

AB-RTCMC-32.768kHz-EOZ9-S3

Moisture Sensitivity Level: MSL=1

RoHS/RoHS II compliant

APPLICATIONS:

3.7 x 2.5 x 0.9 mm

• Wide range in communication & measuring equipment

• Commercial & Industrial applications

· Credit Cards with Security Technology

• Automotive electronics applications

• Wireless communications

• PDA and Palm Pilots

FEATURES:

- With state-of-the-art RTC Technology by Micro Crystal AG
- RTC module with built-in "Tuning Fork" crystal oscillating at 32.768 kHz
- Factory calibrated, all built-in Temperature Compensation circuitry Time accuracy Option A & B. See Part Identification on page 7 for details
- Ultra low power consumption: 800 nA typ @ VDD = 3.0 V / Tamb = $25 ^{\circ}\text{C}$
- Wide clock operating voltage: 1.3 5.5V
- Wide interface operating voltage: 1.4 5.5V
- Extended operating temperature range: -40°C to +125°C
- I2C serial interface with fast mode SCL clock frequency of 400kHz
- Provides year, month, day, weekday, hours, minutes and seconds
- Highly versatile alarm and timer functions
- Integrated Low-Voltage Detector, Power-On Reset and Self-Recovery System
- Main Power Supply to Backup Battery switchover circuitry with Trickle Charger
- Programmable CLKOUT pins for peripheral devices (32.768 kHz / 1024 Hz / 32 Hz / 1 Hz)
- Small and compact package size: 3.7 x 2.5 x 0.9 mm. RoHS-compliant and 100% leadfree

STANDARD SPECIFICATIONS:

Absolute Maximum Ratings

Parameters	Min.	Тур.	Max.	Units	Notes
Supply Voltage (V _{DD})	GND-0.3		+6.0	V	>GND / <v<sub>DD</v<sub>
Supply Current (I _{DD} ; I _{SS})	-50		+50	mA	V _{DD} Pin
Input Voltage (V _I)	GND-0.3		$V_{DD} + 0.3$	V	Input Pin
Output Voltage (Vo)	GND-0.5		V _{DD} +0.5	V	INT/CLKOUT
DC Input Current (I _I)	-10		+10	mA	
DC Output Current (I _O)	-10		+10	mA	
Total Power Dissipation (P _{TOT})			300	mW	
Operating Temperature Range (T _{OPR})	-40		+125	°C	
Storage Temperature (T _{STO})	-55		+125	°C	Stored as bare product

Frequency and Time Characteristics

 $V_{DD}\!\!=\!\!3.0V;\,V_{SS}\!\!=\!\!0V;\,T_{AMB}\!\!=\!\!+25^{\circ}\!C;\,f_{OSC}\!\!=\!\!32.768kHz$

Parameters	Min.	Тур.	Max.	Units	Notes				
32.768kHz Oscillator Characteristics									
Frequency Accuracy (ΔF/F)		±10	±20	ppm	F _{CLKOUT} =32.768kHz; T _{AMB} =+25°C; V _{DD} =3.0V				
Frequency vs Voltage ($\Delta F/V$)		±0.5	±1.0	ppm/V	T _{AMB} =+25°C; V _{DD} =1.4~5.5V				
Frequency vs Temperature ($\Delta F/T_{OPR}$)	-0.035 ppm/°C ² $(T_{OPR}-T_O)^2 \pm 10\%$			ppm	T _{OPR} =-40~+125°C; V _{DD} =3.0V				
Turnover Temperature (T _O)	+20	+25	+30	$^{\circ}\!\mathbb{C}$					
Aging (first year)	-3		+3	ppm	T_{AMB} =+25°C				
Start-up Time Voltage(V _{START})									
Short on Time (T		0.5	3	_	T_{AMB} =-40 ~ +85°C				
Start-up Time (T_{START})		1	3	S	T_{AMB} =-40 ~ +125°C				
CLKOUT duty cycle	40	50	60	%	F _{CLKOUT} =32.768kHz; T _{AMB} =+25°C				

3.7 x 2.5 x 0.9 mm

(Continued)

Pa	Min.	Typ.	Max.	Units	Notes				
Time accuracy, DTCXO Digitally Temperature Compensated									
	$T_{AMB}=+25^{\circ}C$		±1	±3					
Time Accuracy	$T_{AMB}=0 \sim +50$ °C		±2	±4					
Option: A	T_{AMB} =-10 ~ +65°C		±3	±5	ppm				
$(\Delta t/t)$	T_{AMB} =-40 ~ +85°C		±4	±6					
	T_{AMB} =-40 ~ +125°C		±5	±8					
	$T_{AMB}=+25^{\circ}C$		±1	±3					
Time Accuracy	$T_{AMB}=0 \sim +50$ °C		±3	±5					
Option: B	T_{AMB} =-10 ~ +65°C		±5	±10	ppm				
$(\Delta t/t)$	T_{AMB} =-40 ~ +85°C		±10	±25					
	T_{AMB} =-40 ~ +125°C		±15	±30					

Static Characteristics

 $V_{DD}=1.4\sim5.5V$; $V_{SS}=0V$; $T_{AMB}=-40^{\circ}C\sim+125^{\circ}C$; $f_{OSC}=32.768kHz$

Parameters		Min.	Тур.	Max.	Units	Notes	
Supplies							
Supply Voltage (V _{DD})		1.4		5.5	V	Time-keeping mode I ² C bus reduced speed	
		2.1		5.5		I ² C bus full speed	
Minimum Supply (V _{LOW1})	Voltage Detection	1.8		2.1	V	T_{AMB} =-40 ~ +125°C	
Minimum Supply Voltage Detection (V _{LOW2})		1.0		1.4	V	T_{AMB} =-40 ~ +125°C	
Main Supply to Ba Hysteresis (V _{HYST})	ackup Supply Switchover		20		mV	V_{DD} to $V_{BACK} = 3.0V$	
	$V_{DD}=1.4V$ $T_{AMB}=-40^{\circ}C\sim+85^{\circ}C$		0.6	1.5			
	V_{DD} =1.4V T_{AMB} = -40°C ~ +125°C			4.6		SPI bus inactive CLKOUT disabled V _{BACK} = 0V Or	
Supply Current $I_{DD}(V_{BACK}=0V)$	V_{DD} =3.3V T_{AMB} = -40°C ~ +85°C		0.8	2.0	μΑ		
or I _{BACK} (V _{DD} =0V)	V_{DD} =3.3V T_{AMB} = -40°C ~ +125°C			5.2	μΛ		
	V_{DD} =5.0V T_{AMB} = -40°C ~ +85°C		0.9	2.2		$V_{DD} = 0V$	
	V_{DD} =5.0V T_{AMB} = -40°C ~ +125°C			5.5			

ABRACON IS

ISO 9001: 2008 CERTIFIED

3.7 x 2.5 x 0.9 mm

(Continued)

Parameters		Min.	Тур.	Max.	Units	Notes	
	$SCL=200kHz$ $V_{DD}=1.4V$ $T_{AMB}=-40^{\circ}C \sim +85^{\circ}C$			14			
	$SCL=200kHz$ $V_{DD}=1.4V$ $T_{AMB}=-40^{\circ}C \sim +125^{\circ}C$			18			
Supply Current	SCL= 1MHz $V_{DD} = 3.3V$ $T_{AMB} = -40^{\circ}C \sim +85^{\circ}C$			50	4	SPI bus active	
(I_{DD})	SCL= 1MHz $V_{DD} = 3.3V$ $T_{AMB} = -40^{\circ}C \sim +125^{\circ}C$			55	μΑ	CLKOUT disabled	
	SCL= 1MHz $V_{DD} = 5.0V$ $T_{AMB} = -40^{\circ}C \sim +85^{\circ}C$			65			
	SCL= 1MHz $V_{DD} = 5.0V$ $T_{AMB} = -40^{\circ}C \sim +125^{\circ}C$			75			
Current	V _{DD} =5.0V		2.5	3.4		SPI bus inactive	
Consumption	V _{DD} =3.3V		1.5	2.2	μΑ	CLKOUT =32.768kHz	
(I_{DD32K})	V _{DD} =1.4V		1.1	1.6		$C_{LOAD} = 7.5 pF$	
Input							
LOW Level Input Voltage (V _{IL})				20%* V _{DD}	V	$V_{DD} = 1.4 \sim 5.5 V_{DD}$	
HIGH Level Input Voltage (V _{IH})		80%* V _{DD}			V	Pins:SCL,SDI,CLKOE,CE	
Input Leakage Current (I _L)	T _{amb} =-40 ~+85°C	-1		+1	- A		
	T _{amb} =-40 ~+125°C	-1.5		+1.5	μA	$V_{SS} > V_I < V_{DD}$	
Input Capacitance	$(C_{\rm I})$			7	pF		

3.7 x 2.5 x 0.9 mm

(Continued)

Parameters		Min.	Тур.	Max.	Units	Notes
Output						
HIGH Level	$V_{DD} = 1.4V; I_{OH} = 0.1mA$	1.0				
Output Voltage	$V_{DD} = 3.3V$; $I_{OH} = 1.5mA$	2.7			V	
(V_{OH})	$V_{DD} = 5.0V; I_{OH} = 2.0mA$	4.5				
LOW Level	$V_{DD} = 1.4V$; $I_{OL} = 0.4mA$			0.2		
Output Voltage	$V_{DD} = 3.3V$; $I_{OL} = 1.5mA$			0.25	V	
(V_{OL})	$V_{DD} = 5.0V; I_{OL} = 5.0mA$			0.8	7 🗆	
HIGH Level Output Current (I _{OH})	$V_{OH} = 4.5 V/V_{DD} = 5 V$			2.0	mA	
LOW Level Output Current (I _{OL})	$V_{OL} = 0.8V/V_{DD} = 5V$			-5.0	mA	
Output Leekage	$V_O = V_{DD}$ or V_{SS} $T_{AMB} = -40$ °C ~ +85°C	-1	0	+1	4	
Leakage Current (I _{LO})	$V_O = V_{DD}$ or V_{SS} $T_{AMB} = -40$ °C ~ +125°C	-1.5	0	+1.5	μΑ	
Operating Tem	perature Range					
Operating Temper	ature Range (T _{OPR})	-4 0		+125	°C	
EEPROM Char	acteristics					
Read Voltage (V _{Read})	T_{AMB} = -40°C ~ +125°C	1.4			V	
Programming Voltage (V _{Prog})	$T_{AMB} = -40^{\circ}C \sim +125^{\circ}C$	2.2			V	
EEDDOM	T_{AMB} = -40°C ~ +125°C 1 Byte EEPROM User			35		
EEPROM Programming Time (T _{Prog})	T_{AMB} = -40°C ~ +125°C 1 Byte EEPROM Control			100	ms	
	T_{AMB} = -40°C ~ +125°C 2-4 Byte EEPROM Control			135		
EEPROM Write/Erase Cycles (V _{HYST})	V_{DD} to $V_{BACK} = 3.0V$	5000			Cycles	

3.7 x 2.5 x 0.9 mm

(Continued)

Parameters		Min.	Тур.	Max.	Units	Notes
Trickle Charger						
	R80K		80			
Current Limiting	R20k		20		kΩ	$V_{DD} = 5.0V$ $V_{BACK} = 3.0V$
Resistors	R5k		5			$V_{BACK} - 3.0V$ $T_{AMB} = 25^{\circ}C$
	R1.5k		1.5			
Thermometer						
Thermometer	T_{AMB} = -40°C ~ +85°C		±4		°C	
Precision (T _E)	T_{AMB} = -40°C ~ +125°C		±6			

I²C Interface Dynamic Characteristics

 V_{SS} =0V; T_{AMB} =-40°C \sim +125°C; All timing values are valid within the operating supply voltage range and references to V_{IL} and V_{IH} with an input voltage swing from V_{SS} and V_{DD} .

Parameters	Min.	Тур.	Max.	Units	Conditions
			100		$V_{DD} \ge 1.4V$
SCL Clock Frequency (f _{SCL})			300	kHz	$V_{DD} \ge 1.8V$
			400		$V_{DD} \ge 3.0V$
	50				$V_{DD}\!\ge 1.4V$
Start Condition Set-up Time (t _{SU; STA})	30			μs	$V_{DD} \ge 1.8V$
('SU; SIA)	20				$V_{DD} \ge 3.0V$
					$V_{DD}\!\ge 1.4V$
Start Condition Hold Time (t _{HD; STA})	0.2			μs	$V_{DD} \ge 1.8V$
(HD; SIA)				μѕ	$V_{DD} \ge 3.0V$
	100				$V_{DD} \ge 1.4V$
Data Set-up Time (t _{SU; DAT})	80			ns	$V_{DD} \ge 1.8V$
	50				$V_{DD} \ge 3.0V$
	50				$V_{DD}\!\ge 1.4V$
Data Hold Time (t _{HD; DAT})	30			ns	$V_{DD} \ge 1.8V$
	20				$V_{DD} \ge 3.0V$
	4.0				$V_{DD}\!\ge 1.4V$
Data Valid Time (t _{VD; DAT})	1.5			μs	$V_{DD} \ge 1.8V$
	1.2				$V_{DD} \ge 3.0V$
D. Willed J. J. T.	3.5				$V_{DD} \ge 1.4V$
Data Valid Acknowledge Time (t _{VD; ACK})	1.1			μs	$V_{DD} \ge 1.8V$
(VD; ACK)	0.9				$V_{DD} \ge 3.0V$

AB-RTCMC-32.768kHz-EOZ9-S3

RoHS/RoHS II compliant

3.7 x 2.5 x 0.9 mm

(Continued)

Parameters	Min.	Тур.	Max.	Units	Conditions
	50				$V_{DD}\!\ge 1.4V$
Stop Condition Set-up Time (t _{SU; STO})	30			ns	$V_{DD}\!\ge 1.8V$
('SU; S10)	20		μs μs μs 1.0 μs 0.2 0.4 0.3 μs 0.2 50 ns	$V_{DD}\!\ge\!3.0V$	
	1.0				$V_{DD}\!\ge 1.4V$
Bus Free Time between STOP and START Condition (t_{BUF})	0.5			μs	$V_{DD}\!\ge 1.8V$
START Condition (tBUF)	0.4			1 [$V_{DD}\!\ge\!3.0V$
	4.5				$V_{DD}\!\ge 1.4V$
SCL "LOW time" (t _{LOW})	1.7			μs	$V_{DD} \ge 1.8V$
	1.3				$V_{DD} \ge 3.0V$
	0.6				$V_{DD} \ge 1.4V$
SCL "High time" (t _{HIGH})	0.5			μs	$V_{DD} \ge 1.8V$
	0.4				$V_{DD} \ge 3.0V$
			1.0		$V_{DD} \ge 1.4V$
SCL and SDA Rise Time (t _r)			0.3	μs	$V_{DD} \ge 1.8V$
			0.2		$V_{DD} \ge 3.0V$
			0.4		$V_{DD} \ge 1.4V$
SCL and SDA Fall Time(t _f)			0.3	μs	$V_{DD} \ge 1.8V$
			0.2		$V_{DD} \ge 3.0V$
Tolerance Spike Time on Bus (t _{SP})			50	ns	
SCL and SDA I/O Capacitance (C _{I/O})			10	pF	
Capacitive Load Bus Lines (C _B)			200	pF	

I²C Interface Timing Characteristics

AB-RTCMC-32.768kHz-EOZ9-S3

3.7 x 2.5 x 0.9 mm

▶ PART IDENTIFICATIONS:

Table 1. Time accuracy, DTCXO Digitally Temperature Compensated

	ameters	Min.	Тур.	Max.	Units	
	T_{AMB} =+25°C		±1	±3		
T: 4	$T_{AMB}=0 \sim +50$ °C		±2	±4		
Time Accuracy Option: A	T_{AMB} =-10 ~ +65°C		±3	±5	ppm	
Option. 71	T_{AMB} =-40 ~ +85°C		±4	±6		
	T_{AMB} =-40 ~ +125°C		±5	±8		
	T_{AMB} =+25°C		±1	±3		
T: A	$T_{AMB}=0 \sim +50$ °C		±3	±5		
Time Accuracy Option: B	T_{AMB} =-10 ~ +65°C		±5	±10	ppm	
	T_{AMB} =-40 ~ +85°C		±10	±25		
	T_{AMB} =-40 ~ +125°C		±15	±30		

OUTLINE DIMENSIONS:

AB-RTCMC-32.768kHz-EOZ9-S3

3.7 x 2.5 x 0.9 mm

▶ PIN DESCRIPTIONS:

Pin No.	Pin Name	Function
1	CLKOE	CLKOUT enable/disable pin; enable is active HIGH; tie to GND when not using CLKOUT
2	V_{DD}	Positive supply voltage; positive or negative steps in supply voltage may affect oscillator performance, recommend 10 nF decoupling capacitor close to device
3	CLKOUT	Clock Output pin; CLKOUT or INT function can be selected.(Control_1; bit7; Clk/Int) CLKOUT output push-pull / INT function open-drain requiring pull-up resistor
4	SCL	Serial Clock Input pin; requires pull-up resistor
5	SDA	Serial Data Input-Output pin; open-drain; requires pull-up resistor
6	V_{SS}	Ground
7	ĪNT	Interrupt output pin; open-drain; active LOW
8	N.C.	Not connected; internally used for test. do not connect other signals than ground
9	V_{BACKUP}	Backup Supply Voltage; tie to GND when not using backup supply voltage
10	N.C.	Not connected; internally used for test. do not connect other signals than ground

BLOCK DIAGRAM:

AB-RTCMC-32.768kHz-EOZ9-S3

3.7 x 2.5 x 0.9 mm

RECOMMENDED REFLOW PROFILE:

Maximum Reflow Conditions in accordance with IPC/JEDEC J-STD-020C "Pb-free"

Temperature	Conditions	Units
Average Ramp-up Rate (T _{Smax} to T _P)	3°C/second max	°C/s
Ramp Down Rate (T _{cool})	6°C/second max	°C/s
Time 25°C to Peak Temperature (T to-peak)	8 minutes max	m
Preheat		
Temperature Min (T _{Smin})	150	$^{\circ}$ C
Temperature Max (T _{Smax})	200	$^{\circ}$ C
Time Ts _{min} to Ts _{max} (ts)	60 ~ 180	sec
Time Above Liquidus		
Temperature Liquidus (T _L)	217	℃
Time above Liquidus (t _L)	60 ~150	sec
Peak Temperature		
Peak Temperature (T _P)	260	℃
Time within 5°C of Peak Temperature (t _P)	$20 \sim 40$	sec

AB-RTCMC-32.768kHz-EOZ9-S3

3.7 x 2.5 x 0.9 mm

TAPE & REEL:

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

