Power Plant System Engineering Analysis

EE 565

FANA TEFFERA

Contents

E	LECTRICTY FOR FORT DODGE	3
	BACKGROUND	3
	DETERMINATION OF NEEDS AND PROBLEMS	4
	DESCRIPTION OF CURRENT SYSTEM	4
	STAKEHOLDERS	4
	MANAGEMENT AND FINANCING	5
	IOWA ENERGY CONSUMPTION	5
	AVAILABLE ENERGY RESOURCES	5
	ADMINISTRATION	6
	BUDGET	6
	TIMELINE	6
	STATEMENT OF WORK	7
	PROBLEM STATEMENT/GOAL	7
	DELIVERABLE	7
	SUMMARY OF TASKS	8
	REQUIREMENTS	9
	REQUIRMENT ANALYSIS	10
	REQUIREMENT TRACEABILITY MATRIX	10
	FUNCTIONAL ANALYSIS	25
	FUNCTIONAL ANALYSIS TABLE	25
	FUNCTIONAL ANALYSIS SUMMARY	27
	WORK BREAKDOWN	27
	WORK BREAKDOWN STRUCTURE	27
	WORK BREAKDOWN DIAGRAM	33
	SCHEDULE	37
	TASK SCHEDULE	
	HUMAN RESOURCE SCHEDULE	

	TEST AND EVALUATION MASTER PLAN	38
	CONFIGURATION MANAGEMENT PLAN	39
	CM OBJECTIVES AND OVERVIEW	39
	CM ORGANIZATION, CHARTER, MEMBERS AND DUTIES	39
	BASELINE MANAGEMENT	
	ARCHIVAL	39
	TRAINING	
R	eference Used	
	ppendix	
$\boldsymbol{\Lambda}$	урспал	

ELECTRICTY FOR FORT DODGE

BACKGROUND

Fort Dodge is a city and county seat of Webster County in Iowa along the Des Moines River. It is located on US Routes 20 and 169. The city began in 1850.

The population of Fort Dodge stands at approximately 25,000 currently.

The major industries of Fort Dodge are gypsum and limestone mining, drywall manufacturing, trucking, the manufacture of veterinary pharmaceuticals and vaccines, and retail. The gypsum drywall industry is served by (3) major national trucking companies.

For most of the 20th century, meat processing and packing was a major industry in Fort Dodge. But the meat processing and packing plants closed. One of the laboratories for the manufacture of veterinary pharmaceuticals and vaccines was built on the site of a former meat processing and packing plant.

Fort Dodge has been plodding along over the past few decades, but has not experienced significant growth, and the city lost its former vigor and luster, and some buildings and areas became drab and dilapidated. However, the Fort Dodge correctional Facility, 1,250bed medium security state prison was opened in 1998. Then in 1999 Fort Dodge enlarged its waste water treatment plant, and made major improvements to it.

Moreover since the end of 2005 a number of companies built bio-refinery plants in the Fort Dodge area. The bio-refinery plants mill and grind corn, and extract ethanol from the corn through its fermentation with yeast. The distiller grain left over after the ethanol is removed from the corn is sold as livestock feed.

DETERMINATION OF NEEDS AND PROBLEMS

- 1. City has embarked on a program to revitalize itself and grow
- 2. Need to replace the city's decayed electric system and grid, and make the new system and grid bigger
- 3. High cost of electricity from existing providers
- 4. Embarked on a goal to produce the required electricity locally from 'clean' source/s, to optimize its supply, and minimize its consumption
- 5. Large Volume/Mass of waste. Need to do something with it. Keep the city and its surrounding area pollution free
- 6. Electricity generation and waste disposal facilities are to be safe
- 7. Project study and design to take no more than (2 years), and construction no more than (3) years. Project to be completed and implemented by end October 31, 2018
- 8. Development project is to be managed by city, but financed by city and private stakeholders
- 9. Maximum cost of the project: \$57 million dollars.

Fort Dodge has hired our firm 'Paragon Energy Concepts Ltd' to be the Systems Engineer for the electrical energy generation and waste management part of their city development project.

DESCRIPTION OF CURRENT SYSTEM

Majority of the electrical energy consumed in Fort Dodge comes from coal plants. Some electrical energy comes from the Nuclear Duane Arnold Energy center in Palo. Wind energy is also utilized. Energy from bio-fuels is applied increasingly. The electrical energy is supplied to Fort Dodge with the American interstate electricity transmission grid.

STAKEHOLDERS

- Fort Dodge government and people
- Residential, commercial, and institutional users
- Industries and workforce

- Energy supply companies
- American legislative bodies
- Federal and State standards bureaus

MANAGEMENT AND FINANCING

City development project is to be managed by Fort Dodge, but financed by city and private stakeholders. Fort Dodge wants to revitalize itself, grow, and improve the quality of life for its citizens. Private stakeholders want to gain financially from the project.

IOWA ENERGY CONSUMPTION

Iowa per capita energy consumption in 2010: 489 million BTU (143. MWh)

US per capita energy consumption in 2010: 363 million BTU (106.3 MWh) Rank: 5

Fort Dodge population: 25,000

With 15% growth energy required: 14.1 trillion BTU (41.2GWh) per year

Iowa energy consumption by end-use sector, 2011:

Residential: 16.3%, commercial: 13.7%, industrial: 49.3%, transportation: 20.7%

AVAILABLE ENERGY RESOURCES

- Coal
- Natural gas
- Motor gasoline excl. ethanol
- Distilled fuel oil
- Liquefied petroleum gas

- Nuclear electric power
- Hydroelectric power
- Biomass
- Other renewable

United States has decided not to build more nuclear plants currently. Coal plants produce carbon dioxide and nitrogen oxide emissions. The emissions cause smog, acid rain, and toxic air pollution. United States has imposed a moratorium on the building of new coal plants. There are few hydroelectric power plants in the Iowa region and not much hydroelectricity is available. Wind towers are visually obtrusive to their surroundings and alone won't provide the electricity required, and there isn't enough intense sunshine in Iowa to provide solar energy. Natural gas, motor gasoline, distilled fuel oil, ethanol from biomass, and garbage wastes are well available in Fort Dodge as fuel for electricity production.

ADMINISTRATION

The consulting firm should weekly update the progress and get full cooperation from the stakeholders to gather feedback on the design-in-progress.

BUDGET

The study for the project and the design of the project will cost \$7 million. The construction of the project will cost \$57 million.

TIMELINE

The study for the project and the design of the project will be completed by Dec 15, 2015. The construction and deployment of the project will be completed by September 13 2018.

STATEMENT OF WORK

PROBLEM STATEMENT/GOAL

Our design shall provide a means of providing a well-researched and organized set of project set that can be used by the engineers to design additional source of electricity to the city of Fort Dodge. The final submission from our firm shall fully answer questions that may arise during the early stage of technical design of the plant.

