Работа 3.4.1

диа- и парамагнетики

Малиновский Владимир galqiwi@galqiwi.ru

Цель работы: измерение магнитной восприимчивости диа- и пара- магнитного образцов.

В работе используются: электромагнит, аналитические весы, милливеберметр, амперметр постоянного тока, реостаты и образцы.

Идея

Если поместить стержень, состоящий из какого-то вещества в постоянное магнитное поле, на него начнет действовать сила:

$$F = \frac{\chi B^2 s}{2\mu_0},$$

где F — втягивающая сила, s — площадь сечения образца, B — напряженность магнитного поля, χ — магнитная восприимчивость образца.

Рис. 1. Расположение образца в зазоре электромагнита

Если мы знаем B и F, мы можем узнать χ , что мы и сделаем.

Методика и результаты

Нумерация соответствует нумерации в лабнике.

1-2

Рис. 2. Схема экспериментальной установки

Проведем калибровку. Измерим зависимость магнитного потока Φ , проходящего через милливеберметр с площадью $s_0=72 {\rm cm}^2$ от тока, проходящего через электромагнит:

I, A	F, мВб	B, м T л
0.000	0.10	14
0.170	1.50	208
0.330	2.60	361
0.500	3.90	542
0.660	5.20	722
0.830	6.30	875
1.000	7.40	1028
1.170	8.10	1125

 $\Delta I=0.005\,\mathrm{A}, \Delta F=0.05\,\mathrm{mBf}, \Delta B=7\,\mathrm{mT}$ л

Индукция поля B находится как Φ/s_0 . Как видно из графика, зависимость почти линейная. По МНК

$$B = KI$$
,

где $K=(1.02\pm0.02)\, \frac{{
m Ta}}{{
m A}}.$ Но из-за того, что зависимость нелинейная, мы не можем просто использовать эту формулу. В дальнейшем я буду использовать значения тока, численно равные значениям тока, используемым при калибровке. Считая напряженность поля такой же, как при калибровке, ее погрешность будет

$$\sqrt{(\Delta B)^2 + (K\Delta I)^2} = 0.009 \, \mathrm{T}$$
л.

3-5

Для каждого образца я проарретировал весы и подвесил образец между магнитами. После этого я обнулил весы и подавал различные токи I на электромагнит, выписывая показания весов, сначала увеличивая I, а потом уменьшая. Данные на странице 4.

обработка-1-2

Построим графики Δm от B^2 и найдем χ из угла наклона.

Алюминий

I, A	B, Тл	B^2 , Тл ²	$\Delta B^2, \mathrm{T}\pi^2$	m_{up} , мг	m_{down} , мг
0.00	0.014	0.0002	0.0003	0.0	2.0
0.17	0.208	0.043	0.004	3.0	3.0
0.33	0.361	0.130	0.007	10.0	11.0
0.50	0.542	0.29	0.01	19.0	20.0
0.66	0.722	0.522	0.013	31.0	32.0
0.83	0.875	0.766	0.016	45.0	47.0
1.00	1.028	1.056	0.019	60.0	59.0
1.17	1.125	1.27	0.02	71.0	71.0

 $\Delta I=0.01\,\mathrm{A}, \Delta B=0.009\,\mathrm{T}$ л, $\Delta m_{up}=0.5\,\mathrm{m}$ г, $\Delta m_{down}=0.5\,\mathrm{m}$ г

Медь

I, A	B, Тл	B^2 , Тл ²	ΔB^2 , Тл ²	m_{up} , мг	m_{down} , мг
0.00	0.014	0.0002	0.0003	1.0	0.0
0.17	0.208	0.043	0.004	0.0	-3.0
0.33	0.361	0.130	0.007	-3.0	-5.0
0.50	0.542	0.29	0.01	-6.0	-9.0
0.66	0.722	0.522	0.013	-11.0	-15.0
0.83	0.875	0.766	0.016	-18.0	-21.0
1.00	1.028	1.056	0.019	-26.0	-26.0
1.17	1.125	1.27	0.02	-31.0	-32.0

 $\Delta I = 0.01 \, \mathrm{A}, \Delta B = 0.009 \, \mathrm{T}$ л, $\Delta m_{up} = 0.5 \, \mathrm{M}$ г, $\Delta m_{down} = 0.5 \, \mathrm{M}$ г

Графит

I, A	B, Тл	B^2 , Тл ²	$\Delta B^2, \mathrm{T}\pi^2$	m_{up} , мг	m_{down} , мг
0.00	0.014	0.0002	0.0003	0.0	-3.0
0.17	0.208	0.043	0.004	38.0	31.0
0.33	0.361	0.130	0.007	83.0	85.0
0.50	0.542	0.29	0.01	136.0	140.0
0.66	0.722	0.522	0.013	184.0	179.0
0.83	0.875	0.766	0.016	229.0	226.0
1.00	1.028	1.056	0.019	264.0	260.0
1.17	1.125	1.27	0.02	288.0	283.0

 $\Delta I=0.01\,\mathrm{A}, \Delta B=0.009\,\mathrm{T}$ л, $\Delta m_{up}=0.5\,\mathrm{m}$ г, $\Delta m_{down}=0.5\,\mathrm{m}$ г

 $\Delta B^2 = 2B\Delta B$

Алюминий и Медь:

Из МНК:

$$\begin{split} m &= K_1 B^2 \\ K_{1al} &= \frac{(57.3 \pm 0.8) + (57.7 \pm 1.3)}{2} \frac{\text{M}\Gamma}{\text{T}\pi^2} = (57.5 \pm 1.6) \frac{\text{M}\Gamma}{\text{T}\pi^2} \\ K_{1cu} &= \frac{(-24.0 \pm 0.5) + (-25.9 \pm 0.7)}{2} \frac{\text{M}\Gamma}{\text{T}\pi^2} = (-25.0 \pm 0.6) \frac{\text{M}\Gamma}{\text{T}\pi^2} \\ \chi &= \frac{2\mu_0 Kg}{s} = \frac{2\mu_0 Kg}{\pi d^2/4}, \end{split}$$

где g – ускорение свободного падения, s – площадь образца. $d_{al}=d_{cu}=d_c=1\,\mathrm{cm},$ где d – диаметр.

ототе вМ

$$\chi_{al} = (1.81 \pm 0.05) \, 10^{-5}$$

$$\chi_{cu} = (-7.85 \pm 0.19) \, 10^{-6}$$

При этом табличные значения:

$$\chi_{al} = (2.3) \, 10^{-5}$$

$$\chi_{cu} = (-6.4 \, \text{или} - 9.2) \, 10^{-6}$$

Мы правильно получили то, что медь диамагнетик, а алюминий парамагнетик.

Графит:

Видно, что график m от B^2 у графита нелинейный. Это значит, что в силе, прикладываемой к графиту максимальный вклад вносит не та сила, которую мы ожидали, и наша модель неприменима.

Вывод

С помощью метода Гюи мы измерили магнитную восприимчивость меди и алюминия и поняли, что медь диамагнетик, а алюминий парамагнетик. Магнитная восприимчивость аллюминия отличается не больше, чем на 22% от табличной, а восприимчивость меди лежит между двумя табличными значениями из различных источников. Промерить магнитную восприимчивость графита этим методом не вышло, поскольку в реальной установке возникают неизвестные пока мне эффекты, которые мы не учитываем в модели.