## CPE-723 – Otimização Natural Lista de Exercícios #2

1. Considere um processo de Markov X(t) que tem três estados possíveis: 0, 1, e 2. A evolução temporal deste processo é dada pela matriz de transição a seguir:

$$M = \begin{bmatrix} 0.50 & 0.25 & 0.25 \\ 0.25 & 0.50 & 0.25 \\ 0.25 & 0.25 & 0.50 \end{bmatrix}$$

- a) Considerando que a distribuição de probabilidade de X(0) é dada pelo vetor  $\mathbf{p}_0 = [0.3 \ 0.4 \ 0.3]^T$ , calcule a distribuição de probabilidade de X(3) (ou seja, do processo de Markov no instante t = 3).
- b) Iniciando em X(0) = 1, e usando um gerador de números aleatórios (são necessários apenas três números aleatórios, sorteados de PDF uniforme entre 0 e 1), calcule manualmente uma amostra do processo X(t) até t = 3.
- c) Usando um computador, execute 100 repetições do item (b). Em cada uma das 100 repetições, comece a simulação com um valor diferente de X(0), assumindo que os eventos X(0) = 0, X(0) = 1, e X(0) = 2 são equiprovaveis. Armazene as 100 cadeias obtidas em uma matriz  $\mathbf{X}$ , com 4 colunas (t = 0 até t = 3) e 100 linhas.
- d) Fazendo histogramas de cada uma das 4 colunas, calcule as distribuições de probabilidade do processo
  - X(t) em cada um dos 4 instantes: t = 0, 1, 2, 3. Comente os resultados obtidos.
- 2. Considere um sistema em que só há 5 estados possíveis: x = 1, x = 2, x = 3, x = 4, x = 5. Os custos J(x) de cada um dos estados são indicados na tabela abaixo:

| x | J(x) |
|---|------|
| 1 | 0.5  |
| 2 | 0.2  |
| 3 | 0.3  |
| 4 | 0.1  |
| 5 | 0.4  |

- a) Considere um processo de Markov gerado pela aplicação do algoritmo de Metropolis aos dados da tabela acima, com temperatura fixa T=0.1. Calcule a matriz de transição M que define o processo X(t). Obs.: note que o estado X(t) é unidimensional, e portanto a matriz M é  $5 \times 5$ .
- b) Iniciando em X(0) = 1, calcule manualmente 4 amostras do processo X(t).
- c) Qual  $\acute{e}$  o vetor invariante da matriz M do item (a)? Obs.: para facilitar os cálculos, pode-se usar o computador neste item.
- d) Calcule os fatores de Boltzmann (ou seja,  $e^{-(J(x))/T}$ ) associados aos dados da tabela acima, e compare-os com o resultado do item (c). Use T=0.1.
- e) Simulated Annealing: Usando um computador, execute 1000 iterações do algoritmo de Metropolis em cada uma das 10 temperaturas a seguir. Na passagem de uma temperatura para a outra, use o estado atual. Comente as distribuições de probabilidade obtidas no final de cada temperatura.

| $T_0$  | $T_1$  | $T_2$  | $T_3$  | $T_4$  | $T_5$  | $T_6$  | $T_7$  | $T_8$  | $T_9$  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.1000 | 0.0631 | 0.0500 | 0.0431 | 0.0387 | 0.0356 | 0.0333 | 0.0315 | 0.0301 | 0.0289 |

3. Proponha uma função  $J(\mathbf{x})$ , sendo  $\mathbf{x}$  um vetor com 10 dimensões, cujo ponto mínimo você conheça. Evite propor funções que tenham um só ponto mínimo. Encontre o ponto mínimo global

utilizando S.A.

Obs.: neste exercício, entregue o código utilizado e alguns comentários sobre o resultado obtido.

