Partial Derivatives

MTH 234 - Summer 2021

Learning Objectives

- Calculate partial derivatives of multivariable functions.
- State and apply Clairaut's Theorem.

Partial Derivatives

Definition The partial derivative of f w.r.t. χ at (a,b) is f $f_{\chi}(a,b) = \lim_{h \to 0} f(a+h,b) - f(a,b)$

Partial Derivatives Example 1

Consider
$$f(x, y) = x^2y + \sin(x, y)$$

Find $f_x(x, y)$.

Find
$$\frac{3f}{2}$$
 $\frac{\partial}{\partial y}$ $\frac{\partial}{\partial y} = \frac{\partial}{\partial y} (x^2y) + \frac{\partial}{\partial y} \sin(xy)$
 $= \frac{\partial}{\partial y} + \frac{\partial}{\partial y} \cos(xy)$

Second Partial Derivatives

Definition
$$(\xi_x)_x = \xi_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial \xi}{\partial x} \right) = \frac{\partial^2 \xi}{\partial x^2}$$

$$(\xi_x)_y = \xi_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial \xi}{\partial x} \right) = \frac{\partial^2 \xi}{\partial y \partial x}$$

*Notice order flips between subscript and partial "del."

Second Partial Derivatives Example

Consider
$$g(x, y) = xy + x \sin(y) + \frac{y}{x}$$
.
Find $g_{xy}(x, y)$.

$$=\frac{\partial}{\partial x}(x+x\cos(y)+$$

Clairaut's Theorem

Theorem The

Questions

Questions

Questions