

#### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

# РТУ МИРЭА

Институт информационных технологий (ИТ)

Кафедра инструментального и прикладного программного обеспечения (ИиППО)

# ОТЧЁТ ПО ПРАКТИЧЕСКИМ РАБОТАМ

# по дисциплине «Проектирование информационных систем»

на тему

# «Автоматизированный гардероб»

| Выполнил студент группы ИКБО-20- | -21      |          |         | Сидоров С.Д            |
|----------------------------------|----------|----------|---------|------------------------|
| Принял<br>Ассистент              |          |          |         | Литвинов В.В           |
| Практические работы выполнены    | <u> </u> | <u> </u> | 2024 г. | (подпись студента)     |
| «Зачтено»                        | <u> </u> | <u> </u> | 2024 г. | (подпись руководителя) |

# Содержание

| ПРАКТИЧЕСКАЯ РАБОТА №1                                           | 6         |
|------------------------------------------------------------------|-----------|
| Введение                                                         | 6         |
| 1 Общие сведения                                                 | 7         |
| 1.1 Список терминов и определений                                | 7         |
| 2 Требования к системе                                           | 9         |
| 2.1 Требования к системе в целом                                 | 9         |
| 2.1.1 Требования к структуре и функционированию системы          | 9         |
| 2.1.2 Требования к численности и квалификации персонала сис      | стемы и   |
| режиму его работы                                                | 9         |
| 2.1.3 Показатели назначения                                      | 10        |
| 2.1.4 Требования к надежности                                    | 10        |
| 2.1.5 Требования к безопасности                                  | 11        |
| 2.1.6 Требования к эргономике и технической эстетике             | 11        |
| 2.1.8 Требования к эксплуатации, техническому обслуживанию, ре   | монту и   |
| хранению компонентов системы                                     | 11        |
| 2.1.9 Требования к защите информации от несанкционированного дос | ступа. 12 |
| 2.1.10 Требования по сохранности информации при авариях          | 12        |
| 2.1.11 Требования к защите от влияния внешних воздействий        | 12        |
| 2.1.12 Требования к патентной чистоте                            | 12        |
| 2.1.14 Дополнительные требования                                 | 12        |
| 2.2 Требования к функциям (задачам), выполняемым системой        | 12        |
| 2.3 Требования к видам обеспечения                               | 13        |
| 2.3.1 Требования к математическому обеспечению системы           | 13        |
| 2.3.2 Требования к информационному обеспечению системы           | 14        |
| 2.3.3 Требования к лингвистическому обеспечению системы          | 14        |
| 2.3.5 Требования к техническому обеспечению системы              | 14        |
| 2.3.6 Требования к метрологическому обеспечению системы          | 15        |
| 2.3.7 Требования к организационному обеспечению системы          | 15        |
| 2.3.8 Требования к методическому обеспечению системы             | 15        |

| ПРАКТИЧЕСКАЯ РАБОТА №2                                            | . 16 |
|-------------------------------------------------------------------|------|
| Введение                                                          | . 16 |
| 1. Список терминов и определений                                  | 17   |
| 2. Результат выполнения задания                                   | .18  |
| ПРАКТИЧЕСКАЯ РАБОТА №3                                            | . 21 |
| Введение                                                          | .21  |
| 1 Общие сведения                                                  | 22   |
| 1.1 Полное наименование системы и ее условное обозначение         | .22  |
| 1.2 Номер договора                                                | 22   |
| 1.3 Наименование организаций – Заказчика и Разработчика           | 22   |
| 1.4 Основания для разработки системы                              | 22   |
| 1.5 Плановые сроки начала и окончания работы по созданию системы  | .22  |
| 1.6 Источники и порядок финансирования работ                      | . 22 |
| 1.7 Порядок оформления и предъявления заказчику результатов работ | ПО   |
| созданию системы                                                  | . 22 |
| 1.8 Перечень нормативно-технических документов, методических      | 23   |
| материалов, использованных при разработке ТЗ                      | . 23 |
| 1.9 Определения, обозначения и сокращения                         | 23   |
| 1.10 Описание бизнес-ролей                                        | . 24 |
| 2 Назначение и цели создания (развития) системы                   | 26   |
| 2.1. Назначение системы                                           | . 26 |
| 2.2 Цели создания системы                                         | . 26 |
| 3 Характеристика объекта автоматизации                            | . 27 |
| 3.1 Краткие сведения об объекте автоматизации                     | . 27 |
| 3.2 Сведения об условиях эксплуатации объекта автоматизации       | .27  |
| 4 Требования к системе                                            | . 28 |
| 4.1 Требования к системе в целом                                  | 28   |
| 4.1.1 Требования к структуре и функционированию системы           | . 28 |
| 4.1.2 Требования к численности и квалификации персонала системы   | і и  |
| режиму его работы                                                 | . 28 |

| 4.1.3 Показатели назначения                                              |
|--------------------------------------------------------------------------|
| 4.1.4 Требования к надежности                                            |
| 4.1.5 Требования к безопасности                                          |
| 4.1.6 Требования к эргономике и технической эстетике                     |
| 4.1.8 Требования к эксплуатации, техническому обслуживанию, ремонту и    |
| хранению компонентов системы                                             |
| 4.1.9 Требования к защите информации от несанкционированного доступа. 31 |
| 4.1.10 Требования по сохранности информации при авариях                  |
| 4.1.11 Требования к защите от влияния внешних воздействий                |
| 4.1.12 Требования к патентной чистоте                                    |
| 4.1.14 Дополнительные требования                                         |
| 4.2 Требования к функциям (задачам), выполняемым системой                |
| 4.4 Требования к видам обеспечения                                       |
| 4.4.1 Требования к математическому обеспечению системы                   |
| 4.4.2 Требования к информационному обеспечению системы                   |
| 4.4.3 Требования к лингвистическому обеспечению системы                  |
| 4.4.5 Требования к техническому обеспечению системы                      |
| 4.4.6 Требования к метрологическому обеспечению системы                  |
| 4.4.7 Требования к организационному обеспечению системы                  |
| 4.4.8 Требования к методическому обеспечению системы                     |
| 5 Состав и содержание работ по созданию (развитию) системы               |
| 6 Порядок контроля и приёмки системы                                     |
| 7 Требования к составу и содержанию работ по подготовке объекта          |
| автоматизации к вводу системы в действие40                               |
| 7.1 Приведение поступающей в систему информации к виду, пригодному для   |
| обработки с помощью ЭВМ40                                                |
| 7.2 Изменения, которые необходимо осуществить в объекте автоматизации 40 |
| 7.3 Создание условий функционирования объекта автоматизации, 40          |
| при которых гарантируется соответствие создаваемой системы требованиям   |
| содержащимся в ТЗ40                                                      |
|                                                                          |

| 7.4 Создание необходимых для функционирования системы подразделе | эний и |
|------------------------------------------------------------------|--------|
| служб                                                            | 40     |
| 7.5 Сроки и порядок комплектования штатов и обучения персонала   | 40     |
| 8 Требования к документированию                                  | 41     |
| 9 Источники разработки                                           | 42     |
| ПРАКТИЧЕСКАЯ РАБОТА №4                                           | 43     |
| Введение                                                         | 43     |
| Цель создания ИС                                                 | 43     |
| Краткое описание                                                 | 43     |
| Способ создания ИС                                               | 44     |
| Средства создания ИС                                             | 44     |
| Проектирование контекстной диаграммы функциональной модели ИС    | 45     |
| Вывод                                                            | 46     |
| ПРАКТИЧЕСКАЯ РАБОТА №5                                           | 47     |
| ПРАКТИЧЕСКАЯ РАБОТА №6                                           | 50     |
| ПРАКТИЧЕСКАЯ РАБОТА №7                                           | 53     |
| ПРАКТИЧЕСКАЯ РАБОТА №8                                           | 56     |
| ПРАКТИЧЕСКАЯ РАБОТА №9                                           | 58     |
| 9.1 Наполнение системы                                           | 58     |
| 9.2 Математические расчеты                                       | 62     |
| 9.2.1 Разбиение данных                                           | 62     |
| 9.2.2 Математическое ожидание информационного блока системы      | 63     |
| 9.2.3 Дисперсия информационного блока системы                    | 63     |
| 9.2.4 Среднеквадратичное отклонение                              | 63     |
| 9.2.5 Энтропия системы                                           | 64     |
| 9.3 Итоговые параметры ИС                                        | 64     |
| ПРАКТИЧЕСКАЯ РАБОТА №10                                          | 65     |
| Глоссарий                                                        | 65     |

#### ПРАКТИЧЕСКАЯ РАБОТА №1

#### Введение

В настоящее время большинство заведений предоставляющих услуги людям обладают системой хранения личных вещей клиентов в зимнее время. В основном надобность таких систем наступает в холодное время годно, начиная с октября по апрель. В такое время большинство посетителей данных заведений желают оставить тяжёлые куртки, шапки и другие предметы верхней одежды в специальной зоне, чтобы облегчить своё время препровождение.

Чаще всего работоспособность системы хранения обеспечивает несколько человек, чья работа заключается в своевременном обмене личной вещи посетителя на какой-либо идентификатор, позволяющий определить, где находится эта вещь. Данный подход отлично себя зарекомендовал в заведениях с небольшим потоком посетителей, таких как кафе или спортзал, которые за счет небольшой проходимости обеспечивают достаточную скорость обработки каждого посетителя. Однако, в местах с большим скоплением людей, использование простого человеческого труда не позволяет создать комфортные условия для взаимодействия с системой хранения.

Информационная система «Автоматизированный гардероб» спроектирована, чтобы уменьшить время получения или сдачи личных вещей в систему хранения, а также для возможности удобного отслеживания её переполнения, свободных мест, а также наличия неисправных блоков.

