Social-Network Graphs

Last Time ...

- Social Network Graphs
- Betweenness
 - ► Girvan-Newman Algorithm
- Graph Laplacian
 - ▶ Spectral Bisection
 - $\rightarrow \lambda_2, w_2$
- ▶ Eigenvalue problems

Projects

- Yelp data challenge
 - ► http://www.yelp.com/dataset_challenge
- Global Disease Monitoring and Forecasting with Wikipedia
 - ▶ Recent paper, PLoS Nov '14

Direct discovery of communities

- Although partitioning the graph using betweenness is effective, it has some drawbacks
 - ▶ Not possible to place an individual in two different communities
 - Everyone is assigned a community
- Alternatively, discover communities by looking for subsets of the nodes that have a relatively large number of edges among them
 - ▶ Finding cliques → NP Complete
 - ► Easier to find complete bipartite subgraphs
 - Counting tringles

Why count triangles

Clustering coefficient:

given an undirected graph
$$G = (V, E)$$
 cc(v) = fraction of v's neighbors who are neighbors themselves
$$= \frac{|\{(u, w) \in E \mid u \in N(v) \land w \in N(v)\}|}{\binom{d_v}{2}}$$
 number of Δs incident on v

Why clustering coefficients?

Captures how tight-knit the network is around a node

Network Cohesion

- Tightly knit communities foster more trust, social norms

|CS 5965/6965 - Big Data Systems - Fall 2014

How to count triangles

Sequential

```
foreach v \in V foreach u, w \in N(v) if (u, w) \in E triangles[v]++
```

$$\sum_{v \in V} d_v^2$$

Even for sparse graphs can be quadratic if one vertex has high degree

Parallel Version

Parallelize the edge checking phase

- ▶ Map 1: foreach v generate (v, N(v))
- ▶ Reduce 1: Input (v, N(v))

Output: all 2 paths $((v_1, v_2), u)$ where $v_1, v_2 \in N(u)$

- ▶ Map 2: generate $((v_1, v_2), u)$ and $((v_1, v_2), \phi)$ for $(v_1, v_2) \in E$
- ▶ Reduce 2: input $((v_1, v_2), u_1, u_2, ..., u_k, \phi)$

If ϕ is part of the input, then increment triangle count by 1/3

Data skew

- How much parallelism can we achieve?
 - Generate all paths to check in parallel
 - The runtime becomes $\max_{v \in V} \overline{d_v^2}$
- Naïve parallelization does not help with data skew
 - ► Some nodes will have very high degree
 - Remember power-log distribution
 - Most reducers will be done quickly
 - A few will take forever
 - ➤ Curse of the last reducer

Adapting the algorithm

- Dealing with skew directly
 - ► Currently each triangle is counted 3 times
 - ▶ Running time is quadratic in the degree of the vertex
 - ▶ Idea: count each triangle once, by the lowest degree vertex

How to count Δs better

```
Sequential version [Shank '07]
```

```
foreach v \in V

foreach u, w \in N(v)

if d(u) > d(v) \& d(w) > d(v)

if (u, w) \in E

triangles[v]++
```

Dealing with skew

Why does it help?

- Partition nodes into two groups:
 - ▶ Low: $\mathcal{L} = \{v : d_v \le \sqrt{m}\}$
 - $\blacktriangleright \text{ High: } \mathcal{H} = \{v: d_v > \sqrt{m} \}$
- \blacktriangleright There are at most n low nodes; each produces at most m paths
- ▶ There are at most $2\sqrt{m}$ high nodes
- ▶ These two are identical
- no mapper can produce substantially more work than others
- ▶ Total work is $\mathcal{O}(m^{3/2})$, which is optimal

Triangles with all \mathcal{H} nodes

- ▶ There are only $\mathcal{O}(\sqrt{m})$ \mathcal{H} nodes
- ▶ Therefore, there are at most $\mathcal{O}(m^{3/2})$ triangles with all \mathcal{H} nodes
- ▶ Using E, check if these triangles exist in O(1) time
- ▶ Total time $\mathcal{O}(m^{3/2})$

CS 5965/6965 - Big Data Systems - Fall 2014

Triangles with all at least 1 £ node

- ▶ Consider all m edges $-\mathcal{O}(m)$
 - ▶ Given an edge (v_1, v_2)
 - ▶ Ignore if $v_1, v_2 \in \mathcal{H}$
 - ▶ Consider the smaller node, say $v_1 < v_2$
 - ▶ This node has k nodes in its adjacency list, with $k < \sqrt{m}$ $\mathcal{O}(\sqrt{m})$
 - ▶ Count triangle with node u_i iff edge (v_2, u_i) exists and $v_1 < u_i$
- \triangleright $\mathcal{O}(m^{3/2})$