AMOLED Power Solution

1 General Description

The BV6804 is a highly integrated power solution for AMOLED Display application, which uses a single-inductor-bipolar-output (SIBO) converter and three linear low-dropout regulators (LDO) to generate two positive and one negative voltage outputs. It does not need an extra charge pump circuit to generate the negative voltage output so that external capacitors required by the charge pump circuit can be eliminated and the PCB space can be achieved with very small.

The output voltages can be adjusted by SWIRE pin. Compared with the scheme of generating negative voltage by a charge pump circuit, the best energy conversion efficiency can only be obtained near the negative voltage ratio provided by its charge pump circuit. This SIBO architecture can provide a stable high conversion efficiency throughout the entire negative voltage adjusting range. Therefore, this solution can provide the optimal negative voltage output value according to different brightness requirements to reduce the power consumption of the AMOLED display significantly. This is the best solution that can optimize the solution form factor as well as display power consumption.

With its input voltage range from 3.4V to 5.5V, BV6804 is optimized for products powered by single-cell batteries with output currents up to 80mA. The BV6804 is available in the WL-CSP-16B 1.64mm x 1.64mm package.

2 Features

- Input Voltage Range: 3.4V to 5.5V
- Positive Output Voltage AVDD: 2.6V to 3.5V (Default is 3.3V±1%)
- Positive Output Voltage OVDD Range: 2.6V to 5.3V (Default is 3.3V±1%)
- Negative Output Voltage OVSS Range: -0.6V to -4.7V (Default is -3.3V±1%)
- Low Quiescent Current: 70μA
- AVDD Max. Loading is 20mA, OVDD and OVSS Max. loading is 100mA
- Low Output Ripple
- Built-in Internal Soft start
- UVLO, UVP, SCP, OCP, OTP, and SSP protection

3 Applications

Wearable AMOLED Product

4 Ordering Information

BV6804

Package Type
WSC: WL-CSP-16B 1.64mmx1.64mm

Note:

Bravotek products are RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020Package Information

5 Application Circuit

6 Pin Configuration and Function

Top View

Pin	Name	Function
A1	PVIN	Power Input for SIBO
A2	AVIN	Analog Power Input for IC
A3, B3	VON	SIBO Negative Output.
A4	OVSS	OVSS LDO Output
B1, B2	LX1	LX1 switching node for SIBO
B4	SWIRE	SWIRE Control Interface
C1	LX2	LX2 switching node for SIBO
C2, D2	PGND	Power Ground
C3	AGND	Analog Ground
C4	AVDD_EN	Enable for AVDD
D1	VOP	SIBO Positive Output
D3	OVDD	OVDD LDO Output
D4	AVDD	AVDD LDO Output

7 Functional Block Diagram

8 Absolute Maximum Ratings

•	Supply Input Voltage: AVIN, PVIN to ANGD, PGND	0.3V to 6.0V
•	VOP, AVDD, OVDD, SWIRE, AVDDEN to AGND, PGND	0.3V to 6.0V
•	VON, OVSS to ANGD, PGND	6.0V to 0.3V
•	Power Dissipation, PD@ TA=25°C	
	WL-CSP-16B	1.96W
•	Package Thermal Resistance	
	WL-CSP-16B, θ _{JA}	51°C/W
•	Lead Temperature (Soldering, 10sec.)	260°C
•	Junction Temperature	150°C
•	Storage Temperature	65°C to 150°C
•	ESD Susceptibility	
	HBM(Human Body Model)	2KV
	CDM(Charged Device Model)	500V

BV6804

9 Recommended Operating Conditions

- Junction Temperature Range-40°C to 125°C
- Ambient Temperature Range-40°C to 85°C

Note:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the
 device. These are stress ratings only, and functional operation of the device at these or any other
 conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure
 to absolute—maximum—rated conditions for extended periods may affect device reliability.
- 2. The device is not guaranteed to function outside its recommended operating conditions.

