The last bit of light before the long tunnel of generalized stability

Montag, 18. März 2024 18:15

Last week (2 weeks ago), Franzi:

ingredients for Embedding Lemma I:

- Embedding Lemma I

- Knaf-Kuhlmann, (Franzi)

- Lemma 22.

Today!

Aim for today: <u>Lemma 5.6</u> (Embedding Lemma I)

Let (F|K, v) be a SiG function field and let (K^*, v^*) be a henselion extension of (K, v)Let vF/vK be torsion-free and Fv/kv separable. Assume there are embeddings $g \cdot vF \longrightarrow_{vk} v^*K^*$ $\sigma \colon Fv \longrightarrow_{kv} K^*v^*$ then there exists an embedding $\iota \colon (F, v) \longrightarrow_{k} (K^*, v^*)$ inducing g and σ , i.e. $v^*(\iota(a)) = g(v(a))$

DEFINITION of SIG (strongly inertially generated) (FIK,v) valued function field is called SIG if there is a transcendence basis $T = \{x_1, ..., x_r, y_1, ..., y_s\}$

such that:

- vF= vK ⊕ v(x₁) Z ⊕ ... ⊕ v(x₁) Z
- {resv(y1),..., resv(ys)} is a separating transcendence basis
 of FVKV, i.e. a transcendence basis such that
 FVKV(resv(y1),..., resv(ys)) is separable

and there is a EFh such that

- $F^h = K(T)^h(a)$
- $V(\alpha) = 0$
- res_v(a) is separable over K(T)v and $deg(res_v(a) \mid K(T)v) = deg(a \mid K(T)) \qquad (f-n)$

DETOUR - LEMMA 2.2. - "Gauß extension on fire"

- Recall some facts -

- (FIK, v) algebraic extension \Rightarrow vF/vK torsion-group (ALG-val) Fv|Kv alg. extension (ALG-tes)
- (Gauß extension) (K,v) valued field, t transcendental /K There is exactly one extension of v to K(t) with

 $v(t)=0 \text{ k reo_v(t)$ transc. over KV.}$ We have $vK(t)=vK \quad \text{and} \quad K(t)v=Kv(reo_v(t)). \quad (TR-res)$ • $(K_1v) \text{ Nolved field, } \quad t \text{ transcendental }/K,$ $\gamma \quad \text{rot. indep. over } \quad vK. \qquad \qquad (TR-val)$ There is exactly one extension of v to K(t) with $v(t)=\gamma. \quad \text{We have } \quad vK(t)=vK\Phi \gamma \mathbb{Z} \text{ , } \quad K(t)v=Kv.$

Lemma 2.2.

We have:
$$vK(T) - vK \oplus \bigoplus_{i \in I} v(x_i)\mathbb{Z}$$

 $K(T)v = Kv(w_{i}, y_{i}): j \in J)$

valuation v on K(T) is uniquely determined by:

- · restriction to K
- · v(xi), ie]
- the fact that $\text{res}_v(y_i)$, $j\in J$ are alg. indep. over Kv residue map res_v on K(T) is uniquely determined by
- · restriction to K
- · resulyj), je J
- · the fact that v(xi), ie I are rat indep. over vk

Moreover, if
$$f = \sum_{\substack{\alpha \in \mathbb{N}_{k}^{\text{fu}} \\ {}^{\text{loc}}(\mathbb{N}_{k}^{\text{fu}})}} c_{\underline{\alpha}} \times \underbrace{x^{\underline{\alpha}_{i}} y^{\underline{\alpha}_{j}}}_{c_{i} \in \mathbb{L}} \times_{i}^{\alpha_{i}}$$

$$\text{Then}$$

$$v(f) = \min_{\alpha \in \mathbb{N}_{k}^{\text{fu}}} v(c_{\underline{\alpha}}) + \sum_{i \in I} \alpha_{i} \cdot v(x_{i})$$

Proof:

Take $(x_1,...,x_r,y_1,...,y_s)$ finite subtuple of T. We prove it is alg. indep. over K by induction on r+s

- if r+s=0: nothing to do, assume r+s>0
- We show that $(x_1,...,x_r,y_1,...,y_s)$ is alg. indep. oves K and $K(x_1,...,x_r,y_1,...,y_s)$ has value group $VK \oplus V(x_1) \mathbb{Z} \oplus ... \oplus V(y_1) \mathbb{Z}$

and residue field Ku(resly.)..., reslys))
We assume this is true for
subtuples of T of length rrs-1.

