Group 4 Project Proposal

Topic Name:

Cybersecurity Intrusion Detection using Supervised Binary Classification

Goal and motivation for the project:

Create a robust machine learning model to detect intrusion and intrusive behaviors through analysis of network data. We want to be able to accurately detect and classify network traffic as either **benign** or an **attack**. Practically, intrusion detection is critical in cybersecurity, as it helps organizations detect malicious activity early, minimize damage, and ultimately improve trust in network systems. So, given features of a network session, we want to predict whether it's benign (0) or an attack (1).

Dataset Used:

 $\underline{https://www.kaggle.com/datasets/dnkumars/cybersecurity-intrusion-detection-\underline{dataset/data}}$

- Network traffic records
- The dataset contains over 9000 records with features such as: protocol, session duration, whether encryption was used, and attack detected.

Members (roles and responsibilities):

- 1. Saba Siddiqi (Project Manager) model tuning, evaluation, documentation
- 2. Jaswanth Singamsetty (Modeling Lead) model development and training
- 3. Matt Christiansen (Data Analyst) data cleaning, feature engineering, analysis, and documentation
- 4. ThaiHa Dang (Validation/Visualization Lead) data visualization, and model evaluation

Schedule with milestones and expected outcomes:

Date	Milestone	Expected Outcome	
18 Sep 25	Project Proposal	Finished project proposal with details on schedule,	
		roles, responsibilities, dataset, and overall goal	
2 Oct 25	Data Preprocess	Data should be fully preprocessed for goal, identify	
	(Phase 1)	class distributions and missing values	
16 Oct 25	Data Preprocess	Feature encoding, normalization, train/test split. Train	
	(Phase 2)	baseline models	
30 Oct 25	Training	Train advanced models (e.g., Random Forest)	
13 Nov 25	Finalize results	Prepare report and findings	
		1. A trained intrusion detection classifier with	
		accuracy	

		2.	Insights into which features are most predictive of intrusions
TBD	TBD	TBD	