- 04) Prova de 2009 Questão 2, itens (a) e (c).
- 2. (Simulated Annealing) Considere um problema de otimização representado pela função custo a seguir:

| X | J(x) |
|---|------|
| 1 | 0.3  |
| 2 | 0.1  |
| 3 | 0.1  |
| 4 | 0.2  |

- a) Calcule os fatores de Boltzmann  $e^{-J(x)/T}$ , para T = 1.0 e para T = 0.1.
- c) Calcule as matrizes de transição M para T = 1.0 e para T = 0.1. Calcule os vetores invariantes destas matrizes e compare-os com os resultados do item (a).
- 05) Prova de 2011 Questão 2, itens (a), (b), e (e).
- 2. (Simulated Annealing) Considere a função custo J(x1; x2) definida pela tabela a seguir:

 $x1 \ x2 \ J(x)$ 

0 0 0.2

0 1 0.3

1 0 0.3

1 1 0.1

- a) A aplicação do Algoritmo de Metropolis a um vetor inicial x(0) qualquer, alterando uma componente (x1 ou x2) de cada vez, define um processo de Markov com duas matrizes de transição: M1 e M2. Calcule estas matrizes de transição, considerando T = 0.5. Note que o número de estados possíveis é 4.
- b) Calcule, para temperatura T = 0.5, a distribuição de Boltzmann/Gibbs do vetor aleatório X. Verifique que esta distribuição de probabilidades define um vetor invariante para ambas as matrizes de transição calculadas no item (a).
- c) Utilizando um pseudo-código, descreva um algoritmo de *Simulated Annealing* para minimizar esta função J(x1; x2). Defina e use quaisquer parâmetros (temperatura inicial, método de resfriamento etc.) que você julgar necessários.
- e) Quando um número suficientemente grande de iterações do algoritmo do item (c) tiver sido calculado à temperatura T = 0.1, com que probabilidade teremos a ocorrência do evento J = 0.3?
- 06) (Opcional/Desafio) Prova de 2012 Questão 3.
  - 1. (Simulated Annealing) Considere uma situação em que gostaríamos de dividir os oito vértices de um cubo unitário em dois agrupamentos, de modo que o erro quadrático total entre os centros dos agrupamentos e os membros dos agrupamentos seja minimizado. Considere que os vértices são numerados da seguinte forma:



e também que os agrupamentos são definidos através de um vetor  $\mathbf{x}$  binário de comprimento oito. A i-ésima componente de  $\mathbf{x}$  é igual a zero se o vértice i pertencer ao agrupamento zero. E é igual a um no caso contrário. Por exemplo, o estado  $\mathbf{x} = 11101000$  corresponde ao caso da figura, em que os centróides são (3/4, 3/4, 1/4) (agrupamento 0) e (1/4, 1/4, 3/4) (agrupamento 1) e o custo  $J(\mathbf{x})$  é 4.50.

- a) Baseando-se em um esquema de perturbação que consiste em sortear uma posição do vetor **x** e invertê-la, escreva um algoritmo SA básico para a minimização do erro quadrático total. Defina quaisquer parâmetros que você julgar necessários.
- b) Assumindo T=1.0 e o mesmo esquema de perturbação do item (a), calcule a probabilidade de transição do estado 11101000 para o estado 11100000, e também a probabilidade de transição do estado 11100000 para o estado 11110000.
- c) A contagem dos estados conforme os seus custos é dada pela tabela a seguir:

| Custo             | 4.00 | 4.50 | 4.53 | 4.67 | 5.00 | 5.14 | 5.33 | 5.50 | 5.60 | 6.00 |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| Número de Estados | 6    | 8    | 48   | 24   | 24   | 16   | 24   | 24   | 64   | 18   |

Calcule qual é a probabilidade de  $\mathbf{x} = 00001111$  ser gerado, quando o SA básico atinge T = 0.1.

## 07) Prova de 2016 - Questão 2.

1. (Algoritmo de Metropolis) Considere uma execução do algoritmo de Metropolis à temperatura fixa T = 1, com estados [X1X2] (X1 e X2 são variáveis aleatórias binárias) e as duas matrizes de transição dadas a seguir. A matriz M1, à esquerda, modela as probabilidades de transição entre estados no caso em que a perturbação, sempre diferente de zero, é feita sobre X1. A matriz M2, à direita, é para o caso em que a perturbação, sempre diferente de zero, é feita sobre X2.

