Introduction to 1D Time-Dependent Heat Conduction

Yazhuo Liu

September 19, 2024

Contents

1	Intr	Introduction				
2	Der 2.1 2.2 2.3	Energy Balance Derivation				
3	Boundary Conditions					
	3.1	·	-			
	3.2	Dirichlet Boundary Condition at $x = L$				
4	Wea	ak Form Derivation for the Time-Dependent Case	5			
	4.1	Starting with the Strong Form				
	4.2	Energy Balance Integration				
	4.3		6			
		4.3.1 Boundary Terms	6			
	4.4	Incorporating Boundary Conditions into the Weak Form	6			
	4.5	Time Discretization	6			
	4.6	Rearranging Terms	7			
5	FEı	niCS Implementation for Time-Dependent 1D Heat Conduction	7			
	5.1	FEniCS Code	7			
	5.2	Line-by-Line Explanation	Ć			
		5.2.1 Imports	6			
		5.2.2 Define Physical Parameters				
		5.2.3 Define Domain Parameters				
		5.2.4 Define Boundary Conditions				
		5.2.5 Define Time-Stepping Parameters				
		5.2.6 Create Mesh and Define Function Space				
		5.2.7 Define Boundary Identification Functions	11			

	5.2.8	Define Dirichlet Boundary Condition	11
	5.2.9	Define Initial Condition	11
	5.2.10	Define Trial and Test Functions	11
	5.2.11	Define Measures for Boundary Integration	12
	5.2.12	Define the Variational Problem	12
	5.2.13	Create Function to Hold the Solution	13
	5.2.14	Time-Stepping Loop	13
	5.2.15	Finalize and Display the Plot	14
6	Conclusion	ı	14
7	References	5	15

1 Introduction

Heat conduction is a fundamental physical process describing the transfer of thermal energy within a material without the movement of the material itself. In one dimension (1D), heat conduction can be modeled to understand temperature distribution along a rod or similar structures. This document covers the derivation of the time-dependent 1D heat conduction equation incorporating energy balance, boundary conditions (Neumann and Dirichlet), the weak form suitable for finite element analysis, and an implementation using FEniCS with detailed explanations.

2 Derivation of the Time-Dependent 1D Heat Conduction Equation

2.1 Physical Principles

The 1D heat conduction process is governed by two main principles:

1. Fourier's Law: Relates the heat flux q(x) to the temperature gradient.

$$q(x) = -k\frac{dT}{dx}$$

- q(x): Heat flux (W/m²)
- k: Thermal conductivity (W/m·K)
- T: Temperature (K)
- x: Spatial coordinate (m)
- 2. Conservation of Energy: The rate of change of thermal energy within a differential volume equals the net heat flux into the volume plus any internal heat generation Q.

$$\rho c_p \frac{\partial T}{\partial t} \Delta x = q_{\rm in} - q_{\rm out} + Q \Delta x$$

- ρ : Density (kg/m³)
- c_p : Specific heat capacity (J/kg·K)
- $\frac{\partial T}{\partial t}$: Temporal temperature change (K/s)
- Δx : Length of the differential element (m)
- Q: Internal heat generation per unit volume (W/m³)

2.2 Energy Balance Derivation

Consider a small segment of the rod between x and $x + \Delta x$. The energy balance can be expressed as:

2.2.1 Heat Entering at x

$$q(x) = -k \frac{dT}{dx} \Big|_{x}$$

2.2.2Heat Leaving at $x + \Delta x$

$$q(x + \Delta x) = -k \frac{dT}{dx} \bigg|_{x + \Delta x}$$

2.2.3 Net Heat Flux into the Element

$$q_{\rm in} - q_{\rm out} = -k \left(\frac{dT}{dx} \bigg|_{x + \Delta x} - \frac{dT}{dx} \bigg|_{x} \right)$$

Using a Taylor series expansion for small Δx :

$$\left. \frac{dT}{dx} \right|_{x+\Delta x} \approx \left. \frac{dT}{dx} \right|_x + \Delta x \frac{d^2T}{dx^2} \right|_x$$

Thus,

$$q_{\rm in} - q_{\rm out} \approx -k \left(\frac{d^2 T}{dx^2} \Delta x\right)$$

Accumulation of Heat

The rate of accumulation of heat within the element is given by:

$$\rho c_p \frac{\partial T}{\partial t} \Delta x$$

Combining Heat Flux and Heat Accumulation 2.3

From the energy balance:

$$\rho c_p \frac{\partial T}{\partial t} \Delta x = q_{\rm in} - q_{\rm out} + Q \Delta x$$

