法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

第五章 非平稳序列的随机分析

主讲教师 周仕君

本章结构

- □ 差分运算
- □ ARIMA模型
- □ Auto-Regressive模型
- □ 异方差的性质
- □方差齐性变化
- □ 条件异方差模型

5.1 差分运算

- □差分运算的实质
- □ 差分方式的选择
- □ 过差分

差分运算的实质

- □ 差分方法是一种非常简便、有效的确定性信息提取方法
- □ Cramer分解定理在理论上保证了适当阶数的 差分一定可以充分提取确定性信息
- □ 差分运算的实质是使用自回归的方式提取确定性信息

$$\nabla^d x_t = (1 - B)^d x_t = \sum_{i=0}^d (-1)^i C_d^i x_{t-i}$$

差分方式的选择

- □序列蕴含看显著的线性趋势,一阶差分就可以实现趋势平稳
- □序列蕴含看曲线趋势,通常低阶(二阶或三阶)差分就可以提取出曲线趋势的影响
- □ 对于蕴含着固定周期的序列进行步长为周期 长度的差分运算,通常可以较好地提取周期 信息

【例1.1】1964年——1999年中国纱年产量序列蕴含着一个近似线性的递增趋势。对该序列进行一阶差分运算

$$\nabla x_{t} = x_{t} - x_{t-1}$$

考察差分运算对该序列线性趋势信息的提取作用

差分前后时序图

□ 原序列时序图

□ 差分后序列时序图

□ 尝试提取1950年——1999年北京市民用车辆 拥有量序列的确定性信息

差分后序列时序图

□ 一阶差分

□二阶差分

互联网新技术在线教育领航者

□ 差分运算提取1962年1月——1975年12月平均每 头奶牛的月产奶量序列中的确定性信息

差分后序列时序图

□一个阶差分

□ 1阶-12步差分

过差分

- □ 足够多次的差分运算可以充分地提取原序列 中的非平稳确定性信息
- □但过度的差分会造成有用信息的浪费

例5.4

- \square 假设序列如下 $X_t = \beta_0 + \beta_1 t + a_t$
- □ 考察一阶差分后序列和二阶差分序列的平稳 性与方差

比较

- □一个阶差分
 - 平稳

$$\nabla x_t = x_t - x_{t-1}$$
$$= \beta_1 + a_t - a_{t-1}$$

■ 方差小

$$Var(\nabla x_t) = Var(a_t - a_{t-1})$$
$$= 2\sigma^2$$

- □ 二阶差分(过差分)
 - 平稳

$$\nabla^2 x_t = \nabla x_t - \nabla x_{t-1}$$
$$= a_t - 2a_{t-1} + a_{t-2}$$

■ 方差大

$$Var(\nabla^{2} x_{t}) = Var(a_{t} - 2a_{t-1} + a_{t-2})$$
$$= 6\sigma^{2}$$

5.2 ARIMA模型

- □ ARIMA模型结构
- □ ARIMA模型性质
- □ ARIMA模型建模
- □ ARIMA模型预测
- □ 疏系数模型
- □ 季节模型

ARIMA模型结构

- □ 使用场合
 - 差分平稳序列拟合
- □ 模型结构

$$\begin{cases} \Phi(B) \nabla^{d} x_{t} = \Theta(B) \varepsilon_{t} \\ E(\varepsilon_{t}) = 0, \quad Var(\varepsilon_{t}) = \sigma_{\varepsilon}^{2}, E(\varepsilon_{t} \varepsilon_{s}) = 0, s \neq t \\ Ex_{s} \varepsilon_{t} = 0, \forall s < t \end{cases}$$

ARIMA 模型族

 \Box d=0

ARIMA(p,d,q)=ARMA(p,q)

 \square P=0

ARIMA(P,d,q)=IMA(d,q)

□ q=0

ARIMA(P,d,q)=ARI(p,d)

 \Box d=1,P=q=0

ARIMA(P,d,q)=random walk model

随机游走模型(random walk)

□ 模型结构

$$\begin{cases} x_{t} = x_{t-1} + \varepsilon_{t} \\ E(\varepsilon_{t}) = 0, & Var(\varepsilon_{t}) = \sigma_{\varepsilon}^{2}, E(\varepsilon_{t}\varepsilon_{s}) = 0, s \neq t \\ Ex_{s}\varepsilon_{t} = 0, \forall s < t \end{cases}$$

- □ 模型产生典故
 - Karl Pearson(1905)在《自然》杂志上提问:假如有个醉汉醉得非常严重,完全丧失方向感,把他放在荒郊野外,一段时间之后再去找他,在什么地方找到他的概率最大呢?

