3.7 Dry Etching

Outline

3.7.1 Introduction

3.7.2 Chemistry

- Overview
- Control of Selectivity
- Control of Anisotropy

3.7.3 Processes and Equipment

- "Pure" Chemical Etching
- Plasma Etching
- Reactive Ion Etching
- ° Ion Beam Etching
- ° Photoresist Stripping

3.7.4 Process Examples

- Overview: Trench/Gate/Via/Interconnect Etching
- Dry Etching of Metals
- ° ILD Etching porous ULK

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.7 - 1

3.7.1 Introduction

Dry etching techniques are those that use plasmas to drive chemical reactions and/or employ energetic ion beams to remove material.

Goal: Pattern transfer from mask to layer

Dry etching methods:

Glow discharge methods

- Dry physical etching (Sputter etching, ion etching)
- Plasma assisted etching
 - Dry chemical etching (Plasma etching)
 - Reactive ion etching (RIE)

Ion beam methods

- Ion milling
- Reactive ion beam etching
- Chemical assisted ion milling

Wet Clean

Difficult materials to dry etch:

$$A_f \equiv 1 - \frac{l}{h_f} = 1 - \frac{R_1 t}{R_v t} = 1 - \frac{R_1}{R_v}$$

For isotropic etching: $R_l = R_v$ and $A_f = 0$

For completely anisotropic etching: $R_l = 0$ and $A_f = 1$

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.7 - 3

Comparison of dry etching methods

Technique	Mechanism	Etching particles	Pressure [Pa]	Directional behavior
Barrel Etching	chemical	reactive radicals	100	isotropic
Plasma Etching (PE)	phys. & chem.	reactive radicals, weakly ion assisted	10 - 100	isotropic with anisotropic component
Reactive Ion Etching (RIE)	phys. & chem.	reactive radicals, strongly ion assisted	1 - 10	anisotropic with isotropic component
Reactive Ion Beam Etching (RIBE)	phys. & chem.	reactive ions	≤ 0,01	anisotropic with isotropic component
Sputter Etching	physical	inert ions	1 - 10	anisotropic
Ion Beam Etching (IBE)	physical	inert ions	≤ 0.01	anisotropic

Advanced Integrated Circuit Technology

3.7.2 Chemistry

3.7.2.1 Overview

Typical or representative plasma etch gases for films used in IC fabrication			
Material	Etchant	Comments	
Polysilicon	SF ₆ , CF ₄	Isotropic or near isotropic (significant undercutting); poor or no selectivity over	
	CF ₄ /H ₂ , CHF ₃	SiO ₂ .	
	CF_4/O_2	Very anisotropic; nonselective over SiO ₂ .	
	HBr, Cl ₂ , Cl ₄ /HBr/O ₂	Isotropic; more selective over SiO ₂ .	
		Very anisotropic; most selective over SiO ₂ .	
Single-	same etchants as		
crystal Si	Polysilicon		
SiO ₂	SF ₆ , NF ₃ , CF ₄ /O ₂ , CF ₄	Can be near isotropic (significant undercutting); anisotiopy can be improved	
PSG		with higher ion energy and lawer pressure; poor or no selectivity over Si.	
BPSG	CF_4/H_2 , CHF_3/O_2 ,	Very anisotropic; selective over Si.	
	C_2F_6 , C_3F_8		
	CHF ₃ /C ₄ F ₈ /CO	Anisotropic;selective over Si ₃ N ₄ .	
Si ₃ N ₄	CF_4/O_2	Isotropic; selective over SiO ₂ but not over Si.	
	$\mathrm{CF_4/H_2}$	Very anisotropic; selective over Si but not over SiO ₂ .	
	CHF ₃ /O ₂ , CH ₂ F ₂	Very anisotropic; selective over Si.and SiO ₂ .	
A1	Cl_2	Near isotropic (significant undercutting).	
	Cl ₂ /CHCl ₃ , Cl ₂ /N ₂	Very anisotropic; BCI ₃ often added to scavenge oxygen.	
Tungsten	CF ₄ , SF ₆	High etch rate; nonselective:over SiO ₂ .	
(W)	Cl_2	Selective over SiO ₂ .	
Ti	Cl ₂ , Cl ₂ /CHCI ₃ , CF ₄		
TiN	Cl ₂ , Cl ₂ /CHCI ₃ , CF ₄		
TiSi ₂	Cl ₂ , Cl ₂ /CHCI ₃ , CF ₄ /O ₂		
Photoresist	\circ_2	Very selective over other films.	

