Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εργαστήρια Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων

Εργαστηριακή Άσκηση 1:

Μέτρηση του χρόνου ζωής του μιονίου (muon)

Ημερομηνία διεξαγωγή: 15-12-2015

Όνομα επιβλέποντα: Κωνσταντίνος Πρεκετές-Σιγάλας

Όνομα σπουδαστή: Αθανάσιος Λάππας, α.μ.: 09107019

Συνεργάτες: Γεώργιος Κολλάρος, Νίκος Λιάτσος

Compton scattering

Εισαγωγικά

Στην άσκηση αυτή επιχειρούμε να μετρήσουμε την μάζα ηρεμίας του ηλεκτρονίου καθώς και την μεταβολή της κινητικής και ολικής σχετικιστικής του ενέργειας συναρτήσει της ταχύτητάς του. Αυτό το κάνουμε με τη βοήθεια του φαινομένου Compton, χρησιμοποιώντας τα φάσματα ακτίνων-γ από διάφορες ραδιενεργές πηγές (137 Cs-καίσιο, 137 Co-κοβάλτιο, 54 Mn-μαγγάνιο, 22 Na).

Η ακτινοβολία αλληλεπιδρά με την ύλη μέσω τριών φαινομένων, το φωτοηλεκτρικό φαινόμενο, το φαινόμενο Compton και την δίδυμη γένεση. Στην παρούσα εργασία, όπως αναφέραμε ήδη, θα εκμεταλλευτούμε το φαινόμενο Compton, το οποίο είναι το μόνο που έχει κατώφλι. Στο φαινόμενο Compton τα φωτόνια της ακτινοβολίας (στην περίπτωσή μας ακτινοβολία γ) σκεδάζονται σε ηλεκτρόνια ανελαστικά και μέρος της ενέργειας των φωτονίων μεταφέρεται στο ηλεκτρόνιο σαν κινητική ενέργεια. Υποβιβάζεται λοιπόν ενεργειακά το φωτόνιο ενώ το ηλεκτρόνιο σκεδάζεται σε γωνία φ σύμφωνα με την

ακόλουθη σχέση: $\frac{1}{E_{\gamma}'} - \frac{1}{E_{\gamma}} = \frac{(1 - cos \varphi)}{mc^2}$

Το φαινόμενο λαμβάνει χώρα στον πλαστικό σπινθηριστή Nal (μαζί με τα φαινόμενα της δίδυμης γένεσης και του φωτοηλεκτρικού φαινομένου) όπου τα ηλεκτρόνια που εκπέμπονται αλληλεπιδρούν με τα άτομα του κρυστάλλου και παράγουν με την αποδιέγερσης τους φωτόνια που ανιχνεύονται απ τον φωτοπολλαπλασιαστή στον οποίον μετατρέπονται σε ρεύμα και έπειτα σε παλμό τάσης και με τις κατάλληλες διατάξεις μεταφέρονται στον υπολογιστή (χωρίζονται οι τάσεις στα 1024 κανάλια ενός πολυκαναλικού αναλυτή με την κατάλληλη βαθμονόμηση).

Μετρήσεις

			compton			
Πηγή	Centroid	FWHM	edge	σφάλμα	BackScatter	σφάλμα
²² Na	1270	64,6	1056,3	3,3	103,7	4
	489,7	54,7	287,6	5		
¹³⁷ Cs	658,7	63	443,3	5	146,2	3,3
⁵⁴ Mn	839,3	63	620,6	4	120,2	3
⁶⁰ Co	1173,9	56,3	978,4	3	156,7	5
	1323,1	61,3				

Έχουμε ότι το FWHM (Full Width Half Maximum) = 2,7 σ , απ το οποίο μπορούμε να υπολογίσουμε το σφάλμα για το E_{γ} (ενέργεια ακτίνας-στον πίνακα με τις μετρήσεις μας είναι η στήλη με τα Centroid).

Επεξεργασία των μετρήσεων - Απαντήσεις στα ερωτήματα του εργ. οδηγού

1)

Επιβεβαίωση της σχέσης E_{BackScatter} + E^e_{max} = E_ν

¹³⁷Cs : 146,2keV + 443,3keV = 589,5keV αρκετά κοντά στα 658,7keV που μετρήσαμε

⁶⁰Co : 156,7keV + 978,4keV = 1135,1keV αρκετά κοντά στα 1173,9keV που μετρήσαμε

⁵⁴Mn : 146,2keV + 620,6keV = 766,8keV αρκετά κοντά στα 839,3keV που μετρήσαμε

²²Na : 103,7keV + 1056,3keV = 1160,0keV αρκετά κοντά στα 1270,0keV που μετρήσαμε

Φαίνεται σε όλες στις μετρήσεις να είμαστε κατά έναν σταθερό περίπου παράγοντα πάνω απ την αναμενόμενη τιμή, κάτι που καταδεικνύει πιθανότατα κάποιο συστηματικό σφάλμα στις μετρήσεις μας, ίσως του backscatter.

