3.122 — Резонанс напряжений в последовательном контуре.

Цель работы. Исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Теоретическая часть. В данной работе исследуется явление резонанса в «обычной» одномерной физической системе. Величиной, характеризующей систему, является заряд – мы рассматриваем электрическую цепь, идеальный RLC-контур¹. Вся математика рассматривамого процесса сводится к решению неоднородного дифференциального уравнения

$$\ddot{q} + 2\gamma \dot{q} + \omega_0^2 q = \mathcal{E}_0 \sin \omega t, \tag{1}$$

получаемого из того факта, что алгебраическая сумма падений напряжений вдоль всего контура равна внешней ЭДС. Решать такое удобно над полем комплексных чисел; общее решение² есть сумма некоторого частного решения и решения соотв. однородного уравнения:

$$q = \frac{\mathscr{E}_0}{\omega_0^2 - \omega^2 + 2i\omega\gamma} e^{i\omega t} + e^{-\gamma t} (C_1 \cos \omega_0 t + C_2 \sin \omega_0 t); \tag{2}$$

Второе слагаемое есть собственные колебания системы, они достаточно быстро затухают, в результате устанавливаются колебания на частоте внешней вынуждающей силы. Мы исследуем здесь поведение системы в установившемся режиме.

Физический смысл имеет лишь вещественная часть полученного решения. По формуле Эйлера получаем выражение для амплитуды и фазы установившегося колебания:

$$a = \frac{\mathscr{E}_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \gamma^2}},$$

$$\tan \delta = \frac{2\omega\gamma}{\omega_0^2 - \omega^2}.$$
(3)

Максимум³ амплитуды достигается при $\omega = \sqrt{\omega_0^2 - 2\gamma^2}$. Практически важен случай, когда трение в системе мало, потому можно считать, что резонанс достигается при $\omega = \omega_0$; он и реализуется в нашей установке и рассматривается далее.

 $Q=2\pi\frac{W}{\mathrm{Left}},$

где W – энергия запасенная в системе, а ΔW – потери энергии (на трение) за один период. Итак, выше добротность = меньше потери на трение, меньше затухание колебаний. Смысл

 $^{^{2}}q$ здесь есть заряд конденсатора. В механике – координата точки.

Рис. 1: Резонансная кри-

 $^{^{3}}$ Почему увеличение трения смещает максимум на AЧX влево? Из тех же соображений, по которым частота свободных колебаний в системе с трением меньше, что ясно из механической аналогии – при горизонтальном движении груза на пружине при наличии трения он остановится (= отклонение достигнет максимума) раньше, чем при отсутствии трения. Впрочем, нужно обратить внимание на то, что частота свободных колебаний есть $\sqrt{\omega_0^2 - \gamma^2}$; максимум же АЧХ достигается при несколько меньшей частоте. Т. о. неверно утверждение, что резонанс достигается при равенстве частоты свободных колебаний системы и частоты внешней силы.

такого определения будет сейчас прояснен. Если мы хотим описать затухание в системе, то вместо энергии, вообще говоря, удобнее смотреть сразу на амплитуду. И действительно, вводят понятие логарифмического декремента затухания:

$$\delta = \ln \frac{x(t)}{x(t+T)},$$

где T — период колебаний. Для свободных колебаний получаем $\delta = \gamma T$. Используя тот факт, что энергия пропорциональна квадрату амплитуды, и считая трение малым⁴, мы легко получаем связь добротности и логарифмического декремента: $Q \approx \pi/\delta$. Если $\omega = 0$, то на систему действует постоянная сила, вызывающее статическое смещение $a_0 = \mathcal{E}_0/\omega_0$. Амплитуда при резонансе же $a_{\text{max}} = \mathcal{E}_0/(2\omega_0\gamma)$; т. о. получаем, что добротность $Q = a_{\text{max}}/a_0^5$. Итак, выше добротность контура — выше максимум резонансной кривой! В частности, если трения нет, то максимума нет в принципе, амплитуда может быть сколь угодно большой.

Пусть ω_1 и ω_2 — значения частоты, при которых энергия колебаний вдвое меньше энергии в максимуме. Снова используя известное отношение амплитуды и энергии и считая, что отклонение указанных частот от частоты резонанса на порядки меньше, чем, собственно, сами частоты, получаем приближенно

$$\Delta\omega \equiv \omega_2 - \omega_1 = 2\gamma = \omega_0/Q.$$

Стало быть, добротность характеризует ещё и ширину резонансной кривой! Чем выше добротность, тем выше максимум АЧХ и уже ширина резонансной кривой. Это даёт нам и способ её экспериментального измерения – ширина АЧХ при амплитуде $a_{\rm max}/\sqrt{2}$. Напоследок приведём выражение для добротности через параметры контура (легко получаемое из выражения связи добротности и логарифмического декремента): $Q = R\sqrt{\frac{L}{C}}$.

