

ICND(Interconnecting Cisco Network Devices) Instruction

Network 이란?

한 대 혹은 그 이상의 컴퓨터를 연결하여 근거리나 원거리 통신을 제공하고 서로 연결된 요소들 간의 데이터 등을 전송하는 통신망

Network의 의미

- □ 네트워킹이 중요하다고 생각되는 이유는 <u>정보의 공유에 대한 필요성</u> 때문
- □ 네트워크는 네트워크상에 공유된 정보를 액세스하기 위한 컴퓨터간의 통신을 가능하게 해야 함
- □ 네트워크는 네트워크 기본 자원들 즉, 데이터와 프린트 서비스에 접근하여 <u>자원을 제공받는</u> 것을 의미
- □ 데이터베이스와 메시지 응용프로그램들이 통합되면, 네트워크상에 저장된 대형 정보에 보다 <u>빨리 액세스</u> 할수 있고, 사용자들로 하여금 액세스한 정보를 체계적으로 정리할 수 있어 결과적으로 <u>보다 나은 비즈니스 결정</u>을 내리게 할 수 있다.
- □ 또 다른 잇점으로는
 - 보다 나은 고객 서비스 제공에 따른 고객 만족 증가
 - 비즈니스 업무 진행 절차에 대한 관리 강화
 - 직원들간의 업무 협력 증가
 - 비즈니스 경제성과 생산성 증가
 - 이윤 증가

Packet Switching 기술

- □ 패킷 교환 기술이란 큰 데이터를 패킷(Packet)이라는 단위로 작게 나누어 분할하여 송수신하는 방법
- □ 패킷의 단어는 '소포'라는 뜻으로 데이터를 마치 소포처럼 포장하여 상대방과 주고 받는다는 의미
- □ 소포에는 자신의 주소와 목적지 주소를 적어 우체국에 보내듯이 컴퓨터 통신의 경우도 이와 마찬가지로 1개의 패킷에 **자신의 주소와 목적지의 주소를 표시**하여 통신회선에 보낸다.
- □ 각 패킷에 자신의 주소와 목적지의 주소가 있으므로, 하나의 회선을 여러 사용자가 공유해도 각각이 데이터를 보낼 장소와 통신할 상대를 확실히 알고 있으므로 통신의 상대방을 식별할 수 있다.
- □자신의 주소와 목적지의 주소 및 데이터의 번호를 써넣는 부분을 <u>'헤더'</u>라고 한다.

Protocol 개요

- □ 네트워크에서의 프로토콜은 서로 다른 언어를 사용하는 사람끼리의 의견 조정을 위한 회의에서 서로의 의견을 충분히 교환할 수 있는 대화의 방식과 같은 것.
- □ 네트워크에서의 통신 프로토콜은 네트워크의 데이터 흐름에 영향을 주는 중요한 요소로서 통신이 이루어지는 두 컴퓨터는 반드시 동일한 프로토콜을 사용.
- □프로토콜 슈트의 대표적인 예가 TCP/IP 로써 인터넷이나 대규모 네트워크에 사용되며 다른 보기로는 Novell의 Netware 네트워크에 사용되는 IPX/SPX 를 들 수 있다.
- □ 프로토콜의 네트워크에서의 두 가지 중요한 요소
 - ➤ 연결 지향(Connection-Oriented) 성 & 비연결 지향(Connectionless) 성 프로토콜
 - routed protocol(IP, IPX) & non-routed protocol(NETBEUI) & routing protocol(EIGRP, OSPF)

TCP/IP & OSI 7 Layer 모델

- ☐ OSI 7 Layer 모델
 - : 국제표준화기구(ISO)가 컴퓨터 통신 구조의 모델과 앞으로 개발될 프로토콜의 표준적인 뼈대를 제공하기 위해서 개발된 참조모델
- ☐ TCP/IP 모델
 - : 미국에서 개발한 인터넷의 기본 통신 프로토콜, DOD(미국방성 모델)을 기반으로 개발
 - TCP: 연결지향형 프로토콜, 세션의 연결과 종료, 흐름제어, 패킷의 분할 및 재조립
 - IP : 비연결지향형 프로토콜, 데이터 전송
- ** OSI 7Layer 모델과 TCP/IP모델은 상호연관성이 없음.
 - → OSI 7Layer모델은 데이타통신을 이해하기 위한 참조모델

