Random Forests

COMPSCI 371D — Machine Learning

Outline

- Motivation
- 2 Bagging
- 3 Randomizing Split Dimension
- 4 Training
- 6 Inference
- Out-of-Bag Statistical Risk Estimate

From Trees to Forests

- Trees are flexible → good expressiveness
- Trees are flexible → poor generalization
- Pruning is an option, but messy and heuristic
- Random Decision Forests let several trees vote
- Use the bootstrap to give different trees different views of the data
- Randomize split rules to make trees even more independent

Random Forests

- M trees instead of one
- Train trees to completion (perfectly pure leaves) or to near completion (few samples per leaf)
- Give tree m training bag B_m
 - Training samples drawn independently at random with replacement out of T
 - $|B_m| = |T|$
 - About 63% of samples from T are in B_m
- Make trees more independent by randomizing split dim:
 - Original trees: for $j=1,\ldots,d$ for $t=t_{j}^{(1)},\ldots,t_{j}^{(u_{j})}$
 - Forest trees: $j = \text{random out of } 1, \dots, d$ for $t = t_i^{(1)}, \dots, t_i^{(u_j)}$

Randomizing Split Dimension

$$j=$$
 random out of $1,\ldots,d$ for $t=t_{i}^{(1)},\ldots,t_{i}^{(u_{j})}$

- Still search for the optimal threshold
- Give up optimality for independence
- Dimensions are revisited anyway in a tree
- Tree may get deeper, but still achieves zero training loss
- Independent splits and different data views lead to good generalization when voting
- Bonus: training a single tree is now d times faster
- Can be easily parallelized

Training

```
function \phi \leftarrow \operatorname{trainForest}(T, M) \triangleright M is the desired number of trees \phi \leftarrow \emptyset \triangleright The initial forest has no trees for m = 1, \dots, M do S \leftarrow |T| samples unif. at random out of T with replacement \phi \leftarrow \phi \cup \{\operatorname{trainTree}(S, 0)\} \triangleright Slightly modified trainTree end for end function
```

Inference

```
function y \leftarrow \text{forestPredict}(\mathbf{x}, \phi, \text{summary})
V = \{\}
\Rightarrow A \text{ set of values, one per tree, initially empty}
for \tau \in \phi do
y \leftarrow \text{predict}(\mathbf{x}, \tau, \text{summary})
\Rightarrow \text{The predict function for trees}
V \leftarrow V \cup \{y\}
end for
\text{return summary}(V)
end function
```

Out-of-Bag Statistical Risk Estimate

- Random forests have "built-in" test splits
- Tree m: B_m for training, $V_m = T \setminus B_m$ for testing
- h_{oob} is a predictor that works only for $(\mathbf{x}_n, y_n) \in T$:
 - Let tree m vote for y only if $\mathbf{x}_n \notin B_m$
 - $h_{\text{oob}}(\mathbf{x}_n)$ is the summary of the votes over participating trees
 - Summary: majority (classification); mean, median (regression)
- Out-of-bag risk estimate:
 - $T' = \{t \in T \mid \exists m \text{ such that } t \notin B_m\}$ (samples that were left out of *some* bag)
 - Statistical risk estimate: empirical risk over T': $e_{\text{oob}}(h, T') = \frac{1}{|T'|} \sum_{(\mathbf{x}, \mathbf{y}) \in T'} \ell(\mathbf{y}, h_{\text{oob}}(\mathbf{x}))$

$T' \approx T$

- e_{oob}(h, T') can be shown to be an unbiased estimate of the statistical risk
- No separate test set needed if T' is large enough
- How big is T'?
- |T'| has a binomial distribution with N points, $p = 1 (1 0.37)^M \approx 1$ as soon as M > 20
- Mean $\mu \approx pN$, variance $\sigma^2 \approx p(1-p)N$
- $\sigma/\mu \approx \sqrt{\frac{1-\rho}{\rho N}} \to 0$ quite rapidly with growing M and N
- For reasonably large N, the size of T' is very predictably about N: Practically all samples in T are also in T'

Summary of Random Forests

- Random views of the training data by bagging
- Independent decisions by randomizing split dimensions
- Ensemble voting leads to good generalization
- Number M of trees tuned by cross-validation
- OOB estimate can replace final testing
- (In practice, that won't fly for papers)
- More efficient to train than a single tree if M < d
- Still rather efficient otherwise, and parallelizable
- Conceptually simple, easy to adapt to different problems
- Lots of freedom about split rule
- Example: Hybrid regression/classification problems