<u>Da</u>... / <u>Co</u>... / (hidden) / (hidden) / (hidden) / <u>MTRN4230-MTRN4230-5236_00492</u> / <u>Week 10</u> / <u>Quiz 2</u>

 \subseteq

Started on	Monday, 31 July 2023, 4:00 PM
State	Finished
Completed on	Monday, 31 July 2023, 5:35 PM
Time taken	1 hour 35 mins
Grade	17.25 out of 20.00 (86.25%)

[3 Marks] Basic questions (Please answer with 4 decimal places for all questions) [HINT: LECTURE 7]

(I) A robot joint moves from q(0) = 13 (degree)to q(t) = 60 (degree) with a bang-bang trajectory. The constant acceleration of the bang-bang trajectory is $a = 6(\text{deg/s}^2)$

Calculate the switch time (s) (0.5 Marks):

Calculate switch velocity (deg/s) (0.5 Marks)

(II) A single joint robot (**revolute**) has a transformation matrix from the base frame {0} to the endeffector frame {1} [HINT: REFER TO LECTURE 5'S EQUATIONS]

$$^{0}T_{1} =$$

The origin and z-axis of the $\{0\}$ frame are $O_0 = [0;0;0]$ and $Z_0 = [0;0;1]$, respectively.

Calculate the translational velocity Jacobian of this robot (i.e., J_v) (1 Mark)

-18.7 34.23

(III) Decoupling method for inverse kinematic of a 6DOF robot with a spherical joint [HINT: REFER TO LECTURE 5. YOU CAN FIND P AND 0z_6 FROM THE MATRIX 0T_6]

The transformation matrix between the base frame {0} and the end-effector frame {6} is:

$${}^{0}T_{6} =$$

0 -1 0 11

0 0 -1 8

1 0 0 1

0 0 0 1

Calculate the coordinate of the origin of the spherical joint (P_c) if the end effector position (P_c) can be reached by translating P_c a distance of P_c a distance of P_c axis. (1 Mark)

Do not consider unit for this question.

-8

15

11

Your last answer was interpreted as follows: 34.23Your last answer was interpreted as follows: $\boldsymbol{0}$ Your last answer was interpreted as follows: -8Your last answer was interpreted as follows: $15\,$ Your last answer was interpreted as follows: 11Correct answer, well done. Correct! Correct answer, well done. Correct answer, well done. Correct answer, well done. Correct answer, well done. Incorrect answer. Incorrect answer. Incorrect answer. A correct answer is 2.7988, which can be typed in as follows: A correct answer is 16.7929, which can be typed in as follows: 16.7929 A correct answer is -18.7, which can be typed in as follows: -18.7 A correct answer is 34.23, which can be typed in as follows: A correct answer is 0.0, which can be typed in as follows: A correct answer is 11.0, which can be typed in as follows: 11.0 A correct answer is 24.0, which can be typed in as follows:

Your last answer was interpreted as follows: -18.7

24.0

A correct answer is 1.0, which can be typed in as follows:

1.0

[3Marks] Basic question

(I) Artificial Potential Field

A single link robot is under a Conic Well Potential: $U_{att,i}(q)=9.5 |O_i(q)-O_i(q_f)|$ (Nm)

Calculate the absolute value of the attractive force (if the current position and the final position are different) (0.75Marks) (Unit: N)

(II) Manipulability [HINT: REFER TO LECTURE 7 SLIDES - MANIPULABILITY EXAMPLE]

Calculate the manipulability of a two-link robot with link lengths of a1 = 1.0 (m); a2 = 0.6 (m) at joint variable of theta1 = 1.0 (rad); theta2 = 0.3 (rad). (No need to change unit for this question) (0.75 Mark)

Manipulability = |det(J)| = 0.1773

(III) Euler-Lagrange [HINT: REFER TO THE TUTORIAL SLIDES]

Figure above shows a single prismatic joint robot. The mass of the link is $\,$ m = 26 (kg), the link displacement is $\,$ q₁ = 0.6 (m), and the instantaneous velocity is $\,$ v=0.03 (m/s).

Calculate the inertia matrix (only one component for a single joint robot) (0.5 Marks) (unit: kg)

Write the Lagrangian of this Robot: (0.5 Marks) (unit: J = Nm)

Calculate the gravity loading (only one component for a single joint robot. The gravitational acceleration is 9.8m/s^2): (0.5 Marks) (Unit: N) dP/dq = 254.8000

Your last answer was interpreted as follows: $26\,$

Your last answer was interpreted as follows: $-152.8683\,$

Your last answer was interpreted as follows: 254.8000

Correct answer, well done.