DELIVERABLE

- 1 Paragon Energy will deliver Report of Analysis Study. This covers the system requirements.
- 1. Paragon Energy will deliver Development Report of the power plant. This will focuses the Data migration which focus on the measurement and collection of data.
- 2. Paragon Energy will deliver Testing and Training Report. This focus on the mock testing and the end user testing on the model that is presented. Such testing use the data gathering protocol that will be developed earlier.
- 3. Paragon Energy will deliver Documentation Report of the Finalized Review and Acceptance, end user training documentation and recorded change in the system.
- 4. Paragon Energy will deliver Construction Report, which will detail the planed route of constructing the facility.
- 5. Paragon Energy will deliver Reports on the Performance of the system once it goes online.
- 6. Paragon Energy will deliver Reports on the Power Plant Decommissioning. This will include the removal of hazardous materials, building demolition and complete documentation of plant closure.

SUMMARY OF TASKS

- 1. Paragon Energy will provide engineering analysis services describing the system requirement. The engineering services will include at a minimum: Identifying the process, preparing design and prototype, preparing detail technical requirements, reviewing hardware and software that will be used in the system.
- 2. Paragon Energy will provide Development analysis services which focus on data migration. This will include at a minimum Identifying data requirement, Collecting Planning data, Input and Upload Data, verifying data for the planning, result and schedule.
- 3. Paragon Energy will develop training and testing packages which can be used for mock testing and user end testing. This will cover mock testing, verifying plan, result, schedule and cost. This will also include Performing unit test, integration test, and monitoring and controlling scope cost.
- 4. Paragon Energy will perform documentation analysis to document final review and acceptance records, user training records and records of system change. This include process licensing and permit, Report in environmental impacts final design/drawing, final cost estimate and procurement.
- 5. Paragon Energy will perform theoretical analysis of construction process which include at a minimum site selection and preparation, structure erection and commissioning.
- 6. Paragon Energy will perform plants early start technical support and verification after it went online. Paragon Energy will perform analysis of decommissioning process. This will cover at minimum the removal of hazardous materials, building demolition and complete documentation of plant closure. This will be kept updated periodically while the system is running.

REQUIREMENTS

- 1. The system shall have a minimum of average operating capacity factor of 80%.
- 2. The system shall have a minimum power plant efficiency of 65%.
- 3. The system shall have a minimum of 25 MW output.
- 4. The system design should incorporate recycling the waste products.
- 5. The plant should have a minimum of 30 years plant life.
- 6. The plant should have less than 2 years of construction time.
- 7. The construction of the project should cost less than \$57 million.
- 8. The cost for the overall design of the project should be less than \$7 million.
- 9. The power plant shall adhere to the Iowa Code 455B.
- 10. The fuel used in the system shall adhere to the Iowa Code 455B.131.
- 11. All utilities that are used in the power plant shall adhere to the Federal Power Act of Pub. L. No. 95-617.
- 12. All utilities that are used in the power plant shall adhere to the Energy Policy Act of Pub. L. No. 102-486.
- 13. The power plant shall be able to operate 7 days a week for 24 hours each.
- 14. The power plant should be able to store heat to be used on demand.
- 15. The output amount for electricity should be synched with the demand base.
- 16. The production of electricity should be regulated to avoid power surge.
- 17. The power plant should include at least one tie breaker in the design.
- 18. The steady-state frequency deviation will be agreed up on before the start of the project.
- 19. Voltage deviation will be agreed up on before the start of the project.
- 20. The system design will integrate documented work place inspections program.
- 21. The power plant will shall include the frequency of the maintenance.
- 22. The power plant system designer will include operating instruction.
- 23. The power plan should be equipped with equipment that are able to give real time data of the operation.

- 24. The design should include the frequency of the periodical verification of the system.
- 25. All documents that are associated with the system will be signed by professional engineer.
- 26. All tests that are associated with the system will be signed by professional engineer.

REQUIRMENT ANALYSIS

(See Appendix)

REQUIREMENT TRACEABILITY MATRIX

Number	Name	Description	Refined by	Refines	KPP	Rationale	Owner	Test	Origin
		This is rather							
		sensitive to							
		the current	Requirement						
		technology	1.1 Iowa						
		innovation	Legal Code			This is rather			
		that needed to	Requirement			sensitive to the			
		be revised	1.2 Federal			current technology			
		before the	Power Act			innovation that			
		final draft of	Requirement			needed to be revised			
	Legal	the process	1.3 Energy			before the final draft			
1	Requirement	design.	Policy Act		FALSE	of the process design.	Client	Inspection	Originating
						These are the legal			
		The power				code which the			
		plant shall				system should adhere			
		adhere to the		Requirement		to as a default guide			
	Iowa Legal	Iowa Code		1 Legal		lines. Considering the			
1.1	Code	455B.		Requirement	FALSE	consequences, any	Client	Inspection	Originating

						trespassing of this			
						code is not			
						acceptable.			
		All utilities							
		that are used							
		in the power							
		plant shall				This law should have			
		adhere to the				to be respect at all			
		Federal				time, so that the			
		Power Act of		Requirement		execution phase will			
	Federal	Pub. L. No.		1 Legal		go on without no			
1.2	Power Act	95-617.		Requirement	FALSE	serious legal hurdles.	Client	Inspection	Originating
		All utilities							
		that are used							
		in the power							
		plant shall							
		adhere to the							
		Energy							
		Policy Act of		Requirement					
	Energy	Pub. L. No.		1 Legal					
1.3	Policy Act	102-486.		Requirement	FALSE		Client	Inspection	Originating
			Requirement						
	Inputs		2.1 Energy						
2	Requirement		Source		FALSE		Client		Originating

						This code include the			
		The fuel used				necessary safety and			
		in the system				other factors that			
		should adhere				needed to be added in			
		to the Iowa		Requirement		the consideration of			
	Energy	Code		2 Inputs		type of fuel to be used			
2.1	Source	455B.131.		Requirement	FALSE	as in input.	Client	Inspection	Originating
			Requirement						
	Heat		3.1 Heat						
3	Requirement		Storage		TRUE		Client		Originating
						Heat storage is useful			
						in this system			
						because not all heat			
						that is produced will			
						be collected will be			
						used. By storing the			
						heat, it will be			
						possible to release is			
						based on the demand.			
						Every time electricity			
		The power				is produced, the heat			
		plant should				will be also			
		be able to				generated. The			
		store heat to		Requirement		electricity production			
		be used on		3 Heat		can be controlled by			
3.1	Heat Storage	demand.		Requirement	TRUE	manipulating the	Client	Analysis	Originating

				input rate using the		
				input control. Since		
				the heat is needed for		
				the treatment of the		
				waste materials, as		
				described in the		
				background of the		
				report, this function		
				is necessary to fulfill		
				the customer		
				demand.		
		Requirement				
		4.1				
		Electricity				
		Demand				
		Requirement				
		4.2 Power				
		Output				
		Requirement				
		4.3 Power				
		Surge				
		Requirement				
		4.4 Steady				
		State				
	Electricity	Frequency				
4	Requirement	Requirement	TRUE		Client	Originating
7	Requirement	Requirement	TRUE		CHEIR	Originating

			4.5 Tie						
			Breaker						
			Design						
			Requirement						
			4.6 Voltage						
			Deviation						
						This system will			
						allow us to generate			
						the electricity when it			
						is needed only. Since			
						the peak time of			
						electric usage and			
						demand are			
						reasonably			
						predictable, it is			
						possible to manage			
						the production using			
						the collected usage			
						data too. This will			
		The output				help to avoid costly			
		amount for				and wasteful			
		electricity				production of			
		should be				electricity and heat.			
		synched with		Requirement		This will decrease the			
	Electricity	the demand		4 Electricity		cost of heat storage as	System		
4.1	Demand	base.		Requirement	TRUE	well.	Engineer	Instrumented	Derived

					This is based on the			
					population of Fort			
					Dodge and the			
					amount of electricity			
					demand by the			
					residents and the			
					industry. The			
					production can be			
					extended well above			
					25MW if the is a			
					means of producing it			
		The system			with a significant low			
		shall have a			cost. This is			
		minimum of	Requirement		assuming the energy			
	Power	25 MW	4 Electricity		need will have a			
4.2	Output	output.	Requirement	TRUE	linear growth.	Client	Analysis	Originating
					Considering the			
					possibility in process			
					control of the system,			
		The			such function need to			
		production of			be introduced to the			
		electricity			overall design to			
		should be			avoid sudden			
		regulated to	Requirement		increase of			
		avoid power	4 Electricity		electricity. Sudden	System		
4.3	Power Surge	surge.	Requirement	TRUE	increase of the	Engineer	Analysis	Derived

					electricity can be a			
					serious liability if not			
					avoided. Consumer			
					electronics can be			
					damaged and it might			
					lead to even higher			
					industrial,			
					environment or			
					health related risks.			
		The steady-						
		state			This is rather			
		frequency			sensitive to the			
		deviation will			current technology			
		be agreed up			innovation that			
		on before the	Requirement		needed to be revised			
	Steady State	start of the	4 Electricity		before the final draft	System		
4.4	Frequency	project.	Requirement	FALSE	of the process design.	Engineer	Instrumented	Derived
					Tie breakers are			
					vacuum breakers that			
					have a kirk key			
		The power			interlock system in			
		plant should			place to ensure that			
		include at			the ties and both			
		least one tie	Requirement		mains are never all			
	Tie Breaker	breaker in the	4 Electricity		closed at once putting	System		
4.5	Design	design.	Requirement	FALSE	transformers in	Engineer	Instrumented	Derived

						parallel. This is			
						designed so that			
						transitions between			
						transformers will			
						affect the overall			
						generation.			
						This is rather			
		Voltage				sensitive to the			
		deviation will				current technology			
		be agreed up				innovation that			
		on before the		Requirement		needed to be revised			
	Voltage	start of the		4 Electricity		before the final draft	System		
4.6	Deviation	project.		Requirement	FALSE	of the process design.	Engineer	Instrumented	Derived
			Requirement						
			5.1						
	Construction		Construction						
5	Requirement		Time		FALSE		Client		Originating
						This assumes that the			
						supply and price of			
		The plant				raw materials for			
		should have				construction will stay			
		less than 2		Requirement		closer to the current			
		years of		5		value in the coming			
	Construction	construction		Construction		two years after the			
5.1	Time	time.		Requirement	FALSE	construction started.	Client	Analysis	Originating

			Requirement						
			6.1						
			Document						
			Certification						
	Design		Requirement						
	Certification		6.2 Test						
6	Requirement		Certification		FALSE		Client		Originating
		All							
		documents							
		that are							
		associated							
		with the							
		system will		Requirement					
		be signed by		6 Design		This is an originating			
	Document	professional		Certification		requirement that are			
6.1	Certification	engineer.		Requirement	FALSE	not negotiable.	Client	Inspection	Originating
		All tests that							
		are associated							
		with the							
		system will		Requirement					
		be signed by		6 Design		This is an originating			
	Test	professional		Certification		requirement that are			
6.2	Certification	engineer.		Requirement	FALSE	not negotiable.	Client	Inspection	Originating
			Requirement						
	Safety		7.1				System		
7	Requirement		Maintenance		FALSE		Engineer		Derived

			Frequency						
			Requirement						
			7.2 Work						
			Place						
			Inspections						
		The power				Maintenance			
		plant will				schedule will			
		shall include				increase the life time,			
		the frequency		Requirement		stability, and			
	Maintenance	of the		7 Safety		customer confidence	System		
7.1	Frequency	maintenance.		Requirement	FALSE	of the plant.	Engineer	Analysis	Derived
		The system							
		design will				Safety inspection of			
		integrate				the labor and the			
		documented				skilled workers will			
		work place				be included in this			
		safety		Requirement		report. This will also			
	Work Place	inspections		7 Safety		assist in meeting the	System		
7.2	Inspections	program.		Requirement	FALSE	legal demands.	Engineer	Inspection	Derived
			Requirement						
			8.1						
			Operating						
			Capacity						
			Requirement						
	Performance		8.2						
8	Requirement		Operating		TRUE		Client		Originating

			Efficiency						
			Requirement						
			8.3						
			Operating						
			Time						
			Requirement						
			8.4						
			Operation						
			Instruction						
			Requirement						
			8.5 Real						
			Time Data						
			Requirement						
			8.6						
			Verification						
						The 80% is the			
						originating			
		The system				requirements which			
		shall have a				is given to Paragon			
		minimum of				by the client. This			
		average				requirement is a			
		operating		Requirement		reasonable			
		capacity		8		expectation			
	Operating	factor of		Performance		considering advances			
8.1	Capacity	80%.		Requirement	TRUE	in technology.	Client	Analysis	Originating

		The system						
		shall have a						
		minimum	Requirement					
		power plant	8					
	Operating	efficiency of	Performance					
8.2	Efficiency	65%.	Requirement	TRUE		Client	Analysis	Originating
					This is a necessary			
					part of the plant			
					performance			
					considering the			
					demand. It is			
		The power			expected that there is			
		plant shall be			always a demand of			
		able to			electricity, even if it			
		operate 7	Requirement		might vary in time,			
		days a week	8		due to the industrial			
	Operating	for 24 hours	Performance		and consumer			
8.3	Time	each.	Requirement	TRUE	diversity.	Client	Demonstration	Originating
		The power						
		plant system						
		designer will	Requirement					
		include	8					
	Operation	operating	Performance					
8.4	Instruction	instruction.	Requirement	TRUE		Client	Inspection	Originating

