

Continuity of solutions to operator equations with respect to a parameter.

A.G. Ramm

Mathematics Department, Kansas State University,
Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract

Let $A(k)u(k) = f(k)$ (1) be an operator equation, X and Y are Banach spaces, $k \in \Delta \subset \mathbb{C}$ is a parameter, $A(k) : X \rightarrow Y$ is a map, possibly nonlinear. Sufficient conditions are given for continuity of $u(k)$ with respect to k . Necessary and sufficient conditions are given for the continuity of $u(k)$ with respect to k in the case of linear operators $A(k)$.

1 Introduction

Let X and Y be Banach spaces, $k \in \Delta \subset \mathbb{C}$ be a parameter, Δ be an open bounded set on a complex plane \mathbb{C} , $A(k) : X \rightarrow Y$ be a map, possibly nonlinear, $f := f(k) \in Y$ be a function.

Consider an equation

$$A(k)u(k) = f(k). \quad (1.1)$$

We are interested in conditions, sufficient for the continuity of $u(k)$ with respect to $k \in \Delta$. There is a large literature (see eg. [1], [2]) on this subject. The novel points in our paper include necessary and sufficient conditions for continuity of the solution to equation (1.1) and sufficient conditions for its continuity when the operator $A(k)$ is nonlinear.

Consider separately the cases when $A(k)$ is a linear map and when $A(k)$ is a nonlinear map.

Assumption A_1 . $A(k) := X \rightarrow Y$ is a linear bounded operator, and

a) equation (1.1) is uniquely solvable for any $k \in \Delta_0 := \{k : |k - k_0| \leq r\}$, $k_0 \in \Delta$, $\Delta_0 \subset \Delta$,

Math subject classification: 46T20, 47J05, 47J07

key words: dependence on a parameter, operator equations

- b) $f(k)$ is continuous with respect to $k \in \Delta_0$, $\sup_{k \in \Delta_0} \|f(k)\| \leq c_0$;
- c) $\lim_{h \rightarrow 0} \sup_{\substack{k \in \Delta_0 \\ v \in M}} \|[A(k+h) - A(k)]v\| = 0$, where $M \subset X$ is an arbitrary bounded set,
- d) $\sup_{\substack{k \in \Delta_0 \\ f \in N}} \|A^{-1}(k)f\| \leq c_1$, where $N \subset Y$ is an arbitrary bounded set, and c_1 may depend on N .

Theorem 1.1. *If Assumptions A_1 hold, then*

$$\lim_{h \rightarrow 0} \|u(k+h) - u(k)\| = 0. \quad (1.2)$$

Proof. One has

$$\begin{aligned} u(k+h) - u(k) &= A^{-1}(k+h)f(k+h) - A^{-1}(k)f(k) \\ &= A^{-1}(k+h)f(k+h) - A^{-1}(k)f(k+h) + A^{-1}(k)f(k+h) - A^{-1}(k)f(k). \end{aligned} \quad (1.3)$$

$$\|A^{-1}(k)[f(k+h) - f(k)]\| \leq c_1 \|f(k+h) - f(k)\| \rightarrow 0 \quad \text{as } h \rightarrow 0. \quad (1.4)$$

$$\begin{aligned} \|A^{-1}(k+h) - A^{-1}(k)\| &= \|A^{-1}(k+h)[A(k+h) - A(k)]A^{-1}(k)\| \\ &\leq c_1^2 \|A(k+h) - A(k)\| \rightarrow 0 \quad \text{as } h \rightarrow 0. \end{aligned} \quad (1.5)$$

From (1.3)–(1.5) and Assumptions A_1 the conclusion of Theorem 1 follows. \square

Remark 1.2. *Assumptions A_1 are not only sufficient for the continuity of the solution to (1.1), but also necessary if one requires the continuity of $u(k)$ uniform with respect to f running through arbitrary bounded sets. Indeed, the necessity of the assumption a) is clear; that of the assumption b) follows from the case $A(k) = I$, where I is the identity operator; that of the assumption c) follows from the case $A(k) = I$, $A(k+h) = 2I$, $\forall h \neq 0$, $f(k) = g \forall k \in \Delta_0$. Indeed, in this case assumption c) fails and one has $u(k) = g$, $u(k+h) = \frac{g}{2}$, so $\|u(k+h) - u(k)\| = \frac{\|g\|}{2}$ does not tend to zero as $h \rightarrow 0$.*

To prove the necessity of the assumption d), assume that $\sup_{k \in \Delta_0} \|A^{-1}(k)\| = \infty$. Then, by the Banach-Steinhaus theorem, there is an element f such that $\sup_{k \in \Delta_0} \|A^{-1}(k)f\| = \infty$, so that $\lim_{j \rightarrow \infty} \|A^{-1}(k_j)f\| = \infty$, $k_j \rightarrow k \in \Delta_0$. Then $\|u(k_j)\| = \|A^{-1}(k_j)f\| \rightarrow \infty$, so $u(k_j)$ does not converge to $u := u(k) = A^{-1}(k)f$, although $k_j \rightarrow k$.

