Reinforcement Learning for Game Environment

Proximal Policy Optimization

Environment Overview

The **Environment** simulates an obstacle-navigation task inspired by the Chrome dinosaur game. The agent *must jump or squat to overcome obstacles to maximize total reward while progressing forward.*

Key Features:

- Agent: Moves at a fixed speed along the x-axis.
- **Obstacles:** Appear at varying distances.
- **Actions:** jump or squat.
- **Termination:** Collision or goal completion.

Markov Decision Process (MDP)

State Space

A 6-dimensional observation vector:

- 1. Player height
- 2. Jump/squat state (ternary, 1 is jumping, 2 is squatting)
- 3. Distance to next obstacle
- 4. Distance to second obstacle
- 5. Type of next obstacle
- 6. Type of second obstacle

Action Space

Discrete choices:

- **0:** No jump/squat
- 1: Jump
- 2: Squat

Reward Function

- +1 per step survived
- +50 for passing an obstacle
- -50 for collision
- +100 for reaching the goal
- -2 per jump or squat (penalizing unnecessary jumps/squats)

Terminal Conditions

- Collision with an obstacle
- Goal reached

Proximal Policy Optimization

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

Main hyperparameters:

- GAE(0.95)
- Clip Range: 0.2

Result

Training Curves

Mainly converge fast

Stuck at some seeds

Comparison to REINFORCE

Shallow setup: sample single trajectory per update

REINFORCE

PPO