Chapter 1

拜伦:第一个给计算机写程序的人;图灵:人工智能之父、计算机科学之父、**计算机之父**;拜伦:现代

计算机之父、博弈论之父; 巴贝奇: 差分机、分析机; 丘奇: 可计算理论

关系: $R \subset A \times B$; 等价关系: 自反、传递、对称

半群: (S,*), 其中*是满足结合律的二元运算. 若*还满足交换律,则为交换半群

同构: (S,*)和 (T,\circ) 是半群,若 $f:S\to T$ 是双射且 $f(a*b)=f(a)\circ f(b)$, $\forall a,b\in S$

• 同构四步骤: 选f使得Dom(f)=S,f单,f满, $f(a*b)=f(a)\circ f(b)$

通路(边顺次相连)、路径(无重复边)、简单路径(无重复点)、树高(从0层开始)字符串前缀后缀包括空串

例:
$$w^{n} = \underbrace{ww\cdots w}_{n}$$
例:
$$(abba)^{2} = abbaabba$$
规定:
$$w^{0} = \varepsilon$$

 $|\{\epsilon\}|=1, \ |\epsilon|=0$

语言
$$L$$
 - "+" 闭包:
$$L^+ = L^1 \cup L^2 \cup \cdots$$
$$= L^* - \{\varepsilon\}$$
 例:
$$\{a,bb\}^+ = \begin{cases} a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{cases}$$

Chapter 2

确定有限自动机的定义

确定有限自动机 **DFA** (deterministic finite automata) 是五元组 $A = (Q, \Sigma, \delta, q_0, F)$.

 $q_0 \in Q, F \subseteq Q$ $\delta: Q \times \Sigma \rightarrow Q$

扩展转移函数 $\delta*$

 $\delta^* : Q \times \Sigma^* \to Q$

递归定义

基础: $\delta*(q,\varepsilon)=q$

递归: $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$

M接受的语言: $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\in F\}$

$L(M) = \{ awa \mid w \in \{a, b\}^* \}$

Chapter 3

w被NFA接受:存在一条路径接受w

w被NFA拒绝: NFA中不存在接受w的路径(对于每个路径,要么字符串输完不在终态,要么无法输完)

NFA的定义

非确定有限自动机是五元组 $A = (Q, \Sigma \cup \{\varepsilon\}, \delta, q_o, F)$

有限状态集 ——— 输入符号集 ——— 转移函数

开始状态

终态集合

 $q_0 \in \mathbb{Q}$ 与 DFA 有三处不同 δ : $\mathbb{Q} \times \Sigma \cup \{\varepsilon\} \to 2^{\mathbb{Q}}$

注意与DFA不同点: ϵ 也可以作为输入、 $\delta: Q \times \Sigma \cup \{\epsilon\} \to 2^Q$ 映射到状态的**幂集**

	0	1
$\rightarrow p$	$\{q\}$	Ø
q	$\{q\}$	$\{q,r\}$
* 1	Ø	Ø

状态转移是集合↑

ε-闭包

- 状态 q 的 ϵ -闭包是 q(包括q自身) 的 ϵ 路径到达 的所有状态,记为EC(q)。
- 归纳定义:设 NFA $A = (Q, \Sigma, \delta, q_0, F), q \in Q$, EC(q) 满足如下条件:
 - (1) $q \in EC(q)$
 - (2) 若 $p \in EC(q)$ 且 $r \in \delta(p, \epsilon)$, 则 $r \in EC(q)$
- 集合S的ε-闭包EC(S)定义为: $EC(S) = \bigcup_{g \in S} EC(g)$

扩展转移函数(老麻烦了): 与DFA相比,函数映射到一个集合

$$\delta^*(1,b) = \{3,4,5,6,7\}$$

$$\delta^*(1,bb)=\{4\}$$

$$\delta^*(1,ba) = \{3,4,5,6,7\}$$

$$M = (Q, \Sigma, \delta, q_0, F)$$

接受的语言是:

$$L(M) = \{ w \in \Sigma^* \mid \mathcal{S}^* (q_0, w) \cap F \neq \emptyset \}$$

