TRABAJO PRÁCTICO 2 - SINTAXIS

- # DFA actividad A {Alfabeto "A" y "B" transformado en "0" y "1" respectivamente}
- # Ver diagrama para entender cada estado
- # qXC = Llegamos a ese estado con la bolita cayendo por C
- # qXD = Llegamos a ese estado con la bolita cayendo por D

^{*} Parte 2 de la actividad (a) ver código de python "trabajo-practico-2.py"

- Todas las transiciones faltantes del q18 en adelante van todas hacia el q26. # DFA actividad B {Alfabeto "0" y "1" significa "Anota jugador 1" y "Anota jugador 2" respectivamente}

^{*} Ver dfa1B en python "trabajo-practico-2.py"

DFA actividad C {Alfabeto "0" y "1" significa aprueba parcial}

^{*} Ver dfa1C en python "trabajo-practico-2.py"

d)

2)

Autómata 1

- a) Definición matemática. El autómata finito determinista 1 puede ser expresado formalmente como: M1 = $(K, \Sigma, \delta, q1, F)$, donde:
 - $K = \{q1, q2, q3\}$
 - $\Sigma = \{0, 1\}$
 - $\delta = \{((q1, 0), q1), ((q1, 1), q2), ((q2, 1), q2), ((q2, 0), q3), ((q3, 0), q2), ((q3, 1), q2)\}$
 - $F = \{q2\}$
- b) Expresión regular: $\Sigma^*(1 \cup 00)$

L1 = {w / w termina en 1 o en una cantidad par de 0}

Ejemplos: {(0-1-0-1),(0-0-0-1),(0-0-0-1),(0-0-1-1),(0-1-0-0)}

Autómata 2

- a) Definición matemática. El autómata finito determinista 2 puede ser expresado formalmente como: M2 = $(K, \Sigma, \delta, s, F)$, donde:
 - K = {s, q1, q2. r1, r2}
 - $\Sigma = \{a, b\}$
 - $\delta = \{((s, a), q1), ((s, b), r1), ((q1, a), q1), ((r1, b), r1), ((q1, b), q2), ((q2, b), q2), ((q2, a), q1), ((r1, a), r2), ((r2, a), r2), ((r2, b), r1)\}$
 - $F = \{q1, r1\}$
- b) Expresión regular: $(a\Sigma^*a \cup b\Sigma^*b)$

L2 = {w / w empieza y termina con a, o empieza y termina con b}

Ejemplos: {(a-a),(b-b),(a-b-a),(b-a-b),(b-a-a-b)}

Autómata 3

- a) Definición matemática. El autómata finito determinista 3 puede ser expresado formalmente como: M3 = $(K, \Sigma, \delta, q0, F)$, donde:
 - $K = \{q0, q1, q2\}$
 - $\Sigma = \{0, 1, 2, \langle RESET \rangle \}$
 - $\delta = \{((q1, 2), q0), ((q1, <RESET>), q0), ((q1, 1), q2), ((q0, 0), q0), ((q0, <RESET>), q0), ((q0, 1), q1), ((q2, 0), q2), ((q2, 2), q1), ((q2, 1), q0), ((q2, <RESET>), q0), ((q0, 2), q2)\}$
 - $F = \{q0\}$

No necesariamente, puede contener reset aun siendo divisibles

b) L3 = {w/ w Contiene reset si los demás números no son divisibles por 3} Ejemplos: {(1-1-RESET),(2-2-2),(1-0-0-1-1),(2-0-2-0-0-2),(2-1)}

Autómata 4

- a) Definición matemática. El autómata finito determinista 4 puede ser expresado formalmente como: M4 = $(K, \Sigma, \delta, q0, F)$, donde:
 - $K = \{q0, q1\}$
 - Σ = {letra, dígito}
 - $\delta = \{((q0, letra), q1), ((q1, letra), q1), ((q1, digito), q1), ((q0, digito), q0)\}$
 - F = {q1}
- b) Expresión regular: $\Sigma^* letra \Sigma^*$
- L4 = {w/ w contiene al menos una letra}

Ejemplos:

{(dígito-letra-dígito),(letra-letra),(letra-digito-letra),(dígito-letra-letra),(digito-letra-digito-letra)}

Autómata 5

- a) Definición matemática. El autómata finito determinista 5 puede ser expresado formalmente como: M5 = (K, Σ , δ , q0, F), donde:
 - $K = \{q0, q1, q2, q3\}$
 - $\Sigma = \{a, b\}$
 - $\delta = \{((q0, b), q0), ((q0, a), q1), ((q1, b), q1), ((q1, a), q2), ((q2, b), q2), ((q2, a), q3), ((q3, a), q3), ((q3, b), q3)\}$
 - $F = \{q2\}$
- b) Expresión regular: $b^*ab^*ab^*$
- L5 = {w/ w contiene exactamente dos a}

Ejemplos: {(b-a-b-a),(a-a),(a-b-a),(b-b-a-a),(b-a-b-b-a-b)}

Autómata 6

- a) Definición matemática. El autómata finito determinista 6 puede ser expresado formalmente como: M6 = $(K, \Sigma, \delta, q0, F)$, donde:
 - $K = \{q0, q1, q2, q3\}$
 - $\Sigma = \{a, b\}$
 - $\delta = \{((q0, a), q1), ((q0, b), q2), ((q1, a), q2), ((q1, b), q0), ((q2, a), q2), ((q2, b), q2)\}$
 - $F = \{q0\}$
- b) Expresión regular: $(\varepsilon \cup (ab)^*)$
- L6 = {w/ w es la cadena vacía o cualquier cantidad de "ab" seguidas}

Ejemplos: {(a-b),(a-b-a-b),(a-b-a-b-a-b),(a-b-a-b-a-b),(a-b-a-b-a-b-a-b)}

3) El autómata comienza y termina en q0, si la entrada empieza o termina con RESET el programa finaliza, si comienza con 1 y termina con 1 finaliza y si comienza con 2 y termina con 2 el programa termina. Si la entrada comienza con un 0 o RESET permanece en q0

4)

5) a)

Autómata 5A

- a) Definición formal. El autómata finito determinista 5A puede ser expresado formalmente como: M5A = $(K, \Sigma, \delta, q0, F)$, donde:
 - K = {q0, q1, q2, q3, q4}

- $\Sigma = \{0, 1\}$
- $\delta = \{((q0, 0), q0), ((q0, 1), q1), ((q1, 0), q0), ((q1, 1), q2), ((q2, 1), q2), ((q2, 0), q3), ((q3, 0), q0), ((q3, 1), q4), ((q4, 0), q4), ((q4, 1), q4)\}$
- $F = \{q4\}$

b)

Autómata 5B

- a) Definición formal. El autómata finito determinista 5B puede ser expresado formalmente como: M5B = $(K, \Sigma, \delta, q0, F)$, donde:
 - K = {q0, q1, q2, q3, q4, q5}
 - $\Sigma = \{0, 1\}$

- $\delta = \{((q0, 1), q0), ((q0, 0), q1), ((q1, 1), q0), ((q1, 0), q2), ((q2, 0), q2), ((q2, 1), q3), ((q3, 1), q0), ((q3, 0), q4), ((q4, 1), q0), ((q4, 0), q5), ((q5, 0), q5), ((q5, 1), q5)\}$
- $F = \{q5\}$

c)

Autómata 5C

- a) Definición formal. El autómata finito determinista 5C puede ser expresado formalmente como: M5C = $(K, \Sigma, \delta, q0, F)$, donde:
 - K = {q0, q1, q2, q3, q4}
 - $\Sigma = \{a, z, c\}$
 - δ = {((q0, a), q1), ((q0, z), q0), ((q0, c), q0), ((q1, a), q2), ((q1, z), q0), ((q1, c), q), ((q2, a), q2), ((q2, z), q3), ((q2, c), q0), ((q3, a), q1), ((q3, z), q0), ((q3, c), q4), ((q4, a), q4), ((q4, z), q4), ((q4, c), q4)}
 - $F = \{q4\}$

f)

Autómata 5F

- a) Definición formal. El autómata finito determinista 5F puede ser expresado formalmente como: M5F = (K, Σ , δ , q0, F), donde:
 - K = {q0, q1, q2, q3, q4, q5}
 - $\Sigma = \{0, 1\}$
 - δ = {((q0, 0), q1), ((q0, 1), q6), ((q1, 0), q6), ((q1, 1), q2), ((q2, 0), q2), ((q2, 1), q3), ((q3, 0), q4), ((q3, 1), q3), ((q4, 0), q2), ((q4, 1), q5), ((q5, 0), q2), ((q5, 1), q3), ((q6, 0), q6), ((q6, 1), q6)}

Falta definir q0

• F = {q5}

No acepta valida 0101 y deberia

g)

Autómata 5G

- a) Definición formal. El autómata finito determinista 5G puede ser expresado formalmente como: M5G = $(K, \Sigma, \delta, q0, F)$, donde:
 - $K = \{q0, q1, q2, q3\}$
 - $\Sigma = \{a, b\}$
 - $\delta = \{((q0, b), q0), ((q0, a), q1), ((q1, a), q1), ((q1, b), q2), ((q2, a), q3), ((q2,a), q0), ((q3, a), q3), ((q3, b), q3))\}$
 - F = {q0, q1, q2}

