2

3 4

5

б

## IN THE CLAIMS:

Amend the claims as indicated below.

| 7  | 1. (currently aniended) A method for a spread spectrum detector, comprising the steps              |
|----|----------------------------------------------------------------------------------------------------|
| 2  | of:                                                                                                |
| 3  | receiving a spread spectrum modulated signal having a Doppler shift error imposed by               |
| 4  | movement between a signal source and a receiver;                                                   |
| 5  | producing a plurality of complex first correlation values based upon the signal and a              |
| 6  | code;                                                                                              |
| 7  | generating a plurality of complex second correlation values respectively from the first            |
| 8  | correlation values using a fast fourier transform, wherein generating includes combining a stored. |
| 9  | associated, phase shift value with each of the first correlation values to produce the second      |
| 10 | correlation values the second correlation values being phase shifted by respective different       |
| 11 | amounts from corresponding first-correlation values, so that the second correlation values exhibit |
| 12 | less of the Doppler shift error than the first correlation values; and                             |
| 13 | combining the second correlation values to derive a complex third correlation value that           |
| 14 | indicates a degree of correspondence of the code with the signal                                   |

- 2. (original) The method of claim 1, further comprising the steps of: performing the producing, generating, and integrating steps a plurality of times with a different code phase of the code each time in order to produce a plurality of third correlation values; and
- determining that a particular one of the code phases corresponds to the signal based upon the third correlation values.
- 1 3. (original) The method of claim 1, wherein the producing step comprises the steps of: 2 multiplying chips of the code with signal samples, respectively, to derive multiplication 3 results: and
- 4 adding together the multiplication results to produce the first correlation values.
- 1 4. (original) The method of claim 1, further comprising the steps of: 2 storing the first correlation values in a memory; and

indicates a degree of correspondence of the code with the signal.



| 3 | communicating the first correlation values from the memory to combinational logic that            |
|---|---------------------------------------------------------------------------------------------------|
| 4 | implements the fast fourier transform.                                                            |
| 1 | 5. (original) The method of claim 1, further comprising the steps of:                             |
| 2 | performing the producing step a plurality of times with a different code phase of the code        |
| 3 | each time in order to produce more then one plurality of first correlation values, one            |
|   | · · · · · · · · · · · · · · · · · · ·                                                             |
| 4 | corresponding with each of the different code phases;                                             |
| 5 | storing each plurality of first correlation values in a memory; and                               |
| 6 | performing the generating step upon each plurality of first correlation values, one at a          |
| 7 | time, so as to create a plurality of second correlation values for each code phase.               |
| 1 | 6. (original) The method of claim 1, wherein the second correlation values are                    |
| 2 | combined noncoherently in the combining step so that the third correlation value comprises a real |
| 3 | number part and an imaginary number part, which are collectively indicative of a magnitude and    |
| 4 | a phase.                                                                                          |
|   | ·                                                                                                 |
| 1 | 7. (original) The method of claim 1, wherein the second correlation values are                    |
| 2 | combined noncoherently in the combining step so that the third correlation value comprises a      |
| 3 | magnitude.                                                                                        |
| 1 | 9 Contain 12 PPts mode 2 C 1 to 2 to 4                              |
| 1 | 8. (original) The method of claim 1, wherein the producing step comprises the step of             |
| 2 | using a matched filter to produce the first correlation values.                                   |
| 1 | 9. (original) The method of claim 1, wherein the producing step comprises the step of             |
| 2 | using a digital signal processor to produce the first correlation values.                         |
| 1 | 10. (original) The method of claim 1, wherein the signal is received from a satellite             |
| 2 | associated with a global positioning system.                                                      |
| _ | accomica with a Broom boardoning system.                                                          |
| 1 | 11. (original) The method of claim 1, wherein the signal is a carrier signal modulated            |
| 2 | with a repeating code.                                                                            |
|   |                                                                                                   |

12. (original) The method of claim 2, wherein the determining step is performed by a

processor.

| 1  | 13. (currently amended) (currently amended) A spread spectrum detector, comprising:                 |
|----|-----------------------------------------------------------------------------------------------------|
| 2  | first means for receiving a spread spectrum modulated signal having a Doppler shift erro            |
| 3  | imposed by movement between a signal source and a receiver;                                         |
| 4  | second means for producing a plurality of complex first correlation values based upon th            |
| 5  | signal and a code;                                                                                  |
| 6  | third means for generating a plurality of complex second correlation values respectively            |
| 7  | from the first correlation values by implementing a fast fourier transform, wherein generating      |
| 8  | includes combining a stored, associated, phase shift value with each of the first correlation value |
| 9  | to produce the second correlation values the second correlation values being phase shifted by       |
| 10 | respective different amounts from corresponding first correlation values, so that the second        |
| 11 | correlation values exhibit less of the Doppler shift error than the first correlation values; and   |
| 12 | fourth means for combining the second correlation values to derive a third correlation              |
| 13 | value that indicates a degree of correspondence of the code with the signal.                        |
| 1  | 14. (original) The detector of claim 13, further comprising:                                        |
| 2  | fifth means for determining that a code phase of the code corresponds to the signal based           |
| 3  | upon the third correlation value.                                                                   |
| 1  | 15. (original) The detector of claim 13, wherein the second means comprise:                         |
| 2  | means for multiplying chips of the code with signal samples, respectively, to derive                |
| 3  | multiplication results; and                                                                         |
| 4  | means for adding together the multiplication results to produce the first correlation               |
| 5  | values.                                                                                             |
| 1  | 16. (original) The detector of claim 13, further comprising:                                        |
| 2  | means for producing first correlation values with a different code phase of the code each           |
| 3  | time in order to produce more than one plurality of first correlation values, one corresponding     |
| 4  | with each of the different code phases;                                                             |
| 5  | means for storing each plurality of the first correlation values in a memory; and                   |

