Министерство образования Республики Беларусь

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИ-ТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информатики

О.И. Костюкова

Тестовые задачи по курсу «Методы оптимизации и управления»

Содержание

- 1. Решение задач линейного программирования симплексметодом
- 2. Решение задач линейного программирования двойственным симплекс-методом
- 3. Анализ чувствительности
- 4. Решение матричной транспортной задачи методом потенциалов
- 5. Решение задач квадратичного программирования
- 6. Задачи выпуклого программирования
- 7. Задачи нелинейного программирования
- 8. Задачи оптимального управления

1. Решение задач линейного программирования симплекс-методом

ПРИМЕР 1

Решить задачу линейного программирования вида

$$c'x \to \max, \quad Ax = b, \quad x \ge 0, \tag{1.1}$$

со следующими исходными данными

$$c = (-5 -2 \ 3 -4 -6 \ 0 -1 -5)', \qquad b = (6 \ 10 -2 \ 15)$$
 (1.2)

$$A = \left(\begin{array}{ccccccc} 0 & 1 & 4 & 1 & 0 & -3 & 5 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 7 & -1 & 0 & -1 & 3 & 8 & 0 \\ 1 & 1 & 1 & 1 & 0 & 3 & -3 & 1 \end{array}\right) \quad m = 3, \ n = 8,$$

и заданным начальным базисным планом

$$x^{Ha4} = (4 \quad 0 \quad 0 \quad 6 \quad 2 \quad 0 \quad 0 \quad 5)$$

$$J_E = \{1 \ 4 \ 5 \ 8\} = \{j_1 = 1, j_2 = 4, j_3 = 5, j_4 = 8\}$$

Итерация 1

По заданному множеству $J_E = \{1 \ 4 \ 5 \ 8\}$ сформируем матрицы и вектор

$$A_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \quad B = A_{\mathcal{B}}^{-1} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}, \quad c_{\mathcal{B}} = (-5 & -4 & -6 & -5)'$$

Вычислим вектор потенциалов

$$u' = c'_{E} B = (1 \ 0 \ 6 \ -5)$$

и оценок

$$\Delta = (\Delta_j, j = 1, ..., 8) = u'A - c' = (0 \ 40 \ -10 \ 0 \ 0 \ 69 \ 0).$$

Для данного вектора оценок условий $\Delta_{j} \geq 0, j \in J_{H} = J \setminus J_{E}$, не выполняется.

Выберем индекс $j_0 \in J_H$, для которого $\Delta_{j_0} \le 0$:

$$j_0 = 3 \in J_H = \{2 \ 3 \ 6 \ 7\}$$

Построим вектор

$$z = (z_1, z_2, ..., z_m)' := BA_{j_0} = (-4 \ 4 \ 1 \ 1)'.$$

Для данного вектора z условие $z_i \le 0, i = 1, \dots, m$, не выполняется, поэтому продолжаем итерацию.

Найдем шаги θ_i , i = 1, ..., 4, по правилу

$$\theta_{i} = \begin{cases} x_{j_{i}} / z_{i}, & ecnu \ z_{i} > 0, \\ \infty & ecnu \ z_{i} \leq 0, \end{cases} \qquad i = 1, 2, 3, 4; \tag{1.3}$$

Получим

$$\theta_1 = \infty$$
, $\theta_2 = 1.5000$, $\theta_3 = 2$, $\theta_4 = 5$,

и найдем

$$\theta_0 = \min_{i=1,2,3,4} \theta_i = 1.5 = \theta_2$$
.

Следовательно, s = 2, $j_s = j_2 = 4$.

Построим новый базисный план $\overline{x}=(\overline{x}_j,j\in J)=(\overline{x}_j,j=1,...,8)$ и соответствующий ему базис $\overline{J}_{\scriptscriptstyle E}$ по правилам

$$\overline{x}_{j} = 0, j \in J_{H} \setminus j_{0}; \quad \overline{x}_{j_{0}} = \theta_{0}; \quad \overline{x}_{j_{i}} = x_{j_{i}} - \theta_{0}z_{i}; i = 1, ..., m,$$
 (1.4)

$$\overline{J}_{B} = (J_{B} \setminus j_{s}) \cup j_{0} = \{j_{1}, \dots, j_{s-1}, j_{0}, j_{s+1}, \dots, j_{m}\}.$$
(1.5)

В результате получаем

новый план

$$\overline{x} = (10.0000 \quad 0 \quad 1.5000 \quad 0 \quad 0.5000 \quad 0 \quad 0 \quad 3.5000)$$

и новый базис

$$\overline{J}_{\scriptscriptstyle E} = \{1 \quad 3 \quad 5 \quad 8\}$$

Переходим на следующую итерацию, исходя из новых плана

$$x := \overline{x} = (10.0000 \quad 0 \quad 1.5000 \quad 0 \quad 0.5000 \quad 0 \quad 3.5000)$$

и базиса $J_{\scriptscriptstyle E} \coloneqq \overline{J}_{\scriptscriptstyle E} = \{1 \ 3 \ 5 \ 8\}$.

Итерация 2

По заданному множеству $J_{\scriptscriptstyle E}=\left\{j_1=1,j_2=3,j_3=5,j_4=8\right\}$ сформируем матрицы и вектор

$$A_{E} = \left(egin{array}{cccc} 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{array}
ight) \ B = A_{E}^{-1} = \left(egin{array}{ccccc} 0 & 1.0000 & 0 & 0 \\ 0.2500 & 0 & 0 & 0 \\ -0.2500 & 0 & -1.0000 & 0 \\ -0.2500 & -1.0000 & 0 & 1.0000 \end{array}
ight)$$

$$c_E = (-5 \ 3 \ -6 \ -5)'.$$

Вычислим вектор потенциалов

$$u' = c'_{E} B = (3.5000 \quad 0 \quad 6.0000 \quad -5.0000)$$

и оценок

$$\Delta = (\Delta_j, j = 1, ..., 8) = u'A - c' = (0 \ 42.5000 \ 0 \ 2.5000 \ 0 \ -7.5000 \ 81.5000 \ 0)$$
.

Для данного вектора оценок условие $\Delta_{j} \geq 0, j \in J_{H} = J \setminus J_{E}$, не выполняется.

Выберем индекс $\ j_0 \in J_H$, для которого $\ \Delta_{j_0} < 0$:

$$j_0 = 6 \in J_H = \{2 \ 4 \ 6 \ 7\}.$$

Построим вектор

$$z = BA_{i_0} = (0 -0.7500 -2.2500 3.7500)$$
'.

Для данного вектора z условие $z_i \le 0, i = 1, \dots, m$, не выполняется, поэтому продолжаем итерацию.

Найдем шаги θ_i , i = 1,...,4, по правилу (1.3):

$$\theta_1 = \infty$$
, $\theta_2 = \infty$, $\theta_3 = \infty$, $\theta_4 = 0.9333$, .

и найдем

$$\theta_0 = \min_{i=1,2,3,4} \theta_i = 0.9333 = \theta_4$$

Следовательно, s = 4, $j_s = j_4 = 8$.

Построим новый базисный план $\overline{x} = (\overline{x}_j, j \in J) = (\overline{x}_j, j = 1,...,8)$ и соответствующий ему базис $\overline{J}_{\scriptscriptstyle E}$ по правилам (1.4) и (1.5). В результате получаем

новый план

 $\overline{x} = (10.0000 \quad 0 \quad 2.2000 \quad 0 \quad 2.6000 \quad 0.9333 \quad 0$

0)

и новый базис

$$\overline{J}_{\scriptscriptstyle E} = \{1 \quad 3 \quad 5 \quad 6\} \, .$$

Переходим на следующую итерацию, исходя из новых плана

$$x := \overline{x} = (10.0000 \quad 0 \quad 2.2000 \quad 0 \quad 2.6000 \quad 0.9333$$

0)

и базиса

$$J_{\scriptscriptstyle E} = \overline{J}_{\scriptscriptstyle E} = \{1 \quad 3 \quad 5 \quad 6\}$$

Итерация 3

По заданному множеству $J_{\scriptscriptstyle B}=\left\{j_{\scriptscriptstyle 1}=1,j_{\scriptscriptstyle 2}=\ 3,j_{\scriptscriptstyle 3}=\ 5,j_{\scriptscriptstyle 4}=\ 6\right\}$ сформируем матрицы и вектор

$$A_{\mathcal{B}} = \begin{pmatrix} 0 & 4 & 0 & -3 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 3 \\ 1 & 1 & 0 & 3 \end{pmatrix} \quad B = A_{\mathcal{B}}^{-1} = \begin{pmatrix} 0 & 1.0000 & 0 & 0 \\ 0.2000 & -0.2000 & 0 & 0.2000 \\ -0.4000 & -0.6000 & -1.0000 & 0.6000 \\ -0.0667 & -0.2667 & 0 & 0.2667 \end{pmatrix}$$

$$c_{\rm E} = (-5 \ 3 \ -6 \ 0)$$
'.

Вычислим вектор потенциалов

$$u' = c'_{E} B = (3.0000 - 2.0000 6.0000 - 3.0000)$$

и оценок

$$\Delta = (\Delta_j, j = 1, ..., 8) = u'A - c' = (0 \ 46.0000 \ 0.0000 \ 2.00000 \ 0 \ 0 \ 71.0000 \ 2.000071 \ 2)$$
.

Для данного вектора оценок выполняется условие $\Delta_j \geq 0, j \in J_H = J \setminus J_{\mathcal{B}}$.

Алгоритм заканчивает работу:

оптимальный план $x^0 = x = (10.0000 \quad 0 \quad 2.2000 \quad 0 \quad 2.6000 \quad 0.9333 \quad 0 \quad 0)$ найден.

Ответ: $x^0 = (10.0000 \quad 0 \quad 2.2000 \quad 0 \quad 2.6000 \quad 0.9333 \quad 0 \quad 0)$ --- оптимальный план.

ПРИМЕР 2

Решить задачу линейного программирования вида (1.1) со следующими исходными данными

$$c = (-5 -2 \ 3 -4 -6 \ 0 \ 1 -5)', \qquad b = (6 \ 10 \ -2 \ 15)$$

и заданным начальным базисным планом

$$x^{na4} = (10.0000 \quad 0 \quad 1.5000 \quad 0 \quad 0.5000 \quad 0 \quad 3.5000)$$
,

$$J_E = \{ j_1 = 1, j_2 = 3, j_3 = 5, j_4 = 8 \}$$
.

Итерация 1

По заданному множеству $J_E = \{j_1 = 1, j_2 = 3, j_3 = 5, j_4 = 8\}$ сформируем матрицы и вектор

$$A_{\mathcal{B}} = \left(\begin{array}{cccc} 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right) \quad B = A_{\mathcal{B}}^{-1} = \left(\begin{array}{ccccc} 0 & 1.0000 & 0 & 0 \\ 0.2500 & 0 & 0 & 0 \\ -0.2500 & 0 & -1.0000 & 0 \\ -0.2500 & -1.0000 & 0 & 1.0000 \end{array}\right)$$

$$c_E = (-5 \ 3 \ -6 \ -5)'.$$

Вычислим вектор потенциалов

$$u' = c'_{E} B = (3.5000 \quad 0 \quad 6.0000 \quad -5.0000)$$

и оценок

$$\Delta = (\Delta_j, j = 1, ..., 8) = u'A - c' = (0 \ 42.5000 \ 0 \ 2.5000 \ 0 \ -7.5000 \ 1.5000 \ 0)$$

Для данного вектора оценок условие $\Delta_j \geq 0, j \in J_H = J \setminus J_{\mathcal{B}}$, не выполняется.

Выберем индекс $\ j_0 \in J_H$, для которого $\ \Delta_{j_0} < 0$:

$$j_0 = 6 \in J_H = \{2 \ 4 \ 6 \ 7\}.$$

Построим вектор

$$z = BA_{j_0} = (0 -0.7500 -2.2500 3.7500)$$
'.

Вычислим шаги θ_i , i = 1,...,4, по правилу (3)

$$\theta_1 = \infty$$
, $\theta_2 = \infty$, $\theta_3 = \infty$, $\theta_4 = 0.9333$.

Найдем

$$\theta_0 = \min_{i=1,2,3,4} \theta_i = 0.9333 = \theta_4$$
.

Следовательно, s = 4, $j_s = j_4 = 8$.

Построим новый базисный план $\overline{x} = (\overline{x}_j, j \in J) = (\overline{x}_j, j = 1,...,8)$ и соответствующий ему базис $\overline{J}_{\scriptscriptstyle E}$ по правилам (1.3), (1.4). В результате получим

новый план

$$\overline{x} = (10.0000 \quad 0 \quad 2.2000 \quad 0 \quad 2.6000 \quad 0.9333 \quad 0 \quad 0)$$

и новый базис

$$\overline{J}_{\scriptscriptstyle E} = \{1 \ 3 \ 5 \ 6\}$$
 .

Переходим на следующую итерацию, исходя из новых плана

$$x := \overline{x} = (10.0000 \quad 0 \quad 2.2000 \quad 0 \quad 2.6000 \quad 0.9333 \quad 0 \quad 0)$$

и базиса

$$J_{\scriptscriptstyle E} := \overline{J}_{\scriptscriptstyle E} = \{1 \quad 3 \quad 5 \quad 6\}$$

Итерация 3

По заданному множеству $J_E = \{j_1 = 1, j_2 = 3, j_3 = 5, j_4 = 6\}$ сформируем матрицы и вектор

$$A_{E} = \begin{pmatrix} 0 & 4 & 0 & -3 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 3 \\ 1 & 1 & 0 & 3 \end{pmatrix}, \quad B = A_{E}^{-1} = \begin{pmatrix} 0 & 1.0000 & 0 & 0 \\ 0.2000 & -0.2000 & 0 & 0.2000 \\ -0.4000 & -0.6000 & -1.0000 & 0.6000 \\ -0.0667 & -0.2667 & 0 & 0.2667 \end{pmatrix},$$

$$c_E = (-5 \ 3 \ -6 \ 0)'$$
.

Вычислим вектор потенциалов

$$u' = c'_{B} B = (3.0000 - 2.0000 6.0000 - 3.0000)$$

и оценок

$$\Delta = (\Delta_j, j = 1, ..., 8) = u'A - c' = (0 \quad 46.0000 \quad 0.0000 \quad 2.0000 \quad 0 \quad 0 \quad -1.0000 \quad 2.000071 \quad 2).$$

Для данного вектора оценок условие $\Delta_{j} \geq 0, j \in J_{H} = J \setminus J_{E}$, не выполняется.

Выберем индекс $j_{\scriptscriptstyle 0} \in J_{\scriptscriptstyle H}$, для которого $\Delta_{j_{\scriptscriptstyle 0}} \le 0$:

$$j_0 = 7 \in J_H = \{2, 4, 7, 8\}.$$

Построим вектор

$$z = BA_{i_0} = (0 \ 0 \ 0 \ -0.3333)$$
'.

Для данного вектора выполняется условие $z_i \le 0, i = 1, \dots, m$. Алгоритм останавливает свою работу.

Ответ: данная задача не имеет решения, т.к. ее целевая функция не ограничена на множестве планов.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решить симплекс-методом задачу линейного программирования вида (1.1) с заданными исходными данными и начальным базисным планом.

Задача 1

$$c = (-5 \ 2 \ 3 \ -4 \ -6 \ 0 \ 1 \ -5)'$$

$$A = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -8 & 1 & 5 \\ 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & -1 & 3 & -1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 3 & 1 & 1 \end{pmatrix} , b = \begin{pmatrix} 36 \\ -11 \\ 10 \\ 20 \end{pmatrix} ,$$

$$x^{\text{\tiny HAM}} = (4 \ 5 \ 0 \ 6 \ 0 \ 0 \ 0 \ 5)', \quad J_{\scriptscriptstyle B} = \{1 \ 2 \ 4 \ 8\}.$$

OTBET:

$$x^{0} = (0 \ 9.5000 \ 5.3333 \ 1.5000 \ 0 \ 0 \ 3.6667 \ 0), \quad c'x^{0} = 32.6667$$

Задача 2

$$c = (-6 \quad -9 \quad -5 \quad 2 \quad -6 \quad 0 \quad 1 \quad 3)',$$

$$A = \begin{pmatrix} 0 & 1.0 & 1.0 & 1.0 & 0 & -8.0 & 1.0 & 5.0 \\ 0 & -1.0 & 0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 0 & 2.0 & 1.0 & 0 & -1.0 & 3.0 & -1.4 & 0 \\ 1.0 & 1.0 & 1.0 & 1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix} , b = \begin{pmatrix} 15 \\ -45 \\ 1.8 \\ 19 \end{pmatrix} ,$$

$$x^{\text{\tiny HAY}} = (4 \ 0 \ 6 \ 6 \ 0 \ 0 \ 3 \ 0)', \quad J_{\scriptscriptstyle B} = \{1 \ 3 \ 4 \ 7\}.$$

OTBET:

 $x^0 = (0 0 0.7.0555 0.1.8029 2.5777 3.9580), c' x^0 = 28.5628.$

Задача 3

$$c = (-6 -9 -5 2 -6 0 1 3)',$$

$$A = \begin{pmatrix} 0 & -1.0 & 1.0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 0 & 2.0 & 1.0 & 0 & -1.0 & 3.0 & -1.5 & 0 \\ 1.0 & -1.0 & 1.0 & -1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix} , b = \begin{pmatrix} 6 \\ 1.5 \\ 10 \end{pmatrix} ,$$

 $x^{naq} = (4.0 \quad 0 \quad 6.0 \quad 0 \quad 4.5 \quad 0 \quad 0 \quad 0)', \quad J_{\scriptscriptstyle B} = \{1 \quad 3 \quad 5\}.$

OTBET:

 $x^{0} = (0 \ 0.7500 \ 0 \ 2.6818 \ 0 \ 0 \ 13.4318), \quad c'x^{0} = 38.9091$

Задача 4

$$c = (-6 \quad -9 \quad -5 \quad 2 \quad -6 \quad 0 \quad 1 \quad 3)',$$

$$A = \begin{pmatrix} 2.0 & -1.0 & 1.0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 4.0 & 2.0 & -1.0 & 0 & 1.0 & 5.0 & -1.0 & -4.0 \\ 1.0 & -1.0 & 1.0 & -1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix} , b = \begin{pmatrix} 14 \\ 14 \\ 10 \end{pmatrix},$$

 $x^{HAY} = (4 \ 0 \ 6 \ 0 \ 4 \ 0 \ 0 \ 0)', J_{E} = \{1 \ 3 \ 5\}.$

OTBET:

$$x^{0} = (4.625 0 0 0 0 1.0 0 2.375), c'x^{0} = -20.6250$$

Задача 5

$$c = (-6 \ 9 \ -5 \ 2 \ -6 \ 0 \ 1 \ 3)',$$

$$A = \begin{pmatrix} -2.0 & -1.0 & 3.0 & -7.5 & 0 & 0 & 0 & 2.0 \\ 4.0 & 2.0 & -6.0 & 0 & 1.0 & 5.0 & -1.0 & -4.0 \\ 1.0 & -1.0 & 0 & -1.0 & 0 & 3.0 & 1.0 & 1.0 \end{pmatrix}, b = \begin{pmatrix} -23.5 \\ -24.0 \\ 2.0 \end{pmatrix},$$

$$x^{na^{q}} = (0 \ 0 \ 0 \ 5 \ 4 \ 0 \ 0 \ 7)', \quad J_{E} = \{4 \ 5 \ 8\}.$$

OTBET:

Задача не имеет решения, т.к. целевая функция не ограничена сверху на множестве допустимых планов.

