1 Yoneda Lemma

Theorem 1.1. Yoneda If A be a locally small category, then,

$$[\mathcal{A}^{op}, Set](H_A, X) \cong X(A)$$
 naturally in $A \in \mathcal{A}$ and $X \in [\mathcal{A}^{op}, Set]$

Explaination:

First of all, we fix any category, A. Now we choose two things (independent of each other):

i an object, A from the category $\mathcal{A} = \mathcal{A}^{op}$

ii an object, X of the category $[A^{op}, Set]$ which is precisely a functor $X: A^{op} \to Set$

Here, $[\mathcal{A}^{op}, Set](H_A, X)$ denotes arrows $H_A \to X$ in $[\mathcal{A}^{op}, Set]$ i.e. natural transformations, $\alpha: A^{op}$

Each of these natural transformations is a collection of maps in Set, hence each of their components is exactly a function. i.e. $\forall \alpha \in [\mathcal{A}^{op}, Set](H_A, X), \forall K \in \mathcal{A}, \alpha_K$ is a function $:H_A(K) \to X(K)$

X(A) is precisely a set, because X(A) is the image of (our chosen object,) A, under (our chosen functor,) X.

So, the idea is that our choice of A and X completely determines all possible maps (i.e. natural transformations) from H_A to X. This answers out big question of "what are all the maps $H_A \to X$ " or "how does H_A see other presheaves on A".

The theorem says not just that the two are isomorphic, but that they're **naturally** isomorphic. This means that $[A^{op}, Set](H_A, X)$ and X(A) are functorial in both A and X

Also, So, the aforementioned collection of natural transformations also must be a set: As \mathcal{A} is locally small, for each choice of $K \in \mathcal{A}$, $H_A(K) = Hom_{\mathcal{A}}(K,A)$ is a set. Thus, as α_K is a function, and hence a relation, it's a subset of $Hom_{\mathcal{A}}(K,A) \times X(A)$, which is a set as it's a cartesian product of sets. Thus, K-component of every natural transformation is a set. i.e. $\forall \alpha \in [\mathcal{A}^{op}, Set](H_A, X), \forall K \in \mathcal{A}, \alpha_K$ is a set

Now, the question is wether the set of all natural transformations is a set

Proof. Let a locally small category, \mathcal{A} be given.

Denoting the category of all presheaves on \mathcal{A} by \mathcal{C} , i.e. $\mathcal{C} := [\mathcal{A}^{op}, Set]$

Now, fix any object, $A \in \mathcal{A}$, and any object, $X \in \mathcal{C}$.

Need to show that $C(H_A, X)$ is naturally isomorphic to X(A).

Thus, need two mutually inverse natural transformations, such that : $\mathcal{C}(H_A, X) \xrightarrow{\psi} X(A)$

Need to show that the RHS is a set, and then, As both the RHS and LHS above are sets, the natural transformations between them are maps in *Set* i.e. functions.

Going to show the following in order,

- 1. Define ϕ and ψ
- 2. Show that ϕ and ψ are mutually inverse
- 3. Show naturality of ϕ in X
- 4. Show naturality of ϕ in A
- 5. Show naturality of ψ in X
- 6. Show naturality of ϕ in A
- **1. Defining** ϕ and ψ Define ϕ (on natural transformations) as the A-component (of that natural transformation) at the identity of A. i.e. for $\alpha \in \mathcal{C}(H_A, X), \phi(\alpha) := \alpha_A(1_A)$

Define ψ on an object, $x \in X(A)$, by defining it's K-component for any $K \in \mathcal{A}$:

$$(\psi(x))_K: H_A(K) \to X(K)$$
 as, for each $p \in Hom_A(K,A), p \mapsto \Big(X(p)\Big)(x)$

That is to say that the K-component maps any arrow $p: K \to A$ to the image of x under the map X(p).

2. Showing inverses Firstly, to show $\psi \circ \phi(\alpha) = \alpha$, for any natural transformation $\alpha : H_A \to X$

$$\psi \circ \phi(\alpha) = \psi(\alpha_A(1_A)) =$$

Secondly, for every $x \in X(A)$, need $\psi \circ \phi(x) = x$

- **3. Naturality of** ϕ **in** X Need to show that the following square commutes i.e.
- **4. Naturality of** ϕ **in** A Need to show that the following square commutes i.e.
- 5. Naturality of ψ in X Need to show that the following square commutes i.e.
- **6. Naturality of** ψ **in** A Need to show that the following square commutes i.e.

2 Embedding of a category in Presheaf category

Definiton 2.1 (Embedding of a category). A category, \mathcal{A} is said to be embedded in another \mathcal{B}

3 THE PAPER

4 Scratchpad

${\bf Lemma~4.1.~} Composition~of~Pro-relations~is~a~Prorelation$

If P is a prorelation X to Y, and Q is a prorelation Y to Z, then their composition, $Q \circ P$ is a prorelation X to Z. Where $Q \circ P$ is a set of relations defined as

$$Q \circ P := \{(x,z) \in X \times Z | \exists p \in P, \exists q \in Q \text{ and } \exists y \in Y \text{ such that } (x,y) \in P \text{ and } (y,z) \in Q\}$$

Proof. Need to show that

- i there is a preorder on $Q \circ P$, \subseteq
- ii $Q \circ P$ is a down-directed set (w.r.t \subseteq)
- iii $Q \circ P$ is an up-set (w.r.t \subseteq)