Целью практической работы является формирование требований к описанной выше системе. Заданием практической работы является описание объекта автоматизации, формулировка основных задач автоматизации объекта, описание основных параметров проектируемой информационной системы, описание путей достижения целей. Кроме того, необходимо сформулировать требования к информационной системе.

# 1 Общие сведения

#### 1.1 Список терминов и определений

Гардероб — автоматизированная система управления хранением верхней одежды посетителей отдельной организации.

АГР (Автоматизированный гардеробный ряд) — отдельная гардеробная линия, обладающая собственной внутренней нумерацией блоков, системой перемещения блоков, системой связи с панелью управления.

БД (База Данных) — представленная в объективной форме совокупность самостоятельных материалов, систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ).

ИП (Интернет-Портал) — многофункциональная площадка с разнообразным интерактивным сервисом, включающая в себя обширные возможности и услуги, в том числе путем предоставления пользователям ссылок на другие сайты.

ИС (Информационная Система) — система, предназначенная для хранения, поиска и обработки информации, и соответствующие организационные ресурсы (человеческие, технические, финансовые и т. д.), которые обеспечивают и распространяют информацию.

СУБД (Система Управления Базами Данных) — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных.

MS (Microsoft) – одна из крупнейших транснациональных компаний по производству проприетарного программного обеспечения для различного рода вычислительной техники.

CSS (Cascading Style Sheets) – формальный язык описания внешнего вида документа, написанного с использованием языка разметки.

HTML (Hyper Text Markup Language) – стандартизированный язык разметки веб-страниц во Всемирной паутине.

PHP (Hypertext Preprocessor) – скриптовый язык общего назначения, интенсивно применяемый для разработки веб-приложений.

# Описание бизнес-ролей

Гость – пользователь, имеющий доступ к данным о состоянии АГР, возможность получить или сдать верхнюю одежду в гардероб, запрашивает данные об ячейке хранения с использованием собственного уникального идентификатора.

Работник гардероба - пользователь, обладающий доступом к данным о состоянии АГР, отвечающий за перемещение хранимых вещей от гостя к ячейке. Взаимодействует с данными о запрашиваемой ячейке.

Администратор – специалист, отвечающий за поддержание работы гардероба и за состояние системы передачи данных между АГР и пользователями.

# 2 Требования к системе

#### 2.1 Требования к системе в целом

#### 2.1.1 Требования к структуре и функционированию системы

Система имеет модульную структуру, включающую в себя следующие модули:

- модуль раздела «Получить/Сдать»;
- модуль раздела «Личный кабинет»;
- модуль работы автоматизации;
- модуль работы с базой данных;
- модуль раздела «Настройки»;
- модуль раздела «Управление АГР»;
- модуль раздела «Текущее состояние»;

Система должна выполнять следующие функции:

- осуществление автоматической выдачи позиции нахождения ближайшей свободной ячейки хранения;
- осуществление автоматической выдачи позиции нахождения необходимой ячейки хранения;
- осуществление пользовательского ввода данных об результате операции по изменению состояния системы;
- обработка трафика среднего объема;
- информирование о сбоях;
- мониторинг активности пользователей;
- осуществление настройки системы в соответствии с составом АГР

# 2.1.2 Требования к численности и квалификации персонала системы и режиму его работы

Для поддержания работоспособности системы и эксплуатации вебинтерфейса системы управления гардеробом от персонала не должно требоваться специальных технических навыков, знания технологий или программных продуктов, за исключением общих навыков работы с персональным компьютером и стандартным веб-браузером (например, MS Internet Explorer 7.0 или выше).

Режим работы администраторов зависит от работы организации, использующей гардероб, за исключением работы по устранению ошибок ПО, которые были обнаружены в период экспериментальной эксплуатации в нерабочее время.

Режим работы других пользователей также зависит от работы организации, использующей гардероб.

#### 2.1.3 Показатели назначения

Подсистемы, разработанные и доработанные в рамках данного раздела, обязательно должны отвечать следующим требованиям:

- 1. Время на полный запуск (или перезапуск) системы и компонентов системы должно составлять не более 5 минут.
  - 2. Коэффициент юзабилити не менее 85%.
  - 3. Коэффициент достоверности информации не менее 98%
- 4. Время реагирования администратора на возникшую внештатную ситуацию не более 5 минут.
- 5. REST API системы: 100 запросов в минуту при времени отклика не более трёх секунд.

Требования к аппаратной части и масштабированию для обеспечения перечисленных показателей должны быть определены на этапе технического проектирования.

## 2.1.4 Требования к надежности

Программное обеспечение не должно выходить из строя более чем на 3 минуты.

Для устойчивости к потере данных необходимо регулярно производить выгрузку хранимой информации.

Надежность требуемого уровня достигается путем комплексного применения организационных и организационно-технических мероприятий. При этом необходимо использовать соответствующие требованиям

программно-аппаратные средств. В частности, можно использовать следующие базовые подходы:

- системное и базовое ПО и технические средства, соответствующие классу решаемой задачи;
- четкое соблюдение правил эксплуатации, а также регламентных сроков обслуживания используемых программно-аппаратных средств;
- допуск к системе управления только пользователей, прошедших предварительное обучение.

#### 2.1.5 Требования к безопасности

Безопасность данных пользователей должна обеспечиваться шифрованием, а также обеспечением устойчивости программно-технических средств к возможным кибератакам.

#### 2.1.6 Требования к эргономике и технической эстетике

Взаимодействие пользователей с прикладным программным обеспечением, входящим в состав системы должно осуществляться посредством визуального графического интерфейса (GUI). Интерфейс системы должен быть понятным и удобным, не должен быть перегружен графическими элементами и должен обеспечивать быстрое отображение экранных форм.

## 2.1.7 Требования к транспортабельности для подвижных АС

Должна иметься возможность в течении 2ух суток заменить поврежденную часть АГР без применения специализированной техники для транспортировки внутри заведения.

# 2.1.8 Требования к эксплуатации, техническому обслуживанию, ремонту и хранению компонентов системы

Техническим обслуживанием, ремонтом и хранением сервера AC занимаются сетевые инженеры-техники, специалисты по серверным и сетевым технологиям, а также мастера по ремонту компьютерного и другого технического оборудования.

# 2.1.9 Требования к защите информации от несанкционированного доступа

При работе с системой необходимо, чтобы данные могли быть восстановлены в случае потери, информация компании и пользователей была защищена от доступа или модификации несанкционированными лицами.

#### 2.1.10 Требования по сохранности информации при авариях

Серверное программное обеспечение системы должно восстанавливать свое функционирование при перезапуске аппаратных средств. Для обеспечения сохранности данных требуется предусмотреть резервное копирование.

### 2.1.11 Требования к защите от влияния внешних воздействий

Требования к защите от влияния внешних воздействий не предъявляются.

#### 2.1.12 Требования к патентной чистоте

Требования к патентной чистоте не предъявляются.

## 2.1.13 Требования по стандартизации и унификации

Для реализации статических страниц и шаблонов должны использоваться языки HTML и CSS. Исходный код должен разрабатываться в соответствии со стандартами W3C (HTML 5). Для реализации интерактивных элементов клиентской части должны использоваться языки JavaScript. Для реализации внутренней логики автоматизации должен использоваться язык PHP.

# 2.1.14 Дополнительные требования

Дополнительные требования не предъявляются.

# 2.2 Требования к функциям (задачам), выполняемым системой

Таблица 1.1 – Требования к функциям, выполняемым системой

| Фун           | кция           |         | Зада       | ача |           |
|---------------|----------------|---------|------------|-----|-----------|
| Осуществление | автоматической | Запись  | данных     | об  | изменении |
| выдачи позиц  | ии нахождения  | состоян | ия АГР в Б | Д   |           |

| ближайшей свободной ячейки      | Графическое отображение данных  |
|---------------------------------|---------------------------------|
| хранения                        | в разделе «Управление АГР»      |
|                                 | Отправка позиции ячейки         |
|                                 | пользователю                    |
| Осуществление автоматической    | Запись данных об изменении      |
| выдачи позиции нахождения       | состояния АГР в БД              |
| необходимой ячейки хранения     | Графическое отображение данных  |
|                                 | в разделе «Управление АГР»      |
|                                 | Отправка позиции ячейки         |
|                                 | пользователю                    |
| Осуществление пользовательского | Запись данных об изменении      |
| ввода данных об результате      | состояния АГР в БД              |
| операции по изменению состояния | Графическое отображение данных  |
| системы                         | в разделе «Управление АГР»      |
|                                 | Отправка подтверждения принятия |
|                                 | результата системой             |
| Обработка трафика среднего      | Запись данных в БД              |
| объема                          | Графическое отображение данных  |
| Информирование о сбоях          | Отправка данных на панель       |
|                                 | управления                      |
| Мониторинг активности           | Загрузка данных в БД об         |
| пользователей                   | активности пользователей в      |
|                                 | различное время дня             |
|                                 | Отображение данных посещений    |
|                                 | пользователю                    |

# 2.3 Требования к видам обеспечения

# 2.3.1 Требования к математическому обеспечению системы

Математическое обеспечение системы должно обеспечивать реализацию перечисленных в данном ТЗ функций, а также выполнение операций конфигурирования, программирования, управления базами данных и документирования. Алгоритмы должны быть разработаны с учетом возможности получения некорректной входной информации и предусматривать соответствующую реакцию на такие события.

# 2.3.2 Требования к информационному обеспечению системы

Состав, структура и способы организации данных в системе должны быть определены на этапе технического проектирования. Данные, используемые системой, должны храниться в реляционной СУБД. Структура базы данных определяется с учетом особенностей внутренней модели системы принятия решений. Информационный обмен между серверной и клиентской частями системы должен осуществляться по протоколу НТТР.

