Math	34A	Winter	2020
Quiz	#2c		

Alyssal Tolenthoo PRINT NAME PERM NUMBER

No calculators

		provided.	TA: Garo	Trevor	Time: 8am	
Put your answer in the	<u>box</u>	provided.	\square Sam		5pm	7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) = \left(\begin{array}{cc} (-1, & 3) \end{array} \right)$$

$$5 = -1(-3) + b$$

 $5 = -1(-3) + b$
 $5 = -1(-3) + b$
 $5 = -1(-3) + b$

$$\frac{3\cdot 3}{6-3}\cdot \frac{0}{7}\cdot 0$$

$$-x + 2 = 3$$

 $-x = 1$
 $x = -1$

$$y = -1(-1) + 2$$
 $y = 3$

Abigayle Weitl PRINT NAME

PERM NUMBER 8222036

No calculators

Put your answer in the

box.

provided.

TA:Garo Sam

Trevor Time: 🎏 8am

5pm

6pm 7pm

1. Find the (x,y) coordinates of the point of intersection between:

Live 1 • the line connecting the points (x,y)=(-3,5) and (4,-2), and

Line 2 • the line connecting the points (x,y)=(-2,3) and (5,3).

Line 1:
$$y=mx+b$$
 $m=\frac{(-2-5)}{(4-1.3)}=\frac{-7}{7}=-1$
 $y=-x+b=>y=-x+2$
 $-2=-(4)+b==-(-3)+b$
 $2=b=-(-3)+b=-1$

Line 2
$$M = \frac{(3-3)}{(5-(-2))} = \frac{0}{7} = 0$$

$$M = \frac{3}{3}$$

No calculators

Monsa Quezada PRINT NAME

PERM NUMBER

Put your answer in the

box

provided.

TA:Garo Sam

Trevor Time: 8am

5pm

6pm

7pm

- the line connecting the points (x,y)=(-3,5) and (4,-2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$\frac{(-3.5) & (4.-2)}{(x-x_0)^2} = \frac{(-3.5) & (4.-2)}{(4.-3)^2} = \frac{(x,y)}{(4.-3)^2} = \frac{(x,y)$$

$$y=mx+b$$
 $y=-7x+16$ $y=-7x+16$

$$(-2,3) & (5,3)$$

 $\frac{9-90}{x-x_0} = \frac{3-3}{5-2} = \frac{3}{3} = 0$
 $y=0x+3$

$$y = 0x + b$$

 $3 = 0(-2) + b$
 $3 = b$

$$(x,y) = \left(\begin{array}{c} 1 & 3 \\ 3 & 3 \end{array} \right)$$

$$-7x - 16 = 4x + 3$$

$$-\frac{1}{4}x = \frac{19}{9}$$

$$y = 0(\frac{19}{9}) + 3$$

$$x = \frac{19}{9}$$

$$y = 3$$

$$y = 3$$

$$y = 3$$

$$y = 3$$

PRINT NAME Elise Ziem

PERM NUMBER
3047172

No calculators

Put your answer in the	box provided.	TA: Garo Sam	Trevor	Time: X 8am 5pm	☐ 6pm ☐ 7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$\lambda = wx + \rho$$
 $w = \frac{x^3 - x'}{\lambda^3 - \lambda'}$

$$(x,y) = \left(\frac{5}{3}, 3 \right)$$

$$m = \frac{-2-5}{4-(-3)} = \frac{-3}{7} = \frac{3}{7}$$

$$m: \frac{3-3}{5-(-2)}: \frac{9}{7}$$
 - undefined

$$\lambda = -\frac{1}{3}x + \rho$$

$$5 = \frac{9}{7} + b$$
 $\sqrt{1 = -\frac{3}{7}} \times + \frac{26}{7}$

$$3 = -\frac{3}{7} \times \cdot \frac{26}{7}$$

$$\frac{21}{7} = \frac{3}{7} \times + \frac{26}{7}$$

$$-\frac{5}{7} = -\frac{3}{7} \times$$

$$-\frac{3}{7}$$

$$X = -\frac{5}{8}x - \frac{3}{3}$$

$$x = \frac{5}{3}$$

Fabiola Ixtan Moteo PRINT NAME

PERM NUMBER 9491127

No calculators

	J	1	TA: Garo	Trevor	Time: 🗶 8am	6pm
Put your answer in the	box	provided.	☐ Sam		5pm	\square 7pm