| 6 | means for generating a plurality of second correlation values for each plurality of first          |
|---|----------------------------------------------------------------------------------------------------|
| 7 | correlation values, each plurality of second correlation values corresponding to a respective code |
| 8 | phase.                                                                                             |
| 1 | 17. (original) The detector of claim 13, wherein the fourth means comprises a means for            |
| 2 | coherently combining the second correlation values together so that the third correlation value    |
| 3 | comprises a real number part and an imaginary number part, which are collectively indicative of    |
| 4 | a magnitude and a phase.                                                                           |
| 1 | 18. (original) The detector of claim 13, wherein the third means comprises a means for             |
| 2 | noncoherently combining the second correlation values together so that the third correlation       |
| 3 | value comprises a magnitude and no phase information.                                              |
| 1 | 19. (original) The detector of claim 13, wherein the second means comprises a matched:             |
| 2 | filter means for producing the first correlation values.                                           |
| 1 | 20. (original) The detector of claim 13, wherein the second means comprises a digital              |
| 2 | signal processing means for producing the first correlation values.                                |
| 1 | 21. (original) The detector of claim 13, wherein the signal is received from a satellite           |
| 2 | associated with a global positioning system.                                                       |
| 1 | 22. (original) The detector of claim 13, wherein the signal is a carrier signal modulated          |
| 2 | with a repeating code.                                                                             |
| 1 | 23. (original) The detector of claim 13, wherein the third means comprises:                        |
| 2 | means for storing the first correlation values in a memory; and                                    |
| 3 | means for communicating the first correlation values from the memory to combinational              |
| 4 | logic that implements the fast fourier transform.                                                  |
| 1 | 24. (currently amended) A spread spectrum detector, comprising:                                    |
| 2 | a receiver configured to receive a spread spectrum modulated signal having a Doppler               |
| 3 | shift error imposed by movement between a signal source and a receiver;                            |

| 4  | a multiplier configured to produce a plurality of complex first correlation values based                                                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | upon the signal and a code;                                                                                                                            |
| 6  | a fast fourier phase shifter configured to generate a plurality of complex second                                                                      |
| 7  | correlation values respectively from the first correlation values using a fast fourier transform,                                                      |
| 8  | wherein generating includes combining a stored, associated, phase shift value with each of the                                                         |
| 9  | first correlation values to produce the second correlation values the second correlation values                                                        |
| 10 | being phase shifted by respective different amounts from corresponding first correlation values,                                                       |
| 11 | so that the second correlation-values exhibit less of the Doppler shift error than the first                                                           |
| 12 | correlation values; and                                                                                                                                |
| 13 | an integrator configured to integrate the second correlation values to derive a third                                                                  |
| 14 | correlation value that indicates a degree of correspondence of the code with the signal.                                                               |
| 1  | 25. (original) The spread spectrum detector of claim 24, further comprising:                                                                           |
| 2  |                                                                                                                                                        |
| 3  | a processor programmed to determine that a particular one of code phases of the code corresponds to the signal based upon the third correlation value. |
| J  | corresponds to the signal based upon the third correlation value.                                                                                      |
| 1  | 26. (original) The detector of claim 24, wherein the multiplier comprises:                                                                             |
| 2  | a plurality of multipliers configured to multiply chips of each code phase with signal                                                                 |
| 3  | samples, respectively, to derive the multiplication results; and                                                                                       |
| 4  | a plurality of adders configured to add together the multiplication results to produce the                                                             |
| 5  | first correlation values.                                                                                                                              |
| 1  | 27. (original) The detector of claim 24, wherein the multiplier is configured to produce                                                               |
| 2  | · · · · · · · · · · · · · · · · · · ·                                                                                                                  |
|    | first correlation values with a different code phase of the code each time in order to produce more                                                    |
| 3  | than one plurality of first correlation values, one corresponding with each of the different code                                                      |
| 4  | phases; and wherein the multiplier is adapted to store each plurality of the first correlation values                                                  |
| 5  | in a memory; and further comprising means for generating a plurality of second correlation                                                             |
| 6  | values for each plurality of first correlation values, each plurality of second correlation values                                                     |
| 7  | corresponding to a respective code phase.                                                                                                              |

