DMath_U8_bf

V14 körper

8.3

Let $\langle G, *, \hat{\ }, e \rangle$ be a group, and let S be a set. Assume that $f: G \to S$ is a bijection, and consider

- the binary operation \star on S given by $s\star s\prime\stackrel{def}{=} f(f^{-1}(s)*f^{-1}(s\prime))$
- the unary operation \tilde{s} given by $\tilde{s} \stackrel{def}{=} \widehat{f(f^{-1}(s))}$.

Prove the following statement.

a) Axiom G1 (\star is associative) holds for $\langle S, \star, \tilde{\ }, f(e)
angle$

To prove that **G1** holds for $\langle S; \star, \tilde{\ }, f(e) \rangle$, we will show that the operation \star is associative.

Let $s_1,\ s_2,\ s_3\in S$

We need to show that $(s_1 \star s_2) \star s_3 = s_1 \star (s_2 \star s_3)$.

Since we have

$$(s_1 \star s_2) \star s_3 = f(f^{-1}(f(f^{-1}(s_1) * f^{-1}(s_2))) * f^{-1}(s_3)) = f((f^{-1}(s_1) * f^{-1}(s_2)) * f^{-1}(s_3))$$

and

$$s_1 \star (s_2 \star s_3) = f(f^{-1}(s_1) * f^{-1}(f(f^{-1}(s_2) * f^{-1}(s_3)))) = f(f^{-1}(s_1) * (f^{-1}(s_2) * f^{-1}(s_3)))$$

given by the definition of \star and the operation * is associative in G, we have

$$\begin{split} &((f^{-1}(s_1)*f^{-1}(s_2))*f^{-1}(s_3) = f^{-1}(s_1)*(f^{-1}(s_2)*f^{-1}(s_3)) \\ &f(f^{-1}(s_1)*(f^{-1}(s_2)*f^{-1}(s_3))) = f^{-1}(s_1)*(f^{-1}(s_2)*f^{-1}(s_3)) \end{split}$$

Thus,

$$(s_1\star s_2)\star s_3=s_1\star (s_2\star s_3)$$

8.4

c) Prove that $\langle \mathbb{Z}_{15}^*, \odot_{15} \rangle \simeq \langle \mathbb{Z}_{16}^*, \odot_{16} \rangle$.

For two groups $\langle G; *, \hat{\ }, e \rangle$ and $\langle H; *, \tilde{\ }, e' \rangle$, a function $\psi : G \to H$ is called a group homomorphism if, for all a and b, $\psi(a*b) = \psi(a) \star \psi(b)$

If ψ is a bijection from G to H, then it is called an isomorphism, and we say that G and H are isomorphic and write $G \simeq H$. (Definition 5.10.)

 $\langle \mathbb{Z}_{15}^*, \odot_{15} \rangle$

⊙15	1	2	4	8	7	11	13	14
1	1	2	4	8	7	11	13	14
2	2	4	8	1	14	7	11	13
4	4	8	1	2	13	14	7	11
8	8	1	2	4	11	13	14	7
7	7	14	13	11	4	2	1	8
11	11	7	14	13	2	1	8	4
13	13	11	7	14	1	8	4	2

⊙15	1	2	4	8	7	11	13	14
14	14	13	11	7	8	4	2	1

 $\langle \mathbb{Z}_{16}^*, \odot_{16} \rangle$

⊙16	1	3	9	11	5	7	13	15
1	1	3	9	11	5	7	13	15
3	3	9	11	1	15	5	7	13
9	9	11	1	3	13	15	5	7
11	11	1	3	9	7	13	15	5
5	5	15	13	7	9	3	1	11
7	7	5	15	13	3	1	11	9
13	13	7	5	15	1	11	9	3
15	15	13	7	5	11	9	3	1

We define a function $\psi:\mathbb{Z}_{15}^* o \mathbb{Z}_{16}^*$ as follows:

 $\psi(1)=1$

 $\psi(2)=3$

 $\psi(4)=9$

 $\psi(8)=11$

 $\psi(7) = 5$

 $\psi(11) = 7$

 $\psi(13)=13$

 $\psi(14)=15$

Obviously the function is bijective, as it maps each element onto one unique element (injective) and each element has an inverse (surjective).

Now we will prove that it is a group homomorphism on $\langle \mathbb{Z}_{15}^*, \odot_{15} \rangle$

To do this, we must prove, that for all $a,b\in\mathbb{Z}_{15}^*$

$$\psi(a\odot_{15}b)=\psi(a)\odot_{16}\psi(b)$$

We do this by case distinction:

 $\psi(1\odot_{15}1)=1=\psi(1)\odot_{16}\psi(1)$

 $\psi(1\odot_{15}2)=3=\psi(1)\odot_{16}\psi(2)$

 $\psi(1\odot_{15}4)=9=\psi(1)\odot_{16}\psi(4)$

 $\psi(1 \odot_{15} 7) = 5 = \psi(1) \odot_{16} \psi(7)$ $\psi(1 \odot_{15} 8) = 11 = \psi(1) \odot_{16} \psi(8)$

