MODULO 3 – Capítulo 2

COMPONENTES

En un sistema microinformático, los componentes se dividen en activos y pasivos según su capacidad para procesar, amplificar, o modificar señales eléctricas. A continuación, se explica cada tipo:

Componentes Activos

Son aquellos que pueden controlar el flujo de electricidad, amplificar señales o realizar operaciones lógicas. Necesitan una fuente de energía externa para funcionar.

Componentes Pasivos

Son aquellos que no generan energía ni amplifican señales, pero pueden almacenar, disipar o redirigir energía en el circuito.

Tabla: Componentes Activos y Pasivos

Componente	Tipo	Utilidad	Por qué es activo/pasivo	
Procesador (CPU)	-	Ejecuta las instrucciones del sistema y realiza cálculos lógicos y aritméticos.	Es activo porque procesa información y necesita energía externa para realizar operaciones.	
Memoria RAM	Activo	Almacena datos temporales que la CPU necesita para trabajar.	Activa porque requiere energía para retener datos y procesarlos de forma dinámica.	
Disco duro/SSD	Activo	Almacena datos de manera permanente o temporal para el sistema operativo y programas.	Activo porque interactúa con señales eléctricas y controla el almacenamiento y recuperación de datos.	
Fuente de poder	Activo	Convierte la corriente alterna (CA) en corriente continua (CC) para alimentar el sistema.	Activo porque regula y suministra energía al resto de los componentes.	
Condensador	Pasivo	Almacena y libera carga eléctrica para estabilizar o filtrar señales en el circuito.	Es pasivo porque no amplifica ni controla señales, solo almacena energía temporalmente.	
Resistencia	Pasivo	Limita el flujo de corriente eléctrica para proteger componentes o ajustar niveles de señal.	Es pasivo porque no necesita energía externa y no amplifica señales.	
Placa base	Pasivo	Sirve como soporte físico y conexión entre todos los componentes del sistema.	Pasiva porque no procesa señales directamente, pero facilita la comunicación entre los componentes activos.	
Diodo LED	Pasivo	Indica el estado de operación del sistema (alimentación, actividad, etc.).	Pasivo porque convierte energía eléctrica en luz, pero no procesa señales ni amplifica.	

Componente	Tipo	Utilidad	Por qué es activo/pasivo
Tarjeta gráfica		Procesa gráficos y mejora el rendimiento en tareas visuales.	Activo porque tiene un procesador (GPU) y memoria que requieren energía para operar.
Altavoz	Activo	Convierte señales eléctricas en ondas sonoras.	Activo porque amplifica las señales para generar sonido.
Cables y conectores	Pasivo	Transportan señales y energía entre los componentes.	Pasivo porque solo permiten el paso de energía o señales sin modificarlas.
т - 1:6	!1	1. 1 4. 1.0.	

La diferencia principal radica en que los **activos** modifican y procesan señales gracias a una fuente de energía externa, mientras que los **pasivos** interactúan con la energía de forma limitada, sin procesarla ni controlarla activamente.

Diodos Activos vs. Diodos Pasivos

- 1. **Diodos Activos**: Si un diodo está involucrado en la conmutación, rectificación o regulación de voltaje (como en fuentes de alimentación conmutadas o circuitos de protección), puede considerarse activo porque participa en un proceso dinámico que afecta el flujo de energía o señal.
 - Ejemplo: Diodos Zener o Schottky utilizados en la regulación de voltaje.
- 2. **Diodos Pasivos**: Un diodo LED o diodos simples que solo actúan como indicadores o permiten el paso de corriente en una dirección, sin intervenir activamente en el procesamiento, serían pasivos en este contexto.

Actualización de la Tabla para Diodos

Componente	Tipo	Utilidad	Por qué es activo/pasivo
Diodo LED	Pasivo		Pasivo porque solo convierte energía eléctrica en luz, sin modificar señales activamente.
Diodo Zener	Activo	Regula el voltaje en circuitos de alimentación y protege contra sobrecargas.	Activo porque participa en la regulación dinámica de energía y requiere un funcionamiento específico.
Diodo Schottky	Activo		Activo porque está diseñado para rectificar corriente con alta velocidad y baja pérdida de energía.

