Exploration of COVID-19 tracking data from multiple resources

Wei Sun

2020-04-29

Contents

Introduction	1						
JHU time series data							
daily reports data							
NY Times state level data							
COVID Tracking	21						
Session information	22						

Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a new type of coronavirus: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak first started in Wuhan, China in December 2019. The first kown case of COVID-19 in the U.S. was confirmed on January 20, 2020, in a 35-year-old man who teturned to Washington State on January 15 after traveling to Wuhan. Starting around the end of Feburary, evidence emerge for community spread in the US.

We, as all of us, are indebted to the heros who fight COVID-19 across the whole world in different ways. For this data exploration, I am grateful to many data science groups who have collected detailed COVID-19 outbreak data, including the number of tests, confirmed cases, and deaths, across countries/regions, states/provnices (administrative division level 1, or admin1), and counties (admin2). Specifically, I used the data from these three resources:

- JHU (https://coronavirus.jhu.edu/)
 - The Center for Systems Science and Engineering (CSSE) at John Hopkins University.
 - World-wide counts of coronavirus cases, deaths, and recovered ones.
 - https://github.com/CSSEGISandData/COVID-19
- NY Times (https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html)
 - The New York Times
 - "cumulative counts of coronavirus cases in the United States, at the state and county level, over time"
 - https://github.com/nytimes/covid-19-data

- COVID Tracking (https://covidtracking.com/)
 - COVID Tracking Project
 - "collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data"
 - https://github.com/COVID19Tracking/covid-tracking-data

JHU

Assume you have cloned the JHU Github repository on your local machine at "../COVID-19".

time series data

The time series provide counts (e.g., confirmed cases, deaths) starting from Jan 22nd, 2020 for 253 locations. Currently there is no data of individual US state in these time series data files.

Here is the list of 10 records with the largest number of cases or deaths on the most recent date.

cumulative number of deaths on 4.28.20

Next, I check for each country/region, what is the number of new cases/deaths? This data is important to understand what is the trend under different situations, e.g., population density, social distance policies etc. Here I checked the top 10 countries/regions with the highest number of deaths.

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **Italy**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **France**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **United Kingdom**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **Germany**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **Netherlands**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

daily reports data

The raw data from Hopkins are in the format of daily reports with one file per day. More recent files (since March 22nd) inleude information from individual states of US or individual counties, as shown in the following figure. So I turn to NY Times data for information of individual states or counties.

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

NY Times

The data from NY Times are saved in two text files, one for state level information and the other one for county level information.

The currente date is

[1] "2020-04-27"

state level data

First check the 20 states with the largest number of deaths.

##		date	state	fips	cases	deaths
##	3073	2020-04-27	New York	36	292027	17303
##	3071	2020-04-27	New Jersey	34	111188	6044
##	3063	2020-04-27	Michigan	26	38190	3406
##	3062	2020-04-27	Massachusetts	25	56462	3003
##	3046	2020-04-27	Connecticut	9	25997	2012
##	3054	2020-04-27	Illinois	17	45883	1992
##	3080	2020-04-27	Pennsylvania	42	43728	1946
##	3044	2020-04-27	California	6	45208	1800
##	3059	2020-04-27	Louisiana	22	27068	1697
##	3049	2020-04-27	Florida	12	32130	1087
##	3050	2020-04-27	Georgia	13	23229	981
##	3061	2020-04-27	Maryland	24	19487	858
##	3055	2020-04-27	Indiana	18	15961	844
##	3091	2020-04-27	Washington	53	13864	771
##	3077	2020-04-27	Ohio	39	16325	753
##	3045	2020-04-27	Colorado	8	13804	705
##	3086	2020-04-27	Texas	48	25960	699
##	3090	2020-04-27	Virginia	51	13535	458
##	3074	2020-04-27	North Carolina	37	9142	331
##	3066	2020-04-27	Missouri	29	7171	296

For these 20 states, I check the number of new cases and the number of new deaths. Part of the reason for such checking is to identify whether there is any similarity on such patterns. For example, could you use the pattern seen from Italy to predict what happen in an individual state, and what are the similarities and differences across states.

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-01

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-04 Michigan

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10
Massachusetts

data source: https://github.com/nytimes/covid-19-data, day 1 is 02-01

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-08 Illinois

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-24 Pennsylvania

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-06

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-25 Louisiana

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-09 Florida

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-01

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-02

Maryland

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-05 Indiana

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-06

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-21
Ohio

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-09
Colorado

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-05

data source: https://github.com/nytimes/covid-19-data, day 1 is 02-12 Virginia

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-07 North Carolina

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-03

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-07

Next I check the relation between the $\mathbf{cumulative}$ number of cases and deaths for these 10 states, starting on March

data source: https://github.com/nytimes/co

county level data

First check the 20 counties with the largest number of deaths.