Задача 6

$$c = (6 - 9 \ 5 - 2 \ 6 \ 0 \ -1 \ 3)',$$

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & -1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 11 & 0 & 1 & 0 & 3 & 1 & 1 \end{pmatrix} , b = \begin{pmatrix} -2 \\ 14 \\ 4 \end{pmatrix} ,$$

$$x^{na4} = (4 \ 0 \ 6 \ 0 \ 4 \ 0 \ 0 \ 0)', \quad J_{\scriptscriptstyle E} = \{1 \ 2 \ 3\}.$$

OTBET:

$$x^0 = (0 \quad 0 \quad 26 \quad 4 \quad 40 \quad 0 \quad 0 \quad 0), \quad c'x^0 = 362.$$

2. Решение задач линейного программирования двойственным симплекс-методом

ПРИМЕР 1

Решить двойственным симплекс-методом задачу линейного программирования вида

$$c'x \to \max, Ax = b, x \ge 0,$$
 (2.1)

со следующими исходными данными

$$c = (2 \ 2 \ 1 \ -10 \ 1 \ 4 \ -2 \ -3)', \qquad b = \begin{pmatrix} -2 \ 4 \ 3 \end{pmatrix},$$

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & 1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 1 & 0 & -1 & 0 & 3 & -1 & 1 \end{pmatrix}, m = 3, n = 8,$$

и заданным начальным двойственным планом

$$y^{Hay} = (1 \ 1 \ 1), \quad J_{E} = \{j_{1} = 2 \ j_{2} = 5 \ j_{3} = 7\},$$

и соответствующим ему копланом

$$\delta = (\delta_j, j = 1, ..., 8) = y^{naq} A - C' = (1 \ 0 \ 1 \ 2 \ 0 \ 4 \ 0 \ 1).$$

Итерация 1

По заданному множеству $J_{\scriptscriptstyle E} = \{j_{\scriptscriptstyle 1} = 2 \mid j_{\scriptscriptstyle 2} = 5 \mid j_{\scriptscriptstyle 3} = 7\}$ сформируем матрицы

$$A_{\mathcal{B}} = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}, \quad B = A_{\mathcal{B}}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 1 & -1 \\ -1 & 0 & -1 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_{E} = Bb = (2 -1 -1) = (\chi_{j_1} = 2, \chi_{j_2} = -1, \chi_{j_3} = -1)$$
.

Условие $\chi_{\scriptscriptstyle B}$ ≥ 0 не выполняется.

Находим базисный индекс $j_{\scriptscriptstyle k} \in J_{\scriptscriptstyle B}$, для которого $\chi_{\scriptscriptstyle j_{\scriptscriptstyle k}} < 0$:

$$k = 2$$
, $j_k = j_2 = 5$.

Находим числа

$$\mu_j = B_k' A_j, j \in J , \qquad (2.2)$$

где B_k' --- k -я строка матрицы B , A_j --- j -ый столбец матрицы условий A :

$$\mu = (\mu_1, j = 1, ..., 8) = e'_k BA = (\mu_1 = 1, \mu_2 = 0, \mu_3 = 2, \mu_4 = -6, \mu_5 = 1, \mu_6 = 2, \mu_7 = 0, \mu_8 = -4)$$
.

Вычисляем шаги $\sigma_{_{j}}, J_{_{H}}$ = {1 3 4 6 8}, $\sigma_{_{0}}$ по правилам

$$\sigma_{j} = \begin{cases} -\delta_{j} / \mu_{j}, & ecnu \quad \mu_{j} < 0, \\ \infty & ecnu \quad \mu_{j} \ge 0, \end{cases} \qquad j \in J_{H}, \qquad \sigma_{0} = \min_{j \in J_{H}} \sigma_{j} = \sigma_{j_{0}}. \tag{2.3}$$

Получим

$$\sigma_1 = \infty, \ \sigma_3 = \infty, \ \sigma_4 = 0.3333, \ \sigma_6 = \infty, \ \sigma_7 = \infty, \ \sigma_8 = 0.25, \ \sigma_0 = \min_{j \in J_H} = \sigma_8 = 0.25,$$

$$j_0 = 8$$
 .

Построим новый двойственный план

$$\overline{y} = y + \sigma_0 e'_{k} B = (1.25 \ 1.25 \ 0.75),$$

соответствующий ему новый коплан

$$\overline{\delta} = \delta + \sigma_0 \mu = \overline{y}A - c = (1.2500 \quad 0 \quad 1.5000 \quad 0.5000 \quad 0.2500 \quad 4.5000 \quad 0)$$

и новый базис

$$\overline{J}_{\scriptscriptstyle E} = \{2 \ 8 \ 7\}$$
 .

Переходим к следующей итерации, исходя из новых

двойственного плана $y := \overline{y}$, соответствующего ему коплана

$$\delta := \overline{\delta} = (1.2500 \quad 0 \quad 1.5000 \quad 0.5000 \quad 0.2500 \quad 4.5000 \quad 0)$$

и базиса
$$J_{\scriptscriptstyle E} \coloneqq \overline{J}_{\scriptscriptstyle E} = \{2 \ \ 8 \ \ 7\}$$
 .

Итерация 2

По заданному множеству $J_{\scriptscriptstyle E} = \{j_1 = 2 \mid j_2 = 8 \mid j_3 = 7\}$ сформируем матрицы

$$A_{\mathcal{B}} = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 5 & -1 \\ 1 & 1 & -1 \end{pmatrix}, \quad B = A_{\mathcal{B}}^{-1} = \begin{pmatrix} -1.500 & -0.500 & 0.500 \\ -0.250 & -0.250 & 0.250 \\ -1.750 & -0.750 & -0.250 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_{\scriptscriptstyle E} = Bb = (2.5000 \ 0.2500 \ -0.2500) = (\chi_{\scriptscriptstyle j_1} = 2.5000 \ , \ \chi_{\scriptscriptstyle j_2} = 0.2500 \ , \ \chi_{\scriptscriptstyle j_3} = -0.2500 \) \ .$$

Условие $\chi_{\scriptscriptstyle E} \ge 0$ не выполняется.

Находим базисный индекс $j_{\scriptscriptstyle k} \in J_{\scriptscriptstyle E}$, для которого $\chi_{\scriptscriptstyle j_{\scriptscriptstyle k}} < 0$:

$$k = 3$$
, $j_k = j_3 = 7$.

Найдем числа μ_i , $j \in J = \{1, 2, ..., 8\}$, по правилу (2.2), в результате получим

$$\mu = (\mu_j, j = 1,, 8) =$$

$$= e'_k BA = (\mu_1 = 0.25, \mu_2 = 0, \mu_3 = -2.5, \mu_4 = 12.5, \mu_5 = -0.75, \mu_6 = -4.5, \mu_7 = 1, \mu_8 = 0).$$

Вычисляем шаги σ_j , J_H = {1 3 4 5 8}, σ_0 по правилам (2.3). Получим

$$\begin{split} &\sigma_1=\infty, \quad \sigma_3=0.6, \sigma_4=\infty \quad \sigma_5=0.3333 \ , \ \sigma_8=\infty, \\ &\sigma_0=\min_{j\in J_H}=\sigma_5=0.3333, \end{split}$$

$$j_0 = 5$$
.

Построим новый двойственный план

$$\overline{y} := y + \sigma_0 e'_k B = (0.6667 \ 1.0000 \ 0.6667),$$

соответствующий ему новый коплан

$$\overline{\delta} = \delta + \sigma_0 \mu = \overline{y}A - c = (1.3333 \quad 0 \quad 0.6667 \quad 4.6667 \quad 0 \quad 3.0000 \quad 0.3333 \quad 0)$$

и новый базис

$$\overline{J}_{\scriptscriptstyle E} = \{ 2 \ 8 \ 5 \}$$
 .

Переходим к следующей итерации, исходя из новых

двойственного плана $y := \overline{y}$, соответствующего ему коплана

$$\delta\coloneqq\overline{\delta}=(1.3333 \qquad 0\ 0.6667\ 4.6667 \qquad 0\ 3.0000\ 0.3333 \qquad 0)$$
 и базиса $J_{\scriptscriptstyle E}\coloneqq\overline{J}_{\scriptscriptstyle E}=\{2\ 8\ 5\}$.

Итерация 3

По заданному множеству $J_{\scriptscriptstyle E} = \{j_1 = 2 \mid j_2 = 8 \mid j_3 = 5\}$ сформируем матрицы

$$A_{E} = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -5 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad B = A_{E}^{-1} = \begin{pmatrix} 0.3333 & 0.0000 & 0.6667 \\ 0.3333 & -0.0000 & 0.3333 \\ 2.3333 & 1.0000 & 0.3333 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_E = Bb = (\chi_{j_1} = 2.6667, \chi_{j_2} = 0.3333, \chi_{j_3} = 0.3333)$$
.

Все базисные компоненты данного псевдоплана положительные. Алгоритм заканчивает свою работу построением оптимального плана исходной задачи:

оптимальный план

$$x^0 = (0 \ 2.6667 \ 0 \ 0.3333 \ 0 \ 0.3333)$$

оптимальное значение целевой функции

$$c'x^0 = 4.6667$$
.

ПРИМЕР 2

Решить двойственным симплекс-методом задачу линейного программирования вида (2.1)

со следующими исходными данными

$$c = (2 \quad 2 \quad 1 - 10 \quad 1 \quad 4 \quad 0 \quad -3)', \qquad b = (-2 \quad 4 \quad 3),$$

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & 1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 1 & 0 & 1 & 0 & 3 & 1 & 1 \end{pmatrix}$$

и заданным начальным двойственным планом

$$y^{na^{n}} = (1 \ 1 \ 1), \quad J_{E} = \{j_{1} = 2 \ j_{2} = 5 \ j_{3} = 7\}$$

и соответствующим ему копланом

$$\delta = (\delta_j, j = 1, ..., 8) = y^{naq} 'A - c' = (1 \quad 0 \quad 1 \quad 4 \quad 0 \quad 4 \quad 0 \quad 1) \; .$$

Итерация 1

По заданному множеству $J_E = \{j_1 = 2 \mid j_2 = 5 \mid j_3 = 7\}$ сформируем матрицы

$$A_{\mathcal{E}} = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}, \quad B = A_{\mathcal{E}}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_{\scriptscriptstyle B} = Bb = (\chi_{\scriptscriptstyle j_1} = 2, \ \chi_{\scriptscriptstyle j_2} = -5, \ \chi_{\scriptscriptstyle j_3} = -5)$$
.

Условие $\chi_{\scriptscriptstyle E} \ge 0$ не выполняется.

Находим базисный индекс $\,j_{\scriptscriptstyle k}\in J_{\scriptscriptstyle E}\,$, для которого $\,\chi_{\scriptscriptstyle j_{\scriptscriptstyle k}}<0\,$:

$$k = 2$$
, $j_k = j_2 = 5$.

Найдем числа μ_i , $j \in J = \{1, 2, ..., 8\}$, по правилу (2), в результате получим

$$\mu = (\mu_1, j = 1, ..., 8) = e'_k BA = (\mu_1 = -1, \mu_2 = 0, \mu_3 = 4, \mu_4 = -20, \mu_5 = 1, \mu_6 = 8, \mu_7 = 0, \mu_8 = 2)$$
.

Вычисляем шаги σ_i , J_H = {1 3 4 6 8}, σ_0 по правилам (2.3). Получим

$$\sigma_1 = 1, \ \sigma_3 = \infty, \ \sigma_4 = 0.2, \ \sigma_6 = \infty, \ \sigma_7 = \infty, \ \sigma_8 = \infty, \ \sigma_0 = \min_{i \in J_u} = \sigma_4 = 0.2$$

 $j_0 = 4$.

Построим новый двойственный план

$$\overline{y} = y + \sigma_0 e'_k B = (1.6 \ 1.2 \ 1.2)$$

соответствующий ему новый коплан

$$\overline{\delta} = \delta + \sigma_0 \mu = \overline{y}A - c = (0.8000 \quad 0 \quad 1.8000 \quad 0 \quad 0.2000 \quad 5.6000 \quad 0 \quad 1.4000)$$

и новый базис

$$\overline{J}_{\scriptscriptstyle E} = \{ 2 \quad 4 \quad 7 \}$$
 .

Переходим к следующей итерации, исходя из новых

двойственного плана $y := \overline{y}$, соответствующего ему коплана

$$S = \overline{S} = (0.8000)$$

 $\delta := \overline{\delta} = (0.8000 \quad 0 \quad 1.8000 \quad 0 \quad 0.2000 \quad 5.6000$

0 1.4000)

и базиса $J_{\scriptscriptstyle E}\coloneqq \overline{J}_{\scriptscriptstyle E}=\{2\quad 4\quad 7\}$.

Итерация 2

По заданному множеству $J_{\scriptscriptstyle E} = \left\{ j_{\scriptscriptstyle 1} = 2 \quad j_{\scriptscriptstyle 2} = 4 \quad j_{\scriptscriptstyle 3} = 7 \right\}$ сформируем матрицы

$$A_{\mathcal{B}} = \begin{pmatrix} -1 & -7 & 0 \\ 2 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = A_{\mathcal{B}}^{-1} = \begin{pmatrix} 0.0500 & 0.3500 & 0.3500 \\ -0.1500 & -0.0500 & -0.0500 \\ 0.1000 & -0.3000 & 0.7000 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_E = Bb = (2.5000 \ 0.2500 \ -3.500)$$
.

Условие $\chi_{\scriptscriptstyle E} \ge 0$ не выполняется.

Находим базисный индекс $\,j_{\scriptscriptstyle k}\in J_{\scriptscriptstyle E}\,$, для которого $\,\chi_{\scriptscriptstyle j_{\scriptscriptstyle k}}<0\,$:

$$k = 3$$
, $j_k = j_3 = 7$.

Найдем числа μ_j , $j \in J = \{1, 2, ..., 8\}$, по правилу (2.2), в результате получим

$$\mu = (\mu_j, j = 1, ..., 8) =$$

$$= e'_s BA = (\mu_1 = -0.7, \mu_2 = 0, \mu_3 = -0.2, \mu_4 = 0, \mu_5 = -0.3, \mu_6 = 0.6, \mu_7 = 1, \mu_8 = 2.4).$$

Вычисляем шаги $\sigma_i, J_H = \{1 \ 3 \ 5 \ 6 \ 8\}, \ \sigma_0$ по правилам (2.3). Получим

$$\begin{split} &\sigma_1=1.1429, \quad \sigma_3=9, \sigma_5=0.6667 \ \sigma_6=\infty \ , \ \sigma_8=\infty, \\ &\sigma_0=\min_{j\in J_H}=\sigma_5=0.6667, \end{split}$$

$$j_0 = 5$$
.

Построим новый двойственный план

$$\overline{y} = y + \sigma_0 e_k' B = (1.6667 \ 1.0000 \ 1.6667)$$

соответствующий ему новый коплан

$$\overline{\delta} = \delta + \sigma_0 \mu = \tilde{y}A - c = (0.3333 \quad 0 \quad 1.6667 \quad 0 \quad 0 \quad 6.0000 \quad 0.6667 \quad 3.0000)$$

и новый базис

$$\overline{J}_{\scriptscriptstyle E} = \{2 \quad 4 \quad 5\}$$
 .

Переходим к следующей итерации, исходя из новых

двойственного плана $y := \overline{y}$, соответствующего ему коплана

$$\delta\coloneqq\overline{\delta}=(0.3333 \qquad 0\ 1.6667 \qquad 0 \qquad 0\ 6.0000\ 0.6667\ 3.0000)$$
 и базиса $J_{\scriptscriptstyle E}\coloneqq\overline{J}_{\scriptscriptstyle E}=\{2\ 4\ 5\}$.

Итерация 3

По заданному множеству $J_{\scriptscriptstyle E} = \left\{ j_1 = 2 \mid j_2 = 4 \mid j_3 = 5 \right\}$ сформируем матрицы

$$A_{E} = \begin{pmatrix} -1 & -7 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad B = A_{E}^{-1} = \begin{pmatrix} 0.1667 & 0 & 1.1667 \\ -0.1667 & -0.0000 & -0.1667 \\ -0.3333 & 1.0000 & -2.3333 \end{pmatrix}.$$

Вычислим базисные компоненты псевдоплана

$$\chi_{E} = Bb = (-3.8333 \ 0.8333 \ 11.6667)$$
.

Условие $\chi_{\scriptscriptstyle E}$ ≥ 0 не выполняется.

