Differential Equations MATH 225 TABLE OF LAPLACE TRANSFORMS

No.	Function $f(t)$	Laplace Transform $F(s)$	No.	Function $f(t)$	Laplace Transform $F(s)$
1.	f'(t)	sF(s) - f(0)	12.	e^{at}	$\frac{1}{s-a}$
2.	f''(t)	$s^2 F(s) - sf(0) - f'(0)$	13.	$\cos kt$	$\frac{s}{s^2 + k^2}$
3.	$\int_0^t f(\tau) \ d\tau$	$\frac{F(s)}{s}$	14.	$\sin kt$	$\frac{k}{s^2 + k^2}$
4.	$e^{at}f(t)$	F(s-a)	15.	$t^n f(t)$	$(-1)^n F^{(n)}(s)$
5.	$\mathcal{U}(t-a)f(t-a)$	$e^{-as}F(s)$	16.	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
6.	$f(t)*g(t) = \int_0^t f(\tau)g(t-\tau) d\tau$	F(s)G(s)	17.	$e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$
7.	1	$\frac{1}{s}$	18.	$e^{at}\sin kt$	$\frac{k}{(s-a)^2 + k^2}$
8.	t	$\frac{1}{s^2}$	19.	$\mathcal{U}(t-a)$	$\frac{e^{-as}}{s}$
9.	t^n	$\frac{n!}{s^{n+1}}$	20.	$\delta(t-t_0)$	e^{-st_0}
10.	$\cosh kt$	$\frac{s}{s^2 - k^2}$	21.	$\sinh kt$	$\frac{k}{s^2 - k^2}$
11.	$\frac{1}{2k^3}(\sin kt - kt\cos kt)$	$\frac{1}{(s^2+k^2)^2}$	22.	$\frac{t}{2k}\sin kt$	$\frac{s}{(s^2+k^2)^2}$

Four useful formulas

$$\int_0^\infty \delta(t - t_0) f(t) dt = f(t_0)$$

$$\int_0^t \delta(\tau - t_0) g(t - \tau) d\tau = \mathcal{U}(t - t_0) g(t - t_0)$$

$$F(s) = \mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt \quad \text{if } f(t + T) = f(t)$$

$$\mathcal{L}\{g(t) \mathcal{U}(t - a)\} = e^{-as} \mathcal{L}\{g(t + a)\} \text{ (Alternative Form of 5.)}$$