

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0121 –Arquitetura de Computadores

Circuitos Combinacionais

Prof. Gustavo Girão girao@imd.ufrn.br

Roteiro

- Definição de circuitos combinacionais
- Exemplos de circuitos combinacionais
 - Somadores
 - Multiplexadores
 - Comparadores
 - Deslocadores

Circuitos Combinacionais

- Conhecemos portas lógicas básicas e portas lógicas compostas
 - o AND, OR, NOT
 - NAND, NOR, XOR, XNOR
- Todos os exemplos que vimos até agora podem ser caracterizados como circuitos combinacionais
 - Circuitos simples de entender e com um fluxo de "dados" unidirectional.
- Definição
 - Um circuito digital cuja saída depende apenas dos valores atuais das entradas.

Exemplos de Circuitos Combinacionais

- São utilizados como componentes basicos (acima das portas lógicas) na realização de tarefas maiores
- Um processador, por exemplo, pode ser visto como uma agregação destes componentes básicos

Exemplos de Circuitos Combinacionais

- Circuito Somador
- Comparador
- Multiplexador
- ULA

- Função
 - Adicionar dois números binários é talvez a operação mais comum executada nos sistemas digitais.
- Um somador de N-bit é um componente combinacional que adiciona duas entradas (A e B) de N-bit e gera uma saída de N-bit.
- N é a largura do somador.
 - Também chamada de resolução, porém é um termo mais usado em sistemas analógicos.
- Projetar somadores de forma eficiente (tamanho, velocidade) é um campo de pesquisa que tem recebido considerável atenção por muitas décadas.

Começando do inicio

 Realizar a soma de dois bits é uma tarefa simples e já vimos como realizá-la manualmente

 Vimos também a porta XOR que tem um comportamento similar a uma soma:

PORTA OU EXCLUSIVO (XOR) C=A⊕B

Começando do inicio

- Mas existe algo faltando....
- E o Carry?

 0111

 + 0110

 1101
- A porta lógica XOR não é suficiente para representar uma soma de um bit. Precisamos de algo a mais:

Meio Somador de 1-bit

Adicionar dois números de 2 bits

0 01 + 11 = 100 (1 + 3 = 4)

 Podemos implementar a lógica desse circuito usando mintermos ou maxtermos

Abordagem ineficiente!!!!

o Por que?

Entradas			Saídas			
a1	a0	b1	b0	С	s1	s0
0 0 0 0 0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

O tamanho da tabela da verdade cresce exponencialmente

- ► Somador de 2-bit: $2^{2+2} = 16$ linhas
- ► Somador de 4-bit: 2⁴⁺⁴ = 256 linhas
- ► Somador de 8-bit 2⁸⁺⁸ = 65.536 linhas
- Somador de 16-bit 2¹⁶⁺¹⁶ = 4 bilhões de linhas

- N=5 → 1000 transistores
- Número de transistores dobra a cada aumento de N
- ▶ Qtd. transistores = $1000 \times 2^{N-5}$
 - ▶ $N = 16 \rightarrow 2.048.000$ transistores
 - N = 32 → 100 bilhões de transistores para somar 2 números?

Modo alternativo de implementar somadores

Imitar como as pessoas fazem a operação de adição manualmente

Modo alternativo de implementar somadores

Criar um componente para cada coluna

Full-Adders (FA) Somador completo Half-Adder (HA) Meio Somador

Meio Somador (Half-Adder HA)

- Adiciona dois bits, gera a soma (s) e o carry out (co)
- Projeto é implementado na lógica combinacional clássica (mintermo ou maxtermo)

Fluxo de concepção do HA

1. Encontre a tabela da verdade

Entradas		Saídas	
а	b	co	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

2. Converter as saídas da tabela da verdade em equações

$$co = a.b$$

 $s = a \oplus b$

• 3. Criar o circuito

Somador Completo (Full Adder – FA)

- Adiciona três bits, gera a soma (s) e o carry out (co)
- Projeto é implementado na lógica combinacional clássica (mintermo ou maxtermo)

Fluxo de concepção do FA

1. Encontre a tabela da verdade

Entrada			Salda		
a	b	cl	CO 8		
0	0	0	0 0		
0	0	1	0 1		
0	1	0	0 1		
0	1	1	1 0		
1	0	0	0 1		
1	0	1	1 0		
1	1	0	1 0		
1	1	1	1 1		

2. Converter as saídas da tabela da verdade em equações

$$co = b.ci + a.ci + a.b$$

 $s = a \oplus b \oplus ci$

Fluxo de concepção do FA

• 3. Criar o circuito

Somador com propagação do carry

- Somador utilizando FA e HA (como se a soma fosse realizada à mão)
- Pode facilmente construir somadores de qualquer tamanho
 - Somador de 4 bits (2 palavras de 4-bit)
 - o Gera uma saída de 4 bits e o bit de carry out

