DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

05430816

Image available

MANUFACTURE OF SEMICONDUCTOR DEVICE

PUB. NO.:

09-045616 [JP 9045616 A]

PUBLISHED:

February 14, 1997 (19970214)

INVENTOR(s): OTANI HISASHI

MIYANAGA SHOJI TERAMOTO SATOSHI YAMAZAKI SHUNPEI

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD [470730] (A Japanese

Company or Corporation), JP (Japan)

APPL. NO.:

07-216608 [JP 95216608]

FILED:

August 02, 1995 (19950802)

INTL CLASS:

[6] H01L-021/20; H01L-027/12; H01L-029/786; H01L-021/336

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD:R002 (LASERS); R004 (PLASMA); R096 (ELECTRONIC MATERIALS

-- Glass Conductors); R100 (ELECTRONIC MATERIALS -- Ion Implantation)

ABSTRACT

PROBLEM TO BE SOLVED: To restrain the influence of a metallic element in a method for obtaining a crystalline silicon film by using a metallic element which promotes crystallization of silicon.

SOLUTION: Nickel element 104 is held in contact with a surface of an amorphous silicon film 103 wherein specified patterning is carried out.

Then, a crystalline silicon film 105 is obtained by applying heat treatment. In the process, nickel element segregates in a region 106 of an edge of a pattern. A crystalline silicon film 100 without a region wherein a metallic element is concentrated is obtained by carrying out patterning by using a mask 107. A thin film transistor is prepared by making the crystalline silicon film 100 as an active layer.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-45616

(43)公開日 平成9年(1997)2月14日

(51) Int. C1. 6 H01L 21/20 27/12 29/786	識別記号	F I H01L 21/20 27/12 29/78	R	
21/336		審査請求	未請求 請求項の数11 FD	(全12頁)
(21) 出願番号	特願平7-216608	(71)出願人	000153878 株式会社半導体エネルギー研タ	訮
(22)出願日	平成7年(1995)8月2日	(72)発明者	神奈川県厚木市長谷398番地 大谷 久	
		(12/)2/12	神奈川県厚木市長谷398番地 導体エネルギー研究所内	朱式会社半
		(72)発明者		
			神奈川県厚木市長谷398番地 導体エネルギー研究所内	朱式会社半
		(72)発明者		
	•		神奈川県厚木市長谷398番地 構体エネルギー研究所内	朱式会社半
			i	最終頁に続く

(54) 【発明の名称】半導体装置の作製方法

(57) 【要約】

【目的】 珪素の結晶化を助長する金属元素を利用して 結晶性珪素膜を得る方法において、金属元素の影響を抑 制する。

【構成】 所定のパターニングがされた非晶質珪素膜103の表面にニッケル元素104を接して保持させる。 次に加熱処理を加えるころにより、結晶性珪素膜105を得る。この時、パターンの縁の領域106にニッケル元素が偏析する。そしてさらにマスク107を用いてパターニングを行うことによって、金属元素の集中した領域のない結晶性珪素膜100を得る。そしてこの結晶性珪素膜100を活性層として薄膜トランジスタを作製する。

【特許請求の範囲】

【請求項1】絶縁表面を有する基板上に非晶質珪素膜を成膜する工程と、

前記非晶質珪素膜を所定のパターンにパターニングする 工程と、

前記非晶質珪素膜に接して珪素の結晶化を助長する金属 元素を接して保持させる工程と、

加熱処理を加え前記非晶質珪素膜を結晶化させ結晶性珪素膜に変成する工程と、

前記結晶性珪素膜のパターンの周囲をエッチングするエ 10程と、を有することを特徴とする半導体装置の作製方法。

【請求項2】非晶質珪素膜の所定の領域に欠陥及び/または応力が集中した領域を形成する工程と、

前記非晶質珪素膜に接して珪素の結晶化を助長する金属 元素を接して保持させる工程と、

加熱処理を加え前記非晶質珪素膜を結晶化させる工程と、

前記所定の領域をエッチングする工程と、

を有することを特徴とする半導体装置の作製方法。

【請求項3】非晶質珪素膜の所定の領域に欠陥及び/または応力が集中した領域を形成する工程と、

前記非晶質珪素膜に接して珪素の結晶化を助長する金属 元素を接して保持させる工程と、

加熱処理を加え前記非晶質珪素膜を結晶化させると同時 に前記所定の領域に前記金属元素を偏析させる工程と、 前記所定の領域をエッチングする工程と、

を有することを特徴とする半導体装置の作製方法。

【請求項4】非晶質珪素膜の所定の領域に欠陥及び/または応力が集中した領域を形成する工程と、

前記非晶質珪素膜に接して珪素の結晶化を助長する金属 元素を接して保持させる工程と、

加熱処理を加え前記非晶質珪素膜を結晶化させると同時 に前記所定の領域に前記金属元素を偏析させ半導体装置 の活性層となるべき領域またはチャネル形成領域となる べき領域から前記金属元素を除去する工程と、

