Cours de Convergence, Intégration, Probabilités

Mesures sur un espace produit. Indépendance de variables aléatoires

Séance 8 - Convolution et densité des espaces L^p Probabilités dans \mathbb{R}^N . Indépendance

CentraleSupélec - Cursus ingénieur

17 octobre 2019

Amphis CIP 6, 7, 8 et 9

Hervé MOUTARDE
 Institut de recherche sur les lois fondamentales de l'univers (IRFU), CEA, Université Paris-Saclay
 Orme des Merisiers, Bât. 703
 herve.moutarde@cea.fr

Des questions?

daskit.com/cip19-20 puis section "Amphi 8".

Support

- Support amphi 8 en version vierge disponible dès à présent sur edunao.
- Support amphi 8 en version annotée disponible ultérieurement.

Quelques éléments des CM et TD précédents

- Tribu (def. 3.3), tribu des événements (def. 3.25) et tribu produit (def. VII.1.1).
- Mesure (def. 3.21), mesure de probabilité (def. 3.26) et mesure produit (th. VII.1.4).
- Changement de variables (th. VII.2.3).
- Ordre d'intégration dans les intégrales multiples et fonctions sommables (th. VII.2.4 et th. VII.2.5).
- Indépendance de variables aléatoires (def. VII.1.5).
- Indépendance de variables aléatoires et mesure produit (prop. VII.1.6).
- Fonction caractéristique (def. VII.2.6).
- Indépendance de variables aléatoires : expression en termes de fonctions caractéristiques (VII.2.7).

Programme

- Produit de convolution
 - Définition
 - Résultats de densité
- Vecteurs aléatoires
 - Moments d'un vecteur aléatoire
 - Changement de variables
 - Loi marginales
- Indépendance de variables aléatoires
 - Définition
 - Caractérisations de l'indépendance
 - Indépendance et moments
- Fonctions caractéristiques
 - Définition et propriétés
 - Fonctions caractéristiques et indépendance
 - Fonctions caractéristiques et moments

Objectifs de la séance

- Je suis capable d'étudier la convolution de deux fonctions (intégrabilité, convergence).
- Je suis capable d'exprimer l'indépendance de variables aléatoires en terme de mesure produit.
- Je suis capable de vérifier que deux variables aléatoires sont indépendantes.
- Je suis capable de déterminer la loi d'une variable aléatoire définie comme fonction de deux variables aléatoires indépendantes.
- Je distingue parfaitement les notions d'indépendance et de non corrélation.
- Je suis capable d'étudier un vecteur de variables aléatoires réelles, dont la loi est donnée (loi de chaque composante, indépendance).

Produit de convolution

Soient f et g deux fonctions mesurables sur \mathbb{R}^N .

On considère
$$\forall x \in \mathbb{R}^N$$
, $f * g(x) = \int_{\mathbb{R}^N} f(x - y)g(y) \ \lambda(dy)$.

Théorème VIII.1.1

Soient $f, g \in L^1(\mathbb{R}^N, \mathcal{B}(\mathbb{R}^N), \lambda)$. Alors pour λ -presque tout $x \in \mathbb{R}^N$, f * g(x) est bien définie.

Po plus for $x \in L^1$ at ||f(x)|| < ||f(x)||

De plus,
$$f * g \in L^1$$
 et $||f * g||_1 \le ||f||_1 ||g||_1$.

Proposition VIII.1.2 (Admis)

Soient $p \in [1, +\infty[$ et $q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1.$

Soient $f \in L^p$ et $g \in L^q$. Alors pour $x \in \mathbb{R}^N$, f * g(x) est bien définie et la fonction f * g est uniformément continue et bornée sur \mathbb{R}^N .

