Minors of sets

Shigeo Hattori

November 9, 2019

First version: September, 2019
bayship.org@gmail.com
https://github.com/bayship-org/mathematics

1 Contents

The first two pages are the main part. The first page gives the main definition by examples. The second page gives the main definitions formally. The rest pages give definitions used in propositions and proofs and prove the propositions which states that the main definitions are super classes or sub classes of standard notions of mathematics.

2 Main definition by examples

Some words or some notations in this page are possibly not clear for some read-1 ers. All of them will be formally defined in the next page. 2 Let (X, T^2, M^2) denote the 2-dimensional Euclidean space where T^2 is the topology and M^2 is the metric table. Let $S1 := \{L1 \mid L1 \text{ is a subspace of } X \text{ and } L1 \text{ is a closed straight line segment} \}$ of length 1 in terms of M^2 }. As a remark, L1 represents (a subset of X) and (the restriction of T^2 at (L1 as a subset of X)). Meanwhile L1 has no information in terms of M^2 . Let $S2 := \{L2 \mid \exists L1 \in S1 \text{ such that } L2 \text{ is homeomorphic to } L1\}.$ Then S1 and S2 are not topologically equivalent. For example, some distinct two members of S2 intersect to each other exactly at two or more many countable points whereas the same fails for S1 in place of S2. 12 Though there are needs to state that S1 and S2 are almost topologically equivalent. For example, it is true that (A1.) $S1 \subset S2$. And it is possibly true that

are topologically equivalent, then $(S1, L1, L3)$ and $(S1, L2, L3)$ are also topo-	16
logically equivalent.	17
If (*A1 and *A2) holds for $(S1, S2)$ then $S1$ is said a minor of $S2$.	18
	19
3 Main definitions	20
First of all, $\forall m$ is said a memBer if it is a member of some set.	21
Take $\forall c$ as a chain of set ¹ membership. Then all member of c is said a deep	22
member of the maximum member of c . And all member m is said a constant-	23
\mathbf{memBer} if all deep member of m is not a point. And all member m is said an	24
2 end-memBer if m is either a constant-memBer or a point.	25
Needless to say all topological space is a memBer and all memBer m is expressed	26
as a deep graph. To ³ resolve "deep graph", take $\forall m$, then the deep graph of	27
m is defined as the directed graph (V, E) on the set V of all deep members of	28
$m \text{ such that } E = \{(v1, v2) \in V * V \mid v1 \in v2\}.$	2 9
Ultimately, two memBers are said isomorphic or isomorphic by f if (their	30
deep graphs are isomorphic by f as a graph isomorphism and relate-constant-	31
memBer (f) . To resolve "relate-constant-memBer", take $\forall L$ as a binary relation,	32
then it is written as relate-constant-memBer (L) if (take $\forall (x,y) :\in \mathcal{L}$ such	33
that either x or y is a constant-memBer, then $x = y$).	34
	35
Shifting to the notion of minors of memBers.	36
Take $\forall (m1, m2)$ such that $Space(m1) \subset Space(m2)$.	37
Then $m1$ is said a minor of $m2$ if *1 implies *2.	38
1 Take $\forall (d1, d2, d3)$ as deep members of $m1$ such that	39
((m2, d1, d3), (m2, d2, d3)) are isomorphic).	40
2 $((m1, d1, d3), (m1, d2, d3))$ are isomorphic.	41

(A2.) for all three members (L1, L2, L3) of S1, if (S2, L1, L3) and (S2, L2, L3)

 $^{^{1}\}mathrm{The}$ order implies that all member is smaller than the set.

²This word will not be used in the rest.

 $^{^3}$ In this article, "to resolve" means to define the meaning of words after using the words.

