April 25, 2023

Group Name: Go Bear!

Name: Xiaoke Song

Email: xiaokesong57@gmail.com

Country: born in China, college in the US

College: UC Berkeley 5

Specialization: Data Science

```
[1]: import pandas as pd
```

```
[2]: df = pd.read_csv("cust_seg.csv")
     df.head(5)
```

/var/folders/_0/nmpfpzw134n12j0c0z6jtrw80000gn/T/ipykernel_5258/1520097819.py:1: DtypeWarning: Columns (16) have mixed types. Specify dtype option on import or set low_memory=False.

df = pd.read_csv("cust_seg.csv")

[2]:	Unnamed: 0	fecha_dato	ncodpers	ind empleado	pais_residencia	sexo	age	\
0	0	2015-01-28	-	N	-	Н	35	`
U	U	2015-01-20	1373366	1/	ES	п	33	
1	1	2015-01-28	1050611	N	ES	V	23	
2	2	2015-01-28	1050612	N	ES	V	23	
3	3	2015-01-28	1050613	N	ES	H	22	
4	4	2015-01-28	1050614	N	ES	V	23	
	fecha_alta	ind_nuevo	antiguedad	ind_hip_	fin_ult1 ind_plan	n_fin_	ult1	\
0	2015-01-12	0.0	6	•••	0		0	
1	2012-08-10	0.0	35	•••	0		0	
2	2012-08-10	0.0	35	•••	0		0	
3	2012-08-10	0.0	35		0		0	

2012-08-10 0.0 4 2012-08-10 0.0 35

ind_pres_fin_ult1 ind_reca_fin_ult1 ind_tjcr_fin_ult1 ind_valo_fin_ult1 \

0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0

	<pre>ind_viv_fin_ult1</pre>	<pre>ind_nomina_ult1</pre>	<pre>ind_nom_pens_ult1</pre>	<pre>ind_recibo_ult1</pre>
0	0	0.0	0.0	0
1	0	0.0	0.0	0
2	0	0.0	0.0	0
3	0	0.0	0.0	0
4	0	0.0	0.0	0

[5 rows x 48 columns]

Problem description: Customer Segmation _____ "XYZ bank wants to roll out Christmas offers to their customers. But Bank does not want to roll out same offer to all customers instead they want to roll out personalized offer to particular set of customers. If they manually start understanding the category of customer then this will be not efficient and also they will not be able to uncover the hidden pattern in the data (pattern which group certain kind of customer in one category). Bank approached ABC analytics company to solve their problem. Bank also shared information with ABC analytics that they don't want more than 5 group as this will be inefficient for their campaign."

Data Understanding: The data contains information about customers of the bank, including demographic information, customer behavior, and product ownership. There are several columns in the dataset, including customer code, age, seniority, activity index, gross income, and various product ownership indicators.

What type of data you have got for analysis? — Based on the provided information, we have a dataset containing customer information for XYZ bank. The dataset includes demographic information, customer behavior, and product ownership, and it appears to be in a structured format. The warning message "Columns (16) have mixed types" indicates that there might be some columns with mixed data types, but without further information, it's unclear which columns are affected and what the specific data types are. Overall, it seems like we have tabular data that can be analyzed using various techniques such as descriptive statistics, data visualization, and clustering algorithms for customer segmentation.

```
[4]: # check for missing values
print('Number of missing values in each column:')
print(df.isnull().sum())
```

Number of missing values in each column:

 Unnamed: 0
 0

 fecha_dato
 0

 ncodpers
 0

 ind_empleado
 10782

 pais_residencia
 10782

 sexo
 10786

age	0
fecha_alta	10782
ind_nuevo	10782
antiguedad	0
indrel	10782
ult_fec_cli_1t	998899
indrel_1mes	10782
tiprel_1mes	10782
indresi	10782
indext	10782
conyuemp	999822
canal_entrada	10861
indfall	10782
tipodom	10782
cod_prov	17734
nomprov	17734
ind_actividad_cliente	10782
renta	175183
ind_ahor_fin_ult1	0
ind_aval_fin_ult1	0
ind_cco_fin_ult1	0
ind_cder_fin_ult1	0
ind_cno_fin_ult1	0
ind_ctju_fin_ult1	0
ind_ctma_fin_ult1	0
<pre>ind_ctop_fin_ult1</pre>	0
ind_ctpp_fin_ult1	0
ind_deco_fin_ult1	0
ind_deme_fin_ult1	0
ind_dela_fin_ult1	0
ind_ecue_fin_ult1	0
ind_fond_fin_ult1	0
<pre>ind_hip_fin_ult1</pre>	0
ind_plan_fin_ult1	0
ind_pres_fin_ult1	0
ind_reca_fin_ult1	0
ind_tjcr_fin_ult1	0
ind_valo_fin_ult1	0
ind_viv_fin_ult1	0
ind_nomina_ult1	5402
ind_nom_pens_ult1	5402
ind_recibo_ult1	0
dtype: int64	
2 I	

There are missing values in the following columns:

 $ind_empleado,$

pais_residencia,

```
sexo,
fecha alta,
ind_nuevo,
indrel,
ult fec cli 1t,
indrel_1mes,
tiprel_1mes,
indresi,
indext,
conyuemp,
canal_entrada,
indfall,
tipodom,
cod_prov,
nomprov,
ind_actividad_cliente,
renta,
ind_nomina_ult1,
ind_nom_pens_ult1;
```

The column "ult_fec_cli_1t" has a very large number of missing values, while the columns "ind_empleado", "pais_residencia", "sexo", "fecha_alta", "ind_nuevo", "indrel", "indrel_1mes", "tiprel_1mes", "indresi", "indext", "conyuemp", "canal_entrada", "indfall", "tipodom", "cod_prov", "nomprov", "ind_actividad_cliente", "renta", "ind_nomina_ult1", and "ind_nom_pens_ult1" have a relatively smaller number of missing values.

```
[3]: # calculate the summary statistics
summary = df.describe()

# print the summary statistics
print(summary)
```

	Unnamed: 0	ncodpers	ind_nuevo	indrel	\
count	1000000.000000	1.000000e+06	989218.000000	989218.000000	
mean	499999.500000	6.905967e+05	0.000489	1.109074	
std	288675.278933	4.044084e+05	0.022114	3.267624	
min	0.000000	1.588900e+04	0.000000	1.000000	
25%	249999.750000	3.364110e+05	0.000000	1.000000	
50%	499999.500000	6.644760e+05	0.000000	1.000000	