前記所定の領域をエッチングする工程と、

を有することを特徴とする半導体装置の作製方法。

【請求項5】請求項1乃至請求項4において、

珪素の結晶化を助長する金属元素として、

Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Auから選ばれた一種または複数種類のものを用いることを特徴とする半導体装置の作製方法。

【請求項6】請求項1乃至請求項4において、加熱処理 は450℃~700℃の温度で行われることを特徴とす る半導体装置の作製方法。

【請求項7】請求項1乃至請求項4において、 非晶質珪素膜は石英基板上に成膜されており、 加熱処理は800℃~1100℃の温度で行われること を特徴とする半導体装置の作製方法。 【請求項8】請求項2乃至請求項4において、

金属元素の拡散距離をDとして、

得られる結晶性珪素膜の中心部から所定の領域までの距離dがd=D/30~Dで示されることを特徴とする半導体装置の作製方法。

【請求項9】請求項8において、 $d=0.2 \mu m \sim 2 \mu m$ とすることを特徴とする半導体装置の作製方法。

【請求項10】請求項8において、DはD=D。 texp ($\Delta E/kt$) で示されることを特徴とする半導体装置の作製方法。

【請求項11】請求項2乃至請求項4において、 所定の領域にリンイオンまたは酸素イオンを注入することにより、欠陥及び/または応力が集中した領域を形成 することを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本明細書で開示する発明は、結晶性を有する珪素薄膜の作製方法を示す。またこの結晶性を有する珪素薄膜を用いた半導体装置の作製方法を示20 す。

[0002]

【従来の技術】従来より、ガラス基板や石英基板上に形成された非晶質珪素膜を結晶化させて結晶性珪素膜を形成し、この結晶性珪素膜を用いて薄膜トランジスタを構成する技術が知られている。

【0003】この結晶性珪素膜を得る方法としては、プラズマCVD法等で成膜された非晶質珪素膜にレーザー 光を照射し、結晶性珪素膜に変成する方法と、プラズマ CVD法等で成膜された非晶質珪素膜に加熱処理を加 30 え、結晶性珪素膜に変成する方法とに大別することができる。

【0004】このような結晶性珪素膜を得る方法としては、特開平06-232059号公報に記載された技術が公知である。この技術は、珪素の結晶化を助長する金属元素を利用することにより、非晶質珪素膜をより低温で結晶化させるものである。

[0005]

【発明が解決しようとする課題】本出願人らの研究によれば、上記珪素の結晶化を助長する金属元素を用いて結晶性珪素膜を得、さらにこの結晶性珪素膜を用いて薄膜トランジスタを作製した場合、その特性にバラツキが生じやすい傾向が確認されている。

【0006】本明細書で開示する発明は、珪素の結晶化を助長する金属元素を用いることによって結晶性珪素膜を得る技術において、局所的に金属元素が集中して存在してしまうことがないような技術を提供することを課題とする。

[0007]

【課題を解決するための手段】上記の金属元素が結晶性 50 珪素膜中において集中して存在してしまうという問題に

1

30

ついて鋭意研究を重ねた結果、以下に示す事項が確認されるに至った。

[0008] 図2に示すのは、ニッケル元素を用いることによって結晶化された結晶性珪素膜の 1μ m角におけるニッケル元素の固まりを観察した結果である。

【0009】図2に示すデータを得た結晶性珪素膜の作製方法について以下に説明する。まずガラス基板上に500A厚の非晶質珪素膜をプラズマCVD法で成膜する。そしてその表面にニッケル酢酸塩溶液を塗布する。この状態で非晶質珪素膜の表面にニッケル元素が接して10保持された状態が実現される。そして図2中に記載されている加熱温度(図にはSPC温度と記載)で4時間の加熱処理を加える。こうしてガラス基板上の結晶性珪素膜を得る。

【0010】図2に示す3種類のデータを得た試料の違いは、結晶性珪素膜を得るための加熱の温度である。

【0011】図2に示すニッケル元素の固まりの観察方法は、得られた結晶性珪素膜をFPM(過水とフッ酸の混合溶液)でエッチングすることによって、ニッケルの固めっている領域(この領域はニッケルシリサイド化し 20 ている)を除去し、この除去された孔の数を電子顕微鏡によって数えることによって行った。

【0012】このニッケルが固まっている領域を示す孔の状況を図3に示す。図3に示すのは、結晶性珪素膜の表面をFPMによってエッチングした後の状況を電子顕微鏡によって写した写真である。

【0013】この観察方法は、ニッケル元素の固まりの数の絶対値を計測できるものではないが、その相対的な数の評価を行うことができる。

【0014】図2に示すように、加熱処理の温度を高くする程、検出されるニッケルの固まりの数は少なくなる。しかし、SIMS(2次イオン分析方法)で計測したところ、ニッケル元素の濃度は加熱処理時(SPC時)の温度の違いによらずほとんど同じであることが確認されている。このことから、ニッケル元素の偏析は、加熱処理時の温度が高くなる程、一つ一つの固まりが大きなものであることが予想される。

