Optimal decentralized stochastic control: The designer and common information approaches

Aditya Mahajan McGill University

Joint work: Ashutosh Nayyar (UIUC/UC Berkeley) and Demosthenis Teneketzis (Univ of Michigan)

CEA-EDF-INRIA Summer School on Stochastic Optimization, Cadarache, June 25 – July 6, 2012

Region 1

Region 2

Challenges

- Mow to coordinate?
- When, what, and how to communicate?

Limited resources

Limited resources Noisy observations

Limited resources Noisy observations Communication

Limited resources Noisy observations Communication

Challenges

- Real-time communication
- Scheduling measurements and communication
- Detect node failures

Challenges

© Control and communication over networks (internet ⇒ delay, wireless ⇒ losses)

Challenges

- ⑥ Control and communication over networks (internet ⇒ delay, wireless ⇒ losses)
- Distributed estimation

Challenges

- ⑥ Control and communication over networks (internet ⇒ delay, wireless ⇒ losses)
- Distributed estimation
- Distributed learning

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Coordination issues

All controllers must coordinate to achieve a system-wide objective

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Coordination issues

All controllers must coordinate to achieve a system-wide objective

Communication issues

Controllers can communicate either directly or indirectly

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Coordination issues

All controllers must coordinate to achieve a system-wide objective

Communication issues

Controllers can communicate either directly or indirectly

Robustness

System model may not be completely known

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective
Team vs Games

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

Objective
 Team vs Games

2. Dynamics
Static vs Dynamic

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective Team vs Games

2. Dynamics
Static vs Dynamic

This talk will focus on Dynamic Teams

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective Team vs Games

2. Dynamics
Static vs Dynamic

This talk will focus on Dynamic Teams

- ⑤ Studied in economics and systems and control since the mid 50s.
- Unlike games, agents have no incentive to cheat.
- (9) Instead of equilibrium, we seek globally optimal strategies.

Key features of decentralized teams

Non-Classical information structure

Fixed partial order in which agents act

Why is decentralized

stochastic control difficult?

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{bmatrix}$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ \hline x = \begin{bmatrix} 1 & 1 & 2 & 2 \end{bmatrix}$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ & \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ & 1 & 1 & 2 & 2 \end{bmatrix}$$

$$u = g(x) \in \{1, 2, 3\}$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \\ \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{bmatrix}$$
$$x = \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ 1 & 1 & 2 & 2 \end{bmatrix}$$

$$u={\color{red}g}(x)\in\{1,2,3\}$$

$$c(\omega, u)$$

$$u = 1$$

$$u = 2$$

$$u = 3$$

$$u = 0$$

$$J(g) = \mathbb{E}^g[c(\omega, u)]$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ & & & & \bullet \\ & & & & & \end{bmatrix}$$

$$c(\omega, u)$$

$$u = 1$$

$$u = 1$$

$$u = 2$$

$$u = 2$$

$$u = 3$$

$$u = 3$$

$$u = g(x) \in \{1, 2, 3\}$$

$$J(g) = \mathbb{E}^{g}[c(\omega, u)]$$

Brute force search $\min_{g} J(g)$, $|g| = |\mathcal{U}|^{|\mathcal{X}|} = 9$ possibilities.

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ & & & \bullet & \bullet \end{bmatrix}$$

$$c(\omega, u)$$

$$u = 1$$

$$u = 1$$

$$u = 2$$

$$u = 3$$

$$u = 3$$

$$u = g(x) \in \{1, 2, 3\}$$

$$c(\omega, u)$$

$$u = 1$$

$$u = 2$$

$$u = 3$$

$$v = 0$$

$$u = g(x) \in \{1, 2, 3\}$$

$$u = g(x) \in \{1, 2, 3\}$$

$$u = g(x) \in \{1, 2, 3\}$$

Brute force search
$$\min_{g} J(g)$$
, $|g| = |\mathcal{U}|^{|\mathcal{X}|} = 9$ possibilities.

Systematic search 3 + 3 = 6 possibilities

$$u_1 = g(1) \qquad \qquad u_2 = g(2)$$

$$\min_{u_1} \mathbb{E}[c(\omega, u_1) \mid x = 1] \qquad \min_{u_2} \mathbb{E}[c(\omega, u_2) \mid x = 2]$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \end{bmatrix}$$

$$c(\omega, u)$$

$$u = 1$$

$$u = 2$$

$$u = 3$$

$$u = 3$$

$$v_1 \quad \omega_2 \quad \omega_3 \quad \omega_4$$

$$u = 2$$

$$v = 4$$

$$u = g(x) \in \{1, 2, 3\}$$

$$J(g) = \mathbb{E}^{g}[c(\omega, u)]$$
 (functional opt.)