 $(x,y) = \left| \begin{pmatrix} -3/2 & -3/2 \end{pmatrix} \right|$

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$M = \frac{3-3}{5-(-2)} = \frac{0}{7} = 0$$

$$y-3 = 0 (x-(-2))$$

 $y-3 = x+2$
 $+13$ $+3$

$$\frac{2}{1} = \frac{3}{2}$$

$$y = -\frac{3}{2} + \frac{5}{1 \cdot 2}$$

$$= -\frac{3}{2} + \frac{10}{2}$$

$$y = \frac{7}{2}$$

No calculators

PRINT NAME Castillo

PERM NUMBER

6pm

7pm

Put your answer in the box provided. TA: Garo Trevor Time: 8am 5pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$\frac{Y-Y_{0}}{(-3.5)} (4.-2) \frac{Y-Y_{0}}{x-40}$$

$$\frac{-2-5}{4+3} = \frac{-7}{7} = -1 \quad m=-1$$

$$y = mx+b \qquad linear equation #1 = y=-1x+2$$

$$y=-1x+2$$

$$(-2.3)$$
 and (5.3) $\frac{3-3}{5+2} = \frac{0}{7} = 0$ $m=0$
 (-2.3) $y = mx + b$ linear equation # $z = \sqrt{y=0x+3}$
 $3 = 0(-2) + b$
 $3 = 0 + b$

Elizabeth Salcido PRINT NAME PERM NUMBER 8302028

No calculators

	1		TA: Garo	☑ Trevor	Time: 8am	6pm
Put your answer in the	_box	provided.	Sam		5pm	7pm

- 1. Find the (x,y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$\frac{-2-6}{4-3}=\frac{-7}{7}=-1$$

$$(x,y) = \left(-2,3\right)$$

$$\frac{3-3}{5-2} = \frac{0}{7} = 0$$
 because its a straight line

? Line 1:
$$y = -x + 2 \rightarrow 3 = -x + 2 \Rightarrow x = 1$$

Line 2: $y = 3$

cture

No calculators

Siyuan Chen PRINT NAME PERM NUMBER
6918445

Put your answer in the

provided.

abla	8am
	$5 \mathrm{pm}$

	6pm
٦	$7 \mathrm{pm}$

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

For line A,
$$y=k_1X+b_1$$

 $k_1 = \frac{-2-5}{4-(-3)} = \frac{-7}{7} = -1$
 $\Rightarrow y=-1X+b_1$, plug in $(-3,5)$
 $\Rightarrow 5=-1\cdot(-3)+b_1$
 $5=3+b_1$. Line A: $y=-X_1+2$
 $b_1=2$ $y=2-x$

$$(x,y) = (-1,3)$$

For line B,
$$y=k_2 \times b_2$$

 $k_2 = \frac{3-3}{5-(-2)} = \frac{0}{7} = 0$
 $\Rightarrow y=0 \times b_2$, plug in (-2,3)
 $3=0.(-2)+b_2$
 $b_2=3$... Line B: $y=0 \times +3$
 $\Rightarrow y=3$

.* Intergection:

$$y_1 = y_2$$

 $\Rightarrow 2 - \chi = 3$
 $-\chi = 1$
 $\chi = -1$
 \Rightarrow Plug in, $y = 3(2 - 1)$

No calculators

Maile Buckman PRINT NAME PERM NUMBER
6848311

Put your answer in the

box	
DUA	

provided.

