

11 Número de publicación:

2 190 739

(21) Número de solicitud: 200102143

(51) Int. CI.7: F16H 37/00

//F16H 37/08

(12)

SOLICITUD DE PATENTE

A1

- 22 Fecha de presentación: 14.09.2001
- 43 Fecha de publicación de la solicitud: 01.08.2003
- Fecha de publicación del folleto de la solicitud: 01.08.2003
- (1) Solicitante/s: UNIVERSITAT POLITÈCNICA DE CATALUNYA C/ Jordi Girona, 31 08034 Barcelona, ES
- (7) Inventor/es: Vivancos Calvet, Joan y Gomà Ayats, Joan Ramón
- (74) Agente: No consta
- (54) Título: Mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos.

Resumen:
Mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos.
Mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos, caracterizado por estar compuesto por dos mecanismos diferenciales D1 y D2, un mecanismo variador de velocidad progresivo no inversor V y un eje de salida Es colector; caracterizado porque un primer diferencial D1 divide la potencia del eje de entrada Ee en dos ramas, una de las cuales va directamente al eje de salida Es o colector a través de una determinada relación de transmisión T1 y la otra va al mecanismo variador progresivo no inversor V, y los dos ejes E1 y E2 de éste a su vez actúan simultáneamente, a través de relaciones de transmisión adecuadas, sobre el segundo mecanismo diferencial D2 adecuadamente para que éste reste sus velocidades angulares y entregue la potencia al colector de salida Es obligando a este a girar a una velocidad proporcional a dicha diferencia.

Figura 2

בפטוכר וףפונרווופווונטטוטפו-טטננטווון

ES 2 190 739 A1

DESCRIPCION

Mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos.

5 Sector de la técnica

Sector de componentes para transmisiones mecánicas.

Estado de la técnica

10

35

60

Para obtener mecanismos que permitan variar de manera continua la velocidad del eje de salida de una transmisión desde un valor en un determinado sentido hasta otro en sentido contrario pasando por cero (paro del eje de salida), mientras se mantiene constante la velocidad angular del eje de entrada, se han propuesto soluciones basadas en la combinación de un variador de velocidad con un diferencial, ya 15 sea éste de tipo esférico o con ruedas cónicas como en la patente francesa FR 0911705 o de tipo plano o con ruedas cilíndricas como en la patente americana US 2745297.

En la Figura 1 se presenta un diagrama de bloques que representa las funciones de cada uno de los componentes, el variador de velocidad progresivo V y el diferencial D, en este tipo de mecanismos. A partir de una cierta velocidad ω_e en el eje de entrada E_e del sistema se obtiene una velocidad de salida ω_s en el eje de salida E, que puede variar de manera continua desde un valor en un determinado sentido hasta otro valor en sentido contrario pasando por cero, variando la relación de transmisión "r" del variador V entre los valores (1/k) y (k). La velocidad de entrada del variador V es ω_e y la velocidad de salida es r ω_e , y en el diferencial D, en uno de los ejes de entrada le llega la velocidad ω_e directamente de la entrada del mecanismo global, en el otro eje de entrada le llega la velocidad de salida del variador r ω_e y en el eje de salida se obtiene la velocidad ω_s , diferencia ente las velocidades de sus dos ejes de entrada.

En la realización práctica de este tipo de mecanismos se tienen las siguientes 3 dificultades básicas:

- 1^a) El par que soporta el eje de salida del variador de velocidad es igual al par de salida del mecanismo y tiende a infinito cuando la velocidad de salida ω_s se aproxima a cero.
 - 2ª) Aún cuando se disponga de un sistema limitador del par de salida del mecanismo, éste es igual al que tiene que soportar el eje de salida del varíador de velocidad y su valor máximo tiene que producirse cuando la correa del variador trabaja sobre un radio inferior ala media entre el radio mínimo y el radio máximo.
- 3^a) El sistema puede diseñarse para que la velocidad de la correa del variador de velocidad sea mínima cuando la velocidad de salida ω_s del mecanismo sea máxima en uno de los dos sentidos y en este 40 punto la potencia que circula por la correa será sólo una fracción de la potencia de salida, pero necesariamente la velocidad de la correa será máxima cuando la velocidad de salida ω_s sea máxima en el otro sentido, y en este punto la potencia que circule por la correa será un múltiplo de la potencia de salida del mecanismo.
- 45 Los autores presentaron la solicitud de patente P 200001049 en la que se proponía un mecanismo basado en un diferencial con diferente número de dientes en los dos planetas y con doble engranaje en cada satélite. Este mecanismo permite reducir el par de salida del variador a una fracción del par de salida del mecanismo facilitando el trabajo de la correa en la zona de pares de salida elevados, disminuyendo los inconvenientes de las dos primeras dificultades expuestas.

