Texture Mapping

Pasting textures on surfaces

Coordinate Systems Involved

FIGURE 8.35 Drawing texture on several objects of different shape.

$$(s_x, s_y) = T_{ws}(T_{tw}(s,t))$$

frow: Computer Graphics Using OpenGL, 2e, by F. S. Hill ⊕ 2001 by Prentice Hall / Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458

Textures are Images

They are always assigned the shown parametric coordinates (s,t)

$$(s_x, s_y) = T_{ws}(T_{tw}(s,t))$$

We would have to calculate pixel coverages

Screen to Texture

Better approach

$$(\mathsf{s},\mathsf{t}) = \mathsf{T}_{\mathsf{wt}}(\mathsf{T}_{\mathsf{sw}}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{y}}))$$

Requires inverting the projection matrix

From Texture to World (Object)

To apply a texture to an object, we must find a correspondance between (s,t) and some object coordinate system

- Mapping via a parametric representation of the object space
- Manually

Mapping the Texture to an Object Parametric Representation

Linear transformation

From texture space (s,t) to object space (u,v)

$$u = u(s,t) = a_u s + b_u t + c_u$$

 $v = v(s,t) = a_v s + b_v t + c_v$

s in [0,1]

t in [0,1]

Example 1: Image to a Quadrilateral

Simply

$$u = u(s,t) = s$$

$$v = v(s,t) = t$$

glTexCoord2f(0,0); glVertex3dv(v1);

 $glTexCoord2f(1,0)\;;\;\;glVertex3dv(v2)\;;$

 $glTexCoord2f(1,1)\;;\;\;glVertex3dv(v3)\;;$

glTexCoord2f(0,1); glVertex3dv(v4);

Use only left part

$$u = u(s,t) = 0.55s$$
$$v = v(s,t) = t$$

glTexCoord2f(0,0); glVertex3dv(v1);

glTexCoord2f(0.55,0); glVertex3dv(v2);

glTexCoord2f(0.55,1); glVertex3dv(v3);

glTexCoord2f(0,1); glVertex3dv(v4);

Packing textures for efficiency

Example 3: Square Texture to Cylinder

Parametric form of cylinder:

$$x = r \cos \theta$$
, $y = r \sin \theta$, z

Surface parameters: $u = \theta$, v = z

with $0 \le u \le \pi/2$, and $0 \le v \le 1$

Example 3: Square Texture to Cylinder

Square texture to cylinder

We pick the following linear transformation that maps (s,t)=(0,0) to (u,v)=(0,0) and (s,t)=(1,1) to $(u,v)=(\frac{\pi}{2},1)$:

$$u = s\frac{\pi}{2}, \quad v = t$$

Example 3: Square Texture to Cylinder

From screen to texture

- 1. Inverse transform (s_x, s_y) to get world position (x, y, z).
- 2. Then having (x,y,z),

$$u = \tan^{-1}(y/x), \quad v = z$$
$$s = 2u/\pi, \quad t = v$$

Wrapping Textures on Curved Surfaces

$$s = \frac{\theta - \theta_a}{\theta_b - \theta_a}, \quad t = \frac{z - z_a}{z_b - z_a}$$

Cylinder with N faces

Left edge at azimuth $\theta_i = 2\pi i / N$

Upper left vertex texture coordinates $s_i = \frac{\theta_i - \theta_a}{\theta_b - \theta_a}$, $t_i = 1$

Guerrilla CG Tutorial 09: The Basics of UV Mapping

Sampling Facial Shape

Fitted mesh nodes sample range data

Textured 3D Geometric Model

Texture map coordinates

 Positions of fitted mesh nodes in RGB texture image

Example 5: Multiple Texture Maps Many Vertices and Texture Coordinates

Geometry

Texture maps

+ lighting =

How Does this Work With the Graphics Pipeline?

Only polygons

Only vertices go down the graphics pipeline

Interior points?