ARIMA模型的平稳性

- □ ARIMA(p,d,q)模型共 有p+d个特征根, 其 中p个在单位圆内, d 个在单位圆上。
- \square 所以当 $d \neq 0$ 时ARIMA(p,d,q)模型非平稳。

□ 例5.5 ARIMA(0,1,0) 財序图

t

ARIMA模型的方差齐性

 $\Box d \neq 0$ 时,原序列方差非齐性

ARIMA(0,1,0)模型

$$Var(x_t) = Var(x_0 + \varepsilon_t + \varepsilon_{t-1} + \cdots + \varepsilon_1) = t\sigma_{\varepsilon}^2$$

□ d阶差分后,差分后序列方差齐性

ARIMA(0,1,0)模型

$$Var(\nabla x_t) = Var(\varepsilon_t) = \sigma_{\varepsilon}^2$$

ARIMA模型建模步骤

□ 对1952年——1988年中国农业实际国民收入 指数序列建模

一阶差分序列时序图

一阶差分序列自相关图

Autocorrelations

Lag	Covariance	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	1	2	3	4	5	6	7	8	9	1	
0	78.239167	1.00000	-										ŀ	**	**	**	**	**	* *	**	**	**	**	**	ŀ
1	42.075733	0.53778	Ì										Ì	**	**	**	**	**	* *	*					Ì
2	16.246605	0.20765	Ì										İ	**	* *	ĸ									İ
3	7.058588	0.09022	İ										İ	**											İ
4	-11.132207	14228	İ								;	***	ķį												İ
5	-7.917076	10119	İ									**	ķį												İ
6	-9.245185	11817	Ì									**	ķİ												İ
7	-11.564313	14781	Ì								;	***	ķİ												İ
8	7.108735	0.09086	Ì										Ì	**											İ
9	12.965116	0.16571	Ì										Ì	**	*										Ì
10	-0.909105	01162	1										Ì												l
11	-2.455085	03138	1									,	ķ į												1
12	-3.501852	04476	- 1									,	ķ ¦												1
13	-6.583063	08414	- 1									**	k ¦												1
14	-7.883765	10076	1									**	ķ į												1
15	-4.783310	06114	-									,	ķ į												1
16	2.087515	0.02668	1										Ì	*											1
17	12.894776	0.16481	1										ł	**	*										ŀ
18	15.631250	0.19979	ł										ł	**	* *	k									ŀ

"." marks two standard errors

一阶差分后序列白噪声检验

延迟阶数	χ²统计量	P值
6	15.33	0.0178
12	18.33	0.1060
18	24.66	0.1344

拟合ARMA模型

□偏自相关图

Partial Autocorrelations

Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1
1	0.53778	1										ł	**	**	**	**:	**	*				1
2	-0.11474	- 1									* *	*										- 1
3	0.03912	- 1										ł	*									- 1
4	-0.27003	- 1							. ;	**	**	* ¦										- 1
5	0.16219	1										ŀ	**	*								- 1
6	-0.17787	1								*:	**	* !										- 1
7	0.03051	i										i	*									Ì
8	0.21004	İ										Ì	**	**								Ì
9	0.02902	İ										Ì	*									Ì
10	-0.25795	1							. ;	**	**	* i										- 1
11	0.04421	i										Ì	*									Ì
12	0.04346	1										ŀ	*									- 1
13	-0.03857	İ									;	* i										Ì
14	-0.15591	İ								:	**	×١										Ì
15	0.21892	İ										Ì	**	**								Ì
16	0.00855	Ì										ĺ										Ì
17	0.05496	ĺ										Ì	*									Ì
18	0.01825	ĺ										Ì										Ì

建模

- □定阶
 - \blacksquare ARIMA(0,1,1)
- □参数估计

$$(1-B)x_t = 4.99661 + (1+0.70766B)\varepsilon_t$$

 $Var(\varepsilon_t) = 56.48763$

- □模型检验
 - 模型显著
 - 参数显著

ARIMA模型预测

- □ 原则
 - 最小均方误差预测原理
- □ Green函数递推公式

$$\begin{cases} \psi_1 = \phi_1 - \theta_1 \\ \psi_2 = \phi_1 \psi_1 + \phi_2 - \theta_2 \\ \vdots \\ \psi_j = \phi_1 \psi_{j-1} + \dots + \phi_{p+d} \psi_{j-p-d} - \theta_j \end{cases}$$

预测值

$$x_{t+l} = (\varepsilon_{t+l} + \psi_1 \varepsilon_{t+l-1} + \dots + \psi_{l-1} \varepsilon_{t+1}) + (\psi_l \varepsilon_t + \psi_{l+1} \varepsilon_{t-1} + \dots)$$

$$\downarrow \qquad \qquad \downarrow$$

$$e_t(l)$$

$$\hat{x}_t(l)$$

$$E[e_t(l)] = 0$$

$$Var[e_t(l)] = (1 + \psi_1^2 + \dots + \psi_{l-1}^2)\sigma_{\varepsilon}^2$$

□ 已知ARIMA(1,1,1)模型为

$$(1 - 0.8B)(1 - B)x_t = (1 - 0.6B)\varepsilon_t$$

$$\mathbf{L}_{t-1} = 4.5 \qquad x_t = 5.3 \qquad \varepsilon_t = 0.8 \quad \sigma_{\varepsilon}^2 = 1$$

