

Deep Reinforcement Learning

2022-23 Second Semester, M.Tech (AIML)

Session #2-3: Multi-armed Bandits

Instructors:

- Prof. S. P. Vimal (vimalsp@wilp.bits-pilani.ac.in),
 - Dr. V Chandra Sekhar (chandrasekhar.v@wilp.bits-pilani.ac.in)

Agenda for the class

- Recap
- k-armed Bandit Problem & its significance
- Action-Value Methods
 Sample Average Method & Incremental Implementation
- Non-stationary Problem
- Initial Values & Action Selection
- Gradient Bandit Algorithms [Class #3]
- Associative Search [Class #3]

Tic-Tac-Toc

Tic-Tac-Toc

States	Initial Values
	0.5
$\begin{bmatrix} X & O & O \\ & X & \end{bmatrix}$	0.5
$\begin{bmatrix} \boldsymbol{X} & O & O \\ & \boldsymbol{X} & \\ & & \boldsymbol{X} \end{bmatrix}$	1.0
$\begin{bmatrix} X & O \\ \mathbf{X} & O \\ & \mathbf{X} & O \end{bmatrix}$	0
	•••

Learning Task: Play as many times against the opponent and learn the values

X	0	0
0	X	X
		X

Set up a table of states initial values

States	Initial Values
	0.5
$\begin{bmatrix} X & O & O \\ & X & \end{bmatrix}$	0.5
$\begin{bmatrix} \boldsymbol{X} & O & O \\ & \boldsymbol{X} & \\ & & \boldsymbol{X} \end{bmatrix}$	1.0
$\begin{bmatrix} X & O \\ \mathbf{X} & O \\ & \mathbf{X} & O \end{bmatrix}$	0
	•••

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[V(S_{t+1}) - V(S_t) \Big]$$

Temporal Difference Learning Rule

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[V(S_{t+1}) - V(S_t) \Big]$$

Questions:

- (1) What happens if α is gradually made to 0 over many games with the opponent?
- (2) What happens if α is gradually reduced over many games, but never made 0?
- (3) What happens if α is kept constant throughout its life time?

Temporal Difference Learning Rule

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[V(S_{t+1}) - V(S_t) \Big]$$

Key Takeaways:

- (1) Learning while interacting with the environment (opponent).
- (2) We have a clear goal
- (3) Our policy is to make moves that maximizes our chances of reaching goal
 - Use the values of states most of the time (exploration) and explore rest of the time.

Temporal Difference Learning Rule

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[V(S_{t+1}) - V(S_t) \Big]$$

Reading Assigned:

Identify how this reinforcement learning solution is different from solutions using minimax algorithm and genetic algorithms.

Post your answers in the discussion forum;

<u>Temporal Difference Learning Rule</u>

$$V(S_t) \leftarrow V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

Problem

action

- You are faced repeatedly with a choice among k different options, or actions
- After each choice of actions you receive a numerical reward
 Reward is chosen from a stationary probability distribution that depends on the selected
 - **Objective**: to maximize the expected total reward over some time period

Problem

- You are faced repeatedly with a choice among k different options, or actions
- After each choice of actions you receive a numerical reward
 Reward is chosen from a stationary probability distribution that depends on the selected action
- Objective: to maximize the expected total reward over some time period

Problem

- You are faced repeatedly with a choice among k different options, or actions
- After each choice of actions you receive a numerical reward

Reward is chosen from a stationary probability distribution that depends on the selected action

Objective: to maximize the expected total reward over some time period

Strategy:

- Identify the best lever(s)
- Keep pulling the identified ones

Questions:

- How do we define the best ones?
- What are the best levers?

Problem

- You are faced repeatedly with a choice among k different options, or actions
- After each choice of actions you receive a numerical reward

Reward is chosen from a stationary probability distribution that depends on the selected action

Objective: to maximize the expected total reward over some time period

Strategy:

- Identify the best lever(s)
- Keep pulling the identified ones

Questions:

- How do we define the best ones?
- What are the best levers?

