2021-2022 数字电路 第5,6章测试

姓名: _____ 学号: _____

1. 已知脉冲触发 JK 触发器输入端 J、K和 CLK的电压波形如图所示,画出 Q,Q'端对应的电压 波形。设触发器的初始状态为 Q=0.

解答:

2. 分析如图所示的时序逻辑电路,写出电路的驱动方程、状态方程,画出电路的状态转换图,说明电路能否自启动。(状态转移图要求按照 $\mathbf{Q}_2\mathbf{Q}_1\mathbf{Q}_0$ 的命名顺序)

解答:

解:电路的激励方程组为

$$\begin{aligned} D_2 &= Q_1 \\ D_1 &= Q_0 \\ D_0 &= (Q_2 \oplus Q_1) \oplus \overline{Q}_1 \ \overline{Q}_0 \end{aligned}$$

转换方程组为

$$\begin{aligned} Q_2^{n+1} &= Q_1^n \\ Q_1^{n+1} &= Q_0^n \\ Q_0^{n+1} &= \left(Q_2^n \bigoplus Q_1^n\right) \bigoplus \overline{Q}_1^n \ \overline{Q}_0^n \end{aligned}$$

这是个穆尔型同步时序电路。根据转换方程组可列出转换表,如表题解 6.2.8 所示。 状态图如图题解 6.2.8 所示。

表题解 6.2.8

74 AL	707 01210	
$Q_2^n Q_1^n Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	_
0 0 0	0 0 1	$Q_2Q_1Q_0$
0 0 1	010	
0 1 0	101	$000 \longrightarrow 001 \longrightarrow 010 \longrightarrow 101$
0 1 1	111	1
100	0 0 0	(100) - (110) - (111) - (011)
101	0 1 1	图题解 6. 2. 8
1 1 0	100	图题解 0.2.8
111	110	-

3. 下图是由两片同步十进制计数器 74160 组成的计数器,分析**这是多少进制的计数器,每片之间分别是几进制**?

解答:

解: 第(1)片 74160 工作在十进制计数状态。第(2)片 74160 采用置数法接成三进制计数器。两片之间是十进制。

若起始状态第(1)片和第(2)片 74160 的 $Q_3Q_2Q_1Q_0$ 分别为 0001 和 0111,则输入 19 个 CLK 信号以后第(1)片变为 0000 状态,第(2)片接收了两个进位信号以后变为 1001 状态,并使第(2)片的 LD'=0。第 20 个 CLK 信号到达以后,第(1)片计成 0001,第(2)片被置为 0111,于是返回到了起始状态,所以这是二十进制计数器。

4. 画出用两片同步**十六进制**计数器 74161 接成**同步五十九进制**计数器的接线图,可以附加必要的门电路。

	工作状态	ET	EP	LD'	R_{0}^{\prime}	CLK
$-EP \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	置零	×	×	×	0	×
ET 74161 LI	预置数	×	×	0	1	†
Q_0 Q_1 Q_2 Q_3 Q_3	保持	1	0	1	1	×
	保持(但 C=0)	0	×	1	1	×
	计数	1	1	1	1	1

解答:

五十九进制下计数到 58, 十六进制下 58=(3a),设计的接线图如图所示

5. **按照时序电路标准设计流程,**用 JK 触发器和门电路设计一个同步七进制计数器。(状态转移图 要求按照 $O_2O_1O_0$ 的命名顺序)

解:因为七进制计数器必须有七个不同的电路状态,所以需要用三个触发器组成。如果对电路的状态编码没有提出要求,则取哪七个状态以及如何安排顺序可自行确定。如果选用图 A6.31(a) 状态转换图所示的状态编码和循环顺序,即可画出电路次状 $(Q_3^*Q_2^*Q_1^*)$ 的卡诺图,如图 A6.31(b) 所示。

从卡诺图写出电路的状态方程得到

$$\begin{cases} Q_3^* = Q_3 Q_2' + Q_2 Q_1 = (Q_2 Q_1) Q_3' + (Q_2') Q_3 \\ Q_2^* = Q_2' Q_1 + Q_3' Q_2 Q_1' = (Q_1) Q_2' + (Q_3' Q_1') Q_2 \\ Q_1^* = Q_2' Q_1' + Q_3' Q_1' = (Q_2 Q_3)' Q_1' + (\mathbf{1}') Q_1 \end{cases}$$

将上式与JK 触发器特性方程的标准形 $Q^* = JQ' + K'Q$ 对照,即可得出驱动方程为

$$\begin{cases} J_3 = Q_2 Q_1; & K_3 = Q_2 \\ J_2 = Q_1; & K_2 = (Q_3' Q_1')' \\ J_1 = (Q_3 Q_2)'; & K_1 = 1 \end{cases}$$

根据驱动方程画出的电路图如图 A6.31(c)所示。

将无效状态 111 代入状态方程计算,得次态为 000,说明该电路能自启动。

