Savings Models

1. Intentional Saving: $\beta R > 1$

2. Consumption Smoothing: Concavity of u when $\beta R = 1$

3. Precautionary Saving: u''' > 0

4. Life-Cycle Motive (Retirement): Consumption smoothing given expectation of retirement

5. Bequest Motive: Want to leave money to your children

We alth calculation: $a_t + \sum_{\tau=t} T R^{-(\tau-t)} y_\tau = \sum_{\tau=t}^T R^{-(\tau-t)} c_\tau$

Asset Pricing

Real estate

Bonds

Safe asset returns a roughly constant $R^b \approx 1\%$

Stocks

Risky asset returns $R^e \approx 6\%$ with much higher variance

Equity Premium

Compensation for risk $R^e-R^b\approx 5\%$

2-period Endowment Economy with Uncertainty

 $s \in \mathcal{S} = \{s^L, s^H\}$ with π a distribution over these outcome states and $y_2(s^L) < y_2(s^H)$

Bonds

$$\begin{split} \max_{c_1,c_2(s)} \frac{c_1^{1-\gamma}}{1-\gamma} + \beta \sum_{s \in \mathcal{S}} \pi(s) \frac{c_2(s)^{1-\gamma}}{1-\gamma} & \text{ such that } \forall s, c_1 + \frac{c_2(s)}{R^b} = y_1 + \frac{y_2(s)}{R^b} \\ \mathcal{L} &= \frac{c_1^{1-\gamma}}{1-\gamma} + \sum_{s \in \mathcal{S}} \pi(s) \left(\beta \frac{c_2(s)^{1-\gamma}}{1-\gamma} + \lambda_s \left(y_1 + \frac{y_2(s)}{R^b} - c_1 - \frac{c_2(s)}{R^b} \right) \right) \\ &\frac{\partial \mathcal{L}}{\partial c_1} = 0 \Rightarrow c_1^{-\gamma} = \operatorname{Ex} \left[\lambda_s \right] \\ &\frac{\partial \mathcal{L}}{\partial c_2(s)} = 0 \Rightarrow \pi(s) \beta c_2(s)^{-\gamma} = \pi(s) \frac{\lambda_s}{R^b} \\ &R^b \sum_{s \in \mathcal{S}} \pi(s) \beta c_2(s)^{-\gamma} = \operatorname{Ex} \left[\lambda_s \right] = c_1^{-\gamma} \end{split}$$

Note that the summand is just the marginal rate of substitution, so $R^b \operatorname{Ex}[\operatorname{MRS}(s)] = 1$. So the decision about bond investment can be made only on the expectation of the future and not on the actual outcome.

Stocks

$$\begin{split} \max_{c_1,c_2(s)} \frac{c_1^{1-\gamma}}{1-\gamma} + \beta \sum_{s \in \mathcal{S}} \pi(s) \frac{c_2(s)^{1-\gamma}}{1-\gamma} & \text{ such that } \forall s, c_1 + \frac{c_2(s)}{R^e(s)} = y_1 + \frac{y_2(s)}{R^e(s)} \\ \mathcal{L} &= \frac{c_1^{1-\gamma}}{1-\gamma} + \sum_{s \in \mathcal{S}} \pi(s) \left(\beta \frac{c_2(s)^{1-\gamma}}{1-\gamma} + \lambda_s \left(y_1 + \frac{y_2(s)}{R^e(s)} - c_1 - \frac{c_2(s)}{R^e(s)} \right) \right) \\ &\qquad \qquad \frac{\partial \mathcal{L}}{\partial c_1} = 0 \Rightarrow c_1^{-\gamma} = \operatorname{Ex} \left[\lambda_s \right] \\ &\qquad \qquad \frac{\partial \mathcal{L}}{\partial c_2(s)} = 0 \Rightarrow \pi(s) \beta c_2(s)^{-\gamma} = \pi(s) \frac{\lambda_s}{R^e(s)} \\ &\qquad \qquad \sum_{s \in \mathcal{S}} \pi(s) R^e(s) \beta c_2(s)^{-\gamma} = \operatorname{Ex} \left[\lambda_s \right] = c_1^{-\gamma} \\ &\qquad \qquad \sum_{s \in \mathcal{S}} \pi(s) R^e(s) \left(\frac{\beta c_2(s)^{-\gamma}}{c_1^{-\gamma}} \right) = 1 \end{split}$$

Note that unlike before we cannot take the return rate out of the sum, so we get $\text{Ex}\left[R^e(s)\,\text{MRS}(s)\right]=1$.

Equity Premium

Then by using covariance we have $\operatorname{Ex}\left[R^{e}(s)\right]\operatorname{Ex}\left[\operatorname{MRS}(s)\right]=1-\operatorname{cov}\left(R^{e}(s),\operatorname{MRS}(s)\right).$

Substituting by the above we get $\frac{\operatorname{Ex}[R^e(s)]-R^b}{R^b} = -\operatorname{cov}(R^e(s),\operatorname{MRS}(s))$ is the excess return on equity investment and contains the compensation for taking risk.