LAP 3: COMPUTATIONAL SYNTAX INTRODUCTION

Ruben Urizar

WHO CARES?

- Grammar checkers
- Question answering
- Information extraction
- Machine Translation
- Generation
- ...

SYNTAX IN CONTEXT

SYNTACTIC AMBIGUITY (i)

There are many types of syntactic ambiguity, just to mention some:

- 1. **PoS ambiguity** occurs when at least two words can belong to two or more parts of speech.
 - ✓ They can fish.
 - ✓ I saw her duck.

This is **quite rare** despite the large numbers of words that can be both nouns and verbs in English.

SYNTACTIC AMBIGUITY (iii)

3. Coreference:

- √ John told Tom he had to go
 - -he = John => John had to go
 - -he = Tom \Rightarrow Tom had to go.

SYNTACTIC AMBIGUITY (ii)

- 2. **PP** (prepositional phrase) **attachment**. PPs can modify VPs as well as NPs:
 - ✓ She saw a man with a telescope
 -[She] [saw] [a man] [with a telescope]. => (she used a telescope)
 - [She] [saw] [a man with a telescope]. => (the man had a telescope)

 ✓ Peter waved Mary from the school with a flag (...)
 - Peter waved [from the school with a flag] => (the school had a flag)
 - -Peter waved [from the school] [with a flag] => (Peter waved with a flag)

AMBIGUITY RESOLUTION (i)

- Sometimes ambiguity cannot be resolved; we cannot know what the producer of the sentence meant:
 - → I saw her duck:
 - 1. I saw [NP her duck].
 - 2. I saw [NP her] [VP duck].
 - → They can fish:
 - 1. They [VP can fish].
 - 2. They [VP can] [NP fish].

AMBIGUITY RESOLUTION (ii)

- Often, the **context** helps to identify the correct interpretation:
- → [Peter waved from the school with a flag.] He kept waving the flag all the time to Mary's house. ⇒ 'man with a flag' interpretation
- Sometimes, world knowledge (or 'commonsense knowledge') is needed:
- \rightarrow Peter waved from the school with a balcony... \Rightarrow 'school with a balcony' interpretation (NOT 'man with a balcony')
- Many ambiguity cases can be resolved using linguistic context:
- → I saw a duck in the pond ⇒ 'duck' noun
- \rightarrow What should you do when she leaves you? \Rightarrow leaves verb

TWO VIEWS OF LINGUISTIC STRUCTURE

1. Phrase structure organizes words into nested constituents or phrase structures.

TWO VIEWS OF LINGUISTIC STRUCTURE

2. Dependency structure shows which words depend on (modify or are arguments of) which other words.

Economic news had little effect on financial markets

TWO VIEWS OF LINGUISTIC STRUCTURE

Stanford CoreNLP

Basic Dependencies:

II .

TWO VIEWS OF LINGUISTIC STRUCTURE

Dependency structure (2)

Economic news had little effect on financial markets

root (ROOT-0, had-3)

nsubj (had-3, news-2)

amod (news-2, Economic-1)

dobj (had-3, effect-5)

amod (effect-5, little-4)

prep (effect-5, on-6)

amod (markets-8, financial-7)

APPROACHES TO SYNTAX (i)

Both tasks (giving all the possible interpretations of a sentence and choosing one out of them) can be tackled with different approaches:

- The knowledge-based way
- Using linguistic knowledge to eliminate nonsense analyses and/or choose coherent interpretations.
- The automatic way
- Using statistical methods based on empirical evidence (corpora).
- A combination of both

Universal dependency relation

(https://universaldependencies.org/u/dep/

The upper part of the table follows the main organizing principles of the UD taxonomy such that rows correspond to functional categories in relation to the head (ore arguments of clausal predicates, non-core dependents of clausal predicates, and dependents of nominals) while columns correspond to structural categories of the dependent (nominals, clauses, modifier words, function words). The lower part of the table lists relations that are not dependency relations in the narrow sense.

	Nominals	Clauses	Modifier words	Function Words
Core arguments	naubj obj iobj	coup ccomp xcomp		
Non-core dependents	obl vocative expl dislocated	advel	advmod* discourse	oop mark
Nominal dependents	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
con1 cc	fixed flat compound	list parataxis	orphan goeswith reparandum	punct root dep

APPROACHES TO SYNTAX (ii)

- 1. Based on linguistic knowledge
 - Context-free grammars (CFG)
 - Unification-based grammars
 - LFG (Lexical Functional Grammar)
 - HPSG (Head-driven Phrase Structure Grammar)
 - PATR-I
 - ۶ ..
 - Finite-state mechanisms
 - CG (Constraint Grammar)
 - XFST (Xerox Finite State Tool)
- 2. Probabilistic
- 3. Combined

Context Free Grammars CFG

CONTEXT-FREE GRAMMARS

- Formulated by Chomsky (1956) and Backus (1959)
- Capture constituents and ordering
 - Need something else for grammatical relations and dependency relations
- Consists of
 - A set of rules
 - > A lexicon

CONTEXT-FREE GRAMMARS

Consist of:

- A lexicon
- A set of rules (productions) expressing the way symbols of the language can be grouped together.

CONTEXT-FREE GRAMMAR: lexicon

```
Noun 
ightharpoonup flights | breeze | trip | morning | \dots
Verb 
ightharpoonup is | prefer | like | need | want | fly
Adjective 
ightharpoonup cheapest | non - stop | first | latest | other | direct | \dots
Pronoun 
ightharpoonup me | I | you | it | \dots
Proper-Noun 
ightharpoonup Alaska | Baltimore | Los Angeles | Chicago | United | American | \dots
Determiner 
ightharpoonup the | a | an | this | these | that | \dots
Preposition 
ightharpoonup from | to | on | near | \dots
Conjunction 
ightharpoonup and | or | but | \dots
```

CONTEXT-FREE GRAMMAR: set of rules

```
S \rightarrow NP VP
                             I + want a morning flight
     NP → Pronoun
             Proper-Noun
                             Los Angeles
            Det Nominal
                             a + flight
Nominal -> Noun Nominal
                             morning + flight
            Noun
                              flights
     VP \rightarrow Verb
            Verb NP
                              want + a flight
            Verb NP PP
                              leave + Boston + in the morning
            Verb PP
                              leaving + on Thursday
     PP → Preposition NP from + Los Angeles
```

Unification-based grammars

CONTEXT-FREE GRAMMAR: derivations and trees

GRAM	IMAR	rules	LEXIC	ON (entries
S	\rightarrow	NP VP	Pro	\rightarrow	I
VP	\rightarrow	V NP	V	\rightarrow	prefer
NP	\rightarrow	Pro	Det	\rightarrow	а
NP	\rightarrow	Det Nom	Noun	\rightarrow	morning
Nom	\rightarrow	Noun Noun	Noun	\rightarrow	flight

FEATURE STRUCTURES (i)

- Context-free grammars do not deal with issues like agreement
- Unification-based grammars use features such as 'number', 'person', 'aender'...
- A feature structure allows us to state properties e.g. about a noun phrase

[she NP number sg person 3 gender fem]

or a verb phrase [walks VP number sg person 3

present]

FEATURE STRUCTURES (ii)

- Each feature (e.g., 'number') is paired with a value (e.g., 'sg')
- A bundle of feature-value pairs can be put into an attribute-value matrix (AVM)

UNIFICATION (i)

- Unification (U) = a basic operation to merge two feature structures into a resultant feature structure (FS)
- The two-feature structures must be compatible, i.e., have no values that conflict
 - Identical FSs:
 - [number sg] U [number sg] = [number sg]
 - Conflicting FSs:
 - [number sg] U [number pl] = Fail
 - Merging with an unspecified FS:
 - [number sg] U [number []] = [number sg]

.

UNIFICATION (ii)

A feature structure matrix of type phrase in HPSG states that the VP must agree with its subject in number and person (3 sg). In this case, the feature structures of she and walks are compatible so unification takes place.

UNIFICATION (iii)

The resulting parse tree would be the following:

Probabilistic Parsing and Treebanks

STATISTICAL PARSING (ii)

Computing the probabilities of a particular parse tree

We have the following rules and probabilities:

Being P(T) = the probability of a particular parse tree,

```
\begin{array}{lll} \texttt{P(T)} &=& \texttt{P(S$\to$VP)} * \texttt{P(VP} \to \texttt{V} & \texttt{NP)} *... * \texttt{P(N} \to \texttt{flight)} \\ &=& .05 *.40 *.20 *.30 *.05 *.25 = .000015, \text{ or } 1.5 \text{ x } 10 - 5 \end{array}
```

STATISTICAL PARSING (i)

- The basic idea is:
 - Start with a treebank
 - <u>treebank</u>: a corpus with syntactic annotation, i.e., already-parsed sentences (e.g. the Penn Treebank)
 - Examine which parse trees occur frequently
 - Extract grammar rules corresponding to those parse trees, estimating the probability of the grammar rule based on its frequency
- That is, we'll have a context-free grammar (CFG) augmented with probabilities

USING PROBABILITIES

- So, the probability for that parse is 0.000015. What's the big deal?
 - > Probabilities are useful for comparing with other probabilities
- Whereas we couldn't decide between two parses using a regular CFG, we now can.
- For example, "TWA flights" is ambiguous between being two separate NPs (as in I gave [NP John] [NP money]) or one NP:
 - A: [book [TWA] [flights]]B: [book [TWA flights]]
- Comparing probabilities (previous slide) allows us to choose option B

TREEBANKS

The rise of annotated data: The Penn Treebank

```
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)
   (NP (DT a) (NN round))
    (PP (IN of)
       (NP (JJ similar) (NNS increases))
       (PP (IN by)
         (NP (JJ other) (NNS lenders)))
        (PP (IN against)
         (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
  (S-ADV
    (NP-SBJ (-NONE- *))
    (VP (VBG reflecting)
       (NP (DT a) (VBG continuing) (NN decline))
       (PP-LOC (IN in)
         (NP (DT that) (NN market))))))
(. .)))
```

Parts of Speech PoS

TREEBANKS

- Building a treebank may seem a lot slower and less useful than building a grammar... but
- A treebank gives us many things
 - Reusability of the labor
 - Broad coverage
 - Frequencies and distributional information
 - A way to evaluate systems

PARTS OF SPEECH (PoS)

... or 'word classes'

Here are some sentences extracted from different conversations in a café.