TA:	Garo
	Sam

8am
5pm

6pm
7pm

- 1. Find the (x,y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$y-y_0=m(x-x_0)$$

$$5-(-2)=m(-3-4)$$

$$7=m(-7)$$

$$m=-1$$

$$y=mx+b$$

$$5=(-1)(-3)+b$$

$$5=3+b$$

$$b=2$$

$$y=-x+2$$

$$-X + 2 = 3$$

 $-X = 1$
 $X = -1$
 $(-1, 3)$

$$(x,y) = \boxed{ \left(-1,3\right)}$$

Revision:

PRINT NAME Anna Bound

PERM NUMBER 8504920

No calculators

Trevor Time: X 8am 6pm TA:Garo provided. box Put your answer in the 7pm 5pm Sam

- 1. Find the (x,y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

y=-x+2

$$\frac{\gamma_2 - \gamma_1}{x_2 - x_1} = m$$

$$(-3,5),(4,-2)$$

$$-2+5 = -7 = -1 = m$$

$$4+3$$

$$y = -1x + 6$$
 $-2 = -1(4) + 6$
 $-2 = -4 + 6$
 $+4 + 4$
 $6 = 2$

$$(x,y) = \boxed{ \left(-1, 3 \right)}$$

$$\frac{3-2}{-2+5} = \frac{0}{-7} = 0$$

$$y = 0x + 6$$

$$3 = 0(5) + 6$$

$$6 = 3$$

$$y = 2$$

$$3 = -x + 2$$

$$-2 \qquad -2$$

$$-x = 1 \qquad x = -1$$

$$-(-1)+2=y$$

$$-(-1)+2=y$$
 $-(-1,3)$
 $-(-1,3)$

No calculators

PRINT NAME Mya Watts

PERM NUMBER 7481401

Put your answer in the

box	
-----	--

provided.

Garo $TA: \lceil$ Sam

Trevor Time: 8am

5pm

6pm 7pm

- the line connecting the points (x, y) = (-3, 5) and (4, -2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) = \left(\begin{array}{c} (0,) \end{array} \right)$$

$$y+2 = -x-4$$
 $y=-x-6$

$$eq.2 \quad m = \frac{3-3}{5-2} = \frac{0}{7}$$
 undefined

Math	34A	Winter	2020
Quiz	#2c		

PRINT NAME Maya Schnall

PERM NUMBER

Put your answer in the

box

provided.

Trevor	Time:
--------	-------

	$8\mathrm{am}$
i	-5 p m

] 6pm | 7pm

- the line connecting the points (x,y)=(-3,5) and (4,-2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$\frac{-2+5}{4+3} = \frac{-7}{7} = -1$$

$$-2 = -1(4) + h$$

$$-2 = -4 + h$$

$$+4 + 4$$

$$\frac{3-3}{5+2} = \frac{0}{7}$$

$$3 = \frac{9}{7}(5) + 6$$

$$6 = \frac{9}{7}(5) + 6$$

$$6 = \frac{9}{7}(5) + 6$$

$$-1x + 2 = \frac{2}{7}x + 3$$

 $-1x = \frac{1}{2}$
 $-1x = \frac{1}{2}$

$$y=-1(-1)+2$$

 $y=1+2$
 $y=3$

$$(x,y) = \begin{bmatrix} -1 & 3 \end{bmatrix}$$

PARKER VEDA PRINT NAME

PERM NUMBER 9810250

No calculators

Put	your	answer	in	the

pox

provided.

TA: [Garo Sam

Trevor Time: 8am

6pm 7pm

- the line connecting the points (x,y)=(-3,5) and (4,-2), and
- the line connecting the points (x,y)=(-2,3) and (5,3).

$$\frac{5+2}{-3-4} = \frac{7}{-7} = -1$$

$$(x,y) = (-1,3)$$

$$y-3 = 0(x-5)$$

$$y-3 = 0$$

$$y-5=-1(x+3)$$
 $y-3=0(x-5)$
 $y-5=-x-3$ $y=-x-3+5$ $y=3$
 $y=-x+2$

$$3 = -x+2$$

Math	34A	Winter	2020
Quiz	#2c		

,	<u> </u>	
	Tyler Grever	
	PRINT NAME	

PERM	NUMBER
95340	25

Put your answer in the

provided.

TA:	Gar
	San

Trevor '	Time:
----------	-------

	$8\mathrm{am}$
$\overline{\nu}$	5pm

	6pm	
Ī	$7 \mathrm{pm}$	

- the line connecting the points (x, y) = (-3, 5) and (4, -2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

Math	34A	Winter	2020
Quiz	#2c		

Danigza Benitez
PRINT NAME

PERM NUMBER 8247835

Put your answer in the

box

provided.