【0015】また、加熱処理の温度が高くなる程、ニッケル元素の拡散距離は大きくなることが判明している。この拡散距離Dは、概略D_k t exp(- ΔE/kT) によって表 40 される。ここでD_k は適当な定数、t は加熱時間、ΔE は適当な定数、k はボルツマン定数、T は加熱温度(S P C 温度)である。この式で示される傾向は、ニッケル元素だけではなく、他の金属元素についてもいえることである。

【0016】上式から明らかなように、加熱温度を高くすると指数関数的にニッケル元素の拡散距離は大きくなる。一方、加熱温度が高くなる程ニッケル元素の固まりは大きくなる。

【0017】また本出願人らの研究によれば、応力歪が 50

集中している領域には、ニッケル元素が集中しやすいことが判明している。

【0018】以上述べた知見に基づいて本明細書に開示する発明はなされたものである。本明細書で開示する発明の一つは、絶縁表面を有する基板上に非晶質珪素膜を成膜する工程と、前記非晶質珪素膜を所定のパターンにパターニングする工程と、前記非晶質珪素膜に接して珪素の結晶化を助長する金属元素を接して保持させる工程と、加熱処理を加え前記非晶質珪素膜を結晶化させ結晶性珪素膜に変成する工程と、前記結晶性珪素膜のパターンの周囲をエッチングする工程と、を有することを特徴とする。

【0019】また他の発明の構成は、非晶質珪素膜の所定の領域に欠陥及び/または応力が集中した領域を形成する工程と、前記非晶質珪素膜に接して珪素の結晶化を助長する金属元素を接して保持させる工程と、加熱処理を加え前記非晶質珪素膜を結晶化させる工程と、前記所定の領域をエッチングする工程と、を有することを特徴とする。

【0020】また他の発明の構成は、非晶質珪素膜の所定の領域に欠陥及び/または応力が集中した領域を形成する工程と、前記非晶質珪素膜に接して珪素の結晶化を助長する金属元素を接して保持させる工程と、加熱処理を加え前記非晶質珪素膜を結晶化させると同時に前記所定の領域に前記金属元素を偏析させる工程と、前記所定の領域をエッチングする工程と、を有することを特徴とする。

【0021】上記書く発明において、一般にガラス基板が用いられる場合は、加熱処理の温度を450 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ 0

【0022】また基板として石英基板を用いた場合には、加熱処理温度を800° \sim 1100°とすることが好ましい。特にこのように高い温度とすることは高い結晶性を得る上で非常に好ましい。

【0023】本明細書で開示する発明において利用できる珪素の結晶化を助長する金属元素としては、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Auから選ばれた一種または複数種類のものを用いることができる。

【0024】この金属元素の導入方法としては、金属元素を含んだ溶液を用いることが好ましい。この溶液を用いる方法は、当該金属元素を膜状に設けることができるので、非晶質珪素膜に表面に均一に接して保持させることができるという有用性がある。

【0025】また、当該金属元素の濃度を調整することが容易であるという顕著な特徴を有する。珪素の結晶化を助長する金属元素は、珪素膜中におけるその濃度を極力小さくすることが望まれる。従って、導入される金属元素の量を調整することは非常に重要な技術となる。

【0026】このような溶液を用いた方法について以下

5

に示す。まず珪素の結晶化を助長する金属元素としてNiを利用する場合には、ニッケル化合物である臭化ニッケル、酢酸ニッケル、蓚酸ニッケル、炭酸ニッケル、塩化ニッケル、沃化ニッケル、硝酸ニッケル、硫酸ニッケル、蝮酸ニッケル、ニッケルアセチルアセトネート、4ーシクロヘキシル酪酸ニッケル、酸化ニッケル、水酸化ニッケル、2ーエチルヘキサン酸ニッケルからから選ばれた少なくとも1種類の溶液を用いることができる。

【0027】また、Niを無極性溶媒である、ベンゼン、トルエン、キシレン、四塩化炭素、クロロホルム、エーテル、トリクロロエチレン、フロンから選ばれた少なくとも一つに含有させたものを用いることができる。

[0028] 珪素の結晶化を助長する金属元素としてFe(鉄)を用いる場合には、鉄塩として知られている材料、例えば臭化第1鉄(FeBr, 6H, O)、臭化第2鉄(FeBr, 6H, O)、酢酸第2鉄(Fe(C, H, O,),xH, O)、塩化第1鉄(FeCl, 4H, O)、塩化第2鉄(FeCl, 6H, O)、フッ化第2鉄(FeF, 3H, O)、硝酸第2鉄(Fe(NO,),9H, O)、リン酸第1鉄(Fe, (PO,),8H, O)、リン酸第2鉄(FePO, 2H, O)から選ばれたものを用いることができる。

【0029】また珪素の結晶化を助長する金属元素としてCo(コバルト)を用いる場合には、その化合物としてコバルト塩として知られている材料、例えば臭化コバルト(CoBr6H,O)、酢酸コバルト(CoCl,GH,O)、4H,O)、塩化コバルト(CoCl,GH,O)、ブッ化コバルト(CoF,xH,O)、硝酸コバルト(Co(No,),6H,O)から選ばれたものを用いることができる。

