_	_		
O	ptim	ization	methods

Unconstrained convex optimization

Unconstrained convex optimization problem

$$\min_{oldsymbol{w} \in \mathbb{R}^d} \quad f(oldsymbol{w})$$

(f is the convex objective function; feasible region is \mathbb{R}^d).

Gradient descent for differentiable objectives

- ▶ Start with some initial $w^{(1)} \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$ until some stopping condition is satisfied.
 - ▶ Compute gradient of f at $w^{(t)}$:

$$\boldsymbol{\lambda}^{(t)} := \nabla f(\boldsymbol{w}^{(t)}).$$

Update:

$$\boldsymbol{w}^{(t+1)} := \boldsymbol{w}^{(t)} - \eta_t \boldsymbol{\lambda}^{(t)}$$
.

 $(\eta_t > 0 \text{ are step sizes.})$

1 / 25

Two issues

(Projected) (sub)gradient descent

- 1. Objective function not necessarily differentiable everywhere.
- 2. Feasible region not necessarily \mathbb{R}^d .

-/--

Non-differentiability

Non-differentiable convex objectives

Some convex functions f are not differentiable everywhere; gradient descent not even well-specified for these problems.

Example: hinge loss

$$f(\boldsymbol{w}) = \ell_{ ext{hinge}}(\boldsymbol{w}, 0; \boldsymbol{x}, y) = \left[1 - y \langle \boldsymbol{w}, \boldsymbol{x}
angle
ight]_{+}.$$

Not differentiable at $\boldsymbol{w} \in \mathbb{R}^d$ where $y\langle \boldsymbol{w}, \boldsymbol{x} \rangle = 1$.

Dealing with non-differentiability

Local optimization

- lacksquare Locally change $oldsymbol{x} o oldsymbol{x} + oldsymbol{\delta}.$
- ▶ Hopefully improve objective value $f(x) \to f(x + \delta)$.

Subgradients

We say $\pmb{\lambda} \in \mathbb{R}^d$ is a subgradient of a function $f \colon \mathbb{R}^d o \mathbb{R}$ at $\pmb{w}_0 \in \mathbb{R}^d$ if

$$f(\boldsymbol{w}) \geq f(\boldsymbol{w}_0) + \langle \boldsymbol{\lambda}, \boldsymbol{w} - \boldsymbol{w}_0 \rangle$$
 for all $\boldsymbol{w} \in \mathbb{R}^d$,

i.e., λ specifies an **affine lower bound** on the function.

Although not every function f is differentiable everywhere, every **convex function** f has **subgradients** everywhere.

(Some technical conditions apply.)

Call the entire set the subdifferential of f at w_0 ; denote it by

$$\partial f(\boldsymbol{w}_0) := \{ \boldsymbol{\lambda} \in \mathbb{R}^d : \boldsymbol{\lambda} \text{ is a subgradient of } f \text{ at } \boldsymbol{w}_0 \}.$$

5 / 25

Example: max of two affine functions

Consider one-dimensional function $f(z) := [1-z]_+ = \max\{0, 1-z\}.$

Two subgradients of f at z = 1: -1 and 0.

$$f(z) \ge f(1) + (-1) \cdot (z - 1) = 1 - z;$$

 $f(z) > f(1) + (0) \cdot (z - 1) = 0.$

In fact, every $\lambda \in [-1, 0]$ satisfies

$$f(z) \geq f(1) + \frac{\lambda}{\lambda} \cdot (z-1)$$
.

We have $\partial f(1) = [-1, 0]$.

Subgradient descent

Subgradient descent for general convex objectives

- ▶ Start with some initial $w^{(1)} \in \mathbb{R}^d$.
- $\,\blacktriangleright\,$ For $t=1,2,\ldots\,$ until some stopping condition is satisfied.
 - ▶ Compute *any* subgradient $\lambda^{(t)} \in \partial f(w^{(t)})$.
 - Update:

$$w^{(t+1)} := w^{(t)} - n_t \lambda^{(t)}$$
.

 $(\eta_t > 0 \text{ are step sizes.})$

6/2

Example: soft-margin (homogeneous) SVM

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) \,, \qquad f(\boldsymbol{w}) \; := \; \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{|S|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in S} \left[1 - y \langle \boldsymbol{w}, \boldsymbol{x} \rangle \right]_+$$

Question: How do we compute a subgradient g of f at a given point $w_0 \in \mathbb{R}^d$?

$$\boldsymbol{g} \; = \; \lambda \boldsymbol{w}_0 + \frac{1}{|S|} \sum_{(\boldsymbol{x},y) \in S} \begin{cases} \boldsymbol{0} & \text{if } 1 - y \langle \boldsymbol{w}_0, \boldsymbol{x} \rangle < 0 \,; \\ -y \boldsymbol{x} & \text{if } 1 - y \langle \boldsymbol{w}_0, \boldsymbol{x} \rangle > 0 \,; \\ \text{any conv. comb. of above} & \text{if } 1 - y \langle \boldsymbol{w}_0, \boldsymbol{x} \rangle = 0 \,. \end{cases}$$

With "continuous" data, exact equalities like $1 - y\langle \boldsymbol{w}_0, \boldsymbol{x} \rangle = 0$ never come up.

