

Teste de Matemática 12.º ANO

2023

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

A prova é formada por itens de escolha múltipla e de resposta restrita. Os critérios de classificação dos itens de resposta restrita estão organizados por etapas, atribuindo-se, a cada uma delas, uma pontuação.

Caso os alunos adotem um processo não previsto nos critérios específicos, cabe ao professor corretor adaptar a distribuição da cotação atribuída.

Deve ser atribuída a classificação de zero quando um aluno apresente apenas o resultado final de um item, ou de uma etapa, quando é pedida a apresentação de cálculos ou justificações;

Nas seguintes situações deve descontar-se um ponto às cotações estabelecidas para a etapa respetiva:

- Ocorrência de um erro de cálculo;
- Apresentação de uma resposta com o formato que não esteja de acordo com o que foi solicitado;
- Apresentação de expressões com erros do ponto de vista formal.

Caso ocorram erros que revelem desconhecimento de conceitos, de regras ou de propriedades ou o aluno apresente uma resolução incompleta de uma etapa, deve descontar-se até metade da cotação dessa etapa.

CRITÉRIOS ESPECÍFICOS DE CLASSIFICAÇÃO

															G	rupo	Α	Grupo B			
Item	1.1	1.2	2	3	4.1	4.2	4.3	5	6.1	6.2	6.3	7	8	9	10	11	12	10.1	10.2	11	Total
Cotação	10	14	10	12	14	12	12	10	12	12	14	12	10	12	12	12	10	12	12	10	200

QUESTÃO		DESCRIÇÃO	COTA	ÇÃO	
1.					24
	1.1.	Versão 1 Versão 2 (A) (C)		10	
2.	1.2	 Determinar as coordenadas do ponto P (¹³/₃, 0,0) Determinar as coordenadas do ponto D (1, 4, √17) Determinar OP Determinar OD Determinar OP e OD Calcular PÔD (80,1°) Versão 1 (C) 	3 3 1 1 2 4	14	10
3.					12
		• Identificar $\overline{CB} = 2\cos\beta$ ou $\overline{OA} = 2\cos\beta$ • Identificar $\overline{AB} = -\sin\beta$ ou $\overline{OC} = -\sin\beta$ • Identificar $\overline{CM} = \cos\beta$ ou $\overline{MB} = \cos\beta$ • Identificar $\overline{CM} = \cos\beta$ ou $\overline{MB} = \cos\beta$ • In Processo • Escrever $A_{[OABM]} = \frac{2\cos\beta + \cos\beta}{2} \times (-\sin\beta)$ ou equiva • Simplificar a expressão • Usar a fórmula da duplicação do seno • Concluir que $A_{[OABM]} = -\frac{3}{4}\sin(2\beta)$ • Escrever $A_{[OABC]} = 2\cos\beta \times (-\sin\beta)$ ou equivalente • Escrever $A_{[OMC]} = \frac{\cos\beta \times (-\sin\beta)}{2}$ ou equivalente • Fazer a diferença das duas áreas • Simplificar a expressão • Usar a fórmula da duplicação do seno • Concluir que $A = -\frac{3}{4}\sin(2\beta)$		1 1 2 2 3 2 1 1 1 1 3 2	
4.					38
	4.1	• Escrever $\vec{u} \cdot \vec{v} = (\sin(2x); \cos(2x)) \cdot (2\cos(2x); 4\sin(2x))$ • Escrever $\vec{u} \cdot \vec{v} = 2 \cdot \sin(2x) \cdot \cos(2x) + 4 \cdot \cos(2x) \cdot \sin(2x)$ • Escrever $\vec{u} \cdot \vec{v} = \sin(4x) + 2\sin(4x)$ • Concluir que $\vec{u} \cdot \vec{v} = 3\sin(4x)$ • Escrever $3\sin(4x) = \frac{3}{2}$	1 1 3 1	14	

				1	
		• Simplificar a expressão escrevendo $\sin(4x) = \sin(\frac{\pi}{6})$	2		
		ou equivalente	_		
		Resolver a equação em ℝ	3		
		 Determinar as soluções no intervalo pedido 	1		
		• Concluir que as soluções são $\frac{-7\pi}{24}$ e $\frac{\pi}{24}$	1		
				12	
		• Determinar $g'(x)$	3		
		• Calcular $m_r = g'\left(\frac{\pi}{12}\right) = 6$	3		
	4.2.	• Determinar as coordenadas do ponto $P\left(\frac{\pi}{12}; \frac{3\sqrt{3}}{2}\right)$	2		
		• Compreender que a reta pedida tem declive igual a $-\frac{1}{6}$	4		
		e escrever a equação pedida			
		$(x,y)=\left(\frac{\pi}{12};\frac{3\sqrt{3}}{2}\right)+k(-6,1), k\in\mathbb{R}, \text{ por exemplo}$			
				12	
į		• Escrever $g(x) = g'(x) \Leftrightarrow g(x) - g'(x) = 0$ ou	1		
		equivalente			
		• Identificar $g(x) - g'(x)$ como uma outra função, digamos h	1		
		r .1	4		
j	4.3.	• Provar que h é contínua em $\left[0; \frac{\pi}{6}\right]$	4		
		• Calcular $h(0)$ e $h(\frac{\pi}{6})$ e concluir que $h(0) \times h(\frac{\pi}{6}) < 0$	4		
		 Concluir através do Teorema de Bolzano-Cauchy que 			
		$\exists c \in \left]0; \frac{\pi}{6}\right[: h(c) = 0$	1		
		• Concluir o pretendido $\exists c \in \left]0; \frac{\pi}{6} \left[: g(c) = g'(c)\right]\right]$	1		
5.		Versão 1 Versão 2			10
6.		(D) (B)			38
0.				12	36
		• Determinar o domínio de $h\left(D_h = \left \frac{\ln 2}{4}; +\infty\right \right)$	2		
1		1.º Processo			
		• Escrever $h(x) = 0 \Leftrightarrow \ln(e^{4x} - 2) - 2x = 0$	1		
1		• Escrever $\ln(e^{4x} - 2) - 2x = 0 \Leftrightarrow \ln(e^{4x} - 2) - \ln(e^{2x}) =$	2		
		0			
		• Escrever $\ln(e^{4x} - 2) - \ln(2x) = 0 \Leftrightarrow \ln(e^{4x} - 2) = \ln(e^{2x})$	1		
	6.1	• Escrever $e^{4x} - 2 = e^{2x}$ ou equivalente	1		
		• Escrever $y = e^{2x}$ e resolver a equação de 2.º grau	2		
		$y^2 - y - 2 = 0$ ($y = 2 \lor y = -1$) • Resolver $e^{2x} = 2 \lor e^{2x} = -1$, indicando que			
		• Resolver $e^{2x} = 2$ V $e^{2x} = -1$, indicando que $e^{2x} = -1$ é impossível pois $e^{2x} > 0$, $\forall x \in \mathbb{R}$	2		
		• Verificar que a única solução $\left(\frac{\ln 2}{2}\right)$ pertence ao	_		
		domínio e concluir que o único zero de h é $rac{\ln 2}{2}$	1		
1				I	

