Sisteme și algoritmi distribuiți Curs 4

Problemă și ipoteze

Problema diseminării de jetoane: fie un set de jetoane (*tokens*) $M = \{v_1, v_2, \dots v_k\}$, |M| = k, distribuite pe nodurile din rețea. Nodul i stochează în starea inițială doar token-ul propriu $v_i \in M$. Realizați distribuția jetoanelor astfel încât, în starea optimă orice nod i va deține toate jetoanele din M.

- Topologie reprezentată printr-un graf directat tare conectat.
- Fiecare nod are un **ID unic** id_i .
- Dimensiune token sizeof $(v_i) = sizeof(ID) = B$ biţi.
- Notații:
 - \mathcal{N}_i^- mulțimea vecinilor de intrare asociați nodului $i \in V$
 - \mathcal{N}_i^+ mulțimea vecinilor de ieșire asociați nodului $i \in V$
 - $< m_1, m_2 >$ atașarea mesajului m_2 la m_1

Algoritmul FloodSet

Algoritm **FloodSet**():

 M_i : - int id (id propriu)

- int v (token, inițial egal cu $x_i(0)$)
- int *t*, integer, initial 0

Funcție transformare nod i ():

- 1. Fie U mulțimea mesajelor $\langle v_i, id_i \rangle$ primite de la \mathcal{N}_i^-
- $2. \ M(t+1) = M(t) \cup U$
- 3. Fie V(t+1) mulțimea valorilor v_i din M(t+1)
- 4. Fie I(t+1) mulțimea id-urilor id_i din M(t+1)
- 5. If (I(t+1)==I(t)): STOP;
- **6.** Else: send($M(t+1), \mathcal{N}_i^+$)
- 7. t := t+1

Teorema [Kuhn et al.]. În algoritmul FloodSet, $M_i(t) = M$ după O(diam) iterații.

- 1. FloodSet folosește mesaje O(n B).
- 2. FloodSet necesită memorie O(n B).
- 3. FloodSet nu necesită cunoașterea lui *n* sau *diam*.
- 4. Analiza complexității este similară cu cea din cazul **Flooding_gen**(max()).
- 5. FloodSet este un tipar algorithmic care se poate aplica pentru calcularea oricărei funcții.

Adaptare FloodSet pentru calcul distribuit

Aplicație: Calculați distribuit valoarea funcției f în x, i.e. $x_i^* = f(x_1, x_2, \dots, x_n)$.

- Considerăm $v_i := x_i$, i. e. $M = \{x_1, x_2, \dots x_n\}$, |M| = n.
- Nodul *i* pornește din $x_i(0) := v_i$, $\forall i \in V$, converge către $x_i^* = f(x_1, \dots, x_n)$.

Păstrăm ipotezele anterioare:

- Topologie reprezentată printr-un graf directat tare conectat.
- Fiecare nod are un **ID unic** id_i .
- Dimensiune token sizeof $(v_i) = sizeof(ID) = B$ biţi.

Adaptare FloodSet pentru alte funcții

Algoritm **FloodSet**(f, x(0)):

```
M_i: - int id (id propriu)
```

- int v (token, inițial egal cu x_i)
- funcție obiectiv f()
- int t, integer, inițial 0

Funcție transformare nod i ():

- 1. Fie U mulțimea mesajelor $\langle v_i, id_i \rangle$ primite de la \mathcal{N}_i^-
- 2. $M(t + 1) = M(t) \cup U$
- 3. Fie V(t+1) mulțimea valorilor v_i din M(t+1)
- 4. Fie I(t+1) mulțimea id-urilor id_i din M(t+1)
- 5. If (I(t+1)==I(t)):
 - 1. Return f(V(t))
- **6.** Else: send(M(t+1), \mathcal{N}_i^+)
- 7. t := t+1

Teorema [Kuhn et al.]. Algoritmul FloodSet(f, x(0)) returnează valoarea lui f(x(0)) după O(diam) iterații.

- 1. FloodSet folosește mesaje O(n B).
- 2. FloodSet necesită memorie O(n B).
- 3. FloodSet nu necesită cunoașterea lui n sau diam;
- 4. Analiza complexității este similară cu cea din cazul **Flooding_gen**(max()).

Ipoteze și premise

- Topologie reprezentată printr-un graf directat tare conectat.
- Fiecare nod are un **ID unic** id_i. (Rețele anonime)
- Fiecare nod are un token $v_i \subset M$, un M mulțime total ordonată.
- Dimensiune token sizeof $(v_i) = sizeof(ID) = B$ biţi.
- Urmărim algoritmi cu necesar de memorie/mesaj < O(nB).
- Teorema de imposibilitate pentru rețele anonime.

Teorema de imposibilitate pentru rețele anonime

Ipoteze model distribuit:

- Noduri identice
- Rețea anonimă
- Determinism
- Memorie locală limitată (e.g. creștere slabă funcție de gradul nodului)
- Absența informației globale (P_i cunoaște doar vecinii de intrare)
- Topologie statică

Teorema de imposibilitate pentru rețele anonime

O funcție $f: \mathbb{R}^n \to \mathbb{R}^n$ este *independentă de ordine și multiplicitate* dacă valoarea ei este complet determinată de mulțimea valorilor care apar în vectorul $x \in \mathbb{R}^n$ (indiferent de ordinea și numărul de apariții), *i.e.*

$$\exists g \ a. \ \hat{i}. \ f(x) = g(\{v: \exists i: v = x_i\}).$$

Exemple:

- $f(x) = \max(x_1, \dots, x_n)$
- $f(x) = \min(x_1, \dots, x_n)$
- Contraexemplu: $f(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$

Teorema de imposibilitate pentru rețele anonime

Teorema de imposibilitate [Hendricx&Tsitsiklis]. Dacă o funcție f este calculabilă de modelul distribuit specificat anterior, atunci f este independentă de ordine și multiplicitate.

Concluzii:

- Algoritmii pentru Alegere Lider (e.g. Flooding) nu necesită informație globală pentru a rezolva problema AL
- Pentru a calcula funcții *dependente de ordine sau multiplicitate*, trebuie eliminată cel puțin o ipoteză a modelului.

Recapitulare alg. Flooding(max())

Algoritm **Flooding_Gen**(max()):

```
M_i: - int v (token, inițial egal cu x(0))
```

- int *max_v* (var auxiliară), inițial *v*
- *status* ∈ {lider, non-lider}, inițial non-lider
- int t, integer, inițial 0
- int diam (diametru graf)

Funcție transformare nod i ():

- 1. t := t+1
- 2. Fie U mulțimea token-urilor primite de la \mathcal{N}_i
- 3. $max_v := max(\{max_v\} \cup U)$
- **4. If** (t == diam):
 - 1. If $(max_v == v)$: status = leader;
 - **2.** Else: status = non-leader;
- 5. Else: send(v, \mathcal{N}_i^+)

Teorema [Lynch]. În algoritmul Flooding, nodul cu indicele i_{max} este lider, restul nodurilor non-lider, după *diam* iterații.

Complexitate. Complexitatea timp este *diam* iterații până la anunțarea unui lider, iar complexitatea mesaj este $diam \cdot |E|$. Prin |E| înțelegem numărul de muchii directate din graf.

Recapitulare alg. Flooding(max())

Algoritm **Flooding_Gen**(max()):

```
M_i: - int v (token, inițial egal cu x(0))
```

- int *max_v* (var auxiliară), inițial *v*
- *status* ∈ {lider, non-lider}, inițial non-lider
- int t, integer, inițial 0
- int diam (diametru graf)

Funcție transformare nod i ():

- 1. t := t+1
- 2. Fie U mulțimea token-urilor primite de la \mathcal{N}_i
- 3. $max_v := max(\{max_v\} \cup U)$
- **4. If** (t == diam):
 - 1. If $(max_v == v)$: status = leader;
 - **2. Else**: status = non-leader;
- 5. Else: send(v, \mathcal{N}_i^+)

Starea $x_i(t)$ este tokenul maxim max_v la momentul t.

$$\mathcal{N}_i = \{x_{i_1}(t), \dots, x_{i_{|N_i|}}(t)\}$$

$$x_i(t+1) = \max(x_i(t), x_{i_1}(t), \dots, x_{i_{|N_i|}}(t))$$

- 1. Flooding(max()) folosește mesaje O(B)
- 2. Flooding(max()) necesită memorie O(B)
- 3. Flooding(max()) necesită cunoașterea unei estimări a lui *diam* (pt criteriu de oprire)

Problemă

Fie $a \in \mathbb{R}^n$. Notăm $a_{[1]} \le a_{[2]} \le \cdots \le a_{[n]}$. Adaptați algoritmul Flooding pentru a calcula $a_{[n]} + a_{[n-1]}$.

Rezolvare: la tablă.

Consens: definiție

Starea (valoarea) uniformă a nodurilor unui sistem distribuit.

Consens: definiție

Starea (valoarea) uniformă a nodurilor unui sistem distribuit.

Consens: definiție

Starea (valoarea) uniformă a nodurilor unui sistem distribuit.

Condiția de acord: Nu există două procese care decid valori diferite.

Condiția de validitate: Dacă valoarea inițială a proceselor este v, atunci consensul se atinge cu valoarea uniformă v.

Condiția de terminare (algoritm): Într-un algoritm de consens, orice nod din sistem va decide eventual la un moment de timp.

Adesea se reduce la calcularea distribuită a valorii unei funcții de consens în starea inițială a sistemului.

Exemple:

• Majoritar
$$x_i^* = Maj(x(0)) = \begin{cases} 1, dacă |\{i|x_i(0) = 1\}| \ge \frac{n}{2} + 1 \\ 0, dacă |\{i|x_i(0) = 1\}| < \frac{n}{2} + 1 \end{cases}$$

- Medie (aritmetică) $x_i^* = \frac{1}{n} \sum_{i=1}^n x_i(0)$
- Mediană $x_i^* = x_{\left[\frac{n}{2}\right]}(0)$
- Max-consens $x_i^* = \max_{1 \le i \le n} \{x_i(0)\}$ Min-consens $x_i^* = \min_{1 \le i \le n} \{x_i(0)\}$

Funcții independente de ordine și multiplicitate

Consens distribuit: aplicații

Calculul consensului este necesar în operații de nivel înalt:

- Elecția liderului (max-consens)
- Sincronizare ceasuri (medie dinamică, max-consens dinamic)
- Asigurare consistență baze de date (majoritar)
- COMMIT distribuit (majoritar)
- Localizare distribuită în rețele de senzori (medie)
- Formarea de grupuri în rețele de agenți (medie dinamică)

În context sincron fără defecte, asigurarea consensului centralizat se realizează printr-o simplă difuzarea de mesaje.

Dificultatea rămâne selecția preliminară a liderului, care se realizează folosind algoritmi sincroni AL (vezi cursul trecut).

Consens binar majoritar

- stare lider x_1
- 1. buf = Gather(G);

2.
$$x_l = \begin{cases} 1, dacă |\{buf_i = 1\}| \ge \frac{n}{2} + 1 \\ 0, dacă |\{buf_i = 1\}| < \frac{n}{2} + 1 \end{cases}$$

3. Broadcast(x_l);

Consens binar majoritar (centralizat)

- stare lider $x_l \in \{0,1\}$
- 1. buf = Gather(G);

2.
$$x_l = \begin{cases} 1, dacă |\{buf_i = 1\}| \ge \left[\frac{n}{2}\right] \\ 0, dacă |\{buf_i = 1\}| < \left[\frac{n}{2}\right] \end{cases}$$

- 3. Broadcast(x_l);
- Slave: stochează 1 bit cu decizia curentă.
- Dacă avem perturbații pe noduri sau pe legături, schema de mai sus nu funcționează (rezultat posibil greșit).
- De asemenea, un lider defect impune reluarea procedurii de AL distribuit.