 $\min J(g)$, $|g| = |\mathcal{U}|^{|\mathcal{X}|} = 9$ possibilities. Brute force search

Systematic search
$$3 + 3 = 6$$
 possibilities

$$u_1 = g(1)$$

$$u_2 = g(2)$$

$$\min_{u_1} \mathbb{E}[c(\omega, u_1) \mid x = 1]$$

$$\min_{u_2} \mathbb{E}[c(\omega, u_2) \mid x = 2]$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{bmatrix}$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ \hline x = \begin{bmatrix} 1 & 1 & 2 & 2 \\ \hline y = 2 & 1 & 1 & 2 \end{bmatrix}$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ \hline x = \begin{bmatrix} 1 & 1 & 2 & 2 \\ \hline y = 2 & 1 & 1 & 2 \end{bmatrix}$$

$$u = g(x) \in \{1, 2, 3\}$$
 $v = h(y) \in \{1, 2\}$

 $c(\omega, u, v)$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ \hline x = \begin{bmatrix} 1 & 1 & 2 & 2 \\ \hline y = \begin{bmatrix} 2 & 1 & 1 & 2 \end{bmatrix} \end{bmatrix}$$

$$u = g(x) \in \{1, 2, 3\} \quad v = h(y) \in \{1, 2\}$$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ & \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ & 1 & 1 & 2 & 2 \\ y = 2 & 1 & 1 & 2 \end{bmatrix}$$

$$u = g(x) \in \{1, 2, 3\}$$
 $v = h(y) \in \{1, 2\}$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$$

$$\min_{g,h} J(g,h), \quad |g| = |\mathcal{U}|^{|\mathcal{X}|}, |h| = |\mathcal{V}|^{|\mathcal{Y}|},$$
$$9 \times 4 = 36 \text{ possibilities}.$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ x = 1 & 1 & 2 & 2 \\ y = 2 & 1 & 1 & 2 \end{bmatrix}$$

$$c(\omega,u,v)$$

	ω_1		ω_2		ω_3		ω_4	
<i>u</i> = 1	•	•	•	•	•	•	•	•
u = 2	•	•	•	•	•	•	•	•
u = 3	•	•	•	•	•	•	•	•
v =	1	2	1	2	1	2	1	2

$$u = g(x) \in \{1, 2, 3\}$$
 $v = h(y) \in \{1, 2\}$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$$

$$\min_{g,h} J(g), \quad |g| = |\mathcal{U}|^{|\mathcal{X}|}, |h| = |\mathcal{V}|^{|\mathcal{Y}|},$$
$$9 \times 4 = 36 \text{ possibilities}.$$

For one controller/agent to choose an optimal action, it must second guess the other controller's/agent's policy

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ x = \begin{bmatrix} 1 & 1 & 2 & 2 \\ y = 2 & 1 & 1 & 2 \end{bmatrix}$$

$$c(\omega, u, v)$$

$$u = g(x) \in \{1, 2, 3\}$$
 $v = h(y) \in \{1, 2\}$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$$

Orthogonal search

- 1. Suppose h is fixed: $\min_{u_i} \mathbb{E}^{h}[c(\omega, u_i, v) \mid x = i], \quad i = 1, 2, 3.$
- 2. Suppose g is fixed: $\min_{v_j} \mathbb{E}^{g}[c(\omega, u, v_j) \mid y = j], \quad j = 1, 2.$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ \hline \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ x = 1 & 1 & 2 & 2 \\ y = 2 & 1 & 1 & 2 \end{bmatrix}$$

	ω_1		ω_2		ω_3		ω_4	
u = 1	•	•	•	•	•	•	•	•
u = 2	•	•	•	•	•	•	•	•
u = 3	•	•	•	•	•	•	•	•
12 =	1	2.	1	2.	1	2	1	2

$$u = g(x) \in \{1, 2, 3\}$$
 $v = h(y) \in \{1, 2\}$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$$

Orthogonal search yields person-by-person opt strategy

- 1. Suppose h is fixed: $\min_{u_i} \mathbb{E}^{h}[c(\omega, u_i, v) \mid x = i], \quad i = 1, 2, 3.$
- 2. Suppose g is fixed: $\min_{v_j} \mathbb{E}^{g}[c(\omega, u, v_j) \mid y = j], \quad j = 1, 2.$

To find globally optimal strategies, in general, we cannot do better than brute force search

ω_1	ω_2	ω_3	ω_4
ω_5	ω_6	ω_7	ω_8

ω_1	ω_2	ω_3	ω_4	$y_1 = 1$
ω_5	ω_6	ω_7	ω_8	$y_1 = 2$

ω_1	ω_2	ω_3	ω_4	$y_1 = 1$	$u_1 = g_1(y_1) \in \{1, 2\}$
ω_5	ω_6	ω_7	ω_8	$y_1 = 2$	

$$J(g_1, g_2) = \mathbb{E}^{g_1, g_2}[c_1(\omega, u_1) + c_2(\omega, u_2)]$$

$$J(g_1, g_2) = \mathbb{E}^{g_1, g_2}[c_1(\omega, u_1) + c_2(\omega, u_2)]$$

$$J(g_1, g_2) = \mathbb{E}^{g_1, g_2}[c_1(\omega, u_1) + c_2(\omega, u_2)]$$

Critical Assumption: Centralized information

$$d_1 \subseteq d_2$$

Brute force search
$$\min_{g_1,g_2} J(g_1,g_2)$$
.
$$|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, \quad |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. \quad 2^2 \times 2^8 = 1024 \text{ possiblities}.$$

