

Figure 1 in file

COPY

JDP-3 DNA polymerase nucleotide sequence: 2331 nucleotides (SEQ ID NO: 1)

ATGATCCTGACGTTGATTACATCACCGAGAATGGAAAGCCGTATCAGGGTCTTCAGGAAGGAGAACGG
CGAGTCAGGATTGAATACGACCGCAGTCAGGCCTACTTCTACCGCCTCAGGGACGACTCTGCCA
TCGAAGAAAATCAAAAGATAACCGCGGAGAGGCACGGCAGGGCGTTAAGGTTAAGCGCGGAGAACGGTG
AAGAAAAAGTTCTCGGCAGGTCTGTGGAGGTCTGGTCCTCTACTTCACGCACCCGAGGACGTTCCGGC
AATCCCGACAAAATAAGGAAGCACCCCGGGTACATGACATCTACGAGTACGACATACCCCTCGCCAAGC
GCTACCTCATAGACAAGGGCTAATCCCGATGGAAGGTGAGGAAGAGCTTAAACTCATGTCCTTCGACATC
GAGACGCTCTACCACGAGGGAGAAGAGTTGGAACCGGGCGATTCTGATGATAAGCTACGCCGATGAAAG
CGAGGCGCGTGTGATAACCTGGAAGAAGATCGACCTCCTACGTTGAGGTGTCTCCACCGAGAACGGAGA
TGATTAAGCGCTCTTGAGGGCGTTAAGGAGAACGGACCCGGACGTGCTGATAACATACACGGCGACAAAC
TTCGACTTCGCTTACCTGAAAAGCGCTGTGAGAAGCTTGGCGTGAGCTTACCCCTCGGGAGGGACGGGAG
CGAGCGAAGATAACAGCGCATGGGGACAGGTTGCGGTGAGGTGAAGGGCAGGGTACACTTCGACCTTT
ATCCAGTCATAAGGCGCACCATAAACCTCCCACCTACACCCCTGAGGCTGTATACGAGGCGGTTTCGGC
AAGCCCAAGGAGAACGGTCTACGCCGAGGAGATAGCCACCGCTGGAGACCGGGAGGGGCTTGAGAGGGT
CGCGCCTACTCGATGGAGGACGCGAGGGTACCTACGAGCTTGGCAGGGAGTTCTCCGATGGAGGCC
AGCTTCCAGGCTCATCGGCCAAGGCTCTGGACGTTCCGCTCCAGCACCGAACCTCGTCGAGTGG
TTCCTCTAAGGAAGGCCTACGAGAGGAACGAACCTCGCTCCAACAGCCGACGAGAGGGAGCTGGCGAG
GAGAAGGGGGGCTACgcCGGTGGCTACGTCAAGGAGCCGGAGCGGGACTGTGGGACAATATCGTGTATC
TAGACTTCTCGTAGCTCTACCCCTCAATCATAATCACCCACAACGCTCGCCAGATAACGCTCAACCGCGAG
GGGTGTAGGAGCTACGACGTTGCCCCGAGGTGCGTCACAAGATTCTCGCCAACAGCTACTACGGCTACTAC
GAGCCTGCTCGGAAACCTGCTGGAGGAAAGGAGAAGATAAGAGGAAGATGAAGGCAACTCTCGACCCGC
TGGAGAAGAATCTCCTCGATTACAGGCAACGCCATCAAGATTCTCGCCAACAGCTACTACGGCTACTAC
GGCTATGCCAGGGCAAGATGGTACTGCAAGGAGTGCACGGCTTACGGCATGGGAAGGGAGTACAT
CGAAATGGTCATCAGAGAGCTTGAGGAAAAGTTGGTTAAAGTCTCTATGCAGACACAGCGTCTCC
ATGCCACCATCCTGGAGCGGACGCTGAAACAGTCAGAAGAAAAGGCAATGGAGTTCTAAACTATATCAA
CCCAAACGTCCCCGCTCTCGAACCTCGAATACGAGGGCTTCTACGTCAAGGGCTTCTCGTCACGAAGAA
AAAGTACGCGGTATCGACGAGGAGGGCAAGATAACACCGCGGGCTTGAGATAGTCAGGCGCAGTGG
GCGAGATAGCGAAGGAGACCGCAGGCAGGGTTGGAGGGAGATACTCAGGCACGGTGACGTTGAAGAGGCC
GTCAGAATTGTCAGGGAAAGTCACCGAAAAGCTGAGCAAGTACGAGGTTCCGCCGGAGAACGCTGGTTATCCA
CGAGCAGATAACGCGCGAGCTCAAGGACTACAAGGCCACCGGCCGACGTAGCCATAGCGAAGcGTTGG
CCGCCAGAGGTGTTAAATCCGGCCCGGAACGTGATAAGCTACATCGTCTGAAGGGCTCCGGAAGGATA
GGCGACAGGGCGATTCCCTCGACGAGTTGACGCCGACGAAGCACAAGTACGATGCCGACTACTACATCGA
GAACCAGGTTCTGCCGGCAGTTGAGAGAAATCCTCAGGGCTTCCGCTACCGCAAGGAAGACCTCGCCTACC
AGAAGACGAGGCAGGTGGCTTGGCGTGGCTGAAGCCGAAGGGAGAACAGTGA

