Interactive Systems Engineering (ISE)

Thiago Rocha Silva (<u>trsi@mmmi.sdu.dk</u>)
Associate Professor

Short Bio

Thiago Rocha Silva

Associate Professor

- Ph.D. in Computer Science, University of Toulouse III Paul Sabatier, France.
- Research Area: User-Centered Software Engineering.
- Previous research positions in Brazil, France, Japan, Norway, Netherlands, and Ireland.
- More than 5 years of experience in industry working on the development of e-government systems.
- Lecturer in Computer Science and Software Engineering since 2007.
- Joined SDU in 2021 as an Associate Professor of Software Engineering.

What about you?

Prerequisites

- Fundamentals of Software Engineering
- Interaction Design (Human-Computer Interaction)

Syllabus

- User-centered design and agile software development
- Scenario-based and behaviour-driven development
- Model-based engineering of interactive systems
- Task analysis and modelling
- Cognitive and human-error aspects when designing interactive systems
- Consistency assurance between requirements and user interface design artefacts
- Automated testing of graphical user interfaces
- End-user development

Learning Outcomes

Knowledge:

- On successful completion of this course, students will be able to explain and discuss:
 - ❖ How user-centered design can be part of an agile development process
 - ❖ Techniques for scenario- and model-based engineering of interactive systems
 - Methods and tools for analyzing and modelling user and system tasks
 - Methods and tools for assessing user interface design artefacts
 - Strategies for allowing end-user development of interactive systems

Learning Outcomes

Skills:

- On successful completion of this course, students will be able to:
 - Apply user-centered design and agile methods for engineering interactive systems
 - Specify and design testable user requirements for interactive systems
 - Carry out task analysis and modelling of interactive systems
 - Assess the consistency of user interface design artefacts

Learning Outcomes

Competences:

- On successful completion of this course, students will be able to:
 - Employ scenario- and model-based techniques for engineering and assessing interactive systems
 - Recognize and respond to the user needs when designing interactive systems
 - Devise strategies for empowering end users to design and/or customize interactive systems

Class Times and Course Organization

- Fridays from 01/09 to 08/12 (Weeks 35-49).
- Monday, 04/12 (Week 49).
 - * Room: please, check on ITSL.
- Mix of lectures and group work supervision (project-based learning).
- We expect each student to dedicate at least 140 hours throughout the course (5 ECTS).
- Final group presentations: Friday (08/12).

Schedule

Day	Date	12:15 - 13:15	13:30 - 14:30	14:45 - 15:45 (16:00)	
1	01/09	L1. Introduction to the course and group organization	E1. Topic discussion and agreement (15 min. per group)		
2	08/09	L2. Review of key HCI concepts, theories, and models	L3. Review of user-centered requirements engineering techniques	L4. Task analysis and modelling	
3	15/09	L5. Cognitive and human-error task modelling	E2. Group work supervision (15 min. per group)		
4	22/09	L6. End-user development	L7. Low-code development	L8. Low-code development and generative AI	
5	13/10	E3/E4. Group work supervision (20-25 min. per group)			
6	03/11	E4/E5. Group work supervision (20-25 min.	sion (20-25 min. per group)		
7	10/11	L9. Interactive systems design processes	E6. Group work supervision (15 min. per group)		
8	17/11	L10. Consistency assurance between requirements and UI artefacts	E7. Group work supervision (15 min. per group)		
9	24/11	L11. GUI evaluation and automated testing	E8. Group work supervision (15 min. per group)		
10	01/12	E9/10. Group work supervision (20-25 min. per group)			
11	04/12	E10/11. Group work supervision (20-25 min. per group)			
12	08/12	L12/E12. Final group presentations (15-20 min. per group)			

Modus operandi: Reading

- A reading list is made available for each topic covered in class.
- Highlighted readings indicate the most important (core) material for the topic in question.
- You should strive to read the material <u>before</u> the lecture about that topic.
- Readings marked as "content review" are a recap of key HCl concepts that are prerequisites for this course.
- The reading list will also be helpful for report writing, but you should also search for additional references.

Modus operandi: Groups

- The class will be divided into 10-12 groups of 6 students.
 - Groups are encouraged to mix Danish and international students.
- Each group will work on a project work throughout the semester (project-based learning).
- The material from the project work (including a report) will be used as the exam assignment.

Modus operandi: Communication

- Email <u>or</u> direct message on ITSL.
 - ❖ Please, **do not** send both.
- No fixed office hours for students. You can just drop by (Ø19-612a-2).

Modus operandi: Exam Assignment (Project Work)

Prompt Engineering Interactive Systems with Large Language Models:

An Experience Report

Modus operandi: Peer-Review Activity

 04/12
 05/12
 06/12
 07/12
 08/12

 Week 49
 1
 2
 2
 2
 3

Final group presentations

- 1. Report available for peer-review: 04/12 (Monday)
- 2. Peer-review period: 05/12 (Tuesday) 07/12 (Thursday)
- 3. Peer-review completed: 08/12 (Friday)

Questions?

Group Organization and Topic Agreement

- 1. You should **find the colleagues** you want to work with. Please, remember:
 - ❖ We need 10-12 groups of 6 students.
 - Groups are encouraged to mix Danish and international students.
 - You're encouraged to keep, as much as possible, the same group for the other semester courses.
- 2. You should **register your group on ITSL**.
- 3. You should **discuss** with your groupmates about **the interactive system you want to develop** for the project work.
- 4. You, as a group, should **discuss with me** about the system to be developed and **we must agree upon**.

