# ANALISIS MULTIVARIAT Pertemuan 3-4

Wahyu Sri Utami, S.Si., M.Sc.

Program Studi Sains Data Universitas Teknologi Yogyakarta

# Multivariate Analysis of Varians (MANOVA)

- MANOVA adalah generalisasi dari ANOVA untuk situasi yang memiliki beberapa variabel terikat
- MANOVA memiliki kemiripan asumsi dengan ANOVA tetapi diperluas untuk kasus multivariat.
- Perbedaan antara ANOVA dan MANOVA terletak pada jumlah variabel dependennya.

# Multivariate Analysis of Varians (MANOVA)

 ANOVA digunakan untuk mengetahui apakah terdapat perbedaan pengaruh perlakuan terhadap satu variabel dependen, sedangkan MANOVA digunakan untuk mengetahui apakah terdapat perbedaan pengaruh terhadap lebih dari satu variabel dependen Perbanding an Anova dan Manova

# ANOVA (Univariate Analysis of Variance) Hanya mengkaji berbagai pengaruh percobaan yang dilakukan terhadap respons tunggal (satu unit variabel respons). MANOVA (Multivariate Analysis of Variance) Mengkaji pengaruh dari berbagai perlakuan yang dicobakan terhadap respons ganda (lebih dari satu respons).

Ketergantungan di antara variabel respons tidak menjadi perhatian utama karena pada dasarnya terdapat anggapan bahwa variabel-variabel respons saling bebas satu sama lain sehingga pengkajian struktur keragaman hanya dilakukan terhadap setiap variabel respons secara terpisah. Mempertimbangkan adanya ketergantungan antar variabel respons sehingga cocok digunakan untuk pengkajian pengaruh dari berbagai perlakuan terhadap lebih dari satu respons.

# Tujuan Manova

- Tujuan dari MANOVA adalah untuk menguji apakah vektor rerata dua atau lebih grup sampel diambil dari sampel distribusi yang sama.
- MANOVA biasa digunakan dalam dua kondisi utama. Kondisi pertama adalah saat terdapat beberapa variabel dependen yang berkorelasi, sementara peneliti hanya menginginkan satu kali tes keseluruhan pada kumpulan variabel ini dibandingkan dengan beberapa kali tes individual.
- Kondisi kedua adalah saat peneliti ingin mengetahui bagaimana variabel independen mempengaruhi pola variabel dependennya

- Penggunaan MANOVA memiliki keunggulan, yaitu mampu menganalisis semua variabel terikat secara simultan, sehingga dapat memperkecil kesalahan tipe I ( $\alpha$ ) dalam pengambilan keputusan uji statistik
- MANOVA mampu mendeteksi dan mengungkapkan perbedaan yang tidak ditampilkan ANOVA pada masing-masing variabel terikat secara terpisah.

- MANOVA menguji ada tidaknya perbedaan rata-rata dari dua atau lebih variabel tak bebas secara simultan (simultaneously) berdasarkan kelompok-kelompok pada variabel bebas.
- Perlu diperhatikan bahwa pada MANOVA, variabel bebas (independent variable) bersifat non-metrik (terdiri dari beberapa kelompok/kategori), sedangkan variabel bebas bersifat metrik (interval atau rasio)

Multivariate Analysis of Variance

$$Y_1 + Y_2 + Y_3 + \dots + Y_6 = X_1 + X_2 + X_3 + \dots + X_n$$



Kadang pada lebih dari dua populasi diambil sampel acak, berupa kumpulan dari tiap g populasi, sebagai berikut

Populasi 1: 
$$X_{11}, X_{12}, ..., X_{1n_1}$$

Populasi 2: 
$$X_{21}, X_{22}, ..., X_{2n_2}$$

: :

Populasi g: 
$$X_{g1}, X_{g2}, ..., X_{gn_g}$$

- MANOVA digunakan untuk meneliti apakah vektor rata-rata populasi itu sama atau tidak,
- jika tidak komponen rata-rata yang mana yang berbeda secara signifikan

## Manova One Way

• Untuk membandingkan vektor rata-rata populasi g berdasarkan bentuk model Anova One Way sbb:

$$Y_{ij} = \mu + \tau_i + e_{ij}$$

Dengan  $i = 1, 2, \dots, g$  dan  $j = 1, 2, \dots, n$ 

 $Y_{ij}$  : nilai pengamatan (respon Tunggal) dari ulangan ke-j terhadap perlakuan ke-i

 $\mu$  : nilai rata-rata

 $\tau_i$ : pengaruh dari perlakuan ke-i terhadap respon

 $e_{ij}$ : pengaruh galat yang timbul pada perulangan ke-j dan perlakuan ke-i yang diasumsikan independent dan berdistribusi  $N_p(0,\Sigma)$ 

#### Asumsi Dalam Manova One Way

- X<sub>i1</sub>, X<sub>i2</sub>,...,X<sub>in</sub> adalah sampel acak berukuran n<sub>i</sub> dari sebuah populasi dengan rata-rata μ<sub>i</sub> ,l=1,2,...,g
- Sampel acak dari populasi yang beda adalah independen
- Semua populasi memiliki matrik kovarian bersama Σ
- Tiap populasi adalah normal multivariat

## Hipotesis Pada Manova One Way

$$H_0: \mu_1 = \mu_2 = \dots = \mu_g$$

$$H_1: \exists i \neq j$$
, sehingga  $\mu_i \neq \mu_j$ 

- Terdapat beberapa statistic yang digunakan dalam Manova yaitu:
- a. Uji Wilk's Lambda
- b. Uji Pillai Trace
- c. Uji Lawley-Hotelling ( $T^2$ -Hotelling)
- d. Uji Roy's Largest Root

- Menyusun hipotesis  $H_0$  dan  $H_1$
- Menentukan Faktor Koreksi (FK) untuk respon  $Y_1$  dan  $Y_2$

$$\succ$$
 FK untuk  $Y_1$ :

$$FK_{11} = \frac{\left(\sum_{l=1}^{g} Y_{1lj}\right)^{2}}{n}$$

$$ightharpoonup$$
 FK untuk  $Y_2$ :

$$FK_{22} = \frac{\left(\sum_{l=1}^{g} Y_{2lj}\right)^2}{n}$$

$$\triangleright$$
 FK untuk  $Y_1$  dan  $Y_2$ :

$$FK_{12} = \frac{\left(\sum_{l=1}^{g} Y_{1lj}\right)\left(\sum_{l=1}^{g} Y_{2lj}\right)}{n}$$

Dengan

n = banyak data totalg = banyak kelompok

• Menghitung Jumlah Kuadrat Total Terkoreksi (JKT) dan Jumlah Hasil Kali Total Terkoreksi (JHKT) untuk respon  $Y_1$  dan  $Y_2$ 

>JKT untuk respon 
$$Y_1$$
 :  $JKT_{11} = \sum_{l=1}^{g} \sum_{j=1}^{n_l} Y_{1\ lj}^2 - FK_{11}$ 

>JKT untuk respon 
$$Y_2$$
 :  $JKT_{22} = \sum_{l=1}^{g} \sum_{j=1}^{n_l} Y_{2\ lj}^2 - FK_{22}$ 

 $\triangleright$ JHKT untuk  $Y_1$  dan  $Y_2$ :

$$JHKT_{12} = \left(\sum_{l=1}^{g} \sum_{j=1}^{n_l} (Y_{1_{lj}} \cdot Y_{2_{lj}})\right) - FK_{12}$$

• Menghitung Jumlah Kuadrat Perlakuan Terkoreksi (JKP) dan Jumlah Hasil Kali Perlakuan Terkoreksi (JHKP) untuk  $Y_1$  dan  $Y_2$ 

$$\triangleright$$
 JKP untuk  $Y_1$ 

$$: JKP_{11} = \sum_{l=1}^{g} \left( \frac{\left(\sum_{j=1}^{n_l} Y_{1_{lj}}\right)^2}{n_l} \right) - FK_{11}$$

$$\triangleright$$
 JKP untuk  $Y_2$ 

$$: JKP_{22} = \sum_{l=1}^{g} \left( \frac{\left(\sum_{j=1}^{n_l} Y_{2_{lj}}\right)^2}{n_l} \right) - FK_{22}$$

$$ightharpoonup$$
JHKP untuk  $Y_1$  dan  $Y_2$ 

$$: JHKP_{12} = \sum_{l=1}^{g} \frac{\left(\sum_{j=1}^{n_l} Y_{1lj}\right)\left(\sum_{j=1}^{n_l} Y_{2lj}\right)}{n_l} - FK_{12}$$

• Menghitung Jumlah Kuadrat Galat(JKG) dan Jumlah Hasil Kali Galat (JHKG) untuk  $Y_1$  dan  $Y_2$ 

>JKG untuk  $Y_1$  :  $JKG_{11} = JKT_{11} - JKP_{11}$ 

> JKG untuk  $Y_2$  :  $JKP_{22} = JKT_{22} - JKP_{22}$ 

ightharpoonup JHKG untuk  $Y_1$  dan  $Y_2$ :  $JHKP_{12} = JHKT_{12} - JHKP_{12}$ 

#### • Tabel Manova

| Sumber Keragaman                         | Derajat<br>Kebebasan     | Matriks Jumlah Kuadrat Hasil Kali                                               |
|------------------------------------------|--------------------------|---------------------------------------------------------------------------------|
| Perlakuan (Treatment)                    | g-1                      | $P = \sum_{i=1}^{g} n_i (y_i - \bar{y})(y_i - \bar{y})^2$                       |
| Galat (Error)                            | $\sum_{i=1}^{g} n_i - g$ | $G = \sum_{i=1}^{g} \sum_{j=1}^{n_l} (y_{ij} - \bar{y}) (y_{ij} - \bar{y})^2$   |
| Total (Teroreksi dengan nilai<br>Tengah) | $\sum_{i=1}^g n_i - 1$   | $P + G = \sum_{i=1}^{g} \sum_{j=1}^{n_l} (y_{ij} - \bar{y}) (y_{ij} - \bar{y})$ |

• Statistik Uji Wilk's Lambda ( $\Lambda - Wilk$ )

$$\Lambda = \frac{|G|}{|G+P|} = \frac{|G|}{|T|}$$

Dengan |G| menyatakan determinan matriks G

|T| menyataan determinan matriks R.

• Transformasi dari Besaran Wilk's Lambda ke nilai distribusi F

| Banyak Variabel | Banyak grup | Tranformasi F                                                                             | Derajat Bebas                   |
|-----------------|-------------|-------------------------------------------------------------------------------------------|---------------------------------|
| p = 1           | $g \ge 2$   | $\left(\frac{1-\Lambda}{\Lambda}\right)\left(\frac{\Sigma n_l-g}{g-1}\right)$             | $g-1$ ; $\Sigma n_l-g$          |
| p=2             | $g \ge 2$   | $igg(rac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}}igg)igg(rac{\Sigma n_l-g-1}{g-1}igg)$         | $2(g-1); 2(\Sigma n_l - g - 1)$ |
| $p \ge 1$       | g = 2       | $\left(\frac{1-\Lambda}{\Lambda}\right)\left(\frac{\sum n_l-p-1}{p}\right)$               | $p$ ; $\Sigma n_l - p - 1$      |
| $p \ge 1$       | g = 3       | $\left(\frac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}}\right)\left(\frac{\sum n_l-p-2}{p}\right)$ | $2p$ ; $2(\Sigma n_l - p - 2)$  |

- Kriteria Pengujian:  $H_0$  ditolak jika  $F_{hitung} > F_{tabel}$
- Kesimpulan

#### Contoh

Seorang peneliti bidang kesehatan melakukan percobaan untuk melihat hubungan antara aktifitas metabolis di antara kelinci-kelinci percobaan dan daya tahan terhadap kuman TBC. Peneliti menetapkan 4 perlakuan sbb:

 $P_1$ : Kontrol (tidak divaksin)

 $P_2$ : Diinfeksi kuman TBC selama aktifitas metabolic rendah

 $P_3$ : Diinfeksi kuman TBC selama aktifitas metabolic tinggi

 $P_4$ : Diinfeksi kuman TBC selama aktifitas metabolic normal, tetapi diirradiasi dengan 400 rontgens terlebih dahulu

Perlakuan  $P_1$  dan  $P_2$ diulang sampai7 kali  $(n_1=n_2=7)$ , perlakuan  $P_3$  diulang sampai 5 kali  $(n_3=5)$  dan  $P_4$  diulang sebanyak 2 kali  $(n_4=2)$ .

Misalkan  $Y_1$  adalah banyaknya basil yang hidup per tubercle formed (mm);  $Y_2$  adalah banyaknya basil yang hidup per tubercle size (mm). Berikut data hasil pengamatan:

| Illangan | P                     | )<br>1                | F                     | 2                     | F                     | 3                     | $P_4$                 |                       |  |
|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| Ulangan  | <i>Y</i> <sub>1</sub> | <i>Y</i> <sub>2</sub> |  |
| 1        | 24                    | 3,5                   | 7,4                   | 3,5                   | 16,4                  | 3,2                   | 25,1                  | 2,7                   |  |
| 2        | 13,3                  | 3,5                   | 13,2                  | 3                     | 24                    | 2,5                   | 5,9                   | 2,3                   |  |
| 3        | 12,2                  | 4                     | 8,5                   | 3                     | 53                    | 1,5                   |                       |                       |  |
| 4        | 14                    | 4                     | 10,1                  | 3                     | 32,7                  | 2,6                   |                       |                       |  |
| 5        | 22,2                  | 3,6                   | 9,3                   | 2                     | 42,8                  | 2                     |                       |                       |  |
| 6        | 16,1                  | 4,3                   | 8,5                   | 2,5                   |                       |                       |                       |                       |  |
| 7        | 27,9                  | 5,2                   | 4,3                   | 1,5                   |                       |                       |                       |                       |  |

## Penyelesaian

#### Hipotesis

 $H_0$ : tidak ada perbedaan antara banyaknya basil yang hidup per tubercle formed  $(Y_1)$  dan banyaknya basil yang hidup per tubercle size  $(Y_2)$  dengan respon  $P_1$ ,  $P_2$ ,  $P_3$  dan  $P_4$ 

 $H_1$ : ada perbedaan antara banyaknya basil yang hidup per tubercle formed  $(Y_1)$  dan banyaknya basil yang hidup per tubercle size  $(Y_2)$  dengan respon  $P_1$ ,  $P_2$ ,  $P_3$  dan  $P_4$ 

 $H_0$ : tidak ada perbedaan antara banyaknya basil yang hidup per tubercle formed  $(Y_1)$  yang diakibatkan oleh pemberian vaksin kumat TBC pada kelinci

 $H_1$ : ada perbedaan antara banyaknya basil yang hidup per tubercle formed  $(Y_1)$  yang diakibatkan oleh pemberian vaksin kumat TBC pada kelinci

 $H_0$ : tidak ada perbedaan antara banyaknya basil yang hidup per tubercle size  $(Y_2)$  yang diakibatkan oleh pemberian vaksin kumat TBC pada kelinci

 $H_1$ : ada perbedaan antara banyaknya basil yang hidup per tubercle size  $(Y_2)$  yang diakibatkan oleh pemberian vaksin kumat TBC pada kelinci

- Tingkat signifikansi:  $\alpha=0.01$
- Menentukan Faktor Koreksi

| P1      |                       |         |                       |                                    | P2       |                       |                             | Р3                    |                                    |          |                       | P4      |                       |                                    |          |                       |                             |                       |         |          |
|---------|-----------------------|---------|-----------------------|------------------------------------|----------|-----------------------|-----------------------------|-----------------------|------------------------------------|----------|-----------------------|---------|-----------------------|------------------------------------|----------|-----------------------|-----------------------------|-----------------------|---------|----------|
| Ulangan | <i>Y</i> <sub>1</sub> | $Y_1^2$ | <i>Y</i> <sub>2</sub> | <b>Y</b> <sup>2</sup> <sub>2</sub> | $Y_1Y_2$ | <i>Y</i> <sub>1</sub> | Y <sub>1</sub> <sup>2</sup> | <i>Y</i> <sub>2</sub> | <b>Y</b> <sup>2</sup> <sub>2</sub> | $Y_1Y_2$ | <i>Y</i> <sub>1</sub> | $Y_1^2$ | <i>Y</i> <sub>2</sub> | <b>Y</b> <sup>2</sup> <sub>2</sub> | $Y_1Y_2$ | <i>Y</i> <sub>1</sub> | Y <sub>1</sub> <sup>2</sup> | <i>Y</i> <sub>2</sub> | $Y_2^2$ | $Y_1Y_2$ |
| 1       | 24                    | 576     | 3.5                   | 12.25                              | 84       | 7.4                   | 54.76                       | 3.5                   | 12.25                              | 25.9     | 16.4                  | 268.96  | 3.2                   | 10.2                               | 52.48    | 25                    | 630.01                      | 2.7                   | 7.29    | 67.77    |
| 2       | 13.3                  | 176.89  | 3.5                   | 12.25                              | 46.55    | 13.2                  | 174.24                      | 3                     | 9                                  | 39.6     | 24                    | 576     | 2.5                   | 6.25                               | 60       | 5.9                   | 34.81                       | 2.3                   | 5.29    | 13.57    |
| 3       | 12.2                  | 148.84  | 4                     | 16                                 | 48.8     | 8.5                   | 72.25                       | 3                     | 9                                  | 25.5     | 53                    | 2809    | 1.5                   | 2.25                               | 79.5     |                       |                             |                       |         |          |
| 4       | 14                    | 196     | 4                     | 16                                 | 56       | 10.1                  | 102.01                      | 3                     | 9                                  | 30.3     | 32.7                  | 1069.29 | 2.6                   | 6.76                               | 85.02    |                       |                             |                       |         |          |
| 5       | 22.2                  | 492.84  | 3.6                   | 12.96                              | 79.92    | 9.3                   | 86.49                       | 2                     | 4                                  | 18.6     | 42.8                  | 1831.84 | 2                     | 4                                  | 85.6     |                       |                             |                       |         |          |
| 6       | 16.1                  | 259.21  | 4.3                   | 18.49                              | 69.23    | 8.5                   | 72.25                       | 2.5                   | 6.25                               | 21.25    |                       |         |                       |                                    |          |                       |                             |                       |         |          |
| 7       | 27.9                  | 778.41  | 5.2                   | 27.04                              | 145.1    | 4.3                   | 18.49                       | 1.5                   | 2.25                               | 6.45     |                       |         |                       |                                    |          |                       |                             |                       |         |          |
| Total   | 129.7                 | 2628.19 | 28.1                  | 114.99                             | 529.6    | 61.3                  | 580.49                      | 18.5                  | 51.75                              | 167.6    | 168.9                 | 6555.09 | 11.8                  | 29.5                               | 362.6    | 31                    | 664.82                      | 5                     | 12.58   | 81.34    |

 $\triangleright$  Faktor koreksi untuk  $Y_1$ 

$$FK_{11} = \frac{\sum (Y_{1ij})^2}{n} = \frac{(129.7 + 61.3 + 168.9 + 31)^2}{21} = \frac{390.9^2}{21} = 7276.3243$$

 $\triangleright$  Faktor koreksi untuk  $Y_2$ 

$$FK_{22} = \frac{\sum (Y_{2ij})^2}{n} = \frac{(28.1 + 18.5 + 11.8 + 5)^2}{21} = \frac{63.4^2}{21} = 191,4076$$

 $\triangleright$  Faktor koreksi untuk  $Y_1$  dan  $Y_2$ 

$$FK_{12} = \frac{\sum (Y_{1ij}) \sum (Y_{2ij})}{n} = \frac{(390,9) \cdot (63,4)}{21} = 1180,146$$

#### Menentukan JKT dan JHKT

 $\triangleright$  JKT untuk respon  $Y_1$ 

$$JKT_{11} = \sum_{l=1}^{4} \sum_{j=1}^{n_l} Y_{1\ ij}^2 - FK_{11} = (2628,19 + 580,49 + 6555,09 + 664,82) - 7276,3243 = 3152,2657$$

> JKT untuk respon Y<sub>2</sub>

$$JKT_{22} = \sum_{i=1}^{4} \sum_{j=1}^{n_l} Y_{2ij}^2 - FK_{22} = (114,99 + 51,75 + 29,5 + 12,58) - 191,4076 = 17,4124$$

 $\triangleright$  JHKT untuk  $Y_1$  dan  $Y_2$  :

$$JHKT_{12} = \left(\sum_{i=1}^{4} \sum_{j=1}^{n_l} \left(Y_{1_{ij}} \cdot Y_{2_{ij}}\right)\right) - FK_{12} = (529.6 + 167.6 + 362.6 + 81.34) - 1180.146 = -39.03$$

#### Menentukan JKP dan JHKP

| Perlakuan | $\Sigma Y_1$ | $(\Sigma Y_1)^2$             | $\Sigma Y_2$ | $(\Sigma Y_2)^2$ | $\Sigma Y_1 \Sigma Y_2$ |
|-----------|--------------|------------------------------|--------------|------------------|-------------------------|
|           |              | $\frac{(\Sigma Y_1)^2}{n_i}$ |              | $\overline{n_i}$ | $n_i$                   |
| P1        | 129.7        | 2403.16                      | 28.1         | 112.801          | 520.7                   |
| P2        | 61.3         | 536.813                      | 18.5         | 48.8929          | 162                     |
| Р3        | 168.9        | 5705.44                      | 11.8         | 27.848           | 398.6                   |
| P4        | 31           | 480.5                        | 5            | 12.5             | 77.5                    |
| Σ         |              | 9125.91                      |              | 202.042          | 1159                    |

$$>$$
 JKP untuk  $Y_1$ 

$$:JKP_{11} = \sum_{l=1}^{g} \left( \frac{\left(\sum_{j=1}^{n_l} Y_{1_{lj}}\right)^2}{n_l} \right) - FK_{11} = 9125,91 - 7276,3243 = 1849,6$$

$$\triangleright$$
 JKP untuk  $Y_2$ 

$$: JKP_{22} = \sum_{l=1}^{g} \left( \frac{\left(\sum_{j=1}^{n_l} Y_{2lj}\right)^2}{n_l} \right) - FK_{22} = 202,042 - 191,4076 = 10,635$$

$$\succ$$
 JHKP untuk  $Y_1$  dan  $Y_2$ 

> JHKP untuk 
$$Y_1$$
 dan  $Y_2$  :  $JHKP_{12} = \sum_{l=1}^g \frac{\left(\sum_{j=1}^{n_l} Y_{1lj}\right)\left(\sum_{j=1}^{n_l} Y_{2lj}\right)}{n_l} - FK_{12} = 1159 - 1180,146 = -21,38$ 

#### Hitung JKG dan JHKG

 $\triangleright$ JKG untuk  $Y_1$ 

: 
$$JKG_{11} = JKT_{11} - JKP_{11} = 3152,2657 - 1849,6 = 1302,7$$

 $\triangleright$  JKG untuk  $Y_2$ 

$$: JKP_{22} = JKT_{22} - JKP_{22} = 17,412 - 10,635 = 6,78$$

>JHKG untuk  $Y_1$  dan  $Y_2$ :  $JHKP_{12} = JHKT_{12} - JHKP_{12} = -39,03 - (-21,38) = -17,64$ 

## Tabel Manova

| Sumber<br>Keragaman                         | Derajat<br>Kebebasan                      | Matriks Jumlah Kuadrat Hasil Kali                                                                                                                                                                                                     |
|---------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perlakuan<br>(Treatment)                    | g - 1 = 4 - 1 $= 3$                       | $P = \sum_{l=1}^{g} n_l (y_l - \bar{y})(y_l - \bar{y})^2 = \begin{pmatrix} JKP_{11} & JHKP_{12} \\ JHKP_{21} & JKP_{22} \end{pmatrix}$ $= \begin{pmatrix} 1849,6 & -21,38 \\ -21,38 & 10,635 \end{pmatrix}$                           |
| Galat (Error)                               | $\sum_{i=1}^{g} n_i - g$<br>= 21 - 4 = 17 | $G = \sum_{l=1}^{g} \sum_{j=1}^{n_l} (y_{lj} - \bar{y}) (y_{lj} - \bar{y})^2 = \begin{pmatrix} JKG_{11} & JHKG_{12} \\ JHKG_{21} & JKG_{22} \end{pmatrix}$ $= \begin{pmatrix} 1302,7 & -17,64 \\ -17,64 & 6,78 \end{pmatrix}$         |
| Total (Teroreksi<br>dengan nilai<br>Tengah) | $\sum_{i=1}^{g} n_i - 1$ = 21 - 1 = 20    | $T = P + G = \sum_{l=1}^{g} \sum_{j=1}^{n_l} (y_{lj} - \bar{y}) (y_{lj} - \bar{y}) = \begin{pmatrix} JKT_{11} & JHKT_{12} \\ JHKT_{21} & JKT_{22} \end{pmatrix}$ $= \begin{pmatrix} 3152,3 & -39,03 \\ -39,03 & 17,412 \end{pmatrix}$ |

## Statistik Uji Wilk's

#### Diperhatikan bahwa

$$G = \begin{vmatrix} 1302,7 & -17,64 \\ -17,64 & 6,78 \end{vmatrix} = 8517,9$$

$$T = \begin{vmatrix} 3152,3 & -39,03 \\ -39.03 & 17.412 \end{vmatrix} = 53365$$

Dengan demikian diperoleh

$$\Lambda = \frac{|G|}{|G+P|} = \frac{|G|}{|T|} = \frac{8517,9}{53365} = 0,1596$$

