09AMO6

HIMADRI MANDAL

November 9, 2021

§1 Solution

Solution. Notice that displacing all of the terms in both the sequences by k doesnt change the statement. Let the sequences be $\{s_1, s_2, ...\}, \{t_1, t_2, ...\}$ displacing by $-s_1$ and $-t_1$ we get that the sequences become $\{0, s_2 - s_1, ...\}, \{0, t_2 - t_1, ...\}$. Rename these to $\{0, s_1, ...\}, \{0, t_1, ...\}$.

 $\{0,s_1,\ldots\},\{0,t_1,\ldots\}.$ Define $s_i=\frac{a_i}{b_i},t_j=\frac{c_j}{d_j}$ where $a_i,b_i,c_j,d_j\in\mathbb{Z}$ and $\gcd(a_i,b_i)=\gcd(c_j,d_j)=1$ So the condition becomes,

$$s_i t_j \in \mathbb{Z} \ \forall \ i, j \in \mathbb{Z}^+$$

and we have to show that $\exists \frac{m}{n} \in \mathbb{Q}$ such that

$$\frac{ma_i}{nb_i}, \frac{nc_j}{md_j} \in \mathbb{Z} \ \forall \ i, j \in \mathbb{Z}^+$$

Choose a large enough N, now using the previous conditions, we have the following conclusions $\forall i, j \in [N]$ and \forall prime p.

- $\min_{i \le N} (\nu_p(a_i)) \ge \max_{i \le N} (\nu_p(d_i))$
- $\min_{i \le N} (\nu_p(c_i)) \ge \max_{i \le N} (\nu_p(b_i))$

Choose $m_p, n_p \in \mathbb{Z}_{\geq 0}$, such that

$$u_p(c_j) \ge \left[\min_{i \le N} (\nu_p(c_i)) \ge m_p \ge \max_{i \le N} (\nu_p(b_i))\right] \ge \nu_p(b_i)$$

$$\nu_p(a_i) \ge \left| \min_{i \le N} (\nu_p(a_i)) \ge n_p \ge \max_{i \le N} (\nu_p(d_i)) \right| \ge \nu_p(d_j)$$

it is easy to see that such m_p, n_p exist. Repeat the same operation for all primes p. And choose $r = \prod_{\text{prime } p} p^{m_p - n_p}$. Now, taking $N \to \infty$, we are done.