Example: soft-margin (homogeneous) SVM

Subgradient descent algorithm for soft-margin SVM:

- ▶ Start with some initial $w^{(1)} \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$ until some stopping condition is satisfied.

$$\boldsymbol{w}^{(t+1)} := \boldsymbol{w}^{(t)} - \eta_t \left(\lambda \boldsymbol{w}^{(t)} + \frac{1}{|S|} \sum_{(\boldsymbol{x}, y) \in S} \begin{cases} \boldsymbol{0} & \text{if } 1 - y \langle \boldsymbol{w}^{(t)}, \boldsymbol{x} \rangle < 0; \\ -y \boldsymbol{x} & \text{if } 1 - y \langle \boldsymbol{w}^{(t)}, \boldsymbol{x} \rangle \geq 0 \end{cases} \right)$$

$$= (1 - \lambda \eta_t) \boldsymbol{w}^{(t)} + \eta_t \frac{1}{|S|} \sum_{\substack{(\boldsymbol{x}, y) \in S: \\ y \langle \boldsymbol{w}^{(t)}, \boldsymbol{x} \rangle \leq 1}} y \boldsymbol{x}.$$

Note effect of regularization term $\frac{\lambda}{2} \| {m w} \|_2^2$ (whenever $\eta_t < 1/\lambda$):

Shrink $w^{(t)}$ by a factor $1 - \lambda \eta_t$ before updating with subgradient of loss term. Helps prevent $w^{(t)}$ from becoming too long.

Constrained convex optimization

$$egin{array}{ll} \min & f(oldsymbol{w}) \ ext{s.t.} & oldsymbol{w} \in oldsymbol{A} \end{array}$$

for convex function f and convex feasible set A (possibly a strict subset of \mathbb{R}^d).

Projected subgradient descent

- ▶ Start with some initial $w^{(1)} \in A$.
- ▶ For t = 1, 2, ... until some stopping condition is satisfied.
 - ▶ Compute *any* subgradient $\lambda^{(t)} \in \partial f(w^{(t)})$.
 - Update:

$${m w}^{(t+0.5)} := {m w}^{(t)} - \eta_t {m \lambda}^{(t)}$$
 .

▶ Project to feasible region *A*:

$$\boldsymbol{w}^{(t+1)} := \operatorname{Proj}_{\boldsymbol{A}}(\boldsymbol{w}^{(t+0.5)}).$$

Projection onto convex set A: $\operatorname{Proj}_A(\boldsymbol{w}) := \arg\min_{\boldsymbol{w}' \in A} \|\boldsymbol{w} - \boldsymbol{w}'\|_2^2$ (another convex optimization problem, but hopefully simpler objective!).

Example: box constraints

Suppose you want to prevent any feature from having a high weight:

► Constraints:

$$|w_i| \le 1$$
 for all $i = 1, 2, \dots, d$.

► Feasible region:

- ▶ $\operatorname{Proj}_{A}(\boldsymbol{w})$:
 - ▶ For each i = 1, 2, ..., d:
 - ▶ If $w_i \in [-1, +1]$, leave w_i alone.
 - If $w_i > +1$, set $w_i := 1$.
 - ▶ If $w_i < -1$, set $w_i := -1$.

10 / 2

Convergence and optimality conditions

Convergence of (projected) subgradient descent

In general, subgradient descent (with possibly non-differentiable convex objectives) can converge relatively slowly.

(Can help to return the average of the iterates $\frac{1}{T}\sum_{t=1}^T {m w}^{(t)}$.)

Optimality condition for general convex optimization problems also considerably more involved (e.g., more than just " $\nabla f_0(w) = 0$ ").

But for machine learning purposes, we can use alternative criteria for stopping (e.g., hold-out error rate).

Stochastic gradient method

13 / 25

Minimizing sums of convex functions

In machine learning, we typically have objectives of the following form:

$$F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \phi_i(\boldsymbol{w})$$

for convex functions $\phi_i \colon \mathbb{R}^d \to \mathbb{R}$ for $i = 1, 2, \dots, n$.

Example: ϕ_i is loss on i-th training example.

Computational cost of computing $\nabla F(w)$: linear in n. (Typically O(nd)).

