APS 1052Y Final Project Prediction of Daily Change Apple Stock Price

Presented by:

Samson Tran (1001460947), Ian Xu (1003850914), Min Woo (David) Kong (1008691435)

August 24, 2022

Introduction

This project is to study the prediction of Apple stock based on 5-year historic dataset to be trained with different models.

It was considered the following popular indicators are used to our model: 1. RSI (Relative Strength Index), 2. MACD (Moving Average Convergence-Divergence), 3. SO (Stochastic Oscillator), 4. EMA (Exponential Moving Average), 5. Bollinger Band.

We had implemented the KNN (k-nearest neighbors), Random Forest, Logistic Regression to evaluate the performances respectively.

Refer to "APS1052Y Final Project.ipynb" found within the submission.

Input Source Information

Seed code: https://github.com/KieranLitschel/PredictingClosingPriceTomorrow

Apple's 5 year CSV File:

https://finance.yahoo.com/quote/AAPL/history/

List of Indicators

#	Technical Indicators	icators Description Formula		
1	Relative Strength Index (RSI)	It is a technical analysis tools used to determine the strength or	RSI = 100 - [100 / (1 + RS)]	
•	inclutive strength mack (NSI)	weakness of a stock's price.	RS = Average of x days' down closes / Average of x days' up closes	
2	Moving Average Convergence-DivergenceMACD	It is a trend-following momentum indicator that shows the relationship between two moving averages of a security's price.	MACD = 12-Period EMA – 26-Period EMA	
			%K = 100 × CP – L14/H14 – L14	
			CP: Most recent closing price	
			L14: Lowest price of the 14 previous trading sessions	
3	Stochastic Oscillator	It measures the relationship between an issue's closing price and its price range over a predetermined period of time.	H14: Highest price of the same 14 previous trading sessions	
			D = 100 (L3/H3)	
			H3: Highest of the three previous trading sessions	
			L3: Lowest price traded during the same three-day period	
	Simple Moving Average (SMA)/Exponential Moving Average (EMA)		$EMA = (K \times (C - P)) + P$	
4		SMA: It is simply the average price over the specified period.	C: Current Price	
_		EMA: It is similar to SMA but it applies more weight to data.	P: Previous periods EMA	
			K: Exponentialsmoothing constant	
	Bollinger Band		$BOLU = MA(TP,n) + m*\sigma[TP,n]$	
			$BOLD = MA(TP,n) - m*\sigma[TP,n]$	
		It is a technical analysis tool defined by a set of trendlines plotted two	BOLU: Upper Bollinger Band	
_		standard deviations (positively and negatively) away from a simple		
5		moving average (SMA) of a security's price, but which can be	MA: Moving average	
		adjusted to user preferences.	TP (typical price) = (High + Low + Close) ÷ 3	
			n: Number of days in smoothing period (typically 20)	
			m: Number of standard deviations (typically 2)	
			σ[TP,n]: Standard Deviation over last n periods of TP	

Ref: Investopedia

- 1. https://www.investopedia.com/terms/r/rsi.asp
- 2. https://www.investopedia.com/terms/m/macd.asp
- 3. https://www.investopedia.com/terms/s/stochasticoscillator.asp
- 4. https://www.investopedia.com/terms/e/ema.asp
- 5. https://www.investopedia.com/terms/b/bollingerbands.asp

Feature Encoding (refer to Python notebook for code)

	rsi	macd	SO_fast	SO_slow	DiffClose5_EMA	DiffClose8_EMA	DiffClose13_EMA	DiffCloseUpper	DiffCloseLower
1253	50.708579	-4.753417	28.385110	23.191515	0.005410	-0.001676	-0.015706	19.821584	8.128593
1254	50.539711	-4.310890	44.311138	34.261449	0.017905	0.015380	0.004736	16.854561	11.210566
1255	50.379864	-3.644627	60.585741	44.427330	0.028172	0.031047	0.025068	13.521039	14.543045
1256	50.442945	-3.081091	60.585741	55.160873	0.018606	0.023982	0.021410	13.363290	14.597295
1257	51.086413	-2.941101	40.326492	53.832658	-0.007856	-0.005080	-0.007739	16.448673	10.462674

- **rsi**: Relative Strength Index
- macd: The value for the macd histogram
- SO (fast & slow): Stochastic Oscillator
- DiffClose5 EMA, DiffClose8 EMA, DiffClose13 EMA
 - : Percentage difference between the closing price and the 5, 8, and 13 days Exponential Moving Average (EMA)
- DiffCloseUpper: Percentage difference between the upper bollinger band and adjusted closing price
- **DiffCloseLower:** Percentage difference between the lower bollinger band and adjusted closing price

Exploratory Data Analysis

-1.0

- 0.8

- 0.6

- 0.4

0.2

- 0.0

- -0.2

- -0.4

- -0.6

Target Variable Encoding (refer to Python notebook for code)

Goal: To predict the closing price of the following trading day into one of the following 4 bands:

- Adj. Closing Price Change <-1%
- -1% <= Adj. Closing Price Change < 0%
- 0% <= Adj. Closing Price Change < 1%
- 1% <= Adj. Closing Price Change

Model Selection

#	Model Selection Method	Description	Pros	Cons	Selection
1	KNeighborsClassifier	Distance-based supervised learning approach	No Training Period	Not work well with large dataset	x
2	SVC	LIBSVM based implementation	Very effective even with high dimensional data	On large data set comparatively takes more time to train	
3	NuSVC	LIBSVM based implementation	Very effective even with high dimensional data	On large data set comparatively takes more time to train	
4	DecisionTreeClassifier	A rule-based supervised learning algorithm	Requires little data preparation	Can be unstable because small variations in the data might result in a completely different tree being generated	
5	Randomeorecti laccitier	An ensemble of Decision Trees, generally trained via the bagging method	Robust to outliers	Slow Training	x
6	AdaBoostClassifier	A general ensemble method that creates a strong classifier from a number of weak classifiers	Less susceptible to overfitting	Needs a quality dataset	
7	GradientBoostClassifier	ensemble learning involves building a strong model by using a collection (or "ensemble") of "weaker" models	No data pre-processing required	Computationally expensive	
8	Logistic Regression	estimates the parameters of a logistic model by calculating the coefficients in the linear combination	No assumptions about distributions of classes in feature space	Constructs linear boundaries	X

