Department of Applied Physics Entrance Examination Booklet

Physics I

(Answer the 2 Problems in this Booklet)

August 29 (Tuesday) 9:30 – 11:30, 2017

REMARKS

- 1. Do not open this booklet before the start is announced.
- 2. Inform the staff when you find misprints in the booklet.
- 3. Answer the two problems in this booklet.
- 4. Use one answer sheet for each problem (two answer sheets are given). You may use the back side of each answer sheet if necessary.
- 5. Write down the number of the problem which you answer in the given space at the top of the corresponding answer sheet.
- 6. You may use the blank sheet of this booklet to make notes, but you must not detach them
- 7. Any answer sheet with marks or symbols irrelevant to your answers will be considered invalid.
- 8. Do not take this booklet and the answer sheets with you after the examination.

Examinee number	No.
·	

Write down your examinee number above

Let us consider the motions of a point mass with mass m and of a rigid-body sphere of unifrorm density with mass m and radius r placed on top of a semi-cylinder with radius R (R > r). The vertical and horizontal directions are defined as the directions of the z-axis and x-axis, respectively, and θ is defined as the angle between the z-axis and a straight line connecting the point mass or the center of the sphere with the origin as shown in Figures 1, 2 and 3. The center line of the semi-cylinder is fixed perpendicular to the xz-plane at the origin. The gravity acceleration is defined as g and points in the -z-direction.

- [1] At some instant, the point mass starts to slide down from the top of the semi-cylinder and later lifts off at a critical angle θ_{c1} as shown in Figure 1. The friction between the semi-cylinder surface and the point mass is negligible. Moreover, the initial velocity of the point mass is zero. Answer the following questions.
 - [1.1] For $\theta < \theta_{c1}$, write the magnitude of the velocity v of the point mass as a function of θ
 - [1.2] Determine $\cos \theta_{c1}$. Then, find the velocity v_{c1} of the point mass at $\theta = \theta_{c1}$.
- [2] At some instant, the sphere starts to roll down from the top of the semi-cylinder and later lifts off from the semi-cylinder at a critical angle θ_{c2} as shown in Figure 2. Note that the sphere does not slip on the semi-cylinder surface and the rolling friction is negligible. Moreover, the initial velocity of the sphere is zero. Answer the following questions.
 - [2.1] Show that the moment of inertia of the sphere about an axis through its center is $\frac{2}{5}mr^2$.
 - [2.2] For $\theta < \theta_{c2}$, let us define the angular velocity of this sphere around its center and the velocity of the sphere center as ω and v, respectively. Show the relation between v and ω , remembering that the sphere does not slip on the semi-cylinder surface.
 - [2.3] Determine $\cos \theta_{c2}$. Then, find the velocity of the sphere center v_{c2} at $\theta = \theta_{c2}$.
 - [2.4] Explain the reason why θ_{c2} is different from θ_{c1} determined in Question [1.2].
- [3] When the sphere is on top of the semi-cylinder, an impulse with magnitude P in the x-direction is applied to the sphere at $z = z_0$ as shown in Figure 3 ($R < z_0 < R + 2r$). After performing this experiment several times while varying z_0 , it was found that the sphere starts to roll down the semi-cylinder without slipping for $z_0 = R + h$. After this, the sphere continues to roll down and lifts off at a critical angle θ_{c3} . Again, the rolling friction is negligible. Answer the following questions.
 - [3.1] Show the relation between h and r.
 - [3.2] Determine $\cos \theta_{c3}$.

Figure 1

Figure 2

Figure 3

- [1] Consider two concentric spherical shell conductors, Conductors A and B, of radii a and b, respectively, suspended in vacuum (b > a). As shown in Figure 1, they are connected to a power supply by lead wires coated with insulation film. The thickness of the conductors is negligibly small. Assume that the small opening in Conductor B introducing the lead wire and the lead wire itself do not affect their surroundings. Let ε_0 be the vacuum permittivity. Answer the following questions.
 - [1.1] The electric charges held by Conductors A and B are Q_0 and $-Q_0$, respectively $(Q_0 > 0)$. Find the magnitude of the electric field E(r) and the electric potential $\phi(r)$ at the distance r from the center of the spheres, with $\phi(\infty) = 0$.
 - [1.2] Find the capacitance between Conductor A and Conductor B.
 - [1.3] Consider the case that a medium of permittivity ε ($\varepsilon > 0$) uniformly fills the space between Conductors A and B. Find the electrostatic energy when Conductors A and B hold the electric charges Q_0 and $-Q_0$, respectively $(Q_0 > 0)$.
 - [1.4] Consider the case that only a thin film of thickness d ($d \ll b a$) and permittivity ε ($\varepsilon > 0$) is attached to the inner surface of Conductor B. Find the change in capacitance as compared to the result of Question [1.2] in the first order of d.
- [2] Assume that the medium of permittivity ε ($\varepsilon > 0$) in Question [1.3] has a small electric conductivity σ . The frequency dependence of ε and σ can be ignored. Answer the following questions.
 - [2.1] A constant voltage is applied between Conductor A and Conductor B. After a sufficiently long time, they attain constant electric charges Q_0 and $-Q_0$, respectively $(Q_0 > 0)$. For this condition, find the electric current flowing between Conductor A and Conductor B. Find also the electric resistance and the Joule heat generated per unit time. Let the positive direction of the electric current be the direction from Conductor A to Conductor B.
 - [2.2] In the circumstance of Question [2.1], Conductors A and B are separated from the power supply at t = 0. Find the time-dependent electric charge Q(t) of Conductor A. Also find the Joule heat W(t) that has been generated in the medium from t = 0 until a time t.
 - [2.3] Considering the results of Questions [1.3] and [2.2], explain the relation between the electrostatic energy and the Joule heat generated in the medium.
- [3] Now, the medium in Question [2] between Conductors A and B is removed and replaced by two different kinds of media. Medium 1 of electric conductivity σ_1 and permittivity ε_1 ($\varepsilon_1 > 0$) fills the region $a < r < r_0$, whereas Medium 2 of electric conductivity σ_2 and permittivity ε_2 ($\varepsilon_2 > 0$) fills the region $r_0 < r < b$. Here, r is the distance from the center of the spheres. When a constant voltage is applied between the Conductors A and B, a constant electric current I flows after a sufficiently long time. For this condition, find the sheet density of electric charge that is accumulated at the boundary between Media 1 and 2.

Figure 1

Department of Applied Physics Entrance Examination Booklet

Physics II

(Answer 3 Problems among the 4 Problems in this Booklet)

August 29 (Tuesday) 13:00 – 16:00, 2017

REMARKS

- 1. Do not open this booklet before the start is announced.
- 2. Inform the staff when you find misprints in the booklet.
- 3. Choose three problems among the four problems in this booklet, and answer the three problems.
- 4. Use one answer sheet for each problem (three answer sheets are given). You may use the back side of each answer sheet if necessary.
- 5. Write down the number of the problem which you answer in the given space at the top of the corresponding answer sheet.
- 6. You may use the blank sheet of this booklet to make notes, but you must not detach them.
- 7. Any answer sheet with marks or symbols irrelevant to your answers will be considered invalid.
- 8. Do not take this booklet and the answer sheets with you after the examination.

Examinee number	No.	
*		

Write down your examinee number above

Consider the Schrödinger equation for particles with mass m moving along a straight line $(-\infty < x < \infty)$. Below, \hbar is the Planck constant divided by 2π , v is a positive constant, and $\delta(x)$ is the delta function.

[1] A solution with negative energy (E < 0) of the following one-dimensional one-particle Schrödinger equation,

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} - v\delta(x) \right] \phi(x) = E\phi(x), \tag{1}$$

is given by $\phi(x) = Ne^{-\xi|x|}$, where N is a positive real normalization constant and ξ is a positive real number. Obtain N, ξ , and E.

[2] For a two-body system bound by a two-center potential, the one-dimensional two-particle Schrödinger equation is given as

$$\hat{H}\Phi(x_1, x_2) = E\Phi(x_1, x_2),\tag{2}$$

where the Hamiltonian \hat{H} is defined as

$$\hat{H} = -\sum_{j=1,2} \frac{\hbar^2}{2m} \frac{d^2}{dx_j^2} - v \sum_{j=1,2} \delta(x_j + R/2) - v \sum_{j=1,2} \delta(x_j - R/2) + V(|x_1 - x_2|).$$
 (3)

Here, V(|x|) is a repulsive mutual interaction potential that assures the convergence of the integral $\int_{-\infty}^{+\infty} dx V(|x|)$. In the following, from Question [2.1] to [2.3], ignore whether the particles are bosons or fermions.

[2.1] Consider that the distance between the two potential centers R is much larger than the spread of the one-particle wave function $1/\xi$ and that the energy increase if both particles simultaneously approach one of the potential centers is much larger than the absolute energy value |E| obtained in Question [1]. In this situation, the probability that the two particles are simultaneously observed at that potential center becomes very small. Then, we can take the following non-normalized trial wave function for the above two-particle Schrödinger equation (2),

$$\Phi_t(x_1, x_2) = c_1 \phi_s(x_1 + R/2) \phi_s(x_2 - R/2) + c_2 \phi_s(x_1 - R/2) \phi_s(x_2 + R/2), \tag{4}$$

where $\phi_s(x)$ is the solution of the the one-particle Schrödinger equation (1) in Question [1]. The coefficients c_1 and c_2 are real numbers.

Obtain the energy expectation value $E = E(c_1, c_2)$ of the trial wave function $\Phi_t(x_1, x_2)$ by using real numbers A, B, and S, defined as

$$A = \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} dx_2 \, \phi_s(x_1 + R/2) \phi_s(x_2 - R/2) \hat{H} \phi_s(x_1 + R/2) \phi_s(x_2 - R/2), \quad (5)$$

$$B = \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} dx_2 \, \phi_s(x_1 - R/2) \phi_s(x_2 + R/2) \hat{H} \phi_s(x_1 + R/2) \phi_s(x_2 - R/2), \quad (6)$$

$$S = \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} dx_2 \, \phi_s(x_1 - R/2) \phi_s(x_2 + R/2) \phi_s(x_1 + R/2) \phi_s(x_2 - R/2). \tag{7}$$

[2.2] Approximate solutions of the ground state of Equation (2) can be obtained through the variational principle applied to the energy expectation value of the trial wave function, $E = E(c_1, c_2)$, determined in Question [2.1]. Accordingly, extremes of $E = E(c_1, c_2)$ with respect to the variational parameters c_1 and c_2 give approximate values for the ground state energy, \widetilde{E} , and the corresponding wave functions $\widetilde{\Phi}(x_1, x_2)$. Showing your derivation, obtain the following set of linear equations for the variational parameters c_1 and c_2 that determine the extremes of $E = E(c_1, c_2)$. You may assume that 0 < S < 1.

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = E \begin{pmatrix} 1 & S \\ S & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}. \tag{8}$$

- [2.3] Obtain every solution \widetilde{E} and the corresponding wave functions $\widetilde{\Phi}(x_1, x_2)$ of Equation (8) by using A, B, S, and $\phi_s(x)$. It is not necessary to normalize the wave functions.
- [2.4] The wave functions obtained in Question [2.3] are called approximate solutions of the two-particle Schrödinger equation in Question [2.1]. Now, the two-particle Schrödinger equation considered in Question [2.1] to [2.3] shall describe fermions with spin angular momentum $\hbar/2$. The wave functions of the particles are functions of the position coordinates x_j and of the spin coordinates ω_j (= $\pm 1/2$), where j (= 1,2) is the label of the particle. The spin wave functions $\alpha(\omega_j)$ and $\beta(\omega_j)$ represent the eigenfunctions of the z-component of the spin operator with eigenvalues $+\hbar/2$ and $-\hbar/2$, respectively. Derive every approximate solution of the two-particle Schrödinger equation by taking into account the spin degrees of freedom. The orbital part of the wave functions is supposed to be given by the solutions obtained in Question [2.3]. It is not necessary to normalize the wave functions.

