Package 'iNEXT.seq'

July 20, 2024
Type Package
Title Interpolation and Extrapolation for phylogenetic beta diversity and dissimilarity measure for genetic sequence data
Version 0.1.0
Author YaYun Teng & ChunYu Yeh
Maintainer ChunYu Yeh <881204ian@gmail.com>
Description iNEXT.seq provides the function to calculate beta diversity and dissimilarity measure for multiple assemblages.
Depends R (>= 4.0)
Imports tidyverse, magrittr, tidyr, ggplot2, abind, ape, ade4, phytools, phyclust, tidytree, colorRamps, future.apply, iNEXT.3D, iNEXT.beta3D
Remotes AnneChao/iNEXT.beta3D
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
R topics documented:
esophagus 2 esophagus_tree 3 gghierPD 3 ggiNEXTseq 4 ggObsAsyPD 5 hierPD 5

2 esophagus

	ObsAsyPD		8 9 9 10 10
Index			12

esophagus

esophagus OTU count data

Description

This dataset is from package phyloseq and collected by Pei et al. (2004).

Usage

data(esophagus)

Format

esophagus is a list with four species-by-assemblage data.frames.

\$ esophagus_BC:

..\$ B: num [1:58] 50 0 2 0 0 ...

..\$ C: num [1:58] 19 2 13 2 0 ...

\$ esophagus_BD:

..\$ B: num [1:58] 50 0 2 0 0 ...

..\$ D: num [1:58] 5 0 0 1 1 ...

\$ esophagus_CD:

..\$ C: num [1:58] 19 2 13 2 0 ...

..\$ D: num [1:58] 5 0 0 1 1 ...

\$ esophagus_BCD:

..\$ B: num [1:58] 50 0 2 0 0 ...

..\$ C: num [1:58] 19 2 13 2 0 ...

..\$ D: num [1:58] 5 0 0 1 1 ...

References

Pei, Z., Bini, E. J., Yang, L., Zhou, M., Francois, F., & Blaser, M. J. (2004). Bacterial biota in the human distal esophagus. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4250-4255.

esophagus_tree 3

esophagus_tree

phylogenetic tree for esophagus

Description

This dataset includes a phylogenetic tree spanned by 58 OTU listed in the dataset esophagus. Use the chronos function in the ape package to convert to an ultrametric tree with a fixed tree height of 1.

Usage

```
data(esophagus_tree)
```

Format

```
esophagus_tree is a list with the following phylogenetic information:
```

A list of 4:

\$ edge: int [1:114, 1:2] 59 59 60 60 61 62 63 63 62 61 ... \$ edge.length: num [1:114] 1 0.113 0.887 0.102 0.033 ...

\$ Nnode: int 57

 $\$ tip.label: chr [1:58] "OTU_59_8_22" "OTU_59_5_13" "OTU_59_8_12" ...

gghierPD

ggplot2 extension for an hierPD object

Description

gghierPD: the ggplot extension for hierPD object to plot order q against to hierarchical phylogenetic diversity decomposition and dissimilarity measure.

Usage

```
gghierPD(output, type = "A")
```

Arguments

output the output from hierPD. type selection of plot type:

(type = "A") for alpha and gamma diversity;

(type = "B") for beta diversity;

(type = "D") for dissimilarity measure based on multiplicative decomposition.

Value

a figure for hierarchical phylogenetic diversity decomposition or dissimilarity measure.

4 ggiNEXTseq

Examples

```
data("wetland")
data("wetland_mat")
data("wetland_tree")
hier_output <- hierPD(wetland, mat = wetland_mat, q = seq(0, 2, 0.2), PDtree = wetland_tree)
gghierPD(hier_output, type = "A")</pre>
```

ggiNEXTseq

ggplot2 extension for an iNEXT.seq object

Description

ggiNEXTseq: the ggplot extension for iNEXTseq object to plot coverage- or sample-sized-based rarefaction/extrapolation curves for phylogenetic diversity decomposition and dissimilarity measure.

Usage

```
ggiNEXTseq(output, type = "B")
```

Arguments

output the output from iNEXTseq.

type (required only when base = "coverage"), selection of plot type :

type = "B" for plotting the gamma, alpha, and beta diversity;

type = "D" for plotting 4 turnover dissimilarities.

Value

a figure for phylogenetic diversity decomposition or dissimilarity measure.

Examples

```
data("esophagus")
data("esophagus_tree")
output <- iNEXTseq(esophagus[1], q = c(0,1,2), nboot = 10, PDtree = esophagus_tree)
ggiNEXTseq(output, type = "B")</pre>
```

ggObsAsyPD 5

gg0bsAsyPD

ggplot2 extension for an ObsAsyPD object

Description

ggObsAsyPD: the ggplot extension for ObsAsyPD object to plot order q against to phylogenetic diversity decomposition and dissimilarity measure.

Usage

```
ggObsAsyPD(output, type = "B")
```

Arguments

output the output from ObsAsyPD.

method selection of plot type:
type = "B" for plotting the gamma, alpha, and beta diversity;
type = "D" for plotting 4 turnover dissimilarities.

