Model Evaluation and Information Criteria

Felipe José Bravo Márquez

October 1, 2021

Model Evaluation and Information Criteria

- In this class we will introduce various concepts for evaluating statistical models.
- According to [McElreath, 2020], there are two fundamental kinds of statistical error:
 - Overfitting: models that learn too much from the data leading to poor prediction.
 - Underfitting: moderls that learn too little from the data, which also leads to poor prediction.
- We will study the following approaches to tackle these problems.
 - Regularization: a mechanism to tell our models not to get too excited by the data.
 - Information criteria and Cross-validation: scoring devices to estimate predictive accuracy of our models.
- In order to introduce information criteria, this class must also introduce some concepts of information theory.

- In the class of linear regression we learned that including more attributes can lead to a more accurate model.
- However, we also learned that adding more variables almost always improves the fit of the model to the data, as measured by the coefficient of determination R².
- This is true even when the variables we add to a model have no relation to the outcome.
- So it's no good to choose among models using only fit to the data.

- While more complex models fit the data better, they often predict new data worse.
- This means that a complex model will be very sensitive to the exact sample used to fit it.
- This will lead to potentially large mistakes when future data is not exactly like the past data.
- But simple models, with too few parameters, tend instead to underfit, systematically over-predicting or under-predicting the data.
- Regardless of how well future data resemble past data.
- So we can't always favor either simple models or complex models.
- Let's examine both of these issues in the context of a simple data example.

 We are going to create a data.frame containing average brain volumes and body masses for seven hominin species.

- It's not unusual for data like this to be highly correlated.
- Brain size is correlated with body size, across species.

- We will model brain size as a function of body size.
- We will fit a series of increasingly complex model families and see which function fits the data best.
- Each of these models will just be a polynomial of higher degree.

Let's calculate R² for each of these models:

```
> summary(reg.ev.1)$r.squared
[1] 0.490158
> summary(reg.ev.2)$r.squared
[1] 0.5359967
> summary(reg.ev.3)$r.squared
[1] 0.6797736
> summary(reg.ev.4)$r.squared
[1] 0.8144339
> summary(reg.ev.5)$r.squared
[1] 0.988854
> summary(reg.ev.6)$r.squared
[1] 1
```

- As the degree of the polynomial defining the mean increases, the fit always improves.
- The sixth-degree polynomial actually has a perfect fit, $R^2 = 1$.

Polynomial linear models of increasing degree, fit to the hominin data. Each plot shows the predicted mean in black, with 89% interval of the mean shaded. R^2 , is displayed above each plot. (a) First-degree polynomial. (b) Second-degree. (c) Third-degree. (d) Fourth-degree. (e) Fifth-degree. (f) Sixth-degree. Source: [McElreath, 2020].

- We can see from looking at the paths of the predicted means that the higher-degree polynomials are increasingly absurd.
- For example, reg.ev.6 the most complex model makes a perfect fit, but the model is ridiculous.
- Notice that there is a gap in the body mass data, because there are no fossil hominins with body mass between 55 kg and about 60 kg.
- In this region, the models has nothing to predict, so it pays no price for swinging around wildly in this interval.
- The swing is so extreme that at around 58 kg, the model predicts a negative brain size!
- The model pays no price (yet) for this absurdity, because there are no cases in the data with body mass near 58 kg.

- Why does the sixth-degree polynomial fit perfectly?
- Because it has enough parameters to assign one to each point of data.
- The model's equation for the mean has 7 parameters:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4 + \beta_5 x_i^5 + \beta_6 x_i^6 + \epsilon_i \quad \forall i$$

and there are 7 species to predict brain sizes for.

- So effectively, this model assigns a unique parameter to reiterate each observed brain size.
- This is a general phenomenon: If you adopt a model family with enough parameters, you can fit the data exactly.
- But such a model will make rather absurd predictions for yet-to-be-observed cases.

Too few parameters hurts, too

- The overfit polynomial models manage to fit the data extremely well.
- But they suffer for this within-sample accuracy by making nonsensical out-of-sample predictions.
- In contrast, underfitting produces models that are inaccurate both within and out of sample.
- For example, consider this model of brain volume:

$$y_i = \beta_0 + \epsilon_i \quad \forall i$$

- There are no predictor variables here, just the intercept β_0 .
- We can fit this model as follows:

```
> reg.ev.0 <- lm( brain ~ 1 , data=d )
> summary(reg.ev.0)$r.squared
[1] 0
```

• The value of R² is 0.