FIG. 2.

JDF-3 DNA polymerase amino acid sequence (SEQ ID NO: 2)

Theoretical molecular weight: 90.3 kD

MILDVVDYITENGKPVIRVFKKENGEFRIEYDREFEPFYALLRDDS AIEEIKKITAERHGRVVKVKA EKV
KKKFLGRSVEVWLVLYFTHPQDVP AIRDKIRKHPAVIDIYDIPFAKRYLIDKGLIPMEGEEELKLMSFDI
ETLYHEGEEFGTGPILMISYADESEARVITWKKIDLPYVEV VSTEKEMIKRFLRVVKEKD P DVLITYNGDN
FDFAYLKKRCEKLGVSF TLGRDGSEPKIQRMGDRFAVEVKGRVHF DLYPVI RRTINLPTY TLEAVYEA VFG
KPKEKVYAAE IATAWETGEGLERVARYSMEDARV TYELGREFFPMEAQLSRLIGQGLWDVSRSS TGNLVEW
FLLRKAYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSL YPSIIITHNVSPDTLNRE
GCRSYDV APEVGHKFCKDFPGFIPSILLGNLLEERQKIKRKMKA TLDPLEKNLLDYRQRAIKILANSYYGYY
GYARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYADTDGLHATIPGADAETVKKKAMEFLNYIN
PKLPG LLELEYEGFYVRGFFVTKKYAVIDEEGKITTRGLEIVRRDWSEIAKETQARVLEAILRHGDVEEA
VRIVREVTEKLSKYEV PPEKLV IHEQITRELKDYKATGPHVAIAKRLAARGV KIRPGTV ISYIVLKGS GRI
GDRAIPFDEFDPTKH KYDADYYIENQVLP AVERILRAFGYRKEDLRYQKTRQVGLGAWLKPKG KKK

FIG. 3.
JDF-3 DNA polymerase with intein sequence (SEQ ID NO: 3)

MILDVVDYITENGKPVIRVKKKENGEFRIEYDREFEPFYALLRDDS AIEE
IKKITAERHGRVVVKVRAEKVKKKFLGRSVEWWVLYFTHPQDVPAIRDKI
RKHPAVIDIYEYDIPFAKRYLIDKGLIPMEGEEELKLMSPDIETLYHEGE
EFGTGPILMISYADESEARVITWKKIDLPYVEVVSSTEKEMIKRFLRVVKE
KDPDVLLITYNGDNFDFAVLKKRCEKLGVSFTLGRDGSEPKIQRMGDRFAV
EVKGRVHF DLYP VIRRTINLPTY TLEAVYEA VFGKPKEKVYAE EIA TAW E
TGEGLERVAR YSMS EDARV TYELGREFFPMEAQLSRLIGQGLWDVRSSTG
NLVEWFLLRKAYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNI
VYLDFRSLYPSIIITHNVSPDTLNREGCRSYDVAP EVGHKFCKDFPGFIP
SLLGNLLEERQKIKRKMATLDPLEKNLLDYRQRAIKILAN