Como que el variador de velocidad progresivo es un mecanismo basado en el arrastre por fricción, siempre ocasiona pérdidas de potencia mayores que las de los mecanismos de transmisión por engranajes y además tiene unos límites inferiores de temperatura y tensiones de funcionamiento. Por ello, en los mecanismos que combinan variadores con diferenciales, siempre convendría que la potencia que circula por el variador sea la mínima posible.

Explicación de la invención

Corresponde a una realización preferente.

El mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos, esquematizado en la Figura 2 y objeto de la invención, consiste en la combinación de:

· part-maintoologi-bottoini

ES 2 190 739 A1

- a) Un diferencial D_1 que divide la potencia de entrada del eje E_e , una parte de la misma se transmite directamente al eje de salida E_s o colector a partir del portasatélites PS_1 y a través de la transmisión fija T_1 , tipo cadena u otro tipo de sistema, y el resto se transmite a través del eje E_1 coaxial con el eje de entrada E_e . La velocidad de entrada es ω_e .
- b) Un variador de velocidad progresivo V que toma el movimiento del eje de salida E_1 del diferencial anterior D_1 . Dicho variador de velocidad, en este caso está formado por dos poleas cónicas y una correa trapezoidal que transmite el movimiento entre ellas. La anchura de las poleas puede variarse de manera controlada y continua con el desplazamiento X, variando así el radio donde se ajusta la correa trapezoidal y por lo tanto variando de manera continua la relación de transmisión del variador. El variador puede ser de cualquier otro tipo, tipo rodillos cónicos invertidos con correa plana en posición variable, etc. Variando la relación de transmisión del variador de velocidad progresivo V se logra variar de manera continua la relación de transmisión del mecanismo global que relaciona la velocidad de giro de salida ω_s con la velocidad de giro de entrada ω_e .
- c) Un segundo diferencial D₂, cuyo planeta de entrada es accionado por el eje de salida E₂ del variador de velocidad progresivo V y cuyo portasatélites PS₂ es accionado por el eje de entrada E₁ del variador V a través de una transmisión fija T₂, tipo cadena u otro tipo de sistema, de forma que en el eje de salida E_s del segundo diferencial D₂, que es a su vez el eje de salida del mecanismo, se obtiene una velocidad ω_s propocional a la diferencia entre la velocidad del planeta de entrada de D₂ y la velocidad del portasatélites PS₂ de D₂. El eje E_s también recoge la parte de potencia dividida por el primer diferencial D₁ la cual le llega a través de la transmisión fija T₁.

En las Figuras 3 y 4 se muestran los esquemas del flujo de potencia del mecanismo cuando actúa en sentido positivo, es decir ω_s tiene el mismo sentido de giro que ω_e , y cuando actúa en sentido negativo, es decir ω_s tiene el sentido de giro contrario al de ω_e , respectivamente.

