Nom			
Prénom		T . T	
Groupe		Note	
	l		

Algorithmique Info-spé - S3#

Contrôle nº 3 (C3) 5 mars 2019 - 14 : 45 Feuilles de réponses

1	
2	
3	
4	
5	

$R\'{e}ponses$ 1 (Hachage linéaire – 2 points)

Représentation des collisions dans le cas du hachage linéaire avec un coefficient de décalage d=5:

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Réponses 2 (Quelques questions – 5 points)

1.	Citez trois propriétés essentielles que doit posséder une fonction de hachage :
	(a)
	(b)
	(c)
2.	Quelle méthode de hachage génère des collisions secondaires?
3.	Quelle méthode de hachage permet de résoudre le phénomène de regroupement ou accumulation d'éléments (clustering) généré par le hachage linéaire?
4.	Citer 2 méthodes de hachage de base.
	(a) Méthode 1 :
	(b) Méthode 2 :
5.	Citer une méthode utilisant une fonction d'essais successifs :
6.	Quelle méthode de résolution des collisions ne nécessite pas un tableau de hachage de taille supérieure ou égale au nombre de clés à hacher?

$R\'{e}ponses~3~$ (S\'erialisation – 5~points)

1. Le vecteur de pères :

0	1	2	3	4	5	6	7	8	9	10	11

2. La fonction buildParentVect(T, n):

Réponses 4 (Croissants – 4 points)

Spécifications:

BtreeToList(B) retourne la liste des clés du B-arbre B en ordre croissant.

$R\'{e}ponses~5~$ (Mesure sur les B-arbres – 4 points)

${\bf Sp\'{e}cifications}:$

 $\operatorname{occupation}(B)$ retourne le nombre moyen de clés par nœud du B-arbre B.