Conclusión

La clasificación puede depender del contexto y la función del componente en el circuito. Si el diodo realiza una función activa en el control o procesamiento de señales, se clasifica como **activo**. En otros casos más simples (como un LED indicador), puede considerarse **pasivo**. ¡Gracias por señalarlo!

1. Resistencias

Utilidad:

- Limitan el flujo de corriente eléctrica.
- Dividen voltajes.
- Disipan energía en forma de calor.

Tipos:

Tipo	Características	Usos comunes
Fijas	Valor constante.	Electrónica básica, divisores de voltaje.
Variables	Valor ajustable (potenciómetros, trimmers).	Regulación de intensidad, control de volumen.
Termistores	Resistencias que varían con la temperatura.	Sensores de temperatura, protección térmica.
Fotoresistencias	Varían su resistencia con la luz incidente.	Sensores de luz, interruptores fotoeléctricos.

Construcción:

- Materiales: Película de carbono, óxido metálico, alambre enrollado.
- Encapsuladas en cerámica o plástico para mayor resistencia térmica.

2. Condensadores

Utilidad:

- Almacenan y liberan energía eléctrica.
- Filtran señales en circuitos de alimentación.
- Eliminan ruidos eléctricos.

Tipos:

Tipo	Caracteristicas	Usos comunes
Electrolíticos	Alta capacidad, polarizados.	Filtrado de fuentes de alimentación.
Cerámicos	Baja capacidad, no polarizados.	Desacoplo, supresión de ruido.
Tántalo	Alta capacidad, tamaño compacto.	Circuitos de alta densidad.
Variables	Capacidad ajustable manualmente.	Radios, transmisores.

Construcción:

- Dos placas metálicas separadas por un dieléctrico (aire, cerámica, papel, etc.).
- Recubiertos por material aislante.

3. Transformadores

Utilidad:

- Cambian el nivel de voltaje o corriente en un circuito.
- Aíslan eléctricamente circuitos.

Tipos:

TipoCaracterísticasUsos comunesElevadoresIncrementan el voltaje.Líneas de transmisión eléctrica.ReductoresDisminuyen el voltaje.Cargadores, adaptadores.AisladoresSeparan circuitos eléctricos para evitar interferencias.Electrónica de precisión.

Construcción:

- Núcleo de hierro o ferrita.
- Bobinas de hilo conductor enrolladas.

4. Fusibles

Utilidad:

• Protegen circuitos eléctricos desconectando el flujo de corriente en caso de sobrecarga.

Tipos:

Tipo	Características	Usos comunes
De vidrio	Carcasa transparente para fácil inspección.	Electrónica doméstica.
De cerámica	Mayor resistencia térmica.	Electrodomésticos potentes.
Resettable (PTC)	Se reactivan automáticamente.	Dispositivos electrónicos modernos.

Construcción:

- Filamento metálico encapsulado en vidrio o cerámica.
- Fundible al sobrepasar el límite de corriente.

5. Diodos

Utilidad:

- Permiten el paso de corriente en una sola dirección.
- Rectifican corriente alterna (CA) a continua (CC).

Tipos:

Tipo	Caracteristicas	Usos comunes
Rectificadores	Corriente unidireccional para fuentes de alimentación	Cargadores, adaptadores.

Tipo Características Usos comunes

Zener Regulación de voltaje. Protección contra sobrevoltaje.

LED Emisión de luz. Indicadores, iluminación.

Construcción:

• Unión de materiales semiconductores (p-n).

• Encapsulado plástico o cerámico.

6. Transistores

Utilidad:

• Amplifican señales eléctricas.

• Actúan como interruptores electrónicos.

Tipos:

Tipo Características Usos comunes

Bipolares (BJT) Tres terminales: base, colector y emisor. Amplificación, control de potencia. MOSFET Controlado por voltaje. Electrónica de alta eficiencia.

Construcción:

• Semiconductores dopados (silicio o germanio).

• Encapsulado metálico o plástico.

7. Bobinas e Inductores

Utilidad:

- Almacenan energía en forma de campo magnético.
- Filtran señales de alta frecuencia.

Tipos:

Tipo Características Usos comunes

Bobinas de aire Sin núcleo, baja inductancia. Sintonización de señales.

Bobinas con núcleo Mayor inductancia, núcleos de ferrita. Fuentes de alimentación.

