Intro to NN

What are the issues with Classic ML Algos?

- Require us to do manual feature engineering to be able to create complex boundaries
- They might not always work well with big datasets, and we are living in a big-data regime
- Works poorly for sparse data and unstructured data (image/ text/ speech data)

Clearly, all these algos have some limitations which call for a more powerful ML model that can work in the conditions mentioned above. This brings us to Neural Networks (NN).

NN models power pretty much every minute of your digital life

- Online Ads (Google, YouTube)
- Data compression: Done using Autoencoders
- Image enhancement: Eg Magic Eraser
- Gmail: Eg Autocomplete, smart reply

Where did the inspiration for a neuron come from?

NN is loosely inspired by the biological neurons found in the human brain.

In the brain, there exist biological neurons that are connected to each other, forming a network

In simple terms, we understand that

- Neuron takes input(s)
- Perform some computations.
- Ultimately, it fires/passes the output to further neurons, for further processing.

How does an Artificial neuron do its computations?

Consider an artificial neuron.

- It receives input features: x₁,x₂,x₃
- Every input has a weight associated with it: w₁,w₂,w₃
 - These weights are multiplied by the input values, thereby telling us how important a given input is to the neuron.
- Inputs are processed by taking the weighted sum.
- Also, a bias term is added.
 - The net input becomes: $w_1x_1 + w_2x_2 + w_3x_3 + b = z$ (let)
- There is a function, called activation function f, which is associated with a neuron
 - The neuron applies this function on the net input value: $f(z) = f(w_1x_1 + w_2x_2 + w_3x_3 + b)$
- The result of this function becomes the output $o_1 = f(z)$

- This output is then forwarded to other neurons.

This flow of computations is known as Forward Propagation.

Notice that we are going from left to right during Forward Propagation

What happens if we put the sigmoid function as the activation function?

We get a Logistic Regression model, as the output of this becomes: $o_1 = sigmoid(w_1x_1 + w_2x_2 + w_3x_3 + b)$

This neuron, where the activation is a sigmoid function is called a Logistic Regression Unit (LRU)

We can diagrammatically represent a neuron with 2 inputs as:

What if the model looked the same, but the activation function is different? Would it still be called the same NN?

If we replace the activation function to a hinge loss function, we get a Linear SVM model. Forward propagation here would look like:-

-
$$z = w_1x_1 + w_2x_2 + ... + w_dx_d + b$$

-
$$y = f_{hinge}(z)$$

Note:

- A single neuron is able to represent such powerful models, just imagine what will happen if we use multiple neurons.
- Those models would be able to represent really complex relations.

A Brief History of Artificial Neural Networks

Perceptron

- Perceptron is the very first NN-based model. It was designed by Rosenblatt in 1957
- It is different from LRU because it used a step function for activation, which is:

$$f_{perceptron}(x_i, w, b) = \begin{cases} 1, & \text{if } w^T x_i + b > 0. \\ 0, & \text{otherwise.} \end{cases}$$

Challenges:

- As we tried to increase the complexity of NN, they performed poorly.
- There was no optimal way of training the NN.
- This put the whole area in deep freeze for a decade or so.
- A breakthrough came in 1986 when **backpropagation** was introduced by Geoff Hinton and his team.
- This also brought up a lot of hype for artificial intelligence, But, all of that hype died down by 1990s
- There were two main bottlenecks:-
 - We didn't have computational power
 - Nor did we have enough data to train
 - Backprop was failing for NNs with more depth.
- This time period is called **Al winter**, where the funding for Al dried up by 1995
- Meanwhile, Geoff Hinton continued his research and finally came up with a solution to this problem in 2006.
- Also, the discovery of using ReLu and Leaky ReLu as activation functions was another breakthrough.

How does NN fare against classical ML (based on training data)?