【0030】また珪素の結晶化を助長する金属元素としてRu(ルテニウム)を用いる場合、その化合物としてルテニウム塩として知られている材料、例えば塩化ルテニウム(RuCl, H, O)を用いることができる。

【0031】また珪素の結晶化を助長する金属元素としてRh(ロジウム)を用いる場合、その化合物としてロジウム塩として知られている材料、例えば塩化ロジウム(RhCl, 3H, O)を用いることができる。

【0032】また珪素の結晶化を助長する金属元素としてPd(パラジウム)を用いる場合、その化合物として 40パラジウム塩として知られている材料、例えば塩化パラジウム(PdCl, 2H, O)を用いることができる。

【0033】また珪素の結晶化を助長する金属元素としてOs(オスニウム)を用いる場合、その化合物としてオスニウム塩として知られている材料、例えば塩化オスニウム(OsCl,)を用いることができる。

【0034】また珪素の結晶化を助長する金属元素としてIr(イリジウム)を用いる場合、その化合物としてイリジウム塩として知られている材料、例えば三塩化イリジウム(IrCl, 3H, O)、四塩化イリジウム

(IrCl,) から選ばれた材料を用いることができ ス

【0035】また珪素の結晶化を助長する金属元素としてPt(白金)を用いる場合、その化合物として白金塩として知られている材料、例えば塩化第二白金(PtCl,5H,O)を用いることができる。

【0036】また珪素の結晶化を助長する金属元素としてCu(銅)を用いる場合、その化合物として酢酸第二銅(Cu(CH, COO),)、塩化第二銅(CuCl 10,2H,O)、硝酸第二銅(Cu(NO,),3H,O)から選ばれた材料を用いることができる。

【0037】また珪素の結晶化を助長する金属元素として金(Au)を用いる場合、その化合物として三塩化金(AuCl, xH,O)、塩化金塩(AuHCl、4H,O)から選ばれた材料を用いることができる。

[0038]

【作用】例えば図6に示すように、得ようとする結晶性 珪素膜のパターン100の周辺部108を除去する。こ の108の領域には、パターン103を得た場合に形成 20 される応力歪みや欠陥がその周辺部106に集中してい る。そして106の領域には高い濃度で珪素の結晶化を 助長する金属元素が存在する。従って、この領域を除去 することで、当該金属元素の影響を排除した結晶性珪素 膜100を得ることができる。

【0039】また人為的に欠陥や応力が集中した領域を形成する場合に、当該金属元素の拡散距離Dを考慮する。具体的には、最終的に得られるパターンの中心部と欠陥や応力が集中した領域との距離dをd=D/30~Dとすることによって、効果的に金属元素を前記欠陥や応力が集中した領域に追いやることができる。特に薄膜トランジスタのチャネル形成領域から前記金属元素を除去することができ、安定した動作をする薄膜トランジスタを得ることができる。

【0040】このように欠陥や応力が集中した領域を珪素の結晶化を助長する金属元素のゲッタリング領域とすることによって、結晶性珪素膜を用いた半導体装置の信頼性を高めることができる。

[0041]

【実施例】

(実施例1)以下の実施例においては、珪素の結晶化を助長する金属元素として、ニッケルを用いる例を主に示す。これは、ニッケルを用いた場合に最もその効果を安定して得られるからである。また、ニッケル以外に好ましい元素としては、パラジウム、白金、胴を挙げることができる。これらの元素を用いた場合には、ニッケルを用いる場合と同様な効果を得ることができる。

【0042】図1の本実施例の作製工程の概略を示す。 まずガラス基板101上に下地膜として酸化珪素膜10 2を3000Åの厚さにプラズマCVD法またはスパッ 50 夕法で成膜する。この酸化珪素膜102は、ガラス基板

101からの不純物の拡散を防止する機能を有する。ま たガラス基板101と後に形成される珪素薄膜との間に 生じる応力を緩和させる機能を有する。

【0043】次に酸化珪素膜上に図示しない非晶質珪素 膜を500Aの厚さにプラズマCVD法でもって成膜す る。次に最終的に得る薄膜トランジスタの活性層より大 きめのパターンにパターンニングを行い、非晶質珪素膜 でなる島状のパターン103を形成する。(図1 (A))

【0044】本実施例で用いた500Å厚のプラズマC 10 VD膜においては、550℃、4時間の条件における二 ッケル元素の最大の拡散距離はおよそ 2 μmであること が判明している。そこで図1を上面から見た状態を示す 図6に示すdの距離を2μmとする。なお、aで示され る距離は0.5 μmとする。

【0045】このパターンの形成は垂直異方性を有する プラズマエッチングによって行うことが好ましい。これ はプラズマエッチングを行うと、島状に形成されるパタ ーンの緑の領域にプラズマダメージにより応力歪みや欠 陥が生じやすくなるからである。

【0046】そして所定の濃度に調整されたニッケル酢 酸溶液をスピンコート法で塗布し、ニッケル元素104 がパターニングされた非晶質珪素膜103の露呈した表 面に接して保持された状態とする。 (図1 (A))

