E1 215-O: Tutorial Questions

Linear and Non-linear Optimization

January 15, 2022

1. Let $x \in \mathbb{R}^n$ and $||x||_p = \left(\sum_{i=1}^n |x_i|\right)^{\frac{1}{p}}$ show that

$$||x||_2 \le ||x||_1$$

2. Verify the parallelogram law

$$||x + y||_2^2 + ||x - y||_2^2 = 2(||x||_2^2 + ||y||_2^2)$$

3. Consider a matrix

$$A = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right]$$

under what conditions A is positive definite?

4. Prove that the matrix Q is orthogonal

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

5. Show that

$$A = \{(x, y) \in \mathcal{X} | x^2 + y^2 \neq 1\}$$

is open {Hint: find union of open sets }

6. Let for $x, y \in \mathbb{R}$, let d(x, y) defined below be a notion of distance.

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

and let the ball be defined as $B_x(r) := \{y \in \mathbb{R} | d(x,y) < r\}$. Show that under the above assumptions the singleton $\{1\}$ is an open set. {Hint: find an r such that $B_1(r) = \{1\}$ }

7. State whether the following sets are compact in the space of \mathbb{R}^2

- (a) $A = \{[0,1] \times [0,1]\}$
- (b) $B = \{x \in \mathbb{R}^2 : ||x||_2 \le 2\}$
- (c) $C_1 = \{x \in \mathbb{R}^2 : ||x||_2 \le 2\}$
- (d) $C_2 = \{x \in \mathbb{R}^2 : ||x||_2 \ge 1\}$
- (e) $C_1 \cap C_2$

- 8. Consider the sequence $x_n = 5 + \frac{1}{n^3}$. Does the sequence converge as $n \to \infty$. If $\epsilon = 10^{-6}$, find the value of N_{ϵ} such that the criterion in the definition of limit holds.
- 9. Does the sequence $x_n = n^2 \sin(\frac{1}{n}) \log(1 + \frac{1}{n})$ converge as $n \to \infty$? As in question 8, if $\epsilon = 10^{-2}$, find N_{ϵ} (you may want to use a calculator for evaluating logarithmic expressions).
- 10. Show that x^2 is continuous at x = 1 using the ϵ - δ definition.
- 11. if $f(x) = x^3$, using the definition of continuity if we assign $\delta = 10^{-1/3}$, find the corresponding ϵ . (Optional: If we consider the function $f(x) = x^{1/(2k+1)}$ for some large k, observe how the delta values for some small ϵ . keep on increasing k, Comment.)
- 12. Let $G_n = \left[\frac{1}{n}, 1\right]$. Find $\bigcup_{i \in \mathbb{N}} G_i$. Is it open or closed? What do you infer from it? {Hint: The set of natural numbers is an infinite set.}
- 13. Let $G_n = \left(\frac{-1}{n}, \frac{1}{n}\right)$. Find $\bigcap_{i \in \mathbb{N}} G_i$. Is it an open set? What do you infer from it?