Many optimization problems are NP-hard (e.g. the traveling salesperson problem)

- Many optimization problems are NP-hard (e.g. the traveling salesperson problem)
- → an optimal solution cannot be efficiently computed unless P=NP.

- Many optimization problems are NP-hard (e.g. the traveling salesperson problem)
- → an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!

- Many optimization problems are NP-hard (e.g. the traveling salesperson problem)
- → an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- **Techniques** for the design and analysis of approximation algorithms arise from studying specific optimization problems.

Overview

Combinatorial Algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- *k*-Center via param. Pruning
- Min-Deg-Spanning-Tree& local search
- Knapsack via DP & Scaling
- Euclidean TSP via Quadtrees

Overview

Combinatorial Algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- *k*-Center via param. Pruning
- Min-Deg-Spanning-Tree& local search
- Knapsack via DP & Scaling
- Euclidean TSP via Quadtrees

LP-based Algorithms

- introduction to LP-Duality
- Set Cover via LP Rounding
- Set Cover via Primal-Dual Schema
- Maximum Satisfiability
- Scheduling und Extreme Point Solutions
- Steiner Forest via Primal-Dual

In: Graph G = (V, E)

Out:

In: Graph G = (V, E)

In: Graph G = (V, E)

In: Graph G = (V, E)

In: Graph G = (V, E)

In: Graph G = (V, E)

In: Graph G = (V, E)

In: Graph G = (V, E)

In: Graph G = (V, E)

In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

Optimum (OPT = 4)

In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

Optimum (OPT = 4) – but in general NP-hard to find :-(

In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

"good" approximate solution (5/4-approximation)

An **NP-optimization problem** Π is given by:

■ A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - for each pair (s, I), there is a polynomial time algorithm to decide whether $s \in S_{\Pi}(I)$.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - for each pair (s, I), there is a polynomial time algorithm to decide whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj $_{\Pi}$ which assigns a positive objective value obj $_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$ a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - for each pair (s, I), there is a polynomial time algorithm to decide whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value obj_{Π}(I,s) ≥ 0 to any given pair (s, I) with $s \in S_{\Pi}(I)$.
- \blacksquare I is either a minimization or maximization problem.

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

$$D_{\Pi} =$$
For $I \in D_{\Pi}$: $|I| =$
 $S_{\Pi}(I) =$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = Vertex Cover$.

$$D_{\Pi} =$$
Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| =$ $S_{\Pi}(I) =$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = Vertex Cover$.

$$D_{\Pi} =$$
Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| =$

$$G = (V, E) \qquad S_{\Pi}(I) =$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

$$D_{\Pi} =$$
Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$

$$G = (V, E) \qquad S_{\Pi}(I) =$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$obj_{\Pi}(I,s) =$$

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$obj_{\Pi}(I,s) = |s|$$

 Π is M....imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi = \text{Vertex Cover}$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$obj_{\Pi}(I,s) = |s|$$

 Π is M in imization problem.

Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π .

Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\operatorname{obj}_{\Pi}(I, s^*)$ is minimal among objective values attained by the feasible solutions of I.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\underset{\Pi}{\text{obj}}_{\Pi}(I, s^*)$ is minimal among objective values attained by the feasible solutions of I.

maximization problem

Let Π be a minimization problem and $I \in D_{\Pi}$ be an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\underset{\Pi}{\text{obj}}_{\Pi}(I,s^*)$ is minimal among objective values attained by the feasible solutions of I.

The optimal value $\operatorname{obj}_{\Pi}(I, s^*)$ of the objective function is also denoted by $\operatorname{OPT}_{\Pi}(I)$ or simply OPT in context.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a

feasible solution $s \in S_{\Pi}(I)$ such that

$$\frac{\mathrm{obj}_{\Pi}(I,s)}{\mathrm{OPT}_{\Pi}(I)}$$

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \leq \alpha.$$

$$\alpha \colon \mathbb{N} \to \mathbb{Q}$$

Let Π be a minimization problem and $\alpha \in \mathbb{C}^+$.