Chapter 4

单一终态的NFA: 任何NFA都等价于一个只有一个终态的NFA (将所有终态用 ϵ 转移到一个状态)

正则语言的封闭性:

反转:反转所有迁移,初态→终态(只有一个兴态) 补:转让为DEA,惟终态→经态

支: LOLS = TIUIS

补要用DFA,原因是NFA一些因为没有合适转移的串在补的NFA里也没有合适转移;因此要用有明确转移 的DFA

正则表示的定义: **三个基础、四个归纳形式**(基础不要忘了Ø)

运算符优先级: *、 ·、 +

正则表示的语言定义:对语言从上面三个基础、四个归纳形式来定义

没有两个连续0的字符串: $(1+01)*(0+\epsilon)$

01交替的字符串: $(0+\epsilon)(10)*(1+\epsilon)$

证明正则表示语言=正则语言: 前推后从正则表示定义和正则语言封闭性, 反推用状态消去构造

 $r=r_1^*r_2(r_4+r_3r_1^*r_2)^*$

正则语言的同态: $h:\Sigma o T^*$ 拓展为 $h(w)=h(w_1)\cdots h(w_n)$ ($w=w_1\cdots w_n$)

逆同态 (映射到字符串集合) $:h^{-1}(L)=\{w|w\in\Sigma^*\wedge h(w)\in L\}$

定理1: 若L是正则语言,则h(L)也是正则语言

定理2: 若L是正则语言,则h-1(L)也是正则语言

正则表示:连接运算的单位元是 ϵ ,零元是 \varnothing ;并运算单位元是 \varnothing

Chapter 5

文法的定义

文法 G=(V, T, S, P)

V: 变量的集合

T: 终结符的集合

5: 开始变量

P: 产生式的集合

句子/句型

推导闭包⇒

$$L(G) = \{w|S \overset{*}{\Rightarrow} w, w \in T^*\}$$

线性文法:产生式右侧最多一个变量,要么没变量,剩下的均是终结符串

右线性文法:产生式右侧要么没变量,有变量则至多一个且在最右侧

正则文法 (3型文法): 左线性文法或右线性文法 (二者只能出现一个)

NFA转化为右线性文法易错点:

积自动机,注意是DFA,语言是两个语言的并

积自动机

给定DFA

$$A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$$

$$B = (Q_B, \Sigma, \delta_B, q_{0B}, F_B)$$

称自动机:

$$M = (Q_A \times Q_B, \Sigma, \delta, (q_{0A}, q_{0B}), F_A \times F_B)$$

为A和B的积,或称M为积自动机,记为 $M = A \times B$ 。 其中状态转移函数 δ 为

$$\mathcal{S}\left((\boldsymbol{q}_{\scriptscriptstyle{A}},\boldsymbol{q}_{\scriptscriptstyle{B}}),\boldsymbol{a}\right)\!=\!\left(\mathcal{S}_{\scriptscriptstyle{A}}(\boldsymbol{q}_{\scriptscriptstyle{A}},\boldsymbol{a}),\mathcal{S}_{\scriptscriptstyle{B}}(\boldsymbol{q}_{\scriptscriptstyle{B}},\boldsymbol{a})\right)$$

注意F、S、 δ

Chapter 6

判定算法:

• w是否能被接受: DFA O(n) / NFA O(ns²) / 正则表达式转化为NFA

• 正则语言是否为空: DFA O(S) / 正则表达式 O(n)(符号数)

• 判断两个正则语言是否相等:转化为DFA,两个DFA并起来,用填表法看两个初态是否可区分O(n²)

• 正则语言是否无限: DFA初态到终态是否存在环

泵引理:

 $(orall m)(\exists w)(w \in L \wedge |w| \geq m \wedge (orall x,y,z)(\exists k)(xyz = w \wedge |xy| \leq m \wedge y \neq \epsilon \rightarrow xy^kz
otin L))$

