервалах интегрирования.

Общая формула для подсчета определенного интеграла по методу парабол при разбиении интервала интегрирования на 2n элементарных отрезков выглядит следующим образом:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \cdot \left[f(x_0) + f(x_{2n}) + 2 \cdot \sum_{i=1}^{n-1} f(x_{2i}) + 4 \cdot \sum_{i=1}^{n-1} f(x_{2i-1}) \right], \quad h = \frac{b-a}{2n}$$

Далее для описанного метода представим похожие рассуждения, касающиеся особенностей разбиения: при шаге h=1 получается два элементарных отрезка и три узла (точки) разбиения.

И формула приобретает упрощенный вид для рассматриваемого случая:

$$\int_{0}^{2} f(x) dx \approx \frac{h}{3} \cdot [f(x_0) + f(x_2) + 4f(x_1)] = \frac{1}{3} \cdot [f(0) + f(2) + 4f(1)]$$

Произведем расчеты для искомых подынтегральных выражений:

$$\int_{0}^{2} (1+x) dx \approx \frac{1}{3} \cdot (1+3+4\cdot 2) = 4 \qquad \int_{0}^{2} (1+x^{3}) dx \approx \frac{1}{3} \cdot (1+9+4\cdot 2) = 6$$

5.3 Заключение

LATEX