Substituting the net heat flux:

$$\rho c_p \frac{\partial T}{\partial t} \Delta x = -k \frac{d^2 T}{dx^2} \Delta x + Q \Delta x$$

Dividing both sides by Δx (assuming $\Delta x \neq 0$):

$$\rho c_p \frac{\partial T}{\partial t} = -k \frac{d^2 T}{dx^2} + Q$$

Rearranging:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} + \frac{Q}{\rho c_n}$$

where $\alpha = \frac{k}{\rho c_p}$ is the thermal diffusivity. This is the **Time-Dependent 1D Heat Conduction Equation**:

$$\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x^2} = \frac{Q}{\rho c_p}$$

4

3 Boundary Conditions

To solve the heat conduction equation, appropriate boundary conditions must be specified. In this context, we consider:

- Neumann Boundary Condition at x = 0: Specifies the heat flux.
- Dirichlet Boundary Condition at x = L: Specifies the temperature.

3.1 Neumann Boundary Condition at x = 0

A Neumann boundary condition specifies the heat flux at the boundary.

Example:

 $-q\bigg|_{x=0} = q_0$

where:

$$-k\frac{dT}{dx}\bigg|_{x=0} = q_0$$

 q_0 is the prescribed heat flux at x = 0.

3.2 Dirichlet Boundary Condition at x = L

A Dirichlet boundary condition specifies the temperature at the boundary.

Example:

$$T(L,t) = T_0$$

where: T_0 is the prescribed temperature at x = L.

4 Weak Form Derivation for the Time-Dependent Case

To apply the Finite Element Method (FEM) using FEniCS for the time-dependent heat conduction problem with specified boundary conditions, we derive the weak (variational) form of the equation incorporating the energy balance.

4.1 Starting with the Strong Form

The time-dependent 1D heat conduction equation is:

$$\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x^2} = \frac{Q}{\rho c_p}$$
 in $\Omega \times (0, T]$

where $\Omega = [0, L]$ is the spatial domain and T is the final time.

4.2 Energy Balance Integration

Multiply the strong form by a test function v (which vanishes on Dirichlet boundaries) and integrate over the domain:

$$\int_{\Omega} \left(\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x^2} \right) v \, dx = \int_{\Omega} \frac{Q}{\rho c_p} v \, dx$$

4.3 Applying Integration by Parts

Focus on the diffusion term:

$$\int_{\Omega} -\alpha \frac{\partial^2 T}{\partial x^2} v \, dx$$

Apply integration by parts to lower the derivative order:

$$\int_{\Omega} -\alpha \frac{\partial^2 T}{\partial x^2} v \, dx = -\alpha \frac{\partial T}{\partial x} v \bigg|_{0}^{L} + \int_{\Omega} \alpha \frac{\partial T}{\partial x} \frac{\partial v}{\partial x} \, dx$$

4.3.1 Boundary Terms

• Neumann Boundary Condition at x = 0:

$$-\alpha \frac{\partial T}{\partial x}\bigg|_{x=0} = q_0$$

• Dirichlet Boundary Condition at x = L:

$$T(L,t) = T_0$$

Since v(L) = 0 (test function vanishes on Dirichlet boundaries), the boundary term at x = L disappears.

Thus, the boundary terms reduce to:

$$-\alpha \frac{\partial T}{\partial x}\bigg|_{x=0} v(0) = q_0 v(0)$$

4.4 Incorporating Boundary Conditions into the Weak Form

Substituting the boundary condition at x = 0 into the weak form:

$$\int_{\Omega} \frac{\partial T}{\partial t} v \, dx + \int_{\Omega} \alpha \frac{\partial T}{\partial x} \frac{\partial v}{\partial x} \, dx = \int_{\Omega} \frac{Q}{\rho c_p} v \, dx + q_0 v(0)$$

4.5 Time Discretization

Using the **Backward Euler Method**, an implicit time-stepping scheme:

Let T^n denote the temperature at the previous time step and T^{n+1} at the current time step. The time derivative is approximated as:

$$\frac{\partial T}{\partial t} \approx \frac{T^{n+1} - T^n}{\Delta t}$$

where Δt is the time step size.