		The power						
		plan should						
		be equipped						
		with						
		equipment						
		that are able	Requirement					
		to give real	8		This will greatly			
	Real Time	time data of	Performance		enhance the control	System		
8.5	Data	the operation.	Requirement	TRUE	of the system.	Engineer	Demonstrated	Derived
		The design			Verification of the			
		should			system should be			
		include the			done periodically and			
		frequency of	Requirement		the frequency will be			
		the periodical	8		asses with the cost			
		verification	Performance		and overall design in			
8.6	Verification	of the system.	Requirement	TRUE	mind.	Client	Inspection	Originating
		The system						
		design should						
		incorporate			This is assuming the			
		recycling			input will produce a			
	Recycling	system for the			waster product as a	System		
9	Requirement	output.		TRUE	part of the output.	Engineer	Analysis	Derived
					This is based on the			
		The plant			cost of the plant, the			
	Schedual	should have a			average age of the			
10	Requriement	minimum of	_	TRUE	plant and the profit	Client	Analysis	Originating

		30 years plant				that is expected to be			
		life.				collected. There is an			
						assumption that the			
						change of technology			
						will not be significant			
						to the point that will			
						make the plant			
						unprofitable before			
						the scheduled life			
						time.			
			Requirement						
			11.1						
			Construction						
			Cost						
			Requirement						
	Cost		11.2 Design						
11	Requirement		Cost		TRUE		Client		Originating
						This is the			
						construction budget			
						that is given to the			
		The				Paragon Energy by			
		construction				the client. Paragon			
		of the project				Engery accepted this			
		should cost		Requirement		design based on the			
	Construction	less than \$57		11 Cost		early agreement that			
11.1	Cost	million.		Requirement	TRUE	it will design the	Client	Demonstration	Originating

				ĺ	system with the strict			
					-			
					physical construction			
					budget in mind. It is			
					obvious that there are			
					other type of cost that			
					will be introduced as			
					the design progress			
					and once execution			
					started.			
		The cost for						
		the overall						
		design of the			This is the amount			
		project			that is going to be			
		should be less	Requirement		paid for the study and			
		than \$7	11 Cost		the design of the			
11.2	Design Cost	million.	Requirement	TRUE	project.	Client	Demonstration	Originating

FUNCTIONAL ANALYSIS

(See Appendix)

FUNCTIONAL ANALYSIS TABLE

Number	Name	Description	based on	Input	Output
1	Mission Functions	The unrecyclable waste products will be removed.			
1.1	To Input the Fuel	The system will take the chosen fuel into the system.	Requirement 2.1 Energy Source		
1.2	To Control the Input	The input must be controlled to avoid contaminating the generator with contaminants or damaging it with high flow rate.	Requirement 1.2 Federal Power Act Requirement 1.3 Energy Policy Act Requirement 2.1 Energy Source		
1.2.1	To Control Quality of Input	This will control the contaminant rate in the fuel/fluid and pass only that is above the minimum expectation.	Requirement 2.1 Energy Source		Item Recycled Fluid Generation
1.2.1.1	To Feed High Quality	Only high quality input will be fed to the system. This function feeds high quality feeds.	Requirement 2.1 Energy Source		
1.2.1.2	To Remove Low Quality Input	Unrecyclable waste is extracted as final waste product out of the system.	Requirement 2.1 Energy Source		
1.2.2	To Control Rate of Input	This will control the rate of the fluid coming in to avoid any potential damage to the system or unexpected surge of power production.	Requirement 4 Electricity Requirement		
1.3	To Generate Energy	This will generate heat and electricity	Requirement 1.1 Iowa Legal Code Requirement 1.2 Federal Power Act Requirement 1.3 Energy Policy Act Requirement 3 Heat Requirement Requirement 4 Electricity Requirement		

1.3.1	To Generate Electricity	The system will generate electricity using the selected fuel as an energy source.	Requirement 2 Inputs Requirement Requirement 6 Design Certification Requirement	Item Electricity Demand Feedback
1.3.2	To Collect Heat	The system generate heat using the power plant.	Requirement 3 Heat Requirement	
1.4	To Recycle The Waste	The waste product from the generation will be recycled.	Requirement 9 Recycling Requirement	
1.4.1	To Separate Waste	This function allow the system to separate the fuel that can be used again as an input.	Requirement 9 Recycling Requirement	
1.4.1.1	To Feed Recycled Input	The recycled waste from generation will be fed to the input control system for furthure check and it will be fed to generation if it pass.	Requirement 2 Inputs Requirement Requirement 9 Recycling Requirement	Item Recycled Fluid Generation
1.4.1.2	To Remove Unrecyclable	The unrecyclable waste products will be removed.	Requirement 1 Legal Requirment Requirement	
1.5	To Control Output	This will control the output of electricity and heat so that it will be accessed without the significant fluctuation.	Requirement 8 Performance Requirement	
1.5.1	To Control Electricity Output	The electricity will be outputted to the transmission line.	Requirement 8 Performance Requirement	
1.5.2	To Control Heat Output	The Output control will access according to the demand.	Requirement 8 Performance Requirement	
1.6	To Access The Demand	This will access the demand form the client.	Requirement 8.4 Operation Instruction Requirement	
1.6.1	To Access Electricity Demand	This will access the electricity demand from the client.	Requirement 8 Performance Requirement	
1.6.1.1	To Distribute Electricity	This Function will distribute electricity.	Requirement 1 Legal Requirment	
1.6.2	To Feedback to Generation	This wills send a signal to the generator to control electricity production.	Requirement 4.1 Electricity Demand	Item Electricity Demand Feedback

1.6.3	To Access Heat Demand	This will gather the demand request and access the controller of the output to output the heat as needed.	Requirement 3.1 Heat Storage		
1.6.3.1	To Out Put Heat	The system generate electricity using power plant	Requirement 3 Heat Requirement		
1.6.3.2	To Store Excess Heat	The controller will adjust the heat and will feed it to the heat storage system.	Requirement 3.1 Heat Storage		
1.7	To Transmit Energy	This will transmit the final energy.	Requirement 11.1 Construction Cost		
1.8	To Maintain The System	This function will maintain the system 24/7 and continue the process described above.	Requirement 7.1 Maintenance Frequency Requirement 8.6 Verification		

FUNCTIONAL ANALYSIS SUMMARY

The functional analysis in this report is included to discretize large chunk of works into multiple small work orders. Each function is related with the appropriate requirements and will be modified accordingly as the requirements change. One example is the function of controlling heat out is related the performance requirement 8 which mentions to store the excess heat. When the heat out is designed, it is critical to design it according to the requirement. If the heat output is designed without considering the requirement the clients' customers will experience shortage of heat energy.

