

LECTURE 16

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

- Need for performance metrics
 - Usefulness of a model
 - Comparison of candidate models
- Classification Performance
 - Probability of misclassification
 - Naïve Rule: most prevalent class
 - Serves as benchmark
 - Class Separation
- Open RStudio

- Performance Metrics based on Naïve Rule
 - Multiple R²
 - Distance between fit of model to data and fit of naïve rule to data
- Naïve rule equivalent for prediction
 - Sample mean
- Classification Matrix

 n_{i,j}: no. of class i cases classified
 as class j cases

Classification Maturi		
Classification Matrix		
	Predicted Class	
Actual Class	1	0
1	n _{1,1}	n _{1,0}
0	n _{0,1}	n _{0,0}

- Classification Performance
 - Validation partition classification matrix
 - Comparison of training partition classification matrix with validation partition classification matrix
 - Detect overfitting
- Performance Metrics based on classification matrix
 - Misclassification rate or error
 - Accuracy

Performance Metrics based on classification matrix

$$err = \frac{n_{0.1} + n_{1.0}}{n}$$

$$accuracy = 1 - err = \frac{n_{0.0} + n_{1.1}}{n}$$

- Open RStudio
- Cutoff probability value
 - Accuracy for all the classes is important
 - A case is assigned to the class with the highest probability as estimated by the model

- Cutoff probability value
 - Accuracy for a particular class of interest is important
 - A case is assigned to the class of interest if probability for the class is above cutoff value
 - Default cutoff value for a two class model is 0.5 (principally similar to naïve rule)
- Open Excel
 - One-variable table

- Why change cutoff probability value from 0.5?
 - Class of interest
 - Asymmetric misclassification cost

- When to incorporate change in cutoff value?
 - After final model selection
 - Before model derivation

Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

Thanks...