

Syllabus and Course Schedule

Time and Location: Wed 11:30 AM - 12:50 PM, NVIDIA Auditorium

Past schedules: (Spring 2018) (Winter 2018) (Fall 2017)

For all "Materials and Assignments", follow the deadlines listed on this page, not on Coursera!

Assignments are usually due every Wednesday, 30min before the class starts

Event	Date	Description	Materials and Assignments	
	Neural Networks and Deep Learning (Course 1)			
Lecture 1	09/26	 Advanced Lecture Topics: Al is the new electricity Details of the course 	HandoutsWeek 1 slidesNotation convention	
Lecture 2	10/03	Advanced Lecture Topic: Deep Learning Intuition How to frame a machine learning problem? How to choose your loss function? Intuition behind various real-world application of deep learning. Completed modules: C1M1: Introduction to deep learning C1M2: Neural Network Basics	 Lecture 2: Various Deep Learning Topics (Spring 2018 slides) Week 2 slides C1M1 slides C1M2 slides Find partner(s) for your final project and sign up here (link coming soon) Quizzes (due at 11am): Introduction to deep learning Neural Networks Basics Programming Assignments (due at 11am) Python Basics with Numpy (Optional) Logistic Regression with a neural network mindset 	

Event	Date	Description	Materials and Assignments	
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Course 2)				
Lecture 3	10/10	 Advanced Lecture Topic: Full-Cycle of a deep learning project The Mathematics of Deep Learning (backpropagation, initialization, regularization) Completed modules: C1M3: Shallow Neural Network C1M4: Deep Neural Networks 	 Handouts The Mathematics of Deep Learning C1M3 slides C1M4 slides Lecture 3: The Mathematics of Deep Learning (Spring 2018 slides) Quizzes (due at 11am): Shallow Neural Networks Key concepts on Deep Neural Networks 	
			 Programming Assignments (due at 11am): Planar data classification with a hidden layer Building your Deep Neural Network: step by step Deep Neural Network - Application 	
Project Proposal Due	10/14 Sunday 11:59PM			
Lecture 4	10/17	 Advanced Lecture Topics: Attacking neural networks with Adversarial examples Generative Adversarial Networks 	 Handouts C2M1 slides C2M2 slides C2M3 slides (optional) Week 4 slides Optional Video	
		Completed modules:C2M1: Practical aspects of deep learning	 Batch Normalization videos from C2M3 will be useful for the in-class lecture. 	

Event	Date	 C2M2: Optimization Description algorithms 	Materials and Assignments
			Optional Reading
			 Explaining and Harnessing
			Adversarial Examples
			 Adversarial Examples in the
			Physical World
			Adversarial Attacks on Neura
			Network Policies
			The Gan Zoo
			Generative Models, OpenAl
			blog
			 StackGAN: Text to Photo-
			realistic Image Synthesis with
			Stacked Generative
			Adversarial Networks
			NIPS 2016 Tutorial:
			Generative Adversarial
			Networks
			Unsupervised Representation
			Learning with Deep Learning
			Convolutional Generative
			Adversarial Networks
			Image-to-Image Translation
			with Conditional Adversarial
			Networks
			Photo-Realistic Single Image
			Super-Resolution Using a
			Generative Adversarial
			Network
			Unpaired Image-to-Image
			Translation Using Cycle-
			Consistent Adversarial
			Networks
			Adversarial Logit Paring
			, aversandr zegit i annig
			Quizzes (due at 11am):
			 Practical aspects of deep
			learning
			Optimization Algorithms
			Programming Assignments (due
			at 11am):
			 Initialization

Event	Date	Description	Materials and Assignments
			RegularizationGradient CheckingOptimization
	Str	ucturing Machine Learning Pr	ojects (Course 3)
Lecture 5	10/24	Advanced Lecture Topics: Al in Health Care (Guest Speaker: Pranav Rajpurkar) Live-cell segmentation Case Study Completed modules: C2M3: Hyperparameter Tuning, Batch Normalization C3M1: ML Strategy (1) C3M2: ML Strategy (2)	 Handouts C2M3 slides C3M2 slides Lecture 5: Live-cell segmentation case study Optional Reading Understanding the difficulty of training deep feedforward neural networks Quizzes (due at 11am): Hyperparameter tuning, Batch Normalization, Programming Frameworks Bird recognition in the city of Peacetopia (case study) Autonomous driving (case study) Programming Assignments (due at 11am): Tensorflow
Midterm Review	10/30		 Handouts Midterm Review Slides Optimization and Initialization Slides Adversarial Examples Notes Adversarial Examples Jupyter Notebook

