

现代密码学

第八讲 有限状态自动机

信息与软件工程学院

第八讲 有限状态自动机

有限状态自动机

密钥流生成器

- ▶ 有限状态自动机是具有离散输入和输出(输入集和输出集均有限)的一种数学模型,由以下3部分组成:
 - ① 有限状态集 $S=\{s_i | i=1,2,...,l\}$ 。
 - ②有限输入字符集 $A_1=\{A^{(1)}_{j}|j=1,2,...,m\}$ 和有限输出字符集 $A_2=\{A^{(2)}_{k}|k=1,2,...,n\}.$
 - ③ 转移函数 $A^{(2)}_{k}=f_{1}(s_{i},A^{(1)}_{j})$, $s_{h}=f_{2}(s_{i},A^{(1)}_{j})$ 即在状态为 s_{i} , 输入为 $A^{(1)}_{j}$ 时,输出为 $A^{(2)}_{k}$, 而状态转移为 s_{h} 。

有限状态自动机的有向图表示

- ▶ 有限状态自动机可用有向图 表示,称为转移图。
 - 》 转移图的顶点对应于自动机的状态,若状态 s_i 在输入 $A^{(I)}_i$ 时转为状态 s_j ,且输出一字符 $A^{(2)}_j$,则在转移图中,从状态 $(A_2^{(1)},A_1^{(2)})$ s_i 到状态 s_j 有一条标有 $(A^{(I)}_i,A_1^{(2)})$ 的弧线

有限状态自动机的矩阵表示

• 设 $S=\{s_1,s_2,s_3\}$, $A_1=\{A_1^{(1)},A_2^{(1)},A_3^{(1)}\}$, $A_2=\{A_1^{(2)},A_2^{(2)},A_3^{(2)}\}$,则该有限状态自动机的矩阵表示如下

f_1	$A_1^{(1)}$	$A_2^{(1)}$	$A_3^{(1)}$
s_1	$A_1^{(2)}$	$A_3^{(2)}$	$A_2^{(2)}$
s_2	$A_2^{(2)}$	$A_1^{(2)}$	$A_3^{(2)}$
<i>s</i> ₃	$A_3^{(2)}$	$A_2^{(2)}$	$A_1^{(2)}$
f_2	$A_1^{(1)}$	$A_2^{(1)}$	$A_3^{(1)}$
<i>s</i> ₁	s_2	s_1	s_3
s ₂	<i>s</i> ₃	s_2	s_1
<i>s</i> ₃	s_1	s_3	s_2

有限状态自动机的实例

若输入序列为

 $A^{(1)}{}_1 \ A^{(1)}{}_2 \ A^{(1)}{}_1 \ A^{(1)}{}_3 \ A^{(1)}{}_3 \ A^{(1)}{}_1$

初始状态为 s_1 ,

则得到状态序列

 $S_1 S_2 S_2 S_3 S_2 S_1 S_2$

输出字符序列

 $A^{(2)}{}_1 A^{(2)}{}_1 A^{(2)}{}_2 A^{(2)}{}_1 A^{(2)}{}_3 A^{(2)}{}_1$

第八讲 有限状态自动机

有限状态自动机

密钥流生成器

密钥流产生器

- > 密钥流产生器: 参数为k的有限状态自动机,
- \triangleright 一个输出符号集Z、一个状态集 Σ 、两个函数 φ 和 ψ 以及一个初始状态 σ_0 组成。
- \triangleright 状态转移函数 $\varphi:\sigma_i\to\sigma_{i+1}$, 将当前状态 σ_i 变为一个新状态 σ_{i+1} ,
- \triangleright 输出函数 $\psi:\sigma_i\to z_i$, 当前状态 σ_i 变为输出符号集中的一个元素 z_i 。

作为有限状态自动机的密钥流生成器

作为有限状态自动机的密钥流生成器

密钥流生成器设计的关键

- ▶ 关键在于:找出适当的状态转移函数 Φ 和输出函数 Φ ,使得输出序列z满足密钥流序列z应满足的随机性条件,并且要求在设备上是节省的和容易实现的。
- \triangleright 一般采用线性的 ϕ 和非线性的 ψ ,这样将能够进行深入的分析并可以得到好的生成器

密钥流生成器的分解

- ➢ 密钥流生成器可分成驱动部分和非线性组合部分
- 驱动部分控制生成器的状态转移,并为非线性组合部分提供统计性能好的序列
- 》非线性组合部分要利用这些序 列组合出满足要求的密钥流序 列

常见的两种密钥流产生器

- •目前最为流行和实用的密钥流产生器,其驱动部分是一个或多个线性反馈移位寄存器。
 - 前者称为滤波生成器,或前馈生成器
 - 后者称为非线性组合生成器
 - 还有钟控生成器,缩减生成器,停走生成器等

感谢聆听! xynie@uestc.edu.cn