【0047】この状態で600℃、4時間の加熱処理を 行う。この加熱処理は、ガラス基板の耐えられる温度の 範囲内においてなるべく高い温度とすることが望まし い。従って、石英基板を用いた場合には、加熱の温度を 800~1100℃として結晶化を行わすことが望まし 11

【0048】この加熱処理を行うことにより、非晶質珪 素膜のパターン103は結晶化される。またこの時、パ ターン103の周辺部にニッケル元素は拡散していき、 その周辺部に集中することになる。このニッケル元素が パターン103の周辺部に集中する傾向は、加熱処理の 温度が高くなる程顕著なのとなる。

【0049】このニッケル元素の拡散に従って、非晶質 珪素膜の結晶化が進行し、パターン103は結晶性珪素 膜105に変成される。

【0050】またこの時、プラズマダメージや応力歪み 40 が集中しているパターンの縁の領域106には、ニッケ ル元素が集中することになる。(図1(B))

【0051】次にレジストマスク107を用いて露呈し た108の領域をエッチング除去する。即ち、ニッケル 元素が集中している領域をエッチング除去する。このエ ッチング工程によって、薄膜トランジスタの活性層10 0 が完成する。(図1 (C))

【0052】ここで、図6に示すように除去される10 8の領域は a で示される寸法を 2 0 μ とする。本実施例 においては、dで示される寸法を20μmとし、図に示 50 されるように15μm×30μmの矩形パターン100 を得る。このパターン100が薄膜トランジスタを構成 する活性層となる。

【0053】本実施例に示す構成においては、除去され る108の領域にニッケルの集中している領域106が 存在するので、結果として100で示される活性層中に はほとんどニッケル元素の固まりが存在しない状態とす ることができる。

【0054】さらにスカンジウムを0.2 wt%を含有さ せたアルミニウム膜をスパッタ法または電子ピーム蒸着 法で成膜する。ここでスカンジウムを含有させるのは、 後の工程においてアルミニウムの異常成長によるヒロッ ク (刺状あるいは針状の突起) の発生を抑制するためで ある。

【0055】そしてこのアルミニウム膜をパーニングす ることによって、ゲイト電極111を形成する。次に電 解溶液中においてゲイト電極111を陽極とした陽極酸 化を行うことにより、陽極酸化膜112を形成する。こ の陽極酸化膜112の膜厚は500Åとする。この陽極 酸化膜112は、ヒロックを発生を抑制するために非常 20 に効果がある。またこの陽極酸化膜112を厚く形成す ることにより、後の不純物イオンの注入工程において、 オフセットゲイト領域を形成することができる。(図1 (D))

【0056】図1 (D) の状態を得たら、P (リン) イ オンの注入をプラズマドーピング法を用いて行う。この 工程ではゲイト電極108がマスクとなることによっ て、自己整合的にソース領域113とチャネル形成領域 114とドレイン領域115が形成される。(図1 (D))

【0057】ここではPイオンを注入することによっ て、Nチャネル型の薄膜トランジスタを作製する例を示 す。しかし、Bイオンの注入を行えば、Pチャネル型の 薄膜トランジスタを作製することができる。

【0058】次に層間絶縁膜として酸化珪素膜116を 7000Aの厚さいプラズマCVD法で成膜する。さら にコンタクトホールの形成を行い、チタン膜とアルミニ ウム膜とチタン膜との積層膜でもって、ソース電極11 7とドレイン電極118とを形成する。こうして図1 (E) に示す薄膜トランジスタを完成させる。

【0059】本実施例の作製工程を採用した場合、活性 層100にニッケル元素が集中して存在する領域が形成 されることを抑制することができるので、ニッケル元素 の存在による不都合を抑えることができる。

【0060】〔実施例2〕本実施例は、実施例1に示す 工程に組み合わせて、さらにレーザー光の照射を行い、 より高い結晶性を得る構成に関する。また本実施例では 石英基板を用いる例を示す。

【0061】図4に本実施例の作製工程を示す。まず図 1に示す工程と同様にして、石英基板401上に下地膜

30

として酸化珪素膜102を成膜する。ここでは、石英基板と後に形成される珪素膜との間に働く応力の緩和を行うために酸化珪素膜102を5000Åの厚さに成膜する

【0062】次に非晶質珪素膜を減圧熱CVD法で1000Aの厚さに成膜する。次にパターニングを行うことによって、島状のパターン103を形成する。(図4(A))

【0063】そしてニッケル酢酸塩溶液をスピンコート 法によって塗布し、104で示されるようにニッケル元 10 素が膜状に非晶質珪素膜でなる島状のパターン103の 表面に接して保持された状態とする。(図4(A))

【0064】そして850℃、4時間の加熱処理を行い、非晶質珪素膜でなる島状のパターン103を結晶性珪素膜に変成する。この工程においては、加熱の温度が高いので、実施例1の場合に比較して、ニッケル元素がパターンの周辺部により集中する。(図4(B))

