Oecologia

An experimental framework for determining the degree of intraguild predation in a three-species omnivorous food web in the field --Manuscript Draft--

Manuscript Number:				
Full Title:	An experimental framework for determining the degree of intraguild predation in a three-species omnivorous food web in the field			
Article Type:	Methods			
Corresponding Author:	Gen-Chang Hsu National Taiwan University Department of Life Science Taipei, TAIWAN			
Order of Authors:	Gen-Chang Hsu			
Suggested Reviewers:	Philippe Tixier University of Montpellier: Universite de Montpellier tixier@cirad.fr Substantial experience in trophic ecology			
	Arne Janssen University of Amsterdam: Universiteit van Amsterdam arne.janssen@uva.nl Substantial experience in food web interactions			
	Josep Piñol Autonomous University of Barcelona: Universitat Autonoma de Barcelona Josep.Pinol@uab.es Substantial experience in trophic ecology			
Opposed Reviewers:				
Funding Information:				
Abstract:	Intraguild predation (IGP) is common in natural and human-managed systems and plays a critical role in food web dynamics. Previous studies have documented the occurrence of IGP across a wide range of predator taxa, yet there is still a lack of quantitative understanding regarding the degree/intensity of IGP in these systems. Here, I propose an experimental framework combining controlled feeding trials and stable isotope analysis to determine the degree of IGP in a three-species omnivorous food web (shared prey + mesopredator + top predator) in the field. The degree of IGP is defined herein as the proportion (in number) of mesopredator consumed in the total diet (shared prey + mesopredator) of top predator. The feeding trials are used to construct a standard curve for the degree of IGP in the focal system, to which the stable isotope signatures of field samples are compared to estimate the degree of IGP in the field. The proposed framework leverages the strengths of different experimental approaches to studying trophic interactions, providing a useful tool for quantifying IGP in a more accurate (controlled feeding trials and standard IGP curve) and realistic (stable isotope analysis of field samples) fashion. If proven successful, the current framework can be extended to food webs involving more complex interactions (e.g., cannibalism and multiple shared prey) and further complemented with other approaches (e.g., molecular gut content analysis) to capture a more complete picture of IGP dynamics in the field.			

Dear Editor,

I am writing to submit my manuscript, "An experimental framework for determining the degree

of intraguild predation in a three-species omnivorous food web in the field", for consideration of

publication as a Methods paper in Oecologia. All parts of manuscript are carefully prepared

following the author guidelines.

In this paper, I propose an experimental framework combining controlled feeding trials and

stable isotope analysis of field samples to determine the degree of intraguild predation in a three-

species omnivorous food web. Intraguild predation plays a critical role in food web dynamics,

yet there is currently a lack of quantitative understanding of IGP in the field. The proposed

framework could help fill this important gap by quantifying IGP in a more accurate (controlled

feeding trials) and realistic (stable isotope analysis of field samples) fashion. I believe that this

manuscript is appropriate for publication and will be of great interest to the readers.

I declare that this manuscript is original, has not been published before, and is not under

consideration for publication elsewhere. I have no conflict of interest to disclose.

Thank you very much for your consideration and I look forward to your feedback.

Sincerely,

Gen-Chang Hsu

Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.

Email: genchanghsu@gmail.com

Click here to view linked References

Title

An experimental framework for determining the degree of intraguild predation in a three-species omnivorous food web in the field

Author names and affiliations

Gen-Chang Hsu^a

^aDepartment of Life Science, National Taiwan University, Taipei, Taiwan

^aNo.1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C.)

Corresponding author

Gen-Chang Hsu

Email: genchanghsu@gmail.com

Phone: (+886) 952942842

ORCID: https://orcid.org/0000-0002-6607-4382

Author contributions

GCH conceived, designed, and executed this study and wrote the manuscript. No other person is entitled to authorship.

