Contents Lecture 5

- The divide and conquer algorithm design technique
- Analysing a divide and conquer algorithm: Mergesort
- Counting inversions
- Closest pair of points

Refresher on proof by induction

Lemma

$$S(n) = 1 + 2 + \ldots + n = n(n+1)/2$$

Proof.

- Induction on n
- Base case n = 1: S(1) = 1(1+1)/2 = 1
- Induction hypothesis: S(n) is true for i = 1, 2, ..., n
- Show that S(n+1) is true using the induction hypothesis

$$S(n+1) = S(n) + n + 1$$

$$= n(n+1)/2 + n + 1$$

$$= n(n+1)/2 + 2(n+1)/2$$

$$= \frac{n(n+1)+2(n+1)}{2}$$

$$= \frac{n^2+n+2n+2}{2}$$

$$= \frac{(n+1)(n+2)}{2} = S(n+1)$$

The divide and conquer algorithm design technique

- Suppose you have n items of input and the simplest technique to process it would be two nested for loops with a $\Theta(n^2)$ running time
- If *n* is small then this is fine
- With divide and conquer we instead aim at:
 - Divide in linear time the problem into two subproblems with n/2 items
 - Solve each subproblem
 - Combine the solutions to the subproblems in linear time into a solution for the n item problem
- The resulting running time becomes $\Theta(n \log n)$
- We will next study Mergesort

n	n	n log n	n ²	n 3	1.5 ⁿ	2 ⁿ	<i>n</i> !
10	2.5 ns	8.3 ns	25.0 ns	250.0 ns	14.4 ns	256.0 ns	907.2 μ s
11	2.8 ns	9.5 ns	30.2 ns	332.8 ns	21.6 ns	512.0 ns	10.0 ms
12	3.0 ns	10.8 ns	36.0 ns	432.0 ns	32.4 ns	1.0 μ s	119.8 ms
13	3.2 ns	12.0 ns	42.2 ns	549.2 ns	48.7 ns	2.0 μ s	1.6 s
14	3.5 ns	13.3 ns	49.0 ns	686.0 ns	73.0 ns	4.1 μ s	21.8 s
15	3.8 ns	14.7 ns	56.2 ns	843.8 ns	109.5 ns	8.2 μ s	5 min
16	4.0 ns	16.0 ns	64.0 ns	1.0 μ s	164.2 ns	16.4 μ s	1 hour
17	4.2 ns	17.4 ns	72.2 ns	1.2 μ s	246.3 ns	32.8 μ s	1.0 days
18	4.5 ns	18.8 ns	81.0 ns	1.5 μ s	369.5 ns	65.5 μ s	18.5 days
19	4.8 ns	20.2 ns	90.2 ns	1.7 μ s	554.2 ns	131.1 μ s	352.0 days
20	5.0 ns	21.6 ns	100.0 ns	2.0 μ s	831.3 ns	262.1 μ s	19 years
30	7.5 ns	36.8 ns	225.0 ns	6.8 μ s	47.9 μ s	268.4 ms	10 ¹⁵ years
40	10.0 ns	53.2 ns	400.0 ns	16.0 μ s	2.8 ms	5 min	10 ^{31} years
50	12.5 ns	70.5 ns	625.0 ns	31.2 μ s	159.4 ms	3.3 days	10 ⁴⁷ years
100	25.0 ns	166.1 ns	2.5 μ s	250.0 μ s	3 years	10 ^{13} years	10 ¹⁴¹ years
1000	250.0 ns	2.5 μ s	250.0 μ s	250.0 ms	10 ^{159} years	10 ²⁸⁴ years	huge
10 4	2.5 μ s	33.2 μ s	25.0 ms	4 min	huge	huge	huge
10 ⁵	25.0 μ s	415.2 μ s	2.5 s	2.9 days	huge	huge	huge
10 ⁶	250.0 μ s	5.0 ms	4 min	8 years	huge	huge	huge
10 ⁷	2.5 ms	58.1 ms	7 hour	10 ⁴ years	huge	huge	huge
10 ⁸	25.0 ms	664.4 ms	28.9 days	10 ⁷ years	huge	huge	huge
10 ⁹	250.0 ms	7.5 s	8 years	10 ¹⁰ years	huge	huge	huge

Mergesort

- Mergesort is a stable sort algorithm
- Running time $\Theta(n \log n)$
- See mergesort.c e.g. in the book

Recurrence relation

- Swedish differensekvation or rekursionsekvation
- A recurrence relation or just recurrence is a set of equalities or inequalities such as

$$T(n) = \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

- The value of T(n) is expressed using smaller instances of itself and a boundary value.
- To analyze the running time of a divide and conquer algorithm, recurrences are very natural
- But we want to have an expression for T(n) in closed form
- Closed form means an expression only involving functions and operations from a generally accepted set — i.e. "common knowledge".
- Closed form can also be called explicit form
- So our next goal is to rewrite T(n) into closed form

