Tabliers plombés: procédé de filage et modèle de tissage

GHAZOUAN Oumaima

Classes préparatoires aux grandes écoles Professeur encadrant: HAJMI Said

18 juillet 2022

Plan

- 1 Introduction et problématique
- Pourquoi le plomb, l'étain et le bismuth?
 - Numéro atomique
 - Densité
 - Alliage Pb-Sn-Bi
- 3 Pourquoi le polypropylène?
 - Composition atomique
 - Les avantages du polypropylène
- Pourquoi les monofilaments?
 - Filage par fusion
 - Propriétés de quelques échantillons de filaments en polypropylène
 - Spécificités des échantillons de monofilament
- Pourquoi la satinette?
 - Tissage
 - Modélisation : géométrie des tissus d'EDOUARD LUCAS
 - Principe
 - Satin carré
 - Satin symétrique
 - Armure satinette

- Introduction et problématique
- 2 Pourquoi le plomb, l'étain et le bismuth?
- 3 Pourquoi le polypropylène?
- Pourquoi les monofilaments?
- 5 Pourquoi la satinette ?
- 6 Evaluation du coefficient d'atténuation
- Conclusion
- 8 Annexes

Introduction et problématique

Figure – Plaque de plomb

Figure - Collection des tabliers plombés

Introduction et problématique

Comment maximiser l'absorption des rayons X par les tabliers médicaux afin de diminuer l'intensité des faisceaux ionisés traversant le corps humain?

- Introduction et problématique
- 2 Pourquoi le plomb, l'étain et le bismuth?
 - Numéro atomique
 - Densité
 - Alliage Pb-Sn-Bi
- 3 Pourquoi le polypropylène?
- 4 Pourquoi les monofilaments?
- Dourquoi la satinette?
- 6 Evaluation du coefficient d'atténuation
- Conclusion
- Annexes

Numéro atomique

Figure - Position de Sn, Pb et Bi dans le tableau périodique

Densité

Elément chimique	Densité
Pb	11.34
Bi	9.78
Sn	7.31
С	2.25
Н	0.09

Alliage Pb-Sn-Bi

Figure - Diagramme triangulaire de thurston

- 1 Introduction et problématique
- 2 Pourquoi le plomb, l'étain et le bismuth?
- 3 Pourquoi le polypropylène?
 - Composition atomique
 - Les avantages du polypropylène
- 4 Pourquoi les monofilaments?
- Pourquoi la satinette
- 6 Evaluation du coefficient d'atténuation
- Conclusion
- Annexes

Composition atomique

Figure - Symbole conventionnel

Les avantages du polypropylène

- Résistance
- Souplesse
- Indéchirabilité

- 1 Introduction et problématique
- 2 Pourquoi le plomb, l'étain et le bismuth?
- 3 Pourquoi le polypropylène?
- Pourquoi les monofilaments?
 - Filage par fusion
 - Propriétés de quelques échantillons de filaments en polypropylène
 - Spécificités des échantillons de monofilament
- 5 Pourquoi la satinette?
- 6 Evaluation du coefficient d'atténuation
- Conclusion
- Annexes

Filage par fusion

Figure – Procédéde filage

Propriétés de quelques échantillons de filaments en polypropylène

échantillon	Diamètre(mm)	Denier
PPMOP4G2Z-003	11.34	41
PPMOP4G2Z-004	9.78	65
PPMOP4G2Z-005	7.31	100
PPMOP4G2Z-006	2.25	145
PPMOP4G2Z-008	0.09	257

$$D = \sqrt{d \div (7068.6 \times \rho)} \tag{1}$$

1 denier \rightarrow 1 grammeparunfildelongueur 9 mètres

Spécificités des échantillons de monofilament

Code	PP	Plomb	Etain	Diamètre	Chaine	Trame	Poids	épaissseur
L30	70	30	0	190	20	80	367.09	0.513
L40	60	40	0	191	20	80	388.62	0.540
L50	50	50	0	189	20	80	420.40	0.475
LT30	70	15	15	191	20	81	364.48	0.531
T30	70	0	30	190	20	81	361.38	0.509
T40	60	0	40	190	20	81	382.85	0.518
T50	50	0	50	191	20	81	417.71	0.549
R	100	0	0	190	20	80	308.23	0.525

