Lecture 11: Bayesian Hypothesis Testing: Priors

Merlise Clyde

October 6, 2022

• univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$

- univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- test $\mathcal{H}_0: \theta = 0$; vs $\mathcal{H}_1: \theta \neq 0$

- univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- test $\mathcal{H}_0: \theta = 0$; vs $\mathcal{H}_1: \theta \neq 0$
- 1. Put a prior on $\theta \mid \mathcal{H}_i$,

$$\pi(\theta \mid \mathcal{H}_{\scriptscriptstyle 1}) = \mathcal{N}(0, 1/ au_{\scriptscriptstyle 0})$$

$$p(\theta \mid \mathcal{H}_{
m o}) = \delta_o(heta)$$

- univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- test $\mathcal{H}_0: \theta = 0$; vs $\mathcal{H}_1: \theta \neq 0$
- 1. Put a prior on $\theta \mid \mathcal{H}_i$,

$$\pi(\theta \mid \mathcal{H}_{\scriptscriptstyle 1}) = \mathcal{N}(0, 1/ au_{\scriptscriptstyle 0})$$

$$p(\theta \mid \mathcal{H}_{
m o}) = \delta_o(heta)$$

2. Put a prior on the hypotheses $\pi(\mathcal{H}_0)$ and $\pi(\mathcal{H}_1)$.

- univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- test $\mathcal{H}_0: \theta = 0$; vs $\mathcal{H}_1: \theta \neq 0$
- 1. Put a prior on $\theta \mid \mathcal{H}_i$,

$$\pi(\theta \mid \mathcal{H}_{\scriptscriptstyle 1}) = \mathcal{N}(0, {\scriptscriptstyle 1}/ au_{\scriptscriptstyle 0})$$

$$p(\theta \mid \mathcal{H}_{
m o}) = \delta_o(heta)$$

- 2. Put a prior on the hypotheses $\pi(\mathcal{H}_0)$ and $\pi(\mathcal{H}_1)$.
- 3. Likelihood of the hypotheses $p(y^{(n)} | \mathcal{H}_i)$

- univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- test $\mathcal{H}_0: \theta = 0$; vs $\mathcal{H}_1: \theta \neq 0$
- 1. Put a prior on $\theta \mid \mathcal{H}_i$,

$$\pi(\theta \mid \mathcal{H}_{\scriptscriptstyle 1}) = \mathcal{N}(0, {\scriptscriptstyle 1}/ au_{\scriptscriptstyle 0})$$

$$p(\theta \mid \mathcal{H}_{
m o}) = \delta_o(heta)$$

- 2. Put a prior on the hypotheses $\pi(\mathcal{H}_0)$ and $\pi(\mathcal{H}_1)$.
- 3. Likelihood of the hypotheses $p(y^{(n)} | \mathcal{H}_i)$
- 4. Obtain posterior probabilities of \mathcal{H}_0 and \mathcal{H}_1 via Bayes Theorem or Bayes Factors

- univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- test $\mathcal{H}_0: \theta = 0$; vs $\mathcal{H}_1: \theta \neq 0$
- 1. Put a prior on $\theta \mid \mathcal{H}_i$,

$$\pi(\theta \mid \mathcal{H}_{\scriptscriptstyle 1}) = \mathcal{N}(0, {\scriptscriptstyle 1}/ au_{\scriptscriptstyle 0})$$

$$p(heta \mid \mathcal{H}_{
m o}) = \delta_o(heta)$$

- 2. Put a prior on the hypotheses $\pi(\mathcal{H}_0)$ and $\pi(\mathcal{H}_1)$.
- 3. Likelihood of the hypotheses $p(y^{(n)} | \mathcal{H}_i)$
- 4. Obtain posterior probabilities of \mathcal{H}_0 and \mathcal{H}_1 via Bayes Theorem or Bayes Factors
- 5. Report based on loss (optional)

■ **Bayes factor**: is a ratio of marginal likelihoods and it provides a weight of evidence in the data in favor of one model over another.

