Real Analysis

Divya Bhagia

Boston College

August 19, 2019

Overview

- 1 Sets, Relations and Functions
- Metric Spaces
- Basic Topology
- Sequences and Convergence
- Compactness
- 6 Continuity and Weierstrass Theorem

Overview

- 1 Sets, Relations and Functions
- Metric Spaces
- Basic Topology
- 4 Sequences and Convergence
- Compactness
- 6 Continuity and Weierstrass Theorem

Set Notation

A **set** is any well-specified collection of elements.

- A set that contains no elements is called an **empty set** denoted by \emptyset .
- $A \subseteq B$ (A is a subset of B) if $x \in A \Rightarrow x \in B$.
- $A \subset B$ (A is a **proper subset** of B) if $A \subseteq B$ is true but $B \subseteq A$ is not true.
- The set of all subsets of a set X is called the **power set** of X denoted by P(X) or 2^X .

Set Operations

- **Union** of two sets: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- **Intersection** of two sets: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- **Set Difference**: A B or $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$
- **Complement**: A^c or $\bar{A} = U \backslash A$ where U is the universal set.
- Cartesian product: $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$

De Morgan's Law

Proposition

Let $\{A_i\}_{i\in I}$ be a collection of subsets of U, then

(1)
$$\overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \bar{A}_i$$
 (2) $\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \bar{A}_i$

$$(2) \overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \bar{A}_i$$

Proof: (1) \subset : Take $x \in \bigcup A_i$, this implies that $x \notin A_i$ for all $i \in I$. Then

 $x \in \bar{A}_i$ for all $i \in I$ and therefore $x \in \bigcap \bar{A}_i$.

 \supset : Take $x \in \bigcap \bar{A_i}$, this implies that $x \in \bar{A_i}$ for all $i \in I$. Then $x \notin A_i$ for

all $i \in I$ and therefore $x \notin \bigcup A_i$ which implies that $x \in \bigcup A_i$.

(2) Follows from (1).

Relations

A binary **relation** R from A to B is a subset of $A \times B$. (e.g. \geq on $X = \{1, 2, 3\}$)

- R is **reflexive** if for all $x \in X$, we have xRx.
- R is **transitive** if for all $x, y, z \in X$ s.t xRy and yRz, we have xRz.
- R is **anti-symmetric** if for all $x, y \in X$ s.t xRy and yRx, we have x = y.
- R is **complete** if for all $x, y \in X$, either xRy or yRx.
- R is **symmetric** if for all $x, y \in X$ s.t xRy, we have yRx.
- R^{-1} is **inverse** of R such that $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$

Partially Ordered Set

A relation \leq on X is a **partial order** if \leq is reflexive, transitive and anti-symmetric. In this case, we call (X, \leq) a **partially ordered set**.

Upper/Lower Bound, Maximum/Minimum, and Supremum/Infimum

Definitions

Let (X, \leq) be a partially ordered set, and let $A \subset X$.

- $u \in X$ is an **upper bound** of A if $u \ge a$, $\forall a \in A$.
- $I \in X$ is a **lower bound** of A if $I \le a$, $\forall a \in A$.
- $x \in A$ is a **maximum** of A if x is an upper bound of A.
- $x \in A$ is a **minimum** of A if x is an lower bound of A.
- $x \in X$ is the **least upper bound** or **supremum** of A if x is an upper bound of A and $x \le y$ for any upper bound y of A.
- $x \in X$ is the **greatest lower bound** or **infimum** of A if x is a lower bound of A and $x \ge y$ for any lower bound y of A.

Functions

Definition

A relation f from X to Y is a **function** if

- ② $\forall x \in X \text{ and } y_1, y_2 \in Y \text{ if } (x, y_1) \in f \text{ and } (x, y_2) \in f \text{ then } y_1 = y_2$

Given a function $f: X \to Y$

- X is called the domain of f
- Y is called the codomain of f
- **Image** of a set $S \subset X$ under f is given by

$$f(S) = \{f(x) : x \in S\}$$

• f(X) is called the **range** of f

Functions

Consider a function $f: X \to Y$, then

- f is an **injective** function if $\forall x_1, x_2 \in X$ if $f(x_1) = f(x_2)$ then $x_1 = x_2$.
- f is a **surjective** function if f(X) = Y
- f is a **bijective** function if f is both injective and surjective.

