Laporan Praktikum 3 AMP

Antonius Aditya Rizky Wijaya G5402221003 2025-02-06

Classification Methods

The Stock Market Data

```
library(ISLR2)
## Warning: package 'ISLR2' was built under R version 4.3.3
names(Smarket)
## [1] "Year"
                   "Lag1"
                                "Lag2"
                                                        "Lag4"
                                                                     "Lag5"
                                            "Lag3"
## [7] "Volume"
                   "Today"
                                "Direction"
dim(Smarket)
## [1] 1250
               9
summary(Smarket)
##
         Year
                        Lag1
                                             Lag2
                                                                  Lag3
                                        Min.
##
  Min.
           :2001
                   Min.
                          :-4.922000
                                               :-4.922000
                                                            Min.
                                                                    :-4.922000
   1st Qu.:2002
                   1st Qu.:-0.639500
                                        1st Qu.:-0.639500
                                                            1st Qu.:-0.640000
##
##
   Median :2003
                   Median : 0.039000
                                        Median : 0.039000
                                                            Median : 0.038500
##
   Mean
           :2003
                   Mean
                          : 0.003834
                                        Mean
                                               : 0.003919
                                                            Mean
                                                                    : 0.001716
##
    3rd Qu.:2004
                   3rd Qu.: 0.596750
                                        3rd Qu.: 0.596750
                                                            3rd Qu.: 0.596750
##
   Max.
           :2005
                   Max.
                          : 5.733000
                                        Max.
                                               : 5.733000
                                                                    : 5.733000
                                                            Max.
##
         Lag4
                              Lag5
                                                Volume
                                                                  Today
##
   Min.
           :-4.922000
                        Min.
                                :-4.92200
                                            Min.
                                                   :0.3561
                                                             Min.
                                                                     :-4.922000
                        1st Qu.:-0.64000
##
    1st Qu.:-0.640000
                                            1st Qu.:1.2574
                                                              1st Qu.:-0.639500
##
   Median : 0.038500
                        Median : 0.03850
                                            Median :1.4229
                                                             Median : 0.038500
##
   Mean
         : 0.001636
                        Mean
                                : 0.00561
                                            Mean
                                                   :1.4783
                                                             Mean
                                                                     : 0.003138
                                            3rd Qu.:1.6417
##
    3rd Qu.: 0.596750
                        3rd Qu.: 0.59700
                                                              3rd Qu.: 0.596750
          : 5.733000
                        Max. : 5.73300
   Max.
                                            Max.
                                                   :3.1525
                                                             Max.
                                                                   : 5.733000
##
    Direction
    Down:602
##
##
    Up :648
##
##
##
##
```

pairs(Smarket)

Keterangan:

Melakukan eksplorasi awal terhadap data untuk memahami struktur dan distribusinya.

```
#cor(Smarket)
cor(Smarket[, -9])
##
                Year
                             Lag1
                                          Lag2
                                                       Lag3
                                                                     Lag4
## Year
          1.00000000
                      0.029699649
                                  0.030596422
                                                0.033194581
                                                             0.035688718
## Lag1
          0.02969965
                     1.000000000 -0.026294328 -0.010803402 -0.002985911
## Lag2
          0.03059642 -0.026294328
                                  1.000000000 -0.025896670 -0.010853533
## Lag3
          0.03319458 -0.010803402 -0.025896670
                                                1.000000000 -0.024051036
## Lag4
          0.03568872 -0.002985911 -0.010853533 -0.024051036
                                                            1.000000000
## Lag5
          0.02978799 -0.005674606 -0.003557949 -0.018808338 -0.027083641
## Volume 0.53900647 0.040909908 -0.043383215 -0.041823686 -0.048414246
## Today
          0.03009523 -0.026155045 -0.010250033 -0.002447647 -0.006899527
                                          Today
##
                  Lag5
                            Volume
           0.029787995
## Year
                        0.53900647
                                    0.030095229
## Lag1
          -0.005674606
                        0.04090991 -0.026155045
## Lag2
          -0.003557949 -0.04338321 -0.010250033
## Lag3
          -0.018808338 -0.04182369 -0.002447647
## Lag4
          -0.027083641 -0.04841425 -0.006899527
## Lag5
          1.000000000 -0.02200231 -0.034860083
## Volume -0.022002315 1.00000000 0.014591823
## Today -0.034860083 0.01459182 1.000000000
```

Melihat hubungan linear antar variabel numerik untuk memahami mana yang mungkin berhubungan dengan Direction.

```
attach(Smarket)
plot(Volume)
```


Keterangan:

Melihat bagaimana tren Volume perdagangan berubah selama periode waktu yang ada dalam dataset.

Code Halaman 175

```
train <- (Year < 2005)
Smarket.2005 <- Smarket[!train, ]
dim(Smarket.2005)
## [1] 252 9
Direction.2005 <- Direction[!train]</pre>
```

Keterangan:

Pada baris awal kita mencoba memisahkah training set dengan test set. Data sebelum 2005 (training set), dan data dari 2005 ke atas (test set). Lalu dengan Smarket[!train,], kita memilih hanya data dengan Year >= 2005, sehingga Smarket.2005 berisi hanya test set.

Fungsi dim() menampilkan jumlah baris dan kolom dari Smarket. 2005, yaitu 252x9. Selanjutnya, Direction adalah variabel respons yang menunjukkan apakah pasar saham naik ("Up") atau turun ("Down"). Direction[!train] mengambil hanya nilai Direction dari test set (2005 ke atas) dan menyimpannya di Direction. 2005.

K-Nearest Neighbors

```
library(class)
train.X <- cbind(Lag1, Lag2)[train, ]
test.X <- cbind(Lag1, Lag2)[!train, ]
train.Direction <- Direction[train]</pre>
```

Keterangan:

Dataset dipecah menjadi training set dan test set, hanya menggunakan prediktor Lag1 dan Lag2 karena diduga memiliki hubungan dengan Direction. Sementara train. Direction berisi label kategori untuk data latih.

```
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Direction, k = 1)
table(knn.pred, Direction.2005)

## Direction.2005
## knn.pred Down Up
## Down 43 58
## Up 68 83

(83 + 43) / 252

## [1] 0.5</pre>
```

Keterangan:

Model KNN dengan k=1 dibuat dan hasilnya dibandingkan dengan data aktual. Akurasi dihitung dengan (83+43)/252=50, yang menunjukkan model ini tidak jauh lebih baik dari tebakan acak.

```
knn.pred <- knn(train.X, test.X, train.Direction, k = 3)
table(knn.pred, Direction.2005)

## Direction.2005

## knn.pred Down Up

## Down 48 54

## Up 63 87

mean(knn.pred == Direction.2005)

## [1] 0.5357143</pre>
```

Model KNN dengan k=3 diuji untuk melihat apakah lebih baik dari k=1. Menggunakan mean(knn.pred == Direction.2005), akurasi dihitung dan dibandingkan dengan model sebelumnya.

```
dim(Caravan)
## [1] 5822 86
attach(Caravan)
summary(Purchase)
## No Yes
## 5474 348
348 / 5822
## [1] 0.05977327
```

Keterangan:

Dataset Caravan memiliki 5.822 observasi dan target variabel Purchase. Hanya 348 orang yang membeli asuransi (sekitar 6), menunjukkan dataset sangat tidak seimbang.

```
standardized.X <- scale(Caravan[, -86])
var(Caravan[, 1])

## [1] 165.0378

var(Caravan[, 2])

## [1] 0.1647078

var(standardized.X[, 1])

## [1] 1

var(standardized.X[, 2])

## [1] 1</pre>
```

Keterangan:

Variabel prediktor distandarisasi menggunakan scale(), karena KNN sensitif terhadap skala variabel. Setelah standarisasi, semua variabel memiliki varians yang seragam.

```
test <- 1:1000
train.X <- standardized.X[-test, ]
test.X <- standardized.X[test, ]
train.Y <- Purchase[-test]
test.Y <- Purchase[test]
set.seed(1)</pre>
```

```
knn.pred <- knn(train.X, test.X, train.Y, k = 1)
mean(test.Y != knn.pred)
## [1] 0.118
mean(test.Y != "No")
## [1] 0.059</pre>
```

1.000 observasi pertama digunakan sebagai test set, sisanya sebagai training set. Model KNN dengan k=1 diuji dan error rate dihitung. Akurasi model tidak terlalu baik karena dataset tidak seimbang (mean(test.Y != "No") menunjukkan mayoritas prediksi adalah "No").

```
table(knn.pred, test.Y)

## test.Y

## knn.pred No Yes

## No 873 50

## Yes 68 9

9 / (68 + 9)

## [1] 0.1168831
```

Keterangan:

Dari 77 prediksi "Yes", hanya 9 yang benar. Rasio keberhasilan deteksi pembelian asuransi sangat kecil, sekitar 11.7. Model cenderung bias ke "No" karena mayoritas sampel memang "No".

```
knn.pred <- knn(train.X, test.X, train.Y, k = 3)</pre>
table(knn.pred, test.Y)
##
           test.Y
## knn.pred No Yes
##
        No 920 54
##
        Yes 21
                  5
5 / 26
## [1] 0.1923077
knn.pred <- knn(train.X, test.X, train.Y, k = 5)</pre>
table(knn.pred, test.Y)
##
           test.Y
## knn.pred No Yes
##
        No 930
                 55
##
        Yes 11
```

```
4 / 15
## [1] 0.2666667
```

Dengan k=3, hanya 5 dari 26 prediksi "Yes" yang benar, sekitar 19.2 akurasi pada kelas "Yes". Dengan 4k=5, hanya 4 dari 15 prediksi "Yes" yang benar, sekitar 26.7 akurasi pada kelas "Yes". Semakin besar k, semakin sedikit false positive, tetapi semakin banyak false negative.

```
glm.fits <- glm(Purchase ~ ., data = Caravan,
    family = binomial, subset = -test)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs <- predict(glm.fits, Caravan[test, ],</pre>
    type = "response")
glm.pred <- rep("No", 1000)</pre>
glm.pred[glm.probs > .5] <- "Yes"</pre>
table(glm.pred, test.Y)
##
           test.Y
## glm.pred No Yes
        No 934 59
##
        Yes 7 0
glm.pred <- rep("No", 1000)
glm.pred[glm.probs > .25] <- "Yes"</pre>
table(glm.pred, test.Y)
##
           test.Y
## glm.pred No Yes
##
        No 919 48
##
        Yes 22 11
11 / (22 + 11)
## [1] 0.3333333
```

Keterangan:

Model regresi logistik dibuat dan dilatih hanya pada training test. Jika menggunakan ambang batas probabilitas 50, hampir semua prediksi adalah "No", karena dataset tidak seimbang. Jika ambang batas diturunkan ke 25, lebih banyak "Yes" yang terdeteksi. Akurasi untuk mendeteksi pembelian asuransi tetap rendah (11/(22 + 11) = 33) pada kategori "Yes").

Exercise

Nomor 13

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter's lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

```
library(ISLR2)
library(class)
data(Weekly)
names(Weekly)
## [1] "Year"
                    "Lag1"
                                 "Lag2"
                                              "Lag3"
                                                           "Lag4"
                                                                        "Lag5"
                    "Today"
## [7] "Volume"
                                 "Direction"
dim(Weekly)
## [1] 1089
                9
```

a. Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

```
summary(Weekly)
##
         Year
                        Lag1
                                            Lag2
                                                                Lag3
##
   Min.
           :1990
                   Min.
                          :-18.1950
                                       Min.
                                              :-18.1950
                                                          Min.
                                                                  :-18.1950
##
    1st Qu.:1995
                   1st Qu.: -1.1540
                                       1st Qu.: -1.1540
                                                           1st Qu.: -1.1580
   Median :2000
##
                   Median :
                             0.2410
                                       Median :
                                                 0.2410
                                                          Median :
                                                                     0.2410
##
   Mean
           :2000
                   Mean
                             0.1506
                                       Mean
                                                 0.1511
                                                          Mean
                                                                     0.1472
                                       3rd Qu.:
##
    3rd Ou.:2005
                   3rd Qu.:
                             1.4050
                                                 1.4090
                                                           3rd Ou.:
                                                                     1.4090
##
   Max.
           :2010
                   Max.
                          : 12.0260
                                       Max.
                                              : 12.0260
                                                          Max.
                                                                  : 12.0260
##
                                               Volume
         Lag4
                             Lag5
                                                                  Today
                                                              Min.
## Min.
           :-18.1950
                       Min.
                               :-18.1950
                                           Min.
                                                  :0.08747
                                                                     :-18.1950
   1st Qu.: -1.1580
##
                       1st Qu.: -1.1660
                                           1st Qu.:0.33202
                                                              1st Qu.: -1.1540
   Median : 0.2380
                       Median : 0.2340
                                           Median :1.00268
                                                             Median :
                                                                        0.2410
##
##
   Mean
              0.1458
                       Mean
                                  0.1399
                                           Mean
                                                  :1.57462
                                                             Mean
                                                                        0.1499
##
    3rd Qu.: 1.4090
                       3rd Qu.:
                                  1.4050
                                           3rd Qu.:2.05373
                                                              3rd Qu.: 1.4050
##
   Max.
           : 12.0260
                       Max. : 12.0260
                                           Max.
                                                  :9.32821
                                                             Max.
                                                                     : 12.0260
##
    Direction
    Down: 484
##
##
    Up :605
##
##
##
##
pairs(Weekly[, -9])
```



```
plot(Weekly$Volume, type = "l", main = "Volume Mingguan", ylab = "Volume",
xlab = "Minggu")
```

Volume Mingguan

Year dan Volume tampaknya memiliki hubungan, trennya relatif positif.

g. Repeat (d) using KNN with K = 1.

```
library(class)
train <- Weekly$Year < 2009
test <- Weekly$Year > 2008
knn_model <- knn(</pre>
  Weekly[train, "Lag2", drop = FALSE],
 Weekly[test, "Lag2", drop = FALSE],
  Weekly$Direction[train], k = 1
)
(confusion matrix knn <- table(Prediction = knn model, Actual = Weekly[test,</pre>
|$Direction))
##
             Actual
## Prediction Down Up
##
         Down
                21 29
                22 32
##
         Up
(akurasi knn <- mean(knn model == Weekly[test, ]$Direction))</pre>
## [1] 0.5096154
#sum(diag(confusion matrix knn)) / sum(confusion matrix knn)
```

Dengan model KNN pada k = 1, didapat akurasi 50

j. Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for *K* in the KNN classifier.

```
set.seed(1)
res <- sapply(1:30, function(k) {
  fit <- knn(
    Weekly[train, 2:4, drop = FALSE],
    Weekly[test, 2:4, drop = FALSE],
    Weekly$Direction[train],
    k = k
  )
  mean(fit == Weekly[test, ]$Direction)
})
plot(1:30, res, type = "o", xlab = "k", ylab = "Fraction correct")</pre>
```



```
(k <- which.max(res))</pre>
## [1] 26
fit <- knn(</pre>
  Weekly[train, 2:4, drop = FALSE],
  Weekly[test, 2:4, drop = FALSE],
  Weekly$Direction[train],
  k = k
)
table(Prediction = fit, Aktual = Weekly[test, ]$Direction)
##
              Aktual
## Prediction Down Up
##
         Down
                 23 18
##
                 20 43
         Up
mean(fit == Weekly[test, ]$Direction)
## [1] 0.6346154
```

