ECE 667Spring 2013

Synthesis and Verification of Digital Circuits

Scheduling Algorithms

Architectural Optimization

- Optimization in view of design space flexibility
- A multi-criteria optimization problem:
 - Determine schedule ϕ and binding β .
 - Under area A, latency L and cycle time τ objectives
- Solution space tradeoff curves:
 - Non-linear, discontinuous
 - Area / latency / cycle time (more?)
- Evaluate (estimate) cost functions
- Unconstrained optimization problems for resource dominated circuits:
 - Min area: solve for minimal binding
 - Min latency: solve for minimum L scheduling

Scheduling, Allocation and Assignment

Techniques are well understood and mature

Scheduling and Assignment - Overview

$$F1 = (a + b + c) * d$$
 $F2 = (x + y) * z$ $F3 = (x + y) * w$

4 control steps, 1 Add, 2 Mult

Control Step	Ţ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*
1	+1		
2	+2		
3	+3	*1	
4		*2	*3

Scheduling and Assignment - Overview

$$F1 = (a + b + c) * d$$
 $F2 = (x + y) * z$ $F3 = (x + y) * w$

4 control steps, 1 Add, 1 Mult

Control Step	\\\+\\	*
1	+3	
2	+1	*2
3	+2	*3
4		*1

Algorithm Description → Data Flow Graph

$$y'' + 3xy' + 3y = 0$$
 $u = y' = \frac{dy}{dx}$

$$\frac{du}{dx} = y'' = \frac{d^2y}{dx^2} = -3xy' - 3y = -3xu - 3y$$


```
while (x < a) {
xl = x + dx;
ul = u - (3 * x * u * dx) - (3 * y * dx);
yl = y + u * dx;
x = xl; y = yl; u = ul;
```

Data Flow Graph (DFG)

Sequencing Graph

Sequencing Graph

Add source and sink nodes (NOP) to the DFG

ASAP Scheduling Algorithm

- As Soon as Possible scheduling
 - Unconstrained <u>minimum latency</u> scheduling
 - Uses topological sorting of the sequencing graph (polynomial time)
 - Gives optimum solution to scheduling problem
 - Schedule first the first node $n_o \rightarrow T1$ until last node n_v is scheduled
 - C_i = completion time (delay) of predecessor i of node j

```
Input: DFG G = (N, E).

Output: ASAP Schedule.

1. TS_0 = 1; /* Set initial time step */

2. While (Unscheduled nodes exist) {

2.1 Select a node n_j whose predecessors have already been scheduled;

2.2 Schedule node n_j to time step TS_j = \max\{TS_i + (C_i)\}

\forall n_i \rightarrow n_j;
}
```

ASAP Scheduling Algorithm - Example

```
Input: DFG G = (N, E).

Output: ASAP Schedule.

1. TS_0 = 1; /* Set initial time step */

2. While (Unscheduled nodes exist) {

2.1 Select a node n_j whose predecessors have already been scheduled;

2.2 Schedule node n_j to time step TS_j = \max\{TS_i + (C_i)\}

\forall n_i \rightarrow n_j;
}
```

Assume $C_i = 1$

start

finish

ASAP Scheduling Example

Sequence Graph

ASAP Schedule

ALAP Scheduling Algorithm

As late as Possible scheduling

- Latency-constrained scheduling (latency is fixed)
- Uses reversed topological sorting of the sequencing graph
- If over-constrained (latency too small), solution may not exist
- Schedule first the last node $n_v \rightarrow T$, until first node n_0 is scheduled
- C_i = completion time (delay) of predecessor i of node j

```
Input: DFG G = (N, E), IterationPeriod = T. (Latency)

Output: ALAP Schedule.

1. TS_0 = T; /* Set initial time step */

2. While (Unscheduled nodes exist) {

2.1 Select a node n_i whose successors have already been scheduled;

2.2 Schedule node n_i to time step TS_i = \min \{ TS_j - (C_i) \}

\forall n_i \rightarrow n_j;
}
```

ALAP Scheduling Algorithm - example

```
Input: DFG G = (N, E), IterationPeriod = T.

Output: ALAP Schedule.

1. TS_0 = T; /* Set initial time step */

2. While (Unscheduled nodes exist) {

2.1 Select a node n_i whose successors have already been scheduled;

2.2 Schedule node n_i to time step TS_i = \min\{TS_j - (C_i)\}

\forall n_i \rightarrow n_j;
}
```

Assume $C_i = 1$

finish

start

ALAP Scheduling Example

Sequence Graph

ALAP Schedule (latency constraint = 4)

ASAP & ALAP Scheduling

No Resource Constraint

ASAP & ALAP Scheduling

No Resource Constraint

Having determined the minimum latency, what can we do with the slack?

- Adds flexibility to the schedule
- Determine the minimum # resources

What if you want to find

- Min. latency given fixed resources?
- Min resources given a latency?

