

NOMBRES COMPLEXES

Le plan complexe est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

 z_1 et z_2 sont les racines de l'équation $4z^2 + (1+i)z + 1 + i\sqrt{3} = 0$ dans l'ensemble des nombres complexes.

- **1-** $|z_1 z_2| =$
 - **a**) 0,25.
 - **b**) 1.
 - **c**) 0,5.
 - d) aucune des trois réponses ci-dessus n'est correcte.
- **2-** Un argument de $z_1 + z_2$ est
 - a) $\frac{\pi}{4}$.
 - **b**) $-\frac{3\pi}{4}$.
 - **c**) $-\frac{3\pi}{16}$.
 - **d**) $\frac{3\pi}{4}$.
- **3-** $arg(z_1) =$
 - a) $\pi \arg(z_2)$.
 - **b)** $\frac{\pi}{6} \arg(z_2)$
 - **c)** $\arg(z_2) \frac{\pi}{3}$.
 - d) $\frac{\pi}{3}$ arg (z_2) .

4- Les racines de l'équation $4z^{-2} - (1+i)z + 1 + i\sqrt{3} = 0$ sont

- **a)** z_1 et z_2 .
- **b**) $\overline{z_1}$ et $\overline{z_2}$.
- c) $-\overline{z_1}$ et $-\overline{z_2}$.
- d) aucune des trois propositions ci-dessus n'est correcte.

- **5-** Le nombre $(1-i)^{14}$ est
 - a) est un réel pure.
 - b) est un imaginaire pure dont la partie imaginaire est positive.
 - c) est un imaginaire pure dont la partie imaginaire est négative .
 - d) aucune des trois propositions ci-dessus n'est correcte.
- **6** Soit θ un argument du nombre complexe $(1-\sqrt{3}i)^{12}+(4+3i)^9$.

Si
$$z = \frac{(1 - \sqrt{3}i)^{12} + (4 + 3i)^9}{(1 + \sqrt{3}i)^{12} + (4 - 3i)^9}$$
, alors:

- a) |z|=1 et 2θ est un argument de z.
- **b)** |z| = 0 et 2θ est un argument de z.
- c) |z| = 1 et 0 est un argument de z.
- d) aucune des trois propositions ci-dessus n'est correcte.

f est l'application qui , à tout point M d'affixe $z \neq 0$, associe le point M d'affixe $z' = \frac{4i}{\overline{z}}$.

- **7-** L'ensemble des points invariants par f est :
 - a) $\{I(0;2); J(0;-2)\}$.
 - **b**) l'ensemble des points du cercle de centre O et de rayon 2.
 - c) l'ensemble des points de l'axe des ordonnées.
 - d) l'ensemble vide.
- **8-** Les points M et M' sont tels que :
 - a) (OM) et (OM') sont perpendiculaires.
 - **b)** O, M et M' sont alignés.
 - c) M et M' appartiennent au cercle de centre O et de rayon 2.
 - **d)** M et M' appartiennent à l'axe $(O; \overrightarrow{v})$.

PROBABILITE

Le comité d'élèves d'un certain lycée est constitué de cinq filles et trois garçons . On choisit successivement deux membres du comité .

- 9- La probabilité que les membres choisis soient de même sexe est égale à :
 - **a**) $\frac{17}{32}$.
 - **b**) $\frac{13}{28}$.
 - **c**) $\frac{13}{14}$
 - **d**) $\frac{15}{32}$.
- 10- La probabilité que le second membre choisi soit une fille sachant que le premier est un garçon est égale à :
 - **a**) $\frac{5}{7}$.
 - **b**) $\frac{4}{7}$.
 - c) $\frac{15}{56}$.
 - **d**) $\frac{3}{7}$.
- 11- A et B sont deux événements de l'univers d'une certaine expérience aléatoire ,
 - Si $p(\overline{A}) = \frac{5}{8}$, $p(B) = \frac{1}{2}$ et $p(A \cap \overline{B}) = \frac{1}{4}$, alors $p(B/\overline{A})$ est égale à :
 - a) $\frac{3}{4}$.
 - **b**) $\frac{1}{4}$.
 - c) $\frac{3}{8}$.
 - **d**) $\frac{3}{5}$.