WORK BREAKDOWN

WORK BREAKDOWN STRUCTURE

- 1.Power Plant
- 1.1 Analysis Study
- 1.1.1 System Requirement

•	1.1.1.1 Identify Process
•	1.1.1.2 Prepare Design and Prototype
•	1.1.1.2.1 Power Plant Design
•	1.1.1.2.1.1 Feasibility
•	1.1.1.2.1.2 Functional analysis
•	1.1.1.2.1.3 Requirements allocation
•	1.1.1.2.1.4 Timeline analysis
•	1.1.1.2.1.5 System analysis, synthesis and system integration
•	1.1.1.2.1.5.1 System trade-off studies
•	1.1.1.2.1.5.2 Life-cycle cost analysis
•	1.1.1.2.1.5.3 System Synthesis
•	1.1.1.2.1.5.4 System Integration
•	1.1.1.2.1.6 Reliability Engineering
•	1.1.1.2.1.6.1 Program Planning
•	1.1.1.2.1.6.2 Analyses and Predictions
•	1.1.1.2.1.6.3 Test and Evaluation

•	1.1.1.2.1.7 Maintainability Engineering
•	1.1.1.2.1.7.1 Program Planning
•	1.1.1.2.1.7.2 Analyses and Predictions
•	1.1.1.2.1.7.3 Test and Evaluation
•	1.1.1.2.1.8 Human Factors Engineering
•	1.1.1.2.1.8.1 Program Planning
•	1.1.1.2.1.8.2 System functional task analysis
•	1.1.1.2.1.8.3 Training Requirements
•	1.1.1.3 Detail Technical Requirement/Detailed Engineering
•	1.1.1.3.1 Project Engineering
•	1.1.1.3.2 Mechanical Engineering
•	1.1.1.3.3 Process Engineering
•	1.1.1.3.4 Pipe Engineering
•	1.1.1.3.5 Civil/Structure Engineering
•	1.1.1.3.6 Electrical/Instrumentation Engineering
•	1.1.1.4 Review hardware and Software

1.2 Development 1.2.1 Data Migration 1.2.1.1 Identify Data Requirements 1.2.1.2 Collect Planning and Procurement Data 1.2.1.3 Collect Production Resources Data 1.2.1.4 Input and Upload Data 1.2.1.5 Verify and Correct Migrated Data 1.3 Testing and Training 1.3.1 Mock Testing 1.3.1.1 Verify Planning, Result and Schedule 1.3.1.2 Verify Procurement Module ,Cost and End Result 1.3.1.3 Perform Unit Test 1.3.1.4 Perform Integration Test 1.3.1.5 Monitor and Control Scope Quality, time and cost 1.3.1.6 Resolve Problem 1.3.2 End User Testing

•	1.3.2.1 Conduct in House Training
•	1.4 Documentation
•	1.4.1 Finalize Review and Acceptance
•	1.4.1.1 Final System Design Review
•	1.4.1.1.1 Process Licensing and Permits
•	1.4.1.1.2 Report Environmental Impacts
•	1.4.1.1.2.1 Prepare Toxic Report of The Selected Fuel
•	1.4.1.1.2.2 Prepare Visual Environmental Impacts
•	1.4.1.1.2.3 Prepared Noise Environmental Impacts.
•	1.4.1.1.3 Preliminary Project Schedule
•	1.4.1.1.4 Final Design/Drawings
•	1.4.1.1.5 Specifications
•	1.4.1.1.6 Final Cost Estimates
•	1.4.1.1.7 Procurement
•	1.4.2 End user Training Documentation
•	1.4.3 Record in change in control and system modification

•	1.5 Construction
•	1.5.1 Site Selection
•	1.5.2 Site Preparation
•	1.5.3 Foundations
•	1.5.4 Structure Erection
•	1.5.5 Building Service
•	1.5.6 Commissioning
•	1.6 Plant Go live
•	1.6.1 Post Go live
•	1.6.1.1 Data Integrity Check
•	1.6.1.2 System Performance Monitoring
•	1.7 Power Plant Decommissioning
•	1.7.1 Assessment/Design
•	1.7.1.1 Environmental/Hazardous Materials Assessments
•	1.7.1.2 Abatement and Deconstruction
•	1.7.1.3 Cost Estimates

•	1.7.1.4 Milestone Schedule
•	1.7.2 Hazardous Materials Removal
•	1.7.2.1 Oil Filled Electrical Equipment
•	1.7.2.2 Tanks and Pipelines
•	1.7.2.3 Asbestos Containing Materials
•	1.7.2.4 Lead-Based Paint
•	1.7.3 Building Demolition
•	1.7.3.2 Equipment Salvage
•	1.7.3.2Materials Segregation/Recycling
•	1.7.3 Closure Documentation
•	1.7.3.1Regulatory Submittals
•	1.7.3.2 Company Documentation

