Testiranje razdiobe bioloških podataka u R-u

Lucija Kanjer, e-mail: <u>lucija.kanjer@biol.pmf.hr</u> 2024-11-11

Sadržaj praktikuma

- Uvod u rad u programskom okruženju R i osnovne funkcije, instaliranje programskih paketa
- · Unos podataka u programsko okruženje R, struktura objekata
- · Rad s objektima i podacima te definiranje bioloških varijabli u R-u
- · Grafički prikaz bioloških podataka i testiranje razdiobe podataka u R-u
- Primjeri osnovnih statističkih analiza kategoričkih i numeričkih varijabli u biološkim istraživanjima u R-u
- · Regresije i korelacije, linearni modeli bioloških podataka primjeri u R-u
- · Primjena parametrijskih statističkih testova bioloških podataka u R-u
- · Primjena neparametrijskih statističkih testova bioloških podataka u R-u
- Primjeri multivarijatnih analize bioloških podataka u R-u linearni modeli, klaster analize i ordinacijske analize

Sadržaj ove vježbe

Grafički prikazi

- · Faktori u R-u organizacija kategoričkih varijabli
- · izvoz (eksportiranje) grafa u dokument

Testiranje razdiobe bioloških varijabli

- histogram
- · Q-Q plot
- · Shapiro-Wilk test
- · deskriptivna statistika
- Cullen and Fray graf

Otvorite skriptu!

Materijali za ovu vježbu se nalaze na GitHub repoziroriju **APBI_2024** u mapi **05_Testiranje razdiobe**.

https://github.com/lucijakanjer/APBI_2024

Skripra 05_Testiranje razdiobe.R"

```
# Instalacija novih paketa
# install.packages() - popunite za pakete koje nemate, pazite navodnike!
# Učitavanje potrebnih paketa
library(ggplot2) # za crtanje grafova
library(fitdistrplus) # za fit-atanje ditribucije
## Loading required package: MASS
## Loading required package: survival
library(patchwork) # za prikaz više grafova
##
## Attaching package: 'patchwork'
## The following object is masked from 'package:MASS':
##
##
       area
```

Postavite radni direktorij

```
# Postavljanje radnog direktorija
getwd()

## [1] "C:/Users/Hrvoje/Documents/APUBI/05_Testiranje_razdiobe"

Primjer:
setwd("C:/Users/Računalo/Documents/ime_prezime/vjezba_5")
```

Ribe - novi set podataka

```
# Učitavanje seta podataka o ribama u jezerima grada Zagreba
ribe <- read.csv("ribe.csv", header = TRUE)</pre>
# Prealedaite set podataka!
str(ribe)
## 'data.frame': 30 obs. of 9 variables:
   $ duljina cm : num 30.5 28.1 28.7 37.9 36.8 ...
   $ velicina ribe : chr "subadultna" "subadultna" "subadultna" "adultna" ...
   $ masa g
              : num 65.8 53.1 35.7 73.1 73.1 ...
   $ brzina plivanja : num 2.95 2.13 2.81 2.18 2.41 1.24 2.32 2.04 1.74 2.1 ...
   $ starost riba : num 6.46 51.61 8.52 3.27 10.35 ...
##
   $ broj jaja : int 129 96 87 105 96 108 109 117 83 98 ...
   $ broj parazita : int 6 4 4 4 6 7 2 5 3 5 ...
   $ temperatura vode: num 11.9 12.8 18.1 15.9 15.9 ...
             : chr "Bundek" "Bundek" "Maksimir" "Maksimir" ...
##
   $ jezero
```

Ponovimo tipove varijabli

- numeric = numerička kontinuirana varijabla
- · chraracter = tekstualna (kategorička) varijabla
- integer = numerička diskretna (cjelobrojna) varijabla
- factor = ???

