

# **Decision Trees**

Author: Rodriguez Noh Santiago Miguel Professor: Ph.D. Anabel Martin Gonzalez

Link to code: https://github.com/Santiagomrn/Decision\_Trees.git

#### I. Introduction

A Decision tree is a flowchart like tree structure, where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

# A. Theoretical framework

## Entropy:

Entropy basically tells us how impure a collection of data is.

$$Entropy(S) = -(P(yes)log_2P(yes) + P(no)log_2P(no))$$
(1)

### Information Gain:

The measure we will use called information gain, is simply the expected reduction in entropy caused by partitioning the data set according to this attribute. The information gain (Gain(S,A) of an attribute A relative to a collection of data set S, is defined as

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|Sv|}{S} Entropy(Sv)$$
(2)

## II. DECISION TREES

A. Using the training data, construct a decision tree for the binary classification of customers of the restaurant "Mama's Pasta" into 'Satisfied' or 'Unsatisfied'. Use the Information Gain (IG) as the decision criterion to select which attribute to split on. Show your calculations for the IG for all possible attributes for every split.

|   | OVERCOOKED_PASTA | WAITING_TIME | RUDE_WAITER | SATISFIED |
|---|------------------|--------------|-------------|-----------|
| 0 | yes              | long         | no          | yes       |
| 1 | no               | short        | yes         | yes       |
| 2 | yes              | long         | yes         | no        |
| 3 | no               | long         | yes         | yes       |
| 4 | yes              | short        | yes         | no        |

Fig. 1. Training set.

Selection of the root:

| OVERCOOKED_PASTA   | WAITING_TIME   | RUDE_WAITER | SATISFIED   |         |
|--------------------|----------------|-------------|-------------|---------|
| 0 yes              | long           | no          | yes         |         |
| 1 no               | short          | yes         | yes         |         |
| 2 yes              | long           | yes         | no          |         |
| 3 no               | long           | yes         | yes         |         |
| 4 yes              | short          | yes         | no          |         |
| OVERCOOKED_PASTA   | : 0.4199730940 | 219749      |             |         |
| WAITING_TIME : 0.0 | 01997309402197 | 489         |             |         |
| RUDE_WAITER : 0.17 | 70950594454668 | 54          |             |         |
| best gain: 0.4199  | 730940219749 b | est feature | : OVERCOOKE | D_PASTA |

Fig. 2. Compare gains.

The algorithm determined that the best characteristic for the root is OVERCOOKED\_PASTA.

Now looking at the table and relating OVER-COOKED\_PASTA = yes

| W    | AITING_TIME RU | DE_WAITER S | SATISFIED      |      |             |
|------|----------------|-------------|----------------|------|-------------|
| 0    | long           | no          | yes            |      |             |
| 2    | long           | yes         | no             |      |             |
| 4    | short          | yes         | no             |      |             |
| WAI  | TING_TIME : 0  | .2516291673 | 8878229        |      |             |
| RUD  | E_WAITER : 0.  | 91829583405 | 44896          |      |             |
| bes: | t gain: 0.918  | 29583405448 | 396 best featu | re : | RUDE_WAITER |

Fig. 3. Compare gains.

The second and last division occurs with the RUDE\_WAITER characteristic.

As a result I get the following decision tree.



Fig. 4. Decision tree.

After observing the decision tree we notice that the WAIT-ING\_TIME variable is not part of the tree, and this is because it does not provide enough information to make a prediction, in this way the algorithm discarded it.



B. Now use the decision tree you have created to predict whether each of the test users will be satisfied or not after their visit to "Mama's Pasta".

| Person ID | Overcooked pasta? | Waiting time | Rude waiter? |
|-----------|-------------------|--------------|--------------|
| 6         | No                | Short        | No           |
| 7         | Yes               | Long         | Yes          |
| 8         | Yes               | Short        | No           |

Fig. 5. Test data.

```
{'OVERCOOKED_PASTA': 'no', 'WAITING_TIME': 'short', 'RUDE_WAITER': 'no'} SATISFIED : yes 
{'OVERCOOKED_PASTA': 'yes', 'WAITING_TIME': 'long', 'RUDE_WAITER': 'yes'} SATISFIED : no 
{'OVERCOOKED_PASTA': 'yes', 'WAITING_TIME': 'short', 'RUDE_WAITER': 'no'} SATISFIED : yes
```

Fig. 6. Predictions.

#### III. FINAL COMMENTS

#### A. other decision tree

In order to verify the correct operation of the algorithm, I also generated the decision tree of the material seen in class and I obtained the following.



Fig. 7. Decision tree.

For the development of this practice use recursive functions, I think it is something that should not be overlooked because recursion is one of the most complicated issues when learning to program, something that caught my attention about decision trees, is the possibility that some variables of your data set are not found in the final decision tree, that is, they are not considered when making a prediction.

#### REFERENCES

[1] Pranto, B. (2020, 4 marzo). Entropy Calculation, Information Gain Decision Tree Learning., https://medium.com/analytics-vidhya/entropy-calculation-information-gain-decision-tree-learning-771325d16f.