EE 236: Experiment 6 - Schottky Diode I-V Characterization and Transient Analysis

Keshay Samdani

22b3952

September 20, 2024

1 Aim of experiment

- To plot the forward and reverse bias I/V characteristics of 2 fabricated metal-semiconductor junction diodes (one Schottky contact and another Ohmic contact) using a probe station.
- To plot the forward and reverse bias I/V characteristics of a given packaged Schottky diode.
- To obtain and compare the reverse recovery times of a regular PN junction diode and a Schottky diode.

2 Components Required

- Fabricated Samples (10¹⁵ cm⁻³ and 10¹⁹ cm⁻³ doped)
- Probe Station
- · 1N5822 Schottky Diode
- 1N4007 PN Junction Diode
- Resistors 100Ω ($\times 2$)
- Potentiometer $1k\Omega$
- · Breadboard and connecting wires

3 Experimental Setup

The experimental setup consisted of two main parts:

- 1. Probe station setup for characterizing fabricated samples.
- 2. Breadboard circuit for characterizing packaged diodes and measuring reverse recovery time.

4 Procedure

4.1 Part 1: Fabricated Samples Characterization

- 1. Performed I-V characterization (both forward and reverse) of the fabricated diode samples with doping concentrations of 10¹⁵ cm⁻³ and 10¹⁹ cm⁻³ using the probe station.
- 2. Recorded voltage and current measurements for both samples.
- 3. Plotted I-V characteristics for both samples.

4.2 Part 2a: Packaged Schottky Diode Characterization

- 1. Set up the circuit for I-V characterization of the 1N5822 Schottky diode.
- 2. Measured and recorded forward and reverse I-V characteristics.
- 3. Plotted the I-V characteristics of the Schottky diode.

4.3 Part 2b: Reverse Recovery Time Measurement

- 1. Set up the circuit for reverse recovery time measurement.
- 2. Applied a square wave of 2V peak-to-peak amplitude at 100 kHz.
- 3. Measured and recorded the reverse recovery time for both the PN junction diode (1N4007) and the Schottky diode (1N5822).

5 Results and Analysis:-

5.1 Part 1: Fabricated Samples Characterization

Table 1: I-V Characteristics of Fabricated Samples
Sample 1 (10¹⁵ cm⁻³) Sample 2 (10¹⁹ cm⁻³)

- (-c	, ,	- (- ·	,
V (V)	I (mA)	V (V)	I (mA)
-4.64	-0.006	-4.5	-0.049
-3.85	-0.005	-4.0	-0.0425
-3.0	-0.004	-3.5	-0.0369
-2.3	-0.003	-2.5	-0.0242
-1.57	-0.002	-2.0	-0.0176
-1.15	-0.001	-1.5	-0.0119
0	0	-1.0	-0.0054
0.1	0.002	-0.5	-0.001
0.2	0.045	0	0
0.25	0.15	0.5	0.0001
0.28	0.558	1.0	0.0002
0.3	1.05	1.5	0.0003
0.35	2.82	2.0	0.0003
0.4	6.29	2.5	0.0004
0.45	10.39	3.5	0.0005
0.5	14.05	4.5	0.0006
0.56	21.2	4.57	0.0006

Figure 1: I-V Characteristics of Sample 1 (10¹⁵ cm⁻³)

Figure 2: I-V Characteristics of Sample 2 (10¹⁹ cm⁻³)

Analysis:

- \cdot Sample 1 (10¹⁵ cm⁻³) exhibits characteristics of a Schottky contact, with a lower turn-on voltage and higher forward current.
- Sample 2 (10¹⁹ cm⁻³) shows behavior more consistent with an Ohmic contact, with a nearly linear I-V relationship and much lower current levels.

• The difference in characteristics can be attributed to the higher doping concentration in Sample 2, which reduces the barrier height and depletion region width, leading to more Ohmic-like behavior.

5.2 Part 2a: Packaged Schottky Diode Characterization

Table 2: I-V Characteristics of 1N5822 Schottky Diode

V (V)	I (mA)		
-4.63	-0.007		
-3.61	-0.006		
-2.78	-0.005		
-2.16	-0.004		
-1.4	-0.003		
-0.66	-0.002		
-0.11	-0.001		
0	C		
0.1	0.15		
0.13	0.34		
0.148	0.65		
0.16	1.05		
0.175	1.8		
0.18	2.22		
0.2	4.51		
0.21	6.63		
0.22	9.33		
0.23	14.1		
0.245	22.1		

Figure 3: I-V Characteristics of 1N5822 Schottky Diode

Analysis:

- The 1N5822 Schottky diode shows a low turn-on voltage of approximately 0.2V, which is characteristic of Schottky diodes.
- The forward current increases rapidly after the turn-on voltage, demonstrating the high efficiency of the Schottky diode in forward conduction.
- The reverse leakage current is very low, indicating good rectification properties.

5.3 Part 2b: Reverse Recovery Time Measurement

Table	3:	Reverse	Recovery	Time	Comparison
Diode Type Reverse				verse R	ecovery Time
Schottky Diode (1N5822)			2)		998 ns
PN Junction Diode (1N4007)			4007)		1.34 µ s

Analysis:

- The Schottky diode exhibits a shorter reverse recovery time (998 ns) compared to the PN junction diode (1.34 μ s).
- This faster switching behavior of the Schottky diode can be attributed to its metalsemiconductor junction, which doesn't involve minority carrier injection and storage.

- The PN junction diode's longer recovery time is due to the time required for minority carriers to recombine or be swept out of the depletion region.
- The faster reverse recovery of Schottky diodes makes them suitable for high-frequency applications and more efficient in switching circuits.

6 Conclusion

This experiment successfully characterized the behavior of Schottky diodes and compared them with regular PN junction diodes:

- The fabricated samples demonstrated the effect of doping concentration on the metalsemiconductor junction characteristics, with higher doping leading to more Ohmic-like behavior.
- The packaged Schottky diode (1N5822) showed typical Schottky diode characteristics, including a low turn-on voltage and rapid current increase in forward bias.
- The reverse recovery time measurement clearly demonstrated the superior switching speed of Schottky diodes compared to PN junction diodes, highlighting their advantage in high-frequency applications.

These results underscore the unique properties of Schottky diodes and their advantages in certain applications, particularly where fast switching and low forward voltage drop are crucial.

7 Experiment completion status

All parts of the experiment were completed in the lab itself and also checked by my TA