Assumption A_2 . *$A(k) : X \rightarrow Y$ is a nonlinear map and a), b), c) and d) of Assumption A_1 hold, and the following assumption holds:*

- e) $A^{-1}(k)$ is a homeomorphism of X onto Y for each $k \in \Delta_0$.

Remark 1.3. *Assumption e) is included in d) in the case of a linear operator $A(k)$ because if $\|A(k)\| \leq c_2$ and assumption d) holds, then $\|A^{-1}(k)\| \leq c_1$ and $A(k)$, $k \in \Delta_0$, is an isomorphism of X onto Y .*

Theorem 1.4. *If A_2 hold, then (1.2) holds for the solution $u(k)$ to (1.1).*

Remark 1.5. Let us introduce the following assumption:

Assumption A_d . :

Assumptions A_2) hold and

- f) $\dot{f}(k) := \frac{df(k)}{dk}$ is continuous in Δ_0 ,
- g) $\dot{A}(u, k) := \frac{\partial A(u, k)}{\partial k}$ is continuous with respect to (wrt) k in Δ_0 and wrt $u \in X$,
- j) $\sup_{k \in \Delta_0} \| [A'(u, k)]^{-1} \| \leq c_3$, where $A'(u, k)$ is the Fréchet derivative of $A(u, k)$ and $[A'(u, k)]^{-1}$ is continuous with respect to u and k .

Claim: If Assumption A_d holds, then

$$\lim_{h \rightarrow 0} \| \dot{u}(k + h) - \dot{u}(k) \| = 0. \quad (1.6)$$

Remark 1.6. If Assumptions A_1 hold except one: $A(k)$ is not necessarily a bounded linear operator, $A(k)$ may be unbounded, closed, densely defined operator-function, then the conclusion of Theorem 1.1 still holds and its proof is the same. For example, let $A(k) = L + B(k)$, where $B(k)$ is a bounded linear operator continuous with respect to $k \in \Delta_0$, and L is a closed, linear, densely defined operator from $D(L) \subset X$ into Y . Then

$$\| A(k + h) - A(k) \| = \| B(k + h) - B(k) \| \rightarrow 0 \quad \text{as } h \rightarrow 0,$$

although $A(k)$ and $A(k + h)$ are unbounded.

In Section 2 proofs of Theorem 1.4 and of Remark 1.5 are given.

2 Proofs

Proof of Theorem 1.4. One has:

$$A(k + h)u(k + h) - A(k)u(k) = f(k + h) - f(k) = o(1) \quad \text{as } h \rightarrow 0.$$

Thus

$$A(k)u(k + h) - A(k)u(k) = o(1) - [A(k + h)u(k + h) - A(k)u(k + h)].$$

Since $\sup_{\{u(k+h): \|u(k+h)\| \leq c\}} \|A(k + h)u(k + h) - A(k)u(k + h)\| \rightarrow 0$, one gets

$$A(k)u(k + h) \rightarrow A(k)u(k) \quad \text{as } h \rightarrow 0. \quad (2.1)$$

By the Assumption A_2 , item e), the operator $A(k)$ is a homeomorphism. Thus (2.1) implies (1.2).

Theorem 1.4 is proved. \square

Proof of Remark 1.5. First, assume that $A(k)$ is linear. Then

$$\frac{d}{dk}A^{-1}(k) = -A^{-1}(k)\dot{A}(k)A^{-1}(k), \quad \dot{A} := \frac{dA}{dk}. \quad (2.2)$$

Indeed, differentiate the identity $A^{-1}(k)A(k) = I$ and get $\frac{dA^{-1}(k)}{dk}A(k) + A^{-1}(k)\dot{A}(k) = 0$. This implies (2.2). This argument proves also the existence of the derivative $\frac{dA^{-1}(k)}{dk}$. Formula $u(k) = A^{-1}(k)f(k)$ and the continuity of \dot{f} and of $\frac{dA^{-1}(k)}{dk}$ yield the existence and continuity of $\dot{u}(k)$. Remark 1.5 is proved for linear operators $A(k)$. \square

Assume now that $A(k)$ is nonlinear, $A(k)u := A(u, k)$. Then one can differentiate (1.1) with respect to k and get

$$\dot{A}(u, k) + A'(u, k)\dot{u} = \dot{f}, \quad (2.3)$$

where A' is the Fréchet derivative of $A(u, k)$ with respect to u . Formally one assumes that \dot{u} exists, when one writes (2.3), but in fact (2.3) proves the existence of \dot{u} , because \dot{f} and $\dot{A}(u, k) := \frac{\partial A(u, k)}{\partial k}$ exist by the Assumption A_d and $[A'(u, k)]^{-1}$ exists and is an isomorphism by the Assumption A_d , item j). Thus, (2.3) implies

$$\dot{u} = [A'(u, k)]^{-1}\dot{f} - [A'(u, k)]^{-1}\dot{A}(u, k). \quad (2.4)$$

Formula (2.4) and Assumption A_d imply (1.6).

