Chap3. Growth of Functions

- Asymptotic notation
- Comparison of functions
- Standard notations and common functions

Asymptotic notation

- How do you answer the question: "what is the running time of algorithm x?"
- We need a way to talk about the computational cost of an algorithm that focuses on the essential parts and ignores irrelevant details
- We've seen some of this already:
 - linear
 - *n* log *n*
 - n²

Asymptotic notation

- Precisely calculating the actual steps is tedious and not generally useful
- Different operations take different amounts of time. Even from run to run, things such as caching, etc. cause variations
- Want to identify categories of algorithmic runtimes

For example...

- $f_1(n)$ takes n^2 steps
- $f_2(n)$ takes 2n + 100 steps
- $f_3(n)$ takes 3n+1 steps
- Which algorithm is better?
- Is the difference between f_2 and f_3 important/significant?

Runtime examples

	n	$n \log n$	n^2	n^3	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	$4 \sec$
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	$< 18 \min$	10^{25} years
n = 100	< 1 sec	< 1 sec	1 sec	1s	10^{17} years	very long
n = 1000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long
n = 10,000	< 1 sec	< 1 sec	$2 \min$	$12 \mathrm{\ days}$	very long	very long
n = 100,000	< 1 sec	$2 \sec$	3 hours	32 years	very long	very long
n = 1,000,000	1 sec	20 sec	$12 \mathrm{days}$	31,710 years	very long	very long

(adapted from [2], Table 2.1, pg. 34)

• O(g(n)) is the set of functions:

$$O(g(n)) = \begin{cases} f(n): & \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \end{cases}$$

• O(g(n)) is the set of functions:

$$O(g(n)) = \int_{1}^{n} f(n)$$
: there exists positive constants c and n_0 such that $\int_{1}^{n} f(n) dx = \int_{1}^{n} f(n) dx =$

We can bound the function f(n) above by some constant factor of g(n)

• O(g(n)) is the set of functions:

We can bound the function f(n) above by some constant multiplied by g(n)

For some increasing range

• O(g(n)) is the set of functions:

$$O(g(n)) = \int_{\uparrow}^{\uparrow} f(n)$$
: there exists positive constants c and n_0 such that $\int_{0}^{\psi} \int_{0}^{\infty} f(n) f(n) dn$ there exists positive constants c and n_0 such that $\int_{0}^{\psi} \int_{0}^{\infty} f(n) f(n) dn$ there exists positive constants c and n_0 such that $\int_{0}^{\psi} \int_{0}^{\infty} f(n) dn$ there exists positive constants c and n_0 such that $\int_{0}^{\psi} \int_{0}^{\infty} f(n) dn$ there exists positive constants c and n_0 such that $\int_{0}^{\psi} \int_{0}^{\infty} f(n) dn$ and $\int_{0}^{\infty} f($

$$f_1(x) = 3n^2$$

$$O(n^2) = \begin{cases} f_2(x) = 1/2n^2 + 100 \\ f_3(x) = n^2 + 5n + 40 \end{cases}$$

$$f_4(x) = 6n$$

• O(g(n)) is the set of functions:

Generally, we're most interested in big O notation since it is an upper bound on the running time

Big O: examples

- 7n-2 is O(n) need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$
- $3n^3+20n^2+5$ is $O(n^3)$ need c>0 and $n_0\geq 1$ s.t $3n^3+20n^2+5\leq c\cdot n^3$ for $n\geq n_0$ this is true for c=4 and $n_0=21$
- 3 log n + 5 is O(log n) need c > 0 and $n_0 \ge 1$ s.t 3 log n + 5 \le c·log n for n $\ge n_0$ this is true for c = 8 and $n_0 = 2$

Omega: Lower bound

• $\Omega(g(n))$ is the set of functions:

$$W(g(n)) = \left\{ f(n): \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \right\}$$

Omega: Lower bound

• $\Omega(g(n))$ is the set of functions:

$$W(g(n)) = \begin{cases} f(n): & \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \end{cases}$$