Calculate texture coordinates by interpolation along scanlines

Rendering the Texture

Scanline in screen space

• Generating s,t coordinates for each pixel

Interpolation of Texture Coordinates

Problem

Perspective foreshortening

- Scan conversion takes equal steps along scanline in screen space
- Equal steps in screen space are **not** equal steps in world space

Reminder: In-Between Points

$$R'_{1}(f) = \frac{lerp(a_{1},b_{1},g)}{lerp(a_{4},b_{4},g)}$$

$$R'_{1}(f) = lerp\left(\frac{a_{1}}{a_{4}},\frac{b_{1}}{b_{4}},f\right)$$

$$\Rightarrow g = \frac{f}{lerp(\frac{b_{4}}{a_{4}},1,f)}$$

substituting this in R(g) = (1 - g)A + gB yields

$$R_{1} = \frac{lerp(\frac{A_{1}}{a_{4}}, \frac{B_{1}}{b_{4}}, f)}{lerp(\frac{1}{a_{4}}, \frac{1}{b_{4}}, f)}$$
 and similarly for R_{2} and R_{3}

Rendering Images Incrementally

A maps to a (homogeneous)

B maps to b

C maps to c

D maps to d

For scanline y and two edges:

$$s_{left}(y) = \frac{lerp(\frac{s_A}{a_4}, \frac{s_B}{b_4}, f_l)}{lerp(\frac{1}{a_4}, \frac{1}{b_4}, f_l)}, \quad s_{right}(y) = \frac{lerp(\frac{s_C}{c_4}, \frac{s_D}{d_4}, f_r)}{lerp(\frac{1}{c_4}, \frac{1}{d_4}, f_r)}$$

Once we have $s_{\it left}$ and $s_{\it right}$ another hyperbolic interpolation fills in the scanline

Interpolation Along the Scanline

$$s_{left}(y) = \frac{lerp(\frac{s_A}{a_4}, \frac{s_B}{b_4}, f_l)}{lerp(\frac{1}{a_4}, \frac{1}{b_4}, f_l)},$$

$$s_{right}(y) = \frac{lerp(\frac{s_C}{c_4}, \frac{s_D}{d_4}, f_r)}{lerp(\frac{1}{c_4}, \frac{1}{d_4}, f_r)}$$

$$s(x, y) = \frac{lerp(\frac{s_{left}}{h_{left}}, \frac{s_{right}}{h_{right}}, f)}{lerp(\frac{1}{h_{left}}, \frac{1}{h_{right}}, f)}$$

What are f and the h's?

Interpolation Along the Scanline

$$s_{left}(y) = \frac{lerp(\frac{s_{A}}{a_{4}}, \frac{s_{B}}{b_{4}}, f_{l})}{lerp(\frac{1}{a_{4}}, \frac{1}{b_{4}}, f_{l})}, \quad s_{right}(y) = \frac{lerp(\frac{s_{C}}{c_{4}}, \frac{s_{D}}{d_{4}}, f_{r})}{lerp(\frac{1}{c_{4}}, \frac{1}{d_{4}}, f_{r})}$$

$$s(x, y) = \frac{lerp(\frac{s_{left}}{h_{left}}, \frac{s_{right}}{h_{right}}, f)}{lerp(\frac{1}{h_{left}}, \frac{1}{h_{right}}, f)}$$

$$h_{left} = lerp(a_4, b_4, f_l)$$

$$h_{right} = lerp(c_4, d_4, f_r)$$

$$f = (x - x_{left})/(x_{right} - x_{left})$$

Interpolating Information (Incrementally)

Texture coordinates, Color, Normal, etc.

Right edge (1.2):

$$\frac{I_{r,(y+1)} - I_{r,y}}{(y+1) - y} = \frac{I_1 - I_2}{y_1 - y_2} \Rightarrow I_{r,(y+1)} = I_{r,y} + \frac{I_1 - I_2}{y_1 - y_2}$$

Left Edge (1,3):

$$\frac{I_{I,(y+1)}-I_{I,y}}{(y+1)-y} = \frac{I_1-I_3}{y_1-y_3} \Rightarrow I_{I,(y+1)} = I_{I,y} + \frac{I_1-I_3}{y_1-y_3}$$

Along scanline:

$$\frac{I_{(x+1)} - I_x}{(x+1) - x} = \frac{I_r - I_t}{x_r - x_t} \Rightarrow I_{r,(y+1)} = I_{r,y} + \frac{I_r - I_t}{x_r - x_t}$$

Light Maps

For static objects

Bump Mapping

Guerrilla CG Tutorial 10: Displacement and Bump Mapping

Procedural Texture

Volumetric textures

C = B(x,y,z)

