Logica proposizionale

Prof. Rocco Zaccagnino 2022/2023

Linguaggio naturale

Nel linguaggio naturale si utilizzano spesso frasi imprecise

Esempio

Un italiano si laurea in Informatica ogni ora

- Assurdo: significa che c'è un italiano che ogni ora si laurea in Informatica
- Corretta: ogni ora, un italiano che si laurea in Informatica

... o ambigue

Esempio

L'uomo guardava la donna con il binocolo

Ambigua: chi ha il binocolo?

Linguaggio matematico

Il linguaggio matematico richiede certezze nelle affermazioni

Il linguaggio matematico richiede soprattutto che sia possibile determinare se una affermazione è vera o falsa

Quale delle seguenti affermazioni sono vere e quali sono false:

- 2 è un numero primo
- non ci sono numeri primi al di fuori di 2
- quando piove apro l'ombrello

Le proposizioni

Una proposizione è una frase che dichiara un fatto e che può essere vera (T) o false (F), ma non entrambe

Esempio

_			. –
_	Come	\sim $+$ \sim	
•	1 /1//10	C 1 / 1	<i>' '</i>
_	\ ()	7/1/	
	-	<i>-</i> C C C	

• x+5=3

2 è numero primo

Lei ha talento

Rocco supererà l'esame

Una domanda non una proposizione

x non è specificato => né vera né falsa

T

Lei non è specificato => né vera né falsa

Può essere vera o falsa

Le proposizioni composte

Una proposizione **più complessa** può essere costruita attraverso proposizioni elementari connesse attraverso **connettivi logici**

Connettivi logici:

- Negazione (not)
- Congiunzione (and)
- Disgiunzione (or)
- Or esclusivo (xor)
- Implicazione (se allora)
- Bicondizione (se e solo se)

Negazione (not)

Sia p una proposizione. La frase **«non è vero che p»** è un'altra proposizione, chiamata **negazione di p** e denotata con ¬**p**

Esempio

• p = «Potenza è una città della Basilicata»

¬p = **«Non è vero** che Potenza è una città della Basilicata»

= «Potenza **non è** una città della Basilicata»

Negazione (not)

Sia p una proposizione, e ¬p la sua negazione. Possiamo descrivere il meccanismo della negazione attraverso la **tavola** di verità:

• Per ogni valore di p, specifica il corrispondente valore di ¬p

р	¬p
7	F
F	7

Congiunzione (and)

Siano p e q proposizioni. La frase **«p e q»** è un'altra proposizione, chiamata **congiunzione di p e q**, e denotata con $\mathbf{p} \wedge \mathbf{q}$

Esempio

p = «Potenza è una città della Basilicata»
 q = «3 x 3 = 7»
 p ∧ q = «Potenza è una città della Basilicata e 3 x 3 = 7»

Congiunzione (and)

Siano p e q proposizioni. Il valore di verità di p ∧ q è vero se entrambe p e q sono vere, altrimenti è falso

р	q	p∧q
<i>T</i>	Τ	<i>T</i>
7	F	F
F	7	F
F	F	F

Disgiunzione (or)

Siano p e q proposizioni. La frase $\ll p$ o $q \gg$ è un'altra proposizione, chiamata disgiunzione di p e q, e denotata con $p \lor q$

Esempio

p = «Potenza è una città della Basilicata»
 q = «3 x 3 = 7»
 p V q = «Potenza è una città della Basilicata o 3 x 3 = 7»

Disgiunzione (or)

Siano p e q proposizioni. Il valore di verità di p V q è vero se o p o q o entrambe sono vere, altrimenti è falso

р	q	p∨q
τ	7	<i>T</i>
<i>T</i>	F	<i>T</i>
F	T	T
F	F	F

Disgiunzione esclusiva (xor)

Siano p e q proposizioni. La frase **«p o q ma non entrambe»** è un'altra proposizione, chiamata **disgiunzione esclusiva di p e q**, *e denotata con* **p ⊕ q**

Siano p e q proposizioni. Il valore di verità di *p* ⊕ *q è vero se* esattamente una tra p e q è vera ma non entrambe, altrimenti è falso

р	q	p⊕q
7	<i>T</i>	F
7	F	<i>T</i>
F	r	r
F	F	F

Implicazione

Siano p e q proposizioni. La frase **«p implica q»** è un'altra proposizione, chiamata **implicazione**, e denotata con $\mathbf{p} \rightarrow \mathbf{q}$. p è chiamata **ipotesi**, q è chiamata **conclusione**

condizione sufficiente -> condizione necessaria

L'implicazione p → q può essere letta in vari modi:

- se p allora q
- p è sufficiente per q
- q è necessaria per p

Implicazione

Siano p e q proposizioni. Il valore di verità di $\mathbf{p} \rightarrow \mathbf{q}$ è falso se p è vera e q è falso, altrimenti è vero

р	q	$\mathbf{p} \rightarrow \mathbf{q}$
<i>T</i>	T	<i>T</i>
7	F	F
F	T	r
F	F	<i>r</i>

Derivazioni dell'implicazione

• Inverso di $p \rightarrow q$

 $q \rightarrow p$

• Opposto di $p \rightarrow q$

 $\neg p \rightarrow \neg q$

• Contronominale di $p \rightarrow q$

 $\neg q \rightarrow \neg p$

Inverso dell'implicazione

• **Inverso** di p \rightarrow q

$$q \rightarrow p$$

Esempio:

