

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 0 816 504 A2**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

07.01.1998 Bulletin 1998/02

(51) Int Cl.⁶: **C12N 15/55**, C12N 9/18, C07K 16/40

(21) Application number: 97110586.1

(22) Date of filing: 27.06.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV RO SI

(30) Priority: 28.06.1996 JP 188369/96

(71) Applicant: SUNTORY LIMITED
Kita-ku, Osaka-shi, Osaka 530 (JP)

(72) Inventors:

Adachi, Hideki
 Asaka-shi, Saitama 351 (JP)

- Tsujimoto, Masafumi Asaka-shi, Saitama 351 (JP)
- Arai, Hiroyuki Arakawa-ku, Tokyo 116 (JP)
- Inoue, Keizo Kota-ku, Tokyo 135 (JP)

(74) Representative:

Wächtershäuser, Günter, Prof. Dr. Patentanwalt, Tal 29

80331 München (DE)

(54) Platelet activating factor acetylhdrolase, and gene thereof

(57) A protein having activities of a human platelet activating factor acetylhydrolase, and represented by an amino acid sequence represented by the following formula (I) or an amino acid sequence having homology therewith; and a DNA encoding the protein:

Met Gly Val Asn Gln Ser Val Gly Phe Pro Pro Val Thr Gly Pro His Leu Val Gly Cys Gly Asp Val Met Glu Gly Gln Asn Leu Gln Gly Ser Phe Phe Arg Leu Phe Tyr Pro Cys Gln Lys Ala Glu Glu Thr Met Glu Gln Pro Leu Trp Ile Pro Arg Tyr Glu Tyr Cys Thr Gly Leu Ala Glu Tyr Leu Gln Phe Asn Lys Arg Cys Gly Gly Leu Leu Phe Asn Leu Ala Val Gly Ser Cys Arg Leu Pro Val Ser Trp Asn Gly Pro Phe Lys Thr Lys Asp Ser Gly Tyr Pro Leu Ile Ile Phe Ser His Gly Leu Gly Ala Phe Arg Thr Leu Tyr Ser Ala Phe Cys Met Glu Leu Ala Ser Arg Gly Phe Val Val Ala Val Pro Glu His Arg Asp Arg Ser Ala Ala Thr Thr Tyr Phe Cys Lys Gln Ala Pro Glu Glu Asn Gln Pro Thr Asn Glu Ser Leu Gln Glu Glu Trp Ile Pro Phe Arg Arg Val Glu Glu Gly Glu Lys Glu Phe His Val Arg Asn Pro Gln Val His Gln Arg Val Ser Glu Cys Leu Arg Val Leu Lys Ile Leu Gln Glu Val Thr Ala Gly Gln Thr Val Phe Asn Ile Leu Pro Gly Gly Leu Asp Leu Met Thr Leu Lys Gly Asn Ile Asp Met Ser Arg Val Ala Val Met Gly His Ser Phe Gly Gly Ala Thr Ala Ile Leu Ala Leu Ala Lys Glu Thr Gln Phe Arg Cys Ala Val Ala Leu Asp Ala Trp Met Phe Pro Leu Glu Arg Asp Phe Tyr Pro Lys Ala Arg Gly Pro Val Phe Phe Ile Asn Thr Glu Lys Phe

Gin Thr Met Giu Ser Val Asn Leu Met Lys Lys Ile Cys Ala Gin His Giu Gin Ser Arg Ile Ile Thr Val Leu Giy Ser Val His Arg Ser Gin Thr Asp Phe Ala Phe Val Thr Giy Asn Leu Ile Giy Lys Phe Phe Ser Thr Giu Thr Arg Giy Ser Leu Asp Pro Tyr Giu Giy Gin Giu Val Met Val Arg Ala Met Leu Ala Phe Leu Gin Lys His Leu Asp Leu Lys Giu Asp Tyr Asn Gin Trp Asn Asn Leu Ile Giu Giy Ile Giy Pro Ser Leu Thr Pro Giy Ala Pro His His Leu Ser Ser Leu

(I)

Description

BACKGROUND OF THE INVENTION

a) Field of the Invention

This invention relates to a novel platelet activating factor acetylhydrolase, and a gene encoding the same.

b) Description of the Related Art

10

15

A platelet activating factor acetylhydrolase is an enzyme, which acts on a platelet activating factor (hereinafter abbreviated as "PAF") and eliminates its 2-acetyl group to deprive PAF of its activity. Since PAF is a mediator for inflammation which causes defluxion of tissue fluid through finer vessels, vasodilation, smooth muscle contraction, endothelial adhesion, activation of neutrophils, macrophages or eosinophilic leukocytes, or the like, PAF acetylhydrolase is usable as a preventive or therapeutic for various diseases caused by PAF.

Some reports have been made about PAF acetylhydrolase to date. For its use as a medicine, however, there is an outstanding desire for the provision of a PAF acetylhydrolase having higher purity and stronger action compared with conventional PAF acetylhydrolase. Further, from the viewpoint of safety, PAF acetylhydrolase derived form human being instead of an animal is desired.

20

25

30

35

40

45

50

55

SUMMARY OF THE INVENTION

With the foregoing in view, the present invention has as a primary object the provision of PAF acetylhydrolase which can fulfill the above-described desires.

Interested in the wide-spread distribution of PAF acetylhydrolase in animal organs such as the brain and kidneys, the present inventors chose the bovine liver as a source, and by various isolation and purification procedures, progressively increased the purity of PAF acetylhydrolase while placing a focus on its enzymatic activity. As a result, the present inventors have succeeded in obtaining bovine PAF acetylhydrolase as a pure product and further in determining its amino acid sequence. In addition, from the amino acid sequence of the PAF acetylhydrolase, a gene encoding the enzyme has been found by methods known *per* se in the art.

Moreover, using the bovine PAF acetylhydrolase cDNA, the present inventors have also succeeded in identifying the human PAF acetylhydrolase cDNA.

The present invention has been completed based on these findings, and provides a human PAF acetylhydrolase, which plays an important role as a PAF-inhibiting substance, and also a gene which encodes the enzyme and is important for the synthesis of the enzyme by genetic engineering.

The human PAF acetylhydrolase according to the present invention selectively degrades PAF and hence, is usable as medicines or biochemical reagents for the prevention and treatment of diseases caused by PAF, for example, diseases such as asthma, exudative tympanitis, hemorrhagic colitis and adult respiratory distress syndrome.

DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS

The human PAF acetylhydrolase according to the present invention can be prepared as will be described next. PAF acetylhydrolase is first collected from an animal. From the PAF acetylhydrolase, the animal PAF acetylhydrolase cDNA is determined. Using the animal PAF acetylhydrolase cDNA, the human PAF acetylhydrolase cDNA is detected from a human gene library. The human PAF acetylhydrolase cDNA is inserted in an appropriate vector and then cultured in an adequate host organism, whereby the human PAF acetylhydrolase is obtained.

Upon practice of the present invention, it is first necessary to obtain animal PAF acetylhydrolase from an organ of an animal such as the brain, liver or kidneys by purifying it through repetitions of known isolation and purification procedures while using PAF acetylhydrolase activity as an index. A description will hereinafter be made of a process for obtaining PAF acetylhydrolase by using a bovine liver as an example.

As the bovine liver to be used as a source, one obtained from a bovine immediately after its slaughter is preferred. After the bovine liver is first washed with an appropriate buffer (for example, 10 mM Tris-HCl buffer containing 250 mM sucrose and 1 mM EDTA and having a pH of 7.4), it is homogenized with the same buffer. The homogenate is then centrifuged to obtain a soluble fraction.

Making combined use of hydrophobic chromatography, ion exchange chromatography, adsorption chromatography, gel filtration chromatography and the like, the soluble fraction is purified until a single peak is observed by Mono Q FPLC, so that PAF acetyl hydrolase can be obtained.

Incidentally, PAF acetylhydrolase activity which is used as an index for the selective collection of the PAF-acetyl-

hydrolase-containing fraction can be determined, for example, by the method disclosed in Japanese Patent Application Laid-Open (Kokai) No. HEI 7-39373.

With respect to the bovine PAF acetylhydrolase obtained in the above-described manner, its amino acid sequence was investigated by a method known *per se* in the art. As a result, the amino acid sequence has been found to be represented by the following formula (III):

Met Gly Val Asn Gln Ser Val Ser Phe Pro Pro Val Thr Gly Pro His Leu Val Gly Cys Gly Asp Val Met Glu Gly Gln Ser Leu Gln Gly Ser Phe Phe Arg Leu Phe Tyr Pro Cys Gin Glu Ala Glu Glu Thr Ser Glu Gln Pro Leu Trp Ile Pro Arg Tyr Glu Tyr Cys Ala Gly Leu Ala Glu Tyr Leu Lys Phe Asn Lys Arg Trp Gly Gly Leu Leu Phe Asn Leu Gly Val Gly Ser Cys Arg Leu Pro Val Ser Trp Asn Gly Pro Phe Lys Thr Lys Asp Ser Gly Tyr Pro Leu Ile Ile Phe Ser His Gly Met Gly Ala Phe Arg Thr Val Tyr Ser Ala Phe Cys Met Glu Leu Ala Ser Arg Gly Phe Val Val Ala Val Pro Glu His Arg Asp Gly Ser Ala Ala Ala Thr Cys Phe Cys Lys Gln Thr Pro Glu Glu Asn Gln Pro Asp Asn Glu Ala Leu Lys Glu Glu Trp Ile Pro His Arg Gln Ile Glu Glu Glu Glu Lys Glu Phe Tyr Val Arg Asn Tyr Gln Val His Gln Arg Val Ser Glu Cys Val Arg Val Leu Lys Ile Leu Gln Glu Val Thr Ala Gly Gln Ala Val Leu Asn Ile Leu Pro Gly Gly Leu Asp Leu Met Thr Leu Lys Gly Gly Ile Asp Val Ser Arg Val Ala Val Met Gly His Ser Phe Gly Gly Ala Thr Ala Ile Leu Ala Leu Ala Lys Glu Met Gln Phe Arg Cys Ala

10

15

20

25

30

35

40

45

50

Pro Thr Ala Arg Gly Pro Ile Phe Pro Leu Glu His Asp Phe Tyr

Gln Thr Val Glu Thr Val Asn Leu Met Lys Lys Ile Cys Asp Gln

His His Gln Ser Arg Ile Ile Thr Val Leu Gly Ser Val His Arg

Ser Leu Thr Asp Phe Val Phe Val Ala Gly Asn Trp Ile Ser Lys

Phe Phe Ser Ser His Thr Arg Gly Ser Leu Asp Pro Tyr Glu Gly

Gln Glu Thr Val Val Arg Ala Met Leu Ala Phe Leu Gln Lys His

Leu Asp Leu Lys Glu Asp Tyr Asp Gln Trp Asn Asn Phe Ile Glu

Gly Ile Gly Pro Ser Leu Thr Pro Gly Ala Pro His His Leu Ser

Ser Leu

(III)

Further, from the peptide sequence of the bovine PAF acetylhydrolase of the formula (III), a gene encoding the enzyme was determined by a method known *per se* in the art. The gene (hereinafter called the "bovine PAF acetylhydrolase cDNA") has been found to be identified by the following formula (IV):

25

ACA GTG TAT TCA GCC TTC TGC ATG GAG CTG GCT TCT CGT GGC TTT GTG GTT GCT GTA CCA GAG CAC AGG GAT GGG TCA GCT GCG GCC ACC 5 TGT TTC TGC AAG CAG ACC CCA GAG GAG AAC CAG CCT GAC AAT GAG GCC CTG AAG GAG GAA TGG ATC CCC CAC CGT CAA ATT GAG GAA GGG 10 GAG AAG GAA TTC TAT GTT CGG AAC TAC CAG GTG CAT CAG AGG GTG AGC GAG TGT GTG AGG GTG TTG AAG ATC CTA CAA GAG GTC ACT GCT GGG CAG GCC GTT CTC AAC ATC TTG CCT GGC GGA TTG GAT CTG ATG 15 ACC TTG AAG GGC GGC ATT GAC GTG AGC CGT GTG GCT GTA ATG GGA CAT TCA TTT GGA GGG GCC ACA GCT ATT CTG GCC TTG GCC AAG GAG 20 ATG CAA TTT AGG TGT GCT GTG GCT TTG GAC GCT TGG ATG TTT CCT CTG GAG CAT GAC TTT TAC CCC ACG GCC CGA GGC CCT ATC TTC TTT ATC AAT GCT GAG AAG TTC CAG ACA GTG GAG ACT GTC AAC TTG ATG 25 AAA AAG ATT TGT GAC CAG CAC CAA TCC AGG ATC ATA ACT GTC CTT GGT TCT GTT CAT CGG AGT CTA ACC GAC TTT GTT TTT GTG GCT 30 GGT AAC TGG ATT AGT AAA TTC TTC TCC AGT CAC ACC CGT GGA AGC TTG GAC CCC TAT GAA GGT CAG GAG ACC GTG GTG CGG GCC ATG TTG GCC TTC CTG CAG AAG CAT CTT GAC CTG AAA GAG GAC TAT GAC CAG 35 TGG AAC AAC TTC ATT GAA GGC ATT GGC CCA TCA CTG ACC CCA GGG GCC CCA CAC CAT CTG TCC AGC CTG TAG GCACAACTGGTCATCTTGTGGAAG GTCCCTGAGCTGAGTTCCCGTGTGGGGCCTGCCCAGGGATACCCTTGGCCTCCTATCAGG 40 AAGTGATTGCCATGACCCTTCTGTGTTGATTGAGAGGATATAATCACACTGCTGATTGGT AACGGGGTACTTGGATTCTCAGACTTGTCGATCTTAAACTCATGTTGGGACTTGGGTTCA 45 GTGGGATGGGGCTGGGGAAGATCTAAGCCCTAAGCTGGGCACTATGAGCCCTATAAACCC AACCAGCCAACACCCTCACCTTGGGCAAGTATGACTTCTGCAGGTCGACTCT 50

(IV)

To obtain human PAF acetylhydrolase from the bovine PAF acetylhydrolase cDNA obtained as described above, the human gene library is screened by a method known *per se* in the art while using the bovine PAF acetylhydrolase cDNA as a template.

