Gráficos de Controle para a média via *Neoteric*Ranked Set Sampling

Guilherme P. da Silva Cesar Augusto Taconeli Walmes Marques Zeviani Isadora Ap. Sprengoski

Universidade Federal do Paraná Curitiba, 3 de Fevereiro de 2020

Sumário

Introdução

Delineamentos Amostrais Baseados em Conjuntos Ordenados

Controle Estatístico de Processos

Estudo de Simulação

Simulação de aplicação em dados reais

Ilustração de uma Linha de Produção

Fonte: CHAPLIN (1936)

Exemplo de Fluxo para Realizar o Monitoramento de uma Linha de Produção

- Escolher um dado delineamento amostral
 - Amostragem Aleatória Simples
 - Delineamentos amostrais baseados em conjuntos ordenados
 - Amostragem por Conjuntos Ordenados (ACO)
 - Neoteric Ranked Set Sampling (NRSS)
- Controle Estatístico de Processos (CEP)
 - Gráficos de controle
 - Comprimento Médio de Sequência

Objetivos

- Analisar o desempenho do delineamento NRSS no contexto do CEP para a construção de gráficos de controle para a média, por meio de um estudo de simulação e comparar com os demais delineamentos baseados em ranqueamento de amostras.
- Aplicação do NRSS em dados reais;
- Propor um estimador da variância do estimador da média via NRSS e estudar seu viés relativo via simulação;

Delineamentos Amostrais Baseados em Conjuntos Ordenados

Amostragem por Conjuntos Ordenados (ACO)

- Proposto por: MCINTYRE (1952)
- McIntyre constatou que a ACO é um método mais eficiente que à AAS quando as unidades amostrais são de difícil acesso ou de cara mensuração, sendo possível ordenar as unidades amostrais por julgamento pessoal ou algum outro procedimento de baixo custo, sem de fato mensurar a variável de interesse.

$$\begin{cases} \text{Conjunto 1} & \text{Conjunto 2} & \text{Conjunto 3} & \text{Conjunto 4} & \text{Conjunto 5} \\ \hline (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) \\ \hline (X_{(2)},Y_{[2]}) & \hline (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) \\ \hline (X_{(3)},Y_{[3]}) & (X_{(3)},Y_{[3]}) & \hline (X_{(3)},Y_{[3]}) & (X_{(3)},Y_{[3]}) & (X_{(3)},Y_{[3]}) \\ \hline (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) & \hline (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) \\ \hline (X_{(5)},Y_{[5]}) & (X_{(5)},Y_{[5]}) & (X_{(5)},Y_{[5]}) & \hline (X_{(5)},Y_{[5]}) \\ \end{cases}$$

Median Ranked Set Sampling (MRSS)

MUTTLAK (1997) propôs o MRSS como uma alternativa à ACO, e com o objetivo de propor estimadores mais precisos para a média de distribuições simétricas.

$$\begin{pmatrix} \text{Conjunto 1 Conjunto 2 Conjunto 3 Conjunto 4 Conjunto 5} \\ (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) \\ (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) \\ \hline (X_{(3)},Y_{[3]}) & \hline (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) \\ (X_{(5)},Y_{[5]}) & (X_{(5)},Y_{[5]}) & (X_{(5)},Y_{[5]}) & (X_{(5)},Y_{[5]}) \end{pmatrix}$$

Extreme Ranked Set Sampling (ERSS)

 Proposto por SAMAWI; AHMED; ABU-DAYYEH (1996) com o intuito de reduzir os erros de ordenação;

$$\begin{pmatrix} \text{Conjunto 1} & \text{Conjunto 2} & \text{Conjunto 3} & \text{Conjunto 4} & \text{Conjunto 5} \\ \hline (X_{(1)},Y_{[1]}) & \hline (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) & (X_{(1)},Y_{[1]}) \\ \hline (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) & (X_{(2)},Y_{[2]}) \\ \hline (X_{(3)},Y_{[3]}) & (X_{(3)},Y_{[3]}) & \hline (X_{(3)},Y_{[3]}) & (X_{(3)},Y_{[3]}) \\ \hline (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) & (X_{(4)},Y_{[4]}) \\ \hline (X_{(5)},Y_{[5]}) & (X_{(5)},Y_{[5]}) & \hline (X_{(5)},Y_{[5]}) & \hline (X_{(5)},Y_{[5]}) \\ \hline \end{pmatrix}$$

Estudo comparativo

- MUTTLAK; AL-SABAH (2010) apresentaram um estudo via simulação comparando os delineamentos amostrais AAS, ACO, ERSS e MRSS no contexto de CEP, considerando diferentes níveis de correlação e alteração na média do processo quanto ao CMS.
 - Comprovaram que o MRSS supera os demais delineamentos no monitoramento da média de processos com base em gráficos de controle.