Une boite E contient 2 boules rouges , 1 boule blanche et 4 boules jaunes ; Une boite F contient 1 boule rouge , 2 boules blanches et 3 boules jaunes . On tire au hasard 2 boules de chaque boite .

- 12- La probabilité que les 4 boules soient de même couleur est égale à :
 - a) $\frac{1}{7}$.
 - **b**) $\frac{1}{35}$.
 - c) $\frac{2}{35}$.
 - **d**) 0,4.
- 13- La probabilité que 3 des 4 boules soient jaunes est égale à :
 - **a**) $\frac{5}{63}$.
 - **b**) $\frac{2}{7}$.
 - c) $\frac{1}{45}$.
 - d) aucune des trois propositions ci-dessus n'est correcte.

Deux équipes de basketball A et B vont jouer une série de trois parties telle que l'équipe qui gagne deux parties gagne la série .

On sait que , pour chaque partie , la probabilité que l'équipe A gagne est égale à $\frac{2}{3}$.

- **14-** La probabilité que l'équipe B gagnera la série est égale à :
 - **a**) $\frac{4}{27}$.
 - **b**) $\frac{1}{9}$.
 - **c**) $\frac{7}{27}$.
 - **d**) $\frac{4}{9}$.
- 15- Sachant que l'équipe A a gagné la série , la probabilité que l'équipe B a gagné la première partie est égale à :
 - **a**) $\frac{2}{7}$.
 - **b**) $\frac{1}{5}$.
 - **c**) $\frac{2}{7}$.
 - **d**) $\frac{2}{5}$.

EQUATIONS ET INEQUATIONS

16- L'ensemble des solutions de l'inéquation $\exp(\ell n(4-x^2)) \ge 1-2x$ est :

- a) [-1;3].
- **b)** $]-\infty$; $-1]\cup[3;+\infty[$.
- c)]-2;2[.
- **d**) [-1; 2[.

17- L'ensemble des solutions de l'inéquation $e^{\frac{1}{x}} > -e^{-\frac{1}{3}}$ est :

- **a**) *IR* .
- **b**) $IR \{0\}$.
- c) [-3;0[.
- **d**) [-3;0].

18- L'ensemble des solutions de l'équation $e^{4x} - e^{2x} = 2$ est :

- a) $\{-1; 2\}$.
- **b**) $\{\ell n 2\}$.
- **c)** $\{\ell n1\}.$
- $\mathbf{d)} \ \Big\{ \ell n \sqrt{2} \ \Big\}.$

19- L'ensemble des solutions de l'inéquation $\ell n(4-\sqrt{4-x}) < \ell n 2$ est :

- **a)** [-12; 4].
- **b**)]-12;4[.
- **c**)]-12;0[...
- d) aucune des trois propositions ci-dessus n'est correcte.

20- L'ensemble des solutions de l'inéquation $\ell n(x-1) + \ell n(x-3) \le 3\ell n2$ est :

- **a**)]3;5].
- **b**) [3;5[.
- c) $]3; +\infty[$.
- **d**) [-3; 5[.

FONCTIONS

Le plan est rapporté à un repère orthonormé direct $(O~;~\overrightarrow{i}~,~\overrightarrow{j}~)$

21- La fonction f définie sur IR par $f(x) = \begin{cases} 1 - e^{x-1} & \text{if } x \le 1 \\ -\ell nx & \text{if } x > 1 \end{cases}$ est:

- a) continue et non dérivable en 1.
- b) dérivable et non continue en 1.
- c) continue et dérivable en 1.
- d) ni continue ni dérivable en 1.

La fonction h est définie sur]0; $2[\cup]2$; $+\infty[$ par $h(x) = \frac{\ln x}{x-2}$.

22- $\lim_{x \to 0^+} h(x) = \ell_1$ et $\lim_{x \to +\infty} h(x) = \ell_2$ où :

- a) $\ell_1 = +\infty$ et $\ell_2 = -\infty$.
- **b)** $\ell_1 = -\infty$ et $\ell_2 = 0$.
- c) $\ell_1 = -\infty$ et $\ell_2 = -\infty$.
- **d)** $\ell_1 = +\infty$ et $\ell_2 = 0$.

