Resuelve con lo que ya sabes

1. ¿Cuántas galletas lleva un paquete?

Según el gráfico, 8 porciones iguales del paquete de galletas son 24 galletas.

Por tanto, cada porción contiene 24 : 8 = 3 galletas.

El paquete completo contiene 7 de estas porciones; es decir, el paquete lleva $7 \cdot 3 = 21$ galletas.

2. Calcula, por tanteo, el valor de x en la igualdad $x + \frac{x}{7} = 24$.

Probando, vemos que x = 21 verifica la igualdad:

$$x + \frac{x}{7} = 24 \longrightarrow 21 + \frac{21}{7} = 24$$

$$\uparrow$$

$$x = 21$$

Traduce a una igualdad

3. Si llamamos x al peso de una botella de agua, ¿cuál de las siguientes igualdades expresa el equilibrio entre los platillos de la balanza?:

$$3 + x = 4 + x$$

$$3x + 1 = 4 + x$$

$$3(x+1) = 4+1$$

La igualdad buscada es 3x + 1 = 4 + x.

$$3x + 1 = 4 + x \rightarrow 2x = 3 \rightarrow x = 1,5$$

La botella pesa 1,5 kg.

Comprueba la fórmula

4. Completa en tu cuaderno las casillas vacías de la tabla.

5. Comprueba que las siguientes formulas permiten calcular el número de bolas y de palillos para una torre con el número de pisos que desees (n):

N.° DE PISOS	n
N.° DE BOLAS	$4 \cdot n + 4$
N.° DE PALILLOS	$8 \cdot n + 4$

Se comprueba que efectivamente las fórmulas nos proporcionan el número de bolas y palillos dado el número de pisos.

Letras en vez de números

Página 170

Hazlo tú.

Expresa con una fórmula el área del siguiente rectángulo:

1. Copia en tu cuaderno y completa, sabiendo que a = 5.

$$(13) \longrightarrow \boxed{2 \cdot a + 3}$$

$$(13) \longrightarrow \boxed{2 \cdot a + 3} \qquad () \longrightarrow \boxed{2 \cdot a - 3}$$

$$\boxed{13} \longrightarrow \boxed{2 \cdot a + 3} \qquad \boxed{7} \longrightarrow \boxed{2 \cdot a - 3}$$

$$(7) \longrightarrow \boxed{2 \cdot a - 3}$$

$$16) \longrightarrow \boxed{3 \cdot a + 1}$$

$$\begin{array}{ccc}
16 & \longrightarrow & \boxed{3 \cdot a + 1} & \boxed{57} & \longrightarrow & \boxed{10 \cdot a + 7}
\end{array}$$

2. Escribe una expresión para el valor asociado a n.

$$\begin{array}{c|c} a) & 2 & \longrightarrow 5 \\ 6 & \longrightarrow 13 \\ 10 & \longrightarrow 21 \\ \dots & \dots \end{array}$$

b)
$$\begin{array}{cccc}
2 & \longrightarrow 0 \\
6 & \longrightarrow 2 \\
10 & \longrightarrow 4 \\
\dots & \dots \\
n & \longrightarrow ?
\end{array}$$

c)
$$\begin{array}{ccc}
2 & \longrightarrow 2 \\
6 & \longrightarrow 30 \\
10 & \longrightarrow 90 \\
\dots & \dots \\
n & \longrightarrow ?
\end{array}$$

a)
$$n \rightarrow 2n + 1$$

b)
$$n \rightarrow \frac{n}{2} - 1$$

c)
$$n \rightarrow n \cdot (n-1)$$

3. Llamando x a un número natural, escribe:

- a) El doble del número.
- b) El siguiente del número.
- c) La suma del número, su doble y su siguiente.

a)
$$2x$$

b)
$$x + 1$$

c)
$$x + 2x + x + 1$$

4. Codifica en una igualdad matemática el siguiente enunciado:

La suma de un número, x, su doble y su siguiente es 21.

$$x + 2x + x + 1 = 21$$

5. Llamando x a la edad de Ana, escribe una expresión matemática para cada apartado:

- a) La edad que tendrá dentro de ocho años.
- b) La edad que tenía hace dos años.
- c) El doble de la edad que tenía hace dos años.

a)
$$x + 8$$

b)
$$x - 2$$

c)
$$2(x-2)$$

6. Codifica en una igualdad matemática el siguiente enunciado:

La edad de Ana, dentro de ocho años, será igual al doble de la que tenía hace dos años.

$$x + 8 = 2(x - 2)$$

Expresiones algebraicas

Página 173

1. Calcula el valor numérico de la expresión $x^2 + xy - 12$ cuando x = 3 e y = -1.

$$3^2 + 3 \cdot (-1) - 12 = 9 - 3 - 12 = -6$$

2. Indica cuáles de las expresiones siguientes son monomios:

$$a + b$$

$$5x^3$$

$$a^2b^2$$

$$2x^3-x$$

$$-2xy$$

$$2a-3a^2$$

$$\frac{1}{2}(x-1)$$

$$\frac{5a}{2b}$$

Son monomios:

$$5x^3$$
 a^2b^2 $-2xy$

3. Para cada uno de los monomios siguientes, indica su coeficiente, su parte literal y su grado:

$$b)x^2$$

d)
$$\frac{1}{2}xy^3$$

мономіо	COEFICIENTE	PARTE LITERAL	GRADO
2 <i>a</i>	2	а	1
x^2	1	x^2	2
-3 <i>ab</i>	-3	ab	2
$\frac{1}{2}xy^3$	$\frac{1}{2}$	xy^3	4

4. Reduce las expresiones siguientes:

a)
$$a + a + a + a$$

c)
$$a + a + b + b$$

e)
$$2x + 5x$$

$$g) 4a - 3a + a$$

c)
$$2a + 2b$$

b)
$$m + m + m - m$$

$$\mathbf{d}(x) + x + y + y + y + y$$

f)
$$6a + 2a - 5a$$

h)
$$10x - 3x - x$$

d)
$$2x + 3y$$

5. Iguala cada expresión con su reducida:

$$x + x + 1$$

$$x^2 + x^2 + x$$

$$3x^2 - 2x^2 + 5$$

$$x^2 + x^2 + x + x$$

$$2x^2 + 4x - 2x + 3$$

$$9x^2 - 5x^2 + 3 + x + 1$$

$$2x^2 + 2x + 3$$

$$x^2 + 5$$

$$4x^2 + x + 4$$

$$2x^2 + x$$

$$2x^2 + 2x$$

$$2x + 1$$

x + x + 1 = 2x + 1

$$x^2 + x^2 + x = 2x^2 + x$$

$$3x^2 - 2x^2 + 5 = x^2 + 5$$

$$x^2 + x^2 + x + x = 2x^2 + 2x$$

$$2x^2 + 4x - 2x + 3 = 2x^2 + 2x + 3$$

$$9x^2 - 5x^2 + 3 + x + 1 = 4x^2 + x + 4$$

6. Simplifica.

a)
$$x^2 + 2x^2 + x + 2x$$

c)
$$6x^2 - 2x^2 + 7x - 4x$$

e)
$$x + 3x^2 + x^2 - 4x$$

a)
$$3x^2 + 3x$$

c)
$$4x^2 + 3x$$

e)
$$4x^2 - 3x$$

b)
$$3x^2 + 2x^2 + 5x - 4x$$

d)
$$8x^2 - 3x^2 + 2x + x$$

f)
$$2x^2 - 6x + 2x^2 - x$$

b)
$$5x^2 + x$$

d)
$$5x^2 + 3x$$

f)
$$4x^2 - x$$

7. Reduce.

$$a)3x - (4x - 3x)$$

c)
$$8x - (3x + 2x)$$

e)
$$(x + 4x) - (5x - 3x)$$

a)
$$3x - x = 2x$$

c)
$$8x - 5x = 3x$$

e)
$$5x - 2x = 3x$$

b) 5x - (2x + 1)

d)
$$2x - (4 - x)$$

$$f)(6x-4)-(2x-1)$$

b)
$$5x - 2x - 1 = 3x - 1$$

d)
$$2x - 4 + x = 3x - 4$$

f)
$$6x - 4 - 2x + 1 = 4x - 3$$

8. Elimina los paréntesis y simplifica.

a)
$$5x^2 - (2x + x^2)$$

c)
$$x^2 - (3x - x^2)$$

e)
$$(5x^2 - 4x) - (2x^2 + 2x)$$

$$g)(x^2 + x) + (3x + 1)$$

a)
$$5x^2 - 2x - x^2 = 4x^2 - 2x$$

c)
$$x^2 - 3x + x^2 = 2x^2 - 3x$$

e)
$$5x^2 - 4x - 2x^2 - 2x = 3x^2 - 6x$$

g)
$$x^2 + x + 3x + 1 = x^2 + 4x + 1$$

b)
$$3x - (x - x^2)$$

d)
$$5x - (2x - 3x^2)$$

$$f)(7x^2+3)-(5x^2-2)$$

h)
$$(4x^2-5)-(2x^2+2)$$

b)
$$3x - x + x^2 = x^2 + 2x$$

$$d) 5x - 2x + 3x^2 = 3x^2 + 3x$$

f)
$$7x^2 + 3 - 5x^2 + 2 = 2x^2 + 5$$

h)
$$4x^2 - 5 - 2x^2 - 2 = 2x^2 - 7$$

9. ¿Verdadero o falso?

- a) La suma de dos monomios es otro monomio.
- b) La suma o la diferencia de dos monomios semejantes es otro monomio semejante a los sumandos.
- c) El grado de la suma de dos monomios es la suma de los grados de los sumandos.
- d) El grado de la suma de dos monomios semejantes es el mismo que el de los sumandos.
- a) Falso. Por ejemplo, 7x + 8y no es un monomio.
- b) Verdadero. Por ejemplo, 6xy + 4xy = 10xy.
- c) Falso, el grado de la suma de dos monomios es el mismo que el de los sumandos. Por ejemplo, 2x + 8x = 10x.
- d) Verdadero. Por ejemplo, 8b + 6b = 14b.

