POLITE CHNIKA WARSZAWSKA PODSTAWY KONSTRUKCJI URZĄDZEŃ PRECYZYJNYCH

Projekt 1Temat nr MSL - 14

Moduł stolika liniowego Założenia konstrukcyjne

Wykonał: Łukasz Pastuszko, gr. Mt-131B

Prowadzący: dr inż. Marcin Zaczyk

Projekt 1

1. Wprowadzenie

Moduł stolika liniowego z napędem ręcznym, realizowanym poprzez głowicę mikrometryczną to uniwersalne narzędzie używane w laboratoriach badawczych oraz dydaktycznych, służące do dokładnego pozycjonowania elementów układów optycznych czy próbek mikroskopowych. Dzięki możliwości połączenia modułów zapewniony jest precyzyjny ruch liniowy w płaszczyźnie XY.

2. Wymagania techniczne

- Realizowanie ruchu liniowego w zakresie do 15 mm, przy użyciu prowadnicy pryzmatycznej,
- wymiary ruchomej powierzchni blatu: $a \times b = 60 \text{ mm } \times 60 \text{ mm}$ (rys. 1.),
- możliwość mocowania elementów do powierzchni blatu,
- stolik może zostać obciążony siłami zgodnie z ze schematem (rys. 2),
- mocowanie modułu do podłoża oraz połączenie z identycznym modułem w celu zbudowania manipulatora XY,
- zespół napędowy głowica mikrometryczna o numerze katalogowym 149 802 firmy Mitutoyo,
- przewidywana wielkość produkcji od 50 do 500 sztuk rocznie,
- mechanizm ma pracować w temperaturze od +20 °C do +30 °C, w niewielkim zapyleniu.

rys. 1: Podstawowe wymiary modułu stolika liniowego

$$F = 50 \text{ N}$$
 $F_1 = 5 \text{ N}$ $F_2 = 20 \text{ N}$

rys. 2: Siły obciążające model stolika liniowego

3. Obliczenia konstrukcyjne i sprawdzające

3.1. Wyznaczenie maksymalnej długości separatora s_{max}

$$s_{max} = a - L = 60 - 15 = 45 \text{ mm}$$

gdzie:

- *s_{max}* maksymalna długość separatora w mm,
- *a* długość karetki w mm,
- L zakres ruchu liniowego stolika w mm.

Rzeczywista długość separatora powinna być możliwie jak najbliższa długości maksymalnej, jednak nie większa od niej.

$$S \leq S_{max}$$

3.2. Wyznaczenie liczby elementów tocznych

 k_{min} – minimalna odległość osi sąsiednich otworów p_{min} – minimalna odległość osi otworu od krawędzi separatora,

 d_k – średnica kulki,

 D_I – średnica otworu w separatorze,

 $D_1 > d_k + (0, 3-0.5)$

Rys. 3: Schemat separatora

Do ustalenia liczby kulek wykorzystuję zależność:

$$s = (n_k - 1) \cdot k + 2 \cdot p$$

gdzie:

- n_k liczba kulek,
- $k d_k + 2$
- $p 0.5 \cdot d_k + 2$
- *s* długość separatora w mm.

Wyniki obliczeń zostały przedstawione w Tabeli 1.

dk	2	2,5	3	4	5
k	4	4,5	5	6	7
p	3	3,25	3,5	4	4,5
nk	10	9	8	7	6
S	42	42,5	42	44	44

Tabela 1.