4 Notations	42
Consider a proposition, e.g., a and b .	43
And consider a proposition, e.g., $a \wedge b$.	44
The two example propositions are unclear whether they are equivalent to each	45
other.	46
In this article, the two are possibly different.	47
Speaking simply, " a and b " are not checked by the author(me) if it can be commutative.	48 49
In this sense, "a and b" is written as "a $and \wedge b$ ".	50
And in this sense, "a or b" is written as " $a or \lor b$ ".	51
As a remark, I don't have any actual example of " a and b " which is not com-	52
mutative.	53
	54
Definition 4.1 (Restriction of binary relation).	55
Take $\forall (L, X, Y)$ as a binary relation L and sets (X, Y) .	56
$L[X] := \{ (x, y) \in L \mid x \in X \}.$	57
$L[,Y] := \{(x,y) \in L \mid y \in Y\}.$	58
5 Properties of equivalence relation	59
Proposition 1 (Reflexive, symmetry, transitive properties).	60
The relation by isomorphisms of memBers has properties of reflexive, symmetry	61
and transitive.	62
Proof.	63
	00
• *1 has been proved in graph theory.	0.4
	64
• It is trivial that (*2 $_{and} \wedge \dots _{and} \wedge $ *5) holds.	65
 It is trivial that (*2 and ∧ and ∧ *5) holds. Hence this proposition holds. 	
	65
 Hence this proposition holds. 1 The relation by graph isomorphisms has properties of reflexive, symmetry and transitive. 	65 66 67
 Hence this proposition holds. 1 The relation by graph isomorphisms has properties of reflexive, symmetry 	65 66 67 68
 • Hence this proposition holds. 1 The relation by graph isomorphisms has properties of reflexive, symmetry and transitive. 2 Take ∀f₁, f₂, f₃ as graph isomorphisms such that 	65 66 67 68 69

4 relate-constant-memBer (f_1) = relate-constant-memBer (f_1^{-1}) and \land	73
5 (relate-constant-memBer (f_1) and \land relate-constant-memBer (f_2)) \equiv relate-constant-memBer $(f_2 \circ f_1)$	74 75
	76
6 Homeomorphic topological spaces as isomor-	77
phic memBers	78
Definition 6.1.	79
Take $\forall (m1, m2, c)$ such that (80
c is a chain of set membership $_{and}\wedge$	81
m1 is the ⁴ minimum member of c	82
m2 is the ⁵ maximum member of c .	83
).	84
Then define (*1 $_{and} \land \dots _{and} \land \ *5$).	85
1 $m1$ is said a deep member of $m2$.	86
	87
Hence all memBer is a deep member of itself.	88
2 c - 1 is said a power of $(m1, m2)$.	89
3 It is written as $m1 \in c -1$ $m2$.	90
4 Let p be the maximum power of $(m1, m2)$.	91
Then $depth(m1, m2) := p$.	92
5 Let $S := \{d \mid \text{there exists } \exists m \text{ such that } d = depth(m, m2)\}.$	93
Then $depth(m2) :=$ "the maixmum member of S ".	94
	95
Definition 6.2 (Space of memBer).	96
Take $\forall m$.	97
Then define that	98
$Deep(m) := \{d \mid d \text{ is a deep member of } m \}.$	99
$Space(m) := \{ p \in Deep(m) \mid p \text{ is a point } \}.$	100

 $^{^4}$ No member of c is a member of m1. 5 No member of c has m2 as a member.

