CS1050

COMPUTER ORGANIZATION & DIGITAL DESIGN

Eng. DR. Chathura de Silva

Computer Organization & Computer Architecture

Computer Organization

- What matters for the hardware engineers
- Mostly about the physical aspects of computer systems.
 - circuit design, control signals, memory types.
 - Hardware modules, interfacing
- What components are required to build a computer and how they are inter-connected?
- How does a computer work?

Computer Architecture

- What matters for the software developers
- Logical aspects of system as seen by the programmer.
 - Instruction sets, instruction formats, data types, addressing modes.
 - Instruction timing
- How software can perform best in the computer
- How do I design a computer system?

Recall from CS1033

- The CPU understands and executes instructions,
 one at a time
- Instructions are stored in the Memory
- Called the Von-Neumann architecture

- The CPU performs the Instruction cycle
 - Fetch sub cycle
 - Decode sub cycle
 - Operand fetch sub cycle
 - Execute sub cycle
- CPU communicates with other devices through the system bus
- IO devices interface external world with the CPU
- All operations of the CPU (and hence other devices) are sync'd based on the system clock
 - Often these activities are expressed in the form of a "timing diagram"

How CPU Works: in a nutshell

Timing diagrams

• A timing diagram is a graphical representation of how different logic signals change relatively to each other in time.

Example: A SR flipflop

Exercise

Complete the timing diagram of the JK flipflop

Timing diagrams: Clock signals

What would be the timing diagram at point "A"

Clock signals

- A clock signal is a periodic waveform that is used to synchronize state changes of other signals
 - Activities are sync'ed to different parts (states) of the clock signal

Rise-time and fall-time

 In practical situations, electrical properties like capacitance, prevents signals from changing their state instantaneously

Affects the maximum clock rate

Clock, pulse signals and the Duty Cycle

- A clock signal changes periodically between the High-state and the LOW state
 - The ratio between time spent in HIGH state compared to the period is called the Duty Cycle
 - A 50% duty cycle represents a symmetrical clock signal
- A pulse usually remains in one state (idle state), moves briefly to the other state and return's back to the idle state
 - Active-high pulse: signal briefly moves to highstate from idle low-state
 - Active-low pulse: signal briefly moves to lowstate from idle high-state

Reading timing diagrams

- A CPU timing diagram specifies how different signals state change against each other during a task
- Generally, these changes are sync'd to the clock signal

The system bus

- The CPU often need to send and receive various types of values (data / instructions) with memory and IO devices
- The system bus is a common path-way that interconnects these devices with the CPU
 - Contains a few signals transferring data and control information
- All most all CPU operations depends on the bus.
 Hence it is considered a vital component in the computer
- Generally, the bus operates under the control of the CPU.
 - Hence the CPU is referred to as the bus-master of the system
 - Other devices that use the bus are called bus-slaves
- A typical computer system may have multiple busses with different characteristics

Bus characteristics

- The bus needs to send and receive
 - Addresses that uniquely identify the device at the other end
 - Data to be transferred
 - Control signals that ensure correct data transfer
- Address is usually unidirectional (from master to slaves). Other signals are bidirectional
- Some busses send these values serially using a few communication lines.
 Others may use several parallel lines for each category of signals
- Early computers used a single bus to connect with all components. Modern computers use multiple busses, based on characteristics of each device type

Bus characteristics

- The bus is characterized by
 - Electrical properties
 - Voltages, currents of communication lines
 - Mechanical properties
 - Dimensions and properties of connectors
 - Address space
 - How many devices can be connected, addresses
 - Data width (data space)
 - · How many bits of data transferred at a time
 - Clock frequency
 - How many transfers per second
 - Protocols
 - Timing of different signals to ensure correct bus operations

Common types of busses

- Industrial System Bus (ISA)
 - (16-bit address, 8-bit data, 8Mhz)
- Extended Industrial Bus (EISA)
 - (16-bit address, 16-bit data, 8Mhz)
- Peripheral Component Interconnect (PCI)
 - (32-bit address, 32-bit data, 66/133Mhz)
- Universal Serial Bus (USB)
- Control Area Network (CAN) bus
- FireWire bus
- I2C (Inter IC communication) bus

