Martín Emiliano Lombardo

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

2024

Introducción

Ajedrez

- Dos jugadores
- Suma cero

Humano vs. Computadora

Humano vs. Computadora

Humano vs. Computadora

Ajedrez como árbol

Motores de ajedrez (Chess Engines)

Exploran el árbol de juego (Minimax, MCTS, etc.)

Introducción 0000€00000

Introducción 0000€00000

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas

Introducción

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas
- La evaluación se propaga hacia arriba, según el algoritmo

Función de evaluación

(adelanto) Feature set: ¿Cómo transformar la posición a un vector?

(adelanto) Feature set: ¿Cómo transformar la posición a un vector?

Motores de ajedrez (breve historia)

asdasd

■ Text visible on slide 1

asdasd

- Text visible on slide 1
- Text visible on slide 2

asdasd

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 3

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4 asdasd

Contenido

- 1 Introducción
- 2 Engine
- 3 Feature set
 - Motivación
 - Definición
 - Operadores
 - Feature sets conocidos
 - Resumen
- 4 BUNN (NNUE)
- 5 Training
- 6 Experimentos
- 7 Conclusión

Engine

Feature set

¿Cómo transformar la posición a un vector?

Motivación

Motivación

¿Cómo transformar la posición a un vector?

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un *feature*.

Un **feature set** S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un *feature*.
- Cada feature es un valor en el vector de entrada, valiendo 1 si está activo y 0 si no.

Ejemplos de S

Información posicional:

Files =
$$\{a, b, ..., h\}$$

Ranks = $\{1, 2, ..., 8\}$
Squares = $\{a1, a2, ..., h8\}$

Información sobre las piezas:

Roles = { △ Pawn, ⊘ Knight, ♠ Bishop, ☒ Rook, ∰ Queen, ♠ King $Colors = {\bigcirc White, ullet Black}$

Ejemplo completo

	Feature set	
	$(\text{Files} \times \text{Colors})_P$	$(\text{Files} \times \text{Roles})_Q$
Active features	$\langle a, \bigcirc \rangle, \langle a, \bullet \rangle, \langle c, \bullet \rangle,$	$\langle a, \& \rangle, \langle c, @ \rangle, \langle c, @ \rangle,$
	$\langle c, \bigcirc \rangle, \langle d, \bigcirc \rangle, \langle h, \bullet \rangle$	$\langle d, \mathring{\triangle} \rangle, \langle h, \mathring{\underline{\mathbb{A}}} \rangle$

 $P(\langle f, c \rangle)$: there is a piece in file f with color c. $Q(\langle f, r \rangle)$: there is a piece in file f with role r.

Operación: Suma \oplus (concatenación)

Operadores

Hay veces que es útil combinar información de dos feature sets

Operadores

Operación: Suma \oplus (concatenación)

Hay veces que es útil combinar información de dos feature sets

$$S_P,\, T_Q$$
 : feature sets $S_P\oplus T_Q=(S\cup T)_R$ where $R(e)=egin{cases} P(e) & ext{if } e\in S \ Q(e) & ext{if } e\in T \end{cases}$

$$S_P imes T_Q = (S imes T)_R$$
 where $R(\langle e_0, e_1
angle) = P(e_0) \ \land \ Q(e_1)$

000000

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

■ Es pequeño: $64 \times 6 \times 2 = 768$ *features*

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ *features*
- Es completo: contiene toda la información de la posición

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ features
- Es completo: contiene toda la información de la posición
- Es muy rápido computar cuáles features están activas

Feature set: KING-ALL ó "KA"

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

> $KING-ALL = SQUARE_K \times ALL$ K(s): s is the square of the king of the side to move

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{K} imes ext{All}$$

 $K(s)$: s is the square of the king of the side to move

Es grande: $64 \times 768 = 49152$ *features*

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{\mathcal{K}} imes ext{All}$$

 $\mathcal{K}(s)$: s is the square of the king of the side to move

- **E**s grande: $64 \times 768 = 49152$ *features*
- Es muy rápido como All

Feature set: KING-ALL 6 "KA"