Brute force search
$$\min_{g_1,g_2} J(g_1,g_2)$$
.
$$|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, \quad |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. \quad 2^2 \times 2^8 = 1024 \text{ possiblities}.$$

Dynamic programming decomposition

$$\begin{split} V_2(d_2) &= \min_{u_2} \ \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2] \\ V_1(d_1) &= \min_{u_1} \ \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1] \end{split}$$

Brute force search
$$\min_{g_1,g_2} J(g_1,g_2)$$
. (functional opt.) $|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, \quad |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. \quad 2^2 \times 2^8 = 1024 \text{ possiblities.}$

Dynamic programming decomposition

$$\begin{aligned} V_2(d_2) &= \min_{u_2} \ \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2] \\ V_1(d_1) &= \min_{u_1} \ \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1] \end{aligned}$$

Brute force search
$$\min_{g_1,g_2} J(g_1,g_2)$$
. (functional opt.) $|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, \quad |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. \quad 2^2 \times 2^8 = 1024 \text{ possiblities.}$

Dynamic programming decomposition

$$\begin{split} V_2(d_2) &= \min_{u_2} \ \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2] \\ V_1(d_1) &= \min_{u_1} \ \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1] \end{split}$$

- **6** Step 1 works because $\mathbb{P}(\omega \mid d_2)$ does not depend on g_1 .
- © Step 2 works because $\mathbb{P}(d_2 \mid d_1, u_1)$ does not depend on g_1 .

Brute force search
$$\min_{g_1,g_2} J(g_1,g_2). \tag{functional opt.}$$

$$|g_1|=|\mathcal{U}_1|^{|\mathcal{Y}_1|}, \quad |g_2|=|\mathcal{U}_2|^{|\mathcal{Y}_1|\times|\mathcal{Y}_2|\times|\mathcal{U}_1|}. \quad 2^2\times 2^8=1024 \text{ possiblities}.$$

Dynamic programming decomposition

$$\begin{split} V_2(d_2) &= \min_{u_2} \ \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2] \\ V_1(d_1) &= \min_{u_1} \ \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1] \end{split}$$

- **Step 1 works because** $\mathbb{P}(\omega \mid d_2)$ **does not** depend on g_1 .
- **Step 2 works because** $\mathbb{P}(d_2 \mid d_1, u_1)$ **does not** depend on g_1 .
- 9 Both steps work because $d_1 \subseteq d_2$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \omega_1 & \omega_2 & \omega_3 & \omega_4 & y_1 = 1 & u_1 = g_1(y_1) \in \{1, 2\}\\ \hline \omega_5 & \omega_6 & \omega_7 & \omega_8 & y_1 = 2 & d_1 = \{y_1\}\\ \hline u_1 = 1 & \Rightarrow & y_2 = & 1 & 1 & 2 & 2\\ \hline u_1 = 1 & \Rightarrow & y_2 = & 1 & 1 & 2 & 2\\ \hline u_1 = 2 & \Rightarrow & y_2 = & 1 & 2 & 2 & 1\\ \hline u_1 = 2 & \Rightarrow & y_2 = & 1 & 2 & 2 & 1\\ \hline u_1 = 2 & \Rightarrow & y_2 = & 1 & 2 & 2 & 1\\ \hline \end{array}$$

 $I(g_1, g_2) = \mathbb{E}^{g_1, g_2} [c_1(\omega, u_1) + c_2(\omega, u_2)]$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \omega_1 & \omega_2 & \omega_3 & \omega_4 & y_1 = 1 & u_1 = g_1(y_1) \in \{1,2\}\\ \hline \omega_5 & \omega_6 & \omega_7 & \omega_8 & y_1 = 2 & d_1 = \{y_1\}\\ \hline u_1 = 1 & \Rightarrow & y_2 = & 1 & 1 & 2 & 2\\ \hline u_1 = 1 & \Rightarrow & y_2 = & 1 & 1 & 2 & 2\\ \hline u_1 = 2 & \Rightarrow & y_2 = & 1 & 2 & 2 & 1\\ \hline u_1 = 2 & \Rightarrow & y_2 = & 1 & 2 & 2 & 1\\ \hline u_1 = 2 & \Rightarrow & y_2 = & 1 & 2 & 2 & 1\\ \hline \end{array}$$

$$J(g_1, g_2) = \mathbb{E}^{g_1, g_2}[c_1(\omega, u_1) + c_2(\omega, u_2)]$$

Critical Assumption: Decentralized information

 $d_1 \not\subseteq d_2$

Can we do better than brute force search?

