ROCO222: Intro to sensors and actuators

Lecture 7

DC motor datasheets

Maxon DC motor variants

Lots of choice in choosing a motor

Development of permanent magnets

Source: http://www.vacuumschmelze.de/

Year

Permanent magnets

Understanding motor datasheets

- Examine DC motor datasheets
- Selecting a motor to suit the job

Motor Data (provisional)			
	Values at nominal voltage		
1	Nominal voltage	V	9
2	No load speed	rpm	2850
3	No load current	mA	49.7
4	Nominal speed	rpm	2610
5	Nominal torque (max. continuous torque)	mNm	87.8
6	Nominal current (max. continuous current)	Α	2.96
7	Stall torque	mNm	873
8	Starting current	Α	29
9	Max. efficiency	%	92
	Characteristics		
10	Terminal resistance	Ω	0.311
11	Terminal inductance	mH	0.0824
12	Torque constant	mNm/A	30.2
13	Speed constant	rpm/V	317
14	Speed / torque gradient	rpm/mNm	3.27
15	Mechanical time constant	ms	4.85
16	Rotor inertia	gcm ²	142

DC motor data

Plot of motor rotational speed against torque

Power = Speed (Rads⁻¹) x Torque (NM)

Cannot specify a motor simply on its power.

Require a certain torque at a certain speed.

Motor may be powerful enough but not have the torque available at required speed

Speed-voltage characteristic

Influence of applied voltage on speed

Speed-torque characteristic

Speed reduced as output motor torque is increased

Weak motor:

- steep speed-torque line
- sensitive to load changes
- e.g. weak magnet, smaller motor

Motor values at nominal voltage

Operating points

- Load operating points are characterized by a load speed n_L at a given load torque M_I
- Motor operating points lie on the speed-torque-line: select the motor voltage accordingly

Effect of changing the windings

Torque constant K_M

current direction towards brush

current direction towards flange

forces:

force on current leading conductor in a magnetic field

torque:

sum of all forces at the distance to the rotating axis

influencing parameters:

geometry
field density
winding number

Depend on the
design

$$M = k_M \cdot I$$

Torque constant K_M

- Torque constant K_M is determined by motor geometry and magnetic flux densities (Unit: mNm/A)
- Enables calculation of the motor torque for given motor current

$$M = k_M \cdot I$$

Speed constant K_n

- Speed constant k_n
 - mostly used for calculating no-load speeds n₀
 - unit: min⁻¹ / V

$$n_0 = k_n \cdot V$$

- Induced voltage V_{ind} is proportional to motor speed n
 - law of induction: changing flux in a conductor loop
 - induced voltage proportional to speed

$$n = k_n \cdot V_{ind}$$

- Generator constant k_e
 - inverse of k_n: motor as a generator (e.g. DC-Tacho).
 - · Gives how much voltage is produced per rpm
 - units: mV / min⁻¹

Nominal motor characteristics

- Nominal voltage (V) operating voltage of motor
- No load speed (rpm) rotational speed at operating voltage of motor with no load
- No load current (mA) current taken at operating voltage of motor with no load
- Nominal speed (rpm) rotational speed at operating voltage of motor with no load
- Nominal torque (max. continuous torque) (mNm) max torque
- Nominal current (max. continuous current) (A) max continuous current that can be passed through motor
- Stall torque (mNm) torque generated at operating voltage of motor when motor is held stationary
- Starting current (A) current draw when motor starts when operating voltage of motor applied
- Max. efficiency (%) energy efficiency of the motor

List of main motor parameters

- Terminal resistance (phase to phase for EC) (Ω)
- Terminal inductance (phase to phase for EC) (mH)
- Torque constant (mNm/A)
- Speed constant (rpm/V)
- Speed / torque gradient (rpm/mNm)
- Mechanical time constant (ms)
- Rotor inertia (gcm²)

Motor thermal considerations

We must take motor heating and thermal limits into account

- Depend strongly on mounting conditions
- Standard mounting:
- Heating and cooling
 - Thermal resistance housing-ambient R_{th2}
 - Thermal resistance winding-housing R_{th1}
 - Thermal time constant of winding t_{thW}
 - Thermal time constant of motor t_{ths}
- Temperature limits
 - Ambient temperature range
 - Max. winding temperature T_{max}

free convection at 25 °C ambient temperature

Influence of temperature on motor operation

Temperature coefficients

```
Resistivity ρ for Cu + 0.39 % per K
Flux density B for AlNiCo - 0.02 % per K
Flux density B for Ferrite - 0.2 % per K
Flux density B for NdFeB - 0.1 % per K
```


Desirable magnetic properties go down

For example: RE motor

If
$$\Delta T = +50K$$

Stall torque M_H: - 22 %

Nominal torque and temperature

Motor limits: Operation ranges

Short-term overload operation

Motor may be overloaded for a short time and repeatedly

- Limit: max. permissible winding temperature
- Depends on thermal time constant of winding tW and amount of overload

List of main thermal motor parameters

- Thermal resistance housing-ambient (K/W)
- Thermal resistance winding-housing (K/W)
- Thermal time constant winding (s)
- Thermal time constant motor (s)
- Ambient temperature (°C)
- Max. permissible winding temperature (°C)

List of main mechanical motor parameters

Maximum speed and mechanical properties of motor bearings

- Max. permissible speed
 - Limited by bearing life considerations (EC)
 - Limited by relative speed between collector and brushes (DC)
 - Axial and radial play
 - suppressed by a preload
 - Axial and radial bearing load
 - Dynamic: in operation
 - Static: at stall

axial press fit force (shaft supported)

List of main motor mechanical parameters

Max. permissible speed (rpm)

Axial play (mm)

Radial play (mm)

Max. axial load (dynamic) (N)

Max. force for press fits (static) (N)

(static, shaft supported) (N)

Max. radial loading, 5 mm from flange (N)

Other specifications

Rates power (W)

Life expectancy (h)

Weight of motor (g)

Direction of rotation

Number of pole pairs

Number of commutator segments

Commutator material

Insulation class

Protection class

Armature details

Magnet system

Bearing type

Housing

Motor size selection

- Energy balancing act
- Undersized servo motor cant meet requirement
- Oversized would provide the additional capacity
- For optimum performance at the lowest cost
- choose the smallest servo motor that matches requirements
- Smaller will lower costs and power consumption