Находим базисный индекс $\,j_{_{k}}\in J_{_{E}}\,,$ для которого $\,\chi_{_{j_{_{k}}}}<0\,:$

$$k = 1, \quad j_k = j_1 = 2$$
.

Найдем числа μ_j , $j \in J = \{1, 2, ..., 8\}$, по правилу (2.2), в результате получим

$$\mu = (\mu_j, j = 1,...., 8) = e_k^{\dagger} BA =$$

$$= (\mu_1 = 0.8333, \mu_2 = 1, \mu_3 = 0.1667, \mu_4 = 0, \mu_5 = 0, \mu_6 = 3.5, \mu_7 = 1.1667, \mu_8 = 1.5).$$

Вычисляем шаги $\sigma_i, J_H = \{1 \ 3 \ 5 \ 6 \ 8\}, \ \sigma_0$ по правилам (2.3). Получим $\sigma_0 = \infty$

Алгоритм заканчивает свою работу.

Ответ: исходная задачи не имеет решения, т.к. ее ограничения не совместны.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решить двойственным симплекс-методом задачи линейного программирования вида (2.1) с заданными исходными данными и начальным двойственным базисным планом.

Задача 1

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 0 & 0 & 0 & 2 \\ 4 & 2 & 1 & 0 & 1 & 5 & -1 & -5 \\ 1 & 1 & 0 & -1 & 0 & 3 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ -4 \\ -2 \end{pmatrix},$$

$$c = \begin{pmatrix} 5 & 2 & 3 & -16 & 1 & 3 & -3 & -12 \end{pmatrix}, y^{na^{q}} = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix}, J_{E} = \{1 & 2 & 3\}.$$

Ответ:

$$r^0 - (0)$$

 $x^{0} = (0 \quad 0 \quad 0.4000 \quad 0 \quad 0.2.0000 \quad 0.4000), \quad c'x^{0} = -17.2000.$

Задача 2

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 1 & 0 & 0 & 2 \\ -4 & 2 & 1 & 0 & 5 & 1 & -1 & 5 \\ 1 & 1 & 0 & -1 & 0 & 3 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 4 \\ -2 \end{pmatrix},$$

$$c = \begin{pmatrix} -12 & 2 & 2 & -6 & 10 & -1 & -9 & 8 \end{pmatrix}, y^{naq} = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix}, J_{E} = \{2 & 4 & 6\}.$$

Ответ:

$$x^{0} = (0$$

$$x^{0} = (0 0 5.0 1.0 0 0 1.0 0), c'x^{0} = -5.$$

Задача 3

$$A = \begin{pmatrix} -2 & -1 & 1 & -7 & 1 & 0 & 0 & 2 \\ -4 & 2 & 1 & 0 & 5 & 1 & -1 & 5 \\ 1 & 1 & 0 & 1 & 4 & 3 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 8 \\ -2 \end{pmatrix},$$

$$c = \begin{pmatrix} 12 & -2 & -6 & 20 & -18 & -5 & -7 & -20 \end{pmatrix}, y^{na^{4}} = \begin{pmatrix} -3 & -2 & -1 \end{pmatrix}, J_{E} = \{2 \quad 4 \quad 6\}.$$

Ответ:

Задача не имеет решения, т.к. пусто множество ее допустимых планов.

Задача 4

$$A = \begin{pmatrix} -2 & -1 & 10 & -7 & 1 & 0 & 0 & 2 \\ -4 & 2 & 3 & 0 & 5 & 1 & -1 & 0 \\ 1 & 1 & 0 & 1 & -4 & 3 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -2 \\ -5 \\ 2 \end{pmatrix},$$

$$c = \begin{pmatrix} 10 & -2 & -38 & 16 & -9 & -9 & -5 & -7 \end{pmatrix}, y^{nay} = \begin{pmatrix} -3 & -2 & -1 \end{pmatrix}, J_{E} = \{2 \ 8 \ 5\}.$$

Ответ:

$$x^{0} = (1.35 \ 0.20)$$

 $x^{0} = (1.35 \ 0.20 \ 0 \ 0 \ 0 \ 0.45), c'x^{0} = 9.9500.$

Задача 5

$$A = \begin{pmatrix} 3 & -1 & 10 & -7 & 1 & 0 & 0 & 2 \\ 7 & -2 & 14 & 8 & 0 & 12 & -11 & 0 \\ 1 & 1 & 0 & 1 & -4 & 3 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix},$$

$$c = \begin{pmatrix} 36 & -12 & 66 & 76 & -5 & 77 & -76 & -7 \end{pmatrix}, y^{nay} = \begin{pmatrix} -3 & 7 & -1 \end{pmatrix}, J_{E} = \begin{pmatrix} 7 & 8 & 4 \end{pmatrix}.$$

Ответ:

$$x^{0} = (0 \quad 0.2622 \quad 0.1662 \quad 0.5415 \quad 0 \quad 0 \quad 0), \quad c'x^{0} = 27.2264.$$

3. Анализ чувствительности

Пример 1. Рассмотрим задачу линейного программирования (ЛП) вида

$$c'x \to \max, \quad Ax = b, \quad x \ge 0, \tag{1.1}$$

со следующими исходными данными

$$c = (-5 -2 \ 3 -4 -6 \ 0 -1 -5)', \qquad b = (6 \ 10 -2)'$$
 (1.2)

$$A = \left(\begin{array}{cccccccc} 0 & 1 & 4 & 1 & 0 & -3 & 5 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 7 & -1 & 0 & -1 & 3 & 8 & 0 \end{array}\right), \quad m = 3, \quad n = 8.$$

Предположим, что для задачи ЛП с этими данными известен оптимальный базисный план

$$x^{0} = (10.0 \quad 0 \quad 1.5 \quad 0 \quad 0.5 \quad 0 \quad 0), J_{E} = \{1, 3, 5\}$$
 (1.3)

оптимальный двойственный план $u^{0} = c'_{E} A_{E}^{-1} = (2.25 - 5.00 - 6.00)$ и соответствующий ему коплан

$$\Delta' = (\Delta_j, j = 1, ..., 8) = u^0 A - C' = (0 \quad 51.25 \quad 0 \quad 1.25 \quad 0 \quad 11.25 \quad 55.25 \quad 5.00). \tag{1.4}$$

Предположим, что исходные данные задачи изменились, а именно, к основным ограничениям задачи добавилось еще одно условие

$$x_1 + x_2 + x_3 + x_4 + 3x_6 - 3x_7 + x_8 \le 9$$
.

Очевидно, что последнее условие эквивалентно следующим

$$x_1 + x_2 + x_3 + x_4 + 3x_6 - 3x_7 + x_8 + x_9 = 9, \quad x_9 \ge 0.$$

$$\overline{c}'x \to \max, \ \overline{A}x = \overline{b}, \ x \ge 0,$$
 (1.5)

исходные данные принимают вид

$$\overline{c} = (-5 -2 \ 3 \ -4 \ -6 \ 0 \ -1 \ -5 \ 0)', \qquad \overline{b} = (6 \ 10 \ -2 \ 9) ,$$
 (1.6)

$$\overline{A} = \begin{pmatrix} 0 & 1 & 4 & 1 & 0 & -3 & 5 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 7 & -1 & 0 & -1 & 3 & 8 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 3 & -3 & 1 & 1 \end{pmatrix}, \ \overline{m} = 4, \ \overline{n} = 9.$$

Легко проверить, что для задачи ЛП (1.5) вектор

$$\overline{x} = (x^0, x_9) = (10.0 \quad 0 \quad 1.5 \quad 0 \quad 0.5 \quad 0 \quad 0 \quad x_9)$$

не является даже допустимым планом при любом значении компоненты $x_9 \ge 0$. Поэтому для того, чтобы решить эту задачу ЛП симплекс-методом, нужно использовать первую фазу симплекс-метода для построения начального базисного плана.

Отметим, что вектор y' = (2.25 -5.00 6.00 0.00), построенный по оптимальному двойственному базисному плану $u^{0} = (2.25$ -5.00 6.00), $J_{\mathcal{B}} = \{1, 3, 5\}$ старой задачи ЛП (1.1) является допустимым двойственным базисным планом (с базисом $\overline{J}_{\mathcal{B}} = \{1, 3, 5, 9\}$) в новой задаче ЛП (1.5). Поэтому решать задачу ЛП (1.5) эффективнее двойственным симплекс-методом, взяв в качестве начального двойственного базисного плана этот двойственный план.

Решим задачу ЛП (1.5) двойственным симплекс-методом, исходя из начального двойственного базисного плана y' = (2.25 -5.00 -6.00 -0.00), $J_{\scriptscriptstyle E} = \{1, 3, 5, 9\}$. В результате получим

оптимальный план задачи (1.5)

$$\overline{x}^0 = (5.00 \quad 0 \quad 4.75 \quad 4.00 \quad 0 \quad 0.25 \quad 0 \quad 0), \quad \overline{J}_B^0 = \{1, 4, 5, 7\}$$

$$(1.7)$$

и оптимальный двойственный план

$$\overline{u}^0 = (1.00 - 17.25 - 6.00 - 12.25), \quad \overline{J}_{E}^0 = \{1, 4, 5, 7\}$$
 (1.8)

Пример 2. Рассмотрим задачу ЛП (1.5) с исходными данными (1.6), для которой известны оптимальный базисный план (1.7) и оптимальный двойственный базисный план (1.8).

Предположим, что исходные данные задачи изменились, а именно, вектор условий $\overline{b} = (6\ 10\ -2\ 9)'$ заменили на $\overline{b} = (6\ 10\ 3\ 9)'$ и требуется решить новую задачу ЛП

$$\overline{c}'x \to \max, \ \overline{A}x = \overline{\overline{b}}, \ x \ge 0,$$
 (1.9)

Легко проверить, что для задачи ЛП (1.9) вектор \overline{x}^0 (1.7) не является даже допустимым планом. Поэтому для того, что решить эту задачу ЛП симплекс-методом нужно использовать первую фазу симплекс-метода для построения начального базисного плана.

Отметим, что оптимальный двойственный базисный план (см. (1.8))

$$\overline{u}^0 = (1.00 - 17.25 - 6.00 \ 12.25), \quad \overline{J}_B^0 = \{1, 4, 5, 7\},$$

старой задачи ЛП (1.6) является допустимым двойственным базисным планом в новой задаче ЛП (1.9). Поэтому решать задачу ЛП (1.9) эффективнее двойственным симплексметодом, взяв в качестве начального двойственного плана этот план.

Решим задачу ЛП (1.9) двойственным симплекс-методом, исходя из начального двойственного базисного плана (1.8). В результате получим

оптимальный план задачи (1.9)

$$\overline{x}^0 = (5.0 \quad 0 \quad 0 \quad 4.6667 \quad 0 \quad 0.1111 \quad 0.3333 \quad 0 \quad 0), \quad \overline{\overline{J}}_{E}^0 = \{1, 4, 6, 7\},$$

и оптимальный двойственный план

$$\overline{u}^0 = (1.00 -5.75 \ 0.25 \ 0.75)$$
.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Задание 1. Для задачи ЛП вида (1.1) с исходными данными

$$c = (1 \quad 4 \quad -9 \quad 6 \quad -5 \quad 8 \quad 3 \quad -7 \quad 1), \quad b = (14 \quad 23 \quad 6)$$

$$A = \begin{pmatrix} 0 & 1 & -4 & 5 & 0 & -3 & -5 & 0 & 1 \\ 1 & -1 & 0 & 1 & 0 & 8 & 1 & -2 & 1 \\ 0 & 6 & -1 & 0 & -2 & 3 & 8 & 1 & 1 \end{pmatrix},$$

$$(1.20)$$

известны оптимальный базисный план

$$x^{0} = (3.00 0 0.4.00 0 2.00 0 0), J_{E}^{0} = \{1, 4, 6\}$$
 (1.21)

и оптимальный двойственный базисный план

$$u^{0} = (1 \ 1 \ 1), \quad J^{0}_{5} = \{1, 4, 6\}.$$
 (1.22)

Требуется последовательно решить двойственным симплекс-методом задачи ЛП, каждая из которых получается из предыдущей добавлением нового ограничения. В качестве исходной взять задачу (1.1) с данными (1.20). Добавляемые ограничения имеют вид

$$x_1 - 2x_2 - x_3 + 2x_4 + 3x_6 + 3x_7 + x_8 \le 9, (1.23)$$

$$x_1 + x_3 + x_5 + x_6 + x_7 - x_8 \le 20, (1.24)$$

$$-2x_1 + x_2 + x_3 - x_4 + 3x_6 + 3x_7 + x_8 \le 14, (1.25)$$

Таким образом, первой решается задача (1.1) с данными (1.20), (1.23), исходя их известного начального двойственного плана (1.22).

Второй решается задача (1.1) с данными (1.20), (1.23), (1.24), взяв в качестве начального двойственного плана найденный оптимальный двойственный базисный план первой задачи.

Третьей решается задача (1.1) с данными (1.20), (1.23)- (1.25), взяв в качестве начального двойственного плана найденный оптимальный двойственный базисный план второй задачи.

Задание 2. Для задачи ЛП вида (1.1) с исходными данными (1.20) известны оптимальный базисный план (1.21) и оптимальный двойственный базисный план (1.22).

Используя известный оптимальный двойственный план (1.22) решить новую задачу ЛП, в которой вектор условий $b=(14\ 23\ 6)'$ заменен на новый вектор $\overline{b}=(14\ 22\ 7)'$.

4. Решение матричной транспортной задачи методом потенциалов

Пример 1.

Имеется 3 склада, содержащие некоторое количество единиц однотипной продукции (см.таблицу 1), имеется также 5 потребителей нуждающихся в определенном количестве данной продукции (см.таблицу 2). При перевозке одной единицы продукции со склада і потребителю ј возникают издержки \mathbf{c}_{ij} . Величины издержек приведены в таблице 3. При перевозке \mathbf{x}_{ij} единиц продукции со склада і потребителю ј суммарные затраты на перевозку составляют \mathbf{x}_{ij} \mathbf{c}_{ii} .

Требуется найти такой план перевозок, при котором общие затраты на перевозку всей продукции, по всем потребителям, будут минимальны.

Таблина 1

Склад №	Запас ед. продукции
1	20
2	30
3	25

Таблица 2

Потребитель №	Потребность в ед. продукции
1	10
2	10
3	10
4	10
5	10

Таблица 3 Издержки на перевозку единицы продукции со склада і потребителю і

	Потребители					
Склад №	1	2	3	4	5	
1	2	8	-5	7	10	
2	11	5	8	-8	-4	
3	1	3	7	4	2	

Шаг:1

Проверка на сбалансированность.

Общее число запасов на складах : 75 ; Общая потребность : 50. Мы видим, что общее число запасов превышает общую потребность на 25. . Задача является открытой (несбалансированной), для приведения ее к закрытой введем фиктивного потребителя №6 с потребностью в продукции равной 25. Все издержки по доставке продукции данному потребителю с любого склада принимаем равными нулю.

Шаг:2

Отыскание начального плана перевозок. Найдем начальный базисный план перевозки методом северо-западного угла.

Запишем настоящую задачу в виде транспортной таблицы. В верхней строке перечислим потребности потребителей по порядку номеров. В левом столбце перечислим имеющиеся запасы на складах. На пересечении j-го столбца и i-й строки будем записывать количество продукции x_{ij} , поставляемое с i-го склада j-му потребителю. Пока начальное решение не найдено, оставим эти клетки пустыми.

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
$a_1 = 20$						
a ₂ =30						
a ₃ =25						

Введем вспомогательные строку и столбец, в которых будем отмечать оставшиеся нераспределенные запасы и соответственно потребности (остатки). Изначально их содержимое равно исходным запасам и потребностям, так как еще ничего не распределялось. На рисунке они представлены желтым цветом.

Выберем клетку, в которую будем распределять продукцию на следующей итерации, это левая верхняя клетка (северо-западный угол). На рисунке, как сама клетка, так и соответствующие ей остатки отображаются красным шрифтом.

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25	
a ₁ =20	<i>x</i> ₁₁						20
$a_2 = 30$							30
a ₃ =25							25
	10	10	10	10	10	25	

Итерация: 1

Заполним клетку (1,1).

Сравним значения остатков для производителя a_1 и потребителя b_1 .

Нераспределенных остатков по потребностям для $\mathbf{b_1}$ меньше (см. таблицу выше, красный шрифт), положим $\mathbf{x_{11}} = \min\{a_1, b_1\} = 10$ и запишем это в клетку (1,1) одновременно вычитая его из обеих клеток остатков (см. таблицу ниже). При этом клетка остатков по потребностям обнулится указывая, что все потребности для $\mathbf{b_1}$ удовлетворены (см. таблицу ниже). Поэтому исключим столбец $\mathbf{b_1}$ из дальнейшего рассмотрения (серый фон). Ненулевое значение остатка по запасам для $\mathbf{a_1}$ показывает, сколько единиц продукции у него осталось не потребленной.

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25	
a ₁ =20	10	<i>x</i> ₁₂					10
$a_2 = 30$							30
a ₃ =25							25
	0	10	10	10	10	25	

Итерация: 2

Заполним клетку (1,2).

Сравним значения остатков для производителя a_1 и потребителя b_2 .

Они равны (см. таблицу выше, красный шрифт). Положим $\mathbf{x}_{12} = \min\{10,10\} = 10$ запишем это в клетку (1,2) и обнулим соответствующие клетки остатков (см. таблицу ниже). Так как все потребности для \mathbf{b}_2 удовлетворены и все запасы \mathbf{a}_1 использованы, исключим столбец \mathbf{b}_2 и строку \mathbf{a}_1 из дальнейшего рассмотрения (серый фон).