Usual Dynamic programming does not work?

$$\begin{split} &V_2(d_2) \stackrel{?}{=} \min_{u_2} \mathbb{E}^{g_1}[c_2(\omega, u_2) \mid d_2, u_2] \\ &V_1(d_1) \stackrel{?}{=} \min_{u_1} \mathbb{E}^{g_1}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1] \end{split}$$

Usual Dynamic programming does not work?

$$\begin{aligned} &V_2(d_2) \stackrel{?}{=} \min_{u_2} \mathbb{E}^{\mathbf{g_1}}[c_2(\omega, u_2) \mid d_2, u_2] \\ &V_1(d_1) \stackrel{?}{=} \min_{u_1} \mathbb{E}^{\mathbf{g_1}}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1] \end{aligned}$$

A sequential decomposition is possible (Witsenhausen, 1973)

Define
$$\pi_t = \mathbb{P}(\omega \mid g_{1:t-1})$$
.

$$V_t(\pi_t) = \min_{g_t} \mathbb{E}^{g_t} [c_t(\omega, u_t) + V_{t+1}(\pi_{t+1}) \mid \pi_t]$$

But, the worst case complexity remains the same.

Finding optimal strategies

Can we obtain a systematic approach to find optimal strategies that does better than brute force search?

Finding optimal strategies

Can we obtain a systematic approach to find optimal strategies that does better than brute force search?

- Designer approach
- © Common information approach

Designer approach

$$Y_t = h_t(X_t, U_t, W_t)$$

$$X_{t+1} = f_t(X_t, U_t, W_t)$$

$$Y_t = h_t(X_t, U_t, W_t)$$

$$X_{t+1} = f_t(X_t, U_t, W_t)$$

$$X_{t+1} = f_t(X_t, U_t, W_t)$$

$$Y_{t} \longrightarrow V_{t} \longrightarrow U_{t}$$

$$(g_{t}, l_{t})$$

$$U_t = g_t(Y_t, M_{t-1})$$

$$M_t = l_t(Y_t, M_{t-1})$$

$$Y_t \longrightarrow \begin{array}{c} Y_{1:t} \\ U_{1:t-1} \\ g_t \end{array} \longrightarrow U_t$$

$$U_t = g_t(Y_{1:t}, U_{1:t-1})$$

Another look at dynamic consistency

Another look at dynamic consistency

Equivalent to a centralized partially observed system

Define: $\pi_t = \mathbb{P}(\text{state} \mid \text{history of data})$ = $\mathbb{P}(X_t, Y_t \mid g_{1:t-1})$

$$V_t(\pi_t) = \min_{g_t} \mathbb{E}[c(X_t, U_t) + V_{t+1}(\underline{L}^g \pi_t)]$$

Same idea works for arbitrary systems with finite memory controllers

$$\min_{g_{1:T}^{1,2}, l_{1:T}^{1,2}} \mathbb{E}\left[\sum_{t=1}^{T} c(X_t, U_t^1, U_t^2)\right]$$

Same idea works for arbitrary systems with finite memory controllers

$$\min_{g_{1:T}^{1,2}, l_{1:T}^{1,2}} \mathbb{E}\left[\sum_{t=1}^{I} c(X_t, U_t^1, U_t^2)\right]$$

$$\pi_t = \mathbb{P}(X_t, Y_t^{1,2}, M_{t-1}^{1,2} \mid g_{1:t-1}^{1,2}, l_{1:t-1}^{1,2})$$

Same idea works for arbitrary systems with finite memory controllers

$$\min_{g_{1:T}^{1,2}, l_{1:T}^{1,2}} \mathbb{E}\left[\sum_{t=1}^{T} c(X_t, U_t^1, U_t^2)\right]$$

$$\begin{split} \pi_t &= \mathbb{P}(X_t, Y_t^{1,2}, M_{t-1}^{1,2} \mid g_{1:t-1}^{1,2}, l_{1:t-1}^{1,2}) \\ V_t(\pi_t) &= \min_{g_t^{1,2}, l_t^{1,2}} \mathbb{E}[c(X_t, U_t^1, U_t^2) + V_{t+1}(L^{g_t^{1,2}}, l_t^{1,2} \pi_t)] \end{split}$$

Finite Memory

Encoder

$$x_t = e_t(s_t, s_{t-1})$$

Decoder

$$\hat{s}_t = d_t(y_t, y_{t-1})$$

Finite Memory

Encoder

 $x_t = e_t(s_t, s_{t-1})$ $\hat{s}_t = d_t(y_t, y_{t-1})$

Decoder

$$\hat{\mathbf{s}}_t = d_t(\mathbf{y}_t, \mathbf{y}_{t-1})$$

Communication Strategy

$$E = (e_1, e_2, ..., e_T), D = (d_1, d_2, ..., d_T)$$

Finite Memory

Encoder

 $x_t = e_t(s_t, s_{t-1})$ $\hat{s}_t = d_t(y_t, y_{t-1})$

Decoder

- Communication Strategy $E = (e_1, e_2, ..., e_T), D = (d_1, d_2, ..., d_T)$
- Performance

$$\mathcal{J}(E, D) = \lim_{T \to \infty} \mathbb{E} \left\{ \sum_{t=2}^{T} \beta^{t-1} \, \mathbb{P}(\hat{s}_t \neq s_{t-1}) \right\}$$

Gaarder and Slepian's (1982) approach

Brute force search of an optimal policy

- ightharpoonup Pick a time invariant strategy E = (e, e, ..., e), D = (d, d, ..., d).
- Find the steady-state distribution of the MC $\{S_{t-1}, S_t, Y_{t-1}\}$
- Find the steady-state probability of error

$$\lim_{t\to\infty}\mathbb{E}\left\{\,\mathbb{P}(\hat{s}_t\neq\hat{s}_{t-1})\right\}$$

Repeat for all time invariant strategies.

