

ПРИЗНАКОВАЯ МОДЕЛЬ ТЕКСТА КЛАССИФИКАЦИЯ И КЛАСТЕРИЗАЦИЯ ТЕКСТОВ

Большакова Елена Игоревна

СОДЕРЖАНИЕ

- 1. Признаковая модель текста:
 - Типы признаков, модель «мешок слов»
 - ▶ Веса признаков, показатель *TF-IDF*
- 2. Признаковая модель в задачах классификации
 - Постановка задачи
 - > Методы классификации текстов коллекции
 - > Оценки качества классификации, приложения
- 3. Признаковая модель в задачах кластеризации
 - Постановка задачи, методы
 - Алгоритм k-средних
 - Иерархическая кластеризация
 - > Оценки качества кластеризации, приложения
- 4. Заключение и Домашнее задание № 2

ПРИЗНАКОВАЯ МОДЕЛЬ ТЕКСТА

 Для решения многих прикладных задач КЛ не нужна модель всего языка, достаточно модели обрабатываемого текста

- Модель текста абстрактное представление его содержания и формы, свободное от несущественных деталей
- Модель позволяет сравнивать тексты друг с другом и единообразно обрабатывать их коллекции (наборы)
- Такие модели появились в 60-70 гг. в связи с задачами информационного поиска
- Наиболее распространена и практически значима признаковая модель:

текст – неупорядоченный набор (множество) информационных признаков (features)

ТИПЫ ПРИЗНАКОВ

Информационные признаки текста

- Лексические
 - слова (terms): обычно значимые, не служебные, реже – словосочетания
 - N-граммы (шинглы)
- Статистические признаки текста, в том числе учитывающие лингвистическую информацию:
 - доля различных частей речи в тексте
 - доля сложных предложений
 - средняя длина слова/предложения и т.д.
- Экстралингвистические признаки:
 - тип документа, автор, заголовок
 - дата публикации, источник информации
 - гиперссылки и пр.

ПРИЗНАКОВАЯ МОДЕЛЬ КОЛЛЕКЦИИ ТЕКСТОВ

Пусть имеется N текстов

Каждый текст (документ) – набор признаков:

$$d_{j} = (w_{j1}, ..., w_{jm})$$
 , где

 w_{ji} – вес i-ого признака в j-ом тексте d_j

т — число учитываемых признаков в текстах

- Не учитываются связи признаков
- * Вес может отображать только наличие или отсутствие признака ($w_{ii} = 0$ или 1)
- ❖ Текст можно рассматривать как вектор в
 m-мерном пространстве,
 а коллекцию как набор векторов

ПРИЗНАКОВАЯ МОДЕЛЬ: «МЕШОК СЛОВ»

Очень частый, но <u>частный случай</u> признаковой модели: «мешок слов» (*bag-of-words, BOW*),

термин употребил впервые Z.Harris, 1954 г.

- ◆ Признаки слова текста (terms)
- Модель описывает (грубо) содержание текста
- Обычно не учитываются:
 - грамматические формы слов
 - порядок слов в тексте
 - синтаксические связи слов
- Вес признака: чаще всего частота употребления слова в тексте

«МЕШОК СЛОВ»: ПРИМЕР

1: Карл у Клары украл кораллы

2: Клара у Карла украла кларнет

3: Клара у Карла украла кораллы

4: Мал золотник, да дорог

Слова-признаки (леммы):

¹Карл, ²Клара, ³украсть, ⁴коралл, ⁵кларнет, ⁶малый, ⁷золотник, ⁸дорогой

Вес: присутствует признак в документе или нет

$$d_1 = (1, 1, 1, 1, 0, 0, 0, 0)$$

$$d_2=(1,1,1,0,1,0,0,0)$$

$$d_3=(1,1,1,1,0,0,0,0)$$

$$d_4 = (0,0,0,0,0,1,1,1)$$

ЗАДАНИЕ ВЕСОВ ПРИЗНАКОВ

В общем случае:

вес i-ого признака в j-ом тексте задается следующим образом:

$$w_{ji} = l_{ji} \; g_i \; n_j$$
 , где

 $oldsymbol{l_{ii}}$ – локальный вес признака в тексте

 $oldsymbol{g_i}$ – глобальный вес признака во всей коллекции текстов

 $oldsymbol{n_i}$ – нормирующий множитель для текста

Основой для задания весов обычно служит

 f_{ji} – частота (абсолютная или относительная) встречаемости i-ого признака в j-ом тексте

ЗАДАНИЕ ВЕСОВ ПРИЗНАКОВ: ВАРИАНТЫ

Пусть:
$$l_{ij} = f_{ji}$$

• Простая частота признака:

$$w_{ji}=f_{ji}$$
 , a $n_j=1$, $g_i=1$

• Простой косинус (нормализация по длине):

$$w_{ji} = \frac{f_{ji}}{\sqrt{\sum_{i=1}^{m} (f_{ji})^2}} \qquad n_j = \frac{1}{\sqrt{\sum_{i=1}^{m} (l_{ji}g_i)^2}}$$