	2.º Processo			
	• Escrever $h(x) = 0 \Leftrightarrow \ln(e^{4x} - 2) - 2x = 0$	4		
	• Escrever $\ln(e^{4x} - 2) - 2x = 0$ • $\ln(e^{4x} - 2) - \ln(e^{2x}) = 0$	1		
	0	1		
	• Escrever $\ln\left(\frac{e^{4x}-2}{e^{2x}}\right) = 0 \Leftrightarrow \frac{e^{4x}-2}{e^{2x}} = 1$			
	• Escrever $\frac{e^{4x}-2}{e^{2x}}=1 \Leftrightarrow e^{4x}-2=e^{2x}$ ou equivalente,	2		
	pois $e^{2x} > 0$, $\forall x \in \mathbb{R}$	2		
	• Escrever $y = e^{2x}$ e resolver a equação de 2.º grau			
	$y^2 - y - 2 = 0$ (y = 2 \ y = -1)	1		
	• Resolver $e^{2x} = 2 \vee e^{2x} = -1$, indicando que	_		
	$e^{2x}=-1$ é impossível pois $e^{2x}>0$, $\forall x\in\mathbb{R}$	1		
	• Verificar que a única solução $\left(\frac{\ln 2}{2}\right)$ pertence ao	2		
	domínio e concluir que o único zero de $h in rac{\ln 2}{2}$	2		
	3.º Processo			
	• Escrever $h(x) = 0 \Leftrightarrow \ln(e^{4x} - 2) - 2x = 0$	1		
	• Escrever $\ln(e^{4x} - 2) - 2x = 0 \Leftrightarrow \ln(e^{4x} - 2) - \ln(e^{2x}) =$	1		
	0	_		
	• Escrever $\ln\left(\frac{e^{4x}-2}{e^{2x}}\right) = 0 \Leftrightarrow \frac{e^{4x}-2}{e^{2x}} = 1$	1		
	• Escrever $\frac{e^{4x}-2}{e^{2x}}=1 \Leftrightarrow \frac{e^{4x}-2}{e^{2x}}-1=0 \Leftrightarrow \frac{e^{4x}-2-e^{2x}}{e^{2x}}=0$ ou	2		
	equivalente			
	• Escrever $e^{4x} - 2 - e^{2x} = 0 \wedge e^{2x} \neq 0$ (Condição universal	1		
	pois $e^{2x} > 0$, $\forall x \in \mathbb{R}$			
	• Escrever $y = e^{2x}$ e resolver a equação de 2.º grau	1		
	$y^2 - y - 2 = 0$ (y = 2 \times y = -1)			
	• Resolver $e^{2x} = 2 \ \lor \ e^{2x} = -1$, indicando que $e^{2x} = -1$ é impossível pois $e^{2x} > 0$, $\forall x \in \mathbb{R}$	1		
	• Verificar que a única solução $\left(\frac{\ln 2}{2}\right)$ pertence ao	2		
	domínio e concluir que o único zero de h é $rac{\ln 2}{2}$			
		<u> </u>	12	
	• Escrever $m = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{h(x)}{x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{\ln(e^{4x}-2)-2x}{x}$	1		
	• Escrever $\lim_{x \to +\infty} \frac{\ln(e^{4x}-2)-2x}{x} = \lim_{x \to +\infty} \frac{\ln(e^{4x}-2)}{x} - \lim_{x \to +\infty} \frac{2x}{x}$	4		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		
	Escrever $\lim_{x \to +\infty} \frac{\ln(e^{4x} - 2)}{x} - \lim_{x \to +\infty} \frac{2x}{x} = \lim_{x \to +\infty} \frac{\ln(e^{4x}(1 - \frac{2}{e^{4x}}))}{x} - 2$ Escrever $\lim_{x \to +\infty} \frac{\ln(e^{4x}(1 - \frac{2}{e^{4x}}))}{x} - 2 = \lim_{x \to +\infty} \frac{\ln(e^{4x}) + \ln(1 - \frac{2}{e^{4x}})}{x} - 2$	2		
	• Escrever $\lim \frac{\ln(e^{4x}(1-\frac{2}{e^{4x}}))}{1-2} - 2 = \lim \frac{\ln(e^{4x}) + \ln(1-\frac{2}{e^{4x}})}{1-2} - 2$	2		
6.3	2. Concluir que $m = 4 + 0 - 2 = 2$	1		
		1		
	• Escrever $b = \lim_{x \to +\infty} [h(x) - 2x] = \lim_{x \to +\infty} \ln[(e^{4x} - 2) - 4x]$ • Escrever $\lim_{x \to +\infty} [\ln(e^{4x} - 2) - 4x] = \lim_{x \to +\infty} \ln(\frac{e^{4x} - 2}{e^{4x}}) = \lim_{x \to +\infty} \ln(1 - e^{4x} - 2)$			
	$\frac{2}{e^{4x}}$	2		
	• Concluir que $b = \ln 1 = 0$	1		
	ullet Escrever que a assíntota oblíqua ao gráfico de h é dada	1		
	pela reta de equação $y=2x$			

