(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年6 月14 日 (14.06.2001)

PCT

(10) 国際公開番号 WO 01/42208 A1

(51) 国際特許分類⁷: C07D 207/09, 211/26, 405/12, 409/12, 401/12, 401/04, 409/14, 405/14, 401/14, 401/06, 413/06, 413/14, 409/06

(21) 国際出願番号:

PCT/JP00/08627

(22) 国際出願日:

2000年12月6日 (06.12.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願平11/348778 1999年12月8日(08.12.1999) J

- (71) 出願人 (米国を除く全ての指定国について): 帝人株式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府大阪市中央区南本町1丁目6番7号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 塩田辰樹

(SHIOTA, Tatsuki) [JP/JP]. 横山朋典 (YOKOYAMA, Tomonori) [JP/JP]. 上村 孝 (KAMIMURA, Takashi) [JP/JP]; 〒191-0065 東京都日野市旭が丘4丁目3番2号帝人株式会社 東京研究センター内 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東京都千代田区内幸町2丁目1番1号 帝人株式会社 知的 財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許

/続葉有/

(54) Title: CYCLOAMINE CCR5 RECEPTOR ANTAGONISTS

(54) 発明の名称: 環状アミンCCR5レセプター拮抗剤

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} - N \longrightarrow (CH_{2})_{n} - N \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

(57) Abstract: Therapeutic or preventive agents for CCR5-related diseases such as AIDS, rheumatoid arthritis and nephritis, containing as the active ingredient cycloamine derivatives of general formula (I), pharmaceutically acceptable adducts of the same with acids, or pharmaceutically acceptable adducts thereof with C_{16} alkyl.

(57) 要約:

下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分として含有する、エイズ、慢性関節リウマチ、腎炎などの、CCR5が関与する疾患の治療剤または予防剤。

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

2 文字コード及び他の略語については、定期発行される 名 PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

明 細 書

環状アミンCCR5レセプター拮抗剤

5 技術分野

本発明は、慢性関節リウマチ、腎炎(腎症)、多発性硬化症、臓器移植後の拒絶反応、移植片対宿主病(GVHD)、糖尿病、慢性閉塞性肺疾患(COPD)、気管支喘息、アトピー性皮膚炎、サルコイドーシス、線維症、粥状動脈硬化症、乾癬、および炎症性腸疾患など、単球/マクロファージ、T細胞などの組織への浸潤、活性化が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対する治療薬および/または予防薬として効果が期待できるCCR5拮抗剤に関する。

15

背景技術

CCR5レセプターは、MIP-1α (macrophage inflammatory protein-1αの略称)、MIP-1β (macrophage inflammatory protein-1βの略称)、RANTES (regulated upon activation normal T-cell expressed and secretedの略称)のレセプターであり、胸腺や脾臓などのリンパ組織、単球/マクロファージ、T細胞などに発現していることが知られている(例えば、Samson、M. et al., Boichemistry、1996、35、3362; Raport、C.J. et al., J. Biol. Chem., 1996, 27 1、17161; Combadiere, C. et al., J. Leukoc. Biol., 1996, 60, 1

CCR5レセプターと疾患との関連に関する知見としては、慢性関節リウマチ患者の関節滑膜組織および滑液中のT細胞などの白血球にCCR5が発現していること(Loetscher, P. et al., Nature, 1998, 391, 344; Mack, M. et al., Arthritis Rheum., 1999, 42, 981など参照)、CCR5欠損ホモ接合体は慢性関節リウマチ患者中には認められなかったこと(Gomez-Reino, J. J. et al., Arthritis Rheum., 1999,

42. 989参照)、糸球体腎炎、間質性腎炎、移植後の拒絶反応患者の腎 生検サンプル中のT細胞にCCR5が発現していること(Segerer, S. et al., Kidney Int., 1999, 56, 52参照)、多発性硬化症患者の血液 中にはCCR5を発現しているT細胞が多く認められること(Balashov,

K.E., Proc. Natl. Acad. Sci. USA, 1999, 96, 6873参照)、マウス 移植片対宿主病(GVHD)モデルの肝炎症部に浸潤したT細胞にはC CR5が発現しており、このT細胞の浸潤は抗CCR5抗体投与により 抑制されること(Murai, M. et al., J. Clin. Invest., 1999, 104, 49参照)、マウス糖尿病モデルにおける病態の進展にΜΙΡ-1αおよ びCCR5が関与していること(Cameron, M.J. et al., J. Immunol., 2000, 165, 1102参照) などが報告されている。

5

10

15

20

したがって、CCR5は、単球/マクロファージおよび/またはT細 胞が病変部位に集積し、活性化されることが病変の進展に深く関わって いると想定され得る疾患、例えば慢性関節リウマチ、腎炎(腎症)、多 発性硬化症、臓器移植後の拒絶反応、移植片対宿主病(GVHD)、お よび糖尿病などの発症、進展、維持に深く関与していると考えられる。

さらに、CCR5はT細胞の中でも特にTh1細胞に特異的に発現し

ているとの報告があることから、上記疾患も含めてTh1細胞が病態に 関与することが想定され得る慢性閉塞性肺疾患(COPD)、気管支喘 息、アトピー性皮膚炎、サルコイドーシス、線維症、粥状動脈硬化症、 乾癬、および炎症性腸疾患など多くの自己免疫疾患および炎症性疾患の 発症、進展、維持に関わっていると考えられる(Bonecchi, R. et al., J. Exp. Med., 1998, 187, 129; Loetscher, P. et al., Nature, 1 998、391、344など参照)。

一方、HIV(ヒト免疫不全ウイルス)が宿主細胞に感染する際のレ 25 セプターとしてはCD4が知られていたが、このCD4だけではHIV の感染は成立しないことから、第2のレセプター(コレセプターまたは セカンドレセプター)が必要であることが示唆されていた。一般に、H IV-1は感染可能な細胞の種類により、マクロファージ指向性(M-30 tropic)株、T-細胞指向性(T-tropic)株に大別され るが、マクロファージ指向性株の感染に必須のコレセプターがCCR5

WO 01/42208

5

20

25

であることが明らかにされた (例えば、Deng, H. et al., Nature, 1996, 381, 661; Dragic, T. et al., Nature, 1996, 381, 667; Alkha tib, G. et al., Science, 1996, 272, 1955; Choe, H. et al., Cel 1, 1996, 85, 1135; Doranz, B. J. et al., Cell, 1996, 85, 1149参照)。

したがって、HIV-1がCCR5に結合することを阻害する薬剤は、 新たなエイズ(AIDS:後天性免疫不全症候群)治療薬および/また は予防薬として有効であると考えられる (Michael, N.L. et al., Nat ure Med., 1999, 5, 740; Proudfoot, A.E.I. et al., Biochem. Phar macol., 1999, 57, 451; 村上ら 蛋白質 核酸 酵素, 1998, 43, 677な ど参照)。これを裏付ける知見として、CCR5のリガンドであるRA NTES、MIP-1α、MIP-1βがHIV-1感染の抑制因子で あること (Cocchi, F. et al., Science, 1995, 270, 1811参照)、C CR5遺伝子の32塩基対の欠損により正常なCCR5がまったく発現 していない人はHIV-1感染に抵抗性を有するとともに、この欠損は 他の健康上の異常を引き起こさないこと (Liu, R. et al., Cell, 199 6, 86, 367; Samson, M. et al., Nature, 1996, 382, 722; Dean, M. et al., Science, 1996, 273, 1856など参照)、抗CCR5モノクロ ーナル抗体がマクロファージ指向性HIV-1の末梢血単核球への感染 を抑制すること(Wu, L. et al., J. Exp. Med., 1997, 185, 1681参 照)、アミノ末端を欠損もしくは修飾したRANTESはRANTES の拮抗剤となり、マクロファージ指向性 HIV-1の感染を抑制するこ ∠ (Arenzana-Seisdedos, F. et al., Nature, 1996, 383, 400; Proo st, P. et al., J. Biol. Chem., 1998, 273, 7222; Simmons, G. et al., Science, 1997, 276, 276など参照) などが報告されている。 以上のことから、 CCR5の生体内リガンドである $MIP-1\alpha$ 、MIP-1β、またはRANTESのCCR5への結合、もしくはエイズ の病原ウイルスであるHIV-1のCCR5に対する結合を阻害する化 合物、すなわちCCR5拮抗剤は、CCR5の生体内リガンドの標的細 胞への作用、もしくはエイズウイルスの宿主細胞への感染を阻害するこ

とにより、エイズ、慢性関節リウマチ、腎炎(腎症)、多発性硬化症、

臓器移植後の拒絶反応、移植片対宿主病(GVHD)、糖尿病、慢性閉塞性肺疾患(COPD)、気管支喘息、アトピー性皮膚炎、サルコイドーシス、線維症、粥状動脈硬化症、乾癬、または炎症性腸疾患などの疾患の治療薬および/もしくは予防薬として有用であると考えられる。

最近、置換ビスーアクリジン誘導体(国際公開W〇9830218号 5 参照)、置換アニリド誘導体(国際公開WO9901127号:国際公 開W〇0006085号;国際公開W〇0006146号;国際公開W 〇 0 0 0 6 1 5 3 号 ; 国際公開W〇 0 0 4 0 2 3 9 号 ; 国際公開W〇 0 042852号参照)、置換アルケン酸アニリド誘導体(国際公開WO 10 9932100号: 国際公開W〇0010965号; 国際出願W〇0 O 3.7 4 5 5 号: Baba. et al., Proc. Natl. Acad. Sci. USA, 1999. 96. 5698参照)、3-(4-ピペリジニル)インドール誘導体(国際 公開WO9917773号:国際公開WO0042045号参照)、ア ザシクロアルカン誘導体(EP1013276号;国際出願WO003 8680号;国際出願W〇0039125号参照)、ベンゾジピラン誘 導体(国際公開W〇0053175号参照)、およびピロリジン誘導体 (国際公開W〇0059497号:国際公開W〇0059498号:国 際公開W〇0059502号:国際公開W〇0059503号参照)が、 ·CCR5レセプターに対する拮抗活性を有することが報告されている。

20 しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。 一方、本発明で用いる化合物は、国際公開WO9925686号に記載されている化合物と同一のものであるが、これらの化合物がCCR5 レセプターに対する拮抗活性を有することは知られていなかった。

25 発明の開示

本発明の目的は、CCR5に対する結合を阻害する活性を有する低分子化合物、すなわちCCR5拮抗剤を提供することである。

また、RANTESなどのCCR5の生体内リガンドが標的細胞上の CCR5に結合することを阻害する活性、もしくはエイズの病原ウイル 30 スであるHIV-1のCCR5に対する結合を阻害する活性を有する低 分子化合物を提供することである。 さらに、本発明の目的は、CCR5の生体内リガンドが標的細胞上の CCR5に結合することが病因の一つであるような疾患の治療法および /または予防法を提供することである。

さらに、本発明の目的は、HIVの感染に起因するエイズの治療法お 5 よび/または予防法を提供することである。

本発明者らは鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得るC₁~C₆アルキル付加体、または薬学的に許容され得る酸付加体が、CCR5拮抗活性を有することを発見し、さらにはそれらの化合物が、CCR5が関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して研究を進めた結果、本発明を完成するに至った。

すなわち、本発明によれば、下記式(I)

$$15 \xrightarrow{R^{1}} (CH_{2})_{j} - N \xrightarrow{(CH_{2})_{k}} (CH_{2})_{n} - N - C - (CH_{2})_{p} - R^{4} (CH_{2})_{q} - G - R^{6}$$

$$(I)$$

【式中、R¹はフェニル基、C₃~C₃シクロアルキル基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ペンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフェニル基、C₃
 25 ~C₃シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、C₁~C₅アルキル基、C₃~C₃シクロアルキル基、C₂~C₅アルケニル基、C₁~C₅アルコキシ基、C₁~C₅アルキルチオ基、C₃~C₅アルキレン基、C₂~C₅アルキレンオキシ基、C₁~C
 30 ₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、ペンジル基、ペンジルオキシ基、ベンゾイルアミノ基、C₂~C₃アル

カノイル基、 $C_2 \sim C_7$ アルコキカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ N - アルキルカルバモイル基、 $C_4 \sim C_9$ N - シクロアルキルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、 $C_3 \sim C_8$ (アルコキシカルボニル)メチル基、N - フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1- ピロリジニルカルボニル基、式:- N + (C=0) O - で表される 2 価基、式:- N + (C=5) O - で表される 2 価基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、またはジ($C_1 \sim C_6$ アルキル)アミノ基で置換されていてもよく、これらのフェニル基、

 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、または $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_7$ アルコキシカルボ 2 に基、ヒドロキシ基、またはフェニル基を表し、 R^2 における $C_1 \sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、または $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

20 jは0~2の整数を表す。

kは0~2の整数を表す。

mは2~4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハ 25 ロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル 基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表す。

 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または $C_1 \sim C_6$ アルキル基を表し、 R^4 および R^5 における $C_1 \sim C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、

グアニジノ基、 $C_3 \sim C_8$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカノイルオキシオルボニル基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、または($C_1 \sim C_6$ アルキル)アミノ基、または($C_1 \sim C_6$ アルキル)アミノ基、または($C_1 \sim C_6$ アルキル)アミノ基、またはでかまたは変素原子、硫黄原子、および/または変素原子を1~3の10分割では、10分割のは、10分割では、10分割では、10分割では、10分割では、10分割では、10分割のは、10分割では、10分割のは、10分割では、10分割

pは0または1を表す。

15 gは0または1を表す。

20

25

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または $C_1\sim C_6$ アルキル基を表すか、あるいは R^7 は R^5 といっしょになって $C_2\sim C_5$ アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_6$ シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基を表し、上記R 6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル

基、トリフルオロメチル基、C1~C6アルキル基、C3~C8シクロア ルキル基、C2~C6アルケニル基、C1~C6アルコキシ基、C3~C8 シクロアルキルオキシ基、C,~C₆アルキルチオ基、C,~C₃アルキ レンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベン ジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル 基、3-フェニルウレイド基、C2~C1アルカノイル基、C2~C1ア ルコキシカルボニル基、C₂~C₁アルカノイルオキシ基、C₂~C₁ア ルカノイルアミノ基、C,~C, N-アルキルカルパモイル基、C₁~ C。アルキルスルホニル基、フェニルカルバモイル基、N,N-ジ(C 、~C。アルキル)スルファモイル基、アミノ基、モノ(C、~C。アル 10 キル) アミノ基、ジ(C₁~C₆アルキル) アミノ基、ベンジルアミノ 基、 C,~ C, (アルコキシカルボニル) アミノ基、 C,~ C。(アルキ ルスルホニル)アミノ基、またはビス (C₁~C₆アルキルスルホニ ル) アミノ基により置換されていてもよく、これらのフェニル基、C3 ~ C。シクロアルキル基、C3~C3シクロアルケニル基、ベンジル基、 芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原 子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、C、 ~C₆アルキル基、C₁~C₆アルコキシ基、C₁~C₆アルキルチオ基、 モノ ($C_1 \sim C_6$ アルキル) アミノ基、またはジ($C_1 \sim C_6$ アルキル)

20 アミノ基によって置換されていてもよい。]

30

で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR5 拮抗作用を有する薬剤が提供される。

さらに、本発明によれば、上記式(I)で表される化合物、その薬学 25 的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR5が関与する疾患の治療薬もしくは予防薬が提供される。

ここに、上記式(I)で表される化合物は、CCR5拮抗活性、およびCCR5の生体内リガンドの標的細胞への生理的作用を阻害する活性を有する。すなわち、上記式(I)で表される化合物はCCR5拮抗剤である。

発明を実施するための最良の形態

上記式(I)において、R¹はフェニル基、C₃~C₂シクロアルキル 基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素 原子を1~3個有する芳香族複素環基を表し、上記R¹におけるフェニ ル基または芳香族複素環基は、ペンゼン環、またはヘテロ原子として酸 素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複 素環基と縮合して縮合環を形成していてもよく、さらに上記R1におけ るフェニル基、C3~C8シクロアルキル基、芳香族複素環基、または 縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、 10 カルボキシル基、カルバモイル基、C₁~C₆アルキル基、C₃~C₈シ クロアルキル基、CoへCoアルケニル基、CoへCoアルコキシ基、Co ~C。アルキルチオ基、C。~C。アルキレン基、C2~C4アルキレンオ キシ基、 C,~C,アルキレンジオキシ基、フェニル基、フェノキシ基、 フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、 15 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルコキカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、C₂~C₁アルカノイルアミノ基、C₂~C₁N - アルキルカルパモイル基、C₄~C。N-シクロアルキルカルパモイ ル基、 $C_1 \sim C_6$ アルキルスルホニル基、 $C_3 \sim C_8$ (アルコキシカルボ ニル)メチル基、N-フェニルカルバモイル基、ピペリジノカルボニル 20 基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式:-NH (C=O) O-で表される2価基、式:-NH (C=S) O-で表 される2価基、アミノ基、モノ(C₁~C₆アルキル)アミノ基、また はジ(C1~C6アルキル)アミノ基で置換されていてもよい。

25 R¹における「C₃~C₃シクロアルキル基」とは、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、およびシクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる。

30 R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基」とは、例えば、チエニ

ル、フリル、ピロリル、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、ピラゾリル、およびピリジル基などが挙げられる。

R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンソフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

15 なかでもR¹は、フェニル基、チエニル基、ピロリル基、ピラゾリル 基、イソオキサゾリル基、またはインドリル基である場合が特に好まし い。

R¹におけるフェニル基、C₃~C₃シクロアルキル基、芳香族複素環基、または縮合環の置換基としての「ハロゲン原子」とは、フッ素原子、

20 塩素原子、臭素原子、ヨウ素原子などを意味し、その好適な具体例としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

 R^1 の置換基としての「 $C_1 \sim C_6$ アルキル基」とは、例えば、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペナシル、n-ペンチル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル、n-ペル

30 R^1 の置換基としての「 $C_3 \sim C_8$ シクロアルキル基」は、前記 R^1 における「 $C_3 \sim C_8$ シクロアルキル基」の定義と同様であり、その好適

t-ブチル基などが挙げられる。

な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 $C_2 \sim C_6$ アルケニル基」とは、例えば、ビニル、アリル、 $1 - \mathcal{I}$ ロペニル、 $2 - \mathcal{I}$ テニル、 $3 - \mathcal{I}$ テニル、 $2 - \mathcal{I}$ チルー $1 - \mathcal{I}$ ロペニル、 $4 - \mathcal{I}$ ペンテニル、 $5 - \mathcal{I}$ キセニル、 $4 - \mathcal{I}$ チルー $3 - \mathcal{I}$ マンテニル基などの $C_2 \sim C_6$ の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基および $2 - \mathcal{I}$ チルー $1 - \mathcal{I}$ ロペニル基などが挙げられる。

 R^1 の置換基としての「 $C_1 \sim C_6$ アルコキシ基」とは、前記 $C_1 \sim C_6$ アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 $C_1 \sim C_6$ アルキルチオ基」とは、前記 $C_1 \sim C_6$ アルキル基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 $C_3 \sim C_5$ アルキレン基」とは、例えば、トリ メチレン、テトラメチレン、ペンタメチレン、および 1-メチルトリメ チレン基などの $C_3 \sim C_5$ の 2 価のアルキレン基を意味し、その好適な 具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 $C_2 \sim C_4$ アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2$

- $CH_2CH_2O-)$ 、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2$ O-)、1, 1-ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O$ -) 基などの、 $C_2\sim C_4$ の 2 価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。
- R^1 の置換基としての「 $C_1 \sim C_3$ アルキレンジオキシ基」とは、例えば、メチレンジオキシ(- O C H_2 O)、エチレンジオキシ(- O C H_2 C H_2 C H_2 C H_3 C H_4 C H_5 C H_6 C H_7 C H_8 C
- 30 適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが 挙げられる。

R¹の置換基としての「C。~C,アルカノイル基」とは、例えば、ア セチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘ プタノイル、イソブチリル、3-メチルブタノイル、2-メチルブタノ イル、ピバロイル、4-メチルペンタノイル、3、3-ジメチルブタノ イル、5-メチルヘキサノイル基などのC2~C7の直鎖または分枝状 のアルカノイル基を意味し、その好適な具体例としては、アセチル基な どが挙げられる。

5

10

20

R¹の置換基としての「C,~C,アルコキシカルボニル基」とは、前 記C、~C。アルコキシ基とカルポニル基とからなる基を意味し、その 好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基 などが挙げられる。

R¹の置換基としての「C₂~C₁アルカノイルオキシ基」とは、前記 C,~C,アルカノイル基とオキシ基とからなる基を意味し、その好適 な具体例としてはアセチルオキシキ基などが挙げられる。

R¹の置換基としての「C,~C,アルカノイルアミノ基」とは、前記 15 C,~C,アルカノイル基とアミノ基とからなる基を意味し、その好適 な具体例としては、アセチルアミノ基などが挙げられる。

R¹の置換基としての「C,~C,アルキルカルバモイル基」とは、前 記C,~C。アルキル基とカルバモイル基とからなる基を意味し、その 好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバ モイル基などが挙げられる。

 R^{1} の置換基としての「 $C_{4} \sim C_{5}$ N - シクロアルキルカルパモイル 基」とは、前記 C3~C3シクロアルキル基とカルバモイル基とからな る基を意味し、その好適な具体例としては、N-シクロペンチルカルバ モイル基、N-シクロヘキシルカルバモイル基などが挙げられる。

R¹の置換基としての「C₁~C₂アルキルスルホニル基」とは、前記 C、~C。アルキル基とスルホニル基とからなる基を意味し、その好適 な具体例としては、メチルスルホニル基などが挙げられる。

 R^1 の置換基としての「 $C_3 \sim C_3$ (アルコキシカルボニル)メチル 基」とは、前記C。~C,アルコキシカルボニル基とメチル基とからな 30 る基を意味し、その好適な具体例としては、(メトキシカルボニル)メ

チル基、(エトキシカルボニル)メチル基などが挙げられる。

 R^1 の置換基としての「モノ($C_1 \sim C_6$ アルキル)アミノ基」とは、前記 $C_1 \sim C_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ($C_1 \sim C_6$ アルキル)アミノ基」とは、同一または異なった 2 つの前記 $C_1 \sim C_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N- エチル N- メチルアミノ基などが挙げられる。

- 上記の中でも、 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、シアノ基、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_3 \sim C_6$ アルキレン基、 $C_2 \sim C_4$ アルキレンオキシ基、アルキレンジオキシ基、アセチ
- 15 ル基、フェニル基、アミノ基、およびジ($C_1 \sim C_6$ アルキル)アミノ 基を特に好ましい具体例として挙げることができる。特に好ましくは、 ハロゲン原子、ヒドロキシ基、シアノ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim$ C_6 アルコキシ基、 $C_3 \sim C_5$ アルキレン基、メチレンジオキシ基、およ びアミノ基を挙げることができる。
- 20 さらに、 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 $C_1 \sim C_6$ アルキル基、および $C_1 \sim C_6$ アルコ
- 25 キシ基は、前記R¹におけるフェニル基、C₃~C₈シクロアルキル基、 芳香族複素環基、または縮合環の置換基に関して定義されたものと同様 であり、同じ基を好適な具体例として挙げることができる。

上記式(I)において、 R^2 は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における $C_1 \sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$

30

アルコキシ基によって置換されていてもよい。ただし、j=0 のときは、 R^2 はヒドロキシ基ではない。

 R^2 における $C_1 \sim C_6$ アルキル基および $C_2 \sim C_7$ アルコキシカルボニル基は、 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^2 における $C_1 \sim C_6$ アルキル基またはフェニル基の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルキル基および $C_1 \sim C_6$ アルコキシ基は、前記 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素 環基、または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

なかでもR²は、水素原子を表す場合が特に好ましい。

上記式 (I) において、jは0~2の整数を表す。jは0である場合が特に好ましい。

15 上記式(I)において、kは0~2の整数を表し、mは2~4の整数を表す。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが3である場合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4~置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

上記式(I)において、nは0または1を表す。

特に、kが1でmが2でnが0である場合の3-アミドピロリジン、 25 およびkが2でmが2でnが1である場合の4-(アミドメチル)ピペ リジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表す。

 R^3 における $C_1 \sim C_6$ アルキル基は、前記 R^1 におけるフェニル基、 C₃~C₈シクロアルキル基、芳香族複素環基、または縮合環の置換基 に関して定義されたものと同様であり、その好適な具体例としては、メ チル基、エチル基、およびプロピル基が挙げられる。

- 5 R³におけるC₁~C₆アルキル基の置換基としてのフェニル基の置換 基としてのハロゲン原子、C1~C6アルキル基、およびC1~C6アル コキシ基は、それぞれ前記R1におけるフェニル基、C3~C8シクロア ルキル基、芳香族複素環基、または縮合環の置換基に関して定義された ものと同様であり、同じ例を好適な具体例として挙げることができる。
- なかでも、R³は水素原子および無置換のC₁~C₆アルキル基である 10 場合が特に好ましい。

上記式(I)において、R⁴およびR⁵は、同一または異なって、水 素原子、ヒドロキシ基、フェニル基、またはC₁~C₆アルキル基を表 し、R⁴およびR⁵におけるC₁~C₆アルキル基は、任意個のハロゲン

- 原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ 15 イル基、メルカプト基、グアニジノ基、C3~C8シクロアルキル基、 C₁~C₆アルコキシ基、C₁~C₆アルキルチオ基、(任意個のハロゲ ン原子、ヒドロキシ基、C₁~C₆アルキル基、C₁~C₆アルコキシ基、 もしくはペンジルオキシ基によって置換されていてもよいフェニル基)、
- 20 フェノキシ基、ペンジルオキシ基、ペンジルオキシカルボニル基、C。 ~C,アルカノイル基、C2~C7アルコキシカルボニル基、C2~C7ア ルカノイルオキシ基、C,~C,アルカノイルアミノ基、C,~C, N-アルキルカルバモイル基、C」~C。アルキルスルホニル基、アミノ基、 モノ (C,~C,アルキル) アミノ基、ジ (C,~C,アルキル) アミノ
- 25 基、または(ヘテロ原子として酸素原子、硫黄原子、および/または窒 素原子を1~3個有する芳香族複素環基またはそのベンゼン環との縮合 により形成される縮合環)により置換されていてもよく、あるいはR⁴ およびR⁵は、いっしょになって3~6員環状炭化水素を形成していて もよい。
- 30 R⁴およびR⁵におけるC₁~C₆アルキル基は、前記R¹におけるフェ ニル基、C₃~C₈シクロアルキル基、芳香族複素環基、または縮合環

WO 01/42208 PCT/JP00/08627

の置換基に関して定義されたものと同様であり、同じ例を好適な具体例 として挙げることができる。

 R^4 および R^5 における $C_1 \sim C_6$ アルキル基の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_2 \sim C_7$ 7 アルカノイル基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ N - アルキルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、モノ($C_1 \sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環10 基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における $C_1 \sim C_6$ アルキル基の置換基としての $C_3 \sim C_8$ シクロアルキル基、およびヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

15

20

 R^4 および R^5 における $C_1 \sim C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルキル基、および $C_1 \sim C_6$ アルコキシ基は、前記 R^1 においてフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

R⁴、R⁵およびその隣接炭素原子とからなる「3~6員環状炭化水 素」の好適な具体例としては、シクロプロパン、シクロブタン、シクロ ペンタン、およびシクロヘキサンなどが挙げられる。

なかでも、水素原子と $C_1 \sim C_6$ アルキル基を、 R^4 と R^5 の特に好ましい例として挙げることができる。

上記式 (I) において、pは0または1を表し、qは0または1を表す。pとqがともに0である場合が特に好ましい。

30 上記式 (I) において、Gは、-CO-、-SO₂-、-CO-O-、-NR⁷-CO-、-CO-NR⁷-、-NH-CO-NH-、-NH

WO 01/42208 PCT/JP00/08627

-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-0-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または $C_1\sim C_6$ アルキル基を表すか、あるいは R^7 は R^5 といっしょになって $C_2\sim C_5$ アルキレン基を形成していてもよい。

5 ここで、 $-CO-はカルボニル基を、<math>-SO_2-はスルホニル基を、$ $-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例 としては、例えば<math>-NR^7-CO-および-NH-CO-NH-で表される基などが挙げられる。$

 R^7 における $C_1 \sim C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例 として挙げることができる。

 R^5 と R^7 とからなる「 $C_2 \sim C_5$ アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの $C_2 \sim C_5$ の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。

15

なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

- 20 上記式(I)において、 R^6 は、フェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_6$ シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、
 - 25 硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、 $C_3\sim C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、
 - 30 カルボキシル基、カルバモイル基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_2 \sim C_6$ アルケニル基、 C_1

~ C_6 アルコキシ基、 C_3 ~ C_8 シクロアルキルオキシ基、 C_1 ~ C_6 アルキルチオ基、 C_1 ~ C_3 アルキレンジオキシ基、フェニル基、フェニルスルフィニル基、フェニルスルボニル基、3 -フェニルウレイド基、 C_2 ~ C_3 アルカノイル基、 C_2 ~ C_3 アルカノイル基、 C_2 0~ C_3 アルカノイル基、 C_2 0~ C_3 アルカノイルオキシ基、 C_2 0~ C_3 アルカノイルアミノ基、 C_2 0~ C_3 アルカノイルオキシ基、 C_3 0~ C_3 アルカノイルアミノ基、 C_3 0~ C_4 0 アルキルカルバモイル基、 C_4 1~ C_6 アルキルスルボニル基、フェニルカルバモイル基、 C_4 10 アミノ基、モノ(C_4 1~ C_6 アルキル)アミノ基、ジ(C_4 1~ C_6 アルキル)アミノ基、ジ(C_4 1~ C_6 アルキル)アミノ基、スンジルアミノ基、 C_2 0~ C_3 1(アルコキシカルボニル)アミノ基、 C_4 1) C_5 1) アミノ基、または、ビス(C_4 1~ C_6 7ルキルスルボニル)アミノ基により置換されていてもよい。

 R^6 における C_3 ~ C_8 シクロアルキル基、ヘテロ原子として酸素原子、 5 硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基および縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^6 における「 $C_3 \sim C_8$ シクロアルケニル基」とは、例えば、シクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、

20 およびシクロオクテニル基など環状アルケニル基を意味し、その好適な 具体例としては、1-シクロペンテニル基、1-シクロヘキセニル基な どが挙げられる。

25

. 30

なかでもR⁶としては、フェニル基、フリル基、チエニル基、ピラソ リル基、ベンソチエニル基、インドリル基を特に好ましい例として挙げ ることができる。

 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイルアミ

PCT/JP00/08627 WO 01/42208

19

ノ基、Co~CoNーアルキルカルパモイル基、CoへCoアルキルスル ホニル基、モノ(C、~C。アルキル)アミノ基、およびジ(C、~C。 アルキル) アミノ基は、前記R¹におけるフェニル基、C₃~C₃シクロ アルキル基、芳香族複素環基、または縮合環の置換基に関して定義され たものと同様であり、それぞれ同じ例を好適な具体例として挙げること

ができる。 R⁶の置換基としてのC₃~C₈シクロアルキル基は、前記R¹におけ るC、~C。シクロアルキル基に関して定義されたものと同様であり、

R®の置換基としての「C3~C8シクロアルキルオキシ基」とは、前 10 記C。~C。シクロアルキル基とオキシ基とからなる基を意味し、その 好適な具体例としては、シクロプロピルオキシ基、シクロペンチルオキ シ基、シクロヘキシルオキシ基などを挙げることができる。

同じ例を好適な具体例として挙げることができる。

R⁶の置換基としての「N、N-ジ(C,~C₅アルキル)スルファモ イル基」とは、同一または異なった2つの前記C1~C6アルキル基に 15 よって置換されたスルファモイル基を意味し、その好適な具体例として は、例えば、N, N-ジメチルスルファモイル基、N, N-ジエチルス ルファモイル基、N-エチル-N-メチルスルファモイル基などが挙げ られる。

- R®の置換基としての「C₂~C₁(アルコキシカルボニル)アミノ 20 基」とは、前記C,~C,アルコキシカルボニル基とアミノ基とからな る基を意味し、その好適な具体例としては、例えば、(メトキシカルボ ニル)アミノ基、(エトキシカルボニル)アミノ基などを挙げることが できる。
- R⁶の置換基としての「C₁~C₆(アルキルスルホニル)アミノ基」 - 25 とは、前記C、~C。アルキルスルホニル基とアミノ基とからなる基を 意味し、その好適な具体例としては、 (メチルスルホニル) アミノ基な どを挙げることができる。

R°の置換基としての「ビス(C₁~C₆アルキルスルホニル)アミノ 基」とは、同一または異なった2つの前記C1~C6アルキルスルホニ 30 ル基によって置換されたアミノ基を意味し、その好適な具体例としては、 WO 01/42208 PCT/JP00/08627

20

ビス (メチルスルホニル) アミノ基などを挙げることができる。

なかでも、 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、ニトロ基、トリフルオロメチル基、 $C_1 \sim C_8$ アルコキシ基、フェニル基、フェ

- 基、C₁~C₆アルキル基、C₁~C₆アルコキシ基、フェニル基、フェニルスルホニル基、アミノ基、ベンジルアミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、C₁~C₆アルキル基、C₁~C₆アルコキシ基、フェニルスルホニル基、およびアミノ基を挙げることができる。
- 10 さらに、 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)ア 3 ノ基、またはジ($C_1 \sim C_6$ アルキル)アミノ基によって置換されていてもよい。

 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アル コキシ基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、およびジ($C_1 \sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

- 25 上記式 (I) で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C₁ ~ C₆ アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明の C C R 5 の生体内リガンドおよび/または H I V が標的細胞上の C C R 5 に結合することを阻害する医薬、
- 30 あるいはCCR5のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR5が関与すると考えられる疾患の治療薬も

しくは予防薬とすることができる。

すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、 懸濁剤、カプセル剤などが挙げられる。

錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤;カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなどの崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどのグリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法によって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液 20 剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水な どが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリ エチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、 これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バ クテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うこ 25 とによって無菌化される。

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、 軟膏剤は、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを 用いて、クリーム剤は、脂肪油、またはジエチレングリコールやソルビ タンモノ脂肪酸エステルなどの乳化剤を用いて通常の方法によって成形 される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が

用いられる。

本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢と性別、および疾患の程度などによって異なるが、通常成人一人当たり $1 \sim 500$ mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、下記のTable1. 1~1. 221に示される各置換基を含有する化合物を挙げることができる。

Table1.1~1.221において、「Table」は「表」 を意味し、「Compd.No.」は「化合物番号」を意味し、「chirality」は「絶対配置」を意味する。「chirality (絶対配置)」とは、環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「一」はラセミ体であるか、あるいは、その化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

Tab	ما	1.	4
ıau	ne.		