Las relaciones de transmisión de los distintos engranajes se eligen de forma que:

- a) En el sentido positivo, Figura 3, el divisor de potencia desvía la mayor parte de la potencia de entrada P_e directamente hacia el eje de salida E_s a través de la transmisión fija T_1 , la potencia P_{T1} . El mecanismo variador e inversor de velocidad progresivo, formado por el conjunto variador V y segundo diferencial D_2 , no está optimizado en este sentido y por lo tanto la potencia P_v que circula por la correa del variador V es un múltiplo de la potencia que circula por el mecanismo, pero gracias a la división inicial todavía es mucho menor que la potencia de salida. Por el eje E_1 circula la potencia P_{E1} y por la transmisión fija P_{E1} circula la potencia P_{E2} .
 - b) En el sentido negativo, Figura 4, el divisor de la entrada D_1 recircula una parte de la potencia, la P_{T1} , provocando un incremento respecto a la potencia de entrada P_e en la potencia P_{E1} que pasa por el conjunto variador e inversor $(V+D_2)$, pero el conjunto variador e inversor sí ha sido optimizado en este sentido V sólo pasa por la correa del variador V una pequeña fracción P_v de esta potencia P_{E1} . Por la transmisión fija V circula la potencia V por la transmisión fija V por la transmisión fija V circula la potencia V por la transmisión fija V por la tr

En función del rango de velocidades que proporcione el variador y del rango de velocidades requerido en el mecanismo global, es posible determinar las distintas relaciones de transmisión que configuran el mecanismo global para garantizar que tanto en marcha en sentido positivo como en marcha en sentido negativo sólo circule una fracción de la potencia total por la correa del variador V, siendo esta fracción tanto menor cuanto mayor sea el rango de variación de velocidades del variador.

En la Tabla adjunta se muestra, para el caso de un diseño posible del mecanismo, el tanto por ciento de la potencia de entrada P_e que pasa a través de la correa del variador V, en función del rango de variación de la relación de transmisión que permite el variador (k²), para el sentido positivo y para el sentido negativo.

40

10

Rango variador k ²	Sentido positivo (i=1) P _v =% P _e	Sentido negativo (i=-1/2) P _v =% P _e
9	54%	120 %
9	84%	75%
16	50 %	65 %
25	34 %	56 %
25	48%	40 %
36	34%	38%

La relación de transmisión "r" del variador puede variar de manera continua entre 1/k y k, y por lo tanto el rango de variación de la relación de transmisión del variador es rmáximo/rmínimo)= [k/(1/k)]= k².

La relación de transmisión del mecanismo global es i = ω_s/ω_e

Descripción de los dibujos

10

15

30

35

40

45

50

55

60

Figura 1 Diagrama de bloques correspondiente al funcionamiento de un mecanismo formado por la combinación de un variador de velocidad progresivo V y un diferencial D. A partir de una cierta velocidad ω_e en el eje de entrada E_e del sistema se obtiene una velocidad de salida ω_s en el eje de salida E_s que puede variar de manera continua desde un valor en un determinado sentido hasta otro valor en sentido contrario pasando por cero, variando la relación de transmisión "r" del variador V entre los valores (1/k) y (k). La velocidad de entrada del variador V es ω_e y la velocidad de salida es r ω_e , y en el diferencial D, en uno de los ejes de entrada le llega la velocidad ω_e directamente de la entrada del mecanismo global, en el otro eje de entrada le llega la velocidad de salida del variador r ω_e y en el eje de salida se obtiene la velocidad ω_s diferencia entre las velocidades de sus dos ejes de entrada.

Figura 2 Esquema de los componentes mecánicos que constituyen el mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos objeto de la patente. Este esquema corresponde a una realización preferente. Consiste en la combinación de:

- a) Un diferencial D_1 que divide la potencia de entrada, una parte de la misma se transmite directamente al eje de salida E_s o colector a partir del portasatélites PS_1 y a través de la transmisión fija T_1 , tipo cadena u otro tipo de sistema, y el resto se transmite a través del eje E_1 coaxial con el eje de entrada E_e . La velocidad de entrada es ω_e .
- b) Un variador de velocidad progresivo V que toma el movimiento del eje de salida E_1 del diferencial anterior D_1 . Dicho variador de velocidad, en este caso está formado por dos poleas cónicas y una correa trapezoidal que transmite el movimiento entre ellas. La anchura de las poleas puede variarse de manera controlada y continua con el desplazamiento X, variando así el radio donde se ajusta la correa trapezoidal y por lo tanto variando de manera continua la relación de transmisión del variador. El variador puede ser de cualquier otro tipo, tipo rodillos cónicos invertidos con correa plana en posición variable, etc. Variando la relación de transmisión del variador de velocidad progresivo V se logra variar de manera continua la relación de transmisión del mecanismo global que relaciona la velocidad de giro de salida ω_s con la velocidad de giro de entrada ω_e .
- c) Un segundo diferencial D_2 , cuyo planeta de entrada es accionado por el eje de salida E_2 del variador de velocidad progresivo V y cuyo portasatélites PS_2 es accionado por el eje de entrada E_1 del variador V a través de una transmisión fija T_2 , tipo cadena u otro tipo de sistema, de forma que en el eje de salida E_s del segundo diferencial D_2 , que es a su vez el eje de salida del mecanismo, se obtiene una velocidad ω_s propocional a la diferencia entre la velocidad del

