5.3 定积分的应用

- 5.3.1 定积分的微元法
- 5.3.2 平面图形的面积
- 5.3.3 平行截面体的体积
- 5.3.4 平面曲线的弧长
- 5.3.5 旋转曲面的面积

5.3.1 定积分的微元法

- 1、什么问题可以用定积分解决?
- 1) 所求量 U 是与区间[a,b]上的某分布f(x) 有关的一个整体量;
- 2) U 对区间 [a,b] 具有可加性,即可通过

"分割、近似、求和、取极限"

表示为
$$U = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

定积分定义
$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

2、如何应用定积分解决问题?

第一步利用"化整为零,以常代变"求出局部量的

近似值 — 微分表达式

$$dU = f(x) dx$$

第二步利用"积零为整,无限累加"求出整体量的精确值——积分表达式

$$U = \int_{a}^{b} f(x) \, \mathrm{d}x$$

这种分析方法成为微元法(或元素法)

元素的几何形状常取为:条,带,段,环,扇,片,壳等

5.3.2. 平面图形的面积

1) 直角坐标情形

设曲线 $y = f(x) (\ge 0)$ 与直线 x = a, x = b (a < b) 及 x 轴所围曲 边梯形面积为A,则 dA = f(x) dx

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

右下图所示图形面积为

$$A = \int_{a}^{b} |f_1(x) - f_2(x)| \, \mathrm{d}x$$

例1. 计算两条抛物线 $y^2 = x$, $y = x^2$ 在第一象限所围所围图形的面积.

解: 由
$$\begin{cases} y^2 = x \\ y = x^2 \end{cases}$$

得交点 (0,0),(1,1)

$$\therefore A = \int_0^1 \left(\sqrt{x} - x^2\right) dx$$

$$= \left[\frac{2}{3}x^{\frac{3}{2}} - \frac{1}{3}x^3\right]_0^1$$

$$= \frac{1}{3}$$

例2. 计算抛物线 $y^2 = 2x$ 与直线 y = x - 4 所围图形的面积.

解:由
$$\begin{cases} y^2 = 2x \\ y = x - 4 \end{cases}$$
 得交点
$$(2, -2), (8, 4)$$

为简便计算, 选取y作积分变量, 则有

$$\therefore A = \int_{-2}^{4} (y + 4 - \frac{1}{2}y^2) dy$$
$$= \left[\frac{1}{2}y^2 + 4y - \frac{1}{6}y^3 \right]_{-2}^{4} = 18$$

例3. 求椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围图形的面积.

解: 利用对称性,有 dA = y dx

$$A = 4 \int_0^a y \, \mathrm{d} x$$

利用椭圆的参数方程

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases} \quad (0 \le t \le 2\pi)$$

应用定积分换元法得

$$A = 4\int_{\frac{\pi}{2}}^{0} b \sin t \cdot (-a \sin t) dt = 4ab \int_{0}^{\frac{\pi}{2}} \sin^{2} t dt$$
$$= 4ab \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \pi ab \quad \text{ if } a = b \text{ 时得圆面积公式}$$

o x x + d x a x

一般地, 当曲边梯形的曲边由参数方程

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

给出时,按顺时针方向规定起点和终点的参数值 t_1,t_2

则曲边梯形面积
$$A = \int_a^b y dx = \int_{t_1}^{t_2} \psi(t) \cdot \phi'(t) dt$$

例4. 求由摆线 $x = a(t - \sin t)$, $y = a(1 - \cos t)$ (a > 0) 的一拱与 x 轴所围平面图形的面积 .