Remark 1.5 is proved. \square

3 Applications

3.1 Fredholm equations depending on a parameter

Let

$$Au := u - \int_D b(x, y, k)u(y)dy := [I - B(k)]u = f(k), \quad (3.1)$$

where $D \subset R^n$ is a bounded domain, $b(x, y, k)$ is a function on $D \times D \times \Delta_0$, $\Delta_0 := \{k : |k - k_0| < r\}$, $k_0 > 0$, $r > 0$ is a sufficiently small number. Assume that $A(k_0)$ is an isomorphism of $H := L^2(D)$ onto H , for example, $\int_D \int_D |b(x, y, k_0)|^2 dx dy < \infty$ and $N(I - B(k_0)) = \{0\}$, where $N(A)$ is the null-space of A . Then, $A(k_0)$ is an isomorphism of H onto H by the Fredholm alternative, and Assumption A_1 hold if $f(k)$ is continuous with respect to $k \in \Delta_0$ and

$$\lim_{h \rightarrow 0} \int_D \int_D |b(x, y, k + h) - b(x, y, k)|^2 dx dy = 0 \quad k \in \Delta_0. \quad (3.2)$$

Condition (3.2) implies that if $A(k_0)$ is an isomorphism of H onto H , then so is $A(k)$ for all $k \in \Delta_0$ if $|k - k_0|$ is sufficiently small.

Remark 1.5 implies to (3.1) if \dot{f} is continuous with respect to $k \in \Delta_0$, and $\dot{b} := \frac{\partial b}{\partial k}$ is continuous with respect to $k \in \Delta_0$ as an element of $L^2(D \times D)$. Indeed, under these assumptions $\dot{u} = [I - B(k)]^{-1}(\dot{f} - \dot{B}(k)u)$ and the right-hand side of this formula is continuous in Δ_0 .

3.2 Semilinear elliptic problems

Let

$$A_1(k)u := Lu + g(u, k) = f_1(k), \quad (3.3)$$

where $L \geq m > 0$ is an elliptic, second order, self-adjoint, positive-definite operator with real-valued coefficients in a bounded domain $D \subset \mathbb{R}^3$ with a smooth boundary, and $g(u, k)$ is a smooth real-valued function on $\mathbb{R} \times \Delta_0$. Then problem (3.3) is equivalent to (1.1) with

$$A(k)u := u + L^{-1}g(u, k) = f(k) := L^{-1}f_1(k). \quad (3.4)$$

The operator $L^{-1}g(u, k)$ is compact in $C(D)$. Therefore equation (3.4) is solvable in $C(D)$ by the Schauder principle if the map $A(k)$ maps a ball $B(0, R) := B_R$ into itself for some $R > 0$. This happens if $g' := g'_u > 0$ for $u > 0$ and $\inf_{R>0} \frac{g(R)}{R} \leq m^{-1}$, where $g(R) := \max_{k \in \Delta_0} |g(R, k)|$ and $\|L^{-1}\|_{C(D) \rightarrow C(D)} \leq m$. Equation (3.4) has at most one solution if $g' > 0$. Assumptions A_2 can be verified, for example, if $g(u, k)$ is a smooth function on $\mathbb{R} \times \Delta_0$ and $g' \geq 0$. In this case $\|A^{-1}(k, f)\| \leq c\|f\|$, and $A^{-1}(k)$ is a continuous operator defined on all of $H := H_0^2(D)$, where H is a real Hilbert space, for any fixed $k \in \Delta_0$. If, for example, $L = -\Delta + k^2$ is the Dirichlet operator in $D \subset \mathbb{R}^3$, then L^{-1} is a positive-definite integral operator with the kernel $0 \leq G(x, y) < \frac{\exp(-k|x-y|)}{4\pi|x-y|}$, and $m \leq \frac{\int_0^{ka} e^{-s} s ds}{k^2}$, where a is the radius of D , that is, $2a := \sup_{x,y \in D} |x - y|$.

References

- [1] Kantorovich, L., Akilov, G., Functional analysis, Pergamon Press, New York, 1982
- [2] Ramm, A.G., Some theorems on equations with parameters in Banach space, Doklady Acad. of Sci. Azerb. SSR, 22, (1966), 3-6.