28. (original) The detector of claim 24, wherein the integrator is configured to coherently



| 2  | combine the second correlation values together so that the third correlation value comprises a     |
|----|----------------------------------------------------------------------------------------------------|
| 3  | real number part and an imaginary number part, which are collectively indicative of a magnitude    |
| 4  | and a phase.                                                                                       |
| 1  | 29. (original) The detector of claim 24, wherein the integrator is configured to                   |
| 2  | noncoherently combine the second correlation values together so that the third correlation value   |
| 3  | comprises a magnitude and no phase information.                                                    |
| 1  | 30. (original) The detector of claim 24, wherein the multiplier comprises a matched filter         |
| 2  | configured to produce the first correlation values.                                                |
| 1  | 31. (original) The detector of claim 24, wherein the multiplier comprises a digital signal         |
| 2  | processor to produce the first correlation values.                                                 |
| 1  | 32. (original) The detector of claim 24 wherein the signal is received from a satellite            |
| 2  | associated with a global positioning system.                                                       |
| 1  | 33. (original) The detector of claim 24, wherein the signal is a carrier signal modulated          |
| 2  | with a repeating code.                                                                             |
| 1  | 34. (currently amended) A computer readable medium having a program, the program                   |
| 2  | comprising:                                                                                        |
| 3  | first logic to receive a spread spectrum modulated signal having a Doppler shift error             |
| 4  | imposed by movement between a signal source and a receiver;                                        |
| 5  | second logic to produce a plurality of complex first correlation values based upon the             |
| б  | signal and a code;                                                                                 |
| 7  | third logic to generate a plurality of complex second correlation values respectively from         |
| 8  | the first correlation values by implementing a fast fourier transform, wherein generating includes |
| 9  | combining a stored, associated, phase shift value with each of the first correlation values to     |
| 10 | produce the second correlation values the second correlation values being phase shifted by         |
| 11 | respective different amounts from corresponding first correlation values, so that the second       |
| 12 | correlation values exhibit less of the Doppler shift error than the first correlation values; and  |

12/01/2003 12:49

| 13 | fourth logic to combine the second correlation values to derive a third correlation value          |
|----|----------------------------------------------------------------------------------------------------|
| 14 | that indicates a degree of correspondence of the code with the signal.                             |
| 1  | 35. (original) The computer readable medium of claim 34, further comprising:                       |
| 2  | fifth logic to determine that a code phase of the code corresponds to the signal based upon        |
| 3  | the third correlation value.                                                                       |
| 1  | 36. (original) The computer readable medium of claim 34, wherein the second logic                  |
| 2  | comprises:                                                                                         |
| 3  | logic to multiply chips of the code with signal samples, respectively, to derive the               |
| 4  | multiplication results; and                                                                        |
| 5  | logic to add together the multiplication results to produce the first correlation values.          |
| 1  | 37. (original) The computer readable medium of claim 34, wherein the third logic                   |
| 2  | comprises:                                                                                         |
| 3  | logic to produce first correlation values with a different code phase of the code each time        |
| 4  | in order to produce more than one plurality of first correlation values, one corresponding with    |
| 5  | each of the different code phases;                                                                 |
| 6  | logic to store each plurality of the first correlation values in a memory; and                     |
| 7  | logic to generate a plurality of second correlation values for each plurality of first             |
| 8  | correlation values, each plurality of second correlation values corresponding to a respective code |
| 9  | phase.                                                                                             |
| 1  | 38. (original) The computer readable medium of claim 34, wherein the fourth logic                  |
| 2  | comprises logic to coherently combine the second correlation values together so that the third     |
| 3  | correlation value comprises a real number part and an imaginary number part, which are             |
| 4  | collectively indicative of a magnitude and a phase.                                                |
| 1  | 39. (original) The computer readable medium of claim 34, wherein the fourth logic                  |
| 2  | comprises logic to noncoherently combine the second correlation values together so that the third  |

correlation value comprises a magnitude and no phase information.

40. (original) The computer readable medium of claim 34 wherein the signal is received

| 2  | from a satellite associated with a global positioning system.                                        |
|----|------------------------------------------------------------------------------------------------------|
| 1  | 41. (original) The computer readable medium of claim 34, wherein the signal is a carrier             |
| 2  | signal modulated with a repeating code.                                                              |
| 1  | 42. (currently amended) A GPS receiver, comprising:                                                  |
| 2  | a first GPS antenna coupled to a digital memory, the digital memory storing first digitized          |
| 3  | signals obtained through the first GPS antenna;                                                      |
| 4  | a second GPS antenna coupled to the digital memory, the digital memory storing second                |
| 5  | digitized signals obtained through the second GPS antenna;                                           |
| 6  | a digital processor coupled to the digital memory, the digital processor processing the first        |
| 7  | digitized signals after being stored in the digital memory to provide the first position information |
| 8  | and processing the second digitized signals after being stored in the digital memory to provide      |
| 9  | second position information;                                                                         |
| 10 | a receiver configured to receive a spread spectrum modulated signal having a Doppler                 |
| 11 | shift error imposed by movement between a signal source and a receiver;                              |
| 12 | a multiplier configured to produce a plurality of complex first correlation values based             |
| 13 | upon the signal and a code;                                                                          |
| 14 | a phase shifter configured to generate a plurality of complex second correlation values              |
| 15 | respectively from the first correlation values using a fast fourier transform (FFT), wherein         |
| 16 | generating includes combining a stored, associated, phase shift value with each of the first         |
| 17 | correlation values to produce the second correlation values the second correlation values being      |
| 18 | phase shifted by respective different amounts from corresponding first correlation values, so that   |
| 19 | the second correlation values exhibit loss of the Doppler shift error than the first correlation     |
| 20 | values; and                                                                                          |
| 21 | an integrator configured to integrate the second correlation values to derive a third                |
| 22 | correlation value that indicates indicate a degree of correspondence of the code with the signal.    |
| 1  | 43. (currently amended) A method of operating a GPS receiver, the method comprising:                 |