解:
$$A = \int_0^{2\pi} a (1 - \cos t) \cdot a (1 - \cos t) dt$$

$$= a^2 \int_0^{2\pi} (1 - \cos t)^2 dt$$

$$= 4a^2 \int_0^{2\pi} \sin^4 \frac{t}{2} dt$$

$$= 8a^2 \int_0^{\pi} \sin^4 u du \qquad (\rightarrow u = \frac{t}{2})$$

$$= 16a^2 \int_0^{\frac{\pi}{2}} \sin^4 u du$$

$$= 16a^2 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = 3\pi a^2$$

 $2\pi a x$

2) 极坐标情形

设 $\varphi(\theta) \in C[\alpha, \beta], \varphi(\theta) \geq 0$,求由曲线 $r = \varphi(\theta)$ 及射线 $\theta = \alpha, \theta = \beta$ 围成的曲边扇形的面积. 在区间 $[\alpha, \beta]$ 上任取小区间 $[\theta, \theta + d\theta]$ 则对应该小区间上曲边扇形面积的近似值为

$$dA = \frac{1}{2} [\varphi(\theta)]^2 d\theta$$

所求曲边扇形的面积为

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \varphi^{2}(\theta) \, \mathrm{d}\theta$$

曲线
$$r = \varphi(\theta)$$
 $\varphi(\theta) \in C[\alpha, \beta]$

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \varphi^{2}(\theta) \, \mathrm{d}\theta$$

例5. 计算阿基米德螺线 $r = a\theta$ (a > 0)

对应 θ 从 0 变 到 2π 所围图形面积.

解:
$$A = \int_0^{2\pi} \frac{1}{2} (a\theta)^2 d\theta$$

$$=\frac{a^2}{2}\left[\frac{1}{3}\theta^3\right]\frac{2\pi}{0}$$

$$=\frac{4}{3}\pi^3 a^2$$

例6. 计算心形线 $r = a(1 + \cos \theta)$ (a > 0) 所围图形的面积.

解:
$$A = 2\int_0^{\pi} \frac{1}{2} a^2 (1 + \cos\theta)^2 d\theta$$

$$= a^2 \int_0^{\pi} 4 \cos^4 \frac{\theta}{2} d\theta$$

$$\Rightarrow t = \frac{\theta}{2}$$

$$= 8a^2 \int_0^{\frac{\pi}{2}} \cos^4 t dt$$

$$= 8a^2 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3}{2} \pi a^2$$

(利用对称性)

例7. 计算心形线 $r = a(1 + \cos \theta)$ (a > 0) 与圆 r = a 所围图形的面积. $1 + 2\cos \theta + \cos^2 \theta$

 $1 + 2\cos\theta + \cos^2\theta$ $\frac{1}{2}(1 + \cos 2\theta)$

解: 利用对称性, 所求面积

$$A = \frac{1}{2}\pi a^2 + 2 \int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} a^2 (1 + \cos\theta)^2 d\theta$$

$$= \frac{1}{2}\pi a^2 + a^2 \int_{\frac{\pi}{2}}^{\pi} (\frac{3}{2} + 2\cos\theta + \frac{1}{2}\cos 2\theta) d\theta$$

$$= \frac{1}{2}\pi a^2 + a^2(\frac{3}{4}\pi - 2)$$

$$=\frac{5}{4}\pi a^2 - 2a^2$$

5.3.3 平行截面体的体积

1)平行截面体

设所给立体垂直于x 轴的截面面积为A(x),A(x)在[a,b] 上连续,则对应于小区间[x,x+dx]的体积元素为

$$dV = A(x) dx$$

因此所求立体体积为

$$V = \int_{a}^{b} A(x) \, \mathrm{d} x$$

例1. 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成 α 角, 计算该平面截圆柱体所得立体的体积.

解:如图所示取坐标系,则圆的方程为

$$x^2 + y^2 = R^2$$

垂直于x轴的截面是直角三角形,其面积为

$$A(x) = \frac{1}{2}(R^2 - x^2)\tan\alpha \quad (-R \le x \le R)$$

利用对称性

$$V = 2\int_0^R \frac{1}{2} (R^2 - x^2) \tan \alpha \, dx$$

= $2 \tan \alpha \left[R^2 x - \frac{1}{3} x^3 \right]_0^R = \frac{2}{3} R^3 \tan \alpha$

思考:可否选择 y 作积分变量?

此时截面面积函数是什么?

如何用定积分表示体积?