Too few parameters hurts, too

This model estimates the mean brain volume, ignoring body mass.

- As a result, the regression line is perfectly horizontal and poorly fits both smaller and larger brain volumes.
- Such a model not only fails to describe the sample.
- It would also do a poor job for new data

Roadmap

- The first thing we need to navigate between overfitting and underfitting problems is a criterion of model performance.
- We will see how information theory provides a useful criterion for model evaluation: the out-of-sample deviance.
- Once we learn about this criterion we will see how cross-validation and information criteria can help to estimate the out-of-sample deviance of a model.
- We will also learn how to use regularization to improve the out-of-sample deviance of a model.
- As usual, we will start with an example.

The Weatherperson

- Suppose in a certain city, a certain weatherperson issues uncertain predictions for rain or shine on each day of the year.
- The predictions are in the form of probabilities of rain.
- The currently employed weatherperson predicted these chances of rain over a 10-day sequence:

Day	1	2	3	4	5	6	7	8	9	10
Prediction	1	1	1	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Observed	ج	ج	ج	:	: Ö:	:	:Ö:	:Ö:	Ö	Ö:

- A newcomer rolls into town, and this newcomer boasts that he can best the current weatherperson, by always predicting sunshine.
- Over the same 10 day period, the newcomer's record would be:

Day	1	2	3	4	5	6	7	8	9	10
Prediction										
Observed	جي	جي	جي	÷Ö:	÷Ö:	÷Ö:	:Ö:	Ö:	Ö:	:Ö:

The Weatherperson

- Define hit rate as the average chance of a correct prediction.
- So for the current weatherperson, she gets $3 \times 1 + 7 \times 0.4 = 5.8$ hits in 10 days, for a rate of 5.8/10 = 0.58 correct predictions per day.
- In contrast, the newcomer gets $3 \times 0 + 7 \times 1 = 7$, for 7/10 = 0.7 hits per day.
- The newcomer wins.
- Let's compare now the two predictions using another metric, the joint likelihood: ∏ f(y_i; θ) for a frequentist model or ∏ f(y_i|θ) for a Bayesian one.
- The joint likelihood corresponds to the joint probability of correctly predicting the observed sequence.
- To calculate it we must first compute the probability of a correct prediction for each day.
- Then multiply all of these probabilities together to get the joint probability of correctly predicting the observed sequence.

The Weatherperson

- The probability for the current weather person is $1^3 \times 0.4^7 \approx 0.005$.
- For the newcomer, it's $0^3 \times 1^7 = 0$.
- So the newcomer has zero probability of getting the sequence correct.
- This is because the newcomer's predictions never expect rain.
- So even though the newcomer has a high average probability of being correct (hit rate), he has a terrible joint probability (likelihood) of being correct.
- And the joint likelihood is the measure we want.
- Because it is the unique measure that correctly counts up the relative number of ways each event (sequence of rain and shine) could happen.
- In the statistics literature, this measure is sometimes called the log scoring rule, because typically we compute the logarithm of the joint probability and report that.

Information and uncertainty

- So we want to use the log probability of the data to score the accuracy of competing models.
- The next problem is how to measure distance from perfect prediction.
- A perfect prediction would just report the true probabilities of rain on each day.
- So when either weatherperson provides a prediction that differs from the target, we can measure the distance of the prediction from the target.

Information and uncertainty

- What kind of distance should we adopt?
- Getting to the answer depends upon appreciating what an accuracy metric needs to do.
- It should appreciate that some targets are just easier to hit than other targets.
- For example, suppose we extend the weather forecast into the winter. Now there
 are three types of days: rain, sun, and snow.
- Now there are three ways to be wrong, instead of just two.
- This has to be reflected in any reasonable measure of distance from the target, because by adding another type of event, the target has gotten harder to hit.
- Before presenting a distance metric that satisfies the properties described above, we must introduce some concepts from information theory.

Information Theory

 The field of information theory, with Claude Shannon as one of its pioneering figures, was originally applied to problems of message communication, such as the telegraph.

- The basic insight is to ask: How much is our uncertainty reduced by learning an outcome?
- To answer this question we need a way to quantify the uncertainty inherent in a probability distribution.

