Digital Visual Effects – Image Stitching

R13631011 陳冠廷 Team25

Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan

ABSTRACT

作業相關重點說明:

1. Baseline: Feature detection, Feature matching, Image matching and Blending. (60%)

2. Bonus: More than one feature detection or description $(7\%) \rightarrow 2.2.1 + 2.2.2$

3. Bonus: Rectangling (3%) -> **2.5**

4. Bonus: End-to-end alignment(5%) -> **2.4**

Keywords: Image Stitching, Feature Detection and Matching, SIFT, Harris Corner, RANSAC, Image Matching and Blending, Cylindrical Projection, Rectangling

1. INTRODUCTION

影像拼接是一種透過註冊、變形、重採樣和融合將一組影像結合成一張較大影像的技術。常見應用是全景圖的創建。一般而言,影像拼接有兩種主要方法:直接方法和基於特徵的方法,本研究使用基於特徵的方法。

在本次研究中,我實現《Recognising Panoramas》[3] 論文中的部分內容,主要包括以下四個部分:

- 1. 特徵檢測 Feature Detection
- 2. 特徵匹配 Feature Matching
- 3. 影像匹配 Image Matching
- 4. 融合 Blending

特徵匹配有兩種選擇,SIFT (image_stitching_sift.py)、Harris's (image_stitching_harris.py),分為兩個程式撰寫,除了特徵匹配外,拼接流程皆相似。SIFT 較難實現 (sift_impl.py),有參考《Distinctive Image Features from Scale-Invariant Keypoints》[4] 及《Implementing SIFT in Python: A Complete Guide》[6],將參考程式執行速度優化為原本的四倍,並使用了 ptqt5 做了 SIFT 的步驟視覺化 UI (sift_visualizeUI.py)。

對於焦距的估計,使用 Autostitch 取得 pano.txt 中的焦距。

這兩個程式用於三腳架拍攝的測試數據拼接相當成功,但在我自己拍攝的數據則出現明顯錯誤,僅在使用兩張圖片拼接時才沒有出現問題,原因應為程式設計數據拍攝時需固定轉動角度,而我拍攝時並沒有固定角度旋轉。

Figure 1. 測試數據 /grail 拼接步驟視覺化

Figure 2. 測試數據 /parrington 拼接步驟視覺化

2. METHODOLOGY

2.1 Preprocessing

使用 iPhone 15 手機拍攝不同角度之圖片,並經過由 HEIC 轉 JPG 檔案,縮放圖片像素及大小

Figure 3. 該程式能批量轉換影像大小到固定像素或縮放,能比直接使用 opencv resize,保留更多細節,且不會破壞影像

Figure 4. 完整的拍攝數據集,從每張大約 3MB 壓縮至 200KB內,但最終只使用前兩張做拼接,產生最終結果圖

2.2 Feature Detection

2.2.1 SIFT (Scale-Invariant Feature Transform, 尺度不變特徵轉換)

以下說明將完整闡述程式中所用到的 SIFT 核心公式與演算法步驟,包含從金字塔生成、特徵點偵測、極值精細化、方向分配,一直到描述子計算的整體流程。

一、金字塔 (Scale-Space) 與基底影像

1. 生成基底影像 (Generate Base Image)

- 上採樣 (Upsampling)

為了增強影像在小尺度處的特徵穩定性,SIFT 會將輸入影像先放大 2 倍。此舉能在後續做多尺度檢測時,維持較高解析度並確保精度。若原圖尺寸為 (H, W),上採樣後尺寸變為 (2H, 2W)。

- 初始高斯模糊 (Initial Gaussian Blur)

令上採樣後的影像初始模糊量為 $\sigma_{assumed}$ (通常取 0.5)。為了得到理想的 σ (常見為 1.6),需再做一個「補差量」的模糊,使最終等效模糊量符合需求。

若期望最終高斯模糊標準差為 σ ,而已知目前等效模糊為 $2 \times \sigma_{assumed}$ (因上採樣),補差量即

$$\sigma_{\text{diff}} = \sqrt{\sigma^2 - (2 \times \sigma_{\text{assumed}})^2}$$

