Prsteni i polja

October 25, 2021

Neka je R neprazan skup, a +i binarne operacija skupa R. Uređena trojka $(R,+,\cdot)$ je **prsten** ako je sko mrvy cosupane v untoncente

- 1. (R, +) komutativna grupa,
- 2. (R, \cdot) polugrupa (asocijativan grupoid),
- 3. operacija je distributivna u odnosu na operaciju +, tj. za svako $x,y,z\in R$ važi

leva distributivnost:
$$x \cdot (y + z) = x \cdot y + x \cdot z$$
,
desna distributivnost: $(y + z) \cdot x = y \cdot x + z \cdot x$.

Napomena: Ako je operacija · komutativna dovoljno je proveriti samo jednu, npr. levu distributivnost jer iz nje i komutativnosti sledi i desna distributivnost. Inače se moraju proveravati obe distributivnosti.

Neutralni element operacije +, ako postoji, naziva se nula prstena i obično se označava sa 0, a neutralni element operacije \cdot , ako postoji, naziva se jedinica prstena i obično se označava sa 1.

```
(A,×,0)

| (A, (A, (a)) | (A, (a
```

Prsten $(R, +, \cdot)$ je:

- prsten sa jedinicom ako postoji neutralni elemenat multiplikativne operacije ·;
- **komutativan prsten** ako je operacija · komutativna;
- domen integriteta ako je komutativan prsten sa jedinicom (koja mora biti različita od nule prstena) u kome ne postoje delitelji nule, tj. u kome važi

$$a \cdot b = 0 \implies a = 0 \lor b = 0$$
 ili $a \neq 0 \land b \neq 0 \implies a \cdot b \neq 0$.

Polje ako je $(R \setminus \{0\}, \cdot)$ komutativna grupa. Typo opcioette

Svako polje je domen integriteta.

Svaki konačan domen integriteta je polje, ali za beskonačne to ne mora da važi.

 $(\ell, \emptyset, \mathcal{O})$ U prstenu (R, \oplus, \mathcal{O}) za sve $a, b \in R$ važi:

► $a \odot 0 = 0 \odot a = 0$;

 $(-a) \odot b = a \odot (-b) = -(a \odot b);$

 $(-a) \widehat{\bigcirc} (-b) = a \widehat{\bigcirc} b.$

+ tyle cosyponel

· Huge MADACCABE

p Heywhort evenerus 70 overeur py +

huse Stop O

(-a)-ozhako zo whoepznu ekhenaut nog a 20 ovepoujusz +

(A+1.) , A=136 16e2 = 10,±3,±6,±9,±12, -- { I DA 11 DE (Att.) PESTEN? W (ATT.) Keuse apriver (1) (A+) ARELOVA GLUPA? (2) (A,·) POLYGRUPA? 1) (A. ·) -ZATIORAIDAT THE KILL EN X(X+5)=x7+x5 1° (A+) - PATVORENOST? W XEA => X=36, keR 2,(A,) ASOUDATIVNOST) (2+5) x= 1/4 x+5 x 2° (AX) KSOYDKTVUDST ? W 30+3b=0 ? 3° (A+) LEVI NEUTRARNI EZ?. W >> X,y∈A => X=3kn, y=3k2, k,ke,e7 Cour je orwans 4° (A+) LEVI INVERSON OL? W X.y =34.362=3(5k.k.)EA T" [AX) KOMUTAT VNOST ? W -36 =3 (-6) EA 9 XyeA =) X=3kn y3kz, kn,kzEZ X+y = 3 kn+3 k2 = 3. (kn+k2) EA I DA- U DE (A,+,·) DOMEN WITEGENETA? 0EA?. 0=3.0CA XEA => X=3k, ke7 3, x.y=0 => x=0 1 4=0 (AH,) NIDE DI 1= 3. 6, BER 0+x=0+36=36=X

DA 4 x (A,t,0) POYE? NIK Jup svalno polge Word bot DI Prsten (polje) $\mathcal{R}_1=(R_1,+,\cdot)$ je **potprsten (potpolje**) prstena (polja) $\mathcal{R}=(R,+,\cdot)$ ako je R_1 neprazan podskup od R, a operacije + i \cdot iz R_1 su restrikcije operacija + i \cdot iz R.

Neka su $\mathcal{R}_1 = (R_1, +_1)$ i $\mathcal{R}_2 = (R_2, +_2)$ prsteni (polja). Funkcija $f: R_1 \longrightarrow R_2$ je **homomorfizam** iz \mathcal{R}_1 u \mathcal{R}_2 ako za sve $x, y \in R_1$ važi

$$f(x +_1 y) = f(x) +_2 f(y)$$
 i $f(x \cdot_1 y) = f(x) \cdot_2 f(y)$.

Ako je funkcija f još i bijekcija, tada se ona naziva **izomorfizam**.

$$0 \neq H \in Q$$

$$(H'o) - duhorg$$

$$(Q' *) - duhorg$$