519095_individual

2023-10-22

##2.4

#a library Boston	(MASS)										
## black	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio
## 1 396.90	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3
## 2 396.90	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8
## 3 392.83	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8
## 4 394.63	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7
## 5 396.90	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7
## 6 394.12	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7
## 7 395.60	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2
## 8 396.90	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2
## 9 386.63	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2
## 10 386.71	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2
## 11 392.52	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2
## 12 396.90	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	5	311	15.2
## 13 390.50	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509	5	311	15.2
## 14 396.90	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0
## 15 380.02	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	4	307	21.0
## 16 395.62	0.62739	0.0	8.14	0	0.5380	5.834	56.5	4.4986	4	307	21.0
## 17 386.85	1.05393	0.0	8.14	0	0.5380	5.935	29.3	4.4986	4	307	21.0
## 18 386.75	0.78420	0.0	8.14	0	0.5380	5.990	81.7	4.2579	4	307	21.0

## 19	0.80271	0.0	8.14	0	0.5380	5.456	36.6	3.7965	4 307	21.0
288.99 ## 20	0.72580	0.0	8.14	0	0.5380	5.727	69.5	3.7965	4 307	21.0
390.95										
## 21 376.57	1.25179	0.0	8.14	0	0.5380	5.570	98.1	3.7979	4 307	21.0
## 22	0.85204	0.0	8.14	0	0.5380	5.965	89.2	4.0123	4 307	21.0
392.53										
## 23 396.90	1.23247	0.0	8.14	0	0.5380	6.142	91.7	3.9769	4 307	21.0
## 24	0.98843	0.0	8.14	0	0.5380	5.813	100.0	4.0952	4 307	21.0
394.54										
## 25 394.33	0.75026	0.0	8.14	0	0.5380	5.924	94.1	4.3996	4 307	21.0
## 26	0.84054	0.0	8.14	0	0.5380	5.599	85.7	4.4546	4 307	21.0
303.42										
## 27 376.88	0.67191	0.0	8.14	0	0.5380	5.813	90.3	4.6820	4 307	21.0
## 28	0.95577	0.0	8.14	0	0.5380	6.047	88.8	4.4534	4 307	21.0
306.38										
## 29 387.94	0.77299	0.0	8.14	0	0.5380	6.495	94.4	4.4547	4 307	21.0
## 30	1.00245	0.0	8.14	0	0.5380	6.674	87.3	4.2390	4 307	21.0
380.23										
## 31	1.13081	0.0	8.14	0	0.5380	5.713	94.1	4.2330	4 307	21.0
360.17 ## 32	1.35472	0.0	8.14	0	0.5380	6.072	100.0	4.1750	4 307	21.0
376.73										
## 33	1.38799	0.0	8.14	0	0.5380	5.950	82.0	3.9900	4 307	21.0
232.60 ## 34	1.15172	0.0	8.14	0	0.5380	5.701	95.0	3.7872	4 307	21.0
358.77										
## 35	1.61282	0.0	8.14	0	0.5380	6.096	96.9	3.7598	4 307	21.0
248.31 ## 36	0.06417	0.0	5.96	0	0.4990	5.933	68.2	3.3603	5 279	19.2
396.90										
## 37	0.09744	0.0	5.96	0	0.4990	5.841	61.4	3.3779	5 279	19.2
377.56 ## 38	0.08014	0.0	5.96	0	0.4990	5.850	41.5	3.9342	5 279	19.2
396.90										
## 39	0.17505	0.0	5.96	0	0.4990	5.966	30.2	3.8473	5 279	19.2
393.43 ## 40	0.02763	75.0	2.95	0	0.4280	6.595	21.8	5.4011	3 252	18.3
395.63	0.02703	,,,,,	2133	Ū	01.200	0.333		3	3 232	20.5
## 41	0.03359	75.0	2.95	0	0.4280	7.024	15.8	5.4011	3 252	18.3
395.62 ## 42	0.12744	0.0	6.91	a	0.4480	6.770	2.9	5.7209	3 233	17.9
385.41		0.0		J		23770	,	21,203	2 233	_, , ,
## 43	0.14150	0.0	6.91	0	0.4480	6.169	6.6	5.7209	3 233	17.9
383.37										

## 44 394.46	0.15936	0.0	6.91	0 0.4480 6.211	6.5	5.7209	3 233	17.9
## 45	0.12269	0.0	6.91	0 0.4480 6.069	40.0	5.7209	3 233	17.9
389.39								
## 46 396.90	0.17142	0.0	6.91	0 0.4480 5.682	33.8	5.1004	3 233	17.9
## 47	0.18836	0.0	6.91	0 0.4480 5.786	33.3	5.1004	3 233	17.9
396.90								
## 48 392.74	0.22927	0.0	6.91	0 0.4480 6.030	85.5	5.6894	3 233	17.9
## 49	0.25387	0.0	6.91	0 0.4480 5.399	95.3	5.8700	3 233	17.9
396.90								
## 50 396.90	0.21977	0.0	6.91	0 0.4480 5.602	62.0	6.0877	3 233	17.9
## 51	0.08873	21.0	5.64	0 0.4390 5.963	45.7	6.8147	4 243	16.8
395.56								
## 52 393.97	0.04337	21.0	5.64	0 0.4390 6.115	63.0	6.8147	4 243	16.8
## 53	0.05360	21.0	5.64	0 0.4390 6.511	21.1	6.8147	4 243	16.8
396.90								
## 54	0.04981	21.0	5.64	0 0.4390 5.998	21.4	6.8147	4 243	16.8
396.90 ## 55	0.01360	75.0	4.00	0 0.4100 5.888	47.6	7.3197	3 469	21.1
396.90								
## 56	0.01311	90.0	1.22	0 0.4030 7.249	21.9	8.6966	5 226	17.9
395.93 ## 57	0.02055	85.0	0.74	0 0.4100 6.383	35.7	9.1876	2 313	17.3
396.90	010_000			0 00 1200		2,120,0		
## 58	0.01432	100.0	1.32	0 0.4110 6.816	40.5	8.3248	5 256	15.1
392.90 ## 59	0.15445	25.0	5.13	0 0.4530 6.145	29.2	7.8148	8 284	19.7
390.68			5125	0 00 1000 012 10		,,,,,	5 25 .	
## 60	0.10328	25.0	5.13	0 0.4530 5.927	47.2	6.9320	8 284	19.7
396.90 ## 61	0.14932	25.0	5.13	0 0.4530 5.741	66.2	7.2254	8 284	19.7
395.11			5.25	0 00 1000 007 12		, ,	5 25 .	
## 62	0.17171	25.0	5.13	0 0.4530 5.966	93.4	6.8185	8 284	19.7
378.08 ## 63	0.11027	25.0	5.13	0 0.4530 6.456	67.8	7.2255	8 284	19.7
396.90			5.25		0.00	, ,	5 25 .	
## 64	0.12650	25.0	5.13	0 0.4530 6.762	43.4	7.9809	8 284	19.7
395.58 ## 65	0.01951	17.5	1.38	0 0.4161 7.104	59.5	9.2229	3 216	18.6
393.24	0,01331	_,,,,	2.50	0 01 1202 71201	33.3	31223	3 220	20.0
## 66	0.03584	80.0	3.37	0 0.3980 6.290	17.8	6.6115	4 337	16.1
396.90 ## 67	0.04379	80.0	3.37	0 0.3980 5.787	31.1	6.6115	4 337	16.1
396.90	3.043/3	55.0	3.37	0 0.3300 3.707	J = • =	3.0113	. 557	10.1
## 68	0.05789	12.5	6.07	0 0.4090 5.878	21.4	6.4980	4 345	18.9
396.21								

## 69 396.90	0.13554	12.5	6.07	0	0.4090	5.594	36.8	6.4980	4	345	18.9
## 70	0.12816	12.5	6.07	0	0.4090	5.885	33.0	6.4980	4	345	18.9
396.90 ## 71 383.73	0.08826	0.0	10.81	0	0.4130	6.417	6.6	5.2873	4	305	19.2
## 72 376.94	0.15876	0.0	10.81	0	0.4130	5.961	17.5	5.2873	4	305	19.2
## 73	0.09164	0.0	10.81	0	0.4130	6.065	7.8	5.2873	4	305	19.2
390.91 ## 74	0.19539	0.0	10.81	0	0.4130	6.245	6.2	5.2873	4	305	19.2
377.17 ## 75	0.07896	0.0	12.83	0	0.4370	6.273	6.0	4.2515	5	398	18.7
394.92 ## 76	0.09512	0.0	12.83	0	0.4370	6.286	45.0	4.5026	5	398	18.7
383.23 ## 77	0.10153	0.0	12.83	0	0.4370	6.279	74.5	4.0522	5	398	18.7
373.66 ## 78	0.08707	0.0	12.83	0	0.4370	6.140	45.8	4.0905	5	398	18.7
386.96 ## 79	0.05646	0.0	12.83	0	0.4370	6.232	53.7	5.0141	5	398	18.7
386.40 ## 80	0.08387	0.0	12.83	0	0.4370	5.874	36.6	4.5026	5	398	18.7
396.06 ## 81	0.04113	25.0	4.86	0	0.4260	6.727	33.5	5.4007	4	281	19.0
396.90 ## 82	0.04462	25.0	4.86	0	0.4260	6.619	70.4	5.4007	4	281	19.0
395.63 ## 83	0.03659	25.0	4.86	0	0.4260	6.302	32.2	5.4007	4	281	19.0
396.90 ## 84	0.03551	25.0	4.86	0	0.4260	6.167	46.7	5.4007	4	281	19.0
390.64 ## 85	0.05059	0.0	4.49	0	0.4490	6.389	48.0	4.7794	3	247	18.5
396.90 ## 86	0.05735	0.0	4.49	0	0.4490	6.630	56.1	4.4377	3	247	18.5
392.30 ## 87	0.05188	0.0	4.49	0	0.4490	6.015	45.1	4.4272	3	247	18.5
395.99 ## 88	0.07151	0.0	4.49	0	0.4490	6.121	56.8	3.7476	3	247	18.5
395 .1 5 ## 89	0.05660	0.0		0	0.4890	7.007	86.3			270	17.8
396.90											
## 90 396.06	0.05302	0.0			0.4890					270	17.8
## 91 392.18	0.04684	0.0			0.4890		66.1	3.0923	2	270	17.8
## 92 393.55	0.03932	0.0	3.41	0	0.4890	6.405	73.9	3.0921	2	270	17.8
## 93 395.01	0.04203	28.0	15.04	0	0.4640	6.442	53.6	3.6659	4	270	18.2

## 94	0.02875	28.0	15.04	0 0.4640 6.	211 28.9	3.6659	4 270	18.2
396.33 ## 95	0.04294	20 A	15.04	0 0.4640 6.	249 77.3	3.6150	4 270	18.2
396.90	0.04234	20.0	13.04	0 0.4040 0.	249 //.5	3.0130	4 2/0	10.2
## 96	0.12204	0.0	2.89	0 0.4450 6.	625 57.8	3.4952	2 276	18.0
357.98								
## 97	0.11504	0.0	2.89	0 0.4450 6.	163 69.6	3.4952	2 276	18.0
391.83								
## 98	0.12083	0.0	2.89	0 0.4450 8.	069 76.0	3.4952	2 276	18.0
396.90	0 00407	0.0	2 00	0 0 4450 7	000 00	2 4052	2 276	10.0
## 99 393.53	0.08187	0.0	2.89	0 0.4450 7.	820 36.9	3.4952	2 276	18.0
## 100	0.06860	0.0	2.89	0 0.4450 7.	416 62.5	3.4952	2 276	18.0
396.90	0.00000	0.0	2.05	0 0.4430 7.	410 02.3	J. 7JJ2	2 2/0	10.0
## 101	0.14866	0.0	8.56	0 0.5200 6.	727 79.9	2.7778	5 384	20.9
394.76								
## 102	0.11432	0.0	8.56	0 0.5200 6.	781 71.3	2.8561	5 384	20.9
395.58								
## 103	0.22876	0.0	8.56	0 0.5200 6.	405 85.4	2.7147	5 384	20.9
70.80	0 21161	0 0	0 56	0 0 5200 6	127 07 4	2 7147	F 204	20.0
## 104 394.47	0.21161	0.0	8.56	0 0.5200 6.	137 87.4	2.7147	5 384	20.9
## 105	0.13960	0.0	8.56	0 0.5200 6.	167 90.0	2.4210	5 384	20.9
392.69	012000			0 000=00 0				
## 106	0.13262	0.0	8.56	0 0.5200 5.	851 96.7	2.1069	5 384	20.9
394.05								
## 107	0.17120	0.0	8.56	0 0.5200 5.	836 91.9	2.2110	5 384	20.9
395.67	0 43447	0.0	0.56	0 0 5200 6	427 05 2	2 4224	5 204	20.0
## 108 387.69	0.13117	0.0	8.56	0 0.5200 6.	127 85.2	2.1224	5 384	20.9
## 109	0.12802	0.0	8.56	0 0.5200 6.	474 97.1	2.4329	5 384	20.9
395.24	0.12002	0.0	0.50	0 0.3200 0.	3,.1	2.1323	5 50 1	20.3
## 110	0.26363	0.0	8.56	0 0.5200 6.	229 91.2	2.5451	5 384	20.9
391.23								
## 111	0.10793	0.0	8.56	0 0.5200 6.	195 54.4	2.7778	5 384	20.9
393.49	0.40004	0 0	10.01	0 0 5470 6	745 04 6	2 6775	c 422	47.0
## 112 395.59	0.10084	0.0	10.01	0 0.5470 6.	/15 81.6	2.6//5	6 432	17.8
## 113	0.12329	a a	10.01	0 0.5470 5.	913 92 9	2 3534	6 432	17.8
394.95	0.12323	0.0	10.01	0 0.5470 5.	313 32.3	2.3334	0 432	17.0
## 114	0.22212	0.0	10.01	0 0.5470 6.	092 95.4	2.5480	6 432	17.8
396.90								
## 115	0.14231	0.0	10.01	0 0.5470 6.	254 84.2	2.2565	6 432	17.8
388.74								
## 116	0.17134	0.0	10.01	0 0.5470 5.	928 88.2	2.4631	6 432	17.8
344.91 ## 117	0.13158	a a	10.01	0 0.5470 6.	176 72 5	2 7301	6 432	17.8
393.30	0.10100	0.0	10.01	0 0.5470 0.	110 /2.5	2.7501	0 452	17.0
## 118	0.15098	0.0	10.01	0 0.5470 6.	021 82.6	2.7474	6 432	17.8
394.51								