10. Multiplica el número por el monomio.

a)
$$3 \cdot 2x$$

$$\mathbf{d}$$
) $(-3) \cdot 5x$

g)
$$\frac{1}{2} \cdot 6x$$

d)
$$-15x$$

$$b)5 \cdot 3a$$

e)
$$2 \cdot (-2a)$$

$$h)4 \cdot \frac{1}{6}a$$

$$e)-4a$$

h)
$$\frac{2}{3}a$$

i)
$$(-2) \cdot \frac{6}{8}m$$

c) $2 \cdot 4m$

f) $(-3) \cdot (-4m)$

i)
$$\frac{-3}{2}m$$

11. Halla los productos siguientes:

a)
$$x \cdot x^2$$

$$d)x^2 \cdot x^3$$

a)
$$x^3$$

$$d)x^5$$

b)
$$a^2 \cdot a^2$$

e)
$$x^3 \cdot x^3$$

b)
$$a^{4}$$

e)
$$x^{6}$$

c)
$$m^3 \cdot m$$

f)
$$m^2 \cdot m^4$$

c)
$$m^4$$

12. Multiplica los monomios siguientes.

a)
$$x \cdot 2x$$

d)
$$2x \cdot 5x$$

g)
$$3x^2 \cdot 2x^3$$

j)
$$x^3 \cdot (-2x)$$

a)
$$2x^{2}$$

d)
$$10x^2$$

g)
$$6x^{5}$$

j)
$$-2x^4$$

b)
$$5a \cdot a$$

e)
$$3a \cdot 4a^2$$

$$h)4a \cdot 2a^4$$

$$\mathbf{k})(-5a^2)\cdot 3a^3$$

b)
$$5a^2$$

e)
$$12a^3$$

$$k)-15a^5$$

c)
$$m \cdot 2m^2$$

f)
$$2m^2 \cdot 5m^2$$

i)
$$2m^2 \cdot 2m^4$$

1)
$$2m^3 \cdot (-4m^3)$$

c)
$$2m^{3}$$

f)
$$10m^4$$

i)
$$4m^{6}$$

1)
$$-8m^6$$

13. Reduce.

a)
$$(4xy) \cdot (5xy)$$

$$d)5a^2 \cdot (2ab)$$

a)
$$20x^2y^2$$

d)
$$10a^3b$$

b)
$$(3xy) \cdot 2x$$

e)
$$(-xy^2) \cdot (3x^2y)$$

b)
$$6x^{2}y$$

e)
$$-3x^3y^3$$

c)
$$(2a) \cdot (-4ab)$$

f)
$$(3a^2b^3) \cdot (a^2b)$$

c)
$$-8a^2b$$

f)
$$3a^4b^4$$

14. Copia y completa cada paréntesis con un monomio:

a)
$$x \cdot (...) = x^3$$

d)
$$2a^2 \cdot (...) = -8a^5$$

a)
$$x \cdot (x^2) = x^3$$

d)
$$2a^2 \cdot (-4a^3) = -8a^5$$

b)
$$2x^2 \cdot (...) = 4x^4$$

e) (...)
$$\cdot 2x = 6xy$$

b)
$$2x^2 \cdot (2x^2) = 4x^4$$

e)
$$(3y) \cdot 2x = 6xy$$

c)
$$3a \cdot (...) = 6a^2$$

f) (...)
$$\cdot xy = 3x^2y^3$$

c)
$$3a \cdot (2a) = 6a^2$$

f)
$$(3xy^2) \cdot xy = 3x^2y^3$$

15. Divide el monomio entre el número.

a) 6x : 3

b) $12a^2:4$

c) $9m^3:9$

d) $(-18x^2)$: 6

e) 15a:(-5)

f) $(-20m^2)$: (-4)

- a) 2*x*
- b) $3a^2$
- c) m^3
- d) $-3x^2$
- e) -3a
- f) $5m^2$

16. Recuerda las propiedades de las potencias y divide.

a) $x^2 : x$

b) $a^3 : a$

 $d)x^5:x^5$

e) $a^6: a^2$

c) $m^3 : m^2$

f) $m^7 : m^3$

 $g) x^7 : x$

h) $a^4: a^4$

a) *x*

b) a^2

i) $m^6 : m^5$

d) 1

e) a^4

c) m

g) x^6

h) 1

f) m^4 i) m

17. Expresa cada resultado con una fracción algebraica, como en el ejemplo:

•
$$a^2: a^4 = \frac{a^2}{a^4} = \frac{a \cdot a}{a \cdot a \cdot a \cdot a} = \frac{1}{a^2}$$

a) $x : x^2$

b) $a : a^3$

c) $m : m^4$

 $d)x^2:x^3$

e) $a^3 : a^6$

f) $m^2 : m^5$

 $g(x): x^5$

h) $a^3: a^4$

i) $m^3 : m^7$

a) $\frac{1}{r}$

b) $\frac{1}{a^2}$

c) $\frac{1}{m^3}$

d) $\frac{1}{x}$

e) $\frac{1}{a^3}$

f) $\frac{1}{m^3}$

g) $\frac{1}{x^4}$

h) $\frac{1}{a}$

i) $\frac{1}{m^4}$

18. Divide.

a) 8x : 2x

b) $12x^2 : (-4x^2)$

c) a:3a

d) $2a^2: 3a^2$

e) $10x^4 : 5x$

f) $15x^4 : 3x^2$

g) $4a^3 : 6a^2$

h) $10a^5 : 15a$

i) $6x : 3x^2$

j) $2x : 6x^3$

 $k)4a^3:10a^4$

1) $6a^2:9a^5$

- a) 4
- b) 3
- c) $\frac{1}{3}$
- d) $\frac{2}{3}$
- e) $2x^{3}$
- f) $5x^{2}$

- g) $\frac{2}{3}a$
- h) $\frac{2}{3}a^4$
- i) $\frac{2}{x}$
- j) $\frac{1}{3x^2}$
- k) $\frac{2}{5a}$
- 1) $\frac{2}{3a^3}$

19. Simplifica estas fracciones algebraicas:

a) $\frac{4x^3}{8x^2}$

b) $\frac{10x}{5x^3}$

c) $\frac{6x^4}{2x^2}$

d) $\frac{3ab}{9a^2}$

e) $\frac{4a^2b}{8ab^2}$

 $f) \frac{2ab}{10a^2b^2}$

- a) $\frac{1}{2}x$
- b) $\frac{2}{r^2}$
- c) $3x^2$
- d) $\frac{b}{3a}$
- e) $\frac{a}{2b}$

20. Multiplica y expresa sin paréntesis.

a)
$$2(x + 1)$$

$$\mathbf{b}) \mathbf{5} \cdot (\mathbf{a} - \mathbf{b})$$

c)
$$a \cdot (3 - a)$$

$$\mathrm{d})x^2\cdot(x^2+x)$$

e)
$$3x \cdot (x + 5)$$

f)
$$5a \cdot (2a - a^2)$$

a)
$$2x + 2$$

b)
$$5a - 5b$$

c)
$$3a - a^2$$

d)
$$x^4 + x^3$$

e)
$$3x^2 + 15x$$

f)
$$10a^2 - 5a^3$$

21. Copia en tu cuaderno y completa.

a)
$$5 \cdot (... + ...) = 5a + 10$$

b)
$$4 \cdot (... + ...) = 8a + 4b$$

c)
$$x \cdot (... + ...) = x^2 + 3x$$

d)
$$2x \cdot (... + ...) = 4x + 6x^2$$

a)
$$5 \cdot (a + 2) = 5a + 10$$

b)
$$4 \cdot (2a + b) = 8a + 4b$$

c)
$$x \cdot (x + 3) = x^2 + 3x$$

d)
$$2x \cdot (2 + 3x) = 4x + 6x^2$$

22. Copia y completa las casillas vacías.

a)
$$\Box \cdot (x+3) = 5x + 15$$

b)
$$\Box \cdot (3 + 2x) = 9 + 6x$$

c)
$$\Box \cdot (a-1) = a^3 - a^2$$

$$\mathbf{d}$$
) $\mathbf{d} \cdot (a + a^2) = a^2 + a^3$

a)
$$5 \cdot (x+3) = 5x + 15$$

b)
$$3 \cdot (3 + 2x) = 9 + 6x$$

c)
$$a^2 \cdot (a-1) = a^3 - a^2$$

d)
$$a \cdot (a + a^2) = a^2 + a^3$$

23. Multiplica y simplifica, como en el ejemplo.

•
$$5a \cdot \left(\frac{a}{5} + \frac{1}{a}\right) = \frac{5a^2}{5} + \frac{5a}{a} = a^2 + 5$$

a)
$$6x \cdot \left(\frac{1}{6} + \frac{1}{x}\right)$$

b)
$$xy \cdot \left(\frac{1}{x} - \frac{1}{y}\right)$$

c)
$$\frac{1}{a} \cdot (a + a^2)$$

d)
$$\frac{2}{a^2} \cdot \left(\frac{a}{4} + a^2\right)$$

a)
$$\frac{6x}{6} + \frac{6x}{x} = x + 6$$

b)
$$\frac{xy}{x} - \frac{xy}{y} = y - x$$

c)
$$\frac{a}{a} + \frac{a^2}{a} = 1 + a$$

d)
$$\frac{2a}{4a^2} + \frac{2a^2}{a^2} = \frac{1}{2a} + 2$$

24. ¿Verdadero o falso?

- a) El producto de dos monomios es siempre otro monomio.
- b) El grado del producto de varios monomios es el producto de los grados de los factores.
- c) El grado del producto de varios monomios es la suma de los grados de los factores.
- d) Al dividir dos monomios se obtiene otro monomio.
- e) Si el cociente de dos monomios es otro monomio, el grado del dividendo es mayor o igual que el grado del divisor.
- a) Verdadero. Por ejemplo, $14x \cdot 2x = 28x^2$
- b) Falso. Por ejemplo, $7x^2 \cdot 3x = 21x^3$
- c) Verdadero
- d) Falso. Por ejemplo, $4x : 2x = \frac{4x}{2x} = 2$.
- e) Verdadero

Ecuaciones

Página 177

1. Comprueba en cada caso cuál o cuáles de los valores de x son soluciones de la ecuación:

a)
$$5x - 7 = 13$$

$$\begin{cases} x = 1 \\ x = 3 \\ x = 4 \end{cases}$$

b)
$$3x - 6 = x$$

$$\begin{cases} x = 2 \\ x = 3 \\ x = 5 \end{cases}$$

c)
$$\frac{x+5}{6} = 1$$

$$\begin{cases} x = 1 \\ x = -2 \\ x = 6 \end{cases}$$

d)
$$\sqrt{x} + 3 = 5$$

$$\begin{cases} x = -3 \\ x = 0 \\ x = 4 \end{cases}$$

b)
$$3x - 6 = x$$

$$\begin{cases}
x = 2 \\
x = 3 \\
x = 5
\end{cases}$$
e) $x^2 - 6 = x$

$$\begin{cases}
x = -2 \\
x = 1 \\
x = 3
\end{cases}$$

c)
$$\frac{x+5}{6} = 1$$
 $\begin{cases} x=1\\ x=-2\\ x=6 \end{cases}$
f) $\frac{x^2+5}{7} = x-1$ $\begin{cases} x=2\\ x=3\\ x=4 \end{cases}$

