Extra exercises for chapter 6

Complex Analysis (EE2M11-2021v1)

- 1. Determine the zeros of $z^3 2z^2$ and their orders.
- **2.** 0 is a zero of $e^z z 1$. Determine the order of this zero.
- **3.** Determine the zeros of $\frac{z^2-1}{z^3-1}$ and their orders.
- **4.** Determine the zeros of $\frac{\sin z}{z}$ and their orders.
- 5. For the following functions, determine the isolated singularities and their types.
 - (a) $\frac{z^2+1}{e^z}$;
 - (b) $\frac{1}{e^z 1} \frac{1}{z}$;
 - (c) $e^{-z}\cos\left(\frac{1}{z}\right)$;
- **6.** For the following functions, determine the type of the given singularity:
 - (a) $\sin \frac{1}{z-1}$ in z = 1;
 - (b) $\frac{1}{z^3(e^{z^3}-1)}$ in z=0.
- 7. Given function $\frac{1}{\sin \frac{\pi}{z}}$, determine the singularities of this function, along with their types.
- 8. Calculate
 - (a) $\operatorname{Res}\left(\frac{1}{z^3-1}, e^{\frac{2\pi i}{3}}\right)$, $\operatorname{Res}\left(e^{\frac{1}{z}}, 0\right)$, $\operatorname{Res}\left(\frac{\sin z}{z^4}, 0\right)$, $\operatorname{Res}\left(\frac{e^z}{z^5}, 0\right)$.
 - (b) $\operatorname{Res}\left(\frac{e^z 1}{z}, 0\right)$, $\operatorname{Res}\left(\frac{z + 1}{z^3 z^2}, 1\right)$, $\operatorname{Res}\left(\frac{z + 1}{z^3 z^2}, 0\right)$, $\operatorname{Res}\left(\frac{z + 1}{z^3 z^2}, -1\right)$.
- 9. For the following functions, determine all singularities and their residues.
 - (a) $\frac{z^2-1}{z^3(z^2+1)}$;
 - (b) $\frac{e^{i\alpha z}}{z^4 + \beta^4}$ $(\alpha, \beta \text{ real}, \beta \neq 0);$
 - (c) $\frac{1}{z\sin z}$;
 - (d) $\frac{e^{1/z}}{z}$.
- 10. What is wrong with the following thought process? The function $f(z) = \frac{1}{z(z-1)^2}$ has an isolated singularity in z=0. The Laurent series is equal to

$$f(z) = \frac{1}{(z-1)^3} - \frac{1}{(z-1)^4} + \frac{1}{(z-1)^5} - \dots + \dots$$

if |z-1| > 1. Apparently, z = 1 is an essential singularity with a residue of 0.

11. Show that the following integrals are all equal to 0:

(a)
$$\int_{|z|=1} ze^{2z} dz;$$

(b)
$$\int_{|z|=1} \frac{1}{\cos z} \, dz;$$

(c)
$$\int_{|z|=3} \frac{1}{z^2+1} dz$$
;

12. Calculate the following integrals:

(a)
$$\int_{|z|=2} \frac{z^4 + z}{(z-1)^2} dz;$$

(b)
$$\int_{|z|=2} \frac{z^3 + 3z + 1}{z^4 - 5z^2} dz;$$

(c)
$$\int_{|z-i|=2}^{\infty} \frac{e^z + z}{(z-1)^4} dz;$$

(d)
$$\int_{|z-i|=2}^{\infty} \frac{e^{-z} \sin z}{z^2} dz;$$

(e)
$$\int_{|z-i|=2} \frac{\sin z}{(z-i)^n} dz$$
 with positive integer n .

- **13.** Let R > 1. Now look at the contour C_R consisting of the real interval $I_R = [-R, R]$ and the half circle $\Gamma_R = \{Re^{i\theta} | 0 \le \theta \le \pi\}$.
 - (a) Compute

$$\int_{C_R} \frac{dz}{z^4 + 1}.$$

Of course, the contour integral is traversed counter-clockwise.

(b) Show that
$$\lim_{R \to \infty} \int_{\Gamma_R} \frac{dz}{z^4 + 1} = 0.$$

(c) Calculate
$$\int_{-\infty}^{\infty} \frac{dx}{x^4 + 1}$$
 and $\int_{0}^{\infty} \frac{dx}{x^4 + 1}$.

- **14.** Let the function f be analytic on a domain D and suppose that a is an n-th order zero of f. Show that a is an isolated zero of f. In other words, there exists a deleted neighborhood of a where $f(z) \neq 0$.
- **15.** The function g is analytic in a neighborhood of z_0 and has an n-th order zero in z_0 . Show that the function $f(z) = \frac{1}{g(z)}$ has an n-th order pole in z_0 .
- **16.** The functions g and h are analytic in a region of z_0 , $g(z_0) \neq 0$ and z_0 is a first order zero of h. Now look at the function $f(z) = \frac{g(z)}{h(z)}$.

2

- (a) Show that z_0 is a first order pole of f.
- (b) Prove that $\operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}$.

And a little more challenging for the student that wants more:

17. Suppose z_0 is an isolated singularity of the function f(z). Prove:

- (a) z_0 is removable if and only if $\lim_{z\to z_0} f(z)$ exists (so is finite) if and only if $\lim_{z\to z_0} (z-z)$ $z_0)f(z) = 0;$
- (b) z_0 is a pole if and only if $\lim_{z\to z_0} f(z) = \infty$.
- (c) z_0 is essential if and only if $\lim_{z\to z_0} f(z) \neq \infty$ and does not exist.
- **18.** Let $f: D \to \mathbb{C}$ be analytic with D a domain. Let a be a singularity of f.
 - (a) Assume that there is an r > 0 such that $|f(z)| \le |z-a|^{-\frac{3}{4}}$ when 0 < |z-a| < r. Show that a is a removable singularity of f.
 - (b) Assume that there are an r > 0 and positive numbers M and N such that

$$N|z-a|^{-\frac{5}{2}} < |f(z)| < M|z-a|^{-\frac{7}{2}}$$

when 0 < |z - a| < r. Show that a is a pole of f and determine its order.

- **B-C 77.1.** Find the residue at z = 0 of the function
 - (a) $\frac{1}{z+z^2}$;
 - (b) $z \cos\left(\frac{1}{z}\right)$;

 - (c) $\frac{z \sin z}{z};$ (d) $\frac{\cot z}{z^4};$ (e) $\frac{\sinh z}{z^4(1 z^2)}.$
- B-C 79.1. In each case, write the principal part of the funtion at its isolated singular point and determine whether that point is a removable singular point, an essential singular point, or a pole:
 - (a) $z \exp\left(\frac{1}{z}\right)$;
 - (b) $\frac{z^2}{1+z};$ (c) $\frac{\sin z}{z};$ (d) $\frac{\cos z}{z};$

 - (e) $\frac{1}{(2-z)^3}$.