注意k的选取可以与m,w,x,y,z有关,一般常用m、|y|

泵引理不是充分条件, 而是必要条件

Chapter 7

DFA状态集等价关系: $p,q\in Q,pRq$ iff $\delta^*(p,w)\in F\Leftrightarrow \delta^*(q,w), \forall w$

填表算法:基础是p终态、q非终态标记可区别;归纳定义状态r、s通过某个符号a转移到可区别的两个状态,则r、s可区别

最优的DFA: 用填表法计算出等价类后进行划分; 可以反证状态数比M少的自动机来证明最优

归约: $v + d \Rightarrow E + d \Rightarrow EOd \Rightarrow EOE \Rightarrow E$, 推导 $E \Rightarrow v + d$

最左推导,最右推导:每次都替换最左/右侧的非终结符

左句型: $S \stackrel{*}{\Longrightarrow} \alpha$

语法分析树:内部节点非终结符、**叶节点为终结符或非终结符**,如果叶节点*e*则为父节点唯一子节点

设 CFG G = (V, T, S, P). 以下命题是相互等价的:

- (1) 字符串 $w \in T^*$ 可以归约到非终结符A;
- (2) $A \stackrel{*}{\Rightarrow} w$;
- (3) $A \stackrel{*}{\Longrightarrow} W$;
- (4) $A \stackrel{*}{\Rightarrow} w$;
- (5) 存在一棵根结点为 A 的分析树 , 其产物为 w.

证明某语言是某文法的语言:要正反两方面说包含关系

Chapter 8

文法二义性: **存在某字符串**有至少两种最左(或最右)推导⇔存在两棵不同的分析树

一个CFG是否为二义的问题是不可判定的

二义性消除

采用左结合方法将右上图的文法变换为左下图,串:

v + v + d存在唯一的分析树(右下图)

 $E \rightarrow E A T | T$ $T \rightarrow T M F | F$ $F \rightarrow (E) | v | d$ $A \rightarrow +$ $M \rightarrow *$

 $E \rightarrow E A E \mid T$ $T \rightarrow T M T \mid (E) \mid v \mid d$ $A \rightarrow +$ $M \rightarrow *$

二义性消除

悬挂else二义性

 $S \rightarrow \varepsilon | iS | iS \in S$

采用最近嵌套方法消除悬挂 else 二义性

将文法变换为下面的文法

$$S \rightarrow \varepsilon | i S | i M e S$$

 $M \rightarrow \varepsilon | i M e M$

串 i i e 存在唯一的 分析树(右图) i M e S E

固有二义: CFL的所有文法均是二义的 (不存在无二义文法)

题目: $n_0 = n_1$

CFG构造实例

方法3:

另一种解决例3的方法. CFG 如下所示:

 $S \to 0B \mid 1A \mid \varepsilon$, $B \to 1S \mid 0BB$, $A \to 0S \mid 1AA$ 对于任**意**字符串 w , 有三种情况:

- (a) w中0的数量和1的数量相等,通过S生成;
- (b) w 中 0 的数量比 1 的数量多一个,通过 A 生成;
- (c) w 中 0 的数量比 1 的数量少一个,通过 B 生成。

CFG构造实例

方法4:

文法 G:

 $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \varepsilon$

Chapter 9

栈可以为空(可以把栈底符号弹出来),但空栈以后就不可以转移了

转移时可以有 $\epsilon,\epsilon
ightarrow \epsilon$

PDA是非确定的, 转移的是一个集合

PDA形式化定义

 Σ 和 Γ 不一定无交

终态型PDA接受字符串: 所有字符串输入完毕且落在一个终态上

PDA 例 2

PDA 接受串

输入串aaabbb会被下面的NPDA接受。

一般地,该NPDA所接受的语言是:

$$L = \{a^n b^n \mid n \ge 0\}$$

2022/4/19

School of Software

PDA 例 4

设计接受如下语言的PDA:

$$L(M) = \{a^{m-1}b^m \mid m \ge 1\}$$

2022/4/19

School of Software

PDA 例 3

设计接受如下语言的PDA:

$$L(M) = \{a^n b^m \mid n \ge m\}$$

2022/4/19

chool of Softwar

PDA 例 5

设计接受如下语言的PDA:

$$\begin{split} L(M) &= \{a^n b^m \mid \ n \geq m-1\} \\ &= \{a^{m-1} b^m \mid m \geq 1\} \cup \{a^{m+k} b^m \mid \ m,k \geq 0\} \end{split}$$

