1) [5 pts] Define the fundamental group of a space X at basepoint x_0 . Be precise about any equivalence relations involved.

The fundamental group, $\pi_1(X, x_0)$, is defined to be the set of loops γ based at x_0 ($\gamma(0) = \gamma(1) = x_0$) modulo homotopy of loops:

$$\gamma_0 \sim \gamma_1 \text{ rel } 0, 1$$

Expanding out this (which is unnecessary for a complete solution) states $\exists \Gamma : I \times I \to X$ with $\Gamma(0,t) = \Gamma(1,t) = x_0$, and $\gamma_i(t) = \Gamma(t,i)$ for i=0,1.

2) [10 pts] What is the fundamental group of the space X obtained by taking two circles and identifying 2 distinct points on one circle with 2 distinct points on the other?

Call the lines between the 2 points a, b, c, d in order. One can contract b to a point homotopically. This makes X homotopic to $S^1 \vee S^1 \vee S^1$, and therefore, $\pi_1(X) \cong \mathbb{Z}^{*3} = F_3 = \langle a, c, d \rangle$.

3) [5 pts] If X is a topological space, and γ is a loop based at x_0 in X, what is the effect of adjoining a 2-cell by $e^2 = \gamma$ to $\pi(X, x_0)$?

By the Theorem from class, the fundamental group of the resulting space Y is $\pi_1(Y,x_0)=\pi_1(X,x_0)/\langle\gamma\rangle$

4) [10 pts] What is the fundamental group of the space obtained from part 2 by filling in one region?

There are 2 approaches to this. One is to use question 3:

$$\pi_1(Y, x_0) = \pi_1(X, x_0) / \langle \gamma \rangle = \langle a, b, c, d | b \rangle / \langle cb^{-1} \rangle = \langle a, d \rangle = \mathbb{Z}^{*2}$$

The other is to say this is homotopic to $S^1 \vee S^1$.

 $5)\ [10\ \mathrm{pts}]$ State the (simplified) Van Kampen Theorem.

Let $X = A \cup B$ be covered by 2 path connected, open sets A, B with $A \cap B$ path connected. Then for $x_0 \in A \cap B$

$$\pi_1(X, x_0) = \pi_1(A, x_0) *_{\pi_1(A \cap B, x_0)} \pi_1(B, x_0)$$

6) [10 pts] Let X be a path connected space. Recall that the suspension of X, called S(X) = SX, is defined by

$$S(X) = X \times I / \sim$$

where $(x,0) \sim (y,0)$ and $(x,1) \sim (y,1)$ for all $x,y \in X$. That is, we pinch the sides of the interval to a point. Find $\pi_1(SX)$.

Let's divide SX into 2 sets A,B: $A=X\times [0,\frac{1}{2}+\epsilon)$ and $B=X\times (\frac{1}{2}-\epsilon,1]$ for any $0<\epsilon<\frac{1}{2}$. Now, $A\cap B=X\times (\frac{1}{2}-\epsilon,\frac{1}{2}+\epsilon)\simeq X$. So, since X is path connected Van Kampen applies. But each A,B are contractible, by contracting the interval to 0 or 1 respectively. So

$$\pi_1(X, x_0) = \pi_1(A, x_0) *_{\pi_1(A \cap B, x_0)} \pi_1(B, x_0) = 0 * 0 = 0$$

7) [20 pts] Shrinking Wedge of Circles: Let X be the subspace of \mathbb{R}^2 formed by taking a wedge sum at the origin of all the circles C_n of radius $\frac{1}{n}$ centered at $(0, \frac{1}{n})$. We will show that this easily obtained space X has an uncountable fundamental group:

i. [5 pts] The group $G = \prod_{i=1}^{\infty} \mathbb{Z}$ is the ordered set of infinitely many integers. Show that it is uncountable (by for example, comparing it to \mathbb{R}).

Let's show that $\Phi: \mathbb{R} \hookrightarrow G$. Let $a = a_1.a_2a_3a_4 \in \mathbb{R}$ be it's decimal expansion (with a_1 the integer part). Define $\Phi(a) = (a_1, a_2, \ldots)$. This is a well-defined injection. So G is uncountable.

ii. [8 pts] Show that for $\mathbf{a} = (a_1, a_2, \ldots) \in G$, there is $\gamma_{\mathbf{a}} \in \pi_1(X)$ such that $\gamma_{\mathbf{a}}$ loops a_1 -times around C_1 , then a_2 -times around C_2 , and so on (say on timescale $\left[\frac{1}{n+1}, \frac{1}{n}\right]$). In particular, show continuity.

Define γ_a as in the statement of the problem. It only goes to show that this operation is continuous as t=0 (otherwise it can be viewed as a standard loop on a circle).

