Checklist of Problems with Centrifugal Pumps and their Causes

Centrifugal pumps are one of the world's most commonly used devices. Moreover, their field of application is continuously expanding. However, new applications often bring about new problems. Consequently, it is impossible to foresee the problems that may turn up in the future. The only alternative is an indepth knowledge and understanding of how different factors may affect pump performance.

However, even with this knowledge, it is not easy to determine which of the over 120 known causes of trouble with centrifugal pumps is the most likely source of a given malfunction. Unique cases may also occur. Therefore, one of the first steps in diagnosing the source or sources of a given problem is to reduce the number of factors to be checked. This can be best accomplished by studying ready-made checklists that enumerate the most probable causes of a given problem.

The following is a list of problems that I have encountered during my practice. Following this list are checklists of causes that might have generated the given problems.

LIST OF PROBLEMS WITH CENTRIFUGAL PUMPS

- 1. Pump does not develop any head, nor does it deliver liquid
- 2. Pump develops some pressure, but delivers no liquid
- 3. Pump delivers less liquid than expected
- 4. Pump does not develop enough pressure
- 5. Shape of head-capacity curve differs from rated curve
- 6. Pump consumes too much power
- 7. Pump does not perform satisfactorily, although nothing appears to be wrong with pumping unit or system
- 8. Pump operates satisfactorily during start, but performance deteriorates in a relatively short time
- 9. Pump is operating with noise, vibrations, or both

348 Appendix A

- 10. Stuffing box leaks excessively
- 11. Packing has short life
- 12. Mechanical seal has short life
- 13. Mechanical seal leaks excessively
- 14. Bearings have short life
- 15. Bearings overheat
- 16. Bearings operate with noise
- 17. Pump overheats, seizes, or both
- 18. Impeller or casing, or both, has short life
- 19. Loud blow is heard each time pump is started or stopped
- 20. Casing bursts each time pump is started or stopped
- 21. Gaskets leak during pump operation
- 22. Flow-rate periodically decreases, or stops completely, then returns to normal
- 23. Pump develops cavitation when the available NPSH is increased

CHECKLISTS OF CAUSES OF PROBLEMS

1 Pump does not develop any head, nor does it deliver liquid

Possible Causes	See Also
 Pump not primed (not full of liquid) Shaft is broken Broken or disengaged connection between driver and pump Impeller key broken or missing No impeller in pump 	Chapter 1 Chapters 18, 22

2 Pump develops some pressure but delivers no liquid

	Possible Causes	See Also
1. Air p	oockets in pump or pipelines	Chapters 1, 4, 15
2. Suct	ion line clogged	Chapters 5, 18, 23
3. Foot	valve stuck to seat or clogged	Chapters 5, 18, 23
4. Strai	iner covered with solid, usually stringy, matter	Chapters 5, 18, 23
5. Strai	iner filled with solid matter such as sand	Chapters 5, 18, 23
6. Disc	harge pressure required by system is higher than maxing	num
p	pressure developed by pump	Chapters 1, 23
7. Oper	rating speed too low	Chapters 1, 6, 25
8. Wro	ng direction of operation	Chapters 19, 23
9. Avail	lable NPSH inadequate	Chapters 1, 5, 6
10. Exce	essive amounts of gas or air entrained in pumped liquid	Chapters 4, 13
	er diameter of impeller machined to a too small diameter	Chapter 25

3 Pump delivers less liquid than expected

See checklist 3.

1.	The state of the s	
	Air enters pump during operation, or pumping system not	
	deaerated before starting	Chapters 12, 15, Figs. 12-5, 12-6, 12-15, 12-17, 15-1, 15-7
2.	Insufficient speed	Chapter 25
	Wrong direction of rotation	Chapters 19, 23
4.	System requires higher pressure than that developed by pump	Chapters 1, 23
5.	Measuring instruments not properly calibrated or incorrectly	- · · · ·
	installed	Chapter 12
6.	Available NPSH too low	Chapters 1, 5, 6
7.	Excessive amount of air or gas entrained in pumped liquid	Chapters 1, 12, 15
8.	Excessive leakage through wearing rings or other sealing faces	Chapter 7, Figs. 7-7-7-12
9.	Viscosity of liquid higher than that for which pump has been	
	designated	Chapter 8
10.	Impeller or casing partially clogged with solid matter	Chapters 12, 15
11.	Fins, burrs, or sharp edges in path of liquid	Chapter 15, Figs. 12-2, 12-15
12.	Impeller damaged	Chapter 15, 26
13.	Outer diameter of impeller machined to a smaller dimension	
	than specified	Chapter 25
	Faulty casting of impeller or casing	Chapter 15, 19
5.	Impeller incorrectly installed	Chapters 15, 19, Fig. 15-17
6.	Pump operating too far out of the head-capacity curve	Chapters 6, 20, Figs. 6-10, 20-
.7.	Obstruction to flow in suction or discharge piping	Chapters 5, 18, 23
.8.	Foot valve clogged or jammed	Chapters 5, 18, 23
9.	Suction strainer filled with solid matter	Chapters 5, 18, 23
20.	Suction strainer covered with fibrous matter	Chapters 5, 18, 23
21.	Incorrect layout of suction or discharge piping	Chapter 14
22.	Incorrect layout of suction sump	Chapter 14
23.	Excessive leakage through stuffing box or seal	Chapter 7, Figs. 7-7-7-12
4.	Excessive amount of liquid recirculated internally to stuffing box	
. –	lantern or seal	3 1
Э.	Excessive leakage through hydraulic balancing device	Chapter 19, Figs. 10-4, 10-5, 10-7, 10-8
26.	Liquid level in suction tank or sump lower than originally	· · · · · · ·
	specified	Chapters 5, 23
27.	In a system with more than one pump, operation of one pump	.,
	may affect operation of others	Chapters 14, 23
		
1	Pump does not develop enough pressure	
See	checklist 3.	

6 Pump consumes too much power

Possible Causes	See Also
1. Speed too high	Chapter 25
2. Pumped liquid of higher specific gravity than originally quoted	
3. Pumped liquid of higher viscosity than originally quoted	Chapter 8
4. Oversized impeller	Chapter 25
5. Total head of system either higher or lower than anticipated	Chapter 23
6. Misalignment between pump and driver	Chapters 15
7. Rotating parts rubbing against stationary parts	Chapters 15, 16
8. Worn or damaged bearings	Chapter 16
9. Packing improperly installed	Chapter 17, Fig. 12-21
10. Incorrect type of packing	Chapter 17, Appendix B-3
11. Mechanical seal exerts excessive pressure on seat	Chapter 17
12. Gland too tight	Chapter 17
13. Improper lubrication of bearings	Chapter 16
14. Too much lubricant in bearings	Chapter 16
15. Bent shaft	Chapter 16, Fig. 15-16
16. Uneven thermal expansion of different parts of pumping unit	Chapter 8
17. Faulty power-measuring instruments	Chapter 12
18. Power-measuring instruments incorrectly mounted or connected	Chapter 12
19. Wrong direction of rotation	Chapters 19, 23
20. Liquid not preheated to keep viscosity below specified limits	Chapter 8
21. Impeller or casing partially clogged with solid matter	Chapters 5, 15
22. Wetted surfaces of impeller or casing very rough	Chapter 7
23. Damaged impeller	Chapter 15
24. Faulty casting of impeller or casing	Chapter 15
25. Impeller incorrectly located in casing	Chapter 19, Fig. 15-17
26. Impeller inversely mounted on shaft	Chapter 19, Fig. 10-6
27. Pump operating too far out on head-capacity curve	Chapter 6, 20, Figs. 6-10, 20-2
28. Incorrect layout of suction sump	Chapter 14
29. Breakdown of discharge line	

Pump does not perform satisfactorily, although nothing appears to be wrong with pumping system

Possible Causes	See Also	
This is usually due to incorrect testing. The reasons for this may be as follows:		
1. Incorrect measuring instruments	Chapter 12	
2. Measuring instruments damaged during installation	Chapter 12	
3. Measuring instruments mounted in wrong locations	Chapter 12	
4. Tubing that leads from pipelines to measuring instruments		
clogged	Chapter 12	
5. Instrument-connecting tubing that should be full of liquid not		
deaerated completely	Chapter 12	
6. Instrument-connecting tubing that should be full of air contains	-	
some liquid	Chapter 12	
-		

Possible Causes	See Also
7. Leakage in instrument-connecting tubing or in its fittings	Chapter 12
8. Burrs or fins at mouth of connections between tubing and piping	Chapter 12, Fig. 12-7
9. Incorrect connections of wiring to electrical instruments	Chapter 12
10. Connections of wires to terminals too loose	Chapter 12
11. Dirty electrical terminals or connections	Chapter 12
12. Dust or dirt in torque bar	Chapter 12
13. Torque bar incorrectly mounted	Chapter 12
14. In a dynamometer, misalignment or dirt in bearings produces	
false readings	Chapter 12
15. In a dynamometer, excessive friction in pivots or pulleys that	
guides the levers and cables produces false readings	Chapter 12
16. In a dynamometer, weight and stiffness of the electrical	
cables affect torque readings	Chapter 12
17. Cavitation in measuring instruments	Chapter 12
18. Cavitation in pipelines where instruments are hooked up	Chapter 12
19. Actual inner diameter of piping different from nominal diameter	Chapter 12

8 Pump operates satisfactorily during start, but performance deteriorates in a relatively short time

Possible Causes	See Also
 Air leaks into pump Pumped liquid contains high percentage of entrained air or gas Waterfall-like supply of liquid into suction sump draws air into pump Air pocket in suction line has moved into pump 	Chapters 4, 15 Chapter 4 Chapter 4, Fig. 14-22 Chapters 4, 14, Figs. 12-5, 12-6, 12-15, 15-1–15-7
5. Air funnels in suction sump	Chapter 14

9 Pump is operating with noise or vibrations, or both (see also checklist 16)

Possible Causes	See Also
Misalignment between pump and driver	Chapter 15
2. Rotating parts rubbing against stationary parts	Chapter 15
3. Worn-out bearings	Chapter 16
4. Wrong direction of rotation	Chapters 19, 23
5. Available NPSH too low	Chapters 1, 5, 6
6. Impeller or casing partially filled with solid matter	Chapters 5, 18, 23
7. Fins, burrs, or sharp edges in waterways causing cavitation	Chapter 13
8. Damaged impeller	Chapter 15
9. Impeller incorrectly mounted	Chapters 15, 19, Fig. 15-17
10. System requirements too far out on head-capacity curve	Chapters 6, 20, Figs. 6-10, 20-2
11. Suction strainer filled with solid matter	Chapters 5, 18, 23
12. Strainer covered with fibrous matter	Chapters, 5, 18, 23

	(00/11/11/11/11/11/11/11/11/11/11/11/11/1	
	Possible Causes	See Also
13.	Incorrect layout of suction sump	Chapter 14
14.	Air enters pump during operation	Chapters 1, 13
15.	Mutual interaction of several pumps within one common	
	system	Chapters 14, 21–23
16.	Incorrect layout of suction or discharge piping	Chapter 14
17.	Piping imposes strain on pump	Chapters 15, 23
18.	Pump operating at critical speed	Chapter 18
19.	Rotating elements not balanced	Chapter 15
20.	Excessive radial forces on rotating parts	Chapters 10, 17, 27
21.	Too small distance between impeller outer diameter and	
	volute tongue	Chapter 27
22.	Faulty shape of volute tongue	Chapter 27
23.	Undersized suction or discharge piping and fittings causing	
	cavitation somewhere in system	Chapter 13, Fig. 13-11
24.	Loose valve disc in system	Chapter 13, Figs. 13-12, 13-14
25.	Bent shaft	Chapter 15
26.	Impeller bore not concentric with its outer diameter or not	
	square with its face	Chapter 15, Fig. 15-16
27.	Misalignment of pump parts	Chapter 15
28.	Pump operates at very low flow rates	Chapter 9, Figs. 9-8–9-10
29.	Improperly designed base plate or foundations	Chapter 15
30.	Resonance between pump speed and natural frequency of	
	base plate or foundations	Chapter 18
31.	Resonance between operating speed and natural frequency	
	of piping	Chapter 18
32.	Resonance between operating speed and valve discs	Chapter 18
33.	Loose bolts	Chapter 15
	Uneven thermal expansion	Chapter 8
	Improper installation of bearings	Chapters 15, 16
	Damaged bearings	Chapters 15, 16
	Improper lubrication of bearings	Chapter 16
38.	Obstruction to flow in suction or discharge piping	Chapters 13, 15, Figs. 12-15–
		12-17, 15-1
	Total head of system either higher or lower than expected	Chapter 2, 23
	Excessive amount of air or gas entrained in liquid	Chapters 4, 15
	Waterways of impeller or casing badly eroded or rough	Chapter 23
42.	Cavitation in pipelines	Chapter 13, Figs. 13-11, 13-12, 13-14

10 Stuffing box leaks excessively

Possible Causes	See Also
1. Worn out bearings	Chapters 14,16
2. Improperly installed packing	Chapter 17, Fig. 12-21
3. Incorrect type of packing	Chapter 17, Appendix B-3

