Dimensionality Reduction (Contd.)

Piyush Rai

Introduction to Machine Learning (CS771A)

October 9, 2018

Announcements

- Quiz graded and scores sent
- Homework 3 out. Due on Oct 31, 11:59pm. Please start early.
- We will finish homework 1 and 2 grading soon
- Start thinking about your course project (if not working on it already)

Recap: Dimensionality Reduction - The Compression View

Recap: Probabilistic PCA

A probabilistic model that maps a low-dim z via a linear mapping to generate a high-dim x

$$egin{array}{lll} oldsymbol{z}_n & \sim & \mathcal{N}(\mathbf{0}, \mathbf{I}_K) \ oldsymbol{x}_n | oldsymbol{z}_n & \sim & \mathcal{N}(\mathbf{W} oldsymbol{z}_n, \sigma^2 \mathbf{I}_D) \end{array}$$

$$p(x_n) = \underbrace{\mathcal{N}(0, \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_D)}_{\text{Low-rank Gaussian as } \sigma^2 \to 0}$$

Many improvements possible (non-Gaussian distributions, nonlinear mappings, etc)

Recap: Such Models Can Learn to Generate Real-Looking Data..

- Learn the model parameters from training data $\{x_1, \dots, x_N\}$, e.g., using MLE
- Generate a random z from p(z) and a random new sample x conditioned on that z using p(x|z)

(a) Training data

(b) Random samples

Learning the PPCA Model

• One way: Maximize (conditional) log-likelihood $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \mathbf{z}_n)$, or minimize its negative

$$\mathcal{L}(\mathbf{Z}, \mathbf{W}, \sigma^2) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} ||\mathbf{x}_n - \mathbf{W}\mathbf{z}_n||^2 + \frac{ND}{2} \log(2\pi\sigma^2)$$
$$= \frac{1}{2\sigma^2} ||\mathbf{X} - \mathbf{Z}\mathbf{W}^\top||_F^2 + \frac{ND}{2} \log(2\pi\sigma^2)$$

• For known σ^2 , learning PPCA boils down to solve

$$\{\hat{\mathbf{Z}},\hat{\mathbf{W}}\} = \arg\min_{\mathbf{Z},\mathbf{W}} ||\mathbf{X} - \mathbf{Z}\mathbf{W}^{\top}||_F^2$$

- Similar to doing matrix factorization of **X** by minimizing the reconstruction error
- Can solve it using ALT-OPT (**Z** given **W**, and **W** given **Z**)
- Another (better) way: will be to do a proper MLE on $\log p(x_n)$

MLE for PPCA

Doing MLE for PPCA requires maximizing

$$\log p(\mathbf{X}|\Theta) = -rac{N}{2}(D\log 2\pi + \log |\mathbf{C}| + \operatorname{trace}(\mathbf{C}^{-1}\mathbf{S}))$$

where **S** is the data covariance matrix, $\mathbf{C}^{-1} = \sigma^{-1}\mathbf{I} - \sigma^{-1}\mathbf{W}\mathbf{M}^{-1}\mathbf{W}^{\top}$ and $\mathbf{M} = \mathbf{W}^{\top}\mathbf{W} + \sigma^{2}\mathbf{I}$

ullet Assuming both $oldsymbol{W}$ and σ^2 as unknowns, their MLE solution is given by

$$\mathbf{W}_{ML} = \mathbf{U}_{K} (\mathbf{L}_{K} - \sigma_{ML}^{2} \mathbf{I})^{1/2} \mathbf{R}$$

$$\sigma_{ML}^{2} = \frac{1}{D - K} \sum_{k=K+1}^{D} \lambda_{k}$$

where \mathbf{U}_K is $D \times K$ matrix of top K eigvecs of \mathbf{S} , \mathbf{L}_K : $K \times K$ diagonal matrix of top K eigvals $\lambda_1, \ldots, \lambda_K$, \mathbf{R} is a $K \times K$ arbitrary rotation matrix (equivalent to PCA for $\mathbf{R} = \mathbf{I}$ and $\sigma^2 \to 0$)

