EPFL

SEMESTER PROJECT

Internodes

Fabio Matti

supervised by Dr Guillaume Anciaux Raquel Dantas Batista

1 Introduction

THE INTERNODES METHOD FOR CONTACT ME-2 **CHANICS**

2.1 RADIAL BASIS INTERPOLATION

Interpolant of $g:\mathbb{R}^d\to\mathbb{R}$ at interpolation nodes ξ_1,\dots,ξ_M with radius parameter

$$\Pi(\mathbf{x}) = \sum_{m=1}^{M} g_{m} \phi(\|\mathbf{x} - \boldsymbol{\xi}_{m}\|, r)$$
 (2.1)

FIGURE 2.1 – Radial basis functions

Wendland C² radial basis function

$$\phi(\delta) = (1 - \delta)_{+}^{4} (1 + 4\delta) \tag{2.2}$$

with $\delta = \|\mathbf{x} - \mathbf{\xi}_{\mathbf{m}}\| / \mathbf{r}$ are well suited.

Denoting $\mathbf{g}_{\zeta} = (g(\zeta_1), \dots, g(\zeta_N))^\mathsf{T}$ and $\mathbf{g}_{\xi} = (g(\xi_1), \dots, g(\xi_M))^\mathsf{T}$ we can write

$$\mathbf{g}_{\zeta} = \mathbf{D}_{\mathrm{NN}}^{-1} \mathbf{\Phi}_{\mathrm{NM}} \mathbf{\Phi}_{\mathrm{MM}}^{-1} \mathbf{g}_{\xi} \tag{2.3}$$

with the radial basis matrices

$$(\Phi_{MM})_{ij} = \phi(\|\xi_i - \xi_j\|, r_j) \quad i, j \in \{1, ..., M\}$$

$$(\Phi_{NM})_{ij} = \phi(\|\zeta_i - \xi_j\|, r_j) \quad i \in \{1, ..., N\}, j \in \{1, ..., M\}$$

$$(2.4)$$

$$(\Phi_{NM})_{ij} = \phi(\|\zeta_i - \xi_j\|, r_j) \quad i \in \{1, \dots, N\}, \ j \in \{1, \dots, M\}$$
 (2.5)

Deparis et. al. [?] proposed two modifications:

- Localized radius parameters for each node $r_j, j \in \{1, \dots, M\}$
- Rescaling with \mathbf{D}_{NN}^{-1} to obtain exact interpolation of constant functions

2.2 RADIUS PARAMETERS

Conditions [?]:

Limited number of supported interpolation nodes:

$$\forall i : \#\{j \neq i : \|\xi_i - \xi_j\| < r_i\} < 1/\phi(c)$$
 (2.6a)

Interpolation nodes not be too deep in another support:

$$\exists c \in (0,1), \forall i \neq j : \|\xi_i - \xi_j\| \geqslant cr_j \tag{2.6b}$$

All reference nodes in support of interpolation node:

$$\exists C \in (c,1), \forall i, \exists j : \|\zeta_i - \xi_j\| \leqslant Cr_j$$
 (2.6c)

FIGURE 2.2 – Finding radius parameters

Distance matrix between nodes $\{\xi_1, \xi_2, ...\}$ and $\{\zeta_1, \zeta_2, ...\}$ is defined as

$$\mathbf{D}^{\xi,\zeta}(i,j) = \|\xi_i - \zeta_j\| \tag{2.7}$$

Algorithm 1 Computation of radius parameters

Require: Positions of interpolation nodes $\{\xi_1, \xi_2, ...\}$

Require: Radial basis function $\phi : \mathbb{R} \to \mathbb{R}_{\geq 0}$

Require: Constant $c \in (0, C)$

- 1: Compute distance matrix $\mathbf{D}^{\xi,\xi}$ defined in (2.7)
- 2: For each node i, compute distance to closest neighbor $d_i = \min_{j \neq i} \mathbf{D}^{\xi, \xi}(i, j)$
- 3: while $c \leq C$ do
- 4: For each node i, let $r_i \leftarrow d_i/c$ \triangleright Condition (2.6b)
- 5: For each node i, count $n_i = \#\{j \neq i : \mathbf{D}^{\xi,\xi}(i,j) < r_i\}$
- 6: **if** For all nodes i, $n_i < 1/\phi(c)$ **then** \triangleright Condition (2.6a)
- 7: **break**
- 8: end if
- 9: Increase c
- 10: end while
- 11: **return** Radius parameters $\{r_1, r_2, ...\}$

This algorithm has three main benefits over the previous implementation:

- For uniform meshes (constant mesh size) all radial basis parameters will be the exact same
- The computation of the distance matrix is done outside the while-loops
- The algorithm will find interface nodes for a wider class of examples

Algorithm 2 Search for interpolation nodes

```
Require: Positions of primary nodes \{\xi_1, \xi_2, ...\}
```

Require: Positions of secondary nodes $\{\zeta_1, \zeta_2, ...\}$

Require: Radial basis function $\phi : \mathbb{R}^d \to \mathbb{R}_{\geqslant 0}$

