Theory of Computation

William Chu

November 10, 2018

1 Set Equality

Definition 1.1. Let A, B be sets such that A = B. To show A = B, we need to show two statements.

- $A \subset B$
- $B \subset A$

Definition 1.2. Let $p, q \in F$. We say that p divides q (denote p|q) if $\exists k \in F$ so that pk = q.

Proposition 1.1. Let $A = 6n : n \in F$, $B = 2n : n \in F$, $C = 3n : n \in F$. So $A = B \cap C$.

Proof. We first show that $A \subset B \cap C$. Let $x \in A$. By definition of A, x = 6k for some $k \in F$. We show $x \in B$ and $x \in C$. We first observe $x = 2 \cdot (3k)$. Therefore, $x \in B$. Now ovserve $x = 3 \cdot (2k)$. So $x \in C$. Thus $x \in B \cap C$. As x was arbitrairy, we conclude that $A \in B \cap C$. We now show that $(B \cap C) \subset A$. Let $y \in B \cap C$. Let $n_1, n_2 \in F$ such that $y = 2n_2 = 3n_2$. As 2 and 3 share no common factors, we have that $2 \cdot 3|y$. so 6|y. Thus y = 6h for some $h \in F$. So $y \in A$. Thus, $(B \cap C) \subset A$. We showed that $A \subset (B \cap C)$ and $(B \cap C) \subset A$. So $A = B \cap C$.

Proposition 1.2. Let A, B, C be sets, Then $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof. We first show $A \times (B \cup C) \subset (A \times B) \cup (A \times C)$. Let $(x, y) \in A \times (B \cup C)$. We show that $(x, y) \in (A \times B) \cup (A \times C)$. We have two cases:

- 1. Suppose $y \in B$. Then $(x, y) \in A \times B$.
- 2. Suppose $y \in C$. Then $(x, y) \in A \times C$

So $(x,y) \in (A \times B)$ or $(x,y) \in A \times C$. Thus, $(x,y) \in (A \times B) \cup (A \times C)$. And We conclude $A \times (B \cup C) \subset (A \times B) \cup (A \times C)$. We now show $(A \times B) \cup (A \times C) \subset A \times (B \cup C)$. Let $(x,y) \in (A \times B) \cup (A \times C)$. To be continued QED

2 Autonoma Theory

Definition 2.1 (Alphabet). Let Σ be a finite set, We refer to Σ as an alphabet.

Definition 2.2 (Kleene Closure). Let Σ be an alphabet. The kleene closure of Σ , denoted Σ^* is the set:

$$\Sigma^* = \bigcup_{n \in \mathbb{N}} \sum_{n}^{n}$$

where $\Sigma^0 = {\Sigma}$. Note: Σ is the empty string.

Definition 2.3 (Language). A language $L \subset \Sigma^*$

Definition 2.4 (Regular Language). Let Σ be an alphabet. The following are perciesly the regular languages over Σ . (i) \emptyset is regular. (ii) $\{a\}$ is regular, $\forall a \in \Sigma$. (iii) If L_1, L_2 are regular the $L_1 \cup L_2$, L_1^* is regular and $L_1 \cdot L_2 = \{xy | x \in L_1, y \in L_2\}$ is regular.

Definition 2.5. Let Σ be an alphabet. A regular expression defined recusively

- 1. \emptyset is a regular expression with $L(\emptyset) = \emptyset$.
- 2. ϵ is a regular with $L(\epsilon) = {\epsilon}$.
- 3. For each $a \in \Sigma$, the regular expression a has language $\{a\}$. (L(a) = a)
- 4. For R_1, R_2 be regular expressions. Then:
 - (a) $R_1 + R_2$ is a regular expression, where $L(R_1 + R_2) = L(R_1) \cup L(R_2)$.
 - (b) R_1R_2 is a regular expression, where $L(R_1R_2) = L(R_1)L(R_2)$.
 - (c) R_1^* is regular, and $L(R_1^*) = (L(R_1))^*$.

3 Graph Theory

Definition 3.1 (Simple Graph). A simple graph G(V, E) has a vertex set V (denote V(G) if the graph is not clear), and an edge set $E \subset \binom{V}{2}$. $[E \subset \binom{V}{2}]$ is the set of 2-element subsets of V] Remark, for an edge i, h we write it as ij or ji.

