Advanced Machine Learning from Theory to Practice Lecture 5

Model Selection, Cross Validation and Penalization

F. d'Alche-Buc and E. Le Pennec

Fall 2015

Outline

- Supervised Learning
- 2 Models, Complexity and Selection
- Generalized Linear Model
- Structural Risk Minimization
- Practical Minimization
- 6 Theoretical Insights

Supervised Learning Outline

- Supervised Learning
- 2 Models, Complexity and Selection
- Generalized Linear Model
- 4 Structural Risk Minimization
- 5 Practical Minimization
- 6 Theoretical Insights

Supervised Learning Supervised Learning

Experience, Task and Performance measure

- Training data : $\mathcal{D} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- Predictor : $f: \mathcal{X} \to \mathcal{Y}$ measurable
- Cost/Loss function : $\ell(Y, f(X))$ measure how well f(X) "predicts" Y
- Risk:

$$\mathcal{R}(f) = \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \mathbb{E}_{X}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y, f(\mathbf{X}))\right]\right]$$

• Often $\ell(Y, f(X)) = |f(X) - Y|^2$ or $\ell(Y, f(X)) = \mathbf{1}_{Y \neq f(X)}$

Goal

• Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

Supervised Learning Best Solution

ullet The best solution f^{\star} (which is independent of \mathcal{D}_n) is

$$f^{\star} = \arg\min_{f \in \mathcal{F}} R(f) = \arg\min_{f \in \mathcal{F}} \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \arg\min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{X}}\left[\mathbb{E}_{Y \mid \mathbf{X}}\left[\ell(Y, f(\mathbf{x}))\right]\right]$$

Bayes Classifier (explicit solution)

• In binary classification with 0-1 loss :

$$f^{\star}(\mathbf{X}) = \begin{cases} +1 & \text{if} \quad \mathbb{P}\left\{Y = +1 | \mathbf{X}\right\} \ge \mathbb{P}\left\{Y = -1 | \mathbf{X}\right\} \\ \Leftrightarrow \mathbb{P}\left\{Y = +1 | \mathbf{X}\right\} \ge 1/2 \\ -1 & \text{otherwise} \end{cases}$$

In regression with the quadratic loss

$$f^{\star}(\mathbf{X}) = \mathbb{E}\left[Y|\mathbf{X}\right]$$

Issue : Explicit solution requires to know $\mathbb{E}[Y|X]$ for all values of X!

Machine Learning

• Learn a rule to construct a classifier $\widehat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\widehat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

Canonical example: Empirical Risk Minimizer

- One restricts f to a subset of functions $S = \{f_{\theta}, \theta \in \Theta\}$
- One replaces the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(\mathbf{X}_i))$$

- Examples :
 - Linear regression
 - Linear discrimination with

$$\mathcal{S} = \{ \mathbf{x} \mapsto \operatorname{sign} \{ \beta^T \mathbf{x} + \beta_0 \} / \beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R} \}$$

Supervised Learning Bias-Variance Dilemna

- General setting :
 - $\mathcal{F} = \{\text{measurable fonctions } \mathcal{X} \to \mathcal{Y}\}$
 - Best solution : $f^* = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{R}(f)$
 - ullet Class $\mathcal{S}\subset\mathcal{F}$ of functions
 - Ideal target in $S: f_S^{\star} = \operatorname{argmin}_{f \in S} \mathcal{R}(f)$
 - ullet Estimate in $\mathcal{S}:\widehat{f}_{\mathcal{S}}$ obtained with some procedure

Approximation error and estimation error (Bias/Variance)

$$\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^{\star}) = \underbrace{\mathcal{R}(f_{\mathcal{S}}^{\star}) - \mathcal{R}(f^{\star})}_{\text{Approximation error}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f_{\mathcal{S}}^{\star})}_{\text{Estimation error}}$$

- ullet Approx. error can be large if the model ${\mathcal S}$ is not suitable.
- Estimation error can be large if the model is complex.

Agnostic approach

No assumption (so far) on the law of (X, Y).

Supervised Learning Under-fitting / Over-fitting Issue

- Different behavior for different model complexity
- Low complexity model are easily learned but the approximation error ("bias") may be large (Under-fit).
- High complexity model may contains a good ideal target but the estimation error ("variance") can be large (Over-fit)

Bias-variance trade-off ←⇒ avoid overfitting and underfitting

Supervised Learning

Statistical and Optimization Point of View Framework

How to find a good function f with a small risk

$$R(f) = \mathbb{E}\left[\ell(Y, f(X))\right]$$
 ?

Canonical approach : $\hat{f}_{S} = \operatorname{argmin}_{f \in S} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(\mathbf{X}_i))$

Problems

- How to choose S?
- How to compute the minimization?

A Statistical Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier: (Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution : If necessary replace the loss ℓ by an upper bound ℓ' and minimize the empirical loss : SVR, SVM, Neural Network, Tree, Boosting

Models, Complexity and Selection Outline

- 1 Supervised Learning
- 2 Models, Complexity and Selection
- Generalized Linear Model
- 4 Structural Risk Minimization
- Practical Minimization
- 6 Theoretical Insights

Models, Complexity and Selection Over-fitting Issue

Error behaviour

- Learning/training error (error made on the learning/training set) decays when the complexity of the model increases.
- Quite different behavior when the error is computed on new observations (generalization error).
- Overfit for complex models : parameters learned are too specific to the learning set!
- General situation! (Think of polynomial fit...)
- Need to use an other criterion than the training error!