## 119 338.63	0.13058	0.0 10.01	0 0.5470 5	.872 73.1	2.4775	6 432	17.8
## 120	0.14476	0.0 10.01	0 0.5470 5	.731 65.2	2.7592	6 432	17.8
391.50	0.0000	0 0 05 65	0 0 5040 5	070 60 7	2 2577	2 400	40.4
## 121 389.15	0.06899	0.0 25.65	0 0.5810 5	.870 69.7	2.2577	2 188	19.1
## 122	0.07165	0.0 25.65	0 0.5810 6	.004 84.1	2.1974	2 188	19.1
377.67 ## 123	a anann	0.0 25.65	0 0.5810 5	.961 92.9	2.0869	2 188	19.1
378.09	0.09299	0.0 25.05	0 0.3810 3	.901 92.9	2.0009	2 100	19.1
## 124	0.15038	0.0 25.65	0 0.5810 5	.856 97.0	1.9444	2 188	19.1
370.31	0.00040	0 0 05 65	0 0 5040 5	070 05 0	2 2262	2 400	40.4
## 125 379.38	0.09849	0.0 25.65	0 0.5810 5	.879 95.8	2.0063	2 188	19.1
## 126	0.16902	0.0 25.65	0 0.5810 5	.986 88.4	1.9929	2 188	19.1
385.02	0 20725	0 0 05 65	0 0 5040 5	643 05 6	4 7570	2 400	40.4
## 127 359.29	0.38735	0.0 25.65	0 0.5810 5	.613 95.6	1.7572	2 188	19.1
## 128	0.25915	0.0 21.89	0 0.6240 5	.693 96.0	1.7883	4 437	21.2
392.11							
## 129	0.32543	0.0 21.89	0 0.6240 6	.431 98.8	1.8125	4 437	21.2
396.90 ## 130	0.88125	0.0 21.89	0 0.6240 5	.637 94.7	1.9799	4 437	21.2
396.90	0.00123	0.0 21.09	0 0.0240 3	.03/ 94./	1.9/99	4 43/	21.2
## 131	0.34006	0.0 21.89	0 0.6240 6	.458 98.9	2.1185	4 437	21.2
395.04							
## 132 396.90	1.19294	0.0 21.89	0 0.6240 6	.326 97.7	2.2710	4 437	21.2
## 133	0.59005	0.0 21.89	0 0.6240 6	.372 97.9	2.3274	4 437	21.2
385.76							
## 134	0.32982	0.0 21.89	0 0.6240 5	.822 95.4	2.4699	4 437	21.2
388.69 ## 135	0.97617	0.0 21.89	0 0.6240 5	.757 98.4	2.3460	4 437	21.2
262.76	0.9/61/	0.0 21.09	0 0.0240 3	./5/ 90.4	2.3400	4 43/	21.2
## 136	0.55778	0.0 21.89	0 0.6240 6	.335 98.2	2.1107	4 437	21.2
394.67							
## 137 378.25	0.32264	0.0 21.89	0 0.6240 5	.942 93.5	1.9669	4 437	21.2
## 138	0.35233	0.0 21.89	0 0.6240 6	.454 98.4	1.8498	4 437	21.2
394.08							
## 139	0.24980	0.0 21.89	0 0.6240 5	.857 98.2	1.6686	4 437	21.2
392.04 ## 140	0.54452	0.0 21.89	0 0 6240 6	.151 97.9	1.6687	4 437	21.2
396.90	0.54452	0.0 21.05	0 0.0240 0	.131 37.3	1.0007	7 73/	21.2
## 141	0.29090	0.0 21.89	0 0.6240 6	.174 93.6	1.6119	4 437	21.2
388.08	1 63064	0 0 31 00	0.0.6240.5	010 100 0	1 4204	4 427	21 2
## 142 396.90	1.62864	0.0 21.89	0 0.0240 5	.019 100.0	1.4394	4 437	21.2
## 143	3.32105	0.0 19.58	1 0.8710 5	.403 100.0	1.3216	5 403	14.7
396.90							

## 144	4.09740	0.0 19.58	0 0.8710	5.468	100.0	1.4118	5 403	14.7
396.90 ## 145	2.77974	0.0 19.58	0 0.8710	4.903	97.8	1.3459	5 403	14.7
396.90	2 27024	0 0 10 50	0 0 0740	c 120	100.0	4 4404	F 400	14.7
## 146 172.91	2.37934	0.0 19.58	0 0.8710	6.130	100.0	1.4191	5 403	14.7
## 147	2.15505	0.0 19.58	0 0.8710	5.628	100.0	1.5166	5 403	14.7
169.27 ## 148	2.36862	0.0 19.58	0 0.8710	4.926	95.7	1.4608	5 403	14.7
391.71								
## 149 356.99	2.33099	0.0 19.58	0 0.8710	5.186	93.8	1.5296	5 403	14.7
## 150	2.73397	0.0 19.58	0 0.8710	5.597	94.9	1.5257	5 403	14.7
351.85								
## 151 372.80	1.65660	0.0 19.58	0 0.8710	6.122	97.3	1.6180	5 403	14.7
## 152	1.49632	0.0 19.58	0 0.8710	5.404	100.0	1.5916	5 403	14.7
341.60 ## 153	1.12658	0.0 19.58	1 0.8710	E 012	88.0	1.6102	5 403	14.7
343.28	1.12036	0.0 19.38	1 0.0/10	3.012	00.0	1.0102	5 405	14.7
## 154	2.14918	0.0 19.58	0 0.8710	5.709	98.5	1.6232	5 403	14.7
261.95 ## 155	1.41385	0.0 19.58	1 0.8710	6.129	96.0	1.7494	5 403	14.7
321.02	_,							
## 156 88.01	3.53501	0.0 19.58	1 0.8710	6.152	82.6	1.7455	5 403	14.7
## 157	2.44668	0.0 19.58	0 0.8710	5.272	94.0	1.7364	5 403	14.7
88.63								
## 158 363.43	1.22358	0.0 19.58	0 0.6050	6.943	97.4	1.8773	5 403	14.7
## 159	1.34284	0.0 19.58	0 0.6050	6.066	100.0	1.7573	5 403	14.7
353.89	1 42502	0 0 10 50	0 0.8710	6 F10	100 0	1.7659	F 402	14.7
## 160 364.31	1.42502	0.0 19.58	0 0.8/10	0.510	100.0	1./059	5 403	14.7
## 161	1.27346	0.0 19.58	1 0.6050	6.250	92.6	1.7984	5 403	14.7
338.92 ## 162	1.46336	0.0 19.58	0 0.6050	7.489	90.8	1.9709	5 403	14.7
374.43	21.10330	0.0 10.00	0 010030	, , , , , ,	30.0	210705	3 .03	,
## 163 389.61	1.83377	0.0 19.58	1 0.6050	7.802	98.2	2.0407	5 403	14.7
## 164	1.51902	0.0 19.58	1 0.6050	8.375	93.9	2.1620	5 403	14.7
388.45	2 24226	0 0 10 50	0 0 6050	5 054	04.0	2 4222	F 400	44 7
## 165 395.11	2.24236	0.0 19.58	0 0.6050	5.854	91.8	2.4220	5 403	14.7
## 166	2.92400	0.0 19.58	0 0.6050	6.101	93.0	2.2834	5 403	14.7
240.16 ## 167	2.01019	0.0 19.58	0 0.6050	7 929	96.2	2.0459	5 403	14.7
369.30	2.01017	0.0 10.00	0.0000	1.523	70.2	2.0433	J 4 0J	17./
## 168	1.80028	0.0 19.58	0 0.6050	5.877	79.2	2.4259	5 403	14.7
227.61								

## 169	2.30040	0.0	19.58	0 0.6050 6.319 96.1 2.1000 5 403	14.7
297.09 ## 170	2.44953	9.9	19.58	0 0.6050 6.402 95.2 2.2625 5 403	14.7
330.04	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				= ,
## 171	1.20742	0.0	19.58	0 0.6050 5.875 94.6 2.4259 5 403	14.7
292.29 ## 172	2.31390	0 0	19.58	0 0.6050 5.880 97.3 2.3887 5 403	14.7
348.13	2.31390	0.0	19.56	0 0.0030 3.880 37.3 2.3887 3 403	14.7
## 173	0.13914	0.0	4.05	0 0.5100 5.572 88.5 2.5961 5 296	16.6
396.90	0 00470	0.0	4 05	0.0.5400.6.446.04.4.0.64605.006	46.6
## 174 395.50	0.09178	0.0	4.05	0 0.5100 6.416 84.1 2.6463 5 296	16.6
## 175	0.08447	0.0	4.05	0 0.5100 5.859 68.7 2.7019 5 296	16.6
393.23					
## 176	0.06664	0.0	4.05	0 0.5100 6.546 33.1 3.1323 5 296	16.6
390.96 ## 177	0.07022	0.0	4.05	0 0.5100 6.020 47.2 3.5549 5 296	16.6
393.23	0.07022	0.0		0 0.5100 0.020 17.12 3.5515 3 250	10.0
## 178	0.05425	0.0	4.05	0 0.5100 6.315 73.4 3.3175 5 296	16.6
395.60 ## 179	0.06642	0.0	4.05	0 0.5100 6.860 74.4 2.9153 5 296	16.6
## 1/9 391.27	0.00042	0.0	4.05	0 0.5100 0.800 74.4 2.9155 5 290	10.0
## 180	0.05780	0.0	2.46	0 0.4880 6.980 58.4 2.8290 3 193	17.8
396.90					
## 181 395.56	0.06588	0.0	2.46	0 0.4880 7.765 83.3 2.7410 3 193	17.8
## 182	0.06888	0.0	2.46	0 0.4880 6.144 62.2 2.5979 3 193	17.8
396.90					
## 183	0.09103	0.0	2.46	0 0.4880 7.155 92.2 2.7006 3 193	17.8
394.12 ## 184	0.10008	0.0	2.46	0 0.4880 6.563 95.6 2.8470 3 193	17.8
396.90	0.10000	0.0	21.10	2 21 1000 21303 3310 210 1/0 3 233	27.00
## 185	0.08308	0.0	2.46	0 0.4880 5.604 89.8 2.9879 3 193	17.8
391.00 ## 186	0.06047	0.0	2.46	0 0.4880 6.153 68.8 3.2797 3 193	17.8
387.11	0.00047	0.0	2.40	0 0.4000 0.133 00.6 3.2797 3 193	17.0
## 187	0.05602	0.0	2.46	0 0.4880 7.831 53.6 3.1992 3 193	17.8
392.63	0 07075	45.0	2 44	0 0 4270 6 702 44 4 2 7006 5 200	45.2
## 188 393.87	0.07875	45.0	3.44	0 0.4370 6.782 41.1 3.7886 5 398	15.2
## 189	0.12579	45.0	3.44	0 0.4370 6.556 29.1 4.5667 5 398	15.2
382.84					
## 190	0.08370	45.0	3.44	0 0.4370 7.185 38.9 4.5667 5 398	15.2
396.90 ## 191	0.09068	45.0	3.44	0 0.4370 6.951 21.5 6.4798 5 398	15.2
377.68	1122303		_ , , ,		
## 192	0.06911	45.0	3.44	0 0.4370 6.739 30.8 6.4798 5 398	15.2
389.71 ## 193	0.08664	45 A	3 //	0 0.4370 7.178 26.3 6.4798 5 398	15.2
390.49	0.00004	43.0	J.44	0 0.45/0 /.1/0 20.5 0.4/50 5 550	13.2

