# Particle Swarm Optimization (PSO) #2

# Particle Swarm Optimizer Incorporating a Weighted Particle (EPSOWP) -- An Enhanced Variant

## Outline

- Introduction
- Preliminaries of Particle Swarm Optimization (PSO)
- Weighted Particle
- Enhanced Particle Swarm Optimizer Incorporating a Weighted Particle (EPSOWP)
- Simulation Results
- Conclusions

#### Introduction

- Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart in 1995. Based on simulation of simplified animal social behaviors such as fish schooling, bird flocking, etc.
- In order to improve the performances of conventional PSO, many variants have been, considering the selection of control parameters for optimality and convergence.

#### Particle swarm optimization

- PSO searches a space by adjusting the trajectories of individual vectors, called "particles", which are conceptualized as moving points in multidimensional space.
- ▶ Each particle *i* moves through a *n*-dimensional search space with two associated vectors,

```
position vector x_i(t) = \{x_{i1}(t), x_{i2}(t), ..., x_{in}(t)\} and velocity vector v_i(t) = \{v_{i1}(t), v_{i2}(t), ..., v_{in}(t)\}, i = 1, 2, ..., P, in a population P for the current evolutionary iteration t.
```

The particle behavior in a PSO can be modeled as:

$$v_{i}(t+1) = w \times v_{i}(t) + c_{1} \times rand \times (pbest_{i} - x_{i}(t)) + c_{2} \times rand \times (Gbest - x_{i}(t))$$

$$(1)$$

$$x_i(t+1) = x_i(t) + v_i(t+1)$$
 (2)

- $ightharpoonup c_1$  and  $c_2$  are acceleration constants;
- **rand** is random number between 0 and 1;
- w is inertia weight factor
- $G_{best}$  is the best previous position among all the particles and  $pbest_i$  is the best previous position of particle i.

The swarm, which is initialized by a random population to search the best solution, is associated with movement toward  $G_{best}$  and  $pbest_i$  locations of particles. However,  $G_{best}$  and  $pbest_i$  represent two directions of movement for each particle.



#### Problems of conventional PSOs

- The convergence of optimization becomes staggered, especially in later stage during the evolution process.
- Other issues include proper control of global exploration and local exploitation as well as sensitivity of the control parameters

# Weighed Particle

The weighed particle  $x_w$  in a swarm of a PSO algorithm plays a critical role during the optimization process, where the position of the weighed particle can be calculated as:

$$x_{w} = \sum_{i=1}^{P} \overline{c}_{w_{i}} x_{pbest_{i}}, \qquad (3)$$

$$\overline{c}_{w_{-}i} = \frac{\hat{c}_{w_{-}i}}{\sum_{j=1}^{P} \hat{c}_{w_{-}j}}, i = 1, 2, ..., P,$$
(4)

$$\hat{c}_{w_{-}i} = \frac{\max_{1 \le i \le P} (f(x_{pbest_{-}i})) - f(x_{pbest_{-}i})}{\max_{1 \le i \le P} (f(x_{pbest_{-}i})) - \min_{1 \le i \le P} (f(x_{pbest_{-}i}))}, i = 1, 2, ..., P, (5)$$

•  $f(\cdot)$  presents a fitness value of the benchmark function.

# Weighed Particle

- The weighed particle  $x_w$  is generally closer to the optimal position than  $G_{best}$
- The weighed particle is employed in PSO to allow a swarm to adapt in the search space during the optimization process.
- More importantly, the weighed particle often attracts other particles and guides the search direction of the whole swarm.
- The weighed particle is generated when a random value is lower than an attraction value  $\alpha$

# Enhanced Particle Swarm Optimizer Incorporating a Weighted Particle (EPSOWP)

#### Mechanism I in EPSOWP:

If random number  $\leq \alpha$ 

$$v_i(t+1) = w \times v_i(t) + c_3 \times rand \times (pbest_i - x_i(t))$$
$$+ c_4 \times rand \times (x_w - x_i(t))$$
$$x_i(t+1) = x_i(t) + v_i(t+1)$$

