







# M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network

Qijie Zhao<sup>1</sup>, Tao Sheng<sup>1</sup>, Yongtao Wang<sup>1\*</sup>, Zhi Tang<sup>1</sup>, Ying Chen<sup>2</sup>, Ling Cai<sup>2</sup> and Haibin Ling<sup>3</sup>

<sup>1</sup>Institute of Computer Science and Technology, Peking University, Beijing, P.R. China <sup>2</sup>AI Labs, DAMO Academy, Alibaba Group

<sup>3</sup>Computer and Information Sciences Department, Temple University

{zhaoqijie, shengtao, wyt, tangzhi}@pku.edu.cn, {cailing.cl, chenying.ailab}@alibaba-inc.com, {hbling}@temple.edu

#### Qijie Zhao

12, Nov, 2019

Visual Data Interpreting and Generation Lab(VDIG)

Institute of Computer Science and Technology, Peking University

Supervisor: Associate Professor Yongtao Wang

Homepage: qijiezhao.github.io Mail: zhaoqijie@pku.edu.cn

- Proposed method
- **Experiments**
- > Summary

- Proposed method
- **Experiments**
- > Summary

> Object detection based on Multi-scale features



## > Feature Pyramid Networks



#### > Motivations

• State-of-the-art detectors that based on multi-scale feature pyramid network are limited with the backbone that pre-trained on image classification task.



 Widely used feature pyramid networks always ignore the complex appearance variation across object instances with equivalent scale.



- Proposed method
- **Experiments**
- > Summary



Multi-level Feature Pyramid Network(MLFPN) contains **FFMv1**, **FFMv2**, **multiple TUMs and SFAM**.









- Proposed method
- **Experiments**
- > Summary

#### ➤ Ablation Study



#### COCO benchmark.

Validation set: 2014minival

- (1) baseline: simple SSD, vgg, 320×320
- (2) Construct base feature with FFMv1, connect a TUM without 1x1 convs(s-TUM)
- (3) Connect 8 s-TUMs
- (4) Change to 8 TUMs
- (5) Feed Base feature with FFMv2
- (6) Add SFAM
- (7) Change backbone to ResNet101

## ➤ Different Configurations of MLFPN

| TUMs | Channels | Params(M) | AP   | $AP_{50}$ | AP <sub>75</sub> |
|------|----------|-----------|------|-----------|------------------|
| 2    | 256      | 40.1      | 30.5 | 50.5      | 32.0             |
| 2    | 512      | 106.5     | 32.1 | 51.8      | 34.0             |
| 4    | 128      | 34.2      | 29.8 | 49.7      | 31.2             |
| 4    | 256      | 60.2      | 31.8 | 51.4      | 33.0             |
| 4    | 512      | 192.2     | 33.4 | 52.6      | 34.2             |
| 8    | 128      | 47.5      | 31.8 | 50.6      | 33.6             |
| 8    | 256      | 98.9      | 33.2 | 52.2      | 35.2             |
| 8    | 512      | 368.8     | 34.0 | 52.9      | 36.4             |
| 16   | 128      | 73.9      | 32.5 | 51.7      | 34.4             |
| 16   | 256      | 176.8     | 33.6 | 52.6      | 35.7             |

#### Default settings: VGG, 320×320

We configure two hyper parameters:

- a. Number of TUMs
- b. Number of Channels

Given the baseline: (2, 256)

Compare (8, 128) and (4, 256)

(16, 128) and (2, 512)

#### **Conclusion:**

Although both dimensions can benefit the detection accuracy, depth is better than width

## ➤ Compare with State-of-the-art

#### MS-COCO, test-dev detection results, ~300

| one-stage:                       |            |          |       |      |      |      |      |      |      |      |
|----------------------------------|------------|----------|-------|------|------|------|------|------|------|------|
| SSD300* (Liu et al. 2016)        | VGG-16     | 300×300  | False | 43   | 25.1 | 43.1 | 25.8 | 6.6  | 25.9 | 41.4 |
| RON384++ (Kong et al. 2017)      | VGG-16     | 384×384  | False | 15   | 27.4 | 49.5 | 27.1 | -    | -    | -    |
| DSSD321 (Fu et al. 2017)         | ResNet-101 | 321×321  | False | 9.5  | 28.0 | 46.1 | 29.2 | 7.4  | 28.1 | 47.6 |
| RetinaNet400 (Lin et al. 2017b)  | ResNet-101 | ~640×400 | False | 12.3 | 31.9 | 49.5 | 34.1 | 11.6 | 35.8 | 48.5 |
| RefineDet320 (Zhang et al. 2018) | VGG-16     | 320×320  | False | 38.7 | 29.4 | 49.2 | 31.3 | 10.0 | 32.0 | 44.4 |
| RefineDet320 (Zhang et al. 2018) | ResNet-101 | 320×320  | True  | -    | 38.6 | 59.9 | 41.7 | 21.1 | 41.7 | 52.3 |
| M2Det (Ours)                     | VGG-16     | 320×320  | False | 33.4 | 33.5 | 52.4 | 35.6 | 14.4 | 37.6 | 47.6 |
| M2Det (Ours)                     | VGG-16     | 320×320  | True  | -    | 38.9 | 59.1 | 42.4 | 24.4 | 41.5 | 47.6 |
| M2Det (Ours)                     | ResNet-101 | 320×320  | False | 21.7 | 34.3 | 53.5 | 36.5 | 14.8 | 38.8 | 47.9 |
| M2Det (Ours)                     | ResNet-101 | 320×320  | True  | -    | 39.7 | 60.0 | 43.3 | 25.3 | 42.5 | 48.3 |

#### MS-COCO, test-dev detection results, ~512

| YOLOv3 (Redmon and Farhadi 2018) | DarkNet-53 | 608×608  | False | 19.8 | 33.0 | 57.9 | 34.4 | 18.3 | 35.4 | 41.9 |
|----------------------------------|------------|----------|-------|------|------|------|------|------|------|------|
| SSD512* (Liu et al. 2016)        | VGG-16     | 512×512  | False | 22   | 28.8 | 48.5 | 30.3 | 10.9 | 31.8 | 43.5 |
| DSSD513 (Fu et al. 2017)         | ResNet-101 | 513×513  | False | 5.5  | 33.2 | 53.3 | 35.2 | 13.0 | 35.4 | 51.1 |
| RetinaNet500 (Lin et al. 2017b)  | ResNet-101 | ~832×500 | False | 11.1 | 34.4 | 53.1 | 36.8 | 14.7 | 38.5 | 49.1 |
| RefineDet512 (Zhang et al. 2018) | VGG-16     | 512×512  | False | 22.3 | 33.0 | 54.5 | 35.5 | 16.3 | 36.3 | 44.3 |
| RefineDet512 (Zhang et al. 2018) | ResNet-101 | 512×512  | True  | -    | 41.8 | 62.9 | 45.7 | 25.6 | 45.1 | 54.1 |
| CornerNet (Law and Deng 2018)    | Hourglass  | 512×512  | False | 4.4  | 40.5 | 57.8 | 45.3 | 20.8 | 44.8 | 56.7 |
| CornerNet (Law and Deng 2018)    | Hourglass  | 512×512  | True  | -    | 42.1 | 57.8 | 45.3 | 20.8 | 44.8 | 56.7 |
| M2Det (Ours)                     | VGG-16     | 512×512  | False | 18.0 | 37.6 | 56.6 | 40.5 | 18.4 | 43.4 | 51.2 |
| M2Det (Ours)                     | VGG-16     | 512×512  | True  | -    | 42.9 | 62.5 | 47.2 | 28.0 | 47.4 | 52.8 |
| M2Det (Ours)                     | ResNet-101 | 512×512  | False | 15.8 | 38.8 | 59.4 | 41.7 | 20.5 | 43.9 | 53.4 |
| M2Det (Ours)                     | ResNet-101 | 512×512  | True  | -    | 43.9 | 64.4 | 48.0 | 29.6 | 49.6 | 54.3 |