Two Approaches

- Cross validation: Very efficient (and almost always used in practice!) but slightly biased as it target uses only a fraction of the data.
- **Penalization approach**: use empirical loss criterion but penalize it by a term increasing with the complexity of \mathcal{S} $R_n(\widehat{f_S}) \to R_n(\widehat{f_S}) + \text{pen}(\mathcal{S})$ and choose the model with the smallest penalized risk.

Which loss to use?

- The loss used in the risk : most natural!
- The loss used to estimate $\hat{\theta}$: penalized estimation!

Models, Complexity and Selection Cross Validation

- **Very simple idea**: use a second learning/verification set to compute a verification error.
- Sufficient to remove the dependency issue!

Cross Validation

- Use $(1 \varepsilon)n$ observations to train and εn to verify!
- Validation for a learning set of size $(1 \varepsilon) \times n$ instead of n!
- Unstable error estimate if εn is too small?
- Most classical variations :
 - Leave One Out.
 - V-fold cross validation.

Models, Complexity and Selection *V*-fold Cross Validation

Principle

- Split the dataset \mathcal{D} in V sets \mathcal{D}_{v} of almost equals size.
- For $v \in \{1, ..., V\}$:
 - Learn $\hat{f}^{-\nu}$ from the dataset \mathcal{D} minus the set \mathcal{D}_{ν} .
 - Compute the empirical error :

$$R_n^{-\nu}(\hat{f}^{-\nu}) = \frac{1}{n_\nu} \sum_{(\mathbf{X}_i, Y_i) \in \mathcal{D}_\nu} \ell(Y_i, \hat{f}^{-\nu}(\mathbf{X}_i))$$

• Compute the average empirical error :

$$R_n^{CV}(\hat{f}) = \frac{1}{|V|} R_n^{-v}(\hat{f}^{-v})$$

Analysis (when n is a multiple of V)

- The $R_n^{-\nu}(\hat{f}^{-\nu})$ are identically distributed variable but are not independent!
- Consequence :

$$\mathbb{E}\left[R_n^{CV}(\hat{f})\right] = \mathbb{E}\left[R_n^{-v}(\hat{f}^{-v})\right]$$

$$\mathbb{V}\left[R_n^{CV}(\hat{f})\right] = \frac{1}{V}\mathbb{V}\left[R_n^{-v}(\hat{f}^{-v})\right]$$

$$+ (1 - \frac{1}{V})\mathsf{Cov}\left[R_n^{-v}(\hat{f}^{-v}), R_n^{-v'}(\hat{f}^{-v'})\right]$$

- Average risk for a sample of size $(1 \frac{1}{V})n$.
- Variance term much more complex to analyse!
- ullet Fine analysis shows that the larger V the better...
- Accuracy/Speed tradeoff : V = 5 or V = 10!

Models, Complexity and Selection Penalization

Principle

- The empirical loss computed on an estimator selected in a family according to the data is biased!
- Optimistic estimation of the risk...
- Estimate an upper bound of this optimism for a given family, called the penalty.
- Add it to the empirical loss
- One can also think of the penalty as a way to force the use of simple models...

Models, Complexity and Selection Penalization

Penalized Loss

Minimization of

$$\underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(\mathbf{X}_i)) + \operatorname{pen}(\theta)$$

where $pen(\theta)$ is a penalty.

Penalties

- Upper bound of the optimism of the empirical loss
- Depends on the loss and the framework!

Instantiation

- Penalized Loss for Linear Model
- Structural Risk Minimization

Generalized Linear Model Outline

- 1 Supervised Learning
- 2 Models, Complexity and Selection
- Generalized Linear Model
- 4 Structural Risk Minimization
- Practical Minimization
- 6 Theoretical Insights

Generalized Linear Model Variable Selection

• **Setting** : Gen. linear model = prediction of Y by $h(\mathbf{X}^t \beta)$.

Model coefficients

- Model entirely specified by β .
- Coefficientwise :
 - $\beta_i = 0$ means that the *i*th covariate is not used.
 - $\beta_i \sim 0$ means that the *i*th covariate as a *low* influence...
- If some covariates are useless, better use a simpler model...

Submodels

- Simplify the model through a constraint on β !
- Examples :
 - Support : Impose that $\beta_i = 0$ for $i \notin I$.
 - Support size : Impose that $\|\beta\|_0 = \sum_{i=1}^d \mathbf{1}_{\beta_i \neq 0} < C$
 - Norm : Impose that $\|\beta\|_p < C$ with $1 \le p$ (Often p = 2 or p = 1)

Generalized Linear Model Norms and Sparsity

Sparsity

- ullet is sparse if its number of non-zero coefficients (ℓ_0) is small...
- Easy interpretation in term of dimension/complexity.

Norm Constraint and Sparsity

- Sparsest solution obtained by definition with the ℓ_0 norm.
- No induced sparsity with the ℓ_2 norm...
- Sparsity with the ℓ_1 norm (can even be proved to be the same than with the ℓ_0 norm under some assumptions).
- Geometric explanation.

