

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-338993

(43)公開日 平成8年(1996)12月24日

(51)Int.Cl.⁶

G 0 2 F 1/1335

識別記号

5 2 0

府内整理番号

F I

G 0 2 F 1/1335

技術表示箇所

5 2 0

審査請求 有 請求項の数4 OL (全10頁)

(21)出願番号

特願平7-146189

(22)出願日

平成7年(1995)6月13日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 溝端 英司

東京都港区芝五丁目7番1号 日本電気株
式会社内

(72)発明者 池野 英徳

東京都港区芝五丁目7番1号 日本電気株
式会社内

(72)発明者 加納 博司

東京都港区芝五丁目7番1号 日本電気株
式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54)【発明の名称】 反射型液晶表示装置

(57)【要約】

【目的】 簡便な方法で所望の光散乱特性を有し、文字のぼやけや二重映りのない高画質な反射型液晶表示装置を提供することにある。

【構成】 上部絶縁性基板2のコモン電極9を有する側の表面が凹凸を有する。上部絶縁性基板2には、TFT素子等形成されていないため、絶縁膜の塗布及び凹凸のパターニングの工程が必要なく、簡単なプロセスで作成できる。

1 下部絶縁性基板

2 上部絶縁性基板

3 固定電極

4 コモン電極

【0008】

【発明が解決しようとする課題】反射型液晶表示装置では、反射板表面に凹凸を形成することにより入射光を散乱させ、液晶表示画面上に顔や背景の映り込みを防止している。しかし、特にTFT素子やMIM素子などのアクティブ素子を形成した基板上に凹凸を形成するには、絶縁膜の塗布及び凹凸のパターニングの工程が必要となる。この凹凸のパターニングの工程では、凹凸の傾斜角度など微妙な形状の制御が難しく、十分な光散乱特性が得られない。

【0009】本発明の目的は、所望の光散乱特性を有し、文字のぼやけや二重映りのない高画質で明るい表示の反射型液晶表示装置を提供することにある。

【0010】

【課題を解決するための手段】反射板を有する絶縁性基板と透明電極を有する絶縁性基板とで、反射板と透明電極とが対向する形で液晶層を挟み込んだ構造よりなる反射型液晶表示装置において、反射板表面が平坦であり、透明電極を有する絶縁性基板の透明電極を有する側の表面が凹凸を有するか、または光散乱性の塗布膜を有することにより、簡便な方法で高画質な反射型液晶表示装置が得られる。

【0011】また、透明電極を有する絶縁性基板の厚さが0.7mm以下と薄く、透明電極の設けられた面とは反対側の目視側の表面が凹凸を有するか、または光散乱性のシートを有することにより、簡便な方法で高画質な反射型液晶表示装置が得られる。

【0012】さらに、反射板表面を凹凸とすることもできる。

【0013】

【作用】本発明における、光散乱性を持たせるために形成する透明電極を有する絶縁性基板表面の凹凸は削り粉により研磨し、必要に応じて弗酸でエッチングすることにより作成できる。光散乱性の膜に関してはスピンドル塗布により作成できる。また、光散乱性のシートは2枚の絶縁性基板を張り合わせ液晶を注入した後で張り合わせることにより作成でき、屈折率の異なる粒子を混入させた絶縁性基板を用いれば、張り合わせ、液晶注入のみで作成できる。以上のように、透明電極を有する絶縁性基板側で光を散乱させる方法はいずれの場合もパターニング工程を必要としない簡単なプロセスのみで作成が可能であり、散乱特性の制御が容易であり、ペーパーホワイトの見やすい表示が得られる。

【0014】上記のようにして作成された反射型液晶表示装置は反射板表面は鏡面状態であるが、対向基板表面の凹凸、光散乱性質、シート、及び基板と屈折率の異なる粒子を混入した基板が、屈折率差により光を散乱させる機能を有している。特に、この光を散乱させる部分が、表示像を形成する液晶層の透明電極に接しているか、または、極薄い0.7mm以下の基板を介して形成さ