We can bound the function f(n) below by some constant factor of g(n)

Omega: Lower bound

• $\Omega(g(n))$ is the set of functions:

$$\Omega(g(n)) = \begin{cases} f(n): & \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \end{cases}$$

$$\begin{aligned}
f_1(x) &= 3n^2 \\
\Omega(n^2) &= f_2(x) &= 1/2n^2 + 100 \\
f_3(x) &= n^2 + 5n + 40 \\
f_4(x) &= 6n^3
\end{aligned}$$

• $\Theta(g(n))$ is the set of functions:

$$Q(g(n)) = \int_{1}^{n} f(n): \text{ there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } \bigvee_{i=0}^{n} \int_{1}^{n} f(n) dx = 0 \text{ for all } n \text{ fo$$

• $\Theta(g(n))$ is the set of functions:

$$Q(g(n)) = \begin{cases} f(n): & \text{there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } y \\ 0 & \text{f}(n) \\ \end{pmatrix} \end{cases}$$

We can bound the function f(n) above and below by some const ant factor of g(n) (though different constants)

• $\Theta(g(n))$ is the set of functions:

$$Q(g(n)) = \int_{1}^{n} f(n):$$
 there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and c_1, c_2 and c_2, c_3 and c_3, c_4 and c_4, c_5 and c_5, c_5 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6 and c_6, c_6 and c_6, c_6 are c_6, c_6, c_6 and c_6, c_6 are c_6, c_6, c_6 and c_6, c_6, c_6 and c_6, c_6, c_6 are c_6

Note: A function is theta bounded *iff* it is big O bounded and Omega bounded

• $\Theta(g(n))$ is the set of functions:

$$Q(g(n)) = \int_{1}^{n} f(n):$$
 there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 by

$$G(n^{2}) = \begin{cases} f_{1}(x) &= 3n^{2} \\ f_{2}(x) &= 1/2n^{2} + 100 \\ f_{3}(x) &= n^{2} + 5n + 40 \\ f_{4}(x) &= 3n^{2} + n \log n \end{cases}$$

There exist positive constants c_1 and c_2 such that there is a positive constant n_0

There exist positive constants c such that there is a positive constant n_0 such that ...

There exist positive constants c

Θ () proofs

• Prove
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$
• Find c₁, c₂ and n₀ such that

$$c_{1} \leq \frac{1}{2} - \frac{3}{n} \leq c_{2}$$

$$\frac{1}{2} - \frac{3}{n} \leq c_{2} \to n \geq 1, c_{2} \geq \frac{1}{2}$$

$$c_{1} \leq \frac{1}{2} - \frac{3}{n} \to n \geq 7, c_{1} \leq \frac{1}{14}$$

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

$$c_1 = \frac{1}{14}$$

 $c_2 = \frac{1}{2}$

 $n_0 = 7$

Proving bounds (find constants that satisfy inequalities)

- Show that $5n^2 15n + 100$ is $\Theta(n^2)$
- Step 1: Prove O(*n*²)
 - Find constants c and n_0 such that $5n^2 15n + 100 ≤ cn^2$ for all $n > n_0$

$$cn^2 \geq 5n^2 - 15n + 100$$

$$c \geq 5-15/n+100/n^2$$

Let $n_0 = 1$ and c = 5 - 15 + 100 = 90. 100/n² only get smaller as n increases and we ign ore -15/n since it only varies between -15 and 0

Proving bounds

- Step 2: Prove $\Omega(n^2)$
 - Find constants c and n_0 such that $5n^2 15n + 100 ≥ <math>cn^2$ for all $n > n_0$

$$cn^2 \le 5n^2 - 15n + 100$$

 $c \le 5 - 15/n + 100/n^2$

Let $n_0 = 4$ and c = 5 - 15/4 = 1.25 (or anything less than 1.25). We can ignore $100/n^2$ since it is always positive and 15/n is always decreasing.

Bounds

Is
$$5n^2 O(n)$$
? No!