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{K} imes ext{All}$$

 $K(s)$: s is the square of the king of the side to move

- **E**s grande: $64 \times 768 = 49152$ *features*
- Es muy rápido como All
- Entrenarlo require un dataset más grande y lleva más tiempo (no me meto acá)

Resumen

- **S**: set of concepts (roles, colors, squares, files, ranks, etc.).
- **P**(e): predicate that defines when the feature e is present in the (implicit) position.
- **S**_P: a feature set. Every element in S_P is a feature. Features that satisfy P are active.
- $S_P \times T_Q = (S \times T)_R$ where $R(\langle e_0, e_1 \rangle) = P(e_0) \wedge Q(e_1)$

(AUNN) NNUE

ЗUИИ: Efficiently Updatable Neural Networks

ЗUИИ: **N**eural **N**etworks

- El input es un vector one-hot generado por el *feature set*.
 - Debe tener pocos *features* activos (rala): introduce una cota superior.
- La red es una *feedforward* clásica con dos capas ocultas.

Linear layer

Figure: Linear layer operation comparison. Figures from [18].

Figure: Partial tree of feature updates (removals and additions) for (SQUARES \times COLORS) (white's point of view) in a simplified 3x3pawn-only board.

ЗUИИ: Tradeoff

motivacion comparacion de burns

Training

Experimentos

Recapitulando... ¿Qué hay que definir para entrenar una red?

■ Feature set: determina la codificación y los patrones que se pueden aprender

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- Arquitectura de la red: el tamaño de cada capa; L₁ y L₂

- **Feature set**: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2
- **Método de entrenamiento**: PQR/target scores; determina el formato de las muestras y la loss function

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2
- Método de entrenamiento: PQR/target scores; determina el formato de las muestras y la loss function
- Hiperparámetros: learning rate, batch size, epochs, etc.

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red
- Elo relativo: la medida más común para comparar engines.
 - Se realizan torneos de 100ms por movimiento
 - El elo es calculado a partir de Ordo

Busco fijar el setup de entrenamiento con valores razonables

Busco fijar el setup de entrenamiento con valores razonables

■ El feature set va a cambiar cada experimento

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Entonces queda por determinar...

■ La arquitectura de la red $(L_1 \ y \ L_2)$

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Entonces queda por determinar...

- La arquitectura de la red $(L_1 \ y \ L_2)$
- Los hiperparámetros

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

■ Exponential decay: 0.99

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

Exponential decay: 0.99

■ **Batch size**: 16384

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

Exponential decay: 0.99

■ Batch size: 16384

■ **Epoch size**: 100 million

cada epoch realiza 6104 batches

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

Exponential decay: 0.99

■ Batch size: 16384

Epoch size: 100 million

cada epoch realiza 6104 batches

■ Epochs: 256

■ cada run observa 25.6 billion samples

Experimentos

Sólo queda buscar parámetros L_1 y L_2 razonables. Realizo una búsqueda en grilla con:

- \blacksquare L1 \in {256, 512, 1024, 2048}
- L2 ∈ {32, 64, 128, 256}

El feature set a utilizar es ALL[768].

Baseline: resultados

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.
- L1=512. Es el mejor valor para L2=64 y L2=128, y en margen de error para L2=32.
 - Además es el más rápido de entrenar.

Axis encoding: motivación

Figure: Weights of **a neuron** in the L1 layer, which are connected to features in ALL where the role is Ξ Rook. The intensity represents the weight value, and the color represents the sign (although not relevant).

Axis encoding: motivación

La red detecta patrones parecidos a los movimientos de las piezas.

