University of Mumbai **Examination Summer 2022**

QP:- 93098

Program: Computer Engineering Curriculum Scheme: Rev2019

07/06/2022

Examination: SE Semester III Course Code: CSC302 and Course Name: Discrete Structures & Graph Theory

Time: 2 hours 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Let the set A is $\{1, 2, 3\}$ and B is $\{2, 3, 4\}$. Then the set A – B is		
Option A:	$\{1, -4\}$ and B is $\{2, 3, 4\}$. Then the set A – B is		
Option B:	$\{1, 2, 3\}$		
Option C:	{1}		
Option D:	$\{2,3\}$		
Ори			
2.	Let R be a relation on the set A of positive integers. Determine the property of		
	relation R, if $(x, y) \in R$ where $R = \{(x,y) \mid xy \ge 1\}$		
Option A:	Anti symmetric		
Option B:	Transitive		
Option C:	Symmetric		
Option D:	Equivalence relation		
Ориге	1		
3.	The statement $(\sim Q \leftrightarrow R) \land \sim R$ is true when?		
Option A:	Q: True R: False		
Option B:	Q:True R:True		
Option C:	Q: False R:True		
Option D:	Q: False R: False		
4.	How many two-digit numbers can be made from the digits 1 to 9 if repetition is allowed?		
Option A:	9		
Option B:	18		
Option C:	81		
Option D:	99		
5.	Let P (x) denote the statement " $x > 5$." Which of these have truth value true?		
Option A:	P (0)		
Option B:	P(1)		
Option C:	P(2)		
Option D:	P (9)		
6.	How many binary relations are there on a set S with 5 distinct elements?		
Option A:	2 ⁵		
Option B:	2 ²⁵		

	Tall
Option C:	210
Option D:	215
	$c c = x ion f(x) = x^3 + 2 is$
7.	The inverse of function $f(x) = x^3 + 2$ is
Option A:	$f^{-1}(y) = (y-2)^{-1/2}$
Option B:	$f^{-1}(y) = (y)^{-1/3}$
Option C:	$f^{-1}(y) = (y-2)^{-1/3}$
Option D:	$f^{-1}(y) = (y-2)$
8.	When is a graph said to be bipartite? If it can be divided into two independent sets A and B such that each edge connects.
Option A:	vertex from to A to B
Option B:	If the graph is disconnected If the graph has at least n/2 vertices whose degree is greater than n/2
Option C:	If the graph has at least n/2 vertices whose degree is greater than the has add number of vertices
Option D:	If the graph has at least 12 verb If the graph is connected and it has odd number of vertices
	An algebraic structure is called a semigroup.
9.	All algebraic structures
Option A:	(Q, +, *)
Option B:	(P. *)
Option C:	(P, *, +)
Option D:	(+, *)
10.	Condition for monoid is
Option A:	(a+e)=a
Option B:	(a*e)=(a+e)
Option C:	$a=(a^*(a+e)$
Option D:	$(a^*e)=(e^*a)=a$

Q2	
(20	
Marks	
Each)	
Α	Solve any Two 5 marks each
i.	Prove that 8^n - 3^n is a multiple of 5 by mathematical induction, $n \ge 1$
ii.	What is a distributed lattice? Draw the hasse diagram of D_{1001} . Whether it is a distributive lattice? Find the inverses of all elements of D_{1001} .
iii.	Determine the Eulerian and Hamiltonian path, if exists, in the following graphs: d e
	p c a b.
В	Solve any One 10 marks each

	What is a transitive closure? Find the transitive closure of R using Warshall's algorithm where $A = \{a, b, c, d, e, f\}$ & $R = \{(a, b), (b, c), (c, e), (e, f), (e, b)\}$ Let $f(x) = x + 2$, $g(x) = x - 2$ and $h(x) = 3x$ for all
ii.	Let $f(x) = x + 2$, $g(x) = x - 2$ and $h(x) = 3x$ for all $x \in R$. (R is the set of real number). Find i) $f \circ g \circ h$ ii) $h \circ g \circ f$ iii) $f \circ f \circ f$

- 00	
Q3	
(20	
Marks	
Each)	
A	Solve any Two 5 marks each
i.	Let R be the following equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$:
	$R = \{(1, 1), (1,5), (2, 2), (2,3), (2, 6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)\}$
	(6,6)
	Find the partitions of A induced by R, i.e., find the equivalence classes of R.
ii.	Find truth table for the following expression & determine whether it is a tautology:
	$(^P \land (Q \land R)) \lor (Q \land R) \lor (P \land R) \leftrightarrow R$
iii.	In an auditorium, the chairs are to be numbered with an alphabet followed by a
	positive integer not exceeding 60. Find the maximum no. of chairs that can be placed
	in the auditorium.
В	Solve any One 10 marks each
i.	Let $(x1 \land x2) \lor (x1 \land x3) \lor (x2 \land x3)$ be the Boolean expression. Write E $(x1, x2, x3)$
	x3) in a Disjunctive & Conjunctive Normal Form.
ii.	Define minimum hamming distance. Find the code words generated by the parity
11.	check matrix H given below.
	H=
	011
	•

Q4		
(20		
Marks		
Each)		5 marks each
A	Solve any Two	
i.	If 5 points are taken in a squ	are of side 2 units, show that at least 2 of them
	are no more than √2 units ap	part.
ii.	Consider (3,8) encoding function	on e: $B^3 \rightarrow B^6$ defined by
11.	e(000) = 00000000	e(100)= 10I00100
	e(00l)= 10111000	e(101)= 10001001
	e(010)= 00101101	e(110) =00011100

	e(011) = 10010101 $e(111) = 00110001$
	and let d be the (8,3) maximum likelihood decoding function associated with e. H ₀
111	Find the generating functions for the following sequences:
iii.	Find the generating functions to a. 0, 0, 0, 1, 2, 3, 4, 5, 6, 7,
	a. 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, b. 6, -6, 6, -6, 6, -6,
	10 marks each
В	Solve any One
i.	Solve any One Define the term bijective function. Define the term bijective function. Show that the mapping $f: R \rightarrow R$ given by i) $f(x) = 4x-3$ & ii) $f(x) = 4x+7$ is bijective.
	Explain the following terms with suitable example:
ii.	Explain the following terms was
	a) Incidence matrix
	b) Hamiltonian path
	c) Partition setd) Principle of inclusion & exclusion
	d) Principle of inclusion of

EM-III