

ME613 - Análise de Regressão

Parte 4

Samara F. Kiihl - IMECC - UNICAMP

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte04/parte04.html

3/22/2016 ME613 - Análise de Regressão

Transformações: relações não lineares

Transformações

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte04/parte04.html

ME613 - Análise de Regressão

Transformações: relações não lineares

- · Linearizar uma relação linear, em casos que a suposição de normalidade dos erros com variância constante é adequada .
- · Tentar encontrar transformação em X.
- · Avaliar os gráficos de resíduo para decidir qual a melhor transformação.

Exemplo: Treinamento e Performance

X: número de dias de treinamento recebido.

Y: performance nas vendas.

Days	Performance
0.5	42.5
0.5	50.6
1.0	68.5
1.0	80.7
1.5	89.0
1.5	99.6
2.0	105.3
2.0	111.8
2.5	112.3
2.5	125.7
	0.5 0.5 1.0 1.5 1.5 2.0 2.0

file: ///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte04/parte04-html. A part of the control of the

22/2016 ME613 - Análise de Regressão

Exemplo: Treinamento e Performance

Gráfico de resíduos: e_i versus \hat{Y}_i .

Exemplo: Treinamento e Performance

 $\hat{Y} = 34.945 + 35.77X$

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte04/parte04.html

2016 ME613 - Análise de Regressão

Exemplo: Treinamento e Performance

$$X' = \sqrt{X}$$

$$\hat{Y} = -10.33 + 83.45\sqrt{X}$$

,

Exemplo: Treinamento e Performance

Gráfico de resíduos: e_i versus \hat{Y}_i usando X' no modelo.

Transformações: não normalidade e variância não constante

file: ///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP. github.io/aulas/slides/parte04/parte04. html

2016 ME613 - Análise de Regressão

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte04/parte04/parte04 html

3/22/2016 ME613 - Análise de Regressão

Transformações: não normalidade e variância não constante

- · Tentar encontrar transformação em *Y*.
- · Pode ser combinada com uma transformação também em X.

Exemplo: Idade e nível de poliamina

X: Idade

Y: nível de poliamina no plasma

##		Idade	Poliamina
##	1	0	13.44
##	2	0	12.84
##	3	0	11.91
##	4	0	20.09
##	5	0	15.60
##	6	1	10.11
##	7	1	11.38
##	8	1	10.28
##	9	1	8.96
##	10	1	8.59
##	11	2	9.83
##	12	2	9.00
##	13	2	8.65
##	14	2	7.85
##	15	2	8.88

Exemplo: Idade e nível de poliamina

file: ///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP. github. io/aulas/slides/parte04/parte04.html and the control of the contr

3/22/2016 ME613 - Análise de Regressão

Exemplo: Idade e nível de poliamina

Gráfico de resíduos: e_i versus X_i .

Exemplo: Idade e nível de poliamina

Gráfico de resíduos: e_i versus \hat{Y}_i .

ME613 - Análise de Regressão

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte04/parte04.htm

Exemplo: Idade e nível de poliamina

$$Y' = \log_{10} Y$$

$$\hat{Y'} = 1.13 + -0.1X$$

Exemplo: Idade e nível de poliamina

Gráfico de resíduos: e_i versus $\hat{Y'}_i$ usando Y' no modelo.

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.jo/aulas/slides/parte04/parte04.htm

ME613 - Análise de Regressão

Algumas transformações em *Y*

- $\cdot \log_{e}(Y)$: para estabilizar a variância quando esta tende a crescer à medida que Y cresce.
- · \sqrt{Y} : estabilizar a variância quando esta é proporcional à média dos Y's.
- $\cdot \frac{1}{v}$: estabilizar a variância, minimizando o efeito de valores muito altos de Y.
- $\cdot Y^2$: estabilizar a variância quando esta tende a decrescer com a média de Y's.
- · arcsin \sqrt{Y} : estabilizar a variância quando os dados são proporções.
- etc...

Exemplo: Idade e nível de poliamina

Gráfico de resíduos: e_i versus X_i .

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.jo/aulas/slides/parte04/t

ME613 - Análise de Regressão

Transformações de Box-Cox

- · Muitas vezes é difícil determinar, através de gráficos, qual a melhor transformação a ser feita.
- · O procedimento de Box-Cox identifica automaticamente uma transformação:

$$Y' = Y^{\lambda}$$

em que λ é um parâmetro a ser determinado a partir dos dados.

· Modelo com dados transformados:

$$Y_i^{\lambda} = \beta_0 + \beta_1 X_i + \varepsilon_i$$

· O procedimento de Box-Cox utiliza o método de máxima verossimilhança para estimar λ .

3/22/2016 ME613 - Análise de Regressão

Leitura

- · Applied Linear Statistical Models: 3.8-3.11.
- · Weisberg Applied Linear Regression: Capítulo 8.
- · Faraway Linear Models with R: Capítulo 9.

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."