CHAPTER 1: THE DATABASE ENVIRONMENT AND DEVELOPMENT PROCESS

Modern Database Management 12th Edition Jeff Hoffer, Ramesh Venkataraman, Heikki Topi

OBJECTIVES

- Define terms
- Name limitations of conventional file processing
- Explain advantages of databases
- Identify costs and risks of databases
- List components of database environment
- Identify categories of database applications
- Describe database system development life cycle
- Explain prototyping and agile development approaches
- Explain roles of individuals
- Explain the three-schema architecture for databases

DEFINITIONS

- Databases are used to store, manipulate, and retrieve data in nearly every type of organization, including business, health care, education, government, and libraries.
- Database: organized collection of logically related data
- Data: stored representations of meaningful objects and events
 - Structured: numbers, text, dates
 - Unstructured: images, video, documents
- Information: data processed to increase knowledge in the person using the data
- Metadata: data that describes the properties and context of user data

Figure 1-1a Data in context

Class Roster

Course: MGT 500 Semester: Spring 2015

Business Policy

Section: 2

Name	ID	Major	GPA	
Baker, Kenneth D.	324917628	MGT	2.9	
Doyle, Joan E.	476193248	MKT	3.4	
Finkle, Clive R.	548429344	PRM	2.8	
Lewis, John C.	551742186	MGT	3.7	
McFerran, Debra R.	409723145	IS	2.9	
Sisneros, Michael	392416582	ACCT	3.3	

Context helps users understand data

Figure 1-1b Summarized data

Graphical displays turn data into useful information that managers can use for decision making and interpretation

Example Metadata for Class Roster Metadata Data Item Name Length Min Max Description Source Type Alphanumeric 30 Course ID and name Academic Unit Course 9 Section number Section Integer Registrar Semester Alphanumeric 10 Semester and year Registrar

Student name

Student ID (SSN)

Student grade point average

Student major

Descriptions of the properties or characteristics of the data, including data types, field sizes, allowable values, and data context

4.0

Name

Major

GPA

ID

Alphanumeric

Alphanumeric

Integer

Decimal

30

9

0.0

Student IS

Student IS

Student IS

Academic Unit

USING TRADITIONAL MANAGEMENT METHOD

Duplicate Data

FIGURE 1-2 Old file processing systems at Pine Valley Furniture Company

DISADVANTAGES OF FILE PROCESSING

Program-Data Dependence

All programs maintain metadata for each file they use

Duplication of Data

Different systems/programs have separate copies of the same data

Limited Data Sharing

No centralized control of data

Lengthy Development Times

Programmers must design their own file formats

Excessive Program Maintenance

80% of information systems budget

PROBLEMS WITH DATA DEPENDENCY

- Each application programmer must maintain his/her own data
- Each application program needs to include code for the metadata of each file
- Each application program must have its own processing routines for reading, inserting, updating, and deleting data
- Lack of coordination and central control
- Non-standard file formats

PROBLEMS WITH DATA REDUNDANCY

- Waste of space to have duplicate data
- Causes more maintenance headaches
- The biggest problem:
 - Data changes in one file could cause inconsistencies
 - Compromises in data integrity

SOLUTION: THE DATABASE APPROACH

- Central repository of shared data
- Data is managed by a controlling agent
- Stored in a standardized, convenient form

Requires a Database Management System (DBMS)

DATABASE MANAGEMENT SYSTEM

A software system that is used to create, maintain, and provide controlled access to user databases

DBMS manages data resources like an operating system manages hardware resources

ELEMENTS OF THE DATABASE APPROACH

- Data models
 - Graphical diagram capturing nature and relationship of data
 - Enterprise Data Model-high-level entities and relationships for the organization
 - Project Data Model-more detailed view, matching data structure in database or data warehouse

Entities

- Noun form describing a person, place, object, event, or concept
- Composed of attributes

Relationships

- Between entities
- Usually one-to-many (1:M) or many-to-many (M:N), but could also be one-to-one (1:1)

Relational Databases

Database technology involving tables (relations) representing entities and primary/foreign keys representing relationships

Chapter 1 Copyright © 2016 Pearson Education, Inc.

Figure 1-3 Comparison of enterprise and project level data models

Segment of an enterprise data model

Segment of a project-level data model

DATABASE MANAGEMENT SYSTEM

A database management system (DBMS) is a software system that enables the use of a database approach. The primary purpose of a DBMS is to provide a systematic method of creating, updating, storing, and retrieving the data stored in a database

ADVANTAGES OF THE DATABASE APPROACH

- Program-data independence
- Planned data redundancy
- Improved data consistency
- Improved data sharing
- Increased application development productivity
- Enforcement of standards
- Improved data quality
- Improved data accessibility and responsiveness
- Reduced program maintenance
- Improved decision support Chapter I Copyright © 2016 Pearson Education, Inc.

