中国海洋大学全日制本科课程期末考试试卷

<u>2014</u>年_秋_季学期 考试科目:<u>高等数学Ⅱ</u> 学院:<u>数学科学学院</u>

试卷类型: A 卷 命题人: 高等数学命题组 审核人:

考试说明: 本课程为闭卷考试, 共 3 页, 除考场规定的必需用品外不用携带其它文具(例 如计算器等)。答题时请保持卷面整洁。将第一、二大题答案直接写在原题相应空白处;将第三、 四大题的答案按照题目顺序写在答题纸上。

题号	-	 11	四	总分
得分				

一、选择题(共 6 题, 每题 4分, 共 24 分)

- 1. 下列论断正确的是(
- A 函数 f(x) 在 $x = x_0$ 处极限存在当且仅当 f(x) 在 $x = x_0$ 处左极限存在且右极限存在。
- B 函数 f(x) 在 $x = x_0$ 处连续当且仅当 f(x) 在 $x = x_0$ 处左连续且右连续。
- \mathbb{C} 函数 f(x) 在 $x = x_0$ 处导数存在当且仅当 f(x) 在 $x = x_0$ 处左导数存在且右导数存在。
- D 上述 A、B、C 三者皆对。
- 2. 下列计算正确的是()
- A $\lim_{x\to 0} (\frac{1}{x} \frac{1}{x^2}) = \lim_{x\to 0} \frac{1}{x} \lim_{x\to 0} \frac{1}{x^2} = \infty \infty = 0$
- B 因为 $x \to 0$ 时, $\tan x \sim x$, $\sin x \sim x$, 所以 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{x x}{x^3} = \lim_{x \to 0} \frac{0}{x^3} = \lim_{x \to 0} 0 = 0$ 。
- C 由洛必达法则, $\lim_{x\to\infty} \frac{x+\sin x}{x} = \lim_{x\to\infty} (1+\cos x)$,但由于 $\lim_{x\to\infty} \cos x$ 不存在,所以 $\lim_{x\to\infty} \frac{x+\sin x}{x}$ 不存在。
- D $\int_{-1}^{1} \frac{1}{x^2} dx = \int_{0}^{1} \frac{1}{x^2} dx + \int_{-1}^{0} \frac{1}{x^2} dx$, 面 $\int_{0}^{1} \frac{1}{x^2} dx = -\frac{1}{x} / \frac{1}{0} = +\infty$, 故 $\int_{-1}^{1} \frac{1}{x^2} dx$ 发散。
- 3. 函数 $f(x) = \frac{1 + e^{\frac{1}{x}}}{2 + 3e^{\frac{1}{x}}}$,则 x = 0 是 f(x) 的(
- A 连续点。
- B 可去间断点。
- C 跳跃间断点。 D 无穷间断点。
- 4. 函数 f(x) 在 $x = x_0$ 处可导且导数不为零, Δy 与 dy 分别是 f(x) 在 $x = x_0$ 处与自变量增量 Δx 对 应的函数增量与微分,则当 $\Delta x \rightarrow 0$ 时(
- A $\Delta y dy$ 是比 dy 低阶的无穷小。 B $\Delta y dy$ 是比 dy 高阶的无穷小。
- $C \Delta y dy 与 dy 是同阶无穷小。$
- D $\Delta y dy$ 与 dy 是等价无穷小。

5. 曲线 f(x)=x(x-1)(2-x) 与 x 轴所围图形的面积可表示为 ()

A
$$-\int_0^2 f(x)dx$$
.

B
$$\int_0^1 f(x) dx - \int_1^2 f(x) dx$$
.

$$C - \int_0^1 f(x)dx + \int_1^2 f(x)dx$$
 D $\int_0^2 f(x)dx$ o

D
$$\int_0^2 f(x)dx$$
.

6. 设直线为
$$L$$
: $\begin{cases} x+3y+2z+1=0\\ 2x-y-10z+3=0 \end{cases}$, 平面为 π : $4x-2y+z-2=0$,则()

A
$$L \parallel \pi$$
 .

B
$$L \subset \pi$$

$$C L \perp \pi$$

D
$$L$$
与 π 斜交。

二、填空题(共 7 题, 每题 3 分, 共 21 分)

1.
$$x \to 0$$
 时,1-cos x^2 与 x^n 是同阶无穷小,则 $n = _____$ 。

2. 已知函数
$$y = y(x)$$
 满足 $x + y = \tan y$,则 $dy =$ ________。

3. 己知:
$$\cos^{(n)} x = \cos(x + n \cdot \frac{\pi}{2})$$
, $f(x) = \cos(2x)$, 则 $f^{(100)}(\pi) = \underline{\hspace{1cm}}$

4.
$$\lim_{x \to \infty} \left[\frac{1}{x} \int_0^x (1+t^2) e^{t^2 - x^2} dt \right] = \underline{\hspace{1cm}}_{\circ}$$

5. 曲线
$$y = -6x^2 + 4x^4$$
 的凸区间为_____。

6.
$$y = x^2$$
, $x = 2$, $y = 0$ 所围图形绕 x 轴旋转所得旋转体体积为______。

7. 直线
$$L_1: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$$
 与 $L_2: \begin{cases} x-y=6 \\ 2y+z=3 \end{cases}$ 的夹角为______。

三、计算题(共 5 题, 每题 9 分, 共 45 分)

1. 已知函数
$$y = y(x)$$
满足
$$\begin{cases} x = \frac{1}{4}(t+1)^2 \\ y = \frac{1}{4}(t-1)^2 \end{cases}$$
, 求 $\frac{d^2y}{dx^2}$ 。

2. 求函数 $y = (x-1)\sqrt[3]{x^2}$ 的极值。

- 3. 设 $f(x) = e^{|x-1|}$, 求 f(x) 的原函数 F(x) 。
- 4. 求星形线 $x = a\cos^3 t$, $y = a\sin^3 t$ $(0 \le t \le 2\pi)$ 的全长。
- 5. 计算广义积分 $I = \int_0^{+\infty} e^{-2x} \sin x dx$ 。

四、证明题(共 2 题, 每题 5 分, 共 10 分)

- 1. 证明: 当x > 0时, $\ln \frac{e^x 1}{x} < x$ 。
- 2. 设 f(x) 在 [0,1] 上可微,且 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$ 。运用微分中值定理以及积分中值定理相关知识证明:存在 $\xi \in (0,1)$ 使得 $f(\xi) + \xi f'(\xi) = 0$ 。