Development of a beam-based phase feed-forward demonstration at the CLIC Test Facility (CTF3).

Jack Roberts New College, Oxford

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Oxford

Trinity Term, 2016

Abstract This is the abstract TeX for the thesis and the stand-alone abstract.

Dedication.

Acknowledgements

 ${\bf Acknowledgements.}$

Contents

1	Introduction						
	1.1	Particle Accelerators					
	1.2	Motivation for Future Linear Colliders					
	1.3	FONT					
	1.4	CLIC					
	1.5	Phase Feedforward for CLIC					
	1.6	Thesis Overview					
2	\mathbf{CT}	F3 and the PFF Prototype					
	2.1	CTF3					
	2.2	Goals for PFF at CTF3					
	2.3	Design of the PFF Prototype at CTF3					
	2.4	PFF Hardware					
	2.5	Differences Between PFF at CTF and CLIC					
3	Opt	ics for the PFF Prototype					
	3.1	TL2 Lattice					
	3.2	Optics Requirements					
	3.3	TL2 MADX Model					
	3.4	Matched PFF and Nominal Optics					
4	Pha	se Monitor Performance					
	4.1	Phase Monitor Electronics					
	4.2	Signal Response Measurements					
	4.3	Calibrations					
	4.4	Digitiser Noise					
	4.5	Phase Shifter Noise					
	4.6	Resolution					
	4.7	Linearity and Bandwidth					
	4.8	Dependence on Position					
5	Phase Propagation 7						
	5.1	Characteristics of Uncorrected Phase Jitter					
	5.2	First Order Energy Dependencies					
	5.3	Higher Order Energy Dependencies					
	5.4	Other Sources of Phase Jitter					

	5.5	Long Term Propagation Stability	7
6	Sim	ulated PFF Performance	ç
	6.1	Theoretical Corrected Jitter and Optimal Gain	Ć
	6.2	Simulations Using Beam Data	Ć
	6.3	Effect of Limited Correction Range	Ć
	6.4	Effect of Limited Correction Bandwidth	Ĝ
7	Fee	dforward Results	10
	7.1	Gain Scans	10
	7.2	Correction at Optimal Gain	10
	7.3	Simulated PFF Results	10
	1.0		1
		Correction on Longer Timescales	

List of Figures

4.1	Dig shifter 1	4
4.2	Dig shifter 2	5
4.3	Dig shifter 3	5
4.4	Mech shifter	5
4.5	Resolution	6
5.1	Phase correlation vs. residual R56 between monitors	7
5.2	Phase jitter for different R56 whilst wiggling gun current	
5.3	Phase vs. energy for different R56 in TL1	8
7.1	Mean phase	10
7.2	Mean phase along	11
7.3	Flatness	11
7 4	Simulated PFF	11

List of Tables

Glossary

Item1 Description.

Item2 Description.

Item3 Description.

Introduction

- 1.1 Particle Accelerators
- 1.2 Motivation for Future Linear Colliders
- 1.3 FONT
- 1.4 CLIC
- 1.5 Phase Feedforward for CLIC
- 1.6 Thesis Overview

CTF3 and the PFF Prototype

This is the introductory text.

2.1 CTF3

Goals

Machine layout

2.2 Goals for PFF at CTF3

2.3 Design of the PFF Prototype at CTF3

Location of hardware available latency

2.4 PFF Hardware

FONT5 Board

Amplifier

Phase Monitors

Kickers

2.5 Differences Between PFF at CTF and CLIC

Optics for the PFF Prototype

- 3.1 TL2 Lattice
- 3.2 Optics Requirements
- 3.3 TL2 MADX Model
- 3.4 Matched PFF and Nominal Optics

Phase Monitor Performance

Figure 4.1: Dig shifter 1.

Figure 4.2: Dig shifter 2.

Figure 4.3: Dig shifter 3.

Figure 4.4: Mech shifter.

Figure 4.5: Resolution.

- 4.1 Phase Monitor Electronics
- 4.2 Signal Response Measurements
- 4.3 Calibrations
- 4.4 Digitiser Noise
- 4.5 Phase Shifter Noise
- 4.6 Resolution
- 4.7 Linearity and Bandwidth
- 4.8 Dependence on Position

Phase Propagation

- 5.1 Characteristics of Uncorrected Phase Jitter
- 5.2 First Order Energy Dependencies
- 5.3 Higher Order Energy Dependencies
- 5.4 Other Sources of Phase Jitter
- 5.5 Long Term Propagation Stability

Figure 5.1: Phase correlation vs. residual R56 between monitors.

Figure 5.2: Phase jitter for different R56 whilst wiggling gun current.

Figure 5.3: Phase vs. energy for different R56 in TL1.

Simulated PFF Performance

- 6.1 Theoretical Corrected Jitter and Optimal Gain
- 6.2 Simulations Using Beam Data
- 6.3 Effect of Limited Correction Range
- 6.4 Effect of Limited Correction Bandwidth

Feedforward Results

This is the introductory text.

7.1 Gain Scans

- 7.2 Correction at Optimal Gain
- 7.3 Simulated PFF Results
- 7.4 Correction on Longer Timescales
- 7.5 Correction with Additional Jitter Source

Figure 7.1: Mean phase.

Figure 7.2: Mean phase along.

Figure 7.3: Flatness.

Figure 7.4: Simulated PFF.