

School of Computing

Creative Problem Solving: Inverting a Triangle of Coins

Prof. Leong Hon Wai

Department of Computer Science & USP
School of Computing
National University of Singapore
Email, FB: leonghw@comp.nus.edu.sg

Experience the joy of problem solving

Problem: Inverting a Triangle of Coins

- "Invert" a triangle of coins by moving as few coins as possible
- Let h := "height of triangle"
 m := "# of coins to move"

Question: What is the value of m, when h = 191?

Today is
19 Jan

Ask PQ...

Inverting a Triangle of Coins (1)

□ PQ: Try some small instances...

$$h = 1$$

*** TRIVIAL:**

$$\Box$$
 $h = 1$ $m = 0$

$$m = 0$$

(Trivial, but still important.)

Inverting a Triangle of Coins (2)

□ Now, try something bigger...

$$h = 2$$

*** TRIVIAL:**

- \Box h=2 m=1

(Trivial, but still important.)

(Simple, isn't it?)

Inverting a Triangle of Coins (3)

□ Now, try something bigger...

$$h = 3$$

*** RESULTS:**

 \Box h = 1 m = 0

 $\Box h = 2 \qquad m = 1$

 \Box h = 3 m = 2

(Trivial, but still important.)

(Simple, isn't it?)

(Getting interesting...)

Inverting a Triangle of Coins (4)

■ Now, try the original problem...

$$h = 4$$

Done! m = 3

*** RESULTS:**

$$\Box$$
 $h = 1$ $m = 0$

$$\Box$$
 h = 2 $m = 1$

$$\Box$$
 $h = 3$ $m = 2$

$$\Box h = 4 \qquad m = 3$$

Is there a pattern?

What about
$$h = 5$$
? $h = 191$

Moving coins will not work

PQ: Can we view problem from a different perspective?

We Need a Different Perspective!!

☐ Let's see....

- * How about... seeing them together?
- **♦ Let's move** *THEM*...

We Need a Different Perspective (2)

New Perspective

New Question:

How to turn the "orange coins" into the "blue coins"?

Need to move 10 coins!

We Need a Different Perspective (3)

New Operation:

Move the orange triangle around the blue triangle.

Need to move 8 coins!

We Need a Different Perspective (4)

New Operation:

Move the orange triangle around the blue triangle.

Need to move 6 coins!

We Need a Different Perspective (5)

We Need a Different Perspective (6)

Is this the maximum overlap?

Need to move 3 coins!

Try new insight on larger problem

Now try h = 5

Move triangle & maximum overlap

Maximizing Overlap for h=5 (1)

- ☐ There are 3 sides in each triangle.
 - At each side, we have a "non-overlapping" triangle!
 - ❖ Denote their heights by (a, b, c)

(Creative Problem Solving) Page 17

Maximizing Overlap for h=5 (2)

■ More configurations...

- * Note that (a + b + c) = 4 (an invariant)
- ❖ Which configuration gives minimum m?

Activity Period #4:

"Invert Triangle of Coins" for h=8 (DIY) (5 minutes)

Review of Activity #4

- □ Did you try with real coins?
 - ❖ Yes:

No: _____

- \Box What is the value of (a + b + c)?
- □ What configuration (a, b, c) is *minimum*?
 - $(a, b, c) = (_, _, _)$
 - ❖ How many coins moved?
 coins
- □ Was it easy?
- \Box Was it fun? h = 191

Maximizing Overlap is Easy...

 \Box Try for previous cases h = 3

* "Non-overlapping triangles with hts (a,b,c)

- \Box For h=2, we have (0,0,1) m=1
- \Box For h=3, we have (0,1,1) m=2
- \Box For h=4, we have (1,1,1) m=3
- \Box For h=5, we have (1,1,2) m=5
- □ For h=6, we have (1,2,2) m=7
- □ For h=7, we have (2,2,2) m=9
- □ For h=8, we have (2,2,3) m=12

Looking Back...

 \Box Can work out for h = 9, 10, 11, ..., 191

☐ The ANSWER is NOT so important, the *METHOD IS more important*!

☐ Where is the *Key Step*?

The Aha! moment

- Why was it not apparent to us at the beginning?
- ☐ How *did* we get to this step?

Reflections...

□ Creative Problem Solving

- Looking from a Different Perspective
- Problem Transformation
- Importance of Asking Questions!
- * The actual answer is not so important.
- The process is key and
- ***** It is FUN!

Thank you!

If you want to contact me, go email, FB at leonghw@comp.nus.edu.sg

