$v2/f\ddot{u}\ddot{u}sika\ ja\ matemaatikaga\ seotud\ m\tilde{o}tted/GM\ eksperiment/"geometry.cfg"$

v2/füüsika ja matemaatikaga seotud mõtted/GM eksperiment/"bblopts.cfg"

 $v2/f\ddot{u}\ddot{u}sika\ ja\ matemaatikaga\ seotud\ m\tilde{o}tted/GM\ eksperiment/"english.cfg" \\ v2/f\ddot{u}\ddot{u}sika\ ja\ matemaatikaga\ seotud\ m\tilde{o}tted/GM\ eksperiment/"gravitomagnetismi\ experiment.aux"$

GM eksperiment

February 23, 2022

UUEM VERSIOON TEISES ARVUTIS!

Part I

Sissejuhatus

Selle töö eesmärk on kastseliselt tõestada Gravitimagneetilist nähtust. Gravitimagneetilise välja tekitamiseks loomiseks kasutan pöörlevat silndrit.

Part II

Sisu

${f 1}$ G_M välja tekitamine

 $B = \frac{dm^2}{dl*dt}*\mu_G$ (http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/solenoid.html ja eletromagnetismi ja gravitomagnetismi analoogiale tuginedes)

$$\frac{dm^2}{dl*dt} = \int_{r_1}^{r_2} (dr*\rho*\nu(r)) = \int_{r_1}^{r_2} (dr*\rho*\omega*r) = \rho*\omega*\int_{r_1}^{r_2} (dr*r) = \frac{\rho*\omega*(r_2^2-r_1^2)}{2}$$
 maksimaalne GMvlja tugevus silindri kohal on $B_G = \frac{\mu_G*\omega*\rho*(r_2^2-r_1^2)}{2}$ kus:

- ω nurkkiirus
- μ_G on GM konstant.
- ρ on slindr tihedus.
- r2

Et leida maksimaalset nurkkiirust, mis silindril olla saab ilma,et see inertsiaalsete jõudude tõttu puruneks kasutan neid kahte iternetist leitud valemi silindri radiaalse(keskounktist eemale) ja tangensiaalse(joonkiiruse suunalise) pinge leidmiseks. valemid sain(http://www.roymech.co.uk/Useful_Tables/Cams_Springs/Flywheels.html)

$$\begin{split} &\sigma_{radiaal~max} = \frac{\rho*\omega*(3+\mu)*(r_2-r_1)^2}{8} \\ &\sigma_{tangensiaal~max} = \frac{\rho*\omega*((1-\mu)*r_1^2+(3+\mu)*r_2^2)}{4} \end{split}$$

• μ on siin aine, millest silidr tehtud on poissoni tegur.

eeldan, et keha ei murdu kui nende ristuvate pingete ruutude summa ei ole keha pingetaluvusese ruudust suurem.

$$\sigma_{max} = \sqrt{\sigma_{radiaal\ max}^2 + \sigma_{tangensiaal\ max}^2} = \frac{\sigma_*\rho_*\sqrt{(\mu+3)^2*(r_1-r_2)^4+4*(r_1^2*(\mu-1)-r_2^2*(\mu+3))^2}}{8}$$
 avaldan siit $\omega = \frac{8*\sigma_{max}}{\rho} \sqrt{-\frac{1}{-5\mu^2r_1^4+4\mu^2r_1^3r_2+2\mu^2r_1^2r_2^2+4\mu^2r_1r_2^3-5\mu^2r_2^4+2\mu r_1^4+24\mu r_1^3r_2-20\mu r_1^2r_2^2+24\mu r_1r_2^3-30\mu r_2^4-13r_1^4+36r_1^3r_2-78r_1^2r_2^2+36r_1r_2^3-45r_2^4}$ Asendades selle B_G avaldisse saan:
$$B_G = \mu_G * \rho * (r_2^2 - r_1^2) * \frac{8*\sigma_{max}}{\rho} \sqrt{\frac{1}{5\mu^2r_1^4-4\mu^2r_1^3r_2-2\mu^2r_1^2r_2^2-4\mu^2r_1r_2^3+5\mu^2r_2^4-2\mu r_1^4-24\mu r_1^3r_2+20\mu r_1^2r_2^2-24\mu r_1r_2^3+30\mu r_2^4+13r_1^4-36r_1^3r_2+78r_1^2r_2^2-36r_1r_2^3+45r_2^4}$$