Entropy

- Information entropy is a function that measures the uncertainty on probability functions.
- Let X be a discrete random variable of m different possible events, with a probaility mass function f, the entropy of X is definined as follows:

$$H(X) = -\mathbb{E}(\log f(x)) = -\sum_{i=1}^{m} f(x_i) \log f(x_i)$$
 (1)

- Usually we use log base 2, in which case the entropy units are called bits [Murphy, 2021].
- If X is continuous with density function f, the entropy H(X) takes the following form:

$$H(X) = -\mathbb{E}(\log f(x)) = -\int f(x) \log f(x) dx \tag{2}$$

 In plainer words: "The uncertainty contained in a probability distribution is the negative average log-probability of an event".

Entropy

- An example will help to demystify the function H(X).
- To compute the information entropy for the weather, suppose the true probabilities of rain (X=1) and shine (X=2) are $f(1)=\mathbb{P}(X=1)=0.3$ and $f(2)=\mathbb{P}(X=2)=0.7$, respectively.
- Then:

$$H(X) = -(f(1) \log f(1) + (f(2) \log f(2)) \approx 0.88$$

As an R calculation:

```
> f <- c( 0.3 , 0.7 )
> -sum( f*log2(f) )
[1] 0.8812909
```

Entropy

- Suppose instead we live in Abu Dhabi.
- Then the probabilities of rain and shine might be more like f(1) = 0.01 and f(2) = 0.99.

```
> f <- c( 0.01 , 0.99 )
> -sum( f*log2(f) )
[1] 0.08079314
```

- Now the entropy is about 0.08.
- Why has the uncertainty decreased?
- Because in Abu Dhabi it hardly ever rains.
- Therefore there's much less uncertainty about any given day, compared to a place in which it rains 30% of the time.
- These entropy values by themselves don't mean much to us, though.
- Instead we can use them to build a measure of accuracy. That comes next.

- How can we use information entropy to say how far a model is from the target?
- The key lies in divergence.
- Divergence: The additional uncertainty induced by using probabilities from one distribution to describe another distribution.
- This is often known as Kullback-Leibler divergence or simply K-L divergence, named after the people who introduced it for this purpose.
- Suppose for example that the true distribution of events is encoded by function f: f(1) = 0.3, f(2) = 0.7.
- Now, suppose we believe that these events happen according to another function q: q(1) = 0.25, q(2) = 0.75.
- How much additional uncertainty have we introduced, as a consequence of using q to approximate f?
- The answer is the the K-L divergence $D_{KL}(f, q)$.

• If *f* and *q* are probability mass functions, the K-L divergence is defined as follows:

$$D_{KL}(f,q) = \sum_{i=1}^{m} f(x_i)(\log f(x_i) - \log q(x_i)) = \sum_{i=1}^{m} f(x_i) \log \left(\frac{f(x_i)}{q(x_i)}\right)$$
(3)

```
> f<-c(0.3,0.7)
> q<-c(0.25,0.75)
> sum(f* log2(f/ q))
[1] 0.00923535
```

This naturally extends to continuous density functions as well [Murphy, 2021]:

$$D_{KL}(f,q) = \int f(x) \log \left(\frac{f(x)}{q(x)}\right) dx \tag{4}$$

- In plainer language, the divergence is the average difference in log probability between the target (f) and model (g).
- This divergence is just the difference between two entropies.
- The entropy of the target distribution f and the cross entropy arising from using q to predict f.

Cross entropy and divergence

 When we use a probability distribution q to predict events from another distribution f, this defines something known as cross entropy H(f, q):

$$H(f,q) = -\sum_{i=1}^{m} f(x_i) \log q(x_i)$$
 (5)

- The notion is that events arise according to f, but they are expected according to the q, so the entropy is inflated, depending upon how different f and q are.
- Divergence is defined as the additional entropy induced by using q.
- So it is the difference between H(f), the actual entropy of events, and H(f,q):

$$D_{KL}(f,q) = H(f,q) - H(f)$$
(6)

- So divergence really is measuring how far q is from the target f, in units of entropy.
- Notice that which is the target matters: H(f,q) does not in general equal H(q,f).