Constrained Optimization

- Choose a constant *C*.
- ullet Compute eta as

$$\underset{\beta \in \mathbb{R}^d, \|\beta\|_{p} \leq C}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, h(\langle \mathbf{X}_i, \beta \rangle))$$

Lagrangian Reformulation

ullet Choose λ and compute β as

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \ell(Y_i, \langle \mathbf{X}_i, \beta \rangle) + \lambda \|\beta\|_p^{p'}$$

with p' = p except if p = 0 where p' = 1.

- Easier calibration...
- Rk: $\|\beta\|_p$ is not scaling invariant if $p \neq 0...$
- Initial rescaling issue.

Generalized Linear Model Penalization

Penalized Linear Model

Minimization of

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(\beta^t \mathbf{X}_i)) + \operatorname{pen}(\beta)$$

where $pen(\beta)$ is a (sparsity promoting) penalty

• Variable selection if β is sparse.

Classical Penalties

- AIC : pen(β) = $\lambda \|\beta\|_0$ (non convex / sparsity)
- Ridge : pen(β) = $\lambda \|\beta\|_2^2$ (convex / no sparsity)
- Lasso : pen(β) = $\lambda \|\beta\|_1$ (convex / sparsity)
- Elastic net : pen(eta) = $\lambda_1 \|eta\|_1 + \lambda_2 \|eta\|_2^2$ (convex / sparsity)
- Easy optimization if pen (and the loss) is convex...
- Need to specify λ !

Generalized Linear Model Penalized Gen. Linear Models

Classical Examples

- Penalized Least Squares
- Penalized Logistic Regression
- Penalized Maximum Likelihood
- SVM
- Tree pruning
- Sometimes used even if the parametrization is not linear...

Practical Selection Methodology

- Choose a penalty shape pen.
- Compute a CV error for a penalty $\lambda \widetilde{pen}$ for all $\lambda \in \Lambda$.
- Determine $\widehat{\lambda}$ the λ minimizing the CV error.
- ullet Compute the parameters with a penalty $\widehat{\lambda} \widetilde{\text{pen}}$.

Why not using only CV?

- If the penalized likelihood minimization is easy, much cheaper to compute the CV error for all $\lambda \in \Lambda$ than for all possible estimators...
- CV performs best when the set of candidates is not too big (or is structured...)

Structural Risk Minimization Outline

- 1 Supervised Learning
- 2 Models, Complexity and Selection
- Generalized Linear Model
- 4 Structural Risk Minimization
- Practical Minimization
- 6 Theoretical Insights

Structural Risk Minimization Penalization

Penalized $\ell^{0/1}$ loss (Strutural Risk Minimization)

Minimization of

$$\underset{f_m,m\in\mathcal{M},f_m\in\mathcal{S}_m}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell^{0/1}(Y_i,f_m(\mathbf{X}_i) + \operatorname{pen}(m))$$

where pen(m) is a complexity driven penalty...

No easy optimization here!

Classical Penalties

- Finite class : $pen(m) = \lambda \sqrt{\frac{\log |\mathcal{M}|}{n}}$
- Finite VC Dimension : $pen(m) = \lambda \sqrt{\frac{d_{VC}(S_m) \log\left(\frac{en}{d_{VC}(S_m)}\right)}{n}}$
- Need to specify λ !

Structural Risk Minimization Conexcified loss Penalization

Penalized convexified ℓ loss

Minimization of

$$\underset{f_m,m\in\mathcal{M},f_m\in\mathcal{S}_m}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(Y_i,f_m(\mathbf{X}_i) + \operatorname{pen}(m))$$

where pen(m) is a complexity driven penalty...

- No easy optimization here!
- Reuse the previous pen(m)!
- Need to specify λ !
- SVM case :
 - $d_{VC} \sim \|\beta\|^2$ which advocates for a penalty in $\lambda \|\beta\|$...
 - A penalty in $\lambda' \|\beta\|^2$ is more convenient numerically and there is a correspondence between the two problems...

Structural Risk Minimization Penalization and Cross-Validation

Practical Selection Methodology

- Choose a penalty shape pen.
- Compute a CV error for a penalty $\lambda \widetilde{pen}$ for all $\lambda \in \Lambda$.
- Determine $\widehat{\lambda}$ the λ minimizing the CV error.
- Compute the final model with a penalty $\widehat{\lambda} \widetilde{\text{pen}}$.

Why not using only CV?

- If the penalized likelihood minimization is easy, much cheaper to compute the CV error for all $\lambda \in \Lambda$ than for all possible estimators...
- CV performs best when the set of candidates is not too big (or is structured...)

Practical Minimization Outline

- 1 Supervised Learning
- 2 Models, Complexity and Selection
- Generalized Linear Model
- 4 Structural Risk Minimization
- 6 Practical Minimization
- 6 Theoretical Insights

ℓ^0 Penalized Empirical Loss Minimization

Minimization of

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1} \ell(Y_i, h(\langle \mathbf{X}_i, \beta \rangle) + \lambda \|\beta\|_0$$

- Equivalent model selection reformulation :
 - For every $I \subset \{1, \ldots, d\}$, compute

$$\hat{\beta}_{I} = \operatorname*{argmin}_{\beta_{J}, \beta_{J,i} = 0 \forall i \notin I} \frac{1}{n} \sum_{i=1} \ell(Y_{i}, h(\langle \mathbf{X}_{i}, \beta \rangle))$$

Determine

$$\hat{I} = \underset{i}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, \langle \mathbf{X}_i, \hat{\beta}_I \rangle) + \lambda |I|$$

- Need to perform those optimization (non convex/non smooth)!
- Need to choose λ (to guaranty good performance)!