Proposition 2 (Isomorphism of vertices).	101
Take $\forall (m1, m2, f, v1)$ such that (102
$(m1, m2)$ are isomorphic by $f_{and} \land v1 \in Deep(m1)$	103
).	104
Then $v1, f(v1)$ are isomorphic by $f[Deep(v1)]$.	105
Proof.	106
• Let $v2 := f(v1)$.	107
• As C1, claim that $Deep(v2) \subset image(f[Deep(v1)])$.	108
• Assume that the claim fails.	109
• There exists $\exists w2 :\in Deep(v2)$	110
as a minimum counterexample to *C1 compared by $depth(w2, v2)$.	111
• It is trivial that $w2 \neq v2$.	112
• There exists $\exists x2 :\in Deep(v2)$ such that $w2 \in x2$.	113
• Hence x2 is not a counterexample to *C1	114
because $depth(w2, v2) < depth(x2, v2)$.	115
• Hence There exists $\exists x1 :\in Deep(v1)$ such that $f(x1) = x2$.	116
• Hence There exists $\exists w1 :\in x1$ such that	117
$(f(w1) = w2 and \land \ w1 \in Deep(v1)). $ A contradiction.	118
• Hence The assumption on $(\neg *C1)$ is false.	119
• As C2, claim that ($Deep(v1) \subset image(\ f^{-1}[Deep(v2)]\)).$	120
• Though it is trivial that the same logic for the proof of *C1 proves *C2.	121
• Hence $Deep(v2) = image(f[Deep(v1)])$.	122
• Hence $f[Deep(v1)]$ is a graph isomorphism	123
from*to $Deep(v1) * Deep(v2)$.	124
• And it is trivial that	125
$\text{relate-constant-memBer}(f) \Rightarrow \text{relate-constant-memBer}(f[Deep(v1)]).$	126
	127

Proposition 3 (Isomorphism of Spaces).	12 8
Take $\forall (m1, m2, f)$ such that $(m1, m2)$ are isomorphic by f .	129
Then $f[Space(m1)]$ is a bijection from*to $Space(m1) * Space(m2)$.	130
Proof.	131
• Assume it is false.	132
• $image(f[Space(m1)]) \neq Space(m2)$.	133
	134 135
$(*A0 and \land (*A1 or \lor *A2)) \text{ holds.}$ $\mathbf{A0} \ (p1, p2) :\in Space(m1) * Space(m2)).$ $\mathbf{A1} \ f(p1) \not\in Space(m2).$	136 137 138 139 140
• Assume *A1 holds.	141
\bullet Then $f(p1)$ is either a constant-memBer (or a non-constant-memBer as a set).	$\frac{142}{143}$
\bullet Though $f(p1)$ can not be a constant-memBer by that relate-constant-memBer(f).	$\frac{144}{145}$
• Hence $f(p1)$ is a non-constant-memBer as a set.	146
• Though it contradicts to that f is a graph isomorphism because $f(p1)$ has edge to some its member.	147 148
\bullet Hence the assumption of *A1 is false $_{and}\wedge$ *A2 holds.	149
• There exists $\exists c1 : \notin Space(m1)$ such that $f(c1) = p2$.	150
• Hence $f^{-1}(p2) = c1$	151
• Though this condition has been denied in the disproof of *A1.	152
• Hence the assumption of *A2 is false $_{and}\wedge$ the main assumption is false.	153

 \square 154

Proposition 4 (Pair of member's isomorphisms).	155
Take $\forall (I := \{1, 2, 3, 4\}, \{m_i\}_{i \in I}, f_{1,2}, f_{3,4})$	156
such that (*1 $_{and} \wedge \dots _{and} \wedge *4$) holds.	157
Then (*5 $_{and} \wedge$ *6) holds.	158
1 $(m1, m2)$ are isomorphic by $f_{1,2}$.	159
2 $(m3, m4)$ are isomorphic by $f_{3,4}$.	160
3 Let $f := f_{1,2} \cup f_{3,4}$ and $f_s := f[Space(f)]$.	161
4 Then f_s is a bijection.	162
5 f is a function.	163
6 f is a bijection.	164
7 relate-constant-memBer (f) .	165
	1 66
Proof of *5.	167
• Let $(V, E)_{i:\in\{1,2,3,4\}}$ be the deep graph of m_i .	168
• Assume it is false.	169
• Then there exists $\exists ((m1, m3), (m2, m4))$ as a minimum countered	example 170
by $depth((m1, m3))$ such that f is not a function.	171
ullet Let us make sure that f is a union of a set of bijections.	172
• There exists $\exists v :\in V_1 \cap V_3$ such that $ f[\{v\}] \geq 1$ and $v \notin \{m1, v \in \{m1, v \notin \{m1, v \in \{m1, v$	$m3$ }. 173
$ullet$ By the way, this proposition accepts the following $args_v$	174
in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.	175
$ullet \ args_v := ($	176
v,	177
$f_{1,2}(v),$	178
v,	179
$f_{3,4}(v),$	180
$f_{1,2}[Deep(v)],$	181
$f_{3,4}[Deep(v)]$	182
).	183