23- $\lim_{x \to 2^{-}} h(x) = L_1$ et $\lim_{x \to 2^{+}} h(x) = L_2$ où :

- a) $L_1 = -\infty$ et $L_2 = -\infty$.
- **b)** $L_1 = -\infty$ et $L_2 = +\infty$.
- c) $L_1 = -\infty$ et $L_2 = 0$.
- **d**) $L_1 = 0$ et $L_2 = +\infty$.

La fonction g **est définie sur**]0; $+\infty[$ **par** $g(x) = x^2 \left(\frac{3}{2} - \ell n x\right)$.

La courbe représentative (C) de g coupe l'axe des abscisses en un point A.

24- La tangente à (C) en A coupe l'axe des ordonnées au point d'ordonnée :

- a) $-e\sqrt{e}$.
- **b**) $e\sqrt{e}$.
- **c**) e^3 .
- $\mathbf{d)} \ e^2 \ .$

25- La tangente à (C) au point d'inflexion coupe l'axe des abscisses au point d'abscisse :

- **a**) $\frac{1}{4}$.
- **b**) -2.
- c) $\frac{7}{4}$.
- **d**) 1.

La fonction f est définie sur IR par $f(x) = (x+1)e^{-x}$. Soit (γ) la courbe représentative de f.

26- La tangente à (γ) au point d'abscisse α coupe l'axe des ordonnées au point d'ordonnée $\beta = :$

- **a)** $(\alpha^2 + 1)e^{-\alpha}$.
- **b**) $\alpha^2 e^{-\alpha}$.
- c) $(\alpha^2 + \alpha + 1)e^{-\alpha}$
- **d**) $\alpha^2 e^{-\alpha}$.

27- Soit S(m) la mesure , en unités d'aire , de l'aire du domaine limité par (γ) , les deux axes de coordonnées et la droite d'équation x=m où m>0 ; $\ell im\ S(m)=$

- **a**) *e* .
- **b**) 1.
- **c**) e+1.
- **d**) 2.

La fonction F est définie sur]0; $+\infty[$ par $F(x) = x \ln x - \ln x$. Soit (L) la courbe représentative de F.

28- Le signe de F(x) est tel que :

- a) F(x) < 0 dans]0; 1[et F(x) > 0 dans $]1; +\infty[$.
- **b)** Pour tout x dans $]0; +\infty[, F(x) \ge 0]$.
- c) F(x) > 0 dans]0; 1[et F(x) < 0 dans $]1; +\infty[$.
- **d**) Pour tout x dans $]0; +\infty[, F(x) \le 0]$.

29- La droite d'équation y = 2x - 2 coupe (L) aux points d'abscisses respectives :

- **a)** 1 et e^2 .
- **b**) 2 et d = e.
- **c**) 1 et *e* .
- **d**) \sqrt{e} et 1.

30- La courbe (L):

- a) n'a aucun point commun avec l'axe des abscisses .
- **b)** coupe l'axe des abscisses aux points d'abscisses 0 et 1.
- c) est tangente à l'axe des abscisses au point d'abscisse 1.
- ${f d}$) est tangente à l'axe des abscisses au point d'abscisse e .

31-
$$\int_{0}^{\ln 2} \frac{e^x}{e^x - 3} dx$$
 est égale à :

- a) $\ell n2$.
- **b)** $-\ell n2$.
- c) -1,5.
- **d)** aucune des trois propositions ci-dessus n'est correcte.

32-
$$\int_{1}^{1} \left(2x + \frac{x+1}{x^2 + 2x + 3}\right) dx$$
 est égale à :

- **a)** $2 + \ell n \sqrt{3}$.
- **b)** $\ell n3$.
- c) $\ell n \sqrt{3}$.
- **d)** $2 + \ell n 3$.

33-
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \tan^9 x \ dx \text{ est égale à :}$$

$$-\frac{\pi}{3}$$
a) 0.

- **b**) $2(\sqrt{3})^{10}$.
- **c)** $0.2(\sqrt{3})^{10}$.
- **d)** aucune des trois propositions ci-dessus n'est correcte.

34-
$$f$$
 est la fonction continue définie sur IR par $f(x) = \begin{cases} 2x-2 & \text{if } x < 1 \\ \ell n x & \text{if } x \ge 1 \end{cases}$; $\int_{-2}^{e} f(x) dx$ est égale à :

- **a**) 8.
- **b**) -8.
- c) -10.
- **d)** aucune des trois propositions ci-dessus n'est correcte.