2022/4/19

hool of Software

即时描述(q,w,lpha),其中w是还未输完的串,lpha是栈底符号串;传递和传递闭包 \vdash 、 \vdash^*

终态型PDA语言: $\{w|(q_0,w,Z_0)\vdash^* (q_f,\epsilon,\alpha),q_f\in F,\alpha\in\Gamma^*\}$

空栈型PDA语言: $\{w|(q_0,w,Z_0)\vdash^* (q,\epsilon,\epsilon), q\in Q\}$

两种 PDA 语言的关系

• 空栈型PDA到终态型PDA 对于 PDA P_N =(Q, Σ , Γ , δ _N, q_0 , Z_0), L= $L(P_N)$,存在一个 PDA P_F , 使得L= $L(P_F)$.

 $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_P, p_0, X_0, \{p_f\})$

• 终态型PDA到空栈型PDA 对于PDA P_F =(Q, Σ , Γ , δ_F , q_0 , Z_0 ,F), L= $L(P_F)$, 存在一个PDA P_N , 使得 L= $N(P_N)$.

证明思路:

 $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$

2022/4/19

chool of Software

总结,都要添加一个状态并且**改栈底符号为** X_0 ,添加转移 $\epsilon, X_0/Z_0X_0$

CFG 转换 PDA

例:

其中δ 定义为:

$$E \rightarrow EOE \mid (E) \mid v \mid d$$

 $O \rightarrow + \mid *$

$$\mathcal{S}(q,\,\varepsilon,\,E) = \{(q,\,EOE),\,(q,\,(E)),\,(q,\,v),(q,\,d)\},$$

$$\delta(q, \, \varepsilon, \, O) = \{(q, +), \, (q, \, *)\},\,$$

$$\delta(q, v, v) = \{ (q, \varepsilon) \}, \quad \delta(q, d, d) = \{ (q, \varepsilon) \}$$

$$\delta(q, +, +) = \{ (q, \varepsilon) \} , \delta(q, *, *) = \{ (q, \varepsilon) \}$$

$$\delta(q, (, () = \{ (q, \varepsilon) \}), \delta(q,),)) = \{ (q, \varepsilon) \}$$

添加 $\delta(q,\epsilon,S)=\{(q,\Sigma^*)\}$,注意添加 $\delta(q,v,v)=\{(q,\epsilon)\}$

Chapter 10

确定下推自动机:与PDA只有转移函数上的不同

• 约束: 栈顶符号不能为空、输入符号为空和不为空互斥(只能有一个)、转移的状态唯一

注意输入符号为空的互斥条件仅限于相同栈顶元素的条件下:

- $\delta(q, \epsilon, X)$ 与 $\delta(q, a, X)$ 互斥
- $\delta(q, \epsilon, X)$ 与 $\delta(q, a, Y)$ 不互斥

确定性上下文无关语言: 终态型DPDA语言

 $\{0^n1^n|n\geq 1\}$ 既是终态型DPDA语言,也是空栈型DPDA语言

 $\{ww^R\}$ 不是DPDA语言,证明了DPDA<PDA

 $\{wcw^R\}$ 是DPDA语言,但不是正则语言,证明了正则<DPDA(正则显然是DPDA语言)

前缀性质: 语言中没有两个元素使得其中一个是另一个前缀

空栈型DPDA定理(充要):

