

PLANO DE ENSINO 2014.1

DADOS DE IDENTIFICAÇÃO

Disciplina/Módulo: Sistemas Distribuidos

Código/Turma: N598 - 16

Pré-requisito: N562 - Analise e Projeto Sistemas II

N594 - Redes de Computadores I

Nº de Créditos: 4.02

Horário (Turma): N24AB (16) Local (Turma): D40 (16)

Professor(es): Nabor Das Chagas Mendonca

SÍNTESE DO CURRÍCULO LATTES

Nabor Das Chagas Mendonca

Nabor das Chagas Mendonça é Bacharel em Processamento de Dados pela Universidade Federal do Amazonas (UFAM); Mestre em Ciência da Computação pela Universidade Estadual de Campinas (UNICAMP); e Ph.D. em Computação pelo Imperial College London, Inglaterra. Atualmente é Professor Titular do Centro de Ciências Tecnológicas (CCT) da Universidade de Fortaleza (UNIFOR), onde atua nos cursos de Bacharelado em Ciência da Computação e Mestrado e Doutorado em Informática Aplicada. Orientou ou co-orientou 14 dissertações de mestrado. Publicou mais de 60 trabalhos em periódicos especializados e anais de eventos. Suas principais áreas de pesquisa são engenharia de software e sistemas distribuídos, com ênfase em linhas que permeiam ambas as áreas, como tecnologias de middleware, arquiteturas orientadas a serviços, grades computacionais, computação móvel, e computação em nuvem. Participa do comitê de programa de várias conferências nacionais e internacionais, com destaque para IEEE International Conference on Software Maintenance (ICSM), Working Conference on Reverse Engineering (WCRE), ICSE Software Engineering for Cloud Computing Workshop (SECLOUD), IEEE Latin American Conference on Cloud Computing and Communications (LATINCLOUD), IEEE International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), Simpósio Brasileiro de Engenharia de Software (SBES) e Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC). Atua como revisor de artigos para diversos periódicos nacionais e internacionais, incluindo ACM Transactions on Software Engineering and Methodology, IEEE Transactions on Software Engineering, The Journal of Systems and Software, International Journal of Software Engineering and Knowledge Engineering, Automated Software Engineering e Information Sciences. Já recebeu vários prêmios de destaque, entre eles os de Melhor Artigo no XI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, 2o. Lugar no VII Concurso de Teses e Dissertações (Categoria Mestrado) da Sociedade Brasileira de Computação, Melhor Artigo Técnico no III Workshop de Manutenção de Software Moderna, além de ter sido um dos ganhadores do Software Engineering Innovation Foundation (SEIF) Award 2013, da Microsoft Research.

Atualizado em 09/01/2014

OBJETIVO GERAL

Introdução aos sistemas distribuídos. Modelos de sistemas distribuídos. Mecanismos de comunicação entre processos. Tecnologia de objetos distribuídos. Introdução à programação distribuída com Java.

Introdução aos sistemas distribuídos. (16 h/a)

OBJETIVO: Conceituar sistemas distribuídos.

01.01 - Conceitos básicos;

01.02 - Exemplos de sistemas distribuídos;

01.03 - Compartilhamento de recursos;

01.04 - Desafios de projeto.

Modelos de sistemas distribuídos. (18 h/a)

OBJETIVO: Motivar e caracterizar os principais modelos de sistemas distribuídos.

02.01 - Motivação;

02.02 - Modelos arquitetônicos;

02.03 - Modelos fundamentais.

Mecanismos de comunicação. (10 h/a)

OBJETIVO: Explicitar requisitos básicos e mecanismos de comunicação necessários para a construção de sistemas

03.01 - Principais requisitos de comunicação;

03.02 - Tipos de rede;

03.03 - Princípios de rede;

03.04 - Protocolos da Internet.

Comunicação entre processos. (12 h/a)

OBJETIVO: Descrever serviços e paradigmas para comunicação entre processos em sistemas distribuídos.

04.01 - API para comunicação entre processos;

04.02 - Representação de dados externos;

04.03 - Comunicação cliente-servidor;

04.04 - Comunicação grupal.

Tecnologia de objetos distribuídos. (14 h/a)

OBJETIVO: Apresentar modelos e tecnologias para a implementação de objetos distribuídos.

05.01 - Fundamentos de objetos distribuídos;

05.02 - Invocação de objetos distribuídos;

05.03 - Arquitetura de middleware;

05.04 - Coleta de lixo distribuída:

05.05 - Notificação distribuída de eventos;

05.06 - Exemplo com Java RMI.

Introdução à programação distribuída com Java. (38 h/a)

OBJETIVO: Praticar os principais recursos e tecnologias disponíveis na linguagem Java para a implementação de

06.01 - Fundamentos de programação distribuída com Java;

06.02 - Mecanismos de comunicação utilizando sockets;

- 06.03 Mecanismos de invocação de objetos distribuídos utilizando CORBA e Java/RMI;
- 06.04 Exercícios de laboratório;
- 06.05 Projeto e implementação de uma aplicação distribuída com Java.