\bullet In the rest, this $args_v$ is proved to be a counterexample smaller than a minimal counterexample.	184 185
\bullet As the first step, the such-that clause of this proposition holds for $args_v$ as follows.	186 187
• Equivalently (*1 $_{and} \wedge$ $_{and} \wedge$ *4) holds for $args_v$ as follows.	188
• Assume *1 fails for $args_v$.	189
• Hence $(v, f_{1,2}(v))$ is not isomorphic by $f_{1,2}[Deep(v)]$.	190
• Though it contradicts to the proposition titled as "Isomorphism of vertices".	191 192
• Hence the last assumption is false.	193
• Hence *1 holds for $args_v$.	194
• Hence *2 holds for $args_v$ because (for $args_v$, *1 and *2 are logically equivalent).	195 196
• Assume *4 fails for $args_v$.	197
• Let $f_v := f_{1,2}[Deep(v)] \cup f_{3,4}[Deep(v)]$ and \land let $f_{v,s} := f_{1,2}[Deep(v)][Space(f_v)] \cup f_{3,4}[Deep(v)][Space(f_v)].$	198 199
• Then $f_{v,s}$ is not a bijection.	200
• Though it is false because $f_{v,s} \subset f_s$. Hence *4 holds for $args_v$.	201
• Hence (*1 $_{and} \wedge \dots _{and} \wedge *4$) holds for $args_v$.	202
• Moreover *5 fails for $args_v$ as follows.	203
• Assume *5 holds for $args_v$.	204
• Then f_v is a function.	205
• Though $v \in Deep(v) and \land$ $f_v[\{v\}] = f[\{v\}] and \land$ $ f_v[\{v\}] = f[\{v\}] \ge 1.$ • Hence *5 fails for $args_v$.	206 207 208 209 210
- Hollo o land for all gov.	210

• $args_v$ is a counterexample.

• And the size as a counterexample of $args_v$ equals to $depth((v, v))$.	212
• Though $depth((v,v)) < depth((m1,m3))$ ⁶ because $depth((v,v)) = depth(v) + 2 < depth(m1) + 2 \le depth(m1,m3)$.	213214
• Hence arg_v is a counterexample smaller than a minimum counterexample.	215
• Hence the main assumption is false.	216
	217
Proof of *6.	218
Consider the proposition *P $_{S}$ titled as "Reflexive, symmetry,transitive properties".	-219 220
\bullet Consider the proposition *P $_I$ titled as "Isomorphism of spaces".	221
• Then ((*P _{S and} \wedge *P _I) and \wedge (*1 and \wedge and \wedge *4)) implies	222
(*S1 $_{and} \wedge \dots _{and} \wedge $ *S4).	223
S1 $(m2, m1)$ are isomorphic by $f_{1,2}^{-1}$ as an isomorphism.	224
S2 $(m4, m3)$ are isomorphic by $f_{3,4}^{-1}$ as an isomorphism.	225
S3 Let $f_{-1} := f_{1,2}^{-1} \cup f_{3,4}^{-1}$ and \land let $f_{s,-1} := f_{-1}[Space(f_{-1})]$.	226
S4 Then $f_{s,-1}$ is a bijection.	227
• For *S4, it holds because	228
(it is trivial that $(f_{-1} = f^{-1})_{and} \land f_{s,-1} = f_s^{-1}$).	229
• Moreover *5 implies that f_{-1} is a function.	230
• Hence f^{-1} is a function.	231
• Hence *5 implies that f is an injection.	232
ullet By the way, f is surjective because f is not defined the codomain.	233
• Hence f is a bijection.	234
	235
Proof of *7.	236
$^{6}(x,y) := \{\{x\}, \{x,y\}\}$	