Extein 1

SLLPGEWVA
VIEGGKLRPVRIGELVDGLMEASGERVKRDGTTEVLEVEGLYASPSTGSP
RKPAQCR*KP**GTAMP GKFT* LSTPEGGLSVTRGHSLFAYRDASLWR*
RGRRRFKPGDLLAVPSG*PSRRGGRGSTSILNCSSNCPRRKPTCHRHS GK
GRKNFFRGMILRTLWIFGEEKTGGRPGATWSTLRLGLGVKLKIGYGVVD
REGLGKVPRFYERLVEVIRYNGNRGEFIADFNALRPVLRLLMMPEKELEEW
LVGTRNGFRIRPFIEVDWKFAKLLGYYVSEGSAGKWKNRTGGWSYSVRLY
NEDGSVLDMDMERLARSSLGA*ARGELRRDFKEDGLHNLRGALRFTGREQE
GSVAYLHVP*GGPLGLP*GVLHRRRRSPEQDGSAHQERASG*RPRPAP
ELAGR LSDKRPPRQRLQGLRERGTALYRVPEAEERLTYSHVIPREVLEE
TSAGPSRRT*VTGNSGSWWKAGSSTRKGPGVG*AGSSTGI*SSTGSRKSGR
KATRGTTT*ALRRRTSGGLWVPLRAQX

Intein 1

SYYGGYYARARWYC RECAES
VTAWGREYIEMVIRELEEKFGFKVLYADTDGLHATIPGADAETVKKKAME
FLNYINPKLPGLLELEYEGFYVRGFFVTKKYAVIDEEGKITTRGLEIVR
RDWSEIAKETQARVLEAILRHGDVEEAVRIVREVTEKLSKYEVPP EKLVI
HEQITRELKDYKATGPHVAIAKRLAARGVKIRPGTVISYIVLKGS GRIGD
RAIPFDEFDPKHKYDADYYIENQVLP AVERILRAFGYRKEDLRYQKTRQ
VGLGAWLKP KGGKKK

Extein 2

FIG. 4.
JDF-3 DNA polymerase genomic sequence (SEQ ID NO: 4)

AATTCCACTGCCGTTTAACCTTCAACCGTTGAACCTGAGGGTGATT
 TCTGAGCCTCCTCAATCACTTAATCGAGACCGCGATTACCTTGAACCTGG
 TACACGTTCAACGATTGGTCTTGTAAAGTCGATACTGGCCGTGCTG
 GATTTCTAAACGTCTCAAGAACGGCTTCATCAACGGAAACTGCCACGT 5' untranslated sequence
 CTCCGCCGTCGTGAGGGTAAACCTGAAGTTCAAGACTTTGCAACGGAAT
 GGCAGAGAACGGCAGTACCCCAGTGAAGAGCTTGAAAGCCAAGC
 CGAGCTTCAGCGAATGTGCCGTGCCCTTGTCAAGAGTTGTGAGGCCCTG
 ATTGTTGTTTCTCCTCTTGTATAACATCGATGGCGAAGTTATTAG
 TTCTCAGTCGATAATCAGGCAGGTGTTGGTC

ATGATCCTTGACGTTGAT
 TACATCACCGAGAATGAAAGCCGTCATCAGGTCTCAAGAACGGAGAA
 CGGCGAGTTCAAGGATTGAATACGACCGCGAGTTGAGGCCCTACTTCTACG
 CGCTCCTCAGGGACGACTCTGCCATCGAAGAAATCAAAAGATAACCCCG
 GAGAGGCACGGCAGGGCGTTAAGGTTAAGCGCGGAGAACGGTGAAGAA
 AAAGTTCTCGCAGGTCTGTGGAGGTCTGGTCTACTTCACGCACC
 CGCAGGACGTTCCGGCAATCCGCGACAAAATAAGGAAGCACCCCGGGTC
 ATCGACATCTACGAGTACGACATACCCCTCGCCAAGCGCTACCTCATAGA
 CAAGGGCTAATCCGATGGAAGGTGAGGAAGAGCTTAAACTCATGTCCT
 TCGACATCGAGACGCTTACACCGAGGGAGAACGGTTGGAACCGGGCCG
 ATTCTGATGATAAGCTACGCCGATGAAAGCGAGGCGCGCGTGTAAACCTG
 GAAGAAGATCGACCTTCTTACGTTGAGGTGTCCTCACCGAGAACGGAGA
 TGATTAAGCGCTTCTTGAGGGCGTTAAGGAGAACGGACCGGACGTGCTG
 ATAACATACAACGGCGACAACCTCGACTTCGCTACCTGAAAAAGCGCTG
 TGAGAACGCTTGGCGTGAGCTTACCCCTGGGAGGGACGGGAGCGAGCCGA Extein 1
 AGATACAGCGATGGGGACAGGTTGCGGTGAGGTGAAGGGCAGGGTA
 CACTTCGACCTTATCCAGTCATAAGCGCACCATAAAACCTCCCGACCTA
 CACCCCTTGAGGCTGTATACGAGGCGGTTTCGGAAGCCCAAGGAGAACGG
 TCTACGCCGAGGAGATAGCCACCGCTGGAGACCCGGCGAGGGGCTTGAG
 AGGGTCGCGCGTACTCGATGGAGGACGCGAGGGTTACCTACGAGCTTGG
 CAGGGAGTTCTCCGATGGAGGCCAGTTCCAGGCTCATGGCCAAG
 GCCTCTGGGACGTTCCCGCTCCAGCACCGCAACCTCGTCGAGTGGTTC
 CTCCTAAGGAAGGCCAACGAGAGAACGAACTCGCTCCAACAGCCGA
 CGAGAGGGAGCTGGCGAGGAGAACGGGGGCTACGCCGGTGGCTACGTCA
 AGGAGCCGGAGCGGGGACTGTGGGACAATATCGTGTATCTAGACTTCGT
 AGTCTCTACCCCTCAATCATATAATCACCCACACGCTCGCCAGATACTG
 CAACCCGAGGGGTGTAGGAGCTACGACGTTGCCCGAGGTGCGTCACA
 AGTTCTGCAAGGACTCCCCGGCTTCATTCCGAGCCTGCTCGGAAACCTG
 CTGGAGGAAAGGCAGAACGATAAGAGGAAGATGAAGGCAACTCTGACCC
 GCTGGAGAAGAACATCCTCGATTACAGGCAACCGGCCATCAAGATTCTCG
 CCAAC

