Tutorial on Monte Carlo Simulation

Kuang-Hao Liu

National Tsing Hua University

Monte Carlo Simulation

- General definition: any technique that approximates solutions to quantitative problems through statistical sampling
- Rely on the process of explicitly representing uncertainties by specifying inputs as probability distributions
- General idea (consider the error rate of a transmission system)
 - Simulate the system repeatedly,
 - for each simulation count the number of transmitted data and data errors,
 - estimate the symbol error rate as the ratio of the total
 - number of observed errors and the total number of transmitted data.
- Implementation idea: Inside a programming loop:
 - perform a system simulation, and
 - accumulate counts for the quantities of interest

Stop Criterion

- ▶ Question: How many times should the loop be executed?
- ► **Answer**: It depends
 - on the desired level of accuracy (confidence), and
 - on the actual error rate.
- Confidence Intervals:
 - Assume we form an estimate of the error rate \hat{P}_e .
 - Then, the true error rate P_e is (hopefully) close to our estimate.
 - Put differently, we would like to be reasonably sure that $|P_e \hat{P}_e|$ is small.

Choosing the Number of Simulations

In simulations, a stop criterion can be chosen according to

- ightharpoonup a desired confidence level $1-\alpha$
- ▶ an acceptable confidence interval *I*
- \triangleright the error rate P_e

Example: How many samples n we need to have the 95% confidence interval?

Recall the confidence interval is given as (from Assignment 1, $z = \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$)

$$\left(\hat{P}_{e} - z \frac{\sigma}{\sqrt{n}}, \hat{P}_{e} + z \frac{\sigma}{\sqrt{n}}\right)$$
 $z = 1.96$ when $1 - \alpha = 0.95$

or $|\hat{P}_e - P_e| < z \frac{\sigma}{\sqrt{n}} = z \frac{\sqrt{P_e(1-P_e)}}{\sqrt{n}}$. Now given a predefined confidence interval, say I, we can find the number of simulations required: $(1) \ n = \underline{\hspace{1cm}}$.

A better stop criterion

- When simulating communications systems, the error rate is often very small.
- ► Then, it is desirable to specify the confidence interval as a fraction of the error rate.

$$I = \beta P_e$$
.

For example, we accept 10% estimation error if $\beta = 0.1$

- From (1), $n \cdot P_e = (1 P_e) \left(\frac{z}{\beta}\right)^2 \approx \left(\frac{z}{\beta}\right)^2$
- Since $n \cdot P_e$ is the expected number of errors, a rule of thumb is to stop the simulation when the number of errors reaches

Outage probability over Rayleigh Fading Channel

The term "outage" is used in communication theory to represent the event of a transmission error.

▶ An error occurs when the channel capacity C is less than the transmission rate R [1].

$$\mathbb{P}_{\mathsf{out}} = \mathbb{P}[\mathtt{C} < \mathtt{R}]$$

where C is the channel capacity and R is the required transmission rate.

- For point-to-point transmission: $C = \log_2(1+\gamma)$ where $\gamma = \frac{P}{N_0}a^2$ with $a = |\alpha|$ being the fading channel gain.
- \blacktriangleright Alternatively, an error occurs when the received SNR γ is less than a threshold γ_0

$$\mathbb{P}_{\mathsf{out}} = \mathbb{P}[\gamma < \gamma_0]$$

where $\gamma_0 = (3)$

Outage Probability vs. SNR

Want a graph like this

How to set up SNR?

Simulation Setup

Recall SNR = $P|\alpha|^2/N_0$

- Fix $P = |\alpha|^2 = 1$
- ► $10 \log_{10}(|\alpha|^2/N_0) = \text{SNR}_{\text{dB}} \Rightarrow N_0 = 10^{-\frac{\text{SNR}_{\text{dB}}}{10}}$

Procedure

- Generate channel coefficient α (depending on fading conditions)
- ▶ Generate noise term $n=10^{-\frac{{\sf SNR}\,[{\sf dB}]}{20}}\cdot\frac{1}{\sqrt{2}}(x+{\sf j}y)$ where $x,y\sim\mathcal{N}(0,1)$
- ▶ Verify $\frac{|\alpha|^2}{|n|^2} = SNR$

Then perform Monte Carlo simulation

- Determine the confidence interval
- Determine the stopping criteria

References

A. Goldsmith, *Wireless Communications*. Cambridge University Press, 2004.