Construcción:

• Enrollado de hilo conductor sobre un núcleo (aire, ferrita o hierro).

8. Cristales de cuarzo

Utilidad:

• Generan señales de reloj precisas para sincronizar circuitos electrónicos.

Tipos:

Tipo Características Usos comunes

Osciladores de cuarzo Frecuencia fija, alta estabilidad. Relojes, microprocesadores.

Resonadores cerámicos Menor precisión, más económicos. Electrónica de consumo.

Construcción:

- Lámina de cuarzo cortada con precisión.
- Encapsulado metálico o cerámico para proteger contra vibraciones.

Diferencias entre Transistores Bipolares (BJT) y de Efecto de Campo (FET)

Característica	Transistor Bipolar (BJT)	Transistor de Efecto de Campo (FET)
Principio de operación	Control de corriente entre emisor y colector mediante corriente en la base.	Control de corriente entre drenaje y fuente mediante voltaje en la compuerta.
Construcción	Tres capas de material semiconductor tipo P-N-P o N-P-N.	Canal de material semiconductor (N o P) con una compuerta aislada.
Terminales	Base, colector, emisor.	Compureta (Gate), drenaje (Drain), fuente (Source).
Consumo de energía	Requiere corriente para activar la base (mayor consumo).	Controlado por voltaje, consume muy poca corriente (eficiente).
Velocidad de conmutación	Más lento, debido a la carga acumulada en las uniones.	Más rápido, ideal para aplicaciones de alta frecuencia.
Ganancia	Alta ganancia de corriente.	Alta resistencia de entrada, ideal para amplificar señales débiles.
Usos	Amplificación de potencia, control de alta corriente.	Amplificación de señales, conmutación en circuitos digitales.

Tipos de Transistores y Usos

Tipo	Descripción	Escenario de Uso
BJT NPN	Conductividad cuando la base recibe una corriente positiva.	Control de motores, amplificación de señales de potencia.
BJT PNP	Conductividad cuando la base recibe una corriente negativa.	Circuitos de baja potencia, interruptores electrónicos.
MOSFET de canal N	Conductividad controlada por un voltaje positivo en la compuerta.	Conmutación de alta velocidad, fuentes de alimentación.
MOSFET de canal P	Conductividad controlada por un voltaje negativo en la compuerta.	Circuitos complementarios con canal N (CMOS).
JFET	Transistor de efecto de campo con un canal dopado fijo.	Amplificación de señales de radiofrecuencia.
IGBT	Combina la ganancia de corriente del BJT con el control de voltaje del FET.	Control de motores eléctricos, inversores de potencia.

Componentes que Combinan Ambas Tecnologías

IGBT (Transistor Bipolar de Puerta Aislada)

- Construcción:
 - Combina la estructura de un BJT (para manejar altas corrientes) con la compuerta aislada de un MOSFET.
 - Ofrece lo mejor de ambos mundos: capacidad de control por voltaje y alta potencia.
- Usos:
 - Sistemas de tracción eléctrica.

- Inversores de corriente en energía solar.
- Controladores de motores industriales.

Ventajas y Desventajas de Cada Tecnología

Característica	BJTs	FETs	IGBTs
Control	Por corriente (base).	Por voltaje (compuerta).	Por voltaje (compuerta).
Potencia soportada	Moderada.	Alta, en MOSFETs de potencia.	Muy alta.
Eficiencia	Menos eficiente por el consumo en base.	Muy eficiente por su alta impedancia.	Alta eficiencia en conmutación.
Velocidad de conmutación	Moderada.	Muy alta.	Alta, pero menor que los MOSFETs.
Costo	Bajo.	Moderado a alto.	Alto.

Comparación en Aplicaciones

Aplicación	BJT	FET	IGBT
Amplificación	Ideal para alta ganancia.	Ideal para señales débiles.	Menos común para amplificación.
Conmutación rápida	Adecuado, pero limitado en velocidad.	Excelente para altas frecuencias.	Muy bueno, pero limitado en frecuencia alta.
Control de potencia	Moderado.	Excelente en MOSFETs de canal N.	•
Estas componentos	normitan una amplia cam	an do aplicaciones en ele	etrópica, decde circuitos de

Estos componentes permiten una amplia gama de aplicaciones en electrónica, desde circuitos de baja potencia hasta sistemas de control industrial.