BUSINESS REPORT

TERRO'S REAL ESTATE AGENCY

Siliveri Mohan

1. The first step to any project is understanding the data. So for this step, generate the summary statistics for each of the variables. What do you observe?

CRIME_RA	4TE		AGE			INDUS				NOX		DISTANCE		
Mean			98 Mean		57490119				Mean	1.5	0.5547			9.549407115
Standard Er	ror		86 Standard	1.2	51369525		0.3			ard Error		Standard	(0.387084894
Median Mode			82 Median 43 Mode			Median Mode			Media Mode	n	0.538	Median		5 24
			13 Standard	20	14886141		6.0			ard Deviatior				24 8.707259384
Sample Vari			01 Sample Va							e Variance		Standard Sample Va		8.707259384 75.81636598
Kurtosis	ance		91 Kurtosis		67715594				Kurtos			Kurtosis		0.867231994
Skewness			73 Skewness		59896264							Skewness		1.004814648
Range			95 Range	0.		Range			Range		0.486			23
Minimum			04 Minimum			Minimum			Minim			Minimum		1
Maximum		9.	99 Maximum		100	Maximum	- 2	7.74	Maxim	num	0.871	Maximum		24
Sum		2465.	.22 Sum		34698.9	Sum	563	35.21	Sum		280.676	Sum		4832
Count		5	06 Count		506	Count		506	Count		506	Count		506
TAX			PTRATI	0		AVG_RC	DOM			LSTAT		AVG_P	RICE	
Mean	408.2	237 N	∕lean		18.455	5 Mean		6.2	8463	Mean	12.653	1 Mean		22.5328
Standard	7.492	239 S	Standard Er	ror	0.0962	4 Standa	ard	0.0	3124	Standard	0.3174	6 Stand	ard	0.40886
Median	3	330 N	Median		19.0	5 Media	ın	6.	2085	Median	11.3	6 Media	an	21.2
Mode	6	566 N	√lode		20.	2 Mode		5	5.713	Mode	8.0	5 Mode		50
Standard	168.5	37 S	Standard De	viation	2.1649	5 Standa	ard	0.7	0262	Standard	7.1410	6 Stand	ard	9.1971
Sample Va	2840	4.8 S	Sample Vari	ance	4.6869	9 Sampl	le Va	0.49	9367	Sample Va	50.994	8 Samp	le Va	84.5867
Kurtosis			(urtosis			1 Kurtos				Kurtosis		4 Kurto		1.4952
Skewness	0.669	996 S	kewness		-0.802	3 Skewn	ness	0.4	0361	Skewness	0.9064	6 Skewr	ness	1.1081
Range	5	524 R	Range		9.	4 Range		5	5.219	Range	36.2	4 Range		45
Minimum			Vinimum			6 Minim		3	3.561	Minimum		3 Minin		5
Maximum	7	711 N	Maximum		2	2 Maxin	num		8.78	Maximum	37.9	7 Maxin	num	50
Sum	2065	568 S	Sum		9338.	5 Sum		318	80.03	Sum	6402.4	5 Sum		11401.6
Count	5	506 C	Count		50	6 Count			506	Count	50	6 Count	:	506

Here, we generate summary statistics of every column of the given dataset. The Mean, Median, Standard Deviation, range, minimum, maximum, Skewness ad Kurtosis values of each aspect can be seen in the above tables. We can observe that, an average household price is around 22000\$, with age ranging from 2.9 to 100 years.

2. Plot the histogram of the Avg_Price Variable. What do you infer?

Here, we plot the histogram to find the avg_price and frequency of the houses that are shown in below graph. The price of the houses ranging from \$21000 to \$25000 and the number of houses in this range i.e; frequency is 133. The range between \$17000 to \$21000 with frequency of 122 houses. The least frequency of the houses is 6 and the price range between \$37000 to \$41000 and \$45000 and \$49000.

3. Compute the covariance matrix. Share your observations.

Covariance Matrix

	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROON	LSTAT	AVG_PRICE
CRIME_RATE	8.516147873									
AGE	0.562915215	790.7925								
INDUS	-0.110215175	124.2678	46.97143							
NOX	0.000625308	2.381212	0.605874	0.013401						
DISTANCE	-0.229860488	111.55	35.47971	0.61571	75.66653					
TAX	-8.229322439	2397.942	831.7133	13.0205	1333.117	28348.62				
PTRATIO	0.068168906	15.90543	5.680855	0.047304	8.743402	167.8208	4.677726			
AVG_ROOM	0.056117778	-4.74254	-1.88423	-0.02455	-1.28128	-34.5151	-0.53969	0.492695		
LSTAT	-0.882680362	120.8384	29.52181	0.48798	30.32539	653.4206	5.7713	-3.07365	50.89398	
AVG_PRICE	1.16201224	-97.3962	-30.4605	-0.45451	-30.5008	-724.82	-10.0907	4.484566	-48.3518	84.41956

The above table represents the covariance of the matrix. Covariance measures the direction of relationship between two variables. The positive covariance means the both variables are trend to high or low at the same time. The negative covariance represents that one variable is high and another variable is low. Here, the tax vs tax increases by 28348 and the Avg_price vs tax goes decreases by -725.