## 194	0.02187	60.0	2.93	0	0.4010	6.800	9.9	6.2196	1 2	65 15	.6
393.37 ## 195	0.01439	60.0	2.93	0	0.4010	6.604	18.8	6.2196	1 2	65 15	.6
376.70											
## 196 394.23	0.01381	80.0	0.46	0	0.4220	7.875	32.0	5.6484	4 2	55 14	.4
## 197	0.04011	80.0	1.52	0	0.4040	7.287	34.1	7.3090	2 3	29 12	.6
396.90				_							
## 198 354.31	0.04666	80.0	1.52	0	0.4040	7.107	36.6	7.3090	2 3	29 12	.6
## 199	0.03768	80.0	1.52	0	0.4040	7.274	38.3	7.3090	2 3	29 12	.6
392.20											
## 200 396.90	0.03150	95.0	1.47	0	0.4030	6.975	15.3	7.6534	3 40	02 17	.0
## 201	0.01778	95.0	1.47	0	0.4030	7.135	13.9	7.6534	3 40	02 17	.0
384.30											
## 202 393.77	0.03445	82.5	2.03	0	0.4150	6.162	38.4	6.2700	2 3	48 14	.7
## 203	0.02177	82.5	2.03	0	0.4150	7.610	15.7	6.2700	2 3	48 14	.7
395.38											
## 204 392.78	0.03510	95.0	2.68	0	0.4161	7.853	33.2	5.1180	4 2	24 14	.7
## 205	0.02009	95.0	2.68	0	0.4161	8.034	31.9	5.1180	4 2	24 14	.7
390.55											
## 206	0.13642	0.0	10.59	0	0.4890	5.891	22.3	3.9454	4 2	77 18	.6
396.90 ## 207	0.22969	0.0	10.59	0	0.4890	6.326	52.5	4.3549	4 2	77 18	.6
394.87											
## 208	0.25199	0.0	10.59	0	0.4890	5.783	72.7	4.3549	4 2	77 18	.6
389.43 ## 209	0.13587	0.0	10.59	1	0.4890	6.064	59.1	4.2392	4 2	77 18	.6
381.32				_							
## 210	0.43571	0.0	10.59	1	0.4890	5.344	100.0	3.8750	4 2	77 18	.6
396.90 ## 211	0.17446	0.0	10.59	1	0.4890	5.960	92.1	3.8771	4 2	77 18	.6
393.25				_		2.720		2.0			
	0.37578	0.0	10.59	1	0.4890	5.404	88.6	3.6650	4 2	77 18	.6
395.24 ## 213	0.21719	0.0	10.59	1	0.4890	5.807	53.8	3.6526	4 2	77 18	. 6
390.94	0,121,13		20.33	_	0.1020	3.007	33.0	3.0320		, ,	• •
	0.14052	0.0	10.59	0	0.4890	6.375	32.3	3.9454	4 2	77 18	.6
385.81 ## 215	0.28955	0.0	10.59	a	0.4890	5.412	9.8	3.5875	4 2	77 18	. 6
348.93	0.20333	0.0	10.33	J	0.1030	3.112	3.0	3.30,3		, , 10	• •
## 216	0.19802	0.0	10.59	0	0.4890	6.182	42.4	3.9454	4 2	77 18	.6
393.63 ## 217	0.04560	a a	13.89	1	0.5500	5 888	56.0	3.1121	5 2	76 16	.4
392.80	3.0 +500	3.0	15.05	_	3.3300	J. 300	33.0	J. 1121	5 2	. 5	
	0.07013	0.0	13.89	0	0.5500	6.642	85.1	3.4211	5 2	76 16	. 4
392.78											

## 219 396.90	0.11069	0.0	13.89	1 0.5500 5.951 93.8 2.8893 5 276	16.4
## 220	0.11425	0.0	13.89	1 0.5500 6.373 92.4 3.3633 5 276	16.4
393.74	0 35900	0.0	6 20	1 0 5070 6 051 99 5 2 9617 9 207	17.4
## 221 391.70	0.35809	0.0	6.20	1 0.5070 6.951 88.5 2.8617 8 307	17.4
## 222 395.24	0.40771	0.0	6.20	1 0.5070 6.164 91.3 3.0480 8 307	17.4
## 223	0.62356	0.0	6.20	1 0.5070 6.879 77.7 3.2721 8 307	17.4
390.39					
## 224 396.90	0.61470	0.0	6.20	0 0.5070 6.618 80.8 3.2721 8 307	17.4
## 225	0.31533	0.0	6.20	0 0.5040 8.266 78.3 2.8944 8 307	17.4
385.05					
## 226 382.00	0.52693	0.0	6.20	0 0.5040 8.725 83.0 2.8944 8 307	17.4
## 227	0.38214	0.0	6.20	0 0.5040 8.040 86.5 3.2157 8 307	17.4
387.38 ## 228	0.41238	0.0	6.20	0 0.5040 7.163 79.9 3.2157 8 307	17.4
372.08					
## 229	0.29819	0.0	6.20	0 0.5040 7.686 17.0 3.3751 8 307	17.4
377.51 ## 230	0.44178	0.0	6.20	0 0.5040 6.552 21.4 3.3751 8 307	17.4
380.34					
## 231 378.35	0.53700	0.0	6.20	0 0.5040 5.981 68.1 3.6715 8 307	17.4
## 232	0.46296	0.0	6.20	0 0.5040 7.412 76.9 3.6715 8 307	17.4
376.14					
## 233	0.57529	0.0	6.20	0 0.5070 8.337 73.3 3.8384 8 307	17.4
385.91 ## 234	0.33147	0.0	6.20	0 0.5070 8.247 70.4 3.6519 8 307	17.4
378.95	0.55147	0.0	0.20	0 0.3070 0.247 70.4 3.0319 0 307	17.4
## 235	0.44791	0.0	6.20	1 0.5070 6.726 66.5 3.6519 8 307	17.4
360.20 ## 236	0.33045	0.0	6.20	0 0.5070 6.086 61.5 3.6519 8 307	17.4
376.75	0.55045	0.0	0.20	0 0.3070 0.000 01.3 3.0313 8 307	17.4
	0.52058	0.0	6.20	1 0.5070 6.631 76.5 4.1480 8 307	17.4
388.45 ## 238	0.51183	0.0	6.20	0 0.5070 7.358 71.6 4.1480 8 307	17.4
390.07					
	0.08244	30.0	4.93	0 0.4280 6.481 18.5 6.1899 6 300	16.6
379.41 ## 240	0.09252	30.0	4.93	0 0.4280 6.606 42.2 6.1899 6 300	16.6
383.78					
## 241 391.25	0.11329	30.0	4.93	0 0.4280 6.897 54.3 6.3361 6 300	16.6
## 242	0.10612	30.0	4.93	0 0.4280 6.095 65.1 6.3361 6 300	16.6
394.62					
	0.10290	30.0	4.93	0 0.4280 6.358 52.9 7.0355 6 300	16.6
372.75					

## 244 374.71	0.12757	30.0	4.93	0 0.4280 6.393 7.8 7.0355 6 306	16.6
## 245	0.20608	22.0	5.86	0 0.4310 5.593 76.5 7.9549 7 336	19.1
372.49	0.40433	22.0	F 06	2 2 4 2 4 2 5 5 6 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	
## 246 389.13	0.19133	22.0	5.86	9 0.4310 5.605 70.2 7.9549 7 336	9 19.1
## 247	0.33983	22.0	5.86	0 0.4310 6.108 34.9 8.0555 7 336	19.1
390.18 ## 248	0.19657	22.0	5.86	0	19.1
376.14	0.15057	22.0	J.80	7 0.4310 0.220 73.2 8.0333 7 336	, 15.1
## 249	0.16439	22.0	5.86	9 0.4310 6.433 49.1 7.8265 7 336	19.1
374.71 ## 250	0.19073	22.0	5.86	0	19.1
393.74	0.13073	22.0	3.00	7 0.4310 0.710 17.3 7.0203 7 330	, 15.1
## 251	0.14030	22.0	5.86	9 0.4310 6.487 13.0 7.3967 7 336	9 19.1
396.28 ## 252	0.21409	22.0	5.86	0 0.4310 6.438 8.9 7.3967 7 336	9 19.1
377.07					
## 253	0.08221	22.0	5.86	0 0.4310 6.957 6.8 8.9067 7 336	9 19.1
386.09 ## 254	0.36894	22.0	5.86	0 0.4310 8.259 8.4 8.9067 7 336	9 19.1
396.90					
## 255	0.04819	80.0	3.64	0 0.3920 6.108 32.0 9.2203 1 315	16.4
392.89 ## 256	0.03548	80.0	3.64	0 0.3920 5.876 19.1 9.2203 1 315	16.4
395.18					
## 257 386.34	0.01538	90.0	3.75	0 0.3940 7.454 34.2 6.3361 3 244	15.9
## 258	0.61154	20.0	3.97	0 0.6470 8.704 86.9 1.8010 5 264	13.0
389.70					
## 259 383.29	0.66351	20.0	3.97	0 0.6470 7.333 100.0 1.8946 5 264	13.0
## 260	0.65665	20.0	3.97	0 0.6470 6.842 100.0 2.0107 5 264	13.0
391.93			2 2=		
## 261 392.80	0.54011	20.0	3.9/	0 0.6470 7.203 81.8 2.1121 5 264	13.0
	0.53412	20.0	3.97	9 0.6470 7.520 89.4 2.1398 5 264	13.0
388.37	0 52014	20.0	2 07	2 0 6470 0 200 04 5 2 2005 5 26	12.0
## 263 386.86	0.52014	20.0	3.9/	0 0.6470 8.398 91.5 2.2885 5 264	13.0
	0.82526	20.0	3.97	0 0.6470 7.327 94.5 2.0788 5 264	13.0
393.42	0 55007	20.0	2 07	0 0 0470 7 200 01 0 1 0201	12.0
## 265 387.89	0.55007	20.0	3.97	9 0.6470 7.206 91.6 1.9301 5 264	13.0
## 266	0.76162	20.0	3.97	0 0.6470 5.560 62.8 1.9865 5 264	13.0
392.40 ## 267	0.78570	20.0	3.97	0 0.6470 7.014 84.6 2.1329 5 264	13.0
384.07	0.76570	20.0	3.7/	7 0.0470 7.014 04.0 2.1329 3 204	. 13.0
## 268	0.57834	20.0	3.97	0 0.5750 8.297 67.0 2.4216 5 264	13.0
384.54					

## 269 390.30	0.54050	20.0	3.97	0 0.5750 7.470 52.6 2.8720 5 264	13.0
## 270	0.09065	20.0	6.96	1 0.4640 5.920 61.5 3.9175 3 223	18.6
391.34 ## 271	0.29916	20.0	6.96	0 0.4640 5.856 42.1 4.4290 3 223	18.6
388.65					
## 272 396.90	0.16211	20.0	6.96	0 0.4640 6.240 16.3 4.4290 3 223	18.6
## 273 394.96	0.11460	20.0	6.96	0 0.4640 6.538 58.7 3.9175 3 223	18.6
## 274	0.22188	20.0	6.96	1 0.4640 7.691 51.8 4.3665 3 223	18.6
390.77 ## 275	0.05644	40.0	6.41	1 0.4470 6.758 32.9 4.0776 4 254	17.6
396.90	0.03044	40.0	0.41	1 0.44/0 0.738 32.9 4.07/0 4 234	17.0
## 276 396.90	0.09604	40.0	6.41	0 0.4470 6.854 42.8 4.2673 4 254	17.6
## 277	0.10469	40.0	6.41	1 0.4470 7.267 49.0 4.7872 4 254	17.6
389.25 ## 278	0.06127	40.0	6.41	1 0.4470 6.826 27.6 4.8628 4 254	17.6
393.45					
## 279 396.90	0.07978	40.0	6.41	0 0.4470 6.482 32.1 4.1403 4 254	17.6
## 280	0.21038	20.0	3.33	0 0.4429 6.812 32.2 4.1007 5 216	14.9
396.90 ## 281	0.03578	20.0	3.33	0 0.4429 7.820 64.5 4.6947 5 216	14.9
387.31 ## 282	0.03705	20.0	3.33	0 0.4429 6.968 37.2 5.2447 5 216	14.9
392.23	0.03703	20.0	3.33	0 0.4429 0.900 37.2 3.2447 3 210	14.9
## 283 377.07	0.06129	20.0	3.33	1 0.4429 7.645 49.7 5.2119 5 216	14.9
## 284	0.01501	90.0	1.21	1 0.4010 7.923 24.8 5.8850 1 198	13.6
395.52 ## 285	0.00906	00.0	2 07	0 0 4000 7 000 20 0 7 2072 1 205	15 2
## 285 394.72	0.00906	90.0	2.97	0 0.4000 7.088 20.8 7.3073 1 285	15.3
## 286 394.72	0.01096	55.0	2.25	0 0.3890 6.453 31.9 7.3073 1 300	15.3
## 287	0.01965	80.0	1.76	0 0.3850 6.230 31.5 9.0892 1 241	18.2
341.60 ## 288	0.03871	52.5	5.32	0 0.4050 6.209 31.3 7.3172 6 293	16.6
396.90					
## 289 396.90	0.04590	52.5	5.32	0 0.4050 6.315 45.6 7.3172 6 293	16.6
## 290	0.04297	52.5	5.32	0 0.4050 6.565 22.9 7.3172 6 293	16.6
371.72 ## 291	0.03502	80.0	4.95	0 0.4110 6.861 27.9 5.1167 4 245	19.2
396.90					
## 292 396.90	0.07886	80.0	4.95	0 0.4110 7.148 27.7 5.1167 4 245	19.2
## 293 396.90	0.03615	80.0	4.95	0 0.4110 6.630 23.4 5.1167 4 245	19.2
250.36					