Mergesort recurrence

- $T(n) = \max \text{ comparisons to mergesort } n \text{ items}$
- Mergesort recurrence:

$$T(n) \leq \left\{ egin{array}{ll} 0, & n=1 \ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n, & n>1 \end{array}
ight.$$

- This is a simplification as can be seen if compared with the source code, but it is sufficiently accurate.
- We initially ignore ceil and floor:

$$T(n) \leq \left\{ egin{array}{ll} 0, & n=1 \\ 2T(n/2)+n, & n>1 \end{array}
ight.$$

- We also assume *n* is a power of 2
- We will show that these simplifications do not affect our running time analysis, i.e. they are valid

Rewriting a recurrence to closed form

- The easiest way to understand what the closed form is, may be to "expand" or "unroll" the recurrence and simply "see" what is happening
- For Mergesort the closed form will be easy to find this way
- Another way is to look at small inputs and try to guess the closed form
- When we have a guess which works for the small inputs, we then prove by induction that our guess is correct
- In both cases we prove our closed form by induction
- We will start with expanding T(n)

Expanding the recurrence and count

$$T(n) \le \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

- Assume *n* is power of 2
- $\log_2 n$ levels
- n comparisons per level
- In total $n \log n$ comparisons
- $T(n) = n \log n$

:

Proof by induction

Lemma

The recurrence

$$T(n) = \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

has the closed form $T(n) = n \log_2 n$.

Proof.

- Recall $\log ab = \log a + \log b$, so $\log_2 2n = \log_2 n + \log_2 2 = \log_2 n + 1$, and $\log_2 n = \log_2 2n 1$
- Induction on n.
- Base case: n = 1: $T(1) = 1 \log_2 1 = 0$
- Induction hypothesis: assume $T(n) = n \log_2 n$
- $T(2n) = 2T(n) + 2n = 2n \log_2 n + 2n = 2n(\log_2 n + 1) = 2n(\log_2 2n 1 + 1) = 2n \log_2 2n$

Remark about previous proof

- Normally we assume S(i) is true and prove S(i+1)
- On previous slide we did not increment by one but rather doubled our variable
- We could have stated the lemma in terms of S(i) and let $n=2^i$
- Then we use induction on i and assume S(i) and prove S(i+1)

Proof by induction, removing assumption $n = 2^k$

Lemma

The recurrence

$$T(n) \leq \left\{ egin{array}{ll} 0, & n=1 \ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n, & n>1 \end{array}
ight.$$

has the closed form $T(n) \leq n \lceil \log_2 n \rceil$.

Proof.

- Induction on n
- Base case: n = 1: $T(1) = 1 \log_2 1 = 0$
- Let $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$
- Induction hypothesis: assume true for n = 1, 2, ..., n 1
- $T(n) \le T(n_1) + T(n_2) + n \le n_1 \log_2 n_1 + n_2 \log_2 n_2 + n$
- Previous line follows from induction hypothesis

Proof by induction, removing assumption $n = 2^k$

Lemma

The recurrence

$$T(n) \leq \left\{ egin{array}{ll} 0, & n=1 \ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n, & n>1 \end{array}
ight.$$

has the closed form $T(n) \leq n \lceil \log_2 n \rceil$.

Proof.

$$T(n) \le T(n_1) + T(n_2) + n$$

 $\le n_1 \log_2 n_1 + n_2 \log_2 n_2 + n$
 $\le n_1 \log_2 n_2 + n_2 \log_2 n_2 + n$
 $\le (n_1 + n_2) \log_2 n_2 + n$
 $= n \log_2 n_2 + n$
 $\le n(\lceil \log_2 n \rceil - 1) + n$
 $= n\lceil \log_2 n \rceil$

Looking at small inputs

$$T(n) \le \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

• Let us try out some small values:

• Can we identify a pattern?

$$n$$
 1 2 4 8 16 32 64 $T(n)$ 0 2 8 24 64 160 384 $T(n)/n$ 0 1 2 3 4 5 6

- $\log_2 n$ is incremented by one when n is doubled: $\log_2 2n = 1 + \log_2 n$
- So $T(n) = n \log_2 n$ is tempting to try to prove by induction, which we already know is true

The master theorem (MSc thesis by Dorothea Haken)

• There is a nice formula for finding T(n) for many recursive algorithms:

$$T(1) = 1$$

 $T(n) = aT(n/b) + n^s$.

• There are three closed form solutions (for details, see the book):

$$T(n) = \left\{ egin{array}{ll} O(n^s) & ext{if} & s > \log_b a \ \\ O(n^s \log n) & ext{if} & s = \log_b a \ \\ O(n^{\log_b a}) & ext{if} & s < \log_b a. \end{array}
ight.$$

- T(n) = 2T(n/2) + n. With a = b = 2 and s = 1, we have $\log_b a = \log_2 2 = 1 = s$, so $T(n) = O(n \log n)$.
- $T(n) = 2T(n/2) + \sqrt{n}$. With a = b = 2 and s = 0.5, we have $\log_b a = \log_2 2 = 1 > s$, so T(n) = O(n).
- $T(n) = 4T(n/3) + n^2$. We have $\log_b a = \log_3 4 = \frac{\log_{10} 4}{\log_{10} 3} = 1.26 < s = 2$, so $T(n) = O(n^2)$.