Definition 3.2 (Compelete Graph). Let $n \in \mathbb{N}$. The complete graph on n verticies, denoted as k_n , has vertex set V = [n], and edge set $\binom{E = [n]}{2}$.

Definition 3.3 (Path). The path on n verticies, denoted P_n , has certe set V=[n], and edge set; $E=\{\{i,i+1\}|i\in[n-1]\}$.

Definition 3.4 (Null Graph). G(V, E) has $V = E = \emptyset$, $G = \emptyset$.

Definition 3.5 (Empty Graph). The empty graph on n vertices G(VE) has vertex set V = [n], and $E = \emptyset$.

Definition 3.6 (Cycle Graph). For $n \in \mathbb{N}$, $n \geq 3$, the cycle graph on verticies, denoted as C_n , has vertex $E = i, i + 1 | i \in [n-1]$.

Definition 3.7 (Wheel Graph). Let $n \geq 4$. The wheel graph on n vertices, denoted as W_n is the graph G(V, E), with vertex set V = [n] and edge set.

$$E = \{\{i, i+1\} | i \in [n-2]\} \cup \{\{1, n-1\}\} \cup \{\{i, n\} | i \in [n-1]\}$$

.

Definition 3.8 (Bipartite graph). A barpartite graph G(V, E) is a graph s.t. V can be partitioned into two sets X, Y (i.e., $V = XUY, X \cap Y = \emptyset$ and $E \subset \{xy | x \in X, y \in Y\}$)

Definition 3.9 (Hypercube). The hypercube of degree d, denoted Q_d , has vertex set $V = 0, 1^d$ (i.e., the set of binary strings of length d). Now $(w_1, w_2, ..., w_d)$ and $(\tau_1, \tau_2, ... \tau_d)$ are adjacent in Q_d if and only if there exists exactly one $i \in [d]$ s.t. $w_i \neq \tau_i$.

Definition 3.10 (Connected). A graph is said to be connected if for every pair of vertices u, v there exists a path from u to v (i.e., u - v path). A graph is disconnected if it is not connected. The connected subgraphs are called components.

Definition 3.11 (Tree). A tree is a connected, a cyclic graph.

Definition 3.12 (Vertex Degree). Let G(V, E) be a graph. The degree of a vertex $v \in V$ is $deg(v) = |\{uv|uv \in E\}|$. A graph is d-regular if every vertex has degree d.

Definition 3.13 (Walk). Let G(V, E) be a graph. A walk in G is a sequence of verticies. $(v_0, v_1, ..., v_k)$ s.t. for all $i \in \{0, ..., k-1\}$, $v_i v_{i+1} \in E(G)$.

Definition 3.14 (Adjacency Matrix). Let G(V, E) be a graph. The adjacency matrix of G is a $|V| \times |V|$ matrix where $A_{ij} = \{1 : ij \in E(G), 0 : \text{Otherwise}\}$

Definition 3.15 (Closed Walk). Let G(V, E) and let $v_0, v_1, ... v_k$ be a walk. We say that the walk is closed if $v_0 = v_k$.

Definition 3.16 (Independent Set). An independent set of a graph G(V, E) is a set $S \subset V$ such that for every $i, j \in S$, $ij \notin E(G)$. Denote $\alpha(G)$ as the size of the largest independent set in G.

Definition 3.17 (Graph Vertex Coloring). A vertex coloring of a graph G(V, E) is a function $\varphi: V(G) \to [n]$ s.t. whenever $uv \in E(G), \varphi(u) \neq \varphi(v)$. The chromatic number of G denoted $\chi(G)$, is the smallest $n \in \mathbb{N}$ s.t. there exists a coloring

$$\varphi:V(G)\to [n]$$

.

Lemma 3.1 (Handshake Lemma). Let G(V, E) be a simple graph. Then

$$\sum_{v \in V} deg(v) = 2|E|$$

•

Proof. By double counting. 2|E| counts twice the number of edges.

$$\sum_{v \in V} deg(v)$$

we note that deg(v) counts the number of edges incident to v. Each edge has 2 endpoints, u and v. So uv is counted twice once in deg(v) and once in deg(u). So

$$\sum_{v \in V} deg(v) = 2|E|$$

QED

Lemma 3.2. Let G(V, E) be a graph. Every closed walk of odd length at least 3, contains an odd cycle.