## 294	0.08265	0.0	13.92	0	0.4370	6.127	18.4	5.5027	4	289	16.0
396.90 ## 295	0.08199	0.0	13.92	0	0.4370	6.009	42.3	5.5027	4	289	16.0
396.90											
## 296 396.90	0.12932	0.0	13.92	0	0.4370	6.678	31.1	5.9604	4	289	16.0
## 297	0.05372	0.0	13.92	0	0.4370	6.549	51.0	5.9604	4	289	16.0
392.85											
## 298	0.14103	0.0	13.92	0	0.4370	5.790	58.0	6.3200	4	289	16.0
396.90 ## 299	0.06466	70.0	2.24	0	0.4000	6.345	20.1	7.8278	5	358	14.8
368.24											
## 300	0.05561	70.0	2.24	0	0.4000	7.041	10.0	7.8278	5	358	14.8
371.58 ## 301	0.04417	70.0	2.24	a	0.4000	6.871	47.4	7.8278	5	358	14.8
390.86	0.01117	70.0	2.2.	Ū	0.1000	0.071	1,7 • 1	,,02,0		330	11.0
## 302	0.03537	34.0	6.09	0	0.4330	6.590	40.4	5.4917	7	329	16.1
395.75 ## 303	0.09266	34.0	6.09	a	0.4330	6 495	18.4	5.4917	7	329	16.1
383.61	0.03200	34.0	0.05	J	0.4550	0.455	10.4	J. 4J17	,	323	10.1
## 304	0.10000	34.0	6.09	0	0.4330	6.982	17.7	5.4917	7	329	16.1
390.43 ## 305	0.05515	33.0	2.18	а	0.4720	7 236	41.1	4.0220	7	222	18.4
393.68	0.03313	33.0	2.10	Ū	0.4720	7.250	71.1	4.0220	,	222	10.4
## 306	0.05479	33.0	2.18	0	0.4720	6.616	58.1	3.3700	7	222	18.4
393.36 ## 307	0.07503	33.0	2.18	a	0.4720	7 420	71.9	3.0992	7	222	18.4
396.90	0.07505	22.0	2.10	Ū	0.4/20	7.420	/1./	3.0332	,	222	10.4
## 308	0.04932	33.0	2.18	0	0.4720	6.849	70.3	3.1827	7	222	18.4
396.90 ## 309	0.49298	0.0	9.90	а	0.5440	6 635	82.5	3.3175	1	304	18.4
396.90	0.45256	0.0	3.30	Ū	0.5440	0.055	02.5	3.31/3	_	J04	10.4
## 310	0.34940	0.0	9.90	0	0.5440	5.972	76.7	3.1025	4	304	18.4
396.24 ## 311	2.63548	0.0	9.90	а	0.5440	<i>1</i> 973	37 S	2.5194	1	304	18.4
350.45	2.05548	0.0	J. J0	Ū	0.5440	4.5/5	37.0	2.3134	7	504	10.4
## 312	0.79041	0.0	9.90	0	0.5440	6.122	52.8	2.6403	4	304	18.4
396.90 ## 313	0.26169	0 0	9.90	a	0.5440	6 023	90 1	2.8340	1	304	18.4
396.30	0.20109	0.0	9.90	Ū	0.5440	0.023	30.4	2.8340	4	364	10.4
## 314	0.26938	0.0	9.90	0	0.5440	6.266	82.8	3.2628	4	304	18.4
393.39 ## 315	0.36920	0.0	9.90	a	0.5440	6 567	07 2	3.6023	1	304	18.4
395.69	0.30320	0.0	3.30	V	0.3440	0.307	67.3	3.0023	4	304	10.4
## 316	0.25356	0.0	9.90	0	0.5440	5.705	77.7	3.9450	4	304	18.4
396.42 ## 317	0.31827	0.0	9.90	Ω	0.5440	5 01/	83.2	3.9986	1	304	18.4
## 317 390.70	0.3104/	0.0	5.50	V	0.3440	J. J14	03.2	3.3300	4	304	10.4
## 318	0.24522	0.0	9.90	0	0.5440	5.782	71.7	4.0317	4	304	18.4
396.90											

## 319	0.40202	0.0	9.90	0 0.5440 6.382	67.2	3.5325	4 304	18.4
395.21 ## 320	0.47547	0.0	9.90	0 0.5440 6.113	58.8	4.0019	4 304	18.4
396.23								
## 321 396.90	0.16760	0.0	7.38	0 0.4930 6.426	52.3	4.5404	5 287	19.6
## 322	0.18159	0.0	7.38	0 0.4930 6.376	54.3	4.5404	5 287	19.6
396.90								
## 323 396.90	0.35114	0.0	7.38	0 0.4930 6.041	49.9	4.7211	5 287	19.6
## 324	0.28392	0.0	7.38	0 0.4930 5.708	74.3	4.7211	5 287	19.6
391.13								
## 325 396.90	0.34109	0.0	7.38	0 0.4930 6.415	40.1	4.7211	5 287	19.6
## 326	0.19186	0.0	7.38	0 0.4930 6.431	14.7	5.4159	5 287	19.6
393.68								
## 327 396.90	0.30347	0.0	7.38	0 0.4930 6.312	28.9	5.4159	5 287	19.6
## 328	0.24103	0.0	7.38	0 0.4930 6.083	43.7	5.4159	5 287	19.6
396.90								
## 329 382.44	0.06617	0.0	3.24	0 0.4600 5.868	25.8	5.2146	4 430	16.9
## 330	0.06724	0.0	3.24	0 0.4600 6.333	17.2	5.2146	4 430	16.9
375.21								
## 331 368.57	0.04544	0.0	3.24	0 0.4600 6.144	32.2	5.8736	4 430	16.9
## 332	0.05023	35.0	6.06	0 0.4379 5.706	28.4	6.6407	1 304	16.9
394.02								
## 333 362.25	0.03466	35.0	6.06	0 0.4379 6.031	23.3	6.6407	1 304	16.9
## 334	0.05083	0.0	5.19	0 0.5150 6.316	38.1	6.4584	5 224	20.2
389.71								
## 335 389.40	0.03738	0.0	5.19	0 0.5150 6.310	38.5	6.4584	5 224	20.2
## 336	0.03961	0.0	5.19	0 0.5150 6.037	34.5	5.9853	5 224	20.2
396.90								
## 337 396.90	0.03427	0.0	5.19	0 0.5150 5.869	46.3	5.2311	5 224	20.2
## 338	0.03041	0.0	5.19	0 0.5150 5.895	59.6	5.6150	5 224	20.2
394.81								
## 339 396.14	0.03306	0.0	5.19	0 0.5150 6.059	37.3	4.8122	5 224	20.2
## 340	0.05497	0.0	5.19	0 0.5150 5.985	45.4	4.8122	5 224	20.2
396.90								
## 341 396.90	0.06151	0.0	5.19	0 0.5150 5.968	58.5	4.8122	5 224	20.2
## 342	0.01301	35.0	1.52	0 0.4420 7.241	49.3	7.0379	1 284	15.5
394.74								
## 343 389.96	0.02498	0.0	1.89	0 0.5180 6.540	59.7	6.2669	1 422	15.9
202.20								

## 344	0.02543	55.0	3.78	0	0.4840	6.696	56.4	5.7321	5	370	17.6
396.90 ## 345	0.03049	55.0	3.78	0	0.4840	6.874	28.1	6.4654	5	370	17.6
387.97	0 02112	0.0	4 20	0	0 4420	C 014	40 F	0 0126	2	252	10.0
## 346 385.64	0.03113	0.0	4.39	0	0.4420	6.014	48.5	8.0136	3	352	18.8
## 347	0.06162	0.0	4.39	0	0.4420	5.898	52.3	8.0136	3	352	18.8
364.61 ## 348	0.01870	85.0	4.15	0	0.4290	6.516	27.7	8.5353	4	351	17.9
392.43											
## 349 390.94	0.01501	80.0	2.01	0	0.4350	6.635	29.7	8.3440	4	280	17.0
## 350	0.02899	40.0	1.25	0	0.4290	6.939	34.5	8.7921	1	335	19.7
389.85											
## 351 396.90	0.06211	40.0	1.25	0	0.4290	6.490	44.4	8.7921	1	335	19.7
## 352	0.07950	60.0	1.69	0	0.4110	6.579	35.9	10.7103	4	411	18.3
370.78	0.07244	60.0	1 60	_	0 4110	F 004	10 5	10 7100	4	111	10.2
## 353 392.33	0.07244	60.0	1.69	0	0.4110	5.884	18.5	10.7103	4	411	18.3
## 354	0.01709	90.0	2.02	9	0.4100	6.728	36.1	12.1265	5	187	17.0
384.46	0.02,03	20.0	2.02	Ū	0.1200	01,20	30.1		_		27.00
## 355	0.04301	80.0	1.91	0	0.4130	5.663	21.9	10.5857	4	334	22.0
382.80	0.40650	00.0	4 04	•	0 44 30	F 026	40.5	40 5057		224	22.0
## 356 376.04	0.10659	80.0	1.91	0	0.4130	5.936	19.5	10.5857	4	334	22.0
## 357	8.98296	9.9	18.10	1	0.7700	6.212	97.4	2.1222	24	666	20.2
377.73	0.30230	0.0	10.10	_	0.7700	0.212	<i>37</i> • 1	2.1222		000	20.2
## 358	3.84970	0.0	18.10	1	0.7700	6.395	91.0	2.5052	24	666	20.2
391.34											
## 359	5.20177	0.0	18.10	1	0.7700	6.127	83.4	2.7227	24	666	20.2
395.43	4 26121	0.0	18.10	0	0 7700	6 112	01 2	2 5001	24	666	20.2
## 360 390.74	4.26131	0.0	18.10	О	0.7700	6.112	81.3	2.5091	24	666	20.2
## 361	4.54192	0.0	18.10	0	0.7700	6.398	88.0	2.5182	24	666	20.2
374.56											
## 362	3.83684	0.0	18.10	0	0.7700	6.251	91.1	2.2955	24	666	20.2
350.65	2 47000		40.40	_							
## 363 380.79	3.67822	0.0	18.10	0	0.7700	5.362	96.2	2.1036	24	666	20.2
## 364	4.22239	0.0	18.10	1	0.7700	5.803	89.0	1.9047	24	666	20.2
353.04											
## 365	3.47428	0.0	18.10	1	0.7180	8.780	82.9	1.9047	24	666	20.2
354.55 ## 366	4.55587	a a	18.10	a	0.7180	3 561	87 9	1.6132	24	666	20.2
354.70	T. JJJC/	0.0	10.10	Ð	0.7100	J. JUI	37.9	1.0132	24	000	20.2
## 367	3.69695	0.0	18.10	0	0.7180	4.963	91.4	1.7523	24	666	20.2
316.03											
	13.52220	0.0	18.10	0	0.6310	3.863	100.0	1.5106	24	666	20.2
131.42											

## 369	4.89822	0.0	18.10	0	0.6310	4.970	100.0	1.3325	24 666	20.2
375.52 ## 370	5.66998	0.0	18.10	1	0.6310	6.683	96.8	1.3567	24 666	20.2
375.33 ## 371	6.53876	0 0	18.10	1	0.6310	7 016	97.5	1.2024	24 666	20.2
392.05	0.33670	0.0	10.10	_	0.0310	7.010	37.3	1.2024	24 000	20.2
## 372 366.15	9.23230	0.0	18.10	0	0.6310	6.216	100.0	1.1691	24 666	20.2
## 373	8.26725	0.0	18.10	1	0.6680	5.875	89.6	1.1296	24 666	20.2
347.88										
## 374 396.90	11.10810	0.0	18.10	0	0.6680	4.906	100.0	1.1742	24 666	20.2
## 375	18.49820	0.0	18.10	0	0.6680	4.138	100.0	1.1370	24 666	20.2
396.90										
## 376 396.90	19.60910	0.0	18.10	0	0.6710	7.313	97.9	1.3163	24 666	20.2
	15.28800	0.0	18.10	0	0.6710	6.649	93.3	1.3449	24 666	20.2
363.02										
## 378 396.90	9.82349	0.0	18.10	0	0.6710	6.794	98.8	1.3580	24 666	20.2
	23.64820	0.0	18.10	0	0.6710	6.380	96.2	1.3861	24 666	20.2
396.90				_						
## 380 393.74	17.86670	0.0	18.10	0	0.6710	6.223	100.0	1.3861	24 666	20.2
	88.97620	0.0	18.10	0	0.6710	6.968	91.9	1.4165	24 666	20.2
396.90										
	15.87440	0.0	18.10	0	0.6710	6.545	99.1	1.5192	24 666	20.2
396.90 ## 383	9.18702	a a	18.10	a	0.7000	5 536	100 0	1.5804	24 666	20.2
396.90	9.10/02	0.0	10.10	U	0.7000	3.330	100.0	1.5004	24 000	20.2
## 384	7.99248	0.0	18.10	0	0.7000	5.520	100.0	1.5331	24 666	20.2
396.90	20.08490	0 0	18.10	a	0.7000	1 260	91.2	1.4395	24 666	20.2
285.83	20.00490	0.0	10.10	Ø	0.7000	4.300	91.2	1.4393	24 000	20.2
	16.81180	0.0	18.10	0	0.7000	5.277	98.1	1.4261	24 666	20.2
396.90	24.39380	a a	18.10	a	0 7000	1 652	100 0	1 4672	24 666	20.2
396.90	24.33300	0.0	10.10	V	0.7000	4.032	100.0	1.40/2	24 000	20.2
## 388	22.59710	0.0	18.10	0	0.7000	5.000	89.5	1.5184	24 666	20.2
396.90	14 22270	0.0	10 10	0	0 7000	4 000	100 0	1 5005	24 666	20.2
372.92	14.33370	0.0	18.10	О	0.7000	4.000	100.0	1.5895	24 666	20.2
## 390	8.15174	0.0	18.10	0	0.7000	5.390	98.9	1.7281	24 666	20.2
396.90 ## 391	6.96215	9 9	18.10	a	0.7000	5 712	97.0	1.9265	24 666	20.2
394.43	0.90213	0.0	10.10	O	0.7000	J./13	57.0	1.9203	Z T 000	20.2
## 392	5.29305	0.0	18.10	0	0.7000	6.051	82.5	2.1678	24 666	20.2
378.38	11.57790	0 0	10 10	a	0 7000	5 026	97.0	1 7700	24 666	20.2
396.90	11.3//30	0.0	10.10	Ø	0.7000	טכש. כ	37.0	1.//00	2 4 000	20.2

