SEQUENCE LISTING

<110> Merck & Co., Inc.

<120> POLYPEPTIDES FOR INDUCING A PROTECTIVE IMMUNE RESPONSE AGAINST STAPHYLOCOCCUS AUREUS

<130> 21569Y PCT

<150> 60/489,840

<151> 2003-07-24

<150> 60/520,115

<151> 2003-11-14

<160> 107

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 446

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657n with amino terminus methionine

<400> 1

Met Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr

1 5 10 15

Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr
20 25 30

Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala 35 40 45

Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala 50 55 60

Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn 65 70 75 80

Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro 85 90 95

Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp 100 105 110

Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala 115 120 125

Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu 130 135 140

Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val 145 150 155 160

Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr 165 170 175

Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys 180 185 190

Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys 195 200 205

```
Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala
    210
                        215
                                             220
Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala
225
                    230
                                         235
                                                              240
Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn
                245
                                     250
                                                          255
Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys
            260
                                 265
                                                      270
Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala
        275
                             280
                                                 285
Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp
    290
                         295
                                             300
Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu
305
                     310
                                         315
                                                              320
Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu
                 325
                                     330
                                                          335
Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp
                                 345
                                                      350
Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp
        355
                             360
                                                  365
Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys
    370
                         375
                                              380
Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr
385
                     390
                                          395
                                                              400
Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys
                 405
                                      410
Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala
             420
                                 425
Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro
         435
                             440
                                                  445
```

<210> 2

<211> 645

<212> PRT

<213> S. aureus

<400> 2

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Leu Met Ser Asn Gly Glu Ala Gln Ala Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser

Ala 145	Pro	Asn	Ser	Arg	Pro 150	Ile	Asp	Phe	Glu	Met 155	Lys	Lys	Lys	Asp	Gly 160
Thr	Gln	Gln	Phe	Tyr 165	His	Tyr	Ala	Ser	Ser 170	Val	Lys	Pro	Ala	Arg 175	
Ile	Phe	Thr	Asp 180	Ser	Lys	Pro	Glu	Ile 185	Glu	Leu	Gly	Leu	Gln 190	Ser	Gly
Gln	Phe	Trp 195	Arg	Lys	Phe	Glu	Val 200	Tyr	Glu	Gly	Asp	Lys 205	Lys	Leu	Pro
	210				Tyr	215					220		_		
225					Gly 230					235					240
				245	Glu				250					255	
			260		Asn			265					270		
		275			Leu		280					285			
	290				Glu	295					300				
305					Tyr 310					315					320
				325	Lys				330					335	
			340		Met			345					350		
		355			Asn		360					365			
	370				Gly	375					380				
385					Asp 390					395					400
				405					410					415	
			420		Glu			425					430		
		435					440					445			Ile
	450				Phe	455					460				
465					470					475					Thr 480
				485					490					495	
			500					505					510		Glu
		515					520					525			Lys
	530	•	•			535	•				540			_	Val
545					550					555	•				Lys 560
TUL	TUX	гЛ	gaa i	565		GIn	Thr	ser	570		ser Ser	· Ser	· Glu	Ala 575	Lys

```
Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
            580
                                 585
                                                     590
His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
        595
                             600
                                                 605
Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
    610
                         615
                                             620
Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
625
                    630
                                         635
                                                              640
Arg Lys Arg Lys Asn
                645
<210> 3
<211> 569
<212> PRT
<213> Artificial Sequence
<220>
<223> ORF0657nH with amino terminus methionine
<400> 3
Met Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr
 1
Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr
             20
                                 25
                                                      30
Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala
Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala
                         55
Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn
65
                     70
                                                              80
Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro
                 85
                                                          95
                                      90
Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp
             100
                                 105
                                                      110
Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala
         115
                             120
                                                  125
Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu
     130
                                              140
                         135
 Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val
 145
                     150
                                          155
 Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr
                 165
                                      170
                                                          175
Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys
             180
                                  185
                                                      190
 Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys
         195
                              200
                                                  205
 Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala
     210
                          215
                                              220
 Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala
 225
                     230
                                          235
                                                               240
 Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn
                 245
                                      250
                                                           255
 Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys
```

```
Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala
        275
                             280
                                                 285
Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp
    290
                        295
Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu
305
                    310
                                         315
                                                              320
Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu
                325
                                     330
                                                          335
Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp
            340
                                 345
Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp
        355
                             360
                                                 365
Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys
    370
                         375
Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr
385
                     390
                                         395
                                                              400
Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys
                405
                                     410
Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala
            420
                                 425
                                                      430
Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro
        435
                             440
                                                  445
Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys
    450
                         455
                                              460
Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly
465
                     470
                                         475
Lys Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu Ser
                 485
                                     490
Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala
             500
                                 505
                                                      510
Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr
         515
                             520
                                                  525
Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala
     530
                         535
                                              540
Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys
545
                     550
                                          555
                                                               560
Asn Thr Gln Glu Asn Lys Ala Lys Ser
                 565
<210> 4
<211> 570
<212> PRT
<213> Artificial Sequence
```

<220>

<223> ORF0657nH with amino terminus methionine-glycine

<400> 4

Met Gly Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys

1 5 10 15

Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu
20 25 30

Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu
35 40 45

Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser

```
Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu
                485
                                                         495
                                     490
Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val
            500
                                 505
                                                     510
Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln
        515
                             520
                                                 525
Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys
    530
                        535
                                             540
Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn
545
                    550
                                         555
                                                             560
Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
                565
                                     570
<210> 5
<211> 447
<212> PRT
<213> Artificial Sequence
<220>
<223> ORF0657nH with amino terminus methionine-glycine
<400> 5
Met Gly Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys
 1
                                     10
                                                         15
Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu
Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu
        35
                             40
Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys
    50
                         55
Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn
65
                     70
                                         75
                                                              80
Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn
                 85
Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile
             100
                                 105
                                                      110
Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr
         115
                             120
                                                  125
Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro
     130
                         135
                                             140
Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu
 145
                     150
                                         155
                                                              160
Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp
                 165
                                     170
                                                          175
 Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr
             180
                                 185
                                                      190
Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu
         195
                             200
                                                  205
Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser
     210
                         215
                                              220
 Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu
 225
                     230
                                          235
                                                              240
 Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu
```

```
Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys
            260
                                 265
                                                     270
Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser
        275
                             280
                                                 285
Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr
    290
                         295
                                             300
Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn
305
                     310
                                         315
                                                              320
Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met
                325
                                     330
Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr
            340
                                 345
                                                      350
Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys
        355
                             360
                                                  365
Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly
    370
                         375
                                              380
Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp
385
                     390
                                         395
Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr
                 405
                                     410
Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser
             420
                                 425
                                                      430
Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro
         435
                             440
                                                  445
```

<210> 6

<211> 576

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 6

Ala Glu Glu Thr Gly Val Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Val Lys Glu Val Lys Ala Pro Lys Glu Ala Lys Glu Glu Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln

Phe	Trp	Arg	Lys	Phe 165	Glu	Val	Tyr	Glu	Gly 170	Asp	Lys	Lys	Leu	Pro 175	Ile
Lys	Leu	Val	Ser 180	Tyr	Asp	Thr	Val	Lys 185	Asp	Tyr	Ala	Tyr	Ile 190	Arg	Phe
Ser	Val	Ser 195	Asn	Gly	Thr	Lys	Ala 200	Val	Lys	Ile	Val	Ser 205	Ser	Thr	His
Phe	Asn 210	Asn	Lys	Glu	Glu	Lys 215	Tyr	Asp	Tyr	Thr	Leu 220	Met	Glu	Phe	Ala
Gln 225	Pro	Ile	Tyr	Asn	Ser 230	Ala	Asp	Lys	Phe	Lys 235	Thr	Glu	Glu	Asp	Tyr 240
Lys	Ala	Glu	Lys	Leu 245	Leu	Ala	Pro	Tyr	Lys 250	Lys	Ala	Lys	Thr	Leu 255	
Arg	Gln	Val	Tyr 260	Glu	Leu	Asn	Lys	Ile 265	Gln	Asp	Lys	Leu	Pro 270	Glu	Lys
Leu	Lys	Ala 275	Glu	Tyr	Lys	Lys	Lys 280	Leu	Glu	Glu	Thr	Lys 285	Lys	Ala	Leu
Asp	Glu 290	Gln	Val	Lys	Ser	Ala 295	Ile	Thr	Glu	Phe	Gln 300	Asn	Val	Gln	Pro
Thr 305	Asn	Glu	Lys	Met	Thr 310	Asp	Leu	Gln	Asp	Thr 315	Lys	Tyr	Val	Val	Tyr 320
Glu	Ser	Val	Glu	Asn 325	Asn	Glu	Ser	Met	Met 330	Asp	Ala	Phe	Val	Lys 335	His
Pro	Ile	Lys	Thr 340	Gly	Met	Leu	Asn	Gly 345	Lys	Lys	Tyr	Met	Val 350	Met	Glu
Thr	Thr	Asn 355	Asp	Asp	Tyr	Trp	Lys 360	Asp	Phe	Met	Val	Glu 365	_	Gln	Arg
Val	Arg 370		Ile	Ser	Lys	Asp 375		Lys	Asn	Asn	Thr 380	Arg	Thr	Ile	Ile
Phe 385		Tyr	Val	Glu	Gly 390		Thr	Leu	Tyr	Asp 395		Ile	Val	Lys	Val 400
			Thr	405					410				_	415	
			Ala 420					425					430		-
		435					440					445			
	450					455					460				Asp
465					470					475					Asn 480
				485	•				490					495	
Ala	Lys	Ala	Glu 500		Glu	Ser	Ser	Ser 505		Thr	Pro	Thr	Lys 510		Val
		515					520					525	•		Thr
Thr	530		Val	. Val	. Gln	Thr 535		Ala	Gly	Ser	Ser 540		Ala	Lys	Asp
545	•				550)				555	5			_	His 560
Thr	Gln	ser	r Glr	Asn 565		Lys	a Asn	Thr	570		a Asn	Lys	: Ala	Lys 575	Ser

<210> 7 <211> 568

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 7 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Gly Val Thr Leu Ala Thr Lys Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Gly Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys His Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser

<210> 8

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 8

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

Glu	Glv	Asp	Lvs	Tws	T.eu	Pro	Tla	Tare	T.e11	Val	Ser	ጥህን	Asn	Thr	V=1
GIG	011	115b	2,0	165	Leu	110	116	пуз	170	VUI	JCI	17.	nsp	175	Val
Lys	Asp	Tyr	Ala 180	Tyr	Ile	Arg	Phe	Ser 185	Val	Ser	Asn	Gly	Thr 190	Lys	Ala
Val	Lys	Ile 195	Val	Ser	Ser	Thr	His 200	Phe	Asn	Asn	Lys	Glu 205	Glu	Lys	Tyr
Asp	Tyr 210	Thr	Leu	Met	Glu	Phe 215	Ala	Gln	Pro	Ile	Tyr 220	Asn	Ser	Ala	Asp
Lys 225	Phe	Lys	Thr	Glu	Glu 230	Asp	Tyr	Lys	Ala	Glu 235	Lys	Leu	Leu	Ala	Pro 240
Tyr	Lys	Lys	Ala	Lys 245	Thr		Glu	Arg	Gln 250	Val	Tyr	Glu	Leu	Asn 255	Lys
Ile	Gln	Asp	Lys 260	Leu	Pro	Glu	Lys		_	Ala		Tyr	Lys 270	Lys	Lys
Leu	Glu	Asp 275		Lys	Lys	Ala	Leu 280	Asp	Glu	Gln	Val	Lys 285	Ser	Ala	Ile
Thr	Glu 290	Phe	Gln	Asn	Val	Gln 295	Pro	Thr	Asn	Glu	300 Lys	Met	Thr	Asp	Leu
Gln 305	Asp	Thr	Lys	Tyr	Val 310	Val	Tyr	Glu	Ser	Val 315	Glu	Asn	Asn	Glu	Ser 320
Met	Met	Asp	Thr	Phe 325		Lys	His	Pro	11e 330	-	Thr	Gly	Met	Leu 335	Asn
Gly	Lys	Lys	Tyr 340		Val	Met	Glu	Thr 345		Asn	Asp	Asp	Tyr 350	Trp	Lys
Asp	Phe	Met 355		Glu	Gly	Gln	Arg 360		Arg	Thr	Ile	Ser 365	_	Asp	Ala
Lys	Asn 370		Thr	Arg	Thr	Ile 375		Phe	Pro	Tyr	Val 380		Gly	Lys	Thr
Leu 385		Asp	Ala	Ile	Val 390		Val	His	Val	Lys 395		Ile	Asp	Tyr	Asp 400
Gly	Gln	Туг	' His	Val 405		Ile	Val	Asp	Lys 410		Ala	Phe	Thr	Lys 415	Ala
Asn	Thr	Asp	Lys 420		Asn	Lys	Lys	Glu 425		Gln	Asp	Asn	Ser 430	Ala	Lys
Lys	Glu	Ala 435		Pro	Ala	Thr	Pro 440		. Lys	Pro	Thr	Pro 445		Pro	Val
Glu	Lys 450		ı Ser	Gln	Lys	Gln 455		Ser	Gln	Lys	Asp 460	_) Asn	Lys	Gln
Leu 465) Ser	. Val	. Glu	Lys 470		. Asn	Asp) Ala	Ser 475		Glu	Ser	Gly	Lys 480
Asp	Lys	Thi	Pro	Ala 485		. Lys	Pro	Thr	Lys 490		/ Glu	ı Val	. Glu	Ser 495	
Ser	Thr	Thi	Pro 500		Lys	Val	. Val	. Ser 505		Thr	Glr	Asn	val 510	Ala	Lys
Pro	Thr	Thi 515		a Ser	: Ser	Lys	520		: Lys	s Asp	Val	Val 525		Thr	Ser
Ala	Gl _y 53(c Ser	Glu	ı Ala	Lys 535	_	Sei	c Ala	a Pro	Let 540		ı Lys	s Ala	Asn
Ile 545		s Ası	n Thi	. Ası	a Asg 550		/ His	s Thi	c Gli	n Sei 559		n Asr	n Asr	Lys	3 Asn 560
Thr	Glr	ı Glı	u Asr	565		a Lys	s Sei	2							

<210> 9 <211> 568

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 9 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser

<210> 10

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 10

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

```
Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val
                165
                                     170
                                                         175
Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala
            180
                                 185
                                                     190
Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr
        195
                            200
                                                 205
Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp
                        215
                                             220
Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro
225
                    230
                                         235
Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys
                245
                                     250
                                                         255
Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys
            260
                                 265
                                                     270
Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile
        275
                             280
                                                 285
Thr Glu Phe Gln Lys Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu
                        295
                                             300
Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser
305
                     310
                                         315
                                                              320
Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn
                325
                                     330
                                                          335
Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys
            340
                                 345
                                                      350
Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala
        355
                             360
                                                  365
Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr
    370
                         375
                                             380
Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
385
                     390
                                         395
                                                              400
Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                 405
                                     410
                                                          415
Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
            420
                                 425
                                                      430
Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
        435
                             440
                                                  445
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
                         455
                                             460
Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
465
                     470
                                         475
Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu Ser Ser
                 485
                                     490
                                                          495
Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys
             500
                                 505
                                                      510
Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
         515
                             520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
    530
                         535
                                              540
Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
545
                     550
                                          555
                                                              560
Thr Gln Glu Asn Lys Ala Lys Ser
                 565
```

<210> 11 <211> 565

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 11 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp

```
Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr
385
                    390
                                         395
                                                              400
His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp
                405
                                     410
                                                          415
Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala
            420
                                 425
                                                      430
Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu
        435
                             440
                                                  445
Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser
    450
                        455
                                             460
Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr
465
                     470
                                         475
                                                              480
Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser Ser Thr Thr
                485
                                     490
                                                          495
Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr
            500
                                 505
                                                      510
Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Ser Ser
        515
                             520
                                                  525
Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn
    530
                         535
                                              540
Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu
545
                     550
                                         555
                                                              560
Asn Lys Ala Lys Ser
                 565
<210> 12
<211> 566
```

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 12

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

Glu	Gly	Asp	Lys	Lys 165	Leu	Pro	Ile	Lys	Leu 170	Val	Ser	Tyr	Asp	Thr 175	Val
Lys	Asp	Tyr	Ala 180	Tyr	Ile	Arg	Phe	Ser 185	Val	Ser	Asn	Gly	Thr 190	Lys	Ala
Val	Lys	Ile 195	Val	Ser	Ser	Thr	His 200	Phe	Asn	Asn	Lys	Glu 205	Glu	Lys	Tyr
Asp	Tyr 210	Thr	Leu	Met	Glu	Phe 215	Ala	Gln	Pro	Ile	Tyr 220	Asn	Ser	Ala	Asp
Lys 225	Phe	Lys	Thr	Glu	Glu 230	Asp	Tyr	Lys	Ala	Glu 235	Lys	Leu	Leu	Ala	Pro 240
-	_		Ala	245					250		_			255	_
		_	Lys 260					265	_				270	_	
		275					280					285			
	290		Gln			295					300				
305	_		Lys		310					315					320
	•		Thr	325					330					335	
			Tyr 340		_			345			_	_	350		
		355					360					365	_	_	
	370		Thr			375					380				
385					390					395					Asp 400
		_		405	,			_	410	•				415	
			420	•			7	425			_		430		Lys
		435	5				440	1				445			Val
	450)				455				·	460	_		_	Gln
465	i				470)		_		475	•			_	480
_				485	5	-			490) _			_	495	
			500)				505	5				510)	Pro
		51	5				520)				525	5		a Gly
	530)				535	5				540)			E Lys
545	5				550)	c Gli	n Sei	r Gli	n Asr 555		ı Lys	s Ası	ı Thi	560
GIL	A WOI	r ny	s Ala	56!											

<210> 13 <211> 568

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 13 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Lys Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn .530 Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser

<210> 14

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 14

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Glu Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

```
Glu Gly Asp Lys Leu Pro Ile Lys Leu Ala Ser Tyr Asp Thr Val
                165
                                     170
                                                         175
Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Ile Ser Asn Gly Thr Lys Ala
            180
                                 185
                                                     190
Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr
        195
                            200
                                                 205
Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp
                        215
                                             220
Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro
225
                    230
                                         235
Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys
                245
                                     250
                                                          255
Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys
            260
                                 265
                                                      270
Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile
        275
                             280
                                                 285
Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu
                         295
                                             300
Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser
305
                     310
                                         315
Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn
                325
                                     330
                                                          335
Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys
            340
                                 345
                                                      350
Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala
        355
                             360
                                                  365
Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr
    370
                         375
                                             380
Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
385
                     390
                                         395
Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                 405
                                     410
                                                          415
Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
                                 425
                                                      430
Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
        435
                             440
                                                  445
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
                         455
                                              460
Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
465
                     470
                                         475
Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser
                 485
                                     490
                                                          495
Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Val Lys
             500
                                 505
                                                      510
Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
         515
                             520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
                         535
                                              540
Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
 545
                     550
                                          555
                                                              560
Thr Gln Glu Asn Lys Ala Lys Ser
                 565
```

<210> 15 <211> 564

<212> PRT

<213> Artificial Sequence <220> <223> ORF0657nH <400> 15 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly 140· Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp

Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Ser Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser

<210> 16

<211> 565

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 16

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp

Lys	Lys	Leu	Pro	Ile 165	Lys	Leu	Val	Ser	Tyr 170	Asp	Thr	Val	Lys	Asp 175	Tyr
Ala	Tyr	Ile	Arg 180	Phe	Ser	Val	Ser	Asn 185	Gly	Thr	Lys	Ala	Val 190	Lys	Ile
Val	Ser	Ser 195	Thr	His	Phe	Asn	Asn 200	Lys	Glu	Glu	Lys	Tyr 205	Asp	Tyr	Thr
Leu	Met 210	Glu	Phe	Ala	Gln	Pro 215	Ile	Tyr	Asn	Ser	Ala 220	Asp	Lys	Phe	Lys
Thr 225	Glu	Glu	Asp	Tyr	Lys 230	Ala	Glu	Lys	Leu	Leu 235	Ala	Pro	Tyr	Lys	Lys 240
Ala	Lys	Thr	Leu	Glu 245	Arg	Gln	Val	Tyr	Glu 250	Leu	Asn	Lys	Ile	Gln 255	
Lys	Leu	Pro	Glu 260	Lys	Leu	Lys	Ala	Glu 265	Tyr	Lys	Lys	Lys	Leu 270	Glu	Asp
Thr	Lys	Lys 275	Ala	Leu	Asp	Glu	Gln 280	Val	Lys	Ser	Ala	Ile 285	Thr	Glu	Phe
Gln	Asn 290	Val	Gln	Pro	Thr	Asn 295	Glu	Lys	Met	Thr	Asp 300	Leu	Gln	Asp	Thr
305					310					315					Asp 320
				325					330					335	
			340					345		Tyr			350		
		355					360					365			Asn
	370					375					380				Asp
385					390					395					Tyr 400
				405	•				410					415	_
			420					425					430		Ala
		435	1				440					445	1	_	Glu
_	450					455					460	•			Ser
465	•				470)				475			_	_	Thr 480
				485	5		_		490)				495	
			500)				505					510)	Thr
		515	5				520)				525	5		Ser
	530	1				535	5				540)			Asn
545	5	_			550		ı Ser	Glr.	ı Ası	Asn 555		s Asr	1 Thr	Gln	Glu 560
កទ្ធ	r nys	> ₩T¢	a Lys	569											

<210> 17 <211> 568

<212> PRT

<213> Artificial Sequence <220> <223> ORF0657nH <400> 17 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Leu Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Ile Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

```
Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
385
                    390
                                         395
                                                              400
Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                405
                                     410
                                                          415
Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
            420
                                 425
                                                     430
Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
        435
                             440
                                                 445
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
                         455
Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
465
                    470
                                         475
                                                              480
Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser
                485
                                     490
                                                          495
Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys
            500
                                 505
                                                      510
Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
        515
                             520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
    530
                         535
                                             540
Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
545
                     550
                                         555
                                                              560
Thr Gln Glu Asn Lys Ala Lys Ser
                 565
```

<210> 18

<211> 565

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 18

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp

```
Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr
                165
Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile
            180
                                 185
                                                     190
Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr
        195
                            200
                                                 205
Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys
    210
                        215
                                             220
Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys
225
                    230
                                         235
Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp
                245
                                     250
Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp
            260
                                                      270
Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe
        275
                             280
                                                 285
Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr
    290
                         295
                                             300
Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp
305
                     310
                                         315
Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys
                 325
                                     330
Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met
            340
                                 345
                                                      350
Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn
        355
                             360
                                                  365
Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp
                         375
                                              380
Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr
385
                     390
                                         395
His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp
                 405
                                     410
                                                          415
Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala
             420
                                 425
                                                      430
Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu
        435
                             440
                                                  445
Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Pro Leu Pro Ser
    450
                         455
                                              460
Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr
465
                     470
                                          475
Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser Ser Thr Thr
                 485
                                     490
Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr
             500
                                 505
                                                      510
Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Ser Ser
         515
                             520
                                                  525
Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn
     530
                         535
                                              540
Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu
545
                     550
                                          555
                                                              560
Asn Lys Ala Lys Ser
                 565
```

<210> 19 <211> 568

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 19 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Thr Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

```
Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
385
                    390
                                         395
                                                              400
Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                405
                                                          415
Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
            420
                                 425
                                                     430
Arg Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
        435
                             440
                                                 445
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
    450
                        455
                                             460
Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
465
                    470
                                         475
                                                              480
Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser
                485
                                     490
                                                          495
Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys
            500
                                 505
                                                      510
Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
        515
                             520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
    530
                         535
                                              540
Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
545
                     550
                                          555
                                                              560
Thr Gln Glu Asn Lys Ala Lys Ser
                 565
```

<210> 20

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 20

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Thr Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

Glu	Gly	Asp	Lys	Lys 165	Leu	Pro	Ile	Lys	Leu 170	Val	Ser	Tyr	Asp	Thr 175	Val
Lys	Asp	Tyr	Ala 180	Tyr	Ile	Arg	Phe	Ser 185	Val	Ser	Asn	Gly	Thr 190	Lys	Ala
Val	Lys	Ile 195	Val	Ser	Ser	Thr	His 200	Phe	Asn	Asn	Lys	Glu 205	Glu	Lys	Tyr
Asp	Tyr 210	Thr	Leu	Met	Glu	Phe 215	Ala	Gln	Pro	Ile	Tyr 220	Asn	Ser	Ala	Asp
Lys 225	Phe	Lys	Thr	Glu		Asp		Lys	Ala	Glu 235		Leu	Leu	Ala	Pro 240
Tyr	Lys	Lys	Ala	Lys 245	Thr	Leu	Glu	Arg	Gln 250	Val	Tyr	Glu	Leu	Asn 255	Lys
			260					265					270		
		275					280			Gln		285			
	290					295				Glu	300				
305					310					Val 315					320
				325					330					335	
			340					345		Asn			350		
		355					360					365		_	Ala
	370					375				Tyr	380				
385					390					Lys 395				_	400
				405					410					415	
			420					425					430		Lys
		435					440					445			Val
	450					455					460				Gln
465					470					475					Lys 480
	_			485					490)				495	
			500)				505	•				510		Lys
		515	5				520	•				525			Ser
	530)				535	;				540)			Asn
545	_				550)			Glr	ser 555		AST	ı Asn	. Lys	560
Tnr	GII	ı GIL	ı Asr	1 Lys 565		r rys	s Ser	.							

<210> 21 <211> 576

<212> PRT <213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 21 Ala Glu Glu Thr Gly Val Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Val Lys Glu Val Lys Ala Pro Lys Glu Ala Lys Glu Glu Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Gly Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Glu Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile

```
Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val
385
                    390
                                         395
His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val
                405
                                     410
                                                          415
Asp Lys Glu Ala Phe Thr Lys Ala Asn Ala Asp Lys Thr Asn Lys Lys
            420
                                 425
                                                      430
Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Thr Thr Pro Ala Met Pro
        435
                             440
                                                  445
Ser Lys Pro Thr Thr Pro Pro Val Glu Lys Glu Ser Gln Lys Gln Asp
    450
                         455
                                             460
Ser Gln Lys Asp Asp Asn Lys Gln Ser Pro Gly Val Glu Lys Glu Asn
465
                     470
                                         475
                                                              480
Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Met Pro Val Thr Lys Pro
                 485
                                     490
                                                          495
Ala Lys Ala Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val
            500
                                 505
                                                      510
Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Glu Thr
        515
                             520
                                                  525
Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp
    530
                         535
                                              540
Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His
545
                     550
                                          555
                                                               560
Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
                 565
                                      570
                                                          575
```

<210> 22

<211> 576

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 22

Ala Glu Glu Thr Gly Val Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys. Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Val Lys Glu Val Lys Ala Pro Lys Glu Ala Lys Glu Glu Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln

Phe	Trp	Arg	Lys	Phe 165	Glu	Val	Tyr	Glu	Gly 170	Asp	Lys	Lys	Leu	Pro 175	Ile
Lys	Leu	Val	Ser 180	Tyr	Asp	Thr	Val	Lys 185	Asp	Tyr	Ala	Tyr	Ile 190	Arg	Phe
	Val	195					200					205			
	Asn 210					215					220				
225	Pro				230					235					240
	Ala			245					250					255	
	Gln		260					265					270		
	Lys	275					280					285			
	Glu 290					295					300				
305	Asn				310					315			•		320
	Ser			325					330					335	
			340					345					350		Glu
	Thr	355					360					365	_		
	Arg 370					375					380				
385					390					395					400
	Val			405					410					415	
			420					425					430		Lys
		435					440					445			Pro
	450					455					460				Asp
465					470					475			_		Asn 480
				485	•				490					495	
			500	1				505					510		Val
		515	•				520					525			Thr
	530					535					540			_	Asp
545			_		550)				555	•				His 560
Thr	Gln	Ser	Glr	Asr 565		Lys	s Asn	Thr	570		ı Asn	Lys	a Ala	Lys 575	Ser

<210> 23 <211> 568

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 23 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Ser Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Thr Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asn Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Gly Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ser Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Glu Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Ala Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Thr Thr Pro Ala Thr Pro Ser Lys Pro Thr Thr Pro Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Ser Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Thr Thr Lys Pro Ala Lys Ala Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Glu Thr Thr Ile Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Glu Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser

<210> 24

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 24

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Ser Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Thr Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

Glu	Gly	Asn	Lys	Lys 165	Leu	Pro	Ile	Lys	Leu 170	Val	Ser	Tyr	Asp	Thr 175	Val
Lys	Asp	Tyr	Ala 180		Ile	Arg	Phe	Ser 185	_	Ser	Asn	Gly	Thr 190		Ala
Val	Lys	Ile 195	Val	Ser	Ser	Thr	His 200	Phe	Asn	Asn	Lys	Glu 205	Glu	Lys	Tyr
	210				Glu	215					220				
225					Glu 230					235					240
				245	Thr				250		-			255	
			260		Pro			265					270		_
		275			Lys		280					285			
	290				Val	295					300				
305					Val 310					315					320
				325					330					335	
			340		Val			345					350		
		355			Gly		360					365	-	_	
	370				Thr	375					380			-	
385					390					395					Asp 400
				405					410					415	
			420					425					430		Lys
		435					440					445			Val
	450					455					460				Gln
465					470					475					Lys 480
				485					490					495	
			500	•				505					510)	Lys
		515					520					525	•		Ser
	530	1				535					540	ı			Asn
545					550				. GII	Ser 555		Asn	ı Asr	ı Lys	5 Asn 560
Tnr	GIN	i GIV	ı ASN	565	Ala	гу	s ser	•							

<210> 25 <211> 568

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 25 Ala Glu Glu Thr Gly Gly Thr Ile Thr Glu Thr Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Ala Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Asn Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ser Asp Asn Asn Thr Tyr Pro Ile Leu Asn Glu Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Glu Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Glu Arg Val Arg Thr Ile Ser Lys Asp Ala

Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

```
Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
385
                    390
                                         395
                                                              400
Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                405
                                     410
                                                          415
Asn Ala Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
            420
                                 425
                                                      430
Lys Glu Thr Thr Pro Ala Thr Pro Ser Lys Pro Thr Thr Ala Pro Val
        435
                             440
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
    450
                         455
                                             460
Ser Pro Ser Val Glu Lys Glu Ile Asp Ala Ser Ser Glu Ser Gly Lys
465
                     470
                                         475
                                                              480
Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser
                 485
                                     490
                                                          495
Ser Thr Thr Pro Thr Lys Val Val Ser Ala Thr Gln Asn Val Ala Lys
            500
                                 505
                                                      510
Pro Thr Ser Ala Ser Ser Glu Thr Thr Lys Gly Val Val Gln Thr Ser
        515
                             520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Asn Ala Pro Leu Gln Lys Ala Asn
    530
                         535
                                              540
Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
545
                     550
                                          555
                                                              560
Thr Gln Glu Asn Lys Ala Lys Ser
                 565
```

<210> 26

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 26

Ala Glu Glu Thr Gly Gly Thr Ile Thr Glu Thr Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Asn Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ser Asp Asn Asn Thr Tyr Pro Ile Leu Asn Glu Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

Glu	Gly	Asp	Lys	Lys 165	Leu	Pro	Ile	Lys	Leu 170	Val	Ser	Tyr	Asp	Thr 175	Val
Lys	Asp	Tyr	Ala 180	Tyr	Ile	Arg	Phe	Ser 185		Ser	Asn	Gly	Thr 190	Lys	Ala
Val	Lys	Ile 195	Val	Ser	Ser	Thr	His 200	Phe	Asn	Asn	Lys	Glu 205	Glu	Lys	Tyr
Asp	Tyr 210	Thr	Leu	Met	Glu	Phe 215	Ala	Gln	Pro	Ile	Tyr 220	Asn	Ser	Ala	Asp
225					230					Glu 235					240
				245					250	Val				255	
			260				.	265	_	Ala		_	270	_	_
		275			•		280			Gln		285			
	290					295				Glu	300				
305					310					Val 315					320
				325					330					335	
Gly	Lys	Lys	Tyr 340		Val	Met	Glu	Thr 345		Asn	Asp	Asp	Tyr 350	Trp	Lys
		355					360			Thr		365	_		
	370					375				Tyr	380		_		
385					390					395			_	_	Asp 400
				405					410					415	
			420					425					430		Lys
		435	•				440					445	1		Val
	450					455	•				460	i			Gln
465					470)				475	i				Lys 480
Asp) Lys	Thr	r Pro	Ala 485		. Lys	Pro) Ala	490	_	r Glu	Val	. Glu	Ser 495	Ser
Ser	Thr	Thi	500		Lys	Val	. Val	. Ser 505		a Thr	Gln	Asn	Val 510		Lys
Pro	Thr	Ser 515		a Ser	: Ser	Glu	1 Thr 520		. Lys	s Gly	v Val	Val 525		Thr	Ser
Ala	Gly 530		c Ser	: Glı	ı Ala	535	_) Asr	n Ala	a Pro	540		ı Lys	. Ala	Asn
545	5	_			550)			c Glr	n Ser 555		n Asr	ı Asr	Lys	560
Thr	: Glr	ı Gli	ı Ası	1 Lys 565	s Ala	a Lys	s Sei	:							

<210> 27 <211> 570

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 27 Met Gly Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys * Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly

```
Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp
385
                    390
                                         395
Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr
                405
                                     410
                                                          415
Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser
            420
                                 425
                                                      430
Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser
        435
                             440
                                                 445
Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn
    450
                         455
Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser
465
                     470
                                         475
Gly Lys Gly Val Thr Leu Ala Thr Lys Pro Thr Lys Gly Glu Val Glu
                485
                                                          495
Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val
            500
                                 505
                                                      510
Ala Lys Pro Thr Thr Gly Ser Ser Lys Thr Thr Lys Asp Val Val Gln
        515
                             520
                                                  525
Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys
    530
                         535
                                              540
Ala Asn Ile Lys His Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn
545
                     550
                                          555
                                                              560
Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
                 565
                                     570
```

<210> 28

<211> 654

<212> PRT

<213> Artificial Sequence

<220>

<223> SEQ ID NO: 2 modified to contain a glycine after
 the amino terminus methionine and a carboxyl
 His-Tag

<400> 28

Met Gly Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Leu Met Ser Asn Gly Glu Ala Gln Ala Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His

Ser 145	Ala	Pro	Asn	Ser	Arg 150	Pro	Ile	Asp	Phe	Glu 155	Met	Lys	Lys	Lys	Asp 160
Gly	Thr	Gln	Gln	Phe 165	Tyr	His	Tyr	Ala	Ser 170	Ser	Val	Lys	Pro	Ala 175	Arg
Val	Ile	Phe	Thr 180	Asp	Ser	Lys	Pro	Glu 185	Ile	Glu	Leu	Gly	Leu 190		Ser
Gly	Gln	Phe 195	Trp	Arg	Lys	Phe	Glu 200		Tyr	Glu	Gly	Asp 205		Lys	Leu
Pro	Ile 210	Lys	Leu	Val	Ser	Tyr 215		Thr	Val	Lys	Asp 220		Ala	Tyr	Ile
Arg 225	Phe	Ser	Val	Ser	Asn 230		Thr	Lys	Ala	Val 235		Ile	Val	Ser	Ser 240
Thr	His	Phe	Asn	Asn 245	Lys	Glu	Glu	Lys	Tyr 250		Tyr	Thr	Leu	Met 255	
Phe	Ala	Gln	Pro 260	Ile	Tyr	Asn	Ser	Ala 265	Asp	Lys	Phe	Lys	Thr 270		Glu
Asp	Tyr	Lys 275	Ala	Glu	Lys	Leu	Leu 280	Ala	Pro	Tyr	Lys	Lys 285		Lys	Thr
Leu	Glu 290	Arg	Gln	Val	Tyr	Glu 295	Leu	Asn	Lys	Ile	Gln 300	Asp	Lys	Leu	Pro
Glu 305	Lys	Leu	Lys	Ala	Glu 310	Tyr	Lys	Lys	Lys	Leu 315	Glu	Asp	Thr	Lys	Lys 320
Ala	Leu	Asp	Glu	Gln 325	Val	Lys	Ser	Ala	Ile 330	Thr	Glu	Phe	Gln	Asn 335	
Gln	Pro	Thr	Asn 340	Glu	Lys	Met	Thr	Asp 345		Gln	Asp	Thr	Lys 350	_	Val
Val	Tyr	Glu 355		Val	Glu	Asn	Asn 360	Glu	Ser	Met	Met	Asp 365		Phe	Val
Lys	His 370	Pro	Ile	Lys	Thr	Gly 375		Leu	Asn	Gly	Lys 380	Lys	Tyr	Met	Val
Met 385	Glu	Thr	Thr	Asn	Asp 390	Asp	Tyr	Trp	Lys	Asp 395	Phe	Met	Val	Glu	Gly 400
Gln	Arg	Val	Arg	Thr 405	Ile	Ser	Lys	Asp	Ala 410		Asn	Asn	Thr	Arg 415	
Ile	Ile	Phe	Pro 420		Val	Glu	Gly	Lys 425		Leu	Tyr	Asp	Ala 430	Ile	Val
Lys	Val	His 435		Lys	Thr	Ile	Asp 440		Asp	Gly	Gln	Tyr 445	His		Arg
Ile	Val 450		Lys	Glu	Ala	Phe 455		Lys	Ala	Asn	Thr 460		Lys	Ser	Asn
Lys 465	Lys	Glu	Gln	Gln	Asp 470		Ser	Ala	Lys	Lys 475		Ala	Thr	Pro	Ala 480
Thr	Pro	Ser	Lys	Pro 485		Pro	Ser	Pro	Val 490		Lys	Glu	Ser	Gln 495	Lys
Gln	Asp	Ser	Gln 500		Asp	Asp	Asn	Lys 505		Leu	Pro	Ser	Val 510		Lys
Glu	Asn	Asp 515		Ser	Ser	Glu	Ser 520		Lys	Asp	Lys	Thr 525		Ala	Thr
	530					535					540				Lys
Val 545		Ser	Thr	Thr	Gln 550		Val	Ala	Lys	Pro 555		Thr	Ala	Ser	Ser 560
Lys	Thr	Thr	. Lys	Asp 565		Val	Gln	Thr	Ser 570		Gly	Ser	Ser	Glu 575	Ala

```
Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp
            580
                                585
                                                    590
Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala
        595
                            600
                                                605
Lys Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu
    610
                        615
                                            620
Pro Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu
625
                    630
                                        635
                                                             640
Pro Arg Lys Arg Lys Asn Leu Glu His His His His His
                645
                                    650
<210> 29
<211> 1962
<212> DNA
<213> Artificial Sequence
<220>
<223> Full length ORF0657n + Carboxyl His-Tag
<400> 29
atgaacaaac agcaaaaga atttaaatca ttttattcaa ttagaaagtc atcactaggc 60
gttgcatctg tagcaattag tacactttta ttattaatgt caaatggcga agcacaagca 120
gcagctgaag aaacaggtgg tacaaataca gaagcacaac caaaaactga agcagttgca 180
agtccaacaa caacatctga aaaagctcca gaaactaaac cagtagctaa tgctgtctca 240
gtatctaata aagaagttga ggcccctact tctgaaacaa aagaagctaa agaagttaaa 300
gaagttaaag cccctaagga aacaaaagaa gttaaaccag cagcaaaagc cactaacaat 360
acatatccta ttttgaatca ggaacttaga gaagcgatta aaaaccctgc aataaaagac 420
aaagatcata gcgcaccaaa ctctcgtcca attgattttg aaatgaaaaa gaaagatgga 480
actcaacagt tttatcatta tgcaagttct gttaaacctg ctagagttat tttcactgat 540
tcaaaaccag aaattgaatt aggattacaa tcaggtcaat tttggagaaa atttgaagtt 600
tatgaaggtg acaaaaagtt gccaattaaa ttagtatcat acgatactgt taaagattat 660
gcttacattc gcttctctgt atcaaacgga acaaaagctg ttaaaattgt tagttcaaca 720
cacttcaata acaaagaaga aaaatacgat tacacattaa tggaattcgc acaaccaatt 780
tataacagtg cagataaatt caaaactgaa gaagattata aagctgaaaa attattagcg 840
ccatataaaa aagcgaaaac actagaaaga caagtttatg aattaaataa aattcaagat 900
aaacttcctg aaaaattaaa ggctgagtac aagaagaaat tagaggatac aaagaaagct 960
ttagatgagc aagtgaaatc agctattact gaattccaaa atgtacaacc aacaaatgaa 1020
aaaatgactg atttacaaga tacaaaatat gttgtttatg aaagtgttga gaataacgaa 1080
tctatgatgg atacttttgt taaacaccct attaaaacag gtatgcttaa cggcaaaaaa 1140
tatatggtca tggaaactac taatgacgat tactggaaag atttcatggt tgaaggtcaa 1200
cgtgttagaa ctataagcaa agatgctaaa aataatacta gaacaattat tttcccatat 1260
gttgaaggta aaactctata tgatgctatc gttaaagttc acgtaaaaac gattgattat 1320
gatggacaat accatgtcag aatcgttgat aaagaagcat ttacaaaagc caataccgat 1380
aaatctaaca aaaaagaaca acaagataac tcagctaaga aggaagctac tccagctacg 1440
cctagcaaac caacaccatc acctgttgaa aaagaatcac aaaaacaaga cagccaaaaa 1500
gatgacaata aacaattacc aagtgttgaa aaagaaaatg acgcatctag tgagtcaggt 1560
aaagacaaaa cgcctgctac aaaaccaact aaaggtgaag tagaatcaag tagtacaact 1620
ccaactaagg tagtatctac gactcaaaat gttgcaaaac caacaactgc ttcatcaaaa 1680
acaacaaaag atgttgttca aacttcagca ggttctagcg aagcaaaaga tagtgctcca 1740
ttacaaaaag caaacattaa aaacacaaat gatggacaca ctcaaagcca aaacaataaa 1800
aatacacaag aaaataaagc aaaatcatta ccacaaactg gtgaagaatc aaataaagat 1860
atgacattac cattaatggc attattagct ttaagtagca tcgttgcatt cgtattacct 1920
agaaaacgta aaaacctcga gcaccaccac caccaccact ga
                                                                  1962
```

```
<211> 1737
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657nH + Carboxyl His-Tag
<400> 30
atgaacgctg aagaaacagg tggtacaaat acagaagcac aaccaaaaac tgaagcagtt 60
gcaagtccaa caacaacatc tgaaaaagct ccagaaacta aaccagtagc taatgctgtc 120
tcagtatcta ataaagaagt tgaggcccct acttctgaaa caaaagaagc taaagaagtt 180
aaagaagtta aagcccctaa ggaaacaaaa gaagttaaac cagcagcaaa agccactaac 240
aatacatatc ctattttgaa tcaggaactt agagaagcga ttaaaaaccc tgcaataaaa 300
gacaaagatc atagcgcacc aaactctcgt ccaattgatt ttgaaatgaa aaagaaagat 360
ggaactcaac agttttatca ttatgcaagt tctgttaaac ctgctagagt tattttcact 420
gattcaaaac cagaaattga attaggatta caatcaggtc aattttggag aaaatttgaa 480
gtttatgaag gtgacaaaaa gttgccaatt aaattagtat catacgatac tgttaaagat 540
tatgcttaca ttcgcttctc tgtatcaaac ggaacaaaag ctgttaaaat tgttagttca 600
acacacttca ataacaaaga agaaaaatac gattacacat taatggaatt cgcacaacca 660
atttataaca gtgcagataa attcaaaact gaagaagatt ataaagctga aaaattatta 720
gcgccatata aaaaagcgaa aacactagaa agacaagttt atgaattaaa taaaattcaa 780
gataaacttc ctgaaaaatt aaaggctgag tacaagaaga aattagagga tacaaagaaa 840
gctttagatg agcaagtgaa atcagctatt actgaattcc aaaatgtaca accaacaaat 900
gaaaaaatga ctgatttaca agatacaaaa tatgttgttt atgaaagtgt tgagaataac 960
gaatctatga tggatacttt tgttaaacac cctattaaaa caggtatgct taacggcaaa 1020
aaatatatgg tcatggaaac tactaatgac gattactgga aagatttcat ggttgaaggt 1080
caacgtgtta gaactataag caaagatgct aaaaataata ctagaacaat tattttccca 1140
tatgttgaag gtaaaactct atatgatgct atcgttaaag ttcacgtaaa aacgattgat 1200
tatgatggac aataccatgt cagaatcgtt gataaagaag catttacaaa agccaatacc 1260
gataaatcta acaaaaaaga acaacaagat aactcagcta agaaggaagc tactccagct 1320
acgcctagca aaccaacacc atcacctgtt gaaaaagaat cacaaaaaca agacagccaa 1380
aaagatgaca ataaacaatt accaagtgtt gaaaaagaaa atgacgcatc tagtgagtca 1440
ggtaaagaca aaacgcctgc tacaaaacca actaaaggtg aagtagaatc aagtagtaca 1500
actccaacta aggtagtatc tacgactcaa aatgttgcaa aaccaacaac tgcttcatca 1560
aaaacaacaa aagatgttgt tcaaacttca gcaggttcta gcgaagcaaa agatagtgct 1620
ccattacaaa aagcaaacat taaaaacaca aatgatggac acactcaaag ccaaaacaat 1680
aaaaatacac aagaaaataa agcaaaatca ctcgagcacc accaccacca ccactga
                                                                   1737
<210> 31
<211> 1941
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 28 without a carboxyl His-Tag
      and is codon optimized for yeast expression
<400> 31
atgggtaaca agcaacaaaa ggaattcaag tctttctact ccattagaaa gtcttccttg 60
ggtgttgctt ctgtcgctat ctccaccttg ttgttgttga tgtctaacgg tgaagctcaa 120
gctgctgctg aagaaactgg tggtaccaac actgaagctc aaccaaagac cgaagctgtc 180
gcttccccaa ccactacctc tgaaaaggct ccagaaacta agccagttgc taacgctgtc 240
tccgtttcta acaaggaagt cgaagctcca acctccgaaa ctaaggaagc taaggaagtt 300
aaggaagtca aggctccaaa ggaaactaag gaagtcaagc cagctgctaa ggctaccaac 360
aacacttacc caattttgaa ccaagaattg agagaagcta ttaagaaccc agctatcaag 420
```

```
gacaaggacc actccgctcc aaactctaga ccaatcgact tcgaaatgaa gaagaaggac 480
ggtacccaac aattctacca ctacgcgtcc tctgtcaagc cagctagagt tattttcacc 540
gactctaagc cagaaatcga attgggtttg caatccggtc aattctggag aaagttcgaa 600
gtctacgaag gtgacaagaa gttgccaatt aagttggttt cctacgacac cgtcaaggac 660
tacgcttaca tcagattctc cgtttctaac ggtactaagg ctgtcaagat tgtctcttcc 720
acccacttca acaacaagga agaaaagtac gactacactt tgatggaatt cgctcaacca 780
atttacaact ctgctgacaa gttcaagacc gaagaagact acaaggctga aaagttgttg 840
gctccataca agaaggctaa gactttggaa agacaagttt acgaattgaa caagatccaa 900
gacaagttgc cagaaaagtt gaaggctgaa tacaagaaga agttggaaga caccaagaag 960
gctttggacg aacaagtcaa gtccgctatc accgaattcc aaaacgttca accaactaac 1020
gaaaagatga ctgacttgca agacactaag tacgtcgtct acgaatccgt cgaaaacaac 1080
gaatccatga tggacacctt cgttaagcac ccaattaaga ctggtatgtt gaacggtaag 1140
aagtacatgg tcatggaaac cactaacgac gactactgga aggacttcat ggttgaaggt 1200
caaagagtca gaaccatctc caaggacgct aagaacaaca ctagaaccat tatcttccca 1260
tacgttgaag gtaagacttt gtacgacgct atcgtcaagg ttcacgtcaa gactattgac 1320
tacgacggtc aataccacgt tagaattgtt gacaaggaag ctttcaccaa ggctaacacc 1380
gacaagtcca acaagaagga acaacaagac aactctgcta agaaggaagc taccccagct 1440
accccatcta agccaacccc atctccagtt gaaaaggaat ctcaaaagca agactcccaa 1500
aaggacgaca acaagcaatt gccatccgtc gaaaaggaaa acgacgcgtc ttctgaatcc 1560
ggtaaggaca agactccagc taccaagcca actaagggtg aagttgaatc ttcctctact 1620
actccaacca aggttgtctc cactacccaa aacgtcgcta agccaactac cgcttcttcc 1680
aagactacca aggacgttgt ccaaacttct gctggttcct ctgaagctaa ggactctgct 1740
ccattgcaaa aggctaacat caagaacacc aacgacggtc acacccaatc ccaaaacaac 1800
aagaacactc aagaaaacaa ggctaagtct ttgccacaaa ccggtgaaga atccaacaag 1860
gacatgacct tgccattgat ggctttgttg gctttgtctt ccatcgttgc tttcgtcttg 1920
ccaagaaaga gaaagaacta a
                                                                   1941
<210> 32
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 3 and is codon optimized for
      yeast expression
<400> 32
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
 acccaacaat totaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
 tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
 tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
 gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
 cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
 tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
 ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
 aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
 ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
 aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
 tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
 tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
```

```
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aaggacaaga ctccagctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgc ttcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gaacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                  1710
<210> 33
<211> 1341
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 1 and is codon optimized for
      yeast expression
<400> 33
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tececaacea etacetetga aaaggeteea gaaactaage eagttgetaa egetgtetee 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccata a
                                                                   1341
<210> 34
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
```

```
<400> 34
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat totaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagggtgtca ctttggctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ttcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                   1710
<210> 35
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
<400> 35
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
 tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
 gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
 acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
 aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
 acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
 tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
 tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
 gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
 cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
 tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
```

```
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagggcgtca ctttggctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ttcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                  1710
<210> 36
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
<400> 36
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagggtgtta ctttggctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ttcttccaag 1560
```

```
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                  1710
<210> 37
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
<400> 37
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccaqctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagggcgtta ctttggctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ttcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taaqtcttaa
                                                                   1710
<210> 38
<211> 1710
 <212> DNA
<213> Artificial Sequence
 <220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
       methionine and is codon optimized for yeast
       expression
```

```
<400> 38
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagggtgtca ctttagctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ttcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680 .
aacactcaag aaaacaaggc taagtcttaa
                                                                   1710
<210> 39
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
<400> 39
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
```

```
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagggtgtca ctttggctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ctcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                  1710
<210> 40
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
<400> 40
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tececaacea etacetetga aaaggeteea gaaactaage eagttgetaa egetgtetee 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
 aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
 aagggtgtta ctttagctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
 ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ttcttccaag 1560
```

actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620

```
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                  1710
<210> 41
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 7 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
<400> 41
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagggtgtta ctttggctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgg ctcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gcacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                   1710
<210> 42
<211> 481
<212> PRT
<213> Artificial Sequence
<220>
<223> ORF0657nI+
<400> 42
Met Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr
 1
                                     10
                                                         15
```

Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro

```
Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys
    450
                        455
                                            460
Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly
465
                    470
                                        475
                                                             480
Lys
<210> 43
<211> 1452
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 42 and is codon optimized for
      yeast expression
<400> 43
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360
acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagtaaggat cc
                                                                   1452
<210> 44
<211> 605
<212> PRT
<213> ORF0657nG
<400> 44
Met Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr
  1
                                     10
                                                          15
Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr
             20
                                 25
                                                      30
Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala
         35
                             40
                                                 45
```

Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly

```
Lys Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu Ser
                485
                                     490
                                                          495
Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala
            500
                                 505
                                                      510
Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr
        515
                             520
                                                 525
Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala
                        535
                                             540
Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys
545
                    550
                                         555
Asn Thr Gln Glu Asn Lys Ala Lys Ser Leu Pro Gln Thr Gly Glu Glu
                565
                                     570
                                                          575
Ser Asn Lys Asp Met Thr Leu Pro Leu Met Ala Leu Leu Ala Leu Ser
            580
                                 585
                                                      590
Ser Ile Val Ala Phe Val Leu Pro Arg Lys Arg Lys Asn
        595
                             600
                                                  605
<210> 45
<211> 1818
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 44 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
```

<400> 45

atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60 tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120 gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180 gaagtcaagg ctccaaagga aactaaggaa gtcaagccag ctgctaaggc taccaacaac 240 acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300 aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa gaaggacggt 360 acccaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420 tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480 tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540 gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600 cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660 tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720 ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780 aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840 ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900 aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960 tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020 tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080 agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140 gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200 gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260 aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320 ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380 gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440 aaggacaaga ctccagctac caagccaact aagggtgaag ttgaatcttc ctctactact 1500 ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgc ttcttccaag 1560 actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620

```
ttgcaaaagg ctaacatcaa gaacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtctttg ccacaaaccg gtgaagaatc caacaaggac 1740
atgaccttgc cattgatggc tttgttggct ttgtcttcca tcgttgcttt cgtcttgcca 1800
agaaagagaa agaactaa
                                                                  1818
<210> 46
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 17 containing an amino terminus
      methionine and is codon optimized for yeast
      expression
<400> 46
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctttggct 60
tccccaacca ctaccactga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctgctaaggc tgacaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 360
gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa.cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
 gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
 aaggacaaga ctccagctac caagccagct aagggtgaag ttgaatcttc ctctactact 1500
 ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgc ttcttccaag 1560
 actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
 ttgcaaaagg ctaacatcaa gaacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                   1710
 <210> 47
 <211> 1446
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Encodes the SEQ ID NO: 17 I+ region, is codon
       optimized for yeast expression, and encodes a
```

methionine initiation codon

<400> 47

```
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctttggct 60
tccccaacca ctaccactga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctgctaaggc tgacaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 360
gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagtaa
                                                                   1446
<210> 48
<211> 1341
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes the SEQ ID NO: 17 I region, is codon
      optimized for yeast expression, and encodes a
      methionine initiation codon
<400> 48
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctttggct 60
tececaacea etaceaetga aaaggeteea gaaactaage eagttgetaa egetgtetee 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctgctaaggc tgacaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 360
gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
 tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
 gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
 cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
 tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
 ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
 aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
 ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
 aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
```

```
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccata a
                                                                  1341
<210> 49
<211> 1938
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes for full length ORF0657n containing SEQ ID
      NO: 17 modified to contain a glycine afer the
      amino terminus methionine and is codon optimized
      for yeast expression
<400> 49
atgggtaaca agcaacaaaa ggaattcaag tctttctact ccattagaaa gtcttccttg 60
ggtgttgctt ctgtcgctat ctccaccttg ttgttgttga tgtctaacgg tgaagctcaa 120
gctgctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctttggct 180
tccccaacca ctaccactga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 240
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 300
gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctgctaaggc tgacaacaac 360
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 420
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 480
gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 540
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 600
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 660
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 720
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 780
 tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 840
 ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 900
 aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 960
 ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 1020
 aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 1080
 tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1140
 tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1200
 agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1260
 gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1320
 gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1380
 aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1440
 ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1500
 gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1560
 aaggacaaga ctccagctac caagccagct aagggtgaag ttgaatcttc ctctactact 1620
 ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgc ttcttccaag 1680
 actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1740
 ttgcaaaagg ctaacatcaa gaacaccaac gacggtcaca cccaatccca aaacaacaag 1800
 aacactcaag aaaacaaggc taagtctttg ccacaaaccg gtgaagaatc caacaaggac 1860
 atgaccttgc cattgatggc tttgttggct ttgtcttcca tcgttgcttt cgtcttgcca 1920
 agaaagagaa agaactaa
                                                                   1938
```

<210> 50

```
<211> 1710
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 20, is codon optimized for
     yeast expression, and encodes a methionine
      initiation codon
<400> 50
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctactaaggc tgacaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 360
gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aaggacaaga ctccagctac caagccagct aagggtgaag ttgaatcttc ctctactact 1500
ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgc ttcttccaag 1560
actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1620
ttgcaaaagg ctaacatcaa gaacaccaac gacggtcaca cccaatccca aaacaacaag 1680
aacactcaag aaaacaaggc taagtcttaa
                                                                   1710
<210> 51
<211> 1446
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes SEQ ID NO: 20 I+ region, is codon
      optimized for yeast expression, and encodes a
      methionine initiation codon
<400> 51
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctactaaggc tgacaacaac 240
```

```
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 360
gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320
ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1380
gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1440
aagtaa
                                                                   1446
<210> 52
<211> 1341
<212> DNA
<213> Artificial Sequence
<220>
<223> Encodes the SEQ ID NO: 20 I region, is codon
      optimized for yeast expression, and encodes a
      methionine initiation codon
<400> 52
atggctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 60
tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 120
gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 180
gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctactaaggc tgacaacaac 240
acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 300
aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 360
gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 420
tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 480
tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 540
gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 600
cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 660
 tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 720
 ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 780
 aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 840
 ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 900
 aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 960
 tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1020
 tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1080
 agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1140
 gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1200
 gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1260
```

aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1320

ccatctaagc caaccccata a

1341 <210> 53 <211> 1938 <212> DNA <213> Artificial Sequence <220> <223> Encodes for full length ORF0657n containing SEQ ID NO: 20 modified to contain a glycine after the amino terminus methionine and is codon optimized for yeast expression <400> 53 atgggtaaca agcaacaaaa ggaattcaag tctttctact ccattagaaa gtcttccttg 60 ggtgttgctt ctgtcgctat ctccaccttg ttgttgttga tgtctaacgg tgaagctcaa 120 gctgctgaag aaactggtgg taccaacact gaagctcaac caaagaccga agctgtcgct 180 tccccaacca ctacctctga aaaggctcca gaaactaagc cagttgctaa cgctgtctcc 240 gtttctaaca aggaagtcga agctccaacc tccgaaacta aggaagctaa ggaagttaag 300 gaagtcaagg ctccaaagga aactaaggct gtcaagccag ctactaaggc tgacaacaac 360 acttacccaa ttttgaacca agaattgaga gaagctatta agaacccagc tatcaaggac 420 aaggaccact ccgctccaaa ctctagacca atcgacttcg aaatgaagaa ggaaaacggt 480 gaacaacaat tctaccacta cgcgtcctct gtcaagccag ctagagttat tttcaccgac 540 tctaagccag aaatcgaatt gggtttgcaa tccggtcaat tctggagaaa gttcgaagtc 600 tacgaaggtg acaagaagtt gccaattaag ttggtttcct acgacaccgt caaggactac 660 gcttacatca gattctccgt ttctaacggt actaaggctg tcaagattgt ctcttccacc 720 cacttcaaca acaaggaaga aaagtacgac tacactttga tggaattcgc tcaaccaatt 780 tacaactctg ctgacaagtt caagaccgaa gaagactaca aggctgaaaa gttgttggct 840 ccatacaaga aggctaagac tttggaaaga caagtttacg aattgaacaa gatccaagac 900 aagttgccag aaaagttgaa ggctgaatac aagaagaagt tggaagacac caagaaggct 960 ttggacgaac aagtcaagtc cgctatcacc gaattccaaa acgttcaacc aactaacgaa 1020 aagatgactg acttgcaaga cactaagtac gtcgtctacg aatccgtcga aaacaacgaa 1080 tccatgatgg acaccttcgt taagcaccca attaagactg gtatgttgaa cggtaagaag 1140 tacatggtca tggaaaccac taacgacgac tactggaagg acttcatggt tgaaggtcaa 1200 agagtcagaa ccatctccaa ggacgctaag aacaacacta gaaccattat cttcccatac 1260 gttgaaggta agactttgta cgacgctatc gtcaaggttc acgtcaagac tattgactac 1320 gacggtcaat accacgttag aattgttgac aaggaagctt tcaccaaggc taacaccgac 1380 aagtccaaca agaaggaaca acaagacaac tctgctaaga aggaagctac cccagctacc 1440 ccatctaagc caaccccatc tccagttgaa aaggaatctc aaaagcaaga ctcccaaaag 1500 gacgacaaca agcaattgcc atccgtcgaa aaggaaaacg acgcgtcttc tgaatccggt 1560 aaggacaaga ctccagctac caagccagct aagggtgaag ttgaatcttc ctctactact 1620 ccaaccaagg ttgtctccac tacccaaaac gtcgctaagc caactaccgc ttcttccaag 1680 actaccaagg acgttgtcca aacttctgct ggttcctctg aagctaagga ctctgctcca 1740 ttgcaaaagg ctaacatcaa gaacaccaac gacggtcaca cccaatccca aaacaacaag 1800 aacactcaag aaaacaaggc taagtctttg ccacaaaccg gtgaagaatc caacaaggac 1860 atgacettge cattgatgge tttgttgget ttgtetteea tegttgettt egtettgeea 1920 agaaagagaa agaactaa 1938 <210> 54 <211> 565 <212> PRT <213> Artificial Sequence <220> <223> ORF0657nH

<400> 54 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Ala Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp

Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Ser Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser

<210> 55

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 55

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Gly Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala

```
Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr
        195
                             200
                                                  205
Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp
    210
                         215
                                              220
Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro
225
                                          235
                     230
                                                              240
Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys
                 245
                                      250
                                                          255
Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys
                                 265
Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Pro Ala Ile
         275
                             280
                                                  285
Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu
     290
                         295
                                              300
Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser
 305
                     310
                                          315
                                                               320
Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn
                 325
                                      330
 Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys
             340
                                  345
                                                      350
 Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala
         355
                              360
 Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr
     370
                          375
                                              380
 Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
 385
                      390
                                          395
                                                               400
 Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                  405
                                      410
 Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
             420
                                  425
                                                       430
 Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
         435
                              440
                                                   445
 Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
                          455
     450
                                               460
 Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
 465
                      470
                                           475
                                                               480
 Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu Ser Ser
                  485
                                      490
                                                           495
 Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys
              500
                                  505
                                                       510
 Pro Ile Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
         515
                              520
                                                   525
 Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
      530
                          535
                                               540
 Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
 545
                                           555
                                                               560
                      550
 Thr Gln Glu Asn Lys Ala Lys Ser
                  565
```

<220>

<210> 56

<211> 568

<212> PRT

<213> Artificial Sequence

<223> ORF0657nH

<400> 56 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Glu Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Ile Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys 2.55 Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala

```
Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
            420
                                 425
                                                     430
Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
                             440
        435
                                                 445
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
    450
                        455
                                             460
Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
465
                    470
                                         475
Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser
                485
                                     490
Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Val Lys
            500
                                 505
                                                      510
Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
        515
                             520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
    530
                         535
                                              540
Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
545
                     550
                                          555
                                                              560
Thr Gln Glu Asn Lys Ala Lys Ser
                 565
```

<210> 57

<211> 568

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<221> SITE

<222> 247

<223> Unknown

<400> 57

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Pro Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Thr Lys Asn Pro Glu Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Thr Asp Phe Glu Met Lys Lys Asn Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

```
Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val
                165
                                                         175
                                     170
Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Ile Ser Asn Gly Thr Lys Ala
            180
                                 185
                                                     190
Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr
        195
                             200
                                                 205
Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp
    210
                        215
                                             220
Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro
225
                    230
                                         235
Tyr Lys Lys Ala Lys Thr Xaa Glu Arg Gln Val Tyr Glu Leu Asn Lys
                245
                                     250
                                                          255
Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys
            260
                                 265
                                                     270
Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile
        275
                             280
                                                 285
Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu
                         295
                                             300
Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser
305
                     310
                                         315
                                                              320
Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn
                 325
                                     330
                                                          335
Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys
             340
                                 345
                                                      350
Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala
        355
                             360
                                                  365
Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr
    370
                         375
                                              380
Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
385
                     390
                                          395
                                                              400
Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                 405
                                      410
                                                          415
Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
             420
                                 425
                                                      430
Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
         435
                             440
                                                  445
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
                         455
                                              460
Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
465
                     470
                                          475
Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser
                 485
                                      490
                                                          495
Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys
             500
                                  505
                                                      510
Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
         515
                              520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
                         535
                                              540
Leu Leu Lys Thr His Asp Gly His Thr Gln Ser Gln Asn Ile Lys Asn
 545
                     550
                                          555
                                                               560
 Thr Lys Lys Asp Lys Ala Lys Ser
                 565
```

<210> 58 <211> 568

<212> PRT

<213> Artificial Sequence <220> <223> ORF0657nH <400> 58 Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr 200 : Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr

```
Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp Tyr Asp
385
                    390
                                                              400
                                         395
Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala
                405
                                     410
                                                          415
Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys
            420
                                 425
                                                      430
Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val
        435
                             440
                                                 445
Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln
                         455
                                             460
Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys
465
                     470
                                         475
                                                              480
Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu Ser Ser
                 485
                                     490
                                                          495
Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys
            500
                                 505
                                                      510
Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser
        515
                             520
                                                  525
Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn
    530
                                              540
                         535
Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn
545
                     550
                                          555
                                                               560
Thr Gln Glu Asn Lys Ala Lys Ser
                 565
```

<210> 59

<211> 567

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 59

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Asn Lys Lys Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Ala Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr

Glu	Gly	Asp	Lys	Lys 165	Leu	Pro	Ile	Lys	Leu 170	Val	Ser	Tyr	Asp	Thr 175	Val
Lys	Asp	Tyr	Ala 180	Tyr	Ile	Arg	Phe	Ser 185	-	Ser	Asn	Gly	Thr 190		Ala
		195	Val				200					205		_	_
	210		Met			215					220				
225			Glu		230					235					240
			Lys	245					250					255	
			Leu 260					265				_	270	_	
		275	Lys				280					285			
	290		Asn			295					300				
305			Tyr		310					315					320
			Phe	325					330					335	_
			Met 340					345					350		
		355					360					365	-		_
	370		Arg			375					380				
385			Ile		390					395					400
			Val	405					410					415	
			420					425					430		Lys
		435	,				440					445			Glu
	450					455					460				Leu
465					470					475			_	_	Asp 480
0				485	1				490	•				495	
			500	•				505	•				510	-	Pro
		515	5				520					525			Ala
	530	1				535					540)			Ile
545					550			GII	ı ser	555		ı Asr	ı Lys	. Asn	Thr 560
G1I)	r GIU	l ASI	ı Lys	565	_	s ser	•								

<210> 60 <211> 576

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 60 Ala Glu Glu Thr Gly Val Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Val Lys Glu Val Lys Ala Pro Lys Glu Ala Lys Glu Glu Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala . 210 Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Glu Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Ala Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile

```
Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val
385
                    390
                                         395
His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val
                405
                                     410
                                                          415
Asp Lys Glu Ala Phe Thr Lys Ala Asn Ala Asp Lys Thr Asn Lys Lys
            420
                                 425
                                                      430
Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Thr Thr Pro Ala Met Pro
        435
                             440
                                                  445
Ser Lys Pro Thr Thr Pro Pro Val Glu Lys Glu Ser Gln Lys Gln Asp
    450
                         455
                                             460
Ser Gln Lys Asp Asp Asn Lys Gln Ser Pro Ser Val Glu Lys Glu Asn
465
                     470
                                         475
                                                              480
Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Met Pro Val Thr Lys Pro
                485
                                     490
                                                          495
Ala Lys Ala Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val
            500
                                 505
                                                      510
Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Glu Thr
        515
                             520
                                                  525
Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp
    530
                         535
                                              540
Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His
545
                     550
                                          555
                                                              560
Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
                 565
                                      570
                                                          575
```

<210> 61

<211> 572

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 61

Ala Glu Glu Thr Gly Val Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Val Lys Glu Val Lys Ala Pro Lys Glu Ala Lys Glu Glu Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys

```
Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser
                165
                                                         175
                                     170
Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn
            180
                                 185
                                                     190
Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys
        195
                             200
                                                 205
Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr
                         215
                                             220
Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys
225
                    230
                                         235
Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr
                245
                                     250
                                                          255
Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu
            260
                                 265
                                                      270
Tyr Lys Lys Leu Glu Glu Thr Lys Lys Ala Leu Asp Glu Gln Val
        275
                             280
                                                  285
Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys
    290
                         295
                                             300
Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu
305
                     310
                                         315
                                                              320
Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr
                 325
                                     330
                                                          335
Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp
             340
                                 345
                                                      350
Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile
         355
                             360
                                                  365
Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Cys Val
    370
                         375
                                              380
Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr
385
                     390
                                          395
                                                              400
Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala
                 405
                                      410
                                                          415
Phe Thr Lys Ala Asn Ala Asp Lys Thr Asn Lys Lys Glu Gln Gln Asp
             420
                                 425
Asn Ser Ala Lys Lys Glu Thr Thr Pro Ala Met Pro Ser Lys Pro Thr
         435
                             440
                                                  445
Thr Pro Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp
                         455
                                              460
Asp Asn Lys Gln Ser Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser
465
                     470
                                          475
                                                              480
Glu Ser Gly Lys Asp Lys Met Pro Val Thr Lys Pro Ala Lys Ala Glu
                 485
                                      490
                                                           495
Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln
             500
                                  505
                                                      510
Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Glu Thr Thr Lys Asp Val
         515
                              520
                                                  525
Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu
     530
                          535
                                              540
 Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln
 545
                                          555
                     550
                                                               560
 Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
                 565
                                      570
```

<210> 62 <211> 572

<212> PRT <213> Artificial Sequence <220> <223> ORF0657nH <400> 62 Ala Glu Glu Thr Gly Val Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Val Lys Glu Val Lys Ala Pro Lys Glu Ala Lys Glu Glu Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Glu Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val

```
Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr
385
                    390
                                         395
                                                              400
Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala
                405
                                                          415
                                     410
Phe Thr Lys Ala Asn Ala Asp Lys Thr Asn Lys Lys Glu Gln Gln Asp
            420
                                 425
                                                      430
Asn Ser Ala Lys Lys Glu Thr Thr Pro Ala Met Pro Ser Lys Pro Thr
        435
                             440
                                                  445
Thr Pro Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp
    450
                         455
                                              460
Asp Asn Lys Gln Ser Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser
465
                     470
                                         475
                                                              480
Glu Ser Gly Lys Asp Lys Met Pro Val Thr Lys Pro Ala Lys Ala Glu
                 485
                                     490
                                                          495
Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln
            500
                                 505
                                                      510
Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Glu Thr Thr Lys Asp Val
        515
                             520
                                                  525
Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu
    530
                         535
                                              540
Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln
545
                     550
                                          555
                                                              560
Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
                 565
                                      570
```

<210> 63

<211> 566

<212> PRT

<213> Artificial Sequence

<220>

<223> ORF0657nH

<400> 63

Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Lys Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly

Asp	Lys	Lys	Leu	Pro 165	Ile	Lys	Leu	Val	Ser 170	Tyr	Asp	Thr	Val	Lys 175	Asp
Tyr	Ala	Tyr	Ile 180	Arg	Phe	Ser	Val	Ser 185	Asn	Gly	Thr	Lys	Ala 190	-	Lys
Ile	Val	Ser 195	Ser	Thr	His	Phe	Asn 200	Asn	Lys	Glu	Glu	Lys 205	Tyr	Asp	Tyr
	210		Glu			215					220				
225			Glu		230					235					240
			Thr	245					250					255	
			Pro 260					265				_	270		
		275	Lys				280					285			
	290		Val			295					300				_
305			Val		310					315					320
			Val	325					330					335	
			Val 340					345					350		
		355					360					365		_	
	370		Thr			375					380				_
385					390					395			-	_	Gln 400
			Arg	405					410					415	
			420					425					430		Glu
		435	1				440					445			Lys Pro
	450					455					460	1			
465					470					475	•		_	_	Lys 480
				485					490)				495	
			500					505	•				510		Thr
		515	5				520					525	,		Gly
	530)				535	5				540)			Lys
545	•				550)	GIN	ı ser	. GIT	S55		ı PAs	s Asn	ı Thr	Gln 560
GIU	, vař	, ry	s Ala	565		•									

<210> 64 <211> 8

<212>		
~213>	Artificial Sequence	
<220>		
<223>	His-Tag	
<400>		
Leu Gl	lu His His His His 5	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	65	
ctggc	cgtcg ttttac	16
<210>		
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>	66	
cagga	aacag ctatgac	17
<210>	67	
<211>	39	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
	gtttt ccatggggaa caaacagcaa aaagaattt	39
uuccg	geete teatgggaa tadacagtaa aaagaatte	
<210>	68	
<211>		
<212>		
<213>	Artificial Sequence	
<220>	-	
<223>	Primer	
<400>	. 6Ω	
	tttct cgaggtttt acgttttcta ggtaatac	38
	,	
<210>	• 69	

```
<211> 109
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 69
atgggtaaca agcaacaaaa ggaattcaag tctttctact ccattagaaa gtcttccttg 60
ggtgttgctt ctgtcgctat ctccaccttg ttgttgttga tgtctaacg
                                                                   109
<210> 70
<211> 110
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 70
gttggggaag cgacagcttc ggtctttggt tgagcttcag tgttggtacc accagtttct 60
tcagcagcag cttgagcttc accgttagac atcaacaaca acaaggtgga
                                                                   110
<210> 71
<211> 110
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 71
agaccgaagc tgtcgcttcc ccaaccacta cctctgaaaa ggctccagaa actaagccag 60
ttgctaacgc tgtctccgtt tctaacaagg aagtcgaagc tccaacctcc
                                                                   110
<210> 72
<211> 109
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 72
tggtagcctt agcagctggc ttgacttcct tagtttcctt tggagccttg acttccttaa 60
cttccttagc ttccttagtt tcggaggttg gagcttcgac ttccttgtt
                                                                    109
<210> 73
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
```

<400> 73	
aagtcaagcc agctgctaag gctaccaaca acacttaccc aattttgaac caagaattga 60 gagaagctat taagaaccca gctatcaagg acaaggacca ctccgctc 108	
gagaagetat taagaateea getateaagg allaaggalea eelegete	
<210> 74	
<211> 109	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> ORF0657n oligomer	
<400> 74	
tggcttgaca gaggacgcgt agtggtagaa ttgttgggta ccgtccttct tcttcatttc 60	
gaagtcgatt ggtctagagt ttggagcgga gtggtccttg tccttgata 109	<u>}</u>
<210> 75	
<211> 102	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> ORF0657n oligomer	
<400> 75	
accactacgc gtcctctgtc aagccagcta gagttatttt caccgactct aagccagaaa 60	
tcgaattggg tttgcaatcc ggtcaattct ggagaaagtt cg 102	3
<210> 76	
<211> 104	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> ORF0657n oligomer	
<400> 76	
ctgatgtaag cgtagtcctt gacggtgtcg taggaaacca acttaattgg caacttcttg 60	
tcaccttcgt agacttcgaa ctttctccag aattgaccgg attg	4
<210> 77	
<211> 109	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> ORF0657n oligomer	
<400> 77	
caccgtcaag gactacgctt acatcagatt ctccgtttct aacggtacta aggctgtcaa 60	
gattgtctct tccacccact tcaacaacaa ggaagaaaag tacgactac 10	9
<210> 78	
<211> 109	
<212> DNA	

```
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 78
aacttttcag ccttgtagtc ttcttcggtc ttgaacttgt cagcagagtt gtaaattggt 60
tgagcgaatt ccatcaaagt gtagtcgtac ttttcttcct tgttgttga
                                                                   109
<210> 79
<211> 106
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 79
ccgaagaaga ctacaaggct gaaaagttgt tggctccata caagaaggct aagactttgg 60
aaagacaagt ttacgaattg aacaagatcc aagacaagtt gccaga
                                                                   106
<210> 80
<211> 109
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 80
tcggtgatag cggacttgac ttgttcgtcc aaagccttct tggtgtcttc caacttcttc 60
ttgtattcag ccttcaactt ttctggcaac ttgtcttgga tcttgttca
                                                                   109
<210> 81
<211> 109
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 81
cgaacaagtc aagtccgcta tcaccgaatt ccaaaacgtt caaccaacta acgaaaagat 60
gactgacttg caagacacta agtacgtcgt ctacgaatcc gtcgaaaac
                                                                   109
<210> 82
<211> 109
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 82
tttccatgac catgtacttc ttaccgttca acataccagt cttaattggg tgcttaacga 60
```

aggtgtccat catggattcg ttgttttcga	cggattcgta	gacgacgta		109
<210> 83 <211> 109 <212> DNA <213> Artificial Sequence				
<220>				
<400> 83				
gaacggtaag aagtacatgg tcatggaaac ggttgaaggt caaagagtca gaaccatctc			aggacttcat	60 109
<210> 84 <211> 101				
<212> DNA <213> Artificial Sequence				
<220>				
<223> ORF0657n oligomer				
<400> 84	•			
gtcttgacgt gaaccttgac gatagcgtcg ataatggttc tagtgttgtt cttagcgtcc	· -		gtatgggaag	60 101
<210> 85				
<211> 106				
<212> DNA <213> Artificial Sequence				
<220>				
<223> ORF0657n oligomer				
<400> 85				
cgctatcgtc aaggttcacg tcaagactat tgttgacaag gaagctttca ccaaggctaa		_	acgttagaat	60 106
<210> 86				
<211> 96				
<212> DNA				
<213> Artificial Sequence				
<220> <223> ORF0657n oligomer				
<400> 86 tggggttggc ttagatgggg tagctggggt	acetteett	r ttagcagagt	: tatattatta	ı 60
ttccttcttg ttggacttgt cggtgttag		- clageagag		96
<210> 87				
<211> 85				
<212> DNA <213> Artificial Sequence				

```
<220>
<223> ORF0657n oligomer
<400> 87
cagctacccc atctaagcca accccatctc cagttgaaaa ggaatctcaa aagcaagact 60
                                                                   85
cccaaaagga cgacaacaag caatt
<210> 88
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 88
gttggcttgg tagctggagt cttgtcctta ccggattcag aagacgcgtc gttttccttt 60
tcgacggatg gcaattgctt gttgtcgtcc ttttgggagt
                                                                   100
<210> 89
<211> 101
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 89
ggacaagact ccagctacca agccaactaa gggtgaagtt gaatcttcct ctactactcc 60
aaccaaggtt gtctccacta cccaaaacgt cgctaagcca a
                                                                    101
<210> 90
<211> 101
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 90
agcagagtcc ttagcttcag aggaaccagc agaagtttgg acaacgtcct tggtagtctt 60
ggaagaagcg gtagttggct tagcgacgtt ttgggtagtg g
                                                                    101
<210> 91
<211> 91
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> ORF0657n oligomer
 <400> 91
 ggttcctctg aagctaagga ctctgctcca ttgcaaaagg ctaacatcaa gaacaccaac 60
                                                                    91
 gacggtcaca cccaatccca aaacaacaag a
```

```
<210> 92
<211> 98
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 92
gtgaagaatc caacaaggac atgaccttgc cattgatggc tttgttggct ttgtcttcca 60
tcgttgcttt cgtcttgcca agaaagagaa agaactaa
                                                                   98
<210> 93
<211> 98
<212> DNA
<213> Artificial Sequence
<220>
<223> ORF0657n oligomer
<400> 93
gtgaagaatc caacaaggac atgaccttgc cattgatggc tttgttggct ttgtcttcca 60
                                                                   98
tcgttgcttt cgtcttgcca agaaagagaa agaactaa
<210> 94
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 94
                                                                    31
cttaaagctt atgtcacttt ctcttgtatc g
<210> 95
<211> 30
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
 <400> 95
                                                                    30
 tgataagctt gctcaatggt tctcttcctc
 <210> 96
 <211> 53
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
 <400> 96
```

aaccggtttg gatcccacaa aacaaaatgg gt	aacaagca acaaaaggaa ttc 53
<210> 97	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
-	•
<220>	
<223> Primer	
<400> 97	
aaccggtttg gatccttagt tctttctctt tc	ttggcaag ac 42
.010	
<210> 98	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 98	
gctgaagaaa ctggtggtac caac	24
<210> 99	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 99	
gtcacggatc cttaagactt agccttgttt to	cttgagtgt tc 42
gecacygate cetaagatet ageetegtet et	, cegagege ce 42
<210> 100	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
_	
<220>	
<223> Primer	
<400> 100	
ggggggatcc cacaaaacaa aatggctgaa g	aaactggtg g 41
~210× 101	
<210> 101 <211> 39	
<211> 39 <212> DNA	
<213> Artificial Sequence	
urerrerar bedaeine	
<220>	
<223> Primer	

<400> 101 ggggggggat ccttaagact tagccttgtt ttcttgagt	39
<210> 102	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 102	
ggggggatcc cacaaaacaa aatggctgaa gaaactggtg g	41
<210> 103	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 103	
gggggggatc cttagttctt tctctttctt gg	32
<210> 104	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 104	
ctccggatcc cacaaaacaa aatggctgaa gaaactggt	39
<210> 105	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 105	
gctgccggga tccttatggg gttggcttag atggggta	38
<210> 106	
<211> 644	
<212> PRT	
<213> S. aureus	

<400> 106 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Met Ser Asn Gly Glu Ala Gln Ala Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Leu Ala Ser Pro Thr Thr Thr Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Ala Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg 390: Val Arg Thr Ile Ser Lys Asp Ala Ile Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val

His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro Ala Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg Lys Arg Lys Asn

<210> 107 <211> 644

<212> PRT

<213> S. aureus

<400> 107

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Leu Met Ser Asn Gly Glu Ala Gln Ala Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro Ala Thr Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu

Gln	Gln	Phe	Tyr	His 165	Tyr	Ala	Ser	Ser	Val 170	Lys	Pro	Ala	Arg	Val 175	Ile
Phe	Thr	Asp	Ser 180	Lys	Pro	Glu	Ile	Glu 185		Gly	Leu	Gln	Ser 190		Gln
Phe	Trp	Arg 195	Lys	Phe	Glu	Val	Tyr 200		Gly	Asp	Lys	Lys 205	Leu	Pro	Ile
Lys	Leu 210	Val	Ser	Tyr	Asp					Tyr	Ala 220		Ile	Arg	Phe
Ser	Val	Ser	Asn	Glv	Thr					Tlo		Ser	502	ФЪх	Wi o
225				<u>-</u>	230	_, _		V 4.1	ט ציב	235	Val	361	per	IIII	240
Phe	Asn	Asn	Lys	Glu 245		Lys	Tyr	Asp	Tyr 250		Leu	Met	Glu	Phe 255	
Gln	Pro	Ile	Tyr 260	Asn	Ser	Ala	Asp	Lys 265		Lys	Thr	Glu	Glu 270		Tyr
Lys	Ala	Glu 275	Lys	Leu	Leu	Ala	Pro 280	Tyr	Lys	Lys	Ala	Lys 285		Leu	Glu
Arg	Gln 290	Val	Tyr	Glu	Leu	Asn 295	Lys	Ile	Gln	Asp	Lys 300		Pro	Glu	Lys
Leu 305	Lys	Ala	Glu	Tyr	Lys 310	Lys	Lys	Leu	Glu	Asp 315	Thr	Lys	Lys	Ala	Leu 320
Asp	Glu	Gln	Val	Lys 325	Ser	Ala	Ile	Thr	Glu 330	Phe	Gln	Asn	Val	Gln 335	Pro
Thr	Asn	Glu	Lys 340	Met	Thr	Asp	Leu	Gln 345	Asp	Thr	Lys	Tyr	Val 350		Tyr
Glu	Ser	Val 355	Glu	Asn	Asn	Glu	Ser 360	Met	Met	Asp	Thr	Phe 365		Lys	His
Pro	Ile 370	Lys	Thr	Gly	Met	Leu 375	Asn	Gly	Lys	Lys	Tyr 380		Val	Met	Glu
Thr 385	Thr	Asn	Asp	Asp	Tyr 390	Trp	Lys	Asp	Phe	Met 395		Glu	Gly	Gln	Arg 400
Val	Arg	Thr	Ile	Ser 405	Lys	Asp	Ala	Lys	Asn 410	Asn	Thr	Arg	Thr	Ile 415	
Phe	Pro	Tyr	Val 420	Glu	Gly	Lys	Thr	Leu 425	Tyr	Asp	Ala	Ile	Val 430	Lys	Val
His	Val	Lys 435		Ile	Asp	Tyr	Asp 440	Gly	Gln	Tyr	His	Val 445		Ile	Val
Asp	Lys 450	Glu	Ala	Phe	Thr	Lys 455	Ala	Asn	Thr	Asp	Lys 460		Asn	Lys	Lys
Glu 465	Gln	Gln	Asp	Asn	Ser 470	Ala	Lys	Lys	Glu	Ala 475		Pro	Ala	Thr	Pro 480
Ser	Lys	Pro	Thr	Pro 485			Val		Lys 490	Glu	Ser		Lys		Asp
Ser	Gln	Lys	Asp 500	Asp	Asn	Lys	Gln	Leu 505		Ser	Val	Glu	Lys 510	Glu	Asn
Asp	Ala	Ser 515		Glu	Ser	Gly	Lys 520	Asp		Thr	Pro	Ala 525	Thr		Pro
Ala	Lys 530	Gly	Glu	Val	Glu	Ser 535	Ser		Thr	Thr	Pro 540			Val	Val
Ser 545	Thr	Thr	Gln	Asn	Val 550			Pro	Thr	Thr 555	Ala	Ser	Ser	Lys	Thr 560
Thr	. Lys	Asp	Val	Val 565	Gln	Thr	Ser	Ala	Gly 570	Ser		Glu	Ala	Lys 575	
Ser	Ala	Pro	Leu 580	Gln	Lys	Ala	Asn	Ile 585		Asn	Thr	Asn	Asp 590	Gly	His

Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser 595

Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu 610

Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg 625

Lys Arg Lys Asn