Machine Learning Foundations

(機器學習基石)

Lecture 5: Training versus Testing

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 When Can Machines Learn?

Lecture 4: Feasibility of Learning

learning is PAC-possible if enough statistical data and finite $|\mathcal{H}|$

Why Can Machines Learn?

Lecture 5: Training versus Testing

- Recap and Preview
- Effective Number of Lines
- Effective Number of Hypotheses
- Break Point
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Recap: the 'Statistical' Learning Flow

if $|\mathcal{H}| = M$ finite, N large enough, for whatever g picked by \mathcal{A} , $E_{\text{out}}(g) \approx E_{\text{in}}(g)$

if ${\mathcal A}$ finds one g with ${\mathcal E}_{\rm in}(g) \approx {\mathsf 0},$

PAC guarantee for $E_{\text{out}}(g) \approx 0 \Longrightarrow$ learning possible :-)

Two Central Questions

for batch & supervised binary classification,
$$g \approx f \iff E_{\text{out}}(g) \approx 0$$

achieved through
$$\underbrace{E_{\text{out}}(g) \approx E_{\text{in}}(g)}_{\text{lecture 4}}$$
 and $\underbrace{E_{\text{in}}(g) \approx 0}_{\text{lecture 2}}$

learning split to two central questions:

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

what role does M play for the two questions?

Trade-off on M

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

small M

- Yes!,
 P[BAD] ≤ 2 ⋅ M ⋅ exp(...)
- No!, too few choices

large M

- No!,
 ℙ[BAD] ≤ 2 ⋅ M ⋅ exp(...)
- Yes!, many choices

using the right M (or \mathcal{H}) is important $M = \infty$ doomed?

Preview

Known

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon
ight] \leq 2 \cdot \c M \cdot \exp\left(-2\epsilon^2 N
ight)$$

Todo

establish a finite quantity that replaces M

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon
ight] \overset{?}{\leq} 2 \cdot m_{\mathcal{H}} \cdot \exp\left(-2\epsilon^2 N
ight)$$

- justify the feasibility of learning for infinite M
- study $m_{\mathcal{H}}$ to understand its trade-off for 'right' \mathcal{H} , just like M

mysterious PLA to be fully resolved after 3 more lectures :-)

Fun Time

Data size: how large do we need?

One way to use the inequality

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \leq \underbrace{2 \cdot M \cdot \exp\left(-2\epsilon^2 N\right)}_{\delta}$$

is to pick a tolerable difference ϵ as well as a tolerable **BAD** probability δ , and then gather data with size (N) large enough to achieve those tolerance criteria. Let $\epsilon = 0.1$, $\delta = 0.05$, and M = 100. What is the data size needed?

1 215

2 415

3 615

4 815

Where Did M Come From?

$$\mathbb{P}\left[\left| \textit{E}_{\mathsf{in}}(\textit{g}) - \textit{E}_{\mathsf{out}}(\textit{g}) \right| > \epsilon\right] \leq 2 \cdot \textcolor{red}{\mathsf{M}} \cdot \exp\left(-2\epsilon^2 \textit{N}\right)$$

- $\mathcal{B}AD$ events \mathcal{B}_m : $|E_{in}(h_m) E_{out}(h_m)| > \epsilon$
- to give \mathcal{A} freedom of choice: bound $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M]$
- worst case: all B_m non-overlapping

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]$$
union bound

where did uniform bound fail to consider for $M = \infty$?

Where Did Uniform Bound Fail? union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$

- \mathcal{B} AD events \mathcal{B}_m : $|E_{\rm in}(h_m) E_{\rm out}(h_m)| > \epsilon$ overlapping for similar hypotheses $h_1 \approx h_2$
- overlapping for similar hypotheses $H_1 \approx H_2$
- why? 1 $E_{\text{out}}(h_1) \approx E_{\text{out}}(h_2)$ 2 for most \mathcal{D} , $E_{\text{in}}(h_1) = E_{\text{in}}(h_2)$
- union bound over-estimating

to account for overlap, can we group similar hypotheses by kind?