Described specifically, the bovine PAF acetylhydrolase cDNA is labeled, for example, by incorporating fluorescein-

12-dUTP through PCR. By the colony hybridization technique that selects each positive colony by ECL (Enhanced Chemiluminescence; Amersham K.K.), colonies containing the human PAF acetylhydrolase cDNA can be obtained. The human PAF acetylhydrolase cDNA obtained as described above has been found to be identified by the following formula (II):

GCAGGTCTCGACCCACGCGTCCGCGGACGCGTGGG

CGAG	A A G T	GCTT	CCAA	GCGT	CCAT	TTTC	AGC(CTTGC	IAAA(CTACG	ACGA	CCAA	AGGO	CCAC
GGGT	тсст	rgggt	CGTI	TCTC	CATTT	CCGT	CGAC	TTA/	AAC GT	CTGG	GGCT	GCTI	CTGA	AGGAA
TCAC	CTTC	GCTC	GCCA	GCAA	GTTC	CAGCT	CCGC	CAAC	GT CAT	TTGA	TTCA	CCCC	GTGA	TGAA
ATG	GGG	GTC	AAC	CAG	TCT	GTG	GGC	TTT	CCA	CCT	GTC	ACA	GGA	CCC
CAC	CTC	GTA	GGC	TGT	GGG	GAT	GTG	ATG	GAG	GGT	CAG	AAT	CTC	CAG
GGG	AGC	TTC	TTT	CGA	СТС	TTC	TAC	CCC	TGE	CAA	AAG	GCA	GAG	GAG
ACC	AT G	GAG	CAG	ccc	CTG	TGG	ATT	ссс	CGC	TAT	GAG	TAC	TGC	ACT
GGC	CTG	GCC	GAG	TAC	CTG	CAG	TTT	AAT	AAG	CGC	TGC	GGG	GGC	TTG
CTG	TTC	AAC	CTG	GCG	GTG	GGA	TCT	TGT	CGC	CTG	CCT	GTT	AGC	TGG
AAT	GGC	ссс	TTT	AAG	ACA	AAG	GAC	TCT	GGA	TAC	CCC	TTG	ATC	ATC

	TTC	TCC	CAT	GGC	CTA	GGA	GCC	TTC	AGG	ACT	TTG	TAT	TCA	GCC	110
5	TGC	AT G	GAG	CTG	GCC	TCA	CGT	GGC	TTT	GTG	GTT	GCT	GTG	CCA	GAG
	CAC	AGG	GAC	CGG	TCA	GCG	GCA	ACC	ACC	TAT	TTC	TGC	AAG	CAG	GCC
10	CCA	GAA	GAG	AAC	CAG	ССС	ACC	AAT	GAA	TCG	CTG	CAG	GAG	GAA	TGG
10	ATC	CCT	ттс	CGT	CGA	GTT	GAG	GAA	GGG	GAG	AAG	GAA	TTT	CAT	GTT
	CGG	AAT	CCC	CAG	GTG	CAT	CAG	CGG	GTA	Ă G C	GAG	TGT	TTA	CGG	GTG
15	TTG	AAG	ATC	CTG	CAA	GAG	GTC	ACT	GCT	GGG	CAG	ACT	GTC	TTC	AAC
	ATC	TTG	CCT	GGT	GGC	TTG	GAT	CTG	ATG	ACT	TTG	AAG	GGC	AAC	ATT
	GAC	AT G	AGC	CGT	GTG	GCT	GTG	ATG	GGA	CAT	TCA	TTT	GGA	GGG	GCC
20	ACA	GCT	ATT	CTG	GCT	TTG	GCC	AAG	GAG	ACC	CAA	TTT	CGG	TGT	GCG
	GTG	GCT	CTG	GAT	GCT	TGG	ATG	TTT	CCT	CTG	GAA	CGT	GAC	TTT	TAC
25	ССС	A A G	GCC	CGA	GGA	сст	GTG	TTC	TTT	ATC	AAT	ACT	GAG	AAA	TTC
	CAG	ACA	ATG	GAG	AGT	GTC	AAT	TTG	ATG	AAG	AAG	ATA	TGT	GCC	CAG
	CAT	GAA	CAG	TCT	AGG	ATC	ATA	ACC	GTT	CTT	GGT	TCT	GTT	CAT	CGG
30	AGT	CAA	ACT	GAC	TTT	GCT	TTT	GTG	ACT	GGC	AAC	TTG	ATT	GGT	AAA
	TTC	TTC	TCC	ACT	GAA	ACC	CGT	GGG	AGC	CTG	GAC	CCC	TAT	GAA	GGG
35	CAG	GAG	GTT	ATG	GTA	CGG	GCC	ATG	TTG	GCC	TTC	CTG	CAG	AAG	CAC
	CTC	GAC	CTG	AAA	GAA	GAC	TAT	AAT	CAA	TGG	AAC	AAC	CTT	ATT	GAA
	GGC	ATT	GGA	CCG	TCG	CTC	ACC	CCA	GGG	GCC	CCC	CAC	CAT	CTG	TCC
40	AGC	CTG	TAG	GCA	CAAC	rggc	CATT	r GT A	AAGT	CACT	TCAG	CCAA	GTTT'	rcat'	rtggg
	AGC'	TACC	CAAG	GGCA	CCCA	rgag:	CTCC'	ratc.	AAGA	AGT G	ATCA	ACGT	GACC	CCTT	TTCAC
45	AGA	TTGA	A A G G'	rgta	ATCA	CACT	GCTG	CTTG	GATA	ACTG	GGTA	CTTT	GATC'	r t a G	ATTTG
	ATC:	ТТАА	AATC	A C T T	rggg.	A C T G	GGAT	ссст	TGCT	GATT	GACA.	AACA	GACT	TTCT	GGGAC
	CTT	G A T G	G A GT	GGGG	AACA.	AGCA	GTAG.	AGTG	GGAC	TGGG	GGAG.	A C C C	AGGC	CCCG	GGCTG
50	AGC.	ACTG'	TGAG	GCCT	GGAT	GTGA	AGAC	TCAG	CCCA	GCGA	AGCT	CATT	CCCT	TACC	cccgg

(11)

.

5

10

15

20

25

30

35

40

45

50

55

Following conventional procedures, the human PAF acetylhydrolase cDNA obtained as described above is next introduced in an appropriate vector plasmid, and host cells such as mammal cells are then transformed by a commonly-employed recombinant DNA technique to express the human PAF acetylhydrolase. The expression of the human PAF acetylhydrolase can be confirmed by a western blot technique which makes use of an anti-human PAF acetylhydrolase antibody. The introduction into the plasmid, the establishment of the transformed strain, the culture of the strain and the like can be conducted by the general recombinant DNA technology.

From expression systems known to artisans, a suitable expression system can be selected for use in the present invention. It is possible to improve the efficiency of secretion and the level of expression by adding or improving a signal sequence and/or choosing an appropriate host. Although no particular limitation is imposed on host cells, illustrative examples include cultured cells of bacteria, yeasts, other fungi, human and other animals, and cultured cells of plants. Namely, the polynucleotide according to the present invention is inserted in a suitable expression vector, for example, pUC-PL-cl vector, the expression vector is introduced in adequate host cells, for example, *E. Coli* W3110 or the like, and the host cells are then cultured. The target human PAF acetylhydrolase can thereafter be collected as a protein from the thus-obtained cultured matter (cells or culture medium).

As the host, a procaryote or an eucaryote can be used. Usable examples of the procaryote include bacteria, especially *Escherichia coli* and *Bacillus* bacteria, for example, *B. subtilis*. On the other hand, usable examples of the eucaryote include eucaryotic microorganisms such as yeasts, for example, *Saccharomyces* yeasts, especially *s. Servisiae*; insect cells such as armyworm (*Spodoptera Frugiperda*) cells and silkworm (*Bombyx mori*) cells; and animal cells such as human cells, monkey cells and mouse cells, especially monkey cells, for example, COS1 and COS 7.

Usable examples of the expression vector include plasmids, pharges, phargemids, viruses [baculoviruses (for insect cells), vaccinia viruses (for animal cells)]. The promoter in the expression vector is selected depending on the host cells. For examples, lac promoters, trp promoters, trc promoters and the like can be used as promoters for bacteria; and adh 1 promoters, pgk promoters and the like can be used as promoters for yeasts. Further, baculovirus polyhedrin promoters can be mentioned as promoters for insects; and early and late promoters of *Simian virus* 40 (SV40) can be mentioned as promoters for animal cells.

When an enhancer is used, for example, the enhancer of SV40 is inserted either upstream or downstream of the gene.

The transformation of the host by the expression vector can be conducted by a common method known *per se* in the art. Such methods are disclosed, for example, in "Current Protocols in Molecular Biology", John Wiley & Sons, Inc.

The culture of the transformants can also be conducted by a usual method. The purification of the human PAF acetylhydrolase from the cultured matter can be conducted following procedures commonly employed for the isolation and purification of proteins, for example, by ultrafiltration and/or one or more of various column chromatographic procedures, for example, chromatography making use of "Sepharose".

In the above-described manner, the human PAF acetylhydrolase can be advantageously obtained. The human PAF acetylhydrolase according to the present invention is represented by the following formula (I):

Met Gly Val Asn Gln Ser Val Gly Phe Pro Pro Val Thr Gly Pro His Leu Val Gly Cys Gly Asp Val Met Glu Gly Gln Asn Leu Gln Gly Ser Phe Phe Arg Leu Phe Tyr Pro Cys Gln Lys Ala Glu Glu Thr Met Glu Gln Pro Leu Trp Ile Pro Arg Tyr Glu Tyr Cys Thr Gly Leu Ala Glu Tyr Leu Gln Phe Asn Lys Arg Cys Gly Gly Leu Leu Phe Asn Leu Ala Val Gly Ser Cys Arg Leu Pro Val Ser Trp Asn Gly Pro Phe Lys Thr Lys Asp Ser Gly Tyr Pro Leu Ile Ile Phe Ser His Gly Leu Gly Ala Phe Arg Thr Leu Tyr Ser Ala Phe Cys Met Glu Leu Ala Ser Arg Gly Phe Val Val Ala Val Pro Glu His Arg Asp Arg Ser Ala Ala Thr Thr Tyr Phe Cys Lys Gln Ala Pro Glu Glu Glu Asn Gln Pro Thr Asn Glu Ser Leu Gln Glu Glu Trp Ile Pro Phe Arg Arg Val Glu Glu Glu Gly Glu Lys Glu Phe His Val Arg Asn Pro Gln Val His Gln Arg Val Ser Glu Cys Leu Arg Val Leu Lys Ile Leu Gln Glu Val Thr Ala Gly Gln Thr Val Phe Asn

Ile Leu Pro Gly Gly Leu Asp Leu Met Thr Leu Lys Gly Asn Ile Asp Met Ser Arg Val Ala Val Met Gly His Ser Phe Gly Gly Ala 5 Thr Ala Ile Leu Ala Leu Ala Lys Glu Thr Gln Phe Arg Cys Ala Val Ala Leu Asp Ala Trp Met Phe Pro Leu Glu Arg Asp Phe Tyr 10 Pro Lys Ala Arg Gly Pro Val Phe Phe Ile Asn Thr Glu Lys Phe Gln Thr Met Glu Ser Val Asn Leu Met Lys Lys Ile Cys Ala Gln His Glu Gln Ser Arg Ile Ile Thr Val Leu Gly Ser Val His Arg 15 Ser Gln Thr Asp Phe Ala Phe Val Thr Gly Asn Leu Ile Gly Lys Phe Phe Ser Thr Glu Thr Arg Gly Ser Leu Asp Pro Tyr Glu Gly Gln Glu Val Met Val Arg Ala Met Leu Ala Phe Leu Gln Lys His 20 Leu Asp Leu Lys Glu Asp Tyr Asn Gln Trp Asn Asn Leu Ile Glu Gly Ile Gly Pro Ser Leu Thr Pro Gly Ala Pro His His Leu Ser 25 Ser Leu

35

40

45

50

55

(I)

30 The human PAF acetylhydrolase selectively degrades PAF and oxidized phospholipids and has physiologically active effects such anti-inflammatory effects.

