CS 341 Automata Theory STUDENT NAME - EID Homework 11

Due: Tuesday, April 3

This assignment reviews Turing machine construction and covers Sections 17.3 - 17.6 and Chapter 18 and 19.

1) Define a Turing Machine M that computes the function $f: \{a,b\}^* \to N$, where:

$$f(x) =$$
the unary encoding of $max(\#a(x), \#b(x))$.

For example, on input aaaabb, M should output 1111. M may use more than one tape. It is not necessary to write the exact transition function for M. Describe it in clear English.

Solution. \Box

2) Construct a Turing machine M that converts binary numbers to their unary representations. So, specifically, on input < w >, where w is the binary encoding of a natural number n, M will output 1^n . (Hint: use more than one tape.)

Solution. \Box

3) In Example 17.9, we showed a Turing machine that decides the language WcW. If we remove the middle marker c, we get the language WW. Construct a Turing machine M that decides WW. You may exploit nondeterminism and/or multiple tapes. It is not necessary to write the exact transition function for M. Describe it in clear English.

Solution. \Box

4) In Example 4.9, we described the Boolean satisfiability problem and we sketched a nondeterministic program that solves it using the function choose. Now define the language $SAT = \{ < w > : w \text{ is a wff in Boolean logic and } w \text{ is satisfiable} \}$. Describe in clear English the operation of a nondeterministic (and possibly n-tape) Turing machine that decides SAT.

Solution. \Box

5) What is the minimum number of tapes required to implement a universal Turing machine?

Solution. \Box

6) Encode the following Turing Machine as an input to the universal Turing machine:

$$M = (K, \Sigma, \Gamma, \delta, q_0, \{h\}), \text{ where: } K = \{q_0, q_1, h\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c, \square\}, \text{ and } \delta = \{a, b\}, \Gamma = \{a, b\}, \Gamma$$

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1, b, \rightarrow)
q_0	b	(q_1, a, \rightarrow)
q_0		$(h, \square, \rightarrow)$
q_0	c	(q_0, c, \rightarrow)
q_1	a	(q_0, c, \rightarrow)
q_1	b	(q_0, b, \leftarrow)
q_1		(q_0, c, \rightarrow)
q_1	c	(q_1, c, \rightarrow)

	Solu	tion.		
7)	show impl be in	rchs Thesis makes the claim that all reasonable formal models of computation are equivalent. And yed in, Section 17.4, a construction that proved that a simple accumulator/register machine can emented as a Turing machine. By extending that construction, we can show that any computer of applemented as a Turing machine. So the existence of a decision procedure (stated in any notation the sthe algorithm clear) to answer a question means that the question is decidable by a Turing machine.	be an nat	
	can	suppose that we take an arbitrary question for which a decision procedure exists. If the question be reformulated as a language, then the language will be in D iff there exists a decision procedure ver the question. For each of the following problems, your answers should be a precise description lgorithm. It need not be the description of a Turing Machine:	to	
	(a)	* Let $L = \{ < M > : M \text{ is a DFSM that doesnt accept any string containing an odd number of 1 Show that } L \text{ is in } D.$	s}.	
		Solution.		
	(b)	Consider the problem of testing whether a DFSM and a regular expression are equivalent. Expression as a language and show that it is in D .	ess	
		Solution.		
8)		sider the language $L = \{w = xy : x, y \in \{a, b\}^* \text{ and } y \text{ is identical to } x \text{ except that each characterizated}\}$. For example ababaabbaabb $\in L$.	is	
	(a)	* Show that L is not context-free.		
		Solution.		
	(b)	Show a Post system that generates L .		
		Solution.		
9)	Cons	sider the language $L = \{ \langle M \rangle : M \text{ accepts at least two strings} \}.$		
	(a)	Describe in clear English a Turing machine M that semidecides L .		
		Solution.		
	(b)	Suppose we changed the definition of L just a bit. We now consider:		
$L' = \{ \langle M \rangle : M \text{ accepts exactly 2 strings} \}.$				
		Can you tweak the Turing machine you described in part a to semidecide L' ?		
		Solution.		