Numbering Systems Review

- Natural numbers: Things that we count and the base system
 - o unary: 111 1111 111111111111, 11101101111=324
 - o base 7: Sun, Mon, Tues, ... Sat, Sun
 - o base 12: Jan, Feb, .. Dec
 - o base 20: e.g., the Mayan system
 - base 60: from the Sumerians: used for time, angles, geographical coordinates
 - o base 2, 8 (2³), 16 (2⁴)
- Integers: Positive, Zero, and Negative
- Rational: e.g., $\frac{1}{3}$, 2.3 but not... π
- Real Numbers: e.g., π
- Complex Numbers: eg., 3 + 2i where $i = \sqrt{-1}$
- The concept of both ° and ∞

Computer Limitations and Representation

- Recall the Universal Computer
 - There is a limited tape size to perform calculation
- Recall the von Neumann and Harvard architecture
 - There is a predefined width to registers and memory
- Abstract representations with limited sizes for:

Natural Numbers & Zero: unsigned char, unsigned int

o Integers: short int, int, long int

Rational/Real

■ Fix Point ----

■ Floating Point float, double

An encoding of each will include one or more of the following:

sign	whole	fractional	expon sign	exponent
------	-------	------------	------------	----------

Recall from grade school

1234 =	1 x 10^3	
	+ 2 x 10^2	
	+ 3 × 10^1	
	+ 4 × 10^0	

thousands	hundreds	tens	ones
1	2	3	4

Expanded Notation for other Bases

Radix Point

BASE		Colu				
Base 16	4096	256's	16's	1's	1/16	1/256
Base 10	100's	100's	10's	1's	1/10	1/100
Base 8	512's	64's	8's	1's	1/8	1/64
Base 2	8's	4's	2's	1's	1/2	1/4

Recall from grade school

154 =	1 x 10^2	
	+ 5 x 10^1	
	+ 4 x 10^0	

• Base 16
16# 9A

0x9A =	9 x 16^1	
	+ A x 16^0	

• Base 8

0o232 8# 232

Base 10 Value

Base 10 Value

0232 =	2 x 8^2	
	+ 3 x 8^1	
	+ 2 x 8^0	

10	Α
11	В
12	С
13	D
14	Е
15	F

• Base 2: 2# 1001 1010

1001 1010 =	1	x 2^7	
	+ 0	x 2^6	
	+ 0	x 2^5	
	+ 1	x 2^4	
	+ 1	x 2^3	
	+ 0	x 2^2	
	+ 1	x 2^1	
	+ 0	x 2^0	

Real Numbers

```
45.34
1011110.0100
-1011110.0100
radix point
```

But what about may limitations on the computer!

Fixed Point Numbers

- There is a need to represent Rational numbers
- Consider operations on US currency. (dollars and cents)
 - Assign the decimal point (radix) after position 2
 - Provide a register of size 6

Scientific Notation

- All numbers represented as: m x 10^N
- Simplifies operations on large and small numbers.
 - o Distance between sun and earth: $92,000,000 = 9.2 \times 10^7$
 - o Distance between sun and mars: $143,000,000 = 1.43 \times 10^8$

 14.3×10^{7} -9.2×10^{7} 5.1×10^{7}

- Floating point representation
 - o a representation of scientific notation
 - o introduces the notion of infinity, and NaN (0/0 = ?, $0 \times infinity = ?$)
- Pieces of the representation
 - Assume a register of size 16
 - A half precision: float16
 - o -1.1011101 x 2 1001

always 1: so we don't store it

Original number: - 0.000100101

Recall Scientific Notation: -1 0100101 x 2 - 100

- Components to Encode
 - o sign: negative
 - o significant or the mantissa: 0100101
 - exponent: 100 ←
 - Issue: negative exponents
 - Solution: store values with a bias
- Bias:
 - Shift all numbers along the number line by N
 - Typically it is half the range:
 - 3 bits ->

011 == 3

- 5 bits ->
- 0 1111 == 15
- 8 bits ->
 - 0111 1111 == 127
- 11 bits -> 011 1111 1111 == 1023

Number		
-4		
-3		
-2		
-1		
0	000	
1	001	
2	010	
3	011	

https://en.wikipedia.org/wiki/Single-precision floating-point format

Recall Scientific Notation: - 1.0100101 x 2⁻⁴

Formats:

- float16 (half): 1 + 5 + 10 = 16, $0 \cdot 1111 = 15$
- е S е е m m m m m m m m
 - float32 (single): 1 + 8 + 23 = 32, 0111 1111 = 127
- - float64 (double): 1 + 11 + 52 = 64, 01 1111 1111 = 1023

Recall Scientific Notation: - 1.0100101 x 2 -4

Consider a new format: c122f8 (quarter)

```
\circ c122f8 (quarter): 1 + 3 + 4 = 8, 011 = 3
```

• Components

```
o sign: 1
```

$$\circ$$
 expon: -4 + 3 = -1 Opps, number is two small.

```
        1
        e
        e
        e
        0
        1
        0
        0
```

Recall Scientific Notation: - 1.0100101 x 2 -4

Half Precision

```
\circ float16 (half): 1 + 5 + 10 = 16, 0 1111 = 15
```

• Components

```
o sign: 1
```

```
o mantissa: 010010; fill in least significant bits with zero (0)
```

```
\circ expon: -4 + 15 = 11 \rightarrow 1011
```

```
        1
        0
        1
        0
        1
        0
        1
        0
        0
        1
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
```

Recall Scientific Notation: - 1.0100101 x 2 -4

Single Precision

```
o float32 (single): 1 + 8 + 23 = 32, 0111 1111 = 127
```

Components

```
o sign: 1
```

```
o mantissa: 010010; fill in least significant bits with zero (0)
```

```
\circ expon: -4 + 127 = 123 \rightarrow 0111 1011
```

Base N to Base 10

Also See Expanded Notation

Algorithm

- set v = 0
- For each digit (from left to right)
 - o v = v * base; # Multiple by the base
 - \circ v = v + digit; # Add the next digit
- print v

Consider: 145 == 2# 10010001

10010001

v:	=	* 2 +	
v:	=	* 2 +	
	=	* 2 +	
	=	* 2 +	
	=	* 2 +	
	=	* 2 +	
	=	* 2 +	
	=	* 2 +	

Base Conversion

Base 10 to Base 2

- The whole portion is divided by the new base, repeatedly
 - Dividend / Divisor = (Quotient, Remainder)
 - The concatenation of the Remainders provide you with the final digits
- The fraction portion is multiplied by the new base, repeatedly
 - Multiplier * Multiplicant = (Overflow, Product)
 - The concatenation of the Overflows provide you with the final digits
- Consider the examples via the spreadsheet: <u>Base Conversion</u>

Base: 2, 8, 16

- Convert each digit to binary
- 2. Merge the bits
- Rechunk
- 4. Convert each chunk to the appropriate digit
- Consider the examples via the spreadsheet: <u>Rechunk</u>

Decimal Real to Binary Real

1. Split the number at the radix point: whole . fractional

2. With the whole part,

```
number = whole
while (number != 0 ){
    number = number / 2
    push ( number % 2 )
}
pop_all();
```

3. With the fractional part

```
max = 10 ** stringlength(fractional)
number = fractional
while (number != 0 ) {
    number = number * 2
    if ( number > max ) {
        emit 1
        number = number - max
    } else {
        emit 0
    }
}
```

4. Put the two pieces together

Whole Part: Decimal Real to Binary Real

1. Example 39.234

```
2. With the whole part,
```

```
number = whole
while (number != 0 ){
    number = number / 2
    push ( number % 2 )
}
pop_all();
```

```
number: 39
         number = 39/2
                                      \rightarrow 19
         push (39 % 2)
                                      \rightarrow 1
         number = 19/2
                                      \rightarrow 9
         push( 19 % 2)
                                      \rightarrow 1
         number = 9/2
                                      \rightarrow 4
         push(9 % 2)
                                      \rightarrow 1
         number = 4/2
                                      \rightarrow 2
                                      \rightarrow 0
         push( 4 % 2)
         number = 2/2
                                      \rightarrow 1
         push (2 % 2)
                                      \rightarrow 0
         number = 1/2
                                      \rightarrow 0
         push (1 % 2)
                                      \rightarrow 1
```

