Solutions to Weekly Assignment 5

Question 1.

% range from 40%-55% suggesting that there may be a relationship between gender b political preference

(11) Hø: Gender & Political Preference Independent
Hi: Gender & Political Preference Associated

Significance Level 0.05

Test Statistic
$$X^2 = \sum \frac{(0-E)^2}{E} \sim \chi^2(df)$$
 under H_{\emptyset} $df = (r-1)(c-1)$

Observed Test Statistic

Observed (0)

	Tony	Labour	Lubbern	SNP	Other	.1
Male	61	152	hub Dem 49 62	98	25	385
Female	92	125	62	105	31	415
	153	277	111		56	

Expected (E)
$$\left(\frac{1}{2} \frac{\text{Row Tobd} \times \text{Column Tobd}}{\text{Overall Tobd}}\right)$$

Tory Labour Lub Dem SNP Other

Male 73.63 133.31 53.42 97.69 26.45 385

Female 74.37 143.69 57.58 105.31 29.05 415

153 277 111 203 56 800

$$X^2 = \frac{\left(61-73.63\right)^2}{73.63} + \frac{\left(152-133.31\right)^2}{133.31} + \frac{\left(31-29.05\right)^2}{29.05}$$

= 2.167 + 2.621 + 0.366 + 0.001 + 0.141

+ 2.010 + 2.432 + 0.339 + 0.001 + 0.131 = 10.209//

Rejection Region 0.01; One hailed; $\chi^2(4)$

$$df = (r-1) \times (c-1)$$

$$= (2-1) \times (5-1) = 4$$

$$\chi^2(6-1) = 13.28$$

Conclusion: Observed Test Statistic (10.209) is not in the Rejection Regions so we cannot reject Ho in favour of H1 at 1% level i.e. insufficient evidence to suggest that there is an association between gender and political preference.

$$\hat{\theta} \pm 1.96 \sqrt{\frac{\theta(1-\theta)}{n}} \qquad \hat{\theta} = \frac{277}{800} = 0.346$$

$$0.346 \pm 1.96 \sqrt{\frac{0.346(1-0.346)}{800}} \qquad n = 800$$

$$0.346 \pm 1.96 \times 0.0168$$

1e 0.346 ± 0.033

1e (0.313,0.379)

ie proportion of population who vote habour lies between 0.31: 6 0.379 with 95% confidence.

Question 2.

- (b) The most appropriate model is a multiplicative model as the peak-to-trough is not constant and is a 'multiple' of the trend.
 - (a) The plot of the data (as well as the smoothed data and the seasonally adjusted values) is:

			4pt			
year	Quarter	Model	smooth	Trend	Deviation	SAV
1	1	0.63				0.612
	2	0.86				1.303
			1.910			
	3	2.33		2.293	1.016	2.378
			2.675			
	4	3.82	2.405	2.935	1.302	2.872
2	4	2.60	3.195	2.544	1.043	2.502
2	1	3.69	2 000	3.541	1.042	3.583
	2	2.94	3.888	4.410	0.667	4.455
	2	2.34	4.933	4.410	0.007	4.433
	3	5.1	4.933	5.325	0.958	5.204
	J	3.1	5.718	3.323	0.550	3.201
	4	8	5 25	5.958	1.343	6.015
			6.198			
3	1	6.83		6.566	1.040	6.631
			6.935			
	2	4.86		7.460	0.651	7.364
			7.985			
	3	8.05		8.361	0.963	8.214
			8.738			
	4	12.2		9.015	1.353	9.173
_	_		9.293			
4	1	9.84	40.000	9.688	1.016	9.553
	2	7.00	10.083	10.563	0.670	10 727
	2	7.08	11 0/12	10.563	0.670	10.727
	3	11.21	11.043			11.439
	3	11.21				11.433
	4	16.04				12.060
	•	20.0 1				12.000

(d) Using the following table (with the deviation from the trend in the above table) to calculate trend/quarter index

	Qtr 1	Qtr 2	Qtr 3	Qtr 4	
Year 1			1.016	1.302	
Year 2	1.042	0.667	0.958	1.343	
Year 3	1.040	0.651	0.963	1.353	
Year 4	1.016	0.670			
Average	1.033	0.663	0.979	1.333	4.007
Adjustment	1.002	1.002	1.002	1.002	
Quarter					
Index	1.031	0.662	0.977	1.330	
	1.030	0.660	0.980	1.330	

Residuals influences small as the trend and seasonally adjusted values close together.

⁽e) The graph shows an upward trend, with each quarter increasing year-on-year (first quarter highest, 2nd quarter lowest).