【0065】こうして結晶性珪素膜105とニッケル元素が集中して存在している領域106を得ることができる。そして、レジストマスク107を用いて、パターン 20の周辺部106をエッチング除去する。この工程でニッケル元素が集中的に存在している領域が選択的に除去される。(図4(C))

【0066】そしてレジストマスク107を取り除くことによって、薄膜トランジスタの活性層を構成する島状のパターンを有した結晶性珪素膜402を得る。この402で示される領域は図4(B)の109で示される領域に相当する。

【0067】次に図4(D)に示すようにレーザー光の 照射を行う。このレーザー光の照射を行うことで、島状 30 のパターンを有した結晶性珪素膜402の結晶性をさら に高くすることができる。

【0068】また本実施例においては、レーザー光の照射を行った後にさらに800℃、2時間の加熱処理を行う。この加熱処理を行うことで、レーザー光の照射に際して生じた膜中の欠陥を減少させることができる。(図4(E))

【0069】なお、この再度の加熱処理を行わなくても十分に結晶性の高い結晶性珪素膜を得ることができる。 従って、作製工程を簡略化させたい場合には、この加熱 40 処理工程を省略してもよい。

【0070】このように結晶性珪素膜でなる活性層40 2を得た後、図1に示した工程に示すような工程に従っ て、活性層402を用いた薄膜トランジスタを作製す る。

【0071】〔実施例3〕本実施例は、図4に示す工程において、レーザー光の照射の代わりに加熱処理を行う構成に関する。図5に本実施例の作製工程を示す。まず石英基板401上に下地膜として酸化珪素膜102を5000Aの厚さにプラズマCVD法で成膜する。次に図50

示しない非晶質珪素膜を1000Åの厚さに減圧熱CV D法で成膜する。

10

【0072】次にこの非晶質珪素膜をパターニングして 図5 (A) に示すように島状のパターン103を形成する。さらにニッケル酢酸塩溶液をスピンコート法で塗布して104で示されるようにニッケル元素を膜状に設ける。(図5 (A))

【0073】そして850℃、4時間の加熱処理を加えることにより、結晶性珪素膜109を得る。この状態においては、結晶性珪素膜109の周辺にニッケル元素が集中して存在している。(図5(B))

【0074】次にレジストマスク107を配置して図5 (C) に示すように108の領域をエッチング除去す る。この際、多少の余裕をみて109の領域も少しエッ チングする。

【0075】こうして図5(D)に示すように結晶性を有する珪素膜でなる島状のパターン110を得る。このパターン110は後に薄膜トランジスタの活性層となる。

【0076】本実施例では図5に示す状態において、再度の加熱処理を行う。この加熱処理によって、島状のパターン110の結晶性をさらに高めることができる。なお、この加熱処理の後にさらにレーザー光や強光の照射を行ってもよい。

【0077】〔実施例4〕本実施例は、最終的に薄膜トランジスタの活性層701となる領域の周囲の非晶質珪素膜に開口を形成し、この開口が形成された領域に珪素の結晶化を助長する金属元素を偏析させることを特徴とする。

【0078】本実施例を実施するには、まずプラズマC VD法や減圧熱CVD法でもって、適当な絶縁表面を有 する基板上に非晶質珪素膜700を成膜する。次いで非 晶質珪素膜の一部を702で示されるようにエッチング 除去し、開口を形成する。この開口の計上は矩形状に限 らず、円形形状やスリット状であってもよい。

【0079】ここでは珪素の結晶化を助長する金属元素 としてニッケルを用いる例を説明する。上記の開口を形成したら、所定の濃度に調整したニッケル酢酸塩溶液を 塗布し、ニッケル元素が膜状に非晶質珪素膜700に接 して保持された状態とする。

【0080】そして、加熱処理を施すことにより、非晶質珪素膜700を結晶化させる。この時、702で示される開口部分にニッケル元素が集中することになる。これは、開口702の領域に欠陥や応力歪が集中して存在しているからである。

【0081】本実施例に示すような構成は、金属元素の 拡散距離を大きくでき、しかもパターンの寸法の小さい 場合に有効である。例えば、石英基板を用いて、微細な 集積回路を構成する場合に利用することが有効である。

【0082】図7においてcに示す距離も

 $c = D/30 \sim D$

 $D = D_0 t \exp(\Delta E/kt)$

で示される条件を満足する必要がある。ただし一般には Dに示す金属元素の拡散距離を実測で求めることが簡便 である。

11

【0083】ここでDは最大の拡散距離であるが、最低 の拡散距離はこの数十分の1程度となる。この最低の拡 散距離よりも上記cで示される距離を小さくとると、ニ ッケル元素を完全に排除した構成とすることができる。 具体的には c の値を 5 μ m以下にすると、ニッケル濃度 10 を非常に小さくすることができる。上記Dの値は、出発 膜の成膜条件や成膜方法、さらには加熱方法によって大 きくことなる。一般的にはDの値として $1 \mu m \sim 5 \mu m$ となる。よってdの値としては、2 μm以下、好ましく は1μm以下とすることが好ましい。