- Need to do eigen-decomposition of $D \times D$ data covariance matrix **S**. EXPENSIVE!!!
- Also, can't do MLE like this if each x_n has some missing entries

MLE for PPCA using EM

- Using EM for MLE for PPCA has several benefits
 - No need to do expensive eigen-decomposition
 - Works even when x_n may have some missing entries (HW3 has a problem related to this)
- EM does MLE by maximizing the expected CLL

$$\{\mathbf{W}, \sigma^2\} = \arg\max_{\mathbf{W}, \sigma^2} \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \mathbf{W}, \sigma^2)} [\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2)]$$

- This is done by iterating between the following two steps
 - E Step: For n = 1, ..., N, infer the posterior $p(\mathbf{z}_n | \mathbf{x}_n)$ given current estimate of $\Theta = (\mathbf{W}, \sigma^2)$

$$p(\mathbf{z}_n|\mathbf{x}_n,\mathbf{W},\sigma^2) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_n,\sigma^2\mathbf{M}^{-1}) \qquad \text{(where } \mathbf{M} = \mathbf{W}^{\top}\mathbf{W} + \sigma^2\mathbf{I}_K\text{)}$$

• M Step: Maximize the expected CLL $\mathbb{E}[p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2)]$ w.r.t. \mathbf{W}, σ^2

MLE for PPCA using EM

• The expected complete data log-likelihood $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z} | \mathbf{W}, \sigma^2)]$

$$= -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbb{E}[\mathbf{z}_n]^\top \mathbf{W}^\top \mathbf{x}_n + \frac{1}{2\sigma^2} \mathrm{tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^\top] \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} \mathrm{tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^\top]) \right\}$$

• Taking the derivative of $\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2)]$ w.r.t. **W** and setting to zero

$$\boxed{\mathbf{W} = \left[\sum_{n=1}^{N} \mathbf{x}_{n} \mathbb{E}[\mathbf{z}_{n}]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}]\right]^{-1}}$$

- To compute **W**, we need two posterior expectations $\mathbb{E}[z_n]$ and $\mathbb{E}[z_nz_n^\top]$
- These can be easily obtained from the posterior $p(z_n|x_n)$ computed in E step

$$\begin{split} p(\pmb{z}_n|\pmb{x}_n, \pmb{\mathsf{W}}) &=& \mathcal{N}(\pmb{\mathsf{M}}^{-1}\pmb{\mathsf{W}}^{\top}\pmb{x}_n, \sigma^2\pmb{\mathsf{M}}^{-1}) \qquad \text{where } \pmb{\mathsf{M}} = \pmb{\mathsf{W}}^{\top}\pmb{\mathsf{W}} + \sigma^2\pmb{\mathsf{I}}_K \\ \mathbb{E}[\pmb{z}_n] &=& \pmb{\mathsf{M}}^{-1}\pmb{\mathsf{W}}^{\top}\pmb{x}_n \\ \mathbb{E}[\pmb{z}_n\pmb{z}_n^{\top}] &=& \mathbb{E}[\pmb{z}_n]\mathbb{E}[\pmb{z}_n]^{\top} + \text{cov}(\pmb{z}_n) = \mathbb{E}[\pmb{z}_n]\mathbb{E}[\pmb{z}_n]^{\top} + \sigma^2\pmb{\mathsf{M}}^{-1} \end{split}$$

• Note: The noise variance σ^2 can also be estimated (take deriv., set to zero..)

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^2 randomly. Also center the data $(\mathbf{x}_n = \mathbf{x}_n \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n)$
- **E** step: For each n, compute $p(\mathbf{z}_n|\mathbf{x}_n)$ using current **W** and σ^2 . Compute exp. for the M step

$$\begin{split} \rho(\boldsymbol{z}_n|\boldsymbol{x}_n, \mathbf{W}) &= & \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}\boldsymbol{x}_n, \sigma^2\mathbf{M}^{-1}) \quad \text{ where } \mathbf{M} = \mathbf{W}^{\top}\mathbf{W} + \sigma^2\mathbf{I}_K \\ \mathbb{E}[\boldsymbol{z}_n] &= & \mathbf{M}^{-1}\mathbf{W}^{\top}\boldsymbol{x}_n \\ \mathbb{E}[\boldsymbol{z}_n\boldsymbol{z}_n^{\top}] &= & \cos(\boldsymbol{z}_n) + \mathbb{E}[\boldsymbol{z}_n]\mathbb{E}[\boldsymbol{z}_n]^{\top} = \mathbb{E}[\boldsymbol{z}_n]\mathbb{E}[\boldsymbol{z}_n]^{\top} + \sigma^2\mathbf{M}^{-1} \end{split}$$

