SEMINÁRIO DE ANÁLISE DE ALGORITMO

INTEGRANTES: LUIS HENRIQUE, PEDRO ALEPH

FAZALGO

```
void FazAlgo (int n) {
  int i, j, k;
  FOR (i= 1; i<n - 1; i++) {
    FOR (j=i+1; j \le n; j++) {
       FOR (k = 1; k \le j; k++) {
          Algum comando de custo O(1)
```

SOMATÓRIO

```
T(n) = 1 * (somatorio(\Sigma) de i=1 até n - 2)*(somatorio(\Sigma) de j=i+1 até n)*(somatorio(\Sigma) de k=1 até j)*1
```

- 1 * (somatorio(Σ) de i=1 até n 2)*(somatorio(Σ) de j=i+1 até n)* j
- 1 * (somatorio(Σ) de i=1 até n 2)*(n^2 + ni + n)/2
- (somatorio(Σ) de i=1 até n 2)*(n^2)/2 (somatorio(Σ) de i=1 até n 2)(ni)/2 (somatorio(Σ) de i=1 até n 2)*(n)/2
- $(n^3)/4 (3n^2)/4 + (2n)/4$ (função de custo complexidade $O(n^3)$)

COMPLEXIDADE BIG O

$$(n^3)/4 - (3n^2)/4 + (2n)/4 = O(n^3)$$

 $(n^3) - (3n^2) + (2n) = O(n^3)$
 $(n^3) - (3n^2) + (2n) <= C*n^3 \text{ para } n >= 4$
 $((n^3) - (3n^2) + (2n))/n^3 <= C \text{ para } n >= 4$
 $C >= 1 - (3n^2)/n^3 + (2n)/n^3 \text{ para } n >= 4 \text{ é válido}$
 $C >= 64/64 - 48/64 + 8/64 -> 3/8 \text{ para } n = 4$

Por aqui é isso obrigado pela atenção!