Einführung in die Informatik, Übung 8

HENRY HAUSTEIN

Aufgabe 8.1

(a) $2^Q = \mathcal{P}(Q) = \{\emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}, F' = \{\{q_1\}, \{q_0, q_1\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}\}$ $\Rightarrow \mathcal{A}' = (2^Q, \Sigma, \{q_0\}, \delta, F') \text{ mit } \delta$

(b) Den Automaten, der die Sprache $L(\mathcal{A})$ akzeptiert, konstruiert man, indem man den zugehörigen DEA konstruiert (Aufgabe (a)) und die Endzustände anpasst: $F = Q \setminus F$

Aufgabe 8.2

(a) ist erkennbar, der zugehörige Automat ist $\mathcal{A}=(\{q_0,...,q_5\},\{a,b\},q_0,\Delta_a,\{q_5\})$ mit Δ_a

(b) ist erkennbar, der zugehörige Automat ist $\mathcal{B}=(\{q_0,q_1,q_2,q_3\},\{a\},q_0,\Delta_b,\{q_3\})$ mit Δ_b

- (c) ist nicht erkennbar. Angenommen es gäbe einen NEA, der L_3 erkennt. Vertauscht man in diesem $a \leftrightarrow b$, so erhält man einen NEA, der $\{a^nb^n \mid n \geq 0\}$ akzeptiert. Da aber $\{a^nb^n \mid n \geq 0\}$ nicht erkennbar ist, kann es dieses Automaten auch nicht geben $\Rightarrow \mathcal{F}$
- (d) vom Gefühl her würde ich sagen, dass diese Sprache nicht erkennbar ist

Aufgabe 8.3

(a) nein, denn es ist nicht möglich ein einzelnes a zu erzeugen ja, denn

nein, c's lassen sich nicht erzeugen, ohne d's mit zu erzeugen

(b)
$$L(G) = \{a^{2n}d^mc^kb^n \mid n, m \ge 1, k \ge 0\}$$

Aufgabe 8.4

- (a) $G = (\{S,A,B\},\{a,b\},P_a,S)$ mit $P_a = \{S \rightarrow AB, A \rightarrow a, B \rightarrow bb, S \rightarrow \epsilon\}$
- (b) $G = (\{S, A, B\}, \{a, b\}, P_b, S)$ mit $P_b = \{S \rightarrow aSb, S \rightarrow A, S \rightarrow B, A \rightarrow Aa, A \rightarrow a, B \rightarrow Bb, B \rightarrow b\}$
- (c) $G=(\{S,A,B,C,D\},\{a,b,c\},P_c,S)$ mit $P_c=\{S\to ABDCA,D\to BDC,D\to A,A\to\varepsilon,A\to aA,B\to b,C\to c\}$