#### 2.3.3 Требования к лингвистическому обеспечению системы

Интернет-портал «Автоматизированный гардероб» должен быть реализован на русском и английском языках. Должна быть предусмотрена возможность переключения между русским и английским языками через настройки внутри системы. Система ввода-вывода должна поддерживать английский и русский языки.

**2.3.4 Требования к программному обеспечению системы** Программное обеспечение клиентской части должно удовлетворять следующим требованиям: веб-браузер: Internet Explorer 10.0 и выше, или Firefox 10.0 и выше, или Opera 12 и выше, или Safari 14 и выше, или Chrome 88 и выше; включенная поддержка JavaScript и cookies.

## 2.3.5 Требования к техническому обеспечению системы

Платформа, на которой будет развернута серверная часть системы, должна удовлетворять следующим минимальным требованиям: не менее 4 GB оперативной памяти; не менее 500 GB свободного места на жестком диске; ОС на базе Linux или ОС Windows; поддерживаемый протокол передачи данных HTTP / HTTPS, скорость передачи данных 20 Мбит/с;

процессор с тактовой частотой не менее 3 GHz и обладать не менее 4 ядер и 4 потоков.

- **2.3.6 Требования к метрологическому обеспечению системы** Требования к метрологическому обеспечению не предъявляются.
- **2.3.7 Требования к организационному обеспечению системы** Требования к организационному обеспечению не предъявляются.
  - **2.3.8 Требования к методическому обеспечению системы** Необходимо разработать несколько типов руководств:
  - руководство пользователя для администраторов ресурса;
  - руководство пользователя для клиентов сервиса.

#### ПРАКТИЧЕСКАЯ РАБОТА №2

#### Введение

В настоящее время большинство заведений предоставляющих услуги людям обладают системой хранения личных вещей клиентов в зимнее время. В основном надобность таких систем наступает в холодное время годно, начиная с октября по апрель. В такое время большинство посетителей данных заведений желают оставить тяжёлые куртки, шапки и другие предметы верхней одежды в специальной зоне, чтобы облегчить своё время препровождение.

Чаще всего работоспособность системы хранения обеспечивает несколько человек, чья работа заключается в своевременном обмене личной вещи посетителя на какой-либо идентификатор, позволяющий определить, где находится эта вещь. Данный подход отлично себя зарекомендовал в заведениях с небольшим потоком посетителей, таких как кафе или спортзал, которые за счет небольшой проходимости обеспечивают достаточную скорость обработки каждого посетителя. Однако, в местах с большим скоплением людей, использование простого человеческого труда не позволяет создать комфортные условия для взаимодействия с системой хранения.

Информационная система «Автоматизированный гардероб» спроектирована, чтобы уменьшить время получения или сдачи личных вещей в систему хранения, а также для возможности удобного отслеживания её переполнения, свободных мест, а также наличия неисправных блоков.

Целью практической работы является создание диаграммы прецедентов для описанной выше информационной системы. Заданием практической работы является создание диаграммы прецедентов использованием draw.io, включающую в себя действующих субъектов, прецеденты и комментарии, призванные пояснять созданные взаимодействия. быть Также должны созданы отношения И зависимости между нарисованными прецедентами.

#### 1. Список терминов и определений

Гардероб — автоматизированная система управления хранением верхней одежды посетителей отдельной организации.

АГР (Автоматизированный гардеробный ряд) — отдельная гардеробная линия, обладающая собственной внутренней нумерацией блоков, системой перемещения блоков, системой связи с панелью управления.

БД (База Данных) – представленная в объективной форме совокупность самостоятельных материалов, систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ).

ИП (Интернет-Портал) — многофункциональная площадка с разнообразным интерактивным сервисом, включающая в себя обширные возможности и услуги, в том числе путем предоставления пользователям ссылок на другие сайты.

ИС (Информационная Система) — система, предназначенная для хранения, поиска и обработки информации, и соответствующие организационные ресурсы (человеческие, технические, финансовые и т. д.), которые обеспечивают и распространяют информацию.

СУБД (Система Управления Базами Данных) — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных.

MS (Microsoft) – одна из крупнейших транснациональных компаний по производству проприетарного программного обеспечения для различного рода вычислительной техники.

CSS (Cascading Style Sheets) – формальный язык описания внешнего вида документа, написанного с использованием языка разметки.

HTML (Hyper Text Markup Language) – стандартизированный язык разметки веб-страниц во Всемирной паутине.

PHP (Hypertext Preprocessor) – скриптовый язык общего назначения, интенсивно применяемый для разработки веб-приложений.

#### 2. Результат выполнения задания

Действующие субъекты: гость, работник гардероба и администратор.

Прецеденты: добавление новых АГР, просмотр состояния системы, получение места на АГР, получение вещей с АГР, помещение вещей на АГР и т.д.

На рисунке 2.1 представлена диаграмма прецедентов системы автоматизированного гардероба.



Рисунок 2.1 - диаграмма прецедентов системы автоматизированного гардероба

Описание прецедентов представлено в таблице 2.1.

Таблица 2.1 - Описание прецедентов

| Прецедент              | Описание прецедента               |
|------------------------|-----------------------------------|
| Просмотр состояния АГР | Просмотр пользователем страницы с |
|                        | текущим статусом работы АГР       |

# Продолжение таблицы 2.1

| Прецедент                         | Описание прецедента                |
|-----------------------------------|------------------------------------|
| Просмотр наличия свободных мест в | Просмотр пользователем страницы с  |
| АГР                               | информацией об общем количестве и  |
|                                   | количестве занятых мест АГР        |
| Просмотр графика работы АГР       | Просмотр пользователем страницы с  |
|                                   | информацией о графике и режиме     |
|                                   | работы АГР                         |
| Получение информации о            | Просмотр пользователем страницы с  |
| предыдущих посещениях             | таблицей посещений выбранного      |
|                                   | гардероба за выбранный период      |
| Обращение в поддержку             | Отправка пользователем сообщения,  |
|                                   | содержащего информацию о           |
|                                   | возникшем вопросе, а также данные  |
|                                   | пользователя                       |
| Добавление новых АГР в систему    | Ввод администратором данных о      |
|                                   | принадлежности АГР гардеробу,      |
|                                   | вместимости и графике работы       |
| Изменение данных АГР в системе    | Изменение администратором данных   |
|                                   | о принадлежности АГР гардеробу,    |
|                                   | вместимости и графике работы       |
| Получение номера выделенной       | Получение пользователем номера     |
| ячейки гардероба                  | ячейки в выбранной АГР после       |
|                                   | передачи уникального               |
|                                   | идентификатора пользователя        |
| Получение номера запрашиваемой    | Получение работником гардероба     |
| ячейки в гардеробе                | номера ячейки принадлежащей        |
|                                   | пользователю, предоставившему свой |
|                                   | уникальный идентификатор           |

# Продолжение таблицы 2.1

| Прецедент                       | Описание прецедента                |
|---------------------------------|------------------------------------|
| Получение вещи для помещения на | Получение работником гардероба от  |
| хранения                        | пользователя вещи для помещения на |
|                                 | хранение                           |
| Получение вещи из ячейки АГР    | Получением пользователем вещи      |
|                                 | помещённой на хранение из ячейки   |
|                                 | АГР                                |
| Помещение вещи в ячейку АГР     | Помещение работником гардероба     |
|                                 | вещи, переданной на хранение, в    |
|                                 | ячейку АГР                         |

#### ПРАКТИЧЕСКАЯ РАБОТА №3

#### Введение

В настоящее время большинство заведений предоставляющих услуги людям обладают системой хранения личных вещей клиентов в зимнее время. В основном надобность таких систем наступает в холодное время годно, начиная с октября по апрель. В такое время большинство посетителей данных заведений желают оставить тяжёлые куртки, шапки и другие предметы верхней одежды в специальной зоне, чтобы облегчить своё время препровождение.

Чаще всего работоспособность системы хранения обеспечивает несколько человек, чья работа заключается в своевременном обмене личной вещи посетителя на какой-либо идентификатор, позволяющий определить, где находится эта вещь. Данный подход отлично себя зарекомендовал в заведениях с небольшим потоком посетителей, таких как кафе или спортзал, которые за счёт небольшой проходимости обеспечивают достаточную скорость обработки каждого посетителя. Однако, в местах с большим скоплением людей, использование простого человеческого труда не позволяет создать комфортные условия для взаимодействия с системой хранения.

Информационная система «Автоматизированный гардероб» спроектирована, чтобы уменьшить время получения или сдачи личных вещей в систему хранения, а также для возможности удобного отслеживания её переполнения, свободных мест, а также наличия неисправных блоков.

Целью практической работы является формирование требований к описанной выше системе. Заданием практической работы является описание объекта автоматизации, формулировка основных задач автоматизации объекта, описание основных параметров проектируемой информационной системы, описание путей достижения целей. Кроме того, необходимо сформулировать требования к информационной системе.

#### 1 Общие сведения

## 1.1 Полное наименование системы и ее условное обозначение

Наименование системы: Автоматизированный Градероб.

Условное обозначение: АГ.

#### 1.2 Номер договора

Шифр темы: АИС-ММ.

Номер контракта: №1/11-11-11-001 от 09.02.2024.

#### 1.3 Наименование организаций – Заказчика и Разработчика

Заказчиком системы является РТУ МИРЭА.

Адрес заказчика: Проспект Вернадского, д. 78

Разработчиком системы является ООО "Еловая".

#### 1.4 Основания для разработки системы

Работа по созданию системы ускоренного доступа к ячейкам хранения гардероба.

# 1.5 Плановые сроки начала и окончания работы по созданию системы

Плановый срок начала работ по созданию системы ИП автоматизированного гардероба – 16 февраля 2024 года.

Плановый срок окончания работ по созданию системы ИП автоматизированного гардероба – 25 мая 2024 года.

