CS 1510 Homework 5

Brian Falkenstein, Brian Knotten, Brett Schreiber

September 6, 2018

11

a

SJF is not optimal on the following input I:

 $J_1 = (0, 2)$

 $J_2 = (1, 2)$

For each time t:

- 1. Run J_1 (it is the only choice)
- 2. Run J_2 (arbitrarily, since J_1 and J_2 are the same size.)
- 3. Run J_2 (arbitrarily). J_2 is completed now, so $C_2=3$
- 4. Run J_1 (it is the only choice). J_1 is completed now, so $C_1 = 4$

The total completion time for SJF(I) is $C_1 + C_2 = 4 + 3 = 7$ But a more optimal solution opt(I) exists. For each time t:

- 1. Run J_1
- 2. Run J_1 . J_1 is now finished, so $C_1 = 2$.
- 3. Run J_2 .
- 4. Run J_2 . J_2 is now finished, so $C_2 = 4$.

The total completion time for opt(I) is $C_1 + C_2 = 2 + 4 = 6$ SJF(I) is not optimal therefore SJF is incorrect.

b

This proof does not consider the possibility of job j completing between times t and u. If this were the case, and j was initially scheduled to complete before time u, moving it back to u will increase its completion time, making its output not optimal.

\mathbf{c}

Assume that A, the algorithm that implements SRPT, is incorrect and has some input I that makes it give the incorrect output. Define Opt(I) to be the correct output that agrees with A(I), the output from A on I, for the most steps. Also define the first "step", or time interval that A(I) and Opt(I) disagree, to be t. At time t, say that A(I) schedules job J_A with tuple (r_A, x_A) , and Opt(I) schedules job J_O with tuple (r_O, x_O) . We can construct Opt'(I) by simply swapping J_O with the next instance of Opt(I) scheduling J_A , say at time u.

Opt'(I) clearly agrees with A(I) for one more step, as it now also schedules J_A at time t. The problem addressed in part b of this problem can also be disproven here. We know that J_A has a shorter time left until completion than J_O , because of the definition of A. Thus, if J_O were to complete between times t and u, we could simply swap the entirety of J_A into the spots that J_O is ran, and have it complete even earlier, lowering the total completion time. The increased completion time added by having to shift J_O down would be less than the decreased time from completing J_A earlier, because J_O could also be scheduled into the additional slots that J_A does not need.