IPv6/IPv4相互接続技術の概要、実装、運用

角川 宗近 (株)日立製作所 / KAMEプロジェクト sumikawa@sumikawa.jp

IPv4からIPv6への移行技術は必須

- ■インターネット中のマシンを一度にIPv6対応にはできない
- ■IPv4とIPv6を通信させる技術を確立する必要がある
- ■二つのアプローチ
 - エンド-エンドが直接通信するアプローチ
 - デュアルスタック
 - ■トンネル
 - トランスレータ経由で通信するアプローチ
 - ■ヘッダ変換
 - ■トランスポート中継
 - ■代理アプリケーション

デュアルスタックとトンネル(1/2)

- ■デュアルスタック
 - ●一つの機器にIPv4とIPv6の両方を実装する
 - ■IPv4しか対応してない機器とはIPv4で通信
 - ■IPv6に対応している機器とはIPv6で通信

デュアルスタックとトンネル(2/2)

- ■トンネル
 - ●離れたIPv6の島を結ぶ技術
 - プロバイダによる実験トンネル提供サービス
 - OCN, IIJ
 - http://www.freenet6.net/

トランスレータ

- ■IPv4機器とIPv6機器が通信する必要性
 - デュアルスタックでもアドレスが足りなければIPv4アドレスをつけれない
 - これから登場するIPv6専用端末
- ■完璧なトランスレータは存在しない
 - 限定条件で使えるトランスレータは幾つかある
 - ■状況、移行時期に応じて使い分けるしかない
 - トランスレータを使わないにこしたことはない
 - IPv6の本来の目的であるエンド-エンドのフラットな通信を壊す
- ■トランスレータを整理、体系化する必要性
 - プロトコル変換の技術によるパターン分け

トランスレータが不得意な状況

- ■サイト外からのアクセスは難しい
 - サイト内のアドレスが足りないため動的なマッピングが必要
 - DNSキャッシュ
 - ■マッピング用のアドレス枯渇
 - ■マッピング開放のタイミング

- ■IPv6 -> IPv4 はNATと同程度の使い方が適している
- ■IPv6間は直接通信

トランスレータの分類

- ■プロトコル変換の技術
 - ・ヘッダ変換
 - トランスポート中継
 - 代理アプリケーション

ヘッダ変換

- ■ヘッダを入れ替えて転送
- ■チェックサムをヘッダの分だけ補正
- ■ftp問題
- ■ICMPのセマンティクスが違う
- ■v4->v6変換時に20バイト増えるので分割しないといけない
- ■UDPゼロチェックサム問題

トランスポート中継

- ■コネクションを横取りして、張り直す。
 - ●ファイアウォール、WWW横取りキャッシュ
- ■ftp問題はあるが、比較的簡単
- ■2本のコネクションを扱う時(rsh等)にやや大変
 - プロトコルごとにケアしないといけない

代理アプリケーション

- ■運用で実現したトランスレータ
- ■トランザクション・サービスを転送
- ■プロトコル的に代理サービスをサポートしている必要がある
- ■ftp問題なし

既存の実装(1/2)

- ■NAT-PT(KAMEプロジェクト、日立)
 - ヘッダ変換による通信
 - NATの自然な拡張
- ■FAITH(KAMEプロジェクト)
 - トランスポート中継
 - ●コネクション管理にPCBを用いている
 - ・実装が容易
- ■SOCKS(富士通研、NEC)
 - SOCKSを用いている組織に導入しやすい
- ■Toolnet6(日立)
 - Bump in the stack方式
 - ●セルフ・トランスレータによるデュアルスタックの実現
 - IPv4アプリケーションが自動的にIPv6対応になる
 - モデル的にはトランスレータではない
 - ヘッダ変換

既存の実装(2/2)

- apache、 sendmail、 bind ...
 - ●代理アプリケーション

まとめ

- ■IPv4からIPv6への移行技術は必要
- ■デュアルスタックとトンネルが最も望ましい
- ■一部の状況下ではトランスレータが利用できる
 - ●ヘッダ変換
 - トランスポート中継
 - 代理アプリケーション
- ■状況に応じて使いわける必要がある

MP3 ジュークボックス

- ■MP3データをUDP over IPv6マルチキャストで配信
 - IPsecで暗号化
- ■曲リクエストも可能
 - ●曲名一覧取り寄せプロトコル
 - 曲リクエスト・プロトコル
 - リクエスト・キュー確認プロトコル
- ■CGIも用意、Webベースによるリクエスト

なぜMP3か?

- ■圧縮率が高いため、広域に放送できる
 - ●128kbpsでCDクオリティ
- ■サーバ、クライアントが構築しやすい
 - エンコーダ、デコーダが豊富にある
 - サウンド機能さえついていれば気軽に楽しめる
- ■ユーザが導入しやすいため、広域なマルチキャスト実験ができる

実装

- ■サーバ
 - ●icecastを改造
 - http://www.icecast.org/
 - ■元はIPv4のHTTPを用いてMP3を配信
 - ■KAMEプロジェクトでIPv6化 + UDP化 + マルチキャスト化
 - ftp://ftp.kame.net/pub/kame/misc/
- ■クライアント
 - mpg123(コマンドライン)
 - wmmp3(GUI)
 - mcastread (UDP -> stdout)
- ■KAMEプロジェクトで運用テスト
 - KAME FM
 - J-POP中心
 - Hard Rock KAME
 - ■洋物メタル系

KAME FM

Hard Rock KAME