# 1.6 Источники и порядок финансирования работ

Собственные средства разработчика.

# 1.7 Порядок оформления и предъявления заказчику результатов работ по созданию системы

Результаты работ передаются Заказчику в порядке, определённом контрактом в соответствии с Календарным планом работ контракта на основании

Актов сдачи-приемки выполненных работ (этапа работ).

Документация АГ передается на бумажных (два экземпляра, один экземпляр после подписания Заказчиком должен быть возвращён

Исполнителю) и на машинных носителях (DVD) (в двух экземплярах).

Текстовые документы, передаваемые на машинных носителях, должны быть представлены в форматах PDF.

Все материалы передаются с сопроводительными документами Исполнителя.

# 1.8 Перечень нормативно-технических документов, методических материалов, использованных при разработке ТЗ

При разработке автоматизированной системы и создании проектноэксплуатационной документации Исполнитель должен руководствоваться требованиями следующих нормативных документов:

ГОСТ 19.106-78. Единая система программной документации. Требования к программным документам, выполненным печатным способом.

ГОСТ 34.602 – 2020 Техническое задание на создание автоматизированной системы

ГОСТ Р 59793-2021. Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ 34.201–2020. Информационные технологии. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем.

ГОСТ Р 59795-2021. Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Требования к содержанию документов.

# 1.9 Определения, обозначения и сокращения

Гардероб — автоматизированная система управления хранением верхней одежды посетителей отдельной организации.

АГР (Автоматизированный гардеробный ряд) — отдельная гардеробная линия, обладающая собственной внутренней нумерацией блоков, системой перемещения блоков, системой связи с панелью управления.

БД (База Данных) – представленная в объективной форме совокупность самостоятельных материалов, систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ).

ИП (Интернет-Портал) — многофункциональная площадка с разнообразным интерактивным сервисом, включающая в себя обширные возможности и услуги, в том числе путем предоставления пользователям ссылок на другие сайты.

ИС (Информационная Система) — система, предназначенная для хранения, поиска и обработки информации, и соответствующие организационные ресурсы (человеческие, технические, финансовые и т. д.), которые обеспечивают и распространяют информацию.

СУБД (Система Управления Базами Данных) — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных.

MS (Microsoft) – одна из крупнейших транснациональных компаний по производству проприетарного программного обеспечения для различного рода вычислительной техники.

CSS (Cascading Style Sheets) – формальный язык описания внешнего вида документа, написанного с использованием языка разметки.

HTML (Hyper Text Markup Language) – стандартизированный язык разметки веб-страниц во Всемирной паутине.

PHP (Hypertext Preprocessor) – скриптовый язык общего назначения, интенсивно применяемый для разработки веб-приложений.

# 1.10 Описание бизнес-ролей

Гость – пользователь, имеющий доступ к данным о состоянии АГР, возможность получить или сдать верхнюю одежду в гардероб, запрашивает данные об ячейке хранения с использованием собственного уникального идентификатора.

Работник гардероба - пользователь, обладающий доступом к данным о состоянии АГР, отвечающий за перемещение хранимых вещей от гостя к ячейке. Взаимодействует с данными о запрашиваемой ячейке.

Администратор – специалист, отвечающий за поддержание работы гардероба и за состояние системы передачи данных между АГР и пользователями.

# 2 Назначение и цели создания (развития) системы

#### 2.1. Назначение системы

Система интернет-портала автоматизированного гардероба предназначена для увеличения пропускной способности гардеробов.

# 2.2 Цели создания системы

Основными целями создания ИС являются:

- Увеличение пропускной способности гардеробов
- Уменьшение затрат на персонал
- Уменьшение количества случаев утери номера ячейки гардероба

#### 3 Характеристика объекта автоматизации

#### 3.1 Краткие сведения об объекте автоматизации

Объектом автоматизации является ИП гардероб. В независимости от рода занятия пользователя.

## 3.2 Сведения об условиях эксплуатации объекта автоматизации

Условия эксплуатации комплекса технических средств Системы должны соответствовать условиям эксплуатации группы 2 ГОСТ 21552-84 «Средства вычислительной техники. Общие технические требования, приемка, методы испытаний, маркировка, упаковка, транспортировка, хранение».

Условия эксплуатации персональных компьютеров Системы соответствуют Гигиеническим требованиям к видео-дисплейным терминалам, персональным электронно-вычислительным машинам и организации работы (Санитарные правила и нормы. СанПиН 2.2.2.542-96).

Исполнитель должен проверить соблюдение условий эксплуатации комплекса технических средств на этапе технического проектирования.

#### 4 Требования к системе

#### 4.1 Требования к системе в целом

#### 4.1.1 Требования к структуре и функционированию системы

Система имеет модульную структуру, включающую в себя следующие модули:

- модуль раздела «Получить/Сдать»;
- модуль раздела «Личный кабинет»;
- модуль работы автоматизации;
- модуль работы с базой данных;
- модуль раздела «Настройки»;
- модуль раздела «Управление АГР»;
- модуль раздела «Текущее состояние»;

Система должна выполнять следующие функции:

- осуществление автоматической выдачи позиции нахождения ближайшей свободной ячейки хранения;
- осуществление автоматической выдачи позиции нахождения необходимой ячейки хранения;
- осуществление пользовательского ввода данных об результате операции по изменению состояния системы;
- обработка трафика среднего объема;
- информирование о сбоях;
- мониторинг активности пользователей;
- осуществление настройки системы в соответствии с составом АГР.

# 4.1.2 Требования к численности и квалификации персонала системы и режиму его работы

Для поддержания работоспособности системы и эксплуатации вебинтерфейса системы управления гардеробом от персонала не должно требоваться специальных технических навыков, знания технологий или программных продуктов, за исключением общих навыков работы с персональным компьютером и стандартным веб-браузером (например, MS Internet Explorer 7.0 или выше).

Режим работы администраторов зависит от работы организации, использующей гардероб, за исключением работы по устранению ошибок ПО, которые были обнаружены в период экспериментальной эксплуатации в нерабочее время.

Режим работы других пользователей также зависит от работы организации, использующей гардероб.

#### 4.1.3 Показатели назначения

Подсистемы, разработанные и доработанные в рамках данного раздела, обязательно должны отвечать следующим требованиям:

- 1. Время на полный запуск (или перезапуск) системы и компонентов системы должно составлять не более 5 минут.
  - 2. Коэффициент юзабилити не менее 85%.
  - 3. Коэффициент достоверности информации не менее 98%
- 4. Время реагирования администратора на возникшую внештатную ситуацию не более 5 минут.
- 5. REST API системы: 100 запросов в минуту при времени отклика не более трёх секунд.

Требования к аппаратной части и масштабированию для обеспечения перечисленных показателей должны быть определены на этапе технического проектирования.

#### 4.1.4 Требования к надежности

Программное обеспечение не должно выходить из строя более чем на 3 минуты.

Для устойчивости к потере данных необходимо регулярно производить выгрузку хранимой информации.

Надежность требуемого уровня достигается путем комплексного применения организационных и организационно-технических мероприятий. При этом необходимо использовать соответствующие требованиям

программно-аппаратные средств. В частности, можно использовать следующие базовые подходы:

- системное и базовое ПО и технические средства, соответствующие классу решаемой задачи;
- четкое соблюдение правил эксплуатации, а также регламентных сроков обслуживания используемых программно-аппаратных средств;
- допуск к системе управления только пользователей, прошедших предварительное обучение.

#### 4.1.5 Требования к безопасности

Безопасность данных пользователей должна обеспечиваться шифрованием, а также обеспечением устойчивости программно-технических средств к возможным кибератакам.

#### 4.1.6 Требования к эргономике и технической эстетике

Взаимодействие пользователей с прикладным программным обеспечением, входящим в состав системы должно осуществляться посредством визуального графического интерфейса (GUI). Интерфейс системы должен быть понятным и удобным, не должен быть перегружен графическими элементами и должен обеспечивать быстрое отображение экранных форм.

#### 4.1.7 Требования к транспортабельности для подвижных АС

Должна иметься возможность в течении 2ух суток заменить поврежденную часть АГР без применения специализированной техники для транспортировки внутри заведения.

# 4.1.8 Требования к эксплуатации, техническому обслуживанию, ремонту и хранению компонентов системы

Техническим обслуживанием, ремонтом и хранением сервера AC занимаются сетевые инженеры-техники, специалисты по серверным и сетевым технологиям, а также мастера по ремонту компьютерного и другого технического оборудования.

# 4.1.9 Требования к защите информации от несанкционированного доступа

При работе с системой необходимо, чтобы данные могли быть восстановлены в случае потери, информация компании и пользователей была защищена от доступа или модификации несанкционированными лицами.

## 4.1.10 Требования по сохранности информации при авариях

Серверное программное обеспечение системы должно восстанавливать свое функционирование при перезапуске аппаратных средств. Для обеспечения сохранности данных требуется предусмотреть резервное копирование.

### 4.1.11 Требования к защите от влияния внешних воздействий

Требования к защите от влияния внешних воздействий не предъявляются.

#### 4.1.12 Требования к патентной чистоте

Требования к патентной чистоте не предъявляются.

# 4.1.13 Требования по стандартизации и унификации

Для реализации статических страниц и шаблонов должны использоваться языки HTML и CSS. Исходный код должен разрабатываться в соответствии со стандартами W3C (HTML 5). Для реализации интерактивных элементов клиентской части должны использоваться языки JavaScript. Для реализации внутренней логики автоматизации должен использоваться язык PHP.

# 4.1.14 Дополнительные требования

Дополнительные требования не предъявляются.