Problem

- You are faced repeatedly with a choice among k different options, or actions
- After each choice of actions you receive a numerical reward
 Reward is chosen from a stationary probability distribution that depends on the selected action
- Objective: to maximize the expected total reward over some time period

 $\mathbb{E}[a] = -\$0.5$

 $\mathbb{E}[b] = -\$0.2$

 $\mathbb{E}[c] = 0.1

 $\mathbb{E}[d] = 0.11

- Expected Mean Reward for each action selected
 - \rightarrow call it **Value** of the action

$$q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a]$$

$$q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a]$$

- A_τ action selected on time step t
- Q_t (a) estimated value of action a at time step t
- q_{*}(a) value of an arbitrary action a

Note: If you knew the value of each action, then it would be trivial to solve the k -armed bandit problem: you would always select the action with highest value :-)

$$\mathbb{E}[a] = -\$0.5$$

$$\mathbb{E}[b] = -\$0.2$$

 $\mathbb{E}[c] = 0.1

$$\mathbb{E}[d]$$
=\$ 0.11

$$\widehat{E}[a]=1$$

$$-0.2, -0.2$$
 $\widehat{E}[b] = -0.2$

$$-0.5$$
, -0.5 , -0.5
 $\widehat{E}[c] = -0.5$

$$\widehat{E}[d]=-2$$

Keep pulling the levers; update the estimate of action values;

$$\widehat{\mathbb{E}}[a]=1$$

-0.2, -0.2 $\widehat{E}[b] = -0.2$

$$-0.5$$
, -0.5 , -0.5
 $\mathbb{E}[c] = -0.5$

$$\widehat{\mathbb{E}}[d]=-2$$

How to maintain the estimate of expected rewards for each action?
 Average the rewards actually received !!!

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t}$$
$$= \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i = a}}$$

1. How to use the estimate in selecting the right action?

Greedy Action Selection
$$A_t \doteq \underset{a}{\operatorname{argmax}} Q_t(a)$$

2. How to use the estimate in selecting the right action?

Greedy Action Selection

$$A_t \doteq \operatorname*{arg\,max}_a Q_t(a)$$

Actions which are inferior by the value estimate upto time t, could be indeed better than the greedy action at t !!!

3. Exploration vs. Exploitation?

E-Greedy Action Selection / near-greedy action selection

Behave greedily most of the time; Once in a while, with small probability ϵ select randomly from among all the actions with equal probability, independently of the action-value estimates.

$$\{-1, -1, 5\}$$
 $N_{11}(a)=3$
 $q_*(a)=-\$0.5$
 $Q_{11}(a)=1$

 $\{-0.2, -0.2\}$ $Q_{11}(b) = -0.2$

{-1, -1, 5} {-0.2, -0.2} {-0.5, -0.5, -0.5}

$$N_{11}(a) = 3$$
 $N_{11}(b) = 2$ $N_{11}(c) = 3$
 $q_*(a) = -\$0.5$ $q_*(b) = -\$0.2$ $q_*(c) = \$0.1$
 $Q_{11}(a) = 1$ $Q_{11}(b) = -0.2$ $Q_{11}(c) = -0.5$

$$\{-2, -2\}$$

 $N_{11}(d)=2$
 $q_*(d)=\$1$
 $Q_{11}(d)=-2$

Greedy Action

{-1, -1, 5}

$$N_{11}(a)=3$$

 $q_{*}(a)=-\$0.5$
 $Q_{11}(a)=1$

 $\{-0.2, -0.2\}$ $N_{11}(b)=2$ $q_*(b)=-\$0.2$ $Q_{11}(b)=-0.2$

$$\{-0.5, -0.5, -0.5\}$$
 $N_{11}(c)=3$
 $q_{*}(c)=\$0.1$
 $Q_{11}(c)=-0.5$

$$\{-2, -2\}$$
 $N_{11}(d)=2$
 $q*(d)=$1$
 $Q_{11}(d)=-2$

Action to Explore

{-1, -1, 5}

$$N_{11}(a) = 3$$

 $q_{*}(a) = -\$0.5$
 $Q_{11}(a) = 1$

 $\{-0.2, -0.2\}$ $N_{11}(b) = 2$ $Q_{11}(b) = -0.2$

{-1, -1, 5} {-0.2, -0.2} {-0.5, -0.5, -0.5}

$$N_{11}(a) = 3$$
 $N_{11}(b) = 2$ $N_{11}(c) = 3$
 $q_*(a) = -\$0.5$ $q_*(b) = -\$0.2$ $q_*(c) = \$0.1$
 $Q_{11}(a) = 1$ $Q_{11}(b) = -0.2$ $Q_{11}(c) = -0.5$

