The Column Space of a Matrix

Definition 2.7. Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix. The column space of A, denoted by Col(A), is the set of all linear combinations of the columns of A. That is

$$Col(A) = Span(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$$

Theorem 2.8. The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Note 2.9. Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix.

- (a) By definition, $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^m spanned by $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$.
- (b) The following statements are equivalent:
 - $\operatorname{Col}(A) = \mathbb{R}^m$.
 - For every \vec{b} in \mathbb{R}^m , the equation $A\vec{x} = \vec{b}$ has a solution.
 - The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A is onto.

Example 2.10. Find a matrix A such that $W = \operatorname{Col}(A)$ where

$$W = \left\{ \begin{bmatrix} a+b \\ 2a-b \\ -3a \end{bmatrix} \mid a, b \text{ in } \mathbb{R} \right\}$$

Solution

We write each element of W as a linear combination of some vectors. For each \vec{u} in W, we have

$$\vec{u} = \begin{bmatrix} a+b \\ 2a-b \\ -3a \end{bmatrix} = \begin{bmatrix} a \\ 2a \\ -3a \end{bmatrix} + \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix}$$
$$= a \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} + b \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = a\vec{v}_1 + b\vec{v}_2.$$

It follows that $W=\mathrm{Span}(\vec{v}_1,\vec{v}_2).$ Let $A=\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -3 & 0 \end{bmatrix}.$ Then $W=\mathrm{Col}(A).$

Fact 2.11. Let A be an $m \times n$ matrix. We compare the null space and the column space of A as follows:

6

- Nul(A) is a subspace of \mathbb{R}^n .
- Null space of A is implicitly defined: the vectors in Nul(A) solve $A\vec{x} = \vec{0}$.
- It takes time to describe Nul(A) as row reduction of $\left[\begin{array}{cc}A&\vec{0}\end{array}\right]$ is required.
- There is no obvious relation between Nul(A) and the entries in A.
- A typical vector \vec{v} in Nul(A) has the property $A\vec{v} = \vec{0}$.
- It is easy to check if a given vector \$\vec{v}\$ is in Nul(\$A\$) by computing \$A\vec{v}\$.
- Nul(A) = $\{\vec{0}\}$ if and only if the equation $A\vec{x} = \vec{0}$ has only the trivial solution.
- Nul(A) = $\{\vec{0}\}$ if and only the linear transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one.

- Col(A) is a subspace of \mathbb{R}^m .
- Col(A) is explicitly defined since it is spanned by described vectors (the columns of A).
- It is easy to find vectors in Col(A) since they are linear combinations of the columns of A.
- There is an obvious relation between Col(A) and the entries of A since the columns of A generate Col(A).
- A typical vector \vec{v} in Col(A) has the property that $A\vec{x} = \vec{v}$ is consistent.
- It may take time to check if a given vector \vec{v} is in $\operatorname{Col}(A)$ as row reduction of $\begin{bmatrix} A & \vec{v} \end{bmatrix}$ is required.
- $\operatorname{Col}(A) = \mathbb{R}^m$ if and only if the equation $A\vec{x} = \vec{b}$ has a solution for every \vec{b} in \mathbb{R}^m .
- $\operatorname{Col}(A) = \mathbb{R}^m$ if and only if the linear transformation $\vec{x} \mapsto A\vec{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Linear Transformations of Vector Spaces

Definition 2.12. Let V and W be vector spaces. A linear transformation T from V into W, denoted by $T: V \to W$, is a rule that assigns to each vector \vec{x} in V a unique vector $T(\vec{x})$ in W, such that

- (a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u}, \vec{v} in V,
- (b) $T(c\vec{u}) = cT(\vec{u})$ for all \vec{u} in V and all scalars c.

Definition 2.13. Let $T: V \to W$ be a linear transformation.

- (a) V is called the domain of T, and W is its codomain.
- (b) The **kernel** of T, denoted by $\ker(T)$, is the set of all vectors \vec{u} in V such that $T(\vec{u}) = \vec{0}$. That is

$$\ker(T) = \{ \vec{u} \text{ in } V \mid T(\vec{u}) = \vec{0} \}$$

(c) The **range** or **image** of T, denoted by range(T) or $\operatorname{im}(T)$, is the set of all vectors in W which are of the form $T(\vec{v})$ for some \vec{v} in V. That is

$$range(T) = im(T) = \{T(\vec{v}) \mid \vec{v} \text{ in } V\}$$

Fact 2.14. Let $T: V \to W$ be a linear transformation of vector spaces. Then,

(a) $\ker(T)$ is a subspace of V,

- (b) im(T) is a subspace W.
- (c) if $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is the standard matrix of T, then $\ker(T)$ the null space of A, and $\operatorname{im}(T)$ is the column space of A.