Value

a figure for phylogenetic diversity decomposition or dissimilarity measure.

Examples

```
data("esophagus")
data("esophagus_tree")
ObsAsyPD_output <- ObsAsyPD(esophagus[1], q = seq(0, 2, 0.2), PDtree = esophagus_tree)
ggObsAsyPD(ObsAsyPD_output, type = "B")</pre>
```

hierPD

function to calculate hierarchical phylogenetic gamma, alpha, beta diversity and dissimilarity measure

Description

hierPD: function to calculate empirical estimates for hierarchical phylogenetic gamma, alpha, beta diversity and dissimilarity measure.

Usage

```
hierPD(
  data,
  mat,
  q = seq(0, 2, 0.2),
  weight = "size",
  nboot = 10,
  conf = 0.95,
  PDtree,
```

6 iNEXTseq

```
type = "mle",
  decomposition = "relative"
)
```

Arguments

data data should be input as a matrix/data.frame (species by assemblages). hierarchical structure of data should be input as a matrix. mat a numerical vector specifying the diversity orders. Default is seq(0, 2, 0.2). q (required only when type = "mle" and decomposition = "relative") weight weight for relative decomposition empirical estimate. Select size-weighted ("size"), equal-weighted ("equal") or a numerical vector for weight. Default is "size". nboot a positive integer specifying the number of bootstrap replications when assessing sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter 0 to skip the bootstrap procedures. Default is 10. conf a positive number < 1 specifying the level of confidence interval. Default is 0.95. **PDtree** a phylogenetic tree in Newick format for all observed species in the pooled assemblage. estimate type: empirical (type = "mle") or asymptotic estimate (type = "est"). type Default is "mle".

Value

decomposition

a data frames with hierarchical phylogenetic diversity (gamma, alpha, and beta) and four types dissimilarity measure.

decomposition type: relative (decomposition = "relative") or absolute decomposition (decomposition = "absolute"). Default is "relative".

Examples

```
data("wetland")
data("wetland_mat")
data("wetland_tree")
hier_output <- hierPD(wetland, mat = wetland_mat, q = seq(0, 2, 0.2), PDtree = wetland_tree)</pre>
```

iNEXTseq	function to calculate phylogenetic gamma, alpha, beta diversity and
	dissimilarity measure

Description

iNEXTseq: function to calculate interpolation and extrapolation for phylogenetic gamma, alpha, beta diversity and dissimilarity measure.

iNEXTseq 7

Usage

```
iNEXTseq(
  data,
  q = c(0, 1, 2),
  base = "coverage",
  level = NULL,
  nboot = 10,
  conf = 0.95,
  PDtree = NULL,
  PDreftime = NULL)
```

Arguments

data OTU data can be input as a matrix/data.frame (species by assemblages), or a

list of matrices/data.frames, each matrix represents species-by-assemblages

abundance matrix.

q a numerical vector specifying the diversity orders. Default is c(0, 1, 2).

base sample-sized-based rarefaction and extrapolation for gamma and alpha diversity

(base = "size") or coverage-based rarefaction and extrapolation for gamma, alpha and beta diversity (base = "coverage"). Default is base = "coverage".

level A numerical vector specifying the particular value of sample coverage (between

0 and 1 when base = "coverage") or sample size (base = "size"). level = 1 (base = "coverage") means complete coverage (the corresponding diversity

represents asymptotic diversity).

If base = "size" and level = NULL, then this function computes the gamma and

alpha diversity estimates up to double the reference sample size.

If base = "coverage" and level = NULL, then this function computes the gamma and alpha diversity estimates up to one (for q = 1, 2) or up to the coverage of double the reference sample size (for q = 0); the corresponding beta diversity is

computed up to the same maximum coverage as the alpha diversity.

nboot a positive integer specifying the number of bootstrap replications when assessing

sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter 0 to skip the bootstrap procedures.

Default is 10.

conf a positive number < 1 specifying the level of confidence interval. Default is

0.95.

PDtree a phylogenetic tree in Newick format for all observed species in the pooled

assemblage.

PDreftime a numerical value specifying reference time for PD. Default is NULL (i.e., the age

of the root of PDtree).

Value

If base = "coverage", return a list of seven data frames with three coverage-based diversity (gamma, alpha, and beta) and four types dissimilarity measure. If base = "size", return a list of two data frames with two diversity (gamma and alpha).

ObsAsyPD

Examples

ObsAsyPD

function to calculate observed or asymptotic phylogenetic gamma, alpha, beta diversity and dissimilarity of order q

Description

ObsAsyPD computes observed and asymptotic diversity of order q between 0 and 2 (in increments of 0.2) for phylogenetic gamma, alpha, beta diversity and dissimilarity; these values with different order q can be used to depict a q-profile in the ggObsAsyPD function.