Uvijek pogledajmo kako izgleda tablica!

print(ribe)

##	duljina_cm	velicina_ribe	masa_g	brzina_plivanja	starost_riba	broj_jaja
## 1	30.46	subadultna	65.76	2.95	6.46	129
## 2	28.13	subadultna	53.12	2.13	51.61	96
## 3	28.71	subadultna	35.74	2.81	8.52	87
## 4	37.86	adultna	73.11	2.18	3.27	105
## 5	36.78	adultna	73.11	2.41	10.35	96
## 6	28.66	subadultna	33.10	1.24	0.20	108
## 7	33.02	subadultna	47.96	2.32	1.61	109
## 8	26.06	subadultna	96.88	2.04	2.79	117
## 9	25.92	subadultna	65.09	1.74	26.00	83
## 10	33.64	subadultna	50.12	2.10	1.91	98
## 11	29.32	subadultna	117.74	1.75	15.24	96
## 12	29.02	subadultna	38.22	2.03	7.10	99
## 13	26.43	subadultna	94.10	2.98	5.67	96
## 14	23.72	juvenilna	62.16	2.31	16.80	83
## 15	23.85	juvenilna	39.36	1.86	29.57	119
## 16	26.80	subadultna	44.38	1.98	6.00	92
## 17	25.46	subadultna	66.93	2.49	5.29	105
## 18	36.05	adultna	88.67	2.65	16.90	101
## 19	34.30	subadultna	30.60	2.25	10.89	123

Faktori u R-u - organizacija kategoričkih varijabli

U R-u, faktori su strukture podataka koje se koriste za predstavljanje **kategoričkih podataka**, kao što su spol, razine obrazovanja ili bilo koja kvalitativna karakteristika s ograničenim skupom vrijednosti (koji se nazivaju razinama).

Faktori su posebna vrsta vektora koji pohranjuju ove kategoričke vrijednosti kao cjelobrojne kodove (*integers*), ali prikazuju razine kao nizove, što ih čini korisnim za statističku obradu i vizualizaciju podataka.

Ključne karakteristike faktora

- · Razine (*levels*): Ovo su jedinstvene vrijednosti koje faktor može poprimiti. Na primjer, faktor "Spol" može imati razine "Muški" i "Ženski".
- · Redoslijed: Faktori mogu biti neuređeni ili uređeni (*ordered*). Poredani faktori održavaju poredak ili hijerarhiju među razinama, korisni za redne podatke kao što su "Nisko", "Srednje", "Visoko".
- · Interno pohranjeni kao cijeli brojevi (*integers*): Svaka razina se interno preslikava na cjelobrojnu vrijednost, što faktore čini memorijski učinkovitima.

Koje kategoričke varijable nalazimo u setu podataka o ribama?

Koja varijabla je nomimalna, a koja ordinalna?

Nominalna kategorička varijabla

```
### Nominalna kategorička varijabla - broj riba po jezerima
ggplot(ribe, aes(x = jezero)) + geom_bar(aes(fill = jezero)) + theme_minimal()
```


Abecedni redoslijed - zadani prikaz u R-u

```
# Koji je problem? R crta kategorije abecednim redom!
# Provjerite tip varijable jezero!
class(ribe$jezero)

## [1] "character"

str(ribe$jezero)

## chr [1:30] "Bundek" "Maksimir" "Maksimir" "Maksimir" "Bundek" ...
```

Narebda factor()

```
# Koristimo naredbu factor() da postavimo padajući poredak varijable jezero
ribe$jezero <-
  factor(ribe$jezero,
         levels = names(sort(table(ribe$jezero), decreasing = TRUE)))
# Ponovo provjerite tip varijable i nacrtajte barplot! Što se promjenilo?
class(ribe$jezero)
## [1] "factor"
str(ribe$jezero)
## Factor w/ 3 levels "Maksimir", "Bundek", ...: 2 2 1 1 1 2 1 3 1 3 ...
```

$ggplot(ribe, aes(x = jezero)) + geom_bar(aes(fill = jezero)) + theme_minimal()$

Ordinalna kategorička varijabla

```
### Ordinalna kategorička varijabla - broj riba po veličinskoj kategoriji
graf_velicina <- ggplot(ribe, aes(x = velicina_ribe)) +
  geom_bar(aes(fill = velicina_ribe)) + theme_minimal()
print(graf_velicina)</pre>
```



```
# Provjerite tip varijable velicina riba!
class(ribe$velicina ribe)
## [1] "character"
str(ribe$velicina_ribe)
## chr [1:30] "subadultna" "subadultna" "subadultna" "adultna" "adultna" ...
# Koristimo naredbu factor() da ručno uredimo poredak ove ordinalne kategoričke varijable
ribe$velicina ribe <-
  factor(ribe$velicina ribe,
         levels = c("juvenilna", "subadultna", "adultna"), ordered = TRUE)
```

```
# Ponovo provjerite tip varijable i nacrtajte barplot! Što se promjenilo?
graf_velicina <- ggplot(ribe, aes(x = velicina_ribe)) +
  geom_bar(aes(fill = velicina_ribe)) + theme_minimal()
print(graf_velicina)</pre>
```


