§ 1.1 随机事件 § 1.2 随机事件的概率

1. 设事件 A,B 互不相容,则()			
A. P(A) = 1 - P(B)	B. $P(A)$	B) = P(A)P(B)	
$C. P(\bar{A}\bar{B}) = 0$	D. $P(\bar{A})$	$\cup \bar{B}) = 1$	
2. 电脑主板上有4个温控器,运行过程中,	只要有两个温控器	显示的温度不低于临界温度t	0,隼
脑就会降低运行频率,设 $T_{(1)} \le T_{(2)} \le T_{(3)} \le T_{(4)}$	是4个温控器显示的	的从低到高的温度值,则事件	1
"电脑降低运行频率"等于()			
A. $\{T_{(1)} \ge t_0\}$ B. $\{T_{(2)} \ge t_0\}$	C. $\{T_{(3)} \ge t_0\}$	D. $\{T_{(4)} \ge t_0\}$	
3. 已知 A,B,C 是随机事件,用 A,B,C 表示以	下事件:		
{A,B,C都不发生} =,{A	,B,C至少有一件不	5 发生} =	
4. 从 1,2,3,4,5,6 中随机取出两个不同的	数,则"一个数是	另一个数的两倍"的概率	
是,"组成的两位数能被3整除"的概率	率是,"两	数之和是偶数"的概率	
是,"两数之积是偶数"的概率是_			
5. 10名学生中有2名女生和8名男生,将10	名学生平分成两组	,则2名女生分在不同组的根	托 率是
·			
6. 设 A,B 为两个随机事件,且 $P(A) = 0$.	$7, \ P(A-B)=0.3$	B ,则 $P(\bar{A} \cup \bar{B}) = $	
二 计算题			
1. 设 A, B 为两个随机事件,且 $P(A) = 0.7$	P(B) = 0.4, P(B)	$Aar{B})=0.5$,求	
$P(AB), P(\bar{A}B), P(\bar{A}\bar{B}), P(B A \cup \bar{B}).$			

2. 设 A, B 为两个随机事件,且 P(A) = 0.6,P(B) = 0.7,试问分别在什么条件下,P(AB)取得最大值和最小值?最大值和最小值各是多少?

3. 在1到1000中任取一个整数,该数的平方的末位数是6的概率是多少?该数不能被3和4整除的 概率是多少?

§ 1.3 条件概率

-	选择填空题
--------------	-------

1. 设	$\xi A, B$ 为两个随机事件,	0 < P(A)	(4) < 1, 0 <	P(B) < 1,	如果 $P(A B$) = 1, 则()
------	---------------------	----------	--------------	-----------	------------	------------

A. $P(A|\bar{B}) = 0$

B.
$$P(\bar{B}|\bar{A}) = 1$$

C. $P(A \cup B) = 0$

D.
$$P(B|A) = 1$$

2. 设 A, B 为两个随机事件,0 < P(A) < 1,0 < P(B) < 1,

① $P(A \cup B) = P(A) + P(B - A)$ ② $P(AB) = 1 - P(\bar{A} \cup \bar{B})$

 $(3) P(\bar{A}\bar{B}) = 1 - P(A \cup B)$ $(4) P(\bar{A}B) = P(\bar{A})P(B|\bar{A})$

$$(4) P(\bar{A}B) = P(\bar{A})P(B|\bar{A})$$

其中必定正确的是_____.

- 3. 设A, B为两个随机事件,且P(B) = 0.4, $P(A \cup B) = 0.7$,则 $P(A|\bar{B}) = ...$
- 4. 设A, B, C是三个随机事件,且 P(A) = P(B) = P(C) = 1/4, P(AB) = 0, P(AC) = P(BC) = 1/41/16,则A,B,C恰有一件发生的概率是_____,A,B,C都不发生的概率是

,A不发生的条件下B,C都发生的概率是

- 5. 有质地均匀的红、白骰子各一个, 六个面上分别有1,2,3,4,5,6六个数, 随机抛掷红、白骰子各 一次,观察向上的那面出现的数字,事件 $A = \{ \text{两个骰子的数字之和为8} \}, B = \{ \text{红色骰子的数字小于$ 白 色 骰 子 的 数 字 } , 则 P(B) = ______ , P(A|B) = _____ , P(B|A) =
- 6. 如表所示, 手机所用某元件是由三家供应商提供的, 根据以 往记录数据如表,设所有元件在仓库中均匀混合且无区分标志,随 机取一只元件,若取到的是次品,则该次品由第二家供应商提供的 概率是 .

供应商	次品率	提供份额
1	0.02	0.15
2	0.01	0.80
3	0.03	0.05

7. 已知甲盒中有2个白球和1个黑球, 乙盒中有1个白球2个黑球, 先从甲盒中任取一球放入乙盒, 再从乙盒中任取一球,最后从乙盒中取出白球的概率是_____.

二 计算题

- 1. 抛掷三枚均匀硬币,正面向上记为H,反面向上记为T.
- (1)分别写出试验的样本空间 Ω ,事件 $A = \{$ 恰有一枚正面向上 $\}$, $B = \{至少有一枚反面向上<math>\}$;
- (2) 求 P(A), P(B), P(A|B).

- 2.10件产品中有2件次品8件正品,从中不放回地任取三次,每次取一个,求
- (1)至少取得一件次品的概率;

(2)恰好取得一件次品的概率;

- (3)第三次才取得次品的概率;
- (4)第二次取得次品的概率.

3. 电脑通过扫描邮件的某些特征来进行垃圾邮件的识别。对收到的邮件进行扫描之前,不妨认为每封邮件是垃圾邮件或普通邮件的概率相等,由以往数据,垃圾邮件含有链接的概率是60%,普通邮件含有链接的概率是20%,如果一封邮件含有链接,那么它是垃圾邮件的概率是多少?

4. 假设在某特定人群中,每100人中有1人患有一种没有症状的特殊疾病。在进行医学检测中,	
健康的人的检测结果必为阴性,而患病者中也有10%的人检测结果呈阴性,从这个人群中随机选取	
一人,他的检测结果呈阴性,那么他的确没有患病的概率是多少?	
5. 顾客的转化率是指来店顾客中产生消费行为的比率,据"小米之家"的数据显示,其顾客转化率约为20%,在最终购物的顾客中,约有90%会在选购过程中向店员咨询产品,在最终未购物的顾客中,你去2004人内房具次为京具。此	
中,约有30%会向店员咨询产品,求	
(1)来店的顾客向店员咨询产品的概率是多少? (2)如果一位来店的顾客向店员咨询产品,他最终会购买产品的概率是多少?	
6. 假币和真币外观相同,因为材质密度小,假币的重量比真币轻,有2枚假币和8枚真币混合在一	_
起,先从中随机取出一对硬币,从余下8枚中再随机取出一对硬币	
(1) 求第一对与第二对硬币重量相等的概率	
(2)如果第一对与第二对硬币重量相等,这四枚都是真币的概率是多少?	