CRONOGRAMA

JANEIRO 2014		
Data		Conteúdo
Seg	27/01	Observação: Apresentação do Plano de Ensino (aulas teóricas).
Qua	29/01	01.01 - Conceitos básicos;

		FEVEREIRO 2014
D	ata	Conteúdo
Seg	03/02	01.01 - Conceitos básicos;
Qua	05/02	01.02 - Exemplos de sistemas distribuídos;
Seg	10/02	01.03 - Compartilhamento de recursos;
Qua	12/02	01.04 - Desafios de projeto.
Seg	17/02	01.04 - Desafios de projeto.
Qua	19/02	02.01 - Motivação;
Seg	24/02	02.02 - Modelos arquitetônicos;
Qua	26/02	Avaliação (1ª Avaliação - Nota Parcial 1, Turma: 16)

		MARÇO 2014
Data		Conteúdo
Seg	10/03	02.02 - Modelos arquitetônicos;
Qua	12/03	02.02 - Modelos arquitetônicos;

Seg	17/03	02.02 - Modelos arquitetônicos;
Seg	24/03	02.03 - Modelos fundamentais.
Qua	26/03	02.03 - Modelos fundamentais.
Seg	31/03	Avaliação (2ª Avaliação - Nota Parcial 1, Turma: 16)

		ABRIL 2014
D	ata	Conteúdo
		03.01 - Principais requisitos de comunicação;
Qua	02/04	03.02 - Tipos de rede;
		Observação: 1NP - 2a. Chamada
Seg	07/04	03.03 - Princípios de rede;
Qua	09/04	03.04 - Protocolos da Internet.
Seg	14/04	03.04 - Protocolos da Internet.
Qua	16/04	04.01 - API para comunicação entre processos;
Qua	23/04	04.02 - Representação de dados externos;
Seg	28/04	04.02 - Representação de dados externos;
Qua	30/04	Avaliação (1ª Avaliação - Nota Parcial 2, Turma: 16)

MAIO 2014		
D	ata	Conteúdo
Seg	05/05	04.03 - Comunicação cliente-servidor; 04.04 - Comunicação grupal.
Qua	07/05	05.01 - Fundamentos de objetos distribuídos;

Seg	12/05	05.02 - Invocação de objetos distribuídos;
Qua	14/05	05.03 - Arquitetura de middleware;
Seg	19/05	05.04 - Coleta de lixo distribuída;
Qua	21/05	05.05 - Notificação distribuída de eventos; 05.06 - Exemplo com Java RMI.
Seg	26/05	Avaliação (2ª Avaliação - Nota Parcial 2, Turma: 16)
Qua	28/05	Observação: 2NP - 2a. Chamada

		JUNHO 2014
D	ata	Conteúdo
Seg	02/06	
Qua	04/06	
Seg	09/06	
Qua	11/06	
Seg	16/06	
Qua	18/06	

Avaliação em 26/02/2014 (1ª Avaliação - Nota Parcial 1, Turma: 16).
Avaliação em 31/03/2014 (2ª Avaliação - Nota Parcial 1, Turma: 16).
Avaliação em 30/04/2014 (1ª Avaliação - Nota Parcial 2, Turma: 16).
Avaliação em 26/05/2014 (2ª Avaliação - Nota Parcial 2, Turma: 16).

BIBLIOGRAFIA

Bibliografia Básica

COULOURIS, George et al. Distributed systems : concepts and design. 5. ed. Boston: Addison-Wesley, 2012. (Cód.:58685)

COULOURIS, George; DOLLIMORE, Jean; KINDBERG, Tim. Sistemas distribuídos : conceitos e projeto. Tradução de Joao Tortello. 4. ed. Porto Alegre: Bookman, 2007. (Cód.:78010)

DEITEL, H. M;DEITEL, P. J. Java : como programar. Tradução de Edson Furmankiewicz. 6. ed. São Paulo: Pearson Prentice Hall, 2006. (Cód.:57746)

Fundamentos. In: HORSTMANN, Cay S;CORNELL, Gary. Core java 2. Tradução de Andreza Goncalves; Marcelo Soares. Rio de Janeiro: Alta Books, 2005. v.1. ISBN:85-346-1225-0. (Cód.:57834)

BIBLIOGRAFIA

Bibliografia Complementar

HAROLD, Elliotte Rusty. Java network programming. 3. ed. Beijing: O'Reilly, 2004. (Cód.:69286)

METSKER, Steven John. Design patterns java workbook. Boston: Addison-Wesley, 2002. (Software patterns series). (Cód.:66202)

REILLY, David. Java network programming and distributed computing. Colaboração de Michael Reilly. Boston: Addison-Wesley, 2002. (Cód.:63560)

Recursos avancados. In: HORSTMANN, Cay S;CORNELL, Gary. Core java 2. Tradução de Joao Eduardo Nobrega Tortello. São Paulo: Pearson Education do Brasil;Makron Books, 2004. v.2. ISBN:85-346-1253-6. (Cód.:57834)

TANENBAUM, Andrew S. Sistemas operacionais : projeto e implementacao. Colaboração de Albert S Woodhull.Tradução de Edson Furmankiewicz. 2. ed. São Paulo: Bookman, 2002. (Cód.:57845)

TANENBAUM, Andrew S. Sistemas operacionais modernos. Tradução de Ronaldo A. L Goncalves; Luis A Consularo; Luciana do Amaral Teixeira. 3. ed. São Paulo: Pearson Education do Brasil, 2009. (Cód.:39945)

INFORMAÇÕES COMPLEMENTARES

_