Proof. By induction on odd $k \in \mathbb{Z}^+$, $k \geq 3$. Base Case: Any closed walk of length 3 includes an odd cycle so the lemma holds. Inductive Hypothesis: Fix $k \in \mathbb{Z}^+$ odd, $k \geq 3$., and suppose the lemma holds. Inductive Step: Conside a closed walk of length $k+2, v_0, v_1, ..., v_k+2$. If $v_0 = v_{k+2}$ are the only repeated verticies then the walk unduces an odd cycle, and we are done. Suppose instead there are only other repeated verticies in the walk. Let $0 \leq i < j \leq k+2$, where we don't have both i=0 and j=k+2. Suppose $v_i=v_j$, then $v_i, v_{i+1}, ..., v_k$ has odd length, then $v_i, ..., v_j$ contains an odd cycle by the inductive hypothesis. Suppose instead $v_i, ..., v_j$ has even length. Observe that $v_0, ..., v_i, v_{j+1}, ..., v_k+2$ is a closed walk of odd length at most k. So by the Inductive Hypothesis, $v_0, ..., v_i, v_j+1, ..., v_{k+2}$ has an odd cycle. Thus $v_0, ..., v_{k+2}$ (The Original Walk) has an odd cycle.

Theorem 3.1. Let G(V, E) be a graph, and let A be its adjcency matrix. For all $n \in \mathbb{Z}^+$, $(A^n)ij$ counts the number of i-j walks of length n.

Proof. By induction on $n \in \mathbb{Z}^+$. Base case: n=1. So $A^1 = A$. Now there exists a walk of length 1 from i-j if and only if $ij \in ij \in E(G)$. This is counted by A^{ij} . Inductive Hypothesis: Fix $k \geq 1$, and supposes that $(A^k)ij$ counts the number of i-j walks of length k. Inductive Step: Consider $A^{k+1} = A^K \times A$. By the Inductive Hypothesis, $(A^k)ij$ counts the number of i-j walks of length k. Similarly Aij counts the number of i-j walks of length k. Observe that:

$$(A^{K+1})ij = \sum_{x=1}^{n=|V|} ((A^k)_{ix} \times Axj)$$

Now $(A^k)ix$ counts the number of k-length walks from i-x. Now Axj=1 if and only if $xj \in E(G)$. So we may extend a walk of length k from i-x, to walk of length k+1 from i-j if and only if $xj \in E(G)$. By the rule of sum, we add up over all the $x \in V(G)$.

Theorem 3.2. A graph G(V, E) is bipartite if and only if G contains no cycles of odd length.

Proof. Suppose G is bipartite with parts from X and Y.

$$V(G) = X \cup Y, X \cap Y = 0$$

Consider a walk of length n. As no two vertices in a fixed part are adjacent, only walks of even length can be closed. A cycle is a closed walk where only the endpoints are repeated. So G contains no odd cycles. Conversely, suppose G has no odd cycles. We construct a bipartition of G. Without laws of generality, suppose G is connected. For if G is not connected we apply the following construction to each connected component. Fix $v \in V(G)$. Let: $X = \{x \in v(G) | dist(v, x) \text{ is even}\}$, $Y = \{y \in V(G) | dist(v, y) \text{ is odd}\}$. So $V(G) = X \cup Y$, and $X \cap Y = \emptyset$. We show that as two vertices in the same part are adjacent. Suppose to the contrary that there exists a closed odd walk $(v_1, ..., y_1, y_2, ...v)$ By Lemma 1, $(v_1, ..., y_1, y_2, ...v)$ contains an odd cycle, contradicting the assumption that G has no odd cycles. Similarly, no two vertices in X are adjacent. So G is bipartite.

Proposition 3.1. $2^{\mathbb{N}}$ is uncountable.

Proof. Suppose to the contrary that $2^{\mathbb{N}}$ is countable. Let $h: \mathbb{N} \to 2^{\mathbb{N}}$ be a bijection. We obtain a contradiction (contradicting the surjectivity of h). We construct a set: $S \in 2^{\mathbb{N}}$ s.t. $\forall n \in \mathbb{N}, \ h(n) + S$. Def: $S = \{i \in \mathbb{N} | i \notin h(i)\}$. We show that S is not in the range of h. Suppose $i \in h(i)$. Then $i \notin S$ Thus, $h(i) \neq S$. Similarly, if $i \notin h(i)$, then $i \in S$. So $h(i) \neq S$. Thus, S ins not in the range of h, contridicting the assumption that h was a bijection. QED

Proposition 3.2. \mathbb{R} is uncountable.