Composite Functions

Let $f: X \to Y$ and $g: Y \to Z$. Then the **composite function** of f and g, denoted as $g \circ f$, is a function from X to Z s.t. for each $x \in X$, the value of the function $(g \circ f)(x) = g(f(x))$.

Monotonic Functions

When both the domain and the codomain are ordered sets, we can talk about monotonicity of a function. A monotonic function is simply a function that preserves, or inverses, the order.

Definition

Let (X, \leq_X) and (Y, \leq_Y) be posets, and consider a function $f: X \to Y$

- **1** If is weakly increasing iff $x \le x$ implies $f(x) \le y$ f(x')
- ② f is weakly decreasing iff $x \leq_X x'$ implies $f(x) \geq_Y f(x')$
- **3** f is strictly increasing iff $x <_X x'$ implies $f(x) <_Y f(x')$
- f is strictly decreasing iff $x <_X x'$ implies $f(x) >_Y f(x')$

Overview

- Sets, Relations and Functions
- 2 Metric Spaces
- Basic Topology
- 4 Sequences and Convergence
- 6 Compactness
- 6 Continuity and Weierstrass Theorem

Metric Spaces

Definition

Let X be a set. A function $d: X^2 \to \mathbb{R}_+$ is a **distance function** or a **metric** on X if it satisfies the following.

- **1** d(x, y) = 0 if x = y
- ② Symmetry: $d(x,y) = d(y,x) \ \forall x,y \in X$, and
- **3** Triangle inequality: $d(x, y) \le d(x, z) + d(z, y) \ \forall x, y, z \in X$

If d is a metric on X, then the couple (X, d) is called a metric space.

Corollary

Given a metric space (X,d) and a subset $S \subset X$. Define a new distance function $d|_S: S^2 \to \mathbb{R}_+$ as $d|_S(x,y) = d(x,y)$ for any $x,y \in S$, then $(S,d|_S)$ is a valid metric space.

Examples of Metrics on \mathbb{R}^k

• Euclidean distance function d_2

$$d_2(x,y) = \sqrt{\sum_{i=1}^k (x_i - y_i)^2}$$

 \bullet d_n metric

$$d_n(x,y) = \left(\sum_{i=1}^k |x_i - y_i|^n\right)^{\frac{1}{n}}$$

Discrete metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Overview

- Sets, Relations and Functions
- Metric Spaces
- Basic Topology
- 4 Sequences and Convergence
- 6 Compactness
- 6 Continuity and Weierstrass Theorem

Open Balls and Bounded Sets

Let (X, d) be a metric space and S be a subset of X.

Definition

The **open ball** centered at $x \in X$ with radius r > 0 is defined as the set

$$B_r(x) = \{ z \in X : d(z,x) < r \}$$

Definition

The set S is said to be **bounded** if there exists $x \in X$ and r > 0 s.t. $S \subset B_r(x)$.

Open Sets

Let (X, d) be a metric space and S be a subset of X.

Interior Point

A point $x \in X$ is an **interior point** of S if $\exists r > 0$ s.t. $B_r(x) \subset S$. The set of interior points of S is denoted as int(S).

Open Set

The set S is an **open set** if $S \subset int(S)$, i.e. all points in S are interior points.

Union of open sets is open

Proposition

Let $\{E_{\alpha}\}_{{\alpha}\in A}$ be an arbitrary family of open sets (potentially uncountably many of them) in a metric space (X,d). Then their union $\bigcup_{{\alpha}\in A}E_{\alpha}$ is also open.

Proof: Take any $x \in \bigcup_{\alpha \in A} E_{\alpha}$, we need to find r > 0 s.t. $B_r(x) \subset \bigcup_{\alpha \in A} E_{\alpha}$.

By definition of union, there exists $\hat{\alpha}$ s.t. $x \in E_{\hat{\alpha}}$. Because $E_{\hat{\alpha}}$ is open, we can find r > 0 s.t. $B_r(x) \subset E_{\hat{\alpha}}$. This is the r > 0 we needed to find as

$$B_r(x) \subset E_{\hat{\alpha}} \subset \bigcup_{\alpha \in A} E_{\alpha}.$$

Finite intersection of open sets is open

Proposition

Let $\{E_i\}_{i=1}^n$ be a finite family of open sets in a metric space (X, d). Then their intersection $\bigcap_{i=1}^n E_i$ is also open.