§1.4随机事件的独立性

一 选择填空题

	1.	从1,2,	3,4中随机取出	:一个数, <i>A</i> =	= {取到1或	$\{2\}, B = \{$	取到1或3	}, <i>C</i> = {取到	m 或 n }, 如	ļ
果專		A与C相	互独立,事件1	B与C也相互独	其立,且 <i>A</i> , <i>E</i>	?, <i>C</i> 都发生的	的概率是0,	则 $(m,n) =$		
	Α.	(2, 3)		B. (2,4)		C. (3, 4)	D	. (1, 4)		
	2.	设事件A	l, B, C相互独立	$\Box, \ \underline{\exists} P(A) = A$	P(B) = P(C), $P(A \cup E$	$(C \cup C) = 7/2$	8, 则 <i>P(A)</i>	=	_•
	3.	· 设A,B为	两个随机事件	$\exists P(A) = 0$	0.6, P(B-A) = 0.2, 当	A, B相互独	立时,P(B)=	=	,
当A	l, B	互不相容	空时, P(B) =_	·						
	4.	设事件A	l,B相互独立,	P(A)=0.6,	P(B) = 0.3	则 $P(ar{A} A$	∪ <i>B</i>) =	•		
	5.	盒中有5	张卡片,标有	数字1,2,3,4,	5,从中不放	回地随机扣	由取,每次取	又一张,直到	取出的所有-	卡
片_	上的]数字之和	印超过4,则恰	好取出三张卡	5片的概率是	<u>=</u>	<u></u> .			
	6.	三人独立	立向同一目标名	各射击一次,	击中目标的	概率分别是	₹0.5, 0.4, 0.3	B, 则目标被	击中的概率	
是_			只有一人击中	目标的概率是	<u></u>	_ .				
	7.	甲,乙的	投篮命中率为	别是1/3, 2/	/5, 两人进行	厅比赛,轮	流投篮,各	投一次,从	甲先开始,是	논
投口	卢 者	台为胜者,	则甲取胜的概	既率是	•					
	_	二计算题	·							
	1.	设 A,B	是两个随机事	4件, 且 <i>P(A)</i>	= 0.4, $P(A)$	$\cup B)=0.3$	8, 在以下2	不同情况下,	分别计算	
P(E	3),	P(A B)								
	(]	1) 事件A	l, B 互不相容;	(2) 事件A,	B有包含关	系; (3)	事件 A,B 相	互独立.		

- 2. 甲乙两人比赛围棋,每局比赛甲获胜概率都是0.6,每局比赛的胜负相互独立,采用五局三胜制,求:
 - (1) 甲最终获胜的概率;
 - (2) 已知甲最终获胜,那么甲是以3:2 获胜的概率;
 - (3) 已知甲最终获胜,那么甲在第一局中获胜的概率

- 3. 在回答选择题时,学生或者知道答案,或者就猜一个,p表示他知道正确答案的概率,则1-p表示他猜的概率,假定学生猜中正确答案的概率是1/m,此处m就是选择题可选的选项数
 - (1) 该学生回答正确的概率是多少?
 - (2) 在已知他回答正确的条件下,该学生知道正确答案的概率是多少?
- (3)一项测验有三个这样的选择题,正确答对两个或以上即可通过,如果该学生仅凭猜测,那么他通过的概率是多少?假设回答每个问题正确与否相互独立

§ 2.1 一维随机变量与分布函数

§ 2.2 一维离散型随机变量

_	选择填空题
	选择填空题

每次取出的球放回盒中和不放回盒中两种情况下,分别求X的分布律。

	3. 盒中有2个白球3个黑球,每次从中任取一球,直到取到4次白球为止,X表示总共取球的次
数,	在每次取出的球放回盒中和不放回盒中两种情况下,求X的分布律。

4. 发出一份问卷,有0.8的几率受调查人马上完成问卷,有0.5的几率第一次没有完成的人在第二次发给他问卷时会完成问卷,如果问卷被发给了100个人,求两次都没有完成问卷的人数X的分布律,以及至少有两人两次都没有完成问卷的概率.(利用泊松定理计算)

- 5. 盒中共有10个球,其中6个白球、3个黑球、1个红球,从中有放回随机取20次,每次取一个球,设 X_1 , X_2 , X_3 分别表示取到的白球、黑球、红球的个数,求:
 - $(1)X_1$ 的分布律及 $P\{X_1 \ge 1\}$;
 - (2) $P\{X_1=k_1,\,X_2=k_2,\,X_3=k_3\}$ $(k_1,\,k_2,\,k_3$ 是非负整数,且 $k_1+k_2+k_3=20).$

- 6. 在独立重复地进行试验时,设每次试验中事件A发生的概率都是p,当事件A首次发生时,已进行的试验次数X的分布称为几何分布,
 - (1) 求X的分布律及 $P{X$ 为偶数};
- (2) 若对任意自然数n和m,都有 $P\{X > n + m | X > m\} = P\{X > n\}$,则称X的分布具有无记忆性,证明:离散型随机变量X的分布具有无记忆性当且仅当X服从几何分布.

§ 2.3 一维连续型随机变量

一 选择填空题

1. 设 $f(x)$, $F(x)$ 是	随机变量 X 的概率密度函	数与分布函数,若 <i>f(x</i>	$f(-x), \emptyset ()$	
A. $F(-a) = 1 - \int_0^a$	$^{1}f(x)dx$	B. $F(-a) = 0.5$	$-\int_0^a f(x)dx$	
C. F(-a) = F(a)		D. F(-a) = 2F(a) - 1	
2. 设随机变量 X 的 5	分布函数是 $F(x) = \frac{1}{1+x^2}$,	a < x < b, 则区间(a	(,b) 可以是()	
A. $(-\infty, +\infty)$	B. (0,+∞)	C. (-∞,0)	D. (0,1)	
3. 设随机变量 X~ I	W(0,1), 对给定的0 < α <	1 ,数 Z_{α} 满足 $P\{X>Z_{\alpha}\}$	$\{Z_{\alpha}\}=\alpha$,	
	= ()			
A. $Z_{lpha/2}$	B. $Z_{1-\alpha/2}$	C. $Z_{(1-\alpha)/2}$	D. $Z_{1-\alpha}$	
4. 设随机变量 X ₁ ~	$V(0,1), X_2 \sim N(0,4), X_3 \sim$	$N(5,9), p_i = P(-2 \le$	$X_i \le 2$), $i = 1,2,3$, \mathbb{N}	()
A. $p_1 > p_2 > p_3$		B. $p_2 > p_1 > p$	3	
C. $p_3 > p_1 > p_2$		D. $p_1 > p_3 > p$	2	
5. 设随机变量X~U	$(-1,5), \mathbb{H}P(X^2 \leq a) =$	0.5, 则 $a =$	<u>.</u>	
6. 设随机变量 X~N	(μ, σ^2) , $\exists P\{\mu < X < \mu\}$	$+\sigma$ = 0.3,则 P { X <	$\mu - \sigma$ } =	
7. 设随机变量 X 的机	既率密度函数 $f(x) = \begin{cases} ax \\ ax \end{cases}$	$a + b$, $0 \le x \le 1$, $a \le 0$, $a \le 1$	$P\{X > 0.5\} = 0.625,$	
则 <i>a</i> =	, $P\{0.5 < X < 1$.5} =		
8. 在800米跑步比赛	賽中,选手成绩 X 服从正為	於分布X∼N(180,400)	(单位: 秒),成绩位于	于前40%
的选手直接晋级,则用日	时在	可直接晋级, 成绩位	于后20%的选手直接海	3汰,则
用时超过		.		
	则 $P\{ X - \mu < \sigma\} = $			
10. 设某型号电视机	的寿命X(单位:年)的概	既率密度函数为 $f(x)$ =	$\begin{cases} \frac{1}{12}e^{-x/12}, & x > 0, \\ 0, & x \le 0 \end{cases}$	则一台改
型号电视机的寿命超过	12年的概率是	,一台已正常使用了12	年的电视机还能再使用	月12年的
概率是				

二计算题

- 1. 设随机变量X的概率密度函数f(x) = $\begin{cases} ax, & 0 \le x \le 1 \\ 2-x, & 1 < x < 2, \ 求: \\ 0, & \text{其他} \end{cases}$
- (1)常数a; (2)X的分布函数; (3)P{0.5 < X < 1.5}.

- 2. 设随机变量X的分布函数是 $F(x) = \begin{cases} a + be^{-\frac{x^2}{2}}, & x \ge 0, \ x < 0 \end{cases}$
- (1) 常数a,b; (2)X的概率密度函数f(x); (3) $P\{0 < X < \sqrt{2}\}$.

- 3. 设某种电子管的寿命X(单位:小时)的概率密度函数是 $f(x) = \begin{cases} 1000x^{-2}, & x > 1000 \\ 0, & x \le 1000 \end{cases}$
- (1) 求电子管的寿命不超过1500小时的概率;
- (2) 5个这种电子管中寿命不超过1500小时的个数是Y,写出Y的分布律,并求其中至少有两个电子管寿命不超过1500小时的概率.

