

Plan of Presentation

- Motivations of my studies.
- Preparation of simulation.
- Error parametrization.
- Kinematic fit configuration.
- Results of refit on simulation.
- Results of refit on data.
- Conclusions and outlook.

Motivations

Improvement of resolutions of channels with neutral mesons decays.

MM(pp)[GeV/c²]

- Exclusive or inclusive analysis for example: $pp \to K^+ \Lambda(1405) \left[\to \pi^0 \Sigma^0 \left[\to \gamma \Lambda \left[\to p\pi^- \right] \right] \right]$ $\eta \to \pi^- \pi^+ \pi^0 [\to \gamma \gamma]$
- Check of correctness of refit procedures.
- Plots provided by Izabela Ciepał.

 $M(\pi^{-}\pi^{0})^{2} [GeV/c^{2}]^{2}$

π^0 in simulations and data

Official Pluto DST for channel 921 (Jochen):

$$pp \rightarrow pp \left[\eta \rightarrow \pi^- \pi^+ \pi^0 \left[\rightarrow \gamma \gamma \right] \right]$$

- Particle selection:
- -Simulations GEANT PID
- -Data: E > 150 MeV and $0.8 < \beta < 1.2$
- Simulation- 5 000 000 events analyzed
- Data- day 60 9 230 000 events analyzed

Kinematic fit configuration

Error estimation and parametrization:

-photon energy resolution:
$$\frac{\sigma_E}{E} = \frac{5.8\%}{\sqrt{E[GeV]}}$$
 [A. Rost phd thesis]

- -photon θ and ϕ resolution: $\sigma_{\theta} = \sigma_{\phi} = 2.5^{\circ}$ [EMC geometry]
- -R, Z are not used, errors set to $\sigma_R = \sigma_Z = 9999.9$
- $\gamma\gamma \to \pi^0$ refit using π^0 mass constraint: •Convergence: max 10 iterations $\Delta\chi^2 < 1$
- -Probabilty cut P>0.01

Simulation- γ distributions

Results-Simulations-QA plots

• Efficiency after cut on probability:Eff= $\frac{82224}{159638} \approx 51.51\%$

Results for simulations

Large improvement in π_0 mass resolution.

Pulls-Simulations

•
$$Pull = \frac{y-\eta}{\sqrt{\sigma_y^2 - \sigma_\eta^2}}$$

- Pulls for 1/E and θ are shifted from 0, and are asymmetric. It may imply existence of systematic effects.
- All pulls have $\sigma \approx 1$ and are gaussian.

Residuals-Simulations

Results-Data-QA plots

• Efficiency after cut on probability:Eff= $\frac{95033}{171100} \approx 55.54\%$

Results-Data

Pulls-Data

• Energy and θ pulls are asymmetrical- require further investigation.

Conclusion and outlook

- Kinematic refit improves resolution in π_0 mass reconstruction.
- Our results need further work.
- Outlook:
- -study and understand pulls and resolution asymmetry.
- -test additional constraints (3c,4c) in $pp \to pp\eta (\to \pi^+\pi^-\pi^0)$

BACKUP

π^0 ϕ distribution in Simulatuon

$\pi^0 \phi$ distribution-data

ϕ residuals

PULLS WITHOUT P>0.01