• Assume it is false.	237
• There exists $\exists (x,y) :\in f$ such that (either x or y is a constant-memBer) $and \land (x \neq y)$.	238 239
• Though $f = f_{1,2} \cup f_{3,4}$.	240
• Hence $(x, y) \in f_{1,2}$ or $(x, y) \in f_{3,4}$.	241
• There exists $\exists g :\in \{f_{1,2}, f_{3,4}\}$ such that $\neg (\text{relate-constant-memBer}(g)).$	242 243
• It contradicts to (*1 $_{and} \land$ *2).	244
• The assumption is false.	245
	246
Definition 6.3 (Constant space).	247
A constant space D is most likely a function to be used to state conditions on	248
variables.	249
For example, let D be a function and let $x, y, z \in Z * Z * Z$ such that $x = D(z)$	
and $y = D(z)$.	251
Then $x = y$.	252
In this case, D is used to make sure that variables hold equal values. Be careful that all constant space is just a usual variable but a global constant.	253 254
De careful that all constant space is just a usual variable but a global constant.	204
Proposition 5 (Isomorphism by member's isomorphisms).	255
Let *P_P denote the proposition titled as "Pair of member's isomorphisms".	256
Take $\forall (S1, S2, f, F)$ as sets $(S1, S2)$ such that (*A1 $_{and} \land \dots _{and} \land *A7$).	257
Then (*10 $_{and} \land \dots _{and} \land 12$) holds.	258
A1 $Deep({S1, S2})$ \leq continuum.	25 9
A2 f is a bijection from*to $S1 * S2$.	260
A3 There exists $\exists D$ as a function and as a constant space.	261
A4 Take $\forall ((m1, m2), (m3, m4)) :\in f^2$.	262
A5 There exists $\exists f_{1,2}, f_{3,4}$	263
such that $f_{1,2} = D((m1, m2))$ and $f_{3,4} = D((m3, m4))$.	264

A5 Let $args := ($	265
m1, m2, m3, m4,	266
$f_{1,2},$	267
$f_{3,4}$	268
).	269
Then ${}^*\mathbf{P}_P$ accepts $args$	270
in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.	271
A6 *P _P .(*1 $and \wedge and \wedge *4$) holds for $args$.	272
A7 Let $D_{1,2} := \{D((m1, m2)) \mid (m1, m2) \in f\}.$ Then $F = \text{union } D_{1,2}.$	273 274
C10 $F[Space(F)]$ is bijective.	275
C11 F is a function.	276
\mathbf{C} 12 F is bijective.	277
C13 relate-constant-memBer (F) .	278
C14 $(S1, S2)$ are isomorphic by $F \cup \{S1, S2\}$.	279
	280
Proof of $*C10$.	281
• First of all, it is trivial that	282
$domain(F[Space(F)]) = Space(S1)$ and \land	283
image(F[Space(F)]) = Space(S2).	284
• Assume it is false.	285
• There exists $\exists (p1, p2) :\in Space(S1) * Space(S2)$ such that	286
$ F(p1) \ge 1$ or $ F^{-1}(p2) \ge 1$.	287
\bullet Though it implies that the antecedent of this proposition have failed.	288
• Namely, there exists $\exists ((m1, m2), (m3, m4))$	289
which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4	290
such that, of *A6, *P _P .(*4) have failed for $((m1, m2), (m3, m4))$.	291
• Hence the assumption is false.	292
	293

