

Chapter 6 (Textbook Ch8)

Confidence Interval Estimation

Chapter Goals

After completing this chapter, you should understand:

- Point estimate and a confidence interval estimate
- Confidence interval estimate for a single population mean
- Confidence interval estimate for a single population proportion
- Determining the required sample size to estimate a mean or proportion within a specified margin of error

Confidence Intervals

Content of this chapter

- Confidence Intervals for the Population Mean, µ
 - when Population Standard Deviation σ is Known
 - when Population Standard Deviation σ is Unknown
- Confidence Intervals for the Population Proportion, p
- Determining the Required Sample Size

Point and Interval Estimates

- A point estimate is a single number
- A confidence interval provides additional information about variability

Point Estimates

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)	
Mean	μ	X	
Proportion	р	p _s	

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observation from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - Can never be 100% confident

Estimation Process

Why does it work?

- $\overline{\mathit{X}}$ is within $2\mathit{S}_{\overline{\mathit{X}}}$ of its mean μ about 95% of the time
 - Because $S_{\overline{X}}$ is an estimator of $\sigma_{\overline{X}}$ (the standard deviation of the sampling distribution of \overline{X})

• This also says that μ is within $2S_{\overline{X}}$ of \overline{X} about 95% of the time

Why does it work?

$$P(\mu - 2\sigma_{\bar{X}} < \bar{X} < \mu + 2\sigma_{\bar{X}}) \approx 0.95 \Leftrightarrow$$

$$P(-2\sigma_{\bar{X}} < \bar{X} - \mu < +2\sigma_{\bar{X}}) \approx 0.95 \Leftrightarrow$$

$$P(-\bar{X} - 2\sigma_{\bar{X}} < -\mu < -\bar{X} + 2\sigma_{\bar{X}}) \approx 0.95 \Leftrightarrow$$

$$P(\bar{X} - 2\sigma_{\bar{X}} < \mu < \bar{X} + 2\sigma_{\bar{X}}) \approx 0.95 \Leftrightarrow$$

Estimate $\sigma_{\bar{X}}$ by $S_{\bar{X}}$, then

$$P(\bar{X} - 2S_{\bar{X}} < \mu < \bar{X} + 2S_{\bar{X}}) \approx 0.95.$$

Imagine Many Samples

General Formula

The general formula for all confidence intervals is:

Point Estimate ± (Critical Value)(Standard Error)

Confidence Level

- Confidence Level
 - Confidence in which the interval will contain the unknown population parameter
- A percentage (less than 100%)

Confidence Level, $(1-\alpha)$

(continued)

- Suppose confidence level = 95%
- Also written $(1 \alpha) = .95$
- A relative frequency interpretation:
 - In the long run, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

Confidence Intervals

Confidence Interval for μ (σ Known)

- Assumptions
 - Population standard deviation σ is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\frac{1}{100} \times \frac{1}{100} \times \frac{1}$$

(where Z is the normal distribution critical value for a probability of $\alpha/2$ in each tail)

Finding the Critical Value, Z

 $Z = \pm 1.96$

Consider a 95% confidence interval:

Common Levels of Confidence

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z value
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.58
99.8%	.998	3.08
99.9%	.999	3.27

Intervals and Level of Confidence

 $(1-\alpha)x100\%$ of intervals constructed contain μ ; $(\alpha)x100\%$ do not.

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example

(continued)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms.
- Solution:

$$\overline{X} \pm Z \frac{\sigma}{\sqrt{n}}$$
= 2.20 \pm 1.96(.35/\sqrt{11})
= 2.20 \pm .2068
(1.9932, 2.4068)

Interpretation

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Confidence Intervals

Confidence Interval for μ (σ Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, S
- This introduces extra uncertainty, since
 S is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

(continued)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\frac{1}{X} \pm t_{n-1} \frac{S}{\sqrt{n}}$$

(where t is the critical value of the t distribution with n-1 d.f. and an area of $\alpha/2$ in each tail)