a)
$$x = 4$$

b)
$$x = 3$$

c)
$$x = 1$$

$$d)x = 4$$

e)
$$x = -2$$
; $x = 3$

f)
$$x = 3$$
: $x = 4$

2. Indica cuál es el grado de cada ecuación:

a)
$$3x - 4 = 5x + 2$$

b)
$$6x - x^2 = 7 - x$$

c)
$$4x^3 + 2x = 5x^2 + 1$$

d)
$$\frac{5x-1}{4} = \frac{2x+3}{7}$$

3. Razona y encuentra una solución para cada una de estas ecuaciones:

a)
$$5x = 20$$

$$b) 5x - 2 = 18$$

c)
$$\frac{5x-2}{3} = 6$$

$$d)\frac{5x+4}{8}=3$$

a)
$$x = 4$$

$$b) x = 4$$

c)
$$x = 4$$

$$d)x = 4$$

4. Busca, por tanteo, una solución para cada ecuación:

a)
$$5x - 8 = 7$$

b)
$$2x + 3 = 5x - 3$$

c)
$$2(x-1) = 8$$

$$d) 10 - (x - 3) = 6$$

$$e) \frac{3-x}{2} = 1$$

$$f)\frac{5+x}{6}=2$$

$$g)\frac{x-1}{4}=5$$

$$h)\frac{x+2}{3}=1$$

i)
$$\frac{x}{2} + \frac{x}{3} = 5$$

$$j) \ \frac{x}{2} + \frac{x}{4} + \frac{x}{8} = 7$$

$$\mathbf{k})x + x^2 + x^3 = 3$$

$$1) \sqrt{x+5} = 3$$

a)
$$x = 3$$

b)
$$x = 2$$

c)
$$x = 5$$

$$d)x = 7$$

e)
$$x = 1$$

f)
$$x = 7$$

g)
$$x = 21$$

$$h)x = 1$$

i)
$$x = 6$$

j)
$$x = 8$$

$$\mathbf{k}) x = 1$$

1)
$$x = 4$$

Primeras técnicas para la resolución de ecuaciones

Página 178

1. Resuelve aplicando las técnicas recién aprendidas.

a)
$$x + 3 = 4$$

$$\mathbf{d})x - 7 = 3$$

$$g)9 = x + 5$$

a)
$$x = 1$$

$$d)x = 10$$

g)
$$x = 4$$

$$\mathbf{b})x-1=8$$

e)
$$x + 4 = 1$$

$$h)5 = x - 4$$

b)
$$x = 9$$

e)
$$x = -3$$

$$h)x = 9$$

c)
$$x + 5 = 11$$

$$f)x-2=-6$$

i)
$$2 = x + 6$$

c)
$$x = 6$$

f)
$$x = -4$$

i) x = -4

2. Resuelve aplicando las técnicas anteriores.

a)
$$x + 6 = 9$$

$$\mathbf{d)}\,\mathbf{5}+x=\mathbf{4}$$

$$\mathbf{g})\,\mathbf{0}=\mathbf{x}+\mathbf{6}$$

a)
$$x = 3$$

d)
$$x = -1$$

g)
$$x = -6$$

$$\mathbf{b})x - 4 = 5$$

e)
$$3 + x = 3$$

$$\mathbf{h}) \mathbf{1} = 9 - x$$

b)
$$x = 9$$

e)
$$x = 0$$

$$h)x = 8$$

c)
$$2 - x = 4$$

$$f)6 = x + 8$$

i)
$$4 = x - 8$$

c)
$$x = -2$$

f)
$$x = -2$$

i)
$$x = 12$$

3. Resuelve con las técnicas que acabas de aprender.

a)
$$4x = 20$$

 $d)\frac{x}{5}=2$

a) x = 5

b)
$$\frac{x}{2} = 1$$

e)
$$8 = 4x$$

b)
$$x = 2$$

d)
$$x = 10$$
 e) $x = 2$

$$a) 3x - 2 = 0$$

b)
$$4x + 5 = 13$$

c)
$$2x - 5 = 9$$

c) 3x = 12

 $f) 4 = \frac{x}{2}$

c) x = 4

f) x = 8

$$\mathbf{d})\,8-3x=2$$

e)
$$\frac{x}{2} + 4 = 7$$

$$f)\frac{x}{3}-2=3$$

a)
$$x = \frac{2}{3}$$

$$b) x = 2$$

c)
$$x = 7$$

$$d)x = 2$$

e)
$$x = 6$$

f)
$$x = 15$$

Resolución de ecuaciones de primer grado con una incógnita

Página 181

1. Resuelve las ecuaciones siguientes:

a)
$$x + 1 = 6$$

$$b)x + 8 = 3$$

c)
$$7 = x + 3$$

$$d)5 = 11 + x$$

e)
$$x + 1 = -2$$

f)
$$x + 5 = -2$$

$$g) 5 + x = 7$$

$$\mathbf{h})\mathbf{4} + \mathbf{x} = \mathbf{4}$$

i)
$$8 + x = 1$$

a)
$$x + 1 = 6 \rightarrow x = 6 - 1 \rightarrow x = 5$$

b)
$$x + 8 = 3 \rightarrow x = 3 - 8 \rightarrow x = -5$$

c)
$$7 = x + 3 \rightarrow 7 - 3 = x \rightarrow x = 4$$

d)
$$5 = 11 + x \rightarrow 5 - 11 = x \rightarrow x = -6$$

e)
$$x + 1 = -2 \rightarrow x = -2 - 1 \rightarrow x = -3$$

f)
$$x + 5 = -2 \rightarrow x = -2 - 5 \rightarrow x = -7$$

g)
$$5 + x = 7 \rightarrow x = 7 - 5 \rightarrow x = 2$$

h)
$$4 + x = 4 \rightarrow x = 4 - 4 \rightarrow x = 0$$

i)
$$8 + x = 1 \rightarrow x = 1 - 8 \rightarrow x = -7$$

2. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

3. Resuelve estas ecuaciones:

a)
$$x - 6 = 7$$

b)
$$5 = x - 1$$

c)
$$x - 5 = -3$$

$$\mathbf{d}) - \mathbf{4} = x - 2$$

e)
$$-8 = x - 1$$

$$f)4-x=1$$

g)
$$5 - x = 6$$

$$h)8 = 13 - x$$

i)
$$15 = 6 - x$$

Soluciones: a) 13; b) 6; c) 2; d) -2; e) -7; f) 3; g) -1; h) 5; i) -9

a)
$$x - 6 = 7 \rightarrow x = 7 + 6 \rightarrow x = 13$$

b)
$$5 = x - 1 \rightarrow 5 + 1 = x \rightarrow x = 6$$

c)
$$x - 5 = -3 \rightarrow x = -3 + 5 \rightarrow x = 2$$

d)
$$-4 = x - 2 \rightarrow -4 + 2 = x \rightarrow x = -2$$

e)
$$-8 = x - 1 \rightarrow -8 + 1 = x \rightarrow x = -7$$

f)
$$4 - x = 1 \rightarrow 4 - 1 = x \rightarrow x = 3$$

g)
$$5 - x = 6 \rightarrow 5 - 6 = x \rightarrow x = -1$$

h)
$$8 = 13 - x \rightarrow x = 13 - 8 \rightarrow x = 5$$

i)
$$15 = 6 - x \rightarrow x = 6 - 15 \rightarrow x = -9$$

4. Resuelve.

a)
$$4x = 12$$

b)
$$4x = 20$$

c)
$$5x = 3$$

$$d)5 = 10x$$

e)
$$3 = 7x$$

$$f) 4 = 6x$$

$$\mathbf{g}) - 2x = 10$$

h)
$$15 = -5x$$

i)
$$-6x = -9$$

Soluciones: a) 3; b) 5; c) 3/5; d) 1/2; e) 3/7; f) 2/3; g) -5; h) -3; i) 3/2

a)
$$4x = 12 \rightarrow x = \frac{12}{4} \rightarrow x = 3$$

b)
$$4x = 20 \rightarrow x = \frac{20}{4} \rightarrow x = 5$$

c)
$$5x = 3 \rightarrow x = \frac{3}{5}$$

d)
$$5 = 10x \rightarrow x = \frac{5}{10} \rightarrow x = \frac{1}{2}$$

e)
$$3 = 7x \to x = \frac{3}{7}$$

f)
$$4 = 6x \rightarrow x = \frac{4}{6} \rightarrow x = \frac{2}{3}$$

g)
$$-2x = 10 \rightarrow x = \frac{10}{-2} \rightarrow x = -5$$

h)
$$15 = -5x \rightarrow x = \frac{15}{-5} \rightarrow x = -3$$

i)
$$-6x = -9 \rightarrow x = \frac{-9}{-6} \rightarrow x = \frac{3}{2}$$

5. Resuelve las ecuaciones siguientes:

a)
$$5x - 4x = 9$$

$$\mathbf{b})7x - 2x = 15$$

c)
$$x - 2x = 7$$

$$d)2x - 6x = 12$$

e)
$$2x - 5x = -3$$

f)
$$4x - 6x = -8$$

g)
$$1 = 6x - 4x$$

$$\mathbf{h})2 = 11x - 5x$$

i)
$$4 = 2x - 7x$$

Soluciones: a) 9; b) 3; c) -7; d) -3; e) 1; f) 4; g) 1/2; h) 1/3; i) -4/5

a)
$$5x - 4x = 9 \rightarrow x = 9$$

b)
$$7x - 2x = 15 \rightarrow 5x = 15 \rightarrow x = \frac{15}{5} \rightarrow x = 3$$

c)
$$x - 2x = 7 \rightarrow -x = 7 \rightarrow x = -7$$

d)
$$2x - 6x = 12 \rightarrow -4x = 12 \rightarrow x = \frac{12}{-4} \rightarrow x = -3$$

e)
$$2x - 5x = -3 \rightarrow -3x = -3 \rightarrow x = \frac{-3}{-3} \rightarrow x = 1$$

f)
$$4x - 6x = -8 \rightarrow -2x = -8 \rightarrow x = \frac{-8}{-2} \rightarrow x = 4$$

g)
$$1 = 6x - 4x \rightarrow 1 = 2x \rightarrow x = \frac{1}{2}$$

h) 2 =
$$11x - 5x \rightarrow 2 = 6x \rightarrow x = \frac{2}{6} \rightarrow x = \frac{1}{3}$$

i)
$$4 = 2x - 7x \rightarrow 4 = -5x \rightarrow x = \frac{4}{-5} \rightarrow x = -\frac{4}{5}$$

6. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

7. Halla x en cada caso:

a)
$$4x = 3x + 5$$

$$\mathbf{b)}\,5x=7x-4$$

c)
$$2x = 7x - 5$$

$$d)3x = 9x + 12$$

e)
$$8x = 5x + 2$$

f)
$$3x = 9x - 5$$

$$\mathbf{g}) 4 - 2x = 3x$$

$$h)2 + 6x = 9x$$

i)
$$5 - 6x = -x$$

Soluciones: a) 5; b) 2; c) 1; d) -2; e) 2/3; f) 5/6; g) 4/5; h) 2/3; i) 1

a)
$$4x = 3x + 5 \rightarrow 4x - 3x = 5 \rightarrow x = 5$$

b)
$$5x = 7x - 4 \rightarrow 4 = 7x - 5x \rightarrow 4 = 2x \rightarrow x = 2$$

c)
$$2x = 7x - 5 \rightarrow 5 = 7x - 2x \rightarrow 5 = 5x \rightarrow x = 1$$

d)
$$3x = 9x + 12 \rightarrow -12 = 9x - 3x \rightarrow -12 = 6x \rightarrow \frac{-12}{6} = x \rightarrow x = -2$$

e)
$$8x = 5x + 2 \rightarrow 8x - 5x = 2 \rightarrow 3x = 2 \rightarrow x = \frac{2}{3}$$

f)
$$3x = 9x - 5 \rightarrow 5 = 9x - 3x \rightarrow 5 = 6x \rightarrow x = \frac{5}{6}$$

g)
$$4 - 2x = 3x \rightarrow 4 = 3x + 2x \rightarrow 4 = 5x \rightarrow x = \frac{4}{5}$$

h)
$$2 + 6x = 9x \rightarrow 2 = 9x - 6x \rightarrow 2 = 3x \rightarrow x = \frac{2}{3}$$

i)
$$5 - 6x = -x \rightarrow 5 = -x + 6x \rightarrow 5 = 5x \rightarrow x = 1$$

8. Resuelve las ecuaciones siguientes:

a)
$$8x - 5x = x + 8$$

b)
$$3x + 6 = 2x + 13$$

c)
$$5x - 7 = 2 - 4x$$

d)
$$3x + x + 4 = 2x + 10$$

e)
$$4x + 7 - x = 5 + 2x$$

f)
$$8 - x = 3x + 2x + 5$$

Soluciones: a) 4; b) 7; c) 1; d) 3; e) -2; f) 1/2

a)
$$8x - 5x = x + 8 \rightarrow 8x - 5x - x = 8 \rightarrow 2x = 8 \rightarrow x = 4$$

b)
$$3x + 6 = 2x + 13 \rightarrow 3x - 2x = 13 - 6 \rightarrow x = 7$$

c)
$$5x - 7 = 2 - 4x \rightarrow 5x + 4x = 2 + 7 \rightarrow 9x = 9 \rightarrow x = 1$$

d)
$$3x + x + 4 = 2x + 10 \rightarrow 3x + x - 2x = 10 - 4 \rightarrow 2x = 6 \rightarrow x = 3$$

e)
$$4x + 7 - x = 5 + 2x \rightarrow 4x - x - 2x = 5 - 7 \rightarrow x = -2$$

f)
$$8 - x = 3x + 2x + 5 \rightarrow 8 - 5 = 3x + 2x + x \rightarrow 3 = 6x \rightarrow \frac{3}{6} = x \rightarrow x = \frac{1}{2}$$

9. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

10. Resuelve las ecuaciones siguientes:

a)
$$6x = 6x + 3$$

b)
$$13 - 2x = 6 - 2x$$

c)
$$5x - 1 = 2x - 4 + 3x$$

$$\mathbf{d}(x) + 1 = x + 1$$

e)
$$7 - 3x = 4 - 3x + 3$$

$$f) 3x + 4 = 2x + 4 + x$$

Soluciones: a), b) y c) no tienen solución; d), e) y f) son identidades.

a)
$$6x = 6x + 3 \rightarrow 0x = 3 \rightarrow \text{No tiene solución}$$
.

b)
$$13 - 2x = 6 - 2x \rightarrow 2x - 2x = 6 - 13 \rightarrow 0x = -7 \rightarrow \text{No tiene solución}$$
.

c)
$$5x - 1 = 2x - 4 + 3x \rightarrow 5x - 2x - 3x = -4 + 1 \rightarrow 0x = -3 \rightarrow \text{No tiene solución.}$$

d)
$$x + 1 = x + 1 \rightarrow x - x = 1 - 1 \rightarrow 0x = 0 \rightarrow Es$$
 una identidad.

e)
$$7 - 3x = 4 - 3x + 3 \rightarrow 3x - 3x = 4 + 3 - 7 \rightarrow 0x = 0 \rightarrow Es$$
 una identidad.

f)
$$3x + 4 = 2x + 4 + x \rightarrow 3x - 2x - x = 4 - 4 \rightarrow 0x = 0 \rightarrow Es$$
 una identidad.

11. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

12. Resuelve como en el ejercicio anterior.

a)
$$12x-7+x-5=11x-10+x$$

c)
$$7x - 3 + 5x - 4 = 8x - 5 - x$$

Soluciones: a) 2; b) -2; c) 2/5

a)
$$12x - 7 + x - 5 = 11x - 10 + x$$

$$13x - 12 = 12x - 10$$

$$13x - 12x = -10 + 12$$

$$x = 2$$

b)
$$18x + 15 + 5x - 9 - 7x = 9x - 8$$

b) 18x + 15 + 5x - 9 - 7x = 9x - 8

$$16x + 6 = 9x - 8$$

$$16x - 9x = -8 - 6$$

$$7x = -14$$

$$x = \frac{-14}{7} = -2$$

c)
$$7x - 3 + 5x - 4 = 8x - 5 - x$$

$$12x - 7 = 7x - 5$$

$$12x - 7x = -5 + 7$$

$$5x = 2$$

$$x = \frac{2}{5}$$

13. Calcula el valor que debe tener x para que se verifique cada igualdad:

a)
$$10x + 1 - 7x = 5x - 5 + 4x$$

b)
$$2x - 5 - 7x + 1 = 4x - 6x + 11$$

c)
$$2 - 13x = 6x + 1 + x - 9$$

Soluciones: a) 1; b) -5; c) 1/2

a)
$$3x + 1 = 9x - 5$$

$$1 + 5 = 9x - 3x$$

$$6 = 6x$$

$$x = \frac{6}{6} = 1$$

c)
$$2 - 13x = 7x - 8$$

$$2 + 8 = 7x + 13x$$

$$10 = 20x$$

$$x = \frac{10}{20} = \frac{1}{2}$$

b)
$$-5x - 4 = -2x + 11$$

$$-4 - 11 = -2x + 5x$$

$$-15 = 3x$$

$$x = \frac{-15}{3} = -5$$

14. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

15. Resuelve las ecuaciones e indica la que no tiene solución y la que tiene infinitas solucio-

a)
$$6 - 11x + 7 + 12x = x - 13 - 8x + 2$$

b)
$$16x - 5 - 15x + 8 + 2x = 4x + 3 - x$$

c)
$$3 + x = 9x - 6 + 7x - 4 - x - 1$$

$$\mathbf{d})7 - 5x = 9x + 2 - 13x + 7 - x$$

a)
$$x + 13 = -7x - 11$$

$$x + 7x = -11 - 13$$

$$8x = -24$$

$$x = \frac{-24}{8} = -3$$

c)
$$3 + x = 15x - 11$$

$$3 + 11 = 15x - x$$

$$14 = 14x$$

$$x = 1$$

b)
$$3x + 3 = 3x + 3$$
 $0x = 0$ Infinitas soluciones.

d)
$$7 - 5x = -5x + 9$$

 $5x - 5x = 9 - 7$
 $0x = 2$ No tiene solución.

16. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

17. Resuelve estas ecuaciones:

a)
$$5 - (4x + 6) = 2x$$

c)
$$2x - (5 - 4x) + 1 = x + (3x - 5)$$

Soluciones: a)
$$-1/6$$
; b) 2; c) $-1/2$; d) 4

a)
$$5 - 4x - 6 = 2x$$

$$-1 = 6x$$

$$x = \frac{-1}{6}$$

c)
$$2x - 5 + 4x + 1 = x + 3x - 5$$

$$2x = -1$$

$$x = \frac{-1}{2}$$

$$b)x + 1 = 5x - (2x + 3)$$

$$d)5 - (x + 1) - 3 = 3x - (2x + 3) - x$$

b)
$$x + 1 = 5x - 2x - 3$$

$$4 = 2x$$

$$x = \frac{4}{2} = 2$$

d)
$$5 - x - 1 - 3 = 3x - 2x - 3 - x$$

$$x = 4$$

18. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

19. Resuelve.

a)
$$x - 2(x - 2) = 3x$$

c)
$$x - 4(x + 2) = x + 5 - 3x$$

a)
$$x - 2x + 4 = 3x$$

$$4 = 4x$$

$$x = 1$$

c)
$$x - 4x - 8 = x + 5 - 3x$$

$$-13 = x$$

b)
$$11 - x = 3x - 5(2x - 1)$$

$$d)4(x-2)+3=1-3(2-x)$$

b)
$$11 - x = 3x - 10x + 5$$

$$6x = -6$$

$$x = -1$$

d)
$$4x - 8 + 3 = 1 - 6 + 3x$$

$$x = 0$$

20. Resuelve las ecuaciones siguientes:

a)
$$2x - 8 = 1 - 3(x - 2)$$

b)
$$4x - (2 + x) = 3(x - 1)$$

b) 4x - 2 - x = 3x - 30x = -1 No hay solución.

c)
$$2x + 3(x + 1) = 5 - 2(2x - 5)$$

Soluciones: a) 3; b) Sin solución; c) 4/3

a)
$$2x - 8 = 1 - 3x + 6$$

 $5x = 15$

$$x = \frac{15}{5} = 3$$

c)
$$2x + 3x + 3 = 5 - 4x + 10$$

$$9x = 12$$

$$x = \frac{12}{9} = \frac{4}{3}$$

21. Halla x en cada caso:

a)
$$2x - 3(5x + 6) + 10 = 5(x - 3) - 4x$$

b)
$$3(1-4x) + 7 = 5 - (8x + 7)$$

c)
$$12 - 5(3 - 2x) = 8x - 3(x + 1) + 5x$$

Soluciones: a) 1/2; b) 3; c) Infinitas soluciones

a)
$$2x - 15x - 18 + 10 = 5x - 15 - 4x$$

b)
$$3 - 12x + 7 = 5 - 8x - 7$$

$$7 = 14x$$

$$12 = 4x$$

$$x = \frac{7}{14} = \frac{1}{2}$$

$$x = \frac{12}{4} = 3$$

22. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

23. Resuelve estas ecuaciones:

a)
$$2x = \frac{1}{2}$$

b)-4x =
$$1 - \frac{1}{3}$$

c)
$$\frac{7x}{3} = 2$$

d)
$$\frac{15x}{2} - 1 = 5$$

e)
$$\frac{x}{5} = \frac{1}{7}$$

f)
$$\frac{3x}{2} + 1 = \frac{2}{5}$$

Soluciones: a) 1/4; b) -1/6; c) 6/7; d) 4/5; e) 5/7; f) -2/5

a)
$$x = \frac{1}{2 \cdot 2} = \frac{1}{4}$$

b)
$$-4x = \frac{2}{3} \rightarrow x = \frac{2}{-4 \cdot 3} = \frac{-2}{12} = \frac{-1}{6}$$

c)
$$7x = 3 \cdot 2 = 6 \rightarrow x = \frac{6}{7}$$

d)
$$\frac{15x-2}{2} = 5 \rightarrow 15x-2 = 10 \rightarrow 15x = 12 \rightarrow x = \frac{12}{15} = \frac{4}{5}$$

e)
$$x = \frac{5}{7}$$

f)
$$\frac{3x+2}{2} = \frac{2}{5} \rightarrow 3x + 2 = \frac{4}{5} \rightarrow 3x = \frac{4}{5} - 2 = \frac{-6}{5} \rightarrow x = \frac{-6}{15} = \frac{-2}{5}$$

24. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

25. Resuelve.

$$a)-5x=\frac{10}{3}$$

b)
$$-6x = -\frac{3}{4}$$

$$c) - \frac{x}{3} = 2$$

$$\mathbf{d}) - \frac{2}{5}x = 6$$

e)
$$-\frac{1}{3}x = \frac{1}{5}$$

$$f) - \frac{6}{5}x = \frac{3}{10}$$

Soluciones: a) -2/3; b) 1/8; c) -6; d) -15; e) -3/5; f) -1/4

a)
$$x = \frac{10}{(-5) \cdot 3} \rightarrow x = -\frac{2}{3}$$

b)
$$x = -\frac{3}{(-6) \cdot 4} \rightarrow x = \frac{1}{8}$$

c)
$$x = 2 \cdot (-3) = -6$$

d)
$$-2x = 6 \cdot 5 \rightarrow x = -\frac{30}{2} = -15$$

e)
$$-x = \frac{3}{5} \rightarrow x = -\frac{3}{5}$$

f)
$$-6x = \frac{5 \cdot 3}{10} \rightarrow x = -\frac{15}{60} = -\frac{1}{4}$$

26. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

27. Resuelve.

$$a) x - \frac{x}{6} = 1$$

$$\mathbf{b})x + \frac{2x}{5} = 7$$

c)
$$2x - \frac{3x}{4} = 5$$

d)
$$\frac{5x}{8} = 2 - \frac{3x}{8}$$

$$e) \frac{3x}{7} = 1 - x$$

f)
$$3 - \frac{x}{5} = 2 + x$$

Soluciones: a) 6/5; b) 5; c) 4; d) 2; e) 7/10; f) 5/6

a)
$$\frac{6x}{6} - \frac{x}{6} = 1 \rightarrow \frac{5x}{6} = 1 \rightarrow 5x = 6 \rightarrow x = \frac{6}{5}$$

b)
$$\frac{5x}{5} + \frac{2x}{5} = 7 \rightarrow \frac{7x}{5} = 7 \rightarrow 7x = 35 \rightarrow x = \frac{35}{7} = 5$$

c)
$$\frac{8x}{4} - \frac{3x}{4} = 5 \rightarrow \frac{5x}{4} = 5 \rightarrow 5x = 20 \rightarrow x = \frac{20}{5} = 4$$

d)
$$\frac{5x}{8} = \frac{16}{8} - \frac{3x}{8} \rightarrow 5x = 16 - 3x \rightarrow 8x = 16 \rightarrow x = \frac{16}{8} = 2$$

e)
$$3x = 7(1-x) \rightarrow 3x = 7-7x \rightarrow 10x = 7 \rightarrow x = \frac{7}{10}$$

f)
$$\frac{15}{5} - \frac{x}{5} = 2 + x \rightarrow 15 - x = 5(2 + x) \rightarrow 15 - x = 10 + 5x \rightarrow 5 = 6x \rightarrow x = \frac{5}{6}$$

28. Ejercicio resuelto.

Ejercicio resuelto en el libro del alumno.

29. Halla x en cada caso:

a)
$$1 - \frac{x}{4} = \frac{x}{2}$$
 (Multiplica los dos miembros por 4).

b)
$$\frac{2x}{3} - \frac{1}{2} = \frac{x}{2}$$
 (Multiplica los dos miembros por 6).

c)
$$\frac{x}{2} - 6 = \frac{x}{5}$$
 (Multiplica los dos miembros por 10).

Soluciones: a) 4/3; b) 3; c) 20

a)
$$4 - x = 2x \rightarrow 4 = 3x \rightarrow x = \frac{4}{3}$$

b)
$$4x - 3 = 3x \rightarrow x = 3$$

c)
$$5x - 60 = 2x \rightarrow 3x = 60 \rightarrow x = 20$$

30. Resuelve siguiendo el método anterior.

a)
$$x + \frac{2}{7} = 1 - \frac{2x}{7}$$

b)
$$\frac{x}{3} + 1 = x + \frac{5}{6}$$

c)
$$\frac{x}{2} - \frac{2}{5} = \frac{x}{5} + \frac{1}{2}$$

d)
$$\frac{x}{3} - 1 = \frac{x}{5} - \frac{2}{3}$$

Soluciones: a) 5/9; b) 1/4; c) 3; d) 5/2

$$7x + 2 = 7 - 2x \rightarrow 9x = 5 \rightarrow x = \frac{5}{9}$$

$$2x + 6 = 6x + 5 \rightarrow 1 = 4x \rightarrow x = \frac{1}{4}$$

d) Multiplica ambos miembros por 15.
$$5x - 15 = 3x - 10 \rightarrow 2x = 5 \rightarrow x = \frac{5}{2}$$

$$5x - 4 = 2x + 5 \rightarrow 3x = 9 \rightarrow x = \frac{9}{3} = 3$$

Resolución de problemas mediante ecuaciones

Página 185

1. Si a un número le sumas su anterior, obtienes 37. ¿De qué número hablamos?

EL NÚMERO
$$\longrightarrow$$
 x

SU ANTERIOR
$$\longrightarrow$$
 $x-1$

$$x + (x - 1) = 37 \rightarrow 2x - 1 = 37 \rightarrow 2x = 38 \rightarrow x = \frac{38}{2} = 19$$

El número buscado es 19.

2. Al sumarle a un número trece, obtienes el doble que si le restas 5. ¿Qué número es?

EL NÚMERO MÁS TRECE
$$\longrightarrow$$
 $x + 13$

EL NÚMERO MENOS CINCO
$$\longrightarrow x-5$$

EL NÚMERO MÁS
$$13 = 2 \cdot EL$$
 NÚMERO MENOS 5

$$x + 13 = 2(x - 5) \rightarrow x + 13 = 2x - 10 \rightarrow 23 = x$$

Es el número 23.

3. En una cafetería hay 13 sillas más que taburetes, y en total se pueden sentar 45 clientes. ¿Cuántas sillas y cuántos taburetes hay?

TABURETES
$$\longrightarrow x$$

SILLAS
$$\longrightarrow x + 13$$

$$x + (x + 13) = 45 \rightarrow 2x + 13 = 45 \rightarrow 2x = 32 \rightarrow x = \frac{32}{2} = 16$$

Hay 16 taburetes y 16 + 13 = 29 sillas.

4. Una canica de cristal pesa ocho gramos menos que una de acero. Si tres canicas de acero pesan lo mismo que cinco de cristal, ¿cuánto pesa una de cada clase?

$$\bigcirc \rightarrow (x-8)$$
 gramos

$$3x = 5(x - 8) \rightarrow 3x = 5x - 40 \rightarrow 40 = 2x \rightarrow x = \frac{40}{2} = 20$$

La canica de acero pesa 20 gramos y la canica de cristal 20 - 8 = 12 gramos.

5. Hemos pagado 7,50 € por tres cafés y dos cruasanes. Sabiendo que un cruasán cuesta medio euro más que un café, ¿cuál es el precio del café?

CAFÉ (€)
$$\rightarrow x$$

CRUASÁN (
$$\mathfrak{E}$$
) $\rightarrow x + 0.50$

$$3x + 2(x + 0.50) = 7.50 \rightarrow 3x + 2x + 1 = 7.50 \rightarrow 5x = 6.50 \rightarrow x = \frac{6.50}{5} = 1.30$$

El café cuesta 1,30 euros.

6. La base de un rectángulo es doble que la altura, y el perímetro mide 48 cm.

¿Cuáles son las dimensiones del rectángulo?

$$x + 2x + x + 2x = 48 \rightarrow x = 8$$

Altura
$$\rightarrow$$
 8 cm

Base
$$\rightarrow$$
 16 cm

Ejercicios y problemas

Página 186

Lenguaje algebraico

- 1. Asocia la edad de cada personaje con una de las expresiones que hay debajo:
 - Jorge tiene x años.
 - Pilar, su esposa, tiene 3 años menos.
 - Manuel, su padre, le dobla la edad.
 - Lola, su madre, tiene 5 años menos que su padre.
 - Gema, su hija, nació cuando Jorge tenía 26 años.
 - Javi, el pequeño, tiene la mitad de años que la niña.

x-3	x - 26	2x
2x-5	x	(x-26):2

Jorge tiene x años. $\rightarrow x$

Pilar, su esposa, tiene 3 años menos. $\rightarrow x-3$

Manuel, su padre, le dobla la edad. $\rightarrow 2x$

Lola, su madre, tiene 5 años menos que su padre. $\rightarrow 2x - 5$

Gema, su hija, nació cuando jorge tenía 26 años. $\rightarrow x-26$

Javi, el pequeño, tiene la mitad de años que la niña. $\rightarrow (x-26):2$

- 2. \square Llamando x a un número natural, escribe la expresión algebraica que corresponde a cada enunciado:
 - a) El siguiente de ese número.
 - b) Su doble.
 - c) El doble de su anterior.
 - d) La mitad del número que resulta al sumarle cinco.
 - e) El número que resulta al restarle cinco a su mitad.
 - a) x + 1
- b) 2x
- c) 2(x-1)
- d)(x + 5) : 2
- e) (x:2) 5
- 3. Asigna una expresión algebraica al sueldo de cada uno de los siguientes empleados:
 - El sueldo de un informático en cierta empresa es de x euros mensuales.
 - Un contable gana un 10 % menos.
 - El jefe de su sección gana 700 € más.
 - Un operario manual gana 400 euros menos que un informático.
 - El gerente gana el doble que un jefe de sección.
 - El director gana 800 euros más que el gerente.
 - El sueldo de un peón sobrepasa en 200 euros la de un operario manual.

Informático
$$\rightarrow x$$

Contable
$$\rightarrow 0.9x$$

Jefe de sección
$$\rightarrow x + 700$$

Operario manual
$$\rightarrow x - 400$$

Gerente
$$\rightarrow 2(x + 700)$$

Director
$$\rightarrow 2(x + 700) + 800$$

Peón
$$\rightarrow x - 200$$

4. Cuál de las siguientes expresiones representa un número de dos cifras ab?:

a)
$$a + b$$

$$b)a \cdot b$$

c)
$$a + 10 \cdot b$$

$$d)10 \cdot a + b$$

La expresión d) $10 \cdot a + b$.

5. Siguiendo el criterio que da la solución del ejercicio anterior, ¿cómo expresarías algebraicamente un número de tres cifras *abc*?

Usaríamos la siguiente expresión: $100 \cdot a + 10 \cdot b + c$.

6. ✓ Una empresa de ventas online anuncia una promoción de discos, a 4,50 € el álbum, más un fijo de 3,50 € por los gastos de envío. ¿Cuál de las siguientes igualdades relaciona el importe (I) del envío, con el número de discos (d) pedidos?:

a)
$$I = (3.5 + 4.5) \cdot d$$

b)
$$I = 3.5 - 4.5 \cdot d$$

c)
$$I = 3.5 + 4.5 \cdot d$$

$$d)I = (3,5 + 4,5) : d$$

La igualdad c) $I = 3.5 + 4.5 \cdot d$.