提示:

$$A(y) = 2x \cdot y \tan \alpha$$

$$= 2 \tan \alpha \cdot y \sqrt{R^2 - y^2}$$

$$V = 2 \tan \alpha \cdot \int_0^R y \sqrt{R^2 - y^2} \, dy$$

例2. 求两个圆柱面 $x^2 + y^2 = R^2$ 及 $x^2 + z^2 = R^2$ 所围的立体的体积。

解: 所求立体在第一卦限如图. 由对称性所求立体体积为其在第一卦限的8倍.

在 $x \in [0, R]$ 处立体的截面为正方形 $x \in [0, R]$ 处立体的截面函数为

$$A(x) = R^2 - x^2,$$

$$V = 8 \int_0^a (R^2 - x^2) dx = \frac{16}{3} R^3.$$

祖暅原理

"夫叠綦(qí)成立积,缘幂势既同,则积不容异"。设 Ω_A , Ω_B 为位于同一区间[a,b]上的两个立体,其体积分别为 V_A , V_B .

若在 [a,b] 的它们的截面面积函数 A(x) = B(x)

皆连续,且 A(x) = B(x) 则 $V_B = V_A$.

2) 旋转体的体积

当考虑连续曲线段 y = f(x) $(a \le x \le b)$ 绕 x轴

轴旋转一周围成的立体体积时,有

$$V = \int_{a}^{b} \pi [f(x)]^{2} dx$$

当考虑连续曲线段

$$x = \varphi(y) \ (c \le y \le d)$$

绕 y 轴旋转一周围成的立体体积时,

有
$$V = \int_{c}^{d} \pi [\varphi(y)]^{2} dy$$

例4. 试用上述公导出圆锥体积公式.

解:设正圆锥的高为h,底圆半径为r,

可视为曲线
$$y = \frac{r}{h}x, x \in [0, h]$$

绕 x 轴一周围成的立体,

故其体积为

$$V = \pi \int_0^h (\frac{r}{h}x)^2 dx = \frac{1}{3}\pi r^2 h.$$

例5. 求圆 $x^2 + (R - y)^2 \le r^2 (0 < r < R)$ 绕 x 轴一周所得的环状立体的体积.

解: 圆 $x^2 + (R - y)^2 \le r^2 (0 < r < R)$

的上、下半圆分别为

$$y = R + \sqrt{r^2 - x^2}, x \in [-r, r],$$

$$y = R - \sqrt{x^2 - r^2}, x \in [-r, r].$$

故所求的体积为

$$V = \pi \int_{-r}^{r} (R + \sqrt{r^2 - x^2})^2 dx - \pi \int_{-r}^{r} (R - \sqrt{r^2 - x^2})^2 dx$$
$$= 4\pi R \int_{-r}^{r} \sqrt{r^2 - x^2} dx = 2\pi^2 r^2 R.$$

即为 $V = 2\pi R \cdot \pi r^2$.

(以r为半径, $2\pi R$ 为高的圆柱体的体积).

注1: 若曲边梯形的曲边为参数方程

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, t \in [\alpha, \beta]$$

则该曲曲边梯形绕 x 轴旋转一周所围成立体的体积为:

$$V = \pi \int_{\alpha}^{\beta} \psi^{2}(t) | \varphi'(t) | dt$$

注2: 由极坐标曲线围成的平面图形:

$$D: 0 \le \alpha \le \theta \le \beta \le \pi, 0 \le r = r(\theta)$$

绕极轴旋转一周所成的立体的体积为:

$$V = \frac{2\pi}{3} \int_{\alpha}^{\beta} r^3(\theta) \sin \theta d\theta.$$

例6. 计算由椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围图形绕 x 轴旋转而

转而成的椭球体的体积.

