Package 'SDNCMV'

May 25, 2020

Type Package Title Simultaneous Differential Network Analysis and Classification for Matrix-variate Data Version 1.0.1 Date 2020-05-22 Author Hao Chen, Yong He, Jiadong Ji Maintainer Hao Chen Chen Sa. 5.0), Dens Parcorr, for each, do Parallel, SIS, stats, glmnet Description This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 Needs Compilation no R topics documented: SDNCMV-package ADHD Classification Conf_var_ADHD
for Matrix-variate Data Version 1.0.1 Date 2020-05-22 Author Hao Chen, Yong He, Jiadong Ji Maintainer Hao Chen <chenhaota@163.com> Depends R (>= 3.5.0), DensParcorr, foreach, doParallel, SIS, stats, glmnet Description This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD Classification</chenhaota@163.com>
Date 2020-05-22 Author Hao Chen, Yong He, Jiadong Ji Maintainer Hao Chen <chenhaota@163.com> Depends R (>= 3.5.0), DensParcorr, foreach, doParallel, SIS, stats, glmnet Description This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD. Classification</chenhaota@163.com>
Author Hao Chen, Yong He, Jiadong Ji Maintainer Hao Chen Chenhaota@163.com> Depends R (>= 3.5.0), DensParcorr, foreach, doParallel, SIS, stats, glmnet Description This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD Classification
Maintainer Hao Chen <chenhaota@163.com> Depends R (>= 3.5.0), DensParcorr, foreach, doParallel, SIS, stats, glmnet Description This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD</chenhaota@163.com>
Depends R (>= 3.5.0), DensParcorr, foreach, doParallel, SIS, stats, glmnet Description This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD Classification
Description This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD Classification
This package achieves simultaneous differential network analysis and classification for Matrix-Variate data by the SDNCMV method, see https://arxiv.org/abs/2005.08457. LazyData yes License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD Classification
License GPL-3 RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD Classification
RoxygenNote 7.1.0 NeedsCompilation no R topics documented: SDNCMV-package ADHD. Classification
NeedsCompilation no R topics documented: SDNCMV-package ADHD Classification
R topics documented: SDNCMV-package
SDNCMV-package
ADHD
Conf_var_TDC Diff_Net ParCor_Trans_mat TDC
Index

2 SDNCMV-package

SDNCMV-package	Functions for matrix-variate data classification and identification of differential network.
----------------	--

Description

SDNCMV provides tools to implement classification and network comparison for matrix-variate data.

References

Hao Chen, Ying Guo, Yong He, Jiadong Ji, Lei Liu, Shi Yufeng, Yikai Wang, Yu Long, Zhang Xinsheng (2020) Simultaneous Differential Network Analysis and Classification for High-dimensional Matrix-variate Data, with application to Brain Connectivity Alteration Detection and fMRI-guided Medical Diagnoses of Alzheimer's Disease. *arXiv e-prints*, arXiv:2005.08457.

Yikai Wang, Jian Kang, Phebe B. Kemmer and Ying Guo (2016) An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation. *Frontiers in Neuroence*, **10**, 123.

Tony Cai, Weidong Liu, and Xi Luo (2011) A constrained ℓ_1 minimization approach for sparse precision matrix estimation. *Journal of the American Statistical Association* **106**, 594-607.

Diego Franco Saldana and Yang Feng (2018) SIS: An R package for Sure Independence Screening in Ultrahigh Dimensional Statistical Models. *Journal of Statistical Software*, **83**, 1-25.

Jianqing Fan and Rui Song (2010) Sure Independence Screening in Generalized Linear Models with NP-Dimensionality. *The Annals of Statistics*, **38**, 3567-3604.

Examples

```
## Not run:
conf_var <- rbind(Conf_var_ADHD, Conf_var_TDC)</pre>
data_net <- ParCor_Trans_mat(X1=ADHD, X2=TDC, confounder=TRUE, conf_var=conf_var, p=116, sis_num=1000)
#Classification
# Select 70% samples as training samples in each group, and the remaining samples as test samples.
tr1 <- round(0.7*74)
tr2 <- round(0.7*109)
Y <- data_net$Y_net[c(1:tr1,75:(tr2+75))]</pre>
X \leftarrow data_net$X_net[c(1:tr1,75:(tr2+75)),]
New_X <- data_net$X_net[c((tr1+1):74,(tr2+76):183),]</pre>
prediction <- Classification(X=X,Y=Y,New_X = New_X)</pre>
#Identification of Differential Network
Y <- data_net$Y_net
X <- data_net$X_net</pre>
p_edge_ind <- data_net$p_edge_ind</pre>
delta <- Diff_Net(X=X, Y=Y, p=116, p_edge_ind=p_edge_ind)</pre>
## End(Not run)
```

ADHD 3

ADHD	Processed ADHD group data from Peking University site in ADHD-200 Global Competition Dataset

Description

There are 74 subjects in the ADHD group. For each subject, the data is in a temporal*spatial data matrix form, with spatial dimension 116 (ROIs) and temporal dimension 232.

