Lista 16

Zadanie 1. Wyznacz największy wspólny dzielnik par wielomianów (o ile nie jest napisane inaczej: w $\mathbb{R}[x]$)

- $x^4 2x^3 19x^2 + 8x + 60$ oraz $x^4 + 5x^3 + 5x^2 5x 6$;
- $x^4 + x^3 + 2x^2 + 2x$ oraz $x^4 + 2x^3 + 2x^2 + x$ (w $\mathbb{Z}_3[x]$)
- $f = x^p + 1$, g = x + 1 (w $\mathbb{Z}_p[X]$ dla p—pierwszego).

Wyraź nwd jako kombinację podanych wielomianów.

Wskazówka: Do ostatniego: policz, ile wynosi $(x+1)^p$ w \mathbb{Z}_p .

Rozwiązanie Niech $f = x^4 - 2x^3 - 19x^2 + 8x + 60$.

Czyli

$$f' = f - g = 7x^3 + 24x^2 - 13x - 66$$

oraz nwd(f, g) = nwd(f', g).

$$7x^{3} + 24x^{2} - 13x - 66) \xrightarrow{\frac{1}{7}x} - \frac{38}{49}$$

$$-x^{4} - 2x^{3} - 19x^{2} + 8x + 60$$

$$-x^{4} - \frac{24}{7}x^{3} + \frac{13}{7}x^{2} + \frac{66}{7}x$$

$$-\frac{38}{7}x^{3} - \frac{120}{7}x^{2} + \frac{122}{49}x + 60$$

$$-\frac{38}{7}x^{3} + \frac{912}{49}x^{2} - \frac{494}{49}x - \frac{2508}{49}$$

$$-\frac{72}{49}x^{2} + \frac{360}{49}x + \frac{432}{49}$$

$$g - (\frac{x}{7} - \frac{38}{49})f' = \frac{72}{49}(x^2 + 5x + 6)$$

Przekształcając mamy

$$x^{2} + 5x + 6 = \frac{1}{72}(49g - (7x - 38)f')$$

I dalej

$$\begin{array}{r}
 7x - 11 \\
 x^2 + 5x + 6) \overline{)7x^3 + 24x^2 - 13x - 66} \\
 -7x^3 - 35x^2 - 42x \\
 -11x^2 - 55x - 66 \\
 \underline{)11x^2 + 55x + 66} \\
 0
\end{array}$$

Czyli największy wspólny dzielnik to $x^2 + 5x + 6$. Wstawiając wyrażanie na f' dostajemy

$$\frac{1}{72}(49g - (7x - 38)(f - g)) = \frac{7x + 11}{72}g - \frac{7x - 38}{72}f$$

W drugim przykładzie, oznaczmy pierwszy wielomian przez f a drugi przez g. Wtedy

$$a' = a - f = x^3 + x$$

Potem

W ostatnim przykładzie zauważmy, że

$$(x+1)^p =_p \sum_{i=0}^p \binom{n}{i} x^i$$

Zauważmy, że $\binom{p}{i}$ dzieli się przez p dla $i \notin \{0, p\}$, czyli

$$(x+1)^p =_p x^p + 1$$

I w takim razie $nwd(x^p + 1, x + 1) = x + 1$.

Zadanie 2. Korzystając z tw. Bezout rozłóż poniższe wielomiany z $\mathbb{Z}_2[x]$ na czynniki nierozkładalne

$$x^5 + x^3 + x + 1$$
, $x^4 + x^3 + x^2 + 1$, $x^5 + x^2 + x$, $x^4 + x^2 + 1$, $x^4 + x^2 + x$.

Potraktuj powyższe wielomiany jako wielomiany z $\mathbb{Z}_3[x]$ i również rozłóż je na czynniki nierozkładalne. эυцерердиолеји

Wskazówka: Być może konieczne też będzie osobne zastanowienie się, które wielomiany drugiego stopnia są

Rozwiązanie Rozpatrzmy wielomian $x^5 + x^3 + x + 1$ jako wielomian o współczynnikach z \mathbb{Z}_2 . Zauważmy, że jeśli jest on rozkładalny, to ma czynnik stopnia najwyżej 2. Sprawdźmy najpierw czynniki liniowe, czyli policzmy wartość w 0, 1. Łatwo sprawdzić, że wartość w 1 to 1. Wartość w 0 to 0, czyli dzieli się przez x + 1. Można podzielić, albo zauważyć

$$x^{5} + x^{3} + x + 1 = x^{5} + 2x^{4} + x^{3} + x + 1 = (x+1)(x^{4} + x^{3} + 1)$$

Wielomian $x^4 + x^3 + 1$ ma wartość 1 w 1, nie dzieli się więc przez x + 1. Pozostaje sprawdzić, czy dzieli się przez $x^2 + x + 1$ (jedyny nierozkładalny stopnia 2). Jedynym możliwym rozkładem jest $(x^2 + x + 1)^2$:

$$(x^2 + x + 1)^2 = x^4 + x^2 + 1$$

czyli $x^4 + x^3 + 1$ jest nierozkładalny.

