Logic Circuits I

Boolean Algebra

A set of two elements, B = {0,1}, together with three operations v, ∧, and ', which satisfies the following axioms:

- Axiom 1 (Closure)
 - For all x and y in B both $x \lor y$ and $x \land y$ are in B
- Axiom 2 (Identity element)
 - There exist distinct elements o and 1 in B such that for all x in B, $x \lor 0 = x$ and $x \land 1 = x$
- Axiom3 (Commutativity)
 - For all x and y in B, $x \lor y = y \lor x$ and $x \land y = y \land x$
- Axiom 4 (Distributivity)
 - For all x, y, and z in B, $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- Axiom 5 (Complement)
 - For each x in B, there exists an element in B, denoted x' and called the complement or negation of x, such that $x \vee x' = 1$ and $x \wedge x' = 0$
- Axiom 6 (Cardinality)
 - There are at least two distinct elements in B.

OR, AND, and NOT Operations

$$x \lor y = \begin{cases} 1 & \text{when either } x \text{ or } y \text{ is } 1, \text{ or both are } 1 \\ 0 & \text{otherwise} \end{cases}$$
 $x \land y = \begin{cases} 1 & \text{when both } x \text{ and } y \text{ are } 1 \\ 0 & \text{otherwise} \end{cases}$
 $x' = \begin{cases} 1 & \text{when } x = 0 \\ 0 & \text{otherwise} \end{cases}$

OR			
х	у	x v y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

AND				
x y x ∧ y				
0	0	0		
0	1	0		
1	0	0		
1	1	1		

NOT				
х	x'			
0	0 1			
1 0				

Theorems

- Property 1 (Uniqueness of o and 1)
 - o and 1 are unique
- Property 2 (Idempotency)
 - For all x in B, $x \lor x = x$ and $x \land x = x$
- Property 3
 - For all x in B, $x \lor 1=1$ and $x \land 0=0$
- Property 4 (Absorption)
 - For all x and y in B, $(x \lor y) \land x = x$ and $(x \land y) \lor x = x$

Theorems (contd.)

- Property 5 (Associativity)
 - For all x, y, and z in B, $(x \lor y) \lor z = x \lor (y \lor z)$ and $(x \land y) \land z = x \land (y \land z)$
- Property 6 (The uniqueness of complement)
 - For all x in B, x' is unique
- Property 7 (Involution)
 - For all x in B, (x')' = x
- Property 8 (De Morgan's law)
 - For all x and y in B, $(x \lor y)' = x' \land y'$ and $(x \land y)' = x' \lor y'$

Boolean Expressions

- A Boolean expression is a string of symbols involving constants o and 1, some variables, and Boolean operations v, A, and '
- A Boolean expression in n variables x_1 , x_2 , ..., and x_n is defined inductively as follows:
 - Each of the symbols $0, 1, x_1, x_2, \dots$, and x_n is a Boolean expression
 - If e_1 and e_2 are Boolean expressions, so are e_1' , $(e_1 \vee e_2)$, and $(e_1 \wedge e_2)$

$$((x \lor y)' \lor (x' \land y))$$
$$(((x \land y) \lor (x \land z')) \lor (y' \lor y)')$$

Boolean Functions

• If e is a Boolean expression in n variables x_1, x_2, \dots , and x_n , then e defines a Boolean function mapping B^n into B

A truth table is the simplest way to specify a Boolean

function

$$f(x, y, z) = ((x \lor y) \land z')$$

x	у	Z	$f(x,y,z) = ((x \lor y) \land z')$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Number of Different Boolean Functions

 The number of different Boolean functions with n binary variables is

 $2^{2^{n}}$

f(v, v)	ху			Comment	
f(x, y)	00	01	10	11	Comment
0	0	0	0	0	Constant 0
x∧y	0	0	0	1	x and y (AND)
x∧y′	0	0	1	0	x but not y
Х	0	0	1	1	x
x′∧y	0	1	0	0	y but not x
У	0	1	0	1	у
(x∧y')∨(x'∧y)	0	1	1	0	x or y but not both (XOR)
x∨y	0	1	1	1	x or y (OR)
(x∨y)′	1	0	0	0	NOR
(x∧y)∨(x'∧y')	1	0	0	1	x equals y (XNOR)
y'	1	0	1	0	NOT y
x∨y′	1	0	1	1	If y then x
x'	1	1	0	0	NOT x
x′∨y	1	1	0	1	If x then y
(x∧y)′	1	1	1	0	NAND
1	1	1	1	1	Constant 1

Functional Completeness

- A set of Boolean operations is functionally complete if its members can construct all other Boolean functions for any given set of input variables
 - We assume that these operations can be applied as many times as needed
- A well known complete set of Boolean operations is {AND, OR, NOT}

XOR and XNOR

Exclusive OR and exclusive NOT-OR

$$x \oplus y = (x \wedge y') \vee (x' \wedge y) = \begin{cases} 1 & \text{when } x \neq y \\ 0 & \text{otherwise} \end{cases}$$

 $x \odot y = (x \wedge y) \vee (x' \wedge y') = \begin{cases} 1 & \text{when } x \neq y \\ 0 & \text{otherwise} \end{cases}$

NOR and NAND

NOT-OR

$$(x \vee y)'$$

NOT-AND

$$(x \wedge y)'$$

 {NOR} and {NAND} are also functionally complete

XOR			
х	у	х⊕у	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

	XNOR			
х	у	x⊙y		
0	0	1		
0	1	0		
1	0	0		
1	1	1		

	NOR			
х	x y (xvy)			
0	0	1		
0	1	0		
1	0	0		
1	1	0		

NAND				
Х	y (x∧y)′			
0	0	1		
0	1	1		
1	0	1		
1	1	0		

Logic Gates

- A logic gate is a conceptual or physical device that performs one or more Boolean operations
- A Boolean function can be implemented with a logic gate
- A logic gate can be viewed as a block box
 - $f: B^n \rightarrow B^m$
 - n input variables and m outputs
 - n input pins and m output pins
- A logic diagram is a graphical representation of a logic circuit that shows connections between logic gates

Some Elementary Logic Gates

Name	Symbol	Function
NOT	x—	f = x'
OR	× y	$f = x \vee y$
AND	x———f	$f = x \wedge y$
NOR	хf	f = (x v y)'
NAND	xo_f	$f = (x \wedge y)'$
XOR	× y f	f = x ⊕ y
XNOR	× y f	f = x ⊙ y

Combining Logic Gates

 A logic gate with more complicated functionality can be implemented by combining and interconnecting some elementary logic gates

Bus Notation

A bus is a collection of two or more related signal lines

Complete Set of Logic Gates

- Functional completeness can also be applied to logic gates
- A set of logic gates that can implement any Boolean function is called a complete set of logic gates
 - {AND, OR, NOT}
 - {NAND} or {NOR}
- A universal gate is a gate that can implement any Boolean function without need to use any other gate type
 - {NAND} or {NOR}
 - Implementation requires fewer transistors and is faster than that of AND or OR gates
 - Logic designers prefer to use NAND or NOR gate

Multi-input Gates

 Multi-input gates can also be made by combining gates of the same type with less inputs

Multi-bit Logic Gates

 A multi-bit (n-bit) logic gate with a bit-wise Boolean operation is implemented by an array of n gates each operating separately on each bit position of the operands

Combinational Logic vs. Sequential Logic

- The outputs of a combinational logic circuit
 - Totally dependent on the current input values and determined by combining the input values using Boolean operations
- The outputs of a sequential logic circuit
 - Depend not only on the current input values but also on the past inputs
 - Logic gates + memory
 - Outputs are a function of the current input values and the data stored in memory
 - States

Half Adder

- Adds two one-bit binary numbers x and y
 - Two outputs: sum and carry

$$sum = x \oplus y \\
carry = x \wedge y$$

х	у	carry	sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

- Adds three one-bit binary numbers x, y, and a carry (cin) coming in
 - Two outputs: sum and carry (c_{out})

$$sum = (x \oplus y) \oplus c_{in}$$
$$carry = (x \wedge y) \vee (c_{in} \wedge (x \oplus y))$$

Х	у	Cin	sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ripple Carry Adder

- We can implement an n-bit binary adder by cascading n full adders
 - cout of the previous full adder is connected to cin of the next full adder
 - outputs are sum and carry (c_n) from the MSB
- For two's complement representation,

Overflow =
$$c_n \oplus c_{n-1}$$

Decoder

- Also called demultiplexer
- Converts binary information from the n coded inputs to a maximum of 2n unique outputs
- 2-to-4 decoder, 3-to-8 decoder, 4-to-16 decoder, etc.
- Often has an enable input
 - When the enable input is 1, the outputs of the decoder are enabled
 - Otherwise, all the outputs are o

enable	a ₁	a ₀	d ₃	d ₂	d ₁	d ₀
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0
0	Х	Х	0	0	0	0

Combining Decoders

 We can build a 3-to-8 decoder by combining two 2to-4 decoders each with an enable input

Multiplexer

- Also known as a selector
- A digital switch that connects data from one of n sources to its output
- MUX is a shorthand for multiplexer

X	у	S	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$f(x, y, s) = (x \land s') \lor (y \land s)$$

4-to-1 MUX

S ₁	S ₀	f
0	0	Х
0	1	у
1	0	٧
1	1	w

Combining MUXes

 A larger MUX can be constructed by combining smaller MUXes together

Shifter

- \bullet S1 = 0 and S0 = 1
 - One-bit right shift
 - Arithmetic right shift if B3 is connected to Rin
 - If R_{in} is set to 0, one-bit logical right shift
- S1 = 1, S0 = 0, and Lin = 0
 - One-bit left shift

S ₁	S ₀	D ₃	D ₂	D ₁	D ₀
0	0	B ₃	B ₂	B ₁	Bo
0	1	Rin	Вз	B ₂	B ₁
1	0	B ₂	B ₁	B ₀	Lin
1	1	Вз	B ₂	B ₁	Bo

Arithmetic Unit

- Integer addition and subtraction
- Two's complement representation

S ₁	S ₀	Y	$C_{in} = 0$	C _{in} = 1
0	0	00…0	F = A	F = A+1
0	1	В	F = A+B	F = A+B+1
1	0	B'	F = A+B'	F = A+B'+1
1	1	11…1	F = A-1	F = A

Logic Unit

Bitwise OR, AND, XOR, and NOT

S ₁	S ₀	output	operation
0	0	$F = A \vee B$	OR
0	1	$F = A \wedge B$	AND
1	0	$F = A \oplus B$	XOR
1	1	F = A'	NOT

ALU

Arithmetic unit + logic unit

S ₂	S ₁	S ₀	Cin	Operation
0	0	0	0	F = A
0	0	0	1	F = A+1
0	0	1	0	F = A+B
0	0	1	1	F = A+B+1
0	1	0	0	F = A+B'
0	1	0	1	F = A+B'+1
0	1	1	0	F = A-1
0	1	1	1	F = A
1	0	0	Х	F = A∨B
1	0	1	Χ	F = A∧B
1	1	0	Χ	F = A⊕B
1	1	1	Χ	F = A'

ALU in a Broader Sense

ALU + shifter