Require: Constant $C \in (0,1)$

- 1: Let $\mathcal{I} = \{1, 2, ...\}$ and $\mathcal{J} = \{1, 2, ...\}$ denote an index set of active nodes
- 2: Compute distance matrix $\mathbf{D}^{\xi,\zeta}$ defined in (2.7)
- 3: **while** \mathfrak{I} or \mathfrak{J} were modified in the previous iteration **do**
- 4: Obtain radial basis parameters r_i^{ξ} , $i \in \mathcal{I}$ and r_i^{ζ} , $j \in \mathcal{J}$ using Algorithm 1
- 5: Remove isolated nodes $i \in \mathcal{I}$ with $\min_{j \in \mathcal{J}} \mathbf{D}^{\xi, \zeta}(i, j) \geqslant Cr_j^{\zeta} \triangleright \text{Condition (2.6c)}$
- 6: Remove isolated nodes $j \in \mathcal{J}$ with $\min_{i \in \mathcal{I}} \mathbf{D}^{\xi,\zeta}(i,j) \geqslant Cr_i^{\xi} \triangleright \text{Condition (2.6c)}$
- 7: end while
- 8: **return** Sets of active nodes \mathcal{I} and \mathcal{J} with radius parameters r_i^{ξ} , $i \in \mathcal{I}$ and r_j^{ζ} , $j \in \mathcal{J}$

2.3 STRONG FORM

The strong form of the problem is formulated for the displacement field **u**:

$$\begin{cases} -\text{div}(\sigma(u)) = \mathbf{f} & \text{Differential equation (Cauchy stress tensor } \sigma) \\ \mathbf{u} = \mathbf{g} & \text{Dirichlet boundary conditions (displacement field } \mathbf{g}) \\ \sigma(\mathbf{u})\mathbf{n} = \mathbf{t} & \text{Neumann boundary conditions (surface traction } \mathbf{t}) \\ \sigma(\mathbf{u})\mathbf{n} = \lambda & \text{Lagrange multipliers } \lambda \text{ defined along interface } \Gamma \\ \lambda \cdot \mathbf{n} \leqslant 0 & \text{Hertz-Signorini-Moreau condition enforced along interface } \Gamma \end{cases}$$

2.4 WEAK FORM

The weak formulation results in a linear system for the displacements \mathbf{u} and Lagrange multipliers λ [?]:

$$\underbrace{\begin{bmatrix} K_{\Omega_{1}\Omega_{1}} & K_{\Omega_{1}\Gamma_{1}} & 0 & 0 & 0 \\ K_{\Gamma_{1}\Omega_{1}} & K_{\Gamma_{1}\Gamma_{1}} & 0 & 0 & -M_{\Gamma_{1}} \\ 0 & 0 & K_{\Omega_{2}\Omega_{2}} & K_{\Omega_{2}\Gamma_{2}} & 0 \\ 0 & 0 & K_{\Gamma_{2}\Omega_{2}} & K_{\Gamma_{2}\Gamma_{2}} & -M_{\Gamma_{2}}R_{\Gamma_{2}\Gamma_{1}} \\ 0 & I & 0 & -R_{\Gamma_{1}\Gamma_{2}} & 0 \end{bmatrix}}_{A \text{ (INTERNODES matrix)}} \underbrace{\begin{bmatrix} \mathbf{u}_{\Omega_{1}} \\ \mathbf{u}_{\Gamma_{1}} \\ \mathbf{u}_{\Omega_{2}} \\ \mathbf{u}_{\Gamma_{2}} \\ \lambda \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} \mathbf{f}_{\Omega_{1}} \\ \mathbf{f}_{\Gamma_{1}} \\ \mathbf{f}_{\Omega_{2}} \\ \mathbf{f}_{\Gamma_{2}} \\ \mathbf{d} \end{bmatrix}}_{b}$$
 (2.9)

M: Interface mass matrices	(2.10)
K: Stiffness matrices	(2.11)
f: Body force	(2.12)
d : Nodal gaps in configuration	(2.13)

2.5 CONTACT ALGORITHM

Algorithm 3 Contact algorithm for interrnodes method

Require: Positions of primary nodes $\{\xi_1, \xi_2, ...\}$ **Require:** Positions of secondary nodes $\{\zeta_1, \zeta_2, ...\}$ **Require:** Interface candidate index sets \mathcal{I}^C and \mathcal{J}^C

1: **while** \mathcal{I}^{C} or \mathcal{J}^{C} were modified in the previous iteration **do**

- Determine interface nodes \mathcal{I} and \mathcal{J} with radius parameters r_i^{ξ} , $i \in \mathcal{I}$ and r_j^{ζ} , $j \in \mathcal{J}$ using Algorithm 2 on the candidate index sets \mathcal{I}^C and \mathcal{J}^C
- 3: Assemble the matrix **A** and right-hand side **b** of (2.9)
- 4: Solve (2.9) to obtain displacements \mathbf{u} and Lagarnge multipliers λ
- 5: Update the interface candidate nodes \mathfrak{I}^{C} and \mathfrak{J}^{C} with \mathfrak{I} and \mathfrak{J} , respectively, where all nodes in tension have been removed and all interpenetrating nodes have been added
- 6: end while

3 EXPERIMENTS

4 ADJACENT WORK

5 DISCUSSION

Flaws when same nodes that were dumped are added back in (no convergence)

Usually interpenetrating nodes won't be considered part of interface in next iteration

FIGURE 3.1 – Normal displacements

FIGURE 3.2 – Contact radius

 ${\tt FIGURE~4.1-Combine}$ linear and quadratic penalty resolution by templating the classes with a penalty function.