Possible Causes	See Also
4. Rotating element not balanced	Chapter 15
5. Excessive radial forces on rotating parts	Chapters 10, 27
6. Bent shaft	Chapter 15
7. Bore of impeller not concentric with outer diameter, or not square	
with face	Chapter 15, Fig. 15-16
8. Misalignment of pump parts	Chapter 15
9. Rotating parts running off-center	Chapter 15
10. Water-seal pipe clogged	Chapter 17
11. Seal cage improperly located	Chapter 17, Fig. 12-21
12. Shaft sleeve worn or scorched at packing	Chapter 17
13. Failure to provide cooling liquid to water-cooled stuffing boxes	Chapter 17, Fig. 12-21
14. Excessive clearance at bottom of stuffing box (between shaft	, , ,
and box bottom)	Chapter 17
15. Dirt or grit in sealing liquid	Chapter 17

11 Packing has short life

	Possible Causes	See Also
1.	Worn bearings	Chapter 16
2.	Improperly installed packing	Chapter 16, Fig. 12-21
3.	Incorrect type of packing	Chapter 17, Appendix B-3
4.	Gland too tight	Chapter 17
5.	Rotating element not balanced	Chapter 15
6.	Excessive radial forces on rotating parts	Chapters 10, 17, 27
7.	Bent shaft	Chapter 15, Fig. 15-16
8.	Bore of impeller not concentric with its outer diameter or not	
	square with its face	Chapter 15
9.	Misalignment of pump parts	Chapter 15
10.	Rotating parts running off-center from damaged bearings or	
	other parts	Chapter 15
11.	Water-seal pipe clogged	Chapter 17
12.	Seal cage improperly located in stuffing box, preventing sealing	
	fluid from entering	Chapter 17, Fig. 12-21
13.	Shaft scorched where it contacts packing	Chapter 17
14.	Failure to provide cooling liquid to water-cooled stuffing	_
	box	Chapter 17
15.	Excessive clearance at bottom of stuffing box, between shaft	•
	and stuffing box's bottom	Chapter 17
16.	Dirt or grit in sealing liquid	Chapter 17
	Improper lubrication of packing	Chapter 17
	Space in stuffing box where packing is located is excentric	•
-0.	to the shaft	Chapter 17, Fig. 17-1

354 Appendix A

12 Mechanical seal has short life

Possible Causes	See Also
1. Worn out bearings	Chapter 16
2. Rotating elements not balanced	Chapter 15
3. Excessive radial forces on rotating parts	Chapters 10, 27
4. Bent shaft	Chapter 15
5. Misalignment of pump parts	Chapter 15
6. Rotating elements running off-center from damage to bearings	
or other parts	Chapters 15, 16
7. Dirt or grit in seal-flushing liquid	Chapter 17
8. Sealing face not perpendicular to pump axis	Chapter 17
9. Mechanical seal has been run dry	Chapter 17
10. Abrasive particles in liquid coming in contact with seal	Chapter 17
11. Mechanical seal improperly installed	Chapter 17
12. Incorrect type of mechanical seal	Chapter 17
13. Misalignment of internal seal parts preventing proper mating	
between seal and seat	Chapter 17

13 Mechanical seal leaks excessively

Possible Causes	See Also	
The same factors as in checklist 12, plus the following		
 Leakage between the seal seat and gland from faulty gasket or O-ring Leakage between seal and shaft from faulty O-ring or lip seal 	Chapter 17 Chapter 17	

14 Bearings have short life

Possible Causes	See Also
1. Damaged impeller	Chapter 15
2. Impeller partially clogged	Chapter 15
3. Rotating elements not balanced	Chapter 15
4. Excessive radial loads on rotating parts	Chapters 10, 27
5. Excessive axial loads	Chapters 10, 27
6. Bent shaft	Chapter 15, Fig. 15-16
7. Bore of impeller not concentric with outer diameter or not square	
with hub face	Chapter 15
8. Misalignment of pump parts	Chapter 15
9. Misalignment between pump and driver	Chapter 15
10. Pump operates for prolonged time at low flow rate	Chapter 18, Figs. 9-8–9-10
11. Improper base plate or foundations	Chapter 15
12. Rotating parts running off-center from damaged or misaligned	
parts	Chapter 15, Fig. 15-16

Possible Causes	See Also
13. Improper installation of bearings	Chapter 16, Figs. 15-10, 15-15
14. Bores of bearing housing not concentric with bores in water end	Chapter 15
15. Cracked or damaged bearing housing	Chapter 15
16. Excessive grease in bearings	Chapter 16
17. Faulty lubrication system	Chapter 16
18. Improper workmanship during installation of bearings	Chapter 16, Figs. 16-4, 16-5
19. Bearings improperly lubricated	Chapter 16
20. Dirt finds access to bearings	Chapter 16
21. Water has entered bearing housing	Chapter 16
22. Excessive wear of impeller sealing rings reducing the effects	
of balancing means	Chapters 7, 19
23. Excessive suction pressure	Chapter 20
24. Too tight fit between line bearing and seat (may prevent it	
from sliding under axial load, transferring this load to	
the line bearing)	Chapter 16, Figs. 15-15, 16-10
25. Inadequate cooling of bearings	Chapter 16
26. Inadequate cooling of lubricant	Chapter 16
27. Source of cooling media shut-off from bearing housing	Chapter 16

15 Bearings overheat

See checklist 14.

16 Bearings operate with noise

Possible Causes	See Also
A. Steady high-pitch tone	
 Excessive radial load Excessive axial load Misalignment Too much clearance between bearing and shaft, and/or housing 	Chapters 10, 27 Chapter 10 Chapter 15 Chapter 16
B. Continuous or intermittent low-pitch tone	
 Bearing brinelled Pitted raceway, from dirt Resonance with other structural pump parts 	Chapter 16 Chapter 16 Chapter 17
C. Intermittent rattles, rumbles, and/or clicks	
 Loose machine pats Dirt in bearings Clearance between balls and races too large for given application Bearings that require preloading not adequately preloaded 	Chapter 18 Chapter 16 Chapter 16 Chapter 16

Possible Causes	See Also
D. Intermittent squeal or high-pitch tone	
1. Balls skidding from excessive clearance between balls and races	Chapter 16
2. Balls skidding from insufficient preloading (whenever required)	Chapter 16
3. Shaft rubbing against housing from improper mounting of housing	Chapter 16
4. Shaft rubbing against housing from bent shaft	Chapter 23
5. Shaft rubbing against housing from having been machined	•
excentrically	Chapter 23

17 Pump overheats or seizes, or both

Possible Causes	See Also
Pump allowed to run dry	Chapters 1, 15
2. Vapor or air pockets inside pump	Chapter 14, Figs. 15-6-15-9
3. Pump operates near shut-off	Chapter 13, Figs. 9-8-9-10
4. Simultaneous operation of poorly matched pumps	Chapter 14
5. Internal misalignment from too much pipe strain, poor	-
foundations, or faulty repair work	Chapter 15
6. Internal rubbing of rotating parts against stationary parts	Chapter 15
7. Worn or damaged bearings	Chapter 16
8. Poor lubrication	Chapter 16
9. Rotating and stationary wearing rings made of identical,	•
galling-prone materials	Chapter 16, Appendix B-2

18 Impeller or casing, or both, has short life

Possible Causes	See Also
Corrosion from chemical interaction with pumped liquid Electrochemical corrosion from difference of electrochemical potential of different materials of which wetted pump parts	Chapter 18
are made	Chapter 18
3. Abrasion from solids contained in pumped liquid	Chapter 18
4. Fatigue from thermal shocks	Chapters 15, 18
5. Fatigue from vibrations	Chapter 16
6. Erosion from cavitation	Chapter 18
7. Excessive transient stresses during starting or stopping	Chapter 14
8. Pump used at excessively high temperatures	Chapter 8
9. Excessive stresses imposed on pump by piping	Chapters 15, 18
10. Excessive stresses imposed on casing by foundation bolts	Chapter 15
11. Pump mishandled during installation	Chapter 15

Chapter 20

Chapter 20

Chapter 20

Chapter 20

Chapter 20, Fig. 15-12

19	Loud blow	heard each	time pumi	o is started	or stopped
----	-----------	------------	-----------	--------------	------------

2. Pump operates at excessive speed

return to its suction inlet

4. Open bypass in discharge line

3. Breakdown or serious leak in discharge line

5. Extremely large clearances between impeller and casing

6. Hole in casing allowing liquid from pressure side of casing to

	Possible Causes	See Also
2. A	Water hammer Air or gas entrapped between pump discharge and nonreturn valve Glam pressure	Chapter 14 Chapter 14, Figs. 15-10, 15-11 Chapter 14
20	Casing bursts each time pump is started or stopped	
	Possible Causes	See Also
	Vater hammer Slam pressure	Chapter 14 Chapter 14
21	Gaskets leak during operation	
	Possible Causes	See Also
2. I	Uneven thermal expansion of pump parts Loose bolts Unevenly tightened bolts	Chapter 18 Chapter 15 Chapter 15
22	Flow rate periodically decreases, or stops completely, then returns t	o normal
	Possible Causes	See Also
	Periodic fluctuations of liquid level in suction tank	Chapter 18
2. 1	During operation pump removes more liquid from suction tank than rate at which liquid enters the tank	Chapter 18
23	Pump develops cavitation when the available NPSH is increased	
	Possible Causes	See Also
This	may happen when the increase in the available NPSH has reduced the system resistance so far that the pump operates far out on the <i>QH</i> curve. This happens when	
1. (Oversized impeller installed in pump	Chapter 20

Tables

 Table B-1
 Vapor Pressures of Water at Different Temperatures

Tempe	erature	Density	Vapor Pressure									
Degrees (°C)	Degrees (°C)	at a given temperature	_	head of water temperature (ft)	Absolute pressure (kg/cm²)							
0	32	1.000	0.0396	0.13	0.0040							
4	39	1.000	0.0823	0.27	0.0083							
10	50	1.000	0.125	0.41	0.0125							
20	68	68 0.998	0.238	0.78	0.0237							
30	86	0.996	0.426	1.4	0.0424							
40	104	0.992	0.762	2.5	0.0755							
60	140	0.983	2.012	6.6	0.1977							
80	176	0.972	5.000	16.4	0.4860							
100	212	0.959	10.775	35.6	1.0333							
120	248	0.944	21.275	69.8	2.0083							
140	284	0.927	39.624	130	3.6731							
160	320	0.909	69.799	229	6.3447							
180	356	0.889	114.605	376	10.1884							
200	392	0.866	184.992	604	16.0203							
220	428	0.841	281.635	924	23.6885							
240	464	0.814	420.624	1380	34.2388							

Table B-2 Gall Resistance of Material Combinations

	Cast Iron	3% Ni Cast Iron	Ni-Resist (Type 1, 2)	Ductile Ni-Resist	Nickel-Conner Allow K-500	Nickel-Conner Alloy 400	Nickel-Copper Alloy 506	Nickel-Aluminum Alloy 301	Nickel 213 ²	Nickel 305 ²	Nickel-Chromium Alloy 600	Nickel-Chromium Alloy 7053	400 Ser. Stainless Steel (Soft)	400 Ser. Stainless Steel (Hard)	300 Series Stainless Steel	SAE 1000 to 6000 Steel (Soft)	SAE 1000 to 6000 Steel (Hard)	Bronze (Leaded) ⁵	Ni-Vee Bronze "A"4	Ni-Vee Bronze "B"	Ni-Vee Bronze "D"	Ni-Al Bronze ⁶	HASTELLOY ¹ Alloys A, B	HASTELLOY Alloy C	HASTELLOY Alloy D	Nitrided	Chrome Plate ⁷	STELLITE¹
Cast Iron 3% Ni Cast Iron Ni-Resist (Type 1, 2) Ductile Iron Ductile Ni-Resist	S S S	S S S	S : S : S : S : S : S	S S S S S S S S S S S S S S S S S S S	S S S S	S S S	S S S	SSSSS	SSSSS		S S S	S S S	S S S S	S S S S	S S S	S S S	S S S	S S S	S S S	S S S	SSSSS	S S S	SSSSS	SSSSS	SSSSS	SSSSS	S S S S	SSSSS
Nickel–Copper Alloy 505 Nickel–Copper Alloy K-500 Nickel–Copper Alloy 400 Nickel–Copper Alloy 506 Nickel–Alluminum Alloy 301 Nickel 213 ²	S S S	S S	S : S : S : S : S	S S S S S S S S S S S S S S S S S S S	F F N F S	N N F N	SFFFFF	S F N F F S	SSFFSS	S F F	N N N N	S S S	F N N	F F F	N I N I N I	N N N	F F F	S S S	F F F F	S S S	S S	F F S	F ⁺ FNNFS	S F F F S	S S S S S S	SSSSSS	S F S	SSSSS
Nickel 305 ² Nickel-Chromium Alloy 600 Nickel-Chromium Alloy 705 ³ 400 Series	S S S	S S S	S : S : S :	S S S S S	F N S	F N S	F N S	S N S	F F S	S F S	F N F	S F S	F N F	S F S	F N I F	F N F	S F S	S S S	S F S	S S S	S S S	S F S	S N S	S F S	S S S	S S S	S S S	S S S
Stainless Steel (Soft) 400 Series				SS	F	N	N	N	F	F					F]	N							N	F	S	F	F	S
Stainless Steel (Hard) 300 Series Stainless Steel SAE 1000 to 6000 Steel (Soft) SAE 1000 to 6000 Steel (Hard Bronze (Leaded) ⁵ Ni-Vee Bronze "A" ⁴ Ni-Vee Bronze "B" Ni-Vee Bronze "D" Ni-Al Bronze ⁶ HASTELLOY ¹ Alloys A, B HASTELLOY Alloy C HASTELLOY Alloy D Nitrided	S S S S S S S S S S S S S S S S S S S	SSSSSSSSSSSS	S S S S S S S S S S S S S S S S S S S		FNN FSFSSFFFSSS	NN FSFSSFN FSS	FNNFSFSSFNFSS	FNNFSFSSFFFSSS	FFSSSSSSSSSSS	FFSSSSSSSSSSS	NNFSFSSFNFSS	FFSSSSSSSSSS	NFSFSSFNFSF	FSSSSSSFFSSS	S F S F I F S S	NNSSSSS ⁺ NFSS	FSSSSSSFSSS	S S S S S S S S S S S S S S S S S S S	FSSSFFSFFSSF	SSSSSSSFSSSS	S S S S S S S S S S S S S S S S S S S	F#SSFFSNF#SF	N F S	SSSFFFSS	SSSSSSSS	Š	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S
Chrome Plate ⁷ STELLITE ¹	S S	S S	S S	SSS	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S	S S		S S	S S	S S	S S	S S	S S	S S	S S	S S	_	? ⁷ S	S S

Degree of Resistance: S=Satisfactory

F=Fair N=Little or None

Courtesy of Goulds Pumps, Inc.

