

AMENDMENTS TO THE CLAIMS

Kindly amend claims 1 – 2 without prejudice to the subject matter involved as indicated in the listing below. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended): A compound of the formula (I)

wherein the bond between carbon atoms 22 and 23 indicated with a broken line is a single or double bond,

m is 0 or 1,

R₁ represents a C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl group,

R₂ represents an unsubstituted C₁-C₁₂alkyl or halogen-substituted C₁-C₁₂alkyl, unsubstituted C₃-C₈cycloalkyl or halogen-substituted C₃-C₈cycloalkyl, unsubstituted C₂-C₁₂alkenyl or halogen-substituted C₂-C₁₂alkenyl, unsubstituted C₂-C₈alkynyl or halogen-substituted C₂-C₈alkynyl or CN hydrocarbyl group or a substituted hydrocarbyl group, and

R₃ is hydrogen, unsubstituted C₁-C₁₂alkyl or halogen-substituted C₁-C₁₂alkyl, unsubstituted C₃-C₈cycloalkyl or halogen-substituted C₃-C₈cycloalkyl, unsubstituted C₂-C₁₂alkenyl or

halogen-substituted C₂-C₁₂ alkenyl, unsubstituted C₂-C₈ alkynyl or halogen-substituted C₂-C₈ alkynyl, unsubstituted C₁-C₁₂alkoxy or halogen-substituted C₁-C₁₂alkoxy, unsubstituted phenoxy, OH, aryl, heterocyclyl group, CN, -N(R₅)₂, -SR₈, -S(=O)R₈, -S(=O)₂R₈, or -S(=O)₂N(R₅)₂,

where

R₅ represents H, C₁-C₆ alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆ alkoxy, C₃-C₈-cycloalkoxy, hydroxy and cyano, C₁-C₆ alkoxy, C₃-C₈-cycloalkyl, C₂-C₁₂ alkenyl, C₂-C₈ alkynyl, benzyl, or benzyl which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio and C₁-C₁₂haloalkylthio; and

R₈ represents C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆ alkoxy, hydroxy, cyano and benzyl, or benzyl which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio and C₁-C₁₂haloalkylthio; and

R₄ is hydrogen, unsubstituted C₁-C₁₂alkyl, unsubstituted C₃-C₁₂cycloalkyl, C₂-C₁₂ alkenyl or C₂-C₁₂ alkynyl;

R₃ and R₄ represent, independently of each other, hydrogen or a chemical constituent, or either R₂ and R₃ together or R₃ and R₄ together represent a three- to seven-membered alkylene or a four- to seven-membered alkenylene bridge, for each of which at least one, preferably a CH₂ group may be replaced by O, S or NR₆, where R₆ represents hydrogen or a hydrocarbyl group or a substituted hydrocarbyl group; or, if appropriate, an E/Z isomer and/or tautomer of the compound of formula (I), in each case in free form or in salt form.

2. (Currently amended): A process for preparing a compound of formula (I)

wherein R₁, R₂, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, comprising the steps of:

(i) synthesizing a compound of formula (α)

wherein R₁, the bond between the carbon atoms 22 and 23 and m are as defined for formula (I) in claim 1 and Q is a protecting group;

(ii) reacting a disulfide, an aliphatic or aromatic phosphine and a compound of formula (α) to yield a sulfenimine derivative of the compound of formula (α);

(iii) oxidising the sulfenimine derivative of the compound of formula (α) to yield a sulfinimine derivative of the compound of formula (α);

either

(iva) reacting an organometallic reagent having the R₂ group with the sulfinimine derivative of the compound of formula (α) to yield a desoxy – sulfinamide - hydrocarbyl derivative of the compound of formula (α); or

(ivb) reacting an isocyanate isonitrile reagent of formula

where R₁₂ is unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl, unsubstituted or mono- to pentasubstituted C₂-C₁₂alkenyl, unsubstituted or mono- to pentasubstituted C₂-C₁₂alkynyl, unsubstituted or mono- to pentasubstituted aryl, unsubstituted or mono- to pentasubstituted benzyl unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl ester, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl ester, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl sulfone or unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl nitrile with the sulfinimine derivative of the compound of formula (α) to yield a desoxy – amine - hydrocarbyl derivative of the compound of formula (α); or

(ivc) reacting an nitro alkyl reagent of formula

where R₁₀ and R₁₁ are independently of each other, H, CN, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl, unsubstituted or mono- to pentasubstituted C₂-C₁₂alkenyl, unsubstituted or mono- to

pentasubstituted C₂-C₁₂alkynyl, unsubstituted or mono- to pentasubstituted aryl, unsubstituted or mono- to pentasubstituted benzyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl ester, an unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl ester, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl sulfone or unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl nitrile with the sulfinimine derivative of the compound of formula (α) to yield a desoxy – amine - hydrocarbyl derivative of the compound of formula (α); and

either

(va) removing the sulfinyl group and protecting group Q either in one step or sequentially one after another to yield a compound of formula (I), where R₃ and R₄ each represent hydrogen, or

(vb) removing the sulfinyl group alone, carrying out reactions on one or more of the R₂, R₃ and R₄ groups to modify the group and then removing the protecting group Q to yield a compound of formula (I), or

(vc) removing the protecting group Q if the sulfinyl group is removed during (iva) or (ivb) or (ivc) to yield a compound of formula (I).