Neoteric Ranked Set Sampling (NRSS)

- Proposto por: ZAMANZADE; AL-OMARI (2015)
- NRSS é uma alteração no delineamento original da ACO, que consiste na ordenação das k² unidades amostrais em um único conjunto, ao invés de k conjuntos de k unidades.
- Seleção de amostras:

Seleciona-se a [(i-1)k+I]-ésima unidade amostral para mensuração da variável de interesse, para i variando de 1,...,k. Se k é ímpar, $I=\frac{k+1}{2}$; se ambos k e i são pares, então $I=\frac{k}{2}$; mas se k é par e i é ímpar, então $I=\frac{k+2}{2}$.

Neoteric Ranked Set Sampling (NRSS)

Ilustração de Seleção de Amostras via NRSS para k = 3 1° Passo:

$$(X_1, Y_1), (X_2, Y_2), (X_3, Y_3), (X_4, Y_4), (X_5, Y_5),$$

 $(X_6, Y_6), (X_7, Y_7), (X_8, Y_8), (X_9, Y_9).$

2º Passo:

$$(X_{(1)}, Y_{[1]}), (X_{(2)}, Y_{[2]}), (X_{(3)}, Y_{[3]}), (X_{(4)}, Y_{[4]}), (X_{(5)}, Y_{[5]}), (X_{(6)}, Y_{[6]}), (X_{(7)}, Y_{[7]}), (X_{(8)}, Y_{[8]}), (X_{(9)}, Y_{[9]}),$$

3º Passo:

$$(X_{(1)}, Y_{[1]}), (X_{(2)}, Y_{[2]}), (X_{(3)}, Y_{[3]}), (X_{(4)}, Y_{[4]}), (X_{(5)}, Y_{[5]}), (X_{(6)}, Y_{[6]}), (X_{(7)}, Y_{[7]}), (X_{(8)}, Y_{[8]}), (X_{(9)}, Y_{[9]}).$$

Amostras Selecionadas - *Neoteric Ranked Set Sampling* (NRSS)

Tabela 1: Representação das posições das unidades amostrais via NRSS, a serem selecionadas de uma amostra de tamanho k^2 , após ordenação.

k	k^2	Posições das unidades amostrais selecionadas
3	9	2, 5 e 8
4	16	3, 6, 11 e 14
5	25	3, 8, 13, 18 e 23
6	36	4, 9, 16, 21, 28 e 33

Neoteric Ranked Set Sampling (NRSS)

O estimador da média populacional via *NRSS* é não viesado se a ordenação for perfeita e se a distribuição da variável de interesse for simétrica, sendo definido por:

$$\bar{Y}_{NRSS} = \frac{1}{nk} \sum_{j=1}^{n} \sum_{i=1}^{k} Y_{[(i-1)k+l]j}$$

A variância de \bar{Y}_{NRSS} é dada por:

$$Var(\bar{Y}_{NRSS}) = \frac{1}{nk^2} \sum_{j=1}^{n} \sum_{i=1}^{k} Var(Y_{[(i-1)k+l]j}) + \frac{2}{nk^2} \sum_{j=1}^{n} \sum_{i < i'}^{k} Cov(Y_{[(i-1)k+l]j}, Y_{[(i'-1)k+l]j}),$$

Controle Estatístico de Processos

Controle Estatístico de Processos

- ► Garantir a qualidade do produto final. (↑ Qualidade ↓ Variabilidade)
- Variabilidade de um processo
 - Causas Aleatórias
 - Causas Atribuíveis
- Processo sob controle
- Monitoramento do processo
 - Gráficos de Controle
 - CMS

Gráficos de Controle para a Média do Processo

Proposto por SHEWHART (1924), a forma geral para a construção de gráficos de controle:

$$LIC = \mu_0 - A\sqrt{Var(\bar{Y}_{AAS})} = \mu_0 - A\frac{\sigma_{0_{\bar{Y}_{AAS}}}}{\sqrt{k}}$$
 $LC = \mu_0$

$$LSC = \mu_0 + A\sqrt{Var(\bar{Y}_{AAS})} = \mu_0 + A\frac{\sigma_{0_{\bar{Y}_{AAS}}}}{\sqrt{k}}$$