	$b_1 = 10$	$b_2 = 10$	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25	
a ₁ =20	10	10					0
$a_2 = 30$			x ₂₃				30
a ₃ =25							25
	0	0	10	10	10	25	

Итерация: 3

	$b_1 = 10$	b ₂ =10	$b_3 = 10$	b ₄ =10	b ₅ =10	b ₆ =25	
$a_1 = 20$	10	10					0
a ₂ =30			10	x ₂₄			20
a ₃ =25							25
	0	0	0	10	10	25	

Итерация: 4

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25	
$a_1=20$	10	10					0
a ₂ =30			10	10	x ₂₅		10
a ₃ =25							25
	0	0	0	0	10	25	

Итерация: 5

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25	
a ₁ =20	10	10					0
a ₂ =30			10	10	10		0
a ₃ =25						<i>x</i> ₃₆	25
	0	0	0	0	0	25	

Итерация: 6

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25	
$a_1=20$	10	10					0
a ₂ =30			10	10	10		0
a ₃ =25						25	0
	0	0	0	0	0	0	

Получен начальный допустимый план перевозок (см. таблицу ниже), удовлетворены нужды всех потребителей и использованы все запасы производителей.

	b ₁ =10	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
$a_1=20$	10	10	0	0	0	0
a ₂ =30	0	0	10	10	10	0
a ₃ =25	0	0	0	0	0	25

Шаг:3

Проверим полученный <u>план</u> на <u>невырожденность</u>. Количество клеток **N** с ненулевыми перевозками должно удовлетворять условию **N=n+m-1**. В нашем случае N=6, n+m=6+3=9, план является <u>вырожденным</u>. Прежде чем двигаться дальше выберем 2 клетки с нулевыми значениями перевозок. Выбирать следует такие клетки, которые не образуют <u>пиклов</u> с клетками с ненулевыми перевозками.

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	10	10	0	0	0	0
a ₂ =30	0	0	10	10	10	0
a ₃ =25	0	0	0	0	0	25

В последней таблице представлен построенный начальный базисный план перевозки. Базисные клетки отмечены серым цветом. Значения перевозок

$$x_{ij}$$
, $(i, j) \in U = \{(i, j) : i = 1, ..., m, j = 1, ..., n\}$, отмечены синим цветом.

Шаг:4

Проведем поэтапное улучшение начального базисного плана перевозки, используя метод потенциалов.

Итерация: 1

Составим вспомогательную рабочую матрицу затрат. Она строится из исходной матрицы издержек (см. Таблицу 3) путем переноса только тех значений c_{ij} , которые соответствуют базисным клеткам транспортной таблицы. Остальные ячейки остаются пустыми. Кроме того, введем вспомогательный столбец, в который внесем значения неизвестных $u_1,...,u_3$ (3,это ${\bf m}$ - число складов) и вспомогательную строку, в которую внесем значения неизвестных $v_1,...,v_6$ (6,это ${\bf n}$ - число потребителей). На рисунке они представлены желтым цветом. Эти ${\bf n}$ +т неизвестных должны для всех (i,j), соответствующих базисным клеткам, удовлетворять линейной системе уравнений

$$u_i + v_j = c_{ij}, \ (i, j) \in U_B.$$

Эту систему всегда можно решить следующим способом: На первом шаге полагают $v_6=0$. Если на k-м шаге найдено значение неизвестной, то в системе всегда имеется еще не определенная неизвестная, которая однозначно может быть найдена на (k+1)-м шаге из уравнения $u_i+v_j=c_{ij}$, так как значение другой неизвестной в этом уравнении уже известно. Переменные u_i и v_j называются потенциалами.

Рабочая матрица затрат с рассчитанными потенциалами представлена ниже.

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	8	-5			0	$u_1=0$
a_2			8	-8	-4		$u_2 = 13$
a ₃						0	$u_3=0$
	$v_1=2$	$v_2=8$	$v_3 = -5$	v ₄ =-21	v ₅ =-17	$v_6=0$	

Порядок вычисления потенциалов был следующий:

- 1) Пусть $v_6 = 0$;
- 2) $u_1 = c_{1,6} v_6$;
- 3) $u_3 = c_{3,6} v_6$;
- 4) $v_1 = c_{1,1} u_1$;
- 5) $v_2 = c_{1,2} u_1$;
- 6) $v_3 = c_{1,3} u_1$;
- 7) $u_2 = c_{2,3} v_3$;
- 8) $v_4 = c_{2,4} u_2$;
- 9) $v_5 = c_{2.5} u_2$;

Теперь для всех небазисных (свободных) клеток рабочей матрицы затрат вычислим оценки Δ_{ij} , по формуле $\Delta_{ij} = c_{ij} - u_i - v_j$, $(i,j) \in U_H = U \setminus U_E$, (зеленый цвет). Если же среди оценок нет отрицательных - план является оптимальным, решение задачи прекращаем. В противном случае продолжаем решение задачи.

Рабочая матрица затрат с заполненными оценками клетками представлена ниже.

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	8	-5	28	27	0	$u_1=0$
a_2	-4	-16	8	-8	-4	-13	$u_2 = 13$
a ₃	-1	-5	12	25	19	0	$u_3=0$
	$v_1=2$	v ₂ =8	$v_3 = -5$	v ₄ =-21	$v_5 = -17$	$v_6=0$	

Из всех отрицательных оценок имеет смысл выбрать наибольшую по модулю (красный цвет), так как ее воздействие на общие затраты является максимальным. В нашем случае такая оценка находится в клетке $(i_0,j_0)=(2,2)$. В совокупности клеток $U_{\mathcal{E}}\cup(i_0,j_0)$ содержится единственный цикл $U_{\mathit{цикл}}\subset U_{\mathcal{E}}\cup(i_0,j_0)$. В таблице клетки цикла отмечены голубым цветом. Отметим в транспортной таблице ячейку $(i_0,j_0)=(2,2)$ знаком + . Начиная с клетки $(i_0,j_0)=(2,2)$, последовательно обойдем все клетки цикла, поочередно помечая их знаками - и +. В результате множество клеток $U_{\mathit{цикл}}$ цикла разобьется на два подмножества: множество клеток цикла, помеченных знаком + --- $U_{\mathit{цикл}}^+$, и множество клеток цикла, помеченных знаком - --- $U_{\mathit{цикл}}^-$.

	b ₁ =10	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
$a_1 = 20$	10	10 -		0	0	0
a ₂ =30	0	0+	10-	10	10	0
a ₃ =25	0	0	0	0	0	25

Найдем $\theta = \min_{(i,j) \in U_{\eta u \kappa n}^-} x_{ij}$ и выбираем одну ячейку, $(i_*,j_*) \in U_{\eta u \kappa n}^-$, где этот минимум достигается. В нашем случае $\theta = 10$ и $(i_*,j_*) = (1,2)$.

Переходим к новому плану перевозок по правилу

$$\overline{x}_{ij} = x_{ij} + \theta, \ (i,j) \in U_{uukn}^+, \ \overline{x}_{ij} = x_{ij} - \theta, \ (i,j) \in U_{uukn}^-, \ \overline{x}_{ij} = x_{ij}, \ (i,j) \in U \setminus U_{uukn}. \ (3.1)$$

Новое множество базисных клеток строим по правилу

$$\overline{U}_{\scriptscriptstyle E} = (U_{\scriptscriptstyle E} \setminus (i_*, j_*)) \cup (i_0, j_0). \tag{3.2}$$

В результате получим новый базисный план перевозок, приведенный ниже

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	10	0	10	0	0	0
a ₂ =30	0	10	0	10	10	0
a ₃ =25	0	0	0	0	0	25

Здесь базисные клетки $\bar{U}_{\scriptscriptstyle E}$ отмечены серым цветом.

Итерация: 2

	b ₁	b_2	b ₃	b ₄	b ₅	b ₆	
a_1	2	16	-5	28	27	0	$u_1=0$
a_2	-4	5	8	-8	-4	-13	$u_2 = 13$
a ₃	-1	11	12	25	19	0	$u_3=0$
	$v_1=2$	v ₂ =-8	v ₃ =-5	v ₄ =-21	v ₅ =-17	$\mathbf{v}_6 = 0$	

Для небазисной клетки (2,6) оценка $\Delta_{26}=-13\,$ является отрицательной. Полагаем $(i_0,j_0)=(2,6)$.

	b ₁ =10	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	10	0	10+	0	0	0 -
a ₂ =30	0	10	0-	10	10	0+
a ₃ =25	0	0	0	0	0	25

Найдем $\theta = \min_{(i,j) \in U_{\eta u \kappa n}^-} x_{ij}$ и выбираем одну ячейку, $(i_*,j_*) \in U_{\eta u \kappa n}^-$, где этот минимум достигается. На данной итерации имеем $\theta = 0$ и $(i_*,j_*) = (1,6)$.

Находим новый план перевозок по правилам (3.1) и соответствующее ему множество базисных клеток по правилу (3.2).

В результате получим новый базисный план перевозок, приведенный ниже:

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
$a_1 = 20$	10	0	10	0	0	0
$a_2 = 30$	0	10	0	10	10	0
a ₃ =25	0	0	0	0	0	25

Итерация: 3

	b ₁	b_2	b ₃	b ₄	b ₅	b ₆	
a_1	2	16	-5	28	27	13	$u_1 = -13$
a_2	-4	5	8	-8	-4	0	$u_2 = 0$
a ₃	-14	-2	-1	12	6	0	$u_3 = 0$
	$v_1 = 15$	$v_2=5$	$v_3 = 8$	v ₄ =-8	v ₅ =-4	$v_6=0$	

Для небазисной клетки (3,1) оценка $\Delta_{31}=-14$ является отрицательной. Полагаем $(i_0,j_0)=(3,1)$.

	b ₁ =10	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	10-	0	10+	0	0	0
a ₂ =30	0	10	0-	_10_	_10_	
a ₃ =25	0+	0	0	0	0	25

Найдем $\theta = \min_{(i,j) \in U_{\eta\mu\kappa\eta}^-} x_{ij}$ и выбираем одну ячейку, $(i_*,j_*) \in U_{\eta\mu\kappa\eta}^-$, где этот минимум достигается. На данной итерации имеем $\theta = 0$ и $(i_*,j_*) = (2,3)$.

Находим новый план перевозок по правилам (3.1) и соответствующее ему множество базисных клеток по правилу (3.2).

В результате получим новый базисный план перевозок, приведенный ниже.

	b ₁ =10	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	10	0	10	0	0	0
a ₂ =30	0	10	0	10	10	0
a ₃ =25	0	0	0	0	0	25

Итерация: 4

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	2	-5	14	13	-1	$u_1 = 1$
a_2	10	5	14	-8	-4	0	u ₂ =0
a ₃	1	-2	13	12	6	0	$u_3=0$
	$v_1 = 1$	$v_2=5$	$v_3 = -6$	v ₄ =-8	$v_5 = -4$	$v_6=0$	

Для небазисной клетки (3,2) оценка $\Delta_{32}=-2\,$ является отрицательной. Полагаем $(i_0,j_0)=(3,2)$.

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	10	0	10	0	0	0
a ₂ =30	0	10 -	0	10	10	0 +
a ₃ =25	0	0+	0	0	0	25 -

На данной итерации имеем $\theta = 10$ и $(i_*, j_*) = (2, 2)$.

Находим новый план перевозок по правилам (3.1) и соответствующее ему множество базисных клеток по правилу (3.2).

В результате получим новый базисный план перевозок, приведенный ниже.

	b ₁ =10	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
$a_1=20$	10	0	10	0	0	0
a ₂ =30	0	0	0	10	10	10
a ₃ =25	0	10	0	0	0	15

Итерация: 5

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	2	4	-5	14	13	-1	$u_1 = 1$
a_2	10	2	14	-8	-4	0	$u_2=0$
a ₃	1	3	13	12	6	0	$u_3=0$
	$v_1 = 1$	$v_2=3$	$v_3 = -6$	v ₄ = -8	$v_5 = -4$	$v_6=0$	

Для небазисной клетки (1,6) оценка $\Delta_{16}=-1$ является отрицательной. Полагаем $(i_0,j_0)=(1,6)$.

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	10 -	0	10	0	0	0+
$a_2 = 30$	0	0	0	10	10	10
a ₃ =25	0+	10	0	0	0	15 -

На данной итерации имеем $\theta = 10$ и $(i_*, j_*) = (1,1)$.

Находим новый план перевозок по правилам (3.1) и соответствующее ему множество базисных клеток по правилу (3.2).

В результате получим новый базисный план перевозок, приведенный ниже.

	$b_1 = 10$	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20			10			10
$a_2 = 30$				10	10	10
a ₃ =25	10	10				5

Итерация: 6

	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
a_1	1	5	-5	15	14	0	$u_1=0$
a_2	10	2	13	-8	-4	0	$u_2 = 0$
a ₃	1	3	12	12	6	0	$u_3=0$
	$v_1 = 1$	$v_2=3$	$v_3 = -5$	v ₄ =-8	$v_5 = -4$	$v_6=0$	

В приведенной выше таблице нет отрицательных оценок (план улучшить нельзя), следовательно, достигнуто оптимальное решение.

	b ₁ =10	b ₂ =10	b ₃ =10	b ₄ =10	b ₅ =10	b ₆ =25
a ₁ =20	0	0	10	0	0	10
a ₂ =30	0	0	0	10	10	10
a ₃ =25	10	10	0	0	0	5

Общие затраты на перевозку всей продукции, для оптимального плана составляют:

$$\sum_{i=1}^{3} \sum_{j=1}^{6} c_{ij} x_{ij} = 130.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Имеется m складов, содержащие некоторое количество единиц однотипной продукции a_i , i=1,...,m, имеется также n потребителей нуждающихся в определенном количестве данной продукции b_j , j=1,...,n. При перевозке одной единицы продукции со склада $\mathbf i$ потребителю $\mathbf j$ возникают издержки $\mathbf c_{ij}$. Величины $\mathbf c_{ij}$, a_i , i=1,...,m, b_j , j=1,...,n, приведены в таблице. При перевозке $\mathbf x_{ij}$ единиц продукции со склада $\mathbf i$ потребителю $\mathbf j$ суммарные затраты на перевозку составляют $\mathbf x_{ij} \mathbf c_{ij}$.

Требуется найти такой план перевозок при котором общие затраты на перевозку всей продукции, по всем потребителям, будут минимальны.

Задача 1. Решить транспортную задачу с данными из Таблицы 1, m=4,n=8.

Таблица 1

		Потребители								
Склад №	1	2	3	4	5	6	7	8		
1	-3	6	7	12	6	-3	2	16	$a_1 = 20$	
2	4	3	7	10	0	1	-3	7	$a_2 = 11$	
3	19	3	2	7	3	7	8	15	$a_3 = 18$	
4	1	4	-7	-3	9	13	17	22	$a_4 = 27$	
Потребность в ед. продук- ции	<i>b</i> ₁ = 11	$b_2 = 4$	$b_3 = 10$	$b_4 = 12$	$b_5 = 8$	$b_6 = 9$	$b_7 = 10$	$b_8 = 4$		

Ответ: Компоненты x_{ij} , $i=1,...,4,\; j=1,...,8,\;$ оптимального плана перевозок приведены в таблице:

	$b_1 = 11$	b ₂ =4	b ₃ =10	b ₄ =12	b ₅ =8	b ₆ =9	b ₇ =10	b ₈ =4	b ₉ =8
a ₁ =20	11	0	0	0	0	9	0	0	0
$a_2 = 11$	0	0	0	0	0	0	10	1	0
a ₃ =18	0	4	0	0	8	0	0	3	3
a ₄ =27	0	0	10	12	0	0	0	0	5

Общие затраты на перевозку всей продукции для оптимального плана составляют:

$$\sum_{i=1}^{4} \sum_{j=1}^{8} c_{ij} x_{ij} = -108.$$

Задача 2: Решить транспортную задачу с данными из Таблицы 2, m=4,n=8.

			Пс	Запас ед. продукции					
Склад №	1	2	3	4	5	6	7	8	
1	-3	10	70	-3	7	4	2	-20	15
2	3	5	8	8	0	1	7	-10	12
3	-15	1	0	0	13	5	4	5	18
4	1	-5	9	-3	-4	7	16	25	20
Потребность в ед. продукции	5	5	10	4	6	20	10	5	

Ответ: Компоненты x_{ij} , $i=1,...,4,\;j=1,...,8,\;$ оптимального плана перевозок приведены в таблице

	$b_1=5$	b ₂ =5	b ₃ =10	b ₄ =4	b ₅ =6	b ₆ =20	b ₇ =10	b ₈ =5
$a_1 = 15$	0	0	0	0	0	0	10	5
a ₂ =12	0	0	0	0	0	12	0	0
a ₃ =18	5	0	10	0	0	3	0	0
a ₄ =20	0	5	0	4	6	5	0	0

$$\sum_{i=1}^{4} \sum_{j=1}^{8} c_{ij} x_{ij} = -154.$$

Задача 3. Решить транспортную задачу с данными из Таблицы 3, m=4,n=5.

	Γ	Іотр	ебит	гел	Запас ед. продукции	
Склад №	1	2	3	4	5	
1	3	0	3	1	6	53
2	2	4	10	5	7	20
3	-2	5	3	2	9	45
4	1	3	5	1	9	38
Потребность в ед. продукции	15	31	10	3	18	

Ответ: Компоненты x_{ij} , $i=1,...,4,\; j=1,...,6,\;$ оптимального плана перевозок приведены в таблице

	$b_1 = 15$	$b_2 = 31$	b ₃ =10	b ₄ =3	b ₅ =18	b ₆ =79
$a_1 = 53$	0	31	1	3	18	0
a ₂ =20	0	0	0	0	0	20
a ₃ =45	15	0	9	0	0	21
a ₄ =38	0	0	0	0	0	38

$$\sum_{i=1}^{4} \sum_{j=1}^{6} c_{ij} x_{ij} = 111.$$

Задача 4.

Решить транспортную задачу с данными из Таблицы 4, m=5,n=4.

