Note: In here I am adding True or False, it can be Right or Wrong both first Check If option is right or wrong under that question summary. And Rest question which I am giving multiple answer question or single choice question both are only right answers, and there is lot's of changing questions are there so please check all the question first and then only select the correct option.

3.	Suppose img is a $(32,32,3)$ array, representing a $32x32$ image with 3 color channels red, green and blue. How do you reshape this into a column vector x ?	1/1 point
	x = img.reshape((3,32*32))	
	x = img.reshape((1,32*32,3))	
	(a) $x = \text{img.reshape}((32*32*3,1))$	
	x = img.reshape((32*32,3))	
	∠ ⁿ Expand	
	⊘ Correct	
4.	Consider the following random arrays a and b , and c :	1/1 point
	a = np.random.randn(2,3) # a.shape = (2,3)	
	b = np.random.randn(2,1) # b.shape = (2,1)	
	c = a + b	
	What will be the shape of c ?	
	C.shape = (3, 2)	
	c.shape = (2, 3)	
	c.shape = (2, 1)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	∠ ⁷ Expand	
	Correct Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column a.	of

5.	Consider the two following random arrays a and b :	1/1 point
	a = np.random.randn(4,3) # a.shape = (4,3)	
	b = np.random.randn(3,2) # b.shape = (3,2)	
	c = a * b	
	What will be the shape of c ?	
	 The computation cannot happen because the sizes don't match. It's going to be "Error"! c.shape = (3, 3) c.shape = (4,2) c.shape = (4, 3) 	
	∠ Correct Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If Output Description: Output	
	you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).	
	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What is the dimension of $lpha$?	1/1 point
	\bigcirc $(m,1)$	
	$\bigcirc \ (m,n_x)$	
	\bigcirc (1, m)	
	\bigcirc (n_x,m)	
	∠ [¬] Expand	

6.

Recall that $np.dot(a,b)$ performs a matrix multiplication on a and b , whereas $a*b$ performs an element-wise multiplication.	1/1 point
Consider the two following random arrays a and b :	
a=np.random.randn(12288,150)	
#a.shape = (12288, 150)	
b = np.random.randn(150, 45)	
#b.shape = (150, 45)	
c=np.dot(a,b)	
What is the shape of <i>c</i> ?	
The computation cannot happen because the sizes don't match. It's going to be "Error"! c.shape = (12288, 150)	
c.shape = (150,150)	
c.shape = (12288, 45)	
∠ ⁷ Expand	
Correct Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b"	
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" 3. Consider the following code:	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" $a = np.random.randn(3,3)$	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" $a = np.random.randn(3,3)$ $b = np.random.randn(3,1)$	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" $a = np.random.randn(3,3)$	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" $a = np.random.randn(3,3)$ $b = np.random.randn(3,1)$	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" $ a = np.random.randn(3,3) $ $ b = np.random.randn(3,1) $ $ c = a*b $	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" 9. Consider the following code: $a = np.random.randn(3,3)$ $b = np.random.randn(3,1)$ $c = a * b$ What will be c ? (If you're not sure, feel free to run this in python to find out).	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" Consider the following code: a = np.random.randn(3, 3) b = np.random.randn(3, 1) c = a * b What will be c? (If you're not sure, feel free to run this in python to find out). This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3) This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1). This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" O. Consider the following code: $a = np.random.randn(3,3)$ $b = np.random.randn(3,1)$ $c = a * b$ What will be c? (If you're not sure, feel free to run this in python to find out). O This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3) This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1). This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a	1/1 point
Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b" 2. Consider the following code: a = np.random.randn(3, 3) b = np.random.randn(3, 1) c = a * b What will be c? (If you're not sure, feel free to run this in python to find out). 3. This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3) This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1). This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3) It will lead to an error since you cannot use "*" to operate on these two matrices. You need	1/1 point

$\mathcal{L}(\hat{y},y) = -\left(y\log\hat{y} + (1-y)^2\right)$	$(y) \log(1-\hat{y})$
0.693	
○ +∞	
0.5	
∠ [⊅] Expand	
⊘ Correct	
Yes. Given the values of \hat{y} an	and y we get $\mathcal{L}(0.5,0) = -\left(0\log 0.5 + 1\log(0.5) ight) pprox 0.693.$
Yes. Given the values of \hat{y} an	and y we get $\mathcal{L}(0.5,0) = -\left(0\log 0.5 + 1\log(0.5) ight) pprox 0.693.$
	and y we get $\mathcal{L}(0.5,0)=-\left(0\log 0.5+1\log (0.5) ight)pprox 0.693.$ If the following is a valid reshape?
ppose x is a (8, 1) array. Which of	
ppose x is a (8, 1) array. Which of xreshape(-1, 3)	
ppose x is a (8, 1) array. Which of x.reshape(-1, 3) x.reshape(1, 4, 3)	
ppose x is a (8, 1) array. Which of x.reshape(-1, 3) x.reshape(1, 4, 3) x.reshape(2, 2, 2)	
ppose x is a (8, 1) array. Which of x.reshape(-1, 3) x.reshape(1, 4, 3) x.reshape(2, 2, 2)	
ppose x is a (8, 1) array. Which of x.reshape(-1, 3) x.reshape(1, 4, 3) x.reshape(2, 2, 2)	
ppose x is a (8, 1) array. Which of x.reshape(-1, 3) x.reshape(1, 4, 3) x.reshape(2, 2, 2) x.reshape(2, 4, 4)	

 Consider the following random arrays a and l 	4.	Consider the	following	random	arravs (\imath and b	, and c :
--	----	--------------	-----------	--------	----------	------------------	-------------

1/1 point

a = np.random.randn(3, 4) # a.shape = (3, 4)

 $b = np.random.randn(1,4) \, \# \, b.shape = (1,4)$

c = a + b

What will be the shape of c?