| 2  | receiving first GPS signals through a first GPS antenna;                                           |
|----|----------------------------------------------------------------------------------------------------|
| 3  | digitizing the first GPS signals to provide first digitized signals and storing the first          |
| 4  | digitized signals in a first digital memory;                                                       |
| 5  | receiving second GPS signals through a second GPS antenna;                                         |
| 6  | digitizing the second GPS signals to provide second digitized signals and storing the              |
| 7  | second digitized signals in one of the first digital memory and a second digital memory;           |
| 8  | processing in a digital processor the stored first digitized signals to provide a first position   |
| 9  | information and processing the stored second digitized signals to provide a second position        |
| 10 | information;                                                                                       |
| 11 | selecting one of the first position information and the second position information to             |
| 12 | provide a selected position information; and                                                       |
| 13 | when performing the processing step, performing the following steps upon each of the               |
| 14 | first and second GPS signals;                                                                      |
| 15 | producing a plurality of complex first correlation values based upon the signal and a              |
| 16 | code;                                                                                              |
| 17 | generating a plurality of complex second correlation values respectively from the first            |
| 18 | correlation values using a fast fourier transform (FFT), wherein generating includes               |
| 19 | combining a stored, associated, phase shift value with each of the first correlation values        |
| 20 | to produce the second correlation values the second correlation values being phase shifted         |
| 21 | by respective different amounts from corresponding first correlation values, so that the           |
| 22 | second correlation values exhibit less of the Doppler shift error than the first correlation       |
| 23 | <del>values</del> ; and                                                                            |
| 24 | combining the second correlation values to derive a complex third correlation value                |
| 25 | that indicates a degree of correspondence of the code with the signal.                             |
| 1  | 44. (currently amended) A method for determining a position of a mobile global                     |
| 2  | positioning system receiver, the mobile global positioning receiver receiving global positioning   |
| 3  | system signals from at least one of a plurality of global positioning system (GPS) satellites, the |
| 4  | method comprising:                                                                                 |
| 5  | receiving a cellular communication signal in a mobile communication receiver coupled to            |
| •  | 1100 in a month confidence confidence confidence and leceives confident                            |

| 6  | the mobile global positioning system receiver, the cellular communication signal having a time       |
|----|------------------------------------------------------------------------------------------------------|
| 7  | indicator which represents a time event;                                                             |
| 8  | associating the time indicator with data representing a time of arrival of a GPS satellite           |
| 9  | signal at the mobile global positioning system receiver;                                             |
| 10 | determining position information of the mobile global positioning system receiver,                   |
| 11 | wherein the data representing the time of arrival of the GPS satellite signal and the time indicator |
| 2  | are used to determine the position information of the mobile global positioning system receiver      |
| 13 | and wherein the cellular communication signal supports 2-way communications; and                     |
| 4  | when performing the determining step, performing the following steps:                                |
| 15 | producing a plurality of complex first correlation values based upon a signal and a                  |
| 6  | code;                                                                                                |
| 17 | generating a plurality of complex second correlation values respectively from the first              |
| 8  | correlation values using a fast fourier transform (FFT), wherein generating includes                 |
| 9  | combining a stored, associated, phase shift value with each of the first correlation values          |
| 0. | to produce the second correlation values the second correlation values being phase shifted           |
| 21 | by respective different amounts from corresponding first correlation values, so that the             |
| 22 | second correlation values exhibit less of the Doppler shift error than the first correlation         |
| 23 | values; and                                                                                          |
| 24 | combining the second correlation values to derive a complex third correlation value                  |
| 25 | that indicates a degree of correspondence of the code with the signal.                               |
| 1  | 45. (currently amended) A method of operating a global positioning system (GPS)                      |
| 2  | receiver, comprising:                                                                                |
| 3  | sensing whether GPS signals are capable of being received from GPS satellites and                    |
| 4  | providing an activation signal when GPS signals are capable of being received;                       |
| 5  | maintaining the GPS receiver in a low power state;                                                   |
| 6  | activating the GPS receiver from the low power state upon detecting the activation signal            |
| 7  | producing a plurality of complex first correlation values based upon a GPS signal and a              |
| 8  | code;                                                                                                |
| 9  | generating a plurality of complex second correlation values respectively from the first              |
|    |                                                                                                      |