Usage

data(ADHD)

Format

A list

ADHD a list with 74 matrices, and each matrix is of dimension 232*116.

Source

The data set can be downloaded from the website: http://fcon1000.projects.nitrc.org/indi/adhd200/

Classification	Train bootstrapped Penalized Logistic Regression (PLR) Models with
	elastic-net penalty and makes prediction for new data.

Description

Classification Train bootstrapped Penalized Logistic Regression (PLR) Models with elastic-net penalty and makes prediction for new data.

Usage

```
Classification(X, Y, New_X, B = 200, alpha = 0.1)
```

Arguments

X	Input matrix for bootstrapped Penalized Logistic Regression (PLR) Models. Each row is an observation vector.
Υ	An binary response vector correspond to matrix X.
New_X	Matrix of new values for X at which predictions are to be made.
В	Times of bootstrap. Default is 200.
alpha	The elastic-net mixing parameter with $0 \le \alpha \le 1$. alpha=1 is the lasso penalty, and alpha=0 is the ridge penalty. Default is 0.1.

Details

Classifier by training data X and Y, and then make predictions for new data New_X

4 Conf_var_ADHD

Value

An binary outcome for new data New_X.

Author(s)

Hao Chen, Yong He, Jiadong Ji

Examples

```
## Not run:
# Select 70% samples as training samples in each group, and the remaining samples as test samples.
tr1 <- round(0.7*74)
tr2 <- round(0.7*109)
Y <- data_net$Y_net[c(1:tr1,75:(tr2+75))]
X <- data_net$X_net[c(1:tr1,75:(tr2+75)),]
New_X <- data_net$X_net[c((tr1+1):74,(tr2+76):183),]
prediction <- Classification(X=X,Y=Y,New_X = New_X)
## End(Not run)</pre>
```

Conf_var_ADHD

Confounders for ADHD subjects in ADHD-200 Global Competition Dataset from Peking University site

Description

Dataset of three confounders including gender, age and handedness for subjects in the ADHD group.

Usage

```
data(Conf_var_ADHD)
```

Format

A matrix with 74 rows and 3 columns, where the rows correspond to the ADHD subjects and the columns correspond to the confounders.

Source

The data set can be downloaded from the website: http://fcon1000.projects.nitrc.org/indi/adhd200/

Conf_var_TDC 5

Conf_var_TDC	Confounders for TDC subjects in ADHD-200 Global Competition Dataset from Peking University site

Description

Dataset of three confounders including gender, age and handedness for subjects in the TDC group.

Usage

```
data(Conf_var_TDC)
```

Format

A matrix with 109 rows and 3 columns, where the rows correspond to the TDC subjects and the columns correspond to the confounders.

Source

The data set can be downloaded from the website: http://fcon1000.projects.nitrc.org/indi/adhd200/

Diff_Net	Identification of Differential Network

Description

Diff_Net Identification of Differential Network by a bootstrapped Penalized Logistic Regression (PLR) Models with elastic-net penalty.

Usage

```
Diff_Net(X, Y, B = 200, p, p_edge_ind = NULL, alpha = 0.1)
```

Arguments

X	Input matrix for bootstrapped Penalized Logistic Regression (PLR) Models. Each row is an observation vector.
Υ	An binary response vector correspond to matrix X.
В	Times of bootstrap. Default is 200.
p	Row dimension of original matrix-valued data. For example, in fMRI data the p is the number of ROIs.
p_edge_ind	If SIS is called, this parameter is the index of each edge selected by SIS in the previous $p*(p-1)/2$ edges. If SIS is not called, ignore this parameter. Defalut is NULL.
alpha	The elastic-net mixing parameter with $0 \le \alpha \le 1$. alpha=1 is the lasso penalty, and alpha=0 is the ridge penalty. Default is 0.1.