Correct!

Correct answer, well done.

Correct answer, well done.

Correct answer, well done.

Correct answer, well done.

A correct answer is 9.5, which can be typed in as follows:

9.5

A correct answer is 0.1773, which can be typed in as follows:

0.1773

A correct answer is 26.0, which can be typed in as follows:

26.0

A correct answer is -152.8683, which can be typed in as follows:

-152.8683

A correct answer is 254.8, which can be typed in as follows:

254.8

[3 Marks] Please answer with 4 decimal places for all questions

Figure below shows a two-revolute joint manipulator.

(I) Joint 1 moves with a cubic trajectory from 4 (degree) at Ts =0 (s) to 58 (degree) at T_f = 20 (s). The joint starts and ends at zero velocity.

Cubic trajectory: $q_1(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ (degree)

Calculate the four coefficient of q_1 (1.25 Mark)

a₀= 4

a₁= 0

a₂= 0.4050

a₃= -0.0135

Calculate the maximum acceleration of joint 1 (0.75 Mark):

0.8100 (degree/s²)

(II) This robot uses a coordinated path generation, and the trajectory of q2 is also a cubic polynomial. Assume that the maximum acceleration of joint 2 is 30% of the maximum acceleration of joint1, and q2 starts at $q_2(0) = 10$ (degree).

Calculate the end position of joint 2: (1 Mark)

$$q_2 (T_f) = 26.2$$
 (degree)

Your last answer was interpreted as follows: 0.4050

Your last answer was interpreted as follows: -0.0135

Your last answer was interpreted as follows: 0.8100

Your last answer was interpreted as follows: 26.2

Correct answer, well done.

Correct!

Correct answer, well done.

Correct answer, well done.
Correct answer, well done.
Correct answer, well done.
Correct answer, well done.
A correct answer is 4.0 , which can be typed in as follows:
4.0
A correct answer is 0.0 , which can be typed in as follows:
0.0
A correct answer is 0.405 , which can be typed in as follows:
0.405
A correct answer is -0.0135 , which can be typed in as follows:
-0.0135
A correct answer is 0.81 , which can be typed in as follows:
0.81
A correct answer is 26.2 , which can be typed in as follows:
26.2

[4 Marks] Please write 4 decimal places for all answers.

A two-link robot with dimension of L₁=0.5(m); L₂ =0.5(m); L₃ = 0.6(m); and L₄ = 0.5(m).

The joint angles are $\theta_{\rm 1}$ = 80 (degree), and $\,\theta_{\rm 2}$ = 50 (degree).

(i) Find the DH table of this robot [1 Marks] [HINT: REFER TO QUIZ1 REVISION IN LECTURE 5]

i	Theta (deg)	d (m)	a (m)	Alpha (deg)
1	130.1944	0.5	0.7810	0
2	-0.1944	0.5	0	0

(II) Calculate the velocity Jacobian [2 Marks]

 $[J_{v1} J_{v2}] =$

-0.5966	0
-0.5040	0
0	0

(III) [1 Marks]

The two joint use a bang-bang trajectory with the same travelling time and switching time.

Joint 1 moves from 0 degree to 160 with maximum angular acceleration of a1 $_{max}$ =0.25 rad/s 2 . Joint 2 moves from 0 degree to 100.

Calculate the translational velocity of the end effector at the switch time (T_s) of the bang bang trajectory. [1 Mark]

$$V = Sqrt(V_x^2 + V_y^2 + V_z^2)$$

V = 0.6526 (m/s)				
	Your last answer was interpreted as follows: 0.7810			
	Your last answer was interpreted as follows: 0			
	Your last answer was interpreted as follows: -0.1944			
	Your last answer was interpreted as follows: 0.5			
	Your last answer was interpreted as follows: 0			
	Your last answer was interpreted as follows: 0			
	Your last answer was interpreted as follows: -0.5966			
	Your last answer was interpreted as follows: -0.5040			
	Your last answer was interpreted as follows: 0			
	Your last answer was interpreted as follows: 0			
	Your last answer was interpreted as follows: 0			
	Your last answer was interpreted as follows: 0			
	Your last answer was interpreted as follows: 0.6526			

Correct answer, well done.
Correct answer, well done.
Correct answer, well done.
Correct answer, well done.
A correct answer is 130.1944 , which can be typed in as follows: 130.1944
A correct answer is 0.5 , which can be typed in as follows:
0.5 A correct answer is 0.781 , which can be typed in as follows:
0.781 A correct answer is 0.0 , which can be typed in as follows:
0.0
A correct answer is -0.1944 , which can be typed in as follows: -0.1944
A correct answer is 0.5 , which can be typed in as follows: 0.5
A correct answer is 0.0 , which can be typed in as follows:
0.0 A correct answer is 0.0, which can be typed in as follows:
0.0
A correct answer is -0.5966 , which can be typed in as follows: -0.5966
A correct answer is 0.0 , which can be typed in as follows:
0.0 $\label{eq:correct} \mbox{A correct answer is } -0.5041 \mbox{, which can be typed in as follows:}$
-0.5041 A correct answer is 0.0 , which can be typed in as follows:
0.0
A correct answer is 0.0 , which can be typed in as follows:
0.0 A correct answer is 0.0 , which can be typed in as follows:
0.0
A correct answer is 0.6526 , which can be typed in as follows: 0.6526

Correct answer, well done.

[3.5 Marks] Please answer with 4 decimal places for all questions

The figure below shows a 2-link robot working in an environment with one triangle-shaped obstacle.

Starting position: [theta1,theta2]_s =[0,90] (degree); Finish (or Goal) position: [theta1, theta2]_f = [90,90] (degree)

The following artificial potential field is applied to control the robot to move to the targeted pose. Attractive forces:

$$F_{\text{att},i}(q) = -\zeta_i \frac{(o_i(q) - o_i(q_f))}{||o_i(q) - o_i(q_f)||}$$

Repulsive forces at O_{2s} (There is no repulsive force at O_{1s})

$$F_{\text{rep}}(q) = \eta \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right) \frac{1}{\rho^2(q)} \nabla \rho(q)$$

The scale factors are ζ_1 = 7; ζ_2 = 3; η = 4

The thresholds $\rho_0 = 1$.

The length the two links: $L_1 = 8$ (m) and $L_2 = 2(m)$.

The coordinates of the obstacles B is (8, 2.6) in meter unit.

(I) Calculate the attractive forces at O₁: (1Marks)

Calculate the attractive forces at O2: (1 Mark)

(II) Calculate the repulsive forces at O2: (1.5 Marks)

F_rep2_x	0	
F_rep2_y	0	

-7.4074

Correct answer, well done. Correct! Correct answer, well done. Incorrect answer. Incorrect answer. Correct answer, well done. Incorrect answer. A correct answer is -4.9497, which can be typed in as follows: -4.9497 A correct answer is 4.9497, which can be typed in as follows: 4.9497 A correct answer is -2.5725, which can be typed in as follows: A correct answer is 1.5435, which can be typed in as follows: 1.5435 A correct answer is 0.0, which can be typed in as follows: 0.0 A correct answer is -7.4074, which can be typed in as follows:

[3.5 Marks] Please answer with 4 decimal places for all questions

Figure above shows a robot with two prismatic joints. The distances from the centre of mass of each link to their frame origin are q1=0.4(m), and q2=0.7(m), respectively.

The weights of each link are m1 = 8(kg) and m2= 10(kg). $\alpha = 75$ (degree).

[I] Calculate the translational velocity Jacobian of the centre of mass of link 1 (Jv_{c1}) and link 2 (J_{vc2}) (0.5 Marks for Jvc1 and 1 Mark for Jvc2):

J_{vc1}=

0

J_{vc2}=

(II) Calculate the inertia matrix D using the Euler-Lagrange Equation

$$D_{12}=D_{21}=2.5882$$
 (0.667 Mark)

Your last answer was interpreted as follows: 1

Your last answer was interpreted as follows: 0

Your last answer was interpreted as follows: 0.9659

Your last answer was interpreted as follows: 18Your last answer was interpreted as follows: 2.5882 Your last answer was interpreted as follows: 10Correct answer, well done. Correct! Correct answer, well done. A correct answer is 0.0, which can be typed in as follows: 0.0 A correct answer is 0.0, which can be typed in as follows: 0.0 A correct answer is 1.0, which can be typed in as follows: A correct answer is 0.0, which can be typed in as follows: A correct answer is 0.9659, which can be typed in as follows: 0.9659 A correct answer is 0.2588, which can be typed in as follows: 0.2588 A correct answer is 18.0, which can be typed in as follows: A correct answer is 2.5882, which can be typed in as follows: 2.5882

Your last answer was interpreted as follows: 0.2588