## 394		0.0	18.10	0	0.6930	6.193	92.6	1.7912	24	666	20.2
396.96 ## 395	5 13.35980	0.0	18.10	0	0.6930	5.887	94.7	1.7821	24	666	20.2
396.96		a a	18.10	а	0.6930	6 471	98.8	1.7257	24	666	20.2
391.98	3										
## 397 396.90		0.0	18.10	0	0.6930	6.405	96.0	1.6768	24	666	20.2
## 398	7.67202	0.0	18.10	0	0.6930	5.747	98.9	1.6334	24	666	20.2
393.10 ## 399) 38.35180	0.0	18.10	0	0.6930	5.453	100.0	1.4896	24	666	20.2
396.96)										
## 400		0.0	18.10	0	0.6930	5.852	77.8	1.5004	24	666	20.2
338.16											
	25.04610	0.0	18.10	0	0.6930	5.987	100.0	1.5888	24	666	20.2
396.96	14.23620	0 0	18.10	a	0.6930	6 2/12	100 0	1.5741	24	666	20.2
396.96		0.0	10.10	О	0.0930	0.343	100.0	1.5/41	24	000	20.2
## 403		0.0	18.10	0	0.6930	6.404	100.0	1.6390	24	666	20.2
376.11								_,,,,,			
## 404	24.80170	0.0	18.10	0	0.6930	5.349	96.0	1.7028	24	666	20.2
396.90)										
	41.52920	0.0	18.10	0	0.6930	5.531	85.4	1.6074	24	666	20.2
329.46				_							
	67.92080	0.0	18.10	0	0.6930	5.683	100.0	1.4254	24	666	20.2
384.97	, 20.71620	0 0	18.10	a	0.6590	A 120	100 0	1.1781	24	666	20.2
370.22		0.0	10.10	U	0.0390	4.130	100.0	1.1/01	24	000	20.2
	3 11.95110	0.0	18.10	0	0.6590	5,608	100.0	1.2852	24	666	20.2
332.09											
## 409	7.40389	0.0	18.10	0	0.5970	5.617	97.9	1.4547	24	666	20.2
314.64	ļ										
	14.43830	0.0	18.10	0	0.5970	6.852	100.0	1.4655	24	666	20.2
179.36		0 0	10 10	^	0 5070		100.0	1 4120	24		20.2
## 411 2.60	51.13580	0.0	18.10	0	0.5970	5./5/	100.0	1.4130	24	666	20.2
	14.05070	9.9	18.10	a	0.5970	6.657	100.0	1.5275	24	666	20.2
35.05	1 11.03070	0.0	10.10	Ŭ	0.3370	0.037	100.0	1.32,3	- '	000	20.2
	18.81100	0.0	18.10	0	0.5970	4.628	100.0	1.5539	24	666	20.2
28.79											
## 414	28.65580	0.0	18.10	0	0.5970	5.155	100.0	1.5894	24	666	20.2
210.97											
	45.74610	0.0	18.10	0	0.6930	4.519	100.0	1.6582	24	666	20.2
88.27	18.08460	0 0	18.10	a	0 6700	6 121	100 0	1.8347	24	666	20.2
27.25	10.00400	0.0	10.10	ð	0.0730	0.434	100.0	1.034/	24	000	20.2
	10.83420	0.0	18.10	0	0.6790	6.782	90.8	1.8195	24	666	20.2
21.57											
	25.94060	0.0	18.10	0	0.6790	5.304	89.1	1.6475	24	666	20.2
127.36											

	73.53410	0.0 1	18.10	0	0.6790	5.957	100.0	1.8026	24	666	20.2
16.45 ## 420	11.81230	0.0 1	18.10	0	0.7180	6.824	76.5	1.7940	24	666	20.2
48.45	11.08740	0.0 1	19 10	a	0.7180	6 /11	100 0	1.8589	2/	666	20.2
318.75	11.00740	0.0	10.10	U	0.7100	0.411	100.0	1.0309	24	000	20.2
## 422 319.98	7.02259	0.0 1	18.10	0	0.7180	6.006	95.3	1.8746	24	666	20.2
	12.04820	0.0 1	L8.10	0	0.6140	5.648	87.6	1.9512	24	666	20.2
291.55 ## 424	7.05042	0.0 1	18 10	a	0.6140	6 103	85.1	2.0218	2/1	666	20.2
2.52	7.03042	0.0	10.10	Ü	0.0140	0.105	05.1	2.0210	24	000	20.2
## 425 3.65	8.79212	0.0 1	18.10	0	0.5840	5.565	70.6	2.0635	24	666	20.2
	15.86030	0.0 1	18.10	0	0.6790	5.896	95.4	1.9096	24	666	20.2
7.68	12.24720	0.0 1	18 10	a	0.5840	5 837	59.7	1.9976	2/1	666	20.2
24.65	12.24/20	0.0 1	10.10	Ü	0.5040	3.037	33.7	1.5570	24	000	20.2
## 428 18.82	37.66190	0.0 1	18.10	0	0.6790	6.202	78.7	1.8629	24	666	20.2
## 429	7.36711	0.0 1	18.10	0	0.6790	6.193	78.1	1.9356	24	666	20.2
96.73 ## 430	9.33889	0.0 1	18 10	a	0.6790	6 380	95.6	1.9682	2/1	666	20.2
60.72	3.33663	0.0 1	10.10	U	0.0730	0.360	93.0	1.9062	24	000	20.2
## 431	8.49213	0.0 1	L8.10	0	0.5840	6.348	86.1	2.0527	24	666	20.2
83.45 ## 432	10.06230	0.0 1	18.10	0	0.5840	6.833	94.3	2.0882	24	666	20.2
81.33	C 4440F	0 0 1	10 10	^	0 5040	C 425	74.0	2 2004	24	ccc	20.2
## 433 97.95	6.44405	0.0 1	18.10	О	0.5840	6.425	74.8	2.2004	24	666	20.2
## 434	5.58107	0.0 1	18.10	0	0.7130	6.436	87.9	2.3158	24	666	20.2
100.19 ## 435	13.91340	0.0 1	18.10	0	0.7130	6.208	95.0	2.2222	24	666	20.2
100.63	44 46040		10.40	_	0.7400		04.6	2 4247	2.4		20.2
## 436 109.85	11.16040	0.0 1	18.10	0	0.7400	6.629	94.6	2.1247	24	666	20.2
## 437	14.42080	0.0 1	18.10	0	0.7400	6.461	93.3	2.0026	24	666	20.2
27.49 ## 438	15.17720	0.0 1	18.10	0	0.7400	6.152	100.0	1.9142	24	666	20.2
9.32											
## 439 68.95	13.67810	0.0 1	18.10	0	0.7400	5.935	87.9	1.8206	24	666	20.2
## 440	9.39063	0.0 1	18.10	0	0.7400	5.627	93.9	1.8172	24	666	20.2
396.90 ## 441	22.05110	0.0 1	18.10	0	0.7400	5.818	92.4	1.8662	24	666	20.2
391.45											
## 442 385.96	9.72418	0.0 1	18.10	0	0.7400	6.406	97.2	2.0651	24	666	20.2
## 443	5.66637	0.0 1	18.10	0	0.7400	6.219	100.0	2.0048	24	666	20.2
395.69											

## 444 386.73	9.96654	0.0	18.10	0	0.7400	6.485	100.0	1.9784	24	666	20.2
## 445	12.80230	0.0	18.10	0	0.7400	5.854	96.6	1.8956	24	666	20.2
	10.67180	0.0	18.10	0	0.7400	6.459	94.8	1.9879	24	666	20.2
43.06 ## 447	6.28807	0.0	18.10	0	0.7400	6.341	96.4	2.0720	24	666	20.2
318.01				_							
## 448 388.52	9.92485	0.0	18.10	0	0.7400	6.251	96.6	2.1980	24	666	20.2
## 449 396.90	9.32909	0.0	18.10	0	0.7130	6.185	98.7	2.2616	24	666	20.2
## 450	7.52601	0.0	18.10	0	0.7130	6.417	98.3	2.1850	24	666	20.2
304.21 ## 451	6.71772	0 0	18.10	a	0.7130	6 740	92.6	2.3236	2/	666	20.2
0.32											
## 452 355.29	5.44114	0.0	18.10	0	0.7130	6.655	98.2	2.3552	24	666	20.2
## 453	5.09017	0.0	18.10	0	0.7130	6.297	91.8	2.3682	24	666	20.2
385.09 ## 454	8.24809	0.0	18.10	0	0.7130	7.393	99.3	2.4527	24	666	20.2
375.87 ## 455	9.51363	0.0	18.10	0	0.7130	6.728	94.1	2.4961	24	666	20.2
6.68											
## 456 50.92	4.75237	0.0	18.10	0	0.7130	6.525	86.5	2.4358	24	666	20.2
## 457	4.66883	0.0	18.10	0	0.7130	5.976	87.9	2.5806	24	666	20.2
10.48 ## 458	8.20058	0.0	18.10	0	0.7130	5.936	80.3	2.7792	24	666	20.2
3.50											
## 459 272.21	7.75223	0.0	18.10	0	0.7130	6.301	83.7	2.7831	24	666	20.2
## 460	6.80117	0.0	18.10	0	0.7130	6.081	84.4	2.7175	24	666	20.2
396.90 ## 461	4.81213	0.0	18.10	0	0.7130	6.701	90.0	2.5975	24	666	20.2
255.23				_							
## 462 391.43	3.69311	0.0	18.10	0	0.7130	6.376	88.4	2.5671	24	666	20.2
## 463 396.90	6.65492	0.0	18.10	0	0.7130	6.317	83.0	2.7344	24	666	20.2
## 464	5.82115	0.0	18.10	0	0.7130	6.513	89.9	2.8016	24	666	20.2
393.82 ## 465	7.83932	a a	18.10	a	0.6550	6 200	65 /	2.9634	2/	666	20.2
396.90											
## 466 334.40	3.16360	0.0	18.10	0	0.6550	5.759	48.2	3.0665	24	666	20.2
## 467	3.77498	0.0	18.10	0	0.6550	5.952	84.7	2.8715	24	666	20.2
22.01 ## 468	4.42228	0.0	18.10	0	0.5840	6.003	94.5	2.5403	24	666	20.2
331.29											

