Linear Algebra Review

MATH 271.1: Statistical Methods

Jakov Ivan S. Dumbrique

Ateneo de Manila University

Matrix-Vector Multiplication, Ax

Let A be an $n \times p$ matrix and x be a p-dimensional vector. Then we can think of the matrix-vector multiplication Ax as a linear combination of the columns of A:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_p} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$
$$= x_1\mathbf{a_1} + x_2\mathbf{a_2} + \cdots + x_p\mathbf{a_p}$$

An $n \times p$ matrix **A** can be defined by its four fundamental subspaces:

- 1. column space, $Col(\mathbf{A})$ [range of \mathbf{A}]
- 2. nullspace, $N(\mathbf{A})$ [kernel of \mathbf{A}]
- 3. row space, $Col(\mathbf{A^T})$ [corange of \mathbf{A}]
- 4. left nullspace, $N(\mathbf{A^T})$ [cokernel of \mathbf{A}]

An $n \times p$ matrix **A** can be defined by its four fundamental subspaces:

1. column space,
$$Col(\mathbf{A})$$

$$\underline{Col(\mathbf{A})} = \{ \mathbf{b} \in \mathbb{R}^n | \mathbf{a} \mathbf{x} = \mathbf{b} \text{ for some } p\text{-vector } \mathbf{x} \}$$

- 2. nullspace, $N(\mathbf{A})$
- 3. row space, $Col(\mathbf{A^T})$
- 4. left nullspace, $N(\mathbf{A}^T)$

An $n \times p$ matrix **A** can be defined by its four fundamental subspaces:

- 1. column space, $Col(\mathbf{A})$
- 2. nullspace, $N(\mathbf{A})$

$$N(\mathbf{A}) = \{ \mathbf{\underline{x}} \in \mathbb{R}^p | \mathbf{A}\mathbf{\underline{x}} = \mathbf{\underline{0}} \}$$

- 3. row space, $Col(\mathbf{A^T})$
- 4. left nullspace, $N(\mathbf{A^T})$

An $n \times p$ matrix **A** can be defined by its four fundamental subspaces:

- 1. column space, $Col(\mathbf{A})$
- 2. nullspace, $N(\mathbf{A})$
- 3. row space, $Col(\mathbf{A^T})$

$$Col(\mathbf{A^T}) = \{ \mathbf{b} \in \mathbb{R}^p | \mathbf{A^T} \mathbf{y} = \mathbf{b} \text{ for some } n\text{-vector } \mathbf{y} \}$$

4. left nullspace, $N(\mathbf{A^T})$

An $n \times p$ matrix **A** can be defined by its four fundamental subspaces:

- 1. column space, $Col(\mathbf{A})$
- 2. nullspace, $N(\mathbf{A})$
- 3. row space, $Col(\mathbf{A^T})$
- 4. left nullspace, $N(\mathbf{A}^{\mathbf{T}})$

$$N(\mathbf{A^T}) = \{ \mathbf{y} \in \mathbb{R}^n | \mathbf{A^T y} = \mathbf{0} \}$$

How can we reconstruct a subspace?

A subspace can be reconstructed by a set of linearly independent vectors that span the entire subspace. Such a set forms a basis for the subspace.

The number of vectors in a basis of a subspace is what we call the dimension of the subspace, dim(). The rank r of a matrix is just the dimension of its column space.

How are the 4 subspaces connected?

The four fundamental subspaces of a matrix are connected through their dimensions and orthogonality. This concept is captured by the following theorem:

Fundamental Theorem of Linear Algebra

Given an $n \times p$ matrix A,

- 1. The column space and row space have equal dimension r (rank). The nullspace has dimension p-r. The left nullspace has dimension n-r.
- 2. $Col(\mathbf{A^T}) = N(\mathbf{A})^{\perp}$ Orthogonal complements in \mathbb{R}^p $N(\mathbf{A^T}) = Col(\mathbf{A})^{\perp}$ Orthogonal complements in \mathbb{R}^n $\mathbf{A^T}$ $\mathbf{A^T}$

How are the 4 subspaces connected?

Matrix-Matrix Multiplication, AB

Let A and B be matrices such that the matrix multiplication AB is defined:

$$AB = C$$

Matrix-Matrix Multiplication, AB

Let ${\bf A}$ and ${\bf B}$ be matrices such that the matrix multiplication ${\bf AB}$ is defined:

$$AB = C$$

If we flip this equation, then the multiplication turns into a factorization:

$$\underline{\mathbf{C}} = \underline{\mathbf{AB}}$$

The matrix \mathbf{C} is factored into two matrices, \mathbf{A} and \mathbf{B} . These matrices have inside information about the matrix \mathbf{C} . That information is not visible until you factor.

Six Important Factorizations

- Eigenvalue decomposition

 2. Orthogonal diagonalization

 3. Cholesky factorization

 4. LU factorization

 5. QR factorization

 6. Singular Value Decomposition

Eigenvalue decomposition

If ${\bf A}$ is a diagonalizable square matrix, then ${\bf A}$ can be expressed as

$$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$$
, $\overrightarrow{\chi}$: eigenvector of \mathbf{A} corresponding $\overrightarrow{A} \overrightarrow{\chi} = \overrightarrow{\lambda} \overrightarrow{\chi}$ reigenvector of \mathbf{A}

where

 $\underline{\mathbf{P}}$ is an $n \times n$ matrix whose columns consist of n linearly independent eigenvectors of \mathbf{A} , and

 Λ is a diagonal matrix with the corresponding eigenvalues of Λ on its main diagonal. $\int_{0}^{\infty} \lambda_{1} = 0$

The order of the eigenvectors used to form ${\bf P}$ will determine the order in which the eigenvalues appear on the main diagonal of ${\bf \Lambda}$.

