

# PREDICTING HOTEL BOOKINGS CANCELLATION WITH A MACHINE LEARNING CLASSIFICATION MODEL

#### DATA MINING AND MACHINE LEARNING PROJECT

#### **Tommaso Falaschi**

Master's Degree in Artificial Intelligence and Data Engineering

## INTRODUCTION

#### Frequent Cancellations force hotels to rely on:

- Overbooking, which may lead to service denial, poor guest experience, and reputational damage.
- Rigid cancellation policies, which can deter customers and reduce booking volumes.

#### Consequences:

- Lower occupancy accuracy and revenue predictability
- Loss of customer trust and future bookings
- Inefficient room allocation and pricing decisions

#### Predicting cancellations in advance allows hotel managers to:

- Proactively mitigate losses with offers or upgrades
- Adjust pricing and overbooking strategies more precisely

### DATASET OVERVIEW

- This project uses a real-world dataset of hotel bookings from two distinct hotel types:
- Resort Hotel (H1): 40,060 records
- City Hotel (H2): 79,330 records
- Covers bookings scheduled to arrive between July 2015 and August 2017
- Includes both confirmed and canceled reservations

### Feature Composition (31 Variables):

- Numerical: Guests, stay duration, lead time, daily rate (ADR)
- Categorical: Customer type, deposit policy, booking channel, room type, country
- **Temporal**: Year, month, week, day of week of arrival
- Target: IsCanceled: Binary cancellation flag



## DATASET PREPROCESSING

#### Handling Missing & Undefined Values

- Replaced NaN in Children with O (assumed no children)
- Replaced NULL in Agent and Company with O (no intermediary)
- Meal values like "Undefined" replaced with SC (Self Catering)
- Dropped rare undefined rows in MarketSegment and DistributionChannel
- Removed bookings with zero guests (Adults + Children + Babies = 0)

#### **Preventing Data Leakage**

- Removed Country (e.g., default value "Portugal" often updated only after check-in)
- Removed AssignedRoomType, ReservationStatus, ReservationStatusDate (revealed post check-in)

#### Feature Engineering

Created ADRThirdQuartileDeviation.

 $\frac{ADR}{Q3_{ADR}}$ 

#### Encoding & Scaling

- Applied Rare Encoding (for high-cardinality categorical features like Agent, Company)
- Applied One-Hot Encoding to all non-binary categorical features
- Used Standard Scaler for all numerical variables to ensure uniform scale

## DATASET SPLITTING

#### **Convenience Splitting**

- Bookings ordered by arrival date, then grouped into month/year blocks
- Each block is split: 75%
   training, 25% test (stratified on cancellation)
- Allows the capture of what calls "non-stationary temporal data"



#### Stratified K-Fold

- Applied only on the training set
- Used 5 folds, preserving class distribution of the target variable.

The test set from convenience split is used only once for final hold-out evaluation. All temporal features removed before model training to avoid leakage

## MODEL TRAINING: PIPELINES BUILDING

#### **PIPELINES:**

- 1) Feature engineering: ADRThirdQuartileDeviation
- 2) Sampling: SMOTENC, None
- 3) Preprocessing: One-Hot Encoding + StandardScaler
- 4) Classifier: Logistic Regression, Random Forest, XGBoost,

LightGBM, CatBoost, AdaBoost, Decision Tree, KNN

Although the pipeline with

SMOTENC reduced precision, it
improved low recall of default
pipeline, which is crucial for correctly
identifying cancellations. This makes
the pipeline with oversampling more
suitable for the goals of the project.

Table 3.3: Difference (With SMOTENC - Baseline)

| Model               | Accuracy | Precision | Recall | F1 Score | ROC AUC |
|---------------------|----------|-----------|--------|----------|---------|
| Logistic Regression | -0.025   | -0.119    | +0.089 | +0.002   | -0.001  |
| Random Forest       | -0.007   | -0.043    | +0.038 | +0.000   | -0.001  |
| XGBoost             | -0.010   | -0.074    | +0.066 | +0.006   | -0.003  |
| LightGBM            | -0.010   | -0.088    | +0.079 | +0.009   | -0.003  |
| CatBoost            | -0.008   | -0.074    | +0.070 | +0.009   | -0.002  |
| AdaBoost            | -0.023   | -0.122    | +0.094 | +0.006   | -0.002  |
| Decision Tree       | -0.007   | -0.022    | +0.022 | -0.001   | +0.000  |
| KNN                 | -0.011   | -0.051    | +0.049 | +0.002   | +0.000  |

HYPERPARAMETER TUNING AND STISTICAL COMPARISON

We performed extensive hyperparameter tuning using GridSearchCV, optimizing each model based on F1-score. Each optimized model was compared with its default counterpart to verify actual improvements.

Statistical tests (Friedman and Nemenyi) confirmed significant performance differences across models. Based on these results, the topperforming models selected for final hold-out evaluation were: Random Forest, LightGBM, XGBoost, CatBoost, and K-Nearest Neighbors.