4. Analiza obciążeń elementów tocznych prowadnicy

4.1. Obciążenie siłą F(z) prostopadłą do płaszczyzny ruchu stolika

Rys. 4 Obcigżenie siłą pionową

Gdzie:

 $F_{(z)}$ – obciążenie prostopadłe do płaszczyzny ruchu stolika,

 $F_{(z)} = F$,

 $F_{(n1)} - składowa siły <math>F_{(z)}$, działająca na jeden separator

$$F_{n1} = \frac{F_{(z)}}{\sqrt{2}} = \frac{F\sqrt{2}}{2} = \frac{50\sqrt{2}}{2} = 35.355 \, N$$

Każda z sił F_1 działa na elementy toczne w jednym separatorze. Skutkiem nacisku jest siła tarcia. Ponieważ prowadnice nie stanowią z koszyczkami fabrycznie montowanego zespołu, obliczeniowy współczynnik tarcia zawarty w katalogu łożysk tocznych będzie zbyt niski, a zatem w obliczeniach przyjmuję wartość $\mu_{obl} = 0.03$.

$$T_1 = \mu_{obl} \cdot F_{n1} = 0.03 \cdot 35.355 = 1.061 \, \text{N}$$

Opory ruchu prowadnicy zawierającej dwa separatory i dwa rzędy kulek są równe dwukrotnej sile tarcia działającej na jedną prowadnicę.

$$T_{(z)} = 2 \cdot T_1 = 2.121 \, N$$

4.2. Obciążenie siłą $F_{(y)}$ działającą w płaszczyźnie ruchu i prostopadłą do kierunku ruchu stolika

Całe obciążenie przenoszą kulki znajdujące się po jednej stronie prowadnicy, druga część prowadnicy jest nieobciążona.

Rys. 5: Schemat obciążenia siłą poziomą

gdzie:

 $F_{(y)}$ – obciążenie działające w płaszczyźnie stolika, prostopadłe do kierunku ruchu,

F(y) = F,

 $F_{(n2)}$ – składowa siły $F_{(y)}$, działająca na jedną prowadnicę.

$$F_{n2} = \frac{F_{(y)}}{\sqrt{2}} = \frac{F\sqrt{2}}{2} = \frac{50\sqrt{2}}{2} = 35,355 \, N$$

Opory ruchu powstają w tej części prowadnicy która jest obciążona.

$$T_2 = \mu_{obl} \cdot F_{n1} = 0.03 \cdot 35.355 = 1.061 \text{ N}$$

Część prowadnicy przenosząca obciążenie zawiera dwie pary płaszczyzn dociskanych do elementów tocznych z siłą F_{n2} , dlatego opory ruchu całej prowadnicy będą dwukrotnie większe niż siła $T_{(2)}$.

$$T_{(v)} = 2 \cdot T_2 = 2,121 \, N$$

4.3. Obciążenie siłą napięcia wstępnego $F_{(w)}$

Siła napięcia wstępnego w prowadnicy jest siłą kasującą luz i zwiększającą dokładność pozycjonowania prowadnicy.

$$F_w = k \cdot F = 0.45 \cdot 50 = 22.5 N$$

Gdzie:

F_w – siła napięcia wstępnego, F_{nw} – składowa siły F_w

$$F_{nw} = \frac{F_{(w)}}{\sqrt{2}} = \frac{F_{(w)}\sqrt{2}}{2} = \frac{22,5\sqrt{2}}{2} = 15,91 \, N$$

Siła F_w działa w tej samej płaszczyźnie co siła $F_{(y)}$ ale obciąża obie prowadnice, co oznacza, że elementy toczne są dociskane przez cztery pary płaszczyzn. Siła tarcia dla czterech płaszczyzn dociskanych do elementów tocznych jest równa:

$$T_3 = \mu_{obl} \cdot F_{nw} = 0,477 N$$

 $T_w = 4 \cdot T_3 = 1,909 N$

4.4. Całkowite opory ruchu prowadnicy pryzmatycznej

Całkowite opory ruchu układu prowadzenia pryzmatycznego są sumą oporów wywołanych przez napięcie wstępne z siłą F_w oraz obciążanie siłą $F_{(z)}$ lub $F_{(y)}$.

