Microcontroladores - 19.1

Controle de atividades

														At	ivic	dad	es														
Alunos			1			2			3			4			5			6			7			8			9			10	
	а	b	С	d	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С
Andre Oliveira de Sousa	1	0	3	1	-	-	-	1	3	6	-	-	-																		
Cleanderson Lins Coutinho	1	0	4	1	1	3	6	1	3	6	0	3	4																		
Danillo Jose Cezar Ribeiro	1	0	5	1	-	-	-	0	3	6	0	3	4																		
Gabriel Aires Moreira	1	3	6	0	1	3	6	1	3	6	1	3	4																		
Gabriel de Oliveira Moura Soares	1	2	5	1	1	3	6	1	3	6	F	roje	to in	tegr	ado																
Geraldo Figueiredo de Santana Junior	-	-	-	0	-	-	-	-	-	-	-	-	-																		
Gustavo Eraldo da Silva	1	3	5	1	1	3	6	1	3	6	1	3	5																		
Ivan de Aquino Trigueiro	1	3	6	1	1	3	6	1	3	2	1	3	4																		
Jonas da Silva Antas	1	0	5	1	1	3	2	0	3	2	-	-	-																		
Julio Gusmao Carlos de Mendonca	1	3	5	1	1	3	6	1	3	0	1	3	0																		
Lucas Eduardo Dutra Quirino Nunes	-	-	-	0	-	-	-	-	-	-	-	-	-																		
Luciano Vieira da Silva Junior	0	3	4	1	0	3	6	1	3	2	-3	3	2																		
Marismar da Costa Silva	1	3	6	1	-	-	-	1	3	6	1	3	5	,																	
Walsan Jadson de Lima	1	0	6	0	-	-	-	-	-	-	-	-	-																		

Legenda:

- a) Entrega na data, até às 15h (1,0).
- **b**) Com comentários suficientes e esclarecedores. Até 3,0 pontos.
- c) Atende as especificações. Até 6,0 pontos. Penalização de 3,0 pontos se entregue no dia seguinte.
- d) Respondeu à Enquete AT1 (1,0)?

Vejam as páginas seguintes com as atividades.

Descrição

6. Comparador: controle de temperatura (data de entrega: 13/08/19)

Objetivo: Exercício de aplicação e gerenciamento do comparador.

Contexto: Sistema de controle de temperatura para ambiente refrigerado, utilizando o princípio da histerese para evitar a "flutuação" da comutação no valor de comparação. Para isso, utiliza-se dois valores distintos (T_{min} e $T_{máx}$) para definir uma faixa de comutação.

Como funciona:

- Condições iniciais 1:
 - o Supondo que a temperatura de controle do comparador está configurado para $T_{máx}$;
 - O Supondo que a temperatura ambiente (T_{AR}), a ser comparada, é superior a $T_{máx}$;
 - Nessas condições:
 - o compressor deve ser ligado;
 - e altera-se a configuração do comparador para T_{mín}.
- Condições iniciais 2:
 - \circ Supondo que a temperatura de controle do comparador está configurado para T_{min} ;
 - O Supondo que a temperatura ambiente (T_{AR}), a ser comparada, é inferior a T_{min} ;
 - Nessas condições:
 - o compressor deve ser desligado;
 - e altera-se a configuração do comparador para T_{máx}.
- Para qualquer outra condição diferente das descritas acima:
 - o Mantém o estado anterior de funcionamento do compressor (ligado ou desligado);
 - o Mantém o valor anterior de configuração do comparador (T_{min}) ou T_{max} .

Especificações:

- A conversão de temperatura (°C) para tensão (V) será feita considerando a seguinte expressão: V=0.285T-5.4
- As faixas de temperatura de controle deverão obedecer à seguinte tabela:

... continua na página seguinte ...

	T _{mín} (°C)	T _{máx} (°C)
Alexandre	20	24
Andre	21	25
Cleanderson	22	26
Danillo	23	27
Gabriel Aires	24	28
Gabriel Oliveira	25	29
Gustavo	26	30
Ivan	20	25
Jonas	21	26
Julio	22	27
Lucas Eduardo	23	28
Luciano	24	29
Marismar	25	30
Walsan	26	31

- A escolha da equação da tensão de referência do comparador deve ser justificada pela demonstração dos diferentes valores obtidos.
- GP1 deverá ser utilizado para receber o sinal de temperatura;
- GP2 deverá ser utilizado para fornecer o sinal de controle.

Projeto Integrado - Atividades 4 e 5 (Gabriel de Oliveira Moura Soares - data de entrega: 30/07/19) (Gerador de frequências múltiplas e simultâneas)

Objetivo: Exercício de familiarização com gerenciamento de portas, timers, PWM e interrupções do PIC e desenvolvimento de rotinas aritméticas.

Contexto: Implementar um gerador de sinais de onda quadrada, com várias frequências simultâneas, utilizando o PIC16F628A.

Especificações:

- Essa atividade **DEVE** ser implementada com o **PIC16F628A**;
- A atividade será implementada utilizando o kit LCD/PIC16F628A, disponível no LABEC2 (ver documentação específica);
- As frequências simultâneas a serem geradas são:
 - ➤ 1 MHz;
 - ➤ 100 kHz;
 - ➤ 10 kHz;
 - ➤ 1 kHz;
 - ➤ 100 Hz;
 - ➤ 10 Hz:
 - ➤ 1 Hz;➤ 0,5 Hz
 - > 0,1 Hz;
- Para gerar 100 kHz, o módulo PWM do PIC deve ser utilizado, com duty cycle de 50%;
- As portas de saída dos sinais devem ser as mesmas utilizadas no kit didático EXSTO, existente no laboratório;

5. Medição de tensão e indicação em BCD (data de entrega: 30/07/19)

Objetivo: Exercício de familiarização com o conversor A/D do PIC. Especificações:

- Conversão A/D deve ser efetuada, em modo cíclico e tão rápido quanto possível (limitado pela velocidade do microcontrolador);
- A conversão A/D deve ser feita pela porta GP2;

- O valor da conversão A/D deve ser transformado para o correspondente valor de tensão, com uma casa decimal de precisão;
- O valor da tensão deve ser convertido para codificação BCD e enviado a dois displays de 7 segmentos através de um registrador de deslocamento (shift register – 74164APC – ver data sheet);
- Para que a transmissão do PIC ao shift register ocorra sem erros, as especificações do shift register devem ser obedecidas;
- A comunicação com o shift register deve ser feita pelas portas:
 - ☑ GP0 DSA/DSB;
 - ☑ GP1 CP;
- Veja os exemplos:

Valor da conversão A/D	Valor a ser apresentado (V)	Display
23 _h	0,69 → 0,7	רם
32 _h	0,98 → 1,0	10
63 _h	1,94 → 1,9	19
65 _h	1,98 → 2,0	20
A7 _h	$3,27 \rightarrow 3,3$	33
DB _h	4,29 → 4,3	43
FC _h	4,94 → 4,9	49

4. Controlador de LED RGB (data de entrega: 11/07/19)

Objetivo: Exercícios para gerenciamento de portas e de tempo (com TIMERs).

Contexto: Controle da cor e da intensidade do brilho de um LED RGB.

Especificações:

- Três chaves serão utilizadas para configurar a intensidade e selecionar a cor do LED;
- Quando o bit mais significativo da chaves estiver em *HIGH*, a posição das demais chaves irá selecionar qual o LED terá o ajuste da intensidade do brilho, conforme tabela abaixo:

Chaves	Cor do LED
100	Desligados
1 01	Red
1 10	Green
1 11	Blue

 Quando o bit mais significativo da chaves estiver em LOW, a posição das demais chaves irá configurar a intensidade do brilho do LED selecionado, alterando o duty cycle, conforme tabela abaixo:

Chaves	Duty cycle
0 00	5%
0 01	20%
0 10	60%
0 11	100%

- Quando houver duty cycle diferente de 100%, a frequência do sinal deve ser de 500Hz;
- Após a configuração, a aplicação deve acender os LEDs de acordo com os ajustes individuais.
- GP0 deverá ser utilizado para o bit 0 da chave;
- GP1 deverá ser utilizado para o bit 1 da chave;
- GP3 deverá ser utilizado para o bit 2 da chave;
- GP2, GP4 e GP5 deverão ser utilizados, respectivamente, para ativar os LED R, G e B.

3. Controlador de intensidade de um LED (data de entrega: 02/07/19)

Objetivo: Exercícios para gerenciamento de portas e de tempo (sem TIMERs).

Especificações:

 Duas chaves serão utilizadas para configurar a <u>intensidade</u> LED, alterando o *duty cycle*, conforme tabela abaixo:

Chaves	Duty cycle
00	5%
01	20%
10	60%
11	100%

- Quando houver duty cycle diferente de 100%, a frequência do sinal deve ser de 500Hz;
- GP0 deverá ser utilizado para o bit 0 da chave;
- GP1 deverá ser utilizado para o bit 1 da chave:
- GP5 deverá ser utilizado para ativar o LED.

2. Rotina de atraso de 31,25 ms (data de entrega: 18/06/19)

Objetivo: Exercício de aplicação da linguagem Assembly.

Contexto: Para executar determinadas tarefas temporizadas, é necessário a medição de tempo decorrido ou a repetição de unidade tempo de atraso.

Especificações:

- Implementar uma subrotina de unidade de tempo de atraso de 31, 25 ms (1/32 s);
- A subrotina deve ser implementada para o PIC12F675 operando com seu clock interno (4MHz);
- O tempo de atraso inclui a chamada à subrotina (CALL) e seu respectivo retorno;
- Apenas os tempos de execução das instruções devem ser utilizados para produzir atrasos;
- Para permitir a medida e aferição dos tempos da subrotina, uma transição na porta GP5 deve ser gerada repetidamente a cada 31,25 ms.

Atividade 1 - Data de entrega: 06/06/19 Tema: Semáforo de trânsito - Algoritmo

Objetivo: Exercício com algoritmo para posterior implementação com microcontrolador.

Contexto:

Um cruzamento hipotético de trânsito, apresentado na Figura At1.1, necessita ser controlado para agilizar o fluxo de veículos e evitar colisões. A descrição do fluxo tem a seguinte lógica:

- Veículos que vêm da Setor 1 podem seguir para o Setor 2, ou para o Setor 3 ou para o Setor 5;
- Veículos que vêm da Setor 4 podem seguir para o Setor 2, ou para o Setor 5;

Figura At1.1. Cruzamento hipotético de trânsito para estudo do controle dos semáforos A, B, C e D.

O Departamento de Engenharia de Tráfego (DET) efetuou uma pesquisa e concluiu que, em razão do fluxo de veículos, os semáforos **B** e **C** devem ter a metade do tempo destinado aos semáforos **A** e **D**. De acordo com a pesquisa e para complementar o estudo, o DET propôs um diagrama de tempo para representar como deverão funcionar os semáforos A, B, C e D, como ilustrado na Figura At1.2.

Figura At1.2. Diagrama de tempo para os semáforos A, B, C e D. A região em cinza corresponde a indicação de atenção, antes do semáforo fechar.

O DET adota que o tempo padrão para um semáforo permanecer aberto é de 30 segundos.

Tarefa: Proponha um ALGORITMO, escrito em Portugol, para controlar o semáforo descrito acima.