Métodos Numéricos - Clase 7

Ulises Bussi- Javier Portillo

1° cuatrimestre 2020

Ajustes de curvas: Validación

Ajustes de curvas: Validación

Validación

Validación: Ejemplo

Interpolación

Ajustes de curvas: Validación

Interpolación: Polinomios Interpoladores de Lagrange

Polinomios de Lagrange: un ejemplo

Extrapolación

Extrapolación: un Ejemplo

Interpolación con Splines

Spline Lineal: un ejemplo

Spline Lineal

Spline Cuadrático

Spline Cuadrático: un ejemplo Spline Cuadrático: resumiendo

Spline Cúbico

Ajustes de Curvas Ajustes de curvas: Validación

Validación

Validación: Ejemplo

Interpolación

Interpolación: Polinomios Interpoladores de Lagrange

Extrapolación

Extrapolación: un Ejemplo

Interpolación con Splines

Spline Lineal: un ejemplo

Spline Lineal

Spline Cuadrático

Spline Cuadrático: un ejemplo Spline Cuadrático: resumiendo

Snline Cúbico

Validación de Ajuste

Ajustes de curvas: Validación

¿Cómo elegimos modelo? Dado un conjunto de datos, ¿cuál los representa mejor?.

¿Por qué? Existen muchos modelos, vamos tratar de usar el

Validación de Ajuste

¿Cómo elegimos modelo? Dado un conjunto de datos, ¿cuál los representa mejor?.

¿Por qué? Existen muchos modelos, vamos tratar de usar el mejor.

Validación

Dado un conjunto de pares ordenados $(x_i, y_i) \forall i = 1...n$ Vamos a crear dos subconjuntos disjuntos de datos $(x_i, y_i)_{train}$ y $(x_i, y_i)_{\text{validation}}$

Realizaremos los ajustes sobre el conjunto de train. y calcularemos el r^2 sobre el otro conjunto.

Ajustes de curvas: Validación

•000

Supongamos que tenemos el conjunto de datos:

Ajustes de curvas: Validación

•000

Supongamos que tenemos el conjunto de datos:

Primero debemos nuestro separar set de datos

Ajustes de curvas: Validación

•000

Supongamos que tenemos el conjunto de datos:

Primero debemos separar nuestro set de datos

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: A coeficientes donde podemos escribir

$$\begin{bmatrix} n & \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} & \sum x_{i}^{6} \\ \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} & \sum x_{i}^{6} & \sum x_{i}^{7} \\ \sum x_{i}^{4} & \sum x_{i}^{5} & \sum x_{i}^{6} & \sum x_{i}^{7} & \sum x_{i}^{8} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum y_{i}x_{i} \\ \sum y_{i}x_{i}^{2} \\ \sum y_{i}x_{i}^{3} \\ \sum y_{i}x_{i}^{3} \end{bmatrix}$$

Ajustes de curvas: Validación

0000

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: A coeficientes donde podemos escribir

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 & \sum x_i^5 \\ \sum x_i^3 & \sum x_i^4 & \sum x_i^5 & \sum x_i^6 \end{bmatrix}$$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \\ \sum y_i x_i^2 \\ \sum y_i x_i^3 \end{bmatrix}$$

Ajustes de curvas: Validación

Validación: un Ejemplo

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: A coeficientes donde podemos escribir

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \\ \sum y_i x_i^2 \end{bmatrix}$$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \\ \sum y_i x_i^2 \end{bmatrix}$$

0000

Validación: un Ejemplo

Realizamos el ajuste con polinomios hasta de grado 4 para ello, podemos generalizar el problema como: A c = A c donde podemos escribir

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix}$$

Ajustes de curvas: Validación

Validación: un Ejemplo

Una vez hallados los coeficientes para cada caso, es posible dibujar los distintos ajustes:

Ajustes de curvas: Validación

0000

Una vez hallados los coeficientes para cada caso, es posible dibujar los distintos ajustes:

Si bien parecen todos similares miremos r^2

Ajustes de curvas: Validación

Validación: un Ejemplo

Los coeficientes de determinación

Ajustes de curvas: Validación

Validación: un Ejemplo

Los coeficientes de determinación

Conclusión: El meior ajuste narece ser el cuadrático

Ajustes de Curvas Ajustes de curvas: Validación

Ajustes de curvas: Validación

Validación: Ejemplo

Interpolación

Interpolación: Polinomios Interpoladores de Lagrange

Proponemos interpolar 2 puntos como un promedio pesado de estos:

$$f(x) = L_1 f(x_1) + L_2 f(x_2)$$

$$L_1 = \frac{x - x_2}{x_1 - x_2}$$
 $L_2 = \frac{x - x_1}{x_2 - x_1}$

$$f(x) = \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2)$$

Proponemos interpolar 2 puntos como un promedio pesado de estos:

$$f(x) = L_1 f(x_1) + L_2 f(x_2)$$

Si la interpolación es una linea, los pesos serán una función de x:

$$L_1 = \frac{x - x_2}{x_1 - x_2}$$
 $L_2 = \frac{x - x_1}{x_2 - x_1}$

$$f(x) = \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2)$$

Proponemos interpolar 2 puntos como un promedio pesado de estos:

$$f(x) = L_1 f(x_1) + L_2 f(x_2)$$

Si la interpolación es una linea, los pesos serán una función de x:

$$L_1 = \frac{x - x_2}{x_1 - x_2}$$
 $L_2 = \frac{x - x_1}{x_2 - x_1}$

Con lo que la fórmula quedará:

$$f(x) = \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2)$$

Si en cambio, queremos unir 3 puntos con una parábola, Los pesos serán:

$$L_1 = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} \quad L_2 = \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} \quad L_3 = \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$$

Con lo que el polinomio interpolador quedará cómo

$$f(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_2)} f(x_1) + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} f(x_2) + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} f(x_3)$$

Si en cambio, queremos unir 3 puntos con una parábola, Los pesos serán:

$$L_1 = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} \quad L_2 = \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} \quad L_3 = \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$$

Con lo que el polinomio interpolador quedará cómo:

$$f(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_2)} f(x_1) + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} f(x_2) + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} f(x_3)$$

Es posible generalizar los pesos, para cualquier polinomio de grado *n*:

$$L_i = \prod_{j=1, j \neq i}^n \frac{x - x_j}{x_i - x_j}$$

El polinomio quedará:

$$f(x) = \sum_{i=1}^{n} L_i(x) f(x_i)$$

Es posible generalizar los pesos, para cualquier polinomio de grado n:

$$L_i = \prod_{j=1, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

El polinomio quedará:

$$f(x) = \sum_{i=1}^{n} L_i(x)f(x_i)$$

Ajustes de curvas: Validación

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Ajustes de curvas: Validación

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Lo primero que hay que hacer es calcular los *L*:

Ajustes de curvas: Validación

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

$$L_1 = \frac{(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

$$L_1 = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

$$L_1 = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}$$

$$L_2 = \frac{(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2,5.

$$L_1 = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}$$

$$L_2 = \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

$$L_{1} = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}$$

$$L_{3} = \frac{(x-x_{1})(x-x_{2})(x-x_{4})}{(x_{3}-x_{1})(x_{3}-x_{2})(x_{3}-x_{4})}$$

$$L_{2} = \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2,5.

$$L_1 = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}$$

$$L_3 = \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}$$

$$L_2 = \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

$$L_1 = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} \quad L_3 = \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}$$

$$L_2 = \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} \quad L_4 = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_4-x_1)(x_4-x_2)(x_4-x_3)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2,5.

$$L_1 = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} \quad L_3 = \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}$$

$$L_2 = \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} \quad L_4 = \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Ahora debemos evaluar los L_i en el punto de interés:

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{(2,5-2)(2,5-3)(2,5-4)}{(1-2)(1-3)(1-4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{0.5 * (-0.5) * (-1.5)}{(-1) * (-2) * (-3)} = -0.0625$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{0.5 * (-0.5) * (-1.5)}{(-1) * (-2) * (-3)} = -0.0625$$

$$L_2(2,5) = \frac{(2,5-1)(2,5-3)(2,5-4)}{(2-1)(2-3)(2-4)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{0.5 * (-0.5) * (-1.5)}{(-1) * (-2) * (-3)} = -0.0625$$

$$L_2(2,5) = \frac{1,5*(-0,5)*(-1,5)}{(1)*(-1)*(-2)} = 0,5625$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2,5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{0.5 * (-0.5) * (-1.5)}{(-1) * (-2) * (-3)} = -0.0625$$