- 4. 某系统在t小时内发生故障的次数X服从参数为0.2t的泊松分布,与起始时刻无关,
- (1) 写出X的分布律,并求某天上午9时至下午15时至少发生一次故障的概率;
- (2)设T是系统的无故障运行时间(即两次故障发生的间隔时间),求T的分布函数 $F(t) = P\{T \leq t\}$ 和概率密度函数f(t).

- 5. 设随机变量 $X \sim N(0,1)$,其概率密度函数 $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$,
- (1)求 $\varphi(x)$ 的单调区间,极值,凹凸区间,拐点;
- (2) 证明: $\int_{-\infty}^{+\infty} \varphi(x) dx = 1$
- (3) 设随机变量 $Y \sim N(\mu, \sigma^2)$, 证明: $\frac{Y \mu}{\sigma} \sim N(0, 1)$

§ 2.4 一维随机变量函数的分布

二 计算题

- 1. 设随机变量X的概率密度函数 $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其他} \end{cases}$, 求
- (1) $P\{e^{-X} \le 0.8\}$
- (2) $P\{X \le a + 1 | X > a\}$ (a > 0);
- (3) 随机变量 $Y = 1 e^{-X}$ 的概率密度函数 $f_Y(y)$.

- 2. 设随机变量X~U(0,1), 求:
- (1) $Y_1 = a + (b a)X$ 的分布函数与概率密度函数; (a < b)
- (2) $Y_2 = -\ln X$ 的分布函数与概率密度函数.

- 3. 设随机变量*X~N*(0,1), 求:
- (1) $Y_1 = aX + b$ 的概率密度函数;
- (2) $Y_2 = X^2$ 的概率密度函数.
- (3) $Y_3 = e^X$ 的概率密度函数.

§ 2.5 一维随机变量的数字特征

一 选择填空题

13. 设随机变量X的概率密度函数 $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}$,a =______时, $E(X - a)^2$ 取得最 小值.

14. 设随机变量
$$X$$
的密度函数 $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其他} \end{cases}$, $Y = \text{Min}(X, 1)$, 则 $E(Y) = ($)

- A. $(e^{-1})/e$
- B. 1/2
- C. (e-2)/e D. (e+1)/2e

二 计算题

- 1. 抛掷三枚均匀的骰子(正方体六面上分别有1,2,3,4,5,6六个数),观察向上的那面出现的数字,
- (1) 数字相同的骰子个数是X, 求X的分布律和数学期望;
- (2) 数字是偶数的骰子个数是Y, 求Y的分布律和数学期望:
- (3) 三枚骰子的数字之和是Z, 求Z的数学期望与方差:

- 2. 超市进行购物抽奖: 盒中有红白黑三种颜色的球各1个,除颜色外完全相同,顾客每次取1个 球,取后不放回,取到黑球则抽奖结束,否则可继续取球。取到黑球没有奖励,取到红球则奖励20 元,取到白球则奖励10元,求:
- (1) 每一名顾客取球两次就停止抽奖的概率;
- (2) X表示每一名顾客抽奖获得的奖励数额,求X的分布律和数学期望.

- 3. 甲乙两队进行篮球决赛,采用三场两胜制,甲队在主场的获胜概率是0.6,在客场的获胜概率是0.5,三场比赛采用"主客主"顺序,由以往战绩,决赛从甲队主场开始,各场比赛的胜负相互独立,求: (1) 甲队赢得决赛的概率;
 - (2) 决赛阶段进行的比赛场数X的分布律与数学期望.

4. 设随机变量
$$X$$
的概率密度函数为 $f(x) = \begin{cases} 1/2, & -1 \le x < 0 \\ 1/4, & 0 \le x \le 2, \\ 0, &$ 其他

- (1) 若 $P\{X \le a\} = 0.8$, 求a的值;
- (2) 求|X|的数学期望与方差.

- 5. 设连续型随机变量X的概率密度函数是 $f(x) = \begin{cases} ax^2(1-x), & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}$
- (1) 求常数a;
- (2) $\mu_1 = E(X)$, 对于任意 $0 \le x \le 1$,都有 $f(\mu_2) \ge f(x)$,求 $\mu_1 = \mu_2$;

- 6. 在伯努利试验中, $P(A) = \theta$, θ 可看作是一个(0,1)上的随机变量, 如果最初对 θ 缺乏了解,不 妨设 $\theta \sim U(0,1)$, 其概率密度函数记为 $\pi(\theta)$,称为 θ 的先验分布。独立重复进行n次试验,其中事件A发生了x次,把这个结果发生的概率记为 $f(x|\theta)$,称为似然函数
 - (1) 写出先验分布 $\pi(\theta)$ 和似然函数 $f(x|\theta)$ 的表达式;
 - (2) $\pi(\theta|x)$ 表示在得到结果x后 θ 的概率密度函数,称为 θ 的后验分布。根据贝叶斯公式:

$$\pi(\theta|x) = \frac{\pi(\theta)f(x|\theta)}{\int_{-\infty}^{+\infty} \pi(\theta)f(x|\theta)d\theta}$$

- 7. 设随机变量X的分布函数是F(x),概率密度函数为f(x),c是常数
- (1) 证明: $P\{X \le x | X > c\} = \frac{F(x) F(c)}{1 F(c)}$, 并且这个函数的导数是一概率密度函数;
- (2) 设某电子元件的使用寿命X(单位: h)服从指数分布,其数学期望 $E(X) = \mu$,证明: 若该元件已正常使用了c小时,在此条件下该元件寿命的期望是 $\mu + c$.

自测题一

一 选择填空题

1.	城市某区域有	了5个PM2.5浓度监测器,	只要有两个监测器显示	示的浓度不低于临界浓度 x_0	,空气污染
指	数即为橙色 ,	设 $X_{(1)} \le X_{(2)} \le X_{(3)} \le X_{(3)}$	$X_{(4)} \le X_{(5)}$ 是5个监测器	显示的从低到高的浓度值,	则事件

"空气污染指数为橙色"是()

A.
$$\{X_{(2)} \ge x_0\}$$

B.
$$\{X_{(3)} \ge x_0\}$$

A.
$$\{X_{(2)} \ge x_0\}$$
 B. $\{X_{(3)} \ge x_0\}$ C. $\{X_{(4)} \ge x_0\}$ D. $\{X_{(5)} \ge x_0\}$

D.
$$\{X_{(5)} \ge x_0\}$$

2. 设
$$A$$
, B 为两个随机事件,且 $P(A) = 0.4$, $P(B) = 0.8$,则 $P(\bar{A} \cup \bar{B})$ 的取值范围是()

3. 设连续函数
$$F(x)$$
和 $f(x)$ 是连续型随机变量 X 的分布函数和密度函数,下列错误的是()

A.
$$0 \le f(x) \le 1$$

B.
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$C. \lim_{x \to +\infty} F(x) = 1$$

D.
$$f(x) = \lim_{h \to 0} \frac{P\{x < X \le x + h\}}{h}$$

4. 设连续型随机变量X的概率密度函数是f(x),且f(x) = f(-x),E(X),D(X)都存在,则不一定正确 的是()

A.
$$D(X) = D(-X)$$

B.
$$E(X) = E(-X)$$

C.
$$P\{X \le x\} = P\{X \le -x\}$$

C.
$$P\{X \le x\} = P\{X \le -x\}$$
 D. $P\{X \le x\} + P\{X \le -x\} = 1$

5. 某繁忙路段每天有大量汽车通行,设一辆汽车在一天的某段时间内出事故的概率是 0.0001,已知 在该时段内有 1000 辆汽车通过,至少有两辆汽车出事故的概率是()

A
$$1 - \rho^{-0.1}$$

$$R = 1 - 0.1e^{-0.1}$$

$$C = 1 - 1 \cdot 10^{-0.1}$$

A.
$$1 - e^{-0.1}$$
 B. $1 - 0.1e^{-0.1}$ C. $1 - 1.1e^{-0.1}$ D. $1 - 1.105e^{-0.1}$

6. 设随机变量 $X \sim U(0,2)$, Y = Min(X,1), 则E(Y) = ()

7. 盒中有20个白球,30个黑球和30个红球,从中随机取出8个球,其中取出的白球个数的数学期望 是____.