□ 求 X_{t+3} 的95%的置信区间

预测值

□ 等价形式

$$(1 - 1.8B + 0.8B^{2})x_{t} = (1 - 0.6B)\varepsilon_{t}$$

$$x_{t} = 1.8x_{t-1} - 0.8x_{t-2} + \varepsilon_{t} - 0.6\varepsilon_{t-1}$$

□计算预测值

$$\hat{x}_{t}(1) = 1.8x_{t} - 0.8x_{t-1} - 0.6\varepsilon_{t} = 5.46$$

$$\hat{x}_{t}(2) = 1.8\hat{x}_{t}(1) - 0.8x_{t} = 5.59$$

$$\hat{x}_{t}(3) = 1.8\hat{x}_{t}(2) - 0.8\hat{x}_{t}(1) = 5.69$$

计算置信区间

□ Green 函数值

$$\begin{cases} \psi_1 = 1.8 - 0.6 = 1.2 \\ \psi_2 = 1.8 \psi_1 - 0.8 = 1.36 \end{cases}$$

- □ 95%置信区间

$$(\hat{x}_t(3) - 1.96\sqrt{Var(e(3))}, \hat{x}_t(3) + 1.96\sqrt{Var(e(3))})$$

 $\Rightarrow (1.63, 9.75)$

例5.6续:对中国农业实际国民收入指数序列做为期10年的预测

疏系数模型

□ ARIMA(p,d,q)模型是指d阶差分后自相关最高阶数为p,移动平均最高阶数为q的模型,通常它包含p+q个独立的未知系数:

$$\phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q$$

□如果该模型中有部分自相关系数 φ_j,1≤ j< p或部分移动平滑系数 θ_k,1≤ k< q为零,即原模型中有部分系数省缺了,那么该模型称为疏系数模型。

疏系数模型类型

- \square 如果只是自相关部分有省缺系数,那么该疏系数模型可以简记为 $ARIMA((p_1, \dots, p_m), d, q)$
 - p_1, \dots, p_m 为非零自相关系数的阶数
- □如果只是移动平滑部分有省缺系数,那么该疏系数模型可以简记为ARIMA(p,d,(q1,···,qn))
 - q_1, \dots, q_n 为非零移动平均系数的阶数
- □ 如果自相关和移动平滑部分都有省缺,可以简记为 $ARIMA((p_1, \dots, p_m), d, (q_1, \dots, q_n))$

□ 对1917年-1975年美国23岁妇女每万人生育率序列建模

一阶差分

自相关图

Autocorrelations

Lag	Covariance	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1
0	145.928	1.00000											1;	**	***	***	***	***	***	***	***	***	* * !
1	41.471097	0.28419	İ										į,	**	***	**							İ
2	-6.153942	04217	İ									*	ķ										Ì
3	11.679824	0.08004	İ										į,	**									Ì
4	47.775344	0.32739	İ										į,	**	***	**	ķ						İ
5	47.552927	0.32586	Ì										į,	**	***	**	ĸ						Ì
6	21.691431	0.14864	Ì										į,	**	k								İ
7	9.102516	0.06238	1										1	*									1
8	3.544593	0.02429	-										H										ł
9	12.658538	0.08674	-										13	**									ł
10	13.544854	0.09282	-										1;	**									ł
11	-5.308811	03638	-									,	k ¦										ł
12	-10.154165	06958	-									>	k ¦										ŀ
13	-6.521036	04469	-									>	k ¦										ŀ
14	-7.235034	04958	-									*	k ¦										ł
15	-16.998688	11649	-									**	k ¦										ł
16	-18.817139	12895	-								,	***	k ¦										ł
17	-10.170169	06969	-									*	k ¦										ł
18	-21.791201	14933	-								,	***	k ¦										ł

"." marks two standard errors

偏自相关图

Partial Autocorrelations

Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	2	3	4	5	6	7	8	9	1
1	0.28419	1										ŀ	**	**	**	4							1
2	-0.13373	İ								. :	**	* i											Ì
3	0.14580	İ										Ì	**	*									Ì
4	0.28405	Ì										Ì	**			4							Ì
5	0.19604	Ì										Ì	**	**									Ì
6	0.07973	İ										Ì	**										Ì
7	0.02965	İ										Ì	*										Ì
8	-0.10604	Ì									*	* ¦											1
9	-0.05098	1									;	* ¦											1
10	-0.06054	Ì									;	* Î											Ì
11	-0.14640	İ								. :	**	* i											Ì
12	-0.05923	Ì									;	* ¦											1
13	-0.05089	1									;	* ¦											1
14	-0.06281	1									;	* ¦											1
15	-0.07425	1									;	* !											-
16	-0.03383	1									;	* !											- 1
17	0.02752	1										H	*										-
18	-0.08911	ŀ									*	* ¦											H

