Laboratorio de Procesado Digital de Señal - 3º GITT

Práctica 1: muestreo y cuantificación

En esta práctica se van a trabajar conceptos básicos del muestreo y la cuantificación de señales continuas.

Se facilita al alumno la amplitud de la señal x(t) muestreada (vector x) en función del tiempo (vector t); la de la señal k(t) muestreada (vector t) en función del tiempo (vector t_k) y un archivo de audio.

Programe en Matlab los siguientes apartados, **comentando el código**. Consulte en la ayuda de Matlab las funciones utilizadas a lo largo de la práctica.

Al finalizar la práctica, suba a la plataforma web de la asignatura (Moodle) un archivo PDF, en el que se responda a los apartados de la práctica y en el que se presenten las figuras que se piden; y un archivo .m, con el código de Matlab con el que se obtienen los resultados.

Muestreo

En este apartado se va a trabajar con el muestreo de señales y a analizar el resultado de efectuar un muestreo correcto o no.

A partir de la señal facilitada al alumno, realice los siguientes apartados, respondiendo a las preguntas que se plantean:

- a) Indique la frecuencia de muestreo (f_{s-x}) de la señal facilitada (x(t)).
- b) Indique la frecuencia de Nyquist (f_{s-min}) de la señal x(t).
- c) Calcule la señal g(t) como resultado de muestrear la señal x(t), entre t(1) y t(end), a una frecuencia $f_{s-g}=\frac{3}{2}\cdot f_{s-min}$ y una frecuencia $f_{s-h}=\frac{2}{3}\cdot f_{s-min}$, comente los resultados.

En la Práctica 2 el alumno aprenderá a muestrear una misma señal a otra frecuencia. De momento utilice la función interp1 de Matlab con los siguientes parámetros:

Consulte la ayuda de Matlab para conocer el significado de cada uno de los argumentos.

d) Represente el espectro en frecuencia de x(t), desde $-f_{s-x}/2$ hasta $f_{s-x}/2$; de g(t), desde $-f_{s-g}/2$ hasta $f_{s-g}/2$; y de h(t), desde $-f_{s-h}/2$ hasta $f_{s-h}/2$, superpuestas en la misma

- figura. Explique las conclusiones extraídas de analizar el resultado de la figura. ¿Qué es la energía de poca potencia que se ve en todo el rango de frecuencias?
- e) Superponga en una misma figura x(t), g(t) y h(t) en el tiempo, con el vector de tiempo correspondiente para cada uno. Exponga las conclusiones extraídas de la representación.

Cuantificación Uniforme

La cuantificación uniforme consiste en dividir la amplitud de la señal de entrada en intervalos de igual amplitud y determinar a cuál de ellos pertenece cada muestra.

Figura 1 Relación entrada-salida de un cuantificador uniforme.

En este apartado se va a realizar una cuantificación sobre la señal k(t) facilitada por el profesor y se van a analizar los resultados obtenidos al variar los valores de los parámetros de la cuantificación.

Para cuantificar en Matlab una señal muestreada hay que realizar los siguientes pasos:

1) Generar la escala de cuantificación. Para ello utilice la función quantizer de Matlab con los siguientes parámetros:

```
q = quantizer('fixed, 'round', 'saturate', [B, D]);
```

Donde B es el número de bits totales (signo + parte entera + parte decimal) con el que se codifica cada nivel de cuantificación (con 1 bit para el signo) y D es el número de bits de la **parte decimal** de dicha codificación.

2) Realizar la cuantificación de la señal. Para ello utilice la función num2bin de Matlab con los siguientes parámetros:

```
y_{binario} = num2bin(q, x(t));
```

3) Para interpretar los valores binarios de la cuantificación como valores decimales utilice la función bin2num de Matlab con los siguientes parámetros:

 $y_{\text{decimal}} = bin2num(q, y_{\text{binario}})$; A continuación, realice los siguientes apartados respondiendo a las preguntas que se plantean:

a) ¿Cuántos niveles de cuantificación se tendrán si se utilizan B bits para cada nivel de cuantificación (con 1 bit para el signo) y D bits decimales?

- b) ¿De qué magnitud es el salto entre dos niveles de cuantificación consecutivos en el caso anterior?
- c) ¿Cuál es el rango (niveles máximo y mínimo) de la cuantificación para el caso planteado?
- d) ¿Cuál es el rango (valores máximo y mínimo) de error de cuantificación ϵ para una muestra?
- e) Indique el número de niveles de cuantificación, el salto entre dos niveles consecutivos, los niveles máximo y mínimo de la cuantificación, y el rango de error de cuantificación, para B = 5 y D = 3.
- f) Cuantifique la señal k(t) con palabras que tengan 1 bit de signo con:
 - 3 bits de parte entera y 0 bits de parte decimal. La señal resultante será k_{s3.0}(t).
 - 1 bit de parte entera y 2 bits de parte decimal. La señal resultante será k_{S1.2}(t).
 - 3 bits de parte entera y 2 bits de parte decimal. La señal resultante será k_{S3.2}(t).
 - 5 bits de parte entera y 0 bits de parte decimal. La señal resultante será k_{S5.0}(t).
- g) Analice, en el dominio del tiempo, las diferencias entre las señales k(t), k_{53.0}(t), k_{51.2}(t), k_{53.2}(t) y k_{55.0}(t). También analice, en el dominio de la frecuencia, las diferencias entre las señales K(f), K_{53.0}(f) y K_{51.2}(f). Exponga y justifique gráficamente las conclusiones extraídas de dicho análisis. Para ello, muestre las figuras que considere necesarias, ampliando convenientemente la zona de análisis.
- h) Calcule el error cuadrático medio cometido en cada una de las señales cuantificadas respecto de la señal original k(t).