# 4.2 Требования к функциям (задачам), выполняемым системой

Таблица 3.1 – Требования к функциям, выполняемым системой

| Функция                         | Задача                          |
|---------------------------------|---------------------------------|
| Осуществление автоматической    | Запись данных об изменении      |
| выдачи позиции нахождения       | состояния АГР в БД              |
| ближайшей свободной ячейки      | Графическое отображение данных  |
| хранения                        | в разделе «Управление АГР»      |
|                                 | Отправка позиции ячейки         |
|                                 | пользователю                    |
| Осуществление автоматической    | Запись данных об изменении      |
| выдачи позиции нахождения       | состояния АГР в БД              |
| необходимой ячейки хранения     | Графическое отображение данных  |
|                                 | в разделе «Управление АГР»      |
|                                 | Отправка позиции ячейки         |
|                                 | пользователю                    |
| Осуществление пользовательского | Запись данных об изменении      |
| ввода данных об результате      | состояния АГР в БД              |
| операции по изменению состояния | Графическое отображение данных  |
| системы                         | в разделе «Управление АГР»      |
|                                 | Отправка подтверждения принятия |
|                                 | результата системой             |
| Обработка трафика среднего      | Запись данных в БД              |
| объема                          | Графическое отображение данных  |
| Информирование о сбоях          | Отправка данных на панель       |
|                                 | управления                      |
| Мониторинг активности           | Загрузка данных в БД об         |
| пользователей                   | активности пользователей в      |
|                                 | различное время дня             |
|                                 | Отображение данных посещений    |

#### 4.3 Функциональная структура системы



Рисунок 3.1 - Структурная диаграмма

Связь «Подсистема работы с бд - Подсистема управления АГР» определяет процесс добавления / изменения данных в БД при добавлении новых АГР и изменении данных существующих АГР, процесс просмотра состояния АГР путем извлечения данных из БД.

Связь «Подсистема работы с бд - подсистема работы с пользователем» определяет процесс просмотра данных посещений пользователя путем извлечения данных из БД.

Связь «Подсистема работы с бд - подсистема работы с ячейками» определяет процесс получения номера выделенной ячейки пользователя путем извлечения данных из БД, процесс добавления данных о состоянии ячейки в БД при добавлении / извлечении хранимых вещей.

Связь «Подсистема работы с бд - подсистема поддержки» - определяет работу администратора при сбоях в БД, процесс передачи уведомлений о сбоях в БД и дальнейшее устранение неполадок администратором.

Связь «Подсистема поддержки - подсистема управления АГР» - определяет порядок установки состояния АГР при наличия сбоя в системе.

Связь «Внешние системы - подсистема поддержки» - говорит о использовании внешнего сервиса для создания и передачи сообщений от пользователя.

Связь «Внешние системы - подсистема работы с ячейками» - говорит о использовании внешнего сервиса для передачи уникального идентификатора пользователя.

#### 4.4 Требования к видам обеспечения

#### 4.4.1 Требования к математическому обеспечению системы

Математическое обеспечение системы должно обеспечивать реализацию перечисленных в данном ТЗ функций, а также выполнение операций конфигурирования, программирования, управления базами данных и документирования. Алгоритмы должны быть разработаны с учетом возможности получения некорректной входной информации и предусматривать соответствующую реакцию на такие события.

#### 4.4.2 Требования к информационному обеспечению системы

Состав, структура и способы организации данных в системе должны быть определены на этапе технического проектирования. Данные, используемые системой, должны храниться в реляционной СУБД. Структура базы данных определяется с учетом особенностей внутренней модели системы принятия решений. Информационный обмен между серверной и клиентской частями системы должен осуществляться по протоколу НТТР.

## 4.4.3 Требования к лингвистическому обеспечению системы

Интернет-портал «Автоматизированный гардероб» должен быть реализован на русском и английском языках. Должна быть предусмотрена возможность переключения между русским и английским языками через настройки внутри системы. Система ввода-вывода должна поддерживать английский и русский языки.

**4.4.4 Требования к программному обеспечению системы** Программное обеспечение клиентской части должно удовлетворять следующим требованиям: веб-браузер: Internet Explorer 10.0 и выше, или Firefox 10.0 и выше, или Opera 12 и выше, или Safari 14 и выше, или Chrome 88 и выше; включенная поддержка JavaScript и cookies.

## 4.4.5 Требования к техническому обеспечению системы

Платформа, на которой будет развернута серверная часть системы, должна удовлетворять следующим минимальным требованиям: не менее 4 GB оперативной памяти; не менее 500 GB свободного места на жестком

диске; ОС на базе Linux или ОС Windows; поддерживаемый протокол передачи данных HTTP / HTTPS, скорость передачи данных 20 Мбит/с; процессор с тактовой частотой не менее 3 GHz и обладать не менее 4 ядер и 4 потоков.

- **4.4.6 Требования к метрологическому обеспечению системы** Требования к метрологическому обеспечению не предъявляются.
- **4.4.7 Требования к организационному обеспечению системы** Требования к организационному обеспечению не предъявляются.
  - **4.4.8 Требования к методическому обеспечению системы** Необходимо разработать несколько типов руководств:
  - руководство пользователя для администраторов ресурса;
  - руководство пользователя для клиентов сервиса.

#### 5 Состав и содержание работ по созданию (развитию) системы

Разработка системы предполагается по укрупненному календарному плану, приведённому в таблице 5.1.

Таблица 3.2 - Календарный план работа по созданию АС АГ

| Этапы работ             | Содержание работ                                   | Сроки                   |
|-------------------------|----------------------------------------------------|-------------------------|
| 1. Исследование и       | 1.1 Обследование (сбор и анализ данных)            | 16.02.2024 - 23.02.2024 |
| обоснование создания    | автоматизированного объекта, включая сбор          |                         |
| AC                      | сведений о зарубежных и отечественных              |                         |
|                         | аналогах                                           |                         |
| 2. Составление          | 2.1 Разработка функциональных и                    | 24.02.2024 - 28.02.2024 |
| технического задания    | нефункциональных требований к системе              |                         |
| 3. Эскизное             | 3.1 Разработка предварительных решений по          | 01.03.2024 - 09.03.2024 |
| проектирование          | выбранному варианту АС и отдельными видам          |                         |
|                         | обеспечения                                        |                         |
| 4. Техническое          | 4.1 Разработка диаграмм                            | 10.03.2024 - 17.03.2024 |
| проектирование          | 4.2 Разработка макетов интерфейса                  | 18.03.2024 - 31.03.2024 |
| 5. Разработка           | 5.1 Разработка модуля "Получить/Сдать"             | 01.04.2024 - 25.04.2024 |
| программной части       | 5.2 Разработка модуля "Личный кабинет"             |                         |
|                         | 5.3 Разработка модуля автоматизации                |                         |
|                         | 5.4 Разработка модуля работы с базой данных        |                         |
|                         | 5.5 Разработка модуля "Настройка"                  |                         |
|                         | 5.6 Разработка модуля "Управление АГР"             |                         |
|                         | 5.7 Разработка модуля "Текущее состояние"          |                         |
| 6. Предварительные      | 6.1 Проверка работоспособности системы в условиях, | 26.04.2024 - 03.05.2024 |
| комплексные испытания   | приближенных к реальным                            |                         |
| 7. Опытная эксплуатация | 7.1. Эксплуатация с привлечением небольшого        | 04.05.2024 - 10.05.2024 |
|                         | количества участников                              |                         |
|                         | 7.2. Устранение замечаний, выявленных при          | 11.05.2024 - 15.05.2024 |
|                         | эксплуатации, АС                                   |                         |
| 8. Ввод в               | 8.1. Приемка АС в промышленную эксплуатацию        | 16.05.2024 - 25.05.2024 |
| промышленную            | (внедрение АС)                                     |                         |
| эксплуатацию            |                                                    |                         |

#### 6 Порядок контроля и приёмки системы

В соответствии с разделом 5 необходимо на каждой стадии создания системы установить контроль и приемку результатов работ.

На стадии 5 происходит прием готовой версии программного продукта (модели), а остальные результаты работ представляются в виде документов согласно таблице 3.1.

Приемка этапа включает в себя рассмотрение и оценку объема работ и предоставленной технической документации в соответствии с требованиями технического задания.

Организацию и проведение приемки системы должен осуществлять заказчик, а приемка системы должна производиться только после того, как будут выполнены все задачи системы.

Заказчик обязан предоставить материальную часть (технические средства), проектную документацию и специально выделенный персонал.

Последним этапом при приёмке системы является составление акта приёмки.

# 7 Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу системы в действие

Для обеспечения готовности объекта к вводу системы в действие провести комплекс мероприятий:

- приобрести компоненты программного обеспечения, заключить договора на их лицензионное использование;
  - завершить работы по установке технических средств;
  - провести диагностику устойчивости сети к нагрузкам;
  - провести обучение сотрудников.

# 7.1 Приведение поступающей в систему информации к виду, пригодному для обработки с помощью ЭВМ

Информация вводится пользователем в разработанные экранные формы компонентов системы.

## 7.2 Изменения, которые необходимо осуществить в объекте автоматизации

Изменений не требуется.

# 7.3 Создание условий функционирования объекта автоматизации, при которых гарантируется соответствие создаваемой системы требованиям, содержащимся в ТЗ

Для функционирования создаваемой системы требуется платформа, технические характеристики которой соответствуют предъявленным.

# 7.4 Создание необходимых для функционирования системы подразделений и служб

Для функционирования системы не требуется дополнительных подразделений и служб.

# 7.5 Сроки и порядок комплектования штатов и обучения персонала

Комплектование штатов подразделений и служб, необходимых для функционирования системы, а также подготовка их сотрудников должны быть завершены до начала опытной эксплуатации системы.

#### 8 Требования к документированию

Проектная документация должна быть разработана в соответствии с ГОСТ 34.201-2020 и ГОСТ 7.32-2017.