Cf. Teoremei de imposibilitate **Hendricx&Tsitsiklis**, dacă funcția de consens **nu este** independentă de ordine și multiplicitate atunci consensul este imposibil de atins fără cel puțin un atribut precum:

- informație globală e.g.n, diam(G), G
- capacitate locală de stocare mare $B > \deg(P_i)$
- o distribuție de identificatori

Consens binar majoritar (distribuit)

- stare lider $x_i \in \{0,1\}$
- 1. $buf_i = Gather(\mathcal{N}_i)$;

2.
$$x_i = \begin{cases} 1, dacă |\{buf_i[j] = 1\}| \ge \left\lceil \frac{|\mathcal{N}_i|}{2} \right\rceil \\ 0, dacă |\{buf_i[j] = 1\}| < \left\lceil \frac{|\mathcal{N}_i|}{2} \right\rceil \end{cases}$$

3. Broadcast(x_i , \mathcal{N}_i);

Consens binar majoritar (distribuit)

- stare lider $x_i \in \{0,1\}$
- 1. $buf_i = Gather(\mathcal{N}_i)$;

2.
$$x_i = \begin{cases} 1, dacă |\{buf_i[j] = 1\}| \ge \left\lceil \frac{|\mathcal{N}_i|}{2} \right\rceil \\ 0, dacă |\{buf_i[j] = 1\}| < \left\lceil \frac{|\mathcal{N}_i|}{2} \right\rceil \end{cases}$$

3. Broadcast(x_i , \mathcal{N}_i);

Actualizări locale bazate pe calculul "majorității" valorilor provenite de la vecini.

Dificultate majoră: natura binară a stărilor locale $x_i \in \{0,1\}$, B = 1.

Teoremă de imposibilitate [Land & Belew]. Fie sistemul $(\{x(t)\}_{t\geq 0}, \mathcal{G})$ cu n noduri și stări binare $x(t) \in \{0,1\}^n$. Nu există un algoritm determinist, sincron, distribuit care rezolvă exact *problema de consens binar majoritar* (pentru oricare \mathcal{G}).

Concluzie: Numărul (natura) stărilor per nod este un factor important în rezolvarea distribuită a problemelor centralizate.

LAND, Mark; BELEW, Richard K. No perfect two-state cellular automata for density classification exists. *Physical review letters*, 1995, 74.25: 5148.

Teoremă de imposibilitate [Land & Belew]. Fie sistemul $(\{x(t)\}_{t\geq 0}, \mathcal{G})$ cu n noduri și stări binare $x(t) \in \{0,1\}^n$. Nu există un algoritm determinist, sincron, distribuit care rezolvă exact *problema de consens binar majoritar* (pentru oricare \mathcal{G}).

Cum depășim teorema de imposibilitate?

- Stări multiple (e.g. reale, nu binare), B > 1
- Automate probabilistice
- Automate asincrone

Algoritm FloodSet pentru consens

Păstrăm ipotezele anterioare:

- Topologie reprezentată printr-un graf directat tare conectat.
- Fiecare nod are un **ID unic** id_i .
- Dimensiune token sizeof $(v_i) = sizeof(ID) = B$ biţi.

Problemă: Calculați distribuit valoarea funcției f de consens în x(0), astfel încât $x_i^* = f(x(0))$.

- Considerăm v_i : = x_i , i. e. $M = \{x_1, x_2, \dots x_n\}$, |M| = n.
- Nodul *i* pornește din $x_i(0) := v_i$, $\forall i \in V$, converge către $x_i^* = f(x(0))$.
- Problema este o aplicație a soluției problemei de diseminare de jetoane.