Fractional Part: Decimal Real to Binary Real

1. Example 39.234

3. With the fractional part

```
max = 10 ** numdigits(fractional)
number = fractional
while (number != 0 ) {
    number = number * 2
    if ( number > max ) {
        emit 1
            number = number - max
    } else {
        emit 0
    }
}
```

```
max = 10 ** |234| == 1000

number = 234

number = number * 2 = 468

number = 468 * 2 = 936

number = 936 * 2 = 1872 - 1000 = 872

number = 872 * 2 = 1744 - 1000 = 744

number = 744 * 2 = 1488 - 1000 = 488

number = 488 * 2 = 976

number = 976 * 2 = 1952 - 1000 = 952
```

Decimal Real to Binary Real

Split the number at the radix point: whole . fractional

With the whole part,

```
whole = number
while (number != 0 ){
    number = number / 2
    push ( number % 2 )
pop_all();
```

With the fractional part

```
max = 10 ** ( | fractional | )
fractional = number
while (number != 0 ) {
    number = number * 2
    if ( number > max ) {
       emit 1
       number = number - max
    } else {
       emit 0
```

Put the two pieces together

0011101 100111

Whole Part: Decimal Real to Binary Real

1. Example 45.45

```
2. With the whole part,
```

```
whole = number
while (number != 0 ){
    number = number / 2
    push ( number % 2 )
}
pop_all();
```

```
number: 45

number = 45/2 \rightarrow 22

push ( 45\%2 ) \rightarrow 1

number = 22/2 \rightarrow 11

push ( 22\%2 ) \rightarrow 0

number = 11/2 \rightarrow 5

push ( 11\%2 ) \rightarrow 1

number = 5/2 \rightarrow 2

push ( 5\%2 ) \rightarrow 1

number = 2/2 \rightarrow 1

push ( 2\%2 ) \rightarrow 0

number = 1/2 \rightarrow 0

push ( 1\%2 ) \rightarrow 1

number = 0/0
```

Fractional Part: Decimal Real to Binary Real

1. Example 45.45

```
3. With the fractional part
```

```
max = 10 ** ( | fractional | )
fractional = number
while (number != 0 ) {
    number = number * 2
    if ( number > max ) {
        emit 1
        number = number - max
    } else {
        emit 0
    }
}
```

```
max = 10 ** |45| == 100

number = 45

number = number * 2 = 90

number = number * 2 = 180 - 100 = 80

number = 80 * 2 = 160 - 100 = 60

number = 60 * 2 = 120 - 100 = 20

number = 20 * 2 = 40

number = 40 * 2 = 80

number = 80 * 2 = 160 = 100 = 60
```

Decimal Real to Binary Real

1. Split the number at the radix point: whole . fractional

2. With the whole part,

```
whole = number
while (number != 0 ){
    number = number / 2
    push ( number % 2 )
}
pop_all();
```

3. With the fractional part

```
max = 10 ** ( | fractional | )
fractional = number
while (number != 0 ) {
    number = number * 2
    if ( number > max ) {
        emit 1
        number = number - max
    } else {
        emit 0
    }
}
```

4. Put the two pieces together

101101 | . | 0111001 111001

Real: Decimal to Binary (Confusing?)

- A technique to encode both positive and negative numbers
 - uses the same algorithm to perform addition
 - subtraction perform my addition of complements
- Complement: a thing that completes or brings to perfection
- Radix 10: (the radix or base is the number of unique digits to represent a number)
 - o 10's complement

■ 46 + y = 100 : y is the 10s complements of 46 y = 54

o 9's complement

7 + a = 9 : a is the 9s complements of 7 a = 2 46 + b = 99 : b is the 9s complements of 46 b = 53

• The math:

1:	2nd Grade	10's complement	9's complement
	45	45	45
	<u>- 11</u>	<u>+ 89</u>	<u>+ 88</u>
	34	-1 34	-1 33 + 1 = 34

Algorithm: Subtraction via Complements

- Example: 873 218
- 1. Take the nines complement of the subtrahend (218)
- 2. Add the complement to the minuend (873)
- 3. Drop the leading "1" is dropped.
- 4. Add 1

Algorithm: Subtraction via Complements

- Example: 873 218
- 1. Take the nines complement of the subtrahend (218)
- 2. Add the complement to the minuend (873)
- 3. Drop the leading "1" is dropped.
- 4. Add 1

Optimization:

- A technique to encode both positive and <u>negative</u> numbers
 - o uses the same algorithm to perform addition
 - subtraction perform my addition of complements
- Recall: 10s complement = 9's complement + 1 (*Radix 10*)
 - 9's complement can be performed on each individual digit
- Hence: 2's complement = 1's complement + 1 (Radix 2)
- Radix 2: (A special case)
 - 2's Complement: take the 1's complement and add 1
 - **1** 0101 + 1001 = 1000
 - **1**0111 + 01001 = 10000
 - 1's Complement: take each bit and take its complement
 - 0101 + 1010 = 1111 + 1 = 4 0000
 - 10111 + 01000 = 11111 + 1 = + 00000

A technique to encode both positive and <u>negative</u> numbers

- MSB used to denote the sign bit (0 positive, 1 negative) Table assumes a 4-bit represent

Use 1's complement to represent negative numbers

- Divide the number range in half Encode a positive and a negative value for each number Pros/cons:
- - ease to compute
 - positive and negative representations of zero

1's Complement

	Positive	Negative
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	0101	1010
6	0110	1001
7	0111	1000

A technique to encode both positive and <u>negative</u> numbers

- MSB used to denote the sign bit (0 positive, 1 negative) Table assumes a 4-bit represent

Use 1's complement to represent negative numbers

- Divide the number range in half
- Encode a positive and a negative value for each number
- Pros/cons:
 - ease to compute
 - positive and negative representations of zero

Use 2's complete to represent negative numbers

- Hold Zero as special
- Fold the resulting range to assign the result
- Pros/cons:
 - Not symmetric: extra negative number
 - Need to add one to each negative number
 - Consider -7 1 == 1001 -1 = 1000

2's Complement

	Positive	Negative
0		0000
1	0001	1110 + 1 = 1111
2	0010	1101 + 1 = 1110
3	0011	1100 + 1 = 1101
4	0100	1011 + 1 = 1100
5	0101	1010 + 1 = 1011
6	0110	1001 + 1 = 1010
7	0111	1000 + 1 = 1001
8		1000

Comparison of 1's and 2's Complement

1's Complement

	1 0 00mpiomone		
	Positive	Negative	
Θ	0000	1111	
1	0001	1110	
2	0010	1101	
3	0011	1100	
4	0100	1011	
5	0101	1010	
6	0110	1001	
7	0111	1000	

2's Complement

	Positive	Negative
0	0000	
1	0001	1110 + 1 = 1111
2	0010	1101 + 1 = 1110
3	0011	1100 + 1 = 1101
4	0100	1011 + 1 = 1100
5	0101	1010 + 1 = 1011
6	0110	1001 + 1 = 1010
7	0111	1000 + 1 = 1001
8		1000

Algorithm: Subtraction via Complements

- Example: 13 9 == 13 + -9
- Convert 13 and 9 into binary (01101 & 01001)
- 2. Take the 2's complement of the subtrahend (9)

 o 01001 -> 10110 + 1 = 10111
- 3. Add the complement to the minuend
- 4. Drop the leading "1" is dropped.
- Optimization: Addition of adding one is baked in!

- A technique to encode both positive and <u>negative</u> numbers
 - o uses the same algorithm to perform addition
 - subtraction perform my addition of complements
- Recall: 10s complement = 9's complement + 1 (*Radix 10*)
- Hence: 2's complement = 1's complement + 1 (Radix 2)
- Radix 2:
 - 2's Complement: take the 1's complement and add 1
 - **1** 0101 + 1001 = 1000
 - **1**0111 + 01001 = 10000
 - 1's Complement: take each bit and take its complement
 - 0101 + 1010 = 1000
 - **1**0111 + 01000 = 10000
- Negative numbers are stored as 2's complement numbers (Assume 8 bit quantity)
 - Example: -28
 - Convert 28 to binary:
 - Flip all of its bits
 - Add 1 :

Algorithm: Subtraction via Complements

- Example: 13 9
- 1. Convert 13 and 9 into binary
- 2. Take the 1s complement of the subtrahend (9)
- 3. Add the complement to the minuend
- 4. Drop the leading "1" is dropped
- 5. Add 1

Optimization:

Algorithm: Subtraction via Complements

- Example: 13 9
- 1. Convert 13 and 9 into binary
- 2. Take the 2s complement of the subtrahend (9)
- 3. Add the complement to the minuend
- Drop the leading "1" is dropped.
 - Optimization: Addition of adding one is baked in!