10 Components Selection

10.1 Inductor

Reference	Value	Component supplier	Package	Isat / DCR
L1	2.2uH	ALPS GLULK2R201A	2.5mm x 2.0mm x 1.0mm	1.8A / 85m Ω

10.2 Capacitors

Reference	Value	Component supplier	Package
C1, C3, C5, C7, C6	10uF/6.3V	GRM188R60J106ME84	0603
C4	4.7uF/6.3V	GRM188R60J475KE19	0603
C2	1uF/6.3V	GRM155R60J105ME19	0402

11 Electrical Characteristics

V _{IN} =3.7V, SWIRE=V _{IN} , AVDD=3.3V, OVDD=3.3V, OVSS=-3.3V, T _A =25°C, unless otherwise specified.							
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Input Power Supply							
Input Supply Voltage	V _{IN}		3.4	3.7	5.5	٧	
Quiescent Current	IQ	SWIRE=High, AVDD_EN=High, measured into VIN pin. No load	-	70	ı	μΑ	
Standby Current	I _{Standby}	AVDD_EN =High and SWIRE = low	-	20		μΑ	
Shutdown Current	I _{SHDN}	AVDD_EN and SWIRE = low	-	0.1	1	μΑ	
	V _{UVLOH}	VIN Rising		2.75	2.85	V	
Under-Voltage Lockout Threshold	V _{UVLOL}	VIN falling		2.5	2.6	V	
Thermal Shutdown	T _{SD}			140		°C	
Thermal Shutdown Hysteresis	ΔT_{SD}			10		°C	

						_
SWIRE	·					
SWIRE Logical High-Level Voltage	V_{SRH}	V _{IN} =3.4V to 5.5V	1.2	-	-	V
SWIRE Logic Low-Level Voltage	V_{SRL}	V _{IN} =3.4V to 5.5V	0	-	0.4	V
SWIRE Turn-off Detection	T _{OFF_DLY}		300	-	-	μs
SWIRE Signal Stop Indicate Time	T _{STOP}		300	-	-	μs
SWIRE Rising Time	Tr		-	-	200	ns
SWIRE Falling Time	T _f		-	-	200	ns
Clocked SWIRE High	T _{ON}		2	-	20	μs
Clocked SWIRE Low	T_{OFF}		2	-	20	μs
Input Clocked SWIRE Frequency	F _{SWIRE}		25	-	250	KHz
AVDDEN						•
AVDD Enable Input Voltage	VIH	V _{IN} =3.4V to 5.5V	1.2	-	-	V
AVDD Enable Input Voltage	VIL	V _{IN} =3.4V to 5.5V	0	-	0.4	V
SIBO						T
Positive Output Voltage Range	V _{OP}		2.7	-	5.4	V
Negative Output Voltage Range	V _{ON}		-4.8	-	-0.7	V
Switching Frequency	F _{SW}		1.2	1.5	1.8	MHz
Over Current Protection	I _{OCP}			0.75		Α
AVDD LDO						1
Positive Output Voltage Range	V _{AVDD_RANGE}	V _{IN} > AVDD + 0.1V	2.6	3.3	3.5	V
Positive Output Voltage Accuracy	V _{AVDD_ACC}		-1	-	1	%
Output Current Capability	I _{AVDD}		-	10	20	mA
Line Regulation	V_{AVDD_LINE}	V _{IN} =3.4V to 5.5V, I _{AVDD} =1mA	-	2	5	mV
Load Regulation	V_{AVDD_LOAD}	I _{AVDD} = 0 to 10mA	-	2	5	mV
Output Ripple	V _{AVDD_RIPPLE}	I _{AVDD} = 5mA	-	-	10	mV
Current Limit	I _{AVDD_LIMIT}		-	30	50	mA
Discharge Resistance	R _{AVDD_RDIS}			100		Ω
Under Voltage Protection				80		%
UVP Detection Time				1.35		ms
OVDD LDO						
Positive Output Voltage Range	V _{OVDD_RANGE}		2.6	3.3	5.3	V
Positive Output Voltage Accuracy	V _{OVDD_ACC}		-1	-	1	%
Output Current Capability	I _{OVDD}		-	80	100	mA
Line Regulation	V _{OVDD_LINE}	V _{IN} =3.4V to 5.5V, I _{OVDD} =1mA	-	2	5	mV
Load Regulation	V_{OVDD_LOAD}	I _{OVDD} = 0 to 10mA	-	2	5	mV