- c.shape = (3, 1)
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- c.shape = (3, 4)
- c.shape = (1, 4)

Expand

Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.

5. Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :

a = np.random.randn(4,3) # a.shape = (4,3)

b = np.random.randn(3, 2) # b.shape = (3, 2)

c = a * b

What will be the shape of c?

- c.shape = (4,2)
- c.shape = (3, 3)
- c.shape = (4, 3)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!

∠⁷ Expand

⊘ Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What is the dimension of
	X?

- \bigcirc (1,m)
- (m, n_x)
- \bigcirc (n_x, m)
- \bigcirc (m,1)

⊘ Correct

7. Consider the following array:

 $a=np.array \big([[2,1],[1,3]]\big)$

What is the result of np.dot(a,a)?

- $\bigcirc \quad \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$
- $\bigcirc \quad \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}$
- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- (5 5)

∠⁷ Expand

⊘ Correct

Thus
$$\binom{(2)(2)+(1)(1)}{(1)(2)+(3)(1)}$$
 $\binom{(2)(1)+(1)(3)}{(1)(1)+(3)(3)}$

1/1 point

9.	Consider the following code:	1/1 point
	a = np.random.randn(3,3)	
	b=np.random.randn(3,1)	
	c = a * b	
	What will be \it{c} ? (If you're not sure, feel free to run this in python to find out).	
	This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).	
	 This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3) 	
	This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)	
	It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)	
	∠ [™] Expand	

${\bf 10.}$ Consider the following computational graph.

1/1 point

What is the output of J?

(a)
$$a^2 - c^2$$

$$\bigcirc \quad (a-b)*(a-c)$$

$$\bigcirc \quad a^2-b^2$$

$$\bigcirc \quad a^2 + b^2 - c^2$$

∠⁷ Expand

⊘ Correct

Yes.

$$J = r + s = u * v + w * x = (a + b) * (a - b) + (b + c) * (b - c) = a^2 - b^2 + b^2 - c^2 = a^2 - c^2$$

.

Final Attempt:

2. Suppose that $\hat{y}=0.5$ and $y=0$. What is the value of the "Logistic Loss"? Choose the best option.	1 / 1 poin
$igcup \mathcal{L}(\hat{y},y) = -\left(y\log\hat{y} + (1-y)\log(1-\hat{y}) ight)$	
0.693	
\bigcirc $+\infty$	
O.5	
∠ ⁷ Expand	
\odot Correct Yes. Given the values of \hat{y} and y we get $\mathcal{L}(0.5,0)=-\left(0\log 0.5+1\log (0.5) ight)pprox 0.693.$	
3. Suppose x is a (8, 1) array. Which of the following is a valid reshape?	1/1 point
x.reshape(-1, 3)	
x.reshape(1, 4, 3)	
(a) x.reshape(2, 2, 2)	
x.reshape(2, 4, 4)	
∠ [™] Expand	
✓ CorrectYes. This generates uses 2*2*2 = 8 entries.	

a = np.random.randn(3, 4) # a.shape = (3, 4)

 $b = np.random.randn(1,4) \, \# \, b.shape = (1,4)$

c = a + b

What will be the shape of c?

- c.shape = (3, 1)
- The computation cannot happen because it is not possible to broadcast more than one dimension
- c.shape = (3, 4)
- c.shape = (1, 4)

∠ Expand

✓ Correct

Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.

5. Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :

 $a = np.random.randn(4,3) \, \# \, a.shape = (4,3)$

b = np.random.randn(3, 2) #b.shape = (3, 2)

c = a * b

What will be the shape of c?

- c.shape = (4,2)
- c.shape = (3, 3)
- c.shape = (4, 3)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!

Expand

⊘ Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}]$. What is the dimension of
	X7

- \bigcirc (1, m)
- \bigcirc (m, n_x)
- \bigcirc (n_x, m)
- \bigcirc (m,1)

Expand

⊘ Correct

7. Consider the following array:

a = np.array([[2, 1], [1, 3]])

What is the result of np.dot(a,a)?

- \smile $\begin{pmatrix} 2 & 6 \end{pmatrix}$
- $\bigcirc \quad \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}$
- The computation cannot happen because the sizes don't match. It's going to be an "Error"!

Expand

Yes, recall that * indicates the element wise multiplication and that np.dot() is the matrix multiplication. Thus $\binom{(2)(2)+(1)(1)}{(1)(2)+(3)(1)}$ $\binom{(2)(1)+(1)(3)}{(1)(2)+(3)(1)}$.

Thus
$$\binom{(2)(2)+(1)(1)}{(1)(2)+(3)(1)}$$
 $\binom{(2)(1)+(1)(3)}{(1)(1)+(3)(3)}$.

1/1 point

9.	Consider the following code:
	a=np.random.randn(3,3)
	b=np.random.randn(3,1)
	c = a * b
	What will be c ? (If you're not sure, feel free to run this in python to find out).
	This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
	This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)
	This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
	It will lead to an error since you cannot use "x" to operate on these two matrices. You need to instead use np.dot(a,b)
	∠ [™] Expand

1 / 1 poin

What is the output of J?

- $\bigcirc \quad (a-b)*(a-c)$
- $\bigcirc a^2-b^2$
- $\bigcirc \quad a^2+b^2-c^2$

∠⁷ Expand

 \bigcirc Correct

$$J = r + s = u * v + w * x = (a + b) * (a - b) + (b + c) * (b - c) = a^2 - b^2 + b^2 - c^2 = a^2 - c^2$$