planeta de entrada de D_2 y la velocidad del portasatélites PS_2 de D_2 . El eje E_s también recoge la parte de potencia dividida por el primer diferencial D_1 la cual le llega a través de la transmisión fija T_1 .

- Figura 3 En esta Figura se muestra 1 esquema del flujo de potencia del mecanismo esquematizado en la Figura 2, cuando actúa en sentido positivo, es decir ω_s tiene el mismo sentido de giro que ω_e. Las relaciones de transmisión de los distintos engranajes se eligen de forma que en el sentido positivo, el divisor de potencia desvía la mayor parte de la potencia de entrada P_e directamente hacia el eje de salida E_s a través de la transmisión fija T₁, la potencia P_{T1}. El mecanismo variador e inversor de velocidad progresivo, formado por el conjunto variador V y segundo diferencial D₂, no está optimizado en este sentido y por lo tanto la potencia P_v que circula por la correa del variador V es un múltiplo de la potencia que circula por el mecanismo, pero gracias a la división inicial todavía es mucho menor que la potencia de salida P_s. A través del eje E₁ pasa la potencia P_{E1} y a través de la transmisión fija T₂ pasa la potencia P_{T2}.
 - Figura 4 En esta Figura se muestra el esquema del lujo de potencia del mecanismo esquematizado en la Figura 2, cuando actúa en sentido negativo, es decir ω_s , tiene el sentido de giro contrario al de ω_e . Las relaciones de transmisión de los distintos engranajes se eligen de forma que en el sentido negativo el divisor de la entrada D_1 recircula una parte de la potencia, la P_{T1} , provocando un incremento respecto a la potencia de entrada P_e en la potencia P_{E1} que pasa por el conjunto variador e inversor (V+D₂), pero el conjunto variador e inversor sí ha sido optimizado en este sentido y sólo pasa por la correa del variador V una pequeña fracción P_v de esta potencia P_{E1} . Por la transmisión fija T_2 circula la potencia P_{T2} Y por la transmisión fija T_1 circula la potencia P_{T1} .

5 Modo de realización de la invención

15

20

35

40

45

50

Corresponde a una realización preferente.

El mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos, esquematizado en la Figura 2 y objeto de la invención, consiste en la combinación de:

- a) Un diferencial D₁ que divide la potencia de entrada del eje E_e, una parte de la misma se transmite directamente al eje de salida E_s o colector a partir del portasatélites PS₁ y a través de la transmisión fija T₁, tipo cadena u otro tipo de sistema, y el resto se transmite a través del eje E₁ coaxial con el eje de entrada E_e. La velocidad de entrada es ω_e.
- b) Un variador de velocidad progresivo V que toma el movimiento del eje de salida E_1 del diferencial anterior D_1 . Dicho variador de velocidad, en este caso está formado por dos poleas cónicas y una correa trapezoidal que transmite el movimiento entre ellas. La anchura de las poleas puede variarse de manera controlada y continua con el desplazamiento X, variando así el radio donde se ajusta la correa trapezoidal y por lo tanto variando de manera continua la relación de transmisión del variador. El variador puede ser de cualquier otro tipo, tipo rodillos cónicos invertidos con correa plana en posición variable, etc. Variando la relación de transmisión del variador de velocidad progresivo V se logra variar de manera continua la relación de transmisión del mecanismo global que relaciona la velocidad de giro de salida ω_s con la velocidad de giro de entrada ω_e .
- c) Un segundo diferencial D₂, cuyo planeta de entrada es accionado por el eje de salida E₂ del variador de velocidad progresivo V y cuyo portasatélites PS₂ es accionado por el eje de entrada E₁ del variador V a través de una transmisión fija T₂ tipo cadena u otro tipo de sistema, de forma que en el eje de salida E_s del segundo diferencial D₂, que es a su vez el eje de salida del mecanismo, se obtiene una velocidad ω_s propocional a la diferencia entre la velocidad del planeta de entrada de D₂ y la velocidad del portasatélites PS₂ de D₂. El eje E_s también recoge la parte de potencia dividida por el primer diferencial D₁ la cual le llega a través de la transmisión fija T₁.
- En las Figuras 3 y 4 se muestran los esquemas del flujo de potencia del mecanismo cuando actúa en sentido positivo, es decir ω_s tiene el mismo sentido de giro que ω_e , y cuando actúa en sentido negativo, es decir ω_s tiene el sentido de giro contrario al de ω_e , respectivamente.