Usage

```
ObsAsyPD(
  data,
  q = seq(0, 2, 0.2),
  weight = "size",
  nboot = 10,
  conf = 0.95,
  PDtree,
  type = "mle",
  decomposition = "relative"
)
```

Arguments

data	OTU data can be input as a matrix/data.frame (species by assemblages), or a list of matrices/data.frames, each matrix represents species-by-assemblages abundance matrix.
q	a numerical vector specifying the diversity orders. Default is $seq(0, 2, 0.2)$.
weight	(required only when type = "mle" and decomposition = "relative") weight for relative decomposition empirical estimate. Select size-weighted ("size"), equal-weighted ("equal") or a numerical vector for weight. Default is "size".
nboot	a positive integer specifying the number of bootstrap replications when assessing sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter \emptyset to skip the bootstrap procedures. Default is 10 .
conf	a positive number < 1 specifying the level of confidence interval. Default is 0.95.
PDtree	a phylogenetic tree in Newick format for all observed species in the pooled assemblage.
type	estimate type: empirical (type = "mle") or asymptotic estimate (type = "est"). Default is "mle".

tongue_cheek 9

```
decomposition decomposition type: relative (decomposition = "relative") or absolute decomposition (decomposition = "absolute"). Default is "relative".
```

Value

a data frames with observed or asymptotic phylogenetic diversity (gamma, alpha, and beta) and four types dissimilarity measure for each dataset.

Examples

```
data("esophagus")
data("esophagus_tree")
ObsAsyPD_output <- ObsAsyPD(esophagus[1], q = seq(0, 2, 0.2), PDtree = esophagus_tree)</pre>
```

tongue_cheek

tongue and cheek OTU count data

Usage

```
data("tongue_cheek")
```

Format

A data frame with 2549 observations on the following 2 variables.

Cheek a numeric vector

Tongue a numeric vector

Examples

```
data(tongue_cheek)
```

tongue_cheek_tree

phylogenetic for tongue and cheek data

Usage

```
data("tongue_cheek_tree")
```

Format

```
The format is:
```

List of 4

\$ edge: int [1:25400, 1:2] 12702 12703 12704 12704 12705 12706 12706 12707 12707 12705 ...

\$ edge.length: num [1:25400] 2.20e-03 9.91e-01 6.61e-03 7.87e-05 6.38e-03 ...

\$ Nnode: int 12700

 $\$\ tip.label: chr\ [1:12701]\ "OTU_97.15099"\ "OTU_97.13686"\ "OTU_97.30326"\ "OTU_97.26112"$

```
- attr(*, "class")= chr "phylo"
```

- attr(*, "order")= chr "cladewise"

10 wetland_mat

Examples

```
data(tongue_cheek_tree)
```

wetland

wetland OTU count data

Description

This dataset is from package microeco and collected by An et al. (2019).

Usage

data(wetland)

Format

wetland is a species-by-assemblages data.frame.

\$ NE: num 132 12 15 14 12 ... \$ NW: num 10 4 0 4 7 9 ... \$ NC: num 17 9 1 24 26 ... \$ YML: num 0 1 0 10 2 ... \$ SC: num 32 37 18 23 153 ...

References

An, J., Liu, C., Wang, Q., Yao, M., Rui, J., Zhang, S., & Li, X. (2019). Soil bacterial community structure in Chinese wetlands. Geoderma, 337, 290-299.

wetland_mat

hierarchical structure matrix for wetland

Description

This dataset includes a hierarchical structure matrix in the dataset wetland for calculate hierarchical diversity.

Usage

```
data(wetland_mat)
```

Format

wetland_mat is a 3 x 5 (number of hierarchical layers times number of assemblages) matrix.

wetland_tree 11

wetland_tree

phylogenetic tree for wetland

Description

This dataset includes a phylogenetic tree spanned by 404 OTU listed in the dataset wetland. Use the chronos function in the ape package to convert to an ultrametric tree with a fixed tree height of 1.

Usage

data(wetland_tree)

Format

wetland_tree is a list with the following phylogenetic information:

A list of 4:

\$ edge: int [1:806, 1:2] 405 406 407 408 409 410 410 411 412 412 ...

 $\$ edge.length: num [1:806] 9.99e-16 3.86e-01 5.19e-02 2.13e-01 2.89e-02 ...

\$ Nnode: int 403

\$ tip.label: chr [1:404] "OTU_3829" "OTU_705" "OTU_3570" ...

Index

```
* datasets
    esophagus, 2
    esophagus_tree, 3
    tongue_cheek, 9
    wetland, 10
    wetland_mat, 10
    wetland_tree, 11
esophagus, 2
esophagus\_tree, \\ 3
gghierPD, 3
ggiNEXTseq, 4
ggObsAsyPD, 5
hierPD, 3, 5
iNEXTseq, 4, 6
ObsAsyPD, 5, 8
tongue_cheek, 9
tongue_cheek_tree, 9
wetland, 10
\texttt{wetland\_mat}, \textcolor{red}{10}
wetland\_tree, \\ 11
```