Proof of (*C11 $_{and} \land \ ^*C12 \ _{and} \land \ ^*C13$).	294
• First of all, consider the proposition titled as "Pair of member's isomorphisms".	295 296
\bullet The proposition implies that the antecedent of this proposition implies that *A6 can be modified as the following *A6 typed in red.	297 298
• That is, the original "*4" has been replaced with "*7".	299
• A6 *P _P .(*1 $_{and} \land{and} \land *7$) holds for $args$.	300
• Call this modified antecedent as the modified antecedent.	301
• By the way, assume (*C11 $_{and} \land$ *C12 $_{and} \land$ *C13) is false.	302
• (*B1 $_{or} \lor$ *B2) holds.	303
• B1 There exists $\exists (x1, x2) :\in S1 * S2$ such that $ F(x1) \ge 1$ or $\lor F^{-1}(x2) \ge 1$.	304 305
• B2 There exists $\exists f_{1,2} :\in D_{1,2}$ such that \neg relate-constant-memBer $(f_{1,2})$.	306 307
• Though it implies that the modified antecedent have failed.	308
• Namely, there exists $\exists ((m1, m2), (m3, m4))$ which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4 such that, of *A6, $P_P.(*5_{and} \land *6_{and} \land *7)$ have failed for $((m1, m2), (m3, m4))$.	309 310 311 312
• Hence the assumption is false.	313
	314
Proof of *C14.	315
• Assume it is false.	316
• Let $F_+ := F \cup \{S1, S2\}$, Then (*B1 $_{or} \lor$ *B2) holds.	317
• As B1 , $(S1, S2)$ are not graph-isomorphic by F_+ .	318
• As B2 , \neg relate-constant-memBer(F_+).	319
• Assume *B2 holds.	320
• Hence \neg relate-constant-memBer($\{S1, S2\}$).	321

• Hence there exists $\exists (T1, T2) :\in \{(S1, S2), (S2, S1)\}$ such that	322
$T1$ is a constant-memBer $and \wedge T2$ is not a constant-memBer.	323
• There exists $\exists (c_1, p_2) :\in F$ such that	324
$(c_1 \text{ is a constant-memBer } and \land p_2) \text{ is not a point.}$	325
By this contradiction, the assumption on *B2 is false.	326
• Hence *B1 holds.	327
• There exists $\exists (v1, v2) :\in S1 * S2$ such that	328
$F(v1) \notin S2$ or V $F^{-1}(v2) \notin S1$.	329
• Though there exists $\exists f_{1,2} :\in D_{1,2}$ such that (330
$(v1,F(v1))\in f_{1,2}$ and \wedge	331
$f_{1,2}$ is a bijection from to $\operatorname{Deep}(v1)$ Deep $(F(v1))$	332
).	333
• Moreover $F \supset f_{1,2}$.	334
• Hence the assumption on *B1 is false.	335
• The main assumption is false.	336
The main assumption is taise.	
• The main assumption is taise.	□ 337
	□ 337 338
Definition 6.4 (Variations of Indexed set).	
	338
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics.	338 339
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article,	338 339 340
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$.	338 339 340 341
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$.	338 339 340 341 342 343
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$.	338 339 340 341 342 343
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the matural order on the index set.	338 339 340 341 342 343 ost 344
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the matural order on the index set. Proposition 6 (Isomorphisms by spaces).	338 339 340 341 342 343 ost 344
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the matural order on the index set. Proposition 6 (Isomorphisms by spaces). Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,g)$ such that (338 339 340 341 342 343 ost 344 345
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the matural order on the index set. Proposition 6 (Isomorphisms by spaces).	338 339 340 341 342 343 ost 344 345 346 347
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the matural order on the index set. Proposition 6 (Isomorphisms by spaces). Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,g)$ such that $(S)_{i:\in\{1,2\}}, \forall (f,g)$ such that $(S)_{i:\in\{1,2\}}, \forall (f,g)$ are isomorphic by f and also by f and f	338 339 340 341 342 343 ost 344 345 346 347 348
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the matural order on the index set. Proposition 6 (Isomorphisms by spaces). Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,g)$ such that $((S)_{i:\in\{1,2\}}$ are isomorphic by f and also by g and f f [Space(f)]= g [Space(f)]	338 339 340 341 342 343 ost 344 345 346 347 348 349
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the matural order on the index set. Proposition 6 (Isomorphisms by spaces). Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,g)$ such that $((S)_{i:\in\{1,2\}} \text{ are isomorphic by } f \text{ and also by } g \text{ and} \land f[\operatorname{Space}(f)] = g[\operatorname{Space}(g)]$).	338 339 340 341 342 343 ost 344 345 346 347 348 349 350

