Business Report

SMDM Project Business Report DSBA

Sanjay Srinivasan

PGP-DSBA Online

JULY' 21 Batch

Date: 15-05-2022

<u>INDEX</u>

S. No	Contents	Page No
1.	Problem - 1	4
	Summary	4
	Introduction	4
	Data Description	4
	Sample dataset	5
	Exploratory data analysis	5
	1) Outlier Treatment	6
	2) Missing Value Treatment	6
	3) Transform Target variable into 0 and 1	10
	4) Univariate (4 marks) & Bivariate (6 marks) analysis with proper interpretation. (You may choose to include only those variables which were significant in the model building)	11
	5) Train Test Split	15
	6) Build Logistic Regression Model (using statsmodel library) on most important variables on Train Dataset and choose the optimum cutoff. Also showcase your model building approach.	19
	7) Validate the Model on Test Dataset and state the performance matrices. Also state interpretation from the model	23
	8) Build a Random Forest Model on Train Dataset. Also showcase your model building approach	24
	9) Validate the Random Forest Model on test Dataset and state the performance matrices. Also state interpretation from the model	28
	10) Build a LDA Model on Train Dataset. Also showcase your model building approach	30
	11) Validate the LDA Model on test Dataset and state the performance matrices. Also state interpretation from the model	33
	12) Compare the performances of Logistics, Radom Forest and LDA models (include ROC Curve)	35
	13) State Recommendations from the above models	36

List Of Figures

S.No	Content	Page No
1.1	Dataset Sample Before Changing Column Names	5
1.2	Dataset Sample After Changing Column Names	5
1.3	Sample Datatypes of the variable with null values	6
1.4	Shape before Outliers Treatment	7
1.5	Shape After Outliers Treatment	7
1.6	Before Treating Missing value	8
1.7	After Treating Missing value	8
1.8	Default count.	9
1.9	Default count in percentage.	9
1.10	Sample data after Transformation.	9
1.11	Univariate Analysis	9
1.12	Scatterplot for Bivariate Analysis	10
1.13	Sample Multivariate analysis for correlation	11
1.14	Multivariate analysis of plotting correlation in heatmap	12
1.15	Multivariate analysis of plotting correlation in heatmap after dropping insignificant variable.	13
1.16	Taking Highly correlated variables.	13
1.17	X-train shape.	13
1.18	X-test shape.	13
1.19	Y-train shape.	13
1.20	Y-test shap	13
1.21	Selecting the feature with rank 1	14
1.22	Model-1 summary report	14
1.23	Variance Inflation Factor.of Model-1	15
1.24	Model-2 Summary Report	15
1.25	Model-3 Summary Report	16
1.26	Model-4 Summary Report	17
1.27	Model-5 Summary Report	18
1.28	Model-6 Summary Report	19
1.29	Model-7 Summary Report	20
1.30	Model-8 Summary Report	21
1.31	Model-9 Summary Report	22
1.32	Optimum threshold	22
1.33	Confusion matrix for train data	22
1.34	Confusion matrix for test data	22
1.35	Classification report for train data	23
1.36	Classification report for test data	23
1.37	Initializing Random Forest Classifier	24
1.38	Taking features with Rank 1	24
1.39	value count of the target column.	24
1.40	Initializing Model-1 using RF model	24
1.41	Model-1 Summary.	25
1.42	Model-1 Variation Inflation Matrix (VIF)	25
1.43	Initializing Model-2	26
1.44	Model-2 Summary.	26
1.45	Initializing Model-3	26
1.45	Model-3 Summary	27
1.47	Initializing Model-4	
	Model-4 Summary	27
1.48	model 4 summary	28

1.49 Boxplot for Default variable. 28 1.50 Dynumum threshold value 29 1.51 Predicted test values 29 1.52 Predicted test values 29 1.53 Boylor for test values 29 1.54 Optimum threshold values for test data 29 1.55 Confusion matrix test values 30 1.56 Confusion matrix test values 30 1.57 Classification report for test data 30 1.58 Classification report for test data 30 1.59 RCC for train data 30 1.60 AUC score for train data 30 1.61 RCC for test data 30 1.62 AUC score for test data 30 1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model -1 VIF 32 1.69 Model -1 Summary 31 1.69 Model -2 Initializing 32 1.70 Model -3 Summary 32 1.71 Initializing Model -3 33 1.72 Model -1 Oth train model 34 1.73			T
1.51 Predicted train values 29 29 29 29 29 29 29 2	1.49	Boxplot for Default variable.	28
1.52	1.50	Optimum threshold value	28
1.53	1.51		29
1.54 Optimum threshold values for test data 29 1.55 Confusion matrix train values 30 1.56 Confusion matrix test values 30 1.57 Classification report for train data 30 1.58 Classification report for test data 30 1.59 ROC for train data 30 1.60 AUC score for test data 30 1.61 ROC for test data 30 1.62 AUC score for test data 30 1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model 1 Initializing 31 1.67 Model -1 summary 31 1.68 Model -1 VIF 32 1.69 Model -2 Initializing 32 1.70 Model -2 Summary 32 1.72 Model -3 Summary 32 1.73 Default value for LDA train model 33 1.74 Optimum threshold value	1.52	Predicted test values	29
1.55	1.53	Boxplot for test values	29
1.55	1.54	Optimum threshold values for test data	29
1.57 Classification report for train data 30 1.58 Classification report for test data 30 1.59 ROC for train data 30 1.60 AUC score for train data 30 1.61 ROC for test data 30 1.62 AUC score for test data 30 1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model 1 initializing LDA model 31 1.67 Model -1 summary 31 1.68 Model -1 UFF 32 1.69 Model -2 Initializing 32 1.70 Model -2 Summary 32 1.71 Initializing Model -3 33 1.72 Model -3 Summary 32 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA train model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for test data 35 1.83 AUC score for train data 35 1.84 ROC for test data 35 1.85 AUC score for LR model 36 1.87 ROC curve for LR model 36 1.88 ROC curve for LR model 36 1.89 ROC curve for LR model 36 1.80 Classification report for train data 35 1.80 Classification report for train data 35 1.85 AUC score for train data 35 1.86 Comparison datafarme for LR, Fand LDA values 35 1.87 ROC curve for LR model 36 1.88 ROC curve for LR model 36 1.89 ROC curve for LR model 36 1.80 ROC curve for LR model 36 1.80 ROC curve for LR model 36 1.80 ROC curve for LR model 36	1.55		30
1.58 Classification report for test data 30 1.59 ROC for train data 30 1.60 AUC score for train data 30 1.61 ROC for test data 30 1.62 AUC score for test data 30 1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model 1 summary 31 1.67 Model -1 summary 31 1.68 Model -1 summary 32 1.69 Model -2 Lintalizing 32 1.70 Model -2 Summary 32 1.71 Initializing Model -3 33 1.72 Model -3 Summary 32 1.73 Default value for LDA train model 34 1.75 Predicted value for LDA train model 34 1.76 Predicted value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.79 Confusion matrix test values <td>1.56</td> <td>Confusion matrix test values</td> <td>30</td>	1.56	Confusion matrix test values	30
1.59 ROC for train data 30 1.60 AUC score for train data 30 1.61 ROC for test data 30 1.62 AUC score for test data 30 1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model 1 Initializing 31 1.67 Model -1 summary 31 1.68 Model -1 VIF 32 1.69 Model -2 Untializing 32 1.70 Model -2 Initializing 32 1.71 Initializing Model -3 32 1.72 Model -3 Summary 32 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.80 Classification report for t	1.57		30
1.60 AUC score for train data 30 30 1.61 ROC for test data 30 30 1.62 AUC score for test data 30 30 1.63 Initializing LDA model 30 30 1.64 Taking features with rank 1 for LDA model 30 30 1.65 Value count for default variable 31 31 1.66 Model 1 Initializing 31 31 1.67 Model -1 summary 31 31 1.68 Model -2 Initializing 32 32 32 32 33 33 34 34	1.58		30
1.61 ROC for test data 30 1.62 AUC score for test data 30 1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model 1 Initializing 31 1.67 Model -1 summary 31 1.68 Model -2 Initializing 32 1.70 Model -2 Summary 32 1.71 Initializing Model -3 33 1.72 Model -3 Summary 32 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA train model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix train values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82	1.59	ROC for train data	30
1.62 AUC score for test data 30 1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 31 1.65 Value count for default variable 31 1.66 Model 1 Initializing 31 1.67 Model -1 summary 31 1.68 Model -1 VIF 32 1.69 Model -2 Initializing 32 1.70 Model -2 Summary 32 1.71 Initializing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA train model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix train values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for test data 35 1.83 AUC score for test data 35 1.84 ROC for test data 35 1.85 AUC score for test data 35 1.86 Comparison dataframe for LR, RF and LDA values. 35 1.87 ROC curve for RF model 36 1.88 ROC curve for RF model 36 1.89 ROC curve for RF model 36 1.80 ROC	1.60	AUC score for train data	30
1.63 Initializing LDA model 30 1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model 1 Initializing 31 1.67 Model -1 summary 31 1.68 Model -1 VIF 32 1.69 Model -2 Intializing 32 1.70 Model -2 Summary 32 1.71 Intializing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA train model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix test values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for train data 35 1.82 ROC for train data 35 1.83 <	1.61	ROC for test data	30
1.64 Taking features with rank 1 for LDA model 30 1.65 Value count for default variable 31 1.66 Model I Initializing 31 1.67 Model -1 Summary 31 1.68 Model -1 VIF 32 1.69 Model -2 Unitalizing 32 1.70 Model -2 Summary 32 1.71 Initalizing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for train data 35 1.82 ROC for train data 35 1.83 AUC score for test data 35 1.84	1.62	AUC score for test data	30
1.65 Value count for default variable 31 1.66 Model 1 Initializing 31 1.67 Model -1 summary 31 1.68 Model -1 VIF 32 1.69 Model -2 Unitalizing 32 1.70 Model -2 Summary 32 1.71 Initalizing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 34 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification eport for train data 35 1.82 ROC for train data 35 1.83 AUC score for test data 35 1.84 ROC for test data 35 1.85 AUC score for test da	1.63	Initializing LDA model	30
1.66 Model 1 Initializing 31 1.67 Model -1 summary 31 1.68 Model -1 VIF 32 1.69 Model -2 Initializing 32 1.70 Model -2 Summary 32 1.71 Initializing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix train values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for test data 35 1.84 ROC for test data 35 1.85 AUC score for test data 35 1.86 Comparison dataframe for LR	1.64	Taking features with rank 1 for LDA model	30
1.67 Model -1 summary 31 1.68 Model -1 VIF 32 1.69 Model - 2 Initalizing 32 1.70 Model - 2 Summary 32 1.71 Intializing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for test data 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 R	1.65	Value count for default variable	31
1.68 Model - 1 VIF 32 1.69 Model - 2 Intializing 32 1.70 Model - 2 Summary 32 1.71 Intializing Model - 3 33 1.72 Model - 3 Summary 33 1.73 Default value for LDA train model 34 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88	1.66	Model 1 Initializing	31
1.69 Model – 2 Initalizing 32 1.70 Model – 2 Summary 32 1.71 Initalizing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 34 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for RF model 36	1.67	Model -1 summary	31
1.70 Model – 2 Summary 32 1.71 Intializing Model -3 33 1.72 Model –3 Summary 33 1.73 Default value for LDA train model 34 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.68	Model -1 VIF	32
1.71 Intializing Model -3 33 1.72 Model -3 Summary 33 1.73 Default value for LDA train model 34 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.69	Model – 2 Intializing	32
1.72 Model -3 Summary 33 1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA train model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.70	Model – 2 Summary	32
1.73 Default value for LDA train model 33 1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA test model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.71	Intializing Model -3	33
1.74 Optimum threshold value for LDA train model 34 1.75 Predicted value for LDA train model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.72	Model -3 Summary	33
1.75 Predicted value for LDA train model 34 1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.73	Default value for LDA train model	33
1.76 Default value for LDA test model 34 1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.74	Optimum threshold value for LDA train model	34
1.77 Predicted value for LDA test model 34 1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.75	Predicted value for LDA train model	34
1.78 Confusion matrix train values 35 1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.76	Default value for LDA test model	34
1.79 Confusion matrix test values 35 1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.77	Predicted value for LDA test model	34
1.80 Classification report for train data 35 1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.78	Confusion matrix train values	35
1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36	1.79	Confusion matrix test values	35
1.81 Classification report for test data 35 1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36		Classification report for train data	
1.82 ROC for train data 35 1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36		Classification report for test data	
1.83 AUC score for train data. 35 1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36		ROC for train data	
1.84 ROC for test data 35 1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36		AUC score for train data.	
1.85 AUC score for test data. 35 1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36		ROC for test data	
1.86 Comparison dataframe for LR,RF and LDA values. 35 1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36		AUC score for test data.	
1.87 ROC curve for LR model 36 1.88 ROC curve for RF model 36		Comparison dataframe for LR,RF and LDA values.	
1.88 ROC curve for RF model 36		ROC curve for LR model	
		ROC curve for RF model	
		ROC curve for LDA model	

