

# Discrete Mathematics MH1812

Topic 5.1 – Combinatorics Dr. Guo Jian



## What's in store...





## By the end of this lesson, you should be able to...

- Explain the concepts of the principle of counting.
- Determine the number of possible permutations using the counting principle, where order does matter.
- Determine the number of possible combinations using the counting principle, where order does not matter.





There are two slots to be filled, there are  $n_1$  choices for slot 1 and  $n_2$  choices for slot 2.



Slot 1: Main Course

Slot 2: Dessert

The total number of unique choices to fill the slots is  $n_1 n_2$ .

3 Main Course Choices













The total number of unique choices for this example is 3\*2 = 6.

3 Main Course Choices











- In general:  $n_1, n_2, \dots n_k$  choices for k-slots
- *n*<sub>1</sub>\**n*<sub>2</sub>\*...\**n*<sub>k</sub> ways
  - Cardinality of the Cartesian product of sets





Create a yoghurt dessert with 1 fruit, 1 crunch, and 1 sauce.

- 11 fruits
- 16 crunches
- 15 sauces

Slot 1: Fruit **Slot** *2*: Crunch

**Slot** *3*: Sauce



## Principle of Counting: Cardinality of Power Set

- Consider a set  $A = \{a_1,...,a_n\}$  with n elements.
- List all subsets of A. Create a table.

| All subsets of A  | Binary vectors |
|-------------------|----------------|
| {a <sub>1</sub> } | 100            |

- Each of these *n* elements are either in a subset of *A* or not: 2 choices.
- Such a choice needs to be made for each of the n elements.
- Thus  $2*2*...*2 = 2^n$  choices.

## Principle of Counting: Filling r Slots With n Choices

There are n elements, with which to fill r slots.

#### **Can** Be Repeated

When elements can be repeated using the principle of counting:  $n*n*...*n = n^r$  choices.

#### **Cannot Be Repeated**

When elements cannot be repeated:

- n choices for first slot
- n 1 choices for second slot
- n (r 1) choices for last slot
- In total: n(n-1)(n-2)...(n-r+1) choices

## **Principle of Counting: Example 1**



Sequence of choice of cards from a deck of cards.











## **Principle of Counting: Example 2**



Sequence of choice of cards from a deck of cards.













#### Permutations: n!



A permutation is an arrangement of all or part of a set of objects, with regard to the order of the arrangement.



| 1 <sup>st</sup> position | 3 choices |
|--------------------------|-----------|
| 2 <sup>nd</sup> position | 2 choices |
| 3 <sup>rd</sup> position | 1 choice  |

#### Number of permutations of n objects

$$n*(n-1)*(n-2)...*2*1 = n!$$

where n! is called n factorial.

## **Permutations**: P(n,r)

Filling *r* slots with *n* choices and no repetition:

$$n(n-1)(n-2)...(n-r+1)$$

Permutations of n objects: n!

Number of permutations of n objects taken r at a time (n objects, the number of ways in which r items can be ordered):

$$P(n,r) = n(n-1)(n-2)...(n-r+1) = n!/(n-r)!$$

where n! = n\*(n-1)\*(n-2)\*...\*2\*1 (called *n* factorial).



## **Permutations: Example**



In how many ways can we award a  $1^{st}$ ,  $2^{nd}$  and  $3^{rd}$  prize to 8 contestants?

- For the 1<sup>st</sup> prize, any of the 8.
- Then for the  $2^{nd}$  prize, any of the 7 left.
- And for the 3<sup>rd</sup> prize, any of the 6 left.
- Hence 8\*7\*6 = 336.



















## Permutations: Distinguishable Permutations

In general, the number of distinguishable permutations from a collection of objects, where the first object appears (repeats)  $k_1$  times, the second object  $k_2$  times, ... for r distinct objects:

$$n!/(k_1! k_2!... k_r!)$$



# Permutations: Distinguishable Permutations



How many permutations are there of "MISSISSIPPI"?

| M | Appears $k_1 = 1$ |
|---|-------------------|
| 1 | Appears $k_2 = 4$ |
| S | Appears $k_3 = 4$ |
| Р | Appears $k_4 = 2$ |



# **Combinations:** C(n,r) or $\binom{n}{r}$



A combination is a selection of all or part of a set of objects, without regard to the order in which objects are selected.



#### **Example**

Team of 4 people from a group of 10.

Number of combinations of n objects taken r at a time:

$$\binom{n}{r} = C(n,r) = n!/r!(n-r)!$$

There are r! possible orderings within each combination.

So r! C(n,r) = P(n,r) by definition of permutation.

## **Combinations: Example**



From a committee of 8 people, in how many ways can you choose:

 A chairperson and vice-chairperson (one person cannot hold more than one position)?





## **Combinations: Example**



From a committee of 8 people, in how many ways can you choose:

• A subcommittee of 2 people?

C(8,2)

**Subcommittee** 



















# Let's recap...

- Principle of counting
- Permutations (with order)
- Combinations (without order)