BV6804

Output Ripple	V _{OVDD_RIPPLE}	I _{OVDD} = 30mA	-	-	10	mV
Current Limit	I _{OVDD_LIMIT}		-	150	200	mA
Discharge Resistance	R _{OVDD_RDIS}		-	100	1	Ω
Under Voltage Protection				80		%
UVP Detection Time				1.35		ms
OVSS LDO						
Negative Output Voltage Range	V_{OVSS_RANGE}		-4.7	-3.3	-0.6	٧
Negative Output Voltage Accuracy	V _{OVSS_ACC}		-1	-	1	%
Output Current Capability	l _{ovss}		-	80	100	mA
Line Regulation	V _{OVSS_LINE}	V _{IN} =2.7 to 5.5V, I _{OVSS} =1mA	-	2	5	mV
Load Regulation	V _{OVSS_LOAD}	I _{OVSS} = 0 to 10mA	-	2	5	mV
Output Ripple	V _{OVSS_RIPPLE}	I _{ovss} = 30mA	-	-	10	mV
Current Limit	I _{OVSS_LIMIT}		-	150	200	mA
Discharge Resistance	R _{OVSS_RDIS}			100		Ω
Under Voltage Protection				80		%
UVP Detection Time				1.35		ms

12 Detail Descriptions

The BV6804 operates with a five-switch buck-boost converter topology to generation a negative and positive output voltage with a single inductor. The IC have the best efficiency over the entire load-current range. It is implemented by reducing the converter switching frequency into the PSM mode for light load. The output voltage can be set by SWIRE pin, OVDD voltage is from 2.6V to 5.3V, OVSS voltage is from -0.6V to -4.7V, and AVDD voltage is from 2.6V to 3.5V. BV6804 can supply the maximum output current up to 80mA for high luminance application.

The convertor generates the positive voltage (VOP) and the negative voltage (VON) by the several phase switching. Please see the below table to show switch control phase.

			•		
Phase	SW1	SW2	SW3	SWP	SWN
P1	ON	OFF	ON	OFF	OFF
P2	ON	OFF	OFF	ON	OFF
P3	OFF	ON	OFF	ON	OFF
P4	OFF	OFF	ON	OFF	ON
P5(From P3)	OFF	ON	OFF	OFF	OFF
P5(From P4)	OFF	OFF	ON	OFF	OFF

Switch Control Phase

During the phase 1, SW1 and SW3 is turn on, connecting the inductor form VIN to GND for charge. During phase 2 and phase3, the inductor discharges to the positive voltage and phase 4, the inductor discharges to the negative voltage. If the loop only charges to the positive voltage, the phase 1 will switch to phase 3 in one cycle when the positive voltage is light load, and the phase 1 will switch to phase 2 then phase 3 in one cycle

BV6804

when the positive voltage is heave load. If the loop only charges to the negative voltage, the phase 1 will switch to phase 4 in one cycle. The phase 1 will switch phase 2 the phase 4 if the loop charges the positive and negative simultaneously. The charge and discharge current path could be referenced the below picture.

- . lop & Ion with load @ CCM, $(P1 \rightarrow P2 \rightarrow P4) \rightarrow (P1 \rightarrow P2 \rightarrow P4 \rightarrow)...$
- . lop & lon with load @ DCM, $(P1 \rightarrow P2 \rightarrow P4 \rightarrow P5) \rightarrow (P1 \rightarrow P2 \rightarrow P4 \rightarrow P5)...$
- . Ion with load only, $(P1 \rightarrow P4 \rightarrow P5) \rightarrow (P1 \rightarrow P4 \rightarrow P5)...$
- . lop with load only, $(P1 \rightarrow P2 \rightarrow P3 \rightarrow P5) \rightarrow (P1 \rightarrow P2 \rightarrow P3 \rightarrow P5)$ OR $(P1 \rightarrow P3 \rightarrow P5) \rightarrow (P1 \rightarrow P3 \rightarrow P5)$...

There are three LDOs inside in the BV6804 to generate the low noise voltage to supply the wearable OLED power (AVDD, OVDD and OVSS). The AVDD LDO's supply power is PVIN, OVDD LDO's supply power is VOP and the dropout voltage is 100mV. The OVSS LDO's supply power is VON and the dropout voltage is 100mV too. The VOP and VON voltage will be adjusted automatically when the LDO output voltage is adjusted to keep the same dropout voltage.

The BV6804 provides the Under-Voltage Protection (UVP), Short-Circuit Protection (SCP), Over-Temperature Protection (OTP), Over-Current Protection (OCP) and Startup-Short Protection (SSP).