3.7.2.2 Control of Selectivity

Dependence of etch rates of Si and SiO₂ in CF_4 plasmas on the content of O₂ and H₂

<u>Adding H_2 </u> drastically lowers Si etch rate by formation of stable HF $H^+ + F + e^- \rightarrow HF$

However, etch rate of SiO₂ remains longer constant Allows SiO₂/Si etch selectivity to be increased tremendously

Addition of O₂:

Even with plasma the etch rate is slow (insufficient F concentration)

Adding O₂ to the plasma can increase F concentration

$$O + CF_3 \rightarrow COF_2 + F$$
 then $O + COF_2 \rightarrow CO_2 + 2F$

and consumes CF_x
--> Etch rate of Si increases faster than of SiO₂

Concentration of F increases further because recombination of CF_x and F becomes increasingly unlikely.

Also: Less adsorption of C on Si because CF_x is not sufficiently available (reactions (5) and (6))

Etch rate decreases at higher O_2 concentrations: Dilution of F conc. with overly abundant O_2

Similar trend is for SiO2

Etch rate is higher for Si

Si/SiO₂ selectivity is good

Isotropic etching

3.7.2.3 Control of Anisotropy

Formation of Sidewall Passivating Films

- Formation of nonvolatile fluorocarbons that deposit on the surfaces (Polymerization)
- The deposit can only be removed by physical collisions with incident ions
- •Fluorocarbon films deposits on all surfaces, but the ion velocity is nearly vertical. As a result, as the etching proceeds there is little ion bombardment of the sidewalls and the fluorocarbon film accumulates
- •Adding hydrogen encourages the formation of the fluorocarbon films because hydrogen scavenge fluorine, creating a carbon-rich plasma (same thing happened when C_2F_6 is used instead of CF_4)
- Less accumulation is observed on SiO₂ than Si surfaces
- Tradeoff between
 Si/SiO2 selectivity and Anisotropy

Source: Lecture Advanced Topics in Fabrication and Microengineering, John Hopkins University, Baltimore

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited.

Chapter 3.7 - 7

Controlling Polymerization

- Higher F/C-ratio leads to more etching
- Lower F/C-ratio leads to more polymerization
- Can be determined by the gas used
- Adding H₂ consumes F
 leads to polymerization
- Adding O₂ consumes C
 leads to etching

Processes and Equipment 3.7.3

3.7.3.1 "Pure" Chemical Etching

Barrel Reactor

- Plasma and substrate in two different places.
- Chemical etch by reactive radicals (only neutrals reach the wafers)
- Very selective
- Isotropic
- Many wafers in a batch
- Application: Stripping resist in oxygen plasma

Downstream Reactor

- Generation of long-living reactive particles in RF (13,56 MHz) or MW (2,45 GHz) plasma apart from the wafer
- Kink blinds out radiation, no damage
- Very soft process

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibite

gas

Chapter 3.7 - 9

wafer

microwave discharge

tube

3.7.3.2 Plasma Etching

Parallel Plate (Planar) Reactor

- Substrate in the plasma
- Low throughput
- PE mode: Wafer, anode & reactor grounded (large electrode)
 - Cathode HF driven (small electrode)
- Prevalent chemical etching by neutral radicals
- · Low-energy ion bombardment at wafer (plasma potential V_p ~ 10 eV)

/Schumicki, S.115/

3.7.3.3 Reactive Ion Etching

Parallel Plate (Planar) Reactor

- Subtrate in the plasma
- Low throughput
- RIE mode: Wafer HF driven (cathode, small electrode)
 - Reactor & anode grounded (large electrode)
- Ion bombardment at wafer. physical component can be tuned from low to high by voltage (Cathode voltage V_o depends on RF power and external DC bias, 0.1 - 1 keV)
- RIE combines the benefits of chemical etching along with that of directional ion milling
- The combination etch results in a selectivity ratio between SiO₂ and Si of 35 compared with 10 in plasma only etching
- · "RIE has become the choice for all advanced processes" (AMAT)

