Lesson 4: From Eating to Energy

BIOL 1441 Cell & Molecular Biology

Learning Objectives (a.k.a. Study Guide)

By the end of this lesson, students will be able to:

- 1. Explain why the human body needs to eat.
- 2. Define the term "metabolism"
- 3. Describe the function of chemical bonds.
- 4. Explain how the structure of ATP makes it good for storing & releasing energy.
- 5. Explain what happens in catabolic & anabolic reactions.
- 6. Explain what happens in endergonic & exergonic reactions.

- 7. Describe the relationship between catabolic, anabolic, endergonic, and exergonic reactions.
- 8. Explain how ATP & ADP are related.
- 9. Explain what happens during redox reactions.
- 10. Write the overall chemical equation for cellular respiration.
- 11.Identify the location where each step of cellular respiration occurs in the cell.

Learning Objectives (a.k.a. Study Guide)

By the end of this lesson, students will be able to:

- 12. Differentiate between substrate-level phosphorylation & chemiosmosis.
- 13. List the number of carbons found in glucose & pyruvate.
- 14. Identify the starting materials & products created by each of these processes: glycolysis, pyruvate oxidation, the Citric Acid Cycle (a.k.a. Krebs Cycle), and the Electron Transport Chain (and oxidative phosphorylation).
- 15. Explain the function of electron carriers in cellular respiration.

- 16. Explain how electrons are used to build a proton gradient across the inner mitochondrial membrane.
- 17. Explain how the movement of protons is used to build ATP.
- 18. Describe the role of oxygen in the process of cellular respiration.
- 19. Describe the purpose of fermentation.
- 20. Explain how alcohol & lactic acid fermentation occur, including types of organisms using each pathway
- 21. Explain the role of feedback inhibition in regulating cellular respiration.

Your cells have taken up glucose. Now what?

In **cellular respiration** the energy is transferred to the bonds between the phosphate groups ATP.

ATP can be used by cells as a source of energy by breaking the high energy phosphate bonds.

High-energy bonds

Adenine

Ribose

The energy in glucose is stored in the chemical bonds between the atoms. It is not directly available for your cells to use.

From Eating to Energy

On the most basic level, you need to eat to get the energy required to survive

- Energy is required for building **macromolecules** (like proteins & nucleic acids)
- Energy is required for life-sustaining processes like active transport

Foods store energy in their chemical bonds

- By breaking those chemical bonds, that energy is released into your cells
- Your cells can use that energy immediately or store it by forming new chemical bonds

Metabolism is the sum of <u>all the chemical reactions</u> that occur in your cells to keep you alive

Refresher: Metabolism Terminology

The chemical reactions of metabolism can be classified as catabolic or anabolic

Catabolic reactions break large polymers into smaller monomers

These reactions <u>release</u> energy

Anabolic reactions *build* large polymers from smaller monomers

These reactions <u>require</u> energy

Catabolic & anabolic reactions are paired

 The monomers made in catabolic reactions are used to build *polymers* in anabolic reactions

the many building blocks for biosynthesis

Metabolism Terminology

The chemical reactions of metabolism can also be classified as exergonic or endergonic

Exergonic reactions <u>release</u> energy

 This is because the *products* of the reactions have LESS energy than the *reactants*

Endergonic reactions <u>require</u> energy

• This is because the *products* of the reactions have MORE energy than the *reactants*

Exergonic & endergonic reactions are paired

• The energy *released* in exergonic reactions is used to *power* endergonic reactions

Enzymes

- Speed up the rate of chemical reactions
- Without enzymes, reactions would occur much too slowly for organism functioning
- Enzymes facilitate both anabolic and catabolic reactions
- Enzymes act on **substrates** (in this example, lactose) to make **products** (in this case glucose and galactose)

Let's Practice!

Anabolic reactions

RELEASE / REQUIRE

energy.

Endergonic reactions

RELEASE / REQUIRE

energy.

Catabolic reactions

RELEASE / REQUIRE

energy.

Exergonic reactions

RELEASE / REQUIRE

energy.

Based on energy requirements, anabolic reactions are the same as _____ reactions.

Based on energy requirements, catabolic reactions are the same as reactions.

