SIMPLESSO BIBBIA

Base ammissibile **B**: vincoli da cui partire à B={c,d}

Funzione obbiettivo: da massimizzare à min cx = max - (cx)

Vincoli: da scrivere seguendo la formula $x_1 + x_2 \le c$

Matrice A: matrice coi coefficenti di $x_1 x_2$

Matrice b: matrice con i termini noti c

Matrice C: matrice coi coefficenti funzione obbiettivo

Matrice \mathbf{x} : matrice con $\mathbf{x}_1 \mathbf{x}_2$ scritti in colonna

ITERAZIONE

matrice A_{b1}: prendo coefficenti dei vincoli indicati in B

creo inversa A_{b1} : inverto valori 1,1 2,2 \to nego i valori 1,2 2,1 \to moltiplico l'intera matrice per 1/determinante

Calcolo primale x_{b1} = $A_{b1}^{-1} * b_{b1} \rightarrow$ moltiplicazione riga per colonna

Calcolo duale $y_{b1} = c * A_{b1}^{-1} \rightarrow$

- **SE** c'è un valore negativo prendo indice h corrispondente all'indice vincolo della matrice B.
- **SE** ci sono più valori negativi prendo h corrispondente al vincolo negativo con indice più piccolo.
- **SE** è tutto positivo calcolo valore ottimo

valore ottimo : c * $x_{b1} \rightarrow$ calcolo solo se duale tutto positivo

(se c'è un valore ottimo finisce qua l'algoritmo)

matrice E_{b1} = colonna di A_{b1}^{-1} con indice negativo (h) NEGATA

matrice A_{n1} = matrice coi vincoli di A non compresi nella matrice A_{b1}

moltiplico $A_{n1} * E_{h1} \rightarrow mi$ servono valori positivi.

- SE è tutto negativo allora il problema è illimitato (FINE ALGORITMO)
- **SE** c'è esattamente 1 valore positivo questo è l'indice k che andiamo a sostituire ad h nella base B. (**SI RIPETE L'ITERAZIONE**)

- **SE** ci sono più valori positivi si calcola il valore più piccolo seguendo la formula risolutiva sottostante. questo valore è l'indice k che andiamo a sostituire ad h nella base B. **(SI RIPETE L'ITERAZIONE)**

i = posizione in A dei valori positivi