Event	Date	Description	Materials and Assignments		
	Convolutional Neural Networks (Course 4)				
Lecture 6	10/31	Advanced Lecture Topic: • Deep Learning Project strategy - Case studies Completed modules: • C4M1: Foundations of Convolutional Neural Network • C4M2: Deep Convolutional Models	 Handouts 2018 Winter Midterm Without Solutions 2018 Spring Midterm Without Solutions 2018 Spring Midterm Without Solutions 2018 Spring Midterm With Solutions C4M1 slides C4M2 slides Quizzes (due at 11am): The basics of ConvNets Convolutional models Programming Assignments (due at 11am): Convolutional Neural Network - Step by Step Convolutional Neural Network - Application Keras Tutorial: This assignment is optional. Residual Networks 		
Midterm	11/02 Friday		 Midterm Exam Date: November 02, 2018 Time: 3pm - 6pm Locations: Last names A-K: STLC 111 (Google Maps) Last names L-Z: Cubberley Auditorium (Google Maps) 		

Event	Date	Description	Materials and Assignments
Alternate Midterm	11/05 Monday		 Alternate Midterm Exam Date: November 05, 2018 Time: 6pm - 9pm Location: 260-113

Event	Date	Description	Materials and Assignments
Lecture 7	11/07	Advanced Lecture Topics: Interpretability of Neural Network Completed modules: C4M3: ConvNets Applications (1) C4M4: ConvNets Applications (2)	Handouts C4M3 slides C4M4 slides Week 7 slides Optional Reading A guide to convolution arithmetic for deep learning Is the deconvolution layer the same as a convolutional layer? Visualizing and Understanding Convolutional Networks Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps Understanding Neural Networks Through Deep Visualization Learning Deep Features for Discriminative Localization Inceptionism: Going Deeper into Neural Networks Quizzes (due at 11am): Detection Algorithms Special Applications: Face Recognition and Neural Style Transfer Programming Assignments (due at 11am): Car Detection with YOLOv2 Art Generation with Neural Style Transfer Face recognition for the Happy House

Event	Date	Description	Materials and Assignments
Project Milestone Due	11/09 Friday 11:59pm		
		Sequence Models (Cou	urse 5)
Lecture 8	11/14	Advanced Lecture Topic: Career Advice Reading Research Papers Completed modules: C5M1: Recurrent Neural Networks	 C5M1 slides Optional Reading Dropout: A Simple Way to Prevent Neural Networks from Overfitting DenseNet: Densely Connected Convolutional Networks Quizzes (due at 11am): Recurrent Neural Networks Programming Assignments (due at 11am): Building a Recurrent Neural Network - Step by Step Dinosaur Land Character-level Language Modeling Jazz improvisation with LSTM
		Thanksgiving break (E	Enjoy!)

Event	Date	Description	Materials and Assignments
Lecture 9	11/28	Advanced Lecture Topics: • Deep Reinforcement Learning Completed modules: • C5M2: Natural Language Processing and Word Embeddings • C5M3: Sequence-to-Sequence Models	 Week 9 slides C5M2 slides C5M3 slides Optional Reading Mastering the Game of Go without Human Knowledge Human-level control through deep reinforcement learning Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Generative Adversarial Imitation Learning Quizzes (due at 11am): Natural Language Processing and Word Embeddings Sequence Models and Attention Mechanism Programming Assignments (due at 11am): Operations on Word Vectors - Debiasing Emojify! Neural Machine Translation with Attention Trigger Word Detection
Lecture 10	12/05	Advanced Lecture Topic Lecture will be held this day! No assignments due, work on your final projects.	

Event	Date	Description	Materials and Assignments
Poster Session	12/14 Friday		 Poster Session Date: December 14, Friday Time: TBD Location: ACSR basketball courts
Final Project Report Due	12/16 Sunday, 11:59pm		