METHOD FOR BONDING RESIN FILM BY LASER

Julkaisuia muista maista JP2002067164 (A) Julkaisupäivä: 2002-03-05 Keksijä(t): HASEGAWA TATSUYA +

Hakija(t): JAPAN SCIENCE & TECH CORP +

Patenttiluokitus - kansainvälinen B29C65/16; B65B51/10; B29C65/14; B65B51/10; (IPC1-7): B29C65/16: B65B51/10

- eurooppalainen B29C65/00H6G; B29C65/16 Hakemusnumero: JP20000256858 20000828 Etuoikeusnumero(t): JP20000256858 20000828

Tiivistelmä JP 2002067164 (A)

PROBLEM TO BE SOLVED: To provide a method for bonding a resin film by a laser, by which the appearance of the bonded section is favorable, and in addition, the consumption energy can be reduced. SOLUTION: A light-absorbing substance 3 is pinched between top and bottom resin films 1 and 2, and is irradiated with the laser 5. The heat from the light- absorbing substance 3 which has absorbed the laser 5 is transmitted to the top and bottom resin films 1 and 2. When the heat exceeds the melting temperature of the top and bottom resin films land 2, the top and bottom resin films 1 and 2 met. By a force which is applied from the top and the bottom, the top and bottom resin films 1 and 2 are mixed and reset, and thus, a bonding layer 8 which bonds the top and bottom resin films 1 and 2 is formed.

Tiedot saatu espacenet tietokannasta - Worldwide

(19)日本曜時計 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-67164 (P2002-67164A)

(43)公開日 平成14年3月5日(2002.3.5)

(51) Int.Cl.7	藏別記号	F I	ァーマコート*(参考)
B 2 9 C 65/16		B 2 9 C 65/16	3 E 0 9 4
B 6 5 B 51/10		R65R 51/10	Z 4F211

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出顧番号	特順2000-256858(P2000-256858)	(71)出額人 396020800 科学技術振興事業: 引	
(22) H M H	平成12年8月28日(2000.8.28)	埼玉県川口市本町4丁目1番8号	
(SE) DIRACI	TMLET 0 7320 H (2000, 0, 70)	(72) 発明者 長谷川 遠也 要知果名方遠市北区名城3-1-1-208 (74) 代理人 100089635	
		弁理士 清水 守	
		Fターム(参考) 3E094 AA12 CA01 DA08 HA01 HA08	
		4F211 AA04 AA11 AD05 AD08 AG01	
		ACO3 AH54 AKO3 TAO1 TC13	
		TC17 TH02 1H06 TH24 TN27	

(54) 【発明の名称】 レーザによる樹脂フィルムの接着方法

(57)【要約】

【課題】 接着部の見栄えがよく、しかも消費エネルギ ーを低減することができる、レーザによる樹脂フィルム の接着方法を提供する。

【解決手段】 上下樹脂フィルム1,2の間に光吸収物 質3を挟み込み、レーザ5を照射し、このレーザ5を吸 収した光吸収物質3からの熱が前記上下樹脂フィルム 1,2に伝導し、前記上下樹脂フィルム1,2の溶融温 度を越えると前記上下樹脂フィルム1, 2が溶融し、上 下から加えた力により混合、再凝結させ、前記上下樹脂 フィルム1,2を接着する接着層8を形成する。

【特許請求の範囲】

【請求項2】 請求項1記載のレーザによる樹脂フィルムの接案方法において、前記レーザを走査することにより、各種の形態の接着耐を形成することを特徴とするレーザによる樹脂フィルムの接着方法。

【請求項3】 請求項2記載のレーザによる樹脂フィルムの接着方法において、前記各種の形態の接着層は、平面的に形状を形成することを特徴とするレーザによる樹脂フィルムの終業方法

【請求項4】 請求項2記載のレーザによる樹脂フィルムの接着方法において、前記各種の形態の接着型は、平面的に指画される文字を形成することを特徴とするレーザによる樹脂フィルムの接着方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、食品等を包装する 樹脂フィルムのレーデによる接着(シール)方法に関す るものである。

[0002]

【従来の技術】従来、このような分野の技術としては、 特開2000-109028号などがあり、かかるヒートシール法は、上下に直接フィルムを重ねて熟を加えるようにしている。

