CS 577- Intro to Algorithms

Network Flow

Dieter van Melkebeek

October 27, 2020

Changing gears
Specific problem vs paradigm

Changing gears

Specific problem vs paradigm

Motivation

- Networks
- ► Linear programming duality
- Reductions

Changing gears

Specific problem vs paradigm

Motivation

- Networks
- ► Linear programming duality
- Reductions

Plan

- Max flow and min cut
- Applications

Network

Network

Definition

A network N consists of:

- ightharpoonup a digraph (V, E)
- ▶ edge capacities $c: E \to [0, \infty)$
- ightharpoonup the source $s \in V$, which has indegree 0, and
- ▶ the sink $t \in V$, which has outdegree 0.

Definition

A flow is a mapping $f: E \to [0, \infty)$ satisfying:

Definition

A flow is a mapping $f: E \to [0, \infty)$ satisfying:

▶ [capacity constraints] $(\forall e \in E) f(e) \leq c(e)$

Definition

A flow is a mapping $f: E \to [0, \infty)$ satisfying:

- ▶ [capacity constraints] $(\forall e \in E) f(e) \leq c(e)$
- ▶ [conservation constraints] $(\forall v \in V \setminus \{s,t\}) f_{in}(v) = f_{out}(v)$

Definition

A flow is a mapping $f: E \to [0, \infty)$ satisfying:

- ▶ [capacity constraints] $(\forall e \in E) f(e) \leq c(e)$
- ▶ [conservation constraints] $(\forall v \in V \setminus \{s, t\}) f_{in}(v) = f_{out}(v)$ where $f_{in}(v) \doteq \sum_{u \in V: e \doteq (u, v) \in E} f(e)$ and $f_{out}(v) \doteq \sum_{u \in V: e \doteq (v, u) \in E} f(e)$.

Definition

A flow is a mapping $f: E \to [0, \infty)$ satisfying:

- ▶ [capacity constraints] $(\forall e \in E) f(e) \leq c(e)$
- ▶ [conservation constraints] $(\forall v \in V \setminus \{s, t\}) f_{in}(v) = f_{out}(v)$ where $f_{in}(v) \doteq \sum_{u \in V: e \doteq (v, u) \in E} f(e)$ and $f_{out}(v) \doteq \sum_{u \in V: e \doteq (v, u) \in E} f(e)$.

Value of a flow

$$\nu(f) \doteq f_{\mathsf{out}}(s)$$

Cut

Definition

An st-cut is a partition (S, T) of V such that $s \in S$ and $t \in T$. pause

Note

▶ (S, T) is a partition of V if $S \cup T = V$ and $S \cap T = \emptyset$.

Cut

Definition

An st-cut is a partition (S, T) of V such that $s \in S$ and $t \in T$. pause

Note

- ▶ (S, T) is a partition of V if $S \cup T = V$ and $S \cap T = \emptyset$.
- ▶ (S, T) can alternately be written as (S, \overline{S}) where $\overline{S} \doteq V \setminus S$.

Cut

Definition

An st-cut is a partition (S, T) of V such that $s \in S$ and $t \in T$. pause

Note

- ▶ (S, T) is a partition of V if $S \cup T = V$ and $S \cap T = \emptyset$.
- ▶ (S, T) can alternately be written as (S, \overline{S}) where $\overline{S} \doteq V \setminus S$.
- ▶ Term "cut" is sometimes also used to denote the set of edges that cross the cut, i.e., $(E \cap S \times T) \cup (E \cap T \times S)$.

Invariance Property

Statement

For every flow f and st-cut (S,T) in a network N=(V,E,c,s,t)

$$f_{\mathsf{out}}(S) - f_{\mathsf{in}}(S) = \nu(f),$$

where $f_{\text{out}}(S) \doteq \sum_{e \in E \cap S \times T} f(e)$ and $f_{\text{in}}(S) \doteq \sum_{e \in E \cap T \times S} f(e)$.

Proof of Invariance Property

$$u(f) \stackrel{:}{=} f_{\text{out}}(s) - f_{\text{in}}(s) \\
0 = f_{\text{out}}(v) - f_{\text{in}}(v) \qquad v \in S \setminus \{s\}$$

$$\nu(f) = \sum_{v \in S} f_{out}(v) - \sum_{v \in S} f_{in}(v)$$

$$= \sum_{v \in S} \sum_{e \doteq (v,u) \in E} f(e) - \sum_{v \in S} \sum_{e \doteq (u,v) \in E} f(e)$$

$$\stackrel{(*)}{=} \sum_{e \in E \cap S \times T} f(e) - \sum_{e \in E \cap T \times SS} f(e)$$

$$= f_{out}(S) - f_{in}(S)$$

Proof of Invariance Property

$$u(f) \stackrel{:}{=} f_{\text{out}}(s) - f_{\text{in}}(s) \\
0 = f_{\text{out}}(v) - f_{\text{in}}(v) \qquad v \in S \setminus \{s\}$$

