## On the Diagramatic Diagnosis of Data

# Tools to make your data analysis and machine learning both easier and more reliable

Ian Ozsvald, PyConUK 2018

License: Creative Commons By Attribution

- <a href="http://ianozsvald.com">http://ianozsvald.com</a>)
- @ianozsvald

## lan's background

- Senior data science coach (Channel 4, Hailo, QBE Insurance)
- Author of High Performance Python (O'Reilly)
- Co-founder of PyDataLondon meetup (8,000+ members) and conference (5 years old)
- Past speaker (Random Forests and ML Diagnostics) at PyConUK
- Blog <a href="http://ianozsvald.com">http://ianozsvald.com</a>)

# Have you ever...

- Been asked to complete a data analysis or ML task on new data sight unseen? Raise hands?
- I hypothesise that there are more engineers in this room than data scientists show of hands?

### We'll cover

- Google Facets
- Pandas pivot\_table and styling
- Pandas Profiling
- Seaborn
- discover\_feature\_relationships
- The proposed "Data Stories" at the end might make you more confident when presenting your own ideas for investigation

# **Google Facets**

- <a href="https://pair-code.github.io/facets/">https://pair-code.github.io/facets/</a>)
- Handles strings and numbers from CSVs
- 1d and up to 4d plots (!)

# Facets overview (1D)



# Facets Dive (2D)



## Facets Dive (4D)



### **Facets**

- Non-programmatic (you can't clean or add columns)
- You can upload your own CSV files after you add new features
- Interactivity is nice

### Pandas pivot\_table and styling

- Cut numeric columns into labeled bins
- Pivot\_table to summarise
- Apply styling to add colours
- See <a href="https://github.com/datapythonista/towards">https://github.com/datapythonista/towards</a> pandas 1/blob/master/Towards%20pandas%201.0.ipynb (https://github.com/datapythonista/towards</a> pandas 1/blob/master/Towards%20pandas%201.0.ipynb)
  - Via <a href="https://twitter.com/datapythonista">https://twitter.com/datapythonista</a> (https://twitter.com/datapythonista)

```
In [4]: titanic['age_'] = titanic.Age.fillna(titanic.Age.median())
    titanic['has_family_'] = (titanic.Parch + titanic.SibSp) > 0
    titanic.has_family_.value_counts()
```

Out[4]: False 537 True 354

Name: has\_family\_, dtype: int64

Out[5]: Young 602 Over\_40 150 Child 138

Name: age\_labeled\_, dtype: int64

In [6]: titanic[['Survived', 'Pclass', 'age\_labeled\_', 'Age']].head(10)

Out[6]:

|             | Survived | Pclass | age_labeled_ | Age  |
|-------------|----------|--------|--------------|------|
| PassengerId |          |        |              |      |
| 1           | 0.0      | 3      | Young        | 22.0 |
| 2           | 1.0      | 1      | Young        | 38.0 |
| 3           | 1.0      | 3      | Young        | 26.0 |
| 4           | 1.0      | 1      | Young        | 35.0 |
| 5           | 0.0      | 3      | Young        | 35.0 |
| 6           | 0.0      | 3      | Young        | NaN  |
| 7           | 0.0      | 1      | Over_40      | 54.0 |
| 8           | 0.0      | 3      | Child        | 2.0  |
| 9           | 1.0      | 3      | Young        | 27.0 |
| 10          | 1.0      | 2      | Child        | 14.0 |

In [7]: df\_pivot = titanic.pivot\_table(values='Survived', columns='Pclass', index='age\_labe
 led\_', aggfunc='mean')
 df\_pivot

#### Out[7]:

| Pclass       | 1        | 2        | 3        |
|--------------|----------|----------|----------|
| age_labeled_ |          |          |          |
| Child        | 0.875000 | 0.793103 | 0.344086 |
| Young        | 0.669355 | 0.421488 | 0.232493 |
| Over_40      | 0.513158 | 0.382353 | 0.075000 |

```
In [8]: df_pivot = df_pivot.rename_axis('', axis='columns')
    df_pivot = df_pivot.rename('Class {}'.format, axis='columns')
    df_pivot.style.format('{:.2%}')
```