	15.57570	0.0 18.10	0 0.5800 5.9	26 71.0 2.908	4 24 666	20.2
368.74 ## 470	13.07510	0.0 18.10	0 0.5800 5.7	13 56.7 2.823	7 24 666	20.2
396.90						
## 471 396.90	4.34879	0.0 18.10	0 0.5800 6.1	.67 84.0 3.033	4 24 666	20.2
## 472	4.03841	0.0 18.10	0 0.5320 6.2	29 90.7 3.099	3 24 666	20.2
395.33						
## 473	3.56868	0.0 18.10	0 0.5800 6.4	37 75.0 2.896	5 24 666	20.2
393.37 ## 474	4.64689	0.0 18.10	0 0.6140 6.9	80 67.6 2.532	9 24 666	20.2
374.68	4.04005	0.0 10.10	0 0.0140 0.5	00 07.0 2.332	2 2 4 000	20.2
## 475	8.05579	0.0 18.10	0 0.5840 5.4	27 95.4 2.429	8 24 666	20.2
352.58		0 0 10 10				
## 476 302.76	6.39312	0.0 18.10	0 0.5840 6.1	.62 97.4 2.206	0 24 666	20.2
## 477	4.87141	0.0 18.10	0 0.6140 6.4	84 93.6 2.305	3 24 666	20.2
396.21						
	15.02340	0.0 18.10	0 0.6140 5.3	04 97.3 2.100	7 24 666	20.2
349.48 ## 479	10.23300	0.0 18.10	0 0.6140 6.1	.85 96.7 2.170	5 24 666	20.2
379.70	10.23300	0.0 10.10	0 0.0110 0.1	.05 50.7 2.170	21 000	20.2
	14.33370	0.0 18.10	0 0.6140 6.2	29 88.0 1.951	2 24 666	20.2
383.32 ## 481	5.82401	0.0 18.10	0 0.5320 6.2	42 64.7 3.424	2 24 666	20.2
396.90	3.02401	0.0 18.10	0 0.5520 0.2	.42 04.7 3.424	2 24 000	20.2
## 482	5.70818	0.0 18.10	0 0.5320 6.7	50 74.9 3.331	7 24 666	20.2
393.07	F 72446	0 0 10 10	0 0 5330 7 0			20.2
## 483 395.28	5.73116	0.0 18.10	0 0.5320 7.0	61 77.0 3.410	6 24 666	20.2
## 484	2.81838	0.0 18.10	0 0.5320 5.7	62 40.3 4.098	3 24 666	20.2
392.92						
## 485 370.73	2.37857	0.0 18.10	0 0.5830 5.8	71 41.9 3.724	0 24 666	20.2
## 486	3.67367	0.0 18.10	0 0.5830 6.3	12 51.9 3.991	7 24 666	20.2
388.62						
		0.0 18.10	0 0.5830 6.1	14 79.8 3.545	9 24 666	20.2
392.68 ## 488		0.0 18.10	0 0.5830 5.9	05 53.2 3.152	3 24 666	20.2
388.22		0.0 10.10	0 0.3030 3.3	05 55.2 5.152	24 000	20.2
## 489		0.0 27.74	0 0.6090 5.4	54 92.7 1.820	9 4 711	20.1
395.09	0 10227	0 0 27 74	0.0.000 5.4	14 00 2 1 755	4 4 711	20. 1
## 490 344.05	0.18337	0.0 27.74	0 0.6090 5.4	14 98.3 1.755	4 4 711	20.1
## 491	0.20746	0.0 27.74	0 0.6090 5.0	93 98.0 1.822	6 4 711	20.1
318.43						
## 492	0.10574	0.0 27.74	0 0.6090 5.9	83 98.8 1.868	1 4 711	20.1
390.11 ## 493	0.11132	0.0 27.74	0 0.6090 5.9	83 83.5 2.109	9 4 711	20.1
396.90					-	

```
## 494 0.17331
                  0.0 9.69
                               0 0.5850 5.707 54.0 2.3817 6 391
                                                                       19.2
396.90
## 495
                               0 0.5850 5.926 42.6 2.3817
       0.27957
                  0.0 9.69
                                                              6 391
                                                                       19.2
396.90
                               0 0.5850 5.670
## 496 0.17899
                  0.0 9.69
                                              28.8
                                                    2.7986
                                                              6 391
                                                                       19.2
393.29
## 497 0.28960
                  0.0 9.69
                               0 0.5850 5.390
                                              72.9
                                                     2.7986
                                                              6 391
                                                                       19.2
396.90
## 498
      0.26838
                  0.0 9.69
                               0 0.5850 5.794 70.6
                                                    2.8927
                                                                       19.2
                                                              6 391
396.90
## 499 0.23912
                  0.0 9.69
                               0 0.5850 6.019 65.3 2.4091
                                                              6 391
                                                                       19.2
396.90
## 500 0.17783
                  0.0 9.69
                               0 0.5850 5.569
                                              73.5
                                                    2.3999
                                                              6 391
                                                                       19.2
395.77
## 501 0.22438
                  0.0 9.69
                               0 0.5850 6.027
                                               79.7 2.4982
                                                                       19.2
                                                              6 391
396.90
## 502 0.06263
                  0.0 11.93
                               0 0.5730 6.593 69.1 2.4786
                                                              1 273
                                                                       21.0
391.99
## 503 0.04527
                  0.0 11.93
                               0 0.5730 6.120
                                              76.7
                                                     2.2875
                                                              1 273
                                                                       21.0
396.90
                                                              1 273
## 504 0.06076
                  0.0 11.93
                              0 0.5730 6.976 91.0
                                                    2.1675
                                                                       21.0
396.90
## 505 0.10959
                  0.0 11.93
                               0 0.5730 6.794
                                               89.3
                                                     2.3889
                                                              1 273
                                                                       21.0
393.45
## 506 0.04741
                  0.0 11.93
                               0 0.5730 6.030 80.8 2.5050
                                                              1 273
                                                                       21.0
396.90
##
       lstat medv
## 1
        4.98 24.0
## 2
       9.14 21.6
## 3
       4.03 34.7
## 4
        2.94 33.4
## 5
        5.33 36.2
## 6
       5.21 28.7
## 7
       12.43 22.9
       19.15 27.1
## 8
       29.93 16.5
## 9
## 10
      17.10 18.9
## 11
       20.45 15.0
       13.27 18.9
## 12
## 13
       15.71 21.7
## 14
       8.26 20.4
       10.26 18.2
## 15
       8.47 19.9
## 16
## 17
        6.58 23.1
## 18
      14.67 17.5
## 19
       11.69 20.2
## 20
       11.28 18.2
## 21
       21.02 13.6
## 22
       13.83 19.6
## 23
      18.72 15.2
```

```
## 24
       19.88 14.5
## 25
       16.30 15.6
## 26
       16.51 13.9
## 27
       14.81 16.6
## 28
       17.28 14.8
## 29
       12.80 18.4
## 30
       11.98 21.0
       22.60 12.7
## 31
## 32
       13.04 14.5
       27.71 13.2
## 33
## 34
       18.35 13.1
## 35
       20.34 13.5
## 36
        9.68 18.9
## 37
       11.41 20.0
## 38
        8.77 21.0
## 39
       10.13 24.7
## 40
        4.32 30.8
## 41
        1.98 34.9
## 42
        4.84 26.6
## 43
        5.81 25.3
        7.44 24.7
## 44
## 45
        9.55 21.2
## 46
       10.21 19.3
## 47
       14.15 20.0
## 48
       18.80 16.6
## 49
       30.81 14.4
## 50
       16.20 19.4
## 51
       13.45 19.7
## 52
        9.43 20.5
## 53
        5.28 25.0
## 54
        8.43 23.4
## 55
       14.80 18.9
## 56
        4.81 35.4
## 57
        5.77 24.7
## 58
        3.95 31.6
## 59
        6.86 23.3
        9.22 19.6
## 60
## 61
       13.15 18.7
## 62
       14.44 16.0
## 63
        6.73 22.2
## 64
        9.50 25.0
        8.05 33.0
## 65
## 66
        4.67 23.5
## 67
       10.24 19.4
## 68
        8.10 22.0
       13.09 17.4
## 69
## 70
        8.79 20.9
## 71
        6.72 24.2
## 72
        9.88 21.7
## 73
        5.52 22.8
```

```
## 74
        7.54 23.4
## 75
        6.78 24.1
## 76
        8.94 21.4
## 77
       11.97 20.0
## 78
       10.27 20.8
## 79
       12.34 21.2
## 80
        9.10 20.3
## 81
        5.29 28.0
## 82
        7.22 23.9
        6.72 24.8
## 83
## 84
        7.51 22.9
## 85
        9.62 23.9
## 86
        6.53 26.6
## 87
       12.86 22.5
## 88
        8.44 22.2
## 89
        5.50 23.6
## 90
        5.70 28.7
## 91
        8.81 22.6
## 92
        8.20 22.0
## 93
        8.16 22.9
## 94
        6.21 25.0
## 95
       10.59 20.6
## 96
        6.65 28.4
## 97
       11.34 21.4
## 98
        4.21 38.7
## 99
        3.57 43.8
## 100 6.19 33.2
## 101
       9.42 27.5
## 102
       7.67 26.5
## 103 10.63 18.6
## 104 13.44 19.3
## 105 12.33 20.1
## 106 16.47 19.5
## 107 18.66 19.5
## 108 14.09 20.4
## 109 12.27 19.8
## 110 15.55 19.4
## 111 13.00 21.7
## 112 10.16 22.8
## 113 16.21 18.8
## 114 17.09 18.7
## 115 10.45 18.5
## 116 15.76 18.3
## 117 12.04 21.2
## 118 10.30 19.2
## 119 15.37 20.4
## 120 13.61 19.3
## 121 14.37 22.0
## 122 14.27 20.3
## 123 17.93 20.5
```

```
## 124 25.41 17.3
## 125 17.58 18.8
## 126 14.81 21.4
## 127 27.26 15.7
## 128 17.19 16.2
## 129 15.39 18.0
## 130 18.34 14.3
## 131 12.60 19.2
## 132 12.26 19.6
## 133 11.12 23.0
## 134 15.03 18.4
## 135 17.31 15.6
## 136 16.96 18.1
## 137 16.90 17.4
## 138 14.59 17.1
## 139 21.32 13.3
## 140 18.46 17.8
## 141 24.16 14.0
## 142 34.41 14.4
## 143 26.82 13.4
## 144 26.42 15.6
## 145 29.29 11.8
## 146 27.80 13.8
## 147 16.65 15.6
## 148 29.53 14.6
## 149 28.32 17.8
## 150 21.45 15.4
## 151 14.10 21.5
## 152 13.28 19.6
## 153 12.12 15.3
## 154 15.79 19.4
## 155 15.12 17.0
## 156 15.02 15.6
## 157 16.14 13.1
## 158
       4.59 41.3
## 159 6.43 24.3
## 160
      7.39 23.3
## 161
       5.50 27.0
## 162
      1.73 50.0
## 163
       1.92 50.0
## 164
       3.32 50.0
## 165 11.64 22.7
## 166
      9.81 25.0
## 167 3.70 50.0
## 168 12.14 23.8
## 169 11.10 23.8
## 170 11.32 22.3
## 171 14.43 17.4
## 172 12.03 19.1
## 173 14.69 23.1
```

```
## 174 9.04 23.6
## 175
       9.64 22.6
## 176 5.33 29.4
## 177 10.11 23.2
## 178
       6.29 24.6
## 179
       6.92 29.9
## 180
      5.04 37.2
## 181
       7.56 39.8
## 182
       9.45 36.2
       4.82 37.9
## 183
## 184
       5.68 32.5
## 185 13.98 26.4
## 186 13.15 29.6
## 187
       4.45 50.0
## 188
       6.68 32.0
## 189
       4.56 29.8
## 190 5.39 34.9
## 191
       5.10 37.0
## 192 4.69 30.5
## 193
       2.87 36.4
## 194
       5.03 31.1
## 195
       4.38 29.1
## 196
       2.97 50.0
## 197
       4.08 33.3
## 198
       8.61 30.3
       6.62 34.6
## 199
## 200
      4.56 34.9
## 201
       4.45 32.9
## 202
       7.43 24.1
## 203
       3.11 42.3
## 204
       3.81 48.5
## 205
       2.88 50.0
## 206 10.87 22.6
## 207 10.97 24.4
## 208 18.06 22.5
## 209 14.66 24.4
## 210 23.09 20.0
## 211 17.27 21.7
## 212 23.98 19.3
## 213 16.03 22.4
## 214 9.38 28.1
## 215 29.55 23.7
## 216 9.47 25.0
## 217 13.51 23.3
## 218 9.69 28.7
## 219 17.92 21.5
## 220 10.50 23.0
## 221 9.71 26.7
## 222 21.46 21.7
## 223 9.93 27.5
```

```
## 224 7.60 30.1
## 225
       4.14 44.8
## 226
       4.63 50.0
## 227
       3.13 37.6
       6.36 31.6
## 228
## 229
       3.92 46.7
## 230
       3.76 31.5
## 231 11.65 24.3
## 232
       5.25 31.7
       2.47 41.7
## 233
## 234
       3.95 48.3
## 235 8.05 29.0
## 236 10.88 24.0
## 237
       9.54 25.1
## 238
       4.73 31.5
       6.36 23.7
## 239
## 240
       7.37 23.3
## 241 11.38 22.0
## 242 12.40 20.1
## 243 11.22 22.2
## 244
       5.19 23.7
## 245 12.50 17.6
## 246 18.46 18.5
## 247
       9.16 24.3
## 248 10.15 20.5
## 249
       9.52 24.5
## 250 6.56 26.2
## 251
       5.90 24.4
## 252
       3.59 24.8
## 253
       3.53 29.6
## 254
       3.54 42.8
## 255
       6.57 21.9
       9.25 20.9
## 256
## 257
       3.11 44.0
## 258
       5.12 50.0
## 259
       7.79 36.0
## 260 6.90 30.1
## 261
       9.59 33.8
## 262
       7.26 43.1
## 263
       5.91 48.8
## 264 11.25 31.0
## 265
       8.10 36.5
## 266 10.45 22.8
## 267 14.79 30.7
## 268
       7.44 50.0
       3.16 43.5
## 269
## 270 13.65 20.7
## 271 13.00 21.1
## 272
       6.59 25.2
## 273 7.73 24.4
```

```
## 274 6.58 35.2
## 275
       3.53 32.4
## 276
       2.98 32.0
## 277
       6.05 33.2
## 278
       4.16 33.1
## 279
       7.19 29.1
## 280
       4.85 35.1
## 281
       3.76 45.4
## 282
       4.59 35.4
       3.01 46.0
## 283
## 284
       3.16 50.0
## 285
       7.85 32.2
       8.23 22.0
## 286
## 287 12.93 20.1
## 288
       7.14 23.2
## 289
       7.60 22.3
## 290
      9.51 24.8
## 291
       3.33 28.5
## 292
       3.56 37.3
## 293
       4.70 27.9
## 294
       8.58 23.9
## 295 10.40 21.7
## 296
       6.27 28.6
## 297
       7.39 27.1
## 298 15.84 20.3
       4.97 22.5
## 299
       4.74 29.0
## 300
## 301
       6.07 24.8
## 302
      9.50 22.0
## 303 8.67 26.4
## 304
       4.86 33.1
## 305
       6.93 36.1
## 306
       8.93 28.4
       6.47 33.4
## 307
## 308
       7.53 28.2
## 309
       4.54 22.8
## 310 9.97 20.3
## 311 12.64 16.1
## 312
       5.98 22.1
## 313 11.72 19.4
## 314
       7.90 21.6
## 315
       9.28 23.8
## 316 11.50 16.2
## 317 18.33 17.8
## 318 15.94 19.8
## 319 10.36 23.1
## 320 12.73 21.0
## 321
       7.20 23.8
## 322
       6.87 23.1
## 323 7.70 20.4
```

```
## 324 11.74 18.5
## 325
       6.12 25.0
## 326
       5.08 24.6
## 327
       6.15 23.0
## 328 12.79 22.2
## 329
       9.97 19.3
## 330
      7.34 22.6
## 331
       9.09 19.8
## 332 12.43 17.1
       7.83 19.4
## 333
## 334
       5.68 22.2
## 335 6.75 20.7
## 336
       8.01 21.1
## 337 9.80 19.5
## 338 10.56 18.5
## 339
      8.51 20.6
## 340 9.74 19.0
## 341
       9.29 18.7
## 342
       5.49 32.7
## 343
       8.65 16.5
## 344
       7.18 23.9
## 345
       4.61 31.2
## 346 10.53 17.5
## 347 12.67 17.2
## 348
      6.36 23.1
## 349
       5.99 24.5
## 350
      5.89 26.6
## 351
       5.98 22.9
## 352
      5.49 24.1
## 353
       7.79 18.6
## 354
       4.50 30.1
## 355
       8.05 18.2
## 356
       5.57 20.6
## 357 17.60 17.8
## 358 13.27 21.7
## 359 11.48 22.7
## 360 12.67 22.6
## 361
       7.79 25.0
## 362 14.19 19.9
## 363 10.19 20.8
## 364 14.64 16.8
       5.29 21.9
## 365
## 366
       7.12 27.5
## 367 14.00 21.9
## 368 13.33 23.1
## 369
       3.26 50.0
## 370
       3.73 50.0
## 371
       2.96 50.0
## 372
       9.53 50.0
## 373 8.88 50.0
```

```