Compd.	R (CH ₂),-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1	CH-2-	1	2	0	•	н	- CH ₂ - N- C-
2	CHCH ₂ -	1	2	0	•	H	- CH ₂ -N-C-CH ₃
3	CH-CH ₂ -	1.	2	.0	-	н	-CH ₂ -N-C-
. 4	CH-2-	1	2		•	. н	- CH ₂ -N-C-CF ₃
5	CHCH2-	1	2	0	S	Н	- CH ₂ -N-C-CF ₃
6	с⊢С сн₂-	1	2	0	S	н	-CH ₂ -N-C
7	с⊢С СН₂-	1	2	0	S	н	-CH₂-N C-
8	СЊ_СН₂-	1	2	0	S	н	-CH ₂ -N C -
9	с⊢√. }−сн₂-	1	2	0	S	, H	-CH ₂ -N-C-CI
							-CH2-N-C
11 .	CH2-	1	2	0	S	н	-CH2-N-C

Table 1.2

Table	1.2					
Compd.	R ¹ R ² (CH ₂)j-	k m	ı n	chirality	. K3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
12	с⊢СУ−сн₂−	. 1 2	0	S	н	-CH ₂ -H C OCH ₃
13	CH-CH2-	1 2	0	S	н	- CH2-N-C- CF3
14	CH2-	1 2	0	S	н	-CH ₂ -N-C-CH ₃
15	CH_CH ₂ -	1 2	0	S	н	-CH₂-N-C-CI
16	CHCH ₂ -	1 2	0	S	Ħ.	-сн₂-№ с — осн₃
17	CHCH ₂ -	1 2	0	S	н	- CH ₂ -N- C-√CI
18	CH	1 2	0	S	н	- CH ₂ - N- C-
	CHCH2-				н	-CH ₂ -N-C
20	CH-2-	1 2	0	S	н	- CH ₂ -N-C-CF ₃
21	CH-2-	1 2	0	S	н	-CH ₂ -N-C
22	C├ - CH ₂ -	1 2	0	S	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-CF_{3}$ $-CH_{2}-N+C$ $-CF_{3}$

-			-	_
Ta	ם	le	-1.	.3

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
23	CH2-	1	2	0	S	н	-CH ₂ -N-CF ₃
24	с⊢—Сн₂-	1	2	0	S	н	-CH2-N-C
25	C├ - CH ₂ -	1	2	0	S	Н	-CH2-N-C
26	с⊢СН₂-	1	2	0	S	н	-CH ₂ -N-C
27	C ⊢ CH₂-	1.	2	0	s	Н	-CH ₂ -N-C-
28	CH2-	1	2	0	S	Н	- CH ₂ -N-C
29	С⊢СН₂-	1	2	0	R	н	- CH ₂ - N- C- CF ₃
30	С⊢С СН₂-	1	2	0 .	R ·	Н	-CH ₂ -N-C
31	Сі—(СН₂-	1	2	0	R	н	- CH ₂ -N-C
32	CH2-	1	2	0	R	н	- CH ₂ -N-C
33	с⊢(сн₂-	1	2	0	R	н	-CH2-N-CI

Ta	_		4	A
1 a	n	10	- 1	4

	•• •	•				
Compd. No.	R ¹ /(CH ₂) _i -	k r	n n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
34	с⊢√ сн₂-	1 2	2 0	R	н	- CH ₂ -№ C-
35	CHCH2-	1 2	? 0	R	н	-сн ₂ -м-сосн ₃
36 ·	CHCH2-	1 2	0	R	н	-CH2-N-C-OCH3
37	CHCH ₂ -	1 2	0	R ´	н	- CH ₂ -N C - CF ₃
38	CHCH ₂ -	1 2	. 0	R	н	-CH ₂ -N-C
39	с⊢С сн₂-	1 2	0	R	н	- CH ₂ - N-CI
40.	CHCH2-	1 2	0	R	н	-сн ₂ -и-с- О
41	С⊢С СН₂-	1 2	0	R	н	-CH ₂ -N-C-CI
42	С⊢СТ-СН₂-	1 2	0	R	Н	- CH ₂ - N- C-
43	CH2-	1 2	0 .	R	н	· - CH ₂ - N C-
44	C├ - CH₂-	1 2	0	`.R	н	-CH ₂ -N C ← CF ₃

T	2	b	ı	_	1	5
	0	u			1	- 7

Table	1.5	•					
Compd.	R ¹ /(CH ₂)j-	k	c m	ח ו	chirality	· R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
45	С├-{_}СН₂-	1	2	O	R	н	- CH ₂ - N C - CF3
46	. CH-CH2-	1	2	0	R	н	- CH ₂ -N-C-CF ₃
47	C├ \	1	- 2	0	R	н	-CH ₂ -N-C-C
48	C├─ (CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
49	CH-CH2-	. 1	2	0	R	н .	-CH2-NC-
50	CHCH2-	1	2	0	R	н	- CH ₂ -N-C-CF ₃
51	CH2-	1	2	0	R	н	- CH ₂ - N- C-
52	CI—CH₂-	1	2	0	R	н	- CH ₂ - N C - F
53	C├ - CH ₂ -	1	. 2	0	R	н	- CH ₂ -N-C-
54	С;—√СН²-	1	.2	0	R	н	- CH2- M C- CI
55	CH-CH2-	1	2	0	R	н	-CH2-HC-

Та	h	ما	1	.6
ıa	u	15		

1 abie	1.0						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	-(CH ₂) _p
56	CCH₂-	1.	2	0	R	н	- CH ₂ -N C -
57	C├ - CH₂-	1	2.	0	R	н	-CH ₂ -N-C-
58	CH-2-	1	2	0	R	н	- CH2-N-C-
59	CHCH ₂ -	1 .	2	0	R	Н	- CH ₂ - N- C
60	CH_CH ₂ -	. 1	2	0	R.	н	-CH ₂ -N C-
61	CH	1	2	0	R	н	-CH2-N-C
62 [.]	CHCH_2-	1	2	0	R	н	CH ₂ -N C
63	CHCH ₂ -	1	2	0	R	н	- CH ₂ - N- C- CH ₂ CH ₃
64	CH_CH ₂ -	1	2	0	R	н	-CH2-NC-CN
65	CH-CH2-	1	2	0	R	H ·	- CH ₂ -N-C-
							- CH2- N C

_	_			
T	~ h		4	7
- 1	αIJ	le	- 1	. /

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
67	CH-CH ₂ -	1	. 2	0	R	н	- CH ₂ -N-C
68	C⊢CH₂-	1	2	0	R	н	-CH₂-N-C
69	C⊢√CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
70 ·	C├─────────── CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
71	CHCH_2-	· 1	2	0	R	. н	-СH ₂ -№С———ОСН ₃ Н ₃ СО
72	CH2-	1	. 2	0	R	н	O -CH ₂ -NC
73	CH-€	1	2	0	R	Н	- CH ₂ - № C
74	CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C
75	СҢСН₂-	1	2	0	R	н	- CH ₂ -N-C
76	CHCH2-	1	2	0	R·	н	-CH₂-N-C
77	CH-2-	1	2	0	R	н	- CH ₂ - N- C

т	2	h	le		1		o
	a	u	16	:		. 1	Ω

	-1						
Compd. No.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
78	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-F
79	CHCH2-	1	2	0	R	н	-CH ₂ -N-CF ₃
80	CH2-	1	2	0	R R	н	- CH ₂ - N- C- CF ₃
81	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
82 .	С⊢—СН ₂ -	1	2	0	-	-сн ₃	-CH ₂ -N-C-CF ₃
83	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
84	CH-CH2-	1	2	0	R ·	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	CH2-					н	-(CH ₂) ₂ -N-C-
86	C⊢ CH₂-	1	2	0	-	н	-{CH ₂) ₂ - N- C-\\ H NO ₂
87	C	1	2	0	S	H.	-(CH ₂) ₂ -N-C-CF ₃
88	С⊢{	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃ CF ₃ -(CH ₂) ₂ -N-C-CF ₃

31 .

Tab	ile	1.9
-----	-----	-----

	:						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	, R³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
89	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
90	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
91	с⊢сн₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-C1
92	CH-CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-OCH ₃
93	CH-CH2-	1	2	0	S	н.	-(CH ₂) ₂ -N-C-OCH ₃
94	CH-CH2-	1	2	0	S	н .	-(CH ₂) ₂ -N-C-OCH ₃
95	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
96	C⊢—CH₂-					Н	-(CH ₂) ₂ -N-C-CH ₃
							-(CH ₂) ₂ -N-C
98	C├ - CH₂-	1	2	0	S	H	-(CH ₂) ₂ -N-C
99	с⊢-{}-сн₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI

3 2

Table 1.10

lable	1.10						
Compd. No.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	ー(CH ₂) p 1 (CH ₂) q G-R ⁶
100	C	1	2	0	S .	н	-(CH ₂) ₂ -N-C
101	С├-{Сн₂-	1	. 2	0	S	н	-(CH ₂) ₂ -N-C
102	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
103	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	C ├── CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-F ₃
105	CH-2-	1	2	Ō	S	Ħ.	-(CH ₂) ₂ -N-C
106	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-
107	C⊢-CH₂-	1	2	0	S	H [.]	-(CH ₂) ₂ -N-C-F
108	C⊢ ~ CH ₂ -	1	2	0	S	. н	-(CH ₂) ₂ -N-C-O ₂ N
109	С⊢{	1	2	0	S.	н	-(CH ₂) ₂ -N-C-NO ₂
							-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.11

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	−(CH ₂) _p G−R ⁶ R ⁵ (CH ₂) _q G−R ⁶
111	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
112	C├ \ CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F ₃ C
113	CH-€-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
114	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
115	CH-CH ₂ -	1.	2	0.	R	н	-(CH ₂) ₂ - N- C- CI
116	CHCH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
117	C ← CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
118	C├ ─ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
119	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
120	CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C-CI
121	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI

Table 1.12

Iable	1.12						
Compd.	R ¹ (CH ₂)	k	m	л	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
122	с⊢—Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
123	CH-€-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-(CN
125	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	C├ - CH₂-	1	2	0	. R	н	-(CH ₂) ₂ -N-C-CF ₃
127	C├ - CH ₂ -	1	2	O	R	н	-(CH ₂) ₂ -N-C- H-C- F-CF ₃
128	CH-CH₂-	1	2	0	. R	н.	-(CH ₂) ₂ -N-C-
129	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
130	с⊢—Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
131	C├ - CH ₂ -	1 .	2	0	R	н .	-(CH ₂) ₂ -N-C-F
132	CH-€	1	2 .	0	R	н.	$-(CH_2)_2 - N - C - CF_3$ $-(CH_2)_2 - N - C - C - CF_3$ $O - CF_3$ $O - CF_3$

Table 1.13

Compd.	R (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- R^6$
133	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
134	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
135	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
136	CHCH ₂ -	1	2	0	R .	Н	-(CH ₂) ₂ -N-C
137	CHCH ₂ -	1	2	0	R.	н	-(CH ₂) ₂ -N-C-CI
138	C	1	2	0	R	н	-(CH ₂) ₂ -N-C
139	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CI
140	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
141	C├ \ CH ₂ -	1	2	0	R	H	H ₃ CO О О -(CH ₂) ₂ - № С — Н ₃ Ф
142	CI-CH ₂ -	1	2	0	R		-(CH ₂) ₂ -N-C
1'43	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br

T	а	b	l	е	1	١.	1	4

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
144	CI—CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
145	СН-СН2-	. 1	2	0	R	Н	-(CH ₂) ₂ -N-C
146	С-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	CHCH ₂ -	1	2	0	.R	н	-(CH ₂) ₂ -N-C
148	C	1	2	. 0	R	. н	-(CH ₂) ₂ - N C - CN
149	C	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-
150	C├	1	2	0	R	н	-(CH ₂) ₂ -N-C
151	с⊢С—Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
152	С⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
153	C⊢√_CH₂-	1.	2	0	R	н	-(CH ₂) ₂ -N C F
154	C⊢√_CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F

3 7

-	~*	-		-	٠.	-
	аŧ	١.	_	٦.	.1	-
	a .		_			-

I able	1.13	•						•
Compd.	R ²	≻(CH ₂)j−	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
155	C⊢-{	Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
156	с⊢⟨	CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	сҢ		1	2	0	R _.	н	-(CH ₂) ₂ -N-C
158	с-{	CH ₂ -	. 1	. 2	0	R	н	-(CH ₂) ₂ -N-C-___\-_\-\\\\\\\\\\\\\\\\\\\\\\\
159	c{		1	2	0	R .	Ĥ	-(CH ₂) ₂ -NC
160	c{		1	2	0	R	н	-(CH ₂) ₂ -N-C
161	с⊷{	_}-сн₂-	1	2	o : ·	R	н	-(CH ₂) ₂ -N-C-F
		CH₂-					н	-(CH ₂) ₂ -N-C-F-F
163	c⊢{¯	CH2-	1	2	0	R	н.	-(CH ₂) ₂ -N-C
		CH ₂ -				R	н	-(CH ₂) ₂ -N-C
165	сн	_}-сн₂-	1,	2	0		н	-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G−R ⁶
166	С⊢СН2-	1	2	0	R	н	(S) O CF ₃ -CHN-C-CF ₃
167	C├ - CH₂-	1	2	0	R	н	CH3 CH3
168	CH-CH ₂ -	1	2	0 .	R	H .	(S) O CI -CH-N-C-CI CH ₃
169	CH-CH2-	1	2	0	R	н	(S) P -CHN-C-CI CH ₃
170	CI-CH2-	1	2	0	R	'н.	(S) Q CF ₃ -CH-N-C- F
171	CHCH ₂ -	1	2	0 .	R	Н	(S) P -C+N-C-()-CI CH ₃
172	CH-2-	1	2	0	R	H	CH3 CH3
173	CH₂-	1	2	0	R	H	(S) P -CHN-C- H CH ₃
	C⊢—CH₂-						(F) OCF3 -CHNC-CHSCH3
175	CH-2-	1	2	0	R	н	(F) P -CH-N-C-Br CH ₃
176	C	1	2	0	R	н	(A) P CI CH N-C CI CI CH N-C CI CH N

3 9

Table 1.17

	•••						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _{P 1/5} (CH ₂) _q G-R ⁶
177	С⊢-{	1	2	0	R	н	(A) P CI
178	CI-CH ₂ -	1	2	0	R	н	(F) P CF ₃ -CH-N-C- F
179	CH2-	1	2	0	R	н	(F) P -CH-N-C
180	CH_CH ₂ -	1	2	0	R	н	(A) O O O O O O O O O O O O O O O O O O O
181	CHCH ₂ -	1	2	0	R	н	(A) -CHN-C- CH ₃
182	CH-CH ₂ -	1	2	0	R	н .	СН3 О СЕЗ СН3 Н С СН3
183	CHCH_2-	1	2	0	R	H	ĊH³ O BL
184	CH2-	1	2	0	R	н	CH³ C CI
185	C├ ~ CH ₂ -	1	2	0	R	н	CH3 O CI -CH N C CI CH3 CF3
186	C⊢CH₂-	1	2	Ö	R	н	- CH+ N+ C-
187	C⊢————————————————————————————————————	1	2	O	R	н .	CH3 O -CH+N-C

Table 1.18

14510	1						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
188	C├ ─ CH ₂ -	1	2	0	R	н	СH3 Р -СH-М-С-
189	C⊢-()- CH₂-	1	2	0	R	н	CH3
190	C├ - CH₂-	1	2	0	R	Н	CHNC-CF3
191	С⊢СН₂-	1	2	0	R	н	
192	с⊢(1	2	0	R	н	-CH-N-C-
193	CHCH2	1	. 2	0	R	Н	(A) P CI
194	C├ - CH₂-	1	2	0	R	н	(A) P -CH-N-C
195	CH—CH₂-	1	2	0	R	н	CH ₂ C-Ci
196 .	C ⊢ CH₂-	1	2	0	R	н	(F) P -C+N-C- CH ₂ S
197	C	1	2	0	R	н	(A) P
198	CI—(CH ₂ -	1 .	2	0	R	н	CH ₂ S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 1

Table 1.19

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _{p 1} (CH ₂) _q G−R ⁶
199	CHCH ₂ -	1	2	0	R	н	(5) P Br
200	C⊢—CH₂-	1	2	0	R	н	G+2 C
201	CHCH2-	1	2 .	0	R	н	CH-17-C-C-C
202	CH ₂ -	1	2	0	R	н	(S) P CF 3
203	C⊢-{	1	2	0	R	н	CH2-C
204	CH⊋-	1	2	0 .	R	н	CH ₂ -C
205	CCH ₂ -	1	2	0	R	н	(S) P NO 2 -CH N-C- CH 2-CH 2-CH 2-CH 2-CH 2-CH 2-CH 2-C
206	C├ - CH ₂ -	1	2	0	R	н	(O-12)2-3-CH2
207	Ċ⊢Œ~CH₂-	1	2	0	R	н	(O+2)2-3-CH3
208	CH_CH ₂ -	1	2	0	R.	, н	(S) C1 (O1 ₂) ₂ - S O1 ₃
209	C├ - CH₂-	1	2	0	R	н	(OH ₂) ₂ - S CH ₃

4 2

Ta	ble	1.	2	O
· · a	D_{1}		ح.	v

lable	1.20						
Compd.	R ¹ (CH ₂) _j	k	m	ŋ	chirality	Ŕ³	−(CH ₂) p (CH ₂) q G~R ⁶
210	С⊢—СН₂-	1	2	0	R	н	(S) P C C C C C C C C C C C C C C C C C C
211	CH-€CH ₂ -	1	2	0.	R	н	(CH ₂) ₂ -9-CH ₃
212	C⊢————————————————————————————————————	· 1	2	0	Я	н	(3) P -CH-N-C- (CH ₂) ₂ -5-CH ₃
213	C├ - CH ₂ -	1	2	0	R	н .	(O+ ²) ² -2-C+ ² -C++V-C- (2) -C-C+ (2) -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
214	CH_CH2-	1	. 2	0	- ·	н .	-(CH ₂) ₃ -C-()
215	CH-2-	1	2	0	-	н	-(CH ₂) ₃ -C
216	CH-2-	1	2	0	-	H	-(CH ₂) ₃ -C-(S)
217	C⊢-CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-\(\sigma\) H ₃ CO
218	CH2-	1	2	0	-	н	-(CH ₂) ₂ -CH ₃ H ₃ C
219	C1—CH2-	1	2	0		н	-(CH ₂) ₂ -C
220	CI—CH ₂ -	1	2	0	•	н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

·abie	1.2 1						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R ³	-(CH ₂) , (CH ₂), G-R ⁶ R ⁵
221	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-
222	C├ - CH₂-	1	2	0	-	н .	-(CH ₂) ₂ -C-CI
223	CH-CH2-	1	2	0	-	н	O -(CH ₂) ₂ -C-(CH ₂) ₃ CH ₃
224	CH-CH ₂ -	1	2	0	-	н	-CH ₂ -S-CH ₃
225	CH-CH2-	1	2	. 0	-	н	-(CH ₂) ₃ -C-N-
226	CH-CH2-	1	2	0	-	H	-(CH ₂) ₃ -C·NH
227	CH2-	1	2 .	0		. Н	-(CH ₂) ₃ -C-NH
228	CHCH₂-	1	2	0	-	н	-(CH ₂) ₃ -C·N- OCH;
229	CH2-	1	2	0	-	н	- CH ³ CH ³ CH ³ CH ³ CH ³
							- CH ₂ CH ₂ - C N F
231	C	1	2	0	• .	н	-(CH ₂) ₃ -C-CH ₃

Ta	b	le.	1	.2	2

Table 1	1.22						
Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-}R^6$
232	C├ - CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-
233	С⊢—СН₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
234	C⊢-{CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	- CH ₂ -	1	2	0	-	н	-CH ₂ -C+CH ₂ -C-N-CH ₂ -C)
236	C├ - CH ₂ -	1	2	0		н	-CH ₂ -N-S-CH ₃ .
237	C├ - CH₂-	1	2	0	-	н	- CH ₂ - N- C- O- CH ₂ -
238	CH-CH2-	1.	2	0	-	н	- CH O C N C
239	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
240		. 1	2	0	S .	н	-CH ₂ -N-C-CF ₃
241	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CI—CH ₂ —	1	2	0	S	Н	-CH2-N-C-CF3

Ta	h	ما	1	2	3
ıa	u			. z .	~

Compd. No.	R ² (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
243	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
245	F_CH ₂ -	1	2	0	S .	. н	-CH ₂ -N-C-CF ₃
246	CICH ₂ -	1	2	0	s	н	-CH₂-N-C-CF3
247	CI CI—CH₂-	1	2	0.	.s	н	CH ₂ -N-C-CF ₃
248	H ₃ CO —CH ₂ -	1	2	0	S	н	-сн ₂ -м-с-СF3
249	F ₃ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H ₃ C —CH ₂ -	1	2	0	S	н	-сн ₂ -№-с-
251	F-CH ₂ -	1.	2	0	S	н	-сн₂-N-с-С-СF3
252 1	H3CO-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
253	н₃с-{сн₂-	1	2	Ö	s	н	-CH ₂ -N-C-CF ₃

Table 1.24

					•		
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
254	NO ₂	1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N — CH ₂ -	1	2	0	S	н	-CH2-N-C-C-CF3
256	O ₂ N-CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
257	CF ₃	1	2	0	S		-CH ₂ -N-C-CF ₃
258	CO₂CH₂CH₃	1	2	0	s.	н	-CH ₂ -N-C-CF ₃
259	Сн,	1	· 2 ·	0	S	н	CH ₂ -N-C
260	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	F ₃ C-CH ₂ -					н	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
263	Br CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	OH2-						-CH₂-N-C

Table 1.25

Table '	1.25						
Compd.	R ¹ / _{R²} (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
265	Br—CH₂-	1	2	0	S	н .	-CH₂-N-C
266	CH₂-	1	2	0	S	н ·	-CH ₂ -N-C-CF ₃
267	OCH ₃ → CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	ρος-μ——αιε	1	2	0	S	н	-CH ₂ -N-C-CF ₃
269	H ₃ C-S-CH ₂ -	1	2	0	S	. н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271 ·	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	HO—€———————————————————————————————————						-CH ₂ -N-C- H
273	CN CH₂-	1	2	0	S	н	-CH₂-N-C-
274	NC CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃

• :

Table 1.26

Compd.	R ¹ R ² → (CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
276	F€	1	2	0	S	н	-CH2-N-C-C-C-3
277	CH2−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-√-Сн₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F ₃ CO-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280 .	F ₃ CQ CH ₂ -	1	2	0	S	н.	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	Ō	S	н .	-CH ₂ -N-C-CF ₃
282	(H3C)3C	1	2	0	S	н	-CH ₂ -N-C-CF ₃
283	CH ₃ CH ₂ - CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
284	c⊢();c⊢	1	2	0	S	н	-CH₂-N-C-CF3
285	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
Ž86	CH ₂ -	1	2	0	R	н	-сн ₂ -м-с-СF ₃

Ta	h	ما	1	.2	7
10	0	16			•

rable 1	1.27						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
287 .	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH_CH ₂ -					н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	н	-сн₂-N-С- Н
291	F_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
292	CICH ₂ _	1	2 .	0	R	н	-СH ₂ -N-С-СF ₃
293	CI————————————————————————————————————	1	2	0	R	н	-сн ₂ -N-с-СF ₃
294	H ₃ CQ CH ₂ -	1.	2	0	R	н	-СH ₂ -N-С-СF ₃
295	F ₃ C ————————————————————————————————————	1 .	2	0	R	н	-CH ₂ -N-C-CF ₃
296	H ₃ C —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
297	F————————————————————————————————————	1	2	0	R	. н	-CH ₂ -N-C-CF ₃

T:	de	۱۵	4	2	g
10	10	ľ			а

						•	
Compd.	R ¹ (CH ₂)-	k	m	n.	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
298	H ₃ CO-CH ₂ -	1	2	0	R	н	-сн ₂ -ү-с-С _Б
299	H ₃ C-\\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
300	NO₂ CH₂-	1	2	0	R	н	-CH2-N-C-CF3
301	O ₂ N — CH ₂ -	1	2	0	R.	н	CH ₂ -N-C-CF ₃
302	O ₂ N-CH ₂ -	1	. 2	0	R	н	
303	CF ₃ —CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
305	. Сн ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
306	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	F ₃ C-CH ₂ -					н	-CH₂-N-C
308	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

T	a	h	le	1	2	9

							
Compd. No.	R ¹ (CH ₂),—	k	. m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
309	Br CH2-	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃
310	Q-Q-Q-Q-12-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
311	ВСН2-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
312	CH ₂ -	1	2	0	R	H	-CH2-N-C-CF3
313	ОСН ₂ -	. 1	2	0	R	н.	-CH ₂ -N-G-CF ₃
314	РС-С-Й-Д>-СН-₹	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
315	H ₂ C-\$ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-⟨CF ₃
316	H ₃ CO ₂ C —CH ₂ —	1	2	0	R	H	-CH ₂ -N-C-CF ₃
317	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	HO€	1	2	0	R	н	-CH ₂ -N-C-CF ₃
319	CN CH ₂ -	1	2	0	· R	н.	-CH ₂ -N-C-CF ₃

Table 1.30

Compo	$H = \frac{R^1}{R^2} - (CH_2)_i - \frac{R^2}{R^2}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
320	NC —CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
321	NC-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
323		1	2	0	R	н	-CH ₂ -N-C-CF ₃
324	н ₃ ∞ ₂ с-{	1	.2	0	R	Ή	-CH ₂ -N-C-CF ₃
325	F3CO-CH2-	1	2	0	R	H	-CH ₂ -N-C- CF₃
326	F ₃ CQ ——CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	HO₂C-CH₂-	1	2	0	R	н '	-CH ₂ -N-C-CF ₃
328	(H3C)3C-(1	2	0	R	Н	-CH ₂ -N-C-CF ₃
329	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
330	CH2-	0	3	1	-	н	-CH ₂ -N-C-

Table 1.31

lable	1.3 1						•
Compd.	R ² (CH ₂) _j	, k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
331	CH-CH ₂ -	0	3	1	<u>-</u>	н	- CH ₂ - N- CH ₃
332	C├-(0	3	1	-	н	- CH2- N- C- OCH3 OCH3
333	с⊢√_ сн₂-	0	3	1	-	н	- CH ₂ - N C - N
334	с⊢Ст-сн₂-	0	3	1	-	н	-CH ₂ -N-C-CH ₃
335	CH-2-	0	3	.1		н	-CH ₂ -N-C-\(\sigma\).
336	CHCH2-	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	CH-CH ₂ -	0	3	1	-	н	-CH2-N-C- H3C
338	CH-€-	0	3	1	-	н	-CH ₂ -N-C-
339	CH√2-	0	3	1	R	н	- CH ₂ -N-C-CF ₃
340	C	0	3	1	S	н	- CH2- N C- CF3
341	C	0	3	1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32

i abic i			_				
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
342	CH-CH2-		3	1	-	н	- CH N- C-
343	CH-CH ₂ -	0	3	1	-	н	- CH N- C- H CH(CH ₃) ₂
344	с⊢{сн₂-	0	3	1	-	н	O − C H N- C − CH2CH(CH3)2
345	CH2-	0	3	1	-	н	-(CH ₂) ₃ -C-
346	CHCH2-	0	3	1		н	-(CH ₂) ₂ -C
347	с⊢—Сн₂-	0 ·	3	1	-	н	-(CH ₂) ₂ -CH ₃ H ₃ C
348	C├─ (CH ₂ -	0	3	1		н	-(CH ₂) ₂ -C-CH ₃
349	C⊢√CH₂-	0	3	1	-	н	- CH ₂ - \$ CH ₃
							- CH ₂ -N-S-CH ₃
351	CH2-	0	3	1	-	н	-CH2-N-C-O-CH2-
352	С⊢-{Сн₂-	0	3	1	, -	н˙	- cн о с N С С С С С С С С С С С С С С С С С С

Table	1.	.3	3
-------	----	----	---

•								
Compd.	R ¹ R ²	-(CH ₂);	k	m	n	chirality	Ŕ³	–(CH ₂) p 1 (CH ₂)q G−R ⁵
353	с⊢{		1	2	. 1	-	н .	- CH ₂ - N- C-
354	c⊢(1	3	0	-	н	-CH ₂ -N-C-
355	c⊢{		1	3	0	-	н	- CH ₂ - N- C- CH ₃
356	, c⊢{		1	3	0	-	н	-CH ₂ -N-C-
357	c⊢{		1	3 -	0		н	-CH ₂ -N-C-
358	c-{		1	3	0		н	- CH ₂ -N-C
359	сн{		1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	c-{		1	3	.0	· .	н	O -(CH ₂) ₂ -N-CNO ₂
361	с⊢{		. 1	3	0		н	-(CH ₂) ₃ -C-
362	.c⊢€		1	3	0	- .	н	-(CH ₂) ₃ -C-\(\bigcirc\) OCH ₃
363	с⊢{		1	3	0.	-	н	-(CH ₂) ₃ -C-(S)

Table 1.34

	_ 1				-		
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	[:] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
364	CHCH ₂ -	1	3	0	-	Н	-(CH ₂) ₂ -C
365	с⊢—Сн₂-	1	3	0	-	н	-(CH2)2-CH3 $H3C$
366	С⊢—СН₂-	1	3	0	-	н	-(CH ₂) ₂ -C-C-CH ₃
367	CICH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CH-CH₂-	1	3	0		. н	-(CH ₂) ₂ -C-
369	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-CI
370	CH-CH ₂ -	1	3	0		н	-(CH ₂) ₂ -С-Д-Q(CH ₂) ₃ СН ₃
371	CH-CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-
372 ·	CHCH2-	1	3	0	-	н	- CH ₂ - \$ - CH ₃
							-(CH ₂) ₃ -C·N
374	с⊢{сн₂-	1	3	0		н	-(CH ₂) ₃ -C-N-OCH ₃

Tа	ь	۱۵	1	3	5
12	n	10	Ł	.3	

375 CH2- 1 3 0 - H -(CH2)3 376 CH2- 1 3 0 - H -(CH2)3 377 CH2- 1 3 0 - H -CH2- CH2- CH2- CH2- CH2- CH2- CH2-	
376 CH ₂ - 1 3 0 - H -(CH ₂) ₃ - 377 CH ₂ - 1 3 0 - H -CH ₂ - CH ₂ - CH ₂ - 1 3 0 - H	R ⁴ CH ₂) _q G-R ⁶
377 с⊢√ СH₂- 1 3 0 - н −СH₂-С- Сн	O 12)3- C- N- C-
•	° -c-v-{
378 c⊢√ CH₂- 1 3 0 - H -CH₂-	H ₃ O -CH ₂ -C-N-CI H ₃
<u> </u>	CH ₂ -C-N-F
379. CH ₂ - 1 3 0 - H -(CH ₂) ₃ -	0 С- и———— С- СН ₃
380 CH₂- 1 3 0 - H -(CH₂):	0 3- C- W CH3-
381 с⊢ Сн₂- 1 3 0 - н -сн₂-	О Н 0 О СН3
382 c⊢√ −CH₂− 1 3 0 - H −CH₂−	N-C-O-CH2-
383 CH2- 1 3 0 - H -ÇF	+ O- C- N CI
384 CH2- 2 2 0 - H -CH	CH ₃
385 с⊢ Сн₂- 2 2 0 - нсн	2-N-C

Table 1.3.6

Table 1	1.35						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
386	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-
387	—CH₂-	2	2	0	-	н	-CH2-N-C-
388	-CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
389	—CH₂-	2	2	0	-	. н	-cH ₂ -N-C- H
390	· (2	2	0	-	н .	-CH ₂ -N-C-CF ₃
391	—CH₂-	2	2	0	-	, н	-CH₂-N-C- F
392	CH₂-	2	2	0	-	н	-CH ₂ -N-C- OCF ₃
393	CH ₂ -	2	2	0	-	н .	-CH2-N-C-
394	CH₂-	2	2	0	.· •	Н	-CH2-N-C-
395	CH₂-	. 2	2	0	-	н	-CH ₂ -N-C
							CH2-N-C

Table 1.37

rable	1.3 /						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
397	CH₂-	2	2	0	-	н	-CH2-N-C
398	—CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0		н	-(CH ₂) ₂ -N-C-
400		2	2	0	•	н	-(CH ₂) ₂ -N-C-NO ₂
401	CH₂-	2	2	0	. -	Н	-(CH ₂) ₂ -N-C
402	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
403	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
404	CH₂⁻	2	2	0	-	н	-(CH ₂) ₂ -N-C
405	CH ₂ -	2	2	0	-	н .	-(CH ₂) ₂ -N-C-Br
406	CH₂-	2	2	0	-	H	-(CH ₂) ₂ -N-C-C
407	◯ -CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-Br

