ARCHITETTURA DEGLI ELABORATORI

A.A. 2020-2021

Università di Napoli Federico II Corso di Laurea in Informatica

Docenti

Proff. Luigi Sauro gruppo 1 (A-G)

Silvia Rossi gruppo 2 (H-Z)

Memory Arrays

- Memorizzare efficacemente una grossa quantità di dati
- 3 tipologie:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)
- dato a M-bit letto/scritto su di un unico indirizzo a N-bit

Esempio

- $2^2 \times 3$ -bit array
- Numero parole: 4
- Lunghezza parole: 3-bits
- All'indirizzo 10 corrisponde la parola 100

Memory Array

Wordline:

- Agisce come un enable
- Seleziona una riga nella memoria
- Corrisponde ad un unico indirizzo
- Solo una wordline per volta è attivata

ROM Storage

ROM via porte logiche

ROM Logic

$$\begin{array}{c|cccc}
A_1 & A_2 & D_2 \\
A_1 & D_2 & D_3 \\
D_1 & A_3 & D_4 \\
D_2 & A_1 & A_0
\end{array}$$

$$\begin{array}{c|cccc}
Data_1 & = \overline{A_1} + A_0 \\
Data_0 & = \overline{A_1} \overline{A_0}
\end{array}$$

Esempio

Usare un $2^2 \times 3$ -bit ROM per implementare funzioni booleane:

$$-X = AB$$

$$-Y = A + B$$

$$-Z = A\overline{B}$$

Esempio

Usare un $2^2 \times 3$ -bit ROM per implementare funzioni booleane:

$$-X = AB$$

$$-Y = A + B$$

$$-Z = A\overline{B}$$

Lookup tables (LUTs)

$$Data_{2} = A_{1} \oplus A_{0}$$

$$Data_{1} = \overline{A}_{1} + A_{0}$$

$$Data_{0} = \overline{A}_{1}\overline{A}_{0}$$

Logiche con memory array

Sono chiamate *lookup tables* (LUTs): si "guardano" gli output per ogni combinazione di input (indirizzo)

Logic Arrays

- PLAs (Programmable logic arrays)
 - AND array seguito da un OR array
 - solo circuiti combinatori (SOP)
 - Le connessioni interne sono fisse
- FPGAs (Field programmable gate arrays)
 - Array elementi logici (LE)
 - Circuiti combinatori e sequenziali
 - Programmable internal connections

PLAs

- $X = \overline{ABC} + AB\overline{C}$
- $Y = A\overline{B}$

Il seguente diagramma di transizione per una macchina di Moore ha due input $A \in B$ e un output X. Indicare le formule SOP **minime** relative alle due variabili di stato $(S_1 \in S_0)$.

Codifica dello stato:

stato	S_1	S_0
S0	0	0
S1	0	1
S2	1	0
S3	1	1

Formule minime SOP:

$$S_1': \bar{B}\bar{S_0}$$

 $S_0': \bar{A}\bar{B} + B\bar{S_0} + \bar{B}S_0$

Si disegni il grafo di un automa di Moore con un solo input ed un solo output che ritorna 1 sse gli ultimi lo stream di ingresso inizia e finisce con la sequenza 01. [Esempi positivi: 01; 0110111101;] [Esempi negativi: 1101; 0111011; 010010]

Si disegni il grafo di un automa di Moore con un solo input ed un solo output che ritorna 1 sse gli ultimi 3 input letti sono 1. [Esempi positivi: 0111; 00111111;] [Esempi negativi: 1011; 01110; 11]