35- La fonction
$$g$$
 est définie sur $]-\infty$; $0[$ par $g(x)=\ell n(-x)$. Une primitive G de g est définie sur $]-\infty$; $0[$ par $G(x)=$:

- a) $x \ell n(-x) + x$.
- **b)** $-x \ln(-x) + x$.
- c) $-x \ln(-x) x$.
- **d)** $x \ell n(-x) x$.

TRANSFORMATIONS

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v).

Dans la figure , ABCD et EFBA sont deux carrés directs . Soit T la translation de vecteur \overrightarrow{CD} et S la similitude de centre A , de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{A}$.

36- les points $T \circ S(B)$ et $S \circ T(B)$ sont tels que :

a)
$$T \circ S(B) = D$$
 et $S \circ T(B) = D$.

b)
$$T \circ S(B) = A$$
 et $S \circ T(B) = A$.

c)
$$T \circ S(B) = D$$
 et $S \circ T(B) = A$.

d) aucune des trois propositions ci-dessus n'est correcte.

37- les points $T \circ S(E)$ et $S \circ T(F)$ sont tels que :

a)
$$T \circ S(E) = E$$
 et $S \circ T(F) = C$.

b)
$$T \circ S(E) = B$$
 et $S \circ T(F) = F$.

c)
$$T \circ S(E) = F$$
 et $S \circ T(F) = E$.

d)
$$T \circ S(E) = E$$
 et $S \circ T(F) = F$.

38- Le rapport k et l'angle α de la similitude $T \circ S$ sont :

a)
$$k = \frac{1}{\sqrt{2}}$$
 et $\alpha = \frac{\pi}{4}$.

b)
$$k = \sqrt{2}$$
 et $\alpha = \frac{\pi}{4}$.

c)
$$k = 2$$
 et $\alpha = -\frac{\pi}{4}$.

d) aucune des trois propositions ci-dessus n'est correcte.

g est la transformation définie par sa relation complexe $z'=(1-\sqrt{3}\,i)\,z\,+3i$.

39- L'image par g d'un cercle de rayon $\sqrt{2}$ est un cercle d'aire :

- a) 2π unités d'aire.
- **b)** 4π unités d'aire.
- c) 8π unités d'aire.
- d) $4\sqrt{2} \pi$ unités d'aire.

40- Si $f = g \circ g \circ g$, alors f est:

- a) La symétrie centrale de centre $G(0; \sqrt{3})$.
- **b**) la similitude de centre $L(-\sqrt{3};0)$, de rapport 2 et d'angle $-\frac{\pi}{2}$.
- c) la similitude de centre $I(\sqrt{3}; 0)$, de rapport 8 et d'angle $-\frac{\pi}{3}$
- **d**) l'homothétie de centre $J(\sqrt{3}; 0)$ et de rapport -8.

TEST 1 Grille de

correction

Question	Réponse	Question	Réponse
1	С	21	c
2	b	22	d
3	d	23	b
4	С	24	c
5	b	25	a
6	a	26	c
7	d	27	d
8	a	28	b
9	b	29	a
10	a	30	c
11	d	31	b
12	С	32	c
13	b	33	a
14	c	34	b
15	b	35	d
16	d	36	c
17	b	37	d
18	d	 38	b
19	С	39	С
20	a	40	d

UNIVERSITE LIBANAISE FACULTE DE GENIE

Interprétation graphique

On donne ci - dessous la courbe (C) représentant , dans un repère orthonormé , une fonction f définie sur R^* ainsi que la tangente à (C) au point d'abscisse 1 .

- **1-** Pour tout réel a, l'équation f(x) = a:
 - a. admet deux solutions opposées.
 - b. admet deux solutions de même signe.
 - c. admet deux solutions de signes opposés.
 - **d.** aucune des trois propositions ci-dessus n'est correcte.

- **2-** Le nombre de solutions de l'équation f'(x) = 1 est :
 - **a.** 0.
 - **b.** 1.
 - **c.** 2.
 - **d.** 3.
- **3-** Le nombre de solutions de l'équation f'(x) = 2 est :
 - **a.** 0.
 - **b.** 1.
 - **c.** 2.
 - **d.** 3.