| 10 | correlation values using a fast fourier transform (FFT), wherein generating includes combining a   |
|----|----------------------------------------------------------------------------------------------------|
| 11 | stored, associated, phase shift value with each of the first correlation values to produce the     |
| 12 | second correlation values the second correlation values being phase shifted by respective differen |
| 13 | amounts from corresponding first correlation values, so that the second correlation values exhibit |
| 14 | less of the Doppler shift error than the first correlation values, and                             |
| 15 | combining the second correlation values to derive a complex third correlation value that           |
| 16 | indicates a degree of correspondence of the code with the signal.                                  |
| 1  | 46. (currently amended) A method for using a dual mode GPS receiver, the method                    |
| 2  | comprising the steps of:                                                                           |
| 3  | activating the GPS receiver in a first mode of operation including,                                |
| 4  | receiving GPS signals from in view satellites;                                                     |
| 5  | downconverting and demodulating the GPS signals to extract Doppler information                     |
| 6  | regarding in view satellites and to compute pseudorange information;                               |
| 7  | storing the Doppler information;                                                                   |
| 8  | detecting when the GPS information is experiencing blockage conditions and activating a            |
| 9  | second mode of operation in response thereto, the second mode including, digitizing the GPS        |
| 10 | signals at a predetermined rate to produce sampled GPS signals; and                                |
| 11 | receiving a signal having a Doppler shift error imposed by movement between a signal               |
| 12 | source and the GPS receiver;                                                                       |
| 13 | producing a plurality of complex first correlation values based upon the signal and a              |
| 14 | code;                                                                                              |
| 15 | generating a plurality of complex second correlation values respectively from the first            |
| 16 | correlation values using a fast fourier transform (FFT), wherein generating includes combining a   |
| 17 | stored, associated, phase shift value with each of the first correlation values to produce the     |
| 18 | second correlation values the second correlation values being phase shifted by respective differen |
| 19 | amounts from corresponding first correlation values, so that the second correlation values exhibit |
| 20 | less of the Doppler shift error than the first correlation values; and                             |
| 21 | combining the second correlation values to derive a complex third correlation value that           |

SG&C LLP

22

indicates a degree of correspondence of the code with the signal.

| 1  | 47. (currently amended) in a method for determining the position of a remote unit, a           |
|----|------------------------------------------------------------------------------------------------|
| 2  | process comprising:                                                                            |
| 3  | receiving, at the remote unit from a transmission cell in a cellular communication system      |
| 4  | a Doppler information of a satellite in view of the remote unit;                               |
| 5  | computing, in a remote unit, position information for the satellite by using the Doppler       |
| 6  | information without receiving and without using satellite ephemeris information;               |
| 7  | when computing the position information, performing the following steps:                       |
| 8  | producing a plurality of complex first correlation values based upon the signal and a          |
| 9  | code;                                                                                          |
| 10 | generating a plurality of complex second correlation values respectively from the first        |
| 11 | correlation values using a fast fourier transform (FFT), wherein generating includes           |
| 12 | combining a stored, associated, phase shift value with each of the first correlation values    |
| 13 | to produce the second correlation values the second correlation values being phase shiften     |
| 14 | by respective different amounts from corresponding first correlation values, so that the       |
| 15 | second correlation values exhibit less of the Doppler shift error than the first correlation   |
| 16 | values; and                                                                                    |
| 17 | combining the second correlation values to derive a complex third correlation value            |
| 18 | that indicates a degree of correspondence of the code with the signal.                         |
| 1  | 48. (currently amended) A method of using a base station for providing a                       |
| 2  | communications link to a mobile GPS unit, the method comprising:                               |
| 3  | determining Doppler information of a satellite in view of the mobile GPS unit, wherein         |
| 4  | the Doppler information is used by the mobile GPS unit to determine a position information for |
| 5  | the satellite;                                                                                 |
| б  | transmitting from a transmission cell in a cellular communication system the Doppler           |
| 7  | information of the satellite in view to the mobile GPS unit wherein the mobile GPS unit        |
| 8  | determines the position information without receiving and without using satellite ephemeris    |
| 9  | information;                                                                                   |
| 10 | when performing the determining step, performing the following steps:                          |
| 11 | receiving a signal having a Doppler shift error imposed by movement between a                  |
|    |                                                                                                |

408-235-6641

| 12 | satelitie and a GPS receiver producing a plurality of complex first correlation values               |
|----|------------------------------------------------------------------------------------------------------|
| 13 | based upon the signal and a code;                                                                    |
| 14 | generating a plurality of complex second correlation values respectively from the first              |
| 15 | correlation values using a fast fourier transform (FFT), wherein generating includes                 |
| 16 | combining a stored, associated, phase shift value with each of the first correlation values          |
| 17 | to produce the second correlation values the second correlation values being phase shifted           |
| 18 | by respective different amounts from corresponding first correlation values, so that the             |
| 19 | second correlation values exhibit less of the Doppler shift error than the first correlation         |
| 20 | <del>values</del> ; and                                                                              |
| 21 | combining the second correlation values to derive a complex third correlation value                  |
| 22 | that indicates a degree of correspondence of the code with the signal.                               |
| 1  | 49. (currently amended) A method of determining the location of a remote object                      |
| 2  | comprising the steps of:                                                                             |
| 3  | transporting a positioning sensor to a remote object;                                                |
| 4  | repositioning the positioning sensor to a fix position such that the positioning sensor is           |
| 5  | capable of receiving positioning signals, the fix position being in a known position relative to the |
| 6  | position of the remote sensor;                                                                       |
| 7  | storing a predetermined amount of data in the positioning sensor while the positioning               |
| 8  | sensor is located at the fix position, the data comprising the positioning signals;                  |
| 9  | processing the data to determine the location of the fix position;                                   |
| 10 | computing the location of the remote object using the location of the fix position; and              |
| 11 | when performing the processing steps, performing the following steps:                                |
| 12 | producing a plurality of complex first correlation values based upon the signal and a                |
| 13 | code;                                                                                                |
| 14 | generating a plurality of complex second correlation values respectively from the firs               |
| 15 | correlation values using a fast fourier transform (FFT), wherein generating includes                 |
| 16 | combining a stored, associated, phase shift value with each of the first correlation values          |
| 17 | to produce the second correlation values the second correlation values being phase shifted           |
| 18 | by respective different amounts from corresponding first correlation values, so that the             |