- 1 Trademark of Union Carbide Corporation.
- 2 Nickel 213 and Nickel 305 have better gall resistance than Nickel 210. Both are comparable in gall resistance but Nickel 305 will stand heavier loads.
- 3 Nickel-chromium alloy 705 is superior to Nickel 305 and nickel-copper alloy 505 in gall resistance.
- 4 The Ni-Vee bronzes are 5% nickel, 5% tin, cast and heattreatable, similar in balance of composition to the 88-10-2 Cu Sn Zn type. A, No load. B, 1% load. D, 10% load.
- 5 Loaded Bronze—85-5-5 or 80-10-10. Hard materials might "bite" into softer bronzes.
- 6 Nickel-aluminum-bronze is generally somewhat inferior to Ni-Vee "A" in gall resistance and coefficient of friction, but will stand heavier loads in slower motion.
- 7 Chromium plate varies greatly in gall resistance. To be its best it must be backed up by hard material and the plating must bond well to the backing.

 Table B-3
 Packing Selections

Standard

Style	Description	Maximum Pressure Temperature	Remarks
Garlock 5022 AFP or equal (CO6)	PTFE, Impregnated Copper, Wire Braided Ring (5/16 in. through 2 in. Plungers)	5000 PSI/550°F	Good for most liquids except bromine,
Garlock 8922 or equal (CO6)	PTFE, Impregnated, Braided Ring, ($2\frac{1}{2}$ in. through $4\frac{7}{16}$ in. Plungers)	500 PSI/550°F	chlorine, and oxygen compounds

Optional

Style	Description	Maximum Pressure Temperature	Remarks
G8048, G432 or equal	Nitrile/Fabric, V Ring (Neo Duck)	2000 PSI/200°F	Aqueous solutions except aromatics or aqueous solutions of acids or bases
Crane CVH or equal (8764)	PTFE, V Ring with PTFE Adaptors	5000 PSI/500°F	All liquids except flourine and its components
Crane 829 or equal	Nitrile/Fabric with Brass Adaptors (other adaptor material available)	7500 PSI/250°F	Mineral oils, petroleum products, water emulsion solutions

Special Common specials noted below. Contact Application Engineer

Style	Description	Maximum Pressure Temperature	Remarks
Crane C1055 or equal	PTFE Yarn, Braided Ring	2000 PSI/500°F	Food products
Grafoil 235A or equal	Graphite, Comp-Split Ring	4000 PSI/1500°F	Strong corrosive, heat transfer liquids

Courtesy of Milton Roy Company, A Sundstrand Subsidiary.

Notes:

- Pressures over 2000 psig require hardened plungers and close clearance rings. V-Ring-type packing requires metal adaptors.
- 2. When flushing is required, use a V-ring-type packing.
- 3. Use Neo Duck packing for lima and diatomaceous earth slurries with ceramic plungers and flush connections.
- 4. Milroyal $D\frac{1}{8}$ in. & $\frac{1}{4}$ in. plungers are only available with 25% carbon-filled PTFE packing.

 Table B-4
 Chemical Resistance Guide for Valves and Fittings

Chemicals and				Plas Ma		num	l Ela Tei (°F)												N	l e	tals						
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE	ALUMINUM BRUNZE RRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI FLATED DOCTILE 400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20 Monfi	STELLITE	HASTELLOY C
Acetaldehyde CH ₃ CHO	Conc.			120	С	С	350	200	С	С	С	С	В	С	С	С	c c	В	В	A		ВЕ	3 A		A A	A A	. A
Acetic Acid CH ₃ COOH	60%		73		73	175	350	140	С		С	С	С	С	С	С	C C	С	С	С	C	C A	A A	Α	A A	A	A
Acetic Acid CH₃COOH	85%		С	120	73	150	350	140	C		C	С	С	С	С	С	C C	С	С	С	С	C A	A A	Α	A A	A	A
Acetic Acid CH ₃ COOH	Glacial		С	120	73	120	350	140	С		С	С	С	C	С	С	C C	С	С	С	С	C C	A	В	A A	A	A
Acetic Anhydride (CH ₃ CO) ₂ O					С	С	350	С	70	200	B to 70	С	В	С	С	С	c c	СС	C	С	С	c c	В	В	ВІ	В	A
Acetone Ch ₃ COCH ₃			С	73	С	С	350	130	C	B to 70	C	С	Α	A	A	Α.	A A	A	Α	A	Α.	A A	A A	Α	A A	A A	. A
Acetylene HC=CH	GAS 100%	70		73	140	250	250	200	140	70	70	200	A	С	С	С	c c	A	Α	A	A	A A	A A	Α	A A	A A	. A
Acrylonitrile H ₂ C:CHCN			C		С	73	350	С	С	140	С	С	В		A	Α.	A A	A	Α	A	Α.	A A	A	Α	A A	A	A
Allyl Chloride CH ₂ CHCH ₂ Cl					C	212	350	С	C			70	С							С							
Aluminum Hydroxide AlO $_3 \cdot 3H_2O$)	Sat'd		185				250					200						В					3 A	A	A I	В	
Aluminum Nitrate Al(NO ₃)3 · 9H ₂ 0	Sat'd			180																	С	С	A	Α	Α (С	
Aluminum Sulfate (Alum) Al ₂ (SO ₄) ₃	Sat'd		185	180	140	280	250	210	200	160	140	185								С		C C		В			A
Ammonia Anhydrous NH ₃							250	200			100	С		С	С	С	C C	A		A			A	Α	A <i>A</i>	A	A
Ammonia Liquid NH ₃	100%			73	С	С	400	210	B to 70	70	70	С	A B		С	C	C C			A A		A	A A	A	A A	4	A
Ammonium Carbonate (NH ₄)HCO ₃ · (NH ₄)CO2NH ₂	Sat'd			180	140	280	400	210		140	140	250		to	С		(C	E	3 B	В	ВЕ	В	A
Ammonium Chloride NH ₄ Cl	Sat'd		185	180	140	280	400	210	180	200	160	250	В		С		C	С	С	С	С	c c	В	С	ВЕ	3	В
Ammonium Hydroxide NO ₄ OH	10%		185	180	140	225	400	210	B to 70	200	70	70	В	С	С	С	C			С		Ε	3 A	A	ΑI	В	A

(The information given is indended as a guide only. See page 374 for further information)

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals and						and num													M	[et:	als					
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE ALTIMINIM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	2% NI /IPON	3% INITIATED DUCTILE	400 SERIES S.S.	316 S.S. 17.4 PH	ALLOY 20	MONEL STELL PTE	HASTELLOY C
Ammonium Nitrate NH ₄ NO ₃	Sat'd		185	180	140	280	400	250	180	200	160	100		С	С	С	С						P	A A	A	A
Ammonium Sulfate (NH ₄) ₂ SO ₄			185	180	140	280	400	210	180	200	160	200	С	С	С	C C	СС	В	В	0 1	ВВ	В	ВЕ	3 A	В	A
Ammonium Sulfide $(NH_4)_2S$	Dilute					125	350	210	140	200	160		A	С	С	CC	СС	С	C (2	С		В	В	В	
Ammonium Thiocyanate NH ₄ SCN	50-60%				140	275			70	70	70	185	В	С	С	C (СС	С	C (2	С		A A	A	В	A
Amyl Acetate CH ₃ COOC ₅ H ₁₁				С	С	125	100	B to 70	С	С	С	С	A		В	ВЕ	3 B	В	ВІ	В	ΑВ	Α.	A A	A A	A A	A A
n-Amyl Chloride CH ₃ (CH ₂) ₃ CH ₂ Cl					С	280	400	C	С	С	С	200									A A					A A
Aniline $C_6H_5NH_2$:	С	180	С	120	200	140	С	70	С	С	С								ВВ					A
Arsenic Acid H ₃ AsO ₄ · ½H ₂ O	80%		185		140	280	400	185	160	200	180	200	C		С	C (СС	С	C (С	С	В	ΑI	3 A	A	A
Barium Carbonate BaCO ₃	Sat'd				140	280	400	250	180	200	160	250			A	A A	A A	В	В	В :	ВВ	A	A A	A A	A	
Barium Chloride BaCl ₂ · 2H ₂ O	Sat'd				140	280	400	250	180	200	160	300		A	A	A A	A A	В	В	C :	ВВ	В	A	A	A	
Barium Hydroxide Ba(OH) ₂	Sat'd				140	280	400	200	180	200	140	300			С	C (С	В	В	С	В	Α	A A	A A	A	A
Barium Sulfate BaSO ₄	Sat'd		185		140	280	400	200	100	200	160	300							В		В	Α	A A	A A	A	
Barium Sulfide BaS	Sat'd					280													В		В	A	A A	A A	A	
Beer		С		180	140	200	300	200	70	200	140	200	Α	A	A	A A	A A				С	A	A A	A A	A	
Beet Sugar Liquors				180	140	225		210	100	200	160	185	Α			1	A	В	В	В			A A	A A	A	
Benzene C ₆ H ₆		С	С	С	С	170	250	С	С	С	C	150		A	A	A A	A A	. A	. A .	Α.	АА	A	A A	A A	A	
Benzoic Acid C ₆ H ₅ COOH	All			73	140	230	350	С	С	200	160	200			С	C	C C	C	С	С	С	A	A A	A A	A	A
Black Liquor	Sat'd		185		140	175	225	180	180	70	70	200			C	C	СС	В	В	В	В	В	Αl	3 A	В	

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals and				Plas Ma	stics axin	num									·				Me	tals					
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM COPPER	BRONZE (85% Cu)		ALUMINUM BRONZE	BRASS	GKAY IKON	DUCTILE IRON CARBON STEEL	3% NI/IRON	A00 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20 MONEL	STELLITE HASTELLOY C
Borax NA ₂ B ₄ O ₇ · 10H ₂ O	Sat'd			180	140	280		210	140	200	140	185		A	A	A	Α.	A	ΑВ	Α	A A	A A	A	A A	AAA
Boric Acid H ₃ BO ₃	Sat'd		185	180	140	280		210	140	200	140	185		В	В	В	В	С	СВ		C E	3 A	В	A A	A A
Butane C ₄ H ₁₀	50%			73	140	250	350	C	70	200	70	185	A A	A	A	A	Α.	A	A A	Α	A A	A A	A	A A	AAA
Butylene (C) CH ₃ CH:CHCH ₃	Liquid				140	280	400	C	70	C	c	100		A	A	A	A		A		P	A A	A	A A	AAA
Butyric Acid CH ₃ CH ₂ CH ₂ COOH				180	73	230	300	140		C	C	70		A	A	Α.	A	С	СС	С	C E	3 A	A	A A	1
Calcium Bisulfite Ca(HSO ₃) ₂			185	180	140	280	350	C	70	200	70	185		C	C	C	С	С	СС		C E	3 A		A C	A
Calcium Carbonate CaCO ₃			185	180	140	280	350	210	100	70	70	300	A	C	C	C	С	В	ВВ		B A	A A	Α	A A	A A
Calcium Chlorate Ca(CIO ₃) ₂ · 2H ₂ O					140	280	350	140	70	70	70	185	C	E	В	В	В	В	ВВ	В	BE	3 A		A A	1
Calcium Chloride CaCl ₂		100										250							A C		C E	3 A	В	A A	A B A
Calcium Hydroxide Ca(OH) ₂			185	180	140	280	250	210	140	200	70		C C											A A	
Calcium Hypochlorite Ca(OCI) ₂	30%		185	150									СС											ВС	
Calcium Nitrate Ca(NO ₃) ₂				180								200					В				В	Α		A A	
Calcium Sulfate CaSO ₄		100										200													AAA
Cane Sugar C ₁₂ H ₂₂ O ₁₁												200													AAA
Carbon Dioxide CO ₂	Dry 100%												A A												
Carbon Tetrachloride CCl ₄		C	73				350					185							СА					AA	
Carbonic Acid H ₂ CO ₃	Sat'd		185								70	200												A A	
Cellosolve CICH ₂ COOH					73	280	200	140	C	70	В	С		A	ι A	A	Α.	A	АА		A	A		A	A
Chloral Hydrate CCl ₃ CH(OH) ₂	All				140	75				70	to 70	С										-			

