Price Responsive Loads – Simulation Results

William Burke (billstron@berkeley.edu)
Prof. David Auslander (dma@me.berkeley.edu)

Department of Mechanical Engineering University of California Berkeley, California 94720

December 14, 2009

1 / 20

Presentation Overview

- Motivation
- Simulation Overview
- Controls Background
- Local Control
- Systemic Control
- Conclusion
- Future Work

Research Motivation and Goals

Load Management

- Reasons to use
 - Avoid blackouts
 - Avoid peaker plants
- Examples Technologies
 - Load Switches
 - Thermostat Set-Point Adjustment
 - Grid Friendly Appliances

Goal: Explore Residential Load Management Controls Issues

- Local Control individual unit response
- Systemic Control aggregate response
- Customer Effects comfort, cost, etc.

Simulation Motivation

Problem: Difficult to safely vet algorithms

- Equipment is costly
- Experiments take time
- Failure could be catastrophic

Solution: Simulation makes life easy

- Cheap
- Quick
- Safe
- Repeatable

Avian Flu Pandemic (Milner, 2006)

(Thankfully, just a simulation)

Simulation Overview

Constructed using TranRunC

- Object Oriented style
- Task/State Architecture

Consists of three main tasks

- Neighborhood Task
 - Array of independent houses
 - Coordinates timing and communications
- Measurement Task
 - Feeder station
 - Aggregates HVAC power
- Control Task
 - Sends DR messages
 - Flexible

Simulation – House Object

- Reduced Complexity Model
 - ▶ 5 state dynamic model
 - Modifiable state parameters
 Randomly generated
- PCT Controlled
 - Strict Task/State Architecture8 Tasks per house
 - Temperature Control
 - Set-point tables Randomly generated
 - DR Communications

House Block Diagram

PCT Task Diagram

Simulation – Example Response

Simulation Construction

- 10 Houses
- Randomly generated parameters
- Randomly generated set-point tables

House Parameter Range

Parameter	Range	Scale
House Size (ft ²)	1661 - 3222	1x - 2x
AC Size (ton)	2 - 10	0.5x - 1.25x
Slab Construction	Y/N	

Controls Background - Motivation

Setback Events

- 4°F Setback for 2 hours
- Each house responds simultaneously

Simple Event Set-point Profile

Problem - Not Robust

- Not scalable
- Large discontinuities
- Large payback
- Not equitable

Controls Background – Temperature Control Problem

Traditional Hysteresis Control

- Robust simple design
- Non-linear
- Difficult to modulate power

Unreliable Setback Power Response

- Difficult to predict output
- Not same for different houses

Unreliable Setback Example

- Three simulations with identical houses
- First no setback
- Second $-1^{\circ}F$ at 10:15
- Third − 1°F at 10:30
- Second and third have similar power!

Controls Background - Overview

Open-Loop Control Is Coarse

- Set-point is not the same as power
- Not equitable each house responds differently
- Payback hard to control

Intelligent Control Can Help

- Systemic control
 - ► Choose meaningful control variable, e.g. price
 - Use feedback (communications or measurements) to gain robustness
 - Apply different techniques feedback controls, real-time auctions, etc
- Local control
 - Each house responds independently
 - Individual comfort/cost optimization

Systemic Control – Real-Time Auction

Use Auction Mechanism

- Bid Call: At predefined time before, the units submit bids, bids = {expected consumption, price willing to pay}.
- 2 Clearing: Compute clearing price
- Auction Period: Units charged the clearing price for their consumption

Assumptions

- Normalized Price
 - ightharpoonup Price ratio = $\frac{current\ price}{normal\ price}$
 - ▶ Price = 4 means: electricity cost 4 *times* "normal" price
- Market Operation: 15 Minute Period
 - Normal Period price is a predefined value, i.e. 1
 - Control Period price is time varying
- Resource is scarce, i.e. agents want more than exists

Systemic Control – Soft Cost Constraints

Possibly Conflicting Goals

- Maintain comfort
- Reduct cost

Cost Limiting Demand Function

$$P_d = \min \left\{ \frac{P_{est} f_n}{p_r}, P_{est} \right\}$$
 (1)
Cost limited demand - P_d
Estimated power - P_{est}

User input neutral factor – f_n

Energy price ratio – p_r

Systemic Control – Clearing Mechanism

Soft Budget Constrained Mechanism

- Order the bids in ascending order
- Iterate on a "function" until the clearing price is between two bids.
- Compute the allocations

Theorem

The Soft Budget Constraint Mechanism is policy-consistent when the bidders have soft budget constraints.

Benefits

- Game Proof!
- Fast Computable in polynomial time
- Communication Efficient only one message per bidder

Local Control - PWM Synchronization and Control

Low-Frequency PWM

- On/off HVAC operated proportionally
- Use any control method (PI for example)
- Simple power modulation using tunable saturation

PWM Synchronization

- Synchronize PWM period with auction
- Prediction much easier (1 step look-ahead)
- Force load diversity random start times

Local Control – PWM and Power Control

Control with Low-Freq PWM

- Controller directly modulates power
- Controllable saturation limits

Direct Load Control (DLC)

- Radio operated switch
- Cuts power from compressor for specified time
- Variable effect on power
- Adaptive switches

PWM Control with Tunable Saturation

Results - Aggregate Power

3 House Simulation

- Plotting 3 days for visualization purposes
- 7 days to ID house
- Day 8, control begins
- Day 9, no control
- Goal: keep average power below 4kW

Aggregate Power Response

- Price increase at hour 36
- Average power follows 4kW
 - Mismatch due to poor local power estimate

Results - Inside Temperature

3 House Simulation Results

- Same simulation as previous
- Each figure shows inside temperature for one house
- Comparison with and without auction

Inside Temperature Comparison

- Different responses due to different neutral factor
- Inside temperature deviates before price change
 - Mainly due to inaccurate power estimate

Conclusion

Systemic Control Results

- Cost limiting demand curve enables price response
- Cost Constraint Mechanism is fast, efficient, and game proof

Local Control Results

- Low-Frequency PWM simplifies power control
- Synchronization allows for systemic control

Future Work

- Vehicle-to-Grid
- Decentralized Control
- Micro-Grids with Responsive Loads
- Electricity Hedging for "Real" Real-Time Pricing

For More Information

Project

http://response.berkeley.edu

William Burke

billstron@berkeley.edu http://billstron.com

Bibliography

Milner, J. (2006). Avian flu pandemic simulation. (http://jeffmilner.com/index.php/2006/04/08/avian-flu-pandemic-simulation/)