接著對上採樣後影像再做一次高斯平滑,最終得到基底影像。

Figure 5. 基底影像

二、計算金字塔層數與生成高斯模糊金字塔

1. 計算金字塔層數 (Compute Number of Octaves)

SIFT 將影像在空間中不斷下採樣 (Downsampling) 形成多個八度 (octave), 直到影像邊長無法再繼續有效縮小為止。

簡化的做法是:

 $num_octaves = [log_2(min(H, W))] - 1$ 其中 min(H, W) 是基底影像較短的邊長。

2. 生成各層高斯核 (Generate Gaussian Kernels)

- 尺度間隔 (scale intervals)

在一個八度 (octave) 內,會額外再分為數個尺度 (scale)。例如設定每個八度有 $num_intervals$ 個子尺度,SIFT 通常多加 3 張影像以利做差分,故每個 octave 實際上有 $num_intervals+3$ 張高斯模糊後的影像。

- 幾何級數增長

設 $k=2^{\frac{1}{\text{num_intervals}}}$,則第i張影像的等效模糊標準差為 $\sigma_i=\sigma_0 imes k^i$

但實際實作時常儲存「相鄰尺度間需要額外增量的 σ 」,其計算來自 $\sigma_{\mathrm{diff},i} = \sqrt{\sigma_i^2 - \sigma_{i-1}^2}$

3. 生成高斯金字塔 (Generate Gaussian Images)

- 在同一個八度 (octave) 內做多尺度模糊

首先將基底影像視為 σ_0 下的起始狀態。依序對同一張影像再做高斯平滑,使用上一步驟算出的 $\sigma_{diff,i}$,產生出 $num_intervals+3$ 張模糊影像。

- 下採樣進入下一八度

完成當前八度所有尺度後,取該八度中「倒數第三張」(或類似規則)的高斯圖,再做 1/2 下採樣,作為下一個八度的初始影像,重複相同程序。

Figure 6. 高斯金字塔

三、差分金字塔 (DoG) 與極值檢測

1. 生成差分金字塔 (Generate DoG Images)

在一個八度內,相鄰兩張高斯模糊影像作差,就能得到差分金字塔的影格 (DoG layer):

$$D(x, y, \sigma_i) = G(x, y, \sigma_{i+1}) - G(x, y, \sigma_i)$$

如此能在 DoG 影像中尋找局部最大/最小值,以取代拉普拉斯 (LoG) 的方法,節省運算成本。

2. 尋找尺度空間極值 (Find Scale-Space Extrema)

在每個八度的 DoG 影像中,對第 i 層 (i 介於 11 和 num_intervals):

- 1. 取該層的 3D 立體鄰域:包含「前一層」 $(σ_{i-1})$ 、「當前層」 $(σ_{i}$ \sigma_i)、「後一層」 $(σ_{i+1})$ 三張 DoG 影像的同位置 (x,y) 及其 3x3 區域。
- 2. 若該點同時比鄰域所有像素都大,或都小,則為極值候選點。
- 3. 一併做初步的對比度閾值檢查(如對比度小於某門檻,直接忽略)。

Figure 7. 高斯差分金字塔

四、亞像素精細化 (Quadratic Fit)

對於通過初步篩選的極值,SIFT 使用二次泰勒展開 (Taylor Expansion) 近似,來進一步在 $(x,y,\sigma)(x,y, sigma)$ 三維空間中求取更精準的位置。

主要包含:

1. 梯度向量與 Hessian 矩陣

在當前影像立方體(前、中、後三層 DoG)中,對中心像素計算一階導數(gradient)與二階導數(Hessian)。

- 一階導數

$$\frac{\partial D}{\partial x}$$
, $\frac{\partial D}{\partial y}$, $\frac{\partial D}{\partial \sigma}$

- 二階導數 (Hessian)

$$\begin{bmatrix} \frac{\partial^2 D}{\partial x^2} & \frac{\partial^2 D}{\partial x \partial y} & \frac{\partial^2 D}{\partial x \partial \sigma} \\ \frac{\partial^2 D}{\partial y \partial x} & \frac{\partial^2 D}{\partial y^2} & \frac{\partial^2 D}{\partial y \partial \sigma} \\ \frac{\partial^2 D}{\partial \sigma \partial x} & \frac{\partial^2 D}{\partial \sigma \partial y} & \frac{\partial^2 D}{\partial \sigma^2} \end{bmatrix}$$

