1. Consider the Smart Phone dataset and perform exploratory data analysis.

i. Identify the dimension, structure, and summary of the data set

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("smartphones_cleaned_v6.csv")
print(df.shape)
df.info()
print(df.describe())
```

```
PS C:\Users\manju\OneDrive\Desktop\MCA\2nd SEM\ML\Lab Programs> & C:\Users/manju/AppData/Local/Programs/Python/Python312/python.exe "c:/Users/manju/OneDrive/Desktop/MCA/2nd S
EM/ML/Lab Programs/1.1.py
(980, 26)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 980 entries, 0 to 979
Data columns (total 26 columns):
 # Column
                                  Non-Null Count Dtype
 0 brand name
                                  980 non-null
                                                   object
     model
     price
                                  980 non-null
                                                   int64
     rating
                                  879 non-null
                                                   float64
     has_5g
has_nfc
                                  980 non-null
                                                   bool
                                  980 non-null
                                                   bool
     has_ir_blaster
                                  980 non-null
                                                   bool
     processor_brand
                                  960 non-null
                                                   object
     processor_speed
                                  938 non-null
                                                    float64
     battery_capacity
                                  969 non-null
     fast_charging_available
fast_charging
                                  980 non-null
                                                   int64
                                  769 non-null
                                                    float64
     ram_capacity
                                                    float64
     internal memory
                                  980 non-null
                                                   float64
                                                    float64
 16 refresh_rate
17 num_rear_cameras
                                  980 non-null
                                                   int64
                                  980 non-null
 18 num_front_cameras
                                  976 non-null
                                                   float64
                                  966 non-null
                                                   object
 20 primary_camera_rear
                                  980 non-null
                                                   float64
 21 primary_camera_front 975 non-null 22 extended_memory_available 980 non-null
                                                   float64
                                                    int64
 23 extended upto
                                  500 non-null
                                                   float64
 24 resolution_width
25 resolution_height 980 non-null in dtypes: bool(3), float64(12), int64(7), object(4)
                                                   int64
dtypes: bool(3), float64(12), int64(7), object(4)
memory usage: 179.1+ KB
                                                processor_speed ... extended_memory_available extended_upto resolution_width resolution_height
                           rating
               price
                                     num cores
          980.000000 879.000000
mean
       32520,504082
                       78.258248
                                     7.772074
                                                        2.427217 ...
                                                                                          0.630612
                                                                                                         736,064000
                                                                                                                           1075.852041
                                                                                                                                                2214.663265
        39531.812669
                                                                  ...
                                                        1.200000 ...
         3499.000000
                        60.000000
                                      4.000000
                                                                                           0.000000
                                                                                                          32,000000
                                                                                                                            480.000000
                                                                                                                                                 480,000000
        12999.000000
                                      8.000000
                                                        2.050000 ...
                                                                                          0.000000
                                                                                                         512.000000
                                                                                                                           1080.000000
                                                                                                                                                1612.000000
25%
                        74.000000
        19994.500000
                        80.000000
                                                         2.300000
                                                                                           1.000000
                                                                                                        1024.000000
                                                                                                                           1080.000000
                                                                                                                                                2400.000000
75%
        35491,500000
                        84.000000
                                      8,000000
                                                        2.840000 ...
                                                                                           1,000000
                                                                                                        1024,000000
                                                                                                                           1080,000000
                                                                                                                                                2408,000000
                                                        3.220000 ...
       650000.0000000
[8 rows x 19 columns]
```

ii. Pre-process the dataset and treat them (like missing values, 'na'?). Justify the treatment

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read csv("smartphones cleaned v6.csv")#
Identify missing values
print("TOTAL MISSING VALUES ")
print(df.isnull().sum())
# Fill NaNs with the mean of each column df filled mean =
df.fillna(df.mean(numeric only=True))#Handle 'na' entries
by replacing them with NaN df=df.dropna()
#Fill NaNs with a specific value 0
dfa=df.fillna(0)
print("\nDataset after filling missing values with the mean of each column:\n")
print(df filled mean)
print("\nDataset after filling missing values with 0: \n")
print(dfa)
print("\nDataset after replacing 'na' with NaN: \n")
print(df)
```

```
rs/student/AppData/Local/Programs/Python/Python312/python.exe d:/ml/p.py
price
rating
has_1sg
has_nfc
has_ir_blaster
processor_brand
num_cores
processor_speed
battery_capacity
fast charging ava
fast_charging_available
fast_charging
ram_capacity
internal_memor
screen_size
refresh_rate
num_rear_cameras
num_front_cameras
primary_camera_rear
primary_camera_front
extended_memory_available
extended_upto
resolution_width
resolution_height
dtype: int64
                                      model price rating has_5g ... primary_camera_front extended_memory_available extended_upto resolution_vidth resolution_height
OnePlus Nord CE 2 Lites 56 19989 89.0 True ... 16.0 0 736.064 1440 3216
OnePlus Nord CE 2 Lites 56 19989 81.0 True ... 16.0 1 1 2024.000 1680 2417
Samsung Galaxy A14 56 16499 75.0 True ... 13.0 1 1024.000 1680 2417
Motorola Moto GGS 56 14999 81.0 True ... 16.0
Dataset after filling missing values with the mean of each column:
               oneplus
oneplus
samsung
                                                                                                                                       True ...
                realme
1024.000
                                    Samsung Galaxy M52s 5G 24990
               samsung
[980 rows x 26 columns]
Dataset after filling missing values with 0:

        model
        price
        rating
        ...
        extended_memory_available
        extended_upto
        resolution_width resolution_height

        te 56
        19989
        81.0
        ...
        1
        1024.0
        1880
        2412

        d1 56
        16499
        75.0
        ...
        1
        1024.0
        1880
        2488

        2808)
        16999
        80.0
        ...
        1
        1024.0
        1080
        2488

               and name model price one-plus Nord CE 2 Lite 56 19989 samsung Samsung Galaxy F23 56 (66B RAM + 128GB) 16999
                                                                                        Realme 10 Pro
                    vivo Vivo T1 5G (6GB RAM + 128GB) 16990
                                                                                                                                                                                                                                       1024.0
```