| 19 | second correlation values exhibit less of the Dopplor shift error than the first correlation        |
|----|-----------------------------------------------------------------------------------------------------|
| 20 | <del>values</del> ; and                                                                             |
| 21 | combining the second correlation values to derive a complex third correlation value                 |
| 22 | that indicates a degree of correspondence of the code with the signal.                              |
| 1  | 50. (currently amended) A method of tracking a remote object comprising the steps of:               |
| 2  | fitting a remote object with a positioning sensor configured to receive and store                   |
| 3  | positioning information when the remote object is in a fix position;                                |
| 4  | positioning the remote object in a fix position such that the positioning sensor is capable         |
| 5  | of detecting an activation signal;                                                                  |
| 6  | processing and storing a predetermined amount of data in the positioning sensor, the data           |
| 7  | comprising position information;                                                                    |
| 8  | processing the data to determine the location of the fix position;                                  |
| 9  | when processing the data, performing the following steps:                                           |
| 10 | producing a plurality of complex first correlation values based upon the signal and a               |
| 11 | code;                                                                                               |
| 12 | generating a plurality of complex second correlation values respectively from the first             |
| 13 | correlation values using a fast fourier transform (FFT), wherein generating includes combining      |
| 14 | stored, associated, phase shift value with each of the first correlation values to produce the      |
| 15 | second correlation values the second correlation values being phase shifted by respective different |
| 16 | amounts from corresponding first correlation values, so that the second correlation values exhib    |
| 17 | less of the Doppler shift error than the first correlation values; and                              |
| 18 | combining the second correlation values to derive a complex third correlation value                 |
| 19 | that indicates a degree of correspondence of the code with the signal.                              |
| 1  | 51. (currently amended) A computer readable medium containing a computer program                    |
| 2  | having executable code for a GPS receiver, the computer program comprising:                         |
| 3  | first instructions for receiving GPS signals from in view satellites, the GPS signals               |
| 4  | comprising pseudorandom (PN) codes;                                                                 |
| 5  | second instructions for digitizing the GPS signals at a predetermined rate to produce               |
| 6  | sampled GPS signals;                                                                                |
|    |                                                                                                     |

12/01/2003 12:49

SG&C LLP

| •  | unit instructions for storing the sampled GPS signals in a memory; and                                |
|----|-------------------------------------------------------------------------------------------------------|
| 8  | fourth instructions for processing the sampled GPS signal by performing a plurality of                |
| 9  | convolutions on the sampled GPS signals, the processing comprising performing the plurality of        |
| 10 | convolutions on a corresponding plurality of blocks of the sampled GPS signals to provide a           |
| 11 | plurality of corresponding results of each convolution and summing a plurality of mathematical        |
| 12 | representations of the plurality of corresponding results to obtain a first position information; and |
| 13 | wherein the fourth in instructions are designed to:                                                   |
| 14 | produce a plurality of complex first correlation values based upon the signal and a                   |
| 15 | code <del>,</del> ;                                                                                   |
| 16 | generate a plurality of complex second correlation values respectively from the first                 |
| 17 | correlation values using a fast fourier transform (FFT), wherein generating includes                  |
| 18 | combining a stored, associated, phase shift value with each of the first correlation values           |
| 19 | to produce the second correlation values the second correlation values being phase shifted            |
| 20 | by respective different amounts from corresponding first correlation values, so that the              |
| 21 | second correlation values exhibit less of the Doppler shift error than the first correlation          |
| 22 | <del>values</del> ; and                                                                               |
| 23 | combine the second correlation values to derive a complex third correlation value that                |
| 24 | indicates a degree of correspondence of the code with the signal.                                     |
| 1  | 52. (currently amended) A computer readable medium containing an executable                           |
| 2  | computer program for use in a digital processing system, the executable computer program when         |
| 3  | executed in the digital processing system causing the digital processing system to perform the        |
| 4  | steps of:                                                                                             |
| 5  | performing a plurality of convolutions of a corresponding plurality of blocks of sampled              |
| 6  | GPS signals to provide a plurality of corresponding results of each convolution;                      |
| 7  | summing a plurality of mathematical representations of the plurality of corresponding                 |
| 8  | results to obtain a first position information; and                                                   |
| 9  | when performing the plurality of convolutions step, performing at least the following                 |
| 10 | steps:                                                                                                |
| 11 | producing a plurality of complex first correlation values based upon the signal and a                 |

