See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325024206

Impact damage modeling in laminated composite aircraft structures

Sustainable Composites for Aerospace Applications

Edited by Mohammad Jawaid and Mohamed Thariq

This page intentionally left blank

Sustainable Composites for Aerospace Applications

Related Titles

Advanced Composite Materials for Aerospace Engineering (ISBN 978-0-08-100939-0) SHM in Aerospace Structures (ISBN 978-0-08-100148-6)

Lightweight Composite Structures in Transport Applications (ISBN 978-1-78242-325-6)

Marine Applications of Advanced Fibre-reinforced Composites (ISBN 978-1-78242-250-1)

Predicting Structural Integrity in Advanced Composite Materials (ISBN 978-0-08-100137-0)

Polymer Composites in the Aerospace Industry (ISBN 978-0-85709-523-7)

Failure Criteria in Fibre-reinforced Polymer Composites (ISBN 978-0-08-044475-8)

Bonded Joints and Repairs to Composite Airframe Structures (ISBN 978-0-12-417153-4)

Structural Health Monitoring of Aerospace Composites (ISBN 978-0-12-409605-9)

Composite Repair (ISBN 978-0-08-045146-6)

Manufacturing Technology for Aerospace Structural Materials (ISBN 978-1-85617-495-4)

Composite Structures: Design, Safety and Innovation (ISBN 978-0-08-044545-8)

3D Fibre-reinforced Polymer Composites (ISBN 978-0-08-043938-9)

Woodhead Publishing Series in Composites Science and Engineering

Sustainable Composites for Aerospace Applications

Edited by

Mohammad Jawaid Mohamed Thariq

Woodhead Publishing is an imprint of Elsevier
The Officers' Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2018 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-08-102131-6 (print) ISBN: 978-0-08-102138-5 (online)

For information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisition Editor: Gwen Jones Editorial Project Manager: Andrae Akhe Production Project Manager: Debasish Ghosh

Cover Designer: Greg Harris

Typeset by MPS Limited, Chennai, India

This page intentionally left blank

Contents

	ut the	e Editors	xvii xxi xxiii
1		erials selection for aerospace components	1
		lasamy Jayakrishna, Vishesh R. Kar, Mohamed T.H. Sultan	
		Murugan Rajesh	
	1.1	Introduction	1
		Literature	2 5
		Aerospace components	5 7
	1.4	Material properties	
		1.4.1 Mechanical properties	8
		1.4.2 Thermal properties	9
	1 5	1.4.3 Economics	10
	1.5	Materials selection	10
		1.5.1 Ashby's method of materials selection	10
		1.5.2 Decision-making methods	11 11
	1.6	1.5.3 Knowledge-based quantitative systems Conclusions	11
		rences	12
	Kele	telices	12
2	The	role of advanced polymer materials in aerospace	19
		Waheedullah Ghori, Ramengmawii Siakeng,	
	Ması	rat Rasheed, Naheed Saba and Mohammad Jawaid	
	2.1	Introduction	19
		Polymer composites	21
		Advanced composite materials components	22
	2.4	Aerospace structure and features	23
	2.5	1	23
		2.5.1 The fuselage	23
		2.5.2 Wing contents	24
		2.5.3 Wing functions and attachments	24
		2.5.4 The tail	25
		2.5.5 Undercarriage	25
		2.5.6 Engines	25
		Aerospace composite materials	25
	2.7		26
		2.7.1 Composite manufacturing using prepeg	26

viii Contents

	2./.1.1 Hand lay-up	26
	2.7.1.2 Automated tape lay-up	27
	2.7.1.3 Automated fiber placement	28
	2.7.1.4 Resin transfer molding (RTM)	29
	2.7.1.5 Vacuum-assisted resin transfer molded process	29
	2.7.1.6 Filament winding	29
	2.7.1.7 Pultrusion	29
2.8	Aircraft using composite materials	29
	2.8.1 Lear fan 2100	30
	2.8.2 Beech starship	31
	2.8.3 Boeing	31
	2.8.4 Airbus	31
	2.8.5 Advanced tactical fighter	31
	2.8.6 Advanced technology bomber (B-2)	31
	2.8.7 Second generation British harrier "Jump Jet" (AV-8B)	31
	2.8.8 Navy fighter aircraft (F-18A)	32
	2.8.9 Osprey tilt rotor (V-22)	32
2.9	Advantages and disadvantages of composites in aerospace	32
	2.9.1 Advantages	32
	2.9.2 Disadvantages	32
2.10	Future of composites in aerospace and other space applications	32
Refe	erences	33
3 Mec	chanical characteristics of tri-layer eco-friendly polymer	
	posites for interior parts of aerospace application	35
	enthilkumar, I. Siva, N. Rajini, J.T. Winowlin Jappes	
	Suchart Siengchin	
3.1	· ·	35
3.2	Objectives	37
3.3		37
3.4	•••	37
	3.4.1 Materials	37
	3.4.2 Fiber surface modification	38
	3.4.3 Fabrication of composite	38
	3.4.4 Tensile and flexural testing	39
	3.4.5 Free vibration test	40
3.5	Results and discussion	40
	3.5.1 Infrared spectrum analysis	40
	3.5.2 Mechanical properties	41
	3.5.2.1 Tensile strength	41
	3.5.2.2 Flexural strength	46
	3.5.2.3 Vibrational characteristics of different layering	.0
	patterns on hybrid composites	47
3.6		
1.17		
3.7	Conclusions Applications	51 51

Contents ix

		nowled	gments	51				
	Refe	erences		51				
4			ring techniques of composites for aerospace applications ramanian, Mohamed T.H. Sultan and N. Rajeswari	55				
	4.1		luction	55				
	4.2	Comp	osite fabrication processes	56				
		4.2.1	Hand lay-up	56				
		4.2.2	2 Spray lay-up	57				
		4.2.3	Resin transfer molding	58				
		4.2.4	Compression molding	59				
		4.2.5	Injection molding	59				
			Vacuum assisted method	60				
		4.2.7	Autoclave processing	61				
		4.2.8	B Pultrusion	61				
		4.2.9	Filament winding	62				
			Comparison between manufacturing processes	63				
		Concl	usion	64				
	Refe	erences		65				
5	Composite material overview and its testing							
	for	aerospa	ace components	69				
	Car	osena N	Meola, Simone Boccardi and Giovanni M. Carlomagno					
	5.1	A sho	rt introduction to composite materials	69				
			Composition and classification	69				
		5.1.2	Towards the future	71				
		5.1.3	Typical defects and weaknesses	72				
		5.1.4	Failure mechanisms	74				
	5.2	Nonde	estructive inspection methods	75				
	5.3	The u	se of infrared thermography in the inspection of composites	79				
		5.3.1	Infrared thermography nondestructive evaluation	79				
	5.4	Pulse	thermography	80				
			Estimation of defect size and depth	81				
		5.4.2	Evaluation of material porosity	83				
	5.5		in thermography	85				
			Estimation of defect size and depth	86				
		5.5.2	Unsteady-state conditions	87				
		5.5.3	Some examples of materials inspection with lock-in					
			thermography	88				
	5.6		approaches to application in the field	90				
	5.7		sing the performance of new composite materials	91				
		5.7.1		92				
		5.7.2	What to learn from ΔT images	94				
		5.7.3	Analysis of ΔT -time distribution	95				
		5.7.4	Evaluation of damage extension from ΔT images	97				

Contents

	5.8		reduction and discrimination of small thermal stress ed effects	99
	5.9	Concl		101
		erences	usion	101
	KCI	rences		101
6			e bio composites for aircraft components	109
			u Arockiam, Mohammad Jawaid and	
		eed Sal		
		Introd		109
	6.2		ntages and drawbacks of using natural fibers in aircraft	
		structi		110
			Advantages	110
			Drawbacks	111
			ials selection for sustainable aircraft interiors	111
	6.4		al fiber-reinforced aircraft components	113
			Bio composites for aircraft radome application	113
		6.4.2		114
		6.4.3	1	116
		6.4.4	e i	
			structure applications	118
	6.5	Case s	•	118
		6.5.1	1 0 ,	
			Aircraft Cabin Interior"	118
			Airbus helicopters	120
			Boeing research	120
		6.5.4	C	
			of aircraft (PAMELA)	121
		Concl		121
		Future	e scope	122
	Refe	erences		122
7			mage modeling in laminated composite aircraft structures	125
		_	eculj and Bosko Rasuo	
		Introd		125
	7.2	-	sis of impact damage in aircraft structures from composite	
		lamina	ates	126
		7.2.1	r	126
		7.2.2	The mechanism of impact damage accumulations	127
		7.2.3	The effects of impact damage	132
	7.3	Finite	element modeling of impact on laminates	134
		7.3.1	Finite element method (FEM)	134
			7.3.1.1 The implicit method	135
			7.3.1.2 The explicit method	135
		7.3.2	Impact on laminate plate	135
		7.3.3	Impact models according to abrate	137
	7.4	Multis	scale modeling of impact damage on laminated composites	138

Contents xi

		7.4.1 General	138
		7.4.2 Explicit multiscale modeling of impact damage	
		on laminated composites	140
	7.5	Numerical simulation of impact on composite laminated structures	141
		7.5.1 Numerical approach	141
		7.5.2 Damage modeling with the finite elements	142
		7.5.3 Modeling and simulation of projectile impact on carbon	
		fiber-reinforced panels in software ABAQUS	146
	7.6	Result analysis and discussion	148
	7.7	Conclusions	149
	7.8	Sources of further information and advice	150
	Refe	erences	151
8		ural lightweight hybrid composites for aircraft structural	
		lications	155
		ammad R.M. Jamir, Mohammad S.A. Majid and Azduwin Khasri	
	8.1		155
	8.2		156
	8.3	Classification of fibers	157
		8.3.1 Natural fiber	157
	0.4	8.3.2 Synthetic fiber	158
	8.4		159
	8.5	Limitations of natural fibers	160
	8.6	Processing techniques	160
		8.6.1 Hand lay-up	160
		8.6.2 Vacuum infusion method	161
		8.6.3 Resin transfer molding (RTM)	161
	0.7	8.6.4 Compression molding	162
	8.7	Mechanical properties of natural/synthetic fiber hybrid composites	163
		8.7.1 Effect of elevated temperature on hybrid composites	163
	0.0	8.7.2 Effect of moisture absorption on hybrid composites	165
	8.8	Applications of hybrid composites in the aerospace industry Conclusions	167
	8.9		167 168
		nowledgement erences	168
			100
9		iposite patch repair using natural fiber for aerospace lications, sustainable composites for aerospace applications	171
		ncations, sustainable composites for aerospace applications and Khirul Hafiz Muda and Faizal Mustapha	1/1
	9.1		171
	9.1		171
	9.4	9.2.1 Structural patch repair	173
	9.3	÷ •	173
	9.3 9.4	•	177
	9.5		180
	1.5	- amage detection teemingues	100

xii Contents

	9.6	Methodology	181
		9.6.1 Specimen fabrication	181
	9.7	Lay-up process	181
	9.8	Vacuum bagging process	183
	9.9	Patch repair on carbon fiber-reinforced plastic specimens	184
	9.10	Simulating damage on specimens	185
	9.11	Kenaf patching	185
	9.12	Application of repair plies	186
	9.13	Compression test	187
	9.14	Design and fabrication of a compression test jig	188
	9.15	Compression test process	194
	9.16	Tensile test	194
		Damage detection	195
	9.18	Results and discussion	196
		9.18.1 Compression test	196
	9.19	Tensile test	200
	9.20	Piezoelectric sensor response correlates with mechanical test	203
	9.21	Conclusion	207
		rences	207
	Furth	er reading	209
10	High	performance machining of carbon fiber-reinforced plastics	211
	Erwe	en A. Rahim and Hiroyuki Sasahara	
	10.1	Introduction	211
	10.2	Drilling of carbon fiber-reinforced plastics composite	212
	10.3	Ultrasonic drilling of carbon fiber-reinforced plastic composites	216
	10.4	Hole-making of carbon fiber-reinforced plastics composite	
		using a helical milling technique	218
	10.5	Hole making of carbon fiber-reinforced plastic composite	
		stack using a helical milling technique	222
	Refer	rences	226
11		sonic inspection of natural fiber-reinforced composites	227
		M. Loganathan, Mohamed T.H. Sultan and	
		na K. Gobalakrishnan	227
	11.1	Introduction	227
		Defects of natural composite	229
	11.3	Terms and description of defects in composite	229
	11.4	Visual inspection and its limitations	232
	11.5	Inspection types versus testing apparatus	233
		11.5.1 Honeycomb bonding	233
		11.5.1.1 Tap test	237
		11.5.1.2 Bond test	240
		11.5.2 Laminate	243
		11.5.2.1 Display type	243
		11.5.2.2 Pulse echo	244
		11.5.2.3 Immersion through transmission	245

Contents xiii

	11.7	Other n Conclusences		ive testing methods	247 248 249
12	Poter	ntial of n	atural fib	er/biomass filler-reinforced polymer	
	comp	osites in	aerospace	e applications	253
				ed Saba, Mohammad Jawaid and	
		ımmad N			
		Introdu			253
	12.2	Reinfor		-	254
		12.2.1			254
			12.2.1.1	Classification of agricultural biomass	255
		1000	NT . 1.0	raw materials	255
		12.2.2			255
				Chemical composition of natural fibers	257
				Physical properties of natural fibers	257
	100	D 1		Mechanical properties of natural fibers	259
	12.3		r composit		259
	12.4			mer composites	260
	12.5		composite	S	261
	12.6	Applica		**	262
	10.7		-	e applications	262
		Conclus			264
		owledgm	ents		264
	Refer	ences			265
13	The 1	ootential	of natura	l composite materials in structural design	269
				art, Arvin Yu, Dean Webster and Chad Ulven	_0,
	13.1	Introdu		,	269
		13.1.1		nforced composites in aerospace applications	269
		13.1.2		bers in structural applications	270
		13.1.3		* *	271
		13.1.4		iber treatment	272
	13.2		ls and met		273
		13.2.1			273
			Resins		274
				te processing	275
				rization methods	276
	13.3		and discus		278
		13.3.1		rization of double methacrylated epoxidized	
				oyate resin	278
		13.3.2			279
		13.3.3		red weathering	284
	13.4	Conclus			287
		owledger			288
		ences			288

xiv Contents

14		•		operties of natural fiber-reinforced aeronautical applications	293
					293
				ar, M.R. Ishak, Mohammad Jawaid,	
	3. <i>M</i> . 14.1		and Z. Lemo	in	293
	14.1	14.1.1		tion of natural fibers, naturates and their	293
		14.1.1		tion of natural fibers, polymers, and their	294
		14.1.2	properties		294
		14.1.2		criteria for natural fiber-based composites	294
	14.2	Low		atical applications act testing and its significance	294
	14.2		• •	city impact testing methods	293
	14.3	1 ypes (• •	296
			Izod test	St	296
				aht impost tost	290
				ght impact test d commonly assessed parameters after	291
		14.5.4	impact tes	*	298
	14.4	Engtore			290
	14.4			he low velocity impact properties nforced composites	299
		14.4.1		impact energy	299
		14.4.1		impact energy fiber architecture and matrix	301
				chemical treatments and additives	301
		14.4.4		hybridization	302
		14.4.4		Natural-synthetic fiber-reinforced hybrid	303
			14.4.4.1	composite	303
			14.4.4.2	Natural-natural fiber-reinforced hybrid	303
			14.4.4.2	composite	304
		1445	Effort of	temperature	304
				impactor and impact velocity	305
				moisture absorption	305
				manufacturing method	306
	14.5			nent modeling (FEM)	306
	14.6			m and failure behavior of natural	300
	14.0		einforced co		306
	14.7			elementing natural fiber-reinforced	300
	14.7			onautical applications	307
	14.8	_		ome the limitations	308
	14.9	Conclu		one the initiations	308
		ences	51011		309
	KCICI	clices			309
15	Poter	ntial of r	atural/syn ^e	thetic hybrid composites for aerospace	
		cations	•	• •	315
			gowda, Sanj	ay Mavinakere Rangappa, Mohammad Jawaid,	
		_		sha Basavegowda and Naheed Saba	
	15.1	Întrodu		~	315
	15.2	Synthe	tic fibers		321