L : plomb (lead)
T : étain (tin)

R: échantillon témoin

- 1 Introduction et problématique
- 2 Pourquoi le plomb, l'étain et le bismuth?
- 3 Pourquoi le polypropylène?
- 4 Pourquoi les monofilaments?
- Pourquoi la satinette?
 - Tissage
 - Modélisation : géométrie des tissus d'EDOUARD LUCAS
 - Armure satinette
- 6 Evaluation du coefficient d'atténuation
- Conclusion
- Annexes

Tissage

Figure - Disposition des fils de chaîne et de trame

Figure - Armure

Principe

Les conditions de réalisation d'un satin régulier se trouvent satisfaits par le choix :

- a ≤p
- a ∧p=1
 - Ce qui donne :
 - $x = 0, 1, 2, 3, \ldots, k, \ldots, p-1;$
 - $y\equiv 0$, a[p], 2a[p], 3a[p],...., ka[p],..., (p-1)a[p];

Principe

Exemples

• La toile : (p=2,a=1)

$$(p=2,a=1)$$

• le sergé : $(p>2,a \equiv 1 \pmod{p})$

$$(p=3.a=1)$$

$$(p=3,a=2)$$

Satin carré

Un satin est appelé carré lorsque l'inverse de a est confondu avec son opposé. Dans $\mathbb{Z}/p\mathbb{Z}$, a est solution de :

$$\boxed{a^2 + 1 \equiv 0 \pmod{p}} \tag{2}$$

Figure – (p=13,a=5)

Satin symétrique

Le satin est symétrique lorsque le décochement a se confond avec son inverse modulo p. Dans $\mathbb{Z}/p\mathbb{Z}$, a solution de l'équation :

$$\boxed{a^2 - 1 \equiv 0 \pmod{p}} \tag{3}$$

Figure –
$$(p=8,a=3)$$

Armure satinette

Figure - Premier modèle

Armure satinette

Figure - Deuxiéme modèle

- 1 Introduction et problématique
- Pourquoi le plomb, l'étain et le bismuth?
- 3 Pourquoi le polypropylène?
- 4 Pourquoi les monofilaments?
- Pourquoi la satinette?
- 6 Evaluation du coefficient d'atténuation
 - Définition
 - Coefficients d'atténuation de quelques éléments chimiques extrait de XCOM DATABASE
 - Relation entre coefficient d'atténuation massique et linéique
 - Coefficients d'atténuation des échantillons
 - Pourcentages de l'atténuation des rayons X « XAP » en fonction de l'épaisseur

Définition

$$\frac{I}{I_0} = \exp\left(-\mu x\right) \tag{4}$$

$$\mu = -\frac{\ln\left(\frac{I}{I_0}\right)}{x} \tag{5}$$

 I_0 : intensitéinitiale

I : intensité du faisceau atténué

 μ : coefficientd' atténuation linéaire (cm $^{-1}$)

x : épaisseur (cm)

Coefficients d'atténuation de quelques éléments chimiques extrait de XCOM DATABASE

	Pb	Sn	Bi	С	Н
					3.21×10^{-5}
80 KeV	$2.74 \times 10^{+1}$	$2.22 \times 10^{+1}$	$2.16 \times 10^{+1}$	3.60×10^{-1}	2.78×10^{-5}

Relation entre coefficient d'atténuation massique et linéique

$$\mu = \textit{MAS} \times \rho \tag{6}$$

 μ : Coefficientd' atténuationlinéique(cm⁻¹)

MAS : Coefficient d'atténuation massique (cm^2/g)

 ρ : $Massevolumique(g/cm^3)$

Coefficients d'atténuation des échantillons

	1							
Niveau d'énergie/	R	L30	L40	L50	LT30	T30	T40	T50
Degré d'alignement								
30KeV	0.21	8.80	9.89	12.87	8.40	8.35	9.32	10.67
0°								
30KeV	0.21	9.07	10.38	13.85	8.23	8.44	9.96	11.30
45°								
30KeV	0.21	9.55	10.79	14.35	9.10	9.48	10.17	11.61
90°								
80KeV	0.08	4.46	4.55	6.04	3.42	3.11	3.61	4.84
0°								
80KeV	0.08	4.78	4.83	7.22	3.98	3.96	4.07	5.51
45°						•	-	
80KeV	0.08	5.30	5.45	7.67	4.48	4.31	4.75	5.76
90°		•	•	•	•		•	