4. Create a correlation matrix of all the variables as shown in the Videos and various case studies. State top 3 positively correlated pairs and top 3 negatively correlated pairs.

The below table represents the correction of the matrix. Correlation is statistical relationship between two entities or variables.

Correlation Matrix

The 3 positive correlation pairs are Tax vs Distance, Nox vs Indus and Nox vs Age having correction values are 0.91, 0.76 and 0.73 respectively.

The 3 negative correction pairs are Avg.price vs Lstat, Lstat vs Avg.room and Avg.price vs Ptratio having correction values are -0.73, -0.61 and -0.507 respectively.

- 5. Build an initial regression model with AVG_PRICE as the y or the Dependent variable and LSTAT variable as the Independent Variable. Generate the residual plot too.
 - a. What do you infer from the Regression Summary Output in terms of variance explained, coefficient value, Intercept and the Residual plot?
 - b. Is LSTAT variable significant for the analysis based on your model?

Regression S	tatistics							
Multiple R	0.737662726							
R Square	0.544146298							
Adjusted R Square	0.543241826							
Standard Error	6.215760405							
Observations	506							
ANOVA	df	SS	MS	F	Significance F			
Regression	1	23243.914	23243.914	601.6178711	5.0811E-88			
	504	19472.38142	38.63567742					
Residual								
	505	42716.29542						
Residual Total	505 Coefficients	42716.29542 Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0
			t Stat 61.41514552	<i>P-value</i> 3.7431E-236		<i>Upper 95%</i> 35.65922472		Upper 95.05 35.659224

Here we use regression model for Avg.price and Lstat variables. The regression summary output along with Scatterplot, Regression Equation and Residual Plot is provided. The coefficient of Lstat is very less ie; -0.95. The intercept value for coefficient is constant for regression equation. If the p-value is less than 0.05, it is significant variable and the p-value is greater than 0.05, it is insignificant variable. In the above regression table, the p-value much less than 0.05, it shows that the LSTAT variable is significant.

- 6. Build another instance of the Regression model but this time including LSTAT and AVG_ROOM together as independent variables and AVG_PRICE as the dependent variable.
 - a. Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?
 - b. Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square. Explain.

Regression S	Statistics							
Multiple R	0.799100498							
R Square	0.638561606							
Adjusted R Square	0.637124475							
Standard Error	5.540257367							
Observations	506							
	df	SS	MS	F	Significance F			
Regression	2	27276.98621	13638.49311	444.3308922	7.0085E-112			
Residual	503	15439.3092	30.69445169					
Total	505	42716.29542						
			+ C++	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.09
	Coefficients	Standard Error	t Stat					
Intercept	Coefficients -1.358272812	Standard Error 3.17282778	-0.428095348	0.668764941	-7.591900282	4.875354658	-7.591900282	4.8753546
Intercept AVG_ROOM					-7.591900282 4.221550436	4.875354658 5.968025533	-7.591900282 4.221550436	4.8753546 5.9680255

Regression Equation = -1.35827+(5.0947879*7)+(-0.642358*20)

Here we use multiple regression model with Avg.room and Lstat as independent variables and compare with Avg.price as dependent variable. We provide scatter plots, regression equation and residual plot.

The Regression equation is Y=-1.3582+(5.09478*7)+(-0.64235*20)

The value of Avg. price based on data is **21.45** (in terms of 1000 US. \$). A company that sells at an average of **30,000**\$ is clearly **Overcharging**.

The performance of this model is better than the previous regression model as the adjusted R square value is **0.63712448** compared to **0.543242** of the other models. Higher the adjusted R-square value, better for the Regression Model.

7. Now, build a Regression model with all variables. AVG_PRICE shall be the Dependent Variable. Interpret the output in terms of adjusted R-square, coefficient and Intercept values, Significance of variables with respect to AVG_price. Explain.

