Einschub: Das Zornsche Lemma

Ferdinand Szekeresch

27. Dezember 2016

Es sei $\emptyset \neq \mathcal{L}$ eine Menge und \triangleleft eine **Ordnungsrelation** auf \mathcal{L} , d.h. für $a, b, c \in \mathcal{L}$ gilt:

- (1) $a \triangleleft a$
- (2) aus $a \triangleleft b$ und $b \triangleleft a \implies a = b$
- (3) aus $a \triangleleft b$ und $b \triangleleft c \implies a \triangleleft c$

Es sei $\emptyset \neq \mathcal{K} \subseteq \mathcal{L}$. \mathcal{K} heißt eine **Kette**: \iff aus $a, b \in \mathcal{K}$ folgt stets: $a \triangleleft b$ oder $b \triangleleft a$. Sei $\mathcal{M} \subseteq \mathcal{L}$ und $a \in \mathcal{L}$. a heißt eine **obere Schranke** von \mathcal{M} : \iff $x \triangleleft a \ \forall x \in \mathcal{M}$. $v \in \mathcal{L}$ heißt ein **maximales Element** von \mathcal{L} : \iff aus $a \in \mathcal{L}$ und $v \triangleleft a$ folgt: v = a

Lemma 0.1 (Das Zornsche Lemma)

 \mathcal{L} und \triangleleft seien wie oben. Besitzt **jede** Kette in \mathcal{L} eine obere Schranke in \mathcal{L} , so enthält \mathcal{L} ein maximales Element.