AD-A092 446

BOSTON COLL CHESTNUT HILL MA SPACE DATA ANALYSIS LAB F/G 22/2
ATMOSPHERIC EFFECTS ON THE TIME-VARYING PHOTOELECTRON FLUX FROM--ETC(U)
JUN 80 J M FORBES, H B GARRETT
AFGL-TR-80-0185

LOT I

END
BUT
1-81
0 TIC

13

AFGL-TR-80-0185 ENVIRONMENTAL RESEARCH PAPERS, NO. 706

Atmospheric Effects on the Time-Varying Photoelectron Flux From Satellite Surfaces

J. M. FORBES H. B. GARRETT, Capt, USAF

16 June 1980

THE PROPERTY OF THE PROPERTY.

Approved for public release; distribution unlimited.

FILE COPY.

SPACE PHYSICS DIVISION PROJECT 7661

AIR FORCE GEOPHYSICS LABORATORY

HANSCOM AFB, MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF

80 12 04 098

This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Chief Scientist

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

1 AF-L.

riro +1

Unclassified SECURITY CLASSIFICATION OF THIS PAGE When Data Entered REPORT DOCUMENTATION PAGE /TR-80-0185 PE OF REPORT & PHH ATMOSPHERIC EFFECTS ON THE TIME-VARYING PHOTOELECTRON FLUX FROM Scientific. Interim. SATELLITE SURFACES. 6 PERFORMING DIG REPORT NUMBER ERP No. 706 -J. M. Forbes H. B. Garrett, Capt, USAF 13・ドユタ PERFORM NO ORGANIZATION NAME AND ADDRESS Air Force Geophysics Laboratory (PHG) 62101F Hanscom AFB 76610802 Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 16 June 1980 Air Force Geophysics Laboratory (PHG) Hanscom AFB Massachusetts 01731

MONITORING AGENEY, NAME & ADDITESS IT different from Controlling Office S SECURITY CLASS, fol this report. Unclassified 154 DECLASSIFICATION DOWNGRADING DISTRIBUTION STATEMENT On this Reports Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT I the abstract entered in Block 20, if different from Reports 18 SUPPLEMENTAR - NOTES Space Data Analysis Laboratory, Boston College, Chestnut Hill, MA 02167 9 KEY WORDS (Continue on reverse side if necessary and identify by block number) Spacecraft charging Solar attenuation 23 ABSTRACT Continue in reverse side If hereskary and identify by block numbers). Satellites in geosynchronous orbit have been found to vary rapidly in potential as they pass into the earth's shadow. The cause of this effect is known to be the loss of the photoelectron flux from the satellite surface. A material-dependent model of this emission process based on detailed models of the attenuation of the sunlight and of the photoelectron emission as a function of wavelength will be presented. The model is found to agree in detail with actual measurements of photoelectron emission from tungsten. The

DD TAN 13 1473 FOITION OF THOU 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Unclas	sified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (Continued)

computer code included in the Appendix is readily adaptable to a number of materials and situations where the detailed absorption of sunlight as a function of altitude is required.

Access	ion For						
NTIS DTIC I Unappo Justii	CAB						
By	ibution/						
Distribution/ Availability Codes							
AVGL							
Dist	Avail usi/ Special	GF					

Unclassified
SECURITY CLASSIFICATION OF THE TAGE When Data Enterna

Preface

J. M. Forbes acknowledges support under Air Force Geophysics Laboratory Contract F19628-79-C-0031. Assistance in completing this study was provided by E. G. Mullen. M. Spanos provided typing support. The impetus for the study came from C. Pike.

PRECEDING PAGE BLANK-NOT FILMED

Contents

1.	INTRODUCTION	7
2.	EQUATIONS AND GEOMETRICAL CONSIDERATIONS	8
3.	INPUT DATA	11
4.	FORTRAN PROGRAM	13
5.	SAMPLE RESULTS	14
ß.	CONCLUSION	17
RF	FERENCES	19
ΑF	PENDIX - Computer Program, Sample Input, and Sample Outpu	1t 21
		Illustrations
1.	-Illustration of the Meaning of χ, the Angle Between the Sun (S) and the Earth's (E) Center, X _S , the Distance from the Satellite (SAT) to the Center of the Earth, and X _m , the Minimum Ray Path Altitude	8
2.	Geometric Representation of the Obscurations of the Solar Disk Upon Eclipse Entry	9
3.	Geometry for Calculation of Column Densities of Absorbing Species	11

Illustrations

4.	Solar Fluxes Corresponding to F _{10.7} = 150, and Photoemission Yield of Aluminum and Tungsten, as a Function of Wavelength	12
5.	Percent of Unattenuated Photoelectron Current for Tungsten, and Aluminum, Assuming Absorption by O, O_2 , O_3 , and N_2 , and an $F_{10,7}$ Value of 150	15
6.	Percent of Photoelectron Current vs X _m for Aluminum and Tungsten for Different Combinations of Absorbing Species and an F _{10.7} Value of 150	16
7.	Theoretical Calculation of Percent of Photoelectron Current vs ${\rm X_m}$ for Tungsten and an F $_{107}$ Value of 150 Compared to INJUN 5 Observations	17

Atmospheric Effects on the Time-Varying Photoelectron Flux From Satellite Surfaces

1. INTRODUCTION

Although potentials between a satellite and the ambient medium are normally only a few volts (Whipple 1), potentials as high as -20,000 V during eclipse passage have been observed by geosynchronous satellites (Garrett 2). In order to analyze the varying potentials during eclipse entry or exit, a detailed understanding of the variation of the solar-generated photoelectron flux is required. As materials can have radically different photoemission properties as a function of wavelength, it is important that the amount of illumination as a function of wavelength be specified. In this paper, a detailed model of photoemission will be derived based on first principles. The model allows a determination of the photoelectron flux as a function of wavelength. Coupled with a model of the atmospheric density, this allows an estimation of the total photoelectron current as a function of satellite position in the earth's penumbra. This latter result permits an accurate determination of the varying satellite potential, given the ambient particle fluxes (Garrett 2).

The basic theory of time-varying photoelectron flux during eclipse passage was presented in Garrett. 2 Rather than repeat that development, the first section

(Received for publication 10 June 1980)

- 1. Whipple, E.C. (1965) The Equilibrium Potential of a Body in the Upper Atmosphere, NASA X-615-65-296.
- 2. Garrett, H.B. (1978) Effects of a Time-V mying Photoelectron Flux on Space-craft Potential, AFGL-TR-78-0119, At .058 993.

of this paper will start with Eq. (10) of that paper, modified to include the effects of wavelength (an empirical model was assumed for atmospheric attenuation in the original study). This equation is then used to estimate the total attenuated solar flux reaching the satellite. In the second section, the assumed cross sections for the atmospheric constituents will be defined, along with the atmospheric model. The next two sections describe the actual computer programs utilized and compare their output for aluminum and tungsten with experimental results from the INJUN 5 satellite. A listing of the computer programs is included in the Appendix.

2. EQUATIONS AND GEOMETRICAL CONSIDERATIONS

The geometric relationships involved in determining the attenuation of solar flux reaching a satellite due to atmospheric absorption and partial obscuration of the solar disk by the earth have been derived by Garrett. The problem is simplified if the concept of $X_{\rm m}$, the minimum ray path altitude, is introduced (see Figure 1). $X_{\rm m}$ is defined as the minimum distance from the earth that a ray of light attains in going from the center of the sun to the satellite. The problem of finding the percentage of the solar disk that is obscured reduces to that of finding the atmospheric attenuation as a function of $X_{\rm m}$ rather than of time or position in orbit, which vary greatly for a given satellite.

Figure 1. Illustration of the Meaning of χ , the Angle Between the Sun (S) and the Earth's (E) Center, N_S , the Distance from the Satellite (SAT) to the Center of the Earth, and N_m , the Minimum Ray Path Altitude

Referring to Figure 2, and extending Garrett's equations to take into account the dependence on wavelength (λ_m), it can be shown that the value of total flux, F_T , as a function of X_m , is given by:

$$F_{T}(X_{m}) = \int_{0}^{\alpha} d\theta \int_{0}^{2\pi} d\phi \int_{\lambda_{1}}^{\lambda_{2}} [F(\lambda, X(\theta, \phi))P(\lambda) \sin \theta] d\lambda$$
 (1)

where

 $X(\theta, \phi) = X_S(\chi^t) - R_{\theta}$ (see Figure 2) = minimum distance of ray to arbitrary point on sun above the earth's surface

 $\chi' = \cos^{-1}(\cos(\theta)\cos(\chi) + \sin(\theta)\sin(\chi)\cos(\phi))$

 $F(\lambda, X) = solar flux as a function of <math>\lambda$ and X

oro - angular radius of sun (function of day of year)

P = photoemission yield for metal surface

λ = wavelength

 θ , ϕ = see Figure 2

 X_s = distance from satellite to center of earth.

Figure 2. Geometric Representation of the Obscurations of the Solar Disk Upon Eclipse Entry. The variables are defined in the text

The unattenuated photoelectron flux is given by

$$F_{T}(\infty) = 2\pi (1 - \cos \alpha_{TO}) \int_{0}^{\infty} F(\lambda) P(\lambda) d\lambda$$
 (2)

in electrons-cm⁻²-sec⁻¹ for F_{∞} in photons-cm⁻²-sec⁻¹, or upon dividing by 6.25×10^{18} electron charges/amp-sec, $F_{T}(\infty)$ is in amp-cm⁻². A useful quantity for comparison with observations is the percentage of photoelectron flux, given by

$$P(X_m) = \frac{F_T(X_m)}{F_T(\infty)}$$
 (3)

The solar flux at λ is obtained by multiplying the unattenuated flux $(F(\lambda))$ by the transmission coefficient $(T(\lambda))$:

$$F(\lambda) = F_{\infty}(\lambda)T(\lambda) \tag{4}$$

where

$$T(\lambda) = \exp \left[-\sum_{j=1}^{\Sigma} \sigma_{j}(\lambda) N_{j} \right]$$
 (5)

$$N_{j} = \int_{-3}^{+a} n_{j}(\xi) d\xi \tag{6}$$

 n_{j} = number density of j^{th} species

 σ_j = absorption cross section of j^{th} species at wavelength $^{\lambda}$ (H $_2$ O, O, O $_2$, O $_3$, NO, and N $_2$ were considered)

and ξ is the ray path from the sun to the satellite normal to X_m (see Figure 3). Thus, $\xi = (R_e + Z) \sin \theta$, and it is assumed that zero absorption occurs for Z > 400 km.

Figure 3. Geometry for Calculation of Column Densities of Absorbing Species

3. INPUT DATA

The unattenuated solar fluxes and O, O_2 , O_3 , and N_2 cross sections adopted in this study have been obtained from compilations of various experimental data representative of average solar conditions by Strobel³ for 1260-7500 Å, Richmond⁴ for 2-1027 Å, and Keneshea and Huffman⁵ for between 1027 and 1260 Å. The NO and H_2O cross sections are from Banks and Kockarts. The solar flux values are shown in Figure 4, and the absorption cross sections are tabulated in the Appendix.

