UE22MA251 LINEAR ALGEBRA AND ITS APPLICATIONS

Unit-2- Four Fundamental Subspaces & Linear Transformations:

Linear Independence, Basis and Dimensions, Row reduced Echelon form, Sum of subspaces, Direct Sums, The Four Fundamental Subspaces, Rank-Nullity theorem. Linear Transformations, Algebra of Linear transformations, Invertible maps, Isomorphisms. Applications.

Self-Learning Component: Examples of Vector Spaces and Subspaces.

Class No.	Portions to be covered
18-20	Linear Dependence, Independence, Span, Basis and Dimension
21-22	Echelon Form, Row Reduced Echelon Form, Pivot Variables, Free variables
23	Sum of Subspaces, Direct Sums
24	Matlab Class Number 3 – LU Decomposition
25-27	The Four Fundamental Subspaces-Column Space and Null Space
28-29	Row Space, Left Null Space
30	Uniqueness & Existence of Inverses, Rank-Nullity theorem
31-32	Linear Transformations, Transformations represented by Matrices
33-34	Algebra of Linear transformations, Invertible maps, Isomorphisms
35	Matlab Class Number 4 -Inverse of a Matrix by Gauss Jordan Method
36	Applications

Classwork problems:

1 Examine if the following sets of vectors are linearly independent. If not, find a relation between the vectors:

(a)
$$\{(4,2,-1,3), (6,5,-5,1), (2,-1,3,5)\}$$

(b)
$$\{sint, e^t, t^2\}$$

(c)
$$\{t^2 + t + 2, 2t^2, 3t^2 + 2t + 2\}$$

$$\text{(d)} \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \right\} \text{ in } M_{2x2}(R)$$

Answer: (a)dependent $2v_1=v_2+v_3$. (b) independent (c)independent (d) dependent, $M_1+M_2=M_3$.

2 (a)Determine whether these vectors

 $\{(1,2,-2,1), (-3,0,-4,3), (2,1,1,-1), (-3,3,-9,6)\}$ form a basis of \mathbb{R}^4 . If not, find the dimension of the subspace S they span. If S is a subspace of \mathbb{R}^4 , extend the basis of S to a basis of \mathbb{R}^4 .

(b) Do these vectors $\{(2,2,3), (-1,-2,1), (0,1,0)\}$ span \mathbb{R}^3 .

Answer: (a) They do not form a basis of R⁴. They span a subspace

 $S = \{(1,2,-2,1), (-3,0,-4,3)\}$ of dimension 2. (b)Yes. They span \mathbb{R}^3 .

3 Reduce the following matrices to Row Reduced Echelon form and determine

their ranks $\begin{pmatrix} 1 & 3 & -2 & 5 \\ 2 & 1 & 3 & 2 \\ 4 & 7 & -1 & 12 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & -2 & -1 \\ 1 & 2 & -1 & 3 \\ 3 & 7 & -8 & 3 \\ 4 & 5 & -7 & 0 \end{pmatrix}$. Identify the pivot variables and

free variables. Find the special solutions to Ax=0.

Answer: (i) (-11/5,7/5,1,0), (-1/5,-8/5,0,1); (ii) (0,-7/3,-5/3,1)

4 For the following vectors

(i) $S = \{ (0,0,1), (1,0,1), (0,1,1) \}$. Is u=(1,1,1) in span of S.

(ii) $S = \{v_1 = 2t^2 + t + 2, v_2 = t^2 - 2t, v_3 = 5t^2 - 5t + 2, v_4 = -t^2 - 3t - 2\}$. Does $u = t^2 + t + 2 \in \text{span}\{v_1, v_2, v_3, v_4\}$. Find a basis for the subspace W which spans S and what is its dimension.

(iii) { (1,2,-1), (2,3,4), (0,0,1)}. Do these vectors span \mathbb{R}^3 .(Home-work)

Answer: (i) Yes (ii) No, $W = \{v_1, v_2\}$; dim W = 2 (iii) Yes, they span \mathbb{R}^3 .

5 Let $U = \{(a, b, c)/a + b + c = 0\}, V = \{(0, 0, c)\}$. Show that $\mathbb{R}^3 = U + V$. Is U+V a direct sum.

Answer: Yes

6 Find a basis and dimension of U+V given;

(i) $U = span\{(1, -1, -1, -2), (1, -2, -2, 0), (1, -1, -2, -2)\}.$

(ii) $V = span\{(1, -2, -3.0), (1, -1, -3, 2), (1, -1, -2, 2)\}.$

What is the dimension of $U \cap V$.

7 Find the Column space and Null space for the following matrices:

$$\begin{pmatrix} 1 & 1 & -3 & -2 \\ 2 & 9 & 8 & 3 \\ 1 & -1 & 3 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & -1 & 3 \\ 3 & 5 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & -2 & 7 \end{pmatrix}$$

Answer: C(A) is a 3-d plane in \mathbb{R}^3 and N(A) is a line in \mathbb{R}^4 .

C(A) is \mathbb{R}^4 and N(A) is origin in \mathbb{R}^4 .

8 For which vector (a, b, c) does the following system Ax=b have a solution? x + 2y - 3z = a; 2x + 3y + 3z = b; 5x + 9y - 6z = c

Answer: c-b-3a=0

10

9 Find a basis for the set of vectors in \mathbb{R}^3 in the plane x + y - 3z = 0.

Answer: {(-1,1,0), (3,0,1)}

For which vector (b₁,b₂,b₃,b₄) is this system solvable? $\begin{pmatrix} 1 & 2 & -1 \\ 1 & 9 & -1 \\ -3 & 8 & 3 \\ -2 & 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$

$$egin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$
 .(Home-work)

Answer:. $b_3 - 2b_2 + 5b_1 = 0$ and $b_4 - b_2 + 3b_1 = 0$.