1.1 leian kõige parema täidetuse

• p on,et kui suure osa kogu raadiusest on täitmata osa raadiud

$$\begin{aligned} p &= r_1/r_2 \operatorname{seega} r_1 = p * r_2. \\ \operatorname{asendan selle} B_G \operatorname{valemisse}. \\ B_G &= 4v_g \sigma \sqrt{-5\mu^2 p^4 + 4\mu^2 p^3 + 2\mu^2 p^2 + 4\mu^2 p - 5\mu^2 + 2\mu p^4 + 24\mu p^3 - 20\mu p^2 + 24\mu p - 30\mu - 13p^4 + 36p^3 - 78p^2 + 36p - 45} * (1-p^2) \\ \operatorname{,et \ leida} \operatorname{parim \ t\"{a}idetus \ otsin} p \operatorname{v\'{a}\"{a}\'{a}rtuse, \ mille \ pubul \ tuletis } p \operatorname{kaudu} \operatorname{on} 0 \operatorname{ja \ teine \ tuletis \ on \ negatiivne}. \\ \frac{\partial B_G}{\partial p_G} &= 0 \\ \wedge \frac{\partial^2 B_G}{\partial p_G^2} &< 0 \\ \operatorname{ehk} \\ \frac{\partial (\frac{H_G * P^* A^{1*}(2*r_2 - A^1) * 8* \sigma_{max}}{\sqrt{5A^{14}\mu^2 - 2A^{14}\mu + 13A^{14} - 16A^{13}\mu^2 + 232A^3\mu u_2 - 16A^{13}\mu^2 + 272A^3\mu u_2^2 + 48A^{12}r_2^2 + 64A^1\mu u_2^3 - 64A^1x_2^3 + 64d^2})}{\partial A^1} &= 0 \\ \wedge \frac{\partial^2 (\frac{H_G * P^* A^{1*}(2*r_2 - A^1) * 8* \sigma_{max}}{\rho} \sqrt{\frac{5A^{14}\mu^2 - 2A^{14}\mu + 13A^{14} - 16A^{13}\mu^2 + 232A^3\mu u_2 - 16A^{13}u_2^2 + 16A^{12}\mu^2 v_2^2 - 64A^{12}\mu^2 v_2^2 + 48A^{12}v_2^2 + 64A^1\mu u_2^3 - 64A^1x_2^3 + 64d^2})}{\partial A^2} &= 0 \\ \frac{\partial^2 (\frac{H_G * P^* A^{1*}(2*r_2 - A^1) * 8* \sigma_{max}}{\rho} \sqrt{\frac{5A^{14}\mu^2 - 2A^{14}\mu + 13A^{14} - 16A^{13}\mu^2 v_2 + 32A^3\mu u_2 - 16A^{13}v_2 + 16A^{12}\mu^2 v_2^2 - 64A^{12}\mu^2 v_2^2 + 48A^{12}v_2^2 + 64A^1\mu v_2^3 - 64A^1x_2^3 + 64d^2})}{\partial A^2} &< 0 \\ \frac{\partial B_G}{\partial A^1} &= 0 \\ \frac{\partial B_G}{\partial A^1} &= 0 \\ \frac{\partial B_G}{\partial A^2} &= 0 \\ \frac{\partial B_$$

Parimatel praktikas saavutatavatel tingimustel kui:

- $r_1 = 0.252149098288748 * m$
- $r_2 = 5 * m$
- $\mu \approx -2$
- $\rho \approx 22570$
- $\sigma_{max} \approx 3.3 * 10^{-10}$

Siis $B_G \approx 5,56488343912850 * 10^{-16} * s^{-1}$

2 GM välja detekteerimise meetodid

2.1 neutronite kõrvalekaldumine

$$F = 4 * B \times v$$

2.2 keerleva ketta keeramine

Sekundaarse ketta pöörlemistelg on primaarse silindriga 90 kraadi kaldus. $F = 4 * \frac{\partial m}{t} * B_G * l_j uhe =$

2.3 teise suure inertsiomomendiga silndrile jõumomendi tekitamine.