- Quais são as consequência de uma composição de elementos como esta?
- A maior delas é o acumulo do atraso
 - Que já existe em qualquer simples porta lógica

Assumir que todas as entradas são zero inicialmente

- Quais são as consequência de uma composição de elementos como esta?
- A maior delas é o acumulo do atraso
 - Que já existe em qualquer simples porta lógica
 - Vamos imaginar que cada FA abaixo, leva 2 nanosegundos (ns) para realizer a soma de um bit (gerando o carry out)

Assumir que todas as entradas são zero inicialmente

MOMENTO 1

Assumir que todas as entradas são zero inicialmente

MOMENTO 1

Assumir que todas as entradas são zero inicialmente

MOMENTO 2

0111+0001 (reposta deveria ser 01000)

Saída após 2 ns (1 FA)

Atra

MOMENTO 3

0111+0001 (saída deverla ser 01000)

Saída após 4ns (2 FA)

Atra

MOMENTO 3

0111+0001 (saída deverla ser 01000)

Saída após 4ns (2 FA)

MOMENTO 4

Saída após 6ns (3 FA)

Atra

MOMENTO 3

0111+0001 (saída deverla ser 01000)

Saída após 4ns (2 FA)

MOMENTO 4

Saída após 6ns (3 FA)

MOMENTO 5

Saída após 8ns (4 FA)

Saída correta após 8ns

Cascateamento de somadores

 Como eu realizo a soma de 8 bits utilizando o somador de 4 bits anterior?

Somador

Calculadora de 8-bits

Temporalidade

- No exemplo do somador, a temporalidade foi um fator importante na consolidação do valor final
- Externamente observamos que leva um tempo para o valor final "estabilizar"
- É importante notar também que no circuito do somador não existia nenhum componente que marcasse a sincronização temporal entre os outros componentes
- Assim, este componente é dito ASSINCRONO.

Multiplexador

- Outro bloco construtivo de nível mais elevado usado em circuitos digitais.
- Um MUX M x 1 possui M entradas de dados e uma saída.
- Permite que apenas uma das entradas seja passada para saída.
- Uma chave selecionadora informa qual entrada irá passar na saída.
- Mux de 4 entradas -> chave de duas posições
- Mux de 8 entradas -> chave de três posições
- Mux de M entradas -> chave de _____ posições

Multiplexador

- Outro bloco construtivo de nível mais elevado usado em circuitos digitais.
- Um MUX M x 1 possui M entradas de dados e uma saída.
- Permite que apenas uma das entradas seja passada para saída.
- Uma chave selecionadora informa qual entrada irá passar na saída.
- Mux de 4 entradas -> chave de duas posições
- Mux de 8 entradas -> chave de três posições
- Mux de M entradas -> chave de log₂M posições

Multiplexador (MUX)

- Um multiplexador é como uma aparelho de mudança de via em um parque ferroviário de manobras.
- Ele determina qual via de entrada será conectada à única via de saída, de acordo com a alavanca de controle.

Tabela Verdade				
S0	l1	10	D	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

Multiplexador 2x1

Tabela Verdade			
S0	I 1	10	D
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$D = \overline{S0.11.10} + \overline{S0.11.10} + S0.11.\overline{10} + S0.11.10$$

 $D = \overline{S0.10} + S0.11$

Multiplexador 2x1

Mux N-bit Mx1

 Um MUX é frequentemente utilizado para selecionar entradas de vários bits (N-bit)

Comparadores

- São circuitos que comparam dois números binários
- Vamos considerar palavras binárias de 1 bit

Tabela Verdade			
Α	В	X: A = B	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Comparadores

- São circuitos que comparam dois números binários
- Vamos considerar palavras binárias de 1 bit

Tabela Verdade			
Α	В	X: A = B	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

$$X = \overline{A}.\overline{B} + A.B = \overline{A \oplus B}$$

Comparadores

- São circuitos que comparam dois números binários
- Vamos considerar palavras binárias de 1 bit

$$X = \overline{A}.\overline{B} + A.B = \overline{A \oplus B}$$

- Três saídas:
 - \circ X: A = B
 - o Y: A > B
 - o Z : A < B</p>

- Como saber se Y : A > B = 1?
- Como saber se Z : A < B = 1?

Como saber se Y : A > B = 1?

Como saber se Z : A < B = 1?

	Tabela Verdade				
A	В	X: A = B	Y: A > B	Z: A < B	
0	0	1	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	0	0	

Como saber se Y : A > B = 1?

Como saber se Z : A < B = 1?