## 374 34.77 13.8
## 375 37.97 13.8
## 376 13.44 15.0
## 377 23.24 13.9
## 378 21.24 13.3
## 379 23.69 13.1
## 380 21.78 10.2
## 381 17.21 10.4
## 382 21.08 10.9
## 383 23.60 11.3
## 384 24.56 12.3
## 385 30.63 8.8
## 386 30.81 7.2
## 387 28.28 10.5
## 388 31.99 7.4
## 389 30.62 10.2
## 390 20.85 11.5
## 391 17.11 15.1
## 392 18.76 23.2
## 393 25.68 9.7
## 394 15.17 13.8
## 395 16.35 12.7
## 396 17.12 13.1
## 397 19.37 12.5
## 398 19.92 8.5
## 399 30.59 5.0
## 400 29.97 6.3
## 401 26.77 5.6
## 402 20.32 7.2
## 403 20.31 12.1
## 404 19.77 8.3
## 405 27.38 8.5
## 406 22.98 5.0
## 407 23.34 11.9
## 408 12.13 27.9
## 409 26.40 17.2
## 410 19.78 27.5
## 411 10.11 15.0
## 412 21.22 17.2
## 413 34.37 17.9
## 414 20.08 16.3
## 415 36.98 7.0
## 416 29.05 7.2
## 417 25.79 7.5
## 418 26.64 10.4
## 419 20.62 8.8
## 420 22.74 8.4
## 421 15.02 16.7
## 422 15.70 14.2
## 423 14.10 20.8
```

```
## 424 23.29 13.4
## 425 17.16 11.7
## 426 24.39 8.3
## 427 15.69 10.2
## 428 14.52 10.9
## 429 21.52 11.0
## 430 24.08 9.5
## 431 17.64 14.5
## 432 19.69 14.1
## 433 12.03 16.1
## 434 16.22 14.3
## 435 15.17 11.7
## 436 23.27 13.4
## 437 18.05 9.6
## 438 26.45 8.7
## 439 34.02 8.4
## 440 22.88 12.8
## 441 22.11 10.5
## 442 19.52 17.1
## 443 16.59 18.4
## 444 18.85 15.4
## 445 23.79 10.8
## 446 23.98 11.8
## 447 17.79 14.9
## 448 16.44 12.6
## 449 18.13 14.1
## 450 19.31 13.0
## 451 17.44 13.4
## 452 17.73 15.2
## 453 17.27 16.1
## 454 16.74 17.8
## 455 18.71 14.9
## 456 18.13 14.1
## 457 19.01 12.7
## 458 16.94 13.5
## 459 16.23 14.9
## 460 14.70 20.0
## 461 16.42 16.4
## 462 14.65 17.7
## 463 13.99 19.5
## 464 10.29 20.2
## 465 13.22 21.4
## 466 14.13 19.9
## 467 17.15 19.0
## 468 21.32 19.1
## 469 18.13 19.1
## 470 14.76 20.1
## 471 16.29 19.9
## 472 12.87 19.6
## 473 14.36 23.2
```

```
## 474 11.66 29.8
## 475 18.14 13.8
## 476 24.10 13.3
## 477 18.68 16.7
## 478 24.91 12.0
## 479 18.03 14.6
## 480 13.11 21.4
## 481 10.74 23.0
## 482
       7.74 23.7
## 483 7.01 25.0
## 484 10.42 21.8
## 485 13.34 20.6
## 486 10.58 21.2
## 487 14.98 19.1
## 488 11.45 20.6
## 489 18.06 15.2
## 490 23.97 7.0
## 491 29.68 8.1
## 492 18.07 13.6
## 493 13.35 20.1
## 494 12.01 21.8
## 495 13.59 24.5
## 496 17.60 23.1
## 497 21.14 19.7
## 498 14.10 18.3
## 499 12.92 21.2
## 500 15.10 17.5
## 501 14.33 16.8
## 502 9.67 22.4
## 503 9.08 20.6
## 504 5.64 23.9
## 505 6.48 22.0
## 506
       7.88 11.9
? Boston
dim(Boston)
## [1] 506
           14
# 506 rows & 14 columns
# rows = each observation
# columns = predictors
#b
pairs(Boston)
```



```
# nox is negatively correlated with rm, dis, but is positively correlated
with age, Istat
#c
correlation <- cor(Boston[, 1], Boston[, -1])</pre>
print( correlation )
##
                     indus
              zn
                                 chas
                                           nox
                                                      rm
                                                              age
dis
0.3796701
##
                           ptratio
                                       black
             rad
                     tax
                                                lstat
## [1,] 0.6255051 0.5827643 0.2899456 -0.3850639 0.4556215 -0.3883046
#They all correlated with per capita crime rate.
#zn, chas, rm, dis, black, and medv are negatively corelated with per capita
crime rate
#indus, nox, age, rad, tax, ptratio, lstat are positively corelated with per
capita crime rate
#d
par(mfrow = c(1,3))
boxplot(Boston[,1], xlab= 'Crime rate')
```

```
boxplot(Boston[,2], xlab = 'Tax rate')
boxplot(Boston[,11], xlab = 'Pupil-teacher ratios')
```



```
summary(Boston[,1])
##
                       Median
       Min.
                                   Mean
                                         3rd Qu.
             1st Qu.
                                                     Max.
                                3.61352
##
   0.00632 0.08204
                      0.25651
                                        3.67708 88.97620
summary(Boston[,2])
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
      0.00
                      0.00
                                             100.00
              0.00
                              11.36
                                      12.50
summary(Boston[,11])
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
     12.60
             17.40
                     19.05
                              18.46
                                      20.20
                                              22.00
# There are extremely high crime rates(e.g. 88.97) while the mean is 3.61,
and the range is 88.964
# There are extreme high Tax rates, and the range is 524
# There is an extremely low Pupil-teacher ratios here, where range is 9.4
```

```
#e
table(Boston$chas);
##
##
    0
        1
## 471
       35
# 35 suburbs
#f
median_pt_ratio <- median(Boston$ptratio);</pre>
print(median pt ratio);
## [1] 19.05
#19.05
#q
summary(Boston[,14])
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
      5.00
            17.02
                    21.20
                            22.53
                                    25.00
                                             50.00
subset <- Boston[Boston$medv == 5, ]</pre>
subset
##
          crim zn indus chas
                                               dis rad tax ptratio black
                              nox
                                      rm age
lstat
## 399 38.3518 0 18.1
                          0 0.693 5.453 100 1.4896 24 666
                                                              20.2 396.90
30.59
## 406 67.9208 0 18.1 0 0.693 5.683 100 1.4254 24 666
                                                              20.2 384.97
22.98
##
      medv
## 399
          5
## 406
          5
summary(Boston)
##
                                            indus
         crim
                                                            chas
                            zn
                             : 0.00
## Min.
          : 0.00632
                                       Min.
                                              : 0.46
                                                       Min.
                                                               :0.00000
                      Min.
   1st Qu.: 0.08205
                                       1st Qu.: 5.19
##
                      1st Qu.: 0.00
                                                       1st Qu.:0.00000
## Median : 0.25651
                      Median : 0.00
                                       Median: 9.69
                                                       Median :0.00000
##
   Mean
         : 3.61352
                      Mean
                            : 11.36
                                       Mean
                                              :11.14
                                                       Mean
                                                               :0.06917
                                                       3rd Qu.:0.00000
##
   3rd Qu.: 3.67708
                       3rd Qu.: 12.50
                                       3rd Qu.:18.10
          :88.97620
                      Max. :100.00
                                                              :1.00000
## Max.
                                       Max.
                                               :27.74
                                                       Max.
##
                                                          dis
        nox
                          rm
                                         age
                                                     Min. : 1.130
## Min.
           :0.3850
                    Min.
                           :3.561
                                    Min. : 2.90
   1st Qu.:0.4490
                    1st Qu.:5.886
                                     1st Qu.: 45.02
                                                     1st Qu.: 2.100
##
## Median :0.5380
                    Median :6.208
                                     Median : 77.50
                                                     Median : 3.207
##
   Mean
           :0.5547
                    Mean
                           :6.285
                                     Mean
                                           : 68.57
                                                     Mean : 3.795
   3rd Qu.:0.6240
                     3rd Qu.:6.623
                                     3rd Qu.: 94.08
                                                     3rd Qu.: 5.188
## Max. :0.8710
                    Max. :8.780
                                     Max. :100.00
                                                     Max. :12.127
```

```
##
        rad
                                        ptratio
                          tax
                                                         black
           : 1.000
## Min.
                     Min.
                            :187.0
                                     Min.
                                          :12.60
                                                     Min.
                                                            : 0.32
   1st Qu.: 4.000
                     1st Qu.:279.0
                                                     1st Qu.:375.38
##
                                     1st Qu.:17.40
## Median : 5.000
                     Median :330.0
                                     Median :19.05
                                                     Median :391.44
         : 9.549
## Mean
                     Mean
                          :408.2
                                     Mean
                                            :18.46
                                                     Mean
                                                            :356.67
   3rd Qu.:24.000
                     3rd Qu.:666.0
                                     3rd Qu.:20.20
                                                     3rd Qu.:396.23
##
                                                     Max.
## Max.
          :24.000
                     Max.
                           :711.0
                                     Max. :22.00
                                                            :396.90
        lstat
##
                         medv
## Min.
                          : 5.00
          : 1.73
                    Min.
## 1st Qu.: 6.95
                    1st Qu.:17.02
## Median :11.36
                    Median :21.20
## Mean
         :12.65
                    Mean
                          :22.53
   3rd Qu.:16.95
##
                    3rd Qu.:25.00
## Max.
          :37.97
                   Max.
                           :50.00
#Obs.399, 406 have the lowest median value of owner-occupied homes
#Both have extremely high crime rates, age
#Both have relatively high indus, nox, rad, tax, ptratio, black, lstat
#Both have relatively low rm, dis
#h
more than 7 <- sum(Boston$rm > 7)
print(more_than_7);
## [1] 64
more_than_8 <- sum(Boston$rm > 8)
print(more than 8);
## [1] 13
# more than 7 rooms per dwelling = 64
# more than 8 rooms per dwelling = 13
##3.7
library(ISLR)
?Carseats
attach(Carseats)
#a
model <- lm(Sales ~ Price + Urban + US, data = Carseats)
summary(model)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
      Min
                1Q Median
                                30
                                       Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
```

```
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 13.043469
                           0.651012 20.036 < 2e-16 ***
                           0.005242 -10.389 < 2e-16 ***
## Price
               -0.054459
## UrbanYes
               -0.021916
                           0.271650 -0.081
                                               0.936
## USYes
               1.200573
                           0.259042
                                     4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
contrasts(Urban)
##
       Yes
## No
         0
## Yes
         1
contrasts(US)
##
       Yes
## No
         0
## Yes
         1
# The expected Sales would be 13.04, hold other vaibales = 0.
# Hold other vaiables constant, when the Price increases by 1 unit, the Sales
would decrease by 0.05.
# Hold other vaiables constant, if the store is in urban area, the Sales
would decrease by 0.02.
# Hold other vaiables constant, if the store is in the US, the Sales would
increase by 1.20.
#c
# Sales = B0 + B1*Price + B2*Urban + B3*US
# Urban, US are dummy variables
#d
summary(model)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
## Coefficients:
```

```
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469  0.651012  20.036  < 2e-16 ***
              -0.054459
                          0.005242 -10.389 < 2e-16 ***
## Price
## UrbanYes
              -0.021916 0.271650 -0.081
                                              0.936
## USYes
               1.200573 0.259042
                                   4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
# Reject the null hypothesis which UrbanYes is not 0 because the P-value is
way Lower than 0.05
#e
model2 = lm(Sales ~ Price + US, Carseats)
summary(model2)
##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
##
## Residuals:
               10 Median
      Min
                               3Q
                                      Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price
              -0.05448
                          0.00523 -10.416 < 2e-16 ***
                                    4.641 4.71e-06 ***
## USYes
               1.19964
                          0.25846
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
#f
#Both models' Adj R-Squared is about 23~24%, which means both of them can
explain about a quarter of data
#g
confint(model2)
                    2.5 %
##
                               97.5 %
## (Intercept) 11.79032020 14.27126531
              -0.06475984 -0.04419543
## Price
## USYes
               0.69151957 1.70776632
```

```
# 95% confidence intervals for the coefficient of Price = -0.06 ~ -0.04
# 95% confidence intervals for the coefficient of Price = 0.69 ~ 1.71
#h
par(mfrow = c(2,2))
plot(model2)
```