Proof: Take any $x \in \bigcap_{i=1}^n E_i$, we need to find r > 0 s.t. $B_r(x) \subset \bigcap_{i=1}^n E_i$. By definition of intersection, $x \in E_i$ for all i = 1, ..., n. For each i, because E_i is open, $\exists r_i > 0$ s.t. $B_{r_i}(x) \subset E_i$. Let $r = min\{r_1, ..., r_n\}$. Now clearly, r > 0 and $B_r(x) \subset B_{r_i}(x) \subset E_i$.

Closed Sets

Let (X, d) be a metric space and S be a subset of X.

Limit Point

A point $x \in X$ is a **limit point** of S if $(B_r(x)\setminus\{x\})\cap S \neq \emptyset$, $\forall r > 0$. Denote the set of limit points of S as S'.

Closed Set

The set S is a **closed set** if $S' \subset S$, i.e. S contains all of it's limit points.

Topological definition of closed sets

Definition

The set S is a **closed set** if S^c is open.

Proposition

Both definitions are equivalent.

Proof: \Leftarrow : Suppose S is closed. Then choose $x \in S^c$, then $x \notin S$, and so x is not a limit point of S. Hence there exists r > 0 such that $S \cap B_r(x) = \phi$, such that $B_r(x) \subset S^c$. Thus x is an interior point of S^c and S^c is open.

 \Rightarrow : Suppose S^c is open. Let x be a limit point of S, then every open ball around x contains a point of S, so that x is not an interior point of S^c . Since S^c is open, this means that $x \in S$, Therefore S is closed.

Union and intersection of closed sets

Proposition

In metric space (X, d):

- Let $\{F_{\alpha}\}_{\alpha\in A}$ be an arbitrary family of closed sets (potentially uncountably many of them). Then their intersection $\bigcap_{\alpha\in A}F_{\alpha}$ is also closed.
- 2 Let $\{F_i\}_{i=1}^n$ be a finite family of closed sets. Then their union $\bigcup_{i=1}^n F_i$ is also closed.

Overview

- Sets, Relations and Functions
- Metric Spaces
- Basic Topology
- 4 Sequences and Convergence
- Compactness
- 6 Continuity and Weierstrass Theorem

Sequences and Convergence

Definitions

- Let X be a set. The function $x : \mathbb{N} \to X$ is called a **sequence** in X.
- Given a sequence (x_n) , a **subsequence** of (x_n) is a sequence (x_{nk}) indexed by $k \in \mathbb{N}$ where (n_k) is a strictly increasing sequence in \mathbb{N} .

Definition

Let (X,d) be a metric space. A sequence (x_n) in X is said to **converge** to a point $x \in X$, iff $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $d(x_n,x) < \epsilon$ for all n > N. When the sequence (x_n) converges to x, the point x is called a **limit** of the sequence (x_n) , and we use the notation $x_n \to x$ or $\lim_{n \to \infty} x_n = x$.

Closed Set: Alternative Definition

Proposition

Let (X, d) be a metric space, and S a subset of X. Then the following statements are equivalent.

- S is a closed set.
- ② For any sequence (x_n) in S convergent to some point $x \in X$, we have $x \in S$.
- **Proof:** (1) \Rightarrow (2): Suppose S is closed and $x_n \to x$. We will prove the claim by contradiction, so assume $x \notin S$. But because $x_n \to x$, for all r > 0, $\exists n$ such that $x_n \in B_r(x) \setminus \{x\}$. Therefore $x_n \in B_r(x) \setminus \{x\} \cap S$ which implies $B_r(x) \setminus \{x\} \cap S \neq \phi$. So we have shown that $x \in S'$. (2) \Rightarrow (1): We will prove the claim by contrapositive. Suppose S is an open set. Then S^c is closed and $\exists x \in S^c$ such that $\forall r > 0$, $B_r(x) \setminus \{x\} \cap S \neq \phi$. For every $n \in \mathbb{N}$, let $x_n \in B_{\frac{1}{n}}(x) \cap S$, then $x_n \to x$ but $x \notin S$.

August 19, 2019

Sequences and Convergence

Proposition

Let (X, d) be a metric space. If (x_n) is a convergent sequence in X, then x_n must be bounded.

Proof: Let the limit of (x_n) be x. Let $\epsilon = 1$, and by definition of convergence, there exists N s.t. $d(x_n, x) < 1$ for any n > N. Then let

$$r = max\{d(x_1, x), d(x_2, x), ..., d(x_N, x)\} + 1$$

Then clearly we have $B_r(x) \supset \{x_1, x_2, ..\}$.

