- False. For instance, $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ is not symmetric even though $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is. **(l)**
- True. By Theorem 1.4.8(d), $(kA)^T = kA^T$. Since kA is symmetric, we also have $(kA)^T = kA$. For nonzero k the (m) equality of the right hand sides $kA^{T} = kA$ implies $A^{T} = A$.

1.8 Matrix Transformations

- $T_A(\mathbf{x}) = A\mathbf{x}$ maps any vector \mathbf{x} in R^2 into a vector $\mathbf{w} = A\mathbf{x}$ in R^3 . 1. (a) The domain of T_A is R^2 ; the codomain is R^3 .
 - $T_A(\mathbf{x}) = A\mathbf{x}$ maps any vector \mathbf{x} in R^3 into a vector $\mathbf{w} = A\mathbf{x}$ in R^2 . **(b)** The domain of T_A is R^3 ; the codomain is R^2 .
 - $T_A(\mathbf{x}) = A\mathbf{x}$ maps any vector \mathbf{x} in R^3 into a vector $\mathbf{w} = A\mathbf{x}$ in R^3 . (c) The domain of T_A is R^3 ; the codomain is R^3 .
 - $T_A(\mathbf{x}) = A\mathbf{x}$ maps any vector \mathbf{x} in R^6 into a vector $\mathbf{w} = A\mathbf{x}$ in $R^1 = R$. (d) The domain of T_A is R^6 ; the codomain is R.
- The transformation maps any vector \mathbf{x} in R^2 into a vector \mathbf{w} in R^2 . 3. (a) Its domain is R^2 ; the codomain is R^2 .
 - (b) The transformation maps any vector \mathbf{x} in R^2 into a vector \mathbf{w} in R^3 . Its domain is R^2 ; the codomain is R^3 .
- The transformation maps any vector \mathbf{x} in \mathbb{R}^3 into a vector in \mathbb{R}^2 . 5. (a) Its domain is R^3 ; the codomain is R^2 .
 - The transformation maps any vector \mathbf{x} in R^2 into a vector in R^3 . (b) Its domain is R^2 ; the codomain is R^3 .
- 7. The transformation maps any vector \mathbf{x} in \mathbb{R}^2 into a vector in \mathbb{R}^2 . (a) Its domain is R^2 ; the codomain is R^2 .
 - The transformation maps any vector \mathbf{x} in \mathbb{R}^3 into a vector in \mathbb{R}^2 . **(b)** Its domain is R^3 ; the codomain is R^2 .
- The transformation maps any vector \mathbf{x} in R^2 into a vector in R^3 . Its domain is R^2 ; the codomain is R^3 . 9.
- The given equations can be expressed in matrix form as $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 \\ 3 & 5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x \end{bmatrix}$ 11. (a) therefore the standard matrix for this transformation is $\begin{bmatrix} 2 & -3 & 1 \\ 3 & 5 & -1 \end{bmatrix}$

therefore the standard matrix for this transformation is $\begin{bmatrix} 7 & 2 & -8 \\ 0 & -1 & 5 \\ 4 & 7 & -1 \end{bmatrix}.$

- 13. (a) $T(x_1, x_2) = \begin{bmatrix} x_2 \\ -x_1 \\ x_1 + 3x_2 \\ x_1 x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$; the standard matrix is $\begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{bmatrix}$
 - **(b)** $T(x_1, x_2, x_3, x_4) = \begin{bmatrix} 7x_1 + 2x_2 x_3 + x_4 \\ x_2 + x_3 \\ -x_1 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix};$

the standard matrix is $\begin{bmatrix} 7 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$

- (d) $T(x_1, x_2, x_3, x_4) = \begin{bmatrix} x_4 \\ x_1 \\ x_3 \\ x_2 \\ x_1 x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$; the standard matrix is $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$
- **15.** The given equations can be expressed in matrix form as $\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 3 & 5 & -1 \\ 4 & -1 & 1 \\ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ therefore the standard matrix for

this operator is $\begin{bmatrix} 3 & 5 & -1 \\ 4 & -1 & 1 \\ 3 & 2 & -1 \end{bmatrix}$.

