Generating provable primes

Sigurd Meldgaard Kasper Damgård

8. Jan.

► Usually primes are generated by testing random numbers with the randomized Miller-Rabin test

- ► Usually primes are generated by testing random numbers with the randomized Miller-Rabin test
- ▶ But, if we know the factorization of p-1 where p is prime, it is possible to generate a proof showing the primality of p.

- ► Usually primes are generated by testing random numbers with the randomized Miller-Rabin test
- ▶ But, if we know the factorization of p-1 where p is prime, it is possible to generate a proof showing the primality of p.
- ► This way we can generate the prime "bottom up" in a recursive way.

- ► Usually primes are generated by testing random numbers with the randomized Miller-Rabin test
- ▶ But, if we know the factorization of p-1 where p is prime, it is possible to generate a proof showing the primality of p.
- ► This way we can generate the prime "bottom up" in a recursive way.
- ► We have implemented an algorithm constructing primes this way, and compared it to Miller-Rabin

Euler's theorem

$$\forall n \in N, k, \gcd(k, n) = 1 : k^{\phi(n)} \equiv 1 \mod n$$

Lucas' primality criterion

Given a base b and a prime candidate n.

Where gcd(b, n) = 1 and b fulfills Fermat's equation for primes: $b^{(n-1)} = 1 \mod n$

The smallest exponent where the sequence:

$$1, b^2, b^3 \dots \mod n$$

reaches 1 is called the period of $b \mod n$ or $ord_p(b)$.

We know that

$$b^{\phi(n)} \equiv 1 \mod n$$

so

$$ord_p(b)|\phi(n)$$
.

Lucas' primality criterion cont...

We know that

$$ord_p(b)|\phi(n)$$
.

And also that

$$ord_p(b)|(n-1)$$

or equivalently $n-1=x\cdot ord_p(b)$ for some positive integer x. If we can prove x=1 then

$$ord_p(b) = n - 1 = \phi(n)$$

because: $\phi(n) \le n-1$, and then *n* must be prime.

Lucas' primality criterion cont...

Assume we know the factorization of $n-1=q_1^{\beta_1}q_2^{\beta_2}\dots q_r^{\beta_r}$. Then we can check that:

$$b^{(n-1)/q_i} \not\equiv 1 \mod n, i \in 1..r$$

If we raise b to a power not a multiple of $ord_p(b)$ it will be different from 1, so $(n-1)/q_i \not | ord_p(b)$ for any i

And if that is true, all factors of n-1 are not factors of x, and therefore x=1.

Using Lucas to generate primes

For generating large primes we can recursively generate smaller primes, multiply them and see if the product plus one is a prime by testing for Lucas' criterion.

Using Lucas to generate primes

- ► For generating large primes we can recursively generate smaller primes, multiply them and see if the product plus one is a prime by testing for Lucas' criterion.
- ► For the base case (primes smaller than a certain threshold) we use trial division of a random number to construct the prime.

Let the half be random

Really we only need to know the factorization of F (if F is odd), generate R randomly < F and let:

$$n = 2RF + 1$$

Because if F is odd and the test succeeds for some base b the smallest possible prime factor of n is 2F + 1, and because F > R $n = (2RF + 1) < (2F + 1)^2$, n must be prime.

As explained in [Fast Generation of Prime Numbers, by Maurer] almost any base will work for showing the primality of p, the exact proportion of good bases is:

$$\phi(F)/F \geq 1 - \sum_{j=1}^r 1/q_j$$

► To ensure that the primes are generated reasonably uniformly the size of the smaller primes generated in the recursive calls must be chosen properly.

- ► To ensure that the primes are generated reasonably uniformly the size of the smaller primes generated in the recursive calls must be chosen properly.
- ▶ In the same paper a method is given for choosing the sizes from the distribution of the relative size of the largest factor of a random integer *F*. And it is argued that the conditional distribution given that 2*F* + 1 is prime is almost the same.

- ► To ensure that the primes are generated reasonably uniformly the size of the smaller primes generated in the recursive calls must be chosen properly.
- ▶ In the same paper a method is given for choosing the sizes from the distribution of the relative size of the largest factor of a random integer F. And it is argued that the conditional distribution given that 2F+1 is prime is almost the same.
- ▶ Also it is noted that if *F* has only one prime factor, we still choose from among 10 % of all primes.

Asymptotic running time

The asymptotic estimated running time of finding a k-bit prime with the asymptotically best multi-precision algorithms is:

$$O(k^3 \cdot \log \log(k)).$$

For straightforward integer arithmetic the estimated running time is:

$$O(\frac{k^4}{\log(k)})$$

The base case

PROVABLE PRIME(k)

INPUT: a positive integer k.

OUTPUT: a k-bit prime number n.

- 1. (If k is small, then test random integers by trial division. A table of small primes may be precomputed for this purpose.) If $k \le 20$ then repeatedly do the following:
 - 1.1 Select a random k-bit odd integer n.
 - 1.2 Use trial division by all primes less than \sqrt{n} to determine whether n is prime.
 - 1.3 If n is prime then return(n).

The recursive case

- 2. Set $c \leftarrow 0.1$ and $m \leftarrow 20$.
- 3. (Trial division bound) Set $B \leftarrow c \cdot k^2$.
- 4. (Generate r, the size of F relative to n) If k > 2m then repeatedly do the following: select a random number s in the interval [0, 1], set $r \leftarrow 2^{s-1}$, until (k rk) > m. Otherwise (i.e. $k \le 2m$), set $r \leftarrow 0.5$.
- 5. Compute $F \leftarrow \mathsf{PROVABLE} \; \mathsf{PRIME}(|r \cdot k| + 1)$.
- 6. Set $I \leftarrow \lfloor 2^{k-1}/(2F) \rfloor$.

The recursive case 2 (testing candidates)

- 7. $success \leftarrow False$.
- 8. While (not *success*) do the following:
 - 8.1 (select a candidate integer n) Select a random integer R in the interval [I+1,2I] and set $n \leftarrow 2RF+1$.
 - 8.2 Select a random integer a in the interval [2, n-2]. Compute $b \leftarrow a^{n-1} \mod n$. If b=1 do the following: Compute $b \leftarrow a^{2R} \mod n$ and $d \leftarrow \gcd(b-1, n)$. If d=1 then $success \leftarrow True$.
- 9. Return(n).

Optimization

▶ Do a single Miller-Rabin test with base 2 of 2FR + 1 before actually testing for Lucas' primality criterion. Quickly weeds out most of the composites.

Implemented the algorithm in Python.

- Used the built-in multi-precision integers.
- Speed loss due to interpretation is negligible. (Most time is spent doing exponentiations)
- We also implemented the Miller-Rabin primality test for comparison.

- ► There are big deviations from the average, this is due to the algorithm depending a lot on "being lucky" when choosing the random parameters.
- For practical purposes one would want to do the Miller-Rabin test for several bases to make the probability of accepting a composite number negligibly small.

Figure: Timings of the two prime construction methods

Conclusion

Generating provable primes for public key parameters is certainly practically possible. But the Miller-Rabin test is easier to implement and can construct pseudoprimes with very high certainty in ca. the same time. And these numbers will be distributed truly uniformly among all primes.

Questions?

Questions?

Thank you!