• When f = q, we know the actual probabilities of the events and the divergence becomes zero:

$$D_{KL}(f,q) = D_{KL}(f,f) = 0$$

```
> q <- f
> sum(f*log2(f/ q))
[1] 0
```

- As a grows more different from f, the divergence D_{KL} also grows.
- Suppose the true target distribution is $f = \{0.3, 0.7\}$.
- Suppose the approximating distribution q can be anything from $q = \{0.01, 0.99\}$ to $q = \{0.99, 0.01\}$.
- Let's build a plot with q(1) on the horizontal axis and the divergence $D_{KL}(f,q)$ on vertical one.

```
t. <-
  tibble(f 1 = .3,
        f 2 = .7.
        q 1 = seq(from = .01, to = .99, bv = .01)) %>%
  mutate(q_2 = 1 - q_1) %>%
  mutate(d_kl = (f_1 * log2(f_1 / g_1)) + (f_2 * log2(f_2 / g_2)))
+ %>%
  qqplot(aes(x = q 1, v = d kl)) +
  geom\ vline(xintercept = .3, linetype = 2) +
  qeom_line(size = 1.5) +
  annotate(geom = "text", x = .4, y = 1.5, label = "q = f",
           size = 3.5) +
  labs(x = "q(1)",
       v = "Divergence of g from f")
```


- Only exactly where q = f, at q(1) = 0.3, does the divergence achieve a value of zero. Everyplace else, it grows.
- Since predictive models specify probabilities of events (observations), we can
 use divergence to compare the accuracy of models.

Estimating divergence

- To use D_{KL} to compare models, it seems like we would have to know f, the target probability distribution.
- In all of the examples so far, I've just assumed that *f* is known.
- But when we want to find a model q that is the best approximation to f, the "truth," there is usually no way to access f directly.
- We wouldn't be doing statistical inference, if we already knew f.
- But there's an amazing way out of this predicament.
- It helps that we are only interested in comparing the divergences of different candidates, say q and r.
- In that case, most of f just subtracts out, because there is a $\mathbb{E}(\log f(x))$ term in the divergence of both q and r.
- This term has no effect on the distance of q and r from one another.

Estimating divergence

- So while we don't know where f is, we can estimate how far apart q and r are, and which is closer to the target.
- All we need to know is a model's average log-probability: $\mathbb{E}(\log q(x))$ for q and $\mathbb{E}(\log r(x))$ for r.
- To approximate the relative value of $\mathbb{E}(\log q(x))$, we can use the log-probability score of the model:

$$S(q) = \sum_{i=1}^{m} \log q(x_i)$$
 (7)

- This sore is an estimate of $\mathbb{E}(\log q(x))$, just without the final step of dividing by the number of observations.
- It is also an approximation of the K-L divergence of the model relative to the unknown target model.

Estimating divergence

 Most of the standard model fitting functions in R support "logLik", which computes the sum of log-probabilities, usually known as the log-likelihood of the data.

```
> logLik(reg.ev.1)
'log Lik.' -47.46249 (df=3)
> logLik(reg.ev.2)
'log Lik.' -47.13276 (df=4)
```

- Recall that the absolute magnitude of these values are not interpretable.
- Only the difference S(q) S(r) informs us about the divergence of each model from the unknown target f.

Deviance

It is also quite common to see something called the deviance, which is S(q) multiplied by -2.

$$D(q) = -2 \times S(q) = -2 \sum_{i=1}^{m} \log q(x_i)$$
 (8)

- The 2 is there for historical reasons.
- When comparing the deviance, smaller values are better.

```
> -2*logLik(reg.ev.1)
'log Lik.' 94.92499 (df=3)
> -2*logLik(reg.ev.2)
'log Lik.' 94.26553 (df=4)
> -2*logLik(reg.ev.3)
'log Lik.' 91.66948 (df=5)
> -2*logLik(reg.ev.4)
'log Lik.' 87.85016 (df=6)
```

From deviance to out-of-sample

- Deviance has the same flaw as R²: It always improves as the model gets more complex.
- It is really the deviance on new data that interests us.
- When we usually have data and use it to fit a statistical model, the data comprise a training sample.
- Parameters are estimated from it.
- Then we can imagine using those estimates to predict outcomes in a new sample, called the test sample.
- We can compute the deviance on the test sample to obtain the out-of-sample deviance.
- Let's explore it with an example.

