CS211 ALGORITHMS & DATA STRUCTURES II

LAB 10

Dr. Phil Maguire

WEIGHTED GRAPHS

Vertices Visited	Edge Priority Queue	Edge Selected		
Α	AB3, AC6	AB3		
A B	AC6, BD9	AC6		
ABC	CF2, CD5, BD9	CF2		
ABCF	CD5, FD8, BD9, FH9	CD5		
ABCFD	DE6, DH7, FH9	DE6		
ABCFDE	EG4, DH7, FH9	EG4		
ABCFDEG	DH7, GH8, FH9	DH7		

Find the shortest distance between Node A and Node G in the following graph using Dijkstra's algorithm.

Vertices Visited	Α	В	С	D	Е	F	G	Н
Α	0	3 (A)	6 (A)	-	-	-	-	-
АВ	0	3 (A)	6 (A)	12 (B)	-	-	-	-
ABC	0	3 (A)	6 (A)	11 (C)	-	8 (C)	-	-
ABCF	0	3 (A)	6 (A)	11 (C)	-	8 (C)	-	17 (F)
ABCFD	0	3 (A)	6 (A)	11 (C)	17 (D)	8 (C)	-	17 (F)
ABCFDH	0	3 (A)	6 (A)	11 (C)	17 (D)	8 (C)	25 (H)	17 (F)
ABCFDHE	0	3 (A)	6 (A)	11 (C)	17 (D)	8 (C)	21 (E)	17 (F)
ABCFDHEG	0	3 (A)	6 (A)	11 (C)	17 (D)	8 (C)	21 (E)	17 (F)

PART II: Programming exercise

```
public class DiceRolling{
    public static void main(String[] args){
        double total=0;
        int montecarlo=100000;
        for(int i=0;i<montecarlo;) {</pre>
            int sneeze=0;
            int counter=0;
            int dice=0;
            do {
                counter++;
                dice = (int) (Math.random()*6)+1;
                if((int)(Math.random()*1000)+1==1000){
                     sneeze++;
                }
            }while(dice!=6);
            if(sneeze==1){
                total+=counter;
                i++;
                System.out.println(counter+" "+total/i);
            }
        System.out.println(total/montecarlo);
}
```