Monotone Convergence Theorem

Theorem

Every monotone and bounded real sequence (x_n) is convergent in (\mathbb{R}, d_2) .

Proof: (1) Take any increasing and bounded from above real sequence (x_n) . Because the range of the sequence $\{x_1, x_2, ...\}$ is bounded from above, by l.u.b. property of \mathbb{R} , it has a least upper bound. Let $x = \sup\{x_1, x_2, ...\}$, then we want to show that $x_n \to x$. Take any $\epsilon > 0$. We want to find N s.t. $|x_n - x| < \epsilon$ for any n > N. Because x is the least upper bound of $\{x_1, x_2, ...\}$, $x - \epsilon$ is not an upper bound and therefore $\exists N$ s.t. $x_N > x - \epsilon$. Therefore, for any n > N, we have

$$x \ge x_n \ge x_N > x - \epsilon$$

and therefore $|x_n - x| < \epsilon$.

(2) Take any decreasing and bounded from below real sequence (x_n) . Then $(-x_n)$ is increasing and bounded from above. By (1) we have $(-x_n)$ is convergent and thus (x_n) is also convergent.

Sequences and Convergence

Lemma

Every sequence in $\mathbb R$ has a monotone subsequence.

Proof: Take any sequence (x_n) in \mathbb{R} . Call the term x_n a dominant term if $x_n \ge x_m$ for any $m \ge n$.

Case 1: (x_n) has infinitely many dominant terms. Then these dominant terms constitute a decreasing subsequence.

Case 2: (x_n) has finitely many dominant terms. The let x_N be the last dominant term and let $n_1 = N + 1$. By definition, $\exists n_2 > n_1$ s.t.

 $x_{n_2} > x_{n_1}$. Similarly, $\exists n_3 > n_2$ s.t. $x_{n_3} > x_{n_2}$ and so on. Therefore we obtain a strictly increasing subsequence.

Case 3: (x_n) has no dominant term. The let $n_1 = 1$ and construct strictly increasing subsequence as in Case 2.

Bolzano-Weierstrass Theorem

Every bounded sequence in (\mathbb{R}^k, d_2) has a convergent subsequence.

Overview

- Sets, Relations and Functions
- Metric Spaces
- Basic Topology
- 4 Sequences and Convergence
- Compactness
- 6 Continuity and Weierstrass Theorem

Compactness: Two Equivalent Definitions

Compactness

Let (X, d) be a metric space, and S be a subset of X.

- A family of open sets $\{E_a\}_{a\in A}$ is an **open cover** of S if $S\subset\bigcup_{a\in A}E_a$.
- The set S is **compact** if \forall open cover $\{E_a\}_{a\in A}$ of S, \exists a finite $B\subset A$ s.t. $\{E_a\}_{a\in B}$ is also an open cover of S.

Sequential Compactness

Let (X, d) be a metric space, and S a subset of X. The set S is **sequentially compact** if any sequence (x_n) in S has a subsequence convergent to some $x \in S$.

Compactness

Lemma 1

Any closed interval [a, b] is compact in (\mathbb{R}, d_2) .

Lemma 2

Every k-cell $[a_1, b_1] \times [a_2, b_2] \times ... \times [a_k, b_k]$ is compact in (\mathbb{R}^k, d_2) .

Heine-Borel Theorem

In (\mathbb{R}^k, d_2) , a set S is compact *iff* it is closed and bounded.

Sequential Compactness

Theorem

Let (X, d) be a metric space, and S a subset of X. The set S is compact iff it is sequentially compact.

Proof: The theorem is true in general but let us just prove it for (\mathbb{R}^k, d_2) . \Rightarrow : If S in (\mathbb{R}^k, d_2) is compact, then it is bounded. Then any sequence (x_n) in S must be bounded. Then by Bolzano-Weierstrass theorem, (x_n) has a subsequence convergent to some $x \in \mathbb{R}^k$. By sequential definition of closed sets, we have $x \in S$. Therefore S is sequentially compact. \Leftarrow : If S in (\mathbb{R}^k, d_2) is sequentially compact then it must be closed; otherwise we can find a sequence (x_n) in S convergent to some x^* outside S, and any subsequence of (x_n) must also converge to $x^* \notin S$, so it does not have a subsequence convergent to some point in S. Also, the set Smust be bounded. Otherwise we can construct a sequence (x_n) s.t. $d_2(x_n, 0) > n$, and so (x_n) does not even have a convergent subsequence.

