

手写VI0第7章作业讲解

主讲人海滩游侠

作业总览

作业

- ① 将第二讲的仿真数据集(视觉特征, imu 数据)接入我们的 VINS 代码, 并运行出轨迹结果。
 - 仿真数据集无噪声
 - 仿真数据集有噪声(不同噪声设定时,需要配置 vins 中 imu noise 大小。)

数据来源

编译并运行第2章作业的vio_data_simulation,得到如下文件:

数据来源

keyframe文件夹:

all_points_xx.txt是第xx帧观测到的 空间点数据

空间位置(齐次坐标) 投影坐标(归一化平面)

- 1、直接获得归一化平面上的特征点 坐标;
- 2、可以根据空间位置给points设置
- id,有了id就可以匹配上一帧的观测, 也可以计算光流;

输入imu仿真数据

主要流程:

fslmu.open(slmu_data_file.c_str());

sslmuData >> dStampNSec >> q.w() >> q.x() >> q.y() >> q.z() >> t(0) >> t(1) >> t(2) >> vGyr.x() >> vGyr.y() >> vGyr.z() >> vAcc.x() >> vAcc.y() >> vAcc.z();

pSystem->PubImuData(dStampNSec, vGyr, vAcc);

输入视觉数据

解析视觉信息

发布图像:

由于我们已将观测信息打包了, System::PubImageData不再适用,可以 重载这个函数,并作简单修改,然后 将观测信息填入feature_points即可。

```
(size_t i = 0; i < Imageinfo.second.size(); i++)
int p_id = Imageinfo.second[i].first;
double z = 1:
feature_points->points.push_back(Vector3d(x, y, z));
feature_points->id_of_point.push_back(p_id);
feature_points->u_of_point.push_back(x);
feature_points->v_of_point.push_back(y);
feature_points->velocity_x_of_point.push_back(velocity_x);
feature_points->velocity_v_of_point.push_back(velocity_v);
```

轨迹效果

轨迹评估

本行代码将非初始化阶段的camera位姿输出到了pose_output.txt中,可以使用evo工具评估精度,命令如下:

evo_ape tum pose_output.txt cam_pose_tum.txt -va --plot --plot_mode xyz

轨迹评估--有噪声

	max	mean	min	rmse
噪声*1	1.746751	0.944979	0.364448	1.004950
噪声*10	0.712855	0.072721	0.035496	0.095686
噪声*100	1.055822	0.124855	0.029540	0.172392

轨迹评估--无噪声

噪声参数:

acc_n	gyr_n	acc_w	gyr_w
0.019	0.015	0.0001	1.0e-5

误差:

max	mean	min	rmse
0.660141	0.119456	0.058463	0.155637

在线问答

Q&A

感谢各位聆听

Thanks for Listening