(a) if s>0, we know by (IH) that
(x1..., xr, y1..., ys1) is alg. indep. over K

Thus it is enough to show that ys is transcendental over $K(x_1,...,x_r,y_1,...,y_{s_n})$ We know by assumption that $(res(y_1),..., res(y_s))$ is alg. indep. over KV, so in particular, res(ys) is transcendental Kr (resly,),..., reslys-1)) residue field of K(x1,..., X1, y1,..., ys-1) by (1H) By (ALG-res), ys cannot be alg. over K(x1,...,x1,y1,...,ys.1) By (TR-res), we have uniqueners and $K(x_1,...,x_r,y_1,...,y_s) \vee = \left(K(x_1,...,x_r,y_1,...,y_{s-1}) \vee \right) \left(\text{TeV}_{V}(y_{s-1}) \right)$ = Kv (nes(y2),...,nesv (ys)) VK(x1,..., xx, y1,..., ys) = V(K(x1,..., xx, y1,..., ys1)) = VK @ V(X1) Z @ ... @ V(X1) Z (b) if s=0, then r>0, we know by (IH) that $(x_1,...,x_{r-1})$ is alg. indep. over K Thus it is enough to show that Xr is transcudental over K(X11..., Xr-1) Analogous, use (ALG-val) & (TR-val) About the WHY? part (alculate $V(f) \stackrel{?}{=} \underset{x \in N_0 \cup J}{\text{min}} V\left(C_{\alpha} X^{\alpha_{\underline{i}}} Y^{\alpha_{\underline{j}}}\right)$ = $\min_{\alpha \in M_{in}} V(C_{\alpha}) + \sum_{i \in I} \alpha_{i} \cdot V(X_{i})$ NOW. Embedding Lemma I <u>Lemma 5.6</u> (Embedding Lemma I) Let (FIK, v) be a SIG function field and let (K^*, V^*) be a henselian extension of $(K_i V)$ Let VF/VK be torsion-free and FV/KV separable Assume there are embeddings P: VF ← VK V*K* $\sigma \colon \mathsf{Fv} \longrightarrow_{\mathsf{Kv}} \mathsf{K}^* \mathsf{v}^*$ then there exists an embedding $\iota: (F, v) \hookrightarrow_{k} (K^{*}, v^{*})$ inducing g and o, i.e. $v^*(\iota(a)) = \rho(v(a))$ & $res_{v^*}(\iota(a)) = \sigma(res_v(a))$ Proof. DEFINITION of SIG (strongly inertially generated) (FIK,v) valued function field is called SIG if there is a transcendence basis

 $T = \{x_1, ..., x_r, y_1, ..., y_s\}$

- VF= VK ⊕ V(X,) Z ⊕ ... ⊕ V(X,) Z
- AND
- {res_v(y_1), ..., res_v(y_s)} is a separating transcendence basis of FV[KV], i.e. a transcendence basis such that $Fv[Kv(res_v(y_1),...,res_v(y_s))] is separable$

and there is a EFh such that

- $F^h = K(T)^h(a)$
- \(\alpha\)=0
- resv(a) is separable over K(T)v and deg(resv(a)|K(T)v) = deg(a|K(T))

STRATEGY: 1) First construct embedding for K(T)

1) Then extend to F

1 embedding for K(T)

Find $x'_1,...,x'_i \in K^*$ s.th. $v^*(x'_i) = g(v(x_i))$ for i = 1,..., T $v^*(x'_i)$ are rat. indep. over v