8. 设随机变量
$$X$$
的概率密度函数 $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其他} \end{cases}$,且 $P\{X > c\} = P\{X < c\}, c = ____.$

_	٠,۱		H#
	ᆊ	一算	颞
_	- 1	-71	AL A

- **1**. 证明: (1) 设事件A, B相互独立,则 $P(A|B) + P(\bar{A}|\bar{B}) = 1$
 - (2) 设事件A, B互不相容,则 $P(A|A \cup B) = P(A)/(P(A) + P(B))$

2. 假设在某特定人群中有25%的人患有一种没有症状的特殊疾病。在进行医学检测中,健康的人的检测结果必为阴性,而患病者中也有20%的人检测结果呈阴性,从这个人群中随机选取一人,他的检测结果呈阴性的概率是多少?如果已知他的检测结果是阴性,那么他的确没有患病的概率是多少?

- (1) X的分布函数; (2) X的数学期望

- **4**. 盒中共有10个球,标号为1到10,每次从中随机取出1个球,观察球的标号并放回,重复这个过程,直到取出的球的标号大于8,
 - 求: (1) 恰好取球n次的概率; (2) 至少取球k次的概率; (3) 取球次数的数学期望.

5. (1) 设随机变量X的数学期望和方差都存在,证明: 对于任意常数C, $E(X-C)^2 \ge D(X)$

(2) 设随机变量
$$X$$
的概率密度函数 $f(x) = \begin{cases} \frac{1}{\sqrt{2\pi x}} e^{-\frac{x}{2}}, & x > 0, \\ 0, & x \leq 0 \end{cases}$

a为何值时, $E(X-a)^2$ 取得最小值?

- **6**. 设随机变量 $X \sim U(0,1)$, Y = Max(X,1-X)
- (1) \bar{x} *P*{*Y* ≤ 3/4};
- (2) 求Y的概率密度函数, 数学期望与方差.

§ 3.1 二维随机变量与分布函数

§ 3. 2 边缘分布及随机变量的独立性

§ 3.3 二维随机变量函数的分布

1. 设二维随机图	变量(X,Y)~N(0,1,0,1,0),则 F	$P\{ X - Y \le \sqrt{2}\} = ($	
A. 0.5	B. 0.6826	C. 0.8413	D. 0.9332
2. 已知随机变量	量 X 和 Y 相互独立,分布律分别为	$\forall y: X \sim \begin{pmatrix} -1 & 1 \\ 0.6 & 0.4 \end{pmatrix}, Y \sim \begin{pmatrix} -1 & 1 \\ 0.6 & 0.4 \end{pmatrix}$	$\begin{pmatrix} -1 & 1 \\ 0.5 & 0.5 \end{pmatrix}$,
则 $P{X+Y=0}=$			
3. 从1,2,3中随	机取一个数 X ,再从 1 到 X 中随机	几取出一个数 Y , 则 $P\{Y =$	= 2} =
4. 甲乙两人相约	约在7点到8点之间在公共汽车站	占碰头,设两人的到达时刻	是随机的,若先到者最
多等候20分钟,则	他们能相遇的概率是	_; 在7时15分,7时30分,	7时45分,8时各有一班
公共汽车到站,两,	人见车就乘,则他们能乘坐同一	一班车的概率是;	若先到者最多等一班
车,则他们能乘坐	司一班车的概率是		
5. 二维随机变量	量(X,Y)的分布律为:		
	$P\{X=0, Y=0\}=0.4,$	$P\{X = 0, Y = 1\} = a,$	
	$P\{X=1,Y=0\}=b,$	$P\{X=1, Y=1\}=0.1,$	
若随机事件 $\{X=0\}$	与 $\{X+Y=1\}$ 相互独立,则 $a=$	=, b =	
6. 二维随机变量	$\mathbb{E}(X,Y)$ 的联合分布函数 $F(x,y)$	$= \frac{1}{16} x^2 y^2, 0 \le x, y \le 2,$	
则 $P\{X > 1\} =$, $P\{\min(X,Y) \le 1\} =$	·	
7. 二维随机变量	量(<i>X,Y</i>)的概率密度函数为: <i>f</i> (<i>x</i>	$(x,y) = \begin{cases} a(x+y), & 0 \le x \\ 0, & \end{cases}$	<i>x,y</i> ≤ 1 其他 , 则 <i>a</i> =
8. 二维随机变量		$(-1)^2 + y^2 \le 1$ }上的均匀	分布,
则 $P\{X < Y\} = $	$P\{X+Y>1\}=$.	
9. 网站有两台原	服务器A和B,每分钟的访问次	数都服从泊松分布且相互	独立,平均每分钟的访问
次数分别为360次和	口240次,则一秒钟内两台服务器	器总共接到至少2次访问的	概率是

二 计算题

1. 设随机变量 X_1, X_2 相互独立且具有相同的分布, $X_1 \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$, (其中 0),

2. 设随机变量X和Y独立同分布,分布律为 $X\sim\begin{pmatrix}1&2\\0.6&0.4\end{pmatrix}$,记 $U=\max(X,Y),V=\min(X,Y)$,求(U,V)的联合分布律与边缘分布律.

- 3. 有四张扑克牌,一张3,两张4,一张5,背面朝上放在桌面上,先从中任取一张牌,不放回,再从中任取一张牌,*X*和*Y*分别表示第一,二次取到的牌的数字,求:
 - (1) (X,Y)的联合分布律与边缘分布律;
 - (2)两次取到的牌的数字之和X+Y的分布律;
 - (3)两次取到的牌的较小数字min (X,Y)的分布律.

- 4. 设二维随机变量(X,Y)的概率密度函数 $f(x,y)= \begin{cases} 0.25xy, & 0 \leq x,y \leq 2 \\ 0, & \text{其他} \end{cases}$
- (1) \bar{x} *P*{*X* ≥ 1}, *P*{min(*X*, *Y*) < 1};
- (2) 随机事件 $A = \{X > a\}$ 与 $B = \{Y > a\}$,且 $P(A \cup B) = 0.75$,求a;
- (3) 当 $0 \le z \le 2$ 时, 求随机变量 Z = X + Y 的概率密度函数 $f_Z(z)$.

5. 设二维随机变量(*X*, *Y*)的概率密度函数为:
$$f(x,y) = \begin{cases} 1, & 0 < x < 1, & 0 < y < 2x, \\ 0, &$$
 其他

- (1) 求关于X和Y的边缘密度函数 $f_X(x)$, $f_Y(y)$;
- (2) \bar{x} *P*{*Y* ≤ 0.5|*X* ≤ 0.5}.

- 6. 设随机变量X和Y相互独立, $X\sim U(0,1)$,Y的概率密度函数为 $f(y)=\begin{cases} 0.5e^{-0.5y}, & y>0 \\ 0, & y\leq 0 \end{cases}$
- (1) 求(X,Y)的概率密度函数;
- (2) 设关于t的二次方程为 $t^2 + 2Xt + Y = 0$, 求方程有实根的概率.