Computing Slack (mobility)

- Slack of Operator i: $S_i = TS_i^{ALAP} TS_i^{ASAP}$
 - Defines mobility of the operators

 $S_6 = 2-1 = 1$

Timing Constraints

- Time measured in cycles or control steps
- Imposing relative timing constraints between operators i and j
 - max & min timing constraints

A minimum timing constraint $l_{ij} \ge 0$ requires: $t_j \ge t_i + l_{ij}$.

A maximum timing constraint $u_{ij} \ge 0$ requires: $t_i \le t_i + u_{ij}$.

Constraint Graph G_c(V,E)

Existence of Schedule under Timing Constraints

- Upper bound (max timing constraint) is a problem
- Examine each *max* timing constraint (*i*, *j*):
 - Longest weighted path between nodes i and j must be $\leq max$ timing constraint u_{ij} .
 - Any cycle in G_c including edge (*i*, *j*) must be negative or zero
- Necessary and sufficient condition:
 - The constraint graph G_c must <u>not</u> have positive cycles
- Example:
 - Assume delays: ADD=1, MULT=2
 - Path $\{1 \rightarrow 2\}$ has weight 2 ≤ u_{12} =3, that is cycle $\{1,2,1\}$ has weight = -1, OK
 - No positive cycles in the graph, so it has a consistent schedule

Existence of schedule under timing constraints

- Example: satisfying assignment
 - Assume delays: ADD=1, MULT=2
 - Feasible assignment:
 - Vertex Start time
 - v₀ → step 1
 - $v_1 \rightarrow \text{step 1}$
 - $v_2 \rightarrow \text{step } 3$
 - $v_3 \rightarrow \text{step 1}$
 - $v_4 \rightarrow step 5$
 - $v_n \rightarrow step 6$

Scheduling – a Combinatorial Optimization Problem

- NP-complete Problem
- Optimal solutions for special cases and ILP
- Heuristics iterative Improvements
- Heuristics constructive
- Various versions of the problem
 - Unconstrained, minimum latency
 - Resource-constrained, minimum latency
 - Timing-constrained, minimum latency
 - Latency-constrained, minimum resource
- If all resources are identical, problem is reduced to multiprocessor scheduling (Hu's algorithm)
 - Minimum latency multiprocessor problem is intractable

Observation about ALAP & ASAP

- No consideration given to resource constraints
- No priority is given to nodes on critical path
- As a result, less critical nodes may be scheduled ahead of critical nodes
 - No problem if unlimited hardware is available
 - However if the resources are limited, the less critical nodes may block the critical nodes and thus produce inferior schedules
- List scheduling techniques overcome this problem by utilizing a more global node selection criterion

Hu's Algorithm

Simple case of the scheduling problem

- Each operation has unit delay
- Each operation can be implemented by the same operator (multiprocessor)

Hu's algorithm

- Greedy, polynomial time
- Optimal for trees and single type operations
- Computes minimum number of <u>resources</u> for a given latency (MR-LCS), or
- computes minimum <u>latency</u> subject to resource constraints (ML-RCS)

Basic idea:

- Label operations based on their distances from the sink
- Try to schedule nodes with higher labels first (i.e., most "critical" operations have priority)

Hu's Algorithm

Labeling of nodes

- Label operations based on their distances from the sink
- Notation
 - $\alpha_i = \text{label of node } i$
 - \square $\alpha = \max_i \alpha_i$
 - -p(j) = # vertices with label j
- Theorem (Hu)

Lower bound on the <u>number of resources</u> to complete schedule with latency *L* is

$$a_{min} = max_{\gamma} \left[\sum_{j=1}^{\gamma} p(\alpha + 1 - j) / (\gamma + L - \alpha) \right]$$

where γ is a positive integer $(1 \le \gamma \le \alpha + 1)$

In this case: a_{min}= 3 (number of operators needed)

Hu's Algorithm (min Latency s.t. Resource constraint)

```
HU (G(V,E), a) {
     Label the vertices
                                // a = resource constraint
                                 // label = length of longest path
                                           passing through the vertex
    l = 1
    repeat {
            U = unscheduled vertices in V whose
                predecessors have been already scheduled
                   (or have no predecessors)
            Select S \subset U such that |S| \leq a and labels in S are maximal
            Schedule the S operations at step l by setting
              t_i = l, \forall v_i \in S;
           l = l + 1;
    } until v_n is scheduled.
```

Hu's Algorithm: Example (a=3)

List Scheduling (arbitrary operators)

- Extend the idea to several operators
- Greedy algorithm for ML-RCS and MR-LCS
 - Does NOT guarantee optimum solution
- Similar to Hu's algorithm
 - Operation selection decided by criticality
 - O(n) time complexity
- Considers a more general case
 - Resource constraints with different resource types
 - Multi-cycle operations
 - Pipelined operations

List Scheduling Algorithms

- Algorithm 1: Minimize latency under resource constraint (ML-RC)
 - Resource constraint represented by vector a (indexed by resource type)
 - Example: two types of resources, MULT (a_1 =1), ADD (a_2 =2)
- The <u>candidate</u> operations $U_{l,k}$
 - those operations of type k whose predecessors have already been scheduled early enough so that they are completed at step l:

$$U_{l,k} = \{ v_i \subseteq V : type(v_i) = k \text{ and } t_i + d_i \leq l, \text{ for all } j : (v_i, v_i) \subseteq E \}$$