2)

Ξεκινάμε από τον τύπο 1.1, αφού η μέγιστη κινητική ενέργεια που αποκτά το ηλεκτρόνιο προκύπτει από μετωπική σύγκρουση της ακτίνας γ με το ηλεκτρόνιο, έχουμε οπισθοσκέδαση της ακτίνας γ, οπότε θ = π, οπότε:

$$\frac{1}{E_{v'}} - \frac{1}{E_{v}} = \frac{2}{m_{o}c^{2}} \Rightarrow \frac{E_{v} - E_{v'}}{E_{v}E_{v'}} = \frac{2}{m_{o}c^{2}} \Rightarrow E_{v} - E_{v'} = \frac{2E_{v}E_{v'}}{m_{o}c^{2}}$$

Όμως:

$$\frac{1}{E_{\gamma'}} = \frac{2}{m_e c^2} + \frac{1}{E_{\gamma}} \Rightarrow \frac{1}{E_{\gamma'}} = \frac{2 E_{\gamma} + m_e c^2}{m_e c^2 E_{\gamma}} \Rightarrow E_{\gamma'} = \frac{m_e c^2 E_{\gamma}}{2 E_{\gamma} + m_e c^2}$$

Οπότε, αντικαθιστώντας στην πρώτη σχέση:

$$E_{\gamma} - E_{\gamma'} = \frac{2E_{\gamma} \frac{m_{e}c^{2}E_{\gamma}}{2E_{\gamma} + m_{e}c^{2}}}{m_{e}c^{2}} = \frac{2m_{e}c^{2}E_{\gamma}}{m_{e}c^{2}(2E_{\gamma} + m_{e}c^{2})} \Rightarrow E_{max}^{e} = E_{\gamma} - E_{\gamma'} = \frac{2E_{\gamma^{2}}}{2E_{\gamma} + m_{e}c^{2}}$$

Αποδείξαμε έτσι την ζητούμενη σχέση. Λύνουμε τώρα και ως προς τον παράγοντα μάζας:

$$E_{max}^{e} = \frac{2 E_{\gamma}^{2}}{2 E_{\gamma} + m_{e} c^{2}} \Rightarrow \left(2 E_{\gamma} + m_{e} c^{2}\right) E_{max}^{e} = 2 E_{\gamma}^{2} \Rightarrow m_{e} c^{2} E_{max}^{e} = 2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{max}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{\gamma}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{\gamma}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{\gamma}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{\gamma}^{e}}{E_{max}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma} E_{\gamma}^{e}}{E_{\gamma}^{e}} \Rightarrow m_{e} c^{2} = \frac{2 E_{\gamma}^{2} - 2 E_{\gamma}^{e}}{E_{\gamma}^{e}}$$

3)

Η αναμενόμενη τιμή μάζας του ηλεκτρονίου είναι $mc^2 = 511$ KeV. Τώρα, απ τις τιμές που μετρήσαμε εμείς, υπολογίζουμε την μάζα ηρεμίας και το σφάλμα ως:

$$\begin{split} m_e c^2 &= \frac{2 \, E_{\gamma}^2 - 2 \, E_{\gamma} \, E_{max}^e}{E_{max}^e} \qquad \delta \left(m_e \, c^2 \right) &= \quad \frac{\partial \left(m_e \, c^2 \right)}{\partial \, E_{\gamma}} \, \delta E_{\gamma} + \frac{\partial \left(m_e \, c^2 \right)}{\partial \, E_{max}^e} \, \delta E_{max}^e \\ &= \quad \sqrt{\left(\left(\frac{4 \, E_{\gamma}}{E_{max}^e} - 2 \right) \delta E_{\gamma} \right)^2 + \left(-\frac{2 \, E_{\gamma}^2}{E_{max}^e} \, \delta E_{max}^e \right)^2} \end{split}$$

	Εγ	δΕγ(2σ)	Emax	δEmax	mc^2	δ(mc^2)
Na	1270	47,9	1056,3	3,3	514	135
	489,7	40,5	287,6	5	688	197
Cs	658,7	46,7	443,3	5	640	185
Mn	839,3	46,7	620,6	4	592	160
Co	1173,9	41,7	978,4	3	469	117

Υπολογίζουμε τώρα την μέση τιμή της ενέργειας ηρεμίας στα 581~KeV με πολύ μεγάλο σφάλμα σ = 803... καταδεικνύεται λοιπόν κάποιο συστηματικό σφάλμα!