3 Linearly Independent Sets, Bases

Definition 3.1. Let V be a vector space and let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ be vectors in V.

(a) The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is linearly independent if the equation

$$x_1 \vec{v_1} + x_2 \vec{v_2} + \dots + x_p \vec{v_p} = \vec{0}$$

has only the trivial solution $x_1 = x_2 = \cdots = x_p = 0$.

(b) The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is linearly dependent if there exist scalars c_1, c_2, \dots, c_p not all zero such that

(II)
$$c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_p \vec{v_p} = \vec{0}$$

Equation (II) is called a linear dependence relation among $\vec{v}_1, \vec{v}_2, \dots, \vec{x}_p$.

Fact 3.2. As in the case of \mathbb{R}^n , if V is a vector space, then

- (a) A single vector \vec{v} in V is linearly independent if and only if $\vec{v} \neq \vec{0}$.
- (b) A set of two vectors is linearly dependent if and only if one of the vectors is a multiple of the other.
- (c) Any set of vectors containing the zero vector is linearly dependent.

Theorem 3.3. Let V be a vector space and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ be vectors in V. Suppose $p \geq 2$ and $\vec{v}_1 \neq 0$. The set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is linearly dependent if and only if there is some $\vec{v}_j, j > 1$, such that \vec{v}_j is a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{j-1}$.

Example 3.4. Consider the vector space \mathbb{P}_2 (the set of all polynomials of degree at most 2). Let $p_1(t) = t - 1$, $p_2(t) = t^2 + 2t - 3$ and $p_3(t) = t^2 - 1$. We have

$$p_2(t) - 2p_1(t) = (t^2 + 2t - 3) - 2(t - 1)$$

= $t^2 - 1 = p_3(t)$

That is

$$p_3(t) = p_2(t) - 2p_1(t),$$

so

$$p_3(t) - p_2(t) + 2p_1(t) = 0$$

Hence the set $\{p_1(t), p_2(t), p_3(t)\}$ is linearly dependent.

Definition 3.5. Let V be a vector space and let H be a subspace of V.

(a) A basis for V is an indexed set of vectors $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_p\}$ in V such that \mathcal{B} is a linearly independent set and V is spanned by \mathcal{B} , that is

$$V = \operatorname{Span}(\vec{b}_1, \vec{b}_2, \dots, \vec{b}_p)$$

(b) A basis of H is a collection of vectors $\mathcal{B}_H = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r\}$ in H (hence in V) such that \mathcal{B}_H is a linearly independent set and $H = \operatorname{Span}(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r)$.

Fact 3.6 (Invertible Matrix Theorem). Recall that if A is an $n \times n$ matrix, the following statements are equivalent:

- (a) A is invertible
- (b) $det(A) \neq 0$
- (c) the columns of A are linearly independent
- (d) the columns of A span \mathbb{R}^n .

Example 3.7. Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$ be an invertible matrix. By Fact 3.6, the set $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ is linearly independent and $\mathbb{R}^n = \operatorname{Span}(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$. Therefore the columns of A form a basis for \mathbb{R}^n .

Example 3.8. Let $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ be the columns of the $n \times n$ identity matrix I_n . That is

$$ec{e}_1 = \left[egin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array}
ight], ec{e}_2 = \left[egin{array}{c} 0 \\ 1 \\ \vdots \\ 0 \end{array}
ight], \ldots, ec{e}_n = \left[egin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array}
ight]$$

Since $\det(I_n) \neq 0$, the set $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is basis, called standard basis, for \mathbb{R}^n .

Example 3.9. Let
$$\mathcal{B}_1 = \left\{ \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix} \right\}$$
 and $\mathcal{B}_2 = \left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} \right\}$. Determine if \mathcal{B}_1 and \mathcal{B}_2 are bases for \mathbb{R}^3

Solution

Since there are exactly three vectors in \mathcal{B}_1 and \mathcal{B}_2 , we can use any of the conditions of the invertible matrix

For \mathcal{B}_1 , let $A = \begin{bmatrix} 3 & -4 & -2 \\ 0 & 1 & 1 \\ -6 & 7 & 5 \end{bmatrix}$. After some row replacements, A has a three pivots, hence A is invertible.

Therefore the columns of A are linearly independent and $\mathbb{R}^3 = \operatorname{Span}\left(\begin{array}{c|c} 3 & -4 & -2 \\ 0 & 1 & 1 \\ -1 & 7 & 5 \end{array}\right)$. Hence \mathcal{B}_1

For \mathcal{B}_2 , let $B = \begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ -3 & -4 & 1 \end{bmatrix}$. After some row replacements, B is row equivalent to $\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$. Hence

Fact 3.10. Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ be a set of vectors in \mathbb{R}^n .

(a) If p > n, then there are more vectors than entries, so S is linearly dependent. Thus S is not a basis for \mathbb{R}^n .

9

(b) If p < n, then $\mathbb{R}^n \neq \operatorname{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$, so S is not a basis for \mathbb{R}^n .

Example 3.11. Let \mathbb{P}_n be the set of all polynomials of degree at most n. Let $S = \{1, t, t^2, \dots, t^n\}$. First, every polynomial in \mathbb{P}_n can be written as a linear combination of the elements of S. Hence $\mathbb{P}_n = \mathrm{Span}(1,t,t^2,\ldots,t^n)$. Second, if

$$c_0.1 + c_1t + \dots + c_nt^n = 0$$

then $c_0 = c_1 = \cdots = c_n = 0$. Hence S is linearly independent. Therefore, S is a basis for \mathbb{P}_n .

The Spanning Set Theorem

Theorem 3.12 (The Spanning Set Theorem). Let V be a vector space, let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ be a set of vectors in V, and let $H = \operatorname{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$

(a) If there exists i such that \vec{v}_i is a linear combination of the other vectors in S, then the set S'= $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_{i-1},\vec{v}_{i+1},\ldots\vec{v}_n\}$ (we remove \vec{v}_i from S) still spans H. That is

$$H = \text{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_{i-1}, \vec{v}_{i+1}, \dots \vec{v}_n).$$

(b) If $H \neq \{\vec{0}\}\$, then some subset of S is a basis for H.

Example 3.13. Let
$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 2 \\ -4 \\ 3 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix}$, and let $H = \operatorname{Span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$. Find a basis for H .

Solution

By solving the homogeneous equation $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x} = \vec{0}$, we find that \vec{v}_1, \vec{v}_2 and \vec{v}_3 are linearly dependent and $\vec{v}_2 = 2\vec{v}_1 - \vec{v}_3$. Hence by the spanning set theorem $H = \mathrm{Span}(\vec{v}_1, \vec{v}_3)$. Since \vec{v}_1 and \vec{v}_3 are not multiple of each other, they are linearly independent. It follows that $\{\vec{v}_1, \vec{v}_3\}$ is a basis for H.

Bases for Nul(A) and Col(A)

Note 3.14. We have already seen how to find a basis for Nul(A). For that, row reduce A to obtain a matrix in row echelon form and express the null space in parametric vector form. The vectors appearing will be a basis for Nul(A).

Example 3.15. Let
$$A = \begin{bmatrix} 1 & -2 & 0 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Find a basis for Nul(A).

Solution

The matrix A is already in row echelon form, and we see that x_2 and x_4 are free variables. An element of the Nul(A) is then of the form (it is a solution of $A\vec{x}=0$):

$$\vec{x} = \begin{bmatrix} 2x_2 + x_4 \\ x_2 \\ x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad x_2, x_4 \in \mathbb{R}$$

Therefore,
$$\operatorname{Nul}(A) = \operatorname{Span}\left(\begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \right)$$
 and $\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \right\}$ is a basis for $\operatorname{Nul}(A)$.

Theorem 3.16. The pivot columns of a matrix A form a basis for Col(A).

Example 3.17. Let
$$A = \begin{bmatrix} 0 & -3 & -6 & 4 \\ -1 & -2 & -1 & 3 \\ -2 & -3 & 0 & 3 \\ 1 & 4 & 5 & -9 \end{bmatrix}$$
. Find a basis for $Col(A)$.

Solution

The matrix
$$A$$
 is row reduced to the matrix
$$\begin{bmatrix} 1 & 4 & 5 & -9 \\ 0 & 2 & 4 & -6 \\ 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. It follows that column 1, 2, and 4 are pivot columns. Therefore
$$\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ -1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ -2 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ -9 \end{bmatrix} \right\}$$
 is a basis for $\operatorname{Col}(A)$.

Note 3.18. A basis is

- a spanning set which is as small as possible,
- a linearly independent set which is as bis as possible.