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals and						num	l Ela Ter (°F)												N	l let	tals	3					
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE ALIMINIM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	AN SERIED DUCTILE	316 S.S.	17-4 PH	ALLOY 20 MONFI	STELLITE	HASTELLOY C
Chlorobenzene C_6H_5Cl	Dry			73	С	170	200	С	С	С	С	70			A	A	A A	C	С	В		C.	A A	A	Α Δ	A	A
Chloroform CHCl ₃	Dry		C	С	С	125	200	С	C	С	С	70			Α	A	A A	C	С	С		C.	A A	A	Α.	A A	L
Chlorosulfonic Acid CISO ₂ OH				С	73	С	200	С	C	С	С	С	С	С	С	C	C C	В	В	С	С	В	СС	: c	В	A	A
Chromic Acid H ₂ CrO ₄	10%		210	150	140	175	350	70	С	140		100	С	c	С	C (c c	С	С	С	С	C	B A to to 212 7 B	o 0	A to 1 125 B	В	A
Chromic Acid H ₂ CrO ₄	50%		210	180	С	125	200	С	C	140		С	С	С	C	C	C C	C	С	С	С	•	C to		to (С	В
Citric Acid C ₆ H ₈ O ₇	Sat'd		185	180	140	275	200	210	70	140	140	200		С	С	C	C C	C	С	С		C	ВА	A	. A A	A	A
Coffee								140	100			200		A	A	A	A A	C	С	С			A A	ιA	Α	A	k
Copper Acetate Cu(C ₂ H ₃ O ₂) ₂ · H ₂ O	Sat'd		73	73	73	250	350	100	180	C	160	140			С	C	C C	c	С	С		C	ВА	L.	A l	В	A
Copper Chloride CuCl ₂	Sat'd		185		140	280	350	210	180	200	160	200	С	С	С	C	C C	C	С	С	C	C	ВА	L	A l	В	A
Copper Cyanide Cu(CN) ₂			185		140	275	350	210			160	185		С	С	C	C C	C	С	С	A	C	ВА		Al	В	
Copper Nitrate Cu(NO ₃) ₂ · 3H ₂ O	30%				140	280		210	B to 70	200	160	200	С	С	С	C	СС	С	С	С		C	ВА	L	Α (С	
Copper Sulfate CuSO ₄ · 5H ₂ O	Sat'd		185	120	140	280		210		200	160	200	С	С	С	C	C C	С	С	С		С.	A A	ιA	Α (С	A
Creosote			73		73		350	C	73	73	C	73		В	В	В	ВЕ	S A	A	A	A	Α.	A A	A	Α.	A A	ιA
Cresylic Acid	50%				140	150	200	c	С	С	С	185		A	A	A	A A	A	Α.	В	A	Α.	A A	ιA	Α.	A A	1
Cyclohexane C_6H_{12}		100	С	С	C	280	300	С	C	С	С	185			A	A	A A	В	В	A		В.	A A	ιA	. A A	A A	ιA
Detergents (Heavy Duty)			185	150)				200				Α	A	A	A A	A	Α	A	A	Α.	A A	ιA	Α.	A A	L
Dow Therm A					C		212	С	С	C	С	C			A	A	A A	В	Α	A		Α.	A A	ιA	Α.	A A	L
Ether ROR			С	73	С	125			С	С	С	С		A	A	A	A	В	В	В	A	Α.	A A	ι A	Α.	A A	1

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals				Plas Ma		num	Ela Ter (°F)]	Ме	tals	;	***				_
and Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	BRONZE (85% Cu)	SILCON BRONZE	ALUMINUM BRONZE	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE 400 SERIES S.S.		17-4 PH	ALLOY 20 MONFI.	STELLITE	HASTELLOY C
Ethyl Acetate CH ₃ COOC ₂ H ₅		С		120	C	C	200	70	С	C	С	С		A	Α	В	A	\ A	A		I	A A	Α	A A	ΑВ	A
Ethyl Alcohol (Ethanol) C ₂ H ₅ OH			140	180	140	280	300	170	180	200	70			A	A	Α.	A A	A A	A	A	A A	A A	A	A A	A A	Α
Ethyl Chloride C ₂ H ₅ Cl	Dry			73	С	280	350	B to 70	С	70	B to 70	140		A	Α	В	A	A A	Α	A	A A	A A	Α	A A	ΑВ	Α
Ethylene Chloride ClCH ₂ CH ₂ Cl	Dry	c		73	C	280	350		C	С		70										A		A A	A	
Ethylene Glycol CH ₂ OHCH ₂ OH		73	185	120	140	280		210	180	200	160	250	A	A A	. A	Α.	A A	A A	A		A A	A A	Α	A A	A A	Α
Ethylene Oxide CH ₂ CH ₂ O				С	C	С	400	C	С	С	С	С		A	Α.		F	3 <i>F</i>	A		A	A		Αl	В	Α
Fatty Acids R-COOH			73	120	140	280	400	С	140	С	140	185	С	С	С	C	C (C (СС		С	A		A A	A	A
Ferric Chloride (Aqueous) FeCl ₃	Sat'd		185	180	140	280	400	225	180	200	160	200	С	СС	C	C	С	C (СС	С	(СС	С	c o	С	A to
Ferric Nitrate Fe(NO ₃) ₃ · 9H ₂ O	Sat'd		185	180	140	280	400	210	180	140	160	200	(СС	C	C	c (0 (С		C I	ВА	. A	Α (С	A
Ferric Sulfate Fe ₂ (SO ₄) ₃				180	140	280	200	210	140	140	140	185	(СС	C	C	C (C (С		C I	ВА	Α.	Α (С	
Ferrous Chloride FeCl ₂	Sat'd		185	180	140	280	400	200	180			200	С	С	C	С	C (C (СС	С	C (СС	C	С		В
Ferrous Sulfate FeSO ₄		70	185	180										3 C			(C (С	С	C A	A A	. A	. A .	A	A
Fluosilicic Acid H ₂ SiF ₆	50%		73				300						С	СВ	В				С					Α.		Α
Formic Acid HCOOH			73	73	73	250	300	200	С	70	140	С		C	C	В	(2 (С	В	C.	A A	A	. A .	A	A
Freon 11	100%	С	73		140	200	300	С	70	130	С	70	1	A A	A	Α.	A I	В	3 B		В	A A	A	. A .	A	
Furfural C ₄ H ₃ OCHO				С	С	75	300	140						A A										. A .		A
Gasoline, Leaded		C					200				70	100	A	A A	A	Α.	A A	A A	A A	. A	Α.	A A	A	Α.	A A	٠A
Gasoline, Unleaded		С		С	140	280	200	С	70	70		100	A	A A	A	Α.	Α Δ	A A	A A	. A	Α.	A A	A	. A .	A A	. А

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals						num	Ela Ter							-				M	eta	ıls					
and Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM COPPER	BRONZE (85% Cu)	SILCON BRONZE	BRASS	GRAY IRON	CAPBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S. 17-4 PH	ALLOY 20	MONEL	HASTELLOY C
Glucose $C_6H_{12}O_6 \cdot H_2O$		180	185	180	140	280	400	250	180	200	160	300	A A	A	Α.	A A	A	Α.	A A	A A	. A	A A	A A	A A	A A
Heptane C_7H_{16}				C	140	280	300	C	70	70	70	185		A	Α.	A	A	Α.	A A	A A	. A	A A	A A	A A	A A
Hydrazine H ₂ NNH ₂					С	200	250	70	70	70		С		С	С	СС	C	C	С	C		A	A	A	
Hydrobromic Acid HBr	20%		73	120	140	280	250	140	С	100	B to 70	185	СС	С	С	сс	С	C	C (СС	c	С	СС	c c	2
Hydrochloric Acid HCl	35%	С	210	150	140	280	250	70	С	100		100	СС	C	C	СС	C	C	C (СС	C	В	В	CC	2
Hydrocyanic Acid HCN	10%			73	140	280	250	200	70	200		185	СС	С	С	сс	С	C	C (СС	C	ΑI	3 A	A C) A
Hydrofluoric Acid HF	Dilute		73	180	73	250	300	70	С	150	70	150	СС	С	C	СС	C	С	C (СС	C	C	ЭВ	A C) A
Hydrogen Peroxide H ₂ O ₂	50%		185	150	140	150	300	100	C	200	C	185	СС	С	C	СС	С	C	В	СС	: A	A A	A A	A	
Hydrogen Sulfide H ₂ S	Dry		185	150	140	280		100	С	140	С	140	В	В			В		В			A l	ВА	A	A
Inks							300		70		70	70		A	A	A	С	С	С	C	,	A	A	A	
$\begin{matrix} \text{Iodine} \\ I_2 \end{matrix}$	10%		73	150		150	200	70	70	70	С	70	С	С	С	СС	С	С	С	C	: c	C (СВ	A	A
Kerosene		B to 70	185	73	140	280	250	С	140	С	70	300	70 A	. A	A	A A	A	Α	Α.	A A	L	A	4 A	A A	A A
Lactic Acid CH ₃ CHOHCOOH	25%	"		150	140	125	300	70		140	140	70		С	C	СС	С	В	С	Е	3 A	A	A A	A	
Lactic Acid CH₃CHOHCOOH	80%			150	73	125	300	70	С	140		70		С	С	СС	C	В	С	F	3 A	A	A A	A	A
Lead Acetate Pb(C ₂ H ₃ O ₂) ₂ · 3H ₂ O	Sat'd		185	180	140	280	300			100					C		С	С		C	;	A		A	
Lime Slurry								100 B	100	160	100			А	Α				A			A	А	Α	
Linseed Oil		100	185	150	140	280	300		180	200	70	250	A A	. A	Α	A A	A	A	A	A A	ιA	Α.	A A	A	
Magnesium Carbonate MgCO ₂					140	280	225	170	140	140	140	210		В	В		В	В	В	F	3 A	Α.	A A	A	

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals						num		stor npe											N	Лe	tals					
and Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	ЕРDМ	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE	ALUMINUM BRONZE	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	MONEL	STELLITE HASTELLOY C
Magnesium Chloride	Sat'd	4						170					V	_				а С В С		_					¢≥ BA	
MgCl ₂ Magnesium Hydroxide	Sat'd		185	180	140	280	300	170	180	200	160	225		R	C	C	RI	в А	Δ	Δ	ı	Δ	Δ	Δ	ΔΔ	АА
$Mg(OH)_2$	Saru																ы	5 E	ıA							
Magnesium Nitrate Mg(NO ₃) ₂ · 2H ₂ O			185	180	140	280	300	140	70	140	160	225		A	С	С				В		A	A	A A	ΑВ	
Magnesium Sulfate MgSO ₄ · 7H ₂ O			185	180	140	280	300	175	180	140	160	200		Α	Α	A	A A	A A	A	A	A A	ΙA	Α	A A	A A	A A
Malic Acid COOHCH ₂ CH(OH)COOH			185	150	140	250	250	С	100	70	70	200		A	В	В		C	С	C	(A	A	A A	A A	
Mercuric Chloride HgCl ₂			140	180	140	250	300	210	140	140	140	185	С	C	C	C	C (C C	С	C	С	С	C	C I	ВС	Α
Mercuric Cyanide Hg(CN) ₂	Sat'd				140	250	300	70	70	140	70	70		С	C	C	C (C C	С	C	()	A	1	A C	
Mercury Hg			185	150	140	275	300	210	140	140	140	185		C	C	C	c c	C A	A	A	P	A A	A	A A	ΑВ	A
Methyl Acetate CH ₃ CO ₂ CH ₃						100	300	B to 70	С	С	С	С			В	В		E	ВВ	В	F	3 B	Α	1	A A	. A
Methyl Acetone C ₃ H ₆ O						С		70	С	C		C		A	A	A	A A	A A	A	A	A A	λA	A	A A	4 A	A
Methyl Bromide CH ₃ Br					C	280	300	С	70	C	C	185			С	C	В	C	С	В			В	I	ВВ	
Methyl Cellosolve HOCH ₂ CH ₂ ⁰ CH ₃					C	280		70	С	70	70	C			A	Α	В	E	В	В		A	A	A A	A A	A
Methyl Chloride CH₃Cl	Dry	С			C	280	250	С	С	C	C	70	С		A	Α	C (C A	A	A	A A	ΙA	A	A A	A A	A A
Methyl Ethyl Keytone (MEK)		С	С	C	С	С	200	70	С	С	С	С		A	A	A	A A	A A	A	A	A	ιA	A	A A	A A	A A
CH ₃ COC ₂ H ₅					C	C	950	C	C	C	C	70			R	В	R	F	ВВ	R			Α	Α Α	ΑA	Α
Methylene Chloride CH ₂ Cl ₂								С																		
Molasses				73	140	150	300	100	150	150	150	185		А	А	A	A F	A A	A	A	P	1 A	A	A A	A A	Α
Monochloroacetic Acid CH ₇ CICOOH	50%		73	73	140	150	200	С	70	C	C	70		С			C	С			(C	С	CI	ВВ	
Morpholine C ₄ H ₈ ONH						75	200	70	С	С	С	С			В	В		В	ВВ	В	E	3 B	В	ВІ	ВВ	

