Informatics 225 Computer Science 221

Information Retrieval

Lecture 12

Duplication of course material for any commercial purpose without the explicit written permission of the professor is prohibited.

These course materials borrow, with permission, from those of Prof. Cristina Videira Lopes, Prof. Alberto Krone-Martins, Addison Wesley 2008, Chris Manning, Pandu Nayak, Hinrich Schütze, Heike Adel, Sascha Rothe, Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie. Powerpoint theme by Prof. André van der Hoek.

Preprocessing Steps

Detecting duplicates and removing noise

Information Retrieval

- Similarity comparisons using word-based representations of a document are more effective at finding near-duplicates than fingerprint techniques
 - Problem is efficiency

- Similarity comparisons using word-based representations of a document are more effective at finding near-duplicates than fingerprint techniques
 - Problem is efficiency
- Simhash was introduced by Charikar, 2002 to combine the advantages of the word-based similarity measures with the efficiency of fingerprints based on hashing

- Similarity comparisons using word-based representations of a document are more effective at finding near-duplicates than fingerprint techniques
 - Problem is efficiency
- Simhash was introduced by Charikar, 2002 to combine the advantages of the word-based similarity measures with the efficiency of fingerprints based on hashing
 - Similarity of pages measured by the cosine correlation is proportional to the number of bits that are the same in simhash fingerprints

1. Process the document into a set of features with associated weights. We will assume the simple case where the features are words weighted by their frequency.

- 1. Process the document into a set of features with associated weights. We will assume the simple case where the features are words weighted by their frequency.
- 2. Generate a hash value with b bits (the desired size of the fingerprint) for each word. The hash value should be unique for each word.

- 1. Process the document into a set of features with associated weights. We will assume the simple case where the features are words weighted by their frequency.
- 2. Generate a hash value with b bits (the desired size of the fingerprint) for each word. The hash value should be unique for each word.
- 3. In b-dimensional vector V, update the components of the vector by adding the weight for a word to every component for which the corresponding bit in the word's hash value is 1, and subtracting the weight if the value is 0.

- 1. Process the document into a set of features with associated weights. We will assume the simple case where the features are words weighted by their frequency.
- 2. Generate a hash value with b bits (the desired size of the fingerprint) for each word. The hash value should be unique for each word.
- 3. In b-dimensional vector V, update the components of the vector by adding the weight for a word to every component for which the corresponding bit in the word's hash value is 1, and subtracting the weight if the value is 0.
- 4. After all words have been processed, generate a b-bit fingerprint by setting the ith bit to 1 if the ith component of V is positive, or 0 otherwise.

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

(a) Original text

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

(a) Original text

tropical 2 fish 2 include 1 found 1 environments 1 around 1 world 1 including 1 both 1 freshwater 1 salt 1 water 1 species 1

(b) Words with weights

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

(a) Original text

tropical 2 fish 2 include 1 found 1 environments 1 around 1 world 1 including 1 both 1 freshwater 1 salt 1 water 1 species 1

(b) Words with weights

tropical	01100001	fish	10101011	include	11100110
found	00011110	environments	00101101	around	10001011
world	00101010	including	11000000	both	10101110
freshwater	00111111	salt	10110101	water	00100101
species	11101110				

(c) 8 bit hash values

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

(a) Original text

tropical 2 fish 2 include 1 found 1 environments 1 around 1 world 1 including 1 both 1 freshwater 1 salt 1 water 1 species 1

(b) Words with weights

(c) 8 bit hash values

(d) Vector V formed by summing weights

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

(a) Original text

tropical 2 fish 2 include 1 found 1 environments 1 around 1 world 1 including 1 both 1 freshwater 1 salt 1 water 1 species 1

(b) Words with weights

tropical	01100001	fish	10101011	include	11100110
found	00011110	environments	00101101	around	10001011
world	00101010	including	11000000	both	10101110
freshwater	00111111	salt	10110101	water	00100101
species	11101110				

(c) 8 bit hash values

1 -5 9 -9 3 1 3 3

(d) Vector V formed by summing weights

10101111

(e) 8-bit fingerprint formed from V

- 1. Process the document into a set of features with associated weights. We will assume the simple case where the features are words weighted by their frequency.
- 2. Generate a hash value with b bits (the desired size of the fingerprint) for each word. The hash value should be unique for each word.
- 3. In b-dimensional vector V, update the components of the vector by adding the weight for a word to every component for which the corresponding bit in the word's hash value is 1, and subtracting the weight if the value is 0.
- 4. After all words have been processed, generate a b-bit fingerprint by setting the ith bit to 1 if the ith component of V is positive, or 0 otherwise.

- So, how similar are two text files A and B?
 - \perp Compute the simhashes H_A and H_B for each text.
 - The similarity is simply the fraction of the bits that are the same over all n bits of the representation.

$$S_{A,B} = \frac{\sum_{n} (\mathcal{H}_A \equiv_{\text{bitwise}} \mathcal{H}_B)}{n}$$

- So, how similar are two text files A and B?
 - Compute the simhashes H_A and H_B for each text.
 - The similarity is simply the fraction of the bits that are the same over all n bits of the representation.

$$S_{A,B} = \frac{\sum_{n} (\mathcal{H}_A \equiv_{\text{bitwise}} \mathcal{H}_B)}{n}$$

- Are text A and text B near duplicates?
 - Define a threshold level τ.
 - If similarity is greater or equal than the threshold, they are near duplicates under your definition of threshold.

$$S_{A,B} \geq \tau \implies A \& B$$
 are near duplicates

Removing noise

Information Retrieval

Removing Noise

- Many web pages contain text, links, and pictures that are not directly related to the main content of the page
- This additional material is mostly noise that could negatively affect the ranking of the page
- Techniques have been developed to detect the content blocks in a web page
 - Non-content material is either ignored or reduced in importance in the indexing process

Noise Example

Noise Example

So how can you detect content?

