Hugo Marquerie 11/03/2025

Ley 0-1 de Kolmogorov

Teorema 1 (Ley 0-1 de Kolmogorov). Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de v.a.i. $y \in X$

$$\implies \mathbb{P}(A) \in \{0,1\}.$$

Demostración: Sea $A \in T$, veamos que A es independiente de sí mismo:

- **1.** Veamos que $E \in \sigma(X_1, \ldots, X_k)$ y $F \in \sigma(X_{k+1}, X_{k+2}, \ldots) \implies E, F$ son indep.
- a. Si $F \in \sigma(X_{k+1,\dots,X_{k+l}})$ por el teorema Π - λE y F son independientes.
- **b.** Si no, consideramos los π -sistemas siguientes:

$$\Pi_1 = \sigma(X_1, \dots, X_k) \qquad \qquad \Pi_2 = \bigcup_{i>1} \sigma(X_{k+1}, \dots, X_{k+l}).$$

Entonces por el caso 1a, Π_1 , Π_2 son independientes, luego por el teorema Π - λ $\sigma(\Pi_1)$, $\sigma(\Pi_2)$ son independientes. Como $\sigma(X_{k+1}, \dots) \subset \sigma(\Pi_2)$, se tiene que E y F son indep.

- **2.** Veamos que $E \in \sigma(\{X_n\}_{n \in \mathbb{N}})$ y $F \in T \implies E, F$ son independientes.
- **a.** Si $E \in \sigma(X_1, ..., X_k)$, tomamos $F \in \sigma(X_{k+1}, ...)$ (en particular), por el paso 1 E, F son independientes.
- **b.** Si no, consideramos los π -sistemas siguientes:

$$\Pi'_1 = \bigcup_{k \ge 1} \sigma(X_1, \dots, X_k) \quad \land \quad \Pi'_2 = T.$$

Entonces Π_1' , Π_2' son independientes, luego por el teorema Π - λ $\sigma(\Pi_1')$, $\sigma(\Pi_2')$ son independientes. Como $\sigma\left(\{X_n\}_{n\in\mathbb{N}}\right)\subset\sigma(\Pi_1')$, se tiene que E y F son indep.

3. En conclusión, $T \subset \sigma\left(\{X_n\}_{n\in\mathbb{N}}\right)$ y por tanto $A \in T \implies A \in \sigma\left(\{X_n\}_{n\in\mathbb{N}}\right)$. Como T es independiente de $\sigma\left(\{X_n\}_{n\in\mathbb{N}}\right)$, se tiene que A es independiente de A.

Por tanto
$$\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A) \cdot \mathbb{P}(A) \implies \mathbb{P}(A) \in \{0, 1\}.$$