- 7. 随机变量 X_1, X_2 相互独立,
- (1) $X_1 \sim b(n_1, p), X_2 \sim b(n_2, p), \text{ iff } : X_1 + X_2 \sim b(n_1 + n_2, p);$
- (2) X_1, X_2 分别服从参数是 λ_1, λ_2 的泊松分布,证明: X_1+X_2 服从参数是 $\lambda_1+\lambda_2$ 的泊松分布;
- (3) $X_1 \sim N(0,1), X_2 \sim N(0,1)$, 证明: $X_1 + X_2 \sim N(0,2)$

- 8. 随机变量 X_1, X_2 相互独立且都服从参数是 λ 的指数分布,求以下随机变量的概率密度函数和数学期望
 - (1) X_1+X_2 ; (2) Min (X_1,X_2) ; (3) Max (X_1,X_2)

- 9. 随机变量 X_1, X_2 相互独立且都服从U(0,1),求以下随机变量的概率密度函数和数学期望
- (1) X_1+X_2 ; (2) $\max(X_1,X_2)$; (3) $\min(X_1,X_2)$; (4) $|X_1-X_2|$

§ 3.5 多维随机变量函数的数字特征及性质

§ 3.6 协方差,相关系数和矩

一 选择填空题

A.
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

B.
$$E(X^2) = D(X) + (E(X))^2$$

C.
$$Cov(X, X) = D(X)$$

D.
$$D(X + Y) = D(X) + D(Y) + Cov(X, Y)$$

2. 随机变量
$$X$$
和 Y 的分布律: $X \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.2 & 0.5 & 0.3 \end{pmatrix}$, $Y \sim \begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix}$

且
$$P{X^2 = Y^2} = 1$$
,则 $Cov(X,Y) = ($)

3. 设随机变量X,Y的数学期望,方差,协方差都存在且不为0,将X,Y进行标准化:

$$X^* = \frac{X - E(X)}{\sqrt{D(X)}}, \qquad Y^* = \frac{Y - E(Y)}{\sqrt{D(Y)}}$$

$$\bigcirc E(X^*) = E(Y^*) = 0$$

②
$$D(X^*) = D(Y^*) = 1$$

$$\bigcirc$$
 Cov $(X^*, Y^*) = \rho_{XY}$

其中正确的有_____.

4. 设随机变量X和Y独立同分布,分布函数是F(x),则 $Z_1 = \max(X,Y)$ 的分布函数为

_____, $Z_2 = \min(X, Y)$ 的分布函数为_____.

5. 设相互独立的随机变量X,Y, D(X) = 1, D(Y) = 4,则 $D(X - 2Y + 1) = _____$.

6. 设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则D(X+Y)=

$$D(XY) = ____, P\{XY - Y < 0\} = ___.$$

7. 二维随机变量(*X*, *Y*)的概率密度函数为: $f(x,y) = \begin{cases} 2, & 0 \le y \le x \le 1 \\ 0, & \text{其他} \end{cases}$,则 $E(X + Y) = \underline{\qquad}$

8. 已知随机变量X的方差D(X)存在,设Y = -2X + 1,则X与Y的相关系数 $\rho_{XY} =$.

二 计算题

1. 设A,B是随机试验E的两个事件,且P(A) > 0,P(B) > 0,随机变量X和Y的定义为

$$X = \begin{cases} 1, & A$$
发生, $Y = \begin{cases} 1, & B$ 发生, $0, & B$ 不发生,

证明: 若 $\rho_{XY} = 0$,则事件A与B相互独立.

2. 盒中装有5只球,编号是1,2,3,4,5,从中随机取出3个球,X,Y表示取出的三个球中的最小和最大的号码,求(X,Y)的联合分布律与Cov(X,Y).

- 3. 盒中有1个黑球2个白球2个红球,从中任取两次,每次任取一球,*X*,*Y*分别表示取得的白球与红球的个数,
 - (1)如果每次取出的球不再放回,求(X,Y)的联合分布律与(X,Y)的相关系数 ρ_{XY} ;
 - (2)如果每次取出的球放回,求(X,Y)的联合分布律与 $P\{X = 1 | X + Y = 2\}$.

4. 设二维随机变量(X,Y)的概率密度函数为: $f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1 \\ 0, & \text{其他} \end{cases}$, 求关于X和Y的边缘概率密度函数 $f_X(x), f_Y(y)$ 及Cov(X,Y)

- 5. 设二维随机变量(X,Y)的概率密度函数是 $f(x,y) = \begin{cases} 1, & 0 < x < 2, 1 \le y \le 1.5 \\ 0, & \text{其他} \end{cases}$
- (2) 求随机变量 $Z = \max(X, Y)$ 的概率密度函数;
- (3) 求a的值,使 $P\{\min(X,Y) \le a \le \max(X,Y)\}$ 最大

6. 正方形边长为1, 在其四条边上随机取两点,

 $A_1 = \{$ 两个点在同一条边上 $\}$, $A_2 = \{$ 两个点在相邻的两条边上 $\}$, $A_3 = \{$ 两个点在相对的两条边上 $\}$, $B = \{$ 两点距离小于 $1\}$,

(1) $\bar{x}P(A_1), P(A_2), P(A_3)$ (2) $\bar{x}P(B|A_1), P(B|A_2), P(B|A_3)$ (3) $\bar{x}P(B)$

§ 4.1 大数定律 § 4.2 中心极限定理

一 选择填空题

- 1. 彩票的中奖率是0.01,某人购买了200张彩票,则中奖次数不超过2次的概率最接近()
- A. 0.68
- B. 0.5
- C. 0.62
- D. 0.56
- 2. 设 X_1, X_2, \cdots , X_n 是独立同分布的随机变量序列,且 $E(X_i) = \mu$, $D(X_i) = \sigma^2$, $i = 1, 2, \cdots \cdots$,

$$\text{ } \mathbb{M} \forall \varepsilon > 0, \quad \lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| \geq \varepsilon \right\} = \underline{\hspace{1cm}}, \quad \lim_{n \to \infty} P\left\{ \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} > 0 \right\} = \underline{\hspace{1cm}}.$$

二 计算题

- 1. 抛掷两枚均匀硬币,如果两枚都正面向上则赢得2元,否则输1元,
- (1) 设每次赢得金额为X, 求X的分布律, E(X), D(X);
- (2)某人进行27次试验,由中心极限定理计算其亏损(赢得总金额为负)的概率.

- 2. 抛掷n枚均匀硬币,其中有X枚正面向上,
- (1) 若对任意正数 ε , $\lim_{n\to\infty} P\left\{\left|\frac{x}{n}-a\right|<\varepsilon\right\}=1$, 求a;
- (2) 用中心极限定理计算: 抛掷 100 枚均匀硬币,正面向上的频率在 0.45 到 0.55 之间的概率。

- 3. 有10000人向保险公司购买一年期车险,保费2000元,根据以往数据,投保人车辆因发生事故索赔的概率是0.2,平均赔付额5000元,*X*表示10000人在一年内索赔的人数,
 - (1) 求X的分布律, E(X), D(X);
 - (2) 由中心极限定理, 求保险公司盈利超过一千万元的概率.

- 4. 已知某课程的选课学生数X是一个泊松随机变量,数学期望为100,
- (1) 写出X的分布律
- (2) 如果选课学生超过**110**人,学校就开设两个班级,由中心极限定理计算计算需要开设两个班级的概率

§ 5.1 总体和样本 § 5.2 统计量 § 5.3 抽样分布

一 选择填空题

.设随机变量 X 和 Y 相互独立,	$\perp X \sim N(0,1)$,	$Y \sim \chi^2(n)$,	则 $\frac{X}{\sqrt{Y/n}}$ ~()
------------------------	-------------------------	----------------------	-----------------------------	--	---

A. t(n-1)

B. $\chi^2(n)$

C. $\chi^{2}(n-1)$

D. t(n)

2. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,下列结论正确的是()

A.
$$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2 \sim \chi^2(n-1)$$

B.
$$\frac{1}{n}\sum_{i=1}^{n}(X_i - \bar{X})^2 \sim \chi^2(n)$$

C.
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

D.
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n)$$

3. 设 X_1, X_2, \cdots, X_n 是来自正态总体N(0,1)的样本, \bar{X} 和 S^2 是样本均值和样本方差,则()

A.
$$\bar{X}/S \sim t(n-1)$$

B.
$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$$

C.
$$n\bar{X} \sim N(0,1)$$

D.
$$\bar{X} \sim N(0,1)$$

4. 设随机变量X和Y相互独立,且 $X \sim N(0,1)$, $Y \sim N(1,1)$,则()