Soit g la fonction telle que $g(x) = \ell n(f(x))$.

- **4-** La fonction g est définie sur :
 - **a.** R^* .
 - **b.** $]-1;+\infty[$.
 - **c.** $]-1;0[\cup]1;+\infty[$.
 - **d.** $]0; +\infty[$.
- 5- $\int_{7}^{3} g'(x) dx$ est:
 - a. nulle.
 - **b.** strictement négative.
 - **c.** strictement positive.
 - **d.** aucune des trois propositions ci-dessus n'est correcte.

Suites numériques

6- On considère une suite (U_n) , définie sur N , dont aucun des termes n'est nul .

Soit (V_n) la suite telle que, pour tout n, $V_n = -\frac{2}{U_n}$.

- **a.** Si (U_n) est convergente, alors (V_n) est convergente.
- **b.** Si (U_n) est minorée par 2, alors (V_n) est minorée par -1.
- **c.** Si (U_n) est décroissante, alors (V_n) est croissante.
- **d.** Si (U_n) est divergente, alors (V_n) converge vers 0.
- 7- $\lim_{n \to +\infty} \frac{3^n 2^n}{9^n 4^n} = :$
 - a. n'existe pas.
 - **b.** $+\infty$.
 - **c.** 0.
 - d. $\frac{1}{3}$.
- 8- On considère une suite (U_n) de 1^{er} terme $U_0=1$ telle que , pour tout n , $U_{n+1}=\frac{1}{3}U_n+n-2$.

Soit (V_n) la suite telle que , pour tout n , $V_n = -2U_n + 3n - \frac{21}{2}$

- **a.** $U_2 = -\frac{5}{3}$
- **b.** (V_n) est géométrique de raison $-\frac{1}{3}$.
- **c.** (V_n) est arithmétique de raison -2.
- **d.** aucune des trois propositions ci-dessus n'est exacte.
- **9-** Un algorithme qui permet de trouver au bout de combien de jours une population de 2000 bactéries qui augmente de 5% par jour, dépassera 3000 bactéries.

a) $N \leftarrow 2000$	b) <i>N</i> ← 2000	c) <i>N</i> ← 2000	d) aucune des réponses
$J \leftarrow 0$ tant que $N > 3000$ $N \leftarrow N + 0.05N$	$J \leftarrow 0$ tant que $N \le 3000$ $N \leftarrow N + 0.05N$	$J \leftarrow 0$ tant que $N \le 3000$ $N \leftarrow 1,05N$	précédentes n'est juste.
$J \leftarrow J + 1$	$J \leftarrow J + 1$	$J \leftarrow J + 1$	
FIN tant que Afficher J	Afficher J Fin tant que	FIN tant que Afficher J	

- 10- La suite (U_n) de premier terme $U_0=1$ telle que , pour tout naturel n , $U_{n+1}=\frac{U_n}{\sqrt{U_n^2+1}}$ est :
 - a. croissante.
 - **b.** convergente vers 0.
 - **c.** divergente.
 - **d.** convergente vers 1.

Equations et inéquations

11- Le système
$$\begin{cases} e^{x} = \frac{1}{e^{y-1}} \\ e^{y} = e^{x-2} \end{cases}$$
:

- **a.** admet comme solution le couple $\left(-\frac{1}{2}; \frac{3}{2}\right)$.
- **b.** admet comme solution le couple $\left(\frac{3}{2}; -\frac{1}{2}\right)$.
- c. est impossible.
- d. admet une infinité de couples solutions ..

12- L'équation
$$e^{\ln x} + e^{-\ln 5} = 1$$
 :

- **a.** admet comme solution x = 5
- **b.** admet comme solution $x = \frac{1}{5}$
- **c.** admet comme solution x = 6
- **d.** aucune des trois solutions ci-dessus n'est correcte.

13- L'ensemble des solutions de l'inéquation
$$e^{2x} + \frac{1}{e^{-x}} - 2 > 0$$
 est :

- **a.** $]-\infty;0]$.
- **b.** $[1; +\infty[$.
- **c.** $]0; +\infty[$.
- d. aucune des réponses ci-dessus n'est correcte.

