Trig Final (Solution v43)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 13 meters. The angle measure is 2.4 radians. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 31.2 meters.

Question 2

Consider angles $\frac{-11\pi}{4}$ and $\frac{11\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-11\pi}{4}\right)$ and $\sin\left(\frac{11\pi}{3}\right)$ by using a unit circle (provided separately).

Find $cos(-11\pi/4)$

$$\cos(-11\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $sin(11\pi/3)$

$$\sin(11\pi/3) = \frac{-\sqrt{3}}{2}$$

Question 3

If $\cos(\theta) = \frac{36}{85}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$36^{2} + B^{2} = 85^{2}$$

$$B = \sqrt{85^{2} - 36^{2}}$$

$$B = 77$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-77}{85}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = 7.13 meters, an amplitude of 2.25 meters, and a frequency of 4.55 Hz. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 2.25\sin(2\pi 4.55t) + 7.13$$

or

$$y = 2.25\sin(9.1\pi t) + 7.13$$

or

$$y = 2.25\sin(28.59t) + 7.13$$