- Cumulative distribution of tags
 - Document slope curve (e.g. Finn, Kushmerick & Smyth, 2001)

Cumulative distribution of tags

 Main text content of the page corresponds to the "plateau" in the middle of the distribution

• Represent a web page as a sequence of bits, where $b_n = 1$ indicates that the *n*th token is a tag

- Represent a web page as a sequence of bits, where $b_n = 1$ indicates that the *n*th token is a tag
- Optimization problem where we find values of i and j to maximize both the number of tags below i and above j and the number of non-tag tokens between i and j

- Represent a web page as a sequence of bits, where $b_n = 1$ indicates that the *n*th token is a tag
- Optimization problem where we find values of i and j to maximize both the number of tags below i and above j and the number of non-tag tokens between i and j
- i.e., find i and j that maximize

$$\sum_{n=0}^{i-1} b_n + \sum_{n=i}^{j} (1 - b_n) + \sum_{n=j+1}^{N-1} b_n$$

Finding Content Blocks: Alternative

Cumulative distribution of tags in the example web page

 Determine the slope of the lines inside slices and iterate, reducing the slice size until you find zero slope windows.

 Other approaches use Document Object Model (DOM) structure and visual (layout) features

- HTML parser:
 - HTML -> Document Object
 Model representation
 - Tree like structure

Text processing: statistics

Information Retrieval

Preprocessing Steps

Processing Text

- Essential step to convert documents to index terms
- Why?
 - In the context of web search matching the exact string of characters typed by the user is too restrictive
 - i.e., it doesn't work very well in terms of effectiveness (e.g. case sensitive searches may or may not be what you want)
 - Not all words are of equal value in a search
 - Sometimes not clear where words begin and end
 - Not even clear what a word is in some languages
 - e.g., Chinese, Korean

Text Statistics

- Huge variety of words used in text
- But many statistical characteristics of word occurrences are predictable!
 - e.g., distribution of word counts

Text Statistics

- Huge variety of words used in text
- But many statistical characteristics of word occurrences are predictable!
 - e.g., distribution of word counts
- Retrieval models and ranking algorithms depend heavily on statistical properties of words
 - e.g., important words for retrieval tasks are words that occur often in documents but are not frequent in the corpus

Zipf's Law

Distribution of word frequencies is very skewed

- a few words occur very often, many words hardly ever occur
- e.g., two most common words ("the", "of") make up about 10% of all word occurrences in text documents!

Zipf's Law

Distribution of word frequencies is very skewed

- a few words occur very often, many words hardly ever occur
- e.g., two most common words ("the", "of") make up about 10% of all word occurrences in text documents!

Zipf's "law":

- "The frequency of the r-th most common word is inversely proportional to r"
- Or: the rank (r) of a word times its frequency (f) is \sim a constant (k)
 - assuming words are ranked in order of decreasing frequency
- _ i.e., $r.f \approx k$ or $r.P_r \approx c$, where P_r is probability of word occurrence and $c \approx 0.1$ for English

Zipf's Law for English

News Collection (Associated Press 89) Statistics

Total documents	84,678		
Total word occurrences	39,749,179		
Vocabulary size (unique words)	198,763		
Words occurring > 1000 times	4,169		
Words occurring once	70,064		

Biggest variations:

Highest frequency words

but if you keep digging...

Word	Freq.	r	$P_r(\%)$	$r.P_r$	Word	Freq	r	$P_r(\%)$	$r.P_r$
the	2,420,778	1	6.49	0.065	has	136,007	26	0.37	0.095
of	1,045,733	2	2.80	0.056	are	130,322	27	0.35	0.094
to	968,882	3	2.60	0.078	not	127,493	28	0.34	0.096
a	892,429	4	2.39	0.096	who	116,364	29	0.31	0.090
and	865,644	5	2.32	0.120	they	111,024	30	0.30	0.089
in	847,825	6	2.27	0.140	its	111,021	31	0.30	0.092
said	504,593	7	1.35	0.095	had	103,943	32	0.28	0.089
for	363,865	8	0.98	0.078	will	102,949	33	0.28	0.091
that	347,072	9	0.93	0.084	would	99,503	34	0.27	0.091
was	293,027	10	0.79	0.079	about	92,983	35	0.25	0.087
on	291,947	11	0.78	0.086	i	92,005	36	0.25	0.089
he	250,919	12	0.67	0.081	been	88,786	37	0.24	0.088
is	245,843	13	0.65	0.086	this	87,286	38	0.23	0.089
with	223,846	14	0.60	0.084	their	84,638	39	0.23	0.089
at	210,064	15	0.56	0.085	new	83,449	40	0.22	0.090
by	209,586	16	0.56	0.090	or	81,796	41	0.22	0.090
it	195,621	17	0.52	0.089	which	80,385	42	0.22	0.091
from	189,451	18	0.51	0.091	we	80,245	43	0.22	0.093
as	181,714	19	0.49	0.093	more	76,388	44	0.21	0.090
be	157,300	20	0.42	0.084	after	75,165	45	0.20	0.091
were	153,913	21	0.41	0.087	us	72,045	46	0.19	0.089
an	152,576	22	0.41	0.090	percent	71,956	47	0.19	0.091
have	149,749	23	0.40	0.092	up	71,082	48	0.19	0.092
his	142,285	24	0.38	0.092	one	70,266	49	0.19	0.092
but	140,880	25	0.38	0.094	people	68,988	50	0.19	0.093

AP89 most frequent words

Zipf's Law for AP89

- Note problems at high and low frequencies
- Words that occur only once : Hapax Legomena (ἄπαξ λεγόμενον).