From deviance to out-of-sample

Suppose we have the following data generation process and we fit linear regressions with between 1 and 5 free parameters to the data:

Data generating model:
$$y_i \sim \text{Normal}(\mu_i, 1)$$

 $\mu_i = (0.15)x_{1,i} - (0.4)x_{2,i}$
Models fit to data: $\mu_i = \alpha$
 $\mu_i = \alpha + \beta_1 x_{1,i}$
 $\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i}$
 $\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$
 $\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \beta_4 x_{4,i}$

- Since the "true" model has non-zero coefficients for only the first two predictors, we can say that the true model has 3 parameters.
- In other words, x_3 and x_4 as uncorrelated with y.

From deviance to out-of-sample

 The following diagram shows in-sample and out-of-sample deviance scores for 10,000 simulations of 20 training and 20 testing data points from our data generation process.

From deviance to out-of-sample

- Models with different numbers of predictor variables are shown on the horizontal axis.
- Deviance across 10,000 simulations is shown on the vertical.
- Blue shows deviance in-sample, the training data.
- Black shows deviance out-of-sample, the test data.
- Points show means, and the line segments show \pm 1 standard deviation.
- A smaller deviance means a better fit.

From deviance to out-of-sample

- Regarding the in-sample deviance we see that with increasing numbers of parameters, the average deviance declines.
- This is the same phenomenon we saw earlier with R^2 .
- On the other hand, the out-of-sample deviance is smallest on average for 3 parameters, which is the data-generating model
- And it gets worse (increases) with the addition of each parameter after the third.
- The point of this thought experiment is to demonstrate how deviance behaves, in theory.
- While deviance on training data always improves with additional predictor variables, deviance on future data may or may not.

Cross Validation

- We just showed how to estimate the out-of-sample deviance by evaluating the model on observations that were not used to fit the model.
- However, in many cases, we do not want to waste a portion of our data just for evaluation.
- So what is usually done is cross-validation: to divide the sample in a number of chunks, called "folds".
- Then the model is asked to predict each fold, after training on all the others.
- We then average over the score (e.g., deviance) for each fold to get an estimate of out-of-sample performance.
- The minimum number of folds is 2.
- At the other extreme, you could make each point observation a fold and fit as many models as you have individual observations.
- This is called leave-one-out cross-validation (often abbreviated as LOOCV).
- The key trouble with leave-one-out cross-validation is that, if we have 1000 observations, that means computing 1000 models.
- That can be time consuming.

Cross Validation

- The root of overfitting is a model's tendency to get overexcited by the training sample.
- One way to prevent a linear model to overfit the training data is regularization.
- From a frequentist point of view, the most popular regularization technique is ridge regression.
- In this approach we penalize large parameter values β in the likelihood function.
- We add a penalization term to the target function SSE to keep the squares of the parameter values low:

$$\operatorname{argmin}_{\beta} SSE(\beta) + \lambda \sum_{j=0}^{m} \beta_{j}^{2}$$
 (9)

lacktriangle The value of λ is an hyper-parameter that controls the ammount of overfitting.

- If λ is zero, we are just doing least mean squares.
- If it is too large, on the other hand, we risk underfitting.
- This value is usually "tuned" on an independent partition of data referred to as "validation set".
- The function lm.ridge built into R's MASS library implements the ridge regression method.

- Ridge regression is an example of how a statistical procedure can be understood from both Bayesian and non-Bayesian perspectives.
- From a Bayesian point of view, ridge regression is equivalent to setting a Gaussian prior centered at zero for each β coefficient.
- In this setting, the value of σ controls the ammount of regularization.
- For example, a prior $\beta \sim \text{Normal}(0, 1)$ says that, before seeing the data, the machine should be very skeptical of values above 2 and below -2.
- In the next slide, we repeat the experiment of computing the in-sample and out-of-sample deviance for models with different number of attributes using different regularization priors.
- The data generation process is the same as before.

- The points in both plots are the same as in previous figure (no regularization).
- The lines show training (blue) and testing (black) deviance for three regularizing priors.
- Dashed: Each beta-coefficient is given a Normal(0, 1) prior. Thin solid: Normal(0, 0.5). Thick solid: Normal(0, 0.2).

- The training deviance always increases (gets worse) with tighter priors.
- The thick blue trend is substantially larger than the others.
- This is because the skeptical prior prevents the model from adapting completely to the sample.
- But the test deviances, out-of-sample, improve (get smaller) with the tighter priors.
- The model with three parameters is still the best model out-of-sample.
- The regularizing priors have little impact on its deviance.
- But also notice that as the prior gets more skeptical, the harm done by an overly complex model is greatly reduced.
- For the Normal(0, 0.2) prior (thick line), the models with 4 and 5 parameters are barely worse than the correct model with 3 parameters.
- If we can tune the regularizing prior right, then overfitting can be greatly reduced.