• M step: Re-estimate W and σ^2

$$\mathbf{W}_{new} = \left[\sum_{n=1}^{N} \mathbf{x}_{n} \mathbb{E}[\mathbf{z}_{n}]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}]\right]^{-1}$$

$$\sigma_{new}^{2} = \frac{1}{ND} \sum_{n=1}^{N} \left\{ ||\mathbf{x}_{n}||^{2} - 2\mathbb{E}[\mathbf{z}_{n}]^{\top} \mathbf{W}_{new}^{\top} \mathbf{x}_{n} + \operatorname{tr}\left(\mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}] \mathbf{W}_{new}^{\top} \mathbf{W}_{new}\right)\right\}$$

- Set $\mathbf{W} = \mathbf{W}_{new}$ and $\sigma^2 = \sigma_{new}^2$. If not converged (monitor $p(\mathbf{X}|\Theta)$), go back to E step
- Note: For $\sigma^2 = 0$, this EM algorithm can also be used to efficiently solve standard PCA (note that this EM algorithm doesn't require any eigen-decomposition)
- Missing entries of x_n can be estimated in the E step as $p(x_n^{miss}|x_n^{obs})$

Why center the data before doing PPCA?

• The PPCA model, for each x_n , n = 1, ..., N, can also be written as

$$\mathbf{x}_n = \mu + \mathbf{W} \mathbf{z}_n + \epsilon_n$$
 where $\epsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$

The marginal distribution is

$$p(\boldsymbol{x}_n) = \mathcal{N}(\mu, \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}_D)$$

- The MLE of μ is simply $\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$
- So we can simply subtract μ from each observation and assume

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

... and apply PPCA without μ

How to Set "K"?

- Several option to select the "best" K, e.g.,
 - Look at AIC/BIC criteria (NLL + KD or NLL + $K \log D$) and pick the one with smallest K
 - Use sparsity inducing priors on W and/or z_n (set K to some large value; the unnecessary columns of W will "turn off" automatically as they will be shrunk to zero during inference)

Using sparsity-inducing Prior (e.g., Automatic Relevance Determination) on **W**

Effect: Only few columns of **W** will have entries with significant magnitudes

- Compute the marginal likelihood (or its approximation) for each K and choose the best model
- Nonparametric Bayesian methods (allow K to grow with data)

Some Applications of PCA/PPCA

- Compression/dimensionality reduction is a natural application (use z_n instead of x_n)
- Also used for learning low-dim. "good" features z_n from high-dim noisy features x_n
 - Note that this is different from feature selection (z_n is a transformed version of x_n , not a subset)
- Learning the noise variance enables "image denoising": $\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$; $\mathbf{W}\mathbf{z}_n$ is the "clean" part

• Ability to fill-in missing data enables "image inpainting" (left: image with 80% missing data, middle: reconstructed, right: original)

Mixture of PPCA

- May be appropriate if data also exists in clusters (suppose M > 1 clusters)
- Data in each cluster (say m) can have its own "local" PPCA model defined by $\{\mu_m, \mathbf{W}_m, \sigma_m^2\}$
- Can use M such PPCA models $\{\mu_m, \mathbf{W}_m, \sigma_m^2\}_{m=1}^M$ (one per cluster) for the entire data

- Mixtures of PPCA can be seen as playing several roles
 - Jointly learning clustering and dimensionality reduction
 - Nonlinear dimensionality reduction
 - A flexible probability density model: Mixture of low-rank Gaussians