Úteis para identificar alteração na média do processo

Exemplos de Gráficos de Controle

Processo Operando sob Controle

Exemplos de Gráficos de Controle

Processo sob Descontrole

Comprimento Médio da Sequência (CMS)

Segundo MONTGOMERY (2011), o CMS é o número necessários de amostras, em média, para que um ponto caia fora de controle. Caso as observações sejam não correlacionadas, o CMS fica expresso por:

$$CMS = \frac{1}{Probabilidade(um ponto que exceda os limites de controle)}.$$

No caso em que o processo se encontra sob controle, tem-se:

$$CMS_0 = \frac{1}{\alpha}$$

E sob descontrole:

$$extit{CMS}_1 = rac{1}{1-eta(\mu_1)}$$

Proposta para a Utilização do *NRSS* para Gráficos de Controle

$$LIC = \mu_0 - A\sqrt{Var(\bar{Y}_{NRSS})} = \mu_0 - A\sigma_{0_{\bar{Y}_{NRSS}}}$$

$$LC = \mu_0$$

$$LSC = \mu_0 + A\sqrt{Var(\bar{Y}_{NRSS})} = \mu_0 + A\sigma_{0_{\bar{Y}_{NRSS}}}$$

Estudo Via Simulação do Desempenho dos Gráficos de Controle para a Média Via *NRSS*

Algoritmo

Passo 1 - Obter os limites de controle

Passo 2 - Simular 1.000.000 de dados com distribuição:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \textit{Normal} \left(\begin{pmatrix} 0 \\ \mu_Y \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$
$$\mu_Y = \mu_0 + \frac{(\delta \sigma_0)}{\sqrt{k}}$$
$$\delta = |\mu_Y - \mu_0| \frac{\sqrt{k}}{\sigma_0}$$

Passo 3 - Ordenar a variável de interesse Y pelas posições de X

Estudo Via Simulação do Desempenho dos Gráficos de Controle para a Média Via *NRSS*

Algoritmo

Passo 4 - Selecionar os k elementos de Y via NRSS

Passo 5 - Calcular a média de cada amostra (representa um ponto no gráfico de controle)

Passo 6 - Verificar se a média de cada amostra está entre os limites de controle

Passo 7 - Calcular o CMS

$$\mathit{CMS} = \frac{1}{p}, \; \mathsf{sendo} \; p = \frac{\mathsf{N\'umero} \; \mathsf{de} \; \mathsf{pontos} \; \mathsf{fora} \; \mathsf{dos} \; \mathsf{limites} \; \mathsf{de} \; \mathsf{controle}}{1.000.000}$$

Estudo Via Simulação do Desempenho dos Gráficos de Controle para a Média Via *NRSS*

- Parâmetros considerados:
 - Tamanhos de amostras (k = 3, 4, 5, 6)
 - Níveis de correlação entre a variável de interesse e a variável concomitante ($\rho = 0, 25; 0, 50; 0, 75; 0, 9; 1$);
 - Níveis de descontrole do processo em relação à média: $(\delta = 0; 0, 1; 0, 2; 0.3; 0, 4; 0, 8; 1, 2; 1, 6; 2; 2, 4; 3, 2).$

O CMS para o MRSS foi obtido de forma semelhante a do NRSS;

O CMS via AAS foi calculado analiticamente com base nas propriedades da distribuição da média amostral;

Obtenção da Variância do Estimador da Média via NRSS

- Sob Ordenação Perfeita:
 - A $Var(\bar{Y}_{NRSS})$ foi determinada para amostras de tamanhos k = 3, 4, 5, 6 com base nas propriedades de estatísticas de ordem;
- Sob Ordenação Imperfeita:
 - Simula-se 1.000.000 de amostras de uma distribuição normal padrão bivariada;
 - Ordena-se a variávei de interesse pela concomitante
 - Seleciona as unidades amostrais correspondentes
 - Calcula a variância e covariância