Information criteria

- Information criteria are a group of scoring devices that construct a theoretical estimate of the relative out-of-sample deviance using just the training data.
- They are a cheaper alternative to cross-validation.
- The most known information criterion is the Akaike information criterion, abbreviated AIC.
- AIC provides a surprisingly simple estimate of the average out-of-sample deviance:

$$AIC = D_{\text{train}} + 2p \tag{10}$$

where D_{train} is the in-sample deviance, and p is the number of free parameters to be estimated in the model.

• In a linear regression model, p equals to the number of β coefficients (including the intercept) plus 1, to account to the model's standard deviation σ .

Akaike information criterion

We can calculate AIC for the "reg.ev.1" model as follows:

```
> -2*logLik(reg.ev.1)+2*3
'log Lik.' 100.925 (df=3)
```

- In this model p = 3, two β coefficients (β_0, β_1) and σ .
- AIC can be computed directly in R using the "AIC" function:

```
> AIC(reg.ev.1)
[1] 100.925
> AIC(reg.ev.2)
[1] 102.2655
> AIC(reg.ev.3)
[1] 101.6695
> AIC(reg.ev.4)
[1] 99.85016
> AIC(reg.ev.5)
[1] 82.16384
```

 In AIC, the lower the better, so the criterion is still preferring overfitted models in this example.

Akaike information criterion

- Let's try to understand with an example where the AIC formula comes from.¹
- The figure below shows again the in-sample and out-of-sample deviances for the simulated data.

https://barumpark.com/blog/2018/aic-and-bic/

¹A more detailed derivation can be found here:

Akaike information criterion

- The vertical line segments measure the average distance between training deviance (blue) and test deviance (open black).
- Each distance is nearly twice the number of parameters, as labeled on the horizontal axis
- The dashed lines show exactly the blue points plus twice the number of parameters, tracing closely along the average out-of-sample deviance for each model.
- These lines therefore show AIC for each model, an approximation of the out-of-sample deviance.

Information criteria

- AIC provides an approximation of predictive accuracy, as measured by out-of-sample deviance.
- All information criteria aim at this same target, but are derived under more and less general assumptions.
- AIC is just the oldest and most restrictive.
- AIC is commonly used in frequentist models fitted with maximum likelihood estimation.
- When employed in a Bayesian setting, it assumes that the priors are flat and the posterior is approximately a multivariate Gaussian.
- Two more-general criteria are the Deviance Information Criterion (DIC) and the Widely Applicable Information Criterion (WAIC).
- DIC accommodates informative priors, but still assumes that the posterior is multivariate Gaussian.
- WAIC is more general yet, making no assumption about the shape of the posterior.
- We will only study DIC in this class.

- The Deviance Information Criterion (DIC) is a widely used and easy to compute Bayesian information criterion.
- DIC is essentially a version of AIC that is aware of informative priors.
- Like AIC, it assumes a multivariate Gaussian posterior distribution.
- This means if any parameter in the posterior is substantially skewed, and also has a substantial effect on prediction, then DIC like AIC can go horribly wrong.

- DIC is calculated from the posterior distribution of the training deviance.
- What does it mean for the deviance to have a posterior distribution?
- Since the parameters have a posterior distribution, and since the deviance is computed from the parameters, deviance must also have a posterior distribution.
- Classical "deviance" is defined at the MAP values.
- But in principle the posterior distribution provides information about predictive uncertainty.
- That uncertainty turns out to help us estimate out-of-sample deviance.