Trevor Time:

$8\mathrm{am}$
5nm

6pm 7pm

1. Find the (x, y) coordinates of the point of intersection between:

- 6 the line connecting the points $(x,y)=(\overset{\kappa}{-3},\overset{3}{5})$ and $\overset{\kappa_2}{(4,-2)}$, and
- 3 the line connecting the points (x,y)=(-2,3) and (5,3).

) y= - x + 2

 $(x,y) = \begin{bmatrix} 3 & -1 \end{bmatrix}$

m = -7 mmb

7 = - X + b

n = 2

0 y= mx+b		X =
m = 6	The state of the second section of the section of t	• •

BUTURUNIA

Beau Karnsrithang PRINT NAME

PERM NUMBER

No calculators

		,,,,	TA: Garo	X Trevor	Time: 8am	6pm
Put your answer in the	<u>box</u>	provided.	\square Sam	,	又 5pm	7pm

- 1. Find the (x,y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x,y)=(-2,3) and (5,3).

• the line connecting the points
$$(x,y)=(-2,3)$$
 and $(5,3)$. — M

$$(x,y)=(-2,3)$$

$$(x,y)=(-3,5)$$

$$(x,y)=(-3,5)$$

$$(x,y)=(-3,5)$$

$$y = -1x + b$$
 $y = 0(x) + b$
 $y = -1(-1) + 2$
 $y = -1(-1) + 2$
 $y = -3$
 $y = -1(-1) + 2$
 $y = -3$
 $y = -1(-1) + 2$

Math	34A	Winter	2020
Quiz :	#2c		

PRINT NAME	Ollvia Fether	
f (/) (A) (A) (A) (A)		

PERM	NUMBER
98152	26

Put your answer in the

provided.

|X Trevor Time:

	$8\mathrm{am}$
X	5pm

6pm 7pm

- A the line connecting the points (x,y)=(-3,5) and (4,-2), and
- 9 the line connecting the points (x, y) = (-2, 3) and (5, 3).

(A)
$$\frac{-2-5}{4-(-3)} = \frac{-7}{7} = -1$$
 $y=5-(-1)(x+3)$ $y=5-(-x)-3$ $y=8+x$

$$(x,y) = \begin{bmatrix} -5,3 \\ \end{bmatrix}$$

(B)
$$\frac{3-3}{5-(-2)}=0$$

(B)
$$\frac{3-3}{5-(-2)} = 0$$

 $8+x=3-0(x+2)$
 $8+x=3$
 $x=-5$

Math	34A	Winter	2020
Quiz :	#2c		

Kassic Smiggs PRINT NAME

PERM NUMBER 8227 945

Put your answer in the

	box	
--	-----	--

provided.

Trevor Time:

 $(x,y) = \begin{pmatrix} -4/\sqrt{6} & \sqrt{6} \end{pmatrix}$

$8\mathrm{am}$
5pm

6pm 7pm

- the line connecting the points (x, y) = (-3, 5) and (4, -2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$m_1 = \frac{-2.5}{4.3} = \frac{7}{4.51}$$

$$a = \frac{-2-5}{4-3}$$

$$A+y=-1(x-y)$$

Sydney Rouse PRINT NAME

PERM	NUMBER

No calculators

Put	your	answer	in	the
Fut	your	arramer	111	OTIC

box

provided.

TA: Garo Sam

Trevor Time: 8am

6pm 7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(-3,5) & (4,-2)$$

$$510pe = -\frac{2-5}{4+(+3)} = -\frac{7}{7} = -1$$

$$y = mx + b$$
 $-2 = (-1)(1) + b$
 $-2 = -4 + b$
 $+4 + 4$
 $2 = b$
 $1 = -x + 2$

$$\frac{(-2,3)(5,3)}{5(-2)} = \frac{0}{7} = \emptyset$$

$$y = mx + b$$

 $3 = 8x + b$
 $3 = b$
 $y = 3$

$$3 = -1 + b$$

 $+1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$
 $-1 + 1$

Math	34A	Winter	2020
Quiz :	#2c		

Clas Clifby PRINT NAME PERM NUMBER

(9936 DU)

No calculators

Put your answer in the	box	provided.	TA: Garo	Trevor	Time: Sam	☐ 6pm ☐ 7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) =$$

5=mx+b +3-3-5 (b) = 3 x =

Math	34A	Winter	2020
Quiz :	#2c		

TONY YANG PRINT NAME

PERM NUMBER 8003949

Put your answer in the

box

provided.

