1. Let Σ be a combinatorial 2-manifold, where each corner x of each face of Σ is assigned a positive real number $\angle x$, called the *angle* at x. Let corners(v) or corners(f) denote the set of corners incident to a vertex v or a face f, respectively. We define the *curvature* of each vertex and face as follows:

$$\kappa(v) := 1 - \sum_{x \in \text{corners}(v)} \angle x \qquad \qquad \kappa(f) := 1 - \sum_{x \in \text{corners}(f)} (1/2 - \angle x).$$

Prove the combinatorial Gauß-Bonnet theorem:

$$\sum_{\text{vertex } \nu \text{ of } \Sigma} \kappa(\nu) + \sum_{\text{face } f \text{ of } \Sigma} \kappa(f) = \chi(\Sigma).$$

Solution: Let $V(\Sigma)$, $E(\Sigma)$, $F(\Sigma)$ denote the vertex, edge, and face sets of a 2-manifold Σ . Observe that

$$\sum_{\text{vertex } \nu \text{ of } \Sigma} \kappa(\nu) = \sum_{\text{vertex } \nu \text{ of } \Sigma} (1 - \sum_{x \in \text{corners}(\nu)} \angle x)$$
$$= |V(\Sigma)| - \sum_{\text{corner } x \text{ of } \Sigma} \angle x$$

and since every edge contributes to two faces, we have

$$\sum_{\text{face } f \text{ of } \Sigma} \kappa(f) = \sum_{\text{face } f \text{ of } \Sigma} (1 - \sum_{x \in \text{corners}(f)} (1/2 - \angle x))$$
$$= |F(\Sigma)| - 2|E(\Sigma)|/2 + \sum_{\text{corner } x \text{ of } \Sigma} \angle x$$

together we get

$$\sum_{\text{vertex } v \text{ of } \Sigma} \kappa(v) + \sum_{\text{face } f \text{ of } \Sigma} \kappa(f) = |V(\Sigma)| + |F(\Sigma)| - |E(\Sigma)|$$
$$= \chi(\Sigma)$$

2. Suppose every face of Σ is a triangle. Prove the following special case of the combinatorial Gauß-Bonnet theorem:

$$\sum_{\text{vertex } \nu \text{ of } \Sigma} (6 - |\operatorname{corners}(\nu)|) = 6\chi(\Sigma).$$

¹The definitions use individual passes around a *circle* as the unit of angular measurements.

Solution: While every face of Σ is a triangle, we know $3|F(\Sigma)| = 2|E(\Sigma)|$. And it is easy to see that,

$$\sum_{\text{vertex } \nu \text{ of } \Sigma} (6 - | \text{corners}(\nu)|) = 6|V(\Sigma)| - \sum_{\text{vertex } \nu \text{ of } \Sigma} | \text{corners}(\nu)|$$

$$= 6|V(\Sigma)| - 2|E(\Sigma)|$$

$$= 6|V(\Sigma)| - 3|F(\Sigma)|$$

$$= 6|V(\Sigma)| + 6|F(\Sigma)| - 9|F(\Sigma)|$$

$$= 6|V(\Sigma)| + 6|F(\Sigma)| - 6|E(\Sigma)|$$

$$= 6\chi(\Sigma)$$

3. Now suppose Σ has boundary components. Let $\chi(\nu)$ denote the number of edges incident to ν , counting loops twice, minus the number of corners incident to ν . We now redefine the curvature of a vertex ν as follows:

$$\kappa(\nu) := 1 - \frac{\chi(\nu)}{2} - \sum_{x \in \text{corners}(\nu)} \angle x.$$

Prove that the combinatorial Gauß-Bonnet theorem holds in this more general setting.

Solution: Let |E(v)| denote the number of edges incident to v, counting loops twice. Then we get

$$\sum_{\text{vertex } \nu \text{ of } \Sigma} \kappa(\nu) = |V(\Sigma)| - \sum_{\text{vertex } \nu \text{ of } \Sigma} \frac{\chi(\nu)}{2} - \sum_{\text{corner } x \text{ of } \Sigma} \angle x$$

$$= |V(\Sigma)| - \sum_{\text{vertex } \nu \text{ of } \Sigma} \frac{|E(\nu)| - |\operatorname{corners}(\nu)|}{2} - \sum_{\text{corner } x \text{ of } \Sigma} \angle x$$

combining this with the result in question 1.1, we have,

$$\sum_{\text{vertex } v \text{ of } \Sigma} \kappa(v) + \sum_{\text{face } f \text{ of } \Sigma} \kappa(f)$$