A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \leq \mathscr{A}(|I|)$$

maximization problem $\alpha: \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

A factor- α -approximation algorithm for Π is an efficient algorithm which provides for **any** instance $I \in D_{\Pi}$ a feasible solution $s \in S_{\Pi}(I)$ such that

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \stackrel{\geq}{\leq} \mathscr{A}(|I|)$$

Ideas?

Edge-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I,s)/OPT$, when it is hard to calculate OPT?

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I,s)/OPT$,

when it is hard to calculate OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT

and compare it to our approximate solution.

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I,s)/OPT$,

when it is hard to calculate OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and compare it to our approximate solution.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

OPT ≥

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

OPT ≥

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

 $OPT \ge |M|$

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$\begin{array}{l}
\text{OPT} \ge |M| \\
\text{OPT} = |M|?
\end{array}$$

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

Vertex cover of M

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$\begin{array}{c|c}
OPT \ge |M| \\
OPT - |M|?
\end{array}$$

Vertex cover of M

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

Vertex cover of *M* Vertex cover of *E*

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

 $\frac{\text{OPT} \ge |M|}{\text{OPT} - |M|}$?

Vertex cover of *M* Vertex cover of *E*

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

Algorithm VertexCover(*G*)

$$M \leftarrow \emptyset$$

Algorithm VertexCover(*G*)

$$M \leftarrow \emptyset$$

foreach $e \in E(G)$ do

Algorithm VertexCover(G) $M \leftarrow \emptyset$ **foreach** $e \in E(G)$ **do**

if e not adjacent to edge in M then

Algorithm VertexCover(*G*)

```
M \leftarrow \emptyset
foreach e \in E(G) do

| if e not adjacent to edge in M then
| M \leftarrow M \cup \{e\}
```

Algorithm VertexCover(*G*)

```
M \leftarrow \emptyset
foreach e \in E(G) do

| if e not adjacent to edge in M then
| M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

Algorithm VertexCover(G)

```
M \leftarrow \emptyset
foreach e \in E(G) do

| if e not adjacent to edge in M then
| M \leftarrow M \cup \{e\}
```

return $\{u, v \mid uv \in M\}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VertexCover.

Algorithm VertexCover(*G*)

```
M \leftarrow \emptyset
foreach e \in E(G) do

| if e not adjacent to edge in M then
| M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2-approximation algorithm for VertexCover.

The best-known approximation factor for VertexCover is

Algorithm VertexCover(*G*)

```
M \leftarrow \emptyset
foreach e \in E(G) do

| if e not adjacent to edge in M then
| M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2-approximation algorithm for VertexCover.

The best-known approximation factor for VertexCover is $2 - \Theta(1/\sqrt{\log n})$

Algorithm VertexCover(G) $M \leftarrow \emptyset$ **foreach** $e \in E(G)$ **do** if e not adjacent to edge in M then $M \leftarrow M \cup \{e\}$

return $\{u, v \mid uv \in M\}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VertexCover.

The best-known approximation factor for

VertexCover is $2 - \Theta(1/\sqrt{\log n})$

VertexCover cannot be approximated within factor 1.3606 (unless P=NP)

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
foreach e \in E(G) do
\text{if } e \text{ not adjacent to edge in } M \text{ then}
M \leftarrow M \cup \{e\}
```

return $\{u, v \mid uv \in M\}$

Theorem. The above algorithm is a factor-2-approximation algorithm for VertexCover.

The best-known approximation factor for

```
VertexCover is 2 - \Theta(1/\sqrt{\log n})
```

VertexCover cannot be approximated within factor 1.3606 (unless P=NP)

VERTEXCOVER cannot be approximated within factor $2 - \Theta(1)$, if "Unique Games Conjecture" holds.