VI Semester

COMPUTER GRAPHICS AND FUNDAMENTALS OF IMAGE PROCESSING				
Course Code	21CS63	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	03	Exam Hours	03	

Course Objectives:

- CLO 1. Overview of Computer Graphics along with its applications.
- CLO 2. Exploring 2D and 3D graphics mathematics along with OpenGL API's.
- CLO 3. Use of Computer graphics principles for animation and design of GUI's .
- CLO 4. Introduction to Image processing and Open CV.
- CLO 5. Image segmentation using Open CV.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it.
- 6. IntroduceTopicsin manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Overview: Computer Graphics hardware and software and OpenGL: Computer Graphics: Video Display Devices, Raster-Scan Systems Basics of computer graphics, Application of Computer Graphics. OpenGL: Introduction to OpenGL, coordinate reference frames, specifying two-dimensional world coordinate reference frames in OpenGL, OpenGL point functions, OpenGL line functions, point attributes, line attributes, curve attributes, OpenGL point attribute functions, OpenGL line attribute functions, Line drawing algorithms(DDA, Bresenham's).

Textbook 1: Chapter -1,2,3, 5(1 and 2 only)

Self-study topics: Input devices, hard copy devices, coordinate representation, graphics functions, fill area primitives, polygon fill areas, pixel arrays, Parallel Line algorithms

Teaching-	Chalk & board, Active Learning			
Learning	Virtual Lab			
Process				
M. J. J. O				

Module-2

2D and **3D** graphics with OpenGL: **2D** Geometric Transformations: Basic **2D** Geometric Transformations, matrix representations and homogeneous coordinates, **2D** Composite transformations, other **2D** transformations, raster methods for geometric transformations, **OpenGL** raster transformations, **OpenGL** geometric transformations function,

3D Geometric Transformations: Translation, rotation, scaling, composite 3D transformations, other 3D transformations, OpenGL geometric transformations functions

Textbook 1: Chapter -6, 8

Self-study topics: Transformation between 2D coordinate system, OpenGL geometric-transformation, Transformation between 3D coordinate system.

Teaching-

Chalk & board, Active Learning, Problem based learning

Learning Process

Virtual Lab:

Module-3

Interactive Input Methods and Graphical User Interfaces: Graphical Input Data, Logical Classification of Input Devices, Input Functions for Graphical Data, Interactive Picture-Construction Techniques, Virtual-Reality Environments, OpenGL Interactive Input-Device Functions, OpenGL Menu Functions, Designing a Graphical User Interface.

Computer Animation: Design of Animation Sequences, Traditional Animation Techniques, General Computer-Animation Functions, Computer-Animation Languages, Character Animation, Periodic Motions, OpenGL Animation Procedures.

Textbook 1: Chapter -11, 18

Self-study topics: Raster methods for computer animation, Key frame systems, Motion specification.

Teaching-
Learning

Process

Chalk & board, MOOC, Active Learning

Module-4

Introduction to Image processing: overview, Nature of IP, IP and its related fields, Digital Image representation, types of images.

Digital Image Processing Operations: Basic relationships and distance metrics, Classification of Image processing Operations.

Text book 2: Chapter 3

(Below topics is for experiential learning only , No questions in SEE)

Computer vision and OpenCV: What is computer vision, Evolution of computer vision, Application of Computer vision, Feature of OpenCV, OpenCV library modules, OpenCV environment, Reading, writing and storing images using OpenCV. OpenCV drawing Functions. OpenCV Geometric Transformations.

(Note: Computer vision and OpenCV for experimental learning or Activity Based Learning using web sources, Preferred for assignments. No questions in SEE)

Web Source: https://www.tutorialspoint.com/opency/

Teaching-	Chalk& board, Problem based learni
Lagrning	Lab practice for OpenCV for basic go

Learning Lab practice for Ope

Lab practice for OpenCV for basic geometric objects and basic image operation

Process

Module-5

Image Segmentation: Introduction, classification, detection of discontinuities, Edge detection (up to canny edge detection(included)).

Text Book 2: Chapter 9: 9.1 to 9.4.4.4

(Below topics is for experiential learning only, No questions in SEE)

Image processing with Open CV: Resizing, Rotation/Flipping, Blending, Creating region of Interest (ROI), Image Thresholding, Image Blurring and smoothing, Edge Detection, Image contours and Face Detection on images using OpenCV.

(Note :Image Processing withOpenCV for experimental learning or Activity Based Learning using web sources, Preferred for assignments. No questions in SEE)

Web source: https://medium.com/analytics-vidhya/introduction-to-computer-vision-opency-in-python-fb722e805e8b

Teaching- Chalk & board, MOOC

Learning Lab practice on image processing.

Process Virtual Lab:

Course Outcomes:

At the end of the course the student will be able to:

- CO 1. Construct geometric objects using Computer Graphics principles and OpenGL APIs.
- CO 2. Use OpenGL APIs and related mathematics for 2D and 3D geometric Operations on the objects.
- CO 3. Design GUI with necessary techniques required to animate the created objects
- CO 4. Apply OpenCV for developing Image processing applications.
- CO 5. Apply Image segmentation techniques along with programming, using OpenCV, for developing simple applications.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5^{th} week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for 20

Marks (duration 01 hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(To have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- 3. The question paper will have ten questions. Each question is set for 20 marks. Marks scored shall be proportionally reduced to 50 marks
- 4. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Textbooks

- 1. Donald D Hearn, M Pauline Baker and WarrenCarithers: Computer Graphics with OpenGL 4th Edition, Pearson, 2014
- 2. S. Sridhar, Digital Image Processing, second edition, Oxford University press 2016.

Reference Books

- 1. Edward Angel: Interactive Computer Graphics- A Top Down approach with OpenGL, 5th edition. Pearson Education, 2008
- 2. James D Foley, Andries Van Dam, Steven K Feiner, John F Huges Computer graphics with OpenGL: Pearson education

Web links and Video Lectures (e-Resources):

Web links and Video Lectures (e-Resources):

- 1. https://nptel.ac.in/courses/106/106/106106090/
- 2. https://nptel.ac.in/courses/106/102/106102063/
- 3. https://nptel.ac.in/courses/106/103/106103224/
- 4. https://nptel.ac.in/courses/106/102/106102065/
- 5. https://www.tutorialspoint.com/opency/ (Tutorial, Types of Images, Drawing Functions)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

2. Mini project on computer graphics using Open GL/Python/Open CV.