- **Bayes factor**: is a ratio of marginal likelihoods and it provides a weight of evidence in the data in favor of one model over another.
- **Rule of thumb**: $\mathcal{BF}_{10} > 10$ is strong evidence for \mathcal{H}_1 ; $\mathcal{BF}_{10} > 100$ is decisive evidence for \mathcal{H}_1 .

- **Bayes factor**: is a ratio of marginal likelihoods and it provides a weight of evidence in the data in favor of one model over another.
- **Rule of thumb**: $\mathcal{BF}_{10} > 10$ is strong evidence for \mathcal{H}_1 ; $\mathcal{BF}_{10} > 100$ is decisive evidence for \mathcal{H}_1 .

Not worth a bare mention $1 < \mathcal{BF}_{10} < 3$

- **Bayes factor**: is a ratio of marginal likelihoods and it provides a weight of evidence in the data in favor of one model over another.
- **Rule of thumb**: $\mathcal{BF}_{10} > 10$ is strong evidence for \mathcal{H}_1 ; $\mathcal{BF}_{10} > 100$ is decisive evidence for \mathcal{H}_1 .

Not worth a bare mention $1 < \mathcal{BF}_{10} < 3$

Posterior probabilities

$$\pi(\mathcal{H}_1 \mid Y) = rac{1}{rac{\pi(\mathcal{H}_0)}{\pi(\mathcal{H}_1)} rac{p(y^{(n)}|\mathcal{H}_0)}{p(y^{(n)}|\mathcal{H}_1)} + 1} = rac{1}{\mathcal{O}_{01}\mathcal{BF}_{01} + 1}$$

• \mathcal{O}_{01} prior odds of \mathcal{H}_0 to \mathcal{H}_1

- **Bayes factor**: is a ratio of marginal likelihoods and it provides a weight of evidence in the data in favor of one model over another.
- **Rule of thumb**: $\mathcal{BF}_{10} > 10$ is strong evidence for \mathcal{H}_1 ; $\mathcal{BF}_{10} > 100$ is decisive evidence for \mathcal{H}_1 .

Not worth a bare mention $1 < \mathcal{BF}_{10} < 3$

Posterior probabilities

$$\pi(\mathcal{H}_1 \mid Y) = rac{1}{rac{\pi(\mathcal{H}_0)}{\pi(\mathcal{H}_1)} rac{p(y^{(n)}|\mathcal{H}_0)}{p(y^{(n)}|\mathcal{H}_1)} + 1} = rac{1}{\mathcal{O}_{01}\mathcal{BF}_{01} + 1}$$

• \mathcal{O}_{01} prior odds of \mathcal{H}_0 to \mathcal{H}_1

Alternative expression for Bayes Factor (Candidate's Formula)

$$\mathcal{BF}_{ ext{10}} = rac{p(y^{(n)} \mid \mathcal{H}_{ ext{1}})}{p(y^{(n)} \mid \mathcal{H}_{ ext{0}})} = rac{\pi_{ heta}(ext{o} \mid \mathcal{H}_{ ext{1}})}{\pi_{ heta}(ext{o} \mid y^{(n)}, \mathcal{H}_{ ext{1}})}$$

Marginal Likelihoods & Evidence

 \mathcal{BF}_{10} = 1.73 Posterior Probability of \mathcal{H}_0 = 0.3665 versus p-value of 0.05

- Selection 0-1 loss;
 - if $\pi(\mathcal{H}_1 \mid y^{(n)}) > .5$ choose \mathcal{H}_1 ,
 - otherwise \mathcal{H}_{o}