| 12  | code,                                                                                              |
|-----|----------------------------------------------------------------------------------------------------|
| 13  | generating a plurality of complex second correlation values respectively from the first            |
| 14  | correlation values using a fast fourier transform (FFT), wherein generating includes               |
| 15  | combining a stored, associated, phase shift value with each of the first correlation values        |
| 16  | to produce the second correlation values the second correlation values being phase shifted         |
| 17  | by respective different amounts from corresponding first correlation values, so that the           |
| 18  | second correlation values exhibit less of the Doppler shift error than the first correlation       |
| 19  | <del>values</del> ; and                                                                            |
| 20  | combining the second correlation values to derive a complex third correlation value                |
| 21  | that indicates a degree of correspondence of the code with the signal.                             |
| 1   | 53. (currently amended) A method of calibrating a local oscillator in a mobile GPS                 |
| 2   | receiver, the method comprising:                                                                   |
| 3   | receiving a precision carrier frequency signal from a source providing the precision               |
| . 4 | carrier frequency;                                                                                 |
| 5   | automatically locking to the precision carrier frequency signal and providing a reference          |
| 6   | signal;                                                                                            |
| 7   | calibrating the local oscillator with the reference signal, the local oscillator being used to     |
| 8   | acquire GPS signals;                                                                               |
| 9   | receiving a signal having a Doppler shift error imposed by movement between a signal               |
| 10  | source and the GPS receiver;                                                                       |
| 11  | producing a plurality of complex first correlation values based upon the signal and a              |
| 12  | code;                                                                                              |
| 13  | generating a plurality of complex second correlation values respectively from the first            |
| 14  | correlation values using a fast fourier transform (FFT), wherein generating includes combining a   |
| 15  | stored, associated, phase shift value with each of the first correlation values to produce the     |
| 16  | second correlation values the second correlation values being phase shifted by respective differen |
| 17  | amounts from corresponding first correlation values, so that the second correlation values exhibit |
| 18  | less of the Donnler shift error than the first correlation values, and                             |

combining the second correlation values to derive a complex third correlation value that

| 1  | 54. (currently amended) A method of using a base station to calibrate a local oscillator in         |
|----|-----------------------------------------------------------------------------------------------------|
| 2  | a mobile GPS receiver, the method comprising:                                                       |
| 3  | producing a first reference signal having a precision frequency;                                    |
| 4  | modulating the first reference signal with a data signal to provide a precision carrier             |
| 5  | frequency signal;                                                                                   |
| б  | transmitting the precision carrier frequency signal to the mobile GPS receiver, the                 |
| 7  | precision carrier frequency signal being used to calibrate a local oscillator in the mobile GPS     |
| 8  | receiver, the local oscillator being used to acquire GPS signals;                                   |
| 9  | receiving a spread spectrum signal having a Doppler shift error imposed by movement                 |
| 10 | between a signal source and the GPS receiver;                                                       |
| 11 | producing a plurality of complex first correlation values based upon the signal and a               |
| 12 | code;                                                                                               |
| 13 | generating a plurality of complex second correlation values respectively from the first             |
| 14 | correlation values using a fast fourier transform (FFT), wherein generating includes combining a    |
| 15 | stored, associated, phase shift value with each of the first correlation values to produce the      |
| 16 | second correlation values the second correlation values being phase shifted by respective different |
| 17 | amounts from corresponding first correlation values, so that the second correlation values exhibit  |
| 18 | less of the Doppler shift error than the first correlation values; and                              |
| 19 | combining the second correlation values to derive a complex third correlation value that            |
| 20 | indicates a degree of correspondence of the code with the signal.                                   |
| 1  | 55. (currently amended) A method of deriving a local oscillator signal in a mobile GPS              |
| 2  | receiver, the method comprising:                                                                    |
| 3  | receiving a precision carrier frequency signal from a source providing the precision                |
| 4  | carrier frequency signal;                                                                           |
| 5  | automatically locking to the precision carrier frequency signal and providing a reference           |
| 6  | signal;                                                                                             |
| 7  | using the reference signal to provide a local oscillator signal to acquire GPS signals;             |
| 8  | receiving a spread spectrum signal having a Doppler shift error imposed by movement                 |
|    | Atty. Docket No. SIRF.P220-US-U1 -19-                                                               |

indicates a degree of correspondence of the code with the signal.

408-236-6641

between a signal source and the GPS receiver;