Proof. We show [0,1] is uncountable. We represent $S \in 2^{\mathbb{N}}$ as a binary string w, where $w_i = \{1 : i \in S, 0 : i \notin S\}$ we map $w \mapsto 0$. w, which is an injection. So [0,1] is uncountable. QED

4 Asymptotics

Definition 4.1. Let

$$f, g: N \to L = \lim_{x \to \infty} \left(\frac{f(n)}{g(n)} \right)$$

We have: (i) If $0 \le L < \infty$, then $f(n) \in O(g(n))$ (ii) $0 < L \le \infty$, then $f(n) \in \Omega(g(n))$ (iii) If $0 < L < \infty$, then $f(n) \in \Theta(g(n))$

Definition 4.2. Let $f \circ g : \mathbb{N} \to \mathbb{N}$. We say that $f(n) \in \mathcal{O}(g(n))[f(n) = \mathcal{O}(g(n))]$ if $\exists c, k \in \mathbb{Z}^+$ such that $f(n) \leq c \circ g(n) \forall n \geq k$

Theorem 4.1. f(n) = n, $g(n) = n^2$. Then $f(n) \in O(g(n))$.

Proof. Let c = k = 1. We show by induction on $n \in N$ that $n \le n^2$. Inductive Hypothesis: Fix $k \le 0$. Suppose $k \le k^2$. Inductive Step: Consider k+1. By the Inductive Hypothesis, $k \le k^2$. So $k+1 \le k^2+1 > k^2+2k+1 = (k+1)^2$ So we have by induction that $n \le n^2$ for all $n \in N$ Thus, $n \in O(n^2)$. QED

5 Combinatorics

Definition 5.1 (Rule of Sum). If A and B are disjoint sets, then $|A \cup B| = |A| + |B|$.

Definition 5.2 (Rule of Product). If A and B are sets, then $|A B| = |A| \cdot |B|$

Definition 5.3 (Permutation). Let X be a set. A permutation is a bijection $f: x \to x$.

Definition 5.4 (Restricted Permutation). Given an *n*-element set and $r \in 0, ..., n$, there are $P(n, r) = \frac{n!}{n!(n-r)!}$

Definition 5.5 (Σ alphabet). Let Σ be a finite string we refer to as an alphabet. A word of length n is an element of Σ^n

Definition 5.6 (Countabliity). A set X is said to be countable if there exists an injection $f: X \to \mathbb{N}$. That is, X is countable if and only if $|X| \leq |\mathbb{N}|$.

Definition 5.7 (Multiset). A multiset S is an unordered collection of elements, which may be distinct.

Definition 5.8 (Intuition). A multiset is a set, with possible repeated elemtents.

Definition 5.9 (Binomial Theorm). For $x, y \in \mathbb{C}$,

$$(x+y)^n = \sum_{n=1}^{\infty} \binom{n}{i} x^i y^{n-1}$$

Theorem 5.1. There exists n! permutations on [n].

Proof. We define a permutation $\pi:[n] \to [n]$. Observe that $\pi(1)$ can take on any value [n]. So we have n choices for $\pi(1)$. This leaves n-1 possible values to which $\pi(2)$ can map. The selections of $\pi(1)$ and $\pi(2)$ are independent. So by the rule of product, we multiply to obtain n(n-1) ways of selecting $\pi(1)$ and $\pi(2)$. Proceeding in this manner, there are $n(n-1)(n-2)...2 \cdot 1 = n!$ permutations. QED

Theorem 5.2.

$$\sum_{i=0}^{n} 2^i = 3^n$$

Proof. By double countiing, $3n^2$ counts the number of ternary strings of length n. Fix $i \in [n] \cup 0$. We first count the number of ternary string of length n with exactly i binary digits. We select the positions for the binary digits in $\binom{n}{i}$ ways. There are 2^i ways of populating the selected i positions with binary digits. Our selection of binary digits fixes the rest of the positions to contain 2's Denote A, as the set of ternary strings length n with exactly i binary digits. For $i \neq j$, $i \in A_i \cap A_j = \emptyset$. So by rule of sum, we add

$$\sum_{i=0}^{n} 2^{i}$$

This counts all the ternary strings of length n.

QED

Theorem 5.3 (Rule of Sum). Let A and B be disjoint sets, then $|A \cup B| = |A| + |B|$.

Proof. Let n=|A|+|B|. We map $F:A\cup B\to [n]$. Let $g:A\to [|A|]$, $h:B\to [|B|]$ be bijections. Define: $f(x)=g(x):x\in A, h(x)+|A|:x\in B.$ As $A\cap B=0$, x will be evaluated under g or under k, but not both, As g and h are functions so is f. We verify that f is a bijection. Injection: Let $x_1,x_2,\in X\cup Y$ s.t. $f(x_1)=f(x_2).$ Observe that f takes on values from $1,\ldots |A|$ if $x\in A$, and f takes on values from $|A|+1,\ldots,|A|+|B|$ if $x\in Y$. if $x\in B$. Since $f(x_1)=f(x_2)$, we have that $x_1,X_2\in A$ or $x_1,x^2\in B$. If $x_1,x_2\in B$. If $x_1,x_2\in A$, then $f(x_1)=g(x_1)=f(x_2)$. As g is a bijection, it follows that $x_1=x_2$ Similarly, if $x_1,x_2\in B$, then we have: $f(x_1)=h(x_1)=h(x_2)$. As f is a bijection, f is a surjection. Surjection: As f is a surjection, f is a set f is an injection. Surjection: As f is a surjection, f maps to each f is an injection in the f is surjective.

Theorem 5.4 (Stars and Bars). Let $n, k \in \mathbb{N}$. There exists percisely $\binom{n+k-1}{n}$ multisets of size n, whose elements are drawn from [k].

Proof. Let M be the set of n-element multisets drawn from [k]. We construct a bijection $\varphi: (*^n, i^k-1) \to M$, as follows $\varphi(*^a1|...|*^ak) = 1, ..., 1, 2, ..., 2, ..., k, ..., k$. We show that φ is a bijection. Surjection: Let $S = 1, ..., 1, ..., k, ..., k^ak \in M$. Then $*^a1|*a2|...|*^ak| \to S$ under φ So φ is surjective. Injection: Let $\omega, \tau \in R(*^n, |^k-1)$ such that $\varphi(\omega) = \varphi(\tau) = 1^a, 2^{a_1}, ..., k^{a_k}$. It follows that $\omega = \tau = *^{a_1}|*^{a_2}|*^{a_3}$. So φ is injective, and thus a bijection. QED

Theorem 5.5 (Bionomial Theorem). For $x, y \in \mathbb{C}$,

$$(x+y)^n = \sum_{n=1}^{\infty} {n \choose i} x^i y^{n-1}$$

Proof. We observe that on

$$\sum_{n=1}^{\infty} \binom{n}{i} x^i y^{n-1}$$

There are $\binom{n}{i}$ terms of the form $x^iy^{n-1}\forall i\in [n]\cup 0$. Now expanding $(x+y)^n$, each term is of the form x^iy^{n-1} for $i\in [n]\cup 0$. Each factor (x+y) contributes either x or y, but not both to x^iy^n-1 . As multiplication continues the order in which the x's and y's are selected does not matter. There are $\binom{n}{i}$ ways of selecting the x terms, which fixes the selection of the y terms. The selections of terms of the form x^iy^{n-1} , x^jy^{n-j} are disjoint for distinct i,j. So by the rule of sum, we add:

$$\sum_{n=1}^{\infty} \binom{n}{i} x^i y^{n-1} = (x+y)^n$$

QED

Theorem 5.6. \mathbb{Z} is countable.