Pourcentages de l'atténuation des rayons X « XAP » en fonction de l'épaisseur

Code	Epaisseur	0°	0°	45°	45°	90°	90°	
		30KeV	80Kev	30KeV	80KeV	30KeV	80KeV	ĺ
L30	0.49	97.96	83.53	98.29	85.39	98.61	88.38	ĺ
L40	0.53	99.19	86.04	99.40	88.90	99.50	91.54	
L50	0.44	99.40	89.35	99.61	93.20	99.68	94.36	
LT30	0.52	98.04	76.50	98.00	81.21	98.59	84.73	
T30	0.50	97.73	73.06	97.83	79.91	98.59	82.18	
T40	0.49	98.44	77.82	98.84	80.93	99.15	85.36	
T50	0.51	99.28	87.22	99.49	90.39	99.51	91.55	
R	0.52	10.49	05.24	10.73	05.93	10.93	06.16	

- 1 Introduction et problématique
- Pourquoi le plomb, l'étain et le bismuth ?
- 3 Pourquoi le polypropylène?
- Pourquoi les monofilaments?
- 5 Pourquoi la satinette?
- 6 Evaluation du coefficient d'atténuation
- Conclusion
- 8 Annexes

Conclusion

- 1 Introduction et problématique
- Pourquoi le plomb, l'étain et le bismuth?
- 3 Pourquoi le polypropylène?
- 4 Pourquoi les monofilaments?
- Pourquoi la satinette?
- 6 Evaluation du coefficient d'atténuation
- Conclusion
- 8 Annexes
 - Origine de la nomenclature du satin carré
 - Origine de la nomenclature du satin symétrique
 - Simulations

Origine de la nomenclature du satin carré

Figure - Satin carré (p=13,a=5)

Origine de la nomenclature du satin symétrique

Figure – satin symétrique (p=8,a=3)

Dessins des armures

```
import turtle
def corre(x,y,taille,couleur,remplissage);
   turtle.up()
   turtle goto(x,y)
   turtle.down()
   turtle color(couleur)
   If remplissage--it
       turtle begin fill()
        turtle.forward(taille)
       turtle.right(00)
   if remplissage--ir
       turtle end fill()
turtle.speed(8)
remplissage-1
for x in range(0,(int(n)-1)*18+1,18):
   for y in range(0,((int(x)-1)*10)+1,18):
        1 y--(int(d)"x)%(int(m)"10):
           carre(x,y,10, block ,remplissage)
           carre(x, y, 10, 'block', 1-resplinage)
```

Figure - Fonction python dessinant l'armure en vue d'arrière

Dessins des armures

```
m=input('m=')
d=input( d= )
import turtle
def carre(x,y,taille,couleur,remplissage):
    turtle.up()
    turtle.goto(x,y)
    turtle.down()
    turtle.color(couleur)
    if remplissage==1:
        turtle.begin fill()
        turtle.forward(taille)
        turtle.right(90)
    if remplissage -- 1:
        turtle.end fill()
turtle.speed(0)
remplissage=1
for x in range(0,(int(m)-1)*10+1,10):
    for y in range(0,((int(m)-1)*18)+1,18):
        ir y==(int(d)*x)%(int(m)*10):
           carre(x,y,10, 'red',1-resplissage)
            carre(x,y,38, 'red', remplissage)
```

