의료정보분석개론

1강. 의료데이터베이스 개요

- 1. 데이터베이스의 개념
- 2. 데이터베이스의 정의
- 3. 데이터베이스의 목적
- 4. 데이터베이스의 특징
- 5. 데이터베이스의 구성

^{*} 강의교재 : 의료정보관리학 제3판, 박종선 외, 보문각, 2017

◆ 보건의료에서의 데이터

- → 모든 의사결정에서 중심적인 역할
- → <u>신뢰할 수 있고, 완전하며 구조화</u>가 잘 되어야 함

◆ 병원정보시스템에서의 데이터베이스

- → 처방전, 진료내역, 진료비, 약품, 의료소모품 등 <u>다양한 구조를 가진 자료를</u> 통합하여 저장하고 관리
- → 자료의 종류에 따라 장기간 저장이 필요
- → 임상연구/의사결정 자료 및 의학영상자료 저장 및 <u>필요시 즉시 추출</u>

◆ 데이터베이스의 개념

→ 내용을 쉽게 접근하여 처리하고 갱신할 수 있도록 구성된 데이터의 집합체

◆파일 (File)

- → 데이터 저장의 실체
- → 컴퓨터의 파일시스템에 따라 생성되고 삭제 됨
- → 파일 이름을 통해 파일의 접근이 가능함.

◆ 파일시스템(File System)

- → 각각의 파일 단위로 업무와 관련한 데이터를 저장
- → 파일들을 처리하기 위한 독립적인 어플리케이션과 상호 연동
- → 단점으로는 데이터 중복성과 데이터 종속성이 발생

- ◆ 데이터베이스관리시스템(DBMS)
 - → 파일 시스템의 단점을 극복하고 데이터를 효율적으로 관리
 - → <u>사용자 어플리케이션과 데이터베이스 간의 인터페이스</u> 역할을 하는 논리적인 프로그램

◆ 데이터베이스의 발전배경

- → 요구사항
 - 환자 신상 명세에 대한 사항뿐만 아니라 각 진료 부서의 인적 구성, 부서 별 환자, 환자에 대한 데이터, 약품정보 등 수 많은 데이터를 관리
- →문제점
 - 기록의 중복 및 기록 양식의 상이함
 - 검색 및 수정의 어려움 → 효율적인 업무 추진에 많은 지장을 초래
 - 데이터양의 관리의 어려움
 - 조직의 규모가 커짐에 따라 파일시스템으로는 감당이 어려움

그림 9-3 데이터베이스의 발전

◆ 데이터베이스관리시스템(DBMS)의 규모

- → 과거에는 대형 메인프레임에 적용
- → 최근에는 소형 분산 워크스테이션, 중형 시스템, PC에도 사용

◆ DBMS의 종류

- → Oracle, Sybase, Informix, DB2, MS-SQL, Access 등
- → <u>구조화된 질의언어(SQL)</u>를 이용하여 데이터를 검색 및 갱신
 - SQL : Structured Query Language

2. 데이터베이스의 정의

◆ 데이터베이스(Database)

- → 컴퓨터에서 신속한 탐색과 검색을 위해 특별히 조직된 정보 집합체
- → 현실 세계 데이터를 통합하는 관점에서 서로 관련된 <u>정보의 중복을 최소화하여 하나의</u> <u>저장공간에 기록</u>하고, <u>다수의 사용자로 하여금 필요한 정보를 공유</u>하도록 하는 정보의 집합체
- → 어느 특정 조직체에 관련된 여러 정보들을 <mark>공유</mark>할 수 있도록 <u>통합</u>, <u>저장</u>된 <u>운영</u> 데이터의 집합

 통합데이터
 •동일데이터의 중복을 배제하여 중복의 최소화

 저장데이터
 •컴퓨터가 접근할 수 있는 저장 매체에 저장된 데이터의 집합

 운영데이터
 •조직의 존재 목적, 유용성 면에서 필요한 데이터의 집합

 공용데이터
 •여러 응용프로그램이 공동으로 소유, 유지 가능한 데이터

3. 데이터베이스의 목적

◆ 데이터베이스의 목적

→기록의 중복, 기록양식의 상이함, 검색 및 수정의 어려움을 탈피

표 9-1 데이터베이스 목적

구 분	의미	
데이터의 <u>독립성</u>	 논리적 독립성은 데이터베이스의 논리적 구조 변경이 응용 프로그램에 영향을 미치지 않는 성질을 의미한다. 물리적 독립성은 데이터베이스의 물리적 구조 변경이 데이터베이스의 논리적 구조나 응용 프로그램에 영향을 주지 않는 성질을 의미한다. 	
중복성의 최소화	• 동일한 데이터가 여러 파일에 나누어 저장되는 경우를 없앨 수 있다. 따라서 데이터의 집중 관리가 가능하며 저장 경비가 절감된다.	
데이터의 <u>공유성</u>	• 여러 응용 프로그램이 데이터베이스내의 데이터를 공동 사용하며, 신규 프로 그램도 기존의 데이터를 활용할 수 있다.	
데이터의 보안성	• 사고로부터 안전을 보장할 수 있으며 비밀의 유지가 가능하다.	
데이터의 <u>무결성</u>	• 중앙 통제에 의한 갱신과 검증 프로그램의 운용으로 여러 파일의 데이터가 서로 일치하지 않는 현상인 <u>데이터의 불일치를 없앨 수 있다</u> . 즉, 무결성을 보장할 수 있다.	

4. 데이터베이스의 특징

◆데이터베이스의 특징

표 9-2 데이터베이스의 특징

구분	의미	
장 점	 데이터의 다중 이용 기능 파일 수정의 융통성 확보 데이터관리의 용이성 내용에 의한 데이터의 액세스 	
단 점	 전산화 비용의 증가와 시스템의 복잡화 프로그래머의 재교육이 필요하게 되고 패키지 운용 요원이 필요 병원 내 하드웨어와 소프트웨어의 추가구입 및 운용비용이 증가 데이터의 집중 관리로 데이터 백업 비용이 증가 	

5. 데이터베이스의 구성

◆ 데이터베이스의 구성

표 9-3 데이터베이스의 구성요소

요 소	의미	
데이터	데이터는 환자, 질병, 진단 또는 다른 어떤 것에 관한 있는 그대로의 사실을 의미한다. 병원은 매일 매일 엄청난 양의 데이터를 환자나 병원조직에서부터 발생되는데 가공되지 않은 데이터를 말한다.	
하드웨어	데이터베이스가 물리적으로 저장될 저장장치, 저장장치와 연결된 입.출력 장치, 장 치제어기, 그리고 입.출력 채널 등을 들 수 있다.	
소프트웨어	물리적 데이터베이스와 사용자를 연결시켜 주는 소프트웨어를 <u>데이터베이스관리시</u> 스템(DBMS)이라고 한다. 이 시스템은 데이터의 관리에 대한 대부분의 사항을 효율 적으로 지원해준다.	
사 용 자	개인 사용자나 규모가 <u>작은 업체의 경우에는 한 명의 사용자가 직접 데이터베이</u> <u>스를 설계하고 구축</u> , 그러나 대형의 데이터베이스를 설계하고, 구축하여 사용하는 데는 <u>응용프로그래머와 같은 다수의 사람들이 관여</u> 하게 된다.	

1강. 의료데이터베이스 개요 - 요약

◆ 1. 데이터베이스의 개념

파일		데이터베이스	
파일	데이터 저장의 실체	데이터베이스	내용의 쉬운 접근을 위한 데이터의 집합체
파일시스템	파일의 입출력 및 저장 데이터의 중복성 및 종속성 문제	데이터베이스 관리시스템	사용자 어플리케이션과 데이터베이스 간의 인터페이스 역할을 하는 논리적인 프로그램

◆ 2. 데이터베이스의 정의

→ 통합데이터, 저장데이터, 운영데이터, 공용데이터

◆ 3. 데이터베이스의 목적, 특징, 구성

→ 목적 : 독립성, 중복 최소화, 공유성, 보안성, 무결성

→ 특징 : 다중 이용, 수정의 융통성, 관리의 용이성, 전산화 비용 문제

→ 구성: 데이터, 하드웨어, 소프트웨어, 사용자