Eksport grafa iz ggplot-a

```
### Eksportiranje ggplot grafa kao slike ili PDF dokumenta

ggsave(filename = "graf_velicina.jpg", # naziv JPG slike
    plot = graf_velicina, # koji objekt želimo eksportirati
    width = 8, height = 6, # dimenzije u inčima
    dpi = 300) # dots per inch

ggsave(filename = "graf_velicina.pdf", # naziv JPG slike
    width = 8, height = 6, # dimenzije u inčima
    device = cairo_pdf) # naziv metode eksporta za PDF

# Je li ova veličina grafa dobra za A4 dokument?
# Izmjenite dimenzije tako da se font i podaci jasno vide!
```

Ispitivanje normalnosti ditribucije

- 1. Histogram
- 2. Q-Q plot
- 3. Shapiro-Wilk test
- 4. Cullen-Fray plot

1. Histogram

Histogram duljine ribe (cm)


```
# Histogram starosti riba
hist(ribe$starost_riba, main = "Histogram starosti ribe (godine)",
    xlab = "Starost (godina)", col = "lightgreen", border = "black")
```

Histogram starosti ribe (godine)

Koju razliku primjećijete između dva histograma?

2. Q-Q plot

- · Q-Q plot (Quantile-Quantile plot) je grafički alat koji pomaže u procjeni da li skup podataka slijedi određenu distribuciju, najčešće normalnu.
- Na grafu su naneseni kvantili podataka iz uzorka (na y-osi) u odnosu na kvantile teoretske distribucije (na x-osi) koju želimo provjeriti (u ovom slučaju, normalnu distribuciju).
- Ako podaci prate normalnu distribuciju, točke na Q-Q grafu bi trebale slijediti približno ravnu liniju.

2. Q-Q plot
qqnorm(ribe\$duljina_cm, main = "Q-Q plot za duljinu ribe")
qqline(ribe\$duljina_cm, col = "red")

Q-Q plot za duljinu ribe

Interpretacija Q-Q plota za duljinu ribe (duljina_cm)

- Ako je duljina_cm varijabla koja bi trebala biti normalno distribuirana, tada će točke na grafu pratiti ravnu liniju (naznačenu crvenom bojom) kroz čitav raspon podataka.
- Odstupanja od linije (posebno značajna odstupanja na početku ili kraju skale) ukazuju na to da podaci odstupaju od normalne distribucije.
- Na grafu možemo očekivati da će točke većinom pratiti liniju, uz manja odstupanja zbog slučajnih varijacija u uzorku.

```
qqnorm(ribe$starost_riba, main = "Q-Q plot za starost riba")
qqline(ribe$starost_riba, col = "red")
```

Q-Q plot za starost riba

Koju razliku primjećujete u izgledima Q-Q plota?

Interpretacija Q-Q plota za starost ribe (starost_riba)

- Varijabla starost_riba je eksponencijano distribuirana distribuirana, što znači da njezini podaci neće imati normalnu distribuciju. Umjesto toga, podaci su pozitivno asimetrični – koncentrirani su bliže nuli i imaju dugu desnu stranu raspodjele.
- Na Q-Q plotu, eksponencijalno distribuirani podaci obično pokazuju značajna odstupanja od crvene linije (posebno u desnom kraju raspona), jer kvantili eksponencijalne distribucije ne odgovaraju kvantilima normalne distribucije.

3. Shapiro-Wilk test

Shapiro-Wilk test koristi se za procjenu normalnosti distribucije podataka. Ovaj test daje p-vrijednost, na temelju koje možemo donijeti zaključak o tome jesu li podaci iz uzorka normalno distribuirani.