Отчетные материалы должны включать в себя текстовые материалы (представленные в виде бумажной копии и на цифровом носителе в формате MS Word) и графические материалы.

Предоставить документы:

- 1) схема функциональной структуры автоматизируемой деятельности;
- 2) описание технологического процесса обработки данных;
- 3) описание информационного обеспечения;
- 4) описание программного обеспечения АС;
- 5) схема логической структуры БД;
- 6) руководство пользователя;
- 7) описание контрольного примера (по ГОСТ 24.102);
- 8) протокол испытаний (по ГОСТ 24.102).

#### 9 Источники разработки

- ГОСТ 34.602-2020. Информационные технологии. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы.
- ГОСТ Р 59793-2021. Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- ГОСТ 34.201-2020. Информационные технологии. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем.
- ГОСТ Р 59795-2021. Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Требования к содержанию документов.
- ГОСТ 19.106-78. Единая система программной документации. Требования к программным документам, выполненным печатным способом.
- ГОСТ 19.105-78. Единая система программной документации. Общие требования к программным документам.

#### Введение

Для проектирования была выбрана информационная система автоматизации гардероба. Название системы «Автоматизированный гардероб». Система создаётся для уменьшения времени затрачиваемого на обращение в гардероб.

#### Цель создания ИС

Целью создания ИС является:

- автоматизация процессов управления складами и снабжением;
- оперативный доступ к информации о состоянии складских запасов;
- информирование о необходимости пополнения запасов и о ближайших заказах.

По определению ИС: «Информационная система — это сложный программный комплекс, который способен собирать, сохранять, обрабатывать и выдавать по запросу пользователя информацию». Проектируемая ИС полностью удовлетворяет всему перечню требований, указанных в определении, т.к.:

- 1. Сайт собирает информацию о посещениях пользователями различных мест использующих автоматизированный гардероб, а также персональные данные пользователей.
  - 2. Хранит полученную информацию в базе данных.
- 3. Информация из подпунктов выше обрабатывается, на основе чего при помощи специальных алгоритмов пользователь при каждом новом посещении пользователь получает более эффективный вариант размещения в ячейке гардероба.
- 4. Доступ пользователей к информации на сайте (история посещений, обезличенная статистика посещений других пользователей).

#### Краткое описание

ИС «Автоматизированный гардероб» представлена в виде сайта. Сайт является удобным интернет-сервисом, предоставляющим информацию о

текущем состоянии АГР, а также дающим возможность получить доступ к ячейке гардероба на основании уникального идентификатора пользователя. Для уменьшения затрат на оборудование необходимого для функционирования отдельно взятого автоматизированного гардероба сайт адаптирован для мобильных устройств и представлен на русском и английском языках.

Одно из важных достоинств проектируемой ИС - большой функционал для незарегистрированных пользователей. Незарегистрированный пользователь обладает возможностью использовать все функции автоматизированного гардероба. Это даст дополнительную возможность использовать автоматизированный гардероб для пользователей, посещяюх организацию впервые.

#### Способ создания ИС

В качестве способа определения требований была выбрана методология «последовательных приближений», которая основана на том, что все расчёты и графические построения, связанные с определением основных элементов, разбиваются на несколько более мелких элементов, в которых происходит их уточнение. Данный метод также хорошо сочетается с нотацией IDEF0, которая основана на декомпозиции каждого блока на более мелких с уточнением деталей.

#### Средства создания ИС

В качестве средств создания ИС были использованы языки программирования JavaScript, HTML, CSS, СУБД PostgreSQL, React.js для реализации серверной части приложения и сервис для развертывания сервера Араche HTTP Server. Для моделирования проектируемой ИС будет использоваться нотация IDEF0 в CASE-средстве Ramus Educational.

#### Проектирование контекстной диаграммы функциональной модели ИС

Была спроектирована контекстная диаграмма A-0 в нотации IDEF0. В качестве управления были выбраны следующие нормативные и правовые документы:

- 1. Законодательство;
- 2. Политика организации;
- 3. Алгоритмы для вычисления наиболее эффективного расположения ячейки пользователя.

В качестве входящих информационных потоков, которые подлежат обработке и преобразованию в процессе работы ИС, были указаны:

- 1. Уникальный идентификатор пользователя;
- 2. Вещь к помещению.

В качестве механизмов (ресурсов, выполняющих работу) были выделены:

- 1. Гость;
- 2. Работник гардероба;
- 3. Приложение

В качестве выходов получены следующие информационные элементы:

- 1. Вещь побывавшая в гардеробе;.
- 2. Обновлённая история посещений

На рисунке 4.1 представлена контекстная диаграмма проектируемой информационной систем



Рисунок 4.1 - Контекстная диаграмма проектируемой ИС

#### Вывод

В результате выполнения данной практической работы определена цель, способ и средства создания ИС, составлено краткое описание, а также смоделирована контекстная диаграмма A-0 в нотации IDEF0.

При декомпозиции контекстной диаграммы «Посещение автоматизированного гардероба» были спроектированы следующие функциональные блоки:

- 1. Идентификация пользователя(А1);
- 2. Помещение вещи в ячейку гардероба (А2);
- 3. Извлечение вещи из ячейки гардероба (А3).

Все процессы проходят на основе законодательства и политики организации.

Функциональный блок «Идентификация пользователя». В этом процессе выполняется идентификация пользователя. Процесс выполняется с помощью приложения и гостя. В результате отработки процесса получится информация о выделенной ячейке, которая потребуется в следующем процессе. Данный процесс регулируются также алгоритмом для вычисления наиболее эффективного размещения вещей в ячейках гардероба.

Функциональный блок «Помещение вещи в ячейку гардероба». В этом процессе происходит помещение вещи гостя в ячейку гардероба. На вход поступают информация о выделенной ячейке и вещь.. Процесс выполняется с помощью приложения, гостя и работника гардероба. На выходе получаются вещь на хранении и обновлённая информация о ячейке.

Функциональный блок «Извлечение вещи из ячейки гардероба». В этом процессе происходит извлечение вещи гостя из ячейки гардероба. На вход поступают обновлённая информация о ячейке и вещь на хранении. Процесс выполняется с помощью приложения, гостя и работника гардероба. На выходе получается вещь побывавшая в гардеробе и обновленная история посещений.



Рисунок 5.1 - Декомпозиция контекстной диаграммы

Далее произведём декомпозицию функционального блока «Помещение вещи в ячейку гардероба». В результате получены следующие функциональные блоки:

- 1. Получение номера ячейки (А21);
- 2. Передача вещи для помещения в ячейку(А22);
- 3. Помещение вещи в ячейку (А23);
- 4. Обновление статуса ячейки (А24).

Функциональный блок «Получение номера ячейки». В этом процессе происходит извлечение номера ячейки из информации о ячейке для работника гардероба. На вход поступает информация о выделенной ячейке. Процесс выполняется с помощью приложения и работника гардероба. На выходе получается номер выделенной ячейки.

Функциональный блок «Передача вещи для помещения в ячейку». В этом процессе происходит получение вещи к помещению работником гардероба от гостя. На вход поступает вещь к помещению. Процесс

выполняется с помощью работника гардероба и гостя. На выходе получается переданная работнику гардероба вещь.

Функциональный блок «Помещение вещи в ячейку». В этом процессе происходит помещение вещи в ячейку гардероба. На вход поступает номер выделенной ячейки и переданная работнику гардероба вещь. Процесс выполняется с помощью приложения и работника гардероба. На выходе получается вещь на хранении и новый статус ячейки.

Функциональный блок «Обновление статуса ячейки». В этом процессе происходит обновление статуса ячейки. На вход поступает новый статус ячейки. Процесс выполняется с помощью приложения. На выходе получается обновлённая информация о ячейке.

ИСПОЛЬЗУЕТСЯ В: ДАТА: 28.03.2024 РАЗРАБАТЫВАЕТСЯ читатель дата контекст: АВТОР: СидоровСД РЕВИЗИЯ: 28.03.2024 ПРОЕКТ: Автоматизированный ЧЕРНОВИК Гардероб РЕКОМЕНДОВАНО ЗАМЕЧАНИЯ: 12345678910 ПУБЛИКАЦИЯ Политика Законодательство Получение омера ячейк A21 ячейке ячейки Переданная Передача вещи для помещения в ячейку Помещение вещи в статус информация с Обновление статуса ячейки Работник Ветка: А2 Название: Номер: 3 Помещение вещи в ячейку гардероба

Результат декомпозиции представлена на рисунке 5.2.

Рисунок 5.2 - Декомпозиция процесса «Помещение вещи в ячейку гардероба»

При декомпозиции контекстной диаграммы «Помещение вещи в ячейку гардероба» были спроектированы следующие функциональные блоки:

- 1. Получение номера ячейки;
- 2. Помещение вещи в ячейку;
- 3. Обновление статуса ячейки.

Функциональный блок «Получение номера ячейки». В этом процессе происходит получение номера ячейки из информации о выделенной ячейки. На вход поступает информация о выделенной ячейки, которая поступает из вне. На выходе получается внутренний номер выделенной ячейки, передающиеся далее и данные о принадлежности ячейки, которая поступает в базу данных.

Функциональный блок «Помещение вещи в ячейку». В этом процессе происходит помещение вещи в ячейку на основании внутреннего номера ячейки и информации о расположении ячейки полученной из базы данных. На вход поступает информация о расположении ячейки из базы данных и внутренний номер выделенной ячейки. На выходе получаются данные о получении вещи.

Функциональный блок «Обновление статуса ячейки». В этом процессе происходит обновление статуса ячейки. На вход поступают данные о получении вещи, текущее состояние ячейки из базы данных и подтверждение совершения операции от работника гардероба. На выходе получается обновленный статус ячейки.