75% max	749999.250000 1.074511e+06 999999.000000 1.379131e+06			0.000000 1.000000 1.000000 99.000000		
шах	999999.000000	1.3791316+00	1.	.000000	99.00000	O
		tipodom	cod_pro	_	ctividad_cli	ente \
count		39218.0 9822	266.00000		989218.00	
mean	1.000085	1.0	26.85213		0.56	
std	0.012954	0.0	12.42292		0.49	
min	1.000000	1.0	1.00000		0.00	
25%	1.000000	1.0	18.00000		0.00	
50%	1.000000	1.0	28.00000		1.00	
75%	1.000000	1.0	33.00000		1.00	
max	3.000000	1.0	52.00000	00	1.00	0000
	renta in	d_ahor_fin_u]	Lt1 i	ind_hip_f:	in_ult1 \	
count	8.248170e+05	1000000.0000	000	1000000	.000000	
mean	1.396462e+05	0.0001	L77	0	.009982	
std	2.389858e+05	0.0133	303	0	.099410	
min	1.202730e+03	0.0000	000	0	.000000	
25%	7.157184e+04	0.0000	000	0	.000000	
50%	1.066519e+05	0.0000	000	0	.000000	
75%	1.634325e+05	0.0000	000	0	.000000	
max	2.889440e+07	1.0000	000	1	.000000	
	ind_plan_fin_ult	l ind pres 1	fin ult1	ind rec	a_fin_ult1	\
count	1000000.000000	-	0.000000		000.00000	`
mean	0.01455		0.004661		0.072581	
std	0.11975		0.068112		0.259448	
min	0.00000		0.000000		0.000000	
25%	0.00000		0.000000		0.000000	
50%	0.00000) (0.000000		0.000000	
75%	0.00000) (0.000000		0.000000	
max	1.00000) 1	1.000000		1.000000	
	ind_tjcr_fin_ult	l ind_valo_f	in 111+1	ind wiw	_fin_ult1 \	
count	1000000.000000		0.000000	_	00.00000	
mean	0.06608		0.039378	10000	0.006442	
std	0.248429).194493		0.080003	
min	0.00000		0.000000		0.000000	
25%	0.00000		0.000000		0.000000	
50%	0.00000		0.000000		0.000000	
75%	0.00000		0.000000 0.000000			
max	1.00000		1.000000		1.000000	
шах	1.00000	,	1.000000		1.000000	
	ind_nomina_ult1	ind_nom_pens		ind_recib	-	
count	994598.000000	994598.0		1000000.		
mean	0.071629		79543		166275	
std	0.257873		270584		372327	
min	0.000000	0.0	000000	0.0	000000	

25%	0.000000	0.000000	0.000000
50%	0.00000	0.000000	0.000000
75%	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000

[8 rows x 33 columns]

The 75th percentile refers to the point in a dataset where 75% of the observations are below that value. Outliers are observations that fall outside of the typical range of values for a dataset, and can be identified using various statistical methods. Common methods for identifying outliers include the use of box plots, z-scores, and interquartile range (IQR).

```
[4]: # calculate the skewness
skewness = df.skew()

# print the skewness
print(skewness)
```

Unnamed: 0	-2.511790e-15
ncodpers	3.227844e-02
ind_nuevo	4.517572e+01
indrel	2.992451e+01
indrel_1mes	1.534514e+02
tipodom	0.000000e+00
cod_prov	-1.512119e-01
<pre>ind_actividad_cliente</pre>	-2.621046e-01
renta	5.223413e+01
<pre>ind_ahor_fin_ult1</pre>	7.514476e+01
<pre>ind_aval_fin_ult1</pre>	1.601190e+02
<pre>ind_cco_fin_ult1</pre>	-1.152401e+00
<pre>ind_cder_fin_ult1</pre>	4.109809e+01
ind_cno_fin_ult1	2.571915e+00
ind_ctju_fin_ult1	8.391620e+00
<pre>ind_ctma_fin_ult1</pre>	9.903618e+00
<pre>ind_ctop_fin_ult1</pre>	1.405709e+00
ind_ctpp_fin_ult1	3.309287e+00
ind_deco_fin_ult1	2.145683e+01
<pre>ind_deme_fin_ult1</pre>	1.773314e+01
ind_dela_fin_ult1	3.467512e+00
<pre>ind_ecue_fin_ult1</pre>	2.555226e+00
<pre>ind_fond_fin_ult1</pre>	5.815247e+00
<pre>ind_hip_fin_ult1</pre>	9.858534e+00
<pre>ind_plan_fin_ult1</pre>	8.107362e+00
ind_pres_fin_ult1	1.454481e+01
ind_reca_fin_ult1	3.294845e+00
<pre>ind_tjcr_fin_ult1</pre>	3.493287e+00
ind_valo_fin_ult1	4.736660e+00
ind_viv_fin_ult1	1.233849e+01

```
ind_nomina_ult1
                         3.322353e+00
ind_nom_pens_ult1
                         3.107782e+00
ind_recibo_ult1
                         1.792646e+00
dtype: float64
```

/var/folders/_0/nmpfpzw134n12j0c0z6jtrw80000gn/T/ipykernel_5258/2832739648.py:2: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

skewness = df.skew()

To determine the skewness of the data, we need to look at the signs of the values in the third column. If the value is positive, the distribution is right-skewed (or positively skewed), and if the value is negative, the distribution is left-skewed (or negatively skewed).

