Parameter Efficient Fine-Tuning

План

- 1. Что хотим?
- 2. Базовые методы дообучения модели
- 3. PEFT

Так называемая база

ID – in distributionOOD – out of distribution

Adapters

Добавляем Adapter слой в блоки трансформера. Обучаем только его. Можем подбирать размерность, в которую переводит feedforward-down.

Low Rank Adaptation (LoRa)

Можем подбирать параметр r – ранг матриц A и B. В изначально инициализуется 0.

Приближаем матрицы весов матрицами меньшего ранга

BitFit (Bias-Terms Fine Tuning)

Обновляем только bias в линейных слоях модели

$$\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell}$$
 $\mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}_k^{m,\ell}\mathbf{x} + \mathbf{b}_k^{m,\ell}$
 $\mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}_v^{m,\ell}\mathbf{x} + \mathbf{b}_v^{m,\ell}$

Prefix tuning

Soft promt – обучаемый тензор, который конкатенируется с эмбеддингами текста при обучении.

Идея prefix tuning заключается в добавлении обучаемых тензоров к каждому блоку трансфомера. Кроме того, мы прогоняем soft promt через полносвязный слой.

Результаты

50k exam	22k examples							82k examples												
	-50		E2E			WebNLG										DART				
	BLEU	NIST	MET	R-L	CIDEr	BLEU			MET			TER ↓			BLEU	MET	TER \downarrow	Mover	BERT	BLEURT
						S	U	Α	S	U	Α	S	U	Α			11100			
										GP	T-2 _{ME}	DIUM								
FINE-TUNE	68.2	8.62	46.2	71.0	2.47	64.2	27.7	46.5	0.45	0.30				0.53	46.2	0.39	0.46	0.50	0.94	0.39
FT-TOP2	68.1	8.59	46.0	70.8	2.41	53.6	18.9	36.0	0.38	0.23	0.31	0.49	0.99	0.72	41.0	0.34	0.56	0.43	0.93	0.21
ADAPTER(3%)	68.9	8.71	46.1	71.3	2.47	60.4	48.3	54.9	0.43	0.38	0.41	0.35	0.45	0.39	45.2	0.38	0.46	0.50	0.94	0.39
ADAPTER(0.1%)	66.3	8.41	45.0	69.8	2.40	54.5	45.1	50.2	0.39	0.36	0.38	0.40	0.46	0.43	42.4	0.36	0.48	0.47	0.94	0.33
Prefix(0.1%)	69.7	8.81	46.1	71.4	2.49	62.9	45.6	55.1	0.44	0.38	0.41	0.35	0.49	0.41	46.4	0.38	0.46	0.50	0.94	0.39
		$GPT-2_{LARGE}$																		
FINE-TUNE	68.5	8.78	46.0	69.9	2.45	65.3	43.1	55.5	0.46				0.53	0.42	47.0	0.39	0.46	0.51	0.94	0.40
Prefix	70.3	8.85	46.2	71.7	2.47	63.4	47.7	56.3	0.45	0.39	0.42	0.34	0.48	0.40	46.7	0.39	0.45	0.51	0.94	0.40
5	141=					ř .														

Результаты

Model & Method	# Trainable Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	87.1 _{±.0}	$94.2_{\pm.1}$	$88.5_{\pm 1.1}$	$60.8_{\pm .4}$	$93.1_{\pm .1}$	$90.2_{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
RoB _{base} (Adpt ^D)*	0.9M	87.3±.1	94.7±.3	$88.4_{\pm .1}$	$62.6_{\pm .9}$	$93.0_{\pm .2}$	$90.6_{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB _{base} (LoRA)	0.3M	87.5 _{±.3}	$\textbf{95.1}_{\pm .2}$	$89.7 \scriptstyle{\pm .7}$	$63.4_{\pm 1.2}$	$\textbf{93.3}_{\pm.3}$	$90.8 \scriptstyle{\pm .1}$	$\textbf{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 _{±.2}	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	$\textbf{68.2}_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6 \scriptstyle{\pm .1}$	$\textbf{87.4}_{\pm 2.5}$	$\textbf{92.6}_{\pm.2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2±.3	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P)†	0.8M	90.5±3	96.6±.2	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8±3	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	89.9±.5	96.2±.3	88.7 _{±2.9}	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
RoB _{large} (Adpt ^H)†	0.8M	90.3±.3	96.3±.5	87.7 _{±1.7}	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5_{\pm,1}$	$72.9_{\pm 2.9}$	91.5±5	86.4
RoB _{large} (LoRA)†	60006757300							$\textbf{85.2}_{\pm 1.1}$		88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	91.9±.2	$96.9_{\pm .2}$	$92.6_{\pm.6}$	$72.4_{\pm 1.1}$	96.0+.1	92.9+.1	94.9±.4	$93.0_{\pm .2}$	91.3

- https://arxiv.org/pdf/2303.15647.pdf
- https://www.youtube.com/watch?v=Ylj9M_Ufy64&list=PLEwK9wdS5g0pc4 NeOQqGLPcxmBHGUjnWB&index=16
- https://arxiv.org/pdf/2106.09685.pdf
- https://magazine.sebastianraschka.com/p/understanding-parameterefficient
- https://habr.com/ru/articles/791966/