	Потребители			ели	Запас ед. продукции
Склад №	1	2	3	4	
1	2	6	8	-3	13
2	3	2	12	4	5
3	7	2	5	7	7
4	9	2	14	9	9
5	8	7	8	8	10
Потребность в ед. продукции	20	5	6	11	

Ответ: Компоненты x_{ij} , $i=1,...,5,\;j=1,...,5,\;$ оптимального плана перевозок приведены в таблице

	b ₁ =20	b ₂ =5	b ₃ =6	b ₄ =11	b ₅ =2
$a_1 = 13$	2	0	0	11	0
$a_2 = 5$	5	0	0	0	0
a ₃ =7	1	0	6	0	0
a ₄ =9	2	5	0	0	2
a ₅ =10	10	0	0	0	0

$$\sum_{i=1}^{5} \sum_{j=1}^{5} c_{ij} x_{ij} = 131.$$

Задача 5.

Решить транспортную задачу с данными из Таблицы 5, m=5,n=4.

Таблица 5Издержки на перевозку единицы продукции со склада і потребителю **ј**

	Потребители				Запас ед. продукции
Склад №	1	2	3	4	
1	1	1	-1	-1	7
2	0	0	2	6	3
3	5	4	7	6	7
4	7	8	5	7	3
5	2	5	10	2	7
Потребность в ед. продукции	10	10	4	3	

Ответ: Компоненты x_{ij} , $i=1,...,5,\;j=1,...,4,\;$ оптимального плана перевозок приведены в таблице

	$b_1 = 10$	b ₂ =10	b ₃ =4	b ₄ =3
$a_1=7$	3	0	1	3
$a_2 = 3$	0	3	0	0
a ₃ =7	0	7	0	0
a ₄ =3	0	0	3	0
$a_5=7$	7	0	0	0

$$\sum_{i=1}^{5} \sum_{j=1}^{4} c_{ij} x_{ij} = 56.$$

5. Решение задач квадратичного программирования

Пример 1

Решить задачу квадратичного программирования вида

$$c'x + \frac{1}{2}x'Dx \to \min, \quad Ax = b, \ x \ge 0,$$
(4.1)

со следующими исходными данными

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 4 & -1 & -3 \\ 1 & 3 & 0 & 0 & 1 & -1 & -1 & 2 \\ 1 & 4 & 1 & 0 & 0 & 2 & -2 & 0 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, n = 8, m = 3,$$

$$B = \begin{pmatrix} 1, 1, -1, 0, 3, 4, -2, 1 \\ 2, 6, 0, 0, 1, -5, 0, -1 \\ -1, 2, 0, 0, -1, 1, 1, 1 \end{pmatrix}, \qquad d = \begin{pmatrix} 7 & 3 & 3 \end{pmatrix}',$$

$$D = B'B = \begin{pmatrix} 6 & 11 & -1 & 0 & 6 & -7 & -3 & -2 \\ 11 & 41 & -1 & 0 & 7 & -24 & 0 & -3 \\ -1 & -1 & 1 & 0 & -3 & -4 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 7 & -3 & 0 & 11 & 6 & -7 & 1 \\ -7 & -24 & -4 & 0 & 6 & 42 & -7 & 10 \\ -3 & 0 & 2 & 0 & -7 & -7 & 5 & -1 \\ -2 & -3 & -1 & 0 & 1 & 10 & -1 & 3 \end{pmatrix},$$

$$c' = -d'B = \begin{pmatrix} -10 & -31 & 7 & 0 & -21 & -16 & 11 & -7 \end{pmatrix},$$

и заданным правильным опорным планом

$$x^{na^{4}} = (0 \ 0 \ 6 \ 4 \ 5 \ 0 \ 0 \ 0), \quad J_{on} = \{j_{1} = 3, \ j_{2} = 4, \ j_{3} = 5\}, \quad J_{*} = \{3, \ 4, \ 5\},$$

Итерация 1

Шаг 1. Используя заданный план x^{naq} , вычисляем вектор

$$\overline{c}(x^{haq}) = Dx^{haq} + c = (14 -2 -2 0 16 -10 -12 -8)'.$$

По опорному множеству индексов $J_{\it on}$ = {3, 4, 5} строим матрицу и вектор

$$A_{on} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \overline{c}_{on}(x^{na^{4}}) = (-2 \quad 0 \quad 16).$$

Находим вектор потенциалов

$$u' = -\overline{c}_{on}(x^{nau})'A_{on}^{-1} = (0 -16 2)$$

и вектор оценок

$$\Delta = u'A + \overline{c}(x^{na^{q}}) = (0 - 42 \quad 0 \quad 0 \quad 10 \quad 0 - 40), \quad j_0 = 2.$$

Шаг 2. Проверяем критерий оптимальности:

$$\Delta_j \ge 0, j \in J \setminus J_*. \tag{4.2}$$

В данном случае условия оптимальности не выполняются. Зафиксируем индекс $j_0 \in J \setminus J_*$, для которого $\Delta_{j_0} < 0$: $j_0 = 2$. Идем на шаг 3, используя индекс $j_0 = 2$.

Шаг 3. Построим направления $l=(l_j,\ j\in J),\ J=\{1,2,...,8\}.$ изменения плана. Компоненты $l_j,\ j\in J_H=J\setminus J_*=\{1,2,6,7,8\},$ определим по правилу

$$l_j = 0, j \in J_H \setminus j_0, \quad l_{j_0} = 1.$$
 (4.3)

Для нахождения оставшихся компонент $l(J_*) = (l_3, \, l_4, \, l_4)$ сформируем матрицу H и вектор bb

$$H = \begin{pmatrix} D_* & A_* \\ A_* & O \end{pmatrix}, bb = \begin{pmatrix} D(J_*, j_0) \\ A_{j_0} \end{pmatrix},$$

$$ede \ D_* = \begin{pmatrix} d_{ij}, j \in J_* \\ i \in J_* \end{pmatrix}, D(J_*, j_0) = \begin{pmatrix} d_{ij_0} \\ i \in J_* \end{pmatrix}, A_* = (A_j, j \in J_*). \tag{4.4}$$

Получим

$$H = \left(\begin{array}{cccccc} 1 & 0 & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 11 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{array}\right), \quad bb = \left(\begin{array}{c} -1 \\ 0 \\ 7 \\ 2 \\ 3 \\ 4 \end{array}\right).$$

Найдем вектор

$$\begin{pmatrix} l(J_*) \\ \Delta y \end{pmatrix} = -H^{-1}bb = \begin{pmatrix} -4 \\ -2 \\ -3 \\ 0 \\ 14 \\ -4 \end{pmatrix},$$

первые $|J_*|$ компонент которого задают искомый вектор $l(J_*) = (l_3, \, l_4, \, l_4)$. Таким образом, шаг 3 завершается построением вектора

$$l = (0 \ 1 \ -4 \ -2 \ -3 \ 0 \ 0 \ 0)$$
.

Шаг 4. Подсчитаем шаги $\theta_j, j \in J_* \cup j_0$, по правилам

$$\theta_{j} = \begin{cases} \infty, & \text{если } l_{j} \geq 0, j \in J_{*}; \\ -x_{j} / l_{j}, & \text{если } l_{j} \leq 0, j \in J_{*}; \end{cases}$$

$$(4.5)$$

$$\theta_{j_0} = \theta_{\delta} = \begin{cases} \infty, \text{ если } \delta = 0; \\ |\Delta_{j_0}| \setminus \delta, \text{ если } \delta > 0; \end{cases} \quad \text{где } \delta = l'Dl = D'_{*j_0}l_* + A'_{j_0}y + d_{j_0j_0}. \tag{4.6}$$

Найдем $\theta_0 = \min \theta_j, j \in J_* \cup j_0$, и индекс $j_* \in J_* \cup j_0$, на котором $\theta_0 = \theta_{j_*}$. На данной итерации имеем

$$\theta_3 = 1.5000$$
, $\theta_4 = 2.0000$, $\theta_5 = 1.6667$, $\theta_{\delta} = \theta_{j_0} = 0.8400$, $\theta_0 = \min\{\theta_3, \theta_4, \theta_5, \theta_{j_0}\} = \theta_{j_0} = 0.8400$, $j_* = j_0$.

Шаг 5. Строим новый план

$$\overline{x} = x^{Ha4} + \theta_0 l = (0 \ 0.8400 \ 2.6400 \ 2.3200 \ 2.4800 \ 0 \ 0)$$
.

Шаг 6. Строим новые множества \overline{J}_{on} и \overline{J}_* . На данной итерации реализовался случай а): $j_*=j_0$, поэтому новые множества \overline{J}_{on} и \overline{J}_* . строим по правилу

$$\overline{J}_{on} = J_{on}, \ \overline{J}_* = J_* \cup j_0,$$
 (4.7)

В результате чего получаем множества

$$\overline{J}_{on} = \{3, 4, 5\}, \quad \overline{J}_* = \{3, 4, 5, 2\}.$$

Переходим к следующей итерации, исходя их нового правильного опорного плана

$$x := \overline{x} = (0 \ 0.8400 \ 2.6400 \ 2.3200 \ 2.4800 \ 0 \ 0),$$

$$J_{on} := \overline{J}_{on} = \{3, 4, 5\}, \quad J_* := \overline{J}_* = \{3, 4, 5, 2\}.$$

Итерация 2

Шаг 1. Используя заданный план x, вычисляем вектор

$$\overline{c}(x) = Dx + c = (11.4800 \ 18.1600 \ 1.3600 \ 0 \ 4.2400 - 31.8400 - 1.0800 - 9.6800)$$

По опорному множеству индексов $J_{on} = \{3, 4, 5\}$ строим матрицу и вектор

$$A_{on} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \overline{c}_{on}(x) = (1.3600 \quad 0 \quad 4.2400)'.$$

Находим вектор потенциалов

$$u' = -\overline{c}_{on}(x)' A_{on}^{-1} = (0 - 4.2400 - 1.3600)$$

и вектор оценок

$$\Delta = u'A + \overline{c}(x) = (5.8800 - 0.0000 \quad 0 \quad 0 \quad -30.3200 \quad 5.8800 - 18.1600).$$

Проверяем условия оптимальности (4.2).

В данном случае эти условия не выполняются. Зафиксируем индекс $j_0 \in J \setminus J_*$, для которого $\Delta_{j_0} < 0$: $j_0 = 6$. Идем на шаг 3, используя индекс $j_0 = 6$.

Шаг 3. Построим направления $l=(l_j,\ j\in J),\ J=\{1,2,...,8\}.$ изменения плана. Компоненты $l_j,\ j\in J_H=J\setminus J_*=\{1,6,7,8\},$ определим по правилу (4.3).

Для нахождения оставшихся компонент $l(J_*) = (l_3, l_4, l_5, l_2)$ сформируем матрицу H и вектор bb по правилам (4.4). В результате получаем

$$H = \begin{pmatrix} 1 & 0 & -3 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 11 & 7 & 0 & 1 & 0 \\ -1 & 0 & 7 & 41 & 2 & 3 & 4 \\ 0 & 1 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 4 & 0 & 0 & 0 \end{pmatrix}, \quad bb = \begin{pmatrix} D(J_*, j_0) \\ A_{j_0} \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \\ 6 \\ -24 \\ 4 \\ -1 \\ 2 \end{pmatrix}.$$

Найдем вектор

$$\begin{pmatrix} l(J_*) \\ \Delta y \end{pmatrix} = -H^{-1}bb = \begin{pmatrix} -5.8400 \\ -5.9200 \\ -1.8800 \\ 0.9600 \\ 0 \\ -9.5600 \\ 5.1600 \end{pmatrix},$$

первые $|J_*|$ компонент которого задают искомый вектор $l(J_*) = (l_3, \, l_4, \, l_5, l_2)$. Таким образом, шаг 3 завершается построением вектора

 $l = (0 \ 0.9600 \ -5.8400 \ -5.9200 \ -1.8800 \ 1.0000 \ 0)$.

Шаг 4. Подсчитаем шаги $\theta_j, j \in J_* \cup j_0$, по правилам (4.5), (4.6), найдем $\theta_0 = \min \theta_j, j \in J_* \cup j_0$, и индекс $j_* \in J_* \cup j_0$, на котором $\theta_0 = \theta_{j_*}$. На данной итерации имеем

$$\begin{split} &\theta_2 = \infty, \ \theta_3 = 0.4521 \ , \ \theta_4 = 0.3919 \ , \quad \theta_5 = 1.3191, \ \theta_\delta = \theta_{j_0} = 0.5954, \\ &\theta_0 = \min\{\theta_2, \theta_3, \theta_4, \theta_5, \theta_{j_0}\} = \theta_4 = 0.3919, \quad j_* = 4 = j_s, \ s = 2. \end{split}$$

Шаг 5. Строим новый план

$$\overline{x} = x + \theta_0 l = (0 \ 1.2162 \ 0.3514 \ 0 \ 1.7432 \ 0.3919 \ 0 \ 0)$$
.

Шаг 6. Строим новые множества \overline{J}_{on} и \overline{J}_* . На данной итерации реализовался случай с):

$$j_* = j_s \in J_{on}$$
 и существует такой индекс $j_+ \in J_* \setminus J_{on}$, что $e_s' A_{on}^{-1} A_{j_+} \neq 0$;

где $j_{\scriptscriptstyle +}=2$. Поэтому новые множества $\overline{J}_{\scriptscriptstyle on}$ и $\overline{J}_{\scriptscriptstyle *}$. строим по правилу

$$\overline{J}_{on} = (J_{on} \setminus j_*) \cup j_+, \quad \overline{J}_* = J_* \setminus j_*, \tag{4.8}$$

в результате чего получаем множества

$$\overline{J}_{on} = \{2,3,5\}, \overline{J}_* = \{2,3,5\}.$$

Вычисляем новое значение оценки $\ \overline{\Delta}_{j_0} = \Delta_{j_0} + \theta_0 \delta$:

$$\overline{\Delta}_{j_0} = \overline{\Delta}_6 = \Delta_6 + \theta_0 l' D l = -10.3649$$
.

Идем на шаг 3 с новыми значениями

$$x := \overline{x} = (0 \ 1.2162 \ 0.3514 \ 0 \ 1.7432 \ 0.3919 \ 0 \ 0),$$

$$J_{on} := \overline{J}_{on} = \{2,3,\ 5\}, \ J_* := \overline{J}_* = \{2,3,\ 5\}, \ \Delta_{j_0} := \overline{\Delta}_{j_0} = -10.3649 \ \text{и} \ j_0 = 6.$$

Шаг 3. Построим направления $l=(l_j,\ j\in J),\ J=\{1,2,...,8\},$ изменения плана для новых множеств J_{on} и J_* . Компоненты $l_j,\ j\in J_H=J\setminus J_*=\{1,4,6,7,8\},$ определим по правилу (4.3).

Для нахождения оставшихся компонент $l(J_*) = (l_2, l_3, l_5)$ сформируем матрицу H и вектор bb по правилам (4.4). В результате получаем

$$H = \begin{pmatrix} 41 & -1 & 7 & 2 & 3 & 4 \\ -1 & 1 & -3 & 0 & 0 & 1 \\ 7 & -3 & 11 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad bb = \begin{pmatrix} D(J_*, j_0) \\ A_{j_0} \end{pmatrix} = \begin{pmatrix} -24 \\ -4 \\ 6 \\ 4 \\ -1 \\ 2 \end{pmatrix}.$$

Найдем вектор

$$\begin{pmatrix} l(J_*) \\ \Delta y \end{pmatrix} = -H^{-1}bb = \begin{pmatrix} -2.0000 \\ 6.0000 \\ 7.0000 \\ 74.0000 \\ -51.0000 \\ 17.0000 \end{pmatrix},$$

первые $|J_*|$ компонент которого задают искомый вектор $l(J_*) = (l_2, l_3, l_5)$. Таким образом, шаг 3 завершается построением вектора

$$l = (0, -2.0000, 6.0000, 0, 7.0000, 1.0000, 0, 0)$$

Шаг 4. Подсчитаем шаги θ_j , $j \in J_* \cup j_0$, по правилам (4.5), (4.6), найдем $\theta_0 = \min \theta_j$, $j \in J_* \cup j_0$, и индекс $j_* \in J_* \cup j_0$, на котором $\theta_0 = \theta_{j_*}$. На данной итерации имеем

$$\begin{aligned} &\theta_2 = 0.6081, \ \theta_3 = \infty \ , \quad \theta_5 = \infty, \ \theta_{\delta} = \theta_{j_0} = 0.0212, \\ &\theta_0 = \min\{\theta_2, \theta_3, \theta_5, \theta_{j_0}\} = \theta_{j_0} = 0.0212, \quad j_* = j_0 = 6. \end{aligned}$$

Шаг 5. Строим новый план

$$\overline{x} = x + \theta_0 l = (0 \ 1.1738 \ 0.4785 \ 0 \ 1.8916 \ 0.4131 \ 0 \ 0)$$
.

Шаг 6. Строим новые множества \overline{J}_{on} и \overline{J}_* . На данной итерации реализовался случай а): $j_*=j_0$, поэтому новые множества \overline{J}_{on} и \overline{J}_* . строим по правилу (4.7), В результате чего получаем множества

$$\overline{J}_{on} = \{2,3, 5\}, \overline{J}_* = \{2,3, 5, 6\}.$$

Переходим к следующей итерации, исходя их нового правильного опорного плана

$$x := \overline{x} = (0 \ 1.1738 \ 0.4785 \ 0 \ 1.8916 \ 0.4131 \ 0 \ 0),$$

$$J_{on} := \overline{J}_{on} = \{2,3, 5\}, J_* := \overline{J}_* = \{2,3, 5, 6\}.$$

Итерация 3

Шаг 1. Используя заданный план x, вычисляем вектор

$$\overline{c}(x) = Dx + c = (10.8916 \ 19.9755 \ -1.0225 \ 0 \ 9.0675 \ -17.3865 \ -4.1759 \ -4.9775)$$
.

По опорному множеству индексов $J_{on} = \{2, 3, 5\}$ строим матрицу и вектор

$$A_{on} = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 0 & 1 \\ 4 & 1 & 0 \end{pmatrix}, \ \overline{c}_{on}(x) = (19.9755 - 1.0225 \ 9.0675)'.$$

Находим вектор потенциалов

$$u' = -\overline{c}_{on}(x)' A_{on}^{-1} = (1.5685 -9.0675 1.0225)$$

и оценок

$$\Delta = u'A + \overline{c}(x) = (4.4151 \quad 0 \quad 0 \quad 1.5685 \quad 0 \quad -0.0000 \quad 1.2781 \quad -27.8180).$$

Проверяем условия оптимальности (4.2).

