Rapport labo 7 SYL

Explications des circuits:

decodeur_sorties:

- Ce circuit prend en entré un état de la machine et défini l'état des sorties.
- Les états sont définis sur 7 bits (1 parmi M donc un bit à 1 par état) :

Wait:0000001
Scan:0000010
Throw:0000100
Move red:0001000
Move blue:0010000
Drop:0100000
Move init:1000000

- La variables des sorties est aussi sur 7 bits :
 - Bit0:scan_o
 Bit1:throw_o
 Bit2:move_o
 Bit3:dest_red
 Bit4:dest_blue
 Bit5:dest_init
 Bit6:drop
- Équations des sorties en fonction des états présents, page 4

decodeur_etat:

- Prend en entré l'état présent, les entrés de la machine et défini l'état future en fonctions de cela.
- Entrés de la MSS :
 - o Ready_i : est à 1 quand le bras est prêt à effectuer un scan
 - o Color_i: sur 2 bits, indique la couleur du bloc ou une erreur
 - o Timer: est à un quand le timer est terminé
 - o Reset: est à 1 lorsque l'on veut faire un reset
- Q[6:0]: les bits de l'état présent en entré du circuit
- State*_bit*[6:0] : les bits de l'état future :
 - O Dans notre cas il peut y avoir qu'un bit à 1 à la fois (1 parmi M)
 - o Bit0 à 1 -> état 0, bit 1 à 1 -> état 1 etc...
- Équations pour chacun des bits d'états futur, page 3

MSS:

- Contiens les circuits decodeur_sorties et decodeur_etat.
- Détermine l'état des sortis en fonction de l'état de la machine et détermine son prochain état en fonction de l'état actuel et des entrés.
- La machine fait avancer les états avec une horloge et des bascules D
 - o Chaque bascule gère un bit de l'état
 - Les reset des bascules des bit 6 à 1 et le set de la bascule du bit0 sont relié au reset asynchrone de la machine
 - Cela pour que lorsque l'on fait un reset de la machine, elle se remette dans son état « Wait » (E0 : 0000001) où les bits 6 à 1 sont donc remis à 0 et le bit0 à 1
- Tables des états en page 3

Timer

- Prend en entré un reset, un enable et une horloge
- Lorsque le enable est à 1, le timer décompte et est donc actif
- Si le enable est à 0, le timer charge la valeur 2 et est désactivé
 - Le timer décompte sur 3 temps donc de 2 à 0
- La sortie end_timer_o est à 1 lorsque le décompte arrive à 0

auto_arm_top

- Prend en entré ready_i, color_i, reset_i et clk_i déjà expliqué précédemment
- Contient les circuits timer et MSS
 - MSS et timer sont donc utilisé afin de gérer les sorties pour faire fonctionner le bras
- La sorite move_o relie l'enable du timer afin qu'il soit actif et décompte uniquement lorsque la machine est aux états Move red, Move blue ou Move init, pour qu'il décompte bien de 2 à 0, et n'aille pas déjà commencer quand la machine arrive à un de ces états. C'est donc aussi pour cela que le reste du temps, quand l'enable est à 0, la valeur 2 est chargé.

Équations et tables de états :

Tables des états

état-prés	état future f(ready, color, timer)	00000000000000000000000000000000000000
wait 60 Scan E1	(E0) E1	0000001:
Throw 62	Eo!	0000010
Movered F3		8010100
Moveblue E4 /		1000000
Move init E6		0700700

Équations des états futures

E*+: états futurs

E*: états présents

Q[6:0]: bit[6:0] de l'état présent

Nom de l'état	Abréviation correspondante
Wait	E0
Scan	E1
Throw	E2
Move Red	E3
Move Blue	E4
Drop	E5
Move init	E6

Équations des sorties

Sorties: S[0]: scan_o S[1]: throw_o S[2]: move_o S[3]: dest_red S[4]: dest_blue S[5]: dest_init

S[6]: drop

Q* : Correspondent au bit à 1 des différents états

Par exemple, la sortie S0 est à 1 quand la machine est dans l'état 1 (Scan, E1), et donc lorsque le bit 1 de la variable 7bits des états est à 1.

Ceci peut être fait car notre cas le permet grâce au 1 parmi M, et permet de simplifier.

Remerciment

Nous tenons à remercier M.Auberson ainsi que Bastien pour tout le temps hors horaires qu'ils nous ont consacré.