Big Data Computing 2020 Recommender Systems

Donato Crisostomi

Master Degree in Computer Science Sapienza, University of Rome

A.Y. 2019 - 2020

Introduction •00

> • recent rise of web services offering all kind of goods;

- recent rise of web services offering all kind of goods;
- too much information may overwhelm the user;

- recent rise of web services offering all kind of goods;
- too much information may overwhelm the user;
- need to narrow the proposed content;

- recent rise of web services offering all kind of goods;
- too much information may overwhelm the user;
- need to narrow the proposed content;
 - o greater income;

- recent rise of web services offering all kind of goods;
- too much information may overwhelm the user;
- need to narrow the proposed content;
 - o greater income;
 - stand out from competitors;

Introduction 000

> recommender systems are algorithms aimed at suggesting relevant items to users.

Introduction

recommender systems are algorithms aimed at suggesting relevant items to users.

 content-based: create items and users profiles, embed them in a numerical feature space, and then suggest to the user the items which are nearest to him;

Formalization

recommender systems are algorithms aimed at suggesting relevant items to users.

- content-based: create items and users profiles, embed them in a numerical feature space, and then suggest to the user the items which are nearest to him;
- collaborative-filtering: ignore content and rely only on user-item ratings
 - o user-based: user-user similarity;
 - o item-based: item-item similarity;

Formalization

recommender systems are algorithms aimed at suggesting relevant items to users.

- content-based: create items and users profiles, embed them in a numerical feature space, and then suggest to the user the items which are nearest to him;
- collaborative-filtering: ignore content and rely only on user-item ratings
 - user-based: user-user similarity;
 - o item-based: item-item similarity;
- hybrid: leverage both approaches.

Sequential recommender systems

Introduction

Recommender systems have recently taken in consideration sequential dynamics.

- capture patterns in the sequence of actions users perform;
- ignore time, model the order of the actions;
- challenging task as possible sequences grow exponentially;
- Markov-Chain models condition the next action only on few previous ones;
- Neural architectures can be used;

In general feedback is not always given explicitly, so other approaches try to exploit **implicit feedbacks** like clicks or purchases.

Recommending games

In this project we will see how recommender systems can be leveraged to suggest games.

Dataset

The dataset contains information regarding both games and user-game reviews, separated in two tables **steam_reviews** and **steam_games**:

steam_reviews:

- username
- user_id
- product_id
- text
- date
- found_funny
- hours_played

steam_games:

- title
- id
- developer
- genres
- metascore
- price
- publisher
- release_date
- specs
- tags

We will use two models, plus a naive baseline:

- MF model, which is a collaborative-filtering approach;
- RNN-based, which is a sequential recommendation approach;

As both don't require item profiles, we will not use the game features.

Final set of features:

- user_id: reviewer id;
- product_id: reviewed game id;
- text: content of the review;
- date: date of the review;

Data Analysis: ratings per user

The distribution of ratings per-user follows a power-law: most of the users reviewed few games, while only few users have reviewed a significant number of games.

Data Analysis: ratings per game

The same thing happens for games, few games received a large amount of reviews, while most games have few.

Data Analysis: long tail

The distribution shows a long tail which amounts for a significant part of the catalogue, so a good recommender system should be able to recommend less famous games, even if it is in fact harder.

Adding sentiment

- · explicit ratings matrix required;
- implicit feedback approaches may waste useful information from reviews;
- turn text reviews into numerical ratings;

- · explicit ratings matrix required;
- implicit feedback approaches may waste useful information from reviews;
- turn text reviews into numerical ratings;

For this task, we will use a pretrained **sentiment analyzer** from StanfordNLP, so every text review will be mapped to a value $r \in \{0,1,2\}$, meaning negative, neutral and positive respectively.

Adding sentiment

- · explicit ratings matrix required;
- implicit feedback approaches may waste useful information from reviews;
- turn text reviews into numerical ratings;

For this task, we will use a pretrained **sentiment analyzer** from StanfordNLP, so every text review will be mapped to a value $r \in \{0,1,2\}$, meaning negative, neutral and positive respectively.

Matrix Factorization

We will use a constant model as a baseline

- constant in the sense that it does not depend on the user in input;
- without information regarding the user, the safest bet is to suggest most popular games.

The first real model employs a **Latent Factor** collaborative filtering approach.

Latent factor models

Latent factor models are statistical models that relate a set of observable variables (so-called manifest variables) to a set of latent variables.

In our case we want to predict user ratings by representing both items and users with a number of hidden factors inferred from observed ratings.

Matrix Factorization

- we assume there exists an unknown low-dimensional representation of users and items:
- Matrix Factorization obtains these lower-dimensional representations directly from data.

In general, we want to infer the rating $r_{u,i}$ of user u to item i.

- map both items and users to a joint latent factor d-dimensional space, so
 - o each user will be represented by $\mathbf{x}_u \in \mathbb{R}^d$, each item will be represented by $\mathbf{w}_i \in \mathbb{R}^d$;
- estimate r_{u,i} by applying the dot product

$$\hat{r}_{u,i} = \mathbf{x}_u^\mathsf{T} \cdot \mathbf{w}_i = \sum_{i=1}^d x_{u,j} w_{j,i} \tag{1}$$

recommend to user u the k items for which the estimate is maximum.