6 ParCor_Trans_mat

Details

Identification of Differential Network of two groups. In this function, first, training the bootstrapped PLR models with elastic-net penalty B times. Then count the number of occurrences of each coefficient $\beta_{i,j}$ and this number also represents the number of occurrences of each pair of nodes (i,j).

Value

A symmetric delta matrix, of dimensions p*p. Each element represents the number of occurrences of each pair of nodes (i, j).

Author(s)

Hao Chen, Yong He, Jiadong Ji

Examples

```
## Not run:
Y <- data_net$Y_net
X <- data_net$X_net
p_edge_ind <- data_net$p_edge_ind
delta <- Diff_Net(X=X, Y=Y, p=116, p_edge_ind=p_edge_ind)
## End(Not run)</pre>
```

ParCor_Trans_mat

Calculate partial correlations for each subject and do Fisher's Transformation

Description

ParCor_Trans_mat This function first uses R package **DensParcorr** to solve for the partial correlation matrix for each subject, then do Fisher's transformation for the partial correlations. You can use R package **SIS** to screen covariates (edges) first according to specific needs.

Usage

```
ParCor_Trans_mat(
   X1,
   X2,
   confounder = FALSE,
   conf_var = 0,
   p,
   sis_num = NULL,
   cores = NULL,
   dens.level = 0.5
)
```

ParCor_Trans_mat 7

Arguments

X1	A list with n1 elements corresponding to n1 subjects from the case group and each element in this list is a $p*q1$ matrix.
X2	A list with n2 elements corresponding to n2 subjects from the control group and each element in this list is a $p*q2$ matrix.
confounder	logical. If TRUE, add confounder variables to final vector data. Default is FALSE.
conf_var	Confounder matrix, of dimensions n*k, where n=n1+n2, k is the number of confounder variables. If confounder is TRUE, then the input confounder matrix will be added; else ignore this parameter.
р	Row number of each matrix in X1 and X2.
p sis_num	Row number of each matrix in X1 and X2. Give the variables number s in the data obtained after screening. Default is NULL, which means SIS is not called.
	Give the variables number s in the data obtained after screening. Default is NULL,

Details

In detail, we first use the Constrained L1-minimization Approach (CLIME) (Cai et al., 2011) to calculate the partial correlation matrix for each subject and then perform an one-to-one Fisher's transformation on the partial correlations. We then vectorize the upper triangular elements as an observation of network/edge covariates. Sure Independence Screening (SIS) (Fan et al., 2010) method can be called to screen covariates (edges) first. Confounders adjustment can also be taken into account.

Value

a R list from ParCor_Trans_mat containing the following terms:

X_net	Network data generated by this function, where each row represents a subject and each column of the first p*(p-1)/2 columns represents an edge and following columns are confounders Only when sis_num is NULL.
Y_net	Group label corresponding to each subject in matrix X_{net} . Only when sis_num is NULL.
X_net_sis	Network data generated by this function after conducting SIS, where each row represents a subject and each column of the first sis_num columns represents an edge and following columns are confounders. Only when sis_num is not NULL.
Y_net_sis	Group label corresponding to each subject in matrix $X_{\text{net_sis}}$. Only when $\sin_n n$ is not NULL.
p_edge_ind	The index of each edge selected by SIS in the previous $p*(p-1)/2$ edges

Author(s)

Hao Chen, Yong He, Jiadong Ji

8 TDC

Examples

```
## Not run:
conf_var <- rbind(Conf_var_ADHD, Conf_var_TDC)
data_net <- ParCor_Trans_mat(X1=ADHD, X2=TDC, confounder=TRUE, conf_var=conf_var, p=116, sis_num=1000)
## End(Not run)</pre>
```

TDC

Processed TDC group data from Peking University site in ADHD-200 Global Competition Dataset

Description

There are 109 subjects in the TDC group. For each subject, the data is in a temporal*spatial data matrix form, with spatial dimension 116 (ROIs) and temporal dimension 232.

Usage

data(TDC)

Format

A list.

TDC a list with 109 matrices, and each matrix is of dimension 232*116.

Source

The data set can be downloaded from the website: http://fcon1000.projects.nitrc.org/indi/adhd200/

Index

```
* datasets

ADHD, 3

Conf_var_ADHD, 4

Conf_var_TDC, 5

TDC, 8

ADHD, 3

Classification, 3

Conf_var_ADHD, 4

Conf_var_TDC, 5

Diff_Net, 5

ParCor_Trans_mat, 6

SDNCMV (SDNCMV-package), 2

SDNCMV-package, 2

TDC, 8
```