C++

Атрибуты

C + +11

[[noreturn]]

Функция помеченная так не должна возвращать поток управленения.

[[carries_dependencies]]

Атрибут связан с моделями памяти.

C + + 14

[[depracated]]

Атрибудт позволяет разметить устаревший код, вызывая warning'и при его использовании.

```
struct [[depracated]] Name;
[[depracated]] typedef S* pS;
using PS [[depracated]] = S*;
[[depracated]] int x;
uninon U { [[depracated]] int n; }
[[depracated]] void f();
namespace [[depracated]] {NS { int x; }
enum [[depracated]] E {};
enum E { a [[depracated]], b [[depracated]] = 1 };
template < > struct [[depracated]] X<int> {};
```

C + +17

[[fallthrough]]

Используется для switch блоков, сообщая что оператор break не был пропущен по ошибке.

```
switch (x)
{
   case 1:
      [[fallthrough]] //No warning
   case 2:
      break;
   case 3: //Warning
```

```
case 4:
break;
}
```

[[nodiscard]]

Атрибут требует чтобы результат функции не был проигнорирован.

```
[[nodiscard]] bool isEmpty() { ... }
bool status = isEmpty(); //No warning
isEmpty(); //Warning - результат возвращаемый функцией проигнорирован
```

[[maybe_unused]]

Атрибут убирает warning от неиспользуемых аргументов\переменных\функций итд.

```
struct [[maybe_unused]] S;
[[maybe_unused]] typedef S* PS;
using PS [[maybe_unused]] = S*;
[[maybe_unused]] int x;
union U { [[maybe_unused]] int n; };
[[maybe_unused]] void f();
enum [[maybe_unused]] E {};
enum { A [[maybe_unused]], B [[maybe_unused]] };
```

Lambda

C + + 11

Анонимные функции, вызываемого типа std::function, могут использоваться в STL.

Общий вид:

```
auto lamda = [capture-list](arguments) mutable -> ret_type {
    ...
}; //Создание

//Если не указывать mutable - по дефолту он не включен

lambda(arguments); //Вызов
```

Списки захвата:

```
[] // ничего не захватывается
[=] // локальные переменные по значению
[&] // локальные переменные по ссылке
[this] // this по ссылке
[a, &b] // захват отдельных перменных, по значению и ссылке
```

C + + 14

Дополнены правила списка захвата:

```
[&r = x, x = x + 1]

//в lambda можно захватить ссылку, и назвать её как удобно, и можно использовать выражение для инициализации переменной

[x = factory(2)]
[p = std::move(p)]

//Пример генератора
auto generator = [x = 0]() mutable { return x++; }
int a = generator(); // == 0
int b = generator(); // == 1
```

Так же перестал быть необходим trailing return type, для возвращаемого типа auto.

Были введены генерализированные lambds, когда аргументы указаны типа auto.

C + +17

Добавлена возможность захвата текущего объекта по копии, а не по ссылке.

```
[*this]
```

Необходим спецификатор mutable, для того чтобы иметь возможность вызывать неконстантные версии функций класса.

POD-type

Plain old data - структура размещающаяся в памяти таким образом, как её описал программист, исключая оптимизации. Это может быть необходимо для передачи данных в другие языки программирования.

POD = Тривиальный класс + Класс со стандартным размещением

Тривиальный класс:

- T() = default;
- T(const T&) = default;
- T& operator=(const T&) = default;
- T(T&&) = default;
- T& operator=(T&&) = default;
- ~T() = default;
- Нет виртуальных методов и виртуального наследования
- Все нестатические поля тривиальны
- Все базовые классы тривиальны(при наличии)

Класс со стандартным размещением:

- Все нестатические поля имеют одинаковый доступ private\public\protected
- Нет вирутальных методов и вирт. наследования
- Нет нестатических полей-ссылок
- Все нестатические поля и базовые классы со стандартным размещением
- Все нестатические поля объявленны в одном классе в иерархии наследования
- Нет базовых классов того же типа, что и первое нестатическое поле

auto/decltype

auto - возможность замена типа на auto.