建模

- □定阶
 - \blacksquare ARIMA((1,4),1,0)
- □参数估计

$$(1-B)x_{t} = \frac{1}{1 - 0.26633B - 0.33597B^{4}} \varepsilon_{t}$$

- □模型检验
 - 模型显著
 - 参数显著

季节模型

- □简单季节模型
- □ 乘积季节模型

简单季节模型

□ 简单季节模型是指序列中的季节效应和其它 效应之间是加法关系

$$x_{t} = S_{t} + T_{t} + I_{t}$$

□简单季节模型通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常如下

$$\nabla_D \nabla^d x_t = \frac{\Theta(B)}{\Phi(B)} \mathcal{E}_t$$

□ 拟合1962——1991年德国工人季度失业率序列

差分平稳

□ 对原序列作一阶差分消除趋势,再作4步差分消除季节 效应的影响,差分后序列的时序图如下

白噪声检验

延迟阶数	χ²统计量	P值
6	43.84	<0.0001
12	51.71	<0.0001
18	54.48	<0.0001

差分后序列自相关图

Autocorrelations

Lag	Covariance	Correlation	-1	9	8	7	6	5	4	3	2	1	¢	1		2	3	4		5	6	7	8	9	1	
0	0.124721	1.00000												**	*	**	*	**	**	**	**	**	* **	* **	**:	!
1	0.052641	0.42207	İ										į	**	*	**	*	* *	•						i	Ĺ
2	0.023569	0.18898	İ										Ì	**	*	*									Ì	ĺ
3	0.0090404	0.07248	İ										İ	*											Ì	ĺ
4	-0.029789	23884	Ì							1	**	**	* i												Ì	ĺ
5	-0.029783	23879	1							1	**	**	* ¦												1	i
6	-0.022559	18087	1								. *	**	*												1	ĺ
7	-0.024312	19493	- 1								. *	**	* ¦												- 1	l
8	-0.011082	08885	- 1									*	*¦												1	l
9	-0.0074505	05974	- 1										*¦												ŀ	l
10	0.0027160	0.02178	- 1										١												H	l
11	0.0027155	0.02177	- 1										١												ŀ	l
12	-0.013672	10962	- 1									*	*¦												ŀ	l
13	-0.0025423	02038	- 1										H												- 1	l
14	-0.0033988	02725	- 1										*¦												- 1	l
15	-0.015005	12031	- 1									*	*¦												ŀ	l
16	0.0021367	0.01713	- 1										١													l
17	0.0070261	0.05633	- 1										١	*											- 1	ı
18	-0.0046198	03704	ł										* ¦												ŀ	

[&]quot;." marks two standard errors

差分后序列偏自相关图

Partial Autocorrelations

Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1
1	0.42207	ł										:	* * *	* * :	**	**						I I
2	0.01319											ł										ł
3	-0.01435																					
4	-0.32452								* *	**:	**>	k ¦										
5	-0.03822	i									;	k ¦										ł
6	-0.01721	ł																				
7	-0.07052	ł									;	k ¦										ł
8	-0.03361	ŀ									;	k ¦										
9	-0.07938	ŀ									* >	k ¦										
10	0.05648												ŧ									
11	-0.07772										* >	k ¦										
12	-0.19344	ŀ								*:	***	k ¦										
13	0.04133											:	ķ									
14	-0.01802																					
15	-0.12741									. :	**	k ¦										
16	0.01261																					
17	0.03710	i										:	k									
18	-0.11550	I									* >	k ¦										

模型拟合

- □定阶
 - \blacksquare ARIMA((1,4),(1,4),0)
- □参数估计

$$(1-B)(1-B^4)x_t = \frac{1}{1-0.44746B + 0.28132B^4} \varepsilon_t$$

模型检验

残差	连白噪声	金 验	参数	数显著性	检验
延迟 阶数	χ ² 统 计量	P值	待估 参数	<i>t</i> 统 计量	P值
6	2.09	0.7191	$ heta_1$	5.48	<0.0001
12	10.99	0.3584	$ heta_4$	-3.41	<0.0001

拟合效果图

乘积季节模型

- □ 使用场合
 - 序列的季节效应、长期趋势效应和随机波动之间有着复杂地相互关联性,简单的季节模型不能充分地提取其中的相关关系
- □ 构造原理
 - 短期相关性用低阶ARMA(p,q)模型提取
 - 季节相关性用以周期步长S为单位的ARMA(P,Q)模型提取
 - 假设短期相关和季节效应之间具有乘积关系,模型结构如下 Q(D)Q (P)

$$\nabla^{d} \nabla_{S}^{D} x_{t} = \frac{\Theta(B)}{\Phi(B)} \frac{\Theta_{S}(B)}{\Phi_{S}(B)} \varepsilon_{t}$$

例5.10:拟合1948——1981年美国女性月度失业率序列

差分平稳

□一阶、12步差分

差分后序列自相关图

Autocorrelations

Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0	12557.531	1.00000	**********
i	-1734.813	13815	***!
ż	2375.783	0.18919	. ****
2 3	279.359	0.02225	
4	759.808	0.06051	i i*. i
5	138.150	0.01100	
4 5 6	655.488	0.05220	. [*.
7	-1028.202	08188	** .
8	533.734	0.04250	. *.
9	-158.605	01263	. . .
10	-1606.237	12791	*** .
11	858.206	0.06834	
12	- 5698.457	45379	******
13	521.120	0.04150	. *
14	-509.219	04055	. * .
15	-1020.660	08128	.** .
16	-730.212	05815	. * .
17	429.071	0.03417	. [*
18	-825.235	06572	. *! . !
19	592.947	0.04722	. !*
20	-565.282	04502	. * .
21	206.681	0.01646	
22	-117.966	00939	
23	774.691	0.06169	. * .
24	-929.421	07401	. * .

