Example 1.13 In answering a question on a multiple choice test a student either knows the answer or he guesses. Let p be the probability that she knows the answer and 1 - p the probability that she guesses. Assume that a student who guesses at the answer will be correct with probability 1/m, where m is the number of multiple-choice alternatives. What is the conditional probability that a student knew the answer to a question given that she answered it correctly?

Solution: Let C and K denote respectively the event that the student answers the question correctly and the event that she actually knows the answer. Now

$$P(K \mid C) = \frac{P(KC)}{P(C)} = \frac{P(C \mid K)P(K)}{P(C \mid K)P(K) + P(C \mid K^c)P(K^c)}$$

$$= \frac{p}{p + (1/m)(1 - p)}$$

$$= \frac{mp}{1 + (m - 1)p}$$

Thus, for example, if m = 5, $p = \frac{1}{2}$, then the probability that a student knew the answer to a question she correctly answered is $\frac{5}{6}$.