Kapitel 1.5

Färbungen

k-Färbung, chromatische Zahl

Eine (Knoten-)Färbung eines Graphen G = (V, E) mit k Farben ist eine Abbildung $c : V \rightarrow [k]$, so dass gilt

 $c(u) \neq c(v)$ für alle Kanten $\{u, v\} \in E$.

k-Färbung, chromatische Zahl

Eine (Knoten-)Färbung eines Graphen G = (V, E) mit k Farben ist eine Abbildung $c : V \rightarrow [k]$, so dass gilt

 $c(u) \neq c(v)$ für alle Kanten $\{u, v\} \in E$.

Graphfärbung - Prüfungsplan

Examination timetabling

Assign each exam a period and a room.

Graphfärbung - Speicherallokation

Disk

Interference graph example

Interference graph

Graphfärbung - Funknetzwerke

Graphfärbung - Beispiele

4-Farben-Theorem

k-Färbung, chromatische Zahl

Eine (Knoten-)Färbung eines Graphen G = (V, E) mit k Farben ist eine Abbildung $c : V \rightarrow [k]$, so dass gilt

$$c(u) \neq c(v)$$
 für alle Kanten $\{u, v\} \in E$.

Die chromatische Zahl $\chi(G)$ ist die minimale Anzahl Farben, die für eine Knotenfärbung von G benötigt wird.

Äquivalente Formulierung: $\chi(G) \leq k$ gdw. G k-partit

Spezialfall: $\chi(G) \le 2$ gdw. G bipartit

"Ist G bipartit?" kann man in Zeit O(|E|) mit Breiten- oder Tiefensuche beantworten.

Färbbarkeit ist sehr schwer

Satz: Für jedes k ≥ 3 ist das Problem

"Gegeben ein Graph G = (V, E), gilt $\chi(G) \le k$?"

NP-vollständig.

Alternativen?

Exponentieller Algorithmus? Ja, mit Inklusion/Exklusion.

(Polynomieller Speicher und Zeit O(2.3ⁿ))

Approximationen?

Nein. Für jedes $\varepsilon > 0$ ist es NP-schwer, eine $n^{1-\varepsilon}$ -Approximation zu finden.

Spezialfälle?

Ja. Wir werden einige Arten von Graphen sehen, für die es gute Algorithmen gibt.

GREEDY-FÄRBUNG (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to i = n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Beobachtung:

Für jede Reihenfolge $V = \{v_1, \dots, v_n\}$ der Knoten benötigt der Greedy-Algorithmus höchstens $\Delta(G)+1$ viele Farben.

Notation:

 $\Delta(G) := \text{maximaler Grad in G}$

GREEDY-FÄRBUNG (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to i = n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Beobachtung:

Es gibt eine Reihenfolge $V = \{v_1, \dots, v_n\}$ der Knoten, für die der Greedy-Algorithmus nur $\chi(G)$ viele Farben benötigt.

GREEDY-FÄRBUNG (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to i = n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Beobachtung:

Es gibt bipartite Graphen und eine Reihenfolge $V = \{v_1, \dots, v_n\}$ der Knoten, für die der Greedy-Algorithmus |V|/2 viele Farben benötigt.

vollständig bipartiter Graph ohne ein perfektes Matching

GREEDY-FÄRBUNG (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to i = n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Beobachtung:

Gilt für die (gewählte) Reihenfolge $|N(v_i) \cap \{v_1, ..., v_{i-1}\}| \le k \quad \forall \ 2 \le i \le n$, dann benötigt der Greedy-Algorithmus höchstens **k+1** viele Farben.

Heuristik:

v_n := Knoten vom kleinsten Grad. Lösche v_n.

 v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche v_{n-1} . Iteriere.

Falls G=(V,E) erfüllt:

In jedem Subgraphen gibt es einen Knoten mit Grad ≤ k

→ Heuristik liefert Reihenfolge v₁,...,v_n für die der Greedy-Algorithmus höchstens k+1 Farben benötigt

GREEDY-FÄRBUNG (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to i = n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Falls G=(V,E) erfüllt:

In jedem Subgraphen gibt es einen Knoten mit Grad ≤ k

→ Heuristik liefert Reihenfolge v₁,...,v_n für die der Greedy-Algorithmus höchstens k+1 Farben benötigt

Korollar:

Die Heuristik findet immer eine Färbung mit 2 Farben für Bäume.