Показатель TF-IDF (tf-idf)

ПОКАЗАТЕЛЬ IDF

Показатель *TF-IDF* опирается на предположение, что в коллекции частотные термины менее информативны, чем редкие, поэтому веса частотных признаков должны быть ниже, чем веса редких. Для этого вводятся:

• $df_i = N_i$ (document frequency) – число текстов, где есть i-ый признак (показатель его распространенности в коллекции, подокументная частотность)

Редкость признака в коллекции: нужна обратная величина

• idf_i (inverse document frequency) — оценка редкости i-го признака (N — число текстов в коллекции)

$$idf_i = \log(\frac{N}{df_i})$$

Логарифм служит для сглаживания больших величин

ПОКАЗАТЕЛЬ TF-IDF

Если
$$l_{ij}=f_{ji}=tf_{ji}$$
 (term frequency) $g_j=idf_i$, $idf_i=\log(rac{N}{df_i})$ $n_j=1$

$$w_{ji} = tf_{ji}idf_i = f_{ji}\log(\frac{N}{N_i})$$

Величина tf-idf возрастает

- > с увеличением числа вхождений термина в документ
- со снижением частоты термина во всей коллекции
- ❖ tf-idf иногда нормализуют

TF-IDF: ПРИМЕР

1: Мама мыла мылом раму

2: Мама мыла, мыла окно

3: В магазине мама купила мыло

df _i 3 2 2 1 1 1 1 idf _i 0 0,18 0,18 0,47 0,47 0,47 0,47 Документ 1 Документ 2 Документ 3 слово tf _{ji} TF-IDF слово tf _{ji} TF-IDF рама 1 0,47 окно 1 0,47 магазин 1 0,47 мыло 1 0,18 мыть 2 0,36 купить 1 0,47 мыть 1 0,18 мама 1 0 мыло 1 0,18 мама 1 0 мама 1 0 мама 1 0		IVI	ама	МЫІЬ	МЫЛС) P	ама	C	УКНО	Wai	азин	купить
Документ 1 Документ 2 Документ 3 слово	df_i		3	2	2		1		1		1	1
слово tf_{ji} TF-IDF слово tf_{ji} TF-IDF слово tf_{ji} TF-IDF рама 1 0,47 окно 1 0,47 магазин 1 0,47 мыло 1 0,18 мыть 2 0,36 купить 1 0,47 мыть 1 0,18 мама 1 0 мыло 1 0,18	idf_i		0	0,18	0,18	(),47	(0,47	0	,47	0,47
рама 1 0,47 окно 1 0,47 магазин 1 0,47 мыло 1 0,18 мыть 2 0,36 купить 1 0,47 мыть 1 0,18 мама 1 0 мыло 1 0,18	Документ 1				Документ 2				Документ 3			
мыло 1 0,18 мыть 2 0,36 купить 1 0,47 мыть 1 0,18 мама 1 0 мыло 1 0,18	СЛО	во	tf_{ji}	TF-IDF	слово	tf_{ji}	TF-IC)F	сло	ВО	tf_{ji}	TF-IDF
мыть 1 0,18 мама 1 0 мыло 1 0,18	рама	а	1	0,47	ОКНО	1	0,47	7	магаз	ин	1	0,47
· · · · · · · · · · · · · · · · · · ·	МЫЛ	10	1	0,18	МЫТЬ	2	0,36	6	купить		1	0,47
мама 1 0 мама 1 0	МЫТ	Ь	1	0,18	мама	1	0		мыло		1	0,18
12	мам	а	1	0					мама		1	

ДОСТОИНСТВА И НЕДОСТАТКИ ПРИЗНАКОВОЙ МОДЕЛИ

- + Простота модели
- Для векторов удобно вычислять меру близости (например, косинусную меру)
- В векторах много нулевых весов, т.к. в одном тексте редко встречаются сразу все признаки
- Много малоинформативных признаков тех, которые встречаются только в одном-двух или сразу во всех текстах

Необходимо уменьшать количество признаков

❖ Признаковая модель используется в задачах классификации и кластеризации документов

СОКРАЩЕНИЕ КОЛИЧЕСТВА ПРИЗНАКОВ

Уменьшение приводит к

- упрощению процедур, повышению их надежности и устойчивости
- обозримости пространства признаков,
 возможности его содержательного анализа

Используемые методы:

- Методы селекции: из исходного множества признаков отбираются наиболее полезные (feature engineering?)
- Методы трансформации: строятся новые признаки, являющиеся комбинацией исходных, например: признаки, заменяющие группы синонимичных слов

КЛАССИФИКАЦИЯ И КЛАСТЕРИЗАЦИЯ ТЕКСТОВЫХ ДОКУМЕНТОВ

Классификация (рубрицирование) – отнесение документа к <u>заранее известным</u> классам (рубрикам)

- классы: с заданными характеристиками, возможна иерархическая система классов
- часто текстовые документы классифицируют по их содержанию/теме

Кластеризация – разбиение заданного множества документов на подмножества (кластеры)

- характеристики, количество, структура кластеров заранее не заданы
- документы в кластерах похожи по смыслу/стилю/теме/структуре/...