TA:		Gard
	\Box	Sam

Trevor Time:

$8 \mathrm{am}$
5pm

 \times 6pm 7pm

- the line connecting the points (x, y) = (-3, 5) and (4, -2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$0 \left\{ -3a+b=5 \right\}$$

$$4a+b=-1$$

$$\begin{array}{c}
\bigcirc \left\{ \begin{array}{c} -1 & a+b=3 \\
5 & a+b=3 \end{array}\right. \quad (x,y) = \left[\begin{array}{c} \left(\begin{array}{c} -1 \\ \end{array} \right) & 3 \end{array} \right)$$

$$-x + 2 = 3$$

 $-x = 1$
 $x = -1$

Math	34A	Winter	2020
Quiz :	#2c		

Grant Johnson PRINT NAME

PERM	NUMBER
AS 1098	<i>P</i>

No calculators

	Put your answer in the	box	provided.	TA: Garo Sam	Trevor		[√] 6pm ☐ 7pm
--	------------------------	-----	-----------	---------------	--------	-------------	------------------

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$\frac{9^{2}-9}{12-9}$$

$$\frac{-2-5}{4-(-2)}=\frac{-7}{7}=-1$$

$$(x,y) = (-1, 3)$$

$$\frac{y_{2}-y_{1}}{y_{2}-y_{1}}$$

$$\frac{3-3}{5-(-2)} = \frac{9}{7} = 0$$

$$(9-9) = 10(y-y)$$

 $(9-3) = 00x - (-2)$
 $9-3 = 0x + 0$
 $13 = 0x + 3$

Math	34A	Winter	2020
Quiz :	#2c		

CAI	JULIE
PRINT	NAME

PERM NUMBER	
3479318	

Put your answer in the

box

provided.

TA:	Gard
	Sam

o Trevor Time:

8am
5pm

6pm 7pm

- the line connecting the points (x, y) = (-3, 5) and (4, -2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) = \left[(-1,3) \right]$$

$$0 (5 = -3k+b)$$

$$\begin{cases} 3 = -2k + b \\ 3 = 5k + b \end{cases}$$

Math	34A	Winter	2020
Quiz	#2c		

Anyel	Solores
PRINT NAME	

PERM NUMBER

		. 1 .	TA: Garo	☐ Trevor	Time: 8am	
Put your answer in the	box	provided.	\square Sam		\Box 5pm	7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

Math	34A	Winter	2020
Quiz :	#2c		

Carace	Cain
PRINT NAME	

PERM NUMBER

Put your answer in the

|--|

provided.

☑ Trevor Time:

√6pm 7pm

1. Find the (x, y) coordinates of the point of intersection between:

• the line connecting the points (x, y) = (-3, 5) and (4, -2), and

• the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) = \left(\begin{array}{c} (x,2) \end{array} \right)$$

$$\frac{-2-5}{4-(-3)}=\frac{-7}{7}=-1$$

$$y-(-2) = 2 - 1 (x - 4)$$

 $y+2 = -1 (x - 4)$
 $y+2 = -1 (x - 4)$
 $y+3 = -1 (x - 4)$
 $y=-x+2$

$$\frac{3-3}{5-(-2)} = \frac{0}{7} = 0$$

$$\frac{7}{7} = 0 \times (x-5)$$

$$\frac{7}{7} = 0 \times (x-5)$$

$$\frac{7}{7} = 0 \times (x-5)$$

No calculators

Allinta Tadesse PRINT NAME

PERM NUMBER 8045064

Put your answer in the

box

provided.

