- #22: PRACTICA 4: INTERPOLACIÓN I
- #23: LOAD(F:\0 Ampliación 1920\PRACTICAS 19-20\Interpol18.mth)
- #24: ===> 1. Polinomio interpolador de Lagrange
- #25: ==> 1.1

#26: POLY_INTERPOLATE $\begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 2 \end{bmatrix}, x$

#27:
$$-\frac{5 \cdot x - 21 \cdot x + 14}{2}$$

- #28: ==> 1.2
- #29: f(x) := COS(x)
- #30: LF([0, 3, 5, 2], x)

#31:
$$\frac{x \cdot (x-2) \cdot (x-3) \cdot \cos(5)}{30} + \frac{x \cdot (2-x) \cdot (x-5) \cdot \cos(3)}{6} + \frac{x \cdot (x-3) \cdot (x-5) \cdot \cos(2)}{6} + \frac{(2-x) \cdot (x-3) \cdot (x-5)}{30}$$

#32: TABLE(f(x), x, [0, 3, 5, 2])

- #34: POLY_INTERPOLATE $\begin{bmatrix} 0 & f(0) \\ 3 & f(3) \\ 5 & f(5) \\ 2 & f(2) \end{bmatrix}, x$
- #35: POLY_INTERPOLATE(TABLE(f(x), x, [0, 5, 3, 2]), x)

#36: ===> 1.3 Práctica 4

#37:
$$P1(x) := LF([0, 2, 3, 6], x)$$

#38: P1(x) :=
$$\frac{x \cdot (x - 2) \cdot (x - 3) \cdot \cos(6)}{72} + \frac{x \cdot (2 - x) \cdot (x - 6) \cdot \cos(3)}{9} + \frac{x \cdot (x - 3) \cdot (x - 6) \cdot \cos(2)}{8} + \frac{x \cdot (x - 3) \cdot (x - 6) \cdot \cos(2)}{8}$$

$$\frac{(2 - x) \cdot (x - 3) \cdot (x - 6)}{36}$$

#39:
$$P2(x) := LF([-1, 0, 3, 5, 6], x)$$

#40: P2(x) :=
$$\frac{x \cdot (x + 1) \cdot (x - 3) \cdot (x - 5) \cdot \cos(6)}{126} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (3 - x) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (x - 3) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x + 1) \cdot (x - 6) \cdot \cos(5)}{60} + \frac{x \cdot (x - 6) \cdot \cos(5)}{60} +$$

$$\frac{x \cdot (x + 1) \cdot (x - 5) \cdot (x - 6) \cdot \cos(3)}{72} + \frac{x \cdot (x - 3) \cdot (x - 5) \cdot (x - 6) \cdot \cos(1)}{168} +$$

$$(x + 1) \cdot (3 - x) \cdot (x - 5) \cdot (x - 6)$$

#44:
$$f(x) - 0.2 < y < f(x) + 0.2 \land -1 < x < 6$$

#45: P2(x) no aproxima a f(x) con un error < 0.2 pues se sale de la banda en un entorno del 1.

#46: LF(
$$[-1, 0, 2, 4.5, 6], x$$
)

#47: se borra la simplificación de LF después de dibujar el polinomio

#48: Parece que se sale cerca del 3. Nos acercamos:

#51: LF([-1, 0, 2, 4.4, 6], x)

#52: ===> 3. Cúbico de Hermite y Spline natural

#53: ===> 3.1

#54:
$$f(x) := \frac{x \quad 3}{\hat{e} - x + 2 \cdot x}$$

#55: h1(x) := HCF([-1, 1.5, 5], x)

#56: Se simplifica, se dibuja (en rojo) y se borra

#57: h2(x) := HCF([-1, 1.5, 3.5, 5], x)

#58: Se simplifica, se dibuja (en verde) y se borra

#59: s1(x) := SPF([-1, 1.5, 5], x)

#60: Se simplifica, se dibuja (en azul claro) y se borra

#61: s2(x) := SPF([-1, 1.5, 3.5, 5], x)

#62: Se simplifica, se dibuja (en rosa) y se borra

#64:

#65: La cúbica de Hermite en general se parece MÁS a la función debido a la coincidencia de IMAGEN y DERIVADA en los nodos de la partición. Si añadimos un nuevo nodo vemos que .. h1(x) .. sólo se modifica en el intervalo al que pertenece el nuevo nodo, mientras que .. s1(x) .. se modifica en TODOS los subintervalos

#66:

#67: ===> 3.2 Reproducir gráfica

#69: Se simplifica, se dibuja y se borra

#71· ===> 4 1

#72: CHI(1, x, 3) · POLY_INTERPOLATE $\begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 2 \end{bmatrix}, x + CHI(3, x, 5) · POLY_INTERPOLATE <math display="block"> \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}, x$

#73: $-\frac{(x+1) \cdot \text{SIGN}(x-5)}{4} + \frac{3 \cdot (x-4 \cdot x+3) \cdot \text{SIGN}(x-3)}{4} - \frac{2}{(3 \cdot x-13 \cdot x+8) \cdot \text{SIGN}(x-1)}$

#74: ===> 4.2

#75:
$$f(x) := \frac{\begin{array}{c} x & 3 \\ \hat{e} - x + 2 \cdot x \end{array}}{COSH(x)}$$

#76: CHI(-6, x, -3) · LF([-6, -3], x) + CHI(-3, x, 3) · LF([-3, -1.5, 0, 1.5, 3], x) + CHI(3, x, 6) · LF([3, 6], x)

#77: Se simplifica, se dibuja y se borra

#78: ===> 4.3 (Problema 33)

#80: Se simplifica, se dibuja y se borra