Approximation de la mesure de Dirac

Définition VIII.1.3 (Suite régularisante)

Une suite $(\varphi_n)_{n\in\mathbb{N}}$ dans $C_c(\mathbb{R}^N)$ (fonctions continues à support compact) est une approximation de δ_0 si :

- Il existe un compact K tel que supp $\varphi_n \subset K$ pour tout n
- $\forall n, \varphi_n \geq 0 \text{ et } \int_{\mathbb{R}^N} \varphi_n . d\lambda = 1.$
- $\bullet \ \forall \delta > 0 \text{, } \lim_{n \to \infty} \int_{\{|x| > \delta\}} \varphi_n(\mathbf{x}) \ \lambda(\mathbf{dx}) = 0.$

Approximation de la mesure de Dirac

Définition VIII.1.3 (Suite régularisante)

Une suite $(\varphi_n)_{n\in\mathbb{N}}$ dans $C_c(\mathbb{R}^N)$ (fonctions continues à support compact) est une approximation de δ_0 si :

- Il existe un compact K tel que supp $\varphi_n \subset K$ pour tout n
- $\forall n, \varphi_n \geq 0 \text{ et } \int_{\mathbb{R}^N} \varphi_n.d\lambda = 1.$
- $\bullet \ \forall \delta > 0 \text{, } \lim_{n \to \infty} \int_{\{|\mathbf{x}| > \delta\}} \varphi_{n}(\mathbf{x}) \ \lambda(\mathbf{dx}) = 0.$

Exemple : Si $\varphi: \mathbb{R}^N \to \mathbb{R}$ est continue à support compact tel que $\int \varphi d\lambda = 1$, alors on pose : $\forall n$, $\varphi_n(x) = n^N \varphi(nx)$.

Densité dans L^p

Proposition VIII.1.4 (Partiellement admis)

Soit $(\varphi_n)_{n\in\mathbb{N}}$ une approximation de δ_0 .

- (i) Si $f: \mathbb{R}^N \to \mathbb{R}$ est continue, on a $\varphi_n * f \to f$ uniformément sur tout compact.
- (ii) Si $f \in L^p$, avec $p \in [1, +\infty[$, on a $\varphi_n * f \to f$ dans L^p .

Densité dans L^p

Théorème VIII.1.5

Pour Ω ouvert connexe de \mathbb{R}^N , l'ensemble $\mathcal{D}(\Omega) = C_c^{\infty}(\Omega)$ est dense dans $L^p(\Omega, \lambda)$ pour $p \in [1, +\infty[$.

Moments d'un vecteur aléatoir Changement de variables .oi marginales

Mesure de probabilité sur $\Omega = \mathbb{R}^N$, $\mathcal{F} = \mathcal{B}(\mathbb{R}^N)$

La tribu $B(\mathbb{R}^N)$ est trop grande pour déterminer la mesure \mathbf{P} de manière directe (même cas que \mathbb{R}).

Mesure de probabilité sur $\Omega = \mathbb{R}^{N}$, $\mathcal{F} = \mathcal{B}(\mathbb{R}^{N})$

La tribu $\mathcal{B}(\mathbb{R}^N)$ est trop grande pour déterminer la mesure \mathbf{P} de manière directe (même cas que \mathbb{R}).

On utilise alors la définition de $\mathcal{B}(\mathbb{R}^N)$ comme tribu engendrée par $\{]-\infty,x_1]\times\cdots\times]-\infty,x_N];\;x_1,\ldots,x_N\in\mathbb{R}\}\subset\Omega.$

Mesure de probabilité sur $\Omega = \mathbb{R}^N$, $\mathcal{F} = \mathcal{B}(\mathbb{R}^N)$

La tribu $\mathcal{B}(\mathbb{R}^N)$ est trop grande pour déterminer la mesure \mathbf{P} de manière directe (même cas que \mathbb{R}).

On utilise alors la définition de $\mathcal{B}(\mathbb{R}^N)$ comme tribu engendrée par $\{]-\infty,x_1]\times\cdots\times]-\infty,x_N];\;x_1,\ldots,x_N\in\mathbb{R}\}\subset\Omega.$

- π -système
- La mesure P est caractérisée par

$$(x_1,\ldots,x_N)\mapsto \mathbf{P}(]-\infty,x_1]\times\cdots\times]-\infty,x_N])=F(x_1,\ldots,x_N)$$

Mesure de probabilité sur $\Omega = \mathbb{R}^N$, $\mathcal{F} = \mathcal{B}(\mathbb{R}^N)$

La tribu $\mathcal{B}(\mathbb{R}^N)$ est trop grande pour déterminer la mesure \mathbf{P} de manière directe (même cas que \mathbb{R}).