If random number  $> \alpha$ 

$$v_i(t+1) = w \times v_i(t) + c_1 \times rand \times (pbest_i - x_i(t))$$
$$+ c_2 \times rand \times (Gbest - x_i(t))$$
$$x_i(t+1) = x_i(t) + v_i(t+1)$$



# Enhanced Particle Swarm Optimizer Incorporating a Weighted Particle (EPSOWP)

#### Mechanism II in EPSOWP:

If random number  $\leq \alpha$ 

 $v_i(t+1)$  (using the original velocity updating rule)

$$x_i(t+1) = x_i(t) + c_4 \times rand \times (x_w - x_i(t))$$

If random number  $> \alpha$ 

$$v_{i}(t+1) = w \times v_{i}(t) + c_{1} \times rand \times (pbest_{j} - x_{i}(t))$$

$$+ c_{2} \times rand \times (Gbest - pbest_{j}) + c_{3} \times rand \times (x_{w} - pbest_{j})$$

$$x_{i}(t+1) = x_{i}(t) + v_{i}(t+1)$$

# Enhanced Particle Swarm Optimizer Incorporating a Weighted Particle (EPSOWP)



**Fig. 1.** Geometric views of (a) PSO (b) EPSOWP with  $rand_i \le \alpha$  (c) EPSOWP  $rand_i > \alpha$ .

#### Basis for comparison

- An initial population is randomly generated from the search space of the optimization problem
- $c_1, c_2, c_3$  and  $c_4$  are set as 2.
- ▶ The attraction value is set 0.4.
- w is a random factor between 0.5 and 0.55 during the iteration.
- The population size *P* is set as 20 and all algorithms are run for the maximum function evaluation, 180000, as the computation cost

- The best fitness value of the six 10-dimensional benchmark functions below is minimum value for searching the best solution.
  - 1. The Sphere function (unimodal)

$$f_1(x) = \sum_{k=1}^{10} x_k^2 \tag{8}$$

2. The Schwefel function (unimodal)

$$f_2(x) = \sum_{k=1}^{10} |x_k| + \prod_{k=1}^{10} |x_k| \tag{9}$$

3. The Rosenbrock function (unimodal)

$$f_3(x) = \sum_{k=1}^{10} 100 \times (x_{k+1} - x_k^2)^2 + (1 - x_k)^2$$
 (10)

4. The Ackley function (multimodal)

$$f_4(x) = -20e^{-0.2\sqrt{\frac{1}{10}\sum_{k=1}^{10}x_k^2}} - e^{(1/10)\sum_{k=1}^{10}\cos(2\pi x_k)} + 20 + e$$
 (11)

5. The Grewank function (multimodal)

$$f_5(x) = \sum_{k=1}^{10} \frac{x_k^2}{4000} - \prod_{k=1}^{10} \cos(\frac{x_k}{\sqrt{k}})$$
 (12)

6. The Rastrigin function (multimodal)

$$f_6(x) = \sum_{k=1}^{10} (x_k^2 - 10\cos(2\pi x_k) + 10)$$
 (13)

#### Parameters

- $c_1, c_2, c_3$  and  $c_4$  are set as 2.
- ▶ The attraction value is set 0.4.
- w is a random factor between 0.5 and 0.55 during the iteration.
- The population size P is set as 20 and all algorithms are run for the maximum function evaluation, 180000, as the computation cost
- ▶ 100 independent runs
- Define  $accu. dist(G_{best}, x_{opt}) = \sum_{k=1}^{T} \left\| G_{best}(k) x_{opt} \right\|$

$$accu. dist(x_w, x_{opt}) = \sum_{k=1}^{T} ||x_w(k) - x_{opt}||$$



Fig. 3. The comparison of accumulation distance between Accu.  $dist(x^G, x^{Opt})$  and Accu.  $dist(x^W, x^{Opt})$  for  $F_1(x)$ .



