APS Material Scanning

Alex Nishio

Overview

- Overall goal is to replicate x-ray ptychography or diffraction microscopy
 - Scan tiny organisms in µm size using x-ray beam light in nm size
 - Search area is similar to the left diagram

Overview

- Given 1640 different images similar to the left image
 - Goal is to locate the exact position of the white dots and create a small patch on it
 - Exact coordinates will be patched on other
 1639 images
 - Lining patches together supposedly can show different materials?
 - Check next slide for example
 - Disclaimer: seems a little bit more complicated than this but did not get to research far enough

Visualization of Patching Result (Example from Dioptas Software)

Patching from 1 image

Patching from 1640 images

Results

Output

Quick proof displaying the patching worked using open-cv

Quick update changing the rectangular patches to square patches

Example of one of the patches created (failure)

- Ultimately could not extract any meaningful data from this patched image when using methods above
 - White squares seems to be a cv2 rendering issue
 - Should try to render rgb values past 255
- Potential solutions:
 - Replace white squares with fully black squares
 - Use rasterio instead of open-cv

Overall Outlook

Project is difficult to proceed without any background knowledge on x-ray diffraction microscopy

Ideas for improving the project:

- Consulting an expert on
 - how to use diffraction microscopy softwares (Dioptas)
 - how the patching process works
 - how minerals and atoms are specifically identified from performing such steps

Additional Resources

Potentially the same methodology as this project

- Argonne's X-ray microscope
 - Argonne's article
 - https://www.anl.gov/article/scientists-pioneer
 _new-xray-microscopy-method-for-data-analy
 sis-on-the-fly
 - Research paper
 - https://www.nature.com/articles/s41467-023-41496-z
 - Numpy array with 121 scans with 943 patches each
 - https://zenodo.org/records/8121606
 - Official GitHub page
 - https://github.com/vbanakha/edgePtychoNN

Example patch in Argonne's solution

Overall Future Goals

- Successfully patch from 1640 images
- Once enough patches are made, find some correlations and train a ML model
 - Classification
 - Segmentation
 - LM based captioning
 - Regression