Ta	ы	le	1.	.3	8

Compd.	R1 (CH ₂) _j -	k	m	n	chirality	₽³	—(CH ₂) _p G-R ⁶
408	CH₂−	2	2	0	· <u>-</u>	·н	-(CH ₂) ₂ -N-C
. 409	€ CH2-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CI
410	CH₂-	2	2	0	- .	н	(S) P -CH-N-C- CH ₂ CH(CH ₃) ₂ :
411	————————————————————————————————————	2	2	0	-	н	(5) P -CH-N-C- - H - CH ₂ CH(CH ₃) ₂
412	CH ₂ -	2	2	0	-	H	(S) P NO ₂ -CH-N-C
413	CH ₂ -	2.	2	0	<u>.</u>	H	(S) -CH-N-C
414	CH ₂ -	2	2	0	-	Н	(S) Q CF ₃ -CH-N-C- CF ₃ -CH ₂ CH(CH ₃) ₂
415	—CH₂-	2	2	0	-	н	(5) P CF ₃ -CH-N-C- CF ₃ -CH ₂ CH(CH ₃) ₂ F
416	CH₂-	2	2	0	-	н	(S) (P OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
417		2	2	0	-	н	(S) −CH−N−C− CH ₂ CH(CH ₃) ₂
418 418	CH₂-	2	2	0	-	Н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂

Ta	h	ما	1	.3	9
ı a	u	16			_

1 abie	1.5 3						
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
419.	CH₂-	2	2	0	-	н.	(S) P -CH-N-C
420	~ −CH ₂ −	2	2	0	-	н .	(S) -CH-N-C
421		2	2	0	- · .	Н	(S) -CH-N-C-CI CH ₂ CH(CH ₃) ₂
422		2	. 2	0	-	H	(A) (A) (B) (B)
423	- CH ₂ -	. 2	2	0	-	н	(A) 0 -CH-N-C- CH ₂ CH(CH ₃) ₂
424	€ CH2-	2	2	0	-	н	(A) -CH-N-C- H CH ₂ CH(CH ₃) ₂
425	CH₂-	. 2	2	0	-	н	(<i>F</i>) −CH−N−C− H CH ₂ CH(CH ₃) ₂
426	CH ₂ -	2	2	0	-	н	(A) -CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH₂-	2	2	0	-	н	(<i>R</i>) -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
428	CH₂-	2	2	0.		н	(<i>F</i>) −CH−N-C− H CH ₂ CH(CH ₃) ₂
429	€ -CH ₂ -	2	2	0	-	н	CH2CH(CH3)2

Ta	h	ما	1	1	n
14	u	16	- 1	. 4	u

lable	1.70						
Compd. No.	R ² /(CH ₂)j-	k	m	n	chirality	₽³	-(CH ₂) p 1 (CH ₂)q G−R ⁶
430	(Сн₂-	2	2	0	-	н	(A) -CH-N-C- H CH2CH(CH3)5
431	CH ₂ -	2	2	0	-	н	(H) Pr −CH−N-C− CH ₂ CH(CH ₃) ₂ CH ₂ CH(CH ₃) ₂
432	CH₂-	2	2	0	-	н	(A) II -CH-N-C-F -CH ₂ CH(CH ₃) ₂
433	—CH₂-	2	2	0	-	н	(A) P CI -CH-N-C CI -CH2CH(CH3)2 CH2CH(CH3)2
434	CHCH ₂ -	1.	3	1	-	H÷	-CH ₂ -N-C-
- 435	CI—CH ₂ -	1	3	1	- -	н	-CH₂-N-C-
436	C	1	3	1	-	н	-CH ₂ -N-C-\(\sigma\)
437	CH-CH2-	1	3	1	-	н	-сн ₂ -м-с- —со₂сн ₃
	CHCH_2-						
439	C├ ─ }─CH ₂ -	1	3	1	-	H	-сн₂-и-с- р с-г₃
440	CHCH ₂ -	1	3	1	•	н,	-CH ₂ -N-C-OCF ₃

Table 1.41

Table	1.7 1						
Compd.	R ¹ (CH ₂)j-	k	m	n c	hirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
441	C├ - CH ₂ -	1	3	1	-	н	-CH2-N-C-
442	CH-CH2-	1	3	1	-	н	-CH ₂ -N-C-
443	CH_CH2-	1	3	1	•	Н	-CH ₂ -N-C
444	CHCH_2-	1	3	1	• •	н	-сн ₂ -N-С
445	CHCH ₂ -	1	3.	1	-	н	-CH ₂ -N-C-CI
446	CHCH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	CI—CH2-	1	3	1		H	-(CH ₂) ₂ -N-C-
448	CI—CH₂-	1	3	1	•	н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
449	C	1	3	1		н .	-(CH ₂) ₂ -N-C
450	CH-CH ₂ -	1	3	1 .	-	H	-(CH ₂) ₂ -N-C-CF ₃
451	CH_CH2-	1 .	3	1	-	Н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-F ₃

Table 1.42

lable	1.42				•		
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
452	C├ - CH₂-	1	3	:	-	н	-(CH ₂) ₂ -N-C-
453	С⊢—СН₂-	1	3	1		н	-(CH ₂) ₂ -N-C-
454	C├ - CH ₂ -	1	3	1		н .	-(CH ₂) ₂ -N-C-
455	CH_CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
456	CH_CH2-	1	3	1.	-	н	-(CH ₂) ₂ -N-C
457	CHCH2_	1	3	1 .	· <u>-</u>	н	-(CH ₂) ₂ -N-C-C-CI
458	CH-CH₂-	2	2	1 .	-	н	- CH ₂ -N-C-
459	CH-CH₂-	2	2	1	•	н	-CH2-N-C-CH3
460	CH2-	2	2	1	·	н	-CH ₂ -N-C-CH ₃
461	CH-€	2	2	1	· •	н .	- CH ₂ - N- C-
462	CH2-	2	2	1	-	H .	- CH ₂ -N-C-

Table 1.43

Compd.	R (CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
463	CH-2-	2	2	1	-	н,	- CH ₂ - N- C-
464	С├-{СН₂-	2	2	1	-	н	- CH ₂ - N- C — OCH ₃ OCH ₃
465	CH2-	2	2	1	.	н	-CH2-N-C-N
466	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
467	CH-CH2-	2	2	1	-	H	- CH ₂ -N-C-
468	CH-€	2	2	1	· -	н	- CH ₂ - N- C- N(CH ₃) ₂
469	С⊢(СН₂-	2	2	1	-	н	-CH2-HC-COCH3
470	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-CN
471	CH-2-	2	2	1	-	Н	-CH2-MC- HC- CO2CH3
472	CH-2-	2	2	1	-	н	- CH ² - M C - C - C - C - C - C - C - C - C -
473	CH-2-	2	2	1	-	н .	-CH2-N-C-(CH3

Ta	Ы	ما	1	.4	Δ
14	\mathbf{u}			. 🕶	~

lable							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	. Ŕª	-(CH ₂) p 5 (CH ₂) q G-R ⁶
474	CH-CH2-	2	2	1	-	' н ,	-CH ₂ -N-CF ₃
475	CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N C - CH(CH ₃) ₂
476	CH_CH2-	2	2	1	-	н .	-CH2-NC- NO2 .
477	CH-CH ₂ -	2	2	1	-	н	- OH ₂ - H C — ОСН(СН ³) ⁵
. 478	CH-€	2	2	1	 ·	н	- CH ₂ -N-C
479	CH-CH ₂ -	2	2	1	- :	н	-CH2-N-C-
480	CH-CH ₂ -	2	2	1		н	- CH ₂ -N-C-O Br
481	CH-2-	2	2	1	-	н	-CH₂-N-C-
482	C├ - CH ₂ -	2	2	1	-	н	-CH2-HC-S
483 ⁻	C	2	. 2	. 1		н .	- CH ₂ -N-C
484	с⊢-{	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.45

lable i	.43						•
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{-}_{q}G^{-}R^6$
485	C⊢-(CH ₂ -	2	2	1		н	- CH ₂ -N-CF ₃
486	CH-CH ₂ -	2	2	1	•	н	- CH ₂ -N C-
487	CH	2	2	1	-	н	- CH ₂ - N C - CI
488	CH2-	2	2	1	· -	. н	- CH ₂ -N-C-NH ₂
489	CH-CH2-	2	2	1	-	н	- CH ₂ -N-C
490	CH-CH ₂ -	2	2	1.	-	н	OCH2CH3
491	CH-€-	ż	2	1	-	н	- CH ₂ -N-C-CF ₃
492	CH_CH2-	2	.2	1	-	н	-CH ₂ -N-C-OCF ₃
	CHCH2-						- CH ₂ -N-C-CF ₃
494	CHCH2-	2	2	1	-	Н	- CH₂- N- C - CF₃
495	CH-CH ₂ -	2	2	1	- -	Н	- CH ₂ -N-C

Table 1.46

i abic i	1.70	•					
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
496	CH-CH2-	2	2	1	-	Н	- CH ₂ -N-C-F
497	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C-
498	C├ - CH₂-	2	2	1		н	- CH ₂ -N-C-NH ₂ CF ₃
499	C├ - CH ₂ -	2	2	1	<u>-</u> ·	н	-CH ₂ -N-C-\\ -CH ₃ -N-C-\\ -N(CH ₃) ₂
500	.сн-СН2-	2	2	1	-	н,	-СH ₂ -N-С
501	C⊢-(CH ₂ -	2	2	1	-	. н	- CH ₂ - N- C- NO ₂
502	CI-CH ₂ -	2	2 .	1	-	н	-CH ₂ -N-C
503	CH-CH ₂ -	2	2	1	-	: Н	-CH ₂ -N-C
504	CH_2-	2	2	1	-	н	-CH2-N-C- OCH3
505	CH2-	2	2	1	-	н	- CH ₂ - N- C- Br
506	CH-CH2-	2	2	1	-	н	-CH2-N-C- NO2

Table 1.47

lable 1	4 7						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ř³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
507	CH-2-	2	2	1	÷ .	н	- CH ₂ - N C - 0
508	CI—CH₂-	2	2	1	-	н	- CH2-N-C-S
509	CH-CH2-	2	2	1	-	н	-CH2-N-C-S
	CH-CH ₂ -					Н	-CH ₂ -N-C-CH ₃
511	CH2-	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
512	C⊢-€	2	2	1	-	н	- CH ₂ -N-C-CHCH ₃
513	CH-CH ₂ -	2.	2	1	•	н	- CH²- ¼- C- C- CH³
514	CH2-	2	2	1	-	н	- CH ₂ -N-C-C(CH ₃) ₃
515	CH-2-	2	2	1	-	н	-CH ₂ -N-C- H-C- CH ₂ OH
516	H ₂ N	2	2	1	-	н .	-CH ₂ -N-C-
517	H ₂ N —CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
							n

					_
Ta	1.		-	.4	_
12	\mathbf{n}	10	1	4	~

·abic							
Compd.	R ² -(CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) _p (CH ₂) _q G-R ⁶
518	NH₂ CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
519	C-12-C-445	- _. 2	2	· 1	• .	H	-CH2-N-C- H-C- CF3
520	C	2	2	1	-	CH ₃	-CH ₂ -N-C-CF ₃
521	C	2	2	1		-(CH ₂) ₂ CH-	-CH _{Z-N} -C-CF ₃
522	CH-2-	· 2	2	1	-	-CH ₂ CH-	-CH2-N-C-CF3
523	C├ - CH ₂ -	2	2	1		-(CH ₂) ₂ CH-	-CH2-N-C-
524	CH-CH ₂ -	2	2	1	-	-CH ₂ CH-	-сн ₂ -и-с-
525	CI—CH ₂ -	2	2	1	-	н	-CH2-N-C
526	CH2-	2	2	1	-	н	-CH ₂ -N-C-
527	CH-2-	2	2	1.		.	-CH2-N-C-√S
528	CH-2-	2	2	1	-	. н	-CH ₂ -N-C-CS -CH ₃ -N-C-CH ₃ F ₃ C

Ta	bi	le	1.	4	9

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p G -R ⁶ R ⁵ (CH ₂) q G-R ⁶
529	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-√0 NO ₂
530	CH-€ CH₂-	2	2	1	-	. н	-CH ₂ -N-C
531	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\S
532	C├ \ CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CH ₃ H ₃ C
533	CH- C H₂	2	2	1	· · ·	н	-CH ₂ -N-C-0 H H ₃ C
534	CH_CH ₂ -	2	, 2	1	-	н	-CH ₂ -N-C-VO H ₃ C
535	CHZ-	2	2	1	-	н_	-CH ₂ -N-C-C ₅
536	CH2-	2	2	1	-	Н	-CH ₂ -N-C-H ₃ H ₃ C CH ₃
537	CH2-	2	2	1		н	-CH ₂ -N-C-C(CH ₃) ₃
538	CI—CH₂-	2	2	1	-	н	-CH₂-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
539		2	2	1		н	-CH ₂ -N-C-O-CH ₃ -CH ₂ -N-C-O-CH ₃ -CH ₂ -N-C-O-CH ₃
							•

:

Table 1	.5	U
---------	----	---

labic							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	₽³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)_{\overline{q}}G^-R^6$
540	C⊢-()- CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-CH ₃
541	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
542	С⊢ СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
543	CH2-	2	2	1	-	н	-CH ₂ -N-C CH ₂ CH ₃
544	C⊢√CH₂-	ż	2	1	-	н	-CH ₂ -N-C-
545	CH2-	2	2 .	1		н	-CH ₂ -N-C-CI
546	CH-CH ₂ -	2	2	1		н	-CH ₂ -N-C-CI
547	CH-CH2-	2	2	1	-	н	-CH2-N-C-CI
548	C├ - CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CI
549	CH2-	2	2	1	-	н	-CH ₂ -N-C
550	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C

Т	'n	h	le	1.	.5	1

Table 1	1.51						
Compd.	R (CH ₂) _[-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
551	с⊢(сн₂-	2	2	1		н	-CH ₂ -N-C-CH ₂ -CH ₃
552	C├ - CH₂-	2	2	1		н	-CH ₂ -N-C-CH ₂ -CF ₃
553	CH-€CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CF ₃
554	с⊢—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-\N-H
555	CH-CH ₂ -	2	2	1		. н	-CH ₂ -N-C-N-H-CI
556	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-\(\bigcup_H\) -CH ₃
557	CH2-	. 2	2	1		н	-(CH ₂) ₂ -N-C-
558	CH-2-	2	2	1	-	н	-CH N-C-
559	С⊢—СН₂-	2	2	1	-	н	-CHNC-CF3
560	C├ - CH₂-	2	2		-	н	-CHN C-CN
561	CI—CH₂-	2	2	1	-	н	-CH H C - Br

74

Ta	h	۱۵	1	5	2
	_				-

lable 1							•
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	۲۹³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - R^6$
562	C⊢-{	2	2	. 1	-		-CH N C CI
563	CH-2-	2	2	1	-	н	- CH N C - CF ₃ - CH N C - CF ₃ - CH ₃ F ₃ C
564	CHCH ₂ -	2	2	1.	-	н	-CHNC CH₂CH₃ -CHN C-CH₂CH₃
565	CH-CH ₂ -	2	2	1	•	Н	- CH N- C- CF ₃
566	CH-CH ₂ -	. 2	2	1.	-	н	-CH-N-C-CF3 -CH-S-CH3
567	CHCH2-	2	2	.1	-	H.	-CHNC-CF3
568	CHCH2-	2	2	1	-	н	-CHNC-CF3
569	СН2-	2 ·	2	i	-	н	-CHNC-CF3
570	CH2-	2	2	1	-	н	- CHN C-CF3
571	CI—(CH ₂ -	2	2	1	-	н	-CH N C - CH ₃) ₂ -CH ₃ -CH
572	C	2	2	1	-	н	-CHNC-CF3

7 5

Ta	h	10	4	.5	2
14	u	ľ		. J	J

Table							
Compd.	R ¹ /(CH ₂) _j -	k	·m	·.	chirality	R³	-(CH ₂) p 1 (CH ₂) q G−R ⁶
573	CICH ₂ -	2	_. 2	1	-	н	-CHNC-S HHC-S CH3
574	CI-CH2-	2	2·	1	. .	н	-CHNC-S Br
575	CH	2	2.	1	-	н	-CH N C (CH3)3
576	CHCH ₂ -	2	2	1	-	н	-CH-N-C- -CH3 SCH3
577	CHCH ₂ -	2	2	1		н	-CH ^H C-O
578 _.	CH2-	2	2	1	-	н	-CHNC-S
579	C⊢CH₂-	2	2	1	-	н	-CH N C N
580	C├	2	2	1	-	н	-CHNC-S CH3
581	C├ ~ CH ₂ -	2	2	1	· -	Н	-CHN C-S
582	C├ - CH ₂ -	2	2	1	-	н	- CH N C- S
583	С⊢СН₂-	2	2	1	-	н	- CH N C N CH3
		•					

Table 1.54

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
584	CI€ CH ₂ -	2	2	1	-	н	-CH V C - C - C - C - C - C - C - C - C - C
585	CI—CH₂-	2	2	1	-	н	- СН И С- СН3
586	CH-2-	2	2	1	-	н	- CH N C- CI
587	CI—CH ₂ -	2	2	1	-	н	-CHNC-CF3
588	CI—CH₂-	2	2	1		н	- СН- М-С
589	CI-CH ₂ -	2	2	1	-	Н	-CH N-C
590	CHCH ₂ -	2	2	1	-	Н	- CH N C- CH(CH ₃)₂ CH ₃
591	CH-√CH₂-	2	2	1	-	н	-CHNC
592	CH-2-	2	2	1	-	Н .	-CHNC-OCH3
593	C⊢—CH₂-	2	2	1	•	н	- СН № С
594	C├─ \ CH ₂ -	2	2	1		н	-сн» с

T	а	h	le	1	.5	5

lable	1.55						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	'R³	−(CH ₂) p 1 R ⁵ (CH ₂) q G−R ⁶
595	CI——CH₂-	2	2	1	-	н	-CH N-C - CO2CH3 CH3
596	C ⊢ CH₂-	2	2	1	-	н	-CHNC-C-CH3
597	CH-CH2-	2	2	1		н	- CH- N C - CH ³
598	C├ - CH₂-	2	. 2	1	-	н	-CHNC-O
599	CH-2-	2	2	1	- ·	. н	-CH N CH3
600	CH-{	2 .	2	1	-	н	-CH N C -O Br
601	CH2-	2	2	1	-	. н	-CHNC-CH3
· 602	CH-CH ₂ -	2	2	1	-	н	-CHN C- N(CH ₃) ₂
603	CH-CH ₂ -	2	2	1	-	н	- CH N C - NH2
	CH-2-						CH ₃ H
605	C⊢-(¯)-CH₂-	2	2	1	- -	H .	-CH-M-C-

Тa	b	le	1	.5	6

labic	1.5 0						
Compd. No.	R ¹ / _{R²} (CH ₂) _j –	k	m	n	chirality	[°] R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
606	C├ CH₂-	2	2	1	<u>.</u>	н	-CHNC-CS
607	CH-CH ₂ -	2	2	1	:	н	-CHNC-S
608	CI-CH ₂ -	2	2	1	-	н	-CH-N-C
609	C	2	2	1	-	н	-СH-V-С-СО СН3 H3C
610	CI—CH ₂ -	2	2	1		н.	-CH-NC-CH3
611	CHCH ₂ -	2·	2	1	-	н	-CH-N-C
612	CHCH2-	2	2	1	-	H	-CH-N-C
613-	CHCH2-	2	2	1	-	Н	-CHNC-CH ₃ -CH
614	CH-CH2-	2	2	1	-	н	-CH-N-C
615	CH-CH2-	2	2	1	-	н	-CHWC-NH
616	CH_CH ₂ -	2	2	1		н	-chthc-fy

Table 1.57

Compd.	R ² (CH ₂) _j	k	m	n	chirality	Ŕ³	-(CH ₂) _p
617	C⊢-{_}- CH₂-	2	2	1	-	н	-CHN-C-CF3
618	CH-CH ₂ -	2	2	1	-	н	-CH N C
619	CH-CH ₂ -	2	2	1	-	н	-CH+N-C- H CH(CH ₃) ₂ .
620	CH	2	2	1	- · .	н .	- CH N C - Br CH(CH ₃)₂
621	CH	2	2	1	. -	н.	-CH-M-C-CI CH(CH³)⁵ CH(CH³)⁵
622	CH-€	2	2	1	~	н	-CHNC- H CH(CH ₃) ₂
623	CH2-	2	2	1	-	н	-CH N C
624	CH2-	2	2	1	ż	н	-CH-N-C- H CH(CH ₃) ₂
625	CH2-	2	2	1	-	H	-CH-N-C
626	C⊢————————————————————————————————————	2	2	1	· <u>-</u>	н	- CH N C C - CH (CH ₃) ₂ CF ₃
627	С⊢—СН₂-	2	2	1	-	н	- CH- N C → OCH₂CH₃ - CH(CH₃)₂

Table 1.58

Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ³	-(CH ₂) , G (CH ₂) - G-R ⁶
628	с⊢(сн₂-	2	2	1	-	н	- CH N C - CO2CH3 - CH(CH3)2
629	C⊢-{CH₂-	2	2	1	-	н	-CH N C -CF3 -CH (CH3)2
630	CH-2-	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ CH(CH ₃) ₂
631	CH-CH2-	2	2	1	-	н	- CH N C - CF ₃
632	CH-CH ₂ -	2	2	1	-	н	OF −CH+N-C− CH(CH ₃) ₂ CF ₃
633	C├ - CH ₂ -	2	.2	1	-	.Н	Q CF ₃ - CH N C ← CF3 CH(CH ₃) ₂ F
634	CHCH ₂ -	2	2	1	-	н	- CH+N C ← F CH(CH ₃) ₂
635	CHCH2-	2	2	1	- -	н	-CHN C-CH(CH ₃) ₂
636	CH_CH₂-	2	2	1	-	н .	CH(CH ₃) ₂
637	CH ₂ -	2	2	1	-	н	-CH+N-C- CH(CH ₃) ₂
638	C├ - CH ₂ -	2	2	1	-	н	- CH N C - CN CH(CH ₃) ₂
							•

Table 1.59

rabic	1.33						
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	[^] R ³	-(CH ₂) p (CH ₂) q G-R ⁶
639	C	2	2	1	-	н	-CH N-C - N(CH ₃) ₂ -CH(CH ₃) ₂
640	CHCH ₂ -	2	2	1	-	н	-сн к с -сн к с -сн к с -сн к с -сн к с
641	CHCH ₂ -	2	2	1	-	н	-CHNC-CO₂CH3 H CH(CH3)2
642	CHCH ₂ -	2	2	1	-	н	-с+ ус- і н сн(сн ₃) ₂
643	с⊢С}-сн₂-	2	2	1	-	н .	- СН- N- С
644	CHCH2-	2	2	1 .	-	н	O - CH-N C H CH(CH ₃) ₂
645	CHCH ₂ -	2	2	1	-	Н	- CH N C - NH ₂ - CH(CH ₃) ₂
646	CH-CH2-	2	2	1	-	н	- СН- № С
647	CH-CH₂-	2	2	1	-	Н	-CHN-C
648	C	2	2	1	-	н	-CH N C - CH(CH ₃) ₂ -CH(CH ₃) ₂
649	с⊢СН₂-	. 2	2	1	-	H	- СН И С- ОСН(СН3)2 СН(СН3)2
	-						•

Table 1.6	abi	ıe	- 1	.b	U
-----------	-----	----	-----	----	---

14510	1.00						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	-(CH ₂) p G (CH ₂) q G-R ⁶
650	с⊢—Сн₂-	2	2	1		н	CH(CH ³) ⁵
651	CH2-	2	2	1	-	н	CH(CH ₂) ₂
652	CI—CH₂-	2	2	1	-	н	-CH-N-C
653	C⊢(CH ₂ -	2	2	1	-	н	-CH-N-C- 0(CH ₂)₄CH ₃ CH(CH ₃)₂
654	CH-CH ₂ -	. 2	2	1		н	-CH-H-C-C-CH3
655	с⊢С Сн₂-	. 2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂
656	CH-CH ₂ -	2	2	. 1	-	н .	-CH-N-C-
657	CH-CH ₂ -	2	2	1	. -	н	-CH-N-CS CH(CH ₃) ₂
658	C	2	2	1	2	н.	-CH-N-C-NH
659	CHCH ₂ -	2	2	1	-	н	-CH-N-C
660	CI-CH ₂ -	2	2	1	-	н	-CH-N-CN

Table 1.61

lable	1.61						•
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) p 1 (CH ₂) q G−R ⁶
661	CH-CH2-	2	2	1	-	н	-CH-N-C S H CH(CH ₃) ₂ OCH ₃
662	C├ -	2	2	1	-	н	-CH-N-C-CH3 -CH(CH3)2
663	C⊢-CH₂-	2	2	1	-	н	-CHWCH3)2
664	CH-2−	2	2	1	-	н	-CHNC- NO ₂
665	CH2-	2	. 2	1	-	Н .	-CH-NC-S -CH(CH3)2
666	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
667	CH-CH ₂ -	2	2	1	- ,	н	-CH-N-C
668	CH_CH ₂ -	2	2	. 1	-	Н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CCH
669	CH-2-	2	2	1	-	н	-CH-N-C-1 CH(CH ₃) ₂ CH ₃
	CH-2-						-CH-N-C- CH(CH ₃) ₂
671	CH-CH2-	2	2	1	<u>.</u> ·	Н	-CH-M-C- NO2

8 4

Table 1.62

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
672	C⊢-{CH₂-	2	2	1	-	н .	-CH-V-C-\
673	С⊢(СН₂-	2	2	1	-	н	-CH-H-C-S
674	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-S CH(CH ₃) ₂
675	.CHCH ₂ -	2	2	1	-	Н	-CHNC-S CH3
676	CH-CH ₂ -	2	2	. 1	-	Н	-CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
677	CH-CH2-	2	2	1	-	н	-CH-N-C-N-C-N-CH(CH ₃) ₂ CH ₃
678	CH_CH ₂ -	2	2	1	-	H	-CH-N-C
679	CH-2-	2	2	1	-	н	-CH-N-C-S- CH(CH ₃) ₂
680	CH-CH ₂ -	2	2	1	-	Н	-CHN-C-SBr
681	CH2−	2	2	i	-	н	- СН- N- С- СН ₃ СН(СН ₃) ₂ СН ₃
682	CH-€-	2	2	1	-	н	-CH-N-C

Table 1.63

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{\Pi^4}{R^5} (CH_2)_{q} - G^{-}R^6$
683	С⊢—СН₂-	2	2	1	-	н	-CHNC-S H S SCH ₃
684	СН ₂ -	2	2	1	•	н	-CHN-C-S & CH(CH ₃) ₂ CH(CH ₃) ₂
685	C ⊢	2	2	1	-	н	-CH-N-C- S S-CH ₃ CH(CH ₃) ₂
686	с⊢ СН₂-	2	2	1	-	н	-CHN-C- HH CH ₂ CH(CH ₃) ₂
687	CH_CH2-	2	2	1	•	н	-c+ v-c-
688	CHCH ₂ -	2	2	1	-	н	-CHNC
689	CHCH2-	2	2	1	-	H :	-снис- О
690	CHCH2-	2	2	1	-	н	-CH N C-Br
691	CH2-	2	2	1	-	н	-CH N C- (NCH ₃) ₂
692	C	.2	2	1	•	H	-CHNC
693	C	2	2	1	•	H .	-CHN-C

Table 1.64

				_			
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p G-R ⁶
694	CI-CH ₂ -	2	2	1	-	н .	-CH N C- ○ OCH2CH3
695	С⊢—СН ₂ -	2	2	1	-	н	-CH N-C- 0 ∞2CH3
696	C├─ \ CH ₂ -	2	2	1	- .	н	-CH N-C-C-CCF3
697	C├ \ CH ₂ -	. 2	2	1	- -	н	-CH-N-C-CN
698	C├ - CH ₂ -	2	2	1		н	-CHNCH ₃) ₂
699	C ⊢ CH₂-	2	2	1		н	-сн и с- О
700	C├ - CH ₂ -	2 -	2	1	-	н	-CH N-C
701	C├─ ◯ -CH ₂ -	2	2	1	-	н .	-CHN-C-C-CH3
702	C⊢—CH₂-	2	2	1	-	н	-CH N-C
703	CI-CH ₂ -	2	2	1	- .	н	-CH N+C- CH(CH3)2
704	CI—CH₂-	2	2	1	•	н	-CH N-C- NO2
							·

8 7

T	а	Ь	ì	e	1	6	5

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
705	CHCH2-	2	2	1	-	Η٠	-CHNC-S H3C
706	CHCH ₂ -	2	2	1	-	н	-снус- -снус- -снус-
707	C├ ~ CH₂-	2	2	·1	-	н	-CHN-C
708	С⊢СН₂-	2	2	1	-	н	-CHN-C-SB'
<i>.</i> 709	С⊢-СН₂-	2	2	1	<u>.</u> .	н	-CH-Y-C- \$ SCH3
710	CH-CH2-	2	2	1	-	Н	-CHN-C-S Br
711	CH-CH ₂ -	2	2	1	-	н	-CH-V-C-CH3
712	C ← CH ₂ -	2	2	1	-	н	-ching-st
713	С⊢—СН₂-	2	2	1	-	H	-CH-N-C
	С├─{						CH ₃
715	с⊢{сн₂-	2 ·	2	1	-	H	-c++n-c-(\$

Ta	Ь	ما	1	6	6
	u		- 1	. 0	

							•
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
716	C⊢(CH₂-	2	2	1	-	н	-CH4C-\N
717	CH-CH2-	2	2	1	-	H·	-CHNC-OT NO2
718	CH-CH2-	2	2	1	-	н	-c+n-c-2+
719	С├-СН₂-	2	2	1	-	н	-c+n-c-
720.	CH-CH2-	2	2	1	-	Н	-CHNC-OFBr
721	C	2	2	1	•	н	-c+-v-c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
722	C	2	2	1	-	H	-cH-v-c
723	C⊢CH₂-	2	2	1	-	н	-CH-N-CNH2
724	C	2	2	1	-	н	-CH-N-C-(CH3)3
725	СН2-	2	2	1	-	н	-CHMC-C-C-C
726	C	2	2	1	-	н	-снис-С-сн,

Ta	b	le	1.	6	7

Table 1	1.67						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂) q G-R ⁶
727	CI—CH2-	2	2	1	-	н	-CH-4-C-CI
728	CI—CH ₂ -	2	2	1		н	-CH-N-C- NH₂
729	С⊢-{СН₂-	2	2	1	-	н	-CH-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
730	C├ - CH ₂ -	2	2	1	-	н	-c+n-c
731	с	2	2	1	-	н.	-CH-NC-CH3
732	C├─(2	2	1	•	н	-CHNC-CF3
733	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
734	CH-2-	. 2	2	1	-	H	-c+n-c
735	CH-2-	2	2	1	• •	н	-CHNC-C-
	CI—CH ₂ -						-CHN-C- H ₂ N CF ₃
737	CI—CH₂-	2	2	1	•	н	-c+NC

-	L		4	~	0
Ta	n	16	- 1.	6	ы

Table	1.68						
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)^{\frac{R^4}{p+1}}_{P_5}(CH_2)^{\frac{1}{q}}G^{-R^6}$
738	CH-CH2-	2	2	1	•	н	-CH-N-CO-CH3
739	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- NH
740	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
741	CHCH ₂ -	2	2	1		н	-CHN-C-\S\NO_2
742	C├-(-)-CH₂-	2	2	1 ·	-	н .	-CHN-C-S
743	CHCH ₂ -	2	2	1		н	-chnc-C
744	CH2-	2	2	1	•	н	-CHN-C
745	CH_CH ₂ -	2	2	1 .	•	H .	-CHN-C-(CH3)3
746	CH-2-	2	2	1	-	н	-CH-N-C-N-CH3
747	CH-€	2	2	1		Н	-CHNCCH3
748	CH-CH ₂ -	2	2	1		н	-chnc-

Table 1.69

labic	1.03						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂)q G-R ⁶
749	с⊢—Сн₂-	2	2	1	-	н	-cH-N-C
750	с⊢(Сн₂-	2	2	1	-	н	-CH-N-C
751	с⊢—СН₂-	2	2	1	-	н	-CH-N-C-CH ₃ -CH ₂ OH
752	CH-CH ₂ -	2	2	1	-	. н	-CHN-C-CF3 -CH2OH CF3
75 3	CH_CH ₂ -	2	2	1	-	н	-CH-N-C
754	CH-CH2-	2	2	1	-	н	-CH-N-C- CH2OH
755	CH-CH ₂ -	. 2	2	1	- .	н	-CHN-C-CH3 CH2OH
756	CH2-	2	2	1	- -	Н	-CH-N-C- H CH₂OH
757	CHCH ₂ -	2	2	1	-	н	CH ⁵ OH OCH ⁵ CH ³
758	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CO₂CH3 CH2OH
759	C├──── CH ₂ -	2	2	. 1		н	-CHN-C-COCF3 -CH2OH
			•				

9 2

Table 1.70

Table	1.70						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³.	-(CH ₂) _p + (CH ₂) _q G-R ⁶
760	с⊢сн₂-	2	2	1		н	-CH-N-C- H CH₂OH F
761	CH-CH2-	2	2	1	-	н	CH-N-C-F CH₂OH
762	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3 -CH2OH
763	CH-2-	2	2	1	-	Ή	-CH-N-C- H CH ₂ OH
764	с⊢—СН₂	. 2	2	1	-	н	-C-N-C-
765	CI—CH₂-	2	2	1	-	н	CH ₃ CH ₃ -C-N-C-CH ₃ -CH ₃
766	CI-CH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-C
767	CH-CH ₂ -				-	н .	CH3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
768	CHCH_2-	2	2	1	-	н .	CH ₃ P Br
769	C├ - CH ₂ -	2	2	1	-	н	СН3 О ОСF3 -С-N-С-ОСF3 СН3
770	CH-2-	2	2	1	•	Н	CH ₃ P Br -C-N-C- H CH ₃ P CH ₃ P