- Selection 0-1 loss;
 - if $\pi(\mathcal{H}_1 \mid y^{(n)}) > .5$ choose \mathcal{H}_1 ,
 - otherwise \mathcal{H}_{o}
- **E**stimation of θ under squared error loss
- report $\hat{\theta}$ that minimizes Bayes expected loss

$$\mathsf{E}_{ heta | y^{(n)}} \left[(heta - \hat{ heta})^2
ight]$$

- Selection 0-1 loss;
 - if $\pi(\mathcal{H}_1 \mid y^{(n)}) > .5$ choose \mathcal{H}_1 ,
 - otherwise \mathcal{H}_{o}
- **E**stimation of θ under squared error loss
- report $\hat{\theta}$ that minimizes Bayes expected loss

$$\mathsf{E}_{ heta | y^{(n)}} \left[(heta - \hat{ heta})^2
ight]$$

■ Bayes optimal estimator under squared error is the posterior mean $\mathsf{E}[\theta \mid y^{(n)}]$

- Selection 0-1 loss;
 - if $\pi(\mathcal{H}_1 \mid y^{(n)}) > .5$ choose \mathcal{H}_1 ,
 - otherwise \mathcal{H}_{o}
- **E**stimation of θ under squared error loss
- report $\hat{\theta}$ that minimizes Bayes expected loss

$$\mathsf{E}_{ heta | y^{(n)}} \left[(heta - \hat{ heta})^2
ight]$$

- Bayes optimal estimator under squared error is the posterior mean $\mathsf{E}[\theta \mid y^{(n)}]$
- lacksquare no $\mathcal{H}_i!$

- Selection 0-1 loss;
 - if $\pi(\mathcal{H}_1 \mid y^{(n)}) > .5$ choose \mathcal{H}_1 ,
 - otherwise \mathcal{H}_0
- **E**stimation of θ under squared error loss
- report $\hat{\theta}$ that minimizes Bayes expected loss

$$\mathsf{E}_{ heta | y^{(n)}} \left[(heta - \hat{ heta})^2
ight]$$

- Bayes optimal estimator under squared error is the posterior mean $\mathsf{E}[\theta \mid y^{(n)}]$
- \blacksquare no $\mathcal{H}_i!$
- lacktriangle marginal posterior distribution of heta

Prior on θ is a mixture model:

$$p(heta) = \pi_0 \delta_0(heta) + (1 - \pi_0) \pi(heta \mid \mathcal{H}_{\scriptscriptstyle 1})$$

Prior on θ is a mixture model:

$$p(heta) = \pi_0 \delta_0(heta) + (1 - \pi_0) \pi(heta \mid \mathcal{H}_{\scriptscriptstyle 1})$$

■ Dirac delta - degenerate distribution at 0

Prior on θ is a mixture model:

$$p(\theta) = \pi_0 \delta_0(\theta) + (1 - \pi_0) \pi(\theta \mid \mathcal{H}_1)$$

- Dirac delta degenerate distribution at 0
- "spike & slab" prior

Prior on θ is a mixture model:

$$p(heta) = \pi_0 \delta_0(heta) + (1 - \pi_0) \pi(heta \mid \mathcal{H}_{\scriptscriptstyle 1})$$

- Dirac delta degenerate distribution at 0
- "spike & slab" prior

$$\pi(heta \mid y^{(n)}) = \Pr(\mathcal{H}_{ ext{o}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{o}}, y^{(n)}) + \Pr(\mathcal{H}_{ ext{1}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{1}}, y^{(n)})$$

$$egin{aligned} \pi(heta \mid y^{(n)}) &= \Pr(\mathcal{H}_{ ext{o}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{o}}, y^{(n)}) + \Pr(\mathcal{H}_{ ext{1}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{1}}, y^{(n)}) \ \\ \pi(heta \mid y^{(n)}) &= \Pr(\mathcal{H}_{ ext{o}} \mid y^{(n)}) \delta_{ ext{o}}(heta) + \Pr(\mathcal{H}_{ ext{1}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{1}}, y^{(n)}) \end{aligned}$$

posterior also has a spike & slab

$$egin{aligned} \pi(heta \mid y^{(n)}) &= \Pr(\mathcal{H}_{ ext{o}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{o}}, y^{(n)}) + \Pr(\mathcal{H}_{ ext{1}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{1}}, y^{(n)}) \ \\ \pi(heta \mid y^{(n)}) &= \Pr(\mathcal{H}_{ ext{o}} \mid y^{(n)}) \delta_{ ext{o}}(heta) + \Pr(\mathcal{H}_{ ext{1}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{1}}, y^{(n)}) \end{aligned}$$