Abstract

Intraguild predation (IGP) is common in natural and human-managed systems and plays a
critical role in food web dynamics. Previous studies have documented the occurrence of IGP
across a wide range of predator taxa, yet there is still a lack of quantitative understanding
regarding the degree/intensity of IGP in these systems. Here, I propose an experimental
framework combining controlled feeding trials and stable isotope analysis to determine the
degree of IGP in a three-species omnivorous food web (shared prey + mesopredator + top
predator) in the field. The degree of IGP is defined herein as the proportion (in number) of
mesopredator consumed in the total diet (shared prey + mesopredator) of top predator. The
feeding trials are used to construct a standard curve for the degree of IGP in the focal system, to
which the stable isotope signatures of field samples are compared to estimate the degree of IGP
in the field. The proposed framework leverages the strengths of different experimental
approaches to studying trophic interactions, providing a useful tool for quantifying IGP in a more
accurate (controlled feeding trials and standard IGP curve) and realistic (stable isotope analysis
of field samples) fashion. If proven successful, the current framework can be extended to food
webs involving more complex interactions (e.g., cannibalism and multiple shared prey) and
further complemented with other approaches (e.g., molecular gut content analysis) to capture a
more complete picture of IGP dynamics in the field.

Key words

food webs, intraguild predation, omnivory, stable isotope analysis, trophic interactions

Introduction

Intraguild predation (IGP) is common in natural and human-managed ecosystems (Polis and Holt 1992; Müller and Brodeur 2002; Arim and Marquet 2004) and has been documented across a wide range of animal taxa (Polis et al. 1989; Fonseca et al. 2017). IGP could substantially affect the abundance and distribution of interacting species, which may have profound ecological and evolutionary consequences for food web dynamics (Polis et al. 1989).

Previous studies have used manipulative experiments (e.g., field cages) to assess the intensity of IGP by comparing the differences in the densities of prey or mesopredator in the absence vs. presence of top predator (Denno et al. 2004; Provost et al. 2005). This approach could reveal the mechanisms underlying predator-prey interactions, allowing for strong causal inferences about IGP. However, the confined settings in these experiments could potentially alter the encounter rates between organisms and thus lead to biased results.

Stable isotopes, particularly nitrogen isotope signatures (δ^{15} N), have been used to estimate the trophic level of predators in the field for inferences about IGP (Halaj et al. 2005; Wise et al. 2006; Sanders and Platner 2007). It is suggested that IGP would increase the δ^{15} N of predators (Ponsard and Arditi 2000). Rickers et al. (2006) conducted feeding experiments on wolf spiders (*Alopecosa cuneata*) and revealed a higher δ^{15} N of these top predators in IGP treatment. However, the study did not quantify the degree of IGP as the IGP treatment was binary (absence vs. presence of mesopredator) with constant numbers of shared prey and mesopredator. On top of that, the trophic levels of top predators in previous studies were often calculated based on assumed trophic discrimination factors (e.g., Klarner et al. 2013; Svanbäck

et al. 2015). Since trophic discrimination factors are quite taxon-specific (Caut et al. 2009), this could lead to incorrect trophic level estimates and thus inferences about IGP in the field.

Recently, researchers have applied molecular gut content analysis and immunological techniques to reliably detect the presence of certain food items in predators' diet (Hagler 2006; Gagnon et al. 2011; Mansfield and Hagler 2016). These advances in technology have allowed researchers to compute the incidence rate of IGP (i.e., the percentage of top predator individuals with mesopredator detected in the gut contents). Nonetheless, the incidence rate may not necessarily reflect the degree of IGP in the system (Raso et al. 2014). For example, it is possible that a high percentage of top predator individuals feed on mesopredator yet each top predator individual consumes on average a low proportion of mesopredator in the diet. In this case, a high incidence rate of IGP would be misleading and fail to capture the overall IGP dynamics (including frequency and intensity).

So far, there is still a lack of quantitative information regarding the intensity/degree of IGP in the field, and such information is the first step towards a deeper understanding of food web dynamics. To address this gap, I propose an experimental framework combining controlled feeding trials and stable isotope analysis of field samples to determine the degree of IGP in a three-species omnivorous food web (top predator + mesopredator + shared prey) in the systems of interest. The degree of IGP is defined herein as the proportion (in number) of mesopredator consumed in the total diet (mesopredator + shared prey) of top predator. The feeding trials will experimentally link different levels of mesopredator consumption by top predators to the changes in their nitrogen isotope signatures (δ^{15} N) via a standard curve, to which the isotope signatures of field samples are compared to estimate the degree of IGP in the field.