"." marks two standard errors

差分后序列偏自相关图

Partial Autocorrelations

Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1	-0.13815	*** .
2	0.17342	. !***
3	0.07127	. [*.
4	0.04101	. !*.
5	0.00652	
6	0.03643	i i*. i
7	-0.08399	**! .
2 3 4 5 6 7 8 9	0.00291	. i .
9	0.01776	
10	-0.14008	***!
11	0.04184	
12	-0.42881	*****
13	-0.07313	.*1
14	0.11856	. **
15	-0.04173	.*1 .
16	-0.03232	.* .
17	0.04320	. *.
18	0.00766	. . .
19	-0.03205	.* .
20	-0.00893	. . .
21	0.03529	. [*.
22	-0.12175	**
23	0.09376	. **
24	-0.30002	***** .

简单季节模型拟合结果

		拟合材	莫型残差		检验	
延迟 阶数	AR(1	L,12)	MA(1	,2,12)	ARMA((1,	12),(1,12)
171 294	χ ² 值	P值	χ ² 值	P值	χ ² 值	P值
6	14.58	0.0057	9.5	0.0233	15.77	0.0004
12	16.42	0.0883	14.19	0.1158	17.99	0.0213
结果			拟合模型	均不显著	Î	

乘积季节模型拟合

- □模型定阶
 - \blacksquare ARIMA(1,1,1)×(0,1,1)₁₂

□参数估计

$$\nabla \nabla_{12} x_t = \frac{1 + 0.66137B}{1 + 0.78978B} (1 - 0.77394B^{12}) \varepsilon_t$$

模型检验

残差	自噪声		参	数显著性	检验
延迟阶数	χ ² 统 计量	P值	待估 参数	χ ² 统 计量	P值
6	4.50	0.2120	$\theta_{\scriptscriptstyle 1}$	-4.66	<0.0001
12	9.42	0.4002	θ_{12}	23.03	<0.0001
18	20.58	0.1507	ϕ_1	-6.81	<0.0001
结果	模型	显著	7/	参数均显	著

乘积季节模型拟合效果图

5.3 Auto-Regressive模型

□构造思想

■ 首先通过确定性因素分解方法提取序列中主要 的确定性信息

$$X_t = T_t + S_t + \varepsilon_t$$

然后对残差序列拟合自回归模型,以便充分提取相关信息

$$\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + \dots + \phi_{p}\varepsilon_{t-p} + a_{t}$$

Auto-Regressive模型结构

$$\begin{cases} x_t = T_t + S_t + \varepsilon_t \\ \varepsilon_t = \phi_1 \varepsilon_{t-1} + \dots + \phi_p \varepsilon_{t-p} + a_t \\ E(a_t) = 0, Var(a_t) = \sigma^2, Cov(a_t, a_{t-i}) = 0, \forall i \ge 1 \end{cases}$$

对趋势效应的常用拟合方法

□自变量为时间t的幂函数

$$T_{t} = \beta_{0} + \beta_{1} \cdot t + \dots + \beta_{k} \cdot t^{k} + \varepsilon_{t}$$

□自变量为历史观察值

$$T_{t} = \beta_{0} + \beta_{1} \cdot x_{t-1} + \dots + \beta_{k} \cdot x_{t-k} + \varepsilon_{t}$$

对季节效应的常用拟合方法

□ 给定季节指数

$$S_t = S_t'$$

□建立季节自回归模型

$$T_{t} = \alpha_{0} + \alpha_{1} \cdot x_{t-m} + \dots + \alpha_{l} \cdot x_{t-lm}$$

例5.6续

- □ 使用Auto-Regressive模型分析1952年-1988年中国农业实际国民收入指数序列。
- □ 时序图显示该序列有显著的线性递增趋势,但没有季节效应,所以考虑建立如下结构的Auto-Regressive模型

$$\begin{cases} x_t = T_t + \varepsilon_t &, \quad t = 1, 2, 3, \dots \\ \varepsilon_t = \phi_1 \varepsilon_{t-1} + \dots + \phi_p \varepsilon_{t-p} + a_t \\ E(a_t) = 0, Var(a_t) = \sigma^2, Cov(a_t, a_{t-i}) = 0, \forall i \ge 1 \end{cases}$$

趋势拟合

□ 方法一:变量为时间t的幂函数

$$T_t = 66.1491 + 4.5158t$$
 , $t = 1, 2, 3, \cdots$

 \square 方法二:变量为一阶延迟序列值 x_{t-1}

$$\hat{x}_{t} = 1.0365x_{t-1}$$
, $t = 1, 2, 3, \cdots$

趋势拟合效果图

残差自相关检验

- □ 检验原理
 - 回归模型拟合充分,残差的性质 $E(arepsilon_t, arepsilon_{t-j}) = 0$, $\forall j \geq 1$
 - 回归模型拟合得不充分,残差的性质

$$E(\varepsilon_t, \varepsilon_{t-j}) \neq 0$$
 , $\exists j \geq 1$

Durbin-Waston检验(DW检验)