There is an outlier and a high leverage point.
Based on the Residuals vs Leverage graph, the point on the right side of the graph.

4.7

```
library(ISLR)
?Weekly
dim(Weekly)

## [1] 1089 9
attach(Weekly)

#a
pairs(Weekly)
```



```
summary(Weekly)
##
        Year
                       Lag1
                                         Lag2
                                                            Lag3
##
   Min. :1990
                  Min. :-18.1950
                                    Min. :-18.1950
                                                       Min. :-18.1950
   1st Qu.:1995
                  1st Qu.: -1.1540
                                    1st Qu.: -1.1540
                                                       1st Qu.: -1.1580
   Median :2000
                  Median : 0.2410
                                    Median : 0.2410
                                                       Median : 0.2410
##
##
   Mean
         :2000
                  Mean
                       : 0.1506
                                    Mean
                                          : 0.1511
                                                       Mean
                                                            : 0.1472
   3rd Qu.:2005
                  3rd Qu.: 1.4050
                                    3rd Qu.: 1.4090
                                                       3rd Qu.: 1.4090
##
##
                  Max. : 12.0260
   Max. :2010
                                    Max.
                                         : 12.0260
                                                       Max.
                                                            : 12.0260
##
                           Lag5
                                            Volume
                                                             Today
       Lag4
##
   Min. :-18.1950
                      Min. :-18.1950
                                        Min.
                                               :0.08747
                                                         Min.
                                                                 :-18.1950
   1st Qu.: -1.1580
                      1st Qu.: -1.1660
                                        1st Qu.:0.33202
                                                          1st Qu.: -1.1540
                      Median : 0.2340
   Median : 0.2380
                                        Median :1.00268
##
                                                          Median : 0.2410
   Mean : 0.1458
                      Mean : 0.1399
                                        Mean
                                               :1.57462
                                                          Mean : 0.1499
   3rd Qu.: 1.4090
                      3rd Qu.: 1.4050
                                        3rd Qu.:2.05373
                                                          3rd Qu.: 1.4050
##
   Max. : 12.0260
                      Max. : 12.0260
                                        Max. :9.32821
                                                          Max. : 12.0260
##
##
   Direction
   Down:484
##
##
   Up :605
##
##
##
##
```

```
# Year and Volumn have postive relation
# Other variables have no obvious pattern
#b
logistic= glm(Direction~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, Weekly,
family=binomial)
summary(logistic)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
      Volume, family = binomial, data = Weekly)
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686
                          0.08593
                                    3.106
                                            0.0019 **
                          0.02641 -1.563
## Lag1
             -0.04127
                                            0.1181
## Lag2
               0.05844 0.02686
                                   2.175
                                            0.0296 *
## Lag3
              -0.01606 0.02666 -0.602
                                            0.5469
              -0.02779 0.02646 -1.050
## Lag4
                                            0.2937
## Lag5
              -0.01447
                          0.02638 -0.549
                                            0.5833
## Volume
              -0.02274
                          0.03690 -0.616
                                            0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
# Lag2 is the only significant predictor with a p-value lower than 0.05.
probs = predict(logistic, type= 'response')
contrasts(Direction)
##
        Up
## Down
        0
## Up
        1
pred = rep('Down', 1089)
pred[probs > 0.5] = 'Up'
table(pred, Direction)
##
         Direction
## pred
         Down Up
##
     Down
            54 48
##
     Up
          430 557
```

```
mean(pred == Direction)
## [1] 0.5610652
# The total accuracy is roughly 56%.
# But the accuracy of Down is only has 11%(54/54+430) accuracy.
#d
training = (Year < 2009)
dim(Weekly[!training,])
## [1] 104
            9
logistic2 = glm(Direction~Lag2, data=Weekly, family = binomial, subset =
training)
probs2 = predict(logistic2, Weekly[!training,], type= 'response')
pred2 = rep('Down', 104)
pred2[probs2>0.5] = 'Up'
table(pred2, Direction[!training])
##
## pred2 Down Up
    Down
            9 5
##
##
    Up
           34 56
mean(pred2==Direction[!training])
## [1] 0.625
# The total accuracy is roughly 62.5%.
# But the accuracy of Down is only has 21%(9/9+34) accuracy.
##5.4
#a
set.seed(1)
x = rnorm(100)
y = x-2*x^2 + rnorm(100)
print( y )
##
     [1]
                       0.15830946 -3.14310062 -3.33653210 -0.54222762
         -2.03170924
##
    [6]
         -0.39951785
                       0.72896237
                                    0.55825219
                                                 0.29691838
                                                              1.19026356
##
   [11]
         -3.69491989 -0.37575699
                                    0.03916194 -12.67518742 -1.61338897
##
         -0.44177960 -0.33670738 -1.11693068 -0.03339898 -0.28886672
    [16]
##
   [21]
         -1.27601891
                       0.90170074 -0.15113430 -10.08394857 -0.24873291
##
   [26]
          0.65023670
                      -0.27790439 -5.83461170 -1.61706548 -0.25567901
##
                      -0.71281285
                                    0.61858925 -1.57798909 -4.86308774
   [31]
         -2.27318026
                      -1.00619522 -0.59462946 -1.97218105
##
  [36]
         -2.29588536
                                                             -0.45859548
                       0.79483735 -1.93952495 -0.52661504 -2.75344461
##
   [41]
         -2.13301905
## [46]
         -2.45941295
                       2.18590849 -0.39535717 -1.42389009 -2.31219946
##
    [51]
          0.53131640 -1.37973884 -0.20967397 -4.60964725
                                                             -4.16155047
         -6.93875991
                       0.36310410 -3.84583556 -1.46386813 1.69775653
## [56]
```

```
[61]
          -8.70881760
                       -0.28096666
                                     0.79674163
                                                  0.91285657
                                                              -2.46742638
##
    [66]
          2.32360970
                       -8.57573696
                                    -4.25464189
                                                 -0.03811944 -7.06033293
##
           2.33126930
                       -1.61219193
                                     0.32175180
                                                -2.75632734 -4.73082765
    [71]
##
          0.08683839
                       -0.04866764
                                     2.07634792
                                                  1.09068050 -0.07668244
    [76]
                       0.81217044
##
    [81]
          -2.44676041
                                    -1.37776614
                                                -7.63332842
                                                              0.40942478
##
    [86]
          -0.04751613
                        0.26732462
                                    -1.25532164
                                                -0.33402078
                                                              -0.80169423
##
   [91]
          -1.30827996 -1.30800969
                                    -2.26441402
                                                  0.54998851
                                                              -4.65733016
##
    [96]
          -1.11331216
                      -3.09480984
                                   -2.24637935
                                                -3.81199002 -1.30269301
# n is 100
# p is x
# y = x-2*x^2 + random error.
# mean should be nearly 0, and var should be nearly 1
#b
plot(x,y)
```



```
# It's a downward symmetric curve, and most of the xs cluster near 0
#c
set.seed(100)
library(boot)
test.data = data.frame(x, y)
```

```
cv.error = rep (0, 9)
for (i in 1:9){
  model3 = glm(y \sim poly(x,i), data=test.data)
  cv.error[i] = cv.glm(test.data, model3)$delta[1]
}
cv.error
## [1] 7.2881616 0.9374236 0.9566218 0.9539049 0.9247836 0.9569199 0.9998317
## [8] 1.1839802 1.9465417
# Regardless how many times we re-run the code, the average of MSE is
constant.
# The second model has the smallest LOOCV error, indicating a better
predictive performance.
#d
set.seed(10)
library(boot)
test.data = data.frame(x, y)
cv.error = rep (0, 9)
for (i in 1:9){
  model3 = glm(y\sim poly(x,i), data=test.data)
  cv.error[i] = cv.glm(test.data, model3)$delta[1]
}
cv.error
## [1] 7.2881616 0.9374236 0.9566218 0.9539049 0.9247836 0.9569199 0.9998317
## [8] 1.1839802 1.9465417
# Same as (c)
# It means the model is stable, and it will not be affect by random seeds
#e
glm.fit.1 = glm(y\sim poly(x,1), data=test.data)
glm.fit.2 = glm(y\sim poly(x,2), data=test.data)
glm.fit.3 = glm(y\sim poly(x,3), data=test.data)
glm.fit.4 = glm(y\sim poly(x,4), data=test.data)
summary(glm.fit.1)
##
## Call:
## glm(formula = y \sim poly(x, 1), data = test.data)
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                             0.260 -5.961 3.95e-08 ***
## (Intercept)
                 -1.550
                  6.189
                             2.600
                                      2.380
                                              0.0192 *
## poly(x, 1)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6.760719)
```

```
##
##
       Null deviance: 700.85 on 99 degrees of freedom
## Residual deviance: 662.55 on 98 degrees of freedom
## AIC: 478.88
##
## Number of Fisher Scoring iterations: 2
summary(glm.fit.2)
##
## Call:
## glm(formula = y \sim poly(x, 2), data = test.data)
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                           0.0958 -16.18 < 2e-16 ***
## (Intercept)
               -1.5500
## poly(x, 2)1
                6.1888
                            0.9580
                                     6.46 4.18e-09 ***
                            0.9580 -25.00 < 2e-16 ***
## poly(x, 2)2 -23.9483
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.9178258)
##
##
       Null deviance: 700.852 on 99 degrees of freedom
## Residual deviance: 89.029 on 97 degrees of freedom
## AIC: 280.17
##
## Number of Fisher Scoring iterations: 2
summary(glm.fit.3)
##
## Call:
## glm(formula = y \sim poly(x, 3), data = test.data)
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.55002
                            0.09626 -16.102 < 2e-16 ***
                                      6.429 4.97e-09 ***
## poly(x, 3)1
                6.18883
                            0.96263
## poly(x, 3)2 -23.94830
                            0.96263 -24.878 < 2e-16 ***
## poly(x, 3)3 0.26411
                           0.96263
                                      0.274
                                               0.784
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.9266599)
##
       Null deviance: 700.852 on 99
                                     degrees of freedom
## Residual deviance: 88.959 on 96 degrees of freedom
## AIC: 282.09
##
## Number of Fisher Scoring iterations: 2
```

```
summary(glm.fit.4)
##
## Call:
## glm(formula = y \sim poly(x, 4), data = test.data)
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.55002 0.09591 -16.162 < 2e-16 ***
## poly(x, 4)1 6.18883 0.95905
                                 6.453 4.59e-09 ***
## poly(x, 4)4 1.25710
                       0.95905
                                 1.311
                                           0.193
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.9197797)
##
##
      Null deviance: 700.852 on 99 degrees of freedom
## Residual deviance: 87.379 on 95 degrees of freedom
## AIC: 282.3
##
## Number of Fisher Scoring iterations: 2
# Tables show that the coefficients of xs with 2 degrees is the highest.
# It's same with (c), (d) that the 2-dimension model is the best
```

6.8

```
#a
x = rnorm(100)
noise = rnorm(100)

#b
y = 5 + x + 2 * x^2 + 3 * x^3 + noise

#c
library(leaps)
test.data.2 = data.frame(x,y)
best = regsubsets(y~ poly(x,10),test.data.2,nvmax=10)

best_cp <- which.min(summary(best)$cp)
best_bic <- which.min(summary(best)$bic)
best_adj_r2 <- which.max(summary(best)$adjr2)

best_cp

## [1] 3
best_bic</pre>
```

```
## [1] 3
best_adj_r2
## [1] 6
plot(best, scale = "Cp")
```


plot(best, scale = "bic")

plot(best, scale = "adjr2")


```
# It's better to have 6 predictors according to cp, ADJ R^2
# It's better to have 4 predictors according to bic

#d

#FORWARD
forward <- regsubsets(y ~ poly(x, 10), test.data.2, method = "forward", nvmax = 10)

best_cp_forward <- which.min(summary(forward)$cp)
best_bic_forward <- which.min(summary(forward)$bic)
best_adj_r2_forward <- which.max(summary(forward)$adjr2)

best_cp_forward
## [1] 3

best_bic_forward
## [1] 3

best_adj_r2_forward
## [1] 6</pre>
```

```
# It's better to have 6 predictors according to cp, ADJ R^2
# It's better to have 4 predictors according to bic
#BACKWARD
backward <- regsubsets(y ~ poly(x, 10), test.data.2, method = "backward",</pre>
nvmax = 10)
best cp backward <- which.min(summary(backward)$cp)</pre>
best_bic_backward <- which.min(summary(backward)$bic)</pre>
best_adj_r2_backward <- which.max(summary(backward)$adjr2)</pre>
best_cp_backward
## [1] 3
best_bic_backward
## [1] 3
best_adj_r2_backward
## [1] 6
# It's better to have 6 predictors according to cp, ADJ R^2
# It's better to have 4 predictors according to bic
# No matter using which methods, the results are the same.
# Which means the model is stable.
```