E-Greedy Action Selection / near-greedy action selection

```
epsilon = 0.05 // small value to control exploration
def get_action():
    if random.random() > epsilon:
        return argmaxa(Q(a))
    else:
        return random.choice(A)
```

- In the limit as the number of steps increases, every action will be sampled by ε -greedy action selection an infinite number of times. This ensures that all the Qt (a) converge to q_* (a).
- Easy to implement / optimize for epsilon / yields good results

Ex-1: In ε -greedy action selection, for the case of two actions and ε = 0.5, what is the probability that the greedy action is selected?

Ex-1: In ε -greedy action selection, for the case of two actions and ε = 0.5, what is the probability that the greedy action is selected?

```
p (greedy action)  = p \text{ (greedy action AND greedy selection )} + p \text{ (greedy action AND random selection )} \\ = p \text{ (greedy action | greedy selection )} p \text{ (greedy selection )} \\ + p \text{ (greedy action | random selection )} p \text{ (random selection )} \\ = p \text{ (greedy action | greedy selection )} (1-\epsilon) + p \text{ (greedy action | random selection )} (\epsilon) \\ = p \text{ (greedy action | greedy selection )} (0.5) + p \text{ (greedy action | random selection )} (0.5) \\ = (1) (0.5) + (0.5) (0.5) \\ = 0.5 + 0.25 \\ = 0.75
```


10-armed Testbed

Example:

- A set of 2000 randomly generated k -armed bandit problems with k = 10
- Action values were selected according to a normal (Gaussian) distribution with mean 0 and variance 1.
- While selecting action A_t at time step t, the actual reward, R_t , was selected from a normal distribution with mean $q_*(At)$ and variance 1
- One Run: Apply a method for 1000 time steps to one of the bandit problems
- Perform 2000 runs, each run with a different bandit problem, to get an algorithms average behavior

An example bandit problem from the 10-armed testbed

Average performance of ϵ -greedy action-value methods on the 10-armed testbed

Average performance of ϵ -greedy action-value methods on the 10-armed testbed

Discussion on Exploration vs. Exploitation

- 1) What if the reward variance is
 - a. larger, say 10 instead of 1?
 - b. zero? [deterministic]
- 2) What if the bandit task is non-stationary? [that is, the true values of the actions changed over time]

Ex-2:

Consider a k -armed bandit problem with k = 4 actions, denoted 1, 2, 3, and 4.

Consider applying to this problem a bandit algorithm using ε -greedy action selection, sample-average action-value estimates, and initial estimates of Q1 (a) = 0, for all a.

Suppose the initial sequence of actions and rewards is A1 = 1, R1 = 1, A2 = 2, R2 = 1, A3 = 2, R3 = 2, A4 = 2, R4 = 2, A5 = 3, R5 = 0.

On some of these time steps the ε case may have occurred, causing an action to be selected at random.

On which time steps did this definitely occur? On which time steps could this possibly have occurred?

Incremental Implementation

 Efficient approach to compute the estimate of action-value;

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}.$$

 Given Qn and the nth reward, Rn, the new average of all n rewards can be computed as follows

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right],$$

Incremental Implementation

Note:

- StepSize decreases with each update
- We use α or $\alpha_t(a)$ to denote step size (constant / varies with each step)

Discussion:

Const vs. Variable step size?

