Multiple Choice Questions

IMHT-CET Sample Question]

The line y = mx + 1 is tangent to the parabola $y^2 = 4x$ if M is 3

The length of Latus rectum of the parabola $x^2 - 4x - 8y + 12 = 0$ is

If the focus of the parabola is (0, -3) its directix is y = 3 then its equation is 2

3. The co-ordinates of a point on the parabola $y^2 = 8x$ whose focal distance is 4 are

4. d) None of these c) $(2, \pm 4)$ b) $(1,\pm 2\sqrt{2})$ a) (1/3 ± 4)

The end points of latus rectum of the parabola $y^2 = 24x$ are 5.

d) None of these c) $(6, \pm 6)$ b) $(12, \pm 6)$ a) (6, ± 12)

Equation of the parabola with vertex at the origin and diverctnix x + 8 = 0 is

6. d) $x^2 = 32x$ c) $y^2 = 16x$ b) $y^2 = 32x$ a) $y^2 = 8x^2$

The area of the triangle formed by the line joining the vertex of the parabola $x^2 = 12y$ to 7. the end points of its latus rectum is

d) 14 sq. units c) 18 sq. units a) 22 sq. units b) 20 sq. units

If $P(\pi_4)$ is any point on the ellipse $9x^2 + 25y^2 = 225$ S and S^1 are its foci then 8. SP. S'P =

b) 14 c) 17 d) 19

The equⁿ of the parabola having (2, 4) and (2, -4) as end points of its latus return is

b) $y^2 = 8x$ c) $y^2 = -16x$ d) $x^2 = 8y$

If the parabola $y^2 = 4ax$ passes through (3, 2) then the length of its latus reacum is 10.

a) 3/3 b) 4/3 c) $\frac{1}{3}$ d) 4

The eccentricity of rectangular hyperbola is 11.

b) $\frac{1}{2\frac{1}{2}}$ c) $2\frac{1}{2}$ d) $\frac{1}{3\frac{1}{2}}$

The equation of the ellipse having foci (± 4 , 0) and ecentricity $\frac{1}{3}$ is

a) $9x^2 + 10y^2 = 144$

b) $144x^2 + 9y^2 = 1296$ c) $128x^2 + 144y^2 = 18432$

d) $144x^2 + 128y^2 = 18432$

The equation of the ellipse having ecentricity $\frac{\sqrt{3}}{2}$ and passing through (-8, 3) is a) $4x^2 + y^2 = 4$ b) $x^2 + 4y^2 = 100$ c) $4x^2 + y^2 = 100$ d) $x^2 + 4y^2 = 4$

14. If the line $4x - 3y + k = 0$. [173]	
14. If the line $4x - 3y + k = 0$ touches the ellipse $5x^2 + 9y^2 - 4$ 15. The equation of the ellipse $5x^2 + 9y^2 - 4$	MHT-CET
$\frac{1}{10}$ b) $\pm 3\sqrt{21}$	5 then the value of k is.
	d) 61
angle of 180° with the major axis are a) $x = 4$ b) $y = \pm 4$ c) $x = -4$ 3x + 4y = 17 is	tion of the tangents making an
16. The equation of the $4x = 4$	
3x + 4y = 17 is $3x + 4y = 17$ is	d) $x = \pm 5$
N. C.	which is perpendicular to the
b) 3v + 4	
17. Eccentricity of the hyperbola $16x^2$ c) $3y = 4x + $	$-6\sqrt{5}$ d) $3y = x + 25$
-3/2 - 120	
a) 1/3	(177
(c) $\frac{\sqrt{19}}{3}$	d) $\frac{\sqrt{17}}{2}$
$3x^2 + 5y^2 - 36x - 50y - 164 - 0$	3
a) $(2,5)$ b) $(1,-2)$ c) $(-2,1)$	1) (0,0)
touches the hyperbola $4x^2 - 3y^2 = 2$	A the point of sentent in
a) (1, 2) b) (2, 3) c) (3, 2)	d) (-2, -3)
$4x^2 - 9y^2 - 36 = 0$ are	
a) $(\pm \sqrt{13}, 0)$ b) $(\pm \sqrt{11}, 0)$ c) $(\pm \sqrt{12}, 0)$	\
(= $\sqrt{11},0$) c) ($\pm\sqrt{12},0$	d) $(0, \pm \sqrt{12})$
IMHT-CET 2024I	
	= 50. Let the point P divide the
,	= U DP 3 GITACTTIV OF PRO Allimon
E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the corresponding focus be S. If from axis passes through P then the length of the late.	<u> </u>
a^2 b^2 and the corresponding focus be S. If from	m S, the perpendicular on the x -
axis passes through P, then the length of the latus rectu	um of E is
A.F.	
a) $\frac{25}{3}$ b) $\frac{25}{9}$ c) $\frac{32}{9}$	<u>d</u>) $\frac{32}{5}$
22. If the length of the minor axis of an ellipse is equal to h	nalf of the distance between the
foci, then the eccentricity of the ellipse is	and of the distance between the
6	
a) $\frac{2}{\sqrt{5}}$ b) $\frac{1}{\sqrt{3}}$ c) $\frac{\sqrt{5}}{3}$	d) $\frac{\sqrt{3}}{2}$
$\sqrt{5}$	2
π	2 2 2 5 5
23. For $0 < \theta < \frac{\pi}{2}$, if the eccentricity of the hyperbola x	$z^2 - y^2 \csc^2 \theta = 5$ is $\sqrt{7}$ times
eccentricity of the ellipse $x^2 \csc^2 \theta + y^2 = 5$, then the	value of θ is
	1
a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$	d) $\frac{5\pi}{12}$
6 4	12
22	
24. Let H: $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentric	city is $\sqrt{3}$ and the length of the
u b	
latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lie	s on H. If β is the product of the
focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to	0
focal distances of the point $(\alpha, 0)$, then α	d) 172
a) 169 b) 170c) 171	

8 4

10

hapio

tance

01/6

0.

Conic Section