Συστήματα ανάκτησης πληροφοριών Προγραμματιστική εργασία, φάση 3

Δημήτρης Μπάστας, 3130139 Φίλιππος Δουραχαλής, 3170045

Η εκπόνηση της εργασίας πραγματοποιήθηκε στο περιβάλλον Intellij IDEA.

Οι βιβλιοθήκες που θα χρειαστούμε είναι οι ίδιες που χρησιμοποιήθηκαν στην πρώτη φάση του project. Το φόρτωμά τους γίνεται με τον ίδιο τρόπο που έχει περιγραφεί στις προηγούμενες αναφορές, δηλαδή μέσα από τις ρυθμίσεις του Intellij επιλέγουμε

$$file > Project\ Structure > Libraries > Add > Java$$

και στη συνέχεια επιλέγουμε τα κατάλληλα αρχεία jar.

Όπως και προηγουμένως, τροποποιούμε κατάλληλα τις σταθερές TREC_EVAL_PATH και QUERIES_PATH για να δείχνουν στον φάκελο του trec_eval και στο αρχείο qrels.text της συλλογής CACM.

BM25Similarity

Για το συγκεκριμένο σκέλος, αρκεί να αλλάξουμε το similarity από ClassicSimilarity σε BM25Similarity. Στη συνέχεια η εκτέλεση του κώδικα πραγματοποιείται όπως ακριβώς και στην πρώτη φάση της εργασίας.

Το αποτέλεσμα του trec eval για τις τιμές k = 20, 30, 50 φαίνεται στον παρακάτω πίνακα. Τα αντίστοιχα πλήρη outputs βρίσκονται στα αρχεία map20.txt, map30.txt και map50.txt

k	20	30	50
MAP	0.3111	0.3291	0.3455
P_5	0.4308	0.4308	0.4308
P_10	0.3769	0.3769	0.3769
P_15	0.3179	0.3179	0.3179
P_20	0.2769	0.2769	0.2769

Όπως παρατηρούμε, τα αποτελέσματα είναι ελαφρώς αλλά σταθερά ανεβασμένα σε σχέση με τη Classic Similarity σε όλα τα map για k επιστροφές. Στις επόμενες εικόνες φαίνεται το output του trec_eval σε σειρά (για k=20, 30 και 50):

		0 30
runid	all	1
num_q	all	52
num_ret	all	1040
num_rel	all	796
num_rel_ret	all	288
map	all	0.3111
gm_map	all	0.2201
Rprec	all	0.3447
bpref	all	0.4886
recip_rank	all	0.8005
iprec_at_recall_0.00	all	0.8320
iprec at recall 0.10	all	0.6848
iprec at recall 0.20	all	0.5500
iprec_at_recall_0.30	all	0.4438
iprec_at_recall_0.40	all	0.3058
iprec_at_recall_0.50	all	0.2439
iprec_at_recall_0.60	all	0.1772
iprec_at_recall_0.70	all	0.1501
iprec at recall 0.80	all	0.1112
iprec at recall 0.90	all	0.0958
iprec at recall 1.00	all	0.0958
P 5	all	0.4308
P 10	all	0.3769
P 15	all	0.3179
P 20	all	0.2769
P 30	all	0.1846
P 100	all	0.0554
P 200	all	0.0277
P 500	all	0.0111
P 1000	all	0.0055
_		

runid	all	1
num_q	all	52
num_ret	all	1560
num_rel	all	796
num_rel_ret	all	342
map	all	0.3291
gm_map	all	0.2411
Rprec	all	0.3602
bpref	all	0.5459
recip_rank	all	0.8005
iprec_at_recall_0.00	all	0.8320
iprec_at_recall_0.10	all	0.6869
iprec_at_recall_0.20	all	0.5706
iprec at recall 0.30	all	0.4708
iprec_at_recall_0.40	all	0.3549
iprec_at_recall 0.50	all	0.3036
iprec at recall 0.60	all	0.2003
iprec_at_recall_0.70	all	0.1601
iprec_at_recall 0.80	all	0.1192
iprec at recall 0.90	all	0.1029
iprec at recall 1.00	all	0.0958
P_5	all	0.4308
P_10	all	0.3769
P_15	all	0.3179
P_20	all	0.2769
P_30	all	0.2192
P_100	all	0.0658
P_200	all	0.0329
P_500	all	0.0132
P_1000	all	0.0066

runid	all	1	
num_q	all	52	
num_ret	all	2600	
num_rel	all	796	
num_rel_ret	all	408	
map	all	0.3455	
gm_map	all	0.2618	
Rprec	all	0.3699	
bpref	all	0.6089	
recip_rank	all	0.8005	
iprec_at_recall_0.	.00 all	0.8320	
iprec_at_recall_0	.10 all	0.6869	
iprec_at_recall_0	.20 all	0.5720	
iprec_at_recall_0.		0.4938	
iprec_at_recall_0	.40 all	0.4018	
iprec_at_recall_0.	.50 all	0.3142	
iprec_at_recall_0.	.60 all	0.2536	
iprec_at_recall_0.	.70 all	0.1643	
iprec_at_recall_0.	.80 all	0.1341	
iprec_at_recall_0.	.90 all	0.1079	
iprec_at_recall_1.	.00 all	0.0958	
P_5	all	0.4308	
P_10	all	0.3769	
P_15	all	0.3179	
P_20	all	0.2769	
P_30	all	0.2192	
P_100	all	0.0785	
P_200	all	0.0392	
P_500	all	0.0157	
P_1000	all	0.0078	