Las relaciones de transmisión de los distintos engranajes se eligen de forma que:

a) En el sentido positivo, Figura 3, el divisor de potencia desvía la mayor parte de la potencia de entrada P_e directamente hacia el eje de salida E_e a través de la transmisión fija T₁, la potencia P_{T1}. El mecanismo variador e inversor de velocidad progresivo, formado por el conjunto variador

V y segundo diferencial D_2 , no está optimizado en este sentido y por lo tanto la potencia P_v que circula por la correa del variador V es un múltiplo de la potencia que circula por el mecanismo, pero gracias a la división inicial todavía es mucho menor que la potencia de salida. Por el eje E_1 circula la potencia P_{E_1} y por la transmisión fija T_2 circula la potencia P_{T_2} .

b) En el sentido negativo, Figura 4, el divisor de la entrada D_1 recircula una parte de la potencia, la P_{T1} , provocando un incremento respecto a la potencia de entrada P_e en la potencia P_{E1} que pasa por el conjunto variador e inversor (V+D₂), pero el conjunto variador e inversor sí ha sido optimizado en este sentido y sólo pasa por la correa del variador V una pequeña fracción P_v de esta potencia P_{E1} . Por la transmisión fija T_2 circula la potencia P_{T2} y por la transmisión fija T_1 circula la potencia P_{T1} .

En función del rango de velocidades que proporcione el variador y del rango de velocidades requerido en el mecanismo global, es posible determinar las distintas relaciones de transmisión que configuran el mecanismo global para garantizar que tanto en marcha en sentido positivo como en marcha en sentido negativo sólo circule una fracción de la potencia total por la correa del variador V, siendo esta fracción tanto menor cuanto mayor sea el rango de variación de velocidades de(variador.

En la Tabla adjunta se muestra, para el caso de un diseño posible del mecanismo, el tanto por ciento de la potencia de entrada P_e que pasa a través de la correa del variador V, en función del rango de variación de la relación de transmisión que permite el variador (k²), para el sentido positivo y para el sentido negativo.

25	Rango variador k ²	Sentido positivo (i=1) P _v =% P _e	Sentido negativo (i=-1/2) P _v =%P _e
	9	54%	120%
30	9	84 %	75 %
	16	50 %	65 %
35	25	34 %	56%
	25	48 %	40%
40	36	34%	38%

La relación de transmisión "r" del variador puede variar de manera continua entre 1/k y k, y por lo tanto el rango de variación de la relación de transmisión del variador es $(r_{máximo}/r_{mínimo}) = [k/(1/k)]$ = k^2 .

La relación de transmisión del mecanismo global es $i = \omega_s/\omega_e$.

