

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Радиотехнический» Кафедра «Системы обработки информации и управления»

Лабораторная работа № 1

по дисциплине «Разработка интернет-приложений».

Выполнил: студент(ка) группы № РТ5-51Б А. С. Пакало подпись, дата

Проверил: преподаватель Ю. Е. Гапанюк подпись, дата

Оглавление

Цель работы	2
Изучение основных конструкций языка Python	
Задание	
Выполнение	
main.py	
Результаты выполнения	6
Вывол	6

Цель работы

Изучение основных конструкций языка Python.

Задание

Разработать программу для решения биквадратного уравнения.

- 1. Программа должна быть разработана в виде консольного приложения на языке Python.
- 2. Программа осуществляет ввод с клавиатуры коэффициентов A, B, C, вычисляет дискриминант и ДЕЙСТВИТЕЛЬНЫЕ корни уравнения (в зависимости от дискриминанта).
- 3. Коэффициенты A, B, C могут быть заданы в виде параметров командной строки ([вариант задания параметров приведен в конце файла с примером кода](https://github.com/iu5team/iu5web-fall-2021/blob/main/code/lab1_code)). Если они не заданы, то вводятся с клавиатуры в соответствии с пунктом 2. [Описание работы с параметрами командной

- строки.](https://realpython.com/python-command-line-arguments/#the-command-line-interface)
- 4. Если коэффициент А, В, С введен или задан в командной строке некорректно, то необходимо проигнорировать некорректное значение и вводить коэффициент повторно пока коэффициент не будет введен корректно. Корректно заданный коэффициент это коэффициент, значение которого может быть без ошибок преобразовано в действительное число.

Выполнение

main.py

```
import sys
import math
def get_coef(index, prompt):
    1 1 1
    Читаем коэффициент из командной строки или вводим с клавиатуры
    Args:
        index (int): Номер параметра в командной строке
        prompt (str): Приглашение для ввода коэффицента
    Returns:
        float: Коэффициент квадратного уравнения
    # Trying to read coefficient from console arguments.
    if (len(sys.argv) > index):
        coef_str = sys.argv[index]
    else:
        # Otherwise entering it manually.
        print(prompt)
        coef str = input()
    # Conversion.
    try:
```

```
coef = float(coef_str)
    # Input wasn't a float number.
    except:
        print('Число было введёно неверно!')
        print(prompt)
        return get_coef(index, prompt);
    return coef
def get_bisquare_roots(a, b ,c):
    result = []
    squared_result = get_square_roots(a, b, c)
    for squared_root in squared_result:
        if squared_root < 0:</pre>
            continue;
        if squared_root == 0:
            result.append(squared_root)
        elif squared_root > 0:
            root = math.sqrt(squared_root)
            result.append(-root)
    return result
def get_square_roots(a, b, c):
    Вычисление корней квадратного уравнения
    Args:
        a (float): коэффициент А
        b (float): коэффициент В
        c (float): коэффициент С
    Returns:
        list[float]: Список корней
```

```
result = []
    D = b*b - 4*a*c
    if D == 0.0:
        root = -b / (2.0*a)
        result.append(root)
    elif D > 0.0:
        sqD = math.sqrt(D)
        root1 = (-b + sqD) / (2.0*a)
        root2 = (-b - sqD) / (2.0*a)
        result.append(root1)
        result.append(root2)
    return result
def main():
    1 1 1
    Основная функция
    a = get_coef(1, 'Введите коэффициент А:')
    b = get_coef(2, 'Введите коэффициент В:')
    c = get_coef(3, 'Введите коэффициент C:')
    # Вычисление корней
    roots = get_bisquare_roots(a,b,c)
    # Вывод корней
    if not len(roots):
        print('Нет корней')
    for root in roots:
        print(root)
    # len_roots = len(roots)
    # if len_roots == 0:
        # print('Нет корней')
    # elif len roots == 1:
        # print('Один корень: {}'.format(roots[0]))
    # elif len_roots == 2:
        # print('Два корня: {} и {}'.format(roots[0], roots[1]))
# Если сценарий запущен из командной строки
if __name__ == "__main__":
```

```
main()
# Пример запуска
# qr.py 1 0 -4
```

Результаты выполнения

```
      dubuntus@DS13: ... /__t3.1-Course/code/lab1_code$
      python qb.py

      Введите коэффициент В:
      -2

      Введите коэффициент С:
      1

      -1.0
      dubuntus@DS13: ... /__t3.1-Course/code/lab1_code$
      python qb.py

      Введите коэффициент А:
      1

      Введите коэффициент В:
      -16

      Введите коэффициент С:
      16

      -3.8637033051562732
      -1.0352761804100832
```

рис. 1 результат выполнения задания

Вывод

На данной лабораторной работе я изучил основные конструкции языка Python.