TO BE SORTED RANDOM

ALEC HEWITT

(Analysis) Thm 9.5.10 proof recall: $f(x) = \sum_{n=0}^{n} \frac{d^n f(a)h^n}{n!} + R_n$; $R_n \frac{1}{(n+1)!} d^{n+1} f(c)h^{n+1}$ df(a) = 0, n = 1 $\implies f(x) = f(a) + \frac{1}{2}hd^2 f(c)h$; x = a + h $\exists m > 0$ s.t. if $||d^2 f(c)|| < \frac{m}{2}$ $\implies d^2 f(c)$ pos def 2^{nd} order partial derivative is continuous at a and $||c - a|| \le ||\implies ||d^2 f(a) - d^2 f(c)|| < \frac{m}{2} i f ||h|| \sim \text{small} \implies d^2 f(c)$ pos def $\implies f(a + h) = f(a) + \frac{1}{2}h \cdot d^2 f(c)h > f(a)$ $\implies f$ has local min at a Thm 9.5.11 Corollary 9.5.12 Thm 9.5.15 Defn 9.6.1

Peano's Axioms

N1. There is an element $1 \in \mathbb{N}$

N2. For each $n \in \mathbb{N}$ there is a successor element $s(n) \in \mathbb{N}$

N3. 1 is not the successor of an element of \mathbb{N}

N4. If two elements of \mathbb{N} have the same successor, then they are equal.

N5. If s subset A of N contains 1 and is closed under succession (meaning $s(n) \in A$ whenever $n \in A$), then $A = \mathbb{N}$.

Thm 1.2.1 Suppose $\{P_n\}$ is a sequence of statements, one for each

Thm 1.2.1 Suppose $\{P_n\}$ is a sequence of statements, one for each $n \in \mathbb{N}$.

These statements are all true provided

(1) P_1 is true (base case);

(2) whenever P_n is true for some $n \in \mathbb{N}$, then $P_{s(n)}$ is also true, then P_n is true $\forall n \in \mathbb{N}$

```
Proof
Let A \subset \mathbb{N} s.t. n \in Aand(P_nistrue)
pt (1) \implies 1 \in A
pt (2) \implies s(n) \in Awhenn \in A
by N5 A = \mathbb{N} \implies P_n true \forall n
Thm 9.6.2
B inverse for dF(a) at a (constant matrix)
\implies d(BF)(a) = dB \cdot F(a) + B \cdot dF(a) = B \cdot dF(a) = I
\implies G(x) = BF(x)w/dG(a) = I, \ u \cdot dG(a) \cdot u = u \cdot Iu
= ||u||^2 = 1 \implies posdef
recall: Lemma 9.5.9 \implies \exists m > 0 \text{s.t.} ||dG(x) - dG(a)|| > \frac{m}{2}
\implies dG(x) pos def.
(Comp Anal.)
Thm 3.3.7
Assume no such sequence
\implies \exists \epsilon > 0  and \delta > 0  s.t. |f(z) - W| > \epsilon \forall z \in U
= \{z \in \mathbb{C} | 0 < |z - z_0| < \delta \}. Since f(z) \neq w \text{ in U}
g(z) \equiv \frac{1}{f(z) - w} \text{ analytic on } Uw/|g(z)| < \frac{1}{\epsilon}
recall: 3.3.4 (1) a) f bounded in deleted neighborhood of z_0 \implies z_0
removable discontinuity.
g \neq 0 constantly since f is not constantly infinite
```

Thm 3.3.7

Proof

Spose $\not\equiv$ such sequence $\implies \exists \epsilon > 0, \ \delta > 0$ s.t. $|f(z) - w| > \epsilon, \ \forall z \in U = \{z \in \mathbb{C} | 0 < |z - z_0| < \delta\}$ $\implies f(z) \neq w \implies g(z) = \frac{1}{f(z) - w}$ analytic $\implies |g(z)| < \frac{1}{\epsilon} \implies z_0$ removable by Thm 3.3.4 (a) g not constantly zero since f is not constantly infinite (isolated singularity) by Corollary

- zero since f is not constantly infinite (isolated singularity) by Corollary 3.2.8 g has a convergent power series and if g is 0 at z_0 then $g(z) = (z z_0)^k \phi(z)$
- $\implies f(z) = w + \frac{1}{g(z)}$ is analytic if k = 0 or pole of order $k \implies z_0$ is not essential
- \implies contradiction

<u>Prop 4.1.1</u> If g(z) and h(z) are analytic and have zeros at z_0 of the same order, then f(z) = g(z)/h(z) has a removable singularity at z_0 .

Proof Prop 3.3.4 $\Longrightarrow g(z) = (z - z_0)^k \tilde{g}(z), \ \tilde{g}(z_0) \neq 0 h(z) = (z - z_0)^k \tilde{h}(z), \ \tilde{h}(z_0) \neq 0. \ \tilde{g}and\tilde{h}$ analytic and nonzero at z_0 . $\Longrightarrow f(z) = \tilde{g}(z)/\tilde{h}(z)$ analytic at z_0 .

Prop 4.1.2 Let g and h be analytic at z_0 and assume $g(z_0 \neq 0, h(z_0) = 0$ and $h'(z_0) \neq 0$. then f(z) = g(z)/h(z) has a simple pole at z_0 and $\operatorname{Res}(f; z_0) = \frac{g(z_0)}{h'(z_0)}$

Prop 4.1.2

$$\underline{\underline{\text{Proof }}h(z_0)} = 0; h'(z_0) \neq 0 \implies h'(z_0) = \lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} \\
= \lim_{z \to z_0} \frac{h(z)}{z - z_0} \neq 0$$

recall Prop 3.3.4:
$$\lim_{z\to z_0} (z-z_0) f(z) = Res(f;z_0) if \lim_{z\to z_0} (z-z_0) \frac{g(z)}{h(z)} = \frac{g(z_0)}{h'(z_0)} = Res(\frac{g(z)}{h(z)};z_0)$$