- If the set of vectors $\{u,v,w\}$ are linearly independent vectors, then show that the set $\{u+v-2w,\ u-v-w,\ u+w\}$ is linearly independent.
- 1 Find a basis and dimension of the subspace W of $V=M_{2x2}$ spanned by

$$\left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}. \text{ (Home-work)}$$

Answer: Basis of W = $\{M_1, M_2, M_5\}$ Dim=3

Find a basis and the dimension of the subspaces of $U=\{(a,b,c,d)/b-2c+d=0\}$ and $V=\{(a,b,c,d)/a=d,b=2c\}$ in \mathbb{R}^4 . Find basis and dim of $U\cap V$.

Answer: Dim of U=3;Dim of V=2;Basis of $U \cap V = \{(0,2,1,0)\}$ and Dim =1.

If the column space of A is spanned by the vectors (1,2,7,5), (-2,-1,-8,-7), (-1,3,3,0) find all those vectors that span the null space of A. What are the bases and dimensions of $C(A^T)$ and $N(A^T)$.

Answer: Basis of $N(A) = (-\frac{7}{3}, -\frac{5}{3}, 1)$, Dim of $C(A^T) = 2$, Dim of $N(A^T) = 1$.

1 Obtain the four fundamental subspaces, their basis and dimension given

$$\begin{pmatrix} 1 & 3 & 1 & 2 & 1 \\ 1 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \\ 0 & 0 & 3 & 1 & 4 \end{pmatrix}.$$
 Also describe the four fundamental subspaces.

1 Find left / right inverse (whichever possible) for the following matrices:

(i)
$$\begin{pmatrix} 3 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 3 & 1 \\ 0 & 0 \\ 1 & -2 \end{pmatrix}$ (Home-work).

```
1 Which of these transformations are not linear? Give reasons.
   (i)T(x,y,z) = (x + y + z, 2x - 3y + 4z)
    (ii)T(x,y) = (x + 3, 2y, x + y) (iii) (iii)T(x,y) = (xy, x)
   Answer: (ii)T(0) is not equal to 0 (iii)T(kv) \neq KT(v)
1 Find the image of these points after applying the transformation given:
   (i)Rotate (-1,3) counter clockwise through 30° line.
   (ii)Reflect (2,3) across 90° line and then project on x-axis.
   Answer: (i) \left(\frac{-3-\sqrt{3}}{2}, \frac{-1+3\sqrt{3}}{2}\right) (ii) (-2,0)
1 For each of the following linear transformations T, find a basis and the
   dimension of the range and kernel of T:
   (i) T: \mathbb{R}^3 \to \mathbb{R}^2 defined by T(x, y, z) = (2x+z, x+y)
   (ii) T: \mathbb{R}^3 \to \mathbb{R}^3 defined by T(x, y,z)=(x+2y+3z, -3x-2y-z, -2x+2z)
   Answer: (i) \{(2,1),(0,1)\} 2; \{(-1/2,1/2,1)\} 1 (ii) \{(1,-3,-2),(2,-2,0)\} 2; \{(1,-2,1)\} 1.
2 Find the matrix of the linear transformation T on \mathbb{R}^3 defined by
   T(x,y,z)=(2y+z, x-4y, 3x) with respect to
   (i)the standard basis (1,0,0),(0,1,0), ((0,0,1)
   (ii)the basis (1,1,1),(1,1,0), ((1,0,0)
Answer: (i)\begin{pmatrix} 0 & 2 & 1 \\ 1 & -4 & 0 \\ 3 & 0 & 0 \end{pmatrix} (ii)\begin{pmatrix} 3 & 5 & -1 \\ -6 & -6 & -2 \\ 6 & 3 & 3 \end{pmatrix}

2 Find a linear mapping T: \mathbb{R}^4 \to \mathbb{R}^3 whose Kernel is spanned by (-2,1,0,0) and
   (1,0,-1,1).
   Answer: T(x,y,z,t)=(x+2y+z, z+t, 0)
2 If F: \mathbb{R}^3 \to \mathbb{R}^2, G: \mathbb{R}^3 \to \mathbb{R}^2 and H: \mathbb{R}^2 \to \mathbb{R}^2 defined by F(x,y,z)=(y,x+z),
   G(x,y,z)=(2z, x+z-y), H(x,y)=(y, 2x) find F+G, 3F-2G, H_0F, F_0H, H_0 (F+G) and (H_0F+
   H₀G)
   Answer: (F+G)(x,y,z)=(y+2z, 2x-y+z), (3F-2G)(x,y,z)=(3y+4z, x+2y+3z),
   (H_{\circ}F)(x,y,z)=(x+z,2y), (H_{\circ}(F+G))(x,y,z)=(H_{\circ}F+H_{\circ}G)(x,y,z)=(2x-y+z,2y+4z),
   F₀H is not defined.
               If T: \mathbb{R}^2 \to \mathbb{R}^3 is a linear transformation defined by
2
       (i)
               T(x,y)=(3x+y,5x+7y, x+3y). Show that T is one-to-one. Is T onto?
               Is T invertible? Find a rule for T^{-1} like the one which defines T
       (ii)
               where T(x,y,z)=(3x,x-y,2x+y+z) is a transformation in \mathbb{R}^3.
   Answer: (i)No (ii) Yes; T-1(x,y,z)=(x/3, x/3-y, -x+y+z)
```