CMS Sob Ordenação Perfeita - k=3

K=3							
δ	AAS	ACO	ERSS	MRSS	NRSS		
0	370,51	370,51	370,51	370,51	370,51		
0,1	349,04	333,89	340,25	339,67	325,63		
0,2	303,21	266,03	272,18	265,11	234,03		
0,3	247,16	196,93	197,20	186,22	157,23		
0,4	195,12	139,43	137,99	128,12	102,60		
0,8	71,48	35,43	35,35	29,52	21,25		
1,2	27,66	11,54	11,43	9,22	6,41		
1,6	12,30	4,76	4,75	3,80	2,76		
2	6,28	2,50	2,49	2,06	1,61		
2,4	3,63	1,61	1,61	1,40	1,20		
3,2	1,72	1,09	1,09	1,04	1,01		

Fonte: Al-Omari e Haq (2012). * Os valores do CMS dos delineamentos AAS, MRSS e NRSS, foram calculados pelos autores

CMS Sob Ordenação Perfeita - k=4

K=4							
δ	AAS	ACO	ERSS	MRSS	NRSS		
0	370,51	370,51	370,51	370,51	370,51		
0,1	348,19	328,08	341,30	318,07	310,56		
0,2	303,58	249,81	266,81	232,45	210,30		
0,3	250,31	174,89	192,64	156,42	126,90		
0,4	197,98	119,36	135,85	100,29	77,86		
0,8	70,69	27,78	33,69	21,42	13,89		
1,2	27,57	8,54	10,70	6,38	4,09		
1,6	12,28	3,55	4,41	2,73	1,89		
2	6,28	1,94	2,33	1,59	1,25		
2,4	3,64	1,35	1,53	1,19	1,06		
3,2	1,73	1,03	1,07	1,01	1,00		

Fonte: Al-Omari e Haq (2012). * Os valores do CMS dos delineamentos AAS, MRSS e NRSS, foram calculados pelos autores

CMS Sob Ordenação Perfeita - k=5

K=5							
δ	AAS	ACO	ERSS	MRSS	NRSS		
0	370,51	370,51	370,51	370,51	370,51		
0,1	354,23	331,68	333,00	329,60	299,58		
0,2	308,26	244,98	254,77	223,41	181,06		
0,3	251,07	165,54	173,73	136,91	104,59		
0,4	197,82	107,88	117,44	85,20	60,14		
0,8	70,34	22,53	26,59	15,56	9,55		
1,2	27,03	6,73	8,13	4,55	2,86		
1,6	12,15	2,83	3,38	2,04	1,46		
2	6,21	1,63	1,87	1,31	1,10		
2,4	3,61	1,21	1,32	1,08	1,01		
3,2	1,72	1,01	1,03	1,00	1,00		

Fonte: Al-Omari e Haq (2012). * Os valores do CMS dos delineamentos AAS, MRSS e NRSS, foram calculados pelos autores

CMS sob Ordenação Perfeita

- No geral, o NRSS se mostrou mais eficiente em 220 dos 240 (91,67%) cenários em relação a todos os delineamentos apresentados
- ▶ Ao compará-lo especificamente com a AAS, o NRSS foi mais eficiente em todos os cenários estudados.

CMS Sob Ordenação Imperfeita - k=5

K=5						
$\rho \rightarrow$	0	0.25	0.5	0.75	0.9	1
δ	AAS	ACO URSS				
0	370.40	369.73 359.20	369.96 371.89	367.01 372.44	360.68 379.51	347.11 379.65
0.1	352.93	354.64 341.41	347.28 346.50	340.64 345.18	327.95 324.78	300.66 299.85
0.2	308.43	306.15 303.03	299.47 293.00	280.38 278.09	255.16 236.07	226.96 181.88
0.3	253.14	249.98 246.43	237.32 230.63	212.80 197.63	182.35 155.13	153.63 102.83
0.4	200.08	195.90 192.98	183.17 181.39	125.62 142.51	115.51 101.27	98.45 59.59
8.0	71.55	69.63 66.90	59.63 57.01	30.98 37.25	26.71 21.06	21.02 9.61
1.2	27.82	26.33 25.89	21.99 20.65	9.84 12.27	6.90 6.35	6.35 2.87
1.6	12.38	11.65 11.45	9.54 8.95	4.12 5.11	3.47 2.72	2.72 1.46
2	6.30	5.92 5.78	4.84 4.54	2.21 2.67	2.10 1.59	1.59 1.10
2.4	3.65	3.44 3.38	2.85 2.68	1.49 1.71	1.48 1.19	1.19 1.01
3.2	1.73	1.65 1.63	1.45 1.40	1.08 1.11	1.06 1.01	1.01 1.00

Fonte: Muttlak e Al-Sabah (2010). * Os valores do CMS dos delineamentos AAS, MRSS e NRSS, foram calculados pelos autores