Needless to say, the human PAF acetylhydrolase according to the present invention is not limited to the peptide of the formula (I) but includes peptides having homology therewith, namely, peptides having the same function as the peptide represented by the formula (I) despite substitution, deletion, addition or the like of amino acids at parts of their sequences.

The bovine PAF acetylhydrolase represented by the formula (III) may be contemplated to be available by gene manipulation in a similar manner as the human PAF acetylhydrolase. As a matter of fact, however, the bovine PAF acetylhydrolase cannot be obtained unless eucaryotic host cells are used.

To obtain the bovine PAF acetylhydrolase by gene manipulation, it is therefore necessary to employ as host cells those derived from an eucaryote and to select and use a vector compatible with the host cells.

An antibody against the human PAF acetylhydrolase or bovine PAF acetylhydrolase (which may hereinafter be collectively called the "PAF acetylhydrolase") according to the present invention can also be obtained following usual procedures.

Described specifically, the antibody can be obtained by sensitizing an animal such as a rabbit with the PAF acetyl-hydrolase, separating its serum and, if necessary, purifying an immunoglobulin fraction from the serum. To enhance the sensitizing ability of the enzyme in this case, the enzyme in a form bound on a carrier protein such as bovine serum albumin (BSA) or methyl BSA may be used as an immunogen.

Upon sensitizing an animal, the enzyme can also be used together with Freund's complete adjuvant (FCA) or Freund's incomplete adjuvant (FICA) to increase the production of the antibody. It is desired to conduct the sensitization of the animal twice or more. The frequency of sensitization can be determined while checking the antibody titer of the serum by test sampling of blood. The whole blood of an immune animal may be used by slaughtering it as needed. As an alternative, an immune animal may be subjected to booster sensitization as many times as needed to maintain a constant antibody titer, and blood samples may be collected in small quantities as needed for immediate use. It is also possible to obtain a monoclonal antibody in a usual manner by sensitizing a mouse with the enzyme and then forming hybridomas from spleen cells and myeloma cells of the sensitized mouse.

The present invention will hereinafter be described in further detail by the following examples and reference examples. It is however to be noted that the present invention are by no means limited by or to these examples.

Referential Example 1

Measurement of PAF Acetylhydrolase Activity

(1) Using unlabeled lyso PAF (product of Bachem Feinchemikalien AG), 1-O-[1-14C]hexadecyl-lyso PAF (product of New England Nuclear Company; hereinafter called the "labeled lyso PAF") was diluted to 4,000 dpm/nmol.

On the other hand, 1-O-hexadecyl-2-[³H-acetyl]-sn-glycero-3-phosphocholine (hereinafter called "³H-acetyl PAF") was diluted to 3,200 dpm/nmol with the unlabeled lyso PAF.

A standard culture system for the measurement of PAF acetylhydrolase was composed of 50 mM Tris-HCl (pH 7.4), 5 mM EDTA, 5 mM 2-mercaptoethanol (2-ME) and 20 nmol 3 H-acetyl PAF. The total volume of the sample was 0.25 m ℓ .

(2) Measurement of PAF acetylhydrolase activity was conducted by culturing a test sample in the above-described standard culture system at 37°C for 30 minutes, adding 2.5 me of chloroform/methanol (4:1 V/V) and 0.25 m ℓ of water to terminate the reaction, and then measuring the radioactivity of a small amount (0.6 m ℓ) of each upper layer to determine the amount of the acetate liberated from the ³H-acetyl PAF.

Example 1

5

10

15

20

25

30

35

40

45

Obtainment of Bovine PAF Acetylhydrolase

- (1) A fresh bovine liver was purchased from a slaughterhouse and was then treated within 3 hours of the slaughter. Treatments were all conducted at 0 to 4° C. The liver was homogenized in a Waring blender subsequent to the addition of a homogenizing buffer [10 mM Tris-HCl (pH 7.4), 250 mM sucrose, 1 mM EDTA] in an amount 5 times as much as the liver. The resulting homogenate was centrifuged for 30 minutes under 100,000 x g, followed by the removal of a solid portion. The resultant supernatant was centrifuged further for 1 hour under 100,000 x g, whereby a dissolved portion was obtained (supernatant portion)
- (2) The supernatant portion obtained through the procedures (1) was adjusted to 1 M with NaCl. Subsequent to stirring for 15 minutes, the solution was loaded on a "BUTYL TOYOPEARL 650 M" column which had been equilibrated beforehand with a buffer composed of 50 mM Tris-HCl (pH 7.4), 1 mM EDTA and 1 M NaCl. After the column was washed with the same buffer, proteins were eluted with a linear gradient of NaCl (1 to 0 M). PAF acetylhydrolase activity was eluted as a single peak in 1 to 0 M NaCl fractions.
- (3) Active fractions from the "BUTYL TOYOPEARL" column were loaded on a "Q-Sepharose" column which had been equilibrated with 10 mM Tris-HCl (pH 7.4), 1 mM EDTA and 20% (V/V) glycerol (buffer A). The column was washed with the buffer A. Proteins were eluted with a linear gradient of NaCl (0 to 500 mM) in the buffer A. The activity was observed in a fraction eluted with about 300 mM NaCl.
- (4) The active fraction from the "Q-Sepharose" column was concentrated to about 6 mℓ in an "Amicon ultrafiltration cell" in which "YM-10" membranes were used. The thus-concentrated fraction was loaded on a "Biogel A-1.5 m" gel filtration column which had been equilibrated beforehand with 10 mM Tris-HCl (pH 7.4), 200 mM NaCl, 5 mM 2-ME, 20% (V/V) glycerol and 0.5 % (W/V) "CHAPS" (buffer B). The activity was eluted as a single peak in a fraction corresponding to a molecular weight of about 40 kDa.
- (5) The active fraction from the "Biogel-A 1.5 m" column was loaded on a hydroxyapatite column which had been equilibrated beforehand with 10 mM Tris-HCl (pH 7.4), 5 mM 2-ME, 20% (V/V) glycerol and 0.5% (W/V) "CHAPS" (buffer C). Proteins were eluted with a linear gradient which ranged from the buffer C alone to a buffer C containing 150 mM KH₂PO₄. The activity was observed in a fraction which was eluted with about 50 mM KH₂PO₄.
- (6) The active fraction from the hydroxyapatite column was dialyzed against the buffer C, and was then loaded on an "FPLC Mono Q HR 5/5" column which had been equilibrated beforehand with the buffer C. Proteins were eluted by a linear gradient of NaCl (0 to 500 mM) in the buffer C. The activity was observed in a fraction which was eluted with 250 mM NaCl, and a protein in the fraction was obtained as purified bovine PAF acetylhydrolase.
- The total proteins, total activities, purification degrees (in terms of times) and the like in the individual purification steps described above are tabulated below:

2.9

4500

7200

2.16

0.3

Mono Q FPLC

-						
5	Yield (%)	100	22	12	10	7.2
10	Degree of purification (times)	1	15	78	670	096
20	Activity per weight (nmon/min/mg)	1.6	24	124	1060	1530
<i>30</i>	Total activity (µmol/min)	73.5	16.3	8.96	7.38	5.29
40 45	Total proteins (mg)	46000	089	72.4	6.93	3.45
50 55	Step	Cytoplasm	BUTYL TOYOPEAL	Q Sepharose FF	Biogel A-1.5 m	Hydroxyapatite

Example 2

5

10

15

20

30

35

40

45

55

Determination of Amino Acid Sequence of Bovine PAF Acetylhydrolase

(1) About 0.2 mg of the purified PAF acetylhydrolase obtained in Example 1 was reduced with 1 mg of dithiothreitol at room temperature for 2 hours, followed by the S-alkylation with 0.6% (W/V) 4-vinylpyridine at room temperature for 2 hours.

Using a 4.6 mm x 250 mm "Vydak 304-1251 C_4 " column which had been equilibrated beforehand with 20% (V/V) acetonitrile containing 0.1% (V/V) trifluoroacetic acid, the reaction mixture was subjected to reverse phase high-performance liquid chromatography (HPLC). Proteins were then eluted with a linear gradient of acetonitrile (20 to 85% V/V) which contained 0.1% (V/V) trifluoroacetic acid.

- (2) 40 kDa polypeptide, which had been purified by the HPLC, was dialyzed against a lysylendopeptidase digestive buffer [0.5 M Tris-HCl (pH 8.5) and 4 M urea]. Next, 1 μ g of a lysylendopeptidase was added to the sample. After the reaction mixture was incubated for 18 hours at 37°C, the reaction mixture was fractionated by reverse phase HPLC through a 4.6 mm x 250 mm "Vydak 304-1251 C₄" column while using a linear gradient of acetonitrile (5 to 70% V/V) which contained 0.1% (V/V) trifluoroacetic acid.
- (3) The amino acid sequence of a peptide fragment obtained by the reverse phase HPLC was determined by an automated sequencer ("Model 477A", trade name; manufactured by Applied Biosystems, Inc.).

The base sequence of the bovine PAF acetylhydrolase, which was determined from the amino acid sequence of the peptide fragment, was as shown above by the formula (III).

Further, from the peptide sequence (III) of the bovine PAF acetylhydrolase, a gene encoding the enzyme was determined by a method known *per se* in the art. The gene was found to be represented by the formula (IV).

25 Example 3

Cloning of Non-active Human PAF Acetylhydrolase cDNA

Using as a template the bovine PAF acetylhydrolase cDNA obtained in Example 2, fluorescein-12-dUTP was incorporated in 500,000 clones of each of a fetal human liver cDNA library (pRc/CMV) and a human brain cDNA library (pCMV SPORTS) by PCR. The clones were then subjected to colony hybridization while detecting the labeling reagent by ECL, whereby cloning was conducted. As a result, a single positive clone was obtained from the human brain library.

A plasmid DNA was prepared and the base sequence was determined. The clone was a full-length clone which contained ATG encoding initiating methionine. Encoding 43 N-terminal amino acids were the same as the corresponding amino acids in the sequence of the bovine PAF acetylhydrolase up to the 40th amino acid, and there was poly A at the 3' end. A more accurate determination of the base sequence was conducted. As a result, the cDNA was found to consist of 2188 bp and to contain an ORF (open reading frame) consisting of 253 amino acids. Compared with the bovine PAF acetylhydrolase cDNA, 140 amino acids had been deleted. The segment of the deleted 140 amino acids contains a "catalytic triad" of serine, histidine and aspartic acid, which exhibits catalytic activity. The cDNA is therefore not believed to have PAD acetylhydrolase activity.

Hence, a primer was synthesized at positions flanking the deleted region, and PCR was conducted using the library DNA as a template. From the human brain cDNA, two bands were obtained, one corresponding to the above-described cDNA with the 140 amino acids deleted, and the other to a cDNA having substantially the same length as the bovine PAF acetylhydrolase cDNA. From the foregoing, the human brain library DNA was expected to contain, in addition to the above-obtained cDNA, a human PAF acetylhydrolase cDNA which is actually equipped with PAF acetylhydrolase activity.

Example 4

50 Cloning of Human PAF Acetylhydrolase cDNA

The human brain cDNA library was diluted to give 2000 clones per well, followed by incubation on 5 96-well plates. Subpools consisting of 10 wells were prepared, and positive pools were determined by PCR (Pool Nos. 10, 20, 28, and 38). With respect to these subpools, PCR was conducted well after well, so that positive pools were confirmed (Pool Nos. 10-5, 20-10, and 38-12).

Concerning these pools, incubation was conducted on plates subsequent to dilution. Using the non-active human PAF acetylhydrolase cDNA as a probe, cloning was attempted by hybridization. Labeling of the DNA was conducted with fluorescein 12-dUTP by PCR, and detection was carried out by ECL. Positive colonies were obtained from Pool

Nos. 10-5 and 20-10. Plasmid DNAs of these clones were replicated, and their base sequences were then determined. As a result, a human PAF acetylhydrolase cDNA represented by the formula (II) was obtained from the clones of Pool Nos. 10-5.

Based on the resultant cDNA, the amino acid sequence of the human PAF acetylhydrolase was determined. It was found to be represented by the formula (I). Up to 88%, the sequence was the same as that of the bovine PAF acetylhydrolase (346/392 amino acids). On the other hand, it was 42% identical to that of the plasma human PAF acetylhydrolase (162/392 amino acids).

Further, the above cDNA was incorporated in the pUC-PI-cl vector, introduced in *E. coli* W3110 and then subjected to expression. A band, which corresponded to a protein having a molecular weight of 42 kDa, was detected by SDS-PAGE.