Contents xv

	15.2.1 Class Class	221
	15.2.1 Glass fibers	321
	15.2.2 Carbon fibers	322
	15.2.3 Aramid fibers	325
15.3	Natural fibers	325
	15.3.1 Sisal fibers	325
	15.3.2 Jute fibers	326
	15.3.3 Kenaf fibers	326
	15.3.4 Hemp fibers	326
	15.3.5 Coir fibers	330
	15.3.6 Banana fibers	330
	15.3.7 Bamboo fibers	331
	15.3.8 Animal fibers	331
15.4	Survey on natural/synthetic fiber hybrid composites	333
15.5	Potential applications	337
15.6	Conclusions	341
Refer	ences	343
Furth	er reading	351
lex		353

This page intentionally left blank

List of Contributors

Ali Amiri North Dakota State University, Fargo, ND, United States

Naveen Jesu Arockiam Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Mohammad Asim Universiti Putra Malaysia, Serdang, Selangor, Malaysia

K. Balasubramanian Bharat University, Chennai, Tamil Nadu, India

Yogesha Basavegowda Malnad College of Engineering, Hassan, Karnataka, India; Visvesvaraya Technological University, Belagavi, Karnataka, India

Simone Boccardi University of Naples Federico II, Naples, Italy

Victoria Burkart North Dakota State University, Fargo, ND, United States

Giovanni M. Carlomagno University of Naples Federico II, Naples, Italy

Muthukumar Chandrasekar Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Syed Waheedullah Ghori Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Mohana K. Gobalakrishnan Ungku Omar Polytechnic, Ipoh, Perak, Malaysia

M.R. Ishak Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Mohammad R.M. Jamir Universiti Malaysia Perlis, Arau, Perlis, Malaysia

Mohammad Jawaid Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Kandasamy Jayakrishna VIT University, Vellore, Tamil Nadu, India

Vishesh R. Kar VIT University, Vellore, Tamil Nadu, India

Azduwin Khasri Universiti Malaysia Perlis, Arau, Perlis, Malaysia

Dragan Kreculj University of Belgrade, Belgrade, Serbia

xviii List of Contributors

Z. Leman Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Tamil M. Loganathan Polytechnic Banting, Banting, Selangor, Malaysia

Mohammad S.A. Majid Universiti Malaysia Perlis, Arau, Perlis, Malaysia

Carosena Meola University of Naples Federico II, Naples, Italy

Mohd Khirul Hafiz Muda Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Faizal Mustapha Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Mohammad Nasir Forest Research Institute, Dehradun, Uttarakhand, India

Madhu Puttegowda Malnad College of Engineering, Hassan, Karnataka, India; Visvesvaraya Technological University, Belagavi, Karnataka, India

Erween A. Rahim Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Murugan Rajesh VIT University, Vellore, Tamil Nadu, India

N. Rajeswari Velammal Engineering College, Chennai, Tamil Nadu, India

N. Rajini Kalasalingam University, Krishnankoil, Tamil Nadu, India

Sanjay Mavinakere Rangappa Visvesvaraya Technological University, Belagavi, Karnataka, India; Ramaiah Institute of Technology, Bengaluru, Karnataka, India

Masrat Rasheed Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Bosko Rasuo University of Belgrade, Belgrade, Serbia

Naheed Saba Universiti Putra Malaysia, Serdang, Selangor, Malaysia

S.M. Sapuan Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Hiroyuki Sasahara Tokyo University of Agriculture and Technology, Tokyo, Japan

K. Senthilkumar Kalasalingam University, Krishnankoil, Tamil Nadu, India

Pradeep Shivanna Malnad College of Engineering, Hassan, Karnataka, India; Visvesvaraya Technological University, Belagavi, Karnataka, India

List of Contributors xix

Ramengmawii Siakeng Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Suchart Siengchin King Mongkut's University of Technology North Bangkok,
Bangkok, Thailand

I. Siva Kalasalingam University, Krishnankoil, Tamil Nadu, IndiaMohamed T.H. Sultan Universiti Putra Malaysia, Serdang, Selangor, MalaysiaChad Ulven North Dakota State University, Fargo, ND, United States

J.T. Winowlin Jappes Kalasalingam University, Krishnankoil, Tamil Nadu, IndiaArvin Yu North Dakota State University, Fargo, ND, United States

Dean Webster North Dakota State University, Fargo, ND, United States

This page intentionally left blank

About the Editors

Dr. Mohammad Jawaid is currently working as Fellow Researcher (Associate Professor) at the Biocomposite Technology Laboratory, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia, and has also been Visiting Professor at the Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia since June 2013. He is also Visiting Scientist to TEMAG Laboratory, Faculty of Textile Technologies and Design at Istanbul Technical University, Turkey. Previously, he worked as Visiting Lecturer, Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), and also worked as Expatriate Lecturer under UNDP project with the Ministry of Education of Ethiopia at Adama University, Ethiopia. He received his Ph.D. in Polymer Composites from Universiti Sains Malaysia (USM), Malaysia. He has more than 12 years' experience in teaching, research, and industries. His area of research interests includes hybrid reinforced/filled polymer composites, advanced materials: graphene/nanoclay/fire-retardant, lignocellulosic reinforced/filled polymer composites, modification and treatment of lignocellulosic fibers and solid wood, biopolymers and biopolymers for packaging applications, nanocomposites and nanocellulose fibers, polymer blends. So far, he has published 14 books, 33 book chapters, more than 200 peer-reviewed international journal papers and five published review papers under top 25 hot articles in Science Direct from 2013-17. He worked as Guest Editor of a special issue of Current Organic Synthesis and Current Analytical Chemistry, Bentham Publishers, UK; International Journal of Polymer Science, Hindawi Publishing; Interscience Enterprises Ltd; IOP Conference Proceedings; and is an Editorial Board Member of the Journal of Asian Science Technology and Innovation; and the Journal of Recent Innovations in Chemical Engineering. Besides that, he is also a reviewer of several high-impact international peer-reviewed journals published by Elsevier, Springer, Wiley, Saga, etc. Presently, he is supervising 20 Ph.D. students and eight Master students in the field of hybrid composites, green composites, nanocomposites, natural fiber-reinforced composites, nanocellulose, etc. Nine Ph.D. and five Master students graduated under his supervision in 2014–17. He has several research grants at university, national, and international level on polymer composites of around RM 3,000,000 (USD \$700,000). He also delivered plenary and invited talks at international conferences related to composites in India, Turkey, Malaysia, Thailand, the UK, France, Saudi Arabia, and China. Besides that, he is also a member of the technical committees of several national and international conferences on composites and materials science. His H-index, 33 (Google Scholar); 28 (Scopus).

xxii About the Editors

Assoc. Prof. Ir. Ts. Dr. Mohamed Thariq Bin Haji Hameed Sultan is a Professional Engineer (PEng) registered under the Board of Engineers Malaysia (BEM), a Professional Technologist (PTech) registered under the Malaysian Board of Technologists, and also a Charted Engineer (CEng) registered with the Institution of Mechanical Engineers United Kingdom, currently attached to the Universiti Putra Malaysia as the Head of the Biocomposite Technology Laboratory, Institute of Tropical Forestry and Forest Products (INTROP), UPM Serdang, Selangor, Malaysia. Being the Head of the Biocomposite Technology Laboratory, he is also appointed as an Independent Scientific Advisor to Aerospace Malaysia Innovation Centre (AMIC) based in Cyberjaya, Selangor, Malaysia. He received his Ph.D. from the University of Sheffield, United Kingdom. He has about 10 years of experience in teaching as well as in research. His area of research interests includes hybrid composites, advance materials, structural health monitoring, and impact studies. So far he has published more than 100 international journal papers and received many awards locally and internationally. In December 2017, he was awarded a Leaders in Innovation Fellowship (LIF) by the Royal Academy of Engineering (Raeng), United Kingdom. He is also the Honourable Secretary of the Malaysian Society of Structural Health Monitoring (MSSHM) based in UPM Serdang, Selangor, Malaysia. Currently, he is also attached to the Institution of Engineers Malaysia (IEM) as the Deputy Chairman in the Engineering Education Technical Division (E2TD).

Preface

Aerospace industries are looking for alternative materials for the development of sustainable and biodegradable products to replace carbon/Kevlar fibers in aerospace internal components to enhance the fuel efficiency of aircraft. A major problem for aircraft component manufacturers is the disposal of aerospace components after the service life of aircraft finishes. Research centers and industrial organizations have started to develop interior components for aircraft using natural fibers and agricultural biomass. Agricultural biomass such as natural fiber is abundantly available worldwide, but is not being properly utilized due to its limitation in processing, properties, and applications. Biomass such as rice husk, wheat straw, bagasse, pineapple leaves, oil palm, date palm, kenaf, jute, flax, hemp, etc., are potential materials in the development of a new generation of composite materials with enhanced multi-functionality in a broad range of application fields. By careful reinforcement of biomass fillers in polymer, researchers can develop innovative products for aerospace components with better mechanical and physical properties and novel behavior.

The central aim of this book is to present the development, characterization, and applications of composite materials developed from natural fiber/biomass as fillers and reinforcements to enhance material performance for utilization in aerospace components. This book has been written by leading experts in the field of composite materials, and covers composite materials developed from different natural fibers and their hybridization with synthetic fibers. The book chapters will provide cutting-edge, up-to-date research on the use of composite materials in aerospace components from eminent researchers worldwide.

This book covers topics such as materials selection for aerospace components, the role of advanced polymer materials in aerospace, eco-friendly polymer composites for interior parts of aerospace applications, manufacturing techniques of composites for aerospace applications, composite materials overview and testing for aerospace components, sustainable biocomposites for aircraft components, impact damage modeling in laminated composite aircraft structures, natural lightweight hybrid composites for aircraft structural applications, composite patch repair using natural fiber for aerospace applications, sustainable composites for aerospace applications, high performance machining of carbon fiber-reinforced plastics, ultrasonic inspection of natural fiber-reinforced composites, the potential of natural fiber/biomass filler-reinforced polymer composites, the potential of natural composite materials in structural design, the low velocity impact properties of natural fiber-reinforced composite materials for aeronautical applications, and the potential of natural/synthetic hybrid composites for aerospace applications.

xxiv Preface

The book will fill the gap in the published literature (published books on composites do not pay much attention to natural fiber-based composites in aerospace components), and provide reference material for future research in natural fiber and hybrid composite materials, which is much in demand due to sustainable, recyclable, and eco-friendly composites needed for different applications. This book is written by renowned experts from India, Malaysia, Italy, Serbia, Japan, and the USA. We are very grateful to all the authors who contributed to this book, and thus have made our thoughtful idea or dream into a reality. We are also grateful to the Elsevier, UK, supporting team, especially Andrae Akeh, Narmatha Mohan, and Debasish Ghosh for helping us to finalize this book.

Mohammad Jawaid and Mohamed Thariq Universiti Putra Malaysia, Serdang, Malaysia This page intentionally left blank

Impact damage modeling in laminated composite aircraft structures

7

Dragan Kreculj and Bosko Rasuo University of Belgrade, Belgrade, Serbia

7.1 Introduction

Studying the effects of impact loads, and the resulting damage in an aircraft composite structure, is extremely difficult and complex. This comes from the very nature of this process, which is a dynamic event, and the problem of characterizing the resultant damage. Modeling of impact damage is essentially important in the design of laminate composite structures for various technical structures. Generally, there are three separate approaches to examination of the effects of impact on structures.

The first is an empirical approach, in which experiments are performed and the resulting data are collected, connected, and further analyzed.

The second approach is the foundation and development of engineering models with different complexity that approximate impact events with a certain accuracy.

The essence of the third approach is the discretization structure into smaller elements, and application of fundamental physics laws for each structure element. This approach includes the analysis by finite element method, finite difference method, and finite volume method.

Each of these three approaches to study the impact has some advantages, and also inevitable disadvantages. The empirical approach is suitable for solving a specific problem, but can usually be interpolated from outside the parameters of testing. The engineering models usually focus on particular aspects of the problem, by reducing the equation to one- and two-dimensional algebraic or differential equations, assuming certain simplifications. Numerical analysis has proven to be able to provide accurate solutions to very complex problems, but it is necessary to spend a lot of time for the required calculations. In many cases, the best answer (optimum) is a combination of all three approaches [1–4].

Until today, a lot of models (two- and three-dimensional) have been developed for the characterization of impact damage effects in structures. For years, they have been the subject of numerous engineering studies and tests. These models are described theoretically, and functional characteristics and equations are listed. However, they are mainly the results of approximations, and apply in specific cases,

that is, they have certain limitations and therefore the field of application is limited. From the literature, probably the most famous and relevant are impact models according to Abrate, which are also very often used.

Numerical simulations have great applications in engineering analyses of impact on laminated composite aircraft structures. Numerical values and graphical distributions obtained by specified calculations for the damage parameters are extremely important to assess the integrity of those structures. For that operation, highly sophisticated software packages are available and very usable in engineering domain.

7.2 Analysis of impact damage in aircraft structures from composite laminates

7.2.1 Impact loads

Generally, impact is a dynamic event which is characterized by a high load in a very short time period. The same is categorized into low and high velocity, but there is not a clear and definite transition between those definitions. Usually, limited velocity is in the range of 10 up to 100 m/s.

However, a pure difference is in the form of damage developed after each impact category. Damage is much localized due to the high velocity impact, since the incident energy is dissipated in a very small volume. High velocity impact is characterized by penetration induced by fiber breakage. During low velocity impacts, damage is initiated by matrix cracks, which create delaminations at interfaces between plies with different orientations [5].

