Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 03 – Funções lógicas. Simbologia das portas lógicas. Tabela verdade e expressão das portas lógicas

Processador MIPS

ALU/ULA

ALU - Arithmetic Logic Unit

ULA - Unidade Lógico e Aritmética

ALU - Arithmetic Logic Unit

ULA - **U**nidade **L**ógico e **A**ritmética

Níveis de Abstração

Transistor

É usado como componente básico para implementar as portas lógicas

Entrada na base = $1 \Rightarrow$ "liga" a chave \Rightarrow c/e funciona como um fio em curto-circuito \Rightarrow transistor conduzindo

Entrada na base = $0 \Rightarrow$ "desliga" a chave \Rightarrow c/e funciona como um fio cortado \Rightarrow transistor

aberto ou cortado

1º Transistor

Funções Lógicas

Variáveis têm apenas 2 estados: 0 ou 1, F ou V Também chamadas de Funções Booleanas devido a George Boole.

Uma chave binária

Uma lâmpada controlada por uma chave

(a) Conexão simples com uma bateria

(b) Usando uma conexão "terra" como caminho de retorno

Representação: S = A.B

Função AND

Situações Possíveis:

Chave A aberta	A=0]	
Chave B aberta	B=0	$S = A . B = 0 L \hat{a} mpada Apagada$
Chave A aberta	A=0	S=A. $B=0$ Lâmpada Apagada
Chave B fechada		
Chave A fechada	A=1 $B=0$	
Chave B aberta	B=0 ∫	$S = A . B = 0 L \hat{a}mpada Apagada$
Chave A fechada	A=1 B=1	S = A D = 1 Lâmpada Acosa
Chave B fechada	B=1 ∫	$S = A . B = 1 L \hat{a} mpada Acesa$

(a) Função lógica AND (ligação em série)

Tabela Verdade

Tabela Verdade: Mapa onde se colocam todas as possíveis situações de entradas e saídas de um circuito lógico.

Porta AND

```
a = 0 \Rightarrow T1 e T2 abertos \Rightarrow S = 0 \Rightarrow (mesmo que b = 1)

b = 0 \Rightarrow T2 aberto \Rightarrow S = 0 \Rightarrow (mesmo que a = 1)

a = b = 1 \Rightarrow T1 e T2 conduzem \Rightarrow S = 1 \Rightarrow (fechados)
```

Porta AND implementada com transistores

Função OR

Situações Possíveis:

Chave A aberta	A=0]	S = A + B = 0 Lâmpada Apagada
Chave B aberta	A=0 B=0	S=A+B=0 Lampada Apagada
Chave A aberta	A=0	. S=A+B=1Lâmpada Acesa
Chave B fechada	B=1∫	
Chave A fechada	A=1	S=A+B=1Lâmpada Acesa
Chave B aberta	B=0∫	S=A+B=1 Lampada Acesa
Chave A fechada	A=1	• S=A+B=1Lâmpada Acesa
Chave B fechada	B=1	5-11 · D - 1 Lampada 11eesa

Representação: S = A + B

(b) Função lógica OR (ligação em paralelo)

Tabela Verdade

Comportamento

Combinação de duas funções lógicas

<u>Função NOT</u>

Situações Possíveis:

Chave A aberta $A=0 \longrightarrow S=\overline{A}=1$ Lâmpada Acesa Chave A fechada $A=1 \longrightarrow S=\overline{A}=0$ Lâmpada Apagada

Representação: $S = \overline{A}$

Tabela Verdade

TV da Porta NOT

Símbolo da Porta NOT

Função NAND

Situações Possíveis:

Chave A aberta
Chave B aberta

Chave A aberta

Chave A aberta

Chave B fechada

Chave B fechada

Chave A fechada

Chave B aberta

Chave B fechada

Chave B fechada $A=0 \\
B=1$ $S = \overline{A \cdot B} = 1 L \hat{a} mpada A cesa$ $S = \overline{A \cdot B} = 1 L \hat{a} mpada A cesa$ $A=1 \\
B=0$ $S = \overline{A \cdot B} = 0 L \hat{a} mpada A pagada$ Chave B fechada

Chave B fechada B=1

 $Representação: S = \overline{A \cdot B}$

Tabela Verdade

Símbolo da Porta NAND

Função NOR

Situações Possíveis:

Chave A aberta
Chave B aberta

Chave A aberta

Chave A aberta

Chave B fechada

Chave B fechada

Chave A fechada

Chave B aberta

Chave B aberta

Chave B aberta

Chave B fechada

Representação: $S = \overline{A + B}$

Tabela Verdade

Função XOR (OU Exclusivo)

```
Chave A aberta
                      A=0
                             S = A \oplus B = 0 Lâmpada Apagada
Chave B aberta
Chave A aberta
                      A=0
                             S = A \oplus B = 1 L \hat{a} mpada Acesa
Chave B fechada
Chave A fechada
                      A=1
                             S = A \oplus B = 1 Lâmpada Acesa
Chave B aberta
Chave A fechada
                      A=1
                             S = A \oplus B = 0 Lâmpada Apagada
Chave B fechada
```

Representação: $S = A \oplus B$

Obs. Lâmpada só acende quando A != B

Função XOR (OU Exclusivo)

```
Chave A aberta
                      A=0
                             S = A \oplus B = 0 Lâmpada Apagada
Chave B aberta
Chave A aberta
                     A=0
                             S = A \oplus B = 1 L \hat{a} mpada Acesa
Chave B fechada
Chave A fechada
                      A=1
                             S = A \oplus B = 1 Lâmpada Acesa
Chave B aberta
Chave A fechada
                     A=1
                             S = A \oplus B = 0 Lâmpada Apagada
Chave B fechada
```

Representação: $S = A \oplus B$

Obs. Lâmpada só acende quando A != B

Tabela Verdade

Função XNOR (Coincidência)

```
Chave A aberta A=0 B=0 S=A \odot B=1 L \hat{a} m p a da A cesa Chave A aberta A=0 A
```

Obs. Lâmpada só acende quando A = B

 $Representação: S = A \odot B = \overline{A \oplus B}$

Função XNOR (Coincidência)

```
Chave A aberta A=0 B=0 S=A \odot B=1 L \hat{a} m p a da A cesa Chave A aberta A=0 A
```

Obs. Lâmpada só acende quando A = B

Representação: $S = A \odot B = \overline{A \oplus B}$

Tabela Verdade

Outras representações

(a) Circuito que implementa

$$f = \overline{x}_1 + x_1 \cdot x_2$$

<i>X</i> 1	<i>x</i> 2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

(b) Tabela verdade para

Outras representações

Formas de Onda (Diagrama de Tempo)

Mostram o comportamento de uma função lógica durante um intervalo de tempo. Exemplo:

Porta OR

A	В	S	•
0	0	0	
0	1	1	
1	0	1	
1	1	1	,

Tabela Verdade: Representa uma situação estática

Mostra todos os valores que as entradas podem assumir, mas <u>não</u>

mostra a variação desses valores durante um intervalo de tempo

Formas de Onda

Representação dinâmica da função lógica Exemplo: Porta OR

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

(n)x.y+x.z

Próxima aula

- Álgebra de Boole
- Teoremas de DeMorgan