KNN menggunakan variabel 3 Lag pertama performa marginalnya lebih baik dari regresi logistik dengan Lag2 jika kita setel k menjadi k=26 dengan tingkat akurasi 63.46%

Nomor 14

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

a. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

```
library(ISLR2)
data(Auto)
mpg01 <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)
(data_auto <- data.frame(Auto[,-1], mpg01))</pre>
##
        cylinders displacement horsepower weight acceleration year origin
## 1
                           307.0
                                          130
                                                 3504
                                                               12.0
                                                                       70
## 2
                 8
                           350.0
                                          165
                                                 3693
                                                               11.5
                                                                       70
                                                                                 1
                 8
                                                                                1
## 3
                           318.0
                                          150
                                                 3436
                                                               11.0
                                                                       70
## 4
                 8
                           304.0
                                          150
                                                 3433
                                                               12.0
                                                                       70
                                                                                 1
## 5
                 8
                                                 3449
                                                               10.5
                                                                       70
                                                                                 1
                           302.0
                                          140
                 8
                                                                                 1
                                                                       70
## 6
                           429.0
                                          198
                                                 4341
                                                               10.0
                 8
                                                                9.0
                                                                                1
## 7
                           454.0
                                          220
                                                 4354
                                                                       70
## 8
                 8
                           440.0
                                          215
                                                 4312
                                                                8.5
                                                                       70
                                                                                 1
## 9
                 8
                           455.0
                                          225
                                                 4425
                                                               10.0
                                                                       70
                                                                                 1
## 10
                 8
                           390.0
                                          190
                                                 3850
                                                                8.5
                                                                       70
                                                                                1
## 11
                 8
                           383.0
                                          170
                                                 3563
                                                               10.0
                                                                       70
                                                                                 1
                 8
## 12
                                                                                 1
                           340.0
                                          160
                                                 3609
                                                                8.0
                                                                       70
                 8
                                                                9.5
                                                                                 1
## 13
                           400.0
                                          150
                                                 3761
                                                                       70
## 14
                 8
                                                                                 1
                           455.0
                                          225
                                                 3086
                                                               10.0
                                                                       70
                                                               15.0
                 4
                                                                                 3
## 15
                           113.0
                                           95
                                                 2372
                                                                       70
## 16
                 6
                           198.0
                                           95
                                                               15.5
                                                                       70
                                                                                1
                                                 2833
## 17
                 6
                           199.0
                                           97
                                                 2774
                                                               15.5
                                                                       70
                                                                                 1
## 18
                 6
                           200.0
                                           85
                                                 2587
                                                               16.0
                                                                       70
                                                                                 1
                                                                                 3
## 19
                 4
                            97.0
                                           88
                                                 2130
                                                               14.5
                                                                       70
                                                                                 2
                 4
## 20
                            97.0
                                           46
                                                 1835
                                                               20.5
                                                                       70
                                                                                 2
## 21
                 4
                           110.0
                                           87
                                                               17.5
                                                                       70
                                                 2672
                                                                                 2
## 22
                 4
                           107.0
                                           90
                                                 2430
                                                               14.5
                                                                       70
## 23
                 4
                                           95
                                                               17.5
                                                                       70
                                                                                2
                           104.0
                                                 2375
## 24
                 4
                           121.0
                                          113
                                                 2234
                                                               12.5
                                                                       70
                                                                                 2
## 25
                 6
                           199.0
                                           90
                                                 2648
                                                               15.0
                                                                       70
                                                                                1
                 8
                                          215
                                                               14.0
                                                                                 1
## 26
                           360.0
                                                 4615
                                                                       70
                                                                                 1
## 27
                 8
                           307.0
                                          200
                                                4376
                                                               15.0
                                                                       70
                 8
                                                                                1
## 28
                           318.0
                                          210
                                                 4382
                                                               13.5
                                                                       70
                 8
## 29
                                          193
                                                               18.5
                                                                                 1
                           304.0
                                                 4732
                                                                       70
                 4
                                                                                 3
## 30
                            97.0
                                           88
                                                 2130
                                                               14.5
                                                                       71
                 4
                                                               15.5
                                                                                 1
## 31
                           140.0
                                           90
                                                 2264
                                                                       71
## 32
                 4
                           113.0
                                           95
                                                 2228
                                                               14.0
                                                                       71
                                                                                 3
## 34
                 6
                           232.0
                                          100
                                                 2634
                                                               13.0
                                                                       71
                                                                                1
## 35
                 6
                           225.0
                                          105
                                                 3439
                                                               15.5
                                                                       71
                                                                                1
```

## 36	6	250.0	100	3329	15.5	71	1
## 37	6	250.0	88	3302	15.5	71	1
## 38	6	232.0	100	3288	15.5	71	1
## 39	8	350.0	165	4209	12.0	71	1
## 40	8	400.0	175	4464	11.5	71	1
## 41	8	351.0	153	4154	13.5	71	1
## 42	8	318.0	150	4096	13.0	71	1
## 43	8	383.0	180	4955	11.5	71	1
## 44	8	400.0	170	4746	12.0	71	1
## 45	8	400.0	175	5140	12.0	71	1
## 46	6	258.0	110	2962	13.5	71	1
## 47	4	140.0	72	2408	19.0	71	1
## 48	6	250.0	100	3282	15.0	71	1
## 49	6	250.0	88	3139	14.5	71	1
## 50	4	122.0	86	2220	14.0	71	1
## 51	4	116.0	90	2123	14.0	71	2
## 52	4	79.0	70	2074	19.5	71	2
## 53	4	88.0	76	2065	14.5	71	2
## 54	4	71.0	65	1773	19.0	71	3
## 55	4	72.0	69	1613	18.0	71	3
## 56	4	97.0	60	1834	19.0	71	2
## 57	4	91.0	70	1955	20.5	71	1
## 58	4	113.0	95	2278	15.5	72	3
## 59		97.5		2126			
	4		80		17.0	72 72	1 2
	4	97.0	54	2254	23.5		
## 61	4	140.0	90	2408	19.5	72	1
## 62	4	122.0	86	2226	16.5	72	1
## 63	8	350.0	165	4274	12.0	72	1
## 64	8	400.0	175	4385	12.0	72	1
## 65	8	318.0	150	4135	13.5	72	1
## 66	8	351.0	153	4129	13.0	72	1
## 67	8	304.0	150	3672	11.5	72	1
## 68	8	429.0	208	4633	11.0	72	1
## 69	8	350.0	155	4502	13.5	72	1
## 70	8	350.0	160	4456	13.5	72	1
## 71	8	400.0	190	4422	12.5	72	1
## 72	3	70.0	97	2330	13.5	72	3
## 73	8	304.0	150	3892	12.5	72	1
## 74	8	307.0	130	4098	14.0	72	1
## 75	8	302.0	140	4294	16.0	72	1
## 76	8	318.0	150	4077	14.0	72	1
## 77	4	121.0	112	2933	14.5	72	2
## 78	4	121.0	76	2511	18.0	72	2
## 79	4	120.0	87	2979	19.5	72	2
## 80	4	96.0	69	2189	18.0	72	2
## 81	4	122.0	86	2395	16.0	72 72	1
## 82	4	97.0	92	2393		72 72	
					17.0		3
## 83	4	120.0	97 80	2506	14.5	72 72	3
## 84	4	98.0	80	2164	15.0	72 72	1
## 85	4	97.0	88	2100	16.5	72	3