22MCA2PCML. Machine Learning

		***				***	***		
944	realme	Realme Narzo 20		72.0			256.0	720	1600
961	орро	OPPO A58x		72.0		1	1024.0	720	1612
962	doogee	Doogee S99		84.0		1	1024.0	1080	2340
970		Realme Narzo 50i Prime (4GB RAM + 64GB)	8720	64.0		1	1024.0	720	1600
976	honor	Honor X8 5G		75.0		1	1024.0	720	1600
370	Honor	Hohor XB 3d	14550	75.0	••••	*	1024.0	720	1000
-	rows x 26 set after r	columns] eplacing 'na' with NaN:							
t	orand name	model	price	rating		extended memory available	extended upto	resolution width	resolution height
1	oneplus			81.0		1	1024.0	1080	2412
2	samsung	Samsung Galaxy A14 5G		75.0		1	1024.0	1080	2408
5	samsung	Samsung Galaxy F23 5G (6GB RAM + 128GB)		80.0		1	1024.0	1080	2408
10	realme	Realme 10 Pro		82.0		1	1024.0	1080	2400
13	vivo	Vivo T1 5G (6GB RAM + 128GB)	16990	80.0		1	1024.0	1080	2408

						1	256.0	720	1600
944	realme	Realme Narzo 20	10499	/2.0				/20	
944 961		Realme Narzo 20 OPPO A58x		72.0 72.0		1	1024.0	720	1612
944 961	орро	OPPO A58x	13990	72.0		1			
944	oppo doogee		13990 14999			1 1 1 1	1024.0	720	1612

iii. Plot the histogram for continuous variables (at least two) to analyse the data.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("smartphones_cleaned_v6.csv")
plt.hist(df['processor_brand'].head(5), bins=20, edgecolor='black')
plt.ylabel('model')
plt.xlabel('processor_brand')
plt.title('Histogram of Price')
plt.show()
```

Output:

☆←→ +Q = □

iv. Draw a violin plot do describe the distribution of a numerical variable to analyse the data.

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("smartphones_cleaned_v6.csv")
plt.figure(figsize=(8,6))
sns.violinplot(x=df['price'].head(5)) plt.title('Violin Plot of Price')
plt.xlabel('Price')
plt.ylabel('model')
plt.show()

v. Recognize the outliers using box plot (Display the box plot before and after outlier treatment)

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df=pd.read_csv("smartphones_cleaned_v6.csv") plt.figure(figsize=(8, 6)) # sns.boxplot(x=df['price'].head(10), color='skyblue') sns.pairplot(df.head(10)) plt.title('Box Plot of Price (Before Outlier Treatment)') plt.xlabel('Price') plt.grid(True) plt.show()

Output:

N Figure 1

☆←→ **+**Q = □

import pandas as pd

vi. Display a heat map to display the relationship among the attributes

```
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv("smartphones_cleaned_v6.csv") numerical_df
= df.select_dtypes(include=['float64', 'int64'])
correlation_matrix = numerical_df.corr() plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
plt.title('Heatmap of Correlation Matrix')
plt.show()
```


vii. Standardize the continuous variable (if any)

```
import pandas as pd
from sklearn.preprocessing import StandardScalerdf
= pd.read_csv("smartphones_cleaned_v6.csv")
numerical_df = df.select_dtypes(include=['float64', 'int64'])
scaler = StandardScaler()
standardized_values = scaler.fit_transform(numerical_df)
standardized_df = pd.DataFrame(standardized_values, columns=numerical_df.columns)for
col in numerical_df.columns:
    df[col] = standardized_df[col]
print(df.head())
```

1	orand_name	model	price	rating	 extended_memory_available	extended_upto	resolution_width	resolution_height
0	oneplus	OnePlus 11 5G	0.568908	1.451855	 -1.306592	NaN	1.255610	1.939746
1	oneplus	OnePlus Nord CE 2 Lite 5G	-0.317160	0.370575	 0.765350	0.785577	0.014302	0.382272
2	samsung	Samsung Galaxy A14 5G	-0.405488	-0.440385	 0.765350	0.785577	0.014302	0.374523
3	motorola	Motorola Moto G62 5G	-0.443452	0.370575	 0.765350	0.785577	0.014302	0.359026
4	realme	Realme 10 Pro Plus	-0.190362	0.505735	 -1.306592	NaN	0.014302	0.382272

2. For the data set in Q1,

i. Show the distribution of continuous variables using Box Plot

```
import seaborn as sns
import pandas as pd
```

```
import matplotlib.pyplot as plt df=pd.read_csv("smartphones_cleaned_v6.csv")  
numerical_df = df.select_dtypes(include=['float64', 'int64'])  
plt.figure(figsize=(15, 10))  
for i, col in enumerate(numerical_df.columns):  
plt.subplot(len(numerical_df.columns) // 3+1, 3, i+1)  
sns.boxplot(y=df[col])  
plt.title(fBox Plot of {col}')  
plt.tight_layout()  
plt.show()
```


ii. Identify the relationship between two continuous variables using scatter plot

