

Unsupervised Learning

Geena Kim

Clustering

PCA: finds a low-dimensional representation

Clustering: finds subgroups among observations

What Clustering is for

- Get a meaningful intuition of the structure of the data
- Cluster-then-predict (ex) clustering patients into different subgroups and build a model for each subgroup to predict the probability of the risk of having certain disease

Clustering Applications

- Marketing and sales
 - Customer segmentation: identifying subgroups of people who might like to purchase particular types of products
 - Advertising: identifying subgroups of people who might respond to particular types of advertising

Clustering Applications

Disease subtypes discovery

Genomic research

T. Sørlie et al (2001)

Clustering Applications

- Document clustering
 - identifying documents (or movies/music) that are similar

Image segmentation or preprocessing

Dhanachandra et al., (2015)

Popular Clustering Methods

K-means clustering

hierarchical clustering

K-means Clustering

What is a cluster?

What is a centroid?

Distance metrics

Metrics

Distortion (the mean of square distance)

Inertia (the sum of square distance)

How to choose K?

K-means Clustering

Need to decide how many clusters (K) before trying

Vulnerable to curse of dimensionality PCA preprocessing helps

Given enough time, K-means will always converge

Finds local minimum, not global minimum

The local minimum is highly dependent on the initialization sklearn's Kmeans (sklearn.cluster.KMeans) can initialize better if init='k-means++' is used

MiniBatchKmeans uses mini-batches to reduce the computation time

Hierarchical Clustering Properties

It does not need to know K in advance!

Use (di)similarity or distance metric

Use Dendrogram (upside down tree)

Deterministic (Reproducible)

Greedy (local solutions)

Hierarchical Clustering Algorithm

- Measure the (distance) metric among all cluster points
- Merge the closest clusters
- Determine the new cluster's representative point

Hierarchical Clustering Algorithm

Choice of linkage type (metric) matters!

- Complete
- Single
- Average
- Centroid
- Ward

Results from different metrics

Complete Linkage

Single Linkage

Average Distance

Finding clusters from the dendrogram

Effect of (dis)similarity metric choice

Choice of similarity metric is very important

Example: identifying subgroups of shoppers

Data-> 100 millions of shoppers (rows) and 500 millions of items

What happens if we use Euclidean distance?

What if we use correlation?

Effect of feature scaling

Features may have very different range of values

Consider shopping frequency of certain items (e.g.) AA battery vs. laptop

The solution: standardize