10

50

55

60

6

REIVINDICACIONES

- Mecanismo variador e inversor de velocidad progresivo con rendimiento óptimo en ambos sentidos, es decir tanto cuando el eje de salida gira en el mismo sentido que el eje de entrada como cuando el eje de salida gira en sentido contrario al del eje de entrada, caracterizado por estar compuesto por dos mecanismos diferenciales, un mecanismo variador de velocidad progresivo no inversor y un eje de salida colector.
- 2. Mecanismo variador e inversor de velocidad con un rendimiento óptimo en ambos sentidos según la reivindicación 1, caracterizado porque un primer diferencial divide la potencia de entrada en dos ramas, una de las cuales va directamente al eje de salida o colector a través de una determinada relación de transmisión fija y la otra va al mecanismo variador de velocidad progresivo no inversor y los dos ejes de éste a su vez actúan simultáneamente, a través de relaciones de transmisión adecuadas, sobre el segundo mecanismo diferencial adecuadamente para que éste reste sus velocidades angulares y entregue la potencia al colector de salida obligando a éste a girar a una velocidad proporcional a dicha diferencia.
 - 3. Mecanismo variador e inversor de velocidad con un rendimiento óptimo en ambos sentidos según la reivindicación 2, caracterizado porque los dos les del varíador de velocidad progresivo no inversor actúan sobre el segundo mecanismo diferencial, uno sobre el portasatélites a través de una transmisión fija y el otro directamente sobre el planeta de entrada.
 - 4. Mecanismo variador e inversor de velocidad con un rendimiento óptimo en ambos sentidos según la reivindicación 2, caracterizado porque las relaciones de transmisión fijas entre dos ejes se realizan mediante cadenas, o correas, o engranajes o cualquier otro tipo de sistema que permita establecer una relación de transmisión fija entre dos ejes.
- 5. Mecanismo variador e inversor de velocidad con un rendimiento óptimo en ambos sentidos según la reivindicación 1, caracterizado porque el variador de velocidad progresivo no inversor puede ser con poleas cónicas de diámetro variable y correa trapezoidal, o con rodillos cónicos invertidos con correa plana en posición variable, o con cualquier otro sistema que permita variar la relación de transmisión entre dos ejes de manera continua entre dos valores extremos de relación de transmisión.
- 6. Mecanismo variador e inversor de velocidad con un rendimiento óptimo en ambos sentidos según la reivindicación 5, caracterizado porque el sistema de regulación de la variación de la relación de transmisión en el variador de velocidad progresivo no inversor puede ser a través de un sistema neumático, o hidráulico, o mecánico, o eléctrico, o combinaciones de los mismos o cualquier otro sistema que permita dicha regulación.
- 7. Mecanismo variador e inversor de velocidad con un rendimiento óptimo en ambos sentidos según la reivindicación 1, caracterizado porque los mecanismos diferenciales pueden ser epicicloidales de tipo plano o con ruedas cilíndricas, o de tipo esférico o con ruedas cónicas, o de cualquier otro tipo que permita obtener una velocidad de giro del eje de salida como combinación de las velocidades de giro de los otros dos ejes.

45

50

55

60

Figura 1

Figura 2

Figura 3

Figura 4

① ES 2 190 739

21 N.° solicitud: 200102143

22) Fecha de presentación de la solicitud: 14.09.2001

32) Fecha de prioridad:

INFORME SOBRE EL	ESTADO	DE LA	TECNICA
------------------	--------	-------	----------------

(51) Int. Cl. ⁷ :	F16H 37/00 // F16H 37/08	

DOCUMENTOS RELEVANTES

Categoría		Documentos citados	Reivindicaciones afectadas
X	US 2384776 A (L.A. TROFIMOV) 11.09.1945, página 1, columna derecha, línea 29 - página 3, columna derecha, línea 37;		1,5-7
Α	figura 1.		2,4
A	EP 308078 A (DOYLE TRAN línea 1 - página 3, línea 13; pa línea 38; figuras 1,2.	ISMISSIONS) 22.03.1989, resumen; página 2, ágina 4, línea 54 - página 6,	1-7
		·	
-			
X: de Y: de mis	goría de los documentos citado particular relevancia particular relevancia combinado co sma categoría leja el estado de la técnica	O: referido a divulgación no escrita	
	esente informe ha sido realiza para todas las reivindicaciones	para las reivindicaciones nº:	
Fecha de	realización del informe 30.05.2003	Examinador S. Gómez Fernández	Página 1/1