 $\psi(1\odot_{15}11) = 7 = \psi(1)\odot_{16}\psi(11)$

 $\psi(1 \odot_{15} 11) \equiv I \equiv \psi(1) \odot_{16} \psi(11)$

 $\psi(1\odot_{15}13)=13=\psi(1)\odot_{16}\psi(13)$

 $\psi(1\odot_{15}14)=15=\psi(1)\odot_{16}\psi(14)$

 $\psi(2\odot_{15}1)=3=\psi(2)\odot_{16}\psi(1)$

 $\psi(2\odot_{15}2)=9=\psi(2)\odot_{16}\psi(2)$

 $\psi(2\odot_{15}4)=11=\psi(2)\odot_{16}\psi(4)$

 $\psi(2\odot_{15}7)=15=\psi(2)\odot_{16}\psi(7)$

 $\psi(2\odot_{15}8)=1=\psi(2)\odot_{16}\psi(8)$

 $\psi(2\odot_{15}11)=5=\psi(2)\odot_{16}\psi(11)$

 $\psi(2\odot_{15}13) = 7 = \psi(2)\odot_{16}\psi(13)$

 $\psi(2\odot_{15}14)=13=\psi(2)\odot_{16}\psi(14)$

 $\psi(4\odot_{15}1)=9=\psi(4)\odot_{16}\psi(1)$

 $\psi(4\odot_{15}2)=11=\psi(4)\odot_{16}\psi(2)$

 $\psi(4\odot_{15}4)=1=\psi(4)\odot_{16}\psi(4)$

 $\psi(4\odot_{15}7) = 13 = \psi(4)\odot_{16}\psi(7)$

 $\psi(4\odot_{15}8)=3=\psi(4)\odot_{16}\psi(8)$

 $\psi(4\odot_{15}11)=15=\psi(4)\odot_{16}\psi(11)$

 $\psi(4 \odot_{15} 13) = 5 = \psi(4) \odot_{16} \psi(13)$ $\psi(4 \odot_{15} 14) = 7 = \psi(4) \odot_{16} \psi(14)$

 $\psi(7\odot_{15}1)=5=\psi(7)\odot_{16}\psi(1)$

 $\psi(7\odot_{15}2)=15=\psi(7)\odot_{16}\psi(2)$

 $\psi(7\odot_{15}4) = 13 = \psi(7)\odot_{16}\psi(4)$

 $\psi(7\odot_{15}7)=9=\psi(7)\odot_{16}\psi(7)$

```
\psi(7\odot_{15}8)=7=\psi(7)\odot_{16}\psi(8)
\psi(7\odot_{15}11)=3=\psi(7)\odot_{16}\psi(11)
\psi(7\odot_{15}13)=1=\psi(7)\odot_{16}\psi(13)
\psi(7\odot_{15}14)=11=\psi(7)\odot_{16}\psi(14)
\psi(8\odot_{15}1)=11=\psi(8)\odot_{16}\psi(1)
\psi(8\odot_{15}2)=1=\psi(8)\odot_{16}\psi(2)
\psi(8\odot_{15}4)=3=\psi(8)\odot_{16}\psi(4)
\psi(8\odot_{15}7)=7=\psi(8)\odot_{16}\psi(7)
\psi(8\odot_{15}8)=9=\psi(8)\odot_{16}\psi(8)
\psi(8\odot_{15}11)=13=\psi(8)\odot_{16}\psi(11)
\psi(8\odot_{15}13)=15=\psi(8)\odot_{16}\psi(13)
\psi(8\odot_{15}14)=5=\psi(8)\odot_{16}\psi(14)
\psi(11\odot_{15}1)=7=\psi(11)\odot_{16}\psi(1)
\psi(11\odot_{15}2)=5=\psi(11)\odot_{16}\psi(2)
\psi(11\odot_{15}4)=15=\psi(11)\odot_{16}\psi(4)
\psi(11\odot_{15}7)=3=\psi(11)\odot_{16}\psi(7)
\psi(11\odot_{15}8)=13=\psi(11)\odot_{16}\psi(8)
\psi(11\odot_{15}11)=1=\psi(11)\odot_{16}\psi(11)
\psi(11\odot_{15}13)=11=\psi(11)\odot_{16}\psi(13)
\psi(11\odot_{15}14)=9=\psi(11)\odot_{16}\psi(14)
\psi(13\odot_{15}1)=13=\psi(13)\odot_{16}\psi(1)
\psi(13\odot_{15}2)=7=\psi(13)\odot_{16}\psi(2)
\psi(13\odot_{15}4)=5=\psi(13)\odot_{16}\psi(4)
\psi(13\odot_{15}7)=1=\psi(13)\odot_{16}\psi(7)
\psi(13\odot_{15}8)=15=\psi(13)\odot_{16}\psi(8)
\psi(13\odot_{15}11)=11=\psi(13)\odot_{16}\psi(11)
\psi(13\odot_{15}13)=9=\psi(13)\odot_{16}\psi(13)
\psi(13\odot_{15}14)=3=\psi(13)\odot_{16}\psi(14)
\psi(14\odot_{15}1)=15=\psi(14)\odot_{16}\psi(1)
\psi(14\odot_{15}2)=13=\psi(14)\odot_{16}\psi(2)
\psi(14\odot_{15}4) = 7 = \psi(14)\odot_{16}\psi(4)
\psi(14\odot_{15}7)=11=\psi(14)\odot_{16}\psi(7)
\psi(14\odot_{15}8)=5=\psi(14)\odot_{16}\psi(8)
```

$$\begin{split} & \psi(14\odot_{15}11) = 9 = \psi(14)\odot_{16}\psi(11) \\ & \psi(14\odot_{15}13) = 3 = \psi(14)\odot_{16}\psi(13) \\ & \psi(14\odot_{15}14) = 1 = \psi(14)\odot_{16}\psi(14) \end{split}$$