Materials and methods

Here, I illustrate the proposed framework using an example of a three-species omnivorous arthropod food web, in which a top predator and a mesopredator both feed on a shared prey, while the top predator also feeds on the mesopredator (Fig. 1a). Two sets of controlled feeding trials will be conducted. In the first feeding trial, the top predator and the mesopredator are fed the shared prey for an appropriate period of time to allow for the incorporation of isotopes into the tissues (Fig. 1b). The purpose of the first trial is to ensure that both predators have reached an isotopic equilibrium state with the shared prey. In the second feeding trial (with the same duration as the first trial), the top predator are fed mixed diets with different proportions of shared prey and mesopredator individuals from the first trial: (1) shared prey only, (2) 75% of shared prey + 25% of mesopredator, (3) 50% of shared prey + 50% of mesopredator, (4) 25% of shared prey and mesopredator in the presented diet can be determined based on their field densities. The purpose of the second trial is to simulate a full range of potential encounter rates that the focal organisms might experience in the field.

At the end of the second feeding trial, the actual numbers of shared prey and mesopredator consumed by the top predator in each diet treatment are recorded, and the difference in nitrogen isotope signatures between the top predator individuals and the shared prey (baseline) are analyzed ($\delta^{15}N_{predator} - \delta^{15}N_{prey}$; $\Delta^{15}N$). A standard curve can be constructed by plotting the experimental $\Delta^{15}N$ of top predator against the proportion of mesopredator consumed (Fig. 1d). Finally, field samples of shared prey and top predator individuals are collected, with their $\delta^{15}N$ analyzed to obtain the empirical $\Delta^{15}N$. The degree of IGP in the field can thus be estimated by interpolating the empirical $\Delta^{15}N$ to the standard curve (Fig. 1e). A

hypothetical example of data collection in the second feeding trial for standard curve construction is provided in Fig. 2.

Results and discussion

The proposed experimental framework leverages the strengths of previous approaches to studying IGP—the controlled feeding trials combined with stable isotope analysis can yield accurate experimental $\Delta^{15}N$ to construct a standard curve, whereas the empirical $\Delta^{15}N$ derived from stable isotope analysis of field samples reflects the trophic interactions under natural settings. Together, this framework provides a useful tool for determining the degree of IGP in the field in a more quantitative and realistic fashion.

Agricultural systems, in which IGP has been frequently documented (Polis et al. 1989; Rosenheim et al. 1995), are ideal for testing the proposed framework. The food web structures in such systems are relatively simple compared with other ecosystems. Therefore, the potential confounding effects of non-focal species on the trophic interactions among focal organisms can be minimized (Vance-Chalcraft et al. 2007). Moreover, this framework is useful for quantifying the effects of various abiotic and biotic factors on IGP under field settings. For instance, the framework can be implemented along a gradient of habitat complexity to examine how different levels of habitat complexity might affect the degree of IGP in the field. Finally, the framework is robust to variations in background isotope signatures because the degree of IGP is determined based on the difference between nitrogen isotope signatures of the focal organisms (Δ^{15} N) rather than their original values (δ^{15} N), thus allowing for comparisons across sites or systems with distinct background isotope signatures.

A better quantitative understanding of IGP can provide critical insights into the complex predator-predator-prey trophic interactions and could help predict the community structure and stability (Arim and Marquet 2004; Nakazawa and Yamamura 2006; Pahl et al. 2020). Furthermore, such an understanding can have useful implications for practitioners, for example, evaluation of the effectiveness of biocontrol agents in pest control programs (Müller and Brodeur 2002). If proven successful, the current framework can be further extended to food webs involving more complex interactions (e.g., cannibalism and multiple shared prey) and complemented with other approaches (e.g., molecular gut content analysis) to better elucidate the IGP dynamics in the field.

Acknowledgements

- I would like to thank William J.-A. Ou for the useful comments and editing work on this
- manuscript.

Declarations

- 126 Funding
- No funding was received to assist with the preparation of this manuscript.

- Conflict of interest
- The author declares that there is no conflict of interest regarding this paper.