Multiple busses on a motherboard

Busses require logic with tri-state outputs

 Write down the truth table for the (A,B) inputs and the Z output

Α	В	Z
0	0	
1	1	
1	0	
0	1	

Gates with tri-state outputs

En	Input	Output
0	Х	Hi-Z
1	0	0
1	1	1

Truth Table

3-Bus architecture

Z80 Memory Read/Write

Z80 uses 3-bus architecture

Address bus: 16-bit

Data bus: 8-bits

ISA BUS Read/Write cycles

Memory read

Memory write

Multiplexed busses

 Z80 has separate pins for Address, Data and Control busses

 Intel 8088 uses part of its address bus to send and receive data

8088 bus demultiplexing

- Data bus is multiplexed ono part of the address bus
- A separate signal ALE (Address
 Latch Enable) differentiate
 between address and data within
 the multiplexed portion
- External device is expected to demultiplex by latching the address

Serial busses (USB/CAN/Firewire/I2C)

- Transfer all information (Addresses, Data and control) using the same set of lines
- Hence data is transferred as a "frame" in a burst mode
 - A frame is a data structure that includes, address fields, data fields and control fields
- Transmitting and receiving devices serialize/deserialize these frames into appropriate structures before they are used
- The device will not consume/transmit the package unless the address is correct

Bus limitations

- The system bus is a shared resource. Only one pair of devices can use it at any given time
- All devices must communicate at the same speed, using the same protocol
- Bus must always be under control of one bus-master
- Parallel busses require a larger number of lines (multiplexing reduces throughput)
- Serial busses use less lines but add complexity and have lower capacity

Multi-bus systems

- Modern computers needs interconnections with different types of devices with different characteristics
- A single bus is not efficient to interconnect all of them
- Hence these systems use multiple busses, each designed to meet requirements of a category of devices.
- Special devices called Bridges inter-links these busses
 - Matches multiple characteristics across busses
 - Uses buffering to match speeds

ISA bus interface

Bus interfacing: Receiving data

• Z80 Write Cycle

Bus interfacing: Sending data

Z80 Read Cycle

LSI/MSI Components

Function Tables

DM74LS373

Output Control	Enable G	D	Output
L	Н	Н	Н
L	Н	L	L
L	L	X	Q_0
Н	X	X	Z

DM74LS374

Output Control	Clock	D	Output
L	1	Н	Н
L	1	L	L
L	L	Х	Q_0
Н	Х	X	Z

H = HIGH Level (Steady State)

L = LOW Level (Steady State)

X = Don't Care

Z = High Impedance State

^{↑ =} Transition from LOW-to-HIGH level

Q₀ = The level of the output before steady-state input conditions were established.

LSI/MSI components

Connection Diagram

Function Table

Inp	Output	
Ğ	Α	Y
L	L	L
L	Н	Н
Н	Х	Z

L = LOW Logic Level

H = HIGH Logic Level

X = Either LOW or HIGH Logic Level

Z = High Impedance

Connection Diagram

Function Table

Enable G	Direction Control	Operation
L	DIR L	B Data to A Bus
L	Н	A Data to B Bus
Н	X	Isolation

H = HIGH Level L = LOW Level

X = Irrelevant

Multiplexed buses: 8088 processor

Address decoder

Full address decoder

- Decodes all address bits and map to a unique address in the full space
- Typically, in the form of a 2-level MSOP or MPOS format

Partial address d\u00e9coder

- Decodes only a few address lines and therefore maps multiple addresses to the same port
- Used when only a few ports are needed

Hierarchical address decoding

 Typically used when the interface require multiple ports mapped onto an address range

LSI/MSI components: Decoders & Comparators

	(Cascadin	g		Outputs				
	Inp	uts		Inputs					
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B
A3 > B3	Х	Х	Х	Х	Х	Х	Н	L	L
A3 < B3	X	X	X	X	X	X	L	Н	L
A3 = B3	A2 > B2	Х	X	Х	X	Χ	Н	L	L
A3 = B3	A2 < B2	Х	X	Х	X	Χ	L	Н	L
A3 = B3	A2 = B2	A1 > B1	X	Х	X	Χ	Н	L	L
A3 = B3	A2 = B2	A1 < B1	X	Х	X	Χ	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	X	Χ	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	X	X	Χ	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	X	Χ	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	L	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	Н	Н	L

Function Tables

DM74LS138

	Inputs				Outputs							
	Enable	Select				Outputs						
G1	G2 (Note 1)	С	В	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	Н	Χ	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

DM74LS139

Inp	outs		Outputs				
Enable	Sel	ect		Out	puis		
G	В	Α	Y0 Y1 Y2 Y				
Н	Х	Х	Н	Н	Н	Н	
L	L	L	L H		Н	Н	
L	L	Н	Н	L	Н	Н	
L	Н	L	Н	Н	L	Н	
L	Н	Н	Н	Н	Н	L	

H = HIGH Level

X = Don't Care

Note 1: G2 - G2A + G2B

Design with LSI/MSI components

Use of integrated devices (Intel 8255)

