

Question

What's the true objective of machine learning?

minimize error on the training set

minimize training error with regularization

minimize error on unseen future examples

learn about machines

Training error

Loss minimization:

$$\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$$

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})$$

Is this a good objective?

A strawman algorithm

Algorithm: rote learning

Training: just store $\mathcal{D}_{\mathsf{train}}$. Predictor f(x): If $(x,y) \in \mathcal{D}_{\mathsf{train}}$: return y. Else: **segfault**.

Minimizes the objective perfectly (zero), but clearly bad...

Overfitting pictures

Classification

Regression

Evaluation

How good is the predictor f?

Key idea: the real learning objective-

Our goal is to minimize **error on unseen future examples**.

Don't have unseen examples; next best thing:

Definition: test set-

Test set \mathcal{D}_{test} contains examples not used for training.

Overfitting example

Example: overfitting-

Input: $x \in \{-4, -3, -2, -1, 1, 2, 3, 4\}$

Output: y = sign(x), but 25% labels flipped

Train error Test error

Rote 0% 50% — overfits!

Linear 25% 25% — generalizes!

Another strawman algorithm

Algorithm: majority algorithm-

Training: find most frequent output y in $\mathcal{D}_{\mathsf{train}}$.

Predictor f(x): return y.

On the previous example:

$$x$$
 -4 -3 -2 -1 1 2 3 4 $y_{\rm train}$ - + - - + + -

Train error Test error

Rote 0% 50% — overfits!

Linear 25% 25% — generalizes!

Majority 50% 50% — generalizes!*

*though the error is high 18

Generalization

When will a learning algorithm generalize well?

Approximation and estimation error

- Approximation error: how good is the hypothesis class?
- Estimation Error: how good is the learned predictor **relative to** the hypothesis class?

$$\underbrace{\mathsf{Err}(\hat{f}) - \mathsf{Err}(g)}_{\text{estimation}} + \underbrace{\mathsf{Err}(g) - \mathsf{Err}(f^*)}_{\text{approximation}}$$

Effect of hypothesis class size

As the hypothesis class size increases...

Approximation error decreases because:

taking min over larger set

Estimation error increases because:

statistical learning theory

Estimation error analogy

Scenario 1: ask few people around

Is your name Joe?

Scenario 2: email all of Stanford

Is your name Joe?

people = hypotheses, questions = examples

Training and test error

Training error

Test error

Underfitting: majority algorithm

Overfitting: rote learning algorithm

Fitting: reasonable learning algorithms

Question

How can you reduce overfitting (select all that apply)?

remove features

simplify your features (replace $cos(x_1)$ with x_1)

add $0.2||\mathbf{w}||^2$ to the objective function

make sure $\|\mathbf{w}\| \leq 1$

run SGD for fewer iterations

Controlling size of hypothesis class

Linear predictors are specified by weight vector $\mathbf{w} \in \mathbb{R}^d$

Keeping the dimensionality d small:

[whiteboard: linear and quadratic functions]

Keeping the norm (length) $\|\mathbf{w}\|$ small:

[whiteboard: $x \mapsto w_1 x$]

Controlling the dimensionality

Manual feature (template) selection:

- Add features if they help
- Remove features if they don't help

Automatic feature selection (beyond the scope of this class):

- Forward selection
- Boosting
- \bullet L_1 regularization

Controlling the norm: regularization

Regularized objective:

$$\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Algorithm: gradient descent lnitialize $\mathbf{w} = [0, \dots, 0]$ For $t = 1, \dots, T$: $\mathbf{w} \leftarrow \mathbf{w} - \eta(\nabla_{\mathbf{w}} [\mathsf{TrainLoss}(\mathbf{w})] + \lambda \mathbf{w})$

Same as gradient descent, except shrink the weights towards zero by λ .

Note: SVM = hinge loss + regularization

Controlling the norm: early stopping

Algorithm: gradient descent-linitialize
$$\mathbf{w} = [0, \dots, 0]$$

For $t = 1, \dots, T$: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$$

Idea: simply make T smaller

Intuition: if have fewer updates, then $\|\mathbf{w}\|$ can't get too big.

Lesson: try to minimize the training error, but don't try too hard.

Summary so far

Key idea: keep it simple-

Try to minimize training error, but keep the hypothesis class small.

Hyperparameters

Definition: hyperparameters-

Properties of the learning algorithm (features, regularization parameter λ , number of iterations T, step size η , etc.).

How do we choose hyperparameters?

Choose hyperparameters to minimize $\mathcal{D}_{\text{train}}$ error? **No** - solution would be to include all features, set $\lambda = 0$, $T \to \infty$.

Choose hyperparameters to minimize \mathcal{D}_{test} error? **No** - choosing based on \mathcal{D}_{test} makes it an unreliable estimate of error!

Validation

Problem: can't use test set!

Solution: randomly take out 10-50% of training and use it instead of the test set to estimate test error.

 $\mathcal{D}_{\mathsf{train}} ackslash \mathcal{D}_{\mathsf{val}}$ $\mathcal{D}_{\mathsf{val}}$

 $\mathcal{D}_{\mathsf{test}}$

Definition: validation set-

A validation (development) set is taken out of the training data which acts as a surrogate for the test set.

Development cycle

Problem: simplified named-entity recognition-

Input: a string x (e.g., President [Barack Obama] in)

Output: y, whether x contains a person or not (e.g., +1)

Algorithm: recipe for success-

- Split data into train, dev, test
- Look at data to get intuition
- Repeat:
 - Implement feature / tune hyperparameters
 - Run learning algorithm
 - Sanity check train and dev error rates, weights
 - Look at errors to brainstorm improvements
- Run on test set to get final error rates

Learning from Examples: A Review

- Learning principles
- Decision tree
- Linear regression & classification
- Support vector machine
- Neural network & deep learning
- Evaluation (generalization)

Decision Tree

 Choose the attribute that minimizes the remaining information needed

Linear Regression & Classification

$$\underbrace{\mathbf{w} \cdot \phi(x)}_{\text{score}}$$

	Classification	Linear regression
Predictor $f_{\mathbf{w}}$	sign(score)	score
Relate to correct y	$margin \; \big(score y \big)$	residual (score $-y$)
Loss functions	zero-one hinge logistic	squared absolute deviation
Algorithm	SGD	SGD

Linear Regression & Classification

Regression

Binary classification

Minimize the proper loss function

Support Vector Machine

Maximize the margin: hard or soft

Support Vector Machine

Kernel trick: from linear to nonlinear

Neural Network & Deep Learning

Hidden unit & back-projection

Neural Network & Deep Learning

Big data + GPU: NO manual features

Homework & Next Chapter

- Exercise
 - **-** 18.6/18.15/18.16/18.17/18.19/18.22/18.23/18.25

- Machine Learning (practical skills!)
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning