Przebieg zmienności funkcji

Jakub Hajto

9 stycznia 2017

Badana funckja

$$f(x) = x^4 + x^3$$

1. Dziedzina:

$$D = \mathbb{R}$$

2. Zbiór wartości:
$$Z_w = (-\frac{27}{256}, +\infty)$$

3. Miejsca zerowe:

$$f(x) = 0 \iff x = 0 \lor x = -1$$

4. Przecięcie z osią OY:

$$f(0) = 0$$

5. Granice na krańcach przedziałów:

a)
$$\lim_{x \to -\infty} f(x) = +\infty$$

b)
$$\lim_{x \to +\infty} f(x) = +\infty$$

6. Pierwsza pochodna

$$f'(x) = x^2(3+4x)$$

a)
$$f \nearrow dlax \in (-\frac{3}{4}, 0) \cup (0, +\infty)$$

b)
$$f \searrow x \in (0, -\frac{3}{4})$$

c) Ekstrema lokalne:

i. W
$$x = \frac{1}{4}$$
 istnieje maximum lokalne równe $-\frac{1}{2}$

7. Druga pochodna

$$f''(x) = 6x(1+2x)$$

- a) Przedziały wypukłości ku górze $f \cap \Leftrightarrow x \in (-\frac{1}{2},0)$
- b) Przedziały wypukłości ku dołowi $f \cup \Leftrightarrow x \in (-\infty, -\frac{1}{2}) \cup (0, +\infty)$
- c) Punk przegięcia w x=0
- d) Punk przegięcia w $x=-\frac{1}{2}$

8. Tabela

Przedziały	$\left(-\infty, -\frac{3}{4}\right)$	$-\frac{3}{4}$	$\left(-\frac{3}{4}, -\frac{1}{2}\right)$	$-\frac{1}{2}$	$(-\frac{1}{2},0)$	0	$(0,\infty)$
f(x)	$(-\infty,0)$	0	$\left(-\frac{1}{2}, -\frac{1}{8}\right)$	$-\frac{1}{8}$	$\left(-\frac{1}{8},0\right)$	0	$(0,\infty)$
f'(x)	_	0	+	+	+	0	+
f''(x)	+	+	+	0	-	0	+