- □ 假设条件
 - 原假设:残差序列不存在一阶自相关性

$$H_0: E(\varepsilon_t, \varepsilon_{t-1}) = 0 \Leftrightarrow H_0: \rho = 0$$

■ 备择假设:残差序列存在一阶自相关性

$$H_0: E(\varepsilon_t, \varepsilon_{t-1}) \neq 0 \Leftrightarrow H_0: \rho \neq 0$$

DW统计量

- 口构造统计量 $\sum_{t=2}^{n} (\varepsilon_{t} \varepsilon_{t-1})^{2}$ $DW = \frac{\sum_{t=1}^{n} \varepsilon_{t}^{2}}{\sum_{t=1}^{n} \varepsilon_{t}^{2}}$
- □ DW统计量和自相关系数的关系

$$DW \cong 2(1-\rho)$$

DW统计量的判定结果

例5.6续

□ 检验第一个确定性趋势模型

$$x_t = 66.1491 + 4.5158t + \varepsilon_t$$
, $t = 1, 2, 3, \cdots$

残差序列的自相关性。

DW检验结果

□ 检验结果

DW统计 量的值			P值
0.1378	142	1 .53	0.0001

- □检验结论
 - 检验结果显示残差序列高度正自相关。

Durbin h检验

- □ DW统计量的缺陷
 - 当回归因子包含延迟因变量时,残差序列的DW 统计量是一个有偏统计量。在这种场合下使用 DW统计量容易产生残差序列正自相关性不显著 的误判
- □ Durbin h检验

$$Dh = DW \frac{n}{1 - n\sigma_{\beta}^{2}}$$

例5.6续

□检验第二个确定性趋势模型

$$x_{t} = 1.0365x_{t-1} + \varepsilon_{t}$$
, $t = 1, 2, 3, \cdots$

残差序列的自相关性。

Dh检验结果

□ 检验结果

Dh统计量的值	P值				
2.8038	0.0025				

- □ 检验结论
 - 检验结果显示残差序列高度正自相关。

残差序列拟合

- □ 确定自回归模型的阶数
- □ 参数估计
- □ 模型检验

例5.6续

□对第一个确定性趋势模型的残差序列

$$\varepsilon_t = x_t - T_t = x_t - 66.1491 - 4.5158t$$
, $t = 1, 2, \dots$

进行拟合

残差序列自相关图

Autocorrelations

Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5		6	7	8	9	1	
1.00000 0.86045 0.65506						•		•			;	**	**	* *	* * * *	* *	*	**	*:		* *	*	
0.44082 0.21516												**;		**	**	*		•					
0.01276 12360	į				- •					* *	* !							•					
21001 20305					- -					k ** *								•					
15935	į				•				×	k * * *	ķ į							-					i

"." marks two standard errors

残差序列偏自相关图

Partial Autocorrelations

-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

模型拟合

- □定阶
 - \blacksquare AR(2)
- □ 参数估计方法
 - 极大似然估计
- □ 最终拟合模型口径

$$\begin{cases} x_{t} = 69.1491 + 4.5158t + \varepsilon_{t} \\ \varepsilon_{t} = 1.4859\varepsilon_{t-1} - 0.5848\varepsilon_{t-2} + a_{t} \end{cases}$$

□ 第二个Auto-Regressive模型的拟合结果

$$\begin{cases} x_t = 1.033x_{t-1} + \varepsilon_t \\ \varepsilon_t = 0.4615\varepsilon_{t-1} + a_t \end{cases}$$

三个拟合模型的比较

模型	AIC	SBC
ARIMA(0,1,1)模型: $(1-B)x_t = 4.99661 + (1+0.70766B)\varepsilon_t$	249.3305	252.4976
Auto—Regressive模型一: $\begin{cases} x_t = 69.1491 + 4.5158t + \varepsilon_t \\ \varepsilon_t = 1.4859\varepsilon_{t-1} - 0.5848\varepsilon_{t-2} + a_t \end{cases}$	260.8454	267.2891
Auto—Regressive模型二: $\begin{cases} x_t = 1.033x_{t-1} + \varepsilon_t \\ \varepsilon_t = 0.4615\varepsilon_{t-1} + a_t \end{cases}$	250.6317	253.7987

5.4 异方差的性质

- □ 异方差的定义
 - 如果随机误差序列的方差会随着时间的变化而 变化,这种情况被称作为异方差
- \square 异方差的影响 $Var(\varepsilon_t) = h(t)$
 - 忽视异方差的存在会导致残差的方差会被严重低估,继而参数显著性检验容易犯纳伪错误,这使得参数的显著性检验失去意义,最终导致模型的拟合精度受影响。

异方差直观诊断

- □ 残差图
- □ 残差平方图

残差图

□方差齐性残差图

□ 递增型异方差残差图

残差平方图

- □原理
 - 残差序列的方差实际上就是它平方的期望。 $Var(\varepsilon_t) = E(\varepsilon_t^2)$
 - 所以考察残差序列是否方差齐性,主要是考察 残差平方序列是否平稳