Gaarder and Slepian's (1982) approach

Brute force search of an optimal policy

- ightharpoonup Pick a time invariant strategy E = (e, e, ..., e), D = (d, d, ..., d).
- Find the steady-state distribution of the MC $\{S_{t-1}, S_t, Y_{t-1}\}$
- > Find the steady-state probability of error

$$\lim_{t\to\infty} \mathbb{E}\left\{ \mathbb{P}(\hat{s}_t \neq \hat{s}_{t-1}) \right\}$$

Repeat for all time invariant strategies.

Difficulty with the approach

- Steady-state distribution of a Markov chain is discontinuous in its transition matrix
- For some (E,D), the Markov chain may not have a unique steady-state distribution

Define $\pi_t = \mathbb{P}(s_{t-1}, s_t, y_{t-1} | e_{1:t-1}, d_{1:t-1}).$

Define
$$\pi_t = \mathbb{P}(s_{t-1}, s_t, y_{t-1} | e_{1:t-1}, d_{1:t-1}).$$

Finite horizon: An optimal communication strategy can be determined by the solution of the following nested optimality equations

$$\begin{split} V_T(\pi_T) &= \min_{e_T, d_T} \mathbb{E}\left[\left. \mathbb{P}(\hat{s}_T \neq s_{T-1}) \middle| \pi_T, e_T, d_T \right] \right. \\ V_t(\pi_t) &= \min_{e_t, d_t} \mathbb{E}\left[\left. \mathbb{P}(\hat{s}_t \neq s_{t-1}) + V_{t+1}(\pi_{t+1}) \middle| \pi_t, e_t, d_t \right. \right] \end{split}$$

Define $\pi_t = \mathbb{P}(s_{t-1}, s_t, y_{t-1} | e_{1:t-1}, d_{1:t-1}).$

Finite horizon: An optimal communication strategy can be determined by the solution of the following nested optimality equations

$$\begin{split} V_T(\pi_T) &= \min_{e_T, d_T} \mathbb{E}\left[\left. \mathbb{P}(\hat{s}_T \neq s_{T-1}) \middle| \pi_T, e_T, d_T \right] \right. \\ V_t(\pi_t) &= \min_{e_t, d_t} \mathbb{E}\left[\left. \mathbb{P}(\hat{s}_t \neq s_{t-1}) + V_{t+1}(\pi_{t+1}) \middle| \pi_t, e_t, d_t \right. \right] \end{split}$$

Infinite horizon: ... fixed point equation

$$V(\pi) = \min_{e,d} \mathbb{E} \left[\mathbb{P}(\hat{s}_t \neq s_{t-1}) + \beta V(\pi_+) \middle| \pi, e, d \right]$$

Define $\pi_t = \mathbb{P}(s_{t-1}, s_t, y_{t-1} | e_{1:t-1}, d_{1:t-1}).$

Finite horizon: An optimal communication strategy can be determined by the solution of the following nested optimality equations

$$V_T(\pi_T) = \min_{e_T, d_T} \mathbb{E}\left[\mathbb{P}(\hat{s}_T \neq s_{T-1}) \middle| \pi_T, e_T, d_T \right]$$

$$V_{t}(\pi_{t}) = \min_{e_{t}, d_{t}} \mathbb{E} \left[\mathbb{P}(\hat{s}_{t} \neq s_{t-1}) + V_{t+1}(\pi_{t+1}) \middle| \pi_{t}, e_{t}, d_{t} \right]$$

Infinite horizon: . . . fixed point equation

$$V(\pi) = \min_{\substack{e \ d}} \mathbb{E} \left[\mathbb{P}(\hat{s}_t \neq s_{t-1}) + \beta V(\pi_+) \middle| \pi, e, d \right]$$

The designer strategy $\gamma_t:\pi_t\to(e_t,d_t)$ is time-invariant. The choice of (e_t,d_t) is **not time invariant**.

© Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

© Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	s_2	s_3	S_4	s ₅	<i>s</i> ₆	S ₇
Encoder							
Decoder							
Estimate	_	s_1	<i>S</i> ₂	s_3	S ₄	S ₅	s ₆

Solution Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	<i>s</i> ₂	s_3	S_4	s ₅	s ₆	S ₇
Encoder	s_1						
Decoder	0						
Estimate	_	s_1	<i>S</i> ₂	s_3	S ₄	S ₅	s ₆

© Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	<i>s</i> ₂	s_3	s_4	s ₅	s ₆	s ₇
Encoder	s_1	$s_1 \oplus s_2$					
Decoder	0	$y_1 \oplus y_2$					
Estimate	_	s_1	<i>S</i> ₂	s_3	S_4	<i>S</i> ₅	s ₆

© Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	<i>s</i> ₂	s_3	S_4	s ₅	s ₆	S ₇
Encoder	s_1	$s_1 \oplus s_2$	<i>S</i> ₂				
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$				
Estimate	_	s_1	<i>S</i> ₂	s_3	S ₄	S ₅	s ₆

Solution Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	<i>s</i> ₂	s_3	S_4	s ₅	s ₆	S ₇
Encoder	s_1	$s_1 \oplus s_2$	<i>S</i> ₂	S_4			
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0			
Estimate	_	s_1	<i>S</i> ₂	s_3	S ₄	S ₅	s ₆

© Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	s_2	s_3	s_4	s ₅	s ₆	S ₇
Encoder	s_1	$s_1 \oplus s_2$	<i>S</i> ₂	S_4	$s_4 \oplus s_5$		
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0	$y_4 \oplus y_5$		
Estimate	_	s_1	<i>S</i> ₂	<i>s</i> ₃	s_4	S ₅	s ₆

Solution Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	<i>s</i> ₂	s_3	S_4	<i>S</i> ₅	s ₆	S ₇
Encoder	s_1	$s_1 \oplus s_2$	<i>S</i> ₂	S_4	$s_4 \oplus s_5$	<i>S</i> ₅	
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0	$y_4 \oplus y_5$	$y_5 \oplus y_6$	
Estimate	_	s_1	<i>S</i> ₂	s_3	S ₄	S ₅	s ₆

Solution Section **Section** Section **Section**

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	s_1	<i>s</i> ₂	s_3	S_4	s ₅	s ₆	S ₇
Encoder	s_1	$s_1 \oplus s_2$	<i>S</i> ₂	s_4	$s_4 \oplus s_5$	S ₅	S ₇
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0	$y_4 \oplus y_5$	$y_5 \oplus y_6$	0
Estimate	_	s_1	<i>S</i> ₂	s_3	S ₄	S ₅	s ₆

Coordinator approach

Common Knowledge (Aumann, 1976)

Common Knowledge (Aumann, 1976)

Common Knowledge (Aumann, 1976)

Common Knowledge (Aumann, 1976)

$$u = g(x), \quad v = h(y)$$
$$J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

$$u = g(x), \quad v = h(y)$$
$$J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$x \equiv (k, p), \quad y \equiv (k, q),$$

 $u = \tilde{g}(k, p), \quad v = \tilde{h}(k, q).$

$$u = g(x), \quad v = h(y)$$
$$J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let k denote the common knowledge between x and y. Write:

$$\tilde{g}:(k,p)\mapsto u,\quad \tilde{g}:k\mapsto\underbrace{(p\mapsto u)}_{\gamma}$$

$$x \equiv (k, p), \quad y \equiv (k, q),$$

 $u = \tilde{g}(k, p). \quad v = \tilde{h}(k, q).$

$$u = g(x), \quad v = h(y)$$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$\tilde{g}:(k,p)\mapsto u,\quad \tilde{g}:k\mapsto \underbrace{(p\mapsto u)}_{\gamma}$$

Let
$$\gamma(\cdot) = \tilde{g}(k, \cdot)$$
 and $\eta(\cdot) = \tilde{h}(k, \cdot)$

$$x \equiv (k, p), \quad y \equiv (k, q),$$

 $u = \tilde{g}(k, p). \quad v = \tilde{h}(k, q).$

$$u = g(x), \quad v = h(y)$$
$$J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$\tilde{g}:(k,p)\mapsto u,\quad \tilde{g}:k\mapsto \underbrace{(p\mapsto u)}_{v}$$

$$x \equiv (k, p), \quad y \equiv (k, q),$$

 $u = \tilde{g}(k, p). \quad v = \tilde{h}(k, q).$

Let
$$\gamma(\cdot) = \tilde{g}(k, \cdot)$$
 and $\eta(\cdot) = \tilde{h}(k, \cdot)$

A common knowledge based solution

$$\min_{\nu,\eta} \mathbb{E}^{\gamma,\eta}[c(\omega,u,v)|k]$$

$$u = g(x), \quad v = h(y)$$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$\tilde{g}:(k,p)\mapsto u,\quad \tilde{g}:k\mapsto \underbrace{(p\mapsto u)}_{v}$$

$$x \equiv (k, p), \quad y \equiv (k, q),$$

 $u = \tilde{g}(k, p), \quad v = \tilde{h}(k, q).$

Let
$$\gamma(\cdot) = \tilde{g}(k, \cdot)$$
 and $\eta(\cdot) = \tilde{h}(k, \cdot)$

