MONTANA STATE LIBRARY

AQUATIC INVERTEBRATES AND HABITAT AT A FIXED STATION ON ROCK CREEK, GRANITE COUNTY, MONTANA

August 23, 2001

A report to the Montana Department of Environmental Quality Helena, Montana

> by Wease Bollman Rhithron Associates, Inc. Missoula, Montana May 2002

INTRODUCTION

This report is one of 38 brief interpretive summaries of data assembled as part of a statewide, multi-year study conducted by the Montana Department of Environmental Quality (MT DEQ). Each report discusses information generated from a single benthic invertebrate sample collection and habitat evaluation at a fixed station established on a gauged river or high-order tributary. The present treatise focuses on the aquatic community sampled on the Rock Creek near Clinton, Montana on August 7, 2001. The sample site was located by GPS reading at 46° 41' 45" N, 113° 39' 53" W, lying within the Montana Valley and Foothill Prairie Ecoregion (Woods et al. 1998). The sample was collected by personnel of MT DEQ. Sampling effort consisted of either a composite of four Hess samples, or a one-minute kicknet collection (Bukantis 1998). Habitat parameters were evaluated using the MT DEO Macroinvertebrate Habitat Assessment Field Form for streams with riffle/run prevalence. Invertebrate samples were processed and animals identified by Rhithron Associates, Inc. Analysis of invertebrate assemblages was accomplished by applying the revised method (Bollman 1998) for streams of Western Montana's ecoregions. The method uses a multimetric battery to evaluate disturbance to biotic integrity.

The revised bioassessment metric battery and its scoring criteria have not been evaluated for application to higher-order streams and rivers; to date, no bioassessment method has been contrived for these waterways in Montana. Thus, the method used here is likely to have limitations in its applicability to the sites in this study. For example, 24 of the riverine or high-order waterways sampled for the fixed station study were located within Western Montana ecoregions and were sampled between July 23 and August 25, 2001. Mean water temperature for these sites at the time of sampling was 19.8°C (median = 19.4°). Temperatures ranged from 15.5°C (Kootenai River near Libby) to 25.3°C (Jefferson River near Three Forks). Ninety-eight sites from Western Montana were used to assemble the revised metric battery and to test it for sensitivity in detecting impairment, to establish scoring criteria, and to improve robustness of bioassessment. These 98 sites were mainly second and third order streams; the sampling season roughly corresponded to that of the fixed-station study. Mean water temperature for these sites at the time of sampling was 15°C (median = 14°C). Natural variations in benthic community composition and structure along longitudinal and thermal gradients are well known phenomena. Thus, scores and classifications were established for much smaller systems with significantly lower water temperatures; impairment classifications and use support designations in this study must be interpreted with care. Results from the application of other metric batteries may be found in the Appendix.

RESULTS AND DISCUSSION

Table 1 itemizes the nine evaluated habitat parameters and shows the assigned scores for each, as well as the integrated score and condition category.

Overall habitat conditions scored optimally at this site. All instream habitat features were judged optimal, though flow conditions were perceived to be sub-optimal. Disruption was evident in streambank vegetative cover along the left bank. The riparian zone width was judged to be somewhat limited on the right bank. Field notes document the proximity of the Rock Creek Road, which closely follows the stream.

Table 1. Stream and riparian habitat assessment for a fixed station on Rock Creek. August 2001.

Max. possible score	Parameter	Rock Creek near Clinton
10	Riffle development	9
10	Benthic substrate	9
20	Embeddedness	18
20	Channel alteration	16
20	Sediment deposition	18
20	Channel flow status	15
20	Bank stability: left / right	9/9
20	Bank vegetation: left / right	8 / 9
20	Vegetated zone: left / right 10 / 8	
160	Total	138
	Percent of maximum CONDITION*	86 OPTIMAL

^{*}Condition categories: Optimal > 80% of maximum score; Sub-optimal 75 - 56%; Marginal 49 - 29%; Poor <23%. Adapted from Plafkin et al. 1998.

Table 2. Metric values, scores, and bioassessment for a fixed station on Rock Creek. The revised bioassessment metric battery (Bollman 1998) was used for the evaluation. August 2001.

	Rock Creek near Clinton		
METRICS	METRIC VALUES	METRIC SCORES	
Ephemeroptera richness	10	3	
Plecoptera richness	4	3	
Trichoptera richness	6	3	
Number of sensitive taxa	4	3	
Percent filterers	30.8	0	
Percent tolerant taxa	11.3	1	
	TOTAL SCORE (max.=18)	13	
	PERCENT OF MAX.	72	
	Impairment classification	SLIGHT	
	USE SUPPORT	PARTIAL	

Bioassessment results are given in Table 2. When this bioassessment method is applied to these data, scores indicate that this site on Rock Creek is slightly impaired and only partially supports designated uses.