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals																									
and]			ıum		ston npe										N	/Iet	tals	\$				w
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER PRONZE (85% C.1.)	SILCON BRONZE	ALUMINUM BRONZE BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	400 SERIES S.S.	ļ	17-4 PH	ALLOY 20 MONEL	STELLITE HASTELLOV C
Naphtha		B to 70	73	73	140	280	200	С	140	С	С	150	A	1	A A	АВ	A	. A	A	Α	A A	ΑA	A	АА	. A A
Naphthalene		B to 70			С	200	250	C	C	c	C	170	A	1	A A	АВ	A	. A	A	A	A	A A	A	A A	. A A
C ₁₀ H ₈ Nickel Chloride NiCl ₂	Sat'd	10	185	180	140	280	406	210	180	200	160	210		(С	СВ	C	C	c			A		A C	F
Nickel Nitrate Ni(NO ₃) ₂ · 6H ₂ O	Sat'd				140	280	400	210	180			250	С	(C	C	C	С	C		P	A A	Α	A C	
Nickel Sulfate NiSO ₄	Sat'd		185	180	140	280	400	210		200	160	300		A	C	СВ	С	С	C						A
Nicotinic Acid CsH ₄ NCOOH					140	250		70			140			A 1	ВІ	3	С	C	C		F	3 B	В	ВВ	
Nitric Acid HNO ₃	30%		180	120	140	125	250	70	С	100	С	185	С	C (C (ССС	С	C	С		B A	A	A		
Nitric Acid HNO ₃	70%		73	С	73	С	250	С	С	С	С	100	В	C (C	ССС	C	C	C	C	(C A		A	
Nitric Acid HNO ₃	100%			С	С	С	70	С	С	С	С	70	В	C (C	ССС	C	C	C	C	C (C A		A C	,
Nitrobenzene C ₆ H ₅ NO ₂				73	С	73	400	С		С	С	70			ВІ	3	A	A	Α			A		A A	. A
Oleic Acid CH ₃ (CH ₂) ₇ CH:CH(CH ₂) ₇ COOH			185	150	140	250	250	B to 70	100	70	B to 70	185		A :	ВІ	3 A	В	В	С		I	3 A	A	A A	. A
Oxalic Acid HOOCCOOH · 2H ₂ O	50%		185	180	140	125	300	150	С			100	С		C	СС	C	C	С	С	C I	3 A	A	A A	. A
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	70%		73	180	73	250	300		100	С	C	185		A :	ВІ	3 B A	В	В	В		В	3 A	A	A A	
Perchloric Acid HClO ₄	10%		140	73	73	200	250	70	С	70	70	70					C	2				A		A A	
Perchloroethylene Cl ₂ C:CCl ₂						275	200	C	С	С	С	200			ВІ	3	В	В	В		B A	A A	Α	A A	A A
Phenol		С	73	73	73	125		70	C	C	C	200			A A	A C	C	C	C		C	A A	A	A A	L A
C ₆ H ₅ OH Phosphoric Acid H ₃ PO ₄	10%		210	180	140	275	300	140	70	200	140	200	С	С	C (ссс	C	C	С	С	C I	3 A	Α	A C	:

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals and				Plas M		num		istor mpe											N	1 ei	tals	}					
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE	ALUMINUM BRONZE BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE HASTELLOY C
Phosphoric Acid H ₃ PO ₄	50%		210	180	140	275	300	70	С	200	70	200	С	С	С	С	СС	С	С	С	С	C !	ВА	A	. A	С	
Phosphorus Trichloride PCl ₃					С	200	300		C	С	C		С										Α		A	A	
Potassium Bicarbonate KHCO ₃	Sat'd		73	170	140	200	400	170	70	200	160	200	A							A			A		A		
Potassium Bromate KBrO ₃				180	140	275	400		180	140	140	250						C	A	A		A	A		A		
Potassium Bromide KBr				180	140	280	400	170	180	200	160	200			В	В	В	С	С	С			A		A	A	
Potassium Carbonate K ₂ CO ₃		70		180	140	280	400	170	180	200	160	200		В	В	В	ВЕ	ВА	Α	A	A	A	A A	A	. A	Α.	A
Potassium Chlorate KClO ₃ (Aqueous)				180	140	200	400	140	B to 70	140	100	140		В	В	В		A	Α	A	A		A A	A	. A	Α.	A
Potassium Chloride KCl			185	180	140	280	400	210	180	200	160	200		В	Α	Α	ВЕ	В	В	С	В	В	B A	A	. A	A	Α
Potassium Chromate K ₂ CrO ₄										70						Α			В			В	A	A	Α.	A	
Potassium Cyanide KCN			185		140	280	400	140	180	200	160	185	С	С	С	С	C C	В	В	В	В	4	A A	A	. A	Α	A
Potassium Fluoride KF					140	275	400	140	180			250											A	L	A	A	
Potassium Hydroxide KOH	25%		185	150	140	150	400	210	B to 70	140	160	140	С		С	С	С	В	В	В	В		A A	A	. A	Α	
Potassium Nitrate KNO ₃					140	280	400	210		140	140	250		A	A	A	ВЕ	В	В	В	В	I	A A	A	. A	A	A A
Potassium Permanganate KMnO ₄	10%			150	140	250	400	210	С	100	100	140			В	В		A	Α	A		1	A A	A	. A	Α.	A
Potassium Sulfate K ₂ SO ₄				180	140	280	200	210	140	140	140	250		A	A	A	ВВ	A	Α	A	A	В	A A	A	Α	A	A A
Potassium Sulfide K ₂ S						275	300		100		70	100		С	С	С	C C	C	С	С	В]	ВЕ	В	В	С	Α
Potassium Sulfite K ₂ SO ₃ · 2H ₂ O							300	140	70		70	200			В	В	В	C	С	С			A		A	В	

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals						num	l Ela Tei (°F)					-							N	let	als						_
and Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE	ALUMINUM BRONZE BRASS	GRAY IRON	DUCTILE IRON	CAKBON SIEEL	3% NI/IRON	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20 MONFI	STELLITE	HASTELLOY C
Propane C ₃ H ₈			73		140	280	300	С	70	B to 70	70	70	A	A	A	A	A A	A	Α	A	A	A	ιA	Α	A A	A A	A
Propyl Alcohol CH ₃ CH ₂ CH ₂ OH						150		140				250	A	A			A A								A <i>A</i>		A
Rosin							200		70	70	70	100			С	С		С	С	C	•	C A	ιA	Α	A A	A	
Silver Nitrate AgNO ₃		70	185	180	140	280	350	210	140	200	160	250		C	С	C	СС	C	С	С		C E	3 A		Α (2	
Soaps		70	185	73	140		400	210	180	140	140	250			В	В	A	В	В	В		B A	۱ A	Α	A I	3	A
Sodium Acetate NaC ₂ H ₃ O ₂	Sat'd		185	180	140	280	400	170	C	70		C			A	A	В	В	В	С		ВЕ	3 A		A A	4	A
Sodium Aluminate Na ₂ Al ₂ O ₃	Sat'd						300	200	180	140	140	200			C	C	В	В	В	A		В	A		A A	A	A
Sodium Bicarbonate NaHCO ₃		70	185	180	140	280	400	250	180	200	160	300		A	A	A	ВВ	Α	. A	С		A A	۱ A	. A	A A	A A	A
Sodium Bisulfate NaHSO ₄		70		180	140	280		200	180	100	140	250		C	C	C	СС	C	c	С		C E	3 A		A A	A	
Sodium Bisulfite NaHSO ₃			185	180	140	280	400	200	180	200	140	250			В	В		C	c	С		С	A		Α (С	A
Sodium Borate (Borax)	Sat'd			73			300	140	70	100	100	140			A	A		В	В			ВА	۱ A	A	A A	A	
Na ₂ B ₄ O ₇ · 10H ₂ O Sodium Carbonate Na ₂ CO ₃		70	185	180	140	280	400	140	140	140	140	300		С	A	A	ВВ	Α	. A	A	Α.	A	A	Α	A A	ΑВ	Α
Sodium Chlorate	Sat'd			100	79	250	350	B to	B		В	100			۸	A	C	D	В	D		ВΙ	5 A	٨	Α (^	
NaClO ₃	Satu							140			140																
Sodium Chloride NaCl			210	180	140	280	350	140	140	100	160	200	В	A	Α	A	ВВ	В	В	С	Α	ВЕ	3 B	В	A A	A A	A
Sodium Chlorite NaClO ₂	25%		73		С	250	200	С	С	140		С															
Sodium Chromate Na ₂ CrO ₄ · 10H ₂ O						200		70	70		70	70			Α	A		В	В	В		B A	۱ A	Α	A A	A	
Sodium Cyanide NaCN			185	180	140	280	350	140	140	140	140	200		C	C	C	СС	A	A	A	A	P	۱ A	Α	A A	A	
Sodium Fluoride NaF			140	185	140	280	350	140	70	140	70	140			A	A	В	С	C	С			A	•	A A	A	

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals and			Plastics and Elastomers at Maximum Temperature (°F)													M	1et	als									
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	ALLIMINIM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	NI PI ATED DITCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20 MONEL	STELLITE	HASTELLOY C
Sodium Hydroxide NaOH	15%	70	185	180	140	170	400	210	140	200	160	100	С		A		A		A	Α		ВА	٠A	Α	A A	ΑA	Α
Sodium Hydroxide NaOH	30%	70	210	180	140	73	350	210	100	140	160	B to 100	С		A]	В		В	В		ВА	٠A	Α	A A	1	
(Caustic Soda) Sodium Hydroxide NaOH	50%	70	210	180	100	С	350	180	c	140	160	c	С	В	В	C	СС	В	В	В	В	ВА	٠A	Α	A A	Λ	
Sodium Hydroxide NaOH	70%	70		180	100	С	350	70	c	100	100	c	С	В	C	C	СС	В	В	В	В	ВА	ιA	Α	A A	Α	
Sodium Hypochlorite NaOCl · 5H ₂ O		С	185	120	73	200	350	70	c	150	С	140	С	С	С	C	СС	C	С	С	С	c c	A		A A	A	A
Sodium Nitrate NaNO ₃	Sat'd		185	180	140	280	400	210	140	140	140	225		В	Α.	A :	ВВ	A	A	Α	A	A A	ιA	A	A A	В	A
Sodium Perborate NaBO ₂ · 3H ₂ O				73	140	•	350	70	70	70	70	70			С	С		В	В	В		Α	ιA	A	A A	A	A
Sodium Peroxide Na ₂ O ₂					140	200	250	140	B to 70	200	70	185		В	С	С	сс	c	С	С		A	ιA	A	A A	A	В
Sodium Silicate 2Na ₂ O · SiO ₂				180		280		200	140	200	140	200			С	C	В	A	A	Α		A A	ιA	Α	A A	A A	Α
Sodium Sulfate Na ₂ SO ₄	Sat'd	70	185	150	140	280	400	140	140	140	140	200		Α	A	A	ВВ	A	A	Α	A	A A	ιA	Α	A A	A A	Α
Sodium Sulfide Na ₂ S		70	185	150	140	280	350	140	180	200	140	200		С	С	C	СС	В	В	С	В	ВА	ιA	Α	A A	A	
Sodium Sulfite Na ₂ SO ₃		70	185	180	140	280	350	140	140	140	140	200			Α	Α	С	В	В	В		ВВ	ß A	Α	Α (2	Α
Sodium Thiosulphate Na ₂ S ₂ O ₃ · 5H ₂ O				150	140	280	350	200	140	200	160	200	A		В	В	С	С	С	С		С	A		A A	A	
Starch					140	200	300	170	180	200	160	200			В	В	ВВ	В	В	В		ВА	ιA	Α	A A	A	
Stearic Acid CH ₃ (CH ₂) ₁₆ COOH			185	73	140	275	350	С	140	70	70	100					СВ	С	С	C	В	C A	ιA	A	A A	A	Α
Sugar $C_6H_{12}O_6$						275	350	140							С					С					A A	A	
Sulfur S				С	140	250	350		С	70	70	250	С	С	С	С	СС	В	В	С	В	В Е	3 A		A A	A	A