A common knowledge based solution

(functional opt. over smaller space)

$$\min_{\gamma,\eta} \mathbb{E}^{\gamma,\eta}[c(\omega,u,v)|k]$$

$$u = g(x), \quad v = h(y)$$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$\tilde{g}:(k,p)\mapsto u,\quad \tilde{g}:k\mapsto\underbrace{\left(p\mapsto u\right)}_{\gamma}$$

$$x \equiv (k, p), \quad y \equiv (k, q),$$

 $u = \tilde{g}(k, p). \quad v = \tilde{h}(k, q).$

Let
$$\gamma(\cdot) = \tilde{g}(k, \cdot)$$
 and $\eta(\cdot) = \tilde{h}(k, \cdot)$

A common knowledge based solution

(functional opt. over smaller space)

$$\min_{\gamma,\eta} \mathbb{E}^{\gamma,\eta}[c(\omega,u,v)|k]$$

Brute force: $2^4 \times 2^4$ possibilities. CI-based soln: $2 \cdot (2^2 \times 2^2)$ possibilities.

Main idea: Extend CI-based approach to decentralized multi-stage systems.

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

© Common information:

$$k_t = \bigcap_{s \ge t} d_s$$

Private information:

$$p_t = d_t \setminus k_t$$

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

© Common information:

$$k_t = \bigcap_{s \ge t} d_s$$

Private information:

$$p_t = d_t \setminus k_t$$

Objective: Choose $u_t = g_t(k_t, p_t)$ to minimize $J(g_{1:T}) = \mathbb{E}^{g_{1:T}}[c(\omega, u_{1:T})]$

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

© Common information:

$$k_t = \bigcap_{s \ge t} d_s$$

© Private information: $n = d \setminus k$

$$p_t = d_t \setminus k_t$$

Objective: Choose $u_t = g_t(k_t, p_t)$ to minimize $J(g_{1:T}) = \mathbb{E}^{g_{1:T}}[c(\omega, u_{1:T})]$

© Prescription: $\gamma_t : p_t \mapsto u_t$, chosen according to

$$\gamma_t = \psi_t(k_t, \gamma_{1:t-1}), \qquad u_t = \gamma_t(p_t)$$

Solution approach

- 1. Construct a coordinated system (that has classical info-struct.)
- 2. Show that coordinated system \equiv original system.
- 3. Find a solution to coordinated system using centralized stoc. control.
- 4. Translate the result back to original system

An example: delayed sharing

information structure

Delayed sharing information structure

(Nayyar, Mahajan, Teneketzis, 2011)

Delayed sharing information structure

(Nayyar, Mahajan, Teneketzis, 2011)

Literature Overview

How to compress data into a sufficient statistic?

- (Witsenhausen, 1971):
 - ▶ Proposed delayed-sharing information structure.
 - Asserted a structure of optimal control law (without proof).

Literature Overview

How to compress data into a sufficient statistic?

- (Witsenhausen, 1971):
 - ▶ Proposed delayed-sharing information structure.
 - > Asserted a structure of optimal control law (without proof).
- (Varaiya and Walrand, 1978):
 - \triangleright Proved Witsenhausen's assertion for n=1.
 - \triangleright Counter-example to **disproved** the assertion for delay n > 2.

Literature Overview

How to compress data into a sufficient statistic?

- (Witsenhausen, 1971):
 - > Proposed delayed-sharing information structure.
 - > Asserted a structure of optimal control law (without proof).
- (Varaiya and Walrand, 1978):
 - ightharpoonup Proved Witsenhausen's assertion for n=1.
 - ightharpoonup Counter-example to **disproved** the assertion for delay n > 2.

A good model for many applications The result of one-step delayed sharing used in various applications in queuing theory, communication networks, stochastic games, and economics. (Kuri Kumar, 1995; Altman *et al*, 2009; Grizzle *et al* 1982; Papavassilopoulos, 1982; Chang and Cruz, 1983; Li and Whu, 1991).

The coordinated system: state for I/O mapping

$$(U_t^1, U_t^2) \qquad X_t \qquad (Y_t^1, Y_t^2)$$

$$Y_t^1 \qquad (K_t, P_t^1) \qquad U_t^1 \qquad Y_t^2 \qquad (K_t, P_t^2) \qquad U_t^2$$

$$g_t^1 \qquad \qquad g_t^2$$
 Common information
$$K_t = (Y_{1:t-n}^{1,2}, U_{1:t-n}^{1,2}).$$
 Private information
$$P_t^i = (Y_{t-n+1:t}^i, U_{t-n+1:t-1}^i)$$

The coordinated system: state for I/O mapping

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping} \mid \text{data at controller})$

