PRACTICE PROBLEMS (Euler & Taylor's Series) Numerical Solutions of ODE and PDE

- 1. Compute the first few terms using Picard's iteration with $y_0(x) \equiv 0$ for the initial value problem $y' = xy + 2x x^3$ with y(0) = 0, and show that they converge to the solution $y(x) = x^2$ for all x.
- 2. Solve $y' = 3x + y^2$, y=1, when x = 0, numerically for x = 0.1 by Taylor's series method of order 2.
- 3. Use Taylor's series to find a numerical solution at x = 0.5 of the differential equation y'' = xy given that y' = 1 and y = 1 when x = 0 using h = 0.5.
- 4. Solve the differential equation $y' = 2y + 3e^x$ with $x_0 = 0$, $y_0 = 0$, using Taylor's series method of order 2 to approximate y for x = 0.1, 0.2.
- 5. Solve $y' = x y^2$, y(0) = 1 by Euler's method for x = 0.2 to 0.6 with h = 0.2.
- 6. Given y' = y x, where y(0) = 2. Find y(0.1) and y(0.2) by Euler's method taking step size h = 0.1.
- 7. Given that $\frac{dy}{dx} = x + y^2$, y(0)=1. Find y(0.2), by backward Euler's method in one step.
- 8. Use Euler's method to find a numerical solution at x = 0.1 of the differential equation y'' = 4y 2xy' if y' = 0.5 and y = 0.2 when x = 0. Use h = 0.05.
- 9. Given $\frac{dy}{dx} = \frac{1}{x^2 + y}$, y(4) = 4, find y(4.4) by Taylor's series method of order 2, taking h=0.1.
- 10. Find y(1) by Euler's method from the differential equation $\frac{dy}{dx} = \frac{-y}{1+x}$ when y(0.3) = 2. Use step length h = 0.1.
- 11. Given $\frac{dy}{dx} = -\frac{y-x}{1+x}$, with initial condition y(0) = 1, find approximately y for x = 0.1, by backward Euler's method (two steps).
- 12. Use Euler's method to approximate a set of particular solutions of the system of differential equations $y' = x + z^2$; z' = y x over the interval $0 \le x \le 1.5$ given that $(x_0, y_0, z_0) = (0, 0, 1)$. Use h = 0.5.