Université de Monastir Institut Supérieur D'Informatique et de Mathématiques de Monastir Dépt. de Mathématiques A.U: 2024-2025 L1 INFO Algèbre2 Série No.4

Réduction des endomorphismes et des matrices carrées

Exercice 1:

Dans les exemples suivants, u est un endomorphisme de E, déterminer son polynôme caractéristique, ses valeurs propres, ses sous espaces propres puis donner une base B de E formée par des vecteurs propres de u et écrire la matrice de u relativement à cette base.

- 1. $E = \mathbb{R}^2$ et pour tout $a = (x, y) \in E$, u(a) = (4x 3y, 2x y).
- 2. $E = \mathbb{R}^3$ et pour tout $a = (x, y, z) \in E$, u(a) = (x + 3y, 3x 2y z; -y + z).
- 3. $E = \mathbb{R}^4$ et pour tout $a = (x, y, z, t) \in E$, u(a) = (5y, 3x + 2z, 2y + 3t, 5z).
- 4. $E = \mathbb{R}_2[X]$ et pour tout $P \in E$, u(P) = -P + (1+X)P'.
- 5. $E = \mathcal{M}_2(\mathbb{R})$ et pour tout $A \in E$, $u(A) = A + {}^tA$.

Exercice 2:

- 1. Montrer que la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & -1 \end{pmatrix}$ n'est pas diagonalisable sur $\mathbb R$ mais qu'elle l'est sur $\mathbb C$ et effectuer la diagonalisation.
- 2. Déterminer des conditions nécessaires et suffisantes sur les scalaires a,b,c pour que la matrice A soit diagonalisable dans les cas suivant :

$$A = \begin{pmatrix} 2 & a & b \\ 0 & 2 & c \\ 0 & 0 & 2 \end{pmatrix} , \quad A = \begin{pmatrix} 2 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{pmatrix} , \quad A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & a & 0 \\ -1 & 2 & -1 \end{pmatrix} , \quad A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ a & b & c & 2 \end{pmatrix}$$

Exercice 3:

Soit
$$A_m = \begin{pmatrix} 3 & 4 & 4 \\ m & -m & -1 \\ -m & 2 & 3-m \end{pmatrix}, m \in \mathbb{R}.$$

- 1. Calculer le polynôme caractéristique de A_m et en déduire le spectre de A_m .
- 2. Pour quelles valeurs de m, la matrice A_m est-elle inversible.
- 3. Montrer que pour tout $m \in \mathbb{R} \setminus \{-1, -2\}$, la matrice A_m est diagonalisable.
- 4. On prend m = 0 et on note $A = A_0$.
 - (a) Déterminer D une matrice diagonale et P une matrice inversible vérifiant : $A = PDP^{-1}$.
 - (b) Vérifier que A est inversible et préciser les valeurs propres et les sous espaces propres de A^{-1} .
 - (c) Montrer que la matrice $N = 2A + A^{-1} + 3I_3$ est diagonalisable et préciser ses valeurs propres.
 - (d) Calculer A^n , $\forall n \in \mathbb{N}$.
- 5. Soient $(x_n),(y_n),(z_n)$ des suites réelles vérifiant: $x_0=y_0=z_0=1$ et pour tout $n\in\mathbb{N}$,

$$\begin{cases} x_{n+1} = 3x_n + 4y_n + 4z_n \\ y_{n+1} = x_n - y_n - z_n \\ z_{n+1} = -x_n + 2y_n + 2z_n \end{cases}$$

Déterminer les expressions de x_n, y_n, z_n en fonction de n.

- 6. On prend m = -1 et on note $M = A_{-1}$.
 - (a) Vérifier que M est inversible et en utilisant le théorème de Cayley-Hamilton, exprimer M^{-1} en fonction de I_3 , M et M^2 .
 - (b) Montrer que la matrice M n'est pas diagonalisable mais qu'elle est trigonalisable sur \mathbb{R} . On considère l'endomorphisme f de \mathbb{R}^3 canoniquement associé à la matrice M.
 - (c) Déterminer une base $B = (v_1, v_2, v_3)$ de \mathbb{R}^3 vérifiant:

$$f(v_1) = 2v_1, \ f(v_2) = 3v_2, \ f(v_3) = v_2 + 3v_3$$

- (d) En déduire une matrice T triangulaire supérieure semblable à M.
- (e) Ecrire $T = \Delta + N$ avec Δ une matrice diagonale, N une matrice triangulaire supérieure avec des zéros sur la diagonale et telle que : $\Delta N = N\Delta$.
- (f) En utilisant la formule du Binôme de Newton, calculer T^n et déduire M^n , $\forall n \in \mathbb{N}$.