Groupe IPESUP Année 2022-2023

TD 22: Variables aléatoires et moments

Connaître son cours:

• Soit X_1 et X_2 deux variables indépendantes à valeurs dans E_1 et E_2 , $f_1: E_1 \to F_1$ et $f_2: E_2 \to F_2$. Montrer que les variables $f_1(X_1)$ et $f_2(X_2)$ sont indépendantes.

- Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans E et $f: E \to F$. Donner et démontrer la formule de transfert.
- Montrer que la somme de n variables indépendantes de loi de Bernoulli de paramètre p est une variable aléatoire de loi binomiale de paramètres n et p.
- Soit X une variable aléatoire réelle, rappeler la définition de l'espérance de X. Donner l'espérance d'une variable aléatoire suivant une loi binomiale de paramètre (n, p).
- Rappeler l'inégalité de Markov et donner la démonstration. En déduire l'inégalité de Bienaymé-Tchebychev.
- Montrer que la variance d'une somme de variables aléatoires indépendantes est la somme des variances de ces variables.
- Soient X et Y deux variables aléatoires réelles qui admettent un moment d'ordre 2. Démontrer la formule de Huygens.

Variables aléatoires discrètes et espérances :

Exercice 1. (*)

Soit $X, Y \sim \mathcal{U}(\llbracket 0; n \rrbracket)$ indépendantes.

- 1. Donner la loi de $Z_1 = X + Y$.
- 2. Donner la loi de $Z_2 = n X$.
- 3. Soit $a \in \mathbb{R}_+^*$, donner la loi de $Z_3 = aX$.
- 4. Donner l'espérance des variables aléatoires précédentes.

Exercice 2. (**)

- 1. Donner une variable aléatoire X à valeurs dans \mathbb{N} qui n'admet pas d'espérance finie.
- 2. Soit X une variable aléatoire à valeurs dans \mathbb{N} qui admet une espérance et telle que $\mathbb{P}(X > n) \underset{\sim_{+\infty}}{=} o\left(\frac{1}{n}\right).$ Montrer que

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k)$$

Exercice 3. (*)

Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètre respectif λ et μ . Déterminer par deux méthodes différentes la loi de Z = X + Y et en déduire l'espérance de Z.

Exercice 4. (**)

Soit X et Y deux variables aléatoires indépendantes géométriques de paramètres p et q à valeurs dans]0;1[. Calculer l'espérance de $Z = \max(X,Y)$.

Exercice 5. (**)

Soit $N \in \mathbb{N}^*$ et $(U_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées selon une loi uniforme sur [1; N]. Pour tout $n \in \mathbb{N}^*$, on pose

$$M_n = \max(U_1, \ldots, U_n).$$

Déterminer les limites de $\mathbb{E}(M_n)$ et de $\mathbb{V}(M_n)$ lorsque n tend vers $+\infty$.

Exercice 6. (**)

On suppose qu'à la roulette d'un Casino, on obtient la couleur noire avec la probabilité $\frac{1}{2}$, la couleur rouge sinon (on ne suppose qu'il n'y a pas de 0 vert). Un joueur fortuné joue selon le protocole suivant :

- il mise initialement 1 brouzouf sur la couleur noire.
- s'il gagne, il arrête de jouer et empoche le double de sa mise.
- s'il perd, il double sa mise et rejoue.
- On suppose la fortune du joueur infinie.
 Montrer que le jeu s'arrête presque sûrement.
 Déterminer l'espérance de gain du joueur.
- 2. On suppose toujours la fortune du joueur infinie. Que se passe-t-il si au lieu de doubler, il décide de tripler sa mise lorsqu'il rejoue?
- 3. Le joueur n'est en fait pas si fortuné qu'il le prétend : il ne possède que 2ⁿ - 1 brouzoufs ce qui l'autorise à ne pouvoir jouer que n parties. Que devient son espérance de gain?

Exercice 7. (**)

Dans une urne figurent N boules numérotées de 1 à N (avec $N \geq 2$). Dans celle-ci on opère des tirages successifs (avec remise) jusqu'à l'obtention d'une série de k boules consécutives identiques ($k \geq 2$). On admet qu'il est presque sûr que ce processus s'arrête et on note T la variable aléatoire déterminant le nombre de tirages opérés à l'arrêt du processus.

- 1. Déterminer P(T = k) et P(T = k + 1).
- 2. Soit $n \ge 1$, établir $P(T = n + k) = \frac{N 1}{N^k} P(T > n)$
- 3. En déduire que la variable T admet une espérance et déterminer celle-ci.

Exercice 8. (**)

Soit X une variable aléatoire suivant une loi géométrique de paramètre p.
Calculer $\mathrm{E}\left(\frac{1}{X}\right)$.

