Université AMADOU MAHTAR MBOW

MASTER 1 MISID

PROBABILITE ET STATISTIQUE POUR IA

Partie 1: Méthodes Factorielles

Analyse en Composantes Principales

Algorithme

1. Centrer le tableau (
$$X_{< n,p>}$$
) : $X^{'} = X - g$ et $g^{j} = \frac{\sum\limits_{i=1}^{N} p_{i}.x_{ij}}{\sum\limits_{i=1}^{N} p_{i}}$; $j = 1...p$; $i = 1...N \& p_{i} = \frac{1}{N}$

- **2.** Calculer la matrice variance –covariance : $V = \frac{1}{N}X^t.X$
- 3. Déterminer la métrique $M = \begin{cases} I \\ D_{\frac{1}{\sigma_j^2}} \end{cases}$ Données homogènes/ hétérogènes.
- **4.** Recherche des axes principaux U_k de la matrice (VM)
 - \blacktriangleleft Calculer les valeurs propres : $d\acute{e}t(VM \lambda I) = 0$
 - \clubsuit Trier les valeurs propres par ordre décroissant : $\lambda_1>\lambda_2>.....>\lambda_p$.
- **5.** Calculer la qualité de représentation : $Q_j = \frac{\sum_{i=1}^J \lambda_i}{\sum_{i=1}^p \lambda_i} \ge 80\%$.
- **6.** Calculer les vecteurs propres U_k de la matrice (VM) en utilisant la formule : $VMU_k = \lambda_k U_k$.
- 7. Calculer les composantes principales : $C_k^i = \langle X_i, U_k \rangle_M = X_i^t M U_k$ et $C_k = XMU_k$.
- 8. Représenter graphiquement les individus dans l'espace réduit en utilisant les composantes principales.
- 9. Les contributions aux inerties :

 - lacktriangle Contribution relative de l'individu X_i à l'inertie expliquée de l'axe U_k :

$$\rho_{ik} = \frac{P_{i}.(C_{k}^{i})^{2}}{\sum_{i=1}^{n} P_{i}.(C_{k}^{i})^{2}} = \frac{P_{i}.(C_{k}^{i})^{2}}{Var(C_{k})} = \frac{P_{i}.(C_{k}^{i})^{2}}{\lambda_{k}}$$

10. Représentation des variables à l'aide du coefficient de corrélation :

$$Cor(X^{j}, C_{k}) = \frac{Cov(X^{j}, C_{k})}{\sigma_{X^{j}}.\sigma_{C_{k}}} = \frac{\sum_{i=1}^{N} P_{i}.X_{i}^{j}.C_{k}^{i}}{\sigma_{Y^{j}}.\sqrt{\lambda_{k}}} = \frac{\frac{1}{N}(X^{j})^{t}.C_{k}}{\sigma_{Y^{j}}.\sqrt{\lambda_{k}}}$$

AFC & ACM

Algorithme

- 1. Tableau [Variable/Variable] \rightarrow deux tableaux de profils [Individus/ Variables]
- 2. Application de deux ACP $\rightarrow N(I)$

$$\downarrow N(J)$$

3. Les valeurs propres significatives du nuage $\lambda_{\mathbf{k}} \in]0,1[$

$$N(I) \mapsto \lambda_k, U_k$$

$$N(J) \mapsto \lambda_k, V_k$$

$$N(I) \mapsto C_k = F_J^I.D_{1/f.J}U_k & N(J) \mapsto d_k = F_J^J.D_{1/f.J}V_k$$
4. Calculer les composantes principales :

$$C_k^i = \frac{1}{\sqrt{\lambda_K}} \sum_{j=1}^P F_J^I . d_k^j & d_k^j = \frac{1}{\sqrt{\lambda_K}} \sum_{i=1}^n F_I^J . C_k^i$$
5. Les formules de transitions :

Partie 2 : Pratique des méthodes factorielles sur Python