$$T_c = T_{(z,v)} + T_w = 2.121 + 1.909 = 4.031 N$$

4.5. Maksymalna siła $F_{\sum max}$ działająca na rząd n
 kulek po jednej stronie prowadnicy pryzmatycznej

W danym momencie prowadnice są obciążone jednym z układów: siłami $F_{(w)}$ i $F_{(z)}$ albo siłami $F_{(w)}$ i $F_{(y)}$. Ich suma przyjmuje wartość maksymalną gdy:

$$F_{\Sigma max} = F_{n1} + F_{nw} = 35,355 + 15,91 = 51,265 N$$

4.6. Maksymalna siła docisku F_{jmax} pojedynczej kulki do płaszczyzny prowadnicy

W jednej części separatora, przy jednej prowadnicy znajduje się n kulek obciążonych siłą $F_{\Sigma max}$ zatem maksymalna siła docisku pojedynczej kulki jest równa:

$$F_{jmax} = \frac{F_{\sum max}}{n} = \frac{51,265}{7} = 7,324 \text{ N}$$

4.7. Naciski powierzchniowe według wzorów Hertza

Wartość nacisków Hertza jest kryterium doboru materiału na prowadnice i karetkę.

Rys. 6: Schemat siły docisku pojedynczej kulki

$$P_{Hmax} = 0.578 \cdot \sqrt[3]{rac{F_{jmax}}{r^2 \cdot \left(rac{1 - v_1^2}{E_1} + rac{1 - v_2^2}{E_2}
ight)^2}} = 1574,7 \ MPa$$

gdzie:

- F_{jmax}- siła docisku pojedynczej kulki, prostopadła do powierzchni prowadnicy, wyrażona w N,
- r promień kulki w mm,
- v_1 , v_2 liczba Poissona, dla stali $v_1 = v_2 = 0.3$
- E_1 , E_2 moduł sprężystości wzdłużnej materiału prowadnicy i kulki, dla stalowej kulki i stalowej prowadnicy: $E_1 = E_2 = 210000$ MPa

Wyniki obliczeń zostały przedstawione w Tabeli 2.

d_k	n_k	S	$F_{\sum max}$	F _{jmax}	P_{Hmax}
2	10	42		5,127	2219,5
2,5	9	42,5		5,696	1981,1
3	8	42	51,265	6,408	1824,6
4	7	44		7,324	1574,7
5	6	44		8,544	1428,6

Tabela 2: Wartość nacisków Hertza dla kulek o wybranych średnicach.

Najbardziej optymalnym rozwiązaniem będzie użycie kulek o średnicy 4 mm. Dla tej średnicy otrzymana wartość nacisków Hertza pozwala na zastosowanie stali stopowej narzędziowej X210Cr12 ulepszanej cieplnie do twardości 55HRC jako materiału do wykonania prowadnicy nieruchomej oraz karetki.

5. Wymagania dotyczące sprężyny powrotnej

Sprężyna powrotna ma zapewnić ciągły kontakt karetki z trzpieniem głowicy mikrometrycznej. Minimalna siła P_{min}, którą musi pokonać jest równa:

$$P_{min} = F_1 + T_c = 5 + 4,031 = 9,031 N$$

gdzie:

- F1 zadane w wymaganiach technicznych obciążenie w N,
- Tc całkowite opory ruchu w N.

Najmniejsza siła realizowana przez sprężynę w obszarze ruchu roboczego, czyli siła początkowa sprężyny P_p powinna być większa przynajmniej o 50% od siły P_{min} .

5.1. Podstawowe wymagania, konieczne do właściwego zaprojektowania sprężyny powrotnej

Siła początkowa sprężyny: $P_p > 1.5 \cdot P_{min}$

Przyjmuję: $P_p = 1.5 \cdot P_{min} = 1.5 \cdot 9.031 = 13.546 \text{ N}$

Siła końcowa sprężyny: $P_k = 2 \cdot P_p = 27,092 \, N$

Robocza strzałka ugięcia: $f_r = L = 15 \text{ mm}$

5.2. Dobór sprężyny

Do stolika wykorzystuję sprężynę naciskową.