Proof. We construct an injection $\varphi \mathbb{Z} \to \mathbb{N}$. Def $\varphi(n) = 2^n : n \geq 0, 3^n : n < 0$. We show that φ is injective. Let $n_1, n_2 \in \mathbb{Z}$ s.t. $\varphi(n_1) = \varphi(n_2)$. As 2,3 are prime they share no common factors or $n_1, n_2 < 0$. Case: Suppose $n_1, n_2 \geq 0$. So $2^{n_1} = 2^{n_2}$. Thus, $n_1 = n_2$. Case: Suppose $n_1, n_2 < 0$. Then $3^{-n_1} = 3^{-n_2}$. Thus, $-n_1 = -n_2$, and we have $n_1 = n^2$. So φ is injective, and we conclude that \mathbb{Z} is countable. QED

6 Finite State Machines

Definition 6.1 (Finite State Machine). A finite state machine is a 5-state(), where:

- 1. Q is our set of states
- 2. Σ is our input alphabet
- 3. δ is the transition function
- 4. q_0 , the initial start state
- 5. $F \in Q$ the set of final accept states

Definition 6.2 (Deterministic Finite State Automoton). We say that a finite state machine is a DFA(Determanistic finite state automoton) if the transition functions of the form:

$$\delta:Q\times\Sigma\to Q$$

Definition 6.3 (Non-deterministic Finite State Automoton). A finite state machine is a NFA(Non-deterministic Finite State Automoton) if the transition function is of the form:

$$\delta:Q\times\Sigma\to 2^Q$$

Definition 6.4 (ϵ -NFA). A finite state machine is an ϵ -NFA if the transition is of the form:

$$\delta: Q \times (\Sigma \cup {\epsilon}) \to 2^Q$$

Definition 6.5 (Complete Computation). Let M be a FSM, and let $w \in \Sigma^*$. A complete computation of M on w is a sequence: $s_0, s_1, ..., s_k$ (where k = |w|), with $s_1 \in \delta(s_{i-1}, w_i)$, $\forall i \in [k]$, We can say that the computation is accepting if $s_k \in F$ (i.e. if M holds on a final state when run on w).

Definition 6.6. Let M be a FSM. The language of M is the set:

- $L(M) = \{ w \in \Sigma^* | \text{there exists a complete accepting computation for } w \}$
- M(w) = 1, if M accepts w
- M(w) = 0, if M rejects w

Definition 6.7. Let N be an ϵ -NFA, and let $q \in Q$. The E-closure of q, denoted ECLOSE(q), is defined recursively:

- 1. $q \in ECLOSE(q)$
- 2. If $v \in \text{ECLOSE}(q)$ and $r \in \delta(v, \epsilon)$, then $r \in \text{ECLOSE}(q)$

Theorem 6.1 (Kleene Theorem). A language L is regular if and only if there exists a DFA M that accepts $L(i.e.\ L(M)=L)$

Proof. \Rightarrow) We prove by induction on n = |L| that if L is regular, then L is accepted by some DFA. Base Case:

- 1. Suppose n = 0. Then $L = \emptyset$. The DFA q_0 accepts L.
- 2. Suppose n = 1. the DFA q_0 accepts $\{\epsilon\}$
- 3. If $L = \{a\}$, for $a \in \epsilon$ then $q_0 \to \epsilon_1$, accepts L

Inductive Hypothesis: Fix $k \geq 1$, and suppose that every regular language of size $|L| \leq k$ is accepted by some DFA. Inductive Step: Let L_1, L_2 be regular languages of size at most k. By the Inductive Hypothesis, we have DFAs M_1 , M_2 s.t. $L(M_1) = L_1$ and $L(M_2) = L_2$. QED

Lemma 6.1. There exists a DFA M to accept $L_1 \cup L_2$

Proof. Let M be a DFA with:

- 1. $Q_M = Q_1 \times Q_2$
- 2. $\Sigma_K = \Sigma_1 \cup \Sigma_2$
- 3. $q_0(M) = (q_0(1), q_0(2))$
- 4. $(F_1 \times Q_2) \cup (Q_1 \times F_2)$

5.
$$\delta_M = \delta_1 \times \delta_2$$
 (i.e. $S_M((q_i, q_i), a) = S_1(q_i, a), S_2(q_i, a)$)

