[5] Assignment 5: Apply Logistic Regression

1. Apply Logistic Regression on these feature sets

- SET 1:Review text, preprocessed one converted into vectors using (BOW)
- SET 2:Review text, preprocessed one converted into vectors using (TFIDF)
- SET 3:Review text, preprocessed one converted into vectors using (AVG W2v)
- SET 4:Review text, preprocessed one converted into vectors using (TFIDF W2v)

2. Hyper paramter tuning (find best hyper parameters corresponding the algorithm that you choose)

- Find the best hyper parameter which will give the maximum <u>AUC</u>
 (https://www.appliedaicourse.com/course/applied-ai-course-online/lessons/receiver-operating-characteristic-curve-roc-curve-and-auc-1/) value
- Find the best hyper paramter using k-fold cross validation or simple cross validation data
- Use gridsearch cv or randomsearch cv or you can also write your own for loops to do this task of hyperparameter tuning

3. Pertubation Test

- Get the weights W after fit your model with the data X i.e Train data.
- Add a noise to the X (X' = X + e) and get the new data set X' (if X is a sparse matrix, X.data+=e)
- Fit the model again on data X' and get the weights W'
- Add a small eps value(to eliminate the divisible by zero error) to W and W' i.e W=W+10^-6
 and W' = W'+10^-6
- Now find the % change between W and W' (| (W-W') / (W) |)*100)
- Calculate the 0th, 10th, 20th, 30th, ...100th percentiles, and observe any sudden rise in the values of percentage_change_vector
- Ex: consider your 99th percentile is 1.3 and your 100th percentiles are 34.6, there is sudden rise from 1.3 to 34.6, now calculate the 99.1, 99.2, 99.3,..., 100th percentile values and get the proper value after which there is sudden rise the values, assume it is 2.5
- Print the feature names whose % change is more than a threshold x(in our example it's 2.5)

4. Sparsity

· Calculate sparsity on weight vector obtained after using L1 regularization

NOTE: Do sparsity and multicollinearity for any one of the vectorizers. Bow or tf-idf is recommended.

5. Feature importance

Get top 10 important features for both positive and negative classes separately.

6. Feature engineering

- To increase the performance of your model, you can also experiment with with feature engineering like :
 - Taking length of reviews as another feature.
 - Considering some features from review summary as well.

7. Representation of results

• You need to plot the performance of model both on train data and cross validation data for each hyper parameter, like shown in the figure.

Once after you found the best hyper parameter, you need to train your model with it, and find the AUC on test data and plot the ROC curve on both train and test.

Along with plotting ROC curve, you need to print the <u>confusion</u> <u>matrix (https://www.appliedaicourse.com/course/applied-ai-course-online/lessons/confusion-matrix-tpr-fpr-fnr-tnr-1/)</u> with predicted and original labels of test data points. Please visualize your confusion matrices using <u>seaborn heatmaps.</u>

(https://seaborn.pydata.org/generated/seaborn.heatmap.html)

(https://seaborn.pydata.org/generated/seaborn.heatmap.html)

(https://seaborn.pydata.org/generated/seaborn.heatmap.html)

(https://seaborn.pydata.org/generated/seaborn.heatmap.html)

8. Conclusion (https://seaborn.pydata.org/generated/seaborn.heatmap.html)

(https://seaborn.pydata.org/generated/seaborn.heatmap.html)

You need to summarize the results at the end of the notebook, summarize it in the table format. To print out a table please refer to this prettytable library
 (https://seaborn.pydata.org/generated/seaborn.heatmap.html) link
 (http://zetcode.com/python/prettytable/)

Applying Logistic Regression

In [1]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
import sqlite3
import pandas as pd
import numpy as np
import nltk
import string
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature extraction.text import CountVectorizer
from sklearn.metrics import confusion matrix
from sklearn import metrics
from sklearn.metrics import roc_curve, auc
from nltk.stem.porter import PorterStemmer
from nltk.stem import PorterStemmer
from nltk.stem.snowball import SnowballStemmer
import re
# Tutorial about Python regular expressions: https://pymotw.com/2/re/
import string
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
import pickle
from tadm import tadm
import os
con = sqlite3.connect(r"D:\AppliedAI\AAIC_Course_handouts\11_Amazon Fine Food Review
s\amazon-fine-food-reviews\database.sqlite")
data = pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3""",con)
# Change Score with 1 n 2 as -ve and 4 n 5 as +ve
def chng to 0 or 1 (Score):
    if Score ==4 or Score ==5:
        return 1
    elif Score ==1 or Score ==2:
        return 0
    else:# Thus in case by some mistake any data is their with rating 6 or 7 etc due
to some error is removed
        pass
currentScore = data["Score"]
new Score = currentScore.map(chng to 0 or 1)
data["Score"] = new_Score
print ("Number of data points available")
print (data.shape)#Gives original number of data points available
#2 Data Cleaning a.) Getting rid of duplicates and b.) if helpnessdenominator < help
fulnessnumerator
```

```
data = data.drop duplicates(subset = ["UserId", "ProfileName", "HelpfulnessNumerator",
"HelpfulnessDenominator", "Score", "Time", "Summary", "Text"], keep='first', inplace=Fal
print ("Number of data points after removing duplicates")
print (data.shape)#Gives data points are deduplication
# Reference: Copied from above cell final=final[final.HelpfulnessNumerator<=final.H
elpfulnessDenominator]
data=data[data.HelpfulnessNumerator<=data.HelpfulnessDenominator]</pre>
print ("Number of data points after removing where HelpfulnessNumerator is more than
HelpfulnessDenominator ")
print (data.shape)
#3 Preprocessing begins
#Convert to lower case, convert shortcut words to proper words, remove Special Charac
ter
#i) Convert to Lower case:
data["Text"] = (data["Text"].str.lower())
data["Summary"] = (data["Summary"].str.lower())
#ii) Convert Shortcuts words to proper words
#List of Words are:https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contracti
ons
#Reference:https://stackoverflow.com/questions/39602824/pandas-replace-string-with-a
nother-string
data['Text'] = data['Text'].replace({"ain't":"am not", "amn't":"am not", "aren't":"are
not", \
"can't":"cannot","cause":"because","could've":"could have","couldn't":"could not","c
ouldn't've":"could not have", \
"daren't":"dare not", "daresn't": "dare not", "dasn't": "dare not", "didn't": "did not", "d
oesn't":"does not", \
"don't":"do not", "e'er": "ever", "everyone's": "everyone is", "finna": "fixing to", "gimm
e":"give me", \
"gonna": "going to", "gon't": "go not", "gotta": "got to", "hadn't": "had not", "hasn't": "ha
s not","haven't":"have not",\
"he'd": "he had", "he'll": "he shall", "he's": "he has", "he've": "he have", "how'd": "how di
d","how'll":"how will",\
"how're":"how are","how's":"how has","I'd":"I had","I'll":"I shall","I'm":"I am",
"I'm'a":"I am about to",\
"I'm'o":"I am going to","I've":"I have","isn't":"is not","it'd":"it would","it'll":
"it shall", "it's": "it has", \
"let's":"let us", "mayn't": "may not", "may've": "may have", "mightn't": "might not", "might
t've": "might have", \
"mustn't":"must not","mustn't've":"must not have","must've":"must have","needn't":"n
eed not","ne'er":"never",\
"o'clock": "of the clock", "o'er": "", "ol'": "old", "oughtn't": "ought not", "shalln't": "sh
all not","shan't":"shall not",\
"she'd": "she had", "she'll": "she shall", "she's": "she is", "should've": "should have", "s
houldn't": "should not", \
"shouldn't've": "should not have", "somebody's": "somebody has", "someone's": "someone ha
s", "something's": "something has", \
"that'll":"that will","that're":"that are","that's":"that is","that'd":"that would",
"there'd":"there had",\
"there'll":"there shall", "there're": "there are", "there's": "there is", "these're": "hes
e are", "they'd": "they had", \
"they'll":"they will","they're":"they are","they've":"they have","this's":"","thos
e're":"those are","tis":"it is",\
```

```
"twas":"it was","wasn't":"was not","we'd":"we had","we'd've":"we would have","we'll"
:"we will","we're":"we are",\
"we've": "we have", "weren't": "were not", "what'd": "what did", "what'll": "what will", "wh
at're":"what are","what's":"what is",\
"what've": "what have", "when's": "when is", "where'd": "where did", "where're": "where ar
e", "where 've": "where have", \
"which's": "which has", "who'd": "who would", "who'd've": "who would have", "who'll": "who
shall", "who're": "who are", \
"who's": "who has", "who've": "who have", "why'd": "why did", "why're": "why are", "why's":
"why has", "won't": "will not", \
"would've":"would have","wouldn't":"would not","y'all":"you all","you'd":"you had",
"you'll":"you shall","you're":"you are",\
"you've":"you have"})
data['Summary'] = data['Summary'].replace({"ain't":"am not","amn't":"am not","are
n't":"are not", \
"can't":"cannot", "cause": "because", "could've": "could have", "couldn't": "could not", "c
ouldn't've":"could not have", \
"daren't":"dare not","daresn't":"dare not","dasn't":"dare not","didn't":"did not","d
oesn't":"does not", \
"don't": "do not", "e'er": "ever", "everyone's": "everyone is", "finna": "fixing to", "gimm
e":"give me", \
"gonna": "going to", "gon't": "go not", "gotta": "got to", "hadn't": "had not", "hasn't": "ha
s not","haven't":"have not",\
"he'd":"he had", "he'll": "he shall", "he's": "he has", "he've": "he have", "how'd": "how di
d","how'll":"how will",\
"how're": "how are", "how's": "how has", "I'd": "I had", "I'll": "I shall", "I'm": "I am",
"I'm'a":"I am about to",\
"I'm'o":"I am going to","I've":"I have","isn't":"is not","it'd":"it would","it'll":
"it shall", "it's": "it has", \
"let's":"let us","mayn't":"may not","may've":"may have","mightn't":"might not","migh
t've":"might have",\
"mustn't": "must not", "mustn't've": "must not have", "must've": "must have", "needn't": "n
eed not","ne'er":"never",\
"o'clock": "of the clock", "o'er": "", "ol'": "old", "oughtn't": "ought not", "shalln't": "sh
all not","shan't":"shall not",\
"she'd": "she had", "she'll": "she shall", "she's": "she is", "should've": "should have", "s
houldn't": "should not", \
"shouldn't've": "should not have", "somebody's": "somebody has ", "someone's ": "someone ha
s", "something's": "something has", \
"that'll":"that will","that're":"that are","that's":"that is","that'd":"that would",
"there'd":"there had",\
"there'll":"there shall", "there're": "there are", "there's": "there is", "these're": "hes
e are","they'd":"they had",\
"they'll":"they will","they're":"they are","they've":"they have","this's":"","thos
e're":"those are","tis":"it is",\
"twas":"it was","wasn't":"was not","we'd":"we had","we'd've":"we would have","we'll"
:"we will","we're":"we are",\
"we've":"we have","weren't":"were not","what'd":"what did","what'll":"what will","wh
at're":"what are","what's":"what is",\
"what've": "what have", "when's": "when is", "where'd": "where did", "where're": "where ar
e", "where 've": "where have", \
"which's": "which has", "who'd": "who would", "who'd've": "who would have ", "who'll": "who
 shall","who're":"who are",\
"who's":"who has","who've":"who have","why'd":"why did","why're":"why are","why's":
"why has", "won't": "will not", \
"would've": "would have", "wouldn't": "would not", "y'all": "you all", "you'd": "you had",
"you'll":"you shall", "you're": "you are", \
"you've":"you have"})
####
```

```
# iii) Remove Special Characters except alpahbets and numbers
#The reason i dont want to remove number people might write got five eggs as 5 eggs
 or vice versa and dont want to lose
#that information which could be useful
#Ref:https://stackoverflow.com/questions/33257344/how-to-remove-special-characers-fr
om-a-column-of-dataframe-using-module-re
data["Text"]=data["Text"].map(lambda x: re.sub(r'[^a-zA-Z_0-9 -]', '', x))
data["Summary_copy"]=data["Summary"].map(lambda x: re.sub(r'[^a-zA-Z_0-9 -]', '', x
))
#The Summary are usually so small if we remove few stopwords the meaning itself woul
d be complely lost or chamge
# So let us see what all stopwords we have
#Ref::::::https://stackoverflow.com/questions/5511708/adding-words-to-nltk-stopli
#https://chrisalbon.com/machine_learning/preprocessing_text/remove_stop_words/
stopwords = nltk.corpus.stopwords.words('english')
newStopWords = ['would','could','br','<br>','<','>']
notstopwords = ['not','no','nor']
stopwords.extend(newStopWords)
stopwords = [word for word in stopwords if word not in notstopwords]
# iv) For now let us just go with flow will use default stopwords as creating our o
wn stop words is very time consuming
#Rather will use n-gram stratergy to get rid of problem of stopwords removal changin
g the meaning of sentences
#Ref:https://stackoverflow.com/questions/43184364/python-remove-stop-words-from-pand
as-dataframe-give-wrong-output
data["New_Text"] = data['Text'].apply(lambda x: [item for item in str.split(x) if ite
m not in stopwords])
data["Summary"] = data['Summary_copy'].apply(lambda x: [item for item in str.split(x)
if item not in stopwords])
#Ref:https://stackoverflow.com/questions/37347725/converting-a-panda-df-list-into-a-
string/37347837
#we are creating new column New_summary so in case in future we need summary it is i
data["New_Text"]=data["New_Text"].apply(' '.join)
data["Summary"]=data["Summary"].apply(' '.join)
# v) Now lets do Stemming
#https://stackoverflow.com/questions/48617589/beginner-stemming-in-pandas-produces-l
etters-not-stems
english stemmer=SnowballStemmer('english', ignore stopwords=True)
data["New_Text"] = data["New_Text"].apply(english_stemmer.stem)
data["Summary"] = data["Summary"].apply(english_stemmer.stem)
data["New_Text"] = data["New_Text"].astype(str)
data["Summary"] = data["Summary"].astype(str)
#vi) stemming without removing stop words
english_stemmer=SnowballStemmer('english', ignore_stopwords=True)
#https://stackoverflow.com/questions/34724246/attributeerror-float-object-has-no-att
ribute-lower
data["Text_with_stop"]=data["Text"].astype(str)
data["Summary"]=data["Summary"].astype(str)
data["Text_with_stop"]=data["Text_with_stop"].str.lower().map(english_stemmer.stem)
data["Summary"]=data["Summary"].str.lower().map(english_stemmer.stem)
data["Text_with_stop"]=data["Text_with_stop"].apply(''.join)
data["Summary"]=data["Summary"].apply(''.join)
data["Text_with_stop"] = data["Text_with_stop"].astype(str)
```

