Determining Natural Line-Width, Quadropole and Zeeman Effects in Iron Compounds using Mössbauer Spectroscopy

Giacomo Resta (gresta@mit.edu)

March 7, 2013

Principle Behind Mössbauer Spectroscopy

$$E'=E\left(1+v/c\right)$$

Equipment Setup

Absolute Velocity Calibration

⁵⁷Fe Absorption Spectrum

Absorption Line Width and Sample Thickness

Absorption Profile,

$$I(E) = \frac{I_0(\Gamma)^2}{(E - E_0)^2 + (\Gamma)^2}$$

Photons Transmitted (Assuming Thin Sample)

$$C(E) = C_0 \left(1 - \frac{B}{(E - E_0)^2 + \Gamma^2} \right)$$

Example FWHM Fit of Absorption Line - 125[mg] Sample

Determining Natural Line Width

Measured Values for ⁵⁷Fe Natural Line Width

Accepted Values

$$au_{1/2} = 9.8 \times 10^{-8} \text{ [sec]}$$

$$\Gamma = \frac{h \ln 2}{2\pi \tau_{1/2}} = 4.7 \times 10^{-9} \text{ [eV]}$$

Measured Values

 Γ : $(8.0 \pm 1.5(stat)) \times 10^{-9}$ [eV] Factor of σ Off Accepted Γ : 2.19 $\tau_{1/2}$: $(5.7 \pm 1.1(stat))e - 08$ [sec]

FWHM ΔE : $(1.60 \pm 0.3(stat)) \times 10^{-8}$ [eV] E: $(1.439999999998364 \pm 0.00000000000072(stat)) \times 10^{4}$ [eV]

Fractional Width: $(1.11 \pm 0.21(stat)) \times 10^{-12}$

Isomer Shift

$$\delta = C \cdot (R_e^2 - R_g^2) |\phi_s^2(0) - \phi_a^2(0)|$$

where,

 $R_{\rm e}=$ Absorber nucleus charge radius in excited state $R_{\rm g}=$ Absorber nucleus charge radius in ground state $\phi_{\rm s}=$ Source Electron Density $\phi_{\rm a}=$ Absorber Electron Density

Absorption Spectrum of $Fe_2(SO_4)_3$

Isomer Shift in $Fe_2(SO_4)_3$

Quadrupole and Zeeman Effects

Quadrupole

Zeeman

Peak Fitting Quadrupole and Zeeman Effects in Fe₂O₃

Measured Values for Quadrupole and Zeeman Effects in Fe_2O_3

$$\Delta E_g = (4.018 \pm 0.013(stat))e - 07 [eV]$$

 $\Delta E_m = (2.294 \pm 0.013(stat))e - 07 [eV]$
 $\Delta Q = (9.4 \pm 1.6(stat))e - 09 [eV]$

Measurement of the Absorption Spectrum for Fe₃O₄

Chemical Structure of Fe₃O₄

https://www.ebi.ac.uk/chebi/

Measurement of the Absorption Spectrum for Fe₃O₄

Final Remarks

- Mössbauer spectroscopy allows for fine measurements of atomic structure.
- ▶ We have confirmed accepted measurements for $\tau_{1/2}$ in ⁵⁷Fe.
- ► The technique can be applied to provide information about the chemical structure of a substance as demonstrated by our application to Fe₃O₄.