Divisão em Z (euclidiana)

Divisão em Z

Sejam a e b números inteiros, com b \neq 0.

Dividir a por b é determinar os números inteiros q e r tais que: $a = b \cdot a + r \cdot e \cdot 0 < r < lh l$

$$\frac{divides}{a} = \frac{b}{b} \cdot \frac{q}{r} = 0 \le r < |b|$$

q é o quociente e r é o resto da divisão de a por b

Nessas condições, q e r são únicos.

Atenção • $38 = 5 \cdot 7 + 3$

•
$$38 = 5 \cdot 6 + 8$$

•
$$38 = 5 \cdot 5 + 13$$

•
$$38 = 5 \cdot 4 + 18$$

Como 3 =
$$4 \cdot 0 + 3$$
, então o quociente é zero e o resto é 3.

Como 2 =
$$4 \cdot 0 + 2$$
, então o quociente é zero e o resto é 2.

Como
$$1 = 4 \cdot 0 + 1$$
, então o quociente é zero e o resto é 1.

Como
$$0 = 4 \cdot 0 + 0$$
, então o quociente é zero e o resto é zero.

Dividir 647 por 6

A divisão de 647 por 6 tem quociente 107 e resto 5.

05 perto 2 Idivisor

• Ao dividir 38 por 7 obtemos quociente 5 e resto 3, pois $38 = 7 \cdot 5 + 3 e 0 \le 3 < |7|$

• Ao dividir 38 por -7 obtemos quociente -5 e resto 3, pois $38 = (-7) \cdot (-5) + 3 \cdot (-7) = 0 \le 3 < |-7|$

• Ao dividir –38 por 7 obtemos quociente –6 e resto 4, pois –38 = $7 \cdot (-6) + 4 = 0 \le 4 < |7|$

• Ao dividir -38 por -7 obtemos quociente 6 e <u>resto 4</u>, pois $-38 = -7 \cdot 6 + 4$ e $0 \le 4 < |-7|$

$$-38$$
 $\begin{bmatrix} -7 \\ 4 \end{bmatrix}$ 6

Divisão exata

Sejam a e b números inteiros, com b \neq 0.

Quando o resto da divisão de a por b é zero dizemos que a divisão é

exata. $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ Assim, $a = b \cdot q$

Também podemos dizer que:

a é divisível por b

a é múltiplo de b

b divide a

b é divisor de a b é fator de a

Como $45 = 5 \times 9$, então são expressões equivalentes:

- a divisão de 45 por 9 é exata
- 45 é divisível por 9
- 45 é múltiplo de 9
- 9 divide 45
- 9 é divisor de 45
- 9 é fator de 45

Propriedades da divisão exata

- \forall $n \in \mathbb{Z}^*$, $n \in divisor n$
- ∀ n, m, n ∈ Z, com n ≠ 0 e m ≠ 0,
 se n é divisor de m e m é divisor de p, então n é divisor de p.
 Dem.:
 - n é divisor de m $\Rightarrow \exists q \in \mathbb{Z} \mid m = nq(I)$ e m é divisor de p $\Rightarrow \exists k \in \mathbb{Z} \mid p = mk(II)$

Substituindo (I) em (II), vem que p = n(qk), com q e k inteiros. dividual que purcuente Logo, n é divisor de p. $p = (q \cdot k) \Rightarrow p = (q \cdot k)$ $p = (q \cdot k) \Rightarrow p = (q \cdot k)$

Ex.: 3 é divisor de 12 e 12 é divisor de 48 \Rightarrow 3 é divisor de 48

• \forall n, m, p $\in \mathbb{Z}$, com n \neq 0,

Dem.:

n é divisor de m $\Rightarrow \exists q \in \mathbb{Z} \mid m = nq$

e

n é divisor de p $\Rightarrow \exists k \in \mathbb{Z} \mid p = nk$

Assim, m + p = nq + nk = n(q + k), com q e k inteiros.

Logo, n é divisor de m + p.

m+p é divisi vel par n

Ex.: 3 é divisor de 12 e 3 é divisor de 15 \Rightarrow 3 é divisor de 12 + 15

Divisão por 2

neλ 0/ / / 2 n=0 ou n=1

Dividir o número inteiro n por 2:

$$n = 2q + r$$
, $com 0 \le r < 2 e q \in \mathbb{Z}$

Como r é inteiro e $0 \le r < 2$, então r = 0 ou r = 1.

O resto da divisão de um número inteiro por 2 só pode ser 0 ou 1.

Número par e número ímpar

• Um número inteiro que dividido por 2 deixa resto zero é denominado par.

 \forall n \in \mathbb{Z} , n número par $\Leftrightarrow \exists$ k \in \mathbb{Z} | \underline{n} = 2k

Um número é par quando é <u>múltiplo de 2</u>.

Zero é par!
$$P = \{1, \dots, -6\}, -4\}, -2\}, 0\}, \dots$$

 Um número inteiro que dividido por 2 deixa resto 1 é denominado ímpar.

$$\forall$$
 n \in \mathbb{Z} , n número ímpar $\Leftrightarrow \exists$ k \in \mathbb{Z} | n = 2k + 1