Chapitre VI : Géométrie affine

Chapitre VI

Géométrie affine

1 Définitions

1.1 Espaces affines

Définition

Soit \mathcal{E} un ensemble non vide associé à un \mathbb{R} -espace vectoriel V par une application $\varphi:\mathcal{E}\times\mathcal{E}\to V$ qui vérifie les axiomes :

- 1) Pour tous éléments A, B, C de $\mathcal{E}, \varphi(A, B) + \varphi(B, C) = \varphi(A, C)$.
- 2) Pour tout élément $A \in \mathcal{E}$ et tout vecteur $v \in V$, il existe un unique élément $B \in \mathcal{E}$ tel que $\varphi(A,B)=v$.

 \mathcal{E} est alors appelé **espace affine** sur \mathbb{R} associé à l'espace vectoriel V.

- \bullet Les éléments de ${\mathcal E}$ sont appelés **points**.
- Soient A et B deux points, $\varphi(A, B)$ est noté \overrightarrow{AB} .
- On appelle dimension de \mathcal{E} la dimension de l'espace vectoriel associé V.
- V est appelé direction de \mathcal{E} .

<u>Définitions</u>

On appelle **droite** un espace affine de dimension 1, **plan** un espace affine de dimension 2

Propriété

Pour tous points A, B et C:

- 1) $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles).
- 2) $\overrightarrow{AB} = 0 \Leftrightarrow A = B$.
- 3) $\overrightarrow{AB} = -\overrightarrow{BA}$.

Démonstration

- 1) Il s'agit d'une réécriture de l'axiome 1.
- 2) La relation de Chasles implique $\overrightarrow{AA} + \overrightarrow{AA} = \overrightarrow{AA}$ donc $\overrightarrow{AA} = 0$. D'après l'axiome 2, \overrightarrow{A} est donc l'unique point \overrightarrow{B} qui vérifie $\overrightarrow{AB} = 0$ (CQFD).
- 3) La relation de Chasles et la propriété précédente implique $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = 0$.

Propriété

Soit E un \mathbb{R} -espace vectoriel, E est un \mathbb{R} -espace affine associé à l'espace vectoriel E si on définit pour tout couple $(a,b) \in E \times E$, $\overrightarrow{ab} = \varphi(a,b) = b - a$.

Démonstration : on vérifie facilement les deux axiomes des espaces affines.

 $Exemple: \mathbb{R}^n$ est un \mathbb{R} -espace affine associé à l'espace vectoriel \mathbb{R}^n .

Soit $A = (x_1, \ldots, x_n)$ et $B = (y_1, \ldots, y_n)$ des points de \mathbb{R}^n , $\overrightarrow{AB} = (y_1 - x_1, \ldots, y_n - x_n)$.

1.2 Sous espaces affines

Dans cette section, \mathcal{E} un \mathbb{R} -espace affine associé à un \mathbb{R} -espace vectoriel V par l'application $\varphi: \mathcal{E} \times \mathcal{E} \to V$.

Définition

Un ensemble \mathcal{F} de points de \mathcal{E} est un **sous-espace affine** de \mathcal{E} si, il existe un sous espace vectoriel W de V tel que \mathcal{F} associé à W par l'application restreinte $\varphi_{/\mathcal{F}\times\mathcal{F}}^{/W}$ est un \mathbb{R} -espace affine.

Si A est un point de \mathcal{F} , alors $\mathcal{F} = \{M \in \mathcal{E}/\overrightarrow{AM} \in W\}$, on dit que \mathcal{F} est le sous espace affine passant par A et de direction W.

Démonstration : supposons que \mathcal{F} est un sous-espace affine de \mathcal{E} et $A \in \mathcal{F}$, montrons que $\mathcal{F} = \{M \in \mathcal{E}/\overrightarrow{AM} \in W\}$

Soit $B \in \mathcal{F}$, d'après la définition d'un sous-espace affine, $\overrightarrow{AB} = \varphi(A, B) \in W$ donc $B \in \{M \in \mathcal{E}/\overrightarrow{AM} \in W\}$.

