Global alignment with general and affine gapcost

Global alignment

Note about gap cost

In general: cost of "gap block" = g(k), where k is the gap length

Our examples: g(k) = c "constant gap cost"

 $g(k) = b \cdot k$ "linear gap cost"

Many programs: $g(k) = a + b \cdot k$ "affine gap cost"

Modeling gapcost

Biological observation: longer insertions and deletions (indels) are preferred to shorter indels, i.e. a "good" alignment tends to few long indels rather than many short indels ...

Can the simple algorithm for pairwise alignment be adapted to reflect this additional biological insight, i.e. a better model of biology?

Yes, we introduce the concept of a gapcost-function g(k) which gives the cost/penalty for a block of k consecutive insertions or deletions ...

Example

A T A C A - - C G C A
$$s(A,A) + s(T,T) + g(1) + s(C,C) + s(A,T) + g(3) + A T - C T C A C - C T $s(C,C) + g(1) + s(C,C) + s(A,T)$$$

Modeling gapcost

Biological observation: longer insertions and deletions (indels) are preferred to shorter indels, i.e. a "good" alignment tends to few long indels rather than many short indels ...

Computational challenge

Can the sir

this additio Can we compute an optimal global alignment with general (affine) gapcost efficiently?

ed to reflect ogy?

Yes, we introduce the concept of a gapcost-function g(k) which gives the cost/penalty for a block of k consecutive insertions or deletions ...

Example

A T A C A - - - C G C A
$$s(A,A) + s(T,T) + g(1) + s(C,C) + s(A,T) + g(3) + A T - C T C A C - C T $s(C,C) + g(1) + s(C,C) + s(A,T)$$$

Global alignment of two strings

General cost:

Substitution cost: s: \(\Si\S\)

gap cost: 9: IN+ > IR

Global alignment of two strings

The book [BA] defines a gap penalty function in definition 8.1.25 as a function g: $N \rightarrow R$, where g(0)=0 and $g(k)\geq 0$, that is **subadditive**, i.e. where $g(k+l) \leq g(k) + g(l)$. Why do you think that subadditivity is required?

Computing optimal cost with general gap cost

Intuition

Formalization

$$S(e,j) = \max \begin{cases} S(e,j-k) - g(k) \end{cases} \begin{bmatrix} A(e,j) \\ B(e,j) \end{bmatrix}$$

$$\max_{0 \le k \ne i} [S(e,j-k) - g(k)] \begin{bmatrix} A(e,j) \\ B(e,j) \end{bmatrix}$$

$$\max_{0 \le k \ne j} [S(e,j-k) - g(k)] \begin{bmatrix} A(e,j) \\ B(e,j) \end{bmatrix}$$

$$\max_{0 \le k \ne j} [S(e,j-k) - g(k)] \begin{bmatrix} A(e,j) \\ B(e,j-k) \end{bmatrix}$$

Computing optimal cost with general gap cost

Can be implemented using dynamic programming

Running time: $(\frac{n}{2})^2 \cdot \frac{n}{2} \le T(n) \le n^2 \cdot n$ $O(n^3)$

Space consumption: O(n2)

$$S(e,j) = \max \begin{cases} S(e,j) + S(e,j) - g(e) \end{cases} \begin{bmatrix} A(e,j) \\ B(e,j) \end{bmatrix}$$

$$\max_{0 \le k \le i} [S(e,j) - g(e)] \begin{bmatrix} A(e,j) \\ B(e,j) \end{bmatrix} \begin{bmatrix} A(e,j) \\ B(e,j) \end{bmatrix}$$

$$\max_{0 \le k \le j} [S(e,j-k) - g(k)] \begin{bmatrix} A(e,j) \\ B(e,j-k+1) \end{bmatrix} \begin{bmatrix} A(e,j) \\ B(e,j-k+1) \end{bmatrix}$$

Intuition

D(i,j) and I(i,j). Let us consider D(i,j)...