$$\begin{array}{lll} \nu(f) & = & \sum\limits_{v \in S} f_{\text{out}}(v) & - & \sum\limits_{v \in S} f_{\text{in}}(v) \\ & = & \sum\limits_{v \in S} \sum\limits_{e \doteq (v,u) \in E} f(e) & - & \sum\limits_{v \in S} \sum\limits_{e \doteq (u,v) \in E} f(e) \\ & \stackrel{(*)}{=} & \sum\limits_{e \in E \cap S \times T} f(e) & - & \sum\limits_{e \in E \cap T \times SS} f(e) \\ & = & f_{\text{out}}(S) & - & f_{\text{in}}(S) \end{array}$$

type of
$$e \in E$$
 | coefficient of $f(e)$

$$S \times T \quad 1 - 0 = 1$$

$$S \times S \quad 1 - 1 = 0$$

$$T \times S \quad 0 - 1 = -1$$

$$T \times T \quad 0 - 0 = 0$$

Weak duality

Weak duality

Capacity of an st-cut $c(S, T) \doteq \sum_{e \in E \cap S \times T} c(e)$

Weak duality

Capacity of an st-cut

$$c(S,T) \doteq \sum_{e \in E \cap S \times T} c(e)$$

Statement

For every flow f and st-cut (S,T) in a network N=(V,E,c,s,t)

$$\nu(f) \leq c(S, T).$$

$$\nu(f) = \sum_{e \in E \cap S \times T} f(e) - \sum_{e \in E \cap T \times S} f(e)$$

$$\leq \sum_{e \in E \cap S \times T} c(e) - \sum_{e \in E \cap T \times S} 0$$

$$\doteq c(S, T)$$

$$\nu(f) = \sum_{e \in E \cap S \times T} f(e) - \sum_{e \in E \cap T \times S} f(e)$$

$$\leq \sum_{e \in E \cap S \times T} c(e) - \sum_{e \in E \cap T \times S} 0$$

$$\doteq c(S, T)$$

Note

Equality $\nu(f) = c(S, T)$ holds iff

$$\nu(f) = \sum_{e \in E \cap S \times T} f(e) - \sum_{e \in E \cap T \times S} f(e)$$

$$\leq \sum_{e \in E \cap S \times T} c(e) - \sum_{e \in E \cap T \times S} 0$$

$$\doteq c(S, T)$$

Note

Equality $\nu(f) = c(S, T)$ holds iff

$$(\forall e \in E \cap S \times T) f(e) = c(e)$$

$$\nu(f) = \sum_{e \in E \cap S \times T} f(e) - \sum_{e \in E \cap T \times S} f(e)$$

$$\leq \sum_{e \in E \cap S \times T} c(e) - \sum_{e \in E \cap T \times S} 0$$

$$\doteq c(S, T)$$

Note

Equality $\nu(f) = c(S, T)$ holds iff

- $(\forall e \in E \cap S \times T) f(e) = c(e)$
- $(\forall e \in E \cap T \times S) f(e) = 0.$

Max flow

Input: network N = (V, E, c, s, t)

Output: flow f such that $\nu(f)$ is maximized

Max flow

Input: network N = (V, E, c, s, t)

Output: flow f such that $\nu(f)$ is maximized

Min cut

Input: network N = (V, E, c, s, t)

Output: st-cut (S, T) such that c(S, T) is minimized

Max flow

Input: network N = (V, E, c, s, t)

Output: flow f such that $\nu(f)$ is maximized

Min cut

Input: network N = (V, E, c, s, t)

Output: st-cut (S, T) such that c(S, T) is minimized

Weak duality

$$\max_{f} \nu(f) \leq \min_{st\text{-cut }(S,T)} c(S,T)$$

Max flow

Input: network N = (V, E, c, s, t)

Output: flow f such that $\nu(f)$ is maximized

Min cut

Input: network N = (V, E, c, s, t)

Output: st-cut (S, T) such that c(S, T) is minimized

Weak duality

$$\max_{f} \nu(f) \leq \min_{st\text{-cut }(S,T)} c(S,T)$$

We'll show next lecture that equality always holds (strong duality).

Path Augmentation - first attempt

Path Augmentation - first attempt

Algorithm

- 1. Start with $f \equiv 0$.
- 2. While there is an st-path P along which more flow can be pushed, additionally push as much flow along P as possible.
- **3**. Return *f* .

Residual Network

Consider a flow f in N = (V, E, c, s, t).

Definition

The residual network $N_f = (V, E_f, c_f, s, t)$ has:

Residual Network

Consider a flow f in N = (V, E, c, s, t).

Definition

The residual network $N_f = (V, E_f, c_f, s, t)$ has:

For each $e \in E$ with f(e) < c(e), an edge e in E_f with $c_f(e) \doteq c(e) - f(e)$.

Residual Network

Consider a flow f in N = (V, E, c, s, t).

Definition

The residual network $N_f = (V, E_f, c_f, s, t)$ has:

- For each $e \in E$ with f(e) < c(e), an edge e in E_f with $c_f(e) \doteq c(e) f(e)$.
- ▶ For each $e = (u, v) \in E$ with f(e) > 0, an edge $e' \doteq (v, u)$ in E_f with $c_f(e') \doteq f(e)$.

Path Augmentation

Algorithm

- 1. Start with $f \equiv 0$.
- 2. While there is an st-path P in N_f , additionally push as much flow along P as possible.
- 3. Return f.