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals and						num	l Ela Tei (°F)									-			N	Лe	tals	1					_
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE	ALUMINUM BRONZE BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	316 S.S.	17-4 PH	ALLOY 20 MONEI	STELLITE	HASTELLOY C
Sulfur Chloride S ₂ Cl ₂				C		73	350	C	C	70	С	70	С	C	C	C	СС	C	С	С	C	c c	СС	С	В	СС	
Sulfur Dioxide SO ₂	Dry		С	73	140	175	350	70	C	200	С	100	A	Α	Α	В	A A	. A	Α	A		A A	A A	A	A A	A A	A
Sulfur Dioxide SO ₂	Wet		С	73	73	150		140	С	200		140	В	С	C	В	ВС	,				C	A	С	A A	A	Α
Sulfuric Acid H ₂ SO ₄	Up to 30%	B to 100		180	140	250	250	140	С	100	100	200														A C	
Sulfuric Acid H ₂ SO ₄	50%	С	210	150	140	250	250	140	140	150	С	200		C	С	C	СС	C	С	С	C	C C	A	С	A A	A C	A
Sulfuric Acid H ₂ SO ₄	70%	С	210	120	140	200	200	140	С	150	С	250	С	C	C	С	СС	C	C	C	С	C C	В	С	Α (СС	A
Sulfuric Acid H ₂ SO ₄	100%	С	С	С	С	С	B to 200	c	С	С	С	c	С	С	С	С	СС	C	С	С	C	c c	В	С	ВС	СС	
Sulfurous Acid H ₂ SO ₃				150	С	230	350	С		150	С	С		C	C	С	C C	C	С	С	C	C E	3 A	A	A <i>A</i>	A C	A
Tannic Acid C ₇₆ H ₅₂ O ₄₆	10%	С	185	180	140	225	250	70	100	100	100	100			Α	Α		В	В	C	В	ВЕ	3 A	Α	A A	A	A
Tartaric Acid HOOC(CHOH) ₂ COOH				150	140	250	250	С	70	200	70	70		В	A	Α	СС	C	C	С	С	C A	A	A	A A	A	A
Toluene (Toluol) Ch ₃ C ₆ H ₅		С	С	С	С	175	200	С		С	С	70	A	Α	Α	Α	A A	. A	Α	A	A	A	A	Α	A A	A A	Α
Trichloroethylene CHCl:CCl ₂		С	С	С	С	280	200	С	С	С	С	185	A	Α	Α	A	A A	В	В	В		A	A	Α	A A	A A	Α
Turpentine			73	С	140	280		С	70	С	С	150	Α	Α	Α	A	A A	Α.	A	Α	A	A	A A	A	A A	A A	A
Urea CO(NH ₂) ₂			185	180	140					140				C		В					С				ΑI		
Varnish							350					70					ВВ	C								A	A
Vegetable Oil												200			A					Α		Α	Α	Α	A A	A A	
Vinegar		73	150	140	140	225	300	140	С	200	70	С	C	В	С	С	СС	C	С	С		A	A	A	A A	A	A
Vinyl Acetate CH ₃ COOCH:CH ₂				С	С	250	350	70	70	С	С	С			В	В		В	В	В			Α		A I	3	

374 Appendix B

 Table B-4
 Chemical Resistance Guide for Valves and Fittings (continued)

Chemicals and						num		istor mpe												Mε	etal	ls						
Formula	CONCENTRATION	ABS	CPVC	PP	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUOROCARBON	ALUMINUM	COPPER	BRONZE (85% Cu)	SILCON BRONZE	ALUMINUM BRONZE	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	I/4 PH	ALLOY 20 MONEI	STELLITE	HASTELLOY C
Water, Deionized		70	210	180	140	280	400	200	70		160		A	Α	В	В	СС	С	C	C		С	В	A A	A A	A A	1	Α
Water, Salt H ₂ O		70	210	180	140	280	400	250	180	200	160		С	В	В	В	C C	C	C	C	В	С	В	A A	A A	A A	В	A
Water, Sea H ₂ O		70	210	73	140	280	400	250	180	200	160		С	В	В	В	C C	С	C	C	В	С	В	В	ΑΔ	A A	\ C	A
Whiskey			185	150	140	200	350	200	140	140	140	140		A	C	C	В	C	C	C		С	В	A	1	A A	1	A
Wine			185	150	140	200	350	170	140	140	140	140			С	C		C	C	С		C	В	A	1	A A	1	
Xylene (Xylol) C ₆ H ₄ (CH ₃) ₂		С	C	C	C	200	350	C	С	C	C	150	A	A	A	A	A A	A A	A	Α	A	Α.	A A	A A	A A	A A	Α	Α
Zinc Chloride ZnCl ₂			185	180	140	280	400	180	70	200	160	200			С	C	С	C	C	С		С	C I	ВІ	В	A A	1	
Zinc Sulfate ZnSO ₄ · 7H ₂ O			185	180	140	280	400	180	140	200	140	200		A	С	С	В	C	C	С	В	C .	A A	A A	A A	A A	1	A

NIBCO INC., its marketing companies and distributors, and the authors of and contributors to this table specifically deny any warranty, expressed or implied, for the accuracy and/or reliability of the fitness for any particular use of information contained herein.

MATERIAL RATING FOR THERMOPLASTICS & ELASTOMERS

Temp. in °F = "A" rating, maximum temperature which material is recommended, resistant under normal conditions

B to Temp. in °F = Conditional resistance, consult factory

C = Not recommended Blank = No data available

MATERIAL RATINGS FOR METALS

A = Recommended, resistant under normal conditions

B = Conditional, consult factory

C = Not recommended Blank = No data available

Bibliography

- [1] Yedidiah, S.: Effect of Scale and Speed on Cavitation in Centrifugal Pumps, ASME Symposium on Fluid Mechanics in the Petroleum Industry, pp. 61–69, Houston, Tx, December 1973.
- [2] Acosta, A. J. and Bowerman, R. D.: An Experimental Study of Centrifugal Pump Impellers, Trans. ASME, 81: pp 1821–1839, 1957.
- [3] Yedidiah, S.: A Study of Suction Specific Speed, ASME Cavitation Forum, pp. 32–34, Chicago Ill. 1967.
- [4] Yedidiah, S.: Some Observations Relating to Suction Performance of Inducers and Pumps, Trans. ASME. Basic Engng., pp. 567–574, September 1972.
- [5] Chanaud, R. C.: Measurements of Mean Flow Velocity Beyond a Rotating Disc, ASME Paper No. 70-FE-C, 1970.
- [6] Bennet, T. P. and Worster, R. C.: The Friction on Rotating Discs and the Effect on Net Radial Flow and Externally Applied Whirl, BHRA Publication No. RR-691, 1961.
- [7] Yedidiah, S.: Effect of Energy Losses on the Head Developed by a Rotodynamic Pump, ASME Pumping Machinery Symposium, FED Vol. 81, pp. 181–186, La Jolla, Ca, 1989.
- [8] Yedidiah, S.: Recirculation in Centrifugal Pumps, AIAA Publication No. 86-1124, Atlanta, Ga, 1986.
- [9] Yedidiah, S.: Cause and Effect of Recirculation in Centrifugal Pumps, Parts I and II, World Pumps, pp. 267–295, September 1985.
- [10] Yedidiah, S.: A Study of Recirculation at the Inlet of Centrifugal Pumps, Joint ASME–JSME Conference on Thermal Engineering, Hawaii, 1987.
- [11] Worster, R. C. and Thorne, E. W.: Roughness and Friction Effects on Performance in Centrifugal Pumps, BHRA Publication No. SP-564, 1957.
- [12] Varley, F. A.: Effect of Impeller Design and Surface Roughness on the Performance of Centrifugal Pumps, Proc. Inst. Mech. Engng., 175(21): pp. 955–989, 1961.
- [13] Ishida, M. and Senoo, Y.: On the Pressure Losses due to the Tip-Clearance of Centrifugal Pumps, ASME Paper No. 80-GT-139, 1980.
- [14] Yedidiah, S.: Some Causes of Unstable Performance Characteristics of Centrifugal Pumps, 17th International Gas Turbine Conference (an ASME Paper), pp. 5–14, San Francisco, Ca, 1972.
- [15] Yedidiah, S.: Certain Unexplained Phenomena, Observed in Centrifugal Pumps, ASME Paper No. 85-FE-3, Albuquerque, NM, 1985.
- [16] Yedidiah, S.: The Recirculation Theory of Regenerative Pumps, ASME FED, Vol. 154, Pumping Machinery, pp. 355–358, Washington, DC, 1993.
- [17] Yedidiah, S.: Cause of a Dip in the QH Curve of a Centrifugal Pump, ASME Symposium on Unsteady Flow, Anaheim, Ca, 1986.
- [18] Yedidiah, S.: A Possible Cause of Surge in NPSH-Requirements of Centrifugal Pumps, ASME Cavitation and Multiphase Forum, FED, Vol. 36, pp. 39–41, Atlanta, Ga. 1986.
- [19] Yedidiah, S.: Certain Effects of Recirculation on Cavitation in Centrifugal Pumps, Proc. Inst. Mech. Engng, Vol. 200(A4), pp. 283–292, 1986.
- [20] Yedidiah, S.: Effect of Impeller-Inlet Geometry on the Intensity of Recirculation and on Cavitation in a Centrifugal Pump, ASME Cavitation and Multiphase Forum, FED, Vol. 153, pp. 197–203, Washington, DC, 1993.

- [21] Peck, J. F.: Investigations Concerning Flow Conditions on a 6-inch Experimental Centrifugal Pump, British Hydromechanics Research Association (BHRA) Publications, National Engineering Laboratory, East Kilbride, Glasgow, TN-12, 1949.
- [22] Schweiger, F.: Stability of the Centrifugal Pump Characteristics at Part Capacity, International Conference on Pump and Turbine Design, NEL, Paper No. 3-3, September 1976.
- [23] Paulon, J., Fradin C. and Poulain, J.: Improvement of Pump Performance at Off Design Conditions, ASME Paper No. 85-GT-200, Houston, Tx, 1985.
- [24] Guiton, P.: Actual Behaviour of Pumps Outside their High Efficiency Range, Von Karman Institute for Fluid Dynamics, Lecture Series 1978–3.
- [25] Zanker, K. J.: Experiments with Back Vanes used for Balancing Axial Thrust in Centrifugal Pump Impellers, BHRA Publication No. RR-729, April 1962.
- [26] Zanker, K. J.: Axial Thrust in Centrifugal Pumps, BHRA Publication No. RR-746, November 1962.
- [27] Stepanoff, A.: Centrifugal and Axial Flow Pumps, John Wiley & Sons, New York, 1957.
- [28] Worster, R. C.: Flow in the Volute of a Centrifugal Pump and Radial Forces in the Impeller, BHRA Publication No. RR-543, 1956.
- [29] Agostinelli, A., Nobles, D., Mockridge, C. R. et al.: An Experimental Investigation of Radial Thrust in Centrifugal Pumps, ASME-Paper No. 59-HYD-2, 1959.
- [30] Osterlei, R. E.: Motor Efficiency Test Methods—Apples and Oranges, Power Transmission Design, May 1980.
- [31] Pfleiderer, C.: Die Kreiselpumpen, 3rd edn., Springer-Verlag, p. 314, 1949 (in German).
- [32] Taylor, I.: Two Pump Applications Need Extra NPSH Available, ASME Polyphase Forum, pp. 38–41, San Francisco, Ca, 1972.
- [33] Yedidiah, S.: Radial Thrust in Centrifugal Volute Pumps, The author's private notes, 1967.
- [34] Yedidiah, S.: Factors Affecting the Suction Performance of Centrifugal Pumps, ASME Symposium on Fluid Mechanics in the Petroleum Industry, pp. 53–60, Houston, Tx, December 1975.
- [35] Yedidiah, S.: Alternate Vane Cavitation in an Impeller, ASME Cavitation Forum, pp. 12–13, Atlanta, Ga, 1973.
- [36] Yedidiah, S.: Some Observations Relating to Suction Performance of Inducers and Pumps, Basic Engng., pp. 567–574, September 1973.
- [37] Minami, Sungo, Kyai Kawaguchi and Tetsou Homma: Experimental Study of Cavitation in Centrifugal Pump Impeller, J. Soc. Mech. Engng. Vol. 3(9): pp. 19–28, 1960.
- [38] Yedidiah, S.: Oscillation at Low NPSH, Caused by Flow Conditions in the Suction Pipe, ASME Cavitation Forum, pp. 27–28, Montreal, Canada, 1974.
- [39] Knapp, R. T. et al.: Cavitation, McGraw-Hill, New York, 1970.
- [40] Rees, R. P. and Trevence, D. H.: The Effects of Temperature and Viscosity on the Critical Tension of Liquids, ASME Cavitation Forum, p. 1, Chicago, Ill., 1967.
- [41] Yedidiah, S.: Effect of a Sharp Edge on the Appearance of Vapor Bubbles in a Flowing Liquid. ASME Cavitation and Multiphase Forum, FED Vol. 194, pp. 101–103, Lake Tahoe, Nv., 1994.
- [42] Denny, D. F.: Vortex Formation in Pump Sumps, BHRA Publication No. SP-436, 19??.
- [43] Campbell, J. M.: Development of a Pipe Bend having Good Outlet Velocity Distribution, and the Effect of Subsequent Contractions, BHRA Publication No. RR-658, 1960.
- [44] Levi, E.: A Universal Strouhal Law, Joint ASME-ASCE Mechanics Conference, Boulder, CO, 1981.
- [45] Yedidiah, S.: Effect of a Sharp Edge on the Appearance of Vapor Bubbles in a Flowing Liquid, ASME Cavitation and Multiphase Flow Forum, 1994, FED Vol. 194, pp. 101–103, Lake Tahoe, Nv., 1994.
- [46] Yedidiah, S.: A Study of Suction Specific Speed, ASME Cavitation Forum, 1967, pp. 32–35, Chicago, Ill., 1967.
- [47] Hammitt, F. G.: Observation of Cavitation Scale and Thermodynamic Effects in Stationary and Rotating Components, Journal of Basic Engineering, Trans ASME Series D, Vol. 85, pp. 1–16, 1963.
- [48] Jekat, W. K.: Reynolds Number and Incidence Angle Effects on Inducer Cavitation, ASME Paper No. 66-WA/FE-31. 1966.
- [49] Yedidiah, S.: Effect of Impeller Width on the Suction Capability of Centrifugal Pumps, ASME Cavitation and Multiphase Forum, 1988.