```
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv("smartphones_cleaned_v6.csv")
x_var = 'price' # Replace with your chosen variable
y_var = 'battery_capacity' # Replace with your chosen variable
# Create the scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(df[x_var], df[y_var], alpha=0.6, edgecolors='w', linewidth=0.5)
plt.title(f'Scatter Plot of {x_var} vs {y_var}')
plt.xlabel(x_var)
plt.ylabel(y_var)
plt.grid(True)
# Show the plot
plt.show()
```

Output:

番◆ → 中 Q 幸 問 x=3.315e+05 y=1.766e+04

iii. Find and display the frequency of the categorical values using count plot

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("smartphones_cleaned_v6.csv")
categorical_var = 'os'
plt.figure(figsize=(10, 6))
sns.countplot(x=df[categorical_var],
order=df[categorical_var].value_counts().index)
plt.title(f'Count Plot of {categorical_var}')
plt.xlabel(categorical_var)
plt.ylabel('Frequency')
plt.xticks(rotation=45)
plt.show()
```


iv. Apply point plots to display one continuous and one categorical variable

```
import pandas as pd
import
matplotlib.pyplot as plt
import seaborn as sns
df=pd.read csv("smartphones cleaned v6.c
sv")continuous var = 'price'
categorical var
= 'os' # Create
the point plot
plt.figure(figsize=(10, 6))
sns.pointplot(x=categorical var, y=continuous var, data=df,
capsize=0.2,markers='o', linestyles='-')
plt.title(f'Point Plot of {continuous var} vs
{categorical_var}')plt.xlabel(categorical_var)
plt.ylabel(continuo
us var)
plt.xticks(rotation=
45) plt.show()
```


3. For the Market-Basket dataset, apply Apriori algorithm and identify the best rules based on support and confidence.

```
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent patterns import apriori, association rules
# Load the dataset from CSV file
df = pd.read csv(r"Groceries dataset.csv")
# Split itemDescription column into individual items
df['itemDescription'] = df['itemDescription'].apply(lambda x: x.split('/'))
# Explode the itemDescription column into separate rows
df = df.explode('itemDescription')
# Group by Member_number and aggregate itemDescription into lists
transactions = df.groupby('Member number')['itemDescription'].apply(list).tolist()
# Convert dataset to one-hot encoded DataFrame
te = TransactionEncoder()
te ary = te.fit transform(transactions)
df encoded = pd.DataFrame(te ary, columns=te.columns)
# Apply Apriori algorithm to find frequent itemsets
frequent itemsets = apriori(df encoded, min support=0.3, use colnames=True)
# Generate association rules from the frequent itemsets
rules = association rules(frequent itemsets, metric="confidence", min threshold=0.7)
# Print results
print("Frequent Itemsets:")
print(frequent itemsets)
print("\nAssociation Rules:")
print(rules)
Output:
```

22MCA2PCML: Machine Learning

	quent Item support		nsets							
	0.349666	100-00	ouns)							
	0.376603	(other vegetab	oles)							
	0.349666	(ro	olls)							
	0.313494	(5	oda)							
	0.458184	(whole m	nilk)							
	0.349666	(rolls, b	ouns)							
55	ociation F	Rules:								
а	ntecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs metri
	(rolls)	(buns)	0.349666	0.349666	0.349666	1.0	2.859868	0.2274	inf	1.
	(buns)	(rolls)	0.349666	0.349666	0.349666	1.0	2.859868	0.2274	inf	1.

4. For the data set given in Q3, apply FP-tree algorithm, show the tree construction and identify the best rules based on support and confidence.

```
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
from mlxtend.frequent patterns import fpgrowth
from mlxtend.preprocessing import TransactionEncoder
from sklearn.preprocessing import KBinsDiscretizer
df = pd.read csv(r"C:\chithra\Mall_Customers.csv")
x = df.iloc[:, [2, 3]].values
kbins = KBinsDiscretizer(n bins=5, encode='ordinal', strategy='uniform')
x \text{ binned} = kbins.fit transform(x)
df binned = pd.DataFrame(x binned, columns=['Income bin', 'Score bin'])
print(df binned.head())
transactions = df binned.apply(lambda row: [fIncome {int(row["Income bin"])}',
f'Score {int(row["Score bin"])}'], axis=1).tolist()
te = TransactionEncoder()
te ary = te.fit(transactions).transform(transactions)
df encoded = pd.DataFrame(te ary, columns=te.columns)
frequent itemsets = fpgrowth(df encoded, min support=0.1, use colnames=True)
print("\n ******FP growth*****\n")
print(frequent itemsets)
def construct fp tree(itemsets):
  tree = \{\}
  for itemset in itemsets['itemsets']:
    current level = tree
    for item in sorted(itemset):
       if item not in current level:
         current level[item] = {}
       current level = current level[item]
  return tree
fp tree = construct fp tree(frequent itemsets)
def add edges(graph, parent, children):
  for child, sub children in children.items():
    graph.add edge(parent, child)
    add edges(graph, child, sub children)
G = nx.DiGraph()
```

add_edges(G, 'root', fp_tree)
pos = nx.spring_layout(G, seed=42) # positions for all nodes
plt.figure(figsize=(12, 10))
nx.draw(G, pos, with_labels=True, node_size=3000, node_color='crimson', font_size=10, font_weight='bold',
edge_color='gray',font_color='white')
plt.title('FP-Tree Visualization')
plt.show()