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited

Chapter 3.7 - 11

High Density Plasma (HDP) Reactors

• High Density Plasma: ICP, TCP, DPS, MERIE, μW, MORIE, ECR High efficient transfer of electromagnetic energy into the plasma --> high density of reactive particles

Inductively Coupled Plasma (ICP) reactor

Goals: High plasma density

Separate control of physical and chemical etching

Schematic of ICP Chamber

3.7.3.4 Photoresist Stripping

Key components of a microwave plasma asher including a 2.45-GHz microwave generator and process chamber.

Source: AMAT - Microelectronics processing course

Stripper rates for negative photoresist with different combinations of UV, ozone, and oxygen at 300 °C.

200

300

Oxygen Flow Rate (std cm3/min)

400

500

600

100

200

Process examples 3.7.4 **3.7.4.1 Overview**

A) Trench (Si):

Cl₂/Ar/N₂ or Cl₂/HBr

 $Si + 4CI \rightarrow SiCI_{4}$ (bei T > - 40 °C) or

 $Si + 4Br \rightarrow SiBr_4$ (bei T > +25 °C)

 $Si + 4CI \rightarrow SiCI_4$ (bei T > - 40 °C)

e.g. Tungsten silicide WSix:

W + 6F \rightarrow WF $_6$ (bei T > - 50 °C) W + 6Cl \rightarrow WCl $_6$ (bei T > +90 °C)!

C) Via (oxidic films): C_4F_8/H_2 (O₂) or CHF₃/C₂F₆/Ar

 $SiO_2 + 4F \rightarrow SiF_4 + O_2$ (at T > - 130 °C or

 $SiO_2 + 4F + 2C \rightarrow SiF_4 + 2CO$ at T > - 130 °C)

Source: "MNE 94"

Source: SI 3/98

Source: Etch Tech 4/96 Applied Materials

Source: Etch Tech 7/96 Applied Materials

3.7.4.2 Dry Etching of Metals

Al (Si, Cu) Alloy

AlCl₃ is volatile above ~50 °C!

Al films are initially covered by native Al₂O₃, removal by ion bombardment CuCl is volatile only above 250 °C, desorption needs additional energy at surface

Process control:

- 1. Phase: Prevailing ion bombardment for oxide removal
- 2. Phase: Prevailing chemical etching by Cl or Br radicals (from HCl, HBr)
 - Anisotropy has to be achieved by side-wall passivation
 - \rightarrow Polymerization is supported by addition of CH₄, CHCl₃, CHF₃
 - Soft ion bombardment to enable desorption of CuCl Problem: Selectivity to resist → Use *DUV hardened resist* or *hard masks*
- 3. Post-treatment: Immediate removal of Cl containing masks and polymers by fluorine treatment and intensive rinsing in water to prevent subsequent corrosion

 \underline{TiW} : CF₄/O₂ (isotropic) or CF₄

 $\underline{\textit{Mo}}$: CF₄/CBrF₃

 \underline{Au} : $C_2Cl_2F_4$

 \underline{W} : CF₄/O₂; SF₆/Ar

ZfM

dvanced Integrated Circuit Technology

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited.

Chapter 3.7 - 15

3.7.4.3 ILD Etching: Porous ULK Dual Damascene patterning

Patterning Scheme for JSR LKD5109 140 nm wire/280 nm pitch

□ Dual Hard-mask, Partial Via First Approach in LKD 5109

To enable single layer resist

Source: LETI (ULISSE project)

Dual damascene LKD5109 140 nm wire/280 nm pitch

Line 2 lithography on via topology

0.34µm/0.14µm
trench/via target

0.36µm/0.16µm
trench/via target

0.36µm/0.16µm
trench/via target

SiC (bottom hard-mask) etching

0.36µm/0.16µm trench/via target

ULK (line + via) etching

USG hard-mask and ULK etching

0.34µm/0.14µm trench/via target

SiC etching (top and embedded hard-masks)

0.34μm/0.14μm trench/via target

TECHNOLOGIE URZOZEKSKINI (JACHRIKUZ ZEM

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.7 - 17

Source: LETI (ULISSE project)