Смещение (заряд) отстаёт по фазе от внешней силы на величину δ . Как сразу видно из выражения 3, ФЧХ контура имеет вид, представленный на рис. 2.

Эксперимент. Вся наша работа состоит в том, что мы снимем АЧХ и ФЧХ последовательного колебательного контура и сравним полученные данные с изложенной выше теорией. Схему замечательной установки можно увидеть на рис. 3.

Первым делом исследуем явление резонанса. У нас есть 7 контуров (точнее, один с переменным конденсатором). Находим частоту резонанса и, используя выше формулы, последовательно вычисляем индуктивность катушки L, добротность Q, реактивное сопротивление контура $\rho = \sqrt{L/C}$, суммарное активное сопротивление

Рис. 2: Фазово-частотная характеристика

 R_{Σ} , эквивалентное последовательное сопротивление (ЭПС) R_S (обкладки конденсатора) и, наконец, активное сопротивление катушки R_L . Контур все-таки у нас неидеальный. Полученные данные приведены в таблице. Получаем средние значения сопротивления катушки и её индуктивности:

$$R_L \simeq 3.5 \; {
m Om},$$
 $L \simeq 980 \pm 5.5 \; {
m mk} \Gamma {
m H}.$

 $^{^4{}m B}$ общем случае получается менее красивое выражение с экспонентой.

 $^{^{5}}$ Сивухин вообще определяет так добротность. Считаю, что это методологически неверно.

⁶Активным и реактивным (пассивным) сопротивлением называют действительную и мнимую часть импеданса соответственно. Первое имеет смысл необратимых энергетических потерь, т. е. характеризует переход электромагнитной энергии в энергию механическую, тепловую и т. п., второе же – превращения электромагнитной энергии (поле конденсатора, катушки).

n	C , н Φ	f , к Γ ц	U, B	E, B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	R_S , Om	R_L , Om
1	24.8	32.3	2.55	0.1002	979.00	56.77	198.69	7.20	0.20	3.5
2	33.2	27.9	2.27	0.1001	980.15	49.09	171.82	7.17	0.17	3.5
3	47.6	23.3	1.95	0.1000	980.22	41.00	143.50	7.14	0.14	3.5
4	57.5	21.2	1.80	0.1000	980.17	37.30	130.56	7.13	0.13	3.5
5	68.0	19.5	1.67	0.0999	979.63	34.29	120.03	7.12	0.12	3.5
6	81.6	17.8	1.55	0.0998	979.74	31.31	109.57	7.11	0.11	3.5
7	102.8	15.9	1.40	0.0998	974.66	27.82	97.37	7.10	0.10	3.5

Рис. 3: Схема экспериментального стенда

Почему индуктивность меняется линейно? По-видимому, это можно объяснить тем, что конденсатор (?) сам обладает очень малой индуктивностью, проявляющейся при переключении его емкости.

Теперь глянем на АЧХ контуров n = 1 и n = 7.

Рис. 4: АЧХ первого контура, $C = 24.8 \text{ н}\Phi$

Рис. 5: АЧХ седьмого контура, $C=102.8~{\rm H}\Phi$

И построим те же АЧХ в безразмерном масштабе для сравнения:

Рис. 6: Сравнение АЧХ

Что же мы видим? Выше добротность \Rightarrow уже резонансная кривая. Графически можем определить добротность:

$$Q_1 = 50,$$

$$Q_7 = 26;$$

что вполне неплохо сходится с вычислениями.

Теперь перейдем к ФЧХ. К сожалению, с измерениями седьмого контура случилась беда – их нельзя использовать в работе. Потому ограничимся рассмотрением лишь первого контура. В безразмерном масштабе его ФЧХ выглядит так:

Рис. 7: ФЧХ первого контура, $C = 24.8 \text{ н}\Phi$

Ну, по очертанию хотя бы похоже на предсказанную зависимость. Из данного Φ ЧХ можно как-то даже оценить (если считать, что в левой части кривая выходит на плато) добротность: $Q_1 \approx 50$. Очень даже неплохо.

Вывод. Суть работы – решаем диффур, исследуем решение, затем снимаем $AYX/\Phi YX$ какогонибудь контура и сравниваем с теорией. Все замечательно сошлось.