Elementos de Sistemas Álgebra Booleana

Renan Trevisoli

Engenharia da Computação

16/08/2024

Tais coisas simples, e nós fazemos delas algo tão complexo que nos derrota, quase. Such simple things, and we make of them something so complex it defeats us, almost. John Ashbery (1927) poeta americano

Objetivos

- Simplificar de Expressões Booleanas.
- Criar representações canônicas.
- Fazer mapas de Veitch-Karnaugh.

Álgebra Booleana

Propriedades

Lei da identidade	$\frac{A}{A} = \frac{A}{A}$		
Lei da comutatividade	$A \cdot B = B \cdot A$ $A + B = B + A$		
Lei da associatividade	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$ $A + (B + C) = (A + B) + C$		
Lei da idempotência	$A \cdot A = A$ $A + A = A$		
Lei do complemento duplo	$A = \overline{\overline{A}}$		
Lei da complementariedade	$A \cdot \overline{A} = 0$ $A + \overline{A} = 1$		
Lei da intersecção	$A \cdot 1 = A$ $A \cdot 0 = 0$		
Lei da união	A+1=1 $A+0=A$		
Lei da distributividade	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$ $A + (B \cdot C) = (A+B) \cdot (A+C)$		
Teorema de DeMorgan	$\frac{\overline{AB} = \overline{A} + \overline{B}}{\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}}$		
Absorção	$A + A \cdot B = A$ $A \cdot (A + B) = A$		
	$A + \overline{A} \cdot B = A + B$		
	$A\cdot (\overline{A}+B)=A\cdot B$		

Insper

16/08/2024

Exemplo

- Simplifique as expressões abaixo:

 - $(A+B+C)(\overline{A}+\overline{B}+C)$
- Prove que: $A + \overline{A}B = A + B$

Exemplo

• Simplifique a tabela verdade usando mapa de Karnaugh:

Α	В	С	D	Q
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Insper

Exemplo

• Simplifique a tabela verdade usando mapa de Karnaugh:

Α	В	С	D	Q
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Insper

Questão ENADE

 Um sistema de tempo real satisfaz explicitamente restrições de tempo de resposta, podendo ter consequências como riscos ou falhas caso não cumpra essas restrições. O circuito lógico a seguir faz parte de um sistema de tempo real que realiza o acionamento de um alarme. Nesse circuito existem vários atrasos de propagação do sinal, que por sua vez geram atrasos no acionamento do alarme. Na forma como a lógica está implementada, o circuito não atende o requisito de tempo real especificado pelo sistema. Para cada porta lógica utilizada, os atrasos típicos, em unidades de tempo (u.t.), são dados na tabela.

Porta	Atraso (u.t.)
AND	3
OR	4
NOT	1

Após a simplificação do circuito, o menor tempo possível para o acionamento do alarme é de

- a) 9 u.t.
- b) 10 u.t. c) 3 u.t. d) 4 u.t e) 6 u.t.

Insper

Próxima aula

ullet Estudar: Teoria ightarrow Lógica CMOS

ullet Estudar: Teoria o Resistor-Transistor Logic (RTL)