

SLNet: A Spectrogram Learning Neural Network for Deep Wireless Sensing

Zheng Yang¹, Yi Zhang¹, Kun Qian², Chenshu Wu³

¹Tsinghua University

²University of California San Diego

³The University of Hong Kong

NSDI 2023

汇报人: 陈宇杰

Author

RESEARCH INTERESTS

- Internet of Things
- Industrial Internet
- sensing and positioning
- edge computing

Zheng Yang | 杨铮 https://tns.thss.tsinghua.edu.cn/~yangzheng/

Computer Vision technologies

How human perceive the world

Vision is our dominant sense.

Eyes manage 80% of all information you will ever take in.

Computer Vision technologies

Computer Vision (CV) technologies endow computers with an effective way of SENSE.

Classification

Detection

Segmentation

The limitations in vision systems

Despite being effective, CV technologies still has limitations including occlusions, environmental interference, privacy leakage, etc.

The chance in wireless signals

Gait detection

Fall detection

Respiration detection

Related work

> Model-based wireless sensing

- QGesture: Quantifying Gesture Distance and Direction with WiFi Signals.(IMWUT 2018)
- GaitWay: Monitoring and Recognizing Gait Speed Through the Walls.(MobiCom 2020)
- SiFall: Practical Online Fall Detection with RF Sensing.(SenSys 2022)
- SMARS: Sleep Monitoring via Ambient Radio Signals.(MobiCom 2019)

> Learning-based wireless sensing

- Widar3.0: Zero-Effort Cross-Domain Gesture Recognition With Wi-Fi. (TPAMI 2021)
- Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi. (MobiSys 2019)
- mSilent: Towards General Corpus Silent Speech Recognition Using COTS mmWave Radar.(IMWUT 2023)

- Non-visual: RF data contains physical and geometric connotations in time, space, and frequency domains that are not visually intelligible.
- Complex: RF data is complex-valued with both amplitude and phase information.

Convolutional neural network is not designed for wireless signals.

Image

Convolved

Feature

Share weights across different locations

The convolution operation takes a local field of the input, discarding the global locations.

CNN is tailored for images since it is invariant to shifts.

Wireless signals require global discriminations.

The blur in spectrograms cause difficulty for recognition.

The interference is more significant for smaller frequency difference.

The interference caused by spectral leackage is unstable.

Different initial phase cause different interference patterns.

Joseph Fourier

It is all about Fourier Transform (FT)

Learning-Assisted Spectrogram Enhancement

Spectrogram Enhancement Network (SEN)

Generate an ideal spectrum with **1 to 5** frequency components randomly.

amplitudes	phases	frequencies
[0,1]	[0,2∏]	[-60,60]Hz

$$\hat{s} = As + n$$

S: ideal frequency spectrums

 \hat{S} : estimated frequency spectrums

A: windowing effect

n: random complex noises

Learning-Assisted Spectrogram Enhancement

SEN results

Frequency components are more distinguishable after SEN enhancement.

60

SEN assumes the frequency components remain quasi-static during the sliding window period of generating the spectrum.

Multi-Resolution Spectrogram Fusion

-60

500

Multi-Resolution Spectrogram Fusion

2500

Time/ms

3000

Each sliding window's spectrogram is processed using a SEN pre-trained on synthesis spectrograms of the same length.

Wireless signals require global discriminations.

Phase refers to the offset of a waveform in time or space; different phase values result in the wave appearing at different positions.

Phase-polarized feature extraction

global discrimination is introduced along the frequency dimension

Complex-Valued Neural Network

Complex-valued neurons

Complex-valued convolution

Task-Adaptive Network

SLNet calculates the absolute value of the output from the complex-valued FC layer and inputs it to the real-valued FC layer.

additional FC TASK + softmax gesture classification + sigmoid Fall detection

Hardware:

Intel 5300 WiFi Network Interface Cards (NICs)

NVIDIA GeForce 2080Ti GPU

Ubuntu 10.04

Linux CSI Tool (log CSI readings)

Dataset:

Widar 3.0: WiFi-based Activity Recognition Dataset (Gait&Gesture)

https://ieee-dataport.org/open-access/widar-30-wifi-based-activity-recog

Code:

https://github.com/SLNetRelease/SLNetCode

Human gesture recognition with Wi-Fi

Fall detection within home environment with Wi-Fi

Human gait identification with Wi-Fi

Monitoring the breath rate of two users with Wi-Fi

Human gestures

Frequency components becomes more distinguishable.

Recognition tasks

Modality	Ref.	Gesture	Gait	Fall^1	Para ²
WiFi	[23, 90]	90.6%	95.1%	92.8%, 96.3%	1.07M
	[8, 22]	89.0%	96.6%	96.4%, 84.3%	2.72M
	[39, 79]	84.3%	83.3%	96.8%, 93.8%	5.77M
	$[73]^3$	78.9%	70.9%	95.5%, 96.8%	0.06M
FMCW	[87]	88.0%	95.4%	96.0%, 96.0%	1.06M
	[84, 86]	91.6%	96.4%	99.7%, 95.7%	2.76M
Acoustic	[30]	89.6%	95.4%	90.6%, 98.3%	6.08M
Vision	[40]	88.3%	90.1%	95.3%, 95.3%	128.8M
	[15]	91.9%	96.6%	97.0%, 95.6%	11.18M
	[20]	91.0%	97.7%	99.8%, 96.3%	6.96M
CVNN	[17, 32]	72.3%	96.0%	95.2%, 93.7%	115.6M
	[46]	92.0%	96.3%	98.4%, 93.8%	2.94M
WiFi	SLNET	96.6%	98.9%	99.8%, 97.2%	1.48M

Less parameters, but higher performance.

A single-resolution spectrogram for wireless sensing tasks is not the optimal solution

Spectral leakage problem cannot be neglected in wireless sensing tasks

idea

- ◆ Utilize phase information in signal processing.

 [™]
- ◆ Mitigate the impact of **spectral leakage** on spectral analysis.
- Use wavelet transform to solve the multi-wind problem.

请老师和同学们批评指正!

汇报人: 陈宇杰