Lec 01: Sets I

Prof. Adam J. Aviv

GW

CSCI 1311 Discrete Structures I Spring 2023

What is a set?

Definition

A set is a well defined collection of objects that are described as members or elements of the set.

Example

The set of the first 5 prime numbers

$$A = \{2, 3, 5, 7, 11\}$$

The numbers 5 is a member of the set A, or $5 \in A$.

Example

The set of odd numbers between 11 and 17, inclusive.

$$B = \{11, 13, 15, 17\}$$

The number 12 is *not* an element of the Set B, or $12 \notin A$.

Set Roster Notation

The set is described by using braces $\{\ \}$ with all elements separated by commas.

Example

• $\{red, blue, orange\}\{1\}\{a, b, d\}$

You can also specify a set to contain another set using nested braces:

Example

- {1, {2, 3}}
- The set containing 1 and the set $\{2,3\}$

We can use ellipses "..." (read "as so forth") to indicate sets that continue on infinitely.

Example

- $\{0, 1, 2, \ldots\}$ (set of positive integers)
- $\{\ldots, -3, -2, -1\}$ (set of negative integers)

Set Equality

Definition

Two sets A and B are equal (written as A=B) when they contain the same elements. (the order of the elements is irrelevant)

Is A equal to B?

- (1) $A = \{1, 2, 3\}$ $B = \{1, 2, 3\}$
 - yes, *A* = *B*
- (2) $A = \{1, 2, 3\}$ $B = \{2, 1, 3\}$
 - ightharpoonup yes, A=B even though elements presented in different orders
- (3) $A = \{1, 2, 3\}$ $B = \{3, 3, 1, 2, 2, 3, 3\}$
 - yes, A = B even with multiple repetitions.
- (4) $A = \{1, 2, 3\}$ $B = \{1, 1, 3\}$
 - ▶ No, $A \neq B$ because $2 \in A$ but $2 \notin B$

Common Numeric Sets

- ullet \mathbb{R} : The set of real numbers
- ullet \mathbb{Z} : The set of integers
- Q : The set of rational numbers
- ullet N : The set of natural numbers
- ullet C : The set of complex numbers

Set Builder Notation

Set Builder Notation

Describe a set where some condition is met.

$$\{x \in S \mid P(x)\}$$

"The set of all elements x in S such that some property/proposition P(x) is true"

Example

$$\mathbb{Z}^+ = \{ x \in \mathbb{Z} \, | \, x > 0 \}$$

but sometimes we also write it this way

$$\mathbb{Z}^+ = \{x \mid x \in \mathbb{Z} \text{ and } x > 0\}$$

Exercises

Describe all positive even numbers using set-builder notation.

Describe \mathbb{Q} (the rational numbers) using set-builder notation.

Describe $\{x \mid x = (-1)^k \text{ where } k \in \mathbb{Z}^+\}$ using set roster notation.

Interval Notation

It's common to want to describe an interval within a numeric set, such as $\mathbb Z$ or $\mathbb R$. This is easily done using the following notation:

$$\{x \in \mathbb{R} \mid a < x < b\}$$

In plain language, this is the set of real numbers between a and b.

However, this is cumbersome, so we have the following shorthand.

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$(a,\infty) = \{x \in \mathbb{R} \mid x > a\}$$

$$(a,\infty) = \{x \in \mathbb{R} \mid x > a\}$$

$$(a,\infty) = \{x \in \mathbb{R} \mid x < a\}$$

$$(a,\infty) = \{x \in \mathbb{R} \mid x < a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$(a,b) = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a,b) = \{x \in \mathbb{R} \mid x \le a\}$$

Cardinality

Definition

The size of the set, or its cardinality, is the number of elements in the set.

Example

For the set $A = \{5, 4, 22\}$ the cardinality of A is 3, written |A| = 3

Definition

If a set has cardinality of 0, or |B|=0, then we describe it as the empty set and denote it with special symbol \emptyset or sometimes written simply as $\{\}$.

Exercises

Can you construct an argument to show that $\{\}=\emptyset$ based on the equality rule from before?

Recall that "two sets A and B are equal when they contain the same elements"

Is
$$\{\{\}\}=\emptyset$$
 ?

What is $|\{\{\}, 3, \emptyset, \{1, 2, 3\}\}|$?

If two sets A and B have the same cardinality, |A| = |B|, is it the case that A = B?

If two sets A and B are equal, A = B, is it the case that they have the same cardinality, |A| = |B|?