14- L'ensemble des solutions de l'équation
$$\ell n(x+1) + \ell n(x-1) \le 4 \ell n + 2 \ell n = 0$$
 est :

- **a.** [1; 7].
- **b.**]1;7].
- **c.** [-7; 7].
- **d.** $[7; +\infty[$.

15- L'ensemble des solutions de l'équation
$$(\ln x)^2 - 3\ln x - 4 = 0$$
 est :

- **a.** $\{e^{-1}; 4\}$. **b.** $\{e; 4\}$.
- **c.** $\{e^{-1}; e^{4}\}.$ **d.** $\{-1; 4\}.$

Fonction logarithme népérien

16- Soit C la courbe représentant la fonction f définie sur R par $f(x) = ax + b + \frac{\ln x}{x}$.

Le point A(1; 0) appartient à C et la tangente en A à C est parallèle à la droite d'équation y = 3x + 2 si et seulement si :

- **a.** a = 1 et b = 2.
- **b.** a = 3 et b = -3.
- **c.** a = 2 et b = 1.
- d. aucune des réponses ci-dessus n'est correcte.
- 17- La fonction g est définie sur $]-\infty$; 0[par $g(x) = \ell n(-x)$.

Une primitive de g est la fonction G définie sur $]-\infty$; 0[par :

- **a.** $G(x) = x \ln(-x) + x$.
- **b.** $G(x) = -x \ln(-x) + x$.
- **c.** $G(x) x \ln(-x) x$.
- **d.** $G(x) = x \ln(-x) x$.
- $18- \lim_{x \to +\infty} \ln \left(\frac{2x+1}{x^2+x+1} \right) =$
 - $\mathbf{a} \cdot -\infty$.
 - **b.** $+\infty$.
 - **c.** 0 .
 - **d.** 2.
- 19- La fonction h définie sur $]1; +\infty[$ par $h(x) = \sqrt{\ell n x}$ admet comme fonction dérivée h' telle que :
 - **a.** $h'(x) = \frac{1}{x}$.
 - **b.** $h'(x) = \frac{1}{2x\sqrt{\ell n x}}.$
 - $\mathbf{c.} \ h'(x) = \frac{1}{2x} \sqrt{\ell n x} \ .$
 - $\mathbf{d.} \ h'(x) = \frac{1}{x\sqrt{\ell n x}} \ .$
- $20- \lim_{x \to +\infty} \frac{x \ln x}{x} = :$
 - **a.** 0.
 - **b.** $+\infty$.
 - **c.** 1.
 - d. aucune des réponses ci-dessus n'est exacte.

Fonction exponentielle

21- La fonction f est définie sur R par $f(x) = ax + b + xe^{x}$.

Soit $\,C\,$ la courbe représentant $\,f\,$ dans un repère orthonormé .

Le point A(0; 2) appartient à C et la tangente en A à C coupe l'axe des abscisses au point d'abscisse 2 si et seulement si :

- **a.** a = 2 et b = -2.
- **b.** a = b = -2.
- **c.** a = -2 et b = 2..
- d. aucune des réponses ci-dessus n'est juste.
- 22- $\lim_{x \to +\infty} \ell n \left(\frac{e^x + e^{2x} + 1}{e^x + 2} \right) = :$
 - **a.** 0.
 - **b.** 1.
 - \mathbf{c} . $+\infty$.
 - **d.** $\ell n2$.
- **23-** La fonction g est définie sur R par $g(x) = xe^x$.

Une primitive de g est la fonction G telle que :

- **a.** $G(x) = e^x$.
- **b.** $G(x) = (x+1)e^x$.
- **c.** $G(x) = (-x+1)e^x$.
- d. aucune des réponses ci-dessus n'est exacte.
- **24-** La fonction h est définie sur \mathbf{R}^* par $h(x) = \frac{1 e^{-x}}{x}$.

La dérivée h' de h est telle que h'(x) = :

- **a.** xe^{-x} .
- **b.** $\frac{xe^{-x}-1}{x^2}$.
- **c.** $\frac{1-(x-1)e^{-x}}{x^2}$.
- **d.** $\frac{(x+1)e^{-x}-1}{x^2}$.
- **25-** L'ensemble des solutions de l'inéquation $e^{\ln(\sqrt{2-x}-1)} < 2$ est :
 - **a.** $]-\infty$; 1[.
 - **b.** $]-\infty$; 2].
 - **c.**]-7;1[.
 - d. aucune des réponses ci-dessus n'est correcte.