_		
	Income_b:	in Score_bin
0	0	.0 0.0
1	0	.0 0.0
2	0	.0 0.0
3	0	.0 0.0
4	1	.0 0.0
*	*****FP {	growth******
		¥100000 1114
712	support	itemsets
0	0.250	(Income_0)
1	0.230	(Score_0)
2	0.315	(Income_1)
3	0.100	(Income_4)
4	0.125	(Income_3)
5	0.210	(Income_2)
6	0.330	(Score_1)
7	0.330	(Score_2)
8	0.135	(Score_2, Income_1)
	support	itemsets
0	0.250	(Income_0)
1	0.230	(Score 0)
2	0.315	(Income_1)
3	0.100	(Income 4)
4	0.125	(Income_3)
5	0.210	(Income 2)
6	0.330	(Score 1)
	0.330	(300, 0_1)
	support	itemsets
0	0.250	(Income 0)
1	0.230	(Score_0)
2	0.315	(Income_1)
3	0.100	(Income_4)
		_ /
	support	itemsets
0	0.250	(Income_0)
1	0.230	(Score 0)
2	0.315	(Income_1)
	support	itemsets
0	0.250	(Income 0)
0	0.250	(Income 0)
1	0.230	(Score 0)
2	0.315	(Income 1)
2	0.315	(Income_1)
3	0.100	(Income 4)
4	0.125	(Income 3)
5	0.210	(Income 2)
5	0.210	(Income_2)
6	0.330	(Score 1)
7	0.330	(Score 2)
6	0.330	(Score_1)
7	0.330	(Score_2)
7	0.330	(Score_2)
8	0.135	(Score_2, Income_1)
8	0.135	(Score_2, Income_1)
~	0,100	(-202, 11.001)

5. For the Mall-Customer data set, implement K-means clustering algorithm and visualize the clusters

```
import pandas as pd
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
file path = (r"C:\Users\model{lem:manju}\OneDrive\Desktop\MCA\2nd\SEM\ML\Lab\ Programs\Mall\_Customers.csv")
# Replace with the path to your dataset
df = pd.read csv(file path)
# Display the first few rows of the dataframe
print(df.head())
# Preprocess the data
# Encode categorical variables
label encoder = LabelEncoder()
df['Gender'] = label encoder.fit transform(df['Gender'])
# Select features for clustering
features = df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']]
# Feature Scaling
scaler = StandardScaler()
scaled features = scaler.fit transform(features)
# Apply K-means clustering
# Define the number of clusters (you can adjust this based on your needs)
kmeans = KMeans(n clusters=5, random state=42)
df['Cluster'] = kmeans.fit predict(scaled features)
# Visualize the clustering result
# 2D scatter plots for visualization
plt.figure(figsize=(12, 6))
# Plot Age vs Annual Income
plt.subplot(1, 2, 1)
sns.scatterplot(x='Age', y='Annual Income (k$)', hue='Cluster', palette='viridis', data=df, s=100, alpha=0.7)
plt.title('Clusters by Age and Annual Income')
# Plot Age vs Spending Score
plt.subplot(1, 2, 2)
sns.scatterplot(x='Age', y='Spending Score (1-100)', hue='Cluster', palette='viridis', data=df, s=100, alpha=0.7)
```

plt.title('Clusters by Age and Spending Score')

```
plt.show()
```

Display the cluster centers
cluster_centers = scaler.inverse_transform(kmeans.cluster_centers_)
print("Cluster Centers (original scale):")
print(pd.DataFrame(cluster_centers, columns=['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']))

Display the number of customers in each cluster print("\nNumber of customers in each cluster:") print(df['Cluster'].value_counts())

	CustomerID	Gender	Age	Annual	Income	(k\$)	Spending Score (1-100)
0	1	Male	19			15	39
1	2	Male	21			15	81
2	3	Female	20			16	6
3	4	Female	23			16	77
4	5	Female	31			17	40

6. For the Groceries dataset implement Agglomerative clustering algorithm and visualize the clusters.

```
# Hierarchial Clustering
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import pairwise distances
import scipy.cluster.hierarchy as sch
from scipy.spatial.distance import squareform
import matplotlib.pyplot as plt
df = pd.read csv("C:/Users/manju/OneDrive/Desktop/MCA/2nd SEM/ML/Lab Programs/Groceries dataset
(Apriori).csv")
df['itemDescription'] = df['itemDescription'].apply(lambda x: x.split('/'))
df = df.explode('itemDescription')
transactions = df.groupby('Member number')['itemDescription'].apply(list).tolist()
te = TransactionEncoder()
te ary = te.fit transform(transactions)
df encoded = pd.DataFrame(te ary, columns=te.columns)
distance matrix = pairwise distances(df encoded, metric='euclidean')
condensed distance matrix = squareform(distance matrix)
linkage matrix = sch.linkage(condensed distance matrix, method='ward')
plt.figure(figsize=(10, 7))
sch.dendrogram(linkage matrix)
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('Member Number')
plt.ylabel('Euclidean Distance')
plt.show()
num clusters = 5
cluster model = AgglomerativeClustering(n_clusters=num_clusters, affinity='euclidean', linkage='ward')
clusters = cluster model.fit predict(df encoded)
df clusters = pd.DataFrame({'Member number': df['Member number'].unique(), 'Cluster': clusters})
print("\nCluster Assignments:")
print(df clusters)
```

Output:

7. For the Mall_Customers implement DBScan clustering algorithm and visualize the clusters.

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset (assuming it's a CSV file)
# You can adjust the file path as per your requirement
dataset = pd.read csv("C:/Users/manju/OneDrive/Desktop/MCA/2nd SEM/ML/Lab
Programs/Mall Customers.csv")
# Display the first few rows of the dataset
print(dataset.head())
# Preprocessing: Convert 'Gender' to numerical values (Male=0, Female=1)
dataset['Gender'] = dataset['Gender'].map({'Male': 0, 'Female': 1})
# Selecting features for clustering (Age, Annual Income, Spending Score)
X = dataset[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']]
# Standardize the features to bring them to the same scale
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Applying DBSCAN
dbscan = DBSCAN(eps=0.5, min samples=5)
dbscan.fit(X scaled)
# Getting the cluster labels
labels = dbscan.labels
# Adding the cluster labels to the dataset
dataset['Cluster'] = labels
# Visualizing the clusters
plt.figure(figsize=(10, 6))
sns.scatterplot(data=dataset, x='Annual Income (k$)', y='Spending Score (1-100)', hue='Cluster', palette='Set1',
s=100)
plt.title('DBSCAN Clustering of Mall Customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend(loc='best')
plt.show()
```


☆ ← → | + Q = | B

8. Implement KNN Classification algorithm on the Mall Customers. Analyse the model using different K values and display the performance of the model.

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score, classification report, confusion matrix
import matplotlib.pyplot as plt
# Load the dataset (assuming it's a CSV file)
dataset = pd.read csv("C:/Users/manju/OneDrive/Desktop/MCA/2nd SEM/ML/Lab
Programs/Mall Customers.csv")
# Preprocessing: Convert 'Gender' to numerical values (Male=0, Female=1)
dataset['Gender'] = dataset['Gender'].map({'Male': 0, 'Female': 1})
# Select features (Age, Annual Income, Spending Score) and target (Gender)
X = dataset[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']]
y = dataset['Gender']
# Standardize the features
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Split the dataset into training and test sets
X train, X test, y train, y test = train test split(X scaled, y, test size=0.3, random state=42)
# Analyze the model for different values of K
k values = range(1, 21) # We'll analyze for K from 1 to 20
accuracies = []
for k in k values:
  # Initialize KNN with current K value
  knn = KNeighborsClassifier(n neighbors=k)
  # Train the model
  knn.fit(X train, y train)
  # Make predictions
  y pred = knn.predict(X test)
  # Calculate accuracy and store it
  acc = accuracy score(y test, y pred)
  accuracies.append(acc)
```

```
# Display performance metrics for the current K
  print(f"\nPerformance for K=\{k\}:")
  print(f"Accuracy: {acc:.4f}")
  print("Confusion Matrix:")
  print(confusion matrix(y test, y pred))
  print("Classification Report:")
  print(classification report(y test, y pred))
# Visualizing the performance across different K values
plt.figure(figsize=(10, 6))
plt.plot(k values, accuracies, marker='o', linestyle='-', color='b')
plt.title('KNN Model Accuracy for Different K Values')
plt.xlabel('K Value')
plt.ylabel('Accuracy')
plt.xticks(k values)
plt.grid(True)
plt.show()
Output:
                                                          Performance for K=3:
Performance for K=1:
                                                          Accuracy: 0.5333
Accuracy: 0.6000
                                                          Confusion Matrix:
Confusion Matrix:
                                                          [[ 9 15]
[[14 10]
                                                           [13 23]]
 [14 22]]
                                                          Classification Report:
Classification Report:
                                                                        precision
                                                                                     recall f1-score
                                                                                                        support
              precision
                          recall f1-score
                                             support
                                                                     0
                                                                             0.41
                                                                                       0.38
                                                                                                 0.39
                                                                                                              24
           0
                   0.50
                            0.58
                                      0.54
                                                  24
                                                                     1
                                                                             0.61
                                                                                       0.64
                                                                                                 0.62
                                                                                                              36
           1
                   0.69
                                      0.65
                                                  36
                            0.61
                                                              accuracy
                                                                                                 0.53
                                                                                                             60
                                      0.60
                                                  60
    accuracy
                                                             macro avg
                                                                             0.51
                                                                                       0.51
                                                                                                 0.51
                                                                                                             60
   macro avg
                                      0.59
                   0.59
                             0.60
                                                  60
                                                          weighted avg
                                                                             0.53
                                                                                       0.53
                                                                                                 0.53
                                                                                                             60
weighted avg
                             0.60
                                      0.60
                                                  60
                   0.61
Performance for K=2:
                                                        Performance for K=4:
Accuracy: 0.5333
                                                        Accuracy: 0.5000
Confusion Matrix:
                                                        Confusion Matrix:
[[20 4]
                                                        [[16 8]
 [24 12]]
                                                         [22 14]]
Classification Report:
                                                        Classification Report:
             precision
                          recall f1-score
                                            support
                                                                     precision
                                                                                 recall f1-score
                                                                                                    support
          0
                  0.45
                            0.83
                                      0.59
                                                 24
                                                                  0
                                                                          0.42
                                                                                   0.67
                                                                                             0.52
                                                                                                        24
          1
                  0.75
                            0.33
                                      0.46
                                                 36
                                                                          0.64
                                                                                   0.39
                                                                                             0.48
                                                                                                        36
                                                                                             0.50
                                                                                                        60
    accuracy
                                      0.53
                                                 60
                                                            accuracy
                            0.58
                                                           macro avg
                                                                          0.53
                                                                                   0.53
                                                                                             0.50
                                                                                                        60
   macro avg
                  0.60
                                      0.52
                                                 60
                                                        weighted avg
                                                                          0.55
                                                                                   0.50
                                                                                             0.50
weighted avg
                  0.63
                            0.53
                                      0.51
                                                 60
```