OSI 7 Layer 모델

OSI Model

- OSI(Open System Interconnection)
- '개방형 시스템간 상호 연결(접속)' 표준
- •OSI 표준의 목적은 어떤 업체에 종속되지 않고, 서로 다른 제조업체에서 만든 장비라 할지라도 서로간의 표준 적인 연결이 가능하도록 하는 틀을 제공하는 것.
- •계층화된 모델은 아래와 같으며 몇 가지 장점을 가진다.
- 시스템간 통신과 관련된 상호작용을 세분해 분리해 놓았기 때문에 이해하기 쉽다.
- 상하 Layer간의 표준 interface를 정의하여 이 표준을 따를 경우 업체에서 만든 어떤 시스템이라도 상호 호환이 가능하다.
- 각 Layer의 성능 향상 및 개선이 쉽고, 이러한 특성 때문에 기술혁신을 가속화할 수 있다.

Application			
Presentation Session		EXAMPLES	<u>Equipment</u>
Transport	• 신뢰성 있는 혹은 신뢰성 없는 전달 • 에러 수정 후 재 전송	TCP DDP SPX	L4 Switch
Network	• 라우터가 경로 결정에 사용할 논리적 어드레싱 제공	► IP IPX	Router L3 Switch
Data Link	• 비트를 바이트로, 바이트를 프레임으로 결합 • MAC address를 사용하여 매체에 접근 • 수정 없는 에러 검출	802.3 / 802.2 HDLC	Switch Hub
Physical	• 장비들 사이에서의 비트 이동 • 전압, 전선 속도, 핀 아웃 케이블 명시	► EIA/TIA-232 V.35	Repeater LAN Card

EXAMPLES Telnet 사용자 인터페이스 **Application HTTP ASCII** •데이터 변환, 복구 **Presentation EBCDIC** • 암호화, 복호화 **JPEG** 운영체제/ •응용프로그램 구분, Session 어플리케이션 접근 •세션 성립, 유지, 종료 스케줄링 **Transport Layer Network Layer Data Link Physical**

OSI Model & TCP/IP Model

Transport Layer Header <TCP>

Bit 0		Bit 15	Bit 16	Bit 31	
	Source port (16)		Destination port (16)		1
Sequence number (32)					
Acknowledgement number (32)					20 Bytes
Header length (4)	I Reserved this code bite (6) I		Window (16)		
	Checksum (16) Urgent (16)				
	Options (0 or 32 if any)				
Data (varies)					

TCP Three Way Handshake/Open Connection

TCP Simple Acknowledgment

TCP Sequence and Acknowledgment Numbers

TCP Windowing

UDP Header

No sequence or acknowledgment fields

Protocol Field

Determines destination upper-layer protocol

IP Header

1 Bit 15 Bit 16 Bit 31

<u> </u>					
Version (4)	Header Length (4)	Priority & Type of Service (8)		Total Length (16)	
Identification (16)			Flags (3)	Fragment offset (13)	
Time to live (8) Protocol (8) Header checksum (16)			Header checksum (16)		
	Source IP Address (32)				
	Destination IP Address (32)				
Options (0 or 32 if any)					
	Data (varies if any)				

Internet Control Message Protocol

ARP Cache? → Broadcast 無!!!

Address & Subnetting

<u>IP주소의 의미</u>

Computer(Host) 주소

- □ 문자 주소 : www.yahoo.co.kr
- □ 숫자 주소:

 - □ 논리적 주소(Logical Address) → IP Address: 10진수
 □ 물리적 주소(Physical Address) → MAC Address: 16진수
- □ IP(internet Protocol) 구분?