On utilise alors la définition de $\mathcal{B}(\mathbb{R}^N)$ comme tribu engendrée par $\{|-\infty,x_1|\times\cdots\times|-\infty,x_N|;\;x_1,\ldots,x_N\in\mathbb{R}\}\subset\Omega.$

- π -système
- La mesure P est caractérisée par

$$(x_1,\ldots,x_N)\mapsto \mathbf{P}(]-\infty,x_1]\times\cdots\times]-\infty,x_N])=F(x_1,\ldots,x_N)$$

La fonction de répartition dans \mathbb{R}^N est moins utilisée que dans \mathbb{R} .

Définition VIII.2.1

Soit $X=(X_1,\ldots,X_N)$ un vecteur aléatoire. Si $X_k\in \mathbf{L}^1(\Omega,\mathcal{F},\mathbf{P})$ (pour tout $k=1,\ldots,N$), alors le vecteur

$$\mathbf{E}[X] = (\mathbf{E}[X_1], \dots, \mathbf{E}[X_N])$$

est appelé **espérance de** X.

Définition VIII.2.1

Soit $X = (X_1, \dots, X_N)$ un vecteur aléatoire. Si $X_k \in \mathbf{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ (pour tout $k = 1, \dots, N$), alors le vecteur

$$\mathbf{E}[\textbf{X}] = (\mathbf{E}[\textbf{X}_1], \dots, \mathbf{E}[\textbf{X}_N])$$

est appelé **espérance de** X.

Définition VIII.2.2

Soient X et Y deux variables aléatoires réelles dans $\mathbf{L}^2(\Omega, \mathcal{F}, \mathbf{P})$. On définit la **covariance de** X **et** Y comme la quantité

$$Cov(X, Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])] = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y].$$

Proposition VIII.2.3

Si X et Y sont des variables aléatoires réelles admettant des moments d'ordre 2, alors

(i) L'application

$$\mathbf{L}^{2}(\Omega, \mathcal{F}, \mathbf{P}) \times \mathbf{L}^{2}(\Omega, \mathcal{F}, \mathbf{P}) \rightarrow \mathbb{R}$$

$$(X, Y) \mapsto \operatorname{Cov}(X, Y)$$

est bilinéaire.

- (ii) Cov(X, X) = Var(X).
- (iii) Cov(X, Y) = Cov(Y, X).
- (iv) $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2 \operatorname{Cov}(X, Y)$.

Définition VIII.2.4 (Corrélation entre 2 v.a.)

Soient X et Y sont deux variables aléatoires réelles admettant des moments d'ordre 2 non nuls. La quantité

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma(X)\sigma(Y)}$$

où $\sigma(X) = \sqrt{\operatorname{Var}(X)}$ et $\sigma(Y) = \sqrt{\operatorname{Var}(Y)}$ sont les écart-types de X et Y, est appelée coefficient de corrélation entre X et Y.

Attention à ne pas mal interpréter la notion de corrélation!

Attention à ne pas confondre corrélation et causalité!

Définition VIII.2.5 (Matrice de covariances)

Soit $X = (X_1, ..., X_N)$ un vecteur aléatoire dont chaque composante admet un moment d'ordre 2. La matrice de covariances de X est la matrice $\Sigma = [c_{ij}]_{1 \le i,j \le N}$ telle que

$$\forall i, j = 1, \dots, N, \quad c_{ij} = \text{Cov}(X_i, X_j).$$

Proposition VIII.2.6

Toute matrice de covariances $\Sigma = [c_{ij}]_{1 \leq i,j \leq N}$ est symétrique et positive, c'est-à-dire

- Pour tous i, j = 1, ..., N, on a $c_{ij} = c_{ji}$.
- Pour tout vecteur $\lambda = (\lambda_1, \dots, \lambda_N) \in \mathbb{R}^N$, on a

$$\lambda \Sigma \lambda^t = \sum_{1 \le i, j \le N} \lambda_i c_{ij} \lambda_j \ge 0.$$

Théorème VIII.2.7

Soit $X = (X_1, ..., X_N)$ un vecteur aléatoire admettant une densité de probabilité f_X .