Metabolism: An Overview

These are the reactions that happen when you eat food & break it down in your body.

These are the reactions that are necessary for organism functioning.

ATP & ADP

ATP & ADP are the main forms of chemical energy in a cell

 Energy is stored in the energy-rich chemical bonds between their phosphate groups

ATP = adenosine **tri**phosphate

- ATP has 3 phosphate groups, so it has A LOT of energy
- ATP is made when the cell has extra energy

ADP = adenosine <u>di</u>phosphate

- ADP has 2 phosphate groups, so it has some energy
- ADP is made when the cell uses the energy in ATP (by removing one of its phosphate groups)

Adenosine triphosphate (ATP)

This energy comes from catabolic (exergonic) chemical reactions.

Example: digesting food

This energy goes into anabolic (endergonic) chemical reactions.

Example: building new proteins

Let's Practice!

Photosynthesis

- Is this catabolic or anabolic?
- Is this endergonic or exergonic?

How can you tell?

Cellular Respiration

- Is this catabolic or anabolic?
- Is this endergonic or exergonic?

How can you tell?

Oxidation & Reduction

In metabolism, chemical bonds are broken & built

Chemical bonds are made of electrons

When a molecule <u>loses</u> electrons, it becomes **oxidized**

- Often, this loss is seen as the breaking of a chemical bond
- Oxidation can also generate a positively-charged ion

When a molecule gains electrons, it becomes reduced

- Often, this is seen as a the building of a new chemical bond
- Reduction can also generate a negatively-charged ion

Let's Practice: NAD+ & NADH

The **oxidized** form of this molecule is NAD⁺.

Has the oxidized form gained or lost electrons?

$$NAD^{+} + H^{+} + 2e^{-} \longrightarrow NADH$$

The **reduced** form of this molecule is NADH.

Has the reduced form gained or lost electrons?

Cellular Respiration

Cellular respiration is the process your cells use to generate energy from glucose

When glucose is <u>oxidized</u>, the energy stored in its chemical bonds is released

 This energy is then captured in the chemical bonds of newlyformed ATP molecules

Ultimately, energy-poor electrons are given to oxygen

This means oxygen is <u>reduced</u>

This version of the chemical equation for **cellular respiration** makes it look very simple.

In reality, cellular respiration requires several different processes that occur in multiple locations in the cell and involves many enzyme-mediated steps (not pictured).

How Do You Make ATP from Glucose?

Step 1: glycolysis

Split the glucose into pyruvate molecules

Step 2: pyruvate oxidation

 Move the pyruvates into the mitochondria & process them

Step 3: the Citric Acid (Krebs) Cycle

 Remove energy-rich electrons from the processed pyruvates

Step 4: oxidative phosphorylation

 Use the energy from those highenergy electrons to build ATP

Building ATP

ATP is built by **phosphorylating** ADP

- This means a new chemical bond is built between ADP & a phosphate group
- The energy of ATP is stored in that chemical bond

- A phosphate group is removed from one molecule (the substrate)
- It is then directly attached to ADP

Building ATP

ATP can also be made using oxidative phosphorylation

Oxidative phosphorylation uses the Electron Transport Chain (ETC) & Chemiosmosis

- First, the ETC creates a proton
 (H⁺) concentration gradient
 across the inner mitochondrial
 membrane
- Then, ATP synthase uses the energy of that gradient to build ATP in a process called chemiosmosis

Electron Carriers

The Electron Transport Chain (ETC) uses energy from **electron carriers** to create the H⁺ concentration gradient

Electron carriers "capture" the energy from one chemical reaction & transport it to a different part of the cell to be used

Electron carriers like the Uber for electrons

In cellular respiration, the primary electron carriers are NAD+ / NADH & FAD / FADH₂

Cellular Respiration: The Big Picture

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ~36ATP$$

Energy-rich glucose ($C_6H_{12}O_6$) is broken into energy-poor carbon dioxide (CO_2)

Two forms of energy are created: ATP & energized electron carriers (NADH & FADH₂)

Ultimately, the energy of electron carriers is also transformed into ATP using the Electron Transport Chain

Note: Krebs Cycle and Citric Acid Cycle are the same thing.

