Chapitre 16

Polynômes

Objectifs

- Définir la notion de polynômes, étudier la structure de $\mathbb{K}[X]$.
- Définir la notion de degré d'un polynôme et étudier l'algorithme de la division euclidienne.
- Définir la notion de substitution dans un polynôme. Aborder la notion de racine, de polynômes scindés et le théorème de D'Alembert.
- Établir la formule de Taylor.

Sommaire

I)	Définition d'un polynôme		1
	1)	Définition	1
	2)	Opérations sur les polynômes	1
	3)	Écriture définitive des polynômes	2
II)	Division euclidienne		3
	1)	Degré d'un polynôme	3
	2)	Algorithme de la division euclidienne	4
	3)	Divisibilité	4
III)	Fonctions polynomiales, racines		5
	1)	Substitution	5
	2)	Fonctions polynomiales	5
	3)	Racines d'un polynôme	5
	4)	Corps algébriquement clos	6
	5)	Relations racines coefficients	8
IV)	Form	ule de Taylor des polynômes	8
	1)	Dérivation des polynômes	8
	2)	Formule de Taylor	9
V)	Exercices		10

Dans tout ce chapitre, \mathbb{K} désigne un sous-corps de \mathbb{C} .

Définition d'un polynôme I)

Définition 1)

DÉFINITION 16.1

On appelle polynôme à coefficients dans $\mathbb K$ toute suite d'éléments de $\mathbb K$ nulle à partir d'un certain rang. Les termes d'une telle suite sont appelés : coefficients du polynôme, et la suite nulle est appelée polynôme nul. Si tous les termes sont nuls sauf un, le polynôme est appelé monôme. Si tous les termes sont nuls à partir de l'indice 1, on dit que le polynôme est constant.

L'ensemble des polynômes à coefficients dans \mathbb{K} est noté $\mathbb{K}[X]$, on a donc :

$$\mathbb{K}[X] = \{(u_n) \in \mathcal{F}(\mathbb{N}, \mathbb{K}) \ / \ \exists \ N \in \mathbb{N}, n \geqslant N \Longrightarrow u_n = 0\}.$$

Deux polynômes sont égaux si et seulement si ils ont les mêmes coefficients (égalité de deux suites).

Polynômes particuliers:

- a) Pour $k \in \mathbb{N}$, on note δ_k le polynôme défini par $\delta_k = (\delta_{k,n})$ où $\delta_{k,n} = \begin{cases} 1 & \text{si } n = k \\ 0 & \text{sinon} \end{cases}$ (symbole de *Krönecker* ¹). Par exemple, on a : $\delta_0 = (1, 0, ...), \delta_1 = (0, 1, 0, ...)$.
- b) On pose $X = \delta_1$, ce polynôme est appelé indéterminée de $\mathbb{K}[X]$, il peut être nommé par une autre lettre : Y, Z, T, U, \ldots , mais il s'agit toujours du polynôme δ_1 .

2) Opérations sur les polynômes

Soient $P = (a_n)$ et $Q = (b_n)$ deux polynômes. Il existe deux entiers N et N' tels que : $n \ge N \Longrightarrow a_n = 0$, et $n \ge N' \Longrightarrow b_n = 0$, par conséquent si $n \ge \max(N, N')$, alors $a_n + b_n = 0$. Si $\lambda \in \mathbb{K}$, alors $n \ge N \Longrightarrow \lambda a_n = 0$.

DÉFINITION 16.2 (Somme et produit par un scalaire)

On pose : $P + Q = (a_n + b_n)$ (somme des deux suites), et pour $\lambda \in \mathbb{K}$, on pose $\lambda . P = (\lambda a_n)$. On définit ainsi une addition interne dans $\mathbb{K}[X]$ et un produit par les scalaires.

Propriétés: On a en fait repris l'addition de $\mathscr{F}(\mathbb{N},\mathbb{K})$ et le produit par un scalaire, on sait que pour ces opérations $\mathscr{F}(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -e.v., or $\mathbb{K}[X] \subset \mathscr{F}(\mathbb{N}, \mathbb{K})$, et la suite nulle est un polynôme, on en déduit que : $(\mathbb{K}[X], +, .)$ est un \mathbb{K} -e.v..

Avec les notations précédentes, pour $n \in \mathbb{N}$, on pose $c_n = \sum_{k=0}^n a_k b_{n-k}$, si $n \ge N + N' - 1$, alors il est facile de voir que pour toute valeur de k dans [0..n], le produit $a_k b_{n-k}$ est nul, et donc c_n est nul. La suite (c_n) ainsi définie est donc un polynôme.

DÉFINITION 16.3 (Produit de deux polynômes)

On pose $P \times Q = (c_n)$ où la suite (c_n) est définie par : $c_n = \sum_{k=0}^n a_k b_{n-k}$. On définit ainsi une multiplication interne dans $\mathbb{K}[X]$.

Remarques:

- Nous n'avons pas repris la multiplication des suites habituelle, nous verrons plus loin que l'intérêt de cette multiplication réside essentiellement dans le fait que le polynôme δ_k est égal à X^k (où $X = \delta_1$).
- Il y a d'autres expressions pour c_n : $c_n = \sum_{k=0}^n a_{n-k} b_k = \sum_{n+k=0}^n a_n b_n$

Propriétés: on vérifie que cette multiplication:

- est commutative,
- est associative,
- possède un élément neutre qui est le polynôme δ_0 ,
- est distributive sur l'addition.

Par conséquent : $(\mathbb{K}[X], +, \times)$ est un anneau.

On a également : $\forall P, Q \in \mathbb{K}[X], \forall \lambda \in \mathbb{K}, \lambda \cdot (P \times Q) = (\lambda \cdot P) \times Q = P \times (\lambda \cdot Q)$.

3) Écriture définitive des polynômes

Soit $P = (a_n)$ un polynôme, il existe un entier N tel que $n > N \Longrightarrow a_n = 0$, on peut donc écrire P = $(a_0, a_1, \ldots, a_N, 0, \ldots)$, ou encore, compte tenu de la définition de l'addition, $P = (a_0, 0, \ldots) + (0, a_1, 0, \ldots) + (0, a_1, 0, \ldots)$

1. KRÖNECKER LEOPOLD (1823 – 1891): mathématicien polonais qui a travaillé (entre autre) sur les équations algébriques.

2

 $\cdots + (0, \dots, 0, a_N, 0, \dots)$, mais compte tenu de la définition du produit par un scalaire, on a encore $P = a_0 \delta_0 + a_1 \delta_1 + \dots + a_N \delta_N$, c'est à dire : $P = \sum_{k=0}^{N} a_k \delta_k$.

Proposition: Pour $k \in \mathbb{N}$, on a $\delta_k = X^k$ où $X^k = \begin{cases} \delta_0 & \text{si } k = 0 \\ X \times X^{k-1} & \text{si } k \geqslant 1 \end{cases}$. **Preuve**: Par récurrence sur k, pour k = 0 il n'y a rien à démontrer, supposons le résultat démontré pour un entier k,

coefficients).

En reprenant les notations précédentes, on a ainsi l'écriture définitive des polynômes : $P = \sum_{k=1}^{N} a_k X^k$.

Ce que l'on écrit parfois plus simplement : $P = \sum_{k=1}^{\infty} a_k X^k$, étant entendu qu'il s'agit là d'une somme finie puisque les coefficients sont nuls à partir d'un certain rang.

Plongement de \mathbb{K} dans $\mathbb{K}[X]$: L'application $\phi : \mathbb{K} \to \mathbb{K}[X]$ définie par $\phi(\lambda) = \lambda.\delta_0 = (\lambda, 0, ...)$, est une application injective qui vérifie pour $\lambda, \mu \in \mathbb{K}$:

- $-\phi(\lambda+\mu)=\phi(\lambda)+\phi(\mu)$
- $-\phi(\lambda\mu) = \phi(\lambda)\phi(\mu)$
- $\phi(1) = \delta_0 (=1_{\mathbb{K}[X]}).$

Par conséquent, chaque polynôme constant $(\lambda, 0, ...)$ peut être identifié avec le scalaire λ , autrement dit, on pose $\lambda = (\lambda, 0, ...)$. En particulier, le polynôme nul est noté simplement 0, et le polynôme δ_0 est simplement noté 1. On peut donc considérer désormais : $\mathbb{K} \subset \mathbb{K}[X]$, \mathbb{K} étant l'ensemble des polynômes constants.

Finalement : si
$$P = (a_n) = (a_0, ..., a_N, 0, ...)$$
, alors : $P = \sum_{k=0}^{N} a_k X^k = a_0 + a_1 X + ... + a_N X^N$, et :

$$\sum_{n\in\mathbb{N}}a_nX^n=\sum_{n\in\mathbb{N}}b_nX^n\iff\forall\ n\in\mathbb{N},a_n=b_n.$$

$$\left(\sum_{n\in\mathbb{N}}a_nX^n\right)+\left(\sum_{n\in\mathbb{N}}b_nX^n\right)=\sum_{n\in\mathbb{N}}(a_n+b_n)X^n.$$

$$\left(\sum_{n\in\mathbb{N}}a_nX^n\right)\times\left(\sum_{n\in\mathbb{N}}b_nX^n\right)=\sum_{n\in\mathbb{N}}\left(\sum_{p+q=n}a_pb_q\right)X^n.$$

$$\sum_{n\in\mathbb{N}}a_nX^n\in\mathbb{K}\iff\forall\ n\geqslant 1, a_n=0.$$

Division euclidienne II)

1) Degré d'un polynôme

Soit $P \in \mathbb{K}[X]$, si P = 0 alors tous les coefficients de P sont nuls, si $P \neq 0$, alors l'ensemble des indices des coefficients non nuls de P n'est pas vide, et il est majoré (les coefficients sont nuls à partir d'un certain rang), donc cet ensemble admet un plus grand élément.

Définition 16.4

Soit $P \in \mathbb{K}[X]$, si P = 0 alors on pose $\deg(P) = -\infty$, sinon on pose $\deg(P) = \max\{k \in \mathbb{N} \mid a_k \neq 0\}$. Si P est non nul de degré n, alors le coefficient a_n est appelé coefficient dominant de P, si ce coefficient vaut 1, alors on dit que le polynôme P est unitaire (ou normalisé).

Caractérisations du polynôme nul et des polynômes constants non nuls $-P=0 \iff \deg(P)=-\infty$. $-P\in\mathbb{K}^* \iff \deg(P)=0$.

-<mark>`@</mark>-THÉORÈME 16.1

 \bullet Soient $P,Q \in \mathbb{K}[X]$, $\deg(P+Q) \leq \max(\deg(P), \deg(Q))$, et $\deg(P \times Q) = \deg(P) + \deg(Q)$.

Preuve: Si l'un des deux polynômes est nul, alors le théorème est évident. Supposons les deux polynômes non nuls : $P = \sum a_n X^n$ et $Q = \sum b_n X^n$, si $a_n + b_n \neq 0$ alors $a_n \neq 0$ ou $b_n \neq 0$, donc $n \leq \deg(P)$ ou $n \leq \deg(Q)$ i.e. $n \leq \max(\deg(P), \deg(Q))$, ce qui prouve le premier résultat.

 $P \times Q = \sum_{n} c_n X^n$ où $c_n = \sum_{p+q=n} a_p b_q$. Posons $N = \deg(P)$ et $N' = \deg(Q)$, il est clair que $c_{N+N'} = a_N b_{N'} \neq 0$, d'autre part si n > N + N', alors si p + q = n on a p > N ou q > N' donc $a_p b_q = 0$ ce qui entraîne $c_n = 0$. Par conséquent, $\deg(P \times Q) = N + N' = \deg(P) + \deg(Q).$

Lorsque P et Q ont des degrés distincts, ou bien lorsque P et Q ont même degré mais des coefficients dominants non opposés, alors deg(P+Q) = max(deg(P), deg(Q)).

\(\frac{1}{\text{Q}} \) THÉORÈME 16.2

L'anneau ($\mathbb{K}[X],+,\times$) est un anneau intègre. Le groupe des inversibles est \mathbb{K}^* l'ensemble des polynômes constants non nuls.

Preuve: Si P et Q sont deux polynômes non nuls, alors $\deg(P \times Q) = \deg(P) + \deg(Q) \in \mathbb{N}$, donc $P \times Q \neq 0$, ce qui prouve que $\mathbb{K}[X]$ est intègre.

Si P est inversible dans $\mathbb{K}[X]$, alors il existe un polynôme Q tel que $P \times Q = 1$, d'où $\deg(P) + \deg(Q) = 0$, ce qui entraı̂ne deg(P) = deg(Q) = 0 et donc $P \in \mathbb{K}^*$. La réciproque est évidente.

Notation: Soit $n \in \mathbb{N}$, on note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n:

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] / \deg(P) \le n \}$$

Il est facile de vérifier que $\mathbb{K}_n[X] = \text{Vect}[1, X, \dots, X^n]$, c'est donc un s.e.v. de $\mathbb{K}[X]$.

2) Algorithme de la division euclidienne

THÉORÈME 16.3 (de la division euclidienne)

Soient A et B deux polynômes avec $B \neq 0$, alors il existe deux polynômes Q et R **uniques** tels que :

$$A = B \times Q + R$$
 avec $\deg(R) < \deg(B)$

Preuve: Pour l'existence : si deg(A) < deg(B), alors on peut prendre Q = 0 et R = A; si deg(A) = deg(B) = d : soit a_d le coefficient dominant de A, et b_d celui de B, posons $Q = \frac{a_d}{b_d}$, alors le coefficient dominant de $B \times Q$ est a_d , donc $\deg(A - B \times Q) < d = \deg(B)$, on peut donc prendre $R = A - B \times Q$. Supposons maintenant l'existence démontrée pour deg(A) $\leq n$ avec $n \geq d$, et soit A de degré n+1, notons a_{n+1} son coefficient dominant, soit $Q' = \frac{a_{n+1}}{h} X^{n+1-d}$, alors $\deg(B \times Q') = n + 1$ et le coefficient dominant de $B \times Q'$ est a_{n+1} , donc $\deg(A - B \times Q') \leq n$, d'après l'hypothèse de récurrence, il existe deux polynômes Q'' et R tels que $A - B \times Q' = B \times Q'' + R$ avec deg $(R) < \deg(B)$, mais alors $A = B \times (Q' + Q'') + R$, ce qui prouve l'existence au rang n + 1.

Pour l'unicité : supposons que $A = B \times Q + R = B \times Q' + R'$ avec deg(R) < deg(B) et deg(R') < deg(B), alors $B \times (Q - Q') = R' - R$, d'où $\deg(B) + \deg(Q - Q') = \deg(R' - R) < \deg(B)$, comme $\deg(B) \ge 0$, on a nécessairement $\deg(Q-Q')=-\infty=\deg(R'-R)$, et donc Q=Q',R=R'.

La démonstration est constructive, en ce sens qu'elle donne un algorithme de calcul du quotient (Q) et du reste (R).

Exemple: Avec $A = X^4 + aX^2 + bX + c$ et $B = X^2 + X + 1$, on obtient le quotient $Q = X^2 - X + a$ et le reste R = (b-a+1)X + c - a. On peut vérifier que $A = B \times (X^2 - X + a) + (b-a+1)X + c - a$.

3) Divisibilité

ØDéfinition 16.5

Soient $A, B \in \mathbb{K}[X]$, on dit que B divise A lorsqu'il existe un polynôme Q tel que $A = Q \times B$, notation

Remarque: On définit ainsi une relation dans $\mathbb{K}[X]$, on peut vérifier que celle - ci est réflexive, transitive, mais elle n'est ni symétrique, ni antisymétrique. Plus précisément, B|A et A|B ssi il existe $\lambda \in \mathbb{K}^*$ tel que $A = \lambda B$ (on dit que A et B sont associés).

🎖 THÉORÈME 16.4

- Si B ≠ 0, alors B|A ssi le reste de la division euclidienne de A par B est nul.
- $Si A \neq 0$ et B|A, alors $deg(B) \leq deg(A)$.
- Si B|A et B|C, alors $\forall U, V \in \mathbb{K}[X], B|A \times U + C \times V$.

Preuve: Celle - ci est simple et laissée en exercice.

Remarque: Il découle du dernier point que si B|A-C et B|D-E, alors B|(A+D)-(C+E) et B|AD-EC, en particulier, si B|A-C alors $\forall n \in \mathbb{N}, B|A^n-C^n$.

Fonctions polynomiales, racines III)

Substitution

-`<mark>⊙</mark>´-THÉORÈME 16.5

Theoreme 16.5

Soit \mathscr{A} une \mathbb{K} -algèbre et soit $a \in \mathscr{A}$, l'application : S_a : $\mathbb{K}[X] \to \mathscr{A}$ $\sum_{k=0}^n \alpha_k X^k \mapsto \sum_{k=0}^n \alpha_k a^k$

phisme de \mathbb{K} -algèbres, c'est à dire : $\forall P,Q \in \mathbb{K}[X], \forall \lambda \in \mathbb{K}$

- $S_a(P+Q) = S_a(P) + S_a(Q).$
- $-S_a(P \times Q) = S_a(P) \times S_a(Q).$
- $S_a(\lambda P) = \lambda S_a(P).$
- $-S_a(1)=1.$

Preuve: Celle - ci repose sur les règles de calculs dans une algèbre.

Remarque: L'application S_a est appelée substitution par a. Concrètement, le théorème ci - dessus dit que la substitution par a consiste simplement à remplacer l'indéterminée X par a. Par exemple, si on a $P = Q \times B + R$, alors $S_a(P) =$ $S_a(Q) \times S_a(B) + S_a(R)$.

Fonctions polynomiales

Définition 16.6

L'application : \widetilde{P} : $\mathbb{K} \to \mathbb{K}$, est appelée fonction polynomiale associée au polynôme P. Si $x \mapsto S_x(P)$ $P = \sum_{k=0}^n a_k X^k, \text{ alors } \widetilde{P} : x \mapsto \sum_{k=0}^n a_k x^k \text{ où } x \text{ est une variable qui décrit } \mathbb{K}.$

$$P = \sum_{k=0}^{n} a_k X^k$$
, alors $\widetilde{P}: x \mapsto \sum_{k=0}^{n} a_k x^k$ où x est une variable qui décrit \mathbb{K}

On prendra garde à ne pas confondre la variable x, qui est un élément de \mathbb{K} , avec l'indéterminée X (qui

Remarque: On a $\widetilde{P+Q} = \widetilde{P} + \widetilde{Q}$, $\widetilde{P\times Q} = \widetilde{P} \times \widetilde{Q}$, $\widetilde{\lambda.P} = \lambda.\widetilde{P}$.

3) Racines d'un polynôme

3 Définition 16.7

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$, on appelle racine de P dans \mathbb{K} tout élément $a \in \mathbb{K}$ tel que $\widetilde{P}(a) = 0$, c'est

à dire toute solution dans \mathbb{K} à l'équation $\sum_{k=0}^{n} a_k x^k = 0$.

- THÉORÈME 16.6

Soit $P \in \mathbb{K}[X]$:

- Soit $a \in \mathbb{K}$, a est racine de P ssi X a|P.
- Si deg(P) ≤ n et si P admet au moins (n + 1) racines dans \mathbb{K} , alors P = 0.

Preuve: Soit $a \in \mathbb{K}$, on effectue la division euclidienne de P par $X - a : P = Q \times (X - a) + R$ avec $\deg(R) < 1$, donc Rest un polynôme constant $R = \lambda$, finalement $P = Q \times (X - a) + \lambda$. Substituons $a \ge X : \widetilde{P}(a) = \widetilde{Q}(a) \times (a - a) + \lambda$, c'est à dire : $\lambda = \widetilde{P}(a)$, ce qui prouve la première assertion.

La deuxième assertion se démontre par récurrence sur n: pour n = 0, l'hypothèse dit que P est une constante et que P a au moins une racine, donc cette constante est nulle, i.e. P=0. Supposons le résultat démontré au rang n, et soit $\deg(P) \leq n+1$ avec P ayant au moins n+2 racines, soit a l'une d'elles, alors il existe $Q \in \mathbb{K}[X]$, tel que $P = Q \times (X - a)$, mais alors $\deg(Q) \le n$ et Q a au moins n + 1 racines dans \mathbb{K} , donc Q = 0 (HR) et par conséquent, P = 0

Conséquences:

- a) Si a_1, \ldots, a_n sont des racines distinctes de P alors $(X a_1) \cdots (X a_n) | P$.
- b) Si *P* est non nul de degré *n*, alors *P* admet au plus *n* racines distinctes.
- c) L'application $\phi : \mathbb{K}[X] \to \mathscr{F}(\mathbb{K}, \mathbb{K})$ définie par $\phi(P) = \widetilde{P}$ est injective. On pourrait donc identifier Pet \tilde{P} la fonction polynomiale associée à P.

Exercice: Soit P un polynôme de degré 2, on pose :

$$Q = (1 - X^2)\widetilde{P}(0) + \frac{X(X - 1)}{2}\widetilde{P}(-1) + \frac{X(X + 1)}{2}\widetilde{P}(1).$$

Montrer que P = Q.

Pour montrer qu'un polynôme P est nul on dispose de trois méthodes :

- Montrer que tous les coefficients de P sont nuls.
- Montrer que le degré de P est $-\infty$.
- Montrer que P a une infinité de racines.

Soit P un polynôme non nul et soit $a \in \mathbb{K}$, on sait que que si $(X - a)^k | P$ alors $k \leq \deg(P)$ (car $P \neq 0$). Par conséquent l'ensemble $\{k \in \mathbb{N} \mid (X-a)^k \mid P\}$ est un ensemble non vide (contient 0) et majoré par deg(P), comme c'est une partie de N, cet ensemble admet un plus grand élément.

DÉFINITION 16.8 (multiplicité d'une racine)

Soit $P \in \mathbb{K}[X]$ un polynôme non nul et soit $a \in \mathbb{K}$, on appelle multiplicité de a dans P le plus grand des entiers k tels que $(X - a)^k | P$. Notation : $m_p(a)$. Une racine de multiplicité 1 est appelée racine simple, une racine de multiplicité 2 est appelée racine double...etc

Remarques:

- a est racine de P équivaut à $m_P(a) \ge 1$.
- − Il est facile de vérifier que si $q \in \{k \in \mathbb{N} \mid (X-a)^k \mid P\}$, alors tout entier inférieur ou égal à q est également dans l'ensemble, cela signifie que l'ensemble $\{k \in \mathbb{N} \mid (X-a)^k \mid P\}$ est un intervalle d'entiers, on peut donc énoncer :

$$m = m_P(a) \iff (X - a)^m$$
 divise P et $(X - a)^{m+1}$ ne divise pas P .

Exercice: Calculer la multiplicité de 1 dans les polynômes $P = X^3 - 3X^2 + 2$ et $Q = X^3 - 4X^2 + 5X - 2$.

- **№**-THÉORÈME 16.7

Soit P un polynôme non nul, soit $a \in \mathbb{K}$, et soit $m \in \mathbb{N}$, on a alors :

$$m = m_P(a) \iff \exists \ Q \in \mathbb{K}[X], P = (X - a)^m \times Q \ \text{et} \ \widetilde{Q}(a) \neq 0.$$

Preuve: Si on a $P = (X - a)^m \times Q$ et $\widetilde{Q}(a) \neq 0$, alors $m_P(a) \geq m$, mais si $(X - a)^{m+1} | P$, il est facile de voir que X - a | Qce qui est absurde, donc $m_p(a) = m$.

Réciproquement, si $m = m_P(a)$, alors il existe Q tel que $P = (X - a)^m \times Q$, si $\widetilde{Q}(a) = 0$ alors X - a|Q et donc $(X-a)^{m+1}|P$ ce qui contradictoire, donc $\widetilde{Q}(a) \neq 0$.

- **^**-THÉORÈME 16.8

Soient $P,Q \in \mathbb{K}[X]$, non nuls, et $a \in \mathbb{K}$

- a) $m_{P\times O}(a) = m_P(a) + m_O(a)$.
- b) $si P + Q \neq 0$, $alors m_{P+Q}(a) \ge min(m_P(a); m_Q(a))$.

Preuve: Laissée en exercice.

Corps algébriquement clos

Soit P un polynôme non nul ayant des racines dans \mathbb{K} , soient a_1, \ldots, a_n toutes les racines distinctes de P de multiplicités respectives : m_1, \ldots, m_n . D'après ce qui précède il existe un polynôme Q tel que $P = (X - a_1)^{m_1} \times Q$ avec $\widetilde{Q}(a_1) \neq 0$, comme $a_2 \neq a_1$ on peut affirmer que a_2 est racine de $Q : Q = (X - a_2)^m \times T$ avec $\tilde{T}(a_2) \neq 0$, mais alors $P = (X - a_2)^m \times (X - a_1)^{m_1} \times T$, on en déduit que $m = m_2$, par conséquent on a $P = (X - a_1)^{m_1}(X - a_2)^{m_2} \times T$ avec a_1 et a_2 qui ne sont pas racines de T. De proche en proche (récurrence sur n) on a arrive à : il existe un polynôme S tel que

$$P = (X - a_1)^{m_1} \cdots (X - a_n)^{m_n} \times S,$$

avec a_1, \ldots, a_n qui ne sont pas racines de S, mais comme P n'a pas d'autres racines on peut en déduire que S est sans racine dans \mathbb{K} .

- THÉORÈME 16.9 (factorisation d'un polynôme connaissant toutes ses racines)

 $Si\ a_1,\ldots,a_n$ sont les racines distinctes de P de multiplicités respectives m_1,\ldots,m_n , alors il existe un polynôme Q sans racine dans \mathbb{K} tel que : $P = Q \times \prod_{k=1}^{n} (X - a_k)^{m_k}$.

DÉFINITION 16.9 (polynôme scindé)

 $Si\ a_1,\ldots,a_n$ sont les racines distinctes de P de multiplicités respectives m_1,\ldots,m_n , alors d'après le théorème précédent : $\sum_{k=1}^{n} m_k \le \deg(P)$. La quantité : $\sum_{k=1}^{n} m_k$ (somme des multiplicités des racines) est appelée nombre de racines de P comptées avec leur multiplicité. On dira que le polynôme P est scindé sur K lorsque cette quantité est égale au degré de P, on dit aussi que P admet toutes ses racines dans K (toutes : signifie que le nombre de racines comptées avec leur multiplicité, est égal au degré)

En reprenant la factorisation précédente : $P = Q \times \prod_{k=0}^{n} (X - a_k)^{m_k}$, on voit que lorsque P est scindé, alors deg(Q) = 0, le polynôme Q est donc une constante non nulle, en comparant les coefficients dominants de chaque coté, on voit que Q est égal au coefficient dominant de P, d'où l'énoncé :

-THÉORÈME 16.10

Si P est scindé et si a_1, \ldots, a_n sont les racines distinctes de P de multiplicités respectives m_1, \ldots, m_n , alors : $P = \lambda \prod_{k=1}^{n} (X - a_k)^{m_k}$, où λ est le coefficient dominant de P.

Exemples:

- $-X^2$ − 2 est scindé sur \mathbb{R} , mais pas sur \mathbb{Q} .
- $-X^2+1$ est scindé sur \mathbb{C} , mais pas sur \mathbb{R} .

DÉFINITION 16.10

On dit que le corps \mathbb{K} est algébriquement clos lorsque tout polynôme non constant de $\mathbb{K}[X]$ admet au moins une racine dans \mathbb{K} .

 \mathbb{Q} D'après les exemples précédents, les corps \mathbb{Q} et \mathbb{R} ne sont pas algébriquement clos.

√ THÉORÈME 16.11

 $Si \mathbb{K}$ est un corps algébriquement clos, alors tout polynôme non constant de $\mathbb{K}[X]$ est scindé sur \mathbb{K} .

Preuve: On montre par récurrence sur n que si $\deg(P) = n$ alors P admet n racines dans K. Pour n = 1, P = aX + b = na(X+b/a), une racine -b/a. Supposons le résultat démontré au rang n, et soit P de degré n+1:P est non constant, donc P admet au moins une racine a, d'où $P = (X - a) \times Q$, mais $\deg(Q) = n$, il suffit alors d'appliquer l'hypothèse de récurrence à Q pour terminer.

THÉORÈME 16.12 (de D'Alembert ²)

 \mathbb{C} est un corps algébriquement clos.

Exemples:

- Factoriser $X^{2n} - 1$ dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

$$X^{2n} - 1 = \prod_{k=0}^{2n-1} (X - \exp(ik\frac{\pi}{n}))$$

$$= (X - 1)(X + 1) \prod_{k=1}^{n-1} (X - \exp(ik\frac{\pi}{n}))(X - \exp(-ik\frac{\pi}{n}))$$

$$= (X - 1)(X + 1) \prod_{k=1}^{n-1} (X^2 - 2\cos(k\frac{\pi}{n})X + 1).$$

- Factoriser dans $\mathbb{R}[X]: X^4 + X^2 + 1$ et $X^4 + X^2 - 1$.

$$X^{4} + X^{2} + 1 = (X^{2} + 1)^{2} - X^{2} = (X^{2} - X + 1)(X^{2} + X + 1)$$

$$X^{4} + X^{2} - 1 = (X^{2} + \frac{1}{2})^{2} - \frac{5}{4} = (X^{2} + \frac{1 + \sqrt{5}}{2})(X^{2} - \frac{\sqrt{5} - 1}{2})$$

$$= (X^{2} + \frac{1 + \sqrt{5}}{2})(X - \sqrt{\frac{\sqrt{5} - 1}{2}})(X + \sqrt{\frac{\sqrt{5} - 1}{2}})$$

Relations racines coefficients

Soit P un polynôme scindé sur \mathbb{K} , si deg(P) = n et si λ est le coefficient dominant de P, alors il existe $a_1,\ldots,a_n\in\mathbb{K}$ (racines de P) tels que $P=\lambda(X-a_1)\cdots(X-a_n)$, si on développe ensuite cette expression, on va obtenir les coefficients de P en fonction des a_k . Par exemple :

$$- P = \lambda(X - a_1)(X - a_2) = \lambda X^2 - \lambda(a_1 + a_2)X + \lambda a_1 a_2.$$

$$-P = \lambda(X - a_1)(X - a_2)(X - a_3) = \lambda X^3 - \lambda(a_1 + a_2 + a_3)X^2 + \lambda(a_1 a_2 + a_1 a_3 + a_2 a_3)X - \lambda a_1 a_2 a_3.$$

 $-P = \lambda(X - a_1)(X - a_2)(X - a_3) = \lambda X^3 - \lambda(a_1 + a_2 + a_3)X^2 + \lambda(a_1a_2 + a_1a_3 + a_2a_3)X - \lambda a_1a_2a_3.$ **Notation**: On pose $\sigma_0 = 1$, et pour k compris entre 1 et $n : \sigma_k = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1} \cdots a_{i_k}.$

 σ_k est la somme des produits des racines (de P) par paquets de longueur k, par exemple : σ_1 est la somme des racines, σ_2 est la somme des produits deux à deux, \cdots , σ_n est le produit des racines.

Par récurrence on peut alors établir que :

^{2.} D'ALEMBERT JEAN Le Rond (1717 - 1783) : mathématicien français qui contribua notamment à l'étude des nombres complexes, l'analyse et les probabilités.

$$(X - a_1) \cdots (X - a_n) = X^n - \sigma_1 X^{n-1} + \sigma_2 X^{n-2} - \cdots + (-1)^n \sigma_n = \sum_{k=0}^n (-1)^k \sigma_k X^{n-k}$$

On en déduit :

√ THÉORÈME 16.13

Soient $a_1, \ldots, a_n \in \mathbb{K}$, si $P = \sum_{k=0}^n \alpha_k X^k = \alpha_n (X - a_1) \cdots (X - a_n)$, alors on a les relations racines -

$$\alpha_{n-k} = (-1)^k \alpha_n \sigma_k,$$

En particulier, la somme des racines est $-\frac{\alpha_{n-1}}{\alpha_n}$ et le produit des racines est $(-1)^n \frac{\alpha_0}{\alpha_n}$

Exercice: Calculer la somme et le produit des racines n-ièmes de l'unit

Formule de Taylor des polynômes IV)

Dérivation des polynômes

On reprend la dérivation usuelle des fonctions polynomiales :

Définition 16.11

Soit $P = \sum_k a_k X^k$, on appelle polynôme dérivé de P, le polynôme noté P' ou $\frac{dP}{dX}$, et défini par :

$$P' = \sum_{k \ge 1} k a_k X^{k-1}.$$

Par récurrence, la dérivée n-ième de P, notée $P^{(n)}$, est : $P^{(n)} = \begin{cases} P & \text{si } n = 0 \\ \lceil P^{(n-1)} \rceil' & \text{si } n \ge 1 \end{cases}$

🌳 THÉORÈME 16.14 (propriétés)

Soient, $P,Q \in \mathbb{K}[X]$ et soit $\lambda \in \mathbb{K}$:

- $-(P+Q)' = P' + Q' \text{ et } (\lambda P)' = \lambda P'.$
- $-(P \times Q)' = P' \times Q + P \times Q'$, plus généralement, on a la formule de LEIBNIZ³:

$$(P \times Q)^{(n)} = \sum_{k=0}^{n} {n \choose k} P^{(k)} \times Q^{(n-k)}.$$

 $-P(Q)'=Q'\times P'(Q)$ (dérivée d'une composée).