Géométrie dans l'espace

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$.

26- Les vecteurs \overrightarrow{u} (4; m; 6), \overrightarrow{v} (1; 2; 3) et \overrightarrow{w} (7; 8; 9) sont coplanaires si et seulement si m = :

- **a.** 5.
- **b.** -5.
- **c.** 3.
- **d.** -3.

27- Soit les points A(3;1;-1), B(1;2;-2) et C(4;2;1).

Une équation du plan déterminé par ces points est :

- **a.** x + y z + 5 = 0
- **b.** x + y + z 5 = 0.
- **c.** x + y z 5 = 0.
- **d.** 2x+2y-z+3=0.

28- Soient les droites (d_1) et (d_2) de représentations paramétriques .

$$(d_1): \begin{cases} x=2+t \\ y=1-t \quad \text{où} \quad t \in IR \end{cases} \quad ; \quad (d_2): \begin{cases} x=3+3m \\ y=5+2m \quad \text{où} \quad m \in IR \end{cases} \quad .$$

Les droites (d_1) et (d_2) sont :

- a. parallèles et distinctes .
- **b.** confondues.
- c. sécantes.
- d. non coplanaires.

29- Soient (P_1) et (P_2) les plans d'équations respectives 2x - y + 5 = 0 et 3x + y - z = 0.

La droite
$$(\Delta) = (P_1) \cap (P_2)$$
 est :

- **a.** parallèle au plan d'équation 3x + y + 2z = 0
- **b.** parallèle au plan d'équation 5x 5y + z = 0
- **c.** perpendiculaire au plan d'équation 3x + y + 2z = 0
- **d.** perpendiculaire au plan d'équation 5x 5y + z = 0.

30- Soient les points E(2;1;0) et F(-1;4;2).

Une équation du plan médiateur de [EF] est :

- **a.** 3x 3y + 2z 18 = 0
- **b.** 3x-3y-2z+8=0.
- **c.** x + 5y + 2z = 0.
- d. aucune des réponses ci-dessus n'est correcte.

Equations différentielles

31- Une solution de l'équation différentielle y'=3y-15 est :

a.
$$y = e^{-3x} + 5$$

b.
$$y = e^{3x} - 5$$

c.
$$y = e^{3x}$$

d.
$$y = e^{3x} + 5$$

32- Les solutions sur IR de l'équation différentielle 3y'=y sont les fonctions f définies par :

a.
$$f(x) = Ce^{3x}$$
, où $C \in IR$.

b.
$$f(x) = Ce^{-\frac{3}{2}x}$$
, où $C \in IR$.

c.
$$f(x) = Ce^{-3x}$$
, où $C \in IR$.

- d. aucune des réponses ci-dessus n'est correcte.
- 33- Considère l'équation différentielle $y'+2y=6xe^{-2x}$.

Soit z la fonction telle que $z = y - 3x^2e^{-2x}$.

z est la solution de l'équation différentielle :

a.
$$z'+2z=0$$

b.
$$z'-2z = 0$$

c.
$$z'+z = 6e^{-2x}$$

- d. aucune des réponses ci-dessus n'est correcte.
- **34-** Si f est une solution de l'équation différentielle y'+y=4x, alors :

a.
$$f(0) = f'(0)$$
.

b.
$$f(0) + f'(0) = 0$$
.

c.
$$f'(1) = 2 + f(1)$$
.

- d. aucune des réponses ci-dessus n'est correcte.
- 35- Soit l'équation différentielle 3y'+y=0.

Soit h la solution de cette équation dont la courbe représentative (C) passe par le point $M(0\,;\,2)$.

Une équation de la tangente en M à (C) est :

a.
$$y = -\frac{1}{3}x + 1$$

b.
$$y = -\frac{2}{3}x + 2$$

c.
$$y = 2x + \frac{1}{3}$$

d. aucune des réponses ci-dessus n'est correcte.

Probabilité

Une urne contient 3 boules vertes , 5 boules jaunes et 2 boules rouges indiscernables au toucher . On tire $\underline{\text{successivement et sans remise}}$ 3 boules de cette urne .