Zadanie 3. Wielomian f ma resztę z dzielenia przez $x-c_1$ równą r_1 oraz resztę z dzielenia przez $x-c_2$ równą r_2 . Ile wynosi reszta z dzielenia f przez $(x-c_1)(x-c_2)$?

Wystarczy, że zapiszesz zależność na współczynniki tego wielomianu, nie musisz jej rozwiązywać.

Wskazówka: Skorzystaj z tw. Bezout.

Rozwiązanie Reszta jest postaci ax + b, tj.

$$f = (x - c_1)(x - c_2) + ax + b$$

 ${\rm Przy}\ {\rm czym}$

$$f(c_1) = r_1 \quad f(c_2) = r_2$$

Co daje układ równań liniowych na a, b:

$$ac_1 + b = r_1$$
 $ac_2 + b = r_2$

Zadanie 4. Niech f, g, f', g', a będą niezerowymi wielomianami z pierścienia wielomianów $\mathbb{F}[x]$ o współczynnikach z ciała \mathbb{F} . Załóżmy, że f = af' oraz g = ag'.

- Jeśli h' = nwd(f', g'), to ile wynosi nwd(f, g)? Jeśli h' = a'f' + b'g' dla pewnych wielomianów $a', b' \in \mathbb{F}[x]$, to jak wyraża się nwd(f, g) poprzez wielomiany f, g?
- Jeśli h', r' są ilorazem oraz resztą z dzielenia f' przez g', to ile wynosi iloraz, a ile reszta z dzielenia f przez g?

Rozwiązanie Jeśli

$$f' = h'q' + r'$$

to

$$f'a = h'(g'a) + r'a$$

oraz

$$\deg r'a = \deg r' + \deg a < \deg g' + \deg a = \deg g'a = \deg g$$

czyli iloraz to h' a reszta r'a.

Zauważmy teraz, że z tego wynika, że $\operatorname{nwd}(f,g) = a \operatorname{nwd}(f',g')$: W odpowiadających krokach algorytmu Euklidesa dla f,g oraz f',g' dla f,g wywołujemy dla wielomionów dla f',g' przemnożonych przez a. W szczególnośc na końcu dostajemy $\operatorname{nwd}(f',g')$ oraz $a \operatorname{nwd}(f',g')$.

Zadanie 5. Dane są dwa niezerowe wielomiany $f,g\in\mathbb{F}[x]$ z pierścienia wielomianów o współczynnikach z ciała \mathbb{F} . Załóżmy, że f=f'f'' oraz nwd(f',g)=1. Celem zadania jest pokazanie, jak odtworzyć reprezentację nwd(f,g) jako kombinacji wielomianów f,g z analogicznych reprezentacji dla f'',g oraz f',g.

- Pokaż, że nwd(f, g) = nwd(f'', g).
- Niech $\operatorname{nwd}(f'',g) = af'' + bg$ oraz $1 = \operatorname{nwd}(f',g) = cf' + dg$ dla odpowiednich wielomianów $a,b,c,d \in \mathbb{F}[x]$. Wyraź $\operatorname{nwd}(f,g)$ jako kombinację wielomianów f,g; kombinacja ta może używać kombinacji wielomianów spośród a,b,c,d,f',f'' jako współczynników.

Rozwiązanie Z Zadania 10, jeśli

$$nwd(f,g) = \prod_{i} p_i^{\alpha_i}$$

gdzie p_i są nierozkładalne, to istnieją α_i', α_i'' takie że $\alpha_i = \alpha_i' + \alpha_i''$ oraz $p_i^{\alpha_i'}|f'$ oraz $p_i^{\alpha_i''}|f''$. Ponieważ nwd(g, f') = 1, to $\alpha_i' = 0$ dla każdego i. Czyli $\alpha_i'' = \alpha_i$ i tym samym nwd(f, g)|f'', czyli też nwd(f, g)| nwd(f'', g). Jako że f''|f to oczywiście nwd(f'', g)| nwd(f, g). Czyli nwd(f, g) =nwd(f'', g).

