Does time of day affect arrest rate?

ANALYZING POLICE ACTIVITY WITH PANDAS

Kevin MarkhamFounder, Data School

Analyzing datetime data

apple

```
price volume date_and_time

0 174.35 20567800 2018-01-08 16:00:00

1 174.33 21584000 2018-01-09 16:00:00

2 155.15 54390500 2018-02-08 16:00:00

3 156.41 70672600 2018-02-09 16:00:00

4 176.94 23774100 2018-03-08 16:00:00

5 179.98 32185200 2018-03-09 16:00:00
```


Accessing datetime attributes (1)

```
apple.dtypes
                       float64
price
volume
                         int64
              datetime64[ns]
date_and_time
apple.date_and_time.dt.month
```


Accessing datetime attributes (2)

```
apple.set_index('date_and_time', inplace=True)
apple.index
```

```
apple.index.month
```

```
Int64Index([1, 1, 2, 2, 3, 3], dtype='int64', name='date_and_time')
```

• dt accessor is not used with a DatetimeIndex

Calculating the monthly mean price

```
apple.price.mean()
169.5266666666667
apple.groupby(apple.index.month).price.mean()
date_and_time
     174.34
     155.78
     178.46
Name: price, dtype: float64
monthly_price = apple.groupby(apple.index.month).price.mean()
```


Plotting the monthly mean price

```
import matplotlib.pyplot as plt

monthly_price.plot()
```

• Line plot: Series index on x-axis, Series values on y-axis

```
plt.xlabel('Month')
plt.ylabel('Price')
plt.title('Monthly mean stock price for Apple')
```

```
plt.show()
```


Monthly mean stock price for Apple

Let's practice!

ANALYZING POLICE ACTIVITY WITH PANDAS

Are drug-related stops on the rise?

ANALYZING POLICE ACTIVITY WITH PANDAS

Kevin MarkhamFounder, Data School

Resampling the price

```
apple.groupby(apple.index.month).price.mean()

date_and_time
1    174.34
2    155.78
3    178.46
```

```
apple.price.resample('M').mean()
```

```
date_and_time
2018-01-31 174.34
2018-02-28 155.78
2018-03-31 178.46
```


Resampling the volume

```
apple
```

```
apple.volume.resample('M').mean()
```

```
date_and_time
2018-01-31 21075900
2018-02-28 62531550
2018-03-31 27979650
```


Concatenating price and volume

```
monthly_price = apple.price.resample('M').mean()
monthly_volume = apple.volume.resample('M').mean()
pd.concat([monthly_price, monthly_volume], axis='columns')
date_and_time
                        volume
               price
          174.34 21075900
2018-01-31
2018-02-28
          155.78 62531550
2018-03-31
              178.46 27979650
monthly = pd.concat([monthly_price, monthly_volume],
                    axis='columns')
```


Plotting price and volume (1)

```
monthly.plot()
plt.show()
```


Plotting price and volume (2)

```
monthly.plot(subplots=True)
plt.show()
```


Let's practice!

ANALYZING POLICE ACTIVITY WITH PANDAS

What violations are caught in each district?

ANALYZING POLICE ACTIVITY WITH PANDAS

Kevin MarkhamFounder, Data School

Computing a frequency table

	driver_gender	F	М	
	driver_race			
	Asian	551	1838	
	Black	2681	9604	
	Hispanic	1953	7774	
	Other	53	212	
	White	18536	43334	
ĺ				

 Frequency table: Tally of how many times each combination of values occurs

```
ri[(ri.driver_race == 'Asian') &
    (ri.driver_gender == 'F')
].shape
```

```
(551, 14)
```

 driver_race is along the index, driver_gender is along the columns

```
table = pd.crosstab(
  ri.driver_race,
  ri.driver_gender)
```

Selecting a DataFrame slice

• .loc[] accessor: Select from a DataFrame by label

```
table
```

driver_gender	F	М	
driver_race			
Asian	551	1838	
Black	2681	9604	
Hispanic	1953	7774	
0ther	53	212	
White	18536	43334	

```
table.loc['Asian':'Hispanic']
```

```
driver_gender F M
driver_race
Asian 551 1838
Black 2681 9604
Hispanic 1953 7774
```

```
table =
  table.loc['Asian':'Hispanic']
```

Creating a line plot

```
table.plot()
plt.show()
```


Creating a bar plot

```
table.plot(kind='bar')
plt.show()
```


Stacking the bars

```
table.plot(kind='bar', stacked=True)
plt.show()
```


Let's practice!

ANALYZING POLICE ACTIVITY WITH PANDAS

How long might you be stopped for a violation?

ANALYZING POLICE ACTIVITY WITH PANDAS

Kevin MarkhamFounder, Data School

Analyzing an object column

```
apple
```

```
      date_and_time
      price
      volume
      change

      2018-01-08 16:00:00
      174.35
      20567800
      down

      ...
      ...
      ...
      ...

      2018-03-09 16:00:00
      179.98
      32185200
      up
```

- Create a Boolean column:
 True if the price went up, and
 False otherwise
- Calculate how often the price went up by taking the column mean

```
apple.change.dtype
```

```
dtype('0')
```

• .astype() can't be used in this case

Mapping one set of values to another

Dictionary maps the values you have to the values you want

```
mapping = {'up':True, 'down':False}
apple['is_up'] = apple.change.map(mapping)
apple
```

```
      date_and_time
      price
      volume change is_up

      2018-01-08 16:00:00 174.35 20567800 down
      False

      ...
      ...
      ...

      2018-03-09 16:00:00 179.98 32185200 up
      True
```

```
apple.is_up.mean()
```

```
0.5
```


Calculating the search rate

Visualize how often searches were done after each violation type

```
ri.groupby('violation').search_conducted.mean()
```

```
violation
Equipment 0.064280
Moving violation 0.057014
Other 0.045362
Registration/plates 0.093438
Seat belt 0.031513
Speeding 0.021560
```

```
search_rate = ri.groupby('violation').search_conducted.mean
```


Creating a bar plot

```
search_rate.plot(kind='bar')
plt.show()
```


Ordering the bars (1)

Order the bars from left to right by size

```
search_rate.sort_values()
```

```
violation

Speeding 0.021560

Seat belt 0.031513

Other 0.045362

Moving violation 0.057014

Equipment 0.064280

Registration/plates 0.093438

Name: search_conducted, dtype: float64
```


Ordering the bars (2)

```
search_rate.sort_values().plot(kind='bar')
plt.show()
```


Rotating the bars

```
search_rate.sort_values().plot(kind='barh')
plt.show()
```


Let's practice!

ANALYZING POLICE ACTIVITY WITH PANDAS

