BÀI TẬP 3 THỐNG KÊ MÁY TÍNH VÀ ỨNG DỤNG

Câu 1. (2.5 điểm) Dùng phương pháp Monte Carlo, ước lượng các giá trị sau với sai số chuẩn không quá 0.01.

a)

$$I = \int_{-2}^{2} e^{x+x^2} dx.$$

b)

$$J = \int_0^\infty \int_0^x e^{-(x+y^2)} \, dy dx.$$

Câu 2. (3 điểm) Cho các $U_i (i \geq 1)$ độc lập và có phân phối $\mathcal{U}(0,1)$. Đặt

$$N = \max_{n} \left\{ \prod_{i=1}^{n} U_i \ge e^{-3} \right\}.$$

Dùng phương pháp Monte Carlo:

- a) Ước lượng P(N=1).
- b) Ước lượng $P(N \ge 10)$.
- c) Đưa ra khoảng tin cậy 95% cho E(N).

Câu 3. (2.5 điểm) Cho biến ngẫu nhiên có phân phối chuẩn tắc $X \sim \mathcal{N}(0,1)$. Ước lượng $P(3 \leq X \leq 4)$ bằng các phương pháp (1) Monte Carlo "ngây thơ" dùng phân phối $X \sim \mathcal{N}(0,1)$ và phương pháp lấy mẫu quan trọng với các phân phối mới lần lượt là (2) $Y \sim \mathcal{N}(1,1)$, (3) $Y \sim \mathcal{N}(2,1)$, (4) $Y \sim \mathcal{N}(3.5,1)$, (5) $Y \sim \text{Exp}(1) + 3$.

- a) Ước lượng sai số của các phương pháp khi dùng cỡ mẫu là 50000.
- b) Dùng phương pháp tốt nhất trong các phương pháp trên tìm khoảng tin cậy 98% cho I.

Câu 4. (2 điểm) Dùng 2 phương pháp giảm phương sai khác nhau để ước lượng giá trị I ở Câu (1.a). Tính (hoặc ước lượng) tỉ lệ giảm phương sai so với phương pháp ở Câu (1.a).

<u>Lưu ý</u>:

- Trình bày bài làm (lời giải, công thức Toán, mã Python, kết quả, ...) trong tập tin notebook.
- Cần trình bày mã giả và cài đặt bằng Python các thuật toán.
- Cần kiểm tra và đánh giá kết quả chạy các thuật toán.
- Được phép dùng các hàm sinh số ngẫu nhiên từ thư viên random hoặc numpy.random.