Estimation of Channel Distribution Functions using a Neural Network

Peter Hartig

March 12, 2020

The channel state perspective

The optimization framework

Extension of ViterbiNet: Reduced

Simulation Results

Molecular Communication Application

The Channel State

The true state of the channel, s[k], is hidden from us but we attempt to estimate this state based the sampled signal y[k].

The Channel State

The true state of the channel, s[k], is hidden from us but we attempt to estimate this state based the sampled signal y[k].

Sampling Channel State

Consider some received signal y[k] sampled using some filter at the receiver of a point-to-point system.

Sampling Channel State

Consider some received signal y[k] sampled using some filter at the receiver of a point-to-point system.

The channel is a random process that realizes a specific state for each time index k. Specifically give the example of the LTI channel.

Estimating the True Channel State

The true state of the channel, s[k], is hidden from us but we attempt to estimate this state based the sampled signal y[k].

Estimating the True Channel State

The true state of the channel, s[k], is hidden from us but we attempt to estimate this state based the sampled signal y[k].

The channel state perspective

The optimization framework

Extension of ViterbiNet: Reduced

Simulation Results

Molecular Communication Application

MAP Sequence Detection

Utilizing the General Definition of State

Something about reduced state

MAP Sequence Detection

Viterbi Setup

Maximum Likelihood sequence decoding can be formalized as

$$\begin{array}{ll}
\text{maximize} & Pr(\mathbf{y}|\mathbf{x}) \\
\text{maximize} & \prod_{i=1}^{N} Pr(y_i|\mathbf{x}) \\
\text{minimize} & \sum_{i=1}^{N} -log(Pr(y_i|\mathbf{x}))
\end{array} \tag{5}$$

Viterbi Setup Continued

Each state change is decided by the metric $Pr(y_i|\mathbf{x})$. In a linear channel with length I impulse response, this metric becomes $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Example with channel impulse response length 2 and constellation size 2.

Incorporating Neural Net into Viterbi Decoding

Problem 1

Viterbi algorithm requires the distribution $Pr(y_i|\mathbf{x}_{i-1}^i)$.

► Solution

Have a neural network learn $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Problem 2

Generating training data $Pr(y_i|\mathbf{x}_{i-1}^i)$ requires knowledge of the channel and its (current) parameters.

► Solution
Decompose $Pr(y_i|\mathbf{x}_{i-1}^i)$ into

$$Pr(y_{i}|\mathbf{x}_{i-1}^{i}) = \frac{Pr(\mathbf{x}_{i-1}^{i}|y_{i})Pr(y_{i})}{Pr(\mathbf{x}_{i-1}^{i})}$$
(6)

Metrics for $Pr(x_{i-1}^i|y_i)$

Metrics for $Pr(y_i)$

Gaussian Mixture Model using Expectation-Maximization algorithm

The channel state perspective

The optimization framework

Extension of ViterbiNet: Reduced

Simulation Results

Molecular Communication Application

The channel state perspective

The optimization framework

Extension of ViterbiNet: Reduced

Simulation Results

Molecular Communication Application

Conclusion

Simulation Results 18

Detection Performance

Without ISI

With ISI

Simulation Results 19

Detection Performance

Reduced Training data (100 vs. 1000 symbols)

Simulation Results 20

The channel state perspective

The optimization framework

Extension of ViterbiNet: Reduced

Simulation Results

Molecular Communication Application

The channel state perspective

The optimization framework

Extension of ViterbiNet: Reduced

Simulation Results

Molecular Communication Application

Conclusion

Next Steps

- ▶ Improve decoding performance with neural net.
- ▶ Apply to a sampled molecular communications channel.
 - Estimate matched filter
- Generate training data for molecular communications channel and test "transfer learning" to real data.

Thank You.

Questions or Comments?