Substituting into the weak form:

$$\int_{\Omega} \frac{T^{n+1} - T^n}{\Delta t} v \, dx + \int_{\Omega} \alpha \frac{\partial T^{n+1}}{\partial x} \frac{\partial v}{\partial x} \, dx = \int_{\Omega} \frac{Q}{\rho c_p} v \, dx + q_0 v(0)$$

4.6 Rearranging Terms

Bring all known terms to the right-hand side:

$$\int_{\Omega} \frac{T^{n+1}}{\Delta t} v \, dx + \int_{\Omega} \alpha \frac{\partial T^{n+1}}{\partial x} \frac{\partial v}{\partial x} \, dx = \int_{\Omega} \frac{T^{n}}{\Delta t} v \, dx + \int_{\Omega} \frac{Q}{\rho c_{p}} v \, dx + q_{0} v(0)$$

This is the **Weak Form** of the time-dependent 1D heat conduction equation using the Backward Euler time discretization with a Neumann boundary condition at x = 0 and a Dirichlet boundary condition at x = L.

5 FEniCS Implementation for Time-Dependent 1D Heat Conduction

FEniCS is an open-source computing platform for solving partial differential equations (PDEs) using the Finite Element Method (FEM). Below is a FEniCS code example for the time-dependent 1D heat conduction problem with a Neumann boundary condition at x = 0 and a Dirichlet boundary condition at x = L, along with a detailed line-by-line explanation.

5.1 FEniCS Code

```
from fenics import *
 import numpy as np
 import matplotlib.pyplot as plt
 # Suppress FEniCS log output by setting the log level to 'ERROR'
  set_log_level(40) # 40=ERROR
  # Alternatively, to completely deactivate logging, uncomment the
    following line:
  # set_log_active(False)
 # Define physical parameters
                              # Thermal diffusivity (W/m*K)
 alpha = 1.0
 rho = 1.0
                              # Density (kg/m^3)
 cp = 1.0
                              # Specific heat capacity (J/kg*K)
                              # Internal heat generation (W/m<sup>3</sup>)
 Q = Constant(0.0)
 # Define domain parameters
 L = 1.0
                              # Length of the rod (m)
                              # Number of finite elements
 nx = 50
19
 # Define boundary conditions
                       # Prescribed heat flux at x=0 (W/m^2)
22 q0 = Constant (100.0)
|T0| = Constant(300.0)
                           # Prescribed temperature at x=L (K)
# Time-stepping parameters
                              # Final time (s)
_{26} T_final = 1.0
```

```
_{27} num_steps = 50
                              # Number of time steps
  dt = T_final / num_steps
                            # Time step size (s)
28
29
  # Create mesh and define function space
mesh = IntervalMesh(nx, 0, L)
 V = FunctionSpace(mesh, 'P', 1)
  # Define boundary identification functions
34
  def boundary_neumann(x, on_boundary):
35
      return on_boundary and near(x[0], 0.0)
36
37
  def boundary_dirichlet(x, on_boundary):
38
      return on_boundary and near(x[0], L)
39
  # Define boundary condition for Dirichlet at x=L
41
  bc_dirichlet = DirichletBC(V, T0, boundary_dirichlet)
42
43
  # Define initial condition
_{45}|T_n = Function(V)
 T_n.assign(Constant(300.0)) # Initial temperature distribution
  # Define trial and test functions
 T = TrialFunction(V)
  v = TestFunction(V)
 # Define measures for boundary integration
  boundary_markers = MeshFunction('size_t', mesh, mesh.topology().dim()-1,
 neumann_marker = 1
  dirichlet_marker = 2
56
  class NeumannBoundary(SubDomain):
      def inside(self, x, on_boundary):
58
          return on_boundary and near(x[0], 0.0)
  class DirichletBoundary(SubDomain):
      def inside(self, x, on_boundary):
          return on_boundary and near(x[0], L)
63
64
 # Mark boundaries
65
 NeumannBoundary().mark(boundary_markers, neumann_marker)
 DirichletBoundary().mark(boundary_markers, dirichlet_marker)
 # Define measures with boundary markers
 ds = Measure('ds', domain=mesh, subdomain_data=boundary_markers)
71
72 # Define the variational problem
_{73} a = (rho * cp / dt) * T * v * dx + alpha * dot(grad(T), grad(v)) * dx
_{74} L_form = (rho * cp / dt) * T_n * v * dx + Q * v * dx + q0 * v * ds(
    neumann_marker)
```

```
# Create function to hold the solution
  T_sol = Function(V)
78
  # Time-stepping loop using high-level solve
  time = 0.0
  for n_step in range(num_steps):
81
      # Update current time
82
      time += dt
83
84
      # Solve the weak form directly
85
      solve(a == L_form, T_sol, bc_dirichlet)
87
      # Update previous solution
88
      T_n.assign(T_sol)
89
90
      # Plot solution at certain intervals
91
      if n_{step} \% 10 == 0 or n_{step} == num_{steps} - 1:
92
           plt.plot(mesh.coordinates(), T_sol.compute_vertex_values(mesh),
93
              label=f'Time = {time:.2f}s')
  # Finalize and display the plot
  plt.xlabel('Position x (m)')
  plt.ylabel('Temperature T (K)')
  plt.title('Time-Dependent 1D Heat Conduction')
  plt.legend()
  plt.grid(True)
plt.show()
```

