MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

REPUBLIQUE DU CAMEROUN

Paix-Travail-Patrie

•••••

ISSTECOA BAFOUSSAM

.....

EXAMEN DE MATHEMATIQUES 1

ANNEE ACADEMIQUE: 2019/2020

SEMESTRE 1

ENSEIGNANT: TCHOUDO EDDY

<u>SPECIALITES</u>: TOUTES LES SPECIALITES INDUSTRIELLES

NIVEAU: BTS 1

DUREE: 3H

EXERCICE 1 (3 Points)

Un parachutiste tombe à une vitesse de 55 m.s-1 au moment où son parachute s'ouvre. On fixe l'origine du temps (t = 0, en secondes) à ce moment-là. Pour tout t de \mathbb{R}_+ , on note v(t) la vitesse (en m.s-1) du parachutiste à l'instant t. On admet que la résistance de l'air est donnée par: $R = \frac{P.v^2}{25}$, où P est le poids du parachutiste avec son équipement. (P = m.g, g = 10 ms-2)

- 1. Démontrer que v est solution, sur \mathbb{R}_+ , de l'équation différentielle : (E) : $v' = g\left(1 \frac{v^2}{25}\right)$ (0,5pt)
- 2. On suppose que v > 5 sur \mathbb{R}_+ , et on pose sur \mathbb{R}_+ : $z = \frac{1}{v 5}$. Déterminer une équation différentielle satisfaite par z sur \mathbb{R}_+ , et la résoudre. (1pt)
- 3. En déduire une expression de v(t) en fonction de t et préciser sa limite lorsque t tend vers $+\infty$. (0,75pt)
- 4. Donner la courbe de v(t) en fonction du temps et déduire la constante de temps. (0,75pt)

EXERCICE 2 (4pts)

PARTIE A (0,5+1+1=2,5pts)

Soit f la fonction de x et y définie par : $f(x,y) = \frac{x-y}{x+y} \forall x,y > 0$

- 1) Déterminer l'ensemble de définition de f.
- $\text{2)} \quad \text{Calculer } \frac{\partial f(x,y)}{\partial x}; \frac{\partial f(x,y)}{\partial y}; \frac{\partial^2 f(x,y)}{\partial x^2} \text{ et } \frac{\partial^2 f(x,y)}{\partial y^2}.$
- 3) En utilisant le changement de variables u = x + y et v = x y, calculer l'intégrale double $K = \iint_{\Delta} e^{\frac{x-y}{x+y}} dxdy$ où $\Delta = \{(x,y) \in \square^2, x \geq 0, y \geq 0, x+y \leq 1\}$

PARTIE B (0,5+1=1,5pt)

Soit D le domaine : D = $\{(x,y,z) \in \Box^3, x+y+z \le 1, x \ge 0, y \ge 0, z \ge 0\}$

- 1) Représenter le domaine D.
- 2) Calculer sur D l'intégrale $D = \iiint x.y.z.dxdydz$

EXERCICE 3 (8pts)

PARTIE A (1+1=2pts)

Calculer le développement limité en 0 des fonctions f définies ci-dessous.

- 1) $f(x) = (1 + 2\arctan x)(2e^x \sin x)$ à l'ordre 3
- 2) $f(x) = \frac{2 + \arctan x}{\cosh x}$ à l'ordre 4

PARTIE B (1+2= 3pts)

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \ln\left(e^x + \sqrt{e^{2x} + 1}\right)$$

- 1. Déterminer le développement limité la fonction g définie par $g(X) = \ln(1 + \sqrt{1 + X})$ à l'ordre 1, au voisinage de 0.
- 2. Montrer que $f(x) = x + \ln(1 + \sqrt{1 + e^{-2x}})$, à l'aide de la question 1. montrer que f admet une asymptote oblique en $+\infty$, on déterminera la position du graphe de f par rapport à cette asymptote.

<u>PARTIE C (1+1=2pts)</u>

- 1. Calculer $\lim_{x \to 0} \frac{e^{x^2 \cos(x)}}{x^2}$ $\lim_{x \to 1} \frac{\ln(x)}{x^2 1}$ $\lim_{x \to +\infty} (\sqrt{x^2 + 3x + 2} x)$ $\lim_{x \to 0} \frac{e^x 1 x}{\sin^2(x)}$
- 2. Simplifier l'expression $\frac{2 \cosh^2(x) \sinh(2x)}{x \ln(\cosh x) \ln 2}$ et donner ses limites en $-\infty$ et $+\infty$.

EXERCICE 4 (0,5+1+1+1+1,5=6pts)

Soit f la fonction définie par : $f(x) = \arcsin(1 - 2\cos^4(x))$

- 1. Montrer que f est définie et continue sur \mathbb{R} .
- 2. Montrer que f est 2π périodique, quelle est la parité de f? En déduire un intervalle d'étude I.
- 3. Partout où cela ne pose pas de problème, calculer la dérivée de f. On l'exprimera sous la forme la plus simple possible.
- 4. Sur quel sous-ensemble de I la fonction f est-elle dérivable ? Préciser la valeur des limites de f'(x) à droite au point d'abscisse 0 et à gauche au point d'abscisse π .
- 5. Dresser le tableau de variation de *f*
- 6. Tracer son graphe sur trois périodes