Practical Minimization Practical ℓ^0 Penalization

Exact Minimization

- Easy optimization for a given support!
- Very different situation for the support...
- Bruteforce exploration of the support = combinatorial problem.
- 2^d models (supports) to be explored!
- Only possible if d is (very) small!

Clever Exploration

- Minimization of the criterion but without an exhaustive exploration of the subsets.
- Generic strategy :
 - Start with a pool of subsets of size P
 - Create a larger pool of size PC by adding and/or removing variables from the previous subset
 - Keep only the best P subset according to the criterion and iterate
- Variations on the size of the subsets, the initial subsets, the rule to add and remove variables, the criterion...
- Forward, Backward, Forward/Backward, Stochastic (Genetic)
 Algorithm...

Forward strategy

- Start with an empty model
- At each step, create a larger collection by creating models equal to the current one plus any variable not used in the current model (one at a time)
- Modify the current model if the best model within the new collection leads to a reduction of the criterion.

Backward strategy

- Start with the full model.
- At each step, create a larger collection by creating models equal to the current one minus any variable used in the current model (one at a time)
- Modify the current model if the best model within the new collection leads to a reduction of the criterion.

Forward/Backward strategy

- Start with the full model.
- At each step, create a larger collection by creating models equal to the current one plus any variable not used in the current model (one at a time) and to the current one minus any variable used in the current model (one at a time)
- Modify the current model if the best model within the new collection leads to a reduction of the criterion.
- Various Stochastic (Genetic) Algorithm...
- Stability issue...

ℓ^1 Penalized Empirical Loss Minimization

Minimization of

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1} \ell(Y_i, h(\langle \mathbf{X}_i, \beta \rangle) + \lambda \|\beta\|_1$$

- ullet Introduced originally as a convexification of the ℓ^0 loss...
- Non smooth but convex function and thus existing fast optimization algorithm.
- Need to choose λ (to guaranty good performance)!

Sparsification Properties

Let

$$L(\beta) = \frac{1}{n} \sum_{i=1} \ell(Y_i, h(\langle \mathbf{X}_i, \beta \rangle) + \lambda \|\beta\|_1$$

• Convex subgradient property : $\widehat{\beta} = \operatorname{argmin} L(\beta) \Leftrightarrow 0 \in \delta L(\widehat{\beta})$:

$$\sum_{i=1}^{n} \mathbf{X}_{i,k} h'(\langle \mathbf{X}_{i}, \beta \rangle) \frac{d\ell}{dh} (Y_{i}, h(\langle \mathbf{X}_{i}, \beta \rangle)) \begin{cases} = \lambda & \text{if } \widehat{\beta}_{k} < 0 \\ \in [-\lambda, \lambda] & \text{if } \widehat{\beta}_{k} = 0 \\ = -\lambda & \text{if } \widehat{\beta}_{k} > 0 \end{cases}$$

• More *flexibility* at $\beta_k = 0...$

Penalized \(\lambda \) loss (Strutural Risk Minimization)

Minimization of

$$\underset{f_m,m\in\mathcal{M},f_m\in\mathcal{S}_m}{\operatorname{argmin}}\,\frac{1}{n}\sum_{i=1}^n\ell^{0/1}(Y_i,f_m(\mathbf{X}_i)+\operatorname{pen}(m))$$

where pen(m) is a complexity driven penalty...

- ℓ^0 type penalties...
- No easy optimization here if $\ell = \ell^{0/1}$: full exploration.
- Convex loss with linear classifier : subset exploration.
- SVM relaxation leads to a quadratic convex problem...

Theoretical Insights Outline

- Supervised Learning
- 2 Models, Complexity and Selection
- Generalized Linear Model
- 4 Structural Risk Minimization
- 5 Practical Minimization
- **6** Theoretical Insights

Theoretical Insights Penalization Heuristic

Three Examples

- Linear model and unbiased estimate of the risk
- Maximum Likelihood and asymptotic analysis
- Empirical Risk Minimization and concentration

Model and Predictor

- Model : $Y_i = f_0(\mathbf{X}_i) + \sigma \varepsilon_i$ with ε_i i.i.d. such that $\mathbb{E}[\varepsilon_i] = 0$ and $\mathbb{V}[\varepsilon_i] = 1$.
- Linear predictor : we try to predict y from x by $f_{\beta}(x) = \sum_{k=1}^{p} \beta_k \varphi_k(x)$

Least Square Approach

$$\widehat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} |Y_i - \sum_{k=1}^{p} \beta_k \varphi_k(\mathbf{X}_i)|^2$$

• Geometric interpretation : $(f_{\widehat{\beta}}(\mathbf{X}_i))_{i=1}^n$ is the orthogonal projection $P_V\mathbf{Y}$ of $\mathbf{Y}=(Y_i)_{i=1}^n$ on the space spanned by $V=\{(\varphi_k(\mathbf{X}_i))_{i=1}^n\}_{k=1}^p$.

Prediction error on the same grid

$$\sum_{i=1}^{n} |y_i' - \sum_{k=1}^{p} f_{\widehat{\beta}}(\mathbf{X}_i)|^2 = \|(I - P_V)\mathbf{F}_0 + \sigma\varepsilon' - \sigma P_V \varepsilon\|^2$$

$$= \|(I - P_V)\mathbf{F}_0\|^2 + \sigma^2 \|\varepsilon'\|^2 + \sigma^2 \|P_V \varepsilon\|^2$$

$$+ 2\sigma \langle (I - P_V)\mathbf{F}_0, \varepsilon' - P_V \varepsilon \rangle$$

$$- 2\sigma^2 \langle \varepsilon', P_V \varepsilon \rangle$$

and thus

$$\mathbb{E}\left[\sum_{i=1}^{n}|y_i'-\sum_{k=1}^{p}f_{\widehat{\beta}}(\mathbf{X}_i)|^2\right]=\|(I-P_V)\mathbf{F}_0\|^2+n\sigma^2+p\sigma^2$$

Empirical error analysis

$$\sum_{i=1}^{p} |Y_i - \sum_{k=1}^{p} f_{\widehat{\beta}}(\mathbf{X}_i)|^2 = \|\mathbf{Y} - P_V \mathbf{Y}\|^2$$

$$= \|(I - P_V)\mathbf{F}_0 + \sigma(I - P_V)\varepsilon\|^2$$

$$= \|(I - P_V)\mathbf{F}_0\|^2 + \sigma^2 \|(I - P_V)\varepsilon\|^2$$

$$+ 2\sigma \langle (I - P_V)\mathbf{F}_0, (I - P_V)\varepsilon \rangle$$

and thus

$$\mathbb{E}\left|\sum_{i=1}^{p}|Y_i-\sum_{i=1}^{p}f_{\widehat{\beta}}(\mathbf{X}_i)|^2\right|=\|(I-P_V)\mathbf{F}_0\|^2+(n-p)\sigma^2$$

Relationship between the two expectations

$$\mathbb{E}\left[\sum_{i=1}^{n}|y_i'-\sum_{k=1}^{p}f_{\widehat{\beta}}(\mathbf{X}_i)|^2\right]=\mathbb{E}\left[\sum_{i=1}|Y_i-\sum_{k=1}^{p}f_{\widehat{\beta}}(\mathbf{X}_i)|^2\right]+2p\sigma^2$$

• Unbiased estimation heuristic : add a penalty of $2p\sigma^2$ to the empirical error to correct the bias...

Likelihood and Contrast

• Likelihood:

$$L_n(\theta) = \sum_{i=1}^n \log p_{\theta}(Y_i | \mathbf{X}_i)$$

• True contrast :

$$L(\theta) = \mathbb{E}_{(X,Y)} \left[\log p_{\theta}(Y|X) \right]$$

• Maximum Likelihood and target :

$$\widehat{\theta} = \arg\max L_{(\mathbf{X}_i, Y_i)}(\theta)$$
 and $\widetilde{\theta} = \arg\max L(\theta)$

ullet Taylor expansion around $\widetilde{ heta}$

$$L_{n}(\theta) \sim L_{n}(\widetilde{\theta}) + \nabla L_{n}(\widetilde{\theta})^{t}(\theta - \widetilde{\theta}) + \frac{1}{2}(\theta - \widetilde{\theta})^{t}HL_{n}(\widetilde{\theta})(\theta - \widetilde{\theta})$$
$$L(\theta) \sim L(\widetilde{\theta}) + \frac{1}{2}(\theta - \widetilde{\theta})HL_{n}(\widetilde{\theta})(\theta - \widetilde{\theta})$$

We deduce

$$\widehat{\theta} \sim \widetilde{\theta} - (HL_n(\widetilde{\theta}))^{-1} \nabla L_n(\widetilde{\theta})$$

and thus

$$L_{n}(\widehat{\theta}) \sim L_{n}(\widetilde{\theta}) - \frac{1}{2} \nabla L_{n}(\widetilde{\theta}) (HL_{n}(\widetilde{\theta}))^{-1} \nabla L_{n}(\widetilde{\theta})$$
$$L(\widehat{\theta}) \sim L(\widetilde{\theta}) + \frac{1}{2} \nabla L_{n}(\widetilde{\theta}) (HL_{n}(\widetilde{\theta}))^{-1} HL(\widetilde{\theta}) (HL_{n}(\widetilde{\theta}))^{-1} \nabla L_{n}(\widetilde{\theta})$$

Theoretical Insights Maximum Likelihood and AIC

Thus $L(\widehat{\theta}) - L_n(\theta) \sim L(\widetilde{\theta}) - L_n(\widetilde{\theta})$ $+ \frac{1}{2} \nabla L_n(\widetilde{\theta})^t (HL_n(\widetilde{\theta}))^{-1} HL(\widetilde{\theta}) (HL_n(\widetilde{\theta}))^{-1} \nabla L_n(\widetilde{\theta})$ $+ \frac{1}{2} \nabla L_n(\widetilde{\theta})^t (HL_n(\widetilde{\theta}))^{-1} \nabla L_n(\widetilde{\theta})$

• As
$$HL_n(\widetilde{\theta})$$
 tends to $HL(\widetilde{\theta})$, we have
$$L(\widehat{\theta}) - L_n(\theta) \sim L(\widetilde{\theta}) - L_n(\widetilde{\theta}) + \nabla L_n(\widetilde{\theta})^t (HL(\widetilde{\theta}))^{-1} \nabla L_n(\widetilde{\theta}))$$

