Х24 — Нецентральные движения шара

В обычной жизни вы наверняка сталкивались с такими физическими ситуациями, как соударение катящегося шара с вертикальной стенкой, а также падение шара с края горизонтального стола. Также вами наверняка решались задачи, связанные с этими ситуациями, однако вы ограничивались случаями, когда шар катится в направлении, перпендикулярном плоскости стены либо краю стола. В рамках данной задачи вам предлагается получить обобщение результатов на случай, когда скорость центра шара направлена не перпендикулярно плоскости стены либо краю стола.

Во всех пунктах задачи считайте известным следующее:

Часть А. Соударение шара с вертикальной стеной (4.5 балла).

Рис. 1:

Данная часть задачи посвящена изучению столкновения шара с вертикальной стенкой. Шар катится по горизонтальному столу без проскальзывания, а его центр при этом движется со скоростью v в направлении, образующем угол α с нормалью к стенке. Шар не вращается вокруг вертикальной оси z. В некоторый момент шар упруго сталкивается со стенкой. Коэффициент трения между шаром и стенкой равен μ .

Введём прямоугольную систему координат xyz с началом в центре шара в момент соударения так, как показано на рисунке.

Рис. 2:

Будем использовать следующие обозначения:

А1^{0.40} Выразите компоненту скорости \vec{u}_A точки A через компоненту скорости \vec{u}_C центра шара, его угловую скорость $\vec{\omega}$, а также радиус-вектор \vec{r} в произвольный момент. Получите также производную по времени \vec{u}_A вектора \vec{u}_A . Ответ выразите через \vec{u}_C , $\vec{\omega}$ и \vec{r} .

A2 $^{0.60}$ Определите силу трения \vec{F}_0 , действующую на шар в начальный момент контакта со стеной. Ответ выразите через $\vec{e}_{\rm x}$, $\vec{e}_{\rm z}$, lpha, μ и силу нормальной реакции стены N_0 в начальный момент.

АЗ^{1.00} Докажите, что производная по времени \vec{u}_A компоненты скорости \vec{u}_A связана с силой трения \vec{F} соотношением:

$$\dot{\vec{u}}_A = \frac{7\vec{F}}{2m}.$$

Данный факт можно использовать далее, даже если вы не смогли его доказать.

А4^{0.50} Определите компоненту скорости $\vec{u}_{A\kappa}$ сразу после соударения, считая, что шар проскальзывает по стенке в течение всего времени соударения. Ответ выразите через $v, \alpha, \mu, \vec{e}_x$ и \vec{e}_z . При каком максимальном значении коэффициента трения μ_{max} проскальзывание не прекращается в течение всего времени соударения? Ответ выразите через α .

А5^{0.60} При $\mu < \mu_{max}$ определите скорость центра шара \vec{v}_{CK} , а также под каким углом β к горизонту она направлена сразу после соударения. Ответы выразите через v, α , μ , \vec{e}_x , \vec{e}_y и \vec{e}_z .

А6^{0.40} При $\mu < \mu_{max}$ определите координаты x_C , y_C центра шара в момент его падения на стол. Ответы выразите через v, g, μ и α .

А7^{1.00} При произвольных значениях μ определите количество теплоты Q, выделившееся в процессе соударения шара со стенкой. Ответ выразите через m, v, μ и α .

Далее в рамках данной задачи вам предлагается изучить динамику падения однородного шара с прямолинейного края горизонтального стола. Перед тем, как попасть на край, центр шара двигался по столу со скоростью v под углом α к перпендикуляру, проведённому к краю стола в его плоскости. До попадания на край стола шар не вращался вокруг вертикальной оси. При дальнейшем решении задачи считайте, что шар никогда не проскальзывает по столу.

с Страница 2 из 4 ≈

Рис. 4:

Решение задачи наиболее удобно провести в цилиндрической системе координат (r, φ, z) . Ось z совпадает с краем стола. На рисунке приведены единичные орты \vec{e}_r , \vec{e}_φ и \vec{e}_z цилиндрической системы координат. Радиус r шара является расстоянием от его центра до оси z, а угол φ является углом поворота линии, соединяющей центр шара с точкой его контакта со столом и отсчитывается от положения, в котором эта линия вертикальна.

Произвольный вектор в цилиндрической системе координат можно представить в следующей форме:

$$\vec{A} = A_r \vec{e}_r + A_{\varphi} \vec{e}_{\varphi} + A_z \vec{e}_z.$$

При дифференцировании вектора, заданного компонентами в цилиндрической системе координат, необходимо учитывать, что единичные орты цилиндрической системы координат являются переменными. Для их производных по времени можно записать:

$$\frac{d\vec{e}_i}{dt} = \left[\vec{\Omega} \times \vec{e}_i\right],$$

где $\vec{\Omega} = \dot{\phi} \vec{e}_z$ - угловая скорость вращения цилиндрической системы координат.

