임상연구 설계와 분석을 위한 통계 방법

Boncho Ku, Ph.D., Senior researcher

16th November, 2017

KM Fundamental Research Division, Korea Institute of Oriental Medicine

Chapter I: Overview of Statistics and Study Design

Most researchers or people think

Statistics makes us insane...

However

Statistics sometimes gives us very useful information from data!!

So then, what is statistics??

 $^{^\}dagger$ Each word cloud was cited from Trident University International and Augusta University, respectively.

1. Data

- Investigation, experiment, and survey
- Gathering numbers (for quantitative analysis)

2. Description or Summarization

- Table, chart, and so on
- Based on summarized statistics (e.g. mean, standard deviation, median, ...)

3. Inference

- · Numerous statistical tests and models based on probability theory
- e.g. two-sample t-test, ANOVA, ANCOVA, regression, and so on

Type of Studies

Overview

↓□▶◀圖▶◀돌▶◀돌▶ 돌 **옛**Q⊙

Study or trial?

Study

자료의 수집과 분석 목적이 학술적 목적에 국한된 모든 종류의 연구 및 실험

Trial

자료의 수집과 분석 목적이 이윤추구 또는 허가에 목적이 있는 임상시험

Cross-sectional study (단면적 관찰연구)

- 1. prevalence study
- 2. Diagostic test
- 3. Ecological study
- 4. Validity, Reliability, and agreement study

Longitudinal study (종단적 관찰연구)

- 1. Prospective study
- 2. Retrospective study

Experimental Study

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣९@

Randomized controlled trial

Pilot study

Exploratory study

Confirmative study

Type of outcome variables

Primary outcomes

Secondary outcomes

4□▶
4□▶
4□▶
4□▶
4□▶
4□
5
9
0

Surrogate variables

Global assessment variable

Sample size calculation

Two approaches

- 1. Based on the marginal error rate \rightarrow population based observational study
- 2. Based on the effectiveness between concerning groups \rightarrow experimental study

Both approaches are based on previous studies

Is your study entirely new?

Observational study

Observational study: prevalence study

4□▶<</p>
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶</

Observational study: prevalence study

◀□▶◀ઃ♥▶◀ઃ▶ ※ ※ ♡Q♡

Parallel design

2×2 cross-over design

↓□▶↓□▶↓≡▶↓≡▶ ■ かく○

Factorial design

Multiple comparison

What makes data significant?

4□▶4□▶4½▶4½▶ ½ ∽Q

- $1. \ \, {\rm Data} \,\, {\rm themselves} \,\, {\rm contain} \,\, {\rm unexpected} \,\, {\rm errors}$
- 2. Bias
- 3. Just conincidence
- 4. Our hypothesis is working

Torturing data

Statistical Analysis

Overview

◀□▶◀圖▶◀불▶◀불▶ 불 외Q@

Independent two sample t-test

1. Too easy, but very useful methodology for the comparison of sample means between two groups $\,$

Analysis of Variance (ANOVA)

◀ㅁ▶◀瘳▶◀돌▶◀돌▶ 돌 쒸٩ⓒ

Analysis of Covariance (ANCOVA)

◀ㅁ▶◀畵▶◀돌▶◀돌▶ 돌 쒼٩@

Simple or multiple regression

◆□▶◆□▶◆ミ▶◆ミ▶ ミ かへで

Repeated Measures ANOVA

4□ > 4□ > 4 = > 4 = > = 900

Linear mixed effects model

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣९○

Reliability analysis

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣९○

Cohen's κ

Cronbach's α

Intra Class Correlation (ICC)