In structural composites, impact load can cause damage that does not result in instant failure. It may later lead to failure under the influence of workloads [5].

As is known, certain low-velocity impact energies can be absorbed through the bending of the composite, allowing the energy to be transferred to a location away from the point of impact. Since the time of contact between the projectile and the composite material is considerably less at higher velocities, the impact load induces localized deformations without a general response. These two impact types have been investigated by Cantwell and Morton [5]. They have demonstrated this concept by observing delamination in beams of various lengths under the impact of low and high velocity. It was found that the lesion size decreases when the length of the beam increases at low velocity. At high velocities, however, the level of damage was independent of the beam length.

Composites are sensitive enough to impact load, as they absorb impact energy mainly through fracture mechanics, rather than elasticity and plasticity [5]. How the different loading conditions are applied to the composite element can damage the inner structure by mechanisms such as cracking, delamination, fiber breakage, and local buckling [6].

Figure 7.1 Tensile and compression strength degradation due to impact damage.

The primary matrix failure mode is characterized by cracks which move parallel to the fibers in the layers, and they are not aligned with the direction of the main tensile loads.

Secondary matrix failures cause cracks that spread to neighboring layers; therefore, initiating the delamination in a structure.

A typical variation of strength degradation as a function of impact energy is shown in Fig. 7.1, for both tensile and compression loading. This figure shows that compression loading causes much more reduction in strength, as compared to tensile loading.

At low impact energy levels, the reduction in tensile strength is not significant, but reduction in compression strength is quite large. This is due to the fact that impact damage at low energy levels initiates primary delaminations, which cause strength degradation due to buckling (compression loading) [7].

In the case of higher impact energy levels, damage causes fiber breakage, which results in significant tensile strength reduction [8].

7.2.2 The mechanism of impact damage accumulations

Composite laminates are prone to impact damage for several reasons. Because of this, there are different mechanisms of damage accumulation in structures from those types of materials.

First, there is usually no reinforcement in the direction of the composite laminate thickness. Thus, outside the plane the behavior of the laminate is mainly dependent on the characteristics of the matrix. Therefore, low resistance composite laminates, with thin resin rich interfaces between adjacent layers, lead to the mechanism of delamination under impact loading [5].

Figure 7.2 Types of impact damage in the fiber-reinforced laminates [10].

In addition, due to the brittle properties of the composite, and lack of a mechanism of plastic strain, carbon-reinforced composites are more susceptible to impact damage in comparison with metals. It should be noted that metals can have plastic deformation at high load/stress levels, but they still have the ability to retain their integrity.

Moreover, the laminated structure is used to reduce the anisotropy of the layers in different directions, and that makes composites sensitive (vulnerable) to impact damage [9].

Failures in composites caused by impact typically occur in the form of a single or a combination of the following modes (Fig. 7.2):

- 1. Delamination
- 2. Matrix cracking
- 3. Fiber fracture [10].

Several parameters affect the quantity and quality of impact damage in composite laminates. Obviously, impactor initial kinetic energy plays an extremely important role, but there are many other parameters that must be taken into account. The large mass of the impactor with a low initial velocity can have exactly the same kinetic energy as well as less mass with higher initial velocity. However, the amounts and the contours of such damage are quite different. The damage can be localized in a small area of attack in one case, but it can also affect the overall response of the structure in another [9].

The material properties are considered to have a large effect on impact structure response by means of overall structure rigidity and stiffness of contact between the projectile and target. The target is not only under the influence of material properties, but also the thickness of the laminate, the size of the structure, and boundary conditions.

Dynamics of impact and the resulting damage are also influenced by the characteristics of the so-called impactor. These include the following impactor properties: density, elastic properties, shape, initial velocity, and incident angle [10].

The effects of overloading and environmental conditions are also relevant parameters that must be taken into account. They determine the final impact response of selected tested composite structures [9].

When the structure is exposed to high amplitude or repeated loads, the strength and integrity of the same may be affected. Then, there is a reduction of elasticity, which may possibly lead to the structure failure over time. In addition, by heterogeneous materials, there are several damage mechanisms, leading to the failure of the same [6].

Composites can be more sensitive to the load, such as an impact, so that they absorb the energy mainly through fracture mechanics, rather than elasticity and plasticity [5].

Because there are different loading conditions applied to the composite element, the internal composition of the same can be damaged with mechanisms such as: matrix cracking, delamination, fiber breakage, and local buckling. Then, damage is accumulated due to delaminations and material properties are changed, until finally the structure terminates in the form of fiber fracture [5].

In a laminated composite at locations where failure is initiated, stiffness is reduced and the surrounding material must carry the service loads. Because the fibers are the supported material in the composite, when they fail the structure is consequently endangered. Failures occur in stages, where one case of damage can lead to a series of failures in the material, as shown in the stress-deformation curve, shown in Fig. 7.3.

Failures within layers are referred to as intralaminar, while those between the layers are called interlaminar. Each point in Fig. 7.3 displays a basic failure within a singular layer of the composite laminate panel.

As a result of the layer failures, the final state is the total failure of the composite laminate. This figure implies that the failure in the layer is almost sudden. Nevertheless, in reality, failure is progressive, since the present mechanisms, such as matrix cracking, occur gradually, rather than all at once [5].

Structural failures in aircraft composite materials can be initiated and then guided by the various circumstances caused by load processes. They can occur as a result of errors in the manufacturing process of these materials. In some cases, the failure occurs due to a gradual load, such as fatigue, stress, low amplitude, etc.

Figure 7.3 The failure process in composite laminate [9].

Failures can be immediate and catastrophic due to high energy loads, such as impact. In many cases, the overall strength is not compromised, as long as a significant number of carrier fibers are functional [11].

The damage in composite laminates determines the life of the primary carrying structure. The extent of damage consists of damage in the inside layer of the lamina, such as fiber breakage, fiber separation, or matrix cracking. Also, delaminations between the layers are created. The formed defect may or not affect already existing structure damage [12-15].

Impact response phenomenon of composite laminates has been widely theoretically discussed in the expert literature. Moreover, great numbers of experiments have been carried out with the same aims.

The impact of the manufacturing process on the mechanical behavior of materials is undoubtedly an important aspect in the test studies of polymer composites. Many of these materials require treatment with high temperatures, causing residual stresses in the final structures. These stresses are caused by inadequate thermal expansion and chemical constituent's shrinkage polymers. Residual stresses are caused by the thermal mismatch between the laminates and the tools on which the polymers are processed [16-18].

However, analytical and numerical formulations were carried out with consideration for the interaction between materials/contact, forecasting the amount of induced damage and the assessment of residual structure properties. In particular, the efforts of many researchers focused on the modeling of impact history. Because of that, quite closed free solution forms, easy to use and effective, but limited to specific cases of impact, were often used [19].

Transverse cracking, also known as matrix cracking in multidirectional laminate, is shown in Fig. 7.4 (micrographic display). It is due to the stress generated by mechanical or thermal loads. This form of damage also endangers the structures integrity.

Residual stresses arise due to differences in coefficients of thermal expansion between adjacent layers and resin shrinkage. System fiber/epoxy at high temperature is very sensitive to micro cracking. In this special case, only matrix cracking develops in a weaker lamina of the multidirectional laminate.

Figure 7.4 Micrographic matrix cracking in multidirectional laminate [20].

Failure of weaker lamina will be limited by the nearby stronger laminates, which prevent the cracking extending across the whole laminate. These limits are referred as a matrix cracks, because they have been observed in the matrix. When these cracks reach the upper limit for the density (number of cracks per unit length), the state is designated as the characteristic damage state (CDS) [20].

Fiber fracture, as is shown in Fig. 7.5, is another type of damage which occurs during the operation time of the multidirectional composite laminate. This can happen when the stress in the fiber exceeds the fiber's ultimate strength. The characteristic material contours can clearly be seen [20].

Delamination, as is shown in Fig. 7.6, is one of the major defects in composite laminates, which can occur during the service life of the composite in a multidirectional laminate structure. This type of damage affects the strength and the lifetime

Figure 7.5 Micrographic fiber fracture in multidirectional laminate [20].

Figure 7.6 Micrographic delamination in multidirectional laminate [20].

of composite components and structures. Fiber pulling usually occurs after fiber breakage and fiber separation from the matrix. It is also discussed in a number of expert studies [20].

The stress causing the first damage appearance is designated as the first-ply failure stress (FPF). First-ply failure observed stress will be much smaller than the ultimate laminate failure (ULF), and is often used in exploitation of the laminate [5].

Numerous theoretical and experimental studies were carried out on the development of damage during tensile testing of composite laminates and their influence on the time independent properties [20].

7.2.3 The effects of impact damage

Impact damage induces significant reductions in stability and strength of laminated composite structures. Low velocity impact damage from bird strike, runway debris, or dropped tools during fabrication or maintenance operations, may cause damage below the barely visible impact damage (BVID) limit. These types of damage could lead to catastrophic failure, and that is important to be taken into consideration in the design process of composite structures. Since such damage is difficult to detect, especially in-service, structures must be safe and with present BVID. That is a hidden threat, and the residual strength in compression may be only 30% of the undamaged value [21].

The complex problem of determining the effects of impact damage may be divided into two domains (Fig. 7.7):

- 1. Impact damage resistance, associated with the response and damage caused by impact;
- 2. Impact damage tolerance, linked with the reduced strength and stability of the structure due to the damage [21].

It is important to develop reliable methods for assessing the effects of damage and the parameters of residual strength after impact, that is, to determine the tolerance of impact. Studies in this area are mainly related to impact damage tolerance and residual strength prediction of composite structures containing certain impact damage size [22].

Experimental testing is an efficient way to determine the effects of impact damage. Due to the fact that testing is expensive and time-consuming, there is a need to develop calculation methods that are rapid and reasonably accurate that provide the opportunity to perform parametric studies [23].

Figure 7.7 Impact damage resistance and tolerance [21].

The reduction of compressive strength due to impact is more significant than the reduction in tensile strength and other strengths. Therefore, the work on residual strength is focussed on delamination buckling which reduces the flexural properties of the damaged laminate, and may cause significant reduction in compressive strength [21].

The damage tolerance of composite structures is intimately linked to the morphology and extent of flaws or damage. Impacts are a commonly occurring source of threat to composites, which can produce a "key" damage state, which inherently controls the subsequent durability and damage tolerance of the affected structure. Transverse impact to composites is of particular concern, due to the possibility of exciting damage modes that are difficult, or even impossible, to visually detect from the exterior (impact-side) surface [24].

Some examples of such damage are the following: delamination, backside-only fiber failure, debonding of internal substructure (e.g., stringers and stiffeners, doublers, joints), and crushing and separation of sandwich panel core. Damage appearing is highly dependent upon the nature of the threat and conditions associated with the impact event [25].

Fiber composite structures are more brittle than tough. Unlike the tough metals for aircraft (such as aluminum), which are subjected to permanent deformation on impact, composites show little (or no) impact damage on the surface, until the occurrence of failure.

Barely visible impact damage has the option to expand, and at the same time to weaken the structure. As a result of such circumstances, impact damage to the composite aircraft can remain undetected for a longer period of time, until the reporting of a catastrophic failure (such as a separation of the main structures) [26].

Vulnerability is one of the most important exploitable characteristics of modern aircrafts. Research has shown that with respect to the survivability, composite laminated materials have the best behavior and results compared to other aviation materials. That is the reason for their widespread use in high demand aeronautical engineering [14].

By appropriate analysis of the dynamic behavior of damaged structures, a crucial fact is the acceptable level of damage and probable chances for the aircraft to survive can be calculated. The aircraft's ability to survive after being exposed to quite severe damage on vital and load-carrying structure parts is imperative for combat aircrafts, moreover, civil aircraft are not an exception in this engineering aspect [15].

Helicopters are very specific aircraft, because they are highly vulnerable and greatly exposed to threats due to their vertical take-off and landing, low speed, low flight altitude, etc. They are characterized by a high frequency occurrence of impact loads, and damage according to them. The typical ballistic damages to the helicopter windshield are presented in Fig. 7.8. The characteristic damage after ballistic impact on the helicopter main rotor blade are depicted in Fig. 7.9 [7,13].

More details about extensive analysis of examined helicopter structures are given in Ref. [13].

Figure 7.8 Ballistic damage of helicopter's windshield [13].

Figure 7.9 Ballistic damage of the main rotor blade [13].

7.3 Finite element modeling of impact on laminates

7.3.1 Finite element method (FEM)

The finite element method (FEM) is a powerful numerical method for simulation, analysis, and technical calculations, such as differential equations, integration, etc. The finite element method has become one of the dominant tools for designs by engineers at the present time. This is partly due to the increased performance of desktop computers, workstations, and so-called "mainframe" computers. In the FEM, structures with complex boundaries and characteristics can be discretized into a series of small finite elements. Within each element, approximations can be made in parameter variations, such as displacements, strains, and stresses (by using differential equations of motion). For a general problem, when the boundary conditions are satisfied, a unique solution can be obtained by solving the variable elements. The FEM is suitable for computer use, because the iterative process of solving can be programmed for automatic execution (numerical solution) [27].

The FEM solution process consists of the following procedures:

- 1. Divide structure into elements with nodes (discretization/meshing).
- 2. Connect the elements at the nodes to form an approximate system of equations for the whole structure (element matrices).
- 3. Solve the system of equations involving unknown variables at the nodes.
- 4. Calculate desired variables (displacements, strains, stresses) at selected elements.

The two main techniques for solving by the FEM are:

- · Implicit methods
- Explicit methods [28].

7.3.1.1 The implicit method

In the implicit method, general equilibrium is achieved by iteration at first, followed by evaluation of local element variables. If the balance is not achieved, this method becomes expensive for calculation, since the matrix coefficients should recalculate with different time steps. The implicit method is unconditionally stable, allowing the use of larger increment time steps. It is suitable for problems that tend to be highly linear, static, and quasi-static. Commercially available software for the application of implicit methods are: ABAQUS, ANSYS, and NASTRAN [29].

7.3.1.2 The explicit method

The explicit method allows solving problems element by element. Compared with the implicit method, it does not require the general matrix, since the velocity and displacement nodes can be counted directly, using the central difference integration scheme. However, the time step is limited by the size of the numerical stability. Accordingly, this method is considered as conditionally stable, because if the time step is too large, there will be a significant numerical error. In this method, there is no requirement for balance, so it is suitable for highly dynamic analysis, such as high velocity impact.

Explicit finite element codes are now used extensively in aerospace, nuclear, and rail technology. In this way, bird strike, safety of transport bottles, train crash, etc., can be simulated. The best-known commercial software analyses for the explicit method are: PAM-CRASH, LS-DYNA, and RADIOSS [30].

7.3.2 Impact on laminate plate

In order to fully analyze impact on laminate composite plate, the dynamic response of such a structure must be considered. Finite element analysis (FEA) involving large deformations require the solution of transient dynamic problems in a short time period. Explicit and implicit solution techniques, or a combination of both, have been used as the basis for FE crash codes.