2. 極值位置微調 (Offset 計算)

以二次展開式在中心像素處的近似,可得極值在局部的偏移量:

$$\Delta = -H^{-1} \nabla D$$

其中 ∇D 是一階導數向量,H是 Hessian 矩陣。

解出 $\Delta\Delta$ 即可得更精細的 $(\Delta x, \Delta y, \Delta \sigma)$, 並更新該點的位置與尺度。

- 對比度檢查 (Contrast Threshold)

更新後的 DoG 值若仍小於設定的對比度門檻,就捨棄該點。

- 主曲率檢查 (Edge Response Elimination)

若 Hessian 矩陣中, $trace(H_{2\times 2})^2/\det(H_{2\times 2})$ 太大,代表該點更像是「邊緣響應」而非角點或穩定特徵,應排除。常用判斷:

$$\frac{\left(\operatorname{trace}(H_{2\times 2})\right)^2}{\det(H_{2\times 2})} < \frac{(r+1)^2}{r}$$

其中r為可接受的主曲率比值上限。

五、方向分配 (Orientation Assignment)

對每個通過篩選的關鍵點, SIFT 會在其週圍區域計算梯度的方向直方圖,並找出最主要的方向作為關鍵點的「主方向」。若有其他「接近主要峰值 (80% 以上)」的峰,也會額外生成一個具有不同方向的關鍵點,以增加匹配時的穩定度。

1. 搜尋範圍與加權

在該關鍵點(所在八度空間的座標)附近,取一定半徑(與關鍵點尺度相關),對每個像素:

計算梯度幅度 m 與方向 θ。

以高斯函式 $\exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$ 加權,令鄰域越遠的點權重越小。

2. 36-bin 方向直方圖

將 θ 分配到對應的 $0^{\circ} \sim 360^{\circ}$ 切成36 個區間(每 $\sin 10$ 度)。

找出直方圖峰值 θ_{max}

3. 多方向分配

取主峰值為第一方向。若有其他局部峰大於主峰的80%,則也產生一個關鍵點(同座標與尺度,但不同方向)。

Figure 8. 含方向特徵點影像

六、重複鍵點移除與座標轉換

1. 刪除重複 (Remove Duplicate Keypoints)

在同一位置、同樣尺度、同樣方向上,可能產生多個重複關鍵點,故先做排序判斷,移除重複。

2. 轉回原圖大小 (Convert Keypoints to Input Image Size)

由於一開始將影像放大 2 倍,最終需要將關鍵點的坐標與 size 都縮回原圖比例(乘 0.5),以符合實際影像的位置。

七、描述子 (Descriptor) 生成

SIFT 描述子計算的核心,是在關鍵點附近取一個旋轉對齊的區域,分成 4x4 子區域,每個子區域計 8 個方向直方圖,共 128 維 $(4\times4\times8)$ 向量。

1. 定位關鍵點中心與旋轉對齊

在該關鍵點(於所在 octave 的座標)周圍,取一個對應尺度大小的窗口,並依其「主方向」旋轉,使該窗口內的梯度方向相對於主方向對齊。

窗口大小與 keypoint.size 成正比,常乘以一係數 (例如 3~4 倍) 來決定描述子視窗半徑。

2. 計算梯度 (magnitude & orientation)

在該旋轉對齊的局部區域中:

每個像素做水平/垂直差分,得出 (g_x,g_y) 。

幅度:mag = $\sqrt{g_x^2 + g_y^2}$,方向: θ = arctan 2 (g_y, g_x) 。

再以高斯函式對距中心越遠的像素進行權重衰減。

3. 將局部區域切成 4x4 格 (Spatial Binning)

令每個小格 (cell) 建立一個 8 維方向直方圖 (8 bins)。

當一個像素的方向角度落在某兩個相鄰 bin 之間,也會做線性或三線性插值分配 (通常還包含 row、col 的線性插值),使描述子在空間、方向上都更平滑。

4. 描述子向量正規化與截斷 (Normalize & Clamp)

