MEM6810 Engineering Systems Modeling and Simulation

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Spring 2022 (full-time)

Assignment 1

Due Date: March 16 (in class)

Instruction

- (a) You can answer in English or Chinese or both.
- (b) Show **enough** intermediate steps.
- (c) Write your answers **independently**.

.....

Question 1 (10 points)

Suppose that $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, and Cov(X,Y) = 0. Give an example that X is not independent of Y.

Question 2 (10 + 10 = 20 points)

Suppose that $X_1 \sim \text{Pois}(\lambda_1)$, $X_2 \sim \text{Pois}(\lambda_2)$, and $X_1 \perp X_2$.

- (1) Prove that $X_1 + X_2 \sim \text{Pois}(\lambda_1 + \lambda_2)$.
- (2) Prove that given $X_1 + X_2 = n$, $X_1 \sim B(n, \lambda_1/(\lambda_1 + \lambda_2))$.

Question 3 (20 + 20 = 40 points)

Suppose that $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ and } X_1 \perp X_2.$

- (1) Prove that $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$ using the definition.
- (2) Prove that $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$ using the bivariate transformation.

Question 4 (10 points)

Recall the Numerical Integration example in Lec 1 page 28/33. Suppose that f(x) is continuous on [a, b]. Let

$$Y_N := \frac{b-a}{N} [f(X_1) + \dots + f(X_N)].$$

Prove that $Y_N \xrightarrow{a.s.} \int_a^b f(x) dx$ as $N \to \infty$.

Question 5 (10 + 10 = 20 points)

Recall the Numerical Integration example in Lec 1 page 28/33. Now we consider the case of higher dimensionality. Suppose $\mathbf{x} \in \mathbb{R}^d$ and $f(\mathbf{x})$ is continuous on $[a, b]^d$. We want to compute $\int_{[a, b]^d} f(\mathbf{x}) d\mathbf{x}$.

- (1) Describe the Monte Carlo method and give the final estimator Y_N , where N denotes the number of randomly sampled points. [Hint: Similar to the 1D case.]
- (2) **Definition.** Let $\{b_n\}$ be a sequence of real numbers and $\{W_n\}$ a sequence of random variables. We say $\{W_n\}$ is at most of order b_n in probability, denoted $W_n = \mathcal{O}_p(b_n)$, if for every $\epsilon > 0$ there exist a finite $\Delta_{\epsilon} > 0$ and $N_{\epsilon} \in \mathbb{N}$, such that

$$\mathbb{P}\left\{\omega: \left|\frac{W_n(\omega)}{b_n}\right| > \Delta_{\epsilon}\right\} < \epsilon \text{ for all } n > N_{\epsilon}.$$

Prove that $Y_N - \int_{[a,b]^d} f(\boldsymbol{x}) d\boldsymbol{x} = \mathcal{O}_p(N^{-1/2})$, which does not depend on the dimensionality d.