КЛАССИФИКАЦИЯ И КЛАСТЕРИЗАЦИЯ: ОТЛИЧИЕ

Классификация: классы • • изначально предопределены

Кластеризация: кластеры не предопределены, ищем однородные группы

ПОДХОДЫ К РЕШЕНИЮ ЗАДАЧИ

- Ручной
- Полуавтоматический: написание экспертом правил «если …, то …» и их автоматическое применение
- Автоматический: машинное обучение

Подход	Достоинства	Недостатки			
Ручной	высокая точность	- дорого - медленно			
Полу- автоматический	приемлемая точность	трудоемкость создания и актуализации правил			
Автоматический	применения	- не всегда приемлемое качество - для классификации: ручная разметка обучающей выборки			

АВТОМАТИЧЕСКАЯ КЛАССИФИКАЦИЯ ПОСТАНОВКА ЗАДАЧИ

• Имеется множество классов/рубрик/категорий

$$C = \{c_1, ..., c_{|C|}\}$$

• Имеется множество документов

$$D = \{d_1, ..., d_{|D|}\}$$

• Есть неизвестная целевая функция

$$\Phi: D \times C \rightarrow \{0,1\}$$

• Необходимо построить классификатор Φ ', максимально близкий к Φ

$$\Phi': D \times C \rightarrow \{0,1\}$$
 – точный ответ

или
$$\Phi': D \times C \rightarrow [0,1]$$
 – степень подобия

КЛАССИФИКАЦИЯ: ОБУЧАЮЩИЕ ДАННЫЕ

- Обучение с учителем (supervised): Имеется множество D' вручную размеченных документов, для которых значения Φ известны
- При этом:
 - > либо документы отклассифицированы
 - либо для каждой рубрики есть множество положительных и отрицательных примеров
- Множество документов D' делят на две части:
 - обучающая D (для построения Φ')
 - тестовая (для проверки его работы)

<u>Предположение</u>:

обучающие и новые данные однородны

КЛАССИФИКАЦИЯ: ЭТАПЫ

- 1. Лингвистический и статистический анализ текстов коллекции, построение *образа* каждого документа,
 - т.е. <u>набора признаков</u>: $d_{j} = (d_{j1}, ..., d_{jm})$
 - где d_{ji} вес j-ого признака в i-ом документе $0 \le d_{ji} \le 1$, m количество различных признаков
 - Часто: признаком выступает значимое слово текста(*term*), а вес вычисляется по формуле *tf-idf*
- **2.** Построение (обучение) классификатора выбранным методом машинного обучения
 - методы на основе наборов признаков:
 Байесовский классификатор, Деревья решений
 - ❖ методы на основе векторов признаков : kNN, SVM
 - методы на основе нейронных сетей
- **3.** Оценка качества построенного классификатора (полнота, точность, F-мера) на тестовых наборах

БАЙЕСОВСКИЙ КЛАССИФИКАТОР

«Наивный Байес» для модели «мешок слов»

- Наивный: <u>предположение</u>, что слова (*terms*) не зависят друг от друга и от их позиций в тексте
- \succ Ищем наилучший класс c^* для документа d_i :

$$c^* = \operatorname*{argmax}_{c_j \in C} P(c_j \mid d_i) = \operatorname*{argmax}_{c_j \in C} P(c_j) P(d_i \mid c_j)$$
 где $c_j \in C$, $d_i \in D$,

 $P(c_j \, / \, d_i)$ – условная вероятность, что d_i окажется в c_j

- ightharpoonup Вычислить $P(c_j \mid d_i)$ напрямую невозможно, т.к. для этого обучающее множество должно содержать все возможные комбинации классов и документов
- Используем формулу Байеса и предположение

БАЙЕС: ПРАВИЛО КЛАССИФИКАЦИИ

Согласно предположению о независимости,

 $P(d_i \, / \, c_j)$ вычисляется как произведение вероятностей встретить слово-термин t_k в документах класса c_i

$$c *= \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{k=1}^{|T_{d_i}|} P(t_k \mid c_j)$$

Оценка вероятностей на обучающем множестве:

$$P(c_{j}) = \frac{|D_{c_{j}}|}{|D'|} \qquad P(t_{k} | c_{j}) = \frac{tf(t_{k}, c_{j})}{\sum_{i=1}^{m} tf(t_{i}, c_{j})}$$