COSTS AND RISKS OF THE DATABASE APPROACH

- New, specialized personnel
- Installation and management cost and complexity (training, infrastructure)
- Conversion costs
- Need for explicit backup and recovery
- Organizational conflict

Figure 1-5 Components of the database environment

COMPONENTS OF THE DATABASE ENVIRONMENT

- C.A.S.E. tools-- automated tools used to design databases and application programs (even code generation).
- Repository-centralized storehouse of metadata
- Database Management System (DBMS) software for managing the database
- Database-storehouse of the data
- Application Programs-software using the data
- User Interface-text, graphical displays, menus, etc. for user
- Data/Database Administrators-personnel responsible for maintaining the database
- System Developers-personnel responsible for designing databases and software
- CEndu Users people who use the applications and

ENTERPRISE DATA MODEL

- First step in the database development process
- Specifies scope and general content
- Overall picture of organizational data at high level of abstraction
- Entity-relationship diagram
- Descriptions of entity types
- Relationships between entities
- Business rules

FIGURE 1-6 Example business function-to-data entity matrix

Data Entity Types Business Functions	Customer	Product	Raw Material	Order	Work Center	Work Order	Invoice	Equipment	Employee
Business Planning	X	Х						X	X
Product Development		Х	Х		X			X	
Materials Management		Х	Х	X	X	X		Х	
Order Fulfillment	Х	Х	X	Х	X	Х	Х	X	Χ
Order Shipment	X	Х		X	Х		X		X
Sales Summarization	Х	Х		Х			X		X
Production Operations		Χ	Χ	X	X	X		X	Χ
Finance and Accounting	Χ	X	X	X	X		X	X	Χ

TWO APPROACHES TO DATABASE AND IS DEVELOPMENT SDLC

- - System Development Life Cycle
 - Detailed, well-planned development process
 - Time-consuming, but comprehensive
 - Long development cycle
- Prototyping
 - Rapid application development (RAD)
 - Cursory attempt at conceptual data modeling
 - Define database during development of initial prototype
 - Repeat implementation and maintenance activities with new prototype versions

Purpose-develop technology and organizational specifications **Planning** Deliverable-program/data Analysis structures, technology purchases, organization redesigns Logical Design Physical Design Database activity-**Implementation** physical database design (define database to DBMS, physical Maintenance data organization, database processing programs)

PROTOTYPING DATABASE METHODOLOGY (FIGURE 1-8)

Prototyping is a classical Rapid Application Development (RAD) approach

Conceptual data modeling

- Analyze requirements
- Develop preliminary data model

Conceptual data modeling

- · Analyze requirements
- Develop preliminary data model

Database maintenance

- Tune database for improved performance
- Fix errors in database

Logical database design

- · Analyze requirements in detail
- Integrate database views into conceptual data model

Physical database design and definition

- Define new database contents to DBMS
- Decide on physical organization for new data
- Design database processing programs

Database implementation

- · Code database processing
- Install new database contents, usually from existing data sources

Database maintenance

- Analyze database to ensure it meets application needs
- · Fix errors in database

OTHER RAPID APPLICATION (RAD) APPROACHES

- Agile emphasizes "individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and response to change over following a plan." (The Agile Manifesto)
- Examples of agile programming methodologies
 - eXtreme programming
 - Scrum
 - DSDM Consortium
 - Feature-driven development

DATABASE SCHEMA

- External Schema
 - User Views
 - Subsets of Conceptual Schema
 - Can be determined from business-function/data entity matrices
 - DBA determines schema for different users
- Conceptual Schema
 - E-R models-covered in Chapters 2 and 3
- Internal Schema
 - Logical structures-covered in Chapter 4
 - Physical structures-covered in Chapter 5

Figure 1-9 Three-schema architecture

Different people have different views of the database...these are the external schema

The internal schema is the underlying design and implementation

MANAGING PEOPLE AND PROJECTS

- Project-a planned undertaking of related activities to reach an objective that has a beginning and an end
- Initiated and planned in planning stage of SDLC
- Executed during analysis, design, and implementation
- Closed at the end of implementation

MANAGING PROJECTS: PEOPLE INVOLVED

- Business analysts
- Systems analysts
- Database analysts and data modelers
- Users
- Programmers
- Database architects
- Data administrators
- Project managers
- Other technical experts

Figure 1-10a Evolution of database technologies

EVOLUTION OF DATABASE SYSTEMS

- Driven by four main objectives:
 - Need for program-data independence reduced maintenance
 - Desire to manage more complex data types and structures
 - Ease of data access for less technical personnel
 - Need for more powerful decision support platforms

Figure 1-10b Database architectures

Figure 1-10b Database architectures (cont.)

Figure 1-10b Database architectures (cont.)

THE RANGE OF DATABASE APPLICATIONS

- Personal databases
- Two-tier and N-tier Client/Server databases
- Enterprise applications
 - Enterprise resource planning (ERP) systems
 - Data warehousing implementations

TABLE 1-5 Summary of Database Applications		
Type of Database / Application	Typical Number of Users	Typical Size of Database
Personal	1	Megabytes
Multitier Client/Server	100-1000	Gigabytes
Enterprise resource planning	>100	Gigabytes-terabytes
Data warehousing	>100	Terabytes–petabytes

Figure 1-11 Multi-tiered client/server database architecture

ENTERPRISE DATABASE APPLICATIONS

- Enterprise Resource Planning (ERP)
 - Integrate all enterprise functions (manufacturing, finance, sales, marketing, inventory, accounting, human resources)
- Data Warehouse
 - Integrated decision support system derived from various operational databases

FIGURE 1-13 Computer System for Pine Valley Furniture Company

FIGURE 1-15 Project data model for Home Office product line marketing support system