Rys. 7: Sprężyna naciskowa oraz jej charakterystyka: siła P w funkcji ugięcia f

Ugięcie końcowe:

$$f_k = \frac{f_r \cdot P_k}{P_k \cdot P_n} = 30 \ mm$$

gdzie:

- f_r strzałka robocza,
- P_k siła końcowa,
- P_p siła początkowa

Do wyznaczenia parametrów sprężyny konieczny jest tzw. wskaźnik średnicowy sprężyny:

$$w = \frac{D}{d}$$

gdzie:

- D średnia średnica sprężyny w mm,
- d średnica drutu w mm

Zaleca się przyjmowanie wartości wskaźnika z zakresu $w = 7 \div 10$ Jako wskaźnik średnicowy sprężyny przyjmuje w = 8.

W celu uproszczenia obliczeń pomijam wpływ niektórych czynników uwzględniając w zamian tzw. współczynnik poprawkowy dany wyrażeniem:

$$k = 1 + \frac{5}{4} \left(\frac{1}{w} \right) + \frac{7}{8} \left(\frac{1}{w} \right)^2 + \left(\frac{1}{w} \right)^3 = 1,035$$

Wyznaczam średnicę drutu na podstawie powyższych danych.

Jako maksymalną wartość naprężeń stycznych przyjmuję $k_s = 600$ MPa.

$$d' = \sqrt{\frac{8 \cdot P_k \cdot w \cdot k}{\pi \cdot k_s}} = 0,976 \, mm$$

gdzie:

- k_s maksymalne naprężenia styczne,
- w wskaźnik średnicowy,
- k współczynnik poprawkowy,
- P_k siła końcowa

Otrzymaną wartość (d') zaokrąglam w górę do najbliższej znormalizowanej średnicy drutu sprężynowego z normy PN-EN 10270-1:2004.

Na tej podstawie przyjmuję średnice drutu d = 1 mm.

Wyznaczam średnicę sprężyny dla przyjętej średnicy drutu korzystając ze wskaźnika średnicowego sprężyny:

$$D = w \cdot d = 8 * 1 = 8 mm$$

Liczba zwojów czynnych:

$$z_c = \frac{G \cdot d \cdot f_k}{8 \cdot P_k \cdot w^3} \approx 21,5$$

gdzie:

- G 8·10⁴ MPa moduł sprężystości poprzecznej stali,
- *d* średnica drutu w mm,
- f_k ugięcie końcowe sprężyny
- P_k siła końcowa w N,
- w wskaźnik średnicowy

Liczba zwojów została zaokrąglona po połowy zwoju czynnego.

Przyjmuję liczbę zwojów nieczynnych:

$$z_n = 1.5$$

Całkowita liczba zwojów:

$$Z = z_c + z_n = 21.5 + 1.5 = 23$$

Prześwit międzyzwojowy:

$$\sum a_{min} = \left(0.0015 \cdot \frac{D^2}{d} + 0.1 \cdot d\right) \cdot z_c = 4.214 \ mm$$

gdzie:

- D średnia średnica sprężyny w mm,
- d średnica drutu w mm,
- z_c liczba zwojów czynnych

Długość zablokowanej sprężyny:

$$l_{bl} = (Z + p) \cdot d = 24 mm$$

gdzie:

- Z całkowita liczba zwojów,
- p = 1 zależy od rodzaju sprężyny (1 dla sprężyn o zwojach przyłożonych i nieszlifowanych),
- d średnica drutu w mm,

Długość końcowa sprężyny:

$$l_k = l_{bl} + \sum a_{min} = 24 + 4,214 = 28,214 \ mm$$

Długość początkowa sprężyny:

$$l_p = l_k + f_r = 28,214 + 15 = 43,214 \, mm$$

Długość sprężyny swobodnej:

$$l_0 = l_k + f_k = 28,214 + 30 = 58,214 \, mm$$

gdzie:

- l_{bl} długość zablokowanej sprężyny w mm,
- $\sum a_{min}$ całkowita długość prześwitu międzyzwojowego w mm,
- f_r długość strzałki roboczej w mm,
- f_k długość ugięcia końcowego w mm

Sprawdzenie możliwości wyboczenia sprężyny:

• Wskaźnik smukłości sprężyny λ:

$$\lambda = \frac{l_0}{D} = \frac{58,214}{8} = 7,277$$

Wskaźnik sprężystości sprężyny η:

$$\eta = \frac{f_k}{l_0} * 100 = \frac{30}{58,214} = 51,534$$

Rys. 8 Zależności wskaźnika sprężystości od wskaźnika smukłości

Z wykresu wynika, że dla otrzymanych wyników wskaźnika sprężystości sprężyny η oraz wskaźnika smukłości sprężyny λ wynika, iż sprężyna ta ma zmienne warunki podparcia i przy konstrukcji stolika konieczne będzie uwzględnienie prowadzenia sprężyny.

Podsumowując w module stolika liniowego wykorzystam sprężynę o następujących parametrach:

- D = 8 mm
- d = 1 mm
- $l_p = 43,214 \text{ mm}$
- $l_k = 28,214 \text{ mm}$

- $l_0 = 58,214 \text{ mm}$
- $\sum a_{\min} = 4,214 \text{ mm}$
- Z = 23
- drut sprężynowy PN-EN 10270-1 DM 1 Z

Wykonanie sprężyny:

Sprężynę nawija się na zimno. Zaczepy dogina się potem gorąco. Po ukształtowaniu sprężynę należy odpuszczać w temperaturze 210 ± 100 °C.

Sprężyn nie wolno hartować po nawinięciu, gdyż niszczy to własności sprężyste drutu.

6. Głowica mikrometryczna

Stosuję głowicę mikrometryczną firmy Mitutoyo o numerze katalogowym 149 – 802.

Dane techniczne:

- Zakres ruchu: 0 15 mm,
- Powierzchnia pomiarowa: węglik spiekany,
- Końcówka wrzeciona: Sferyczna (SR4),
- Podziałka: 0,01 mm,
- Ø tulei: 9,5 mm,
- Dokładność pomiarowa ±2μm,

Nacisk głowicy mikrometrycznej na powierzchnię stopki karetki:

$$P_{Hmax} = 0.578 \cdot \sqrt[3]{\frac{F_{jmax}}{r^2 \cdot \left(\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}\right)^2}} = 0.578 \cdot \sqrt[3]{\frac{47,092}{4^2 \cdot \left(\frac{1 - 0.17^2}{4.2 \cdot 10^5} + \frac{1 - 0.17^2}{4.2 \cdot 10^5}\right)^2}} \approx 2984 \, MPa$$

gdzie:

- $Fjmax = F_2 + P_k$ całkowita siła obciążająca materiał będąca sumą obciążenia zadanego w warunkach technicznych (F2), całkowitej siły tarcia (T_C) i siły końcowej działającej na sprężynę (Pk)
- r promień sferycznego zakończenia trzpienia głowicy (SR4)
- v_1 , v_2 liczba Poissona (węglik spiekany $v_1 = v_2 = 0.17$)
- E_1 , E_2 moduł sprężystości wzdłużnej materiału (węglik spiekany $E_w = 4.2 \cdot 10^5 \, MPa$)

Otrzymane wartości nacisków są niższe od wartości granicznych dla węglika wobec tego w karetce zostanie umieszczona w miejscu kontaktu z trzpieniem głowicy mikrometrycznej wkładka walcowa z węglika (W).

7. Literatura

- I. Mościcki W.: Materiały do projektowania PKUP I 2022/2023. Moduł stolika liniowego. Preskrypt, 2022
- II. Mitutoyo Polska Sp, z o. o.: Katalog przyrządów pomiarowych 2013/2014