Lesson 2

Lesson 1 Review

....

QUESTION 6

If $\log_2 a = 5$ and $\log_2 b = 3$, then a - b equals

- (A) 5 3
- (B) 2⁵⁻³
- (C) $2^5 2^3$
- (D) $5^2 3^2$

a.
$$y=rac{\sin(x)}{x}$$

b.
$$y=rac{\sin(4x)}{\cos(2x)}$$

.

a)
$$2\ln(x+1) - \ln(x+5) = \ln(x-1)$$
 where $x > 1$

16. Determine the equation of the tangent and the line perpendicular to the tangent to the curve $y=3\cos(x)$ at the point where $x=\pi$.

Derivative Practice

QUESTION 13 (5 marks)

a) Determine the derivative of $f(x) = x^2(2\ln(x) - 1)$ and simplify.

- 11. A particle moves in a straight line so that at time t seconds its displacement, x metres, from a fixed origin O is given by $x(t) = t^3 6t^2 + 9t$, $t \ge 0$.
 - a. How far is the particle from O after 2 seconds?
 - b. What is the velocity of the particle after 2 seconds?
 - c. After how many seconds does the particle reach the origin again, and what is its velocity at that time?
 - d. What is the particle's acceleration when it reaches the origin again?
- 12. A particle moves in a straight line so that its displacement a point, \emph{O} , at any time, \emph{t} , is

$$x = \sqrt{3t^2 + 4}.$$

Determine:

- a. the velocity as a function of time
- b. the acceleration as a function of time
- c. the velocity and acceleration when t=2.
- 10. The graph of the function $f: R \to R$, $f(x) = 3x^3e^{-2x}$ is shown. The derivative may be written as $f'(x) = ae^{-2x}(bx^2 + cx^3)$ where a, b and c are constants.

- a. Calculate the exact values of $a,\,b$ and c.
- b. Calculate the exact coordinates where f'(x) = 0.
- c. Determine the equation of the tangent to the curve at x=1.
- 14. A rower is in a boat $4\,\mathrm{km}$ from the nearest point, O, on a straight beach. His destination is $8\,\mathrm{km}$ along the beach from O. If he is able to row at $5\,\mathrm{km/h}$ and walk at $8\,\mathrm{km/h}$, what point on the beach should he row to in order to reach his destination in the least possible time? Give your answer correct to 1 decimal place.

13. Metal box guttering has to be formed on a common wall between two adjacent town houses. The cross section of the box guttering is shown.

For the most efficient elimination of rain water, this box guttering needs to have a maximum cross-sectional area within the given dimensions.

- a. Determine an expression for h, the height of the trapezium, in terms of the angle x in radians, as shown.
- b. Determine an expression for \emph{b} , the base length of the trapezium, in terms of \emph{x} .
- c. Show that the cross-sectional area of the box guttering, $A~{
 m cm^2}$, is given by $A=200\sin(x)(2\cos(x)+1).$
- d. Determine, correct to 3 decimal places, the value of x that gives maximum cross-sectional area, and find this maximum area correct to the nearest ${\bf cm}^2$.

20 cm

h cm

-10 cm-

20 cm

The graphs of $y = \ln x$ and $y = e^x$ are shown on the same axes below. The tangent to the curve $y = e^x$ at the point (1, e) is also shown.

Determine the coordinates of the point on the graph of $y = \ln x$ where the gradient is parallel to the tangent shown.