WORK BREAKDOWN DIAGRAM

Level 2,3,4,5 Starting 1.3

SCHEDULE

TASK SCHEDULE

HUMAN RESOURCE SCHEDULE

TEST AND EVALUATION MASTER PLAN

	Test and Evaluation Master Plan (TEMP)							
Number	Name	Test	Owner	Resources and Test Facilites	Support Equipment	Place of Test	Test Admistrtor	Special Expectation
1	Legal Requirment	Inspection	Client		Legal Agreement Document	Indoor	Client	
1.1	Iowa Legal Code	Inspection	Client	Iowa Legal Code Document	Legal Agreement Document	Indoor	Client	
1.2	Federal Power Act	Inspection	Client	EPA Policy BooK	Legal Agreement Document	Indoor	Client	
1.3	Energy Policy Act	Inspection	Client	EPA Policy BooK	Legal Agreement Document	Indoor	Client	
2	Inputs Requirement							
2.1	Energy Source	Inspection	Client	EPA Policy BooK	Legal Agreement Document	Indoor	Client	
3	Heat Requirement		Client					
3.1	Heat Storage	Analaysis	Client	Collected Data and Plant Site	Design Used	Plant Site	System Engineer	
4	Electricity Requirement							
4.1	Electricity Demand	Instrumented	System Engineer	Collected Data	Real Time Data	Plant Site	System Engineer	
4.2	Power Output	Analysis	Client	Collected Data and Plant Site	Measurment Instrument	Plant Site	System Engineer	
4.3	Power Surge	Analysis	System Engineer	Collected Data and Plant Site	Measurment Instrument	Plant Site	System Engineer	
4.4	Steady State Frequency	Instrumented	System Engineer	Collected Data and Plant Site	Measurment Instrument	Plant Site	System Engineer	
4.5	Tie Breaker Design	Instrumented	System Engineer	Collected Data and Plant Site		Plant Site	System Engineer	This should be done in low demand time, to avoid potetional problem if failed.
4.6	Voltage Deviation	Instrumented	System Engineer	Collected Data and Plant Site	Measurment Instrument	Plant Site	System Engineer	
5	Construction Requirement		Client					
5.1	Construction Time	Analysis	Client	Analysis of Projection of Cost	Cost Estimation Softwares		Client	
6	Design Certification Requirement		Client					
6.1	Document Certification	Inspection	Client	Check Signed Documend	Legal Agreement Document	Indoor	Client	
6.2	Test Certification	Inspection	Client	Check Signed Documend	Legal Agreement Document	Indoor	Client	
7	Saftey Requirement							
7.1	Maintenance Frequency	Analysis	System Engineer	Check Reports	Reports	Indoor	System Engineer	
7.2	Work Place Inspections	Inspection	System Engineer	Check Reports	Legal Agreement Document	Indoor	Client	
8	Performance Requirement		Client					
8.1	Operating Capacity	Analysis	System Engineer	Recorded and Real Time data			System Engineer	
8.2	Operating Efficiency	Analysis	System Engineer	Recorded and Real Time data			System Engineer	
8.3	Operating Time	Demonstration	System Engineer	Recorded and Real Time data			System Engineer	
8.4	Operation Instruction	Inspection	System Engineer	Recorded and Real Time data	Legal Agreement Document	Indoor	Client	
8.5	Real Time Data	Demonstraion	System Engineer	Recorded and Real Time data			System Engineer	
8.6	Verification	Inspection	System Engineer	Recorded and Real Time data	Legal Agreement Document	Indoor	Client	
9	Recycling Requirement	Analysis	System Engineer	Check Design			System Engineer	
10	Schedual Requriement	Analysis	Client	Check Design			Client	
11	Cost Requirement		Client					
11.1	Construction Cost	Demonstration	Client	Cost Report			Client	
11.2	Design Cost	Demonstration	Client	Cost Report			Client	

CONFIGURATION MANAGEMENT PLAN

CM OBJECTIVES AND OVERVIEW

The purpose of the Configuration Management Plan is to document and inform project stakeholders related to modification in the system. This will make it possible to identify, organize and control modifications focuses on to the system by reducing error.

This document helps to identify and baseline configuration items, control modification of configuration items, report and record status of configuration items, ensure consistency of configuration items and control transportation of configuration items though out the system.

CM ORGANIZATION, CHARTER, MEMBERS AND DUTIES

- All stakeholder of the plant should consult recorded or expert advice before continuing with their process.
- Each group is responsible to communication any significant change that is made to the plant.
- All employee are expected to report any changes that is done by them which might affect the plant operating capacity before the scheduled life time.
- The plant will have a configuration control board which periodically check and update the configuration management plan. Each team will have at least one configuration control member which will notify the others and update as need if any change in her/his group occurred.
- Online, but will only be accessed through company server, library for any change will be introduced later as a maintenance producer.

BASELINE MANAGEMENT

Up to date version of hardware and software which were approved by the system engineer, the client and the stakeholders will be included in this report. Any revision should be included in the document with a detailed reasoning. Internal baseline report will also be included in this document.

All changes that will be occurred due to the introduction of the new version will also be included in this document.

ARCHIVAL

This document will include the length of archive for each type of data the will be collected from the power plant.

TRAINING

All the training that necessary to familiarize the employee and the stakeholders with the change in the system will be documented here.

REFERENCE USED

- 1. "Battery and Energy Technologies." *Energy Efficiency*. N.p., n.d. Web. 09 Dec. 2013.
- 2. Blanchard, Benjamin S., and W. J. Fabrycky. Systems Engineering and Analysis. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. Print.
- 3. Buede, Dennis M. The Engineering Design of Systems: Models and Methods. New York: Wiley, 2000. Print.
- 4. "Digest of Federal Resource Laws of Interest to the U.S. Fish and Wildlife Service." Federal Power Act. N.p., n.d. Web. 10 Dec. 2013.
- 5. "Menu." Introduction to SYS 201. N.p., n.d. Web. 10 Dec. 2013.

Appendix

1 Legal Requirement

Refined By Subordinate Requirements:

- 1.1 Iowa Legal Code
- 1.2 Federal Power Act
- 1.3 Energy Policy Act

Figure 1 Legal Requirement Requirements Diagram

1.1 Iowa Legal Code

Requirement Statement:

The power plant shall adhere to the Iowa Code 455B.

Refines Higher-Level Requirement:

1 Legal Requirement

1.2 Federal Power Act

Requirement Statement:

All utilities that are used in the power plant shall adhere to the Federal Power Act of Pub. L. No. 95-617.

Refines

Higher-Level Requirement:

1 Legal Requirement

1.3 Energy Policy Act

Requirement Statement:

All utilities that are used in the power plant shall adhere to the Energy Policy Act of Pub. L. No. 102-486.

Refines Higher-Level Requirement:

1 Legal Requirement

Specifies:

Function: 1.8 To Maintain The System

2 Inputs Requirement

Refined By Subordinate Requirements:

2.1 Energy Source

Figure 2 Inputs Requirement Requirements Diagram

2.1 Energy Source

Requirement Statement:

The fuel used in the system should adhare to the Iowa Code 455B.131.

Refines Higher-Level Requirement:

2 Inputs Requirement

Specifies:

Function: 1.1 To Input the Fuel

3 Heat Requirement

Refined By Subordinate Requirements:

3.1 Heat Storage

Figure 3 Heat Requirement Requirements Diagram

3.1 Heat Storage

Requirement Statement:

The power plant should be able to store heat to be used on demand.

Refines Higher-Level Requirement:

3 Heat Requirement

Specifies:

Function: 1.6.3.2 To Store Excess Heat

4 Electricity Requirement

Refined By Subordinate Requirements:

- 4.1 Electricity Demand
- 4.2 Power Output
- 4.3 Power Surge
- 4.4 Steady State Frequency
- 4.5 Tie Breaker Design
- 4.6 Voltage Deviation

Figure 4 Electricity Requirement Requirements Diagram

4.2 Power Output

Requirement Statement:

The system shall have a minimum of 25 MW output.

Refines Higher-Level Requirement:

4 Electricity Requirement

Specifies:

Function: 1.3.1 To Generate Electricity

Function: 1.5.1 To Control Electricity Output

5 Construction Requirement

Refined By Subordinate Requirements:

5.1 Construction Time

Figure 5 Construction Requirement Requirements Diagram

5.1 Construction Time

Requirement Statement:

The plant should have less than 2 years of construction time.

Refines Higher-Level Requirement:

5 Construction Requirement

6 Design Certification Requirement

Refined By Subordinate Requirements:

- 6.1 Document Certification
- 6.2 Test Certification

Figure 6 Design Certification Requirement Requirements Diagram

6.1 Document Certification

Requirement Statement:

All documents that are associated with the system will be signed by professional engineer.