Table 3.4: Comparison of Default vs. Optimized Models

| Model               | F1 (Optimized) | F1 (Default) | Improvement | Chosen Version |
|---------------------|----------------|--------------|-------------|----------------|
| KNN                 | 0.764          | 0.740        | +0.024      | Optimized      |
| LightGBM            | 0.775          | 0.759        | +0.016      | Optimized      |
| Decision Tree       | 0.747          | 0.735        | +0.012      | Optimized      |
| XGBoost             | 0.772          | 0.765        | +0.007      | Optimized      |
| Random Forest       | 0.786          | 0.782        | +0.004      | Optimized      |
| AdaBoost            | 0.720          | 0.717        | +0.003      | Optimized      |
| Logistic Regression | 0.712          | 0.712        | -0.000      | Default        |
| CatBoost            | 0.763          | 0.768        | -0.005      | Default        |



## FINAL HOLD-OUT EVALUATION

The top 5 models were evaluated on the **hold-out** test set. **Random Forest** achieved the best overall performance, with all the highest metrics. LightGBM and XGBoost followed closely, while KNN showed strong recall, making it valuable in minimizing false negatives such as missed cancellations.

Table 3.5: Hold-Out Evaluation Metrics for Final Models

| Model         | Accuracy | Precision | Recall | F1 Score | ROC AUC |
|---------------|----------|-----------|--------|----------|---------|
| Random Forest | 0.844    | 0.794     | 0.781  | 0.788    | 0.914   |
| LightGBM      | 0.835    | 0.792     | 0.752  | 0.772    | 0.902   |
| XGBoost       | 0.831    | 0.784     | 0.751  | 0.767    | 0.900   |
| CatBoost      | 0.827    | 0.785     | 0.736  | 0.759    | 0.892   |
| KNN           | 0.828    | 0.768     | 0.769  | 0.768    | 0.894   |





## FEATURE IMPORTANCE





## **GLOBAL EXPLAINABILITY**





## LOCAL EXPLAINABILITY: CLASS O





# LOCAL EXPLAINABILITY: CLASS 1





## LOCAL EXPLAINABILITY: INTERESTING CASES





## PREVIOUS STUDIES COMPARISON

In comparing our work with previous studies, we found that both adopted tree-based models—XGBoost in the first and Random Forest in the second. While performance in terms of accuracy was comparable to ours, our approach stands out for several reasons. Themost important difference is that this project included a feature importance analysis and explainability using SHAP values, providing insights not only into performance but also into the model's decision-making process—something missing in earlier research.

#### Original Paper Evaluation metrics

| Hotel. | Dataset | Acc.  | AUC   | Prec. | Sensit. | Specif. |
|--------|---------|-------|-------|-------|---------|---------|
| H1     | Train   | 0.846 | 0.910 | 0.839 | 0.626   | 0.950   |
| Test   | 0.842   | 0.877 | 0.811 | 0.603 | 0.941   |         |
| TTO    | Train   | 0.857 | 0.934 | 0.876 | 0.793   | 0.909   |
| H2     | Test    | 0.849 | 0.922 | 0.869 | 0.779   | 0.905   |

#### Second paper metrics

| Model              | Accuracy | Recall | Precision | F1     |
|--------------------|----------|--------|-----------|--------|
| RF                 | 0.8717   | 0.7750 | 0.8646    | 0.8173 |
| After Tuning<br>RF | 0.8725   | 0.7826 | 0.8606    | 0.8197 |

Table 3.5: Hold-Out Evaluation Metrics for Final Models

| Model         | Accuracy | Precision | Recall | F1 Score | ROC AUC |
|---------------|----------|-----------|--------|----------|---------|
| Random Forest | 0.844    | 0.794     | 0.781  | 0.788    | 0.914   |
| LightGBM      | 0.835    | 0.792     | 0.752  | 0.772    | 0.902   |
| XGBoost       | 0.831    | 0.784     | 0.751  | 0.767    | 0.900   |
| CatBoost      | 0.827    | 0.785     | 0.736  | 0.759    | 0.892   |
| KNN           | 0.828    | 0.768     | 0.769  | 0.768    | 0.894   |

# GRAPHIC USER INTERFACE





## REFERENCES

• **Dataset**:Nuno Antonio, Ana de Almeida, and Luis Nunes. Hotel Booking Demand Datasets. Published in Data in Brief, Volume 22, Pages 41–49.

DOI: https://doi.org/10.1016/j.dib.2018.11.126

- Nuno Antonio, Ana Maria De Almeida, and Luís Nunes. Predicting Hotel Bookings
   Cancellation with a Machine Learning Classification Model. 2017 IEEE International
   Conference on Machine Learning and Applications (ICMLA). DOI:
   10.1109/ICMLA.2017.00-11
- Zharfan Akbar Andriawan, Ricko, Feri Wijayanto, Satriawan Rasyid Purnama, Adi Wibowo, Adam Sukma Darmawan, and Aris Sugiharto. Prediction of Hotel Booking Cancellation using CRISP-DM. 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). DOI: 10.1109/ICICoS51170.2020.9299011

# THANK YOU