$$ECM = \frac{1}{N} \cdot \sum_{n=1}^{N} |k[n] - k_{SE.D}[n]|^2$$

Donde k[n] es la muestra n-ésima de la señal original, $k_{SE.D}[n]$ es la muestra n-ésima de la señal cuantificada, y N es el número de muestras de las señales.

Comente los resultados obtenidos en función de la parte entera y la parte decimal de los niveles de cuantificación.

Basándose en los resultados anteriores y teniendo en cuenta <u>el archivo de audio</u> <u>suministrado</u>, realice los siguientes apartados:

Nota: Para el desarrollo de esta parte de la práctica el alumno necesita unos altavoces o auriculares.

a) Cuantifique uniformemente la señal y[n] obtenida a partir de la señal de audio facilitada por el profesor, donde y[n] es la parte de x[n] que contiene sonido. Es decir, ignore de x[n] las muestras de los intervalos de reposo (|x[n]| < 0,01 V)¹ anteriores y posteriores a la voz. Emplee para ello un cuantificador de 7 bits. La señal resultante será qu[n]. Use la función "audioread" o "wavread" para leer el fichero y "sound" para reproducirlo. El alumno deberá seleccionar el número bits que asigna a la parte entera y a la parte decimal respectivamente y exponer el razonamiento llevado a cabo.

-

¹ Ajuste el nivel de 0,01 V al valor adecuado para eliminar los silencios anterior y posterior a la voz, en función de la onda facilitada por el profesor.

Cuantificación No Uniforme

En ocasiones es mejor elegir los intervalos de cuantificación de forma que sean más estrechos donde la señal x[n] es más probable, para así incrementar la precisión de la cuantificación y optimizar el proceso. Para ello es necesario conocer la función densidad de probabilidad de las muestras x[n] de la señal a cuantificar.

Por ejemplo, en las señales de audio las amplitudes pequeñas son más probables que las grandes, por lo que un cuantificador no uniforme con la respuesta mostrada en la Figura 2 optimiza notablemente el proceso de cuantificación.

Este cuantificador hace que, en las amplitudes pequeñas, los intervalos de cuantificación sean más estrechos.

Figura 2. Relación entrada (x) – salida (x_q) en un cuantificador no uniforme.

Para construir un cuantificador no uniforme se pueden emplear dos técnicas: 1) definir el intervalo para cada nivel de cuantificación; 2) emplear un cuantificador uniforme con una compresión de muestras y una expansión de muestras, anterior y posterior a él, respectivamente, tal y como se esquematiza en la Figura 3.

Figura 3. Diagrama de bloques de un cuantificador no uniforme.

Aunque existen varias leyes de compresión, en esta Práctica se va a emplear la llamada Ley A, con la siguiente ley de compresión:

$$F_A(x) = \begin{cases} sig(x) \cdot \frac{A \cdot |x|}{1 + \ln(A)}, & si \mid x \mid < \frac{1}{A} \\ sig(x) \cdot \frac{1 + \ln(A \cdot |x|)}{1 + \ln(A)}, & si \mid \frac{1}{A} \le |x| \end{cases}$$

Donde A=87.6 es el valor del parámetro normalizado para telefonía en Europa.

La ley de expansión es la función inversa de la ley anterior, y se expresa como

$$F_A^{-1}(y) = \begin{cases} sig(y) \cdot \frac{|y| \cdot (1 + \ln(A))}{A}, & si |y| < \frac{1}{1 + \ln(A)} \\ sig(y) \cdot \frac{\exp(|y| \cdot (1 + \ln(A)) - 1)}{A}, & si \frac{1}{1 + \ln(A)} \le |y| \end{cases}$$

En este apartado se va a construir y analizar un cuantificador no uniforme, comparando sus efectos con los resultados obtenidos mediante un cuantificador uniforme.

Para ello, realice los siguientes apartados:

- a) Genere una función de Matlab en la que se implemente un bloque compresor y una segunda función en la que se implemente un bloque expansor, ambos de ley A, tal y como se ha descrito anteriormente. Indique los argumentos de entrada y salida de la función generada.
- b) Represente gráficamente, en dos figuras independientes, la respuesta del bloque compresor y la del bloque expansor para valores de la entrada normalizados entre -1 y 1.
- c) Cuantifique no uniformemente la señal de audio y[n]. Para ello, implemente un cuantificador no uniforme completo integrando los bloques compresor y expansor anteriores, con el cuantificador uniforme empleado previamente en la Práctica. La señal resultante será q_{nu}[n].

