The Randomized Dependence Coefficient

http://papers.nips.cc/paper/5138-the-randomized-dependence-coefficient.pdf

- ▼ What did the authors try to accomplish?
 - Introduce the Randomized Dependence Coefficient (RDC), a measure of nonlinear dependence between random variables of arbitrary dimension based on the Hirschfeld-Gebelein-Renyi Maximum Correlation Coefficient
- ▼ What were the key elements of the approach?
 - Defines dependence between two random variables as the largest canonical correlation between random non-linear projections of their respective empirical copula-transformations. RDC is invariant to monotonically increasing transformations, operates on random variables of arbitrary dimension, and has computational cost of O(n log n)

Figure 1: RDC computation for a simple set of samples $\{(x_i,y_i)\}_{i=1}^{100}$ drawn from a noisy circular pattern: The samples are used to estimate the copula, then mapped with randomly drawn non-linear functions. The RDC is the largest canonical correlation between these non-linear projections.

1. Estimation of Copula-Transformations

 To achieve invariance with respect to transformations on marginal distributions (such as shifts or rescalings), we operate on the empirical copula transformation of the data

2. Generation of Random Non-Linear Projections

- Augment the empirical copula transformations with non-linear projections, so that linear methods can subsequently be used to capture non-linear dependencies on the original data
- The choice of the non-linearities $\phi:R\to R$ is the main and unavoidable assumption in RDC
- The only way to favour one such family and distribution over another is to use prior assumptions about which kind of distributions the method will typically have to analyse.
- We use random features instead of the Nystrom method because of their smaller memory and computation requirements. In our experiments, we will use sinusoidal projections, φ(wT x + b) := sin(wT x + b)

3. Computation of Canonical Correlations

• compute the linear combinations of the augmented empirical copula transformations that have maximal correlation. Canonical Correlation Analysis (CCA, [7]) is the calculation of pairs of basis vectors (α, β) such that the projections $\alpha T X$ and $\beta T Y$ of two random samples $X \in R^{(p \times n)}$ and $Y \in R^{(q \times n)}$ are maximally correlated

Formal definition of RDC

Given the random samples $X \in \mathbb{R}^{p \times n}$ and $Y \in \mathbb{R}^{q \times n}$ and the parameters $k \in \mathbb{N}_+$ and $s \in \mathbb{R}_+$, the Randomized Dependence Coefficient between X and Y is defined as:

$$rdc(\boldsymbol{X}, \boldsymbol{Y}; k, s) := \sup_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \rho\left(\boldsymbol{\alpha}^T \boldsymbol{\Phi}(\boldsymbol{P}(\boldsymbol{X}); k, s), \boldsymbol{\beta}^T \boldsymbol{\Phi}(\boldsymbol{P}(\boldsymbol{Y}); k, s)\right). \tag{9}$$

- ▼ What can you use yourself?
 - Randomized Dependence Coefficient
 - Implementation: https://github.com/garydoranjr/rdc
- ▼ What other references do you want to follow?
 - **Distance Correlation:** G. J. Szekely, M. L. Rizzo, and N. K. Bakirov. Measuring and testing dependence by correlation of distances. Annals of Statistics, 35(6), 2007.
 - **Brownian Correlation:** G. J. Szekely and M. L. Rizzo. Rejoinder: Brownian distance covariance. ´Annals of Applied

Statistics, 3(4):1303-1308, 2009.