SUMMARY OUTPUT								
Regression S	tatistics							
Multiple R	0.832978824							
R Square	0.69385372							
Adjusted R Square	0.688298647							
Standard Error	5.1347635							
Observations	506							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	9	29638.8605	3293.206722	124.9045049	1.9328E-121			
Residual	496	13077.43492	26.3657962					
Total	505	42716.29542						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	29.24131526	4.817125596	6.070282926	2.53978E-09	19.77682784	38.70580267	19.77682784	38.70580267
CRIME_RATE	0.048725141	0.078418647	0.621346369	0.534657201	-0.105348544	0.202798827	-0.105348544	0.202798827
AGE	0.032770689	0.013097814	2.501996817	0.012670437	0.00703665	0.058504728	0.00703665	0.058504728
INDUS	0.130551399	0.063117334	2.068392165	0.03912086	0.006541094	0.254561704	0.006541094	0.254561704
NOX	-10.3211828	3.894036256	-2.650510195	0.008293859	-17.97202279	-2.670342809	-17.97202279	-2.670342809
DISTANCE	0.261093575	0.067947067	3.842602576	0.000137546	0.127594012	0.394593138	0.127594012	0.394593138
TAX	-0.01440119	0.003905158	-3.687736063	0.000251247	-0.022073881	-0.0067285	-0.022073881	-0.0067285
PTRATIO	-1.074305348	0.133601722	-8.041104061	6.58642E-15	-1.336800438	-0.811810259	-1.336800438	-0.811810259
AVG_ROOM	4.125409152	0.442758999	9.317504929	3.89287E-19	3.255494742	4.995323561	3.255494742	4.995323561
LSTAT	-0.603486589	0.053081161	-11.36912937	8.91071E-27	-0.70777824	-0.499194938	-0.70777824	-0.499194938

The Summary Output and Residual Plots of given attributes are provided above. The **adjusted R-square** value is <u>0.68829</u> which definitely shows that this model is better than all the previous models. The coefficients are the <u>beta</u> of the given variables. The significance of all the variables in comparison to the **AVG_PRICE** can be measured from the **p-value**. Except for **CRIME_RATE**, all the other variables have a **p-value** less than **0.05** which proves that it is a significance.

- 8. Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked. (HINT: Significant variables are those whose p-values are less than 0.05. If the p-value is greater than 0.05 then it is insignificant)
 - a. Interpret the output of this model.
 - b. Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?
 - c. Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?
 - d. Write the regression equation from this model.

SUMMARY OUTPUT								
Regression S	tatistics	•						
Multiple R	0.832835773	•						
R Square	0.693615426							
Adjusted R Square	0.688683682							
Standard Error	5.131591113							
Observations	506							
ANOVA								
	df	SS	MS	F	ignificance	F		
Regression	8	29628.68142	3703.585178	140.6430411	1.9E-122			
Residual	497	13087.61399	26.33322735					
Total	505	42716.29542						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	Ipper 95.0%
Intercept	29.42847349	4.804728624	6.124898157	1.84597E-09	19.98839	38.86856	19.98839	38.86856
AGE	0.03293496	0.013087055	2.516605952	0.012162875	0.007222	0.058648	0.007222	0.058648
INDUS	0.130710007	0.063077823	2.072202264	0.038761669	0.006778	0.254642	0.006778	0.254642
NOX	-10.27270508	3.890849222	-2.640221837	0.008545718	-17.9172	-2.62816	-17.9172	-2.62816
DISTANCE	0.261506423	0.067901841	3.851242024	0.000132887	0.128096	0.394916	0.128096	0.394916
TAX	-0.014452345	0.003901877	-3.703946406	0.000236072	-0.02212	-0.00679	-0.02212	-0.00679
PTRATIO	-1.071702473	0.133453529	-8.030529271	7.08251E-15	-1.33391	-0.8095	-1.33391	-0.8095

0.44248544 9.323400461 3.68969E-19 3.256096 4.994842 3.256096 4.994842

 $0.0529801 \ \ -11.42238841 \ \ 5.41844E-27 \ \ -0.70925 \ \ -0.50107 \ \ \ -0.70925 \ \ \ -0.50107$

4.125468959

-0.605159282

AVG_ROOM

LSTAT

This is the Final Regression Model which consists of only the significant variables i.e; the p-value is less than 0.05. The Summary Output and Residual Plots are provided above. The **adjusted R-square** value is **0.68868**. Since we removed the non-significant **CRIME_RATE** variable from this model, the adjusted R-square value **increased** by **0.00038504**. Thus, this is the most **successful** and **relevant** model that can be created from the given dataset.

The Regression Equation of this model is

 $Y=29.428+0.033(Age)+0.131(Indus)-10.273(Nox)+0.2615(Distance)-0.015(Tax)-1.072(PtRatio)+4.125(Avg_Room)-0.605(Lstat).$

Terro's Real Estate Agency

Done by Siliveri Mohan