Homework 8

** Problem 1. If $g \in N$, show that

$$\int_{\mathbb{D}^n} f(g \cdot x) dx = \int_{\mathbb{D}^n} f(x) dx.$$

Proof. Let

$$\begin{pmatrix} 1 & a_{12} & \dots & a_{1n} \\ 0 & 1 & \dots & a_{2n} \\ \vdots & & & \vdots \\ 0 & a_{n2} & \dots & 1 \end{pmatrix}.$$

Then if $x = (x_1, x_2, \dots, x_n)^T$ we have

$$g \cdot x = \begin{pmatrix} x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x_2 + a_{23}x_3 + \dots + a_{2n}x_n \\ \dots \\ x_n \end{pmatrix}.$$

Thus, x_i will always appear without a multiple in the *i*th row of $g \cdot x$. Recall dx_i is translation invariant. Since we integrate component-wise, and all other terms in this row are constants, we have the desired result. \Box

** Problem 2. What is the Haar measure on $\mathbb{C}^{\times} = \mathbb{T} \times \mathbb{R}_{+}^{\times}$?

Proof. We know that the Haar measure on \mathbb{R}_+^{\times} is dx/x. Since we integrate component wise, we only need to find the Haar measure on \mathbb{T} and then the product of the measures will suffice. Let f be a function on \mathbb{T} . Then for a constant $a \in \mathbb{T}$ we have

$$\int_{\mathbb{T}} f(ax)e^{i\theta}dx = \frac{1}{a}\int_{\mathbb{T}} f(ax)ae^{i\theta}dx = \int_{\mathbb{T}} f(x)e^{i\theta}dx.$$

The desired measure is then $e^{i\theta} dx dy/x$.

** Problem 3. For \mathbb{C} and $\alpha \in \mathbb{C}$ what is $d(\alpha z)$?

Proof. Treat \mathbb{C} as \mathbb{R}^2 . Then dz = dxdy. Moreover, since we're only concerned with scaling areas in \mathbb{R}^2 , we can consider only $|\alpha|$. Then we have

$$d(\alpha z) = d(|\alpha|x)d(|\alpha|y) = |\alpha|^2 dx dy = |\alpha|^2 dz.$$

** Problem 4. Show that every character is unitary over the group $(\mathbb{Q}_p,+)$.

Proof. Let $\chi: \mathbb{Q}_p \to \mathbb{C}^{\times}$ be an additive character and let $a \in \mathbb{Q}_p$. Note that by p-adic expansion, $a = \sum_{k=\gamma}^{\infty} a_k p^k$ where $|a|_p = p^{-\gamma}$ and $0 \le a_k \le p-1$. Then we have

$$\chi(a) = \chi\left(\sum_{k=\gamma}^{\infty} a_k p^k\right) = \prod_{k=\gamma}^{\infty} \chi(a_k p^k) = \prod_{k=\gamma}^{-1} e^{2\pi i a_k p^k}.$$

The last result uses the tail of a, $\sum_{k=\gamma}^{-1} a_k p^k$. Note that $|\chi(a)| = 1$ by Euler's identity.

** Problem 5. Show \hat{G} is a group.

Proof. Let $\chi_1, \chi_2, \chi_3 \in \hat{G}$. Then, since associativity holds in \mathbb{C} , we have

$$((\chi_1\chi_2)\chi_3)(x) = (\chi_1\chi_2)(x)\chi_3(x) = (\chi_1(x)\chi_2(x))\chi_3(x) = \chi_1(x)(\chi_2(x)\chi_3(x)) = \chi_1(x)(\chi_2\chi_3(x)) = (\chi_1(\chi_2\chi_3))(x).$$

Now consider the 1 function which sends all values to 1. Then for $\chi \in \hat{G}$, $(1 \cdot \chi)(x) = 1\chi(x) = \chi(x)$. Finally, for $\chi \in \hat{G}$, let $\chi^{-1} : G\mathbb{C}^{\times}$ such that $\chi^{-1}(x) = (\chi(x))^{-1}$. The fact that this map is continuous follows from the fact that $\chi(x) \neq 0$. To show χ^{-1} is a homomorphism, let $x, y \in G$. Then

$$\chi^{-1}(xy) = (\chi(xy))^{-1} = (\chi(x)\chi(y))^{-1} = (\chi(x))^{-1}(\chi(y))^{-1} = \chi^{-1}(x)\chi^{-1}(y).$$

Since associativity, identity and inverses hold, \hat{G} is a group.

** Problem 6. Read about the compact-open topology.

Proof. For the case of \hat{G} , let K be a compact subset of G and U be an open subset of \mathbb{C} . If $V(K,U) \subseteq \hat{G}$ is the set of all elements of \hat{G} such that $\chi(K) \subseteq U$, then V(K,U) is a subbase for the compact-open topology. \square

** Problem 7. Suppose $G = \mathbb{T}$ and $f \in L^1(G)$ such that $f(e^{i\theta}) = 1$. Find \hat{f} .

Proof. By definition we know

$$\hat{f}(\chi) = \int_{\mathbb{T}} f(x) \overline{\chi(x)} dx$$

and since $f(e^{i\theta}) = 1$, this simplifies to

$$\hat{f}(\chi) = \int_{\mathbb{T}} \overline{\chi(x)} dx.$$

Since $|\chi(x)| = 1$ we can write $\chi(x) = e^{i(x+a)}$ for some constant $a \in \mathbb{R}$. Then we have

$$\hat{f} = \int_{\mathbb{T}} e^{-i(x+a)} dx = \int_{0}^{2\pi} e^{-i(x+a)} dx = 0.$$