"But you can't prove it," said Susan.

Hawk smiled his warm meaningless smile, "Provin' don't matter to me, knowin's enough,"

- "I want it all
- -R. I. Parker, Pale Kings and Princes.

PROMYS Number Theory

Problem Set #7

Boston University, July 13, 2021

Reasoning

P1: Consider a subset S of the natural numbers \mathbb{N} . The principle of mathematical induction asserts that if 1 is in the set S and if $n+1 \in S$ whenever $n \in S$, then S is the set of all natural numbers. What is the relationship between the well-ordering principle and the principle of mathematical induction? Can you prove one from the other?

Technique of Generalization

P2: Consider the system $\mathbb{Z}_3[x]$ of polynomials with coefficients in \mathbb{Z}_3 . Is $\mathbb{Z}_3[x]$ a ring under the addition and multiplication of polynomials? Is $\mathbb{Z}_3[x]$ a commutative ring? With (multiplicative) identity? With cancellation law? When should we say that one polynomial divides another in $\mathbb{Z}_3[x]$? What are the units in $\mathbb{Z}_3[x]$? Which of the following polynomials are prime in $\mathbb{Z}_3[x]$: $x^2 + x + 2$, $x^3 + x^2 + 1$, $x^3 + x^2 + x + 2$, $x^3 - x^2 + 1$, $x^4 + x + 2$? Construct a table of primes of degree 2 in $\mathbb{Z}_3[x]$.

Prove or Disprove and Salvage if Possible

- P3: $[x+y] \ge [x] + [y]$. Here x and y are real numbers and [x] is the greatest integer in x.
- P4: [n+x] = n + [x] for $n \in \mathbb{Z}$, $x \in \mathbb{R}$.
- P5: Two integers a and b are relatively prime \Leftrightarrow there is an integral solution (x, y) of the linear Diophantine equation ax + by = 1.
- P6: An element a in \mathbb{Z}_m is a unit $\Leftrightarrow (a, m) = 1$.
- P7: U_m has exactly $\varphi(m)$ elements.
- P8: If a|c, b|c and (a, b) = 1 then ab|c. True in \mathbb{Z} .
- P9: There exist infinitely many distinct positive rational primes.
- P10: Every natural number > 1 has a unique prime factorization.

Numerical Problems

- P11: Find the continued fraction of \(\frac{1+\sqrt{5}}{2}\). What is the relation between the convergents of this continued fraction and the Fibonacci numbers?
- P12: From the simple continued fraction expansion of $\sqrt{5}$ find the convergent with the smallest denominator which approximates $\sqrt{5}$ to within one part in 1000.
- P13: Find the GCD of 7 + 11i and 3 + 5i in $\mathbb{Z}[i]$. Does our algorithm in \mathbb{Z} suggest a method?
- P14: Calculate $\tau(15!)$. Explain.
- P15: Consider the polynomial $x^2 6x + 8$ in $\mathbb{Z}_{105}[x]$. Factor this polynomial into linear factors in $\mathbb{Z}_{105}[x]$ in as many ways as possible.