- 1. 先將整個 128 維向量做 ℓ2\ell_2 正規化,使向量總長度為 1。
- 2. 将任何成分大於 0.2 (或類似設定)者截為 0.2,以避免某些過大響應壟斷。
- 3. 再度正規化一次。
- 4. 最後將向量縮放至 0~255 的 byte 範圍, SIFT 原始實作常用 ×512 再四捨五入到 [0,255]。 最終得到的 128 維浮點或 byte 特徵向量,即為該鍵點的特徵描述子,可以用於後續特徵匹配。

Figure 9. 128 維特徵描述向量分布

八、總結

這些步驟相互結合,構成了 SIFT 特徵點偵測與描述的完整流程,也正是程式中所實作的核心原理。透過對差分金字塔搜尋極值、二次泰勒展開做精細化、並對周圍鄰域梯度分佈計算描述子, SIFT 能達到對尺度、旋轉皆具備高度不變性的局部特徵偵測與描述。

2.2.2 Harris Corner Detector

以下將說明程式中所用到的 **Harris 特徵偵測** 與 **特徵匹配** (包含簡易描述子與 RANSAC) 之流程,並剖析每個步驟背後的數學原理。

- \ Harris Corner Detector

Harris Corner Detector 用於找出影像中的角點 (corner)。角點通常被視為在兩條邊界交會處周圍,灰階或顏色分佈方向多變且對小範圍平移具敏感性的區域。計算流程

- 1. 灰階化: 將彩色影像轉成灰階影像 I_{gray} 。
- **2. 求梯度** Ix, Iy: 使用簡單的離散微分(如 Sobel、或程式中自定義的 kernel Hx, Hy)計算水平方向梯度 Ix 與垂直方向梯度 Iy:

$$I_x = \frac{\partial I_{\text{gray}}}{\partial x}, \quad I_y = \frac{\partial I_{\text{gray}}}{\partial y}$$

3. 累積矩陣 (Structure Tensor): Harris 演算法中,會在局部區域內累積以下量:

$$A = I_x^2$$
, $B = I_y^2$, $C = I_x I_y$

然後對這三張圖(A, B, C)做高斯平滑(或以 box filter 近似),得到平滑後的

$$\overline{A} = G_{\sigma} * (I_{x}^{2}), \quad \overline{B} = G_{\sigma} * (I_{y}^{2}), \quad \overline{C} = G_{\sigma} * (I_{x}I_{y}).$$

在某個像素(x,y)(x,y)位置,可視為2x2矩陣

$$M = egin{bmatrix} \overline{A}(x,y) & \overline{C}(x,y) \ \overline{C}(x,y) & \overline{B}(x,y) \end{bmatrix}$$

4. 角點響應函式 R

Harris 的角點判斷使用以下響應函式:

$$R = \det(M) - k \cdot (\operatorname{trace}(M))^2,$$

其中

$$\det(M) = \overline{A}\overline{B} - \overline{C}^2$$
, $\operatorname{trace}(M) = \overline{A} + \overline{B}$, $k \land \mathbb{A} \otimes \mathbb{$

det(M) 大代表兩個方向上的變化量都大,可能是角點。

trace(M) 大但det(M) 不大時,代表只是一條邊界(邊緣響應),非角點。

5. 閾值與區域最大值

設定一個閾值 threshold = $\alpha \times \max(R)$, 若 R(x,y) 小於此閾值則忽略。

通過閾值者,再確認是否為其 3x3 或更大鄰域中的最大值,若是則視為候選角點。

6. 取前 max_points 個角點

最後可依照 R 值從大到小排序,最多只取前幾個角點,避免角點過多,並確保保留高響應者。

程式最終會輸出一串角點清單,每個角點包含其座標 (y,x) 及對應的 Harris 響應值 R。同時也保留了梯度資訊 I_{x},I_{y} 供後續描述子計算。

二、描述子 (Descriptor) 計算

程式採用類似 SIFT 的 16x16 區域方向直方圖,不過是簡化版本,主要步驟如下:

1. 取得角點附近 16x16 區域 (patch)

對於每個角點 (y,x)(y,x),為了取出一個局部區域以供特徵量化,需要確保周圍 16x16 區域在影像範圍內,因此常設置一個邊界保護 (margin=8)。

2. 計算梯度大小 m 與方向 θ

先在整張影像(或每個 patch)中,利用上一步的

$$m = \sqrt{I_x^2 + I_y^2}$$
, $\theta = \arctan 2(I_y, I_x)$ (以度數表達且範圍 0° ~ 360°).

