Language Technology

http://cs.lth.se/edan20/

Chapter 5: Counting Words

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 7, 2020

Text Segmentation

Figure: Latin inscriptions on the *lapis niger*. Corpus inscriptionum latinarum, CI, 1. Picture from Wikipedia

Getting the Words from a Text: Tokenization

Arrange a list of characters:

```
[1, i, s, t, '', o, f, '', c, h, a, r, a, c, t, e, r, s]
into words:
```

[list, of, characters]

Sometimes tricky:

- Dates: 28/02/96
- Numbers: 9,812.345 (English), 9 812,345 (French and German)
 9.812,345 (Old fashioned French)
- Abbreviations: km/h, m.p.h.,
- Acronyms: S.N.C.F.

Tokenizers use rules (or regexes) or statistical methods.

Tokenizing in Python: Using the Boundaries

Simple program

```
import re
```

```
one_token_per_line = re.sub('\s+', '\n', text)
```

Punctuation

```
import regex as re
```

```
spaced_tokens = re.sub('([\p{S}\p{P}])', r' \1 ', text)
one_token_per_line = re.sub('\s+', '\n', spaced_tokens)
```


Tokenizing in Python: Using the Content

Simple program

```
import regex as re
```

re.findall('\p{L}+', text)

Punctuation

 $spaced_tokens = re.sub('([\p{S}\p{P}])', r' \1', text) \\ re.findall('[\p{S}\p{P}\p{L}]+', spaced_tokens)$

Improving Tokenization

The tokenization algorithm is word-based and defines a content It does not work on nomenclatures such as Item #N23-SW32A, dates, or numbers

Instead it is possible to improve it using a boundary-based strategy with spaces (using for instance \s) and punctuation

But punctuation signs like commas, dots, or dashes can also be parts of tokens

Possible improvements using microgrammars

At some point, need of a dictionary:

 $Can't \rightarrow can n't, we'll \rightarrow we 'll$

 $J'aime \rightarrow j'$ aime but aujourd'hui

Sentence Segmentation

As for tokenization, segmenters use either rules (or regexes) or statistical methods.

Grefenstette and Tapanainen (1994) used the Brown corpus and experimented increasingly complex rules

Most simple rule: a period corresponds to a sentence boundary: 93.20% correctly segmented

Recognizing numbers:

$$[0-9]+(\setminus [0-9]+)+$$
 Fractions, dates $([+\setminus])?[0-9]+(\setminus)?[0-9]*%$ Percent $([0-9]+,?)+(\setminus [0-9]+|[0-9]+)*$ Decimal numbers

93.78% correctly segmented

Abbreviations

Common patterns (Grefenstette and Tapanainen 1994):

- single capitals: A., B., C.,
- letters and periods: U.S. i.e. m.p.h.,
- capital letter followed by a sequence of consonants: Mr. St. Assn.

Regex	Correct	Errors	Full stop
[A-Za-z]\.	1,327	52	14
$[A-Za-z] \setminus .([A-Za-z0-9] \setminus .)+$	570	0	66
$[A-Z]$ [bcdfghj-np-tvxz]+\.	1,938	44	26
Totals	3,835	96	106

Correct segmentation increases to 97.66% With an abbreviation dictionary to 99.07%

Counting Words With Unix Tools

- 1 tr -cs 'A-Za-z' '\n' <input_file |
 Tokenize the text in input_file, where tr behaves like Perl tr: We have one word per line and the output is passed to the next command.
- ② tr 'A-Z' 'a-z' |

 Translate the uppercase characters into lowercase letters and pass the output to the next command.
- Sort | Sort the words. The identical words will be grouped in adjacent lines.
- uniq -c | Remove repeated lines. The identical adjacent lines will be replaced with one single line. Each unique line in the output will be preceded by the count of its duplicates in the input file (-c).
- Sort -rn | Sort in the reverse (-r) numeric (-n) order: Most frequent work
- 6 head -5
 Print the five first lines of the file (the five most frequent words)

Counting Words in Python

```
def tokenize(text):
    words = re.findall('\p{L}+', text)
    return words
def count_unigrams(words):
    frequency = {}
    for word in words:
        if word in frequency:
            frequency[word] += 1
        else:
            frequency[word] = 1
    return frequency
```


Counting Words in Python (Cont'd)

```
if __name__ == '__main__':
    text = sys.stdin.read().lower()
    words = tokenize(text)
    frequency = count_unigrams(words)
    for word in sorted(frequency.keys()):
        print(word, '\t', frequency[word])
```


Posting Lists

Many websites, such as Wikipedia, index their texts using an inverted index.

Each word in the dictionary is linked to a posting list that gives all the documents where this word occurs and its positions in a document.

Collection

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

Index	
Words	Posting lists
America	(D1, 7)
Chrysler	$(D1,1)\to(D2,1)$
in	$(D1, 5) \rightarrow (D2, 5)$
investments	$(D1, 4) \rightarrow (D2, 4)$
Latin	(D1, 6)
major	(D2, 3)
Mexico	(D2, 6)
new	(D1, 3)
plans	$(D1, 2) \rightarrow (D2, 2)$

Pierre Nuques

Inverted Index (Source Apple)

http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation@UserExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchKitConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchWittConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchWittConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchWittConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchWittConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchWittConcepts/index.http://developer.apple.com/library/mac/documentation/userExperience/Conceptual/SearchWittConceptu

Information Retrieval: The Vector Space Model

The vector space model represents a document in a space of words.

Documents \Words	w_1	<i>W</i> ₂	W ₃	 W _m
D_1 D_2	,	$C(w_2, D_1)$ $C(w_2, D_2)$	· · · · · · · · · · · · · · · · · · ·	$C(w_m, D_1)$ $C(w_m, D_2)$
 D _n	$C(w_1, D_n)$	$C(w_2, D_n)$	$C(w_3, D_n)$	 $C(w_m, D_n)$

It was created for information retrieval to compute the similarity of two documents or to match a document and a query.

We compute the similarity of two documents through their dot

The Vector Space Model: Example

A collection of two documents D1 and D2:

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

The vectors representing the two documents:

D.	america	chrysler	in	investments	latin	major	mexico	new	plans
1	1	1	1	1	1	0	0	1	1
2	0	1	1	1	0	1	1	0	1

The vector space model represents documents as bags of words (BOW) that do not take the word order into account.

The dot product is
$$\mathbf{D1} \cdot \mathbf{D2} = 0 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 1 = 4$$

Their cosine is
$$\frac{D1 \cdot D2}{||D1||.||D2||} = \frac{4}{\sqrt{7}.\sqrt{6}} = 0.62$$

Giving a Weight

Word clouds give visual weights to words

$TF \times IDF$

The frequency alone might be misleading

Document coordinates are in fact $tf \times idf$: Term frequency by inverted document frequency.

Term frequency $tf_{i,j}$: frequency of term j in document i

Inverted document frequency: $idf_j = \log(\frac{N}{n_j})$

Document Similarity

Documents are vectors where coordinates could be the count of each word: $\mathbf{d} = (C(w_1), C(w_2), C(w_3), ..., C(w_n))$

The similarity between two documents or a query and a document is given by their cosine:

$$\cos(\mathbf{q}, \mathbf{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}.$$

Dimension Reduction

One-hot encoding of TFIDF encoding can produce very long vectors: Imagine a vocabulary one one million words per language with 100 languages.

A solution is to produce dense vectors also called word embeddings using a dimension reduction

This reduction is very close to principal component analysis or singular value decomposition

It can be automatically obtained through training or initialized with pretrained vectors

A Data Set: Salammbô

A corpus is a collection - a body - of texts.

Supervised Learning

Letter counts from Salammbô

Chapter	French		English	
	# characters	# A	# characters	# A
Chapter 1	36,961	2,503	35,680	2,217
Chapter 2	43,621	2,992	42,514	2,761
Chapter 3	15,694	1,042	15,162	990
Chapter 4	36,231	2,487	35,298	2,274
Chapter 5	29,945	2,014	29,800	1,865
Chapter 6	40,588	2,805	40,255	2,606
Chapter 7	75,255	5,062	74,532	4,805
Chapter 8	37,709	2,643	37,464	2,396
Chapter 9	30,899	2,126	31,030	1,993
Chapter 10	25,486	1,784	24,843	1,627
Chapter 11	37,497	2,641	36,172	2,375
Chapter 12	40,398	2,766	39,552	2,560
Chapter 13	74,105	5,047	72,545	4,597
Chapter 14	76,725	5,312	75,352	4,871
Chapter 15	18,317	1,215	18,031	1,119

Data set: https://github.com/pnugues/ilppp/tree/master programs/ch04/salammbo

Principal Component Analysis

We will use a small dataset to explain principal component analysis: The characters in *Salammbô*

Chapter Chap																													
Column C	Ch.	,5,	.р.	.6.	.q.	'e'	'F'	.9.	ъ.	7	7	'k'	- 4	'm'	'n'	.0,	,b,	,d,	- 7	15	't'	.0.	ν.	'W'	,×,	- 'y'	'Z'	.9.	.9.
0.5 10.62 12.2 22.5 24.6 10.7 10.7 25.5 25	01 fr	2503	365	857	1151	4312	264	349	295	1945	65	- 4	1946	726	1896	1372	789	248	1948	2996	1938	1792	414	0	129	94	20	128	36
04 F 2487 303 864 137 4189 314 231 227 2028 137 31 1796 72 1989 1314 31 27 100 43 105 75 75 105 75 1	02 fr	2992	391	1006	1388	4993	319	360	350	2345	81	6	2128	823	2308	1560	977	281	2376	3454	2411	2069	499	0	175	89	23	136	50
Section Conference Confer	03 fr	1042	152	326	489	1785	136	122	126	784	41	7	816	397	778	612	315	102	792	1174	856	707	147	0	42	31	7	39	9
OF 1205 2006 2008 2010 1206 2005 2008 2010 1206 2015 2010 20	04 fr	2487	303	864	1137	4158	314	331	287	2028	57	3	1796	722	1958	1318	773	274	2000	2792	2031	1734	422	0	138	81	27	110	43
07 5062 706 1707 2388 861 623 622 623 624 625	05 fr	2014	268	645	949	3394	223	215	242	1617	67	3	1513	651	1547	1053	672	166	1601	2192	1736	1396	315	1	83	67	18	90	67
0 0 0 0 0 0 0 0 0 0	06 fr	2805	368	910	1266	4535	332	384	378	2219	97	3	1900	841	2179	1569	868	285	2205	3065	2293	1895	453	0	151	80	39	131	42
0 7 210 29 29 771 92 29 29 272 29 29 29 29 29 29 20 20 21 21 21 20 20 21 21 21 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	07 fr	5062	706	1770	2398	8512	623	622	620	4018	126	19	3726	1596	3851	2823	1532	468	4015	5634	4116	3518	844	0	272	148	71	246	50
10 176 176 249 546 865 302 179 242 215 139 66 5 1402 598 124 245 159 150 150 145 130 150 1	08 fr	2643	325	869	1085	4229	307	317	359	2102	85	4	1857	811	2041	1367	833	239	2132	2814	2134	1788	437	0	135	64	30	130	43
11 7 2041 31 1217 1079 4018 238 277 438 288 277 330 1885 144 0 1886 900 1966 1356 763 230 1912 2564 2218 1737 425 0 114 61 25 101 40 127 127 127 127 127 127 127 127 127 127	09 fr	2126	289	771	920	3599	278	289	279	1805	52	6	1499	619	1711	1130	651	187	1719	2404	1763	1448	348	0	119	58	20	90	24
12 F 276 373 978 123 277 413 297 398 124 416 299 390 390 390 390 273 68 2 1965 812 298 141 868 272 276 1313 274 1923 455 0 189 98 37 129 33 13 F 596 775 273 678 648 278 145 2	10 fr	1784	249	546	805	3002	179	202	215	1319	60	5	1462	598	1246	922	557	172	1242	1769	1423	1191	270	0	65	61	11	73	18
13 F 9647 755 1730 2273 8678 648 866 642 380 174 22 3766 1807 3864 2756 1507 485 425 4081 1809 487 3480 1807 62 0 281 145 4 22 375 141 14 12 38 141 147 5312 415 141 141 141 141 141 141 141 141 141												0												0					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 fr	2766	373	935	1237	4618	329	350	349	2273	65	2	1955	812	2285	1419	865	272	2276	3131	2274	1923	455	0	149	98	37	129	33
15 125 173 402 582 216 150 134 148 90 27 6 950 387 90 607 417 103 905 136 108 905 90 60 83 36 3 48 20	13 fr	5047	725	1730	2273	8678	648	566	642	3940	140	22	3746	1597	3984	2736	1550	425	4081	5599	4387	3480	767	0	288	119	41	209	55
01 m 2217 451 795 1316 5867 586 662 2050 1823 22 200 1254 686 1851 1897 525 15 1764 1842 2847 764 286 683 20 401 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										4278		2			4255	2713											41		
	15 fr	1215	173	402	582	2195	150	134	148	969	27	6	950	387	906	697	417	103	985	1395	1037	893	206	0	63	36	3	48	20
03 04 05 05 05 05 05 05 05	01 en	2217	451	729	1316	3967	596	662	2060	1823	22	200	1204	656	1851	1897	525	19	1764	1942	2547	704	258	653	29	401	18	0	0
04 = 2274 454 736 1315 3814 595 599 1879 1885 2 7 188 187 2 189 1873 696 171 1865 514 33 1726 1888 7 187 64 745 26 663 60 467 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											13																	0	0
	03 en																										15	0	0
06 = 2006 518 797 1509 4237 687 699 2254 2007 26 216 1239 783 2174 2231 613 25 1931 2192 265 1899 277 733 49 464 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											22																	0	0
07 = 405 013 1221 2081 7834 1306 1183 4379 2838 24 10 24 12 24 10	05 en										7																	0	0
08 = 286 431 702 1416 4014 621 624 2171 2011 24 216 152 748 2085 1947 527 33 1915 1966 2765 789 266 605 65 379 24 0 0 0 0 0 0 0 = 1933 408 653 1063 379 575 571 7166 148 151 468 16 29 178 58 58 58 58 58 58 58 58 58 58 58 58 58																												0	0
00 - 1993 408 6053 1006 3173 575 517 1766 1648 16 146 881 629 1728 1698 442 20 1661 18076 2442 683 208 500 50 25 328 18 0 0 0 11 cm 1627 396 451 296 452 207 1807 1807 1807 1807 1807 1807 1807 18																												0	0
10 m 1077 399 481 977 643 1938 2690 477 409 1475 1106 7 131 789 506 1266 1369 125 23 1211 1344 1799 502 181 410 31 255 20 0 0 1 12 m 256 250 250 250 250 250 250 250 250 250 250																												0	0
11 cm 2275 437 643 1364 3790 610 644 2277 1830 16 217 1122 799 1833 1948 486 23 1720 1945 2424 787 246 632 20 457 39 0 0 12 cm 250 499 757 156 4331 677 675 65 2348 033 28 234 1102 746 2152 2105 581 291 291 2152 304 67 750 721 35 418 40 0 0 13 cm 4597 997 1462 2690 7963 1254 1201 4278 3634 39 42 2281 1493 3774 3911 1099 49 2577 3894 556 1179 437 1374 77 673 49 0 0 14 cm 450 450 450 450 450 450 450 450 450 450											16																	0	0
12 en 2560 489 757 1566 4331 677 650 2348 2033 28 234 1102 746 2125 2105 581 32 1939 2152 3046 750 278 721 35 418 40 0 0 0 13 en 4597 987 1462 2589 789 1104 2589 789 4120 1478 3643 39 412 2281 1493 3774 3911 1599 49 379 3044 5580 1194 437 1374 77 673 49 0 0 14 en 4671 948 1439 2799 3179 1387 1140 4534 3829 35 447 2281 1548 4053 3999 1019 35 3699 3046 588 1890 539 3137 00 856 49 0 0											7																	0	0
13 ⁻ en 4597 987 1462 2698 7963 1254 1201 4278 3634 39 432 2281 1493 3774 3911 109 49 3577 3894 5540 1379 437 1374 77 673 49 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																												0	0
14 en 4871 948 1439 2799 8179 1335 1140 4534 3829 36 427 2218 1534 4053 3989 1019 36 3689 3946 5858 1490 539 1377 90 856 49 0 0																												0	0
																												0	0
15_en 1119 229 335 683 1994 323 281 1108 912 9 112 579 351 924 1004 305 9 863 997 1330 310 108 330 14 150 9 0 0																												0	0
	15_en	1119	229	335	683	1994	323	281	1108	912	9	112	579	351	924	1004	305	9	863	997	1330	310	108	330	14	150	9	0	0