Figure 7.10 Impact on laminate plate.

Fig. 7.10 describes the impact of the rigid body (for impactor: m—mass, r—radius, and v—velocity) on the laminate composite plate [21]. Introducing the conventional stress and moment resultants (Nx, Ny, Nxy, Mx, My, Mxy, Qx, Qy), the laminate constitutive equation is as follows:

where [A] is the extensional stiffness matrix, [B] is the bending-extensional coupling matrix, [D] is the bending stiffness matrix, and [F] is the transverse shear stiffness [28].

The dynamic equation for a plate is in general given as:

$$[M]\{\ddot{u}\} + [K]\{u\} = \{F\} \tag{7.2}$$

where [M] and [K] are, respectively, the mass matrix and stiffness matrix of the composite plate. In Eq. (7.2) $\{u\}$ and $\{\ddot{u}\}$ are, respectively, the displacement and acceleration vector, $\{F\}$ is the equivalent of external load, which includes the impact force [21].

The dynamic equation of a rigid ball (impactor) is given by the use of Newton's second law:

$$m_i \ddot{w}_i = -F_c \tag{7.3}$$

where m_i is the mass of the ball, and F_c is the contact force.

It considers the contact between a spherical ball made of an isotropic material and a target laminated composite plate containing *N* transversely thin layers (the contact is located at the center of the plate).

This contact force between the impactor and the plate for loading is calculated using a modified nonlinear Hertzian indentation law, proposed by Tam and Sun:

$$F = k\alpha^{3/2} \tag{7.4}$$

where α is indentation, and k is the Hertzian contact constant [5].

For a plate α is given by the following equation:

$$\alpha(t) = w_i(t) - w_s(t) \tag{7.5}$$

 $w_i(t)$ and $w_s(t)$ are the displacement of impactor and displacement of the impact point on the mid surface of the plate. The solution of nonlinear equation obtained from Eqs. (7.1), (7.2), (7.3) and (7.4), is carried out by an iterative procedure using Newton-Raphson method [28].

In order to solve Eqs. (7.1) and (7.2), the Newmark algorithm can be adopted. Newmark's integration scheme is implemented to solve the dynamic equations of the plate and the impactor for each time step [21].

7.3.3 Impact models according to abrate

To study the dynamics of impact, a complete model fully takes into consideration the dynamic behavior of projectiles, namely structures and the contact between them. In many cases, the structure is modeled using a simplified beam, plate, or shell. However, in some cases a three-dimensional elasticity model is applied [5].

One of the most detailed reviews of impact mechanics and dynamics of complex structures was made by Abrate [5]. Depending on how the structure is modeled dynamically, response to impact on the composite structures can be classified as: spring-mass models, energy balance models, complete models, and models of impact in an infinite plate.

Spring-mass models are relative simple and can provide accurate analysis for a kind of impact during tests on samples of small size. There are models with two degrees of freedom (TDOF) and one degree of freedom (single degree of freedom, SDOF) for the impact in composite panels and beams [27]. This is shown in Fig. 7.11 (A) and (B).

The TDOF model consists of a linear spring stiffness of the structure, other nonlinear spring stiffness of the membrane (K_m) , nonlinear contact rigidity (K), the effective mass of the structure (M_2) , and the mass of the projectile (M_I) . For the SDOF model, the overall deformation of the structure is ignored. Local deformation is taken into account using nonlinear contact stiffness (K).

Figure 7.11 The spring-mass models [27].

7.4 Multiscale modeling of impact damage on laminated composites

7.4.1 General

The damage in composite laminates occurs due to quite different mechanisms. Some of them (failure fibers, matrix cracking, delamination) were presented earlier. But the specific so-called "multiscale" modeling of damage in composite materials is especially important.

For a full understanding of the degradation structure phenomenon and characterization of its effects on material performance, it is essential to connect two scales: the first scale on which these processes occur ("microscale"), and the second scale for the materials used (structural level or "macroscale") [31].

In reality, these two scales can be different from each other and may require consideration and interscale ("mesoscale"). The process of linking the behavior of materials on two different scales is referred as a "multiscale" modeling. "Multiscale" modeling does not give exactly the same answer as the "single scale" model [31].

Prediction of damage in general multidirectional laminate, under complex loads, is rather difficult, but the problem boundary values for multidirectional laminate is too complicated, and to achieve a reasonable elastic solution the common strategy was to use computer tools. Hence, it was necessary to develop a simpler approach, which could be used to predict damage in such laminates, and also that is easily integrated into a "multiscale" model analysis [31].

In order to apply the more developed models of failure of composites in the analysis of composite structures, it is necessary to implement and then validate the "multiscale" modeling of composite material systems in suitable FE codes. In the previous period, explicit FE methods have proven to be successful for the analysis of dynamic, highly nonlinear problems, especially where contact in impact plays an important role [32].

In Fig. 7.12 the summary hierarchy of all possible scales (structural scales) involved in the so-called "multiscale" modeling damage in aircraft composite laminates is shown [22].

A more suitable approach for multiscale modeling of composite materials would rather be the synergistic damage mechanics (SDM), which is proposed by Talreja. Conceptually, SDM combines continuum damage mechanics (CDM) and micro damage mechanics (MDM) to characterize response function in terms of fields variables (stress, strain, etc.) and internal variables representing the certain field of evolving damage entities. The multiscale SDM approach considers the substructure as a potentially critical region, which must be fully identified and analyzed.

This substructure is first analyzed in detail to determine the loading on its boundary. In the next step, damage induced from this loading is characterized using the CDM in terms of internal variables.

To characterize the microstructure using MDM, it is necessary to make an appropriate zoom in this region and perform micromechanic calculations over a representative unit cell to obtain constraint like certain structure parameters.

Figure 7.12 Structural scale hierarchy (multiscale) for the modeling of damages in aircraft composite materials [22].

On the micromechanical scale, the representative volume element is introduced to model the initiation and growth of microscopic damage and their effects on material behavior.

Thus, unlike in the hierarchical approach, in this case the guideline is moved up to the lowest length scale of interest. This ensures accurate representation of the processes at the lowest length scales, and also allows it to connect to the macroscale in an, above all, easier way.

7.4.2 Explicit multiscale modeling of impact damage on laminated composites

The complexities encountered in the damage modeling of composite structures arise from the microstructural level heterogeneities of the composites. Therefore, multiscale approaches are becoming increasingly used to improve the failure prediction methods for heterogeneous materials. For multiscale modeling of impact damage in laminated composites, the explicit approach can be an optimal solution.

Multiscale impact damage prediction methodology for laminated composite structures is based on the high fidelity generalized method of cells (HFGMC) micromechanical model, and the mixed mode continuum damage mechanics (MMCDM) theory and damage formulation.

The development and verification of a multiscale methodology applicable for modeling of impact damage in laminated composite structures employs the HFGMC micromechanical model. This model predicts the local stress/strain fields within the unidirectional composite material. The micromechanical model also has been coupled with Abaqus/Explicit, where the structural scale computations have been performed [33].

The MMCDM is used to model damage within the composite microstructure. The micromechanical damage model parameters have been determined by correlation with available experimental data for the nonlinear behavior of the homogenized composite material at in-plane shear and transverse compressive loading.

The obtained results demonstrate the ability of the micromechanical approach to model accurately the failure modes of the composite materials, as well as the non-linear behavior of the composite plies at the in-plane shear and transverse compressive loading [33].

The numerical approach is intended for application within explicit Finite Element Analyses, and has been used for modeling the high-velocity impact damage in laminated composite structures. By applying the structural scale applications and the multiscale framework method, the micromechanical model calculates the local stress and strain fields within the unidirectional composite material, whereas the structural-scale computations have been performed employing Abaqus/Explicit. The MMCDM theory has been utilized to model the damage and failure modes of the composite material at the micromechanical level [33].

The HFGMC and MMCDM models enable modeling of the microdamage nonlinearities at in-plane shear and transverse compressive loading of certain composite plies. The micromechanical damage modeling approach has been employed at high-velocity soft-body impact on CFRP and GFRP composite plates.

Results of the multiscale damage model have been validated using available experimental data and by comparison with the numerical results, which have been obtained using the commonly used ply-level failure criteria and damage models [33].

7.5 Numerical simulation of impact on composite laminated structures

7.5.1 Numerical approach

As mentioned in Section 7.2, FEA is a numerical technique used to solve mathematical models of solid structural components, heat transfer, and fluid flow. The FEA can be used to determine strains, stresses, deflections, and natural frequencies of structural components, as well as velocities and pressures in fluid flow analysis.

For the dynamic impact on fixed structure, the next energy equation is relevant, it considers energy before and after an impact event:

$$\frac{1}{2}(M_{\text{initial}})(V_{\text{initial}})^2 = \frac{1}{2}(M_{\text{final}})(V_{\text{final}})^2 + E_{\text{absorb}}$$
(7.6)

 $M_{\rm initial}$ —initial mass (kg); $V_{\rm initial}$ —initial velocity (m/s); $M_{\rm final}$ —mass after impact (kg); $V_{\rm final}$ —velocity after impact (m/s); $E_{\rm apsorb}$ —total absorbed energy (J).

The basic partial differential equation for a dynamic system is written in general form as:

$$M\ddot{r} + C\dot{r} + Kr = R(t) \tag{7.7}$$

In the previous equation labels are as follows:

M—mass matrix; *C*—damping matrix; *K*—stiffness matrix; *R*—force/changeable; \dot{r} —velocity; \ddot{r} —acceleration; r—displacement.

The node movements can be small for structures, but large for fluids. Conventionally, computer fluid dynamics (CFD) adopts the Eulerian approach, where the fluid flows through a fixed grid; and structural analysis uses the Lagrangian approach, which follows the small nodal displacements on the original geometry. This can cause problems if the structural displacements are very large, as can happen in cases of bird-strike, or ballistic and hypervelocity impact.

For the numerical simulation of impact on composite structures, the two- or three-dimensional models were developed. Each of them has appropriate characteristics, accuracy, and accordingly, application in certain areas.

To reduce development and certification costs for composite structures, efficient computational methods are unavoidably required. It is essential to predict structural

integrity and failure under dynamic loads, such as impact and crash events. Failure in PMC is initiated at the microscopic level, with length scales governed by fiber diameters, until the length scale of aircraft structures is in meters, which poses a severe challenge for FEA of composite structures. By using mesoscale models based on continuum damage mechanics (CDM), proposed by Ladevèze and coworkers, it is possible to define materials models for finite element codes at the structural macro level. Continuum damage mechanics provides a framework within which in-ply and delamination failures may be modeled. Ply failure models can be developed for unidirectional (UD) fiber with three scalar damage parameters representing ply microdamage and associated damage evolution equations, which relate the damage parameters to damage energy release rates in the ply [34].

Over the years, researchers have conducted numerous endeavors to optimize the impact performance of multilayered systems. The majority of these efforts are experimental, which can be time-consuming and costly. More recently, numerical simulations coupled with experiments have been reported to provide a more cost-effective way of studying the impact performance of laminated systems. Additionally, numerical simulations provide insight into the material response and failure mechanisms that occur in the laminates during the impact process. However, it can be concluded that the weakness in simulating impact was the lack of adequate material models and the corresponding material characterization [35].

With sophisticated numerical analysis techniques and increasing computational power, models that can accurately describe the response and failure behavior of composite materials undergoing large deformations and failure at high strain rates are essential. When simulating dynamic events, the material response is typically described by: an equation of state, internal energy and temperature; a constitutive relationship which describes the strength of the material to resist distortion; and a failure model that can describe the failure of a material under a multiaxial stress state at various strain rates [35].

In a modern design for impact analysis of structures, a wide range of software packages are used, among them the greatest applications are achieved by ABAQUS, LS-DYNA, ANSYS, and PTC Creo (Pro/ENGINEER) [36].

7.5.2 Damage modeling with the finite elements

Damage modeling always has been a challenge for researchers of impact effects on structures. So far, significant studies using progressive models to explain the failure of composite laminate, subjected to loading conditions in the plane, were performed. Usually, these models are connected the finite element method (FEM), in order to perform stress analysis in composite laminates under quasi-static loading [5].

Analytical methods are rarely used to analyze stresses, because the failure mechanisms of composites commonly are so complicated, and this method is therefore impractical. Moreover, the progressive failure analysis of laminated composites involves introduction of certain three-dimensional stresses, and effects along the free edges and the fronts of the multidirectional delamination. These problems

require a large amount of computation phase. Therefore, the usual research projects are focussed on the use of the finite element method for modeling the development of damage in composites [37].

The two-dimensional (2D) finite element method, based on the Classical Laminate Plate Theory (CLPT), has been used by Sandhu for failure of composite laminates. Experiments were first performed to obtain stress—strain curves of uniplanar composites under load. These curves were later presented as part of a continuous long cubic functions interpolation for finite element analysis. Failure criterion of the total strain energy was developed by Sandhu in order to calculate failure of the basal layer and methods of easing (Tsai and Azzi), and was used to reduce the stiffness of the damaged laminae [5].

Another use of the 2D finite element method, based on the classic CPLT, is also given in the works of Chang. They performed a progressive failure analysis of composite laminates with a notch on tensile. Nonlinear dependence of the stress—strain was proposed by Hahn and Tsai, and was used to shear stress level. The resulting nonlinear equations are solved by finite element modified Netwon—Raphson iterative technique [37].

The full three-dimensional (3D) finite element method was used by Lee to analyze load for biaxial loading of the composite laminate with a central hole. He later developed 3D FE codes to analyze the progressive accumulation of damage and the failure of the same problem. Reducing the stiffness was conducted at the level of the element and the stress-based failure criterion was used to identify three failure modes: fiber fracture, transverse cracking, and delamination. However, his code never detected delamination [37].

In Ref. [38] the impact damage of the composite laminate in the form of intraand inter-laminar damage has been modeled, using criteria based on the stress for
initiation of damage and fracture mechanics techniques to encompass the development of damage. Nonlinear shear strength of the composite is described with a
semi-empirical Soutis stress—strain formula. The FEM was used to simulate the
behavior of composite impact due to low impact, cohesive interface elements are
inserted between the layers with the applicable law of mixed damage for delamination modeling. A damage model has implemented in the FE code (Abaqus/Explicit)
the subroutine VUMAT. Numerical results generally had good agreement when
compared with the experimental curves of impact force and absorbed energy versus
time. Different damage mechanisms have been observed with nondestructive technique (NDT) X-rays, and have been successfully covered by the proposed numerical damage development model.

The use of so-called numerical "Layerwise" theory in the analysis of composite plates was investigated by Y. Zhang in a Ph.D. thesis. Research on delamination buckling effects of laminated composite plates with a square hole was done using three-dimensional FEM analysis (Zor). Numerical analysis of composite plates with "multiple" delamination exposed to uniaxial buckling load was studied by Cappello. Analytical and numerical study of buckling delaminated composite beams were conducted by Wee [39].