LMJelinekMercerSimilarity

Στο συγκεκριμένο κομμάτι της εργασίας αλλάξαμε ξανά την κλάση της ομοιότητας που χρησιμοποιεί η Lucene δίνοντας την LMJelinekMercerSimilarity. Προκειμένου να χρησιμοποιηθεί η συγκεκριμένη κλάση πρέπει να δώσουμε στον κατασκευαστή της μια τιμή για το λ μεταξύ 0 και 1, που προσδιορίζει το βάρος που δίνεται στις πιθανότητες ένας όρος να βρίσκεται στη συλλογή ή σε ένα κείμενο αντίστοιχα. Για να βρούμε την τιμή του λ που δίνει καλύτερα αποτελέσματα ελέγχουμε διαδοχικά τιμές και παρατηρούμε το output του trec_eval για καθεμία από αυτές. Η στρατηγική που ακολουθήσαμε είναι να ξεκινήσουμε με ίσα βάρη και για τις δύο πιθανότητες (λ =0.5).

Στη συνέχεια εξετάζουμε τις τιμές 0.2 και 0.8 ώστε να δούμε σε ποιο υποδιάστημα παίρνουμε υψηλότερο ποσοστό συναφών κειμένων. Από εκεί μπορεί να δοκιμάσουμε και άλλες τιμές που ανήκουν στο διάστημα (π.χ. 0.4 και 0.7) για να εξετάσουμε πως μεταβάλλεται το map και έτσι να μπορέσουμε μετά να κάνουμε μια καλύτερη εκτίμηση για την τιμή του λ. Επαναλαμβάνουμε την παραπάνω διαδικασία για όλες τις τιμές του k που μας ενδιαφέρουν.

Παρακάτω παρουσιάζουμε τους συνοπτικούς συγκριτικούς πίνακες για κάθε λ και για κάθε τιμή του k για την οποία έτρεξε το πρόγραμμα.

(Σημείωση: Οι κενές γραμμές σε έναν πίνακα σημαίνει πως για το συγκεκριμένο k δεν δοκιμάστηκε η τιμή του λ που αναφέρεται καθώς το αποτέλεσμα της δεν θα είχε κάποια ουσιαστική επίδραση, δηλαδή την είχαμε αποκλείσει ήδη ως μη-βέλτιστη).

Λ=0.2

k	20	30	50	
MAP	0.2581	0.2755	0.2911	
P_5	0.4000	0.4000	0.4000	
P_10	0.3250	0.3250	0.3250	
P_15	0.2808	0.2808	0.2808	
P 20	0.2442	0.2442	0.2442	

Λ=0.4

k	20	30	50
MAP	0.2719		0.3048
P_5	0.4000		0.4000
P_10	0.3442		0.3442
P_15	0.2846		0.2846
P_20	0.2529		0.2529

Λ=0.5

k	20	30	50
MAP	0.2275	0.2961	0.3108
P_5	0.4038	0.4038	0.4038
P_10	0.3423	0.3423	0.3423
P_15	0.2872	0.2872	0.2872
P_20	0.2558	0.2558	0.2558

Λ=0.7

k	20	30	50
MAP	0.2856	0.3029	0.3192
P_5	0.4115	0.4115	0.4115
P_10	0.3423	0.3423	0.3423
P_15	0.2923	0.2923	0.2923
P_20	0.2577	0.2577	0.2577

Λ=0.75

k	20	30	50	
MAP		0.3025	0.3195	
P_5		0.4038	0.4038	
P_10		0.3481	0.3481	
P_15		0.2923	0.2923	
P 20		0.2538	0.2538	

Λ=0.8

k	20	30	50
MAP	0.2815	0.3002	0.3166
P_5	0.4038	0.4038	0.4038
P_10	0.3423	0.3423	0.3423
P_15	0.2974	0.2974	0.2974
P_20	0.2558	0.2558	0.2558

Παρατηρούμε πως δίνοντας περισσότερο βάρος στην πιθανότητα ο όρος να περιέχεται σε ολόκληρη την συλλογή κειμένων ($\lambda > 0.5$), τα αποτελέσματα είναι καλύτερα ασχέτως k. Για να

βρούμε όμως το ιδανικό λ αφού περιοριστούμε στο υποδιάστημα (0.5, 1) ελέγξαμε διαδοχικά τις τιμές 0.8, 0.9 και 0.7. Όπως φαίνεται και ανωτέρω, τα αποτελέσματα ήταν πάντα καλύτερα για λ=0.7, ενώ στην περίπτωση του k=50 η υψηλότερη τιμή του map παρατηρήθηκε για λ=0.75. Όπως ήταν αναμενόμενο όλα τα P5-20 μένουν απαράλλακτα για κάθε λ μεταξύ των k.

Συνοψίζοντας όλα τα ανωτέρω, για k=20 και k=30 καλύτερα αποτελέσματα παρατηρήθηκαν για λ =0.7, ενώ για k=50 η ιδανική τιμή για το λ φάνηκε να ήταν η λ =0.75. Τα πλήρη outputs για τις συγκεκριμένες τιμές ως συνήθως βρίσκονται επίσης στα αρχεία map20_07.txt, map30_07.txt και map50_075.txt