Confirmation No.: 1759

Attorney Docket No.: 7589.049.NPUS01

CLAIMS LISTING:

1. (Currently amended) A method for manufacturing a generally ring-shaped stator or rotor component (21) which is intended during operation to conduct a gas flow, comprising:

constructing a portion of said stator or rotor component (21) by steps including 1) providing a curved first wall part (1, 14, 15, 114) having one edge (3) bearing against a flat side (4) of a second wall part (4, 9, 109)[[,]] extending in the intended that extends in a direction corresponding to an eventual radial direction of the component[[,]] in such a way that the first wall part extends and curves in the intended a direction corresponding to an eventual circumferential direction of the component and also extends in a direction corresponding to an eventual axial direction of the component;[[,]] and in that 2) laser-welding the edge of the first wall part is then laser welded to the second wall part from an, in the circumferential direction, opposite side of the second wall part in relation to the first wall part in such a way that the joined-together portions of the wall parts form a T-shaped joint (5); and wherein the first wall part (1, 14, 15, 114) is arranged such that it also extends in an intended axial direction of the component.

wherein a sufficient number of stator or rotor component portions are so constructed and are mutually arranged so as to form the stator or rotor component, with the curved first wall parts of the stator or rotor components defining an axially extending, substantially annular flow-guiding surface that delimits a gas duct in said eventual radial direction.

- 2. (Currently amended) The method as recited in claim 1, wherein the first wall part (1, 14, 15, 114) of said stator or rotor component portion is placed essentially perpendicular to abuts the flat side of the second wall part (4, 9, 109) in generally perpendicular fashion.
- 3. (Currently amended) The method as recited in claim 1, wherein the second wall part (4, 9, 109) of said stator or rotor component portion is arranged such that it also extends in the intended axial direction corresponding to the eventual axial direction of the component.

Confirmation No.: 1759

Attorney Docket No.: 7589.049.NPUS01

4. (Cancelled)

5. (Currently amended) The method as recited in claim 1, wherein the second wall part (4, 9, 109), extending in the <u>direction corresponding to the eventual</u> radial direction <u>of the stator or rotor component</u>, is arranged so as to <u>circumferentially</u> limit [[a]] <u>said</u> gas duct (20) in the <u>direction corresponding to the eventual</u> circumferential direction of the component.

- 6. (Currently amended) The method as recited in claim 1, wherein the second wall part (4, 9, 109) is arranged such that it has [[the]] <u>an</u> essentially radial widening for guidance of the gas flow and/or transmission of load during operation of the component.
- 7. (Canceled) A method for manufacturing a stator or rotor component (21) which is intended during operation to conduct a gas flow, comprising:

providing a first wall part (1, 14, 15, 114) having one edge (3) bearing against the flat side (4) of a second wall part (4, 9, 109), extending in the intended radial direction of the component, in such a way that the first wall part extends in the intended circumferential direction of the component, and in that the edge of the first wall part is then laser-welded to the second wall part from an, in the circumferential direction, opposite side of the second wall part in relation to the first wall part in such a way that the joined together portions of the wall parts form a T-shaped joint (5) and wherein the first wall part (1, 14, 15, 114), extending in the circumferential direction, is arranged so as to limit a gas duct (20) in the radial direction.

Confirmation No.: 1759

Attorney Docket No.: 7589.049.NPUS01

8. (Canceled) A method for manufacturing a stator or rotor component (21) which is

intended during operation to conduct a gas flow, comprising:

providing a first wall part (1, 14, 15, 114) having one edge (3) bearing against a flat side

(4) of a second wall part (4, 9, 109), extending in the intended radial direction of the component,

in such a way that the first wall part extends in the intended circumferential direction of the

component, and in that the edge of the first wall part is then laser-welded to the second wall part

from an, in the circumferential direction, opposite side of the second wall part in relation to the

first wall part in such a way that the joined together portions of the wall parts form a T-shaped

joint (5) and wherein the first wall part (1, 14, 15, 114) has a shape which curves essentially in

the circumferential direction.

9. (Original) The method as recited in claim 1, wherein the first wall part (14, 15) is

placed with a second edge, which is opposite to the first-named edge, bearing against the flat

side of a further second wall part (10, 110), which is arranged at a distance in the circumferential

direction from the first-named second wall part (9), and is connected thereto.

10. (Currently amended) The method as recited in claim 9, wherein the second edge of

the first wall part (14, 15, 114) is also laser-welded to this further second wall part (10, 110)

from an, in the circumferential direction, opposite side of the second wall part in relation to the

first wall part in such a way that the joined-together portions of the wall parts form a T-shaped

joint (5).

11. (Currently amended) The method as recited in claim 9, wherein the two second wall

parts (9, 10, 109, 110) which are spaced apart in the circumferential direction constitute at least

part of two different blades or stays for guidance of a gas flow and/or transmission of load.

12. (Original) The method as recited in claim 9, wherein the two second wall parts (9,

10) are formed by a single, substantially U-shaped element (6).

4

Confirmation No.: 1759

Attorney Docket No.: 7589.049.NPUS01

13. (Original) The method as recited in claim 1, wherein the first and second wall part (9, 10, 14, 15) are arranged between an, in the radial direction, inner and outer ring

element (7, 8).

14. (Original) The method as recited in claim 13, wherein the second wall part (9, 10) is

connected to at least one of the ring elements (7, 8) by laser-welding from an, in the radial

direction, opposite side of the ring element in relation to the second wall part in such a way that

the joined-together portions form a T-shaped joint (5).

15. (Original) The method as recited in claim 12, wherein the first and second wall part

(9, 10, 14, 15) are arranged between an, in the radial direction, inner and outer ring element (7,

8) and the U-shaped element (6), prior to the laser-welding of the wall parts, is arranged between

the inner ring element (7) and the outer ring element (8).

16. (Canceled) The method as recited in claim 1, wherein the stator or rotor component

(21, 23) has an essentially circular cross-sectional shape and in that a plurality of ducts (20) for

conduction of the gas flow extend in the axial direction between an inner and an outer ring.

17. (Original) The method as recited in claim 1, wherein the stator or rotor component

(21, 23) is intended for a gas turbine.

18. (Original) The method as recited in claim 1, wherein the stator or rotor component

(21, 23) is intended for a jet engine.

5