Universidad de Sevilla

Escuela Técnica Superior de Ingeniería Informática

Grado en Ingeniería Informática del Software

Diseño y Pruebas II

Curso 2021/2022

PERFORMANCE REPORT

Repositorio: https://github.com/Ginpasfer/Acme-Recipes

Grupo de Prácticas	S07	
Estudiantes	Rol	
Pastor Fernández, Ginés	Project Manager Developer Operator Tester	
Giráldez Álvarez, Pablo	Developer Analyst Tester	
Rijo Hernández, Badayco	Developer Tester	
Solís Miranda, Antonio Manuel	Developer Tester	

Índice

1.	Resumen ejecutivo	.3
2.	Tabla de revisiones	.3
3.	Introducción	.3
4.	Contenido	.3
4.1.	Request Logs	.3
4.2.	Test Case Logs	.4
4.3.	Análisis estadístico	.5
4.	.3.1. Intervalos de confianza	.5
4.	.3.2. Contraste de hipótesis	.5
4.4.	Comparativa entre distintos equipos	.6
5.	Conclusión	.6
6.	Bibliografía	.6

1. Resumen ejecutivo

En el presente documento se detalla el análisis de rendimiento realizado a partir de las pruebas ejecutándolas en dos dispositivos distintos, recopilando toda la información proporcionada por estas para su posterior análisis. Esta información viene dada por los logs generados automáticamente al ejecutar las pruebas del sistema, los cuales procesamos posteriormente haciendo uso de Microsoft Excel y su capacidad de análisis de datos. Con todo ello obtenemos una gráfica representativa con el tiempo promedio de acceso a las distintas rutas de nuestra aplicación.

2. Tabla de revisiones

Versión	ersión Fecha Autor		Descripción de cambios	
1.0	21/08/2022	Pablo Giráldez Álvarez	 Creación del documento 	

3. Introducción

El presente documento pretende realizar una descripción del estado del sistema en relación al rendimiento de la aplicación web. En concreto se realizarán dos análisis en dos computadoras distintas en relación al tiempo medio de las solicitudes del sistema, estableciendo de esta manera una hipótesis. Siguiendo esto, el contenido que va a formar parte del documento a parte de los dos puntos anteriores y este mismo contendrá un apartado donde se detallan las Request Logs, otro donde se detallan los Test Case Logs, para mas tarde detallar un análisis que contendrá los intervalos de confianza y la hipótesis. Además, el documento incluirá unas conclusiones y la bibliografía.

4. Contenido

4.1. Request Logs

Como podemos observar, los tiempos de la aplicación oscilan entre 0.4 y 1.1 segundos, siendo la más alta el acceso a una aplicación externa que suele tardar más, por lo tanto, el tiempo promedio más alto de las peticiones de nuestra propia aplicación es de 0.8 segundos. Por lo tanto, podemos decir que se trata de una aplicación estable.

4.2. Test Case Logs

Podemos observar cierta disparidad en los datos los tiempos de ejecución de los tests. Esto se puede deber a que los números de casos de prueba que testean los tests son diferentes, es decir, uno testea más casos que otro, por lo tanto, los tiempos de ejecución del que más comprueba son mayores. Además, al tratarse de test que abren una interfaz gráfica del navegador y se ejecutan automáticamente, tiende a tener unos altos tiempos de resolución

4.3. Análisis estadístico

Un análisis estadístico ayuda a sacar conclusiones sólidas a partir de los resultados de rendimiento obtenidos durante la ejecución de sus pruebas.

4.3.1. Intervalos de confianza

Para llevar a cabo un análisis estadístico correcto hemos utilizado las herramientas que nos proporciona Excel para el tiempo promedio de las peticiones en nuestra aplicación, dándonos como resultado una tabla con estadísticas:

time		
Media	500,945233	
Error típico	14,0117684	
Mediana	560	
Moda	563	
Desviación estándar	311,111747	
Varianza de la muestra	96790,5194	
Curtosis	202,903244	
Coeficiente de asimetría	12,3330085	
Rango	5726	
Mínimo	250	
Máximo	5976	
Suma	246966	
Cuenta	493	
Nivel de confianza(95,0%)	27,5302855	

Para calcular los intervalos de confianza y comprobar que nuestra aplicación cumple con los requisitos de estar entre 0 y 1000 ms, debemos de usar las siguientes fórmulas:

IC_MIN = Media - Nivel de confianza

IC MAX = Media + Nivel de confianza

Aplicando esta fórmula a nuestros datos obtenemos el siguiente intervalo:

Intervalo de confianza 473.414948	528,475519
-----------------------------------	------------

Por lo tanto, nuestra aplicación cumple con el intervalo de confianza requerido, con un nivel de confianza del 95%.

4.3.2. Contraste de hipótesis

Prueba z para medias de dos muestras		
	PC - Pablo Giráldez	C - Ginés Pastor
Media	500,9452333	409,397566
Varianza (conocida)	96790,5194	52971,988
Observaciones	493	493
Diferencia hipotética de las medias	0	
Z	5,252537856	
P(Z<=z) una cola	7,50088E-08	
Valor crítico de z (una cola)	1,644853627	
Valor crítico de z (dos colas)	1,50018E-07	
Valor crítico de z (dos colas)	1,959963985	

Se puede ver que el valor de P es muy bajo, por lo que quiere decir que los cambios realizados tras la refactorización han sido efectivos.

4.4. Comparativa entre distintos equipos

time		time	
NA - J'-	F00 04F333	No. I'-	400 207566
Media	500,945233	Media	409,397566
Error típico	14,0117684	Error típico	10,3657248
Mediana	560	Mediana	556
Moda	563	Moda	560
Desviación estándar	311,111747	Desviación estándar	230,156442
Varianza de la muestra	96790,5194	Varianza de la muestra	52971,988
Curtosis	202,903244	Curtosis	16,9714285
Coeficiente de asimetría	12,3330085	Coeficiente de asimetría	1,6729165
Rango	5726	Rango	2536
Mínimo	250	Mínimo	123
Máximo	5976	Máximo	2659
Suma	246966	Suma	201833
Cuenta	493	Cuenta	493
Nivel de confianza(95,0%)	27,5302855	Nivel de confianza(95,0%)	20,3665488
Intervalo de confianza de Pablo Giráldez		Intervalo de confianza de G	inés Pastor
473,4149478	528,475519	389,0310172	429,764115

Se puede observar como el equipo del compañero Ginés ha sido un bastante superior que el del compañero Pablo en la ejecución del proyecto y los tests.

5. Conclusión

En resumen, concretar que nuestra aplicación web cumple con los estándares de confianza del 95%, además se puede observar cómo se cumple con los estándares en la métrica de p-value, el intervalo de confianza y se ha explicado con detalle los datos presentados.

6. Bibliografía

Se ha hecho uso de las diapositivas de la plataforma de Enseñanza Virtual. En concreto las diapositivas "S05 - Performance testing (Theory, Laboratory).pptx" y el "Erratum" de las mismas.