Centro Universitário Univates

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia da Computação

AVALIAÇÃO E ANÁLISE DE CONSUMO DE ENERGIA MULTINÍVEL EM HARDWARE MODULAR

Jonas Fronchetti

Orientador: Marcelo de G. Malheiros

Lajeado 2015

Objetivo

- Desenvolver uma biblioteca de funções para medição do consumo energético
- Possibilitar a análise do consumo energético em diferentes níveis de plataforma modular de hardware
- Desenvolver formas de monitoramento e medição do consumo energético para maximizar a utilização da energia em plataformas computacionais

Justificativa

- Aumento do consumo de energia elétrica
- O aumento da produção de energia elétrica gera diversos danos à natureza. Os principais impactos são os ambientais, como desflorestamento e a poluição
- O investimento em maior produção de energia renovável, intensificando a oferta, apenas irá amenizar o problema
- É importante haver uma transformação no modo de consumir energia, caso contrário o risco ambiental irá persistir

Hardware utilizado

- Placa Odroid-XU+E
- EmonTx 2 Shield do projeto OpenEnergyMonitor
- Arduino Uno
- Sensor de corrente não invasivo
- Sensor de efeito Hall (ACS712)
- Transformador de tensão 220V para 9V

Diagrama hardware

ARM big.LITTLE

- big.LITTLE é o uso combinado de dois conjuntos de quatro núcleos de arquiteturas diferentes
- → A15 núcleos big, A7 núcleos LITTLE

Software Utilizado

- Ubuntu Xubuntu 14.04 LTS
- Compilador GCC (Gnu Compiler Collection)
- Linguagens de programação, entre elas C
- Ambiente de Desenvolvimento Integrado (IDE) Arduino

Biblioteca desenvolvida

- As funções da biblioteca Energy são:
- initEnergy()
- setSensor()
- setTime()
- startEnergy()
- stopEnergy()

- getEnergy()
- getCurrent()
- getTension()
- printEnergy()

- A medição do consumo foi realizada na placa Odroid
- Ensaios realizados:
- Placa ociosa (idle)
- → Placa em 50% de processamento
- Placa em 100% de processamento
- Benchmark da placa

► Placa ociosa (idle)

Sensor	Tempo	Consumo W	Consumo KWh
A15	5m	1,75873	0,000029
A7	5m	3,081404	0,000051
MEM	5m	16,586161	0,000276
GPU	5m	0,999728	0,000017
ODROID	5m	22,426023	0,000373
DC	5m	815,635559	0,013594
AC	5m	3725,089844	0,062085

■ 50% de processamento

Sensor	Tempo	Consumo W	Consumo KWh
A15	5m	959,831726	0,015997
A7	5m	6,08097	0,000101
MEM	5m	34,558296	0,000576
GPU	5m	1,113282	0,000019
ODROID	5m	1001,584274	0,016693
DC	5m	2043,705566	0,034062
AC	5m	5737,561035	0,095626

■ 100% de processamento

Sensor	Tempo	Consumo W	Consumo KWh
A15	5m	1262,639526	0,021044
A7	5m	6,618042	0,000110
MEM	5m	35,105316	0,000585
GPU	5m	1,494112	0,000025
ODROID	5m	1305,856996	0,021764
DC	5m	2467,78833	0,041130
AC	5m	6632,644043	0,110544

Benchmark da placa

Sensor	Tempo	Consumo W	Consumo KWh
A15	5,23m	647,183838	0,010786
A7	5,23m	5,899576	0,000098
MEM	5,23m	25,048946	0,000417
GPU	5,23m	1,070956	0,000018
ODROID	5,23m	679,203316	0,011319
DC	5,23m	1687,716797	0,028129
AC	5,23m	4670,169434	0,077836

Gráfico consumo por ensaio

Gráfico consumo por nível

Validações

- As validações dos dados obtidos foram feitas:
- Utilizando multímetro para comparar os dados obtidos na biblioteca
- Verificação se o consumo no nível interno não é maior que o nível anterior

Conclusões

- Maior parte do consumo esta na fonte, nos testes realizados esse consumo foi maior que 60%
- A comprovação que 50% do consumo energético da placa esteve relacionado diretamente com o processador
- Sensores integrados na placa possibilitam um maior controle energético
- Implementação da biblioteca possibilitando realizar a medição e análise da energia consumida por uma aplicação

Trabalhos futuros

- Implementar a medição do consumo sistemas distribuídos
- Realizar a medição do consumo em servidores, ou qualquer tipo de sistema que realize grande quantidade de processamento ou de consumo energético
- Realizar a análise do consumo de energia em alguns algoritmos que utilizam uma maior carga de trabalho da CPU

Obrigado

■ Perguntas?