Student's t Distribution

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

$$d.f. = n - 1$$

Degrees of Freedom (df)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given mean)

Student's t Distribution

Note: $t \rightarrow Z$ as n increases

Student's t Table

	Upper Tail Area				
df	.25	.10	.05		
1	1.000	3.078	6.314		
2	0.817	1.886	2.920		
3	0.765	1.638	2.353		

The body of the table contains t values, not probabilities

Let:
$$n = 3$$

 $df = n - 1 = 2$
 $\alpha = .10$
 $\alpha / 2 = .05$

t distribution values

With comparison to the Z value

Confidence Level	t (10 d.f.)	t (20 d.f.)	t (30 d.f.)	Z
.80	1.372	1.325	1.310	1.28
.90	1.812	1.725	1.697	1.64
.95	2.228	2.086	2.042	1.96
.99	3.169	2.845	2.750	2.58

Note: $t \rightarrow Z$ as n increases

Example

A random sample of n=25 has X=50 and S=8. Form a 95% confidence interval for μ

• d.f. =
$$n - 1 = 24$$
, so $t_{\alpha/2, n-1} = t_{.025, 24} = 2.0639$

The confidence interval is

$$\overline{X} \pm t_{\alpha/2, \, n-1} \frac{S}{\sqrt{n}} = 50 \pm (2.0639) \frac{8}{\sqrt{25}}$$

(46.698, 53.302)

Confidence Intervals

Confidence Intervals for the Population Proportion, p

 An interval estimate for the population proportion (p) can be calculated by adding an allowance for uncertainty to the sample proportion (p_s)

Confidence Intervals for the Population Proportion, p

(continued)

 Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_p = \sqrt{\frac{p(1-p)}{n}}$$

We will estimate this with sample data:

$$\sqrt{\frac{p_s(1-p_s)}{n}}$$

Confidence Interval Endpoints

 Upper and lower confidence limits for the population proportion are calculated with the formula

$$p_s \pm Z_{\sqrt{\frac{p_s(1-p_s)}{n}}}$$

- where
 - Z is the standard normal value for the level of confidence desired
 - p_s is the sample proportion
 - n is the sample size

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the true proportion of left-handers

Example

(continued)

 A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers.

$$p_s \pm Z \sqrt{p_s (1 - p_s)/n}$$

$$= 25/100 \pm 1.96 \sqrt{.25(.75)/100}$$

$$=.25\pm1.96(.0433)$$

(0.1651, 0.3349)

Interpretation

- We are 95% confident that the true percentage of left-handers in the population is between 16.51% and 33.49%.
- Although the interval from .1651 to .3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

Sampling Error

- The required sample size can be found to reach a desired margin of error (e) with a specified level of confidence (1 - α)
- The margin of error is also called sampling error
 - the amount of imprecision in the estimate of the population parameter
 - the amount added and subtracted to the point estimate to form the confidence interval

(continued)

$$e = Z \frac{\sigma}{\sqrt{n}} \implies \boxed{\begin{array}{c} \text{Now solve} \\ \text{for n to get} \end{array}}$$

$$n = \frac{Z^2 \sigma^2}{e^2}$$

(continued)

- To determine the required sample size for the mean, you must know:
 - The desired level of confidence (1 α), which determines the critical Z value
 - The acceptable sampling error (margin of error), e
 - The standard deviation, σ

Required Sample Size Example

If σ = 45, what sample size is needed to estimate the mean within \pm 5 with 90% confidence?

$$n = \frac{Z^2 \sigma^2}{e^2} = \frac{(1.645)^2 (45)^2}{5^2} = 219.19$$

So the required sample size is n = 220

(Always round up)

If σ is unknown

- If unknown, σ can be estimated when using the required sample size formula
 - Use a value for σ that is expected to be at least as large as the true σ
 - Select a pilot sample and estimate σ with the sample standard deviation, S

