

Increasing Kernel Size: Running Time = 6.33s

Downsizing Image: Running Time = 0.34s

3418 circles

Increasing Kernel Size: Running Time = 5.48s Downsizing Image: Running Time = 0.34s

805 circles

736 circles

Increasing Kernel Size: Running Time = 2.29s Downsizing Image: Running Time = 0.23s

Increasing Kernel Size: Running Time = 4.32s Downsizing Image: Running Time = 0.29s

Increasing Kernel Size: Running Time = 2.86s Downsizing Image: Running Time = 0.33s

Increasing Kernel Size: Running Time = 4.66s Downsizing Image: Running Time = 0.28s

Increasing Kernel Size: Running Time = 3.07s Downsizing Image: Running Time = 0.18s

Downsizing Image: Running Time = 0.13s

Comparison of running times

- As we can see from the running times stated that downsizing an image and then filtering it is much faster than increasing the kernel size.
- Therefore downsizing an image is more Downsizing Image.

Parameter choosing

- I played around with the values of sigma, threshold, K(multiplication factor) and number of levels in the code.
- I found sigma = 0.5, K = $\sqrt{2}$ and number of levels = 15 to give the best results for me in both the methods.
- Threshold = 0.01 gave me the best results in the Increasing kernel size method.
- Threshold = 0.03 gave me the best results in the Downsizing method.
- I have tried sigma = 1, threshold = 0.1, K = 2 and No of levels = 10, but the above values gave me the best results.
- All the values were chosen based on the results I got by trial and error with multiple values.