Table: Character counts per chapter, where the fr and en suffixes designate the language, either French or English

Each chapter is modeled by a vector of characters.

Character Counts

Table: Character counts per chapter in French, left part, and English, right part

Each characters is modeled by a vector of chapters.

Singular Value Decomposition

There are as many as 40 characters: the 26 unaccented letters from a to z and the 14 French accented letters

Singular value decomposition (SVD) reduces these dimensions, while keeping the resulting vectors semantically close

X is the $m \times n$ matrix of the letter counts per chapter, in our case, m = 30 and n = 40.

We can rewrite X as:

$$X = U \Sigma V^{\mathsf{T}}$$

where **U** is a matrix of dimensions $m \times m$, Σ , a diagonal matrix of dimensions $m \times n$, and **V**, a matrix of dimensions $n \times n$.

The diagonal terms of Σ are called the **singular values** and are traditionally arranged by decreasing value.

We keep the highest values and set the rest to zero.

Code Example

Jupyter Notebook 3.1-SVD

Word Sequences

Words have specific contexts of use.

Pairs of words like *strong* and *tea* or *powerful* and *computer* are not random associations.

Psychological linguistics tells us that it is difficult to make a difference between *writer* and *rider* without context

A listener will discard the improbable *rider of books* and prefer *writer of books*

A language model is the statistical estimate of a word sequence.

Originally developed for speech recognition

The language model component enables to predict the next word given a sequence of previous words: the writer of books, novels, poetry, etc. and not the writer of hooks, nobles, poultry, ...

N-Grams

The types are the distinct words of a text while the tokens are all the words or symbols.

The phrases from *Nineteen Eighty-Four War is peace*

Freedom is slavery

Ignorance is strength

have 9 tokens and 7 types.

Unigrams are single words

Bigrams are sequences of two words

Trigrams are sequences of three words

Trigrams

Word	Rank	More likely alternatives
We	9	The This One Two A Three Please In
need	7	are will the would also do
to	1	
resolve	85	have know do
all	9	the this these problems
of	2	the
the	1	
important	657	document question first
issues	14	thing point to
within	74	to of and in that
the	1	
next	2	company
two	5	page exhibit meeting day
days	5	weeks years pages months

Counting Bigrams With Unix Tools

- 1 tr -cs 'A-Za-z' '\n' < input_file > token_file
 Tokenize the input and create a file with the unigrams.
- tail +2 < token_file > next_token_file Create a second unigram file starting at the second word of the first tokenized file (+2).
- paste token_file next_token_file > bigrams Merge the lines (the tokens) pairwise. Each line of bigrams contains the words at index i and i+1 separated with a tabulation.
- And we count the bigrams as in the previous script.

Counting Bigrams in Python

```
bigrams = [tuple(words[inx:inx + 2])
           for inx in range(len(words) - 1)]
The rest of the count_bigrams function is nearly identical to
count_unigrams. As input, it uses the same list of words:
def count_bigrams(words):
    bigrams = [tuple(words[inx:inx + 2])
                for inx in range(len(words) - 1)]
    frequencies = {}
    for bigram in bigrams:
        if bigram in frequencies:
             frequencies[bigram] += 1
        else:
             frequencies[bigram] = 1
    return frequencies
```

Probabilistic Models of a Word Sequence

$$P(S) = P(w_1, ..., w_n),$$

= $P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)...P(w_n|w_1, ..., w_{n-1}),$
= $\prod_{i=1}^{n} P(w_i|w_1, ..., w_{i-1}).$

The probability P(It was a bright cold day in April) from Nineteen Eighty-Four corresponds to

It to begin the sentence, then was knowing that we have It before, then a knowing that we have It was before, and so on until the end of the sentence.

$$P(S) = P(It) \times P(was|It) \times P(a|It, was) \times P(bright|It, was, a) \times P(April|It, was, a, bright, ..., in).$$

Approximations

Bigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-1}),$$

Trigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1}).$$

Using a trigram language model, P(S) is approximated as:

$$P(S) \approx P(It) \times P(was|It) \times P(a|It, was) \times P(bright|was, a) \times ... \times P(April|day, in).$$

Maximum Likelihood Estimate

Bigrams:

$$P_{MLE}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{\sum\limits_{w} C(w_{i-1},w)} = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}.$$

Trigrams:

$$P_{MLE}(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i)}{C(w_{i-2},w_{i-1})}.$$

Conditional Probabilities

A common mistake in computing the conditional probability $P(w_i|w_{i-1})$ is to use

$$\frac{C(w_{i-1}, w_i)}{\#bigrams}.$$

This is not correct. This formula corresponds to $P(w_{i-1}, w_i)$. The correct estimation is

$$P_{MLE}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{\sum\limits_{w} C(w_{i-1}, w)} = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}.$$

Proof:

$$P(w_1, w_2) = P(w_1)P(w_2|w_1) = \frac{C(w_1)}{\# words} \times \frac{C(w_1, w_2)}{C(w_1)} = \frac{C(w_1, w_2)}{\# words}$$

Training the Model

The model is trained on a part of the corpus: the **training set** It is tested on a different part: the **test set**

The vocabulary can be derived from the corpus, for instance the 20,000 most frequent words, or from a lexicon

It can be closed or open

A closed vocabulary does not accept any new word

An open vocabulary maps the new words, either in the training or test sets, to a specific symbol, <UNK>

