Professor: Alexander Schmidt Tutor: Arne Kuhrs

Aufgabe 1

(a) Es genügt zu zeigen, dass

- (i) alle Nullstellen von $X^4-2=(X-\sqrt[4]{2})(X+\sqrt[4]{2})(X-i\sqrt[4]{2})(X+i\sqrt[4]{2})$ in $L=\mathbb{Q}(\sqrt[4]{2},i)$ liegen. Das ist allerdings aus der Produktdarstellung von X^4-2 sofort offensichtlich.
- (ii) $L = \mathbb{Q}(\sqrt[4]{2}, i)$ wird von den Nullstellen von $X^4 + 2$ erzeugt. Wegen $i = \frac{i\sqrt[4]{2}}{\sqrt[4]{2}} \in \mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2})$ ist $\mathbb{Q}(\sqrt[4]{2}, i) \subset \mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2})$ und wird damit von den Nullstellen von $X^4 2$ erzeugt.
- (b) Sei σ ein \mathbb{Q} -Automorphismus von L. Dann gilt $\sigma|_{\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$. Nach Lemma 3.40 ist die Anzahl der verschiedenen \mathbb{Q} -Homomorphismen $\sigma \colon \mathbb{Q}(\sqrt[4]{2}) \to L$ gleich

$$|\{\alpha \in L | f^{\sigma}(\alpha) = f(\alpha) = 0\}| = 4,$$

wobei $f=X^4-2\in\mathbb{Q}[X]$ das Minimalpolynom zu $\sqrt[4]{2}$ über \mathbb{Q} bezeichne (siehe letzter Zettel) und $f^{\sigma}=f$ wegen $\sigma|_{\mathbb{Q}}=\mathrm{id}_{\mathbb{Q}}$. Die einzelnen Fortsetzungen sind nach Lemma 3.40 (ii) eindeutig bestimmt durch ihren Wert auf $\alpha=\sqrt[4]{2}$. Da $g=X^2+1$ das Minimalpolynom zu i über $\mathbb{Q}(\sqrt[4]{2})$ darstellt, ist die Anzahl der verschiedenen Fortsetzungen auf ganz $L=\mathbb{Q}(\sqrt[4]{2})(i)$ nach Lemma 3.40 gleich

$$|\{\alpha \in L | g^{\sigma}(\alpha) = 0\}| = |\{\alpha \in L | \sigma(1)X^2 + \sigma(1) = 0\}| = |\{i, -i\}| = 2.$$

Die einzelnen Fortsetzungen sind nach Lemma 3.40 (ii) eindeutig bestimmt durch ihren Wert auf $\alpha=i$. Daher können wir jeden der 4 \mathbb{Q} -Homomorphismen auf zwei verschiedene Weisen zu einem L-Automorphismus fortsetzen, sodass wir insgesamt 8 \mathbb{Q} -Automorphismen erhalten, die eindeutig durch ihre Werte auf $\sqrt[4]{2}$ und i gegeben sind.

- 1. $\sqrt[4]{2} \mapsto \sqrt[4]{2}, i \mapsto i$
- 2. $\sqrt[4]{2} \mapsto \sqrt[4]{2}, i \mapsto -i$
- 3. $\sqrt[4]{2} \mapsto -\sqrt[4]{2}, i \mapsto i$
- $4. \sqrt[4]{2} \mapsto -\sqrt[4]{2}, i \mapsto -i$
- 5. $\sqrt[4]{2} \mapsto i\sqrt[4]{2}, i \mapsto i$
- 6. $\sqrt[4]{2} \mapsto i\sqrt[4]{2}, i \mapsto -i$
- 7. $\sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto i$
- 8. $\sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto -i$
- (c) Sei $f = X^2 2\sqrt{2}X + 3 \in \mathbb{Q}(\sqrt{2})$. Dann gilt $f(\sqrt{2}+i) = 1 + 2\sqrt{2}i 4 2\sqrt{2}i + 3 = 0$. Wäre f reduzibel, so gäbe es eine Zerlegung in zwei Linearfaktoren über $\mathbb{Q}(\sqrt{2})$. Dann müsste mindestens einer der beiden Linearfaktoren $X (\sqrt{2}+i)$ sein. Dann wäre aber $\sqrt{2}+i \in \mathbb{Q}(\sqrt{2})$. Das ist aber nicht der Fall, also muss f irreduzibel und damit das Minimalpolynom von $\sqrt{2}+i$ sein. Daher ist aber $[\mathbb{Q}(\sqrt{2},\sqrt{2}+i):\mathbb{Q}(\sqrt{2})]=2$ und nach dem Gradsatz $\mathbb{Q}(\sqrt{2},\sqrt{2}+i):\mathbb{Q}]=4$. Wegen $\sqrt{2}=\frac{1}{6}(5(\sqrt{2}+i)-(\sqrt{2}+i)^3)$ ist aber $\sqrt{2}\in\mathbb{Q}(\sqrt{2}+i)$ bereits enthalten. Also ist $\mathbb{Q}(\sqrt{2}+i,\sqrt{2})=\mathbb{Q}(\sqrt{2}+i)$. Offensichtlich ist $\sqrt{2}+i\in\mathbb{Q}(\sqrt{2},i)$ und damit $\mathbb{Q}(\sqrt{2}+i)\subset\mathbb{Q}(\sqrt{2},i)$. Wegen $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2}+i)=\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2}+i,\sqrt{2})=4=\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2},i)$ folgern wir mit LA1, dass dann $\mathbb{Q}(\sqrt{2}+i)=\mathbb{Q}(\sqrt{2},i)$ gelten muss.

Algebra 1, Blatt 5 Josua Kugler

Aufgabe 2

1. Es gilt $X^4+4=(X-\sqrt{2}e^{i\frac{\pi}{4}})(X-\sqrt{2}e^{i\frac{3\pi}{4}})(X-\sqrt{2}e^{i\frac{5\pi}{4}})(X-\sqrt{7}e^{i\pi})$. Der Zerfällungskörper von X^4+4 ist daher durch $\mathbb{Q}(\sqrt{2}e^{i\frac{\pi}{4}},\sqrt{2}e^{i\frac{3\pi}{4}},\sqrt{2}e^{i\frac{5\pi}{4}},\sqrt{2}e^{i\frac{7\pi}{4}})$ gegeben. Wegen $\sqrt{2}e^{i\frac{3\pi}{4}}=\frac{1}{2}\left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^3,\,\sqrt{2}e^{i\frac{5\pi}{4}}=\frac{1}{4}\left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^5$ und $\sqrt{2}e^{i\frac{7\pi}{4}}=\frac{1}{8}\left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^7$ wird dieser Körper bereits von $\sqrt{2}e^{i\frac{\pi}{4}}$ erzeugt. Da keine der Nullstellen von X^4+4 in \mathbb{Q} liegt, ist das Polynom irreduzibel und damit das Minimalpolynom zu $\sqrt{2}e^{i\frac{\pi}{4}}$. Also hat die Erweiterung $L\colon\mathbb{Q}$ Grad 4.

- 2. Es gilt $X^8-1=(X-e^{i\frac{\pi}{4}})(X-e^{i\frac{\pi}{2}})(X-e^{i\frac{3\pi}{4}})(X-e^{i\frac{3\pi}{4}})(X-e^{i\frac{5\pi}{4}})(X-e^{i\frac{3\pi}{4}})(X-e^{i\frac{2\pi}{4}})(X-e^{i\frac{2\pi}{4}})(X-e^{i\frac{2\pi}{4}})(X-e^{i\frac{2\pi}{4}})(X-e^{i\frac{2\pi}{4}})(X-e^{i\frac{2\pi}{4}})$. Analog zum Polynom X^4+4 lässt sich hier jede Nullstelle als Potenz von $e^{i\frac{\pi}{4}}$ schreiben. Daher ist der Zerfällungskörper von X^8-1 einfach $\mathbb{Q}(e^{i\frac{\pi}{4}})$. Wegen $\left(e^{i\frac{\pi}{4}}\right)^4+1=0$ ist X^4+1 das Minimalpolynom zu $e^{i\frac{\pi}{4}}$ (Irreduzibilität folgt aus der Bonusaufgabe auf dem letzten Zettel). Insbesondere hat also $\mathbb{Q}(e^{i\frac{\pi}{4}})/\mathbb{Q}$ Grad 4.
- 3. Es gilt

$$\begin{split} X^4 + 2X^2 - 2 &= (X^2 + 1 + \sqrt{3})(X^2 + 1 - \sqrt{3}) \\ &= (X + \sqrt{1 + \sqrt{3}})(X - \sqrt{1 + \sqrt{3}})(X + \sqrt{1 - \sqrt{3}})(X + \sqrt{1 - \sqrt{3}}) \end{split}$$

Der Zerfällungskörper von X^4+2X^2-2 ist daher $\mathbb{Q}(\sqrt{1+\sqrt{3}},\sqrt{1-\sqrt{3}})$. Die Erweiterung $\mathbb{Q}(\sqrt{1+\sqrt{3}})/\mathbb{Q}$ hat Grad 4, da X^4+2X^2-2 nach Eisenstein irreduzibel ist und damit Minimalpolynom zu $\sqrt{1+\sqrt{3}}$. Da $\sqrt{1-\sqrt{3}}$ einen nicht verschwindenden Imaginärteil hat, kann es nicht in $\mathbb{Q}(\sqrt{1+\sqrt{3}})\subset\mathbb{R}$ enthalten sein. Da das Polynom $X^2+\sqrt{1+\sqrt{3}}^2-2$ die beiden Nullstellen $\pm\sqrt{1-\sqrt{3}}$ besitzt, ist es folglich irreduzibel über $\mathbb{Q}(\sqrt{1+\sqrt{3}})$. Also hat die Erweiterung $\mathbb{Q}(\sqrt{1+\sqrt{3}},\sqrt{1-\sqrt{3}})/\mathbb{Q}(\sqrt{1+\sqrt{3}})$ Grad 2. Insgesamt hat die Erweiterung daher Grad $8=4\cdot 2$.

Aufgabe 3

(a) Sei $f \in K[X]$ das Minimalpolynom zu α . Sei

$$M := \{x \in L \colon f(x) = 0\}.$$

die Menge der Nullstellen von f, wobei die Koeffizienten von f gemäß der Körpererweiterung L/K als Elemente von L auffassen. Da σ ein K-Automorphismus ist, gilt $0 = f^{\sigma_i}(\sigma_i(x)) = f(\sigma_i(x)) \forall x \in M$. Also ist $\sigma_i(\alpha) \in M$. M enthält also die n verschiedenen Elemente $\sigma_i(\alpha) \forall 1 \leq i \leq n$. Damit hat f mindestens Grad n. Allerdings hat f auch höchstens Grad n, da [L:K] = n ist. Daher ist deg f = n. Damit ist $[K(\alpha):K] = n$. Insbesondere ist also $\dim_K K(\alpha) = \dim_K L$, $K(\alpha) \subset L$ und nach LA1 also $K(\alpha) = L$.

(b) Da Körperhomomorphismen stets injektiv sind, genügt es zu zeigen, dass jedes $\alpha \in L$ ein Urbild $a \in L$ unter $\sigma \colon L \to L$ besitzt, wobei es sich bei σ um einen K-Homomorphismus handelt, d.h.

$$\sigma_K \colon K \to L$$

 $k \mapsto k$.

Algebra 1, Blatt 5 Josua Kugler

Sei also $\alpha \in L$. Da die Erweiterung algebraisch ist, existiert ein Minimalpolynom $f \in K[X]$ mit $f(\alpha) = 0$, wobei wir hier und in der nächsten Definition die Koeffizienten von f gemäß der Körpererweiterung L/K als Elemente von L auffassen. Sei also

$$M := \{ x \in L \colon f(x) = 0 \}.$$

die Menge der Nullstellen von f. Nach Lemma 3.40 ist dann auch $0 = f^{\sigma}(\sigma(x)) = f(\sigma(x)) \forall x \in M$, wobei die letzte Gleichheit gilt, weil $\sigma_K = \mathrm{id}_K$ ist. Daraus folgt $\sigma(M) \subset M$. Da M eine endliche Menge und f injektiv ist, muss aber bereits $f^{\sigma}(M) = M$ gelten und wegen $\alpha \in M$ existiert ein Urbild $a \in M$ mit $\sigma(a) = \alpha$. Ist die Körpererweiterung nicht algebraisch, so gilt die Aussage nicht. Für die Körpererweiterung K(t)/K ist

$$\sigma \colon K(t) \to K(t)k \qquad \qquad \mapsto k \forall k \in K$$

$$t \mapsto t^2$$

ein K-Homomorphismus, der nicht surjektiv ist, weil t kein Urbild besitzt.

Aufgabe 4

- (a) Sei $0 \neq \alpha \in R$. Da R ein Ring ist, gilt $K[\alpha] \subset R$. Dann gilt nach Satz 3.20 $K[\alpha] = K(\alpha)$. Insbesondere ist also auch $\alpha^{-1} \in R$. Daher ist $R^{\times} = R \setminus \{0\}$ und folglich ist R ein Körper.
- (b) Es gilt $K \subset E, F \subset L$, wobei K und L Körper sind. Daher genügt es zu zeigen, dass $M = \{\sum_{i=1}^{n} a_i b_i | n \in \mathbb{N}, a_i \in E, b_i \in F\}$ bezüglich Addition und Multiplikation abgeschlossen ist. Es gilt

$$\sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{m} a_i' b_i' \stackrel{\text{Umnummerierung}}{=} \sum_{i=1}^{n+m} a_i b_i \in M.$$

Außerdem gilt

$$\left(\sum_{i=1}^n a_i b_i\right) \left(\sum_{j=1}^m a_j' b_j'\right) = \sum_{(i,j) \in \{1,\dots,n\} \times \{1,\dots,m\}} \underbrace{a_i a_j'}_{\alpha_k} \underbrace{b_i b_j'}_{\beta_k} = \sum_{k=1}^{n \cdot m} \alpha_k \beta_k \in M.$$

Nach Aufgabe (a) muss M also ein Körper sein. Offensichtlich muss jedes Element von M in EF enthalten sein. Daher ist M gerade der kleinste Teilkörper, der E und F enthält.

(c) Sind [E:K] und [F:K] endlich, so gilt $E=K(\alpha_1,\ldots,\alpha_n)$ und $F=K(\beta_1,\ldots,\beta_m)$. Dann ist $EF\subset K(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m)$, da $K(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m)$ die beiden Körper E und F enthält. Jeder Körper, der E und F enthält auch sofort α_1,\ldots,α_n und β_1,\ldots,β_m . Also ist auch $K(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m)\subset EF$.

$$\dim_K EF = \dim_K K(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m).$$

Sei f_i das Minimalpolynom von α_i über $K(\alpha_1, \ldots, \alpha_{i-1})$ und analog g_i das Minimalpolynom von β_i über $K(\beta_1, \ldots, \beta_{i-1})$.

$$[E:K] = \prod_{i=1}^{n} \deg f_i$$
 $[F:K] = \prod_{i=1}^{m} \deg g_i$

Algebra 1, Blatt 5 Josua Kugler

Sei außerdem h_i das Minimalpolynom von β_i über $K(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{i-1})$. Dann gilt deg $h_i \leq$ deg g_i und

$$[K(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m)\colon K(\alpha_1,\ldots,\alpha_n)]=\prod_{i=1}^n \deg h_i$$

$$\begin{split} [EF\colon K] &= [K(\alpha_1,\dots,\alpha_n,\beta_1,\dots,\beta_m)\colon K] \\ &= [K(\alpha_1,\dots,\alpha_n,\beta_1,\dots,\beta_m)\colon K(\alpha_1,\dots,\alpha_n)]\cdot [K(\alpha_1,\dots,\alpha_n)\colon K] \\ &= \prod_{i=1}^n \deg h_i \cdot \prod_{i=1}^n \deg f_i \\ &\leq \prod_{i=1}^n \deg g_i \cdot \prod_{i=1}^n \deg f_i \\ &= [F:K] \cdot [E:K] \end{split}$$

(d) Sind [F:K] und [E:K] teilerfremd, so gibt es keine Darstellung $E=K(\alpha_1,\ldots,\alpha_n)$ und $F=K(\beta_1,\ldots,\beta_m)$, sodass es α_i,β_j und zugehörige Minimalpolynome f_i,g_j gibt mit deg $f_i=\deg g_j$. Also kann es kein Element a in $F\setminus K$ geben, dass auch in $E\setminus K$ liegt. Sonst könnte man o.B.d.A. $\alpha_1=a$ und $\beta_1=a$ wählen und erhielte zwei identische Minimalpolynome mit insbesondere gleichem Grad. Daher ist $[E(\beta_1,\ldots,\beta_i):E(\beta_1,\ldots,\beta_{i-1})]=[K(\beta_1,\ldots,\beta_i):K(\beta_1,\ldots,\beta_{i-1})]$. Insbesondere ist also stets $\deg h_i=\deg g_i$. Damit wird die Abschätzung in Aufgabe (c) zu einer Gleichheit.