Refines Higher-Level Requirement:

6 Design Certification Requirement

6.2 Test Certification

Requirement Statement:

All tests that are associated with the system will be signed by professional engineer.

Refines Higher-Level Requirement:

6 Design Certification Requirement

8 Performance Requirement

Refined By Subordinate Requirements:

- 8.1 Operating Capacity
- 8.2 Operating Efficiency
- 8.3 Operating Time
- 8.4 Operation Instruction
- 8.5 Real Time Data
- 8.6 Verification

Figure 7 Performance Requirement Requirements Diagram

8.1 Operating Capacity

Requirement Statement:

The system shall have a minimum of average operating capacity factor of 80%.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.3 To Generate Energy

8.2 Operating Efficiency

Requirement Statement:

The system shall have a minimum power plant efficiency of 65%.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.3 To Generate Energy

8.3 Operating Time

Requirement Statement:

The power plant shall be able to operate 7 days a week for 24 hours each.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.3 To Generate Energy

8.4 Operation Instruction

Requirement Statement:

The power plant system designer will include operating instruction.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.3 To Generate Energy

8.6 Verification

Requirement Statement:

The design should include the frequency of the periodical verification of the system.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.8 To Maintain The System

10 Schedule Requirement

Requirement Statement:

The plant should have a minimum of 30 years plant life.

11 Cost Requirement

Refined By Subordinate Requirements:

- 11.1 Construction Cost
- 11.2 Design Cost

Figure 8 Cost Requirement Requirements Diagram

11.1 Construction Cost

Requirement Statement:

The construction of the project should cost less than \$50 million.

Refines Higher-Level Requirement:

11 Cost Requirement

11.2 Design Cost

Requirement Statement:

The cost for the overall design of the project should be less than \$7 million.

Refines Higher-Level Requirement:

11 Cost Requirement

2 Design Constraints

5 Construction Requirement

Refined By Lower-Level Requirements:

5.1 Construction Time

Figure 9 Construction Requirement Requirements Diagram

5.1 Construction Time

Design Constraint Statement:

The plant should have less than 2 years of construction time.

Refines Higher-Level Requirement:

5 Construction Requirement

Figure 10 Construction Time Requirements Diagram

11 Cost Requirement

Refined By Lower-Level Requirements:

- 11.1 Construction Cost
- 11.2 Design Cost

2 Design Constraints

Figure 11 Cost Requirement Requirements Diagram

11.1 Construction Cost

Design Constraint Statement:

The construction of the project should cost less than \$50 million.

Refines Higher-Level Requirement:

11 Cost Requirement

Figure 12 Construction Cost Requirements Diagram

11.2 Design Cost

Design Constraint Statement:

The cost for the overall design of the project should be less than \$7 million.

Refines Higher-Level Requirement:

11 Cost Requirement

2 Design Constraints

Figure 13 Design Cost Requirements Diagram

3 Heat Requirement

Refined By Lower-Level Requirements:

3.1 Heat Storage

Figure 14 Heat Requirement Requirements Diagram

3.1 Heat Storage

Performance Requirement Statement:

The power plant should be able to store heat to be used on demand.

Refines Higher-Level Requirement:

3 Heat Requirement

Specifies:

Function: 1.6.3.2 To Store Excess Heat

Figure 15 Heat Storage Requirements Diagram

4 Electricity Requirement

Refined By Lower-Level Requirements:

- 4.1 Electricity Demand
- 4.2 Power Output
- 4.3 Power Surge
- 4.4 Steady State Frequency
- 4.5 Tie Breaker Design
- 4.6 Voltage Deviation

Figure 16 Electricity Requirement Requirements Diagram

4.1 Electricity Demand

Performance Requirement Statement:

The output amount for electricity should be synched with the demand base.

Refines Higher-Level Requirement:

4 Electricity Requirement

Specifies:

Function: 1.3.1 To Generate Electricity

Function: 1.6.1 To Access Electricity Demand

Figure 17 Electricity Demand Requirements Diagram

4.2 Power Output

Performance Requirement Statement:

The system shall have a minimum of 25 MW output.

Refines Higher-Level Requirement:

4 Electricity Requirement

Specifies:

Function: 1.3.1 To Generate Electricity

Function: 1.5.1 To Control Electricity Output

Figure 18 Power Output Requirements Diagram

4.3 Power Surge

Performance Requirement Statement:

The production of electricity should be regulated to avoid power surge.

Refines Higher-Level Requirement:

4 Electricity Requirement

Specifies:

Function: 1.5.1 To Control Electricity Output

Figure 19 Power Surge Requirements Diagram

4.4 Steady State Frequency

Performance Requirement Statement:

The steady-state frequency deviation will be agreed up on before the start of the project.

Refines Higher-Level Requirement:

4 Electricity Requirement

Specifies:

Function: 1.5.1 To Control Electricity Output

Figure 20 Steady State Frequency Requirements Diagram

4.5 Tie Breaker Design

Performance Requirement Statement:

The power plant should include at least one tie breaker in the design.

Refines Higher-Level Requirement:

4 Electricity Requirement

Specifies:

Function: 1.5.1 To Control Electricity Output

Figure 21 Tie Breaker Design Requirements Diagram

4.6 Voltage Deviation

Performance Requirement Statement:

Voltage deviation will be agreed up on before the start of the project.

Refines Higher-Level Requirement:

4 Electricity Requirement

Specifies:

Function: 1.5.1 To Control Electricity Output

Figure 22 Voltage Deviation Requirements Diagram

7 Saftey Requirement

Refined By Lower-Level Requirements:

- 7.1 Maintenance Frequency
- 7.2 Work Place Inspections

Figure 23 Saftey Requirement Requirements Diagram

7.1 Maintenance Frequency

Performance Requirement Statement:

The power plant will shall include the frequency of the maintenance.

Refines Higher-Level Requirement:

7 Saftey Requirement

Specifies:

Function: 1.8 To Maintain The System

Figure 24 Maintenance Frequency Requirements Diagram

7.2 Work Place Inspections

Performance Requirement Statement:

The system design will integrate documented work place safety inspections program.

Refines Higher-Level Requirement:

7 Safety Requirement

Specifies:

Function: 1.8 To Maintain The System

Figure 25 Work Place Inspections Requirements Diagram

8 Performance Requirement

Refined By Lower-Level Requirements:

- 8.1 Operating Capacity
- 8.2 Operating Efficiency
- 8.3 Operating Time
- 8.4 Operation Instruction
- 8.5 Real Time Data
- 8.6 Verification

Figure 26 Performance Requirement Requirements Diagram

8.1 Operating Capacity

Performance Requirement Statement:

The system shall have a minimum of average operating capacity factor of 80%.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.3 To Generate Energy

Figure 27 Operating Capacity Requirements Diagram

8.2 Operating Efficiency

Performance Requirement Statement:

The system shall have a minimum power plant efficiency of 65%.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.3 To Generate Energy

Figure 28 Operating Efficiency Requirements Diagram

8.3 Operating Time

Performance Requirement Statement:

The power plant shall be able to operate 7 days a week for 24 hours each.