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right],$$

 $NewEstimate \leftarrow OldEstimate + StepSize | Target - OldEstimate |$

Bandit Algorithm with Incremental Update/ &-greedy selection

```
Initialize, for a = 1 to k:
     Q(a) \leftarrow 0
     N(a) \leftarrow 0
Loop forever:
     A \leftarrow \begin{cases} \operatorname{arg\,max}_a Q(a) & \text{with probability } 1 - \varepsilon \\ \operatorname{a random action} & \text{with probability } \varepsilon \end{cases} (breaking ties randomly)
     R \leftarrow bandit(A)
     N(A) \leftarrow N(A) + 1
     Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]
```


Non-stationary Problem

- Most RL problems are non-stationary!
- Give more weight to recent rewards than to long-past rewards !!!

$$Q_{n+1} \doteq Q_n + \alpha \Big[R_n - Q_n \Big]$$

Non-stationary Problem

- Most RL problems are non-stationary!
- Give more weight to recent rewards than to long-past rewards !!!

$$Q_{n+1} \doteq Q_n + \alpha \Big[R_n - Q_n \Big]$$

 $Q_{n+1} = Q_n + \alpha \left[R_n - Q_n \right]$ $= \alpha R_n + (1 - \alpha)Q_n$

 $= \alpha R_n + (1 - \alpha) [\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$

 $= \alpha R_n + (1-\alpha)\alpha R_{n-1} + (1-\alpha)^2 Q_{n-1}$

 $= \alpha R_n + (1 - \alpha)\alpha R_{n-1} + (1 - \alpha)^2 \alpha R_{n-2} +$

 $\cdots + (1-\alpha)^{n-1}\alpha R_1 + (1-\alpha)^n Q_1$

$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i.$$

Exponential recency-weighted average

Optimistic Initial Values

- All the above discussed methods are **biased** by their initial estimates
- For sample average method the bias disappears once all actions have been selected at least once
- For methods with constant α , the bias is permanent, though decreasing over time
- Initial action values can also be used as a simple way of encouraging exploration.
- In 10 armed testbed, set initial estimate to +5 rather than 0.

This can encourage action-value methods to explore.

Whichever actions are initially selected, the reward is less than the starting estimates; the learner switches to other actions, being disappointed with the rewards it is receiving. The result is that all actions are tried several times before the value estimates converge.

Optimistic Initial Values

Caution:

Optimistic Initial Values can only be considered as a simple trick that can be quite effective on stationary problems, but it is far from being a generally useful approach to encouraging exploration.

Question:

Explain how in the non-stationary scenario the optimistic initial values will fail (to explore adequately).

The effect of optimistic initial action-value estimates on the 10-armed testbed. Both methods used a constant step-size parameter, α = 0.1

Upper-Confidence-Bound Action Selection

- E-greedy action selection forces the non-greedy actions to be tried, Indiscriminately, with no preference for those that are nearly greedy or particularly uncertain
- It would be better to select among the non-greedy actions according to their potential for actually being optimal

Take into account both how close their estimates are to being maximal and the uncertainties in those estimates.

$$A_t \doteq \operatorname*{arg\,max}_a \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

Upper-Confidence-Bound Action Selection

- Each time a is selected the uncertainty is presumably reduced
- Each time an action other than a is selected, t increases but N_t(a) does not; because t appears in the numerator, the uncertainty estimate increases.
- Actions with lower value estimates, or that have already been selected frequently, will be selected with decreasing frequency over time

Upper-Confidence-Bound Action Selection

UCB often performs well, as shown here, but is more difficult than "-greedy to extend beyond bandits to the more general reinforcement learning settings

Policy-based algorithms

- Forget about action-value (Q) estimates, we don't really care about them
- We care about what actions to chose
 - Let's assign a preference to each action and tweak its value
- Letine $H_t(a)$ as a numerical preference value associated with action a
- Which action is selected?
 - $A_t = \underset{a}{\operatorname{argmax}}[H_t(a)]$
 - Hardmax results in no exploration -- deterministic action selection
 Softmax!

