Problèmes de "plus court chemin" dans un graphe et algorithme de Dijkstra

exercice 1:

Pour le graphe valué ci dessous, déterminer la distance du sommet E au sommet S ainsi que tous les parcours réalisant cette distance.

Exercice 2:

On considère le graphe ${\cal G}$, valué aux arêtes, dont une représentation est donnée ci dessous :

Déterminez $d_G(A, H)$ ainsi que toutes les chaînes réalisant cette distance en utilisant l'algorithme de Dijkstra.

Exercice 3:

Pour le graphe valué ci dessous, déterminer la distance du sommet a au sommet i ainsi que tous les parcours réalisant cette distance.

Exercice 4:

L'algorithme de Dijkstra s'utilise aussi avec des graphes orientés.

Déterminez, pour le graphe orienté ci dessous, le plus court chemin du sommet a au sommet h, puis donnez la distance de a à h :

Exercice 5:

Routage par information d'état des liens.

Dans un réseau le "sommet " A (i.e. le routeur A) reçoit les paquets d'information d'état des liens de chaque sommet. Il connait donc les voisins de chaque sommet du graphe ainsi que les coûts associés :

ГА	coût	В	coût	$oxed{C}$	coût	П	coût
В	4	A	4	В	2	$\frac{D}{C}$	7
Е	5	F	$\frac{2}{6}$	Б	1	F	3

E	coût	F	coût
A	5	В	6
C	1	D	3
F	3	E	3

- 1. Aider A à reconstruire le réseau.
- 2. Calculer les tables de routages de A puis celles de D (Pour un sommet donné x, la table de routage contient, pour chaque destination y, son coût total et le premier sommet de la plus courte chaîne en allant de x vers y).

Exercice 6:

Programmation dynamique (cf. michel.minguenaud@insa rouen.fr)

La demande d'un équipement en janvier, février et mars est de deux unités. Les deux unités sont livrées à la fin de chaque mois. Le fabricant souhaite établir le plan de production de cet équipement. Le stock ne peut pas dépasser 2 unités en février et mars et est nul en janvier et en avril. La production maximale pour un mois donné est de 4 unités. Le premier mois, seuls les coûts de productions sont imputables; les mois suivants le stock entre en ligne de compte.

Pour un stock de i équipements et une production y , le coût mensuel vaut : C(y,i) = f(y) + 6i avec f(0) = 0; f(1) = 15; f(2) = 17; f(3) = 19; f(4) = 21 .

Résoudre ce problème en utilisant la théorie des graphes.

