

Лекция 1. Основы нейронных сетей

Галков Михаил

7 февраля 2017 г.

Административная часть

- Смешанные занятия (лекция/семинар)
- Баллы: накапливаются за семинары (дз) и коллоквиумы (их будет два)
- Коммуникация: slack dm2

План лекции

1 На что способны нейросети?

2 Backpropagation

Neural networks vs Human writing

Рис.: Zip codes

Puc.: Network

AlphaGo

How Google's AlphaGo Beat a Go World Champion

Imagenet

Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Classification: object detection

Artistic Style

Neural networks vs Games

DCGAN

Рис.: Faces Рис.: Anime

Cross-domain

Как выглядят современные нейросети

Но обучаются обычным градиентным спуском!

Classification

Задача бинарной классификации:

$$X = \{x_1, ..., x_N\}, T = \{t_1, ..., t_N\}, x_i \in \mathbb{R}^M, t_i \in \{0, 1\}$$

Мы хотим "обучить" функцию y(x) для классификации новых данных.

Логистическая регрессия

Будем моделировать вероятность класса

$$Pr(C_1|x) = y(x) = \sigma(w^Tx)$$

И максимизировать функцию правдоподобия $L(w|x,t) = \Pr(t|w)$

Задача 1: как она выглядит?

Задача 2: найдите производную $\frac{d\sigma(x)}{dx}$

Переход к логарифмам и функция потерь

$$C(w) = -\log(\Pr(t|w)) = \sum_{i=1}^{N} (t_i \log(y_i) + (1-t_i) \log(1-y_i))$$

В итоге имеем следующий граф вычислений:

$$x \to w^T x \to \sigma(w^T x) \to \log(\sigma(w^T x)) \to C$$

Если мы хотим посчитать как влияет каждый элемент в графе можно воспользоваться chain rule: $\frac{dz}{dy} = \frac{dz}{dy} \frac{dy}{dz}$

Задача: найдите производную функции потерь по логарифму Задача: как обобщить на много классов?

Пример простой нейросети

Основная идея: разбиваем большой граф на отдельные блоки, для каждого из них определяем forward pass

$$x \to f(x) = z$$

и backward pass

$$\frac{dC}{dx} = \frac{dC}{dz}\frac{dz}{dx}$$

Как себя проверить?

Gradient Descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow:(, approximate:(, easy to write:) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Thus, given a function $g(\theta)$ that is supposedly computing $\frac{d}{d\theta}J(\theta)$, we can now numerically verify its correctness by checking that

$$g(\theta) \approx \frac{J(\theta + \text{EPSILON}) - J(\theta - \text{EPSILON})}{2 \times \text{EPSILON}}.$$

Multilayer model

$$\frac{5f_{1} \times x}{5f_{1} \times x} = \frac{90}{90} \Gamma = \frac{1}{90} \frac{95f_{11}}{95f_{11}} = \frac{1}{95f_{11}} \frac{90}{95f_{11}} = \frac{1}{95f_{11}} \frac{95f_{11}}{95f_{11}} = \frac{1}{95f_{11}} \frac{95f_{11}$$

Вопросы

