This file contains information and instructions for the code at https://github.com/Wennink/gwreconstruction

We build upon the SageMath program *admcycles* by Delacroix, Pixton, Schmitt, Zachhuber, and van Zelm. It can be found at

https://gitlab.com/jo314schmitt/admcycles and is documented in [1]. We display tautological strata classes in the same way as it is done in *admcycles*, which is explained in Section 3.1 of [1].

Our program contains functions that calculate specific ingredients we use in our proofs such as for example getL25() from Lemma 7.4 or the following from the matrix calculations:

```
sage: calculate_discriminant_a()
(-2880) * (i^2 - 9*i - 18)
```

For a full list of these functions see the readme file of the program.

1 Computing Gromov-Witten invariants of \mathbb{P}^2 blown up in finitely many points

The part of the computer program that calculates these Gromov-Witten invariants is built around two functions we have written. The first is compute_gw_formula, which computes the expression $\mathcal{T}_{\beta}(L, \gamma_1, \ldots, \gamma_n)$ for any $L \in S_{g,n}$ for $g \leq 2$ and any choice of classes from the generating basis $\{pt, H, E_1, \ldots, E_r\}$. The second function is apply_form which evaluates this obtained formula.

To make the program calculate a Gromov-Witten invariant of degree $\beta = dH - \sum_i \alpha_i$, we write gw_inv(g,psiprofile,[d,alpha_1,alpha_2,...]), where the psiprofile is

- [] to calculate $N_{d,\alpha}^{(g)}$,
- [(1,-1)] to calculate $P_{d,\alpha}^{(g)}$,
- [(1,0)] to calculate $H_{d,\alpha}^{(g)}$, and
- [(1,1)] to calculate $K_{d,\alpha}^{(g)}$.

For example we can calcuate $N_4^{(0)}$ and $H_{4,2}^{(2)}$ as follows:

```
sage: gw_inv(0,[],[4])
620
sage: gw_inv(2,[(1,0)],[4,2])
-5/3
```

2 Symbols of tautological relations

We describe some of most important functions in the program related to symbols.

For $g \leq 3$, the function get_primitive_part_fzm(g,n,r,nonsym) gives a matrix of (symmetric) relations in $P_{g,n}^r$ modulo restriction to the primitive part. This matrix comes together with a legend that represents the columns as decorated strata classes.

```
sage: prim = get_primitive_part_fzm(2,3,2,false)
sage: prim[0]
        -1 - 2/3
1
sage: list_tg(prim[1])
                    [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]
[0] : Graph :
Polynomial: 1*psi_1^1
[1] : Graph :
                    [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]
Polynomial: 1*psi_6^1
[2] : Graph :
                    [0, 0, 2] [[2, 3, 6], [1, 7, 8], [9]] [(6, 7), (8, 9)]
Polynomial: 1*
 We can obtain a tautological class ("tautclass" in the program) from a
row in this matrix.
sage: tcbp = partial_to_tautclass(vec=prim[0][0],taut_gens=prim[1])
sage: tcbp
              [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]
Graph:
Polynomial: 1*psi_1^1
              [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]
Graph:
Polynomial : (-1)*psi_6^1
              [0, 0, 2] [[2, 3, 6], [1, 7, 8], [9]] [(6, 7), (8, 9)]
Polynomial : (-2/3)*
Since we set nonsym to false we are working with symmetric relations and
the program only stores one element in each S_n-orbit. To obtain the full
expression for the tautological relation we "unsymmetrize" it.
sage: unsymtc = smarter_unsym_tc(tc=tcbp,n=3)
We now obtain the symbol which the program displays as follows.
sage: sbp = symbol_from_tautclass(g=2,tc=unsymtc)
sage: sbp
```

-1/3 [PP*aa*bb, cc] -1/3 [PP*aa*cc, bb] 1/3 [PP*aa, bb*cc]

```
-1/3 [PP*bb*cc, aa]
1/3 [PP*bb, aa*cc]
1/3 [PP*cc, aa*bb]
-2/3 [aa*bb*cc]
```