- So define *D* now as the posterior distribution of deviance.
- This means we compute deviance (on the training sample) for each set of sampled parameter values in the posterior distribution.
- So if we draw 10,000 samples from the posterior, we compute 10,000 deviance values.
- Let \overline{D} indicate the average of D.
- Also define \hat{D} as the deviance calculated at the posterior mean.
- This means we compute the average of each parameter in the posterior distribution.
- Then we plug those averages into the deviance formula to get \hat{D} out.
- Once you have \overline{D} and \hat{D} , DIC is calculated as:

$$DIC = \overline{D} + (\overline{D} - \hat{D}) = \overline{D} + \rho_D \tag{11}$$

- The difference $\overline{D} \hat{D} = p_D$ is analogous to the number of parameters used in computing AIC.
- It is an "effective" number of parameters that measures how flexible the model is in fitting the training sample.
- More flexible models entail greater risk of overfitting.
- So this p_D term is sometimes called a penalty term.
- It is just the expected distance between the deviance in-sample and the deviance out-of-sample.
- In the case of flat priors, DIC reduces directly to AIC, because the expected distance is just the number of parameters.
- But more generally, p_D will be some fraction of the number of parameters, because regularizing priors constrain a model's flexibility.
- The function "DIC" in the "rethinking" package will compute DIC for a model fit with "quap" or "ulam".

- Let's compare DIC for three Bayesian linear models for the Howell data.
- b.reg1: a simple linear regression of height using weight as a predictor.
- b.reg2: a multivariate linear regression of height using weight and age as predictors.
- b.reg3: a polynomial regression of height using weight and weight square as predictors.

```
library(rethinking)
data(Howell1)
d <- Howell1
d2 <- d[ d$age >= 18 , ]

b.reg1 <- quap(
    alist(
        height ~ dnorm( mu, sigma ),
        mu <- b0 + b1*weight,
        b0 ~ dnorm( 150 , 50 ) ,
        b1 ~ dnorm( 0 , 1) ,
        sigma ~ dunif( 0 , 50 )
        ) , data=d2 )</pre>
```

```
b.reg2 <- quap(
  alist(
    height ~ dnorm( mu, sigma ),
    mu <- b0 + b1*weight+b2*age,
   b0 ~ dnorm( 150 , 50 ) ,
    b1 ~ dnorm( 0 , 1) ,
   b2 ~ dnorm( 0 , 1) ,
    sigma \sim dunif(0, 50)
  ) , data=d2 )
b.reg3 <- quap(
  alist(
    height ~ dnorm( mu, sigma ),
    mu <- b0 + b1*weight+b2*weight^2,
    b0 ~ dnorm(150,50),
    b1 ~ dnorm( 0 , 1) ,
   b2 ~ dnorm( 0 , 1) ,
    sigma \sim dunif(0,50)
  ) , data=d2 )
```

Let's compute DIC for each model:

```
> DIC(b.reg1)
[1] 2148.409
attr(,"pD")
[1] 3.190277
> DIC(b.reg2)
[1] 2149.218
attr(,"pD")
[1] 3.941273
> DIC(b.reg3)
[1] 2149.858
attr(,"pD")
[1] 3.805133
```

- In this case the lowest (better) score in achieved by the simplest model.
- What we have just done is to use the DIC information criterion for model comparison.

• With the definition of DIC in hand, let's review one more simulation exercise.

 The figure above shows the results of 10,000 simulations each for the five familiar models with between 1 and 5 parameters.

- The plot displays only out-of-sample deviance now, for simplicity.
- The black points are average out-of-sample deviance resulting from simulations with nearly flat priors.
- The blue points result from simulations using regularizing Normal(0, 0.5) priors.
- The black and blue lines show the estimated out-of-sample deviance from DIC, with colors corresponding to groups of points.
- DIC is an accurate estimate of out-of-sample deviance, being within 1 point of deviance of the actual average in most cases.

- Also notice that the regularizing prior (blue) still helps, and that DIC tracks this help.
- This suggests that using both regularization and information criteria will always beat using only one or the other alone.
- Regularization, as long as it's not too strong, reduces overfitting for any particular model
- Information criteria instead help us measure overfitting across models fit to the same data.
- These are complementary functions.
- And since both are very easy to use and widely available, there's no reason to shy away from their use.

Conclusions

- This class has been a marathon.
- It began with the problem of overfitting, a universal phenomenon by which
 models with more parameters fit a sample better, even when the additional
 parameters are meaningless.
- Theree common tools were introduced to address over-fitting: regularization, cross-validation, and information criteria.
- Regularization reduces overfitting during estimation, and both cross-validation and information criteria help estimate the degree of overfitting.
- In all cases, keep in mind that these tools are heuristic.
- They provide no guarantees.
- No statistical procedure will ever substitute for iterative scientific investigation.

References I

McElreath, R. (2020).

Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press.

Murphy, K. P. (2021).

Probabilistic Machine Learning: An introduction.

MIT Press.