- [50] Worster, R. C.: The Flow in Volutes and its Effect on Centrifugal Pump Performance, Proc. Inst. Mech. Engng. Vol. 77(31), pp. 843–876, 1963.
- [51] Anderson, H. H.: Centrifugal Pumps, 3rd ed., Trade & Technical Press, 1980.
- [52] Copley, D. M. and Worster, R. C.: Pressure Measurements at the Blade Tips of a Centrifugal Pump Impeller and the Effects of Tip Profile on Pump Performance, BHRA Publication No. RR-710, 1961.
- [53] Yedidiah, S.: Effect of Blade-Geometry on the Head Developed by a Rotodynamic Impeller, Fluid Machinery Forum, ASME Summer Meeting, FED Vol. 222, pp. 25–34, Hilton Head, S.C., 1995.
- [54] Yedidiah, S.: The Theoretical Head-Capacity Curve of a Centrifugal Impeller, presented at the Fluid Machinery Forum, ASME Summer meeting, Hilton Head, S.C., 1995.
- [55] Yedidiah, S.: Calculation of Head Developed by a Centrifugal Impeller, ASME Paper No. 89-FE-9, San Diego, Ca., 1989.
- [56] Yedidiah, S.: About the Validity of a Slip-Factor for Predicting the Head of a Centrifugal Pump, FED Vol. 119, pp. 7–9, Portland, Or., 1991.
- [57] Yedidiah, S.: An Alternate Method for Calculating the Head Developed by a Centrifugal Impeller, FED Vol. 107, pp. 131–138, Portland, Or., 1991.
- [58] Saalfield, K.: Einige neuere Gedanken zur Laufradberechnung von radialen und halbaxialen Kreiselpumpen, KSB Teechnische Berichte 11, August 1966 (in German).
- [59] Yedidiah, S.: A Correlation between Aerofoil Theory and Euler's Equation for Calculating the Head of a Constant Pitch Axial-Flow Inducer, Proc. Inst. Mech. Engng., Vol. 205(C5), pp. 357–363, 1987.
- [60] Yedidiah, S.: A Study of Application of the Aerofoil Theory for Calculating the Head Developed by an Axial-Flow Impeller, Proc. CSME Engineering Forum, Vol. 1, pp. 25–29, Toronto, Canada, 1990.
- [61] Varghese, G., Mohana Kumas, T. C., Rao, Y. V. N. et al.: Influence of Surface Roughness on the Performance of Centrifugal Pumps, ASME Joint Applied Mechanics, Fluid Engineering and Bioengineering Conference, Paper 77-FE-8, New Haven, Connecticut, 1977.
- [62] Worster, R. C.: The Effects of Skin Friction and Roughness on the Losses in Centrifugal Pump Volutes, BHRA Publication No. RR-557, 1957.
- [63] Myles, D. J.: An Analysis of Impeller and Volute Losses in Centrifugal Fans, Proc. Inst. Mech. Engng., Vol. 184, Pt. 1, No. 14, pp. 253–279, 1970.
- [64] Yedidiah, S.: Beware of Pitfalls in Testing of Centrifugal Pumps, POWER, pp. 85–87, September 1986.
- [65] Yedidiah, S.: Centrifugal Pumps, Problems and Cures, Pennwell Books, Tulsa, Ok., 1980.
- [66] Janigro, A. and Ferrini, F.: Inducer Pumps, Von Karman Institute For Fluid Dynamics, Lecture Series 61 (3 lectures), 1973.
- [67] Yedidiah, S.: Approximate Method for Calculating the Head Developed by an Impeller with a Finite Number of Blades, ASME Paper No. 69-FE-8, 1969.

Index

A	В
Abrasion 73	Back vanes 101, 328-330
by metallic contact 74, 238, 274	Balancing device 99-104
by packing 221, 238	balancing holes 100, 139
by pumped liquid 237–238	Bearings, function and problems 209
resistance of materials to 73	sliding
Air	advantages and disadvantages 209–210,
appearance 31	273
effects of 9, 31, 32, 132, 134-136, 158,	lubrication 210
193, 196–197, 278	problems with 210
funnel 163–165, 167	rolling
handling capability of impellers 32, 204	advantages and disadvantages 211
in column 250	failures and their causes 216–219
sources of 31	handling 214–216
Air leakage	lubrication 211–214
detection 139, 202	some special problems 219
due to bent shaft 207, 274, 290	Belt drive 120, 208
due to parallel operation 185–186	Bernoulli's equation 164
due to prerotation 168	Bernouli's equation for a rotating system 10–11
due to other sources 202–204	Blow
due to vortices 167	due to cavitation 231, 155–156
through mechanical seal 139–140, 202	due to compressed air 201–202, 206, 250
through stuffing box 139, 202–203	effects of 206–207
Air pockets 127, 128, 194–200	due to hard object 206
effects on check valve 201–202	due to prerotation 154–156
in discharge line 200–202	due to water hammer 178
in donut pumps 200	Boiling 33
in pumps proper 198–200	Borehole pumps (see Deep well pumps)
in suction lines 127–128, 136, 194–195	Bypass, uses of 183, 241
prevention of 195–196	
in suction nozzle 199	C
reduction of 194	C
Air, solubility in liquids 141, 193	Constant starting 000
Air valve 126, 181	Careless starting 206
Alignment, checking for 290–292	Casing
Analysis of preliminary information 273–280	diffuser type 24, 260, 318
Axial thrust 97–99	effects of geometry 318–322
balancing	split 23
multi-stage pumps 101-104	volute 20–21, 317
single-stage pumps 99–101	Cavitation, definition of 8–9, 33–34
on closed impellers 97–98	alternate vane 150–151
on semi-open impellers 98-99	and specific speed 38, 51

Cavitation, caused by:	
cutdown of impeller 37–38	
heating of parts 205–208	
inertia 179–181	
prerotation 143, 154–156	
vibrations 141, 151–153	
vortices 157–159	
water hammer 155, 179–181	
Cavitation, effects of	
balancing holes 265–269	
discharge line 153	
impeller cutdown 37–38	
impeller width 315	
impurities 160	
sharp edge 161	
suction line 157 temperature 159–160	
valve 152–153	
Cavitation, external signs of 34, 279	
Cavitation, cushioning 158	
Cavitation, effects on	
performance 147–151	
wetted parts 237, 285, 287	
Cavitation, graphical presentations	
at constant flow rate 41	
at different flows 41	
at design-flow 47-54	
Cavitation Number	
dimensionless 40	Cl
Thoma's 37	Cl
Cavitation, occurence	C
at impeller inlet 148–150	
at impeller outlet 180	
at volute (diffusor)-throat 56-58	
in istruments and their connections 129	
in pumps operating in parallel 186	
in pumps operating in series 185	
in special cases 151–153, 263–266	
Cavitation, prevention 181	
Cavitation, remedial means 181, 300–302 Cavitation, resistance of materials 303	
Cavitation, at increased available NPSH	
263–265	
Cavitation, at elevated temperatures 159–160	
Chain reactions 75, 117–118, 190	
Checklist, of most common problems 347–348	
Checklists of most common causes	
bearings overheat 354–355	
bearings operate with noise 355–356	
bearings have short life 354–355	
casing bursts when the pump is started or	
stopped 357	
flow rate periodically decreases, or	
even stops, then returns to normal	Ce
357	Cl
gaskets leak during pump operation 357	CI

impeller and/or casing has short life 356

loud blow is heard each time the pump is started or stopped 357 mechanical seal leaks excessively 354 mechanical seal has short life 354 packing has short life 353 pump does not develop any head, nor does it deliver liquid 348 pump develops some pressure, but does not deliver liquid 348 pump delivers less liquid than expected 349 pump does not develop enough presure pump consumes too much power 350 pump does not perform satisfactorily, although nothing appears to be wrong with the pump or with the system 350 pump operates satisfactorily during start, but performance deteriorates shortly afterwards 351 pump is operating with noise and vibrations, or both 351 pump overheats and/or seizes 356 pump develops cavitation under increased NPSH 357 shape of head-capacity curve differs from rated curve 349 stuffing box leaks excessively 352–353 heck valve, effect of air pockets 201, 250 hemical compatibility of materials 362-374 entrifugal pumps, classifications: by application 19 deep well 24, 25 high temperatures 20, 24, 76 irrigation 14 sewage-disposal 25 by design diffusor-pumps 24 multi stage 19, 23-26 single-stage 19, 20, 23 volute pumps 20-22 by structure centerline-discharge 20 closed-impeller 25 double-suction 23 end-suction 20-21 horizontal 21, 23-25 open-impeller 25 side-suction 21 single-suction 20-21 split-casing 23 vertical 22, 25 by specific speed 26–28 entrifugal pumps, principles of operation 6–8 hoice of pumps, effects of 14-17, 55 Clearances, checking of 243-246 Clearances, closed impeller, effects of 67-70

power consumption 119-121

NPSH 131-132

Extrusion 206, 234

Clearances, open impeller, effects of 71-72 Closed test loop 133, 138, 153 Column effects of air 250 effects of faulty assembly 250 effects of faulty machining 250 oil lubricated 251 water lubricated 251-253 Compression, fracture due to 234 Corrosion due to cavitation 237, 285 chemical affinity 234, 235, 285, 362-374 crevice 235 elevated temperatures 236-237 electrolytic 235 intermittend operation 237 reduced NPSH 237 Corrosion, effects of discontinuities in surface 285 velocity of flow 236 stabilisers 236-237 Critical speed 274, 300 Curve, drooping causes of 90-95, 111-113 definition of 14-15 effects of 186-188 Curves, performance dip in 87, 113-114 as a diagnostic tool 273-278 steepness of 15 Curves, system 16, 44 Cutdown of impeller-diameter with parallel edge 307-310 with inclined edge 310-312

D

Damage classification of 233-241 effects of human factors 239, 283-285 Deep well pumps, description 25, 247 Deep well pumps, problems caused by extension of lineshaft 247-248 in floating vessels 262 installation 250 sand 249-250 well-geometry 250 Deep well pumps, problems related to all types 247-250 oil lubrication 251 semi-open impellers 245-246, 253-254 variations in water level 248-249 water lubrication 251-253 Diffusor 260, 318 installation of 258-260

F	flat 14 steep 14
Failed parts, visual inspection of 281–287	Head developed by an impeller 6, 164, 334–341
bearings 281	Head increases with flow 277-278
casing 285–287	Head, measurements 122-130
impeller 285, 287	Head-NPSH curves 41-43
seals and packing 221–229, 281–282	Head, reduced 158
shaft 282, 300	Head, shutoff 91–94, 188
wearing rings 282–285	Head, Static 15–16
Failure of parts	Head, Total 10, 122, 123, 164
time effects on 134–136, 159, 240–241	Heating of parts
human factors 239	causes 75, 205–208
Faults in	effects 75, 190, 293, 355–356 Hot liquids 75–76
assembly 205–208, 247, 250	Human factors 239, 283–285
layout 163–176	Hydraulic sources of noise 229–231
Field procedures 289–295	Hysteresis due to recirculation 85–88
Flow meter	Typicatosis and to recirculation 60 00
cavitation in 122 Flow rate	
fluctuations in 178, 187, 237	I
increases with head 14–15, 92–95,	_
111–113	Impeller
measurements of 121–122	air–handling capability 32, 204
Flow ratio 42	closed 25
Flow	for handling sewage 25
obstruction to 123–124, 136,	semi–open 25
resistance to fluctuations 187	variations with specific speed 27
straightener 176–177	Impeller cutdowns, effect on
Foundation, setting of 240–241	head 38, 306–312
Fracture due to	NPSH-requirements 38, 57–58
bending 234	Impeller, effects of
cerelessnes 206	roughness 65
compression 234	width 313–315
extrussions and dents 207, 234	Impeller adjusting clearances 243–245
fatigue 234 galling 74, 238–239	checking clearances 244–247
shear 234	inspection, on site 285, 290
tension 233	safety precautions, prior to on–site inspection
Frequency, natural 293	290
200	Impellers semi-open, problems with
G	in deep-well pumps 245-246, 253-254
u	in multi–stage pumps 244–247
Galling, definition of 74, 238–239	in single-stage pumps 243–244
Gland, tightening of 238	Inducer
Gas (see Air)	effect of radial clearance 327–328
Gas, solubility in liquids 141, 193	effect of inlet-tip shape 328
Gasket, obstruction to flow 123–124, 195–196	effect on NPSH–requirements 84
Gradual reduction of flow 178–182, 249–250	effect on performance 83–86
Graphs, performance	effect on recirculation 84
as a diagnostic tool 273–278	Inspection, visual of
Grease, for different applications 212, 260	bearings 209–219, 281
	casing 285–287 impeler 285–287
H	seals and packings 221–224, 281–282
	shaft 282
Head-capacity curve	wearing rings 282–285
drooping 14–15, 92–95, 111–113	Inspection, on–site