Fig. 4. The comparison of accumulation distance between Accu.  $dist(x^G, x^{Opt})$  and Accu.  $dist(x^W, x^{Opt})$  for  $F_2(x)$ .



Fig. 5. The comparison of accumulation distance between Accu.  $dist(x^G, x^{Opt})$  and Accu.  $dist(x^W, x^{Opt})$  for  $F_3(x)$ .



Fig. 6. The comparison of accumulation distance between Accu.  $dist(x^G, X^{Opt})$  and Accu.  $dist(x^W, X^{Opt})$  for  $F_4(x)$ .



Fig. 7. The comparison of accumulation distance between Accu.  $dist(x^G, x^{Opt})$  and Accu.  $dist(x^W, x^{Opt})$  for  $F_5(x)$ .



Fig. 8. The comparison of accumulation distance between Accu.  $dist(x^G, x^{Opt})$  and Accu.  $dist(x^W, x^{Opt})$  for  $F_n(x)$ .

The population size M is set as 20 and the termination condition

PSO, CRPSO, GA, DE and EPSOWP for six benchmark functions.

| itness | PSO           | CRPSO         | GA            | DE            |  |
|--------|---------------|---------------|---------------|---------------|--|
|        |               |               |               |               |  |
| Mean   | 1.0675e - 024 | 6.1992e – 039 | 2.1074e – 008 | 2.7970e – 016 |  |
| itd.   | 4.2664e – 024 | 1.4934e – 038 | 1.0306e – 008 | 1.7708e – 016 |  |
| ∕lean  | 2.5503e – 017 | 2.2927e – 021 | 1.3332e – 001 | 5.0090e – 010 |  |
| itd.   | 1.0104e – 016 | 3.4088e - 021 | 1.4673e – 001 | 1.8440e – 010 |  |
| Mean   | 2.9552e+001   | 1.4372e+001   | 9.7191e+001   | 2.5418e – 011 |  |
| itd.   | 2.2389e + 001 | 2.4899e + 000 | 1.8175e + 001 | 2.5069e – 012 |  |
| Mean   | 4.5581e – 013 | 1.8971e – 014 | 4.9296e – 012 | 5.7289e – 009 |  |
| itd.   | 1.4563e – 012 | 5.1062e – 015 | 2.0079e – 012 | 2.0900e – 009 |  |
| Mean   | 1.2388e-002   | 6.3070e – 003 | 1.2744e – 009 | 6.3192e – 012 |  |
| itd.   | 1.3601e – 002 | 8.8200e – 003 | 6.1488e – 010 | 2.6574e – 011 |  |
| Mean   | 3.1122e+001   | 1.3823e+002   | 8.8949e + 000 | 1.3089e+002   |  |
| itd.   | 9.1057e+000   | 5.1833e+001   | 3.7033e+000   | 9.8771e + 000 |  |

Table 3

Simulation results of LPSO, MPSO, LDWPSO and EPSOWP for five benchmark functions.