0 0.38 0.38 0.38 0.38 24 0 0.38 0.54 0.45 1 0.58 0.58 0.58 0.58 36 1 0.58 0.42 0.48 accuracy	Accuracy: 0.5000 Confusion Matrix [[9 15])								
Accuracy: 0.5000 Confusion Matrix: [[9 15]	Confusion Matrix									
[[9 15] [15 21] Classification Report:	[[9 15]	::								
[15 21]] Classification Report:						Confusion	Matrix:			
Classification Report:						[[13 11]				
Precision Prec	15 21					[21 15]]				
precision recall f1-score support precision recall f1-score support 0 0.38 0.38 0.38 0.38 24 0 0.38 0.54 0.45 1 0.58 0.58 0.58 36 1 0.58 0.42 0.48 accuracy 0.50 60 accuracy 0.48 0.48 0.47 weighted avg 0.50 0.50 60 weighted avg 0.50 0.47 Performance for K=7: Accuracy: 0.5667 Confusion Matrix: [[6 18]	Classification R	Report:				Classifica	ation Report	:		
0 0.38 0.38 0.38 0.38 24 0 0.38 0.54 0.45 1 0.58 0.58 0.58 36 1 0.58 0.42 0.48 accuracy 0.50 60 accuracy 0.48 0.48 0.47 weighted avg 0.50 0.50 0.50 60 weighted avg 0.50 0.47 Performance for K=7: Accuracy: 0.5667 Confusion Matrix: [[6 18] [8 28]] Classification Report: precision recall f1-score support 0 0.43 0.25 0.32 24 0 0.38 0.42 0.40 1 0.61 0.78 0.68 36 1 0.59 0.50 0.50 Performance for K=9: Accuracy: 0.5000 Confusion Matrix: Performance for K=8: Accuracy: 0.5000 Confusion Matrix: [[10 14] [16 20] [16 20] [16 20] [17 20] Classification Report: precision recall f1-score support 0 0.43 0.25 0.32 24 0 0.38 0.42 0.40 1 0.61 0.78 0.68 36 1 0.59 0.56 0.57 accuracy 0.500 macro avg 0.52 0.51 0.50 60 macro avg 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49		10.00	recall	f1-score	support				all f1-sc	ore suppor
1 0.58 0.58 0.58 0.58 36 1 0.58 0.42 0.48 accuracy	P		,				SERVINE			
accuracy	0	0.38	0.38	0.38	24		0 0.	38 6	.54 0	.45 2
accuracy	1	0.58	0.58	0.58	36		1 0.	58 6	.42 0	.48 3
### Acturacy										
macro avg	accuracy			0.50	60					
weighted avg 0.50 0.50 0.50 60 weighted avg 0.50 0.47 0.47 Performance for K=7: Accuracy: 0.5667 Performance for K=8: Accuracy: 0.5000 Confusion Matrix: [[6 18] [[10 14] [[10 20]] [[10 20]] Classification Report: Precision recall f1-score support precision recall f1-score support precision recall f1-score support 0 0.38 0.42 0.40 0.40 0.50 0.57 0.50 0.57 0.50 0.57 0.50 0.57 0.50	_	0.48	0.48	0.48	60		0			
Accuracy: 0.5667 Confusion Matrix: [6 18] [8 28]] Classification Report: precision recall f1-score support 0 0.43 0.25 0.32 24 0 0.38 0.42 0.40 1 0.61 0.78 0.68 36 1 0.59 0.56 0.57 accuracy accurac		0.50	0.50	0.50	60	weighted a	avg 0.	50 0	0.47	.47 6
Accuracy: 0.5667 Confusion Matrix: [6 18] [8 28]] Classification Report: precision recall f1-score support 0 0.43 0.25 0.32 24 0 0.38 0.42 0.40 1 0.61 0.78 0.68 36 1 0.59 0.56 0.57 accuracy accurac	0									
Accuracy: 0.5000 Confusion Matrix: [[6 18]						- 6	5			
[[6 18]	Control of the contro									
[[10 14] [16 20]] Classification Report:		:								
Classification Report:	[[6 18]						atrix:			
Classification Report:										
## Precision recall f1-score support ## Precision recall f1-score sup	Classification R	eport:					ion Popont			
0 0.43 0.25 0.32 24 0 0.38 0.42 0.40 1 0.61 0.78 0.68 36 1 0.59 0.56 0.57 accuracy 0.57 60 accuracy 0.50 macro avg 0.49 0.49 0.49 weighted avg 0.54 0.57 0.54 60 weighted avg 0.51 0.50 0.50 Performance for K=9: Accuracy: 0.6000 Confusion Matrix: Performance for K=10: Accuracy: 0.4667 Confusion Matrix:	pr	ecision	recall	f1-score	support	Classificat		n reca	11 f1-sco	ra sunnort
1 0.61 0.78 0.68 36 1 0.59 0.56 0.57 accuracy 0.57 60 accuracy 0.50 macro avg 0.52 0.51 0.50 60 macro avg 0.49 0.49 0.49 weighted avg 0.54 0.57 0.54 60 weighted avg 0.51 0.50 0.50 Performance for K=9: Accuracy: 0.6000 Accuracy: 0.4667 Confusion Matrix:							precision	i i eca	11 11-300	re support
1 0.61 0.78 0.68 36 1 0.59 0.56 0.57 accuracy 0.57 60 accuracy 0.50 macro avg 0.52 0.51 0.50 60 macro avg 0.49 0.49 0.49 weighted avg 0.54 0.57 0.54 60 weighted avg 0.51 0.50 Performance for K=9: Accuracy: 0.6000 Confusion Matrix: Performance for K=10: Accuracy: 0.4667 Confusion Matrix:	0	0.43	0.25	0.32	24		0 0.3	8 0.	42 0.4	40 24
macro avg 0.52 0.51 0.50 60 macro avg 0.49 0.49 0.49 weighted avg 0.54 0.57 0.54 60 weighted avg 0.51 0.50 0.50 Performance for K=9: Accuracy: 0.6000 Confusion Matrix: Confusion Matrix:	1	0.61	0.78	0.68	36					
macro avg 0.52 0.51 0.50 60 macro avg 0.49 0.49 0.49 weighted avg 0.54 0.57 0.54 60 weighted avg 0.51 0.50 0.50 Performance for K=9: Accuracy: 0.6000 Confusion Matrix: Confusion Matrix:	accuracy			0 57	60	State Common Control				
weighted avg 0.54 0.57 0.54 60 weighted avg 0.51 0.50 0.50 Performance for K=9: Accuracy: 0.6000 Confusion Matrix: Confusion Matrix:		0 52	0 51				-			
Performance for K=9: Accuracy: 0.6000 Confusion Matrix: Performance for K=10: Accuracy: 0.4667 Confusion Matrix:							-			
[6 30]]	Accuracy: 0.6000 Confusion Matrix: [[6 18]					Accuracy: 0.40 Confusion Matr [[8 16]	567			
Classification Report: Classification Report:		eport:					Penort:			
cassification report.			recall	f1-score	support	Classificació	100	recall	f1-score	support
precision recuir it score suppore							pi ccision	recuir	11 Score	заррог с
0 0.50 0.25 0.33 24 0 0.33 0.33 0.33 24	0	0.50	0.25	0.33	24	0	0.33	0.33	0.33	24
1 0.62 0.83 0.71 36 1 0.56 0.56 0.56 36	1	0.62	0.83	0.71	36	1	0.56	0.56	0.56	36
accuracy 0.60 60 accuracy 0.47 60	accuracy			0.60	60	266110261			0.47	60
decardey 0.54	733	0.56	0.54				0.44	0 11		60
macro avg						_				60
weighted dvg						weighted avg	0.47	0.47	0.47	00
	Accuracy: 0.4833 Confusion Matrix:					Accuracy: 0.500 Confusion Matri	00			
Accuracy: 0.4833 Accuracy: 0.5000 Confusion Matrix: Confusion Matrix:						[15 21]]				
Accuracy: 0.4833 Accuracy: 0.5000 Confusion Matrix: Confusion Matrix: [[4 20] [[9 15]		port:				Classification	Report:			
Accuracy: 0.4833 Accuracy: 0.5000 Confusion Matrix: Confusion Matrix: [[4 20] [[9 15] [15 21]]		(2 10 10	recall	f1-score	support	ŗ	precision	recall	f1-score	support
Accuracy: 0.4833 Confusion Matrix: [[4 20]	a	0.27	0 17	Q 21	2/1	0	0.38	0.38	0.38	24
Accuracy: 0.4833 Confusion Matrix: [[4 20]				0.62	36	1	0.58	0.58	0.58	36
Accuracy: 0.4833 Confusion Matrix: [[4 20]										
Accuracy: 0.4833 Confusion Matrix: [[4 20]		0.50				accuracy			Q EQ	60
Accuracy: 0.4833 Confusion Matrix: [[4 20]	1 accuracy						0 12	0 10		
Accuracy: 0.4833 Confusion Matrix: [[4 20]	1 accuracy macro avg	0.41	0.43	0.41	60	macro avg			0.48	60