Design models capable of simulating and predicting the residual strength with impact damage caused by variable factors on laminates are necessary to assist in the interpretation of experimental results and reduce demand testing. Simulation has yielded good results in comparison with the tests, which means that the FE model simulations are adequate and reliable [39].

In a study of laminated plates or scales, analytical solutions are available only for some special problems, even in the case of the linear static analysis, which is the easiest case overall. As for the problems of impacts, closed forms solutions can be obtained for free from extreme models, which introduce appropriate assumptions, that lead to the linearized equations to be solved. In the impact phenomenon view, several nonlinear effects are present: contact between the impactor and the target, large displacement, and nonlinear constitutive equations. According to these effects, even the model with one degree of freedom requires a certain form of numerical solution [40].

In Ref. [41] the progressive failure analysis using a finite element model that is characterized by impact damage in the unidirectional reinforced carbon/epoxy composite laminate has been investigated. Low velocity impact can cause substantial damage, in terms of matrix cracking and delamination. Such defects are very difficult to detect, and can lead to severe reductions in rigidity and strength of the structure. For this reason it is very important to provide for them through the finite element approach.

Contact force, position, and size of delamination, as well as its expansion according to the low velocity impact process, were characterized by the progressive failure analysis in specified software GENOA/LS-DYNA and NASTRAN. Fig. 7.13 gives an overview of the analysis conducted for the laminate plate. The model (i.e., impactor plus plate) is presented in Fig. 7.13. Also, simulation analysis for the laminate plate has a graphical outline on the same figure.

One appropriate example of dynamic implicit analysis is given in Ref. [42]. It considered a flat composite plate (cuboid), from the composite material T800H, dimensions of $50 \text{ mm} \times 20 \text{ mm} \times 1 \text{ mm}$ (0/90/90/0 degrees). This plate has been modeled in program ABAQUS, using 3D solid composite elements (C3D8), with the time-varying compressive load in the central upper surface and the boundary conditions on all edges. In Fig. 7.14 the resulting location of the first delamination appearance in the adoptable model evident is shown.

Figure 7.13 Overview of the model (A) and simulation (B) of low velocity impact on laminate plate [41].

Figure 7.14 Prediction of delamination location in the model [42].

Figure 7.15 Fringe plots of internal variables: Q_1 (fiber tensile damage), Q_2 (fiber compressive damage), Q_4 (matrix tensile damage), and Q_5 (matrix compressive damage) at t = 0.52 ms [43].

Transient FEM analysis of elastic—plastic deformation in composites can be fully seen in Ref. [43]. Testing material is fiber-reinforced AS4/PEEK laminate, under the low velocity impact of the rigid sphere. It is assumed that the matrix deforms elastic—plastic and fibers elastic. Consideration of failure and damage to the fiber-reinforced laminates is connected by a continuous damage mechanics approach and micromechanics.

Delamination occurs over a wider region below the spherical impactor. The fibers below the impactor fail due to compression load, but matrix mostly by tension load. The provided damage developments in matrix and fiber well agree with the conducted experimental observations. In Fig. 7.15 the damage variables—Q (for fiber and matrix damage) during impact process are presented [43].

7.5.3 Modeling and simulation of projectile impact on carbon fiber-reinforced panels in software ABAQUS

The ABAQUS (Simulia) is sophisticated software for a complex dynamic impact analysis. The program package offers accurate, robust, high-performance solutions for challenging nonlinear problems, large-scale linear dynamics applications, and routine design simulations [44].

The key ABAQUS features, possibilities, and benefits for this kind of unique impact simulation are the following:

- 1. Ability to model progressive damage and failure of composites in Abaqus/Explicit with general user-defined material capabilities.
- 2. Automatic contact capability facilitates the definition of complex contact conditions.
- 3. Element erosion with automatic activation of contact faces based on failure of the underlying elements [44].

In this simulation, the projectile is a cold-rolled steel ball (5 mm diameter) with an initial velocity specified in a direction normal to the plate plane. The specified model configuration is shown in Fig. 7.16.

Both the projectile and the plate are meshed with first order, reduced integration, solid continuum elements (type C3D8R).

The composite ply lay-up used for this simulation is a simple orthotropic design [0/90/0]3 s, and 18 ply layers of 0.2 mm thickness are modeled individually using solid continuum elements (see Fig. 7.17).

The complete formed test model (impactor plus plate) developed in software ABAQUS has graphical presentation in Fig. 7.18 [7,45].

Fig. 7.19 shows a top view of the damage in the composite plate, as the steel ball penetrates through the material. Significant damage occurs both locally as the

Figure 7.16 Finite element mesh applied to the steel missile ball shape [45].

Figure 7.17 Finite element mesh applied to the composite panel across to the thickness [45].

Figure 7.18 Geometry model for the impact simulation in the composite plate [45].

Figure 7.19 Graphical representation of steel ball impact simulation on the composite panel (phase 1-5) [45].

ball penetrates composite, and also globally, due to propagation and reflection of stress waves through the composite plate. The total impact process and various characteristic damages formed are presented in detail through phases (1-5). On the same figure pronounced development and propagation of damages are shown [45].

7.6 Result analysis and discussion

Based on all information presented in this chapter, some engineers analysis and scientific views can be carried out and considered. The following relevant expert facts are exposed for future research in the domain of modeling impact on laminated composite aircraft structures.

During aircraft operation on structural elements, beside common operational loads, impact loads from foreign objects occur that can cause serious structural damage. In order to determine the results of impact damage, it is necessary to consider the dynamic response of different aircraft structures under various types of impact, and issues related to the development of engineering models for such type analysis.

In an effort to fully predict and analyze the resulting impact damage, it is evident that there are a lot of problems, due to complexity and many influencing factors.

Despite numerous improvements, existing models (2D and 3D) fail to fully determine the impact effects on structures and their severe consequences.

However, the tasks for future models, which are being developed or will be developed later, are that they have to be closer to real conditions, i.e., more specifically characterized impact damages in certain structures, and its parameters on the remaining capacity and thus importantly the safety of those laminated composite structures.

This chapter provides an overview of existing models, which consider the impact effect in certain composite laminate structures. The damage quantitatively and qualitatively varies for low and high velocity impacts.

Moreover, specific features and limitations of defined models have been precisely listed. Also, impact simulations on composite structures, which have been performed in sophisticated software packages and the results obtained have been presented.

The properties of high velocity impact have been discussed in detail, especially the ballistic damage on helicopter structures, i.e., windshield and main rotor blade have been shown, with the focus on the vulnerability and survivability.

Composite laminates have some extraordinary properties, such as great strength, high stiffness, and light weight. However, a serious obstacle to more widespread use of those materials is their sensitivity to impact loads. As a consequence of that, impact damages through initiation and growth are occurring.

In general, failures that appear in laminated composite structures after impact events are intralaminar or interlaminar. In the previous time period, many models for impact damage in laminates have been developed with some approach and accuracy. Those models can replace real and expensive tests in laminated structures, but with some approaches.

Impact behavior is a very important fact in the process of designing aircraft structures. This structure must be able to withstand the primary and secondary wear energy, and damage from impacts are almost daily (in service life). Such cases are influences from dropping tools (maintenance), hard landing, then hail, bird, and stone on take-off (rule and driving on a runway). Subsurface damage in structures caused by these types of loads is known as barely visible impact damages.

Multiscale methodology is applicable for clear modeling of impact damage and assessment of structural integrity in laminated composites at different observation levels.

By using specialized software packages, numerical simulation can be done and the damage parameters in laminate aircraft structures accurately predicted and calculated.

7.7 Conclusions

Impact events in aeronautical structures often occur. Under existing impact loads, the formed damages grow, extend, and further develop. As a final result, these factors significantly reduce the structure load capacity, even to total failure. In such cases material properties, kinematic and dynamic conditions are of great influence for research. Methods and approaches for impact modeling can be considerably distinguished according to introduced assumptions for establishing and deriving the necessary and relevant equations.

Laminated composites are a relatively new generation of technical materials, which are widely used in contemporary structures. They are characterized by a number of advantages compared to conventional materials, among them the most important are: high specific strength, significant stiffness, low density (weight), good performance to fatigue, and corrosion resistance.

A serious obstacle to their increasing use in modern structures represents the sensitivity to impact and static load, especially in the thickness direction.

In general, when defining impact, there is a limit of velocity (usually in the certain range), which separates low velocity and high velocity impact. The characteristics of these impact types are mainly clearly specified and damage also has distinctive sizes and forms.

Modeling of impact and consequently impact damage in composite laminates are very complex, comprehensive, and very demanding processes. The created models (2D/3D) successfully, or with a certain deviation, approximate the real damage due to the impact in composite laminate structures.

In general, the characterization of the damage can be derived analytically, experimentally, and numerically. Combination of these irreplaceable methods probably represents the optimal and leading strategy for the general structural analysis of composite laminate plates.

Research into the impact damage resistance and tolerance domains provide complete and detailed insight into structural integrity and safety. The crucial assignment is to determine the failure points/zones and possibly final fracture in the aircraft structures.

The essential objectives in the design and maintenance of aircrafts, and generally in the aviation industry, are the following: shorten the process of mapping defects, determine the residual strength of vulnerable structures, and finally flight authorization.

One suitable engineering approach for this problem is FEM, which can simulate the behavior of composite structures under the influence of impact loads. Development of appropriate FEM simulation impact models varies, from those in composite beam, plate, shell, and panel, to the parts and components of aircraft structures.

Modern software such as ABAQUS, LS-DYNA, ANSYS, etc., can be used to perform impact simulations on composite laminate structures. The results should closely reflect the true test conditions as in certain real structures. However, final confirmation of accuracy thereof must be tested and proved experimentally.

Explanation and analysis of existing, and creation of new, impact damage models will fully complete in-depth understanding of impact, characterization of this phenomenon, and the resulting damage in some structures.

All of the mentioned and analyzed engineering facts and procedures are of great importance in the design, but also for the maintenance of laminate structures during exploitation in present and future aircrafts.

7.8 Sources of further information and advice

- Composite Structures Damage Tolerance Analysis Methodologies: http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov
- Damage Tolerance of Composite Structures in Aircraft Industry: http://www.carbon-composites.eu
- Probabilistic Design of Damage Tolerant Composite Aircraft Structures: http://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/
- CODAMEIN (Composite Damage Metrics and Inspection, EASA): http://easa.europa.eu
- · Crashworthiness of Composite Aircraft Structures: http://www.dtic.mil/dtic
- Rotorcraft Structures and Survivability: http://vtol.org/events/rotorcraft-structures-andsurvivability
- Structural Composites "Armour Works Expert In Survivability": http://www.armourworks.co.uk/products/exterior-platform-protection/composites
- The Aircraft Combat Survivability Education Web Site: http://www.aircraft-survivability.com
- Survivability/Vulnerability Information Analysis Center: http://www.bahdayton.com/ SURVIAC/index.htm
- · ISO: International Organization for Standardization: www.iso.org
- CEN: European Committee for Standardization: https://www.cen.eu
- · ASTM (American Society for Testing and Materials): http://www.astm.org

- Journal of Testing and Evaluation (JOTE):www.astm.org/DIGITAL_LIBRARY/ JOURNALS/TESTEVAL
- ASNT (The American Society for Nondestructive Testing): https://www.asnt.org
- http://www.arc.aiaa.org

The most important benefits of modeling impact damage in laminated structures for the aviation industry are:

- 1. Can aid maintenance engineers in assessing whether an incident could have caused damage to a structure, and if so what inspection technique should be applied to resolve damage.
- 2. Helpful for design engineers to:
 - a. improve resistance of composite aircraft structures to wide-area impact damage, as well as a variety of other sources such as hail- and bird-strikes, runway debris, lost access panel, etc.
 - **b.** provide critical information on mode and extent of damage, particularly nonvisible impact damage (NVID), resulting from a wide gamut of impact threats (from low to high velocity).

The complexity of the considered phenomena that occur on impact indicates the numerous directions for further research. In the analysis of impact damage it is necessary to consider the dynamics of the system projectiles and target (where both of them can be deformable), behavior of materials in plastic deformation zone and fracture criteria.

The future needs for research and engineers would consider:

- 1. More accurate numerical approach for modeling of impact damages.
- 2. Better quality/quantity assessment of structure integrity after impact.
- 3. Incorporation of Non Destructive Inspection (NDI) into impact studies.

References

- [1] Rasuo B. Aircraft Production Technology (in Serbian), Faculty of Mechanical Engineering, University of Belgrade; 1995.
- [2] Rasuo B. Aeronautical Safeguarding (in Serbian), Military Academy, Belgrade; 2004.
- [3] Rasuo B, Djuknic G. Optimization of the aircraft general overhaul process. Aircraft Eng Aerospace Technol 2013;85(5):343—54.
- [4] Zivaljevic M, Rasuo B. Application of fuzzy logic in solving problems from the area of reliability and maintenance of aircraft systems. In: Reusch B, editor. Lecture Notes in Computer Science 1226. Berlin: Springer Verlag; 1997. p. 583–4.
- [5] Kreculj D. Modeling of impact damage in laminatecomposite structures. Doctoral Thesis, (in Serbian), Aeronautical Department, Faculty of Mechanical Engineering, University of Belgrade; 2013.
- [6] Rasuo B. Design, fabrication and testing of the helicopter tail rotor blade from composite materials: an experience. RAeS Structures & Materials Conference - 2nd Aircraft Structural Design Conference, London (UK); 2010.
- [7] Rasuo B. Testing of the helicopter tail rotor blade made of composite laminated materials after ballistic damages. 11th International Conference on Composite Materials, ICCM-11, Gold Coast, Queensland, Australia, Cambridge (England), Woodhead Publishing Limited; Proceedings Volume 2 (Impact); 1997. pp. 485–95.