The protein was investigated for activity. Human PAF acetylhydrolase activity was confirmed.

10

20			
25			
30			
35			
40			
45			
50			
<i>55</i>			

	[Sec	ıuer	ıce	Lls	tin	a 1										
5	SEQ.	II). N	o.:	1											
	SEQ.	LE	ENGT	H:	392											
	SEQ.	TY	PE:	am	ino	ac.	id									
10	MOLE	ECUI	LE I	YPE	: p	ept	ide			•						
	ORIG	SIN <i>I</i>	AL S	OUR	CE:											
15		OI	RGAN	IISM	ı: b	ovi	ne	(Bos	tau	ırus)	1					
	SEQU	JENO	CE D	ESC	RIP	TIO	N:									
20			Gly	Val	Asn	Gln	Ser	Val	Ser	Phe	Pro	Pro	Val	Thr	Gly	Pro
		1				5					10					15
25		His	Leu	Val	Gly	Cys	Gly	Asp	Val	Met	Glu	Gly	Gln	Ser	Leu	Gln
						20					25					30
		Gly	Ser	Phe	Phe	Arg	Leu	Phe	Туг	Pro	Cys	Gln	Glu	Ala	Glu	Glu
30						35					40					45
		Thr	Ser	Glu	Gln		Leu	Trp	He	Pro	Arg	Туг	Glu	Tyr	Cys	Ala
<i>35</i>						50					55					60
		Gly	Leu	Ala	Glu		Leu	Lys	Phe	Asn		Arg	Trp	Gly	Gly	
		,	DI		Ţ.	65				_	70					75
40		Leu	Phe	Asn	Leu		Val	Gly	Ser	Cys		Leu	Pro	Val	Ser	
			0 1		D.I.	80		_		_	85	_				90
45		ASN	Gly	Pro	Phe		Thr	Lys	Asp	Ser		Туг	Pro	Leu	He	
		Pho	con.	u; a	C1	95 Vat	01	41.	n.	4	100		m.	2		105
		1116	Ser	1115	пīЯ		игу	Ala	rne	Arg		val	lyr	ser	Ala	
50						110					115					120

	Cys	Met	Glu	Leu	Ala	Ser	Arg	Gly	Phe	Val	Val	Ala	Val	Pro	Glu
5					125					130					135
	His	Arg	Asp	Gly	Ser	Ala	Ala	Ala	Thr	Суѕ	Phe	Cys	Lys	Gln	Thr
					140					145					150
10	Dro	G Lu	Glo	l an	Gin	Dro	Acn	A en	Clu	Ala	Lou	Lve	Glu	Clu	Tro
	110	Glu	Ulu	VSII		110	пър	NSII	aia			цуз	U L U	uru	
15	Па	Dno	и; а	Ana	155	Ila	Clu	Clas	C)	160		Clu	Dha	т., ,	165
	rre	Pro	nis	Arg	170	116	ulu	GIU	чт		гаг	ulu	rne	lyr	
	4	A	т	C1		u: _	C.1	4	V - 1	175	C.1	C	U - 1	4	180
20	Arg	Asn	lyr	GIR		птѕ	GIN	Arg	Val		aru	Cys	Val	Arg	
	r	T	rı.	T	185	C1	W = 1	ጥե_	41-	190	Cl-	Ala	Va l	Lou	195
05	Leu	Lys	11e	Leu		Glu	Vai	Inr	АГа		uin	жта	Val	Leu	
25	71-	f	D	C1	200	ſ		T	V +	205	Lau	T	C1	C i u	210
	116	Leu	Pro	Gly		Leu	ASP	Leu	пеє		ьeu	Lys	Gly	Gly	
30		W = 1	C		215	41-	W = 1	W 4	C 1	220	C	DL.	C1	C1	225
	ASP	Val	2er	Arg		Ага	vai	met	Gly		ser	rne	uly	uly	
	m ı				230				a.1	235	0.1	D.1		0	240
35	Thr	Ala	lie	Leu		Leu	Ala	Lys	Glu		GIn	Phe	Arg	Cys	
	., ,	. 1			245			0.1		250	0.1			DL.	255
40	Val	Ala	Leu	Asp		lrp	Met	Phe	Pro		Glu	HIS	ASP	Pne	
	5	m i			260			D.I.	D.)	265			0.1	•	270
	Pro	Thr	Ala	Arg		Pro	He	Phe	Phe		Asn	Ala	Glu	гяз	
45					275					280	_		_		285
	Gin	Thr	Vai	Glu		Val	Asn	Leu			Lys	He	Cys	Asp	
					290					295					300
50	His	His	Gln	Ser		lle	He	Thr			Gly	Ser	Val	His	
					305					310					315

	Ser	Leu	Thr	Asp	Phe	Val	Phe	Val	Ala	Gly	Asn	Trp	He	Ser	Lys
_					320					325					330
5	Phe	Phe	Ser	Ser	His	Thr	Arg	Gly	Ser	Leu	Asp	Pro	Туг	Glu	Gly
					335					340					345
10	Gln	Glu	Thr	Val	Val	Arg	Ala	Met	Leu	Ala	Phe	Leu	Gln	Lys	His
					350					355					360
	Leu	Asp	Leu	Lys	Glu	Asp	Туг	Asp	Gln	Trp	Asn	Asn	Phe	Ιlе	Glu
15					365					370					375
	Cl v	Ila	Clv	Pro	Ser	Lau	The	Pro	GLv		Pro	His	His	Len	
20	ury	116	uly	110	380	be u	1 111	110	dry	385	110	1113	1113	БСЧ	390
	Ser	Leu			000										
	501	392													
25		003													
30															
35															
40															
.0															
45															
50															
50															
55															

5	SEQ.	ID.	No	.:	2											
	SEQ.	LEN	IGTH	: 1	665											
	SEQ.	TYI	?E:	nuc	lei	c a	cid									
10	MOLE	CULI	Е ТУ	PE:	cD	AN										
	ORIG	INA	L SC	URC	E:											
15		OR	GAN:	ISM:	bc	vin	e (Bos	taur	us)						
	SEQU	ENC	E D	ESCI	RIPT	NOI	í :									
20			G	TCGA	CCCA	CGCG	TCCG	AGTT	GACC	GTCT	'GGGC	тстт	TCTG	AGGG	TCAAC	50
	GTG	ACTC	GCCG	TCAA	GTTC	AGCC	ACTG	CCCA	AGTC	GTCG	TTCA	GTTC	AGTT	GGTT	ATGAG	110
25																
	ATG	GGG	GTC	AAC	CAG	TCT	GTG	AGC	TTC	CCA	ccc	GTC	ACG	GG A	ccc	155
30	Met	Gly	Val	Asn	Gln	Ser	Val	Ser	Phe	Pro	Pro	Val	Thr	Gly	Pro	
	1				5					10					15	
35	CAC	стс	GTA	GGC	TGT	GGG	GAT	GTG	A T G	GAG	GGT	CAG	AGC	CTC	CAG	200
	His	Leu	Val	Gly	Cys	Gly	Asp	Val	Met	Glu	Gly	Gln	Ser	Leu	Gln	
					20					25					30	
40																
	GGC	AGC	TTC	TTT	CGA	CTG	TTC	TAC	CCG	TGC	CAA	GAG	GCA	GAG	GAG	245
45	Gly	Ser	Phe	Phe	Arg	Leu	Phe	Tyr	Pro	Cys	Gln	Glu	Ala	Glu	Glu	
					35					40					45	
50	ACC	TCG	GAG	CAG	CCC	CTG	TGG	ATT	ccc	CGC	TAT	GAG	TAC	TGC	GCT	290
	Thr	Ser	Glu	Gln	Pro	Leu	Trp	Ile	Pro	Arg	Tyr	Glu	Tyr	Суs	Ala	
					50					55					60	
55																

	GGC	CTG	GCC	GAA	TAC	CTA	AAG	TTT	AAT	AAG	CGC	TGG	GGG	GGG	TTA	335
	Gly	Leu	Ala	Glu	Tyr	Leu	Lys	Phe	Asn	Lys	Arg	Trp	Gly	Gly	Leu	
5					65					70					75	
10	CTG	TTC	AAC	CTG	GGT	GTG	GGA	TCT	TGT	CGC	стс	CCT	GTT	AGC	TGG	380
70	Leu	Phe	Asn	Leu	Gly	Val	Gly	Ser	Cys	Arg	Leu	Pro	Val	Ser	Trp	
					80					85					90	
15																
	AAT	GGC	ссс	TTT	AAA	ACA	AAG	GAC	TCT	GGA	TAC	ccc	TTG	ATC	ATC	425
20	Asn	Gly	Pro	Phe	Lys	Thr	Lys	Asp	Ser	Gly	Tyr	Pro	Leu	He	Ile	
20					95					100					105	
25	TTC	TCT	CAT	GGC	ATG	GGA	GCC	TTC	AGG	ACA	GTG	TAT	TCA	GCC	TTC	470
	Phe	Ser	His	Gly	Met	Gly	Ala	Phe	Arg	Thr	Val	Туг	Ser	Ala	Phe	
					110					115					120	
30																
	TGC	ATG	GAG	CTG	GCT	TCT	CGT	GGC	TTT	GTG	GTT	GCT	GTA	CCA	GAG	515
<i>35</i>	Cys	Met	Glu	Leu	Ala	Ser	Arg	Gly	Phe	Val	Val	Ala	Val	Pro	Glu	
					125					130					135	
40	CAC	AGG	GAT	GGG	TCA	GCT	GCG	GCC	ACC	TGT	TTC	TGC	AAG	CAG	ACC	560
	His	Arg	Asp	Gly	Ser	Ala	Ala	Ala	Thr	Cys	Phe	Cys	Lys	Gln	Thr	
45					140					145					150	
	CCA	GAG	GAG	AAC	CAG	CCT	GAC	AAT	GAG	GCC	CTG	AAG	GAG	GAA	TGG	605
50	Pro	Glu	Glu	Asn	Gln	Pro	Asp	Asn	Glu	Ala	Leu	Lys	Glu	Glu	Trp	
					155					160					165	
55																

	ATC	CCC	CAC	CGT	CAA	ATT	GAG	GAA	GGG	GAG	AAG	GAA	TTC	TAT	GTT	650
5	Ile	Pro	His	Arg	Gln	Ιlе	Glu	Glu	Gly	Glu	Lys	Glu	Phe	Туг	Val	
					170					175					180	
10	CGG	AAC	TAC	CAG	GTG	CAT	CAG	AGG	GTG	AGC	GAG	TGT	GTG	AGG	GTG	695
	Arg	Asn	Tyr	Gln	Val	His	Gln	Arg	Val	Ser	-Glu	Cys	Val	Arg	Val	
15					185					190					195	
10																
	TTG	AAG	ATC	CTA	CAA	GAG	GTC	ACT	GCT	GGG	CAG	GCC	GTT	CTC	AAC	740
20	Leu	Lys	Ile	Leu	Gln	Glu	Val	Thr	Ala	Gly	Gln	Ala	Val	Leu	Asn	
					200					205					210	
25	ATC	TTG	ССТ	GGC	GGA	TTG	GAT	CTG	ATG	ACC	TTG	AAG	GGC	GGC	ATT	785
	Ile	Leu	Pro	Gly	Gly	Leu	Asp	Leu	Met	Thr	Leu	Lys	Gly	Gly	lle	
30					215					220					225	
			AGC													830
35	Asp	Val	Ser	Arg	Val	Ala	Val	Met	Gly	His	Ser	Phe	Gly	Gly		
					230					235					240	
40																0.55
			ATT													875
	Thr	Ala	lle	Leu	Ala	Leu	Ala	Lys	Glu			Phe	Arg	Cys		
45					245					250					255	
50			TTG													920
50	Val	Ala	Leu	Asp		Trp	Met	Phe	Pro		Glu	His	Asp	Phe		
					260					265					270	
55																