Refines Higher-Level Requirement:

8 Performance Requirement

Specifies:

Function: 1.3 To Generate Energy

Figure 29 Operating Time Requirements Diagram

8.5 Real Time Data

Performance Requirement Statement:

The power plan should be equipped with equipment that are able to give real time data of the operation.

Refines Higher-Level Requirement:

8 Performance Requirement

Figure 30 Real Time Data Requirements Diagram

9 Recycling Requirement

Performance Requirement Statement:

The system design should incorporate recycling system for the output.

Specifies:

Function: 1.4 To Recycle The Waste

Figure 31 Recycling Requirement Requirements Diagram

10 Schedual Requriement

Performance Requirement Statement:

The plant should have a minimum of 30 years plant life.

Figure 32 Schedule Requirement Requirements Diagram

Part I - Function List

- 1 Mission Functions
- 1.1 To Input the Fuel
- 1.2 To Control the Input
- 1.2.1 To Control Quality of Input
- 1.2.1.1 To Feed High Quality
- 1.2.1.2 To Remove Low Quality Input
- 1.2.2 To Control Rate of Input
- 1.3 To Generate Energy
- 1.3.1 To Generate Electricity
- 1.3.2 To Collect Heat
- 1.4 To Recycle The Waste
- 1.4.1 To Separate Waste
- 1.4.1.1 To Feed Recycled Input
- 1.4.1.2 To Remove Unrecyclable
- 1.5 To Control Output
- 1.5.1 To Control Electricity Output
- 1.5.2 To Control Heat Output
- 1.6 To Access The Demand
- 1.6.1 To Access Electricity Demand
- 1.6.1.1 To Distribute Electricity
- 1.6.2 To Feedback to Generation
- 1.6.3 To Access Heat Demand
- 1.6.3.1 To Out Put Heat
- 1.6.3.2 To Store Excess Heat
- 1.7 To Transmit Energy
- 1.8 To Maintain The System

Part II - Behavior Model

1 Mission Functions

Figure 33 Mission Functions (N2 Diagram)

Figure 34 Mission Functions (FFBD)

1.1 To Input the Fuel

Description:

The system will take the chosen fuel into the system.

Specified By Requirements:

2.1 Energy Source

1.2 To Control the Input

Figure 35 To Control the Input (N2 Diagram)

Figure 36 To Control the Input (FFBD)

1.2.1 To Control Quality of Input

Table 1 1.2.1 To Control Quality of Input Interfacing Items

Interfacing Items	Source / Destination
Recycled Fluid Generation	Input To:
	1.2.1 To Control Quality of Input
	Output From:
	1.4.1.1 To Feed Recycled Input

Figure 37 To Control Quality of Input (N2 Diagram)

Figure 38 To Control Quality of Input (FFBD)

1.2.1.1 To Feed High Quality

1.2.1.2 To Remove Low Quality Input

Description:

Unrecyclable waste is extracted as final waste product out of the system.

1.2.2 To Control Rate of Input

1.3 To Generate Energy

Specified By Requirements:

8.1 Operating Capacity

- 8.2 Operating Efficiency
- 8.3 Operating Time
- 8.4 Operation Instruction

Figure 39 To Generate Energy (N2 Diagram)

Figure 40 To Generate Energy (FFBD)

1.3.1 To Generate Electricity

Description:

The system will generate electricity using the fuel input.

Specified By Requirements:

- 4.1 Electricity Demand
- 4.2 Power Output

Table 2 1.3.1 To Generate Electricity Interfacing Items

Interfacing Items	Source / Destination
Electricity Demand Feedback	Input To:
	1.3.1 To Generate Electricity
	Output From:
	1.6.2 To Feedback to Generation

1.3.2 To Collect Heat

Description:

The system generate heat using the power plant.

1.4 To Recycle The Waste

Specified By Requirements:

9 Recycling Requirement

Figure 41 To Recycle The Waste (N2 Diagram)

Figure 42 To Recycle The Waste (FFBD)

1.4.1 To Separate Waste

Figure 43 To Separate Waste (N2 Diagram)

Figure 44 To Separate Waste (FFBD)

1.4.1.1 To Feed Recycled Input

Table 3 1.4.1.1 To Feed Recycled Input Interfacing Items

Interfacing Items	Source / Destination
Recycled Fluid Generation	Input To:
	1.2.1 To Control Quality of Input
	Output From:
	1.4.1.1 To Feed Recycled Input

1.4.1.2 To Remove Unrecyclable

1.5 To Control Output

Figure 45 To Control Output (N2 Diagram)

Figure 46 To Control Output (FFBD)

1.5.1 To Control Electricity Output

Description:

The elecrity will be outputed to the trasmission line.

Specified By Requirements:

- 4.2 Power Output
- 4.3 Power Surge
- 4.4 Steady State Frequency

- 4.5 Tie Breaker Design
- 4.6 Voltage Deviation

1.5.2 To Control Heat Output

Description:

The Output control will access according to the demand.

1.6 To Access The Demand

Figure 47 To Access The Demand (N2 Diagram)

Figure 48 To Access The Demand (FFBD)

1.6.1 To Access Electricity Demand

Specified By Requirements:

4.1 Electricity Demand

Figure 49 To Access Electricity Demand (N2 Diagram)

Figure 50 To Access Electricity Demand (FFBD)

1.6.1.1 To Distribute Electricity

1.6.2 To Feedback to Generation

Table 4 1.6.2 To Feedback to Generation Interfacing Items

Interfacing Items	Source / Destination
Electricity Demand Feedback	Input To:
	1.3.1 To Generate Electricity
	Output From:
	1.6.2 To Feedback to Generation

1.6.3 To Access Heat Demand

Description:

This will gather the demand request and access the controller of the output to output the heat as needed.

Figure 51 To Access Heat Demand (N2 Diagram)

Figure 52 To Access Heat Demand (FFBD)

1.6.3.1 To Out Put Heat

Description:

The system generate electricity using power plant

1.6.3.2 To Store Excess Heat

Description:

The controller will adjust the heat and will feed it to the heat storage system.

Specified By Requirements:

3.1 Heat Storage

1.7 To Trasmit Energy

1.8 To Maintain The System

Specified By Requirements:

- 1.3 Energy Policy Act
- 7.1 Maintenance Frequency
- 7.2 Work Place Inspections
- 8.6 Verification