Graph

Simple Graph ADT

$$V = \{A, B, C, D, E, F, G, H, I\}$$

$$E = \{(A, G), (A, C), (C, H), (D, B), (D, I) \dots \}$$

Note: The number in the edge are the weight of the edges, these can be any value, but always must be an Integer Weight = w

$$inv = \{no \ lops\}$$

$$inv = \{\forall \ w \ \{w | \ w > 0\}\}$$

$$inv = \{V \ ! = \emptyset\}$$

$$inv = \{E \ ! = \emptyset\}$$

$$inv = \{derigged\}$$

Primitive Operations

SGraph		SGraph
Create Vertex	SGraph x Pos	SGraph x Vertex
Create Edge	SGraph x V1 x V2	SGraph x Edge
Dijkstra Path	SGraph x V1 x V2	SGraph x List Vertex
Dijkstra Amount	SGraph x List Vertex	Integer
Floyd Warshall	SGraph	SGraph x List Vertex

Graph

SGraph(): Constructor

Creates a new Simple Graph

 $pre = \{true\}$ $pos = \{SGraph\}$

Create Vertex(Pos): Creator

Creates a new vertex in the graph, this vertex must have an identification

 $pre = \{true, MDGraph\}$

 $pos = \{a \text{ new vertex without conexion}\}\$

Create Edge(V vertex1, V vertex2, W weight): Creator

Creates a new edge between two vertexes, this edge has a weight, this weight is an integer greater than zero.

 $pre = \{vertex1, vertex2\}$

 $pos = \{edge\ between\ vertex1, vertex2\}$

Dijkstra Path(V vertex1, Vertex2) : Analyzer

Visit all the paths between the vertex1 and vertex2, evaluate any paths to know which path is the shortest one, and return a list with the vertexes of the path

pre = {true, vertex1, vertex2}

 $pos = \{list \ with \ vertexes\}$

Dijkstra Amount(): Analyzer

Get the list of the method Dijkstra Path, and then evaluate the edges between the vertexes of the list and get the total weight of the path.

 $pre = \{Dijkstra\ Path\}$

 $pos = \{an integer that is the total weight\}$

Floyd Warshall(): Analyzer

Evaluates all paths between all vertices, to find the shortest path between any pair of vertices.

 $pre = \{true\}$

 $pos = \{list with vertexes\}$