Teoria Sygnałów w zadaniach

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce Zadanie 1. Oblicz splot sygnałów $f(t) = A \cdot \Pi\left(\frac{t-T}{T}\right)$ i $h(t) = \mathbb{1}(t) \cdot e^{-a \cdot t}$

Wzór na slot sygnałów

$$y(t) = \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau \tag{1}$$

Wzory sygnałów pod całką

$$f(\tau) = A \cdot \Pi\left(\frac{\tau}{T}\right)$$
$$h(t - \tau) = \mathbb{1}(t) \cdot e^{-a \cdot (t - \tau)}$$

$$f(\tau) = \begin{cases} 0 & \tau \in (-\infty; 0) \\ A & \tau \in (0; T) \\ 0 & \tau \in (T; \infty) \end{cases}$$
$$h(t - \tau) = \begin{cases} e^{-a \cdot (t - \tau)} & \tau \in (-\infty; t) \\ 0 & \tau \in (t; \infty) \end{cases}$$

Wykresy obu funkcji w dziedzinie τ dla różnych wartości t:

Po wymnożeniu obu funkcji dla przykładowych wartości t otrzymujemy: