Lecture 16

Exercise class for exam 1

Topics

- 1. Efficiency analysis
 - definition of O, Ω , Θ
 - Properties of asymptotic notations
 - efficiency analysis methods (substitution, recursion tree, master theorem)
 - Divide and conquer algorithms (binary search, powering of a number, strassen's algorithm, max-subarray)
- 2. Sorting algorithms
 - insertion, mergesort, quicksort, heapsort, counting sort, radix sort
 - their efficiency (best worst average and when does it happen)
 - · how each algorithm works
- 3. Hashing
 - idea of hashing
 - · open hashing
 - idea
 - hashing function (division and multiplication)
 - closed hashing
 - idea
 - hashing function(linear, quadratic, double hashing)

CS 303, Paul Cao,

Lecture 16

1. prove that if
$$f(n) \in O(S(n))$$
, then $g(n) \in \Omega(f(n))$.

if $f(n) \in O(g(n))$, then $f(n) \in S(n)$. S.t.

$$f(n) \in C(g(n)) \text{ for all } n > n_0$$

thus. $g(n) \geq \frac{1}{n} f(n)$. Thus proved

2. Use recursion thee method to find the efficiency of T(n) if $T(n) = 3T(n/2) + \frac{O(n)}{Cn}$

$$T(\eta_{1}) T(\eta_{2}) T(\eta_{2})$$

$$C n = -C n$$

$$C \eta_{1} C \eta_{2} C \eta_{2} - \frac{3}{2} C n$$

$$C \eta_{1} C \eta_{2} C \eta_{2} - \frac{3}{2} C n$$

$$C \eta_{2} C \eta_{3} C \eta_{4} C \eta_{4}$$

$$C \eta_{4} C \eta_{4} C \eta_{4} C \eta_{5}$$

$$C \eta_{5} C \eta_{2} C \eta_{5} C \eta_{5} C \eta_{5}$$

$$C \eta_{6} C \eta_{7} C \eta_$$

3. prone T(n) = 4T(n/2) + θ(n) is O(n²)

suppose T(k) ≤ C1k²-C2k for all ken, C1>0, C2>0

Then

$$T(n) = 4 T(n/2) + C'n$$

$$= 4 \left(C_1(\frac{h}{2})^2 - C_2(\frac{h}{2}) + C'n\right)$$

$$= C_1n^2 - C_2n - (C_2 - C')n$$
if we pick $C_2 > C$, then the above is
$$\leq C_1n^2 - C_2n$$
thus proved.

CS 303, Paul Cao,

Lecture 16

@ rot swys/heapity:

5. use the follow hash function to perform hashing into the hash table.

a. open hashing
$$w/h(K) = |L| m_3 d 7$$

$$|K_1 = 10, K_2 = 21, K_3 = 8, K_4 = 22$$

$$|V_1 = 10, K_2 = 21, K_3 = 8$$

$$|V_2 = 10, K_3 = 8$$

$$|V_3 = 10, K_4 = 22$$

$$|V_4 = 10, K_4 = 22$$

6. Open hashing
$$W = h(K) = (K + A \mod 2^m) \gg (\omega - r)$$

where $r = 3$, $A = |0||0||$, $\omega = 7$, $n = 2^3 = 8$
 $|K_1A = ||0||0||$
 $|K_2A = ||0||0||$
 $|K_3A = ||0||0000$

C. closed hashing
$$w/m = 13$$
, $h(k,i)$
 $k_1 = 5$ $k_3 = 6$
 $k_4 = 70$