A.
$$P\{X + Y \le 0\} = 0.5$$

B.
$$P\{X + Y \le 1\} = 0.5$$

C.
$$P\{X - Y \le 0\} = 0.5$$

D.
$$P\{X - Y \le 1\} = 0.5$$

5. 设 X_1, X_2, \cdots, X_n 是取自总体 $X \sim b(10, 0.2)$ 的一组样本,若 $\forall \varepsilon > 0$,

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - a \right| < \varepsilon \right\} = 1, \quad \text{M} a = \underline{\qquad}.$$

6. 设 x_1, x_2, \cdots, x_{10} 是从总体中随机抽取的一组样本观测值,算得数据:

$$\sum_{i=1}^{10} x_i = 20$$
, $\sum_{i=1}^{10} x_i^2 = 940$,

则样本标准差
$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2} = \underline{\hspace{1cm}}.$$

7. 设 X_1 , X_2 ,…, X_{25} 是取自正态总体 $X \sim N(20,16)$ 的一组样本, $\bar{X} = \frac{1}{25} \sum_{i=1}^{25} X_i$,则

$$P(\bar{X} < 21) = ____, P\{\sum_{i=1}^{16} X_i - \sum_{i=17}^{25} X_i \le 155\} = ___.$$

8. 设 X_1 , X_2 , X_3 是取自正态总体 $X \sim N(0,0.25)$ 的样本,若 $a(X_1^2 + X_2^2 + X_3^2) \sim \chi^2(3)$,则 $a = \underline{\hspace{1cm}}$.

二 计算题

1. 设 X_1, X_2, X_3, X_4 是取自正态总体 $X \sim N(0,4)$ 的一组样本,

$$Y = a(X_1 - 2X_2)^2 + b(3X_1 - 4X_2)^2$$

问a,b分别为何值时,统计量Y服从 χ^2 分布,其自由度是多少?

2. 设 X_1, X_2, \cdots, X_n 是来自总体U(0,1)的样本, 求:

 $(1) P\{X_1 + X_2 + X_3 \leq 1\}; \quad (2) P\{X_1^2 + X_2^2 + X_3^2 \leq 1\}; \quad (3) P\{X_1 + \cdots + X_{1200} > 605\}$

§ 6.1 点估计 § 6.2 估计量的评选标准

一 选择填空题

1. 设 X_1, X_2, \cdots, X_n 是取自于正态总体 $N(0, \sigma^2)$ 的一组样本,	下列不是 σ^2 的无偏估计的是(
---	--------------------------

A. $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$

B. $n(\bar{X})^2$

C. $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$

D.
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-(\bar{X})^{2}$$

2. 设 X_1, X_2, \cdots, X_n 是来自总体 $N(0, \sigma^2)$ 的样本,下列四个估计量是 σ^2 的无偏估计的是______.

- 3. 设 $\hat{\theta}$ 是总体X的未知参数 θ 的无偏估计,则 $E(\hat{\theta}-\theta)=$ _____.
- 4. 设 X_1 , X_2 , X_3 是来自总体X的样本,下列关于总体均值的估计中,
- a. $(X_1 + X_2 + X_3)/3$

b. X_1

c. $(X_1 + X_2)/2$

d.
$$(2X_1 + X_2 + X_3)/4$$

则无偏估计是_____, 其中最有效的是_____.

6. 设总体X的概率密度函数为 $f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x \geq \theta \\ 0, & else \end{cases}$, θ 是未知参数, $X_{1,}X_{2,}\cdots,X_{n}$ 是来自总体X的样本,则 θ 的矩估计是_______.

7. 设 X_1, X_2, \dots, X_{10} 是来自总体 $U(0, \theta)$ 的样本, $\hat{\theta}$ 是 θ 的最大似然估计,则

 $E(\hat{\theta}/\theta) =$ ______.

二 计算题

1. 某学校进行一次关于学生考试作弊情况的随机化调查。一套卡片共20张,15张上写有"你在考试中曾作弊了吗?",5张上写有"你参加过校园马拉松吗?",每人随机抽取一张卡片,根据卡片上的问题回答"是"或"否",在参加调查的100名学生中,回答"是"有30人,回答"否"有70人,假设每人都真实回答,则学生中曾考试作弊的比例的矩估计是多少?(全校约有三分之一的学生参加过校园马拉松)

- 2. 设 X_1 , X_2 , X_3 是来自总体 $X \sim U(0,\theta)$ 的样本,
- (1)验证 $\hat{\theta}_1 = (2X_1 + 4X_3)/3$ 是 θ 的无偏估计;
- (2)验证 $\hat{\theta}_2 = \frac{4}{3} \max \{X_1, X_2, X_3\}$ 是 θ 的无偏估计;
- (3)上述哪个估计更有效?

3. 设总体X的分布律是:

$$P\{X=-1\}=\theta^2,\quad P\{X=0\}=2\theta(1-\theta),\qquad P\{X=1\}=(1-\theta)^2$$
 从总体中抽取的一组样本观测值为: $x_1=x_4=-1,\qquad x_3=x_6=x_7=0,\qquad x_2=x_5=1$

- (1) 求 θ 的最大似然估计 $\hat{\theta}$;
- (2) 设 X_1, X_2, \cdots, X_n 是来自总体X的样本,在 $\theta = \hat{\theta}$ 时,由中心极限定理,计算

$$P\{\left|\frac{X_1 + X_2 + \dots + X_{50}}{50}\right| \le 0.1\}$$

- 3. 设总体的概率密度函数为: $f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x \ge 0 \\ 0, & x < 0 \end{cases}$, X_1, X_2, \cdots, X_n 是取自总体的样本,
- (1) 求 θ 的最大似然估计 $\hat{\theta}_1$;
- (3) 证明: $\hat{\theta}_1$ 和 $\hat{\theta}_2 = nX_{(1)}$ 都是 θ 的无偏估计.

- 4. 设总体X的概率密度函数为 $f(x;\theta)=\left\{egin{array}{ll} 2x/ heta^2\ ,&0\leq x\leq \theta\ 0,& ext{ 其他} \end{array}
 ight.,~\theta$ 是未知参数, X_1,X_2,\cdots,X_n 是来自总体X的样本,
 - (1) 求 $E(X), E(X^2)$;
 - (2) 求 θ 的矩估计 $\hat{\theta}$,判断 $\hat{\theta}$ 是否是 θ 的无偏估计;
 - (3) $\overline{A}_{\underline{n}}^{\underline{c}} \sum_{i=1}^{n} X_i^2 \mathbb{E} \theta^2$ 的无偏估计,求c的值.
 - (4) 统计量 $T = \max(X_1, X_2, X_3)$, 求T的概率密度函数并构造 θ 的无偏估计.