Satz: (ohne Beweis)

Ist ein Graph planar (kann überkreuzungsfrei in der Ebene gezeichnet werden), so gibt es immer einen Knoten vom Grad ≤ 5.

Korollar:

Die Heuristik findet eine Färbung mit ≤ 6 Farben für planare Graphen.

Greedy-Färbung (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to i = n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Beobachtung:

Gilt für die (gewählte) Reihenfolge $|N(v_i) \cap \{v_1, ..., v_{i-1}\}| \le k \quad \forall \ 2 \le i \le n$, dann benötigt der Greedy-Algorithmus höchstens **k+1** viele Farben.

Heuristik:

v_n := Knoten vom kleinsten Grad. Lösche v_n.

 v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche v_{n-1} . Iteriere.

Korollar:

G=(V,E) zshgd. und es gibt $v \in V$ mit $deg(v) < \Delta(G)$

→ Heuristik (oder Breiten-/Tiefensuche) liefert Reihenfolge, für die der Greedy-Algorithmus höchstens △(G) Farben benötigt

Warum ist Färbbarkeit so schwer?

Satz: \forall k \in N, \forall r \in N : Es gibt Graphen ohne einen Kreis mit Länge \leq k, aber mit chromatischer Zahl \geq r.

(Beweis im Skript für k=3)

Lokal sieht der Graph aus wie ein Baum (alle Knoten, die man von einem v aus in k/2 Schritten erreichen kann).

Satz: Einen 3-färbbaren Graphen kann man in Zeit O(|V| + |E|) mit $O(\sqrt{|V|})$ Farben färben.

Algorithmus:

While es gibt Knoten v, der $> \sqrt{|V|}$ ungefärbte Nachbarn hat:

Färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben.

Lösche alle gefärbten Knoten. Der Restgraph hat Maximalgrad $\Delta \leq \sqrt{|V|}$.

Färbe verbleibende Knoten mit Greedy-Algorithmus mit $\Delta + 1$ neuen Farben.

Block-Graphen

Ist G ein Graph, in dem man jeden Block mit k Farben färben kann.

Dann kann man auch G mit k Farben färben.

Farbklassen tauschen

Abhängigkeit vom maximalen Grad

Greedy-Färbung (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

Jeder Graph kann in Zeit O(|E|) mit $\Delta(G)+1$ Farben gefärbt werden

Satz von Brooks

 $G \neq K_n$, $G \neq C_{2n+1}$, G zshgd:

 \Rightarrow G kann in Zeit O(|E|) mit $\Delta(G)$ Farben gefärbt werden

Satz von Brooks

Satz von Brooks

 $G \neq K_n$, $G \neq C_{2n+1}$, G zshgd:

 \Rightarrow G kann in Zeit O(|E|) mit $\Delta(G)$ Farben gefärbt werden

Algorithmus:

- Falls Δ(G)=2: färbe G mit zwei Farben
 (da G zshgd und kein ungerader Kreis, ist G ein Pfad oder ein gerader Kreis)
- Falls $\exists v \in V$ mit $deg(v) < \Delta(G)$: färbe G mit Greedy-Algorithms + Heuristik (benötigt nur $\Delta(G)$ Farben)
- Falls es einen Artikulationsknoten v gibt: färbe alle Blöcke (jeweils inkl. Knoten v) mit Heuristik; ggf. Farbtausch, damit v in allen Graphen einheitlich gefärbt

(in allen diesen Blöcken hat v Grad $< \Delta(G)$, Heuristik funktioniert also wie oben argumentiert)

- Bestimme Knoten v,x,y ∈ V mit x,y ∈ N(v) und {x,y} ∉ E
 (diese existieren, da G zshgd und kein vollständiger Graph)
- Betrachte G' := G[V \ {x,y}]:
 - Falls G'zshgd: färbe G mit Greedy-Alg: Erst x und y, danach Heuristik für G'
 - Falls G' nicht zshgd: ...