- [8] Ratwani MM. Effect of damage on strength and durability. PhD thesis, RTO-EN-AVT-156-05.
- [9] Sabet SA. Investigation of multi-scale modeling strategies to simulate high velocity impact damage. Master Thesis, Universität Stuttgart; 2010.
- [10] Davies GAO, Olsson R. Impact on composite structures. Aeronautical J 2004.
- [11] Rasuo B. Helicopter tail rotor blade from composite materials: an experience. SAE Int J Aerospace SAE Int 2011;4(2):828–38.
- [12] Rasuo B. Design, fabrication and testing of the helicopter tail rotor blade from composite laminated materials. In: Zhang Y, editor. 13th International Conference on Composite Materials, ICCM, Beijing, China, Proceedings; 2001.
- [13] Rasuo B. An experimental methodology for evaluating survivability of an aeronautical constructions from composite materials: an overview. International Journal of Crashworthiness, Volume 12/Issue 1, Taylor & Francis, London, England, 2007. p. 9–15.
- [14] Rasuo B. Experimental study of the structural damping of composite helicopter blades with different cores, plastics rubber & composites, Volume 39, Number 1, Maney Publishing, Institute of Materials, Minerals and Mining, London; 2010. p. 1–5.
- [15] Rasuo B. On structural damping of composite aircraft structures, reference module in materials science and materials engineering. https://doi.org/10.1016/B978-0-12-803581-8.10338-8, Elsevier Ltd., Current as of 24 April 2017.
- [16] Rasuo B. Experimental techniques for evaluation of fatigue characteristics of laminated constructions from composite materials: full-scale testing of the helicopter rotor blades, Journal of Testing and Evaluation (JTE), Volume 39/Issue 2, ASTM International; 2011. pp. 237–42.
- [17] Grbovic A, Rasuo B. FEM based fatigue crack growth predictions for spar of light aircraft under variable amplitude loading, engineering failure analysis, Volume 26, Elsevier Ltd; 2012. pp. 50–64.
- [18] Dinulovic M, Rasuo B. Dielectric modeling of multiphase composites, composite structures, Volume 93/Issue 12, Elsevier Ltd; 2011. pp. 3209–15.
- [19] Menna C, Asprone D, Caprino G, Lopresto V, Prota A. Numerical simulation of impact tests on GFRP composite laminates. Int J Impact Eng 2011.
- [20] Birur A. Time-dependent damage evolution in multidirectional polymer composite laminates. Master Thesis, Department of Mechanical and Manufacturing Engineering, University of Manitoba, Canada; 2008.
- [21] Nilsson E. Residual strength prediction of composite laminates containing impact damage. Master Thesis, Linköping University; 2005.
- [22] Singh CV. Multiscale modeling of damage in multidirectional composite laminates. Doctor Thesis, Texas A&M University; 2008.
- [23] Rasuo B. An experimental methodology for evaluating survivability or damage tolerance of an aeronautical construction from composite materials, a joint sheffield-cambridge conference, deformation and fracture of composites (DFC-11) & structural integrity and multi-scale modelling (SI-5), The University of Cambridge, Cambridge, UK; 2011.
- [24] Rasuo B, Dinulovic M, Veg A, Grbovic A, Bengin A. Harmonization of new wind turbine rotor blades development process: a review. Renew Sustain Energy Rev, 39. Elsevier Ltd; 2014. p. 874–82.
- [25] Kim H. Impact damage formation on composite aircraft structures. San Diego: University of California; 2012.

- [26] Rasuo B. Damage tolerance and survivability of composite aircraft structures. In: Beaumont PWR, Soutis C, Hodzic A, editors. Structural integrity and durability of advanced composites: innovative modelling methods and intelligent design. Woodhead Publishing Series inComposites Science and Engineering, Elsevier Science; 2015. p. 641–58.
- [27] Zheng D. Low velocity impact analysis of composite laminated plates. Doctor Dissertation, The University of Akron; 2007.
- [28] Kreculj D, Rasuo B. Review of impact damages modelling in laminated composite aircraft structures. Technical Gazette 2013;20(3):485–95.
- [29] Brown KA. Finite element modeling of the static and dynamic impact behavior of thermoplastic composite sandwich structures. Doctor Thesis, The University of Nottingham; 2007.
- [30] Othman RB. Finite element analysis of composite ballistic helmet subjected to high velocity impact, Universiti Sains Malaysia, Master Thesis; 2009.
- [31] Talreja R. Multi-scale modeling in damage mechanics of composite materials. J Mater Sci 2006;41:6800–12.
- [32] Soutis C, Beaumont PWR. Multi-scale modeling of composite material systems. Cambridge: Woodhead Publishing Limited; 2005.
- [33] Ivancevic D, Smojver I. Explicit multiscale modelling of impact damage on laminated composites. Compos Struct 2016;145:248-58.
- [34] Tippetts T, Hemez FM. Non-linear models of composite laminates. IMAC: Conference and Exposition on Structural Dynamics, Orlando; 2005.
- [35] Laliberté J, Poon C, Straznicky P. Numerical modelling of low-velocity impact damage in fibre-metal-laminates. 23rd ICAS Congress, Congress of International Council of the Aeronautical Sciences, Toronto; 2002.
- [36] Kreculj D. Stress analysis in an unidirectional carbon/epoxy composite material. FME Trans 2008;36:127–32.
- [37] Serena THN. Modeling damage in composites using the element-failure method. Doctor Thesis, National University of Singapore; 2005.
- [38] Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct 2012;94(9):2902–13.
- [39] Farooq U, Gregory K. Global and local buckling simulation of fibrous composite panels after low velocity impact of variable shape impactors. Eur J Sci Res 2009;25(3):384–95.
- [40] Ghelli D. Some issues concerning the dynamic response and damage of composite laminates subjected to low velocity impact. Doctor Thesis, The University of Bologna; 2009.
- [41] Monaco F, Fenza AD, Petrone G, Fabbtricatore M, Abdi F, Ricci F. Low velocity impact analysis on an unidirectional laminate composite. In: International Conference on Mechanics of Nano, Micro and Macro Composite Structures, Politecnico di Torino; 2012.
- [42] Roy S, Larrosa C, Chang F. Developing an Interface with ABAQUS for Analysis of Impact Damage in Laminated Composites. Stanford University; 2009.
- [43] Batra RC, Gopinath G, Zheng JQ. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Compos Struct 2012;94:540-7.
- [44] Kreculj D, Rasuo B. The Problem of Impact on Aircraft Constructions from Composite Laminates, Technics, LXIV, No. 6, Belgrade, (in Serbian); 2009. M1–M8.
- [45] Projectile Impact on a Carbon Fiber Reinforced Plate, Abaqus Technology Brief TB-06-CRP-1, DSS Simulia; 2007.

This page intentionally left blank

Note: Page numbers followed by "f" and "t" refer to figures and tables, respectively.

A	beech starship, 31
ABAQUS, 135, 146, 150	Boeing, 31
Absorbed energy, 298, 301–302	Lear Fan 2100, 30
Acoustic emission, 228	navy fighter aircraft (F-18A), 32
testing, 247–248, 248 <i>t</i>	Osprey tilt rotor (V-22), 32
Acoustic sound energy, 244	second generation British harrier "Jump
Advanced Composites Airframe Programme	Jet" (AV-8B), 31
(ACAP), 262–264	Aircraft weight reduction, 211
Advanced materials, 9	Aircraft wing boxes, bio composites for,
Advanced tactical fighter (ATF), 31	114-116
Advanced technology bomber (B-2), 31	Airframe, 23, 32
Advantages of composites in	Alkali treated composites (ATC), 36
aerospace, 32, 177	Alkali treatment, 35–36, 46–47
Aerospace components, 5–7	Alkaline treated, unweathered flax
Aerospace materials, defined, 1	fiber-DMESS resin
Aerospace panels, 236f	(TUW-DMESS), 280f
Agricultural biomass raw materials,	Alkaline treated, unweathered flax
classification of, 255	fiber-MESS resin (TUW-MESS),
Airbus, 31	280 <i>f</i>
Airbus A350-XWB, 177	Alkaline treatment, 273, 282
Airbus A380, 69	Alpaca fiber, 332
Airbus A400, 69	Aluminum alloys, 5–6, 6 <i>t</i> , 8–10, 262–264
Airbus helicopters, 120	Analytical hierarchy process method (AHP),
Aircraft cabin interior panels, bio composites	11
for, 116–118	Animal fibers, 331–333
Aircraft fleet recycling association (AFRA),	ANSYS, 135, 150
112-113	workbench, 306
Aircraft indoor structure applications	Aramid fiber-reinforced composites, 6–7, 9
bast fiber-reinforced green composites	Aramid fibers, 269, 325, 341t
for, 118	A-scan presentation, 243–244
Aircraft product design phases, 112f	Ashby's method of materials selection,
Aircraft radome application, bio composites	10-11
for, 113–114	ASTM D3039, 184-185, 194
Aircraft structure, important features of, 340t	ASTM D3410, 184-185
Aircraft using composite materials, 29–32	Attenuation effects, 77
advanced tactical fighter (ATF), 31	Autoclave processing, 61, 61f
advanced technology bomber (B-2), 31	Automated fiber placement (AFP), 28, 28f
airbus, 31	Automated tape laying, 228

Automated tape lay-up (ATL), 27–28, 27f	C
Avimid K polyamide, 31	Camera signal-to-noise ratio (SNR), 81
	Carbon, 232f
В	Carbon fiber (CF), 5, 20, 113–114, 211,
Ballistic damage	269, 322–325, 341 <i>t</i>
of helicopter's windshield, 134f	properties of, 324t
of the main rotor blade, 134f	Carbon fiber-reinforced composites, 6–7
Bamboo fiber-reinforced polypropylene	Carbon fiber-reinforced epoxy polymer, 22
composites (BFRP), 333–337	Carbon fiber-reinforced plastics (CFRP),
Bamboo fibers, 331	181, 196, 211
export and import flow of, 332t	drilling of, 212–216
Bamboo-glass fiber-reinforced	hole-making
polypropylene composites (BGRP),	of carbon fiber-reinforced plastic
333–337	composite stack, 222–225
Bamboo-reinforced epoxy sandwich	of carbon fiber-reinforced plastics
structure composites, 236–237	composite, 218–222
Banana fibers, 37–38, 330–331	specimens, patch repair on, 184-185
chemical compositions of, 331t	ultrasonic drilling of, 216–217
Barely visible impact damage (BVID), 132,	Carbon fiber-reinforced polymer, 211
149, 298	machining of, 211–212
Basalt fibers, 303–304	Carbon nanostructures (CNS), 71–72
Bast fiber-reinforced composite, common	Carbon nanotube reinforced epoxy
failure modes for, 308	composite, 5
Bast fiber-reinforced green composites	Carbon nanotube-reinforced polymers, 270
for aircraft indoor structure applications,	Carbon nanotubes (CNTs), 3–5, 71–72
118	Carbon-enhanced reinforcement (CER)
Bast fibers, 118, 178	technology, 72
Beech starship, 31	Carbon-epoxy composites for aerospace
Billet, 24	applications, $3-5$
Bio-composites, 173	Carbon-reinforced silicon carbide (C/SiC),
sustainable. See Sustainable bio	70
composites	Care-free structures, in aerospace industry,
Biomass fibers, 254–255	167
classification, 255	Cashmere fiber, 332
Bismaleimide fabric laminate, 232f	Cayley project, 270
Bismaleimides (BMIs), 31	Cellulose, 157
Boeing, 20, 31	Cellulose fibers spun, 256–257
Boeing B787, 177	Ceramic matrix composites (CMCs), 70
Boeing Dreamliner, 6–7, 69	Characteristic damage state (CDS), 131
composite applications on, 56f	Charpy impact, 301–302
Boeing research, 120	Charpy test, 296, 302-303
Bolt hole damage, 174f	Chopped fiber composite, 57f
Bond Master, 242f	CL400 Krautkramer model, 245
Bond test, 240–243	Classical Laminate Plate Theory (CLPT),
Bonded composite reinforcements, 171	143
Boron—graphite materials, 26	Clearly visible impact damage (CVID), 298
Braiding, 3–5	CO ₂ emissions, 109
B-scan presentation, 244	Coconut-epoxy fiber composites, 246-247
Buckling, concept of, 188–191, 188f	Coir fibers, 330
By-pass engine, 25	Cold press molding, 59

Complete models, 137	Delamination, 131–132, 212–216,
Components of aircraft structure, 23-25	220-221, 229-232, 230f
engines, 25	Delamination threshold load (DTL), 74–75
fuselage, 23	ΔT images, 93 f , 94 f
tail, 25	evaluation of damage extension from,
undercarriage, 25	97-98
wing contents, 24	learning from, 94–95
wing functions and attachments, 24	Δ T-time distribution, analysis of, 95–97
Composite laminates, 40, 127, 130, 138,	Detection lasers, 77
148-149	Diamond sawing, 184-185
Composite materials, defined, 315–316	Disadvantages of composites in aerospace,
Composite panels, 275–276, 276 <i>f</i>	32
Composition and classification of	Disbonding, 230–232
composites, 69-71	DMESS resin, 275
Compression molding, 59, 63-64, 162-163,	DMESS soaked fibers, 275-276
228, 276 <i>f</i>	Double-bubble fuselage, 23
Compression test, 187, 194, 196-199	Down-time and delays operation, 180-181
Compression test rig, 189f, 191f, 192	Drilling of carbon fiber-reinforced plastics
design and fabrication of, 188-193	composite, 212–216, 214 <i>f</i>
Computer fluid dynamics (CFD), 141	Drop weight impact test, 297–298
Condition monitoring (CM), 180	DuPont's Avimid K polyamide, 31
Contact methods, 247	Dynamic stiffness method, 3–5
Continuous fiber composite, 57f	
Continuous reinforced fibers, 235–236	E
Continuum damage mechanics (CDM), 139,	Eco-sustainability, 71
141-142	810 Material Testing System (MTS)
Corrosion resistance, $5-6$	machine, 194
Cosmetic damage, 232–233	Elastic energy, 298
Cost element, 10	ELECTRE, 11
Crack, defined, 230	Electromagnetic testing, 228
Crack Patching, 171–172, 172f	Electronic-Speckle-Pattern-Interferometry
Creep resistance, 2–3	(ESPI), 79
C-scan presentation, 244	Empirical approach, 125
Curing process, 160–161, 231	Empty fruit bunch (EFB), 304, 307,
	333-337
D	Energy balance models, 137
Damage degree, 299, 301	Engines, 25
Damage detection, 180–181, 181f, 195,	Environmental regulations, 111, 113
196 <i>f</i>	Epoxidized sucrose esters of fatty acid
Damage modeling with the finite elements,	(ESEFA), 271–272
142-145	Epoxidized sucrose soyate (ESS), 272, 274
Damage prognosis (DP), 180	Epoxy, 60
Damage resistance, 298	Epoxy resin, 115, 211
Damage tolerance, 133, 298	Ethylene-propylene-diene-monomer
Damping factor, 50	(EPDM), 178
Damping index, 299	Eurofighter Typhoon, 177
Decision-making methods, 11	Explicit finite element method, 135
Decision-making theories, 2	Explicit multiscale modeling, 140-141
Defects and weaknesses, in composites,	of impact damage on laminated
72-74	composites, 140–141

