ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 6

Aufgabe 19. (4 Punkte)

Es gelten die Generalvoraussetzungen der Schaudertheorie aus der Vorlesung. Sei $u \in C^{2,\alpha}(\overline{\Omega})$ die einzige Lösung des Randwertproblems

$$\begin{cases} a^{ij}u_{ij} + b^iu_i + du &= f \text{ in } \Omega, \\ u &= \varphi \text{ auf } \partial\Omega \end{cases}$$

in $C^{2,\alpha}(\overline{\Omega})$. Aufgrund des Beweises von Theorem 2.5 gilt dann auch ohne eine Vorzeichenbedingung an d

$$||u||_{C^{2,\alpha}(\Omega)} \le c \cdot \{||f||_{C^{0,\alpha}(\Omega)} + ||\varphi||_{C^{2,\alpha}(\partial\Omega)} + ||u||_{C^{0}(\Omega)} \}.$$

Zeige, dass aufgrund der Eindeutigkeit der Lösung sogar

$$||u||_{C^{2,\alpha}(\Omega)} \le c \cdot \left\{ ||f||_{C^{0,\alpha}(\Omega)} + ||\varphi||_{C^{2,\alpha}(\partial\Omega)} \right\}$$

gilt.

Hinweis: Passe Bemerkung 1.10 aus der Vorlesung Partielle Differentialgleichungen Ia an.

Aufgabe 20. (4 Punkte)

Sei $\overset{\smile}{\Omega} \subset \mathbb{R}^n$ offen und beschränkt, $u \in W^{2,p}_0(\Omega), \, 1 Dann gilt$

$$||D^2u||_{L^p(\Omega)} \le c(n,p) \cdot ||\Delta u||_{L^p(\Omega)}.$$

Sei $Lu = a^{ij}u_{ij}$ für ein x-unabhängiges a^{ij} mit $a^{ij}\xi_i\xi_j \ge \lambda |\xi|^2$ für alle $\xi \in \mathbb{R}^n$. Bestimme damit c_1 , so dass

$$||D^2u||_{L^p(\Omega)} \le c_1 \cdot ||Lu||_{L^p(\Omega)}$$

gilt. Wie hängt c_1 von a^{ij} und λ ab?

Hinweis: Transformiere L auf den Laplaceoperator und benutze, dass c(n,p) nicht von Ω abhängt.

Aufgabe 21. (4 Punkte)

Angenommen, Lemma 3.2 gilt für R=1 und T=1. Zeige damit Lemma 3.2 für beliebige R>0 und T>0.

Hinweis: Skaliere.

Aufgabe 22. (4 Punkte)

Angenommen, Theorem 3.6 gilt im Spezialfall

$$R = 1$$
, $k = 0$ und $\sup_{\mathcal{P}(\Omega \times (0,T))} u^+ \le 0$.

Zeige damit die allgemeine Variante des Theorems.

Abgabe: Bis Dienstag, 12.12.2017, 10:00 Uhr, in die Mappe vor Büro F 402.