1. Description of the language recognized by the DFA:

The DFA recognizes an initial 0 or 1, then either two sequential characters of the opposite character as the initial character or one of the same, and finally any number of trailing 0's and 1's.

A regular expression that corresponds to this DFA is: (011|00|100|11)([01]*)

- 2. See Figure.
- 3. All strings in which ai occurs an even number of times for some $i \in \{1, 2, 3\}$.

I interpret that this means we want all strings for which there is at least 1 character in {1,2,3} that occurs an even number of times.

See Figure.

- 4. Write regular expressions for the following languages over the alphabet $\Sigma = \{0, 1\}$:
 - (a) All strings that contain at least one 0 and at least one 1 and that also end with at least two 1s.

(1*)0([01]*)11 note the two 1s at the end satisfy the "at least one 1" requirement

(b) All strings that do not begin with 01.

00([01]*)|0([01]*)

(c) All strings that contain an odd number of 1s.

(0*) 1 ((0*)1(0*)1)*

5. See Figure.

6.

aa(b*)

b+ (that is, at least one sequential b)

5.a. After naming the states in the given NFA:

5.b. The language of the regular expression (0 + 01)* 1*