Listing 1: High-Level FEniCS Code for 1D Time-Dependent Heat Conduction with Log Suppression

5.2 Line-by-Line Explanation

5.2.1 Imports

```
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
```

- **FEniCS**: Imports all necessary classes and functions from the FEniCS library for finite element computations.
- NumPy: Imports NumPy for numerical operations.
- Matplotlib: Imports Matplotlib for plotting the results.

5.2.2 Define Physical Parameters

```
# Define physical parameters
alpha = 1.0  # Thermal diffusivity (W/m*K)

rho = 1.0  # Density (kg/m^3)

cp = 1.0  # Specific heat capacity (J/kg*K)

Q = Constant(0.0)  # Internal heat generation (W/m^3)
```

- alpha: Thermal diffusivity $\alpha = \frac{k}{\rho c_n}$.
- **rho**: Density ρ .
- **cp**: Specific heat capacity c_p .
- Q: Internal heat generation term. Set to zero for no internal heat sources.

5.2.3 Define Domain Parameters

- L: Length of the rod.
- nx: Number of finite elements for spatial discretization.

5.2.4 Define Boundary Conditions

```
# Define boundary conditions q0 = Constant(100.0) # Prescribed heat flux at x=0 (W/m^2) TO = Constant(300.0) # Prescribed temperature at x=L (K)
```

- q0: Prescribed heat flux at x = 0 (Neumann boundary condition).
- T0: Prescribed temperature at x = L (Dirichlet boundary condition).

5.2.5 Define Time-Stepping Parameters

```
# Time-stepping parameters
T_final = 1.0  # Final time (s)
num_steps = 50  # Number of time steps
dt = T_final / num_steps # Time step size (s)
```

- **T_final**: Total simulation time.
- num_steps: Number of time steps.
- dt: Time step size, calculated as the total time divided by the number of steps.

5.2.6 Create Mesh and Define Function Space

```
# Create mesh and define function space
mesh = IntervalMesh(nx, 0, L)
V = FunctionSpace(mesh, 'P', 1)
```

- mesh: Creates a 1D mesh from x = 0 to x = L with 'nx' elements.
- V: Defines the function space using first-order (linear) Lagrange elements.

5.2.7 Define Boundary Identification Functions

```
# Define boundary identification functions
def boundary_neumann(x, on_boundary):
    return on_boundary and near(x[0], 0.0)

def boundary_dirichlet(x, on_boundary):
    return on_boundary and near(x[0], L)
```

- boundary_neumann: Identifies the Neumann boundary at x = 0.
- boundary_dirichlet: Identifies the Dirichlet boundary at x = L.

5.2.8 Define Dirichlet Boundary Condition

```
# Define boundary condition for Dirichlet at x=L
bc_dirichlet = DirichletBC(V, TO, boundary_dirichlet)
```

• **bc_dirichlet**: Applies the Dirichlet boundary condition $T = T_0$ at x = L.

5.2.9 Define Initial Condition

```
# Define initial condition
T_n = Function(V)
T_n.assign(Constant(300.0)) # Initial temperature distribution
```

- T_n: Represents the temperature at the previous time step.
- assign: Initializes the temperature distribution to 300 K across the entire domain.

5.2.10 Define Trial and Test Functions

```
# Define trial and test functions
T = TrialFunction(V)
v = TestFunction(V)
```

- T: Trial function representing the unknown temperature at the current time step.
- v: Test function used in the variational formulation.

