Anatomy and Arithmetic of Convolutional Neural Networks Part I

Styles of Learning

Supervised	Unsupervised	Semi-Supervised	Reinforcement
Data has known labels	 No labels Focuse on finding patterns and gaining insight from the data 	 Labels known for a subset of data A blend of supervised and unsupervised 	 Focus on making decisions based on previous experience

(text and layout were taken from blogs.sas.com)

(leonardoaraujosantos.gitbooks.io)

<u>Semantic Segmentation = Pixel-wise Classification</u>

(vladlen.info)

Loss Functions - 1

Bounding box	Facial landmarks	Pose estimation
(coursera.org)	(stackoverflow.com)	(cs231n.stanford.edu)
(c_x, c_y, w, h)	$(x_1, y_1, \dots, x_M, y_M)$	$(x_1, y_1, \dots, x_M, y_M)$

$$\frac{1}{m} \sum_{i=1}^{m} \left(\sum_{j=1}^{n} L(s_j, \hat{s}_j) \right) \rightarrow \min$$

$$L(s_j, \hat{s}_j) = \frac{1}{2} (s_j - \hat{s}_j)^2$$

Loss Functions - 2

loss function:

$$\lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right]$$

$$+ \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right]$$

$$+ \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_{i}(c) - \hat{p}_{i}(c))^{2}$$

$$(3)$$

where $\mathbb{1}_i^{\text{obj}}$ denotes if object appears in cell i and $\mathbb{1}_{ij}^{\text{obj}}$ denotes that the jth bounding box predictor in cell i is "responsible" for that prediction.

<u>Loss Functions – 3. Categorical cross-entropy</u>

$$\hat{y} = s \quad \text{vs} \quad y = j$$

$$\mathbf{p} = (p_1, \dots, p_K) \quad \text{vs} \quad \mathbf{y} = \begin{pmatrix} 0, \dots, 1, \dots, 0 \end{pmatrix}$$

$$P(\mathbf{y}) = p_j = p_1^0 \dots p_j^1 \dots p_K^0 = p_1^{y_1} \dots p_K^{y_K}$$

$$p_1^{y_1} \dots p_K^{y_K} \to \max$$
$$y_1 \ln p_1 + \dots + y_K \ln p_K \to \max$$

one-hot encoding

$$0 < p_k < 1 \implies \ln p_k < 0 \implies -\ln p_k > 0$$

$$-y_1 \ln p_1 - \dots - y_K \ln p_K \to \min$$

$$\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} -y_k^{(i)} \ln p_k^{(i)} \to \min$$

Three Main Types of Classification

Binary: <u>two</u> mutually exclusive classes (object belongs to <u>one</u> class)

$$y^{(i)} = 1 p^{(i)} = 0.7 -y^{(i)} \ln p^{(i)} - (1 - y^{(i)}) \ln (1 - p^{(i)})$$

 Multi-class: any number of mutually exclusive (object belongs to <u>one</u> class)

$$y^{(i)} = \begin{bmatrix} 0 & 1 & 0 \\ p^{(i)} = \begin{bmatrix} 0.3 & 0.6 & 0.1 \end{bmatrix}$$

$$\sum_{k=1}^{K} -y_k^{(i)} \ln p_k^{(i)}$$

 Multi-label: any number of independent classes (object can belong to <u>many</u> classes)

$$y^{(i)} = \begin{bmatrix} 1 & 1 & ? & 0 \end{bmatrix} \qquad \sum_{k=1}^{K} \left[-y_k^{(i)} \ln p_k^{(i)} - \left(1 - y_k^{(i)} \right) \ln \left(1 - p_k^{(i)} \right) \right]$$

$$p^{(i)} = \begin{bmatrix} 0.5 & 0.7 & 0.4 & 0.2 \end{bmatrix} \qquad \sum_{k=1}^{K} \left[-y_k^{(i)} \ln p_k^{(i)} - \left(1 - y_k^{(i)} \right) \ln \left(1 - p_k^{(i)} \right) \right]$$

What is an image - 1

(Udacity)

Why images are hard? - 1

(cs231n.github.io)

Why images are hard? - 2

Viewpoint variation

Scale variation

Deformation

Occlusion

Background clutter

Intra-class variation

(cs231n.github.io)

What is an image - 2

(www.di.ens.fr)

Meet the Tensors

•	ť
,	e'
5	n'
•	s'
١	o'
*	r

Tensor of

dimension[1]