- posterior also has a spike & slab
- mixture weights are updated

$$egin{aligned} \pi(heta \mid y^{(n)}) &= \Pr(\mathcal{H}_{ ext{o}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{o}}, y^{(n)}) + \Pr(\mathcal{H}_{ ext{1}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{1}}, y^{(n)}) \ \\ \pi(heta \mid y^{(n)}) &= \Pr(\mathcal{H}_{ ext{o}} \mid y^{(n)}) \delta_{ ext{o}}(heta) + \Pr(\mathcal{H}_{ ext{1}} \mid y^{(n)}) \pi(heta \mid \mathcal{H}_{ ext{1}}, y^{(n)}) \end{aligned}$$

- posterior also has a spike & slab
- mixture weights are updated
- updated "slab" hyperparameters

Posterior Means and Other Summaries

Use Iterated Expectations to find

$$\mathsf{E}[heta \mid y^{(n)}]$$

Posterior Variance?

Credible Intervals?

An important issue with hypothesis testing and using Spike & Slab prior is choice of hyperparameters (τ_0 in this case)

An important issue with hypothesis testing and using Spike & Slab prior is choice of hyperparameters (τ_0 in this case)

■ Bayes Factor and posterior probabilities of \mathcal{H}_i depend on τ_0 through $p(y^{(n)} \mid \mathcal{H}_1)$

An important issue with hypothesis testing and using Spike & Slab prior is choice of hyperparameters (τ_0 in this case)

- Bayes Factor and posterior probabilities of \mathcal{H}_i depend on τ_0 through $p(y^{(n)} \mid \mathcal{H}_1)$
- 1. What is impact of τ_0 on \mathcal{BF}_{01} ?

An important issue with hypothesis testing and using Spike & Slab prior is choice of hyperparameters (τ_0 in this case)

- Bayes Factor and posterior probabilities of \mathcal{H}_i depend on τ_0 through $p(y^{(n)} \mid \mathcal{H}_1)$
- 1. What is impact of τ_0 on \mathcal{BF}_{01} ?
- 2. How do we choose τ_0 ?

Question 1.

$$\mathcal{BF}_{01} = rac{\pi(\mathrm{o} \mid \mathcal{H}_{\scriptscriptstyle 1}, y^{(n)})}{\pi(\mathrm{o} \mid \mathcal{H}_{\scriptscriptstyle 1})}$$

Precision

$$lacksquare$$
 $au_0=1/10$

Precision

- lacktriangledown $au_0 = 1/10$
- Bayes Factor for \mathcal{H}_0 to \mathcal{H}_1 is 1.5

Precision

- lacktriangledown $au_0 = 1/10$
- Bayes Factor for \mathcal{H}_0 to \mathcal{H}_1 is 1.5
- Posterior Probability of $\mathcal{H}_0 = 0.6001$

What about even more vague priors?

• As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid y^{(n)}) \to 1$!

- As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid y^{(n)}) \to 1$!
- As we use a less & less informative prior under \mathcal{H}_1 we obtain more & more evidence for \mathcal{H}_0 over \mathcal{H}_1 !

- As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid y^{(n)}) \to 1$!
- As we use a less & less informative prior under \mathcal{H}_1 we obtain more & more evidence for \mathcal{H}_0 over \mathcal{H}_1 !

Known as **Bartlett's Paradox** - the paradox is that a seemingly non-informative prior for θ is very informative about \mathcal{H} !

- As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid y^{(n)}) \to 1$!
- As we use a less & less informative prior under \mathcal{H}_1 we obtain more & more evidence for \mathcal{H}_0 over \mathcal{H}_1 !

