f 2 entraînement

Exercice 16. Étudier les limites de la fonction $f: x \mapsto \frac{1}{x-|x|}$ puis donner l'allure de son graphe. Indication: on remarquera utilement que f est 1-périodique, puis on restreindra l'étude de f à un intervalle bien choisi.

- **Exercice 17.** Démontrer sans avoir recours à la caractérisation séquentielle de la limite que si $a \in \mathbb{R} \cup \{\pm \infty\}$ et si f et g sont deux fonctions définies sur un voisinage de a admettant $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ pour limites respectives en a, alors $f(x)g(x) \xrightarrow[x \to a]{} \ell\ell'$.
- **Exercice 18.** Dire si les courbes représentatives des fonctions suivantes admettent des asymptotes :

(i)
$$f: r \mapsto \sqrt[3]{r^4 + r^2 + r + 1}$$

(ii)
$$g: x \mapsto \sqrt{x^2 - 2x\sqrt{x}}$$

(i)
$$f: x \mapsto \sqrt[3]{x^4 + x^2 + x + 1}$$
 (ii) $g: x \mapsto \sqrt{x^2 - 2x\sqrt{x}}$ (iii) $h: x \mapsto \cos(x)\sin\left(\frac{1}{x}\right)$

Exercice 19. Déterminer les limites suivantes :

(i)
$$\lim_{x\to 0} \cos(\tan(\sin(x)))$$

$$(iv) \lim_{x \to 0} \arctan\left(\frac{1}{\sin(x^2)}\right) \qquad (vii) \lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}$$

$$(v) \lim_{x \to \pi} \frac{\sin(x)}{\pi - x} \qquad (viii) \lim_{x \to 0^+} \frac{\sin(\sin(x))}{x^2}$$

$$(vii) \lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}$$

$$(ii) \lim_{x \to 1^{-}} \tan^{3} \left(\frac{\pi}{2}x\right)$$

$$(v) \lim_{x \to \pi} \frac{\sin(x)}{\pi - x}$$

$$(viii)$$
 $\lim_{x\to 0+} \frac{\sin(\sin(x))}{x^2}$

(iii)
$$\lim_{x \to +\infty} \frac{\arctan(x)}{\arctan(x^2)}$$

$$(vi) \lim_{x \to \frac{\pi}{2}} \frac{\cos(x)}{\pi - 2x}$$

$$(ix)$$
 $\lim_{x \to +\infty} x^3 \tan^2\left(\frac{1}{x}\right)$

Exercice 20. Déterminer les limites suivantes :

(i)
$$\lim_{x \to +\infty} \left| \frac{1}{\sqrt{x}} \right|$$

(ii)
$$\lim_{x \to +\infty} \tan(\arctan(x))$$

(ii)
$$\lim_{x \to +\infty} \tan(\arctan(x))$$
 (iii) $\lim_{x \to -\infty} \left| \frac{1}{\sqrt[3]{x}} + \frac{x^2 + 1}{x^4 - 5} \right|$

Exercice 21. Le but de cet exercice est de démontrer la relation

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\sin(x)}{x} = 1.$$

Soit $x \in [0, \frac{\pi}{2}]$. On note \mathcal{D} le disque délimité par le cercle trigonométrique, on place les points O=(0,0), A=(1,0) et $M=(\cos(x),\sin(x))$ du plan et on considère la portion \mathcal{S} de \mathcal{D} délimitée par les segments [OA] et [OM] ainsi que par l'arc du cercle trigonométrique allant de A à M dans le sens positif (voir figure page suivante).

- 1. (a) Rappeler l'aire de \mathcal{D} , puis calculer celle de \mathcal{S} .
 - (b) Représenter le triangle de sommets O, $A' = (\cos(x), 0)$ et M puis calculer son aire.
 - (c) Représenter le triangle de sommets O, A et $M' = (1, \tan(x))$ puis calculer son aire.
 - (d) En comparant les trois aires déterminées dans les questions précédentes, établir la relation

$$\cos(x) \leqslant \frac{\sin(x)}{x} \leqslant \frac{1}{\cos(x)}.$$

■ Exercice 22. Montrer que la fonction définie par

$$\forall x \geqslant 0, \quad f(x) = \begin{cases} x \cos\left(\frac{1}{\sqrt{x}}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

est continue sur \mathbb{R}_+ .

 \blacksquare Exercice 23. Montrer que la fonction f définie par

$$\forall x \in]0,1[, \quad f(x) = \frac{\sin(\pi x)}{x(1-x)}$$

admet un prolongement par continuité sur [0,1] (c'est-à-dire en 0 et en 1).

Exercice 24. On considère la fonction

$$f: x \longmapsto \frac{1+x^5}{1+x}.$$

- 1. Donner l'ensemble de définition de f.
- 2. Montrer que f admet un prolongement par continuité à l'ensemble $\mathbb R$ tout entier.

Exercice 25. Montrer que la fonction indicatrice de \mathbb{Q} dans \mathbb{R} , définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ sinon,} \end{cases}$$

est discontinue en tout point de \mathbb{R} .

- **Exercice 26.** Soit h une fonction définie sur \mathbb{R}_+ , continue et strictement croissante, telle que h(0) = 0. Montrer que l'équation $\sqrt{x+1} \sqrt{x} = h^2(x)$ admet une unique solution sur \mathbb{R}_+ .
- **Exercice 27** (Minimalité des hypothèses du théorème de la bijection). Soit I un intervalle de \mathbb{R} et soit $f: I \to \mathbb{R}$ une application injective et continue. On souhaite montrer que f est strictement monotone.
 - 1. Montrer que pour tous $x, y \in I$, la fonction $\Phi : \lambda \longmapsto \lambda x + (1 \lambda)y$ est une fonction continue sur l'intervalle [0, 1] et vérifie $\Phi(0) = y$ et $\Phi(1) = x$.

2. Supposons qu'il existe $a, b, c, d \in I$ tels que a < b et f(a) < f(b) ainsi que c < d et f(c) > f(d). Montrer à l'aide du théorème des valeurs intermédiaires que la fonction

$$\varphi: \lambda \longmapsto f(\lambda a + (1-\lambda)c) - f(\lambda b + (1-\lambda)d)$$

s'annule sur]0,1[, puis arriver à une contradiction et conclure.

- **Exercice 28.** Montrer qu'une fonction continue par morceaux sur un segment y est bornée. Atteint-elle nécessairement sa borne inférieure et sa borne supérieure sur ce segment?
- **Exercice 29.** Montrer qu'une fonction continue sur \mathbb{R} vérifiant $\lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = +\infty$ admet un minimum sur \mathbb{R} .