$$= |V(\Sigma)| - \sum_{\text{vertex } v \text{ of } \Sigma} \frac{|E(v)| - |\operatorname{corners}(v)|}{2} - \sum_{\text{corner } x \text{ of } \Sigma} \angle x + |F(\Sigma)|$$

$$- \sum_{\text{face } v \text{ of } \Sigma} \frac{|\operatorname{corners}(f)|}{2} + \sum_{\text{corner } x \text{ of } \Sigma} \angle x$$

$$= |V(\Sigma)| + |F(\Sigma)| - \sum_{\text{vertex } v \text{ of } \Sigma} \frac{|E(v)|}{2}$$

$$= |V(\Sigma)| + |F(\Sigma)| - |E(\Sigma)| = \chi(\Sigma)$$

The second equation is from $\sum_{\text{face } \nu \text{ of } \Sigma} |\operatorname{corners}(f)| = \sum_{\text{vertex } \nu \text{ of } \Sigma} |\operatorname{corners}(\nu)|$, and the fact that every edge contributes to the number of incident edges for two vertices implies the last equation.

2

4. Suppose the surface Σ' is homeomorphic to a disk, and every face and *interior* vertex of Σ' has curvature at most 0. Prove that at least three boundary vertices of Σ' have strictly positive curvature.

Solution: We know $\chi(\Sigma') = 1$, therefore we have

$$\sum_{\text{vertex } \nu \text{ of } \Sigma'} \kappa(\nu) + \sum_{\text{face } f \text{ of } \Sigma'} \kappa(f) = 1$$

Let V_B be the set of boundary vertices of Σ' . Then we get

$$\sum_{v \in V_B} \kappa(v) + \sum_{v \in V(\Sigma') - V_B} \kappa(v) + \sum_{f \in F(\Sigma')} \kappa(f) = 1$$

We know $\kappa(\nu) \le 0$, $\forall \nu \in V(\Sigma') - V_B$ and $\kappa(f) \le 0$, $\forall f \in F(\Sigma')$. So $\sum_{\nu \in V_B} \kappa(\nu) \ge 1$. From the definition of curvature of vertex ν in question 1.3, we know if $\nu \in V_B$,

$$\kappa(v) = 1 - \frac{|E(v)| - |\operatorname{corners}(v)|}{2} - \sum_{x \in \operatorname{corners}(v)} \angle x$$
$$= 1 - \frac{1}{2} - \sum_{x \in \operatorname{corners}(v)} \angle x$$
$$= \frac{1}{2} - \sum_{x \in \operatorname{corners}(v)} \angle x$$

where the second equation is from the number of edges incident to a boundary vertex is one more than the number of corners incident to the vertex. Since the angle of every corner is positive. Every boundary vertex has curvature strictly less than 1/2. Therefore, to make $\sum_{\nu \in V_B} \kappa(\nu) \ge 1$, we need at least $\lfloor \frac{1}{1/2} \rfloor + 1 = 3$ boundary vertices has positive curvature.

CS 7301.003 Fall 2020 Homework 3 Problem 2 Dongpeng Liu (dxl200000) Jiashuai Lu (jxl173630)

Let G be a cellularly embedded (i.e. every face is a disk) graph on a surface Σ with boundary. Recall, a *cut graph* is a subgraph H of G such that the closure of $\Sigma \setminus H$ is a disk. A cut graph is minimal if no proper subgraph is a cut graph. For example, a minimal cut graph of an annulus is a path from one boundary to the other.

A *pair of pants* is a sphere minus three open disks. Let G be a graph with non-negatively weighted edges, cellulary embedded in a pair of pants Σ . Describe an algorithm to find the minimum-length cut graph in G in $O(n \log n)$ time. [Hint: What does a minimal cut graph of a pair of pants look like?]

Solution: Let *D* denote the set of three open disks minus from the sphere.

MINIMUM-LENGTH CUT GRAPH (G, D):

For every disk $d \in D$

Let d_1, d_2 be two disks in $D \setminus \{d\}$.

Compute a minimum-length path $\sigma_{u,v}$ for every pair of points $u, v, u \in d_1, v \in d_2$.

Let σ_{min} be the minimum-length path among all paths computed from the step above.

Compute a minimum-length path $\sigma_{u,v}$ for every pair of points $u, v, u \in \sigma_{min} \cup d_1 \cup d_2, v \in d$.

Let σ_{min_2} be the minimum-length path among all paths computed from the step above.

Let *H* be the minimum-length cut-graph computed in this iteration

Return the cut-graph with minimum-length among the cut-graphs we get in three iterations.