На рисунке 6.1 представлена декомпозиция процесса «Помещение вещи в ячейку гардероба».



Рисунок 6.1 - Декомпозиция процесса «Помещение вещи в ячейку гардероба» При декомпозиции контекстной диаграммы «Помещение вещи в

ячейку» были спроектированы следующие функциональные блоки:

- 1. Получение данных о положении ячейки;
- 2. Разблокировка ячейки;
- 3. Помещение вещи в ячейку;
- 4. Блокировка ячейки.

Функциональный блок «Получение данных о положении ячейки». В этом процессе происходит получение данных о положении ячейки. На вход поступает внутренний номер выделенной ячейки и информация о расположении ячейки. На выходе получается запрос на открытие ячейки и данные о положении ячейки.

Функциональный блок «Разблокировка ячейки». В этом процессе происходит разблокировка ячейки. На вход поступает сигнал на открытие ячейки.

На этапе «Помещение вещи в ячейку» поставщик доставляет товары на склад. В этом процессе происходит помещение вещи в ячейку гардероба. На

выходе получается запрос на закрытие ячейки отправляемый в приложении и данные о весе помещённой в ячейку вещи.

Функциональный блок «Блокировка ячейки». В этом процессе происходит блокировка ячейки. На вход поступает сигнал закрытия ячейки из приложения, подтверждение помещения вещи в ячейку от работника гардероба, данные о весе помещённой в ячейку вещи из бд. На выходе получаются данные о полученной вещи.

На рисунке 6.2 представлена декомпозиция процесса «Помещение вещи в ячейку».



Рисунок 6.2 - Декомпозиция процесса «Помещение вещи в ячейку»

Задача системы – сбор и обработка информации о функционировании автоматизированных гардеробов. Система должна идентифицировать клиента, обеспечивать корректную выдачу номеров ячеек при помещении веще на хранении и выдачи с него, а также записывать происходящие в изменения. Система использует данные системе документы OT пользователей, сотрудников администраторов автоматизированных И гардеробов.

Таким образом, проектируемая система должна выполнять следующие действия:

- 1. Хранить данные о пользователях, их ролях, ячейках, компаниях и филиалах;
- 2. Предоставлять возможность отследить историю посещений и изменений данных;
- 3. Предоставлять информацию о состоянии автоматизированных гардеробных рядах и их ячейках;
- 4. Осуществлять выдачу номера, привязанной к пользователю ячейки.

Выделим сущности из действий системы:

- ячейка явная сущность;
- АГР явная сущность;
- компания явная сущность;
- филиал явная сущность;
- пользователь сущность, но требуется уточнение роли для пользователя, следовательно можно выделить явную сущность роль пользователя;

Также требуется добавить таблицы для сбора информации о посещениях и действиях происходящих внутри базы данных.

Выделим связи между сущностями и таблицами:

• **роль-пользователь** — один-ко-многим — одна роль может быть у нескольких пользователь, и у каждого пользователя может быть одна роль;

- пользователь компания один ко многим один пользователь может отвечать за несколько компаний, к компании привязан только один пользователь;
- **компания филиал** один ко многим к компании может быть прикреплено множество филиалов, но у филиала только одна компания;
- пользователь филиал один ко многим один пользователь может отвечать за несколько филиалов, но к филиалу привязан только один пользователь:
- филиал АГР один ко многим один филиал содержит несколько АГР, но АГР закреплена за одним филиалом;
- пользователь АГР один к одному за одним АГР закреплен один пользователь, один пользователь может быть закреплен за одним АГР;
- **АГР ячейка** один ко многим ячейка прикреплена к одному АГР, но АГР может содержать несколько ячеек;
- пользователь ячейка один к одному к пользователю может быть прикреплена только одна ячейка, у ячейки может быть только один пользователь;
- название действия лог один ко многим лог может иметь только одно название действия, одно название действия может быть прикреплено к нескольким логам;
- тип действия лог один ко многим лог может иметь только один тип действия, один тип действия может быть прикреплен к нескольким логам;
- пользователь лог один ко многим лог может иметь только одного создателя, но один пользователь можно создать множество логов;
- пользователь посещение одно посещение соответствует одному пользователю, но у пользователя может быть множество посещений;
- **ячейка посещение** один ко многим одно посещение соответствует одной ячейке, но у ячейки может быть много связанных

#### посещений;

• филиал – посещение – один ко многим – одно посещение привязано к одному филиалу, но с филиалом связано множество посещений.

На рисунке 7.1 представлена логическая ER-диаграмма проектируемой системы.



Рисунок 7.1 – Логическая ER-диаграмма системы

Примеры тестовых запросов приведены в листинге 7.1

#### Листинг 7.1 - Примеры тестовых запросов к базе данных

```
--Получение списка активных пользователей

SELECT * FROM users WHERE `status` = 'active';

--Получение истории посещений пользователя

SELECT * FROM visits WHERE `user_id` = 'h8bx-1juo';

--Создание новой записи логов

INSERT INTO log (performedAt, performedBy, id_related_entry, action_type, action_name) VALUES ("2024-04-01 19:11:53", "h8bx-1juo", "1", "create user", "insert");
```

Для создания диаграммы состояний проектируемой системы выберем прецедент помещения вещи в автоматизированный гардероб.

Первым состоянием жизненного цикла системы будет её инициализация. В текущем состоянии выполняется инициализация подсистемы для пользователя с ролью «USER».

При инициализации роли процесс переходит к следующему состоянию «Открыт». Происходит открытие главной страницы приложения с преждевременной инициализацией списка АГР и ячеек, после чего пользователь вводит свой уникальный идентификатор.

После ввода уникального идентификатора процесс переходит в состояние «Передача вещей». На самой странице передачи вещей пользователь может изменить предложенную ячейку и АГР, которые были предварительно вычислены.

Когда условия хранения полностью удовлетворяют клиента, система переходит в состояние «Подтверждение передачи вещей». Пользователь передает вещи и по окончанию происходит обновление статуса ячейки.

Далее следует развилка в виде успешной или неудачной передачи вещей. Если вещи успешно положены в ячейку, то происходит переход в состояние «Подтверждение помещения». В этом состоянии система автоматически записывает информация по помещению в БД и изменяет состояние ячейки. В случае ошибки система переходит в состояние «Отмена помещения», в котором система отправляет пользователю сообщение об опибке.

После всех действий процесс системы заканчивается. Полная диаграмма представлена на рисунке 8.1.



### Рисунок 8.1 – Диаграмма состояний прецедента оформления заявки проектируемой системы

#### ПРАКТИЧЕСКАЯ РАБОТА №9

#### 9.1 Наполнение системы

Проектируемая информационная система может быть наполнена практически любым количеством элементов базы данных. Их количество ограничиваются только параметрами сервера.

Элементарная семантическая единица (ЭСЕ) — неделимая единица информации, использующаяся в ИС. ЭСЕ представляет собой завершенную контекстную конструкцию, вызываемую в результате поиска по различным атрибутам или в результате тех или иных команд в виде отклика или отчета.

В рамках исследования информационной системы «Автоматизированный гардероб» за элементарную семантическую единицу была выбрана одна из характеристик системы, а именно количество ячеек, принадлежащих системе. В нашем примере эта величина меняется случайным образом в пределах от 100 до 10000.

В рамках данной практической работы система была наполнена 100 ЭСЕ, приведены в Таблице 9.1.

Таблица 9.1 – Список элементарных семантических единиц

| Наименование параметра             | Значение параметра |
|------------------------------------|--------------------|
| Количество ячеек, принадлежащих ИС | 2799               |
| Количество ячеек, принадлежащих ИС | 1855               |
| Количество ячеек, принадлежащих ИС | 8949               |
| Количество ячеек, принадлежащих ИС | 9523               |
| Количество ячеек, принадлежащих ИС | 1951               |
| Количество ячеек, принадлежащих ИС | 8310               |
| Количество ячеек, принадлежащих ИС | 8476               |

## Продолжение таблицы 9.1

| Количество ячеек, принадлежащих ИС | 9831 |
|------------------------------------|------|
| Количество ячеек, принадлежащих ИС | 5758 |
| Количество ячеек, принадлежащих ИС | 5159 |
| Количество ячеек, принадлежащих ИС | 7917 |
| Количество ячеек, принадлежащих ИС | 3121 |
| Количество ячеек, принадлежащих ИС | 1523 |
| Количество ячеек, принадлежащих ИС | 8095 |
| Количество ячеек, принадлежащих ИС | 4863 |
| Количество ячеек, принадлежащих ИС | 7241 |
| Количество ячеек, принадлежащих ИС | 4970 |
| Количество ячеек, принадлежащих ИС | 8218 |
| Количество ячеек, принадлежащих ИС | 2491 |
| Количество ячеек, принадлежащих ИС | 2184 |
| Количество ячеек, принадлежащих ИС | 9396 |
| Количество ячеек, принадлежащих ИС | 7319 |
| Количество ячеек, принадлежащих ИС | 9836 |
| Количество ячеек, принадлежащих ИС | 7580 |
| Количество ячеек, принадлежащих ИС | 4816 |
| Количество ячеек, принадлежащих ИС | 1162 |
| Количество ячеек, принадлежащих ИС | 9679 |
| Количество ячеек, принадлежащих ИС | 9380 |
| Количество ячеек, принадлежащих ИС | 1746 |
| Количество ячеек, принадлежащих ИС | 8900 |
| Количество ячеек, принадлежащих ИС | 247  |
| Количество ячеек, принадлежащих ИС | 9951 |
| Количество ячеек, принадлежащих ИС | 9332 |
| Количество ячеек, принадлежащих ИС | 395  |
| Количество ячеек, принадлежащих ИС | 2600 |
|                                    | 1    |