	CC	C AC(G GC	C CGA	A GGC	CCI	TA 7	C TTO	C TT	T AT	C AA1	r gen	r GA	G AA	G TTC	965
5	Pro	o Thr	Ala	a Arg	Gly	Pro	ı Ile	e Phe	e Pho	e Ile	e Asr	n Ala	Gli	ı Ly:	s Phe	
					275					280)				285	
10	CAC	G ACA	GTG	GAG	ACT	GTC	AAC	тто	ат (G AAA	A AAG	ATT	TGT	GAO	CAG	1010
	Glr	n Thr	Val	Glu	Thr	Val	Asn	Leu	Met	Lys	s Lys	Ile	Cys	. Asp	Gln	
15					290					295	5				300	
	CAC	CAC	CAA	TCC	AGG	ATC	ATA	ACT	GTO	стт	GGT	TCT	GTT	CAT	CGG	1055
20	His	His	Gln	Ser	Arg	Ile	Ile	Thr	Val	Leu	Gly	Ser	Val	His	Arg	
					305					310					315	
25																
20					TTT											1100
	Ser	Leu	Thr	Asp	Phe	Val	Phe	Val	Ala		Asn	Trp	He	Ser		
30					320					325					330	
	ፕፐር	ጥጥ ሮ	ፐርር	<i>አ ሮሞ</i>	CAC	100	CCT	CCA	400	ጥጥ	0.10	000	ጥልጥ	C	a am	1145
25					CAC											1145
35	1 110	1110	501	501	335	1111	лів	uly	sei	340	кър	rro	LYL	ulu	345	
										340					340	
40	CAG	GAG	ACC	GTG	GTG	CGG	GCC	ATG	TTG	GCC	TTC	CTG	CAG	AAG	C A T·	1190
					Val											
45					350					355				·	360	
45																
	CTT	GAC	CTG	AAA	GAG	GAC	TAT	GAC	CAG	TGG	AAC	AAC	TTC	ATT	GAA	1235
50					Glu											
					365					370					375	
55																

	GGC ATT GGC CCA TCA CTG ACC CCA GGG GCC CCA CAC CAT CTG TCC 1.	280
5	Gly Ile Gly Pro Ser Leu Thr Pro Gly Ala Pro His His Leu Ser	
	380 385 390	
10		
		36
	Ser Leu	
15	392	
	GGGGCCTGCCCAGGGATACCCTTGGCCTCCTATCAGGAAGTGATTGCCATGACCCTTCTG 13	96
20		
	TGTTGATTGAGAGGATATAATCACACTGCTGATTGGTAACGGGGTACTTGGATTCTCAGA 14	56
25		
	CTTGTCGATCTTAAACTCATGTTGGGACTTGGGTTCACTTACTGATGGGCAAACGGGCAT 15	16
	TCTCACCACTCACCCTTAATCCTATCCACAAAAAAAAAA	
30	TCTGAGGACTGAGCCTTAATGGTATGGAGAACAAACAGTGGGATGGGGCTGGGGAAGATC 157	'6
	TAAGCCCTAAGCTGGGCACTATGAGCCCTATAAACCCAACCAGCCAACACCCTCACCTTG 163	16
35		
	GGCAAGTATGACTTCTGCAGGTCGACTCT 1665	
40		
45		
40		
50		
55		

	SEQ.	ID.	No.	.: 3	3										
5	SEQ.	LEN	GTH:	39	2										
	SEQ.	TYP:	E: a	amir	no a	cid									
10	MOLEC	ULE	TYI	PE:	pep	tid	е								
	ORIGI	NAL	sot	JRCE	E:										
		ORG	ANIS	SM:	hum	an									
15	SEQUE	NCE	DES	SCR1	PTI	ON:									
		Q1	V - 1	4.55	Cln	°	V. I	C 1	D.L.		D	17 1	mı.	<i>a</i> .	
20	Met	Gly	vai	ASN	GIN	ser	vai	ыу	Phe	Pro	Pro	Val	Thr	Giy	Pro
	1				5					10					15
	His	Leu	Val	Gly	Cys	Gly	Asp	Val	Met	Glu	Gly	Gln	Asn	Leu	Gln
25					20					25					30
	Gly	Ser	Phe	Phe	Arg	Leu	Phe	Tyr	Pro	Суѕ	Gln	Lys	Ala	Glu	Glu
30					35					40					45
	Thr	Met	Glu	Gln		Leu	Trp	He	Pro		Tyr	Glu	Tyr	Cys	Thr
					50					55					60
35	Gly	Leu	Ala	Glu		Leu	Gln	Phe	Asn		Arg	Cys	Gly	Gly	Leu
					65					70					75
40	Leu	Phe	Asn	Leu		Val	Gly	Ser	Суѕ		Leu	Pro	Val	Ser	
40		0.1			80					85	_				90
-	Asn	Gly	Pro	Phe		Thr	Lys	Asp	Ser		Tyr	Pro	Leu	He	
45	n!	0		a.	95	a. l		5.1		100			_		105
	Phe	Ser	ніѕ	Gly		Gly	Ala	Phe	Arg		Leu	Tyr	Ser	Ala	
	2		0.1		110					115				_	120
50	Cys	met	Glu	Leu		Ser	Arg	Gly	Phe		Val	Ala	Val	Pro	
					125		. •			130	D.1		_	2.1	135
<i>55</i>	Hıs	Arg	Asp	Arg		Ala	Ala	Thr	Thr		Phe	Cys	Lys	GIn	
					140					145					150

	Pr	o Gl	u Gli	ı Ası	n Gla	n Pr	o Th	r As	n Gl	ı Sei	r Lei	u Gl	n Gl	u Gl	u Trp
5					155	5				160)				165
	11	e Pr	o Phe	e Arg	g Arg	g Va	l Gl	u Gla	u Gly	/ Glu	ı Lys	s Gl	u Ph	e Hi	s Val
					170)				175	ō				180
10	Ar	g As	n Pro	Glr	n Val	Hi	s Gli	n Arg	g Val	Ser	Glu	1 Су	s Le	u Ar	g Val
					185	i			.	190)				195
15	Le	u Ly:	s Ile	e Lei	ı Glr	Gl	u Val	l Thi	r Ala	Gly	Glr	n Th	r Va.	l Ph	e Asn
					200)				205	•				210
	Il	e Le	ı Pro	Gly	Gly	Le	ı Ası	Lei	ı Met	Thr	Leu	Ly:	s Gly	y Ası	ı Ile
20					215	i				220)				225
	Asp	Met	Ser	Arg	Val	Ala	Val	Met	Gly	His	Ser	Phe	e Gly	Gly	Ala
					230					235					240
25	Thr	Ala	Ile	Leu	Ala	Leu	Ala	Lys	Glu	Thr	Gln	Phe	Arg	Cys	
					245					250					255
30	Val	Ala	Leu	Asp	Ala	Trp	Met	Phe	Pro	Leu	Glu	Arg	Asp	Phe	Tyr
					260					265					270
	Pro	Lys	Ala	Arg	Gly	Pro	Val	Phe	Phe	He	Asn	Thr	Glu	Lys	Phe
35					275					280					285
	Gln	Thr	Met	Glu	Ser	Val	Asn	Leu	Met	Lys	Lys	He	Суѕ	Ala	Gln
40					290					295					300
	His	Glu	Gln	Ser	Arg	Ile	Ile	Thr	Val	Leu	Gly	Ser	Val	His	Arg
					305					310					315
45	Ser	Gln	Thr	Asp	Phe	Ala	Phe	Val	Thr	Gly	Asn	Leu	Пlе	Gly	Lys
					320					325					330
50	Phe	Phe	Ser	Thr	Glu	Thr	Arg	Gly	Ser	Leu	Asp	Pro	Tyr	Glu	Gly
					335					340					345

	Gln	Glu	Val	Met	Val	Arg	Ala	Met	Leu	Ala	Phe	Leu	Gln	Lys	His
5					350					355					360
	Leu	Asp	Leu	Lys	Glu	Asp	Tyr	Asn	Gln	Trp	Asn	Asn	Leu	Ile	Glu
					365					370					375
10	Gly	Ιlе	Gly	Pro	Ser	Leu	Thr	Pro	Gly	Ala	Pro	His	His	Leu	Ser
					380				•	385					390
15	Ser	Leu													
		392													
20															
25															
20															
30															
35															
40															
45															
50															
55															

_	SEQ	. II). N	ío .:	4											
5	SEQ	. LI	ENGI	H:	25 5	9										
	SEQ	. ту	PE:	nu	cle	ic	acio	i								
10	MOL	ECUI	LE I	YPE	: c	DNA										
	ORI	GIN <i>I</i>	AL S	OUR	CE:											
15		OI	RGAN	IISM	: h	uma	n									
10	SEQ	UENC	CE D	ESC	RIP	TIO	N:									
20							GC	AGGT	CTCG	ACCC	ACGC	GTCC	GCGG	ACGC	GTGGG	35
	CGA	GAAG	ፐርሮፕ	ፐሮሮ A	AGCG	ፐርርል	ጥጥ ጥ	CACC	сттс	CAAA	СТАС	GACG	ACCA	AAGG	GCCAC	95
25	ou.	unnu	1001		naca	1001		unuc	CIIU	unnn	CINC	unçu	neen	MNGG	deche	50
	GGG	TTCC	TGGG	TCGT	TTCT	CATT	TCCG	TCGA	GTTA	AACG	TCTG	GGGC	TGCT	TCTG	AGGAA	155
30	TCA	GCTT	GGCT	GGCC	AGCA	AGTT	CAGC	TCCG	GCAA	GTCA	TTTG	ATTC	ACCC	GGTG	ATGAA	215
35	ATG	GGG	GTC	AAC	CAG	TCT	GTG	GGC	TTT	CCA	CCT	GTC	ACA	GGA	CCC	260
	Met	Gly	Val	Asn	Gln	Ser	Val	Gly	Phe	Pro	Pro	Val	Thr	Gly	Pro	
	1				5					10					15	
40																
										GAG						305
45	His	Leu	Val	Gly		Gly	Asp	Val	Met	Glu	Gly	Gln	Asn	Leu		
					20					25					30	
50	GGG	A G C	<u>ቸ</u> ፐር	ፐፐፕ	ርር አ	ሮፑር	ፐፑር	TAC	ccc	TGC	CAA	AAC	C.C.A	CAC	CAG	350
										Cys						550
	~ 1 J				35	<u> L</u> Cu	1116	1 7 1	110	40	u I II	п13	a	ulu	45	

	ACC	ATG	GAG	CAG	ccc	CTG	TGG	ATT	CCC	CGC	TAT	GAG	TAC	TGC	ACT	395
5	Thr	Met	Glu	Gln	Pro	Leu	Trp	Ile	Pro	Arg	Туг	Glu	Tyr	Cys	Thr	
					50					55					60	
10	GGC	CTG	GCC	GAG	TAC	CTG	CAG	TTT	AAT	AAG	CGC	TGC	GGG	GGC	TTG	440
	Gly	Leu	Ala	Glu	Tyr	Leu	Gln	Phe	Asn	Ľys	Arg	Cys	Gly	Gly	Leu	
15					65					70					75	
00	CTG	TTC	AAC	CTG	GCG	GTG	GGA	TCT	TGT	CGC	CTG	ССТ	GTT	AGC	TGG	495
20	Leu	Phe	Asn	Leu	Ala	Val	Gly	Ser	Cys	Arg	Leu	Pro	Val	Ser	Trp	
					80					85					90	
25																
	ААТ	GGC	CCC	TTT	AAG	ACA	AAG	GAC	TCT	GGA	TAC	CCC	TTG	ATC	ATC	540
30	Asn	Gly	Pro	Phe	Lys	Thr	Lys	Asp	Ser	Gly	Tyr	Pro	Leu	Ile	lle	
30					95					100					105	
	mm a	m a a	a.m		am .											
35										ACT						585
	Phe	Ser	HIS	Gly		Gly	Ala	Phe	Arg	Thr	Leu	Туг	Ser	Ala		
40					110					115					120	
40	TGC	ATG	GAG	CTG	GCC	тсь	ССТ	GGC	ፐፐፐ	GTG	стт	GCT	стс	$CC\Delta$	GAG	630
										Val						000
45	-				125		8	,	0	130					135	
50	CAC	AGG	GAC	CGG	TCA	GCG	GCA	ACC	ACC	ТАТ	TTC	TGC	A A G	CAG	GCC	675
	His	Arg	Asp	Arg	Ser	Ala	Ala	Thr	Thr	Tyr	Phe	Cys	Lys	Gln	Ala	
					140					145					150	
55																

	CCA	. GAA	GAG	AAC	CAG	CCC	ACC	ААТ	GAA	TCC	CTG	CAG	GAC	GAA	TGG	720
5	Pro	Glu	Glu	Asn	Gln	Pro	Thr	Asn	Glu	Ser	Leu	Glm	Glu	Glu	Trp	
					155					160	1				165	
10																
	ATC	CCT	TTC	CGT	CGA	GTT	GAG	GAA	GGG	GAG	AAG	G A A	TTT	CAT	GTT	765
	Ile	Pro	Phe	Arg	Arg	Val	Glu	Glu	Gly	Ğlu	Lys	Glu	Phe	His	Val	
15					170					175					180	
20	CGG	AAT	ccc	CAG	GTG	CAT	CAG	CGG	GTA	AGC	GAG	TGT	TTA	CGG	GTG	810
20	Arg	Asn	Pro	Gln	Val	His	Gln	Arg	Val		Glu	Суѕ	Leu	Arg	Val	
					185					190					195	
25																
											CAG					855
	Leu	Lys	He	Leu		Glu	Val	Thr	Ala		Gln	Thr	Val	Phe		
30					200					205					210	
																2.22
35											TTG					900
	Ile	Leu	Pro	Gly		Leu	Asp	Leu	Met		Leu	Lys	Gly	Asn		
					215					220					225	
40															000	0.45
											TCA					945
45	Asp	Met	Ser			Ala	Val	Met	Gly		Ser	Phe	Gly	Gly		
40					230					235					240	
																0.00
50											CAA					990
	Thr	Ala	lle			Leu	Ala	Lys			Gln	Phe	Arg	Суs		
					245					250					255	
55																

