Asymmetric Cryptography Algorithm

Dr. Rafiqul Islam

Lecture Outline

- DES
- AES
- RC4
- RSA

Block Cipher

- A block cipher is an encryption/decryption scheme in which a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.
- Many block ciphers have a Feistel structure.
- The Data Encryption Standard (DES) has been the most widely used encryption algorithm until recently. It exhibits the classic Feistel structure. DES uses a 64-bit block and a 56-bit key.

Block vs Stream Ciphers

- Block ciphers process messages in blocks, each of which is then en/decrypted like a substitution on very big characters 64-bits or more.
- Stream ciphers process messages a bit or byte at a time when en/decrypting many current ciphers are block ciphers broader range of applications

Block Cipher Principles

- Most symmetric block ciphers are based on a Feistel Cipher Structure needed since must be able to decrypt ciphertext to recover messages efficiently
- Block ciphers look like an extremely large substitution would need table of 2⁶⁴ entries for a 64-bit block instead create from smaller building blocks using idea of a product cipher

Feistel Cipher Structure

Output (plaintext)

Figure 3.3 Feistel Encryption and Decryption (16 rounds)

Feistel Cipher Design Elements

- Block size
- Key size
- Number of rounds
- Subkey generation algorithm
- Round function
- Fast software en/decryption
- Ease of analysis

Data Encryption Standard

- Most widely used block cipher in world adopted in 1977 by NBS (now NIST) as FIPS PUB 46
- Encrypts 64-bit data using 56-bit key
- Has widespread use
- Has been considerable controversy over its security

DES Encryption Overview

General structure of DES

DES function

Key generation

Initial Permutation IP

- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- example:

```
IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)
```

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$$

- F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P

DES Round Structure

S-Box

Table 3.3 Definition of DES S-Boxes

Tab	le 3.3	De	finitio	n of I	DES S	S-Box	es									
S_1	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	100	100	120		1/2	2.5		15		2	8		220			
S ₂	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	0.000	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
S ₃	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
	20															
S ₄	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
						10					•		- 12			
S ₅	2 14	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
	4	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	100000	2 8	1	11 7	10	13	7	8	15	9	12	5	6	3	0	14
	11	δ	12	1	1	14	2	13	6	15	0	9	10	4	5	3
S ₆	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
S ₇	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
37	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
0	1	13	1.5	0	10	3		0.00	12	3	U	11	U	14	7	2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- each S-box is actually 4 little 4 bit boxes
 - outer bits 1 & 6 (row bits) select one row of 4
 - inner bits 2-5 (col bits) are substituted
 - result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data & key
 - feature known as autoclaving (autokeying)
- example:
 - $S(18 \ 09 \ 12 \ 3d \ 11 \ 17 \ 38 \ 39) = 5fd25e03$

DES Key Schedule

- forms subkeys used in each round
 - initial permutation of the key (PC1) which selects
 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating each half separately either 1 or 2 places depending on the key rotation schedule K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- note practical use issues in h/w vs s/w

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 - **–**
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value

Single Round of DES

Figure 3.6 Single Round of DES Algorithm

Avalanche Effect

- key desirable property of encryption alg
- where a change of **one** input or key bit results in changing approx **half** output bits
- making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

Strength of DES – Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

Strength of DES – Analytic Attacks

- now have several analytic attacks on DES
- these utilise some deep structure of the cipher
 - by gathering information about encryptions
 - can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest
- generally these are statistical attacks
- include
 - differential cryptanalysis
 - linear cryptanalysis
 - related key attacks

Strength of DES – Timing Attacks

- attacks actual implementation of cipher
- use knowledge of consequences of implementation to derive information about some/all subkey bits
- specifically use fact that calculations can take varying times depending on the value of the inputs to it
- particularly problematic on smartcards

Example

• A complete example is attached in PDF.

Double-DES?

• could use 2 DES encrypts on each block

$$-C = E_{\kappa_2} (E_{\kappa_1} (P))$$

- issue of reduction to single stage
- and have "meet-in-the-middle" attack
 - works whenever use a cipher twice
 - $-\operatorname{since} X = E_{\kappa_1}(P) = D_{\kappa_2}(C)$
 - attack by encrypting P with all keys and store
 - then decrypt C with keys and match X value
 - can show takes $O(2^{56})$ steps

Triple-DES with Two-Keys

- hence must use 3 encryptions
 - would seem to need 3 distinct keys
- but can use 2 keys with E-D-E sequence
 - $-C = E_{\kappa_1} (D_{\kappa_2} (E_{\kappa_1} (P)))$
 - nb encrypt & decrypt equivalent in security
 - if K1=K2 then can work with single DES
- standardized in ANSI X9.17 & ISO8732
- no current known practical attacks