From the given data, we can see that:

Unnamed: 0, ncodpers, tipodom, ind cco fin ult1, ind cno fin ult1, ind ctop fin ult1, ind_ctpp_fin_ult1,

ind dela fin ult1, ind ecue fin ult1, ind reca fin ult1, ind tier fin ult1, ind_valo_fin_ult1, ind_nomina_ult1,

ind nom pens ult1, and ind recibo ult1 have a skewness value of approximately zero (around 0).

ind nuevo, indrel. ind_cder_fin_ult1, ind_ctju_fin_ult1, ind_ctma_fin_ult1, ind deco fin ult1, ind deme fin ult1,

ind plan fin ult1, ind fond fin ult1, ind hip fin ult1, ind pres fin ult1, ind viv fin ult1 have positive skewness values, indicating a right-skewed distribution. cod prov and ind actividad cliente have negative skewness values, indicating a left-skewed distribution. indrel 1mes and ind aval fin ult1 have very high positive skewness values, indicating extreme right-skewed distributions. Therefore, we can say that the given dataset has a mix of left-skewed, right-skewed, and extreme right-skewed distributions.

What approaches you are trying to apply on your data set to overcome problems like NA value, outlier etc and why? —— one approach to handle missing values is imputation using the mean value of the column. Here's an example code below. In this code, we first load the data and then check for missing values using isnull() and sum() methods. Then, we replace the missing values with the mean value of the column using fillna() method with inplace=True to replace the missing values in the original data frame. Finally, we check for missing values again to confirm that all missing values have been replaced with the mean value of the column.

```
[]: import numpy as np
     # check for missing values
     print(df.isnull().sum())
     # replace missing values with mean value of column
     df.fillna(df.mean(), inplace=True)
```

check for missing values again print(df.isnull().sum())

Unnamed: 0	0
fecha_dato	0
ncodpers	0
ind_empleado	10782
pais_residencia	10782
sexo	10786
age	0
fecha_alta	10782
ind_nuevo	10782
antiguedad	0
indrel	10782
ult_fec_cli_1t	998899
indrel_1mes	10782
tiprel_1mes	10782
indresi	10782
indext	10782
conyuemp	999822
canal_entrada	10861
indfall	10782
tipodom	10782
cod_prov	17734
nomprov	17734
ind_actividad_cliente	10782
renta	175183
ind_ahor_fin_ult1	0
<pre>ind_aval_fin_ult1</pre>	0
<pre>ind_cco_fin_ult1</pre>	0
<pre>ind_cder_fin_ult1</pre>	0
ind_cno_fin_ult1	0
<pre>ind_ctju_fin_ult1</pre>	0
ind_ctma_fin_ult1	0
<pre>ind_ctop_fin_ult1</pre>	0
<pre>ind_ctpp_fin_ult1</pre>	0
<pre>ind_deco_fin_ult1</pre>	0
ind_deme_fin_ult1	0
ind_dela_fin_ult1	0
<pre>ind_ecue_fin_ult1</pre>	0
<pre>ind_fond_fin_ult1</pre>	0
<pre>ind_hip_fin_ult1</pre>	0
ind_plan_fin_ult1	0
<pre>ind_pres_fin_ult1</pre>	0
ind_reca_fin_ult1	0
${\tt ind_tjcr_fin_ult1}$	0
<pre>ind_valo_fin_ult1</pre>	0

ind_viv_fin_ult1 0 ind_nomina_ult1 5402 ind_nom_pens_ult1 5402 ind_recibo_ult1 0 dtype: int64

[]: