Lesson 4: Logic Gates & Boolean Algebra

1. Logic Gates

Gate Lexicon

Gate	Expression	Output is 1 when
NOT	$L = \overline{A}$	input is 0.
AND	$L = A \cdot B$	all inputs are 1.
OR	L = A + B	at least one input is 1.
NAND	$L = \overline{A \cdot B}$	any input is 0.
NOR	$L = \overline{A + B}$	all inputs are 0.
XOR	$L = A \oplus B$	inputs are different.
XNOR	$L = \overline{A \oplus B}$	inputs are the same.

Universal Gates (NAND & NOR)

 Why universal? Any logic gate can be constructed using only NAND gates or only NOR gates. This makes manufacturing ICs cheaper and simpler.

Implementations with NAND

- NOT A = $(A \cdot A)'$
- A AND B = $((A \cdot B)')'$
- A OR B = $(A' \cdot B')'$

2. Boolean Algebra

Key Laws & Theorems

- Identity: A + 0 = A , $A \cdot 1 = A$
- Complement: $A+\overline{A}=1$, $A\cdot\overline{A}=0$
- Commutative: A + B = B + A
- **Associative:** A + (B + C) = (A + B) + C
- Distributive: A(B+C) = AB + AC
- De Morgan's:
 - $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$
- Redundancy: $A + \overline{A}B = A + B$

3. Standard Forms

SOP & POS

- SOP (Sum of Products): Sum of AND terms (Minterms). Derived from rows where output is 1
 - Ex: $F = \overline{A}BC + A\overline{B}C$
- POS (Product of Sums): Product of OR terms (Maxterms). Derived from rows where output is **0**.
 - Ex: $F = (A + B + C)(A + \overline{B} + C)$

Deriving SOP from a Truth Table

Α	В	С	F	Minterm
0	0	0	0	
0	0	1	1	$\rightarrow \overline{AB}C$
0	1	0	0	
0	1	1	1	$\rightarrow \overline{A}BC$

SOP Expression: $F = \overline{AB}C + \overline{A}BC$

4. Karnaugh Maps (K-Maps)

Simplification Rules

- 1. Group only 1s, never 0s.
- 2. Groups must be rectangular & contain a power of 2 number of cells (1, 2, 4, 8...).
- 3. No diagonal groups.
- 4. Make groups as large as possible.
- Groups can overlap. Wrap-around is allowed.
- 6. Use the fewest number of groups possible.

3-Variable K-Map Example

Simplify $F = \overline{AB}C + \overline{A}BC + A\overline{BC} + A\overline{B}C$

1. Map the 1s:

	AB							
С	00	01	11	10				
0				1				
1	1	1		1				
• ·· 4 · T								

- 2. **Group the 1s:** Two groups are made.
 - Group 1 (Green): The two 1s in column AB=10. This simplifies to $A\overline{B}$.
 - Group 2 (Blue): The two 1s in row C=1, columns AB=00 and AB=01. This simplifies to $\overline{A}C$.
- 3. Final Expression: $F = A\overline{B} + \overline{A}C$

5. Circuit Types

Combinational vs. Sequential

- Combinational Circuits:
- Output depends **only** on the current inputs.
- Has no memory.
- Examples: Adders, Decoders.
- Sequential Circuits:
- Output depends on current inputs and past states.
- Has **memory** to store past states.
- Uses a feedback loop (output is fed back as an input).
- Examples: Flip-Flops, Counters.

6. Practical Circuits

Adders

- Half Adder: Adds 2 bits.
 - Sum = $A \oplus B$
 - Carry = $A \cdot B$
- Full Adder: Adds 3 bits (A, B, C_{in}). Built with two Half Adders and an OR gate.
 - Sum = $A \oplus B \oplus C_{in}$
 - Carry Out = $A \cdot B + C_{in}(A \oplus B)$

Memory

- **Flip-Flop:** The basic building block of memory. A sequential circuit that can **store** a single bit (0 or 1).
- RS Latch (Flip-Flop): Simplest type, built with cross-coupled NAND or NOR gates. Has Set (S) and Reset (R) inputs.

Design Example: Simple Alarm

Problem: An alarm (F) should sound if a sensor (A) is triggered, but only if the system is armed (B) and the door is closed (C).

- 1. **Truth Table:** The only time F=1 is when A=1, B=1, and C=1.
- 2. **Expression:** The SOP expression is simply the minterm for that one case: $F = A \cdot B \cdot C$.
- 3. Circuit: A single 3-input AND gate.