UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Posgrado en Ciencia e Ingeniería de la Computación

Aprendizaje Profundo

Bibliotecas para AP

Profesor: Gibran Fuentes Pineda

Ayudantes: Berenice & Ricardo Montalvo Lezama

Agosto 2021

Bibliotecas para aprendizaje profundo

- Modelo de programación sencillo de álgebra lineal.
- Abstracciones comunes de redes neuronales.
- Ejecución en CPU y GPU.
- Diferenciación automática y optimizadores.
- Visualización, serialización, trazas, distribución, cuantización.
- Ecosistema de dominios: CV, NLP, audio, etc.

3

Tensores

• Un tensor es un arreglo multidimensional.

4

Gráficas de cómputo

 Representación de una composición de funciones donde las variables son tensores (datos y parámetros).

5

Estática SGD Trainer learning_rate = [0.01] Class Labels classes = [10] Logit Layer ReLu Layer

Define-and- Run

Define-by-Run Dinámica

A graph is created on the fly from torch, autograd import Variable

x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W x = Variable(torch.randn(20, 10))

 $h = W_x$

Define-and- Run Estática

Define-by-Run Dinámica

A graph is created on the fly from torch, autograd import Variable

x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W h = Variable(torch.randn(20, 20))

W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_x, x.t()) h2h = torch.mm(W_h, prev_h.t())

Define-and- Run Estática

Define-by-Run Dinámica

A graph is created on the fly from torch, autograd import Variable

x = Variable(torch.randn(1, 10))
prev h = Variable(torch.randn(1, 20))
W h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

Define-and- Run Estática

Define-by-Run Dinámica

A graph is created on the fly from torch, autograd import Variable

x = Variable(torch.randn(1, 10))
prev h = Variable(torch.randn(1, 20))
W h = Variable(torch.randn(20, 20))
W x = Variable(torch.randn(20, 10))
i2h = torch.mm(W x, x,t())

h2h = torch.mm(W_h, prev_h.t()) h2h = torch.mm(W_h, prev_h.t()) next_h = i2h + h2h next h = next h.tanh()

Gráficas y bibliotecas

Estática

Dinámica

Entrenamiento de un modelo

- Datos.
 - Preprocesamiento, tuberia, y paralelización.

- Arquitecturas.
 - Implementación, prueba e inspección.

- Entrenamiento.
 - Ciclo, evaluación, monitoreo, guardado.

Representación de imágenes

Interfaces de PyTorch

- Alto Nivel
 - Apilando capas con nn.Sequential.

- Medio Nivel
 - Heredando de nn.Module.

- Bajo Nivel
 - Usando primitivas y definiendo parámetros.

Ventajas de PyTorch

- Arquitecturas, modelos preentrenados y conjuntos de datos.
 - torchvision, torchtext, torchaudio.
- Visualización y entrenamiento.
 - Tensorboard, skorch, Ignite, Lightning.
- Dominios especializados.
 - MMCV (visión), AllenNLP (lenguaje), DGL (gráficas), learn2learn(meta aprendizaje).
- Precisión mixta e interoperabilidad.
 - Apex/AMP, ONNX.