Remember from last week:

Theorem 9: Best Approximation Theorem: Let W be a subspace of \mathbb{R}^n , and \mathbf{y} a vector in \mathbb{R}^n . Then the closest point in W to \mathbf{y} is the unique point $\hat{\mathbf{y}}$ in W such that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . In other words, $\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$ for all \mathbf{v} in W with $\mathbf{v} \neq \hat{\mathbf{y}}$.

We proved last week that, if $\hat{\mathbf{y}}$ is in W, and $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} , then $\hat{\mathbf{y}}$ is the unique closest point in W to \mathbf{y} . But we did not prove that a $\hat{\mathbf{y}}$ satisfying these conditions always exist.

We will show that the function $\mathbf{y} \mapsto \hat{\mathbf{y}}$ is a linear transformation, called the orthogonal projection to W, and calculate it using a special orthogonal basis for W.

Our remaining goals:

- §6.2 The properties of orthogonal bases (p2-?)
- §6.3 Calculating the orthogonal projection (p?-?)
- §6.4 Constructing orthogonal bases (p?-?)
- §6.2 Matrices with orthogonal columns (p?-?)

§6.2: Orthogonal Bases

- **Definition**: A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an *orthogonal set* if each pair of distinct vectors from the set is orthogonal, i.e. if $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ whenever $i \neq j$.
 - A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an *orthonormal set* if it is an orthogonal set and each \mathbf{u}_i is a unit vector.

Example:
$$\left\{ \begin{array}{c|c} 3 & -1 \\ 0 & 5 \\ -1 \end{array}, \begin{array}{c} -1 \\ 5 & 3 \end{array} \right\}$$
 is an orthogonal set, because

$$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix} = -3 + 0 + 3 = 0, \quad \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 3 + 0 - 3 = 0, \quad \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = -1 + 10 - 9 = 0.$$

To obtain an orthonormal set, we normalise each vector in the set:

$$\left\{ \begin{bmatrix} 3/\sqrt{10} \\ 0 \\ -1/\sqrt{10} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{35} \\ 5/\sqrt{35} \\ -3/\sqrt{35} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{14} \\ 2/\sqrt{14} \\ 3/\sqrt{14} \end{bmatrix} \right\}$$
 is an orthonormal set.

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 2 of 25

Example: In \mathbb{R}^6 , the set $\{\mathbf{e}_1, \mathbf{e}_3, \mathbf{e}_5, \mathbf{e}_6, \mathbf{0}\}$ is an orthogonal set, because $\mathbf{e}_i \cdot \mathbf{e}_j = 0$ for all $i \neq j$, and $\mathbf{e}_i \cdot \mathbf{0} = 0$.

So an orthogonal set may contain the zero vector. But when it doesn't:

Theorem 4: Nonzero Orthogonal sets are Linearly Independent: If

 $\{\mathbf v_1,\dots,\mathbf v_p\}$ is an orthogonal set of nonzero vectors, then it is linearly independent.

Proof: We need to show that $c_1 = \cdots = c_p = 0$ is the only solution to

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0}. \tag{*}$$

Take the dot product of both sides with v_1 :

$$(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p) \cdot \mathbf{v}_1 = \mathbf{0} \cdot \mathbf{v}_1$$

$$c_1\mathbf{v}_1\cdot\mathbf{v}_1+c_2\mathbf{v}_2\cdot\mathbf{v}_1+\cdots+c_p\mathbf{v}_p\cdot\mathbf{v}_1=0.$$

Using that $\mathbf{v}_i \cdot \mathbf{v}_1 = 0$ whenever $j \neq 1$:

$$c_1\mathbf{v}_1 \cdot \mathbf{v}_1 + c_20 + \dots + c_p0 = 0.$$

Since \mathbf{v}_1 is nonzero, $\mathbf{v}_1 \cdot \mathbf{v}_1$ is nonzero, so it must be that $c_1 = 0$.

By taking the dot product of (*) with each of the other \mathbf{v}_i s and using this argument, each c_i must be 0.