れでいるため、表示のぼやけが発生しない。これが1mm以上の基板を介して形成されると表示のぼやけが著しく、表示文字の認識速度が低下し、画質が劣化する。

【0015】対向基板の厚さと文字読取時間の関係を図14に示す。読取時間は被験者によって絶対値が異なるため、各被験者の0.3mm厚のときの読取時間を1とした。読取実験では“員”と“貫”的に似かよった文字を画面上一面に表示し、それぞれの文字が何文字あるかを被験者が回答するまでの時間を測定した。

10 【0016】図14より対向基板が0.7mm以上の板厚になると認識時間が急激に上がっていることが分かる。したがって、液晶パネルの表面で散乱をさせる場合、対向基板の厚さを0.7mm以下にすることがよい表示特性を得るのに重要となる。

【0017】ここで、透明電極を有する絶縁性基板側で、光散乱性を大きくすると、後方散乱も大きくなるため、黒表示の輝度が上昇し、コントラストが低下するが、反射板を有する絶縁性基板側にも光散乱特性をもたらすことによりコントラストを低下させずに、十分な光散乱特性を有する反射型液晶表示装置を作製することができる。

【0018】

【実施例】以下に本発明の実施例について図面を参照して詳細に説明する。

【0019】図において、下部絶縁性基板1上には、ゲート電極7、ソース・ドレイン電極3、ゲート絶縁膜6、ドーピング層4、半導体層5からなるアクティブラジクス方式のスイッチング素子と、このスイッチング素子に接続された画素電極8とが形成されている。画素電極8は反射板として機能している。

【0020】また、上部絶縁性基板2には、凹凸を有するコモン電極9が形成されている。上部絶縁性基板2と下部絶縁性基板1とは、間に液晶層10を挟んで画素電極8とコモン電極9が対向する形で張り合わせてある。画像は上部絶縁性基板2側から見る。

【0021】(実施例1) 図1は第1の発明の第1の実施例の反射型液晶表示装置の断面図である。

【0022】反射板である画素電極8を有する下部絶縁性基板1については1.1mm厚のガラス基板を用い、透明電極であるコモン電極9を有する上部絶縁性基板2については1.1mm厚のガラス基板を1000#の磨き粉で研磨した粗面化ガラス基板を用いた。

【0023】下部絶縁性基板1には順スタガー構造薄膜トランジスタ(TFT)を作成した。はじめにCr金属をスパッタリング法により100nm成膜し、通常のフォトレジスト工程によりソース・ドレイン電極3及び信号配線をパターニング形成する。次に、ドーピング層4、半導体層5、ゲート絶縁膜6をプラズマCVDにより連続成膜を行った。このとき、ドーピング層4には、リン原子を混入することでn型化されたアモルファスシリコ

【0042】一方、上部絶縁性基板2については、はじめに光散乱性の膜として酸化チタンを含む塗料ビヒクルを1~2μmスピンドルコート塗布し、オーブンにより90°Cで焼成した。その後、ITO膜をスパッタリング法により60nm成膜し、パターニングすることによりコモン電極9を形成した。

【0043】その後も実施例1と同様に基板の張り合わせ、液晶注入を行い、液晶注入口を封止し、反射型液晶表示装置を製造した。

【0044】このようにして、実用上十分明るく、新聞紙に匹敵する白表示を有するモノクロ反射型パネルを低成本で、実現した。また、上部絶縁性基板に、RGBカラーフィルタを設置することで、明るいカラー反射型パネルを低成本で実現できる。

【0045】(実施例6)図6は第3の発明の第3の実施例の反射型液晶表示装置の断面図である。上記実施例と同じものは同じ符号で示した。

【0046】反射板を有する下部絶縁性基板1及び透明電極を有する上部絶縁性基板2については1.1mm厚のガラス基板を用いた。

【0047】下部絶縁性基板1については実施例3と同様に作成した。

【0048】一方、上部絶縁性基板2については、はじめに光散乱性の膜として酸化チタンを含む塗料ビヒクルを1~2μmスピンドルコート塗布し、オーブンにより90°Cで焼成した。その後、ITO膜をスパッタリング法により60nm成膜し、パターニングすることによりコモン電極9を形成した。

【0049】その後も実施例3と同様に基板の張り合わせ、液晶注入を行い、液晶注入口を封止し、反射型液晶表示装置を製造した。

【0050】このようにして、実用上十分明るく、新聞紙に匹敵する白表示を有するモノクロ反射型パネルを低成本で、実現した。また、上部絶縁性基板に、RGBカラーフィルタを設置することで、明るいカラー反射型パネルを低成本で実現できる。