Probability of a Sentence: Unigrams

<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>

Wi	$C(w_i)$	#words	$P_{MLE}(w_i)$
<s></s>	7072	_	
a	2482	108140	0.023
good	53	108140	0.00049
deal	5	108140	$4.62 \ 10^{-5}$
of	3310	108140	0.031
the	6248	108140	0.058
literature	7	108140	$6.47 \ 10^{-5}$
of	3310	108140	0.031
the	6248	108140	0.058
past	99	108140	0.00092
was	2211	108140	0.020
indeed	17	108140	0.00016
already	64	108140	0.00059
being	80	108140	0.00074
transformed	1	108140	$9.25 10^{-6}$
in	1759	108140	0.016
this	264	108140	0.0024
way	122	108140	0.0011
	7072	108140	< □0:065 [□]

Probability of a Sentence: Bigrams

<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>

w_{i-1} , w_i	$C(w_{i-1}, w_i)$	$C(w_{i-1})$	$P_{MLE}(w_i w_{i-1})$
<s> a</s>	133	7072	0.019
a good	14	2482	0.006
good deal	0	53	0.0
deal of	1	5	0.2
of the	742	3310	0.224
the literature	1	6248	0.0002
literature of	3	7	0.429
of the	742	3310	0.224
the past	70	6248	0.011
past was	4	99	0.040
was indeed	0	2211	0.0
indeed already	0	17	0.0
already being	0	64	0.0
being transformed	0	80	0.0
transformed in	0	1	0.0
in this	14	1759	0.008
this way	3	264	0.011
way	18	122	0.148

Sparse Data

Given a vocabulary of 20,000 types, the potential number of bigrams is $20,000^2 = 400,000,000$ With trigrams $20,000^3 = 8,000,000,000,000$

- Methods:
 - Laplace: add one to all counts
 - Linear interpolation:

$$P_{DelInterpolation}(w_n|w_{n-2},w_{n-1}) = \lambda_1 P_{MLE}(w_n|w_{n-2}w_{n-1}) + \lambda_2 P_{MLE}(w_n|w_{n-1}) + \lambda_3 P_{MLE}(w_n)$$

- Good-Turing: The discount factor is variable and depends on the number of times a n-gram has occurred in the corpus.
- Back-off

Laplace's Rule

$$P_{Laplace}(w_{i+1}|w_i) = \frac{C(w_i, w_{i+1}) + 1}{\sum\limits_{w} (C(w_i, w) + 1)} = \frac{C(w_i, w_{i+1}) + 1}{C(w_i) + Card(V)},$$

w_i , w_{i+1}	$C(w_i, w_{i+1}) + 1$	$C(w_i) + Card(V)$	$P_{Lap}(w_{i+1} w_i)$
<s> a</s>	133 + 1	7072 + 8635	0.0085
a good	14 + 1	2482 + 8635	0.0013
good deal	0 + 1	53 + 8635	0.00012
deal of	1 + 1	5 + 8635	0.00023
of the	742 + 1	3310 + 8635	0.062
the literature	1 + 1	6248 + 8635	0.00013
literature of	3 + 1	7 + 8635	0.00046
of the	742 + 1	3310 + 8635	0.062
the past	70 + 1	6248 + 8635	0.0048
past was	4 + 1	99 + 8635	0.00057
was indeed	0 + 1	2211 + 8635	0.000092
indeed already	0 + 1	17 + 8635	0.00012
already being	0 + 1	64 + 8635	0.00011
being transformed	0 + 1	80 + 8635	0.00011
transformed in	0 + 1	1 + 8635	0.00012
in this	14 + 1	1759 + 8635	0.0014
this way	3 + 1	264 + 8635	0.00045
way	18 + 1	122 + 8635	0.0022

Good-Turing

Laplace's rule shifts an enormous mass of probability to very unlikely bigrams. Good—Turing's estimation is more effective Let's denote N_c the number of n-grams that occurred exactly c times in the corpus.

 N_0 is the number of unseen n-grams, N_1 the number of n-grams seen once, N_2 the number of n-grams seen twice The frequency of n-grams occurring c times is re-estimated as:

$$c* = (c+1)\frac{E(N_{c+1})}{E(N_c)},$$

Unseen n-grams: $c* = \frac{N_1}{N_0}$ and N-grams seen once: $c* = \frac{2N_2}{N_1}$.

Good-Turing for *Nineteen eighty-four*

Nineteen eighty-four contains 37,365 unique bigrams and 5,820 bigram seen twice.