5	GTG GCT CTG GAT GCT TGG ATG TTT CCT CTG GAA CGT GAC TTT TAC 10:	35
	Val Ala Leu Asp Ala Trp Met Phe Pro Leu Glu Arg Asp Phe Tyr	
	260 265 270	
10		
	CCC AAG GCC CGA GGA CCT GTG TTC TTT ATC AAT ACT GAG AAA TTC 108	0
15	Pro Lys Ala Arg Gly Pro Val Phe Phe Ile Asn Thr Glu Lys Phe	
70	275 280 285	
00	CAG ACA ATG GAG AGT GTC AAT TTG ATG AAG AAG ATA TGT GCC CAG 112	5
20	Gln Thr Met Glu Ser Val Asn Leu Met Lys Lys Ile Cys Ala Gln	
	290 295 300	
25		
	CAT GAA CAG TCT AGG ATC ATA ACC GTT CTT GGT TCT GTT CAT CGG 1170	
	His Glu Gln Ser Arg Ile Ile Thr Val Leu Gly Ser Val His Arg	
30	305 310 315	
35	AGT CAA ACT GAC TTT GCT TTT GTG ACT GGC AAC TTG ATT GGT AAA 1215	
	Ser Gln Thr Asp Phe Ala Phe Val Thr Gly Asn Leu Ile Gly Lys	
	320 325 330	
40		
	TTC TTC TCC ACT GAA ACC CGT GGG AGC CTG GAC CCC TAT GAA GGG 1260	
45	Phe Phe Ser Thr Glu Thr Arg Gly Ser Leu Asp Pro Tyr Glu Gly	
.0	335 340 345	
50	CAG GAG GTT ATG GTA CGG GCC ATG TTG GCC TTC CTG CAG AAG CAC 1305	
	Gln Glu Val Met Val Arg Ala Met Leu Ala Phe Leu Gln Lys His	
E E	350 355 360	
55		

	CTC	GAC	CTG	AAA	GAA	GAC	TAT	AAT	CAA	TGG	AAC	AAC	CTT	ATT	GAA	1350
5	Leu	Asp	Leu	Lys	Glu	Asp	Tyr	Asn	Gln	Trp	Asn	Asn	Leu	Ile	Glu	
					365					370					375	
10																
				CCG												1395
15	Gly	Ile	Gly	Pro		Leu	Thr	Pro	Gly		Pro	His	His	Leu	Ser	
10					380					385					390	
20	AGC	CTG	TAG	GCAC	CAACT	'GGCC	ATTT	'GT A A	AGTC	CACTT	CAGO	CAAG	:TTTT	CAT1	TGGG	1452
	Ser	Leu	*													
		392														
25																
	AGC	TACC	CAAG	GGCA	CCCA	TGAG	CTCC	rat c	A A G A	A G T G	ATCA.	ACGT	GACC	CCTT	TTCAC	1512
30																
	AGA	TTGA	AAGG	TGTA.	ATCA	CACT	GCTG	CTTG	GATA	A C T G (GGTA	CTTT	GATC	TTAG	ATTTG	1572
<i>35</i>	ልፐሮ	ፐፐልል	ልልፐሮ	& CTT'	ፕሮሮር	A C T G (ርርልፐ፤	ጉቦተጥ	rccti	G A TT(GACA	A A C A	GACT	ፐፐሮፕ	GGGAC	1632
	AIC	IIAA	AAI C	ncii	1 4 4 4 7	ncrui	uuni		iuci	unii	non	mon	unci	1101	addiio	1002
	СТТ	GATG	GAGT	GGGG.	AACA	AGCA	GTAGA	A GT G (GGAC	rggg(GGAG	ACCC.	AGGC	cccg	GGCTG	1692
40																
	AGC.	ACTG'	TGAG	GCCT	GGAT	GT GAA	AGACT	rcag(CCCAC	GCGAA	A G C T (CATT	CCCT	TACC	CCCGG	1752
45																
	CCA	GT G C	rger	GCTT	CAGT	GGAAC	GAGAT	(GAA	GCCAA	A A G G A	CAG	AAT G	A A A A	TCCC'	FACCT	1812
50												~ -		n a	T0000	1070
	TCA	G A G A (CTCT	AGCC	CAGCO	CCAA(CACCA	ATCT(CTTC(CTACC	TCT(CAGCO	CTTC'	rccc'	rcccc	1872
55																

	AGGGCCACTTGTTGAAGTCTGAGCACTTTATGTAAATTTCTAGGTGTGAGCCGTGATCAC	1932
5	ATTTTCTATTTATTTCCAAGTCTTCTCATTGTATGGAACATAGTACTACTTATACTTACA	1992
10	GTAGTAAGTTATACTTGTGAGCCCACAGAGTGGCAGACAGCATGGCTCTCACAGCACAGG	2052
15	GAGAAAAACTGAGGTACACAGAGGTACCTCAGAAGCTCTGGATGTCTTTGGGGGTTTTGC	2112
	TAAGTGTATCTTGATAGGAAACAACAAAAGCAGGTTGAGATGGGGAAGATGACAGAACAA	2172
20	CAGTGTTAAATGGCCATTTGCACAGGCCTTTGCCACAACAGAGAAGTAGTTTGGTCAGCT	2232
25	AAAACTCAGCTGCAGCCTGGACAGTAGAGCGAGACCCCATCTTAAAAAATAAAGAAGGCTG	2292
30	GGCGTGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGC	2352
or.	TAAGGCCAGGAGTTCAAGACCACCTGGCCAACATGGTGAAACCCCCGTCTCTACTAAAAAT	2412
35	ACAAAAATTAGCCTGGCGTAATGGCAGGCGCCTATAATCCCAGCTACTCAGGAGGCTGA	2472
40	AGCAGAAGAATCACTTGAACCTAGGAGGCGGAGGTTGCAGTGAGTCAAGATCGCGCCACT	2532
45	GCACTCCAGCCTGGGTGACAGAGCAAGACTCTGTCTT 2569	
50		

SEQUENCE LISTING

	(1) GENI	ERAL	INFO	RMAT	'ION	:											
<i>5</i>	(i	(E (C	A) NA B) ST C) CI E) CC	ME: TREET TY: OUNTE	OSAL OSAL	KA JAPAN	Doji 1	TED imaha		2-cho	ome,	Kita	a-ku,	, Osa	aka-s	shi,	
	(ii)	TIT	LE C	F IN GENE	VENT	ION:	PL#	TELE	T AC	CTIVA	TING	FAC	CTOR	ACET	YLHY	DROLA	SE,
15	(iii)	COM (A	PUTE) ME	R RE DIUM MPUT	ADAB TYP	LE F E: F	ORM: lopp	y di compa PC-D	tibl		os.						
20		(D) so	FTWA	RE:	Pate	ntIn	Rel	ease	#1.	0, v	ersi	on #	1.30	(EP	0)	
	(2) INFO	RMAT	ION	FOR	SEQ	ID N	o: 1	:									
25		SEQ (A (B (C	UENC) LE) TY) ST	E CH NGTH PE: RAND	ARAC : 39 amin EDNE	TERI	STIC ino id sing	s: acid	s								
30		MOL ORI	GINA	L SO	URCE												
<i>35</i>	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 1:	•						
	Met 1	Gly	Val	Asn	Gln 5	Ser	Val	Gly	Phe	Pro 10	Pro	Val	Thr	Gly	Pro 15	His	
40	Leu	Val	Gly	Сув 20	Gly	Asp	Val	Met	Glu 25	Gly	Gln	Asn	Leu	Gln 30	Gly	Ser	
	Phe	Phe	Arg 35.	Leu	Phe	Tyr	Pro	Cys 40	Gln	Lys	Ala	Glu	Glu 45	Thr	Met	Glu	
45	Gln	Pro 50	Leu	Trp	Ile	Pro	Arg 55	Tyr	Glu	Tyr	Cys	Thr 60	Gly	Leu	Ala	Glu	
	Tyr 65	Leu	Gln	Phe	Asn	Lys 70	Arg	Cys	Gly	Gly	Leu 75	Leu	Phe	Asn	Leu	Ala 80	
50	Val	Gly	Ser	Cys	Arg 85	Leu	Pro	Val	Ser	Trp 90	Asn	Gly	Pro	Phe	Lys 95	Thr	
	Lys	Asp	Ser	Gly 100	Туr	Pro	Leu	Ile	Ile 105	Phe	Ser	His	Gly	Leu 110	Gly	Ala	
<i>55</i>	Phe	Arg	Thr 115	Leu	Tyr	Ser	Ala	Phe 120	Cys	Met	Glu	Leu	Ala 125	Ser	Arg	Gly	

	Phe	val 130		Ala	Val	Pro	Glu 135	His	Arg	Asp	Arg	Ser 140	Ala	Ala	Thr	Thr
5	Tyr 145	Phe	Cys	Lys	Gln	Ala 150	Pro	G1u	G1u	Asn	Gln 155	Pro	Thr	Asn	Glu	Ser 160
	Leu	Gln	Glu	Glu	Trp 165	Ile	Pro	Phe	Arg	Arg 170	Val	Glu	Glu	Gly	Glu 175	Lys
10	Glu	Phe	His	Val 180	Arg	Asn	Pro	Gln	Val 185	His	Gln	Arg	Val	Ser 190	Glu	Cys
	Leu	Arg	Val 195	Leu	Lys	Ile	Leu	Gln 200	Glu	Val	Thr	Ala	Gly 205	Gln	Thr	Val
15	Phe	Asn 210	Ile	Leu	Pro	Gly	Gly 215	Leu	Asp	Leu	Met	Thr 220	Leu	Lys	Gly	Asn
	11e 225	Asp	Met	Ser	Arg	Val 230	Ala	Val	Met	Gly	His 235	Ser	Phe	Gly	Gly	Ala 240
20	Thr	Ala	Ile	Leu	Ala 245	Leu	Ala	Lys	Glu	Thr 250	Gln	Phe	Arg	Сув	Ala 255	Val
	Ala	Leu	Asp	Ala 260	Trp	Met	Phe	Pro	Leu 265	Glu	Arg	Asp	Phe	Tyr 270	Pro	Lys
25	Ala	Arg	Gly 275	Pro	Val	Phe	Phe	11e 280	Asn	Thr	Glu	Lys	Phe 285	Gln	Thr	Met
	Glu	Ser 290	Val	Asn	Leu	Met	Lys 295	Lys	Ile	Cys	Ala	Gln 300	His	Glu	Gln	Ser
30	A rg 305	Ile	Ile	Thr	Val	Leu 310	Gly	Ser	Val	His	Arg 315	Ser	Gln	Thr	Asp	Phe 320
	Ala	Phe	Val	Thr	Gly 325	Asn	Leu	Ile	Gly	1330	Phe	Phe	Ser	Thr	Glu 335	Thr
35	·	Gly		340	_		_		345					350	-	
		Leu -	355				-	360		_		_	365			
40		370					375					380	Leu	Thr	Pro	GIA
	385					390										
45	(2) INFO	RMATI SEOU														
	(1)	(A)	LEN TYI	IGTH: PE: r	255 ucle	9 ba	se p cid	airs	5							
50			TOE				own									
		MOLE														
55	(VI)	ORIC (A)	ORC				1									