【0051】(実施例7)図7は第2の発明の第1の実施例の反射型液晶表示装置の断面図である。上記実施例と同じものは同じ符号で示した。

【0052】反射板を有する下部絶縁性基板1については1.1mm厚のガラス基板を用い、透明電極を有する上部絶縁性基板2については0.7mm厚のガラス基板を100#の磨き粉で研磨した粗面化ガラス基板を用いた。

【0053】下部絶縁性基板1については実施例1と同様に作成した。

【0054】一方、上部絶縁性基板2には、粗面化表面の裏面にITO膜をスパッタリング法により60nm成膜し、パターニングすることによりコモン電極9を形成した。

10 【0055】その後も実施例1と同様に基板の張り合わせ、液晶注入を行い、液晶注入口を封止し、反射型液晶表示装置を製造した。

【0056】このようにして、実用上十分明るく、新聞紙に匹敵する白表示を有するモノクロ反射型パネルを低成本で、実現した。また、上部絶縁性基板に、RGBカラーフィルタを設置することで、明るいカラー反射型パネルを低成本で実現できる。

【0057】(実施例8)図8は第4の発明の第1の実施例の反射型液晶表示装置の断面図である。上記実施例と同じものは同じ符号で示した。

【0058】反射板を有する下部絶縁性基板1については1.1mm厚のガラス基板を用い、透明電極を有する上部絶縁性基板2については0.7mm厚のガラス基板を100#の磨き粉で研磨した粗面化ガラス基板を用いた。

【0059】下部絶縁性基板1については実施例3と同様に作成した。

20 【0060】一方、上部絶縁性基板2には、粗面化表面の裏面にITO膜をスパッタリング法により60nm成膜し、パターニングすることによりコモン電極を形成した。

【0061】その後も実施例3と同様に基板の張り合わせ、液晶注入を行い、液晶注入口を封止し、反射型液晶表示装置を製造した。

【0062】このようにして、実用上十分明るく、新聞紙に匹敵する白表示を有するモノクロ反射型パネルを低成本で、実現した。また、上部絶縁性基板に、RGBカラーフィルタを設置することで、明るいカラー反射型パネルを低成本で実現できる。

【0063】(実施例9)図9は第2の発明の第2の実施例の反射型液晶表示装置の断面図である。上記実施例と同じものは同じ符号で示した。13は光拡散シートである。

【0064】反射板を有する下部絶縁性基板1については1.1mm厚のガラス基板を用い、透明電極を有する上部絶縁性基板2については0.7mm厚のガラス基板を用いた。

30 【0065】下部絶縁性基板1については実施例1と同様に作成した。一方、上部絶縁性基板2についても同様にITO膜をスパッタリング法により60nm成膜し、パターニングすることによりコモン電極9を形成した。その後も実施例1と同様に基板の張り合わせ、液晶注入を行い、液晶注入口を封止し、液晶パネルを作成した。

【0066】さらに、液晶パネルの上部絶縁性基板2の表面に光散乱性のシートとして、通常透過型液晶ディスプレイのバックライトに用いる光拡散シート13を貼ることにより反射型液晶表示装置を製造した。実用上十分明るく、新聞紙に匹敵する白表示を有するモノクロ反射型パネルを低成本で、実現した。また、上部絶縁性基

II

- 1 下部絶縁性基板
- 2 上部絶縁性基板
- 3 ソース・ドレイン電極
- 4 ドーピング層
- 5 半導体層
- 6 ゲート絶縁膜
- 7 ゲート電極
- 8 画素電極

- 9 コモン電極
- 10 液晶層
- 11 ポリイミド平坦化膜
- 12 光散乱性膜
- 13 光拡散シート
- 14 光散乱ガラス基板
- 15 ポリイミド絶縁膜
- 16 コンタクトホール

【図1】

- 1 下部絶縁性基板
- 2 上部絶縁性基板
- 3 画素電極
- 4 コモン電極

【図2】

- 11 ポリイミド平坦化膜

【図4】

- 15 ポリイミド絶縁膜

【図9】

1.3 光試験シート

【図10】

【図11】

【図12】