Table 1.71

Table	1.7 4						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
771	CI-CH ₂ -	2	2	1	-	н	CH ₃ P CF ₃
772	CH2-	2	2	1	-	н	CH ₃ P -C-N-C- H CH ₃ .
773	CH-CH ₂ -	2	2	1	-	Н	CH ₃ O CH ₃ O CH ₃ C(CH ₃) ₃
774.	CH ₂ -	2	2	1	-	н	CH ₃ P SCH ₃ SCH ₃
775	CI—CH₂-	2.	2	1	-	н	CH ₃ Q CH ₃ -C-N-C-Q CH ₃ C(CH ₃) ₃
776	CH2−	2	2	1	•	H	GH, 9 CH3
777	С⊢—СН₂-	2	2	1	-	H	CH ₃ O CF ₃ -C-N-C- CH ₃ CH ₃
778	CI—CH₂-	2	2	1	<u>-</u>	H ,	CH ₃ O NO ₂ -C-N-C- CI CH ₃
779	CH-CH₂-	2	2	1	-	н	CH3 CCI
780	CH2-	2	2 ·	1	- .	н	CH ₃ O NO ₂
	C ├── CH ₂ -						CH3 P

Table 1.72

Table 1	1.1 2						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
782	C├ - CH₂-	2	2	1	-	н	CH ₃ O OCH ₃ -C-N-C-OCH ₃
783	CHCH ₂ -	2	2	1	-	H	CH ₃ OCH ₂ CH ₃ -C-N-C-
784	С⊢—СН₂-	2	2	1	-	н	CH ₃ Q -C-N-C-CH ₂ CF ₃ CH ₃
785	CH2-	2	2	1	•	н	CH ₃ OCH ₃
786	CH-CH2-	2	2.	1		н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\$
787	CH-2-	2	2	1	.	н .	H ₂ CCCH ₂
788	CH-CH ₂ -	2	2	1	-	Н .	H ₂ C—CH ₂ CF ₃
789	CH2-	. 2	2	1	-	Н	H2C-O45
790	CH-CH ₂ -	2	2	1	-	н	H ₂ CCH ₂
791	CHCH ₂ -	2	2	1	-	н	H ₂ C—CH ₂
792	CH_CH ₂ -	2	2	1	-	н	H ₂ C - O+2 -C - N - C - C - C - C - C - C - C - C -

Table 1.73

lable 1	.73						·
Compd. No.	R ² (CH ₂),	k	m	n	chirality	R ³	-(CH ₂) _p (CH ₂) _q G-R ⁶
793	CI—CH₂-	2	2	1		н	-C-N-C-F H-C-CH ₂
794	CH2-	2	2	1	-	н .	H ₂ C—CH ₂ F
795	С⊢—СН₂-	2	2	1	-	н	-C-N-C-CF3
796 [.]	CH2-	2	2	1	-	н .	H ₂ C-CH ₂
797	CHCH ₂ -	2	2	1.	-	н	H ₂ C-CH ₂ C(CH ₃) ₃ .
798	CHCH ₂ -	2	2	1	-	н	H ₂ C CH ₂
799	CH-CH ₂ -	2	2	1	-	ηн	O CF3 -C-N-C-CH ₂ CH ₃
800	CI-CH ₂ -	2	2	1		н	-C-N-C
801	C├ \ CH ₂ -	2	2	1	•	н	H ₂ C-CH ₂
802	CI—CH₂-	2	2	1	• •	н .	H ₂ C-CH ₂
803	CI—(CH₂-	2	2	1	-	н	-C-H ₂ C-CH ₂

96

Table 1.74

100.0	1.7 7						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
804	С⊢ СН₂-	2	2	1	-	н	-C-N-C-CH ₂ CF ₃
805	C├ - CH₂-	2	2	1	-	н	H ₂ C—CH ₂ OCH ₃
806	СН-СН2-	2	2	1	-	· Н	H ₂ C—CH ₂
807	CHCH2-	2	2	1	-	н	(CH3)2 G-NH2
808	CH_CH ₂ -	2	2	1		н	(CH ³) ² C-NH ² -CH-N-C- D CH ³
809	CHCH2-	2	2	1	-	н	-CH-N-C-NH ₂
810	CH2-	2	2	1	· •	н	-CH-N-C-NH2
811	С⊢ СН₂-	2	2	1	-	н	-CH-N-C- H H (CH ₂) ₂ -C-NH ₂
812	C	2	2	1	-	н	- CH-N-C
813	C	2	2	1	-	н	-CH-N-C
814	C├ ~ CH₂-	2	2	1	-	н	-CH-N-C

Table 1.75

	•						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}\frac{R^4}{1}(CH_2)_{q}G-R^6$
815	C⊢(2	2	1	-	н	-CH-N-C
816	CH-€¯>- CH₂-	2	2	1	-	н	CH-N-C-WH2
817	CH-{	2	2	1	-	н	-CH-N-C
818	CI—CH ₂ -	2	2	1	-	н	-C++N-CN-12 H (C1-12) 2-C-N-12
. 819	CHCH2-	2	2	1	-	н	-CH-N-C-CF3 (CH ₂) _Z C-NH ₂ CF ₃
820	CHCH_2-	2	2	1	-	н	- CH-N-C
821	CHCH ₂ -	2	2	1	.	н	-CH-N-CI -CH ₂ OCH ₃
822	CH-CH ₂ -	2	2	1	•	• н	CH ₂ OCH ₃
823	CH-CH2-	2	2	1	-	н	-CH-N-C-
824	CH-CH ₂ -	2	2	1	-	н	O CH3 -CH-N-C- CH2OCH3
825	CH-CH2-	2	2	1	-	н	-CH-N-C

Table 1.76

	•		_				
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p
826	С⊢—СН₂-	2	2	1	•	н	-CH-N-C-CH ₃ -CH ₂ OCH ₃
827	C├ - CH ₂ -	.2	2	1	-	н	-CH-N-C-NH CH₂OCH₃
828	C├ - CH₂-	2	2	1	•	н ·	-CH-N-C
829	CH-CH ₂ -	2	2	1	•	н	-CH-N-C
830	CH-CH ₂ -	2	2	1		. н	-CH-N-C
831	C├ - CH₂-	2	2	1	- .	· н	CH2OCH3
832	С⊢—СН₂-	· 2	2	1.	-	н	-CH-N-C-CI CH2OCH3
833	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C- H CH ₂ OCH ₃
834	CH-CH ₂ -	2	2	1		н	-CH-N-C
835	C├ - CH₂-	2	2	1	-	н	-CH-N-C- CH₂OCH₃
836	CH-2−	2	2	1	•,	н	-CH-N-C- CH3 CH3 CH3 CH3

Table 1.77 ·

lable	1.77						
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p
837	C├ - CH₂-	2	2	1	-	н	-CH-N-C- CH ₂ OCH ₃
838	C├ - CH₂-	2	2	1	-	н	-CH-N-C- CH2OCH3
839	C├ - CH ₂ -	2	2	1	. -	н	CH-N-C-OCH ₃ -CH-N-C-OCH ₃ -CH ₂ OCH ₃ OCH ₃
840	C⊢√CH₂-	2	2	1	-	Н	-(CH ₂) ₃ -C-
841 .	С⊢—СН₂-	2	2	1	-	н.	-(CH ₂) ₂ -C-
842	CI—(CH ₂ -	2	2	1	-	н .	-(CH ₂) ₂ -C-CI
843	CH-€	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
844	CH-CH ₂ -	2	2	1	-	H	-(CH ₂) ₂ -C-CH ₃
845	CHCH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-Q S-CH ₃
846	C├ - CH₂-	2	2	1	-	н	-(CH ₂) ₂ -C
							-(CH ₂) ₂ -C

100

Table 1.78

lable	1.70						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
848	CH2−	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
849	C├-{}- CH₂-	2	2	1	•	н .	-(CH ₂) ₂ -C
850	С├ - СН ₂ -	2	2	1	-	н	- CH₂- Ş
851	CH2-	2	2	1	-	н.	- CH ₂ -N-C-N-CF ₃
852	CH-CH ₂ -	2	2	1	•	н	- CH ₂ -N-C-N-CF ₃
853	CH-CH ₂ -	2	2	1	•	H	- CH ₂ - H C- N-
854	CHCH2-	2	2	1	-	н	- CH ₂ - N-C- N-C- N-C- H
855	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
856	CH-2-	2	2	1	-	Н	-CH²- ¼ C- ¼ C- C+3
857	CH-2-	2	2	1	-	н	-CH2-N-C-N-C-H
							-сн₂-йс-й-сосн³
							• •

101

Ta	h	۱۵	1.	7	q
ı a		16			_

lable	1.7 9						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
859	с⊢СН₂-	2	2	. 1	-	н	- CH2- N C-N-
860	с⊢{}-сн₂-	. 2	2	. 1		н	-CH2-N-C-N-CN
861	CH-CH₂-	2	2	1	-	н	- CH ₂ -N-C-N-
862	CH-CH₂-	2	2	1	-	н	- CH ₂ -N-C · N- CH ₃
863	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	CH_CH ₂ -	2	2	· 1	-	н	- CH ₂ -N-C-N-C-H OCH ₃
865	CH-CH ₂ -	2	2	1,	<u>.</u> .	н	-CH ₂ -N-S-CH ₃
	CH-CH ₂ -					н	- CH ₂ - N- S-
867	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-CF ₃
868	с⊢{сн₂-	2	2	1	-	н	-CH ₂ -N-S
869	С⊢С СН₂-	2	2	1	• '	H _.	- CH ₂ -N-S-CH(CH ₃) ₂

102

_				-	^
Ta	m	10	7	.8	11
		16			v

, abic							
Compd.	R ¹ /(CH ₂) -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
· 870	С├ - СН₂-	2	2	1	-	н	- CH ₂ -N-S-CH ₃
871 .	CH-CH2-	2	2	1	-	н	- CH ₂ - N S (CH ₂) ₃ CH ₃
872	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-
873	CH-2-	2	2	1	-	н	Н
874	CH-CH2-	2	2	1	-	н .	- CH O C N CI
875	(CH ₂ -	2	2	1	-	н	- CH ₂ - N C CF ₃
876	Br—CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	1	-	н	- CH ₂ - N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ - N C CF ₃
879	CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
880	O^O CH₂-	2	2	1	•	н	- CH₂- N-C

103

Table 1.81

Compd.	R¹ R² (CH₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
881	Br CH ₂ -	2	2	1	-	н	CH ₂ -N-C
882	OH2-	2	2	1	-	н	- CH ₂ - N C - CF ₃
883	CI CH₂-	2	2	1	-	н	- CH ₂ -N-CF ₃
884	#c.c-H αι⁵-	2	2	1		н	-CH ₂ -N-C-CF ₃
885	О Н ₃ С- \$————————————————————————————————————	. 2	2	1	-	· H	-CH2-N-C-CF3
886	F———CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
887	F ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
888	HO-(2	2	1	-	H	-CH ₂ -N-C-
	CH₂-						- CH ₂ - N C-
890	CH ₂ -	2	2	1	-	н ·	- CH ₂ -N-C-CF ₃
891	CI—CH₂-	. 2	2	1	. -	н	- CH2- N: C- CF3

104

Table 1.82

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
892	H ₃ CO — CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
894	HO CH ₃ H ₃ C CH ₂ - CH ₃	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	- CH₂- N C CF3
896	CN CH₂-	2 -	. 2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C	2	2	1	-	н	- CH ₂ -N C-
898	HO ₂ C-\(\bigc\)-CH ₂ -	2	2	. 1	-	н .	- CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1	-	н	-CH ₂ -N-C-CF ₃
90 <u>0</u>	н₃∞₂с-С-СН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
901	CH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
.902	O ₂ N CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃

105

Table 1.83

lable	1.03						
Compd.	R ² (CH ₂) _i	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
903	H ₃ CO — CH ₂ - OCH ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
904	HQCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	਼ ਸ	- CH ₂ -N-C-CF ₃
[.] 907	CH(CH ₂) ₂ -	2	2	. 1	-	н	-CH₂-N-C
908	N C C C C C C C C C C C C C C C C C C C	2	2	1	<u>.</u> .	н	-CH₂-N-C-
909	○- # c- ○ - c+²-	2	2 .	1	-	н	- CH ₂ -N-C-CF ₃
910	CI CI—CH₂-	2	2	1	-	н	- CH ₂ -N-C-C-CF ₃
911	CI CH ₂ -	2	2	1		н	- CH ₂ -N-C- CF ₃
912	Br CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
913	H3CO	2	2	1	-	н	- CH ₂ -N-C-CF ₃

106

Table 1.84

rable	1.04					•	
Compd.	R ¹ R ² (CH ₂) _j	k.	m	n	chirality	R³	-(ĊH ₂) p 1 (CH ₂) q G−R ⁶
914	CH2°C—CH2°C	2	2	1	-	н	- CH ₂ - N- C-CF ₃
915	OH CHCH²-	2	2	1	-	H	- CH ₂ - N- C- CF ₃
916	NCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
917	N——CH₂-	2	2	1	-	н	- CH ₂ -N-C-⟨CF ₃
918	H3CO2C-OH2	2	2	1	-	н	- CH ₂ -N-C-CF ₃
919	H ₃ C-CH ₂ -	2	2	1	•	н	- CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH₂-	2	2	1	<u>.</u> ·	н .	- CH ₂ - N- C- CF ₃
	D-CH₂-						- CH ₂ -N-C-CF ₃
923	CI-CH-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
924	H ₂ N-C	2	2	1	-	, н	-CH ₂ -N-C-CF ₃

107

Ta	h	۱,	1.	Ω	5
12	30	Ie.	- 1.	. to	Э

lable	1.03						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
925	H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
926	C)-CH2-C)-CH2-	2	.2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ —CH ₂ -	2	2	1	;	н	-CH ₂ -N-C-CF ₃
928	F3CO-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
. 929	H₃CS{	2	2	1		н	-CH ₂ -N-C-CF ₃
930	CH ₃	2	2	1	-	Н	-CH ₂ -N-C
931	NC —CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C-CF ₃
932	NO ₂					Н	-CH ₂ -N-C-
933	CH-CH-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
934	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
935	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

108

T	а	h	le	1	8	6

Table	1.00			_			
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	⁻ R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
936	NO ₂	2	2	1	-	H	-CH ₂ -N-C-CF ₃
937	(H ₃ C) ₂ N-(-)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	CH-Z-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
940	OH CH₂-	2	2	1		, н	-CH ₂ -N-C-CF ₃
941	F ₃ C C⊢—CH₂-	2	2	1	-	H .	-CH ₂ -N-C-CF ₃
942	CH-{	2	2	1	-	н	- CH N C - CF ₃ - CH (CH ₃) ₂ CF ₃
943	С⊢-{	1	4	0	-	н	CH ₂ -N-C-CF ₃
944	CHZ-	1	4 .	0		н .	-CH ₂ -N-C-CH ₃
945	C⊢√ CH₂-	1	4.	0	•	н	-CH ₂ -N-C
946	С⊢СТ>-СН₂-	1	4	0	-	'H	-(CH ₂) ₂ -N-C

109

T	ab	ie	1	Я	7
	111			. 0	

rabie	1.07						
Compd. No.	R ² (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
947 [.]	с⊢(сн₂-	1	4	0	-	н	-(CH ₂) ₂ -N-C
948	с⊢√Сн₂-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CI
949	CH-CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂
950	CH-CH ₂ -	0	4	1	-	н	- CH ₂ - N- C-
951.	CHCH2-	1	2	0	R	н	-сн ₂₋ N-с-С-сн ₃
952	С├──СН₂-	. 1	2	0	R	н	-CH ₂ -N-C-\(\bigcup_N(CH_3)_2\)
953	C⊢CH₂-	1	2	0	R		-(CH ₂) ₂ -N-C
	CH-CH ₂ -						-CH ₂ -N-C-VH
955	CHCH2-	1	2	0	R	•	-(CH ₂) ₂ -N-C- H H ₃ C-NH
956	CHCH2-	1	2	0	R		-(CH ₂) ₂ -N-C
957	CH-CH2-	1	2	0,	R	н	-cH²-N-C-QOH

110

Table 1.8	T	ab	le	1.	8	8
-----------	---	----	----	----	---	---

	1						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
958	C├ ─ CH ₂ -	. 1	2	0	R	Н	-(CH ₂) ₂ -N-C
959	CH-2-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
960	C⊢CH₂-	1	2	0	R	н	-(CH ₅) ² -N-C-CH ₃
961	с⊢СН₂-	1	2	0	R	Н	-сн ₂ -ү-сн ₃
962	Ç⊢—CH₂-	1	2	0	R	Н,	-(CH ₂) ₂ -N-CH ₃
963	CH_CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-С-Ф-ОН
964	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H-C- CO ₂ CH ₃
965	CH-2-	1	2	0	R	н	$-(CH_2)_2$ -N-C- $-\infty_2$ CH ₃
966	CH-CH ₂ -	. 1	2	0	R ·	н	-CH2-N-C-CH3
967	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
968	CH-CH2-	1	2	0	R	H .	-CH ₂ -N-C-NH

111

Table	1.	8	9
-------	----	---	---

lable	1.03		•				
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
969	C├ - CH₂-	1	2	0	R	н .	-(CH ₂) ₂ -N-C-NH
970	C	1	2	0	R	н	-CH ₂ -N-C-√N(CH ₃) ₂
971	C├ \ CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
972	Ci—CH₂-	1	2	0	R	н .	-CH ₂ -N-C
973	CH-€	1	2	0	R	H.	-(CH ₂) _Z -N-C-NH ₂
974	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-_NH ₂
975	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
976	CH_CH ₂ -	1	2	. 0	R	н	-CH2-N-C-NH
977	CH-CH ₂ -	1	2	0	R .	H	-(CH ₂) ₂ -N-C-NH
978	CH-2-	1	2	0	R	н	-CH2-HC-NH
979	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NH

112

~	_	L	١.	_	^	^
и,	а	D	le	- 1	.9	u

i abie	1.90						
Compd.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
980	C	1	2	0	R	н	-сн ₂ -и-с-сн ₃
· 981	CHCH2-	1	2	0	R	н	-(C12)2-N-C-C13
982	СН-СН2-	1	2	Ó	R	. н	-CH ² -N-C-\ H ₃ C) ² N
983	C ⊢ CH ₂ -	1	2	0	R	н -	-(CH ₂) ₂ -N-C-
984	.CHCH ₂ -	1	2	0	R R	н.	-сн ₂ - N-С- Н С-С-С-Сн ₂ Он
985	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-С
986	CH-CH-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
987	-CH-CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
988	C	1	4	0	-	н .	-CH2-N-C-CF3
989	CH2-	1	4	0	-	н	-ch ₂ -N-C-O-ch ₂
990	C├───── CH ₂ -	1	4	0	-	н .	-CH2-N-C-
						•	

113

Ta	h	ما	1	9	1
10	_				

Table	1.31						
Compd.	R ² (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
991	С⊢-{СН₂-	1	4	0		н	-(CH ₂) ₂ -C-
992	С⊢—СН₂-	1	4	0	-	н	-(CH ₂) ₂ -C-(CH ₃)
993	CH2-	1	4	0	-	н	O CH ₃ -(CH ₂) ₂ -C-
994	с⊢{сн₂-	1	4	0	-	Н	-(CH ₂) ₃ -C-
995	C├ - CH₂-	1	4	0	· .	н	-(CH ₂) ₃ -C-\OCH ₃
996	с⊢-{сн₂-	1	4	0	-	H .	-(CH ₂) ₃ C-NCH ₃
997	CH-{-}-CH ₂ -	2	2	1	-	н	-CH2CH(CH3)2
998	CH-{-}-CH2-	2	2	1	-	н	OF3 -CHN-C- CH2CH(CH3)2
999	C├ - CH ₂ -	2	2	1	-	н	O O O O O O O O O O O O O O
1000	C	2	2	1	-	н	-C+ v-C- H O OCH3 O OCH3
1001	C├ - CH ₂ -	2	2	1	•	н	O OCH ₂ CH ₃ -CH N-C

114

	Т	al	ole	9 '	1.	9	2
--	---	----	-----	-----	----	---	---

Table 1	.92						
Compd.	R (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{G}G-R^6$
1002	С⊢—СН₂-	2	2	1	-	н	-(CH ₂) _p + (CH ₂) _q G-R ⁶ OCF ₃ -CH N-C O1 ₂ CH(CH ₃) ₂
1003	с⊢(сн₂-	2	2	1	-	н	-CHN-C
1004	C├ - CH ₂ -	2	2	1	-	н	OHOCH3P OCH3
1005	CH-2-	2	2	1	- .	н	О ОСН3 -СН N-С ОСН3 -СН₂СН(СН₃)2 ОСН3
1006	C├ - CH₂-	2	2	1	-	H·	ОСН ₂ СН ₃ -СН-N-С — ОСН ₂ СН ₃ -СН-N-С — ОСН ₂ СН ₃ -СН-СН-З) ₂
1007	C├ - CH ₂ -	2	2	1	-	н	ОСН2СН3 -СН-К-С-С-С-Н2СН3 -СН2СН(СН3)2 ОСН2СН3
1008	CH-2-	2	2	1	-	н	(CH ₂) ₂ -C-NH ₂
1009	C├ - CH ₂ -	2	2 ·	1	-	н	(CH2)2-Q-NH2 -CH-N-C
1010	CHCH ₂ -	2	2	1		н	OCH ₂ CH ₃ -CH-N-C
1011	CH-CH ₂ -	2	2	1	<u>.</u>	н	- CHH H- C- CH ₂ CH ₃
1012	с⊢ Сн₂-	2	2	1	- ,	н	- CH-N-C
							•

1 1 5

Table 1.93

iable							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1013	C├ - CH ₂ -	. 2	.2	1	-	Н	-CH-N-C
1014	С⊢СН₂-	2	2	1	-	н	(CH) 5-6-NH5 -CHN-C- OCH5CH2
1015	с⊢СН₂-	2	2	1	-	. н	-CHPS-C-NH2 OCH2CH3
1016	C├ \	2	2	0	-	н	-CH ₂ -N-C-CF ₃
1017 .	CH-2-	. 2	2	0 ·	-	н .	-CH ₂ -N-C-
1018	CHCH2-	2	2	1	•	н	-CH2-N-C
1019	CHCH2-	2	2	1	-	н	-CH ₂ -N-C
1020	CH2-	2	2	1	-	н	-сн₂-N-с
1021	CH₂-	. 2	2 .	1	-	н	$-CH_2-N-C-$ F_3CCH_2O OCH ₂ CF ₃
1022	C	2	2	1	-	н	CH ₃ OCH ₃
1023	CH₂-	2	2	1	-	н	(5) P CH ₂ CH ₃ -CH ₃ CH ₃

116

Т	a	h	le	1	.9	4
	a	u	10			

Compd.	R ² (CH ₂) _j	k	m	n	chirality	[°] R³	-(CH ₂) p (CH ₂) q G−R ⁶
1024	C├ - CH₂-	2	2	1	- -	. н	(S) OCH3 -CH3 OCH3 -CH3 OCH3
1025	CCH ₂	2	2	1	-	. н	(S) P −CH-N-C− − OCH₂CH₃ I H CH₃
1026	С⊢СН2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1027 .	CHCH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH ₃ OCH ₃ -CH ₃
1028	CH2−	2	2	1	- ;	н	(S) OCH ₂ CF ₃ -CH-N-C-CH H CH ₃ OCH ₂ CF ₃
1029	CH-CH₂-	2	2	1	-	н	(S) OCH₂CH₃ -CH₁C CH₂ CH₃
1030	CH-CH₂-	2	2	1	- -	н	(S) OCF ₃ -CH-N-C-CH ₃
1031	C⊢—CH₂-	2	2	1	-	Н	CH3 OCH3
1032	CH ₂ -	2	2	1	-	н	(R) OCH ₃ -CH-N-C OCH ₃ CH ₃ OCH ₃
1033	C├ - CH ₂ -	2	2 .	1	-	Н	(A) CH₂CH₃ -CH·N·C EH3
1034	CH ₂ -	2	2	.1	-	H,	(A) OCH3 -CH-N-C

117

Ta	ь	le	1	.9	5

Compd. No.	R ² (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{Q}G^{-R^6}$
1035	с⊢(сн₂-	2	2	1	•	н	(A) OCH ₂ CH ₃ -CH-N-C
1036	с⊢-{сн₂-	2	2	1	-	н	(R) -CH-N-C → OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
1037	CH-CH ₂ -	2	2	1	•	н	(F) OCH ₂ CH ₃ -CH-N-C
1038	CH-CH ₂ -	2	2	1	-	Ħ	(F) OCH ₂ CF ₃ -CH-N-C- CH ₃ OCH ₂ CF ₃
1039	_CHCH₂-	2	2	1.		. н	(A) CH-N-C OCH₂CH₃ CH₃ CH₃
1040	CH-CH ₂ -	2	2	1	-	н	(F) P OCF ₃ -CHN-C- H CH ₃
1041	C⊢-{CH₂-	2	2	1	-	н	(R) Q OCH ₃
1042	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1043	C├ - CH₂-	2	2	1		Н	-CH ₂ -N-C-
	CH2⁻						-CH ₂ -N-C-
1045	CH-€	2	. 2	1	-	н	-CH ₂ -N-C

118 .

Table 1.96

1 apre							
Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂) q G−R ⁶
1046	с⊢(сн₂-	2	2	1	-	н	-CH ₂ -N-C
1047	с⊢-{	2	2	1	-	н	-CH ₂ -N-C-CH ₃
. 1048	CH-CH2-	2	2	1	-	н _.	-CH ₂ -N-C
1049	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ H ₂ N Br
1050 ·	CHCH2-	2	2	1.	-	н	(S) OCH ₃ -CH-N-C- CH ₂ CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH-CH2-	2	2	1	<u>-</u>	Н	(S) CH ₂ CH ₃ -CH-N-C-C-CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1052	CH- 2 −	2	2	· 1	-	н	(S) OCH ₃ -CH-N-C
1053	CHCH2-	2	2 .	1	. ·	н	(S) OCH ₂ CH ₃ -CH-N-C
1054	C ├── CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1055	C⊢√CH₂-	2	2	1	-	н	(5) OCH ₂ CH ₃ -CH-N-C
1056	C⊢√CH₂-	2	2	1	-	н	(S) OCH ₂ CF ₃ -CH-N-C
					,		

119 .

Table 1.97

, abic							
Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1057	СН-СН ₂ -	2	. 2	1		.H	(F) OCH ₂ CH ₃ -CH-N-C
1058	_ C├ - CH₂-	2	2	1	-	н	(S) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1059	с⊢(Сн₂-	2	2	1	-	́н	(S) OCF ₃ -CH-N-C
1060	CH-CH ₂ -	2	2		-	н	(A) DOCH3CH3 -CH-N-C
1061	CH-€	2	2	1		н .	(F) QCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	С├-{СН₂- ∙	2	2	1	-	н	(S) Q -CH-N-C- CH ₂ CH(CH ₃) ₂
1063	CH-CH2-	2	2.	1	-	н	(F) P OCH ₃ -CH-N-C
1064	C├ - CH₂-	2	2	1	-	Н	(A) OCF3 -CH-N-C
1065	CH-CH2-	2	2 .	1	-	н	(F) OCH ₃ -CH-N-C OCH ₃ H CH ₂ CH(CH ₃) ₂ OCH ₃
1066	С⊢{СН₂-	2	2	1	-	н	(A) O CH ₂ CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1067	C	2	2	1	-	н	(A) OCH3 -CH-N-C OCH3 -CH2CH(CH3)2 OCH3

120

т	9	h	le	1	9	R
	d	u	16		. 3	0

lable 1							
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	H3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1068	CH2-	2	2	1		н	(A) OCH ₂ CH ₃ -CH-N-C
1069	CHCH2-	2	2	· 1	· •	н .	(A) OCH ₂ CH ₃ -CH-N-C
1070	CH-€	2	2	1	-	н	CH-NC-S-SCH
1071	с⊢—Сн₂-	2	2	1	-	Н	-CH-N-C
1072	CH-CH2-	2	2	1	·	н	-CH-WCC(CH3)3
1073	C	2	2	1	-	H	- CH- H- C- CH-3
1074	CH-(-)-CH ₂ -	2	2	1	-	н	- CH-N-C-CF3
1075	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
1076	CHCH ₂ -	2	2	. 1	-	н	-c++ N-C → NO2
- 1077	CHCH ₂ -	2	2	1	-	н	-CH-N-C
1078	CH-2-	2	2	1	-	н	-CH-MC-
•							_

121

Ta	h	ما	1	9	9

i abie	1.33						·
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1079	C├ - CH₂-	2	2	1	-	Н	- CH2 CH2 CH3
1080	CH-2-	2	2	1	-	н	-CH-N-C
1081	CH	2	2	1	-	н	orochi ochi
1082	CH2-	2	2	1	-	н ,	(5) P O O
1083	CH2-	2	2 .	1	-	. н	- CH+ N+ C-
1084	CHCH2-	1	2	0	R	н	-CH ₂ -N-C
1085	C├ \ -CH₂-	1	2.	0	R	н	$-CH_2-N-C$ H_2N H_2N
1086	C├ - CH₂-	1	2	0	·R	н	$-CH_2-N-C$ H_2N
1087	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H
1088	CH2-	1	2	0	R	н	-CH ₂ -N-C-
1089	CH-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-N-C-N-F
					. •		

122

Table 1.100

lable	1.100						
Compd. No.	R (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1090	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
1091	CH-CH2-	1	2	0	R	, н	-CH ₂ CH ₂ -N-C-
1092	C├ - CH ₂ -	1	2	0	R		-CH ₂ CH ₂ -N-C
1093	CH-CH2-	1	2	0	R	н	-CH ₂ CH ₂ -N-C
1094 ·	CH-2-	1	2	0	R	н.	-CH ₂ CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1095	CH-CH2-	1	2	0	R	н	-сн ₂ сн ₂ - n-с-
1096	CHCH2-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-H-H-F
1097	C ← CH ₂ -	. 1	2	0	R	н .	OCH2CH₂ CH2CH2-N-C-
1098	CH-2-	1	2	0	R	н	−CH ₂ −N-C−−−CH ₃
1099	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1100	CHCH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C

123

Tab	1 ما	1	01
I du			

Table 1							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1101	C ⊢	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1102	CH2-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1103	H ₃ C-CH ₂ -	1	2	0	 R	. н	-CH ⁵ -V-C-CH ³
1104	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1105	H ₃ C-CH ₂ -	1	2	0	R	H	CH ₂ -N-C
1106	H ₃ C-CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C- CH ₃
	H ₃ C-CH ₂ -						-CH ₂ -N-CNO ₂
1108	CH ₃ CH₂− CH₃	1.	2	0	R	Н	-CH ₂ -N-C
1109	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1110	CH₃ N—CH₂- CH₃	1	2	O.	R	н	-CH ₂ -N-C
1111	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C

124

Ta	h	ما	4	1	0:	2
18	O				u	_

lable	1.102						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	[:] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1112	CH₃ N→CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1113	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C
1114	с⊢{	2 .	2	1	-	н	-CH ₂ -N-C
1115	CCH₂-	2	2	1	-	н	-CH₂-N-CF
1116	СНСН2-	2	2	1	·-	H	-:CH ₂ -N-C
1117	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-CNO ₂
1118		1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1119	H₃CS(-)-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ .
	H ₃ CO —CH ₂ — OCH ₃						-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1122	H3C (H3C)2CH-CH2-CH2-CH3)2	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 5

Ta	b	le	1	.1	0	3
10	v	10			v	•

lable 1				_			
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	`R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_Q-CH ₂ -	1	· 2	0	R	н	-CH ₂ -N-C-CF ₃
1125	C⊢(CH₂-	2	2	1	- ·	н	- 0+ N- C-
1126	C├ - CH ₂ -	2	2	1	·	н	- CH-N-C
1127	CH_CH2	2	2	1	-	н	-CH-MCNH
1128	CHCH2-	2	2	1	-	н	-CH-N-C
1129	CH	2	2	1	-	н .	-CH-N-C
1130	с⊢— сн₂-	2	2	1		н	-c+ Nc - Br
1131	С⊢—СН₂-	2	2	1	٠_	н	-c+ Nc-
1132	CHCH2-	2	2	1	-	. Н	-CH2-N-C-CF3
1133	H ₃ CO CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-СF ₃

126

Table 1.104

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1134	H ₃ CO H ₃ CO—CH ₂ - H ₃ CO	1	2	. 0	R	н	-CH ₂ -N-C-CF ₃
1135	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	СН2-	.1	2	0	R	н	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1140	O ₂ N — CH ₂ -	1	2	. 0	R	н	-CH₂-N-C-CF₃
1141	CH ₂ -	. 1	2	0	R	H	-CH ₂ -N-C-CF ₃
1142	CH₂-	1	2	0	R	н	-CH₂-N-C-CF3
1143	OH20 OH20 CH2	1	2	0	R .	н .	-CH ₂ -N-C-CF ₃
-1144	H₃CO CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

127

Table 1.105 .