Soit $B \in \{M \in \mathcal{E}/\overrightarrow{AM} \in W\}$, d'après le deuxième axiome dans \mathcal{F} appliqué à $A \in \mathcal{F}$ et $\overrightarrow{AB} \in W$, il existe $M \in \mathcal{F}$ tel que $\overrightarrow{AM} = \varphi(A, M) = \overrightarrow{AB}$. Dans \mathcal{E} , on a $\overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{AM} = \overrightarrow{BA} + \overrightarrow{AB} = 0$ donc B = M et $B \in \mathcal{F}$.

Théorème

Un ensemble de points \mathcal{F} est un sous-espaces affine de \mathcal{E} si et seulement si :

- il contient au moins un point A.
- l'ensemble $\{AM/M \in \mathcal{F}\}$ est un sous espace vectoriel de V.

 $\{\overrightarrow{AM}/M \in \mathcal{F}\}$ est alors la direction de \mathcal{F} .

 $D\acute{e}monstration$: pour vérifier les axiomes, il suffit de montrer que φ peut être restreinte au départ à \mathcal{F}^2 et à l'arrivée à $W = \{\overrightarrow{AM}/M \in \mathcal{F}\}$. Or pour tous points B et C de \mathcal{F} , $\overrightarrow{BC} = -\overrightarrow{AB} + \overrightarrow{AC} \in W$ car $\overrightarrow{AB} \in W$, $\overrightarrow{AC} \in W$ et W est un sous espace vectoriel.

Exemple : l'ensemble des solutions d'un système linéaire à p inconnues est un sous espaces affines de \mathbb{R}^p .

Théorème : intersection de sous espaces affines

Soient \mathcal{F} et \mathcal{F}' des sous-espaces affines de directions W et W', si $\mathcal{F} \cap \mathcal{F}'$ n'est pas vide (c.a.d. \mathcal{F} et \mathcal{F}' sécants), alors $\mathcal{F} \cap \mathcal{F}'$ est un sous espace affine de direction $W \cap W'$.

 $Remarque : si \mathcal{F} \cap \mathcal{F}' = \emptyset$, l'intersection n'est pas un sous-espace affine.

 $D\acute{e}monstration: Si \mathcal{F} \cap \mathcal{F}'$ contient au moins un point A, on a $\mathcal{F} = \{M \in \mathcal{E}/\overrightarrow{AM} \in W\}$ et $\mathcal{F}' = \{M \in \mathcal{E}/\overrightarrow{AM} \in W'\}$. Il suit $\mathcal{F} \cap \mathcal{F}' = \{M \in \mathcal{E}/\overrightarrow{AM} \in W \cap W'\}$. Il s'agit du sous espace affine de direction $W \cap W'$ passant par A.

1.3 Sous-espaces affines parallèles

Définition

On dit que des sous espaces affines \mathcal{F} et \mathcal{F}' de \mathcal{E} sont parallèles s'ils ont la même direction. On note $\mathcal{F} \parallel \mathcal{F}'$.

Théorème : intersection de sous espaces parallèles

Soient \mathcal{F} et \mathcal{F}' des sous-espaces affines parallèles, ou bien $\mathcal{F} = \mathcal{F}'$, ou bien $\mathcal{F} \cap \mathcal{F}' = \emptyset$.

Démonstration Supposons que $\mathcal{F} \parallel \mathcal{F}'$ et $\mathcal{F} \cap \mathcal{F}' \neq \emptyset$. Il existe donc un point $A \in \mathcal{F} \cap \mathcal{F}'$. On note W la direction commune de \mathcal{F} et \mathcal{F}' . $\mathcal{F} = \{M \in \mathcal{E}/\overrightarrow{AM} \in W\} = \mathcal{F}'$ (CQFD).

1.4 Repère cartésien

Définition

Soit \mathcal{E} un espace affine de dimension n et de direction V, O un point de \mathcal{E} et (e_1, \ldots, e_n) une base de V, (O, e_1, \ldots, e_n) est appelé repère cartésien de \mathcal{E} .

