Summer-2019 UM-SJTU JI Ve311 Homework #3

Instructor: Dr. Chang-Ching Tu

Due: 10:00 am, June 20, 2019 (Thursday) in class

Note:

- (1) Please use A4 size papers.
- (2) Please use the SPICE model below for simulation. .model Qbreakn NPN IS=5e-16 BF=100 VAF=100
- 1. [BJT Forward-Active Current] For a npn BJT with cross-section as below:
 - (a) [20%] Assuming $V_{BE} = 0.7$ V, calculate the base neutral region width (W_B) , and confirm whether $W_B \ll L_n$. (Hint: consider the depletion widths at the base/emitter and base/collector junctions.)
 - (b) [30%] Assuming $V_{BE} = 0.7 \text{ V}$, calculate I_C , I_B and I_E .

Note: use the appended graphs for L_n and D_n .

$$\begin{split} &N_{d(Emitter)} = 1 \times 10^{20} \ 1/cm^{3} \\ &N_{a(Base)} = 4 \times 10^{17} \ 1/cm^{3} \\ &N_{d(Collector)} = 1 \times 10^{18} \ 1/cm^{3} \end{split}$$

- 2. [BJT Forward-Active I-V Characteristics] For a npn BJT circuit as below:
 - (a) [20%] When $V_{BE} = 0.7 \text{ V}$ and $V_{CE} = 2 \text{ V}$, use proper equations provided in the course slides and the spice model above to calculate the transconductance gain (gm) and the output impedance (r_o).
 - (b) [15%] In Pspice, when $V_{CE} = 2$ V, plot I_{C} versus V_{BE} (from 0 to 1 V). Find out the slope at $V_{BE} = 0.7$ V and compare it with the gm value calculated in (a).
 - (c) [15%] In Pspice, when $V_{BE} = 0.7 \text{ V}$, plot I_C versus V_{CE} (from 0 to 5 V). Find out the inverse of slope at $V_{CE} = 2 \text{ V}$ and compare it with the r_o value calculated in (a).