7. Copia y completa cada tabla en tu cuaderno:

n	1	2	3	5	10	50
3n - 2	1			13		
n	1	2	3	5	10	50
n + 3		<u>5</u> 2				
2		2				
n	1	2	3	5	10	50
$n^2 - 1$		3				
n	1	2	3	5	10	50
3n - 2	1	4	7	13	28	148
n	1	2	3	5	10	50
n + 3	2	<u>5</u> 2	2	4	<u>13</u> 2	<u>53</u> 2
2	2	2	3	4	2	2
n	1	2	3	5	10	50
n^2-1	0	3	8	24	99	2499

8. Reflexiona y completa en tu cuaderno.

1	2	3	4	5	10	a	n	
2	7	12	17	22				
	1 2	-			10			
1	2	3	4	5	10	a	n	
$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	<u>5</u> 6				
	1 3		1	0				
1	2	3	4	5	10	a	n	
0	3	8	15	24				
1	2	3	4	5	10	a	n	
2						$\cdot a - 3$		2
2	/	14	1/	22	4/)	· <i>u</i> = 3	J · n -	-)
1	2	3	4	5	10	a	n	
$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	<u>2</u>	<u>5</u>	<u>5</u> 3	$\frac{a}{6}$	<u>n</u> 6	
6	3	2	3	6	3	6	6	
1	2	3	4	5	10	a	n	i
0	3	8	15	24	99	$a^2 - 1$		

Monomios y operaciones

9. d Opera.

$$a) 3x + 2x + x$$

$$d)a - 5a + 2a$$

$$\mathbf{u}_{j}u - \mathbf{j}u + \mathbf{z}u$$

$$d)-2a$$

b)
$$10x - 6x + 2x$$

$$e) -2x + 9x - x$$

c)
$$5a - 7a + 3a$$

f) $-5x - 2x + 4x$

$$f) -3x$$

10. Reduce todo lo posible.

a)
$$x + x + y$$

c)
$$5a + b - 3a + b$$

e)
$$2 + 3x + 3$$

g)
$$2x - 5 + x$$

$$i) x-2y+3y+x$$

a)
$$2x + y$$

c)
$$2a + 2b$$

e)
$$3x + 5$$

g)
$$3x - 5$$

i)
$$2x + y$$

b)
$$2x - y - x$$

$$d)3a + 2b + a - 3b$$

$$f) 5 + x - 4$$

$$h)3x + 4 - 4x$$

$$j) 2x + y - x - 2y$$

b)
$$x - y$$

d)
$$4a - b$$

$$f)x+1$$

h)
$$4 - x$$

$$j) x-y$$

11. Reduce, cuando sea posible.

a)
$$x^2 + 2x^2$$

d)
$$a^2 - a - 1$$

g)
$$2a^2 + a - a^2 - 3a + 1$$

a)
$$3x^{2}$$

d)
$$a^2 - a - 1$$

g)
$$a^2 - 2a + 1$$

$$b)x^2 + x$$

e)
$$x^2 - 5x + 2x$$

h)
$$a^2 + a - 7 + 2a + 5$$

b)
$$x^2 + x$$

e)
$$x^2 - 3x$$

h)
$$a^2 + 3a - 2$$

c)
$$3a^2 - a - 2a^2$$

f)
$$4 + 2a^2 - 5$$

c)
$$a^2 - a$$

f)
$$2a^2 - 1$$

12. Suprime los paréntesis y reduce.

a)
$$3x - (x + 1)$$

$$d)2a + (1 - 3a)$$

a)
$$3x - x - 1 = 2x - 1$$

d)
$$2a + 1 - 3a = 1 - a$$

$$\mathbf{b})x + (2 - 5x)$$

e)
$$(x-4) + (3x-1)$$

b)
$$x + 2 - 5x = 2 - 4x$$

e)
$$x - 4 + 3x - 1 = 4x - 5$$

c)
$$4a - (3a - 2)$$

$$f) (6x-3) - (2x-7)$$

c)
$$4a - 3a + 2 = a + 2$$

f)
$$6x - 3 - 2x + 7 = 4x + 4$$

13. Multiplica.

a)
$$2 \cdot (5a)$$

$$d)(5x) \cdot (-x)$$

g)
$$(2a) \cdot (-5ab)$$

d)
$$-5x^2$$

g)
$$-10a^2b$$

b)
$$(-4) \cdot (3x)$$

e)
$$(2a) \cdot (3a)$$

h)
$$(6a) \cdot \left(\frac{1}{3}b\right)$$

b)
$$-12x$$

e)
$$6a^2$$

c)
$$(-2a) \cdot a^2$$

f)
$$(-2x) \cdot (-3x^2)$$

i)
$$\left(\frac{2}{3}x\right)\cdot(3x)$$

c)
$$-2a^3$$

f)
$$6x^{3}$$

i)
$$2x^2$$

14. Divide.

a)
$$(6x):3$$

g)
$$(15a^2)$$
: $(3a)$

b)
$$(-8):(2a)$$

e)
$$(6a) : (-3a)$$

h)
$$(-8x)$$
: $(4x^2)$

b)
$$\frac{-4}{a}$$

e)
$$-2$$

h)
$$\frac{-2}{x}$$

c)
$$(-15a)$$
: (-3)

$$f) (-2x) : (-4x)$$

i)
$$(10a):(5a^3)$$

f)
$$\frac{1}{2}$$

i)
$$\frac{2}{12}$$

15. Quita paréntesis.

a)
$$(-5) \cdot (1 + x)$$

$$d)x^2 \cdot (2x-3)$$

a)
$$-5 - 5x$$

d)
$$2x^3 - 3x^2$$

b)
$$4 \cdot (2 - 3a)$$

e)
$$x^2 \cdot (x + x^2)$$

b)
$$8 - 12a$$

e)
$$x^3 + x^4$$

c)
$$3a \cdot (1 + 2a)$$

f)
$$2a \cdot (a^2 - a)$$

c)
$$3a + 6a^2$$

f)
$$2a^3 - 2a^2$$

16. Quita paréntesis y reduce.

a)
$$x + 2(x + 3)$$

d)
$$3 \cdot (2a - 1) - 5a$$

a)
$$x + 2x + 6 = 3x + 6$$

d)
$$6a - 3 - 5a = a - 3$$

b)
$$7x - 3(2x - 1)$$

e)
$$2(x+1) + 3(x-1)$$

b)
$$7x - 6x + 3 = x + 3$$

e)
$$2x + 2 + 3x - 3 = 5x - 1$$

c)
$$4 \cdot (a + 2) - 8$$

f)
$$5(2x-3)-4(x-4)$$

c)
$$4a + 8 - 8 = 4a$$

f)
$$10x - 15 - 4x + 16 = 6x + 1$$

Ecuaciones sencillas

17. Resuelve.

a)
$$2x + 5 - 3x = x + 19$$

$$d)7 + 5x - 2 = x - 3 + 2x$$

a)
$$x = -7$$

d)
$$x = -4$$

b)
$$7x - 2x = 2x + 1 + 3x$$

e)
$$x - 1 - 4x = 5 - 3x - 6$$

c)
$$11 + 2x = 6x - 3 + 3x$$

$$f) 5x = 4 - 3x + 5 - x$$

c)
$$x = 2$$

f)
$$x = 1$$

18. Resuelve las ecuaciones siguientes:

a)
$$3x - x + 7x + 12 = 3x + 9$$

c)
$$7x + 3 - 8x = 2x + 4 - 6x$$

a)
$$x = -\frac{1}{2}$$

c)
$$x = \frac{1}{3}$$

b)
$$6x - 7 - 4x = 2x - 11 - 5x$$

$$d)5x - 7 + 2x = 3x - 3 + 4x - 5$$

b)
$$x = -\frac{4}{5}$$

d) No tiene solución.

Ecuaciones con paréntesis

19. Resuelve estas ecuaciones:

a)
$$4 - (5x - 4) = 3x$$

b)
$$7x + 10 = 5 - (2 - 6x)$$

c)
$$5x - (4 - 2x) = 2 - 2x$$

d)
$$1 - 6x = 4x - (3 - 2x)$$

a)
$$4 - (5x - 4) = 3x \rightarrow 4 - 5x + 4 = 3x \rightarrow 8 = 8x \rightarrow x = 1$$

b)
$$7x + 10 = 5 - (2 - 6x) \rightarrow 7x + 10 = 5 - 2 + 6x \rightarrow x = -7$$

c)
$$5x - (4 - 2x) = 2 - 2x \rightarrow 5x - 4 + 2x = 2 - 2x \rightarrow 9x = 6 \rightarrow x = \frac{6}{9} = \frac{2}{3}$$

d)
$$1 - 6x = 4x - (3 - 2x)$$
 \rightarrow $1 - 6x = 4x - 3 + 2x$ \rightarrow $4 = 12x$ \rightarrow $x = \frac{4}{12} = \frac{1}{3}$

20. Resuelve.

a)
$$x - (3 - x) = 7 - (x - 2)$$

b)
$$3x - (1 + 5x) = 9 - (2x + 7) - x$$

c)
$$(2x-5)-(5x+1)=8x-(2+7x)$$

$$\mathbf{d})9x + (x-7) = (5x+4) - (8-3x)$$

a)
$$x - (3 - x) = 7 - (x - 2)$$
 $\rightarrow x - 3 + x = 7 - x + 2$ $\rightarrow 3x = 12$ $\rightarrow x = \frac{12}{3} = 4$

b)
$$3x - (1 + 5x) = 9 - (2x + 7) - x \rightarrow 3x - 1 - 5x = 9 - 2x - 7 - x \rightarrow x = 3$$

c)
$$(2x-5)-(5x+1)=8x-(2+7x) \rightarrow 2x-5-5x-1=8x-2-7x \rightarrow$$

$$\rightarrow$$
 $-4 = 4x \rightarrow x = -1$

d)
$$9x + (x - 7) = (5x + 4) - (8 - 3x)$$
 $\rightarrow 9x + x - 7 = 5x + 4 - 8 + 3x$ \rightarrow $\rightarrow 2x = 3$ $\rightarrow x = \frac{3}{2}$

21. \blacksquare Halla x en cada caso:

a)
$$2(x+5) = 16$$

$$\mathbf{b})\,\mathbf{5}=\mathbf{3}\cdot(\mathbf{1}-2x)$$

c)
$$5(x-1) = 3x-4$$

d)
$$5x - 3 = 3 - 2(x - 4)$$

e)
$$10x - (4x - 1) = 5 \cdot (x - 1) + 7$$

f)
$$6(x-2) - x = 5(x-1)$$

$$\mathbf{g}) \, 7(x-1) - 4x - 4(x-2) = 2$$

h)
$$3(3x-2)-7x=6(2x-1)-10x$$

i)
$$4x + 2(x + 3) = 2(x + 2)$$

a)
$$2(x+5) = 16 \rightarrow 2x + 10 = 16 \rightarrow 2x = 6 \rightarrow x = 3$$

b)
$$5 = 3 \cdot (1 - 2x) \rightarrow 5 = 3 - 6x \rightarrow 2 = -6x \rightarrow x = -\frac{2}{6} = -\frac{1}{3}$$

c)
$$5(x-1) = 3x-4 \rightarrow 5x-5 = 3x-4 \rightarrow 2x = 1 \rightarrow x = \frac{1}{2}$$

d)
$$5x - 3 = 3 - 2(x - 4) \rightarrow 5x - 3 = 3 - 2x + 8 \rightarrow 7x = 14 \rightarrow x = 2$$

e)
$$10x - (4x - 1) = 5 \cdot (x - 1) + 7 \rightarrow 10x - 4x + 1 = 5x - 5 + 7 \rightarrow x = 1$$

f)
$$6(x-2) - x = 5(x-1) \rightarrow 6x - 12 - x = 5x - 5 \rightarrow 0x = 7$$
 No tiene solución.