```
data["Summary"] = data["Summary"].astype(str)
print(data["Score"].value_counts())
print ("Thus we see there are 85% and 15% positive and negative reviews, thus a unbal
anced dataset. So to create a balanced \
dataset we first copy negative dataset 6 times than we sample with same number of ti
mes as positive")
# Let include another feature which is the length of the text
data_neg = data[data["Score"] == 0]
data_pos = data[data["Score"] == 1]
data = pd.concat([data_pos,data_neg])
#https://stackoverflow.com/questions/46429033/how-do-i-count-the-total-number-of-wor
ds-in-a-pandas-dataframe-cell-and-add-thos
data["Text_length"]= (data["New_Text"].str.count(' ') + 1)
data["Summary_length"] = (data["Summary"].str.count(' ') + 1)
data["Time_formatted"]= pd.to_datetime(data["Time"])
data.sort values(by=['Time formatted'], inplace=True)
C:\ProgramData\Anaconda3\lib\site-packages\gensim\utils.py:1212: UserWar
ning: detected Windows; aliasing chunkize to chunkize serial
 warnings.warn("detected Windows; aliasing chunkize to chunkize_seria
1")
Number of data points available
(525814, 10)
Number of data points after removing duplicates
(366392, 10)
Number of data points after removing where HelpfulnessNumerator is more
than HelpfulnessDenominator
(366390, 10)
     308679
1
      57711
Name: Score, dtype: int64
Thus we see there are 85% and 15% positive and negative reviews, thus a u
nbalanced dataset. So to create a balanced dataset we first copy negative
dataset 6 times than we sample with same number of times as positive
```

In [2]:

```
# https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_te
st_split.html
from sklearn.model_selection import train_test_split

Y = data['Score'].values
X_no_stop = data['New_Text'].values
X_summary = data ['Summary'].values

X_no_stop_train, X_no_stop_test, y_train, y_test = train_test_split(X_no_stop, Y, te
st_size=0.33, shuffle=False)
X_no_stop_train, X_no_stop_CV, y_train, y_CV = train_test_split(X_no_stop_train, y_t
rain, test_size=0.33, shuffle=False)

X_summary_train,X_summary_test, y_summary_train, y_summary_test = train_test_split(X
_summary, Y, test_size=0.33, shuffle=False)
X_summary_train,X_summary_CV, y_summary_train, y_summary_CV = train_test_split(X_sum
mary_train,y_summary_train, test_size=0.33, shuffle=False)
```

[5.1] Logistic Regression on BOW, SET 1

In [3]:

```
%time
from sklearn.feature_extraction.text import CountVectorizer
import math
bow_vect = CountVectorizer(ngram_range = (1,2),min_df = 7,max_features=9000)
bow_X_train_no_stop = bow_vect.fit_transform(X_no_stop_train)
bow_X_test_no_stop = bow_vect.transform(X_no_stop_test)
bow_X_CV_no_stop = bow_vect.transform(X_no_stop_CV)
bow X summary train = bow vect.fit transform(X summary train)
bow_X_summary_test = bow_vect.transform(X_summary_test)
bow_X_summary_CV = bow_vect.transform(X_summary_CV)
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
# creating odd list of C(i.e. 1/Lambda) for BOW Logistic Regression
def tothepower(y):
   return (10**y)
C_LR_BOW = list(map(tothepower, list(range(-4, 5))))
print (C LR BOW)
C_LR_BOW_log = [math.log(x) for x in C_LR_BOW]
print (C_LR_BOW_log)
Wall time: 0 ns
[-9.210340371976182, -6.907755278982137, -4.605170185988091, -2.30258509
29940455, 0.0, 2.302585092994046, 4.605170185988092, 6.907755278982137,
9.210340371976184]
In [4]:
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')
bow_X_train_txt =StandardScaler(with_mean=False, with_std=False).fit_transform(bow_X_
train_no_stop)
bow X test txt = StandardScaler(with mean=False, with std=False).fit transform(bow X
test_no_stop)
bow X CV txt = StandardScaler(with mean=False, with std=False).fit transform(bow X CV
_no_stop)
```

```
(164472, 9000)
```

print (bow_X_train_txt.shape)

summary train)

summary test)

mmary CV)

bow_X_train_sum =StandardScaler(with_mean=False,with_std=False).fit_transform(bow_X_

bow X test sum = StandardScaler(with mean=False, with std=False).fit transform(bow X

bow_X_CV_sum = StandardScaler(with_mean=False,with_std=False).fit_transform(bow_X_su

[5.1.1] Applying Logistic Regression with L1 regularization on BOW, SET

In [5]:

```
from sklearn.linear_model import LogisticRegression
auc_cv_bow_txt = []
auc_train_bow_txt=[]

for C in tqdm(C_LR_BOW):
    LR_BOW_txt = LogisticRegression(penalty='l1',C=C, fit_intercept=True, intercept_
scaling=1, class_weight='balanced')
    LR_BOW_txt.fit(bow_X_train_txt, y_train)
    proba_pred_train_BOW_txt=(LR_BOW_txt.predict_proba(bow_X_train_txt)[:,1])
    proba_pred_cv_BOW_txt=(LR_BOW_txt.predict_proba(bow_X_CV_txt)[:,1])
    auc_train_bow_txt.append(roc_auc_score(y_train,proba_pred_train_BOW_txt))
    auc_cv_bow_txt.append(roc_auc_score(y_CV,proba_pred_cv_BOW_txt))
```

In [6]:

```
l1_auc_cv_bow_summary = []
l1_auc_train_bow_summary=[]

for C in (C_LR_BOW):
    L1_BOW_sum = LogisticRegression(penalty='l1',C=C, fit_intercept=True, intercept_
scaling=1, class_weight='balanced')
    L1_BOW_sum.fit(bow_X_train_sum, y_summary_train)
    l1_proba_pred_train_BOW_sum=(L1_BOW_sum.predict_proba(bow_X_train_sum)[:,1])
    L1_proba_pred_cv_BOW_sum=(L1_BOW_sum.predict_proba(bow_X_CV_sum)[:,1])
    l1_auc_train_bow_summary.append(roc_auc_score(y_summary_train,l1_proba_pred_train_BOW_sum))
    l1_auc_cv_bow_summary.append(roc_auc_score(y_summary_CV,L1_proba_pred_cv_BOW_sum)))
```

In [7]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_BOW_log, auc_train_bow_txt)
plt.scatter(C_LR_BOW_log, auc_train_bow_txt)
plt.plot(C_LR_BOW_log, auc_cv_bow_txt)
plt.scatter(C_LR_BOW_log, auc_cv_bow_txt)
plt.scatter(C_LR_BOW_log, auc_cv_bow_txt)
plt.xlabel('Log of C = 1/\lambda')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/\lambda' vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```


In [8]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_BOW_log, l1_auc_train_bow_summary)
plt.scatter(C_LR_BOW_log, l1_auc_train_bow_summary)
plt.plot(C_LR_BOW_log, l1_auc_cv_bow_summary)
plt.scatter(C_LR_BOW_log, l1_auc_cv_bow_summary)
plt.scatter(C_LR_BOW_log, l1_auc_cv_bow_summary)
plt.xlabel('Log of C = 1/\lambda')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/\lambda' vs AUC to choose best C for Summary Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for 'Log of C = $1/\lambda$ ' vs AUC to choose best C for Summary Review

In [9]:

```
import numpy as np
lis = np.arange (.01, 1, .05)
print (lis)
```

[0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.96]

In [10]:

```
from sklearn.linear_model import LogisticRegression
auc_cv_bow_txt = []
auc_train_bow_txt=[]

for C in (lis):
    LR_BOW_txt = LogisticRegression(penalty='l1',C=C, fit_intercept=True, intercept_
scaling=1, class_weight='balanced')
    LR_BOW_txt.fit(bow_X_train_txt, y_train)
    proba_pred_train_BOW_txt=(LR_BOW_txt.predict_proba(bow_X_train_txt)[:,1])
    proba_pred_cv_BOW_txt=(LR_BOW_txt.predict_proba(bow_X_CV_txt)[:,1])
    auc_train_bow_txt.append(roc_auc_score(y_train,proba_pred_train_BOW_txt))
auc_cv_bow_txt.append(roc_auc_score(y_CV,proba_pred_cv_BOW_txt))
```

In [11]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(lis, auc_train_bow_txt)
plt.scatter(lis, auc_train_bow_txt)
plt.plot(lis, auc_cv_bow_txt)
plt.scatter(lis, auc_cv_bow_txt)
plt.scatter(lis, auc_cv_bow_txt)
plt.xlabel('C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for C = 1/λ vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```


So the best C is 0.16 for Text Review

In [12]:

import numpy as np

```
lis2 = np.arange(.1, 1, .05)
print (lis2)
[0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.8 0.85 0.9 0.95]
In [13]:
auc_cv_bow_summary = []
auc_train_bow_summary=[]
for C in tqdm(lis2):
    LR_BOW_sum = LogisticRegression(penalty='l1',C=C, fit_intercept=True, intercept_
scaling=1, class_weight='balanced')
    LR_BOW_sum.fit(bow_X_train_sum, y_summary_train)
    proba_pred_train_BOW_sum=(LR_BOW_sum.predict_proba(bow_X_train_sum)[:,1])
    proba_pred_cv_BOW_sum=(LR_BOW_sum.predict_proba(bow_X_CV_sum)[:,1])
    auc_train_bow_summary.append(roc_auc_score(y_summary_train,proba_pred_train_BOW_
sum))
    auc_cv_bow_summary.append(roc_auc_score(y_summary_CV,proba_pred_cv_BOW_sum))
```

| 18/18 [00:07<00:00, 2.18it/s]

In [14]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(lis2, auc_train_bow_summary)
plt.scatter(lis2, auc_train_bow_summary)
plt.plot(lis2, auc_cv_bow_summary)
plt.scatter(lis2, auc_cv_bow_summary)
plt.scatter(lis2, auc_cv_bow_summary)
plt.xlabel('C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for 'C = 1/λ' vs AUC to choose best C for Summary Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```


Best C for Summary Review is .6

In [15]:

```
bestC_L1_BOW_txt = LogisticRegression(penalty='l1',C=.16, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
bestC_L1_BOW_txt.fit(bow_X_train_txt, y_train)
l1_proba_pred_train_BOW_txt=(bestC_L1_BOW_txt.predict_proba(bow_X_train_txt)[:,1])
l1_proba_pred_test_BOW_txt=(bestC_L1_BOW_txt.predict_proba(bow_X_test_txt)[:,1])
l1_auc_test_BOW = (roc_auc_score(y_test,l1_proba_pred_test_BOW_txt))
l1_auc_train_BOW = (roc_auc_score(y_train,l1_proba_pred_train_BOW_txt))
```

In [16]:

```
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_bow_l1_txt, tpr_test_bow_l1_txt, thresholds = roc_curve(y_test, l1_proba_pr
ed test BOW txt)
fpr_train_bow_l1_txt, tpr_train_bow_l1_txt, thresholds = roc_curve(y_train, l1_proba
_pred_train_BOW_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_bow_l1_txt, tpr_test_bow_l1_txt, label=' Test ROC curve on Review
 Text')
plt.scatter(fpr_test_bow_l1_txt, tpr_test_bow_l1_txt, label=' Test ROC curve on Revi
ew Text')
plt.plot(fpr_train_bow_l1_txt, tpr_train_bow_l1_txt, label=' Train ROC curve on Revi
ew Text')
plt.scatter(fpr_train_bow_l1_txt, tpr_train_bow_l1_txt, label=' Train ROC curveon Re
view Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
= plt.xlabel('False Positive Rate')
  = plt.ylabel('True Positive Rate')
_ = plt.title('ROC Curve')
_ = plt.xlim([-0.02, 1])
_ = plt.ylim([0, 1.02])
_ = plt.legend(loc="lower right")
```


In [17]:

```
bestC_L1_BOW_txt = LogisticRegression(penalty='l1',C=.16, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
bestC_L1_BOW_txt.fit(bow_X_train_txt, y_train)
l1_pred_train_BOW_txt=(bestC_L1_BOW_txt.predict(bow_X_train_txt))
l1_pred_test_BOW_txt=(bestC_L1_BOW_txt.predict(bow_X_test_txt))
```

In [18]:

support	f1-score	recall	precision	
21261	0.76	0.90	0.66	0
99648	0.94	0.90	0.98	1
120909	0.91	0.90	0.92	avg / total

support	f1-score	recall	precision	
22681	0.76	0.93	0.65	0
141791	0.95	0.92	0.99	1
164472	0.93	0.92	0.94	avg / total

In [19]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train,l1_pred_train_BOW_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train,l1_pred_train_BOW_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x1527d321860>

In [20]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, l1_pred_test_BOW_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, l1_pred_test_BOW_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x152766e6eb8>

Lets perform the same over Summary Text

In [21]:

```
bestC_L1_BOW_sum = LogisticRegression(penalty='l1',C=.6, fit_intercept=True, interce
pt_scaling=1, class_weight='balanced')
bestC_L1_BOW_sum.fit(bow_X_train_sum, y_summary_train)
L1_proba_pred_train_BOW_sum=(bestC_L1_BOW_sum.predict_proba(bow_X_train_sum)[:,1])
L1_proba_pred_test_BOW_sum=(bestC_L1_BOW_sum.predict_proba(bow_X_test_sum)[:,1])
```

In [22]:

```
l1_auc_test_BOW = (roc_auc_score(y_test,L1_proba_pred_test_BOW_sum))
l1_auc_train_BOW = (roc_auc_score(y_train,L1_proba_pred_train_BOW_sum))
```

In [23]:

```
from sklearn.metrics import roc curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_bow_l1_sum, tpr_test_bow_l1_sum, thresholds = roc_curve(y_summary_test, L1_
proba_pred_test_BOW_sum)
fpr_train_bow_l1_sum, tpr_train_bow_l1_sum, thresholds = roc_curve(y_summary_train,
L1_proba_pred_train_BOW_sum)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_bow_l1_sum, tpr_test_bow_l1_sum, label=' Test ROC curve on Summary
Text')
plt.scatter(fpr_test_bow_l1_sum, tpr_test_bow_l1_sum, label=' Test ROC curve on Summ
ary Text')
plt.plot(fpr_train_bow_l1_sum, tpr_train_bow_l1_sum, label=' Train ROC curve on Summ
ary Text')
plt.scatter(fpr_train_bow_l1_sum, tpr_train_bow_l1_sum, label=' Train ROC curveon Su
mmary Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
  = plt.xlabel('False Positive Rate')
  = plt.ylabel('True Positive Rate')
  = plt.title('ROC Curve')
  = plt.xlim([-0.02, 1])
  = plt.ylim([0, 1.02])
  = plt.legend(loc="lower right")
```


In [24]:

```
bestC_L1_BOW_sum = LogisticRegression(penalty='l1',C=.6, fit_intercept=True, interce
pt_scaling=1, class_weight='balanced')
bestC_L1_BOW_sum.fit(bow_X_train_sum, y_summary_train)
L1_pred_train_BOW_sum=(bestC_L1_BOW_sum.predict(bow_X_train_sum))
L1_pred_test_BOW_sum=(bestC_L1_BOW_sum.predict(bow_X_test_sum))
```

In [25]:

	precision	recall	f1-score	support	
0	0.56	0.88	0.68	21261	
1	0.97	0.85	0.91	99648	
avg / total	0.90	0.86	0.87	120909	

The classification report on Training dataset Review Text

support	f1-score	recall	precision	
22681 141791	0.67 0.93	0.91 0.87	0.53 0.98	0 1
164472	0.89	0.88	0.92	avg / total

In [26]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_summary_train,L1_pred_train_BOW_sum,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_summary_train,L1_pred_train_BOW_sum)
```

IN NOT NORMALIZED FORMAT BELOW

Out[26]:

<matplotlib.axes._subplots.AxesSubplot at 0x15245a144a8>

In [27]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_summary_test, L1_pred_test_BOW_sum,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_summary_test, L1_pred_test_BOW_sum)
```

IN NOT NORMALIZED FORMAT BELOW

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x1526ffb9a20>

[5.1.1.1] Calculating sparsity on weight vector obtained using L1 regularization on BOW, SET

In [28]:

```
import numpy as np
bestC_L1_BOW_sum = LogisticRegression(penalty='l1',C=.55, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
bestC_L1_BOW_sum.fit(bow_X_summary_train, y_summary_train)
coef_ =bestC_L1_BOW_sum.coef_
bow_features_name_l1_sum = bow_vect.get_feature_names()
sparsity_wght_df = pd.DataFrame(coef_, columns = bow_features_name_l1_sum)
sparsity_wght_df_trans = sparsity_wght_df.T
sparsity_wght_df_trans.columns = ["Weight"]
print (sparsity_wght_df_trans)
```

10 10 star 100 100 calorie 100 juice 100 natural	Weight -0.182671 2.205732 -0.408930 1.080471 0.000000 0.000000
100 pure 100 whole 11 12 12 ounce 12 oz 13	-0.308794 0.000000 -1.299526 -0.016507 0.000000 0.000000 0.000000
14 15 16 16 ounce 16 oz 17	-0.165057 -0.228623 0.000000 0.000000 0.000000 0.000000
1866 19 1st 20 2008 2010 2011	0.000000 0.000000 -0.180391 -0.997673 -2.081325 0.000000 -1.596866 -0.200899
24 yummy good yummy great yummy gummi yummy healthi	0.000000 0.000000 0.000000 0.000000 0.000000
yummy healthy yummy little yummy low yummy not yummy snack yummy stuff	0.000000 0.000000 0.000000 0.000000 0.000000
yummy tea yummy treat yummy tummi yummy way yummy yum yummy yummi yummy yummy	0.000000 0.000000 0.000000 0.000000 -5.402375 0.000000
yummyearth yumyum zen zero zero star zesty	0.000000 0.061501 0.164548 -1.239981 -1.405409 1.472606
zevia zico zinger zip zoe zotz	-0.016135 0.129125 0.000000 0.000000 0.000000 0.000000

```
zukes 0.000000
[9000 rows x 1 columns]

In [29]:
#https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.count_nonzero.htm
l
sparsity_wght_df_trans_non_zero = np.count_nonzero(sparsity_wght_df_trans)
print (sparsity_wght_df_trans_non_zero)
3799
```

So we see out of 9000 only 3799 are nonzero weights vectors. That means only 3799 are relevant features to consider and rest (i.e. 9000-3799=5201) words vectors/features could be discarded as per L1 regularization

[5.1.2] Applying Logistic Regression with L2 regularization on BOW, SET

In [30]:

```
from sklearn.linear_model import LogisticRegression
12_auc_cv_bow_txt = []
12_auc_train_bow_txt=[]

for C in (C_LR_BOW):
    L2_BOW_txt = LogisticRegression(penalty='12',C=C, fit_intercept=True,intercept_s
caling=1,class_weight='balanced')
    L2_BOW_txt.fit(bow_X_train_txt, y_train)
    12_proba_pred_train_BOW_txt=(L2_BOW_txt.predict_proba(bow_X_train_txt)[:,1])
    12_proba_pred_cv_BOW_txt=(L2_BOW_txt.predict_proba(bow_X_CV_txt)[:,1])
    12_auc_train_bow_txt.append(roc_auc_score(y_train,l2_proba_pred_train_BOW_txt))
    12_auc_cv_bow_txt.append(roc_auc_score(y_CV,l2_proba_pred_cv_BOW_txt))
```

In [31]:

```
print (C_LR_BOW)
print (C_LR_BOW_log)
```

In [32]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_BOW_log, 12_auc_train_bow_txt)
plt.scatter(C_LR_BOW_log, 12_auc_train_bow_txt)
plt.plot(C_LR_BOW_log, 12_auc_cv_bow_txt)
plt.scatter(C_LR_BOW_log, 12_auc_cv_bow_txt)
plt.scatter(C_LR_BOW_log, 12_auc_cv_bow_txt)
plt.xlabel('Log of C = 1/\lambda')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/\lambda' vs AUC to choose best C for Text Review using L 2 Regulization")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for 'Log of C = $1/\lambda$ ' vs AUC to choose best C for Text Review using L2 Regulization

In [33]:

```
import numpy as np
list_l2 = np.arange (.01, 1, .05)
print (list_l2)
```

[0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.96]

In [34]:

```
from sklearn.linear_model import LogisticRegression
l2_auc_cv_bow_txt = []
l2_auc_train_bow_txt=[]

for C in (list_l2):
    L2_BOW_txt = LogisticRegression(penalty='l2',C=C, fit_intercept=True,intercept_s
caling=1, verbose =1,class_weight='balanced')
    L2_BOW_txt.fit(bow_X_train_txt, y_train)
    l2_proba_pred_train_BOW_txt=(L2_BOW_txt.predict_proba(bow_X_train_txt)[:,1])
    l2_proba_pred_cv_BOW_txt=(L2_BOW_txt.predict_proba(bow_X_CV_txt)[:,1])
    l2_auc_train_bow_txt.append(roc_auc_score(y_train,l2_proba_pred_train_BOW_txt))
    l2_auc_cv_bow_txt.append(roc_auc_score(y_CV,l2_proba_pred_cv_BOW_txt))
```

[LibLinear]

In [35]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(list_12, 12_auc_train_bow_txt)
plt.scatter(list_12, 12_auc_train_bow_txt)
plt.plot(list_12, 12_auc_cv_bow_txt)
plt.scatter(list_12, 12_auc_cv_bow_txt)
plt.scatter(list_12, 12_auc_cv_bow_txt)
plt.xlabel('C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for 'C = 1/λ'vs AUC to choose best C for Text Review using L2 Reguli zation")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```


Best C is .06 for Text Review using L2 Regulization

```
In [36]:
```

```
bestC_12_proba_pred_train_BOW_txt = []
bestC_12_proba_pred_test_BOW_txt = []

bestC_L2_BOW_txt = LogisticRegression(penalty='12',C=.06, fit_intercept=True,interce
pt_scaling=1, verbose =1,class_weight='balanced')
bestC_L2_BOW_txt.fit(bow_X_train_txt, y_train)
bestC_12_proba_pred_train_BOW_txt=(bestC_L2_BOW_txt.predict_proba(bow_X_train_txt)
[:,1])
bestC_12_proba_pred_test_BOW_txt=(bestC_L2_BOW_txt.predict_proba(bow_X_test_txt)[:,1])
```

[LibLinear]

In [37]:

```
12_auc_test_BOW = (roc_auc_score(y_test,bestC_12_proba_pred_test_BOW_txt))
12_auc_train_BOW = (roc_auc_score(y_train,bestC_12_proba_pred_train_BOW_txt))
```

In [38]:

```
from sklearn.metrics import roc curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_bow_12_txt, tpr_test_bow_12_txt, thresholds = roc_curve(y_test, bestC_12_pr
oba_pred_test_BOW_txt)
fpr_train_bow_12_txt, tpr_train_bow_12_txt, thresholds = roc_curve(y_train, bestC_12
_proba_pred_train_BOW_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_bow_12_txt, tpr_test_bow_12_txt, label=' Test ROC curve on Summary
Text')
plt.scatter(fpr_test_bow_12_txt, tpr_test_bow_12_txt, label=' Test ROC curve on Summ
ary Text')
plt.plot(fpr_train_bow_12_txt, tpr_train_bow_12_txt, label=' Train ROC curve on Summ
ary Text')
plt.scatter(fpr_train_bow_12_txt, tpr_train_bow_12_txt, label=' Train ROC curve on S
ummary Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
  = plt.xlabel('False Positive Rate')
  = plt.ylabel('True Positive Rate')
  = plt.title('ROC Curve')
  = plt.xlim([-0.02, 1])
  = plt.ylim([0, 1.02])
  = plt.legend(loc="lower right")
```


In [39]:

```
bestC_L2_BOW_txt = LogisticRegression(penalty='12',C=.06, fit_intercept=True, interc
ept scaling=1, class weight='balanced')
bestC_L2_BOW_txt.fit(bow_X_train_txt, y_train)
12 pred_train_BOW_txt=(bestC_L2_BOW_txt.predict(bow_X_train_txt))
12_pred_test_BOW_txt=(bestC_L1_BOW_txt.predict(bow_X_test_txt))
```

In [40]:

```
from sklearn.metrics import classification_report
print ("####################")
print ("The classification report on Test dataset on Review Text")
print ("#################"")
print(classification_report(y_test, 12_pred_test_BOW_txt))
print ("#################"")
print ("The classification report on Training dataset Review Text")
print ("#################"")
print(classification_report(y_train, 12_pred_train_BOW_txt))
```


The classification report on Test dataset on Review Text

	precision	recall	f1-score	support	
0	0.66	0.90	0.76	21261	
1	0.98	0.90	0.94	99648	
avg / total	0.92	0.90	0.91	120909	

The classification report on Training dataset Review Text

	precision	recall	+1-score	support
0	0.65	0.93	0.77	22681
1	0.99	0.92	0.95	141791
avg / total	0.94	0.92	0.93	164472

In [41]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, 12_pred_test_BOW_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, 12_pred_test_BOW_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x1526cbb9f98>

In [42]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train, 12_pred_train_BOW_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train, 12_pred_train_BOW_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[42]:

<matplotlib.axes._subplots.AxesSubplot at 0x15203e54908>

In [43]:

```
12_auc_cv_bow_summary = []
L2_auc_train_bow_summary=[]

for C in tqdm(C_LR_BOW):
    L2_BOW_sum = LogisticRegression(penalty='12',C=C, fit_intercept=True, intercept_
scaling=1, class_weight='balanced')
    L2_BOW_sum.fit(bow_X_train_sum, y_summary_train)
    proba_pred_train_BOW_sum=(L2_BOW_sum.predict_proba(bow_X_train_sum)[:,1])
    proba_pred_cv_BOW_sum=(L2_BOW_sum.predict_proba(bow_X_CV_sum)[:,1])
    L2_auc_train_bow_summary.append(roc_auc_score(y_summary_train,proba_pred_train_B
OW_sum))
    12_auc_cv_bow_summary.append(roc_auc_score(y_summary_CV,proba_pred_cv_BOW_sum))
```


In [44]:

```
print (C_LR_BOW)
```

In [45]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_BOW_log, L2_auc_train_bow_summary)
plt.scatter(C_LR_BOW_log, L2_auc_train_bow_summary)
plt.plot(C_LR_BOW_log, l2_auc_cv_bow_summary)
plt.scatter(C_LR_BOW_log, l2_auc_cv_bow_summary)
plt.scatter(C_LR_BOW_log, l2_auc_cv_bow_summary)
plt.xlabel('Log of C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/λ' vs AUC to choose best C for Summary Review with L2 Regulization")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for 'Log of C = $1/\lambda$ ' vs AUC to choose best C for Summary Review with L2 Regulization

In [46]:

```
import numpy as np
list_12_sum = np.arange (.1, 10, .2)
print (list_l2_sum)
[0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5
 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1 6.3 6.5 6.7 6.9 7.1
 7.3 7.5 7.7 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5 9.7 9.9]
In [47]:
12_auc_cv_bow_summary = []
L2_auc_train_bow_summary=[]
for C in (list_12_sum):
    L2_BOW_sum = LogisticRegression(penalty='12',C=C, fit_intercept=True, intercept_
scaling=1, class weight='balanced')
    L2_BOW_sum.fit(bow_X_train_sum, y_summary_train)
    proba_pred_train_BOW_sum=(L2_BOW_sum.predict_proba(bow_X_train_sum)[:,1])
    proba_pred_cv_BOW_sum=(L2_BOW_sum.predict_proba(bow_X_CV_sum)[:,1])
    L2_auc_train_bow_summary.append(roc_auc_score(y_summary_train,proba_pred_train_B
OW_sum))
    12_auc_cv_bow_summary.append(roc_auc_score(y_summary_CV,proba_pred_cv_BOW_sum))
```

In [48]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(list_12_sum, L2_auc_train_bow_summary)
plt.scatter(list_12_sum, L2_auc_train_bow_summary)
plt.plot(list_12_sum, 12_auc_cv_bow_summary)
plt.scatter(list_12_sum, 12_auc_cv_bow_summary)
plt.xlabel('C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for C = 1/λ vs AUC to choose best C for Summary Review with L2 Regul ization")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for C = $1/\lambda$ vs AUC to choose best C for Summary Review with L2 Regulization

So the best Value of C for summary text using L2 Regulization is .5

In [49]:

```
L2_BOW_sum = LogisticRegression(penalty='l2',C=.5, fit_intercept=True, intercept_scaling=1, class_weight='balanced')
L2_BOW_sum.fit(bow_X_train_sum, y_summary_train)
bestC_proba_pred_train_BOW_sum=(L2_BOW_sum.predict_proba(bow_X_train_sum)[:,1])
bestC_proba_pred_test_BOW_sum=(L2_BOW_sum.predict_proba(bow_X_test_sum)[:,1])
```

In [50]:

```
12_auc_test_BOW_sum = (roc_auc_score(y_summary_test,bestC_proba_pred_test_BOW_sum))
12_auc_train_BOW_sum = (roc_auc_score(y_summary_train,bestC_proba_pred_train_BOW_sum))
```

In [51]:

```
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_bow_12_sum, tpr_test_bow_12_sum, thresholds = roc_curve(y_summary_test, bes
tC_proba_pred_test_BOW_sum)
fpr_train_bow_12_sum, tpr_train_bow_12_sum, thresholds = roc_curve(y_summary_train,
bestC_proba_pred_train_BOW_sum)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_bow_12_sum, tpr_test_bow_12_sum, label=' Test ROC curve on Summary
Text')
plt.scatter(fpr_test_bow_12_sum, tpr_test_bow_12_sum, label=' Test ROC curve on Summ
ary Text')
plt.plot(fpr_train_bow_12_sum, tpr_train_bow_12_sum, label=' Train ROC curve on Summ
ary Text')
plt.scatter(fpr_train_bow_12_sum, tpr_train_bow_12_sum, label=' Train ROC curve on S
ummary Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
= plt.xlabel('False Positive Rate')
 = plt.ylabel('True Positive Rate')
_ = plt.title('ROC Curve')
_ = plt.xlim([-0.02, 1])
 = plt.ylim([0, 1.02])
_ = plt.legend(loc="lower right")
```


In [52]:

```
bestC_L2_BOW_sum = LogisticRegression(penalty='l1',C=.5, fit_intercept=True, interce
pt_scaling=1, class_weight='balanced')
bestC_L2_BOW_sum.fit(bow_X_train_sum, y_summary_train)
L2_pred_train_BOW_sum=(bestC_L2_BOW_sum.predict(bow_X_train_sum))
L2_pred_test_BOW_sum=(bestC_L2_BOW_sum.predict(bow_X_test_sum))
```

In [53]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_summary_test, L2_pred_test_BOW_sum,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_summary_test, L2_pred_test_BOW_sum)
```

IN NOT NORMALIZED FORMAT BELOW

Out[53]:

<matplotlib.axes._subplots.AxesSubplot at 0x15206ef8940>

In [54]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_summary_train, L2_pred_train_BOW_sum,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_summary_train, L2_pred_train_BOW_sum)
```

IN NOT NORMALIZED FORMAT BELOW

Out[54]:

<matplotlib.axes._subplots.AxesSubplot at 0x1524773c630>

[5.1.2.1] Performing pertubation test (multicollinearity check) on BOW, SET 1

In [55]:

```
bow vect2 = CountVectorizer(ngram range = (1,2),min df = 7,max features=4000)
bow_X_train_no_stop_4k = bow_vect2.fit_transform(X_no_stop_train)
bow_X_test_no_stop_4k = bow_vect2.transform(X_no_stop_test)
bow X CV no stop 4k = bow vect2.transform(X no stop CV)
bow_X_summary_train_4k = bow_vect2.fit_transform(X_summary_train)
bow_X_summary_test_4k = bow_vect2.transform(X_summary_test)
bow_X_summary_CV_4k = bow_vect2.transform(X_summary_CV)
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')
bow_X_train_txt_4k = StandardScaler(with_mean=False, with_std=False).fit_transform(bow
_X_train_no_stop_4k)
bow_X_test_txt_4k = StandardScaler(with_mean=False,with_std=False).fit_transform(bow
_X_test_no_stop_4k)
bow_X_CV_txt_4k = StandardScaler(with_mean=False,with_std=False).fit_transform(bow_X
_CV_no_stop_4k)
bow_X_train_sum_4k = StandardScaler(with_mean=False, with_std=False).fit_transform(bow
_X_summary_train_4k)
bow X test sum 4k = StandardScaler(with mean=False, with std=False).fit transform(bow
_X_summary_test_4k)
bow_X_CV_sum_4k = StandardScaler(with_mean=False,with_std=False).fit_transform(bow_X
_summary_CV_4k)
print (bow_X_train_txt_4k.shape)
\#noise = np.random.normal(0,.03,[164472, 4000]).astype(<math>np.float16)
#bow_X_train_no_stop_float16 = bow_X_train_no_stop.astype(np.float16)
#print (bow_X_train_no_stop_float16.shape)
```

(164472, 4000)

In [56]:

```
import numpy as np
from sklearn.linear_model import LogisticRegression

bestC_L2_BOW_txt_4k = LogisticRegression(penalty='12',C=.06, fit_intercept=True, int
ercept_scaling=1, class_weight='balanced')
bestC_L2_BOW_txt_4k.fit(bow_X_train_txt_4k, y_train)
coef_12 =bestC_L2_BOW_txt_4k.coef_
bow_features_name_12_txt_4k = bow_vect2.get_feature_names()
12_wght_df = pd.DataFrame(coef_12, columns = bow_features_name_12_txt_4k)
12_wght_df_trans = 12_wght_df.T
12_wght_df_trans.columns = ["Weight"]
```

In [57]:

```
#https://stackoverflow.com/questions/46093073/adding-gaussian-noise-to-a-dataset-of-
floating-points-and-save-it-python

target_dims = bow_X_train_txt_4k.shape
noise = np.random.normal(scale=.03, size=[164472, 4000])
noisy_bow_X_train_txt = bow_X_train_txt_4k + noise
```

In [58]:

In [59]:

```
print (12_wght_df_trans)
print (12_wght_df_trans_noisy)
```

	11-1-1-4
4.0	Weight
10	-0.173259
10 star	-0.083588
100	-0.090209
100 calorie	-0.010128
11	0.059754
12	0.163083
14	-0.023536
15	0.571035
16	-0.079238
17	-0.085166
18	-0.076257
1st	-0.212233
20	-0.143034
24	0.175945
25	-0.134752
2nd	0.427156
30	-0.241678
35	-0.057779
40	-0.096686
45	-0.062449
50	-0.238180
70	0.080523
able	0.138256
absolute	0.051144
absolute best	-0.409328
absolutely	0.152942
absolutely best	-0.157167
absolutely delici	0.019550
absolutely delicious	-0.042098
absolutely lov	-0.308636
•••	• • •
yucky	0.085965
yucky yuk	0.029474
	0.029474 0.146397
yuk	0.029474 0.146397 0.223964
yuk yum yum yum yumm	0.029474 0.146397
yuk yum yum yum yumm yummi	0.029474 0.146397 0.223964 -0.384353 0.073282
yuk yum yum yum yumm	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288
yuk yum yum yum yumm yummi	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522
yuk yum yum yum yumm yummi yummi	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288
yuk yum yum yum yumm yummi yummiest yummm	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522
yuk yum yum yum yumm yummi yummiest yummm yummmm	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445
yuk yum yum yum yumm yummi yummiest yummm yummmm yummmm	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323
yuk yum yum yum yummi yummi yummiest yummm yummmm yummmm yummmm yummmm	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445
yuk yum yum yum yumm yummi yummiest yummm yummmm yummmm yummmm yummo yummy	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688
yuk yum yum yum yumm yummi yummiest yummm yummmm yummmm yummmm yummmo yummy yummy yummy coff	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970
yuk yum yum yumm yummi yummi yummiest yummm yummmm yummmm yummmm yummo yummy yummy coff yummy gluten	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816
yuk yum yum yum yumm yummi yummiest yummm yummmm yummmm yummo yummy yummy yummy coff yummy gluten yummy good	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153
yuk yum yum yum yumm yummi yummiest yummmm yummmm yummmm yummo yummy yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthy	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720
yuk yum yum yum yumm yummi yummiest yummmm yummmm yummmm yummmo yummy yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163
yuk yum yum yum yumm yummi yummiest yummmm yummmm yummmm yummo yummy yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthy	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718
yuk yum yum yum yumm yummi yummiest yummm yummmm yummmm yummo yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthy yummy snack	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723
yuk yum yum yum yumm yummi yummiest yummm yummmm yummmm yummo yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthi yummy snack yummy tea	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182
yuk yum yum yum yumm yummi yummiest yummmm yummmm yummmm yummo yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthi yummy snack yummy tea yummy treat	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182 0.167446
yuk yum yum yum yumm yummi yummiest yummmm yummmm yummmm yummo yummy yummy gummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthi yummy healthy yummy snack yummy tea yummy treat yummy tummi	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182 0.167446 0.331882
yuk yum yum yum yumm yummi yummiest yummmm yummmm yummo yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthi yummy tea yummy tea yummy treat yummy yummi	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182 0.167446 0.331882 -1.027739
yuk yum yum yum yumm yummi yummiest yummm yummmm yummmm yummo yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthi yummy healthi yummy tea yummy treat yummy tummi yummy yummy yummy yummi yummy yummy	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182 0.167446 0.331882 -1.027739 1.012932
yuk yum yum yum yumm yummi yummiest yummmm yummmm yummmm yummo yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthi yummy tea yummy tea yummy treat yummy yummi yummy yummi yummy yummi yummy yummi yummy yummy yummy	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182 0.167446 0.331882 -1.027739 1.012932 0.955496
yuk yum yum yum yumm yummi yummi yummiest yummmm yummmm yummm yummo yummy yummy gummy gummy yummy galuten yummy good yummy gummi yummy healthi yummy healthi yummy tea yummy treat yummy tummi yummy yummi yummy yummi yummy yummi yummy yummi yummy yummy yummy yummy	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182 0.167446 0.331882 -1.027739 1.012932 0.955496 1.185432
yuk yum yum yum yumm yummi yummi yummiest yummmm yummmm yummo yummy yummy coff yummy gluten yummy good yummy gummi yummy healthi yummy healthi yummy tea yummy treat yummy treat yummy tummi yummy yummi yummy yummi yummy yummy yummy yummy yummy snack	0.029474 0.146397 0.223964 -0.384353 0.073282 0.034288 0.707522 -0.124221 0.000323 0.193445 -0.106688 0.064970 -0.179816 0.258153 -0.041720 -0.134163 0.400718 0.411723 0.329182 0.167446 0.331882 -1.027739 1.012932 0.955496 1.185432 -0.073555

zico 0.438948

[4000 rows x 1 column	ns]
	Weight
10	-0.189408
10 star	-0.060853
	0.113841
100	
100 calorie	-0.016100
11	0.188675
12	0.235542
14	-0.012434
15	0.477481
16	-0.043354
17	-0.174088
18	-0.099039
1st	-0.095712
20	-0.172237
24	-0.007641
25	-0.132736
2nd	0.347855
30	-0.131967
35	-0.035167
40	-0.121817
45	-0.011651
50	-0.241033
70	0.092361
able	0.084357
absolute	-0.021151
absolute best	-0.339500
absolutely	0.157003
absolutely best	-0.198635
absolutely delici	0.138195
absolutely delicious	-0.141993
absolutely lov	-0.190338
yucky	-0.020539
-	-0.029091
yuk	
yum	0.157603
yum yum	0.238845
yumm	-0.269705
yummi	0.070937
yummiest	0.053316
yummm	0.531062
yummmm	-0.002998
yummmmm	-0.063370
yummo	0.255305
yummy	0.001608
yummy coff	-0.048887
yummy gluten	-0.171534
yummy good .	0.060444
yummy gummi	-0.058484
yummy healthi	-0.137928
yummy healthy	0.401472
yummy snack	0.449172
yummy tea	0.344808
yummy treat	0.057433
yummy tummi	0.424974
yummy yummi	-0.871268
yummy yummy	
yannny yannny	N OTTITIO
vummvoan+h	0.933309
yummyearth	0.933309 0.693674 1.154595

1.154595

zero

zero star -0.120286 zesty 0.019427 zevia -0.063618 zico 0.385819

[4000 rows x 1 columns]

In [60]:

#https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.subtrac
t.html
#https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_va
lues.html
12_wght_df_after_subtraction=12_wght_df_trans.subtract(12_wght_df_trans_noisy)
12_wght_df_after_subtraction = 12_wght_df_after_subtraction.sort_values('Weight',asc
ending=True)
print (12_wght_df_after_subtraction)

	Woight
great variety	Weight -0.479635
hyp	-0.394818
good health	-0.337734
boxes pack	-0.327244
homemade	-0.323224
watermelon	-0.297960
drinking	-0.296387
throw	-0.294883
good earth	-0.287281
formula	-0.271717
didnt	-0.270823
ev	-0.270501
miracle	-0.265171
complex	-0.262315
hazard	-0.259818
fan	-0.256949
lovely tea	-0.256929
dry	-0.253898
season	-0.250691
lentil	-0.245526
smells great	-0.245460
job	-0.244945
tasting green	-0.244550
tahini	-0.242901
noodl	-0.236692
simple	-0.236300
good source	-0.235911
fragrant	-0.235876
chipotle	-0.233437
nothing like	-0.233001
···	• • •
mini	 0.307036
matcha	 0.307036 0.307323
matcha ahmad	0.307036 0.307323 0.313447
matcha ahmad good stuff	0.307036 0.307323 0.313447 0.315987
matcha ahmad good stuff almonds	0.307036 0.307323 0.313447 0.315987 0.320511
<pre>matcha ahmad good stuff almonds ill</pre>	0.307036 0.307323 0.313447 0.315987 0.320511 0.320779
<pre>matcha ahmad good stuff almonds ill assorted</pre>	0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816
<pre>matcha ahmad good stuff almonds ill</pre>	0.307036 0.307323 0.313447 0.315987 0.320511 0.320779
matcha ahmad good stuff almonds ill assorted issues aid	0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769
matcha ahmad good stuff almonds ill assorted issues	0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652
matcha ahmad good stuff almonds ill assorted issues aid soy milk	0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season	0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas	0.307036 0.3070323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955 0.333015
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe	0.307036 0.3070323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.325378 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.324652 0.325378 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.363866
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.363866 0.376821
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy virgin coconut	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.363866 0.376821 0.377614
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy virgin coconut buying	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.361458 0.376821 0.377614 0.381178
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy virgin coconut buying min	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.363866 0.377614 0.387178 0.387682
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy virgin coconut buying min agave	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.328364 0.329067 0.330238 0.330955 0.333015 0.335057 0.335057 0.338121 0.344098 0.361458 0.361458 0.363866 0.376821 0.387178 0.387682 0.387682 0.393933
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy virgin coconut buying min agave dont	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.325378 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.361458 0.376821 0.377614 0.381178 0.387682 0.393933 0.403060
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy virgin coconut buying min agave dont everyday tea	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.361458 0.361458 0.376821 0.377614 0.381178 0.387682 0.393933 0.403060 0.465168
matcha ahmad good stuff almonds ill assorted issues aid soy milk great season gas organic worth buy potato caffe lil decaf good not aspartam buy virgin coconut buying min agave dont	0.307036 0.307036 0.307323 0.313447 0.315987 0.320511 0.320779 0.322816 0.323769 0.324652 0.325378 0.325378 0.329067 0.330238 0.330955 0.333015 0.335057 0.338121 0.344098 0.361458 0.361458 0.376821 0.377614 0.381178 0.387682 0.393933 0.403060

dogs love 0.535314

[4000 rows x 1 columns]

In [61]:

```
bestC_L2_BOW_txt_4k_noisy = LogisticRegression(penalty='12',C=.06, fit_intercept=Tru
e, intercept_scaling=1, class_weight='balanced')
bestC_L2_BOW_txt_4k_noisy.fit(noisy_bow_X_train_txt, y_train)
bestC_proba_pred_train_BOW_sum_noisy=(bestC_L2_BOW_txt_4k_noisy.predict_proba(noisy_
bow_X_train_txt)[:,1])
bestC_proba_pred_test_BOW_sum_noisy=(bestC_L2_BOW_txt_4k_noisy.predict_proba(bow_X_t
est_sum_4k)[:,1])
##########3
12_auc_test_BOW_sum_noisy = (roc_auc_score(y_summary_test,bestC_proba_pred_test_BOW
_sum_noisy))
12_auc_train_BOW_sum_noisy = (roc_auc_score(y_summary_train,bestC_proba_pred_train_
BOW sum_noisy))
print ("AUC for Test Data for Summary Text")
print (12_auc_test_BOW_sum)
print ("AUC for Train Data for Summary Text")
print (12_auc_train_BOW_sum)
print ("AUC for Test Data for Summary Text after introducing Noise")
print (12_auc_test_BOW_sum_noisy)
print ("AUC for Train Data for Summary Text after introducing Noise")
print (12_auc_train_BOW_sum_noisy)
```

AUC for Test Data for Summary Text
0.9424611174771534
AUC for Train Data for Summary Text
0.9602455659988494
AUC for Test Data for Summary Text after introducing Noise
0.49928546116495914
AUC for Train Data for Summary Text after introducing Noise
0.959400814948332

In [62]:

IN NOT NORMALIZED FORMAT BELOW

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x1526ff9ab38>

In [63]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_summary_train, bestC_pred_train_BOW_sum_noisy,normaliz
e=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_summary_train, bestC_pred_train_BOW_sum_noisy)
```

IN NOT NORMALIZED FORMAT BELOW

Out[63]:

<matplotlib.axes._subplots.AxesSubplot at 0x1527ea1c240>

Thus we can see the features are very collinear after introducing small noise we can see the TPR and FPR wasnt that much affected for training dataset as compared with TPR and FPR after introduction of noise

[5.1.3] Feature Importance on BOW, SET 1

[5.1.3.1] Top 10 important features of positive class from SET 1

In [64]:

```
import numpy as np
bestC_L1_BOW_sum = LogisticRegression(penalty='l1',C=.55, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
bestC_L1_BOW_sum.fit(bow_X_summary_train, y_summary_train)
coef_ =bestC_L1_BOW_sum.coef_
bow_features_name_l1_sum = bow_vect.get_feature_names()
sparsity_wght_df = pd.DataFrame(coef_, columns = bow_features_name_l1_sum)
sparsity_wght_df_trans = sparsity_wght_df.T
sparsity_wght_df_trans.columns = ["Weight"]
#print (sparsity_wght_df_trans)
#https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.abs.htm
l
sparsity_wght_df_trans_abs = sparsity_wght_df_trans.abs()
#print (sparsity_wght_df_trans_abs)
print (sparsity_wght_df_trans_abs)
print (sparsity_wght_df_trans.sort_values('Weight',ascending=False).head(10))
```

```
Weight
not bitter
                 8.213487
not bad
                 7.881789
wont disappoint 5.992895
                 5.968882
whats not
heaven
                 5.448181
not salti
                 5.403594
not bitt
                 5.366013
no problem
                 5.019613
                 4.987004
fantast
go wrong
                 4.893911
```

[5.1.3.2] Top 10 important features of negative class from SET 1

In [65]:

```
-6.202488
yuck
               -5.496440
ruined
mediocre
               -5.419876
               -5.402339
yummy yummi
               -5.233702
worst
least favorite -5.183203
terribl
               -4.955913
horribl
               -4.943413
               -4.730430
aw
              -4.695597
taste better
```

[5.2] Logistic Regression on TFIDF, SET 2

[5.2.1] Applying Logistic Regression with L1 regularization on TFIDF, SET 2

In [66]:

```
from sklearn.model selection import cross val score
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')
from sklearn.feature_extraction.text import TfidfVectorizer
tf idf_vect = TfidfVectorizer(ngram_range=(1,5))
tfidf X train = tf idf vect.fit transform(X no stop train)
tfidf_X_test = tf_idf_vect.transform(X_no_stop_test)
tfidf_X_CV = tf_idf_vect.transform(X_no_stop_CV)
tfidf_X_train =StandardScaler(with_mean=False,with_std=False).fit_transform(tfidf_X_
train)
tfidf_X_test = StandardScaler(with_mean=False,with_std=False).fit_transform(tfidf_X_
test)
tfidf_X_CV = StandardScaler(with_mean=False,with_std=False).fit_transform(tfidf_X_CV
)
# creating odd list of C(i.e. 1/Lambda) for BOW Logistic Regression
def tothepower(y):
    return (10**y)
C_LR_tfidf = list(map(tothepower, list(range(-4, 5))))
print (C LR tfidf)
C_LR_tfidf_log = [math.log(x) for x in C_LR_tfidf]
print (C_LR_tfidf_log)
```

In [67]:

```
from sklearn.linear model import LogisticRegression
auc_cv_tfidf_txt = []
auc_train_tfidf_txt=[]
for C in tqdm(C_LR_tfidf):
    L1_tfidf_txt = LogisticRegression(penalty='l1',C=C, fit_intercept=True, intercep
t_scaling=1, class_weight='balanced')
    L1_tfidf_txt.fit(tfidf_X_train, y_train)
    proba pred train tfidf txt=(L1 tfidf txt.predict proba(tfidf X train)[:,1])
    proba_pred_cv_tfidf_txt=(L1_tfidf_txt.predict_proba(tfidf_X_CV)[:,1])
    auc_train_tfidf_txt.append(roc_auc_score(y_train,proba_pred_train_tfidf_txt))
    auc_cv_tfidf_txt.append(roc_auc_score(y_CV,proba_pred_cv_tfidf_txt))
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_tfidf_log, auc_train_tfidf_txt)
plt.scatter(C_LR_tfidf_log, auc_train_tfidf_txt)
plt.plot(C_LR_tfidf_log, auc_cv_tfidf_txt)
plt.scatter(C_LR_tfidf_log, auc_cv_tfidf_txt)
plt.xlabel('Log of C = 1/\lambda')
plt.ylabel('AUC')
plt.title("Plot for'Log of C = 1/\lambda' vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```



```
In [68]:
```

```
import numpy as np
lis_tfidf = np.arange (1, 15, 1)
print (lis_tfidf)
```

[1 2 3 4 5 6 7 8 9 10 11 12 13 14]

In [69]:

```
l1_auc_train_tfidf_txt = []
l1_auc_cv_tfidf_txt = []
for C in tqdm(lis_tfidf):
    L1_tfidf_txt = LogisticRegression(penalty='l1',C=C, fit_intercept=True, intercep
t_scaling=1, class_weight='balanced')
    L1_tfidf_txt.fit(tfidf_X_train, y_train)
    proba_pred_train_tfidf_txt=(L1_tfidf_txt.predict_proba(tfidf_X_train)[:,1])
    proba_pred_cv_tfidf_txt=(L1_tfidf_txt.predict_proba(tfidf_X_CV)[:,1])
    11_auc_train_tfidf_txt.append(roc_auc_score(y_train,proba_pred_train_tfidf_txt))
    11_auc_cv_tfidf_txt.append(roc_auc_score(y_CV,proba_pred_cv_tfidf_txt))
```

| 14/14 [09:31<00:00, 62.26s/it]

In [70]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(lis_tfidf, l1_auc_train_tfidf_txt)
plt.scatter(lis_tfidf, l1_auc_train_tfidf_txt)
plt.plot(lis_tfidf, l1_auc_cv_tfidf_txt)
plt.scatter(lis_tfidf, l1_auc_cv_tfidf_txt)
plt.scatter(lis_tfidf, l1_auc_cv_tfidf_txt)
plt.xlabel('C = 1/\lambda')
plt.ylabel('AUC')
plt.title("Plot for C = 1/\lambda vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```


Best C = 6 when using TFIDF with L1 regulization

In [71]:

```
bestC_L1_tfidf_txt = LogisticRegression(penalty='l1',C=6, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
bestC_L1_tfidf_txt.fit(tfidf_X_train, y_train)
l1_proba_pred_train_tfidf_txt=(bestC_L1_tfidf_txt.predict_proba(tfidf_X_train)[:,1])
l1_proba_pred_test_tfidf_txt=(bestC_L1_tfidf_txt.predict_proba(tfidf_X_test)[:,1])
l1_auc_test_tfidf = (roc_auc_score(y_test,l1_proba_pred_test_tfidf_txt))
l1_auc_train_tfidf = (roc_auc_score(y_train,l1_proba_pred_train_tfidf_txt))
```

In [72]:

```
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_bow_l1_txt, tpr_test_bow_l1_txt, thresholds = roc_curve(y_test, l1_proba_pr
ed test BOW txt)
fpr_train_bow_l1_txt, tpr_train_bow_l1_txt, thresholds = roc_curve(y_train, l1_proba
_pred_train_BOW_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_bow_l1_txt, tpr_test_bow_l1_txt, label=' Test ROC curve on Review
 Text')
plt.scatter(fpr_test_bow_l1_txt, tpr_test_bow_l1_txt, label=' Test ROC curve on Revi
ew Text')
plt.plot(fpr_train_bow_l1_txt, tpr_train_bow_l1_txt, label=' Train ROC curve on Revi
ew Text')
plt.scatter(fpr_train_bow_l1_txt, tpr_train_bow_l1_txt, label=' Train ROC curveon Re
view Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
= plt.xlabel('False Positive Rate')
  = plt.ylabel('True Positive Rate')
_ = plt.title('ROC Curve')
_ = plt.xlim([-0.02, 1])
_ = plt.ylim([0, 1.02])
_ = plt.legend(loc="lower right")
```


In [73]:

```
bestC_L1_tfidf_txt = LogisticRegression(penalty='l1',C=6, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
bestC_L1_tfidf_txt.fit(tfidf_X_train, y_train)
l1_pred_train_tfidf_txt=(bestC_L1_tfidf_txt.predict(tfidf_X_train))
l1_pred_test_tfidf_txt=(bestC_L1_tfidf_txt.predict(tfidf_X_test))
```

In [74]:

support	f1-score	recall	precision	
21261	0.79	0.89	0.71	0
99648	0.95	0.92	0.97	1
120909	0.92	0.92	0.93	avg / total

рі	recision	recall	f1-score	support	
0	0.78	1.00	0.87	22681	
1	1.00	0.95	0.98	141791	
avg / total	0.97	0.96	0.96	164472	

In [75]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train, l1_pred_train_tfidf_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train, l1_pred_train_tfidf_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[75]:

<matplotlib.axes._subplots.AxesSubplot at 0x15796c146d8>

In [76]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, l1_pred_test_tfidf_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, l1_pred_test_tfidf_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[76]:

<matplotlib.axes._subplots.AxesSubplot at 0x15203808160>

91937

1

7711

0

Predicted label

1

40000 30000

20000 10000

In [77]:

```
from sklearn.linear_model import LogisticRegression
l2_auc_cv_tfidf_txt = []
l2_auc_train_tfidf_txt=[]

for C in (C_LR_tfidf):
    L2_tfidf_txt = LogisticRegression(penalty='l2',C=C, fit_intercept=True, intercep
t_scaling=1, class_weight='balanced')
    L2_tfidf_txt.fit(tfidf_X_train, y_train)
    l2_proba_pred_train_tfidf_txt=(L2_tfidf_txt.predict_proba(tfidf_X_train)[:,1])
    l2_proba_pred_cv_tfidf_txt=(L2_tfidf_txt.predict_proba(tfidf_X_CV)[:,1])
    l2_auc_train_tfidf_txt.append(roc_auc_score(y_train,l2_proba_pred_train_tfidf_tx
t))
    l2_auc_cv_tfidf_txt.append(roc_auc_score(y_CV,l2_proba_pred_cv_tfidf_txt))
```

In [78]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_tfidf_log, 12_auc_train_tfidf_txt)
plt.scatter(C_LR_tfidf_log, 12_auc_train_tfidf_txt)
plt.plot(C_LR_tfidf_log, 12_auc_cv_tfidf_txt)
plt.scatter(C_LR_tfidf_log, 12_auc_cv_tfidf_txt)
plt.scatter(C_LR_tfidf_log, 12_auc_cv_tfidf_txt)
plt.xlabel('Log of C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/λ' vs AUC to choose best C for Text Review using L 2 regulization")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for 'Log of C = $1/\lambda$ ' vs AUC to choose best C for Text Review using L2 regulization

In [79]:

```
bestC_L2_tfidf_txt = LogisticRegression(penalty='l2',C=10000, fit_intercept=True, in
tercept_scaling=1, class_weight='balanced')
bestC_L2_tfidf_txt.fit(tfidf_X_train, y_train)
l2_proba_pred_train_tfidf_txt=(bestC_L2_tfidf_txt.predict_proba(tfidf_X_train)[:,1])
l2_proba_pred_test_tfidf_txt=(bestC_L2_tfidf_txt.predict_proba(tfidf_X_test)[:,1])
l2_auc_test_tfidf = (roc_auc_score(y_test,l2_proba_pred_test_tfidf_txt))
l2_auc_train_tfidf = (roc_auc_score(y_train,l2_proba_pred_train_tfidf_txt))
```

In [80]:

```
from sklearn.metrics import roc curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_tfidf_12_txt, tpr_test_tfidf_12_txt, thresholds = roc_curve(y_test, 12_prob
a_pred_test_tfidf_txt)
fpr_train_tfidf_12_txt, tpr_train_tfidf_12_txt, thresholds = roc_curve(y_train, 12_p
roba_pred_train_tfidf_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_tfidf_12_txt, tpr_test_tfidf_12_txt, label=' Test ROC curve on Rev
iew Text')
plt.scatter(fpr_test_tfidf_12_txt, tpr_test_tfidf_12_txt, label=' Test ROC curve on
 Review Text')
plt.plot(fpr_train_tfidf_12_txt, tpr_train_tfidf_12_txt, label=' Train ROC curve on
 Review Text')
plt.scatter(fpr_train_tfidf_12_txt, tpr_train_tfidf_12_txt, label=' Train ROC curveo
n Review Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
= plt.xlabel('False Positive Rate')
  = plt.ylabel('True Positive Rate')
_ = plt.title('ROC Curve')
_ = plt.xlim([-0.02, 1])
_ = plt.ylim([0, 1.02])
_ = plt.legend(loc="lower right")
```


In [81]:

```
bestC_L2_tfidf_txt = LogisticRegression(penalty='l2',C=10000, fit_intercept=True, in
tercept_scaling=1, class_weight='balanced')
bestC_L2_tfidf_txt.fit(tfidf_X_train, y_train)
l2_pred_train_tfidf_txt=(bestC_L2_tfidf_txt.predict(tfidf_X_train))
l2_pred_test_tfidf_txt=(bestC_L2_tfidf_txt.predict(tfidf_X_test))
```

In [82]:

support	f1-score	recall	precision	
21261	0.81	0.82	0.80	0
99648	0.96	0.96	0.96	1
120909	0.93	0.93	0.93	avg / total

The classification report on Training dataset Review Text

	precision	recall	f1-score	support	
0 1	1.00 1.00	1.00 1.00	1.00 1.00	22681 141791	
avg / total	1.00	1.00	1.00	164472	

In [83]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, 12_pred_test_tfidf_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, 12_pred_test_tfidf_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[83]:

<matplotlib.axes._subplots.AxesSubplot at 0x157b4175080>

In [84]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train, 12_pred_train_tfidf_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train, 12_pred_train_tfidf_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[84]:

<matplotlib.axes._subplots.AxesSubplot at 0x15203e66e10>

[5.2.3] Feature Importance on TFIDF, SET 2

[5.2.3.1] Top 10 important features of positive class from SET 2

In [85]:

```
import numpy as np
bestC_L2_tfidf_txt = LogisticRegression(penalty='l2',C=10000, fit_intercept=True, in
tercept_scaling=1, class_weight='balanced')
bestC_L2_tfidf_txt.fit(tfidf_X_train, y_train)
coef_l2_tfidf =bestC_L2_tfidf_txt.coef_
tfidf_features_name_l2_txt = tf_idf_vect.get_feature_names()
tfidf_l2_wght_df = pd.DataFrame(coef_l2_tfidf, columns = tfidf_features_name_l2_txt)
tfidf_l2_wght_df_trans = tfidf_l2_wght_df.T
tfidf_l2_wght_df_trans.columns = ["Weight"]
print (tfidf_l2_wght_df_trans.sort_values('Weight',ascending=False).head(10))
```

```
Weight
           96.471367
great
           78.935136
best
delicious 71.667225
           66.620629
good
perfect
           61.326061
excellent 58.125593
          54.601299
wonderful 54.155668
           53.792301
love
           46.991667
nice
```

[5.2.3.2] Top 10 important features of negative class from SET 2

In [86]:

```
print (tfidf_12_wght_df_trans.sort_values('Weight',ascending=True).head(10))
```

```
Weight
              -82.132212
worst
disappointed -82.044212
              -71.219333
not worth
              -66.471566
terrible
              -64.783386
horrible
              -61.847312
              -59.813053
awful
not recommend -59.227251
              -55.394758
not buy
unfortunately -54.677788
```

[5.3] Logistic Regression on AVG W2V, SET 3

[5.3.1] Applying Logistic Regression with L1 regularization on AVG W2V SET

In []:

```
lst train=[]
lst_test=[]
lst_of_lst_train = []
lst of lst test = []
lst_of_lst_CV =[]
lst_CV = []
for sentance in tqdm(X_no_stop_train):
    lst_train.append(sentance.strip())
for sentance in tqdm(lst train):
    lst_of_lst_train.append(sentance.split())
for sent in tqdm(X_no_stop_test):
    lst_test.append(sent.strip())
for sent in tqdm(lst_test):
    lst of lst test.append(sent.split())
for sent_CV in tqdm(X_no_stop_CV):
    lst_CV.append(sent_CV.strip())
for sent_CV in tqdm(lst_CV):
    lst_of_lst_CV.append(sent_CV.split())
w2v_model_self_taught_train=Word2Vec(lst_of_lst_train,min_count=1,size=50, workers=4
w2v_words_train = list(w2v_model_self_taught_train.wv.vocab)
```

In []:

```
sent_vectors_train_l1 = []
for sent1 in tqdm(lst_of_lst_train): # for each review/sentence
    sent_vec1 = np.zeros(50)
    cnt_words1 = 0
    for word1 in sent1:
        if word1 in w2v_words_train:
            vec1 = w2v_model_self_taught_train.wv[word1]
            sent_vec1 += vec1
            cnt_words1 += 1

if cnt_words1 != 0:
        sent_vec1 /= cnt_words1
    sent_vectors_train_l1.append(sent_vec1)
```

In []:

```
sent_vectors_test_l1 = []
for sent2 in tqdm(lst_of_lst_test): # for each review/sentence
    sent_vec2 = np.zeros(50)
    cnt_words2 = 0
    for word2 in sent2:
        if word2 in w2v_words_train:
            vec2 = w2v_model_self_taught_train.wv[word2]
            sent_vec2 += vec2
            cnt_words2 += 1

if cnt_words2 != 0:
        sent_vec2 /= cnt_words2
    sent_vectors_test_l1.append(sent_vec2)
```

In []:

```
sent_vectors_CV_l1 = []
for sent3 in tqdm(lst_of_lst_CV): # for each review/sentence
    sent_vec3 = np.zeros(50)
    cnt_words3 = 0
    for word3 in sent3:
        if word3 in w2v_words_train:
            vec3 = w2v_model_self_taught_train.wv[word3]
            sent_vec3 += vec3
            cnt_words3 += 1

if cnt_words3 != 0:
        sent_vec3 /= cnt_words3
    sent_vectors_CV_l1.append(sent_vec3)
```

In [91]:

```
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')

sent_vectors_train_l1_std =StandardScaler(with_mean=False,with_std=False).fit_transf
orm(sent_vectors_train_l1)
sent_vectors_test_l1_std = StandardScaler(with_mean=False,with_std=False).fit_transf
orm(sent_vectors_test_l1)
sent_vectors_CV_l1_std = StandardScaler(with_mean=False,with_std=False).fit_transfor
m(sent_vectors_CV_l1)
```

In [92]:

```
def tothepower(y):
    return (10**y)

C_LR_avf_w2V = list(map(tothepower, list(range(-4, 5))))
print (C_LR_avf_w2V)

C_LR_avf_w2V_log = [math.log(x) for x in C_LR_avf_w2V]
print (C_LR_avf_w2V_log)
```

In []:

```
from sklearn.linear_model import LogisticRegression
auc_cv_avg_w2v_txt = []
auc_train_avg_w2v_txt=[]

for C in tqdm(C_LR_avf_w2V):
    L1_avg_w2v_txt = LogisticRegression(penalty='l1',C=C, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
    L1_avg_w2v_txt.fit(sent_vectors_train_l1_std, y_train)
    proba_pred_train_avg_w2v_txt=(L1_avg_w2v_txt.predict_proba(sent_vectors_train_l1_std)[:,1])
    proba_pred_cv_avg_w2v_txt=(L1_avg_w2v_txt.predict_proba(sent_vectors_CV_l1_std)
[:,1])
    auc_train_avg_w2v_txt.append(roc_auc_score(y_train,proba_pred_train_avg_w2v_txt))
    auc_cv_avg_w2v_txt.append(roc_auc_score(y_CV,proba_pred_cv_avg_w2v_txt))
```

In [94]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_avf_w2V_log, auc_train_avg_w2v_txt)
plt.scatter(C_LR_avf_w2V_log, auc_train_avg_w2v_txt)
plt.plot(C_LR_avf_w2V_log, auc_cv_avg_w2v_txt)
plt.scatter(C_LR_avf_w2V_log, auc_cv_avg_w2v_txt)
plt.scatter(C_LR_avf_w2V_log, auc_cv_avg_w2v_txt)
plt.xlabel('Log of C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/λ' vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```


The best value of C =1 for Avg-W2V against L1 regulization

In [95]:

```
bestCl1_auc_train_avg_w2v_txt = []
bestCl1_auc_test_avg_w2v_txt = []
bestC_L1_avg_w2v_txt = LogisticRegression(penalty='l1',C=1, fit_intercept=True, inte
rcept_scaling=1, class_weight='balanced')
bestC_L1_avg_w2v_txt.fit(sent_vectors_train_l1_std, y_train)
bestC_proba_pred_train_avg_w2v_txt=(bestC_L1_avg_w2v_txt.predict_proba(sent_vectors_train_l1_std)[:,1])
bestC_proba_pred_test_avg_w2v_txt=(bestC_L1_avg_w2v_txt.predict_proba(sent_vectors_test_l1_std)[:,1])
bestCl1_auc_train_avg_w2v_txt.append(roc_auc_score(y_train,bestC_proba_pred_train_avg_w2v_txt))
bestCl1_auc_test_avg_w2v_txt.append(roc_auc_score(y_test,bestC_proba_pred_test_avg_w2v_txt))
```

In [96]:

```
from sklearn.metrics import roc curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_avg_w2v_l1_txt, tpr_test_avg_w2v_l1_txt, thresholds = roc_curve(y_test, bes
tC_proba_pred_test_avg_w2v_txt)
fpr_train_avg_w2v_l1_txt, tpr_train_avg_w2v_l1_txt, thresholds = roc_curve(y_train,
bestC_proba_pred_train_avg_w2v_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_avg_w2v_l1_txt, tpr_test_avg_w2v_l1_txt, label=' Test ROC curve on
Review Text')
plt.scatter(fpr_test_avg_w2v_l1_txt, tpr_test_avg_w2v_l1_txt, label=' Test ROC curve
on Review Text')
plt.plot(fpr_train_avg_w2v_l1_txt, tpr_train_avg_w2v_l1_txt, label=' Train ROC curve
on Review Text')
plt.scatter(fpr_train_avg_w2v_l1_txt, tpr_train_avg_w2v_l1_txt, label=' Train ROC cu
rveon Review Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
= plt.xlabel('False Positive Rate')
  = plt.ylabel('True Positive Rate')
_ = plt.title('ROC Curve')
_ = plt.xlim([-0.02, 1])
_ = plt.ylim([0, 1.02])
_ = plt.legend(loc="lower right")
```


In [97]:

bestC_pred_train_avg_w2v_txt=(bestC_L1_avg_w2v_txt.predict(sent_vectors_train_l1_std
))
bestC_pred_test_avg_w2v_txt=(bestC_L1_avg_w2v_txt.predict(sent_vectors_test_l1_std))

In [98]:

	precision	recall	f1-score	support	
0	0.48	0.86	0.62	21261	
1	0.97	0.80	0.87	99648	
avg / total	0.88	0.81	0.83	120909	

	precision	recall	f1-score	support	
0	0.43	0.85	0.57	22681	
1	0.97	0.82	0.89	141791	
avg / total	0.90	0.82	0.84	164472	

In [99]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train, bestC_pred_train_avg_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train, bestC_pred_train_avg_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[99]:

<matplotlib.axes._subplots.AxesSubplot at 0x158714a98d0>

In [100]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, bestC_pred_test_avg_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, bestC_pred_test_avg_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[100]:

<matplotlib.axes._subplots.AxesSubplot at 0x1587125ba90>

[5.3.2] Applying Logistic Regression with L2 regularization on AVG W2V, SET 3

In [101]:

```
from sklearn.linear_model import LogisticRegression
12_auc_cv_avg_w2v_txt = []
12_auc_train_avg_w2v_txt=[]

for C in tqdm(C_LR_avf_w2V):
        L2_avg_w2v_txt = LogisticRegression(penalty='12',C=C, fit_intercept=True, interc
ept_scaling=1, class_weight='balanced')
        L2_avg_w2v_txt.fit(sent_vectors_train_l1_std, y_train)
        12_proba_pred_train_avg_w2v_txt=(L2_avg_w2v_txt.predict_proba(sent_vectors_train_l1_std)[:,1])
        12_proba_pred_cv_avg_w2v_txt=(L2_avg_w2v_txt.predict_proba(sent_vectors_CV_l1_std)[:,1])
        12_auc_train_avg_w2v_txt.append(roc_auc_score(y_train,l2_proba_pred_train_avg_w2v_txt))
        12_auc_cv_avg_w2v_txt.append(roc_auc_score(y_CV,l2_proba_pred_cv_avg_w2v_txt))
```

In [102]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_avf_w2V_log, 12_auc_train_avg_w2v_txt)
plt.scatter(C_LR_avf_w2V_log, 12_auc_train_avg_w2v_txt)
plt.plot(C_LR_avf_w2V_log, 12_auc_cv_avg_w2v_txt)
plt.scatter(C_LR_avf_w2V_log, 12_auc_cv_avg_w2v_txt)
plt.scatter(C_LR_avf_w2V_log, 12_auc_cv_avg_w2v_txt)
plt.xlabel('Log of C = 1/\lambda ')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/\lambda ' vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for 'Log of C = $1/\lambda$ ' vs AUC to choose best C for Text Review

In [103]:

```
12_bestC_auc_train_avg_w2v_txt = []
12_bestC_auc_test_avg_w2v_txt = []
bestC_L2_avg_w2v_txt = LogisticRegression(penalty='l2',C=1, fit_intercept=True, inte
rcept_scaling=1, class_weight='balanced')
bestC_L2_avg_w2v_txt.fit(sent_vectors_train_l1_std, y_train)
12_bestC_proba_pred_train_avg_w2v_txt=(bestC_L2_avg_w2v_txt.predict_proba(sent_vecto
rs_train_l1_std)[:,1])
12_bestC_proba_pred_test_avg_w2v_txt=(bestC_L2_avg_w2v_txt.predict_proba(sent_vector
s_test_l1_std)[:,1])
12_bestC_auc_train_avg_w2v_txt.append(roc_auc_score(y_train,l2_bestC_proba_pred_train_avg_w2v_txt))
12_bestC_auc_test_avg_w2v_txt.append(roc_auc_score(y_test,l2_bestC_proba_pred_test_avg_w2v_txt))
```

In [104]:

```
from sklearn.metrics import roc curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_avg_w2v_12_txt, tpr_test_avg_w2v_12_txt, thresholds = roc_curve(y_test, 12_
bestC_proba_pred_test_avg_w2v_txt)
fpr_train_avg_w2v_12_txt, tpr_train_avg_w2v_12_txt, thresholds = roc_curve(y_train,
12_bestC_proba_pred_train_avg_w2v_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_avg_w2v_l2_txt, tpr_test_avg_w2v_l2_txt, label=' Test ROC curve on
Review Text')
plt.scatter(fpr_test_avg_w2v_12_txt, tpr_test_avg_w2v_12_txt, label=' Test ROC curve
on Review Text')
plt.plot(fpr_train_avg_w2v_12_txt, tpr_train_avg_w2v_12_txt, label=' Train ROC curve
on Review Text')
plt.scatter(fpr_train_avg_w2v_12_txt, tpr_train_avg_w2v_12_txt, label=' Train ROC cu
rveon Review Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
  = plt.xlabel('False Positive Rate')
  = plt.ylabel('True Positive Rate')
  = plt.title('ROC Curve')
  = plt.xlim([-0.02, 1])
  = plt.ylim([0, 1.02])
  = plt.legend(loc="lower right")
```


In [105]:

```
12_bestC_pred_train_avg_w2v_txt=(bestC_L2_avg_w2v_txt.predict(sent_vectors_train_l1_
std))
12_bestC_pred_test_avg_w2v_txt=(bestC_L2_avg_w2v_txt.predict(sent_vectors_test_l1_st
d))
```

In [106]:

support	f1-score	recall	precision	
21261	0.62	0.86	0.48	Ø
99648	0.87	0.80	0.97	1
120909	0.83	0.81	0.88	avg / total

	precision	recall	f1-score	support	
0	0.43	0.85	0.57	22681	
1	0.97	0.82	0.89	141791	
avg / total	0.90	0.82	0.84	164472	

In [107]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train, 12_bestC_pred_train_avg_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train, 12_bestC_pred_train_avg_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[107]:

<matplotlib.axes._subplots.AxesSubplot at 0x15872087f60>

In [108]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, 12_bestC_pred_test_avg_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, 12_bestC_pred_test_avg_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[108]:

<matplotlib.axes._subplots.AxesSubplot at 0x158720689e8>

In [109]:

Please write all the code with proper documentation

[5.4] Logistic Regression on TFIDF W2V, SET 4

[5.4.1] Applying Logistic Regression with L1 regularization on TFIDF W2V, SET 4

In [110]:

```
model = TfidfVectorizer()
model.fit(X_no_stop_train)
dictionary = dict(zip(model.get_feature_names(), list(model.idf_)))
tfidf feat = model.get feature names() # tfidf words/col-names
tfidf_w2v_sent_vectors_train = []; # the tfidf-w2v for each sentence/review is store
d in this list
row=0;
for sent4 in tqdm(lst of lst train): # for each review/sentence
    sent_vec4 = np.zeros(50) # as word vectors are of zero length
    weight_sum4 =0; # num of words with a valid vector in the sentence/review
    for word4 in sent4: # for each word in a review/sentence
        if word4 in w2v_words_train and word4 in tfidf_feat:
            vec4 = w2v_model_self_taught_train.wv[word4]
            tf idf train = dictionary[word4]*(sent4.count(word4)/len(sent4))
            sent_vec4 += (vec4 * tf_idf_train)
            weight_sum4 += tf_idf_train
    if weight_sum4 != 0:
        sent_vec4 /= weight_sum4
    tfidf_w2v_sent_vectors_train.append(sent_vec4)
    row += 1
```

100%

| 164472/164472 [4:27:41<00:00, 11.27it/s]

In [111]:

```
tfidf_w2v_sent_vectors_test = []; # the tfidf-w2v for each sentence/review is stored
in this list
row=0;
for sent5 in tqdm(lst_of_lst_test): # for each review/sentence
    sent_vec5 = np.zeros(50) # as word vectors are of zero length
    weight_sum5 =0; # num of words with a valid vector in the sentence/review
    for word5 in sent5: # for each word in a review/sentence
        if word5 in w2v_words_train and word5 in tfidf_feat:
            vec5 = w2v model self taught train.wv[word5]
            tf_idf_test = dictionary[word5]*(sent5.count(word5)/len(sent5))
            sent_vec5 += (vec5 * tf_idf_test)
            weight_sum5 += tf_idf_test
    if weight sum5 != 0:
        sent vec5 /= weight sum5
    tfidf_w2v_sent_vectors_test.append(sent_vec5)
    row += 1
```

100%

| 120909/120909 [3:26:01<00:00, 17.26it/s]

In [112]:

```
tfidf w2v sent vectors cv = []; # the tfidf-w2v for each sentence/review is stored i
n this list
row=0;
for sent6 in tqdm(lst_of_lst_CV): # for each review/sentence
    sent_vec6 = np.zeros(50) # as word vectors are of zero length
    weight_sum6 =0; # num of words with a valid vector in the sentence/review
    for word6 in sent6: # for each word in a review/sentence
        if word6 in w2v_words_train and word6 in tfidf_feat:
            vec6 = w2v_model_self_taught_train.wv[word6]
            tf idf cv = dictionary[word6]*(sent6.count(word6)/len(sent6))
            sent_vec6 += (vec6 * tf_idf_cv)
            weight_sum6 += tf_idf_cv
    if weight_sum6 != 0:
        sent_vec6 /= weight_sum6
    tfidf_w2v_sent_vectors_cv.append(sent_vec6)
    row += 1
```

100%|

81009/81009 [2:21:53<00:00, 14.37it/s]

In [113]:

```
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')

tfidf_w2v_sent_vectors_train_std =StandardScaler(with_mean=False,with_std=False).fit
_transform(tfidf_w2v_sent_vectors_train)
tfidf_w2v_sent_vectors_test_std = StandardScaler(with_mean=False,with_std=False).fit
_transform(tfidf_w2v_sent_vectors_test)
tfidf_w2v_sent_vectors_cv_std = StandardScaler(with_mean=False,with_std=False).fit_t
ransform(tfidf_w2v_sent_vectors_cv)
```

In [114]:

```
def tothepower(y):
    return (10**y)

C_LR_tfidf_w2v = list(map(tothepower, list(range(-4, 5))))
print (C_LR_tfidf_w2v)

C_LR_tfidf_w2v_log = [math.log(x) for x in C_LR_tfidf_w2v]
print (C_LR_tfidf_w2v_log)
```

In [115]:

```
from sklearn.linear_model import LogisticRegression
auc_cv_tfidf_w2v_txt = []
auc_train_tfidf_w2v_txt=[]

for C in tqdm(C_LR_tfidf_w2v):
    L1_tfidf_w2v_txt = LogisticRegression(penalty='l1',C=C, fit_intercept=True, inte
rcept_scaling=1, class_weight='balanced')
    L1_tfidf_w2v_txt.fit(tfidf_w2v_sent_vectors_train_std, y_train)
    proba_pred_train_tfidf_w2v_txt=(L1_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_train_std)[:,1])
    proba_pred_cv_tfidf_w2v_txt=(L1_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_cv_std)[:,1])
    auc_train_tfidf_w2v_txt.append(roc_auc_score(y_train,proba_pred_train_tfidf_w2v_txt))
    auc_cv_tfidf_w2v_txt.append(roc_auc_score(y_Cv,proba_pred_cv_tfidf_w2v_txt))
```

In [116]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_tfidf_w2v_log, auc_train_tfidf_w2v_txt)
plt.scatter(C_LR_tfidf_w2v_log, auc_train_tfidf_w2v_txt)
plt.plot(C_LR_tfidf_w2v_log, auc_cv_tfidf_w2v_txt)
plt.scatter(C_LR_tfidf_w2v_log, auc_cv_tfidf_w2v_txt)
plt.scatter(C_LR_tfidf_w2v_log, auc_cv_tfidf_w2v_txt)
plt.xlabel(' Log of C = 1/λ')
plt.ylabel('AUC')
plt.title("Plot for ' Log of C = 1/λ' vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for 'Log of C = $1/\lambda$ ' vs AUC to choose best C for Text Review

The value of C is 1 for TFIDF W2V

In [117]:

```
11_bestC_auc_train_tfidf_w2v_txt = []
11_bestC_auc_test_tfidf_w2v_txt = []
L1_tfidf_w2v_txt = LogisticRegression(penalty='l1',C=1, fit_intercept=True, intercept_scaling=1, class_weight='balanced')
L1_tfidf_w2v_txt.fit(tfidf_w2v_sent_vectors_train_std, y_train)
proba_pred_train_tfidf_w2v_txt=(L1_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_train_std)[:,1])
proba_pred_test_tfidf_w2v_txt=(L1_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_test_std)[:,1])

l1_bestC_auc_train_tfidf_w2v_txt.append(roc_auc_score(y_train,proba_pred_train_tfidf_w2v_txt))
l1_bestC_auc_test_tfidf_w2v_txt.append(roc_auc_score(y_test,proba_pred_test_tfidf_w2v_txt))
```

In [118]:

```
from sklearn.metrics import roc curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_avg_tfidf_l1_txt, tpr_test_avg_tfidf_l1_txt, thresholds = roc_curve(y_test,
proba_pred_test_tfidf_w2v_txt)
fpr_train_avg_tfidf_l1_txt, tpr_train_avg_tfidf_l1_txt, thresholds = roc_curve(y_tra
in, proba_pred_train_tfidf_w2v_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_avg_tfidf_l1_txt, tpr_test_avg_tfidf_l1_txt, label=' Test ROC curv
e on Review Text')
plt.scatter(fpr_test_avg_tfidf_l1_txt, tpr_test_avg_tfidf_l1_txt, label=' Test ROC c
urve on Review Text')
plt.plot(fpr_train_avg_tfidf_l1_txt, tpr_train_avg_tfidf_l1_txt, label=' Train ROC c
urve on Review Text')
plt.scatter(fpr_train_avg_tfidf_l1_txt, tpr_train_avg_tfidf_l1_txt, label=' Train RO
C curveon Review Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
= plt.xlabel('False Positive Rate')
 = plt.ylabel('True Positive Rate')
_ = plt.title('ROC Curve')
_ = plt.xlim([-0.02, 1])
_ = plt.ylim([0, 1.02])
_ = plt.legend(loc="lower right")
```


In [119]:

```
l1_pred_train_tfidf_w2v_txt=(L1_tfidf_w2v_txt.predict(tfidf_w2v_sent_vectors_train_s
td))
l1_pred_test_tfidf_w2v_txt=(L1_tfidf_w2v_txt.predict(tfidf_w2v_sent_vectors_test_std
))
```

In [120]:

	precision	recall	f1-score	support	
0	0.45	0.83	0.58	21261	
1	0.96	0.78	0.86	99648	
avg / total	0.87	0.79	0.81	120909	

	precision	recall	f1-score	support	
0	0.39	0.82	0.53	22681	
1	0.97	0.79	0.87	141791	
avg / total	0.89	0.80	0.82	164472	

In [121]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train, l1_pred_train_tfidf_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train, l1_pred_train_tfidf_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[121]:

<matplotlib.axes._subplots.AxesSubplot at 0x15889c9a198>

In [122]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, l1_pred_test_tfidf_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, l1_pred_test_tfidf_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[122]:

<matplotlib.axes._subplots.AxesSubplot at 0x15889c72710>

[5.4.2] Applying Logistic Regression with L2 regularization on TFIDF W2V, SET 4

In [123]:

```
from sklearn.linear_model import LogisticRegression
l2_auc_cv_tfidf_w2v_txt = []
L2_auc_train_tfidf_w2v_txt=[]

for C in tqdm(C_LR_tfidf_w2v):
        L2_tfidf_w2v_txt = LogisticRegression(penalty='l2',C=C, fit_intercept=True, inte
rcept_scaling=1, class_weight='balanced')
        L2_tfidf_w2v_txt.fit(tfidf_w2v_sent_vectors_train_std, y_train)
        l2_proba_pred_train_tfidf_w2v_txt=(L2_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_train_std)[:,1])
        L2_proba_pred_cv_tfidf_w2v_txt=(L2_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_cv_std)[:,1])
        L2_auc_train_tfidf_w2v_txt.append(roc_auc_score(y_train,l2_proba_pred_train_tfidf_w2v_txt))
        l2_auc_cv_tfidf_w2v_txt.append(roc_auc_score(y_Cv,L2_proba_pred_cv_tfidf_w2v_txt))
```

In [124]:

```
default_dpi = plt.rcParamsDefault['figure.dpi']
plt.rcParams['figure.dpi'] = default_dpi*1.5
plt.plot(C_LR_tfidf_w2v_log, L2_auc_train_tfidf_w2v_txt)
plt.scatter(C_LR_tfidf_w2v_log, L2_auc_train_tfidf_w2v_txt)
plt.plot(C_LR_tfidf_w2v_log, l2_auc_cv_tfidf_w2v_txt)
plt.scatter(C_LR_tfidf_w2v_log, l2_auc_cv_tfidf_w2v_txt)
plt.scatter(C_LR_tfidf_w2v_log, l2_auc_cv_tfidf_w2v_txt)
plt.xlabel('Log of C = 1/\lambda')
plt.ylabel('AUC')
plt.title("Plot for 'Log of C = 1/\lambda' vs AUC to choose best C for Text Review")
plt.legend(['train', 'CV'], loc='upper right')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
plt.show()
```

Plot for 'Log of C = $1/\lambda$ ' vs AUC to choose best C for Text Review

In [125]:

```
12_bestC_auc_train_tfidf_w2v_txt = []
12_bestC_auc_test_tfidf_w2v_txt = []

L2_tfidf_w2v_txt = LogisticRegression(penalty='12',C=1, fit_intercept=True, intercep
t_scaling=1, class_weight='balanced')
L2_tfidf_w2v_txt.fit(tfidf_w2v_sent_vectors_train_std, y_train)
12_proba_pred_train_tfidf_w2v_txt=(L2_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_train_std)[:,1])
12_proba_pred_test_tfidf_w2v_txt=(L2_tfidf_w2v_txt.predict_proba(tfidf_w2v_sent_vectors_test_std)[:,1])
12_bestC_auc_train_tfidf_w2v_txt.append(roc_auc_score(y_train,12_proba_pred_train_tfidf_w2v_txt))
12_bestC_auc_test_tfidf_w2v_txt.append(roc_auc_score(y_test,12_proba_pred_test_tfidf_w2v_txt))
```

In [126]:

```
from sklearn.metrics import roc curve
import matplotlib.pyplot as plt
%matplotlib inline
fpr_test_avg_tfidf_12_txt, tpr_test_avg_tfidf_12_txt, thresholds = roc_curve(y_test,
12_proba_pred_test_tfidf_w2v_txt)
fpr_train_avg_tfidf_l2_txt, tpr_train_avg_tfidf_l2_txt, thresholds = roc_curve(y_tra
in, 12_proba_pred_train_tfidf_w2v_txt)
# create plot
plt.rcParams['figure.dpi'] = default dpi*1.1
plt.plot(fpr_test_avg_tfidf_12_txt, tpr_test_avg_tfidf_12_txt, label=' Test ROC curv
e on Review Text')
plt.scatter(fpr_test_avg_tfidf_12_txt, tpr_test_avg_tfidf_12_txt, label=' Test ROC c
urve on Review Text')
plt.plot(fpr_train_avg_tfidf_12_txt, tpr_train_avg_tfidf_12_txt, label=' Train ROC c
urve on Review Text')
plt.scatter(fpr_train_avg_tfidf_12_txt, tpr_train_avg_tfidf_12_txt, label=' Train RO
C curveon Review Text')
plt.plot([0, 1], [0, 1], 'k--', label='Random guess')
plt.minorticks_on()
plt.grid(b=True, which='both', color='0.65', linestyle='-')
= plt.xlabel('False Positive Rate')
 = plt.ylabel('True Positive Rate')
_ = plt.title('ROC Curve')
_ = plt.xlim([-0.02, 1])
_ = plt.ylim([0, 1.02])
_ = plt.legend(loc="lower right")
```


In [127]:

```
12_pred_train_tfidf_w2v_txt=(L2_tfidf_w2v_txt.predict(tfidf_w2v_sent_vectors_train_s
td))
12_pred_test_tfidf_w2v_txt=(L2_tfidf_w2v_txt.predict(tfidf_w2v_sent_vectors_test_std
))
```

In [128]:

	precision	recall	f1-score	support	
0	0.45	0.83	0.58	21261	
1	0.96	0.78	0.86	99648	
avg / total	0.87	0.79	0.81	120909	

	precision	recall	f1-score	support	
0	0.39	0.82	0.53	22681	
1	0.97	0.79	0.87	141791	
avg / total	0.89	0.80	0.82	164472	

In [129]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_test, l2_pred_test_tfidf_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_test, l2_pred_test_tfidf_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[129]:

<matplotlib.axes._subplots.AxesSubplot at 0x15889f9e630>

In [130]:

```
from sklearn.metrics import confusion_matrix
import scikitplot.metrics as skplt
plt.rcParams['figure.dpi'] = default_dpi*.63
skplt.plot_confusion_matrix(y_train, 12_pred_train_tfidf_w2v_txt,normalize=True)
print ("IN NOT NORMALIZED FORMAT BELOW")
skplt.plot_confusion_matrix(y_train, 12_pred_train_tfidf_w2v_txt)
```

IN NOT NORMALIZED FORMAT BELOW

Out[130]:

<matplotlib.axes._subplots.AxesSubplot at 0x15889f78d30>

[6] Conclusions

In [131]:

```
from prettytable import PrettyTable
x = PrettyTable()
x.field names = ["Algorithm", "Hyper-Parameter C = 1/\lambda", "AUC"]
x.add_row(["Bag Of Words with L1 (Test Data)",.16,l1_auc_test_BOW ])
x.add_row(["Bag Of Words with L1 (Train Data)",.16,l1_auc_train_BOW ])
x.add_row(["Bag Of Words with L2 (Test Data)",.06,12_auc_test_BOW ])
x.add_row(["Bag Of Words with L2 (Train Data)",.06,12_auc_train_BOW])
x.add row(["TFIDF with L1 (Test Data)",6,11 auc test tfidf ])
x.add_row(["TFIDF with L1 (Train Data)",6,11_auc_train_tfidf ])
x.add_row(["TFIDF with L2 (Test Data)",10000,12_auc_test_tfidf ])
x.add_row(["TFIDF with L2 (Train Data)",10000,12_auc_train_tfidf ])
x.add_row(["Avg-W2V with L1 (Test Data)",1, bestCl1_auc_test_avg_w2v_txt])
x.add_row(["Avg-W2V with L1 (Train Data)",1,bestCl1_auc_train_avg_w2v_txt ])
x.add_row(["Avg-W2V with L2 (Test)",1,12_bestC_auc_test_avg_w2v_txt ])
x.add_row(["TFIDF-W2V with L2 (Train)",1,12_bestC_auc_train_avg_w2v_txt ])
x.add_row(["TFIDF-W2V with L1 (Test Data)",1,11_bestC_auc_test_tfidf_w2v_txt ])
x.add_row(["TFIDF-W2V with L1 (Train Data)",1,l1_bestC_auc_train_tfidf_w2v_txt ])
x.add_row(["TFIDF-W2V with L2 (Test)",1, l2_bestC_auc_test_tfidf_w2v_txt])
x.add_row(["TFIDF-W2V with L2 (Train)",1, l2_bestC_auc_train_tfidf_w2v_txt])
print (x)
```

+	-+	+
		. I
Algorithm	Hyper-Parameter C = 1/	۸
AUC +		
	-+	+
•	0.16	1 0 04220
Bag Of Words with L1 (Test Data) 61600108804	0.16	0.94220
Bag Of Words with L1 (Train Data)	0.16	0.95951
83466662653		
Bag Of Words with L2 (Test Data)	0.06	0.95604
66630696771	1 0.05	1 0 07604
Bag Of Words with L2 (Train Data)	0.06	0.97601
06097669967		1 0 00722
TFIDF with L1 (Test Data)	6	0.96722
81379423163 TFIDF with L1 (Train Data)	l 6	0.99372
9950925152	1 6	0.99372
TFIDF with L2 (Test Data)	10000	0.96687
19764414065	1 10000	0.30087
TFIDF with L2 (Train Data)	10000	0.99999
99992226276	1 2000	1 0.33333
Avg-W2V with L1 (Test Data)	1	[0.91266
2021187068]	-	1 [0.11==11
Avg-W2V with L1 (Train Data)	1	[0.91177
07026614622]	•	, ,
Avg-W2V with L2 (Test)	1	[0.91266
28646621915]		
TFIDF-W2V with L2 (Train)	1	[0.91176
98456860744]		
TFIDF-W2V with L1 (Test Data)	1	[0.88606
6674226696]		
TFIDF-W2V with L1 (Train Data)	1	[0.88880
57728658172]		
TFIDF-W2V with L2 (Test)	1	[0.88606
63844148741]		
TFIDF-W2V with L2 (Train)	1	[0.88880
51410174906]		
+	-+	+

Both TFIDF and BOW performed very good. Also it didnt take much time. Also they were better than previous algorithms that we tried like KNN and Naive Bayes

Avg-W2V and TFIDF-W2V takes time in creating model and also it didnt perform that well as compared to Logistic Regression of BOW and TFIDF

Also as mentioned before we saw the features are very collinear after introducing small noise we can see the TPR and FPR wasnt that much affected for training dataset as compared with TPR and FPR after introduction of noise