22MCA2PCML: Machine Learning

Performance for Accuracy: 0.583 Confusion Matri: [[4 20] [5 31]] Classification	3 x:	recall	f1-score	support	Performance Accuracy: 0. Confusion Ma [[8 16] [9 27]] Classification	5833 trix:	recal]	l f1-score	e support	
0	0.44	0.17	0.24	24	0	0.47	0.33	3 0.39	9 24	
1	0.61	0.86	0.71	36	1		0.75			
accuracy			0.58	60	accupacy			0.58	3 60	
accuracy macro avg	0.53	0.51	0.48	60	accuracy macro avg		0.54			
weighted avg	0.54	0.58	0.52	60	weighted avg	0.56	0.58	0.57	7 60	
Performance for Accuracy: 0.600 Confusion Matri	Э				Performance for Accuracy: 0.583 Confusion Matri [[7 17]	3				
[[6 18]					[8 28]]					
[6 30]] Classification	Report:				Classification					
	recision	recall	f1-score	support	р	recision	recall	f1-score	support	
0	0.50	0.25	0 22	24	0	0.47	0.29	0.36	24	
0 1	0.50 0.62	0.25 0.83	0.33 0.71	24 36	1	0.62	0.78	0.69	36	
					accuracy			0.58	60	
accuracy	0.55	0.54	0.60	60	macro avg	0.54	0.53	0.53	60	
macro avg weighted avg	0.56 0.57	0.54	0.52 0.56	60 60	weighted avg	0.56	0.58	0.56	60	
weighten ava	0.57	0.00	0.50	00						
Performance for Accuracy: 0.600 Confusion Matri [[5 19] [5 31]] Classification	00 X:	recall	f1-score	support	Performance Accuracy: 0. Confusion Mar [[6 18] [10 26]] Classificatio	5333 trix: on Report:				
0	0.50	0.21	0.29	24		precision	recall	f1-score	support	
1	0.62	0.86	0.72	36	0		0.25	0.30	24	
accuracy			0.60	60	1	0.59	0.72	0.65	36	
macro avg	0.56	0.53		60	accuracy			0.53	60	
weighted avg	0.57	0.60	0.55	60	macro avg	0.48 0.50	0.49 0.53	0.47 0.51	60 60	
Performance for Accuracy: 0.5667 Confusion Matrix [[4 20] [6 30]]					weighted avg Performance f		0. 53	6.51	00	
Classification R	eport:				Accuracy: 0.5	500				
pr	ecision	recall f	1-score s	support	Confusion Mat					
0	0.40	0.17	0.24	24	[[5 19]					
1	0.60	0.83	0.70	36	[8 28]]					
			0.53		Classificatio	n Report:				
accuracy macro avg	0.50	0.50	0.57 0.47	60 60		precision	n re	ecall fi	1-score	support
weighted avg	0.52	0.57	0.51	60	weighted avg	0.52	2	0.57	0.51	60