- The <u>unfinished</u> operations T_{l,k}
 - those operations of type k that started at earlier cycles but whose execution has not finished at step l:

$$T_{l,k} = \{ v_i \subseteq V: type(v_i) = k \text{ and } t_i + d_i > l \}$$

- Priority list
 - List operators according to some heuristic urgency measure
 - Common priority list: labeled by position on the longest path in decreasing order
- Algorithm 2: Minimize resources under latency constraint (MR-LC)

List Scheduling Algorithm 1: ML-RC

Minimize latency under resource constraint

```
LIST_L (G(V,E), a) { // resource constraints specified by vector a
     1 = 1
     repeat {
     for each resource type k {
     U_{l,k} = candidate operations available in step l
     T_{l,k} = unfinished operations (in progress)
     Select S_k \subseteq U_{l,k} such that |S_k| + |T_{l,k}| \le a_k
     Schedule the S_k operations at step l
     l = l + 1
     } until v_n is scheduled
```

Note: If for all operators i, $d_i = 1$ (unit delay), the set $T_{i,k}$ is empty

List Scheduling – Example 1 (a=[2,2])

MLRC Minimize latency under resource constraint (with d = 1)

Assumptions

- All operations have unit delay $(d_i=1)$
- Resource constraints:

MULT: $a_1 = 2$, ALU: $a_2 = 2$

• Step 1:

- $U_{1,1} = \{v_1, v_2, v_6, v_8\}$, select $\{v_1, v_2\}$
- $U_{1,2} = \{v_{10}\}, \text{ select + schedule}$
- Step 2:
 - $U_{2,1} = \{v_3, v_6, v_8\}$, select $\{v_3, v_6\}$
 - $U_{2,2} = \{v_{11}\}$, select + schedule
- Step 3:
 - $U_{3.1} = \{v_7, v_8\}$, select + schedule
 - $U_{3,2}$ = { v_4 }, select + schedule
- Step 4:
 - $U_{4,2} = \{v_5, v_9\}$, select + schedule

List Scheduling – Example 2 (a = [3,1])

MLRC Minimize latency under resource constraint (with $d_1=2$, $d_2=1$)

Assumptions

Operations have different delay:

 $del_{MULT} = 2$, $del_{ALU} = 1$

Resource constraints:

MULT: $a_1 = 3$, ALU: $a_2 = 1$

 MUTL 	ALU	start time
$U = \{v_1, \ v_2, \ v_6\}$	<i>V</i> ₁₀	1
$T = \{v_1, v_2, v_6\}$	V_{11}	2
$U = \{v_3, v_7, v_8\}$		3
$T = \{v_3, v_7, v_8\}$		4
	V_4	5
	V_5	6
	V ₉	7

Latency L = 8

List Scheduling Algorithm 2: MR-LC

```
LIST R (G(V,E), \lambda') {
     a = 1. l = 1
     Compute latest possible starting times t^L using ALAP algorithm
     repeat {
          for each resource type k {
             U_{l,k} = candidate operations;
             Compute slacks \{s_i = t_i^L - l, \forall v_i \in U_{l,k}\};
             Schedule operations with zero slack, update a;
             Schedule additional S_k \subseteq U_{l,k} requiring no additional resources;
          1 = 1 + 1
     } until v_n is scheduled.
```

List Scheduling – Example 3

MRLC Minimize resources under latency constraint

- Assumptions
 - All operations have unit delay (d_i=1)
 - Latency constraint: L = 4
- Use slack information to guide the scheduling
 - Schedule operations with slack=0 first
 - Add other operations only if resource limit allows
 - The lower the slack the more urgent it is to schedule the operation

List Scheduling – Pipelined Operations

Minimize latency under resource constraint (a_1 =3 Mults, a_2 =3 ALUs)

Assumptions

- Multipliers are pipelined
- Sharing between first and second pipeline stage allowed 11 for different multipliers

•	MUTL	ALU	start time
	$\{V_1, V_2, V_6\}$	V ₁₀	1
	<i>V</i> ₈	V_{11}	2
	$\{V_3, V_7\}$		3
		V_9	4
		V_4	5
		V ₅	6

NOP) 10 * T2 11 **T3 T4 T5 T6**

• L=7, Compare to multi-cycle case

Scheduling – a Combinatorial Optimization Problem

- NP-complete Problem
- Optimal solutions for special cases (trees) and ILP
- Heuristics
 - iterative Improvements
 - constructive
- Various versions of the problem
 - Minimum latency, unconstrained (ASAP)
 - Latency-constrained scheduling (ALAP)
 - Minimum latency under resource constraints (ML-RC)
 - Minimum resource schedule under latency constraint (MR-LC)
- If all resources are identical, problem is reduced to multiprocessor scheduling (Hu's algorithm)
 - Minimum latency multiprocessor problem is intractable for general graphs
 - For trees greedy algorithm gives optimum solution