В данном случае эти условия не выполняются. Зафиксируем индекс $j_0 \in J \setminus J_*$, для которого $\Delta_{j_0} < 0$: $j_0 = 8$. Идем на шаг 3, используя индекс $j_0 = 8$.

Шаг 3. Построим направления $l=(l_j,\ j\in J),\ J=\{1,2,...,8\}.$ изменения плана. Компоненты $l_j,\ j\in J_H=J\setminus J_*=\{1,4,7,8\},$ определим по правилу (4.3).

Для нахождения оставшихся компонент $l(J_*) = (l_2, l_3, l_5, l_6)$ сформируем матрицу H и вектор bb по правилам (4.4). В результате получаем

$$H = \begin{pmatrix} 41 & -1 & 7 & -24 & 2 & 3 & 4 \\ -1 & 1 & -3 & -4 & 0 & 0 & 1 \\ 7 & -3 & 11 & 6 & 0 & 1 & 0 \\ -24 & -4 & 6 & 42 & 4 & -1 & 2 \\ 2 & 0 & 0 & 4 & 0 & 0 & 0 \\ 3 & 0 & 1 & -1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 2 & 0 & 0 & 0 \end{pmatrix}, \qquad bb = \begin{pmatrix} -3 \\ -1 \\ 1 \\ 10 \\ -3 \\ 2 \\ 0 \end{pmatrix}.$$

Найдем вектор

$$\begin{pmatrix} l(J_*) \\ \Delta y \end{pmatrix} = -H^{-1}bb = \begin{pmatrix} 0.2444 \\ -2.2331 \\ -2.1053 \\ 0.6278 \\ -4.0419 \\ 9.9816 \\ -0.3272 \end{pmatrix},$$

первые $|J_*|$ компонент которого задают искомый вектор $l(J_*) = (l_2, l_3, l_5, l_6)$. Таким образом, шаг 3 завершается построением вектора

$$l = (0 \ 0.2444 - 2.2331 \ 0 - 2.1053 \ 0.6278 \ 0 \ 1.0000)$$
.

Шаг 4. Подсчитаем шаги $\theta_j, j \in J_* \cup j_0$, по правилам (4.5), (4.6) , найдем $\theta_0 = \min \theta_j, j \in J_* \cup j_0$, и индекс $j_* \in J_* \cup j_0$, на котором $\theta_0 = \theta_{j_*}$. На данной итерации имеем

$$\theta_2 = \infty$$
, $\theta_3 = 0.2143$, $\theta_5 = 0.3919$, $\theta_6 = \infty$, $\theta_{\delta} = \theta_{j_0} = 0.6825$, $\theta_0 = \min\{\theta_2, \theta_3, \theta_5, \theta_6, \theta_{j_0}\} = \theta_3 = 0.2143$, $j_* = j_s = 3$, $s = 2$.

Шаг 5. Строим новый план

$$\overline{x} = x + \theta_0 l = (0 \ 1.2262 \ 0.0000 \ 0 \ 1.4405 \ 0.5476 \ 0 \ 0.2143)$$
.

Шаг 6. Строим новые множества \overline{J}_{on} и \overline{J}_* . На данной итерации реализовался случай с):

$$j_* = j_s \in J_{on}$$
 и существует такой индекс $j_+ \in J_* \setminus J_{on}$, что $e_s' A_{on}^{-1} A_{j_+} \neq 0$;

где $j_{+}=6$. Поэтому новые множества \overline{J}_{on} и \overline{J}_{*} . строим по правилу (4.8), В результате чего получаем множества

$$\overline{J}_{on} = \{2, 5, 6\}, \quad \overline{J}_* = \{2, 5, 6\}.$$

Вычисляем новое значение оценки $\ \overline{\Delta}_{j_0} = \Delta_{j_0} + \theta_0 \delta$:

$$\overline{\Delta}_{j_0} = \overline{\Delta}_8 := \Delta_8 + \theta_0 l' D l = -19.0833 \ .$$

Идем на шаг 3 с новыми значениями

$$\begin{split} x \coloneqq \overline{x} = (\ 0 \ \ 1.2262 \ \ 0.0000 \qquad 0 \ \ 1.4405 \ \ 0.5476 \qquad 0 \ \ 0.2143), \\ J_{on} \coloneqq \overline{J}_{on} = \{2,5,\ 6\}, \quad J_* \coloneqq \overline{J}_* = \{2,5,\ 6\}, \quad \Delta_{j_0} \coloneqq \overline{\Delta}_{j_0} = -19.0833 \ \text{и} \ \ j_0 = 8. \end{split}$$

Шаг 3. Построим направления $l=(l_j,\ j\in J),\ J=\{1,2,...,8\},$ изменения плана для новых множеств J_{on} и J_* . Компоненты $l_j,\ j\in J_H=J\setminus J_*=\{1,3,4,7,8\},$ определим по правилу (4.3).

Для нахождения оставшихся компонент $l(J_*) = (l_2, l_5, l_6)$ сформируем матрицу H и вектор bb по правилам (4.4). В результате получаем

$$H = \begin{pmatrix} 41 & 7 & -24 & 2 & 3 & 4 \\ 7 & 11 & 6 & 0 & 1 & 0 \\ -24 & 6 & 42 & 4 & -1 & 2 \\ 2 & 0 & 4 & 0 & 0 & 0 \\ 3 & 1 & -1 & 0 & 0 & 0 \\ 4 & 0 & 2 & 0 & 0 & 0 \end{pmatrix} \qquad bb = \begin{pmatrix} D(J_*, j_0) \\ A_{j_0} \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 10 \\ -3 \\ 2 \\ 0 \end{pmatrix},$$

Найдем вектор

$$\begin{pmatrix} l(J_*) \\ \Delta y \end{pmatrix} = -H^{-1}bb = \begin{pmatrix} -0.5000 \\ 0.5000 \\ 1.0000 \\ -37.1667 \\ -9.0000 \\ 36.3333 \end{pmatrix},$$

первые $|J_*|$ компонент которого задают искомый вектор $l(J_*) = (l_2, \, l_5, \, l_6)$. Таким образом, шаг 3 завершается построением вектора

$$l = (0, -0.5, 0, 0, 0.5, 1.0, 0, 1.0)$$

Шаг 4. Подсчитаем шаги $\theta_j, j \in J_* \cup j_0$, по правилам (4.5), (4.6) , найдем $\theta_0 = \min \theta_j, j \in J_* \cup j_0$, и индекс $j_* \in J_* \cup j_0$, на котором $\theta_0 = \theta_{j_*}$. На данной итерации имеем

$$\begin{aligned} &\theta_2 = 0. \ 24524, \quad \theta_5 = \infty, \quad \theta_6 = \infty, \ \theta_{\delta} = \theta_{j_0} = \ 0.1759, \\ &\theta_0 = \min\{\theta_2, \theta_5, \theta_6, \theta_{j_0}\} = \theta_{j_0} = \ 0.1759, \quad j_* = j_0. \end{aligned}$$

Шаг 5. Строим новый план

$$\overline{x} = x + \theta_0 l = (0 \ 1.1382 \ 0.0000 \ 0 \ 1.5284 \ 0.7235 \ 0 \ 0.3902)$$

Шаг 6. Строим новые множества \overline{J}_{on} и \overline{J}_* . На данной итерации реализовался случай а): $j_*=j_0$, поэтому новые множества \overline{J}_{on} и \overline{J}_* . строим по правилу (4.7), в результате чего получаем множества

$$\overline{J}_{an} = \{2, 5, 6\}, \overline{J}_* = \{2, 5, 6, 8\}.$$

Переходим к следующей итерации, исходя их нового правильного опорного плана

$$x := \overline{x} = (0 \ 1.1382 \ 0.0000 \ 0 \ 1.5284 \ 0.7235 \ 0 \ 0.3902),$$

$$J_{on} := \overline{J}_{on} = \{2, 5, 6\}, J_* := \overline{J}_* = \{2, 5, 6, 8\}.$$

Итерация 4

Шаг 1. Используя заданный план x, вычисляем вектор

$$\overline{c}(x) = Dx + c = (5.8464 \ 7.8326 - 2.0077 \ 0 \ 8.5115 \ 0.1413 - 5.1536 - 0.4808).$$

По опорному множеству индексов $J_{on} = \{2, 5, 6\}$ строим матрицу и вектор

$$A_{on} = \begin{pmatrix} 2 & 0 & 4 \\ 3 & 1 & -1 \\ 4 & 0 & 2 \end{pmatrix}, \ \overline{c}_{on}(x) = (7.8326 \ 8.5115 \ 0.1413)'.$$

Находим вектор потенциалов

$$u' = -\overline{c}_{on}(x)' A_{on}^{-1} = (-5.8346 - 8.5115 7.3428)$$

и оценок

$$\Delta = u'A + \overline{c}(x) = (-1.1569 - 0.0000 5.3351 - 5.8346 0 0 -5.4931 0.0000).$$

Проверяем условия оптимальности (4.2). В данном случае эти условия не выполняются. Зафиксируем индекс $j_0 \in J \setminus J_*$, для которого $\Delta_{j_0} < 0$: $j_0 = 1$. Идем на шаг 3, используя индекс $j_0 = 1$.

Шаг 3. Построим направления $l=(l_j,\ j\in J),\ J=\{1,2,...,8\}.$ изменения плана. Компоненты $l_j,\ j\in J_H=J\setminus J_*=\{1,3,4,7\},$ определим по правилу (4.3).

Для нахождения оставшихся компонент $l(J_*) = (l_2, l_5, l_6, l_8)$ сформируем матрицу H и вектор bb по правилам (4.4). В результате получаем

$$H = \begin{pmatrix} 41 & 7 & -24 & -3 & 2 & 3 & 4 \\ 7 & 11 & 6 & 1 & 0 & 1 & 0 \\ -24 & 6 & 42 & 10 & 4 & -1 & 2 \\ -3 & 1 & 10 & 3 & -3 & 2 & 0 \\ 2 & 0 & 4 & -3 & 0 & 0 & 0 \\ 3 & 1 & -1 & 2 & 0 & 0 & 0 \\ 4 & 0 & 2 & 0 & 0 & 0 & 0 \end{pmatrix}, bb = \begin{pmatrix} D(J_*, j_0) \\ A_{j_0} \end{pmatrix} = \begin{pmatrix} 11 \\ 6 \\ -7 \\ -2 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Найдем вектор

$$\begin{pmatrix} l(J_*) \\ \Delta y \end{pmatrix} = -H^{-1}bb = \begin{pmatrix} -0.2650 \\ -0.5684 \\ 0.0300 \\ 0.1966 \\ 0.8589 \\ 1.7304 \\ -0.4395 \end{pmatrix},$$

первые $|J_*|$ компонент которого задают искомый вектор $l(J_*) = (l_2, l_5, l_6, l_8)$. Таким образом, шаг 3 завершается построением вектора

$$l = (1.0000 - 0.2650 \quad 0 \quad 0 - 0.5684 \quad 0.0300 \quad 0 \quad 0.1966)$$
.

Шаг 4. Подсчитаем шаги $\theta_j, j \in J_* \cup j_0$, по правилам (4.5), (4.6) , найдем $\theta_0 = \min \theta_j, j \in J_* \cup j_0$, и индекс $j_* \in J_* \cup j_0$, на котором $\theta_0 = \theta_{j_*}$. На данной итерации имеем

$$\theta_2 = 4.2957, \quad \theta_5 = 2.6892, \quad \theta_6 = \infty, \, \theta_8 = \infty, \theta_{\delta} = \theta_{j_0} = 0.9467,$$

$$\theta_0 = \min\{\theta_2, \theta_5, \theta_6, \theta_8, \theta_{j_0}\} = \theta_{j_0} = 0.9467, \quad j_* = j_0.$$

Шаг 5. Строим новый план

$$\overline{x} = x + \theta_0 l = (0.9467 \ 0.8874 \ 0.0000 \ 0.9904 \ 0.7519 \ 0.5763)$$
.

Шаг 6. Строим новые множества \overline{J}_{on} и \overline{J}_* . На данной итерации реализовался случай а): $j_*=j_0$, поэтому новые множества \overline{J}_{on} и \overline{J}_* . строим по правилу (4.7), в результате чего получаем множества

$$\overline{J}_{on} = \{2, 5, 6\}, \overline{J}_* = \{1, 2, 5, 6, 8\}.$$

Переходим к следующей итерации, исходя их нового правильного опорного плана

$$x := \overline{x} = (0.9467 \ 0.8874 \ 0.0000 \ 0.9904 \ 0.7519 \ 0.5763),$$

$$J_{on} := \overline{J}_{on} = \{2, 5, 6\}, \quad J_* := \overline{J}_* = \{1, 2, 5, 6, 8\}.$$

Итерация 5

Шаг 1. Используя заданный план x, вычисляем вектор

$$\overline{c}(x) = Dx + c = (4.9681 \ 2.9559 \ -1.3889 \ 0 \ 6.8734 \ -0.6410 \ -4.6119 \ -1.3177)$$

По опорному множеству индексов $J_{on} = \{2, 5, 6\}$ строим матрицу и вектор

$$A_{on} = \begin{pmatrix} 2 & 0 & 4 \\ 3 & 1 & -1 \\ 4 & 0 & 2 \end{pmatrix}, \quad \overline{c}_{on}(x) = (2.9559 \quad 6.8734 \quad -0.6410)'.$$

Находим вектор потенциалов

$$u' = -\overline{c}_{on}(x)' A_{on}^{-1} = (-5.0215 -6.8734 6.9268)$$

и оценок

$$\Delta = u'A + \overline{c}(x) = (-0.0000 -0.0000 5.5379 -5.0215 0 0 -6.5707 0.0000).$$

Проверяем условия оптимальности (4.2). В данном случае эти условия не выполняются. Зафиксируем индекс $j_0 \in J \setminus J_*$, для которого $\Delta_{j_0} < 0$: $j_0 = 4$. Идем на шаг 3, используя индекс $j_0 = 4$.

Шаг 3. Построим направления $l=(l_j,\ j\in J),\ J=\{1,2,...,8\}.$ изменения плана. Компоненты $l_j,\ j\in J_H=J\setminus J_*=\{3,4,7\},$ определим по правилу (4.3).

Для нахождения оставшихся компонент $l(J_*) = (l_1, l_2, l_5, l_6, l_8)$ сформируем матрицу H и вектор bb по правилам (4.4). В результате получаем

$$H = \begin{pmatrix} 6 & 11 & 6 & -7 & -2 & 1 & 1 & 1 \\ 11 & 41 & 7 & -24 & -3 & 2 & 3 & 4 \\ 6 & 7 & 11 & 6 & 1 & 0 & 1 & 0 \\ -7 & -24 & 6 & 42 & 10 & 4 & -1 & 2 \\ -2 & -3 & 1 & 10 & 3 & -3 & 2 & 0 \\ 1 & 2 & 0 & 4 & -3 & 0 & 0 & 0 \\ 1 & 3 & 1 & -1 & 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 2 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad bb = \begin{pmatrix} D(J_*, j_0) \\ A_{j_0} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Найдем вектор

$$\begin{pmatrix} l(J_*) \\ \Delta y \end{pmatrix} = -H^{-1}bb = \begin{pmatrix} -0.7028 \\ 0.1816 \\ -0.2626 \\ -0.0118 \\ 0.2044 \\ 4.1649 \\ 5.7008 \\ -5.7452 \end{pmatrix},$$

первые $|J_*|$ компонент которого задают искомый вектор $l(J_*) = (l_1, l_2, l_5, l_6, l_8)$. Таким образом, шаг 3 завершается построением вектора

$$l = (-0.7028 \quad 0.1816 \quad 0 \quad 1.0000 \quad -0.2626 \quad -0.0118 \quad 0 \quad 0.2044)$$
.

Шаг 4. Подсчитаем шаги $\theta_j, j \in J_* \cup j_0$, по правилам (4.5), (4.6) , найдем $\theta_0 = \min \theta_j, j \in J_* \cup j_0$, и индекс $j_* \in J_* \cup j_0$, на котором $\theta_0 = \theta_{j_*}$. На данной итерации имеем

$$\begin{aligned} &\theta_1 = 1.3469, \ \theta_2 = \infty, \quad \theta_5 = 3.7714, \quad \theta_6 = 63.5221, \ \theta_8 = \infty, \theta_\delta = \theta_{j_0} = 1.2057, \\ &\theta_0 = \min\{\theta_2, \theta_5, \theta_6, \theta_8, \theta_{j_0}\} = \theta_{j_0} = 1.2057, \quad j_0 = j_* \ . \end{aligned}$$

Шаг 5. Строим новый план

$$\overline{x} = x + \theta_0 l = (0.0993 \quad 1.1064 \quad 0.0000 \quad 1.2057 \quad 0.6738 \quad 0.7376 \quad 0 \quad 0.8227)$$
.

Шаг 6. Строим новые множества \overline{J}_{on} и \overline{J}_* . На данной итерации реализовался случай а): $j_*=j_0$, поэтому новые множества \overline{J}_{on} и \overline{J}_* . строим по правилу (4.7), в результате чего получаем множества

$$\overline{J}_{on} = \{2, 5, 6\}, \overline{J}_{*} = \{1, 2, 4, 5, 6, 8\}.$$

Переходим к следующей итерации, исходя их нового правильного опорного плана

$$x := \overline{x} = (0.0993 \quad 1.1064 \quad 0.0000 \quad 1.2057 \quad 0.6738 \quad 0.7376 \qquad 0 \quad 0.8227),$$

$$J_{on} := \overline{J}_{on} = \{2, 5, 6\}, J_* := \overline{J}_* = \{1, 2, 4, 5, 6, 8\}.$$

Итерация 6

Шаг 1. Используя заданный план x, вычисляем вектор

$$\overline{c}(x) = Dx + c = (0 \ 0 \ 0 \ 0 \ 0 \ 0)$$

По опорному множеству индексов $J_{on} = \{2, 5, 6\}$ строим матрицу и вектор

$$A_{on} = \begin{pmatrix} 2 & 0 & 4 \\ 3 & 1 & -1 \\ 4 & 0 & 2 \end{pmatrix}, \quad \overline{c}_{on}(x) = (0 \quad 0 \quad 0)'.$$

Находим вектор потенциалов

$$u' = -\overline{c}_{on}(x)' A_{on}^{-1} = (0 \ 0 \ 0)$$

и оценок

$$\Delta = u'A + \overline{c}(x) = (0 \ 0 \ 0 \ 0 \ 0 \ 0).$$

В данном случае условия оптимальности (4.2) выполняются. Алгоритм останавливает свою работу. Задача решена.

Ответ:

Оптимальный план

$$x^0 = (0.0993 \quad 1.1064 \quad 0.0000 \quad 1.2057 \quad 0.6738 \quad 0.7376 \quad 0 \quad 0.8227).$$

Оптимальное значение целевой функции

$$c'x^0 + 0.5x^0'Dx^0 = -33.5000.$$

Замечание. В данной задаче имеется множество оптимальных планов!

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решить задачу квадратичного программирования вида (4.1) с заданными исходными данными и заданным начальным правильным опорным планом.

Задача 1

$$A = \begin{pmatrix} 11 & 0 & 0 & 1 & 0 & -4 & -1 & 1 \\ 1 & 1 & 0 & 0 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 2 & -2 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 8 \\ 2 \\ 5 \end{pmatrix}, \quad d = \begin{pmatrix} 6 \\ 10 \\ 9 \end{pmatrix},$$

$$D = B'B$$
, $c' = -d'B$,

$$\begin{split} x^{na^{q}} &= (0.7273 \quad 1.2727 \quad 3.0000 \qquad 0 \qquad 0 \qquad 0 \qquad 0), \\ J_{on} &= \{1,2,3\}, \ J_{*} &= \{1,2,3\}. \end{split}$$

Ответ:

Оптимальный план

$$x^0 = (0.7921 \quad 1.2576 \quad 1.3811 \quad 1.1526 \quad 0.1258 \quad 0.5634 \quad 0.0713 \quad 0.4592)$$
.

Оптимальное значение целевой функции: -108.5000.

Задача 2

$$A = \begin{pmatrix} 2 & -3 & 1 & 1 & 3 & 0 & 1 & 2 \\ -1 & 3 & 1 & 0 & 1 & 4 & 5 & -6 \\ 1 & 1 & -1 & 0 & 1 & -2 & 4 & 8 \end{pmatrix}, \quad b = \begin{pmatrix} 8 \\ 4 \\ 14 \end{pmatrix},$$

$$D = B'B$$
, $c' = (-13 - 217 \ 0 - 117 - 27 - 71 \ 18 - 99)$,

$$x^{na^{4}} = (0 \quad 2 \quad 0 \quad 0 \quad 4 \quad 0 \quad 0 \quad 1), \quad J_{on} = \{2, 5, 8\}, \ J_{*} = \{2, 5, 8\}.$$

Ответ:

Оптимальный план

$$x^{0} = (0.2977 \quad 1.0404 \quad 5.3680 \quad 0.00 \quad -0.0 \quad 1.3007 \quad 0.7599 \quad 2.1990)$$
.

Оптимальное значение целевой функции: -263.

Задача 3

$$A = \left(\begin{array}{ccccccc} 0 & 2 & 1 & 4 & 3 & 0 & -5 & -10 \\ -1 & 3 & 1 & 0 & 1 & 3 & -5 & -6 \\ 1 & 1 & 1 & 0 & 1 & -2 & -5 & 8 \end{array}\right), \quad b = \left(\begin{array}{c} 6 \\ 4 \\ 14 \end{array}\right),$$

$$c' = (1 \quad 3 \quad -1 \quad 3 \quad 5 \quad 2 \quad -2 \quad 0),$$

$$x^{na^{4}} = (0 \quad 2 \quad 0 \quad 0 \quad 4 \quad 0 \quad 0 \quad 1), \quad J_{on} = \{2, 5, 8\}, \ J_{*} = \{2, 5, 8\}.$$

Ответ: Задача не имеет решения, т.к. целевая функция не ограничена снизу на множестве планов.

Залача 4

$$A = \begin{pmatrix} 0 & 2 & 1 & 4 & 3 & 0 & -5 & -10 \\ -1 & 1 & 1 & 0 & 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 0 & 1 & -2 & -5 & 8 \end{pmatrix}, b = \begin{pmatrix} 20 \\ 1 \\ 7 \end{pmatrix},$$

$$c' = (1 -3 4 3 5 6 -2 0),$$

$$x^{na^{4}} = (3 \quad 0 \quad 0 \quad 2 \quad 4 \quad 0 \quad 0 \quad 0), \quad J_{on} = \{1, \quad 4, \quad 5\}, J_{*} = \{1, \quad 4, \quad 5\}.$$

Ответ:

Оптимальный план

$$x^0 = (2.1844 \ 0.2713 \ 0.2101 \ 3.1017 \ 2.8843 \ -0.0000 \ 0.0000 \ 0.1812)$$
.

Оптимальное значение целевой функции: 309.5489.

Задача 5

$$A = \begin{pmatrix} 0 & 0 & 1 & 5 & 2 & 0 & -5 & -4 \\ 1 & 1 & -1 & 0 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 0 & 1 & 2 & 5 & 8 \end{pmatrix}, b = \begin{pmatrix} 15 \\ -1 \\ 9 \end{pmatrix},$$

$$x^{na^{u}} = (4 \quad 0 \quad 5 \quad 2 \quad 0 \quad 0 \quad 0 \quad 0), \ J_{on} = \{\ 1, \quad 3 \ , \quad 4\}, \ J_{*} = \{\ 1 \ , \quad 3 \ , \quad 4\}.$$

Ответ:

Оптимальный план

$$x^0 = (0.0000 \quad 0.6667 \quad 0.0000 \quad 4.6667 \quad 0.0000 \quad 0.0000 \quad 1.6667 \quad 0.0000)$$
.

Оптимальное значение целевой функции: 8.6667.

6. Задачи выпуклого программирования

Рассмотрим задачу выпуклого программирования

$$f(x) \to \min, \ g_i(x) \le 0, \ i = 1,...,5, \ x \ge 0,$$
 (5.1)

где функции f(x), $g_i(x) \le 0$, i = 1,...,5, заданы в виде

$$f(x) = 0.5x'B(0)'B(0)x + c(0)'x,$$

$$g_i(x) := 0.5x'B(i)'B(i)x + c(i)'x + \alpha(i), i = 1,...,5, x \in \mathbb{R}^8,$$
(5.2)

$$B(0) = \begin{pmatrix} 2 & 1 & 0 & 4 & 0 & 3 & 0 & 0 \\ & 0 & 4 & 0 & 3 & 1 & 1 & 3 & 2 \\ & 1 & 3 & 0 & 5 & 0 & 4 & 0 & 4 \end{pmatrix},$$

$$B(1) = \left(\begin{array}{cccccccccc} 0 & 0 & 0.5000 & 2.5000 & 1.0000 & 0 & -2.5000 & -2.0000 \\ 0.5000 & 0.5000 & -0.5000 & 0 & 0.5000 & -0.5000 & -0.5000 & -0.5000 \\ 0.5000 & 0.5000 & 0.5000 & 0 & 0.5000 & 1.0000 & 2.5000 & 4.0000 \end{array} \right),$$

$$B(2) = \begin{pmatrix} 1.0000 & 2.0000 & -1.5000 & 3.0000 & -2.5000 & 0 & -1.0000 & -0.5000 \\ -1.5000 & -0.5000 & -1.0000 & 2.5000 & 3.5000 & 3.0000 & -1.5000 & -0.5000 \\ 1.5000 & 2.5000 & 1.0000 & 1.0000 & 2.5000 & 1.5000 & 3.0000 & 0 \end{pmatrix},$$

$$B(3) = \left(\begin{array}{ccccccccc} 0.7500 & 0.5000 & -1.0000 & 0.2500 & 0.2500 & 0.2500 & 0.7500 \\ -1.0000 & 1.0000 & 1.0000 & 0.7500 & 0.7500 & 0.5000 & 1.0000 & -0.7500 \\ 0.5000 & -0.2500 & 0.5000 & 0.7500 & 0.5000 & 1.2500 & -0.7500 & -0.2500 \end{array} \right),$$

$$B(4) = \begin{pmatrix} 1.5000 & -1.5000 & 2.0000 & 1.5000 & 0 & 0.5000 & -1.5000 \\ -0.5000 & -2.5000 & -0.5000 & -1.0000 & -2.5000 & 2.5000 & 1.0000 & 2.0000 \\ -2.5000 & 1.0000 & -2.0000 & -1.5000 & -2.5000 & 0.5000 & 2.5000 & -2.5000 \end{pmatrix},$$

$$B(5) = \begin{pmatrix} 1.0000 & 0.2500 & -0.5000 & 1.2500 & 1.2500 & -0.5000 & 0.2500 & -0.7500 \\ -1.0000 & -0.7500 & 0.5000 & -0.5000 & -0.2500 & 1.2500 & 0.2500 & -0.5000 \\ 0 & 0.7500 & 0.5000 & -0.5000 & -1.0000 & 1.0000 & 1.0000 & 1.0000 \end{pmatrix},$$

$$c(0) = (-1 & -1 & -1 & -1 & -2 & 0 & -2 & -3),$$

$$c(1) = \begin{pmatrix} 0 & 60 & 80 & 0 & 0 & 0 & 40 & 0 \end{pmatrix},$$

$$c(2) = \begin{pmatrix} 2 & 0 & 3 & 0 & 2 & 0 & 3 & 0 \end{pmatrix},$$

$$c(3) = \begin{pmatrix} 0 & 0 & 80 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$c(4) = \begin{pmatrix} 0 & -2 & 1 & 2 & 0 & 0 & -2 & 1 \end{pmatrix},$$

$$c(5) = \begin{pmatrix} -4 & -2 & 6 & 0 & 4 & -2 & 60 & 2 \end{pmatrix},$$

$$\alpha(1) = -51.7500, \quad \alpha(2) = -436.7500, \quad \alpha(3) = -33.7813$$

$$\alpha(4) = -303.3750, \quad \alpha(5) = -41.7500,$$

$$x^* = \begin{pmatrix} 1 & 0 & 0 & 2 & 4 & 2 & 0 & 0 \end{pmatrix},$$

$$f(x^*) = \begin{pmatrix} 369.5000, \quad g_i(x^*) = 0, i \in I_0(x^*) = \{1,3,5\}, g_i(x^*) < 0, i \in \{2,4\}, \end{pmatrix}$$

$$\frac{\partial f(x^*)}{\partial x} = \begin{pmatrix} 50 & 120 & -1 & 194 & 10 & 136 & 34 & 97 \end{pmatrix},$$

$$\frac{\partial g_1(x^*)}{\partial x} = \begin{pmatrix} 3.0000 & 63.0000 & 86.0000 & 22.5000 & 12.0000 & 3.7500 & 28.0000 & -0.7500 \end{pmatrix},$$

$$\frac{\partial g_3(x^*)}{\partial x} = \begin{pmatrix} 0.4375 & 4.0000 & 85.5000 & 8.8125 & 7.1875 & 10.3750 & 0.1875 & -3.3125 \end{pmatrix},$$

$$\frac{\partial g_3(x^*)}{\partial x} = (0.4375 + 4.0000 + 85.5000 + 8.8125 + 7.1875 + 10.3750 + 0.1875 + 3.3125)$$

$$\frac{\partial g_5(x^*)}{\partial x} = (2.0000 + 3.5000 + 0.3750 + 11.6250 + 16.0000 + 6.8750 + 65.2500 + 7.3750)',$$

$$d_* = (-1, 0, 3, -1, -1, -1, 0, 0), \qquad d^* = (1, 1, 1, 1, 1, 1, 1, 1).$$

Решаем задачу линейного программирования

$$\frac{\partial f'(x^*)}{\partial x}l \to \min$$

$$\frac{\partial g'_i(x^*)}{\partial x}l \le 0, \ i \in I_0(x^*) = \{1, 3, 5\},$$

$$d_* \le l \le d^*.$$

Эта задача имеет решение

$$l^0 = (-1.0000, \ 0.0000, \ 0.3136, \ -1.0000, \ -1.0000, \ -1.0000, \ 0.0000, \ 0.0000) \,,$$

на котором значение целевой функции равно

$$\frac{\partial f'(x^*)}{\partial x}l^0 = -390.3136 < 0$$
.

Следовательно, вектор x^* не является оптимальным планом в задаче (5.1), (5.2). Этот план можно заменить на новый план с лучшим значением целевой функции

Новый план строим в виде

$$x(t) = x^* + t(l^0 + \alpha \Delta x), \ \Delta x = \overline{x} - x^*$$
.

Здесь \overline{x} --- такой допустимый план задачи (5.1), что имеют место строгие неравенства $g_i(\overline{x}) < 0, i = 1, ..., 5$. В данном примере в качестве \overline{x} можно взять вектор $\overline{x} = (0\ 0\ 0\ 0\ 0\ 0\ 0)$.

Число $\alpha > 0$ подберем так, чтобы выполнялось неравенство

$$\frac{\partial f'(x^*)}{\partial x}l^0 + \alpha \frac{\partial f'(x^*)}{\partial x} \Delta x < 0.$$

Число t > 0 подберем так, чтобы выполнялись неравенства

$$f(x(t)) < f(x^*), g_i(x(t)) \le 0, i = 1,...,5, x(t) \ge 0.$$

Положим t = 0.5, $\alpha = 1$.

Тогда

$$x(t) = (0.0000 \quad 0.0000 \quad 0.1568 \quad 0.5000 \quad 1.5000 \quad 0.5000 \quad 0.0000 \quad 0.0000)$$

$$f(x(t)) = 18.7182 < f(x^*) = 369.5000$$
,

$$g_1(x(t))$$
=-34.2350<0, $g_2(x(t))$ =-386.1373<0,
 $g_3(x(t))$ =-17.6890<, $g_4(x(t))$ =-282.5222, $g_5(x(t))$ =-32.6918<0.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Рассмотрим задачу (5.1), в которой функции имеют вид (5.2) со следующими значениями данных

$$B(0) = \begin{pmatrix} 2 & 1 & 0 & 4 & 0 & 3 & 0 & 0 \\ & 0 & 4 & 0 & 3 & 1 & 1 & 3 & 2 \\ & 1 & 3 & 0 & 5 & 0 & 4 & 0 & 4 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 & 0.5000 & 2.5000 & 1.0000 \end{pmatrix}$$

$$B(1) = \left(\begin{array}{ccccccccc} 0 & 0 & 0.5000 & 2.5000 & 1.0000 & 0 & -2.5000 & -2.0000 \\ 0.5000 & 0.5000 & -0.5000 & 0 & 0.5000 & -0.5000 & -0.5000 & -0.5000 \\ 0.5000 & 0.5000 & 0.5000 & 0 & 0.5000 & 1.0000 & 2.5000 & 4.0000 \end{array} \right),$$

$$B(2) = \begin{pmatrix} 1.0000 & 2.0000 & -1.5000 & 3.0000 & -2.5000 & 0 & -1.0000 & -0.5000 \\ -1.5000 & -0.5000 & -1.0000 & -2.5000 & 3.5000 & -3.0000 & -1.5000 & -0.5000 \\ 1.5000 & 2.5000 & -1.0000 & 1.0000 & 2.5000 & 1.5000 & 3.0000 & 0 \end{pmatrix},$$

$$B(3) = \begin{pmatrix} 0.7500 & 0.5000 & -1.0000 & 0.2500 & 0.2500 & 0 & 0.2500 & 0.7500 \\ -1.0000 & 1.0000 & 4.0000 & 0.7500 & 0.7500 & 0.5000 & 7.0000 & -0.7500 \\ 0.5000 & -0.2500 & 0.5000 & 0.7500 & 0.5000 & 1.2500 & -0.7500 & -0.2500 \end{pmatrix},$$

$$B(4) = \begin{pmatrix} 1.5000 & -1.5000 & 2.0000 & 1.5000 & 0 & 0.5000 & -1.5000 \\ -0.5000 & -2.5000 & -0.5000 & -5.0000 & -2.5000 & 3.5000 & 1.0000 & 2.0000 \\ -2.5000 & 1.0000 & -2.0000 & -1.5000 & -2.5000 & 0.5000 & 8.5000 & -2.5000 \end{pmatrix},$$

$$c(0) = (-1 \quad -1 \quad -1 \quad -1 \quad -2 \quad 0 \quad -2 \quad -3),$$

$$c(1) = (0 \quad 60 \quad 80 \quad 0 \quad 0 \quad 0 \quad 40 \quad 0),$$

$$c(2) = (2 \quad 0 \quad 3 \quad 0 \quad 2 \quad 0 \quad 3 \quad 0),$$

$$c(3) = (0 \quad 0 \quad 80 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0),$$

$$c(4) = (0 \quad -2 \quad 1 \quad 2 \quad 0 \quad 0 \quad -2 \quad 1),$$

$$c(5) = (-4 \quad -2 \quad 6 \quad 0 \quad 4 \quad -2 \quad 60 \quad 2),$$

$$\alpha(1)$$
= -687.1250, $\alpha(2)$ = -666.6250, $\alpha(3)$ = -349.5938, $\alpha(4)$ = -254.6250, $\alpha(5)$ = -45.1563.

Требуется проверить, является ли план

$$x^* = (0 8 2 1 0 4 0 0)$$

оптимальным в этой задаче. В случае его неоптимальности требуется построить новый план с лучшим значением целевой функции.

В качестве вектора \overline{x} , удовлетворяющего соотношениям $\overline{x} \ge 0$, $g_i(\overline{x}) < 0$, i = 1,...,5, можно взять вектор $\overline{x} = (0\ 0\ 0\ 0\ 0\ 0\ 0)$.

7. Задачи нелинейного программирования

Пример 1. Применяя необходимые и достаточные условия оптимальности, решить задачу на безусловный экстремум:

$$f(x) = x_1x_2 + 50/x_1 + 20/x_2 \rightarrow \min$$
.

Решение. Согласно необходимому условию оптимальности первого порядка на оптимальном плане должны выполняться условия стационарности $\frac{\partial f(x)}{\partial x} = 0$, т.е.

$$\frac{\partial f(x)}{\partial x_1} = x_2 - 50 / x_1^2 = 0, \frac{\partial f(x)}{\partial x_2} = x_1 - 20 / x_2^2 = 0.$$

Данная система имеет единственное решение

 $x^0 := (x_1^0 = 5, \ x_2^0 = 2)$. Следовательно, вектор x^0 --- единственный вектор, удовлетворяющий необходимому условию оптимальности первого порядка, и только он может быть (но может и не быть) решением нашей задачи.

Проверим выполнение условий оптимальности второго порядка на векторе x^0 . Для этого подсчитаем матрицу вторых производных функции f(x)

$$\frac{\partial^2 f(x^0)}{\partial x^2} = \begin{pmatrix} \frac{\partial^2 f(x^0)}{\partial x_1^2} & \frac{\partial^2 f(x^0)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f(x^0)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x^0)}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 100 / (x_1^0)^3 & 1 \\ 1 & 40 / (x_2^0)^3 \end{pmatrix} = \begin{pmatrix} 4 / 5 & 1 \\ 1 & 5 \end{pmatrix}.$$

Матрица $\begin{pmatrix} 4/5 & 1 \\ 1 & 5 \end{pmatrix}$ является строго положительно определенной. Следовательно, на

векторе x^0 выполняется достаточное условие второго порядка локальной оптимальности. Значит, вектор x^0 является точкой **локального** минимума рассматриваемой функции.

Отметим, что вектор x^0 не является точкой **глобального** минимума рассматриваемой функции.

Ответ: вектор $x^0 = (x_1^0 = 5, x_2^0 = 2)$ --- точка **локального** минимума рассматриваемой функции.

Пример 2. Проверить выполнение необходимых и достаточных условий оптимальности для плана $x^0=(x_1^0=6,x_2^0=14,x_3^0=0)$ в задаче

$$f(x) = \frac{x_1 - x_2 - x_3}{2x_1 + x_3 + 1} \rightarrow \min$$

при ограничениях

$$\begin{cases} -x_1 + x_2 + 3x_3 = 8 \\ 2x_1 - x_2 - x_3 = -2 \\ x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0 \end{cases}$$

Решение. Перепишем ограничения задачи в виде

$$\begin{cases} g_1(x) := -x_1 + x_2 + 3x_3 - 8 = 0, \\ g_2(x) := 2x_1 - x_2 - x_3 + 2 = 0, \\ g_3(x) := -x_1 \le 0, \\ g_4(x) := -x_2 \le 0, \\ g_5(x) := -x_3 \le 0. \end{cases}$$

Ограничения задачи заданы двумя условиями-равенствами и тремя условияминеравенствами.

Подсчитаем

$$g_1(x^0) := -6 + 14 + 0 - 8 = 0,$$

 $g_2(x^0) := 12 - 14 - 0 + 2 = 0,$
 $g_3(x^0) := -6 < 0,$
 $g_4(x^0) := -14 < 0,$
 $g_5(x^0) := 0 = 0.$

Следовательно, вектор x^0 является допустимым планом нашей задачи. Из ограниченийнеравенств только последнее ограничения является активным:

$$I_a(x^0) = \{i \in \{3,4,5\} : g_i(x^0) = 0\} = \{5\}.$$

Подсчитаем

$$\frac{\partial g_1(x^0)}{\partial x} = \begin{pmatrix} -1\\1\\3 \end{pmatrix}, \quad \frac{\partial g_2(x^0)}{\partial x} = \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}, \quad \frac{\partial g_5(x^0)}{\partial x} = \begin{pmatrix} 0\\0\\-1 \end{pmatrix}.$$

Эти векторы являются линейно независимыми, следовательно, план x^0 является обыкновенным.

Согласно условиям оптимальности первого порядка для оптимальности плана x^0 в данной задаче необходимо, чтобы существовали такие числа

$$\lambda_1, \lambda_2, \lambda_3 = 0, \lambda_4 = 0, \lambda_5 \ge 0,$$

такие, что имеет место равенство

$$\frac{\partial f(x^0)}{\partial x} + \sum_{i=1}^{5} \lambda_i \frac{\partial g_i(x^0)}{\partial x} = 0.$$
 (6.1)

Подсчитаем

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \frac{(2x_1 + x_3 + 1) - (x_1 - x_2 - x_3)2}{(2x_1 + x_3 + 1)^2} \\ \frac{-(2x_1 + x_3 + 1)}{(2x_1 + x_3 + 1)^2} \\ \frac{-(2x_1 + x_3 + 1) - (x_1 - x_2 - x_3)}{(2x_1 + x_3 + 1)^2} \end{pmatrix}, \quad \frac{\partial f(x^0)}{\partial x} = \begin{pmatrix} \frac{29}{(13)^2} \\ \frac{-1}{13} \\ \frac{-5}{13^2} \end{pmatrix}.$$

Условие (6.1) принимает вид

$$\frac{29}{(13)^2} - \lambda_1 + 2\lambda_2 = 0,$$

$$\frac{-1}{13} + \lambda_1 - \lambda_2 = 0,$$

$$\frac{-5}{13^2} + \lambda_1 - \lambda_2 - \lambda_5 = 0.$$
(6.2)

Система (6.2) имеет единственное решение

$$\lambda_1 = -0.0178$$
, $\lambda_2 = -0.0947$, $\lambda_5 = 0.0118 > 0$.

Сследовательно, вектор x^0 удовлетворяет необходимому условию оптимальности первого порядка с вектором множителей Лагранжа

$$\lambda^0 = (\lambda_1 = -0.0178, \quad \lambda_2 = -0.0947, \quad \lambda_3 = 0, \quad \lambda_4 = 0, \quad \lambda_5 = 0.0118).$$

Чтобы проверить достаточное условие второго порядка для локальной оптимальности вектора \boldsymbol{x}^0 надо показать, что

$$l'\frac{\partial^2 L(x^0,\lambda^0)}{\partial x^2}l > 0$$
 для любого $l \in K \setminus 0$, (6.3)

где
$$L(x,\lambda) = f(x) + \sum_{i=1}^{5} g_i(x), \quad K = \{l \in \mathbb{R}^3 : l' \frac{\partial g_i(x^0)}{\partial x} = 0, i = 1,2,5\}.$$

В нашем примере множество K состоит только из одного вектора l = (0,0,0), следовательно, условие (6.3) можно считать выполненным.

Ответ: вектор $x^0 = (x_1^0 = 6, x_2^0 = 14, x_3^0 = 0)$ является локально оптимальным планом данной задачи.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Задача 1. Проверить выполнение необходимых и достаточных условий оптимальности для планов x^0 =(0,1) и x^{00} =(1,1) в задаче

$$f(x) = \exp(x_1 - x_2) - x_1 - x_2 \rightarrow \min$$

при ограничениях

$$\begin{cases} x_1 + x_2 \le 1, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

Задача 2. Проверить выполнение необходимых и достаточных условий оптимальности для плана x^0 =(3, 9) в задаче

$$f(x) = x_1^2 - 8x_1 + x_2^2 \rightarrow \min$$

при ограничениях

$$x_1^2 + (x_2 - 9)^2 \le 9.$$

Задача 3. Проверить выполнение необходимых и достаточных условий оптимальности для плана x^0 = $(6\sqrt{10/5},2\sqrt{10/5})$ в задаче

$$f(x) = 3x_1 + x_2 \rightarrow extr$$

при ограничениях

$$\begin{cases} x_1 x_2 \ge 2, \\ x_1^2 + x_2^2 \le 16. \end{cases}$$

Задача 4. Проверить выполнение необходимых и достаточных условий оптимальности для плана x^0 =(0,1,0) в задаче

$$f(x) = 3x_2^2 - 11x_1 - 3x_2 - x_3 \rightarrow \min$$

при ограничениях:

$$\begin{cases} x_1 - 7x_2 + 3x_3 + 7 \le 0, \\ 5x_1 + 2x_2 - x_3 \le 2, \\ x_3 \ge 0. \end{cases}$$

Задача 5. Проверить выполнение необходимых и достаточных условий оптимальности для плана x^0 =(3;4) в задаче

$$f(x) = 9(x_1 - 5)^2 + 4(x_2 - 5)^2 \rightarrow \min$$

при ограничениях

$$\begin{cases} x_1^2 - 2x_2 - x_2 + 1 \le 0, \\ -x_1 + x_2 \le 1, \\ x_1 - x_2 \le 0. \end{cases}$$

8. Задачи оптимального управления

Пример 1. Решить следующую задачу оптимального управления. Найти функцию управления $u(t), t \in [0,5]$, такую, что $|u(t)| \leq 1, t \in [0,5]$, и соответствующая траектория $x(t) = (x_1(t), x_2(t), x_3(t))$ динамической системы

$$\dot{x}_1(t) = -x_1(t) + x_2(t),$$

$$\dot{x}_2(t) = x_3(t),$$

$$\dot{x}_3(t) = -x_2(t) + u(t),$$

с начальным условием $x_1(0)=1,\ x_2(0)=-1,\ x_3(0)=3$ в терминальный момент времени t=5 удовлетворяет условиям

$$x_1(5) + x_3(5) = 0.3916; x_1(5) - x_2(5) = -0.3916$$

и функция

$$\frac{1}{2}(x_1^2(5) + x_2^2(5) + x_3^2(5)) + x_2(5)$$

принимает минимальное значение.

Данную задачу можно переписать в виде

$$\frac{1}{2}x'(t_*)Dx(t_*) + c'x(t_*) \to \min,$$

$$\dot{x}(t) = Ax(t) + bu(t), \ x(t_0) = x^*, Hx(t_*) = g,$$

$$|u(t)| < 1, t \in [t_0, t_*],$$
(8.1)

где $x(t) = (x_1(t), x_2(t), x_3(t)), t_0 = 0, t_* = 5,$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, c = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, x^* = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix},$$

$$H = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, g = \begin{pmatrix} 0.3916 \\ -0.3916 \end{pmatrix}.$$

Для решения этой задачи будем использовать метод сведения к задаче нелинейного программирования, описанный в курсе лекций (см. раздел 7).

Для этого выберем параметр N>0, например, N=30, и разобьем отрезок управления $[t_0,t_*]$ точками

$$t_i = t_0 + jh = jh, i = 1, ..., N, h = (t_* - t_0)/N = 1/6,$$

на N отрезков $[t_{j-1}, t_j], j = 1, ..., N$.

Построим векторы $B_0 \in \mathbb{R}^3$, $B_j \in \mathbb{R}^3$, j = 1, ..., N, и матрицу $B \in \mathbb{R}^{3 \times N}$, осуществив следующие построения.

А) Проинтегрируем систему дифференциальных уравнений

$$\dot{w}(t) = Aw(t), \ w(t_0) = x_*, t \in [t_0, t_*],$$
(8.2)

и найдем вектор $w(t_*)$.

Численную процедуру интегрирования можно осуществить с помощью любого пакета прикладных программ, например, Matlab. В данном примере вектор $w(t_*)$ имеет следующее значение $w(t_*) = (2.2015, 2.5931, -1.8099)'$.

В) Проинтегрируем систему дифференциальных уравнений

$$\dot{y}(t) = Ay(t) + b, \ y(t_0) = 0, t \in [t_0, t_1] = [0, 1/6],$$
 (8.3)

и найдем вектор $y(t_1) \in \mathbb{R}^3$.

В данном примере вектор $y(t_1)$ имеет следующее значение $y(t_1) = (0.0007, 0.0139, 0.1659)'$.

С) Используя найденный вектор $y(t_1)$, проинтегрируем систему дифференциальных уравнений

$$\dot{z}(t) = Az(t) + b, \ z(t_1) = y(t_1), t \in [t_1, t_N], \tag{8.4}$$

и найдем значения $z(t_j), j=1,...,N$, решения данной системы в точках $t_j, j=1,...,N$.

Численную процедуру интегрирования систем (8.3) и (8.4) также можно осуществить с помощью любого пакета прикладных программ, например, Matlab.

D) Положим

$$B_0 = w(t_*), \quad B_j = z(t_{N-j+1}), \ j = 1, ..., N, \ B = (B_j, j = 1, ..., N).$$

Для данного примера столбцы матрицы В имеют вид

$$(B_j, j=1,...,15) = \begin{pmatrix} -0.0978 & -0.0856 & -0.0710 & -0.0544 & -0.0362 & -0.0169 & 0.0029 & 0.0227 & 0.0420 & 0.0602 & 0.0770 & 0.0918 & 0.1042 & 0.1140 & 0.1210 \\ -0.1630 & -0.1664 & -0.1651 & -0.1592 & -0.1490 & -0.1346 & -0.1165 & -0.0951 & -0.0712 & -0.0452 & -0.0180 & 0.0097 & 0.0371 & 0.0635 & 0.0882 \\ 0.0338 & 0.0063 & -0.0214 & -0.0485 & -0.0743 & -0.0979 & -0.1189 & -0.1366 & -0.1505 & -0.1602 & -0.1655 & -0.1662 & -0.1623 & -0.1539 & -0.1412 \end{pmatrix}$$

$$(B_j, j = 15, ..., 30) = \begin{pmatrix} 0.1249 & 0.1258 & 0.1237 & 0.1188 & 0.1112 & 0.1014 & 0.0897 & 0.0766 & 0.0628 & 0.0488 & 0.0352 & 0.0229 & 0.0126 & 0.0049 & 0.0007 \\ 0.1104 & 0.1295 & 0.1451 & 0.1566 & 0.1638 & 0.1665 & 0.1645 & 0.1580 & 0.1471 & 0.1321 & 0.1135 & 0.0917 & 0.0674 & 0.0412 & 0.0139 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1389 & 0.1522 & 0.1613 & 0.1659 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1528 & 0.0028 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1528 & 0.0028 \\ 0.1246 & -0.1046 & -0.0816 & -0.0564 & -0.0297 & -0.0021 & 0.0256 & 0.0525 & 0.0780 & 0.1013 & 0.1218 & 0.1528 & 0.0028 \\ 0.1247 & -0.0027 & -0.0027 & -0.0027 & -0.0027 & -0.0027 & 0.0027 & 0.0027 & 0.0027 & 0.0027 & 0.0027 & 0.0027 & 0.0027 &$$

Введем вектор искомых параметров $U = (u_j, j = 1, ..., N)$. Тогда терминальное состояние $x(t_*)$ нашей динамической системы может быть аппроксимировано следующим образом:

$$x(t_*) = B_0 + BU.$$

С учетом этой аппроксимации наша задача оптимального управления может быть заменена следующей: найти вектор параметров $U = (u_i, j = 1, ..., N)$, такой что

$$\frac{1}{2}(B_0 + BU)'D(B_0 + BU) + c'(B_0 + BU) \to \min,$$

$$H(B_0 + BU) = g, \quad -1 \le u_j \le 1, j = 1, ..., N.$$
(8.5)

Задача (8.5) — это задача квадратичного программирования, которая может быть записана в виде

$$\frac{1}{2}U'\bar{D}U + \bar{c}'U \to \min_{U},$$

$$\bar{A}U = \bar{b}, \quad -1 \le u_j \le 1, j = 1, ..., N,$$

где $U = (u_j, j = 1, ..., N)$ — вектор искомых параметров,

$$\bar{D} = B'DB \in \mathbb{R}^{N \times N}, \bar{A} = HB \in \mathbb{R}^{2 \times N}, \bar{c} = B'(c + DB_0) \in \mathbb{R}^N, \bar{b} = g - HB_0 \in \mathbb{R}^N$$
(8.6)

— исходные данные задачи квадратичного программирования.

Решим задачу квадратичного программирования методом, описанным в курсе лекций (см. раздел 3).

В результате получим следующие оптимальные значения искомых параметров $U^0 = (u^0_i, j=1,...,N) \colon$

$$(\mathbf{u}_{j}^{0}, j = 1, ..., 15) = (1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \ 0.0 \ 1.0 \ -1.0 \$$

Приближенное решение исходной задачи оптимального управления строим по правилу

$$\tilde{u}^0(t) = u_j^0, \ t \in [t_{j-1}, t_j], \ j = 1,, N.$$

график функции $\tilde{u}^0(t), t \in [t_0, t_*],$ приведен на Рисунке 8.1.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Задание 1. Решить задачу оптимального управления вида (8.1) со следующими данными

$$t_0 = 0, \ t_* = 6,$$

$$D = \begin{pmatrix} 5 & 0 & 9 \\ 0 & 0 & 0 \\ 9 & 0 & 17 \end{pmatrix}, A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, c = 0.5 \begin{pmatrix} -3 \\ 1 \\ -2 \end{pmatrix}, x^* = \begin{pmatrix} -5 \\ -4 \\ -3 \end{pmatrix},$$

$$H = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, g = -6.5139.$$

Ответ: график функции $\tilde{u}^0(t), t \in [t_0, t_*]$, приведен на Рисунке 8.2.

Задание 2. Решить задачу оптимального управления вида (8.1) со следующими данными

$$t_0 = 0, \ t_* = 10,$$

$$D = \begin{pmatrix} 5 & 0 & 9 \\ 0 & 1 & 0 \\ 9 & 0 & 17 \end{pmatrix}, A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, c = 0.5 \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, x^* = \begin{pmatrix} -5 \\ -4 \\ -3 \end{pmatrix},$$

$$H = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}, g = \begin{pmatrix} -198.0 \\ -192.0 \end{pmatrix}.$$

Ответ: график функции $\tilde{u}^0(t), t \in [t_0, t_*]$, приведен на Рисунке 8.3.

Рисунок 8.3