# Network Time Synchronization

### Introduction

- Network Time Synchronization is an Internet time protocol used to synchronize the clocks of computers to some time references.
- It is widely used to synchronize the time for Internet hosts, routers and ancillary devices to Coordinated Universal Time (UTC).

### Importance of Time Synchronization

Key areas where time synchronization directly effects network operations are:

- Log file accuracy, auditing & monitoring
- Network fault diagnosis and recovery
- File time stamps
- Directory services
- Distributed computing

# Time Synchronization directly effects Application

Key areas where time synchronization directly effects application are:

- Software development
- Email

### Network Time Protocol (NTP)

- Network Time Protocol (NTP) synchronizes clocks of hosts and routers in the Internet.
- NTP runs over the User Datagram Protocol (UDP), using UDP port 123.
- It is widely used to synchronize the system clocks among a set of distributed time servers and clients.



Source:https://nts.softros.com/

# NTP Operating Modes

NTP can be configured one of three ways

- Client/Server mode
- Symmetric active/passive mode
- Broadcast and/or Multicast



Source:http://www.cemaltaner.com.tr/ntp-network-time-protocol/

# Technical Facts

- Timestamps are used in messages
- Accuracy over LAN and Internet

# Synchronization subnet(Startum)

- NTP uses hierarchical system of "clock strata".
- Stratum levels define distance from reference clock.



Source: http://basics974.rssing.com/chan-13445281/all\_p1.html

### History of Time

- Second defined in 1967
- UTC in 1st January 1972
- RFC 778-Internet Clock reference in 1981
- RFC 958-Description of NTP in 1985
- RFC 1059-NTPv1, protocols and algorithm in 1988
- RFC 1305-NTPv3 and formal correctness in 1992
- F RFC 5905-NTPv4 in 2010



### Basic features of NTP

- NTP uses UTC as reference time
- NTP is a fault-tolerant protocol
- NTP is highly accurate

# Some Definitions

- Reference clock
- Accuracy
- Precision

### What NTP Does Not

- Convert NTP timestamps into system time format.
- Set the hardware clock.
- Handle time-zones/summer time.

# Advantages of NTP

- A number of security features (Using MD5 encryption).
- Uses stratum that describe the clock precision.
- Used for all timing applications.

### Working procedure of NTP

- Let assume that there are two devices which stated as Device X and Device Y.
- Device X and Device Y are interconnected via a network.
- Both have different time settings.



Source: http://www.h3c.com.hk/Products\_\_\_Technology/Technology/IPv4\_\_\_IPv6\_Services/ Technology\_Introduction/200701/195572\_57\_0.htm

### Working procedure of NTP

- Let Client X and Y NTP server exchanging messages with each other.
- Message1 X sends to Y.
- Message2 Y replies to X.
- T1 to T4 are timestamps
- Roundtrip delay = (T4-T1) (T3-T2)

# T1 T4 T4 message1 message2

Server Y

Client X

### Five Possible Attacks on NTP

- A non-time server impersonates a time server (masquerade)
- An attacker modifies messages sent by time server (modification)
- An attacker resends a timer server's message (replay)
- An attacker intercepts a time server's message and deletes it (denial of service)
- An attacker delays time messages (delay)



http://thehackernews.com/2014/01/Network-Time-Protocol-Reflection-DDoS-Attack-Tool.html

### Suggested Improvements

- Authentication should be used with keys issued on a per-path, not per-host basis.
- Access control should be based on routes recorded, not simply on IP address.
- Servers should have several other source servers to limit effectiveness of delay and denial of service attacks.

### Precision Time Protocol (PTP)

- The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout a computer network.
- "Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems"
- it improves accuracy, precision and robustness but is not backward compatible with the original 2002 version.

### Architecture of PTP

- The IEEE 1588 standards describe a hierarchical master-slave architecture for clock distribution.
- Under this architecture, a time distribution system consists of one or more communication media (network segments), and one or more clocks.
- An ordinary clock is a device with a single network connection and is either the source of (master) or destination for (slave) a synchronization reference.

### Architecture of PTP



Source:iebmedia.com/images/art\_images/ieb4735\_3.gif

# Optional features

IEEE 1588-2008 standard lists the following set of features that implementations may choose to support:

- ★ Alternate Time-Scale
- Grand Master Cluster
- Unicast Masters
- ★ Alternate Master
- Path Trace

# NTP vs PTP

| Criteria                           | NTP                                             | PTP                                                       |
|------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| Peak time transfer error           | >1ms                                            | >100ns                                                    |
| Primary error source               | Routers                                         | Router, switches, port connection, network etc            |
| Implementation                     | Hardware or software servers, software clients. | Hardware master or Hardware and software clients(Slaves). |
| Mode of operation                  | Clients pull time from server.                  | Master push time to slaves (clients).                     |
| On path support                    | Not existent and not possible.                  | Not required but possible.                                |
| Relative cost of solution          | Not expensive.                                  | More expensive(Higher precision solutions cost more).     |
| Metrics, monitoring and management | Exists but minimal.                             | Extensive in bad metrics for monitoring and management.   |

### Live Demo



### References

- https://www.endruntechnologies.com/network-time-synchronization.htm
- http://www.scientific-devices.com.au/pdfs/WeTransfer-NZvJB6Cw/Time%20%26%20Frequency/Importance%20of%20Network%20Time%20Synchronization.pdf
- https://www.eecis.udel.edu/~mills/database/brief/overview/overview.pdf
- http://www.ntp.org/ntpfaq/NTP-s-algo.htm
- http://www.brocade.com/content/html/en/administration-guide/NI\_05800a\_ADMIN/GUID-B6CFABD5-070A-484F-9BD5-351F3288DDD5.html
- http://www.ntp.org/ntpfaq/NTP-s-def.htm

### References

- https://www.akadia.com/services/ntp\_synchronize.html
- http://www.endruntechnologies.com/pdf/PTP-1588.pdf
- http://www.rtaautomation.com/technologies/ieee-1588/
- http://www.en4tel.com/pdfs/NTPandPTP-A-Brief-Comparison.pdf
- http://www.h3c.com.hk/Products\_\_\_Technology/Technology/IPv4\_\_\_IPv6\_Services/TechnologyIntroduction/200701/195572\_57\_0.htm
- http://www.ni.com/newsletter/50130/en/