## Продолжение таблицы 9.1

| Количество ячеек, принадлежащих ИС | 8231 |
|------------------------------------|------|
| Количество ячеек, принадлежащих ИС | 3954 |
| Количество ячеек, принадлежащих ИС | 9505 |
| Количество ячеек, принадлежащих ИС | 8812 |
| Количество ячеек, принадлежащих ИС | 3192 |
| Количество ячеек, принадлежащих ИС | 819  |
| Количество ячеек, принадлежащих ИС | 2926 |
| Количество ячеек, принадлежащих ИС | 6485 |
| Количество ячеек, принадлежащих ИС | 990  |
| Количество ячеек, принадлежащих ИС | 5812 |
| Количество ячеек, принадлежащих ИС | 7053 |
| Количество ячеек, принадлежащих ИС | 8458 |
| Количество ячеек, принадлежащих ИС | 7848 |
| Количество ячеек, принадлежащих ИС | 7565 |
| Количество ячеек, принадлежащих ИС | 8806 |
| Количество ячеек, принадлежащих ИС | 6938 |
| Количество ячеек, принадлежащих ИС | 6168 |
| Количество ячеек, принадлежащих ИС | 3059 |
| Количество ячеек, принадлежащих ИС | 1879 |
| Количество ячеек, принадлежащих ИС | 9796 |
| Количество ячеек, принадлежащих ИС | 4927 |
| Количество ячеек, принадлежащих ИС | 1411 |
| Количество ячеек, принадлежащих ИС | 9778 |
| Количество ячеек, принадлежащих ИС | 7340 |
| Количество ячеек, принадлежащих ИС | 2343 |
| Количество ячеек, принадлежащих ИС | 3763 |
| Количество ячеек, принадлежащих ИС | 9697 |
| Количество ячеек, принадлежащих ИС | 3481 |
|                                    | 1    |

## Продолжение таблицы 9.1

| Количество ячеек, принадлежащих ИС | 8470     |
|------------------------------------|----------|
| Количество ячеек, принадлежащих ИС | 1724     |
| Количество ячеек, принадлежащих ИС | 2612     |
| Количество ячеек, принадлежащих ИС | 9259     |
| Количество ячеек, принадлежащих ИС | 8511     |
| Количество ячеек, принадлежащих ИС | 9276     |
| Количество ячеек, принадлежащих ИС | 4368     |
| Количество ячеек, принадлежащих ИС | 8780     |
| Количество ячеек, принадлежащих ИС | 5421     |
| Количество ячеек, принадлежащих ИС | 3862     |
| Количество ячеек, принадлежащих ИС | 8956     |
| Количество ячеек, принадлежащих ИС | 7138     |
| Количество ячеек, принадлежащих ИС | 2377     |
| Количество ячеек, принадлежащих ИС | 5268     |
| Количество ячеек, принадлежащих ИС | 6620     |
| Количество ячеек, принадлежащих ИС | 4501     |
| Количество ячеек, принадлежащих ИС | 4569     |
| Количество ячеек, принадлежащих ИС | 2805     |
| Количество ячеек, принадлежащих ИС | 2576     |
| Количество ячеек, принадлежащих ИС | 2576     |
| Количество ячеек, принадлежащих ИС | 1337     |
| Количество ячеек, принадлежащих ИС | 4312     |
| Количество ячеек, принадлежащих ИС | 3651     |
| Количество ячеек, принадлежащих ИС | 2924     |
| Количество ячеек, принадлежащих ИС | 9432     |
| Количество ячеек, принадлежащих ИС | 1575     |
| Количество ячеек, принадлежащих ИС | 6808     |
| Количество ячеек, принадлежащих ИС | 4511     |
| 1                                  | <u> </u> |

Продолжение таблицы 9.1

| Количество ячеек, принадлежащих ИС | 5094 |
|------------------------------------|------|
| Количество ячеек, принадлежащих ИС | 4043 |
| Количество ячеек, принадлежащих ИС | 2061 |
| Количество ячеек, принадлежащих ИС | 5592 |
| Количество ячеек, принадлежащих ИС | 9122 |
| Количество ячеек, принадлежащих ИС | 4987 |
| Количество ячеек, принадлежащих ИС | 388  |
| Количество ячеек, принадлежащих ИС | 5403 |
| Количество ячеек, принадлежащих ИС | 6154 |

#### 9.2 Математические расчеты

#### 9.2.1 Разбиение данных

Для дальнейшего исследования проектируемой ИС необходимо рассчитать вероятности, с которыми ЭСЕ принимает то или иное значение. Для оценки этих вероятностей было принято решение разбить весь диапазон значений на 10 дискретных величин с шагом в 900.

Расчеты ведутся с помощью формулы

$$P(\xi) = \frac{n}{N},\tag{9.1}$$

где n- благоприятное число исходов (в данном случае число изделий, попадающих в данный диапазон), N- общее число исходов,  $\xi-$  середина интервала разбиения.

В Таблице 9.2 приведены возможные значения, принимаемые ЭСЕ, и их вероятности.

Таблица 9.2 – Ряд распределения ЭСЕ

| No | ξ      | $P(\xi)$      |
|----|--------|---------------|
| 1  | 732.2  | 6/100 = 0.06  |
| 2  | 1702.6 | 11/100 = 0,11 |
| 3  | 2673   | 13/100 = 0.13 |

Продолжение таблицы 9.2

| 4  | 3643.4 | 7/100 = 0.07  |
|----|--------|---------------|
| 5  | 4613.8 | 11/100 = 0,11 |
| 6  | 5584.2 | 7/100 = 0.07  |
| 7  | 6554.6 | 7/100 = 0.07  |
| 8  | 7525   | 8/100 = 0,08  |
| 9  | 8495.4 | 14/100 = 0.14 |
| 10 | 9465.8 | 16/100 = 0.16 |

#### 9.2.2 Математическое ожидание информационного блока системы

Математическим ожиданием случайной величины называется сумма произведений всех возможных значений случайной величины на вероятности этих значений.

Расчёт математического ожидания информационного блока:

$$M_{\xi_i} = \sum_{i=0}^{n} [p_i * \xi_i]$$
 (9.2)

На основе данных, полученных в таблице 9.2: М (10) = 5496.86 [ячеек, принадлежащих ИС], следовательно, наиболее вероятное количество находится в районе 5497 [ячеек, принадлежащих ИС].

#### 9.2.3 Дисперсия информационного блока системы

Расчет дисперсии информационного блока:

$$D_{x_i} = \sum_{i=0}^{n} \left[ p_i * (\xi_i)^2 \right] - \left( \sum_{i=0}^{n} \left[ p_i * \xi_i \right] \right)^2$$
 (9.3)

На основе данных, полученных в таблице 3: D (10) = 8495708 [ячеек, принадлежащих  $UC^2$ ].

#### 9.2.4 Среднеквадратичное отклонение

Расчет среднеквадратического отклонения информационного блока:

$$\sigma_{\xi_i} = \sqrt{D_{\xi_i}} \tag{9.4}$$

На основе данных, полученных в таблице 9.2:  $\sigma(10) = \sqrt{8495708} = 2914.74$  [ячеек, принадлежащих ИС].

#### 9.2.5 Энтропия системы

Энтропия системы – это сумма произведений вероятностей различных состояний системы на логарифмы этих вероятностей, взятая с обратным знаком.

Энтропия фрагмента информационного наполнения:

$$H_{(\xi)} = -\sum_{i=1}^{n} [p_i * \log_a p_i]$$
 (9.5)

За основание логарифма а возьмем двоичную систему счисления.

На основе данных, полученных в таблице 9.2: H(x) = 3.244052 [бит].

#### 9.3 Итоговые параметры ИС

В рамках выполнения практической работы осуществлен расчет основных характеристик проектируемой ИС, которые показаны на Таблице 9.3.

Таблица 9.3 – Параметры проектируемой ИС

| Математическое ожидание     | 5496.86 [ячеек, принадлежащих ИС]   |
|-----------------------------|-------------------------------------|
| информационного блока       |                                     |
| Допустимый разброс значений | 8495708 [у ячеек, принадлежащих ИС] |
| смысловых информационных    |                                     |
| блоков (дисперсия)          |                                     |
| Среднеквадратичное          | 2914.74 [ячеек, принадлежащих ИС]   |
| отклонение                  |                                     |
| Энтропия информационного    | 3.244052 [бит]                      |
| наполнения                  |                                     |

#### Глоссарий

Гардероб – автоматизированная система управления хранением верхней одежды посетителей отдельной организации.

АГР (Автоматизированный гардеробный ряд) — отдельная гардеробная линия, обладающая собственной внутренней нумерацией блоков, системой перемещения блоков, системой связи с панелью управления.

Ячейка - отдельный объект используемый для хранения различных веще пользователя, обладающая специальным номером внутри АГР и привязанная к нему.

БД (База Данных) – представленная в объективной форме совокупность самостоятельных материалов, систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ).

ИП (Интернет-Портал) — многофункциональная площадка с разнообразным интерактивным сервисом, включающая в себя обширные возможности и услуги, в том числе путем предоставления пользователям ссылок на другие сайты.

ИС (Информационная Система) — система, предназначенная для хранения, поиска и обработки информации, и соответствующие организационные ресурсы (человеческие, технические, финансовые и т. д.), которые обеспечивают и распространяют информацию.

СУБД (Система Управления Базами Данных) — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных.

MS (Microsoft) – одна из крупнейших транснациональных компаний по производству проприетарного программного обеспечения для различного рода вычислительной техники.

CSS (Cascading Style Sheets) – формальный язык описания внешнего вида документа, написанного с использованием языка разметки.

HTML (Hyper Text Markup Language) — стандартизированный язык разметки веб-страниц во Всемирной паутине.

PHP (Hypertext Preprocessor) – скриптовый язык общего назначения, интенсивно применяемый для разработки веб-приложений.