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping } | \text{data at controller})$

$$\pi_t = \mathbb{P}(X_t, P_t^1, P_t^2 \mid K_t, \gamma_t^1, \gamma_t^2)$$

Structural Result There is no loss of optimality in restricting prescriptions of the form

$$\gamma_t = \psi_t(\pi_t)$$
 and hence, $U_t^i = g_t^i(\pi_t, P_t^i)$

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping } | \text{data at controller})$

$$\pi_t = \mathbb{P}(X_t, P_t^1, P_t^2 \mid K_t, \gamma_t^1, \gamma_t^2)$$

Structural Result There is no loss of optimality in restricting prescriptions of the form

$$\gamma_t = \psi_t(\pi_t)$$
 and hence, $U_t^i = g_t^i(\pi_t, P_t^i)$

Dynamic Programming decomposition An optimal coordination strategy is given by the solution to the following dynamic program

$$V_t(\pi_t) = \min_{\substack{\gamma_t^1, \gamma_t^2 \\ \gamma_t^1, \gamma_t^2}} \mathbb{E}[c(X_t, \gamma_t^1(P_t^1), \gamma_t^2(P_t^2)) + V_{t+1}(\pi_{t+1} \mid \pi_t, \gamma_t^1, \gamma_t^2)]$$

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping } | \text{data at controller})$

$$\pi_t = \mathbb{P}(X_t, P_t^1, P_t^2 \mid K_t, \gamma_t^1, \gamma_t^2)$$

Structural Result There is no loss of optimality in restricting prescriptions of the form

$$\gamma_t = \psi_t(\pi_t)$$
 and hence, $U_t^i = g_t^i(\pi_t, P_t^i)$

Dynamic Programming decomposition An optimal coordination strategy is given by the solution to the following dynamic program

$$V_t(\pi_t) = \min_{\gamma_t^1, \gamma_t^2} \ \mathbb{E}[c(X_t, \gamma_t^1(P_t^1), \gamma_t^2(P_t^2)) + V_{t+1}(\pi_{t+1} \mid \pi_t, \gamma_t^1, \gamma_t^2)]$$

Setting $g_t^i(\pi_t, P_t^i) = \psi_t^i(\pi_t)(P_t^i)$ gives optimal control strategy.

An easy solution to long

standing open problem

Connections

(Nayyar, Mahajan, Teneketzis, 2011)

Many existing results on decentralized control are special cases

- Delayed state sharing (Aicardi et al, 1987)
- Periodic sharing information structures (Ooi et al, 1997)
- Control sharing (Bismut, 1972; Sandell and Athans, 1974; Mahajan 2011)
- Finite state memory controllers (Sandell, 1974, Mahajan, 2008)

Connections

(Nayyar, Mahajan, Teneketzis, 2011)

Many existing results on decentralized control are special cases

- Delayed state sharing (Aicardi et al, 1987)
- ▶ Periodic sharing information structures (Ooi *et al*, 1997)
- Control sharing (Bismut, 1972; Sandell and Athans, 1974; Mahajan 2011)
- Finite state memory controllers (Sandell, 1974, Mahajan, 2008)

Generalization to other models

- ► Infinite horizon (discounted and average cost) models using standard results for POMDPs
- **Computation algorithms** based on algorithms for POMDPs
- Extend results to systems with unknown models based on Q-learning and adaptive control algorithms

Summary of the main idea

- Find common information at the controllers
- © Look from the point of view of a **coordinator** that observes common information and chooses prescriptions to the controllers
- Find information state for the coordinated system and use it to set up a dynamic program
- When common information is nil, the approach reduces to designer's approach

Future Directions

Identify other tractable information structures

The common information approach (almost) all known results for Markov chain setup. Are there other structures that are tractable?

Computational algorithms

Develop computation algorithms that are tuned to the type of DP equations that arise in decentralized control.

Connections with stochastic optimization

Can techniques from stochastic optimization used to solve decentralized stochastic control problems?

Connections with sequential games

Does the common information approach help in identifying sequential equilibrium in sequential games?

References

- 1. H. Witsenhausen, A Standard Form for Sequential Stochastic Control, *Mathematical System Theory*, vol 7, no 1, pp. 1-11, 1973.
- 2. A. Mahajan, Sequential decomposition of sequential teams: applications to real-time communication and networked control systems,*PhD thesis*, Univ of Michigan, Ann Arbor, MI. 2008.
- 3. A. Nayyar, Sequential decision making in decentralized systems, *PhD thesis*, Univ of Michigan, Ann Arbor, MI. 2011.
- 4. A. Nayyar, Sequential decision making in decentralized systems, *PhD thesis*, Univ of Michigan, 2011.
- 5. H. Witsenhausen, Separation of estimation and control for discrete time systems, *Proceedings of the IEEE*, vol 59, no 11, pp. 1557-1566, Nov 1971.
- 6. A. Nayyar, A. Mahajan, D. Teneketzis, Optimal control strategies for delayed sharing information structures, *IEEE Trans. on Automatic Control*, vol. 56, no. 7, pp. 1606-1620, July 2011.

References

- 7. A. Nayyar, A. Mahajan, D. Teneketzis, Dynamic programming for decentralized stochastic control with partial information sharing: a common information approach, submitted to *IEEE Trans. on Automatic Control*, Dec 2011.
- 8. A. Mahajan, Optimal decentralized control of coupled subsystems with control sharing, submitted to *IEEE Trans. on Automatic Control*, Dec 2011.