Lecture 13: Newton's 3rd Law of Motion

Warm-Up Activity

Which of the following statements, if any, are true about Newton's 3rd law pairs?

- (A) They appear on different free-body diagrams.
- (B) They are the same type of force.
- (C) They appear on the same free-body diagram.
- (D) $\vec{F}_{AB}^t = -\vec{F}_{AB}^t$

Feedback Question

Do you prefer feedback through documents uploaded to Canvas, or through Gradescope (as was done on the quizzes)?

- (A) PDFs on Canvas
- (B) Comments in Gradescope

Newton's 3rd Law of Motion

• If A exerts a force on B, then B exerts a force of the same magnitude on A in the opposite direction:

$$\vec{F}_{AB}^t = -\vec{F}_{BA}^t$$

- These two forces make a Newton's 3rd law pair, or an action-reaction pair.
- 3rd law pair forces...
 - are the same type of force;
 - appear on different free body diagrams.

Spring Forces

- Many objects resist changes in physical configuration (*i.e.* deformations).
- For small deformations, we can model the object as a spring.
- The forces caused by springs obey Hooke's law: $\vec{F}^S = -k(\vec{x} \vec{x}_{eq})$.
 - $-\Delta \vec{x} = (\vec{x} \vec{x}_{eq})$ is displacement from equilibrium.
 - -k is the spring constant.
 - What does the negative sign mean?

Types of Forces

$$\vec{F}_{AB}^g = m_A \vec{g}_B$$

- Newtonian
$$\vec{g}_B = G_{r^2}^{M_B}(-\hat{r}), G = 6.67408 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$$

- Near-Earth
$$\vec{g}_E = g(-\hat{y}), \ g = 9.81 \frac{m}{s^2} \approx 10 \frac{m}{s^2}$$

• Normal
$$\vec{F}^N$$
 always \perp ; varies in magnitude

• Tension
$$\vec{F}^T$$
 uniform (massless, inextensible rope)

• Spring
$$\vec{F}^S = -k(\vec{x} - \vec{x}_{eq})$$

• Friction

- Static Friction $F^{sf} \leq \mu_s |\vec{F}^N|$
- Kinetic Friction $F^{kf} = \mu_k |\vec{F}^N|$

Not Forces

- Momentum
- Inertia
- Velocity
- Acceleration

A*R*C*S: Uh-Oh Dr. Paws

In the video in Section 3.16 of our textbook, Paul pushes a footstool (mass m_1) across the floor with a constant force so that the footstool speeds up. Dr. Paws (a dog with mass m_2) is sitting on the footstool. The coefficient of static friction between the dog and the footstool is μ (assume no friction between the footstool and the ground). How much force can Paul exert on the footstool before the dog begins sliding?

L13-1: Uh-Oh Dr. Paws – Analyze and Represent

(1a) Understand the Problem

- Mass of the footstool: $m_1 = 10 \text{ kg}$
- Mass of the dog: $m_2 = 30 \text{ kg}$
- Gravity: $g = 10 \text{ m/s}^2$
- Coefficient of static friction: $\mu = 0.4$

(1b) Identify Assumptions

- Near-Earth
- Particle model
- Neglect air-resistance
- Dr. Paws doesn't move.

$\vec{F}_{DS}^{N} \downarrow \qquad \vec{F}_{DS}^{sf} \qquad y \qquad \downarrow \vec{F}_{SG}^{N} \qquad \vec{F}_{SD}^{N} \qquad \vec{F}_{SP}^{N} \qquad \vec{F}_{SD}^{N} \qquad \vec{F}_{SE}^{N} \qquad \vec{F}_{SE}^{N}$

(1c) Represent Physically

- Why are the assumptions reasonable?
- Identify any problems with these free body diagrams.
- Identify the third-law pairs.

L13-2: Uh-Oh Dr. Paws – Sensemake

You have three friends who each come up with a different equation for the maximum allowable force that Paul can apply:

(A)
$$F_{SP}^N = \mu \frac{m_1}{m_1 + m_2} g$$

(B)
$$F_{SP}^N = \mu (m_2 - m_1)g$$

(C)
$$F_{SP}^N = \mu \frac{m_1 m_2}{m_1 + m_2} g$$

Which of the above equations, if any, are correct? How can you tell?

Uh-Oh Dr. Paws - Calculate

(2a) Represent Principles

$$\vec{F}^{net} = m\vec{a}$$
 $\vec{F}_{AB} = -\vec{F}_{BA}$ $F^{sf} \le \mu F^N$ $\vec{F}^g = m\vec{g}$

(2b) Solve Symbolically

$$\underline{\text{Dog}} \qquad \underline{\text{Stool}}
m_2 a = F_x^{net} = F_{DS}^{sf} \qquad F_x^{net} = m_1 a
0 = F_y^{net} = F_{DS}^N - F_{DE}^g \qquad F_{SP}^N - F_{SD}^{sf} = m_1 a
F_{DS}^N = m_2 g \qquad F_{SP}^N = m_1 a + F_{SD}^{sf} = m_1 a + F_{DS}^{sf}
F_{SP}^N = m_1 a + m_2 a = (m_1 + m_2) a$$

 $F_{SD}^{N} < (m_1 + m_2)\mu q$

$$a \le \mu g$$
 (2c) Plug in Numbers

 $m_2 a \leq \mu m_2 g$

 $F_{DS}^{sf} \le \mu F_{DS}^{N} = \mu m_2 q$

$$F_{SP}^{N} \le (m_1 + m_2)\mu g$$

= $(10 \text{ kg} + 30 \text{ kg})(0.4) \left(10\frac{\text{m}}{\text{s}^2}\right)$
= 160 N

A Model for Interactions

- Quantities
 - Mass m Force \vec{F}
- Laws
 - Net force is proportional to acceleration:

 $\vec{F}^{net} = m\vec{a}$

- Forces come in pairs: $\vec{F}_{AB} = -\vec{F}_{BA}$
- Assumptions
 - We can treat multiple objects as a system.
 - All forces act as if on the center of the system.

• Diagram

Solving Problems Using Forces

- Identify a system.
- Identify the (external) forces acting on the system.
 - Draw a free-body diagram.
- Identify the acceleration (**not a force**).
 - Static/dynamic equilibrium (acceleration = 0)
 - Dynamics (acceleration not 0)
- Use the laws of motion.
- Reflect on your answer (check units and evaluate special cases).

Main Ideas

• Newton's 3rd law of motion can be used to relate the forces acting on different objects or systems.