36- La probabilité que la première boule soit rouge et la troisième verte est égale à :

- **a.** $\frac{1}{21}$.
- **b.** $\frac{2}{21}$.
- c. $\frac{1}{15}$.
- **d.** $\frac{4}{15}$.

37- La probabilité que la première boule soit rouge ou la troisième verte est égale à :

- **a.** $\frac{13}{30}$.
- **b.** $\frac{1}{2}$.
- c. $\frac{17}{30}$.
- **d.** $\frac{3}{10}$.

38- La probabilité que les trois boules soient de couleurs différentes est égale à :

- **a.** $\frac{1}{24}$.
- **b.** $\frac{1}{4}$.
- **c.** $\frac{1}{3}$

d. aucune des réponses ci-dessus n'est correcte.

On tire <u>simultanément</u> 3 boules de la même urne .

39- La probabilité que les trois boules soient de même couleur est égale à :

- **a.** $\frac{11}{30}$.
- **b.** $\frac{11}{120}$.
- c. $\frac{11}{24}$.

d. aucune des réponses ci-dessus n'est correcte.

- **40-** La probabilité que les trois boules soient de couleurs différentes est égale à :
 - **a.** $\frac{1}{2}$.
 - **b.** $\frac{1}{3}$
 - c. $\frac{1}{4}$.
 - d. aucune des réponses ci-dessus n'est correcte.

Primitives convexité continuité

41- La fonction f définie sur R par $f(x) = \begin{cases} 3+x & si \ x \le -1 \\ x^2+x & si \ x > -1 \end{cases}$ est:

- **a.** continue en -1.
- **b.** dérivable en -1.
- **c.** continue et non dérivable en -1.
- d. aucune des réponses ci-dessus n'est correcte.

42- La fonction g est définie sur $]1; +\infty[$ par $g(x) = \frac{1}{x(\ln x)^2}$.

Une primitive de g est la fonction G définie sur $]1; +\infty[$ par G(x) = :

- **a.** $-\ell n x$.
- **b.** $(\ln x)^3$.
- **c.** $\frac{1}{3}(\ln x)^3$.
- $\mathbf{d.} \ \frac{-1}{\ell n \, x} \ .$

43- La fonction *h* définie sur]0; $+\infty[$ par $h(x) = e^x - \sqrt{x}$ est :

- **a.** concave sur $]0; +\infty[$.
- **b.** convexe sur $]0; +\infty[$.
- **c.** concave sur]0;1] et convexe sur $[1;+\infty[$.
- **d.** ni convexe ni concave sur $]0; +\infty[$.

44- La fonction p est définie sur R par $p(x) = xe^{-2x}$.

La dérivée seconde de p est la fonction p " définie sur R par p" (x) = x

- **a.** $(1-2x)e^{-2x}$.
- **b.** $4(x-1)e^{-2x}$.
- c. $4e^{-2x}$.
- **d.** $(x+2)e^{-2x}$.

45- On donne ci -contre le tableau de variations d'une fonction g continue et dérivable sur R. Soit f la fonction définie sur R par

$$f(x) = -g(x)e^{-x}.$$

- **a.** f est décroissante sur $]-\infty$; 0] et croissante sur $[0;+\infty[$...
- **b.** f est croissante sur $]-\infty$; 0] et décroissante sur $[0; +\infty[$.
- **c.** f est croissante sur $]-\infty$; 0] et son sens de variation sur $[0; +\infty[$ ne peut pas être déterminé.
- **d.** f est croissante sur $]-\infty$; -1], décroissante sur $[0; +\infty[$ et son sens de variation sur]-1; 0[ne peut pas être déterminé.

Solution

TEST 1 (Programme français)

Grille de correction

Question	Réponse	Question	Réponse
1	С	26	Α
2	Α	27	С
3	С	28	С
4	С	29	D
5	В	30	В
6	В	31	D
7	С	32	D
8	В	33	Α
9	С	34	В
10	В	35	В
11	В	36	С
12	D	37	Α
13	С	38	В
14	В	39	В
15	С	40	С
16	D	41	D
17	D	42	D
18	Α	43	В
19	В	44	В
20	С	45	D
21	С		
22	С		
23	D		
24	D		
25	D		