【0003】また、高周波法では樹脂フィルム全体を溶かすようにしている。

[0004]

【発明が解決しようとする課題】しかしながら、上記した従来のヒートシール法は、上下から開詣フィルムを挟んで熱を加えるため、フィルムの内側に熱で溶ける接着 便を設けた二重構造のフィルムを使っており、コスト高の原因になっている。

【0005】また、ヒートシール法や高周波法では樹脂 フィルム全体を溶かすため、外形の変形を置けることが できず、見かけや接着力の増強のため、包装部分以外に かなり余分な幅広い面積を必要としており、これもコス ト高の原因になっている。

【0006】因みに、フィルムの内部を加熱落音する方法として超音波シール法がある。しかし、この方法で実 取できるフィルム送り速度は最大25m/min(40 0mm/s)であり、実際のシール装置に必要なフィル ム送り速度60m/min(1000mm/s)が達成 できず、砂製機様では実用に考れていない。 【0007】本発明は、これらの問題を解決するため、 接着部の見架えがよく、しかも消費エネルギーを低減す ることができる、レーザによる樹脂フィルムの接着方法 を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明は、上記目的を達成するために、

(1)レーザによる樹脂フィルムの接着方法において 上下砌備フィルムの間に光吸収物質を挟み込み、レーザ 転取付し、このレーザを吸収した前記光吸収物質からの 熱が縮出下砌備フィルムに伝導し、前記上下砌備フィ ルムの溶磁温度を超えると前記上下破備フィルムが溶磁 し、上下から加えた力により混合、再流結させ、前記上 下切備フィルムを接着する核着層を形成することを持微 とする。

【0009】(2)上記(1)記載のレーザによる樹脂 フィルムの接着方法において、前記レーザを走査するこ とにより、各種の形態の接着層を形成することを特徴と する。

【0010】[3]上記〔2〕記載のレーザによる樹脂 フィルムの接着方法において、前記各種の形態の接着層 は、平面的に形状を形成することを特徴とする。

【0011】 [4]上記 [2]記載のレーザによる樹脂 フィルムの接着方法において、前記各種の形態の接着層 は、平面的に描画される文字を形成することを特徴とす

[0012]

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。

【0013】図1は本発明の実施例を示すレーザによる 樹脂フィルムの接着工程断面図である。

【0014】まず、図1(a)に示すように、上部樹脂 フィルム1と下部樹脂フィルム2の間に光吸収物質3を 挟み込む。

【0015】次いで、図1(b)に示すように、上記した接着すべき部材を押えた状態で、レーザーモジュール 4からのレーザ5をその接着すべき部材へ照射する。

【0016】すると、図1(c)に示すように、レーザを吸収し発生した光吸収物質3からの熱が上下樹脂フィルム1,2に伝導し、熱伝導部6,7が生成される。

【0017】そして、図1(d)に示すように、伝導した熱が上下樹脂フィルム1、2の溶産温度を魅えると上下樹脂フィルム1、2の接種面は溶組し、上下から圧力を加えることにより、混合し再凝固し、上下樹脂フィルム1、2の接着(シール)が密をする。

【0018】以下、具体的な食品包装用フィルムの接着 例について説明する。

【0019】〔第1具体例〕

⑦ 接着される上下樹脂フィルムの材料:ボリエチレン

(PE)包装フィルム

(度み15 mm)

② 光吸収物質:黒マジック(登録商標)インクで着色

③ レーザパワー:9~12(W)

④ レーザ走査速度:10 [mm/s]

〔第2具体例〕

② 光吸収物質: C P側溶接時は黒のレジマーク印刷を利用 O P側溶接時は黒マジックで着色

n 1 CD CDMA

Mari Cracriga		
レーザパワー (W)	走査速度〔mm/s〕	焦点直径〔mm〕
1~2	10	2
2~4	10	4
③ − 2 OP − OP接合		
レーザパワー (W)	走査速度〔mm/s〕	焦点直径〔mm〕