Figure - Fonction python dessinant l'armure en vue d'avant

		Scattering		74	Pair Pro	duction	Total Attenuation		
Edge	Photon Energy	Coherent	Incoherent	Photoelectric Absorption	In Nuclear Field	In Electron Field	With Coherent Scattering	Without Coheren Scattering	
	MeV	cm ² /g	cm ² g	cm ² g	cm ² /g	cm ² /g	cm²/g	cm ² /g	
	3.000E-02	1.377E+00	8 228E-02	2.886E+01	0.000E-00	0.000E+00	3.032E+01	2.894E+01	
	4.000E-02	9.202E-01	9.019E-02	1.335E+01	0.000E+00	0.000E+00	1.436E+01	1.344E+01	
	5.000E-02	6.545E-01	9.478E-02	7.292E+00	0.000E+00	0,000E+00	8.042E+00	7.387E+00	
	6.000E-02	4.900E-01	9.734E-02	4.432E+00	0.000E+00	0.000E+00	5.020E+00	4.530E+00	
- 3	8.000E-02	3.078E-01	9.923E-02	2.012E+00	0.000E+00	0.000E+00	2.419E+00	2.112E+00	
	8.800E-02	2.632E-01	9.928E-02	1.547E+00	0.000E+00	0.000E+00	1.910E+00	1.647E+00	
82 K	8.800E-02	2.632E-01	9.928E-02	7.321E+00	0.000E+00	0.000E+00	7.684E+00	7.421E+00	
	1.000E-01	2.128E-01	9.894E-02	5.237E+00	0.000E+00	0.000E+00	5.549E+00	5.336E+00	
	1.500E-01	1.049E-01	9.484E-02	1.815E+00	0.000E+00	0.000E+00	2.015E+00	1.910E+00	
	2,000E-01	6.260E-02	8.966E-02	8.464E-01	0.000E-00	0.000E+00	9.986E-01	9.360E-01	
	3.000E-01	2.988E-02	8.036E-02	2.930E-01	0.000E+00	0.000E+00	4.032E-01	3.733E-01	

	Service Co.	Scattering			Pair Pro	oduction	Total A	attenuation
Edge	(required) Photon Energy	Coherent	Incoherent	Photoelectric Absorption	In Nuclear Field	In Electron Field	With Coherent Scattering	Without Coherent Scattering
	MeV	cm ² /g	cm g	cm²/g	em-/g	cm²/g	cm ² /g	cm²/g
	3.000E-02	1.406E+00	8.230E-02	3.003E+01	0.000E+00	0.000E+00	3.152E+01	3.011E+01
	4.000E-02	9.406E-01	9.025E-02	1.392E+01	0.000E+00	0.000E+00	1.495E+01	1.401E+01
	5.000E-02	6.700E-01	9.486E-02	7.613E+00	0.000E+00	0.000E+00	8.378E+00	7.708E+00
	6.000E-02	5.017E-01	9.746E-02	4.634E+00	0.000E+00	0.000E+00	5.233E+00	4.731E+00
	8.000E-02	3.153E-01	9.939E-02	2.107E+00	0.000E+00	0.000E+00	2.522E+00	2.206E+00
	9.053E-02	2.572E-01	9.942E-02	1.500E+00	0.000E+00	0.000E+00	1.856E+00	1.599E+00
83 K	9.053E-02	2.572E-01	9.942E-02	7.023E+00	0.000E+00	0.000E+00	7.379E+00	7.122E+00
	1.000E-01	2.179E-01	9.913E-02	5.420E+00	0.000E+00	0.000E+00	5.737E+00	5.520E+00
	1.500E-01	1.076E-01	9.507E-02	1.880E+00	0.000E-00	0.000E+00	2.082E+00	1.975E+00
	2.000E-01	6.420E-02	8.991E-02	8.792E-01	0.000E+00	0.000E+00	1.033E+00	9.691E-01
	3.000E-01	3.066E-02	8.060E-02	3.052E-01	0.000E+00	0.000E+00	4.164E-01	3.858E-01