Find $y'_1,...,y'_s \in K^*$ s.th. $v^*(y_i) = \sigma(v_s, y_i)$ for i = 1,..., s $v^*(x'_i)$

Get Jsomorphism $K(\mathcal{T}) \stackrel{\cong}{\longrightarrow} K(\mathcal{T}') \subseteq K^*$ $x_i \longmapsto x_i'$ $y_i \longmapsto y_i'$

To show: ι respects g and σ Let $f = \sum_{\underline{x} \in N_{\underline{x}}} \sum_{\underline{g} \in N_{\underline{x}}} c_{\underline{x},\underline{\beta}} \times^{\underline{\alpha}} y^{\underline{\beta}}$

For 9: use suspicious formula from Lemma 2.2.

$$V^*(\iota(f)) = V^*\left(\sum_{\underline{x}} \sum_{\underline{\beta}} C_{\underline{x},\underline{\beta}} + \sum_{i=1}^{r} X_i \cdot V^*(X_i^i)\right)$$

$$= \min_{(\underline{x},\underline{\beta})} \left(V(C_{\underline{x},\underline{\beta}}) + \sum_{i=1}^{r} X_i \cdot V^*(X_i^i)\right)$$

$$= \min_{(\underline{x},\underline{\beta})} \left(V(C_{\underline{x},\underline{\beta}}) + \sum_{i=1}^{r} X_i \cdot V(X_i^i)\right)$$

$$= 0 \left(\min_{(\underline{x},\underline{\beta})} \left(V(C_{\underline{x},\underline{\beta}}) + \sum_{i=1}^{r} X_i \cdot V(X_i^i)\right)\right)$$
Lemma??

For o: use that resur, resu are honomorphisms

2 Extend to F

Write Fo = K(T)

Goal: Embedding $(F^h, v^h) \longrightarrow_K (K^*, v^*)$

mp can then take restriction to F

By the universal property of the Heuselization, F_0^h we can extend $\iota\colon F_0 \hookrightarrow K^*$

to an embedding $F_0^h \longrightarrow K^*$

KUFFOCY

Henselization is immediate ⇒ i induces p & o

From now on: identify Foh with U(Foh)

By SI6 we know $F^h = F_0 h(a)$ Let \overline{f} be the minimal polynomial of res_V(a) $\in F^h \vee$ over $F^h \vee$, note \overline{f} is repeable by SIG Let $f \in O_{\overline{f},h}[X]$ be a monic lift of \overline{f} . Hensels there is unique $a' \in O_{K^*}$ s.th. f(a') = 0 and $res_{V^*}(a') = \sigma(res_V(a))$

~~~ Isomorphism

compatible with the valuation (Foh heuseliau!)

$$Fh = F_{0}h(0)$$

$$f = 1 \text{ (houselian)}$$

$$f = n \text{ (SIG)}$$

$$e = 1 \text{ (houselian)}$$

$$e = 1 \text{ (houselian)}$$

$$inequality}$$

$$The end of the property of the prop$$

## To show: 1 respects o

write nes, (a) = x

 $\sim 1$ ,  $\propto$ ,  $\propto^2$ , ...,  $\propto^{n-1}$  are lin indep. over  $r_0^h \vee 1$ ,  $r_0^h \sim 1$ ,  $r_0^h \sim 1$ ,  $r_0^h \sim 1$  form a standard valuation basis of  $r_0^h \sim 1$ , that is,

$$V\left(\sum_{i} c_{i} a^{i}\right) = \min_{i} V(c_{i})$$

Every  $b \in F^{h}(a)$  can be expressed as

If v(b)=0, then  $g \in \mathcal{O}_{F_0^h}[X]$  and  $\bar{q} \in F_0^h v[X]$ 

$$\operatorname{res}_{\Lambda}(\Gamma(\rho)) = \operatorname{res}_{\Lambda}(\Gamma(q(\alpha))) = \operatorname{res}_{\Lambda}(\Gamma(q(\alpha))) - \operatorname$$