F	normalized tensile strength and tensile
Failure mechanisms, 74–75	modulus of, 285f
Failure process in composite laminate,	Flax properties, literature values for, 274t
129–130, 129 <i>f</i>	Flax-epoxy composite, 301-302
Fiber, effective performance of, 73	Flexural modulus of hybrid composites, 47t
Fiber composite structures, 133	Flexural test, 39
Fiber epoxy composites, 26	Forged ribs, 24
Fiber fracture, 131, 131f	Fourier Transform Infrared spectroscopy
Fiber properties, 38t	(FTIR), 278
Fiber-matrix adhesion, 110	Fracturing of a composite, 74
Fiber-reinforced air filled core, 240f	Free vibration characteristics, 3–5
Fiber-reinforced composite, 3–5, 36	Free vibration experimental setup, 40f
in aerospace applications, 269-270	Free vibration test, 40, 40f
mechanical properties of, 114 types of, 57 <i>f</i>	Frequency response function (FRF), 47–50, 50 <i>f</i>
Fiber-reinforced foam, 240f	Fruit fibers, 255–256
Fiber-reinforced hybrid composites, 333	Fuselage, 23
Fiber-reinforced laminates, impact damage in, 128f	Future of composites in aerospace, 32–33
Fiber-reinforced polymer composites, 19,	G
173, 315–316	Gas lasers, 77
Fibers, classification of, 157–159, 316f	Gel permeation chromatography (GPC)
natural fiber, 157–158, 158f	system, 278
synthetic fiber, 158–159, 158f	GENOA/LS-DYNA, 144
Fiber-volume ratio, 73	Geometrical parameters, 3–5
Fibrillation effects, 307	GLARE (glass-reinforced aluminum
Fighter aircraft, 23	laminate), 20
Filament winding, 29, 62–64, 63 <i>f</i>	Glass fiber composites, $6-7$, 269
Finite difference method, 125	Glass fiber-reinforced polymer composites
Finite element analysis (FEA), 135	(GFRPCs), 118, 321–322, 324 <i>f</i>
Finite element method (FEM), 125,	Glass fibers (GFs), 113–114, 318 <i>t</i> ,
134–135, 143	321-322, 341t
explicit method, 135	chemical compositions of, 322t
implicit method, 135	physical and mechanical properties of, 323t
Finite element modeling (FEM), 306	types and unique properties of, 322t
Finite element modified Netwon-Raphson	Glass filaments, 26
iterative technique, 143	Glass mat thermoplastic (GMT), 303–304
Finite volume method, 125	Glass—carbon/epoxy composites, 261–262
Fique—epoxy fiber composites, 246—247	Golden Fiber. See Jute fibers
Fire, smoke, and toxicity (FST) standards,	Gordon Aerolite, 155
117	Gough—Joule effect, 99—101
First-ply failure stress (FPF), 132	Graphite composites, 26
Flash thermography, 83–85	Green composites, 118
Flax fiber composites, 271, 271 <i>f</i> , 282, 287–288	Green Technology Hub, 227
normalized flexural strength and flexural	Н
modulus of, 284f	Hammer tap test, 237–238
normalized plots of interlaminar shear strength for, 284 <i>f</i>	Hand lay-up method, 26–27, 56–57, 63–64, 160–161, 228, 231–232

Helical milling technique, 218–225	Hybrid polymer composites, 262, 263f
Helicopters, 120, 133	Hybridization, 156–157, 239–240, 303,
Hemicellulose, 157–158	333–337
Hemie fiber, 115	Hybridization composite, 239-240
Hemp fibers, 110, 162, 326-330	Hydroquinone, 274–275
Hemp-epoxy composites, 302-304	
Hexcel Corporation, 181, 194	I
High fidelity generalized method of cells	IGEM, 227
(HFGMC) micromechanical model,	Immersion testing, 245–246
140-141	Impact damage extension, 97
High performance synthetic fibers, 113–114	Impact damage modeling in laminated
High velocity impact, 126, 148	composite aircraft structures, 125
High-speed steel (HSS) drill, 216	analysis, 126–133
Hollow Glass Fiber (HGF), 22	effects of impact damage, 132–133
Honeycomb bonding, 229f, 233-243	impact loads, 126–127
bond test, 240–243	mechanism of impact damage
evaluation procedure, 242	accumulations, 127–132
inspection procedure for skin, 242	damage modeling with the finite elements,
preliminary setup, 241	142–145
reporting procedure, 242–243	finite element method (FEM), 134-135
standardization procedure, 241–242	explicit method, 135
tap test, 237–240	implicit method, 135
calibration procedure, 239	impact models according to Abrate, 137
evaluation procedure, 239–240	impact on laminate plate, 135–137
inspection procedure, 239	modeling and simulation of projectile
procedure to conduct, 239	impact on carbon fiber-reinforced
Hybrid composites, 35–36, 57 <i>f</i> , 109, 261–262	panels, 146–148
advantages of, 156–157	multiscale modeling, 138–141
applications of, in aerospace industry, 167	explicit multiscale modeling, 140–141
defined, 156	numerical approach, 141–142
elevated temperature on, 163–165	result analysis and discussion, 148–149
fibers, classification of, 157–159	Impact damage resistance and tolerance,
natural fiber, 157–158	132f, 150
synthetic fiber, 158–159	Impact energy, 75, 94, 237–238, 298–299
flexural properties of, 164 <i>f</i> , 166 <i>f</i>	Impact hammer, experimental setup for, 240 <i>f</i>
matrix, classification of, 159–160	Impact tests
moisture absorption on, 165–167	drop weight, 297–298
natural fibers, limitations of, 160	on-line monitoring of, 92–94
peak load of, 164 <i>f</i> , 166 <i>f</i>	terms and commonly assessed parameters
processing techniques, 160–163	after, 298–299
compression molding, 162–163	Impactor, 128
hand lay-up, 160–161	Implicit finite element method, 135
resin transfer molding (RTM), 161–162	Impulse hammer method, 3–5
vacuum infusion method, 161	Inclusions, 231–232
tensile properties of, 163 <i>f</i> , 165 <i>f</i>	Infrared devices, 90
Hybrid effect, 156–157, 333–337	Infrared spectrum analysis, 40–41
Hybrid fiber-reinforced polymer composites,	Infrared thermal imaging, 248, 248 <i>t</i>
333	Infrared thermography (IRT), 75, 78–80
preparation methods, 334t	nondestructive evaluation, 79–80

Injection molding, 59–60, 60 <i>f</i> , 63–64, 228	Lignin, 158
Interim repair, 175	Lignocellulosic fibers, 157–158, 255, 259
Interlaminar, 129, 148-149	Lignocellulosic materials, 255
Interlaminar shear strength (ILSS) tests, 73,	Liquid crystalline (LC) solutions, 256–257
276, 282, 286	Load-bearing products, 256–257
Intralaminar, 129, 148-149	Lock-in thermography (LT), 85–90
Iron-nickel steel alloy, 6-7	estimation of defect size and depth,
ISO 9712 standard, 75-76	86-87
Izod test, 296	examples, 88-90
	unsteady-state conditions, 87–88
J	Logarithmic decrement method, 50
Jute fibers, 326	Long pulse thermography (LPT), 80
characteristics, 329t	Low velocity impact testing, 295
	Charpy test, 296
K	drop weight impact test, 297-298
Kenaf fiber, 114, 177-180, 326	Izod test, 296
Kenaf patching, 185–186, 186 <i>f</i>	terms and commonly assessed parameters
Kenaf/aramid/epoxy hybrid composites,	after, 298–299
261-262	Low-velocity impact energies, 126
Kenaf/pineapple leaf fiber (PALF), 261–262	LS-DYNA, 150
Kenaf-PE composite, 306	
Kevlar fiber, 6–7, 113–114	M
properties of, 325t	Mach number, 2–3
Knitting technology, 3–5	"Mainframe" computers, 134
Knowledge-based quantitative (KBS)	Maleated polypropylene (MAPP), 303
systems, 11–12	Maleic anhydride polypropylene (MAPP), 178
L	Manufacturing procedures for aerospace
Lagrangian approach, 141	composites, 26–29
Lamb waves, 77	prepeg, composite manufacturing using,
Laminate, 229, 243-247. See also Impact	26-29
damage modeling in laminated	automated fiber placement, 28, 28f
composite aircraft structures	automated tape lay-up (ATL), 27–28,
display type, 243–244	27f
immersion through transmission,	filament winding, 29
245-247	hand lay-up, 26-27
impact on laminate composite plate,	pultrusion, 29, 30f
135-137	resin transfer molding (RTM), 29
pulse echo, 244-245	vacuum-assisted resin transfer molded
repairs, 176f	process, 29
splitting, 174 <i>f</i>	Manufacturing techniques of composites, 55
Laser Ultrasonics, 77	aim of, 56 <i>f</i>
Lay-up and equipment for a repair process,	comparison between manufacturing
176 <i>f</i>	processes, 63–64
Lay-up process, 181–183, 182 <i>f</i>	composite fabrication processes, 56–64
of carbon fiber-reinforced plastic panel,	autoclave processing, 61
183 <i>f</i>	compression molding, 59
Lear Fan 2100, 30	filament winding, 62–63
Life cycle of fiber composites, 261f	hand lay-up, 56-57

injection molding, 59-60	Mixed mode continuum damage mechanics
pultrusion, 61–62	(MMCDM) theory, 140–141
resin transfer molding, 58-59	Modern alloys, composition of, 8t
spray lay-up, 57–58	Mulberry silk, 332
vacuum assisted method, 60	Multiple attribute decision-making
Maraging steels, 6–7	(MADM), 11
Mar-Lin equation, 231	Multiple criteria decision-making (MCDM), 11
Material porosity, evaluation of, 83–85	Multiple objective decision-making
Material properties, 7–10	(MODM), 11
economics, 10	Multiscale modeling of damage in aircraft
mechanical, 8-9	composite laminates, 138-141
thermal, 9–10	
Materials cutting process, 182f	N
Materials selection, 10–12	Nanotechnology, 71–72
Ashby's method of, 10–11	Napier/glass fiber hybrid composites,
decision-making methods, 11	163-166
knowledge-based quantitative systems,	NASTRAN, 135, 144
11–12	Natural and synthetic fibers, classification
for sustainable aircraft	of, 158f
interiors, 111–113	Natural composite materials, in structural
Matlab program, 116	design, 269
Matrix, 21	fiber-reinforced composites, in aerospace
classification of, 159–160	applications, 269–270
defined, 159	materials and methods, 273–277
Matrix cracking, 129–130	characterization methods, 276–277
in multidirectional laminate, 130 <i>f</i>	composite processing, 275–276
Matrix cracks, 130–131, 246–247	fiber, 273–274
Matrix/transverse cracking, 230	resins, 274–275
Metal matrix composites (MMCs), 70	natural fibers, in structural applications,
Methacrylated epoxidized sucrose soyate	270–271
(MESS), 272, 274–275, 278	natural fiber treatment, 272–273
MESS soaked fibers, 275–276	natural resins, 271–272
synthetic route to double, 279f	results and discussion, 278–287
Methacrylic acid, 274–275	accelerated weathering, 284–287
Methyl ethyl ketone peroxide (MEKP),	characterization of double
37–38	methacrylated epoxidized sucrose
Micro damage mechanics (MDM), 139	soyate resin, 278
Micrographic delamination in	fiber treatment, 279–283
multidirectional laminate, 131 <i>f</i>	Natural fiber composites (NFCs), 315–317
Micrographic fiber fracture in	Natural fiber polyester composites (NFPCs),
multidirectional laminate, 131f	35
Micromechanical model, 140	Natural fiber/biomass filler-reinforced
Micro-structural inhomogeneity and	polymer composites, 253
anisotropy, 74	applications, 262–264
Microwave curing (MW), 306	aerospace applications, 262–264
Mikoyan-Gurevich (MiG-25) aircraft, 6–7	hybrid composites, 261–262
Military fighter aircraft, 20	natural fiber-polymer composites,
Milled ribs, 24	260–261
*	
Mitsui Wood Pecker, 239	polymer composites, 259–260

Natural fiber/biomass filler-reinforced	Natural fiber-reinforced polymer composites
polymer composites (Continued)	(NFPCs), 319–321
reinforcements, 254-259	mechanical properties of, 338t
biomass fibers, 254–255	Natural fibers, 35, 42-44, 51, 109,
natural fibers, 255–259	157–158, 173, 227, 253, 255–259,
Natural fiber-based composites (NFC),	270, 315–318, 316 <i>f</i> , 325–333
293-294	advantages of, 110
Natural fiber-based thermosets and	animal fibers, 331–333
thermoplastics, 155	bamboo fibers, 331
Natural fiber-reinforced aircraft components,	banana fibers, 330–331
113-118	chemical composition of, 257, 258t
Natural fiber-reinforced composites, 227,	classification of, 158f, 178f, 294
273, 293	coir fibers, 330
damage mechanism and failure behavior	drawbacks of, 111
of, 306–307	hemp fibers, 326–330
defects of, 229	honeycomb sandwich panels with, 237f
terms and description of, 229-232	jute fibers, 326
factors affecting the low velocity impact	kenaf fibers, 326
properties of, 299–306	limitations of, 160
chemical treatments and additives,	mechanical properties of, 259, 259t, 319t
effect of, 302-303	patch repair using. See Patch repair using
fiber architecture and matrix, effect of,	natural fiber
301–302	physical properties of, 257–258, 259 <i>t</i>
hybridization, effect of, 303–304	sisal fibers, 325–326
impact energy, effect of, 299–301	in structural applications, 270–271
impactor and impact velocity, effect of,	versus synthetic fibers, 318t
305	treatment, 272–273
manufacturing method, effect of, 306	Natural frequency, 47–50
moisture absorption, effect of, 305	Natural resins, 271–272
temperature, effect of, 305	Naturally woven coconut sheath fiber mat,
finite element modeling (FEM), role of, 306	37–38
implementation, limitations in, 307–308	Natural-natural fiber-reinforced composite, 304
inspection types versus testing apparatus,	Natural—synthetic fiber hybrid composites,
233–247	156
honeycomb bonding, 233–243	mechanical properties of, 163–167
laminate, 243–247	survey on, 333–337
low velocity impact testing, 295	Natural-synthetic fiber-reinforced composite,
Charpy test, 296	303-304
drop weight impact test, 297–298	Natural—synthetic hybrid composites, 167
Izod test, 296	potential of, 315–352
terms and commonly assessed	biodegradability of hybrid composites,
parameters after, 298–299	337–339
measures to overcome the limitations, 308	survey on, 333-337
nondestructive testing methods, 247–248	Navy fighter aircraft (F-18A), 32
selection criteria, 294	New composite materials, assessing the
visual inspection and limitations,	performance of, 91–98
232–233	ΔT images
Natural fiber-reinforced honeycomb core	evaluation of damage extension from,
panels, 235–236	97–98