Review of Mathematical Operations:

- First, introduce some status values:
 - o Zero, Sign, Overflow, Carry
- Assume a register of size 4:

6
,
3
_

S

O C

2

In Binary

A + B = C S						
Α	В	С	S			
0	0	0	0			
0	1	0	1			
1	0	0	1			
1	1	1	0			

- transform the operation to addition
- 2. convert abs(X) to binary
- 3. compute 2's complement for negative numbers
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first
- 4 + 5:
- > 7 + 6:
 - -3 + 5:
- -18 4:

- 2. 000111, 000110
- 3. -000110 = 111001+1 = 111010
- 5. 1 (check)

- transform the operation to addition
- 2. convert abs(X) to binary
- 3. compute 2's complement for negative numbers
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first
- 4 + 5:
- 7 6:
- > (-3) + 5:
 - -18 4:

- 2.-000011, 000101
- 3.-000011 = 111100+1 = 111101
- 5.2 (check)

- transform the operation to addition
- 2. convert abs(X) to binary
- 3. compute 2's complement for negative numbers
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first
- 4 + 5:
- 7 6:
- -3 + 5:
- > (-18) + (-4):

$$3.-010010 = 101101+1 = 101110$$

$$-000100 = 111011+1 = 111100$$

5.
$$101010 = -010101 + 1 = -010110$$

Steps:

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. compute 2's complement for negative numbers
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first
- > 8 + 9:
- 7 4
- -5 + 2
- -16 3:

5. 17 (check!)

Steps:

- transform the operation to addition
- 2. convert abs(X) to binary
- 3. compute 2's complement for negative numbers
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first
- 8 + 9
- > 7 + (-4):
- -5 + 2
- \bullet (-16) + (-3)

$$3.-000100 = 111011+1 = 111100$$

5. 3 (check!)

- transform the operation to addition
- 2. convert abs(X) to binary
- 3. compute 2's complement for negative numbers
- 4. perform binary addition
- convert result to decimal
 - o if negative result: compute 2's complement first
- 8 + 9
- 7 4
- **>** (-5) + 2:
- -16 3

- 2. -000101 + 000010
- 3. -000101 = 111010+1 = 111011
- 5. 1111101 = -000010+1 = 000011

$$= -3$$
 (check!)

- 0 0 0 0 1 0
- 0 1 1 1 1 0 1

- transform the operation to addition
- convert abs(X) to binary
- compute 2's complement for negative numbers 3.
- perform binary addition
- Validate step: convert result to decimal
 - if negative result: compute 2's complement first

- -5 + 2
- (-16) + (-3)

```
-010000
        + -000011
```

$$3. -010000 = 101111+1 = 110000$$

$$-000011 = 111100+1 = 111101$$

5.
$$101101 = -010010+1 = -010011$$

$$= -19$$
 (check)

BCD: Addition

Addition performed on the nibble level: 6+7

	1	1	0	0
	0	1	1	0
+	0	1	1	1
0	1	1	0	1

if (overflow or invalid code) then

+		0	1	1	0	
	1	0	0	1	1	

N	Code	N	Code
0	0000	8	1000
1	0001	9	1001
2	0010		1010
3	0011		1011
4	0100		1100
5	0101		1101
6	0110		1110
7	0111		1111

BCD: Binary Coded Decimal

- Another encoding for numbers, where precision is required
- Four bits are used to encode each digit
- Perform addition per nibble
- Example: 246 + 127

N	Code	N	Code
0	0000	8	1000
1	0001	9	1001
2	0010		1010
3	0011		1011
4	0100		1100
5	0101		1101
6	0110		1110
7	0111		1111

BCD: Addition

Addition performed on the nibble level: 7+9

	1	1	1	0	
	0	1	1	1	
+	1	0	0	1	
1	0	0	0	0	

if (overflow or invalid code) then

+		0	1	1	0	
	1	0	1	1	0	

N	Code	N	Code
0	0000	8	1000
1	0001	9	1001
2	0010		1010
3	0011		1011
4	0100		1100
5	0101		1101
6	0110		1110
7	0111		1111

Comments on Multiplication

- Consider: $9 \times 13 = ?117$
- What is carry value for the 10's column?

Algorithm for Multiplication

```
product = 0;
for (d = 0; d < 4; d ++) {
    if (B[d] == 1) {
        product += A;
    }
    A = A << 1;
}</pre>
```