Algoritm FloodSet pentru consens

Algoritm FloodSet(f()):

```
M_i: - int id (id propriu)
```

- int v (token, inițial egal cu x_i)
- funcție obiectiv f()
- int *t*, integer, inițial 0

Funcție transformare nod i ():

- 1. Fie U mulțimea mesajelor $\langle v_j, id_j \rangle$ primite de la \mathcal{N}_i^-
- $2. M(t+1) = M(t) \cup U$
- 3. Fie V(t+1) mulțimea valorilor v_i din M(t+1)
- 4. Fie I(t+1) mulțimea id-urilor id_i din M(t+1)
- 5. If (I(t+1)==I(t)):
 - 1. Return f(M(t))
- **6.** Else: send(M(t+1), \mathcal{N}_i^+)
- 7. t := t+1

- Reducem operația de consens static la calculul unei funcții de consens f(x(0))
- Dezavantaje:
 - 1. FloodSet folosește mesaje O(n B)
 - 2. FloodSet necesită memorie O(n B)
- În general urmărim ca dimensiunea mesajelor/memoriei să fie o funcție slab crescătoare de numărul de noduri (e.g. $\log(n)$, $n^{\frac{1}{p}}$)
- Consens majoritar: considerarea de stări reale ne conduce la algoritmi eficienți.

Consens majoritar

Fie $v \in \mathbb{R}^n$, atunci

$$Maj(v) = \begin{cases} 1, dacă |\{i|v_i = 1\}| \ge \frac{n}{2} + 1 \\ 0, dacă |\{i|v_i = 1\}| < \frac{n}{2} + 1 \end{cases}$$

se rescrie notând
$$\bar{v} = \frac{1}{n} \sum_{i=1}^{n} v_i$$

$$Maj(v) = \begin{cases} 1, & dacă \ \bar{v} \ge \frac{1}{2} \\ 0, & dacă \ \bar{v} < \frac{1}{2} \end{cases}$$

Consens majoritar

Păstrăm ipotezele anterioare:

- Topologie reprezentată printr-un graf directat tare conectat.
- Dimensiune token sizeof $(v_i) = sizeof(ID) = B$ biţi.

Problemă: Calculați distribuit valoarea funcției f() = Maj() de consens în x(0), astfel încât $x_i^* = f(x(0))$.

- Considerăm $v_i := x_i$, i. e. $M = \{x_1, x_2, \dots x_n\}$, |M| = n.
- Nodul i pornește din $x_i(0) := v_i$, $\forall i \in V$, converge către $x_i^* = f(x(0))$.
- Observație: $Maj(v) = \frac{1}{2} \left(1 + \operatorname{sgn}\left(Mean(v) \frac{1}{2}\right) \right)$

Algoritm Flooding pentru consens majoritar

Algoritm **Flooding**(Maj()):

- M_i : int v (token)
 - int d (grad intrare), integer
 - int *t*, integer, inițial 0

- Inițial: $x_j(0) = v_j \in R$
- Iterație locală: $x_i(t+1) = \frac{1}{d_i+1} \left(x_i(t) + \sum_{j \in \mathcal{N}_i^-} x_j(t) \right)$, $\forall i$
- Analiza complexității timp pe scurt: la tablă!

Funcție transformare nod i ():

- 1. Fie U mulțimea mesajelor $v_j = x_j(t)$ primite de la \mathcal{N}_i^-
- 2. $x(t+1) = \frac{1}{d+1} \left(x_i(t) + \sum_{j \in \mathcal{N}_i^-} x_j(t) \right)$
- **3. If** (criteriu_oprire):
 - 1. Return $\frac{1}{2} \left(1 + \operatorname{sgn} \left(x(t) \frac{1}{2} \right) \right)$
- **4.** Else: send($x(t+1), \mathcal{N}_i^+$)
- 5. t := t+1