#### Out[8]:

|              | Class 1 | Class 2 | Class 3 |
|--------------|---------|---------|---------|
| age_labeled_ |         |         |         |
| Child        | 87.50%  | 79.31%  | 34.41%  |
| Young        | 66.94%  | 42.15%  | 23.25%  |
| Over_40      | 51.32%  | 38.24%  | 7.50%   |

#### Out[9]:

#### Survival rates by class and age

|              | Class 1 | Class 2 | Class 3 |
|--------------|---------|---------|---------|
| age_labeled_ |         |         |         |
| Child        | 87.50%  | 79.31%  | 34.41%  |
| Young        | 66.94%  | 42.15%  | 23.25%  |
| Over_40      | 51.32%  | 38.24%  | 7.50%   |

# Pivot table and styling benefits

- Summarise relationships visually
- Highlight (and give background colours) to call out results
- Push the resulting DataFrame into a Seaborn heatmap (not shown) for a .png export

### **Pandas Profiling**

- <a href="https://github.com/pandas-profiling/pandas-profiling/pandas-profiling/pandas-profiling/pandas-profiling">https://github.com/pandas-profiling/pandas-profiling/pandas-profiling</a>)
- Take a look at the exported html: <a href="http://localhost:8000/titanic\_pp.html">http://localhost:8000/titanic\_pp.html</a>)

  (<a href="http://localhost:8000/titanic\_pp.html">http://localhost:8000/titanic\_pp.html</a>)
- Add the exported html artefact to your source control

```
# report in the Notebook
pp.ProfileReport(titanic)

# report to an html file (i.e. generate an artefact)
profile = pp.ProfileReport(titanic)
profile.to_file(outputfile="./titanic_pp.html")
```

### Seaborn

- Additional statistical plots on top of matplotlib and Pandas' own
- See <a href="https://www.kaggle.com/ravaliraj/titanic-data-visualization-and-ml">https://www.kaggle.com/ravaliraj/titanic-data-visualization-and-ml</a> (<a href="https://www.kaggle.com/ravaliraj/titanic-data-visualization-and-ml">https://www.kaggle.com/ravaliraj/titanic-data-visualization-and-ml</a>)

In [11]: fg = sns.catplot('Pclass', 'Survived', data=titanic, kind='point')
fg.ax.set\_title("Survival rate by Pclass with bootsrapped Confidence Interval");





In [12]: fg = sns.catplot('Pclass', 'Survived', data=titanic, hue='age\_labeled\_', kind='poin
t');
fg.ax.set\_title("Younger people generally have higher survival rates");



In [13]: fg = sns.catplot('Pclass', 'Survived', data=titanic, hue='Sex', kind='point');
fg.ax.set\_title("Females have significantly higher survival rates across Pclass");







### **Seaborn benefits**

- Visualise pivot-table results
- Clearly show 3D relationships
- Work using the DataFrame that you're manipulating (with new features and cleaner data)

### **Seaborn on the Boston dataset**

- See also aplunket.com/data-exploration-boston-data-part-2/
- Smarter 2D scatter, rug and hex plots

In [15]: from sklearn.datasets import load\_boston
 boston\_data = load\_boston()
 boston = pd.DataFrame(boston\_data.data, columns=boston\_data.feature\_names)
 boston['MEDV'] = boston\_data.target
 boston.head()

#### Out[15]:

|   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TÆ  |
|---|---------|------|-------|------|-------|-------|------|--------|-----|-----|
| 0 | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296 |
| 1 | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242 |
| 2 | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242 |
| 3 | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222 |
| 4 | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222 |

```
In [16]: ax = boston[['LSTAT', 'MEDV']].plot(kind="scatter", x="LSTAT", y="MEDV");
ax.set_title("Scatter plot");
```



In [17]: grid = sns.JointGrid(x='LSTAT', y='MEDV', data=boston, space=0, height=6, ratio=50)
 grid.plot\_joint(plt.scatter, color="b")
 grid.plot\_marginals(sns.rugplot, color="b", height=4);