【0084】〔実施例5〕本実施例の作製工程の概略を 図8に示す。図8に示す作製工程においては、基板とし て石英基板を用いる例を示す。まず石英基板801上に 下地膜として酸化珪素膜802を5000Åの厚さにプ ラズマCVD法で成膜する。次に図示しない非晶質珪素 20 膜を7000人の厚さに成膜する。そしてパターニング を行うことにより、図8(A)の803に示すパターン を形成する。

【0085】次に所定の濃度に調整したニッケル酢酸塩 溶液を塗布し、ニッケル元素が803で示されるように 膜状に設けられた状態とする。(図8(A))

【0086】次に950℃、4時間の加熱処理を加える ことにより、結晶性珪素膜804を得る。(図8 (B))

【0087】次に等方性のエッチング手段を利用して、 805で示す島状の形状を有した結晶性珪素膜の表面を エッチングする。この工程で厚さが1500人の結晶性 珪素膜806を得る。(図8(C))

【0088】次に950℃の温度で熱酸化を行い、島状 の結晶性珪素膜806の露呈した表面に厚さ500人の 熱酸化膜を形成する。こうして、薄膜トランジスタに利 用できる結晶性珪素膜で構成される活性層806を得 る。(図8(D))

【0089】〔実施例6〕本実施例は、珪素の結晶化を 助長する金属元素の除去効果をさらに高めた構成に関す 40 ケル元素の固まりの数を示すグラフ図。 る。図9に本実施例の作製工程を示す。まずガラス基板 901上に下地膜として酸化珪素膜902を3000Å の厚さに成膜する。

【0090】次に非晶質珪素膜をプラズマCVD法で5 00人の厚さに成膜する。さらにこれをパターニングす ることにより、903で示される島状の領域を形成す る。そして所定の濃度に調整されたニッケル酢酸塩溶液 をスピンコート法で塗布し、ニッケル元素を904で示 されるように膜状に設ける。(図9(A))

【0091】次にレジストマスク905を配置し、P

(リン) イオンの注入を行う。この工程において、Pイ オンは906で示される領域に注入される。このPイオ ンの注入によって906で示される領域には欠陥が高い 密度で形成される。また907で示される領域にはPイ オンは注入されない。(図9(B))

【0092】次にレジストマスク905を取り除き、5 50℃、4時間の加熱処理を行う。この工程で非晶質珪 素膜の全体は結晶化する。この時、903で示されるパ ターンの縁周辺部に存在する906の領域にニッケル元 素は集中する。この作用は、パターンの縁であること、 906の領域に金属元素のゲッタリング作用を有するP (リン) が注入されていること、さらにPイオンの注入 によって、906の領域に欠陥が高密度に形成されてい ること、によって生じる。

【0093】次に図9(C)に示すように新たなレジス トマスク908を配置し、露呈した珪素の膜の領域をエ ッチングする。こうしてニッケル元素を除去した島状の 結晶性珪素膜でなる領域909を得ることができる。な おここではリンイオンを用いたが、酸素イオンを用いて もよい。(図9(D))

[0094]

【発明の効果】予めパターニングされた非晶質珪素膜の パターンを珪素の結晶化を助長する金属元素を利用した 加熱処理によって結晶化させ、さらに当該金属元素の集 中しているパターンの周辺領域を除去することにより、 当該金属元素の集中した部分の少ないまたはない結晶性 珪素膜のパターンを得ることができる。

【0095】即ち、珪素の結晶化を助長する金属元素を 用いることによって結晶性珪素膜を得る技術において、 30 局所的に金属元素が集中して存在してしまうことがない ような技術を得ることができる。

【0096】そして、本明細書で開示する発明を利用す ることにより、薄膜トランジスタの特性を向上させるこ とができる。また得られる薄膜トランジスタの作製歩留 りを高めることができる。また得られる薄膜トランジス 夕の特性を安定させることができる。

【図面の簡単な説明】

【図1】 薄膜トランジスタの作製工程を示す図。

結晶性珪素膜中の単位面積中に含まれるニッ 【図2】

【図3】 結晶性珪素膜を示す写真。

薄膜トランジスタの作製工程を示す図。 【図4】

【図5】 薄膜トランジスタの作製工程を示す図。

【図6】 結晶性珪素膜のパターニングの状態を示す上 面図。

【図7】 結晶性珪素膜のパターニングの状態を示す上 面図。

【図8】 薄膜トランジスタの作製工程を示す図。 【符号の説明】

ガラス基板 50 1 0 1

102	下地膜(酸化珪素膜)		1 1 6	層間絶縁膜(酸化珪素膜)
103	島状にパターニングされた非晶質珪素膜の		1 1 7	ソース電極
パターン			1 1 8	ドレイン電極
1 0 4	膜状に設けられたニッケル元素		401	石英基板
105	島状の形状を有した結晶性珪素膜のパター		402	結晶性珪素膜でなる活性層
ン			700	非晶質珪素膜
106	ニッケル元素が偏析した領域		701	活性層となるべき領域
107	レジストマスク		702	非晶質珪素膜に形成された開口
108	エッチング除去される領域		8 0 1	石英基板
100	結晶性珪素膜でなる活性層	10	802	酸化珪素膜
1 1 0	ゲイト絶縁膜(酸化珪素膜)		803	非晶質珪素膜
111	ゲイト電極		8 0 4	膜状に設けられたニッケル元素
1 1 2	陽極酸化膜		8 0 5	結晶性珪素膜
113	ソース領域		8 0 6	エッチングされる領域
1 1 4	チャネル形成領域		8 0 7	活性層
1 1 5	ドレイン領域		808	ゲイト絶縁膜

