Michael Burton

March 15, 2016

Assumptions

- 1. Fixed Engine Weight $W_{eng-tot} \leftarrow 6$ lbf $P_{shaft-maxMSL} \leftarrow 2.189$ kW. Also assuming that engine performance is affected by altitude and RPM.
- 2. Fixed range to station $R \leftarrow 200$ nmi
- 3. Fixed payload $W_{pay} \leftarrow 10 \text{ lbf } Vol_{pay} \leftarrow 0.5 \text{ ft}^3$
- 4. Fixed altitude at cruise $h_{cruise} \leftarrow 5000 \text{ ft}$
- 5. Fixed altitude at station $h_{station} \leftarrow 1.5 \times 10^4 \text{ ft}$
- 6. Fixed a vonics $Vol_{avionics} \leftarrow 0.125 \text{ ft}^3 \ W_{avionics} \leftarrow 8 \text{ lbf}$
- 7. Fixed climb rate $h_{dot} \leftarrow 125 \frac{\text{ft}}{\text{min}}$
- 8. Fixed time to get on station $t_{cruise} \leftarrow 1 \text{ day}$
- 9. Constant wind speed during loiter $V_{wind} \leftarrow 25 \text{ m/s}$

Figure 1: Engine Performance

Trade Studies

Figure 2: Time on station vs MTOW. This carries all the same assumptions.

Figure 3: Time on station vs R. Assumes fixed weight of MTOW = 87 [lbf].

Figure 4: Time on station vs cruise altitude. Assumes fixed weight of MTOW = 87 [lbf].

Figure 5: Time on station vs wind velocity. Assumes fixed weight of MTOW = 87 [lbf].

Figure 6: Time on station vs wind velocity.