Exercice 9. (**)

On lance une pièce équilibrée jusqu'à ce que celle-ci ait produit au moins une fois «face et une fois «pile »

- Justifier qu'il est presque sûr que le jeu s'arrête.
- 2. On note X le nombre de lancers avant que le jeu cesse. Montrer que X admet une espérance et déterminer celle-ci.

Exercice 10. (**)

Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} . On suppose que la loi conjointe de X et Y vérifie

$$\forall (j,k) \in \mathbb{N}^2, P(X=j,Y=k) = a \frac{j+k}{2^{j+k}} \text{ avec } a \in \mathbb{R}.$$

- 1. Déterminer la valeur de *a* pour que la somme des probabilités soit égale à 1.
- 2. Déterminer les lois marginales de X et de Y.
- 3. Les variables X et Y sont elles indépendantes?
- 4. Calculer P(X = Y).

Exercice 11. (***)

Soit T une variable aléatoire à valeurs naturelles vérifiant pour tout $n \in \mathbb{N}$, P(T > n) > 0. On appelle taux de panne associé à T la suite $(\theta_n)_{n \in \mathbb{N}}$ déterminée par

$$\theta_n = P(T = n \mid T \ge n)$$

Typiquement, si T est la variable aléatoire indiquant l'instant où un matériel tombe à panne, la quantité θ_n indique la probabilité qu'il tombe en panne à l'instant présent alors qu'il est actuellement fonctionnel.

- 1. Justifier $\forall n \in \mathbb{N}, \theta_n \in [0; 1[$
- 2. Exprimer en fonction des termes de la suite $(\theta_n)_{n\in\mathbb{N}}$, la probabilité $P(T \ge n)$. En déduire la divergence de la série $\sum \theta_n$.

Groupe IPESUP Année 2022-2023

Moments d'ordre 2 d'une variable aléatoire :

Exercice 12. (*)

Soit X une variable aléatoire admettant un moment d'ordre 2. Faire une étude de la fonction $a \mapsto E((X-a)^2)$ et donner une interprétation de la variance de X.

Exercice 13. (*)

On dit qu'une variable aléatoire discrète réelle X est quasi-certaine lorsqu'il existe un réel a tel que P(X=a)=1. Soit X une variable aléatoire discrète réelle telle que $X(\Omega)$. Démontrer que X est quasi-certaine si et seulement si V(X)=0.

Exercice 14. (**)

Soient X et Y deux variables aléatoires réelles admettant chacune une variance. On suppose $\mathbb{V}(X) > 0$. Déterminer $a, b \in \mathbb{R}$ minimisant la quantité

$$E((Y-(aX+b))^2)$$

Exercice 15. (**)

Soit X une variable aléatoire discrète à valeurs dans [a;b].

1. Montrer que X admet une espérance m et que celle-ci est élément de [a;b]. La variable X admet aussi une variance σ^2 que l'on se propose de majorer. On introduit la variable aléatoire Y = X - m et les quantités

$$t = \sum_{y \geq 0} y P(Y = y), \ s = \sum_{y \geq 0} y^2 \mathrm{P}(Y = y) \ \mathrm{et} \ \ u = \mathrm{P}(Y \geq 0).$$

- 2. Vérifier $t^2 \le su$
- 3. Calculer espérance et variance de Y. En déduire $t^2 \le (\sigma^2 s)(1 u)$
- 4. En exploitant les deux majorations précédentes, obtenir

$$t^2 \le \sigma^2/4$$

5. Conclure

$$\sigma^2 \le (b-a)^2/4$$

Inégalités de Markov et de Bienaymé-Tchebychev :

Exercice 16. (*)

Soit X une variable aléatoire réelle finie à valeurs dans \mathbb{R}_+ , $f:\mathbb{R}_+\to\mathbb{R}_+^*$ une fonction croissante. Démontrer que

$$P(X \ge a) \le \frac{E(f(X))}{f(a)}.$$

Exercice 17. (**)

On jette 3600 fois un dé équilibré. Minorer la probabilité que le nombre d'apparitions du numéro 1 soit compris entre 480 et 720.

Exercice 18. (**)

Une usine fabrique des pièces dont une proportion inconnue p est défectueuse, et on souhaite trouver une valeur approchée de p.

On effectue un prélèvement de n pièces. On suppose que le prélèvement se fait sur une population très grande, et donc qu'il peut s'apparenter à une suite de n tirages indépendants avec remise. On note X_n la variable aléatoire égale au nombre de pièces défectueuses et on souhaite quantifier le fait que $\frac{X_n}{n}$ approche p.

- 1. Quelle est la loi de X_n ? Sa moyenne? Sa variance?
- 2. Démontrer que, pour tout $\varepsilon > 0$,

$$P\left(\left|\frac{X_n}{n} - p\right| \ge \varepsilon\right) \le \frac{1}{4n\varepsilon^2}.$$

3. En déduire une condition sur n pour que X_n/n soit une valeur approchée de p à 10^{-2} près avec une probabilité supérieure ou égale à 95%.

3/3