МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по проведению практического занятия №8

Тема занятия:

СИНТЕЗ И ИССЛЕДОВАНИЕ АНАЛОГОВЫХ ПАССИВНЫХ ФИЛЬТРОВ (продолжение)

Студентам предлагается в соответствии с номером бригады выбрать из табл. 8.1 конкретный вариант задания.

Таблица 8.1

№ п/п	Тип фильтра	$f_{-2},$ к Γ ц	<i>f</i> ₋₁ , кГц	f_0 , к Γ ц	П, кГц	$f_{\scriptscriptstyle 1},$ к Γ ц	f_2 , к Γ ц	$f_2 - f_{-2}$ к Γ ц		ΔK , ∂E	<i>L</i> , дБ
1	ФНЧ (Ч)	-	-	-	-	0,075	0,25	-	0	3	30
2	ФВЧ (Ч)	0,02	0,04	-	-	-	-	-	0	3	25
3	ПФ (Ч)	-	-	200	20	-	-	300	0	3	45
4	ФНЧ (Э)	-	-	-	-	0,075	0,15	-	0	3	30
5	ФВЧ (Э)	0,1	0,2	-	-	-	-	-	0	3	35
6	ПФ (Э)	-	-	400	20	-	-	100	0	3	60
7	ФВЧ (Б)	20	60	-	-	-	-	-	0	3	25
8	ФНЧ (Б)	-	-	-	-	7,5	36	-	0	3	40
9	ПФ (Б)	-	-	400	20	-	-	300	0	3	45

Здесь приняты следующие обозначения:

- f_{-2} , f_{-1} , f_1 , f_2 граничные частоты фильтра в порядке возрастания;
- f_0 центральная частота для ПФ и РФ;
- Π полоса пропускания по уровню ΔK ;
- K_0 коэффициент передачи в пределах полосы пропускания;

- ΔK неравномерность коэффициента передачи в пределах полосы пропускания;
- L минимальное затухание в полосе задерживания;
- $(f_2 f_{-2})$ полоса задерживания для $\Pi\Phi$;
- (Б) полином Баттерворта, (Ч) полином Чебышева, (Э) эллиптическая аппроксимация.

Последовательность выполнения конкретного расчётного задания:

- 1. Провести синтез фильтра сначала для стандартной реализации фильтра, а затем для дуальной. Обсудить полученные результаты.
- 2. Рассчитать АЧХ фильтра. По графику АЧХ, построенному в децибелах, необходимо убедиться, что требования технического задания выполнены.
- 3. Округлить полученные при синтезе фильтра номиналы реактивных элементов следующим образом:
 - значения индуктивностей округлить до двух значащих цифр (например, если рассчитанное значение равно 14,752 мГн, то оно округляется до 15 мГн, а если рассчитанное значение равно 6,125 мГн, то оно округляется до 6,1 мГн);
 - значение ёмкости выбрать из стандартного ряда номинальных ёмкостей E12 (табл. 8.2)

Таблица 8.2

0,010	0,015	0,022	0,033	0,047	0,068
0,012	0,018	0,027	0,039	0,056	0,082

Затем следует рассчитать AЧX, после чего сравнить её параметры с заданными и сделать вывод о влиянии округления номиналов компонентов на вид AЧX фильтра.

4. Повторить синтез фильтра. Затем задать 5%-ный разброс номиналов реактивных элементов схемы и методом Монте-Карло оценить пределы изменения граничных частот для полосы пропускания и полосы задерживания. Повторить моделирование при 10%-ном разбросе и обсудить полученные результаты.

Напомнить студентам, что методика статистического анализа методом Монте-Карло, реализуемая с помощью программного пакета *Micro-Cap 10 demo*, приведена в описании лабораторной работы «Исследование модели резистивного усилителя».

В процессе выполнения расчётного задания преподавателю целесообразно предлагать студентам дополнительные вопросы. Например, нарисовать примерный вид АЧХ ПФ Чебышева и расставить граничные частоты для задания на расчёт соответствующей характеристики; предложить параметр для оценки прямоугольности АЧХ ПФ, определяемый через граничные частоты и т.п.