131	
132	Ethics approval
133	Not applicable.
134	
135	Consent to participate
136	Not applicable.
137	
138	Consent for publication
139	Not applicable.
140	
141	Availability of data and material
142	Data sharing not applicable to this article as no datasets were generated or analysed during the
143	current study.
144	
145	Code availability
146	Not applicable.
147	
148	Authors' contributions

149 GCH conceived, designed, and executed this study and wrote the manuscript. No other person is 150 entitled to authorship. 151 152 Reference 153 Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species 154 biology. Ecol. Lett. 7:557-564 doi: https://doi.org/10.1111/j.1461-0248.2004.00613.x 155 Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors ($\Delta 15N$ and $\Delta 13C$): 156 the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 157 46:443-453 158 Denno RF, Mitter MS, Langellotto GA, Gratton C, Finke DL (2004) Interactions between a 159 hunting spider and a web-builder: consequences of intraguild predation and cannibalism 160 for prey suppression. Ecol. Entomol. 29:566-577 doi: https://doi.org/10.1111/j.0307-161 6946.2004.00628.x 162 Fonseca MM, Montserrat M, Guzmán C, Torres-Campos I, Pallini A, Janssen A (2017) How to 163 evaluate the potential occurrence of intraguild predation. Exp. Appl. Acarol. 72:103-114 164 doi: https://doi.org/10.1007/s10493-017-0142-x 165 Gagnon A-È, Heimpel GE, Brodeur J (2011) The ubiquity of intraguild predation among 166 predatory arthropods. PLoS One 6:e28061 167 Hagler J (2006) Development of an immunological technique for identifying multiple predator— 168 prey interactions in a complex arthropod assemblage. Ann. Appl. Biol. 149:153-165 doi:

https://doi.org/10.1111/j.1744-7348.2006.00076.x

169

170	Halaj J, Peck RW, Niwa CG (2005) Trophic structure of a macroarthropod litter food web in
171	managed coniferous forest stands: a stable isotope analysis with $\delta15N$ and $\delta13C$.
172	Pedobiologia 49:109-118 doi: https://doi.org/10.1016/j.pedobi.2004.09.002
173	Klarner B, Maraun M, Scheu S (2013) Trophic diversity and niche partitioning in a species rich
174	predator guild-Natural variations in stable isotope ratios (13C/12C, 15N/14N) of
175	mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil
176	Biol. Biochem. 57:327-333 doi: https://doi.org/10.1016/j.soilbio.2012.08.013
177	Mansfield S, Hagler JR (2016) Wanted dead or alive: scavenging versus predation by three
178	insect predators. Food Webs 9:12-17 doi: https://doi.org/10.1016/j.fooweb.2016.03.003
179	Müller CB, Brodeur J (2002) Intraguild predation in biological control and conservation biology.
180	Biological Control 25:216-223
181	Nakazawa T, Yamamura N (2006) Community structure and stability analysis for intraguild
182	interactions among host, parasitoid, and predator. Popul. Ecol. 48:139-149 doi:
183	https://doi.org/10.1007/s10144-005-0249-5
184	Pahl KB, Yurkowski DJ, Lees KJ, Hussey NE (2020) Measuring the occurrence and strength of
185	intraguild predation in modern food webs. Food Webs:e00165 doi:
186	https://doi.org/10.1016/j.fooweb.2020.e00165
187	Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions.
188	Trends Ecol. Evol. 7:151-154 doi: https://doi.org/10.1016/0169-5347(92)90208-S
189	Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation:
190	potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20:297-330 doi:
191	https://doi.org/10.1146/annurev.es.20.110189.001501