AGCCTTCTCCGGGAGTGGGTTGCGGTCAATTGAAGGGGGAAA
 CTCAGGCCGTCCGCATCGCGAGCTGGTTGATGGACTGATGGAAGCCAG
 CGGGGAGAGGGTAAAAGAGACGGCGACACCGAGGTCTTGAAGTCGAGG
 GGCTTACGCCCTCCTCGACAGGGAGTCAAGAAAGCCGCACAATGC
 CGGTGAAAGCCGTGATAAGGCACCGCTATGCCGGGAAGTTACAGAATA
 GCTCTCAACTCCGGAGGGAGGATTAAGCGTGACGCCGGCACAGCCTCT Intein 1
 TCGCGTACCGGGACCGCGAGCTGTGGAGGTGACGGGGAGGGAGGGTTC
 AAGCCCGCGACCTCCTGGCGGTGCCAAGCGGATAACCCTCCCGAGAGG

AGGGAGAGGCTAACATCGTGAACGTCTCGAACTGCCGAGGAGGA
 AACGGCGACATGTCATCGACATTCCGGCAAGGGTAGAAAGAACTTCTTC
 AGGGGAATGCTCAGAACCTCCGCTGGATTTGGGGAGGAGAACCGG Intein 1
 AGGGCGGCCAGGCCTACCTGGAGCACCTGCGTGGCTCGCTACGTGA
 AGCTGAGGAAAATCGGCTACGGGTGTTGATAAGGGAGGGACTGGGAAAG
 GTACCGCGCTTCTACGAGAGGCTCGTGGAGGTAATCGCTACAACGGCAA
 CAGGGGGAGTTCATCGCCATTCAACCGCTCCGCCCGCTCCGCC
 TGATGATGCCGAGAAGGAGCTTGAAAGAGTGGCTCGTGGACGAGGAAC
 GGGTCAGGATAAGGCCGTTCATAGAGGTTGATTGAAAGTCGAAAGCT
 CCTCGGCTACTACGTGAGCGAGGGAGCGCCGGAAAGTGGAAAAACCGGA
 CCGGGGCTGGAGCTACTCGGTGAGGCTTACAACGAGGACGGAGCGTT
 CTCGACGACATGGAGAGACTCGCGAGGAGTTCTTGGGGCGTGAGCGCG
 GGGGAACTACGTCGAGATTCAAAGAACAGATGGCCTACATAATCTCGAG
 GGGCTCTCGGGTTCACCGGGCAGAGAACAAAGAGGTTCCGTTGCTTATCTT
 CACGTCCTCTGAGGAGGTCCGCTGGGCCCTTGAGGGTACTTCATCG
 GCGACGGCGACGTTCACCGGAGCAAGATGGTCCGCTCTCACCAAGAGC
 GAGCTCTGGCTAACGGCCTCGTCCCTGCTGAACTCGCTGGCGTCTC
 AGCGATAAACGTCGCCACGACAGCGGGTTACAGGGCTACGTGAACG
 AGGAACACTGCCCTTACAGAGTACCGGAAGCGGAAGAACGCTCACTTACT
 CCCACGTCATACCGAGGGAAAGTGCTGGAGGAGACTCGGCCGGCCTTCC
 AGAAGAACATGAGTCACGGAAATTCAAGGGAGCTGGTGGAAAGCGGGGAG
 CTCGACGCGGAAAGGCCGGTAGGATAGGCTGGCTCTGACGGGATAT
 AGTCCTCGACAGGGTCTCGGAAGTCAGGAAGGAAAGCTACGAGGGTACG
 TCTACGACCTGAGCGTTGAGGAGGACGAGAAACTCTGGCGGCTTGGGT
 TCCTCTACGCGCACACNN

