Communication Systems Design

Lab 6: Cell Search and MIB Recovery

(Part 2)

Dr. Wu Guang

Email: wug@sustech.edu.cn

Electrical & Electronic Engineering Southern University of Science and Technology

Understanding LTE: Physical layer

- 1. Frame structure
- 2. LTE Channel
- 3. LTE downlink channel
- 4. LTE uplink channel

Flow chart of received signal processing

How to determine TDD or FDD?

Frame Structure in physical layer

FDD/TDD Frame in time-domain

FDD/TDD Frame in freq.-domain

A resource block: a group of resource elements corresponding to 12 subcarriers or 180 kHz in the frequency domain and one 0.5ms slot in the time domain.

OFDM parameters for downlink transmission subframe duration (1 ms) subcarrier spacing (15 kHz)						
Bandwidth (MHz)	1.4	3	5	10	15	20
Sampling frequency (MHz)	1.92	3.84	7.68	15.36	23.04	30.72
FFT size	128	256	512	1024	1536	2048
Number of resource blocks	6	15	25	50	75	100
OFDM symbols per slot			14/12		(Normal/extended)	
CP length			4.7/5.6		(Normal/e	extended)


```
% *Signal Capture and Processing*
  enbDefault = enb:
while rxsim.numBurstCaptures
     % Set default LTE parameters
                                                                                                    K>> enb
       enb = enbDefault:
       rxWaveform = eNodeBOutput;
                                                                                                    enb =
     % Show power spectral density of captured burst
     hsa.SampleRate = rxsim.RadioFrontEndSampleRate;
                                                                                                                 PDSCH: [1x1 struct]
     step (hsa, rxWaveform);
                                                                                                           DuplexMode: 'FDD'
     % Perform frequency offset correction for known cell ID
                                                                                                         CyclicPrefix: 'Normal'
     frequencvOffset = lteFrequencvOffset(enb,rxWaveform):
                                                                                                              CellRefP: 4
     rxWaveform = lteFrequencyCorrect(enb,rxWaveform,frequencyOffset):
                                                                                                                 NDLRB: 50
     fprintf('\nCorrected a frequency offset of %i Hz.\n', frequencyOffset)
     % Perform the blind cell How to perform cell search with PSS/SSS here?
     % Use 'PostFFT' SSS detection method to improve speed
     cellSearch. SSSDetection = 'PostFFT': cellSearch. MaxCellCount = 1:
                                                                                                    enb =
     [NCellID, frameOffset] = <u>lteCellSearch(enb, rxWaveform, cellSearch)</u>
     fprintf('Detected a cell identity of %i.\n', NCellID);
     enb.NCellID = NCellID: % From lteCellSearch
                                                                                                                 PDSCH: [1x1 struct]
                                                                                                           DuplexMode: 'FDD'
     % Sync the captured samples to the start of an LTE frame, and trim off
                                                                                                         CvclicPrefix: 'Normal'
     % any samples that are part of an incomplete frame.
      rxWaveform = rxWaveform(frameOffset+1:end,:):
                                                                                                              CellRefP: 4
     tailSamples = mod(length(rxWaveform), samplesPerFrame);
                                                                                                                 NDLRB: 50
     rxWaveform = rxWaveform(1:end-tailSamples,:);
                                                                                                               NCellID: 88
      enb.NSubframe = 0:
     fprintf('Corrected a timing offset of %i samples.\n',frameOffset)
```


Downlink channel model

Cell search and synchronization


```
% For each frame decode the MIB. PDSCH and DL-SCH
for frame = 0: (numFullFrames-1)
    fprintf('\nPerforming DL-SCH Decode for frame %i of %i in burst:\n',
       frame+1.numFullFrames)
                                                                                                        enb =
   % Extract subframe #0 from each frame of the received resource grid
                                                                                                                       PDSCH: [1x1 struct]
    enb. NSubframe = 0;
   rxsf = rxGrid(:,frame*LFrame+(1:Lsf),:);
                                                                                                                DuplexMode: 'FDD'
    hestsf = hest(:,frame*LFrame+(1:Lsf),:,:):
                                                                                                             CyclicPrefix: 'Normal'
   % PBCH demodulation.
                                                                                                                  CellRefP: 4
    enb.CellRefP = 4:
                                                                                                                       NDLRB: 50
    pbchIndices = ltePBCHIndices(enb):
    [pbchRx, pbchHest] = lteExtractResources(pbchIndices, rxsf, hestsf):
                                                                                                                    NCe111D: 88
    [~, ~, nfmod4, mib, CellRefP] = ltePBCHDecode(enb, pbchRx, pbchHest, nest);
                                                                                                                 NSubframe: 0
   % If PBCH decoding successful CellRefP~=0 then update info
    if "CellRefP
       fprintf(' No PBCH detected for frame.\n'):
        continue:
                                                                                                        enb =
    enb.CellRefP = CellRefP: % From ltePBCHDecode
                                                                                                                        PDSCH: [1x1 struct]
   % Decode the MIB to get current frame number
                                                                                                                 DuplexMode: 'FDD'
    enb = lteMIB(mib, enb):
                                                                                                              CyclicPrefix: 'Normal'
   % Incorporate the nfmod4 value output from the function
                                                                                                                    CellRefP: 1
    % ltePBCHDecode, as the NFrame value established from the MHB
                                                                                                                    → NDLRB: 50
    % is the system frame number modulo 4.
    enb. NFrame = enb. NFrame+nfmod4:
                                                                                                                     NCellID: 88
    fprintf(' Successful MIB Decode, \n')
                                                                                                                  NSubframe: 0
    fprintf(' Frame number: %d.\n', enb. NFrame);
                                                                                                             PHICHDuration: 'Normal'
   % The eNodeB transmission bandwidth may be greater than the
                                                                                                                           Ng: 'Sixth'
   % captured bandwidth, so limit the bandwidth for processing
                                                                                                                      NFrame: 700
    enb. NDLRB = min(enbDefault.NDLRB, enb. NDLRB);
```

Assignments

- Read the example 'Transmit and Receive LTE MIMO Using a Single Analog Devices AD9361/AD9364' in LTE System Toolbox.
- Explain the functions of the following six subcomponents respectively,
 - (1) IteCellSearch.m
 - (2) ItePBCHDecode.m
 - (3) IteResourceGridSize.m
 - (4) ItePCFICHDecode.m
 - (5) ItePDCCHDecode.m
 - (6) ItePDSCHDecode.m

Reception Process

Questions

