Cost estimation with COCOMO II

Art	icle · N	November 2002
CITATIONS		READS
15		6,931
1 a	uthor	
1		Barry Boehm
		University of Southern California
		373 PUBLICATIONS 21,026 CITATIONS
		SEE PROFILE
Sor	me of	the authors of this publication are also working on these related projects:
	Project	Systems Quality Ontology, Tradespace, and Affordability View project
-	rioject	Systems Quanty Ontology, tradespace, and Anordability view project

Cost Estimation with COCOMO II

Barry Boehm

CS 577a, Fall 2002

October 14, 2002

(boehm@sunset.usc.edu)

(http://sunset.usc.edu)

Outline

- Model Overview
 - Sizing, Reuse, and Scale Factors
 - Effort Multipliers
 - Other Features
- Example of Use: Demo
- Model Reinterpretation for CS 577

COCOMO II Overview

Relations to MBASE*/Rational Anchor Point Milestones

*MBASE: Model-Based (System) Architecting and Software Engineering

Early Design and Post-Arch Model

• Effort:

$$PM_{estimated} = A \times (Size)^{(SF)} \times \left[\prod_{i} EM_{i}\right]$$

- Size
 - KSLOC (Thousands of Source Lines of Code)
 - UFP (Unadjusted Function Points) * KSLOC/UFP
 - KSLOC/UFP factor varies by language
 - EKSLOC (Equivalent KSLOC) used for adaptation
- SF: Scale Factors (5)
- EM: Effort Multipliers (7 for ED, 17 for PA)

Scaling Exponent Approach

- Nominal person-months = A*(size)**B
- B = 0.91 + 0.01 Σ (exponent driver ratings)
 - B ranges from 0.91 to 1.23
 - 5 drivers; 6 rating levels each
- Exponent drivers:
 - Precedentedness
 - Development flexibility
 - Architecture/ risk resolution
 - Team cohesion
 - Process maturity (derived from SEI CMM)

Project Scale Factors

$$PM_{estimated} = 3.67 \times (Size)^{(SF)} \times \left[\prod EM_{i} \right]$$

$$SF = 0.91 + 0.01 \times \sum w_i$$

Scale Factors (W)	Very Low	Low	Nominal	High	Very High	Extra High					
PREC	thoroughly unprecedented	largely unprecedented	somewhat unprecedented	generally familiar	largely familiar	throughly familiar					
FLEX	rigorous	occasional relaxation	some relaxation	general conformity	some conformity	general goals					
RESL	little (20%)	some (40%)	often (60%)	generally (75%)	mostly (90%)	full (100%)					
TEAM	very difficult interactions	some difficult interactions	basically cooperative interactions	largely cooperative	highly cooperative	seamless interactions					
PMAT	weighted sum of 18	KPA achievement I	evels			weighted sum of 18 KPA achievement levels					

Nonlinear Reuse Effects

Reuse and Reengineering Effects

- Add Assessment & Assimilation increment (AA)
 - Similar to conversion planning increment
- Add software understanding increment (SU)
 - To cover nonlinear software understanding effects
 - Coupled with software unfamiliarity level (UNFM)
 - Apply only if reused software is modified
- Results in revised Equivalent Source Lines of Code (ESLOC)
 - -AAF = 0.4(DM) + 0.3(CM) + 0.3(IM)
 - ESLOC = ASLOC[AA+AAF(1+0.02(SU)(UNFM))], AAF \leq 0.5
 - ESLOC = ASLOC[AA+AAF(SU)(UNFM))], AAF > 0.5

Software Understanding Rating / Increment

	Very Low	Low	Nom	High	Very High
Structure	Very low	Moderately low	Reasonably	High cohesion,	Strong
	cohesion, high	cohesion, high	well -	low coupling.	modularity,
	coupling,	coupling.	structured;		information
	spaghetti code.		some weak		hiding in
			areas.		data/control
					structures.
Application	No match	Some	Moderate	Good	Clear match
Clarity	between	correlation	correlation	correlation	between
	program and	between	between	between	program and
	application	program and	program and	program and	application
	world views.	application.	application .	application .	world views.
Self -	Obscure code;	Some code	Moderate level	Good code	Self -
Descriptiveness	documentation	commentary and	of code	commentary	descriptive
	missing,	headers; some	commentary,	and headers;	code;
	obscure or	useful	headers,	useful	documentation
	obsolete.	documentation.	documentation.	documentation;	up-to-date,
				some weak	well-organized,
				areas.	with design
					rationale.
SU Increment to	50	40	30	20	10
ESLOC					

