3. Fairness: Definitions and metrics

What is fairness?

Many definitions of fairness:

- Individual. seeks for similar individuals to be treated similarly
- Group. split a population into groups defined by protected attributes (e.g. women, black) and seeks for some measure to be equal across groups

Individual fairness

Am I as an individual being treated as another with similar qualifications?

- Fairness through unawareness.
- Fairness through awareness.
- Counterfactual fairness.

Fairness through unawareness

• **Definition:** Protected attributes A not explicitly used as features X.

Mathematically: A∩X = Ø

Potential problem: proxy in the data (see practice notebook).

Fairness through awareness/ Individual Fairness

• **Definition:** Similar predictions to similar individuals (w.r.t similarity metric).

• Mathematically: x,y 2 individuals. Model M must satisfy Lipschitz condition:

$$D(M(x), M(y)) \le d(x, y)$$

Potential problem: Choice of similarity/distance metric.

Counterfactual fairness

- **Definition:** Causal graph. Fair if the predicted outcome does not depend on a descendant of the protected attribute
- Mathematically: A protected attribute, X other features, U latent background variables. \hat{Y} estimator.

$$P(\hat{Y}_{A < -a}(U) = y | X = x, A = a) = P(\hat{Y}_{A < -a}(U) = y | X = x, A = a)$$

Potential problem: determining the causal graph

Group fairness

Is the minority group to which I belong being treated as the majority group?

- Equality of Outcome. Distribution across groups should be the same (Statistical Parity, Disparate Impact)
- Equality of Opportunity. E.g. Equalized Odds

Equality of Outcome

- Definition: Equal likelihood of positive predicted outcome.
- Mathematically:

$$P(\hat{Y} = 1|A = male) = P(\hat{Y} = 1|A = female)$$

$$SR_{male}$$
 SR_{female}

- Example metrics:
 - Disparate Impact = $SR_{female} / SR_{male} \rightarrow$ ideal value of 1
 - Statistical Parity = $SR_{female} SR_{male} \rightarrow$ ideal value of 0
- Potential problem: Positive discrimination ?

Equality of Opportunity

- **Definition:** This should be equal for all groups:
 - probability of a person in the positive class being correctly assigned a positive outcome
 - · probability of a person in a negative class being incorrectly assigned a positive outcome

• Mathematically:
$$P(\hat{Y} = 1 | A = m, Y = y) = P(\hat{Y} = 1 | A = f, Y = y), y \in \{0,1\}$$

$$TPR_m \text{ if } y = 1; FPR_m \text{ if } y = 0$$

• **Example metric:** Average Odds Difference

$$AOD = \frac{1}{2}[(FPR_f - FPR_m) + (TPR_f - TPR_m)]$$

 Potential problem: Where does ground-truth come from, is it a valid unbiased measure?

Group fairness - Illustration through an example

Equality of outcome →

$$P(\widehat{Y} = 1|A = male) = P(\widehat{Y} = 1|A = female)$$

$$SR_{male} = 37/50 = 0.74$$
 $SR_{female} = \frac{26}{50} = 0.52$
 $SR_{female} = 0.52 = 0.52$
 $SR_{female} = 0.52 = 0.52$
 $SR_{female} = 0.52 = 0.52$

Equality of opportunity >

$$P(\widehat{Y} = 1 | A = male, Y = 0) = P(\widehat{Y} = 1 | A = female, Y = 0)$$

$$P(\hat{Y} = 1 | A = m, Y = 0) = FPR_{male} = \frac{FP}{FP + TN} = 7/17 = 0.41$$

$$P(\hat{Y} = 1 | A = f, Y = 0) = 4/22 = 0.18$$

Equality of opportunity \rightarrow

$$P(\hat{Y} = 1 | A = male, Y = 1) = P(\hat{Y} = 1 | A = female, Y = 1)$$

$$P(\hat{Y} = 1 | A = m, Y = 1) = TPR_{male} = \frac{TP}{TP + FN} = 30/33 = 0.91$$

$$P(\hat{Y} = 1 | A = f, Y = 1) = 22/28 = 0.79$$

Average Odds Difference

$$AOD = \frac{1}{2}[(0.18 - 0.41) + (0.79 - 0.91)] = -0.175$$

Reading/References

Supporting Notebook

Definitions of fairness

(Verma & Rubin, 2018) <u>Fairness Definitions Explained</u> (Mehrabi et al., 2021). <u>A survey on bias and fairness in machine learning</u>

Metrics

https://www.holisticai.com/open-source