• Now, by the CLT,
$$\sqrt{n}\nabla L_n(\widetilde{(}\theta)) \to Z \sim \mathcal{N}(0,J(\widetilde{\theta}))$$
 with $J(\theta) = \mathbb{V}\left[\nabla \log p_{\theta}(X|Y)\right]$ and thus
$$L(\widehat{\theta}) - L_n(\theta) \sim L(\widetilde{\theta}) - L_n(\widetilde{\theta}) + \frac{1}{2}Z^tHL(\widetilde{\theta})^{-1}Z.$$

• Taking the expectation leads to

$$\mathbb{E}\left[L(\widehat{\theta}) - L_n(\widehat{\theta})\right] \sim \frac{1}{n} \text{Tr}(HL(\widetilde{\theta})^{-1} J(\widetilde{\theta}))$$

Theoretical Insights Maximum Likelihood and AIC

Now,

$$\begin{split} HL(\widetilde{\theta})_{i,j} &= \mathbb{E}\left[\frac{\partial^2}{d\theta_i d\theta_j}(\log p_{\widetilde{\theta}}(X,Y))\right] \\ &= \mathbb{E}\left[-\frac{\frac{\partial}{d\theta_j}p_{\widetilde{\theta}}(X,Y) \times \frac{\partial}{d\theta_j}p_{\widetilde{\theta}}(X,Y)}{p_{\widetilde{\theta}}^2(X,Y)}\right] + \mathbb{E}\left[\frac{\frac{\partial^2}{d\theta_j d\theta_i}p_{\widetilde{\theta}}(X,Y)}{p_{\widetilde{\theta}}^2(X,Y)}\right] \\ &= -\mathbb{E}\left[\left(\frac{\partial}{d\theta_i}\log p_{\widetilde{\theta}}(X,Y)\right)\left(\frac{\partial}{d\theta_j}\log p_{\widetilde{\theta}}(X,Y)\right)\right] + \Delta(\widetilde{\theta}) \\ &= J(\widetilde{\theta}) + \Delta(\widetilde{\theta}) \\ \text{with } \Delta(\widetilde{\theta}) &= \mathbb{E}\left[\frac{\frac{\partial^2}{d\theta_j d\theta_i}p_{\widetilde{\theta}}(X,Y)}{p_{\widetilde{\theta}}(X,Y)}\right] \end{split}$$

Asymptotic Control

We have thus

$$\mathbb{E}\left[L(\widehat{\theta}) - L_n(\widehat{\theta})\right] \sim -\frac{p}{n} - \frac{1}{n} \mathrm{Tr}(HL(\widetilde{\theta})^{-1} \Delta(\widetilde{\theta}))$$

ullet Note that if $p_{\widetilde{\theta}}$ is the true law then

$$\Delta(\widetilde{\theta}) = \mathbb{E}\left[\frac{\frac{\partial^2}{d\theta_j d\theta_i} p_{\widetilde{\theta}}(X, Y)}{p_{\widetilde{\theta}}(X, Y)}\right]$$
$$= \int \frac{\partial^2}{d\theta_j d\theta_i} p_{\widetilde{\theta}}(x, y) dx dy = 0$$

and we obtain a bias of p/n! (Usual AIC)

Bayesian Approach

• Bayesian Approach :

$$\begin{split} \log \mathbb{P} \left\{ \mathcal{M} | Y \right\} &= \log \int \mathbb{P} \left\{ \mathcal{M}, \theta | Y \right\} d\theta \\ &= \log \int \frac{\mathbb{P} \left\{ Y | \theta, \mathcal{M} \right\} \mathbb{P} \left\{ \theta | \mathcal{M} \mathbb{P} \left\{ M \right\} \right\}}{\mathbb{P} \left\{ Y \right\}} d\theta \\ &= \log \int e^{n(L_n(\theta) + \frac{1}{n} \log \mathbb{P} \left\{ \theta | \mathcal{M} \right\})} d\theta \\ &+ \log \mathbb{P} \left\{ M \right\} - \log \mathbb{P} \left\{ Y \right\} \end{split}$$

- Using a Taylor expansion around $\widehat{\theta}$ yields $L_n(\theta) \sim L_n(\widehat{\theta}) \frac{1}{2}(\theta \widehat{\theta})^t (-HL_n(\widehat{\theta}))(\theta \widehat{\theta})$
- We deduce that

$$\begin{split} \log \int e^{n(L_n(\theta) + \frac{1}{n} \log \mathbb{P}\{\theta | \mathcal{M}\})} d\theta &\sim nL_n(\widehat{\theta}) \\ &+ \log \int e^{-\frac{1}{2}(\theta - \widehat{\theta})^t (-nHL_n(\widehat{\theta}))(\theta - \widehat{\theta}) + \log \mathbb{P}\{\theta | \mathcal{M}\})} d\theta \end{split}$$

ullet If we assume the prior is flat around $\widehat{ heta}$, we obtain

$$\begin{split} \log \int e^{n(L_n(\widehat{\theta}) + \frac{1}{n} \log \mathbb{P}\{\theta | \mathcal{M}\})} d\theta &\sim nL_n(\theta) + \log \mathbb{P}\left\{\widehat{\theta}\right\} | \mathcal{M} \right\} \\ &+ \frac{d}{2} \log \frac{2\pi}{n} - \frac{1}{2} \log \det(-HL_n(\widehat{\theta})) \end{split}$$

