Problem 1. Consider the 3-sphere as the set of unit quaternions

$${x + iy + jz + kw | x^2 + y^2 + z^2 + w^2 = 1}$$

Let $\phi: U \to \mathbb{R}^3$ be $\phi(x+iy+jz+kw) = (y,z,w) \in \mathbb{R}^3$ where

$$U = \{x + iy + jz + kw \in S^3 | x > 0\}$$

Consider ϕ as a chart. For each $q \in S^3$, define a chart ψ_q by $\psi_q(p) = \phi(q^{-1}p)$. Show that this set of charts is an atlas for a smooth structure on S^3 .

First note that every point $q \in S^3 \subset \mathbb{H}$ will be included in the chart ψ_q . Moreover since ψ_q will be a homeomorphism if ϕ is a homeomorphism as $p \mapsto q^{-1}p$ is continuous where defined. Thus all we need to show is that ϕ is a homeomorphism and that for $q, p \in S^3$ that $\psi_q \psi_p^{-1}$ is smooth.

The projection map ϕ is continuous. Define an inverse via

$$\phi^{-1}(y,z,w) = \sqrt{1-y^2-z^2-w^2} + iy + jz + kw$$

This map is continuous as all of its components are continuous. Thus, since ϕ has a continuous inverse, it is indeed a homeomorphism. It then follows that ψ_q is a homeomorphism due to the reasoning above.

Now we will show that for $q, p \in S^3$ that $\psi_q \psi_p^{-1}$ is smooth where defined. Let r = x + iy + jz + kw and p = a + ib + jc + kd. Then we expand $\psi_q \psi_p^{-1}$ as

$$\psi_q \psi_p^{-1}(r) = \psi_q(p\phi^{-1}(r))$$

$$= \psi_q(p(\sqrt{1 - y^2 - z^2 - w^2} + iy + jz + kw))$$

$$= \phi(q^{-1}p(\sqrt{1 - y^2 - z^2 - w^2} + iy + jz + kw))$$

The expression $q^{-1}p(\sqrt{1-y^2-z^2-w^2}+iy+jz+kw)$ is smooth where defined and the projection ϕ is smooth. Therefore $\psi_q\psi_p^{-1}$ is smooth and therefore the ψ_q s form an atlas for $S^3 \subset \mathbb{H}$.

Problem 2. Let X be a copy of the real line \mathbb{R} and let $\phi: X \to \mathbb{R}$ be $\phi(x) = x^3$. Taking ϕ as a chart, this defines a smooth structure on X. Prove or disprove the following statements:

- 1. X is diffeomorphic to \mathbb{R} ;
- 2. the identity map $X \to \mathbb{R}$ is a diffeomorphism;
- 3. ϕ together with the identity map comprise an atlas;
- 4. on the one-point compactification X^+ of X, ϕ, ψ give an atlas, where $\psi(x) = 1/x$, for $x \neq 0, \infty$, and $\psi(\infty) = 0$. (ψ is defined on $X^+ \setminus \{0\}$.)
- 1. The smooth manifold X will be diffeomorphic to $\mathbb R$ by the map ϕ . To verify this we check that

$$id_{\mathbb{R}} \circ x^3 \circ x^{-1/3} = x$$

and

$$x^3 \circ x^{1/3} \circ id_{\mathbb{D}}^{-1} = x$$

are smooth. However since they are both the identity map we have that it is the case that ϕ and ϕ^{-1} are both smooth. Thus ϕ is a diffeomorphism and it follows that X and $\mathbb R$ are diffeomorphic.

2. The identity map will not be a diffeomorphism as

$$id_{\mathbb{R}} \circ id \circ x^{1/3} = x^{1/3}$$

is not a smooth map and thus id cannot be a diffeomorphism.

3. Together they do not form an atlas as

$$id \circ x^{1/3} = x^{1/3}$$

is not smooth at zero.

4. Yes, the maps ϕ, ψ form an atlas on X^+ . To verify this note first that every point in X^+ is in the domain of ϕ of ψ , X and $X^+ \setminus \{0\}$ respectively. We also have that x^3 and $\frac{1}{x}$ are homeomorphisms on their respective domains. Finally the maps

$$\phi\psi^{-1} = x^{-3}$$

and

$$\psi\phi^{-1} = \frac{1}{x^{-1/3}}$$

are both smooth so long as we avoid both 0 and ∞ .

Therefore ϕ and ψ form an atlas for X^+ .