Activation Functions

(Tanh, ReLU, Swish, Mish)

Habib Mbow Fenosoa Randrianjatovo Heritiana Daniel Andriasolofo Santatriniaina Avotra Randrianambinina

African Master of Machine Intelligence (AMMI) at African Institute for Mathematical Sciences (AIMS)

April 29, 2022

Contents

- Generalities
 - Generality on supervised machine learning
 - Neural Network & Activation Functions
 - Gradient Descent Optimizer
- 2 Activation Functions: tanh, relu, swish, mish
 - Hyperbolic tangent
 - Rectified Linear Unit
 - Swish
 - Mish
- Experimental Observations
 - Experimental result
- 4 Conclusion

Generality on supervised machine learning

In supervised machine learning, we are given a sample data $\{(X_i, y_i)\}_{i=1}^N$.

Goal

Find a function *F* such that

$$y = F(X)$$

for all (X, y) from the population of the given sample data.

Heritiana (AIMS) Activation Functions April 29, 2022

Generality on supervised machine learning

In supervised machine learning, we are given a sample data $\{(X_i, y_i)\}_{i=1}^N$.

Goal

Find a function F such that

$$y = F(X)$$

for all (X, y) from the population of the given sample data.

Approach

Approximating F by a function f using the sample data points, i.e.

$$f \approx F$$
.

The function f is called **predictor function**.

Examples of approximation method

Linear functions are easy to parameterized, and that makes it easy to learn.

Definition (Linear Regression)

The approach of choosing the predictor function to be a *linear* function is called **Linear Regression**.

Examples of approximation method

Linear functions are easy to parameterized, and that makes it easy to learn.

Definition (Linear Regression)

The approach of choosing the predictor function to be a *linear* function is called **Linear Regression**.

One can also write the predictor function as a composition of functions i.e.

$$f = f_k \circ f_{k-1} \circ \cdots \circ f_1,$$

for some functions f_i .

This is the approach we use in Deep Learning $(k \ge 2)$.

Neural Network & Activation Functions

Now we will use the approach of writing f as a composition of functions as follows

$$f = (g_k \circ f_k) \circ (g_{k-1} \circ f_{k-1}) \circ \cdots \circ (g_1 \circ f_1).$$

Neural Network & Activation Functions

Now we will use the approach of writing f as a composition of functions as follows

$$f = (g_k \circ f_k) \circ (g_{k-1} \circ f_{k-1}) \circ \cdots \circ (g_1 \circ f_1).$$

Neural Network - Activation Function

In neural network, we add the following assumptions :

- f_i's are linear functions,
- g_i 's are function that we set ourselves known as **activation functions**.

Neural Network & Activation Functions

Now we will use the approach of writing f as a composition of functions as follows

$$f = (g_k \circ f_k) \circ (g_{k-1} \circ f_{k-1}) \circ \cdots \circ (g_1 \circ f_1).$$

Neural Network - Activation Function

In neural network, we add the following assumptions :

- f_i's are linear functions,
- g_i 's are function that we set ourselves known as **activation functions**.

For the approximation, we only adjust the weights of f_i 's.

Gradient Descent

Loss function

It is a distance function between f and F.

Heritiana (AIMS) Activation Functions April 29, 2022

Gradient Descent

Loss function

It is a distance function between f and F.

A common algorithm to adjust weights of the predictor to get small loss is the Gradient Descent algorithm.

Gradient Descent

Let w be a weight of the predictor. To minimize the loss function ℓ w.r.t w, we can adjust w by

$$w \leftarrow w - lr \cdot \frac{\partial \ell}{\partial w}$$
, for some $lr > 0$.

Heritiana (AIMS)

Sigmoid

Sigmoid function is one of the most popular activation function due to that fact that it can be interpreted as probability.

Definition (Sigmoid)

The sigmoid function and its derivative are given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\implies \sigma'(x) = \sigma(x)(1 - \sigma(x)).$$

The sigmoid is a non zero-centered function. Its range lies between 0 to 1.

Habib (AIMS) Activation Functions April 29, 2022 7

Hyperbolic Tangent

The tanh activation function has been conceived to overcome disadvantage of non-zero centered as in sigmoid.

Definition (Hyperbolic Tangent)

The tanh function and its derivate are defined by:

$$\tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$\implies \tanh'(x) = 1 - \tanh^{2}(x).$$

Hyperbolic Tangent

The tanh activation function has been conceived to overcome disadvantage of non-zero centered as in sigmoid.