Примеры типов: переменной, возвращаемого значения функции, и шаблоных аргументов.

decltype() - позволяет выводить тип переменной или выражения.

C + +11

Особенности работы auto:

```
int bar();
auto i = 0; //int
auto ui = 0u; //unsigned int
volatile auto ci = i; //volotile int
const volatile auto cvi = i; // const volatile int
auto j = cvi; //int

auto& ri = i; //int &
const auto& cri = i; //const int&

auto&& fri = i; // int &
auto&& fri = i; // const int &
```

```
auto &&frv = 0; // int &&
auto &&frvf = bar(); // int &&
```

Альтернативный синтаксис шаблонных функций

Позволяет выводить возвращаемый тип шаблонной функции.

```
template <typename T1, typename T2>
auto sum(const T1& lhs, const T2& rhs) -> decltype(lhs + rhs)
{
    return lhs + rhs;
}
```

C + + 14

He нужен trailing return type, достаточно auto, Можно реализовать функцию факториал с возвращаемым типом auto, но факториал от нуля должен быть определён до рекурсивного использования этой функции.

Так же было осущестлвенно послабление, теперь внутри decltype() можно указывать не выражение\переменную, а auto.

Примеры:

```
double foo();
double&& bar();

double v1 = 0.0;  //double
  const double& v2 = v1;  //const double &

decltype(auto) v3 = v1;  //double
  decltype(auto) v4 = (v1);  //double&
  decltype(auto) v5 = v2;  //const double&

decltype(auto) v6 = foo();  //double
  decltype(auto) v7=bar();  //double &&
```

Literals

C + + 11

Строковые литералы

```
//Было до C++11

"Text" //char
L"Text" //wchar_t

//Появилось в C++11 - utf

u8"Text" //char - utf8
u"Text" //char16_t
U"Text"//char32_t

//Сырые строки обрамляются в () в "" и могут иметь произвольны delemiter
R"delimiter( raw string )delimeter"
LR"delimiter( raw string )delimeter"
u8R"delimiter( raw string )delimeter"
uR"delimiter( raw string )delimeter"
uR"delimiter( raw string )delimeter"
UR"delimiter( raw string )delimeter"
```

Пользовательские литералы

Пример пользовательского литерала преобразования радиан в градусы.

```
long double operator""_degrees(long double value)
{
    return value * M_PI / 180.0;
}
double degrees = 0.38__degrees
```

Список возможных аргументов, при определении пользовательского литерала:

```
( const char * )
( unsigned long long int )
( long double )
( char )
( wchar_t )
( char16_t )
( char32_t )
( const char * , std::size_t )
( const wchar_t * , std::size_t )
( const char16_t * , std::size_t )
( const char32_t * , std::size_t )
```

C + + 14

```
std::string from_literal = "some string"s;
```

Бинарные литералы

```
int a = 0b111; // == 7
int b = 0B11; // == 3
```

Разделители числовых литералов

```
int a = 1'000'000;
int b = 3.14'15'92'65;
```

STL литералы

```
auto half_minute = 30s; // std::chrono::duration
auto day = 24h; // std::chrono::duration

auto complex = 1 + 1i; //std::complex
```

Initialization

C + +11

Универсальная инициализация

Везде можно использовать {}:

```
// Начиная с C++11 можно везде {}

int a;
int b{2};
int c = {2};
int d{};
int arr[] = {1, 2, 3};

struct Point { double x, y; } point {0.0, 0.0}; //(5)
std::complex<double> cmpl{0.0, 0.0}; //(2)
std::complex<double> c2 = std::complex<double>{0.0, 0.0}; //(3)
```

std::initializer_list

Возможность использовать список инициализации для создания конструкторов или операторов присвоения.