Theoretical Insights Maximum Likelihood and BIC

Hence

$$\log \mathbb{P} \left\{ \mathcal{M} | Y \right\} \sim n \left(L_n(\widehat{\theta}) - \frac{\log n - \log 2\pi}{2} \frac{d}{n} \right)$$
$$- \frac{1}{2} \log \det(-HL_n(\widehat{\theta}))$$
$$+ \log \mathbb{P} \left\{ \widehat{\theta} \right\} | \mathcal{M} \right\} + \log \mathbb{P} \left\{ M \right\} - \log \mathbb{P} \left\{ Y \right\}$$
$$\sim n \left(L_n(\widehat{\theta}) - \frac{\log n}{2} \frac{d}{n} \right)$$

Bayesian Information Criterion

$$\log \mathbb{P} \left\{ \mathcal{M} | Y \right\} \sim n \left(L_n(\widehat{\theta}) - \frac{\log n}{2} \frac{d}{n} \right)$$
$$-\log \mathbb{P} \left\{ \mathcal{M} | Y \right\} \sim n \left(-L_n(\widehat{\theta}) + \frac{\log n}{2} \frac{d}{n} \right)$$

Theoretical Insights ERM and PAC Analysis

• Theoretical control of the random (error estimation) term : $\mathcal{R}(\widehat{f_S}) - \mathcal{R}(f_S^*)$

Probably Almost Correct Analysis

- Theoretical guarantee that with probablity larger than 1δ , $\mathbb{P}\left\{\mathcal{R}(\widehat{f}) \mathcal{R}(f_{\mathcal{S}}^{\star}) \leq \varepsilon_{\mathcal{S}}(\delta)\right\} \geq 1 \delta$ for a suitable $\varepsilon_{\mathcal{S}}(\delta) > 0$.
- Implies :

$$\bullet \ \mathbb{P}\left\{\mathcal{R}(\widehat{f}) - \mathcal{R}(f^\star) \leq \mathcal{R}(f^\star_{\mathcal{S}}) - \mathcal{R}(f^\star) + \varepsilon_{\mathcal{S}}(\delta)\right\} \geq 1 - \delta$$

•
$$\mathbb{E}\left[\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}\right] \leq \int_{0}^{+\infty} \varepsilon_{\mathcal{S}}^{-}(t) dt$$

The result should hold without any assumption on the law P!

Theoretical Insights A General Decomposition

By construction :

$$\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}) = \mathcal{R}(\widehat{f}) - \mathcal{R}_{n}(\widehat{f}) + \mathcal{R}_{n}(\widehat{f}) - \mathcal{R}_{n}(f_{\mathcal{S}}^{\star}) + \mathcal{R}_{n}(f_{\mathcal{S}}^{\star}) - \mathcal{R}(f_{\mathcal{S}}^{\star})$$

$$\leq \mathcal{R}(\widehat{f}) - \mathcal{R}_{n}(\widehat{f}) + \mathcal{R}_{n}(f_{\mathcal{S}}^{\star}) - \mathcal{R}(f_{\mathcal{S}}^{\star})$$

$$\leq \left(\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star})\right) - \left(\mathcal{R}_{n}(\widehat{f}) - \mathcal{R}_{n}(f_{\mathcal{S}}^{\star})\right)$$

Four possible upperbounds

•
$$\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}) \leq \sup_{f \in \mathcal{S}} ((\mathcal{R}(f) - \mathcal{R}(f_{\mathcal{S}}^{\star})) - (\mathcal{R}_{n}(f) - \mathcal{R}_{n}(f_{\mathcal{S}}^{\star})))$$

•
$$\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}) \leq \sup_{f \in \mathcal{S}} (\mathcal{R}(f) - \mathcal{R}_n(f)) + (\mathcal{R}_n(f_{\mathcal{S}}^{\star}) - \mathcal{R}(f_{\mathcal{S}}^{\star}))$$

•
$$\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}) \leq \sup_{f \in \mathcal{S}} (\mathcal{R}(f) - \mathcal{R}_n(f)) + \sup_{f \in \mathcal{S}} (\mathcal{R}_n(f) - \mathcal{R}(f))$$

•
$$\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}) \leq 2 \sup_{f \in \mathcal{S}} |\mathcal{R}(f) - \mathcal{R}_n(f)|$$

- Supremum of centered random variables!
- **Key**: Concentration of each variable...

Theoretical Insights Error Bounds

• By construction, for any $f' \in \mathcal{S}$, $\mathcal{R}(f') = \mathcal{R}_n(f') + (\mathcal{R}(f') - \mathcal{R}_n(f'))$

A uniform upper bound for the error

ullet Simultaneously $\forall f' \in \mathcal{S}$,

$$\mathcal{R}(f') \leq \mathcal{R}_n(f') + \sup_{f \in \mathcal{S}} (\mathcal{R}(f) - \mathcal{R}_n(f))$$

- Supremum of centered random variables!
- Key: Concentration of each variable...
- Can be interpreted as a justification of the ERM!

Theoretical Insights Concentration of the Empirical Loss

Empirical loss :

$$\mathcal{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell^{0/1}(Y_i, f(\mathbf{X}_i))$$

Properties

• $\ell^{0/1}(Y_i, f(\mathbf{X}_i))$ are i.i.d. random variables in [0, 1].