□ 直观考察美国1963年4月——1971年7月短期 国库券的月度收益率序列的方差齐性。

一阶差分后残差图

一阶差分后残差平方图

异方差处理方法

- □ 假如已知异方差函数具体形式,进行方差齐 性变化
- □ 假如不知异方差函数的具体形式,拟合条件 异方差模型

5.5 方差齐性变换

- □ 使用场合
 - ullet 序列显示出显著的异方差性,且方差与均值之间具有某种函数关系 $\sigma_{t}^{2}=h(\mu_{t})$

其中:h(·)是某个已知函数

- □ 处理思路
 - ullet 尝试寻找一个转换函数 $g(\cdot)$,使得经转换后的变量满足分差齐性 $Var[g(x_{t})] = \sigma^{2}$

转换函数的确定原理

□ 转换函数g(x,)在μ, 附近作一阶泰勒展开

$$g(x_t) \cong g(\mu_t) + (x_t - \mu_t)g'(\mu_t)$$

□ 求转换函数的方差

$$Var[g(x_t)] \cong Var[g(\mu_t) + (x_t - \mu_t)g'(\mu_t)]$$
$$= [g'(\mu_t)]^2 h(\mu_t)$$

□ 转换函数的确定

$$g'(\mu_t) = \frac{1}{\sqrt{h(\mu_t)}}$$

常用转换函数的确定

□ 假定

$$\sigma_t = \mu_t \Leftrightarrow h(\mu_t) = \mu_t^2$$

□转换函数的确定

$$g'(\mu_t) = \frac{1}{\sqrt{h(\mu_t)}} = \frac{1}{\mu_t} \implies g(\mu_t) = \log(\mu_t)$$

例5.11续

- □ 对美国1963年4月——1971年7月短期国库券的月度收益率序列使用方差齐性变换方法进行分析
- \square 假定 $\sigma_t = x_t$
- □ 函数变换 $y_t = \log(x_t)$

对数序列时序图

一阶差分后序列图

白噪声检验

延迟阶数	LB统计量	P值
6	3.58	0.7337
12	10.82	0.5441
18	21.71	0.2452

拟合模型口径及拟合效果图

5.6条件异方差模型

- □ ARCH模型
- □ GARCH模型
- □ GARCH模型的变体
 - EGARCH模型
 - IGARCH模型
 - GARCH-M模型
 - AR-GARCH模型

ARCH模型

□ 假定

$$\varepsilon_{\scriptscriptstyle t}/\sqrt{h_{\scriptscriptstyle t}} \sim N(0,1)$$

- □原理
 - 通过构造残差平方序 列的自回归模型来拟 合异方差函数

□ ARCH(q)模型结构

$$\begin{cases} x_{t} = f(t, x_{t-1}, x_{t-2}, \dots) + \varepsilon_{t} \\ \varepsilon_{t} = \sqrt{h_{t}} e_{t} \\ h_{t} = \omega + \sum_{j=1}^{q} \lambda_{j} \varepsilon_{t-j}^{2} \end{cases}$$

GARCH 模型结构

- □ 使用场合
 - ARCH模型实际上适 用于异方差函数短期 自相关过程
 - GARCH模型实际上 适用于异方差函数长 期自相关过程

□ 模型结构

$$\begin{cases} x_t = f(t, x_{t-1}, x_{t-2}, \dots) + \varepsilon_t \\ \varepsilon_t = \sqrt{h_t} e_t \\ h_t = \omega + \sum_{i=1}^p \eta_i h_{t-i} + \sum_{j=1}^q \lambda_j \varepsilon_{t-j}^2 \end{cases}$$

GARCH模型的约束条件

□参数非负

$$\omega > 0, \eta_i \ge 0, \lambda_j \ge 0$$

□参数有界

$$\sum_{i=1}^p \eta_i + \sum_{j=1}^q \lambda_j < 1$$

EGARCH模型

$$\begin{cases} x_t = f(t, x_{t-1}, x_{t-2}, \dots) + \varepsilon_t \\ \varepsilon_t = \sqrt{h_t} e_t \end{cases}$$

$$\begin{cases} \ln(h_t) = \omega + \sum_{i=1}^p \eta_i \ln(h_{t-i}) + \sum_{j=1}^q \lambda_j g(e_t) \\ g(e_t) = \theta e_t + \gamma [|e_t| - E|e_t|] \end{cases}$$

IGARCH模型

$$\begin{cases} x_{t} = f(t, x_{t-1}, x_{t-2}, \dots) + \varepsilon_{t} \\ \varepsilon_{t} = \sqrt{h_{t}} e_{t} \end{cases}$$

$$\begin{cases} h_{t} = \omega + \sum_{i=1}^{p} \eta_{i} h_{t-i} + \sum_{j=1}^{q} \lambda_{j} \varepsilon_{t-j}^{2} \\ \sum_{i=1}^{p} \eta_{i} + \sum_{j=1}^{q} \lambda_{j} = 1 \end{cases}$$

GARCH-M模型

$$\begin{cases} x_t = f(t, x_{t-1}, x_{t-2}, \dots) + \delta \sqrt{h_t} + \varepsilon_t \\ \varepsilon_t = \sqrt{h_t} e_t \\ h_t = \omega + \sum_{i=1}^p \eta_i h_{t-i} + \sum_{j=1}^q \lambda_j \varepsilon_{t-j}^2 \end{cases}$$