How Many Lines Are There? (1/2)

$$\mathcal{H} = \left\{ ext{all lines in } \mathbb{R}^2
ight\}$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

2 kinds:
$$h_1$$
-like(\mathbf{x}_1) = \circ or h_2 -like(\mathbf{x}_1) = \times

How Many Lines Are There? (1/2)

$$\mathcal{H} = \left\{ \mathsf{all\ lines\ in}\ \mathbb{R}^2
ight\}$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

2 kinds:
$$h_1$$
-like(\mathbf{x}_1) = \circ or h_2 -like(\mathbf{x}_1) = \times

How Many Lines Are There? (2/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

how many kinds of lines if viewed from two inputs x₁, x₂?

4: 0

one input: 2; two inputs: 4; three inputs?

How Many Lines Are There? (2/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

• how many kinds of lines if viewed from two inputs x_1, x_2 ?

4: 0

one input: 2; two inputs: 4; three inputs?

How Many Kinds of Lines for Three Inputs? (1/2)

$$\mathcal{H} = \left\{ \mathsf{all\ lines\ in}\ \mathbb{R}^2
ight\}$$

8:

0

×

0

always 8 for three inputs?

X

How Many Kinds of Lines for Three Inputs? (2/2)

$$\mathcal{H} = \left\{ \mathsf{all \ lines \ in \ } \mathbb{R}^2
ight\}$$

'fewer than 8' when degenerate (e.g. collinear or same inputs)

How Many Kinds of Lines for Four Inputs?

$$\mathcal{H} = \left\{ \mathsf{all\ lines\ in}\ \mathbb{R}^2
ight\}$$

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ \iff effective number of lines

- must be $\leq 2^N$ (why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$
- wish:

$$\begin{split} & \mathbb{P}\left[\left| \mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g) \right| > \epsilon\right] \\ \leq & 2 \cdot \mathsf{effective}(\textit{N}) \cdot \mathsf{exp}\left(-2\epsilon^2\textit{N}\right) \end{split}$$

lines in 2D

N effective(N		
1	2	
2	4	
3	8	
4	$14 < 2^N$	

- if (1) effective (N) can replace M and
 - (2) effective(N) $\ll 2^N$

learning possible with infinite lines :-)

Fun Time

What is the effective number of lines for five inputs $\in \mathbb{R}^2$?

1 14

2 16

3 22

4 32

Dichotomies: Mini-hypotheses

$$\mathcal{H} = \{\text{hypothesis } h \colon \mathcal{X} \to \{\times, \circ\}\}$$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a **dichotomy**: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

\$\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N)\$:
 all dichotomies 'implemented' by \$\mathcal{H}\$ on \$\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N\$

	hypotheses ${\cal H}$	dichotomies $\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)$
e.g.	all lines in \mathbb{R}^2	{0000,000×,00××,}
size	possibly infinite	upper bounded by 2 ^N

$$|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)|$$
: candidate for **replacing** M

Growth Function

- $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$: depend on inputs $(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N)$
- growth function: remove dependence by taking max of all possible $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

finite, upper-bounded by 2^N

how to 'calculate' the growth function?

lines in 2D $m_{\mathcal{H}}(N)$ 2 3 $max(\ldots,6,8)$ = 8 $14 < 2^N$

4

Growth Function for Positive Rays

- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each h(x) = sign(x a) for threshold a
- 'positive half' of 1D perceptrons

one dichotomy for $a \in \text{each spot } (x_n, x_{n+1})$:

$$m_{\mathcal{H}}(N) = N + 1$$

$$(N+1) \ll 2^N$$
 when N large!