No esta definido q0

h)

Autómata 5H

- a) Definición formal. El autómata finito determinista 5H puede ser expresado formalmente como: M5H = (K, Σ , δ , q0, F), donde:
 - K = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11}
 - $\Sigma = \{0, 1\}$
 - $\delta = \{((q0, 0), q1), ((q0, 1), q1), ((q1, 0), q2), ((q1, 1), q2), ((q2, 0), q3), ((q2, 1), q3), ((q3, 0), q4), ((q3, 1), q4)), ((q4, 0), q5), ((q4, 1), q5), ((q5, 0), q6), ((q5, 1), q6), ((q6, 1), q$

 $0),\ q7),\ ((q6,1),\ q7),\ ((q7,\ 0),\ q8),\ ((q7,\ 1),\ q8)),\ ((q8,\ 0),\ q9),\ ((q8,\ 1),\ q9),\ ((q9,\ 1),\ q10),\ ((q10,\ 0),\ q11),\ ((q10,\ 0),\ q10),\ ((q11,\ 0),\ q11),\ ((q11,\ 1),\ q11))\}$

• $F = \{q10\}$

i)

Autómata 51

- a) Definición formal. El autómata finito determinista 5l puede ser expresado formalmente como: M5l = $(K, \Sigma, \delta, q0, F)$, donde:
 - K = {q0, q1, q2, q3, q4, q5}
 - $\Sigma = \{0, 1\}$
 - $\delta = \{((q0, 0), q1), ((q0, 1), q3), ((q1, 1), q2), ((q1, 0), q4), ((q2, 0), q2), ((q2, 1), q2), \\ ((q3, 1), q3), ((q3, 0), q4), ((q4, 0), q4)), ((q4, 1), q5)), ((q5, 0), q4), ((q5, 1), q3)) \}$
 - $F = \{q2, q5\}$

Autómata 5J

- a) Definición formal. El autómata finito determinista 5J puede ser expresado formalmente como: M5J = (K, Σ , δ , q0, F), donde:
 - $K = \{q0, q1, q2\}$
 - $\Sigma = \{0, 1\}$
 - $\delta = \{((q0, 0), q1), ((q0, 1), q0), ((q1, 0), q2), ((q1, 1), q1), ((q2, 0), q1), ((q2, 1), q2)\}$
 - $F = \{q2\}$

No esta definido q0. No acepta la cadedna vacia y deberia

Autómata 5L

- a) Definición formal. El autómata finito determinista 5L puede ser expresado formalmente como: M5L = (K, Σ , δ , q0, F), donde:
 - K = {q0, q1, q2, q3, q4}
 - $\Sigma = \{0, 1\}$
 - $\delta = \{((q0, 0), q0), ((q0, 1), q1), ((q1, 0), q0), ((q1, 1), q2), ((q2, 1), q2), ((q2, 0), q3), \\ ((q3, 1), q2), ((q3, 0), q4), ((q4, 0), q4), ((q4, 1), q4)\}$
 - $F = \{q0, q1, q2, q3\}$

Autómata 5M

- a) Definición formal. El autómata finito determinista 5M puede ser expresado formalmente como: M5M = $(K, \Sigma, \delta, q0, F)$, donde:
 - K = {q0, q1, q2, q3, q4, q5}
 - $\Sigma = \{0, 1\}$
 - $\delta = \{((q0, 0), q0), ((q0, 1), q1), ((q1, 0), q0), ((q1, 1), q2), ((q2, 0), q4), ((q2, 1), q3), ((q4, 0), q4), ((q4, 1), q5), ((q5, 0), q4), ((q5, 1), q3), ((q3, 0), q3), ((q3, 1), q3)\}$
 - F = {q0, q1, q2, q4, q5}

No esta definido q0. Acepta "1" y no deberia

Autómata 5N

- a) Definición formal. El autómata finito determinista 5N puede ser expresado formalmente como: M5N = (K, Σ , δ , q0, F), donde:
 - K = {q0, q1, q2, q3, q4, q5}
 - $\Sigma = \{a, b\}$
 - $\delta = \{((q0, a), q1), ((q0, b), q0), ((q1, a), q1), ((q1, b), q2), ((q2, a), q3), ((q2,b), q2), ((q3, q), q3), ((q3, b), q4), ((q4,a), q5), ((q4, b), q4), ((q5,a), q5), ((q5, b), q2)\}$
 - $F = \{q2, q3\}$

7)

9) 1 1 t0 t1 t3 1 0

0

$$t2 = \{y1 = 1; y2 = 1\}$$

$$t3 = \{y1 = 1; y2 = 0\}$$