§ 6.3 区间估计 § 6.4 单正态总体均值与方差的区间估计

§ 7.1 参数假设检验问题概述 § 7.2 单正态总体的参数检验

一 选择填空题

	1. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,样本均值 $\bar{x}=9.5$,总体均值 μ 的置信度为 0. 95
的双	又侧置信区间上限为 10.8 ,则 μ 的置信度为 0.95 的双侧置信区间是
	2. 某型号汽车的百公里油耗 X 服从正态分布 $N(\mu, 0.36)$,随机抽取 9 辆这款车测试其百公里油
耗,	得到数据如下: 9.0,9.5,8.6,10.2,9.9,8.1,9.1,7.9,8.7 (单位: 升),则 μ 的矩估计是
	,μ的置信度为 0.95 的置信区间是
	3. 体育课上随机测试了36位学生的50米游泳成绩,他们平均成绩 $\bar{x}=40$ 秒,样本标准差 $s=6$
秒,	已知学生的50米游泳成绩服从正态分布,则μ的置信度为0.95的置信区间是
	A. (38, 42) B. (39, 41) C. (38. 5, 41. 5) D. (39. 5, 40. 5)
	4. 在假设检验中,显著性水平α是()的概率
	A. 未拒绝正确原假设 B. 未拒绝错误原假设
	C. 拒绝正确原假设 D. 拒绝错误原假设
	5. 设 X_1, X_2, \cdots, X_{25} 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,样本标准差 $s=1$,在显著性水平 α 下,检
验H	$H_0: \mu = \mu_0, \ H_1: \ \mu > \mu_0, \ \mathbb{M}\alpha = ($
	A. $P\{\bar{X} < \mu_0 - 0.2 \ t_{\alpha/2}(24) H_0$ 为真} B. $P\{\bar{X} < \mu_0 - 0.2 \ t_{\alpha}(24) H_0$ 为真}
	C. $P\{\bar{X} \ge \mu_0 + 0.2 \ t_{\alpha/2}(24) \ H_0$ 为真} D. $P\{\bar{X} \ge \mu_0 + 0.2 \ t_{\alpha}(24) \ H_0$ 为真}
	6. 设 X_1, X_2, \cdots , X_{100} 是来自总体 $N(\mu, 100)$ 的样本,在显著性水平 $\alpha=0.05$ 下,检验

二 计算题

1. 交通部门对市民的出行方式进行抽样调查,1,2,3,4分别表示公共交通,私家车,骑车,步行,即总体分布为: $P\{X=k\}=\theta_k,\ k=1,2,3,4$,在收到的10000份问卷调查中,选择1的人数 $X_1=2075$,

A. $(1.65, +\infty)$ B. $(1.96, +\infty)$ C. $(-\infty, -1.65)$ D. $(-\infty, -1.96)$

 H_0 : $\mu = 0$, H_1 : $\mu > 0$, 拒绝域是 $\{(x_1, x_2, \dots, x_{100}): \bar{x} \in D\}$, 则D = 0

- (1) 在 $\theta_1 = 0.2$ 时,由中心极限定理计算 $P\{X_1 \ge 2075\}$;
- (2) 根据调查结果,可否认为选择公共交通的市民比例显著高于20%?(取显著性水平 $\alpha = 0.05$)

2. 由全国普查数据知,14周岁男孩体重*X~N*(50,100),14周岁女孩体重*Y~N*(47,100),(单位:kg),设男女孩人数相等,则14周岁儿童体重超标(大于65)率是多少?数据还显示,全国14周岁儿童的平均体重为48, *A*, *B*分别是某山区学校与沿海城市学校各36位14周岁儿童的体重数据,可否认为*A*, *B*两地14周岁儿童的平均体重与全国的平均值相比显著偏低或显著偏高?设体重服从正态分布,取显著性水平为0.05.

- 3. 质检局为检验某品牌牛奶每百毫升平均含钙量,随机抽查了 36 盒牛奶,结果每百毫升平均含钙量为 115 毫克,已知该品牌牛奶每百毫升含钙量*X~N*(μ, 36)
 - (1) 求总体均值μ的置信度为 0.95 的置信区间;
- (2) 该牛奶包装盒上标注每百毫升含钙量约为 118 毫克,根据检验结果,可否认为与标注有显著差距?(取显著性水平 $\alpha=0.05$)

- 4. 航空公司为了解今天旅客携带行李的平均重量,随机选择了 25 位乘客,称重了他们的行李后得知平均重量为 18 磅,已知旅客携带行李的重量 $X \sim N(\mu, 4)$.
 - (1) 求总体均值µ的置信度为 0.95 的置信区间;
- (2) 根据以往数据,旅客携带行李的重量 $X \sim N(17.6,4)$,今天旅客携带行李的平均重量与以往相比有无显著变化?(取显著性水平 $\alpha = 0.05$)

- 5. 为估计采用新工艺生产的某批次轮胎的平均寿命,随机抽取 16 只轮胎进行寿命试验,测得平均寿命 $\overline{x}=4.709$ (单位:万千米),样本标准差 s=0.248,设轮胎寿命 $X_{\sim}N(\mu,\sigma^2)$,
 - (1) 求轮胎平均寿命 μ 的置信度为 0.95 的置信区间;
- (2) 采用新工艺制造的这批轮胎的寿命相比以前的平均寿命 4.585 万千米是否有显著提高?(取显著性水平为 0.05)

- 6. 医院为了解慢性铅中毒患者的脉搏(每分钟)与正常人有无显著差别,测量了 25 位患者,得知他们的脉搏平均次数 \bar{x} =69,已知脉搏次数 $X \sim N(\mu, 10^2)$
 - (1) 求总体均值μ的置信度为 0.95 的置信区间;
- (2) 根据以往数据,正常人的脉搏次数 $X \sim N(74, 10^2)$,那么患者的脉搏与正常人相比有无显著差异? 取显著性水平 $\alpha = 0.05$.

一 选择填空题

1. 设事件 <i>A</i> , <i>B</i> 互不相容, 则(`						((则	Ţ		卒]2	木	不	. –	互	3	ì	4.	4,	4	事	设		1
-------------------------------------	---	--	--	--	--	--	---	---	---	---	--	---	----	---	---	-----	---	---	---	----	----	---	---	---	--	---

A.
$$P(A) = 1 - P(B)$$

A.
$$P(A) = 1 - P(B)$$
 B. $P(AB) = P(A)P(B)$ C. $P(\bar{A}\bar{B}) = 0$ D. $P(\bar{A} \cup \bar{B}) = 1$

C.
$$P(\bar{A}\bar{B}) = 0$$

$$D. P(\bar{A} \cup \bar{B}) = 1$$

2. 以下随机变量
$$X,Y$$
不相互独立的是()

A.
$$A,B$$
是任意集合,且 $P\{X \in A,Y \in B\} = P\{X \in A\}P\{Y \in B\}$

B. 二维随机变量(*X*, *Y*), 其联合概率密度函数为
$$f(x,y) = \begin{cases} 1/\pi, & x^2 + y^2 \le 1 \\ 0, & x^2 + y^2 > 1 \end{cases}$$

C.
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, 0)$$

D. 从一副扑克牌(去掉王牌)随机抽取一张,取出的数字
$$X$$
和取出的花色 Y

3. 设随机变量
$$X \sim N(0.1)$$
, 其分布函数为 $\Phi(x)$, 则 $P(|X| > x) = ($

A.
$$2\Phi(x) - 1$$

B.
$$2(1 - \Phi(x))$$

B.
$$2(1 - \Phi(x))$$
 C. $\Phi(x) - \Phi(-x)$ D. $1 - 2\Phi(-x)$

$$1 - 2\Phi(-x)$$

4. 设
$$X_1, X_2, X_3$$
是来自总体 $X \sim U(0, \theta)$ 的样本,以下是 θ 的无偏估计量的是()

A.
$$(X_1 + X_2 + X_3)/3$$

B. min
$$\{X_1, X_2, X_3\}$$

C.
$$\max\{X_1, X_2, X_3\}$$

D.
$$(X_1 + 2X_2 + 3X_3)/3$$

5. 体育课上随机测试了36位学生的50米游泳成绩, 他们平均成绩
$$\bar{x} = 40$$
秒, 样本标准差

$$s = 6$$
秒,已知学生的50米游泳成绩服从正态分布,则 μ 的置信度为0.95的置信区间是()

6. 设
$$A, B$$
为两个随机事件, 且 $P(A) = 0.7$, $P(A - B) = 0.3$,则 $P(\bar{A} \cup \bar{B}) =$ ______.

7. 盒中有2个白球2个红球和1个黑球,每次随机取出一个球,观察颜色后放回,重复进行三次,则三种

8. 设相互独立的随机变量
$$X,Y,D(X)=1,D(Y)=4$$
,则 $D(X-2Y+1)=$ ______.

9. 设
$$(X,Y)$$
的联合概率密度函数 $f(x,y) = \begin{cases} 4xy & 0 \le x, y \le 1 \\ 0, & \text{其他} \end{cases}$,则 $P\{X > Y\} =$ _______.