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	0	0	0
×	0	0	0
×	×	0	0
×	×	×	0
×	×	×	×

Growth Function for Positive Intervals

- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each h(x) = +1 iff $x \in [\ell, r)$, -1 otherwise

one dichotomy for each 'interval kind'

$$m_{\mathcal{H}}(N) = \underbrace{\begin{pmatrix} N+1 \\ 2 \end{pmatrix}}_{\text{interval ends in } N+1 \text{ spots}} + \underbrace{1}_{\text{all } \times}_{\text{all } \times}$$

$$= \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

 $(\frac{1}{2}N^2 + \frac{1}{2}N + 1) \ll 2^N$ when N large!

Growth Function for Convex Sets (1/2)

convex region in blue

non-convex region

- $\mathcal{X} = \mathbb{R}^2$ (two dimensional)
- \mathcal{H} contains h, where $h(\mathbf{x}) = +1$ iff \mathbf{x} in a convex region, -1 otherwise

what is $m_{\mathcal{H}}(N)$?

Growth Function for Convex Sets (2/2)

- one possible set of N inputs:
 x₁, x₂,..., x_N on a big circle
- every dichotomy can be implemented by H using a convex region slightly extended from contour of positive inputs

$$m_{\mathcal{H}}(N) = 2^N$$

• call those N inputs 'shattered' by \mathcal{H}

$$m_{\mathcal{H}}(N) = 2^N \Longleftrightarrow$$
 exists N inputs that can be shattered

Fun Time

Consider positive and negative rays as \mathcal{H} , which is equivalent to the perceptron hypothesis set in 1D. The hypothesis set is often called 'decision stump' to describe the shape of its hypotheses. What is the growth function $m_{\mathcal{H}}(N)$?

The Four Growth Functions

- positive rays:
- · positive intervals:
- convex sets:
- 2D perceptrons:

$$m_{\mathcal{H}}(N) = N+1$$
 $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N+1$
 $m_{\mathcal{H}}(N) = 2^N$

 $m_{\mathcal{H}}(N) < 2^N$ in some cases

what if $m_{\mathcal{H}}(N)$ replaces M?

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}}(N) \cdot \exp\left(-2\epsilon^2 N\right)$$

polynomial: good; exponential: bad

for 2D or general perceptrons, $m_{\mathcal{H}}(N)$ polynomial?

Break Point of \mathcal{H}

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a **break point** for \mathcal{H}

- $m_{\mathcal{H}}(k) < 2^k$
- k + 1, k + 2, k + 3, ... also break points!
- will study minimum break point k

2D perceptrons: break point at 4

The Four Break Points

• positive rays: $m_{\mathcal{H}}(N) = N + 1 = O(N)$ break point at 2

positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = O(N^2)$

break point at 3

• convex sets: $m_{\mathcal{H}}(N) = 2^N$

no break point

• 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases

break point at 4

conjecture:

- no break point: $m_{\mathcal{H}}(N) = 2^N$ (sure!)
- break point k: $m_{\mathcal{H}}(N) = O(N^{k-1})$

excited? wait for next lecture :-)

Fun Time

Consider positive and negative rays as \mathcal{H} , which is equivalent to the perceptron hypothesis set in 1D. As discussed in an earlier quiz question, the growth function $m_{\mathcal{H}}(N) = 2N$. What is the minimum break point for \mathcal{H} ?

Summary

1 When Can Machines Learn?

Lecture 4: Feasibility of Learning

Why Can Machines Learn?

Lecture 5: Training versus Testing

Recap and Preview

two questions: $E_{\mathsf{out}}(g) \approx E_{\mathsf{in}}(g)$, and $E_{\mathsf{in}}(g) \approx 0$

- Effective Number of Lines
 - at most 14 through the eye of 4 inputs
- Effective Number of Hypotheses
 at most m_H(N) through the eye of N inputs
- Break Point when $m_{\mathcal{H}}(N)$ becomes 'non-exponential'
- next: $m_{\mathcal{H}}(N) = poly(N)$?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?