before the pump is started 289-292	Misalignment 190, 207–208
during operation 292–294	Model laws
precautionary steps 290	for testing 130
when dismantling the unit 294–295	for pump-sumps 175-176
Instabilities	Multistage pumps 19, 23–24, 246–247
in suction line 155–156	
at low, partial flow-rates 86–88, 155–156,	
241	N
in double-suction pumps 232, 255-256	
Intermittend operation 237	Natural frequency 293
	Noise
T	description 229–230
L	diagnosing the sources of 293
	dry, cracking 279
Leakage of air 139, 167–168, 185–186,	from combined sources 231–233
202–205, 224	hydraulic sources of 229–231
Leakage of liquid 202	mechanical sources of 205–208, 231
through open impeller 71–72	sources of, checklist 351–352
through wearing rings 66–70 Leakage, locations 202	special cases 233
Leakage, locations 202 Leakage, effect on	NPSH, available 35 NPSH, definition 34
pump output 69–70	NPSH, effects of
suction performance 159	air (gas) 134–136, 141, 150, 158
Lineshaft, extension 247–248	blade-tip shape 46, 328
Liquids	choice of pump 55
effects on suction performance 141,	design flow 53
159–160, 193	design speed 53
thermodynamic properties 159–160, 359	different liquids 141, 160
Losses of energy 61–73	discharge line 137–138
Loop, closed 133, 138	flow-rate 55-56, 146-150
Loop for testing pumps 126, 131–133	impurities in liquid 160
Lubrication of ball bearings 211	leakage 70–71, 159
Lubrication, grease 212–213	prerotation 143
for special duties 212, 260	scale 54
Lubrication: Grease vs. oil 212–214	suction line 136–137, 157
Lubrication of journal bearing 210	temperature 141, 159–160
Lubrication: oil 213–214	time 134–136, 159
	vibrations 141, 151–153
3.5	NPSH-Flow curves 42
M	for a given application 145–150
	NPSH-Head curves 35, 41, 146–152
Materials, resistance to	NPSH, Required 35
abrasion and wear 73	at other than tested flow rates 55–56
cavitation 73	at other than tested speeds 55, 306–307
chemicals 74, 362–374	sudden jump in 268–269
Measurements of flow 121–122	at very high flow rates 56–60 within normal range of flow-rates 55
head 122–130	within normal range of flow–rates 55 NPSH–tests 131
errors in 123, 125, 127–129	NPSH, test-loops 131-133
NPSH 123-124, 131-132, 142-143	NPSH, variable 132
power 119–121	Nr Si i, variable 132
suction head 123–124	
Mechanical seals	0
features of 224	
Mechanical seals, problems with 222–223	Oil, lubricating
causes of problems 223	handling 214
diagnostic procedures 223–228	suitability 213–214
amgnostic procedures 220 220	Salushing 210 217

On–site inspection 289–295	increasing clearance between inducer and
Operation at low flow-rates 205, 241	casing 327–328
Operating conditions, changes in 241 choice of pump for given conditions 14–17	underfiling inducer inlet–tips 328 PH, effects on corrosion 236–237
Operating speed, effects of 180, 305–307	Pipe diameter, actual vs.nominal 129–130
Operation in parallel 185–188	Pipelines, stresses imposed by 188–189, 241,
Operation in series 185	274, 294
Output	Power
effects of air or gas 278, 357	consumed at different flows 13-14
decreases gradually, after start 278, 351	consumed by thrust bearing 120
low, combined with low power consumption	consumed by belt drive 120
275	consumed by column shaft 120
low, at start only 194-212, 357	consumed by geared head 120
means of modifying 323–330	definition of 4–5, 118–119
periodical fluctuations of 278–279, 357	measurements 119-121
reduced 349	transfer of 3-6, 334-341
stopped completely 348	unchanged at reduced output 277
Overheating of parts 75, 205–208	Prerotation 80–83
	effects on head-measurements 123-124
n	effects of flow on appearance 82
P	effect of impeller–geometry 154–155
D 11 (0) (C -1)	effects on NPSH 88
Packing (see Stuffing boxes)	effects on shape of QH-curve 83-85
Packing, for different applications 361	problems caused by 85–88, 154–156
Packing, handling and troubleshooting 221–222 Performance	Pressure 9 at blade-tips 326
effects of careless starting 206	at blade-tips 326 difference between both faces of a blade 10
effects of careless starting 200 effects of casing–geometry 317–322	34. 47–48
effects of handling 207–208	increases with flow rate 277
effect of impeller-cutdown 307-312	local drop in 33, 48
effect of position of impeller 208	pulsations, frequency 229–230
effect of reduced impeller-width 313-317	slam 183–184
effects of speed 180, 305–307	prevention 184–185
effects of time 73–74, 159, 240–241	vapor 33, 359
effect of vanes in suction bell 269	Priming 9
effect of volute–geometry 322	Pump, classification
effect of volute-tongue 320-321	deep-well 25
effects of workmanship 205, 207	double-suction 23
effects of a drooping curve 186–188	end–suction 20
effects of suction line 157, 190–191	for high temperatures 20
Performance, in series 185	for hot liquids 76
Performance, in parallel 185–188	for low NPSH 84, 204, 300–301
Performance curves	multistage 23, 24
applications 14–17	with open impeller 25
as a diagnostic tool 273–278	sewage handling 25
effect of leakage 67-72	single-stage 20–22
for different NPSH 43, 44	split-casing 23
breakoff 278 factors affecting 273–278	wet pit 25 Pumps, description 3, 7
unstable, and their causes 85–88,	principles of operation 3–8, 13, 64, 193,
155–156, 232, 255–256	334–341
Performance, means of altering	principal parts 6–8
adding back-vanes to shrouds 328–330	Pumps, problems with
blade-tips, overfiling 325–327	deep-well (see Deep-well pumps)
blade-tips, underfiling 323–325	dry pit 261–262, 283–285
changing end-clearance of semi-open	due to human factors 239, 256–258,
impellers 71-72, 327	283–285

effect of elbow in suction line 254–256 floating vessels 262	S
multistage pumps 101–104, 258–259	Sand, in columns 249–250
operating in parallel 185–188	Seal, mechanical (see Mechanical seal)
operating in series 185	Semi-open impellers (see Impellers, semi-open)
propeller pumps 183	Shaft, assembly 250
split-casing 232, 254-258	Shaft, extension 247
special problems 263–268	Shear-fracture signs of 234
Pumps, care of	Shock
after shutoff 285	due to cavitation 154–156
during starting 206	due to entrapped air 201
in harsh climatic conditions 260	thermal 76
Pump-system interaction 43–44, 185–188,	due to water hammer 177-178
293-294	Shutoff head
Pumping action, principles of 6–8, 13, 193	testing at 123–124
Pumping hot liquids 75–76	Similarity laws for
Pumping viscous liquids 76–78	pump-sumps 175-176
Pump-sumps	testing 130
design 166–175	Slam pressure 183–184
model laws 175–176	prevention 184–185
troubleshooting 174–175	Special cases 263–268
Pumping systems	Specific speed 26
layout 183–191	effect on design 27
problems with 172, 176–178	Stabilisers 236–237
remedial means 174–176, 178, 182–185	Stuffing box
Pump selection	handling and troubleshooting 139–140,
for given operating conditions 14	221, 238, 282, 352–353
for low NPSH 55	packing materials 221, 361
for low power consumption 17	special problems 222, 274
	Stuffing box, air leakage 139–140 Stress
R	imposed by piping 188–189, 241, 274, 294 352
	consequences of 190
Radial thrust 104–110, 321–322 Rating curves	due to inproper workmanship 188, 239, 282
as a diagnostic tool 273–278	due to setting of structures 189
differnt shapes of 14–18	due to changes in temperature 188
drooping HQ–curve 14–16	Stress, means of prevention 188–189
factors affecting their shapes 92–95,	Submergence of suction–inlet 166
111-113	Suction head 8–9, 35
Recirculation	in presence of prerotation 123–124
at pump-inlet 80-82, 122-123	Suction lift 8
at impeller outlet 88–95	Suction line
definition 80	air pockets in 127–128, 194–198
effect on QH-curve 79, 82-85	air leakage into 202-204
effect on shutoff head 88–95	effects on head-measurements 122, 158,
effect of flow-rate 82	193–194
effect on NPSH 84, 88	effects on performance 176–177, 190–191
from discharge-nozzle 89-95	Suction, process of 8–9
to eye of impeller 83	Suction inlet
to an intermediate radius 88	location in sump 166–167
Reducer, excentric 196	submergence 166
Resonance 233, 274, 352, 393	Suction nozzle 8
in variable-speed drive 233	Suction performance 34–44, 145–153
Rotation, direction of 206	graphical representation 41
Roughness, effects of 61–66	factors affecting 147–150, 158

measuring 126-127	multi-stage 101-103
testing 131–136	Thrust, radial 104–110, 321–322
Suction specific speed	Time, effects of 73–74, 134–136, 159, 240–241
definitions of 39–40	Torque-meter 121
effects of design-flow and design speed	Total head 10, 122, 123, 164
52-53	Transient conditions 154–156, 177–182, 206
effects of operating speed 52	Trouble, detection of causes:
for given flow-ratio 42	analysing information 273–280
scale effects 54	collecting information 273, 275
Suction lift 8	external inspection of pumping unit
Suction sump 163	289–292
design principles, of 166–173	external inspection of site 289–290
effects of inlet duct 168–169	inspection of failed parts 281–285
for more than one, single pump 172-173	observations during operation 292–294
model laws 175–176	preliminary steps 273–280, 289–290
recommended dimensions 167	verifying information 289
troubleshooting 174–175	Troubleshooting, recommended sequence of
Sump, suction see Suction sump	activities 273–295
Surface roughness 61–66	certain shortcuts 299–303
System-curve 16	Turbine pumps 247 oil–lubricated 251
determination of 16, 44, 293–294	water lubricated 251–253
System-pump interaction 44, 293–294	with semi-open impellers 253-254
at reduced NPSH 44	with semi-open impeners 200 201
System, pumping	
layout 183–191	U
problems 167–173, 176–178	
remedial means 174–175, 178, 182–185	Unstable performance
	due to fluctuation in liquid-level 248-250
T	due to interaction of several pumps 172–173
Temperature, effects on	due to prerotation 85–88, 154–156
alignement of parts 75	due to sump-layout 169-174
cavitation 159–160	Unsuitable choice of pump 14, 17, 55
NPSH required 159	Unusual case-histories 263-269
pump-parts 293, 355-356	
Temperature, elevated 76, 141, 159–160	
Temperature, fatigue due to changes in 75–76,	${f v}$
188	
Tension, fracture due to 233-234	Vacuum in column 250
Testing near shutoff 123-124, 141	Valve
Test loops	effects of closing 178
for NPSH 131-133	effect of air 201–202, 250
for performance 126, 133	Valve-disk 201
Tests and testing 118–119	Valve, air 126, 181
field 292–295	Vapor bubbles
similarity laws 130	collapse of 33
Test, misleading	Vapor pressure 33, 359
causes of 119–125, 157	Vibrations see also Noise
implications 119	Vibrations, sources of
near shutoff 122–123, 141	checklist of 351–352
Tests, problems with 119–125, 157	combined 231–233
Thermal shock 76	diagnosing its sources 293
Thoma's Cavitation Number 37	hydraulic 229–231
Thrust, axial 97–99	mechanical 205–208, 231
Thrust, balancing	self-excited 233, 274, 293, 352 valve-disk 152-153, 278
single stage 99–101	valve-uisk 152-155, 276

Viscosity due to prerotation 154-157 definition 76 during start 181 effect on NPSH 78 due to shutoff 179-181 discharge line 177 effect on performance 77, 206 frequent starts and stops 178 Volute effect of air in 198-200 pipelines 177 prerotation 154-156 effect of throat-area 318-320 effect of tongue geometry 320-321 suction line 177, 254-256 Vortex, cavitation due to 169 damage due to 177 Vortex, effect on performance 157, 169 prevention 178-179, 182 Water level, variations in 248–250 Vortex, formation of 163 Wear resistance 73 Vortex, origin 163-165 periodic shedding of 268 Wearing ring leakage Vortex, in sumps 163, 167-173 effects on cavitation 70-71 effects on performance 66-70 Well \mathbf{w} deviations from vertical position 250 oil in 252 straightness of 250 Water hammer principles 178

Workmanship, effects of 201-203, 239

Water hammer caused by

cavitation 155-156