

Data Engineer

Probabilità e Statistica

Modulo: Probabilità prof. Riccardo Figliozzi

Chi sono?

prof. Riccardo Figliozzi

- Marketing Data Scientist
- Digital Marketer e Freelance
- Docente di Accademia del Levante
- Staff Member firenze.dev

Perché Probabilità e Statistica?

Data Engineer

ML Engineer

Data Scientist

Data Analyst

Reporting Business Insights

IASEM

Probabilità e Statistica

Probabilità

Teoria della Probabilità Eventi aleatori e operazioni Probabilità + Statistica

Statistica

Statistica Descrittiva
Statistica Bivariata
Regressione e
Correlazione

Variabili Aleatorie
Distribuzioni di Probabilità
Normalizzazione

Probabilità

Il Calcolo delle Probabilità si occupa di tutte le situazioni in cui si presenta il caso:

- si ricercano, se non leggi, quantomeno delle regolarità
- ricavare informazioni e indicazioni, per orientarsi nel caos degli eventi.

Richiami - Insiemistica

- Insieme: raggruppamento di oggetti in base ad un criterio oggettivo
- **Sottoinsieme**: *B* è un sottoinsieme di *A* se tutti gli elementi di *B* sono anche elementi di *A*

Richiami - Insiemistica

- Intersezione $(A \cap B)$: insieme degli elementi che appartengono sia ad A che a B
- Unione ($A \cup B$): insieme degli elementi che appartengono ad A o a B o a entrambi

Prime definizioni

- Esperimento aleatorio (casuale): ogni fenomeno il cui esito non può essere previsto in anticipo
- Spazio campionario: insieme S di tutti i possibili esiti di un esperimento aleatorio

Prime definizioni

- Evento elementare: sottoinsiemi dello spazio campionario costituiti da un solo elemento
 - "testa" e "croce" sono eventi elementari.
- Evento aleatorio (casuale): ogni sottoinsieme dello spazio campionario (combinazione di esiti)
 - "ottenere almeno una testa in due lanci"

Tipi di Evento

Certo

Se oggi è martedì, allora domani sarà mercoledì.

Aleatorio

Domani pioverà. Non possiamo esserne sicuri al 100%

Impossibile

Lanciando un dado a 6 facce, uscirà il numero 7.

Rappresentazioni dello spazio

Come si può rappresentare graficamente lo spazio campionario?

Prime definizioni

- S è lo spazio campionario
- E è l'evento

Di quale esperimento stiamo parlando? E di quale evento si tratta?

Esercizi

Rappresenta gli eventi:

- a. «Dal lancio di un dado, esce un numero pari»
- b. «Dal lancio di due dadi, escono due numeri il cui prodotto è25»
- c. «Dal lancio di due dadi, escono due numeri la cui somma
 è minore di 11»
- d. «Dal lancio di un dado, esce un numero pari o un numero dispari»
- e. «Dal lancio di un dado, esce un numero pari e un numero dispari»
- f. «Lanciando due volte una moneta, non esce mai testa entrambe le volte»

Evento unione (di due o più eventi):

- E₁: «Dal lancio di un dado, esce un numero dispari»
- E₂: «Dal lancio di un dado, esce un numero minore di 3»
 - Cos'è l'evento: «Dal lancio di un dado, esce un numero dispari o minore di 3»?

Evento unione (di due o più eventi):

«Dal lancio di un dado, esce un numero dispari o minore di 3»

$$S = \{1, 2, 3, 4, 5, 6\}$$

 E_1 = «Esce un numero dispari» = {1, 3, 5}

 E_2 = «Esce un numero minore di 3» = {1, 2}

 $E = \text{«Esce un numero dispari o minore di 3»} = \{1, 2, 3, 5\}$

Evento intersezione (di due o più eventi):

- E₁: «Dal lancio di un dado, esce un numero dispari»
- E₂: «Dal lancio di un dado, esce un numero minore di 3»

Cos'è l'evento: «Dal lancio di un dado, esce un numero dispari e minore di 3»?

Evento intersezione (di due o più eventi): «Dal lancio di un dado, esce un numero dispari e minore di 3»

$$E_1 = 1.2.3.4.5.6$$

 $E_1 = \text{«Esce un numero dispari»} = \{1, 3, 5\}$
 $E_2 = \text{«Esce un numero minore di 3»} = \{1, 2\}$
 $E = \text{«Esce un numero dispari e minore di 3»} = \{1\}$

Evento contrario (di un evento):

- E_1 : «Dal lancio di un dado, esce un numero dispari»
- Cos'è l'evento: «Dal lancio di un dado, non esce un numero dispari»?

Evento contrario (di un evento):

«Dal lancio di un dado, non esce un numero dispari»

$$S = 1, 2, 3, 4, 5, 6$$

$$E_1$$
 = «Esce un numero dispari» = {1, 3, 5}
 E = «Non esce un numero dispari» = {2, 4, 6}

Ricapitolando

EVENTO	DEFINZIONE	CONGIUNZIONE
EVENTO UNIONE	Evento che si verifica al verificarsi di almeno uno degli eventi studiati	0
EVENTO INTERSEZIONE	Evento che si verifica al verificarsi contemporaneamente degli eventi studiati	E
EVENTO CONTRARIO	Evento che si verifica solo se non si verifica l'evento studiato	NON

Esempi fatti da voi

Elaborate almeno 6 esempi di eventi, 2 per ogni tipo di evento e rappresentateli graficamente.

Probabilità – definizione classica

«Dal lancio di un dado, esce un numero pari»

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{2, 4, 6\}$

$$p(E) = \frac{casi favorevoli}{casi possibili} = \frac{3}{6} = 50\%$$

Probabilità – definizione classica

«Dal lancio di un dado, esce un numero pari o un numero dispari»

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E_1 = \{2, 4, 6\}$

$$p(E) = \frac{casi favorevoli}{casi possibili} = \frac{6}{6} = 100\%$$

Probabilità – definizione classica

«Dal lancio di un dado, esce un numero pari e un numero dispari»

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E_1 = \{2, 4, 6\}$

$$p(E) = \frac{casi favorevoli}{casi possibili} = \frac{0}{6} = 0\%$$

Eventi compatibili e incompatibili

Questi eventi sono compatibili perché **possono verificarsi contemporaneamente**: se esce il numero 4 o 6, entrambi gli eventi A e B si verificano.

Esempio: Estrazione di una carta da un mazzo

- Evento A: Estrarre una carta di cuori.
- Evento B: Estrarre una figura (Jack, Regina, Re).

Eventi compatibili e incompatibili

Due eventi sono incompatibili se non possono verificarsi contemporaneamente, ovvero se non hanno alcun risultato in comune.

Il verificarsi di uno esclude il verificarsi dell'altro.

Esempio: Lancio di un dado

- Evento A: Ottenere un numero pari (2, 4, 6).
- Evento B: Ottenere un numero dispari (1, 3, 5).

Probabilità condizionata

Consideriamo un mazzo di carte napoletane e i seguenti due eventi:

 E_1 = «Si pesca una figura»

 E_2 = «Si pesca un valore pari»

Peschiamo una carta e supponiamo che l'evento E_2 si sia verificato. Qual è la probabilità che si sia verificato anche E_1 ?

NON dobbiamo calcolare $p(E_1)$ ma la probabilità dell'evento E_1 condizionato dal fatto che si sia verificato prima l'evento E_2 : $p(E_1|E_2)$

Probabilità condizionata

Se si è verificato E_2 = «Si pesca un valore pari», il nostro spazio campionario è

$$S = \{2, 4, 6, 8, 10, 2, 4, 6, 8, 10, 2, 4, 6, 8, 10, 2, 4, 6, 8, 10\}$$

Questo vuol dire che abbiamo pescato una di queste carte.

Qual è la probabilità condizionata di E_{1} = «Si pesca una figura»?

In S, i casi favorevoli sono $E = \{8,10,8,10,8,10,8,10\}$

$$p(E_1|E_2) = \frac{c.f.}{c.p.} = \frac{8}{20}$$

Probabilità condizionata

Consideriamo un dado a 12 facce e i seguenti due eventi:

 E_1 = «Esce un numero pari»

 E_2 = «Esce un numero minore di 8»

Calcoliamo $p(E_1|E_2)$.

Se si verifica E_2 , lo spazio campionario è

$$S = \{1, 2, 3, 4, 5, 6, 7\}$$

Quindi:

$$p(E_1|E_2) = \frac{c.f.}{c.p.} = \frac{3}{7}$$

Eventi dipendenti e indipendenti

Due eventi si dicono **dipendenti** se il verificarsi di uno *influenza* il verificarsi dell'altro

Si pesca una carta e, <u>senza reinserirla nel mazzo</u>, se ne estrae una seconda

Due eventi si dicono **indipendenti** se il verificarsi di uno *non influenza* il verificarsi dell'altro

Si pesca una carta e, <u>reinserendola nel mazzo</u>, se ne estrae una seconda

Prodotto logico di eventi indipendenti (1)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia, la si reinserisce nel sacchetto e successivamente se ne estrae una seconda.

Calcolare la probabilità di aver estratto, nell'ordine,

Eventi indipendenti

Particolarità:

- 1. evento intersezione
- 2. ordinamento

Prodotto logico di eventi indipendenti (1)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia, la si reinserisce nel sacchetto e successivamente se ne estrae una seconda.

Calcolare la probabilità di aver estratto, nell'ordine, una biglia rossa e una biglia blu»

Lo spazio campionario è costituito da 25 elementi.

È richiesta una prima biglia rossa e una seconda blu, quindi, abbiamo solo 2 casi

Prodotto logico di eventi indipendenti (2)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia, la si reinserisce nel sacchetto e successivamente se ne estrae una seconda.

Calcolare la probabilità di aver estratto una biglia

Eventi indipendenti

Particolarità: 1. evento intersezione

2. senza ordinamento

Prodotto logico di eventi indipendenti (2)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia, la si reinserisce nel sacchetto e successivamente se ne estrae una seconda.

Calcolare la probabilità di aver estratto una biglia rossa e una biglia blu»

Lo spazio campionario è costituito da 25 elementi. È richiesta una biglia rossa e una blu oppure una blu e una rossa. Quindi, abbiamo 4 casi favorevoli:

$$p(E) = \frac{4}{25} = \frac{2}{5} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{2}{5}$$
$$p(E) = p(E_1) \cdot p(E_2) + p(E_2) \cdot p(E_1)$$

Prodotto logico di eventi dipendenti (1)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia e, senza reinserirla nel sacchetto, se ne estrae una seconda.

Calcolare la probabilità di aver estratto, nell'ordine, una biglia rossa e una biglia blu»

Eventi dipendenti

Particolarità: 1. evento intersezione

2. ordinamento

Prodotto logico di eventi dipendenti (1)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia e, senza reinserirla nel sacchetto, se ne estrae una seconda.

Calcolare la probabilità di aver estratto, nell'ordine, una biglia rossa e una biglia blu»

Lo spazio campionario è costituito da 20 elementi, perché non c'è reinserimento.

È richiesta una prima biglia rossa e una seconda blu. Quindi, abbiamo 2 casi favorevoli:

$$p(E) = \frac{2}{20} = \frac{2}{5} \cdot \frac{1}{4} = p(E_2) \cdot p(E_1 | E_2)$$

Prodotto logico di eventi dipendenti (2)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia e, senza reinserirla nel sacchetto, se ne estrae una seconda.

Calcolare la probabilità di aver estratto una biglia rossa e una biglia blu»

Eventi dipendenti

Particolarità: 1. evento intersezione

2. senza ordinamento

Prodotto logico di eventi dipendenti (2)

«Un sacchetto contiene 2 biglie rosse, 1 blu e 2 verdi. Si pesca una biglia e, senza reinserirla nel sacchetto, se ne estrae una seconda.

Calcolare la probabilità di aver estratto una biglia rossa e una biglia blu»

Come prima, lo spazio campionario è costituito da 20 elementi, perché non c'è reinserimento.

È richiesta una biglia rossa e una blu oppure una blu e una rossa. Quindi, abbiamo:

$$p(E) = \frac{2}{5} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{2}{4} = \frac{4}{20}$$
$$p(E) = p(E_2) \cdot p(E_1 | E_2) + p(E_1) \cdot p(E_2 | E_1)$$