解:方法1 利用直角坐标方程

$$y = \frac{b}{a} \sqrt{a^2 - x^2} \quad (-a \le x \le a)$$

则
$$V = 2\int_0^a \pi y^2 \, \mathrm{d}x$$

$$=2\pi \frac{b^2}{a^2} \int_0^a (a^2 - x^2) \, \mathrm{d}x$$

$$=2\pi \frac{b^2}{a^2} \left[a^2 x - \frac{1}{3} x^3 \right]_0^a = \frac{4}{3} \pi a b^2$$

(利用对称 性)

方法2 利用椭圆参数方程

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$

$$V = 2 \int_0^a \pi y^2 dx = 2\pi \int_0^{\frac{\pi}{2}} ab^2 \sin^3 t dt$$

$$= 2\pi ab^2 \cdot \frac{2}{3} \cdot 1$$

$$= \frac{4}{3}\pi ab^2$$

特别当
$$b=a$$
 时, 就得半径为 a 的球体的体积 $\frac{4}{3}\pi a^3$.

例7. 计算摆线
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (a > 0)$$
 的一拱与 $y = 0$

所围成的图形分别绕 x 轴, y 轴旋转而成的立体体积.

解:绕 x 轴旋转而成的体积为

$$V_x = \int_0^{2\pi a} \pi y^2 dx$$

= $\pi \int_0^{2\pi} a^2 (1 - \cos t)^2 \cdot a (1 - \cos t) dt$

利用对称性

$$= 2\pi a^{3} \int_{0}^{\pi} (1 - \cos t)^{3} dt = 16\pi a^{3} \int_{0}^{\pi} \sin^{6} \frac{t}{2} dt \quad (\diamondsuit u = \frac{t}{2})$$

$$= 32\pi a^{3} \int_{0}^{\frac{\pi}{2}} \sin^{6} u du = 32\pi a^{3} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$= 5\pi^{2} a^{3}$$

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (a > 0)$$

绕y轴旋转而成的体积为

$$V_{y} = \int_{0}^{2a} \pi x_{2}^{2}(y) dy - \int_{0}^{2a} \pi x_{1}^{2}(y) dy$$

$$= \pi \int_{0}^{\pi} a^{2} (t - \sin t)^{2} \cdot a \sin t dt$$
注意_

注意上下限!

$$= \pi \int_{2\pi}^{a} a^{2} (t - \sin t) \cdot a \sin t \, dt$$

$$-\pi \int_{0}^{\pi} a^{2} (t - \sin t)^{2} \cdot a \sin t \, dt$$

$$= -\pi a^{3} \int_{0}^{2\pi} (t - \sin t)^{2} \sin t \, dt$$

$$=6\pi^3a^3$$
 注

说明: V_v也可按柱壳法求出

柱面面积 $2\pi x \cdot y$

柱壳体积 2πxy·dx

$$V_y = 2\pi \int_0^{2\pi a} xy dx$$
$$= 2\pi \int_0^{2\pi} a(t - \sin t) \cdot a^2 (1 - \cos t)^2 dt$$

$$V_{y} = \cdots$$

$$= 2\pi \int_{0}^{2\pi} a(t - \sin t) \cdot a^{2} (1 - \cos t)^{2} dt$$

$$= 8\pi a^{3} \int_{0}^{2\pi} (t - \sin t) \sin^{4} \frac{t}{2} dt$$

$$\Rightarrow u = \frac{t}{2}$$

$$= 16\pi a^{3} \int_{0}^{\pi} (2u - \sin 2u) \sin^{4} u du$$

$$\Rightarrow v = u - \frac{\pi}{2}$$

$$= 16\pi a^{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2v + \pi + \sin 2v) \cos^{4} v dv = 6\pi^{3} a^{3}$$

$$\Rightarrow \sin 2v \cos^{4} v dv = 6\pi^{3} a^{3}$$

例8. 设 y = f(x) 在 $x \ge 0$ 时为连续的非负函数,且 f(0) = 0, V(t) 表示 y = f(x), x = t (> 0) 及 x 轴所围图 形绕直线 x = t 旋转一周所成旋转体体积,证明:

$$V''(t) = 2\pi f(t).$$

证: 利用柱壳法

$$dV = 2\pi (t - x) f(x) dx$$

则
$$V(t) = \int_0^t 2\pi (t - x) f(x) dx \qquad o$$

$$= 2\pi t \int_0^t f(x) dx - 2\pi \int_0^t x f(x) dx$$

$$V'(t) = 2\pi \int_0^t f(x) dx + 2\pi t f(t) - 2\pi t f(t)$$

故
$$V''(t) = 2\pi f(t)$$

例9. 求曲线 $y=3-|x^2-1|$ 与x 轴围成的封闭图形绕直线 y=3 旋转得的旋转体体积.

