Лабораторная работа №4-5

Выполнил: Шардт Максим

Группа: ИВТ-1.1

- 1. Тема лабораторной работы: Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование с использованием функции пользователя.
- 2. Цель лабораторной работы: Выполнить задания, указанные в документе лабораторной работы
- 3. Используемое оборудование: ПК, PascalABC.NET, draw.io

Часть 1

- 1. Реализовать вычисление определенного интеграла из индивидуального задания методом парабол с использованием пользовательской функции.
- 2. Математическая модель

$$\int_{0.6}^{1.0} \frac{\cos(0.6x^2 + 0.4) dx}{1.4 + \sin^2(x + 0.7)}.$$

3. Блок-схема:

4. Список идентификаторов

Название переменной	Тип	Назначение
n	Целый	Число разбиений интеграла
a	Вещественный	Начальная точка вычислений

b	Вещественный	Конечная точка вычислений
X	Вещественный	Счетчик шагов
S	Вещественный	Сумма интегралов
h	Вещественный	Шаг

5. Код программы

```
program Simpson;
    function Y(x: real): real;
    begin
      Y := (\cos(0.6 * x * x + 0.4)) / (1.4 + \sin(x + 0.7))
* sin(x + 0.7));
    end;
    function Simpson rule(a: real; b:real; n:integer)
:real;
    var
    h, s, x :real;
    begin
      h := (b - a) / n;
      s := 0; x := a + h;
      while x < b do
      begin
        s := s + 4 * Y(x);
        x := x + h;
        s := s + 2 * Y(x);
        x := x + h;
      end;
      s := h / 3 * (s + Y(a) - Y(b));
      Simpson rule := s;
    end;
```

begin

writeln(Simpson_rule(0.6, 1.0, 10000));
end.

6. Результаты вычислений

Output Window

0.117329387317774

Часть 2

- 1. Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника правых частей.
- 2. Математическая модель

$$y = \frac{\sum_{i=1}^{n} \left(\frac{1}{(i+1)!} \cdot \frac{x^{2i+1}}{2i+1} \right)}{5.5 + x^{2} + (3n)!}$$

где
$$x = 1$$
, $n = 5$

3. Блок-схема

4. Список идентификаторов

Название переменной	Тип	Назначение
n	Целый	Число разбиений
		интеграла
	-	
a	Вещественный	Начальная точка вычислений
		вычислении
b	Вещественный	Конечная точка вычислений
		вы-ислении
	TT V	D
X	Целый	Вводимая переменная
S	Вещественный	Сумма
5	Бещественный	Сумма
h	Вещественный	Шаг
	Бещественный	
i	Целый	Вводимая переменная
	·	•

5. Код программы

```
function factorial(n:integer) :integer;
var
i, s: integer;
begin
   s := 1;
   for i := 1 to n do
      begin
      s *= i;
   end;
   factorial := s;
```

```
var
    y: real;
    n, x, i: integer;
begin
    x := 1;
    n := 5;
    for i := 1 to n do
        begin
        y += 1/factorial(i+1)*exp(ln(x) *
2*i+1)/2*i+1
        end;
    y /= (5.5 + x * x + factorial(3*n));
    writeln(y);
end.
```

6. Результаты вычислений

```
Output Window
3.17179136318734E-09
```

7. Вывод

Мной были решены все задания лабораторной работы средствами PascalABC.Net с помощью детерминированных циклических процессов и с функциями пользователя.