1. Určete souřadnice vrcholu paraboly, která je grafem funkce f.

Porovnáním koeficientů ve vrcholové rovnici funkce $f: y = a(x - m)^2 + n$ určíme souřadnice vrcholu paraboly V = [m; n].

a)
$$f: y = x^2 + 2 = 1(x - 0)^2 + 2$$
 => $V = [0; 2]$

b)
$$f: y = (x+1)^2 = (x-(-1))^2 + 0$$
 => $V = [-1; 0]$

c)
$$f: y = (x-4)^2 + 3 = (x-4)^2 + 3$$
 => $V = [4; 3]$

d)
$$f: y = 0.9 (x + 6)^2 - 5 = 0.9 [x - (-6)]^2 + (-5)$$
 => $V = [-6; -5]$

2. Určete průsečíky grafu funkce $f: y = -x^2 + 4x + 12$ s osou x a s osou y, tj. určete souřadnice bodů P_x a P_y .

Každý <u>bod osy x</u> má druhou souřadnici nulovou => $P_x[x; \mathbf{0}]$ => za y dosadíme nulu Každý <u>bod osy y</u> má první souřadnici nulovou => $P_y[\mathbf{0}; y]$ => za x dosadíme nulu

Dosadíme-li do rovnice funkce za y nulu, dostaneme kvadratickou rovnici pro x:

$$0 = -x^{2} + 4x + 12 \quad \dots \quad a = -1, b = 4, c = 12$$

$$D = b^{2} - 4ac = 4^{2} - 4 \cdot (-1) \cdot 12 = 16 + 48 = 64 \quad \dots \quad \sqrt{D} = 8$$

$$x_{1} = \frac{-b + \sqrt{D}}{2a} = \frac{-4 + 8}{2 \cdot (-1)} = \frac{4}{-2} = -2 \quad \Rightarrow \quad P_{x_{1}}[-2; 0]$$

$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-4 - 8}{2 \cdot (-1)} = \frac{-12}{-2} = 6$$
 => $P_{x_2}[6; 0]$

Dosadíme-li do rovnice funkce za x nulu, dostaneme: $y = -0^2 + 4 \cdot 0 + 12 = 12$ \Rightarrow $P_y[0; 12]$

3. Grafem funkce f je parabola, která prochází body A[-3;8], B[0;2], C[-1;0]. Stanovte předpis této funkce f.

Do obecné rovnice kvadratické funkce $y = ax^2 + bx + c$ dosadíme za x a y souřadnice daných bodů.

$$A[-3;8]$$
 ... $8 = a \cdot (-3)^2 + b \cdot (-3) + c$... $8 = 9a - 3b + c$ \Rightarrow $8 = 9a - 3b + 2$

$$B[0;2]$$
 ... $2=a\cdot 0+b\cdot 0+c$... $\mathbf{2}=\mathbf{c}$... dosadíme do 1. a 3. rovnice

$$C[-1;0]$$
 ... $0 = a \cdot (-1)^2 + b \cdot (-1) + c$... $0 = a - b + c$ => $0 = a - b + 2$

1.
$$6 = 9a - 3b \implies 6 = 9(b - 2) - 3b \dots 6 = 9b - 18 - 3b \dots 24 = 6b \dots b = 4$$

3. $\underline{-2 = a - b}$ => a = b - 2 ... dosadíme do 1.rovnice

$$a = 4 - 2$$
 ... $a = 2$ $f: y = 2x^2 + 4x + 2$