## 86	8	350.0	175	4100	13.0	73	1
## 87	8	304.0	150	3672	11.5	73	1
## 88	8	350.0	145	3988	13.0	73	1
## 89	8	302.0	137	4042	14.5	73	1
## 90	8	318.0	150	3777	12.5	73	
							1
## 91	8	429.0	198	4952	11.5	73	1
## 92	8	400.0	150	4464	12.0	73	1
## 93	8	351.0	158	4363	13.0	73	1
## 94	8	318.0	150	4237	14.5	73	1
## 95	8	440.0	215	4735	11.0	73	1
## 96	8	455.0	225	4951	11.0	73	1
## 97	8	360.0	175	3821	11.0	73	1
## 98	6	225.0	105	3121	16.5	73	1
## 99	6	250.0	100	3278	18.0	73	1
## 100	6	232.0	100	2945	16.0	73	1
## 101	6	250.0	88	3021	16.5	73	1
## 102	6	198.0	95	2904	16.0	73	1
## 103	4	97.0	46	1950	21.0	73	2
	8	400.0	150	4997	14.0	73	1
## 105	8	400.0	167	4906	12.5	73	1
## 106	8	360.0	170	4654	13.0	73	1
## 107	8	350.0	180	4499	12.5	73	1
## 108	6	232.0	100	2789	15.0	73	1
## 109	4	97.0	88	2279	19.0	73	3
## 110	4	140.0	72	2401	19.5	73	1
## 111	4	108.0	94	2379	16.5	73	3
## 112	3	70.0	90	2124	13.5	73	3
## 113	4	122.0	85	2310	18.5	73	1
## 114	6	155.0	107	2472	14.0	73	1
## 115	4	98.0	90	2265	15.5	73	2
## 116	8	350.0	145	4082	13.0	73	1
## 117	8	400.0	230	4278	9.5	73	1
## 118	4	68.0	49	1867	19.5	73 73	2
## 119							
	4	116.0	75 01	2158	15.5	73	2
## 120	4	114.0	91	2582	14.0	73	2
## 121	4	121.0	112	2868	15.5	73	2
## 122	8	318.0	150	3399	11.0	73	1
## 123	4	121.0	110	2660	14.0	73	2
## 124	6	156.0	122	2807	13.5	73	3
## 125	8	350.0	180	3664	11.0	73	1
## 126	6	198.0	95	3102	16.5	74	1
## 128	6	232.0	100	2901	16.0	74	1
## 129	6	250.0	100	3336	17.0	74	1
## 130	4	79.0	67	1950	19.0	74	3
## 131	4	122.0	80	2451	16.5	74	1
## 132	4	71.0	65	1836	21.0	74	3
## 133	4	140.0	75	2542	17.0	74 74	1
## 134	6	250.0	100	3781	17.0	74 74	1
## 135	6	258.0	110	3632	18.0	74	1
## 136	6	225.0	105	3613	16.5	74	1

##	137	8	302.0	140	4141	14.0	74	1
##	138	8	350.0	150	4699	14.5	74	1
##	139	8	318.0	150	4457	13.5	74	1
##	140	8	302.0	140	4638	16.0	74	1
	141	8	304.0	150	4257	15.5	74	1
	142	4	98.0	83	2219	16.5	74	2
	143	4	79.0	67	1963	15.5	74	2
	144	4	97.0	78	2300	14.5	74	2
	145	4	76.0	52	1649	16.5	74	3
	146	4	83.0	61	2003	19.0	74	3
	147	4	90.0	75	2125	14.5	74	1
	148	4	90.0	75 75	2108	15.5	74	2
	149	4	116.0	75 75	2246	14.0	74 74	2
	150	4	120.0	97	2489	15.0	74 74	3
	151							3
		4	108.0	93 67	2391	15.5	74 74	2
	152	4	79.0	67 05	2000	16.0	74 75	
	153	6	225.0	95	3264	16.0	75 75	1
	154	6	250.0	105	3459	16.0	75 75	1
	155	6	250.0	72	3432	21.0	75 	1
	156	6	250.0	72	3158	19.5	75 	1
	157	8	400.0	170	4668	11.5	75	1
	158	8	350.0	145	4440	14.0	75	1
	159	8	318.0	150	4498	14.5	75	1
	160	8	351.0	148	4657	13.5	75	1
	161	6	231.0	110	3907	21.0	75	1
##	162	6	250.0	105	3897	18.5	75	1
##	163	6	258.0	110	3730	19.0	75	1
##	164	6	225.0	95	3785	19.0	75	1
##	165	6	231.0	110	3039	15.0	75	1
##	166	8	262.0	110	3221	13.5	75	1
##	167	8	302.0	129	3169	12.0	75	1
##	168	4	97.0	75	2171	16.0	75	3
##	169	4	140.0	83	2639	17.0	75	1
##	170	6	232.0	100	2914	16.0	75	1
##	171	4	140.0	78	2592	18.5	75	1
	172	4	134.0	96	2702	13.5	75	3
##	173	4	90.0	71	2223	16.5	75	2
	174	4	119.0	97	2545	17.0	75	3
	175	6	171.0	97	2984	14.5	75	1
	176	4	90.0	70	1937	14.0	75	2
	177	6	232.0	90	3211	17.0	75	1
	178	4	115.0	95	2694	15.0	75 75	2
	179	4	120.0	88	2957	17.0	75 75	2
	180	4	121.0	98	2945	14.5	75 75	2
	181	4	121.0	115	2671	13.5	75 75	2
	182	4	91.0	53	1795	17.5	75 75	3
	183	4	107.0	86	2464	15.5	75 76	2
	184	4	116.0	81	2220	16.9	76 76	2
	184			81 92				1
		4	140.0		2572	14.9	76 76	
##	186	4	98.0	79	2255	17.7	76	1

##	187	4	101.0	83	2202	15.3	76	2
##	188	8	305.0	140	4215	13.0	76	1
##	189	8	318.0	150	4190	13.0	76	1
##	190	8	304.0	120	3962	13.9	76	1
##	191	8	351.0	152	4215	12.8	76	1
##	192	6	225.0	100	3233	15.4	76	1
	193	6	250.0	105	3353	14.5	76	1
	194	6	200.0	81	3012	17.6	76	1
	195	6	232.0	90	3085	17.6	76	1
	196	4	85.0	52	2035	22.2	76	1
	197	4	98.0	60	2164	22.1	76	1
	198	4	90.0	70	1937	14.2	76	2
	199	4	91.0	53	1795	17.4	76	3
	200	6	225.0	100	3651	17.7	76 76	1
	201	6	250.0	78	3574	21.0	76 76	1
##	202	6	250.0	110	3645	16.2	76 76	1
	203	6	258.0	95	3193	17.8	76 76	1
	204							2
		4	97.0	71 70	1825	12.2	76 76	
	205	4	85.0	70 75	1990	17.0	76 76	3
	206	4	97.0	75 72	2155	16.4	76 76	3
	207	4	140.0	72	2565	13.6	76 76	1
	208	4	130.0	102	3150	15.7	76	2
	209	8	318.0	150	3940	13.2	76	1
	210	4	120.0	88	3270	21.9	76	2
	211	6	156.0	108	2930	15.5	76	3
	212	6	168.0	120	3820	16.7	76	2
	213	8	350.0	180	4380	12.1	76	1
	214	8	350.0	145	4055	12.0	76	1
##	215	8	302.0	130	3870	15.0	76	1
##	216	8	318.0	150	3755	14.0	76	1
##	217	4	98.0	68	2045	18.5	77	3
##	218	4	111.0	80	2155	14.8	77	1
##	219	4	79.0	58	1825	18.6	77	2
	220	4	122.0	96	2300	15.5	77	1
##	221	4	85.0	70	1945	16.8	77	3
##	222	8	305.0	145	3880	12.5	77	1
##	223	8	260.0	110	4060	19.0	77	1
##	224	8	318.0	145	4140	13.7	77	1
##	225	8	302.0	130	4295	14.9	77	1
##	226	6	250.0	110	3520	16.4	77	1
##	227	6	231.0	105	3425	16.9	77	1
	228	6	225.0	100	3630	17.7	77	1
	229	6	250.0	98	3525	19.0	77	1
	230	8	400.0	180	4220	11.1	77	1
	231	8	350.0	170	4165	11.4	77	1
	232	8	400.0	190	4325	12.2	77	1
	233	8	351.0	149	4335	14.5	77	1
	234	4	97.0	78	1940	14.5	77	2
	235	4	151.0	88	2740	16.0	77	1
	236	4	97.0	75	2265	18.2	77	3
	_55	•	2,.0	, ,		-0.2		_

