Computational Science I Exercise notes: Lotka-Volterra

Tobias Grubenmann

November 12, 2013

Exercise 1

The following code solves the Lotka-Volterra equations with the Python built-in integrator odeint:

```
from scipy.integrate import odeint
alpha = 3

def func(y, t):
    return [alpha * y[0] - y[0]*y[1], y[0]*y[1] - y[1]]

t = arange(0, 20, 0.01)
y0 = [2, 1]

y = odeint(func, y0, t)

plot(t, y)
```

The following figures are plots for the model for different values of α and different initial conditions:

Figure 1: Lotka-Volterra model with $\alpha=3,\,x_0=2,\,y_0=1$

Figure 2: Lotka-Volterra model with $\alpha=3,\,x_0=1,\,y_0=2$

Figure 3: Lotka-Volterra model with $\alpha=1,\,x_0=2,\,y_0=1$

Figure 4: Lotka-Volterra model with $\alpha=1,\,x_0=1,\,y_0=2$

Figure 5: Lotka-Volterra model with $\alpha=0.5,\,x_0=2,\,y_0=1$

Figure 6: Lotka-Volterra model with $\alpha=0.5,\,x_0=1,\,y_0=2$

Figure 7: Lotka-Volterra model with $\alpha=0.1,\,x_0=2,\,y_0=1$

Figure 8: Lotka-Volterra model with $\alpha=0.1,\,x_0=1,\,y_0=2$