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

Tensor of dimensions[2]

(Edureka)

Common Operations on Tensors

Extending scalar binary operations:

$$(A \star B)_{\alpha} = A_{\alpha} \star B_{\alpha}$$
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 6 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 9 & 10 \end{bmatrix}$$

Applying scalar functions:

$$g: \mathbb{R} \to \mathbb{R}, \quad (g(A))_{\alpha} = g(A_{\alpha})$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}, \quad \sigma(\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}) = \begin{bmatrix} 0.5000 & 0.7311 \\ 0.8808 & 0.9526 \end{bmatrix}$$

• Flatten (reshaping to 1d-tensor):

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

Concatenation:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 7 & 8 & 9 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 7 & 8 & 9 \\ 4 & 5 & 6 & 10 & 11 & 12 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

<u>Modern Neural Network (MLP, CNN, RNN) == Graph of Tensors</u>

(Alessio Tonioni on slideshare.net)

$$Forward(\theta) = f(Parents(\theta))$$

$$Backward(\theta) = \frac{\partial E}{\partial \theta} = \sum_{c \in Children(\theta)} \left(\frac{\partial E}{\partial c} \cdot \frac{\partial c}{\partial \theta} \right)$$

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

(Shruti Jadon on Medium)

Computer Science > Neural and Evolutionary Computing

Searching for Activation Functions

Prajit Ramachandran, Barret Zoph, Quoc V. Le

(Submitted on 16 Oct 2017 (v1), last revised 27 Oct 2017 (this version, v2))

Swish
$$(x) = x \cdot \sigma(\beta x) = \frac{x}{1 + e^{-\beta x}}$$

(towardsdatascience.com)

(pictures with gray background were taken from Udacity)

Softmax - 1

$$\begin{bmatrix} z_1 \\ \vdots \\ z_K \end{bmatrix} \mapsto \begin{bmatrix} \frac{\overline{z_1}}{\overline{\Sigma}e^{z_i}} \\ \vdots \\ \frac{\overline{z_K}}{\overline{\Sigma}z_i} \end{bmatrix}, \qquad \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \mapsto \begin{bmatrix} 0.5 \\ -0.5 \\ 1.0 \end{bmatrix}$$

$$\begin{bmatrix} z_1 \\ \vdots \\ z_K \end{bmatrix} \mapsto \begin{bmatrix} e^{z_1} \\ \vdots \\ e^{z_K} \end{bmatrix} \mapsto \begin{bmatrix} \frac{e^{-1}}{\sum e^{z_i}} \\ \vdots \\ \frac{e^{z_K}}{\sum e^{z_i}} \end{bmatrix} = \begin{bmatrix} p_1 \\ \vdots \\ p_K \end{bmatrix}$$

$$0 < p_i < 1,$$

$$\sum_{i=1}^{K} p_i = 1$$

$$z_i < z_j \implies p_i < p_j$$

Softmax - 2

(http://principlesofdeeplearning.com)

```
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
model.summary()
```

Layer (type)	Output Shap	pe 	Param #
dense_1 (Dense)	(None, 512))	401920
dropout_1 (Dropout)	(None, 512))	0
dense_2 (Dense)	(None, 512))	262656
dropout_2 (Dropout)	(None, 512))	0
dense_3 (Dense)	(None, 10)		5130

Total params: 669,706

Trainable params: 669,706 Non-trainable params: 0

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 512)	401920
dropout_1 (Dropout)	(None, 512)	0
dense_2 (Dense)	(None, 512)	262656
dropout_2 (Dropout)	(None, 512)	0
dense_3 (Dense)	(None, 10)	5130

Total params: 669,706

Trainable params: 669,706 Non-trainable params: 0

Input	$28 \cdot 28 = 784$
Hidden 1 (dense_1)	$(784 + 1) \cdot 512 = 401920$
Hidden 2 (dense_2)	$(512 + 1) \cdot 512 = 262656$
Output (dense_3)	$(512+1) \cdot 10 = 5130$

<u>Feature</u> is a specific 2D structure in the image such as a blob, corner or an edge than can be described in a local neighborhood by its appearance information.

<u>Descriptor</u> is a vector that contains local appearance information.

(Pablo F. Alcantarilla)

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

- Parameter sharing. A feature detector (such as vertical edge detector) that's useful in one part on the image is *probably* useful in another part of the image.
- Sparsity of connections. In each layer each output value depends on a small number of inputs.

(Coursera)