

State register holds state number

JOHNS HOPKINS

UNIVERSITY

State alone is sufficient to determine output control signals

Output	Current states	Ор		
PCWrite	state0 + state9			
PCWriteCond	state8			
lorD	state3 + state5			
MemRead	state0 + state3			
MemWrite	state5			
IRWrite	state0			
MemtoReg	state4			
PCSource1	state9			
PCSource0	state8			
ALUOp1	state6			
ALUOp0	state8			
ALUSrcB1	state1 +state2			
ALUSrcB0	state0 + state1			
ALUSrcA	state2 + state6 + state8			
RegWrite	state4 + state7			
RegDst	state7			

State alone determines output control signals

Output	Current states
PCWrite	state0 + state9
PCWriteCond	state8
lorD	state3 + state5
MemRead	state0 + state3
MemWrite	state5
IRWrite	state0
MemtoReg	state4
PCSource1	state9
PCSource0	state8
ALUOp1	state6
ALUOp0	state8
ALUSrcB1	state1 +state2
ALUSrcB0	state0 + state1
ALUSrcA	state2 + state6 + state8
RegWrite	state4 + state7
RegDst	state7

Opcode as well as state are needed to determine next state

Output	Current states	Ор		
NextState0	state4 + state5 + state7 + state8 + state9			
NextState1	state0			
NextState2	state1	(Op = 'lw') + (Op = 'sw')		
NextState3	state2	(Op = 'lw')		
NextState4	state3			
NextState5	state2	(Op = 'sw')		
NextState6	state1	(Op = 'R-type')		
NextState7	state6			
NextState8	state1	(Op = 'beq')		
NextState9	state1	(Op = 'jmp')		

Four bits are needed for state number (since there are 10 states)

Output	Current states	Ор		
NextState0	state4 + state5 + state7 + state8 + state9			
NextState1	state0			
NextState2	state1	(Op = 'lw') + (Op = 'sw')		
NextState3	state2	(Op = 'lw')		
NextState4	state3			
NextState5	state2	(Op = 'sw')		
NextState6	state1	(Op = 'R-type')		
NextState7	state6			
NextState8	state1	(Op = 'beq')		
NextState9	state1	(Op = 'jmp')		

Opcode as well as state are needed to determine next state

Four bits are needed for state number (since there are 10 states)

Mapping Control to Gates

Outputs	Input values (S[3–0])									
	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
PCWrite	1	0	0	0	0	0	0	0	0	1
PCWriteCond	0	0	0	0	0	0	0	0	1	0
IorD	0	0	0	1	0	1	0	0	0	0
MemRead	1	0	0	1	0	0	0	0	0	0
MemWrite	0	0	0	0	0	1	0	0	0	0
IRWrite	1	0	0	0	0	0	0	0	0	0
MemtoReg	0	0	0	0	1	0	0	0	0	0
PCSource1	0	0	0	0	0	0	0	0	0	1
PCSource0	0	0	0	0	0	0	0	0	1	0
ALUOp1	0	0	0	0	0	0	1	0	0	0
ALUOp0	0	0	0	0	0	0	0	0	1	0
ALUSrcB1	0	1	1	0	0	0	0	0	0	0
ALUSrcB0	1	1	0	0	0	0	0	0	0	0
ALUSrcA	0	0	1	0	0	0	1	0	1	0
RegWrite	0	0	0	0	1	0	0	1	0	0
RegDst	0	0	0	0	0	0	0	1	0	0

Truth table gives the 16 control signals as function of 4-bit state

The 16 control signals could be read from a lookup table in ROM

Lower 4 bits of the address	Bits 19–4 of the word			
0000	100101000001000			
0001	00000000011000			
0010	00000000010100			
0011	00110000000000			
0100	00000100000010			
0101	001010000000000			
0110	000000001000100			
0111	00000000000011			
1000	010000010100100			
1001	10000010000000			

Use state number as index or address in ROM LUT (lookup table)

Use state number (as row) and opcode (as column) to get next state number from second ROM LUT

	Op [5-0]							
Current state S[3-0]	000000 (R-format)	000010 (jmp)	000100 (beq)	100011 (lw)	101011 (sw)	Any other value		
0000	0001	0001	0001	0001	0001	0001		
0001	0110	1001	1000	0010	0010	Illegal		
0010	XXXX	XXXX	XXXX	0011	0101	Illegal		
0011	0100	0100	0100	0100	0100	Illegal		
0100	0000	0000	0000	0000	0000	Illegal		
0101	0000	0000	0000	0000	0000	Illegal		
0110	0111	0111	0111	0111	0111	Illegal		
0111	0000	0000	0000	0000	0000	Illegal		
1000	0000	0000	0000	0000	0000	Illegal		
1001	0000	0000	0000	0000	0000	Illegal		

Undefined state/opcode combinations are "illegal"

- State number alone is sufficient to determine the 16 control bits
- The 4-bit state number and 6-bit opcode form a 10-bit address
- 10-bit address determines control bits as well as next state
- Instruction execution corresponds to a sequence of states
- Control bits output in each state direct datapath actions
- Each state is one step in the execution and takes 1 clock cycle
- Other control unit implementations will be described next.