

COMUNICAÇÕES DIGITAIS

Prof. Claudio Coutinho

Aula 02

Classificações e características de sinais

Como avaliar a qualidade de sistemas de comunicação?

- Sistemas analógicos, como lidam com uma quantidade infinita de símbolos, usam uma métrica de **fidelidade** como a SNR.
- Já em SCDs avaliamos a qualidade do sistema baseado na capacidade deste recuperar os símbolos que foram enviados no transmissor.
- Uma boa medida de desempenho em SCDs é a **probabilidade de erro**, P_E .
 - Essa métrica avalia a fração de símbolos transmitidos que foram decodificados incorretamente.
 - Transmissões de arquivos compactados, por exemplo, têm pouca tolerância a erros.
 - Já transmissões do tipo *streaming* conseguem "entregar" o serviço mesmo com erros.
- Quanto menor este valor, melhor é a transmissão.

Exercício

- Exercício 2: Você foi contratado como consultor para o desenvolvimento de um sistema de monitoramento, o qual é composto por 1000 sensores alimentados por bateria, distribuídos em uma plantação, os quais enviam uma vez por minuto o valor da temperatura para um sistema central. De acordo com as características dos sensores abaixo, informe qual tipo de sensor seria a pior escolha, e qual seria adequado. Todos os sistemas abaixo são binários.
- a) $R = 1 \, kbps$, $P_E = 10^{-6}$, e consumo de $0.1 \, W$.
- b) $R = 100 \ kbps$, $P_E = 10^{-7}$, e consumo de $10 \ W$.
- c) R = 1 kbps, $P_E = 10^{-7}$, e consumo de 0.2 W.

Classificação de sinais

Sinais Determinísticos e Aleatórios

- Sinais determinísticos são aqueles sobre os quais não há incerteza sobre seu valor em qualquer instante de tempo.
- Geralmente podem ser dados por uma equação, como:

$$x(t) = 10\cos(5t)$$

- Sinais aleatórios ou randômicos são aqueles em que só podemos determinar seus valores em cada instante após este se manifestar.
- Ruído e a aquisição de um sinal de áudio são situações que podem ser modeladas como sinais aleatórios.

Sinais Periódicos e Aperiódicos

- Sinais periódicos são aqueles compostos por um padrão que se repete infinitamente.
- Matematicamente, são aqueles em que existe uma constante $T_0>0$, que satisfaz a equação:

$$x(t) = x(t + T_0); -\infty < t < \infty$$

O menor valor de T_0 que permite a igualdade acima é chamado de período fundamental.

• Sinais para os quais não existe T_0 que satisfaça a equação acima são ditos aperiódicos.

Sinais Contínuos e Discretos

- Um sinal contínuo x(t) é aquele que é uma função contínua do tempo.
- ullet Esse tipo de sinal possui um valor para cada instante de tempo t.
 - Uma onda sonora no ar é um exemplo de sinal contínuo.
- Já sinais discreto x(kT) são aqueles cujos valores só podem ser especificados em instantes de tempo específicos.
- Os instantes em que podemos observar estes sinais são múltiplos de T.

Sinais de Energia e de Potência

• A energia de uma forma de onda x(t) é dada por:

$$E_{x} = \lim_{T \to \infty} \int_{-T/2}^{T/2} x^{2}(t)dt$$

- Essa medida indica o quanto de energia é dissipada ou fornecida pela forma de onda.
- Já a potência média é dada por

$$P_x = \frac{E_x}{T} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x^2(t) dt$$

em que T é o período do sinal.

• Por que podemos usar esta outra abordagem para cálculo de potência quando tratamos de sinais periódicos?

Sinais de Energia e de Potência

 A Potência indica a média na qual a energia é fornecida ou dissipada por unidade de tempo.

$$P_{x} = E\{x^{2}[n]\}$$

Para sinais periódicos calculamos potência por

$$P_{x} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x^{2}(t) dt$$

Sinais de Energia e de Potência

- Ambas as medidas acima servem para medir a intensidade de sinais.
- Os sinais para os quais a energia é uma boa medida para indicar sua intensidade são ditos sinais de energia.
 - Nesse caso E_x é finita e $P_x \to 0$.
- Sinais com amplitude e duração limitada geralmente são de energia.
- Já os sinais para os quais a potência é adequada para avaliar sua intensidade são chamados de *sinais de potência*.
 - Agora temos $E_x \to \infty$ e P_x finita.
- Sinais periódicos e/ou aleatórios são de potência.
- Sinais em que $E_x \to \infty$ e $P_x \to \infty$ não são nem de energia e nem de potência.

Energia e Potência para Sinais Discretos

- Considere x[n] um sinal discreto.
- A energia de x[n] é dada por:

$$E_{x} = \sum_{n=-\infty}^{\infty} x[n]^{2}$$

• Já a sua potência é calculada como:

$$P_{\chi} = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N} x[n]^2$$

Densidade Espectral

Densidade espectral

Densidade Espectral de Energia (**ESD**, em inglês) e Densidade Espectral de Potência (**PSD**, em inglês), são **funções no domínio da frequência** que indicam como a energia e potência de um sinal, respectivamente, distribuem-se pelas componentes espectrais.

- São úteis quando desejamos avaliar as interações de energia/potência em situações em que a análise no espectro é mais adequada.
- Como essa função identifica a contribuição de cada componente espectral na energia/potência de um sinal, podemos determinar a energia/potência de um sinal acumulando estas várias contribuições.

Densidade espectral de energia (ESD)

- Considere um sinal de energia x(t).
- De acordo com o **Teorema de Parseval**, podemos escrever:

$$E_{x} = \int_{-\infty}^{\infty} x^{2}(t)dt = \int_{-\infty}^{\infty} |X(f)|^{2}df$$

Deixe-nos definir:

$$\Psi_{\chi}(f) = |X(f)|^2$$

- Em que $\Psi_{x}(f)$ é a densidade espectral de energia.
- Essa medida indica como a energia do sinal se concentra por unidade de frequência.

Densidade espectral de energia (ESD)

• Novamente, pelo **Teorema de Parseval**:

$$E_{x} = \int_{-\infty}^{\infty} \Psi_{x}(f) df$$

 Essa situação é curiosa: como podemos ter um sinal de energia, que possui energia limitada, sendo representado por uma soma de senoides, que são sinais de potência e, portanto, de energia ilimitada?

Densidade espectral de potência (PSD)

• Sabemos que a potência de um sinal de potência é dada por:

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x^{2}(t) dt$$

• Pelo Teorema de Parseval:

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |X(f)|^{2} df$$

• A função Densidade Espectral de Potência é dada por:

$$G_{x}(f) = \lim_{T \to \infty} \frac{1}{T} |X(f)|^{2}$$

Densidade espectral de potência (PSD)

- Sinais aleatórios são de potência e, portanto, devemos ser capazes de calcular sua PSD, porém:
 - São sinais de comprimento infinito, e talvez não tenham Transformada de Fourier.
 - Como é não-periódico, não possui série de Fourier.
- Nesses casos, podemos calcular a PSD, no sentido de limite.
- Para um sinal de potência aperiódico x(t), podemos tomar uma versão truncada no intervalo [-T/2, T/2], $x_T(t)$, que possui **energia finita**.
- Assim, ele possui Transformada de Fourier, e sua PSD pode ser dada por:

$$G_{\mathcal{X}}(f) = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2$$

Propriedades da PSD

• Propriedade 1 – Valor Quadrático Médio (P): O valor quadrático médio ou potência de um PE, é igual à área sob a curva $S_X(f)$.

$$P = \mathbf{E}[|X(f)|^2] = \int_{-\infty}^{\infty} S_X(f) df$$

Propriedade 2 – Não negatividade: A PSD de um PE estacionário é sempre não negativa:

$$S_X(f) \ge 0, \forall f$$

Propriedade 3 – Simetria: A PSD de um PE estacionário é uma função par de f:

$$S_X(-f) = S_X(f)$$

Propriedades da PSD

• Propriedade 4 – Processo Estocástico Filtrado: Se um PE estacionário X(t) com espectro $S_X(f)$ é passado através de um filtro linear com resposta H(f), o espectro do PE resultante Y(t) é dado por

$$S_Y(f) = |H(f)|^2 S_X(f)$$

Exercício

• Exercício 3: Considere que em um sistema de comunicação o sinal transmitido x(t) possui PSD dada por:

$$S_{x}(f) = \begin{cases} 2, |f| < 4000 \ Hz \\ 0, & c. \ c. \end{cases}$$

- Esse sinal passa por um canal cuja resposta ao impulso é $h(t)=\delta(t)$ e é atacado por um ruído AWGN n(t) em que $N_0/2=0.1$
- Considere que no receptor o sinal recebido é submetido a um filtro passa baixas ideal, com magnitude unitária, e largura de banda de $8000\,Hz$.
- Qual a SNR do sinal recebido após essa filtragem?