Análisis de resultados

En este apartado se van a analizar los resultados obtenidos en los bloques anteriores.

- a) Compare <u>cualitativamente</u> la señal original x[n] con la señal cuantificada uniformemente $q_u[n]$ y con la cuantificada no uniformemente $q_{nu}[n]$, es decir, reproduciendo ambas. Explique las diferencias percibidas y justifíquelas.
- b) Represente en el tiempo y superpuestas en una misma figura las señales x[n], qu[n] y qnu[n]. Utilice marcadores (puntos, círculos, asteriscos...) en las muestras de las señales. Una exclusivamente los marcadores de la señal x[n] y no de las otras dos, para apreciar más fácilmente las diferencias de la cuantificación.
- c) Compare <u>cuantitativamente</u> la señal original x[n] con la señal cuantificada uniformemente $q_u[n]$ y con la señal cuantificada no uniformemente $q_{nu}[n]$. Es decir, calcule el error cuadrático medio entre la señal original y la señal cuantificada uniformemente y compárelo con el error cuadrático medio entre la señal original y la señal cuantificada no uniformemente.

$$ECM = \frac{1}{N} \cdot \sum_{n=1}^{N} |x[n] - q[n]|^2$$

Donde x[n] es la muestra n-ésima de la señal original, q[n] es la muestra n-ésima de la señal (uniforme o no uniformemente) cuantificada, y N es el número de muestras de las señales.

Exponga las conclusiones extraídas de analizar el error cometido en cada método de cuantificación.

Funciones de Matlab

Consulte la ayuda de Matlab para conocer el significado de cada uno de los argumentos.

Miscelánea	
Borra todas las variables del Workspace	clear
Cierra todas las figuras abiertas	close all
Limpia la ventana de comandos	alc
Carga en el Workspace las variables almacenadas en el archivo nombre_archivo.mat	load 'nombre_archivo.mat'
Devuelve la longitud del vector x	y = length(x);
Muestra el mensaje de texto por pantalla	<pre>disp('texto');</pre>
Convierte en string (cadena de caracteres) el número 🛪	y = num2str(x);
Representación	
Abre una nueva ventana para representar gráficamente	figure;
Representación en ejes x-y uniendo los puntos y en color rojo	plot(ejex, ejey, 'r');
Congela la figura activa para poder superponer más representaciones	hold on;
Activa la rejilla de la representación	grid on;
Pone título a la representación	title('Texto');
Pone etiqueta en eje x	xlabel('Texto');
Pone etiqueta en eje ${f y}$	ylabel('Texto');
Representa el eje x entre los valores ini y £in	<pre>xlim([ini fin]);</pre>
Representa el eje y entre los valores ini y £in	ylim([ini fin]);
Muestra una leyenda en la figura, donde se muestran los textos indicados	<pre>legend('Texto1', 'Texto2',);</pre>

Vectores	
Genera el vector de valores v entre ini y fin equiespaciados del ta	v = ini : delta : fin;
Genera el vector v de N valores equiespaciados entre ini y fin (indusive)	v = linspace(ini, fin, N);
Genera el vector ${f v}$ con los elementos del vector ${f x}$ desde el ${f a}$ hasta el ${f b}$ (inclusive)	$\mathbf{v} = \mathbf{x}(\mathbf{a}; \mathbf{b}) ;$
Almacena en ${f v}$ el elemento ${f n}$ -ésimo del vector ${f x}$	$\mathbf{v} = \mathbf{x}(\mathbf{n});$
Almacena en ${f v}$ el último elemento del vector ${f x}$, independientemente de su longitud	v = x (end);
Matemáticas	
Calcula el valor absoluto del número ${f x}$, o el módulo de éste si es un número complejo	y = abs(x);
Calcula la transformada de Fourier del vector ${f x}$	X = fft(x, length(x)) / length(x);
Trasposición del espectro en frecuencias ${f x}$	X = fftshift(abs(X));
Calcula el sumatorio de todos los valores del vector x	$\lambda = \operatorname{sum}(x)$
Calcula las muestras de la señal $\bf y$ en los instantes de tiempo $\bf t2$ a partir de la señal $\bf x$, cuyas muestras están en los instantes $\bf t1$	y(t2) = interp1(t1, x(t1), t2, 'spline');
Calcula la traspuesta de la matriz 🛪	x = x';
Cuantificación	
Generar la escala de cuantificación ${f q}$ con ${f B}$ bits totales para cada nivel, de los cuales ${f D}$ son decimales	<pre>q =quantizer('fixed','round','saturate',[B D]);</pre>
Transformar un número decimal ${f b}$ en su representación binaria ${f y}$ según la cuantificación ${f q}$	y = num2bin(q, b);
Transformar un número binario ${f b}$ en su representación decimal ${f y}$ según la cuantificación ${f q}$	y = bin2num(q, b);