Axis encoding: motivación

La red detecta patrones parecidos a los movimientos de las piezas. Para hacerle la vida más fácil a la red, propongo agregar features como:

"there is a \bigcirc White \square Rook in the 4th rank"

Axis encoding: experimento

Axis encoding: experimento

Depiction	Block name		Definition	Number of features
← →	Н	(FILES	\times Roles \times Colors) _P	96
‡	V	(Ranks	\times Roles \times Colors) _P	96
	D1	(Diags1	\times Roles \times Colors) _P	180
	D2	(Diags2	\times Roles \times Colors) _P	180

 $P(\langle x, r, c \rangle)$: there is a piece in x with role r and color c

Axis encoding: experimento

Depiction	Feature set	Number of features
↔ ⊕ ‡	$\mathrm{H}\oplus\mathrm{V}$	192
✓ ⊕ 🔨	$\mathrm{D}1\oplus\mathrm{D}2$	360
←→⊕ ↑ ⊕ ✓ ⊕ \	$H\oplus V\oplus D1\oplus D2$	552
	$\mathrm{All} \oplus \mathrm{H} \oplus \mathrm{V}$	960
$ALL \oplus \nearrow \oplus \searrow$	$\mathrm{All} \oplus \mathrm{D1} \oplus \mathrm{D2}$	1128
$ALL \oplus \longleftrightarrow \oplus \uparrow \oplus \nearrow \oplus \nwarrow$	$ALL \oplus H \oplus V \oplus D1 \oplus D2$	1320

Axis encoding: resultados

Feature set	Number of features	Val. loss	Rating elo (rel. to All)	Puzzles move acc.
←→ ⊕ 🚶	192	0.005810	-384.3 ± 5.1	0.8618
✓ ⊕ 🔨	360	0.006707	-444.1 ± 5.1	0.8517
	552	0.003907	-183.5 ± 4.1	0.8748
ALL (reference)	768	0.003134	0.0	0.8865
$ALL \oplus \longleftrightarrow \oplus $	960	0.003082	-27.1 ± 4.1	0.8851
$ALL \oplus \nearrow \oplus \searrow$	1128	0.003087	-26.1 ± 3.8	0.8814
$\begin{array}{c} \text{All} \oplus \longleftrightarrow \oplus \\ \oplus \nearrow \oplus \\ \end{array}$	1320	0.003067	-58.7 ± 3.7	0.8766

Pairwise axes: motivación

Configuraciones distintas, situaciones similares

Las mismas dos features (par rojo y par azul)

Pairwise axes: motivación

Comparando con el experimento anterior, es más específico en vez de más general:

```
"there is a ○ White \( \begin{aligned} \begin{aligned} \text{Rook in the 4th rank} \\ \text{vs.} \end{aligned} \)
```

"there is a ● Black \(\mathbb{Z}\) Rook next to a \(\cap \) White \(\text{\alpha}\) Pawn in the 'a' file"

Pairwise axes: experimento

D.	Block name	Definition	Num. of features	
		$(RANKS \times (ROLES \times COLORS) \times (ROLES \times COLORS))_P$		
0-0	PH	$P(\langle r, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in rank r with role r_1 and color c_1 to the left of a piece with role r_2 and color c_2	1152	
8	PV	$({\rm Files}\times({\rm Roles}\times{\rm Colors})\times({\rm Roles}\times{\rm Colors}))_Q$		
		$Q(\langle f, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in file f with role r_1 and color c_1 below a piece with role r_2 and color c_2	1152	

Pairwise axes: experimento

5 4 3 2 1 а h Pairwise vertical (PV)

Pairwise axes: experimento

Los feature sets a entrenar son:

- lacktriangle ALL \oplus PH (1920 features)
- lacktriangleq ALL \oplus PV (1920 features)
- $ALL \oplus PH \oplus PV$ (3072 features)

Pairwise axes: resultados

Feature set	Number of features	Val. loss	Rating elo (rel. to All)
All (reference)	768	0.003134	0.0
All ⊕ 0-0	1920	0.003033	$\text{-38.2} \pm \text{4.8}$
$ALL \oplus $	1920	0.002946	-8.4 ± 5.0
$All \oplus o - o \oplus \emptyset$	3072	0.002868	-37.6 ± 4.9

■ Reducir el número de pairs puede llevar a una mejora por sobre ALL (ej. △)

Conclusión

Ajedrez

asdasd