

ISTANBUL TECHNICAL UNIVERSITY

Uygulama-7

Çarpıcı Devresi Tasarımı 16.07.2021

8 bitlik Çarpıcı Devresi

- 1. İkilik sistemde çarpma işlemi aşağıda gösterildiği gibi olmaktadır.
- 2. İki tane 8-bitlik sayıyı çarpan bir devre tasarımı yapmanız ve tasarımınızın doğru çalıştığını ispatlayan test ortamı oluşturmanız beklenmektedir.
- 3. Devrenizin en üst modülünün giriş ve çıkışları aşağıda gösterilmiştir.
- 4. Çarpıcı Modülü Giriş-Çıkış Bilgileri
 - a) Clk:Sistemi senkronize etmek için kullanılan saat sinyali
 - b) Reset: Sistemi başlangıç durumuna getiren asenkron reset sinyali
 - c) **Start**: Çarpma işleminin başlaması gerektiğini belirten sinyal (saatin yükselen kenarında, start 1 ise çarpma işlemine başlanır).

Figure 1: Çarpma İşlemi Örneği

Figure 2: Çarpıcı Modülü Girişleri ve Çıkışları

- d) **Ready**:işlem sonucunun hazır olduğunu, 1 saat periyodu boyunca 1durumunda kalarak işlemin bittiğini belirten çıkış sinyali
- e) A: 8-bitlik çarpan
- f) **B:** 8-bitlik çarpılan
- g) **Product:** 16-bitlik sonuç
- 5. Şekil-3'te Çarpıcı(**Multiplier**) devresinin iç mimarisi gösterilmiştir. Ayrıca tasarımdaki diğer modüllerin açıklamaları yapılmıştır.
 - a) **8-bit register Multiplicand:**8-bitlik B girişi load sinyali 1 olduğunda, multiplicand modülüne yüklenir.
 - b) 8-bit shift register Multiplier:
 - i. 8-bitlik A girişi load sinyali 1 olduğunda, multiplier modülüne yüklenir.
 - ii. A'nın değerini tutan register **shift_right** sinyali 1 olduğunda 1-bit sağa kaydırılır.
 - iii. Dataout çıkışına, A'nın değerini tutan registerin LSB si verilir.

Figure 3: Çarpıcı Modülü Mimarisi

c) 17-bit shift register Product:

- i. Product registerı reset sinyali sıfır olduğunda sıfırlanır.
- ii. Adderın sonucunu, load sinyali 1 olduğunda en önemli bitlerine yazar.
- iii. Shift_right sinyali 1 olduğunda, resgisteri 1-bit sağa kaydırır.
- iv. Dataout çıkışına, registerin ilk 16-biti yazılır.

d) AND:

i. Multiplicandın tüm bitlerini, multiplier(0) arasında ve işlemini gerçekleştirir.

e) 8-bit Adder:

i. AND modülünün sonucu ile product modülünün en önemli 8-bitini toplar.

f) Controller:

i. Tüm modüllerin kontrol sinyallerini üretir.

- 6. Şekil-4'te controller modülünün durum şeması verilmiştir.
 - a) S0:
 - Start sinyali 1 olduğunda s1 durumuna geçer.
 - Multiplier ve multiplicand modülleri giriş değerlerini okur.
 - Product register ve loop counter sıfırlanır.
 - b) **S1:**
 - Bir sonraki durum her zaman s2 durumudur.
 - Adderın sonucu product registerina yüklenir.
 - Loop counter 1 arttırılır.
 - c) **S2:**
 - Loop counter son değerine ulaşmışsa s3 durumuna geçilir, aksi halde s1 durumuna dönülür.
 - Multiplier ve product registerları 1-bit kaydırılır.
 - d) **S3:**
 - Bir sonraki durum her zaman s0 dır.
 - Bu duruma gelindiğinde çarpma işlemi bitmiştir ve ready sinyali 1 durumuna getirilir.

Figure 4: Controller Durum Diyagramı