10. 设
$$X_1, X_2, \cdots, X_{100}$$
 是来自于总体 $X \sim N(\mu, 100)$ 的样本,则 $D\left(\frac{1}{100}\sum_{i=1}^{100}X_i\right) =$ ______.

<u> </u>	计算题	
11.	盒中装有标号为1~10的10个环	球,随机无放回取出3个球,取出的球中最大的标号是X,求:
(1)	最大标号超过6的概率;	(2) X的分布律.

12. 一项血液化验有95%的把握诊断某种疾病,但用于健康人也有1%的"伪阳性"结果,该疾病的患者事实上仅占总人口的0.5%,如果全民检验,结果为阳性的概率是多少?若某人化验结果为阳性,则此人确实患病的概率是多少?

- **13.** 两人相约去车站乘车,设他们的到达时刻X,Y相互独立,且都服从上午9点到**10**点之间的均匀分布 U(0,1),(单位:小时)
- (1)9点10分有一辆车到达车站,求他们都没有赶上这班车的概率;
- (2) 求后到者的到达时刻T = Max(X,Y)的概率密度函数和数学期望.

- 14. 光源离地面高度为1, 与竖直方向的夹角 $\theta \sim U[-\pi/2,\pi/2]$, 地面上的光点坐标是X, 求:
- $(1) \ P\big\{X \le \sqrt{3}\big\};$
- (2) X的分布函数和概率密度函数.

- 15. 设(X,Y)的概率密度函数为: $f(x,y) = \begin{cases} 1, & 0 < x < 1, & 0 < y < 2x \\ 0, & \text{其他} \end{cases}$
- (1) 求边缘密度函数 $f_X(x)$, $f_Y(y)$; (2) 求Cov(X,Y).

- **16.** 某种彩票的中奖概率p未知,设每次中奖与否相互独立,
- (1)某人购买了100张彩票,如果已知p=0.01,求他至少中奖一次的概率;
- (2)m个人每人购买了n张彩票,中奖次数分别是 x_1, x_2, \cdots, x_m ,求p的矩估计和最大似然估计.

自测题三

一 选择填空题

1	设AR	C为三个随机事件,	$\exists P(C AR)$) = 1 III ()
1.	VXH,D		$\exists I. $	/ 一 1 ,火归(

A. P(C) = P(AB)

B.
$$P(C) = P(A \cup B)$$

C. $P(C) \ge P(A) + P(B) - 1$

D.
$$P(C) \le P(A) + P(B) - 1$$

2. 设随机变量
$$X$$
的概率密度函数是 $f(x) = \begin{cases} ax^{-\frac{3}{2}}, & 1 < x < 9 \\ 0, & \text{其他} \end{cases}$,则 $a = ($)

A. 1/2

B. 1/3

D. 3/4

3. 将长度1米的线段随机分为3段,这三段能围成三角形的概率是()

B. 1/3

C. 1/4 D. 4/9

4. 设二维随机变量(X,Y)~N(0,1,1,1,0),则下列事件中概率为0.5的是()

A. $\{X + Y \le 0\}$

B. $\{X + Y \le 1\}$ C. $\{X - Y \le 0\}$ D. $\{X - Y \le 1\}$

5. 英语考试的通过率 $X \sim U(\theta, 1)$, 随机调查了n所学校,得到一组样本: x_1, x_2, \cdots, x_n ,得知

$$x_{(1)} = 0.64$$
, $x_{(n)} = 0.98$, $\bar{x} = 0.8$,则 θ 的矩估计 $\hat{\theta}_1$ 与最大似然估计 $\hat{\theta}_2$ 是()

A. $\hat{\theta}_1 = 0.8$, $\hat{\theta}_2 = 0.98$

$$\hat{\theta}_{2} = 0.98$$

B.
$$\hat{\theta}_1 = 0.6$$
, $\hat{\theta}_2 = 0.81$

$$\hat{\theta}_2 = 0.81$$

C.
$$\hat{\theta}_1 = 0.6$$
, $\hat{\theta}_2 = 0.64$

D.
$$\hat{\theta}_1 = 0.64$$
, $\hat{\theta}_2 = 0.81$

6. 设(X,Y)服从 $D = \{(x,y) | |X| + |Y| \le 2\}$ 上的均匀分布,则 $P\{X^2 < Y\} =$ ______.

7. 设二维随机变量(X,Y)的联合概率密度函数为: $f(x,y) = \begin{cases} 6x, & 0 \le x \le y \le 1, \\ 0, & else \end{cases}$

则 $P\{X+Y\leq 1\}=$ _____.

8. 设 $X_1, X_2, \cdots, X_{100}$ 是来自正态总体 $N(\mu, 1)$ 的样本,样本均值 $\bar{x} = 5$,总体均值 μ 的置信度为0.95的置信区间是_____

二 计算题

1. 已知盒中有2个白球和3个黑球,每次从中任取一球,取后不放回,直到两种颜色的球都取到 为止,此时的取球次数是X,求X的分布律和E(X).

2. 把标号是a,b两个球随机放入标号为1,2,3,4的四个盒子,X,Y分别表示放入标号为1,2的盒中的球的个数,求(X,Y)的联合分布律相关系数 ρ_{XY}

3.设随机变量
$$X$$
的概率密度函数 $f(x) = \left\{ \begin{array}{ll} 1-|x|, & -1 \leq x \leq 1 \\ 0, & \text{其他} \end{array} \right.$,求:

- (1) X的分布函数F(x);
- (2) 求|X|的数学期望与方差.

- 4. 设二维随机变量(X,Y)服从区域 $D = \{(X,Y) | 0 \le x, y \le 2\}$ 上的均匀分布,
- (1) \bar{x} *P*{*X* ≥ 1}, *P*{min(*X*, *Y*) < 1};
- (2) 随机事件 $A = \{X > a\}$ 与 $B = \{Y > a\}$,且 $P(A \cup B) = 0.75$,求a;
- (3) 求X+Y的概率密度函数

5. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ, σ 是未知参数,

$$\bar{X} = \frac{1}{n} \sum_{i=0}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=0}^{n} (X_i - \bar{X})^2$, $T = \bar{X}^2 - \frac{1}{n} S^2$

(1) 证明 \bar{X} 和 S^2 分别是 μ 和 σ^2 的无偏估计; (2) 证明 T 是 μ^2 的无偏估计.

- 6. 测量零件长度时的误差 $X \sim N(\mu, 0.5)$ (单位:毫米),测量了200次,平均误差 $\bar{x} = 0.1$,
- (1) 在 $\mu = 0$ 时,计算 $P\{|\bar{X}| \geq 0.1\}$;
- (2) 根据测量结果,可否认为 μ 显著不为 0? (取显著性水平 $\alpha = 0.05$)

7. 设离散型总体 X的分布是:

$$P\{X=1\} = 1 - \theta, \ P\{X=2\} = \theta - \theta^2, \ P\{X=3\} = \theta^2$$

从总体中随机抽取样本容量为n的样本,其中 1,2,3 各有 X_1,X_2,X_3 个, $X_1+X_2+X_3=n$,

- (1) 求 θ 的最大似然估计 $\hat{\theta}$;
- (2) 求常数 a_1, a_2, a_3 ,使 $T = a_1 X_1 + a_2 X_2 + a_3 X_3$ 是 θ 的无偏估计.

8. 设二维随机变量
$$X,Y$$
的联合密度函数为: $f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{其他} \end{cases}$, 求:

(1)
$$P\{X < Y\}$$
; (2) 随机变量 $Z = X + Y$ 的概率密度函数 $f_Z(z)$.

9. 设总体
$$X$$
的概率密度函数 $f(x)=egin{cases} \frac{1}{ heta^2}xe^{-\frac{x}{ heta}}, & x>0 \\ 0, & x\leq 0 \end{cases}, \quad X_1,X_2,\cdots,X_n$ 是来自总体 X 的样本,

- (1) 求 θ 的矩估计和最大似然估计
- (2) 判断上述估计是否是无偏估计?