

Local and Global Optimization

Understanding Optima in Complex Landscapes

Dr. Helga Ingimundardóttir (helgaingim@hi.is)

VÉL113F: Design and Optimization

INDUSTRIAL ENGINEERING

Introduction

Delve into the dynamics of optimization landscapes, differentiating between local optima and the overarching global optimum, and the techniques to approach each.

Mathematical Programming

Calculus Methods: Using mathematical tools to solve problems involving change and motion.

▶ Determining the fastest moment a car was going during a trip.

Calculus of Variations: A field of mathematical analysis that deals with maximizing or minimizing functionals.

Finding the shortest path a beam of light can take to reflect off a surface.

Nonlinear Programming: Optimizing functions that are not straight lines.

▶ Maximizing profit when the production cost changes as you produce more.

Geometric Programming: Optimization technique based on polynomial equations.

▶ Designing a soda can with the least material but a specific volume.

Quadratic Programming: Optimizing quadratic functions, which are polynomials of degree 2.

▶ Minimizing the cost of production given certain constraints.

Mathematical Programming ||

Linear Programming: A method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships.

Finding the best combination of products to manufacture to maximize profit.

Dynamic Programming: Breaking down a problem into simpler parts and solving each part only once.

Figuring out the most efficient way to store data to minimize retrieval time.

Integer Programming: Optimization where some of the variables are restricted to integer values.

▶ Deciding the number of buses a school should deploy, as you can't have a fraction of a bus.

Stochastic Programming: Making decisions in the face of uncertainty.

▶ Planning for the future stock of a store when future demand is uncertain.

Mathematical Programming |||

Separable Programming: A nonlinear program where the objective and constraint functions are separable.

► Maximizing crop yield by optimizing the amount of water and fertilizer used when the effects of each are independent.

Multi-objective Programming: Making decisions while considering multiple goals simultaneously.

Designing a product that's both low-cost and high-quality.

Network Methods, CPM and PERT: Tools for project planning and control.

Organizing tasks when building a house to ensure it's done efficiently and on time.

Game Theory: Studying mathematical models of strategic interactions among rational decision-makers.

▶ Two businesses deciding on the price of a product, considering what the other might charge.

Stochastic and Statistical Methods

Stochastic Processing Techniques: Techniques to handle processes that involve uncertainty.

▶ Predicting stock prices based on past fluctuations.

Statistical Decision Theory: Making decisions using data analysis.

► Choosing to launch a product based on customer survey data.

Markov Processes: Processes where the next state depends only on the current state.

Predicting tomorrow's weather based on today's.

Queuing Theory: Studying the behavior of waiting lines.

▶ Optimizing supermarket cashiers to reduce wait times.

Renewal Theory: Statistics of the time to events in processes.

▶ Predicting machine failure based on past breakdowns.

Simulation Methods: Imitating a real-world process using a model.

Predicting drug spread using a computer model.

Stochastic and Statistical Methods ||

Reliability Theory: Predicting and enhancing system durability.

▶ Determining average lifespan of a car part.

Regression Analysis: Examining relationships between variables.

Determining sales relation to advertising.

Cluster Analysis & Pattern Recognition: Grouping based on similarities.

Grouping customers by buying habits.

Design of Experiments: Planning experiments to get valid data.

► Testing if new fertilizer improves growth.

Discriminant Analysis/Factor Analysis: Breaking down data into core influences.

▶ Understanding factors influencing grades.

Modern Optimization Techniques

Genetic Algorithms: Optimization using natural selection principles.

► Finding best airplane wing design by "evolving" designs.

Simulated Annealing: Probabilistic optimization mimicking the annealing process.

Optimizing delivery routes.

Ant Colony Optimization: Optimization using ant behavior.

Optimizing city traffic flow.

Particle Swarm Optimization: Optimization based on flock behavior.

Adjusting wind turbine design for efficiency.

Neural Networks: Algorithms designed to recognize patterns.

Recognizing faces in photos.

Fuzzy Optimization: Optimization using fuzzy logic rather than binary.

Adjusting car heat based on "warm" or "cold".

Classification of Optimization Problems

Equations Involved: Based on the nature of equations.