While the biotic index value (4.20) is slightly elevated over expectations, the number of mayflies collected in the sample suggests that water quality was essentially unimpaired at this site. Four sensitive cold stenothermic taxa were taken in the sampling effort, including the mayfly *Drunella doddsi*, and the salmonfly *Pteronarcys princeps*.

The site supported at least 4 stonefly taxa, suggesting that reach-scale habitat features such as streambank stability, riparian zone function, and channel morphology were unimpaired by human activities. Sixteen "clinger" taxa and 6 caddisfly taxa were collected, implying the availability of hard benthic surfaces unaffected by fine sediment deposition. Seven predator taxa and excellent taxa richness (37) indicate that diverse instream habitats supported a diverse community.

All expected functional components of a healthy benthic assemblage were present in the sample, although scrapers seemed to be underrepresented. The functional structure was skewed toward gatherers.

CONCLUSIONS

- Intact instream and near stream habitat and excellent water quality supported a diverse, cold-water adapted benthic community at this site on Rock Creek.
- The slight impairment indicated by the bioassessment method used appears to be inappropriate, given the taxonomic composition and tolerance characteristics of the benthic assemblage. The contribution of filter-feeders and tolerant taxa seem to be appropriate for the type of environment sampled. The biotic health at this site appears to be non-impaired.

LITERATURE CITED

Bollman, W. 1998. Improving Stream Bioassessment Methods for the Montana Valleys and Foothill Prairies Ecoregion. Master's (M.S.) Thesis. University of Montana. Missoula, Montana.

Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft. April 22, 1997. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

Woods, A.J., Omernik, J. M. Nesser, J.A., Shelden, J., and Azevedo, S. H. 1999. Ecoregions of Montana. (Color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia. US Geological Survey.

APPENDIX

Taxonomic data and summaries

Rock Creek

August 2001

Aquatic Invertebrate Taxonomic Data

Site Name: Rock Creek near Clinton	Date:	8/23/01			
Site ID: C02ROCKC01	Approx	c. percent of s	sample used; 30		
Taxon	Q	uantity	Percent	HBl	FFG
Enchytraeidae		7	2.13	11	CG
Nais behningi		10	3.05	8	CG
Pisidium sp.		1	0.30	8	CF
Total Misc. Taxa		18	5.49		
Acentrella insignificans		20	6.10	4	CG
Baetis tricaudatus		5	1.52	4	CG
Diphetor hageni		2	0.61	5	CG
Drunella doddsi		6	1.83	I	CG
Drunella spinifera		7	2.13	0	PR
Ephemerella sp.		2	0.61	1	CG
Serratella tibialis		17	5.18	2	CG
Epeorus albertae		1	0.30	2	CG
Nixe sp.		1	0.30	4	SC
Rhithrogena sp.		3	0.91	0	CG
Total Ephemeroptera		64	19.51		
Sweltsa sp.		1	0.30	0	PR
Claassenia sabulosa		1	0.30	3	PR
Hesperoperla pacifica		5	1.52	2	PR
Pteronarcys princeps		1	0.30	0	SH
Total Plecoptera		8	2.44		~
Arctopsyche grandis		12	3.66	2	PR
Brachycentrus occidentalis		23	7.01	2	CF
Glossosoma sp.		1	0.30	0	SC
Hydropsyche sp.		74	22.56	5	CF
Lepidostoma spsand case larvae		3	0.91	1	SH
Psychomyia sp.		1	0.30	2	CG
Total Trichoptera		114	34.76		
Optioservus sp.		11	3.35	5	SC
Zaitzevia sp.		18	5.49	5	CG
Total Colcoptera		29	8.84		
Simulium sp.		3	0.91	5	CF
Antocha sp.		2	0.61	3	CG
Hexatoma sp.		2	0.61	2	PR
Total Diptera		7	2.13		110
Cricotopus nostococladius		9	2.74	6	PH
Eukiefferiella Devonica Gr.		1	0.30	8	CG
Eukiefferiella Gracei Gr.		12	3.66	8	CG
Eukiefferiella Pseudomontana Gr.		3	0.91	8	CG
Micropsectra sp.		5 51	15.55	4	CG
Orthocladus sp.		31	0.91	6	CG
Pagastia sp.				0	CG
		6	1.83 0.30	5	PR
Thienemannimyia Gr.		1			
Total Chironomidae		2	0.61	5	CG
Total Chironomidae	C 1T (1	88	26.83		
	Grand Total	328	100.00		