## ➤ Compare with State-of-the-art

#### MS-COCO, test-dev detection results, compare with powerful two-stage detectors

| two-stage:                                     |             |            |       |      |      |      |      |      |      |      |
|------------------------------------------------|-------------|------------|-------|------|------|------|------|------|------|------|
| Faster R-CNN (Ren et al. 2015)                 | VGG-16      | ~1000×600  | False | 7.0  | 21.9 | 42.7 | -    | -    | -    | -    |
| OHEM++ (Shrivastava et al. 2016)               | VGG-16      | ~1000×600  | False | 7.0  | 25.5 | 45.9 | 26.1 | 7.4  | 27.7 | 40.3 |
| R-FCN (Dai et al. 2016)                        | ResNet-101  | ~1000×600  | False | 9    | 29.9 | 51.9 | -    | 10.8 | 32.8 | 45.0 |
| CoupleNet (Zhu et al. 2017)                    | ResNet-101  | ~1000×600  | False | 8.2  | 34.4 | 54.8 | 37.2 | 13.4 | 38.1 | 50.8 |
| Faster R-CNN w FPN (Lin et al. 2017a)          | Res101-FPN  | ~1000×600  | False | 6    | 36.2 | 59.1 | 39.0 | 18.2 | 39.0 | 48.2 |
| Deformable R-FCN (Dai et al. 2017)             | Inc-Res-v2  | ~1000×600  | False | -    | 37.5 | 58.0 | 40.8 | 19.4 | 40.1 | 52.5 |
| Mask R-CNN (He et al. 2017)                    | ResNeXt-101 | ~1280×800  | False | 3.3  | 39.8 | 62.3 | 43.4 | 22.1 | 43.2 | 51.2 |
| Fitness-NMS (Tychsen-Smith and Petersson 2018) | ResNet-101  | ~1024×1024 | True  | 5.0  | 41.8 | 60.9 | 44.9 | 21.5 | 45.0 | 57.5 |
| Cascade R-CNN (Cai and Vasconcelos 2018)       | Res101-FPN  | ~1280×800  | False | 7.1  | 42.8 | 62.1 | 46.3 | 23.7 | 45.5 | 55.2 |
| SNIP (Singh and Davis 2018)                    | DPN-98      | -          | True  | -    | 45.7 | 67.3 | 51.1 | 29.3 | 48.8 | 57.1 |
| RetinaNet800 (Lin et al. 2017b)                | Res101-FPN  | ~1280×800  | False | 5.0  | 39.1 | 59.1 | 42.3 | 21.8 | 42.7 | 50.2 |
| M2Det (Ours)                                   | VGG-16      | 800×800    | False | 11.8 | 41.0 | 59.7 | 45.0 | 22.1 | 46.5 | 53.8 |
| M2Det (Ours)                                   | VGG-16      | 800×800    | True  | -    | 44.2 | 64.6 | 49.3 | 29.2 | 47.9 | 55.1 |

### ➤ Compare with State-of-the-art



#### Inference speed comparison

Environment: NVIDIA Titan X, CUDA9.2, cuDNN 7.1.4, Pytorch0.4.0

Compute method: (cnntime\_total + nmstime\_total)/1000

For fair comparison, we reproduce the results of SSD321-ResNet101, SSD513-ResNet101, CornerNet and RefineDet on our machine.

- Proposed method
- **Experiments**
- Summary

#### ➤ Discussion: What is Multi-scale Multi-level Features



### ➤ Discussion: Why M2Det?

- The MLFPN can deepen the network, so that the gap between localization tasks and pre-training classification task can be dwindled
- The Multi-level pyramid can handle complex appearance variation across the object instances with equivalent scale.
- The results of VGG based M2Det largely get large improvements compared with SSD, so M2Det can remedy the deficiency of weak backbones. This also benefit to pretrain-free situations.

## Question&Answer?