learning from, 94–95	result and discussion, 196–199
Δ T-time distribution, analysis of, 95–97	compression test, 196–199
on-line monitoring of impact tests, 92-94	simulating damage on specimens, 185
Newton's second law, 136	structural patch repair, 173-176
Newton-Raphson method, 137	tensile test, 194, 200-203
Noise reduction and discrimination of small	vacuum bagging process, 183-184
thermal stress coupled effects, 99-101	Permanent repair, 175
Noncellulosic substances, 157	Petroleum pitch, 322
Noncontact techniques, 78	Phenolic, 60, 62, 161
Nondestructive evaluation (NDE), 75, 78,	Phosphates, 117
180	Piezoelectric sensor, 203–206
infrared thermography, 79-80	Piston engines, 25
Nondestructive inspection (NDI) methods,	Pitch, 25
75-79, 180	Pitch—catch modes, 240—241
applications, 90	bond testing, 241f
Nondestructive testing (NDT) methods,	Plant fiber production and their producers,
75–76, 228, 247–248	317 <i>t</i>
for inspecting natural composites, 248 <i>t</i>	Plant fibers, 157, 255–256, 271, 293, 325,
Non-starch derived resins, 272	331–332
Numerical "Layerwise" theory, 143	Plant/cellulosic fibers, 315–316
Numerical analysis, 125	Plastic matrix, 159
Numerical simulations, 126	Plate type ribs, 24
Numerical simulations, 120	Polyacrylonitrile (PAN) fiber, 322
0	Polyamide, 60
Oil palm fiber, 156–157	Polyester, 62, 158–159, 260, 319
One degree of freedom, 137, 144	Polyether ether ketone (PEEK), 71, 342 <i>t</i>
On-line monitoring of impact tests, 92–94	Polyether imide (PEI), 71
Optical lock-in thermography. See Lock-in	
	Polyethylene (PE) composite, 302
thermography (LT)	Polylactic acid (PLA), 72, 115, 272,
Osprey tilt rotor (V-22), 32	302–303 Palaman annuaritae 250, 260
P	Polymer composites, 259–260
_	Polymer materials, in aerospace, 8–9, 19,
Pack-threads effect, 88–89	315–316
Patch repair using natural fiber, 171, 176 <i>f</i>	advanced composite materials
application of repair plies, 186–187	components, 22
complex repair, 173	aerospace composite materials, 25–26
compression test, 187, 194	aerospace structure and features, 23
damage detection, 180–181, 195	components of aircraft structure, 23–25
design and fabrication of compression test	engines, 25
jig, 188–193	fuselage, 23
easy repair, 173	tail, 25
Kenaf patching, 185–186	undercarriage, 25
lay-up process, 181–183	wing contents, 24
methodology, 181	wing functions and attachments, 24
specimen fabrication, 181	composite manufacturing using prepeg,
patch repair on carbon fiber-reinforced	26-29
plastic specimens, 184–185	automated fiber placement, 28, 28f
piezoelectric sensor response correlates	automated tape lay-up (ATL), 27-28,
with mechanical test, 203-206	27 <i>f</i>

Polymer materials, in aerospace (<i>Continued</i>) filament winding, 29	Pulse thermography (PT), 80–85, 232–233 estimation of defect size and depth,
hand lay-up, 26–27	81–82
pultrusion, 29, 30f	evaluation of material porosity, 83-85
resin transfer molding (RTM), 29	setups for, 81f
vacuum-assisted resin transfer molded	Pultrusion, 29, 30 <i>f</i> , 61–64, 62 <i>f</i>
process, 29	Puncture damage in a sandwich structure, 174 <i>f</i>
composite materials, aircraft using, 29–32	PZT sensors, 195, 207
advanced tactical fighter (ATF), 31	121 sensers, 190, 201
advanced technology bomber (B-2), 31	Q
airbus, 31	Q-Switched Nd:YAG, 77
beech starship, 31	QWIP detector, 99
Boeing, 31	QVIII detector, >>
Lear Fan 2100, 30	R
navy fighter aircraft (F-18A), 32	Radiographic testing, 228, 247
Osprey tilt rotor (V-22), 32	Ramjet engines, 25
second generation British harrier "Jump	Rapid Solidification Process (RSP)
Jet" (AV-8B), 31	aluminum alloy, 8–9
composites in aerospace, 32	Rayon fiber, 322
advantages, 32	Reinforcement fibers, 21, 254
disadvantages, 32	Reinforcements, 21, 254–259, 319, 322
future of, 32–33	biomass fibers, 254–255
polymer composites, 21–22	natural fibers, 255–259
Polymer nanocomposite, 9	Renewable materials, 109, 254–255
Polymeric matrices used in aerospace	Residual stresses, 130, 229–230
applications, 342t	Resin curing, 73
Polymeric matrix composites (PMCs), 70	Resin injection molding, 340–341
failure in, 141–142	Resin transfer molding (RTM), 29, 58–59,
Polyphenylene sulfide (PPS), 71	58 <i>f</i> , 63–64, 161–162, 228
Polypropylene, 71–72, 178, 245, 253, 260	Resonance methods, 228
Polystyrene, 71, 253, 319	Ribs, 24, 29
Polytec Scanning Vibrometer PSV 300, 239	Roll, 25
Polyvinylchloride, 71	
Porosities, 231	S
Potential applications, of natural/synthetic	Sandwich honeycomb composite panel, 117f
hybrid composites, 337–341	Sandwich structures, 5–6, 9, 172–173, 229
Prepeg, composite manufacturing using, 26–29	Scanning electron microscopy (SEM),
automated fiber placement, 28, 28f	280-281
automated tape lay-up (ATL), 27-28, 27f	Second generation British harrier "Jump Jet"
filament winding, 29	(AV-8B), 31
hand lay-up, 26-27	Shafts, 24, 70
pultrusion, 29, 30f	Shear modulus, 3–5, 115–116
resin transfer molding (RTM), 29	Shearography, 79, 247
vacuum-assisted resin transfer molded	Sheep fiber, 332
process, 29	Silk, 332
Prepeg plies, 27–28	Simple additive weighting method (SAW), 11
Process for Advanced Management of End-	Sisal, banana and coconut sheath fibers,
of-Life of Aircraft (PAMELA),	38–39, 41 <i>f</i> , 51
112–113, 121	FTIR spectrum of, 41f
Pulse echo, 244–245	surface roughness of, 44t

Sisal fiber, 37–38, 156–157, 325–326,	natural fiber-reinforced aircraft
329f	components, 113–118
Sisal fiber-reinforced polyester composites, 162	bast fiber-reinforced green composites
Sizing technique, 238f	for aircraft indoor structure
Slabs analysis with PT, 80	applications, 118
Sodium hydroxide, 273, 279–280, 287, 302	bio composites for aircraft cabin
SoyOyl, 272	interior panels, 116–118
Special alloys in aerospace, 8t	bio composites for aircraft radome
Spoilers, 24, 228, 233–235	application, 113–114
Spray lay-up, 57–58, 58 <i>f</i> , 63–64 Spray-up, 228	bio composites for aircraft wing boxes, 114–116
Spring-mass models, 137, 138f	Synergistic damage mechanics (SDM), 139
SPT (step pulse thermography), 80	Synthetic fiber composites (SFCs), 110, 122
Squirter, alignment of, 246f	315-318
Stacking sequences, 38–39, 39 <i>f</i> , 333–337	Synthetic fiber-based composites, 109–110,
Stainless steels, 6–7	307-308
Stealth, 262–264, 340 <i>t</i>	Synthetic fiber-based materials, mechanical
Steel ball impact simulation on the	strength of, 293–294
composite panel, 147f	Synthetic fiber-reinforced composites, 3–5,
Step sanded repair, 176 <i>f</i>	36, 293
Stereographic testing, 228	Synthetic fiber-reinforced polymer
Stiffeners, 23	composites (SFPCs), 109-110, 122,
Strength degradation, variation of, 127	319-321
Strength-to-weight ratio, 2–3, 69, 118, 167	Synthetic fibers, 62–63, 109, 113–114,
Stressed skin, 24	158–159, 259–260, 315–318, 316
Stringers, 23–24	321-325
Structural failures in aircraft composite	aramid fibers, 325
materials, 129	carbon fibers, 322–325
Structural health monitoring (SHM),	classification of, 158f
180-181, 207	glass fibers, 321–322
Structural materials, 1, 19, 171	mechanical properties of, 319t
Structural patch repair, 173-176	versus natural fibers, 318t
Structural Repair Manual (SRM), 173–174,	
185	T
Structure health monitoring (SHM) system,	Tail, 25
207	Tap test, 237–240
Superalloys, 8–10	Taper sanded repair, 176f
Sustainable bio composites, 109	Tapping technique, 238f
advantages of using natural fibers, 110	Temporary repair, 175
case study, 118–121	Tensile and flexural testing, 39
"Aim of Developing a Fully Recyclable	Tensile modulus of hybrid composites, 45t,
Aircraft Cabin Interior", 118–120	165-166
airbus helicopters, 120	Tensile strength, 41–46, 165–166,
Boeing research, 120	201-203, 282, 330-331
Process for Advanced Management of	effect of layering pattern on, 42f
End-of-Life of Aircraft (PAMELA),	Tensile test, 194, 200-203
121	Test reference standard, 241-242
drawbacks of using natural fibers, 111	Thermal diffusivity, 83–87
future scope, 122	distribution, 83-84, 84f
materials selection, 111-113	Thermal Dirac pulse, 83–84

Thermal imaging. See Thermography	Two-dimensional (2D) finite element
Thermal properties of materials, 9–10	method, 143
Thermal protection systems (TPS), 70	Typical Structural Repair Manual wing skin
Thermal relaxation time, 87–88 Therma Scientific Nicelet 8700, 278	repair, 172f
Thermocouples 183	U
Thermographic techniques, 70, 80	Ultimate laminate failure (ULF), 132
Thermographic techniques, 79–80 Thermography, 228, 248, 248 <i>t</i>	Ultrasonic bond tester, 240–241
Thermoplastic natural rubber (TPNR), 178 hybrid composite, 333–337	Ultrasonic drilling of carbon fiber-reinforced plastic composites, 216–217
Thermoplastics, 70–71, 260, 320 <i>t</i>	Ultrasonic inspection, 228, 243
Thermoset resin, 70–71, 211	on flax-reinforced composite, 245f
defined, 159–160	for natural composite structures, 233f
Thermosets, 62–63, 70–71, 256–257, 260	Ultrasonic testing (UT), 75–76, 245
Thin walled structure, 23	Undercarriage, 25
Three-dimensional (3D) finite element	Unidirectional (UD) fiber, 58–59, 95, 141–142
method, 143	Unidirectional (UD) woven, 301–302
Thrust force, 212, 214 <i>f</i> , 216–217, 220 <i>f</i> ,	Untreated, unweathered flax fiber-vinyl
221-224	ester resin (UTUW-VE), 280f
Titanium alloy, $5-6$, $8-10$	
Titanium matrix composites, 70	V
TOPSIS, 11	Vacuum assisted method, 60, 63–64
TORNADO, 116	Vacuum bagging, 27, 60, 161, 183–184, 228
Torsional vibration drilling, 216–217	Vacuum infusion method, 161
Total energy of fracture, 296, 298	Vacuum-assisted resin transfer molding
Total impact energy, 298, 299f	(VARTM), 29, 58f
Transverse cracking, 130, 143, 230	Vacuum-pump system, 29
Tri-layer eco-friendly polymer composites,	Vibrational characteristics, 47–51
35	Vibratory drilling method, 216
applications, 51	Vinyl ester (VE), 272
experimental details, 37–40	Vinyl ester resin, 287–288
fabrication of composite, 38–39	Vinyl ester soaked fibers, 275–276
fiber surface modification, 38	Visual inspection, 232–233, 234t
free vibration test, 40, 40f	Voids, defined, 231
materials, 37–38	
tensile and flexural testing, 39	W
infrared spectrum analysis, 40–41	Weaving, 3–5
mechanical properties, 41–51	Weight reduction, 1–2
flexural strength, 46–47	Wing contents, 24
tensile strength, 41–46	Wing functions and attachments, 24
vibrational characteristics of different	Woven fiber composite, 57f, 332
layering patterns on hybrid	Woven flax fabric—epoxy composite, 301
composites, 47–51	Woven jute-polyethylene composites, 301
methodology, 37	T 7
objectives, 37	X
Tube rolling, 228	X-ray-based techniques, 78
Turbo jet engines, 25	V
Turbofan engines, 25	Y V 25
Turbo-prop engines, 25	Yaw, 25
Two degrees of freedom (TDOF), 137	Young's modulus, 115, 179

WOODHEAD PUBLISHING SERIES IN COMPOSITES SCIENCE AND ENGINEERING

- Updates about the most relevant natural fibre based composites and their potential to be applied in aircraft applications.
- Demonstrates systematic approaches and investigations on design, development, characterization and applications of composite materials to establish their important relationship with end-user applications.
- A useful reference and technical guide for university academics, R & D sectors, and industrialists working in materials commercialization.

The aerospace industry is currently looking for alternative materials to replace carbon/ Kevlar fibres in aerospace internal components to enhance fuel efficiency in aircraft structures. Research centres and industrial organizations have now started to develop interior components using natural fibres and agricultural biomass.

Agricultural biomass; such as natural fibres are abundantly available worldwide; but are not getting proper utilization due to their limitation in processing, properties and applications.

This book presents recent advances in the development, characterization and applications of composite materials produced from natural fibre/biomass as fillers and reinforcements to enhance materials performance towards utilization in aerospace components. Written by leading experts in the field the book chapters provide cutting-edge up-to-date research on the use of composite materials in aerospace components.

The book fills the gap in the published literature (published books on composites do not pay much attention to natural fibre based composites in aerospace components) and provides reference materials for future research in natural fibre and hybrid composite materials, which is much in demand due to the need for sustainable, recyclable and eco-friendly composites.

Dr. Mohammad Jawaid is currently working as Fellow Researcher (Associate Professor), at Biocomposite Technology Laboratory, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang, Selangor, He has more than 13 years of experience in teaching, research, and industries. His area of research interests includes Hybrid Reinforced/Filled Polymer Composites, Advance Materials: Graphene/Nanoclay/Fire Retardant, Lignocellulosic Reinforced/Filled Polymer Composites, Modification and Treatment of Lignocellulosic Fibres and Solid Wood, Nano Composites and Nanocellulose fibres, Polymer blends. So far he has published 13 book, 27 book chapters, and more than 200 International journal papers and 4 Published review paper under Top 25 hot articles in science direct during 2014-2017. He is Guest Editor for Current Organic Synthesis and Current Analytical Chemistry. He is reviewer of more 75 Journals and several high impact ISI journals. His H Index 34 (Google Scholar); 28 (Scopus).

Mohamed Thariq is a Professional Engineer registered under the Board of Engineers Malaysia (BEM), and is currently attached to the Universiti Putra Malaysia as Director / Head of Aerospace Manufacturing Research Centre (AMRC), Faculty of Engineering, UPM Serdang, Selangor, Malaysia. Being a Director / Head of AMRC; he is also an Independent Scientific Advisor to the Aerospace Malaysia Innovation Centre (AMIC) based in Cyberjaya, Selangor, Malaysia. He received his Ph.D. from the University of Sheffield, United Kingdom. He has about 10 years of experience in teaching and research. His area of research includes Hybrid Composites, Advance Materials, Structural Health Monitoring and Impact Studies. He is also the Deputy President of Malaysian Society of Structural Health Monitoring (MSSHM) based in UPM Serdang, Selangor, Malaysia. He published more than 75 ISI journal papers and reviewer of several high impact journals.