- 一个语言是空栈型DPDA语言, 当且仅当 1) 有前缀性质 2) 是某终态型DPDA语言
- 空栈型DPDA与正则语言无关,因为 $\{wcw^R\}$ 是KDPDA但不正则, $\{0^*\}$ 正则但不是KDPDA

判断KDPDA: 前缀性质

判断DFA/CFG: 泵引理

定理:

- L是空栈型DPDA语言,则L有一个无二义性文法G使L(G)=L:由空栈型PDA构造CFG过程看出
- L是终态型DPDA语言,则L有一个无二义性文法G使L(G)=L:在L每个元素后面添加\$变成空栈型 DPDA语言,CFG中添加 $S \to \epsilon$

另一方面, $\{ww^R\}$ 为非固有二义的,因此包含是真包含

综上:

KDPDA<即固有二义CFG<CFG=PDA

DFA<DPDA<非固有二义CFG<PDA=CFG

CFG的化简

消除←产生式

可空符号: $A\overset{*}{\Rightarrow}\epsilon$, A是变量; 归纳, 若产生式B的右边均是可控符号, 则B也是

消除可空符号:对于每个产生式 $A o A_1 \cdots A_n$,若m<n个为可空符号则扩写成 2^m 项,m=n则 2^{m-1}

项

定理:消除后的语言是 $L(G)-\{\epsilon\}$

消除单一产生式

单一产生式: $A \rightarrow B$, 其中AB均为非终结符

单一偶对(A,B): $A \stackrel{*}{\Rightarrow} B$ 路径上全部都为单一产生式

设 CFG G = (V, T, S, P), 通过下列步骤消去 G 中的单一产生式:

(1) 计算 G 的单一偶对集合;

- (2) 对每个单一偶对 (A, B), 在 G_1 中加入产生式 $A \rightarrow \alpha$, 其中 $B \rightarrow \alpha$ 为一非单一产生式;
- (3) G₁中包含 G 的所有非单一产生式。

消除无用产生式

有用符号: X在一条 $S\stackrel{*}{\Rightarrow}w$ 的路径上; **有用符号既包括变量,也包括终结符**

无用产生式: 含有无用符号的产生式

产生符号: $X\stackrel{*}{\Rightarrow}w$; 可达符号: $S\stackrel{*}{\Rightarrow}\alpha X\beta$

有用符号⇒产生符号、可达符号(反之不成立)

先消去非产生、再消去非可达

画面: S ---->√β---->×

化为Chomsky范式

Chomsky范式 (CNF) : 1) G中不含无用符号; 2) 产生式P只有两种形式: $A o BC \ / \ A o a$

注意: 消除无用符号可以在其中穿插反复进行

定理:设 CFG G 的语言包含非 ε 的字符串,通过上述步骤从 G 构造 G₁,则 G₁符合 CNF 的要求, 日满足:

$$L(G_1) = L(G) - \{\epsilon\}$$

Chapter 11

CFL泵引理:

注意只能保证vx

CFL泵引理的应用

证明不是CFL的步骤:

- 1. 选取任意正整数 n
- 2. 找一个字符串 z∈L, 使得:
 - (i) $|z| \ge n$
 - (ii) 对满足如下条件的任意 u,v,w,x,y

 $z=uvwxy, vx\neq\varepsilon, |vwx| \leq n$

School of Software

(iii) 选择 k≥0, 使得 uv^kwx^kv ∉ L

2022/5/10

例子: $\{ww\}$ 、 $\{0^n1^n2^n\}$ 不是CFL

CFL封闭运算:并、星闭包、连接、反转

非封闭运算: 交、补、差

替换: $s: \Sigma \to \mathcal{L}$

定理:设 $\forall a \in \Sigma, s(a)$ 是CFL,若L是 Σ 上的CFL,则s(L)是CFL

定理:设L是CFL,则h(L)(h-1(L))均是CFL

正则闭性质: CFL和正则语言的交为CFL (在此基础上交运算也封闭)