Let $\epsilon > 0$. Then there exists $n \gg 0$ such that $\frac{1}{n} < \frac{\epsilon}{2}$. Then

$$\gamma_a(t) \in \bigcup_{i=n}^{\infty} C_i \subseteq D_{\frac{1}{n}}(\frac{1}{n})$$

So $|\gamma_a(t)| \leq \frac{2}{n} < \epsilon$.

iii. [7 pts] Show that the γ_a are non-homotopic, by considering retractions $r_n: X \to C_n$ sending all other circles to the origin.¹

If $\mathbf{a} \neq \mathbf{b}$, then $\exists n \in \{1, 2, 3, \ldots\}$ such that $a_n \neq b_n$. Consider $(r_n)_*(\gamma_{\mathbf{a}}) = a_n \in \mathbb{Z}$ and $(r_n)_*(\gamma_{\mathbf{b}}) = b_n$. These are distinct integers, so they couldn't have been homotopic to begin with (as $(r_n)_*$ is invariant under the class in π_1).

 $[\]overline{{}^{1}\text{Note this also distinguishes the space }X \text{ from } \bigvee_{i=1}^{\infty} S^{1}, \text{ which has countable fundamental group }\mathbb{Z}^{*\infty}.$

8) [5 pts] Define a covering space.

A covering space is a map $p: \tilde{X} \to X$ such that for every $x \in X$, there exists U open containing x such that

$$p^{-1}(U) = \coprod_{\alpha} U$$

9) [10 pts] Let $X = \bigcup_{\alpha} X_{\alpha}$ be a locally finite open cover of X. If $\tilde{X} = \coprod_{\alpha} X_{\alpha}$ is the disjoint union of the open sets in the cover, show that $p: \tilde{X} \to X$ is a covering space.²

Let $x \in X$. Then because the cover is locally finite, there exist only finitely $\max X_{\alpha_1}, \ldots, X_{\alpha_n}$ containing x. Therefore, $X_{\alpha_1} \cap \ldots \cap X_{\alpha_n} = U_x$ is an open set (because X is topological) and $p^{-1}(U_x) = \coprod_{i=1}^n U_x$. Thus p is a covering space.

²Therefore, nice open covers can be viewed as covering spaces.

10) [10 pts] Consider the cover of $X = S^1 \vee S^1$ given by the following picture. Present and describe in words $G(\tilde{X})$, the group of deck transformations of \tilde{X} over X.

p is a 2-sheeted normal (because taking a 180 degree spin of it doesn't change p) covering space. Therefore, $G(\tilde{X}) = \pi_1(X)/p_*(\pi_1(\tilde{X}))$. We note that the images of loops is exactly $\langle a, b^2 \rangle$, and therefore, $G(\tilde{X}) = \mathbb{Z}/2\mathbb{Z}$.

11) [15 pts] Let X and Y be path connected, locally connected spaces, and let \tilde{X} and \tilde{Y} be their respective universal covering spaces (so that \tilde{X} and \tilde{Y} are simply connected). Show that if $X \simeq Y$, then $\tilde{X} \simeq \tilde{Y}$. (**Hint:** lifting properties!)

Given \tilde{X}, \tilde{Y} are simply connected, their fundamental groups are 0. Therefore, by the lifting criterion, there exist maps \tilde{f}, \tilde{g} making the following diagram commute:

$$\tilde{X} \stackrel{\tilde{f}}{\longleftrightarrow} \tilde{Y} \\
\downarrow p \qquad \qquad \downarrow q \\
X \stackrel{f}{\longleftrightarrow} Y$$

This is true because clearly $f_*p_*\pi_1(\tilde{X}) = 0 \subseteq q_*\pi_1(\tilde{Y}) = 0$ and vice-versa. Here, $g: Y \to X$ is the homotopy inverse to f, so that $f \circ g \simeq Id_Y$.

Now, let's compare $\tilde{g} \circ \tilde{f}$ and $Id_{\tilde{X}}$. If we look at p of these maps, we know that $Id_X \simeq g \circ f$. $Id_{\tilde{X}}$ is a lift of the homotopy at time 0, so the homotopy extends to one above for some lift of Id_X , say $I\tilde{d}_X$. Now, $Id_{\tilde{X}}$ and $I\tilde{d}_X$ differ by a deck transformation. Call it ϕ . Therefore,

$$\tilde{g} \circ \tilde{f} \simeq I\tilde{d}_X = \phi \circ Id_{\tilde{X}}$$

or equivalently,

$$(\phi^{-1} \circ \tilde{g}) \circ \tilde{f} \simeq \phi^{-1} I \tilde{d}_X = I d_{\tilde{X}}$$

Similarly for $\tilde{f} \circ \tilde{g}$, $\exists \psi \in G(\tilde{Y})$ such that

$$\tilde{f} \circ \tilde{g} \simeq I\tilde{d}_Y = \psi \circ Id_{\tilde{Y}} = Id_{\tilde{Y}} \circ \psi$$

$$\tilde{f} \circ \tilde{g} \circ \psi^{-1} \simeq Id_{\tilde{Y}}$$

Applying the listed fact, we are done.