 $T = \{t_I, ..., t_m\}$ — множество признаков всех документов T_{di} — множество слов-признаков в документе d_i D_{cj} — множество документов в классе c_j $tf(t_k, c_j)$ — частота признака t_k в документах класса c_j

БАЙЕСОВСКИЙ КЛАССИФИКАТОР: ПРИМЕР (2 КЛАССА)

	Термины (слова) в документе	c=«Китай»
d_1	китайский пекин китайский	С
d_2	китайский китайский шанхай	С
d_3	китайский макао	С
d_4	токио япония китайский	$\neg c$
d_5	китайский китайский	?
	токио япония	

Обучение: P(c) = 3/4, $P(\neg c) = 1/4$ P(китайский|c)=5/8, P(токио|c)=P(япония|c)=0 $P(китайский|\neg c)=P(токио|\neg c)=P(япония|\neg c)=1/3$

Применение: $P(d_5|c)=3/4*(5/8)^3*0*0=0$ $P(d_5|\neg c)=1/4*(1/3)^3*1/3*1/3*0,001$

Следовательно, $c^* = \neg c$ («не Китай»)

МЕТОД ДЕРЕВЬЕВ ПРИНЯТИЯ РЕШЕНИЙ

- Образ документа множество терминов-слов
- Строим дерево:
 - √ узлы термины документов
 - ✓ листья метки классов
 - ✓ на ребрах веса терминов

При обучении ищем термин, обладающий наибольшей различительной способностью – пытаемся максимизировать прирост информации

$$t^* = rgmax_{t_k \in T} I(D, t_k) = egin{array}{l} I - ext{ кол-во информации} \ E - ext{ энтропия} \ rgmax_{t_k \in T} (E(D, c) - (p(t_k)E(t_k, c) + p(\neg t_k)E(\neg t_k, c))) \end{array}$$

ДЕРЕВО РЕШЕНИЙ: ПРИМЕР

Обучение (вычисление характеристик): Исходная энтропия

$$E(D,c) = -p(c)\log_2 p(c) - p(\neg c)\log_2 p(\neg c) \approx 0.81$$
 $I(китайский) = 0$
 $I(пекин) = I(шанхай) = I(макао) = 0.12$
 $I(токио) = I(япония) = 0.81$

<u>Разделяющий термин</u>: *токио* или *япония*

Применение:

 d_5 содержит термин mокио

Следовательно, $c^* = \neg c$ («не Китай»)

МЕТОДЫ КЛАССИФИКАЦИИ: ДОКУМЕНТ КАК ВЕКТОР В ПРОСТРАНСТВЕ ПРИЗНАКОВ

 $d_{j} = (w_{jl}, \; ..., \; w_{jm})$, где w_{ji} – вес i-ого признака в j-ом документе

- Правительство
- Наука
- Искусство

КЛАССИФИКАЦИЯ НОВОГО ДОКУМЕНТА

Предположения:

- документы одного класса находятся в одной области пространства
- документы из разных классов находятся непересекающихся областях

Границы классов?

- Правительство
- Наука
- Искусство

ТЕМА ДОКУМЕНТА – ПРАВИТЕЛЬСТВО

КЛАССИФИКАЦИЯ: МЕТОД РОККИО

- Образ документа вектор признаков
- Метод ищет границы между классами как множества точек, равноудалённых от центроидов этих классов (предполагается, что классы имеют форму сфер)

Центроид класса- усреднённый вектор членов класса

$$\mu_{c_j} = \frac{1}{|D_{c_j}|} \sum_{i:d_i \in c_j} d_i$$

 $D_{\!c_j}$ — множество документов в классе $\,c_j$

• Правило классификации: поиск центроида (класса), к которому образ нового документа d ближе всего

$$c^* = \underset{c_j \in C}{\operatorname{argmin}} \left\| \mu_{c_j} - d \right\|$$

Хорошо работает со «сферическими» классами

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА РОККИО (1)

Классификация на 2 класса

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА РОККИО (2)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА РОККИО (3)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА РОККИО (4)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА РОККИО (5)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА РОККИО (6)

МЕТОД РОККИО: ПРИМЕР ПРИМЕНЕНИЯ

Обучение: вычисление центроидов c и $\neg c$ $d_5 = \{0, 0, 0, 0, 0.7, 0.7\}$ $(d_{ij} - \text{по формуле } \textit{tf-idf})$

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆
	китайский	пекин	шанхай	макао	япония	токио
μ_{c}	0	0,33	0,33	0,33	0	0
$\mu_{\neg c}$	0	0	0	0	0.7	0.7