然後在 16x16 patch 中取對應的 m, θ 。

3. 找主要方向 (main orientation)

先對 16x16 區域整體的梯度方向做一個粗略統計,可建立 8 個 bin (將 0~360 度分成 8 區,每 45 度一個 bin),並將該 patch 所有像素的梯度大小累加到對應 bin。bin 數值最大的角度區間即該區塊「主要方向」,記作 θ_{main} 。

4. 方向對齊 (Orientation Alignment)

之後會將整個 patch 的角度值視為「 $\theta-\theta_{main}$ 」,使得該角點的描述子對此主要方向做旋轉對齊,亦即保有旋轉不變性。

5. 分成 4x4 子區域、計算方向直方圖

將這個 16x16 區域再分割成 4×4 個小塊,每小塊大小為 4×4 。在每個小塊中,再次以 8-bin 的方式統計方向分佈,不過這次是針對「旋轉對齊後的角度」做統計。最後可得到 $4\times4\times8=128$ 維的向量,作為該角點描述子。

6. 描述子正規化

SIFT 風格會對整個 128 維向量先做 l_2 正規化,使向量總長度為 1。若有成分大於 0.2(或其他閾值),則將其截斷為 0.2,之後再做一次 l_2 正規化,藉此抑制過大響應對特徵造成不平衡。

最終得到每個角點對應的 128 維描述子,與(x,y)座標一一對應。

三、總結

透過以上流程,可以找到兩張影像之間的大致位移關係,並在後續步驟中將影像做平移、疊合與拼接。程式也在此基礎上進一步執行圓柱投影 (cylindrical projection)、影像融合 (blend) 及裁切 (crop) 等操作,最終得到全景拼接效果。

2.3 Feature Matching

這兩個程式分別使用了 SIFT 與 Harris + 簡易描述子 兩種不同的特徵偵測與描述子生成方式,但在匹配與 RANSAC 部分的原理大致相同。以下依序說明:

1. 最近鄰匹配 (Nearest Neighbor Matching)

無論是 SIFT 還是 Harris+簡易描述子,最終都得到一組「特徵向量 (128 維)」。在程式中,透過以下簡化的最近鄰匹配:

- 針對影像 A 的每個特徵向量 \mathbf{d}_{A} ,在影像 B 特徵集中找出使 L2 距離最小的 \mathbf{d}_{B} 。
- 若該最小距離小於一個設定的閾值 (程式中如 desc_thresh=25000 或 1.0 等,視描述子大小而定),則接受此 匹配。
- 形成匹配對 $((x_A, y_A), (x_B, y_B))$ 。

距離的計算公式(以L2 為例):

$$dist(\mathbf{d}_{A}, \mathbf{d}B) = |\mathbf{d}A - \mathbf{d}B|^{2} = \sum k = 1^{128} (dA, k - dB, k)^{2}$$

若該值 < 閾值,表示描述子非常相似,可能是真正匹配。

2. RANSAC 找平移 (dx, dy)

因為此拼接僅考慮純平移 (或已經透過圓柱投影消弭了大部分透視變化),因此對於所有匹配對 $((x_A, y_A), (x_B, y_B))$,可計算

$$\Delta x = x_A - x_B$$
, $\Delta y = y_A - y_B$.