解:利用对称性,在第一象限

$$y = \begin{cases} x^2 + 2, & 0 \le x \le 1 \\ 4 - x^2, & 1 < x \le 2 \end{cases}$$

故旋转体体积为

$$V = \pi \cdot 3^2 \cdot 4 - 2 \int_0^1 \pi [3 - (x^2 + 2)]^2 dx$$
$$-2 \int_1^2 \pi [3 - (4 - x^2)]^2 dx$$
$$= 36\pi - 2\pi \int_0^2 (x^2 - 1)^2 dx = \frac{448}{15}\pi$$

5.3.4 平面曲线的弧长

1) 平面曲线弧长的定义

设平面曲线 C = AB, 作C 上的分割T:

$$A = P_0, P_1, P_2, \cdots P_{n-1}, P_n = B$$

用 $|P_{i-1}P_i|$ 表示连结 P_{i-1},P_i 的线段

$$(i = 1, 2, \dots, n).$$

记
$$||T|| = \max_{1 \le i \le n} |P_{i-1}P_i|, \quad s_T = \sum_{i=1}^n |P_{i-1}P_i|.$$

定义1 对于曲线C上的任意分割T,如果存在极限

$$\lim_{\|T\|\to 0} s_T = s,$$

则称C是可求长的,并称 s 为曲线C 的弧长.

2) 光滑曲线

定义2 设平面曲线C的参数方程为

$$x = x(t), y = y(t), t \in [\alpha, \beta],$$

若 x(t), y(t) 都在 $[\alpha, \beta]$ 连续可微, 且 x'(t), y'(t) 不同时为零, 则称C为光滑曲线.

(C为光滑曲线:C上任一点都存在切线.)

定理1 设曲线C由参数方程为

$$x = x(t), y = y(t), t \in [\alpha, \beta]$$

若C是光滑曲线,则C是可求长的,且弧长为

$$s = \int_{\alpha}^{\beta} \sqrt{x'^2(t) + y'^2(t)} dt.$$

证明: (略)

3) 弧微分

若把公式中的积分上限改为t,就得到曲线由端点 P_0 到动点P(x(t)),y(t)的弧长,即

$$s(t) = \int_{a}^{t} \sqrt{x'^{2}(\tau) + y'^{2}(\tau)} d\tau$$

由于被积函数是连续的, 因此,

$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$
$$ds = \sqrt{dx^2 + dy^2}$$

特别称 s(t) 的微分 ds 为弧微分.

注: 若C是光滑曲线,其方程为

1. 参数方程 $x = x(t), y = y(t), t \in [\alpha, \beta]$ 则弧长为

$$s = \int_{\alpha}^{\beta} \sqrt{x'^2(t) + y'^2(t)} dt.$$

2. 直角坐标方程 $y = f(x), x \in [a,b]$,

则其参数方程为 $x = x, y = f(x), x \in [a,b]$,

则弧长为
$$s = \int_a^b \sqrt{1 + f'^2(x)} dx.$$

3. 极坐标方程 $r = r(\theta), \theta \in [\alpha, \beta]$, 则其参数方程为

$$x = r(\theta)\cos\theta, y = r(\theta)\sin\theta, \theta \in [\alpha, \beta]$$

则弧长为
$$s = \int_{\alpha}^{\beta} \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$$
.

例1. 两根电线杆之间的电线,由于其本身的重量,下垂

成悬链线. 悬链线方程为

$$y = c \cosh \frac{x}{c} \quad (-b \le x \le b)$$

求这一段弧长.