AGCTACTACGGCTACTACGGCTATGCCAGGG
 CAAGATGGTACTGCAGGGAGTGCAGCGAGAGCGTTACGGCATGGGAAGG
 GAGTACATCGAAATGGTCACTAGAGAGCTTGAGGAAAAGTCGGTTTAA
 AGTCCTCTATGCAAGACACAGACGGCTCCATGCCACCATTCTGGAGCGG
 ACGTGAACAGTCAGGAAAAGGCAATGGAGTTCTAAACTATATCAAT
 CCCAAACTGCCGGCTCTCGAACTCGAATACGAGGGCTCTACGTCA
 GGGCTCTCGTCACGAAGAAAAGTACGCGGTATCGACGGAGGGCA
 AGATAACCACGCGCGGGCTTGAGATAAGTCAGGCGCAGTGGAGCGAGATA
 GCAGGAGGAGACGCCAGGGTTTGGAGGCATACTCAGGCACGGTGA Extein 2
 CGTTGAAGAGGCCGTCAGAATTGTCAGGGAAAGTCACCGAAAAGCTGAGCA
 AGTACGAGGTTCCGCCGGAGAAGCTGGTTATCCACGAGCAGATAACGCGC
 GAGCTCAAGGACTACAAGGCCACCGGGCCGACGTAGCCATAGCGAAGCG
 TTTGGCCGCCAGAGGTGTTAAATCCGGCCCGAACGTGTGATAAGCTACA
 TCGTCTGAAGGGCTCCGGAGGATAGGCGACAGGGCGATTCCTCGAC
 GAGTCGACCCGACGAAGCACAAGTACGATGCGACTACTACATCGAGAA
 CCAGGGTCTGCCGGAGTTGAGAGAATCCTCAGGGCTTGGCTACCGCA
 AGGAAGACCTCGCCTACAGAGACGAGGCAGGTGGCTGGCTGGCGTGG
 CTGAAGCCGAAGGGAAAGAAGAAGTGA

GGAATTATCTGGTTCTTTCCC
 AGCATTAAATGCTTCCGACATTGCTTATTTATGAAACTCTGTTGCCCC
 TGAGTTGTCAGAAAACAGCCTGTTCTGACGGCGTTTCTTGCAG
 GTCTCTGAGTTGCAAGGGCTTCTCGACCAGCTCAATGGTCTTGTGCG
 TCATTGTTNNNNNNNNNNNNNNNNNNNNNNCCGGGACTTCATACTGGC
 GGTAATAGACAGGGATTCCCTCCTCAAGGACTTCCGGAGGCATTGGAG
 TTTTTGGTGGGGCTTCACAGGATTGCTCATCTGTGGATTCTCGTT
 CGATTGAATCTGTCCACTTGAGGGTGTAGGTCGAGACGGTGGAGCGCGTA

TTCCGGGAGCGGGTCTGAGGCTCATTTCAGTCCTCCGGCGAAG 3' Untranslated sequence
AAGTGGAACTCAAGCCGGGTAGCTTATGTTATGTTCCAACCTCC
AGCACCTCCAGGATCCCCTCAATCCCGAACCTCGAAGCCCCCTCTCGTGG
ATCTTCTAACTCCTCTGCCTCCGGTTATCCAGACCAGCCCACATGCC
GGCTCTCAGCGCACCCCTCGAAATCCTCCCGTAGGTGTCGCCGATGTGGA
TTGCCTCGTCCGGCTCGACCCCGAACATCGAGCGGTTCTGAACATCT
CGGGCATCGGCTTATACGCCAGAACCTCGTCGGCGAAGAAGGTTCCCTCA
ATGTAGTCCATCAGGCCAACCTCTCGAGGGGGCCCGTACCCAAATT
GCCCTATAGTGAGTCGATTACAATTCACTGGCCGTGTTACAACGTCG
TGACTGGAAAACCCCTGGCGTTACCCAACTTAAGTCGCTTGAGCACAT
CCCCC