Значения задаются между {} и через запятую.

initializer_list содержит следующие функции:

```
init_list.size()
init_list.begin()
init_list.end()

init_list.r/c/begin/end() // Начиная с C++14

init_list.empty() // Начиная с C++17
init_list.data() // Начиная с C++17
```

C + + 14

Aggregate initialization with deafult member initializer

```
struct x
{
    int a,b;
    char c = '0';
};

x v { 1, 2 }; // До C++14 нельзя было опустить третье поле "c"
```

C + +17

auto + std::initializer_list

```
// До C++17

auto v1 { 1, 2, 3}; // std::initializer_list<int>
auto v2 = { 1, 2, 3, }; // std::initializer_list<int>
auto v3 {42}; // std::initializer_list<int>
auto v4 = { 42 }; // std::initializer_list<int>

// Начиная с C++17

auto v1 { 1, 2, 3}; // compile error
auto v2 = { 1, 2, 3, }; // std::initializer_list<int>
auto v3 {42}; // int
auto v4 = { 42 }; // std::initializer_list<int>
```

Агрегатная инциализация базового класса

Возможность вложенной инициализации:

```
struct Base
{
    std::string name;
    std::string sur_name;
};

stuct Child : public Base
{
    int age;
}

Child ch1; //name, sur_name - empty, age undefined
Child ch2{}; //all fields empty

Child ch3 {{"name", "sur"}, 99};
Child ch4 {"name", "sur", 99};
```

constexpr

C + + 11

Функции помеченные constexpr могут вычислять на этапе компиляции. Изначально такие функции имели большое количество ограничений, например должны были состоять из только 1 блока return.

C + + 14

Ограничения были существенно ослабленны. Запрещенным остались:

```
__asm__
goto
метки, корме case\default в switch,
блок try,
переменные нелитерального типа,
static \ thread_local переменные,
переменные без инициализации
```

Так же они удобны для применения в шаблонной магии, например в вариативных шаблонах, о них ниже.

C + +17

Лямбда может быть помечена как constexpr:

```
constexpr auto add = [](int a, int b) { return a + b; }
```

Если она может быть вызванна на этапе компиляции - это будет осуществленно, иначе она будет работать в run-time.

Шаблоны

C + +11

Вариативные шаблоны (Variadic template)

Используются для создания функций с переменным числом аргументов:

```
template <typename... Args>
void printf(const char* const format, const Args&... args);

//При вызове
printf("test", 1, 0.1);

// Произойдёт инстанцирование
printf<int, double>("test", 1, 0.1);
```

Помимо этого, используются в кортежах (tuple).

Extern templates

Используются с целью осуществить единичное истанцирование при компиляции, для её ускорения.

```
extern template void foo<int>(int);
extern template class SomeClass<int>;
```

C + + 14

Шаблон переменной (Variable template)

```
template <class T>
structure is_reference
{
    static constexpr bool value = false;
};

template <class T>
structure is_reference<T&>
{
    static constexpr bool value = true;
};

template <class T>
structure is_reference<T&&>
{
    static constexpr bool value = true;
};

template <class T>
structure is_reference<T&&>
{
    static constexpr bool value = true;
};

template <typename T>
constexpr bool is_reference_v = is_reference<T>::value;
static_assert(!is_reference_v<SomeType>, " SomeType is reference");
```

C + +17

Выведение типов шаблонных аргументов

Возможность не использовать указание типа шаблонного параметра в <>:

```
std::piar m {0, 0}; //Bmecro std::pair<int, int> { 0, 0};
std::vector v { 0.0 }; // Bmecro std::vector<double> { 0.0; }
std::lock_guard lock(mutex); // Bmecro std::lock_guard<std::mutex>
```

Так же deduction guide может быть определен вручную. Пример для std::array:

```
namespace std
{
template <class T, size_t N>
struct array
{
    Tarr[N];
};

template <class T, class... U>
array(T, U...) -> array<T, sizeof...(U) + 1>
};

//Тогда возможно использование
std::array arr {0, 1, 2, 3}; //Вместо std::array<int, 4>;
```

template auto

Полезно для template not-type параметров.

```
template <auto Val> // Эквивалент template <decltype(auto) Val> struct integral_const {
    using value_type = decltype(Val);
    static constexpr value_type value = Val;
};
using true_type = integral_const<true>; //He требуется задавать тип вручную using false_type = integral_const<false>; //integral_const<bool, false>

//Схожий пример:
template <auto.. seq> struct my_sequence
{
    ...
};
auto seq = std::integer_sequence<int, 0, 1, 2>(); //int задан явно auto seq2 = my_sequence<1, 2, 3>(); //int будет выведен из значений
```

