TUTORIAL-5 (EE 101: Basic Electronics)

DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING, IIT GUWAHATI

PRE-TUTORIAL ASSIGNMENT- PROBLEMS (To be solved in the space provided)

Name: Roll No. Tutorial Group:

<u>Problem-1:</u> In the transistor circuit shown, assume the following – β =100, R₁=100 KΩ, R₂=50KΩ, R_E=5KΩ, V_{CC}=15V. Find the Bias Point of the transistor and its r_e. (Assume this to be a silicon transistor with

 $V_{CE,SAT} = 0.1 \text{ V}$ if it is in saturation. Use $V_T = 26 \text{ mV}$)

<u>Problem-2:</u> Determine the RMS value of a source with the voltage waveform given below. If the source is connected to a 2 Ω resistor, find the power absorbed by the resistor.

TUTORIAL-5: PROBLEMS

Problem 1: In the differential amplifier circuit shown, the two transistors are identical with β =50.

- (a) If R_C =50 K Ω and R_E =10 K Ω , what is the Q-Point for the two transistors. (Assume that v_{i1} and v_{i2} are shorted to ground for DC.)
- **(b)** Find the voltage gain A_V of this differential amplifier where $A_V = (v_{O1} v_{O2})/(v_{i1} v_{i2})$ assuming the transistor's output resistance r_O to be infinity.

<u>Problem 2</u>: Find the gain $A_v = v_o/v_s$ of the circuit shown.

<u>Problem 3</u>: Switch S was closed in position 1 for sufficiently long time before connection to position 2. Find the expression for Vc(t) for all time t > 0.

<u>Problem 4</u>: Draw the current phasor diagram for the circuit shown below when $Vs = 100 \cos(1.43t + 53.13^{\circ})$.