3~6

なお、OPはCPに比べて融点が高いので必要なレーザ パワーが大きい。

- 【0021】〔その他の具体例〕この他、ペット(PT)での接着を確認している。
- 【0022】なお、フィルムの押さえ圧についてはこれまでの実験では指で4箇所のナットを回して締めつける程度である。
- 【0023】本発明のレーザによる樹脂フィルムの接着 (シール)法は、フィルムの内部を加熱溶着する方法で ある。
- 【0024】したがって、仕上がりがきれいであり、余 分の熱を加える必要がないので消費エネルギーが少な い。また、外部無熱とのようご程点の高い相似 (外側) と離点の低い材料 (内側) からなる複合フィルムを使用 する必要がなく、単一成分のフィルムを使用できるの で、フィルム材料のリサイクル性を向上させることがで きる。
- 【00025】上記したように、ポリプロピレンフィルム を用いた基礎実験によれば、出力1W、焦点前径2m 、フィルム送り速度10mm/sで落著が可能であ る。現在100W級の半導体レーザが存在していること を考慮されば、フィルム送り速度60m/min(10 00mm/s)よ対対なたまた。
- 0 m m / s) を達成することは可能である。
- 【0026】本発明のレーザによる樹脂フィルムの接着 (シール) 法は、光学系の工夫やコンピュータ制御によ り準々な接着(シール) 加工が可能である。たとえば、 破線、曲線、淡線、文字指両などである。
- 【0027】図2は本発明の実施例を示す任意應樣の接 着(シール)方法を示す平面図であり、図2(a)はそ の破線形状の接着(シール)層を形成する平面図、図2 (b)はその曲線形状の接着(シール)層を形成する平 面図、図2(c)はその曲線形状の接着(シール)層を

6 焦点直径:4 [mm]

これ以上のパワーでは、包装フィルムの外面の溶融や、 接着部の焼き切れが起きるので、注意を要する。 【0020】

- 10 2 形成する平面図、図2(d)は文字指画の接着(シール)層を形成する平面図である。
- 【0028】(1)図1に示すレーザ照射により、図2 (a)に示すように、樹脂フィルム11内部に破線形状
- の接着 (シール) 層12を形成することができる。 【0029】(2)図1に示すレーザ照射により、図2 (b)に示すように、樹脂フィルム21内部に曲線形状
- の接着 (シール) 層 2 2 を形成することができる。 【0030】(3) 図 1 に示すレーザ照射により、図 2 (c) に示すように、樹脂フィルム 3 1 内部に波線形状 の接着 (シール) 曜 3 2 を形成することができる。
- 【0031】(4)図1に示すレーザ照射により、図2 (d)に示すように、樹齢フィルム41内部に描画され る文字(シール)層42を形成することができる。その 際には、光釈取物質は黒色や有色の物質であることが望 ましい。また、シールを兼ねて、この商品のコードや番 号を描くようとしてもよい。

【0032】なお、木発明は上記実施側に限定されるものではなく、木発明の超旨に基づいて種々の変形が可能であり、これらを木発明の範囲から排除するものではない。

[0033]

【発明の効果】以上、詳細に説明したように、本発明に よれば、以下のような効果を奏することができる。

- 【0034】(A) 樹脂フィルムの内側の溶酸による接 着であるため、樹脂フィルムの外側を溶離・変形をきた すことなく接着(シール)することができ、仕上がりが きれいである
- 【0035】(B)樹脂フィルムの接着強度を強固に し、密封性を良くすることができる。
- 【0036】(C) 樹脂フィルムのシール幅を小さく し、樹脂フィルムの使用量を減らすことができる。

【0037】(D)シール装置の消費電力の低減化を図 ることができる。 【0038】(E)複雑な装置を用いることなく、樹脂

フィルムの接着(シール)が可能である。

【0039】(F)レーザビームを走査することによ り、破線、曲線、波線、文字描画などを形成することが できる.

【0040】(G)単一成分のフィルムを使用できるの でフィルム材料のリサイクルを向上させることができ

8. 【図面の簡単な説明】

【図1】本発明の実施例を示すレーザによる樹脂フィル ムの接着工程断面図である。

【図2】本発明の実施例を示す任意態様の接着(シー

ル) 方法を示す平面図である。 【符号の説明】

上部樹脂フィルム

下部樹脂フィルム 2

3 光吸収物質

レーザモジュール 4 レーザ

6,7 熱伝導部

接着(シール)層

(a)

11, 21, 31, 41 樹脂フィルム

12 破線形状の接着 (シール) 層 22 曲線形状の接着(シール)層

32 波線形状の接着 (シール) 層

42 描画される文字 (シール) 層

【図1】

[**32**]