Применение:

$$\|\mu_c - d_5\| = \sqrt{0 + 0.33^2 + 0.33^2 + 0.33^2 + 0.7^2 + 0.7^2} \gg 1.14$$

$$\|\mu_{\neg c} - d_5\| = \sqrt{0 + 0 + 0 + 0 + 0} = 0$$

Следовательно, $c^* = \neg c$ («не Китай»)

КЛАССИФИКАЦИЯ: МЕТОД *к*NN

kNN – k-nearest neighbors (ближайшие соседи)

- Предположение: документы одного класса образуют компактную область, причём области разных классов не пересекаются
- <u>Правило классификации</u>: новый документ относится к тому классу, который является наиболее распространённым среди *k* его ближайших соседей, классы которых известны
- Неплохо работает с несферическими классами

ПРИМЕР: Обучение – выбор *k* на основе опыта эксперта и имеющихся знаний о решаемой задаче

Применение, k=3:

$$||d_5 - d_1|| = ||d_5 - d_2|| = ||d_5 - d_3|| \approx 1.92$$
 $||d_5 - d_4|| = 0$

Следовательно, $c^* = \neg c$ («не Китай»)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА kNN, k=3 (1)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА kNN, k=3 (2)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА kNN, k=3 (3)

ИЛЛЮСТРАЦИЯ РАБОТЫ МЕТОДА kNN, k=3 (4)

МЕТОД ОПОРНЫХ ВЕКТОРОВ

Как правильно определить разделяющую поверхность (линию, гиперплоскость)?

Найти a, b, c, такие, что ax + by > c для красных ax + by < c для желтых

Решений бесконечно много, нужно искать оптимальное

ИДЕЯ МЕТОДА SVM

$$w \ d - b = 0$$
 , где w – перпендикуляр к гиперплоскости, b – константа

- Нас интересует оптимальное разделение:
 - берем гиперплоскости, параллельные оптимальной, и ближайшие к ним точки – опорные вектора (support vectors)
 - максимизируем расстояние между гиперплоскостью и опорными векторами

ОПТИМАЛЬНАЯ ГИПЕРПЛОСКОСТЬ

Параллельные гиперплоскости имеют вид:

$$w d - b = 1$$

$$w d - b = 1$$
 $w d - b = -1$

Нужно выбрать w и b такие, что:

- Между гиперплоскостями не лежат точки обучающей выборки
- Расстояние между ними максимально

Потребуем:
$$w \ d_i - b \geq 1$$
 для $d_i \in c$, $w \ d_i - b \leq -1$ для $d_i \in \neg c$

Расстояние: 2/||w||, т.е. нужно минимизировать w

Решение задачи минимизации – Решающее правило:

$$f(d) = sign(\sum_{i=1}^{n} \alpha_i m_i d_i * d - b)$$

 $\alpha_i \neq 0$ для опорных векторов

МЕТОД *SVM:* ПРИМЕР ПРИМЕНЕНИЯ

Обучение: получение значений $lpha_i$ и m_i

 $(\alpha_i$ получают из статистических программных пакетов)

$$\alpha_{1} \approx 0.31 \quad \alpha_{2} \approx 0.23 \quad \alpha_{3} \approx 0.23 \quad \alpha_{4} \approx 0.78$$

$$m_{1} = -1 \quad m_{2} = -1 \quad m_{3} = -1 \quad m_{4} = -1$$

$$d_{5} = (0, 0, 0, 0, 7, 0, 7)$$

$$w = \sum_{i=1}^{n} \alpha_{i} m_{i} d_{i} = (0, -0.31, -0.23, 0.23, 0.55, 0.55)$$

$$b = m_{i} - w d_{i} = -0.5$$

Применение (определение, к какой полуплоскости относится новый документ): $f(d_5) = -1$

Следовательно, $c^* = \neg c$ («не Китай»)

НЕЙРОННЫЕ СЕТИ ДЛЯ КЛАССИФИКАЦИИ ТЕКСТОВ

- НС различаются по архитектуре (сложности), для задачи классификации текстов коллекции – персептрон
- Многослойный персептрон:
 - входной слой нейронов + выходной + несколько промежуточных (скрытых)
 - обычно 1-4 промежуточных слоя, с уменьшающимся числом нейронов от входа к выходу
- Обучение НС состоит из нескольких эпох: каждая эпоха — это проход от (заданного) входа к выходу и обратно (от заданного выхода в входу) с целью минимизации несоответствия
- При проходе обычно применяется градиентный спуск для минимизации ошибки на обучающих примерах

НЕЙРОННАЯ СЕТЬ С ОДНИМ СКРЫТЫМ СЛОЕМ

Все признаки классифицируемого документа должны быть представлены <u>числами</u>, как и выходные данные

Полносвязный персептрон одним скрытым слоем:

КЛАССИФИКАЦИЯ НА БАЗЕ НС И ПРИЗНАКОВ ТЕКСТА

- <u>Входной слой НС</u> соответствует признакам документа (каждый нейрон очередной признак), т.е. на вход поступает числовой вектор признаков текста
 - ◆ часто входной слой строится на базе векторов слов (embeddings) из предсказательных языковых моделей
- Выходной слой НС соответствует выявленным классам,
 - ◆ обычно число нейронов количество классов
 - каждый нейрон выходного слоя, как правило, соответствует некоторому классу и дает
 - либо число 0 или 1: принадлежность текста к классу
 - либо число (0,1): вероятность принадлежности

ОСОБЕННОСТИ МЕТОДОВ ДЛЯ КЛАССИФИКАЦИИ

- Алгоритм «наивной» байесовской классификации устойчив к шуму и неоднородным данным (в отличие от алгоритма деревьев принятия решений)
- Алгоритм Роккио хорошо работает для классов, близких к сферическим
- Алгоритм k-ближайших соседей неплохо справляется с несферическими и несвязанными классами
- Алгоритм опорных векторов обычно используют для разбиения на два непересекающихся класса
- Нейронные сети могут по требовать достаточно большого объема обучающих данных
- Качество классификации может существенно различаться: 60-99%, метод подбирается к конкретной задаче

ОЦЕНКИ КАЧЕСТВА КЛАССИФИКАЦИИ

Поскольку обучающее множество может некорректно отражать реальные данные, необходимы оценки.

Основные показатели:

- Точность доля правильных решений (объектов класса) среди найденных объектов
- Полнота доля правильно найденных по отношению к общему числу объектов класса
- Ошибка доля ложных решений
- Аккуратность доля всех правильно принятых решений к общему числу решений

$$Precision = \frac{tp}{tp + fp}$$

$$Recall = \frac{tp}{tp + fn}$$

True negative rate =
$$\frac{tn}{tn + fp}$$

$$Accuracy = \frac{tp + tn}{tp + tn + fp + fn}$$

$$t$$
, f , p , n – $true$, $false$, $positive$, $negative$

КЛАССИФИКАЦИЯ: КОМБИНИРОВАННАЯ МЕРА

- Обычно чем лучше точность, тем хуже полнота и наоборот
- *F-мера* интегральный показатель
- Часто применяется сбалансированная, F1-мера — среднее гармоническое между полнотой и точностью: β =1 или α =1/2

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

$$F1 = \frac{2}{\frac{1}{P} + \frac{1}{P}} = \frac{2PR}{P + R}$$

• В графическом виде: *ROC-кривая* ошибок (для бинарной классификации) отображает соотношение между долей TP-объектов от общего числа объектов (*чувствительность*) и долей FP-объектов (1-FP, *специфичность* метода)

ОЦЕНКИ КАЧЕСТВА ДЛЯ НЕСКОЛЬКИХ КЛАССОВ

- Используются полнота, точность, F-мера, ошибка классификатора для каждого класса
- Если классов больше двух, то как объединять рассмотренные оценки для каждого класса?
- Используется
 - макроусреднение: составляются таблицы принятия решений для каждого класса по-отдельности, вычисляются меры, берется среднее по всем классам
 - микроусреднение: составляется <u>единая</u> таблица для всех классов, затем по этой таблице вычисляют меры

КЛАССИФИКАЦИЯ: ПРИКЛАДНЫЕ ЗАДАЧИ

- Упорядочивание набора документов
- Навигация по набору документов
 - составление интернет-каталогов
- Ограничение области поиска (в поисковых системах)
- Фильтрация потока документов:
 - фильтрация спама
- Персонализированный/тематический подбор информации:
 - контекстная реклама, новости и т.п.

АВТОМАТИЧЕСКАЯ КЛАСТЕРИЗАЦИЯ ПОСТАНОВКА ЗАДАЧИ

- Обучение без учителя (unsupervised)
- Имеется множество документов

$$D = \{d_1, ..., d_{|D|}\}$$

 Необходимо их разбить на подмножества – кластеры похожих документов

$$C = \{c_1, ..., c_{|C|}\}$$

- Алгоритм должен самостоятельно принимать решение о количестве и составе кластеров
- Используется понятие схожести документов
 - в идеале: семантическое сходство
 - на практике: документы вектора в пространстве признаков, важно расстояние между ними

МЕТОДЫ КЛАСТЕРИЗАЦИИ

- Плоские алгоритмы создают неструктурированное множество кластеров
 - алгоритм k-средних
 - нечеткий алгоритм с-средних
 - плотностный алгоритм DBSCAN (Density Based Spatial Clustering of Applications with Noise)
 - алгоритм SOM (Self Organization Map)
 - алгоритм C²ICM (Cover-Coefficient-based Incremental Clustering Methodology)
- Иерархические алгоритмы создают структурированное множество кластеров:
 - восходящие (агломеративные)
 - нисходящие (дивизимные)

