HW8: Function Growth, Sequences & Series

Due: Nov 26, 2024 @ 11:59 PM

Problem 1 [36 pts]: Sequences & Series

(i) Sequence: 18, 72, 288, 1152, 4608, 18432, . . .

Type: Geometric sequence (constant ratio r = 4).

Expression for a_k :

$$a_k = 18 \cdot 4^k$$

Sum of the first 11 terms:

$$S_{11} = 18(\frac{1-4^{11}}{1-4}) = 25165818$$

(ii) Sequence: $-1, 1, 7, 17, 31, 49, \dots$

Type: Quadratic sequence (constant second difference $\Delta^2=4$).

Expression for a_k :

$$a_k = 2k^2 - 4k + 1$$

Sum of the first 11 terms:

$$S_{11} = \sum_{k=1}^{11} (2k^2 - 4k + 1) = 759$$

(iii) Sequence: $0, -1, -2, -3, -4, -5, \dots$

Type: Arithmetic sequence (constant difference d = -1). Expression for a_k :

$$a_k = -k$$

Sum of the first 11 terms:

$$S_{11} = \sum_{k=1}^{11} (-k) = -66$$

Problem 2 [18 pts (3 each)]: Function Growth True/False

- 1. $5n^3 + 2n = O(n^4)$: False The growth of $5n^3 + 2n$ is $O(n^3)$, not $O(n^4)$.
- 2. $n^5 = O(7n + 1)$: False n^5 grows faster than O(7n + 1).

Name: Sean Balbale

- 3. If $2n^3 + 6n = O(h(n))$, then $2n^3 + 6n > h(n)$: False The statement misinterprets Big-O; O(h(n)) does not imply f(n) > h(n) for all n.
- 4. $4n + 1 = \Omega(n^2)$: False The growth of 4n + 1 is O(n), so it cannot be $\Omega(n^2)$.
- 5. $6n^2 + 4 = O(6n^2 + 4)$: **True** A function is always O of itself.
- 6. $5\log_2 n = \Theta(7\log_{10} n + 1)^2$: False The growth of $\log n$ is much slower than $(\log n)^2$, so this cannot hold.

Problem 3 [22 pts (14, 8 pts)]: Function Growth

(i) Function Columns

Group the following functions based on asymptotic growth rates (O):

Column 1: 10000

Column 2: $\log_2 n$, $3^{\log_3 n}$

Column 3: n

Column 4: $n \log_2 n$, $n \log_3 n$

Column 5: n^2 , 100n

Column 6: 2^n , 3^n

Column 7: n!

(ii) Simplest
$$f(n)$$
 for $3n + 4n^2 + 3n! = O(f(n))$:
 $f(n) = n!$

Problem 4 [24 pts (6 each)]: Demonstrating Function Growth

For each statement, find c, x_0 such that $0 \le f(x) \le cg(x)$ for $x \ge x_0$, or provide a justification if the statement is false.

- 1. $2^x = O(3^x)$: True. Exponential functions 2^x and 3^x satisfy $2^x \le c \cdot 3^x$ for c = 1 and $x_0 = 1$.
- 2. $5x^3 + x = O(x^3)$: **True**. The cubic term dominates, so $5x^3 + x \le 6x^3$ for c = 6 and $x_0 = 1$.
- 3. $x^4 = O(\ln x)$: False. Polynomial growth x^4 is faster than logarithmic growth $\ln x$, so no constants c, x_0 can satisfy the inequality.
- 4. $4x + 7 = O(x^2)$: **True**. For $x \ge 8$, $4x + 7 \le x^2$ can be satisfied with c = 1 and $x_0 = 8$.