Preuve: La première propriété est simple à vérifier. Pour la deuxième propriété, on commence par montrer que $(X^n \times Q)' = nX^{n-1} \times Q + X^n \times Q'$, puis on applique la première propriété. La formule de Leibniz se montre ensuite par récurrence sur n (exactement comme la formule du binôme de NEWTON). Quant à la troisième, on commence par le cas où $P = X^n$, c'est à dire on commence par montrer que $[Q^n]' = nQ' \times Q^{n-1}$, ce qui se fait par récurrence sur n, on utilise ensuite la première propriété pour le cas général.

3. LEIBNIZ Gottfried (1646 – 1716) : philosophe et mathématicien allemand.

En particulier $si \deg(P) = n$ alors $P^{(n)} = a_n n!$ et $si \ k > \deg(P)$, alors $P^{(k)} = 0$. D'autre part, lorsque $k \le \deg(P)$, alors $\deg(P^{(k)}) = \deg(P) - k$.

Preuve: Celle - ci est simple et laissée en exercice.

2) Formule de Taylor

Soit $P = \sum_{k=0}^{n} a_k X^k$, soit r un entier compris entre 0 et n, alors $P^{(r)} = \sum_{k=r}^{n} A_k^r a_k X^{k-r}$, substituons 0 à X, on obtient alors $\widetilde{P^{(r)}}(0) = r!a_r$, on en déduit donc que :

$$\forall r \in \llbracket 0..n \rrbracket, a_r = \frac{\widetilde{P^{(r)}}(0)}{r!}.$$

Remarquons que la formule reste vraie pour r > n, finalement on obtient la formule de Taylor ⁴ en 0 :

$$P = \sum_{k} \frac{\widetilde{P^{(k)}}(0)}{k!} X^{k}.$$

Soit $a \in \mathbb{K}$, posons Q = P(X + a) (composée de P avec le polynôme X + a), d'après ce qui précède, on a :

$$Q = \sum_{k} \frac{\widetilde{Q^{(k)}}(0)}{k!} X^{k}.$$

Or, il est facile de montrer que $Q^{(k)} = P^{(k)}(X+a)$, par conséquent $\widetilde{Q^{(k)}}(0) = \widetilde{P^{(k)}}(a)$, et comme P = Q(X-a), on obtient :

$$P = \sum_{k} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k}.$$

THÉORÈME 16.16

 $Si\ P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$, alors : $P = \sum_{k} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k$. C'est la formule de Taylor pour le polynôme P en a.

Applications:

– Division euclidienne d'un polynôme P par $(X-a)^n$: d'après la formule de TAYLOR en a appliquée à P, on a :

$$P = \sum_{k} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k}$$

$$= \sum_{k \ge n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k} + \sum_{k < n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k}$$

$$= (X - a)^{n} \times \sum_{k \ge n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k - n} + \sum_{k < n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k},$$

comme $\deg(\sum_{k < n} \frac{\widetilde{p^{(k)}}(a)}{k!} (X - a)^k) < n$, on en déduit que le quotient Q et le reste R dans la division euclidienne par $(X - a)^n$ sont :

$$Q = \sum_{k \ge n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^{k-n} \text{ et } R = \sum_{k \le n} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k.$$

^{4.} TAYLOR Brook (1685 – 1731) : mathématicien anglais qui a énoncé sa célèbre formule en 1715.

- Calcul de la multiplicité d'une racine : a ∈ \mathbb{K} est une racine de P de multiplicité $n \ge 1$ si et seulement si :

$$\forall k \in [0..n-1], \widetilde{P^{(k)}}(a) = 0 \text{ et } \widetilde{P^{(m)}}(a) \neq 0.$$

En effet, d'après ce qui précède,

$$n = m_P(a) \iff R = 0 \text{ et } Q(a) \neq 0$$

 $\iff R(X + a) = 0 \text{ et } Q(a) \neq 0$
 $\iff \forall k \in [0..n - 1], \widetilde{P^{(k)}}(a) = 0, \text{ et } \widetilde{P^{(n)}}(a) \neq 0$

V) Exercices

★Exercice 16.1

Factoriser dans $\mathbb{R}[X]$ les polynômes suivants :

$$X^{6} + 1$$
; $X^{4} + 1$; $X^{4} - 2X^{2} + 3$; $X^{4} + 5X^{2} + 3$; $X^{8} + X^{4} + 1$; $X^{9} + X^{6} + X^{3} + 1$.

★Exercice 16.2

Soit $P = X^5 - 2X^4 - X^3 + 2X^2 + X - 2$ et $Q = X^3 - 2X^2 - 3X + 6$. Factoriser P et Q sachant qu'ils ont une racine commune.

★Exercice 16.3

Soit $P = X^3 + pX + q \in \mathbb{C}[X]$, montrer que l'on peut trouver $u, v \in \mathbb{C}$ tels que a = u + v soit racine de P avec $uv = -\frac{p}{3}$. Application : déterminer les racines de $X^3 - 3X + 1$.

★Exercice 16.4

On considère le polynôme P_n défini par $P_n = \prod_{k=0}^n (1+X^{2^k})$. Simplifier $(1-X) \times P_n$, en déduire l'expression développée de P_n .

★Exercice 16.5

Soit $P \in \mathbb{K}[X]$, montrer que P est pair (i.e. P(-X) = P) ssi les coefficients de P d'indices impairs sont nuls. Montrer que P est impair (i.e. P(-X) = -P) ssi les coefficients d'indices pairs sont nuls.

★Exercice 16.6

- a) Soient $\alpha, \beta \in \mathbb{K}$, distincts, soit $P \in \mathbb{K}[X]$, calculer le reste dans la division euclidienne de P par $(X \alpha)(X \beta)$, puis par $(X \alpha)^2$.
- b) Calculer le quotient et le reste dans la division euclidienne de $(X-1)^{n+2} (X+2)^n 2$ par $(X-1)^n$.