Consider a lattice model for a system of volume V containing N monoatomic molecules in thermal equilibrium $(N\gg 1)$. Divide this system into small cells with a constant volume of v, each of which can accommodate at most one molecule. The total number of cells in the system is $M=\frac{V}{v}$. For each cell i, define a variable σ_i so that $\sigma_i=0$ when it is empty, and $\sigma_i=1$ when it is occupied by a molecule. Each cell cannot contain two or more molecules (excluded volume effect), and each molecule can occupy only one cell. The microscopic state of the system is uniquely represented by a set of σ_i , $(\sigma_1, \sigma_2, ... \sigma_M)$. In the following, the density of molecules is expressed as $\phi = \frac{N}{M} = \frac{vN}{V}$, where $0 < \phi < 1$. Let T and k_B denote the temperature of the system and the Boltzmann constant, respectively.

- [1] First, consider the case that molecules in different cells have no interaction.
 - [1.1] Calculate the entropy of the system $S = k_{\rm B} \ln W$ (W is the number of states), using Stirling's formula for a large number N: $\ln N! \sim N \ln N N$ (In denotes the natural logarithm).
 - [1.2] Calculate the pressure of the above system, p_0 , using the formula $p_0 = -\frac{\partial F_0}{\partial V}\Big|_{(T,N)}$, where F_0 is the Helmholtz free energy of the system. Compare p_0 to the ideal gas pressure, $p_{\rm id} = \frac{k_{\rm B}NT}{V}$, and explain the cause of any possible difference between p_0 and $p_{\rm id}$. Remember that the cell volume v is constant. The following expansion may be used if necessary: $-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$, $(0 \le x < 1)$.
- [2] Next, consider the system with an attractive interaction α between the molecules in the nearest neighboring cells ($\alpha > 0$). The total energy of the system is expressed as

$$U = -\alpha \sum_{\langle i,j \rangle} \sigma_i \sigma_j, \tag{1}$$

where the summation $\sum_{\langle i,j\rangle}$ includes all nearest neighbor cell pairs. By replacing the individual σ_k with ϕ , the expected value of U in the thermal equilibrium state is approximated as

$$\overline{U}(\phi) = -\frac{1}{2}Mz\alpha\phi^2 \qquad (z: \text{ the number of nearest neighbor cells}).$$
 (2)

[2.1] Let F be the Helmholtz free energy of the system. Calculate the chemical potential from $\mu = \frac{\partial F}{\partial N}$. Then derive the following expression:

$$\mu = -\alpha z \phi + k_{\rm B} T \left[\ln \phi - \ln(1 - \phi) \right]. \tag{3}$$

- [2.2] Find the temperature range in which $\mu(\phi)$ derived in Question [2.1] is a monotonically increasing function of ϕ .
- [2.3] If the temperature is out of the range determined in Question [2.2], there may exist three different ϕ 's that give an identical value of μ . Explain the physical meaning of this situation, including the corresponding phenomena.

