EE103 – Digital Lab Demo

2023-24/I Autumn

A) Logic Probe Circuit

GND - Pin 7

JK Flip-flop Function Table

Function Table

Inputs					Outputs	
PR	CLR	CLK	J	K	Q	Q
L	Н	X	X	X	Н	L
H	L	X	X	X	L	Н
L	L	X	X	X	H*	H*
Н	н	1	L	L	Q_0	\overline{Q}_0
Н	Н	1	Н	L	Н	L
Н	Н	1	L	Н	L	H
Н	Н	1	Н	Н	Toggle	
Н	Н	Н	X	X	Q ₀	\overline{Q}_0

- Synchronous inputs: J and K
- Asynchronous inputs: PRE' and CLR'

74S112 JK Flip-flop Pin-out

B) Toggle Flip-flop (using JK Flip-flop)

74S112 -ve Edge-triggered JK F/F

Pin 16: +5 V; Pin 8: GND

- JK Flip-flop wired as a Toggle Flip-flop (Mod-2 counter)
- J = K = 1; PRE'= CLR'= 1
- Q changes at the negative Clock edges
- V_{cc} line corrupted by switching noise
- Should use a de-coupling capacitor (between V_{cc} and GND typ 0.1 μ F)

C) Mod-6 Ripple UP Counter

- Problem Statement: Design a modulo-6 Ripple UP counter using negativeedge triggered JK flip-flops.
- (Hint: Being an UP counter, use the following sequence of states (CBA): 000, 001, 010, 011, 100, 101, 000, 001,.... will make design simpler)
- Solution: Connect input Clock to FF-A Clock input; Q_A output to FF-B Clock; Q_B output to FF-C Clock. Outputs $Q_CQ_BQ_A$ (or CBA).

```
Stable States (CBA):
000, 001, 010, 011, 100, 101
```

```
Unstable (Quasi-stable)
State (CBA):

110 (we will decode
this state and clear the
flip-flop)
```

Mod-6 Ripple UP Counter

Stable States (CBA):

000, 001, 010, 011, 100, 101

Unstable State (CBA):

110

State 111 can occur only at Power ON

Ripple Counter Behaviour at Higher Clock Frequencies

- Advantage
 - Easy to design
- Disadvantages
 - Ripple counters used only up to a few MHz
 - Asynchronous outputs
 - The Quasi-stable state can create problems (in time critical applications)

D) Mod-5 Ripple DOWN Counter

- Problem Statement: Design a modulo-5 Ripple DOWN counter using negative-edge triggered JK flip-flops.
- (Hint: Being a DOWN counter, use the following sequence of states (CBA): 111, 110, 101, 100, 011, 111, 110,.... will make design simpler)
- Solution: Connect input Clock to FF-A Clock input; Q_A' output to FF-B Clock; Q_B' output to FF-C Clock. Outputs $Q_C Q_B Q_A$ (or CBA).

```
Stable States (CBA):

111, 110, 101, 100, 011
```

```
Unstable (Quasi-stable)
State (CBA):

010 (we will decode this state and clear the flipflop). Decode BA'
```

Mod-5 Ripple DOWN Counter

```
Stable States (CBA):
111, 110,
101, 100,
011
```

```
Unstable State (CBA): 010
```

States 001 and 000 can occur only at Power ON