解:
$$ds = \sqrt{1 + y'^2} dx$$

$$= \sqrt{1 + \sinh^2 \frac{x}{c}} dx = \cosh \frac{x}{c} dx$$

$$\therefore s = 2 \int_0^b \cosh \frac{x}{c} dx = 2c \left[\sinh \frac{x}{c} \right]_0^b$$

$$= 2c \sinh \frac{b}{c}$$

$$ch x = \frac{e^x + e^{-x}}{2}$$

$$sh x = \frac{e^x - e^{-x}}{2}$$

$$(ch x)' = sh x$$

$$(sh x)' = ch x$$

例2. 求连续曲线段
$$y = \int_{-\frac{\pi}{2}}^{x} \sqrt{\cos t} dt$$
 的弧长.

解:
$$\cos x \ge 0$$
, $\therefore -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

$$s = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 + y'^2} \, dx$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \sqrt{1 + (\sqrt{\cos x})^2} \, dx$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \sqrt{2} \cos \frac{x}{2} \, dx$$

$$= 2 \sqrt{2} \left[2 \sin \frac{x}{2} \right]_{0}^{\frac{\pi}{2}}$$

$$= 4$$

例3. 计算摆线
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (a > 0) \quad - 拱 (0 \le t \le 2\pi)$$
的弧长.

解:
$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= \sqrt{a^2 (1 - \cos t)^2 + a^2 \sin^2 t} dt$$

$$= a\sqrt{2(1 - \cos t)} dt$$

$$= 2a \sin \frac{t}{2} dt$$

$$\therefore s = \int_0^{2\pi} 2a \sin \frac{t}{2} dt = 2a \left[-2 \cos \frac{t}{2} \right]_0^{2\pi} = 8a$$

例4. 求阿基米德螺线 $r = a\theta$ (a > 0) 相应于 $0 \le \theta \le 2\pi$ 一段的弧长.

解:
$$ds = \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$$

$$= \sqrt{a^2 \theta^2 + a^2} d\theta$$

$$= a\sqrt{1 + \theta^2} d\theta$$

$$\therefore s = a \int_0^{2\pi} \sqrt{1 + \theta^2} \, d\theta \quad \text{(P305 \(\) \($$

例5. 求心形线 $r = a(1 + \cos \theta) (a > 0)$ 的周长.

解: 由公式得

$$s = \int_0^{2\pi} \sqrt{r^2 + r'^2} d\theta = 2 \int_0^{\pi} \sqrt{2a^2 (1 + \cos \theta)} d\theta = 4a.$$

5.3.5 旋转曲面的面积

设平面光滑曲线 $y = f(x) \in C^1[a,b]$, 且 $f(x) \ge 0$, 求它绕 x 轴旋转一周所得到的旋转曲面的面积.

取面积元素: 位于[x,x+dx]上的圆台的侧面积

$$dS = 2\pi y ds$$

$$= 2\pi f(x)\sqrt{1 + f'^2(x)} dx$$

积分后得旋转体的面积

$$S = 2\pi \int_a^b f(x) \sqrt{1 + f'^2(x)} \, dx$$

注意:侧面积元素

$$dS = 2\pi y ds \neq 2\pi y dx$$

因为 $2\pi y dx$ 不是薄片侧面积 $\triangle S$ 的的线性主部.

若光滑曲线由参数方程

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} (\alpha \le t \le \beta)$$

给出,则它绕*x* 轴旋转一周所得旋转体的侧面积为

$$S = \int_{\alpha}^{\beta} 2\pi \psi(t) \sqrt{\varphi'^2(t) + \psi'^2(t)} dt$$

例1. 计算圆 $x^2 + y^2 = R^2 \pm x \in [x_1, x_2] \subset [-R, R]$ 上绕

x 轴旋转一周所得的球台的侧面积S.

解:对曲线弧

$$y = \sqrt{R^2 - x^2}, \ x \in [x_1, x_2]$$

应用公式得

$$S = 2\pi \int_{x_1}^{x_2} \sqrt{R^2 - x^2} \cdot \sqrt{1 + \left(\frac{-x}{\sqrt{R^2 - x^2}}\right)^2} \, \mathrm{d}x$$

$$= 2\pi \int_{x_1}^{x_2} R \, \mathrm{d}x = 2\pi \, R(x_2 - x_1)$$

当球台高h=2R时,得球的表面积公式

$$S = 4\pi R^2$$

例2. 求由星形线 $x = a\cos^3 t$, $y = a\sin^3 t$ 绕 x 轴旋转一周所得的旋转体的表面积 S.

