optimization

Generated by Doxygen 1.9.1

File Index 1.1 File List
File Documentation
2.1 optimization.hpp File Reference
2.1.1 Typedef Documentation
2.1.1.1 f64
2.1.2 Function Documentation
2.1.2.1 jacobian()
2.1.2.2 root()
ndex

Chapter 1

File Index

1	1 1	Fi	le	Ιi	et
			ıc	_,	ЭL

Here is a list of all documented files with brief descriptions:		
optimization.hpp	 	3

2 File Index

Chapter 2

File Documentation

2.1 optimization.hpp File Reference

```
#include <stdexcept>
#include <functional>
#include <optional>
#include "armadillo"
```

Typedefs

• using f64 = double

Functions

Numerically approximate the jacobian matrix for a vector function Compute the numerical approximation for the Jacobian matrix using the centered-difference approximation. This requires the size of the function 'f' to be the number of input parameters so that the corresponding Jacobian matrix is square.

template<typename T >
 optional < Col < T >> root (const function < Col < T >(Col < T >) > &func, const function < Mat < T >(Col <
 T >) > &jac, const Col < T > &x0)

Determine the root of a general vector function Determine the root of a general vector function using Newton-Raphson iteration. Newton-Raphson iteration requires evaluating a Jacobian and then solving the resulting linear system. The iterative method looks like: $x^{\{i+1\}} = x^{\{i\}} - J(x^{\{i\}})^{\{-1\}}f(x^{\{i\}})$ This method has quadratic convergence, though may be unstable and therefore requires an initial guess that is sufficiently close to the root.

Variables

• const unsigned int MAX_ITERATIONS = 50

2.1.1 Typedef Documentation

4 File Documentation

2.1.1.1 f64

```
using f64 = double
```

Maximum number of iterations before failing

2.1.2 Function Documentation

2.1.2.1 jacobian()

```
template<typename T > Mat<T> jacobian ( const function< Col< T >(Col< T >)> & func, const Col< T > & x )
```

Numerically approximate the jacobian matrix for a vector function Compute the numerical approximation for the Jacobian matrix using the centered-difference approximation. This requires the size of the function 'f' to be the number of input parameters so that the corresponding Jacobian matrix is square.

Template Parameters

```
T A floating point data type
```

Parameters

func	The continuous function whose Jacobian to approximate
Х	The value at which to approximate the Jacobian of 'f'

Returns

Mat<T>

2.1.2.2 root()

```
template<typename T > optional<Col<T> > root ( const function< Col< T > (Col< T >)> & func, const function< Mat< T > (Col< T >)> & jac, const Col< T > & x0 )
```

Determine the root of a general vector function Determine the root of a general vector function using Newton- \leftarrow Raphson iteration. Newton-Raphson iteration requires evaluating a Jacobian and then solving the resulting linear system. The iterative method looks like: $x^{i+1} = x^{i} - J(x^{i})^{-1}f(x^{i})$ This method has quadratic convergence, though may be unstable and therefore requires an initial guess that is sufficiently close to the root.

Template Parameters

T

Parameters

func	The function to find the root of
jac	The function that generates the jacobian matrix
x0	The initial guess for the root

Returns

 $optional{<}Col{<}T{>}{>}$

6 File Documentation

Index

```
f64
optimization.hpp, 3
jacobian
optimization.hpp, 4
optimization.hpp, 3
f64, 3
jacobian, 4
root, 4

root
optimization.hpp, 4
```