• h on teise silindri kõrgus.

$$\tau = \int (dr * (2\pi * r) * h * \rho_2 * E_G * r * 4) = -\int (dr * (2\pi * r) * h * \rho_2 * \frac{r * \frac{\partial B_G}{\partial t}}{2} * r * 4) = -\frac{2\pi * h * \rho_2 * \frac{\partial B_G}{\partial t} * (r_{2,2}^4 - r_{2,1}^4)}{2} = -\frac{2\pi * h * \rho_2 * B_G * (r_{2,2$$

parimal praktiliselt saavutataval juhul kui:

- $\rho_2 \approx 22570$
- h=0,5*m
- $_{\Delta}t = 0.1 * s$

siis $tau_{parim\ praktiliselt\ saavutatav} \approx 9.86455531800619*10^{-16}*N*m$

2.4 teise silndri pöörlema panemine

- roo_2 on teise silindri tihedus
- r_2.1 on teise õõnes silindri välimine raadius.
- r_2.2 on teise õõnes silindri sisemine raadius.
- E_G on gravitatsiooni väli.
- B_G on gravitimagneetilineväli.
- tau on jõumoment.
- I on inertsimoment.

GEM võrrand:
$$rot(E_G) = -\frac{\partial B_G}{\partial t}$$

 $2 * \pi * r * E_G = -\pi * r^2 * \frac{\partial B_G}{\partial t}$
 $E_G = -\frac{r * \frac{\partial B_G}{\partial t}}{2}$
 $\tau = \int (dr * (2\pi * r) * h * \rho_2 * E_G * r * 4) = -\int (dr * (2\pi * r) * h * \rho_2 * \frac{r * \frac{\partial B_G}{\partial t} * 4}{2} * r) = -\frac{2\pi * h * \rho_2 * \frac{\partial B_G}{\partial t} * (r_{2.2}^4 - r_{2.1}^4)}{2}$
 $I = \frac{m * (r_{2.2}^2 - r_{2.1}^2)}{2} = \frac{\pi * h * \rho_2 * (r_{2.2}^2 - r_{2.1}^2)^2}{2}$
 $\omega = \int (\frac{\tau * dt}{I}) = \int (\frac{2\pi * h * \rho_2 * \frac{\partial B_G}{\partial t} * (r_{2.2}^4 - r_{2.1}^4) * dt}{4 * \pi * h * \rho_2 * (r_{2.2}^2 - r_{2.1}^2)^2}) = \int (\frac{\partial B_G}{\partial t} * (r_{2.2}^4 - r_{2.1}^4) * dt}{2 * (r_{2.2}^2 - r_{2.1}^2)^2}) = \frac{\Delta B_G * (r_{2.2}^4 - r_{2.1}^4)}{2 * (r_{2.2}^2 - r_{2.1}^2)^2}$
parimal juhul $\omega_{\text{parim}} \approx 2.78105119466268e - 13 * s^{-1}$

2.5 Laser interferomeetriga

Tuleb uurida, et kui suur B-vaäli minimaalselt olema peab, et seda mõõta saaks. B väli muudab kiire suunda, aga mitte teepikkust ja ei tekita eriti faasivahet. E_G väli tekitaks faasivahet. Kui footon oleks kogu silindri peatumise ajal maksimaalse gravitatsiooniväljaga kohas: $_{\Delta}\lambda/\lambda=E_g*l/c^2$; $E_G=-\frac{r*\frac{\partial B_G}{\partial t}}{2}$ seega $_{\Delta}\lambda/\lambda=\frac{r*l*\frac{\partial B_G}{\partial t}}{2*c^2}=\frac{r*_{\Delta}B_G}{2*c}\approx 4.640613273140196e-24$

juhul kui ühe silindri asemel oleks mitu pöörlevat ketast, mis just siis peatuvad kui õige valguskiire (laserkiire) jupp neid läbib võiks saada suurema muutuse lainepikuses.

2.6 laserkiire suuna muutusega

Laserkiire suunamuutus peale pikkus l läbimist homogeeenses gravitimagneetilises väljas tugevusega B_G $_{\Delta}\alpha \approx B_G*l \approx 1.3905255973313401e-10*rad$ tagasipeegeldamise abil võib kiire pikkus olla näiteks 500 meetrit.r