g)
$$7(x-1) - 4x - 4(x-2) = 2 \rightarrow 7x - 7 - 4x - 4x + 8 = 2 \rightarrow -x = 1 \rightarrow x = -1$$

h)
$$3(3x-2) - 7x = 6(2x-1) - 10x \rightarrow 9x - 6 - 7x = 12x - 6 - 10x \rightarrow 0x = 0$$
 Es una identidad.

i)
$$4x + 2(x + 3) = 2(x + 2) \rightarrow 4x + 2x + 6 = 2x + 4 \rightarrow 4x = -2 \rightarrow x = -\frac{2}{4} = -\frac{1}{2}$$

Ecuaciones con denominadores

22. Resuelve estas ecuaciones:

a)
$$2x = \frac{1}{2}$$

$$b) 2x = -\frac{4}{3}$$

c)
$$3x - 1 = \frac{1}{2}$$

b)
$$2x = -\frac{4}{3}$$
 c) $3x - 1 = \frac{1}{2}$ d) $5x - 1 = x - \frac{1}{3}$

a)
$$x = \frac{1}{4}$$

b)
$$x = -\frac{4}{6} = -\frac{2}{3}$$

c)
$$3x = \frac{1}{2} + 1 \rightarrow 3x = \frac{3}{2} \rightarrow x = \frac{1}{2}$$

c)
$$3x = \frac{1}{2} + 1 \rightarrow 3x = \frac{3}{2} \rightarrow x = \frac{1}{2}$$
 d) $5x - x = 1 - \frac{1}{3} \rightarrow 4x = \frac{2}{3} \rightarrow x = \frac{1}{6}$

23. Resuelve las siguientes ecuaciones:

a)
$$\frac{x}{5} - 1 = \frac{3x}{5} - 3$$

a)
$$\frac{x}{5} - 1 = \frac{3x}{5} - 3$$
 b) $\frac{7x}{4} - \frac{1}{2} = \frac{3x}{4} + \frac{1}{2}$ c) $3x = \frac{x}{3} + \frac{4}{3}$

c)
$$3x = \frac{x}{3} + \frac{4}{3}$$

d)
$$\frac{x}{5} - 2 = x - \frac{1}{3}$$

a)
$$x - 5 = 3x - 15 \rightarrow 10 = 2x \rightarrow x = \frac{10}{2} = 5$$

b)
$$7x - 2 = 3x + 2 \rightarrow 7x - 3x = 2 + 2 \rightarrow 4x = 4 \rightarrow x = 1$$

c)
$$9x = x + 4 \rightarrow 9x - x = 4 \rightarrow 8x = 4 \rightarrow x = \frac{4}{8} = \frac{1}{2}$$

d)
$$3x - 30 = 15x - 5 \rightarrow 5 - 30 = 15x - 3x \rightarrow 12x = -25 \rightarrow x = -\frac{25}{12}$$

24. Resuelve siguiendo las indicaciones.

a)
$$\frac{x}{2} + \frac{4}{6} = \frac{1}{3}$$
 Multiplica los dos términos por 6.

b)
$$\frac{2x}{3} - \frac{3x}{4} = 1$$
 Multiplica los dos términos por 12.

c)
$$\frac{x}{2} - \frac{1}{2} = \frac{x}{5} + 1$$
 Multiplica los dos términos por 10.

d)
$$\frac{x}{3} + 1 = \frac{2x}{5} - \frac{1}{3}$$
 Multiplica los dos términos por 15.

a)
$$3x + 4 = 2 \rightarrow 3x = 2 - 4 = -2 \rightarrow x = -\frac{2}{3}$$

b)
$$8x - 9x = 1 \rightarrow -x = 1 \rightarrow x = -1$$

c)
$$5x - 5 = 2x + 10 \rightarrow 5x - 2x = 10 + 5 \rightarrow 3x = 15 \rightarrow x = 5$$

d)
$$5x + 15 = 6x - 5 \rightarrow 20 = x$$

Resuelve problemas

25. 📶 La suma de tres números consecutivos es 57. ¿Qué números son?

$$x + x + 1 + x + 2 = 57 \rightarrow 3x = 57 - 3 \rightarrow 3x = 54 \rightarrow x = \frac{54}{3} = 18$$

Los números son 18, 19 y 20.

26. I Si a un número le sumas su mitad y le restas 7, obtienes 17. ¿Qué número es?

$$x + \frac{x}{2} - 7 = 17 \rightarrow 2x + x - 14 = 34 \rightarrow 3x = 34 + 14 = 48 \rightarrow x = \frac{48}{3} = 16$$

El número buscado es 16.

27. Si a un número le sumas 20 obtienes el triple que si le restas 8. ¿De qué número se trata?

$$x + 20 = 3(x - 8) \rightarrow x + 20 = 3x - 24 \rightarrow 20 + 24 = 3x - x \rightarrow 44 = 2x \rightarrow x = \frac{44}{2} = 22$$

El número buscado es 22.

28. Al sumarle a un número 30 unidades se obtiene el mismo resultado que al multiplicarlo por cuatro. ¿Cuál es el número?

$$x + 30 = 4x \rightarrow 30 = 4x - x = 3x \rightarrow x = \frac{30}{3} = 10$$

El número buscado es 10.

29. Si añadieras 20 botes de kétchup a la estantería, habría el cuádruple que si retiraras 10. ¿Cuántos botes hay en la estantería?

$$x + 20 = 4(x - 10) \rightarrow x + 20 = 4x - 40 \rightarrow 60 = 3x \rightarrow x = \frac{60}{3} = 20$$

En la estantería hay 20 botes.

30. Un pastor tiene, entre ovejas y cabras, 231 cabezas. El número de ovejas supera en 83 al de cabras. ¿Cuántas cabras y cuantas ovejas hay en el rebaño?

Cabras
$$\rightarrow x$$

Ovejas
$$\rightarrow x + 83$$

$$x + x + 83 = 231 \rightarrow 2x = 231 - 83 = 148 \rightarrow x = \frac{148}{2} = 74$$

Por tanto, en el rebaño hay 74 cabras y 231 - 74 = 157 ovejas.

31. En un garaje hay 12 coches más que motos, y en total contamos 60 ruedas. ¿Cuántos coches y cuántas motos hay en el garaje?

	мотоѕ	COCHES
VEHÍCULOS	x	<i>x</i> + 12
RUEDAS	2x	4(x + 12)

$$2x + 4(x + 12) = 60 \rightarrow 2x + 4x + 48 = 60 \rightarrow 6x = 12 \rightarrow x = \frac{12}{6} = 2$$

En el garaje hay 2 motos y 14 coches.

32. ☐ Amaya ha encontrado en un cajón 13 monedas, unas de diez céntimos y otras de 20 céntimos, que valen en total 1,70 €. ¿Cuántas hay de cada clase?

$$10x + 20(13 - x) = 170 \rightarrow 10x + 260 - 20x = 170 \rightarrow 260 - 170 = 20x - 10x \rightarrow 90 = 10x \rightarrow x = 9$$

Hay 9 monedas de 10 céntimos y 4 monedas de 20 céntimos.

33. Alfredo tiene 36 cromos más que Iván, y si comprara 10 más, tendría el triple. ¿Cuántos cromos tiene cada uno?

Iván
$$\rightarrow x$$
 Alfredo $\rightarrow x + 36$

CROMOS DE ALFREDO $+ 10 = 3 \cdot 3$ CROMOS DE IVÁN

Iván $\rightarrow x$

Alfredo
$$\rightarrow x + 36$$

$$x + 36 + 10 = 3x \rightarrow 46 = 2x \rightarrow x = \frac{46}{2} = 23$$

Por tanto, Iván tiene 23 cromos y Alfredo tiene 23 + 36 = 59 cromos.

34. Una caja de pastas cuesta lo mismo que tres cajas de galletas. Por dos cajas de galletas y una de pastas he pagado 10 euros. ¿Cuánto cuesta una caja de pastas y cuánto una de galletas?

Galletas $\rightarrow x$

Pastas $\rightarrow 3x$

$$2x + 3x = 10 \rightarrow 5x = 10 \rightarrow x = \frac{10}{5} = 2$$

Una caja de galletas cuesta 2 euros y una caja de pastas cuesta $3 \cdot 2 = 6$ euros.

35. ☐ Una tableta de chocolate cuesta el doble que un paquete de arroz. Dos tabletas de chocolate y tres paquetes de arroz han costado 5,60 €. ¿Cuánto cuesta cada uno de esos artículos?

Arroz $\rightarrow x$

Tableta de chocolate $\rightarrow 2x$

$$2 \cdot 2x + 3x = 5{,}60 \rightarrow 7x = 5{,}60 \rightarrow x = \frac{5{,}60}{7} = 0{,}80$$

Cada paquete de arroz cuesta $0.80 \in y$ cada tableta de chocolate cuesta $2 \cdot 0.80 = 1.60$ euros.

36. ✓ Sabiendo que un yogur de frutas es 5 céntimos más caro que uno natural, y que seis de frutas y cuatro naturales me han costado 4,80 €, ¿cuánto cuesta un yogur natural? ¿Y uno de frutas?

NATURAL
$$\rightarrow x$$
 € FRUTAS $\rightarrow (x + 0.05)$ €

$$4x + 6(x + 0.05) = 4.8 \rightarrow 4x + 6x + 0.30 = 4.80 \rightarrow 10x = 4.50 \rightarrow x = 0.45$$

Un yogur natural cuesta 0.45 €. Uno de frutas cuesta 0.45 + 0.05 = 0.50 €.

37. ☐ Un kilo de fresas cuesta 1,80 € más que uno de naranjas. Cinco kilos de naranjas cuestan lo mismo que dos de fresas.

¿A cómo están las naranjas y a cómo las fresas?

Naranjas $\rightarrow x$

Fresas $\rightarrow x + 1.80$

$$5x = 2(x + 1,80) \rightarrow 5x - 2x = 3,60 \rightarrow x = \frac{3,60}{3} = 1,20$$

Un kilo de naranjas cuesta 1,20 € y un kilo de fresas cuesta 1,20 + 1,80 = 3 euros.

38. En un concurso de cincuenta preguntas, dan tres puntos por cada acierto y quitan dos por cada fallo. ¿Cuántas preguntas ha acertado un concursante que ha obtenido 85 puntos?