解: 利用对称性

$$S = 2 \cdot 2\pi \int_0^{\frac{\pi}{2}} a \sin^3 t$$

$$\cdot \sqrt{(-3a\cos^2t\sin t)^2 + (3a\sin^2t\cos t)^2} dt$$

$$= 12\pi a^2 \int_0^{\frac{\pi}{2}} \sin^4 t \cos t \, dt$$

$$=12\pi a^2 \left[\frac{1}{5}\sin^5 t\right] \frac{\pi}{2}$$

$$=\frac{12}{5}\pi a^2$$

内容小结

1. 平面图形的面积

上下限按顺时针方向确定

直角坐标方程

边界方程

参数方程
$$A = \int_{t_1}^{t_2} \psi(t) \cdot \varphi'(t) dt$$

极坐标方程
$$A = \frac{1}{2} \int_{\alpha}^{\beta} \varphi^{2}(\theta) d\theta$$

2. 平面曲线的弧长

弧微分:
$$ds = \sqrt{(dx)^2 + (dy)^2}$$

注意: 求弧长时积分上下限 必须上大下小

曲线方程

直角坐标方程

参数方程方程

极坐标方程
$$ds = \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$$

3. 已知平行截面面面积函数的立体体积

$$V = \int_{a}^{b} A(x) \, \mathrm{d}x$$

4. 旋转体的侧面积

y = y(x)绕 x 轴旋转, 侧面积元素为 d S = $2\pi y$ d s

(注意在不同坐标系下 ds 的表达式)

思考与练习

1.用定积分表示图中阴影部分的面积 A 及边界长 S.

提示: 交点为(1,-1),(9,3),以x为积分变量,则要分

两段积分,故以 y 为积分变量.

$$A = \int_{-1}^{3} [(2y+3) - y^{2}] dy = \frac{32}{3}$$

弧线段部分

直线段部分

$$s = \int_{-1}^{3} \sqrt{1 + 4y^2} \, dy + \int_{-1}^{3} \sqrt{1 + 2^2} \, dy$$

$$=3\sqrt{37}+5\sqrt{5}+\frac{1}{4}\left[\ln(6+\sqrt{37})+\ln(2+\sqrt{5})\right]$$

2. 试用定积分求圆 $x^2 + (y - b)^2 = R^2 (R < b)$ 绕 x 轴 旋转而成的环体体积 V 及表面积 S .

提示: 上半圆为
$$y = b \pm \sqrt{R^2 - x^2}$$
 $y' = -\frac{x}{\sqrt{R^2 - x^2}}$

求体积:

方法1 利用对称性

$$V = 2\int_0^R \pi \left[(b + \sqrt{R^2 - x^2})^2 - (b - \sqrt{R^2 - x^2})^2 \right] dx$$
$$= 2\pi^2 R^2 b$$

上
十
単
助

$$y = b \pm \sqrt{R^2 - x^2}$$
, $y' = \pm \frac{x}{\sqrt{R^2 - x^2}}$

方法2 用柱壳法

$$dV = 2\pi y \cdot 2x \cdot dy$$

$$V = 4\pi \int_{b-R}^{b+R} y \sqrt{R^2 - (y-b)^2} \, dy$$
$$= 2\pi^2 R^2 h$$

 $dV = \pi R^2 \cdot b d\theta$

说明: 上式可变形为

$$V = \pi R^2 \cdot 2\pi b = \int_0^{2\pi} \pi R^2 \cdot b \, d\theta$$

此式反映了环体微元的另一种取法(如图所示).