Mixture of PPCA

- For mixture of PPCA, the generative story for each observation x_n is as follows
 - Generate its cluster id as

$$c_n \sim \mathsf{multinoulli}(\pi_1, \dots, \pi_M)$$

ullet Generate latent variable $oldsymbol{z}_n \in \mathbb{R}^K$ as

$$oldsymbol{z}_n \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I}_K)$$

ullet Generate obervation $oldsymbol{x}_n \in \mathbb{R}^D$ from the $oldsymbol{c}_n^{th}$ PPCA/FA model

$$oldsymbol{x}_{n} \sim \mathcal{N}(oldsymbol{\mu_{c_{n}}} + oldsymbol{W_{c_{n}}} oldsymbol{z}_{n}, \sigma_{oldsymbol{c_{n}}}^{2} oldsymbol{I}_{D})$$

- ullet Each PPCA model has its separate mean μ_{c_n} (not needed when M=1 if data is centered)
- Exercise: What will be the marginal distribution of x_n , i.e., $p(x_n|\Theta)$?
- Exercise: Use EM in this model to learn the parameters and latent variables

(Classic) Principal Component Analysis

Principal Component Analysis (PCA)

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as
 - Learning projection directions that capture maximum variance in data
 - Learning projection directions that result in smallest reconstruction error
- Can also be seen as changing the basis in which the data is represented (and transforming the features such that new features become decorrelated)

• Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

PCA as Maximizing Variance

Variance Captured by Projections

- ullet Consider projecting $oldsymbol{x}_n \in \mathbb{R}^D$ on a one-dim subspace (basically, a line) defined by $oldsymbol{u}_1 \in \mathbb{R}^D$
- Projection/embedding of \mathbf{x}_n along a one-dim subspace $\mathbf{u}_1 = \mathbf{u}_1^\top \mathbf{x}_n$ (location of the green point along the purple line representing \mathbf{u}_1)

- Mean of projections of all the data: $\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{u}_{1}^{\top} \boldsymbol{x}_{n} = \boldsymbol{u}_{1}^{\top} (\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}) = \boldsymbol{u}_{1}^{\top} \boldsymbol{\mu}$
- Variance of the projected data ("spread" of the green points)

$$\frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{u}_{1}^{\top} \mathbf{x}_{n} - \mathbf{u}_{1}^{\top} \mathbf{\mu} \right)^{2} = \frac{1}{N} \sum_{n=1}^{N} \left\{ \mathbf{u}_{1}^{\top} (\mathbf{x}_{n} - \mathbf{\mu}) \right\}^{2} = \mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}$$

• **S** is the $D \times D$ data covariance matrix: $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\top}$. If data already centered $(\boldsymbol{\mu} = 0)$ then $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\top} = \frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$

Direction of Maximum Variance

- ullet We want $m{u}_1$ s.t. the variance of the projected data is maximized arg $\max_{m{u}_1} \ m{u}_1^{ op} \mathbf{S} m{u}_1$
- ullet To prevent trivial solution (max var. = infinite), assume $||oldsymbol{u}_1||=1=oldsymbol{u}_1^ opoldsymbol{u}_1$
- ullet We will find $oldsymbol{u}_1$ by solving the following constrained opt. problem

$$\argmax_{{\boldsymbol u}_1} \; {\boldsymbol u}_1^\top {\sf S} {\boldsymbol u}_1 + \lambda_1 (1 - {\boldsymbol u}_1^\top {\boldsymbol u}_1)$$

where λ_1 is a Lagrange multiplier

Direction of Maximum Variance

- ullet The objective function: $rg \max_{oldsymbol{u}_1} oldsymbol{u}_1^{ op} \mathbf{S} oldsymbol{u}_1 + \lambda_1 (1 oldsymbol{u}_1^{ op} oldsymbol{u}_1)$
- ullet Taking the derivative w.r.t. $oldsymbol{u}_1$ and setting to zero gives

$$\mathbf{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

- Thus u_1 is an eigenvector of **S** (with corresponding eigenvalue λ_1)
- But which of **S**'s (*D* possible) eigenvectors it is?
- Note that since $\boldsymbol{u}_1^{\top}\boldsymbol{u}_1=1$, the variance of projected data is

$${m u}_1^{ op} {\sf S} {m u}_1 = \lambda_1$$

- \bullet Var. is maximized when u_1 is the (top) eigenvector with largest eigenvalue
- ullet The top eigenvector $oldsymbol{u}_1$ is also known as the first Principal Component (PC)
- Other directions can also be found likewise (with each being orthogonal to all previous ones) using the eigendecomposition of **S** (this is PCA)

