References

Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. *InterJournal*, Complex Systems:1695, 2006. URL https://igraph.org.

Mahdi Jalili. centiserve: Find Graph Centrality Indices, 2017. URL https://CRAN.R-project.org/package=centiserve. R package version 1.0.0.

Carter T. Butts. sna: Tools for Social Network Analysis, 2020. URL https://CRAN.R-project.org/package=sna. R package version 2.6.

Supplementary

Network statistics implemented in NBFvis. These functions could be found in the igraph, centiserve and snr packages.

Name	Description
Number of Nodes	The number of nodes in the neighborhoods
Degree	The number of edges the node has
Betweenness	The number of shortest paths that pass through the
	node
Closeness	The reciprocal of the sum of the length of the shortest
	paths between the node and all other nodes
Eigencentrality	It measures the influence of a node has in the net-
	work. If a node is linked by many nodes with high
	eigenvector centrality, then that node itself will have
	high eigenvector centrality.
The reciprocal of eccen-	The reciprocal of the longest shortest paths from the
tricity	node to other ones.
Subgraph centrality	It measures the number of subgraphs a node partic-
	ipates in, weighting them according to their size.
Load centrality	The fraction of all shortest paths that pass through
	that node.
Gil-Schmidt power cen-	It takes a value of 1 when the node is adjacent to all
trality index	reachable nodes, and approaches 0 as the distance
	from the node to each node approaches infinity.
Information centrality	It measures the harmonic mean length of paths end-
scores	ing at the node, which is smaller if the node has many
	short paths connecting it to other nodes.
Stress centrality	If the node has a high stress centrality, it is traversed
	by a high number of shortest paths.
The reciprocal of average	The reciprocal of the average of the shortest paths.
distance	

Barycenter centrality	The reciprocal of the total distance from the node to
	all other nodes
Variant closeness centrality	The sum of inversed distances to all other nodes
Residual closeness central-	The minimum of the closeness centrality of the node
ity	when one node is deleted.
Communicability be-	If a node v has a low communicability betweenness
tweenness centrality	centrality, there are few shortest paths pass through
,	v among the pairs of nodes.
Cross-clique connectivity	The number of cliques to which belongs.
Decay centrality	The sum of distances between a chosen node and
	every other node weighted by the decay
Diffusion Degree	The cumulative contribution score of the node itself
	and its neighbors in a diffusion process.
Geodesic 3-path centrality	The number of neighbors on a geodesic path less than
	3 away.
Laplacian centrality	The drop in the sum of squares of the eigenvalues in
	the Laplacian matrix when the node is removed.
Leverage centrality	It measures the relationship between the degree of a
	given node and the degree of each of its neighbors,
	averaged over all neighbors.
Lin centrality	It is a weighting closeness for graphs with infinite dis-
	tances using the square of the number of coreachable
	nodes.
Lobby centrality	The largest integer k such that x has at least k neigh-
	bors with a degree of at least k .
Markov centrality	It uses the mean first-passage time from every node
	to every other node to produce a centrality score for
	each node.
Maximum neighborhood	The size of the maximum connected component of
component	the neighborhood. The neighborhood here is the set
	of nodes adjacent to the node and does not contain
	this node.
Radiality centrality	High radiality indicates that the node is generally
	closer to the other nodes with respect to the diame-
	ter. Low radiality means that the node is peripheral.
Semi local centrality	The sum of the number of the nearest and the next
	nearest neighbors of the nodes who are the nearest
	neighbors of the given node.
The reciprocal of the topo-	The topological coefficient measures the extent to
logical coefficient	which a node shares neighbors with other nodes in
	an undirected graph.

Table 1: Centrality Table. We use implementations of these centrality measures from the R packages <code>igraph[Csardi</code> and Nepusz, 2006], <code>centiserve</code> [Jalili, 2017] and <code>sna</code> [Butts, 2020].