[1] Consider light-induced transitions in a non-degenerate two energy level system of atoms (Figure 1). Define Level 1 and Level 2 as the lower and upper energy levels, respectively, with the energy difference $\hbar\omega_0$. The Planck constant divided by 2π is denoted as \hbar . Define N_1 and N_2 as the atom numbers in Levels 1 and 2 per unit volume, respectively. The transition probability from Level 2 to Level 1 by spontaneous emission per unit time is denoted as A (Einstein coefficient A). When the transition from Level 2 to Level 1 occurs only by spontaneous emission, the time evolution of N_2 can be written as $\frac{dN_2}{dt} = -AN_2$. Under light with an angular frequency ω_0 , transitions due to stimulated emission (Level 2 to Level 1 transition) and stimulated absorption (Level 1 to Level 2 transition) also occur. Probabilities per unit time for both stimulated emission and stimulated absorption are the same, and are defined as $BW(\omega_0)$ (B is called Einstein coefficient B). Here, $W(\omega_0)$ is the energy density of light per unit angular frequency and unit volume at ω_0 . For simplicity, transitions due to stimulated emission and absorption occur only when the light angular frequency is at the resonance angular frequency ω_0 . Answer the questions below.

- [1.1] Write simultaneous differential equations that show the time evolutions of N_1 and N_2 .
- [1.2] Express $W(\omega_0)$ in the steady state by A, B, N_1 , and N_2 . Show that $N_2/N_1 < 1$ is always satisfied.
- [2] Under thermal equilibrium at a temperature T, the energy density of light per unit angular frequency and unit volume is described by the equation

$$W_{\rm eq}(\omega) = \frac{\hbar\omega^3}{\pi^2 c^3} \frac{1}{e^{\hbar\omega/(k_{\rm B}T)} - 1},\tag{1}$$

which is known as Planck's law of black-body radiation. Here, c is the speed of light in vacuum, and $k_{\rm B}$ is the Boltzmann constant. Let us derive $W_{\rm eq}(\omega)$ by considering the number of modes of the electromagnetic waves, then obtain a relation between A and B. Answer the questions below.

- [2.1] Find the number of modes of electromagnetic waves with angular frequencies from 0 to ω available in a cubic cavity of side length d.
- [2.2] Find the available number of modes of electromagnetic waves per unit volume and unit angular frequency. Derive Equation (1) for Planck's black-body radiation. You may use that the average energy of an electromagnetic wave per mode is $\frac{\hbar\omega}{e^{\hbar\omega/(k_{\rm B}T)}-1}$.

- [2.3] Under the light energy density $W_{\rm eq}(\omega)$ that satisfies Planck's equation of black-body radiation (1), for any resonance angular frequency ω_0 in the two-level system of Question [1], N_1 and N_2 are distributed according to the Boltzmann distribution in thermal equilibrium. From $W(\omega_0) = W_{\rm eq}(\omega_0)$, derive a relation between the coefficients A and B as a function of ω_0 .
- [3] Consider now a non-equilibrium three-level system with optical pumping as shown in Figure 2. For simplicity, we consider only the transitions indicated by arrows in Figure 2. The energy difference between Level 1 and Level 3 is $\hbar\omega_p$, and light with an energy density of $W_p(\omega_p)$ per unit angular frequency and unit volume is used to pump from Level 1 to Level 3. The transition probabilities of both stimulated absorption and stimulated emission between Level 1 and Level 3 per unit time are $P = B_{13}W_p(\omega_p)$. The energy difference between Level 1 and Level 2 is $\hbar\omega_l$, and the transition probabilities of both stimulated absorption and stimulated emission between Level 1 and Level 2 per unit time are defined as $L = B_{12}W_l(\omega_l)$, under light whose energy density per unit angular frequency and unit volume is $W_l(\omega_l)$. The transition from Level 3 to Level 2 is non-radiative, and its transition probability per unit time is defined as C. The spontaneous emission probability per unit time from Level 2 to Level 1 and from Level 3 to Level 1 are defined as A and A', respectively. The atom number densities in Levels 1, 2, and 3 are defined as N_1, N_2 , and N_3 , respectively. A relation, $N_2/N_1 > 1$, between the atom number densities in Level 1 and Level 2 can be realized under a certain condition in the steady state. This is called population inversion, which is required for laser amplification of Level 2 to Level 1 transitions. Answer the questions bellow.