By directly substituting (-1,2,4) for (x_1,x_2,x_3) into the given equation we obtain

$$w_1 = -(3)(1) + (5)(2) - (1)(4) = 3$$

$$w_2 = -(4)(1)-(1)(2)+(1)(4)=-2$$

$$w_3 = -(3)(1) + (2)(2) - (1)(4) = -3$$

By matrix multiplication,
$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 3 & 5 & -1 \\ 4 & -1 & 1 \\ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -(3)(1) + (5)(2) - (1)(4) \\ -(4)(1) - (1)(2) + (1)(4) \\ -(3)(1) + (2)(2) - (1)(4) \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix}.$$

17. **(a)**
$$T(x_1, x_2) = \begin{bmatrix} -x_1 + x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
; the standard matrix is $\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$.
 $T(\mathbf{x}) = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} (1)(1) + (1)(4) \\ -(0)(1) + (1)(4) \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ matches $T(-1, 4) = (1 + 4, 4) = (5, 4)$.

(b)
$$T(x_1, x_2, x_3) = \begin{bmatrix} 2x_1 - x_2 + x_3 \\ x_2 + x_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
; the standard matrix is $\begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.
$$T(\mathbf{x}) = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} (2)(2) - (1)(1) - (1)(3) \\ (0)(2) + (1)(1) - (1)(3) \\ (0)(2) + (0)(1) - (0)(3) \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$$
 matches $T(2,1,-3) = (4-1-3,1-3,0) = (0,-2,0)$.

19. **(a)**
$$T_A(x) = Ax = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

(b)
$$T_A(x) = Ax = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 1 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 13 \end{bmatrix}$$

21. (a) If
$$\mathbf{u} = (u_1, u_2)$$
 and $\mathbf{v} = (v_1, v_2)$ then

$$T(\mathbf{u} + \mathbf{v}) = T(u_1 + v_1, u_2 + v_2)$$

$$= (2(u_1 + v_1) + (u_2 + v_2), (u_1 + v_1) - (u_2 + v_2))$$

$$= (2u_1 + u_2, u_1 - u_2) + (2v_1 + v_2, v_1 - v_2)$$

$$= T(\mathbf{u}) + T(\mathbf{v})$$

and
$$T(k\mathbf{u}) = T(ku_1, ku_2) = (2ku_1 + ku_2, ku_1 - ku_2) = k(2u_1 + u_2, u_1 - u_2) = kT(\mathbf{u})$$
.

(b) If
$$\mathbf{u} = (u_1, u_2, u_3)$$
 and $\mathbf{v} = (v_1, v_2, v_3)$ then

$$T(\mathbf{u} + \mathbf{v}) = T(u_1 + v_1, u_2 + v_2, u_3 + v_3)$$
$$= (u_1 + v_1, u_3 + v_3, u_1 + v_1 + u_2 + v_2)$$

=
$$(u_1, u_3, u_1 + u_2) + (v_1, v_3, v_1 + v_2)$$

$$=T(\mathbf{u})+T(\mathbf{v})$$

and $T(k\mathbf{u}) = T(ku_1, ku_2, ku_3) = (ku_1, ku_3, ku_1 + ku_2) = k(u_1, u_3, u_1 + u_2) = kT(\mathbf{u})$.

- The homogeneity property fails to hold since $T(kx,ky) = ((kx)^2,ky) = (k^2x^2,ky)$ does not generally equal 23. (a) $kT(x,y) = k(x^2,y) = (kx^2,ky)$. (It can be shown that the additivity property fails to hold as well.)
 - The homogeneity property fails to hold since $T(kx,ky,kz) = (kx,ky,kxkz) = (kx,ky,k^2xz)$ does not generally **(b)** equal kT(x,y,z) = k(x,y,xz) = (kx,ky,kxz). (It can be shown that the additivity property fails to hold as well.)
- 25. The homogeneity property fails to hold since for $b \neq 0$, f(kx) = m(kx) + b does not generally equal kf(x) = k(mx + b) = kmx + kb. (It can be shown that the additivity property fails to hold as well.) On the other hand, both properties hold for b = 0: f(x+y) = m(x+y) = mx + my = f(x) + f(y) and f(kx) = m(kx) = k(mx) = kf(x).

Consequently, f is not a matrix transformation on R unless b = 0.

By Formula (13), the standard matrix for T is $A = \begin{bmatrix} T(\mathbf{e}_1) & | T(\mathbf{e}_2) \end{bmatrix} T(\mathbf{e}_3)$. Therefore **27**.

