

Software Lab Computational Engineering Science

Group 12, Pusher Mechanism

Aaron Floerke, Arseniy Kholod, Xinyang Song and Yanliang Zhu

Informatik 12: Software and Tools for Computational Engineering (STCE) RWTH Aachen University

Contents

Essential Technical Background

Analysis

User Requirements System Requirements

Project Management

Summary and Conclusion

Essential Technical Background

Software and Tools for Computational Engineering

The Four Bar Mechanism

Online Demo: https://www.geogebra.org/m/BueCG9ch

Essential Technical Background

Software and Tools for Computational Engineering

The Example

Analysis

User Requirements

- Establish the basic geometry for a planar mechanism to achieve the given path.
- Provide the following data for the designed four-bar mechanism:
 - Position of the two fixed pivot positions
 - Lengths of the three moving links and of the fourth base link
 - ▶ The position of the couple offset point relative to the coupler
- Using Solid Edge, design and generate the 3D models of links of the mechanism:
 - Construct the links out of sub-parts
 - Assemble the links
 - A diagram (produced from Solid Edge) of the assembled 3D mechanism
- Simulate the motion of the mechanism using the Simply Motion option within Solid Edge.
- Evaluate the KE of the mechanism as it cycles:
 - Produce a graph of the KE against time (or against crank angle) with at least 36 points
 - Find the kinetic energy of the mechanism as it goes through a cycle
- Obtain a configuration suitable for RP production.

System Requirements

Functional:

- ▶ Use the "mechanism selector" in the constraint modeller to find a four-bar mechanism that fits the given path.
- ▶ Use the CAD (Solid Edge) to generate parts as 3D models:
 - Construct the links out of sub-parts (to minimize the eventual cost of RP).
 - Assemble the links in Solid Edge to ensure that they fit together.
 - Additional requirements for RP:
 - Moving parts should be designed with a clearance between holes and shafts of approximately 0.25mm.
- Simulate the motion of the mechanism using the Simply Motion option within Solid Edge.

System Requirements

Functional:

- Evaluate the KE of the mechanism as it cycles:
 - Use the constraint modeller or other appropriate methods:
 - Firstly adapt a macro for a four-bar chain to represent and simulate the motion of the particular mechanism.
 - ▶ Then enhance the macro to find velocities and kinetic energies of the links.
 - Results to be achieved:
 - Produce a graph of the KE against time (or against crank angle) with at least 36 points.
 - Find the kinetic energy of the mechanism as it goes through a cycle.
- Obtain a configuration suitable for RP production:
 - In Solid Edge, save each component as a separate part file.
 - Lay out the various parts using Solid Edge on a plane.
 - These parts then need to be packed reasonably closely on a plane region of size 140mm x 220mm.
 - Identify the maximum height (RP build depth).

System Requirements

Non-Functional:

- Use the constraint modelling software created at Bath University.
- Use Solid Edge.
- Provide the following data for the designed four-bar mechanism:
 - Position of the two fixed pivot positions.
 - Lengths of the three moving links and of the fourth base link.
 - ▶ The position of the couple offset point relative to the coupler.
- Things to be prepared:
 - A listing of any constraint modeller macro used.
 - ▶ A listing of any programming language code used.
 - An indication of the calculation performed by any spreadsheet used.
 - ▶ The graph of KE and a statement of its maximum value.

Project Management

Gantt Chart

Summary and Conclusion

