

MODELLBILDUNG UND SIMULATION:

Mechanische, elektrische und physiologische Systeme und deren Regelung

Andreas KÖRNER

Institut für Analysis und Scientific Computing FB Scientific Computing und Modellieren

Beispiele Mathematischer Modelle

- Beschreibung von Temperatur (Newtonsches Abkühlungsgesetz)
- Barometrische Höhenformel
- Radioaktiver Zerfall und bakterielles Wachstum
- [...]

$$\frac{dT(t)}{dt} = k \cdot (T_0 - T(t))$$

$$p(h) = p_0 \cdot e^{-\frac{\rho g}{p_0}h}$$

$$N(t) = N_0 \cdot e^{-\lambda t}$$

Mathematische Modelle

- Ein mathematisches Modell beschreibt den zugrundeliegenden Sachverhalt im Allgemeinen nur ausschnittweise und ungenau.
- Um einschätzen zu können, ob ein mathematisches Modell gut oder schlecht ist, muss man wissen, zu welchem Zweck das Modell verwendet wird.
- Ein mathematisches Modell gibt einen realen Sachverhalt im Allgemeinen in idealisierter Form wieder, wobei gewisse annahmen getroffen werden. Die Annahmen werden nach Möglichkeit so getroffen, dass das Modell überschaubar und handhabbar wird.
- Ein und derselbe Sachverhalt kann durch verschiedene mathematische Modelle beschrieben werden.
- Mit ein und demselben mathematischen Modell kann man verschiedene Sachverhalte beschreiben.

Mathematische Modelle

The best material model of a cat is another, or preferably the same, cat.

(Norbert Wiener)

Klassischer Zugang

- Anwendung von Theorien
- Durchführung von Experimenten

Modellbildung als Prozess

Simulation

- Experimente in virtuelen Laboratorien
- Experimente am Computen
- Dritte Säule neben Theorie und Experiment

Kreislauf der Mododellbildung

Auswahl an Methoden

Gewöhnliche Differentialgleichungen (Physikalische Gesetze, Regeln, etc.)

d2q + 1.c. 9 = 0

System
Dynamics

Physikalische Modellierung

Zelluläre Automaten

Agent-based

Discrete event simulation

Partielle Differentialgleichungen

Klassifikation der Methoden

Gewöhnliche Differentialgleichungen (Physikalische Gesetze, Regeln, etc.)

Physikalische Modellierung

Discrete event simulation

networkSeize, NetworkSeize

Partielle Differentialgleichungen

Mechatronische Systeme

Physiologische Systeme

Verifikation von Systemmodellen

Regelung von Systemen

Regelung von Systemen

Geregeltes inverses Dreifachpendel

LVA Perspektiven

- AKMOD: Mathematische Modellbildung in der Systemsimulation
- AKMOD: Angewandte Modellbildung in der Systemsimulation
- AKMOD: Modellbildung und Simulation dynamischer Systeme
- Modeling and Simulation
- Regelungsmathematische Modelle in der Medizin
- AKANW Modellbildung und Simulation des Herzkreislaufsystems