► Linear vs. Nonlinear equations.

Design Variables Values: Based on permissible values.

▶ Discrete variables in selecting warehouse locations.

Deterministic Nature: Based on variables' determinacy.

Predictable machine outputs vs. unpredictable stock prices.

Existence of Constraints: Whether constraints are present.

Maximizing revenue with a limited budget.

Classification of Optimization Problems II

Design Variables Nature: Nature of the variables involved.

▶ Binary choices in a network design.

Physical Structure: Based on the problem's inherent structure.

Structural engineering optimizations.

Separability of Functions: If functions can be separated.

▶ Independent departmental budgets in a company.

Number of Objectives: Based on the number of goals.

▶ Balancing cost, quality, and time in project management.

Objective Function: Maximize or Minimize

The choice between maximizing and minimizing a function can often be translated by considering the function's opposite or a scaled version of the function.

Figure: $\min_{x} f(x) \iff \max_{x} -f(x)$

Figure: Scaled $c_1 \cdot f(x)$ and translated $c_2 + f(x)$ both retain the original shape.

Single Variable Optimization

Single variable optimization with no constraints

Determine the value of $x = x^*$ within the interval [a, b] that minimizes the function f(x).

Necessary Condition If a function f(x) is defined in the interval $a \le x \le b$ and has a relative minimum at $x = x^*$, where $a < x^* < b$, and if the derivative $\frac{df(x)}{dx} = f'(x)$ exists as a finite number at $x = x^*$, then $f'(x^*) = 0$.

Single Variable Optimization Ⅱ

Considerations

- ightharpoonup The proof holds even if x^* is a local maximum.
- ► The derivative's existence at x* is not guaranteed for every minimum or maximum.
- Extrema at the endpoints of the function's definition interval are not covered.
- ► A zero derivative doesn't guarantee the presence of an extremum; it could be an inflection (or saddle) point.

Single Variable Optimization |||

Sufficient Condition for Extrema

Let's assume the first n-1 derivatives at point x^* are zero, but the nth derivative is not zero.

- If the *n*th derivative at x^* is positive and *n* is even, then $f(x^*)$ is a minimum.
- ▶ If the *n*th derivative at x^* is negative and *n* is even, then $f(x^*)$ is a maximum.
- ▶ If *n* is odd, $f(x^*)$ is neither a maximum nor a minimum.

Think of the even n as giving the function "another chance" to decide if it's curving up or down. Odd n means the function hasn't settled into a curve direction.

Multivariable Optimization

Multivariable Optimization: Necessity vs. Sufficiency

In single-variable optimization, a zero derivative suggests potential extrema. Similarly, in the multivariable case, all first partial derivatives should be zero at a stationary point, constituting the **necessary condition**. To further discern if it's genuinely a maximum or minimum (and not a saddle point), we turn to the Hessian matrix for the **sufficient condition**.

Simply put, for a point to be a high or low point in multiple dimensions, the function shouldn't be rising or falling in any of those directions.

Multivariable Optimization ||

Necessary Condition For a function $f(\mathbf{x})$ to have an extreme point at $\mathbf{x} = \mathbf{x}^*$:

$$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \frac{\partial f}{\partial x_2}(\mathbf{x}^*) = \cdots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*) = 0$$

Sufficient Condition To determine the nature of a stationary point \mathbf{x}^* of the function $f(\mathbf{x})$:

- ▶ If the Hessian matrix at \mathbf{x}^* is positive definite, \mathbf{x}^* is a local minimum.
- ightharpoonup If it's negative definite, \mathbf{x}^* is a local maximum.

This helps us be certain about the nature of the stationary point.

Multivariable Optimization |||

Refresher: The Hessian Matrix

The Hessian matrix H of a function $f(\mathbf{x})$ is the matrix of its second-order partial derivatives. It provides insight into the curvature of the function:

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Multivariable Optimization IV

A matrix A is considered:

- **Positive definite** if all its eigenvalues are positive. This suggests the function is curving upwards, indicating a minimum. That means all values of λ that satisfy the determinantal equation $|A \lambda I| = 0$ should be positive.
- ▶ **Negative definite** if all its eigenvalues are negative. This suggests the function is curving downwards, indicating a maximum.