TA:[Garo Sam

Trevor Time:

8am 5pm M 6pm 7pm

1. Find the (x, y) coordinates of the point of intersection between:

- the line connecting the points (x,y)=(-3,5) and (4,-2), and the line connecting the points (x,y)=(-2,3) and (5,3).

$$M: \frac{1}{x_1 - x_1} \qquad M: \quad \frac{2-5}{4-(-3)} = \frac{7}{7} = -1$$

$$(x,y) = (1,1)$$

$$M: \quad \frac{3-3}{5-(-1)} = \frac{0}{7} = 0$$

$$Y = m \times + b$$

$$Y = -1 \times + b$$

$$(x,y) = \left(\begin{array}{c} (x,y) \\ \end{array} \right)$$

$$M_{\frac{1}{2}} = \frac{3-3}{5-(-1)} = \frac{0}{7} = 0$$

4=m x+b

$$5 = -3(-1) + 6$$

 $5 = 3 + 6$
 $6 = 2$
 $4 = -x + 2$

Karla Hernandez Legra PRINT NAME

PERM NUMBER 9457607

No calculators

Put your answer in the	box	provided.	TA: Garo Sam	Trevor	Time:	\square 6pm \square 7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) = \boxed{ \left(-1,3\right)}$$

$$\frac{3-3}{5-(-2)} \to 0$$

$$\frac{-2-5}{4-1-3} = \frac{-7}{7} \rightarrow -1$$

$$L_1 \qquad L_2 \qquad \qquad M = 0$$

$$y = -1x + b$$

$$5 = -1(-3) + b$$

$$2 = b$$

$$-1(x-4)+(-2)=0(x-5)+3$$

$$-x+4-2=+3$$

Y= m(x-x.)+y=

$$y = 0(5-6)+3$$

 $(-1,3)$

Luisa Sanchez PRINT NAME PERM NUMBER
8252496

No calculators

Put your answer in the

box

provided.

TA: Garo

Trevor Time:

8am 5pm ∭ 6pm ∏7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

Michaela Wong PRINT NAME

PERM NUMBER 751773

No calculators

Put your answer in the	box	provided.	TA: Garo Sam	Trevor Tim	e:	☐ 6pm ☐ 7pm
	2			m: 7-11=	m (x-X1)	

• the line connecting the points
$$(x,y) = (-3,5)$$
 and $(4,-2)$, and • the line connecting the points $(x,y) = (-2,3)$ and $(5,3)$.

$$\frac{-2.5}{4+3} = \frac{7}{7} = \frac{3-3}{5+2} = \frac{1}{7}$$

$$\frac{5}{3} = \frac{7}{7} = -1 \quad m = \frac{3-3}{5+2} = \frac{1}{7} \qquad (x,y) = \begin{bmatrix} -\frac{63}{8} & \frac{79}{8} \\ \frac{79}{8} & \frac{79}{8} \end{bmatrix}$$

$$-X+2 = \frac{1}{7} \times + \frac{23}{4}$$

$$-\frac{23}{7} - \frac{23}{7}$$

$$-X-9 = \frac{1}{7} \times + \frac{1}{7} \times$$

Math	34A	Winter	2020
Quiz :	#2c		

David cectio-Hernonder PRINT NAME

PERM NUMBER 9571092

No calculators

Put your answer in the

provided.

ΓА:	Gar
	San

$8\mathrm{am}$
5pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$\frac{-2-5}{4-(-3)}$$

$$\frac{7}{7} = 1 \qquad (x,y) = \boxed{}$$

$$(x,y) =$$

Math	34A	Winter	2020
Quiz	#2c		

Man	Lockwood
PRINT	NAME

PERM NUMBER 7952195

No calculators

Sam opm repar	Put your answer in the	box	provided.	TA: Garo Sam	Trevor	Time:	6pm 7pm
---------------	------------------------	-----	-----------	--------------	--------	-------	------------

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - \bigcirc the line connecting the points (x,y)=(-2,3) and (5,3).

$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}$

$$Y-Y_1=-1(x-X_1)$$

 $Y-5=-1(x-(-3))$
 $Y-5=-x-3$
 $Y=-x+2$

$$(x,y) = \left(1.5,3\right)$$

$$\frac{3-3}{-3-5} = \frac{6}{7}$$

No calculators

PRINT NAME WIS GUINKERD

PERM NUMBER
9343013

Put your answer in the

box

provided.