	237	4	140.0	89	2755	15.8	77	1
##	238	4	98.0	63	2051	17.0	77	1
##	239	4	98.0	83	2075	15.9	77	1
##	240	4	97.0	67	1985	16.4	77	3
##	241	4	97.0	78	2190	14.1	77	2
##	242	6	146.0	97	2815	14.5	77	3
	243	4	121.0	110	2600	12.8	77	2
	244	3	80.0	110	2720	13.5	77	3
	245	4	90.0	48	1985	21.5	78	2
	246	4	98.0	66	1800	14.4	78	1
	247	4		52	1985	19.4	78	
			78.0					3
	248	4	85.0	70	2070	18.6	78	3
	249	4	91.0	60	1800	16.4	78	3
	250	8	260.0	110	3365	15.5	78	1
	251	8	318.0	140	3735	13.2	78	1
	252	8	302.0	139	3570	12.8	78	1
##	253	6	231.0	105	3535	19.2	78	1
##	254	6	200.0	95	3155	18.2	78	1
##	255	6	200.0	85	2965	15.8	78	1
##	256	4	140.0	88	2720	15.4	78	1
##	257	6	225.0	100	3430	17.2	78	1
	258	6	232.0	90	3210	17.2	78	1
	259	6	231.0	105	3380	15.8	78	1
	260	6	200.0	85	3070	16.7	78	1
	261	6	225.0	110	3620	18.7	78	1
	262	6	258.0	120	3410	15.1	78	1
	263	8	305.0	145	3425	13.2	78	1
	264	6	231.0	165	3445	13.4	78	1
	265	8	302.0	139	3205	11.2	78	1
	266	8	318.0	140	4080	13.7	78	1
	267	4	98.0	68	2155	16.5	78	1
	268	4	134.0	95	2560	14.2	78	3
	269	4	119.0	97	2300	14.7	78	3
	270	4	105.0	75	2230	14.5	78	1
	271	4	134.0	95	2515	14.8	78	3
	272	4	156.0	105	2745	16.7	78	1
	273	4	151.0	85	2855	17.6	78	1
##	274	4	119.0	97	2405	14.9	78	3
##	275	5	131.0	103	2830	15.9	78	2
##	276	6	163.0	125	3140	13.6	78	2
##	277	4	121.0	115	2795	15.7	78	2
	278	6	163.0	133	3410	15.8	78	2
	279	4	89.0	71	1990	14.9	78	2
	280	4	98.0	68	2135	16.6	78	3
	281	6	231.0	115	3245	15.4	79	1
	282	6	200.0	85	2990	18.2	79	1
	283	4	140.0	88	2890	17.3	79 79	1
	284	6		90	3265	18.2	79 79	
			232.0					1
	285	6	225.0	110	3360	16.6	79 70	1
##	286	8	305.0	130	3840	15.4	79	1

##	287	8	302.0	129	3725	13.4	79	1
##	288	8	351.0	138	3955	13.2	79	1
##	289	8	318.0	135	3830	15.2	79	1
##	290	8	350.0	155	4360	14.9	79	1
##	291	8	351.0	142	4054	14.3	79	1
	292	8	267.0	125	3605	15.0	79	1
	293	8	360.0	150	3940	13.0	79	1
	294	4	89.0	71	1925	14.0	79	2
##	295	4	86.0	65	1975	15.2	79	3
	296	4	98.0	80	1915	14.4	79	1
	297	4	121.0	80	2670	15.0	79	1
	298	5	183.0	77	3530	20.1	79	2
	299	8	350.0	125	3900	17.4	79	1
	300	4	141.0	71	3190	24.8	79	2
	301	8	260.0	90	3420	22.2	79	1
##	302	4	105.0	70	2200	13.2	79	1
	303	4	105.0	70	2150	14.9	79	1
	304	4	85.0	65	2020	19.2	79	3
	305	4	91.0	69	2130	14.7	79	2
	306	4	151.0	90	2670	16.0	79 79	1
	307	6	173.0	115	2595	11.3	79 79	1
	308				2700		79 79	1
		6	173.0	115		12.9		
	309	4	151.0	90	2556	13.2	79	1
	310	4	98.0	76	2144	14.7	80	2
	311	4	89.0	60	1968	18.8	80	3
	312	4	98.0	70	2120	15.5	80	1
	313	4	86.0	65	2019	16.4	80	3
	314	4	151.0	90	2678	16.5	80	1
	315	4	140.0	88	2870	18.1	80	1
	316	4	151.0	90	3003	20.1	80	1
	317	6	225.0	90	3381	18.7	80	1
	318	4	97.0	78	2188	15.8	80	2
	319	4	134.0	90	2711	15.5	80	3
	320	4	120.0	75	2542	17.5	80	3
	321	4	119.0	92	2434	15.0	80	3
	322	4	108.0	75	2265	15.2	80	3
	323	4	86.0	65	2110	17.9	80	3
	324	4	156.0	105	2800	14.4	80	1
	325	4	85.0	65	2110	19.2	80	3
	326	4	90.0	48	2085	21.7	80	2
	327	4	90.0	48	2335	23.7	80	2
	328	5	121.0	67	2950	19.9	80	2
	329	4	146.0	67	3250	21.8	80	2
##	330	4	91.0	67	1850	13.8	80	3
##	332	4	97.0	67	2145	18.0	80	3
##	333	4	89.0	62	1845	15.3	80	2
##	334	6	168.0	132	2910	11.4	80	3
##	335	3	70.0	100	2420	12.5	80	3
##	336	4	122.0	88	2500	15.1	80	2
##	338	4	107.0	72	2290	17.0	80	3