Problem - 1

Summary

The data is gathered based on the company financial balance sheet, which deals with the company finances. This dataset has financial statements for 3586 company with 67 variables. For investing in the company, to analyse from the investor's point of view, to predict that the company is capable of handling the financial obligation, can grow quickly and manage the growth scale.

Introduction

The purpose of this exercise is to find the company with good credit rating and handling the financial obligation.

Data Description

Field Name	Description	New Field Name
1 Co_Code	Company Code	Co_Code
2 Co_Name	Company Name	Co_Name
	Value of a company as on 2016 - Next Year(difference between the value of total assets and total	
3 Networth Next Year	liabilities)	Networth_Next_Year
4 Equity Paid Up	Amount that has been received by the company through the issue of shares to the shareholders	Equity_Paid_Up
5 Networth	Value of a company as on 2015 - Current Year	Networth
6 Capital Employed	Total amount of capital used for the acquisition of profits by a company	Capital_Employed
7 Total Debt	The sum of money borrowed by the company and is due to be paid	Total Debt
8 Gross Block	Total value of all of the assets that a company owns	Gross_Block
		_
	The difference between a company's current assets (cash, accounts receivable, inventories of raw	
9 Net Working Capital	materials and finished goods) and its current liabilities (accounts payable).	Net Working Capital
- Italian Sapital	All the assets of a company that are expected to be sold or used as a result of standard business	Tet_tetming_copies
.0 Current Assets	operations over the next year.	Curr_Assets
	Short-term financial obligations that are due within one year (includes amount that is set aside	
1 Current Liabilities and Provisions	cover a future liability)	Curr Liab and Prov
2 Total Assets/Liabilities	Ratio of total assets to liabailities of the company	Total Assets to Liab
2 Total Assets/ Liabilities	natio of total assets to havailities of the company	TOTAL_ASSETS_TO_FIRST
.3 Gross Sales	The grand total of sale transactions within the accounting period	Gross Sales
4 Net Sales	Gross sales minus returns, allowances, and discounts	Net Sales
4 Net Sales	Gross sales minus returns, anowances, and discounts	Net_sales
5 Other Lands	1	Other Income
.5 Other Income	Income realized from non-business activities (e.g. sale of long term asset)	Other_Income
sul of o		
.6 Value Of Output	Product of physical output of goods and services produced by company and its market price	Value_Of_Output
L7 Cost of Production	Costs incurred by a business from manufacturing a product or providing a service	Cost_of_Prod
	Costs which are made to create the demand for the product (advertising expenditures, packaging	
	and styling, salaries, commissions and travelling expenses of sales personnel, and the cost of shops	
18 Selling Cost	and showrooms)	Selling_Cost
19 PBIDT	Profit Before Interest, Depreciation & Taxes	PBIDT
20 PBDT	Profit Before Depreciation and Tax	PBDT
21 PBIT	Profit before interest and taxes	PBIT
22 PBT	Profit before tax	PBT
23 PAT	Profit After Tax	PAT
24 Adjusted PAT	Adjusted profit is the best estimate of the true profit	Adjusted_PAT
26 CP	Commercial paper , a short-term debt instrument to meet short-term liabilities.	CP
27 Revenue earnings in forex	Revenue earned in foreign currency	Rev_earn_in_forex
28 Revenue expenses in forex	Expenses due to foreign currency transactions	Rev_exp_in_forex
29 Capital expenses in forex	Long term investment in forex	Capital_exp_in_forex
30 Book Value (Unit Curr)	Net asset value	Book_Value_Unit_Curr
31 Book Value (Adj.) (Unit Curr)	Book value adjusted to reflect asset's true fair market value	Book_Value_Adj_Unit_Curr
, , , , ,	Product of the total number of a company's outstanding shares and the current market price of one	
32 Market Capitalisation	share	Market Capitalisation
	Cash Earnings per Share, profitability ratio that measures the financial performance of a company	
33 CEPS (annualised) (Unit Curr)	by calculating cash flows on a per share basis	CEPS annualised Unit Curr
34 Cash Flow From Operating Activities	Use of cash from ongoing regular business activities	Cash Flow From Opr
24 COST TOWN OPERATING ACTIVITIES	Cash used in the purchase of non-current assets—or long-term assets—that will deliver value in the	cost_now_rrom_opr
35 Cash Flow From Investing Activities	future	Cash Flow From Inv
55 Cash Flow From investing Activities		Cash_riow_From_inv
26 Cash Flow From Fig A -tiiti	Net flows of cash that are used to fund the company (transactions involving debt, equity, and	Cach Flow From Fin
36 Cash Flow From Financing Activities	dividends)	Cash_Flow_From_Fin
37 ROG-Net Worth (%)	Rate of Growth - Networth	ROG_Net_Worth_perc
38 ROG-Capital Employed (%)	Rate of Growth - Capital Employed Rate of Growth - Gross Block	ROG_Capital_Employed_perc
39 ROG-Gross Block (%)		ROG Gross Block perc

40	ROG-Gross Sales (%)	Rate of Growth - Gross Sales	ROG_Gross_Sales_perc
41	ROG-Net Sales (%)	Rate of Growth - Net Sales	ROG_Net_Sales_perc
42	ROG-Cost of Production (%)	Rate of Growth - Cost of Production	ROG_Cost_of_Prod_perc
43	ROG-Total Assets (%)	Rate of Growth - Total Assets	ROG_Total_Assets_perc
44	ROG-PBIDT (%)	Rate of Growth- PBIDT	ROG_PBIDT_perc
45	ROG-PBDT (%)	Rate of Growth- PBDT	ROG_PBDT_perc
46	ROG-PBIT (%)	Rate of Growth- PBIT	ROG_PBIT_perc
47	ROG-PBT (%)	Rate of Growth- PBT	ROG_PBT_perc
48	ROG-PAT (%)	Rate of Growth- PAT	ROG_PAT_perc
49	ROG-CP (%)	Rate of Growth- CP	ROG_CP_perc
50	ROG-Revenue earnings in forex (%)	Rate of Growth - Revenue earnings in forex	ROG_Rev_earn_in_forex_perc
51	ROG-Revenue expenses in forex (%)	Rate of Growth - Revenue expenses in forex	ROG_Rev_exp_in_forex_perc
52	ROG-Market Capitalisation (%)	Rate of Growth - Market Capitalisation	ROG_Market_Capitalisation_perc
53	Current Ratio[Latest]	Liquidity ratio, company's ability to pay short-term obligations or those due within one year	Curr_Ratio_Latest
		Solvency ratio, the capacity of a company to discharge its obligations towards long-term lenders	
54	Fixed Assets Ratio[Latest]	indicating	Fixed_Assets_Ratio_Latest
		Activity ratio, specifies the number of times the stock or inventory has been replaced and sold by	
55	Inventory Ratio[Latest]	the company	Inventory_Ratio_Latest
56	Debtors Ratio[Latest]	Measures how quickly cash debtors are paying back to the company	Debtors_Ratio_Latest
57	Total Asset Turnover Ratio[Latest]	The value of a company's revenues relative to the value of its assets	Total_Asset_Turnover_Ratio_Latest
58	Interest Cover Ratio[Latest]	Determines how easily a company can pay interest on its outstanding debt	Interest_Cover_Ratio_Latest
59	PBIDTM (%)[Latest]	Profit before Interest Depreciation and Tax Margin	PBIDTM_perc_Latest
60	PBITM (%)[Latest]	Profit Before Interest Tax Margin	PBITM_perc_Latest
61	PBDTM (%)[Latest]	Profit Before Depreciation Tax Margin	PBDTM_perc_Latest
62	CPM (%)[Latest]	Cost per thousand (advertising cost)	CPM_perc_Latest
63	APATM (%)[Latest]	After tax profit margin	APATM_perc_Latest
64	Debtors Velocity (Days)	Average days required for receiving the payments	Debtors_Vel_Days
65	Creditors Velocity (Days)	Average number of days company takes to pay suppliers	Creditors_Vel_Days
66	Inventory Velocity (Days)	Average number of days the company needs to turn its inventory into sales	Inventory_Vel_Days
67	Value of Output/Total Assets	Ratio of Value of Output (market value) to Total Assets	Value_of_Output_to_Total_Assets
68	Value of Output/Gross Block	Ratio of Value of Output (market value) to Gross Block	Value_of_Output_to_Gross_Block

Sample of the dataset:

	Co_Code	Co_Name	Networth Next Year	Equity Paid Up	Networth	Capital Employed	Total Debt	Gross Block	Net Working Capital	Current Assets	 PBIDTM (%) [Latest]	PBITM (%) [Latest]	PBDTM (%) [Latest]	CPM (%) [Latest]	APATM (%) [Latest]	Debt Velo (Da
0	16974	Hind.Cables	-8021.60	419.36	-7027.48	-1007.24	5936.03	474.30	-1076.34	40.50	 0.00	0.00	0.00	0.00	0.00	
1	21214	Tata Tele. Mah.	-3986.19	1954.93	-2968.08	4458.20	7410.18	9070.86	-1098.88	486.86	 -10.30	-39.74	-57.74	-57.74	-87.18	
2	14852	ABG Shipyard	-3192.58	53.84	506.86	7714.68	6944.54	1281.54	4496.25	9097.64	 -5279.14	-5516.98	-7780.25	-7723.67	-7961.51	
3	2439	GTL	-3054.51	157.30	-623.49	2353.88	2326.05	1033.69	-2612.42	1034.12	 -3.33	-7.21	-48.13	-47.70	-51.58	
4	23505	Bharati	-2967.36	50.30	-1070.83	4675.33	5740.90	1084.20	1836.23	4685.81	 -295.55	-400.55	-845.88	379.79	274.79	3

Fig 1.1 Dataset Sample Before Changing Column Names

	Networth_Next_Year	Equity_Paid_Up	Networth	Capital_Employed	Total_Debt	Gross_Block	Net_Working_Capital	Curr_Assets	Curr_Liab_and_Prov 1
0	-8021.60	419.36	-7027.48	-1007.24	5936.03	474.30	-1076.34	40.50	1116.85
1	-3986.19	1954.93	-2968.08	4458.20	7410.18	9070.86	-1098.88	486.86	1585.74
2	-3192.58	53.84	506.86	7714.68	6944.54	1281.54	4496.25	9097.64	4601.39
3	-3054.51	157.30	-623.49	2353.88	2326.05	1033.69	-2612.42	1034.12	3646.54
4	-2967.36	50.30	-1070.83	4675.33	5740.90	1084.20	1836.23	4685.81	2849.58

Fig 1.2 Dataset Sample After Changing Column Names

Exploratory Data Analysis

Let us check the types of variables in the data frame.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3586 entries, 0 to 3585
Data columns (total 67 columns):
Co Code
                                                    3586 non-null int64
Co Name
                                                   3586 non-null object
                                                  3586 non-null float64
Networth Next Year
Equity Paid Up
                                                  3586 non-null float64
                                                  3586 non-null float64
Networth
Capital Employed
                                                  3586 non-null float64
Total Debt
                                                   3586 non-null float64
Gross Block
                                                   3586 non-null float64
Net Working Capital
                                                  3586 non-null float64
Current Assets
                                                  3586 non-null float64
Current Liabilities and Provisions 3586 non-null float64
Total Assets/Liabilities
                                                   3586 non-null float64
Gross Sales
                                                  3586 non-null float64
Net Sales
                                                   3586 non-null float64
Other Income
                                                   3586 non-null float64
Value Of Output
                                                  3586 non-null float64
Cost of Production
                                                  3586 non-null float64
                                                   3586 non-null float64
Selling Cost
                                                  3586 non-null float64
PBIDT
PBDT
                                                   3586 non-null float64
                                                   3586 non-null float64
PBIT
PBT
                                                   3586 non-null float64
                                                   3586 non-null float64
PAT
                                                  3586 non-null float64
Adjusted PAT
                                                  3586 non-null float64
Revenue earnings in forex

Revenue expenses in forex

Capital expenses in forex

Book Value (Unit Curr)

Book Value (Adj.) (Unit Curr)

Market Capitalisation

CEPS (annualised) (Unit Curr)