- □ Unicast IP
- **□** Multicast IP
- □ Broadcast IP

IP 주소 Classes

8 bits 8 bits 8 bits 8 bits

Class A:

Network Host Host Host

• Class B: Network Network Host Host

• Class C: Network Network Network Host

Class D: Multicast

Class E: Research

❖ A Class : 0.0.0.0 ~ 127.255.255.255 (□국)

❖ B Class : 128.0.0.0 ~ 191.255.255.255 (ISP업체, 정부기관)

❖ C Class : 192.0.0.0 ~ 223.255.255.255 (소규모 사무실, PC방)

❖ D Class : 224.0.0.0 ~ 239.255.255.255 (멀티캐스트용)

❖ E Class : 240.0.0.0 ~ 255.255.255.255 (실험용)

IP 주소 구성

IP Address Allocation

사설 IP

- □ 공인 IP는 NIC(Krnic)에서 관리하며 ISP업체에 공급, 사용자는 ISP에 공인 IP 신청
- □ 인터넷과 연결 하기 위해서는 각 Class의 공인 IP를 사용, 각 호스트마다 고유의 IP 사용
- □ Local 네트워크에서는 (인터넷 연결하지 않는 네트워크) IP 주소를 A, B, C Class 중 아무거나 사용해도 상관없으나, 인터넷의 확산으로 인한 IP 주소의 부족을 해결하는 방안으로 IP 주소 영역에서 인터넷에서는 사용하지 않는 구역을 정의, 이 구역을 사설 주소(Private Address)라고 한다.
- □ 하나의 공인 IP를 이용 인터넷 연결, 나머지 호스트들은 사설 IP 할당해서(NAT) 공인 IP 부족을 보완하고 기업 네트워크의 보안을 목적으로 사용
- □ 이 사설 IP는 인터넷에 연결될 수 없도록 모든 트래픽을 ISP에서 봉쇄

Class	IP 대역 (RFC 1597)
А	10.0.0.0 ~ 10.255.255.255
В	172.16.0.0 ~ 172.31.255.255
С	192.168.0.0 ~ 192.168.255.255

Netmask

□ 넷 마스크(Netmask) = Default Subnet mask

Class	네트워크 주소	호스트 주소	기본 넷 마스크	약식 표기
А	1 ~ 126	0.0.1 ~ 255.255.254	255.0.0.0	/8
В	128.1 ~ 191.254	0.1 ~ 255.254	255.255.0.0	/16
С	192.0.1 ~ 223.255.254	1 ~ 254	255.255.255.0	/24

□ 넷 마스크의 역할

- □ 데이터 전송 시 목적지 호스트 IP가 속해져 있는 네트워크 주소를 식별
- □ 네트워크 주소 IP 식별과 함께 브로드캐스트(방송) IP 식별
- □ 네트워크 세그먼트의 크기, 즉 호스트 수
- □ 마스크의 의미는 호스트 IP와 넷 마스크 IP를 And 연산 수행(둘 다 1인 경우 1)

□ 넷 마스크 계산

$$211.41.187.60 \rightarrow 11010011. \ 00101001. \ 10111011. \ 00111100$$

$$+ 255.255.255.0 \rightarrow + 111111111. \ 11111111. \ 11111111. \ 00000000$$

$$211.41.187.0 \longleftarrow 11010011. \ 00101001. \ 10111011. \ 00000000$$

- □ Mask 연산 결과 211.41.187.60 호스트 IP의 네트워크 주소는 211.41.187.0 라는 것
- □ Host IP의 범위가 211.41.187.1 ~ 211.41.187.254로써 254개의 범위임을 알 수 있다.
- □ 마지막으로 Broadcast IP 가 211.41.187.255 인 것을 알 수 있다.

Mask의 종류

- □ Network Mask = Default Subnet Mask
 - ex) 168.249.0.0 <u>255.255.0.0</u>
- ☐ Subnet Mask
 - ex) 168.249.145.0 <u>255.255.255.0</u>
- □ Supernet Mask
 - ex) 168.0.0.0 <u>255.0.0.0</u>
- ☐ Inverted Mask
 - Wildcard Mask
 - OSPF, Cisco Router Access-list에서 사용
 - ex) 168.249.149.0 <u>0.0.0.255</u>

Subnet

- □ Subnet(서브넷)?
- □ 서브넷(subnet)은 "subnetwork 의 줄인 말로서 어떤 기관에 소속된 네트웍이지만 따로 분리되어 한 부분으로 인식될 수 있는 네트웍
- □ 분리할 네트워크 개수가 많을 때
- □ 하나의 네트워크 세그먼트에 너무 많은 호스트 할당함으로써 트래픽이 심할 때
- □ IP 주소의 효율적인 사용(IPV4의 부족한 IP 주소 임시적 해결 방안)
- □ 이러한 부분을 해결하기위한 방법이 Subnetmask(서브넷마스크) 이며, 이것을 Subnetting (서브넷팅)이라 한다.