Ref:

- 1. https://botbark.com/2019/12/19/top-5-advantages-and-disadvantages-of-support-vector-machine-algorithm/
- 2. https://scikit-learn.org/stable/modules/tree.html
- 3. https://towardsai.net/p/machine-learning/why-choose-random-forest-and-not-decision-trees#:~:text=Pros%20%26%20Cons%20of%20Random%20Forest,-
- 4. https://machinelearningmastery.com/boosting-and-adaboost-for-machine-learning/
- 5. https://blog.paperspace.com/gradient-boosting-for-classification/

Parameter Tuning

#	Model Selection Method	Parameters
1	KNeighborsClassifier	'n_neighbors'- Number of neighbors used by default 'leaf_size' - leaf size can affect the speed of the construction and guery, as well as the memory required to store the tree 'p_values'- Power parameter, when p=1, manhattan_distance is used. P=2, euclidean distance is used
2	Random Forest Classifier	'n_estimators'- Number of trees in random forest 'min_samples_leaf' - Minimum number of samples required at each leaf node 'max_features'- Number of features to consider at every split
3	Logistic Regression	'solvers - Algorithm to use in the optimization problem' 'class_weights' - Weights associated with classes 'C_values'- Inverse of regularization strength

Best Models

```
# Model Selection Method Values

Random grid: {'leaf_size': list(range(1,50)), 'n_neighbors': list(range(1,30), 'p': [1,2]}

Best leaf_size: 1

Best p: 2

Best n_neighbors: 8

Random grid: {'n_estimators': [10, 31, 52, 73, 94, 115, 136, 157, 178, 200], 'max_features': ['auto', 'sqrt'], 'min_samples_leaf': [4, 10, 15]}

Best Parameters: {'n_estimators': 115, 'min_samples_leaf': 4, 'max_features': 'auto'}

Random grid: ('solvers' = ['lbfgs', 'sag', 'saga', 'newton-cg'], 'class_weights' = ['balanced', None], 'c_values' = [10, 1.0, 0.5, 0.1, 0.01]

Best Parameters: {'C': 10, 'class_weight': 'balanced', 'solver': 'lbfgs'}
```


Understanding data distribution of the target variable


```
Best leaf_size: 1
Best p: 2
Best n_neighbors: 8
```

- Hyperparameter tuning
- Utilized GridsearchCV function
- 10 Cross validation fold

	precision	recall	f1-score	support			
0	0.74	0.78	0.76	76			
1	0.46	0.49	0.48	87			
2	0.41	0.40	0.41	98			
3	0.71	0.68	0.69	117			
accuracy			0.58	378			
macro avg	0.58	0.59	0.58	378			
weighted avg	0.58	0.58	0.58	378			
0.80701448618	0.8070144861893384						

Precision: 0.58Recall: 0.58

• F1-score: 0.58

• ROC_AUC score: 0.81

True Positives: 43False Negative: 28False Positives: 24True Negatives: 39

The error of training dataset is 0.33522727272727 The error of testing dataset is 0.417989417989418

Feature importances of the random forest model

Based on our model, the most important features are:

- 1. DiffClose5_EMA
- 2. RSI
- 3. SO_slow

This graph shows how the training and validation scores are influenced by number of trees.

Based on our graphs, the accuracy scores of both training and validation sets reach to relatively stable states from the tree number 20. As the mean value of training scores reach to 100%, the range of mean value of validation scores is between 60% and 64%.

Confusion matrix of Random Forest Model for Test Set

Train Scores

Precision using Random Forest is 99.9%

Recall using Random Forest is 99.9%

Accuracy using Random Forest is 99.9%

The error of training dataset is 0.1%

Test Scores

Precision using Random Forest is 61.8%

Recall using Random Forest is 62.7%

Accuracy using Random Forest is 62.7%

The error of testing dataset is 37.3%

p-value

Do not reject Ho = The population distribution of rule returns has an expected value of zero or less (because p_value is not small enough)

p_value: 0.5644

Results (Logistic Regression)

Feature importances of the logistic regression

Based on our model, the most important features are:

- 1. DiffClose5_EMA
- 2. DiffClose8_EMA
- 3. DiffClose13_EMA

Results (Logistic Regression)

Train Scores

Precision using Logistic Regression is 65.5%

Recall using Logistic Regression is 65.9%

Accuracy using Logistic Regression is 65.7%

Test Scores

Precision using Logistic Regression is 63.1%

Recall using Logistic Regression is 61.8%

Accuracy using Logistic Regression is 61.3%

Results (Logistic Regression)

p-value

Do not reject Ho = The population distribution of rule returns has an expected value of zero or less (because p_value is not small enough)

p_value: 0.3388

Model Comparison

By analyzing the metric for all three models, we can see that the best model is the logistic regression, although the scores from the random forest model is very similar with the logistic regression model.

Unsurprisingly, the model that performed the worse is the KNN as this model have the simplest complexity.

Although the random forest model was able to illustrate feature importance more clearly, however, the model exist overfitting as the training scores is much higher than the validation scores. Additionally, logistic regression model was able to have consistent training and test score around 62 - 65% and have higher true positive and true negatives values than random forest model.

Schedule