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 3 & 0 & -3 \\ 0 & 1 & -1 \end{bmatrix} \text{ and } T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} (1)(2) + (0)(1) + (4)(0) \\ (3)(2) + (0)(1) - (3)(0) \\ (0)(2) + (1)(1) - (1)(0) \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix}.$$

29. (a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

(b)
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

31. (a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -5 \\ 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -5 \\ 3 \end{bmatrix}$$

33. (a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$

(b)
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$$

35. (a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$$

37. **(a)**
$$\begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} \frac{3\sqrt{3}}{2} + 2 \\ \frac{3}{2} - 2\sqrt{3} \end{bmatrix} \approx \begin{bmatrix} 4.60 \\ -1.96 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \cos(-60^{\circ}) & -\sin(-60^{\circ}) \\ \sin(-60^{\circ}) & \cos(-60^{\circ}) \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} - 2\sqrt{3} \\ -\frac{3\sqrt{3}}{2} - 2 \end{bmatrix} \approx \begin{bmatrix} -1.96 \\ -4.60 \end{bmatrix}$$

(c)
$$\begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} \frac{7\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix} \approx \begin{bmatrix} 4.95 \\ -0.71 \end{bmatrix}$$

(d)
$$\begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

39. By Formula (13), the standard matrix for T is $A = \begin{bmatrix} T(\mathbf{e}_1) & | T(\mathbf{e}_2) \end{bmatrix}$. Therefore

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
 and $T(1,1) = A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a+c \\ b+d \end{bmatrix}$.

41. (a)
$$T_A(\mathbf{e}_1) = \begin{bmatrix} -1\\2\\4 \end{bmatrix}, T_A(\mathbf{e}_2) = \begin{bmatrix} 3\\1\\5 \end{bmatrix}, T_A(\mathbf{e}_3) = \begin{bmatrix} 0\\2\\-3 \end{bmatrix}.$$

(b) Since T_A is a matrix transformation,

$$T_A(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3) = T_A(\mathbf{e}_1) + T_A(\mathbf{e}_2) + T_A(\mathbf{e}_3) = \begin{bmatrix} -1\\2\\4 \end{bmatrix} + \begin{bmatrix} 3\\1\\5 \end{bmatrix} + \begin{bmatrix} 0\\2\\-3 \end{bmatrix} = \begin{bmatrix} 2\\5\\6 \end{bmatrix}.$$

- (c) Since T_A is a matrix transformation, $T_A(7e_3) = 7T_A(e_3) = 7\begin{bmatrix} 0\\2\\-3 \end{bmatrix} = \begin{bmatrix} 0\\14\\-21 \end{bmatrix}$.
- **43.** Reflection about the *xy*-plane: $T(1,2,3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$.

Reflection about the xz-plane:
$$T(1,2,3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}.$$

Reflection about the *yz*-plane:
$$T(1,2,3) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$
.

45. The standard matrix for T is $A = \begin{bmatrix} T(\mathbf{e}_1) & | T(\mathbf{e}_2) \end{bmatrix}$. Observe that $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Because

$$T_A$$
 is a transformation, $T_A\left(\mathbf{e}_1\right) = T_A\left(3\begin{bmatrix}1\\1\end{bmatrix} - \begin{bmatrix}2\\3\end{bmatrix}\right) = 3T_A\left(\begin{bmatrix}1\\1\end{bmatrix}\right) - T_A\left(\begin{bmatrix}2\\3\end{bmatrix}\right) = 3\begin{bmatrix}1\\-2\end{bmatrix} - \begin{bmatrix}-2\\5\end{bmatrix} = \begin{bmatrix}5\\-11\end{bmatrix}$.

Likewise,
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 so we obtain

$$T_{A}\left(\mathbf{e}_{2}\right) = T_{A}\left(\begin{bmatrix}2\\3\end{bmatrix} - 2\begin{bmatrix}1\\1\end{bmatrix}\right) = T_{A}\left(\begin{bmatrix}2\\3\end{bmatrix}\right) - 2T_{A}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}-2\\5\end{bmatrix} - 2\begin{bmatrix}1\\-2\end{bmatrix} = \begin{bmatrix}-4\\9\end{bmatrix}.$$