$$L_3(2,5) = \frac{(2,5-1)(2,5-2)(2,5-4)}{(3-1)(3-2)(3-4)}$$

$$L_2(2,5) = \frac{1.5 * (-0.5) * (-1.5)}{(1) * (-1) * (-2)} = 0.5625$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2,5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{0.5 * (-0.5) * (-1.5)}{(-1) * (-2) * (-3)} = -0.0625$$

$$L_3(2,5) = \frac{1,5*(0,5)*(-0,5)}{(2)*(1)*(-2)} = 0,5625$$

$$L_2(2,5) = \frac{1.5 * (-0.5) * (-1.5)}{(1) * (-1) * (-2)} = 0.5625$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2,5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{0.5 * (-0.5) * (-1.5)}{(-1) * (-2) * (-3)} = -0.0625$$

$$L_3(2,5) = \frac{1,5*(0,5)*(-0,5)}{(2)*(1)*(-2)} = 0,5625$$

$$L_2(2,5) = \frac{1.5 * (-0.5) * (-1.5)}{(1) * (-1) * (-2)} = 0.5625$$

$$L_4(2,5) = \frac{(2,5-1)(2,5-2)(2,5-3)}{(4-1)(4-2)(4-3)}$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Ahora debemos evaluar los L_i en el punto de interés:

$$L_1(2,5) = \frac{0.5 * (-0.5) * (-1.5)}{(-1) * (-2) * (-3)} = -0.0625$$

$$L_3(2,5) = \frac{1,5*(0,5)*(-0,5)}{(2)*(1)*(-2)} = 0,5625$$

$$L_2(2,5) = \frac{1,5 * (-0,5) * (-1,5)}{(1) * (-1) * (-2)} = 0,5625$$

$$L_4(2,5) = \frac{1,5*(0,5)*(-0,5)}{(3)*(2)*(1)} = 0,0625$$

Supongamos que tenemos los valores x = [1, 2, 3, 4] e y = [1, 5, 3, 4]. Queremos hallar el Polinomio interpolador de Lagrange en x = 2.5.

Por último, reemplazamos en el polinomio:

$$f(2,5) = -0.0625 * 1 + 0.5625 * 5 + 0.5625 * 3 - 0.0625 * 4$$

$$f(2,5) = 4,1875$$

Es posible dibujar el polinomio completo si evaluamos punto a punto en matlab:

Ajustes de Curvas Ajustes de curvas: Validación

Ajustes de curvas: Validación

Extrapolación

Extrapolación: un Ejemplo

¿Que sucede si gueremos predecir valores fuera del rango de datos?

¿Que sucede si gueremos predecir valores fuera del rango de datos?

Extrapolación

Newton y Lagrange, sirven para interpolación pero presentan riesgos para valores externos (extrapolación). Tendencia es

Ajustes de curvas: Validación

¿Que sucede si gueremos predecir valores fuera del rango de datos?

Newton y Lagrange, sirven para interpolación pero presentan riesgos para valores externos (extrapolación). Tendencia es

desconocida fuera del rango de datos.

Extrapolación: un Ejemplo

Supongamos que tengo los datos: x = 1.5.5

$$y = Q(x)^2 * x^2 - 5 * x - 1 + \varepsilon$$

Extrapolación: un Ejemplo

Supongamos que tengo los datos: x = 1.5.5

$$y = Q(x)2 * x.^{2} - 5 * x - 1 + \varepsilon$$

Extrapolación: un Ejemplo

Supongamos que tengo los datos: x = 1:5:5 e

$$y = Q(x)2 * x.^{2} - 5 * x - 1 + \varepsilon$$

Ajustes de Curvas Ajustes de curvas: Validación

Ajustes de curvas: Validación

Validación

Validación: Ejemplo

Interpolación con Splines

Spline Lineal: un ejemplo

Spline Lineal

Spline Cuadrático

Salina Cúbica

Splines

Ajustes de curvas: Validación

Hasta ahora: ajustabamos polinomios de grado n-1 a npuntos.

Splines

Ajustes de curvas: Validación

Hasta ahora: ajustabamos polinomios de grado n-1 a npuntos.

Ahora Buscaremos aplicar funciones de orden menor.

¿Por qué?

Splines

Ajustes de curvas: Validación

Hasta ahora: ajustabamos polinomios de grado n-1 a npuntos.