Si $h: \Delta \subset \mathbb{R}^N \to D \subset \mathbb{R}^N$ est un C^1 -difféomorphisme, alors le vecteur aléatoire Y = h(X) admet la densité de probabilité f_Y définie par

$$\forall y \in \mathbb{R}^N, \quad f_Y(y) = \frac{f_X(h^{-1}(y))}{|\det(Jh(h^{-1}(y)))|} \mathbb{1}_D(y)$$

où Jh est la matrice jacobienne de h.

Définition VIII.2.8

Soit $X = (X_1, \ldots, X_N)$ un vecteur aléatoire. La loi d'un sous-vecteur $(X_{i_1}, \ldots, X_{i_k})$ est appelée **loi marginale** de la mesure de probabilité P_X .

En particulier, les lois des variables aléatoires réelles X_i sont des lois marginales de P_X .

Proposition VIII.2.9

Soit $X = (X_1, \dots, X_N)$ de fonction de répartition

$$F_X(x_1,\ldots,x_N)=\mathbf{P}(X_1\leq x_1,\ldots,X_N\leq x_N).$$

 $\forall 1 \leq k < N$, la fonction de répartition de (X_1, \ldots, X_k) est

$$F_{(X_1,\ldots,X_k)}(x_1,\ldots,x_k) = \lim_{x_{k+1},\ldots,x_N \to +\infty} F_X(x_1,\ldots,x_N)$$
$$= F_X(x_1,\ldots,x_k,+\infty,\ldots,+\infty).$$

Proposition VIII.2.10

Soit $X = (X_1, ..., X_N)$ admettant une densité de probabilité f_X . Le vecteur aléatoire $(X_1, ..., X_k)$ admet la densité définie par

$$f_{(X_1,\ldots,X_k)}(x_1,\ldots,x_k)=\int_{\mathbb{R}^{N-k}}f_X(x_1,\ldots,x_N)\ \lambda(dx_{k+1}\ldots dx_N).$$

Définition VIII.3.1 (Rappel, tribus indépendantes)

Dans un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$, des sous-tribus $(\mathcal{F}_i)_{i \in I}$ de \mathcal{F} sont dites **indépendantes** si pour tout sous-ensemble fini J de I et toute famille d'événements $A_i \in \mathcal{F}_i$ (avec $i \in I$),

$$\mathbf{P}\left(\bigcap_{i\in J}A_i\right)=\prod_{i\in J}\mathbf{P}(A_i).$$

Définition VIII.3.2 (Variables aléatoires indépendantes)

Soit $(X_i)_{i\in I}$ une famille de variables aléatoires, à valeurs dans les espaces (E_i, \mathcal{E}_i) . Les variables X_i sont dites **indépendantes** si les sous-tribus engendrées $X_i^{-1}(\mathcal{E}_i)$ sont indépendantes.

Théorème VIII.3.3

Deux v.a. $X: (\Omega, \mathcal{F}) \to (E, \mathcal{E})$ et $Y: (\Omega, \mathcal{F}) \to (E, \mathcal{E})$ sont indépendantes si l'une des conditions équivalentes suivantes est vérifiée :

(a) Pour tous $A \in \mathcal{E}$ et $B \in \tilde{\mathcal{E}}$,

$$\mathbf{P}(X \in A, Y \in B) = \mathbf{P}(X \in A) \ \mathbf{P}(Y \in B);$$

(b) Pour toutes fonctions mesurables bornées $f \colon E \to \mathbb{R}$ et $g \colon \tilde{E} \to \mathbb{R}$,

$$\mathbf{E}[f(X)g(Y)] = \mathbf{E}[f(X)] \ \mathbf{E}[g(Y)];$$

(c) Pour toutes fonctions mesurables bornées $f: E \to \mathbb{R}$ et $g: \tilde{E} \to \mathbb{R}$, les variables aléatoires f(X) et g(Y) sont indépendantes.