| 10 | producing a plurality of complex first correlation values based upon the signal and a               |
|----|-----------------------------------------------------------------------------------------------------|
| 11 | code;                                                                                               |
| 12 | generating a plurality of complex second correlation values respectively from the first             |
| 13 | correlation values using a fast fourier transform (FFT), wherein generating includes combining a    |
| 14 | stored, associated, phase shift value with each of the first correlation values to produce the      |
| 15 | second correlation values the second correlation values being phase shifted by respective different |
| 16 | amounts from corresponding first correlation values, so that the second correlation values exhibit  |
| 17 | less of the Doppler shift error than the first correlation values; and                              |
| 18 | combining the second correlation values to derive a complex third correlation value that            |
| 19 | indicates a degree of correspondence of the code with the signal.                                   |
| .1 | 56. (currently amended) A method of processing position information, the method                     |
| 2  | comprising:                                                                                         |
| 3  | receiving SPS signals from at least one SPS satellite;                                              |
| 4  | transmitting cell based communication signals between a communication system coupled                |
| 5  | to the SPS receiver and a first cell based transceiver which is remotely positioned relative to the |
| 6  | SPS receiver wherein the cell based communication signals are wireless;                             |
| 7  | determining a first time measurement which represents a time of travel of a message in              |
| 8  | the cell based communication signals in a cell based communication system which comprises a         |
| 9  | first cell based transceiver and the communications system;                                         |
| 10 | determining a second time measurement which represents a time of travel of the SPS                  |
| 11 | signals;                                                                                            |
| 12 | determining a position of the SPS receiver from at least one of the first time measuremen           |
| 13 | and the second time measurement, wherein the cell based communication signals are capable of        |
| 14 | communicating data messages in a two-way direction between the first cell based transceiver and     |
| 15 | the communication system; and                                                                       |
| 16 | performing the following steps during at least one of the determining steps:                        |
| 17 | producing a plurality of complex first correlation values based upon the signal and a               |
| 18 | code;                                                                                               |

| generating a plurality of complex second correlation values respectively from the first                                    |
|----------------------------------------------------------------------------------------------------------------------------|
| correlation values using a fast fourier transform (FFT), wherein generating includes                                       |
| combining a stored, associated, phase shift value with each of the first correlation values                                |
| to produce the second correlation values the second correlation values being phase shifted                                 |
| by respective different amounts from corresponding first correlation values, so that the                                   |
| second correlation values exhibit less of the Doppler shift error than the first correlation                               |
| <del>values</del> ; and                                                                                                    |
| combining the second correlation values to derive a complex third correlation value                                        |
| that indicates a degree of correspondence of the code with the signal.                                                     |
| 57. (currently amended) A method of processing position information in a digital processing system, the method comprising: |
| determining a first time measurement which represents a time of travel of a message in                                     |
| cell based communication signals in a cell based communication system which comprises a first                              |
| cell based transceiver which communicates with the digital processing system and a                                         |
| communication system which communicates in a wireless manner with the first cell based                                     |
| transceiver;                                                                                                               |
| determining a position of a SPS receiver from at least the first time measurement and a                                    |
| second time measurement which represents a time of travel of SPS signals received at the SPS                               |
| receiver which is integrated with the communication system and is remotely located relative to                             |
| the first cell based transceiver and the digital processing system, wherein the cell based                                 |
| communication signals are capable of communicating messages from the communication system                                  |
| to the first cell based transceiver; and                                                                                   |
| performing the following steps when determining the position:                                                              |
| receiving a signal having a Doppler shift error imposed by movement between a                                              |
| signal source and the GPS receiver;                                                                                        |
| producing a plurality of complex first correlation values based upon an SPS signal                                         |
| and a code;                                                                                                                |
| generating a plurality of complex second correlation values respectively from the firs                                     |
| correlation values using a fast fourier transform (FFT), wherein generating includes                                       |

combining a stored, associated, phase shift value with each of the first correlation values

| 22 | to produce the second correlation values the second correlation values being phase shifted       |
|----|--------------------------------------------------------------------------------------------------|
| 23 | by respective different amounts from corresponding first correlation values, so that the         |
| 24 | second correlation values exhibit less of the Doppler shift error than the first correlation     |
| 25 | values; and                                                                                      |
| 26 | combining the second correlation values to derive a complex third correlation value              |
| 27 | that indicates a degree of correspondence of the code with the signal.                           |
| 1  | 58. (currently amended) A method of controlling a communication link and processing              |
| 2  | data representative of GPS signals from at least one satellite in a GPS receiver, the method     |
| 3  | comprising:                                                                                      |
| 4  | processing the data representative of GPS signals from at least one satellite in a               |
| 5  | processing unit, including performing a correlation function to determine a pseudorange based or |
| 6  | the data representative of GPS signals;                                                          |
| 7  | controlling communication signals through the communication link by using the                    |
| 8  | processing unit to perform the controlling and wherein the processing unit performs              |
| 9  | demodulation of communication signals sent to the GPS receiver; and                              |
| 10 | when performing the processing step, performing at least the following steps:                    |
| 11 | receiving a signal having a Doppler shift error imposed by movement between a                    |
| 12 | signal source and the GPS receiver;                                                              |
| 13 | producing a plurality of complex first correlation values based upon the signal and a            |
| 14 | code;                                                                                            |
| 15 | generating a plurality of complex second correlation values respectively from the first          |
| 16 | correlation values using a fast fourier transform (FFT), wherein generating includes             |
| 17 | combining a stored, associated, phase shift value with each of the first correlation values      |
| 18 | to produce the second correlation values the second correlation values being phase shifted       |
| 19 | by respective different amounts from corresponding first correlation values, so that the         |
| 20 | second correlation values exhibit less of the Doppler shift error than the first correlation     |
| 21 | values; and                                                                                      |
| 22 | combining the second correlation values to derive a complex third correlation value              |

that indicates a degree of correspondence of the code with the signal.