ee101_reso_rlc_1.sqproj

Figure 1: Series RLC circuit driven by a sinusoidal source.

Description

The current I in the series RLC circuit shown in Fig. 1 is given by

$$\mathbf{I} = \frac{\mathbf{V}_s}{R + j(\omega L - 1/\omega C)}.$$
 (1)

The following results hold for this circuit in the sinusoidal steady state:

- (a) The total impedance seen by the source is minimum at $\omega_0 = 1/\sqrt{LC}$ rad/s, and is equal to R, giving $|\mathbf{I}|_{\text{max}} = \mathbf{V}_s/R$.
- (b) The bandwidth of the circuit (i.e., $B = \omega_2 \omega_1$, where ω_1 and ω_2 are frequencies at which $|\mathbf{I}| = |\mathbf{I}|_{\text{max}}/\sqrt{2}$) is given by B = R/L.
- (c) The quality $Q = \frac{\omega_0}{B} = \frac{1}{R} \sqrt{\frac{L}{C}}$ is a measure of the sharpness of the $|\mathbf{I}|$ versus frequency curve. The quality of the circuit can be visually judged by plotting $|\mathbf{I}|$ versus $\log \omega$ (or $\log f$).
- (d) For $\omega \ll \omega_0$, the total impedance is dominated by the capacitor, i.e., $\mathbf{Z} \approx 1/j\omega C$. Almost the entire source voltage appears across the capacitor, i.e., $\mathbf{V}_C \approx \mathbf{V}_s$, and the current \mathbf{I} has a phase of $+\pi/2$.
- (e) For $\omega \gg \omega_0$, the total impedance is dominated by the inductor, i.e., $\mathbf{Z} \approx j\omega L$. Almost the entire source voltage appears across the inductor, i.e., $\mathbf{V}_L \approx \mathbf{V}_s$, and the current \mathbf{I} has a phase of $-\pi/2$.

Exercise Set

- 1. For $R = 1 \Omega$, L = 1 mH, and $C = 1 \mu F$, calculate f_0 and B. Verify with simulation.
- 2. What happens to the bandwidth if R is doubled? Plot $|\mathbf{I}|$ versus $\log f$ for $R = 1 \Omega$ and $R = 2 \Omega$ on the same graph.
- 3. What is $|\mathbf{V}_C|$ for $\omega \ll \omega_0$, $\omega = \omega_0$, and $\omega \gg \omega_0$? Make an approximate sketch of $|\mathbf{V}_C|$ versus $\log \omega$, using the above information. Check with simulation.
- 4. What will happen to the $|\mathbf{V}_C|$ versus $\log \omega$ curve if R is doubled? Relate your answer to the Q of the circuit.
- 5. Sketch $|\mathbf{V}_L|$ and $|\mathbf{V}_C|$ versus $\log \omega$ together. Verify with simulation.
- 6. Sketch $\angle \mathbf{V}_L$ and $\angle \mathbf{V}_C$ versus $\log \omega$ together. Verify with simulation.