HEURISTIC ANALYSIS

By Vinicius Ribeiro Machado da Silva

Objective

As the AB_improved score is defined by (#player_moves - #opponent_moves), I tried to develop some heuristics that could beat this one but playing around with the same two variables only. Below you can see the heuristics developed, the results obtained and then the critical analysis.

Heuristic 1: custom_score

```
"if game.is_loser(player):

return float("-inf")

if game.is_winner(player):

return float("inf")

player_moves = len(game.get_legal_moves())

opponent_moves = len(game.get_legal_moves(game.get_opponent(player)))

return float(player_moves - opponent_moves*(np.random.rand()*9+1))"
```

This score focus on using a stochastic value for the offensive strategy of pretending the higher value of the remaining opponent moves. A broad band of factors is used ranging from 1 up to 10.

Heuristic 2: custom_score_2

```
"if game.is_loser(player):

return float("-inf")

if game.is_winner(player):

return float("inf")

player_moves = len(game.get_legal_moves())

opponent_moves = len(game.get_legal_moves(game.get_opponent(player)))

return float(player_moves - opponent_moves*5.5)"
```

This score focus on using a deterministic value for the offensive strategy of pretending the higher value of the remaining opponent moves. One can observe that the fator of 5.5 is the mean value of the fator's distribution used in custom score (*(np.random.rand()*9+1)) This aims to contrast with the random offensive strategy adopted before.

Heuristic 3: custom_score_3

```
"if game.is_loser(player):

return float("-inf")

if game.is_winner(player):

return float("inf")

player_moves = len(game.get_legal_moves())

opponent_moves = len(game.get_legal_moves(game.get_opponent(player)))

if opponent_moves == 0:

opponent_moves = 0.01

return float(player_moves * (1/opponent_moves))"
```

This score focus on using a penalty value for the remaining player moves based on the inverse of the number of the opponent moves. As the number of the opponent moves decrease, the number of player moves is increased, becoming more relevant for the move choice.

Results

Match #	0pponent	AB_Improved		AB_Custom		AB_Custom_2		AB_Custom_3	
		Won	Lost	Won	Lost	Won	Lost	Won	Lost
1	Random	19	1	18	2	18	2	17	3
2	MM Open	12	8	8	12	14	6	12	8
3	MM Center	16	4	18	2	19	1	16	4
4	MM Improved	13	7	10	10	12	8	11	9
5	AB_Open	10	10	6	14	11	9	9	11
6	AB Center	13	7	8	12	9	11	12	8
7	AB_Improved	8	12	8	12	12	8	8	12
	Win Rate:	65.0%		54.3%		67.9%		60.7%	

Critical Analysis

It turns out that the **custom_score_2**, which uses a deterministic offensive strategy, had a slight improvement regarding the overall results. If one applies a statistical test to evaluate whether exists a significative improvement between the mentioned score and the AB_improved, it is likely to find that the difference of the performance is not significative.

The use of a broad band random offensive strategy in custom_score seems not to provide a good choice. Alternative random strategies such as exponential decay of the randomness can also be tried, starting with a random factor and converging to a deterministic one.

In custom_score_3, a different use of #player_moves and #opponent_moves variables tried to formulate a new score. The results indicates that the difference between the mentioned variables keeps providing better results.

With that said, the recommended evaluation function is the custom_score_2, once it provides a small improvement regarding the overall results, including the AB_improved score, without increasing the computational cost. The offensive randomness idea enable the agent to be more aggressive sometimes, but further research need to be done to obtain even better results with the development of band/dispersion control and offensive factor decay.