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

	GCAGGTCTCG	ACCCACGCGT	CCGCGGACGC	GTGGGCGAGA	AGTGCTTCCA	AGCGTCCATT	60
5	TTGAGCCTTG	GAAACTACGA	CGACCAAAGG	GCCACGGGTT	CCTGGGTCGT	TTCTCATTTC	120
	CGTCGAGTTA	AACGTCTGGG	GCTGCTTCTG	AGGAATCAGC	TTGGCTGGCC	AGCAAGTTCA	180
	GCTCCGGCAA	GTCATTTGAT	TCACCCGGTG	ATGAAATGGG	GGTCAACCAG	TCTGTGGGCT	240
10	TTCCACCTGT	CACAGGACCC	CACCTCGTAG	GCTGTGGGGA	TGTGATGGAG	GGTCAGAATC	300
	TCCAGGGGAG	CTTCTTTCGA	CTCTTCTACC	CCTGCCAAAA	GGCAGAGGAG	ACCATGGAGC	360
	AGCCCCTGTG	GATTCCCCGC	TATGAGTACT	GCACTGGCCT	GGCCGAGTAC	CTGCAGTTTA	420
15	ATAAGCGCTG	CGGGGGCTTG	CTGTTCAACC	TGGCGGTGGG	ATCTTGTCGC	CTGCCTGTTA	480
	GCTGGAATGG	CCCCTTTAAG	ACAAAGGACT	CTGGATACCC	CTTGATCATC	TTCTCCCATG	540
	GCCTAGGAGC	CTTCAGGACT	TTGTATTCAG	CCTTCTGCAT	GGAGCTGGCC	TCACGTGGCT	600
20	TTGTGGTTGC	TGTGCCAGAG	CACAGGGACC	GGTCAGCGGC	AACCACCTAT	TTCTGCAAGC	660
	AGGCCCCAGA	AGAGAACCAG	CCCACCAATG	AATCGCTGCA	GGAGGAATGG	ATCCCTTTCC	720
	GTCGAGTTGA	GGAAGGGGAG	AAGGAATTTC	ATGTTCGGAA	TCCCCAGGTG	CATCAGCGGG	780
25	TAAGCGAGTG	TTTACGGGTG	TTGAAGATCC	TGCAAGAGGT	CACTGCTGGG	CAGACTGTCT	840
	TCAACATCTT	GCCTGGTGGC	TTGGATCTGA	TGACTTTGAA	GGGCAACATT	GACATGAGCC	900
	GTGTGGCTGT	GATGGGACAT	TCATTTGGAG	GGGCCACAGC	TATTCTGGCT	TTGGCCAAGG	960
30	AGACCCAATT	TCGGTGTGCG	GTGGCTCTGG	ATGCTTGGAT	GTTTCCTCTG	GAACGTGACT	1020
	TTTACCCCAA	GGCCCGAGGA	CCTGTGTTCT	TTATCAATAC	TGAGAAATTC	CAGACAATGG	1080
	AGAGTGTCAA	TTTGATGAAG	AAGATATGTG	CCCAGCATGA	ACAGTCTAGG	ATCATAACCG	1140
35	TTCTTGGTTC	TGTTCATCGG	AGTCAAACTG	ACTTTGCTTT	TGTGACTGGC	AACTTGATTG	1200
	GTAAATTCTT	CTCCACTGAA	ACCCGTGGGA	GCCTGGACCC	CTATGAAGGG	CAGGAGGTTA	1260
	TGGTACGGGC	CATGTTGGCC	TTCCTGCAGA	AGCACCTCGA	CCTGAAAGAA	GACTATAATC	1320
40	AATGGAACAA	CCTTATTGAA	GGCATTGGAC	CGTCGCTCAC	CCCAGGGGCC	CCCCACCATC	1380
	TGTCCAGCCI	GTAGGCACAA	CTGGCCATTI	GTAAAGTCAC	TTCAGCCAAG	TTTTCATTTG	1440
	GGAGCTACCO	C AAGGGCACCC	ATGAGCTCCT	ATCAAGAAGT	GATCAACGTG	ACCCCTTTTC	1500
45	ACAGATTGA	A AGGTGTAATC	ACACTGCTGC	TTGGATAACT	GGGTACTTTG	ATCTTAGATT	1560
	TGATCTTAAA	ATCACTTTGG	GACTGGGATC	CCTTGCTGAT	TGACAAACAG	ACTTTCTGGG	1620
						GGCCCCGGGC	1680
50	TGAGCACTG	r GAGGCCTGGA	TGTGAAGACT	CAGCCCAGCG	AAGCTCATTC	CCTTACCCCC	1740
						AAATCCCTAC	1800
						TTCTCCCTCC	1860
55	CCAGGGCCAG	C TTGTTGAAGT	CTGAGCACTI	TATGTAAATT	TCTAGGTGTG	AGCCGTGATC	1920

	ACATTTTC	ra Ti	TATT	TCC	A AG	rct t	CTCA	TTG'	ratgo	GAA (CATAC	STACT	ra C	rtat?	ACTT	A	1980
	CAGTAGTA	AG TI	ATA!	CTTG	r GA	gccc.	ACAG	AGT	GGCA	GAC A	AGCAT	rggc:	rc T	CACA	GCAC	A	2040
5	GGGAGAAA	AA CI	rgago	STACA	A CA	GAGG'	PACC	TCA	GAAG	CTC :	rggan	rgtci	T T	GGGG	GTTT:	ľ	2100
	GCTAAGTG'	ra to	CTTGA	ATAGO	G AA	ACAA	CAAA	AGC	AGGT	rga (GATG (GGA1	AG A	rgaci	AGAA	2	2160
	AACAGTGT	ra a <i>t</i>	ATGGO	CCATT	r TG	CACA	GGCC	TTT	GCCA	CAA (CAGA	GAAGT	ra G	rttg	GT CA	3	2220
10	CTAAAACT	CA GO	CTGC	AGCC	r GG	ACAG'	FAGA	GCG	AGAC	ecc i	ATCT1	LAAA1	AA T	AAAG	AAGG	2	2280
	TGGGCGTG	GT GC	GCTC#	ATGC	C TG	TAAT	CCCA	GCA	CTTTC	GGG 7	AGGC	CAAGO	GC A	GCA	GATC	A	2340
	CTTAAGGC	CA GO	GAGT'I	CAAC	G AC	CACC'	rggc	CAA	CATG	STG 2	AAAC	CCCGI	C T	CTAC	raaa <i>i</i>	A	2400
15	ATACAAAA	AA TI	ragco	CTGG	C GT	AATG	GCAG	GCG	CCTAT	CAA !	rcccz	AGCT <i>I</i>	AC TO	CAGG	AGGC:	r	2460
	GAAGCAGA	AG AZ	ATCAC	CTTG/	A AC	CTAG(GAGG	CGG	AGGTT	rgc i	AGTG	AGTC	AA G	ATCG	CGCC	A	2520
	CTGCACTC	CA GO	CTGC	GTG?	A CAC	GAGC	AAGA	CTC	rgrci	rT							2559
20	(2) INFO	RMATI	ON E	FOR S	SEQ :	ID N	0: 3	:									
25	(i) (ii)	(B) (C) (D)	LEN TYP STF TOP	NGTH: PE: 6 RANDI POLOC	: 39: amino EDNE: GY: (2 am: 5 ac: 55: : unkno	ino a id sing:	acid	5								
30	(vi)	(A)	ORG	SANIS	SM: 1	oovi			tauri								
		SEQU									Bro	T7 ~ 1	mh∽	C1 11	Pro	uic	
35	1	GIĀ	vai	ASII	5	Ser	vai	per	FIIC	10	FIU	vaı	1111	Gry	15	1115	
	Leu	Val	Gly	Cys 20	Gly	Asp	Val	Met	G1u 25	Gly	Gln	Ser	Leu	Gln 30	Gly	Ser	
40	Phe	Phe	Arg 35	Leu	Phe	Tyr	Pro	Cys 40	Gln	Glu	Ala	Glu	Glu 45	Thr	Ser	Glu	
	G1n	Pro 50	Leu	Trp	Ile	Pro	Arg 55	Tyr	G1u	Tyr	Cys	Ala 60	Gly	Leu	Ala	Glu	
45	Tyr 65	Leu	Lys	Phe	Asn	Lys 70	Arg	Trp	Gly	Gly	Leu 75	Leu	Phe	Asn	Leu	Gly 80	
	Val	Gly	Ser	Cys	Arg 85	Leu	Pro	Val	Ser	Trp 90	Asn	Gly	Pro	Phe	Lys 95	Thr	
50	Lys	Asp	Ser	Gly 100	Tyr	Pro	Leu	Ile	11e 105	Phe	Ser	His	Gly	Met 110	Gly	Ala	
	Phe	Arg	Thr 115	Val	Tyr	Ser	Ala	Phe 120	Cys	Met	Glu	Leu	Ala 125	Ser	Arg	Gly	
55	Phe	Val 130	val	Ala	Val	Pro	Glu 135	His	Arg	Asp	Gly	Ser 140	Ala	Ala	Ala	Thr	

	Cys 145	Phe	сув	Lys	Gln	Thr 150		Glu	Glu	Asn	Gln 155		Asp	Asn	Glu	Ala 160
5	Leu	Lys	Glu	Glu	Trp 165		Pro	His	Arg	Gln 170	Ile	Glu	Glu	Gly	Glu 175	Lys
	Glu	Phe	Tyr	Val 180		Asn	Tyr	Gln	Val 185	His	Gln	Arg	Val	Ser 190		Cys
10	Val	Arg	Val 195	Leu	Lys	Ile	Leu	Gln 200	Glu	Val	Thr	Ala	Gly 205	Gln	Ala	Val
	Leu	Asn 210	Ile	Leu	Pro	Gly	Gly 215	Leu	Asp	Leu	Met	Thr 220	Leu	Lys	Gly	Gly
15	Ile 225	Asp	Val	Ser	Arg	Va1 230	Ala	Val	Met	Gly	His 235	Ser	Phe	Gly	Gly	Ala 240
	Thr	Ala	Ile	Leu	Ala 245	Leu	Ala	Lys	Glu	Met 250	Gln	Phe	Arg	Сув	Ala 255	Val
20	Ala	Leu	Asp	Ala 260	Trp	Met	Phe	Pro	Leu 265	Glu	His	Asp	Phe	туr 270	Pro	Thr
	Ala	Arg	Gly 275	Pro	Ile	Phe	Phe	Ile 280	Asn	Ala	Glu	Lys	Phe 285	Gln	Thr	Val
25	Glu	Thr 290	Val	Asn	Leu	Met	Lys 295	Lys	Ile	Cys	Asp	Gln 300	His	His	Gln	Ser
	Arg 305	Ile	Ile	Thr	Val	Leu 310	Gly	Ser	Val	His	Arg 315	Ser	Leu	Thr	Asp	Phe 320
30	Val	Phe	Val	Ala	Gly 325	Asn	Trp	Ile	Ser	Lys 330	Phe	Phe	Ser	Ser	His 335	Thr
	Arg	Gly	Ser	Leu 340	Asp	Pro	Tyr	Glu	Gly 345	Gln	Glu	Thr	Val	Val 350	Arg	Ala
35	Met	Leu	Ala 355	Phe	Leu	Gln	Lys	His 360	Leu	Asp	Leu	Lys	G1u 365	Asp	Tyr	Asp
	Gln	Trp 370	Asn	Asn	Phe		Glu 375	Gly	Ile	Gly		Ser 380	Leu	Thr	Pro	Gly
40	385					390	Ser	Leu								
	(2) INFOR															
45	(1)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	166 ucle DNES	5 ba ic a	cid ingl	airs								
	(ii)	MOLE	CULE	TYP	E: c	DNA										
50	(vi)						e (B	os ta	auru	s)						
55	(xi)	SEQU:	ENCE	DES	CRIP'	rion	: SE	Q ID	NO:	4:						

	GTCGACCCA	C GCGTCCGAG	T TGACCGTCT	G GGCTGTTTC	T GAGGGTCAA	C GTGACTCGCC	60
	GTCAAGTTC	A GCCACTGCC	C AAGTCGTCG	T TCAGTTCAG	T TGGTTATGA	G ATGGGGGTCA	120
5	ACCAGTCTG	F GAGCTTCCC	A CCCGTCACG	G GACCCCACC	T CGTAGGCTG	r ggggatgtga	180
	TGGAGGGTC	A GAGCCTCCÁ	G GGCAGCTTC	T TTCGACTGT	T CTACCCGTG	CAAGAGGCAG	240
10	AGGAGACCTO	C GGAGCAGCC	CTGTGGATT	C CCCGCTATG.	A GTACTGCGCT	GGCCTGGCCG	300
10	AATACCTAAA	GTTTAATAA	G CGCTGGGGG	G GGTTACTGT	T CAACCTGGGT	GTGGGATCTT	360
	GTCGCCTGCC	TGTTAGCTGC	AATGGCCCCT	TTAAAACAA	A GGACTCTGGA	TACCCCTTGA	420
15	TCATCTTCTC	TCATGGCATC	GGAGCCTTC	GGACAGTGT	A TTCAGCCTTC	TGCATGGAGC	480
	TGGCTTCTCG	TGGCTTTGTG	GTTGCTGTAC	CAGAGCACAC	G GGATGGGTCA	GCTGCGGCCA	540
	CCTGTTTCTG	CAAGCAGACC	CCAGAGGAGA	ACCAGCCTG	A CAATGAGGCC	CTGAAGGAGG	600
20	AATGGATCCC	CCACCGTCAA	ATTGAGGAAG	GGGAGAAGG <i>I</i>	ATTCTATGTT	CGGAACTACC	660
	AGGTGCATCA	GAGGGTGAGC	GAGTGTGTGA	GGGTGTTGA	GATCCTACAA	GAGGTCACTG	720
25	CTGGGCAGGC	CGTTCTCAAC	ATCTTGCCTG	GCGGATTGGA	TCTGATGACC	TTGAAGGGCG	780
25	GCATTGACGT	GAGCCGTGTG	GCTGTAATGG	GACATTCATT	TGGAGGGGCC	ACAGCTATTC	840
	TGGCCTTGGC	CAAGGAGATG	CAATTTAGGT	GTGCTGTGGC	TTTGGACGCT	TGGATGTTTC	900
30	CTCTGGAGCA	TGACTTTTAC	CCCACGGCCC	GAGGCCCTAT	CTTCTTTATC	AATGCTGAGA	960
	AGTTCCAGAC	AGTGGAGACT	GTCAACTTGA	TGAAAAAGAT	TTGTGACCAG	CACCACCAAT	1020
	CCAGGATCAT	AACTGTCCTT	GGTTCTGTTC	ATCGGAGTCT	AACCGACTTT	GTTTTTGTGG	1080
35	CTGGTAACTG	GATTAGTAAA	TTCTTCTCCA	GTCACACCCG	TGGAAGCTTG	GACCCCTATG	1140
	AAGGTCAGGA	GACCGTGGTG	CGGGCCATGT	TGGCCTTCCT	GCAGAAGCAT	CTTGACCTGA	1200
10	AAGAGGACTA	TGACCAGTGG	AACAACTTCA	TTGAAGGCAT	TGGCCCATCA	CTGACCCCAG	1260
40	GGGCCCCACA	CCATCTGTCC	AGCCTGTAGG	CACAACTGGT	CATCTTGTGG	AAGGTCCCTG	1320
	AGCTGAGTTC	CCGTGTGGGG	CCTGCCCAGG	GATACCCTTG	GCCTCCTATC	AGGAAGTGAT	1380
45	TGCCATGACC	CTTCTGTGTT	GATTGAGAGG	ATATAATCAC	ACTGCTGATT	GGTAACGGGG	1440
	TACTTGGATT	CTCAGACTTG	TCGATCTTAA	ACTCATGTTG	GGACTTGGGT	TCACTTACTG	1500
	ATGGGCAAAC	GGGCATTCTG	AGGACTGAGC	CTTAATGGTA	TGGAGAACAA	ACAGTGGGAT	1560
50	GGGGCTGGGG	AAGATCTAAG	CCCTAAGCTG	GGCACTATGA	GCCCTATAAA	CCCAACCAGC	1620
	CAACACCCTC	ACCTTGGGCA	AGTATGACTT	CTGCAGGTCG	ACTCT		1665