Cash Flow From Operating Activities

Cash Flow From Investing Activities

3586 non-null float64

3586 non-null float64
CP
```

Fig- 1.3. Sample Datatypes of the variable with null values

There are total 3586 rows and 67 columns in the dataset.

1.1 Outlier Treatment

The boxplot is plotted for all the variable without treating the outliers.

Fig- 1.5 Shape After Outliers Treatment

1.2 Missing Value Treatment

	Fig- 1.4 Sha	ape After Outliers Treatment	
Co_Code	0	Networth_Next_Year	0
Co_Name	0	Equity_Paid_Up	0
Networth_Next_Year	0	Networth	0
Equity_Paid_Up	0	Capital_Employed	0
Networth	0	Total_Debt	0
Capital_Employed	0	Gross_Block	0
Total_Debt	0	Net_Working_Capital	0
Gross_Block	0	Curr_Assets	0
Net_Working_Capital	0	Curr_Liab_and_Prov	0
Curr_Assets	0	Total_Assets_to_Liab	0
Curr_Liab_and_Prov	0	Gross_Sales	0
Total_Assets_to_Liab	0	Net Sales	0
Gross_Sales	0	Other_Income	0
Net_Sales	0	Value_Of_Output	0
Other_Income	0	Cost_of_Prod	0
Value_Of_Output	0	Selling_Cost	0
Cost_of_Prod	0	PBIDT	0
Selling_Cost	0	PBDT	0
PBIDT	0	PBIT	0
PBDT	0	PBT	0
PBIT	0	PAT	0
PBT	0	Adjusted_PAT	0
PAT	0	CP	0
Adjusted_PAT	0	Rev_earn_in_forex	0
CP	0	Rev_exp_in_forex	0
Rev_earn_in_forex	0	Capital_exp_in_forex	0
Rev_exp_in_forex	0	Book_Value_Unit_Curr	0
Capital_exp_in_forex	0	Book_Value_Adj_Unit_Curr	0
Book_Value_Unit_Curr	0	Market_Capitalisation	0
Book_Value_Adj_Unit_Curr	4	CEPS_annualised_Unit_Curr	0
ROG Gross Block perc		ROG Gross Block perc	0
ROG_Gross_Sales_perc	0	ROG_Gross_Sales_perc	0
ROG_Net_Sales_perc	0	ROG_Net_Sales_perc	0
ROG_Cost_of_Prod_perc	0	ROG_Cost_of_Prod_perc	0
ROG_Total_Assets_perc	0	ROG Total Assets perc	0
ROG_PBIDT_perc	0	ROG_PBIDT_perc	0
ROG_PBDT_perc	0	ROG_PBDT_perc	0
ROG_PBIT_perc	0	ROG_PBIT_perc	0
ROG_PBT_perc	0	ROG_PBT_perc	0
ROG_PAT_perc	0	ROG_PAT_perc	0
ROG_CP_perc	0	ROG_CP_perc	0
ROG_Rev_earn_in_forex_perc	0	ROG Rev earn in forex perc	0

Fig- 1.6 Before Treating Missing value

Fig- 1.7 After Treating Missing value

${\bf 1.3\ Transform\ Target\ variable\ into\ 0\ and\ 1.}$

Target value 'Networth_Next_year' is transform into 0's and 1's.

Networth_Next_year < 0 (negative) then target or default variable = 1 Networth_Next_year > 0 (positive) then target or default variable = 0

- 1 Company might default.
- 0 Company might not default.

0 3198 1 388

Name: default, dtype: int64

Fig - 1.8 Default count.

0 0.891801 1 0.108199

Name: default, dtype: float64

Fig – 1.9 Default count in percentage.

Latest	APATM_perc_Latest	Debtors_Vel_Days	Creditors_Vel_Days	Inventory_Vel_Days	Value_of_Output_to_Total_Assets	Value_of_Output_to_Gross_Block	default
0.00	0.00	0.0	0.0	45.0	0.00	0.00	1
-57.74	-87.18	29.0	101.0	2.0	0.31	0.24	1
723.67	-7961.51	97.0	210.5	0.0	-0.03	-0.26	1
-47.70	-51.58	93.0	63.0	2.0	0.24	1.90	1
379.79	274.79	253.0	210.5	0.0	0.01	0.05	1

Fig – 1.10 Sample data after Transformation.

1.4 Univariate (4 marks) & Bivariate (6 marks) analysis with proper interpretation. (You may choose to include only those variables which were significant in the model building)

Uni-Variate Analysis:

Fig - 1.11 Univariate Analysis

From the above chart (displot and boxplot), there are outliers present in the economic.cond.national and economic.cond.household data. We can infer that there is no trend or pattern that it follows a normal distribution.

Bi – variate Analysis:

Fig - 1.12 Scatterplot for Bivariate Analysis

Multi – variate Analysis:

	Equity_Paid_Up	Networth	Capital_Employed	Total_Debt	Gross_Block	Net_Working_Capital	Curr_Assets	Curr_Liab_and_Prov
Equity_Paid_Up	1.000000	0.575311	0.678049	0.573822	0.615089	0.388607	0.631646	0.646325
Networth	0.575311	1.000000	0.873308	0.535012	0.665375	0.623119	0.760024	0.683618
Capital_Employed	0.678049	0.873306	1.000000	0.781394	0.824900	0.688619	0.902837	0.834573
Total_Debt	0.573822	0.535012	0.781394	1.000000	0.781595	0.574341	0.798859	0.780363
Gross_Block	0.615089	0.665375	0.824900	0.781595	1.000000	0.527678	0.814709	0.850400
Net_Working_Capital	0.388607	0.623119	0.688619	0.574341	0.527678	1.000000	0.761698	0.554177
Curr_Assets	0.631646	0.760024	0.902837	0.798859	0.814709	0.761698	1.000000	0.912895
Curr_Liab_and_Prov	0.646325	0.683618	0.834573	0.780363	0.850400	0.554177	0.912895	1.000000
Total_Assets_to_Liab	0.695357	0.836822	0.977779	0.806901	0.856130	0.657365	0.934370	0.906441
Gross_Sales	0.584579	0.721942	0.825233	0.727858	0.833787	0.645461	0.885011	0.866521
Net_Sales	0.565780	0.723721	0.827319	0.728285	0.832207	0.646346	0.885998	0.866431
Other_Income	0.547215	0.663716	0.741598	0.600497	0.721992	0.509973	0.744745	0.739434
Value_Of_Output	0.565715	0.727349	0.827751	0.727520	0.830015	0.647768	0.886111	0.866309
Cost_of_Prod	0.537617	0.673156	0.792087	0.718135	0.836093	0.634337	0.864821	0.847112
Selling_Cost	0.449257	0.593682	0.665321	0.595529	0.715885	0.513265	0.705795	0.700329
PBIDT	0.455248	0.787430	0.766376	0.573574	0.691599	0.576149	0.743035	0.702935
PBDT	0.318126	0.696443	0.593961	0.354797	0.533308	0.471505	0.571838	0.521224
PBIT	0.382343	0.741600	0.689721	0.486828	0.587191	0.540258	0.672483	0.624369
PBT	0.235951	0.618249	0.488698	0.234827	0.392171	0.412861	0.476762	0.417439
PAT	0.236287	0.619903	0.492140	0.238806	0.393956	0.412758	0.478623	0.418445
Adjusted_PAT	0.235459	0.616226	0.478390	0.224134	0.378879	0.402873	0.471071	0.407710
CP	0.324023	0.705317	0.606498	0.368987	0.547914	0.477619	0.581137	0.529975
Rev_earn_in_forex	0.296983	0.449846	0.508538	0.444829	0.565897	0.437218	0.538245	0.512520
Rev_exp_in_forex	0.382239	0.533567	0.604157	0.527873	0.654415	0.508922	0.646190	0.633391
Capital_exp_in_forex	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Book_Value_Unit_Curr	0.074402	0.592468	0.470570	0.241273	0.341511	0.394028	0.422223	0.347588

Fig – 1.13 Sample Multivariate analysis for correlation

Fig – 1.14 Multivariate analysis of plotting correlation in heatmap

From this Heatmap we can infer that 3 variables do not have any correlation and do not contribute on the output. So, dropping the insignificant variables.

Fig – 1.15 Multivariate analysis of plotting correlation in heatmap after dropping insignificant variable.

These are the highly correlated variables in the dataset with more than 90% of correlation

```
['Curr_Assets', 'Curr_Liab_and_Prov', 'Total_Assets_to_Liab', 'Net_Sales', 'Value_Of_Output', 'Cost_of_Prod', 'PBIT', 'PAT', 'Adjusted_PAT', 'CP', 'ROG_Net_Sales_perc', 'ROG_PBDT_perc', 'ROG_PBIT_perc', 'ROG_PAT_perc', 'ROG_CP_perc', 'CPM_perc_Latest', 'APATM_perc_Latest']
```

Fig – 1.16 Taking Highly correlated variables.

1.5 Train Test Split

The shape of the dataset after splitting the train and test data. The train data and test data are splitted in the ratio of 67:33 with the random state – 42.

1.6 Build Logistic Regression Model (using statsmodel library) on most important variables on Train Dataset and choose the optimum cutoff. Also showcase your model building approach.

	Feature	Rank
1	Networth	1
2	Capital_Employed	1
3	Total_Debt	1
8	Selling_Cost	1
9	PBIDT	1
12	Rev_exp_in_forex	1
13	Book_Value_Unit_Curr	1
15	Market_Capitalisation	1
16	CEPS_annualised_Unit_Curr	1
20	ROG_Net_Worth_perc	1
29	Curr_Ratio_Latest	1
31	Inventory_Ratio_Latest	1
32	Debtors_Ratio_Latest	1
34	Interest_Cover_Ratio_Latest	1
42	Value_of_Output_to_Gross_Block	1

Fig - 1.21 Selecting the feature with rank 1

Dep. Variable: default No. Observations: 2402

Model - 1

Logit	Rea	ression	Resu	lts.
-vgii	8	10331011	1,4230	

Dep. remaine.				_			
Model:	Logit	Df R	esiduals:	2386			
Method:	MLE	-	Of Model:		15		
Date:	Sun, 08 May 2022	Pseudo R-squ.:		0.5980			
Time:	15:33:23	Log-Li	kelihood:	-33	1.01		
converged:	True		LL-Null:	-82	3.47		
		LLR	p-value:	2.301e	-200		
		_					
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.5240	0.505	-14.887	0.000	-8.515	-6.533
	Networth	-0.6488	0.417	-1.557	0.119	-1.465	0.168
	Capital_Employed	-0.5778	0.566	-1.020	0.308	-1.688	0.532
	Total_Debt	1.3585	0.375	3.622	0.000	0.623	2.094
	Selling_Cost	-0.3243	0.278	-1.168	0.243	-0.868	0.220
	PBIDT	-0.5765	0.329	-1.752	0.080	-1.221	0.068
	Rev_exp_in_forex	0.3099	0.226	1.372	0.170	-0.133	0.753
Boo	ok_Value_Unit_Curr	-6.0852	0.643	-9.460	0.000	-7.346	-4.824
Ma	arket_Capitalisation	-0.5763	0.307	-1.880	0.080	-1.177	0.024
CEPS_an	nualised_Unit_Curr	-0.4984	0.354	-1.406	0.160	-1.193	0.198
RO	G_Net_Worth_perc	-0.4011	0.132	-3.045	0.002	-0.659	-0.143
	Curr_Ratio_Latest	-0.6999	0.651	-1.074	0.283	-1.977	0.577
Inve	ntory_Ratio_Latest	-1.5284	1.127	-1.356	0.175	-3.738	0.681
De	btors_Ratio_Latest	-1.1137	1.821	-0.612	0.541	-4.683	2.455
Interest_0	Cover_Ratio_Latest	-0.4314	0.329	-1.312	0.190	-1.076	0.213
Value_of_Outp	ut_to_Gross_Block	-0.4849	0.160	-3.027	0.002	-0.799	-0.171

Possibly complete quasi-separation: A fraction 0.31 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig – 1.22 Model-1 summary report

	variables	VIF
1	Capital_Employed	10.551510
0	Networth	7.834042
4	PBIDT	4.958060
8	CEPS_annualised_Unit_Curr	3.867756
2	Total_Debt	3.726912
6	Book_Value_Unit_Curr	2.883423
7	Market_Capitalisation	2.637387
3	Selling_Cost	2.561778
5	Rev_exp_in_forex	2.035821
9	ROG_Net_Worth_perc	1.689240
14	Value_of_Output_to_Gross_Block	1.119548
13	Interest_Cover_Ratio_Latest	1.058831
12	Debtors_Ratio_Latest	1.013745
11	Inventory_Ratio_Latest	1.013311
10	Curr_Ratio_Latest	1.007535

Fig – 1.23 Variance Inflation Factor.of Model-1

The capital Employed has the highest vif and p-value is greater than the alpha value(0.05), capital_employed variable is dropped.

Model-2

Logit Regression Results

Dep. Variable:	default	No. Obse	rvations:	:	2402		
Model:	Logit	Df R	esiduals:		2387		
Method:	MLE	- 1	Df Model:	14			
Date:	Sun, 08 May 2022	Pseud	o R-squ.:	0.6	5974		
Time:	15:33:24	Log-Li	kelihood:	-33	1.54		
converged:	True		LL-Null:	-82	3.47		
		LLR	p-value:	4.540e	-201		
		coef	std err	z	P> z	[0.025	0.975]
	Intercept	-7.5470	0.510	-14.811	0.000	-8.546	-6.548
	Networth	-0.8686	0.352	-2.470	0.014	-1.558	-0.179
	Total_Debt	1.0725	0.242	4.431	0.000	0.598	1.547
	Selling_Cost	-0.3760	0.279	-1.345	0.178	-0.924	0.172
	PBIDT	-0.5928	0.330	-1.799	0.072	-1.239	0.053
	Rev_exp_in_forex	0.3181	0.225	1.411	0.158	-0.124	0.760
Boo	ok_Value_Unit_Curr	-6.1148	0.640	-9.549	0.000	-7.370	-4.880
Ma	arket_Capitalisation	-0.6607	0.300	-2.204	0.028	-1.248	-0.073
CEPS_an	nualised_Unit_Curr	-0.4813	0.352	-1.368	0.171	-1.171	0.208
RO	G_Net_Worth_perc	-0.3968	0.131	-3.026	0.002	-0.654	-0.140
	Curr_Ratio_Latest	-0.7180	0.657	-1.093	0.274	-2.005	0.569
Inve	ntory_Ratio_Latest	-1.7831	1.198	-1.488	0.137	-4.132	0.566
De	btors_Ratio_Latest	-1.0703	1.814	-0.590	0.555	-4.626	2.485
Interest_0	Cover_Ratio_Latest	-0.4291	0.331	-1.297	0.195	-1.078	0.219
Value_of_Outp	ut_to_Gross_Block	-0.4794	0.159	-3.008	0.003	-0.792	-0.167

Possibly complete quasi-separation: A fraction 0.32 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig - 1.24 Model-2 Summary Report

Debtors_Ratio_Latest has the highest p-value and is insignificant, therefore, we need to eliminate it.

Model 3:

Logit Regression Results

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df R	esiduals:	2	2388		
Method:	MLE	ı	Of Model:		13		
Date:	Sun, 08 May 2022	Pseudo R-squ.:		0.5971			
Time:	15:33:24	Log-Likelihood:		-331.81			
converged:	True	LL-Null:		-823.47			
		LLF	? p-value:	6.691e	-202		
		cnef	std err	z	P> z	[0.025	0.9751
	Intercept			-14.955	0.000	•	-6.524
	Networth	-0.8494	0.351	-2.419	0.016	-1.538	-0.161
	Total_Debt	1.0688	0.243	4.403	0.000	0.593	1.545
	Selling_Cost	-0.3801	0.278	-1.386	0.172	-0.925	0.165
	PBIDT	-0.5753	0.330	-1.742	0.081	-1.222	0.072
	Rev_exp_in_forex	0.3218	0.225	1.431	0.152	-0.119	0.762
Boo	k_Value_Unit_Curr	-6.1340	0.641	-9.568	0.000	-7.391	-4.877
Ma	rket_Capitalisation	-0.6840	0.294	-2.325	0.020	-1.261	-0.107
CEPS_an	nualised_Unit_Curr	-0.4861	0.353	-1.379	0.168	-1.177	0.205
RO	G_Net_Worth_perc	-0.4018	0.131	-3.065	0.002	-0.659	-0.145
	Curr_Ratio_Latest	-0.7118	0.654	-1.088	0.277	-1.994	0.571
Inve	ntory_Ratio_Latest	-1.8011	1.171	-1.538	0.124	-4.097	0.495
Interest_0	Cover_Ratio_Latest	-0.4319	0.329	-1.314	0.189	-1.076	0.212
Value_of_Outp	ut_to_Gross_Block	-0.4848	0.158	-3.070	0.002	-0.794	-0.175

Possibly complete quasi-separation: A fraction 0.32 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig – 1.25 Model-3 Summary Report

Curr_Ratio_Latest has the highest p-value and is insignificant, therefore, we need to eliminate it.

Logit Regression Results

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df R	esiduals:	2	389		
Method:	MLE	ı	Df Model:		12		
Date:	Sun, 08 May 2022	Pseud	o R-squ.:	0.5	958		
Time:	15:33:24	Log-Likelihood:		-33	2.83		
converged:	True		LL-Null:	-82	3.47		
		LLR	? p-value:	1.986e	-202		
		coef	std err	z	P> z	[0.025	0.975]
	Intercept	-7.5509	0.506	-14.928	0.000	-8.542	-6.560
	Networth	-0.8387	0.353	-2.379	0.017	-1.530	-0.148
	Total_Debt	1.0898	0.243	4.480	0.000	0.613	1.568
	Selling_Cost	-0.3819	0.280	-1.362	0.173	-0.932	0.168
	PBIDT	-0.5714	0.332	-1.722	0.085	-1.222	0.079
	Rev_exp_in_forex	0.3336	0.227	1.472	0.141	-0.111	0.778
Boo	k_Value_Unit_Curr	-6.2499	0.641	-9.747	0.000	-7.507	-4.993
Ma	rket_Capitalisation	-0.6961	0.293	-2.375	0.018	-1.271	-0.122
CEPS_ani	nualised_Unit_Curr	-0.4864	0.355	-1.370	0.171	-1.182	0.209
RO	G_Net_Worth_perc	-0.4182	0.132	-3.178	0.001	-0.676	-0.160
Inve	ntory_Ratio_Latest	-1.7889	1.194	-1.498	0.134	-4.129	0.551
Interest_0	Cover_Ratio_Latest	-0.4438	0.324	-1.369	0.171	-1.078	0.191
Value_of_Outp	ut_to_Gross_Block	-0.4809	0.157	-3.061	0.002	-0.789	-0.173

Possibly complete quasi-separation: A fraction 0.32 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig – 1.26 Model-4 Summary Report

Selling_Cost has the highest p-value and is insignificant, therefore, we need to eliminate it.

Logit Regression Results

	Dep. Variable:	default	No. Obse	rvations:	2	2402		
	Model:	Logit	Df R	esiduals:	2	390		
	Method:	MLE	ı	Df Model:		11		
	Date:	Sun, 08 May 2022	Pseud	o R-squ.:	0.5	948		
	Time:	15:33:24	Log-Li	kelihood:	-33	3.80		
	converged:	True		LL-Null:	-82	3.47		
			LLR	? p-value:	5.379e	-203		
			coef	std err	z	P> z	[0.025	0.975]
					_		•	•
		Intercept	-7.5288	0.505	-14.918	0.000	-8.518	-6.540
		Networth	-0.8268	0.353	-2.343	0.019	-1.519	-0.135
		Total_Debt	0.9580	0.225	4.258	0.000	0.517	1.399
		PBIDT	-0.5998	0.329	-1.824	0.068	-1.244	0.045
		Rev_exp_in_forex	0.2174	0.213	1.022	0.307	-0.199	0.634
	Boo	ok_Value_Unit_Curr	-6.3105	0.645	-9.783	0.000	-7.575	-5.048
	Ma	arket_Capitalisation	-0.7353	0.293	-2.511	0.012	-1.309	-0.161
	CEPS_an	nualised_Unit_Curr	-0.4640	0.352	-1.319	0.187	-1.153	0.228
	RO	G_Net_Worth_perc	-0.3982	0.130	-3.070	0.002	-0.653	-0.144
	Inve	entory_Ratio_Latest	-1.9713	1.287	-1.555	0.120	-4.455	0.513
	Interest_0	Cover_Ratio_Latest	-0.4464	0.328	-1.381	0.173	-1.089	0.198
,	Value_of_Outp	ut_to_Gross_Block	-0.4859	0.159	-3.059	0.002	-0.797	-0.175

Possibly complete quasi-separation: A fraction 0.32 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig – 1.27 Model-5 Summary Report

Rev_exp_in_forex has the highest p-value and is insignificant, therefore, we need to eliminate it.

Model 6:

Logit Regression Results

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df R	esiduals:	2	391		
Method:	MLE	ı	Df Model:	10			
Date:	Sun, 08 May 2022	Pseudo R-squ.:		0.5940			
Time:	15:33:25	Log-Likelihood:		-33	4.32		
converged:	True	LL-Null:		-82	3.47		
		LLR	? p-value:	8.798e	204		
		coef	std err	z	P> z	[0.025	0.975]
	Intercept	-7.5167	0.504	-14.910	0.000	-8.505	-6.529
	Networth	-0.8178	0.349	-2.344	0.019	-1.502	-0.134
	Total_Debt	1.0583	0.202	5.238	0.000	0.662	1.454
	PBIDT	-0.5462	0.323	-1.688	0.091	-1.180	0.088
Boo	k_Value_Unit_Curr	-6.2788	0.642	-9.777	0.000	-7.537	-5.020
Ma	rket_Capitalisation	-0.7145	0.287	-2.490	0.013	-1.277	-0.152
CEPS_an	nualised_Unit_Curr	-0.4606	0.351	-1.312	0.190	-1.149	0.228
RO	G_Net_Worth_perc	-0.4063	0.130	-3.128	0.002	-0.661	-0.152
Inve	ntory_Ratio_Latest	-2.0299	1.288	-1.576	0.115	-4.554	0.494
Interest_0	Cover_Ratio_Latest	-0.4404	0.332	-1.325	0.185	-1.092	0.211
Value_of_Outp	ut_to_Gross_Block	-0.4748	0.157	-3.018	0.003	-0.783	-0.168

Possibly complete quasi-separation: A fraction 0.31 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig - 1.28 Model-6 Summary Report

CEPS_annualised_Unit_Curr has the highest p-value and is insignificant, therefore, we need to eliminate it.

Model 7:

Logit Regression Results

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df R	esiduals:	2	2392		
Method:	MLE	1	Of Model:		9		
Date:	Sun, 08 May 2022	Pseud	o R-squ.:	0.5	930		
Time:	15:33:25	Log-Li	kelihood:	-33	5.18		
converged:	True		LL-Null:	-82	3.47		
		LLR	p-value:	1.928e	-204		
		coef	std err	z	P> z	[0.025	0.975]
	Intercept	-7.3533	0.484	-15.183	0.000	-8.303	-6.404
	Networth	-0.8102	0.353	-2.292	0.022	-1.503	-0.118
	Total_Debt	1.1250	0.199	5.641	0.000	0.734	1.516
	PBIDT	-0.7685	0.286	-2.685	0.007	-1.329	-0.208
Boo	k_Value_Unit_Curr	-6.2193	0.638	-9.750	0.000	-7.470	-4.969
Ma	rket_Capitalisation	-0.7431	0.286	-2.596	0.009	-1.304	-0.182
RO	G_Net_Worth_perc	-0.4692	0.122	-3.847	0.000	-0.708	-0.230
Inve	ntory_Ratio_Latest	-1.9878	1.292	-1.538	0.124	-4.521	0.545
Interest_0	Cover_Ratio_Latest	-0.4351	0.326	-1.336	0.182	-1.073	0.203
Value_of_Outp	ut_to_Gross_Block	-0.4700	0.158	-2.977	0.003	-0.779	-0.161

Possibly complete quasi-separation: A fraction 0.31 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig – 1.29 Model-7 Summary Report

Interest_Cover_Ratio_Latest has the highest p-value and is insignificant, therefore, we need to eliminate it.

Model 8:

Logit Regression Results

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df R	esiduals:	2	393		
Method:	MLE	ı	Of Model:		8		
Date:	Sun, 08 May 2022	Pseud	o R-squ.:	0.5	926		
Time:	15:33:25	Log-Li	kelihood:	-33	5.48		
converged:	True		LL-Null:	-82	3.47		
		LLR	p-value:	2.242e-	205		
		coef	std err	z	P> z	[0.025	0.975]
	Intercept	-7.3385	0.483	-15.186	0.000	-8.286	-6.391
	Networth	-0.8121	0.354	-2.297	0.022	-1.505	-0.119
	Total_Debt	1.1298	0.199	5.677	0.000	0.740	1.520
	PBIDT	-0.7743	0.286	-2.712	0.007	-1.334	-0.215
Boo	k_Value_Unit_Curr	-6.2276	0.640	-9.732	0.000	-7.482	-4.973
Ma	rket_Capitalisation	-0.7470	0.286	-2.608	0.009	-1.308	-0.188
RO	G_Net_Worth_perc	-0.4891	0.122	-3.852	0.000	-0.708	-0.230
Inve	ntory_Ratio_Latest	-1.9615	1.283	-1.529	0.126	-4.475	0.552
Value_of_Outpo	ut_to_Gross_Block	-0.4720	0.158	-2.990	0.003	-0.781	-0.163

Possibly complete quasi-separation: A fraction 0.31 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig – 1.30 Model-8 Summary Report

Inventory_Ratio_Latest has the highest p-value and is insignificant, therefore, we need to eliminate it.

Logit			

Dep. Variable:	default	No. Obse	rvations:		2402		
Model:	Logit	Df R	esiduals:	2	2394		
Method:	MLE	ı	Df Model:		7		
Date:	Sun, 08 May 2022	Pseud	o R-squ.:	0.5	914		
Time:	15:33:25	Log-Li	kelihood:	-33	6.44		
converged:	True		LL-Null:	-82	3.47		
		LLF	p-value:	4.858e	-208		
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.2051	0.466	-15.468	0.000	-8.118	-6.292
	Networth	-0.7906	0.351	-2.250	0.024	-1.479	-0.102
	Total_Debt	1.1148	0.198	5.620	0.000	0.726	1.504
	PBIDT	-0.7480	0.285	-2.625	0.009	-1.306	-0.190
Boo	ok_Value_Unit_Curr	-6.2362	0.639	-9.761	0.000	-7.488	-4.984
Ma	arket_Capitalisation	-0.7612	0.284	-2.680	0.007	-1.318	-0.205
RO	G_Net_Worth_perc	-0.4728	0.121	-3.894	0.000	-0.711	-0.235
Value_of_Outp	ut_to_Gross_Block	-0.4841	0.157	-3.080	0.002	-0.792	-0.176

Possibly complete quasi-separation: A fraction 0.30 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig - 1.31 Model-9 Summary Report

Now, all the variables are significant and p-value is less than the alpha value 0.05. Therefore, we don't need to eliminate the other variables.

1.7 Validate the Model on Test Dataset and state the performance matrices. Also state interpretation from the model

The optimum threshold is 0.16890979736726344

Fig - 1.32 Optimum threshold

 $Fig-1.\ 33\ Confusion\ matrix\ for\ train\ data$

Fig – 1.34 Confusion matrix for test data

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.989	0.930	0.959	2142	0	0.987	0.934	0.960	1056
1	0.613	0.915	0.735	260	1	0.622	0.898	0.735	128
accuracy			0.928	2402	accuracy			0.930	1184
macro avg	0.801	0.923	0.847	2402	macro avg	0.804	0.916	0.847	1184
weighted avg	0.948	0.928	0.934	2402	weighted avg	0.947	0.930	0.935	1184

Fig – 1. 35 Classification report for train data

Fig - 1. 36 Classification report for test data

From the train data and test data we can infer that recall is good for both training and test data classification report.

The test data has 89.8% recall that company might default.

The precision of test data is slightly greater than the train data, test data is slightly over fitting.

1.8 Build a Random Forest Model on Train Dataset. Also showcase your model building approach.

RandomForestClassifier(max_depth=35, n_jobs=-1, oob_score=True, random_state=42)
Fig - 1. 37 Initializing Random Forest Classifier

	Feature	Rank
0	Networth	1
1	Capital_Employed	1
2	Total_Debt	1
4	PBIDT	1
6	Book_Value_Unit_Curr	1
7	Market_Capitalisation	1
8	CEPS_annualised_Unit_Curr	1
9	ROG_Net_Worth_perc	1
10	Curr_Ratio_Latest	1
12	Debtors_Ratio_Latest	1
13	Interest_Cover_Ratio_Latest	1
14	Value_of_Output_to_Gross_Block	1

Fig – 1.38. Taking features with Rank 1

0 2142 1 260

Name: default, dtype: int64

 $\label{eq:fig-fig} \textit{Fig} - 1.39 \; \text{value count of the target column}.$

Model Building of Random forest model:

Model - 1

Optimization terminated successfully.

Current function value: 0.143538

Iterations 11

Fig – 1.40 Initializing Model-1 using RF model

Dep. Variable:	default	No. Obse	ervations:	2	2402		
Model:	Logit	Df R	esiduals:	2	2392		
Method:	MLE	1	Df Model:		9		
Date:	Sun, 15 May 2022	Pseud	o R-squ.:	0.5813			
Time:	16:10:05	Log-Li	kelihood:	-34	4.78		
converged:	True		LL-Null:	-82	3.47		
		LLF	R p-value:	2.660e	-200		
		_					
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.2470	0.479	-15.123	0.000	-8.186	-6.308
	Networth	-1.2523	0.361	-3.471	0.001	-1.959	-0.545
	Capital_Employed	0.8079	0.279	2.897	0.004	0.261	1.355
	PBIDT	-0.5091	0.298	-1.705	0.088	-1.094	0.076
Boo	k_Value_Unit_Curr	-6.0603	0.619	-9.798	0.000	-7.273	-4.848
CEPS_an	nualised_Unit_Curr	-0.6261	0.343	-1.826	0.068	-1.298	0.046
RO	G_Net_Worth_perc	-0.4156	0.129	-3.215	0.001	-0.669	-0.162
	Curr_Ratio_Latest	-0.9498	0.715	-1.329	0.184	-2.350	0.451
Interest_0	Cover_Ratio_Latest	-0.4397	0.294	-1.493	0.135	-1.017	0.137
Value_of_Outp	ut_to_Gross_Block	-0.5023	0.150	-3.358	0.001	-0.795	-0.209

Possibly complete quasi-separation: A fraction 0.30 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig – 1.41 Model-1 Summary.

	variables	VIF
3	PBIDT	4.937125
0	Networth	4.186395
7	CEPS_annualised_Unit_Curr	3.863618
5	Book_Value_Unit_Curr	2.882603
6	Market_Capitalisation	2.620160
2	Selling_Cost	2.558143
1	Total_Debt	2.056451
4	Rev_exp_in_forex	2.027065
8	ROG_Net_Worth_perc	1.652846
13	Value_of_Output_to_Gross_Block	1.118399
12	Interest_Cover_Ratio_Latest	1.048832
11	Debtors_Ratio_Latest	1.013579
10	Inventory_Ratio_Latest	1.013266
9	Curr_Ratio_Latest	1.007419

Fig – 1.42 Model-1 Variation Inflation Matrix (VIF)

Curr_Ratio_Latest has the highest p-value and is insignificant, therefore, we need to eliminate it.

Model - 2

Optimization terminated successfully. Current function value: 0.144188 Iterations 11

Fig – 1.43 Initializing Model-2

Logit Regression	Results						
Dep. Variable:	default	No. Obse	rvations:	2	402		
Model:	Logit	Df R	esiduals:	2	393		
Method:	MLE	I	Of Model:		8		
Date:	Sun, 15 May 2022	Pseud	o R-squ.:	0.5	794		
Time:	16:10:05	Log-Lil	kelihood:	-346	5.34		
converged:	True		LL-Null:	-823	3.47		
		LLR	p-value:	1.111e-	200		
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.3006	0.485	-15.061	0.000	-8.251	-6.351
	Networth	-1.2588	0.364	-3.456	0.001	-1.973	-0.545
	Capital_Employed	0.8416	0.281	2.995	0.003	0.291	1.392
	PBIDT	-0.5027	0.300	-1.675	0.094	-1.091	0.086
Boo	k_Value_Unit_Curr	-6.2010	0.620	-10.003	0.000	-7.416	-4.986
CEP\$_ani	nualised_Unit_Curr	-0.6334	0.346	-1.830	0.067	-1.312	0.045
RO	G_Net_Worth_perc	-0.4371	0.130	-3.362	0.001	-0.692	-0.182
Interest_0	Cover_Ratio_Latest	-0.4537	0.290	-1.565	0.117	-1.022	0.114
Value_of_Outp	ut_to_Gross_Block	-0.4973	0.149	-3.349	0.001	-0.788	-0.206

Possibly complete quasi-separation: A fraction 0.30 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig - 1.44 Model-2 Summary

Interest_Cover_Ratio_Latest has the highest p-value and is insignificant, therefore, we need to eliminate it.

Model - 3

Optimization terminated successfully.

Current function value: 0.144347

Iterations 11

Fig - 1.45 Initializing Model-3

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df Residuals:		2	2394		
Method:	MLE	I	Of Model:		7		
Date:	Sun, 15 May 2022	Pseud	o R-squ.:	0.5	789		
Time:	16:10:05	Log-Li	kelihood:	-346.72			
converged:	True		LL-Null:	-823.47			
		LLF	R p-value:	1.343e	-201		
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.2848	0.484	-15.051	0.000	-8.233	-6.336
	Networth	-1.2642	0.365	-3.464	0.001	-1.979	-0.549
	Capital_Employed	0.8500	0.281	3.025	0.002	0.299	1.401
	PBIDT	-0.5105	0.300	-1.703	0.089	-1.098	0.077
Boo	k_Value_Unit_Curr	-6.2101	0.622	-9.985	0.000	-7.429	-4.991
CEPS_ani	nualised_Unit_Curr	-0.6336	0.346	-1.833	0.067	-1.311	0.044
RO	G_Net_Worth_perc	-0.4367	0.130	-3.364	0.001	-0.691	-0.182
Value_of_Outp	ut_to_Gross_Block	-0.4992	0.149	-3.361	0.001	-0.790	-0.208

Possibly complete quasi-separation: A fraction 0.30 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig - 1.46 Model-3 Summary

PBIDT has the highest p-value and is insignificant, therefore, we need to eliminate it.

<u> Model - 4</u>

Optimization terminated successfully.

Current function value: 0.145004

Iterations 11

Fig – 1.47 Initializing Model-4

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df R	esiduals:	2	2395		
Method:	MLE	ı	Df Model:		6		
Date:	Sun, 15 May 2022	Pseud	o R-squ.:	0.5	770		
Time:	16:10:06	Log-Li	kelihood:	-34	8.30		
converged:	True		LL-Null:	-82	3.47		
		LLF	R p-value:	4.908e	-202		
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.2406	0.478	-15.153	0.000	-8.177	-6.304
	Networth	-1.1449	0.344	-3.326	0.001	-1.820	-0.470
	Capital_Employed	0.6531	0.251	2.604	0.009	0.162	1.145
Boo	ok_Value_Unit_Curr	-6.2606	0.625	-10.023	0.000	-7.485	-5.036
CEPS_an	nualised_Unit_Curr	-0.9019	0.304	-2.965	0.003	-1.498	-0.306
RO	G_Net_Worth_perc	-0.4620	0.130	-3.563	0.000	-0.716	-0.208

Possibly complete quasi-separation: A fraction 0.30 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig - 1.48 Model-4 Summary

0.147 -3.358 0.001 -0.782 -0.205

All features are having p-value less than the alpha value. So model building for the Random Forest is over.

Value_of_Output_to_Gross_Block -0.4935

1.9 Validate the Random Forest Model on test Dataset and state the performance matrices. Also state interpretation from the model.

Fig – 1.49 Boxplot for Default variable.

Optimal threshold value of Random Forest model is 0.22423536888400453

Fig - 1.50 Optimum threshold value