For solar radiation absorption by the $\rm O_2$ Schumann-Runge bands (1750-2050 A), we adopt the parameterization used by Strobel³ for the transmission in each band i, $\rm Tr_i$:

$$Tr_{i} = \exp \left\{ -\left(\gamma_{i} I_{O_{2}} + \delta_{i} I_{O_{2}}^{1/2} \right) \right\}$$
 (7)

^{3.} Strobel, D.F. (1976) Parameterization of the Atmospheric Heating Rate from 15 to 120 km Due to 02 and 03 Absorption of Solar Radiation, NRL Memorandum Report 3398.

Richmond, A.D. (1972) <u>Numerical Model of the Equatorial Electrojet</u>, AFCRL-72-0668, AD 758 196.

^{5.} Keneshea, T.J. and Huffman, R.E. (1972) Solar Photoionization Rate Constants and Ultraviolet Intensities, AFCRL-72-0667, AD 756 480.

^{6.} Banks, P.M. and Kockarts, G. (1973) Aeronomy, Part B, Academic Press, N.Y.

and the cross section of $\mathbf{O}_{\mathbf{2}}$ in each band:

$$\sigma_{i} - \alpha_{i} + \beta_{i} I_{O_{2}}^{1/2}$$
 (8)

where I_{O_2} = column density of O_2 along the ray path, and γ_i , δ_i , α_i , and β_i are constants tabulated in subroutine ABSORB (see Appendix).

Figure 4. Solar Fluxes Corresponding to F_{10} , = 150, and Photoemission Yield of Aluminum and Tungsten, as a Function of Wavelength

Following Richmond, ⁴ the solar cycle variability of the fluxes has been parameterized in terms of the 10.7 cm radio flux as follows:

$$F_{n} = F_{n}^{0}(F_{10.7}^{1}/F_{10.7,n}^{0})^{P_{n}}$$
(9)

where

 $F'_{10,7} = F_{10,7} - 0.0573(F_{10,7} - 143.) - 0.001273(F_{10,7} - 143.)^2$

 $F_n = flux \text{ for the } n^{th} \text{ band or line}$

 F_n^0 = flux at the solar activity level represented by $F_{10.7,n}^0$

P_n = a power derived from experimental data

The photoemission yields for aluminum and dirty tungsten, also shown in Figure 4, are representative of experimental and theoretical data presented by Whipple.
The long wavelength cutoff for dirty tungsten, which is dependent on the state of the metal surface, and which, according to Whipple,
varies between 1900 A and 2600 Å, is taken here to be 2300 Å to best fit INJUN 5 observations (see Figure 7), as was empirically done by Garrett.

The number densities of O, O_2 , O_3 , and N_2 below 100 km are from Strobel, 3 modified slightly within the 85 to 100 km height range to merge smoothly with the U.S. Standard Atmosphere (1976) 7 above 100 km. The NO profile is an average one, based on data in Swider. 8

Note that considerations of wavelengths less than 700 A and greater than 4500 A, as well as absorption by N_2 , NO, and $H_2\mathrm{O}$, are not really germane to the computation of satellite photoelectron fluxes, but have nevertheless been included as options in the computer code for possible use in other environmental problems such as photoionization, atmospheric heating, and absorption by rocket effluents.

4. FORTRAN PROGRAM

The Appendix contains a listing of the FORTRAN program TESTL, sample input data, and sample output. TESTL is a main program written for the purpose of illustrating the use of the working subroutines ABSORB and INTEG. Subroutine ABSORB computes an array of wavelength-dependent percent atmospheric

^{7.} U.S. Standard Atmosphere (1976), U.S. Government Printing Office, Washington, D.C.

^{8.} Swider, W. (1972) E-region model parameters, J. Atmos. Terr. Phys. 34:1615-1626.

transmission coefficients $T(\lambda)$ for a given minimum ray path altitude (X_m) . This involves interpolating the number densities of various absorbing species at altitudes along the ray path, finding the integrated densities of the species along the ray path (Eq. (6)), and multiplying by the wavelength-dependent absorption cross sections to compute the transmission coefficient (Eq. (5)). In conjunction with Subroutines FUNC and ANGIN, Subroutine INTEG performs the integration in Eq. (1). Given a wavelength in angstroms, Subroutine PYIELD gives the photoemission yields of aluminum and dirty tungsten by interpolating in tables.

Program TESTL illustrates the use of these subroutines to compute photo-electron fluxes for the INJUN 5 satellite. First, the wavelengths, solar flux values (ergs-cm⁻²-sec⁻¹), the absorption cross sections (cm²), and number densities (cm⁻³) are read in from a data file (see Appendix for sample data files). An option is included to replace NO with $\rm H_2O$ as the fifth absorbing constituent. (This option has been utilized to examine the possible effects of water discharges from repeated launches of Heavy Lift Launch Vehicles (HLLV's) connected with proposed future Satellite Power System (SPS) activities.) The fluxes are then adjusted to the appropriate solar activity level, using Eq. (9), and converted from ergs-cm⁻²-sec⁻¹ to photons-cm⁻²-sec⁻¹. The unattenuated photoelectron current is computed and printed out in amp-cm⁻². Finally, by calling ABSORB and INTEG, $\rm P(X_m)$, the percentage of photoelectron flux as a function of $\rm X_m$ and wavelength, and the quantity

$$PCURI = \frac{\int_{\lambda_{1}}^{\lambda} F_{\infty}(\lambda) P(\lambda) d\lambda}{\int_{\lambda_{1}}^{\infty} F_{\infty}(\lambda) P(\lambda) d\lambda}$$
(10)

which illustrates the relative contributions of various wavelengths to the photoelectron flux. See Appendix for a sample computer printout,

5. SAMPLE RESULTS

Some insight into the process of photoemission from a satellite surface can be obtained by examining results from the present model as a function of surface material, wavelength, and atmospheric absorbing species. In Figure 5, the percent of unattenuated photoelectron current, given by Eq. (10), is plotted as a

Figure 5. Percent of Unattenuated Photoelectron Current for Tungsten and Aluminum, Assuming Absorption by O, $\rm O_2$, $\rm O_3$, and $\rm N_2$, and an $\rm F_{10.7}$ Value of 150

function of wavelength for tungsten and aluminum, assuming $F_{10..7}$ = 150. Here we see that 50 percent of the unattenuated photoelectron current is due to wavelengths less than 2000 Å for tungsten and 3000 Å for aluminum, and that 90 percent of the current can be attributed to wavelengths less than 2300 Å and 3600 Å, respectively, for tungsten and aluminum. The total unattenuated photoelectron currents corresponding to aluminum and tungsten are 0.293 \times 10⁻⁶ amp-cm⁻² and 0.167 \times 10⁻⁸ amp-cm⁻², respectively, at solar minimum ($F_{10..7}$ = 50), and 0.305 \times 10⁻⁶ and 0.228 \times 10⁻⁸ amp-cm⁻² at solar maximum ($F_{10..7}$ = 250). Thus, we see that photoemission from a tungsten surface, due to its greater dependence on shorter

wavelengths, is more variable with solar activity. Since most of the atmospheric absorption occurs below 150 km altitude, the solar cycle variation of thermospheric composition has been omitted in the present study.

The above differences in the wavelength dependence of photoemission rates for different materials suggest differences would exist with regard to the relative importance of absorbing species. For instance, from Input Table 1 in the Appendix we see that C_1 , C_2 , and C_3 are strong absorbers in the EUV, UV, and visible, respectively. Further, from the height dependences of these constituents, we would expect that EUV, UV, and visible radiations are absorbed at progressively lower heights in the atmosphere. These points are illustrated in Figure 6, where it is demonstrated that C_3 absorption of near-visible radiation can be neglected for tungsten photoemission in the case of EUV and aluminum. Note also that the 50 percent and 90 percent levels of unattenuated photoelectron current are attained above 55 km and 85 km, respectively, for aluminum, but above 95 km and 225 km, respectively, for tungsten.

In Figure 7, the percentage of photoelectron current measured by the INJUN 5 satellite shows good agreement with computations from the present model, assuming a tungsten surface and $F_{10...7}=150$. The only adjustment made to optimize this fit was to choose a long wavelength cutoff of 2300 A for the photoemission yield

Figure 6. Percent of Photoelectron Current vs $\rm X_m$ for Aluminum and Tungsten for Different Combinations of Absorbing Species and an $\rm F_{10,\,7}$ Value of 150

curve. According to an assessment of various experimental and theoretical data by Whipple, 1 this long wavelength cutoff, which is dependent on the state of the metal surface, varies between 1900 A and 2690 $\rm \mathring{A}$ for dirty to g=n.

Figure 7. Theoretical Calculation of Percent of Photoelectron Current vs \mathbf{X}_m for Tungsten and an F $_{10,.7}$ Value of 150 Compared to INJUN 5 Observations

6. CONCLUSION

The model of atmospheric attenuation presented in this report, when coupled with models of the photoelectron emission characteristics of satellite material, provides an important step forward in our ability to study spacecraft charging. A number of increasingly more sophisticated models of the satellite charging process have been developed in the last year. One of those codes, the so-called NASCAP (NASA Spacecraft Charging Analyzer Program) model, is capable of modeling the complex surfaces and materials found on a typical satellite. Coupled with the knowledge of the solar flux as a function of satellite position, modeling of the penumbral passage of a satellite such as the AF/NASA P78-2 is possible—the simple model of Garrett has already been used for this purpose. As the P78-2 instrumentation provides measurements of the potentials on several different types of

materials on the satellite, the model introduced here should prove extremely useful in allowing NASCAP to predict surface potentials during eclipse passage. It is to this end that the report has been prepared.

References

- Whipple, E.C. (1965) The Equilibrium Potential of a Body in the Upper Atmosphere, NASA X-615-65-296.
- 2. Garrett, H.B. (1978) Effects of a Time-Varying Photoelectron Flux on Space-craft Potential, AFGL-TR-78-0119, AD A058 993.
- Strobel, D.F. (1976) Parameterization of the Atmospheric Heating Rate from 15 to 120 km Due to O₂ and O₃ Absorption of Solar Radiation, NRL Memorandum Report 3398.
- 4. Richmond, A.D. (1972) Numerical Model of the Equatorial Electrojet, AFCRL-72-0668, AD 758 196.
- Keneshea, T.J. and Huffman, R.E. (1972) Solar Photoionization Rate Constants and Ultraviolet Intensities, AFCRL-72-0667, AD 756 480.
- 6. Banks, P.M. and Kockarts, G. (1973) Aeronomy, Part B, Academic Press, N.Y.
- 7. U.S. Standard Atmosphere (1976), U.S. Government Printing Office, Washington, D.C.
- 8. Swider, W. (1972) E-region model parameters, J. Atmos. Terr. Phys. 34:1615-1626.

