Recall Mivision Algorithm let a be an integer and da positive integer. Then there are unique integers q-and r, with $0 \le r < d$, such that $\alpha = dq + r$. Definition In the above, a= a div d, r= a mod d. Remark) In Python3, 2= a/d, v= a % d. Note also that $a = \begin{bmatrix} \alpha \\ d \end{bmatrix}$, $r = \alpha - d \begin{bmatrix} \alpha \\ d \end{bmatrix}$ Ex. $101 \mod 11 = 2$ as 101 = 11.9 + 2So, $101 \dim 11 = 9$ Modular Arithmetic, on Z/mz (Zmfor positive integer m. We can classify integers into classes represented by their remainder mod m. Zm={0,1,1,1, m-1}

 $Z_{m} = \{0, 1, \dots, m-1\}$ $\alpha + mb = (a+b) \mod m$ $\alpha \cdot mb = (a \cdot b) \mod m$

Ex. 7 + 19 = 5, $7 \cdot 119 = 8$ Properties. 1. Closure: If $a,b \in \mathbb{Z}_m$, then $a + mb \in \mathbb{Z}_m$ 2. Associativity: If $a,b,c \in \mathbb{Z}_m$, then $(a + mb) + m \in a + m(b + mc)$ and $(a \cdot mb) \cdot m \in a \cdot m(b \cdot mc)$

3. Commutativity: It a, b = Zm, then a + m b = b + m a and and a m b = b + m a.

4. Identity elements: The elements O and I are identify elements for addition and multiplication. That is, $\alpha + m 0 = 0 + m \alpha = \alpha$ and $\alpha \cdot m l = l \cdot m \alpha = \alpha$ 5. Additive invovals of a $\in \mathbb{Z}_m$, then $m-\alpha$ is an for any a E Zm additive inverse of a in Em. That is, a + m(m-a) = 0 and 0 + m 0 = 06. Distributhe caus. If a, b, c & Zm, then aom (btmc) = aom b+ aom c (atmb) onc = a mctbinc Base b expansion of n. let b be an integer >1. If n is a postitive integer then $N = a_k b^k + a_{k+1} b^{k+1} + \dots + a_i b + a_0$ where k is a nonnegative integer, au, -, ak are nonnegative integer less than b. In Pythons, det base_repr(n, p): 1s=[] while n'e (s. append (n %P) N/1=P return 1s # returs base-b digits in an array reversed

```
Decimal Expansions (most common)
  3.75 = 3.10^2 + 7.10 + 5
Dinary Expansions (used by computers)
  375 = 2.187 + 1
       =2(2.93t1)t
       =2(2(2.46+1)+1)+1
        =2(2(2(2,(2,23+0)+1)+1)+1)
        =2(2(2(2\cdot(2\cdot11+1)+0)+1)+1)+1)
       = 2(2(2(2(2(2.5+1)+1)+0)+1)+1)+1)+1)
       = 2(2(2(2(2(2(2.2+1)+1)+1)+1)+1)+1)+/
       = (101110111)
  Instead, keeping the digit one by one will be
 simpler in the expression. For example,
   375= 2. 18/11
    187=2,93+1
    93=2.46+1
    46=2.23+0
                       23 = 211+1
```

the expansion, hexadecimal of	longer Ar bluary Expansion is also ut	. To shorten ed.
ex. (11 1110 1011 110		
	ne in decimal	
value in decimal of Bin hexade in al	In hexadeclimal	
I in hexadecimal 3 in hexadecimal		
e (all Hexadecimal system	0,1,2,3,4,5,6,7,8,	9 -) they are) A, B, C, P, E, F
The number in boxadeci	imal expansion is (3	EBC)16

F

Modular Exponentation (Left-to-right binary method) problem) Find y mod m for given y, n, and m>0. y² mod m can be calculated by m even $0^{\frac{n}{2}+\frac{m}{2}\frac{2}{2}+n}$ r^2 mod n where $-\frac{m}{2} \leq r < \frac{m}{2}$ and modumi mil y mod m = r mod m. o mi This reduces the size after squaring. 2) n73. The method is useful for large 1. Stepl: Write n in binary expansion, collect digits in an array [bo, b1, --, be-1] of length l where I is the length of the expansion.

Step 2:

Ex.
$$N = (1011)_2$$
 $1=0$: $Y = 5y \% m = y \% m$
 $1=1$: $Y = 5y \% m = y (10)_2 \% m$
 $1=1$: $Y = 5y \% m = y (10)_2 \% m$
 $1=2$: $Y = 5y \% m = y (101)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1011)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1010)_2 \% m$
 $1=3$: $Y = 5y \% m = y (1$