Module 1: ROS for Beginners

- Introduction to Robotics and Robot Programming
 - What is a Robot?
 - Robotics in a nutshell
 - Different types of robots
 - > Applications of robotics
 - Selecting sensors, actuators and computing unit for your robot
 - Building your own robot
 - What is Robot Programming?
 - How to program a robot?
 - Software frameworks for programming robots
- ✓ Learning Prerequisites of Robot Operating System
 - Learning Ubuntu Linux for ROS
 - Learning C++ for ROS
 - Learning Python for ROS

Module 1: ROS for Beginners

- ✓ Kickstarting Robot programming using ROS
 - What is Robot Programming?
 - Getting started with ROS
 - ROS Equation
 - Why use ROS?
 - Installing ROS
 - ROS Architecture and concepts
 - ROS Filesystem
 - ROS Coding styles, IDE
 - ROS Hello World
 - ROS TurtleSim

✓ Programming with ROS – Part 1

- ROS Workspace and package
- ROS Client libraries: roscpp & rospy
- Understanding roslaunch, rosbag, Rviz, rqt
- Implementing Topics, Service, Parameters
- Learning ROS programming using TurtleSim: roscpp and rospy
 - Understanding ROS concepts using TurtleSim
 - Moving TurtleSim using ROS programming

Module 1: ROS for Beginners

- **✓** Programming with ROS TF Part 2
 - What is ROS TF?
 - Understanding Transformation and frames
 - Working with TF broadcaster and listener
 - Creating TF for your robot
 - Working with ROS TF tools
 - > TurtleSim projects
 - Draw your caricature using TurtleSim
 - Object tracking using TurtleSim
- ✓ Modeling a robot in ROS using URDF
 - What is URDF & xacro?
 - Understanding URDF & xacro
 - Writing your own URDF and xacro
 - Visualizing your robot
 - Interacting with the robot model
 - Moving the robot model

Module 1: ROS for Beginners

- ✓ Simulating your robot using Gazebo / Webots
 - Introduction to Gazebo simulator
 - Getting started with Gazebo
 - Gazebo models and plugins
 - Spawning models into Gazebo
 - Interacting with a simulated robot
 - Working with Husky, Turtlebot3, and x-arm simulation
 - Visualizing robot sensor data in Rviz
 - Creating your own mobile robot and robot arm simulation
 - Visualizing robot in Rviz
 - Introduction to ROS controllers*
 - Interacting with robot models
 - Moving robots using ROS programming [Finish all needed Books]

✓ Building autonomous food delivery mobile robot using ROS

- What is an autonomous mobile robot?
- Creating a robot model of a delivery robot
- Understanding the basics of ROS navigation stack
- Interfacing our mobile robot to ROS navigation stack
 - Implement Mapping and Localization using SLAM and AMCL
 - Commanding robot using GUI

Module 1: ROS for Beginners

- ✓ Building Pick-Place application using Robotic arm
 - Introduction to ROS Movelt!
 - Interfacing Simulated robotic arm to Movelt!
 - Path planning using Movelt!
 - Grasping using Movelt!
 - Implement pick-place using MoveIt! and Gazebo

✓ Working with ROS perception

- What is robot perception?
- Introduction to ROS perception stacks
- Working with ROS OpenCV and Point Cloud
 - Robotic vision using OpenCV and ROS
 - Point cloud processing using PCL and ROS
 - Example projects using OpenCV and PCL

Module 2: Mastering ROS

✓ Mastering URDF

- Deep dive into ROS URDF and xacro
- Discussing various tags in URDF
- Creating your own URDF/xacro for your robot
- Creating your URDF/xacro for a mobile robot
- Creating your URDF/xacro for a robotic arm
- Working with Joint state publisher and robot state publisher
- Working with Gazebo URDF tags and Spawning in Gazebo
- Writing launch file to simulation and visualization

✓ Mastering ROS Navigation stack

- Deep dive into ROS Navigation stack
- Configuring and fine-tuning navigation stack
- Using different path planners in Navigation stack
- Deep dive into ROS move_base node

Module 2: Mastering ROS

✓ Mastering ROS Movelt!

- Deep dive into ROS Movelt!
- Configuring and fine tuning Movelt! for any robot
- Using different planners in Movelt!
- Interfacing perception to Movelt!
- Complex motion planning and pick-place
- Programming using MoveIt! APIs

✓ Mastering ROS Perception

- Deep dive into ROS interface of OpenCV and PCL
- Creating ROS nodelets for working with PCL
- 2D & 3D Object detection using ROS
- YOLO Object detection using ROS
- ROS-Perception projects

Module 2: Mastering ROS

- ✓ Docker for ROS App deployment
 - Mastering Docker concepts and commands
 - Working with Docker-ROS container
 - Deploying your ROS app in docker
 - Working with NVIDIA Docker and ROS
 - Working with ROS Gazebo with Docker
- ✓ Testing and Deployment of your Code
 - Mastering GitHub and Travis CI for ROS project
 - Creating and pushing a ROS project in GitHub
 - Integrating Continuous Integration using Travis CI
 - Releasing your ROS package
 - Adding your own package in ROS distro

Module 3: ROS Advanced

✓ ROS-SLAM

- List of SLAM wrappers in ROS
- Gmapping, Cartographer
- Deep dive into Visual SLAM
- Configuring different SLAM package for your robot

✓ ROS-Controllers

- Deep dive into Controllers in ROS
- Configuring ROS controllers for your robot
- Writing ROS controllers for your robot
- Interfacing ROS controllers to actual actuator

Module 3: ROS Advanced

✓ ROS Path planners

- Deep dive into ROS based path planners
- Working with existing planners in ROS
- Configuring a planner for your robot
- Writing your own planner for your robot

✓ Rviz and Rqt Plugins

- Deep dive into Rviz and Rqt plugins
- Working with existing Rviz and Rqt plugins
- Creating new Rviz plugin for visualization
- Creating new Rqt plugin

Module 3: ROS Advanced

✓ ROS in Self-driving cars

- Deep dive into the self-driving car technology
- Discussing hardware to built a self-driving car
- Discussing the software architecture
- ROS based software for self driving car
- Working with Autoware project
- Simulating and Visualizing a self-driving car
- Visualization of Self-driving data in Webviz & XVIZ

✓ ROS Deep learning

- Deep dive into Deep learning frameworks
- Interfacing deep learning frameworks to ROS
- Working with Object detection using ROS deep learning stacks