##		date		county	S	state	fips	cases	deaths
##	94265	2020-04-27	New	York City	New	York	NA	160499	11857
##	94264	2020-04-27		Nassau	New	York	36059	34865	2003
##	93812	2020-04-27		Wayne	Mich	igan	26163	15872	1622

```
## 93163 2020-04-27
                                         Illinois 17031
                              Cook
                                                          31953
                                                                  1347
## 94284 2020-04-27
                           Suffolk
                                         New York 36103
                                                          32470
                                                                  1147
                                         New York 36119
## 94292 2020-04-27
                       Westchester
                                                          28007
                                                                  1077
## 94191 2020-04-27
                                                                  1028
                             Essex
                                       New Jersey 34013
                                                          13047
## 94186 2020-04-27
                            Bergen
                                       New Jersey 34003
                                                          15104
                                                                   960
## 92777 2020-04-27
                       Los Angeles
                                       California 6037
                                                          20417
                                                                   942
## 92871 2020-04-27
                         Fairfield
                                      Connecticut
                                                   9001
                                                          10763
                                                                   727
## 93727 2020-04-27
                         Middlesex Massachusetts 25017
                                                          12953
                                                                   700
## 94193 2020-04-27
                            Hudson
                                       New Jersey 34017
                                                          13925
                                                                   673
## 93793 2020-04-27
                                         Michigan 26125
                                                                   631
                           Oakland
                                                           6913
## 92872 2020-04-27
                          Hartford
                                      Connecticut
                                                   9003
                                                           5157
                                                                   612
## 94204 2020-04-27
                                                                   583
                             Union
                                       New Jersey 34039
                                                          12011
## 93780 2020-04-27
                                         Michigan 26099
                                                                   527
                            Macomb
                                                           5245
## 94664 2020-04-27
                      Philadelphia
                                     Pennsylvania 42101
                                                          12868
                                                                   484
## 92875 2020-04-27
                         New Haven
                                      Connecticut 9009
                                                           6993
                                                                   456
## 94196 2020-04-27
                         Middlesex
                                       New Jersey 34023
                                                          10767
                                                                   455
## 93731 2020-04-27
                           Suffolk Massachusetts 25025
                                                          11883
                                                                   448
```

For these 20 counties, I check the number of new cases and the number of new deaths.

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-01
Nassau New York

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-05

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10 Cook_Illinois

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-24 Suffolk_New York

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-08

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-12
Bergen_New Jersey

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-04

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-26 Fairfield_Connecticut

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-08 Middlesex_Massachusetts

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-05

data source: https://github.com/nytimes/covid–19–data, day 1 is 03–09

Oakland_Michigan

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10
Hartford_Connecticut

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-14

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-09
Macomb_Michigan

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-13 Philadelphia_Pennsylvania

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10

data source: https://github.com/nytimes/covid-19-data, day 1 is 02-01

COVID Tracking

The positive rates of testing can be an indicator on how much the COVID-19 has spread. However, they are more noisy data since the negative testing results are often not reported and the tests are almost surely taken on a non-representative random sample of the population. The COVID traking project proides a grade per state: "If you are calculating positive rates, it should only be with states that have an A grade. And be

careful going back in time because almost all the states have changed their level of reporting at different times." (https://covidtracking.com/about-tracker/). The data are also available for both counties and states, here I only look at state level data.

Since the daily postive rate can fluctuate a lot, here I only illustrate the cumulative positave rate across time, for four states with grade A data. Of course since this is an R markdown file, you can modify the source code and check for other states.

github.com/COVID19Tracking/, cumulative positive rate on 0428: 0.08(WA) 0.09(TX) 0.35(NY) 0.08(NC)

Session information

sessionInfo()

```
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.4
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
   [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                    base
##
## other attached packages:
  [1] httr_1.4.1
                     ggpubr_0.2.5 magrittr_1.5 ggplot2_3.2.1
##
## loaded via a namespace (and not attached):
   [1] Rcpp_1.0.3
                         pillar_1.4.3
                                           compiler_3.6.2
                                                            tools 3.6.2
##
   [5] digest_0.6.23
                         evaluate_0.14
                                          lifecycle_0.1.0
                                                            tibble_2.1.3
##
   [9] gtable_0.3.0
                         pkgconfig_2.0.3
                                          rlang_0.4.4
                                                            yaml_2.2.1
## [13] xfun_0.12
                         gridExtra_2.3
                                          withr_2.1.2
                                                            dplyr_0.8.4
  [17] stringr 1.4.0
                         knitr 1.28
                                          grid 3.6.2
                                                            tidyselect 1.0.0
  [21] cowplot 1.0.0
                         glue_1.3.1
                                                            rmarkdown 2.1
                                          R6_2.4.1
                         farver_2.0.3
## [25] purrr_0.3.3
                                          scales_1.1.0
                                                            htmltools_0.4.0
```

[29] assertthat_0.2.1 colorspace_1.4-1 ggsignif_0.6.0 labeling_0.3
[33] stringi_1.4.5 lazyeval_0.2.2 munsell_0.5.0 crayon_1.3.4