Ahora Buscaremos aplicar funciones de orden menor.

¿Por qué?

Evitar oscilaciones.

Ajustes de curvas: Validación

Propuesta:

- tenemos *n* puntos,

Splines: Lineal

Ajustes de curvas: Validación

Propuesta:

- tenemos n puntos,
- separamos en n-1 intervalos de 2 puntos.

Splines: Lineal

Ajustes de curvas: Validación

Propuesta:

- tenemos n puntos,
- separamos en n-1 intervalos de 2 puntos.
- unimos los puntos de cada intervalo con rectas.

Splines: Lineal

Ajustes de curvas: Validación

Propuesta:

- tenemos *n* puntos,
- separamos en n-1 intervalos de 2 puntos.
- unimos los puntos de cada intervalo con rectas.

Veamos un Ejemplo

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_1(x) = a_1 + b_1(x - x_1)$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_1(x) = a_1 + b_1(x - x_1)$$

 $a_1 = y_1$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_1(x) = a_1 + b_1(x - x_1)$$
$$a_1 = y_1$$
$$b_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_1(x) = a_1 + b_1(x - x_1)$$
$$a_1 = y_1$$
$$b_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

$$s_1(x) = 1 + 4(x - 1)$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_2(x) = a_2 + b_2(x - x_2)$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_2(x) = a_2 + b_2(x - x_2)$$

 $a_2 = y_2$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$
 $s_2(x) = a_2 + b_2(x - x_2)$

$$a_2 = y_2$$

$$b_2 = \frac{y_3 - y_2}{x_3 - x_2}$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_2(x) = a_2 + b_2(x - x_2)$$
$$a_2 = y_2$$
$$b_2 = \frac{y_3 - y_2}{x_3 - x_2}$$

$$s_2(x) = 5 - 2(x - 2)$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3)$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3)$$

 $a_3 = y_3$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$
 $s_3(x) = a_3 + b_3(x - x_3)$

$$a_3 = y_3$$

$$b_3 = \frac{y_4 - y_3}{x_4 - x_3}$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3)$$

 $a_3 = y_3$
 $b_3 = \frac{y_4 - y_3}{x_4 - x_3}$

$$s_3(x) = 3 + 1(x - 3)$$

Ajustes de curvas: Validación

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$S(x) = \begin{cases} 1 + 4(x - 1), & \mathbf{si } x \in [1, 2) \\ 5 - 2(x - 2), & \mathbf{si } x \in [2, 3) \\ 3 + (x - 3), & \mathbf{si } x \in [3, 4] \end{cases}$$

Spline Lineal: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.
- Calculamos la recta que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i)$$

$$a_i = y_i$$

$$b_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

• Creamos la función partida S(x).

Spline Lineal: resumiendo

- Tomamos los n puntos y dividimos en n − 1 intervalos.
- Calculamos la recta que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i)$$

$$a_i = y_i$$

$$b_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Ajustes de curvas: Validación

- Tomamos los n puntos y dividimos en n − 1 intervalos.
- Calculamos la recta que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i)$$

$$a_i = y_i$$

$$b_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Spline Lineal: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.
- Calculamos la recta que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i)$$

$$\boxed{a_i = y_i} \quad b_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Ajustes de curvas: Validación

Spline Lineal: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.
- Calculamos la recta que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i)$$

$$a_i = y_i$$
 $b_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$

Creamos la función partida S(x).

•0000000

Spline Cuadrático

Ajustes de curvas: Validación

Ahora propondremos ajustar funciones cuadráticas a los pares de puntos. Para esto agregaremos una condición:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

•0000000

Spline Cuadrático

Ajustes de curvas: Validación

Ahora propondremos ajustar funciones cuadráticas a los pares de puntos. Para esto agregaremos una condición:

La derivada en cada punto debe ser continua

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

•0000000

Spline Cuadrático

Ahora propondremos ajustar funciones cuadráticas a los pares de puntos. Para esto agregaremos una condición:

La derivada en cada punto debe ser continua

Nuestros s; tendrán la forma

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

Spline Cuadrático

Ajustes de curvas: Validación

Ahora propondremos ajustar funciones cuadráticas a los pares de puntos. Para esto agregaremos una condición:

La derivada en cada punto debe ser continua

Nuestros s; tendrán la forma

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

Es inmediato ver que $s_i(x_i) = a_i = y_i$.