Tumačenje rezultata Shapiro-Wilk testa

Hipoteze testa:

- · Nulta hipoteza (H₀): Podaci su normalno distribuirani.
- · Alternativna hipoteza (H1): Podaci nisu normalno distribuirani.

p-vrijednost:

- Ako je p-vrijednost > 0.05: Nema dovoljno dokaza da odbacimo nultu hipotezu. To znači da podaci mogu biti normalno distribuirani (prihvatamo pretpostavku normalnosti).
- Ako je p-vrijednost ≤ 0.05: Postoje značajni dokazi protiv nulte hipoteze, što znači da podaci vjerojatno nisu normalno distribuirani (odbijamo pretpostavku normalnosti).

```
# 3. Shapiro-Wilk test
shapiro.test(ribe$duljina cm)
##
    Shapiro-Wilk normality test
##
## data: ribe$duljina_cm
## W = 0.96505, p-value = 0.414
shapiro.test(ribe$starost_riba)
##
##
    Shapiro-Wilk normality test
##
## data: ribe$starost_riba
## W = 0.83155, p-value = 0.0002609
# Za koju varijablu je Shapiro-Wilk test značajan? Što to znači?
```

Shapiro-Wilk test je posebno koristan za manje uzorke, jer daje dobar uvid u normalnost podataka.

U ovom slučaju:

- duljina riba je normalno distribuirana varijabla jer je p-vrijednost = 0.414 što je veće od 0.05
- starost ribe nije normalno distribuirana varijabla jer je p-vrijednost = 0.0002609,
 što je manje od 0.05

Napomena: Za veće uzorke, Shapiro-Wilk test može biti previše osjetljiv i pokazivati značajna odstupanja čak i kod blagih odstupanja od normalnosti.

4. Cullen and Fray graf

- Cullen-Fray graf je vizualni alat za procjenu distribucije podataka i koristi se u funkciji descdist() iz R paketa fitdistrplus.
- Ovaj graf prikazuje kurtosis (koncentriranost) i skewness (nagnutost) podataka kako bi nam pomogao odrediti koja distribucija najbolje odgovara skupu podataka.
- · Analizom gdje podaci "padaju" na ovom grafu, možemo usporediti njihovu poziciju s teoretskim distribucijama.

Cullen and Frey graph


```
## summary statistics
## -----
## min: 21.24 max: 38.05
## median: 28.95
## mean: 29.96833
## estimated sd: 4.441661
## estimated skewness: 0.1611543
## estimated kurtosis: 2.190404
```

Interpretacija rezultata za varijablu duljina_cm (normalna distribucija)

- Ako su točke blizu područja normalne distribucije (skewness ≈ 0 i kurtosis ≈ 3), to potvrđuje da podaci duljina_cm odgovaraju normalnoj distribuciji.
- Ako postoji mala varijacija, očekujemo da će se točke nalaziti blizu normalne distribucije, s manjim odstupanjima zbog slučajnih varijacija.

Cullen and Frey graph


```
## summary statistics
## -----
## min: 0.2 max: 51.61
## median: 8.435
## mean: 12.721
## estimated sd: 12.63815
## estimated skewness: 1.612995
## estimated kurtosis: 5.680622
```

Interpretacija rezultata za varijablu starost_riba (eksponencijalna distribucija)

- Visoka vrijednost za skewness i umjereno visoka za kurtosis ukazuju na distribuciju s jednim dominantnim repom, što je karakteristično za eksponencijalnu distribuciju..
- Ako su točke blizu područja eksponencijalne distribucije, to potvrđuje da podaci starost_riba imaju karakteristike te distribucije, što je u skladu s očekivanom dugom desnom stranom i koncentracijom podataka bliže nuli.

Eksportiranje grafova u base R-u

Zadaci

- 1.a Eksportirajajte napravljenje grafove, zalijepite ih u Word dokument.
- 1.b Objasnite svaki od korištenih grafova i testova.
- 2.a Napravite ispitivanje normalnosti za varijablu "brzina_plivanja".
- 2.b Je li varijabla normalno distribuirana? Napravite dokument izvještaja.
- 3.a Napravite ispitivanje normalnosti za varijablu "broj_jaja".
- 3.b Je li varijabla normalno distribuirana? Napravite dokument izvještaja.