VJEROJATNOST I STATISTIKA

ZADACI ZA VJEŽBU

10. Matematička statistika

FER, Zagreb

SADRŽAJ:

Zadaci za vježbu iz udžbenika Nevena Elezovića: Statistika i procesi Cjelina 10 – Matematička statistika

*** Prije rješavanja zadataka treba proći teoretsko gradivo ove cjeline ***

1. Formule	3
2. Zadaci	4
3. Rješeni zadaci	5
4. Službena rješenja	8
5. Literatura	9

NAPOMENA

Zadaci KOJE TREBA rješavati su od 1.-5. Zadatka i od 9.-13., ostali zadaci (6.-8.)su teoretskog tipa.

Zadaci koji nedostaju: -

Posebna zahvala LORD OF THE LIGHT na rješenjima nekih zadataka!

FORMULE:

10. MATEMATIČKA STATISTIKA

 $\textbf{Statistika} - \text{slučajna varijabla} \quad \Theta \coloneqq g(X_1, X_2, ..., X_n)$

Procjena očekivanja:

Nepoznato očekivanje *a* populacije X procjenjujemo pomoću sredine uzorka.

$$\overline{X} = \frac{1}{n} \textstyle \sum_{i=1}^n X_i \hspace{1cm} \text{, (uz $n_i X_i$):} \hspace{1cm} \overline{X} = \frac{1}{n} \textstyle \sum_{i=1}^n n_k X_i$$

 $E(\overline{X})=a$; $D(\overline{X})=\frac{\sigma^2}{n}$ gdje je σ^2 varijacija(disperzija) populacije.

Nepristrani procjenitelji

Za statistiku Θ kažemo da je nepristrana statistika parametra ϑ ako vrijedi: $E(\Theta) = \vartheta$

Procjena disperzije

Ako je očekivanje *a* <u>poznato</u>, procjena disperzije se računa:

$$D^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - a)^2$$

Ako su očekivanje a i disperzija σ^2 <u>nepoznati</u>, procjena disperzije se računa:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
, uz $n_i X_i$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (n_i X_i^2 - n \overline{X}^2)$

Kriterij najveće izglednosti

 $x_1, x_2, ... x_n$ realizacija uzorka populacije X, čija funkcija gustoće $f(\theta, x)$ ovisi o nepoznatom parametru θ .

$$L(\vartheta, x_1, ..., x_n) = f(\vartheta, x_1) f(\vartheta, x_2) ... f(\vartheta, x_n)$$

Za procjenu parametra θ uzimamo onu vrijednost za koju fukcija izglednosti poprima <u>maksimum</u>.

§ 10. Zadatci za vježbu

- 1. Rezultati mjerenja su 4.3, 4.5, 4.2, 4.6, 4.5, 4.4, 4.5, 4.4. Odredi procjene očekivanja i varijance.
- 2. Procjena disperzije varijable s poznatim očekivanjem a računa se iz uzorka formulom

$$\hat{D}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - a)^2.$$

Džepna računala programirana su na računanje disperzije ukoliko očekivanje nije poznato:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

Dokaži sljedeću korisnu formulu:

$$\hat{D}^2 = \hat{\sigma}^2 + (\overline{x} - a)^2.$$

- 3. Visina tornja je 164.32 m. U deset nezavisnih mjerenja visine tog tornja, uređajem koji nema sistematske pogreške, dobiveni su sljedeći rezultati: 164.16, 164.33, 164.38, 164.44, 164.12, 164.30, 164.56, 164.47, 164.55, 164.22. Uz pretpostavku da je pogreška distribuirana po normalnom zakonu, odredi nepristranu procjenu za odstupanje
- 4. Pretpostavimo da u mjerenjima iz prethodnog zadatka stvarna veličina nije poznata. Uz pretpostavku da je pogreška distribuirana po normalnom zakonu, odredi nepristranu procjenu za odstupanje.
- 5. Mjerenje kapaciteta kondenzatora (u μ F) u probnom uzorku dalo je sljedeće rezultate:

interval	n_k
21.0–21.3	2
21.3-21.6	8
21.6-21.9	15
21.9-22.2	26
22.2 - 22.5	43
22.5 - 22.8	38
22.8 - 23.1	24
23.1-23.4	15
23.4-23.7	6
23.7–24.1	3

Izračunaj sredinu i varijancu uzorka.

6. Načinjeno je n nezavisnih pokusa da bi se utvrdila frekvencija pojavljivanja događaja A. Kolika je disperzija te frekvencije? Za koju vrijednost vjerojatnosti p = P(A) će ta disperzija biti maksimalna?

7. Nepoznata veličina mjerena je u n navrata mjerenjima različitih preciznosti. Neka su pri tom dobivene vrijednosti x_1, \ldots, x_n , uz standardne devijacije $\sigma_1, \ldots, \sigma_n$. Procjenu mjerene veličine tražimo u obliku

$$\hat{x} = \sum_{i=1}^{n} t_i x_i,$$

gdje su t_i težinski koeficijenti, kojima je zbroj jednak 1. kako treba odrediti te koeficijente, da bi disperzija veličine \hat{x} bila minimalna?

8. n brojeva odabrano je na sreću iz nepoznatog intervala [a,b] i dobivene su vrijednosti x_1,\ldots,x_n . Da bismo procjenili sredinu c tog intervala, odabrali smo vrijednosti

 $x_m = \min\{x_1, \dots, x_n\}, \quad x_M = \max\{x_1, \dots, x_n\}$ i stavili

$$\hat{c}=rac{x_m+x_M}{2}.$$

- (a) Dokaži da je \hat{c} nepristrana procjena za c.
- (b) Dokaži da je ta procjena valjana.
- 9. Vjerojatnost p događaja A je nepoznata. Pokus je ponovljen pet puta i A se dogodio triput. Nakon toga, pokus je ponovljen šest puta i A se dogodio u četiri navrata. Koristeći kriterij najveće izglednosti, odredi procjenu za p.
- 10. Slučajna varijabla ima eksponencijalnu razdiobu $X \sim \mathcal{E}(\lambda)$. Ona je poprimila vrijednost x_1 . Koristeći kriterij najveće izglednosti, koja je procjena za parametar λ ?
- 11. Registrirana su vremena (u minutama) između uzastopnih poziva u telefonskoj centrali: 8, 12, 7, 10, 5. Kolika je vjerojatnost da će se na sljedeći poziv čekati više od 5 minuta?
- 12. Poissonova slučajna varijabla $X \sim \mathcal{P}(\lambda)$ u tri nezavisna pokusa poprimila je vrijednosti $x_1 = 5$, $x_2 = 7$, $x_3 = 3$. Koristeći kriterij najveće izglednosti, odredi procjenu parametra λ .
- 13. Uzorak x_1, \ldots, x_n izvučen je iz populacije koja ima gustoću razdiobe

$$f(x) = \lambda x^{\lambda - 1}, \qquad 0 < x < 1.$$

Pomoću kriterija najveće izglednosti, odredi procjenu za parametar λ .