Matrix Factorization

Need a way to map users and items to these latent factor vectors.

- Approximate R with the product of two matrices $X \in \mathbb{R}^{m \times d}$ and $W \in \mathbb{R}^{d \times n}$
- Equivalent to minimizing

$$\mathcal{L}(X, W) = \sum_{u, i \in D} (r_{u, i} - \mathbf{x}_{u}^{T} \cdot \mathbf{w}_{i})^{2}$$
(2)

- Optimization problem can be solved in 2 ways
 - SGD: iterative method which tries to minimize the loss function by descending its gradient;
 - ALS: alternately fix one latent vector and update the other one, making the loss function convex;

Sequential Recommender System

Transform the dataset to obtain for each user a vector

$$\mathbf{x} = (x_1, \dots, x_n)$$

- Train the model to predict next game review given the previous ones, or equivalently x_i given x₁,..., x_{i-1};
- use the first n-1 reviews (x_1, \ldots, x_{n-1}) as input and train the model to predict the input shifted by 1 position (x_2, \ldots, x_n) .

ISTM

Recurrent Neural Networks summarize the context of a certain token m with a recurrently updated vector

$$\vec{h}_m = g(\vec{x}_m, \vec{h}_{m-1}), \quad m = 1, 2, \dots, m$$

where \vec{x}_m is the vector embedding of the token w_m and g defines the recurrence.

- · often fail to capture long-time dependencies;
- LSTMs often used instead:
- more complex recurrence, in which a memory cell goes through a series of gates, in fact avoiding repeated applications of non-linearity.
- bidirectionality would allow the model to cheat;
- sequences must be padded;

- 1. each input sequence x is embedded by a word embedding layer;
- 2. a LSTM encoder takes as input the embedded sequence and returns a dynamic representation of each game and its context:
- 3. the hidden representation is given to a Multi Layer Perceptron to map each game representation to the games space.
- 4. Cross entropy is used as loss function

$$\mathcal{L} = -\sum_{c=1}^{M} y_{o,c} \log(p_{o,c})$$

Legend					
Egame	game embedding dim				
s	Sequence length				
н	LSTM hidden dimension				
В	batch size				

Matrix Factorization evaluation

Root Mean Squared Error quantifies how much much the predictions are far from the gold truth.

$$RMSE = \sqrt{\frac{\sum_{i=0}^{N-1} (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2}{N}}$$
 (3)

Precision at k instead is a measure of how many of the first k recommended documents are in the set of true relevant documents averaged across all users.

$$P(k) = \frac{1}{M} \sum_{i=0}^{M-1} \frac{1}{k} \sum_{j=0}^{\min(Q_i, k) - 1} rel_{D_i}(R_i(j))$$
 (4)

As P@k doesn't account for the order of the recommendations, to consider it we must use NDCG@k

$$NDCG(k) = \frac{1}{M} \sum_{i=0}^{M-1} \frac{1}{IDCG(D_i, k)} \sum_{j=0}^{n-1} \frac{rel_{D_i}(R_i(j))}{\log(j+2)}$$
 (5)

where

$$n = \min\left(\max\left(Q_i, N_i\right), k\right) \tag{6}$$

$$IDCG(D,k) = \sum_{j=0}^{\min(|D|,k)-1} \frac{1}{\log(j+2)}$$
 (7)

Matrix Factorization results

	P@5	NDCG@5	RMSE	
Popularity	$4e^{-3}$	$9e^{-3}$	//	
Matrix Factorization	$3e^{-5}$	$9e^{-5}$	1.125	

Problem challenges:

- sentiment analysis still an open research field;
- severe error pile-up with the error produced by the recommender system;
- game reviews may be particularly difficult for the analyzer to get right;

Metrics for the sequential approach

Hit@10 has been used for the sequential model, which is a **top**-*n* metric that counts the fraction of times that the ground-truth next item is among the top 10 recommended items

$$\frac{\# \text{ hits}}{\# \text{ users}} \tag{8}$$

- model obtains a *H*@5 of 0.503;
- obtained accuracy would be low in a typical classification setting with few classes;
- model must be able to discriminate among $\approx 13k$ classes

Sequential results

Random baseline would obtain

$$\Pr\{hit\} = \sum_{i=1}^{10} \Pr\{pred_i \text{ is correct}\}$$
 (9)

$$= \sum_{i=1}^{10} \frac{1}{\# \text{ classes}} = 10 \cdot \frac{1}{13000} \approx 7e^{-5}$$
 (10)

We have seen two very different approaches to recommender systems, neither of them reached state of the art.

- The MF approach is too naive and doesn't exploit all the features;
- the LSTM approach has few intrinsic flaws, for example the LSTM predicting a sequence of games where the same game is often repeated;
- not easy to carve such constraints in the model.

There are some improvements that could be tried:

- add content based features to both approaches, for example obtaining contextualized embeddings from the text reviews;
- try adding a sequence scorer on top of the LSTM (e.g. a CRF) to help assess the quality of a sequence of tags as a whole.

Thank you for your attention