Spline Cuadrático

Para asegurar la continuidad hasta la primer derivada tomemos $S_i \bigvee S_{i+1}$:

$$s_i(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2$$

 $s_{i+1}(x) = y_{i+1} + b_{i+1}(x - x_{i+1}) + c_{i+1}(x - x_{i+1})^2$

Spline Cuadrático

Para asegurar la continuidad hasta la primer derivada tomemos $S_i \bigvee S_{i+1}$:

$$s_i(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2$$

 $s_{i+1}(x) = y_{i+1} + b_{i+1}(x - x_{i+1}) + c_{i+1}(x - x_{i+1})^2$

Tendremos que: $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$ (continuidad)

$$y_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = y_{i+1} + 0 + 0$$

Spline Cuadrático

Tendremos que: $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$ (continuidad)

$$y_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = y_{i+1} + 0 + 0$$

Tendremos que $s'_i(x_{i+1}) = s'_{i+1}(x_{i+1})$ (derivada continua)

$$b_i + 2c_i \underbrace{(x_{i+1} - x_i)}_{h_i} = b_{i+1} + 0$$

Spline Cuadrático

Vamos a escribir las ecuaciones, supongamos que son 4 puntos:

$$y_i + b_1 h_1 + c_1 h_1^2 = y_2$$

$$b_1 + 2c_1 h_1 = b_2$$

$$y_2 + b_2 h_2 + c_2 h_2^2 = y_3$$

$$b_2 + 2c_2 h_2 = b_3$$

$$y_3 + b_3 h_3 + c_3 h_3^2 = y_4$$

Tenemos 6 incógnitas y 5 ecuaciones!

$$\rightarrow$$
 Pidamos $c_1 = 0$

Spline Cuadrático

Vamos a escribir las ecuaciones, supongamos que son 4 puntos:

$$y_i + b_1 h_1 + c_1 h_1^2 = y_2$$

$$b_1 + 2c_1 h_1 = b_2$$

$$y_2 + b_2 h_2 + c_2 h_2^2 = y_3$$

$$b_2 + 2c_2 h_2 = b_3$$

$$y_3 + b_3 h_3 + c_3 h_3^2 = y_4$$

$$\rightarrow$$
 Pidamos $c_1 = 0$

Spline Cuadrático

Vamos a escribir las ecuaciones, supongamos que son 4 puntos:

$$y_i + b_1 h_1 + c_1 h_1^2 = y_2$$

$$b_1 + 2c_1 h_1 = b_2$$

$$y_2 + b_2 h_2 + c_2 h_2^2 = y_3$$

$$b_2 + 2c_2 h_2 = b_3$$

$$y_3 + b_3 h_3 + c_3 h_3^2 = y_4$$

Tenemos 6 incógnitas v 5 ecuaciones!

$$\rightarrow$$
 Pidamos $c_1 = 0$

Spline Cuadrático

Vamos a escribir las ecuaciones, supongamos que son 4 puntos:

$$y_i + b_1 h_1 + c_1 h_1^2 = y_2$$

$$b_1 + 2c_1 h_1 = b_2$$

$$y_2 + b_2 h_2 + c_2 h_2^2 = y_3$$

$$b_2 + 2c_2 h_2 = b_3$$

$$y_3 + b_3 h_3 + c_3 h_3^2 = y_4$$

Tenemos 6 incógnitas y 5 ecuaciones!

$$\rightarrow$$
 Pidamos $c_1 = 0$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

Ajustes de curvas: Validación

Ajustes de curvas: Validación

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2$$

$$a_1 = y_1 = 1$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_{1}(x) = a_{1} + b_{1}(x - x_{1}) + c_{1}(x - x_{1})^{2}$$

$$a_{1} = y_{1} = 1$$

$$c_{1} = 0$$

$$y_{1} + b_{1}h = y_{2}$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$y = [1, 5, 3, 4]$$

$$s_{1}(x) = a_{1} + b_{1}(x - x_{1}) + c_{1}(x - x_{1})^{2}$$

$$a_{1} = y_{1} = 1$$

$$c_{1} = 0$$

$$b_{1} = \frac{y_{2} - y_{1}}{b}$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2$$