ПЛОСКИЕ АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ

- Алгоритм *k*-средних и нечеткий алгоритм *c*-средних:
 - опора на центроиды кластеров
 - в алгоритме с-средних документ может быть отнесен к нескольким кластерам
- Плотностный алгоритм *DBSCAN*:
 - плотность внутри кластера выше, чем снаружи
 - учитывает кластеры произвольной формы
- Алгоритм C²/CM:
 - опора на «затравки» кластеров (документы, признаки которых «покрывают» соседние документы)
 - позволяет изменять кластерную структуру без проведения перекластеризации всех данных

АЛГОРИТМ *k*-СРЕДНИХ

Входные данные:

- \succ количество кластеров k
- множество документов как векторов

Выполнение алгоритма:

- 1. Выбираем *k* начальных центроидов кластеров
- 2. Каждый документ относим к тому кластеру, чей центроид является наиболее близким
- 3. Выполняем повторное вычисление центроидов каждого кластера
- 4. Повторяем, пока не достигнем условия остановки:
 - выполнено пороговое число итераций
 - центроиды кластеров больше не изменяются
 - достигнуто пороговое значение целевой функции

ЦЕЛЕВАЯ ФУНКЦИЯ АЛГОРИТМА *k*-СРЕДНИХ

Алгоритм минимизирует целевую функцию (среднеквадратичную ошибку кластеризации) как среднеквадратичное расстояние между документами и центрами их кластеров

$$e(D,C) = \sum_{j=1}^k \sum_{i:d_i \in c_j} \!\! \left\| d_i - \mu_j \right\|^2$$
 , где

 μ_i – центроид кластера c_j , вычисляется (и перевычисляется) как $\mu_j = \frac{1}{|c_i|} \sum_{i:d_i \in c_i} d_i$

Идеальный кластер – сфера с центроидом в ее центре

ИЛЛЮСТРАЦИЯ РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ (0)

ИЛЛЮСТРАЦИЯ РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ (1)

1. Выбираем центроиды (случайным образом)

ИЛЛЮСТРАЦИЯ РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ (2)

- 1. Выбираем центроиды
 - 2. Назначаем кластеры

ИЛЛЮСТРАЦИЯ РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ (3)

- 1. Выбираем центроиды
- 2. Назначаем кластеры
- 3. Вычисляем новые центроиды

ИЛЛЮСТРАЦИЯ РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ (4)

- 1. Выбираем центроиды
- 2. Назначаем кластеры
- 3. Вычисляем новые центроиды
- 4. Переназначаем кластеры

ИЛЛЮСТРАЦИЯ РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ (5)

- 1. Выбираем центроиды
- 2. Назначаем кластеры
- 3. Вычисляем новые центроиды
- 4. Переназначаем кластеры
- 5. Вычисляем новые центроиды

ИЛЛЮСТРАЦИЯ РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ (6)

- 1. Выбираем центроиды
- 2. Назначаем кластеры
- 3. Вычисляем новые центроиды
- 4. Переназначаем кластеры
- 5. Вычисляем новые центроиды
- 6. Переназначаем кластеры

АЛГОРИТМ *k*-СРЕДНИХ: ПРИМЕР

Nº	Термины в документе	c=«Китай»
1	китайский пекин китайский	С
2	китайский китайский шанхай	С
3	китайский макао	С
4	токио япония китайский	$\neg C$
5	китайский китайский токио япония	$\neg C$
	TORVIO ATTOTIVIA	
6	токио пекин	

ПРИМЕР РАБОТЫ АЛГОРИТМА *k*-СРЕДНИХ

<u>Итерация 1</u>. Случайным образом инициализированы μ_i : μ_1 =[0,96 0,80 0,42 0,79 0,66 0,85] μ_2 =[0,49 0,14 0,91 0,96 0,04 0,93]

dist	d_1	d_2	d_3	d_4	d_5	d_6
μ_1	1,55	1,81	1,66	1,51	1,38	0,85
μ_2	1,82	1,38	1,37	1,74	1,59	0,93

$$\rightarrow$$
 c₁:={d₁, d₄, d₅, d₆}, c₂:={d₂, d₃}

<u>Итерация 2</u>.

$$\mu_1 = [0.24 \ 0.45 \ 0 \ 0.43 \ 0.35]$$
 $\mu_2 = [0.16 \ 0.49 \ 0.49 \ 0.49 \ 0]$

dist	d_1	d_2	d_3	d_4	d_5	d_6
μ_1	0,74	1,21	1,22	0,68	0,61	0,67
μ_2	1,18	0,69	0,69	1,21	1,18	1,24

$$\rightarrow$$
 c₁:={d₁, d₄, d₅, d₆}, c₂:={d₂, d₃}

Разбиение не изменилось, условие остановки выполнено

ИЕРАРХИЧЕСКИЕ АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ

- Восходящие: построение кластеров снизу вверх
 - Начало: один документ один кластер
 - Последовательно объединяем пары кластеров
 - В итоге: один кластер все документы
- Нисходящие: построение кластеров сверху вниз
 - Начало: все документы один кластер
 - Рекурсивно делим кластеры пополам (с помощью алгоритма плоской кластеризации)
 - В итоге: один кластер один документ

