Introducción al Diseño Lógico (E0301)

Ingeniería en Computación

Gerardo E. Sager

Clase 11 curso 2021

Clase 12

- Temas a tratar
 - Contadores
 - Asincrónicos
 - Sincrónicos
 - Frecuencia de Operación Máxima
 - Aplicaciones
 - Divisores de frecuencia
 - Control de tiempos
 - Generación de Direcciones

¿Qué hace y para que sirve un contador?

- Cuenta el número de impulsos que recibe en una de sus entradas, habitualmente la entrada de Reloj
- Aplicaciones
 - Divisores de frecuencia
 - Permiten obtener una frecuencia de salida $f_s = f_{in}/M$ donde f_{in} es la frecuencia de entrada y M es el número máximo hasta el que llega la cuenta
 - Control de tiempos
 - Permiten la medición o generación de intervalos de tiempo a partir de una entrada periódica llamada base de tiempo
 - Generación de Direcciones
 - Permiten generar números consecutivos que pueden utilizarse para acceder secuencialmente a direcciones de una memoria

Contador Asincrónico I

Contador Asincrónico II

Contador Asincrónico III

Contador Asincrónico IV

- Los Contadores tipo "Ripple" son sencillos y necesitan pocos componentes para producir una operación dada
 - Los retardos de propagación acumulados pueden crear problemas a altas frecuencias.
- Si el período entre pulsos de entrada es más largo que el tiempo de propagación total del contador, se evita este problema
 - Para que funcione correctamente: $T_{clock} \ge N \ t_{pd}$
 - Frecuencia Máxima: $f_{max} \le 1/(N t_{pd})$

Contadores Sincrónicos I

 Én contadores síncronos o paralelos, todos los FF son disparados simultaneamente por el reloj.

Los contadores síncronos pueden operar a frecuencias mucho más altas que los asincrónicos.

Contadores Sincrónicos II

- Cada FF tiene entradas J & K que se establecen en ALTO sólo cuando todas las salidas de orden inferior están en ALTO.
- Para que este circuito cuente correctamente, sólo aquellos FF que se supone que deben cambiar en una transición dada de reloj, deben tener un valor ALTO aplicado a sus entradas J y K
- El contador sincrónico básico que se obtiene siguiendo las reglas vistas cuenta solamente MOD 2^N . N es el número de FFs.

Count	D	С	В	Α
0	0	0	0	0
1	0	0	0	1
1 2 3	0	0	1	0
3	0	0 0 0	1	1
4 5	0	1		0
5	0	1	0	1
6	0	1	1	0
6 7	0	1	1	1 0 1 0 1 0 1
8	1		0	
9	1	0 0 0	0	1
10	1	0	1	0
11	1	0	1	0 1 0 1
12	1	1	0	0
13	1	1	0 0	1
14	1	1	1	0
15	1	1	1	0 1 0 1
0	0	0	0	0
			*	
1981	100	75	227	
		etc.	. 8 ,	

Contadores Sincrónicos III

- El contador sincrónico básico que se ha visto, puede modificarse para contar MOD M donde M es menor que 2^{N} .
 - Esto se logra forzando a que el contador saltee estados, que serían normalmente parte de la secuencia de conteo.
 - En este ejemplo puede obtenerse un contador MOD-6 haciendo un clear de los FF de un contador MOD-8, cuando la cuenta llega a seis (110).

Contadores Sincrónicos IV

- Como cambiar el Módulo M del contador.
 - Encontrar el valor mínimo de N tal que 2^N sea mayor que el valor deseado M.
 - Conectar la salida de una compuerta NAND a la entrada Clear asincrónica de todos los FF.
 - Determinar cuáles FFs están en ALTO cuando se alcance la cuenta deseada y conectar las salidas (Q) de esos FF a las entradas de la compuerta NAND.

Registros

- Un registro es un circuito sincrónico que permite almacenar N bits utilizando N Flip Flops,
- Los Flip Flops que componen el registro comparten todas sus señales de control:
 - Preset, Clear, Clk, etc.
- Hay distintos tipos:
 - Segun el modo de entrada / salida: serie y paralelo
 - Registros de Desplazamiento: uni y bidireccionales.

Tipos de Registros

Tipos de Registros

Éntrada Paralelo, Salida Paralelo (PIPO)

Entrada Serie, Salida Serie (SISO)

Tipos de Registros

Entrada Paralelo / Serie, Salida Serie (PISO)

Contadores basados en registros

 Løs contadores basados en registros de desplazamiento (Shift-Registers) usan realimentación o feedback, esto es, la salida del último FF en el registro está conectada de alguna manera, a la entrada del primer FF.

Contador de Anillo:

- Es un registro de desplazamiento circular, conectado de manera tal que la salida del último FF se conecta directamente a la entrada del primero.
- Necesita un circuito de arranque, que inyecte un 1 en un FF al inicio

Q ₃	Q_2	Q ₁	Q ₀	CLOCK pulse
1	0	0	0	0
0	1	0	0	1
0	0	1	0	2
0	0	0	1	2
1	0	0	0	4
0	1	0	0	5
0	0	1	0	6
0	0	0	1	7
*	25	20		
•	3%	*11	90	- 36

Contadores basados en registros

Contador Johnson o contador de doble anillo:

- Es un registro de desplazamiento circular, conectado de manera tal que la salida invertida (Q) del último FF se conecta directamente a la entrada del primero.
- Si arranca en ciertos estados (010 o 101) se queda alternando entre estos dos valores.

Q_2	Q ₁	Q ₀	CLOCK pulse
0	0	0	0
1	o	ő	1
1	1	0	2
1	1	1	3
0	1	1	4
0	0	1	5
0	0	0	6
1	0	0	7
1	1	0	8
			*1
34			**

Contadores basados en registros

Generador de secuencias

- Es un registro de desplazamiento circular, conectado de manera tal que la salida y al menos un FF intermedio, se combinen mediante una funcion lógica y el resultado se aplique a la entrada.
- Si cumplen ciertas condiciones, la secuencia generada se llama secuencia seudo aleatoria. Se debe proveer un valor de inicio ≠0

