

مهلت تحویل ساعت ۲۴ روز جمعه ۴ اسفند

پاسخنامه تمرین یک

به موارد زیر توجه کنید:

- ۱- حتما نام و شماره دانشجویی خود را روی پاسخنامه بنویسید.
- ۲- کل پاسخ تمرینات را در قالب یک فایل pdf با شماره دانشجویی خود نام گذاری کرده در سامانه CW بار گذاری کنید.
 - ۳- این تمرین ۶۰ نمره دارد که معادل ۶٫۶ نمره از نمره کلی درس است.
 - ۴- در صورت مشاهده هر گونه مشابهت نامتعارف هر دو (یا چند) نفر کل نمره این تمرین را از دست خواهند داد.
 - ۱- (۱۰ نمره) در شکل زیر Li ورودی فرمان Load و Ei ورودی فرمان Enable خروجی سه حالته ثبات i است.
- الف- چه کد عملیاتی باید به این مدار اعمال شود تا انتقال $R3 \leftarrow R2$ انجام شود، ؟ (کد Hex با فرمت $(y_1y_0x_1x_0)$ مراحل بهدست آوردن کد را توضیح دهید.
 - ب- آیا با این سختافزار میتوانیم همزمان محتوای دو ثبات را با هم عوض کنیم؟
 - ج- فرض کنید خروجی ثباتهای سهحالته نیستند. سختافزاری رسم کنید که مثل همین مدار کار کند.

ياسخ:

الف- باید Load ثبات R3 و Enable ثبات R2 مقدار یک داشته باشند، یعنی E2=1 و E3=1 بقیه پایهها باید صفر E3=1 باشند. برای اینکه E3=1 شود باید E3=1 شود باید E3=1 شود باید E3=1 بایند E3=1 ب

ب- همزمان مقدار دو ثبات را نمی توانیم تغییر دهیم، چون فقط یک گذرگاه برای قرار دادن ثبات مبدا داریم و بنابراین در هر لحظه فقط یک ثبات را می توانیم به ثبات دیگری انتقال دهیم.

ج- اگر خروجی ثباتها سه حالته نباشند، می توانیم از یک مولتی پلکسر چهار به یک استفاده کنیم که بیتهای انتخاب آن x_1 و x_2 باشند و خروجی هر ثبات به آن وارد شود و خروجی مولتی پلکسر به ورودی همه ثباتها متصل باشد.

۲- (۱۰ نمره) سختافزاری بسازید که عملیات زیر را انجام دهد:

T₀: R1 \leftarrow R1 XOR R2 T₁: R1 \leftarrow 1110 T₂: R2 \leftarrow srl R2

 T_3 : R3 \leftarrow R3 AND R1, R2 \leftarrow R3

ثباتها را 4 بیتی در نظر بگیرید و فرض کنید در هر کلاک حداکثر یکی از سیگنالهای 7 1 1 2 و 2 یک خواهد بود. پاسخ:

 R_1 را در هر کلاک محتوای K_1 تا K_1 را در هر کلاک طوری تعیین کنید که پس از تعداد کافی کلاک محتوای K_1 به سایر ثباتها برود و محتوای R_1 برابر محتوای اولیهٔ R_2 شود. سپس مشخص کنید این کار حداقل چند کلاک طول می کشد؟

پاسخ:

این عملیات را می تواند در حداقل چهار چرخهٔ ساعت انجام داد:

 $K'_{1}K_{2}K'_{3}K'_{4}: R2 \leftarrow R1$ $K'_{1}K'_{2}K_{3}K_{4}: R1 \leftarrow R4$ $K_{1}K'_{2}K_{3}K'_{4}: R3 \leftarrow R2$ $K_{1}K_{2}K'_{3}K'_{4}: R4 \leftarrow R2$ ۴- (۱۰ نمره) توضیح دهید کد RTL زیر چه می کند و محتوای ثباتها پس از هر بار اجرای این دو خط چه تغییری می کند؟ فرض کنید دو خط زیر در دو کلاک متوالی اجرا می شوند.

```
R1 \leftarrowR1 XOR R1, R2 \leftarrowR1, R3 \leftarrowR3+1
R2 \leftarrowR2 XOR R2, R1 \leftarrowR2, R3 \leftarrowR3+1
```

پاسخ:

هر بار به ترتیب در دستور اول محتوای R1 به R2 می رود، R1 صفر می شود و R3 یکی اضافه می شود. در دستور دوم محتوای R2 به R1 می رود، R2 صفر می شود و R3 یکی اضافه می شود.

یعنی با هر بار اجرا محتوای اولیهٔ R1 بین R1 و R2 پاس داده می شود و با هر بار انتقال آن یکی به R3 اضافه می شود، بنابراین پس از هر بار اجرای این دستورات محتوای R1 همان مقدار اولیهٔ آن، R2 برابر صفر است و به R3 دو تا اضافه می شود.

۵- (۲۰ نمره) مدار زیر را با سیگنالهای کنترلی K_1 تا K_3 در نظر بگیرید. ساده ترین مداری را که توصیف RTL یکسان با این مدار دارد رسم کنید. (راهنمایی: ابتدا توصیف RTL مدار را بنویسید و ساده کنید، سپس ساده ترین مدار را برای آن بسازید.)

پاسخ:

```
K_1'K_2'K_3': R3 \leftarrow R1 + R4

K_1'K_2'K_3: R3 \leftarrow R3 + R4

K_1'K_2K_3': R4 \leftarrow R1 + R2

K_1'K_2K_3: R4 \leftarrow R3 + R2

K_1K_2'K_3: R2 \leftarrow R1 + R2

K_1K_2'K_3: R2 \leftarrow R3 + R2

K_1K_2'K_3: R2 \leftarrow R1 + R4

K_1K_2K_3: R2 \leftarrow R1 + R4
```