例题: $L=\{a^nb^n|n\neq 100\}$ 是CFL,取正则语言L= $\{a^{100}b^{100}\}$,它的补为L= $\{w|w\neq a^{100}b^{100}\}$,与CFL $\{a^nb^n\}$ 交得证

例题: $L=\{n_an_bn_c\}$ 不是CFL,假设成立,取正则语言 $\{a^*b^*c^*\}$ 归谬,二者交为 $\{a^nb^nc^n\}$ 是CFL,显然不正确

Chapter 12

空语言问题:检查语言是否为空,则判断开始变量是否无用

无限语言问题:进行CFG的化简,之后构造变量依赖图,判断是否有环

语言元素问题: CYK解析算法 O(n³)

i	1	2	3	4	5
a _l	b	а	a	b	а

j=5	{S,A,C}		_		
j=4	-	{S,A,C}			
j=3	-	{B}	{B}		_
j=2	{S,A}	{B}	{S,C}	{S,A}	
j=1	{B}	{A,C}	{A,C}	{B}	{A,C}
	b	a	a	b	а

S→AB|BC A→BA|a B→CC|b C→AB|a

字符串 bbabaa 是否属于该文法的语言?

CFL不可判定问题:

CFG是否歧义、CFL是否固有二义、CFL相交是否为空(交自动机)、CFL是否相等(并自动机看初态是否可区分)、CFL是否是 Σ^*

上下文无关语言判定性质

CFL的一些不可判定问题:

- 1. 上下文无关文法是否无歧义的?
- 2. 上下文无关语言是否固有歧义的?
- 3. 两个上下文无关语言相交是否为空?
- 4. 两个上下文无关语言是否相等?
- 5. 上下文无关语言是否等于 Σ*?

TM的注意事项:

- 初始时读头位于输入串最左
- 输入串不为空
- TM机默认是确定TM的
- 状态转移是一个元素(三元组)而非集合,不允许€转移
- 接受輸入:輸入完字符串,TM停在某终态(反之停在非终态、进入无限循环(我们假定到终态即停机,可以证明任何一个图灵机都等价于一个到终态即停机的TM))
- 注意, 图灵机可以不接收完输入串

图灵机接受语言: aa*

$$a \rightarrow a, R$$

$$Q_0 \xrightarrow{B \rightarrow B, L} Q_1$$

TM接受的语言 $\{a^nb^n|n\geq 1\}$

图灵机例

定义 ID's 之间的推导关系 \vdash_M (或 \vdash)如下:

1. 设 δ(q, X_i) = (p, Y, L), 则有

 $X_1X_2...X_{i-1}qX_iX_{i+1}...X_n \mid_M X_1X_2...X_{i-2}pX_{i-1}Y...X_n$

两个例外:

- (1) i=1 时, $qX_1X_2...X_n \mid_M pBYX_2...X_n$
- (2) i=n 且 Y=B 时,

$$X_1X_2...X_{n-1}qX_n \mid_M X_1X_2...X_{n-2}pX_{n-1}$$

2. 设 $\delta(q, X_i) = (p, Y, R)$, 则有: $X_1X_2...X_{i-1}qX_iX_{i+1}...X_n \mid_M X_1X_2...X_{i-1}YpX_{i+1}...X_n$ 两个例外:

- (1) i=n 时, $X_1X_2...X_{n-1}qX_n \mid_M X_1X_2...X_{n-1}YpB$
- (2) i=1及 Y=B 时,

$$qX_1X_2...X_n \mid_M pX_2...X_{n-1}X_n$$

类似,可定义推导关系 $|_{M}$ 的传递闭包记为 $|_{M}$ (或 $|_{M}$)

总结一下: 状态右边一定要有符号, 与状态右边无关的空白符可以删去

递归可枚举语言:有定理称任何图灵机都可以转化为到达终态就停机的图灵机(根据原来的定义,有可能还会继续,以后假定到达终态一定停机

递归语言:对于任何不属于L(M)的字符串也可以使得M停机。递归语言对应的问题是可判定的。

Chapter 13

单位制: 00000 (十进制的5)

