$7_3 \ (K7a_5)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 6 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^3 8u^2 + 4u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_3, c_4, c_7	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_3, c_4, c_7	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.873214	-7.66009	-12.2690
u = -0.138835 + 1.234450I	2.96024 + 1.97241I	-4.57572 - 3.68478I
u = -0.138835 - 1.234450I	2.96024 - 1.97241I	-4.57572 + 3.68478I
u = 0.408802 + 1.276380I	-3.69558 - 4.59213I	-8.58114 + 3.20482I
u = 0.408802 - 1.276380I	-3.69558 + 4.59213I	-8.58114 - 3.20482I
u = -0.413150	-0.738851	-13.4170

II. u-Polynomials

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \ c_6$	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_3, c_4, c_7	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_3, c_4, c_7	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$