Computability

Rasmus Guldborg Pedersen

January 2015

Turing machines as a model universal computer

Give a formal definition of a Turing Machine. Describe the language accepted by a Turing machine and what it means that a Turing machine is total.

Turing Machine

$$T = (Q, \Sigma, \Gamma, q_0, \delta)$$

Q, a finite set of states

 Σ , the input alphabet ($\Sigma \subseteq \Gamma$)

 Γ , the tape alphabet $(\Delta \not\in \Gamma)$

 q_0 , the initial state $(q_0 \in Q)$

 δ , the transition function

$$\delta: Q \times (\Gamma \cup \{\Delta\}) \rightarrow (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\} \times \{R, L, S\})$$

Language accepted by a TM

If $x \in \Sigma$ then x is accepted by T if

$$q_0 \Delta x \vdash_T^* wh_a y$$

 $L \subseteq \Sigma^*$ is accepted by T if L = L(T) where

$$L(T) = \{x \in \Sigma^* \mid x \text{ is accepted by } T\}$$

A TM that always halts.

A TM that always halts.

Let T be a TM that takes a description T_1 of a TM as input. T accepts if the T_1 halts, and rejects otherwise.

A TM that always halts.

Let T be a TM that takes a description T_1 of a TM as input.

T accepts if the T_1 halts, and rejects otherwise.

T' is an extended T_1 where if T_1 accepts it will loop forever, and if

T rejects it will accept.

A TM that always halts.

Let T be a TM that takes a description T_1 of a TM as input.

T accepts if the T_1 halts, and rejects otherwise.

T' is an extended T_1 where if T_1 accepts it will loop forever, and if T rejects it will accept.

Feed T' to T.

The End

The End