Chapitre 7

Le type structure – La définition d'un type

L.ZERTAL

Chapitre 7 Le type structure – La définition d'un type

I Le type structure

Pour représenter un ensemble d'informations hétérogènes, de *types différents*, on utilise un constructeur spécifique : le type structure.

I.1 Exemple

Pour représenter les notes et les noms des étudiants :

Pour accéder aux notes d'un étudiant donné, on utilise l'accès associatif.

Autre représentation :

On définit une structure de données qui permet de représenter ensemble les nom et prénom de l'étudiant ainsi que ses notes (informations qui sont de natures différentes).

Cette structure est composé d'éléments, appelés champs, de types différents :

nom (chaine)

prenom (chaine)

Tabnote (T_Tabnote)

L.ZERTAL

Chapitre 7 Le type structure – La définition d'un type

```
On définit un nouveau type pour décrire cette forme :
```

```
○T_Etudiant (type) = structure

( nom (chaine); prenom (chaine);

Tabnote (T_Tabnote)
```

Avec T_Tabnote (type) = table [T_Mat] réel

et T_Mat (type) = (noteA, noteF, noteM) (type énuméré)

Une variable de ce type : ET (T_Etudiant)

est une structure composée de 3 champs : nom, prenom et Tabnote.

Pour gérer l'ensemble des étudiants avec les nom + les notes, on définit un nouveau type table :

Nbemax(cste/entier=1000)

T_Nbetud (type) = 1..Nbemax

T_Promo (type) = table [T_Nbetud] T_Etudiant

1 Nbemax

noteA noteF noteM
nom prenom Tabnote

L.ZERTAL

Chapitre 7 Le type structure – La définition d'un type

Exemple:

Soit la variable $Promo(T_Promo) \Rightarrow$ table de Nbemax étudiants dont le contenu est de type $T_Etudiant$.

Pour accéder à la note de français de l'étudiant numéro i ⇒

Pour accéder au nom de l'étudiant numéro i ⇒

RTAL

Calcul de la moyenne de chaque étudiant :		
algo	Ord	Lexique
pour e ← 1 à Nbe faire ecrire (Promo[e].nom, Promo[e].prenom, moy) moy ← Moyenne (Promo[e].Tabnote, Tabcoef) fpour suite algo		Cstes+Types+ Variables T_Tabcoef (type) = table [T_Mat] reel Tabcoef (T_Tabcoef) e (T_Nbetud) Nbe (T_Nbetud) moy (reel) Moyenne(fonction/reel)
fonction Moyenne(TN : T_Tabnote; TC : T_Tabcoef) : reel	Ord	Lexique
pour n ← noteM à noteF faire somnotes ← somnotes + TN[n] * TC[n] fpour suite calculs		n (T_Mat) somnotes (reel)

L.ZERTAL 7

Chapitre 7 Le type structure – La définition d'un type

I.2) Définition

Un type structure est un type qui permet de définir une information représentée par un ensemble de données de types différents.

Syntaxe:

RTAL 8

Utilisation:

L'accès aux champs d'une structure se fait en utilisant la notation pointée :

nom_variable.nom_champ

Exemple:

Soit E (T_Etudiant):

- ➤ ecrire(E.nom)
- ▶ lire(E.prenom)
- ➤ lire(E.TabNote[noteM])

I ZERTA

Chapitre 7 Le type structure – La définition d'un type

<u>L'affectation</u>:

On peut affecter 2 variables de même type structure. Exemple :

Soient E1, E2 (T_Etudiant)

E1
$$\leftarrow$$
 E2 \iff E1.nom \leftarrow E2.nom E1.prenom \leftarrow E2.prenom E1.Tabnote \leftarrow E2.Tabnote

L'affectation d'une table à une autre est possible si la table est un champ d'une structure (sinon l'affectation d'une table à une autre se fait case par case en algorithmique).

II Construction d'un type

On construit un type dans le but d'utiliser une typologie la plus proche possible des informations à manipuler. Cela permet par conséquent de ne manipuler ces données qu'à travers les opérations spécifiques au type créé.

Quel type créer?

Une information sera décrite par :

- ✓ Un type scalaire si elle appartient à un ensemble de valeurs connues et ordonnées
- √ Un type intervalle si elle appartient à un sous-ensemble fini d'un type scalaire
- ✓ Un booléen, un entier, un caractère, une chaîne, un réel si elle s'apparente à un type simple
- ✓ Un type table si c'est un ensemble fini de valeurs de même type
- ✓ Un type structure si c'est un ensemble d'informations de types différents

L.ZERTAL

Chapitre 7 Le type structure – La définition d'un type

<u>Exemple</u>: Soit la variable Info (T_Departement).

❖ Note de français de l'étudiant n°4 de 1ère année est donnée par :

Info.Lesforms[B1][4].Notes[NoteF] (qui est un réel)

avec:

Info est de type *structure*Info.Lesforms est de type *table*Info.Lesforms[B1] est de type *table*Info.Lesforms[B1][4] est de type *structure*Info.Lesforms[B1][4].Notes est de type *table*

❖ Nom du chef de département : Info.Chef.nom