##	339	4	135.0	84	2490	15.7	81	1
##	340	4	151.0	84	2635	16.4	81	1
##	341	4	156.0	92	2620	14.4	81	1
##	342	6	173.0	110	2725	12.6	81	1
	343	4	135.0	84	2385	12.9	81	1
	344	4	79.0	58	1755	16.9	81	3
	345	4	86.0	64	1875	16.4	81	1
	346	4	81.0	60	1760	16.1	81	3
	347	4	97.0	67	2065	17.8	81	3
	348	4	85.0	65	1975	19.4	81	3
	349	4	89.0	62	2050	17.3	81	3
	350	4	91.0	68	1985	16.0	81	3
	351	4	105.0	63	2215	14.9	81	1
	352	4	98.0	65	2045	16.2	81	1
	353	4	98.0	65 74	2380	20.7	81	1
	354	4	105.0	74 75	2190	14.2	81	2
	356	4	107.0	75 75	2210	14.4	81	3
##	357	4	108.0	75	2350	16.8	81	3
	358	4	119.0	100	2615	14.8	81	3
	359	4	120.0	74	2635	18.3	81	3
	360	4	141.0	80	3230	20.4	81	2
	361	6	145.0	76	3160	19.6	81	2
	362	6	168.0	116	2900	12.6	81	3
	363	6	146.0	120	2930	13.8	81	3
##	364	6	231.0	110	3415	15.8	81	1
##	365	8	350.0	105	3725	19.0	81	1
##	366	6	200.0	88	3060	17.1	81	1
##	367	6	225.0	85	3465	16.6	81	1
##	368	4	112.0	88	2605	19.6	82	1
##	369	4	112.0	88	2640	18.6	82	1
##	370	4	112.0	88	2395	18.0	82	1
##	371	4	112.0	85	2575	16.2	82	1
##	372	4	135.0	84	2525	16.0	82	1
##	373	4	151.0	90	2735	18.0	82	1
	374	4	140.0	92	2865	16.4	82	1
	375	4	105.0	74	1980	15.3	82	2
	376	4	91.0	68	2025	18.2	82	3
	377	4	91.0	68	1970	17.6	82	3
	378	4	105.0	63	2125	14.7	82	1
	379	4	98.0	70	2125	17.3	82	1
	380	4	120.0	88	2160	14.5	82	3
	381	4	107.0	75	2205	14.5	82	3
	382	4	108.0	70	2245	16.9	82	3
	383	4	91.0	67	1965	15.0	82	3
	384	4	91.0	67	1965	15.7	82	3
	385	4	91.0	67 67	1995	16.2	82 82	3
	386	6	181.0	110	2945	16.4	82	1
	387	6	262.0	85 02	3015	17.0	82	1
	388	4	156.0	92	2585	14.5	82	1
##	389	6	232.0	112	2835	14.7	82	1

```
## 390
                          144.0
                                          96
                                               2665
                                                              13.9
                                                                     82
                                                                              3
                4
                4
                                                                              1
## 391
                                          84
                                                              13.0
                                                                     82
                          135.0
                                               2370
                4
                                               2950
                                                                     82
                                                                              1
## 392
                          151.0
                                          90
                                                              17.3
                                                                              1
## 393
                4
                          140.0
                                          86
                                               2790
                                                              15.6
                                                                     82
## 394
                4
                                                                              2
                           97.0
                                          52
                                               2130
                                                              24.6
                                                                     82
## 395
                4
                          135.0
                                          84
                                               2295
                                                                     82
                                                                              1
                                                              11.6
                4
                                                                              1
## 396
                          120.0
                                          79
                                               2625
                                                              18.6
                                                                     82
## 397
                4
                                          82
                                                                     82
                                                                              1
                          119.0
                                               2720
                                                              19.4
##
                                           name mpg01
## 1
                    chevrolet chevelle malibu
## 2
                            buick skylark 320
                                                     0
## 3
                           plymouth satellite
                                                     0
## 4
                                 amc rebel sst
                                                     0
## 5
                                   ford torino
                                                     0
## 6
                             ford galaxie 500
                                                     0
                             chevrolet impala
                                                     0
## 7
## 8
                            plymouth fury iii
                                                     0
## 9
                              pontiac catalina
                                                     0
                           amc ambassador dpl
                                                     0
## 10
## 11
                          dodge challenger se
                                                     0
                                                     0
## 12
                           plymouth 'cuda 340
## 13
                        chevrolet monte carlo
                                                     0
## 14
                      buick estate wagon (sw)
                                                     0
## 15
                        toyota corona mark ii
                                                     1
                                                     0
## 16
                               plymouth duster
## 17
                                    amc hornet
                                                     0
                                                     0
## 18
                                 ford maverick
## 19
                                                     1
                                  datsun pl510
## 20
                volkswagen 1131 deluxe sedan
                                                     1
                                                     1
## 21
                                   peugeot 504
## 22
                                   audi 100 ls
                                                     1
## 23
                                       saab 99e
                                                     1
## 24
                                       bmw 2002
                                                     1
## 25
                                   amc gremlin
                                                     0
## 26
                                     ford f250
                                                     0
                                                     0
## 27
                                     chevy c20
## 28
                                    dodge d200
                                                     0
## 29
                                      hi 1200d
                                                     0
## 30
                                  datsun pl510
                                                     1
## 31
                          chevrolet vega 2300
                                                     1
                                                     1
## 32
                                 toyota corona
## 34
                                   amc gremlin
                                                     0
                    plymouth satellite custom
                                                     0
## 35
                   chevrolet chevelle malibu
                                                     0
## 36
                                                     0
## 37
                               ford torino 500
## 38
                                   amc matador
                                                     0
## 39
                             chevrolet impala
                                                     0
## 40
                    pontiac catalina brougham
                                                     0
## 41
                              ford galaxie 500
                                                     0
                                                     0
## 42
                            plymouth fury iii
```

```
## 43
                            dodge monaco (sw)
                                                   0
## 44
                                                   0
                    ford country squire (sw)
                          pontiac safari (sw)
                                                    0
## 45
## 46
                  amc hornet sportabout (sw)
                                                   0
## 47
                                                   0
                          chevrolet vega (sw)
## 48
                             pontiac firebird
                                                   0
## 49
                                 ford mustang
                                                   0
                                                    1
## 50
                           mercury capri 2000
                                                   1
## 51
                                    opel 1900
## 52
                                  peugeot 304
                                                   1
## 53
                                                   1
                                    fiat 124b
## 54
                         toyota corolla 1200
                                                   1
## 55
                                  datsun 1200
                                                   1
## 56
                        volkswagen model 111
                                                   1
## 57
                             plymouth cricket
                                                   1
## 58
                       toyota corona hardtop
                                                   1
## 59
                           dodge colt hardtop
                                                    1
                                                    1
## 60
                            volkswagen type 3
## 61
                               chevrolet vega
                                                   0
## 62
                         ford pinto runabout
                                                   0
## 63
                             chevrolet impala
                                                   0
                                                   0
## 64
                             pontiac catalina
## 65
                                                   0
                            plymouth fury iii
## 66
                             ford galaxie 500
                                                   0
                                                   0
## 67
                           amc ambassador sst
## 68
                              mercury marquis
                                                   0
                                                   0
## 69
                        buick lesabre custom
## 70
                                                   0
                  oldsmobile delta 88 royale
## 71
                      chrysler newport royal
                                                   0
## 72
                              mazda rx2 coupe
                                                   0
## 73
                                                   0
                             amc matador (sw)
## 74
           chevrolet chevelle concours (sw)
                                                   0
## 75
                       ford gran torino (sw)
                                                   0
## 76
              plymouth satellite custom (sw)
                                                    0
                                                    0
## 77
                              volvo 145e (sw)
                                                    0
## 78
                          volkswagen 411 (sw)
## 79
                             peugeot 504 (sw)
                                                   0
## 80
                              renault 12 (sw)
                                                   1
## 81
                                                   0
                              ford pinto (sw)
## 82
                                                   1
                              datsun 510 (sw)
## 83
                 toyouta corona mark ii (sw)
                                                   1
## 84
                              dodge colt (sw)
                                                   1
                                                   1
## 85
                    toyota corolla 1600 (sw)
## 86
                            buick century 350
                                                   0
                                                   0
## 87
                                  amc matador
## 88
                             chevrolet malibu
                                                   0
## 89
                             ford gran torino
                                                   0
## 90
                                                   0
                        dodge coronet custom
## 91
                    mercury marquis brougham
                                                   0
                                                   0
                   chevrolet caprice classic
## 92
```

```
## 93
                                      ford 1td
                                                    0
                    plymouth fury gran sedan
                                                    0
## 94
                chrysler new yorker brougham
                                                    0
## 95
## 96
                    buick electra 225 custom
                                                    0
## 97
                                                    0
                     amc ambassador brougham
## 98
                             plymouth valiant
                                                    0
## 99
                       chevrolet nova custom
                                                    0
                                                    0
## 100
                                    amc hornet
                                                    0
## 101
                                ford maverick
## 102
                              plymouth duster
                                                    1
                                                    1
## 103
                     volkswagen super beetle
## 104
                             chevrolet impala
                                                    0
                                                    0
## 105
                                 ford country
## 106
                      plymouth custom suburb
                                                    0
## 107
                    oldsmobile vista cruiser
                                                    0
                                                    0
## 108
                                  amc gremlin
## 109
                                toyota carina
                                                    0
                                                    0
## 110
                               chevrolet vega
## 111
                                   datsun 610
                                                    0
## 112
                                    maxda rx3
                                                    0
## 113
                                   ford pinto
                                                    0
                                                    0
## 114
                             mercury capri v6
## 115
                         fiat 124 sport coupe
                                                    1
## 116
                     chevrolet monte carlo s
                                                    0
                           pontiac grand prix
## 117
## 118
                                      fiat 128
                                                    1
                                                    1
## 119
                                   opel manta
## 120
                                   audi 100ls
                                                    0
## 121
                                  volvo 144ea
                                                    0
                            dodge dart custom
                                                    0
## 122
## 123
                                     saab 991e
                                                    1
## 124
                               toyota mark ii
                                                    0
## 125
                             oldsmobile omega
                                                    0
                              plymouth duster
                                                    0
## 126
                                                    0
## 128
                                    amc hornet
                                                    0
## 129
                               chevrolet nova
## 130
                                                    1
                                  datsun b210
## 131
                                   ford pinto
                                                    1
## 132
                          toyota corolla 1200
                                                    1
## 133
                               chevrolet vega
                                                    1
           chevrolet chevelle malibu classic
## 134
                                                    0
## 135
                                  amc matador
                                                    0
                                                    0
## 136
                  plymouth satellite sebring
                             ford gran torino
                                                    0
## 137
                                                    0
## 138
                    buick century luxus (sw)
## 139
                   dodge coronet custom (sw)
                                                    0
## 140
                       ford gran torino (sw)
                                                    0
## 141
                                                    0
                             amc matador (sw)
## 142
                                      audi fox
                                                    1
                                                    1
## 143
                            volkswagen dasher
```

