Algebra II (ISIM), lista 14 (przed egzaminem)

Teoria: Metoda Kroneckera znajdowania rozkładu wielomianu. Chińskie twierdzenie o resztach. Uniwersalność pierścieni wielomanów, każdy pierścień przemienny z jednością jest homomorficznym obrazem pierścienia wielomanów nad \mathbb{Z} (wielu zmiennych). Ciała: definicja, własności, charakterystyka. Ciała proste. Podciało proste. Rozszerzanie ciała o pierwiastek wielomianu. Ciało algebraicznie domknięte: definicja, istnienie (informacyjnie). Ciało algebraicznie domknięte jest nieskończone. Mociała skończonego to potęga p. Funkcja Frobeniusa.

1. – Usunać niewymierność z mianownika w następujących ułamkach:

$$\frac{1}{1+\sqrt[3]{5}}, \ \frac{1}{2+\sqrt[3]{2}}$$

.

- 2. Udowodnić chińskie twierdzenie o resztach odwołując się do izomorfizmu pierścieni $\mathbb{Z}_n \cong \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_r}$, gdzie $k_1, \ldots, k_r \in \mathbb{Z}^+$ są parami względnie pierwsze oraz n jest ich iloczynem.
- 3. * (a) W celi jest dwóch więźniów. Strażnik zaproponował, że wypuści ich, jeśli dobrze wykonają następujące zadanie:

Do pomieszczenia ze strażnikiem wchodzi pierwszy z więźniów. W pomieszczeniu na wszystkich polach szachownicy 8 × 8 losowo zostały rozłożone monety (orłem lub reszką do góry, na każdym polu jedna moneta). Strażnik na oczach pierwszego więźnia obraca na drugą stronę jedną z tych monet. Zadaniem pierwszego więźnia jest odwrócenie (bądź nie) jednej z monet na szachownicy, tak by drugi więzień po wejściu mógł wskazać, którą monetę odwrócił strażnik. Podać strategię dla więźniów.

- (b) Modyfikacja: zamiast szachownicy 8×8 mamy szachownicę 7×7 . Na polach szachownicy zostały rozrzucone losowo kamyczki (na każdym polu może ich być kilka, jeden lub żaden). Strażnik dokłada dodatkowy kamyczek na jedno z pól. Pierwszy więzień dokłada kolejny kamyczek na jedno z pól. Drugi więzień ma wskazać pole, na które strażnik położył kamyczek. Podać strategię dla więniów.
- 4. Doskonałe tasowanie zbioru 2n kart do gry to permutacja:

Jaka jest najmniejsza liczba doskonałych kolejnych tasowań 52 kart, po której karty są w wyjściowym układzie? Jaka jest ta liczba dla 50 kart?

5. * Piętnastka to następująca układanka: w ramce z miejscami na 16 kostek umieszczone jest 15 kostek z liczbami od 1 do 15, jedno miejsce pozostaje

wolne. W pojedynczym ruchu można przesuwać poziomo lub pionowo kostkę na wolne miejsce, z miejsca sąsiedniego. Udowodnić, że w ten sposób z układu:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

nie można w żadnej liczbie ruchów przejść do układu:

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

- 6. Załóżmy, że $W(X) \in F[X]$ jest nierozkładalny stopnia $n>0, F\subseteq F_1$ jest rozszerzeniem ciał oraz $\alpha\in F_1$ jest pierwiastkiem W. Udowodnić, że:
 - (a) $F[\alpha] := \{a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1} : a_i \in F\}$ jest podciałem ciała F_1 izomorficznym z ciałem F[X]/(W).
 - (b) $\mathcal{B} = \{1, \alpha, \dots, \alpha^{n-1}\}$ jest bazą $F[\alpha]$ jako przestrzeni liniowej nad ciałem F.
 - (c) Dla $b \in F[\alpha]$ niech $f_b : F[\alpha] \to F[\alpha]$ będzie określone wzorem $f_b(x) = bx$. f_b jest F-liniowe. Obliczyć $\det(f_\alpha)$ i $Tr(f_\alpha)$ (jako przekształcenia liniowego n-wymiarowej przestrzeni liniowej $F[\alpha]$ nad ciałem F, Tr oznacza ślad, przypomnieć sobie z algebry liniowej).
 - (d) Niech $F' = \{m_{\mathcal{B}}(f_b) : b \in F[\alpha]\} \subseteq M_{n \times n}(F)$. Udowodnić, że F' z działaniami dodawania i mnożenia macierzy jest ciałem izomorficznym z ciałem $F[\alpha]$.
- 7. (a) Wskazać w pierścieniu macierzy $M_{2\times 2}(\mathbb{R})$ podciało izomorficzne z ciałem liczb zespolonych \mathbb{C} .
 - (b) Wskazać w pierścieniu macierzy $M_{2\times 2}(\mathbb{R})$ podciało izomorficzne z ciałem liczb zespolonych \mathbb{C} inne niż w punkcie (a).