Wombat Example 9A

Problem statement

- Monthly weight records from birth to weaning of beef calves
- Analysis using random regression with an additional random effect
- Fit quadratic B-splines as basis functions

Description of dataset

- 'animal' and 'subject' = animal ID
- btype = birth type class
- dagroup = ?
- cgroup = contemporary group
- pdam = permanent environmental effect of dam
- gdam = genetic effect of dam
- weight = response
- age = age of calves (in months)
- sex

Random Intercept and Slope

Random regressions model

Fixed effect for *i*th contemporary group

rth random regression coefficient for permanent environmental effect of dam k

rth random regression coefficient for direct additive genetic effect of animal j

 r^{th} random regression coefficient for permanent environmental effect of animal j

$$e \sim N[\theta, I\sigma_e^2]$$
 $\alpha \sim N[0, I\sigma_\alpha^2]$ $\beta \sim N[0, I\sigma_\beta^2]$ $\gamma \sim N[0, I\sigma_\gamma^2]$

Splines and B-Splines

Splines:

- Curves consisting of individual segments joined smoothly
- Segments given by polynomials
- Points at which they join are called knots

B-Splines:

- Set of overlapping, smooth and non-negative functions
- Are unimodal
- Sum to unity for all values of t.
- Are defined recursively

Age (here) Total no. of knots =
$$n-p+1$$

$$B_{k,p}(t) = \frac{t-T_k}{T_{k+p}-T_k} B_{k,p-1}(t) + \frac{T_{k+p+1}-t}{T_{k+p+1}-T_{k+1}} B_{k+1,p-1}(t)$$
 val Degree of

Description of parameters

- ANAL RR random regression analysis
- FIX cgroup fixed effects
- COV age(6, bspq) fixed covariable. n =6 is the degree of fit with basis function = quadratic b-spline. Could also use (POL or LEG)
- RRC age random regression control variable
- RAN animal(6, bspq) nrm additive genetic effect for animal is random. Each animal has its unique intercept and slope across levels of age
- RAN (subject, bspq) permanent environmental effect for animal is random. Each animal has its unique intercept and slope across levels of age
- trait response

Description of parameters

- VAR animal 6 assume covariance matrix among RR coefficients for animal is unstructured. Elements of upper triangle supplied
- VAR residual 1 HET 10 :
 - residual 1: dimension of each residual covariance matrix =1, usually equal to no. of traits
 - HET 10: heterogeneous error covariances. Here separate residual variances are being fit for each pair of levels of age

Additional parameters

- RUNOP For specifying run time options on the first line of the parameter file
- logdia Diagonal elements of covariance matrices are log transformed
- aireml Average Information algorithm used
- metis14,0,3,2 Selects an ordering using a multilvel nested dissection procedure so as to optimize computational time.
 - 14 graph separators
 - 0 rows in matrices to be treated as dense
 - standard edge matching strategy
 - 1-sided node refinement