

利用奇偶校验位的方法一

把载体划分成几个不相重叠的区域, 在一个载体区域中存储一比特信息。

选择 L(m)个不相重叠区域,计算出每一区域I的所有最低比特的奇偶校验位(即"1"的个数奇偶性),

$$b_i(i=1,2, \dots, n)$$
 \circ $b_i = \sum_{j \in I} LSB(c_j) \mod 2$

嵌入信息时,在对应区域的奇偶校验位上嵌入信息比特 m_i ,如果奇偶校验位 b_i 与 m_i 不匹配,则将该区域中所有元素的最低比特位进行翻转,使得奇偶校验位与 m_i 相同,即 b_i = m_i 。

区域内翻转所有像素最低位的例子

如果奇偶校验位与*m_i*不匹配,则将该区域中的所有像素值的最低比特位翻转,从而使奇偶校验位与*m_i*相同。

例如:

下列区域所有像素的最低比特有偶数个1,计算得奇偶校验位 b_i =0。如果要嵌入的秘密信息比特为1,即 m_i =1,要想满足 b_i = m_i ,则需要翻转所有像素的最低比特位,使得该区域的最低有效位有奇数个1,即 b_i =1,从而满足了 b_i = m_i 。

利用奇偶校验位的方法—

提取

在接收端,收方与发方拥有共同的伪装密钥作为 种子,可以伪随机地构造载体区域。收方从载体区域 中计算出奇偶校验位,排列起来就可以重构秘密信息。

利用奇偶校验位的方法二

把载体划分成几个不相重叠的区域,在一个载体区域中存储一比特信息。

选择 L(m)个不相重叠区域,计算出每一区域I的所有最低比特的奇偶校验位 $b_i(i=1,2,...,n)$ 。

嵌入

$$b_i = \sum_{j \in I} LSB(c_j) \bmod 2$$

区域I隐藏一个信息比特。若 b_i 与 m_i 不同,那么就将该区域中某个像素的最低比特位进行翻转,从而使得奇偶校验位与 m_i 相同,即 b_i = m_i 。

提取

用同样的方法划分载体区域,计算出奇偶校验位,构成秘密信息。

区域内翻转某个像素最低位的例子

如果奇偶校验位与*m_i*不 匹配,则将该区域中的某个 像素的最低比特位翻转,导 致奇偶校验位与*m_i*相同。 例如:

下列区域所有像素的最低比特有偶数个1,计算得奇偶校验位 b_i =0。如果要嵌入的秘密信息比特是1,即 m_i =1,要想满足 b_i = m_i ,则需要翻转某个像素的最低比特位,使得该区域的最低有效位有奇数个1,即 b_i =1,从而满足了 b_i = m_i 。

区域内翻转某个像素最低位的例子

0	1	1
0	1	1
1	1	0

0 1 1 0 1 1 1 0 0

偶数个1,校验位的值为0

翻转某个LSB后,

奇数个1,校验位的值为1