(a) Pour tous $A \in \mathcal{E}$ et $B \in \tilde{\mathcal{E}}$,

$$\mathbf{P}(X \in A, Y \in B) = \mathbf{P}(X \in A) \; \mathbf{P}(Y \in B);$$

(a) Pour toutes fonctions mesurables bornées $f: E \to \mathbb{R}$ et $g: \tilde{E} \to \mathbb{R}$,

$$\mathbf{E}[\mathit{f}(X)\mathit{g}(Y)] = \mathbf{E}[\mathit{f}(X)] \; \mathbf{E}[\mathit{g}(Y)];$$

(i) Pour toutes fonctions mesurables bornées $f: E \to \mathbb{R}$ et $g: \tilde{E} \to \mathbb{R}$, les variables aléatoires f(X) et g(Y) sont indépendantes.

Proposition VIII.3.9

Soient X et Y deux variables aléatoires réelles dans $\mathbf{L}^1(\Omega, \mathcal{F}, \mathbf{P})$. Si X et Y sont indépendantes, alors on a

$$\mathbf{E}[XY] = \mathbf{E}[X] \ \mathbf{E}[Y].$$

Si X et Y sont dans $\mathbf{L}^2(\Omega, \mathcal{F}, \mathbf{P})$ et sont indépendantes, alors elles sont non-corrélées, i. e. $\mathrm{Cov}(X, Y) = 0$ ce qui s'écrit encore

$$\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y).$$

Définition et propriétés

Fonctions caractéristiques et indépendance Fonctions caractéristiques et moments

Définition VII.2.6 (Rappel, fonction caractéristique)

On appelle **fonction caractéristique** d'une variable aléatoire X à valeurs dans \mathbb{R}^N l'application $\varphi_X : \mathbb{R}^N \to \mathbb{C}$ définie par

$$t \mapsto \varphi_X(t) = \mathbf{E}\left[e^{i\langle t, X\rangle}\right] = \int_{\mathbb{R}^N} e^{i\langle t, x\rangle} P_X(dx)$$

Définition et propriétés

onctions caractéristiques et indépendance onctions caractéristiques et moments

$$t \mapsto \varphi_X(t) = \mathbf{E}[e^{i\langle t, X \rangle}] = \int_{\mathbb{R}^N} e^{i\langle t, x \rangle} P_X(dx)$$

Proposition VIII.4.1

- $\varphi_X(0) = 1$ et pour tout $t \in \mathbb{R}^N$, $|\varphi_X(t)| \le 1$.
- Pour tout $\lambda \in \mathbb{R}$ et tout $a \in \mathbb{R}^N$, $\varphi_{\lambda X+a}(t) = e^{iat} \varphi_X(\lambda t)$.
- φ_X est une fonction semi-positive, i.e. pour tous $n \geq 1$ et tous $t_1, \ldots, t_n \in \mathbb{R}^N$, on a

$$\forall z_1,\ldots,z_n\in\mathbb{C},\quad \sum_{1\leq j,k\leq n}z_j\,\varphi_X(t_j-t_k)\,\overline{z_k}\geq 0.$$

Définition et propriétés Fonctions caractéristiques et indépenda

Proposition VIII.4.2

La fonction caractéristique d'une v.a. X à valeurs dans \mathbb{R}^N est continue sur \mathbb{R}^N .