定义:

函数 f 是可计算的,如果存在图灵机M,对任意 $w \in D$,满足

f可计算: $\forall w \in D$, 有 $f: q_0w \vdash^* q_ff(w)$, 例如f(x,y) = x + y, 输入x1y则输出xy1 (单位制下)

f(x) = 2x 的图灵机为:

计算后要回到初始状态

带存储区的状态 (storage in the state)

多道 (multiple tracks) 图灵机

此类图灵机 $M = (Q, \Sigma, \Gamma, \delta, q_o, B, F)$ 中,带符号是向量的形式。如上图中的图灵机,带符号的形式为三元组。

相当于对**带符号**进行扩展,带符号变为[X,Y,Z]

子例程的设计

完成两个正整数的乘法. 初始时, 带上的符号串形如 0^m10ⁿ1, 而结 束时, 带上的符号串变为0^{mn}。 左图的图灵机表示子例程 copy ,下图的图灵机表示可以调用copy 的主程序。

第一类TM结构对应模拟TM的结构

多带图灵机:第一条带处于输入符号的最左端,其余读头任意放置; k条带可用2k通道的TM模拟

语言L $\{a^nb^n\}$; 标准图灵机O (n^2) , 2带O(n)

2维TM用二通道模拟

非确定图灵机: 转移映射到一个三元组集合

标准图灵机:

$$q_1 \xrightarrow{a \to g, R} q_2$$

半无限带机:

Time 1

					<u>' </u>			
右部	#	d	e	В	В	В		
左部	#	С	b	g	В	В	• •	•••••
	q_1^L							

Time 2

半无限带机在分界端:

右部

$$q_1^R$$
 $(\#,\#) \rightarrow (\#,\#), R$ q_1^L

左部

$$(q_1^L)^{(\#,\#) \to (\#,\#), R} q_1^R$$

传递函数是非确定的

多栈机

k个栈的多栈机可以用k+1个带的多带图灵机模拟(其中一个用来扫描输入)

一个双栈机可以模拟标准图灵机:一个堆栈模拟读头左边单元格,一个模拟右边

计数器机

计数器机只有两个栈符号 Z_0,X ,X只能被替换为 X^i , Z_0 只能被替换为 X^iZ_0

定理: 一个计数器的计数器机语言接受能力相当于确定下推自动机KDPA; 两个相当于图灵机

Chapter 14

图灵机编码:

对图灵机作一些假定:

- (1) 输入字母表为{0,1}
- (2) 设有限状态为 q_1 , q_2 , ..., q_k , 并假定初态 总是 q_1 , 终态总是 q_2 (假定一个终态即可)
- (3) 设带符号为X₁, X₂, ..., X_m, 并假定 X₁ 总 代表 0, X₂ 总代表 1, X₃ 总代表 B
- (4) 假定带头移动方向为D₁和 D₂, 分别代表 L 和 R

假定

- 字母表为0,1
- 初态1, 终态2
- 带符号 0编码1 1编码2 B编码3
- 带头移动 L编码1 R编码2

图灵机的二进制编码: 状态转移函数

$$\delta(q_i, X_j) = (q_k, X_l, D_m)$$

可以编码为: 0 10 10 10 k10 10 m

所有转移规则的编码排列在一起可以作为该 图灵机的编码。例如: Xsu1023 6月1日

11C₁11C₂11...C_{n-1}11C_n

可以有多个编码,

输入字符串w编码: 1w, (Eg: 0000000对应128个输入字符串)

对角线语言: $L_d = \{w_i | w_i \notin L(M_i)\}$, 不是递归可枚举语言

• 对角线语言 *L*_d

定义:对任何 $i \ge 1$,设 M_i 为第 i 个图灵机。称语言

 $L_d = \{ w_i \mid w_i \notin L(M_i) \}$

为对角线 (对角化)语言。

通用语言: L_U M_i111w_i , 递归可枚举语言

• 通用语言

- 设 M 为接受二进制输入串的图灵机,M的二进制编码为 C,w 为(0+1)* 中的串C
- 图灵机与输入串偶对 (*M, w*) 的二进制编码记为: C 111 C'
- 定义: 称语言
 L_u={C 111 C' | (M, w) ∈ {0,1}*, w ∈ L(M)}
 为通用语言。