Principal Component Analysis

- ullet Center the data (subtract the mean $\mu = \frac{1}{N} \sum_{n=1}^N oldsymbol{x}_n$ from each data point)
- Compute the covariance matrix **S** using the centered data as

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X}$$
 (note: **X** assumed $D \times N$ here)

- Do an eigendecomposition of the covariance matrix S
- Take first K leading eigenvectors $\{u_k\}_{k=1}^K$ with eigenvalues $\{\lambda_k\}_{k=1}^K$
- The final K dim. projection/embedding of data is given by

$$\mathbf{Z} = \mathbf{X}\mathbf{U}$$

where $\mathbf{U} = [\mathbf{u}_1 \ \dots \ \mathbf{u}_K]$ is $D \times K$ and embedding matrix \mathbf{Z} is $K \times N$

Singular Value Decomposition (SVD)

- We can represent any matrix **X** of size $N \times D$ using SVD as $\mathbf{X} = \mathbf{U} \wedge \mathbf{V}^{\top}$
- ullet $oldsymbol{\mathsf{U}} = [oldsymbol{u}_1, \dots, oldsymbol{u}_N]$ is N imes N, each $oldsymbol{u}_n \in \mathbb{R}^N$ a left singular vector of $oldsymbol{\mathsf{X}}$
 - ullet **U** is orthonormal: $oldsymbol{u}_n^ op oldsymbol{u}_{n'} = 0$ for n
 eq n', and $oldsymbol{u}_n^ op oldsymbol{u}_n = 1 \Rightarrow oldsymbol{U}oldsymbol{U}^ op = oldsymbol{I}_N$
- Λ is $N \times D$ with only min(N, D) diagonal entries (all positive) singular values (decreasing order)
- $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_D]$ is $D \times D$, each $\mathbf{v}_d \in \mathbb{R}^D$, a right singular vector of \mathbf{X}
 - ullet **V** is orthonormal: $oldsymbol{v}_d^ op oldsymbol{v}_{d'} = 0$ for d
 eq d', and $oldsymbol{v}_d^ op oldsymbol{v}_d = 1 \Rightarrow oldsymbol{V}oldsymbol{V}^ op = oldsymbol{I}_D$
- ullet Note: If old X is symmetric then it is known as eigenvalue decomposition (and old U = old V in that case)

Low-Rank Approximation via SVD

• Can also expand the SVD expression as

$$\mathbf{X} = \sum_{k=1}^{\min(N,D)} \lambda_k oldsymbol{u}_k oldsymbol{v}_k^ op$$

• Can write a rank-K approximation of **X** (where $K \ll \min(N, D)$) as

$$\mathbf{X} pprox \hat{\mathbf{X}} = \sum_{k=1}^K \lambda_k \mathbf{u}_k \mathbf{v}_k^{\top} = \mathbf{U}_K \Lambda_K \mathbf{V}_K^{\top}$$

PCA/PPCA: Limitations and Extensions

- A linear projection method
 - Won't work well if data can't be approximated by a linear subspace
 - But PCA/PPCA can be kernelized (Kernel PCA or Gaussian Process Latent Variable Models)
- Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve class separation, e.g., when doing classification)

- ullet PCA relies on eigendecomposition of an $D \times D$ covariance matrix
 - Can be slow if done naïvely. Takes $O(D^3)$ time
 - Many faster methods exists (e.g., Power Method)
 - Note: PPCA doesn't suffer from this issue (EM can be very efficient!)

Next Class

- How to compute singular vectors (SVD) power method
- Nonlinear Dimensionality Reduction
- Supervised Dimensionality Reduction
- Dimensionality Reduction for Visualization

