Procesamiento de Señales en Comunicaciones

Objetivos:

Introducir al alumno en las técnicas clásicas de pre y posprocesamiento de señales asociadas a la transmisión y/o recepción de información en base al modelado de canales de comunicaciones. Se analizan aspectos de diseño de receptores digitales que utilizan modulaciones de banda estrecha y banda ancha (espectro disperso, OFDM).

Programa sintético

1. Modulación

- Técnicas PAM básicas, PAM pasabanda. Filtro acoplado.
- Modulación de pulsos ortogonales
- Combinación PAM y pulsos ortogonales

2. Diseño de Distancia Mínima

- Espacio de señales.
- Diseño en base a distancia mínima.
- Ancho de banda y dimensionalidad.

3. Desempeño en Ruido

- Procesos Gaussianos complejos. Probabilidad de error PAM.
- Desempeño de Distancia Mínima.
- Capacidad y Modulación.

4. Detección

- Detección señales conocidas en ruido Gaussiano.
- Detección óptima de PAM con ISI.
- Detector de secuencias: Algoritmo de Viterbi.

5. Ecualización Óptima

- Criterio de ISI nula.
- Métodos de ecualización generalizados.
- ISI y Capacidad de canal.
- Ecualizadores de complejidad reducida.

6. Modulación de portadoras múltiples

- Multiplexado por división de frecuencias ortogonales (OFDM)
- Modulación multicanal
- Modulación multitonos discretos (DMT)

Programa Analítico

1. Modulación

- Introducción.
 - Técnicas PAM básicas, Formato de pulsos
 - PAM bandabase. Criterio de Nyquist.
 - PAM pasabanda.
 - Filtro acoplado.
- Espectro disperso
- Modulación de pulsos ortogonales.
- Combinación PAM y pulsos ortogonales
 - Criterio de Nyquist generalizado.
 - Modulación de portadoras múltiples. CDMA.

2. Diseño de Distancia Mínima

- Espacio de señales.
 - Modulaciones en el espacio de señales
- Diseño en base a distancia mínima.
 - Aplicación a diferentes modulaciones
 - PAM pulsos aislados
 - Modulación de pulsos ortogonales
 - Combinación de PAM y pulsos ortogonales
- PAM con interferencia intersímbolo (ISI).
 - Criterio equivalente discreto
 - Caso especial: Pulsos ortogonales
 - Caso general
- Ancho de banda y dimensionalidad.
 - o Teorema de Landau Pollak
 - o Relación con el criterio de Nyquist generalizado
 - o Producto tiempo ancho de banda

3. Desempeño en Ruido del diseño de distancia mínima

- Procesos Gaussianos complejos.
 - Procesos Gaussianos circularmente simétricos
- Probabilidad de error con distancia mínima:
 - Resultados generales.
 - Cotas sobre la probabilidad de error
- Probabilidad de error PAM.
 - o Probabilidad de error de símbolo, bit, bloque
- Desempeño de Distancia Mínima.
 - o Ruido bandabase equivalente
 - Pulso aislado PAM
 - Pulsos ortogonales
 - o Combinación PAM pulsos ortogonales.
- Desempeño de Distancia Mínima para PAM con ISI.
 - Filtro acoplado de blanqueo

- Receptor de distancia mínima
- Espectro disperso
 - Ancho de banda y probabilidad de error
 - Generación de pulsos de banda ancha
 - Espectro disperso y la ISI, y/o interferencias.
- Capacidad y Modulación.
 - Probabilidad de error PAM
 - Capacidad del canal Gaussiano ideal
 - Comparaciones con SNR normalizada

4. Detección óptima

- Detección de un símbolo.
 - Observaciones discretas
 - Observaciones continuas
- Detección de un vector señal.
 - Detección de Máxima Verosimilitud (ML)
 - Detección de Maximum a priori (MAP)
 - Probabilidad de error para detector ML
- Detección de señales conocidas en ruido Gaussiano.
 - Señal recibida discreta
 - o Ruido blanco o ruido coloreado (Whitening matched Filter, WMF)
 - Recepción de tiempo continuo
 - o Estadística suficiente
- Detección no coherente óptima.
- Detección óptima de PAM con ISI.
 - WMF como estadística suficiente
 - Detector de secuencias ML (MLSD)
- Detector de secuencias: Algoritmo de Viterbi.
 - Señal mediante una máquina de estados finitos
 - Diagrama Trellis
 - Detectores de secuencia ML y MAP
 - Probabilidad de error

5. Ecualización Óptima

- Criterio de ISI nula (ZF).
 - Resultados usando WMF: figuras de mérito ML y MLSD
 - Ecualizador linear ZF: figura de mérito
 - Ecualizador de realimentación de decisión (DFE): figura de mérito cota
 optimalidad propagación de errores
 - Precodificación en transmisión
- Criterio de ecualización generalizados (MSE).
 - Modelo del canal limitaciones físicas
 - Error medio cuadrático (MSE)
 - o Ecualizador lineal: criterio ZF criterio MSE
 - o DFE: criterio ZF criterio MSE
 - MLSD

- Ecualización de espaciamiento fraccionario.
 - Muestreo y aliasing
 - Análisis en el dominio tiempo
 - Análisis en el dominio frecuencia
- Ecualizadores FIR.
- ISI y Capacidad de canal.
 - o Canal continuo "Water pouring". Canal pasabanda
 - Canal discreto
 - Relación con medias aritmética y geométrica
 - o Eficiencia espectral, relación señal a ruido
 - Relación de capacidad y el DFE-MSE
 - o Impacto de ISI en la capacidad
 - o Desempeño de LE y DFE
- Ecualizadores de complejidad reducida.
 - Estructura: Ecualizador lineal DFE
 - MSE mínimo (MMSE)
 - Algoritmo de gradiente
- Ecualizador lineal adaptativo.
 - o Estructura
 - o Convergencia de algoritmo de gradiente mejoras
- DFE adaptativo.
 - o MSE mínimo
 - Algoritmo de gradiente
- Ecualizador de espaciamiento fraccionario de complejidad reducida.
 - Unicidad solución
 - Drift de coeficientes
- Ecualización pasabanda.

6. Modulación de portadoras múltiples

- Multiplexado por división de frecuencias ortogonales (OFDM)
 - o Idea concepto Principio de ortogonalidad
 - Un mejor conjunto de pulsos ortogonales
 - Receptor del conjunto de pulsos ortogonales
 - Combatiendo ISI con prefijo cíclico
 - o Descripción en el dominio frecuencia
 - Aspectos básicos de ecualización
- Modulación multicanal
 - Capacidad del canal AWGN
 - o Partición del canal en tiempo continuo Propiedades
 - SNR geométrica
 - o Carga del sistema de transmisión multicanal
 - Interpretación del problema de optimización (water filling)
- Modulación multitonos discretos (DMT)
 - Transformada Discreta de Fourier
 - Descripción en el dominio frecuencia del canal
 - Sistema DMT basado en DFT

Bibliografía

Básica

- Digital Communication, E. A. Lee y D. G. Messerschmitt, 2nd ed., Ed. Kluwer 1994.
- Digital Communication, J.R. Barry, E. A. Lee y D. G. Messerschmitt, 3rd ed., Ed. Springer, 2004
- Communication Systems Engineering, 2nd ed., J. Proakis and M. Salehi, Ed. Pearson, 2001.

De consulta

- Digital Communications, J. G. Proakis, 4th edition Ed. McGraw-Hill, 2000.
- Digital Communications, S. Haykin, 3rd ed. Ed. Wiley 2006.