Course Code:CSE3002	Course Title: Artificial Intelligence	TPC	3	2	4
Version No.	1.1		-	-	-
Course Pre-requisites/ Co-requisites	CSE1004/CSE1001				
Anti-requisites (if any).	None				
Objectives:	 To have a thorough understanding of classical and modern AI applications; To implement a wide range of AI concepts; To understand non-classical AI approaches such as genetic algorithms and neural networks; To be able to assess the potential of AI in research and real-world environments; 				

CO's Mapping with PO's and PEO's

Course Outcomes	Course Outcome Statement	PO's / PEO's
CO1	Understand the basics of AI	PO1,PO2,PO5,PO8
CO2	Implement and debug core AI algorithms in a clean and structured manner	PO2,PO6,PO7
CO3	Describe AI algorithms and representations and explain their performance, in writing and orally	PO4,PO6,PO9
CO4	Analyze and design a real world AI application	PO1,PO2,PO6,PO7,PO12
		TOTAL HOURS OF INSTRUCTIONS: 45

Module No. 1	Introduction To Al And Production Systems	7 Hours	
Introduction to AI-Problem formulation, Problem Definition -Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics -Specialized production system-			
Module No. 2	Problem Solving methods	8 Hours	
Problem graphs, Matching, Indexing and Heuristic functions -Hill Climbing-Depth first and Breath first, Constraints satisfaction - Related algorithms, Measure of performance and analysis of search algorithms.			
Module No. 3	Knowledge Representation	8 Hours	
Knowledge based agents- Prepositional Logic- First Order logic- Inferences			
Module No. 4	Knowledge Inference	8 Hours	
Knowledge representation -Production based system, Frame based system. Inference - Backward chaining			
Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayesian Theory-Bayesian			
Network-Dempster - Shafer theory.			
Module No. 5	Planning And Learning	8 Hours	

Basic plan generation systems - Strips -Advanced plan generation systems – K strips -Strategic explanations – Explanation bases Learning- Machine learning, adaptive Learning. Reinforcement learning- Genetic algorithms

Module No. 6 Communicating, perceiving, and acting and Expert Systems 7 Hours

Natural Language Processing- Data aquistation —Perception-Data quality and transformation -Expert systems – Typical expert systems – MYCIN, DART, XOON, Expert systems shells.

Text Books

• Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach" Prentice Hall, Fourth Edition, 2020

References

- Deepak Khemani, "A First Course in Artificial Intelligence", McGraw Hill Education (India),
 2017
- Nick Bostrom, "Superintelligence: Paths, Dangers, Strategies", 1st edition, 2015.
- David Poole, Alan Mackworth, "Artificial Intelligence: Foundations of Computational Agents", 2nd edition, 2017.
- Elaine Rich and Kevin Knight. "Artificial Intelligence", Tata McGraw Hill, Third Edition, 2019.

Lab Exercises

- 1. Introduction to LISP and PROLOG programming languages.
- 2. Write a program to solve any 2 player game scenarios (Eg:8 Queens, 8 Puzzle)
- 3. Search a list of items using best first search.
- 4. Write a program for min max problem
- 5. Write a program to find the minimal moves in a 8 queens problem.
- 6. Write a program for greedy search.
- 7. Solve 8-puzzle problem using best first search.
- 8. Solve Robot (traversal) problem using means End Analysis
- 9. Solve traveling salesman problem.
- 10. Write a program to solve "Water Jug Problem"
- 11. Write a program to maintain family tree.
- 12. Program for bayes rule.
- 13. Design an expert system scenario with learning and planning capability of AI.
- 14. Write a program using genetic algorithm for roulette wheel selection.
- 15. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.

Mode of Evaluation	Continuous Assessment Test-1	20%	
	Continuous Assessment Test-2	20%	

	Continuous Assessment Test-3	20%
	Cumulative Lab Exercises	20%
	Practical Assessment (Mini Project)	20%
Modified by	Prof.Ajith Jubilson E	
Recommended by the Board of Studies on	07.01.2021	
Date of Approval by the Academic Council	5 th Academic council 02.03.2021	