• 语言非空图灵机

该问题可对应语言:

$$L_{ne} = \{ M \mid L(M) \neq \emptyset \}$$

- $-L_{ne}$ 可以简约到通用语言 L_{u} ,则该问题是部分可判定的;
- 而 L_u 也可以简约到 L_{ne} ,则该问题是不可判定的。

定理: Lne 是递归可枚举语言, 但不是递归语言。

则语言为空图灵机非RE

RICE引理描述的是图灵机编码的性质,即它是将一些接受特定语言的图灵机挑出来

• 一台图灵机接受的语言是否是正则语言/CFL均是不可判定的

定理:

- 递归语言的补也是递归语言
- 若语言L和L的补都是递归可枚举语言,则二者均是递归语言

定义:

- 若一个问题对应的语言是递归语言,则可判定,否则不可判定
- 若一个问题对应的语言是递归可枚举语言,则称为部分可判定

问题P1到P2的简约: $P_1 \leq_T P_2$,则 P_2 可判定/部分可判定 $\Rightarrow P_1$ 也; P_1 不可判定/非 $RE \Rightarrow P_2$ 也图灵机停机问题: 任给图灵机M和字符串w,问是否停机——不可判定

• Post 对应问题 (PCP)

PCP的实例包含同一字母表上数量相同的两组字符串:

$$A = w_1, w_2, ..., w_k$$

 $B = x_1, x_2, ..., x_k$

 (w_i, x_i) 1≤ $i \le k$ 称为对应对。

称PCP的该实例有解,当且仅当存在整数序列:

$$i_1, i_2, ..., i_m$$
使得 $w_{i_1} w_{i_2} \cdots w_{i_m} = x_{i_1} x_{i_2} \cdots x_{i_m}$

例:设 Σ ={0,1},两组字符串A,B由下图定义

	A	В
i	w_{i}	x_i
1	1	111
2	10111	<i>10</i>
3	10	0
	图(1)	•

	\boldsymbol{A}	В	
i	w_i	x_i	
1	10	101	
2	<i>011</i>	11	
3	<i>101</i>	011	
'	图(2)		

- a) 图(1) PCP 的实例有解,其中一个解为: 2,1,1,3 即 $w_2w_1w_1w_3 = x_2x_1x_1x_3 = 1011111110$
- b) 图(2) PCP 的实例无解。

该问题不是可判定问题

• 图灵机的时间复杂度

如果对任何长为n的输入串w,图灵机 M 可以在最多 T(n) 移动步停机,则称图灵机 M 的时间复杂度为T(n)。

• 非确定图灵机的时间复杂度

若对任何长为n 的输入串 w, 非确定图灵机 M 的任何一个转移序列,可以最多 T(n) 个移动步停机,则称非确定图灵机 M 的复杂度为 T(n)。

非确定图灵机时间复杂度: 树高

• **P**问题

如果问题(语言)L 满足:存在一确定图灵机 M,使得 L=L(M),且 M 的时间复杂度 T(n) 为多项式,则称该问题是 P问题,即 L 属于P.

• **%P**问题

如果问题(语言)L 满足:存在一个非确定图灵机 M,使得 L=L(M),且 M 的时间复杂度 T(n) 为多 项式,则称该问题是 \mathfrak{MP} 问题,即 L 属于 \mathfrak{MP} .

复杂度归约 $P_1 \leq_P P_2$

• 若P2是P问题,则P1也是;若P2是NP问题,则P1也是

• 若P1不是P问题,则P2也不是;若P1不是NP问题,则P2也不是

NP-hard: 任何一个NP问题都可以简约到该问题上

如果可以证明某个NPC是P的,则有P=NP