Overview

- Sets, Relations and Functions
- 2 Metric Spaces
- Basic Topology
- 4 Sequences and Convergence
- 6 Compactness
- 6 Continuity and Weierstrass Theorem

Continuity

Definition

Let (X, d_X) and (Y, d_X) be metric spaces. Let S be a subset of X, function $f: S \to Y$, and $x_0 \in S$. Then the function f is said to be **continuous at** x_0 if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t.

$$f(B_\delta(x_0)\cap S)\subset B_\epsilon(f(x_0))$$

The function f is said to be a **continuous function** if f is continuous at x_0 for all $x_0 \in S$.

Continuity

Theorem

Let (X, d_X) and (Y, d_X) be metric spaces. Let S be a subset of X, function $f: S \to Y$, and $x_0 \in S$. Then f is continuous at x_0 iff $f(x_n) \to f(x_0)$ for any sequence (x_n) in S convergent to x_0 .

Continuous image of a compact set is also compact

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, and function $f: X \to Y$ is continuous. Then f(K) is compact in (Y, d_Y) for any K compact in (X, d_X) .

Proof: Take K compact in (X, d_X) and take any open cover $\{E_\alpha\}_{\alpha \in A}$ of f(K). We want to find a finite $B \subset A$ s.t. $\{E_\alpha\}_{\alpha \in B}$ is an open cover of f(K).

First we claim that $\{f^{-1}(E_{\alpha})\}_{\alpha\in A}$ is an open cover of K. Because each E_{α} is open in (Y,d_Y) , the set $f^{-1}(E_{\alpha})$ is open in (X,d_X) . Take any $x\in K$, we have $f(x)\in f(K)$. Because $\{E_{\alpha}\}_{\alpha\in A}$ covers f(K), $\exists \hat{\alpha}\in A$ s.t. $f(x)\in E_{\hat{\alpha}}$. So $x\in \{f^{-1}(E_{\alpha})\}_{\alpha\in A}$. Therefore, $\{f^{-1}(E_{\alpha})\}_{\alpha\in A}$ is an open cover of K.

Take any $y \in f(K)$. There exists $\hat{x} \in K$ s.t. $f(\hat{x}) = y$. Because $\{f^{-1}(E_{\alpha})\}_{\alpha \in A}$ covers K, $\exists \hat{\alpha} \in B$ s.t. $\hat{x} \in f^{-1}(E_{\hat{\alpha}})$. Therefore, $y = f(\hat{x}) \in E_{\hat{\alpha}}$. Therefore $\{E_{\alpha}\}_{\alpha \in B}$ is an open cover of f(K).

Continuity

Claim

Let K be a compact set in (\mathbb{R}, d_2) . Then there exists $x^* \in K$ s.t. $x^* \ge x$ for any $x \in K$, and there exists $x_* \in K$ s.t. $x_* \le x$ for any $x \in K$.

Proof: Because K is compact in (\mathbb{R}, d_2) , we know that K is bounded, i.e. there exists some r>0 s.t. $K\subset B_r(x)$. Then x+r is an upper bound of K. By l.u.b. property of \mathbb{R} , there exists sup K. Now we need to show that sup $K\in K$. If not, then sup K is a limit point of K because for any $\epsilon>0$, there exists $x\in K$ s.t. $x>\sup k-\epsilon$. Since K is closed it must contain all it's limit points.

Weierstrass Theorem

Theorem

Let (X, d_X) be a metric space, and function $f: X \to \mathbb{R}$ is continuous. Let S be a compact set in (X, d_X) . There exists $x^* \in S$ s.t. $f(x^*) \ge f(x)$ for any $x \in S$, and there exists $x_* \in S$ s.t. $f(x_*) \le f(x)$ for any $x \in S$.

Proof: By the previous theorem we know that f(S) is compact in (\mathbb{R}, d_2) . Therefore, there exists $y^* \in f(S)$ s.t. $y^* \geq f(x)$ for any $x \in S$. By definition of the image f(S), there exists $x^* \in S$ s.t. $f(x^*) = y^*$, and therefore $f(x^*) \geq f(x)$ for any $x \in S$. Symmetrically, we can find x_* .