Its vocabulary of 8,635 words generates $86352^2 = 74.563.225$ bigrams whose 74.513.701 are unseen.

New counts:

• Unseen bigrams:
$$\frac{37,365}{74,513,701} = 0.0005$$
.
• Unique bigrams: $2 \times \frac{5820}{37,365} = 0.31$.

• Unique bigrams:
$$2 \times \frac{5820}{37.365} = 0.31$$
.

Etc.

Freq. of occ.	N_{c}	C*	Freq. of occ.	N_c	C*
0	74,513,701	0.0005	5	719	3.91
1	37,365	0.31	6	468	4.94
2	5,820	1.09	7	330	6.06
3	2,111	2.02	8	250	6 4
4	1,067	3.37	9	179	8 93
-				1	

Backoff

If there is no bigram, then use unigrams:

$$P_{\mathsf{Backoff}}(w_i|w_{i-1}) = \begin{cases} \tilde{P}(w_i|w_{i-1}), & \text{if } C(w_{i-1},w_i) \neq 0, \\ \alpha P(w_i), & \text{otherwise.} \end{cases}$$

$$P_{\mathsf{Backoff}}(w_i|w_{i-1}) = \begin{cases} P_{\mathsf{MLE}}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}, & \text{if } C(w_{i-1},w_i) \neq 0, \\ P_{\mathsf{MLE}}(w_i) = \frac{C(w_i)}{\# \mathsf{words}}, & \text{otherwise.} \end{cases}$$

Backoff: Example

w_{i-1}, w_i	$C(w_{i-1}, w_i)$		$C(w_i)$	$P_{Backoff}(w_i w_{i-1})$
<g></g>			7072	_
<s> a</s>	133		2482	0.019
a good	14		53	0.006
good deal	0	backoff	5	$4.62 \ 10^{-5}$
deal of	1		3310	0.2
of the	742		6248	0.224
the literature	1		7	0.00016
literature of	3		3310	0.429
of the	742		6248	0.224
the past	70		99	0.011
past was	4		2211	0.040
was indeed	0	backoff	17	0.00016
indeed already	0	backoff	64	0.00059
already being	0	backoff	80	0.00074
being transformed	0	backoff	1	$9.25 \ 10^{-6}$
transformed in	0	backoff	1759	0.016
in this	14		264	0.008
this way	3		122	0.011
way	18		7072	0.148

The figures we obtain are not probabilities. We can use the Good-Turing technique to discount the bigrams and then scale the unigram probabilities. This is the Katz backoff.

Quality of a Language Model (I)

The quality of a language model corresponds to its accuracy in predicting word sequences: $P(w_1, ..., w_n)$: The higher, the better.

We derive the model (the statistics) from a training set and evaluate this quality on a long unseen sequence sequence: The test set.

With the n-gram approximations, we have:

$$P(w_1, ..., w_n) = \prod_{i=1}^n P(w_i)$$
 Unigrams
$$P(w_1, ..., w_n) = P(w_1) \prod_{i=2}^n P(w_i | w_{i-1})$$
 Bigrams
$$P(w_1, ..., w_n) = P(w_1) P(w_2 | w_1) \prod_{i=2}^n P(w_i | w_{i-2}, w_{i-1})$$
 Trigrams

etc.

Quality of a Language Model (II)

The probability value will depend on the length of the sequence. We take the geometric mean instead to standardize across different lengths:

$$\sqrt[n]{\prod_{i=1}^{n} P(w_i)}$$
 Unigrams $\sqrt[n]{P(w_1) \prod_{i=2}^{n} P(w_i|w_{i-1})}$ Bigrams

In practice, we use the log to compute the per word probability of a word sequence, the entropy rate:

$$H(L) = -\frac{1}{n} \log_2 P(w_1, ..., w_n).$$

Here the lower, the better

The figures are usually presented with the perplexity metric:

Mathematical Background

Entropy rate: $H_{rate} = -\frac{1}{n} \sum_{w_1,...,w_n \in L} p(w_1,...,w_n) \log_2 p(w_1,...,w_n)$. Cross entropy:

$$H(p, m) = -\frac{1}{n} \sum_{w_1,...,w_n \in L} p(w_1,...,w_n) \log_2 m(w_1,...,w_n).$$

We have:

$$H(p,m) = \lim_{n \to \infty} -\frac{1}{n} \sum_{w_1,...,w_n \in L} p(w_1,...,w_n) \log_2 m(w_1,...,w_n),$$

=
$$\lim_{n \to \infty} -\frac{1}{n} \log_2 m(w_1,...,w_n).$$

We compute the cross entropy on the complete word sequence of a test set, governed by p, using a bigram or trigram model, m, from set.

