Notas:

Para las búsquedas de Fibbonacci se define:

$$F(0) = 0, F(1) = 1, F(2) = F(1) + F(0), \dots, F(n) = F(n-1) + F(n-2)$$

Para las estimaciones cuadraticas sucesivas se define \bar{x} o x^* como:

$$q(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

$$a_0 = f_1, \quad a_1 = \frac{f_2 - f_1}{x_2 - x_1}, \quad a_2 = \frac{1}{x_3 - x_2} \left(\frac{f_3 - f_1}{x_3 - x_1} - a_1\right)$$

$$x^* = \frac{x_1 + x_2}{2} - \frac{a_1}{2a_2}$$

Calcular la efectividad

Método	Fórmula
Método de Fibonacci	$\frac{2}{N}$
Método de Sección Dorada	$0.5^{N/2}$
Búsqueda Exhaustiva	$\frac{2}{F_{N+1}}$
Método de Newton-Raphson	$(0.618)^{N-1}$

Paso	Descripción		
raso			
D 1	1 Método de búsqueda exhaustiva		
Paso 1	Inicializar $x_1 = a$ y $\Delta x = \frac{b-a}{n}$, con n como el número de puntos intermedios.		
Paso 2	Calcular $x_2 = x_1 + \Delta x$ y $x_3 = x_2 + \Delta x$.		
Paso 3	IF $f(x_1) \ge f(x_2) \le f(x_3)$, entonces el mínimo está en (x_1, x_3) . TERMINAR.		
raso 5	IF $x_3 \le b$, actualizar $x_1 = x_2$, $x_2 = x_3$, $x_3 = x_2 + \Delta x$ y volver al Paso 2. ELSE		
no existe un mínimo en (a,b) .			
2 Método de la fase de acotamiento Paso 1 Elegir un punto inicial $x^{(0)}$ y un incremento Δ . Hacer $k = 0$.			
	Elegir un punto inicial $x^{(0)}$ y un incremento Δ . Hacer $k=0$.		
Paso 2	IF $f(x^{(0)} - \Delta) > f(x^{(0)} + \Delta)$, THEN Δ es positivo. ELSE IF $f(x^{(0)} - \Delta) < f(x^{(0)} + \Delta)$, Δ es negativo. ELSE GOTO Paso 1.		
Paso 3	$x^{(k+1)} = x^{(k)} + 2^k \Delta.$		
Paso 4	IF $f(x^{(k+1)}) < f(x^{(k)})$ THEN $k = k+1$ y vuelve al paso 3. ELSE el mínimo se		
	encuentra en el intervalo $(x^{(k-1)}, x^{(k+1)})$. TERMINAR.		
3 Método de eliminación de regiones: Intervalos por la mitad.			
Paso 1	Elegir un límite inferior a y un límite superior b . Definir la tolerancia ε . Calcular $x_m = \frac{a+b}{2}$, $L = b-a$, y $f(x_m)$.		
Paso 2	Calcular $x_1 = a + \frac{L}{4}$ y $x_2 = b - \frac{L}{4}$. Calcular $f(x_1)$ y $f(x_2)$.		
Paso 3	IF $f(x_1) < f(x_m)$ THEN actualizar $b = x_m$, $x_m = x_1$, y continuar al Paso 5.		
Paso 4	IF $f(x_1) < f(x_2)$ THEN actualizar $a = x_m$, $x_m = x_2$, y continuar al Paso 5.		
	ELSE actualizar $a = x_1, b = x_2$.		
Paso 5	Calcular $L = b - a$. IF $ L < \varepsilon$, TERMINAR. ELSE volver al Paso 2.		
4 Método de búsqueda de Fibonacci			
Paso 1	Elegir un límite inferior a y un límite superior b , con $L = b - a$. Definir el		
	número de iteraciones N . Iniciar $k=2$.		
Paso 2	Calcular $L_k^* = \frac{F_{n-k+1}}{F_{n+1}} \cdot L$, luego $x_1 = a + L_k^*$ y $x_2 = b - L_k^*$.		
Paso 3	Calcular $f(x_1)$ o $f(x_2)$ (el que no se haya evaluado antes). Usar eliminación de		
1 000 0	regiones para ajustar $a y b$.		
Paso 4	¿Es $k > N$? Si no, incrementar k y volver al Paso 2. Si sí, TERMINAR.		
5 Método de búsqueda de la sección dorada			
Paso 1 Elegir un límite inferior a y un límite superior b , y una tolerancia ϵ . Normalizar			
	$w = \frac{x-a}{b-a}$. Definir $a_w = 0$, $b_w = 1$, $L_w = b_w - a_w$, y $k = 1$.		
Paso 2	Calcular $w_1 = a_w + 0.618 \cdot L_w$ y $w_2 = b_w - 0.618 \cdot L_w$. IF $f(w_1) < f(w_2)$ THEN		
	$a_w = w_2$. ELSE $b_w = w_1$. Actualizar $L_w = b_w - a_w$.		
Paso 3	IF $ L_w < \epsilon$ THEN TERMINAR. ELSE incrementar k y volver al Paso 2.		
6 Método de estimaciones cuadráticas sucesivas			
Paso 1	Elegir punto inicial x_1 y paso Δ , además de las tolerancias $TOL1$ y $TOL2$.		
	Calcular $x_2 = x_1 + \Delta$.		
Paso 2	Evaluar $f(x_1)$ y $f(x_2)$.		
Paso 3	IF $f(x_1) > f(x_2)$ THEN $x_3 = x_1 + 2\Delta$. ELSE $x_3 = x_1 - \Delta$. Evaluar $f(x_3)$.		
Paso 4	Determinar $F_{min} = \min(f(x_1), f(x_2), f(x_3))$ y X_{min} asociado a F_{min} .		
Paso 5	Calcular \bar{x} con interpolación cuadrática.		
Paso 6	IF $ F_{min} - f(\bar{x}) \leq TOL1$ AND $ X_{min} - \bar{x} \leq TOL2$, TERMINAR. ELSE		
	continuar al Paso 7.		
Paso 7	Almacenar el mejor punto $(X_{min} \circ \bar{x})$ y re-etiquetar puntos. tomando en cuenta:		
	$x_1 < x_2 < x_3$. GOTO Paso 4.		
7 Método de búsqueda de Newton-Raphson			
Paso 1	Proporcionar el punto inicial x_1 , una tolerancia ϵ e iniciar $k=1$. Calcular		
D 2	$f'(x_1)$.		
Paso 2	Calcular $f''(x_k)$.		
Paso 3	Calcular $x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$. Recalcular $f'(x_{k+1})$ IF $ f'(x_{k+1}) \le \epsilon$ THEN TERMINAR. ELSE incrementar $k = k+1$ y volver al		
Paso 4	$ \text{IF } f'(x_{k+1}) \leq \epsilon \text{ THEN TERMINAR. } \text{ELSE incrementar } k=k+1 \text{ y volver al}$		
	Paso 2.		

Table 1: Pasos de los métodos de optimización