12.1 Power Sequence

12.1.1 AVDDEN = ON → SWIRE=ON → SWIRE=OFF → AVDDEN=OFF

12.1.2 AVDDEN = ON → SWIRE=ON → AVDDEN=OFF → SWIRE=OFF

12.1.3 SWIRE = ON → AVDDEN=ON → SWIRE=OFF → AVDDEN=OFF

12.1.4 AVDDEN Power ON-OFF Sequence

12.1.5 SWIRE Power ON OFF Sequence

12.1.6 OVSS Voltage setting by SWIRE

12.2 Protection Functions

12.2.1 Under-Voltage Protection

All outputs are protected against short circuits either to GND. The IC will go into shutdown mode when the output voltage is under the limit level (80% and keep 1.35ms). The IC can only restart normal operation after re-power on.

12.2.2 Over-Temperature Protection

The BV6804 include an over temperature protection circuit to prevent overheating. The IC will disable positive and negative output when the junction temperature exceeds 140°C. Once the junction temperature drops down 10°C approximately, IC will automatically recovery into normal operation.

12.2.3 Short-Circuit Protection

All outputs are protected against short circuits either to GND. The IC will go into shutdown mode immediately when the output short to ground, and the output voltage is under the limit level (20%). The IC can only restart normal operation after re-power on.

12.2.4 Over-Current Protection

The BV6804 includes a cycle-by-cycle current limit function which monitor the inductor current during Phase 1 period. The power switch will be forced off to avoid large current damage IC when the current is over the limit level (0.75A).

12.2.5 Startup-Short Protection (Optional) (Default is disable)

The BV6804 provides the function to check OVDD and OVSS short when power on. The OVDD and OVSS will disable when OVSS voltage large than 300mV and keep 400us. The detect period is between OVDD start-up to OVSS start-up. Please see the detail on the below curve.

12.3 SWIRE Setting

Pulse	Function Description
0	Clear all setting to default code (AVDD, OVDD, and OVSS voltage setting doesn't)
10-12	OVSS transient time method
13-17	OVSS transient time setting
22-31	AVDD setting (2.6V to 3.5V)
36-63	OVDD setting (2.6V to 5.3V)
70-111	OVSS setting (-4.7V to -0.6V)
124	OVDD and OVSS fast discharge when SWIRE pull low
125	AVDD, OVDD and OVSS Hi-Z when AVDD_EN pull low
126	OVDD turn on
127	OVSS and VON turn on
128	OVDD turn off (Hi-Z)
129	OVSS and VON turn off (Hi-Z)
130	OVSS and VON discharge to GND then Hi-Z when SWIRE pull low
131	Soft-Reset, clear all setting to default code (AVDD, OVDD, and OVSS voltage setting doesn't)

124 and 125 Pulse – Discharge function

		Default		
AVDD_EN	SWIRE	AVDD	OVDD	OVSS
0	0	FD	FD	FD
0	1	FD	FD	FD
1	0		Hi-Z	Hi-Z

124 Pulse						
AVDD_EN	SWIRE	AVDD	OVDD	OVSS		
0	0	FD	FD	FD		
0	1	FD	FD	FD		
1	0		FD	FD		

125 Pulse						
AVDD_EN	SWIRE	AVDD	OVDD	OVSS		
0	0	Float	Hi-Z	Hi-Z		
0	1	Float	Hi-Z	Hi-Z		
1	0		Hi-Z	Hi-Z		

124 Pulse + 125 Pulse									
AVDD_EN SWIRE AVDD OVDD OVSS									
0	0	Float	Hi-Z	Hi-Z					
0	1	Float	Hi-Z	Hi-Z					
1	0		FD	FD					

10~12 Pulse – OVSS transient time method

Pulse	OVSS transient time method	Description
10	Method 1	Direct change (40uS/0.1V)
11	Method 2	4 division change (25mV) during transient time setting per 100mV
12	Method 3	Smoothly change within transient time setting

