Radio luminosity functions with Radio Galaxy Zoo and machine learning

Matthew Alger (ANU/Data61)

O. Ivy Wong (ICRAR/ŪWA) Cheng Soon Ong (Data61/ANU) Naomi McClure-Griffiths (ANU)

Slides: http://www.mso.anu.edu.au/~alger/ml-projects-18

Radio luminosity functions

- Comoving density of radio sources as a function of radio luminosity
 - Units of mag⁻¹ Mpc⁻³
 - Comoving density accounts for universe size and shape over cosmic time
 - Distribution of radio source luminosities in a physically meaningful way
- Fractional radio luminosity functions
 - Luminosity function of a subset of sources
 - Luminosity distribution of physically-selected subsets may be different
 - Helps understand evolution and structure of radio galaxies

Radio luminosity function divided into radio due to star formation and radio due to active galactic nuclei.

Image: Mauch & Sadler (2007)

Radio Galaxy Zoo

FIRST (radio)

WISE (infrared)

Radio Galaxy Zoo

Zooniverse ID (3)	RA (4)	Declination (5)	N _{votes} (6)	N_{total} (7)	(8)
ARG000255v	251.679244	23.382107	41	42	0.98
ARG000255x	163.799660	23.384972	58	58	1.00
ARG000255y	138.960429	23.381641	43	43	1.00
ARG000255z	126.215156	23.381729	35	35	1.00
ARG0002560	149.273620	23.381661	40	40	1.00
A D C 000 2561	167 047509	22 281620	2.4	25	0.07

Radio Galaxy Zoo cross-identification catalogue

Cross-identification as binary classification

- Cross-identification
 - Match radio emission to infrared host galaxies
 - Output of Radio Galaxy Zoo
- Can be cast as binary classification
 - Binary classification is well-understood
 - Lots of off-the-shelf classification models
 - Easy to train
- **Problems:**
 - Converting cross-identification catalogues to binary labels loses information
 - Unclear how uncertainties in this formulation are related to dataset or physical uncertainties

 $\mathbf{f}:\mathbb{R}^{\mathrm{d}} \to \mathbb{R}$

 $xid: Radio \rightarrow IR$ xid(r) = argmax f(i; r) $i \in IR$ objects

 Assign hosts positive labels

- Assign hosts positive labels
- Assign everything else negative labels

- Assign hosts positive labels
- Assign everything else negative labels
- Train classifier to identify host and not host classes

- Assign hosts positive labels
- Assign everything else negative labels
- Train classifier to identify host and not host classes

 $\begin{array}{c} xid: Radio \rightarrow IR \\ xid(r) = \underset{i \in IR \ objects}{objects} \\ \end{array}$

Binary classification model

- ResNet-18 (multiclass)
 - Good accuracy
 - Low complexity
 - Very fast to train and use
- Remove last layer and replace with a binary classifier
- Add non-image features
 - Mid-infrared colours
 - 3.4 µm flux
 - Room for improvement e.g. add redshifts

Trade-offs between network complexity and accuracy on ImageNet.

Image: Canziani et al. (2016)

Binary classification model

Luminosity function

- RG7-Fx contains 214 214 cross-identified radio sources with 26 268 redshifts
 - >4x more sources than RGZ
 - >2x more sources with redshifts than RGZ
- Large sample allows us to build a radio luminosity function of extended sources
 - Luminosities up to 10²⁶ W/Hz
 - Close match to Mauch and Sadler (2007) radio AGN luminosity function

Radio Galaxy Zoo: radio luminosity functions of extended sources

M. J. Alger^{1,2*} et al.

ronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia

Fractional luminosity function (Mid-IR)

- Divide radio luminosity function based on mid-infrared host colours
 - "Extended" starforming sources below 10²³ W/Hz (manually verified)

 Radio-loud sources dominated by "intermediate" galaxies

Fractional luminosity function (Mid-IR)

- Divide radio luminosity function based on mid-infrared host colours
 - "Extended" starforming sources below 10²³ W/Hz (manually verified)
 - Radio-loud sources dominated by "intermediate" galaxies

