Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations

Chiyuan Zhang¹, Stephen Voinea¹, Georgios Evangelopoulos^{1,2}, Lorenzo Rosasco^{1,2}, Tomaso Poggio^{1,2}

¹ Center for Brains, Minds and Machines, McGovern Institute for Brain Research at MIT ² LCSL, Istituto Italiano di Tecnologia and Massachusetts Institute of Technology

1. Overview

Goal: framework for learning (invariant) speech representations. **Motivation:**

- Speech variations (speaker, tempo, accent, pronunciation, ...): major ASR challenge for learning with few resources (labeled examples).
- Convolutional Neural Networks (CNNs): invariance to local frequency translations only.

Contributions:

- CNNs for generic transformations other than translations;
- 2. Theoretical justification of why CNNs work well via i-theory [1, 2];
- 3. Algorithm for discriminative learning of templates (exemplars) for group-transformation invariant speech representations [3];
- Application to Vocal Tract Length (VTL) variation: improved framebased phone classification errors on TIMIT and WSJ.

- VTL normalization: rectifies interspeaker variability.
- Speaker adaptation through VTL modification (VTL warping).
- Transformation: piecewise linear map of the frequency axis.

2. A Theory for Group Invariant Representations

Main Theorems [1, 2]

- G is a group: the orbit $O_G(x) = \{\Phi_g(x) : g \in G\}$ is an invariant and selective feature map under transformations Φ_a .
- G is locally compact: our network architecture is computing an approximation of $O_G(x)$.

Invariant: $\exists g: x' = \Phi_q(x) \Rightarrow F(x) = F(x')$; Selective: $F(x) = F(x') \Rightarrow \exists g: x' = \Phi_q(x)$

3. CNN as Approximately Invariant Orbit Map

Convolution: $y[i] = \sum_{j} x[j]t[i-j] = \sum_{j} x[j]\tilde{t}[j-i] = \langle x, \Phi_{i}(\tilde{t}) \rangle$, Inner-product of the input and the transformed template (filter).

Pooling: $\mathbf{z}[i] = \max \mathbf{y}[j]$, accumulating (MAX) statistics of inner-products.

4. CNN Over VTL Transformations

CNNs are approximately invariant to local (frequency) translation. Generalized CNN: replace Φ_i with general transformations Φ_a . VTL-CNN: (this paper) Use VTL transforms and propose networks with convolutions over VTL.

5. Learning VTL-CNN

Issue: Back-propagation with VTL-CNN: need to compute $\partial(\langle \mathbf{x}, \Phi_a(t) \rangle)/\partial t$ (simple only for linear/parametric/known transformations).

Observation: for unitary groups

$$\langle \mathbf{x}, \Phi_g(\mathbf{t}) \rangle = \langle \Phi_g^{-1}(\mathbf{x}), \mathbf{t} \rangle = \langle \Phi_{g^{-1}}(\mathbf{x}), \mathbf{t} \rangle$$

Data Augmentation: work with transformed inputs; gradient becomes easy to compute.

6. VTL-CNN Architecture

Input x as 3D-tensor (15 x 40 x 9): 15-frame context \times 40-dim filter-banks (no Δ , $\Delta\Delta$) \times 9-VTL perturbations (augmentation).

- Local filters t applied to inputs x transformed with different VTL perturbations Φ_a .
- MAX pooling over responses of $\Phi_a(\mathbf{x})$.
- Pooled feature maps fed into densely-connected layers.

Filters are jointly learned with the DNN classifier

7. Experimental Evaluation (TIMIT, WSJ)

← Proposed Architecture

↓ Baseline Architectures Baseline CNN: similar architecture, pools only over frequency translation. Baseline DNN: replaces the conv-pool layer with densely connected layer.

All models: similar number of parameters.

Model	TIMIT	WSJ
DNN	58.25	63.65
CNN	62.41	66.78
VTL-CNN	64.62	70.08

Test Frame Accuracy (ALL)

Datasets: TIMIT and WSJ.

Task: Frame classification -- targets are forcedaligned mono-phone HMM states.

Baselines:

Densely-connected Deep Neural Network (DNN). CNN that pools over frequency translation.

Training: SGD without pre-training, on standard train-dev-test splits.

Compare with Data Augmentation:

Baseline models were trained on same augmented data used by VTL-CNN. Performances are similar to models trained on the original datasets.

Conv-pool over VTL is crucial for taking full advantage of augmented data!

Acknowledgements: This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216. Chiyuan Zhang and Stephen Voinea acknowledge the support of a Nuance Foundation Grant.

References: [1] F. Anselmi & T. Poggio. *Representation Learning in Sensory Cortex: a theory.* (2014). [2] F. Anselmi et. al. Unsupervised Learning of Invariant Representations in Hierarchical Architectures, CBMM Memo 001, 2013.

[3] C. Zhang, S. Voinea, G. Evangelopoulos, L. Rosasco, T. Poggio. Phone Classification by a Hierarchy of Invariant Representation Layers. INTERSPEECH 2014.