PRECEDING PACE BLANK-NOT FILMED

Appendix

Computer Program, Sample Input, and Sample Output

Main Program TESTL

```
PRJGRAM TESTL (INPUT, OUT? II)
COMMON/INFOI//II15C1, 72(15C1, FT (1511, AHP(5, 1531, ILMAX, ILMIN, IN
COMMON/INFOI//II15C1, 72(15C1, FT (1511, AHP(5, 1531, ILMAX, ILMIN, IN
COMMON/INFOI//II(5, 5, 6), NAPPAY(6), NAPPAY(6), NAPPAY(6)
OIMFUSION I(1501, II(151),
OIMFA SION, SECTION, OUT, II, II, II,
OATA FIB//ISO,
DATA HASE(II), I=1, 136)/116*145., 5*177., 7*143., 8*150./
DATA HONERII, I=1, 136)/116*145., 5*177., 7*143., 8*150./
OATA IN/S, N, 9*12, 3*1.7, 2*2, 3, 2*2.6, 3, 0, 3, 5, 5, 0, 6, 7/
OATA ILLA, FIRST, LLAST, ILMAX/98, 1, 136, 136/
OATA IN/S/
                                                                    READ IN MAYELENGTH, SOLAR FEUX, ABSORPTION CORFF. AND NUMBER DENSITIES OF ATMOSPHERIC CONSTITUENTS
        6001 FORMAT(///)
PRINT 6000
PPINT 6001
ON 2010 I=1.45
2011 FRINT 200,11(I),12(I),FT(I), (ARP(J,I),J=1,IN)
PRINT 600
PPINT 600
PPINT 600
PPINT 600
PPINT 6000
PPINT 6000
PPINT 6000
PPINT 6000
PPINT 6001
POINT 6001
[00 2012 1=91:136
2012 1=91:136
2012 200, T1 (T1:12 (T1:11 (And (J:11:11:11))
POINT 6001
PRINT 6001
POINT 6001
[00 3011 1=41:1/MAX
**511 POINT 300, 74(1), (7(1), (1:1))
POINT 6000

**511 POINT 300, 74(1), (7(1), (1:1))
POINT 6000

**511 POINT 300, 74(1), (7(1), (1:1))
POINT 6000
                                              IF INDEA AND INDROGES, NO 15 CIFTH SPECIF
IF INGED AND INDROGES, NOO 15 EIFTH SPECIF
IF INDROGES DEFINE WATER COND. AND ARROUSE DOCEST DEST
IF (INDROGES) TO 10 TO 10 TO 40 TO
                                                 DO 103 J=1,17MAX
7-(J-1)+5.
                                                 174 CONTINUE
                                                                     ADJUST FLUX TO SOLAR ACTIVITY LEVEL.
CONVERT FLUX FROM FROMENSES TO PROTONYCHRISES.
AND COMPUTE UNATTINUATED PROTOFICOTRON FLUX TROURID.
                                              ILMINELFIRST
ILMATELLAST
VXEC107-143;
F137F-177-X**C.0537+,UN1273*XX)
PCJFIEC.0
```

Main Program TESTL (Cont.)

```
71(1)=11(1)
                                                                      Z2(I)=12(I)
*L4#Z2(I)+(71(I)-72(I))72.
                                              A == 22(1)+((1))-72(1))/2

2AL PYIELO(XH,PYA,PYA)

FI(1)=FI(1)=X(H*.5E+03

3 P(10.E1=PGURI=PGURI+FI(1)*FYY
PCTRI=PSURI/6.25E+18
6001 FORMAT(1+1)
                                                                 PRINT 6000
    SCOO FORMATILX; 2 MMPGURI # INTEGRAL OF FIFPY # , FIS. 3, 2X, 7HAMP/CH21
                                                                   PRINT SPPG. PCHRI
PCURI=PCUPI#6.255+18
                                                                                                       COMPUTE FXM. PERGENTAGE OF PHOTCELECTRON FLUX AS A FUNCTION OF YM
200
                                                                   DO 2 IXM=1.9

YM IS THE MINIMIM PAY PATH ALTTTINE
XM=FLOAT(IXM-1)*50.
                                                                      APSRO= (EXM/6378.1+1.1/xS
PC=ASIN(ARGRO)
                                                                                                    PO IS THE ANGILAR DISTANCE IN PADIANS RETWEEN CENTER OF EARTH AND SUN-SATELLITE LINE
                                                                      CALL ASSORBLYM.T)
CALL INTEGIPC.FE.FS.YS.AILLE
                                              OAL INTEGREGATE, POST OILL)
PXMITHMONITH COUNTY
FORMATILES SHYMON, FS. 0, 18, 402 MT., F10, 71
PRINT LOOD, 8M, PAMITHM
OO I TOLMIN, ILMAX
1 PITYM, 11=T(I)
2 CONTINUE
                                                99 % I=ILMIN, ItMAX % P(12, I)=P(13, I)>P(13, I)=P(13, I)>P(13, I)
                                                      PPINE AND THOSPHERICALE THOSPH
        PRINT 2701

2010 FORMAT 12 H MAVELEROTH ,7x, unflux, Ax, 5HxM=0.7, 2x, 1 5HXM=C0.1, 1x, 7HxM=10.1, 1x, 7HxM=151., 1x, 7HxM=200., 2 1x, 7HxM=250., 1x, 7HxM=350., 1x, 7HxM=350., 1x, 7HxM=400., 3 4x, 5HCURI)

PRINT 2000

3000 FORMAT (1x, 14, 16-, 10.4x, 511.3, 4x, 9F8.5, 2x, F8.5)

PRINT 3000, (11 (1), 12 (1), F1 (1), (07.1, 1), 1=1, 10), 1=1, 45)

PRINT 3000

PRINT 3001
                                                                   PRINT COUNT PRINT TO THE PRINT 
                                                                      PRINT 1000
PRINT 2000
PRINT 3000, ([14(1),[2([],F]([]),[P(],[],]=1,10],[=91,136]
PRINT 6000
                        SCS CONTROL OF FRICTION (STATE OF THE STATE OF THE SCS TO THE SCS 
                     POINT 202
201 forward(1x, 14.1+-, 14.11). (..., 5.10.2)
PPINT 201. (11(1).12(1).1(1).(AME(1.1).1=1.1N).1=1.45)
PPINT 202
PPINT 202
PRINT 201.(11(1).12(1).1(1).(AME(1.1).1.1).1=1.1N).1=46.90)
PPINT 201.(11(1).12(1).1(1).(AME(1.1).1).1=1.1N).1=46.90)
PPINT 201.(11(1).12(1).1(1).(AME(1.1).1).1=1.1N).1=46.90)
                                                                   POINT 202

POINT 2014(1141), [241), F[4]; (AHP4J, [], J=14]H), [=91,136]

POINT 6000

PRINT 300, (7M4[], 47M4J; [], J=1, [N), [=1,17MX)
                                                                        STOP
END
```

Subroutine ABSORB

```
SUBSTITUTE AROUSTINE AROUSTINES AND APPAY OF FERGENT ATHOSPHERIC TRANSMISSION COFFES (1) CORFESSIONES TO AN ARRAY OF MAYCLENGTH PAMES (T.T-72) FOR A GIVEN HINTHUM PAY PATH ALTITUDE (XM), LENGTH OF ARRAYS : LUMAX-JUHIN.
00000
                    OTHERSICN GAM(19), DELT(13), SUBBLES), T(153), VH(31), TH(5)
DIMENSION S114), S214)
SUBBONVINE OT/71(150), 72(15,1, F1(15,1), A RF(5, 15)), ILMAX, I, RID, ID
                COMMON/INFO2/ZN(5,01), Z14x, T1(15:), ABR(6,15)), ILMAX, I.M.
COMMON/INFO2/ZN(5,01), Z14x, TZ, ZN(6)), IZMAX
DATA RE/SZTS./

IARLES OF CCCFFC FOR SOMEMANHERMSE ABSORTION BY OZ
DATA (GAMI), I=1,10)/I.13635-23,1.4002F-23,1.3033E-23,
1.2P99F-231.22C4E-23,1.45141-23:1.4059F-23,1.3031E-23,
2.4.324[E-23,7.77575-23,1.6341-22,2.10775-20,4.6920E-22,
5.1007FC-21,2.1219C-21,3.53+77-21,8.7-66F-21,2.1935E-2],
4.52699E-20/

TATA (CCLT(I), I=1,10)/6,4880F-14,9.6723E-14,3.0592E-13,
1.1766E-12,2.6039S-12,5.493F-12,5.3996E-12,1.2232F-11,
                 1 1.7876E-12.2.60395-12.5.493E-12.4.3946E-12.1.2232E-11.
2 1.9898E-11.3.1147E-11.3.5539I-11.5.0541E-11.9.6615E-11.
3 6.7403E-11.6.1449E-11.1.0362E-10.1.8609E-10.2.4514E-11.
                  4 3.1771L-10/
              00 3 TEILHIN, ILMAX

5 I(I)=1.0

IFIXM_GE_7MAX+) 00 TO 117

A=50RT((ZMAX+).0E-10+RE)**2-(XM+PE)**2)

0P=0/50.
             OP 2 1=1.IN

SUMMITITE. 7

INTERPOLATION OF CONSTITUENTS AT DETERMINED ACTITUDES.

OF 1 = 1.50

P-)P/2. *(I-1)* DP
                  P-5P/Z, +(I-1)*P/P

J-5031 (1XM+PE)**Z*P**Z*J-9F
00 1 N=1 ;IN
00 5 J=1,T7HAX
XN(J)=7N(N, J)
CALL ATSM17,7H,XN,17HAY,1,51,52,7)
CALL ALL (7,51,52,XN7,3,1,(F+12,158)
IF (N,E0,3,4NP,7,GT,1(0,1), XN7Z*D,C
SUMMATION AND INTEGRATION OF NUMBER OFFICITY WITH
ANSOFRTION CONFERCITY,
SUMMATS SUMMAN **N7
             1 SUPH(N)=SUPH(N)+XN7
FACTI=2.*90*1.(E+05
N0 5 N=1.IN
5 TH(N)=SUPH(N)*FACTI
                   INTH = 3000000
IN=0
DO 6 I=ILMIN, THMAX
SUST=5.0
ON 9 J=1.IN
      117:1-2

IF(ILT) 113,112,113

112 [F(ILT) 113,112,113

113 [F4(I-6F+,54+AM0-[+1-,72) 30 F0 111

113 [F4(I-7)]
      60 TO 8
111 TR-1901
F&35=GAM(IR)*TN(2)+NELT(IR)*SQRT(TR(2))
      A SURT-SUMT-FARS

1°2 FERSUMT.GT.10.1 SUMT=14.

T(T)=FYPT-SUMT)

6 CONTINUE
      111 RETURN
```

Subroutine PYIELD

```
SUBPOUTINE PYTELD(VA, PY4, PYT)
DIMENSION PT(46), PA(46), A(46)

TABLE OF PHOTOEMISSION VIELDS - DIPTY TUNGSTEN

DATA (PT(11, IT1, 46) / 2,755 - 03... 956 - 02... 276 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01... 126 - 01...
```