Eigenvalue decomposition

$$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1} \qquad \qquad \qquad \mathbf{P}^{-1}$$

$$\begin{bmatrix} 3 & 2 \\ 6 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1/4 & -1/4 \\ 3/4 & 1/4 \end{bmatrix}$$

$$\mathbf{P}^{-1} \begin{bmatrix} 3 & 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 1/4 & -1/4 \\ 3/4 & 1/4 \end{bmatrix}$$

$$\mathbf{P}^{-1} \begin{bmatrix} 3 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1/4 & -1/4 \\ 3/4 & 1/4 \end{bmatrix}$$

$$\mathbf{P}^{-1} \begin{bmatrix} 3 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1/4 & -1/4 \\ 3/4 & 1/4 \end{bmatrix}$$

$$\mathbf{P}^{-1} \begin{bmatrix} 3 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1/4 & -1/4 \\ 3/4 & 1/4 \end{bmatrix}$$

$$\mathbf{P}^{-1} \begin{bmatrix} 3 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1/4 & -1/4 \\ 3/4 & 1/4 \end{bmatrix}$$

Orthogonal diagonalization

 ${f A}$ is orthogonally diagonalizable if and only if ${f A}$ is symmetric:

where ${f Q}$ is orthogonal, ${f \Lambda}$ is diagonal.

$$\begin{array}{l} \mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathbf{T}}, \\ \mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1} \\ \mathbf{D} \text{ if } \mathbf{Q} \text{ is square, } \mathbf{Q}^{-1} = \mathbf{Q}^{\mathsf{T}} \Rightarrow \mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{I} \\ \mathbf{f} \mathbf{G} \text{ is rectangular, } \mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{I} \end{array}$$

This is just the eigenvalue decomposition of a symmetric matrix. As a consequence, all the eigenvalues of a symmetric matrix are real. Furthermore, all its eigenvectors are orthogonal.

real. Furthermore, all its eigenvectors are orthogonal.

Q\(\hat{x}) \text{ = preserves the length of } \hat{x}, but it retails reflects } \hat{x} \\

$$||Q\(\hat{x})|| = \sqrt{\langle Q\(\hat{x}), Q\(\hat{x})} = \sqrt{\langle Q\(\hat{x}), Q\(\hat{x})} = \sqrt{\langle Q\(\hat{x}), Q\(\hat{x})} = \sqrt{\langle Q\(\hat{x}), Q\(\hat{x})} = ||\(\hat{x})||$$

Q\(\hat{x}) = \int(\hat{x}) \frac{1}{\Q\(\hat{x})} = \int(\hat{x}) \frac{1}{\Q\(\hat{x})} = ||\(\hat{x})||

I

Orthogonal diagonalization

Cholesky factorization

Every positive definite matrix A can be factored as

$$A = LL^T$$

where ${f L}$ is lower triangular with positive diagonal elements.

Cholesky factorization

Every positive definite matrix A can be factored as

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathbf{T}}$$

where L is lower triangular with positive diagonal elements.

Cholesky factorization is useful in solving linear equations, linear least-squares and least-norm problems.

Cholesky factorization

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathbf{T}}$$

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

LU factorization

Every square nonsingular matrix A can be factored as

$$A = PLU$$
,

where

 \mathbf{P} is an $n \times n$ permutation matrix

 ${f L}$ is a unit lower traingular $n \times n$ matrix

 ${f U}$ is a nonsingular upper triangular n imes n matrix

LU factorization is useful in solving linear equations.

LU factorization

$$A = PLU$$

$$\begin{bmatrix} 0 & 5 & 5 \\ 2 & 9 & 0 \\ 6 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -19/5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 9 & 0 \\ 0 & 5 & 5 \\ 0 & 0 & 27 \end{bmatrix}$$

QR factorization

If ${\bf A}$ is an $n \times p$ matrix with a zero nullspace, then it can be factored as

$$\mathbf{A} = \mathbf{Q}\mathbf{R},$$

where

 ${f Q}$ is an $n \times p$ orthogonal matrix, and

 ${f R}$ is a p imes p upper triangular matrix with positive diagonal elements

QR factorization

If ${\bf A}$ is an $n \times p$ matrix with a zero nullspace, then it can be factored as

$$\mathbf{A} = \mathbf{Q}\mathbf{R},$$

where

 ${f Q}$ is an $n \times p$ orthogonal matrix, and

 ${f R}$ is a p imes p upper triangular matrix with positive diagonal elements

QR factorization is useful in solving linear least-squares and least-norm problems.

QR factorization

$$\mathbf{A} = \mathbf{QR}$$

$$\frac{1}{5} \begin{bmatrix} 3 & -6 & 26 \\ 4 & -8 & -7 \\ 0 & 4 & 4 \\ 0 & -3 & -3 \end{bmatrix} = \begin{bmatrix} 3/5 & 0 & 4/5 \\ 4/5 & 0 & -3/5 \\ 0 & 4/5 & 0 \\ 0 & -3/5 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$

Singular Value Decomposition

Given any $n \times p$ matrix \mathbf{A} , its singular value decomposition is given by

$$A = U\Sigma V^{T}$$

where

U is orthonormal,

 $oldsymbol{\Sigma}$ is diagonal, and

 ${f V}$ is orthonormal.

Singular Value Decomposition

Given any $n \times p$ matrix \mathbf{A} , its singular value decomposition is given by

$$A = U\Sigma V^{T}$$

where

U is orthonormal,

 Σ is diagonal, and

V is orthonormal.

SVD is useful in a lot of applications. In this class, we will focus on its application on *principal components analysis*.

Singular Value Decomposition

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$$

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}^{T}$$