| $\mathbf{M}1$ | 00  | 01  | 1 | 10 | M2 | 00  | 0 | 1 1 | 10  |
|---------------|-----|-----|---|----|----|-----|---|-----|-----|
|               |     |     | 1 |    |    |     |   | 1   |     |
| 00            | 2/3 | 0   | 0 | 1  | 00 | 2/3 | 1 | 0   | 0   |
| 01            | 0   | 2/3 | 1 | 0  | 01 | 1/3 | 0 | 0   | 0   |
| 11            | 0   | 1/3 | 0 | 0  | 11 | 0   | 0 | 0   | 1/3 |
| 10            | 1/3 | 0   | 0 | 0  | 10 | 0   | 0 | 1   | 2/3 |

- a) Considerando J(00) = 1, calcule os valores de J(01), J(11) e J(10) de forma que M1 e M2 tenham os valores dados acima.
- b) Calcule uma matriz de transição **M** que modele transições de qualquer um dos quatro estados para qualquer um dos quatro estados.
- c) Calcule o vetor invariante da matriz **M** do item (b). Verifique que ele é um vetor invariante também de **M**1 e **M**2, apesar de estas matrizes terem diferentes autovetores correspondentes aos autovalores que têm valor igual a 1.

1. (Simulated Annealing) Considere uma função custo dada pela tabela a seguir:

d) Descreva, usando pseudo-código, a implementação do algoritmo S.A. básico aplicado à minimização da função custo acima. Na sua descrição, leve em consideração os seguintes parâmetros: temperatura inicial T0, temperatura mínima  $T_{min}$ , e o número de iterações N a serem executadas em temperatura fixa.

- Calcule as matrizes de transição do processo de Markov que corresponde ao S.A. à temperatura T=10 e à temperatura T=5 (chamadas de M10 e M5) e os seus respectivos vetores invariantes.
  - e) (0.25 ponto extra) Observe o menor dos números em M10 e o menor dos números em M5. Qual é a relação entre estes números e T,  $J_{max}$ ,  $J_{min}$  e o número de estados possíveis?
- 09) Prova de 2017 Questão 3, itens (b) e (c).
- 3. (*Simulated Annealing*) Considere uma função custo definida sobre cinco estados discretos, chamados de estados 1, 2, ... 5, com os seguintes valores: J(1) = J(5) = 4, J(2) = 1, J(3) = 3 e J(4) = 2.
- a) Apresente, usando pseudo-código, uma implementação do algoritmo Simulated Annealing básico, usada para encontrar o estado para o qual o valor da função custo \_e mínimo. Defina e utilize todos os parâmetros que você considerar necessários.
- b) Calcule uma matriz de transição entre estados à temperatura  $T1 = 1/\ln 2$  e uma matriz de transição entre estados à temperatura  $T2 = 1/\ln 3$ .
- c) Calcule os vetores invariantes das matrizes encontradas no item (b).
- 10) Prova de 2018 Questão 3.
  - 1. (Simulated Annealing) Considere a matriz de transição dada a seguir (calculada usando  $T = T_0 = 0.1$ ):

$$\mathbf{M} = \begin{bmatrix} (1/2)(1 - e^{-2}) & 1/2 & 0 & 0 & 1/2 \\ (1/2)e^{-2} & 0 & (1/2)e^{-1} & 0 & 0 \\ 0 & 1/2 & (1/2)(1 - e^{-1}) & (1/2)e^{-2} & 0 \\ 0 & 0 & 1/2 & (1/2)(2 - e^{-1} - e^{-2}) & 1/2 \\ 1/2 & 0 & 0 & (1/2)e^{-1} & 0 \end{bmatrix}$$

- a) Considerando um grafo com cinco estados (estado 1 conectado aos estados 2 e 5; 2 conectado a 1 e 3; 3 conectado a 2 e 4; 4 conectado a 3 e 5; 5 conectado a 4 e 1) e considerando que o custo associado ao estado 1 é igual a 0.2, calcule os custos associados aos estados 2, 3, 4 e 5.
- b) Calcule o vetor invariante da matriz M.
- c) Escreva a menor das probabilidades da matriz  $\mathbf{M}$  em função dos valores máximo e mínimo de J(x), da temperatura T e do número N das transições possíveis para cada estado. Recalcule esta probabilidade para  $T = T_0/\log_2 4$ .