Таким образом, проекции производной по времени вектора $ec{A}$ записываются следующим образом:

$$(\dot{\vec{A}})_r = \dot{A}_r - \dot{\varphi} A_{\varphi} \qquad (\dot{\vec{A}})_{\varphi} = \dot{A}_{\varphi} + \dot{\varphi} A_r \qquad (\dot{\vec{A}})_z = \dot{A}_z$$

Данные соотношения могут оказаться полезными в процессе дальнейшего решения задачи.

Часть В. Уравнения кинематических связей (0.9 балла).

Данная часть посвящена получению основных кинематических уравнений, описывающих движение шара.

В1^{0.20} Определите компоненты вектора скорости центра шара v_{ϕ} и v_z в цилиндрической системе координат. Ответы выразите через r, $\dot{\phi}$ и \dot{z} .

B2^{0.30} Определите компоненты вектора ускорения центра шара a_r , a_{φ} и a_z в цилиндрической системе координат. Ответы выразите через r, v_{φ} , \dot{v}_{φ} и \dot{v}_z .

B3^{0.40} Из условия отсутствия проскальзывания определите компоненты угловой скорости шара ω_{φ} и ω_{z} в цилиндрической системе координат. Ответы выразите через r, v_{φ} и v_{z} .

Страница 3 из 4 ≈

Часть С. Движение в плоскости, перпендикулярной краю стола (2.0 балла).

В плоскости, перпендикулярной краю стола, шар движется по окружности, что очень упрощает анализ данной части его движения.

С1^{0.80} Определите компоненту силу трения $F_{\varphi}(\varphi)$, действующую на шар, а также компоненту ускорения $a_{\varphi}(\varphi)$ его центра. Ответы выразите через массу шара m, g и φ .

С2^{0.50} Получите зависимость $v_{\varphi}(\varphi)$. Ответ выразите через v, g, r, α и φ .

С3 $^{0.20}$ При каком условии шар не отрывается от стола в момент, когда нижняя точка шара достигает его края? Запишите это условие через v, g, r и α . Во всех дальнейших пунктах считайте, что это условие выполняется.

 ${f C4^{0.50}}$ Определите угол ϕ_1 в момент отрыва шара от стола. Ответ выразите через v,g,r и lpha.

Часть D. Движение шара вдоль оси z (3.6 балла)

В данной части задачи вам предлагается проанализировать зависимости от угла φ компоненты скорости центра шара v_z , а также его угловой скорость верчения ω_r .

 $\mathbf{D1^{0.50}}$ Выразите кинетическую энергию шара E_k через $m, v_{\varphi}, v_z, \omega_r$ и r.

 $\mathbf{D2^{0.60}}$ Запишите для шара закон сохранения механической энергии. Комбинируя его с результатом пункта С2, покажите, что величины ω_r и v_z связаны соотношением:

$$1 = \frac{\omega_r^2}{A^2} + \frac{v_z^2}{B^2},$$

где A,B>0 - постоянные коэффициенты. Определите A и B. Ответы выразите через v,r и α .

Решение данной задачи осложняется тем, что компонента угловой скорости ω_r не может быть получена исключительно из уравнения кинематической связи, однако можно получить выражение для её производной по времени $\dot{\omega}_r$.

 $\mathbf{D3^{0.50}}$ Вектор углового ускорения $ec{arepsilon}$ шара может быть представлен в виде:

$$\vec{\varepsilon} = \varepsilon_r \vec{e}_r + \varepsilon_{\varpi} \vec{e}_{\varpi} + \varepsilon_z \vec{e}_z.$$

Используя уравнение динамики вращательного движения относительно центра шара, покажите, что $\varepsilon_r=0$. Используя полученное равенство, выразите $\dot{\omega}_r$ через $\dot{\varphi}, v_z$ и r.

D4^{1.20} Комбинируя результаты пунктов D2 и D3, получите зависимости $\omega_r(\varphi)$ и $v_z(\varphi)$. Ответы выразите через v, α, r и φ .

D5^{0.80} Рассмотрим предельный переход, когда угол $\alpha \to \pi/2$, т.е движение шара до контакта с краем стола происходит практически параллельно ему. Определите проекцию скорости v_z центра шара, а также проекцию его угловой скорости ω_y на ось y, направленную вертикально вниз, в момент отрыва шара от стола. Ответы выразите через v и r. Все численные коэффициенты в ответе должны быть аналитическими, а не приближёнными!