	144	opel manta	1
##	145	toyota corona	1
##	146	datsun 710	1
##	147	dodge colt	1
##	148	fiat 128	1
	149	fiat 124 tc	1
	150	honda civic	1
	151	subaru	1
		fiat x1.9	1
	152		
	153	plymouth valiant custom	0
	154	chevrolet nova	0
##	155	mercury monarch	0
##	156	ford maverick	0
##	157	pontiac catalina	0
##	158	chevrolet bel air	0
	159	plymouth grand fury	0
	160	ford 1td	0
	161	buick century	0
	162	chevroelt chevelle malibu	
			0
	163	amc matador	0
	164	plymouth fury	0
	165	buick skyhawk	0
##	166	chevrolet monza 2+2	0
##	167	ford mustang ii	0
##	168	toyota corolla	1
	169	ford pinto	1
	170	amc gremlin	0
	171	pontiac astro	1
	172	toyota corona	1
	173		1
		volkswagen dasher	
	174	datsun 710	1
	175	ford pinto	0
	176	volkswagen rabbit	1
	177	amc pacer	0
##	178	audi 100ls	1
##	179	peugeot 504	1
	180	volvo 244dl	0
	181	saab 991e	1
	182	honda civic cvcc	1
	183	fiat 131	
			1
	184	opel 1900	1
	185	capri ii	1
##	186	dodge colt	1
##	187	renault 12tl	1
##	188	chevrolet chevelle malibu classic	0
	189	dodge coronet brougham	0
	190	amc matador	0
	191	ford gran torino	0
	192	plymouth valiant	0
		chevrolet nova	0
##	193	cuevroter nova	О

	40.			
	194	ford maverick	1	
	195	amc hornet	0	
	196	chevrolet_chevette	1	
	197	chevrolet woody	1	
	198	vw rabbit	1	
	199	honda civic	1	
	200	dodge aspen se	0	
##	201	ford granada ghia	0	
##	202	pontiac ventura sj	0	
##	203	amc pacer d/l	0	
##	204	volkswagen rabbit	1	
##	205	datsun b-210	1	
##	206	toyota corolla	1	
##	207	ford pinto	1	
	208	volvo 245	0	
	209	plymouth volare premier v8	0	
	210	peugeot 504	ø	
	211	toyota mark ii	0	
	212	mercedes-benz 280s	0	
	213	cadillac seville	0	
	213	chevy c10	0	
	214	ford f108	0	
	216	dodge d100	0	
	217	honda accord cvcc	1	
	218	buick opel isuzu deluxe	1	
	219	renault 5 gtl	1	
	220	plymouth arrow gs	1	
	221	datsun f-10 hatchback	1	
	222	chevrolet caprice classic	0	
	223	oldsmobile cutlass supreme	0	
##	224	dodge monaco brougham	0	
##	225	mercury cougar brougham	0	
##	226	chevrolet concours	0	
	227	buick skylark	0	
	228	plymouth volare custom	0	
	229	ford granada	0	
	230	pontiac grand prix lj	0	
	231	chevrolet monte carlo landau	0	
	232	chrysler cordoba	0	
	233	ford thunderbird	0	
	234	volkswagen rabbit custom		
		<u> </u>	1	
	235	pontiac sunbird coupe	1	
	236	toyota corolla liftback	1	
	237	ford mustang ii 2+2	1	
	238	chevrolet chevette	1	
	239	dodge colt m/m	1	
	240	subaru dl	1	
##	241	volkswagen dasher	1	
##	242	datsun 810	0	
##	243	bmw 320i	0	

```
## 244
                                   mazda rx-4
                                                   0
                                                   1
## 245
             volkswagen rabbit custom diesel
## 246
                                  ford fiesta
                                                   1
## 247
                             mazda glc deluxe
                                                   1
## 248
                               datsun b210 gx
                                                   1
## 249
                                                   1
                             honda civic cvcc
## 250
          oldsmobile cutlass salon brougham
                                                   0
                               dodge diplomat
                                                    0
## 251
                        mercury monarch ghia
                                                    0
## 252
## 253
                           pontiac phoenix lj
                                                   0
## 254
                                                   0
                             chevrolet malibu
                        ford fairmont (auto)
                                                   0
## 255
## 256
                         ford fairmont (man)
                                                   1
## 257
                              plymouth volare
                                                   0
## 258
                                  amc concord
                                                   0
                                                   0
## 259
                       buick century special
## 260
                               mercury zephyr
                                                    0
                                                   0
## 261
                                  dodge aspen
                              amc concord d/l
## 262
                                                   0
## 263
                chevrolet monte carlo landau
                                                   0
## 264
             buick regal sport coupe (turbo)
                                                   0
                                                   0
## 265
                                  ford futura
## 266
                              dodge magnum xe
                                                   0
## 267
                           chevrolet chevette
                                                   1
                                                   1
## 268
                                tovota corona
## 269
                                   datsun 510
                                                    1
## 270
                                                   1
                                   dodge omni
## 271
                   toyota celica gt liftback
                                                   0
## 272
                             plymouth sapporo
                                                   1
## 273
                      oldsmobile starfire sx
                                                   1
## 274
                                datsun 200-sx
                                                   1
## 275
                                    audi 5000
                                                   0
## 276
                                  volvo 264gl
                                                   0
                                                   0
## 277
                                   saab 99gle
                                                   0
## 278
                                peugeot 604sl
                                                   1
## 279
                         volkswagen scirocco
                              honda accord lx
                                                   1
## 280
## 281
                            pontiac lemans v6
                                                   0
## 282
                             mercury zephyr 6
                                                   0
## 283
                              ford fairmont 4
                                                   0
## 284
                             amc concord dl 6
                                                   0
                                dodge aspen 6
## 285
                                                   0
                                                   0
## 286
                   chevrolet caprice classic
                              ford 1td landau
                                                   0
## 287
                                                   0
## 288
                       mercury grand marquis
## 289
                              dodge st. regis
                                                   0
## 290
                     buick estate wagon (sw)
                                                   0
## 291
                    ford country squire (sw)
                                                   0
## 292
               chevrolet malibu classic (sw)
                                                   0
                                                   0
## 293 chrysler lebaron town @ country (sw)
```