3. (Original): A process for preparing a compound of formula (I)

wherein R₁, R₂, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, comprising the steps of:

(i) synthesizing a compound of formula (β)

wherein R₁, the bond between the carbon atoms 22 and 23 and m is as defined for formula (I) in claim 1 and X is H or Q, where Q is a protecting group;

(ii) reacting N-R₄hydroxylamine or salt thereof with a compound of formula (β) to yield a nitrone derivative of the compound of formula (β);

either

(iii)a) reacting an organometallic or a silyl reagent having the R₂ group with nitrone derivative of the compound of formula (β) to yield a desoxy – N-R₄hydroxylamino - hydrocarbyl derivative of the compound of formula (β), where R₄ is as defined for formula (I) in claim 1, or

(iii)b) reacting an alkene or an alkyne derivative with the nitrone derivative of the compound of formula (β) to yield a desoxy – N-isoxazolidine derivative or 2,3-dihydro-isoxazole derivative respectively of the compound of formula (β); and

either

(iva) removing the protecting group Q, if present, to yield a compound of formula (I), where R₃ is OH in the event of reaction step (iiia), or where R₂ and R₃ is an alkylene or alkenylene bridge with a CH₂ group replaced by an oxygen atom in the event of reaction step (iiib), or

(ivb) carrying out reactions on one or more of R₂, R₃ and R₄ groups to modify the group and removing the protecting group Q, if present, to yield a compound of formula (I).

4. (Original): A process for preparing a compound of formula (I)

wherein R₁, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1 and R₂ is CN, comprising the steps of:

(i) synthesizing a compound of formula (β)

wherein R₁, the bond between the carbon atoms 22 and 23 and m is as defined in for formula (I) in claim 1 and X is H or Q, where Q is a protecting group; either

(iia) reacting the compound of formula (β) with a silylated amine (having the R₃ and R₄ groups) in presence of a Lewis acid and a trialkylsilyl cyanide, to yield a compound of formula (I) with the proviso that the oxygen atom at the 5-carbon position is protected, if Q is present, and wherein R₁, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, and R₂ is CN, or

(iib) reacting the compound of formula (β) with an amine of formula R₃R₄NH, a chlorosilane, a Lewis acid and a trialkylsilyl cyanide to yield a compound of formula (I) with the proviso that the oxygen atom at the 5-carbon position is protected, if Q is present, and wherein R₁, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, and R₂ is CN;

(iii) optionally carrying out reactions on one or both of R₃ and R₄ groups to modify the group; and

(iv) removing the protecting group Q, if present, to yield a compound of formula (I);

or

(i) synthesizing a compound of formula (β)

wherein R₁, the bond between the carbon atoms 22 and 23 and m are as defined for formula (I) in claim 1 and X is H or Q, where Q is a protecting group;

(ii) reacting the compound of formula (β) with an ammonium salt of formula R₁₈CO₂⁻NH₄⁺, an isocyanide of formula R₁₂NC to yield a compound of formula (I), with the proviso that the oxygen atom at the 5-carbon position is protected, if Q is present in the compound of formula (β), wherein R₁, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, R₂ is R₁₂NHC(O), and R₄ is R₁₈C(O), R₁₈ is H, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl, unsubstituted or mono- to pentasubstituted C₂-C₁₂alkenyl, unsubstituted or mono- to pentasubstituted C₂-C₁₂alkynyl, unsubstituted or mono- to pentasubstituted aryl, unsubstituted or mono- to pentasubstituted benzyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl ester, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl ester, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl sulfone or unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl nitrile and R₁₂ is as defined in claim 2; and

(iii) removing the protecting group Q, if present, to yield a compound of formula (I).

5. (Original): A compound of the formula (III)

wherein the bond between carbon atoms 22 and 23 indicated with a broken line is a single or double bond,

m is 0 or 1,

R₁ represents a C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl, group,

R₈ represents C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy, cyano, aryl, benzyl or heteroaryl, which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio and C₁-C₁₂haloalkylthio, and

X represents H or Q, where Q is a suitable protecting group to prevent reaction on the oxygen atom at the 5-carbon position;

or, if appropriate, an E/Z isomer and/or diastereoisomer and/or tautomer of the compound of formula (III), in each case in free form or in salt form.

6. (Original): A compound of the formula (V)

wherein the bond between carbon atoms 22 and 23 indicated with a broken line is a single or double bond,

m is 0 or 1,

R₁ represents a C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl, group,

R₄ represents a chemical constituent, and

X represents H or Q, where Q is a suitable protecting group to prevent reaction on the oxygen atom at the 5-carbon position; or, if appropriate, an E/Z isomer and/or diastereoisomer and/or tautomer of the compound of formula (V), in each case in free form or in salt form.

7. (Previously presented): A pesticidal composition comprising at least one compound of the formula (I), as defined in claim 1, as an active compound, and at least one auxiliary.

8. (Previously presented): A method for controlling pests comprising applying a composition defined in claim 7 to the pests or their habitat.

9. - 11 (Cancelled).

12. (Original): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 7.

13. (Previously presented): A pest resistant plant propagation material having adhered thereto at least one compound of the formula (I), as defined in claim 1.

14. (Cancelled).

15. (Previously presented): A pesticidal composition comprising at least one compound of the formula (III), as defined in claim 5, as an active compound, and at least one auxiliary.

16. (Previously presented): A pesticidal composition comprising at least one compound of the formula (V), as defined in claim 6, as an active compound, and at least one auxiliary.

17. (Previously presented): A method for controlling pests comprising applying a composition defined in claim 15 to the pests or their habitat.

18. (Previously presented): A method for controlling pests comprising applying a composition defined in claim 16 to the pests or their habitat.

19. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 15.
20. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 16.
21. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 5.
22. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 6.