while adding up several numbers of different absolute accuracy the following mades may be adopted:

i) Isolate the number with greatest absolute export,

ii) & Round-off all other numbers retaining in them one digit more than in the isolated numbers,

iii) Add up, ama

iv) Round-off the sum by discarding one digit.

Sum of the following numbers: 0.1532, 15.45, 0.000354, 305.1, 8.12, 143.3, 0.0212, 0.643 and 0.1734 osterre in each of which all the given digits are connect. Greatest obsolute error is in 305.1 & 143.3, and which is Hence norma- off all the other number to two decimal digits. 0.05. These are: 0.15, 15.45, 0.00, 9.12, 0.02, 0.64, and 0.17 Hence, the sum is S = 305.1 + 143.3 + 0.15 + 15.45 + 8.12 + 0.02 + 0.64 + 0.17= 472.6 [round-off to one by decreening one significant digits] = 472.59 · Bonny - Al Exercis = 0.01 absolute error EA = 2(0.05)+7(0.005) = 0.135. 20.14 Hence, the total tromon = 0.01+0.14 = 0.15. Thus, S= 472.6±0.15 \$

solution of nonlinear algebraice equation by numerical methods

Let us unsider f(x) = 0 where f(x) nonlinear in x^2 . example: x3+3x2+7x+5=0 $x^3 - 2x + 6 = 0$ $x^{n} + \alpha x^{n-1} + b x^{n-2} + \cdots + t x^{l} + R = 0$

In To solve & nonlinear est eguations we need to apply numerical technique.

There are several numerical techniques on methos for solving nonlinear eguations.

Solving a nonlinear equation means to find out its 1 2 00 or

BISECTION METHOD

Let, f(x) is continuous between

x=a and z=b.

Also, f(a) * f(b) < 0

Then atleast one moot exists between apb

Scanned by CamScanner

a \$ b are called brackets, or initial

each step interval between the initial values becomes \$ (12-a) wfy

$$\frac{|b-a|}{2n} \le \varepsilon$$
 [ε is a small value] coiled tollerance.

$$=) 2^{\eta} > \frac{|b-a|}{\varepsilon}$$

=)
$$n \log e^2 > \log e \left(\frac{|b-a|}{\epsilon}\right)$$

$$=) m > \frac{\log e^{\frac{(1b^{-n})}{\varepsilon}}}{\log e^{2}}$$

For example, n>10 when |b-a|=1 7 &=0.001

This method always succeeds

If there are more than one noot between the initial values arb, bisection method finds one of the mooks.

criteria for termination of iterations:

$$\frac{\pi i a}{\varepsilon_n} = \frac{\chi_n^2 - \chi_n}{\chi_n^2} \times 100$$

$$\frac{\chi_n^2 \leftarrow n \cdot \omega \quad \text{mid value,}}{\chi_n^2 \leftarrow n \cdot \omega \quad \text{mid value,}}$$

Terminate when En<Ep (Ep= prescribed tollerance) In addition, the maximum number of iterations may also be satisfied in advance.

- 1) Get two 'ne' values a &b such that f(a) * f(b) < 0
- 2) Find out $\frac{a+b}{2}$ and $f(\frac{a+b}{2})$
- 3) If $\left| \frac{1}{2} \left(\frac{a+b}{2} \right) \right| < \varepsilon \left[\frac{\varepsilon}{\varepsilon} \right]$ is a predefined very small value] $\left(\frac{a+b}{2} \right)$ is the negatived root, hence, terminate. otherwise proceed to step 4
 - 4) If $f\left(\frac{a+b}{2}\right) * f(a) < 0$, take box $\frac{a+b}{2}$ and go to step 3
 else if, $f\left(\frac{a+b}{2}\right) * f(b) < 0$, take a as $\frac{a+b}{2}$ and go to step 3.

Example:

Given, $f(x) = x^3 - x - 1 = 0$ find out one most of the above equation between $x = 1 \neq 2$

STEPS

Τ.		•	(4)	1	6/17	$mid = \frac{a+b}{2}$		[[cimol]		update	
	η	8	f(v)	b	f(p)	Y1110 = 2	2	f (mid)		70000	
	1	1	-1	2	5	1.5		0.875		b = mid	
	2	1	-1	1.5	0.875	1.25		-0.29688		a=mid	
-	3	1,25	-0:2%	1.5	0.875	1.375	1 2	0-22461		p = mig	
	4	1.25	-0.29688	1.375	0.22461	1,3125		-0.05151		v=mig	
	ち	1.3125	-0.05151	1,375	0.22461	1,34875		0.08261		b=m)	2
-	6	1-3 125	- 0.05 157	1.34375	0-08261	1.32812		0.01458		p = sonj	2
	7	1.3125	-0.0515)	1.32812	0.01458	1.32031	-	0.01871	10	n = mi	2
	Ł	1-3203	1 -0.01271	1,32812	0.01458	1.82422	-(-0.00213		Sicut =	
	9	1.3242	2 -0.01213	1.32812	0.01458	1,32617	0	0.00621 b		e mia	
	10	1:32 42	-0.00213	1.32617	0.00621	1.3252	0	0.00214 6:		- mig	
	1)	1.3242	2 -0'002 3	1.3252	0.00204	(1.32471)	-(0.00005	a=	לאחר :	_

Hence, the approximate noot = 1.32971