EE359 – Lecture 15 Outline

- Review of Last Lecture
- Introduction to MIMO Systems
- MIMO Channel Decomposition
- MIMO Channel Capacity
- Beamforming
- Diversity vs. Multiplexing Tradeoffs

Review of Last Lecture

- Finite Constellation Sets
 - Use heuristic to assign rates to regions
 - Channel inversion power control in each region
 - Near-optimal performance
- Practical Issues in Adaptive Modulation
 - Update rate based on AFRD in Markov fading model: At f_D=80 Hz and 100 Kbps, adapt every 10-100 Ts.
 - Estimation error/delay lead to irreducible errors floors: must estimate well (within 1 dB) and feedback in t<<T_c

Multiple Input Multiple Output (MIMO)Systems

 MIMO systems have multiple (r) transmit and receiver antennas

- With perfect channel estimates at TX and RX, decomposes into r independent channels
 - R_H-fold capacity increase over SISO system
 - Demodulation complexity reduction
 - Can also use antennas for diversity (beamforming)
 - Leads to capacity versus diversity tradeoff in MIMO

MIMO Decomposition

 Decompose channel through transmit precoding (x=Vx) and receiver shaping (y=UHy)

- Leads to $R_H \le \min(M_t, M_r)$ independent channels with gain σ_i (ith singular value of H) and AWGN
- Independent channels lead to simple capacity analysis and modulation/demodulation design

Capacity of MIMO Systems

- Depends on what is known at TX and RX and if channel is static or fading
- For static channel with perfect CSI at TX and RX, power water-filling over space is optimal:
 - In fading waterfill over space (based on short-term power constraint) or space-time (long-term constraint)
- Without transmitter channel knowledge, capacity metric is based on an outage probability
 - P_{out} is the probability that the channel capacity given the channel realization is below the transmission rate.

Beamforming

Scalar codes with transmit precoding

- Transforms system into a SISO system with diversity.
 - Array and diversity gain
 - Greatly simplifies encoding and decoding.
 - Channel indicates the best direction to beamform
 - Need "sufficient" knowledge for optimality of beamforming

Optimality of Beamforming

Mean Information

Covariance Information

Diversity vs. Multiplexing

Use antennas for multiplexing or diversity

Best use depends on the application

Diversity/Multiplexing tradeoffs (Zheng/Tse)

$$\lim_{SNR\to\infty} \frac{\log \mathbf{P}_{e}(SNR)}{\log \mathbf{SNR}} = -\mathbf{d}$$

$$\lim_{SNR\to\infty} \frac{R(SNR)}{\log SNR} = r$$

$$\mathbf{d}^*(\mathbf{r}) = (\mathbf{M}_{t} - \mathbf{r})(\mathbf{M}_{r} - \mathbf{r})$$

Main Points

- MIMO systems exploit multiple antennas at both TX and RX for capacity and/or diversity gain
- With TX and RX channel knowledge, channel decomposes into independent channels
 - Linear capacity increase with number of TX/RX antennas
 - With TX/RX channel knowledge, capacity vs. outage is the capacity metric
- Beamforming provides diversity gain in direction of dominent channel eigenvectors
- Fundamental tradeoff between capacity increase and diversity gain: optimization depends on application