Fold expressions (свертка функций)

Позволяет записывать операции для вариативного числа шаблонных аргументов:

```
template <typename T, typename ..Types>
constexpr auto sum(T t1, Types ..tN)
{
    return (t1 + ... + tN);
}
```

```
constexpr size_t res = sum(0, 1, 2, 3);
```

Четыре вида свёрток функций:

```
(pack op ...) = (E_1 op (... op (E_N-1 op E_N)))
(... op pack) = (((E_1 op E_2) op ...) op E_N)
(pack op ... op init) = (E_1 op (... op (E_N-1 op (E_N op I))))
(init op ... op pack) = ((((I op E1) op E2) op ...) op E_N)
```

Операции:

```
op:
+, -, *, /, %, ^, &, |, =, <, >, <<, >>,
+=, -=, *=, /=, %=, ^=, &= |=,
<<=, >>=, ==, !=, <=, >=, &&, ||, .*, ->*
и оператор ,
```

Начиная с С++17 возможна запись:

```
template <typename ...Types>
void print(const Types& ...tN)
{
    std::cout << ... << tN;
}</pre>
```

constexpr if

Метод разметить ветки для шаблонов:

```
template <size_t N>
decltype(auto) get(const Person& )
{
    if constexpr (N == 0)
    {
        return p.Name();
    }
    else if constexpr (N == 1)
    {
        return p.GetSurname();
    }
}
```

Спецификаторы

'default' + 'deleted' specifiers

Возможность либо пометить удалённой и недопустимой функцию (deleted). Либо реализовать стандартное поведение для конструктров\операторов присваения итд.

- 1. Дефотный конструктор
- 2. Констуктор копирования
- 3. Конструктор перемещения
- 4. Оператор копирования
- 5. Оператор перемещения

Если компилятор может - он постарается вывести поехсерт версии функций

'overrdie' + 'final' sepcifiers

override - указывает на то, что функция переопределяет виртуальную функцию из наследуемого класса.

final - не даст переопределять функции дальше, т.е. означает что это финальная версия перезагруженной функции.

```
virtual void foo(int) const override {}
virtual void foo(int) const final {}
```

Так же final может запретить дальнейшее наследование, если мы хотим создать класс\структуру, от которой нельзя наследоваться дальше.

Небольшие нововведения

C + +11

Move semantics

Добавлен новый тип r-value ссылка T&&, который представляет собой временное значение, например результат вычисления выражений или результат вызова функций.

Для того чтобы перенести такое значение без копирования введена специальная функция std::move().

Move семантика полезна когда объект тяжелый для копирования, но легкий для перемещения. Или же когда объект запрещено копировать, например unique_ptr.

noexcept

Метод пометить функцию, что она не должна вызывать исключения.

Необходимо для создания move-конструктора и оператора присвоения, если они не помечены как noexcept будут вызываны конструктор копирования и оператор копирования (например при содания векторов нашего произвольного класса).

Range based for cycle

Вызов цикла в конструкции вида:

```
for (const auto& element: containter)
{
    ...
}
```

Где container это класс с функциями begin\end, возвращающих итератороподобный объект, который должен уметь инкрементироваться и разыменовываться как указатель.

Delegate constructors

Возможность вызова одного из конструкторв из тела другого.

Default values for non-static class members

Возможность проинициализировать переменную класса в месте её определения

nullptr

Общий тип для обозначения пустых указателей. Можно перегружать функции, используя std::nullptr_t как аргумент.

enum class

Не позволяет сравнивать поля разных enum'oв.

enum underlying type

Позволяет задать тип, в котором хранится перечисление, например:

```
enum X : int
{
    A,
    B
};
```

Тем самым можно задать размер переменной типа Х.

Explicit cast operators

Операторы явного каста:

```
class P
{
    explicit operator bool() { return ...; }
};

P ptr;
int flag = ptr; // Преобразования не будет,
//т.к. помечено explicit: ошибка компиляции
```

Relaxed rules for unions

До 11 стандарта можно было использовать только POD внутри union.