	294	vw rabbit custom	1
	295	maxda glc deluxe	1
	296	dodge colt hatchback custom	1
	297	amc spirit dl	1
	298	mercedes benz 300d	1
	299	cadillac eldorado	1
	300	peugeot 504	1
	301	oldsmobile cutlass salon brougham	1
	302	plymouth horizon	1
	303	plymouth horizon tc3	1
	304	datsun 210	1
	305	fiat strada custom	1
	306	buick skylark limited	1
	307	chevrolet citation	1
	308	oldsmobile omega brougham	1
	309	pontiac phoenix	1
	310	vw rabbit	1
	311	toyota corolla tercel	1
	312	chevrolet chevette	1
	313	datsun 310	1
	314	chevrolet citation	1
	315	ford fairmont	1
	316	amc concord	1
	317	dodge aspen	0
	318	audi 4000	1
	319	toyota corona liftback	1
	320	mazda 626	1
	321	datsun 510 hatchback	1
	322	toyota corolla	1
	323	mazda glc	1
	324	dodge colt	1
	325	datsun 210	1
	326	vw rabbit c (diesel)	1
	327	vw dasher (diesel)	1
	328	audi 5000s (diesel)	1
	329	mercedes-benz 240d	1
	330	honda civic 1500 gl	1
	332	subaru dl	1
	333	vokswagen rabbit	1
	334	datsun 280-zx	1
	335	mazda rx-7 gs	1
	336	triumph tr7 coupe	1
	338	honda accord	1
	339	plymouth reliant	1
	340	buick skylark	1
	341	dodge aries wagon (sw)	1
	342	chevrolet citation	1
	343	plymouth reliant	1
	344	toyota starlet	1
##	345	plymouth champ	1

## 346	honda civic 1300	1	
## 347	subaru	1	
## 348	datsun 210 mpg	1	
## 349	toyota tercel	1	
## 350	mazda glc 4	1	
## 351	plymouth horizon 4	1	
## 352	ford escort 4w	1	
## 353	ford escort 2h	1	
## 354	volkswagen jetta	1	
## 356	honda prelude	1	
## 357	toyota corolla	1	
## 358	datsun 200sx	1	
## 359	mazda 626	1	
## 360	peugeot 505s turbo diesel	1	
## 361	volvo diesel	1	
## 362	toyota cressida	1	
## 363	datsun 810 maxima	1	
## 364	buick century	0	
## 365	oldsmobile cutlass ls	1	
## 366	ford granada gl	0	
## 367	chrysler lebaron salon	0	
## 368	chevrolet cavalier	1	
## 369	chevrolet cavalier wagon	1	
## 370	chevrolet cavalier 2-door	1	
## 371	pontiac j2000 se hatchback	1	
## 372	dodge aries se	1	
## 373	pontiac phoenix	1	
## 374	ford fairmont futura	1	
## 375	volkswagen rabbit l	1	
## 376	mazda glc custom l	1	
## 370 ## 377	——————————————————————————————————————	1	
	mazda glc custom		
## 378 ## 370	plymouth horizon miser	1	
## 379	mercury lynx l	1	
## 380 ## 381	nissan stanza xe	1	
## 381	honda accord	1	
## 382	toyota corolla	1	
## 383	honda civic	1	
## 384	honda civic (auto)	1	
## 385	datsun 310 gx	1	
## 386	buick century limited	1	
## 387	oldsmobile cutlass ciera (diesel)	1	
## 388	chrysler lebaron medallion	1	
## 389	ford granada l	0	
## 390	toyota celica gt	1	
## 391	dodge charger 2.2	1	
## 392	chevrolet camaro	1	
## 393	ford mustang gl	1	
## 394	vw pickup	1	
## 395	dodge rampage	1	

b. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

```
par(mfrow = c(2, 4))
for (i in 1:7) boxplot(data_auto[, i] ~ data_auto$mpg01, main =
colnames(data_auto)[i])
```


- 1. Cylinders: Mobil dengan sedikit silinder (misalnya 4) cenderung hemat BBM.
- 2. Displacement : Mobil dengan displacement (kapasitas mesin) lebih kecil cenderung hemat BBM.
- 3. Horsepower: Mobil dengan horsepower lebih rendah cenderung hemat BBM.
- 4. Weight: Mobil yang lebih ringan cenderung lebih hemat BBM.
- 5. Acceleration: Tidak ada perbedaan yang cukup signifikan.

6. Year: Mobil yang lebih baru (year tinggi) tidak selalu lebih hemat BBM.

7. Origin : Mobil yang berasal dari tempat 1,2,dan 3 banyak yang hemat BBM, tapi ada juga yang tidak, hubungan tidak cukup signifikan.

Kesimpulan:

Cylinders, Displacement, Horsepower, dan Weight bisa dijadikan prediktor yang kuat. Sementara Acceleration, Year, dan Originkurang memiliki hubungan yang signifikan dengan mpg.

c. Split the data into a training set and a test set.

```
set.seed(1)
train_index <- sample(1:nrow(data_auto), nrow(data_auto) * 2/3)
train_data <- data_auto[train_index, ]
test_data <- data_auto[-train_index, ]</pre>
```

h. Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

```
library(class)
train_X <- scale(train_data[, c("cylinders", "horsepower", "weight",</pre>
"displacement")])
test X <- scale(test data[, c("cylinders", "horsepower", "weight",</pre>
"displacement")])
train Y <- train data$mpg01
errors_knn <- c()
for (k in 1:10) {
  knn predict <- knn(train X, test X, train Y, k = k)</pre>
  error <- mean(knn predict != test data$mpg01)</pre>
  errors_knn <- c(errors_knn, error)</pre>
}
errors knn
## [1] 0.13740458 0.09923664 0.12977099 0.12977099 0.12213740 0.12213740
## [7] 0.13740458 0.12977099 0.12977099 0.11450382
which.min(errors_knn)
## [1] 2
```

Untuk memprediksi mpg dengan prediktor Cylinders, Displacement, Horsepower, dan Weight menggunakan model K-Nearest Neighbors (KNN) nilai K yang paling bagus untuk data ini adalah K=2 dengan error (potensi salah) sebesar 9.92%.

Nomor 16

Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes and KNN models using various sub-sets of the predictors. Describe your findings.

```
library(ISLR2)
data(Boston)
crime01 <- ifelse(Boston$crim > median(Boston$crim), 1, 0)
data boston <- data.frame(Boston, crime01)</pre>
# Membagi data
set.seed(123)
train index2 <- sample(1:nrow(data_boston), nrow(data_boston) * 2/3)</pre>
train_data2 <- data_boston[train_index2, ]</pre>
test data2 <- data boston[-train index2, ]
# KNN
library(class)
train2_X <- scale(train_data2[, c("lstat", "dis", "nox", "rm")])</pre>
test2 X <- scale(test data2[, c("lstat", "dis", "nox", "rm")])</pre>
train2_Y <- train_data2$crime01</pre>
errors2 knn <- c()
for (k in 1:16) {
  knn_predict2 <- knn(train2_X, test2_X, train2_Y, k = k)</pre>
  error2 <- mean(knn predict2 != test data2$crime01)</pre>
  errors2_knn <- c(errors2_knn, error2)</pre>
}
errors2_knn
## [1] 0.1834320 0.1952663 0.1538462 0.1834320 0.1656805 0.1715976 0.1538462
## [8] 0.1656805 0.1656805 0.1715976 0.1715976 0.1715976 0.1715976
## [15] 0.1834320 0.1893491
which.min(errors2 knn)
## [1] 3
```

Untuk model K-Nearest Neighbors (KNN), nilai K yang paling bagus untuk data ini adalah K = 3 dengan error (potensi salah) sebesar 15.38%.