For each process, know these things:

- What does it start with?
- What does it end with?
- Where does it occur?
- Does it build ATP?
- Does it build energized electron carriers?

Step 1: Glycolysis

Glycolysis is the initial glucose-breaking process

 Many chemical reactions break its chemical bonds, rearrange its elements, and harvest some of its energy

Starting materials: glucose $(C_6H_{12}O_6) + 2 \text{ ATP} + 2 \text{ NAD}^+$ *Oxygen (O_2) is NOT required for this process!*

Ending materials: 2 pyruvate $(C_3H_4O_3) + 2$ (net) ATP + 2 NADH

- Technically, 4 ATP are made, but 2 ATP are required, so the cell only gains 2 ATP
- This ATP is made through substrate-level phosphorylation

Location: the cytoplasm

Glycolysis: A Closer Look

Remember!

Glycolysis generates two forms of energy: ATP & NADH

Each pyruvate CCC By making **two pyruvate**, the has **3 carbons**. 2 Pyruvate number of carbons does not change.

Step 2: Pyruvate Oxidation

Each 3-carbon pyruvate still has A LOT of energy

 The pyruvates are transported into the mitochondria so that energy can be harvested

Starting materials: 2 pyruvate + 2 NAD+ + 2 Coenzyme A complexes

Ending materials: 2 acetyl coenzyme A (acetyl CoA) + $2 CO_2 + 2 NADH$

Location: the mitochondrial matrix (a.k.a. its center)

Mitochondrial Structures

The outer mitochondrial membrane divides it from the cytoplasm

The inner membrane is the location of the Electron Transport Chain (ETC)

The **intermembrane space** (between the membranes) is where the ETC pumps H⁺ ions into

 As H⁺ re-enter the matrix through the ATP Synthase enzyme, ATP is built

The **matrix** is the central fluid-filled area of the mitochondria

• It is the site of the Citric Acid (Krebs) Cycle

Step 3: The Citric Acid (Krebs) Cycle

The Citric Acid Cycle harvests all the remaining energy in Acetyl Coenzyme A (Acetyl CoA)

 REMEMBER: one glucose molecule makes two acetyl CoA's!

Starting materials: 2 acetyl CoA + 6 NAD⁺ + 2 FAD (+ oxaloacetate)

Ending materials: oxaloacetate + 4 CO₂ + 2 ATP + 6 NADH + 2 FADH₂

Location: the mitochondrial matrix (a.k.a. its center)

The Citric Acid Cycle: A Closer Look

The Citric Acid Cycle begins with a **4-carbon** molecule (oxaloacetate).

2 carbons are added when acetyl-CoA enters the cycle.

Those 2 carbons leave the cycle as CO₂ molecules, generating NADH.

As the remaining **4 carbons** rearrange their structure, ATP & more energized **electron carriers** are made.

So, Where's the Glucose?

Glucose has 6 carbons

By the end of the Citric Acid Cycle, all 6 carbons have been separated from one another & released as CO₂ (carbon dioxide)

And Where's the Energy?

At the end of the Citric Acid Cycle, only 4 ATP have been made

- 2 (net) ATP from glycolysis
- 2 ATP from the Citric Acid Cycle

The rest of the energy is stored in **electron carriers**

- 10 NADH (from glycolysis, pyruvate oxidation, & the Citric Acid Cycle)
- 2 FADH₂ (from the Citric Acid Cycle)

Oxidative phosphorylation transforms the energy in those electron carriers into ATP

Oxidative Phosphorylation

Oxidative phosphorylation builds *most* of the ATP generated through cellular respiration.

First, the Electron Transport Chain (ETC) creates an H⁺ concentration gradient across the inner mitochondrial membrane.

Then, during chemiosmosis, ATP synthase uses that gradient to build ATP.

The Electron Transport Chain (ETC)

Electrons (from NADH & FADH₂) travel through each of the ETC protein complexes.

Their energy is used by the proteins to pump H⁺ ions (a.k.a. protons) into the intermembrane space.

By the end of the ETC, the electrons no longer store any energy & are combined with O₂.