Finding people with similar tastes

- Consider a category such as text editor, programming language, preferred tab width, or the 22 Mozart operas
- To compare how similar tastes within a category three people have, they can rank a list of say 5 operas A-E

Tintin: A D C E B

Captain Haddock: A C B D E

Bianca Castafiore: A B D C E

- All agree opera A is best
- Who have most similar tastes?

Inversions

Tintin: A D C E B

Captain Haddock: A C B D E

Bianca Castafiore: A B D C E

We have 5 positions in each list

• Start with Tintin's list and label each item 1, 2, ..., 5:

Tintin: A D C E B

Tintin: 1 2 3 4 5

• Then we put these labels according to Captain Haddock's ranking:

Captain Haddock: 1 3 5 2 4

 a_1 a_2 a_3 a_4 a_5

• i and j are **inverted** if i < j and $a_i > a_j$

• Inversions: (3,2), (5,2), and (5,4)

The fewer inversions, the more similar tastes (obviously)

Counting inversions

- Running time is $O(n^2)$
- How can we use divide and conquer to achieve $O(n \log n)$? 1 3 | 5 2 4
- Count inversions in left part
- Count inversions in right part
- Somehow combine these parts and add number of inversions...???

What can we do to simplify the problem?

- 1 3 | 5 2 4
- Assume you know there are no inversions in the left part and two in the right part
- It is OK to "destroy" the array, such as sorting it, if that helps...
- If modifying the array is forbidden, we can always make a copy and work with the copy instead
- Copying the array is fine since that is faster than $O(n \log n)$
- Copying the array is O(n) but memory allocation can be costly so don't do it too much
- For Mergesort, it is non-trivial to not use a second array

Sorting the array

- By subarray is meant the part our recursive subproblem is going to work with
- Sorting the subarray after counting the inversions may help
- 1 3 | 5 2 4
- After having counted in the subarrays we have: 1 3 2 4 5
- Combining two sorted parts can be done in linear time as in Mergesort

The 2 was inverted with each remaining in left part — only the 3 in this example so one inversion is counted when the parts are combined

In total 3 inversions

Implementing the $n \log n$ algorithm

- As always: first make a simple reference implementation that can be used to verify the correctness of a faster implementation
- In this case the n^2 algorithm is ideal if used with small inputs

Lab 4: Closest points in a plane

- Lab 4 is about the field of computational geometry
- Consider *n* points (x_i, y_i) in a plane
- We want to find which points are closest
- Comparing all points with each other in an n^2 algorithm is simple
- But comparing points "obviously" far from each other is a waste
- How can divide and conquer be used to find an n log n algorithm?
- We cut the plane in two halves and find closest points in each half
- We have then three categories of point pairs which can be closest:
 - Point pairs in the left half
 - Point pairs in the right half
 - Opening Point pairs with one point in the left and the other in the right half
- Can we find close points from the last category in linear time???

An example

- We cut the plane in two halves with 10 points in each half
- We compute the nearest points in each half
- $\delta = \min(146, 113)$
- ullet We only have to consider points within δ from the vertical line
- ullet If there are none, then δ is the answer
- ullet If there are, then they must be checked with points from the other side which also must be within δ from the vertical line, of course

Combining

- The point p on the vertical line x_p belongs to the left half but there could also be points in the right half with the same x-coordinate
- Let the set S consist of all points with a distance within δ from the line x_p , (5 points here)
- Clearly it is sufficient to compare only points q and r from S such that p comes from the left half and q from the right part

Combining

- Each dashed box has a side of $\delta/2$
- How many points can each such box contain at most?
- The diagonal of a dashed box is $\sqrt{2} \times \delta/2 < \delta$
- With two points in a dashed box, their distance would be less than δ so at most one point

Combining

- With at most one point per dashed box, we can do as follows.
- Let S be sorted on y-coordinates
- Each point $p \in S$ is inspected at a time.
- The distances from *p* to each of the next 6 points on the other side in *S* (according to y-coordinates) are checked to see if it less than the shortest distance found so far

Algorithm outline

- What do we need for this?
- Input is a set of *n* points *P*
- We produce two sorted arrays P_x and P_y before starting our recursion
- We divide P_x into two arrays L_x and R_x (left and right)
- We divide P_y into two arrays L_y and R_y
- We solve the two subproblems $(L_x, L_y, n/2)$ and $(R_x, R_y, n/2)$
- ullet Then we compute δ as the minimum from these subproblems
- Then we create the set S_y from P_y
- All dividing and combining can be done in linear time, so we solve this in $\Theta(n \log n)$ time