Known as **Bartlett's Paradox** - the paradox is that a seemingly non-informative prior for θ is very informative about \mathcal{H} !

General problem with nested sequence of models. If we choose vague priors on the additional parameter in the larger model we will be favoring the smaller models under consideration!

- As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid y^{(n)}) \to 1$!
- As we use a less & less informative prior under \mathcal{H}_1 we obtain more & more evidence for \mathcal{H}_0 over \mathcal{H}_1 !

Known as **Bartlett's Paradox** - the paradox is that a seemingly non-informative prior for θ is very informative about \mathcal{H} !

General problem with nested sequence of models. If we choose vague priors on the additional parameter in the larger model we will be favoring the smaller models under consideration!

Bottom Line Don't use vague priors!

- As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid y^{(n)}) \to 1$!
- As we use a less & less informative prior under \mathcal{H}_1 we obtain more & more evidence for \mathcal{H}_0 over \mathcal{H}_1 !

Known as **Bartlett's Paradox** - the paradox is that a seemingly non-informative prior for θ is very informative about \mathcal{H} !

General problem with nested sequence of models. If we choose vague priors on the additional parameter in the larger model we will be favoring the smaller models under consideration!

Bottom Line Don't use vague priors!

- As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid y^{(n)}) \to 1$!
- As we use a less & less informative prior under \mathcal{H}_1 we obtain more & more evidence for \mathcal{H}_0 over \mathcal{H}_1 !

Known as **Bartlett's Paradox** - the paradox is that a seemingly non-informative prior for θ is very informative about \mathcal{H} !

General problem with nested sequence of models. If we choose vague priors on the additional parameter in the larger model we will be favoring the smaller models under consideration!

Bottom Line Don't use vague priors!

What then?

Conventional Priors

- Conventional Priors
- Simplest is Unit Information Prior (UIP)

- Conventional Priors
- Simplest is Unit Information Prior (UIP)
- center prior at MLE (\bar{y}) but choose prior precision to be the equivalent of a sample size of 1

- Conventional Priors
- Simplest is Unit Information Prior (UIP)
- center prior at MLE (\bar{y}) but choose prior precision to be the equivalent of a sample size of 1
- center prior at 0, but choose prior precision to be the equivalent of a sample size of 1 (UIP)

- Conventional Priors
- Simplest is Unit Information Prior (UIP)
- center prior at MLE (\bar{y}) but choose prior precision to be the equivalent of a sample size of 1
- center prior at 0, but choose prior precision to be the equivalent of a sample size of 1 (UIP)

Default UIP

$$heta \mid \mathcal{H}_{\scriptscriptstyle 1} \sim \mathsf{N}(\mathtt{o}, \mathtt{1})$$

Note: UIP is the basis for the Bayes Information Criterion (BIC)

 BIC is derived in more general settings by taking a Laplace approximation to the marginal likelihood and making some simplifying assumptions

- BIC is derived in more general settings by taking a Laplace approximation to the marginal likelihood and making some simplifying assumptions
- BIC chooses model with highest marginal likelihood

- BIC is derived in more general settings by taking a Laplace approximation to the marginal likelihood and making some simplifying assumptions
- BIC chooses model with highest marginal likelihood
- BIC has a well known tendency to choose/favor simpler models due to UIP containing very little information

- BIC is derived in more general settings by taking a Laplace approximation to the marginal likelihood and making some simplifying assumptions
- BIC chooses model with highest marginal likelihood
- BIC has a well known tendency to choose/favor simpler models due to UIP containing very little information
- consistent for model selection i.e. $\Pr(\mathcal{H}_i \mid y^{(n)})$ goes to 1 for the true model as $n \to \infty$

- BIC is derived in more general settings by taking a Laplace approximation to the marginal likelihood and making some simplifying assumptions
- BIC chooses model with highest marginal likelihood
- BIC has a well known tendency to choose/favor simpler models due to UIP containing very little information
- consistent for model selection i.e. $\Pr(\mathcal{H}_i \mid y^{(n)})$ goes to 1 for the true model as $n \to \infty$
- Is a fixed τ_0 consistent as $n \to \infty$?

■ Place a prior on τ_0

■ Place a prior on τ_0

$$au_0 \sim \mathsf{Gamma}(1/2,1/2)$$

$$p(au_0 \mid \mathcal{H}_{\scriptscriptstyle 1}) = rac{(1/2)^{1/2}}{\Gamma(1/2)} au_0^{1/2-1} \exp\left(- au_0/2
ight)$$

• Place a prior on τ_0

$$au_0 \sim \mathsf{Gamma}(1/2,1/2)$$

$$p(au_0 \mid \mathcal{H}_{\scriptscriptstyle 1}) = rac{(1/2)^{1/2}}{\Gamma(1/2)} au_0^{1/2-1} \exp\left(- au_0/2
ight)$$

■ If $\theta \mid \tau_0, \mathcal{H}_1 \sim N(o, 1/\tau_0)$, then $\theta_0 \mid \mathcal{H}_1$ has a Cauchy(0, 1) distribution! Recommended by Jeffreys (1961)

• Place a prior on τ_0

$$au_0 \sim \mathsf{Gamma}(1/2,1/2)$$

$$p(au_0 \mid \mathcal{H}_{\scriptscriptstyle 1}) = rac{(1/2)^{1/2}}{\Gamma(1/2)} au_0^{1/2-1} \exp\left(- au_0/2
ight)$$

- If $\theta \mid \tau_0, \mathcal{H}_1 \sim N(o, 1/\tau_0)$, then $\theta_0 \mid \mathcal{H}_1$ has a Cauchy(0, 1) distribution! Recommended by Jeffreys (1961)
- no closed form expressions for marginal likelihood!

• Can't use improper priors under \mathcal{H}_1

- Can't use improper priors under \mathcal{H}_1
- use part of the data y(l) to update an improper prior on θ to get a proper posterior $\pi(\theta \mid \mathcal{H}_i, y(l))$

- Can't use improper priors under \mathcal{H}_1
- use part of the data y(l) to update an improper prior on θ to get a proper posterior $\pi(\theta \mid \mathcal{H}_i, y(l))$
- use $\pi(\theta \mid y(l), \mathcal{H}_i)$ to obtain the posterior for θ based on the rest of the training data

- Can't use improper priors under \mathcal{H}_1
- use part of the data y(l) to update an improper prior on θ to get a proper posterior $\pi(\theta \mid \mathcal{H}_i, y(l))$
- use $\pi(\theta \mid y(l), \mathcal{H}_i)$ to obtain the posterior for θ based on the rest of the training data
- Calculate a Bayes Factor (avoids arbitrary normalizing constants!)

- Can't use improper priors under \mathcal{H}_1
- use part of the data y(l) to update an improper prior on θ to get a proper posterior $\pi(\theta \mid \mathcal{H}_i, y(l))$
- use $\pi(\theta \mid y(l), \mathcal{H}_i)$ to obtain the posterior for θ based on the rest of the training data
- Calculate a Bayes Factor (avoids arbitrary normalizing constants!)
- Choice of training sample y(l)?
- Berger & Pericchi (1996) propose "averaging" over training samples intrinsic Bayes Factors

- Can't use improper priors under \mathcal{H}_1
- use part of the data y(l) to update an improper prior on θ to get a proper posterior $\pi(\theta \mid \mathcal{H}_i, y(l))$
- use $\pi(\theta \mid y(l), \mathcal{H}_i)$ to obtain the posterior for θ based on the rest of the training data
- Calculate a Bayes Factor (avoids arbitrary normalizing constants!)
- Choice of training sample y(l)?
- Berger & Pericchi (1996) propose "averaging" over training samples intrinsic Bayes Factors

• **intrinsic prior** on θ that leads to the IBF