| Fun. D         | Dim.           | LPSO                                |                                 |                             |                      | MPSO                      |                          |                          | LDWISO               |                                  |                           |                           | EPSOWP               |                                  |                             |                      |                      |
|----------------|----------------|-------------------------------------|---------------------------------|-----------------------------|----------------------|---------------------------|--------------------------|--------------------------|----------------------|----------------------------------|---------------------------|---------------------------|----------------------|----------------------------------|-----------------------------|----------------------|----------------------|
|                |                | Best                                | Worst                           | Average<br>Deviation        | Time(s)              | Best                      | Worst                    | Average<br>Deviation     | Time (s)             | Best                             | Worst                     | Average<br>Deviation      | Time (s)             | Best                             | Worst                       | Average<br>Deviation | Time(s)              |
| F <sub>1</sub> | 10<br>20<br>30 | 593e - 77<br>433e - 32<br>195e - 14 | 8.20e-73<br>113e-29<br>5.82e-10 | 4.66e-30                    | 122<br>131<br>164    |                           | 2.15e - 12               | 6.49e - 17               | 1.02<br>1.26<br>1.57 | 1.01e-29<br>6.99e-12<br>2.89e-06 |                           | 1.30e-11                  | 0.98<br>1.22<br>1.48 |                                  | 0<br>4.38e-247<br>5.43e-114 | 0<br>0<br>5.43e- 115 | 0.99<br>2.09<br>2.56 |
| F <sub>3</sub> | 10<br>20<br>30 | 0.004<br>0.007<br>0.62              | 0.20<br>11.32<br>66.73          | 0.068<br>4.48<br>23.10      | 1.74<br>2.12<br>2.77 | 0.005<br>2.96<br>13.48    | 2.13<br>69.54<br>91.71   | 1.05<br>23.57<br>25.63   | 1.66<br>2.43<br>2.94 | 0.009<br>3.99<br>12.35           | 3.27<br>72.78<br>78.23    | 136<br>2468<br>2429       | 1.77<br>2.05<br>2.68 | 2.77e-08<br>4.98e-07<br>2.42e-05 | 2.98<br>3.99<br>42.91       | 1.57<br>6.93         | 2.57<br>3.45<br>4.39 |
| F <sub>4</sub> | 10<br>20       | 154e-09<br>154e-09                  | 154e-09<br>154e-09              | 0                           | 1.34                 | 1.54e-09<br>5.63e-07      | 1.54e-09<br>8.33e-07     | 0<br>0.78e – 07          | 2.26<br>1.99         | 1.54e-9<br>3.28e-07              | 1.54e -9<br>4.97e-07      | 0<br>7.10e-07             | 1.25<br>1.72         | 8.88e-16<br>8.88e-16             | 8.88e-16<br>8.88e-16        | 0                    | 1.76<br>2.23         |
| Fs             | 30<br>10<br>20 | 1.58e-09<br>0.014<br>0.017          | 4.44e-09<br>0.07<br>0.056       | 1.13e = 09<br>0.03<br>0.017 | 2.47<br>0.98<br>1.17 | 1.30e-04<br>0.014<br>0.03 | 3.11e-04<br>0.13<br>0.34 | 0.99e 04<br>0.05<br>0.17 | 2.37<br>0.90<br>1.09 | 120e-04<br>0.014<br>0.03         | 3.92e-04<br>0.11<br>0.036 | 1.10e-04<br>0.04<br>0.023 | 2.08<br>0.86<br>0.91 | 8.88e-16<br>0<br>0               | 8.88e- 16<br>0.13<br>0.28   | 0.04<br>0.05         | 0.42<br>0.33         |
| F <sub>6</sub> | 30<br>10<br>20 | 0.012<br>0.09<br>8.95               | 0.022<br>1.08<br>12.94          | 0.0048<br>0.69<br>6.75      | 139<br>122<br>159    | 0.05<br>1.68<br>8.13      | 0.07<br>2.98<br>26.02    | 0.017<br>0.94<br>8.43    | 1.07<br>1.13<br>1.64 | 0.05<br>1.02<br>8.96             | 0.07<br>2.98<br>21.89     | 0.018<br>1.46<br>6.38     | 1.05<br>1.28<br>1.42 | 0                                | 0.48<br>14.92<br>23.86      | 0.07<br>4.39<br>7.52 | 0.55<br>1.54<br>1.14 |
|                | 30             | 20.81                               | 37.78                           | 6.52                        | 1.89                 | 22.33                     | 52.18                    | 13.25                    | 1.88                 | 23.88                            | 75.04                     | 10.46                     | 1.43                 | 0                                | 28.79                       | 5.96                 | 0.56                 |

## Conclusions

This paper presents a novel strategy where weighed particles help guiding particles of swarm to optimal solution.

- Simulation results show the effectiveness of the EPSOWP to solve high-dimension benchmark functions.
- In light of the satisfactory results obtained in optimizing the benchmark functions, the proposed optimization method has the potential to tackle more complex practical real-world applications.