Stochastic gradients

Key idea

Let I be a uniform random variable in $\{1, 2, \dots, n\}$. Then for any w,

$$F(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(\boldsymbol{w}) = \mathbb{E}[\phi_I(\boldsymbol{w})]$$

and by linearity,

$$\nabla F(\boldsymbol{w}) = \nabla \left\{ \frac{1}{n} \sum_{i=1}^{n} \phi_i(\boldsymbol{w}) \right\} = \frac{1}{n} \sum_{i=1}^{n} \nabla \phi_i(\boldsymbol{w}) = \mathbb{E}[\nabla \phi_I(\boldsymbol{w})].$$

Upshot: $\nabla \phi_I(w)$ is an *unbiased* estimate of gradient of F at w.

Computational cost of computing $\nabla \phi_I(w)$: independent of n. (E.g., O(d)).

15 / 25

Stochastic gradient method

Consider convex functions $\phi_i : \mathbb{R}^d \to \mathbb{R}, i = 1, 2, \dots, n$;

$$\min_{\boldsymbol{w} \in A} F(\boldsymbol{w}) \,, \qquad F(\boldsymbol{w}) \; := \; \frac{1}{n} \sum_{i=1}^n \phi_i(\boldsymbol{w}) \,.$$

Stochastic (projected) (sub)gradient "descent" method

- ▶ Start with some initial $w^{(1)} \in A$.
- For $t = 1, 2, \ldots$ until some stopping condition is satisfied.
 - ightharpoonup Pick I_t uniformly at random from $\{1, 2, \dots, n\}$.
 - ▶ Compute any subgradient $\lambda^{(t)} \in \partial \phi_{I_t}(\boldsymbol{w}^{(t)})$.
 - Update:

$$\boldsymbol{w}^{(t+0.5)} := \boldsymbol{w}^{(t)} - \eta_t \boldsymbol{\lambda}^{(t)}$$
.

▶ Project to feasible region *A*:

$$\boldsymbol{w}^{(t+1)} := \operatorname{Proj}_{A}(\boldsymbol{w}^{(t+0.5)}).$$

Example: logistic regression

Maximum likelihood estimation for logistic regression:

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \qquad \frac{1}{n} \sum_{i=1}^n \ln \Big(1 + \exp \big(-y_i \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle \big) \Big) \,.$$

Stochastic gradient method for logistic regression:

- ▶ Start with some initial $w^{(1)} \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$ until some stopping condition is satisfied.
 - ▶ Pick I_t uniformly at random from $\{1, 2, ..., n\}$;

$$\boldsymbol{w}^{(t+1)} := \boldsymbol{w}^{(t)} + \eta_t (1 - P_{\boldsymbol{w}^{(t)}}(Y = y_{I_t} \mid \boldsymbol{X} = \boldsymbol{x}_{I_t})) y_{I_t} \boldsymbol{x}_{I_t}.$$

17 / 25

Example: soft-margin (homogeneous) SVMs

$\min_{\boldsymbol{w} \in \mathbb{R}^d} \qquad \frac{1}{n} \sum_{i=1}^n \left(\frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \left[1 - y_i \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle \right]_+ \right)$

Stochastic gradient method for soft-margin SVMs:

- ▶ Start with some initial $w^{(1)} \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$ until some stopping condition is satisfied.
 - ▶ Pick I_t uniformly at random from $\{1, 2, ..., n\}$;

$$\boldsymbol{w}^{(t+1)} := \boldsymbol{w}^{(t)} - \eta_t \left(\lambda \boldsymbol{w}^{(t)} + \begin{cases} \boldsymbol{0} & \text{if } 1 - y_{I_t} \langle \boldsymbol{w}^{(t)}, \boldsymbol{x}_{I_t} \rangle < 0; \\ -y_{I_t} \boldsymbol{x}_{I_t} & \text{if } 1 - y_{I_t} \langle \boldsymbol{w}^{(t)}, \boldsymbol{x}_{I_t} \rangle \geq 0 \end{cases} \right)$$

$$= (1 - \lambda \eta_t) \boldsymbol{w}^{(t)} + \begin{cases} \boldsymbol{0} & \text{if } y_{I_t} \langle \boldsymbol{w}^{(t)}, \boldsymbol{x}_{I_t} \rangle > 1; \\ y_{I_t} \boldsymbol{x}_{I_t} & \text{if } y_{I_t} \langle \boldsymbol{w}^{(t)}, \boldsymbol{x}_{I_t} \rangle \leq 1. \end{cases}$$

Why should this work?