Subroutine INTEG

```
SUBPOUTINE INTEGIRG, PE, PS, YS, AILLI

IN CONJUNCTION WITH SUBPOUTINES FUNG AND AUGIN,
THIS SUBPOUTINE INTEGRATES OVER THE UNOBSCURED FORTION
OF THE SOLAF DISK.

OIMFUSION RAD(21), /(21)
OR=RS/ID.
OO 1 T=1.11
P=jq*(I-1)
CALL ANGIN(P, PC, PE, YS, THE)
RAD(I)=THE
CALL QSF(DR, PAD, Z+11)
AILL=RILL/PSA
PETIDEN
END
```

the control of the co

Subroutine FUNC

SUBTOUTINE FUNC(#, \C.RE.THT.F, \XS)
COMMON/INFO1/71(150).72(15C).FI(15^).ARP(S, 150).ILMAX, ILMIN, IN
DIMENSION T(150)
AARACOS(COS(R)*COS(R)+SIN(R)*SIN(PC)*COS(THT))
XM=(XS*SIN(AA)-RE)*6378.
FFEN.0
IF(M*,LI.W.0) GO TO 2
GALL ABSORB(XM+T)
DO 1 E=ILMIN, ILMAX
XLM=ZZ(IJ)* ZZ(IJ)* ZZ(IJ)* ZZ.(IJ)* ZZ.
GALL PMIELD(XLH, PMA, PMT)
FFET(IJ*FI(I)*PMT+FF
F=FF*SIN(R)
RETUPN
FND

Subroutine ANGIN

SUBROUTINE ANGIN(R.RC, FF. YS. THF)
DIMENSTON TH (21), Z(21)
DTM=6.28318/10.
DO 1 I=1.11
THT-DTM*[I-1)
CALL FUNC(R.PC, RE, THT.F.XS)
1 TH(I)=F
CALL QSF(OTH, TH, Z.11)
THEFZ(11)
RFTUPN
END

Input Table 1. Solar Flux and σ as Functions of Wavelength

	σ		
$\lambda_1 - \lambda_2 - F_{\infty}(\lambda) = 0$	α_2	ϕ_3	N ₂ NO
7550 7450 1.275.0	٠.		6. F.
7450 7350 1.375.04 1. 7450 7350 1.305.04 1. 7350 7750 1.345.04 1.	:	3.81-22	(
7150 7050 4	Ç.,	5.45-22	c. c.
7750 6950 1.4 16 604 n.	1.	6.58-22 A.26-22	· · · · · · · · · · · · · · · · · · ·
6950 6950 1.675.5. 5. 6950 6759 1.696.96 1.	?:	1.01-21	
0.000 0000 1*205*38 3*	9.		
5550 6455 1.565 13.	7.	7.91-21	· 9.
6450 6350 1.652.04 1. 6352 6257 1.652.174 0.	7.4	₹.95-21	
6259 6159 1 . KAF 4 Nu 1.	1.	1.41.571	·
6159 6959 1.775 494 9. 6850 6958 1.756 494 9.	5. 5.	4.55-21	
5950 SASO 1.785424 C.	2.	9.9E-21 P	0.
575° 56°° 1.44°° 40° 0.) .	** 37 ~ 21 "	f.
5650 5550 1.9*6+9% 9. 5559 5650 1.856+9% 0.	::	1.55-21 0	· ('.
5453 5559 1.49£ +94 P.	٠.	7.1E-21 0 2.7E-21 0	4 1.
5259 5150 1.95* eg. 1	5. 1.	2. 18-21 / 1.75-21 /	1.
フょつり 50つり [•87:+34].	7.	1.58-21	n .
475 4550 1.325.14	?. ?.	4.01-55 5	٠ ٤,
777 4777 1.345 974 7.	;.		
4000 4004 A 040-44 A	1.6	2.45-27 n	• " •
4450 3600 1.5 (C. 60 0. 7500 3500 9.5 (C. 60 0. 7500 3500 9.5 (C. 60 0. 7500 9.5 (C. 60 0	7. J.	2.1F-22 /	
359° 5445 A. A. A. A. A.	3 • 9 •	2.9F-22 6 3. FF-22 6 1. PF-21 F	.).
7407 3311 3.301467 7. 7336 4200 2.805467 3		* · 21 - 21	١.
520° 3130 6.466414 C	1.	5.25-20 0.	
3053 2950 3.9cr.et n) .	1.5f-19 e.	. (,
2980 2753 2 484.03 6	^.	1, 2F-1 " ".	
5,50 51,4 5*#DE*D& J*	1.	3.3F-18 1. 5.8F-18 1.	
2774 254F 8 . L [" + 7 2 7 .		1.75-17 C.	ř.
2500 2440 t.50-602 d. 2440 2375 2.314.602 d.	1.	9.9r-19 1.	h.,
7375 2325 2.39***22 1.	5.0F-25 1.4E-24	e. 25 - 14 f.	٠,
2775 2775 1.175+F2 1.	5.7F-24 5.7F-24	6.45-18 (. 4.56-14 (). 3.86-14 ().	
2279 2175 7.005.02 1. 2175 2129 7.405.02 1.	7.65-24	1.8F-1# 9.	1.
2125 2075 1.500.02	7.5E-24 1.1E-23	1.0F-18 5. F-19 P.	l. 1.
2745 2075 1.700+01 7.	1.35-23	1.35-19 1.	С.
	٦,	3.1F-17 3.	· 1
1975 lara Giagrien a.	7.	3.35 - 19 7. 3.65 - 19 7.	u .
1979 1925 1.595 40 10. 1925 1923 7.565 40) 0.	n. 1.	4.17-19 n. 4.55-19 n.	ι,
1923 1882 6.5 *C+98 1.	•	7.7	η.
1872 1854 4.20: +19 4.	7. 3.	5.5F-19 9.	G. U.
1854 1858 2.916499 1. 1858 1822 2.201493 (.		5.85-19 0.	f. •
1822 1819 2.5 Jr ara 4.	7.	7.18-19 6.	٠. ٠.
1738 1749 1.302401 0.	7 . C .	7.55-11). 7.75-17 °.	¢.
1789 1779 1.205.00 1.		7.9F-19 0.	٥.

Input Table 1. Solar Flux and σ as Functions of Wavelength (Cont.)

			σ			
$\lambda_1 - \lambda_2$	$F_{\infty}(\lambda)$	O	$^{\rm O}_2$	o^3	N_2	NO
1772 179	'2 9 • 1 05 - 01 56 6 • 7 (5 - 01	٠.	3.	8.1E-19 8.2E-19	1.	r.
1766 176		0.	1. n.	#.2E-19 #.7E-19	7.	C •
1749 173	10 1.708+00	7.	3.7E-19	*.3E=13	7.	ŭ.
1730 171			5.9E-19	8.38-10	2•	C.
1690 163	13 4.705-01	9.	1.75-18	A. "E-13	7.	0.
1670 169 1650 163		2.	1.8E-18	5.28-19 8.36-17	.	9.
1630 161	[^ 1:1HE-31	. " •	3:4E-18	9:08-19	11	e.
1610 151		:	4.7E-18 6.0E-18	1. "E-19 1.5E-19	1.	б. г.
1570 159	10 3.40E-71	^ •	7 . 3F -18	1.98-18	i .	# •
1550 151 1530 151		5.	5.5E-16 1.3E-17	2.5F-15 2.9E-18	"•	9.
1517 147		٩,	1-1E-17	4. "F = 18	n.	; · · · · · · · · · · · · · · · · · · ·
1490 147		7.	1 - 2E - 17 1 - 3E - 17	4.5F-18 5.*E-18	• •	₹. t.
1450 14	10 9.3 DE - 02	٠,٠	1 • 5E - 17	6.08-19	n.	ŭ.
1436 141		1	1.55~17	6.5E-18	}*	r.
1397 13	73 4.ADF-02	. j •	1.35-17	8.116-16	J.	t.
1370 13		' " •	3.0E~1A 2.TE~18	9.7E-18	7.	C.
1330 12	13 4.305-02	0.	1 + 4 F ~ 1 9	1.78-17	t.	U.
1310 121			5.)E~19 2.8E~19	1.7E-17	7. 0.	6. r.
1270 12	50 1.605-32	1.	4.3F-19	5.7E-14	٠.	11.
1215 121			1.0F-20 2.0E-19	2.3E-17	σ. 1.0F-17	2.46-1# L.
1027 91	1 3.455-03	3.	6:9E-18	0 :	7:28-13	7.
1026 1 M2			1.56-18	g.	2.66-21 1.66-13	r.
977 91	P 9.755-07	·).	4.6E-1 F	g.	A. ZE - ZO	
973 97			1.2F-17 6.3F-18	0 •	3.6E-16 5.2E-18	v• 0•
945 97	5 1.99E-01	^ <i>;</i>	3:25-18		1.06-15	Č.
311 A6			7,0E-18 1,6E-17	ŋ.	5.16-18 1.26-17	0 •
796 7	2 3.505-02	3.0E-18	2.28-17	ð •	1.AE-17	U.
732 63 330 58				e. i.	2.58-17	ť•
5 A B 4 F	1 7.435-02	7:8F-18		r.	2.46-17	0.
463 37 370 31		9.6E-18 9.7E-18	1.76-17	7. G.	2.16-17 1.58-17	C •
330 24	10 1.435-41	N . 25-18	1.6E-11	0.	1.28-17	t •
384 31 280 23		7.5F-18	1.6E-17 1.3E-17	0 • 0 •	1.2E-17 1.0E-17	C.
531 50	5 9 1 825 -02	5:56-18	1.96-17	D 4	7.65-18	V •
205 17 176 15		4.7E-18	F. 4E ~18	g. 0.	5.65-18 4.45-18	0.
151 12	# 2.279-12	2.1E-18	4.2F-18	J.	2.56-15	1.
128 10	14 1 •66E •72 11 2 • 15° • 02	1.4E-18 1.1E-18	2.0E-15 2.0E-18	U •	1,66-14	t.
dt t	N 2.935-92	7.6E-19	1.5E-18	fi .	8,95-13	t =
	'9 2.441-02 58 5.895-02	5.65-19 3.65-10	1.1E-18 7.7E-19	0 • t •	6.5E-13	(2.
5° =	# 2.95E-UZ	2.56-19	5.15-19	٥.	3.16-19	i.
	50-38-02 11-888-02	1.5E-19 A.2E-20	1.1E-19	8.	9.66-2	9. 6.
31 7	4 1.035-05	4.5E-25	9.26-20	ú.	1006-19	7.
	.5 9.310-03 .0 3.306-03		7. °E-19 2. 9E-19	9. 6.	3.6E-19 1.5E-17	0. t.
10	4 3.006-04	5.6F-20	1.18-19	0.	1.05-21	0.
9	6 1.395-64	3.2E-29 1.5E-20	5.0E-20	0.	1.75-20	2.
4	2 5.	4. 5E-21	8.5E-21	e.	5416-21	0.