ACIERTOS
$$\rightarrow x$$
 FALLOS $\rightarrow 50 - x$

3 · ACIERTOS -2 · FALLOS $=$ PUNTOS OBTENIDOS

$$3x - 2(50 - x) = 85 \rightarrow 3x - 100 + 2x = 85 \rightarrow 5x = 185 \rightarrow x = \frac{185}{5} = 37$$

El concursante ha acertado 37 preguntas.

39. Eva tiene 9 años más que su primo Roberto y dentro de 3 años le doblará en edad. ¿Cuántos años tiene cada uno?

	EDAD HOY	EDAD DENTRO DE 3 AÑOS
ROBERTO	x	<i>x</i> + 3
EVA	<i>x</i> + 9	<i>x</i> + 12

$$x + 12 = 2(x + 3) \rightarrow x + 12 = 2x + 6 \rightarrow 12 - 6 = x \rightarrow x = 6$$

Roberto tiene 6 años y Eva tiene 6 + 9 = 15 años.

40. Rosa tiene cinco años más que su hermano Vicente, y hace tres años, le doblaba en edad. ¿Cuántos años tiene cada uno?

	EDAD HOY	EDAD HACE 3 AÑOS
VICENTE	x	
ROSA		
	EDAD HOY	EDAD HACE 3 AÑOS
VICENTE	EDAD HOY	

$$x + 2 = 2(x-3) \rightarrow x + 2 = 2x - 6 \rightarrow 8 = x$$

Vicente tiene 8 años y Rosa tiene 8 + 5 = 13 años.

41. Una parcela rectangular es 18 metros más larga que ancha, y tiene una valla de 156 metros. ¿Cuáles son las dimensiones de la parcela?

$$x = 2x + 2(x + 18) = 156 \rightarrow 4x = 156 - 36 = 120 \rightarrow x = \frac{120}{4} = 30$$

$$x + 18$$

La parcela mide 30 metros de ancho y 30 + 18 = 48 metros de largo.

42. El lado mediano de un triángulo escaleno mide 5 cm más que el menor y 2 cm menos que el mayor. El perímetro del triángulo mide 23 cm. ¿Cuánto mide cada lado?

$$x-5+x+x+2=23 \rightarrow 3x=26 \rightarrow x=\frac{26}{3}$$

El lado mediano mide $\frac{26}{3}$ cm, el lado pequeño mide $\frac{26}{3}$ - 5 = $\frac{11}{3}$ cm y el lado mayor mide $\frac{26}{3}$ + 2 = $\frac{32}{3}$ cm.

43. Si subo las escaleras de mi casa de dos en dos, doy cinco saltos más que si las subo de tres en tres. ¿Cuántos escalones tienen en total?

Escalones $\longrightarrow x$

Saltos de dos escalones $\longrightarrow \frac{x}{2}$

Saltos de tres escalones $\longrightarrow \frac{x}{3}$

$$\frac{x}{2} = \frac{x}{3} + 5 \rightarrow 3x = 2x + 30 \rightarrow x = 30$$

Las escaleras tienen en total 30 escalones.

- 44. Un camión cargado, a una velocidad media de 60 km/h, ha tardado en el viaje de ida de la ciudad A a la ciudad B dos horas más que en el viaje de vuelta, descargado, a una media de 80 kilómetros por hora.
 - a) ¿Cuánto ha tardado en la ida?

Tiempo en la ida (h) $\longrightarrow t$

Tiempo en la vuelta (h) $\longrightarrow t-2$

Distancia entre A y B \longrightarrow $\begin{cases} 60 \cdot t \\ 80 \cdot (t-2) \end{cases}$

b)¿Cuál es la distancia entra A y B?

a)
$$60t = 80(t-2) \rightarrow 160 = 20t \rightarrow t = 160/20 = 8$$

En la ida ha tardado 8 horas.

- b) La distancia entre A y B son $60 \cdot 8 = 480$ km.
- 45. Dos cestas contenían la misma cantidad de huevos. Se han pasado 8 de la primera a la segunda y ahora una tiene el triple que la otra. ¿Cuántos huevos hay en total?

Al pasar los huevos de una cesta a otra, en la primera cesta quedan x-8 huevos y en la segunda cesta quedan x+8 huevos.

$$x + 8 = 3(x - 8) \rightarrow x + 8 = 3x - 24 \rightarrow 24 + 8 = 2x \rightarrow x = \frac{32}{2} = 16$$

En cada cesta había 16 huevos, por tanto, en total hay 32 huevos.

Taller de Matemáticas

Página 190

Investiga y exprésate

• A continuación te presentamos un juego para dos jugadores. Ensaya, analízalo y describe razonadamente la estrategia ganadora.

El juego empieza colocando una ficha en la posición salida. Cada jugador, por turno, mueve la ficha, siempre hacia abajo, a una de las posiciones adyacentes. Gana el que deje la ficha en la posición llegada.

Ayuda:

- Juega varias veces con un compañero.
- Ensaya con tableros de menos puntos.
- ¿Desde qué posiciones ganas con seguridad?
- ¿Prefieres salir el primero o el segundo?

Para analizar el juego, empezamos estudiando situaciones más sencillas, con menos posiciones entre la salida y la llegada.

Las flechas rojas indican los movimientos del jugador que inicia el juego, y las azules, las respuestas del contrario.

Entrénate resolviendo problemas

Razona ayudándote de esquemas

• Úrsula y Marina viven en la misma casa y van al mismo colegio. Úrsula, cuando va sola, tarda 20 minutos de casa al colegio. Marina, a su paso, tarda 30 minutos en el mismo recorrido. ¿Cuánto tardará Úrsula en alcanzar a Marina, si esta ha salido hoy con 5 minutos de ventaja?

Ayuda: Sitúa la posición de cada una cada 5 minutos.

Úrsula tarda 10 minutos en recorrer la mitad del camino y Marina, 15 minutos. Por tanto, si Marina sale 5 minutos antes, Úrsula la alcanza a la mitad del camino, cuando lleva caminando 10 minutos.

• Estas 12 cerillas forman 3 cuadrados.

Añadiendo solo 3 cerillas más puedes obtener 6 cuadrados. ¿Sabrías hacerlo?

Autoevaluación

a) V + A

- **1.** En una granja hay vacas (V) y avestruces (A).
 - a) ¿Cuál de las siguientes expresiones indica el número de cabezas?
 - b);Y el número de alas?
 - c) ¿Y el número de patas?

2V + A	4V + 2A	V + A	2 <i>A</i>	V-2A	
	b) 2 <i>A</i>				c) 4 <i>V</i> + 2 <i>A</i>

2. Completa en tu cuaderno las tablas siguientes:

n	1	. 2	2	3	5	10	15
n ² +	3				28		
					10		
1	2	3	5		10	а	n
2	5	10	26	5 1	l 01		- 1
n	1	. 2	2	3	5	10	15
n ² +	3 4	į ,	7	12	28	103	228
1	2	3	5	10	0	a	n

3. Señala los monomios y di el grado de cada uno.

$$x^3 - 1$$

$$a^3 \cdot b$$

$$5x^2$$

$$x^2 + 3x + 2$$
 $\frac{2}{5}m^5$

$$\frac{2}{5}m^5$$

Monomios:

$$a^3 \cdot b$$
, grado 4

$$5x^2$$
, grado 2

$$\frac{2}{5}m^5$$
, grado 5

4. Calcula el valor de la expresión $\frac{3x^2-5x}{2}$:

a) Para
$$x = 0$$
.

b) Para
$$x = 2$$
.

5. Calcula.

a)
$$x \cdot 3x^3$$

b)
$$15a^3 : 3a^2$$

c)
$$(-2x) \cdot 3x^4$$

a)
$$3x^{4}$$

c)
$$-6x^5$$

6. Reduce.

a)
$$5a^3 - 2a^3$$

b)
$$x + 2 - x^2 + 2x + x^2$$

c)
$$(7x^2 - x) - (4x^2 + 2x)$$

d)
$$3(x^2-1)+2(x-1)$$

a)
$$3a^{3}$$

b)
$$3x + 2$$

c)
$$3x^2 - 3x$$

d)
$$3x^2 + 2x - 5$$

7. Separa las ecuaciones de las identidades.

$$a) 3x + 2x = 5x$$

$$b)2 + a = 7$$

c)
$$2 + 6a = 2 \cdot (1 + 3a)$$

$$d)x^2 = 9$$

Ecuaciones: 2 + a = 7; $x^2 = 9$

Identidades:
$$3x + 2x = 5x$$
; $2 + 6a = 2 \cdot (1 + 3a)$

8. Resuelve.

a)
$$3x - 5 + 2x = x + 3$$

b)
$$8 - 2(x + 1) = 5(x - 1) + 4$$

a)
$$3x - 5 + 2x = x + 3 \rightarrow 3x + 2x - x = 3 + 5 \rightarrow 4x = 8 \rightarrow x = \frac{8}{4} \rightarrow x = 2$$

b)
$$8 - 2(x + 1) = 5(x - 1) + 4 \rightarrow 8 - 2x - 2 = 5x - 5 + 4 \rightarrow 8 - 2 + 5 - 4 = 5x + 2x \rightarrow 7 = 7x \rightarrow x = 1$$

9. La suma de tres números naturales consecutivos es 54. ¿Cuáles son esos números?

$$x + x + 1 + x + 2 = 54 \rightarrow 3x = 54 - 3 = 51 \rightarrow x = \frac{51}{3} = 17$$

Los números son 17, 18 y 19.

10. Por tres kilos de naranjas y dos de peras, he pagado 6,40 €. ¿A cómo está el kilo de cada una de esas frutas, si el de peras es veinte céntimos más caro que el de naranjas?

 $x \rightarrow$ precio del kilo de naranjas

 $x + 0.20 \rightarrow$ precio del kilo de peras

Planteamos la ecuación:

$$3x + 2(x + 0.20) = 6.40 \rightarrow 3x + 2x + 0.40 = 6.40 \rightarrow 3x + 2x = 6.40 - 0.40 \rightarrow$$

 $\rightarrow 5x = 6 \rightarrow x = \frac{6}{5} \rightarrow x = 1.2$

Las naranjas están a 1,20 €/kg, y las peras, a 1,20 + 0,20 = 1,40 €/kg.

11. En una ferretería se venden clavos en cajas de tres tamaños diferentes. La caja grande contiene el doble de unidades que la mediana, y esta, el doble que la pequeña. Si compras una caja de cada tamaño, te llevas 350 unidades. ¿Cuántos clavos tiene cada caja?

Clavos en la caja pequeña $\rightarrow x$

Clavos en la caja mediana $\rightarrow 2x$

Clavos en la caja grande $\rightarrow 2 \cdot 2x = 4x$

$$x + 2x + 4x = 350 \rightarrow 7x = 350 \rightarrow x = \frac{350}{7} = 50$$

La caja pequeña contiene 50 clavos; la mediana, 100 clavos, y la grande, 200 clavos.