CSE4708: Software Project Management

Unit II: Project Evaluation & Estimation
Topic: Software Process Models: The Waterfall Model,
Iterative Enhancement Model, Rapid Application
Development, Prototyping Models

Name: Manka Sharma

Delivered on: 17th August 2020

Process Models

The Waterfall Model

The WaterFall Model

- It has five phases i.e. Requirements Analysis, Design, Implementation and Unit testing, Integration and System testing, and operation and maintenance
- It resembles waterfall and hence the name
- Requirement Analysis and Specification Phase:
 - To understand the exact requirements of the customer and document them properly.
 - This activity is executed with customer
 - The aim is to document all the functional and non functional requirements
 - The requirements describe "what" aspect of the system.

- The resultant document is known as Software Requirement Specification document written in natural language.

Design Phase:

- The aim is to transform the requirements specifications into a structure suitable for implementation in programming language.
- The work is documented in Software Design Document (SDD).
- Implementation and unit testing phase:
 - The aim is to convert the high level design to a working system.
 - The unit testing involves testing each module separately to localize errors.
 - Small modules are tested first in isolation

- Integration and System Testing:
 - It is a very expensive activity and incurs one-third of the total cost.
 - The aim is to ensure that the whole system works accurately together.
- Operation and Maintenance
 - This is a broad activity and it includes error correction, enhancement of capabilities, deletion of obsolete capabilities and optimization
- Advantages of "The WaterFall Model"
 - Easy to Understand and explain to the users.
 - Works on "Define before Design" and "Design before Code" i.e. Structured approach.
 - Stages and activities are well defined.
 - Helps to plan and schedule the project.
 - Verification at each stage ensures early detection of errors/misunderstanding.
 - Each phase has specific deliverables.

Disadvantages:

- Complete requirements are expected to freeze early in the process
- Working software is not available till late in the process
- Accommodating changes is difficult
- Very difficult to go back to any stage after it finished.
- A little flexibility and adjusting scope is difficult and expensive.
- Costly and required more time, in addition to the detailed plan.

Increment Process Models

- These are effective when requirements are defined precisely and there is no confusion about the functionality of the product
- After every cycle, a useable product is given to the customer
- Every new cycle adds a new functionality to the system
- It is more useful when a quick delivery of a limited functionality system needs to be developed
- These models include:
 - ✓ Iterative Enhancement Model
 - ✓ Rapid Application Development (RAD) Model

Iterative Enhancement Model

Iterative Enhancement Model

Iterative Enhancement Model

- Similar to waterfall model, but is based on several cycles.
- A useable product with added functionality is released at the end of each cycle
- During the requirements analysis phase, customers and developers consider as many requirements as possible and prepare SRS document.
- Requirements are then prioritized
- Developers then build the system in one or more cycles on defined priorities.

Iterative Enhancement Model

The complete product is divided into releases.

Advantages:

- Produces business value early in the development lifecycle i.e. Some useful system may be given to the customer to start the work
- First release may be available within few weeks or months.
- Better use of scarce resources
- Can accommodate some change requests between increments.
- More focused on customer value than the linear approaches.
- Problems can be detected earlier.

Rapid Application Development (RAD)

- It is an increment process model, developed by IBM in 1980s.
- In this model, the user involvement is necessary right from requirements phase till the delivery of the product.

 With active participation of users

 It adjust the phases in such a way so as to get some part developed quickly and into the hands of the user.

Rapid Application Development (RAD)

- Requirements Planning: In this phase, requirements are gathered using group elicitation techniques. This is done for the active involvement of the users.
- User Description: Joint teams of developers and users are constituted to prepare, understand and review the requirements.
- Construction Phase: This phase combines the detailed design, coding and testing phases.
- Cut over Phase: It incorporates acceptance testing, installation and user training.

Rapid Application Development (RAD)

- As a result, the users better understand the system and suggest revision that brings system closer to the requirements.
- Most RAD prefer CASE tools, JAD technique, fourth generation programming language
- Advantages:
 - It is a combination of SDLC with tools and techniques to improve the speed and quality of the system developed
- Disadvantage:
 - At times it is difficult to match the user's expectations

- Creating prototypes of software applications, for example, incomplete versions of the software program being developed
- It used to visualize some component of the software to limit the gap of misunderstanding the customer requirements by the development team.
- When the final prototype is developed, the requirement is considered to be frozen.
- Prototyping based methodology performs analysis, design and implementation phases concurrently

- These phases are performed repeatedly in a cycle until the system is completed.
- In this, the work immediately begins to develop a system prototype, i.e. "quick-and-dirty" program that provides minimal amount of features
- The first prototype created is shown to the users and their reaction and comments are gathered.
- Based on the feedback collected, the system is reanalyzed, redesigned and re-implemented to produce second prototype.

 This process is repeated until the prototype provides enough functionality to be installed and used in the system.

Advantage:

- It quickly provides the system for the users to interact with, even if it is not initially ready for widespread organizational use.
- It reassures the users that the project team is working on the system and the approach helps to more quickly refine real requirements.

Disadvantage:

- The fast paced system releases may prevent conduct careful, methodical analysis.
- The prototype may undergo several changes and the initial design decisions prove to be not the good ones.

Throwaway Prototyping Methodology

This methodology has relatively thorough analysis phase.

Throwaway Prototyping Methodology

- It builds a design prototype. A design prototype is not a working system, it is a product that represents a part of the system that needs additional refinement.
- A design prototype contains enough detail to enable users to understand the issues under consideration.
- Several design prototypes are formed.
- This reduces the risk associated with the system as important issues are discussed before the real system is built.
- Prototypes that are eventually discarded rather than becoming a part of the finally delivered software

Throwaway Prototyping Methodology

Advantages:

- It balances the benefits of well thought out analysis and design phases with the advantages of using prototypes to refine key issues before a system is built.
- It produces more stable and reliable systems.
- Reduced time and costs, but this can be a disadvantage if the developer loses time in developing the prototypes.
- Improved and increased user involvement.

Disadvantage:

 It may take longer to deliver the final system as compared with the prototyping based methodology.

References

- Bob Hughes and Mike Cotterell, "Software Project Management", Tata McGraw Hill, 4th edition, 2006.
- Software Project Management, Tutorialspoint.
 https://www.tutorialspoint.com/software_engineering/software_project_management.htm (accessed on 18th July 2020).