Remarque: pour une droite, on dit que e_1 est un vecteur directeur.

Définition : coordonnées cartésiennes

Soit (O, e_1, \ldots, e_n) est un repère cartésien de \mathcal{E} , pour tout point M, il existe un unique n-uplet (x_1, \ldots, x_n) tel que $\overrightarrow{OM} = x_1e_1 + \cdots + x_ne_n$. (x_1, \ldots, x_n) sont appelées coordonnées cartésiennes du point M dans le repère (O, e_1, \ldots, e_n) .

 $D\acute{e}monstration: \overrightarrow{OM} \in V$ qui admet pour base (e_1, \ldots, e_n) , d'où le résultat.

2 Plan affine \mathbb{R}^2

2.1 Sous-espaces affines de \mathbb{R}^2

Propriété

Les sous espaces de \mathbb{R}^2 sont :

- les espaces de dimension 0, c'est à dire les singletons A avec $A \in \mathbb{R}^2$.
- les espaces de dimension 1, c'est à dire les droites de \mathbb{R}^2 .
- le plan \mathbb{R}^2 lui-même de dimension 2.

2.2 Équation paramétrique d'une droite de \mathbb{R}^2

Propriété

Toute droite de \mathbb{R}^2 admet une équation paramétrique de la forme $\begin{cases} x = x_a + \lambda x_u \\ y = y_a + \lambda y_u \end{cases}$ de paramètre $\lambda \in \mathbb{R}$ et où $(x_u, y_u) \neq (0, 0)$.

Inversement, toute partie de \mathbb{R}^2 ayant une telle équation paramétrique est une droite de vecteur directeur $u = (x_u, y_u)$ passant par $A = (x_a, y_a)$.

 $D\'{e}monstration$: Ce résultat se déduit de l'équivalence :

$$\exists \lambda \in \mathbb{R}, \begin{cases} x = x_a + \lambda x_u \\ y = y_a + \lambda y_u \end{cases} \Leftrightarrow \overrightarrow{AM} \in \langle u \rangle \text{ où } M = (x, y), A = (x_a, y_a) \text{ et } u = (x_u, y_u).$$

2.3 Équation d'une droite de \mathbb{R}^2

Propriété

Toute droite de \mathbb{R}^2 admet une équation de la forme ax + by + c = 0 avec $(a, b) \neq (0, 0)$. Inversement, toute partie de \mathbb{R}^2 admettant une telle équation est une droite de vecteur directeur u = (-b, a) passant par $A = (\frac{-c}{a}, 0)$ si a est non nul, $A = (0, \frac{-c}{b})$ sinon.

Démonstration : Soit \mathcal{D} une droite affine de \mathbb{R}^2 . Soit $A = (x_a, y_a)$ un point de \mathcal{D} et $u = (x_u, y_u)$ un vecteur directeur.

 $M = (x, y) \in \mathcal{D}$ si et seulement si \overline{AM} est colinéaire à u, c'est-à-dire $(x - x_a, y - y_a)$ est proportionnel (x_u, y_u) , qui équivaut, d'après les produits en croix à : $y_u(x-x_a) = x_u(y-y_a)$ ce qui s'écrit $y_ux-x_uy-y_ux_a+x_uy_a=0$. Comme $(x_u,y_u)\neq (0,0)$, on a bien une équation de la forme attendue.

Inversement, soit $(a,b) \neq (0,0)$ et \mathcal{F} la partie d'équation ax + by + c = 0 (1). Supposons $a \neq 0$, (x,y) est solution de (1) si et seulement si il existe λ tel que $\begin{cases} x = \frac{-c - b\lambda}{a} \\ y = \lambda \end{cases}$. Il s'agit

de l'équation paramétrique de la droite passant par $A = (\frac{-c}{a}, 0)$ et de vecteur directeur $(\frac{-b}{a}, 1)$ colinéaire à $u = (-b, a) \neq 0$.