In [18]: grid = sns.JointGrid(x='LSTAT', y='MEDV', data=boston, space=0, height=6, ratio=50)
 grid.plot\_joint(plt.scatter, color="b", alpha=0.3)
 grid.plot\_marginals(sns.rugplot, color="b", height=4, alpha=.3);



In [19]: jg = sns.jointplot(boston.LSTAT, boston.MEDV, kind='hex')
jg.ax\_marg\_x.set\_title("Median value vs % lower status of the population");



## Pair plots

- Show scatter and kernel density (kde) plots for feature pairs
- See <a href="http://gael-varoquaux.info/interpreting ml tuto/content/01 how well/02 cross validation.html">http://gael-varoquaux.info/interpreting ml tuto/content/01 how well/02 cross validation.html</a>)

In [20]: boston\_smaller = boston[['LSTAT', 'CRIM', 'NOX', 'MEDV']]
 sns.pairplot(boston\_smaller, height=2);



In [21]: g = sns.PairGrid(boston\_smaller, diag\_sharey=False, height=2)
 g.map\_lower(sns.kdeplot)
 g.map\_upper(plt.scatter, s=2)
 g.map\_diag(sns.kdeplot, lw=3);



# discover\_feature\_relationships

- Which features predict other features?
  - What relationships exist between all pairs of single columns?
  - Could we augment our data if we know the underlying relationships?
  - Can we identify poorly-specified relationships?
- Go beyond Pearson and Spearman correlations (but we can do these too)
- https://github.com/ianozsvald/discover\_feature\_relationships/ (https://github.com/ianozsvald/discover\_feature\_relationships/)

```
In [24]: cols = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PT
RATIO', 'B', 'LSTAT', 'MEDV']
classifier_overrides = set() # classify these columns rather than regress (in Bosto
    n everything can be regressed)
%time df_results = discover.discover(boston[cols].sample(frac=1), classifier_overrides, method="spearman")
```

CPU times: user 868 ms, sys: 0 ns, total: 868 ms Wall time: 867 ms



In [ ]: %time df\_results = discover.discover(boston[cols].sample(frac=1), classifier\_overrides)

In []: # RAD figures are clipped which distorts the relationship with CRIM!
# we've identified some dodgy data - maybe we could look for better data sources?
jg = sns.jointplot(boston.CRIM, boston.RAD, alpha=0.3)
jg.ax\_marg\_x.set\_title("CRIM vs RAD (which is heavily clipped)\nshowing a distorted relationship");

### **Data Stories**

- Proposed by Bertil: <a href="https://medium.com/@bertil hatt/what-does-bad-data-look-like-91dc2a7bcb7a">https://medium.com/@bertil hatt/what-does-bad-data-look-like-91dc2a7bcb7a</a>)
- A short report describing the data and proposing things we could do with it
- Use Facets and Pandas Profiling to describe the main features
- Use discover\_feature\_relationships and PairGrid to describe interesting relationships
- Note if there are parts of the data we don't trust (time ranges? sets of columns?)
  - Bonus take a look at the missingno missing number library
- Propose experiments that we might run on this data which generate a benefit
- This presentation is a *Jupyter Notebook* in *presentation mode* (i.e. a source controlled code artefact)

### Conclusion

- We've looked at a set of tools that enable Python engineers and data scientists to review their data
- Looking beyond 2D correlations we might start to dig further into our data's relationships
- A Data Story will help colleagues to understand what can be achieved with this data
- See my Data Science Delivered repo on github.com/ianozsvald
- Did you learn something? I love receiving postcards! Please email me and I'll send you my address
- Talk to me about team coaching
- Please try my tool I'd love feedback: <a href="https://github.com/ianozsvald/discover-feature-relationships">https://github.com/ianozsvald/discover-feature-relationships</a>)
- Please come to a PyData event and please thank your fellow volunteers here

lan Ozsvald (<a href="http://ianozsvald.com">http://ianozsvald.com</a>), <a href="http://twitter.com/ianozsvald">http://twitter.com/ianozsvald</a>))