5.2.11 Define Measures for Boundary Integration

```
# Define measures for boundary integration
 boundary_markers = MeshFunction('size_t', mesh, mesh.topology().dim()-1,
 neumann_marker = 1
 dirichlet_marker = 2
 class NeumannBoundary(SubDomain):
     def inside(self, x, on_boundary):
          return on_boundary and near(x[0], 0.0)
 class DirichletBoundary(SubDomain):
     def inside(self, x, on_boundary):
11
          return on_boundary and near(x[0], L)
12
 # Mark boundaries
14
 NeumannBoundary().mark(boundary_markers, neumann_marker)
 DirichletBoundary().mark(boundary_markers, dirichlet_marker)
17
 # Define measures with boundary markers
 ds = Measure('ds', domain=mesh, subdomain_data=boundary_markers)
```

- boundary_markers: Creates a mesh function to mark different parts of the boundary.
- neumann_marker and dirichlet_marker: Assign unique integer labels to the Neumann and Dirichlet boundaries, respectively.
- SubDomain Classes: Define subdomains for the Neumann and Dirichlet boundaries.
- mark: Marks the boundaries with the specified markers.
- **ds**: Defines a boundary measure that can be used to integrate over specific marked boundaries.

5.2.12 Define the Variational Problem

- a: Bilinear form representing the left-hand side of the weak form.
 - $-(\rho c_p/\Delta t)Tv dx$: Time derivative term.
 - $-\alpha \nabla T \cdot \nabla v \, dx$: Diffusion term.
- **L_form**: Linear form representing the right-hand side of the weak form.

- $-(\rho c_p/\Delta t)T_n v dx$: Contribution from the previous time step.
- -Qv dx: Internal heat generation.
- $-q_0v ds$ (neumann_marker): Neumann boundary condition at x=0.

5.2.13 Create Function to Hold the Solution

```
# Create function to hold the solution
2 T_sol = Function(V)
```

• 'T_sol = Function(V)': Initializes a FEniCS 'Function' in space 'V' to store the computed temperature distribution at the current time step.

5.2.14 Time-Stepping Loop

- Initialization:
 - 'time = 0.0': Initializes the simulation time to '0.0 seconds'.
- Loop Over Time Steps:
 - 'for n_step in range(num_steps):': Iterates over each time step from '0' to 'num_steps
 1'.
 - Updating Time:
 - * 'time += dt': Increments the simulation time by the time step size 'dt'.
 - Solving the Variational Problem:
 - * 'solve(a == L_form, T_sol, bc_dirichlet)': Directly solves the weak form equation by equating the bilinear form 'a' to the linear form 'L_form', storing the solution in 'T_sol' and applying the Dirichlet boundary condition 'bc_dirichlet'.

- Updating Previous Solution:

* 'T_n.assign(T_sol)': Updates the temperature from the current time step to be used in the next iteration. This ensures that each time step uses the latest temperature distribution as the "previous" temperature.

- Plotting the Solution:

- * 'if n_step % 10 == 0 or n_step == num_steps 1:': Checks if the current time step is a multiple of '10' or the final time step.
- * 'plt.plot(...)': Plots the temperature distribution along the rod at the current time step with a label indicating the simulation time.

5.2.15 Finalize and Display the Plot

```
# Finalize and display the plot
plt.xlabel('Position x (m)')
plt.ylabel('Temperature T (K)')
plt.title('Time-Dependent 1D Heat Conduction')
plt.legend()
plt.grid(True)
plt.show()
```

- plt.xlabel: Labels the x-axis as position in meters.
- plt.ylabel: Labels the y-axis as temperature in Kelvin.
- plt.title: Sets the plot title.
- plt.legend: Displays the legend showing different time steps.
- plt.grid(True): Adds a grid for better readability.
- plt.show(): Renders and displays the plot.

6 Conclusion

This document provided a comprehensive introduction to time-dependent 1D heat conduction, including the derivation of the governing equation with energy balance, application of boundary conditions (Neumann at x=0 and Dirichlet at x=L), formulation of the weak form for FEM, and implementation using FEniCS. By incorporating a Neumann boundary condition for heat flux and a Dirichlet boundary condition for temperature, the simulation accurately models scenarios where one end of the rod is subjected to a prescribed heat flux while the other end maintains a fixed temperature.

Understanding these concepts lays the foundation for analyzing more complex heat transfer problems in higher dimensions and with more intricate boundary conditions.

7 References

- FEniCS Documentation: https://fenicsproject.org/documentation/
- Finite Element Method Theory: Various textbooks and online resources provide indepth coverage of FEM and weak form derivations.
- Numerical Methods for PDEs: Literature on numerical analysis for partial differential equations offers insights into time-stepping schemes and stability considerations.
- Neumann Boundary Condition: https://en.wikipedia.org/wiki/Boundary_condition# Neumann_boundary_condition
- Dirichlet Boundary Condition: https://en.wikipedia.org/wiki/Boundary_condition# Dirichlet_boundary_condition