Niech

$$nwd(f', g) = 1 = a'f' + b'g \quad nwd(f'', g) = a''f'' + b''g$$

Łaczac dostajemy

$$nwd(f'', g) = a''f'' + b''g$$

= $(a'f' + b'g)a''f'' + b''g$
= $a'f'f'' + (b'a''f'' + b'')q$

co daje reprezentację nwd(f,g) w żądanej postaci.

Zadanie 6. Oblicz wartości podanych wielomianów w punktach w odpowiednich pierścieniach:

$$x^4 + 3x^2 - 2x + 1 \le 2$$
, w \mathbb{Z}_7 ; $2x^3 - x^2 + x - 2 \le 1$, w \mathbb{Z}_3 ; $3x^4 - 3x^3 + 4x - 5 \le 2$, w \mathbb{Z}_6

Zadanie 7. Podaj wszystkie nierozkładalne wielomiany stopnia 2 oraz 3 w $\mathbb{Z}_2[x]$ oraz wszystkie nierozkładalne wielomiany stopnia 2 w $\mathbb{Z}_3[x]$.

Wskazówka: Jeśli f = gh, to przynajmniej jeden z nich ma stopień 1.

Rozwiązanie Rozważmy najpierw wielomiany stopnia 2 w $\mathbb{Z}_2[x]$:

$$x^{2}, x^{2} + 1, x^{2} + x, x^{2} + x + 1$$

Pierwszy dzieli się przez x, drugi to $(x+1)^2$, trzeci to x(x+1). Czwarty jest nierozkładalny: gdyby był rozkładalny, to na czynniki liniowe, czyli musiałby mieć pierwiastek w 0 lub 1, a łatwo sprawdzić, że nie ma.

W przypadku wielomianów stopnia 3 zauważmym, że jeśli wielomian stopnia 3 jest rozkładalny, to dzieli się przez wielomian stopnia 1, czyli ma pierwiastek. Jest 8 wielomianów stopnia 3 w $\mathbb{Z}_2[x]$:

$$x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + 1, x^3 + x^2 + x, x^3 + x^2 + x + 1$$
.

Należy teraz sprawdzić, który ma pierwiastek w 0 lub 1, pozostałe są nierozkładalne. tzn.

$$x^3 + x + 1$$
, $x^3 + x^2 + 1$.

są nierozkładalne.

W $\mathbb{Z}_3[x]$ jest 9 wielomianów stopnia 2:

$$x^{2}, x^{2} + 1, x^{2} + 2, x^{2} + x, x^{2} + x + 1, x^{2} + x + 2, x^{2} + 2x, x^{2} + 2x + 1, x^{2} + 2x + 2.$$

Ponownie sprawdzamy, który ma pierwiastek. Pozostają:

$$x^{2} + 1$$
, $x^{2} + x + 2$, $x^{2} + 2x + 2$.

Zadanie 8 (* Nie liczy się do podstawy). Celem tego zadania jest pokazanie, że wielomiany nierozkładalne w $\mathbb{R}[x]$ są stopnia najwyżej 2. Możesz korzystać z (nie tak prostego) twierdzenia, że wielomiany nierozkładalne nad $\mathbb{C}[x]$ są stopnia najwyżej 1. W tym zadaniu utożsamiamy wielomian z jego wartościowaniem a \overline{x} będzie oznaczać sprzężenie (w \mathbb{C}) liczby zespolonej x.

Ustalmy wielomian $f \in \mathbb{R}[x]$.

- Pokaż, że dla liczby zespolonej c zachodzi $f(\overline{c}) = \overline{f(c)}$.
- Wywnioskuj z tego, że jeśli $c \in \mathbb{C}$ jest miejscem zerowym wielomianu f, to jest nim też \bar{c} .
- Pokaż, że wielomian $(x-c)(x-\overline{c})$ ma współczynniki rzeczywiste.
- Wywnioskuj z tego, że jeśli f jest nierozkładalny (w $\mathbb{R}[x]$), to jest stopnia najwyżej 2.

Rozwiązanie Łatwo sprawdzić, że $\overline{a+b}=\overline{a}+\overline{b}$ oraz $\overline{a\cdot b}=\overline{a}\cdot \overline{b}$. Dla wielomianu $f=\sum_i f_i x^i$ zdefinujmy

$$\overline{f} = \sum_{i} \overline{f_i} x^i.$$

Wtedy $\overline{f \cdot g} = \overline{f} \cdot \overline{g}$. Ponadto

$$\overline{f}(\overline{a}) = \sum_{i} \overline{f_i} \overline{a^i} = \overline{\sum_{i} f_i a^i} = \overline{f(a)}$$