	Tabela Verdade				
A	В	X: A = B	Y: A > B	Z: A < B	
0	0	1	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	0	0	

$$Y = A.\bar{B}$$

 $Z = \bar{A}.B$

$$Y = A.\bar{B}$$

 $Z = \bar{A}.B$

Comparador de N bits

 Para fazer um comparador de n bits, fazemos n comparações de 1 bit

Comparador de N bits com três saídas

- Como saber qual das seguintes palavras binárias é maior?
 - \circ A = 1001
 - o B = 0110
- Passos:
 - Identificar o bit mais significativo das duas palavras binárias
 - \circ Se A_N > B_N, então A > B
 - \circ Se A_N < B_N, então A < B
 - \circ Se $A_N = B_N$, então devemos testar o bit seguinte

Comparador de N bits com três saídas

Podemos usar o seguinte bloco lógico

Resultados dos bits anteriores

Resultados dos bits atuais

 Vamos concatenar os blocos para comparar palavras binárias com mais de 1 bit

Deslocadores

- Circuito com n entradas e n saídas
- Entrada: palavra binária de n bits
- Saída: palavra binária de n bits deslocada
- Circuito simples de deslocamento
 - Não utiliza nenhuma porta lógica
 - Apenas fios
 - Bits descartados: bit IN ou bit I0

Aritmética utilizando deslocadores

- Exemplos de deslocamentos à esquerda
 - o 0110 -> 1100: 6 -> 12
 - o 0101 -> 1010: 5 -> 10
 - o 0010 -> 0100: 2 -> 4
- Exemplos de deslocamentos à direita
 - o 0110 ! 0011: 6 -> 3
 - 0 0100 ! 0010: 4 -> 2
 - o 1110 ! 0111: 14 -> 7
- Resumindo:
 - Deslocamento à esquerda: multiplica por 2
 - Deslocamento à direita: divide por 2

Aritmética utilizando deslocadores

- O que acontece quando o deslocamento de 1 bit ocorre duas vezes?
 - o 001100 -> 110000: 12 -> 48
- Exemplos de deslocamentos à direita
 - o 001100 -> 000011: 12 -> 3

Resumindo:

- Deslocamento à esquerda de 2 bits: multiplica por 4
- Deslocamento à direita de 2 bits: divide por 4

· Conclusão:

- Realizar n deslocamentos à esquerda de 1 bit, equivale a multiplicar o número por 2ⁿ
- Realizar n deslocamentos à direita de 1 bit, equivale a dividir o número por 2ⁿ

Tipos de deslocadores

- Deslocador de 1 bit à esquerda
 - Adiciona 0 à I0
 - O mesmo deslocador pode ser feito para direita
- Deslocador de 1 bit à esquerda
 - Permite escolher o valor a ser adicionado em IN
 - O mesmo deslocador pode ser feito para direita

Tipos de deslocadores

- Deslocador com shift
 - A variável shift permite definir se o deslocamento vai ou não ser realizado
 - Se shift for igual a 1: deslocamento à esquerda
 - Se shift for igual a 0: a saída será igual à entrada
 - O mesmo deslocador pode ser feito para direita

Tipos de deslocadores

- Deslocador com escolha de lado
 - Permite escolher o lado do deslocamento (direita ou esquerda)
 - Possui variáveis de controle: shiftL e shiftR
 - Se shiftL for igual a 1: deslocamento à esquerda
 - Se shiftR for igual a 1: deslocamento à direira
 - Se shiftR e shiftL forem igual a 0: a saída será igual à entrada

Conclusões

- Vimos diferentes tipos de circuitos que podem ser construídos a partir de portas lógicas
 - São blocos básicos que representam um nível de abstração mais alta
- Os circuitos que vimos são todos chamados de circuitos combinacionais
 - Suas saídas dependem somente das entradas
 - O tempo necessário para realizar o processamento depende somente do atraso dos componentes, ou seja, do tempo que leva para o sinal chegar até a saída do circuito.
- Nem todos os circuitos são combinacionais!
 - Outros tipos de circuitos dependem do estado em que eles se encontravam até o inicio da computação.
 - Exemplo: elementos de memória

Referências

- STALLINGS, William. Arquitetura e organização de computadores. 10. ed. São Paulo: Pearson, 2017. 814 p.
 - Capítulo 9
- TOCCI, Ronald J; Widmer, Neal S. Sistemas Digitais: principios e Aplicações. 11. ed. São Paulo SP: Pearson, 2011, 817 p. ISBN 9788576050957
 - Capitulo 1

 PATTERSON, David A; HENNESSY, John L. Organização e projeto de computadores: A interface HARDWARE/SOFTWARE. Rio de Janeiro: Elsevier, 2005, 3ª edição.

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0121 –Arquitetura de Computadores

Circuitos Combinacionais

Prof. Gustavo Girão girao@imd.ufrn.br