Input Table 2. Density (n) as a Function of Altitude X

X(km)	n(O)	$n(O_2)$	$n(O_3)$	$n(N_2)$	n(NO)	X(km)	n(O)	$n(O_2)$	$n(O_3)$	$n(N_2)$	n(NO)
•	;				,	200.	4.156.03			2.95[+13	:
•	3 - 7 55 + 7 5	5.105.18	8.0 nF+11		•	205.	3.675+79			2.41(1.7)	:
	3.03 .06		7.00011		•	210.	3.215 +83	1.248+08	٠.	1.94 + 53	
-	3 . 1 (6: + 9.5		9.0 F F 11	5. EAL + 19	٦.	215	2.87E+19	1:308.078		1.656.473	٥.
15.	3.075 4 11 5		1.8 4112	3.198 414		220.	5.575.49	3.15E+D7		1.376+19	٥.
24.	10001		3.1 (E+12	1. 466 . 18	•	225.	24315473	5.545.97	•	1.15: 13	.:
. 52	2.00.5		4.5 CF +12	6. 195 117		230.	2.3AE+03	5.42E+67	٠.	9.638 114	·.
30.	2.10E+18		3.100+12		•	235.	1.895+09	4 . 4 SE + 07		8 . (61. 4:8	
35.	3.505+39		1.6 CE +12			240	1.7 05 +03			6. 78F +. 9	
	1.505.1		6.7 E+11			265	66+36541		•	54 71E + F-3	•
	4:30E+33	8:796+15	2.165411			250.	1 . 395 + 8 3			4. (31, +0.9	
50.	9.0 6: +33	4.665.15	7.865.10			245	1.255.93			4.085+.8	
55.	2. "E + 17		2.2 . 5 +13			266.	1.165413			4.45FF 4.8	
£0.	2.502+11		7.P.CE+1.9	5. 25E+15	1.156 +36	265	1 . 0 45 + 13		. 22	2,44713	
65.	2.19E+13	7.566+14	2.2CF109	2, 815 115		270.	40.57.40			5. 695 6.	
.0.	2.0 [[+1]	3.866+14	7.0. 6 +0 6	1.446. +15	3. 116 + 3 f	275	664564.6			2, 126 +1.9	
75.	4:306:13	11:825	2.5 FE + C B	6.79E #14	5. JJE + G f.	280.	7.82.438			1 . F F.	
90.	5.205.43	8.205+13	3.105 + 58	3.186 +24	8.335 +8 4	38.5	7.16-494			1.566 + 1.4	نے :
09 5°	1.77E+11		1.20F+78	1. 375 + 14	2.098 +07	290	6.526+69			1.315 . 9	
.06	2 . 44E +11		2.7 -6 +07	5.556.13	3.10 - 467	500	E C + 14.5 T			125439	
95.			4.67E 1 E 6 F 6		3.73E + 6.7	100	5 4 5 4 5 5			9.59.	: :
100.	4.305.411		1.30E+06		3.85E+07	485	5.05.498	7		4.598+37	
185:	3.417.111		1.575455	3:885*12	4. JOE + 87	4.0	404.45.4	•		R. 675 0 17	
110.	2.355.11		1.4 PE+[4	1.645 +12	3.346.07	, d	66438649	_		7.026+77	
115.	1.435.11		1.205+03		3.515.07	42D.	1. RO . + 3.8			6. 515 407	
120.	3.28E + 13	4.410	1.505+02	3.73= +11	3.335.407	200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		15.117	
125.	6.385.13	2,345+15		2 14 5 + 11	2. 53E.07	440.	504 15 4 4	_		4 6.	
130.	4.63 +10	1.38F+19		1.336 +11	1.75E +07		# 1 4 1 K E . C	•		4. 69. 4.	
135.	3.5 (2 + 13	# : 6 5F + 0 9 1	9.		1.325 +07	460.	7.585 199			2 . H. F . 17	
147.	2.735 +17	5.70E+09			1.136.97	165	2.507.139	-		2. 4.A. 1.7	
145.	2-1 05 -13	. 614516.	ċ		8.905.98	350	2.252+98		,	2. (75 +117	
150.	1.787.13	2.75€+99 1	•		6.30E+C6	445	2.15: 198			1.83	
155.	1.495011	1.985+19			4.33E+3E	191	1.895+34	6.8 AE + 9 5	•	1. : 36 +77	
154.	1.245+13	1.455.9			4.116+36	165	1.785+39		•	1 . 36 . 40 ?	
165.	1.15.10	1.592499	•		3.278 +86	170.	86+365-1			1.145.007	
17.	6.+30,.€	3.2PE+@A			2.256.96	175.	1.43640			1. 21. +87	
175.	1.775.09	6.15E+08 (1.438.01	189.	- 0 - 1 - 1			8. 4.1F +115	
149.	6.75E+13	# 4526 * ti	•	5.74E 4. 9	1.816.00		100000000000000000000000000000000000000			7. 4 2 0 7 . 2	
195.	5.3" [+ 13	3.955+86		5.421.13	1.335.464		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6.175	
190.	5.195.03	3.7 3F + 6A		F * 362 * 1	9.	105.	101.74.7			5, C7F + 115	
195.	4.575.53	7.47.699	•	3.572473	٠,	, ,			: .	9001/201	• •
						,			•		

Output Table 1. Total Solar Flux in Wavelength Interval and Percent Transmission at Indicated Altitude (See Text)

		*******	**********	•	A THUS PUB	MOISSIMSHABE DISPUSHIN	01551 #56		***********	********	
MAVELENGTH	F1 UR	X H = C · C	YH= CO.	V4-130.	×4-150	. 44 - 250.	x4-250.	v4-250. xH-250. xH=300.	XH - 35.6.		PCUPI
7550-7459	4756 4 11	. 32143	chabb.	1.73000	1. 707	1. 0000	1.5.130 [10 :00 1	1.1001	1.10.7	1,000
7 450 - 7 350	. LABIEF1	66716.	66 466	1.03960	10: 11: 1	1.00001	30. 23.1		1646		6 63
7350-7259	4 1 4 3 1 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	94306.	61866.	1.000.0.1	10,000	1. JAPE 8	1.00.00	1.00005	1.0001	1.1001	60,0000
7250-7150	. 49 35 4 16	0.144.	33766	1.0,000	1.10001	1.100.1	1.00000		11.0016	1.00100	000000
7150-7051	.4375416	. A 5 30 2	21666.	1.0000	1.1000	1.7300	1.0000		1. 0000	7	9.fv)03
7655-5358	.57 1F 3 1E	. 8255E	. 99763	1.57066	1.63600	1.000	1.34000	1.026.1	1. 0.63	1.0000	00.00.0
6953-6853	+507E+16	79153	. 99711	1.0000	1.0000	1.0000	1.64366		1. 6.50	7	J.0600n
68 56-6 753	.511E+16	. 73752	\$ 996,25	1.400 11	3.1000	1.000.	1. 10 30 0		1. 0000	1.10 (00	600001.0
6750-5653	. 3148 +15	16184.	.94538	1.0000	100 100 1	1. 5016	1.00300	1.03691	1.19110	_	69 00
6650-6551	.5548+16	. 62653	\$ 3466.	1.1.1300	1.1000	15. 77.00	1.41116	-	1. :0 66	~	£0 r 9 0 * 0
6550-5453	. 597F + 16	57059	80866.	1.00001	10:5:1	1.0000	1.00100	1. 1) () (1. 0 . 60	1.6000	0000000
6456-4343	51 + 3t 1 5 ·	. 56765	. 99166	1.63300	1.11.165		1 623 (1.4000	1.1010.	0.00700
6350-6253	.5278 • 16	. 45164	493622		1.00001		1	1. 29 / 10		1. (3635)	5.101
6 250-6150	.521E+16	. 4. 16	.98879	1.0000	1.0000	1.6960	1.00906			-	00 C 0 C 1 B
F193-6340	.5256 + 16	1 26 71	10 / 86.	1.00000	1.0960	1.00 600	1. 63000	1.33030	1.66060	1. (0 00 0	000000
6950-5953	.525E+16	. 3411 F	. 386.73	1.01900	1.04981	1. 19 et e		1.1,010	1.3009	-	(00000)
5350-5851	.525E+14	. 19253	. 98850	1.0000	1.000	1.1006	1.00-00		1.000.1	-	C) 0300
5850-5754	.528E+16	36595	.98764	1.0730	1.0000	1.5000	1.00001	1.0000	1.16960	1. (0:0.	0.000.0
5758-5553	.522F+16	36595	. 98764	1.0036	1.096-01	10.00.1	1.10330		1.00000	-	0.00000
5650-553	1 51 16 4 1 6	. 44121	16686	1.0100	13.6.0.1	1. 5496 6	1.10700	1. 16 036	1.3000	1.64000	6.00 to 0 d
5551-545#	.5935 + 16	. 48446	. 99104	1.6067	1.0001	1000-1	1.10110		1. 0000	-	0.00000
5450-5343	.5115+16	53135	. 39222	1.0000	10.0.1	1.09500	1-00.00		1.0000	1.00603	CP 4 10 0
5355253	.501F+16	5 39 85 0	. 99337	1-1 1364	1.0000	1.031 66		1.000.0	1 6.0 5.0	2.1001.1	00
5252-5150	.491E+15	. 67 20 4	. 19513	1.03900	1.1000	1.0000	1.30000	_	1.70000	-	EB110.0
5150-5940	477F + 16	12402	. 63567	1.1 33FL	1.04001	1 9 5.05	1.0000		1.0000	-	00 35 3 * 3
5051-4951	. 4 9 3E + 16	. AU271	62166.	1.33350	1.1956	1. 50000	1.00000	_	1.50.63	-	C0 C0 D O
4351-4853	71F + 16	185502	99806	1.60366	1.1.1.001	1.60100	1.00000		1. 0000	-	1.003.4
4853-4753	• 455F • 15	.87524	. 994 35	1 3464	1.50600	1.0906	1.00004		1.17000	_	1.56.43
4750-4650	. 454[+ 16	. 93883	22666	1.01303	1.10.00	1.1064	10.06.46		1. 0.00	1.101.1	13.04.0
4659-4553	. 467F#15	99596	. 39331	1:03000	1.00000	1. נחיונ נ	1.0000		1.666	1.50075	6.16.03
4550-4453	. 4635+16	. 37234	59666.	1.67300	1.0001	1.1000	_		1 401.	1, (Atac	000000
4450-3698	. 3926416	. 95432	24666*	1.87069	1.0000	1.1001	1. cocot	1.06.06	1. (66)	1. [Jut.:	CD 130.0
3600-3503	.1595+16	. 92143	66866	1.000	1000-11	1.0000	1.0001		1.0166	1. (3 000	100,100
3560-3409	.1546416	.79153	. 99711	1.5000	1-00	1.70001	1.23334	1.33100	1.000	1. (000)	0(1).
\$400-3309	.151E+16	. 37460	16186.	1.13000	1.10,01	1.5000	1. :3646	1. 16.00	1.10113	1.10003	0000000
1 100 - 120	•127E+15	36626.	.95756	1.0000	1.000	1. 495.00	1.01700	1.3)301	100,00	- '	0000000
1200-3103	.1316+15	51001.	18358.	1.6116	1. 3600		1. to 0.00 E		1.00000	1. (000-6	U - 10 10 L 20
3100-1053	.4035415	500CU.	. 54364	1. 7. 50	11.11.161	-	1.0000	_	1. 0001	1.[3]	0 ()) • 0
1662-3531	.5855+15	50003.	. 36 14 7	1.67914	1.00 00	1.0000	1. 1000		10.1116	1.63060	01.31.10
2356-2562	.761E+15	. n 00 r s	. 33112	1.07100	1.60064		1.000	1. 10. 10	1 631	1.13603	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2900-2753	. 1117 + 15	ម្យាល្យ	. 39007	1.7.2760	1. 101 0.		1)		11.0.1	1.7)	00 € 0 J • N
2750+2703	. 327F + 15	. 0005	. 60395	1.07363	1.50000	1.6366	1.03 100	1. Jenje	1.0000	1.101.1	5 C C C C C C C C C C C C C C C C C C C
2700-2559	.2415	20LJC.	30.00°	1.03000	:•aru09	1.10001	1.63505	-	1. 916.		00105*0
2550-2563	-102f +15	60000	£2.61 ·	67665-1	1.10.01	1.000	1 10		10 (11)	1.6963.	C 6 0 1 0 1 3
2505-2443	. 4176 + 14	60000	39785.	1-1376	1.10401	u	1 3 16 6	1.10	10.000	1. (0000	6, 30007

Output Table 1. Total Solar Flux in Wavelength Interval and Percent Transmission at Indicated Altitude (See Text) (Cont.)

