Programação Linear Lista de Exercícios - Método Simplex

Prof. Alexandre Salles da Cunha

Data de entrega: 27 de Maio de 2025.

Questão 01: O algoritmo Simplex detecta quando o Problema de Programação Linear (PPL) $\min\{c^Tx: Ax=b, x\geq 0\}$ é ilimitado. Mostre como construir um raio extremo \overline{x} do cone de recessão $\{x: Ax=0\}$ tal que $c^T\overline{x}<0$, a partir do dicionário Simplex, quando o mesmo detecta a ilimitação do PPL.

Questão 02 Use o resultado da questão anterior para caracterizar \overline{x} para o PPL abaixo, partindo do ponto $(0,6)^T$.

$$\min \quad 2x_1 - 8x_2$$

$$x_2 \ge 1$$

$$x_1 + x_2 \ge 2$$

$$-(1/2)x_1 + x_2 \le 8$$

$$-x_1 + x_2 \le 6$$

Questão 03 Assuma que na iteração k do Método Simplex (uma iteração é caracterizada por uma operação de pivoteamento), a variável x_i sai da base. É possível que a variável x_i entre na base novamente na iteração k+1? Mostre que sim por meio de um exemplo ou prove que não pode ocorrer.

Questão 04 Assuma que na iteração k do Método Simplex, a variável x_i entra da base. É possível que a variável x_i saia da base na iteração k+1? Mostre que sim por meio de um exemplo ou prove que não pode ocorrer.

Questão 05 Mostre que o PPL $\min\{c^Tx: Ax=b\}$ não admite solução ou então que toda solução viável é ótima.

Questão 06 Transforme o PPL abaixo para o formato padrão.

$$\min \quad x_1 + x_2 + |x_3|$$

$$x_1 + x_2 + 7x_3 \le 5$$

$$x_1 - 4x_2 \ge 11$$

$$x_1 \ge 0$$

Questão 07 Considere \overline{x} viável, porém não necessariamente solução básica de $\{x: Ax=b, x\geq 0\}$. Descreva um algoritmo de pivoteamento que inicie com \overline{x} e termine com a solução básica viável \hat{x} , satisfazendo $c^T\hat{x}\leq c^T\overline{x}$. Você pode assumir que o PPL em questão admita solução ótima.

Questão 08 Considere o PPL min $c^Tx: Ax = b, 0 \le x \le u$, onde $u \in \mathbb{R}^n, u > 0$. Caracterize uma solução básica para o poliedro na forma $\{Ax = b, 0 \le x \le u\}$ e especialize o Método Simplex para otimizar sobre a caracterização que você produziu para as soluções básicas.