□ Subnetmask(서브넷마스크)

- □ 기존의 호스트 bit로 할당된 bit 중 일부를 Subnet bit로 지정 → 하나의 Major 네트워크당 다수의 Subnetwork 구성
- □ C Class 는 defaultmask 255.255.255.0 (/24), Host 주소 bit가 8bit 인데 2bit를 subnetmask 로 할당 255.255.255.192/26
- □ C Class 211.41.187.0 Major 네트워크를 2bit Subneting 함으로써 4개(2²=4개)의 Subnetwork 구성
 - □ 각 Subnetwork 211.41.187.0, 211.41.187.64, 211.41.187.128, 211.41.187.192 (앞 그림 참조)
- 그 각 Subnetwork 는 6bit의 Host bit를 가짐으로 62개($2^6 2 = 64 2$)의 호스트 IP를 할당할 수 있다.
 - \square 211.41.187.(0 ~ 63=1~61), 211.41.187.(64 ~ 127=65~126), 211.41.187.(128 ~ 191=129~190), 211.41.187.(192 ~ 255=193~254)

Class C

Defaultmask	11111111	11111111	11111111	0000000	
	255	. 255	. 255	. 0	⇒ /24
Subnetmask	11111111	11111111	11111111	11000000]
	255	. 255	. 255	. 192	⇒ /26

Class C Subnetting

□ Subnet(서브넷) → Class C: 211.41.187.0

Netmask	이진값	약식	n	Network	Host 수
255.255.255. 0	11111111.11111111.11111111.00000000	/24	0	1	254 (2 ⁸ – 2)
Subnetmask	이진값	약식	n	Subnetwork	Host 수
255.255.255. <mark>128</mark>	11111111.11111111.11111111. <mark>1</mark> 0000000	/25	1	0 (21 – 2)	1 <mark>26</mark> (2 ⁷ – 2)
255.255.255. <mark>192</mark>	11111111.111111111.11111111. <mark>11</mark> 000000	/26	2	2 (2 <mark>2–</mark> 2)	62 (2 ⁶ - 2)
255.255.255. <mark>224</mark>	11111111.11111111.11111111.1 <mark>111</mark> 00000	/27	3	6 (2 <mark>3 –</mark> 2)	30 (2 ⁵ – 2)
255.255.255. <mark>240</mark>	11111111.11111111.11111111.1 <mark>111</mark> 0000	/28	4	14 (2 <mark>4 –</mark> 2)	14(24-2)
255.255.255. <mark>248</mark>	11111111.11111111.11111111.1 <mark>1111</mark> 000	/29	5	30 (2 ⁵ – 2)	6 (2 ³ – 2)
255.255.255. <mark>252</mark>	11111111.111111111.11111111.1 <mark>11111</mark> 00	/30	6	62 (2 <mark>6-</mark> 2)	2 (2 ² – 2)

- □ 서브네트워크(Subnetwork) 수, 호스트 수 계산식 \rightarrow 2ⁿ 2
- □ Subnetwork 수는 2ⁿ 구성 (Allow 1 subnet bit)
- □ Subnetmask 값 + Host 수 = 256
- ☐ Subnetwork x Host 수 = 256

Subnet 의 표기 방법

Netmask	이진값	n	약식
255.255.255. <mark>0</mark>	11111111.11111111111111111.00000000	0	/24
Subnetmask	이진값	n	약식
255.255.255. <mark>128</mark>	11111111.11111111.1111111. <mark>1</mark> 0000000	1	/25
255.255.255. <mark>192</mark>	11111111.11111111.1111111. <mark>11</mark> 000000	2	/26
255.255.255. <mark>224</mark>	11111111.11111111.1111111.1 <mark>111</mark> 00000	3	/27
255.255.255. <mark>240</mark>	11111111.11111111.11111111.1 <mark>111</mark> 0000	4	/28
255.255.255. <mark>248</mark>	11111111.11111111.11111111.1 <mark>1111</mark> 000	5	/29
255.255.255. <mark>252</mark>	11111111.11111111.11111111.1 <mark>11111</mark> 00	6	/30

[□] C class Address 인 211.41.187.0 을 255.255.255.192 로 Subnetting 했을 때 매번 SubnetMask 값을 255.255.255.192로 표기를 한다면 매우 귀찮은 일일 것이다.