CMS Sob Ordenação Imperfeita - k=6

K=6					
0	0.25	0.5	0.75	0.9	1
AAS	ACO URSS	ACO URSS	ACO URSS	ACO URSS	ACO URSS
370.40	370.58 365.36	370.08 373.55	369.31 364.96	364.90 369.41	349.00 375.80
352.93	351.55 339.56	350.35 344.35	341.89 337.04	328.51 318.07	304.54 287.36
308.43	307.10 307.79	296.99 295.51	278.92 268.53	250.10 234.41	214.01 163.85
253.14	251.51 246.97	236.85 233.97	209.33 194.29	174.20 146.82	137.56 89.08
200.08	196.66 192.94	180.92 177.97	150.53 132.91	118.24 93.08	87.86 48.91
71.55	68.51 67.48	58.86 55.86	41.77 35.09	27.84 18.73	17.28 7.23
27.82	26.22 25.74	21.58 20.45	14.08 11.44	8.73 5.58	5.13 2.23
12.38	11.58 11.46	9.33 8.74	5.92 4.80	3.63 2.43	2.26 1.26
6.30	5.90 5.83	4.73 4.44	3.06 2.53	2.00 1.47	1.40 1.04
3.65	3.42 3.38	2.79 2.63	1.91 1.64	1.38 1.14	1.11 1.00
1.73	1.65 1.63	1.44 1.38	1.16 1.09	1.04 1.01	1.00 1.00
	370.40 352.93 308.43 253.14 200.08 71.55 27.82 12.38 6.30 3.65	AAS ACO URSS 370.40 370.58 365.36 352.93 351.55 339.56 308.43 307.10 307.79 253.51 246.97 200.08 196.66 192.94 71.55 68.51 67.48 27.82 26.22 25.74 12.38 11.58 11.46 6.30 5.90 5.83 3.65 3.42 3.38	0 0.2.5 0.5 AAS ACO URSS ACO URSS 370.40 370.58 365.36 370.08 373.55 352.93 351.55 339.56 350.35 344.35 308.43 307.10 307.79 296.99 295.51 253.14 251.51 246.97 236.85 23.97 200.08 196.66 192.94 180.92 177.97 71.55 68.51 67.48 58.86 55.86 27.82 26.22 25.74 21.58 20.45 12.38 11.58 11.46 9.33 8.74 6.30 5.90 5.83 4.73 4.44 3.65 3.42 3.38 2.79 2.63	0 0.25 0.5 0.7 <td>O O.≥ O. B.S O. B.S</td>	O O.≥ O. B.S O. B.S

Fonte: Muttlak e Al-Sabah (2010). * Os valores do CMS dos delineamentos AAS, *MRSS* e *NRSS*, foram calculados pelos autores

CMS Sob Ordenação Imperfeita

➤ O NRSS ganhou em eficiência 197 dos 200 cenários em relação a AAS para o processo sob descontrole.

CMS Sob Ordenação Imperfeita

O NRSS ganhou em eficiência 197 dos 200 cenários em relação a AAS para o processo sob descontrole.

O NRSS foi mais eficiente em relação à ACO em 179 dos 200 cenários para o processo sob descontrole.

CMS Sob Ordenação Imperfeita

O NRSS ganhou em eficiência 197 dos 200 cenários em relação a AAS para o processo sob descontrole.

O NRSS foi mais eficiente em relação à ACO em 179 dos 200 cenários para o processo sob descontrole.

Comparando os resultados via NRSS obtidos com os valores do CMS produzidos via ACO, MRSS e ERSS em MUTTLAK; AL-SABAH (2010), o NRSS foi mais eficiente em 167 de 200 cenários

Análise do Viés do Estimador Proposto

O viés relativo do estimador proposto para a variância da média, foi inferior a 0,01 (em 2 dos 8 valores de B, inferior a 0,001) para todos os valores de B considerados, produzindo indicativo de baixo viés associado ao estimador.

Para cenários mais favoráveis, resultantes de maiores valores para b, k e ρ , espera-se que o viés relativo seja ainda menor.

