Probabilistic \mathcal{EL}

Jean Christoph Jung

AG Theoretische Grundlagen der Künstlichen Intelligenz Universität Bremen

19.01.2010

Motivation

- Description Logics are accepted formalism for KR
- ightharpoonup polynomial time reasoning for \mathcal{EL}
- desired: ability to represent uncertain knowledge

Example

- a certain indication has a probable cause
- a finding is not certain
- somebody with a flew has fever with at least 75%

Description Logics

- family of logics to describe terminological knowledge
- decidable fragments of FOL
- ▶ Concepts: $C ::= \top \mid A \mid \neg C \mid C_1 \sqcap C_2 \mid \exists r.C \mid ...$
- ▶ terminological knowledge (TBox): set of GCIs $C \sqsubseteq D$
- ▶ instance knowledge (ABox): set of assertions C(a), r(a,b)

Example

```
Mother \sqsubseteq Female \sqcap \exists child. \top
Parent \equiv Mother \sqcup Father
GrandMother □ Mother \sqcap \exists child. Parent
```

Semantics

given by interpretations $\mathcal{I} = (\Delta, \cdot^{\mathcal{I}})$

- \triangleright domain \triangle , set of individuals
- concept names: $A^{\mathcal{I}} \subseteq \Delta$
- conjunction: $(C_1 \sqcap C_2)^{\mathcal{I}} = C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$
- ▶ negation: $(\neg C)^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}}$
- ▶ roles: $r^{\mathcal{I}} \subseteq \Delta \times \Delta$
- existential restrictions: $(\exists r.C)^{\mathcal{I}} = \{d \in \Delta \mid \exists e \in C^{\mathcal{I}}.(d,e) \in r^{\mathcal{I}}\}$

Semantics for Probability

- important problem in philosophy: mathematical, classical, subjective, frequency, . . .
- desired: formal semantics for probabilities
- ► FOL: statistical vs. subjective interpretation [Halpern, 1990]
- probability distribution on the domain vs. possible world semantics

Possible World Semantics

- ▶ additional concept constructors $P_{>p}C$, $\exists P_{>p}r.C$
- extend DL-interpretation with a set of worlds
- probability distribution on the worlds
- ▶ concept & role names are interpreted locally: $A^{\mathcal{I},w}$, $r^{\mathcal{I},w}$
- interpretation of new constructors:

$$(P_{\geq p}C)^{\mathcal{I},w} = \{d \in \Delta \mid \sum_{v:d \in C^{\mathcal{I},v}} Pr(v) \geq p\}$$

$$(\exists P_{\geq p}C)^{\mathcal{I},w} = \{d \in \Delta \mid \exists e \in C^{\mathcal{I},w}. \sum_{v:(d,e) \in r^{\mathcal{I},v}} Pr(v) \geq p\}$$

Worlds with probability zero

- takes time getting used to it
- philosophical justification:
 logically contradictory infinitely improbable
- ▶ special behaviour, since probabilistic operators range only over worlds w with Pr(w) > 0
- often: restriction to one world with probability 0 possible
- ▶ difference between $\Box C$ and $P_{=1}C$, e.g., no direct reduction from $S5_{ALC}$ to Prob- ALC^{01} possible

Reasoning in \mathcal{EL}

 \mathcal{EL} : restriction to constructors $\exists r.A$ and \sqcap

- turns out to be expressive enough in many cases (e.g. medical knowledge bases)
- ▶ extensions: role hierarchies, fixpoint operators, ⊥, . . .
- polynomial reasoning
- finite model property
- ▶ convex logic: $C \sqsubseteq D_1 \sqcup D_2$ implies $C \sqsubseteq D_1$ or $C \sqsubseteq D_2$

important observation: non-convex extensions of \mathcal{EL} are as hard as the corresponding variant of \mathcal{ALC} .

Probabilistic \mathcal{EL}

aims for the design of "Prob- \mathcal{EL} ":