22MCA2PCML: Machine Learning

Performance for Accuracy: 0.5500 Confusion Matrix					Performance for Accuracy: 0.5500 Confusion Matrix	9			
[[5 19] [8 28]]					weighted avg	0.52	0.57	0.51	60
weighted avg	0.52	0.57	0.51	60	Performance for Accuracy: 0.5500	9			
Performance for Accuracy: 0.5500 Confusion Matrix					Confusion Matrix [[5 19] [8 28]] Classification Watrix				
weighted avg	0.52	0.57	0.51	60		report t			
Performance for Accuracy: 0.5500 weighted avg		0.57	0.51	60	Performance for Accuracy: 0.550 Confusion Matrix [[5 19] Performance for Accuracy: 0.550 Confusion Matrix	K=20:			
Performance for	K=20:				[[5 19] [[5 19]				
weighted avg	0.52	0.57	0.51	60	[8 28]] Classification R	A CONTRACTOR OF THE PARTY OF TH			
					рі	recision	recall	f1-score	support
weighted avg	0.52	0.57	0.51	60	0 1	0.38 0.60	0.21 0.78	0.27 0.67	24 36
weighted avg	0.52	0.57	0.51	60	accuracy			0.55	60
weighted avg	0.52	0.57	0.51	60	macro avg weighted avg	0.49 0.51	0.49 0.55	0.47 0.51	60 60

9. Implement Naïve Bayes Classification algorithm on the Online Retail. Analyse the efficiency of the algorithm using different metrics.

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.naive bayes import GaussianNB
from sklearn.metrics import accuracy score, classification report, confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset (assuming it's a CSV file)
dataset = pd.read csv("C:/Users/manju/OneDrive/Desktop/MCA/2nd SEM/ML/Lab
Programs/Online Retail.csv", encoding='latin1')
# Display the first few rows of the dataset
print(dataset.head())
# Step 1: Data Preprocessing
# Dropping rows with missing CustomerID as we need it for classification
dataset = dataset.dropna(subset=['CustomerID'])
# Selecting features for classification
# Let's assume we are classifying based on the Country where the customer is from
# We'll use 'Quantity', 'UnitPrice', and 'InvoiceDate' features (with feature engineering)
dataset['InvoiceDate'] = pd.to datetime(dataset['InvoiceDate'])
dataset['InvoiceDay'] = dataset['InvoiceDate'].dt.day
dataset['InvoiceMonth'] = dataset['InvoiceDate'].dt.month
dataset['InvoiceHour'] = dataset['InvoiceDate'].dt.hour
# Select relevant features and target (Country)
X = dataset[['Quantity', 'UnitPrice', 'InvoiceDay', 'InvoiceMonth', 'InvoiceHour']]
y = dataset['Country']
# Step 2: Train-Test Split
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
# Step 3: Applying Naive Bayes Classifier (GaussianNB for continuous features)
model = GaussianNB()
# Train the model
model.fit(X train, y train)
# Make predictions on the test data
y pred = model.predict(X test)
# Step 4: Analyzing Model Efficiency
# Accuracy score
accuracy = accuracy score(y test, y pred)
```

```
print(f"Accuracy: {accuracy:.4f}")
# Classification Report
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
# Confusion Matrix
print("\nConfusion Matrix:")
conf_matrix = confusion_matrix(y_test, y_pred)
print(conf matrix)
# Plotting Confusion Matrix
plt.figure(figsize=(10, 7))
sns.heatmap(conf matrix, annot=True, fmt='d', cmap='Blues', xticklabels=model.classes,
yticklabels=model.classes)
plt.title('Confusion Matrix of Naive Bayes Classification')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
Ac	curacy: 0.	.0766						

	precision	recall	f1-score	support
	(数)			1315
Australia	0.00	0.00	0.00	370
Austria	0.00	0.00	0.00	116
Bahrain	0.00	0.60	0.00	5
Belgium	0.01	0.09	0.01	625
Brazil	0.27	1.00	0.43	9
Canada	0.00	0.00	0.00	44
Channel Islands	0.00	0.00	0.00	230
Cyprus	0.00	0.00	0.00	186
Czech Republic	0.00	0.00	0.00	9
Denmark	0.01	0.01	0.01	124
EIRE	0.00	0.00	0.00	2322
European Community	0.00	0.00	0.00	16
Finland	0.00	0.00	0.00	213
France	0.00	0.00	0.00	2525
Germany	0.02	0.75	0.05	2785
Greece	0.00	0.00	0.00	45
Iceland	0.00	0.00	0.00	53
Israel	0.00	0.00	0.00	75
Italy	0.00	0.00	0.00	261
Japan	0.00	0.00	0.00	96
Lebanon	0.29	1.00	0.45	15
Lithuania	0.00	1.00	0.01	9
Malta	0.00	0.00	0.00	34
Netherlands	0.11	0.00	0.01	719
Norway	0.00	0.00	0.00	340
Poland	0.00	0.00	0.00	92
Portugal	0.00	0.00	0.00	469
RSA	0.12	1.00	0.21	23
Saudi Arabia	0.00	0.00	0.00	2
Singapore	0.03	0.02	0.02	64
Spain	0.00	0.00	0.00	755
Sweden	0.00	0.00	0.00	149
Switzerland	0.02	0.00	0.01	536
USA	0.01	0.53	0.01	93
United Arab Emirates	0.00	0.00	0.00	20
United Kingdom	0.80	0.07	0.12	108561
-		Table 1		
accuracy		0.40	0.08	122049
macro avg		0.18		122049
weighted avg	0.71	0.08	0.11	122049
6C				
Confusion Matrix:				
[[0 0 12		0]		
[0 0 1		8]		
[0 0 3	0 0	2]		
• • •				
[0 0 0		0]		
[0 0 3046	20 7063 37	705]		
[0 0 12 <u>.</u>		29]]		
PS C:\Users\manju>				