Simulação de aplicação em dados reais

Conjunto de Dados

Em estudo realizado por YEH (1998), dados foram coletados com o objetivo de mensurar a resistência do concreto

- ▶ 1030 observações e 9 variáveis:
 - Variável de interesse: Resistência do concreto (MPa)
 - Variável concomitante: Quantidade de cimento (kg)

Materiais

Representação da mensuração da resistência do concreto

Fonte: Youtube (2009)

Descrição da Aplicação do NRSS, ACO e a AAS

- Parâmetros:
 - ► Tamanhos de amostra, k = 3 e 5
 - Níveis de alteração na média do processo, $\delta = 0; 0, 8 \text{ e } 1, 2$
 - ▶ Delineamentos NRSS, ACO e AAS
- Descrição:
 - 25 amostras de tamanho k utilizadas para calcular os LIC e LSC
 - 75 amostras para realizar o monitoramento do processo
 - Somando-se a variável de interesse, uma variável aleatória W (que representa o descontrole):

$$\mathsf{W} \sim \mathit{N}(\frac{\delta \sigma_0}{\sqrt{k}}, 2)$$

Simulação da Aplicação em Dados Reais

Comportamento e distribuição da variável Resistência do Concreto

Fonte: Os autores

Gráficos de Controle

Gráficos de Controle

Publicação

Chilean Journal of Statistics Vol. 10, No. 2, December 2019, 131–154

STATISTICAL QUALITY CONTROL RESEARCH PAPER

Performance of Shewhart control charts based on neoteric ranked set sampling to monitor the process mean for normal and non-normal processes

Guilherme Parreira da Silva¹, Cesar Augusto Taconeli^{1,*}, Walmes Marques Zeviani¹, and Isadora Aparecida Sprengoski do Nascimento

¹Department of Statistics, Federal University of Paraná, Curitiba, Brazil

(Received: 05 April 2019 · Accepted in final form: 28 May 2019)

Abstract

In this study, we consider the design and performance of control charts using the neutric ranked set sampling (NRSS) in monitoring industrial processes. NRSS is a recently proposed sampling design, based on the traditional ranked set sampling (RSS). NRSS differs from RSS by constituting, originally, a single set of k^2 sample units, instead of k sets of size k, where k is the final sample size. We evaluate NRSS control charts by average, median and standard deviation of run lengths, based on Monte Carlo simulation results. NRSS control charts perform the best, compared to RSS and some of its extensions, in most simulated scenarios. The impact of imperfect ranking and non normally are also evaluated. An application to concrete strength data serves as an illustration of the proposed method.

Keywords: Generalized normal distribution \cdot Imperfect ranking \cdot Perfect ranking \cdot Run length \cdot Skew-normal distribution

Mathematics Subject Classification: Primary 62D05 · Secondary 62P30

Principais Modificações para Publicação

- Inclusão da mediana e desvio padrão do comprimento de sequência;
- Comparação com Dados que não seguem distribuição Normal:
 - Skew normal;
 - Generalized normal distribution;

Muito obrigado!

 $< thps://github.com/guilhermeparreira/apresentacoes/tree/master/TCC_Artigo>$

Referências I

CHAPLIN, C. Tempos Modernos.[Filme-vi'deo]. **Direção de Charles Chaplin. EUA, United Artists. DVD. Preto e Branco**,
v. 87, 1936.

MCINTYRE, G. A method for unbiased selective sampling, using ranked sets. **Crop and Pasture Science**, v. 3, n. 4, p. 385–390, 1952.

MONTGOMERY, D. C. Introduction to Statistical Quality Control. Traducao. [s.l.] John Wiley & Sons, 2011. v. 6

MUTTLAK, H. Median ranked set sampling. **Journal of Applied Statistical Science**, v. 6, n. 4, p. 245–255, 1997.

MUTTLAK, H.; AL-SABAH, W. Statistical quality control based on ranked set sampling. **Journal of Applied Statistics**, v. 30, n. 9, p. 1055–1078, 2010.

Referências II

SAMAWI, H. M.; AHMED, M. S.; ABU-DAYYEH, W. Estimating the population mean using extreme ranked set sampling. **Biometrical Journal**, v. 38, n. 5, p. 577–586, 1996.

SHEWHART, W. A. Some applications of statistical methods to the analysis of physical and engineering data. **Bell System Technical Journal**, v. 3, n. 1, p. 43–87, 1924.

YEH, I.-C. Modeling of strength of high-performance concrete using artificial neural networks. **Cement and Concrete research**, v. 28, n. 12, p. 1797–1808, 1998.

ZAMANZADE, E.; AL-OMARI, A. I. Unified Ranked Set Sampling. arXiv preprint arXiv:1411.1351v2, 2015.