Consider differentiable convex functions $\phi_i \colon \mathbb{R}^d \to \mathbb{R}, \ i = 1, 2, \dots, n$:

$$\min_{oldsymbol{w} \in \mathbb{R}^d} F(oldsymbol{w}) \,, \qquad F(oldsymbol{w}) \,:=\, rac{1}{n} \sum_{i=1}^n \phi_i(oldsymbol{w}) \,.$$

Then

$$\boldsymbol{\lambda}^{(t)} \ = \ \nabla \phi_{I_t}(\boldsymbol{w}^{(t)}) \ = \ \nabla F(\boldsymbol{w}^{(t)}) + \underbrace{\left(\nabla \phi_{I_t}(\boldsymbol{w}^{(t)}) - \mathbb{E}\Big[\nabla \phi_{I_t}(\boldsymbol{w}^{(t)})\Big]\right)}_{\text{mean-zero "noise"}}.$$

"Noise" is "averaged away" when step sizes η_t are small (e.g., $\eta_t \sim 1/\sqrt{t}$).

10 / 2

19 /

-- /--

Convergence theory

Consider convex functions $\phi_i : \mathbb{R}^d \to \mathbb{R}, i = 1, 2, \dots, n$;

$$\min_{\boldsymbol{w} \in A} F(\boldsymbol{w}), \qquad F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^{n} \phi_i(\boldsymbol{w}).$$

Run stochastic gradient method for T iterations, get iterates $w_1, w_2, \dots, w_{T+1} \in A$.

Under some suitable conditions (e.g., on step sizes η_t),

$$\mathbb{E}[F(\boldsymbol{w}_{T+1})] \leq \min_{\boldsymbol{w} \in A} F(\boldsymbol{w}) + O\left(\frac{\log T}{\sqrt{T}}\right).$$

Let $ar{w} \coloneqq rac{1}{T+1} \sum_{t=1}^{T+1} w_t$ (average of the iterates). Under same conditions,

$$\mathbb{E}\big[F(\bar{\boldsymbol{w}})\big] \leq \min_{\boldsymbol{w} \in A} F(\boldsymbol{w}) + O\bigg(\frac{1}{\sqrt{T}}\bigg).$$

Often really helps in practice!

Efficient implementation trick

Special case:

- $\phi_i(w) = \lambda ||w||_2^2/2 + \ell(y_i\langle w, x_i\rangle)$ for some convex function $\ell \colon \mathbb{R} \to \mathbb{R}$.
- $ightharpoonup x_i$ has few non-zero entries (i.e., x_i is "sparse").

Gradient of ϕ_i at w:

$$\nabla \phi_i(\boldsymbol{w}) = \lambda \boldsymbol{w} + \ell'(y_i \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle) y_i \boldsymbol{x}_i$$
.

Update $(I_t = i)$:

$$\boldsymbol{w}_{t+1} := (1 - \lambda \eta_t) \boldsymbol{w}_t - \eta_t \ell'(y_i \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle) y_i \boldsymbol{x}_i.$$

- ▶ Represent weight vector w_t as $c_t v_t$ for scalar $c_t \in \mathbb{R}$ and vector $v_t \in \mathbb{R}^d$.
- ► Sparsity-respecting update:

$$egin{array}{ll} g_t &:= \ \ell'(y_t c_t \langle oldsymbol{v}_t, oldsymbol{x}_i
angle) \ c_{t+1} &:= \ (1 - \lambda \eta_t) c_t \ oldsymbol{v}_{t+1} &:= \ oldsymbol{v}_t - rac{\eta_t g_t}{c_{t+1}} y_i oldsymbol{x}_i \end{array}$$

Other practical tips

- ▶ Pick I_1, I_2, \ldots, I_t u.a.r. without replacement from $\{1, 2, \ldots, n\}$. I.e., randomly shuffle order of training data, then process in that order. If possible, re-shuffle after each pass through training data.
- ► For debugging purposes, periodically check overall objective value. (Should generally be improving, though not necessarily at every step.)
- ► Use hold-out error rate as a stopping criterion. (Stop when hold-out error rate does not improve after a while.)
- ▶ Use hold-out set to tune step sizes.

Other solvers

Many other algorithms for solving convex optimization problems

- ▶ *Newton-Raphson*: use Hessian to pick better descent directions.
- ▶ *Quasi-Newton methods* (e.g., conjugate gradient, "BFGS", "L-BFGS"): use efficient approximations of Hessians.
- ► Techniques for dealing with constraints:
 - ▶ Barrier methods: add penalties for constraint violations, slowly relax.
 - ► *Primal-dual methods*: start with dual-feasible point, iteratively improve until corresponding primal point is feasible.
- •

But remember: end goal in machine learning is *not* to minimize training error rate or training surrogate loss.

22 / 2

Key takeaways

- 1. Concept of subgradients, and generalizing gradient descent to non-differentiable objectives.
- 2. Subgradients for maximum of affine functions.
- 3. Extending gradient descent to constrained optimization problems.
- 4. Concept of stochastic gradients; stochastic gradient descent method; high-level idea of convergence theory.
- 5. Efficient implementation for sparse gradients.