We show that $L_1 \cup L_2 = L_M$. Let $\omega \in L_1 \cup L_2$. Thus, $\omega \in L_1$ for some $i \in [2]$. Let $\hat{\delta}_i = (s_0, s_1, ..., s_k)$ be an accepting computation of M_i on ω . Let $\hat{\delta}_j = (r_0, r_1, ..., r_k)$ be a computation of M_j on ω . We have that $((s_0, r_0), (s_1, r_1), ..., (s_k, r_k))$ is an accepting computation of M on ω . Thus $\omega \in L(M)$. So $L_1 \cup L_2 \subset L(M)$. We now show $L(M) \subset L_1 \cup L_2$. Let $\omega \in L(M)$. Let $\hat{\delta}_M = ((a_0, b_0), (a_1, b_1), ..., (a_k, b_k))$ be the accepting computation of M on ω As $\omega \in L(M)$, $(a_k, b_k) \in (F_1 \times Q_2)$ or $(a_k, b_k) \in (Q_1 \times F_2)$. Without the laws of generality, suppose $(a_k, b_k) \in (F_1 \times Q_2)$. So $(a_0, a_1, ..., a_k)$ is accepting computation of M_1 on ω . So $\omega_1 \in L_1$. By similar argument, if instead $(a_k, b_k) \in Q_1 \times F_2$, then $\omega \in L_2$. So $\omega \in L_1 \cup L_2$. QED

Lemma 6.2. $L_1 \cdot L_2$ is accepted by an ϵ -NFA M

Lemma 6.3. L_1^* is regular

7 Group Theory

Definition 7.1 (Group). A group is a two-tuple (G, *) where G is a set and * is a binary operation. Also G must be closed under $GxG \to G$

- 1. Accordativity: $\forall a, b, c \in G, a(bc) = (ab)c = a * (b * c) = (a * b) * c$
- 2. Identity: $\exists e \in G \text{ s.t. } ea = ae = a \ \forall a \in G$
- 3. Inverses: $\forall e \in G, \exists a^{-1} \text{ s.t. } aa_{-1} = a^{-1}a = e$

Definition 7.2 (Order of an Element). The order of an element for any $a \in G$, $|a| = min\{n \in \mathbb{Z}^+ : a^n = e\}$

Definition 7.3 (Order of a Group). |G| for (G, *), a group, the cardinality of the set G.

Definition 7.4 (Subset). Let G be a group. The set M is a subgroup of G of G if $M \subset G$ and H is a subgroup in it's own right under the same operation denoted $H \leq G$.

Theorem 7.1. Let (G,*) be a group. Then:

- 1. The identity, e, is unique
- 2. Inverses are unique
- 3. $(a^{-1})^{-1} = a \ \forall a \in G$

Proof. 1. By def of G being a group, the identity exists. BWOC, let $e, f \in G$, both the identity. Thus, ef = f and fe = e by def of identity. Hence, we also know ef = fe so f = ef = fe = e. Thus the identity is unique.

- 2. By definition of G, $\forall a \in G$, $\exists a^{-1}$ BWOC, let $a_1^{-1}, a_1^{-2} \in G$ are both inverses for a. Then, $aa_1^{-1} = e$ and aa_2^{-1} . So, $a_1^{-1} = a_1^{-1}e = a_1^{-1}(aa_2^{-1}) = (a_1^{-1}a)a_2^{-1}ea_2^{-1} = a_2^{-1}$.
- 3. Let a $\in G.$ By definition of G, $\exists a^-1$ s.t. $aa^{-1}=e$ and $\exists (a^{-1})^{-1}$ s.t. $a^{-1}(a^{-1})^{-1}=e.$

QED

8 Myhill-Nerode and DFA minimization

- 9 Turing Machines
- 10 Planar Graphs
- 11 P vs. NP

Definition 11.1 (P).

$$P = \bigcup_{n \in \mathbb{N}} DTIME(n^k)$$

= $\{L | \exists$ Turing Machine M and \exists polynomial P_M such that $\forall \omega \in \Sigma^*, M(\omega) = 1 <=> w \in L$, and M takes time $p(|\omega|)\}$

Definition 11.2 (NP).

 $NP = \{L | \exists \text{ verifier } M \text{ for } L \text{ such that } M \text{ runs in polynomial time.} \}$

Proposition 11.1. $P \subset NP$

Proof. Let $L \in P$, and let M be a poly-time decider for L. We construct a poly-time verifier for L as follows. For $\omega \in \Sigma^*$, M on input $<\omega,0>$ simulates M on ω (ignoring the certificate O). M accepts $<\omega,0>$ off M accepts ω . Since M decides L in poly-time, M verifiers members of L in poly-time. So $L \in NP$.

12 $\varphi \phi$