Si a=0, nécessairement $b\neq 0$, par le même raisonnement on en déduit que $(x,y)\in \mathcal{F}$ si et seulement si il existe $\lambda\in$ tel que $(x,y)=(0,\frac{-c}{b})+\lambda(1,\frac{-a}{b})$. \mathcal{F} est donc la droite affine passant par $A=(0,\frac{-c}{b})$ et de vecteur directeur u=(-b,a).

Théorème : équations de droites parallèles

Soit \mathcal{D} et \mathcal{D}' deux droites affines de \mathbb{R}^2 d'équations ax + by + c = 0 et a'x + b'y + c' = 0. $\mathcal{D} \parallel \mathcal{D}' \Leftrightarrow ab' - a'b = 0$.

Démonstration : \mathcal{D} et \mathcal{D}' ont pour vecteur directeur respectivement u = (-b, a) et u' = (-b', a'). $\mathcal{D} \parallel \mathcal{D}'$ si et seulement si u et u' sont colinéaires, c.a.d. (-b, a) et (-b', a') sont proportionnels, c.a.d. -ba' = -ab' (produit en croix), qui s'écrit aussi ab' - a'b = 0.

3 Espace affine \mathbb{R}^3

3.1 Sous-espaces affines de \mathbb{R}^3

Propriété

Les sous espaces de \mathbb{R}^3 sont :

- les espaces de dimension 0, c'est à dire les singletons A avec $A \in \mathbb{R}^3$.
- les espaces de dimension 1, c'est à dire les droites de \mathbb{R}^3 .
- les espaces de dimension 2, c'est à dire les plans de \mathbb{R}^3 .
- l'espace \mathbb{R}^3 lui-même de dimension 3.

3.2 Plans de \mathbb{R}^3

Théorème

Deux plans de \mathbb{R}^3 non parallèles ont pour intersection une droite.

Démonstration

Soient \mathcal{P} et \mathcal{P}' des plans non parallèles. Leurs directions P et P' sont donc des sousespaces vectoriels de \mathbb{R}^3 , de dimension 2, tels que $P \neq P'$.

Il nous faut vérifier que \mathcal{P} et \mathcal{P}' sont sécants et que $P \cap P'$ est une droite vectorielle. On sait que (1): $\dim(P + P') = \dim P + \dim P' - \dim(P \cap P')$.

Puisque P+P' est un sous-espace vectoriel de \mathbb{R}^3 , $\dim(P+P')\leqslant 3$ donc (1) implique $\dim(P\cap P')=2+2-\dim(P+P')\geqslant 4-3=1$. De plus, $P\cap P'$ n'est pas de dimension 2 (sinon on aurait $P\cap P'=P$ donc P=P') donc $\dim(P\cap P')=1$. $P\cap P'$ est donc une droite vectorielle.

De (1) et $\dim(P \cap P') = 1$, il suit que $\dim(P + P') = 2 + 2 - 1 = 3$ et donc $P + P' = \mathbb{R}^3$. On peut déduire de $P + P' = \mathbb{R}^3$ que \mathcal{P} et \mathcal{P}' sont sécants. En effet, soit $A \in \mathcal{P}$ et $A' \in \mathcal{P}'$, il existe $u \in P$ et $u' \in P'$ tel que $\overrightarrow{AA'} = u + u'$. Soit M le point défini par $\overrightarrow{AM} = u$, $M \in \mathcal{P}$ car $u \in P$. De plus $\overrightarrow{A'M} = \overrightarrow{A'A} + \overrightarrow{AM} = -u - u' + u = -u' \in P'$ donc $M \in \mathcal{P}'$. On en déduit que $M \in \mathcal{P} \cap \mathcal{P}'$, c.a.d. \mathcal{P} et \mathcal{P}' sont sécants. (CQFD)

Propriété : équation paramétrique d'un plan de \mathbb{R}^3

Tout plan de \mathbb{R}^3 admet une équation paramétrique de la forme $\begin{cases} x = x_a + \lambda x_u + \mu x_v \\ y = y_a + \lambda y_u + \mu y_v \\ z = z_a + \lambda z_u + \mu z_v \end{cases}$

de paramètres $\lambda, \mu \in \mathbb{R}$ et où $u = (x_u, y_u, z_u)$ et $v = (x_v, y_v, z_v)$ sont non colinéaires. Inversement, toute partie de \mathbb{R}^3 ayant une telle équation paramétrique est un plan passant par $A = (x_a, y_a, z_a)$ de direction $\langle u, v \rangle$.