(continued)

$$e = Z\sqrt{\frac{p(1-p)}{n}} \longrightarrow \begin{bmatrix} \text{Now solve} \\ \text{for n to get} \end{bmatrix} \longrightarrow \begin{bmatrix} n = \frac{Z^2 p(1-p)}{e^2} \end{bmatrix}$$

(continued)

- To determine the required sample size for the proportion, you must know:
 - The desired level of confidence (1 α), which determines the critical Z value
 - The acceptable sampling error (margin of error), e
 - The true proportion of "successes", p
 - p can be estimated with a pilot sample, if
 necessary (or conservatively use p = .50)

Required Sample Size Example

How large a sample would be necessary to estimate the true proportion defective in a large population within ±3%, with 95% confidence?

(Assume a pilot sample yields $p_s = .12$)

Required Sample Size Example

(continued)

Solution:

For 95% confidence, use Z = 1.96

$$e = .03$$

 $p_s = .12$, so use this to estimate p

$$n = \frac{Z^2 p(1-p)}{e^2} = \frac{(1.96)^2 (.12)(1-.12)}{(.03)^2} = 450.74$$

So use n = 451

PHStat Interval Options

PHStat Sample Size Options

Using PHStat (for μ, σ unknown)

A random sample of n = 25 has $\overline{X} = 50$ and S = 8. Form a 95% confidence interval for μ

	Α	В
1	Confidence Interval Estimate	for the Mean
2		
3	Data	
4	Sample Standard Deviation	8
5	Sample Mean	50
6	Sample Size	25
7	Confidence Level	95%
8		
9	Intermediate Calculations	
10	Standard Error of the Mean	1.6
11	Degrees of Freedom	24
12	t Value	2.063898137
13	Interval Half Width	3.302237019
14		
15	Confidence Interval	
16	Interval Lower Limit	46.70
17	Interval Upper Limit	53.30

Using PHStat (sample size for proportion)

How large a sample would be necessary to estimate the true proportion defective in a large population within 3%, with 95% confidence?

(Assume a pilot sample yields $p_s = .12$)

Confidence Interval for Population Total Amount

Point estimate:

Population total =
$$N\overline{X}$$

Confidence interval estimate:

$$N\overline{X} \pm N(t_{n-1}) \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

(This is sampling without replacement, so use the finite population correction in the confidence interval formula)

Confidence Interval for Population Total: Example

A firm has a population of 1000 accounts and wishes to estimate the total population value.

A sample of 80 accounts is selected with average balance of \$87.6 and standard deviation of \$22.3.

Find the 95% confidence interval estimate of the total balance.

Example Solution

$$N = 1000$$
, $n = 80$, $\overline{X} = 87.6$, $S = 22.3$

$$\begin{split} &N\overline{X} \,\pm\, N(t_{n-1}) \frac{S}{\sqrt{n}} \,\sqrt{\frac{N-n}{N-1}} \\ &= (1000)(87.6) \pm (1000)(1.9905) \frac{22.3}{\sqrt{80}} \,\sqrt{\frac{1000-80}{1000-1}} \\ &= 87,\!600 \pm 4,\!762.48 \end{split}$$

The 95% confidence interval for the population total balance is \$82,837.52 to \$92,362.48

Confidence Interval for Total Difference

Point estimate:

Total Difference =
$$N\overline{D}$$

Where the average difference, D, is:

Confidence Interval for Total Difference

(continued)

Confidence interval estimate:

$$N\overline{D} \pm N(t_{n-1}) \frac{S_{D}}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

where

$$S_{D} = \frac{\sum_{i=1}^{n} (D_{i} - \overline{D})^{2}}{n-1}$$

One Sided Confidence Intervals

 Application: find the upper bound for the proportion of items that do not conform with internal controls

Upper bound =
$$p_s + Z_{\sqrt{\frac{p_s(1-p_s)}{n}}} \sqrt{\frac{N-n}{N-1}}$$

- where
 - Z is the standard normal value for the level of confidence desired
 - p_s is the sample proportion of items that do not conform
 - n is the sample size
 - N is the population size