

Automated Classification of Brain Tumor MRI Images

By Sarah Roe

Table of contents

Background Info

4 Streamlit App

2 CNN Modeling

Real world impact/ Conclusions

Grad-CAM Heatmap

1

Background info on Brain Cancer

What is Brain Cancer?

Occurrence of a Brain Tumor

in the brain

Tumor Classification

Primary Brain Tumors: Originate in the brain

Secondary Brain Tumors: Originate elsewhere in the body

5th Most Common

Type of cancer

90,000

Receive a primary brain tumor diagnosis annually

12%

Survive for 5 years

Symptoms & What's Next

Symptoms

- Headaches
- Seizures
- Vision issues
- Vomiting
- Mental Changes
- Difficulty walking/speaking

Primary Care Appt

- Medical history
- Lab testing
- Imaging (MRI or CT scan)

Three Tumor Types

Glioma

Meningioma

Pituitary

Glioma

- Primary tumor that starts in the glial cells of the brain or spinal cord
- 80% of malignant brain tumors
- Classification based on tumor grade
 I-IV
- Causes:
 - Genetic mutations and syndromes
 - Environmental Factors (exposure to radiation and some chemicals)
 - Family history of brain tumors

Meningioma

- Primary tumors that originate from the meninges
- 30% of all brain tumors
- Classification based on tumor grade
 I-III
- Causes:
 - Not incredibly well understood
 - Some genetic factors
 - Radiation

Pituitary

- Tumors that develop in the pituitary gland.
- Relatively common
- Most are benign but influence hormone secretion in the body
- Causes:
 - Only known risk factors are rare hereditary conditions

2

CNN Modeling

Baseline Counts

CNN - MaxPooling + Drop Out

Sequence of Layers:

Conv2D (32, 5, activation=relu), MaxPooling2D (2), Dropout (0.2),

Conv2D (64, 5, activation=relu), MaxPooling2D (2), Dropout (0.25),

Flatten (), Dense (128, activation=relu), Dropout (0.25),

Dense(4, activation='softmax')

OVERALL ACCURACY: 0.93

	Precision	Recall	f1-Score
Glioma	0.90	0.90	0.90
Meningioma	0.87	0.95	0.91
No Tumor	0.98	0.88	0.93
Pituitary	0.99	0.97	0.98

	Pred Glioma	Pred Meningioma	Pred No Tumor	Pred Pituitary
Actual Glioma	122	14	0	O
Actual Meningioma	6	133	1	0
Actual No Tumor	5	4	88	2
Actual Pituitary	2	1	1	132

Loss and Accuracy

CNN - MaxPooling + Drop Out + I2 Reg

* l2 regularization of 0.001

OVERALL ACCURACY: 0.93

	Precision	Recall	f1-Score
Glioma	0.91	0.93	0.92
Meningioma	0.87	0.92	0.90
No Tumor	0.98	0.86	0.91
Pituitary	0.99	0.99	0.99

	Pred Glioma	Pred Meningioma	Pred No Tumor	Pred Pituitary
Actual Glioma	127	9	0	Ο
Actual Meningioma	9	139	2	0
Actual No Tumor	3	9	86	2
Actual Pituitary	1	1	0	134

Loss and Accuracy

CNN - Transfer Learning + Xception

Total Params: 22, 963, 756

Trainable Params: 2, 102, 776

Final **hidden dense layer** with **1024 neurons**

OVERALL ACCURACY: 0.95

	Precision	Recall	f1-Score
Glioma	0.98	0.90	0.94
Meningioma	0.86	0.97	0.91
No Tumor	1.00	0.95	0.97
Pituitary	0.98	0.97	0.97

	Pred Glioma	Pred Meningioma	Pred No Tumor	Pred Pituitary
Actual Glioma	122	13	0	1
Actual Meningioma	2	136	0	2
Actual No Tumor	0	5	95	0
Actual Pituitary	0	4	0	132

Loss and Accuracy

3

Grad-CAM Heatmap

Predicted: Glioma

Predicted: Meningioma

Predicted: Pituitary

4

Streamlit App

5

Real World Impact/ Conclusions

Real life impact

Mark Ruffalo:

- Diagnosed with benign tumor in 2001
- Suffered temporary facial paralysis

Wilma Rudolph:

- Diagnosed in July 1994
- Passed in November 1994 (Age 54)

Janet Johnson:

- Diagnosed with Glioblastoma in early July 1999
- Passed on August 21st, 1999 (Age 59)

Why is this Important?

Early Detection

Advancement in Med Tech

Fast and accurate diagnosis

Improving healthcare disparities

Workload relief

Educational opportunities

Work Cited

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132094/#:~:text=Glioma%20APT%20images%20are%20larger,the%20infiltration%20of%20brain%20tumors.

https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_colors.html#sphx-glr-gallery-lines-bars-and-markers-bar-colors-py

https://www.mayoclinic.org/diseases-conditions/glioma/symptoms-causes/syc-20350251

https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084#:~:text=A%20brain%20tumor%20is%20a,the%20surface%20of%20the%20brain.

https://www.aaroncohen-gadol.com/en/patients/brain-tumor/types/statistics#:~:text=Malignant%20Brain%20Tumors%20Statistics,-32.&text=33.,7%20per%20100%2C000%20individuals%20annually.&text=35.

https://en.wikipedia.org/wiki/Wilma Rudolph

https://en.wikipedia.org/wiki/Mark Ruffalo

https://en.wikipedia.org/wiki/Janet Johnson (politician)

https://braintumourresearch.org/en-us/pages/types-of-brain-tumours-glioma#:~:text=Grade%202%20gliomas%20(such%20as,of%20around%205%2D10%25.

https://www.mayoclinic.org/diseases-conditions/meningioma/symptoms-causes/syc-20355643

https://www.mayoclinic.org/diseases-conditions/pituitary-tumors/symptoms-causes/syc-20350548

Thanks

Questions??

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