			12				
		• Determinar $h'(x)$ $\left(h'(x) = \frac{4e^{4x}}{e^{4x} - 2} - 2\right)$	12				
		• Escrever a equação $h'(x) = x^3 \Leftrightarrow \frac{4e^{4x}}{e^{4x}-2} - 2 = x^3$ ou					
	6.3.	 equivalente Desenhar o gráfico das duas funções e determinar a sua interseção NOTA: Se o domínio não estiver explícito no gráfico, esta etapa terá no máximo 2 pontos 					
		• Escrever as coordenadas do ponto P com aproximação 1					
		 às milésimas [P (1,270; 2,050)] Calcular a distância de P à origem do referencial (2,4) 					
7.		(2,2)		14			
7.		• Escrever $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} \frac{8(\sqrt{x+3}-2)}{x-1}$ ou equivalente	1	14			
		$\lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x) - \lim_{x \to 1^{-}} y(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} \frac{g(x)}{x \to 1^{-}} = \lim_{x \to 1^{-}} $					
		• Escrever $\lim_{x \to 1^{-}} \frac{8(\sqrt{x+3}-2)}{x-1} = 8 \lim_{x \to 1^{-}} \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}$ ou equivalente	2				
		• Escrever $8 \lim_{x \to 1^{-}} \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)} = 8 \lim_{x \to 1^{-}} \frac{1}{(\sqrt{x+3}+2)}$ ou equivalente	1 1				
		• Concluir que $\lim_{x \to 1^{-}} g(x) = 2$	•				
		• Escrever $\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} \frac{4x(1-x)}{1-e^{2(x-1)}}$ ou equivalente					
		• Escrever $\lim_{x \to 1^+} \frac{4x(1-x)}{1-e^{2(x-1)}} = \lim_{x \to 1^+} \frac{-4x(x-1)}{-(e^{2(x-1)}-1)}$ ou equivalente					
		• Mudar a variável e escrever $\lim_{x \to 1^+} \frac{-4x(x-1)}{-(e^{2(x-1)}-1)} = \lim_{y \to 0^+} \frac{4y(y+1)}{(e^{2y}-1)}$ ou					
		equivalente $ \begin{array}{ccccccccccccccccccccccccccccccccccc$					
		• Escrever $\lim_{y\to 0^+} \frac{4y(y+1)}{(e^{2y}-1)} = \lim_{y\to 0^+} \frac{2y}{(e^{2y}-1)} \times \lim_{y\to 0^+} 2(y+1)$ ou equivalente					
		• Mudar novamente a variável e escrever $\frac{1}{\lim_{z\to 0^+} \frac{(e^z-1)}{z}} \times 2$ ou	1				
		equivalente					
		• Concluir que $\lim_{x \to 1^+} g(x) = 2$	1				
		• Concluir que, uma vez que $\lim_{x \to 1^-} g(x) = g(1) = \lim_{x \to 1^+} g(x) = 2$,	2				
		então g é contínua em $x=1$ Versão 1 Versão 2					
8.		(B) (A)		10			
9.				12			
		• Mostrar que $v_n = \log 2^n$ é uma progressão aritmética de razão $\log 2$	4				
		• Referir que u_n é a soma dos n primeiros termos de v_n	2				
		$ullet$ Calcular a soma dos n primeiros termos de v_n	6				
		Grupo A					
10.				12			
		• Concluir que $P(\underline{A \cap B}) = 0.25 \Leftrightarrow P(A \cap B) = P(A) - 0.25$	2				
		• Concluir que $P(\overline{A \cup B}) = k \Leftrightarrow P(A \cup B) = 1 - k$	1				
		• Concluir que $P(B A) = 0.4 \Leftrightarrow P(A \cap B) = 0.4 P(A)$	2				

		• Concluir de $P(A \cap B) = P(A) - 0.25$ e de $P(A \cap B) = 0.4$ $P(A)$ que $P(A) = \frac{5}{12}$ ou equivalente	2				
		• Concluir que $P(A \cup B) = 1 - k \Leftrightarrow P(A) + P(B) = 1 - k + P(A \cap B)$	2				
	• Escrever $P(A) + P(B) = 1 - k + P(A \cap B) \Leftrightarrow P(A) + P(B) = 1 - k + P(A) - 0.25$						
	• Concluir que $P(A) + P(B) = \frac{7-6k}{6}$ ou equivalente						
11.		6		12			
		ullet Concluir que se a linha tem m elementos então estamos na linha $m-1$	2				
		• Indicar os casos possíveis ($m(m-1)$ ou ${}^m\mathcal{C}_2$	2				
		• Indicar os casos favoráveis $(2 \times 2 \times 2! \text{ ou } {}^2C_1 \times {}^2C_1)$	4				
		• Escrever $\frac{2}{m} \times \frac{2}{(m-1)} \times 2! = \frac{1}{75}$ ou $\frac{{}^2C_1 \times {}^2C_1}{{}^mC_2} = \frac{1}{75}$ ou equivalente	1				
		 Resolver a equação de 2.º grau 	2				
		• Responder $m=25$ porque $m>1$	1				
12.		Versão 1 Versão 2 (C) (D)		10			
Grupo B							
10.				24			
	10.1.	• Determinar $Z_1 \times Z_2$ $\left((a+2b)+(b-2a)i\right)$ • Concluir que se $Z_1 \times Z_2$ é um número real então $b=2a$ ou equivalente • Determinar $1+\frac{z_1}{z_2}\left(\left(\frac{5+a-2b}{5}\right)+\left(\frac{b+2a}{5}\right)i\right)$ • Concluir que se $1+\frac{z_1}{z_2}$ é um imaginário puro então $a-2b=-5$ ou equivalente • Resolver o sistema $\begin{cases} b=2a\\ a-2b=-5 \end{cases}$ ou equivalente • Concluir que $a=\frac{5}{3}$ e $b=\frac{10}{3}$	12				
	10.2	• Determinar w $(w=-2-2i)$ • Escrever w na forma trigonométrica $\left(w=\sqrt{8}.e^{i\frac{5\pi}{4}}\right)$ ou equivalente • Calcular as raízes quadradas de w $\left(Z_0 = \sqrt[4]{8}e^{i\frac{5\pi}{8}} \ e \ Z_0 = \sqrt[4]{8}e^{i\frac{13\pi}{8}}\right)$ ou equivalente	12				
11.		Versão 1 Versão 2 (C) (D)		10			