	(required)	Scatt	ering		Pair Pro	duction	Total Attenuation		
Edge	Photon	Coherent	_ Incoherent	Photoelectric Absorption	In Nuclear Field	In Electron Field	With Coherent Scattering	Without Coheren Scattering	
	MeV	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	
	3.000E-02	6.914E-01	1.009E-01	4.042E+01	0.000E+00	0.000E+00	4.121E+01	4.052E+01	
	4.000E-02	4.513E-01	1.077E-01	1.887E+01	0.000E+00	0.000E+00	1.943E+01	1.897E+01	
	5.000E-02	3.199E-01	1.113E-01	1.027E+01	0.000E+00	0.000E+00	1.070E+01	1.038E+01	
	6.000E-02	2.378E-01	1.129E-01	6.214E+00	0.000E+00	0.000E+00	6.565E+00	6.327E+00	
	8.000E-02	1.456E-01	1.132E-01	2.770E+00	0.000E+00	0.000E+00	3.029E+00	2.883E+00	
	1.000E-01	9.862E-02	1.115E-01	1.467E+00	0.000E+00	0.000E+00	1.677E+00	1.578E+00	
	1.500E-01	4.790E-02	1.049E-01	4.564E-01	0.000E+00	0.000E+00	6.091E-01	5.612E-01	
	2.000E-01	2.827E-02	9.821E-02	1.995E-01	0.000E+00	0.000E+00	3.260E-01	2.977E-01	
	3.000E-01	1.315E-02	8.720E-02	6.351E-02	0.000E+00	0.000E+00	1.639E-01	1.507E-01	

	(required)	Scattering			Pair Pro	duction	Total Attenuation		
Edge	Photon	Coherent	Incoherent	Photoelectric Absorption	In Nuclear Field	In Electron Field	With Coherent Scattering	Without Coherent Scattering	
	MeV	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	
	3.000E-02	3.365E-02	1.655E-01	5.706E-02	0.000E+00	0.000E+00	2.562E-01	2.225E-01	
	4.000E-02	2.045E-02	1.653E-01	2.193E-02	0.000E+00	0.000E+00	2.076E-01	1.872E-01	
	5.000E-02	1.371E-02	1.630E-01	1.042E-02	0.000E+00	0.000E+00	1.871E-01	1.734E-01	
	6.000E-02	9.807E-03	1.598E-01	5.671E-03	0.000E+00	0.000E+00	1.753E-01	1.655E-01	
	8.000E-02	5.711E-03	1.531E-01	2.169E-03	0.000E+00	0.000E+00	1.610E-01	1.553E-01	
	1.000E-01	3.719E-03	1.466E-01	1.031E-03	0.000E+00	0.000E+00	1.514E-01	1.476E-01	
	1.500E-01	1.685E-03	1.327E-01	2.706E-04	0.000E+00	0.000E+00	1.347E-01	1.330E-01	
	2.000E-01	9.541E-04	1.219E-01	1.063E-04	0.000E+00	0.000E+00	1.229E-01	1.220E-01	
	3.000E-01	4.264E-04	1.062E-01	2.980E-05	0.000E+00	0.000E+00	1.066E-01	1.062E-01	

	(required)	Scattering			Pair Pro	duction	Total Attenuation		
Edge	Photon	Coherent	 Incoherent	Photoelectric Absorption	In Nuclear Field	In Electron Field	With Coherent Scattering	Without Coherent Scattering	
	MeV	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	cm ² /g	
	3.000E-02	3.024E-03	3.539E-01	6.166E-05	0.000E+00	0.000E+00	3.570E-01	3.540E-01	
	4.000E-02	1.712E-03	3.441E-01	2.284E-05	0.000E+00	0.000E+00	3.458E-01	3.441E-01	
	5.000E-02	1.099E-03	3.344E-01	1.058E-05	0.000E+00	0.000E+00	3.355E-01	3.344E-01	
	6.000E-02	7.648E-04	3.253E-01	5.649E-06	0.000E+00	0.000E+00	3.260E-01	3.253E-01	
	8.000E-02	4.308E-04	3.087E-01	2.105E-06	0.000E+00	0.000E+00	3.091E-01	3.087E-01	
	1.000E-01	2.760E-04	2.941E-01	9.822E-07	0.000E+00	0.000E+00	2.944E-01	2.941E-01	
	1.500E-01	1.228E-04	2.650E-01	2.495E-07	0.000E+00	0.000E+00	2.651E-01	2.650E-01	
	2.000E-01	6.907E-05	2.428E-01	9.625E-08	0.000E+00	0.000E+00	2.429E-01	2.428E-01	
	3.000E-01	3.070E-05	2.112E-01	2.637E-08	0.000E+00	0.000E+00	2.112E-01	2.112E-01	

Hydrogen

Pourcentage d'atténuation des rayons X « XAP »

$$XAP(\%) = \frac{I_0 - I}{I_0} \times 100$$
 (7)