Aquatic Invertebrate Summary

Site Name: Rock Creek near Clinton		Date: 8/23/01
SAMPLE TOTAL	328	•
EPT abundance	186	
TAXA RICHNESS	37	
Number EPT taxa	20	
Percent EPT	56 71	

TAXONOMIC COMPOSITION

GROUP	PERCENT	#TAXA	ABUNDANCE
Misc Taxa	5 49	3	18
Odonata	0.00	0	0
Ephemeroptera	19 51	10	64
Piecoptera	2 44	4	8
Hemiptera	0.00	0	0
Megaloptera	0.00	0	0
Trichoptera	34 76	6	114
Lepidoptera	0.00	0	0
Coleoptera	8 84	2	29
Diptera	2 13	3	7
Chironomidae	26 83	9	88

■ Odonata
Ephemeropiera
□ Plecoptera
I Llamintera

■ Misc. Taxa

- Hemiptera
 Megaloptera
 Trichoptera
 □ Lepidoptera
 Colcoptera
- 100% Diptera
 Chironomidae

FUNCTIONAL COMPOSITION

GROUP	PERCENT	#TAXA	ABUNDANCE
Predator	8 84	7	29
Parasite	0.00	0	0
Gatherer	52 44	20	172
Filterer	30 79	4	101
Herbivore	0.00	0	0
Piercer	2 74	1	9
Scraper	3 96	3	13
Shredder	1 22	2	4
Xylophage	0.00	0	0
Omnivore	0.00	0	0
Unknown	0.00	0	0

-	Predator
ï	Parasite

■ Gatherer

■ Filterer
■ Herbivore

■ Piercer

□ Scraper

■ Shredder

☐ Xylophage

☑ Omnivore

☑ Unknown

COMMUNITY TOLERANCES

Sediment tolerant taxa	2
Percent sediment tolerant	1 22
Sediment sensitive taxa	4
Percent sediment sensitive	7 01
Metals tolerance index (McGuire)	3 44
Cold stenotherm taxa	4
Percent cold stenotherms	7.01

Site ID: C02ROCKC01 DOMINANCE

DOMINANCE			
TAXON		ABUNDANCE	PERCENT
Hydropsyche sp		74	22.56
Micropsectra sp		51	15 55
Brachycentrus oc	cidemalis	23	7 01
Acentrella insigni	ficans	20	6 10
Zantzevia sp		18	5 49
SUBTOTAL 5 DO	MINANTS	186	56.71
Serratella ubialis		17	5 18
Arctopsyche gran	dis	12	3 66
Eukiefferiella Gra	cei Gr	12	3 66
Opnoservus sp		11	3 35
Nais behningi		10	
TOTAL DOMINA	ANTS	248	75 61
SAPROBITY			
Hilsenhoff Biotic	Index		4 20
DIVERSITY			
Shannon H (loge)			2 48
Shannon H (log2)			3 58
Simpson D			0.09
VOLTINISM			
TYPE		ABUNDANCE	PERCENT
Multivoltine		105	31 94
Univoltine		152	46 42
Semivoltine		71	21 65
TAXA CHARAG	TERS		
	#TAXA	ABUNDANCE	PERCENT
Tolerant	4	37	11.28
		0.3	7.01

BIOASSESSMENT INDICES

Intolerant

Clinger

BIOASSESSMEN			
B-IBI (Karr et al.))		
METRIC	VALUE		SCORE
Taxa richness	37		3
E nchness	10		5
P nchness	4		3
T richness	6		3
Long-lived	7		5
Sensitive richness	4		5
%tolerant	11 28		5
%predators	8 84		1
Clinger richness	16		3
%dominance (3)	45 12		5
		TOTAL SCORE	38

4

16

76 %

23 182

MONTANA DEQ METRICS (Bukantis 1998)

METRIC	VALUE	Plans Ecoregions	Valleys and Footballs	Mountain Ecoregions
Taxa richness	37	3	3	3
EPT richness	20	3	3	3
Biotic Index	4 20	3	2	1
%Dominant taxon	22.56	3	3	3
%Collectors	83 23	1	1	0
%EPT	56 71	3	2	2
Shannon Diversity	3 58	3		
%Scrapers +Shredd	5 18	1	0	0
Predator taxa	7	3		
%Multivoltine	31 94	3		
%H of T			3	
TOTAL SCORES		26	17	12
PERCENT OF MA	XIMUM	86 67	70 83	57 14
IMPAIRMENT CL	ASS	NON	SLIGHT	SLIGHT

Montana DEQ metric batteries

MONTANA STATE LIBRARY