Lista de produto escalar/vetorial

Parte 1:

- 1. Mostre que o triângulo de vértices A(2,3,1), B(2,1,-1) e C(2,2,-2) é um triângulo retângulo.
- 2. Seja o triângulo A(-1,-2,4), B(-4,-2,0) e C(3,-2,1). Determinar o ângulo interno ao vértice B.
- 3. Os pontos A, B e C são vértices de um triângulo eqüilátero cujo lado mede 10 cm. Calcular o produto escalar dos vetores AB e AC.
- 4. Sabendo que o ângulo entre os vetores $\vec{u} = 2\vec{i} + \vec{j} \vec{k}$ e $\vec{v} = \vec{i} \vec{j} + (m+2)\vec{k}$ é $\pi/3$, determinar m.
- 5. Determinar n (n>0) para que seja 30° o ângulo entre os vetores $\vec{u} = \vec{i} + n\vec{j} + 2\vec{k}$ e \vec{j} .
- 6. Dados os vetores $\vec{a} = 2\vec{i} + \vec{j} + \alpha \vec{k}$ e $\vec{b} = (\alpha + 2)\vec{i} 5\vec{j} + 2\vec{k}$ e $\vec{c} = 2\alpha\vec{i} + 8\vec{j} + \alpha\vec{k}$, determinar os valores de α para que o vetor $\vec{a} + \vec{b}$ seja ortogonal ao vetor $\vec{c} \vec{a}$.
- 7. Determinar o vetor \vec{v} paralelo ao vetor $\vec{u} = (1,-1,2)$ tal que $\vec{v} \cdot \vec{u} = -18$
- 8. Determinar o vetor \vec{v} , ortogonal ao vetor $\vec{u} = (2,-3,-12)$ e colinear ao vetor $\vec{w} = (-6,4,-2)$
- 9. Dados os vetores $\vec{u} = 2\vec{i} \vec{j} + \vec{k}$ e $\vec{v} = \vec{i} \vec{j}$, calcule: a) $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v})$ b) $2\vec{u} \times 3\vec{v}$
- 10. Sabendo que $|\vec{a}| = 3$, $|\vec{b}| = \sqrt{2}$ e que o ângulo entre os vetores \vec{a} e \vec{b} é 45°, calcule $|\vec{a}x\vec{b}|$
- 11. Dados os vetores $\vec{u} = 3\vec{i} + \vec{j} + 2\vec{k}$ e $\vec{v} = 4\vec{i} \vec{j}$, calcular $\vec{u} \times \vec{v}$
- 12. Calcular a área do triângulo ABC: a) A(-1,02), B(-4,1,1) e C(0,1,3) b)A(2,3,-1),B(3,1,-2)e C(-1,0,2)
- 13. A área do triângulo ABC, A(x,1,1), B(1,-1,0) e C(2,1,-1) é igual a $\frac{\sqrt{29}}{2}$ *u.a.* Encontre os valores possíveis para x.
- 14. Dados três vetores, \vec{u} , \vec{v} e \vec{w} e o escalar k, seria possível se efetuar as operações indicadas? <u>Justifique.</u>

$$(\vec{u} \bullet \vec{w}) \times (\vec{u} \bullet \vec{v})$$

- 15. Sabendo que $\vec{u} \bullet \vec{v} = 3$, $\vec{u} \bullet \vec{w} = 1$, $\vec{v} \bullet \vec{w} = -2$ e que \vec{w} é um vetor unitário, calcule o valor da expressão $(2\vec{u} + \vec{w}) \bullet (3\vec{v} + \vec{w})$
- 16. Utilizando a identidade de Lagrange, prove que $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| sen \theta$
- 17. Calcular o valor de m para que o volume do paralelepípedo determinado pelos vetores $\vec{v}_1 = 2\vec{i} \vec{j}$, $\vec{v}_2 = 6\vec{i} + m\vec{j} 2\vec{k}$ e $\vec{v}_3 = -4\vec{i} + \vec{k}$ seja igual a 10.
- 18. Dados os pontos A (1,-2,3), B(2,-1,-4), C(0,2,0) e D (-1,m,1), determinar o vetor de m para que seja de 20 unidades de volume o volume do paralelepípedo determinado pelos vetores \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} .
- 19. Calcular o volume do tetraedro ABCD, sendo dados: A (1,0,0), B(0,1,0), C(0,0,1) e D (4,2,7)

9) a)
$$-2\vec{i} - 2\vec{j} + 2\vec{k}$$
 b) $6\vec{i} + 6\vec{j} - 6\vec{k}$ 10) 3 11) $2\vec{i} + 8\vec{j} - 7\vec{k}$ 12) a) $\sqrt{6}$ u.a. b) $9\frac{\sqrt{2}}{2}$ u.a. 13) $3 e^{1/5}$ 15) 15 17) $6 ou - 4$ 18) $6 ou 2$ 19) 2.

1)Encontre o vetor u tal que u x (i+k) = 2(i+j-k) e $|u| = \sqrt{6}$.

Dica:tome $\overrightarrow{u} = (a,b,c)$ e faça as contas!

2)Sejam A(2,1,3),B(3,3,5) e C(0,31) vértices de um triângulo retângulo em A.

a)Calcular a medida da projeção $\stackrel{\circ}{BH}$ do cateto BA sobre a hipotenusa BC.

Dica:Lembre-se que
$$proj_u^v = (\underbrace{v \cdot u}_{u \cdot u})u$$
.

b)Determinar o ponto H, pé da altura relativa ao vértice BC.

3)O produto escalar é uma importante ferramenta matemática para a Física, uma vez que inúmeras grandezas físicas são definidas com seu emprego, como por exemplo, o trabalho. O trabalho realizado por uma força constante \vec{F} ao longo de um determinado deslocamento \vec{d} é definido como o produto escalar desta força pelo deslocamento efetuado pelo corpo no qual a força está aplicada. A partir destas informações, calcule o trabalho realizado pela força \vec{F} para deslocar o corpo de A até B na figura abaixo, sabendo que $|\vec{F}| = 10N$, $|\vec{AB}| = |\vec{d}| = 20me$ $\theta = 60^{\circ}$.

Dica:Lembre-se da definição geométrica do produto escalar.

4)Sejam A=(m,1,0),B=(m-1,2m,2) e C=(1,3,-1), faça o que se pede:

a) Para que valor de m o triângulo ABC é retângulo em $\stackrel{\circ}{A}$?

b)Calcule a área do triângulo, lembre que $A = \frac{bh}{2}$.

c)Calcule o cosseno de UM dos outros dois ângulos internos do triângulo.

5)Calcule os valores das incógnitas abaixo:

a)
$$v=(1; 0; -2); w=(0, 1, 2)$$

$$u = (u_x, u_y, u_z) = v \times w$$

b)
$$v=(1; 0; -2); w=(0, 1, a)$$

$$u = (2; 2; 1) = v \times w$$

c)
$$v=(1; 1; -2); w=(w_x, w_y, w_z)$$

$$u = (2; 2; 1)$$