W takim razie, jeśli $f \in \mathbb{R}[x]$ to oczywiście $\overline{f} = f$ i w takim razie

$$f(\overline{a}) = \overline{f(a)}.$$

Jeśli

$$f(\alpha = 0)$$

to

$$f(\overline{\alpha}') = \overline{0} = 0$$

Jeśli α jest pierwiastkiem $f \in \mathbb{R}[x]$ to $f = (x - \alpha)g$ i nakładając obustronnie sprzężenie dostajemy $f = (x - \overline{\alpha})\overline{g}$. Czyli

$$f = (x - \alpha)(x - \overline{\alpha})h$$

Ponownie nakładając sprzężenie:

$$f = \overline{(x - \alpha)(x - \overline{\alpha})}\overline{h} = (x - \alpha)(x - \overline{\alpha})\overline{h}.$$

Czyli $h = \overline{h}$ i tym samym ma współczynniki rzeczywiste. Ponadto

$$\overline{(x-\alpha)(x-\overline{\alpha})} = (x-\overline{\alpha})(x-\alpha)$$

czyli ma współczynniki rzeczywiste.

Jeśli $f \in \mathbb{R}[x]$ jest nierozkładalny i stopnia większego niż 1, to ma pierwiastek zespolony, powiedzmy α . Ale wtedy $(x - \alpha)(x - \overline{\alpha})|f$, czyli $f = c(x - \alpha)(x - \overline{\alpha})$ dla pewnej stałej c.

Zadanie 9. Pokaż, że jeśli $\mathbb F$ jest ciałem, to w pierścieniu wielomianów $\mathbb F[x]$ o współczynnikach z ciała $\mathbb F$ zachodzi prawo skreśleń: dla $f,g,h\in\mathbb F[x]$, gdzie $f\neq 0$, zachodzi

$$fg = fh \implies g = h$$
.

Wywnioskuj z tego, że analogiczne prawo zachodzi też dla podzielności: dla $f,g,h\in\mathbb{F}[x]$, gdzie $f\neq 0$, zachodzi

$$fg|fh \implies g|h$$
.

Rozwiązanie Przenosząc na jedną stronę dostajemy

$$f(g-h) = 0$$

Jako że $\deg 0 = \deg f + \deg (g-h)$ dostajemy, że g-h = 0,czylig=h.

Zadanie 10. Udowodnij uogólnienia twierdzenia z wykładu:

Niech \mathbb{F} będzie ciałem, f będzie wielomianem nierozkładalnym a p_1, p_2, \dots, p_ℓ wielomianami w pierścieniu wielomianów $\mathbb{F}[x]$ o współczynnikach z \mathbb{F} oraz $f^k|p_1p_2\dots p_\ell$. Wtedy istnieją liczby n_1, n_2, \dots, n_ℓ , takie że $\sum_i n_i \geq k$ oraz dla każdego i zachodzi $f^{n_i}|p_i.$

Wskazówka: Skorzystaj z Zadania 9, nawet jeśli nie potralisz go rozwiązać.

Rozwiązanie Indukcja po k, dla k = 1 zostało pokazane na wykładzie.

Niech $f^{k+1}|p_1p_2\dots p_\ell$, w szczególności $f^k|p_1p_2\dots p_\ell$. Z założenia indukcyjnego istnieją takie n_1,\dots,n_ℓ , że $p_i = f^{n_i} p_i'$ oraz $\sum_i n_i = k$. Skoro $f^{k+1} | p_1 p_2 \dots p_\ell$ to dla pewnego h mamy

$$f^{k+1}h = f^k p_1' p_2' \dots p_{\ell}'.$$

Po skróceniu (Zadanie 9) dostajemy

$$fh = p_1' p_2' \dots p_\ell'.$$

I teraz dostajemy, że f dzieli ktoreś p'_i m czyli $f^{n_i+1}|p_i$, co daje tezę.

Zadanie 11. Niech \mathbb{F} będzie ciałem zaś $\mathbb{F}[x]$ pierścieniem wielomianów o współczynnikach z tego ciała. Udowodnij, że każdy wielomian $f \in \mathbb{F}[x]$ da się przedstawić jednoznacznie (z dokładnością do kolejności czynników) w postaci $f = c \cdot f_1 \cdot f_2 \cdots f_k$, gdzie $c \in \mathbb{F}$ jest stałą, a każde $f_i \in \mathbb{F}[x]$ jest wielomianem nierozkładalnym o wiodącym współczynniku równym 1.

W*skazówka*: Założenie o współczynniku równym l jest tylko po to, by uniknąć arbitralności w wyborze współczynnika wiodącego, co prowadzi do "różnych" rozkładów. Możesz skorzystać z Zadań 9–10, nawet jeśli nie potrafisz ich udowodnić.