Proposition VIII.4.3

Si la loi de X admet une densité de probabilité, alors

$$\lim_{|t|\to\infty}\varphi_X(t)=0.$$

Théorème VIII.4.4 (Admis, théorème d'inversion)

Si la fonction caractéristique φ_X d'une v.a. X est dans $\mathbf{L}^1(\mathbb{R})$, alors X admet la densité $f_X : \mathbb{R}^N \to \mathbb{R}_+$ définie par

$$\forall x \in \mathbb{R}^N$$
, $f_X(x) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} e^{-i\langle t, x \rangle} \varphi_X(t) \ \lambda(dt)$.

Théorème VIII.4.4 (Admis, théorème d'inversion)

Si la fonction caractéristique φ_X d'une v.a. X est dans $\mathbf{L}^1(\mathbb{R})$, alors X admet la densité $f_X : \mathbb{R}^N \to \mathbb{R}_+$ définie par

$$\forall x \in \mathbb{R}^N$$
, $f_X(x) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} e^{-i\langle t, x \rangle} \varphi_X(t) \ \lambda(dt)$.

Théorème VIII.4.5 (Théorème d'unicité)

Deux variables aléatoires X et Y ont même loi si et seulement si $\varphi_X = \varphi_Y$.

Théorème VII.2.7 (Rappel)

Les v.a. réelles X_1, \ldots, X_N sont indépendantes si et seulement si leurs fonctions caractéristiques vérifient

$$\forall t \in \mathbb{R}^N, \quad \varphi_X(t) = \prod_{k=1}^N \varphi_{X_k}(t_k)$$

où
$$X = (X_1, ..., X_N)$$
.

Proposition VIII.4.6

Soient X_1, \ldots, X_n des vecteurs aléatoires indépendants à valeurs dans \mathbb{R}^N , de lois respectives P_{X_1}, \ldots, P_{X_n} .

La loi de $X_1 + \cdots + X_n$ est le produit de convolution $P_{X_1} * \cdots * P_{X_n}$

et a pour fonction caractéristique
$$\varphi_{X_1+\cdots+X_n}=\prod_{j=1}\varphi_{X_j}$$
.

Proposition VIII.4.7

Soit X une v.a. à valeurs réelles dans $\mathbf{L}^n(\Omega, \mathcal{F}, \mathbf{P})$ ($n \ge 1$). Alors, sa fonction caractéristique φ_X est de classe C^n et

$$\forall t \in \mathbb{R}, \quad \varphi_X^{(n)}(t) = i^n \mathbf{E}[X^n e^{itX}].$$

En particulier, $\mathbf{E}[X^n] = i^{-n} \varphi_X^{(n)}(0)$.

Objectifs de la séance

- Je suis capable d'étudier la convolution de deux fonctions (def. VIII.1.1 et prop. VIII.1.4).
- Je suis capable d'exprimer l'indépendance de variables aléatoires en terme de mesure produit (prop.VII.1.6).
- Je suis capable de vérifier que deux variables aléatoires sont indépendantes (th.VIII.3.3).
- Je suis capable de déterminer la loi d'une variable aléatoire définie comme fonction de deux variables aléatoires indépendantes (prop.VII.1.7 et prop.VII.1.8).
- Je distingue parfaitement les notions d'indépendance (def. VIII.3.1) et de non corrélation (VIII.2.4).
- Je suis capable d'étudier un vecteur de variables aléatoires réelles (def. VIII.2.1), dont la loi est donnée (loi de chaque composante (def. VIII.2.8), indépendance (th. VIII.3.3 et th. VII.2.7).

Références bibliographiques

- T. Gallouët, R. Herbin. Mesure, intégration, probabilités.
 https://www.i2m.univ-amu.fr/perso/thierry.gallouet/licence.d/mes-int-pro.pdf
- O. Garet. Intégration et probabilités.
 http://www.iecl.univ-lorraine.fr/-Olivier.Garet/cours/ip/ip-2016-2017.pdf
- J.-F. Le Gall. Intégration, probabilités et processus aléatoires. https://www.math.u-psud.fr/-jflegall/IPPA2.pdf
- W. Rudin. Real and Complex Analysis. McGraw-Hill.