$$a_1=y_1=1$$

$$c_1 = 0$$

$$b_1 = \frac{y_2 - y_1}{h}$$

$$s_1(x) = 1 + 4(x - 1)$$

Spline Cuadrático: un ejemplo

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

Ajustes de curvas: Validación

Spline Cuadrático: un ejemplo

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2$$

Ajustes de curvas: Validación

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2$$

$$a_2=y_2=5$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2$$

$$a_2 = y_2 = 5$$

$$b_2 = b_1 + 2c_1h_1 = 4$$

$$c_2 = \frac{y_3 - y_2 - b_2 * h_2}{h_2^2}$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$y = [1, 5, 3, 4]$$

$$s_{2}(x) = a_{2} + b_{2}(x - x_{2}) + c_{2}(x - x_{2})^{2}$$

$$a_{2} = y_{2} = 5$$

$$b_{2} = b_{1} + 2c_{1}h_{1} = 4$$

$$c_{2} = \frac{-2 - 4}{1} = -6$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2$$

$$a_2 = y_2 = 5$$

$$b_2 = b_1 + 2c_1h_1 = 4$$

$$c_2 = \frac{-2-4}{1} = -6$$

$$s_2(x) = 5+4(x-2)-6(x-2)^2$$

Spline Cuadrático: un ejemplo

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

Ajustes de curvas: Validación

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3) + c_3(x - x_3)^2$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3) + c_3(x - x_3)^2$$

$$a_3 = y_3 = 3$$

Ajustes de curvas: Validación

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3) + c_3(x - x_3)^2$$

$$a_3 = y_3 = 3$$

$$b_3 = b_2 + 2c_2h_2 = -8$$

$$c_3 = \frac{y_4 - y_3 - b_3 * h_3}{h_3^2}$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3) + c_3(x - x_3)^2$$

$$a_3 = y_3 = 3$$

$$b_3 = b_2 + 2c_2h_2 = -8$$

$$c_3 = \frac{1+8}{1} = 9$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$s_3(x) = a_3 + b_3(x - x_3) + c_3(x - x_3)^2$$

$$a_3 = y_3 = 3$$

$$b_3 = b_2 + 2c_2h_2 = -8$$

$$c_3 = \frac{1+8}{1} = 9$$

$$s_3(x) = 3-8(x-3)+9(x-3)^2$$

$$x = [1, 2, 3, 4]$$
 $y = [1, 5, 3, 4]$

$$S(x) = \begin{cases} 1 + 4(x - 1), & \text{si } x \in [1, 2) \\ 5 + 4(x - 2) - 6(x - 2)^2, & \text{si } x \in [2, 3) \\ 3 - 8(x - 3) + 9(x - 3)^2, & \text{si } x \in [3, 4] \end{cases}$$

Spline Cuadrático: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

$$\begin{bmatrix} a_i = y_i \end{bmatrix} \begin{bmatrix} b_i = b_{i-1} + 2c_{i-1}h_{i-1} \end{bmatrix}$$
$$c_i = \frac{y_{i+1} - y_i - b_ih_i}{h_i^2}$$

Ajustes de curvas: Validación

Spline Cuadrático: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.
- Calculamos la parabola que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

$$\begin{bmatrix} a_i = y_i \end{bmatrix} \begin{bmatrix} b_i = b_{i-1} + 2c_{i-1}h_{i-1} \end{bmatrix}$$
$$c_i = \frac{y_{i+1} - y_i - b_i h_i}{h_i^2}$$

Spline Cuadrático: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.
- Calculamos la parabola que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

$$a_{i} = y_{i}$$

$$b_{i} = b_{i-1} + 2c_{i-1}h_{i-1}$$

$$c_{i} = \frac{y_{i+1} - y_{i} - b_{i}h_{i}}{h_{i}^{2}}$$

Spline Cuadrático: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.
- Calculamos la parabola que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

$$\begin{bmatrix}
a_i = y_i \\
c_i = b_{i-1} + 2c_{i-1}h_{i-1}
\end{bmatrix}$$

$$c_i = \frac{y_{i+1} - y_i - b_i h_i}{h_i^2}$$

Spline Cuadrático: resumiendo

- Tomamos los n puntos y dividimos en n-1 intervalos.
- Calculamos la parabola que va en cada intervalo:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

$$\begin{bmatrix}
a_i = y_i \\
c_i = \frac{y_{i+1} - y_i - b_i h_i}{h_i^2}
\end{bmatrix}$$

Creamos la función partida S(x).