Definition (Hyperbolic Tangent)

The tanh function and its derivate are defined by:

$$\tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$\implies \tanh'(x) = 1 - \tanh^{2}(x).$$

It can be seen as deformed sigmoid.

Property

We have

$$\tanh(x) = 2\sigma(2x) - 1.$$

Graphs of Hyperbolic Tangent and its derivative

Figure: Hyperbolic tangent vs its derivative

Habib (AIMS) Activation Functions April 29, 2022 9

Advantages

• Tanh is continuously differentiable and provides a smooth gradient, i.e., fast convergence.

Advantages

- Tanh is **continuously differentiable** and provides a smooth gradient, i.e., fast convergence.
- Tanh is a zero-centered function and its range lies between -1 to 1

Advantages

- Tanh is continuously differentiable and provides a smooth gradient, i.e., fast convergence.
- Tanh is a zero-centered function and its range lies between -1 to 1

Disadvantages

• Saturation leads to vanishing gradient

Advantages

- Tanh is continuously differentiable and provides a smooth gradient, i.e., fast convergence.
- Tanh is a zero-centered function and its range lies between -1 to 1

Disadvantages

- Saturation leads to vanishing gradient
- Computationally expensive

Rectified Linear Unit - ReLU

The ReLU outperforms Tanh during learning due the fact of non-vanishing Gradient.

Definition (Rectified Linear Unit)

$$\operatorname{ReLU}(x) = \max(0, x) = x \max\left(0, \frac{x}{|x|}\right)$$

$$\Longrightarrow \operatorname{ReLU}'(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \end{cases}$$

$$1 & \text{if } x > 0$$

a based on this link

Habib (AIMS) Activation Functions April 29, 2022 11/28

Graph of ReLU and its derivative

Figure: ReLU vs its derivative

Advantages

Cheap computation

Advantages

- Cheap computation
- ullet Bounded below \Longrightarrow Strong regularization

Advantages

- Cheap computation
- Bounded below ⇒ Strong regularization
- Unbounded above

 No vanishing gradient problem

Advantages

- Cheap computation
- ullet Bounded below \Longrightarrow Strong regularization
- ullet Unbounded above \Longrightarrow No vanishing gradient problem

Disadvantages

Not differentiable at 0

Advantages

- Cheap computation
- Bounded below

 Strong regularization
- ullet Unbounded above \Longrightarrow No vanishing gradient problem

Disadvantages

- Not differentiable at 0
- The gradients for negative input are zero

Swish

A lookalike ReLU parameterized activation function named swish was proposed in 2017 by Ramachandran et.al., which is defined as follow

Definition (swish)

Swish function and its derivative :

swish
$$(x; \beta) = x \cdot \sigma(\beta x), \forall x, \in \mathbb{R}, \beta \text{ is a constant}$$

$$\implies$$
 swish $(x; \beta) = \beta \cdot \text{swish}(x; \beta) + \sigma(\beta \cdot x)(1 - \beta \cdot \text{swish}(x; \beta))$

Swish

A lookalike ReLU parameterized activation function named *swish* was proposed in 2017 by Ramachandran et.al., which is defined as follow

Definition (swish)

Swish function and its derivative :

$$swish (x; \beta) = x \cdot \sigma (\beta x), \forall x, \in \mathbb{R}, \beta \text{ is a constant}$$

$$\implies swish'(x; \beta) = \beta \cdot swish (x; \beta) + \sigma (\beta \cdot x) (1 - \beta \cdot swish (x; \beta))$$

Properties

$$\lim_{\beta \to 0} \operatorname{swish}(x; \beta) = \frac{x}{2}$$
$$\lim_{\beta \to +\infty} \operatorname{swish}(x; \beta) = \operatorname{ReLU}(x)$$

Avotra (AIMS) Activation Functions April 29, 2022 14/28

Visualizations of swish with different values of β

Figure: Swish and its derivatives with different values of β

Visualizations of swish and its first derivative

Figure: Swish and its derivatives for $\beta=1$

Advantages

ullet Unbounded above \Longrightarrow no-vanishing gradient.