AR-GARCH模型

$$\begin{cases} x_t = f(t, x_{t-1}, x_{t-2}, \dots) + \varepsilon_t \\ \varepsilon_t = \sum_{k=1}^m \beta_k \varepsilon_{t-k} + \upsilon_t \\ \upsilon_t = \sqrt{h_t} e_t \\ h_t = \omega + \sum_{i=1}^p \eta_i h_{t-i} + \sum_{j=1}^q \lambda_j \upsilon_{t-j}^2 \end{cases}$$

GARCH模型拟合步骤

- □ 回归拟合
- □ 残差自相关性检验
- □ 异方差自相关性检验
- □ ARCH模型定阶
- □参数估计
- □ 正态性检验

例5.12

□使用条件异方差模型拟合某金融时间序列。

回归拟合

□ 拟合模型

$$X_t = \alpha_1 X_{t-1} + \mathcal{E}_t$$

□参数估计

$$\hat{\alpha}_1 = 1.0053$$

- □参数显著性检验
 - P值<0.0001, 参数高度显著

残差自相关性检验

- □残差序列DW检验结果
 - Durbin h=-2.6011
 - \blacksquare Pr(Dh < -2.6011) < 0.0046
- □ 拟合残差自回归模型
 - 方法:逐步回归
 - 模型口径

$$\varepsilon_{t} = -0.1559\varepsilon_{t-1} - 0.407\varepsilon_{t-2} + \upsilon_{t}$$

异方差自相关检验

- □ Portmantea Q检验
- □ 拉格朗日乘子 (LM) 检验

Portmantea Q检验

□ 假设条件

$$H_0: \rho_1 = \rho_2 = \cdots = \rho_q = 0 \leftrightarrow H_1: \rho_1, \rho_2, \cdots, \rho_q$$
不全为零

□ 检验统计量

$$Q(q) = n(n+2) \sum_{i=1}^{q} \frac{\rho_i^2}{n-i} \sim \chi^2(q-1)$$

- □ 检验结果
 - 拒绝原假设 $Q(q) \ge \chi_{1-\alpha}^2(q-1)$
 - 接受原假设 $Q(q) < \chi_{1-\alpha}^2(q-1)$

LM检验

□ 假设条件

$$H_0: \rho_1 = \rho_2 = \cdots = \rho_q = 0 \leftrightarrow H_1: \rho_1, \rho_2, \cdots, \rho_q$$
不全为零

□ 检验统计量

$$LM(q) = W'W , W = \left(\frac{\rho_1^2}{\hat{\sigma}^2}, \frac{\rho_2^2}{\hat{\sigma}^2}, \cdots, \frac{\rho_q^2}{\hat{\sigma}^2}\right)$$

- □ 检验结果
 - 拒绝原假设 $Q(q) \ge \chi_{1-\alpha}^2(q-1)$
 - 接受原假设 $Q(q) < \chi_{1-\alpha}^2(q-1)$

例5.12残差序列异方差检验

阶数	Portmantea Q 统计量	P值	LM 统计量	P值
1	21.0457	< 0.0001	20.9461	< 0.0001
2	69.5836	< 0.0001	57.6219	< 0.0001
3	91.2062	< 0.0001	62.8963	< 0.0001
4	103.7725	< 0.0001	63.0874	< 0.0001
5	105.1216	< 0.0001	65.9268	< 0.0001
6	105.1753	< 0.0001	68.5504	< 0.0001
7	105.4858	< 0.0001	68.6805	< 0.0001
8	116.6605	< 0.0001	86.6446	< 0.0001
9	131.2003	< 0.0001	102.3673	< 0.0001
10	185.9957	< 0.0001	135.5774	< 0.0001
11	205.3304	< 0.0001	135.6465	< 0.0001
12	417.1844	< 0.0001	230.3537	< 0.0001

ARCH模型拟合

- □ 定阶: GARCH(1,1)
- □ 参数估计: 极大似然估计
- □ 拟合模型口径: AR(2)-GARCH(1,1)

$$\begin{cases} x_t = 1.0046x_{t-1} + \varepsilon_t \\ \varepsilon_t = -0.1559\varepsilon_{t-1} - 0.407\varepsilon_{t-2} + \upsilon_t \\ \upsilon_t = \sqrt{h_t} e_t \\ h_t = 0.0951 + 0.8999h_{t-1} + 0.1053\upsilon_{t-1}^2 \end{cases}$$

模型检验

- □ 检验方法:正态性检验
- 口 假设条件: $H_0: u_t \sim N(0,1) \leftrightarrow H_0: u_t \sim N(0,1)$
- □ 检验统计量

$$T_n = \frac{n}{6}b_1^2 + \frac{n}{24}(b_2 - 3)^2 \sim \chi^2(2)$$

- □ 检验结果
 - 拒绝原假设 $T_n \geq \chi_{1-\alpha}^2(2)$
 - 接受原假设 $T_n < \chi_{1-\alpha}^2(2)$

例5.13正态性检验结果

$$T_n = 1.1585$$

P值 = 0.5603

□ AR(2)-GARCH(1,1)模型显著成立

拟合效果图

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