若同一對影像真實的平移量為 (dx *, dy *), 那麼越多匹配都應落在此平移量附近。程式中做法如下:對所有匹配對計算 $(\Delta x, \Delta y)$ 。

任取一個 $(\Delta x_0, \Delta y_0)$ 當作假設;

計算其他匹配對與此假設的差距 $\left(\left(\Delta x_i - \Delta x_0\right)^2 + \left(\Delta y_i - \Delta y_0\right)^2\right)$,若小於設定閾值 (如 33),則計為 inlier。

逐一嘗試,最後取 inlier 數量最多者為最終平移量。

此即 RANSAC (隨機採樣一致性) 的簡化版本,用投票 (voting) 方式找最大公約數之移動向量。

Figure 10. SIFT 特徵匹配示意圖(此視覺化模型有配合 opencv 函式庫,主程式沒有使用)

Figure 11. Harris 特徵匹配示意圖

2.4 Image Matching

所謂「影像匹配」在此主要指的是根據前一步算出的 (dx, dy) 來對新影像做適當的「平移」,然後把它「接」 到前面已拼好的全景上。由於這些程式都用了「圓柱投影」(cylindrical projection) 來處理相機擺動對水平方向的 扭曲,故最終只需考慮水平/垂直的簡單平移。

1. 圓柱投影 (Cylindrical Projection)

假設焦距 = f,對於影像中某像素 (x, y),令影像中心在 (c_x, c_y) 。程式中計算方式: 先得圓柱投影

$$x_{\text{dist}} = x - c_x, \quad y_{\text{dist}} = y - c_y.$$

$$x_{\text{mapped}} = \left[f \cdot arctan! \left(\frac{x_{\text{dist}}}{f} \right) \right] + c_x, \quad y_{\text{mapped}} = \left[f \cdot \frac{y_{\text{dist}}}{\sqrt{x_{\text{dist}}^2 + f^2}} \right] + c_y.$$

其中 [-]]-] 表示四捨五入。

透過此步驟,可以將原本視角較廣的圖轉成類似「捲在圓柱上」的效果,以減少透視變形,讓影像可以用簡單平移便可「大致」對齊。

Figure 12. 範例為測試數據 /grail 拼接四張圖片後結果,可以看出明顯的圓柱投影形狀

2. 累計平移與 drift 修正

當要拼多張影像,程式會計算相鄰兩張之間的平移量 (dx_i, dy_i) ,不斷把新影像「接」到已拼好的全景影像上。為防止因誤差累積而造成「第一張和最後一張」在高度上有漂移 (drift),常會計算最後得到的整體 (dx, dy),再將其等分到每一步的 (dy) 做修正,減少上下飄移。

流程概念:

- 1. 第 0 張當作基準,之後每張的累計移動量=前面累計+當前平移;
- 2. 最後 Δy 可能大於 0,表示影像越拼越往上或往下;
- 3. 在第二輪實際拼接時,將每一步的 dy 減去一個平均漂移量 $\Delta y \left(\frac{\Delta y}{({\it K} \cdot {\it K} \cdot 1)} \right)$
- 4. 重新拼接可得到較平滑的水平對齊。

3. 影像平移 (padding)

程式中用 pad_{image} 函式,依 (dx, dy) 做 zero padding。例如要把一張影像 B 向右下平移 (dx>0, dy>0),就上方 與左方都 pad 多少行/列的 0,並將原圖貼到該區塊的後方。如此合成後,兩張影像就產生相對位移效果。

Figure 13. 未解決 drift 前, parrington 拼接結果

Figure 14. 解決 drift 後, parrington 拼接結果

2.5 Blending

完成了「影像對齊」之後,若兩張影像有重疊區域,程式就會使用簡單的線性漸變融合來避免硬疊造成的接縫(seams)。以下為主要概念:

1. 重疊區 (Overlap)

程式計算兩張平移後的影像在 x 方向上重疊的範圍 (overlap_range)。之後在這個範圍內,設定一個隨著列 (column) 遞增的「alpha」,做線性混合。

2. 線性混合公式

令 α 為 0 到 1 之間,對應於重疊區域的左至右。對於每個像素 (同一行 c),分別從兩張影像 (A,B) 取得像素值 $\mathbf{p_{A}}$, $\mathbf{p_{B}}$ 。融合後結果可定義為:

$$pblend = (1 - \alpha) pA + \alpha pB$$
.