BEST AVAILABLE COPY

Preliminary Qualification of Mutants

Figure 5

BEST AVAILABLE COPY

Sequencing with Purified Mutants

Figure 6

BEST AVAILABLE COPY

Sequencing with Dye-labeled Dideoxynucleotides

Figure 7

Sequencing with the P410L, A485T Double Mutant and α -³³P Dideoxynucleotides

Figure 8

Figure 9

Figure 10

Figure 11

33P - TAAACGTTGGGGGGGGCA →
TGCAACCCCCCGTAT

Figure 12

Flu ddUTP signal/ddTTP signal

Figure 13

4	1	- - - - - LVXNAXSTGNLVEWFLLRK
10	1	- - - - - VWDVSRSSSTGNLVERFLLRK
13	1	- - - - - VWDVSRSSSTGNLVEWFLLRK
16	1	- - - - - VWDVSRSSSTGNLVEWFLLRK
18	1	- - - - - VWDVSRSSSTGNLVEWFLLRK
19	1	- - - - - VWDVXRSSSTGNLVEWFLLRK
28	1	- - - - - VWDVPRSSSTGNLVEWFLLRK
34	1	- - - - - VWDVSRSSSTGNLVEWFLLRK
41	1	- - - - - VWDVSRSSSTGNLVEWFLLRK
33	1	- - - - - VWDVSRSSSTGNLVEWFLLRK
48	1	- - - - - YWSXPXLRTGNLVEWFLLRK
55	1	- - - - - VIGTXPRESSSTGNLVEWFLLRK
64	1	- - - - - XXXFWDVSRSSSTGNLVEWFLLRK
Jdf3	301	TGEGLERVARYSMEDARVTYELGREFFPMEAQLSRLIGQGIWVDSRSSTGNLVEWFLLRK

4	20	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
10	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHSVSP
13	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
16	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
18	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
19	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGOWDNIAYLDFRSLYPSIIITHNVSP
28	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
34	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
41	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGPWDNIVYLDFRSLYPSIIITHNVSP
33	21	AYERNKAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
48	21	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
55	22	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSHYPSIIITHNVSP
64	24	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP
Jdf3	361	AYERNELAPNKPDERELARRGGYAGGYVKEPERGLWDNIVYLDFRSLYPSIIITHNVSP

4	80	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
10	81	DTL E REGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
13	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
16	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
18	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
19	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
28	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
34	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
41	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
33	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
48	81	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGN P LEERQKIKRKMKA TLDPLEKNLLD
55	82	DTLNREGCRSYDVAPEDGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNHLD
64	84	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD
Jdf3	421	DTLNREGCRSYDVAPEVGHKFCKDFPGFIPSLLGNLLEERQKIKRKMKA TLDPLEKNLLD

Figure 14

4	140	YRQRAIKILANSYYGYC Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
10	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
13	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
16	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
18	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
19	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
28	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
34	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
41	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
33	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
48	141	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
55	142	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
64	144	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD
Jdf3	481	YRQRAIKILANSYYGY Y YARARWYCRECAESVTAWGREYIEMVIRELEEKFGFKVLYAD

4	200	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
10	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
13	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
16	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
18	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
19	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
28	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
34	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
41	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
33	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
48	201	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
55	202	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
64	204	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE
Jdf3	541	TDGLHATIPGADAETVKKKAMEFLNYINPKLPG L LELEYEGFYVRGFFVTKKYAVIDEE

4	260	GKITTRGLEIVRRDWSEIAKETQARVLEAVL R HGDVEEAVRIVREVTEKL S KYEVPPEKL
10	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHDVEEAVRIVREVTEKL S KYEVPPEEL
13	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
16	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
18	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
19	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
28	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
34	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
41	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
33	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
48	261	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
55	262	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEGA
64	264	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL
Jdf3	601	GKITTRGLEIVRRDWSEIAKETQARVLEA I LRHG D VEEAVRIVREVTEKL S KYEVPPEKL

Figure 15