Multivariable Optimization V

Determining Definiteness Using Determinants

To assess the definiteness of a matrix A of order n, evaluate the determinants of all the leading principal minors.

Example: For a $n \times n$ matrix A:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Multivariable Optimization VI

The determinants of the leading principal minors are:

$$A_1 = |a_{11}|, \quad A_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \cdots \quad A_n = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

The matrix A will be:

- **Positive definite** if all A_1, A_2, \ldots, A_n are positive.
- ▶ **Negative definite** if the sign of A_j alternates starting with negative, i.e., the sign of A_j is $(-1)^{j+1}$ for j = 1, 2, ..., n.

Laplace expansion is a technique to compute matrix determinants using cofactors. For more, see Wikipedia: Laplace Expansion.

Optimization with Equality Constraints

Multivariable Optimization with Equality Constraints

Goal: Minimize a function $f(\vec{x})$ where $\vec{x} = [x_1, x_2, \dots, x_n]$.

Constraints: Equations given by $g_j(\vec{x}) = 0$, dictating the rules our solution must follow.

Note If the number of constraints (m) is greater than the elements in our solution list (n), the problem is **overdefined**. Typically m > n means no solution exists.

Optimization with Equality Constraints ||

Example

Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit radius.

Setup

- Let the origin of the Cartesian coordinate system x_1, x_2, x_3 be at the center of the sphere.
- ▶ Let the sides of the box be $2x_1, 2x_2$, and $2x_3$.
- ▶ The volume of the box is:

$$f(x_1, x_2, x_3) = 8x_1x_2x_3$$

Optimization with Equality Constraints |||

▶ Since the corners of the box lie on the sphere:

$$x_1^2 + x_2^2 + x_3^2 = 1$$

Constraints and Reformulation

- ▶ This problem has three design variables and one equality constraint.
- ▶ Use the equality constraint to eliminate one variable:

$$x_3 = \sqrt{1 - x_1^2 - x_2^2}$$

► The objective becomes:

$$f(x_1, x_2, x_3) = 8x_1x_2\sqrt{1 - x_1^2 - x_2^2}$$

Optimization with Equality Constraints IV

Necessary Conditions for the maximum of f provide a system of equations.

$$\frac{\partial f}{\partial x_1} = 8x_2 \left[\sqrt{1 - x_1^2 - x_2^2} - \frac{x_1^2}{\sqrt{1 - x_1^2 - x_2^2}} \right] = 0$$

$$\frac{\partial f}{\partial x_2} = 8x_1 \left[\sqrt{1 - x_1^2 - x_2^2} - \frac{x_2^2}{\sqrt{1 - x_1^2 - x_2^2}} \right] = 0$$

After simplification, the equations become:

$$1 - 2x_1^2 - x_2^2 = 0,$$

$$1 - x_1^2 - 2x_2^2 = 0.$$

Optimization with Equality Constraints V

Solving this system of equations yields the solution $x_1^* = x_2^* = \frac{1}{1/2}$ and hence

$$x_3^* = \frac{1}{\sqrt{3}}$$
. Therefore, the volume of the box is $f(\vec{x}^*) = \frac{8}{3\sqrt{3}}$. To verify that this is a maximum, we need to check the sufficient conditions to

 $f(x_1, x_2)$. The second-order partial derivatives of f at \vec{x}^* are given by

$$\frac{\partial^2 f}{\partial x_1^2}(\vec{x}^*) = -\frac{32}{\sqrt{3}}, \quad \frac{\partial^2 f}{\partial x_2^2}(\vec{x}^*) = -\frac{32}{\sqrt{3}}, \quad \frac{\partial^2 f}{\partial x_1 \partial x_2}(\vec{x}^*) = -\frac{16}{\sqrt{3}},$$

and since $\frac{\partial^2 f}{\partial x_1^2} < 0$ and $\frac{\partial^2 f}{\partial x_1^2} \frac{\partial^2 f}{\partial x_2^2} - \left(\frac{\partial^2 f}{\partial x_1 \partial x_2}\right)^2 > 0$ then the Hessian matrix of f at \vec{x}^* is negative definite and hence \vec{x}^* is a maximum point of f.