А. Сравнения подстрок

2 секунды, 256 мегабайт

Дана строка s. Ответьте на m запросов вида: равны ли подстроки s[a..b] и s[c..d].

Входные данные

В первой строке ввода записана строка s ($1 \le |s| \le 10^5$).

Во второй строке записано целое число m — количество запросов ($0 \le m \le 10^5$).

В следующих m строках четверки чисел a, b, c, d ($1 \le a \le b \le |s|, 1 \le c \le d \le |s|$).

Выходные данные

Выведите m строк. Выведите Yes, если подстроки совпадают, и No иначе.

```
      входные данные

      1 7 1 7
      3

      1 7 1 7
      1 1 1 5

      выходные данные

      Yes
      Yes

      No
      No
```

В. Префикс-функция

2 секунды, 256 мегабайт

Постройте префикс-функцию для заданной строки S.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения префикс-функции строки s для всех индексов 1, 2, ..., |s|.

входные	данные
aaaAAA	
выходны	е данные
0 1 2 0 0	Θ

С. Z-функция

2 секунды, 256 мегабайт

Постройте Z-функцию для заданной строки S.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения Z-функции строки s для индексов 2, 3, ..., |s|.

входные данные	
аааААА	
выходные данные	

входные данные	
abacaba	
выходные данные	
0 1 0 3 0 1	

D. Быстрый поиск подстроки в строке

2 секунды, 256 мегабайт

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Входные данные

Первая строка входного файла содержит p, вторая -t ($1 \le |p|$, $|t| \le 10^6$). Строки состоят из букв латинского алфавита.

Выходные данные

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

входные	данные			
aba abaCaba				
выходные	е данные			
2 1 5				

Е. Поиск периода

2 секунды, 256 мегабайт

Дана строка S. Требуется найти минимальную по длине строку t, такую что S представима в виде конкатенации одной или нескольких строк t.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите длину искомой строки t.

входные	данные
abcabcabc	
выходные	е данные
3	

входные данные	
abacaba	
выходные данные	
7	

F. Подстроки-3

2 секунды, 256 мегабайт

Даны K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Входные данные

В первой строке число K ($1 \le K \le 10$).

В следующих K строках — собственно K строк (длины строк от 1 до $10\,000$).

Выходные данные

Наибольшая общая подстрока.

BXOДНЫЕ ДАННЫЕ 3 abacaba mycabarchive acabistrue BЫХОДНЫЕ ДАННЫЕ

G. Множественный поиск

3 секунды, 1024 мегабайта

дая массив строк з; и строка г. тресуется для каждой строки з; определить, встречается ли опа в г как подстрока.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите «YES», если она встречается в t и «NO» в противном случае. Строки нумеруются в порядке появления во входном файле.

входные	данные
abc abcdr abcde xabcdef	
выходные	з данные
YES NO YES	

Н. Множественный поиск 2

3 секунды, 1024 мегабайта

Дан массив строк S_i и строка t. Требуется для каждой строки S_i определить, сколько раз она встречается в t как подстрока.

Входные данные

Первая строка входных данных содержит целое число n ($1 \le n \le 10^6$) — число элементов в s.

Следующие n строк содержат по одной строке s_i . Гарантируется, что сумма длин всех строк из s не превосходит 10^6 .

Последняя строка входных данных содержит строку t ($1 \le |t| \le 10^6$).

Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите количество её вхождений в строку t в том же порядке, что и во входных данных.

І. Множественный поиск 3

3 секунды, 1024 мегабайта

Дан массив строк S_i и строка t. Требуется для каждой строки S_i найти самое левое и самое правое вхождение в t как подстроки.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите два числа: индексы самой левой и самой правой позиции, в которых она встречается в t. Если строка не встречается в t ни разу, выведите -1 -1. Строки нумеруются в порядке появления во входном файле. Позиции нумеруются с 0.

входные	данные
3	
ab	
bcd abde abcdab	
abde	
abcdab	
выходные	данные
0 4	

J. Суффиксный массив

2 секунды, 512 мегабайт

Постройте суффиксный массив для заданной строки S, для каждых двух соседних суффиксов найдите длину максимального общего префикса.

Входные данные

Первая строка входного файла содержит строку s ($1 \le |s| \le 400\,000$). Строка состоит из строчных латинских букв.

Выходные данные

В первой строке выведите |s| различных чисел — номера первых символов суффиксов строки s так, чтобы соответствующие суффиксы были упорядочены в лексикографически возрастающем порядке. Во второй строке выведите |s| - 1 чисел — длины наибольших общих префиксов.

входные данные
ababb

выходные данные

1 3 5 2 4
2 0 1 1

К. Количество подстрок

2 секунды, 512 мегабайт

Вычислите количество различных подстрок строки S.

Входные данные

Единственная строка входного файла содержит строку s ($1 \le |s| \le 400\,000$). Строка состоит из строчных латинских букв.

Выходные данные

Выведите одно число — ответ на задачу.

входные данные
ababb
выходные данные
11

L. Циклические сдвиги

2 секунды, 512 мегабайт

k-м циклическим сдвигом строки S называется строка, полученная перестановкой k первых символов строки S в конец строки.

Рассмотрим все различные циклические сдвиги строки S и отсортируем их по возрастанию. Требуется вычислить i-ю строчку этого массива.

Например, для строки abacabac существует четыре различных циклических сдвига: нулевой (abacabac), первый (bacabaca), второй (acabacab) и третий (cabacaba). После сортировки по возрастанию получится такой массив: abacabac, acabacab, bacabaca, cabacaba.

Входные данные

В первой строке входного файла записана строка S, длиной не более $100\,000$ символов с ASCII-кодами от 32 до 126. Во второй строке содержится единственное целое число k ($1 \le k \le 100\,000$).

Выходные данные

В выходной файл выведите k-й по возрастанию циклический сдвиг строки S, или слово IMPOSSIBLE, если такого сдвига не существует.

входные данные abacabac 4 выходные данные cabacaba

BXOДНЫЕ ДАННЫЕ abacabac 5

выходные	ие данные	
TMPOSSTRIF		

М. Наибольшая общая подстрока

2 секунды, 512 мегабайт

Найдите наибольшую общую подстроку строк s и t.

Входные данные

Первая строка входного файла содержит строку s, вторая -t ($1 \le |s|, |t| \le 100, 000$). Строки состоят из строчных латинских букв.

Выходные данные

Выведите одну строку — наибольшую общую подстроку строк s и t. В случае, если ответ не единственный, выведите минимальный лексикографически.

входные данные	
bababb zabacabba	
выходные данные	
aba	

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0