Démonstration : même méthode que pour les droites.

Propriété : équation d'un plan de \mathbb{R}^3

Tout plan de \mathbb{R}^3 admet une équation de la forme ax+by+cz+d=0 avec $(a,b,c)\neq (0,0,0)$. Inversement, toute partie de \mathbb{R}^3 admettant une telle équation est un plan dont la direction a pour équation ax+by+cz=0.

 $D\acute{e}monstration$: Soit \mathcal{P} un plan affine de \mathbb{R}^3 , $A=(x_a,y_a,z_a)\in\mathcal{P}$ et $\langle u,v\rangle$ sa direction avec $u=(x_u,y_u,z_u)$ et $v=(x_v,y_v,z_v)$. $M=(x,y,z)\in\mathcal{P}\Leftrightarrow\overrightarrow{AM}\in\langle u,v\rangle\Leftrightarrow(\overrightarrow{AM},u,v)$ est liée.

En utilisant les déterminants, ceci équivaut à

$$\begin{vmatrix} x - x_a & x_u & x_v \\ y - y_a & y_u & y_v \\ z - z_a & z_u & z_v \end{vmatrix} = 0$$

c.a.d. $(x - x_a)(y_u z_v - y_v z_u) - (y - y_a)(x_u z_v - x_v z_u) + (z - z_a)(x_u y_v - x_v y_u) = 0$. (I) En posant $a = (y_u z_v - y_v z_u)$, $b = -x_u z_v + x_v z_u$, $c = x_u y_v - x_v y_u$, et $d = -x_a(y_u z_v - y_v z_u) + y_a(x_u z_v - x_v z_u) - z_a(x_u y_v - x_v y_u)$ (I) s'écrit ax + by + cz + d = 0.

De plus, si on avait (a, b, c) = (0, 0, 0), u et v seraient colinéaires (produits en croix) ce qui est contradictoire avec l'hypothèse \mathcal{P} est un plan.

Conclusion : \mathcal{P} admet une équation de la forme ax+by+cz+d=0 avec $(a,b,c)\neq(0,0,0)$.

Inversement, soit \mathcal{F} une partie qui admet une équation de la forme ax + by + cz + d = 0 avec a, b et c non tous nuls.

Supposons par exemple que $a \neq 0$, alors le point $A = (\frac{-d}{a}, 0, 0) \in \mathcal{F}$.

Soit M = (x, y, z) un point de \mathbb{R}^3 ,

 $M \in \mathcal{F} \Leftrightarrow ax + by + cz + d = 0 \Leftrightarrow a(x - \frac{d}{a}) + by + cz = 0 \Leftrightarrow \overrightarrow{AM} \in P$ où P est le sous

espace vectoriel de \mathbb{R}^3 d'équation ax + by + cz = 0.

 \mathcal{F} est donc le sous espace affine passant par A et de direction P.

L'expression paramétrique des solutions de l'équation ax + by + cz = 0 est $(x, y, z) = \lambda(-\frac{b}{a}, 1, 0) + \mu(-\frac{c}{a}, 0, 1)$ avec les paramètres $\lambda, \mu \in \mathbb{R}$.

En posant $u = (-\frac{b}{a}, 1, 0)$ et $v = (-\frac{c}{a}, 0, 1)$, on en déduit que (u, v) est une famille génératrice de P, or u et v ne sont pas colinéaires (composantes non proportionnelles) donc (u, v) est une base de P. P est bien un plan vectoriel.