We can do substitutions of classes in symbols and do vector space operations on symbols such as multiplying by a scalar. There are also methods to apply the string, dilaton, or divisor equations from Lemmas 4.9 and 4.10.

```
sage: 3*sbp.subs([aa,W,W])
-2 [PP*aa*W, W]
1 [PP*aa, W^2]
-1 [PP*W^2, aa]
2 [PP*W, aa*W]
-2 [aa*W^2]
sage: 3*sbp.subs([aa,W,W]).applydivisor()
1 [PP*aa, W^2]
2 [PP*W, aa*W]
-5 [aa*W^2]
```

The above is the program's way of displaying the symbol

$$<\psi a, \omega^2>+2<\psi\omega, a\omega>-5< a\omega^2>.$$

3 Computing tautological relations

Memory usage is the main bottleneck when it comes to computing tautological relations. But when working with symmetric relations, the program only needs to store a single element representing an orbit of the S_n -action. We have written a new version of the code that computes symmetric relations using improvements where we use S'_n -actions for n' < n. For example one of the steps the old version takes in the process of calculating the symmetric relations of $P^r_{g,n}$ is to calculate a generating basis of (nonsymmetric) relations in $P^{r-1}_{g,n}$ and then multiply by ψ_i for $1 \le i \le n$. It would be more efficient to calculate relations that are fixed by the S_{n-1} -action on the first n-1 points, and then multiply by ψ_n .

We can compare the old and new versions of computing symmetric relations.

The old version:

```
sage: m = get_memory_usage()
sage: %time a=derived_rels(3,4,6,1)
CPU times: user 2min 3s, sys: 628 ms, total: 2min 4s
Wall time: 2min 4s
sage: get_memory_usage()-m
1368.984375
```

The new version:

sage: m = get_memory_usage()

sage: %time a=derived_rels_SS(3,4,6,1)

CPU times: user 1min 40s, sys: 416 ms, total: 1min 41s

Wall time: 1min 41s

sage: get_memory_usage()-m

940.66796875

The new verion is faster but most importantly it uses less memory. The higher the number of points n, the bigger these differences become:

The old version:

sage: m = get_memory_usage()

sage: %time a=derived_rels(3,4,7,1)

CPU times: user 14min 15s, sys: 4.06 s, total: 14min 19s

Wall time: 14min 20s

sage: get_memory_usage()-m

9712.96484375

The new version:

sage: m = get_memory_usage()

sage: %time a=derived_rels_SS(3,4,7,1)

CPU times: user 7min 30s, sys: 2.19 s, total: 7min 32s

Wall time: 7min 32s

sage: get_memory_usage()-m

4823.75390625

We have now got a method to calculate partially symmetric relations. In particular we can use this to calculate nonsymmetric relations. Below we list some comparison results between our new method pre_processed_fzm and the method DR.FZ_matrix (denoted by pre and dr respectively). All results are for stable curves.

	$P_{3,7}^2$	$P_{2,7}^2$	$P_{2,5}^{3}$	$P^4_{2,4}$
dr time	2m12s	2 m 19 s	7 m23 s	out of memory
pre time	17 m 50 s	$10 \mathrm{m} 19 \mathrm{s}$	1 m 57 s	2 m 50 s
dr memory usage	1242	1078	4906	more than 14500
pre memory usage	3109	2734	1379	1674

The DR.FZ_matrix method performs better at low codimension and high genus or high number of points, while pre_processed_fzm is more efficient for higher codimension.

Remark 3.1. An improved version of this new method has been incorporated into the admcycles project.

References

[1] Vincent Delecroix, Johannes Schmitt, and Jason van Zelm. "admcycles – a Sage package for calculations in the tautological ring of the moduli space of stable curves." In: arXiv preprint arXiv:2002.01709 (2020).