192	Ponsard S, Arditi R (2000) What can stable isotopes (δ15N and δ13C) tell about the food web of
193	soil macro-invertebrates? Ecology 81:852-864 doi: https://doi.org/10.1890/0012-
194	9658(2000)081[0852:WCSINA]2.0.CO;2
195	Provost C, Coderre D, Lucas E, Chouinard G, Bostanian NJ (2005) Impact of intraguild
196	predation and lambda-cyhalothrin on predation efficacy of three acarophagous predators.
197	Pest Management Science: formerly Pesticide Science 61:532-538 doi:
198	https://doi.org/10.1002/ps.1027
199	Raso L et al. (2014) Intraguild predation in pioneer predator communities of alpine glacier
200	forelands. Mol. Ecol. 23:3744-3754 doi: https://doi.org/10.1111/mec.12649
201	Rickers S, Langel R, Scheu S (2006) Stable isotope analyses document intraguild predation in
202	wolf spiders (Araneae: Lycosidae) and underline beneficial effects of alternative prey and
203	microhabitat structure on intraguild prey survival. Oikos 114:471-478 doi:
204	https://doi.org/10.1111/j.2006.0030-1299.14421.x
205	Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among
206	biological-control agents: theory and evidence. Biol. Control 5:303-335 doi:
207	https://doi.org/10.1006/bcon.1995.1038
208	Sanders D, Platner C (2007) Intraguild interactions between spiders and ants and top-down
209	control in a grassland food web. Oecologia 150:611 doi: https://doi.org/10.1007/s00442-
210	006-0538-5
211	Svanbäck R, Quevedo M, Olsson J, Eklöv P (2015) Individuals in food webs: the relationships
212	between trophic position, omnivory and among-individual diet variation. Oecologia
213	178:103-114 doi: https://doi.org/10.1007/s00442-014-3203-4

214	Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A (2007) The influence of
215	intraguild predation on prey suppression and prey release: a meta-analysis. Ecology
216	88:2689-2696
217	Wise DH, Moldenhauer DM, Halaj J (2006) Using stable isotopes to reveal shifts in prey
218	consumption by generalist predators. Ecol. Appl. 16:865-876 doi
219	https://doi.org/10.1890/1051-0761(2006)016[0865:USITRS]2.0.CO;2
220	

Figure legends

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

Figure 1. A schematic diagram of the proposed experimental framework for determining the degree of intraguild predation (IGP) in a three-species omnivorous food web, in which a top predator and a mesopredator both feed on a shared prey, while the top predator also feeds on the mesopredator (a). In the first feeding trial (b), the top predator and the mesopredator are fed the shared prey for an appropriate period of time to ensure that both predators have reached an isotopic equilibrium state with the shared prey. In the second feeding trial (c), the top predators are fed mixed diets with different proportions of shared prey and mesopredator individuals to simulate a full range of potential encounter rates that the focal organisms might experience in the field. (d) A standard curve can be constructed by plotting the difference in nitrogen isotope signatures between the top predator individuals and the shared prey (baseline) ($\delta^{15}N_{predator}$ – $\delta^{15}N_{prey}$; experimental $\Delta^{15}N$) against the proportion of mesopredator consumed. (Note that the curve may not necessarily be linear due to the differences in the biomass of shared prey and mesopredator individuals.) (e) The $\delta^{15}N$ of field-sampled shared prey and top predator individuals are analyzed to obtain the empirical $\Delta^{15}N$, which is then interpolated to the standard curve to estimate the degree of IGP in the field.

237

238

239

240

241

242

Figure 2. A hypothetical example of data collection in the second feeding trial for standard curve construction. Each diet treatment consists of five replicates (i.e., five different top predator individuals). *N*: number of shared prey/mesopredator supplied in the mixed diet; *C*: number of shared prey/mesopredator consumed by the top predators; *P*: proportion of mesopredator consumed (%). Each point in the standard curve represents a top predator individual.

Figures

Figure 1.

Figure 2.

Diet treatment		*	*	*	*	
N	20/0	15/5	10/10	5/15	0/20	
С	12/0 11/0 12/0 10/0 13/0	8/3 7/5 9/3 8/4 7/3	6/5 6/4 7/4 5/5 6/4	3/6 3/5 4/5 2/5 3/5	0/4 0/5 0/5 0/3 0/6	© Z
P (%)	0 0 0 0	27.2 41.7 25.0 33.3 30.0	45.5 40.0 36.3 50.0 40.0	66.7 62.5 55.6 71.4 62.5	100 100 100 100 100	P (%)
Δ ¹⁵ N (‰)	1.0 0.8 0.9 0.9 1.0	1.4 1.8 1.3 1.5 1.5	2.2 2.1 1.7 2.2 2.0	2.4 2.4 2.3 2.5 2.3	2.9 2.7 2.7 2.6 2.8	