					ATPOSPHE	NVal 11d	NOTESTHENDAT JIG THOSHISTION		***********		
HELFNGTH	rl.)x	KM-0.5	WINTE.	FH-170.	*H-140.	147260.	14=260, XH=256.	XM - 563.		_	Linel
2440-2373	. 3 4 2 5 4 1 4	. 0000	.0000	. 43995	1.06001	1. 30161	1.03350	1. 3) (4)	1.1 66 60	1.13006	0000000
2375-2325	141616	70007	60.00.	THEED.	1	1.1771	1.00760	1. 11636	1.700.1	1. [360.	00.00.0
2325-2273	33775	20000	. 00:00	49969	1.00000	1000001	1.1.300 5		10.010	1. (000)	0000000
2275-2225	38 15 + 14	50000	. CO 105	33353	10000-1	1. 5076	1. 1.110		1.76.70	1.00.1	5088ú.
2225-2175	. 31 36 4 14	. 00005	. 101.72	. 41929	1.0000	1.00001	1.00000	1.33036	1.06060	1. (3.60)	.23483
2175-2123	2545615	5040.	. 10426	.1971	17.05	1.37005	1. 33738	1. 37030	1.10166	1.60375	.37564
2125-2075	.1795+14	. 10005	. (1075	16916.	1.7.7.001	1.00160	1.00030	1. 33 0 10	1 60 6.	1. (1.60	197.73.
2015-2043	.? n.E + 13	1,0005	. 11333	8 1 8 8 6 .	10.60.1	1.73696	1.0000	1. 70636	1. 0710	1, (1/63	168341
2045-2015	.172E + 13	Silvair •	. (1511	53866.	16566	66666	1. 40346	1. 30 .1	1. c Cute	1.02606	. 50152
2095-1935	11625113	. 0000	. [1313	AAZEC.	. 3339E	64646	1.50.906	1.39630	1. 0063	1. (360)	64215
1995-197	.7136 + 12	5 13 13 .	. 11618	19567	98386	96666.	86666.	. 199399	1. 0000	1. (9 60 .	.51414
1961-5261	22 796 7 2	. 50505	. 50 0 05	94166	.19314	. 99375	16666.	36666.	86666.	1. (01.01	.52233
1969-1925	3945.12	5 4000	. 60292	.97325	.13871	. 9466	. 43 166	76666.	96666.	1.()000	.53157
1 352-1 35 1	.6816+12	. 0000	.000.33	. 94593	18166.	726tb.	. 99972	66666.	19995	1. (3650	. 53775
1923-1882	. 5255 1 12	3000	. 03069	18626.	46366.	334B4	15166.	. 43983	136.66	1. (3000	887 75.
1882-1972	. 4946 - 12	5 0000	.00305	. BA778	33415	. 53831	18666.	.33975	0566f •	1.10165	. 54493
1872-1854	. 1966 + 12	. 0000	. 60.05	.8 210 2	35066.	62166	46866.	656 EF *	19666	1. (400)	.55 312
1854-183	. 25.15.12	. 30105	. 00307	.71.17	. 98517	11366.	37866.	31666.	44666.	1.0000	.55599
1838-1823	.2571 + 12	53940.	. 10005	. 732GA	.98389	. 93516	. 99918	. 33926	. 19970	1.600	.55983
1922-1810	.231€ 112	- 10005	.0000.	.69364	.97503	. 39304	19466.	. 33895	43961	~	.55152
1610-1794	.1641.12	. 0305	.0000.	.33313	. 95741	. 04755	. 19536	.33811	. + 19 2.5	1. (0 504.	.56349
1798-1789	, 119E + 12	2000L	. 13305	256570	16196	. 99071	3 69 £6 ·	4 33 86 1	. 99943	1.11000	36766.
1789-1773	.1345+12	10000	. (00 € 5	. 45254	35026.	. 99151	. 93685	31866.	87000	1.0000	•5995•
1774-1772	. 727f + 11	63046	. 63765	.27599	19556.	. 98573	. 33469	.93784	13415	1.63063	.55722
1772-1765	. 5975 + 11	. 0000	1000	17570.	. 31287	97446	. 99348	. 93613	24865.	1. (0.60	66/95
1766-1769	1145 112	. 10005	. 1000.	.01195	242 A4.	. 96630	. 9874	Benéf •	26160.	1.00000	.55,350
1760-1743	.9858 + 11			.63033	. A 4. B 4. B	. 95610	. 98370	49338	05766.	1.0000	.57067
1740-1749	.143641.	\$0036.	.0000	.0000.	4711.	19266.	. 94463	4866f. •	15666	1. (7.3	.57271
1730-1717	21,1,1,1,	5 00 0 v *	. 50996	. n))	. R 7 3 34	. 99.6P1	. 49845	. 4966.	.43196	10.009.1	55775.
1714-1691	11175 1 12	. 06365	. 62095	-73305	.82279	. 98392	: 99777	. 39963	46666.	1.000	.57617
1690-1671	11 + 16 8 1.	. 6778	. 10015	. 2001.	16821.	. 47737	. 99685	84666 .	166.66	1.60665	561175
1670-1659	. 5458 + 11	. 0000.	.0000.	50000	. 56156	. 96 6.24	. 49527	. 13922	19866.	1.63000	.57.838
1650-1630	. 46.E + 11	30002	-0103	S0000.	.56335	. 95343	14866.	34892	39666.	1. (960.	61625
1530-1613	. 3295 + 11	-0690-	. 0000	1 036 5	22854.	15726.	50166.	. 99853	. 19975	1, 19600	.57773
1610-1543	11+3652*	.0000	. 00005	. 1 900 5	1001.1	, 91424	11186.	96161.	94666.	1. 14.00	£ 2682.
1595-1579	. 2 3 2 5 + 11	5 CBO L 5	0008	. 13069	.2922	. 89184	. 98 t. 3 t	33746	1 566 ·	1.60503	.0.45.
1579-1559	.264E+11	.0000	. 10 005	.01105	.18721	. 47uac	16186.	. 33684	73 54 F.	1. [010]	.58171
1550-1530	.2576+11	.0000.	. (0000	.01066	.14213	. RS (. 31	.97788	. 93632	. 13939	1.53630	. 58265
1531-1510	. 1546 . 11	5000.	. 00005	. 61005	.1017	. 82632	. 97 40 3	. 93567	43956	1.10160	.58331
1510-1431	.1146.11	. 0000	. 1691 .	. 7305	Ī	. 81071	. 47147	.93524	. 19320	1, (330.)	. 58 186
1498-1470	. 37 35 + 10	. 00005	. 60) 05	1.0005	Ī	. 19539	.95392	. 934.61	. 19913	1. () (0)	13784.
1470-1459	19185+18	. rb0u5	. 60:05	100641	15639	. 780 35	. 36637	. 39437	. 13956	1.03.003	. 55163
1450-1430	. 50 4 5 4 1 9	. 46965	. 3000	4 100 0 .	. : 3197	. 75114	.96130	19866.	38 AF t .	1.0003	. 4065
1430-1413	.5636+19	. 01005	.0000		1616 1.	. 75114	.96131	. 93351	39895	1.00000	.58 712
1610-1331	.3215+10	5 0 J J J J •	. 0000.	. 43365	. 4322	. 75561	. 36.383	*+166.	65866.	1.50000	16885.

Output Table 1. Total Solar Flux in Wavelength Interval and Percent Transmission at Indicated Altitude (See Text) (Cont.)