Теперь почти любой, но важно для юнона так же объявить конструктор, если он есть у вложенной структуры. Но в 17 стандарте это стало не обязательным для реализации.

static_assert

Возможность использования ассертов на этапе компиляции, условие + строка сообщения, например:

```
static_assert(std::is_pod(variable), "ERROR: !!");
```

В 17 стандарте строка стала не обязательной.

allignof, alligingas

Позволяет использовать нужное выравнивание или узнать его

'using' for types

Более современная замена typedef, способная принимать шаблонные аргументы:

```
typedef std::vector<int>::iterator vec_iter;

template <typename T>
typedef std::vector<T>::iterator vec_t_iter;
//Ошибка при компиляции

Алтернативная запись:
using vec_iter = std::vector<int>::iterator;

template <typename T>
using vec_t_iter = std::vector<T>::iterator;

vec_t_iter<int> it; //ok!
```

C + + 14

Memory allocation ellision/combining

Вызовы new\delete могут оптимизироваться.

C + + 17

noexcept

Спецификатор того, что функция не выбрасывает исключения - теперь часть системы типов функции.

```
typdef void (*nef)() noexcept;
typedef void (*ya)();

void foo() noexcept;
void bar();

ef pf1 = foo; // +
nef pf2 = foo; // +
ef = bar; // +
nef = bar; //Compile error
```

Copy elision

Создание объекта не при выходе из фукнкции, а в месте его последующего применения, там где эта функция вызывалась.

Structure bindings

Возможность раскрутить группу значений в серию переменных. Можно раскрытить:

- array
- tuple
- pair/structure

```
const auto& [field1, field2, field2] = structure/tupple/..
```

Можно реализовать для произвольного класса:

```
template <size_t N>
decltype(auto) get(const Person&);

template <>
delctype(auto) get<0>(const Person& p)
```

```
return p.GetName();
}
template <>
decltype(auto) get<1>(const Person& p)
    return p.GetSurname();
}
// Далее нужно определить tuple_size в std::
namespace std
{
    template <>
    struct tuple_size<Person> : std::integral_constant<size_t, 2>
    {};
    template <>
    struct tuple_element<0, Person>
        using type = const std::string &;
    };
    template <>
    struct tuple_element<1, Person>
        using type = const std::string &;
    };
}
```

Последовательность операций вызова

```
a.b
a->b
a->*b
a(b1, b2, b3)
// b1, b2, b3 не последовательны
// их порядок не определен
b @= a
a[b]
a << b << c
a >> b >> c
```

'if' / 'switch' with initialization

Возможность задать значение в теле условия:

```
if (int a = f(5); a > 2)
{
    //a существует здесь
}
//а не существует здесь
```

Можно использовать structure bindings на этапе if initialization. Тем самым подготовить сразу несколько переменных для условий и вычислений.

inline variables

Необходимы чтобы быть разделяемыми между файлами, будучи определенными в хэдере. Или для функций - чтобы писать определение прямо в хэдере.

```
__has_include()
```

Директива препроцессора, проверяет наличие хэдеров

```
allignas (32)
```

Теперь выравнивани структуры по границе заданной, при динамическом размещении

```
static_assert(true)
```

Теперь можно использовать без строки, просто 1 условие

Nasted namespaces

```
namespace A::B::C {
    int i;
}

//Эквивалентно:
namespace n1 {
    namespace n2 {
        int n;
    };
};

//Вызов
n1::n2::n;
```

STL

C++11

C + + 14

C + +17

string_view

Обобщенный и легковесный вариант для хранения строчек std::string\c_string std::string_view // std::wstring_view

std::to_chars/std::from_chars

Функции приобразования цифр. Может содержать ошибку парсинга.

multithreading

chrono

random

спецификаторы default\delete и другие

Заменить ## на # и везде уменьшить на 1 звездочку

TODO все возможные модификаторы переменных, const/volotile etc

Forwarding reference

```
template <class T>
class A
{
   template <class U>
   void foo(T&& t, U&& u);
};
```

допольнить и изучить внимательней

• inline namespaces тоже в 11 фитчи