[□] 그래서 255.255.255.192를 /26으로 표기함으로써 간단히 표기할 수 있고 쉽게 Subnetting 된 Bit 수(2bit) 를 알 수 있다.

What is Routing?

- 패킷을 Routing하기 위해서는 Router가 다음과 같은 주요 정보를 인지:
 - 목적지 주소
 - 정보 소스: 목적지 경로를 어떤 소스(라우터)에서 배우는가?
 - 가능한 경로들
 - 최선의 경로
 - 라우팅 정보 관리 및 검증: 목적지에 대한 경로는 유효하고 가장 최근의 것

Router 구성 및 상태 조회 명령어

Cisco Router 접속 방법

- Console 이용 (async serial port)
- LAN, WAN Interface를 통한 virtual terminal 이용 (telnet)
- TFTP(Trivial ftp) 서버를 이용
- NMS 를 이용

Cisco Console Cables / Port

■ Console 접속

□ PC에서 터미널 통신 에뮬레이터 실행

터미널 에뮬레이터로 사용할 수 있는 통신용 소프트웨어는 많이 있습니다.

- Windows 95/98/NT에 기본적으로 내장되어 있는 하이퍼터미널(Hyper Terminal)
- 새롬데이터맨
- 이야기
- Telix 등등

□ 터미널 에뮬레이터 설정

터미널 에뮬레이터 마다 설정 방법이 약간씩 다르지만 기본적인 설정 값들은 다음과 같습니다.

초당 비트 수	데이터 비트	패리티	정지 비트	흐름 컨트롤
(Baud rate)	(Data bit)	(Parity)	(Stop bit)	(Flow control)
9600	8	젒	1	없

Router 모드 개요

- Router>
- Router> enable
- Password:
- Router#
- Router# configure terminal
- Router(config)#

User mode prompt

사용자 모드

Privileged mode prompt

특권 모드

Global mode prompt

전역 모드

Router 기본 설정 단계

- 1. Hostname 설정
- 2. Password 설정
 - **1** Enable password
 - **2** Telnet password
 - **3** Console password
- 3. IP 설정 → interface (ethernet, serial)
 - **1** Ethernet, Fast Ethernet, Gigabit Ethernet
 - 2 Serial
- 4. IP 경로 설정
 - ① Static: ip route ~
 - 2 Dynamic: rip, igrp, ospf, eigrp, is-is, bgp4

Router 기본 설정 단계

```
Router(config)# hostname Seoul
              실행 후 Prompt 상태
1 Step
              Seoul(config)#
          ☐ Enable Password 설정
             Enable password : 관리자 암호를 암호화 하지 않음
             Enable secret : 관리자 암호를 암호화 함
              Seoul(config)# enable password ****
2 Step
              Seoul(config)# enable secret ****
          □ Telnet Password 설정
              Seoul(config)# line vty 0 4
              Seoul(config-line)# login
              Seoul(config-line)# password ****
```

Interface ip 설정

□ 인터페이스(Interface) 번호 (Cisco 2501 라우터)

Interface 번호 설명		비고
Ethernet 0	이더넷 인터페이스 0	LAN 영역 정의
Serial 0	시리얼 인터페이스 0	WAN 영역 정의
Serial 1	시리얼 인터페이스 1	WAN 영역 정의

□ 이더넷 인터페이스(Ethernet Interface) 설정

Seoul(config)# interface ethernet 0

Seoul(config-if)# ip address 192.168.1.1 255.255.255.0

Seoul(config-if)# description office

Seoul(config-if)# no shutdown

□ 시리얼 인터페이스(Serial Interface) 설정

Seoul(config)# interface serial 0

Seoul(config-if)# ip address 192.168.2.1 255.255.255.0

Seoul(config-if)# description isp-krline

Seoul(config-if)# no shutdown

3 Step