Chemiosmosis

ATP Synthase is the ATP-generating protein of oxidative phosphorylation

The concentration of H⁺ (protons) is very high in the intermembrane space & much lower in the matrix

- ATP synthase which is embedded in the inner mitochondrial membrane – allows protons to move back into the matrix
- The energy that is released when these protons move back in is called **proton motive force**

ATP synthase uses the power of proton motive force to create new ATP

 It takes the movement of 4 protons (H⁺) to make 1 molecule of ATP

The Role of Oxygen

Oxidative phosphorylation is the only cellular respiration process that requires oxygen (O_2)

O₂ is the final electron acceptor at the end of the Electron Transport Chain (ETC)

- Energy-poor electrons are donated to O₂, making space for other electrons to continue to move through the ETC
- If oxygen was not present, electrons would build up in the Electron Transport Chain & electron carriers would remain permanently reduced

Cellular Respiration: A Review

Respiration begins with glucose ($C_6H_{12}O_6$).

The glucose is split into pyruvate in the cytoplasm, then transported into the mitochondria.

As the pyruvate is processed further, both ATP & energized electron carriers are made.

Ultimately, the most ATP is built through oxidative phosphorylation, the process that harnesses the energy stored in electron carriers.

Respiration Processes & Their Mitochondrial Locations

	Location	Starts with:	Ends with:	Stored Forms of Energy (ATP, NADH, or FADH ₂)
Glycolysis				
Pyruvate oxidation				
The Citric Acid Cycle				
Oxidative Phosphorylation				

Oxygen & Cellular Respiration

The only part of cellular respiration that directly uses oxygen is the Electron Transport Chain (ETC)

 O₂ removes low-energy electrons from the ETC, allowing new electrons to constantly enter it

Electrons in the ETC come from NADH & FADH₂

- Donating electrons to the ETC oxidizes the carriers to NAD⁺ & FAD, the form needed for all the other parts of cellular respiration
- If the electron carriers can't be oxidized, ALL cellular respiration stops

Fermentation

Cells use **fermentation** when there is no oxygen present

The goal of fermentation is to regenerate the oxidized electron carrier NAD⁺

- Without this carrier, glycolysis cannot occur, and...
- Without glycolysis, a cell has no ways to make ANY ATP

Alcohol Fermentation

Alcohol fermentation is used by <u>yeast</u> to regenerate NAD⁺

- The pyruvate (made by glycolysis) is transformed into **ethanol**
- This transformation requires electrons, which NADH provides, oxidizing it back into NAD+

Alcohol fermentation is used in brewing & wine-making

- This process generates a lot of CO₂
- Fermentation tanks have valves to help relieve the pressure this gas creates

Lactic Acid Fermentation

Lactic acid fermentation is used to regenerate NAD⁺ in <u>bacteria</u>, <u>fungi</u>, & <u>mammals</u>

- The pyruvate (made by glycolysis) is transformed into lactic acid
- This transformation requires electrons, which NADH provides, oxidizing it back into NAD⁺

Lactic acid fermentation is used to make many different foods

- Examples: yogurt, cheese, sourdough bread
- Lactic acid leads to a tangy taste in these foods

Summary of Aerobic and Anaerobic Pathways

Macromolecules besides carbohydrates can be catabolized using some of the same metabolic pathways as glucose

Regulating Cellular Respiration

The steps of cellular respiration are regulated using **feedback inhibition**

 This means that the products of the chemical reactions can inhibit the continuation of the chemical reaction

Many of the enzymes involved in respiration are sensitive to ATP

- If A LOT of ATP is present, they are inactive
- If A LITTLE ATP is present, they are active

Other factors (like pH changes due to lactic acid buildup) can also influence enzyme activity

Your cells have taken up glucose. Now what?

In **cellular respiration** the energy is transferred to the bonds between the phosphate groups ATP.

ATP can be used by cells as a source of energy by breaking the high energy phosphate bonds.

High-energy bonds

Adenine

Ribose

The energy in glucose is stored in the chemical bonds between the atoms. It is not directly available for your cells to use.

To Prepare for Next Class...

- ☐ Review your class notes
 - Use the eTextbook & Other Helpful Resources to supplement your lecture notes
- ☐ Complete the homework assignment and use it to direct your studying
- ☐ Print the slides for Lesson #5- Green Energy