Advantages

- Unbounded above \implies no-vanishing gradient.
- ullet Bounded below \Longrightarrow regularization of the model

Advantages

- Unbounded above \implies no-vanishing gradient.
- ullet Bounded below \Longrightarrow regularization of the model
- ullet Smooth gradient \Longrightarrow fast convergence

Avotra (AIMS) Activation Functions April 29, 2022

Advantages

- Unbounded above \implies no-vanishing gradient.
- ullet Bounded below \Longrightarrow regularization of the model
- Smooth gradient ⇒ fast convergence
- ullet Non-monotonic \Longrightarrow reduction of the influence of the weight on the output.

Advantages

- Unbounded above \implies no-vanishing gradient.
- Bounded below \implies regularization of the model
- Smooth gradient ⇒ fast convergence
- ullet Non-monotonic \Longrightarrow reduction of the influence of the weight on the output.
- Self-gated

Avotra (AIMS) Activation Functions April 29, 2022

Advantages

- Unbounded above \implies no-vanishing gradient.
- ullet Bounded below \Longrightarrow regularization of the model
- Smooth gradient ⇒ fast convergence
- ullet Non-monotonic \Longrightarrow reduction of the influence of the weight on the output.
- Self-gated

Disadvantage

Computationally expensive

Definition (Mish activation function)

softplus
$$(x) = \ln (1 + e^x)$$

mish $(x) = x \cdot \tanh (\text{softplus}(x))$

The first derivative of Mish is given by

Derivative

$$\begin{aligned} \min'(x) &= \frac{\min(x)}{x} + x \cdot \sigma(x) \left(1 - \tanh^2(\operatorname{softplus}(x)) \right) \\ &= \frac{\min(x)}{x} + \operatorname{swish}(x) \cdot \operatorname{sech}^2(\operatorname{softplus}(x)) \end{aligned}$$

Avotra (AIMS) Activation Functions April 29, 2022 18/

Visualizations of mish and its first derivative

Figure: Mish vs its derivative

Difference of mish versus swish

Properties

- $\forall x \in \mathbb{R}$, tanh (softplus (x)) $\geq \sigma(x)$
- $\forall x \ge 0$, mish $(x) \ge \text{swish } (x) \ge 0$
- $\forall x < 0$, mish (x) < swish (x) < 0

Mish vs Swish

- This last inequality implies that swish is more regularized than mish.
- Harder to compute the gradient compared to swish.

20/28

Avotra (AIMS) Activation Functions April 29, 2022

Visualizations of mish versus swish

Figure: Mish vs swish

Avotra (AIMS) Activation Functions April 29, 2022 21/28

Visualizations of mish versus swish

Figure: Zoom in the negatives values

Presentation of the used data and model architecture

For the experiment, we used the MNIST dataset.

Figure: NMIST data

Presentation of the used data and model architecture

For the experiment, we used the MNIST dataset.

Figure: NMIST data

The model architecture is as followed:

Experimental result

Model parameters

batchsize: 64 optimizer: SGD

lr: 0.01

momentum: 0.9

loss function: cross entropy

Experimental result

Model parameters

batchsize : 64 optimizer : SGD

 $lr:\ 0.01$

 $momentum: \ 0.9$

loss function: cross entropy

Activation function Num epochs	5	10	30
Tanh	97.69%	98.32%	98.74%
ReLU	98.21%	11.35%	98.78%
Swish	97.99%	98.50%	98.67%
Mish	98.01%	98.49%	98.90%

Table: Test Accuracy.

Observations

We observe the following in general.

• Tanh performs the least.

Fenosoa (AIMS) Activation Functions

Observations

We observe the following in general.

- Tanh performs the least.
- Mish performs the most.

Observations

We observe the following in general.

- Tanh performs the least.
- Mish performs the most.
- ReLU have better performance than swish unless it faces the zero gradient too early.

Fenosoa (AIMS) Activation Functions April 29, 2022 25/28

Conclusion

We conclude the following :

Tanh < Swish < ReLU (risky) < Mish.

Thank you for listening ...

References

- Deep Learning using Rectified Linear Units (ReLU), Abien Fred M. Agarap https://arxiv.org/pdf/1803.08375.pdf.
- SWISH: A SELF-GATED ACTIVATION FUNCTION Prajit Ramachandran, Barret Zoph, Quoc V. *Google Brain*, https://arxiv.org/pdf/1710.05941v1.pdf.
- Mish: A Self Regularized Non-Monotonic Activation Function Diganta Misra Landskape, https://arxiv.org/pdf/1908.08681.pdf.
- Numerical influence of ReLU'(0) on backpropagation https://hal.archives-ouvertes.fr/hal-03265059v2/document.