Recap - A-Values

- Free energy difference between equatorial and axial conformer
- 1,3 Diaxial interactions are a consequence of gauche butane interactions

Typical A Values

R A	/alue (kcal/mol)	R	A Value (kcal/mol)
F Size CI vs Br bond I length OH OCH ₃ OCOCH ₃ NH ₂ NR ₂ CO ₂ H CO ₂ Na CO ₂ Et SO ₂ Ph	0.25 0.52 0.5-0.6 0.46 0.7 (0.9) 0.75 0.71	CHO COCH ₃ CN C \equiv CH NO ₂ CH=CH ₂ CH ₃ CH ₂ CH ₃ n C ₃ H ₇ n C ₄ H ₉ CH(CH ₃) ₂ C(CH ₃) ₃ C ₆ H ₅	0.6–0.8 1.2 0.2 0.41 Small, linear groups 1.1 1.7 1.8 1.9 (1.8) 2.1 2.1 >4.5 (ca. 5.4) 3.1 (2.9)

cis-1,2-Dimethylcyclohexane

 $\Delta E = 0 \text{ kcal/mol}$

 $3 \times (gauche interaction)$

 $3 \times (0.9 \text{ kcal}) = 2.7 \text{ kcal}$

 $3 \times (gauche interaction)$

 $3 \times (0.9 \text{ kcal}) = 2.7 \text{ kcal}$

trans-1,2-Dimethylcyclohexane

2.7 kcal/mol more stable

$$4 \times$$
 (gauche interaction)

$$4 \times (0.9 \text{ kcal}) = 3.6 \text{ kcal}$$

$$1 \times (gauche interaction)$$

$$1 \times (0.9 \text{ kcal}) = 0.9 \text{ kcal}$$

cis-1,3-Dimethylcyclohexane

 $1 \times (Me-Me 1,3 diaxial int)$

 $2 \times (0.9 \text{ kcal}) + 3.7 \text{ kcal}$

= 5.5 kcal

$$0 \times (gauche interaction)$$

$$0 \times (0.9 \text{ kcal}) = 0 \text{ kcal}$$

Homework: Analysis for trans-1,3-dimethylcyclohexane

trans-1,3-Dimethylcyclohexane

$$H$$
 CH_3
 H
 CH_3
 H
 CH_3
 H
 CH_3

$$CH_3$$
 H H CH_3 H CH_3 H

$$2 \times (0.9 \text{ kcal}) = 1.8 \text{ kcal}$$

$$2 \times (gauche interaction)$$

$$2 \times (0.9 \text{ kcal}) = 1.8 \text{ kcal}$$

Largest Group Biases Conformation

Conformation of t-butylcyclohexane is said to be BIASED

But NOT LOCKED

What about cis-1,4-ditertbutylcyclohexane?

Copyright © 2010 Pearson Prentice Hall, Inc.

The most stable conformation is the **twist boat**. Both chair conformations require one of the bulky *t*-butyl groups to occupy an axial position.

Points to Remember

(i) Groups which are above the avg. plane would continue to be above the avg. plane even after ring flipping

(ii) A cis-isomer would remain as cis-isomer, so is trans

Polycyclic Compounds

Spiro cyclic compounds: Compounds that share <u>one carbon</u> atom between two rings

Fused ring compounds: Compounds that share two adjacent carbon atoms

Bicyclic ring compounds: that share <u>two non-adjacent</u> <u>carbon</u> atoms

Fused Ring Compounds - Decalins

Fused cyclohexane rings which share a common C-C bond

Depending on the orientation of the hydrogen atoms at the ring junction there are two stereoisomers for decalins

cis-Decalin

trans-Decalin

trans-decalin

trans-decalins are **conformationally LOCKED** as they cannot undergo ring flipping.

How many destabilizing interactions?

cis-Decalin

Conformationally flexible!

green H starts axial on black ring yellow H starts equatorial on black ring after ring inversion, green H is equatorial on black ring yellow H is axial on black ring

http://classes.yale.edu/chem220/STUDYAIDS/movies/decalins.html

How many destabilizing interactions?

 ΔE between *cis*- and *trans*-decalin = 2.7 kcal/mol

Conformations & Reactivity

Reactions of axial and equatorial substituents could be very different!

cis-compound reacts 31 times faster!! Why???

Ts =
$$p$$
-toluene sulphonyl H_3 C $-$ SO₂

Understanding Selectivity

Hint: This is an S_N2 reaction – Back side attack is favoured

Why is backside attack required for S_N2 reaction?

Conformation and Elimination

Antiperiplanar conformation is required for E2 Elimination. Why?

Homework – Problem 1

Draw the Newman projection of the starting material to determine conformation required for cis and trans product. Br/Et gauche interactions = 0.5 kcal Et/Me gauche interactions = 0.9 kcal

Homework Problem 2

Consider E2 elimination of

Which of these react faster?

Do both give the same product?

Rearrangement Reactions

heteroatom

 This process is conformationally dependent!

Migrating group antiperiplanar to leaving group. Why?

Homework Problem - 3

Ring expansion of cyclic β -amino alcohols

Explain this observation