- FA: Garo
-) XI
- Trevor Time:
- 8am 5pm
- ∑ 6pm ∏7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) = \left(-\frac{Q}{7}, 2\right)$$

$$-1x+2 = \frac{9}{7}x+\frac{21}{7}$$

 $-\frac{6}{7} = 1x$

$$5 = -1(-3) + b$$

$$-3 = 3 + b$$

$$-3 = -3$$

$$2 = -b$$

$$3 = \frac{9}{(-2)} + b$$
 $2 = \frac{9}{3} + b$
 $2 = \frac{9}{3} + b$
 $2 = \frac{9}{3} = \frac{9}{5}$

Jasmine Garcia

PERM NUMBER 8125239

No calculators

Put your answer in the	box	vided. TA: Gar	 Fime:	☐ 6pm ☑ 7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x, y) = (-3, 5) and (4, -2), and
 - the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$m_1 = \frac{-2-5}{4\cdot 3} = \frac{-7}{7} = -1$$
 $(x,y) = (-1,3)$

$$m_2 : \frac{3-3}{5+2} : \frac{0}{7} : 0 \quad y=3$$

$$y = -1x + b$$

 $-x = 1$
 $5 = -(-3) + b$
 $x = -1$
 $y = 3$

Math	34A	Winter	2020
Quiz :	#2c		

Juan Angelina PRINT NAME

PERM NUMBER 10004

Put your answer in the

pox

provided.

Garo TA:Sam

Trevor Time: 8am

5pm

6pm $\sqrt{7}$ pm

1. Find the (x,y) coordinates of the point of intersection between:

• the line connecting the points (x,y)=(-3,5) and (4,-2), and

8k+b-(-2k+b)=0.

tle+b+2k-b20

~ y>= 3.

 $\mathbf{y}_{\mathbf{x}}$. • the line connecting the points (x,y)=(-2,3) and (5,3).

y = katb.

b= 5+3k=-2-4k.

7/x=-7

K2-1

-3x(-1)+b=5

)1= +100

こーハナンラろ. -M=1 1=-1

(-1,3).

(x,y) =(-1,3)

Check:

J-13/e=-2-46.

\$76=-7

b=5+3k=2.

9=-X+2.

7=-1

Math	34A	Winter	2020
Quiz	#2c		

PRINT	NAME	Leonordio
-------	------	-----------

PERM NUMBER

	· ·		TA: Garo	Trevor	Time: 8am	6pm
Put your answer in the	box	provided.	☐ Sam	hanned.	\Box 5pm	7pm

- 1. Find the (x, y) coordinates of the point of intersection between:
 - the line connecting the points (x,y)=(-3,5) and (4,-2), and the line connecting the points (x,y)=(-2,3) and (5,3).

$$(x,y) =$$
 $\left(-\sqrt{3}\right)$

PRINT NAME

PERM NUMBER

9753153

No calculators

Put your answer	in the	b
-----------------	--------	---

provided.

TA: Garo

Trevor Time: [

8am 5pm ☐ 6pm √7pm

1. Find the (x, y) coordinates of the point of intersection between:

- the line connecting the points (x, y) = (-3, 5) and (4, -2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) =$$

$$y = ax+b$$

 $5 = -3x + b$
 $5 = -3x + b$

-x+2=3 -x=3-z=1

X= -1

$$3 = 2a+b$$
 $3 = 5a+b$
 $3 = 5a+b$
 $4 = 5a+5b$
 $4 = 5a+2b$
 $5 = 5a+3$
 $5 =$

No calculators

Aaliyah PRINT NAME Zendejas PERM NUMBER

Put your answer in the

box

provided.

TA: Garo Sam

Trevor Time:

8am5pm

6pm 7pm

1. Find the (x,y) coordinates of the point of intersection between:

- the line connecting the points (x, y) = (-3, 5) and (4, -2), and
- the line connecting the points (x, y) = (-2, 3) and (5, 3).

$$(x,y) = \bigvee$$

SIOPE FORM= Y=MX+b

$$Point = (Y - Y_1) = m(x - x_1)$$
 (-2*,5)

$$(-2^{+},5)$$
 $(47^{-}3)$ $=$ 7

$$\frac{3-3}{5-2} = \frac{0}{10}$$

$$(y-3) = Q(x-5)$$