- [3.1] Write simultaneous differential equations that show the time evolutions of N_1 , N_2 , and N_3 .
- [3.2] In the steady state, express N_2/N_1 by A, A', C, P, and L. When C and A fulfill a certain condition, there exists a threshold value, P_c , so that a population inversion is generated between Level 1 and Level 2 for $P > P_c$. Derive the necessary relation between C and A to generate a population inversion, and discuss its physical meaning. Determine P_c for this condition.
- [3.3] Describe the reason why it becomes more difficult to realize a population inversion for shorter wavelength, assuming that the coefficient B does not depend on the transition energy.

Suppose that a charged particle with an effective mass m and an electric charge q moving in a conductor under a static electric field E and a static magnetic field (magnetic flux density B) can be described by the following equation of motion,

$$m\left(\frac{d}{dt} + \frac{1}{\tau}\right) \mathbf{v} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right),\tag{1}$$

where v is the velocity and τ is the relaxation time. Now, consider the steady state of a particle moving within a two-dimensional conductor with the velocity $v = (v_x, v_y, 0)^T$ under $\mathbf{B} = (0, 0, B)^T$ (B > 0) and $\mathbf{E} = (E_x, E_y, 0)^T$. Here, T means transpose, i.e., the vectors are column vectors. In the following, consider only the x and y components of \mathbf{E} and \mathbf{v} . Assume that m and τ are constants independent of energy and direction of motion, and ignore quantum mechanical effects.

- [1] First, consider the situation that only electrons exist as charged particles. Let n be the sheet density and q = -e the charge of an electron, where e is the elementary charge (e > 0). The cyclotron frequency is defined as $\omega_c = eB/m$. Answer the following questions.
 - [1.1] Show that the current density $J = -nev = (j_x, j_y)^{\mathrm{T}}$ is expressed as $J = \tilde{\sigma} E$ by using the electric field $E = (E_x, E_y)^{\mathrm{T}}$ and the following conductivity tensor $\tilde{\sigma}$. Moreover, find σ_0 .

$$\tilde{\sigma} = \frac{\sigma_0}{1 + (\omega_c \tau)^2} \begin{pmatrix} 1 & -\omega_c \tau \\ \omega_c \tau & 1 \end{pmatrix}$$
 (2)

- [1.2] When a current is applied along the x-direction of a two-dimensional conductor, which is electically open in the y-direction, as shown in Figure 1, $j_y = 0$ is realized in the steady state. In this condition, find the Hall coefficient $R_{\rm H} = E_y/(j_x B)$ and the effective electrical conductivity along the x-direction $\sigma = j_x/E_x$.
- [2] Next, consider the situation that both electrons and holes exist as charged particles. Let n and p be the sheet densities of electrons and holes and -e and e the charges of an electron and a hole, respectively. Assume that the effective mass and the relaxation time of electrons and holes are the same, given as m and τ , respectively. Answer the following questions.
 - [2.1] Supposing that the total current is given by summation of the current carried by electrons and holes, find the conductivity tensor $\tilde{\sigma}$.
 - [2.2] Find the Hall coefficient $R_{\rm H}$ and the effective electrical conductivity along the x-direction σ in the steady state under the condition $j_y = 0$.
 - [2.3] For $R_{\rm H}$ obtained in Question [2.2], let $R_{\rm H}^{(0)}$ and $R_{\rm H}^{(\infty)}$ be the Hall coefficient at the low magnetic field limit ($\omega_{\rm c}\tau\ll 1$) and at the high magnetic field limit ($\omega_{\rm c}\tau\gg 1$), respectively. Express p and n, respectively, in terms of $R_{\rm H}^{(0)}$ and $R_{\rm H}^{(\infty)}$. Note that $p\neq n$.
 - [2.4] For σ obtained in Question [2.2], sketch the $\omega_c \tau$ dependence for p/n = 0 and p/n > 0 $(p \neq n)$, respectively, by considering the behavior at the low and high magnetic field limits.
 - [2.5] The situation p = n can be realized in a certain type of semimetal. Describe how σ behaves at the high magnetic field limit and the physics behind this behavior.

Figure 1