【図1】

13

【図2】

[図3]

【手続補	正書】		
【提出日】平成7年12月22日		パターン	
【手続補正1】		104	膜状に設けられたニッケル元素
【補正対象書類名】明細書		105	島状の形状を有した結晶性珪素膜のパター
【補正対象項目名】図面の簡単な説明		ン	
【補正方法】変更		106	ニッケル元素が偏析した領域
【補正内容】		107	レジストマスク
【図面の簡単な説明】		108	エッチング除去される領域
【図1】	薄膜トランジスタの作製工程を示す図。	100	結晶性珪素膜でなる活性層
【図2】	結晶性珪素膜中の単位面積中に含まれるニッ	1 1 0	ゲイト絶縁膜(酸化珪素膜)
ケル元素	の固まりの数を示すグラフ図。	111	ゲイト電極
【図3】	結晶性珪素膜を示す写真。	1 1 2	陽極酸化膜
[図4]	薄膜トランジスタの作製工程を示す図。	1 1 3	ソース領域
【図5】	薄膜トランジスタの作製工程を示す図。	114	チャネル形成領域
【図6】	結晶性珪素膜のパターニングの状態を示す上	1 1 5	ドレイン領域
面図。		116	層間絶縁膜(酸化珪素膜)
【図7】	結晶性珪素膜のパターニングの状態を示す上	117	ソース電極
面図。		118	ドレイン電極
[図8]	薄膜トランジスタの作製工程を示す図。	401	石英基板
【図9】	薄膜トランジスタの作製工程を示す図。	402	結晶性珪素膜でなる活性層
【符号の説明】		700	非晶質珪素膜
101	ガラス基板	701	活性層となるべき領域
102	下地膜(酸化珪素膜)	702	非晶質珪素膜に形成された開口
103	島状にパターニングされた非晶質珪素膜の	801	石英基板
-			

802	酸化珪素膜	808	ゲイト絶縁膜
803	非晶質珪素膜	903	非晶質珪素膜
804	膜状に設けられたニッケル元素	904	膜状に設けられたニッケル元素
805	結晶性珪素膜	905	レジストマスク
806	エッチングされる領域	909	結晶性珪素膜
807	活性層		
【手続補			
	】平成8年4月18日	107	レジストマスク
【手続補		108	エッチング除去される領域
•	象書類名】明細書	100	結晶性珪素膜でなる活性層
【補正対	象項目名】図面の簡単な説明	1 1 0	ゲイト絶縁膜(酸化珪素膜)
【補正方	法】変更	111	ゲイト電極
【補正内	容】	1 1 2	陽極酸化膜
【図面の	簡単な説明】	1 1 3	ソース領域
【図1】	薄膜トランジスタの作製工程を示す図。	114	チャネル形成領域
【図2】	結晶性珪素膜中の単位面積中に含まれるニッ	1 1 5	ドレイン領域
ケル元素	の固まりの数を示すグラフ図。	1 1 6	層間絶縁膜(酸化珪素膜)
【図3】	結晶性珪素膜表面の結晶構造を示す顕微鏡写	1 1 7	ソース電極
真。		1 1 8	ドレイン電極
【図4】	薄膜トランジスタの作製工程を示す図。	401	石英基板
【図5】	薄膜トランジスタの作製工程を示す図。	402	結晶性珪素膜でなる活性層
【図6】	結晶性珪素膜のパターニングの状態を示す上	700	非晶質珪素膜
面図。		701	活性層となるべき領域
【図7】	結晶性珪素膜のパターニングの状態を示す上	702	非晶質珪素膜に形成された開口
面図。		801	石英基板
【図8】	薄膜トランジスタの作製工程を示す図。	802	酸化珪素膜
【図9】	薄膜トランジスタの作製工程を示す図。	803	非晶質珪素膜
【符号の	説明】	8 0 4	膜状に設けられたニッケル元素
101	ガラス基板	805	結晶性珪素膜
102	下地膜(酸化珪素膜)	806	エッチングされる領域
103	島状にパターニングされた非晶質珪素膜の	807	活性層
パターン		808	ゲイト絶縁膜
104	膜状に設けられたニッケル元素	903	非晶質珪素膜
105	島状の形状を有した結晶性珪素膜のパター	904	膜状に設けられたニッケル元素
ン		9 0 5	レジストマスク
106	ニッケル元素が偏析した領域	909	結晶性珪素膜

フロントページの続き

(72)発明者 山崎 舜平

神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.