Sets & Relations

Basics of Sets

sets & Relations

Relational Database

×	У	Likes(x,y)	
	Alice	TRUE	
Alice	Jabberwock	FALSE	
是 了一个	Flamingo	TRUE	
	Alice	FALSE	
Jabberwock	Jabberwock	TRUE	
	Flamingo	FALSE	
Flamingo	Alice	FALSE	
	Jabberwock	FALSE	
	Flamingo	TRUE	

Relational DB Table

Likes				
X	у			
Alice	Alice			
Alice	Flamingo			
Jabberwock	Jabberwock			
Flamingo	Flamingo			

- Queries to the DB are set/logical operations
 - SELECT x

 FROM Likes

 WHERE y='Alice' OR y='Flamingo'

Sets: Basics

- Unordered collection of "elements"
 - $oe.g.: \mathbb{Z}, \mathbb{R}$ (infinite sets), oeta (empty set), oeta (1, 2, 5), ...
- Will always be given an implicit or explicit universe (universal set) from which the elements come
 - (Aside: In developing the foundations of mathematics, often one starts from "scratch", using only set theory to create the elements themselves)
- Set membership: e.g. 0.5 ∈ \mathbb{R} , 0.5 ∉ \mathbb{Z} , \emptyset ∉ \mathbb{Z}
- Set inclusion: e.g. Z, ⊆ \mathbb{R} , \emptyset ⊆ Z
- Set operations: complement, union, intersection, difference

Set Operations

Sets as Predicates

×	Winged(x)	Flies(x)	Pink(x)	inClub(x)
Alice	FALSE	FALSE	FALSE	TRUE
Jabberwock	TRUE	TRUE	FALSE	FALSE
Flamingo	TRUE	TRUE	TRUE	TRUE

- Given a predicate can define the set of elements for which it holds
 - WingedSet = { x | Winged(x) } = {J'wock, Flamingo}
 - FliesSet = { x | Flies(x) } = {J'wock, Flamingo}
 - PinkSet = { x | Pink(x) } = {Flamingo}
- © Conversely, given a set, can define a membership predicate for it e.g. given set $Club = \{Alice, Flamingo\}$. Then, define predicate inClub(x) s.t. $inClub(x) = True \ iff \ x \in Club$

Set Operations

Unary operator

Binary operators

Associative

S complement

Symbol: S

 $in\overline{S}(x) = \neg inS(x)$

S union T

Symbol: SUT

inS∪T(x)

= inS(x) \vee inT(x)

S <u>intersection</u> T

Symbol: S ∩ T

inS∩T(x)

= inS(x) \wedge inT(x)

S difference T

Symbol: S - T

(Alternately: S\T)

|inS-T(x)|

 \equiv inS(x) \land \neg inT(x)

 \equiv inS(x) \leftrightarrow inT(x))

 $S-T = S \cap \overline{T}$

S symmetric diff. T

Symbol: S \(D \) T

 $inS\Delta T(x)$

 \equiv inS(x) \oplus inT(x)

Note: Notation inS(x) used only to explicate the connection with predicate logic. Will always write $x \in S$ later.

De Morgan's Laws

- SUT = S∩T
 - - $\equiv \neg(x \in S \lor x \in T) \equiv \neg(x \in S) \land \neg(x \in T)$
 - $\equiv x \in \overline{S} \land x \in \overline{T} \equiv x \in \overline{S} \cap \overline{T}$

S U T

- $S \cap T = \overline{S} \cup \overline{T}$
 - - $\equiv \neg(x \in S \land x \in T) \equiv \neg(x \in S) \lor \neg(x \in T)$
 - $\equiv x \in \overline{S} \lor x \in \overline{T} \equiv x \in \overline{S} \cup \overline{T}$

Distributivity

```
R \cap (S \cup T) = (R \cap S) \cup (R \cap T)
          x \in R \cap (S \cup T) = 
               = x \in R \land (x \in S \lor x \in T) = (x \in R \land x \in S) \lor (x \in R \land x \in T)
               \equiv \mathbf{x} \in (\mathbf{R} \cap \mathbf{S}) \cup (\mathbf{R} \cap \mathbf{T})
  x \in R \cup (S \cap T) = 
               \equiv x \in R \lor (x \in S \land x \in T) \equiv (x \in R \lor x \in S) \land (x \in R \lor x \in T)
               \equiv x \in (R \cup S) \cap (R \cup T)
```

Set Inclusion

×	Winged(x) Flies(x)		Pink(x)
Alice	FALSE	FALSE	FALSE
Jabberwock	TRUE	TRUE	FALSE
Flamingo TRUE		TRUE	TRUE

- PinkSet ⊆ FliesSet = WingedSet
- S ⊆ T same as the proposition $\forall x x \in S \rightarrow x \in T$
- **③** S ⊇ T same as the proposition $\forall x \ x \in S \leftarrow x \in T$
- S = T same as the proposition ∀x x∈S ↔ x∈T

Set Inclusion

- S ⊆ T same as the proposition $\forall x \quad x \in S \rightarrow x \in T$
- If S = \emptyset , and T any arbitrary set, S ⊆ T
 - \bullet $\forall x$, vacuously we have $x \in S \rightarrow x \in T$
- \odot If $S\subseteq T$ and $T\subseteq R$, then $S\subseteq R$

If no such x, already done

- **②** Consider arbitrary $x \in S$. Since $S \subseteq T$, $x \in T$. Then since $T \subseteq R$, $x \in R$.
- $lackbox{0} S \subseteq T \longleftrightarrow \overline{T} \subseteq \overline{S}$

$$\equiv \ \forall x \ \underline{x \in \overline{T}} \to \underline{x \in \overline{S}}$$

Proving Set Equality

- To prove S = T, show $S \subseteq T$ and $T \subseteq S$
- ø e.g., L(a,b) = { x : ∃u,v ∈ \mathbb{Z} x=au+bv }

 M(a,b) = { x : (gcd(a,b) | x) }
- © [Recall] Theorem: L(a,b) = M(a,b)
- Proof in two parts:
 - lacksquare L(a,b) \subseteq M(a,b) : i.e., $\forall x \in \mathbb{Z}$ $x \in L(a,b) \rightarrow x \in M(a,b)$

Let x=au+bv. $gla, glb \Rightarrow glx$

First show that
g∈L(a,b)

(as the smallest +ve
element in L(a,b))

Let x=ng. But g=au+bv ⇒ x=au'+bv'

Inclusion-Exclusion

- S| + |T| counts every element that is in S or in T
 - But it double counts the number of elements that are in both:
 i.e., elements in S∩T
- So, |S|+|T| = |S∪T| + |S∩T|
- Or, |S∪T| = |S| + |T| |S∩T|

Cartesian Product

 \odot Not the same as $(R \times S) \times T$ (but "essentially" the same)

S