Softmax function

- Input: vector of preferences
- Output: vector of probabilities forming a valid distribution

•
$$\Pr\{a_t = a\} = \frac{e^{H_t(a)}}{\sum_{a' \in A} e^{H_t(a')}} = \Pr(a)$$

$$\bullet \ H_t \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{bmatrix} 6 \\ 9 \\ 2 \end{bmatrix}$$

•
$$H_t \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{bmatrix} 6 \\ 9 \\ 2 \end{bmatrix}$$

• softmax $\begin{pmatrix} 6 \\ 9 \\ 2 \end{pmatrix} = \begin{bmatrix} 0.047 \\ 0.952 \\ 0.00087 \end{bmatrix}$

• That is, with Pr(0.95) choose a_2 , Pr(0.05) choose a_1 , and Pr(0.01) choose a_3

Softmax function

- Exploration checked!
- Softmax provides another important attribute a differentiable policy
- Say that we learn that action a_1 results in good relative performance
- Hardmax: $A_t = \underset{a}{\operatorname{argmax}} [H_t(a_1), H_t(a_2), H_t(a_3)]$
 - Change $H(a_1)$ such that $\Pr(a_1)$ is increased, $\frac{\partial \Pr(a_1)}{\partial H(a_1)} = NA$
- Softmax: $\Pr(a_1) = \frac{e^{H_t(a)}}{\sum_{a' \in A} e^{H_t(a')}}$
 - Change $H(a_1)$ such that $Pr(a_1)$ is increased -> update towards $\frac{\partial Pr(a_1)}{\partial H(a_1)}$

Gradient ascend

•
$$H_{t+1}(A_t) = H_t(A_t) + \alpha (R_t - \overline{R_t}) \frac{\partial \Pr(A_t)}{\partial H(A_t)}$$
• $\forall a \neq A_t, H_{t+1}(a) = H_t(a) + \alpha (R_t - \overline{R_t}) \frac{\partial \Pr(A_t)}{\partial H(a)}$

- Update the preferences based on observed reward and a baseline reward $(\overline{R_t})$
- If the observed reward is larger than the baseline:
 - Increase the preference of the chosen action, A_t
 - Decrease the preference of all other actions, $\forall a \neq A_t$
- Else do the opposite

Update Rule

On each step, after selecting action A t and receiving the reward Rt, Update the action preferences:

$$H_{t+1}(A_t) = H_t(A_t) + \alpha (R_t - \overline{R_t})(1 - \Pr(A_t))$$

$$\forall a \neq A_t, H_{t+1}(a) = H_t(a) - \alpha (R_t - \overline{R_t}) \Pr(a)$$

$$H_{t+1}(A_t) \doteq H_t(A_t) + \alpha \left(R_t - \bar{R}_t \right) \left(1 - \pi_t(A_t) \right), \quad \text{and}$$

$$H_{t+1}(a) \doteq H_t(a) - \alpha \left(R_t - \bar{R}_t \right) \pi_t(a), \quad \text{for all } a \neq A_t$$

What did we learn?

- Problem: choose the action that results in highest expected reward
- **Assumptions**: 1. actions' expected reward is unknown, 2. we are confronted with the same problem over and over, 3. we are able to observe an action's outcome once chosen
- Approach: learn the actions' expected reward through exploration (value based) or learn a policy directly (policy based), exploit learnt knowledge to choose best action
- Methods: 1. greedy + initializing estimates optimistically, 2. epsilon-greedy, 3. Upper-Confidence-Bounds, 4. gradient ascend + soft-max

A different scenario

- Associative vs. Non-associative tasks?
- Policy: A mapping from situations to the actions that are best in those situations
- (discuss) How do we extend the solution for non-associative task to an associative task?
 - Approach: Extend the solutions to non-stationary task to non-associative tasks
 - Works, if the true action values changes slowly
 - What if the context switching between the situations are made explicit?
 - How?
 - Need Special approaches !!!

Required Readings

- 1. Chapter-2 of Introduction to Reinforcement Learning,2nd Ed., Sutton & Barto
- 2. <u>A Survey on Practical Applications of Multi-Armed and Contextual Bandits</u>, Djallel Bouneffouf , Irina Rish [https://arxiv.org/pdf/1904.10040.pdf]

Thank you!