842 0.080 1057 0.018 1595 0.189 100 0.888 0.007 1191 2163 0.000 0.005 2763 2701 0.000 2072 0.020 2349 0.001 1392 0.000 1621 0.032 1960 0.000 0.000 2148 571 0.000 0.168 1984 1592 0.006 0.000 3110 1564 0.000 2155 0.375 dtype: float64

Fig – 1.51 Predicted train values

251 7.840598e-01 3493 2.465653e-10 3063 5.228939e-07 2384 2.317520e-03 1679 2.060074e-02 dtype: float64

Fig – 1.52 Predicted test values

Fig – 1.53 Boxplot for test values

Optimal threshold value of Random Forest model test data is 0.36950413411928446

Fig – 1.54 Optimum threshold values for test data

1.10 Build a LDA Model on Train Dataset. Also showcase your model building approach.

LinearDiscriminantAnalysis(solver='eigen')

Fig 1.63 Initializing LDA model

	Feature	Rank
0	Networth	1
1	Capital_Employed	1
2	Total_Debt	1
4	PBIDT	1
6	Book_Value_Unit_Curr	1
7	Market_Capitalisation	1
8	CEPS_annualised_Unit_Curr	1
9	ROG_Net_Worth_perc	1
14	Value_of_Output_to_Gross_Block	1

Fig 1.64 Taking features with rank 1 for LDA model

0 1056 1 128

Name: default, dtype: int64

Fig 1.65 Value count for default variable

Model - 1

Optimization terminated successfully. Current function value: 0.139387 Iterations 11

Fig 1.66 Model 1 Initializing

Logit Regression Results

Dep. Variable:	default	No. Obse	ervations:	2	2402		
Model:	Logit	Df R	esiduals:	2	2392		
Method:	MLE	ı	Df Model:		9		
Date:	Sun, 15 May 2022	Pseud	o R-squ.:	0.5	5934		
Time:	16:37:57	Log-Li	kelihood:	-33	4.81		
converged:	True		LL-Null:	-82	3.47		
		LLF	R p-value:	1.336e	-204		
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.3485	0.482	-15.245	0.000	-8.293	-6.404
	Networth	-0.5328	0.408	-1.305	0.192	-1.333	0.268
	Capital_Employed	-0.7052	0.548	-1.287	0.198	-1.779	0.369
	Total_Debt	1.4287	0.357	3.997	0.000	0.728	2.129
	PBIDT	-0.4808	0.321	-1.498	0.134	-1.110	0.148
Boo	k_Value_Unit_Curr	-6.2383	0.645	-9.667	0.000	-7.503	-4.974
Ma	rket_Capitalisation	-0.6361	0.289	-2.197	0.028	-1.203	-0.069
CEP\$_an	nualised_Unit_Curr	-0.4805	0.352	-1.366	0.172	-1.170	0.209
RO	G_Net_Worth_perc	-0.4206	0.131	-3.221	0.001	-0.677	-0.165
Value_of_Outp	ut_to_Gross_Block	-0.4910	0.157	-3.130	0.002	-0.798	-0.184

Possibly complete quasi-separation: A fraction 0.31 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig 1.67 Model -1 summary

	variables	VIF
1	Capital_Employed	10.348232
0	Networth	7.759803
3	PBIDT	4.738334
6	CEPS_annualised_Unit_Curr	3.815682
2	Total_Debt	3.464989
4	Book_Value_Unit_Curr	2.874226
5	Market_Capitalisation	2.531367
7	ROG_Net_Worth_perc	1.663652
8	Value_of_Output_to_Gross_Block	1.113905

Fig 1.68 Model -1 VIF

Capital_Employed has the highest VIF value and is insignificant, therefore, we need to eliminate it.

Model – 2

Optimization terminated successfully.

Current function value: 0.139736

Iterations 11

Fig 1.69 Model – 2 Intializing

Logit Regression Results

Dep. Variable:	default	No. Obse	rvations:	2	2402		
Model:	Logit	Df R	esiduals:	2	2393		
Method:	MLE	ı	Of Model:		8		
Date:	Sun, 15 May 2022	Pseud	o R-squ.:	0.5	924		
Time:	16:37:57	Log-Li	kelihood:	-33	5.65		
converged:	True		LL-Null:	-82	3.47		
		LLF	R p-value:	2.697e	-205		
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-7.3574	0.485	-15.160	0.000	-8.309	-6.406
	Networth	-0.7995	0.347	-2.302	0.021	-1.480	-0.119
	Total_Debt	1.0527	0.201	5.241	0.000	0.659	1.446
	PBIDT	-0.5350	0.322	-1.659	0.097	-1.167	0.097
Boo	k_Value_Unit_Curr	-6.2904	0.643	-9.783	0.000	-7.551	-5.030
Ma	rket_Capitalisation	-0.7371	0.285	-2.589	0.010	-1.295	-0.179
CEP\$_ani	nualised_Unit_Curr	-0.4388	0.348	-1.261	0.207	-1.121	0.243
RO	G_Net_Worth_perc	-0.4119	0.130	-3.179	0.001	-0.666	-0.158

Possibly complete quasi-separation: A fraction 0.31 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

CEPS_annualised_Unit_Curr has the highest p-value and is insignificant, therefore, we need to eliminate it.

<u> Model – 3</u>

Optimization terminated successfully. Current function value: 0.140067 Iterations 11

Fig 1.71 Intializing Model -3

Logit Regression Results

Dep. Variable:	default	No. Observations:	2402
Model:	Logit	Df Residuals:	2394
Method:	MLE	Df Model:	7
Date:	Sun, 15 May 2022	Pseudo R-squ.:	0.5914
Time:	16:37:57	Log-Likelihood:	-336.44
converged:	True	LL-Null:	-823.47
		LLR p-value:	4.858e-206

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-7.2051	0.466	-15.468	0.000	-8.118	-6.292
Networth	-0.7906	0.351	-2.250	0.024	-1.479	-0.102
Total_Debt	1.1148	0.198	5.620	0.000	0.726	1.504
PBIDT	-0.7480	0.285	-2.625	0.009	-1.306	-0.190
Book_Value_Unit_Curr	-6.2362	0.639	-9.761	0.000	-7.488	-4.984
Market_Capitalisation	-0.7612	0.284	-2.680	0.007	-1.318	-0.205
ROG_Net_Worth_perc	-0.4728	0.121	-3.894	0.000	-0.711	-0.235
Value_of_Output_to_Gross_Block	-0.4841	0.157	-3.080	0.002	-0.792	-0.176

Possibly complete quasi-separation: A fraction 0.30 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Fig 1.72 Model -3 Summary

All the features are having p-value less than the alpha value. So model building for the LDA model is completed.

1.11 Validate the LDA Model on test Dataset and state the performance matrices. Also state interpretation from the model.

Fig 1.73 Default value for LDA train model

Fig 1.74 Optimum threshold value for LDA train model

842 0.080 1057 0.019 1595 0.035 100 0.861 1191 0.010 2163 0.000 2763 0.002 2701 0.000 2072 0.020 2349 0.001 1392 0.000 1621 0.039 1960 0.000 2148 0.000 571 0.000 1984 0.026 1592 0.008 3110 0.000 1564 0.000 2155 0.264 dtype: float64

Fig 1.75 Predicted value for LDA train model

Fig 1.76 Default value for LDA test model

251 0.706 3493 0.000 3063 0.000 2384 0.001 1679 0.016 604 0.003 3434 0.000 2244 0.000 2523 0.000 2162 0.000 3102 0.000 1638 0.101 2046 0.000 1241 0.143 133 0.255 2294 0.001 2139 0.000 2844 0.011 1360 0.050 2896 0.000 dtype: float64

Fig 1.77 Predicted value for LDA test model

1.12 Compare the performances of Logistics, Radom Forest and LDA models (include ROC Curve).

	LR Test	RF Test	LDA Test
Accuracy	0.930	0.962	0.958
AUC	0.916	0.966	0.965
Recall	0.898	0.758	0.766
Precision	0.622	0.874	0.831
F1 Score	0.735	0.812	0.797

Fig 1.86 Comparison dataframe for LR,RF and LDA values.

From the above dataframe, Recall is higher in logistic Regression, precision is better in Random Forest classifier. *Overall Random Forest is better algorithm.*

1.13 State Recommendations from the above models

From the above model, Random Forest model is the best model with higher precision and recall.

Company with the following details will lead the investor to invest in the company are

- 1. Increase in debtor's shows company turnover has increased.
- 2. Increase in debtor's / decrease in creditors will lead to get fresh loan with lower interest rate with good credit rating for the company.
- 3. Reduction in creditors shows that the company follows the strict/disciplined payment terms.
- 4. Change in debt equity ratios shows that the company is growing.
- 5. Growth in current asset and decrease in current liability.
- 6. Increase in Net worth will help the company to provide good dividends for the share/stake holders.