Other Major COCOMO II Changes

- Range versus point estimates
- Requirements Volatility (Evolution) included in Size
- Multiplicative cost driver changes
 - Product CD's
 - Platform CD's
 - Personnel CD's
 - Project CD's
- Maintenance model includes SU, UNFM factors from reuse model
 - Applied to subset of legacy code undergoing change

Post-Architecture EMs - Product:

	Very Low	Low		Nominal	High	Very High	Extra High
Required	slight incon -	low, easily		moderate,	high financial	risk to human	
Reliability	venience	recoverable		easily	loss	life	
(RELY)		losses		recoverable			
	EM = .82		.92	losses 1.0	1.10	1.26	
Database		DB bytes/		10 < D/P < 100	100 < D/P <	D/P > 1000	
Size		Pgm SLOC<			1000		
(DATA)		10 .90 1.0		1.14 1.28			
Complexity	see Complexity Table						
(CPLX)					ī-		
Required		none		across	across	across	across
Reuse (RUSE)				project	program	product line	multiple
							product lines
Documentation	Many life -	Some life -		Right-sized	Excessive for	Very	
Match to	cycle needs	cycle needs		to life-cycle	life-cycle	excessive for	
Lifecycle	uncovered	uncovered		needs	needs	life-cycle	
(DOCU)						needs	

Post-Architecture Complexity:

	Control Operations	Computation al Operations	Device - dependent Operations	Data Management Operations	User Interface Management Operations
Very Low	•••	•••	•••	•••	•••
Low	•••	•••	•••	•••	•••
Nominal	Mostly simple nest ing. Some intermod ule control. Decision tables. Simple call backs or message passing, including middleware-sup ported distributed processing.	Use of standard math and statistical routines. Basic matrix/vector operations.	I/O processing includes device selection, status checking and error processing.	Multi-file input and single file output. Simple structural changes, simple edits. Complex COTS-DB queries, updates.	Simple use of widget set.
High	•••	•••	•••	•••	•••
Very High	•••	•••	•••	•••	•••
Extra High	•••	•••	•••	•••	•••

Post-Architecture EMs - Platform:

	Very Low	Low	Nominal	High	Very High	Extra High
Execution			\leq 50% use of	70%	85%	95%
Time			available			
Constraint			execution			
(TIME)			time			
Main			$\leq 50\%$ use of	70%	85%	95%
Storage			available			
Constraint			storage			
(STOR)						
Platform		major change	major: 6 mo.;	major: 2 mo.;	major: 2 wk.;	
Volatility		every 12 mo.;	minor: 2 wk.	minor: 1 wk.	minor: 2 days	
(PVOL)		minor change				
		every 1 mo.				

Post-Architecture Ems- Personnel:

	Very Low	Low	Nominal	High	Very High	Extra High
Analyst Capability (ACAP)	15th percentile	35th percentile	55th percentile	75th percentile	90th percentile	
Programmer Capability (PCAP)	15th percentile	35th percentile	55th percentile	75th percentile	90th percentile	
Personnel Continuity (PCON)	48%/year	24%/year	12%/year	6%/year	3%/year	
Application Experience (AEXP)	< 2 months	6 months	1 year	3 years	6 years	
Platform Experience (PEXP)	< 2 months	6 months	1 year	3 years	6 years	
Language and Tool Experience (LTEX)	< 2 months	6 months	1 year	3 years	6 years	

Post-Architecture EMs - Project:

	Very Low	Low	Nominal	High	Very High	Extra High
Use of	edit, code,	simple,	basic	strong,	strong, mature,	
Software	debug	frontend,	lifecycle	mature	proactive	
Tools (TOOL)		backend	tools,	lifecycle	lifecycle tools,	
		CASE, little	moderately	tools,	well integrated	
		integration	integrated	moderately	with processes,	
				integrated	methods, reuse	
Multisite	International	Multi-city	Multi-city or	Same city or	Same building	Fully
Development:		and Multi -	Multi -	metro. area	or complex	collocated
Collocation		company	company			
(SITE)						
Multisite	Some phone,	Individual	Narrowband	Wideband	Wideband elect.	Interactive
Development:	mail	phone, FAX	email	electronic	comm,	multimedia
Communicati				communica -	occasional	
ons (SITE)				tion	video conf.	
Required	75% of	85%	100%	130%	160%	
Development	nominal					
Schedule						
(SCED)						

Early Design vs. Post-Arch EMs:

Early Design Cost Driver	Counterpart Combined Post - Architecture Cost Drivers		
Product Reliability and Complexity	RELY, DATA, CPLX, DOCU		
Required Reuse	RUSE		
Platform Difficulty	TIME, STOR, PVOL		
Personnel Capability	ACAP, PCAP, PCON		
Personnel Experience	AEXP, PEXP, LTEX		
Facilities	TOOL, SITE		
Schedule	SCED		

Other Model Refinements

Initial Schedule Estimation

$$TDEV = \left[3.67 \times \left(\overline{PM}\right)^{\left[0.28 + 0.2 \times (B - 0.91)\right]}\right] \times \frac{SCED \%}{100}$$

where \overline{PM} = estimated person months excluding Schedule multiplier effects

Output Ranges

Stage	Optimistic Estimate	Pessimistic Estimate
Application Composition	0.50 E	2.0 E
Early Design	0.67 E	1.5 E
Post-Architecture	0.80 E	1.25 E

- 80% confidence limits: 10% of time each below Optimistic, above Pessimistic
- Reflect sources of uncertainty in model inputs

Outline

- Model Overview
 - -Sizing, Reuse, and Scale Factors
 - -Effort Multipliers
 - -Other Features

- Example of Use: Demo
- Model Reinterpretation for CS 577

Example of Use: Demo

- Estimate effort and schedule to build USC COCOMO II
- Show sensitivity analysis capabilities
- Use as example of Fast Function Point sizing
 - Best sizing method for CS 577 projects

Fast Function Point Sizing

- Count number of files of different types
 - File: grouping of data elements handled similarly by software
 - External Input EI: files entering software system
 - External Output EO: files exiting software system
 - Internal Logical IL: internal files used by software system
 - External Interface EIF: files passed/shared between software systems
 - External Query EQ: input and immediate output response
- Use Average complexity weights for all files
 - FP = 4 * EI + 5 * EO + 10 * IL + 7 * EIF + 4 * EQ
- USC COCOMO II FP = 4(12) + 5(7) + 10(7) + 0 + 0 = 153
 - Java, C++ SLOC = 153(50) = 7650 SLOC
 - HTML, Power Builder = 153(20) = 3060 SLOC
 - Can use averages for mixes of languages

Outline

- Model Overview
 - -Sizing, Reuse, and Scale Factors
 - -Effort Multipliers
 - -Other Features
- Example of Use: Demo

•Model Reinterpretation for CS 577

Using COCOMO II in CS 577

- Begin with COCOMO II estimate
 - Using Fast Function Point sizing
 - Using adjustments to CS 577 below
 - Focus on 577b Construction phase
- Cross-check with bottom-up team estimate
 - Source lines of code (SLOC)
 - Effort by activity, rough 577b milestone plan
- Adjust, try to reconcile both estimates

COCOMO II Estimates for 577b

- Disregard COCOMO II schedule estimates
- Use COCOMO II effort estimates to determine how large a team needed for 12-week fixed schedule
 - Assuming 12 hours/week of dedicated effort per person
 - Assuming 10 of the 12 weeks fill COCOMO II Construction phase (72% of total effort estimate)
 - Assuming 100 hours/person-month for COCOMO estimates
- For 577b Construction phase, these are equivalent:
 - 1 577b team member effort = (10 weeks)(12 hours/week) = 120 hours
 - 1.67*[estimated COCOMO II person month] = (1.67)(100 hours)(0.72) = 120 hours
- So, COCOMO II estimated 577b team size = 1.67*[estimated COCOMO II person months]
- Ideal COCOMO II estimate = (5 team members)(1.67) = 8.33PM