- add probabilistic constructors
- retain polynomial reasoning

Attempt $1 - P_{>0}C$ and $P_{>0.4}C$

Consider the KB
$$\mathcal{K} = (\mathcal{T}, \{C(a)\})$$
 with \mathcal{T} :

$$C \equiv P_{>0.4}A_1 \sqcap P_{>0.4}A_2 \sqcap P_{>0.4}A_3$$

$$D_1 \equiv P_{>0}(A_1 \sqcap A_2)$$

$$D_2 \equiv P_{>0}(A_1 \sqcap A_3)$$

$$D_3 \equiv P_{>0}(A_2 \sqcap A_3)$$

Attempt $1 - P_{>0}C$ and $P_{>0.4}C$

Consider the KB
$$\mathcal{K} = (\mathcal{T}, \{C(a)\})$$
 with \mathcal{T} :

$$C \equiv P_{>0.4}A_1 \sqcap P_{>0.4}A_2 \sqcap P_{>0.4}A_3$$

$$D_1 \equiv P_{>0}(A_1 \sqcap A_2)$$

$$D_2 \equiv P_{>0}(A_1 \sqcap A_3)$$

$$D_3 \equiv P_{>0}(A_2 \sqcap A_3)$$

Now we have

$$\mathcal{K} \models D_1(a) \sqcup D_2(a) \sqcup D_3(a)$$

but for all
$$i = 1, 2, 3$$

$$\mathcal{K} \not\models D_i(a)$$

Attempt 2 – $P_{<1/3}$ and \perp

Consider TBox:

$$A_1 \sqcap A_2 \sqsubseteq \bot$$
$$A_2 \sqcap A_3 \sqsubseteq \bot$$
$$A_1 \sqcap A_3 \sqsubseteq \bot$$

Attempt 2 – $P_{<1/3}$ and \perp

Consider TBox:

$$A_1 \sqcap A_2 \sqsubseteq \bot$$
$$A_2 \sqcap A_3 \sqsubseteq \bot$$
$$A_1 \sqcap A_3 \sqsubseteq \bot$$

We obtain

$$\mathcal{K} \models P_{<1/3}A_1(a) \sqcup P_{<1/3}A_2(a) \sqcup P_{<1/3}A_3(a)$$

but for all i = 1, 2, 3

$$\mathcal{K} \not\models P_{<1/3}A_i(a)$$

Attempt $3 - P_{>p}C$

Assume p=1/k for some positive integer k. Consider now the knowledge base $\mathcal{K}=(\mathcal{T},\mathcal{A})$ with

$$\mathcal{T} = \{A_i \sqcap A_j \sqsubseteq P_{>p}C_{ij} \mid 1 \le i < j \le k\}$$

and

$$\mathcal{A} = \{ P_{>p} A_i(a) \mid 1 \le i \le k \}$$

Attempt $3 - P_{>p}C$

Assume p = 1/k for some positive integer k. Consider now the knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with

$$\mathcal{T} = \{A_i \sqcap A_j \sqsubseteq P_{>p} C_{ij} \mid 1 \le i < j \le k\}$$

and

$$\mathcal{A} = \{ P_{>p} A_i(a) \mid 1 \le i \le k \}$$

Then,

$$\mathcal{K} \models \bigsqcup_{i < j} P_{>p} C_{ij}$$

Result

Many interesting combinations of \mathcal{EL} with probabilistic operators lead to intractable reasoning.

Three possible settings:

- 1. restriction to "normal" TBoxes $+ P_{>p}C$ for one probabilty p
- 2. TBoxes without probabilities, but still only one probability $P_{>p}C$
- 3. restriction to $P_{>0}C$ and $P_{=1}C$

Probabilities on the roles

- ▶ adding arbitrary $\exists P_{>p}r.C$ leads to similar problems
- ▶ So again, try $\exists P_{>0}r.C$ or $\exists P_{=1}r.C$.
- convex extension
- ▶ From [Lutz & Schröder, 2010] it is known that \mathcal{EL} extended with $P_{>0}C$ and one of the two constructors is PSPACE-hard
- ▶ best known upper bound: 2-EXPTIME.

The logic $S5_{\mathcal{EL}}$

- two-dimensional logic with possible world semantics
- ▶ $\Diamond C$ roughly $P_{>0}C$ and $\exists \Diamond r.C$ roughly $\exists P_{>0}r.C$
- "roughly": worlds with probability zero
- $ightharpoonup {
 m PSPACE}$ algorithm for instance checking in ${\cal S5}_{{\cal EL}}$
- ightharpoonup we believe that with a similar technique we get an algorithm for the corresponding \mathcal{EL} -variant

Conclusions and future directions

- more careful analysis of statistical semantics
- how to convert from statistical to subjective semantics, i.e. how to get degree of belief from statistical knowledge

Relevant References

Joseph Halpern

An analysis of First-Order Logics of Probability Artificial Intelligence, Vol 46, 1990

Carsten Lutz, Lutz Schröder Probabilistic Description Logics for Subjective Uncertainty Proceedings of KR 2010