上
十
単
助

$$y = b \pm \sqrt{R^2 - x^2}$$
, $y' = \pm \frac{x}{\sqrt{R^2 - x^2}}$

求侧面积:

$$S = 2\int_{0}^{R} 2\pi (b + \sqrt{R^{2} - x^{2}}) \cdot \sqrt{1 + y'^{2}} dx$$

$$+ 2\int_{0}^{R} 2\pi (b - \sqrt{R^{2} - x^{2}}) \cdot \sqrt{1 + y'^{2}} dx$$

$$= 8\pi b \int_{0}^{R} \sqrt{1 + y'^{2}} dx = 4\pi^{2} bR$$

上式也可写成 $S = 2\pi R \cdot 2\pi b = \int_0^{2\pi} 2\pi R \cdot b \, d\theta$ 它也反映了环面微元的另一种取法.

补充例题 1. 求曲线 $|\ln x| + |\ln y| = 1$ 所围图形的面积.

$$y = ex$$

$$y = ex$$

$$\frac{1}{e}$$

$$0 \quad 1$$

$$xy = e$$

$$xy = \frac{1}{e}$$

$$xy = \frac{x}{e}$$

か在区域 $\begin{cases} e^{-1} \le y \le 1 \\ e^{-1} \le y \le 1 \end{cases}$ 中曲线为 $xy = \frac{1}{e}$, 同理其它.

面积为
$$S = \int_{\frac{1}{e}}^{1} (ex - \frac{1}{ex}) dx + \int_{1}^{e} (\frac{e}{x} - \frac{x}{e}) dx = e - \frac{1}{2e} - \frac{1}{2}$$

2. λ 为何值才能使 y = x(x-1) 与 x 轴围成的面积等

于y = x(x-1)与 $x = \lambda 及 x$ 轴围成的面积.

解: y = x(x-1) 与 x 轴所围面积

$$A_1 = \int_0^1 -x(x-1) dx = \frac{1}{6}$$

 $\lambda \geq 0$ 时,

$$A_2 = \int_1^{\lambda} x(x-1) dx = \frac{1}{3} \lambda^3 - \frac{1}{2} \lambda^2 + \frac{1}{6}$$

曲
$$A_1 = A_2$$
,得 $\lambda^2 (\frac{1}{3}\lambda - \frac{1}{2}) = 0$,故

$$\lambda_1 = \frac{3}{2}, \quad \lambda_2 = 0$$

由图形的对称性, $\lambda_3 = -\frac{1}{2}$, $\lambda_4 = 1$ 也合于所求.

3. 求曲线 $r_1 = a\cos\theta$ 与 $r_2 = a(\cos\theta + \sin\theta)$ 所围成图形的公共部分的面积.

解: $\Leftrightarrow r_2(\theta) = 0$,得 $\alpha = -\frac{\pi}{4}$

所围区域的面积为

$$S = \frac{1}{2} \int_{-\frac{\pi}{4}}^{0} \left[r_2(\theta) \right]^2 d\theta + \frac{1}{2} \cdot \pi \cdot \left(\frac{a}{2} \right)^2$$

$$= \frac{a^2}{2} \int_{-\frac{\pi}{4}}^{0} (\cos \theta + \sin \theta)^2 d\theta + \frac{\pi}{8} a^2$$

$$= \frac{a^2}{2} (\theta - \frac{\cos 2\theta}{2}) \begin{vmatrix} 0 \\ -\frac{\pi}{4} \end{vmatrix} + \frac{\pi}{8} a^2 = \frac{a^2(\pi - 1)}{4}$$

 $r_2 = a(\cos\theta + \sin\theta)$

4. 设平面图形 A 由 $x^2 + y^2 \le 2x$ 与 $y \ge x$ 所确定, 求图形 A 绕直线 x = 2 旋转一周所得旋转体的体积.

提示: 选 x 为积分变量.

旋转体的体积为

$$V = 2\pi \int_0^1 (2-x)(\sqrt{2x-x^2} - x) dx$$
$$= \frac{1}{2}\pi^2 - \frac{2}{3}\pi$$

若选 y 为积分变量,则

$$V = \pi \int_0^1 \left[2 - (1 - \sqrt{1 - y^2}) \right]^2 dy - \pi \int_0^1 (2 - y)^2 dy$$