How would we prove it?

$$O(g(n)) = \int_{\uparrow}^{\uparrow} f(n)$$
: there exists positive constants c and n_0 such that $\int_{0}^{\psi} \int_{0}^{\infty} f(n) dn$ there exists positive constants c and n_0 such that $\int_{0}^{\psi} \int_{0}^{\infty} f(n) dn$

Disproving bounds

Is $5n^2 O(n)$?

$$O(g(n)) = \int_{\uparrow}^{\uparrow} f(n)$$
: there exists positive constants c and n_0 such that $\int_{\downarrow}^{\downarrow} O(g(n)) = \int_{\uparrow}^{\uparrow} f(n)$: $\int_{\downarrow}^{\uparrow} O(g(n)) f(n) dn$ for all $n \ge n_0$

Assume it's true. That means there exists some c and n_0 such that

$$5n^2$$
 £ cn for $n > n_0$

 $5n \pm c$ contradiction!

Some rules of thumb

- Multiplicative constants can be omitted
 - $14n^2$ becomes n^2
 - 7 log *n* become log *n*
- Lower order functions can be omitted
 - n + 5 becomes n
 - $n^2 + n$ becomes n^2
- n^a dominates n^b if a > b
 - n^2 dominates n, so $n^2 + n$ becomes n^2
 - $n^{1.5}$ dominates $n^{1.4}$

Some rules of thumb

- a^n dominates b^n if a > b
 - 3ⁿ dominates 2ⁿ
- Any exponential dominates any polynomial
 - 3^n dominates n^5
 - 2^n dominates n^c
- Any polynomial dominates any logarithm
 - *n* dominates log *n* or log log *n*
 - n² dominates n log n
 - n^{1/2} dominates log n
- <u>Do not omit lower order terms of different</u> variables $(n^2 + m)$ does not become n^2

Some examples

- O(1): constant. Fixed amount of work, regardless of the input size
 - add two 32 bit numbers
 - determine if a number is even or odd
 - sum the first 20 elements of an array
 - delete an element from a doubly linked list
- O(log *n*): logarithmic. At each iteration, discards some portion of the input (i.e. half)
 - binary search

Some examples

- O(n): linear. Do a constant amount of work on each element of the input
 - find an item in a linked list
 - determine the largest element in an array
- O(*n* log *n*):log-linear. Divide and conquer algorithms with a linear amount of work to recombine
 - Sort a list of number with Merge Sort
 - FFT

Some examples

- $O(n^2)$: quadratic. Double nested loops that iterate over the data
 - Insertion sort, selection sort,
- $O(2^n)$: exponential
 - Enumerate all possible subsets
 - Traveling salesman using dynamic programming
- O(n!)
 - Enumerate all permutations

Asymptotic Notation

- What does asymptotic mean? Asymptotic describes the behavior of a function *in the limit* (for sufficiently large values of its parameter).
- The *order of growth of the running time of* an algorithm is defined as the highest-order term (usually the leading term) of an expression that describes the running time of the algorithm.
- Example: The order of growth of an algorithm whose running time is described by the expression an² + bn + c is simply n².

- •Let's say that we have some function that represents the sum total of all the running-time costs of an algorithm; call it *f(n)*.
- For merge sort, the actual running time is: $f(n) = cn(\log_2 n) + cn$
- We want to describe the running time of merge sort in terms of another function, g(n), so that we can say f(n) = O(g(n)), like this: $cn(log_2n) + cn = O(nlog_2n)$

Big O, Omega, Theta

- Already studied
- Why would we prefer to express the running time of merge sort as $\Theta(n(\log_2 n))$ instead of $O(n(\log_2 n))$?
- Because Big-Theta is more precise than Big-O.
- If we say that the running time of merge sort is O(n(log₂n)), we are merely making a claim about merge sort's asymptotic upper bound, whereas of we say that the running time of merge sort is Θ(n(log₂n)), we are making a claim about merge sort's asymptotic upper and lower bounds.