- Our friends are sitting in the corner, look.
- I have an important conference at work tomorrow, so I am rather busy
- Would you like to come to our party on Saturday, Jessica?
- This coffee is really good.
- And it's cheap here.
- 1. What different parts of speech can you distinguish?
- 2. Classify all the words in their corresponding part of speech

PARTS OF SPEECH (PoS)

Verb

- Lexical: have, am, is, like, come, sitting, look
- · Auxiliary: would, are

Nour

- * Common: conference, work, coffee, party, Saturday, friends, corner
- Proper: Jessico
- 3. Adjective: important, busy, good cheap
- 4. Adverb: really, tomorrow, rather, here
- 5. Preposition: at, to, on, in
- 6. Determiner: an, this, our, the
- 7. Pronoun: I, it, you
- 8. Conjunction:
 - · Coordinating conjunction: and, or, but
 - Subordinating conjunction: because, although

PENN TREEBANK TAGSET for English (i)

		VB	Verb, base form	
	Lexical and Auxiliary (not modal)	VBD	Verb, past tense	
		VBG	Verb, gerund or present participle	
VERB		VBN	Verb, past participle	
mod		VBP	Verb, non-3rd person singular present	
		VBZ	Verb, 3rd person singular present	
	Modal	MD	Modal	
	Common	NN	Noun, singular or mass	
NOUN	Common	NNS	Noun, plural	
NOON	Proper	NNP	Proper noun, singular	
P		NNPS	Proper noun, plural	
ADJECTIVE		IJ	Adjective	
		JJR	Adj. comparative	
		JJS	Adjective, superlative	

PENN TREEBANK TAGSET for English (ii)

ABVERR	RB	Adverb	
	RBR	Adverb, comparative	
ADVERB	RBS	Adverb, superlative	
	WRB	Wh-adverb	
PREPOSITION	IN	Preposition (or subordinating conjunction)	
DETERMINER	DT	Determiner	
	WDT	Wh-determiner	
	PDT	Predeterminer	
	PRP	Personal pronoun	
PRONOUN	PRP\$	Possessive pronoun	
PRONOUN	WP	Wh-pronoun	
	WP\$	Possessive wh-pronoun	
CONJUNCTION	CC	Coordinating conjunction	
CONJUNCTION	IN	Subordinating conjunction (or preposition)	

PENN TREEBANK TAGSET for English (iii)

	EX	Existential there
	CD	Cardinal number
	FW	Foreign word
	LS	List item marker
OTHER	POS	Possessive ending
	RP	Particle
	SYM	Symbol
	ТО	to
	UH	Interjection

VISLCG TAGSET

	Part of Speech Tags
ADJ	adjective
ADV	adverb
ART	article, cp. <art> (*)</art>
DET	determiner pronoun (inflecting)
IN	interjection
INDP	independent pronoun (non-inflecting)
INFM	infinitive marker
кс	coordinating conjunction
KS	subordinating conjunction
N	noun
PROP	proper noun, name
PRP	preposition
PERS	personal pronoun
V	verb> PR, IMPF, IMP, INF, PCP[12]

Morphological information Tags		
1P	1. person plural (PERS +, V ¤)	
15	1. person singular (PERS +, V ¤)	
2P	2. person plural (PERS +, V ¤)	
25	2. person singular (PERS +, V ¤)	
3P	3. person plural (PERS +, V ¤)	
35	3. person singular (PERS +, V ¤)	
ACC	accusative case (N, PERS)	
COM	comparative degree (ADJ, ADV)	
CONJ	conjunction, cp. KS and KC	
GEN	genitive case	
IMP	imperative (V)	
IMPF	past tense (V), also PAST (*)	
INF	infinitive (V)	
NOM	nominative case	
NUM	numeral> <card>, <ord></ord></card>	
P	plural	
PCP	past participle, cp. PCP2, PED (*)	
PCP1	present participle, cp. GER, PING (*)	
PCP2	past participle, cp. PCP, PED (*)	
PED	-ed participle, cp. PCP, PCP2 (*)	
PR	present tense> AKT, PAS	
S	singular, cp. SG (*)	
SUBJ	subjunctive, cp. CONJ (*)	
SUP	superlative degree (ADJ, ADV)	
()		

EXERCISES

Exercise 01 in eGela

.

DEPENDENCY TREE

Global emissions of CO2 will rise for the first time in four years.

PARSERS

43

EXERCISES

Exercise 02 in eGela

Exercise 03 in eGela