Se nevica allora le auto procedono lentamente

- p = nevica
- q = le auto procedono lentamente
- $p \rightarrow q$
- L'inverso: Se le auto procedono lentamente allora nevica

$$q \rightarrow p$$

Inverso dell'implicazione

• Inverso di $p \rightarrow q$

$$q \rightarrow p$$

р	q	$\mathbf{p} \rightarrow \mathbf{q}$	q → p
7	7	7	T
r	F	F	r
F	T	r	F
F	F	7	7

Opposto dell'implicazione

Opposto di p → q

$$\neg p \rightarrow \neg q$$

Esempio:

Se nevica allora le auto procedono lentamente

- p = nevica
- q = le auto procedono lentamente
- $p \rightarrow q$
- L'opposto: Se non nevica allora le auto procedono velocemente

$$\neg p \rightarrow \neg q$$

Opposto dell'implicazione

Opposto di p → q

$$\neg p \rightarrow \neg q$$

р	q	$\mathbf{p} \rightarrow \mathbf{q}$	¬ p	¬q	$\neg p \rightarrow \neg q$
<i>T</i>	<i>T</i>	r	F	F	T
<i>T</i>	F	F	F	<i>T</i>	r
F	<i>T</i>	7	7	F	F
F	F	r	7	7	7

Controminale dell'implicazione

• Contronominale di $p \rightarrow q$

Esempio:

Se nevica allora le auto procedono lentamente

- p = nevica
- q = le auto procedono lentamente
- $p \rightarrow q$
- Contronominale: Se le auto procedono velocemente allora non nevica

$$eg oldsymbol{q}
ightarrow
eg oldsymbol{p}$$

Controminale dell'implicazione

• Contronominale di $p \rightarrow q$

р	q	$\mathbf{p} \rightarrow \mathbf{q}$	¬q	¬ p	$\neg \mathbf{q} \rightarrow \neg \mathbf{p}$
<i>T</i>	<i>T</i>	r	F	F	<i>T</i>
T	F	F	<i>T</i>	F	F
F	<i>T</i>	r	F	7	τ
F	F	r	7	7	τ

Bicondizione

Siano p e q proposizioni. La frase «p se e solo se q» è un'altra proposizione, chiamata bicondizione, e denotata con $p \leftrightarrow q$.

La bicondizione p ← q può essere letta in vari modi:

- se p allora q e viceversa
- p iff q
- p è necessaria e sufficiente per q

Bicondizione

Il valore dell'equivalenza $\mathbf{p} \longleftrightarrow \mathbf{q}$ è vera solamente se i valori di verità di \mathbf{p} e q coincidono

р	q	$\mathbf{p} \leftrightarrow \mathbf{q}$
r	τ	<i>T</i>
<i>T</i>	F	F
F	T	F
F	F	r

Bicondizione

 $\mathbf{p} \longleftrightarrow \mathbf{q}$ ha gli stessi valori di verità di $(\mathbf{p} \to \mathbf{q}) \land (\mathbf{q} \to \mathbf{p})$

р	q	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$	$\mathbf{p} \leftrightarrow \mathbf{q}$
<i>r</i>	r	r	r	<i>T</i>
<i>T</i>	F	F	r	F
F	r	<i>T</i>	F	F
F	F	7	<i>T</i>	7

Esempio

р	q	¬p	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \rightarrow q) \land (\neg p \leftrightarrow q)$
7	7				
7	F				
F	<i>T</i>				
F	F				

Esempio

(p)	q	¬p	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(\mathbf{p} \rightarrow \mathbf{q}) \wedge (\neg \mathbf{p} \leftrightarrow \mathbf{q})$
7	7				
r	F				
F	<i>T</i>				
F	F			propo	sizioni
				elem	entari

Esempio

• Consideriamo l'espressione $(\mathbf{p} \rightarrow \mathbf{q}) \land (\neg \mathbf{p} \leftrightarrow \mathbf{q})$

р	q	¬p	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \rightarrow q) \land (\neg p \leftrightarrow q)$
7	r				
7	F				
F	7				
F	F				proposizioni
					composte

ausiliarie

Esempio

р	q	¬р	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \rightarrow q) \land (\neg p \leftrightarrow q)$
7	7	F	r		
7	F	F	F		
F	<i>T</i>	7	7		
F	F	<i>T</i>	<i>T</i>		

Esempio

р	q	¬ p	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(p \rightarrow q) \land (\neg p \leftrightarrow q)$
7	r	F	T	F	
<i>T</i>	F	F	F	r	
F	<i>T</i>	<i>T</i>	r	r	
F	F	7	r	F	

Esempio

р	q	¬ p	$\mathbf{p} \rightarrow \mathbf{q}$	$\neg p \leftrightarrow q$	$(\mathbf{p} \rightarrow \mathbf{q}) \wedge (\neg \mathbf{p} \leftrightarrow \mathbf{q})$
7	7	F	τ	F	F
<i>T</i>	F	F	F	T	F
F	r	<i>T</i>	T	<i>T</i>	7
F	F	7	r	F	F