

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROJETO DE CIRCUITOS FOTÔNICOS EM SILÍCIO

Professor: Adolfo Herbster

Aluno: Caio Rodrigues Correia de Oliveira

Lista de exercícios: Guia slab simétrico

24 de dezembro de 2021

Campina grande, PB

- 1. Considere um guia *slab* simétrico com $n_1 = 1,485$, $n_2 = 1,465$, espessura d = 13 um. O sinal possui comprimento de onda 1550 nm. Analise inicialmente os modos TE.
 - a) Ilustre os dois lados da equação característica correspondente (soluções pares e ímpares);

- b) Encontre todas as soluções (modos guiados método gráfico) possíveis e para cada solução apresente:
 - i. os respectivos índices efetivos (n_{eff}) ;
 - ii. os respectivos índices de grupo (n_g) ;

Método gráfico

Modo	n_{eff}	n_g
TE_0	1.4652	1.4853
TE_1	1.4713	1.4875
TE_2	1.4770	1.4900
TE_3	1.4815	1.4980
TE_4	1.4842	1.4775

c) Encontre todas as soluções (modos guiados) pelo método numérico apresentado no livro Electromagnetic Waves and Antennas - Orfanidis. Compare com aqueles valores obtidos no item b).

Método numérico

Modo	n_{eff}	n_g
TE_0	1.465165	1.4686
TE_1	1.471284	1.4659
TE_2	1.477098	1.4616

TE_3	1.481447	1.4558
TE_4	1.484107	1.4497

d) Ilustre a distribuição de campo E_y e H_x dos modos guiados. Para o campo normal à interface, discuta sua descontinuidade.

Através de análises cautelosas dos gráficos em associação com fundamentos teóricos, conclui-se que ambas as componentes de campo são **contínuas** nas interfaces.

- 2. Tomando o guia *slab* simétrico do problema anterior, considere, agora, apenas os modos TM.
 - a) Determine, a partir cálculo da solução não-trivial de um sistema linear homogêneo de equações independentes (formado a partir da aplicação das condições de contorno sobre as equações de distribuição de campo transversais), as equações características (modos pares e ímpares).

As equators do mode IM how constant
$$\begin{aligned}
E_x &= -\frac{\beta}{3} \frac{\beta}{K_c^2} \frac{dE_2}{dx} \\
H_y &= -\delta \frac{\omega \varepsilon}{K_c^2} \frac{dE_2}{dx} \\
\frac{d^2E_2}{dx^2} + K_c^2E_2 = 0
\end{aligned}$$

Assumindo decainente mos didétricos viginhos e aplicando as condições de franteiros, obtém-se os valores de $E_2(x)$:

$$E_{z}(x) = \begin{cases} A_{z}^{-dcx} + A_{z}^{dcx}, & x \ge a \\ B \cos(\kappa g x) + C \sin(\kappa g x), & |x| \le a \end{cases}$$

$$D_{z}^{dcx} + D_{z}^{dcx}, & x \le -a \end{cases}$$

Como se tratade slot similare, «c=«». Pora miscoma Contuisão de compo no múdeo do quia, N=D=0. Assim tem-se:

$$E_z(x) = \begin{cases} A e^{-\alpha c x}, & x \ge \alpha \\ E_0 Sin(K_0 x + \phi), |x| \le \alpha \end{cases}$$

$$D_x = \begin{cases} P_x = P_x \\ P_x = P_x \end{cases}$$

$$P_x = P_x = P_x$$

$$P_x$$

$$E_2(x) = \begin{cases} Ae^{-4cx}, & x \ge a \\ E_0cos(Kfx+\phi), & |x| \in a \end{cases}$$

$$\int e^{4cx}, & x \le -a \end{cases}$$
(Solução impor)

b) Ilustre os dois lados da equação característica correspondente (soluções pares e ímpares);

Equação conoctunistana do modo TM:

$$\frac{\mu(psot Pcw)}{\mu^2 - psopersu} = tom(2u), order$$

$$\frac{np^2}{ns^2}$$

- c) Encontre todas as soluções (modos guiados método gráfico) possíveis e para cada solução apresente:
 - i. os respectivos índices efetivos (n_{eff}) ;
 - ii. os respectivos índices de grupo (n_g) ;

Método gráfico

Modo	n_{eff}	n_g
TM_0	1.4652	1.4853
TM_1	1.4712	1.4875
TM_2	1.4770	1.4900
TM_3	1.4814	1.4980
TM_4	1.4841	1.4775

d) Encontre todas as soluções (modos guiados) pelo método numérico apresentado no livro Electromagnetic Waves and Antennas - Orfanidis. Compare com aqueles valores obtidos no item b).

Método numérico

Modo	n_{eff}	n_g
TM_0	1.465159	1.4686
TM_1	1.471232	1.4659
TM_2	1.477055	1.4616
TM_3	1.481423	1.4557
TM_4	1.484100	1.4497

e) Ilustre a distribuição de campo H_y e E_x dos modos guiados. Para o campo normal à interface, discuta sua descontinuidade.

Através de análises cautelosas dos gráficos em associação com fundamentos teóricos, conclui-se que ambas as componentes de campo são **descontínuas** nas interfaces.