Concentration

$$\mathbb{P}\left\{\mathcal{R}(f) - \mathcal{R}_n(f) \le \varepsilon\right\} \ge 1 - e^{-2n\varepsilon^2}$$

$$\mathbb{P}\left\{\mathcal{R}_n(f) - \mathcal{R}(f) \le \varepsilon\right\} \ge 1 - e^{-2n\varepsilon^2}$$

$$\mathbb{P}\left\{|\mathcal{R}_n(f) - \mathcal{R}(f)| \le \varepsilon\right\} \ge 1 - 2e^{-2n\varepsilon^2}$$

- Concentration of sum of bounded independent variables!
- Hoeffding theorem.

Concentration

• If S is finite of cardinality |S|,

$$\mathbb{P}\left\{\sup_{f}\left(\mathcal{R}_{n}(f)-\mathcal{R}(f)\right)\leq\sqrt{\frac{\log|\mathcal{S}|+\log(1/\delta)}{2n}}\right\}\geq1-\delta$$

$$\mathbb{P}\left\{\sup_{f}\left|\mathcal{R}_{n}(f)-\mathcal{R}(f)\right|\leq\sqrt{\frac{\log|\mathcal{S}|+\log(1/\delta)}{2n}}\right\}\geq1-2\delta$$

- Control of the supremum by a quantity depending on the cardinality and the probability parameter δ .
- Simple combination of Hoeffding and a union bound.

PAC Bounds

• If S is finite of cardinality |S|, with proba greater than $1-2\delta$

$$\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}) \leq \sqrt{rac{\log |\mathcal{S}|}{2n}} + \sqrt{rac{2\log(1/\delta)}{n}}$$

• If S is finite of cardinality |S|, with proba greater than $1 - \delta$, simultaneously $\forall f' \in S$,

$$\mathcal{R}(f') \leq \mathcal{R}_n(f') + \sqrt{rac{\log |\mathcal{S}|}{2n}} + \sqrt{rac{\log (1/\delta)}{2n}}$$

- ullet Risk increases with the cardinality of \mathcal{S} .
- Similar issue in cross-validation!
- No direct extension for an infinite S...

PAC Bounds

- If S is of VC dimension d_{VC} then if $n > d_{VC}$
- With probability greater than $1-2\delta$,

$$\mathcal{R}(\widehat{f}) - \mathcal{R}(f_{\mathcal{S}}^{\star}) \leq \sqrt{\frac{8d_{VC}\log\left(\frac{en}{d_{VC}}\right)}{n}} + \sqrt{\frac{2\log(1/\delta)}{n}}$$

ullet With probability greater than $1-\delta$, simultaneously $\forall f'\in\mathcal{S}$,

$$\mathcal{R}(f') \leq \mathcal{R}_n(f') + \sqrt{\frac{8d_{VC}\log\left(\frac{en}{d_{VC}}\right)}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}$$

• **Rk**: If $d_{VC} = +\infty$ no uniform PAC bounds exists!

Theoretical Insights Models, Non Uniform Risk Bounds and SRM

• Assume we have a countable collection of set $(S_m)_{m \in \mathcal{M}}$ and let π_m be such that $\sum_{m \in \mathcal{M}} \pi_m = 1$.

Non Uniform Risk Bound

• With probability $1 - \delta$, simultaneously for all $m \in \mathcal{M}$ and all $f \in \mathcal{S}_m$,

$$\mathcal{R}(f) \leq \mathcal{R}_n(f) + \sqrt{\frac{8d_{VC}(\mathcal{S}_m)\log\left(\frac{en}{d_{VC}(\mathcal{S}_m)}\right)}{n}} + \sqrt{\frac{\log \pi_m}{2n}} + \sqrt{\frac{\log(1/\delta)}{2n}}$$

Structural Risk Minimization

ullet Choose \hat{f} as the minimizer over $m \in \mathcal{M}$ and $f \in \mathcal{S}_m$ of

$$\mathcal{R}_n(f) + \sqrt{\frac{8d_{VC}(\mathcal{S}_m)\log\left(\frac{en}{d_{VC}(\mathcal{S}_m)}\right)}{n}} + \sqrt{\frac{\log \pi_m}{2n}}$$

• Mimics the minimization of the integrated risk!

Theoretical Insights SRM and PAC Bound

PAC Bound

ullet If \hat{f} is the SRM minimizer then with probability $1-2\delta$,

$$\mathcal{R}(\widehat{f}) \leq \inf_{m \in \mathcal{M}} \inf_{f \in \mathcal{S}_m} \left(\mathcal{R}(f) + \sqrt{\frac{8d_{VC}(\mathcal{S}_m) \log \left(\frac{en}{d_{VC}(\mathcal{S}_m)}\right)}{n}} + \sqrt{\frac{\log \pi_m}{2n}} \right) + \sqrt{\frac{2\log(1/\delta)}{n}}$$

• The SRM minimizer balances the risk $\mathcal{R}(f)$ and the upper bound on the estimation error

$$\sqrt{\frac{8d_{VC}(S_m)\log\left(\frac{en}{d_{VC}(S_m)}\right)}{n}} + \sqrt{\frac{\log \pi_m}{2n}}.$$