Paper Reading: The Importance of Being Recurrent for Modeling Hierarchical Structure

Ke Tran, Arianna Bisazza & Christof Monz

University of Amsterdam & Leiden University

Motivation

- ► Compare two architectures-recurrent versus non-recurrent.
- Ability of modeling hierarchical structure.

LSTM v.s. Fully Attentional Network (FAN)

Figure 1: Diagram showing the main difference between a LSTM and a FAN. Purple boxes indicate the summarized vector at current time step t which is used to make prediction. Orange arrows indicate the information flow from a previous input to that vector.

Task1: Subject-Verb Agreement

- (a) A general language model. i.e. Next word prediction objective.
- ▶ (b) An explicit supervision objective. i.e. Predicting the number of the verb given its sentence history.

Table 1: Examples of training and test conditions for the two subject-verb agreement subtasks. The full input sentence is "The **keys** to the <u>cabinet</u> **are** on the table" where verb and subject are bold and intervening nouns are underlined.

	Input	Train	Test
(a) (b)	the keys to the cabinet the keys to the cabinet	are plural	p(are) > p(is)? plural/singular?

Task1 results

Figure 2: Results of subject-verb agreement with different training objectives.

Task2: Logical inference

- The vocabulary of this language includes six word typesa,b,c,d,e,f, and three logical operatorsor, and, not. There are also 7 logical relations.
- Reason for use the task: to correctly classify logical relations, the model must learn nested structures as well as the scope of logical operators.

```
 \begin{array}{c} (\,d\,(\,or\,f\,)\,) \sqsupset (\,f\,(\,and\,a\,)\,) \\ (\,d\,(\,and\,(\,c\,(\,or\,d\,)\,)\,)\,\#\,(\,not\,f\,) \\ (\,not\,(\,d\,(\,or\,(\,f\,(\,or\,c\,)\,)\,)\,)) \sqsubset (\,not\,(\,c\,(\,and\,(\,not\,d\,)\,)\,)\,) \end{array}
```

Model

The LSTM architecture used in this experiment is similar to that of Bowman et al. (2015b). We simply take the last hidden state of the top LSTM layer as a fixed-size vector representation of the sentence. Here, we use a 2-layer LSTM with skip connections. The FAN maps a sentence x of length n to $\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_n] \in \mathbb{R}^{d \times n}$. To obtain a fixed-size representation \mathbf{z} , we use a self-attention layer with two trainable queries $\mathbf{q}_1, \mathbf{q}_2 \in \mathbb{R}^{1 \times d}$:

$$\begin{split} \mathbf{z}_i &= \operatorname{softmax} \left(\frac{\mathbf{q}_i \mathbf{H}}{\sqrt{d}} \right) \mathbf{H}^\top \quad i \in \{1, 2\} \\ \mathbf{z} &= [\mathbf{z}_1, \mathbf{z}_2] \end{split}$$

Task2 results

Figure 4: Results of logical inference when training on all data (a) or only on samples with at most n logical operators (b).

Conclusions

- ▶ Recurrence is important for modeling hierarchical structure.
- ▶ The paper provides a way to do model analysis.

Paper Reading: How Much Attention Do You Need? A Granular Analysis of Neural Machine Translation Architectures

Tobias Domhan

Amazon

Motivation

- ► A granular analysis of neural machine translation architectures.
- ▶ In Transformer, how much each of components matters.

Architecture Definition Language

► Layers, Layer definitions, Layer chaining, Encoder/Decoder structure, Layer repetition.

Layer Definitions

Dropout, Fixed positional embeddings, Linear, Feed-Forward, Convolution, Identity, Concatenation, Recurrent Neural Network, Attention, Layer normalization, Residual layer.

What to attend to?

Encoder block	IWSLT	WMT'17
upper	25.4 ± 0.2	27.6 ± 0.0
increasing	25.4 ± 0.1	27.3 ± 0.1
decreasing	25.3 ± 0.2	27.1 ± 0.1

Table 2: BLEU scores when varying the encoder block used in the source attention mechanism of a Transformer on the EN→DE IWSLT and WMT'17 datasets.

Network Structure

```
First, Encoder: dropout \rightarrow res_d(birnn) \rightarrow repeat(5, res_d(rnn)) Decoder: dropout \rightarrow repeat(6, res_d(rnn)) \rightarrow res_d(dot_src_att) \rightarrow res_d(ffl)

Then, Encoder: pos \rightarrow res_nd(birnn) \rightarrow res_nd(ffl) \rightarrow repeat(5, res_nd(rnn) \rightarrow res_nd(ffl)) \rightarrow norm Decoder: pos \rightarrow repeat(6, res_nd(rnn) \rightarrow res_nd(mh_dot_src_att) \rightarrow res_nd(ffl)) \rightarrow norm
```

Transforming an RNN into a Transformer style architecture

	IWSLT EN→DE	WMT'17 EN→DE		WMT'17 LV→EN	
Model	BLEU	BLEU	METEOR	BLEU	METEOR
Transformer	25.4 ± 0.1	27.6 ± 0.0	47.2 ± 0.1	18.5 ± 0.0	51.3 ± 0.1
RNMT	23.2 ± 0.2	25.5 ± 0.2	45.1 ± 0.1	-	-
 input feeding 	23.1 ± 0.2	24.6 ± 0.1	43.8 ± 0.2	-	-
RNN	22.8 ± 0.2	23.8 ± 0.1	43.3 ± 0.1	15.2 ± 0.1	45.9 ± 0.1
+ mh	23.7 ± 0.4	24.4 ± 0.1	43.9 ± 0.1	16.0 ± 0.1	47.1 ± 0.1
+ pos	23.9 ± 0.2	24.1 ± 0.1	43.5 ± 0.2	-	-
+ norm	23.7 ± 0.1	24.0 ± 0.2	43.2 ± 0.1	15.2 ± 0.1	46.3 ± 0.2
+ multi-att-1h	24.5 ± 0.0	25.2 ± 0.1	44.9 ± 0.1	16.6 ± 0.2	49.1 ± 0.2
/ multi-att	24.4 ± 0.3	25.5 ± 0.0	45.3 ± 0.0	17.0 ± 0.2	49.4 ± 0.1
+ ff	25.1 ± 0.1	26.7 ± 0.1	46.4 ± 0.2	17.8 ± 0.1	50.5 ± 0.1

Table 3: Transforming an RNN into a Transformer style architecture. + shows the incrementally added variation. / denotes an alternative variation to which the subsequent + is relative to.

Transforming a CNN based model into a Transformer style architecture

	IWSLT EN-DE	WMT'17 EN→DE		WMT'17 LV→EN	
Model	BLEU	BLEU	METEOR	BLEU	METEOR
Transformer	25.4 ± 0.1	27.6 ± 0.0	47.2 ± 0.1	18.5 ± 0.0	51.3 ± 0.1
CNN GLU	24.3 ± 0.4	25.0 ± 0.3	44.4 ± 0.2	16.0 ± 0.5	47.4 ± 0.4
+ norm	24.1 ± 0.1	-	-	-	-
+ mh	24.2 ± 0.2	25.4 ± 0.1	44.8 ± 0.1	16.1 ± 0.1	47.6 ± 0.2
+ ff	25.3 ± 0.1	26.8 ± 0.1	46.0 ± 0.1	16.4 ± 0.2	47.9 ± 0.2
CNN ReLU	23.6 ± 0.3	23.9 ± 0.1	43.4 ± 0.1	15.4 ± 0.1	46.4 ± 0.3
+ norm	24.3 ± 0.1	24.3 ± 0.2	43.6 ± 0.1	16.0 ± 0.2	47.1 ± 0.5
+ mh	24.2 ± 0.2	24.9 ± 0.1	44.4 ± 0.1	16.1 ± 0.1	47.5 ± 0.2
+ ff	25.3 ± 0.3	26.9 ± 0.1	46.1 ± 0.0	16.4 ± 0.2	47.9 ± 0.1

Table 4: Transforming a CNN based model into a Transformer style architecture.

Self-attention variations

		IWSLT EN→DE	WMT'17 EN→DE		WMT'17 LV→EN	
Encoder	Decoder	BLEU	BLEU	METEOR	BLEU	METEOR
self-att	self-att	25.4 ± 0.2	27.6 ± 0.0	47.2 ± 0.1	18.3 ± 0.0	51.1 ± 0.1
self-att	RNN	25.1 ± 0.1	27.4 ± 0.1	47.0 ± 0.1	18.4 ± 0.2	51.1 ± 0.1
self-att	CNN	25.4 ± 0.4	27.6 ± 0.2	46.7 ± 0.1	18.0 ± 0.3	50.3 ± 0.3
RNN	self-att	25.8 ± 0.1	27.2 ± 0.1	46.7 ± 0.1	17.8 ± 0.1	50.6 ± 0.1
CNN	self-att	25.7 ± 0.1	26.6 ± 0.3	46.3 ± 0.1	16.8 ± 0.4	49.4 ± 0.4
RNN	RNN	25.1 ± 0.1	26.7 ± 0.1	46.4 ± 0.2	17.8 ± 0.1	50.5 ± 0.1
CNN	CNN	25.3 ± 0.3	26.9 ± 0.1	46.1 ± 0.0	16.4 ± 0.2	47.9 ± 0.2
self-att	combined	25.1 ± 0.2	27.6 ± 0.2	47.2 ± 0.2	18.3 ± 0.1	51.1 ± 0.1
self-att	none	23.7 ± 0.2	25.3 ± 0.2	43.1 ± 0.1	15.9 ± 0.1	45.1 ± 0.2

Table 5: Different variations of the encoder and decoder self-attention layer.

Conclusion

- Source attention on lower encoder layers brings no additional benefit.
- Multiple source attention layers and residual feed-forward layers are key.
- ► Self-attention is more important for the source than for the target side.