50 Projeto - Somador completo:

Integrantes do grupo: Lara Gama Santos, Mateus Ribeiro Ferraz, Sulamita Ester Costa.

Objetivos: Implementar, usando Verilog HDL, um circuito digital somador completo de 1 bit e, logo após, usar estrutura hierárquica para criar um somador completo de 4 bits.

Primeira parte: Somador 1 bit

1-Tabela-verdade:

TE = transporte de entrada TS = transporte de saída

Entradas: A,B e TE. Saídas: Soma, TS.

А	В	TE	SOMA	TS
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2- Expressões booleanas:

No bloco 0 foi utilizado um ½ somador, construído a partir das seguintes expressões booleanas:

SOMA: A

B

TS: **A.B**

Para encontrar as demais expressões booleanas nós utilizamos o mapa de Karnaugh.

Mapas de Karnaugh:

Utilizando a saída SOMA:

	~A~B	~AB	AB	A~B
~TE	0	1	0	1
TE	1	0	1	0

Temos: SOMA = ~A.~B.Te + ~A.B~Te + A.B.Te + A.~B.~Te

Utilizando a saída TS:

	~A~B	~AB	AB	A~B
~TE	0	0	1	0
TE	0	1	1	1

Temos: TS = B.Te + A.Te + AB

3- O circuito é sequencial ou combinacional?

Ele é combinacional, pois suas saídas dependem única e exclusivamente das combinações entre as variáveis de entrada.

4- A descrição do circuito em verilog HDL:

```
module somador_lbit(A, B, TE, SOMA, TS);
input A, B, TE;
output SOMA, TS;
assign SOMA = (~A&~B&TE) | (~A&B&~TE) | (A&B&TE) | (A&CB&TE);
assign TS = (A&TE) | (B&TE) | (A&B);
endmodule
```

5- Esquemático do circuito:

6- a- Nós utilizamos os períodos de 100, de 50 e de 25, pois eles nos permitem visualizar bem as diferenças nos resultados em cada valor lógico das entradas, já que o período de B é a metade de A, e o período de TE é a metade B.

b- A figura gerada na simulação:

7- Comente e analise os resultados obtidos:

Para desenvolver esse código, utilizamos a lógica de circuitos somadores estudados na parte teórica. Com o desenvolvimento desse projeto, observamos que quando somamos números binários há a ocorrência de bits de carry in e carry out,

isso permite que somadores completos de mais bits sejam construídos de maneira hierárquica utilizando como base o somador completo de 1 bit.

Segunda parte: Somador 4 bits:

1-Tabela-verdade:

A tabela verdade do somador de 4 bits é inviável de fazer manualmente pois é muito grande.

2- Expressões booleanas:

Como utilizaremos a estrutura hierárquica para criar o somador 4 bits a partir do somador 1 bit, então, iremos implementar as mesmas expressões booleanas utilizadas na primeira parte.

No bloco 0 foi utilizado um ½ somador, construído a partir das seguintes expressões booleanas:

SOMA: A

B

T: **A.B**

Os demais blocos são somadores completos, construídos a partir das seguintes expressões booleanas

$$B.T + A.T + AB$$

3- O circuito é sequencial ou combinacional?

Ele é combinacional, pois suas saídas dependem única e exclusivamente das combinações entre as variáveis de entrada.

4- A descrição do circuito em verilog HDL:

```
module somador_4bits(A, B, SOMA);
input [3:0] A;
input [3:0] B;

wire [2:0] T;

output [4:0] SOMA;

somador_lbit bloco0 (A[0], B[0], 0, SOMA[0], T[0]);
somador_lbit bloco1 (A[1], B[1], T[0], SOMA[1], T[1]);
somador_lbit bloco2 (A[2], B[2], T[1], SOMA[2], T[2]);
somador_lbit bloco3 (A[3], B[3], T[2], SOMA[3], SOMA[4]);
endmodule
```

5- Esquemático do circuito:

6- a- As imagens abaixo ilustram quais foram os tipos de sinal e períodos dos sinais de entrada. É possível observar que foram escolhidos períodos e ciclos diferentes para que pudessem ser comparadas diferentes possibilidades de saída.

A:

B:

Counter Attributes Start Value	End Value		
Time Period	Time Unit ps ▼		
Counter Type Binary	Count Direction		
Step Count			
Repeat			
• Forever			
C Never			
C Count			
Times			

b- A figura gerada na simulação:

7) Comente e analise os resultados obtidos:

Para criar o somador completo de 4 bits usamos estrutura hierárquica para implementar o somador 1 bit em blocos para resultar em um somador 4 bits. Nesse projeto, utilizamos quatro blocos somadores, em que o primeiro é um ½ somador e os demais são somadores completos. Além disso, observamos que quando somamos dois números binários de 4 bits, utilizando o somador, resulta em um número de 5 bits em que o bit mais à esquerda é um bit gerado por overflow.