Table 1: Continuity Equation for Incompressible Flow in Different Coordinate Systems

Coordinate System	Continuity Equation
Cartesian	$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$
Cylindrical	$\frac{1}{r}\frac{\partial(ru_r)}{\partial r} + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0$

Table 2: Momentum Equations for Incompressible Flow in Different Coordinate Systems

Direction	Momentum Equation		
	Cartesian		
\overline{x}	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\mu}{\rho} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + g_x$		
y	$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + \frac{\mu}{\rho} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + g_y$		
z	$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial z} + \frac{\mu}{\rho} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + g_z$		
Cylindrical			
	$\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_\theta^2}{r} + u_z \frac{\partial u_r}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial r} + g_r$		
r	$+\frac{\mu}{\rho}\bigg[\underbrace{\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_r}{\partial r}\right)-\frac{u_r}{r^2}}_{} + \underbrace{\frac{1}{r^2}\frac{\partial^2 u_r}{\partial \theta^2}-\frac{2}{r^2}\frac{\partial u_\theta}{\partial \theta}}_{} + \frac{\partial^2 u_r}{\partial z^2}\bigg]$		
	$rac{\partial}{\partial r}\left(rac{1}{r}rac{\dot{\partial}}{\partial r}(ru_r) ight)$		
	$\frac{\partial u_{\theta}}{\partial t} + u_{r} \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{r} u_{\theta}}{r} + u_{z} \frac{\partial u_{\theta}}{\partial z} = -\frac{1}{\rho r} \frac{\partial P}{\partial \theta} + g_{\theta}$		
θ	$+\frac{\mu}{\rho}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_{\theta}}{\partial r}\right) - \frac{u_{\theta}}{r^2} + \frac{1}{r^2}\frac{\partial^2 u_{\theta}}{\partial \theta^2} + \frac{2}{r^2}\frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial^2 u_{\theta}}{\partial z^2}\right]$		
	$rac{\partial}{\partial r}\left(rac{1}{r}rac{\partial}{\partial r}(ru_{ heta}) ight)$		
z	$\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial z} + g_z$		
	$+\frac{\mu}{\rho}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2}\right]$		

 ${\bf Table~3:~Streamline~Equations}$

Coordinate System	Streamline Equations
Cartesian	$u = \frac{\partial \psi}{\partial y} v = -\frac{\partial \psi}{\partial x}$
Cylindrical, Planar	$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} u_\theta = -\frac{\partial \psi}{\partial r}$
Cylindrical, Axisymmetric	$u_r = -\frac{1}{r} \frac{\partial \psi}{\partial z} u_z = \frac{1}{r} \frac{\partial \psi}{\partial r}$