1370 1370	MAVEL ENGTH 1390-1370 1370-1350 1350-1333	FLUX	B.D.H.	Trive 5.8	381-HX	XH-150.	Y4=20.	XH=250.	XH=360.	XH = 356.		FCUPI
10000 100000 100000 100000 100000 10000 10000 10000 10000 10000 10000 10000 10000	1390-1370 1370-1350 1350-1333				10000					3000		
	1370-1350	01000	. 0000	507.00		56050	. 76035	. 96637	18966.	. 13310		.58975
	1350-1331	. 43TE +1B	.0005	. (0105	. 00365	15941	. 85846	. 47417	, 93653	2466f ·	1.0000	.59103
		. 9136 + 10	.0000		.00000	.58983	10156.	16166.	.9990	.99983	1. 10603	.59493
100001 1000000 1000000 1000000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 1000000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000	1330-1319	.287E+13	5 000 5	. 40 n 0 5	20000.	.72517	. 97365	38685	. 33959	36566.	1.00105	. 59531
	1310-1290	.5008+10	5 1639.	. (0405	20163.	.89157	. 93651	.93869	81666.	96666.	1.60003	.59773
	1201-121	.4475+09	6 11 11 11 11 11 11 11 11 11 11 11 11 11	. 60465	. 60305	91115	. 9946	. 93926	. 33988	96666.	1. (01.0	.5484
1. 1986.11 1. 1986.1 19	1270-1250	.1325.13	. 007165	. 00005	. 03305	.90602	. 99163	18866.	. 33 961	16666.	3.60200	19865.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1216-1215	. 307E+12	. 16005	50000.	. 39216	36966.	65666	96.66	96666.	66 666 •	10,000	.03501
1	1259-1027	. 4 38 . 4 10	. 0.000.5	. (9005	.0033	. 0000°	ESTIL.	. 57 542	. 88453	. 97742	1.00000	.941.04
1986 1980 1880 1980	116 - 2201	.1586+19	. 60005	. 60005	.61305	.0000.	.08989	. 65790	. 91 23 2	. 46367	•	.64681
	1826-1025	3516+10	. 00005	. 69405	. 03445	. 70478	. 97 118	. 99595	. 99932	68666 *	-	.85352
11 12 12 12 12 12 12 12	266 -266	. 60 JE+09	. 00005	. (0005	. T 000 5	. 53 664	.94241	.99158	. 33812	99666	-	.85511
1000 1000		. 1675 +13	. 2005	. 00005	.00065	.31764	. 30318	. 98537	93756	23666	1.64400	29 699.
1		. 9116 + 03	3000	. 00005	5 9 5 0 3 .	20JOU.	. 006.35	. 60005	. 01194	. 43864	1.03600	.87092
1		.345E+09	50000	. 60005	00000.	. 30005	.17572	. 75843	.93567	. 38775	-	.87217
100001 100000 100000 100000 100000 100000 100000 100000 1000		. 3185+08	. 0 . 0 . 5	. (0 . 0 5	5 0000	. F 297 3	. 68912	. 43843	19966.	67266.	7	. P 2 5 5 2
7. 1		. 589E . 10	. 1880 5	.00305	.01305	.0000	.03369	. 40 360	. 73868	. 90621	_	. 90185
\$ 1,000.1 3466.0 6666. 6866. 6		2575418	. 00005	00000	. 10115	.00005	. FO362	. 27915	. 63610	. 89643	1.00003	.91611
\$75,654.03		1395+10	2000.	. 000P5	.00005	50000	19000.	18349	62575	.87875	-	92489
100 100		5255483	1000	.00005	10000	10000	.0000	88647.	33962	. 75892	-	.92871
17.0 17.0		2825410	5 10 5 7	(0005	5 9000	. 00 . 1	0000	. 43567	34612	.71837	-	94920
370 Severity Series Se		2025110	13005	50000	. 00005	.0000	. 101.5	. 0.5172	.33825	.71228		.96075
10001 1 39066 6 56666 7846 7856 7867 79700 5 0000 5 0000 7 5000 7		.648E+19	. 50000	.00:00	50064	50 J 0 J	51101	. 44.200	. 35 7 53	.72159		. 96335
1335E11		.2846+19	. n 366 5	. (0399	.0000	50204	. 8065	. 07764	. 41 350	.75889	-	.97216
\$33551E10		. 230E+19	. (1005	. 00305	5 000 0	90000	.00117	.09256	. 44654	.76719	-	. 97789
176 1985 1985 1985 1985 1985 1985 1885 1		.5518+10		50000.	.00005	.00005	.00017	.09256	. 4.659	.76769	1.00003	.99154
153 157		.182E+10	.00005	.0000	.00365	.04045	. 91.65	.12319	. 49450	.78650	1. (0000	.99504
176 .227E.1) .0005 .0005 .0005 .0005 .01617 .31878 .67739 .87827 1.10600 .01623 .0397E.09 .00005 .00005 .00005 .00205 .01605 .026243 .68666 .88627 .89627 1.10600 .01625 .02005 .		.874E+09		. 60005	. 90005	.00005	.10234	.17535	.54+36	. 815 26	1.63000	98968
153		. 22 7 5 + 1)		.000	. 9999 5	50003.	. 01617	. 31878	. 67739	.87927	1. (3664	60666
123 . 1316 . 09 . 00005 . 00005 . 10005 . 12243 . 56993 . 61917 . 33557 1. (1000 . 00005 . 000005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00005 . 00		.55PE+09	10000	. 10005	. 69305	.0000.	12270.	. 41916	.74471	. 907 57	1. (0000	.9966
100 1936.08 .00005 .01005 .01005 .01003 .25124 .68266 .85627 .96672 1.00000 .0100000 .0100000 .010000 .010000 .010000 .0100000000		.130E+09	. 0000	+00000	.03305	.1.0005	. 12943	. 56093	1618.	13856.	1.6300.	64666.
91 1112.09 10005 10105 10105 1129 17659 76693 99928 36672 160000 11312.09 10000 100000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 10000		82+3666	.0000	. 83385	.01305	. 40033	. 26124	. 68266	. 87 625	.95672	1.(0059	19666.
10 .111E.09 .00005 .00005 .00005 .47051 .81194 .3153 .97622 1.(0.5u		.1036+09	5 Ga 6 J •	. 60095	. 03305	. 39581	.37659	.75893	91928	. 36876	-	.99985
71 1966508 10005 00005 00005 00462 15625 85571 99916 99822 10007 100005 117918-79 100005 100005 100005 11345 99946 19346 99822 100007 117918-79 100005 100000 100005 1000005 1000005 100005 100005 1000005 100005 100005 100005 100005 100005 100005 100005 100005 10		· 1 31E + 09	.01005	.00000	-10165	. 1229	1 5027	.81194	.33153	. 97622	_	e6666°
60 ::1745E79 - CTOTO ::1743 - 6999E - 92445 - 92445 - 92445 - 92441 - 9886E - 92445 - 92455 - 92445 - 92455 -		.9665.488	500000	. 00015	. 03065	59a4a•	. 58625	.85971	91646	.98272	1.60656	16662
59		: I L 3 E + 113	. 10155	. (0105	.10001	.11343	.69898	.93445	.95511	.98860		96666*
41 .4991608 .17005 .13005 .41331 .86557 .95944 .3553 .99562 1.3060 1 23 .431610 .10005 .03005 .41331 .86557 .95944 .3553 .99542 1.0060 1 23 .431610 .10005 .00005 .10005 .7538 .99196 .95737 .9959 1.0000 1 24 .456107 .00005 .00005 .10005 .15116 .75286 .99196 .99737 .9959 1.0000 1 25 .431607 .00005 .00005 .10005 .15116 .75286 .99196 .99737 .9999 1.0000 1 26 .456105 .00005 .00005 .10005 .40005 .9859 .99525 .9969 .9957 1.0000 1 27 .456105 .00005 .00005 .40005 .40005 .9959 .9955 .9999 1.0000 1 28 .456105 .00005 .00005 .40005 .9557 .96585 .99523 .9999 1.0000 1 29 .456105 .00005 .00005 .40005 .96835 .99523 .9959 .9999 1.0000 1 20 .456105 .00005 .00005 .40005 .96835 .99583 .99959 .99999 1.00000 1 20 .456105 .00005 .00005 .40005 .96835 .99583 .99999 .99999 1.00000 1 20 .456105 .00005 .00005 .40005 .96835 .99593 .99999 1.00000 1 20 .456105 .00005 .00005 .40005 .96835 .99999 .99999 1.00000 1 20 .456105 .40005 .40005 .40005 .96835 .99999 .99999 1.00000 1 20 .456105 .40005 .40005 .40005 .96835 .99999 .99999 1.00000 1 21 .456105 .40005 .40005 .40005 .96835 .99999 .99999 .99999 1.00000 1 22 .456105 .40005 .40005 .40005 .40005 .98999 .99999 .99999 1.00000 1 23 .456106 .40005 .40005 .40005 .40005 .98999 .99999 .99999 1.00000 1 24 .456105 .40005 .40005 .40005 .40005 .98999 .99999 .99999 1.00000 1 25 .456105 .40005 .40005 .40005 .40005 .99999 .99999 .99999 1.00000 1 25 .456105 .40005 .40005 .40005 .40005 .40005 .99999 .9		.861E+0A	9 30 10 1 2	.00005	. 4946 5	.22968	. 78322	. 93334	. 37 65 6	.99210		85666
11 .131E**8 . PPUDS . P13.45 . F2441 .923F .94777 .9326. 999*41 .1016F .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1		90+3669		50663 .	. 63305	. 41331	. 86357	1 16 56 *	. 73583	• 365 25	10 302 1	66666.
23 .137E 06 .00005 .0005 .0005 .71289 .9374 .99425 .99442 1.0005 .11285 .99442 1.0005 .11285 .99442 1.0005 .11285 .99442 1.0005 .11285 .99442 1.0005 .11285 .99442 1.0005 .11285 .99442 1.0005 .11285 .99442 1.0005 .11285 .9949 .99455 .99459 .99455 1.0000 1.0005 .11456 .99455 .99459 .99459 .99459 1.0000 1.0000 1.0005 .99459 .99459 .99459 1.00000 1.0000 1.0005 .99459 .99459 .99459 1.00000 1.0005 .99459 .99459 .99459 1.00000 1.0005 .99459 .99459 1.00000 1.0000 1.0000 1.000000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.00000000		. 3315+18	. 66995	. 00045	50 F.C J.	.62541	. 92 3AF	11116.	. 33226	19266.	1.03664	1.50000
15 .333EG7 .CCQUE .CQQDE .CQDD5 .15116 .7236 .9119f .95737 .08679 1.(1400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.134 E+ 08	. 0000	. 10005	51000	125531	.71289	. 93748	. 99 425	24966*	1. (0565	1.00021
10 .205E+07 .70035 .00305 .44702 .87694 .96305 .99639 .99581 1.00003 1 8 .134E66 .7025 .00305 .40245 .71438 .94459 .98452 .93466 .99922 1.42240 1 6 .344E+05 .40005 .40005 .40105 .87695 .96935 .99123 .99459 1.60400 1 7 .000015 .000015 .41825 .96593 .99653 .99659 1.60400 1 7 .000015 .000015 .41825 .96544 .9953 .9969 399965 1.60400 1		*338+07	500000	- 00003.	. 1.0305	.15116	. 72386	45016.	16168.	6,680.	1.53683	1.0000
A .134E+66 .77025 .00045 .71438 .94599 .98452 .93466 .99822 1.22444 1 6 .344E+05 .mrd05 .00045 .00045 .9557 .94595 .99823 .99823 .99829 1.10444 1 7 .00045 .00045 .00045 .41827 .97544 .99823 .99829 .99959 1.10444 1 7 .00045 .00045 .00045 .00045 .00044 1		.2055407	. 30035	50100.	-13365	586995	16918.	. 96305	. 98639	. 99561	1.00003	1.6.000
\$.345E+05 .00005 .00005 .60005 .42057 .95635 .99123 .95637 .99999 1.(UU-UU 1	10- 4	9943481.	.3636	. 60000	24,04.	. 71438	66596.	. 38+52	93466	.9982	1.02030	1.00000
\$ 70000 -00005 -00	3- S	.345E+85	- 46665	. 60000	. 60305	. 82953	96935	. 99123	76966.	66966.	1. (4030	1.fulfi
T	ę. , , , ,		.0000	-0000	91661.	.4182	. 98576	.93593	. 13859	199661	1.10004	1.0000
	- -	÷	5 0 0 0 C	.00.05	.04179	54516.	. 99586	. 19 182	6 6 6 6 6 6 6	49986	1. 60 600	1.0000

Output Table 2. Absorption Coefficients as Functions of Wavelength $% \left(1\right) =\left(1\right) +\left(1\right)$

