Wprowadzenie do automatyki

Sprawozdanie z laboratorium nr 1

Temat zajęć: "Implementacja maszyny stanowej na sterowniku PLC"

Data laboratorium: 27.03.2024

Wykonawca: Kamil Borkowski 83374

Grupa: WCY22IY1S1

Prowadzący zajęcia: mgr. inż. Małgorzata Rudnicka

Schemat podłączenia sterownika PLC do urządzenia sterowanego:

Definicja stanów maszyny stanowej:

kod stan	x ₁ (t)	x ₂ (t)
1	0	0
2	0	1
3	1	0
4	1	1

Sposób kodowania stanów:

Stany są kodowane na dwóch bitach – x_1 oraz x_2 . Stan 1 jest stanem początkowym. Do stanu początkowego możemy wrócić z stanu końcowego, czyli stanu 4.

Tabela przejść stanów:

u(t)	x ₁ (t)	x ₂ (t)	x₁(t+1)	x ₂ (t+1)
0	0	0	0	0
1	0	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	0	1	0
1	1	0	1	1
0	1	1	0	0
1	1	1	1	1

Wyrażenia algebraiczne do obliczania wartości funkcji przejścia:

Dla x₁(t+1):

$u(t)$ $x_1(t) x_2(t)$	00	01	11	10
0	0	1	0	1
1	0	0	1	1

$$x_1(t+1) = u(t)x_1(t)+x_1(t)\overline{x}_2(t)+\overline{u(t)x}_1(t)x_2(t)$$

Dla x₂(t+1):

$u(t)$ $x_1(t) x_2(t)$	00	01	11	10
0	0	0	0	0
1	1	1	1	1

$$x_2(t+1) = u(t)$$

Tabela funkcji wyjścia:

x₁(t)	x ₂ (t)	Q
0	0	0
0	1	1
1	0	1
1	1	0

Wyrażenia algebraiczne do obliczania wartości funkcji wyjścia:

$x_1(t)$	0	1
0	0	1
1	1	0

$$Q = x_1(t)\overline{x}_2(t) + \overline{x}_1(t)x_2(t)$$

Diagram LD:

Diagram FBD:

Wyniki:

Dla programu LD:

Dla programu FBD:

Wnioski: Dla obu programów wyniki są poprawne – wciśnięcie przycisku powoduję zmianę ze stanu początkowego do stanu drugiego, co oznacza zapalenie się żarówki. Po puszczeniu przycisku w stanie drugim program przechodzi do stanu trzeciego, nie gasząc żarówki. Ponowne przyciśnięcie przycisku przenosi program do stanu czwartego i gasi żarówkę. Puszczenie przycisku w stanie czwartym powoduje przejście na stan początkowy.