SECOND ROBOTICS PROJECT

ROBOTICS

THE ROBOT

SICK LMS100

Optitrack Markers

Intel T265

pixhawk mini

Agilex Scout

DATA

Format: ROS Bag file

Data: bag files

Topics:

- /Robot_1/pose: gt from optitrack (not always available)
- /camera/accel/sample: camera IMU
- /camera/gyro/sample: camera IMU
- /camera/odom/sample: camera Odom (visual odom+IMU)
- /mavros/imu/data_raw: IMU data (cog mounted)
- /odom: scout odometry
- /scan: laser data
- /scout_status: scout status
- /tf: some tf

THE PROJECT

- Small bag (calibration.bag)
- use only for sensor calibration (estimate missing tf)

- Choose one bag
- use the data to create a map using gmapping

- Configure robot localization, imu_filter, amcl
- Perform localization on the other bags using the recorded map

THE PROJECT

- The map can be created using directly the odometry or with the output of robot localization
- odometry and laser are **not aligned**, there is a rotation between them (use calibration bag to estimate it)
- Localization need to be performed with amcl+robot localization
- Use the best sensor setup to achieve accurate localization (min two sources in robot localization)
- you can use imu_tools to preprocess imu data (not mandatory)
- We employed commercial sensors, for question regarding mean error, max distance, etc. you can **refer to the datasheet**