程式中的 alpha 是:

$$= \alpha = \frac{\text{overlap_counter}}{\text{overlap_range}},$$

overlap_counter 每往右一列就加一,實現從 0 漸漸到 1 的過程,達到漸層轉換。

3. 非重疊區處理

若某列只有 A 有內容 $(B \stackrel{.}{\Rightarrow} 0)$ 就直接用 A; 只有 B 有內容就直接用 B; 雨者皆無則維持 0; 雨者都有則做上述線性混合。

4. 最後裁切 (rectangle_crop)

當整張拼接好的影像外圍仍有黑色無效區域,程式中會對灰階值做閾值判斷,找出有效區域的最小外框並裁切,以得到較乾淨的結果。各數據集裁切邊界大小建議:/grail = 17,/parrington = 15,/out = 30,/wind = 24

Figure 15. Rectangling 後, parrington 拼接結果

3. RESULTS

本研究使用以下四種數據做影像拼接:

使用兩種演算法與 autostitch 分別做比較:

Grail =

- 上: SIFT (執行時間 1174.90 秒)
- 中: Harris (執行時間 22.12 秒)
- 下: Autostitch (執行時間 10 秒左右)

Parrington =

- 上: SIFT (執行時間 1446.45 秒)
- 中: Harris (執行時間 19.38 秒)
- 下: Autostitch (執行時間 10 秒左右)

Lab Outside =

- 左: SIFT (執行時間 1174.90 秒)
- 中: Harris (執行時間 2.12 秒)
- 右: Autostitch (執行時間 3 秒左右)

新增程式功能比較:

Parrington 程式歷程

- 上: 舊版程式 drift 問題
- 中: End to end alignment 後
- 下: Rectangling 後

4. CONCLUSIONS

Feature Detection and Matching

先以 SIFT 或 Harris+描述子找到兩張影像的特徵點與特徵向量;

用最近鄰 (L2 距離) 進行初步匹配;

用 RANSAC 選出最佳平移量,排除離群值。

Image Matching

由 RANSAC 得到的 (dx,dy)(dx, dy) 表示新影像相對舊影像的平移;

配合圓柱投影 (cylindrical projection) 消除鏡頭旋轉帶來的曲面扭曲;

累計多張影像的平移量,並可根據「首尾之差」做 drift 修正,保證不會越拼越高/低。

Blending

在重疊區域用線性漸變混合,使影像邊緣平滑過渡;

若有多列或多行重疊也可類似做二維的權重漸變。

拼完後可能周圍仍有黑邊,最後做裁切。

透過以上關鍵演算法與數學公式的結合,就能在實作中完成多張影像的全景拼接:

- 1. 特徵偵測 (SIFT / Harris)
- 2. 特徵與影像匹配 (Nearest Neighbor + RANSAC)
- 3. 影像對齊(平移)
- 4. 影像融合(簡單線性 blending)
- 5. 裁切 (rectangle_crop)

Data Availability Statement:

All the codes, datasets and files can be viewed and downloaded via the links: Github: Image Stitching

REFERENCES

- [1] Richard Szeliski and Heung-Yeung Shum. 1997. **Creating full view panoramic image mosaics and environment maps**. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques (SIGGRAPH '97). ACM Press/Addison-Wesley Publishing Co., USA, 251–258. https://doi.org/10.1145/258734.258861
- [2] Harris, Christopher G. and M. J. Stephens. "A Combined Corner and Edge Detector." Alvey Vision Conference (1988). https://doi.org/10.5244/C.2.23
- [3] Brown and Lowe, "**Recognising panoramas**," Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 2003, pp. 1218-1225 vol.2, https://doi.org/10.1109/ICCV.2003.1238630.
- [4] Lowe, D.G. **Distinctive Image Features from Scale-Invariant Keypoints**. *International Journal of Computer Vision* **60**, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
- [5] Brown, M., Lowe, D.G. **Automatic Panoramic Image Stitching using Invariant Features**. Int J Comput Vision 74, 59–73 (2007). https://doi.org/10.1007/s11263-006-0002-3
- [6] Implementing SIFT in Python: A Complete Guide