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1145	H ₃ CO CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1146	OH2O-OH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1147	HC-C-H CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1148	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1149	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1150	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-N-H
1153	CH ₃ CH ₂ -	1	2	0	R ·	Н	-CH ₂ -N-C-N-CI
1154	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1155	CH₃ CH₂- CH₃	1	2		R	н	-CH ₂ -N-C-N _H -CH ₂ -N-C-N _O F ₃ C

128

Ta	h	ما	1	1	n	ĸ
12	ŧ 1	160			u	u

100.0	1.100						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1156	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1157	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SSCH ₃
1158	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1159	CH ₃ CH ₂ -	1	2 .	0	R	H	-CH ₂ -N-C
1160	CH ₃ N CH ₂ - CH ₃	1	2	. 0	R	н	-CH ₂ -N-C
	OH H ₃ CO—CH ₂ -		•			н	-сн ₂ - N-с-
1162	H ₃ CO—CH ₂ —CH ₂ —	1	2	0.	R	н	-CH ₂ -N-C-CF ₃
1163	H ₃ CO-CH ₂ -	1	. 2	0	R	н	-сн ₂ - N-с-С _{F3}
							-CH ₂ -N-C-CF ₃
1165	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1166	Bt H₃CO—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
							·

1 2 9

Ta	h	ما	4	1	07

rable	1.107						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	'R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1167	с-{	2	2	1	. •	н	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	н	-CH ₂ -N-C CF ₃
1169	H ₂ C- C- H ₂ - CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-⟨CF ₃
1170	H CH ₂ -	1	2	0	R	н	-сн ₂ -м-с-СF ₃
1171	СН2-	1	2	0	.R	н	-CH ₂ -N-C
1172	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C-N-H
1173	C ⊢ √-CH₂-	1	2	0.	R	н	-CH ₂ -N-C-N-H
1174	CHZ−CHz−	1	2	0	R	н	-CH ₂ -N-C
1175	H ₃ C-CH ₂ -	1	2	0	R .	Н	-CH₂-N-C-CH₃
1176	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1177	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃

130

Table 1.108

Table	1.100						·
Compd.	R ¹ /(CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $(CH_2)_{q}^{Q}$ $G-R^6$
1178	H ₃ C-CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C
1179	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1180	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
	CH ₃ CH ₃					н	-CH₂-N-CBr
1182	CH₃ CH₂− CH₃	1	2	0	R .	н	-CH₂-N-C-NH OH
1183	CH₃ CH₂− CH₃						-CH ₂ -N-C-N-H OCH ₃
1184	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1185	CH ₃					н	-CH ₂ -N-C
1186	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-N-C-NH
							-CH ₂ -N-C-Br
1188	с⊢С сн₂-	2	2	1	-	н	-CH ₂ -N-C-N-N-OH

1 3 1

Ta	h	ما	1	.1	n	q
	ı	16	- 1		u	3

lable	1.109						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1189 .	С├-{}-СН₂	2	2	. 1	-	н	-CH ₂ -N-C-N-C-N-H
1190	C⊢-{CH₂-	2	2	1	-	н	-CH ₂ -N-C
1191	CH₃ CH₂− .CH₃	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1192	CH ₃ N CH ₂ − CH ₃	1	2	0	R ·	H	-CH₂-N-C-CF₃
1193	CH ₃ N CH ₂ − CH ₃	1	2	0	R	, н	-CH ₂ -N-C-C-C-C-S
	CH ₃ CH ₂ -					. н	-CH ₂ -N-C
	CH ₃ CH ₂ − CH ₃						-сн ₂ -N-с-Вг
	CH ₃ N—CH ₂ − CH ₃						-CH ₂ -N-C-\(\sigma\)
							-CH ₂ -N-C
1198	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-сн ₂ - N-с С С С С С С С С С С С С С С С С С С С
1199	CH ₃ CH ₃	1	2	0	R .	н	-CH ₂ -N-C-CH ₃
							•

1 3 2

Table 1.110

						•	
Compd.	R (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1200	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH₂-N-C
1201	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH₂-N-CF
1202	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1203	H ₃ CCH ₂ -	1	2	0	R	H	-CH ₂ -N-C-C
1204 ·	H ₃ CCH ₂ -	1	2	0	R	H.:	-CH ₂ -N-C
1205	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- Br
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1207	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1208	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1209	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH3
1210	H ₃ C-CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-CI

133

Table 1.111

Compd. No.	R (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1211	Н ₃ С-СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1212	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1213	CH-CH2-	2	2	1	-	· H	-CH ₂ -N-C
1214	C⊢————————————————————————————————————	2	2	1		Н	-CH ₂ -N-C
1215	CH-CH ₂ -	2	2	1	· -	н	CH ₂ -N-C- CI
1216	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1217	C├ - CH₂-	1	2	0	R ·	н	-CH ₂ -N-C
1218	C⊢CH₂-	1	2	0	R	н	-CH ₂ -N-C
1219	CHCH ₂ -	1,	2	0	R	н	-CH ₂ -N-C-CI
1220	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1221	с⊢—Сн₂-	1	2	0	R	н	$-CH_{2}-N \cdot C \longrightarrow H_{2}N$ $-CH_{2}-N \cdot C \longrightarrow F$ $H_{2}N$

134

Table 1.112

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1222	CH-CH2-	1	2	0	R	н	-CH2-MC-NHCH3
1223	С-СН2-	1	2	0	R	н	-CH ₂ -N-C-
1224	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1225	H₃C- \ -CH₂-	1	2	0	R	н	CF ₃
1226	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	CH₂-N-C-
1227	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CI
1228	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NC$
1229	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F H H ₂ N
1230	H ₃ C-CH ₂ -	1	2	0	R	Н 	-CH ₂ -N-C-√N H
1231	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1232	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

1 3 5

Table 1.113

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1233	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-сн ₂ -N-с-СF ₃
1234	CH ₃ CH ₂ -	1	2	0	R ·	н	-CH2-N-C
1235	CH ₃ CH ₂ - CH ₃	1	2	0	R	H- 	-CH2-N-C
1236	CH ₃ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1237	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1238	CH ₃ CH ₂ -					н	-CH ₂ -N-C-√N-N-H
1239	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1240	CH ₃ CH ₂ - CH ₃						-CH ₂ -N-C- H
1241	CHCH2-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1242	C	2	2	.1		н	-CH ₂ -N-C- F
1243	CHCH_2-	2	2	1	-	н .	-CH₂-N-C

1 3 6

Ta	h	ما	1	1	1	4

lable	1.1 1 7						
Compd. No.	R (CH ₂);-	k	m	n	chirality	R³	—(CH ₂) _p 1 (CH ₂) _q G−R ⁶
1244	с⊢()—сн₂-	2	2	1	-	н	-CH ₂ -N-C-
1245	C⊢-{CH₂-	2	2	1	-	н	-CH ₂ -N-C
1246	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1247	C⊢√_CH₂−	2	2	1		н	-сн ₂ -N-с-
1248	CHCH2-	. 2	2	1	-	. н	-CH ₂ -N-CNO 2
1249	CHCH2-	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1251	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1252	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CH(CH ₃) ₂
							-CH ₂ -N-C
1254	CH ₃ CH ₂ −	1	2	0	R	н	-CH2-N-C-(CH3)2

137

Table 1.115

Tuble !			_				
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1255	C├ - CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C
1256	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C
1257	· CH ₃ CH₂− CH₃	1	2	0	R	, н	CH ₂ -N-C
1258	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1259	CH ₃ CH₂-	1 ·	.2	0	R	н	-CH ₂ -N-C-
1260	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1261	C├ \ _CH ₂ -	1	2	0	R ·	. н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
1263	CH ₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-O H ₃ C -CH ₂ -N-C-O H ₆ C -CH ₂ -N-C-O H ₆ C -CH ₂ -N-C-O H ₆ C
.1264	C⊢√_CH₂-	1	2	0	R	н	-сн ₂ -N-с-СО
1265	H ₃ C-CH ₂ -	1	2	0	R	' н	-сн ₂ -мс-Со
	-						

138

Table 1.116

, abic .					·		
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1266	CH₃ CH₃	1	2	0	R	н	-CH₂-N-C-O H-C
1267	с⊢С сн₂-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1268	CH2-	1	2	0	R	н	-CH ₂ -N-C
1269	СН2−СН2−	1	2	0	R	н	-CH ₂ -N-C
1270	С-СН2-	1	2	. 0	R	н	-CH2-N-C-
1271	С⊢СН2-	1	2	0	R	н .	-CH ₂ -N-C-F
1272	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-OCF ₃
1273	H ₃ C	1	2 .	0	R	н	-CH ₂ -N-C-
1274	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1275	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH₂-N-C-
1276	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

1 3 9

Table 1.117

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1277	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	•
1278	CH ₃ CH ₂ - CH ₃	1	2	0	R _.	н	-CH ₂ -N-C-
	CH ₃ CH ₂ -						-CH₂-N-CBr HO
	CH ₃ CH ₂ -					н	-cH2-H-C-
1281	CH₃ CH₂− CH₃	1	2	0	. R	Н	-CH ₂ -N-C
1282	CH2-	2	2	1	٠,	н	-CH ₂ -N-C-N-H-OCF ₃
1283	C⊢(CH2-	2	2	1	-	н ,	-CH ₂ -N-C
1284	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-→Br
	C├ - CH ₂ -						-CH ₂ -N-C-
1286	H ₃ ¢ N(O43)3O————O43-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1287	NO ₂	1 .	2	0	R	н	-CH ₂ -N-C-CF ₃

140

Table 1.118

$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} + G - R^6$ $-CH_2 - N - C - CF_3$ OCH 3
- OCH ₂
-CH ₂ -N-C
$-CH_2-N-C$ H_2N CH_3
-CH ₂ -N-C-N-CH ₃
-CH ₂ -N-C-H ₃
-CH ₂ -N-C
-CH ₂ -N-C-F
-CH ₂ -N-C-(CH ₃) ₃
CH2-N-C-SCH3
Q .CH ₂
$-CH_{2}-N+C$ $F_{3}C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$

141

Table 1.119

	•••						<u></u>
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1299	H ₃ CO H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	осн ₃ н ₃ со—Сн ₂ -					н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO—CH ₂ -	1	2	0	R	, Н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃ H ₃ CO CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1303	H ₃ CO—CH ₂ -	1	2	0	R	, н	-CH ₂ -N-C-CF ₃
1304	H ₂ CQ -CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1306	H ₃ CCH ₂ Q H ₆ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO — CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1308	СН₂-	1	2	Ò	R	н	-CH ₂ -N-C
1309	H ₃ CO CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃

142

Table 1.120

lable 1							
Compd.	R (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1310	H ₃ CQ HO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1311	O^O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	I 	1	2	0	R	н	. −CH ₂ −N-C− CF ₃
1313	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1314·	O ₂ NCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1315	H ₃ C_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	O ₂ ·N CH ₂ -					н	-CH ₂ -N-C
1318	с⊢ Сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	CH_CH ₂ -	1	2	0	R	н	
1320	B	1	2	0	R	, н	-сн ₂ -N-с-С _Б

143

Table 1.121

Compd.	R¹ R ² (CH ₂)j	k	m	ก	chirality	R ³	−(CH ₂) _p + (CH ₂) _q G−R ⁶
1321	с⊢С −сн₂-	1	2	0	R .	н	-CH ₂ -N-C-Br
1322	C⊢√CH₂-	1	2	0	R	н	-CH2-N-C-CH3
1323	CH_CH ₂ -	1	2	0	R	н _.	-CH2-N-C
	CH_CH2-	•					-CH ₂ -N-C- H HO CH ₃
1325	CHCH2-	1	2	0	R	н.	-CH2-N-C
1326	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C
1327	с⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C
1328	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1329	H ₃ CCH ₂ -	1	2	0	R	н	-CH2-N-C-(CH3
1330 .	H₃C- (_)—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1331	H ₃ C-CH ₂ -	1.	2	0	R	н	$-CH_{2}-NC-CH_{3}$ $-CH_{2}-NC-CH_{3}$ $+O$

144

Tab	le	1.	1	22

rabie	1.122						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1334	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
	CH ₃ CH ₂ − CH ₃					н .	-CH2-NC-Shr
1336	CH ₃ CH₂− CH₃	1	·- 2	0	R	н	CH ₂ -N-C-CH ₃
1337	CH₃ CH₃ CH₃	1	2	0	R	н	-CH2-H-C
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
	CH₃ CH₃					н	* н 🖵 🖤
1340	CH ₃ CH ₂ - CH ₃	. 1	2	0	R	н	-CH ₂ -N-C
1341	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-NC-$ H_2N
1342	C├─ \ CH ₂ -	2	2	1	-	н	H₂N O Br CH₂−N-C−← CI

1 4 5

Table 1.123

Table 1			_				
Compd.	R (CH ₂);-	k	m	п	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
1343	CH2-	2	2	1	-	н	-CH2-N-C-CH3
1344	CH2-	2	2	1	-	н	-CH2-N-C-CI
1345	CH-CH ₂ -	2	2	.1	-	н	-CH₂-N-C
1346	CH-€	2	2	1	-	н	-CH ₂ -N-C
1347	СН-СН2-	1	2	0	R	н	-CH₂-N-C-S CH3
1348	H₃C- \ CH₂-	1	2	0	R	н	-CH₂-N-C-S CH3
1349	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH2-N-C-S CH3
1350	с⊢(сн₂-	2	2	1	-	н	CH ₂ -N-CS-CH ₃
1351	CHCH ₂ -	1	2	0	R	. Н	-042-11-0-043
1352	H ₃ C-CH ₂ -	1	2	0	R ·	н	-045-P.C.
1353	CH ₃ CH ₂ - CH ₃	1	2	0	Ŗ	н	-012-H C -012

146

Table 1.124

Compd. R_2 (CH ₂) k m n chirality R^3 -(CH ₂) R^4 (CH ₂) R^4	
1355 $CH - CH_2 - 1 $	H ₂) _q -G-R ⁶
1356 $H_3C \longrightarrow CH_2 - 1 2 0 R H - CH_2 - N^2C \longrightarrow H_2^2 + H_2^2$ 1357 $CH_3 \longrightarrow CH_2 - 1 2 0 R H - CH_2 - N^2C \longrightarrow H_2^2 + H_2^2$ 1358 $CH \longrightarrow CH_2 - 2 2 1 - H - CH_2 - N^2C \longrightarrow H_2^2 + H_2^2$ 1359 $CH_3 \longrightarrow CH_2 - 1 2 0 R H - CH_2 - N^2C \longrightarrow CH_3$ 1360 $CH_3 \longrightarrow CH_2 - 1 2 0 R H - CH_2 - N^2C \longrightarrow CH_3$	Ç-04,
1357 CH_2 1 2 0 R H $-CH_2$ 1 2 0 R $-CH_2$ 1 $-CH_$	CN
1358 CH_{2} . 2 2 1 - H $-CH_{2}$. N. C. H_{2} . 1 2 0 R H $-CH_{2}$. CH_{3} . 1360 CH_{3} . 1 2 0 R H $-CH_{2}$. CH_{3} . 1 2 0 R H $-CH_{2}$. CH_{3} . CH_{3	CN
1359 CH_{3} CH_{2} CH_{2} CH_{2} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{3} CH_{4} CH_{2} CH_{3} CH_{4} CH_{4	ÇN N
1360 CH ₂ - 1 2 0 R H -CH ₂ -N-C-CH ₃	CN N
CH₃	
1361 H ₃ C-CH ₂ - 1 2 0 R H -CH ₂ -N-C-C	CH ₃ CH ₃ CH ₃
	_осн₃
1362 CH ₂ - 1 2 0 R H -CH ₂ -N-C-	CH₃
1363 $\xrightarrow{CH_3}$ 1 2 0 R H $\xrightarrow{-CH_2-N-C-}$ 1364 $\xrightarrow{H_3C-}$ CH ₂ - 1 2 0 R H $\xrightarrow{-CH_2-N-C-}$	CH₃ CH₃
1364 H₃C-CH₂- 1 2 0 R H -CH₂-N-C-	CH₃

147

Table 1.125

19016	1.125						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p CH₂ G-R⁶ CH₂ CH₂
	CH ₃ CH ₂ - CH ₃					н	-CH2-N-C-
1366	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1367	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1368	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1369	CHCH ₂ -	1.	2	0	R	н	-CH ₂ -N-C
1370	CH2-	1	2	0	R	н	-CH₂-N-C-S Br
1371	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-
1372	C	1	2	0		н	- CH 2- N C-
1373	H ₃ C-\CH ₂ -	1	2	0	R.	н	-CH ₂ -N-C
	H ₃ C-\CH ₂ -				R	н ;	CF ₃ -CH ₂ -N-C
1375	H ₃ CCH ₂ -	1	2	0	R	н	-CH₂-N-C-SBr

148

Table 1.126

lable	1.120						
Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1376	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1377	H₃C- \ CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
1378	CH ₃ CH₂-	1	2	0	R	н	PCH₂−NC−CI
1379	CH ₃ CH₂− CH₃	1	2	0	R	н	OCH ₂ CF ₃ -CH ₂ -N-C
1380	CH ₃ CH₂− CH₃	1	2 .	0	R	н	-CH₂-N-C-SBr.
1381	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1382	CH ₃ CH ₃	1	2	0	R	н	-012-HC-
1383	C├ - CH ₂ -	2	2	1	-	н '	-CH ₂ -N-C
1384	C├───────────────────────────	2	2	1	- .	н .	-CH ₂ -N-C-S Br
1385	C⊢-{CH₂-	2	2	1	-	Н	- н 💚
	CH-CH ₂ -					н	-012 H.C-

149

Table 1.127

. 45.0							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R3	-(CH ₂) p (CH ₂) q G-R ⁶
1387	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH2-N-C-
1388	CH₃ N CH₂- CH₃	1	2	0	R _.	н	-CH ₂ -N-C-(CH ₃) ₃ -CH ₃ -N-C-(CH ₃) ₃ -CH ₃ -N-C-(CH ₃) ₃
	CH ₃ CH ₂ CH ₃					н	-сн²-и-с-(и,о
1390	H ₃ C CH ₃ H ₃ C CH ₂ -	1	2	Ō	R	н	-CH₂-N-C-CF3
1391	H ₃ C .	1	2	0	. R	Н	-CH ₂ -N-C-CF ₃
1392	CI H ₃ C—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1393	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1394	O ₂ N — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
•	H ₂ C=CH-CH ₂ -						-CH ₂ -N-C-CF ₃
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CF ₃
1397	Br—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃

150

Table 1.128

Iable	1.120						
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1398	C⊢ CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH-CH-CH-	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1400	C	1	2	0	R	н ·	-CH ₂ -N-C-CF ₃
1401	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-CI
1402	H ₃ C-CH ₂ -	1	2	0	Ė	н	-CH ₂ -N-C-OCH ₃ H ₂ N OCH ₃
1403	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-_N
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-HC-
1405	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1406	H₃C- \ CH₂-	1	2	0	R	н	-CH ₂ -N-C CH ₃
1407	H ₃ C-\CH ₂ -	1	2	0	R	• н	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C	1	2	0	Ř		-CH2-N-C-

151

Table 1.129

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	K3	-(CH ₂) p G (CH ₂) q G-R ⁶
1409	H ₃ C-\CH ₂ -	. 1	2	0	R	H·	-сн ₂ -м-с-СН ₃
1410	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-
1411	с⊢С}−сн₂−	1	2	0	R	н	H2C-C-NH H C-C-NH
1412	H ₃ C-\CH ₂ -	1	2	0	R	н	H2C-C-NH 0
.1413	CH₃ CH₂-	· 1	2	0	R .	н	H3C-C-NH C-CH2-NH C-C-NH
1414	C⊢-{CH₂-	2	2	1	-	н	H ₂ C-C-NH H ₃ C-C-NH
1415	CI—(CH₂-	1	2	0	·R	H	-CH2-N-C-SCN
	H ₃ C-CH ₂ -					н	-CH₂-N-C-SCN
1417	CH ₃ CH ₂ − CH ₃	1	2	. 0	R	н	-CH ₂ -N-C-SCN H ₂ N
1418	CHCH _Z -	2	2	1	-	н	-CH ₂ -N-C-SCN H ₂ N
1419	C├ - CH ₂ -	1	2	0	R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $+L_{2}N$ $-CH_{2}-N+C$ $+L_{2}N$ $-CH_{2}-N+C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

152

Table 1.130

I able	1.130						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
1420	H ₃ C-{	. 1	2	0	R	н	-CH ₂ -N-C
1421	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-SH
1422	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-SH
1423	С-Сн2-	1	2	0	R	н	-сн ₂ -м-с
	H ₃ C-\(\bigcirc\)-CH ₂ -				•		-CH ₂ -N-C
1425	CH₃ CH₃	1	2	0	·R	н	-CH ₂ -N-C-
1426	СН-СН2-	.2	2	1	•	н	-CH ₂ -N-C
1427	C⊢√CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-NH
1428	C├─ \ CH ₂ -	2	2	1		н	-CH ₂ -N-C
	њсан₂о-{Сн₂-						-CH ₂ -N-C
1430	O-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
							•

153

Table 1.131

. 45.0			•					
Compo	J. R ¹	(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1431	њссн₂о-	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1432		_}_CH₂-	2	2	1		н	-CH ₂ -N-C
1433	њссн₂о−	()−042−	2	2	1	-	н	-chz-N-c-
1434	њссн₂о—		2	2	1	-	Н	-chz-Nc
1435	ӊсҫн₂—⟨		2	2	1	-	н .	-CH ₂ -N-C
1436	(њс)₂сн-∢		2	2	1	-	н	-CH ₂ -N-C
1437	н₃с(сн ₂) ₂ о–	~ -04₂-	2	2	1	-	. н	-CH ₂ -N-C
1438	н₃ссн₂—{		2	2	1	•	н	-CH ₂ -N-C-S
1439	(₩С)₂СН-{		2 .	2	1	-	Н	-CH ₂ -N-C-SBr
1440	н ₂ с(сн ₂) ₂ о—	~ -04;-	2	2	1	- .	н	-CH ₂ -N-C-Br
1441	н₃сѕ—{	_)—CH2-	2	2	1	-		-CH ₂ -N-C-Br

154

Table 1.132

lable	1.132							
Compd No.	· R ¹	-(CH ₂);	k	m	n	chirality	Ř³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1442	н₃ссн ₂ .	-√Сн²-	2	2	1	-	н	-CH2-NC-
1443	(H ₀ C)₂CH	-Char.	2	2	1	-	н	-CH2-12-CH2-CH(CH3)2
1444	ӊ _С (СҢ ₂) ₂	o—()—01²-́	2	2	1	: <u>.</u>	н	-CH2-NC
1445	н₃ссн₂-	-{_}-CH₂-	2	2	1	•	н	-CH2-N-CH2CH
1446	(H4C)₂'CH	OI z	2	Ż	1	-	н	-CH2-N-C
1447	ӉҪ҉ѤӉӡ҈	o- √ -0-i₂-	2	2	1	-	н	-012-HC
1448	н₃сѕ–∢	Сн₂-	2	2	i	•	. н	-CH2-N-C
1449	н₃ссн₂—	_Сн₂-	2	2 .	1	•	н	-CH2-N-C-
1450	(H ₂ C)₂CH	-CH2-	2	2	1	-	н ,	-CH2-N-C
1451	(H3CCH ²) ² V		2	2	1	-	н	-CH ₂ -N-C-CF ₃
1452	но но		2	2	1	-	Н	-CH₂-N-C

<u>;</u>.

155

Table 1.133

IBDIE	1.100						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶ . R ⁵
1453	ӊс(сн _ә) ₂ о-(С)- сн ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1454	њсан ₂О-{СТ}- СН₂-	2	2	1	-	н	-сн ₂ -N-с-СF ₃
1455	H ₃ CQ	2	2	1	-	н	-CH2-N-C- CF3
1456	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1458	H ₃ CQ HO————————————————————————————————————	2	. 2	1	• •	. H	-CH ₂ -N-C
1459	(H ₃ C) ₂ N-√ → OH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1460	H ₃ CQ HO-CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N H_2N H_2N
1461	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-сн ₂ - но сн ₂ оснь
1462	H ₃ CQ HO————————————————————————————————————	2	2	1		н .	-CHZ-N-C
1463	С⊢-{}СН₂-	2	1	1		н	-сн²-Й-с—С _{СЕ³}
			•				

156

T	aŀ	1	6	1	1	3	4
	шL		_				-

lable	1.134						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1464	CH2-	2	1	1	-	н	-CH ₂ -N-C
1465	С⊢—СН₂-	2	1	1	-	н	-CH ₂ -N-C
1466	СН-СН2-	2	1	1	-	H	-CH ₂ -N-C
1467	C	2	1	1	- .	н	-CH ₂ -N-C
1468	CH2	2	1	.1	-	Н	-CH ₂ -N-C
1469	С⊢(СН₂-	2	1	1	-	н	-CH ₂ -N-C
1.470	CH2-	2	1	1	· -	н	-сн ₂ -N-с
1471	СН ₂ -	2	1	1	-	н	-CH2-N-C
1472	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	B S CH ₂ -					н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1474	CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

157

Table 1.135

						-		
Compd.	· R ¹	-(CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1475	CL O	Сн ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1476	Βſ	\$ }-CH₂-					н	-CH ₂ -N-C-CF ₃
		[}-сн₂-					н	-CH ₂ -N-C
1478	ВГО	[}-01 ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1479	н₃с-{	CH ₃ CH ₂ -	1	. 2	0	R	· н	-сн ₂ -ү-с-СF ₃
1480	н₃с⊸	CH ₃	1 .	2	0	R	Н	-cH₂-N-c-CF3
1481	H₃C-√ H₃C	CH₃ —CH₂−	1	2	0	R	н	-CH₂-N-C-CF3
1482	B	> −СН ₂ −	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1483	H ₃ C) СН₂-	1	2	0	R	н	-CH₂-N-C-CF3
1484	cr O s	CH2-	1	2	0	R	н	-CH ₂ -N-C
1485	н₃с-{	_Сн₂-	1	2	0	R	н	-CH ₂ -N-C-S

158

Tal	ble	1.	1.	36

I able	1.130						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1486	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
: 1487	н₃С-{Сн₂-	1	2	0	R	H	-CH ₂ -N-C-
1488	H ₃ C-CH ₂ -	1	2	0	R	н	-сн₂-ү-сД
1489	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1490	H ₃ C-CH ₂ -	1	2 .	0	R	н	-CH ₂ -N-C-√
1491	н₃с-{	1	2	0	R	н	-CH ₂ -N-C
1492	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-→NO ₂
1493	CH ₃ CH ₂ - CH ₃	1	2	0,	R	н	-01-Hc-5
1494	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1495	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N H ₃ C
1496	CH ₃ CH ₂ -	1	2	0	R	н .	-CH ₂ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -N-CH ₃ -CH ₃ -N-CH

1.5 9

Table 1.137

Idole	1						
Compd. No.	* 1					R³	-(CH ₂) p G G-R ⁶
	CH ₃ N CH ₂ − CH ₃					н	-CH ₂ -N-C
	CH ₃ CH ₂ − CH ₃					н	-cH₂-N-C\
1499	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-M-CД
	CH³-					H-	-cH⁵-H-c- O cH³
	CH₃ CH₂-						-cH₂-N-C-
•	CH₃ CH₂-			٠			-CH ₂ -N-C-CF ₃
1503	CH ₃	1	2	0	R	н .	-CH ₂ -N-C
	H ₂ N-CH ₂ -						-CH ₂ -N-C-CF ₃
1505		1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	CH ₂ O CH ₂ -	2	1	1	-	н	-CH ₂ -N-C
1507	CH ₂ -	2	1	1	• .	H .	-CH ₂ -N-C

160

Tat	פור	1.	1	3	R
101	ノルモ	١.		·	·

i able	1.138						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
1508	CH-CH ₂ -	2	1	1	- .	н	-CH ₂ -N-C
1509	C⊢-€	2	1	1	-	н	-0+2-N-C-
1510	C⊢-{	2	. 1	1	· •	н	-CH ₂ -N-C-
1511	CHCH2-	2	. 1	1	-	н	-CH ₂ -N-C-S Br
1512	C⊢(2	1	1		н	-CH ₂ -N-C
1513	CHCH₂-	2	1	1	-	Н	-CH ₂ -N-C-
1514	(H ₃ CCH ₂) ₂ N	2	2	1	-	Н	-CH ₂ -N-C-
1515	HQ H₃CO————————————————————————————————————	2	2	1	. •	H	-CH ₂ -N-C
1516	(H ₃ CCH ₂) ₂ N	2	2.	1	-	н	-CH ₂ -N-C
1517	HQ . H ₃ CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1518	HQ . H ₃ CO—CH ₂ - HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-сн ₂ -мс-

161

Ta	b	le	1.	.1	3	9

							•
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
1519	HQ H ₃ CO————————————————————————————————————	2	2	1	•	H _.	-CH2-NC-OCH
1520	Br—⟨	1	2	0	R	н	-CH ₂ -N-C-
1521	H₃CO-{}-CH₂-	1	2	0	R ·	Н	-CH ₂ -N-CBr
1522	CH₂-	1	2	0	. R	Н	-CH ₂ -N-C
1523	H ₃ CO————————————————————————————————————	1	2	0	. R	H	-CH ₂ -N-C-Br
1524	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH₂-N-C-
1525	Br—€ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1526	H₃CO- ()-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
	CH ₂ -					н	-CH ₂ -N-C
	H ₃ CO-CH ₂ -					н	-CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃
1529	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCF ₃

162

T	a	h	le	1.	1	4	٥

rabie	1.170						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1530	В.—СН2-	· 1	2	0	R	Н	-CH ₂ -N-C- CF ₃
1531	н₃со-Сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1532	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1533	H ₃ CQ ⁻ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1534	H ₃ CQ HO-CH ₂ -	1	2	0	R	, н	-CH₂-N-C-CF3
1535	Br————————————————————————————————————	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1536	н₃со-{_}Сн₂-	1	2	0	R	н	-CH ₂ -N-C
1537	CH₂-	1	2	0	R	н .	-CH ₂ -N-C
1538	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	O	R .	н	-CH ₂ -N-C
1539	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1540	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
	•			•			

163

Table 1.141

Compo No.	R^{1} R^{2} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1541	н₃со-{сн₂-	1	2	0	R	н	-CH ₂ -N-C-F
1542	CH ₂ -	1	2	0	R	н	-CH₂-N-C
. 1543	H ₃ CO C C H ₂	1	2	. 0	R	н	-CH ₂ -N-C-CF ₃
1544	H ₃ CQ HO————————————————————————————————————	.1	2	0	R .	H	-CH ₂ -N-C-CF ₃
1545	CL_S_CH ₂ -	1	2	. 0	R	н.	-CH ₂ -N-C-CF ₃
1546	H₃CO ← CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1547	H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1548	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C H ₃ C CH ₃ CH ₃
1549	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1550	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-0+2-HC- HOC-H-2 CH2O H12
1551	H₃C CH₂-	1	2	0	, R	н	-CH2-HC-

164

Table 1.142

Iable	1.174						
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1552	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1553	H ₃ C-CH ₂ -	1	2	0	Ŕ	H	-042-NG-CH2
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1555	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-N H ₃ C
1556	H ₃ C-CH ₂ -	1	2	0	R	н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1557	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NN H ₃ C
1558	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-N=N H ₃ C N-CH ₃
1559	: H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1,560	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1561	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1562	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C

165

Table 1.143

rabie	1.143						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	· R³	· -(CH ₂) _p -(CH ₂) _q G-R ⁶
1563	H₃C-{}-CH₂-	1	2	0	R	н	-cn-light
1564	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-042-Hgc-053
1565	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1566	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1567	CH₃ CH₃	1	2	0	R	н	-042-M2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
1568	CH ₃ CH ₂ - CH ₃	1	2	0.	R	н	-or-lic-
1569	CH ₃ CH ₂ -	1	2	0	R	н	-сн _э - <u>n</u> -c
1570	H₃CSCH₂-	2	2	1	-	н	-CH ₂ -N-C
1571	H ₃ CS-(-)-CH ₂ -	2	2	1	-	Н	-cH2-NCSCH
	N-C						-CH ₂ -N-C-CF ₃
1573	н,со-О-;;°с-О-ог,г	2	2	1	-	н	-CH ₂ -N-C-CF ₃

166

Ta	h	ما	1.	1	4	4

I able	1.144						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1574	₩ c-{}-# c-{}-04-	2	2	1		н	-CH ₂ -N-C-CF ₃
1575	CI	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1576	€ N-C	2	2	1	. •	н	-CH ₂ -N-C-CF ₃
1577	HO(CH) 1- H C CH2-	2	2	1	-	н	-CH₂-N-C-CF₃
1578	H ₂ C -N C -CH ₂ -	2	2	1	-	н	-CH₂-N-C
1579	CH3 6 CH3-	2	2	1	-	н	-CH₂-N-C CF3
1580	N+C	2	2	1	-	Н	O CF3 -CH₂-N-C- CF3
1581	СНСН2-	2	2	1	-	Н	- CH ² - H _C - S- NH
1582	CHCH ₂ -	2	2	1	-	н	-01-H-C
1583	CHCH ₂ -	1	2	0	R	н	$-CH_{2}-NCF_{3}$ $-CH_{2}-NCF_{3}$ $-CH_{2}-NCF_{3}$ $-CH_{2}-NCF_{3}$ $-CH_{2}-NCF_{3}$
1584	ССН2-	1	2	0	R	н	-CH ₂ -N-C

167

Table 1.145

lable	1.145						
Compd. No.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q G - R^6$
1585	C⊢————————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-CN
1586	CHCH2-	. 1	2	0	R	н	-CH ₂ -N-C-_N=_CI
1587	СН_СН2-	1	2	0	R	н	-CH ₂ -N-C-
1588	с⊢—Сн₂-	1	2	0	R	H	-CH ₂ -N-C-
1589	H₃C-{	.1	2		R	Н	-CH ₂ -N-C-CF ₃
1590	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C
1591	H ₃ C-CH ₂ -	1	2		R	Н	$-CH_2-N$ - C - N
	H ₃ C-CH ₂ -					Н	-сн ₂ -N-с-√
1593	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1594	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
1595	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- -CH ₂

168

Table 1.146

	·						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{P^5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
1596	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-
	CH ₃ N − CH ₂ − CH ₃					н.	-CH2-N-C-
1598	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ -	1	2	0	R	H	-сн ₂ -м-с-√
1600	CH-CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
1601	CHCH2-	2	2	.1	-	н	-CH ₂ -N-C
1602	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-
1603	CH_CH2-				.	н	-CH ₂ -N-C-\ N=\ CI
1604	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-
1605	CH- ()—CH₂-	2	2	1	<u>-</u>	н	-CH ₂ -N-C-CH ₃
1606	C├ - CH₂-	1	2	0	R	н -	-CH ₂ -N-C

169

Table 1.147

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1607	H ₃ C−⟨	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-
1609	C├─ ─ -CH ₂ -	2	2	1	-	Н	-CH₂-N-C-
1610	CF3 0 CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1611	CI	2	2	. 1	-	н	-CH ₂ -N-C-CF₃
1612	HOOLOH PATE - CO-ON-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1613	#°	2	2	1	- .	н	- CH ₂ -N-C-СБ ₃
1614	F ₃ CS-CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-СБ ₃
	F₃CS—CH₂-						-CH ₂ -N-C-CF ₃
1616	F3CS-CH2-	2	2	1	-	H	-CH ₂ -N-C-
1617	F ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ Br $-CH_{2}-N-C$
						•	

170

Table 1.148

		•					
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
1618	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH₂-N-C- Br
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	н :	-CH₂-N-C-COCF3
1620 .	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1622	H ₃ CO-CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-CF ₃
1623	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1624	HO-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-OCF ₃
1625	HO-CH ₂ -	1	2	0	R	. н ·	-CH ₂ -N-C-⟨CF ₃
1626	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1627	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1628	H ₃ C,SCH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C

171

Table 1.149

iable	1,145						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1629	н₃сѕ-{_}сн₂-	1	. 2	0	R	н	-CH ₂ -N-C-F
1630	H ₃ C CH ₂ -	1	· 2	0	R	н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ ————————————————————————————————————	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1632	CF ₃ —CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
163.4	(H ₂ C) ₂ CH-√-CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C-CF ₃
1635	H ₃ CCH ₂ -	1	2	0	R	н	-сн ₂ -м-с-С(сн ₃) ₃
•	H ₃ C-\CH ₂ -						-CH ₂ -N-C -CH ₃
1637	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-HC
1639	CH ₃ CH ₂ -	1	2	0	R:	Н	-сн₂-Д с-осн₂сн₃
•	CH₃						<u> </u>

172

Table 1.150

. 45.0	1.100						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1640	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н.	-CH2-N-C
1641	CH ₃	1	2	0	R	н	-CH ₂ -N-C
	CH ₃						-CH ₂ -N-C-N
1643	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1644	CH ₃ CH₂− CH₃	1	2	0.	R	н	$-CH_2-N-C- \bigcirc $
1645	CH2-	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1646	Br O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ —CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	- .	н	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	1	2	0	R	H	-CH₂-N-C-CF3

т	-	ь	le	4	1	5	1
	4	u	16			J	

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1651	н ₃ С(СН ₂)3—ССН ₂ -	2	2	1	-	Н	-CH2-N-C-
1652	H ₃ C(CH ₂) ₃	2	2	1	-	н	$-CH_{2}-\underset{H}{\overset{O}{\text{N-C}}}-\underset{H_{2}}{\overset{B}{\text{r}}}$
1653	H ₃ C(CH ₂) ₂	2	2	1	-	н	-CH2-NC
1654	H ₃ C(CH ₂) ₂	2	2	1	-	н	-CH ₂ -N-C
1655 .	H ₃ C(CH ₂) ₃ —{	2	2	1	-	н,	-CH2-NC
1656	H ₃ C(CH ₂) ₃ -{-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1657	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1		н	-CH ₂ -NC
	н _э с(сн ₂) ₂ —Сн ₂ -				-	, н	-CH ₂ -N-C-
							-CH ₂ -N-C
1660	Br—⟨ CH₂-	1	2	0	R	н	$-CH_{2}-N$ $-CH_$
1661	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C
							•

174

Ta	h	ما	1	1	5	2

	1.152						
Compd No.	. R ¹ R ² (CH ₂)	j k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1662	Br—CH	H ₂ - 1	2	0	R	н	-CH ₂ -N-C
1663	Br—CH	H ₂ - 1	2	0	R	н	-CH ₂ -N-C
1664	н₃с9—С	:H₂- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1665	н₃СЅ-{}С	H ₂ - 2	2	1	-	H .	-CH ₂ -N-C
1666	н₃сѕ-{¯}-с	H₂- 2	2	1	-	н.	-CH ₂ -N-C
1667	ӊссн₂—(cH₂- 2	2	1	<u>-</u>	Н	-CH ₂ -N-C-Br
1668	н₃ссн₂—√_>-с	:H₂- 2	2	1	-	.Н	-CH ₂ -N-C-F H H ₂ N
1669	њссн₂—(:H₂- 2	2	1	-	Н	-CH ₂ -N-C
1670	ң₃ссн₂—(С)—с	H₂- 2	2	1	-	н	$-CH_2-N-C$ H_2N
1671	ң,ссн₂—С}—с	H ₂ - 2	2	1	÷	н	OCF ₃ -CH ₂ -N-C
1672	ң₀ссн₂—⟨СУ−с	н₂- 2	. 2	1	-	н	-CH ₂ -N-C

1 7 5

Ta	h	ما	1	1	53
10	u				

·	1.133				_		
Compd. No.	R ¹ (CH ₂);-	k	m	п	chirality	· R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1673	н,ссн₂—Сн₂-	2	2	1	-	Н	-CH ₂ -N-C-Br
1674	F	2	2	1	-	н	-CH₂-N-C-OBr
1675	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1676	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1677	CH ₂ -	2 .	2	1	-	н	-CH ₂ -N-C
1678	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\ H ₂ N
1679	F-CH ₂ -	2 .	2	1	-	н .	-CH ₂ -N-C-
1680	F—————————————————————————————————————	2	2	1	-		-CH ₂ -N-C OCF ₃
1681	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1682	F—————————————————————————————————————	2	2	1	-	н .	-CH ₂ -N-C
1683	— μ°ς-——α+²-	2	2	1	•	н .	-CH _z -N-C-

Ta	h	ما	1	1	5	4

Table 1							
Compd.	R ² (CH ₂);	k	m	n	chirality	. K3	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $- GR^6$
1684	M-C	2	2	1	-	н	-CH ₂ -N-C-F
1685	₩ ^c	2	2	1	-	н	-CH ₂ -N-C
1686		2	2	1	-	н	-CH ₂ -N-C
1687	— Ν c — CH2-	2	2	1	-	н	-CH ₂ -N-C-
1688	⊘ -₩°	2	2	1		H	-CH ₂ -N-C
1689		2	2	1	-	н .	-CH ₂ -N-C
1690		2	2	1	-	H .	$-CH_2-N-C \longrightarrow H_2N$
1691		2	2	1	-	H	-CH ₂ -N-C
1692	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1693	CH₃ H₃C—CH₂−	1	2	0	R	н	$-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$
1694	CH₃ CH₂−	1	2	0	R	н	$-CH_2-NC - $

177

Table 1.155

Table 1	1.155						
Compd.	R ¹ (CH ₂)	k	m _.	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1695	CH ₃ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1696	H ₃ C-CH ₃	1.	2	0	R	Н	-CH ₂ -N-C
1697	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1698	СН ₃ СН ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$
1699	H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1700	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1702	H₃COCH₂-	1	2	0	R	н	-CH ₂ -N-C
	CH ₂ -						-CH ₂ -N-C
1704	HOCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1705	CI CH ₂ -	1	2	0	R	H	$-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $+L_{2}N$ $+L_{2}N$
					•		

178

Ta	h	ما	1	1	5	6
10		15			•	·

Table	1.100						
Compd. No.	R ¹ / _P -(CH ₂) _j -	k	m	n	chirality	. K3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1706	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1707	H₃CSCH ₂ -	1	2	0	R	H·	-CH ₂ -N-C-CF ₃
1708	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1709	(HgC)2CH-{\bigc}-CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1710	H ₃ C Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH ₃ —CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO−CH ₂ −CH ₂ −	1	2	0	R	′ н	-CH ₂ -N-C-CF ₃
	H ₃ C HO—CH ₂ -					н	-CH ₂ -N-C-CF ₃
1714	HQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1715	-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.157

rabie	1.137						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p i (CH ₂) _q G-R ⁶
1717	H ₃ CO-⟨N-⟩-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
·1718	CH3 V CH3-	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1719	CH2-	1	. 2	0	R .	н	-CH2-N-C-⟨CF3
1720	H3C-CH2- CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1721	ң ₃ ссн ₂ —Сн ₂ -	1	2 .	. 0	R	н ,	-CH ₂ -N-C-CF ₃
1722	O—CH₂-	1	2.	0	. R	н	-CH ₂ -N-C-CF ₃
1723	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H ₃ C-⟨CH ₃					н	-CH ₂ -N-C-CF ₃
1725	CH ₃ CH ₂ - H ₃ C	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1726	ң-ссн₂-{_}сн₂-	1	2	, 0	R	н	-CH₂-N-C-CF₃
1727	-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C

PCT/JP00/08627

180

Table 1.158

							•
Compd.	R ² (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1728	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1729	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1730	H ₃ C C C C C C C C C C C C C C C C C C C	1	2	0	R	н	-CH2-N-C-
1731	H ₃ COL ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
. 1732	HOCH ₂ ————————————————————————————————————	1	2	.0	R.	Н	-CH ₂ -N-C-CF ₃
1733	-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-FF
1734	н₃сѕ-{сн₂-	1	2	0	R	н	-CH₂-N-C-CF₃
	н ₃ ссн ₂ ————————————————————————————————————					н	-CH ₂ -N-C-CF₃ F
1736	CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
İ737	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H C- F
1738	H ₃ C ← CH ₂ − H ₃ C	1	2	0 .	R	н	$-CH_{2}-N^{-}C$ $-CH_{2}-N^{-}C$ $-CH_{2}-N^{-}C$ F F

:

181

Table 1.159

	1.133						
Compo No.	$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
1739	(H ₃ C) ₂ CH-√2-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1740	CH _z -	1.	2	0	R	н	-CH ₂ -N-C-Br
1741	н₃cs—()—сн₂-	1	2	0	R	н	-CH ₂ -N-C-Br
1742	ң,ссн ₂ —Сн ₂ -	,1	2	0	R	н	-CH ₂ -N-C-Br
1743	CH₂-	1	2	0	R	. н	-CH ₂ -N-C-Br
1744	CH ₃	1	2	· 0	R	H ·	-CH ₂ -N-C-Br
1745	H ₃ C — CH ₂ -	1 .	2	0	Ř	Н	-CH ₂ -N-C-Br
1746	(HgC)2CH-СОН2-	1	2	0	R	Н	-CH ₂ -N-C-Br
1747 ·	-CH ₂ -	1	2	0	R		-CH ₂ -N-C-Br
1748	н₃ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1749	H ₃ C-CH ₃ ·	1	2	0	R	н	$-CH_{2}-N+C$ $+L_{2}N$ $+CH_{2}-N+C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

182

Table 1.160

Compd No.	R ¹ (0	CH ₂);—	k	m	ח	chirality	R³	—(CH ₂) _p i (CH ₂) _q G−R ⁶
1750		: }CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1751	н,сѕ-{=	_у_сн₂-	1	2	0	·R	н	-СH ₂ -N-С
1752	н₃ссн₂—{	Сн ₂	1	2	0	R	н.	-CH ₂ -N-C-OCF ₃
1753		–CH₂–	1	2	0	R	н	-CH2-N-C OCF3
1754	н₃с-√	CH₃ ≻−CH₂−	1	2	0	R	Н	-CH ₂ -N-C
1755	H ₃ C	CH₃ CH₂-	1	2	0	R	н	-CH₂-N-C-
	(H6C)₂CH-{						н	-CH ₂ -N-C-C-OCF ₃
1757	Br Br	r -CH ₂ -	1	2	0	R	н	-CH2-N-C CF3
1758	H ₃ CO-Br	Br —CH₂− Br	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-	-CH₂-	1	2	0	R	н .	-04,FM2
760	н₃с-{¯}	-CH₂-	1	2	0	R	н	-OH2-N-C

183

Table 1.161

				_			
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. Ka	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1761	H₃C-{}-CH ₂ -	1	2	0	R	н	-CH2-N-C-N-CI
1762	CH³ CH³-	1	2	0	R	н	-CH ₂ -H ₀ C-N-Cl
1763	СН₂-	2	2	0	-	Н	-CH2-N-C
1764	(_>-CH₂-	2	2	0	-	Н	OCH2CH3
1765	. CH ₂ -	2	2	0	-	н	(S) Q OCH₂CH₃ -CH-N-C- H H CH₂CH(CH₃)₂
1766	CH₂-	2	2	0	-	н	(A) OCH2CH3 -CH-N-C-CH2CH(CH3)2
1767	CHCH ₂ -	1	3	1	-	н	-CH ₂ -N-C-
	с⊢(Сн₂-					Н	-CH2CH2-N-C-
1769	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-NC-CH3 CHCF20
1770	CH ₃ CH₂− CH₃	1	2	0	R	н	-cH-Hc-M-C-N-CI
1771	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH2-NC-OCH3 -CH2-

184

Ta	ы	e	1	.1	6	2

			-				
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	·R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
1772	CH ₃ CH ₂ - CH ₃	1	2	0	R ·	н	-CH-HC-HC-
	CH ₃ CH ₂ - CH ₃					н	H ₃ C — H C
1774	CH ₃ CH ₂ - CH ₃	- 1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO—ÇH₂— H₃CO	1	2	0	R	Н	-CH ₂ -N-C
1776	H ₃ CO————————————————————————————————————	1	2	0	R .	Н	-CH ₂ -N-C
1777	CH-CH2-CH2-	2	2	1	•	н	-CH ₂ -N-C-CF ₃
1778	H ₃ CCH ₂ -	2	2	1	-	H .	-CH ₂ -N-C-CF ₃
1779	CH2-					Н	-CH ₂ -N-C-CF ₃
1780	Br—CH₂-	2	2	1	- .	н	-CH ₂ -N-C
1781	HO-CH ₂ -	2	2,	1	-	н	-CH ₂ -N-C
1782	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	-	н	$-CH_{2}-N+C$

185

Table 1.1	ıb	J
-----------	----	---

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	[.] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1783	NC-(2	2	1		н	-CH ₂ -N-C
1784		2	2	1	-	н	-CH ₂ -N-C- H ₂ N
1785	CH ₂ (CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1786	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1787	CH ₂)2-CH ₂ -	· 1	2	0	R	н	-CH ₂ -N-C
1788	H₃C-(CH₂-	2	2	1	-	H	-CH ₂ -N-C
1789	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1790	CI—(CH₂-	1	2	0	S	н	-CH ₂ -N-C
1791	CH-2-						$-CH_2-N$ H_2N OCF_3
							$-CH_2-N-C$ H_2N
1793	a-{}-cH₂-	2	2	1	•	н	-CH ₂ -N-C

186

Tab	le 1	1.1	64
-----	------	-----	----

rable	1.104	_					
Compd No.	· R ¹ (CH ₂) _j -	k	m	n	chirality	[.] R³	-(CH ₂) - G (CH ₂) - G-R ⁶
1794	H ₃ C-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1795	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1796	Br	2	2	1	-	н	-CH ₂ -N-C
1797	HO-{	. 2	2	1	. -	н	-CH ₂ -N-C-F H ₂ N
1798	H ₃ CO-()-CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-F
1799	н ₂ С=СН-{	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
1800	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
1801	_CH ₂ -				-	Н	-CH ₂ -N-C-F
1802	HO—CH₂—CH₂—	1	2	0	R	н	$-CH_2-N-C$ H_2N
1803	HO-CH ₂ -	1	2	0	R		-CH ₂ -N-C- H H ₂ N
1804	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C

Table	1	.1	6	5
-------	---	----	---	---

rable	1.105						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1805	B	1	. 2	0	R	н	-CH ₂ -N-C-
1806	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1807	H3-CQ H0	1	2	0	R	H	-CH ₂ -N-C-
1808	H ₃ CO−CH ₂ −	1	2	0	R	н	-CH2-N-C-SCF3
1809	HO-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	. Н	-CH ₂ -N-C-SCF ₃
1811	CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H ₃ CS-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1813	H ₂ CCH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	O CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1815	CH ₃	1	2	0	R	H.	-CH ₂ -N-C

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	[.] R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1816	(CH3)2CH-CH2-	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH3)3 C-{	1	2	0	R	н	-CH2-N-C-SCF3
1818	Br-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1819	H ₃ CO-CH ₂ -	1	· 2	0	R	н	OCHF2
1820	H3-CQ HOCH2-	1	2	. 0	R	н	-CH ₂ -N-C-OCHF ₂
1821	H ₃ CO-CH ₂ -	1,	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1822	HO€	1	2	0	R	н	-CH ₂ -N-C-C
1823	O CH₂-	1	2	0	R	н .	-CH ₂ -N-C
1824	CH ₂ -	1	2	0	, R	н	-CH ₂ -N-C-OCHF ₂
1825	н₃сѕ-{}сн₂-	1	2	0	R	н	-CH ₂ -N-C
	н ₃ ссн ₂ ————————————————————————————————————						-CH ₂ -N-C-C

. 4516							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1827	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1828	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1829	н ₃ с— СН ₃ н ₃ с	1	2	0	R	н	-CH ₂ -N-C
1830	(CH3)2CH-{\bigce}-CH2-	1.	2	0	R	н	-CH ₂ -N-C
1831	Br⟨□}CH ₂	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1832	H₃CO-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1833	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1834	HQ H ₃ CO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1835	HO-CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C
1836	CH₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1837	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃

:

190

Compd No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) - + (CH ₂)- G-R [€]
1838	H ₃ CS-(1	2	0	R	н	-CH ⁵ -M-C-(CH ³) ³
1839	н₃ссн₂-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1840	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1841	H ₃ C- CH ₂ CH ₂	1	2	. 0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1842	H ₃ C — CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ C H-{	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1845	H₃CCH₂	1	Ż	0	R	Н	-CH2-NC
1846	CH ₃ H ₃ C - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -					н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	H	-CH2-NCC

labie	1,103						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1849	CH ₂ -	-1	. 2	0	R ·	н	- CH ₂ -N-C
1850	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH2-N-C-
1851	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH ² -N-C-
1852	CH2-	1	2	0	R	н	-CH ₂ -N-C-
1853	H ₃ CQ HO—————CH₂—	1	2	0	R	н.	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1855	н _з ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1856	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1857	-CH ₂ -	-1	2	0	R	н	-CH ₂ -N-C-
1858	Br—CH₂−	1	2	0	R .	н	$-CH_2-N-C$ H_2N H_2N
1859	н₃со-{сн₂-	1	2 -	0	R	Н	$-CH_{2}-NC$ $-CH$

Iable	1.170						
Compd No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1860	H ₃ CQ HO————————————————————————————————————	_ 1	2	0	R	Н	-CH ₂ -N-C
1861	но сн	l _z - 1	2	0	R	н	-CH ₂ -N-C Br
1862	но-{	- 1	2	0	R	Н	-CH ₂ -N-C-S
1863	CH₂-	1	2	0	R	н	-CH ₂ -N-C
1864	н₃сѕ-{сн	₂ – 1	2	0	R	Н •	-CH ₂ -N-C
1865	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1866	H ₃ C CH ₃ H ₃ C	- 1	2	0	R	н	-CH ₂ -N-C
1867	(СН ₃) ₂ С Н-С)-СН	r 1	2	0	. R	н	-CH ₂ -N-C
1868	(CH ₃) ₃ C————————————————————————————————————	₂ - 1	2	0	R	н	-CH ₂ -N-C
1869	Br—CH₂-	1	2	0	R	H	-CH ₂ -N-C
1870	н₃со-{_}-сн₂	- 1	2	0	R	Н	-CH ₂ -N-C

Compd No.	R ¹ (CH ₂),	k	m	n	chirality	R³.	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1871	H ₃ CQ	1	2	0	R	н	-CH ₂ -N-C-
1872	HQ H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-
1873	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1874	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1875	. CH2-	1	2	. 0	R	н •	-CH ₂ -N-C
1876	H ₃ CS-(-)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1877	н₃ссн₂—Сн₂-	. 1	2	0	R .	н	-CH ₂ -N-C-
1878	CH ₂ -	1	2		R	н	-CH ₂ -N-C
1879	CH ₃ H ₃ C CH ₂ -	1	2	0	R.	Н	$-CH_2-N-C-$ H_2N
1880	(CH ₃) ₂ C H-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1881	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table	1.	17	2
-------	----	----	---

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂)q G-R ⁶
1882	Br-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1883	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1884	H0-CH ₂ -	1	2	0	R.	Н	-CH ₂ -N-C-NO ₂
1885	HQ H ₃ CO——CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1886	HO-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
1887	CH2-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1888	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1889	H₃CS-CH₂-					· н	-CH ₂ -N-C-\ H ₂ N
1890	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1891	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1892	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂ -CH ₂ -N-C-NO ₂ -CH ₂ -N-C-NO ₂ H ₂ N

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1893	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1894	(CH ₃) ₂ CH- CH ₂	- 1	2	0	R	Н	-CH ₂ -N-C
1895	(CH ₃) ₃ C-CH ₂ -	- 1	2	0	R	н	-CH ₂ -N-C
1896	HQ H₃CO—CH₂−	1	2	0	R	Н	-CH ₂ -N-C
1897	H₃CS-{\rightarrow}-CH2-	1	2	0	. R	н	-CH ₂ -N-C
1898	н₃ссн₂—Сн₂-	1	2	0	R	H	-CH ₂ -N-C
1899	(CH ₃) ₂ C H- CH ₂ -	1	2	0	R	H ·	$-CH_2-N-C$ H_2N O
1900	H ₃ CO HO—CH ₂	1	2	0	R	Н	-CH ₂ -N-C
1901	H ₃ C(СН ₂) ₂ —————СН ₂ -	1	2	0	R _.	н	-CH ₂ -N-C
1902	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1903	(CH3)2CH-€CH2-	2	2	1	<u>.</u> .	н	$-CH_{2}-N$ $-CH_$

rabie	1.174						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1905	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1906	CH₂-	1	2	0	R	н	-CH ₂ -N-C
1907	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1908	H₃CO-{CH₂-	1	2	0	R	• н	-CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C$ H_2N OCF_3
1910	· Br-CH ₂ -	2	2	1		н	-CH ₂ -N-C-OCF ₃
.1911	CH ₂ -	2	2	1		н	-CH ₂ -N-C
1912	HO-{CH ₂ -	2	2	1		н	-CH ₂ -N-C
1913	CH ₃ -CH ₂ - ·	. 2	2	1	•	н .	-CH ₂ -N-C
1914	н₃С-{	2	2	1	-	н	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$

	_						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5}(CH_2)_{q} - G^{-R^6}$
1915	H3CCH2Q H0	1	2	0	R	н	-CH ₂ -N-C
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1917	H ₃ CCH ₂ Q	2	2	1	-	н .	$-CH_2-NCC\longrightarrow OCF_3$ H_2N
1918	H ₃ C HO—CH ₂ —	2	2	1	• •	н	-CH ₂ -N-C
1919	CH ₂ -	2 .	2	1	-	Н	-CH ₂ -N-C- H ₂ N·
1920	CH2-	2	2	1	-	н	-CH ₂ -N-C
1921	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1922	CH2-	2	2	1	-	н	-CH ₂ -N-C
1923	Br—CH₂-	2	2	1		H _.	-CH ₂ -N-C-SCF ₃
1924	H₃CO-⟨CH₂-	2	2	1	•	н	-CH ₂ -N-C-SCF ₃
1925	F(CH ₂ -	2	2 ·	1	-	н	-CH ₂ -N-C-SCF ₃

T	ah	le	1	1	76	3
	36				, ,	,

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1926	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1927	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH₂-	2	2	1		н	-CH ₂ -N-C-SCF ₃
1929	CH₂-	2	2	1.	-	н	-CH2-N-C-SCF3
1930	H ₃ CS-CH ₂ -	2	2 .	1	<u>-</u> ·	н	-CH ₂ -N-C-SCF ₃
1931	H ₃ CCH ₂ ————————————————————————————————————	2	. 2	1	-	н	-CH ₂ -N-C-SCF ₃
1932	CH₂-	2	2	1	-	н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					н	-CH₂-N-C-SCF3
1934	CH ₃ H ₃ C CH ₂ -	2	2	1	-	H	-CH₂-N-C-
	O ₂ N-⟨ CH ₂ -						-CH₂-N-C-SCF3
1936	H ₃ C-CH ₂	2	2	1	-	H .	-CH2-N-C-

lable						_	
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁵
1937	(CH ₃) ₂ CH	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1938	Br—(2	2	1	-	н	-CH ₂ -N-C
1939	H₃CO(CH₂-	2	2	1	-	н	-CH ₂ -N-C
1940	F-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1941	F CH₂-	2	2	1	-	н	-CH ₂ -N-C
1942	HO(CH₂-	2	2	1	-	н	-CH ₂ -N-C
1943	CH₂-	2	2	1	-	н	-CH ₂ -N-C
1944	-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1945	H ₃ CS-CH ₂ -	2	2	1	-	: H	-CH ₂ -N-C
1946	H ₃ CCH ₂ —СН ₂ -	2	2	1	-	н	-сн ₂ -N-С
1947	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C

. 45.0	1.170						
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	₽³	·—(CH ₂) _p G-R ⁶
1948	CH ₃	2	2	1	<u>-</u> .	н	-CH ⁵ -N-C- O CH ³
1949	H ₃ C - CH ₂ -	2	2	1	•	н	-CH2-N-C- Br CH3
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C- Br CH3
1951	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1952	Br-CH ₂ -	2	2	1	- •	н	-CH ₂ -N-C-Sr
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1954	F	2	2	1	-	Н	-CH₂-N-C-Ser
1.955	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
1956	HO-CH ₂ -	2	2	1	· -	н .	-CH ₂ -N-C
	CH₂-						-CH ₂ -N-C- H
1958	. CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- Br F

Table	1.175						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
1959	H ₃ CS-CH ₂ -	2 .	2	1	-	н	-CH ₂ -N-C
1960	н ₃ ссн ₂ —Сн ₂ -	2	2	1	- -	н	-CH ₂ -N-C
1961	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1962	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1963	H ₃ C-CH ₂	2	2	1		Н	-CH ₂ -N-C
1964	O ₂ N-€ CH ₂ -	2	2	1		Н	-CH₂-N-CF
1965	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1966	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH2-N-C-
1967	Br—CH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2N
1968	H₃CO-{	2 .	2	1	-	н	-CH ₂ -N-C
1969	HO-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C

Table 1.180

							•
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1.970	CH2-	2	2	1	-	н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1972	H3CS-(-)-CH2-	2	2	1	· .	н	-CH ₂ -N-C-
1973	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1974	H ₃ C-⟨CH ₃ CH ₂ -	2	2	1		н .	-CH ₂ -N-C
1975	O ₂ N-CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C
1976	H ₃ C-{	2	2	1	•	н	-CH ₂ -N-C-
1977	NC-CH ₂ -	2	2	1	- ·	н	$-CH_{2}-N-C-$ $H_{2}N$
1978	(CH ₃) ₂ CH-\CH ₂ -						$-CH_2-N-C$ H_2N
1979	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1980	OCH2-	2	2	1		н	$-CH_{2}-NC$ $+I_{2}N$ $-CH_{2}-NC$ $+I_{2}N$ $+I_{2}N$

Table	1.	.1	8	1
-------	----	----	---	---

. 45.0							•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1981	O ₂ N-{	2	2	1	-	н	-CH ₂ -N-C-F
1982	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1983	(CH ₃)₂C H-√CH₂-	2	2	1	•	н	-CH ₂ -N-C
1984	Вг-СН2-	2	2	1	-	H.	CH ₂ -N-C
1985	H₃CO-CH ₂ -	. 2	2	1	-	н	$-CH_2-N-C-$ H_2N
1986	HO-CH ₂ -	2	2	1	•	н	$-CH_2-N-C-$ H_2N
1987	-CH ₂ -	2	2	1	-	н	$-CH_2-N^{-1}C-$ H_2N
1988	-CH ₂ -			1	-	н	-CH ₂ -N-C
1989	H ₃ CS-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $+_{2}N$
1990	н ₃ ссн ₂ —Сн ₂ -	2	2	1	•	н	$-CH_2-N-C \longrightarrow H_2N$
							$-CH_2-N-C$ H_2N

т	· _	h	le	1	1	Я	2
- 1	a	u	"	- 1		0	~

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1992	CH ₃	2	2	1		н	-CH ₂ -N-C
1993	O ₂ N-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1994	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-NC-4$ H_2N
1995	NC-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1996	(сн ³⁾³ сн——сн ² -	2	2	1	-	н . ·	$-CH_2-NC-4$ H_2N
1997	H ₃ C CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-
1998	B	2	2	1	.	н	-CH2-N-C-
1999	H₃CO-{	2	2	1	-·	н	-CH ₂ -N-C-C
2000	FCH ₂ -	_. 2	2	1	-	н .	-CH ₂ -N-C-
2001	HO-CH ₂ -	2	2	1	-	н	-CH2-N-C-
2002	CH₂-	2	2	1	-	н	-CH2-N-C-

Compd. No.	R ¹ (CH ₂),—	k	m ·	'n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2003	CH ₂ -	2	2	1	-	н	-CH2-N-C-
2004	H ₃ CS	2	2	1	- ·	н	-CH2-N-C-CI
2005	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-
2006	CH ₃	2	2	1	-	H	-CH ₂ -N-C-
2007	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2008	H₃C-(2	2	1	-	Н	-CH ₂ -N-C
2009	NC-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-C
	(CH ₃) ₂ C H-\CH ₂ -				-	н	-CH ₂ -N-C-
2011	CH ₃ H ₃ C - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2012	Br—CH ₂ -	2	2	1	-	н	-CH2-N-C-
2013	H₃CO-(¯¯)-CH₂-	2	2	1	-	н	-CH ₂ -N-C- Br

:

Compd	R ¹						 ਜ਼ਿ⁴
No.	R ¹ (CH ₂)	k	m	n 	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
2014	HO-(CH ₂ -	2	2	1	· <u>.</u>	н	-CH2-N-C- Br
2015	O CH₂-	2	2	1	-	н	-сн ₂ -N-С-Вг
2016	-CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br
2017	H₃CS-CH₂-	2	2	1	-	н	-CH ₂ -N-C-Shr
2018	Н₃ССН₂—СН₂-	2	2	1	-	н.	-CH₂-N-CBr
2019	O-CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C- Br
-2020	CH ₃ CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
2021	0 ₂ N-CH ₂ -	2	2	1	-	н ·	-CH ₂ -N-C
2022	H ₃ CCH ₂ -	2	2	1	-	н	-CH2-N-C-Sp. CI
2023	NC-CH ₂ -	2	2	1	-	н .	-CH2-N-C
2024	(CH ₃) ₂ CH-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C

							· · · · · · · · · · · · · · · · · · ·
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	(CH ₂) _p + (CH ₂) _q G−R ⁶
2025	H ₃ C — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2026	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
20 <u>2</u> 7	Вг—СН₂-	2	2	1	-	н	-CH ₂ -N-C
2028	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SBr
2029	HO-CH ₂ -	2	2	1	-	н •	-CH ₂ -N-C
2030	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2031	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2032	OCH₂−			1	÷	H	-CH ₂ -N-C
2033	CH ₃	2	2	1	-		-CH ₂ -N-C-Br
2034	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2035	н₃с-{	2	2	1	-	н	-CH ₂ -N-C-Br

, 42.0							
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2036	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C
2037	H ₃ C — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2038	F-CH ₂ -	2	2	1	-	н :	-CH ₂ -N-C
2039	H ₃ C-CH ₂ -	. 2	2	1	-	н -	- CH ₂ -N-C-CN
2040	H ₃ C-⟨ CH ₂ -	1	2	0	R	н • .	-CH2-N-C-CHOH
2041	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-H-C-CH-
2042	H ₃ C-CH ₂ -	· 1	2	0	R	н	-CH ₂ -N-C
	H ₃ C-CH ₂ -				R	н	-CH ₂ -N-C-CH ₂ -CH ₃
2044	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2045	CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-CH3

Table 1.187

I able I							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2047	CH ₃ CH₂- CH₃	1	2	0	R .	н	-CH, -N. C()
2048	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -H _C
2049	CH ₃	1 .	2	0	R	H	-CH ₂ -N-C
2050	H ₃ CSCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2052	Bt CH2− OCH2CH3	2	2	Ί	-	н	CH ₂ -N-C
2053	н _э со Сн _х о-Сн _х -	2	2	1	-	н	-CH ₂ -N-C
	H ₃ CO-CH ₂ -					H	$-CH_2-N-C$ H_2N H_2N
							$-CH_2-N-C$ H_2N
2056	Br CH₂-	2	2	1	• ,	H .	$-CH_2-N-C$ H_2N
2057	H ₃ CO-CH ₂ -	2	2	1	. .	Н	-CH ₂ -N-C

210

Table 1.188

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2058	H ₃ CQ OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2059	○ -0- ○ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2060	H ₃ CO CH ₂ -	2	2	1		н	-CH ₂ -N-CF
2061	F_CH₃ CH₂-	2	2	1	-	н	-CH ₂ -N-C
2062	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2063	H ₃ CO . H ₃ CO . CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C
2064	Bt CH₂-	2	2	1	-	н	-CH ₂ -N-C
2065	H³CCH²O H³CCH²O	2	2	1	-	н	-CH ₂ -N-C
2066	OCH ₂ -CH ₂ -	2	2	1		н	-CH ₂ -N-C
2067	(H ₂ C) ₂ CHCH ₂	2	2	1	-	н	-CH ₂ -N-C
2068	CAH ₂ -	2	2	1	-	н	-CH ₂ -N-CF H ₂ N

2 1 1

Tat	ole	1	.1	8	9
-----	-----	---	----	---	---

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p R⁴ (CH ₂) q G-R ⁶
2069	H ₃ C H ₃ CO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2070	Br CH₂− OCH₃	2	2	. 1		н	-CH ₂ -N-C
2071	H ₃ CO-CH ₂ - OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2072	(H ₃ C) ₂ CHO	2	2	1		н	-CH ₂ -N-C
2073	CH ₂ Q	. 2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2074	нэсо-О-О-Сн2-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2075	H ₃ CQ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2076	F-CH ₂ -				-	H	-CH ₂ -N-C
2077	CH ₂ -OH	2	2	1	-	н	-CH ₂ -N-C
2078	H₃CCH₂Q OH CH₂-	2	2	1	•	н	-CH ₂ -N-C-F H H ₂ N
2079	— сн₂о щсо— — сн₂-	2	2	1	•	н	H ₂ N −CH ₂ −N-C−−−−− H ₂ N

2 1 2

Table 1.190

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
2080	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2081	CH ₂ -	2	2	1	· · -	н	-CH ₂ -N-C
2082	OH H₃CO- CH₂-	2	2	1	-	н	-CH _z -N-C
2083	HO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- H ₂ N
2084	H ₃ CQ HO-CH ₂ - H ₃ CO	1	2	0	R	н	-CH ₂ -N-C-S
2085	OH -CH ₂ -	1	. 2	0	Ŗ,	Н	-CH ₂ -N-C-CF ₃
2086	CI CH₂-	1	2	0	R	Н	-CH ₂ -N-C
	(H ₃ C) ₂ N-⟨□ CH ₂ -				R	н	-CH ₂ -N-C
2088	(H3CCH2)2N-(CH2-	1.	2	0	R	н	-CH ₂ -N-C-S
2089	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2090	CH ₂ -		2	0	R	Н	$-CH_{2}-N-CF_{3}$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{3}-N-CF_{3}$ $-CH_{2}-N-CF_{3}$ $-CH_{2}-N-CF_{3}$

213

Table 1.191

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
2091	с⊢(2	2	1	-	Н	-CH-N-C-
2092	с⊢—Сн₂-	2	2	1	-	н	-C+-NH -C+-NH
2093	CH	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C- H H CH ₂ CH ₂ SCH ₃
2094	CI—CH ₂ -	2	2	1	-	н	(A O O CH ₂ CH ₃ -CH N C C C C C C C C C C C C C C C C C C
2095	CH2−	2	2	1		н	(R) OCH ₂ CH ₃ -CHN-C
2096	CI—CH₂-	2	2	1	-	. н	(R O OCH ₂ CH ₃ -CH-N-C-C
2097	CI(C)CI12-	2	2	1	1	н	(A) OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ CH ₃
2098	CH-{	2	2	1	-	H .	(R) OCH ₂ CH ₃ -CH NC CH CH ₂ CH CH
2099	CI-CH ₂ -		2		-	н	-chh-c-C
2100	CH2-	2	2	1	-	н	CH-NC-OCH3
2101	: СН ₂ -	2	2	1	-	н	(R OCH ₂ CH ₃ -CH-N-C OCH ₃ (R OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃

214

Table 1.192

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2102	CH ₂ -	2	2	1	•	н	Сн-х-С-ОСн ₂ -Сн ₃
2103	а—{_}сн₂-	2	2	1	-	н	-CH-N-C
2104	CH2-	2	2	1	-	Н	CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CCCH ₃ CH ₂ CH ₂ CCOCH ₃ O R
2105	H ₃ CQ OH	2	2	1	-	н	CH ₂ -N-C-F H ₂ N
2106	H ₃ C OH CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-F H ₂ N
2107	Br CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-F H ₂ N
2108	CH ₃	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2109	Br O-CH ₂ -	2	2	1	-	н	-CH _z -N-C
	H ₃ CCH ₂ O CH ₂ -					н	-CH ₂ -N-C
2111	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N .
2112	Br H ₃ CO CH ₂ -	2	2	1	-	н	H₂N . -CH₂-N-C

2 1 5

Table 1.193

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2113	H ₂ N H ₃ CO—CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2114	H ₂ N H ₃ C-CH ₂ -	2	2	1	• •	н	-CH ₂ -N-C
2115	CI—{	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
2116	CH-{	2	2	1	-	н	(R) 0 -CH-N-C- H CH(CH ₃)CH ₂ CH ₃
2117	CICH ₂ -	2	2	1	• -	н	CH2-NH
2118	HOCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2119	ОН НО-{CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2120	BI-1				R	н .	-CH ₂ -N-C-CF ₃
2121	OCH ₃ HO-{CH₂-	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2122	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2123	CH ₂ -	.1	2	0	R	н	-CH ₂ -N-C-3

216

Table 1.194

Compd.	R ¹ >-(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
2124	O ₂ N CI—CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2126	O ₂ N H ₃ C — CH ₂ -	1	2	0	R	н ·	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2127	CH ₂ -	1	2	0	<u>.</u> R	н	-CH ₂ -N-C-CF ₃
2128	H ₂ N H ₃ CO—CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C
2129	H ₂ N H ₃ C CH ₂ -	1	2	0	R	н	$-CH_2-N-C \xrightarrow{CF_3}$ $+L_2N$
2130	0. N CH2-	2	2	1	-	н	-CH ₂ -N-C
2131	CH₃ CH₂-	2	2	1		н	-CH ₂ -N-C
2132	H ₂ N CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
2133	(H ₃ C) ₂ N	1	2	0	R	н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2134	O-CH ₂ -N(CH ₃) ₂	1	2	0	R	H	-CH ₂ -N-C

217

Table 1.195

rabie	1.195						
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2137	CH ₃	1	2	0	R	н	-CH ₂ -N-C
2138	CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2139	H ₃ C CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C-CF ₃
2140	O-CH ₂ -	2	2	1	. -	н	-CH ₂ -N-C-F H ₂ N
2141	H ₂ N HO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2142	G. 12					н	-CH ₂ -N-C-F H ₂ N
2143	HN-C-CH ³	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2144	H ₂ N H ₃ CO—CH ₂ -	.2	2	1		н	-CH ₂ -N-C- CF ₃
2145	H ₂ N HO————————————————————————————————————	2	2	1	. -	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$

2 1 8

Table 1.196

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2146	CH ₂ -	2	2	1	•	·H	-CH ₂ -N-C- CF ₃
2147	О Н₃С-С-NН Н₃СО————————————————————————————————————	2	2	1		н	-CH ₂ -N-C
2148	О Н₃С-С-NH НО————СН₂-	2	2	1		н	-CH ₂ -N-C
2149	O ₂ N HO—————CH ₂ -	1	2	0	R	н	$-CH_2-N_1C$ H_2N H_2N
2150	H ₃ C-C-NH CI-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2151	H to	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2153	H3C-()-CH2-					H	$-CH_2-N-C$ H_2N
2154	H ₃ C·C-NH H ₃ CO CH ₂ - CH ₂ -C-NH	2	2	1	.	н .	-CH ₂ -N-C- H ₂ N
2155	HO	2	2	1	-	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $+L_{2}N$ $+L_{2}N$ $-CF_{3}$ $-CF_{3}$
2156	HMC-CH ²	2	2	1	· .	Н	-CH ₂ -N-C

219

Ta	abl	e	1.	.1	9	7

rable	.197						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}^{\frac{R^4}{p+1}}(CH_2)_{q}^{-}G^{-}R^6$
2157	CH ₃	1	2	0	R .	н	-CH ₂ -N-C
2158	H ₃ C-NH HO—CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
2160	H ₃ C-NH HO-CH ₂ -	2	2	1	-	H .	$-CH_2-N-CF$ H_2N
2161	H ₃ C-NH CH ₂ -	2	2	1	•-	н	-CH ₂ -N-C
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2163	H ₃ C-NH HO———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
2164	CH₃ CH₂−	1	2		R	н	-CH ₂ -N-C
2165	H N − CH ₂ −	1	2	0	R	н	-CH ₂ -N-C
2166	G CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
2167	H CH2-	1	2	0	R	, H	-CH ₂ -N-C-\(\sigma\) H ₂ N

220

Table 1.198

				_			
Compd.	R ² ` 21					R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2168	H ₃ C CH ₂ H ₃ C CH ₃					H	-CH ₂ -N-C
2169	H ₃ C-CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
2170	С ⁰ -сн ₂ -	1	2	0	R	н	-CH ₂ -N-C
2171	H ₃ C ₁ -N ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\) H ₂ N
2172	F ₃ C CH ₃	1	2	0	R ·	н	-CH ₂ -N-C
2173	CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2175	OC H ₃	1	2	0	R	н	$-CH_2-NC$ H_2N H_2N
2176	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2177	H₃C OH N >-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ H ₂ N
2178	CH ₂ OH H ₃ CO-C HN CH ₂ -	1	2	0	R	н	$-CH_{2}-N - C - CF_{3}$

221

Table 1.199

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2179	H ₃ C-Ç-NCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2180	CI—(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
2181	H ₃ CO N CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C
2182	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-NC$ H_2N H_2N
2183	5-N CH2-	1	2	· 0	R	• н	-CH ₂ -N-C
2184	Ş-N N=CH₂-	2	2	1	-	н	-CH ₂ -N-C
2185	5-N CH ₂ -	2	. 2	1	-	. н	$-CH_2-N-C - O CF_3$ H_2N
2186	H CH ₂ -	2	2	1	-	H	$-CH_2-N-C-$ H_2N H_2N
2187	H ₂ N HO————————————————————————————————————	1.	2	0	R	H	-CH ₂ -N-C
2188	CH ₂ -					Н	-CH ₂ -N-C
2189	CH₂-	1	2	0	R	н	$-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $+_{2}N \cdot C \longrightarrow CF_{3}$

222

Table 1.200

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2190	CH2-	2	2	1	-	н	-CH ₂ -N-C
2191	CH ² -	2	2	1	-	н	$-CH_2-NC- CF_3$ $+L_2N$
2192	H CH2	2	2	1	-	н	-CH ₂ -N-C
2193	CH2-	2	2	1	-	н	-CH ₂ -N-C
2194 ·	H ₂ N H ₃ C-CH ₂ -	2 ·	2	1	-	н	CH ₂ -N-C- CF ₃
· 2195	H ₂ N CH ₂ -	2	2	1	-	H	-CH ₂ -N-C- CF ₃
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2198	H ₃ C-NH CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_{2}-N+C$ $+CH_{2}-N+C$
2200	H ₃ C-NH CH ₂ -CH ₂ -	2	2 .	1		н	-CH ₂ -N-C-

Table 1.201

labic	1.201						
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2202	CH ₂ -	1	2	.	R	Н	-CH ₂ -N-C- H ₂ N
2203	CH ₂ -	2	. 2	1		Н	-CH ₂ -N-C
2204	CH ₂ −	2	2	1	•.	H .	-CH ₂ -N-C- H ₂ N
2205	CH ₂ -	2	2	1	<u>.</u> .	н	-CH ₂ -N-C
2206	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2207	HO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2208	CH2−				•	н	-CH ₂ -N-C
2209	HN-CH3 CH2−	2	2	1	- -	H	$-CH_{2}-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2210	CH _Z -	1	2	0	R	н	-CH ₂ -N-C
2211	CH ₂ -	2	2	1	-	H	$-CH_{2}-N-C \longrightarrow F$ $H_{2}N$ $-CH_{2}-N-C \longrightarrow F$ $H_{2}N$ $-CH_{2}-N-C \longrightarrow H_{2}N$ $-CH_{2}-N-C \longrightarrow H_{2}N$ $-CH_{2}-N-C \longrightarrow H_{2}N$

Table 1.202

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	R^4 $CH_2)_{p}$ S^6 $CH_2)_{q}$ $G-R^6$
2212	CH₂-					Н	-CH ₂ -N-C
2213	H ₂ N CH ₂ -	2	2	1	-	н	$-CH_2-N C CF_3$ $+ H_2N$
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	- -	н	$-CH_2-N$ H_2 H_2 H_2
2215	H ₃ C-HN CH————CH ₂ —	1	2	0	R	н	-CH ₂ -N-CF ₃
2216	H ₃ CCH ₂ —N H ₃ CCH ₂ —N	1	2	. 0	. R	н	-CH ₂ -N-CF ₃
2217	H ₃ CO-CH ₂ - CH ₃ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2218	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
2219	CI—{	1	2	0	R	н	-CH2-N C-N-CF3
2220	C⊢—ČH₂-	1	2	0	R	н	-CH2-N-C-CH(CH3)2
2221	CH- € -CH ₂ -	1	2	0	R	н	O CF3
2222	H ₃ C CO ₂ CH ₃ CH ₂ - CH ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.203

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2223	CH-2-	1	2	0	R	н	-CH ₂ -N-C-N-N-N-CF ₃
2224	CH-€CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-
2225	CH-2-	1	. 2	0	R	. н	-CH2-N-CH3 CF3
2226	H ₃ C, CH ₂ -CH ₂ -	1	.2	0	R	н .	-CH ₂ -N-C- H ₂ N
2227	C⊢CH₂-	1	2	0	R .	н	-CH-H-C-H-MCH-MCH-M
2228	C⊢—CH₂-	1	2	0	R	н	-CH ₂ -N-CF ₃
2229	CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
	. CH ₃					н	-CH ₂ -N-C
2231	CH ₃	1	2	0	R	н	$-CH_{2}-NC- \bigcirc OCF_{3}$ $+I_{2}N$ $O OCF_{3}$
2232	H ₃ C H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2233	CH ₂	1	2	0	R	н	$\begin{array}{c} H \\ H_2N \\ OCF_3 \\ -CH_2-N-C \\ H_2N \\ -CH_2-N-C \\ H_2N \\ \end{array}$

Table 1.204

labic	1.204						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2234	CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2235	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2236	FCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2237	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2238	H ₃ CO CH ₂ -	1	. 2	0	R .	н	-CH ₂ -N-C
2239	CH ₂	1	2	0	R	н	-CH ₂ -N-C
2240	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2241	H ₃ C N H	1			R	Н	-CH2-N-C-
2242	CH ₃	1	. 2	0	R	н	
2243	(H ₃ C) ₂ N-√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2244	F N H	1	2	0	R	H .	$-CH_{2}-NC-$

227

Table 1.205

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2245	H ₃ C N CH ₂	1	2	0	R	н	-CH ₂ -N-C
2246	H ₃ CCH ₂ -N-N-CH ₂ -	1	2	0	R	+ Н	-CH ₂ -N-C-\(\frac{\text{CF}_3}{\text{H}}\)
2247	(H2C)3CH N C N CH2-	1	2	0	. R	н	-CH ₂ -N-C-\(\sigma\) H ₂ N
2248	H ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2249	H ₂ N H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
2250	H ₂ N HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
2251	H ₂ N H ₃ C—CH ₂ -			0	R	Н	CH ₂ -N-C
2252	CH₂-	2	2	1	-	H	-CH ₂ -N-C
2253	Ĥ					Н	-CH ₂ -N-C
2254	H ₃ CO CH ₂ -	2	2	1	-	н	$-CH_{2}-N+C$ $H_{2}N$
2255	H ₃ C N H	2	2	1	-	н	$H_{2}N$ CF_{3} $-CH_{2}-N-C$ $H_{2}N$ CF_{3} $-CH_{2}-N-C$ $H_{2}N$ CF_{3} $-CH_{2}-N-C$ $H_{2}N$ CF_{3} $-CH_{2}-N-C$ $H_{2}N$

Table 1.206

Table	1.200						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2256	CH ₃ H	2	2	1	• •	н	-CH ₂ -N-C-CF ₃
2257	H ₃ CQ CH ₂ -	2	2	. 1		Н	-CH ₂ -N-C-CF ₃
2258	CH2-CH2-	1	2	0	R	Н	(S) O CI CH ₃ CI
2259	H₃CS-(1	2	0	R	Н	(S) Q CI -CH ₃ CH ₃
2260	CH ₂ -	1	2	0	R	H	CH3 P
2261	C	1	2	0	R	Н	(S) P -CH-N-C-N- CH ₃
2262	H ₃ CS-CH ₂ -	1	2	0	R	H	(S) P -CH-N-C-N- CH ₃
	CI CI—CH₂-					. н	(S) O CI -CH-N-C C CI CH ₃
2264	CI—()-CH ₂ -	1	2	0	S	н	(S) P CI -CH-N-C CI CH ₃
2265	H₃CS—CH₂-	1	2	0	S	H .	CH ₃ CCI
	CH2-CH2-						

Table 1.207

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
2267	Cl CH₂-	2	2	1	-	н	(S) CI -CH-N-C-CI CH ₃
2268	CH2− CH2−	2	2	1		н	(S) PCI CH H C-CO
2269	H₃CS-{	2	2	1	-	н	(S) P CI -CH-N-C
2270	CI CH2−	2	2	1	-	H	(S) P -CH-N-C-N- CH ₃
2271	CI—(CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N-(S)
2272	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- CH ₃
2273	CICH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C- CI -CH(CH ₃) ₂
2274	H ₃ CS-CH ₂ -	2	2	1	-	H	(S) Q CI -CH-N-C- CI -CH(CH ₃) ₂ CI
2275	CI CI—CH₂-	2	2	1	-	H 	(S) 0 -CH-N-C-N- H H H CH(CH ₃) ₂
2276	CI—CH₂-	2	2	1		н	(S) P -CH-N-C-N- CH(CH ₃) ₂
2277	H₃CS-{}_CH₂-	2	2	1	-	н '	(S) Q - CH+N-C-N- H H H CH(CH ₃) ₂

Table 1.208

	RL						
No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p
2278	CH ₂ -	1	2	0	R	н .	(S) P CF3 -CHN-C CH3 -CH3 H ₂ N
2279	CI	1	2	0	R	н	(S) P -CH N C H CH ₃ H ₂ N
2280	CICH ₂ _	1	2	0	S	н	(S) O CF ₃ -CH-N-C H CH ₃ H ₂ N
2281	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) O CF ₃ -CH-N-C- H CH ₃ H ₂ N
2282	C	2	2	1	-	н	(S) Q CF ₃ -CHN-C- CF ₃ CH ₃ H ₂ N
2283	H₃CS-CH ₂ -	2	2	1		Н	$(S) \bigcap_{CF_3} CF_3$ $-CHNCC \longrightarrow H$ $CH_3 H_2N$
2284	CI_CH ₂ -	. 2	2	1	-	н	(S) P NH ₂ -CHN-C- CF ₃
2285	CI—CH ₂ −	2	2	1	-	н	(S) P NH ₂ -CH-N-C-CH-CH ₃) ₂ CF ₃
2286	H₃CS-(2	2	1	-	н	(S) NH ₂ -CH-N-C CH ₃ -CH(CH ₃) ₂ CF ₃
2287	CI—CH ₂ -	2	2	1	-	H .	(S) \$ -CH-N-C-N- CH(CH ₃) ₂
2288	H₃CS-{}CH₂-	2.	2	1	-	Н	(S) P CI -CH-N-C- CI (CH ₂) ₂ CONH ₂

Table 1.209

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2289	CICH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- H H (CH ₂) ₂ CONH ₂
2290	CH2-CH2-	2	2	1	-	Н	(S) P CI -CH-N-C CI CH ₂ OH
2291	CHCH2-	2	2	1	· <u>-</u>	н .	(S) Q CI -CH-N-C CI H CH₂OH
2292	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) Q CI -CH-N-C CI H CH₂OH
2293	CI CI—CH₂-	2	2	. 1	. <u>.</u>	н	(S) 0 -CH-N-C-N- CH₂OH
2294	C	2	2	1	<u>-</u>	н	(S) P -CH-N-C-N- CH ₂ OH
2295	н₃сѕ-{_}-сн₂-	. 2	2	1	-	н	(S) P -CH-N-C-N- CH ₂ OH
2296	CI CI—CH ₂ -	.1	2	0	R	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2297	H₃CS-{\rightarrow}-CH2-	1	2	0	R	Н	(S) P -CH-N-C
2298	CI CI—CH₂-	1	2	0	R	Н	(S) O -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2299	H₃CS-{}CH₂-	1	2	0	R	Н	(S) 0 -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃

Table 1.210

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
2300	CI—CH ₂ -	1	2	0	S	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2301	CH2-CH2-	1	2	0	S	. н	(S) P CI -CH-N-C
2302	CICH ₂ -	1	2	0	R	н .	(S) P NH2 -CHNC C CH2) ₂ SO ₂ CH ₃ CF ₃
2303	CI—CH ₂ —	1	. 2	0	R	н	(S) P NH ₂ -CH-N-C- CH ₃ CF ₃
2304	H₃CS-CH ₂ -	1	2	0	R	н	(S) P NH2 - CH N- C
2305	CH_CH2	1	2	0	S	H	(S) O NH ₂ -CHN-C- CH ₂ (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	H₃CS-{}-CH₂-	1	2	0	S	Н.	(S) PH2 -C+N-C- (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2307	- CHCH ₂ -	1	2	0	R	н	(S) N - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2308	н₃сs-{}-сн ₂ -	1	2	0	R	н	(S)
2309	CICH ₂ -	1	2 ·	0	S	H	(S)
2310	CH2-	1	2	0	S	н	(S) S C C C C C C C C C

Table 1.211

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2311	H ₃ CS-CH ₂ -	1	2	0	S	н	(S)
2312	H₃CS-CH₂-	1	2	0	R	н	(S) O CF ₃ -CH _N -C- CF ₃ CH ₃ H ₂ N
2313	CLCH ₂ -	1	2	0	R	H :	(S) Q CI -CH-N-C CI CH ₃
2314	H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) 0 CH-N-C-N- H H H
2315	C	2	2	1	-	H	(S) Q CI -CH-N-C-CI CH(CH ₃) ₂
2316	C	1	2	0	S	н	(5) NH ₂ O NH
2317	CICH ₂ -	_ 2	2	1		н	(S) NH ₂ -CH-N-C CF ₃
2318	CH_CH2	1	2	0	R	• н	(S)
2319	CI CI—CH₂-	2	2	1	-	н	(S) S C C C C C C C C C
2320	CI—CH2-	2	2	1	-	H	(S) S CH (CH ₃) ₂
2321	н₃сѕ-{_}сн₂-	2	2	1	•	н	(S) S CH (CH ₃) ₂

Table 1.212

· · abic	1.2 1 2						
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2322	CH2-CH2-	2	2	1	-	н	(S) S -CH-N-C-N- H H CH(CH ₃) ₂
2323	H₃CS-{CH₂-	2	2	1		н	(S)
2324	CICH ₂ -	2	2	1	-	н	(S) O CF ₃ -CH-N-C CF ₃ CH ₃ H ₂ N
2325	CICH ₂ -	1	. 2	0	R	H	(S) S CH ₃ CH ₃
2326	CI—⟨	1	2	0	R	н	(S) S CH ₃
2327	H₃CS-{	1	2	0	R	H	(S) S CH CH CH CH S CH CH
2328	CI CI—CH₂-	1	2	0	S	н	(S) S -CH-N-C-N-C H H H
2329	a—{_}-a+ ₂ -	· 1	2	0	s ·	н	(S) S -CH-N-C-N-C CH ₃
2330	H₃CS-{}_CH ₂ -	1	2	0	S	н	(S) S -CH-N-C-N- H H H
2331	CI—CH₂-	1 .	2	0	S	н	(S) P CF3 C+N-C- CH3 H2N
2332	α—{	1	2	0	R	н	(S) P CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.213

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
2333	CH2-CH2-	1	2	0	R	н	(S) O - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2334	H₃CS()-CH ₂ -	1	2	0	S	н	(S) P -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2335	CICH ₂ -	1	2	0	S	· н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2336	C	1	2	0	S	н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2337	H₃CS-(1	2	0	S	н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2338	H₃CS-(2	2	1	-	н	(CH ₂) ₂ CONH ₂
2339	CICH ₂ -	2	2	1	-	Н	(S) P NH ₂ - C H N C - C H (CH ₂) ₂ CONH ₂ CF ₃
2340	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) PH2 -CHN-C- H (CH ₂) ₂ CONH ₂ CF ₃
2341	CH2−CH2−	2	2	1	-	Н	(S) P NH2 -CH-N-C- H CH ₂ OH CF ₃
2342	H₃CS-()-CH2-	2	2	1	-	н	(S) O NH2 - CH N- C- CH ₂ OH CF ₃
2343	CL CH2-	2 -	2	-1		н	(S) Q CI -CH-N-C-CI (CH ₂) ₂ CONH ₂

Table 1.214

I able	1.214						
Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2344	CI—CH2-	2	2	1	-	H	(S) P CI -CH-N-C C CI (CH ₂) ₂ CONH ₂
2345	CI—CH2-	2	. 2	1	-	н	(S) P -CH-N-C-N- (CH ₂) ₂ CONH ₂
2346	CI—CH ₂ -	2	2	1	-	Н	(S) P NH2 - C + N- C - C + H (CH ₂) ₂ C ONH ₂ CF ₃
2347	CI_CH2-	1	2	0	S	н	(S) P -CH-N-C-N- H H H
2348	CH ₂ -	1	. 2	0	R	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2349	F—CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C C CI H H (CH ₂) ₂ SO ₂ CH ₃
2350	F—CH ₂ -					н	(S) Q CI -CH-N-C-C-CI H H (CH ₂) ₂ SO ₂ CH ₃
2351	CH₂-	1	2	0	R	H .	(S) P C C - CH N C C CH ₂) ₂ SO ₂ CH ₃
	CICH ₂ -						(S) 0 -CH-N-C-N-C-N-C-CH-3
2353	CH ₂ -CH ₂ -	2	2	1	-	Н	(5) O -CH-N-C-N- CH ₃
2354	CICH ₂ -	1	2	0	R	Н .	(S) OC -CH-N-C CO (CH ₂) ₂ SO ₂ CH ₃

Table 1.215

145.0							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
2355	CH_CH₂-	1	2	0	R	н	(S) PCI CI -CH-N-C (CH ₂) ₂ SO ₂ CH ₃
2356	CH2-CH2-	, 1	2	0	R	н	(S) P -CH-N-C H (CH ₂) ₂ SO ₂ CH ₃ CI
2357	CI—CH ₂ -	1	2	0	R	н	(S) P -CH-N-C-S CI (CH ₂) ₂ SO ₂ CH ₃
2358	CH2-CH2-	1	2	0	R	Н	(S) P -CH-N-C-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2359	CICH ₂ -	1	2	0	R	H	(S) P -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
2360	CI—CH ₂ -	1	2	0	R	н	(S) 0 - CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2361	CH_CH2	1	2	0	R	н	(S) P -CH-N-C-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2362	CH ₂ -	1	2	0	R	н	(S) P -CH-N-C-N-C-OCH ₃ (CH ₂) ₂ SO ₂ CH ₃
	CICH₂-						Grig
2364	CICH ₂ -	2	2	1	-	н	(S) OC CI -CHN-C- CH3
							CH3 CH CH

Table 1.216

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2366	CH-CH-	2	2	1	-	н	(S) 0 -CH-N-C-CH ₃ CH ₃
2367	CICH ₂ -	2	2	1	-	н	(S) 0 -CHN-C-(S) CH3
2368	CICH ₂ -	2	2	1	-	н	(S) P -CHN-C-S CI CH ₃
2369	CLCH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N-C-N-OCH ₃ CH ₃
2370 .	CH2−CH2−	2	2	1	-	н	
2371	C)—CH ₂ -	2	2	1	-	н	(S) P CI - CH-N-C- CI CH ₃ CI
2372	CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₃
	F—CH ₂ -					н	CH3 CH3
2374	CH ₂ -	2	2	1	-	Н	CH3 CH3 CI
2375	F-CH ₂ -	2	2	1	-	н	(S) P C CI
2376	F_CH ₂	2	2	1	-	Н	(S) P CH CH CH 3

Table 1.217

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
2377	F-CH ₂ -	2	2	1	-	н	(S) P CC C
2378	CH ₂ -	2	2	. 1	-	н	(S) P C CI -CH-N-C C CI CH ₃
2379	CICH2-	2	2	1	-	Н	(S)
2380	CICH ₂ -	2	2	1	-	Н	(S) O -CH-N-C- CH ₃ H ₂ N
2381	CICH ₂ -	2	2	1	-	Н	(S) O -CH-N-C- CH ₃ HO
2382	CI CI—CH₂-	. 2	2	1	-	н	(S) Р -СН-N-С-Ф-ОН СН ₃
2383	CI CI—CH₂-	2	2	1	-	н	(S) S CH ₂ CH ₂ CH ₃
	CH ₂ -					н	(S) CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2385	CI CH₂-	1	2	0	R	-н	(S) CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2386	CI CH ₂ -	1	2	0	R	·н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2387							(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.218

	-						
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2388	F—CH₂-	1	2	0	R	Н	(S) CI -CH-N-C
2389	CH ₂ -	1	2	0	R	н .	(S) Q CI -CH-N-C- CI H (CH ₂) ₂ SO ₂ CH ₃
2390	CI—CH ₂ —	1	2	0	R	н	(S) O NH ₂ -CH-N-C- CH H (CH ₂) ₂ SO ₂ CH ₃ Br
2391	CI—CH ₂ -	1	2	0	R	н	(S) ONH2 -CHN-C-CH2 (CH2)2SO2CH3 CI
2392	CH ₂ -	1	2	0	R	н	(S) PHN-C-(CH ₂) ₂ SO ₂ CH ₃
2393	CI—CH ₂ —	1	2	0	R	н	(S)
2394	CI—CH ₂ —	2	2	1	-	н	(S) P CI -CH-NC-C CI (CH ₂) ₂ SCH ₃
2395	CICH ₂ -	2	2	1	-	н ·	(S) P CI -CH-N-C- CA CH ₂ OCH ₂ Ph
2396	CL CH ₂ -	2	2	1	-	Н	(S) CI -CH-N-C-CA (CH ₂) ₄ NH ₂
2397	Cl Cl—CH₂-	2	2	1	-	н	(S) H2C C1
2398	CI CH₂-	2	2	1		Н	(S) -CH H C -C -CI -CH H C -CC (COH ₃) ₃

Table 1.219

Compd. No.	R ¹ (CH ₂)j-	k.	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2399	CL CH ₂ -	2	2	1	-	н	(S) P-C1 -CH-H-C-C-C1 H2C C-C-C1
2400	Ct CH ₂ -	2	2	1	-	· н	-GH-N-C-CI
2401	СĻ СН ₂ —	2	2	1	-	Н	-CI
2402	CI—CH₂-	2	2	1		н	(S) CI -CH-N-C CI CH ₂ OH
2403	F—CH ₂ -	2	2	1		н .	(S)
2404	F_CH ₂ -	2	2	1	-	. Н	(S) P -CH-N-C CH H CH₂OH
2405	F-CH ₂ -	2	2	1	-	н	(S) Q -CH-N-C CI H CH₂OH
2406	F_CH ₂ -	2	2	1	••	н	(S) P -CH-N-C- CI H CH₂OH
2407	CH ₂ -	2	2	1	-	н	(S) P −CH-N-C-CH-CI CH₂OH
2408	H ₃ CSO ₂	2	2	1	-	н	(S) P CH-N-C-C-CI CH ₂ OH
2409	н₃со₂с-{_}_сн₂-	2	2	1	-	н	(S) P CH -CH-N-C- CH CH2OH

Table 1.220

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³ ·	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2410	CI_CH2-	2	2	1	-	н	(S) 0°Cl -CH-N-C- CH ₂ OH
2411 ,	CI—CH ₂ -	2	2	1		н	(S) PCI CI -CHN-C- H H CH2OH
2412	CL CH ₂ -	2	2	1	-	н	(S)
2413	CICH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N
2414	CH ₂ -	2	2	1	-	н	(S) 0 -C++N-CS CH2OH
2415	CICH ₂ -	2	2	1	-	н	(S) S OC H ₃ -CH-N-C-N-C-N-C
2416	CI—CH ₂ —	2	2	1	-	н	(S) N OCH3 -CH-N-C-N- OCH3 CH3
2417	CICH ₂	2	2	1	-	н	(S) S CH ₃ -CH-N-C-N-CH ₃ CH ₃
2418	Cl CH₂- CH₂-	2	2	1	-	н	(S) S
2419	CI CH2−	2	2	1	-	н	(S) S CI -CH-N-C-N-CI CH ₃
2420	CICH₂-	2	2	1	·•	н	(S) S CH ₃

Table 1.221

Compd.	R ¹ (CH ₂) _j	k _.	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
2421	CL CH2-	2	2	1	-	н	(S) S -CH-N-C-N-F CH ₃
2422	CL CH₂-	1	2	0	R	н	(S) S -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2423	CL CH ₂ -	1	2	0	R	н	(S) S -CHNC-N-C-N-COCH ₃ (CH ₂) ₂ SO ₂ CH ₃
2424	Cl CH₂-	1	2	0	R	н	(S) S CH ₃ -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2425	CICH₂-	1	2	Ö	R	н	(S) S - C + N - C - N - C + G H H H (CH ₂) ₂ SO ₂ C H ₃
2426	CL CH ₂ -	1	2	0	R	н	(S) S CI -C+N-C-N-C (CH ₂) ₂ SO ₂ CH ₃
2427	Cl CH₂-	1	2	0	R	н	(S) \$ -CH-N-C-N
2428	CL CH ₂ -CH ₂ -	1	2	0	Ŗ	н	(S)

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば、塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

- さらに、本発明においては、例えばヨウ化1-(4-クロロベンジル)-1-メチル-4-[{N-(3-トリフルオロメチルベンゾイル)グリシル}アミノメチル]ピペリジニウムのような、環状アミン化合物のC₁~C₆アルキル付加体も用いられる。ここで、アルキル基としては、例えば、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、イソプロピル、イソプチル、sec-ブチル、tert-プチル、イソペンチル、ネオペンチル、tert-ペンチル、2-メチルペンチル、1-エチルブチルが好適な具体例として挙げられるが、特に好ましい例としては、メチル基、エチル基などが挙げられる。
- 15 また、アンモニウム陽イオンの対陰イオンの好適な具体例としては、フッ化物、塩化物、臭化物、またはヨウ化物などのハロゲン化物陰イオンを挙げることができる。

本発明においては、上記式(I)で表される化合物のラセミ体および 可能なすべての光学活性体も用いることができる。

20 上記式 (I) で表される化合物は、国際公開WO9925686号に 記載されているように、下記に示すいずれかの一般的な製造法を用いる ことにより合成することができる。 WO 01/42208 PCT/JP00/08627

2 4 5

(製造法1)

下記式(11)

「式中、 R¹、 R²、 R³、 j 、 k 、 m 、および n は、上記式(I)にお 10 けるそれぞれの定義と同じである。] で表される化合物1当量と、下記式(III)

「式中、R⁴、R⁵、R⁶、G、p、およびqは、上記式 (I) における それぞれの定義と同じである。〕

で表されるカルボン酸、またはその反応性誘導体の0.1~10当量を 20 無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(III)で表されるカルポン酸の「反応性誘導体」とは、例え ば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野に おいて通常使用される反応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシーブなどの脱水剤;ジシクロ 25 ヘキシルカルボジイミド(DCC)、N-エチル-N'-(3-ジメチ ルアミノプロピル) カルボジイミド (EDCIまたはWSC)、カルボ ニルジイミダゾール (CDI)、N-ヒドロキシサクシンイミド (HO Su)、N-ヒドロキシベンゾトリアゾール(HOBt)、ベンゾトリ アソール-1-イルオキシトリス (ピロリジノール) ホスホニウム=へ 30 キサフルオロホスフェート (РуВОР)、2-(1H-ベンゾトリア

WO 01/42208 PCT/JP00/08627

246

キサフルオロホスフェート(HBTU)、2-(1H-ペンゾトリアゾ ールー1ーイル) -1, 1, 3, 3-テトラメチルウロニウム=テトラ フルオロボレート (TBTU)、2-(5-ノルボルネン-2、3-ジ カルボキシイミド) -1, 1, 3, 3-テトラメチルウロニウム=テト 5 ラフルオロボレート (TNTU)、O-(N-サクシニミジル)-1, 1. 3. 3-テトラメチルウロニウム=テトラフルオロボレート (TS TU)、プロモトリス(ピロリジノ)ホスホニウム=ヘキサフルオロホ スフェート(PvBroP)などの縮合剤:炭酸カリウム、炭酸カルシ 10 ウム、炭酸水素ナトリウムなどの無機塩基、トリエチルアミン、ジイソ プロピルエチルアミン、ピリジンなどのアミン類、(ピペリジノメチー) ル) ポリスチレン、(モルホリノメチル) ポリスチレン、(ジメチルア ミノメチル)ポリスチレン、ポリ(4-ビニルピリジン)などの高分子 支持塩基などの塩基を適宜用いることにより、より円滑に進行させるこ とができる。 15

(製造法2)

下記式 (IV)

20

$$\begin{array}{c}
\begin{pmatrix}
(CH_{2})_{k} \\
HN \\
(CH_{2})_{m}
\end{pmatrix} - (CH_{2})_{n} - N - C - (CH_{2})_{p} - H - (CH_{2})_{q} - G - R^{6}
\end{pmatrix} (V)$$

[式中、R³、R⁴、R⁵、R⁶、G、k、m、n、p、およびqは、上 記式 (I) におけるそれぞれの定義と同じである。]

で表される化合物 0.1~10当量を無溶媒下、または溶媒存在下に反10 応させることによる製造方法。

かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、 より円滑に進行させることができる。さらに、本製造方法においてヨウ 化カリウム、ヨウ化ナトリウムなどのヨウ化物を共存させることにより、 反応を促進できる場合がある。

15 上記式 (IV) において、Xはハロゲン原子、アルキルスルホニルオキシ基、またはアリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基などが挙げられる。

20 アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式 (VI)

25

5

$$R^1$$
 CH₂)_{j-1}—CHO (VI)

30 [式中、R¹およびR²は上記式(I)におけるそれぞれの定義と同じ であり、jは1または2を表す。] 248

または、下記式 (VII)

 $R^{1} - CHO$ (VII)

5 [式中、R ¹は上記式 (I) におけるR ¹の定義と同じであり、jは 0 を表す場合に相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0.1 ~10 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

- 10 かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、また15 は電解還元反応などを用いることができる。
 - (製造法4)

下記式 (VIII)

20
$$\mathbb{R}^{1}$$
 $(CH_{2})_{j}$ $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{n}$ $(CH_{2})_{n}$ $(CH_{2})_{p}$ $(CH_{2})_{p}$ $(CH_{2})_{q}$ $(CH_{$

[式中、R¹、R²、R³、R⁴、R⁵、R⁷、j、k、m、n、p、およ 25 びqは、上記式(I)におけるそれぞれの定義と同じである。] で表される化合物 1 当量と、下記式(IX)

$$HO-A-R^{6} \qquad (IX)$$

30 [式中、R 6は上記式 (I) におけるR 6の定義と同じであり、A はカルボニル基またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 $0.1\sim10$ 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野で一般に使用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を 適宜用いることにより、より円滑に進行させることができる。

10

(製造法5)

上記式 (VIII) で表される化合物 1 当量と、下記式 (X)・

$$Z = C = N = R^{6} \tag{X}$$

15

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Zは酸素原子または硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート 0.1~10 当量・を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

20

(製造法6)

下記式 (XI)

[式中、R¹、R²、R³、R⁴、R⁵、j、k、m、n、p、およびqは、 30 上記式 (I) におけるそれぞれの定義と同じであり、Aはカルボニル基 またはスルホニル基を表す。] WO 01/42208

PCT/JP00/08627

250

で表される化合物1当量と、下記式(XII)

 $R^{6} - NH_{2} \qquad (XII)$

5 [式中、R⁶は上記式(I)におけるR⁶の定義と同じである。] で表されるアミン 0.1~10当量を、無溶媒下、または溶媒存在下に 反応させることによる製造方法。

かかる反応は、上記製造法 1 と同様の脱水剤、縮合剤、または塩基を 適宜用いることにより、より円滑に進行させることができる。

- 10 上記製造法1~6において、各反応に供する基質が、一般に有機合成 化学において各反応条件において反応するか、あるいは反応に悪影響を 及ぼすことが考えられる置換基を有する場合には、その官能基を既知の 適当な保護基で保護して反応に供した後、既知の方法を用いて脱保護す ることにより目的の化合物を得ることができる。
- 15 さらに、本発明の化合物は、例えばアルキル化反応、アシル化反応、 還元反応などの、一般に有機合成化学において使用される既知の反応を 用いて、上記製造法 1~6により製造される化合物の単数または複数の 置換基をさらに変換することによっても得ることができる。
- 上記各製造法において、反応溶媒としては、ジクロロメタン、クロロ ホルムなどのハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭 化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢 酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが反応に応じ 75 て適宜用いられる。

いずれの製造方法においても、反応温度は-78 \mathbb{C} $\sim +150$ \mathbb{C} 、好ましくは0 \mathbb{C} ~ 100 \mathbb{C} の範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または \mathbb{C}_1 $\sim \mathbb{C}_6$ \mathbb{C}_7 \mathbb{C}_7

251

ることができる。

WO 01/42208

本発明のCCR5が関与する疾患の治療薬もしくは予防薬の具体的な対象疾患としては、HIV(ヒト免疫不全ウイルス)の感染に起因する疾患、特にエイズ(後天性免疫不全症候群)、軟骨破壊または骨破壊を伴う疾患、特に慢性関節リウマチ、腎炎もしくは腎症、特に糸球体腎炎や間質性腎炎やネフローゼ症候群、脱髄疾患、特に多発性硬化症、臓器移植後の拒絶反応、移植片対宿主病(GVHD)、糖尿病、慢性閉塞性肺疾患(COPD)、気管支喘息、アトピー性皮膚炎、サルコイドーシス、線維症、粥状動脈硬化症、乾癬、または炎症性腸疾患が挙げられる。

10

実施例

本発明を以下、具体的に実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。以下の実施例において各化合物に付された化合物番号は、前記Table1.1~1.221において好適な具体例として挙げた化合物に付された化合物番号 (Compd. No.)と対応している。

[参考例1] (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジン(化合物番号69)の合成

- 20 本発明の化合物はWO9925686記載の製造法により合成したが、 例えば化合物番号1606の(R)-1-(4-クロロベンジル)-3 -[{N-(3-(トリフルオロメチルチオ)ベンゾイル)グリシル} アミノ]ピロリジンは、以下のように合成した。
- 1) <u>3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩</u> 4-クロロベンジルクロリド (4.15g、25.8mmol) と「 Pr₂NEt (6.67g、51.6mmol) を3-{(tert-ブトキシカルボニル) アミノ} ピロリジン (4.81g、25.8mm ol) のDMF溶液 (50mL) に加えた。反応混合物を70℃で15 時間攪拌し、溶媒を減圧下に除去した。再結晶 (CH₃CN、50m 30 L) により目的とする3-{(tert-ブトキシカルボニル) アミ
- 30 L) により目的とする3 ((tert-フトキシカルホニル) アミ ノ - 1 - (4 - クロロベンジル) ピロリジン (6.43g、80%)

を黄白色固体として得た。

¹ H - N M R (C D C 1₃, 3 0 0 M H z) 8 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H).

- 5 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた (98%); ESI/MS m/e 311.0 (M++H、C16H24ClN2O2)
 - $3-\{(tert-プトキシカルボニル) アミノ\}-1-(4-クロロベンジル) ピロリジン(6.38g、20.5mmol)の<math>CH_3O$
- H (80 m L) 溶液に1 M H C l E t 2 O (100 m L) を加え、
 25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶 (C H 3 O H : C H 3 C N = 1 : 2、130 m L) で精製することにより、3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩(4.939g、85%)を白色粉末として得た。
- 15 ¹ H N M R (d₆ D M S O, 3 0 0 M H z) δ 3.15 (br, 1 H),
 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H),
 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H),
 8.45 (br, 1 H), 8.60 (br, 1 H);

純度はRPLC/MSで求めた(>99%);ESI/MS m/e

20 2 1 1. 0 $(M^+ + H \cdot C_{11} H_{16} C l N_2)$

光学活性 (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩と (S) -3-アミノ-1-(4-クロロベンジル) ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ体と同じ H-NMRを示した。

- 25 2) $(R) 3 \{ (N t e r t \vec{J} + \hat{\nu} + \hat{$
 - (R) 3 アミノ- 1 (4 クロロベンジル) ピロリジン・二塩酸塩 (4.5 4 g、16.0 mmol)、2 M NaOH溶液(80 mL)、および酢酸エチル(80 mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80 mL×2)で抽出した。有機層をあわせて

無水硫酸ナトリウムで乾燥、濾過、濃縮することにより遊離の(R)-

3-アミノ-1-(4-クロロベンジル) ピロリジン (3.35g、99%) を得た。

35g、16mmol)のCH,Cl,(80mL)溶液に、Et₃N

- (2.5mL、17.6mmol)、N-tert-プトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2M NaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽
- 10 出した($100mL \times 3$)。有機層をあわせて水($100mL \times 2$)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO_2 、酢酸エチル)により、目的とする(R) $-3-\{N-(tert-プトキシカルボニル)グリシル}アミノ-1-(4-クロロベンジル)ピロリジン(<math>5.40g$ 、
 - 3) <u>(R) -1 (4 クロロベンジル) -3 (グリシルアミノ) ピ</u>ロリジンの合成

(R) -3-{N-(tert-ブトキシカルボニル)グリシル}アミノ-1-(4-クロロベンジル)ピロリジン(5.39g、14.7
 20 mmol)のメタノール(60mL)溶液に、4M HClジオキサン(38mL)溶液を加えた。この溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80mL)を加えた。混合液をジクロロメタン(80mL×3)で抽出し、抽出液をあわせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO₂、A

25 $cOEt:EtOH:Et_3N=90:5:5$)により、(R) -3-(グリシルアミノ) -1-(4-クロロペンジル) ピロリジン(3.3 74g、86%)を得た。

 $^{1}H-NMR$ (CDC1₃, 270MHz) δ

- 1.77 (dd, J = 1.3 および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H),
- 30 2.53 (dd, J = 3.3および9.6 Hz, 1 H),

15

92%)を得た。

2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H),

254

3. 31 (s, 2 H), 3. 57 (s, 2 H), 4. 38-4. 53 (br, 1 H),

7. 18-7. 32 (m, 4 H), 7. 39 (br, s, 1 H)

4) $(R) - 1 - (4 - クロロベンジル) - 3 - [{N - (3 - (トリ フルオロメチルチオ) ベンゾイル) グリシル} アミノ] ピロリジン(化$

5 合物番号 1 6 0 6)_

3-(トリフルオロメチルチオ)安息香酸(0.060mmol)、(R)-1-(4-クロロベンジル)-3-(グリシルアミノ)ピロリジン(0.050mmol)、ジイソプロピルカルボジイミド(0.060mmol)、HOBt(0.060mmol)、tertープタノール(0.15mL)、クロロホルム(1.35mL)の混合物を室温で15時間攪拌した。反応混合物をVarianTM SCXカラムに添加後、メタノール:クロロホルム=1:1(12mL)、メタノール(12mL)で順に洗浄した後、4M アンモニアのメタノール溶液(5mL)で溶出し、濃縮することにより、(R)-1-(4-クロロパンジル)-3-[{N-(3-(トリフルオロメチルチオ)ベンゾイル)グリシル}アミノ]ピロリジン(化合物番号1606)を得た(17.0mg、72%):純度はRPLC/MSで求めた(97%);ESI/MS m/e 472.0(M*+H、C21H21C1F3N3

20

0,S)

[実施例1] [125 I] 標識 M I P - 1 β の C C R 5 発現細胞膜画分へ の結合に対する化合物の阻害能の測定

ポリスチレン製96ウエルプレートに、被験化合物をアッセイバッファー(50mM HEPES、pH7.4、5mM MgCl₂、1m 25 M CaCl₂、0.2%BSA)で希釈した溶液20μL、[¹²⁵ I]標識MIP-1β (NEN Life Science Products, Inc.)を0.1 ~0.5 n M になるようにアッセイバッファーで希釈した溶液25μL、ヒトCCR5を発現させたCHO細胞膜画分を懸濁させた懸濁液155μL (膜画分4μgを含む)をおのおの添加し(最終反応溶液量200 μL)、2分間撹拌後、27℃で60分間インキュベートした。

反応終了後、反応液をFiltermate(パッカード社製)を用

255

いて濾過し、フィルターをあらかじめ冷した洗浄バッファー($10 \, \text{mM}$ HEPES、pH7. 4、0. $5 \, \text{M}$ NaCl) $250 \, \mu$ Lで 9 回洗 浄した。液体シンチレーターを1 ウエルあたり $50 \, \mu$ Lずつ加え、放射 活性をトップカウントNXT(パッカード社製)で測定した。

被験化合物の代わりにヒトMIP-1α 0.2μMを添加したときのカウントを非特異的結合として差し引き、被験化合物を何も添加しないときのカウントを100%としてヒトMIP-1βのCCR5発現細胞膜画分への結合に対する被験化合物の阻害能を算出した。

10 阻害率 (%) = {1-(A-B)/(C-B)} × 100

(A:被験化合物添加時のカウント、B:非標識ヒトMIP-1 α 添加時のカウント、C: [125 I] 標識ヒトMIP-1 β のみ添加したときのカウント)

15 本発明の環状アミン誘導体の阻害能を測定したところ、例えば下記の 化合物は、 10μ Mの濃度おいて、それぞれ $20\sim50$ %、 $50%\sim8$ 0%、および>80%の阻害能を示した。

10μMの濃度において20%~50%の阻害能を示した化合物: 化合物番号132、198、490、516、521、528、529、

- 20 6 0 1 . 6 1 6 . 6 2 2 . 6 2 7 . 6 4 2 . 6 8 4 . 8 4 7 . 8 4 9 . 8 5 0 . 8 5 7 . 8 6 7 . 8 7 4 . 8 9 9 . 9 0 2 . 1 0 0 2 . 1 0 0 3 . 1 0 5 7 . 1 0 8 3 . 1 1 8 9 . 1 2 4 5 . 1 2 4 7 . 1 4 7 2 . 1 6 0 6 . 1 8 5 9 . 1 9 9 8 . 2 0 9 3 . 2 0 9 5 . 2 0 9 7 . 2 1 3 4
- 10μMの濃度において50%~80%の阻害能を示した化合物:
 化合物番号461、505、668、679、782、1042、1073、1114、1559、1583、1609、1703、1718、1783、1833、1836、1855、1917、2157、2189、2251
- 30 10μMの濃度において>80%の阻害能を示した化合物: 化合物番号1709、1837、1910、1919、2179、22

256

35, 2241

[実施例2] HIV-1の細胞への感染に対する化合物の阻害能の測定 HIV-1の細胞への感染に対する化合物の阻害能は、CD4とCC R5を同時に発現している細胞、あるいはヒト末梢血単核球を用いて文 献記載の方法に準じて実施した(例えば、Mack、M. et al., J. Exp. Med., 1998, 187, 1215; Baba, M. et al., Proc. Natl. Acad. Sci. USA, 1999, 96, 5698など参照)。

10 [実施例3] 錠剤の製造

本発明で用いる化合物の錠剤は例えば下記処方により製造した。

本発明で用いる化合物 30 mg ラクトース 8 7 mg デンプン 30 mg

ステアリン酸マグネシウム 15 3 mg

[実施例4] 注射剤の製造

本発明で用いる化合物の注射用溶液は例えば下記の処方により製造し た。

20 本発明で用いる化合物の塩酸塩 30 mg

食塩 900mg

注射用蒸留水 1 0 0 mL

産業上の利用可能性

25 本発明で用いられる環状アミン化合物、その薬学的に許容される酸付 加体、またはその薬学的に許容されるC₁~C₆アルキル付加体は、C CR5拮抗剤であり、CCR5の生体内リガンドの標的細胞に対する作 用を抑制する作用を有する。したがって、これらの化合物を有効成分と して含有する薬剤は、CCR5が関与する疾患の治療薬もしくは予防薬 30 となる。

このような疾患としては、慢性関節リウマチ、腎炎(腎症)、多発性

硬化症、臓器移植後の拒絶反応、移植片対宿主病(GVHD)、糖尿病、慢性閉塞性肺疾患(COPD)、気管支喘息、アトピー性皮膚炎、サルコイドーシス、線維症、粥状動脈硬化症、乾癬、および炎症性腸疾患など、単球/マクロファージ、T細胞などの組織への浸潤、活性化が病気の進行、維持に主要な役割を演じている疾患が挙げられる。

また、本発明の薬剤は、CCR5拮抗作用に基づくHIV-1の宿主 細胞への感染を阻害する作用により、エイズなどのHIV感染に起因す る疾患の治療薬および/または治療薬としても有用である。

258

請求の範囲

1. 一般式

[式中、R¹はフェニル基、C₃~C₈シクロアルキル基、またはヘテロ 10 原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有 する芳香族複素環基を表し、上記R1におけるフェニル基または芳香族 複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、 および/または窒素原子を1~3個有する芳香族複素環基と縮合して縮 合環を形成していてもよく、さらに上記R1におけるフェニル基、C3 ~ C 。シクロアルキル基、芳香族複素環基、または縮合環は、任意個の ハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルポキシル基、 カルバモイル基、C、~C。アルキル基、C3~C。シクロアルキル基、 $C_{\circ} \sim C_{\circ}$ アルケニル基、 $C_{\circ} \sim C_{\circ}$ アルコキシ基、 $C_{\circ} \sim C_{\circ}$ アルキルチ 20 オ基、C₃~C₅アルキレン基、C₂~C₄アルキレンオキシ基、C₁~C 3アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、 ペンジル基、ペンジルオキシ基、ペンゾイルアミノ基、C2~C7アル カノイル基、C。~C,アルコキカルボニル基、C。~C,アルカノイル オキシ基、C,~C,アルカノイルアミノ基、C,~C, N-アルキルカ ルバモイル基、C4~C。N-シクロアルキルカルパモイル基、C1~ 25 C。アルキルスルホニル基、C3~Cg(アルコキシカルボニル)メチル 基、N-フェニルカルバモイル基、ピペリジノカルボニル基、モルホリ ノカルボニル基、1-ピロリジニルカルボニル基、式:-NH(C= O) O-で表される 2 価基、式: -NH (C=S) O-で表される 2 価 基、アミノ基、モノ (C,~C,アルキル) アミノ基、またはジ (C,~ 30

C。アルキル)アミノ基で置換されていてもよく、これらのフェニル基、

 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、または $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における $C_1 \sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、または $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

jは0~2の整数を表す。

kは0~2の整数を表す。

mは2~4の整数を表す。

nは0または1を表す。

15 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、

- 20 フェニル基、または $C_1 \sim C_6$ アルキル基を表し、 R^4 および R^5 における $C_1 \sim C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 $C_3 \sim C_8$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、
- $C_1 \sim C_6 P N$ キル基、 $C_1 \sim C_6 P N$ コキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシカルボニル基、 $C_2 \sim C_7 P N$ カノイル基、 $C_2 \sim C_7 P N$ カノイルオキシ基、 $C_2 \sim C_7 P N$ カノイルアミノ基、 $C_2 \sim C_7 P N$ カノイルアミノ基、 $C_2 \sim C_7 P N$
- 30 イル基、 $C_1 \sim C_6$ アルキルスルホニル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、または($C_1 \sim C_6$ アルキル

260

テロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基またはそのペンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3~6員環状炭化水素を形成していてもよい。

5 pは0または1を表す。

10

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、-NH-CS-NH- 、-NH-CS-NH- 、-NH-CO-O- 、または-O-CO-NH-で表される基を表す。ここで、 $-R^7$ は、水素原子または $-R^7$ は、 $-R^7$ は、水素原子または $-R^7$ は、
 R^{6} は、フェニル基、 $C_{3} \sim C_{6}$ シクロアルキル基、 $C_{3} \sim C_{6}$ シクロア ルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、 および/または窒素原子を1~3個有する芳香族複素環基を表し、上記 R⁶におけるフェニル基、ベンジル基、または芳香族複素環基は、ベン ゼン環またはヘテロ原子として酸素原子、硫黄原子、および/または窒 素原子を1~3個有する芳香族複素環基と縮合して縮合環を形成してい てもよく、さらに上記R⁶におけるフェニル基、C₃~C₈シクロアルキ ル基、Co~Coシクロアルケニル基、ベンジル基、芳香族複素環基、 20 または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、 シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル 基、トリフルオロメチル基、Cェ~C。アルキル基、Cュ~C。シクロア ルキル基、Co~Coアルケニル基、Co~Coアルコキシ基、Co~Co シクロアルキルオキシ基、C、~C。アルキルチオ基、C、~C。アルキ レンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ペン ジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル 基、3-フェニルウレイド基、C2~C1アルカノイル基、C2~C1ア ルコキシカルボニル基、C,~C,アルカノイルオキシ基、C,~C,ア ルカノイルアミノ基、Co~CoNーアルキルカルバモイル基、Co~ 30 C₆アルキルスルホニル基、フェニルカルパモイル基、N, N-ジ(C

 $_{1}$ ~ $_{6}$ アルキル)スルファモイル基、アミノ基、モノ($_{C_{1}}$ ~ $_{6}$ アルキル)アミノ基、ジ($_{C_{1}}$ ~ $_{6}$ アルキル)アミノ基、ベンジルアミノ基、 $_{2}$ ~ $_{2}$ ~ $_{7}$ (アルコキシカルボニル)アミノ基、 $_{1}$ ~ $_{6}$ (アルキルスルホニル)アミノ基、またはピス($_{1}$ ~ $_{6}$ 7 アルキルスルホニ

- 5 ル)アミノ基により置換されていてもよく、これらのフェニル基、C₃ ~C₈シクロアルキル基、C₃~C₈シクロアルケニル基、ベンジル基、 芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原 子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、C₁ ~C₆アルキル基、C₁~C₆アルコキシ基、C₁~C₆アルキルチオ基、
- 10 モノ($C_1 \sim C_6$ アルキル)アミノ基、またはジ($C_1 \sim C_6$ アルキル)アミノ基によって置換されていてもよい。] で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR5 拮抗作用を有する薬剤。

15

- 2. 上記式 (I) においてk=1かつm=2である請求の範囲第1項記載のCCR5拮抗作用を有する薬剤。
- 3. 上記式(I)においてk=0かつm=3である請求の範囲第1項20 記載のCCR5拮抗作用を有する薬剤。
 - 4. 上記式(I) においてk=1かつm=3である請求の範囲第1項 記載のCCR5拮抗作用を有する薬剤。
- 25 5. 上記式(I) において k = 2 かつ m = 2 である請求の範囲第1項 記載のCCR5 拮抗作用を有する薬剤。
 - 上記式(I) において k = 1 かつm = 4 である請求の範囲第1項 記載のCCR5 拮抗作用を有する薬剤。

3Ò

7. 上記式(I)で表される化合物、その薬学的に許容される酸付加

- 体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR5が関与する疾患の治療薬もしくは予防薬。
- 8. CCR5が関与する疾患がヒト免疫不全ウイルスの感染に起因す 5 る疾患である請求の範囲第7項記載の治療薬もしくは予防薬。
 - 9. ヒト免疫不全ウイルスの感染に起因する疾患が後天性免疫不全症候群である請求の範囲第8項記載の治療薬もしくは予防薬。
- 10 10。 CCR 5 が関与する疾患が、軟骨破壊または骨破壊を伴う疾患 である請求の範囲第 7 項記載の治療薬もしくは予防薬。
 - 11. 軟骨破壊または骨破壊を伴う疾患が慢性関節リウマチである請求の範囲第10項記載の治療薬もしくは予防薬。

15

- 12. CCR5が関与する疾患が、腎炎もしくは腎症である請求の範囲第7項記載の治療薬もしくは予防薬。
- 13. 腎炎もしくは腎症が、糸球体腎炎、間質性腎炎、またはネフロ 20 一ゼ症候群である請求の範囲第12項記載の治療薬もしくは予防薬。
 - 14. CCR5が関与する疾患が脱髄疾患である請求の範囲第7項記載の治療薬もしくは予防薬。
- 25 15. 脱髄疾患が多発性硬化症である請求の範囲第14項記載の治療 薬もしくは予防薬。
 - 16. CCR5が関与する疾患が臓器移植後の拒絶反応である請求の 範囲第7項記載の治療薬もしくは予防薬。

30

17. CCR5が関与する疾患が移植片対宿主病である請求の範囲第

263

7項記載の治療薬もしくは予防薬。

18. CCR 5 が関与する疾患が糖尿病である請求の範囲第7項記載 の治療薬もしくは予防薬。

5

19. CCR5が関与する疾患が、慢性閉塞性肺疾患、気管支喘息、 アトピー性皮膚炎、サルコイドーシス、線維症、粥状動脈硬化症、乾癬、 または炎症性腸疾患である請求の範囲第7項記載の治療薬もしくは予防 薬。

10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08627

Int C07I C07I	SIFICATION OF SUBJECT MATTER . C1 ⁷	c, C07D401/14,	C07D401/0				
	S SEARCHED						
Minimum d Int C07I C07I	6, C07D413/06,						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA (STN), REGISTRY (STN), WPIDS (STN)							
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	· · ·	passages	Relevant to claim No.			
х	WO, 99/25686, A (Teijin Limited 27 May, 1999 (27.05.99),	i),		1-7,10-15,19			
Y	Claims, p1, p345-354 & EP, 1030840, A			1,8,9,16-19			
Y	RAPORT. C. J. Molecular Cloning and Functional Characterization of a Novel Human CC Chemokine Receptor (CCR5) for RANTES, MIP-1 β , and MIP-1 α . J. Biol. Chem., 1996, Vol.271, No.29, pages 17161-17166		1				
Y	WO, 98/30218, A (SMITHKLEIN BE 16 July, 1998 (16.07.98), Claims, p1, p15-16 & EP, 979078, A						
Y	MURAI. M. Active participation of CCR5*CD8* T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J. Clin. Invest., July 1999, Vol.104, No.1, pages 49-57		17				
Y	BALASHOV.K.E.CCR5* and CXCR3* T multiple sclerosis and their lig	ands MIP-lα and		16,18			
Furthe	r documents are listed in the continuation of Box C.		annex.				
"A" docume	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
	document but published on or after the international filing	"X" document of particu	lar relevance; the cl	aimed invention cannot be			
"L" docume	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be					
"O" docume	reason (as specified) ant referring to an oral disclosure, use, exhibition or other	considered to involve combined with one	e an inventive step or more other such o	when the document is documents, such			
Date of the a	ctual completion of the international search anuary, 2001 (15.01.01)	Date of mailing of the international search report 23 January, 2001 (23.01.01)					
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer					
Facsimile No.		Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08627

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	expressed in demyelinating brain lesions. Proc. Nat Acad. Sci. USA., June 1999, Vol.96, No.12, pages 6873-68	78
Y	WO, 99/01127, A (SMITHKLEIN BEECHAM CORPORATION), 14 January, 1999 (14.01.99), Claims, p1-4, p25-28 & EP, 1001766, A	19
:		
·		
		•

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08627

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (IPC)

C07D403/12, C07D413/12, C07D417/12, C07D487/04 141, C07D403/06, C07D417/06, C07D513/04 331, C07D495/04 101, A61K31/40, A61K31/4025, A61K31/4545, A61K31/4545, A61K31/4545, A61K31/4545, A61K31/4545, A61K31/4525, A61K31/4535, A61K31/42, A61K31/422, A61K31/4155, A61K31/427, A61K31/53, A61K31/429, A61K31/4178, A61K31/381, A61K31/505, A61K31/4439, A61K31/4035, A61K31/428, A61K31/4245, A61P43/00 111, A61P29/00 101, A61P19/02, A61P13/12, A61P37/06, A61P21/00, A61P3/10, A61P11/00, A61P17/00, A61P9/10 101, A61P17/06, A61P1/04, A61P31/18

Continuation of B. FIELDS SEARCHED (IPC)

C07D403/12, C07D413/12, C07D417/12, C07D487/04 141, C07D403/06, C07D417/06, C07D513/04 331, C07D495/04 101, A61K31/40, A61K31/4025, A61K31/4545, A61K31/454, A61K31/4525, A61K31/4535, A61K31/42, A61K31/422, A61K31/4155, A61K31/427, A61K31/53, A61K31/429, A61K31/4178, A61K31/381, A61K31/505, A61K31/4439, A61K31/4035, A61K31/428, A61K31/4245

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int cl' C07D207/09, C07D211/26, C07D405/12, C07D409/12, C07D401/12, C07D401/04, C07D409/14, C07D405/14, C07D401/14, C07D401/14, C07D401/06, C07D413/06, C07D413/14, C07D409/06

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int cl' C07D207/09, C07D211/26, C07D405/12, C07D409/12, C
07D401/12, C07D401/04, C07D409/14, C07D405/14, C07D401/1
4, C07D401/06, C07D413/06, C07D413/14, C07D409/06

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN), WPIDS (STN)

C. 関連すると認められる文献				
引用文献の		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号		
X	WO, 99/25686, A (帝人株式会社) 27. 5月. 199	1-7, 10-15, 19		
	9 (27.05.99) Claims, pl, p345-354 & EP, 1030			
Y	840, A	1, 8, 9, 16-19		
Y	RAPORT.C.J.Molecular Cloning and Functional Characterization	1		
_	of a Novel Human CC Chemokine Receptor (CCR5) for RANTES,			
	MIP-1 β , and MIP-1 α . J. Biol. Chem., 1996, Vol. 271, No. 29,			
	pages17161-17166			
	·			
1				

X C欄の続きにも文献が列挙されている。

│ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

15.01.01

国際調査報告の発送日

23.01.01

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 内藤 伸一 4P 8615

電話番号 03-3581-1101 内線 3492

C (続き).	関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
Y	WO, 98/30218, A (SMITHKLEIN BEECHAM CORPORATION) 16.7月.1998 (16.07.98) Claims, pl, pl5-16 & EP, 979078, A	8, 9			
Y	MURAI. M. Active participation of CCR5°CD8°T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J. Clin. Invest., July 1999, Vol. 104, No. 1, pages49-57	17			
Y	BALASHOV. K. E. CCR5 and CXCR3 T cells are increased in multiple sclerosis and their ligands MIP-1 α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. USA., June 1999, Vol. 96, No. 12, pages 6873-6878	16, 18			
Y	WO, 99/01127, A (SMITHKLEIN BEECHAM CORPORATION) 14.1月.1999 (14.01.99) Claims, pl-4, p25-28 & EP, 1001766, A	1 9			
	·				
		·			
	·				

A. の続き

C07D403/12, C07D413/12, C07D417/12, C07D487
/04 141, C07D403/06, C07D417/06, C07D513/04
331, C07D495/04 101, A61K31/40, A61K31/4025,
A61K31/4545, A61K31/445, A61K31/454, A61K31/
4525, A61K31/4535, A61K31/42, A61K31/422, A61
K31/4155, A61K31/427, A61K31/53, A61K31/429,
A61K31/4178, A61K31/381, A61K31/505, A61K31/
4439, A61K31/4035, A61K31/428, A61K31/4245, A
61P43/00 111, A61P29/00 101, A61P19/02, A61P
13/12, A61P37/06, A61P21/00, A61P3/10, A61P11
/00, A61P17/00, A61P9/10 101, A61P17/06, A61P

B. の続き

C07D403/12, C07D413/12, C07D417/12, C07D487 /04 141, C07D403/06, C07D417/06, C07D513/04 331, C07D495/04 101, A61K31/40, A61K31/4025, A61K31/4545, A61K31/445, A61K31/454, A61K31/ 4525, A61K31/4535, A61K31/42, A61K31/422, A61 K31/4155, A61K31/427, A61K31/53, A61K31/429, A61K31/4178, A61K31/381, A61K31/505, A61K31/ 4439, A61K31/4035, A61K31/428, A61K31/4245