Claims

1. A protein having activities of a human platelet activating factor acetylhydrolase, and represented by an amino acid sequence represented by the following formula (I) or an amino acid sequence having homology therewith:

5

Met Gly Val Asn Gln Ser Val Gly Phe Pro Pro Val Thr Gly Pro 10 His Leu Val Gly Cys Gly Asp Val Met Glu Gly Gln Asn Leu Gln Gly Ser Phe Phe Arg Leu Phe Tyr Pro Cys Gln Lys Ala Glu Glu Thr Met Glu Gln Pro Leu Trp Ile Pro Arg Tyr Glu Tyr Cys Thr 15 Gly Leu Ala Glu Tyr Leu Gln Phe Asn Lys Arg Cys Gly Gly Leu Leu Phe Asn Leu Ala Val Gly Ser Cys Arg Leu Pro Val Ser Trp 20 Asn Gly Pro Phe Lys Thr Lys Asp Ser Gly Tyr Pro Leu Ile Ile Phe Ser His Gly Leu Gly Ala Phe Arg Thr Leu Tyr Ser Ala Phe Cys Met Glu Leu Ala Ser Arg Gly Phe Val Val Ala Val Pro Glu 25 His Arg Asp Arg Ser Ala Ala Thr Thr Tyr Phe Cys Lys Gln Ala Pro Glu Glu Asn Gln Pro Thr Asn Glu Ser Leu Gln Glu Glu Trp Ile Pro Phe Arg Arg Val Glu Glu Glu Glu Lys Glu Phe His Val 30 Arg Asn Pro Gln Val His Gln Arg Val Ser Glu Cys Leu Arg Val Leu Lys Ile Leu Gln Glu Val Thr Ala Gly Gln Thr Val Phe Asn 35 Ile Leu Pro Gly Gly Leu Asp Leu Met Thr Leu Lys Gly Asn Ile Asp Met Ser Arg Val Ala Val Met Gly His Ser Phe Gly Gly Ala Thr Ala Ile Leu Ala Leu Ala Lys Glu Thr Gln Phe Arg Cys Ala 40 Val Ala Leu Asp Ala Trp Met Phe Pro Leu Glu Arg Asp Phe Tyr Pro Lys Ala Arg Gly Pro Val Phe Phe Ile Asn Thr Glu Lys Phe 45 Gln Thr Met Glu Ser Val Asn Leu Met Lys Lys Ile Cys Ala Gln

50

5		His Glu Gln Ser Arg Ile Ile Thr Val Leu Gly Ser Val His Arg Ser Gln Thr Asp Phe Ala Phe Val Thr Gly Asn Leu Ile Gly Lys											
		Phe Phe Ser Thr Glu Thr Arg Gly Ser Leu Asp Pro Tyr Glu Gly											
		Gln Glu Val Met Val Arg Ala Met Leu Ala Phe Leu Gln Lys His											
10		Leu Asp Leu Lys Glu Asp Tyr Asn Gln Trp Asn Asn Leu Ile Glu											
		Gly Ile Gly Pro Ser Leu Thr Pro Gly Ala Pro His His Leu Ser											
15		Ser Leu											
		(I)											
20	2.	A DNA encoding said protein of claim 1.											
	3.	An expression vector having said DNA of claim 2.											
	4.	Recombinant host cells transformed by said expression vector of claim 3.											
25	5.	A process for the production of a protein having activities of a human platelet activating factor acetylhydrolase, which comprises culturing said recombinant host cells of claim 4 and collecting said protein from the resulting cultured matter.											
30	6.	An antibody against said protein of claim 1.											
30	7.	A DNA encoding a protein having activities of a bovine platelet activating factor acetylhydrolase, and represented by an amino acid sequence represented by the following formula (III) or an amino acid sequence having homology therewith:											
35													
40													
45													
50													
50													
55													

	Met	Gly	Val	Asn	Gln	Ser	Val	Ser	Phe	Pro	Pro	Val	Thr	Gly	Pro
5	His	Leu	Va-l	Gly	Cys	Gly	Asp	Val	Met	Glu	Gly	Gln	Ser	Leu	Gln
	Gły	Ser	Phe	Phe	Arg	Leu	Phe	Туг	Pro	Cys	Gln	Glu	Ala	Glu	Glu
	Thr	Ser	Glu	Gln	Pro	Leu	Trp	Ile	Pro	Arg	Туг	Glu	Туг	Суѕ	Ala
10	Gly	Leu	Ala	Glu	Туг	Leu	Lys	Phe	Asn	Lys	Arg	Trp	Gly	Gly	Leu
	Leu	Phe	Asn	Leu	Gly	Val	Gly	Ser	Cys	Arg	Leu	Pro	Val	Ser	Trp
15	Asn	Gly	Pro	Phe	Lys	Thr	Lys	Asp	Ser	Gly	Туг	Pro	Leu	Ile	Ile
	Phe	Ser	His	Gly	Met	Gly	Ala	Phe	Arg	Thr	Val	Туг	Ser	Ala	Phe
	Cys	Met	Glu	Leu	Ala	Ser	Arg	Gly	Phe	Val	Val	Ala	Val	Pro	Glu
20	His	Arg	Asp	Gly	Ser	Ala	Ala	Ala	Thr	Cys	Phe	Cys	Lys	Gln	Thr
	Pro	Glu	Glu	Asn	Gln	Pro	Asp	Asn	Glu	Ala	Leu	Lys	Glu	Glu	Trp
25	Ile	Pro	His	Arg	Gln	Ile	Glu	Glu	Gly	Glu	Lys	Glu	Phe	Туг	Val
20	Arg	Asn	Tyr	Gln	Val	His	Gln	Arg	Val	Ser	Glu	Cys	Val	Arg	Val
	Leu	Lys	Ile	Leu	Gln	Glu	Val	Thr	Ala	Gly	Gln	Ala	Val	Leu	Asn
30	Ile	Leu	Pro	Gly	Gly	Leu	Asp	Leu	Met	Thr	Leu	Lys	Gly	Gly	Ile
	Asp	Val	Ser	Arg	Val	Ala	Val	Met	Gly	His	Ser	Phe	Gly	Gly	Ala
	Thr	Ala	Ile	Leu	Ala	Leu	Ala	Lys	Glu	Met	Gln	Phe	Arg	Cys	Ala
35	Val	Ala	Leu	Asp	Ala	Trp	Met	Phe	Pro	Leu	Glu	His	Asp	Phe	Tyr
	Pro	Thr	Ala	Arg	Gly	Pro	Ile	Phe	Phe	Ile	Asn	Ala	Glu	Lys	Phe
40	Gln	Thr	Val	Glu	Thr	Val	Asn	Leu	Met	Lys	Lys	lle	Cys	Asp	Gln
	His	His	Gln	Ser	Arg	Ile	Ile	Thr	Val	Leu	Gly	Ser	Val	His	Arg
	Ser	Leu	Thr	Asp	Phe	Val	Phe	Val	Ala	Gly	Asn	Trp	Ile	Ser	Lys
45	Phe	Phe	Ser	Ser	His	Thr	Arg	Gly	Ser	Leu	Asp	Pro	Туг	Glu	Gly
	Gln	Glu	Thr	Val	Val	Arg	Ala	Met	Leu	Ala	Phe	Leu	Gln	Lys	His
50	Leu	Asp	Leu	Lys	Glu	Asp	Туг	Asp	Gln	Trp	Asn	Asn	Phe	Ile	Glu
	Gly	Ile	Gly	Pro	Ser	Leu	Thr	Pro	Gly	Ala	Pro	His	His	Leu	Ser
	Ser	Leu													
55							(I	II)							

8. An expression vector having said DNA of claim 7.

9. Recombinant eucaryotic host cells transformed by said expression vector of claim 8.

- 10. A process for the production of a protein having activities of a bovine platelet activating factor acetylhydrolase, which comprises culturing said recombinant eucaryotic host cells of claim 9 and collecting said protein from the resulting cultured matter.
- 11. An antibody against a protein having activities of a bovine platelet activating factor acetylhydrolase, and represented by an amino acid sequence represented by the following formula (III) or an amino acid sequence having homology therewith:

Met Gly Val Asn Gln Ser Val Ser Phe Pro Pro Val Thr Gly Pro His Leu Val Gly Cys Gly Asp Val Met Glu Gly Gln Ser Leu Gln Gly Ser Phe Phe Arg Leu Phe Tyr Pro Cys Gln Glu Ala Glu Glu Thr Ser Glu Gln Pro Leu Trp Ile Pro Arg Tyr Glu Tyr Cys Ala Gly Leu Ala Glu Tyr Leu Lys Phe Asn Lys Arg Trp Gly Gly Leu Leu Phe Asn Leu Gly Val Gly Ser Cys Arg Leu Pro Val Ser Trp Asn Gly Pro Phe Lys Thr Lys Asp Ser Gly Tyr Pro Leu Ile Ile Phe Ser His Gly Met Gly Ala Phe Arg Thr Val Tyr Ser Ala Phe Cys Met Glu Leu Ala Ser Arg Gly Phe Val Val Ala Val Pro Glu His Arg Asp Gly Ser Ala Ala Ala Thr Cys Phe Cys Lys Gln Thr

Pro Glu Glu Asn Gln Pro Asp Asn Glu Ala Leu Lys Glu Glu Trp Ile Pro His Arg Gln Ile Glu Glu Glu Glu Lys Glu Phe Tyr Val Arg Asn Tyr Gln Val His Gln Arg Val Ser Glu Cys Val Arg Val Leu Lys Ile Leu Gln Glu Val Thr Ala Gly Gln Ala Val Leu Asn Ile Leu Pro Gly Gly Leu Asp Leu Met Thr Leu Lys Gly Gly Ile Asp Val Ser Arg Val Ala Val Met Gly His Ser Phe Gly Gly Ala Thr Ala Ile Leu Ala Leu Ala Lys Glu Met Gln Phe Arg Cys Ala Val Ala Leu Asp Ala Trp Met Phe Pro Leu Glu His Asp Phe Tyr Pro Thr Ala Arg Gly Pro Ile Phe Phe Ile Asn Ala Glu Lys Phe Gln Thr Val Glu Thr Val Asn Leu Met Lys Lys Ile Cys Asp Gln His His Gln Ser Arg Ile Ile Thr Val Leu Gly Ser Val His Arg Ser Leu Thr Asp Phe Val Phe Val Ala Gly Asn Trp Ile Ser Lys Phe Phe Ser Ser His Thr Arg Gly Ser Leu Asp Pro Tyr Glu Gly Gln Glu Thr Val Val Arg Ala Met Leu Ala Phe Leu Gln Lys His Leu Asp Leu Lys Glu Asp Tyr Asp Gln Trp Asn Asn Phe Ile Glu Gly Ile Gly Pro Ser Leu Thr Pro Gly Ala Pro His His Leu Ser Ser Leu

(111)

5

10

15

20

25

30

35

40

45

50