Ex. OVSS transient from -5V to -4V

							D V 000
Pulse	OVSS transient time setting	Pulse	OVDD	Pulse	ovss	Pulse	ovss
13	5ms	36	2.6V	70	-4.7V	91	-2.6V
14	10ms	37	2.7V	71	-4.6V	92	-2.5V
15	15ms	38	2.8V	72	-4.5V	93	-2.4V
16	20ms	39	2.9V	73	-4.4V	94	-2.3V
17	25ms	40	3.0V	74	-4.3V	95	-2.2V
		41	3.1V	75	-4.2V	96	-2.1V
Pulse	AVDD	42	3.2V	76	-4.1V	97	-2.0V
22	2.6V	43	3.3V	77	-4.0V	98	-1.9V
23	2.7V	44	3.4V	78	-3.9V	99	-1.8V
24	2.8V	45	3.5V	79	-3.8V	100	-1.7V
25	2.9V	46	3.6V	80	-3.7V	101	-1.6V
26	3.0V	47	3.7V	81	-3.6V	102	-1.5V
27	3.1V	48	3.8V	82	-3.5V	103	-1.4V
28	3.2V	49	3.9V	83	-3.4V	104	-1.3V
29	3.3V	50	4.0V	84	-3.3V	105	-1.2V
30	3.4V	51	4.1V	85	-3.2V	106	-1.1V
31	3.5V	52	4.2V	86	-3.1V	107	-1.0V
		53	4.3V	87	-3.0V	108	-0.9V
		54	4.4V	88	-2.9V	109	-0.8V
		55	4.5V	89	-2.8V	110	-0.7V
		56	4.6V	90	-2.7V	111	-0.6V
		57	4.7V				
		58	4.8V				
		59	4.9V				
		60	5.0V				
		61	5.1V				
		62	5.2V				
		63	5.3V				

13 Typical Operating Curve

V_{IN}=3.7V, AVDD=3.3V, OVDD=3.3V, OVSS=-3.3V, T_A=25°C, unless otherwise specified

14 Layout Guidelines

For the best performance of the BV6804, the basic principles listed should be strictly followed.

- Place C1 and C2 as close as possible to the PVIN and AVIN pins respectively.
- Place C3 and C6 as close as possible to the VOP and VON pins respectively
- Place C4, C5 and C7 as close as possible to the AVDD, OVDD and OVSS pins respectively
- Place L1 as close as possible to the LX1 and LX2 pins
- For good regulation, the traces should be wide and short especially for the high current output loop

15 Outline Dimension

Symbol	Dimensi	ons(mm)	Dimensions(inch)			
Symbol	Min.	Max.	Min.	Max.		
Α	0.527	0.621	0.021	0.024		
A1	0.175	0.213	0.007	0.008		
b	0.228	0.308	0.009	0.012		
D	1.620	1.660	1.552	0.065		
D1	1.2	00	0.047			
E	1.620	1.660	0.064	0.065		
E1	1.2	00	0.047			
е	0.4	00	0.0	16		

BV6804

16 Packaging Information

Orderable Device	Status (1)	Package Type	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4)
BV6804W	ACTIVE	WLCSP	16	3,000	Green (RoHS & no Sb/Br)	SN	Level-1-260C-1 YEAR	-40 to 85	6804

1. The status is to reflect current situation in marketing.

ACTIVE: The product currently is on sale.

LAST TIME BUY in EOL: Bravotekcorp announced this product will be discontinued. Only last time buy supported within a half of a year.

SAMPLES BY REQUEST: The product is still in developing. Samples may or may not be available.

OBSOLETE: Bravotekcorp has terminated the production of this product.

- 2. Green: Bravotekcorp defines that the product follow JS709B low halogen requirements of <= 1,000 ppm. RoHS: Bravotekcorp defines that the product follows current EU RoHS requirements.
- 3. MSL, Peak Temp.: The Moisture Sensitivity Level rating was based on JEDEC industry standard classification, and peak solder temperature.
- 4. Device marking: The device marking of the product will follow Bravotekcorp's marking rule that may contain multiple information for tracing.

18 Tape and Reel Information

TAPE DIMENSIONS KO P1 BO Cavity A0

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameters (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BV6804W	WLCSP	16	3000	180	9	1.77+/- 0.05	1.77+/- 0.05	0.75+/- 0.05	4	8	Q1

19 Tape and Reel Box Dimension

Device	Package Type	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BV6804W	WLCSP	16	3000	183+/-3	183+/-3	85+/-3

20 VERSION HISTORY

Version	Implemented	Revision	Approved	Approval	Reason
#	Ву	Date	Ву	Date	
0.1	Stanley	11.02.2020			Initial Design Definition draft
0.2	Stanley	11.26.2020			Add Waveform and Curve
0.3	Stanley	12.02.2020			Add Packaging information, Tape and Reel information and box dimension
0.4	Stanley	01.26.2021			Change VIN Range from 2.9V to 3.4V
0.5	Stanley	05.24.2021			Application Circuit Modified

Template Version: 09/09, 2019