Other Statistical Formulas

• Mutual information (The strength of an association):

$$I(w_i, w_j) = \log_2 \frac{P(w_i, w_j)}{P(w_i)P(w_j)} \approx \log_2 \frac{N \cdot C(w_i, w_j)}{C(w_i)C(w_j)}.$$

• T-score (The confidence of an association):

$$t(w_i, w_j) = \frac{mean(P(w_i, w_j)) - mean(P(w_i))mean(P(w_j))}{\sqrt{\sigma^2(P(w_i, w_j)) + \sigma^2(P(w_i)P(w_j))}}$$

$$\approx \frac{C(w_i, w_j) - \frac{1}{N}C(w_i)C(w_j)}{\sqrt{C(w_i, w_j)}}.$$

T-Scores with Word set

Word	Frequency	Bigram set + word	t-score
ир	134,882	5512	67.980
а	1,228,514	7296	35.839
to	1,375,856	7688	33.592
off	52,036	888	23.780
out	12,3831	1252	23.320

Source: Bank of English

Mutual Information with Word surgery

Word	Frequency	Bigram word + surgery	Mutual info
arthroscopic	3	3	11.822
pioneeing	3	3	11.822
reconstructive	14	11	11.474
refractive	6	4	11.237
rhinoplasty	5	3	11.085

Source: Bank of English

Mutual Information in Python

T-Scores in Python

Word Embeddings

We can extend singular value decomposition from characters to words. The rows will represent the words in the corpus, and the columns, documents.

We can replace documents by a context of a few words to the left and to the right of the focus word: w_i .

A context C_j is then defined by a window of 2K words centered on the word:

$$W_{i-K}, W_{i-K+1}, ..., W_{i-1}, W_{i+1}, ..., W_{i+K-1}, W_{i+K},$$

where the context representation uses a bag of words.

We can even reduce the context to a single word to the left or to the right of w_i and use bigrams.

Word Embeddings

We store the word-context pairs (w_i, C_j) in a matrix.

Each matrix element measures the association strength between word w_i and context C_j , for instance mutual information.

Mutual information, often called pointwise mutual information (the strength of an association) is defined as:

$$I(w_i, w_j) = \log_2 \frac{P(w_i, w_j)}{P(w_i)P(w_j)} \approx \log_2 \frac{N \cdot C(w_i, w_j)}{C(w_i)C(w_j)}.$$

D#\Words	C_1	C_2	<i>C</i> ₃	 Cn
w_1	$MI(w_1, C_1)$	$MI(w_1, C_2)$	$MI(w_1, C_3)$	 $MI(w_1, C_n)$
<i>W</i> ₂	$MI(w_2, C_1)$	$MI(w_2, C_2)$	$MI(w_2, C_3)$	 $MI(w_2, C_n)$
<i>W</i> 3	$MI(w_3, C_1)$	$MI(w_3, C_2)$	$MI(w_3, C_3)$	 $MI(w_3, C_n)$
		***		 SETT
Wm	$MI(w_m, C_1)$	$MI(w_m, C_2)$	$MI(w_m, C_3)$	 M. () =
				ON

Word Embeddings

We compute the word embeddings with a singular value decomposition, where we truncate the matrix $\mathbf{U}\Sigma$ to 50, 100, 300, or 500 dimensions. The word embeddings are the rows of this matrix.

We usually measure the similarity between two embeddings ${\bf u}$ and ${\bf v}$ with the cosine similarity:

$$\mathsf{cos}\big(u,v\big) = \frac{u \cdot v}{||u|| \cdot ||v||},$$

ranging from -1 (most dissimilar) to 1 (most similar) or with the cosine distance ranging from 0 (closest) to 2 (most distant):

$$1 - \cos(\mathbf{u}, \mathbf{v}) = 1 - \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||}.$$

Popular Word Embeddings

Embeddings from large corpora are obtained with iterative techniques Some popular embedding algorithms with open source programs:

word2vec: https://github.com/tmikolov/word2vec

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

ELMo: https://allennlp.org/elmo

fastText: https://fasttext.cc/

To derive word embeddings, you will have to apply these programs on a very large corpus

Embeddings for many languages are also publicly available. You just

download them

gensim is a Python library to create word embeddings from a continuous https://radimrehurek.com/gensim/index.html