Trick

Consider the best deletion-block, two possibilities:

S(i-1,j) = max{M(i-1,j), I(i-1,j), D(i-1,j)}
and D(i-1,j)-(
$$\alpha$$
+ β) <= D(i-1,j)- α

Hence,

$$D(i,j) = \max \left\{ M(i-1,j) - (\alpha+\beta), I(i-1,j) - (\alpha+\beta), D(i-1,j) - \alpha \right\}$$

$$= \max \left\{ S(i-1,j) - (\alpha+\beta), D(i-1,j) - \alpha \right\}$$

Trick

Consider the best deletion-block, two possibilities:

D(i-1.j) -
$$\alpha$$

D(i-1.j) - α

Ontimation of existing block [--- BLj] - - - : -]

$$S(i,j) = \max \begin{cases} O & i = 0 \text{ and } j = 0 \\ S(i-1,j-1) + s(Ali3,Blj3) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i,j) & i > 0 \text{ and } j > 0 \end{cases}$$

$$I(i,j) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i,j) = \max \begin{cases} S(i-1,j) - (l+\beta) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i-1,j) - d & i > 1 \text{ and } j > 0 \end{cases}$$

$$T(i,j-1) - d & i > 0 \text{ and } j > 0 \end{cases}$$

$$T(i,j-1) - d & i > 0 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - d & i > 0 \text{ and } j > 0 \end{cases}$$

Can be implemented using dyn. proj/memorization using 3 tables of size ()(n.m)

$$S(i,j) = \max \begin{cases} O & i = 0 \text{ and } j = 0 \\ S(i-1,j-1) + s(AliI,RljI) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i,j) & i > 0 \text{ and } j > 0 \end{cases}$$

$$I(i,j) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i,j) = \max \begin{cases} S(i-1,j) - (i+\beta) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i-1,j) - i & i > 1 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - i & i > 1 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - i & i > 1 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - i & i > 1 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - i & i > 1 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - i & i > 1 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - i & i > 1 \text{ and } j > 0 \end{cases}$$

Can be implemented using dyn. prog/memorization using 3 tables of size ()(n.m)

Time and space is O(nm). An optimal alignment can be retrieved by backtracking in time O(n).

$$S(i,j) = \max \begin{cases} O & i = 0 \text{ and } j = 0 \\ S(i-1,j-1) + s(AliI,RljI) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i,j) & i > 0 \text{ and } j > 0 \end{cases}$$

$$I(i,j) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i,j) = \max \begin{cases} S(i-1,j) - (a+\beta) & i > 0 \text{ and } j > 0 \end{cases}$$

$$D(i-1,j) - a & i > 1 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - a & i > 0 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - a & i > 0 \text{ and } j > 0 \end{cases}$$

$$I(i,j-1) - a & i > 0 \text{ and } j > 0 \end{cases}$$

can be implemented using dyn. proj/memorization using 3 tables of size ()(n.m.)

Global alignment with convex gap cost

g(k) = "a convex function, fx log(k) or sqrt(k)"

$$S(e,j) = \max \begin{cases} O \\ M(i,j) \\ S(e-1,j-1) \end{cases} \begin{bmatrix} A(e,j) \\ R(e,j) \end{bmatrix}$$

$$\max_{0 \le k \le i} [S(e-k,j) - g(k)] \begin{bmatrix} A(e-k+i) - R(e,j) \\ A(e-k+i) - g(k) \end{bmatrix} \begin{bmatrix} A(e-k+i) - R(e,j) \\ A(e-k+i) - R(e,j) \end{bmatrix}$$

$$\max_{0 \le k \le i} [S(e,j-k) - g(k)] \begin{bmatrix} A(e-k+i) - R(e,j) \\ A(e-k+i) - R(e,j) \end{bmatrix}$$

In cubic time using above recursion, but it can be done in O(nmlog(n))