HAVELENGTH	FLUX		*** C, 02.03.42.40	D A350KPTION	C(EFFICIENTS***
7550-7453	. 47 55 + 15	ο.	94	.3571-21 5.	۲.
7450-7350	. 481E . 15	0.	٥.	.140F-21 L.	t.
7350-7253	.4935+15	0.	r •	.429E-21 C.	Ĺ.
7 250 - 7153	• 4935+16	0.	7•	• # 15-30+ª•	L •
7150-7051	. 4375416	٠. ٥	o •	.553E-21 P.	{ •
7050-6950	.531 <u>5</u> +16	0.	0.	*# \$216-57 F.	t +
6950+585]	.5378+15	D.	0.	.133F-20 U.	1.
6850-6750	.51°E+16	3.	6.	.13/E-21 F.	Fr .
6759-5550	1516E+16	9 .	0 •	.1505-201.	Γ.
6653-6558	51 AE + 16	7.	0.	·5111 -50 me	Γ.
6550-5450	•517E+16	0.	0.	12-306-56 6.	ŗ.
6450~5350	•51 9E+16	0.	ę.	23.F-26 F	T •
6350-6259	# 520F+16	0:	O.	1347E-20 Ci	ŗ.
6251-615)	• 5215 • 16	J.	0.	.3935-26 · .	(• r •
6150-6053	.525E+16	0.	υ. 2		
6850-5950 5350-5850	.525E+16	o. r.	0. 0.	.453E-2, r.	;:
5850 - 5750	.529E+15	0		.411E-21 C.	
5751-5651	1522E+16	0.	0. 0.	437E-20 0.	ł. ₽.
5550-555)	,513E+16	ŏ.	G.	.3 33F-2r C.	
5550 - 5451	519E+15	ö.	ő.	**1:11-2E F*	ì.
5453-5350	511F+16	0.	0.	.2735-21 .	Ü.
5350-5250	5715+15	Γ.	2.	.2306-20 C.	ř.
5250-5150	. 43 1E+15	0.	n.	.173E-26 C.	e.
5150-5053	477E+15	0.	0.	.157E=20 C.	c.
5050-4950	4435+16	0.	0,	.4.16-51 1.	٠,
4352-4851	4715+16	J.	D .	. F 70t-21 C.	Ū.
4850-4753	,466E+16	О.	0.	.57UE-21 A.	f: .
4750-4650	. 45 BE + 1 B	0.	D.	.27JE-21 G.	G.
4651-4550	.46 PE+16	1.	F •	.2.0E-21 P.	٠.
4551 4 4451	.443E+16	0.	D.	.1278-21 F.	€.
4450-3601	.312E+16	n.	0.	.201E-21 F.	ρ.
3600-3500	.139E+16	0.	0.	.3546-21 1.	7.
3500-3400	.154F+16	v.	0.	.111E-2: L.	١.
1407-3317	1515+15	0.	0.	.4536-56 %.	0.
3300-3213	•127E+15	٥.	٠.	.15JE-19 #.	ŗ.
3207-3120	:101E+15	1.	o.	.4 51-3024.	t.
3102-3050	.4)^E+15 .585E+15	٥.	0. 7.	.15UE-18 0.	C.
3050-2950	.751E+15	s. 0.	J.	.12JE-17 F	ί.
2950-290 0 2900-2750	.379E+15	¢.	0.	.333E-17 C.	r.
2750-2710	.327E+15	ő.	ű.	6518-17 "	ù.
2700-2550	.249E+15	0.	n.	.197E-16 F.	č.
2550-2500	.112F+15	7.	g,	.11st-16 (.	i.
25911-2449	437E+14	0.	v,	.93JE-17 ".	r.
2440-2375	.349E+14	¢.	.50JF-24	.820F-17 f.	l. •
2375-2325	.341E+14	v.	.140E-23	.6406-17 0.	(.
2325-2275	.357E+14	ø.	.330E-23	.45Jt-17 0.	r.
2275-2225	.35 35+14	ø,	.530E-23	.33vE-17 1.	1.
2225-2175	.31 OE+14	Ů.	.7608-23	.130E-17 P.	.
2175-2125	.258E+14	6. •	.960E-21	-170E-17 n-	١.
2125-2075	.15 FF414	ŋ.	.110E-22	.55JE-18 D.	į,
2075-2045	. 20 KE+13	٥.	.130E-22	331[-14 0	٥.
2045-2005	1728+13	0 ·	0. D.	.339E-1+ C.	ρ. ι.
2005-1935 1995-1975	.1425+13 .7835+12	0.	0.	33UE-18 1	r.
1975-1977	.57 BE+12	0.	° .	350E-18 C	0.
1969-1989	394512	ð.	ŭ.	413E-18 D.	i.
1925-1923	6918+12	j.	9.	. 4596-18 8.	6.
1923-1882	.625E+12	ó.	ő.	. 5 20F - 16 C.	ř.
1982-1872	4346+17	ů.	o.	.53JF-18 G.	ι.
1872-1854	336E+12	0.	a.	.6416-18 B.	
1854-1839	. 261E+12	Ð.,	Ď.	.640E-18 U.	0.
1838-1822	. 73 PEF 12	0.	7.	.733E-15 F.	Р.
1822-1811	. 23(E+12	C •	0.	.73UE-16 0.	۷.
1818-1739	.1546*12	0.	0.	.73BE-18 D.	v .
1798-1788	.11 RE+12	€.	٤٠	.770E-18 P.	(•
1788-1778	.13 AE+12	0.	Ď.	.7378-16 6.	u •
1778-1772	. 72 7E+11	3.	0.	.81.E-16 F.	Ç.
1772-1756	.5305 11	٥.	1.	.82JF-18 D.	ŗ.
1766-1765	.11 6E+12	٥.	1.	.820E-18 0.	l. 5.
1750-1747	. 9956+11	٥.	.3796-15	**************************************	6.
1740-1733	.1496412	0.	.5794-17 .590E-18	. #33E-1/ () •	ί.
1710-1717	1126+12	٥.	8501-18	.A2JE-1A 0.	ò.
4110-19-4			4.0-16.		

Output Table 2. Absorption Coefficients as Functions of Wavelength (Cont.)

MA VEL ENGTH	FLUY	***0,0	2.05.62.80	ARSOFPTION (O	FF 10 1FN1S***
1690-1679	.73 TE 411	0.	.1226-17	. 400F-18 T.	C.
1670-1650	.64FE+11	e .	.1 MDE - 17	.#208=t# (.	Ç.,
1650-1617	. 4546 11	٥.	.25 DE-17	+5 3 Jt1 F 1 +	(,
163^-1610	.32*E+11	0.	. 340E - 17	. 710: 1A P.	ί,
1610-1533	. 25 45 11	0.	. 676F-17	• 135t - 17 (•	ŗ.
1590-1570	. 2325 • 11	Ç.	.6COF-17	.1575-17 0.	c.
1570-1550	.25 ME + 11	r.	.7308-17	.130r-17 M.	Ç.
1550-1530	. 25 7F+11	0.	•852F-17	.25){-17 (.	ι. Ο•
1530-1519	.154E+11	0.	•10JE-16 •11CF-15	.231E-17 0.	ί.
1510-149)	•973E+11	ð.	1208-16	.4535-17 "	::
1490-1477	.817E+11	0.	1346-16	5116-17 7	ř.
1650-1410	.63 GF • 17	υ.	150E-16	.F10F-17 P.	е.
1437-1413	. 50 45 + 13	0.	150E-15	.6536-17 %.	υ.
1410-1399	9205110	ö.	.1426-16	.7136-17	i.
1390-1 179	135517	0.	.130F-1c	. 63 H -17 m.	e,
1370-1350	* 43 * 6 * 1 *	3.	.8196-17	.933:-17	η,
1350-1332	. 81 8F+17	ž.	- 23 n E - 17	1215-15	9.
1 330 - 1 311	. 29 7F + 13	0.	.1404-17	1715-16 6.	
1310-1270	. 57 6 6 4 1 7	0.	·500E-19	.1736 -16 C.	i.
1290-1270	. 4 . 7F + 0 3	0.	.28CE-18	. 1 7ac - 1 F	6.
1270-1260	*177F*17	٠.	.47 38 - 19	.573E-17 ".	r.
1216-1216	• 37 7E+12	n.	.100F-17	. 2316-16 1 .	+14(F-15
1250-1927	. 43 FF+10	٠.	. 2071-1ª .	.10	T-16 0.
1027- 911	• 19 A C • 17	0.	. 8 R of - 17		.:-17 0.
1026-1025	• 15°F • 1]	9.	. 1506-17	(• • ĕ¶•	.f-20 f.
395- 335	* F3 4E * 4 2	9.			. r - 1 P 6 .
971- 977	•987F+11	0.	-400-17		F-19 0.
971- 973	• 86 65 63	2.	*350E-10		15 0.
937- 957	.345E+03	0.			[-17 L.
945- 945	• 31 AF • CA	0.	. 32 nF -17		LE-17 (.
911- 96) 961- 776	659511	.300F-17	.705F-17		16-17 C. .2-16 C.
	+2570+13 +1306+13	.241E-17	.2787-15		ς=18 D.
796- 732 732- 633	52/6+01	.75 CF - 17			E-16 P.
537- 587	. 25 25 4 11	.755F +17	.250E-16		E-16 0.
580- 460	• 50 5 (+ 1)	180F-17	2458-16		E-16 0.
460 - 370	.6485193	360E-17			F-16 0.
375- 330	.286E+11	.370E-17	.175E-16		E-16 1.
330- 233	. 250E+17	. 1208 =17	.15FF+16		F-16 D.
304- 394	. 5515+10	.920E-17			E-16 0.
250- 231	.1925.12	.7576-17	.130E-16	C10	LE-15 0.
231- 255	. 8745+03	.654E-17	. 100F-16	701	E-17 (.
205- 176	.223E+17	.4908-17	.54CF-17		LE-17 C.
175- 153	.55 8F+09	. 3016 - 17	.5206-17		LE-17 0.
153- 124	+13PF+97	.210E-17	\$427E+17		P# #17 E.
129- 100	*330E+JA	-140E-17			1E-17 6.
188- 38	• 13 TE • 0 3	.10CE-17	.20CE-17		E-17 R.
90 - 90	.1315+29	.76CE-18			E-18 0.
10- 73	3645 + 04	.5518-18			E-16 C.
70- 60	•1345•33	. 5636 - 18			E-18 C.
60 - 51	+ 8515+95	.2508-18			re•18 €. :e-18 €.
5;- 49 48- 31	.43 15+11 .3315+01	.157E-18 .928E-19	.160E-19		E-19 D.
40- 31 31- 23	• 138E+09	50E-19	.99rE-19		E-17 f.
23- 13	. 93 5 7 4 3 7	.351E-18	.70.E-18		E-18 C.
15- 10	.29 5E+97	.143E-18	.290E-18		E-14 C.
10- 9	134E+05	5616-19			E-19 C.
8- 5	. 546E+05	.325E-19	.64uE-13		£-19 D.
š- 4	c.	.150E-19	.300E-19		£-19 t.
ų- <u>?</u>	r.	. 430E - 20	. R60E-2)	C58	vE-20 6.

END

DATE FILMED

DTIC