Создается структурированное множество кластеров: история объединения/деления кластеров дает их иерархию (бинарное дерево)

ВОСХОДЯЩИЕ АЛГОРИТМЫ: КРИТЕРИИ ОБЪЕДИНЕНИЯ

Сходство двух кластеров есть:

- сходство между их наиболее похожими документами (одиночная связь)
 - ✓ создаются протяженные кластеры
 - ✓ не учитывается вся структура кластера:
- сходство между их наиболее непохожими документами (полная связь)
 - ✓ создаются компактные кластеры
 - ✓ учитывается вся структура кластера
- среднее сходство всех пар документов (групповое усреднение)
- сходство между их центроидами

ПРИМЕР ПРИМЕНЕНИЯ ВОСХОДЯЩИХ АЛГОРИТМОВ

Матрица расстояний:

sim	d_1	d_2	d_3	d_4	d_5	d_6
d_1	0					
d_2	1,36	0				
d_3	1,37	1,39	0			
d_4	1,36	1,39	1,40	0		
d_5	1,32	1,36	1,38	0,27	0	
d_6	0,66	1,43	1,41	1,30	1,21	0

Одиночная связь

Полная связь

ОСОБЕННОСТИ ЗАДАЧИ КЛАСТЕРИЗАЦИИ

Решение задачи кластеризации принципиально неоднозначно:

- Не существует однозначно наилучшего критерия качества кластеризации
- Часто количество кластеров заранее неизвестно
- Результат кластеризации существенно зависит от того, как определяется схожесть
- Нет общепризнанного оптимального алгоритма
- Нет общепризнанных тестовых данных

Главное основание для выбора алгоритма – знание теоретических характеристик метода и оценка пригодности для решения поставленной задачи

ОЦЕНКА КАЧЕСТВА КЛАСТЕРИЗАЦИИ

Вычисляются меры двух видов:

- Внешние меры: сравнение созданного разбиения с «эталонным»
 - анализируется сходство предсказаний экспертов и предсказаний системы относительно принадлежности каждой пары документов одному или разным кластерам
- Внутренние меры: анализ внутренних свойств
 - компактность: члены одного кластера должны быть близки друг другу
 - отделимость: кластеры должны достаточно далеко отстоять друг от друга

КАЧЕСТВО КЛАСТЕРИЗАЦИИ: ВНЕШНИЕ МЕРЫ

Rand Index оценивает, насколько много из тех пар
 объектов, которые были в одном классе, и тех пар объектов,
 которые находились в разных классах, сохранили это
 состояние после кластеризации алгоритмом:

$$RandIndex = (TP+TN) / (TP+TN+FP+FN)$$

• Индекс Жаккара (*Jaccard Index*) похож на *Rand Index*, только не учитывает пары элементов находящиеся в разные классах и разных кластерах (TN)

$$JaccardInd = (TP+TN)/(TP+FP+FN)$$

 Значения обоих мер – от 0 до 1, где 1 означает полное совпадение кластеров с заданными классами, а 0 – отсутствие совпадений

КЛАСТЕРИЗАЦИЯ: ПРИКЛАДНЫЕ ЗАДАЧИ

- Упорядочивание набора документов
- Навигация по набору документов
- Информационный поиск:
 - улучшение результатов поиска
 - «интеллектуальная» группировка результатов

ЗАКЛЮЧЕНИЕ: ВОПРОСЫ

Методы классификации и кластеризации текстов – одна из наиболее разработанных областей КЛ и информационного поиска

- Какие еще могут быть признаки текстов?
- В чем отличие области применимости рассмотренных методов классификации от методов НММ и CRF

СПАСИБО ЗА ВНИМАНИЕ

ДОМАШНЕЕ ЗАДАНИЕ № 2

На выбор <u>5 вариантов</u>:

- А. На базе интерфейса НКРЯ, словарей и др. ресурсов исследовать временные изменения смысла выбранного слова/слов и частоты его/их употребления
- В. Для уже существующей N-граммной модели рассчитать вероятности нескольких фраз и перплексию
- С. Построить свою N-граммную модель и вычислить по ней вероятности нескольких фраз и перплексию (дополнительно: сравнение двух N-граммных моделей)
- D. Провести исследование явления "разреженности данных" в коллекциях/корпусах текстов
- Е. Провести анализ того, как явление "разреженности данных" в коллекциях/корпусах текстов отражается в предсказательных языковых моделях типа *Word2Vec*

Срок выполнения – до 12 марта включительно