Contents

1	Part	A	2
	1.1	A Main Code	2
	1.2	A.1 Code	2
	1.3	A.1 Output	3
	1.4	A.2 Code	3
	1.5	A.2 Output	3
	1.6	A.3 Code	3
	1.7	A.3 Output	4
	1.8	Output Result Differences	4
•	D 4	D.	_
2	Part	В	5
	2.1	B Main Code	5
	2.2	B.1 Code	5
	2.3	B.2 Code	5
	2.4	Output Result Differences	6

Chapter 1

Part A

1.1 A Main Code

```
@qfunc
def main(cntrl: Output[QArray[QBit]], target: Output[QBit]) -> None:
    allocate(5, cntrl)
    allocate(1, target)
    control(ctrl=cntrl, operand=lambda: X(target))
```

Figure 1.1: A Main Code

1.2 A.1 Code

Figure 1.2: A-1 Code

1.3 A.1 Output

1.4 A.2 Code

Figure 1.3: A-2 Code

1.5 A.2 Output

1.6 A.3 Code

Figure 1.4: A-3 Code

1.7 A.3 Output

1.8 Output Result Differences

- A1 Case: Here, we focused on minimizing the depth of the circuit, resulting in shallow but wider circuit. In this case, we got Width = 8 and depth = 34. Means, 8 qubits are involved in simultaneous operation and 34 operations are needed to complete the circuit.
- **A2 Case:** Here, we focused on minimizing the width of the circuit, sacrificing the depth, resulting in deeper circuit. Here, we got width=6 and depth=117. Means, 6 qubits are involved in simultaneous operation and 117 operations are needed to complete the circuit, results in a deeper circuit.
- A3 Case: Here, we focused on a moderate circuit, balancing between width and depth optimization. In this case, we got width=6 and depth=51, which is a balance of previous two case.

Chapter 2

Part B

2.1 B Main Code

```
@qfunc
def main(cntrl: Output[QArray[QBit]], target: Output[QBit]) -> None:
    allocate(20, cntrl)
    allocate(1, target)
    control(ctrl=cntrl, operand=lambda: X(target))

    0.0s
```

Figure 2.1: B Main Code

2.2 **B.1** Code

Figure 2.2: B-1 Code

2.3 **B.2** Code

Figure 2.3: B-2 Code

2.4 Output Result Differences

- **B1 Case:** Here, we focused on minimizing the depth of the circuit, resulting in shallow but wider circuit. In this case, we got <u>Width</u> = 30 and <u>depth</u> = 66. Means, 30 qubits are involved in simultaneous operation and 66 operations are needed to complete the circuit.
- **B2 Case:** Here, we focused on minimizing the width of the circuit, sacrificing the depth, resulting in deeper circuit. Here, we got width = 22 and depth=1894. Means, 22 qubits are involved in simultaneous operation and 1894 operations are needed to complete the circuit, results in a deeper circuit.