• There exists $\exists v_1 :\in Deep(S1)$ as a minimum counterexample compared by $depth(v_1)$ such that	354 355
$f(v_1) \neq g(v_1).$	356
• It is trivial that $depth(v_1) > 0$.	357
• Hence v_1 is a set.	358
• $f[v_1] = g[v_1]$ because (359
take $\forall w_1 :\in v_1$,	360
then $(\operatorname{depth}(w_1) < \operatorname{depth}(v_1)$ and w_1 is not a counterexample)	361
).	362
• Hence $f(v_1) = image(f[v_1]) = image(g[v_1]) = g(v_1)$.	363
• The assumption is false.	364
	□ 365
Definition 6.5 (Isomorphism by spaces).	366
Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,F)$ such that	367
$(S)_{i:\in\{1,2\}}$ are isomorphic by F and \wedge $Space(F) \subset f \subset F$.	368
Then $(S)_{i:\in\{1,2\}}$ are also said isomorphic by f .	3 69
Proposition 7 (Homeomorphism as isomorphism).	370
As you know, the set theory defines that	371
$(x,y) := \{\{x\}, \{x,y\}\}.$	372
Take $\forall ((X,T))_{i:\in\{1,2\}}, \forall H \text{ such that } ($	373
$((X,T))_{i:\in\{1,2\}}$ is a pair of topological spaces $_{and}\wedge$	374
H is a bijection from*to $X_1 * X_2$ and \land	375
$((X,T))_{i:\in\{1,2\}}$ are homeomorphic by H	376
).	377
Then (*1 $_{and} \land \dots _{and} \land *5$) holds.	378
1. $(X)_{i:\in\{1,2\}}$ are isomorphic by H .	379
2. Take $\forall (t_1, t_2) :\in T1 * T2$ such that $t_2 = image(H[t_1])$.	380
Then $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1]$.	381
3. $(T)_{i:\in\{1,2\}}$ are isomorphic by H .	382
4. $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by H .	383
5. $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by H .	384

6. $(\{\{X\}, \{X, T\}\})_{i:\in\{1,2\}}$ are isomorphic by H .	385
· · · · · · · · · · · · · · · · · · ·	386
Proof of *1.	387
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	388 389
• $(X)_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2)\}.$	390
	391
Proof of *2.	392
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	393 394
• $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1] \cup \{(t1,t2)\}.$	395
	396
Proof of *3.	397
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	398 399
• Consider *2.	400
• Let $t_{1,2} := \{(t_1, t_2) \in T1 * T2 \mid t_2 = image(H[t_1])\}.$	401
• $(T)_{i:\in\{1,2\}}$ are isomorphic by $H \cup t_{1,2} \cup \{(T1,T2)\}.$	402
	403
Proof of *4.	404
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	405 406
• Consider *1.	407
• $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1, X2), (\{X1\}, \{X2\})\}.$	408
	409
Proof of *5.	410

 Consider the proposition titled as "Isomorphism by member's phisms". 	isomor- 411 412
• Consider *1 and *3.	413
• $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2),(T1,T2),(\{X1,T1\},\{X2,T2\})\}.$	414 415
	□ 416
Proof of *6.	417
• Consider the proposition titled as "Isomorphism by member's phisms".	isomor- 418 419
• Consider *4 and *5.	420
• $(\{\{X\},\{X,T\}\})_{i:\in\{1,2\}}$ are isomorphic	421
• by $H \cup \{$	422
(X1, X2),	423
(T1, T2), $(\{X1, T1\}, \{X2, T2\}),$	424 425
$(\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\})$	426
}.	427
	428

References 429