## Transformasi Uji F

Karena p=2 dan dan  $g=4\geq 2$  maka digunakan transformasi F sbb

$$\left(\frac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}}\right)\left(\frac{\Sigma n_l - g - 1}{g - 1}\right) = \left(\frac{1-\sqrt{0,1596}}{\sqrt{0,1596}}\right)\left(\frac{21-4-1}{4-1}\right) = 8,0161$$

#### Dengan

$$df_1 = 2(g-1) = 2(4-1) = 6$$
  
$$df_2 = 2(\Sigma n_l - g - 1) = 2(21 - 4 - 1) = 32$$

Menggunakan Tabel F diperoleh  $F_{\alpha;df_1;df_2} = F_{0,01;6;32} = 3,43$ 

## Kriteria Penolakan $H_0$ & Kesimpulan

- $H_0$  ditolak jika  $F_{hitung} > F_{tabel}$ .
- Karena  $F_{hitung} = 8,0161 > F_{tabel} = 3,43$  maka  $H_0$  ditolak.

#### Kesimpulan:

Jadi, ada perbedaan antara banyaknya basil yang hidup per tubercle formed  $(Y_1)$  dan banyaknya basil yang hidup per tubercle size  $(Y_2)$  dengan respon  $P_1, P_2, P_3$  dan  $P_4$ . Selain itu, ada perbedaan antara banyaknya basil yang hidup per tubercle formed  $(Y_1)$  dan per tubercle size  $(Y_2)$  yang diakibatkan oleh pemberian vaksin kumat TBC pada kelinci.

# Latihan

An experiment was performed to investigate four different methods for teaching school children multiplication (M) and addition (A) of two four-digit numbers. The data for four groups of students independent are summarized in Table 4.5.3. Are there any significant differences between addition and multiplication skills within the various groups?

|     | TABLE 4.5.3. Teaching Methods |     |      |     |      |         |    |  |  |  |  |
|-----|-------------------------------|-----|------|-----|------|---------|----|--|--|--|--|
| Gro | up 1                          | Gro | up 2 | Gro | up 3 | Group 4 |    |  |  |  |  |
| Α   | M                             | Α   | M    | Α   | M    | A       | M  |  |  |  |  |
| 97  | 66                            | 76  | 29   | 66  | 34   | 100     | 79 |  |  |  |  |
| 94  | 61                            | 60  | 22   | 60  | 32   | 96      | 64 |  |  |  |  |
| 96  | 52                            | 84  | 18   | 58  | 27   | 90      | 80 |  |  |  |  |
| 84  | 55                            | 86  | 32   | 52  | 33   | 90      | 90 |  |  |  |  |
| 90  | 50                            | 70  | 33   | 56  | 34   | 87      | 82 |  |  |  |  |
| 88  | 43                            | 70  | 32   | 42  | 28   | 83      | 72 |  |  |  |  |
| 82  | 46                            | 73  | 17   | 55  | 32   | 8.5     | 67 |  |  |  |  |
| 65  | 41                            | 85  | 29   | 41  | 28   | 8.5     | 77 |  |  |  |  |
| 95  | 58                            | 58  | 21   | 56  | 32   | 78      | 68 |  |  |  |  |
| 90  | 56                            | 65  | 25   | 55  | 29   | 86      | 70 |  |  |  |  |
| 95  | 55                            | 89  | 20   | 40  | 33   | 67      | 67 |  |  |  |  |
| 84  | 40                            | 75  | 16   | 50  | 30   | 57      | 57 |  |  |  |  |
| 71  | 46                            | 74  | 21   | 42  | 29   | 83      | 79 |  |  |  |  |
| 76  | 32                            | 84  | 30   | 46  | 33   | 60      | 50 |  |  |  |  |
| 90  | 44                            | 62  | 32   | 32  | 34   | 89      | 77 |  |  |  |  |
| 77  | 39                            | 71  | 23   | 30  | 31   | 92      | 81 |  |  |  |  |
| 61  | 37                            | 71  | 19   | 47  | 27   | 86      | 86 |  |  |  |  |
| 91  | 50                            | 75  | 18   | 50  | 28   | 47      | 45 |  |  |  |  |
| 93  | 64                            | 92  | 23   | 35  | 28   | 90      | 85 |  |  |  |  |
| 88  | 68                            | 70  | 27   | 47  | 27   | 86      | 65 |  |  |  |  |
|     |                               |     |      |     |      |         |    |  |  |  |  |