Conclusion: L'ensemble d'équation ax + by + cz + d = 0 avec $(a, b, c) \neq (0, 0, 0)$ est un plan affine dont la direction a pour équation ax + by + cz = 0.

Théorème : équations de plans parallèles

Soit \mathcal{P} et \mathcal{P}' des plans affines de \mathbb{R}^3 d'équations ax + by + cz + d = 0 et a'x + b'y + c'z + d' = 0. $\mathcal{P} \parallel \mathcal{P}' \Leftrightarrow (a, b, c)$ et (a', b', c') sont proportionnels.

$D\'{e}monstration:$

Les directions de \mathcal{P} et \mathcal{P}' ont pour équations ax + by + cz = 0 et a'x + b'y + c'z = 0. Donc $\mathcal{P} \parallel \mathcal{P}'$ si et seulement si ax + by + cz = 0 et a'x + b'y + c'z = 0 déterminent le même sous espace vectoriel de \mathbb{R}^3 , c'est-à-dire si les coefficients de ces deux équations sont proportionnels. (CQFD)

3.3 Droites de \mathbb{R}^3

Propriété : équation paramétrique d'une droite de \mathbb{R}^3

Toute droite de \mathbb{R}^3 admet une équation paramétrique de la forme $\begin{cases} x = x_a + \lambda x_u \\ y = y_a + \lambda y_u \\ z = z_a + \lambda z_u \end{cases}$ paramètre $\lambda \in \mathbb{R}$ et où $(x_u, y_u, z_u) \neq (0, 0, 0)$.

Inversement, toute partie de \mathbb{R}^3 ayant une telle équation paramétrique est une droite de vecteur directeur $u = (x_u, y_u, z_u)$ passant par $A = (x_a, y_a, z_a)$.

 $D\acute{e}monstration$: identique à celle dans \mathbb{R}^2 .

Propriété : équation d'une droite de \mathbb{R}^3

Toute droite de \mathbb{R}^3 admet une équation de la forme $\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$ avec (a, b, c) et (a', b', c') non proportionnels.

Inversement, toute partie de \mathbb{R}^3 admettant une telle équation est une droite.

 $D\acute{e}monstration$: Soit \mathcal{D} une droite affine de \mathbb{R}^3 . Soit $A=(x_a,y_a,z_a)$ un point de \mathcal{D} et $u=(x_u,y_u,z_u)$ un vecteur directeur. $(x_u,y_u,z_u)\neq(0,0,0)$, supposons par exemple que

Chapitre VI : Géométrie affine

$$\begin{aligned} x_u &\neq 0. \\ M &= (x,y,z) \in \mathcal{D} \text{ si et seulement si } \overrightarrow{AM} \text{ est colinéaire à } u, \\ \text{c'est-à-dire } (x-x_a,y-y_a,z-z_a) \text{ est proportionnel } (x_u,y_u,z_u), \\ \text{qui équivaut, d'après les produits en croix à : } \begin{cases} y_u(x-x_a) = x_u(y-y_a) \\ z_u(x-x_a) = x_u(z-z_a) \end{cases} \\ \text{c.a.d. } \begin{cases} y_ux-x_uy+x_uy_a-y_ux_a=0 \\ z_ux-x_uz+x_uz_a-z_ux_a=0 \end{cases} \end{aligned}$$

Comme $x_u \neq 0$, $(y_u, -x_u, 0)$ $(z_u, 0, -x_u)$ ne sont pas proportionnels, on a bien une équation de la forme attendue.

Inversement, si une partie \mathcal{F} admet une telle équation, $\mathcal{F} = \mathcal{P} \cap \mathcal{P}'$ où \mathcal{P} et \mathcal{P}' sont les plans d'équations ax + by + cz + d = 0 et a'x + b'y + c'z + d' = 0. Comme (a, b, c) et (a', b', c') ne sont pas proportionnels, \mathcal{P} et \mathcal{P}' ne sont pas parallèles donc leur intersection \mathcal{F} est une droite.