★Exercice 16.7

Soient a_0, \ldots, a_n n+1 éléments distincts de \mathbb{K} , et $P \in \mathbb{K}[X]$:

- a) Montrer qu'il existe un unique polynôme R de degré $\leq n$ tel que $\widetilde{R}(a_k) = \widetilde{P}(a_k)$ pour $k \in [0..n]$. Calculer R lorsque $\deg(P) < n+1$ et lorsque $P = X^{n+1}$.
- b) Pour k compris entre 0 et n, on pose : $L_k = \prod_{i=0, i \neq k}^n \frac{X a_i}{a_k a_i}$. Calculer $\deg(L_k)$ et montrer que

$$L_k(a_j) = \delta_{k,j}$$
. En déduire le polynôme R pour P quelconque. Calculer $\sum_{k=0}^{n} L_k$.

★Exercice 16.8

- a) Montrer que dans $\mathbb{R}[X], X^2 X + 1 | (X 1)^{n+2} + X^{2n+1} |$
- b) Montrer que dans $\mathbb{R}[X], X^3 3X^2 + 3X 1|X^{2n+1} (2n+1)X^{n+1} + (2n+1)X^n 1$.
- c) Soient *n* et *m* deux entiers positifs, montrer que si n|m alors $X^n 1|X^m 1$.
- d) Montrer que $X^2 2\cos(\theta)X + 1|\cos((n-1)\theta)X^{n+1} \cos(n\theta)X^n \cos(\theta)X + 1$, dans $\mathbb{R}[X]$.
- e) Soient $P,Q \in \mathbb{R}[X]$, montrer que si P|Q dans $\mathbb{C}[X]$, alors P|Q dans $\mathbb{R}[X]$.
- f) Soit $P \in \mathbb{K}[X]$, montrer que P X|P(P) P, en déduire que P X|P(P) X.

★Exercice 16.9

Calculer la multiplicité de 1 dans les polynômes $P = X^{2n} - nX^{n+1} + nX^{n-1} - 1$ et $Q = X^{2n+1} - (2n + 1)X^{n+1} + (2n + 1)X^n - 1$.

★Exercice 16.10

Soit $P \in \mathbb{R}[X]$, soit $z \in \mathbb{C}$ une racine complexe non réelle de P de multiplicité m. Montrer que \overline{z} est également racine de P de multiplicité m. En déduire que tout polynôme non constant de $\mathbb{R}[X]$ se factorise en produit de facteurs de degré 1 ou 2, les facteurs de degré 2 étant sans racine réelle.

★Exercice 16.11

- a) Déterminer tous les polynômes P de degré n tels que $P(X^2) = P^2$ (poser $P = a_n X^n + Q$ où $\deg(Q) < n$).
- b) Déterminer tous les polynômes P, Q, R de $\mathbb{R}[X]$ qui vérifient : $P^2 XQ^2 = XR^2$.
- c) Déterminer les polynômes $P \in \mathbb{C}[X]$ qui vérifient : P'|P.

★Exercice 16.12

Soient a_1, \ldots, a_n des entiers distincts, soit $P = (X - a_1) \cdots (X - a_n) - 1$. On suppose qu'il existe deux polynômes Q et R à coefficients entiers, tels que $P = Q \times R$. Montrer que si Q est non constant, alors $\deg(Q) = \deg(P)$ et $R = \pm 1$.

★Exercice 16.13

Soit $s, p \in \mathbb{C}$ avec $p \neq 0$. A quelle(s) condition(s) les racines de $X^2 - sX + p$ ont-elles le même argument?

★Exercice 16.14

a) Montrer qu'il existe un unique polynôme $T_n \in \mathbb{R}[X]$ de degré au plus n tel que :

$$\forall x \in \mathbb{R}, T_n(\cos(x)) = \cos(nx).$$

- b) Calculer T_0, T_1, T_2, T_3 . Calculer $T_n(0)$ et le coefficient dominant de T_n .
- c) Étudier la parité de T_n . Montrer que T_n admet n racines dans [-1;1]. Calculer leur produit.
- d) Démontrer la relation : $\forall n \ge 1, T_{n+1} = XT_n + \frac{1}{n}(X^2 1)T_n'$. Calculer T_4 .
- e) Démontrer la relation : $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} T_n$.
- f) Montrer que $T_n(T_m(X)) = T_m(T_n(X)) = T_{nm}(X)$.

★Exercice 16.15

- a) Soit $S_n = \sum_{k=0}^n (-1)^k \left(C_n^k \right)^2$, soit $P = (1-X)^n$ et $Q = (1+X)^n$. Calculer le coefficient de X^n dans le produit $P \times Q$, en déduire une simplification de S_n .
- b) En s'inspirant d'une même démarche, simplifier : $\sum_{k=0}^n \left(\mathbf{C}_n^k \right)^2$; $\sum_{k=0}^p \mathbf{C}_n^k \mathbf{C}_m^{p-k}$.

★Exercice 16.16

Soit $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}, P(x) \ge 0$. Soit $n = \deg(P)$, et $Q = P + P' + \cdots + P^{(n)}$. Montrer que $\forall x \in \mathbb{R}, Q(x) \ge 0$.

★Exercice 16.17

Soit $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ définie par $\forall P \in \mathbb{R}_3[X], f(P) = Q + R$ où Q et R sont respectivement le quotient et le reste de la division de P par $(X - 1)^2$.

- a) Montrer que f est un endomorphisme de $\mathbb{R}_3[X]$.
- b) Déterminer ker(f) et Im(f).
- c) Résoudre l'équation f(P) = 2X + 1 dans $\mathbb{R}_3[X]$.