# R09 - Two-way ANOVA

STAT 587 (Engineering) - Iowa State University

April 26, 2019

### Two factors

Consider the question of the affect of variety and density on yield under various experimental designs:

#### Two factors

Consider the question of the affect of variety and density on yield under various experimental designs:

- Balanced, complete design
- Unbalanced, complete
- Incomplete

#### Two factors

Consider the question of the affect of variety and density on yield under various experimental designs:

- Balanced, complete design
- Unbalanced, complete
- Incomplete

We will also consider the problem of finding the density that maximizes yield.

An experiment was run on tomato plants to determine the effect of

• 3 different varieties (A,B,C)

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)
   on yield.

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)
   on yield.

There is an expectation that planting density will have a different effect depending on the variety.

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)
   on yield.

There is an expectation that planting density will have a different effect depending on the variety. Therefore a balanced, complete, randomized design was used.

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)

on yield.

There is an expectation that planting density will have a different effect depending on the variety. Therefore a balanced, complete, randomized design was used.

 $\bullet$  complete: each treatment (variety  $\times$  density) is represented in the experiment

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)

on yield.

There is an expectation that planting density will have a different effect depending on the variety. Therefore a balanced, complete, randomized design was used.

- complete: each treatment (variety × density) is represented in the experiment
- balanced: each treatment in the experiment has the same number of replications

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)

on yield.

There is an expectation that planting density will have a different effect depending on the variety. Therefore a balanced, complete, randomized design was used.

- complete: each treatment (variety × density) is represented in the experiment
- balanced: each treatment in the experiment has the same number of replications
- randomized: treatment was randomly assigned to the plot

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)

on yield.

There is an expectation that planting density will have a different effect depending on the variety. Therefore a balanced, complete, randomized design was used.

- complete: each treatment (variety × density) is represented in the experiment
- balanced: each treatment in the experiment has the same number of replications
- randomized: treatment was randomly assigned to the plot

This is also referred to as a full factorial or fully crossed design.

• How does variety affect mean yield?

How does variety affect mean yield?

• How does density affect mean yield?

How does variety affect mean yield?

How does density affect mean yield?

- How does variety affect mean yield?
  - How is the mean yield for variety A different from B on average?

• How does density affect mean yield?

- How does variety affect mean yield?
  - How is the mean yield for variety A different from B on average?
  - How is the mean yield for variety A different from B at a particular value for density?
- How does density affect mean yield?

- How does variety affect mean yield?
  - How is the mean yield for variety A different from B on average?
  - How is the mean yield for variety A different from B at a particular value for density?
- How does density affect mean yield?
  - How is the mean yield for density 10 different from density 20 on average?

- How does variety affect mean yield?
  - How is the mean yield for variety A different from B on average?
  - How is the mean yield for variety A different from B at a particular value for density?
- How does density affect mean yield?
  - How is the mean yield for density 10 different from density 20 on average?
  - How is the mean yield for density 10 different from density 20 at a particular value for variety?
- How does density affect yield differently for each variety?

- How does variety affect mean yield?
  - How is the mean yield for variety A different from B on average?
  - How is the mean yield for variety A different from B at a particular value for density?
- How does density affect mean yield?
  - How is the mean yield for density 10 different from density 20 on average?
  - How is the mean yield for density 10 different from density 20 at a particular value for variety?
- How does density affect yield differently for each variety?

For all of these questions, we want to know

- is there any effect and
- if yes, what is the nature of the effect.

- How does variety affect mean yield?
  - How is the mean yield for variety A different from B on average?
  - How is the mean yield for variety A different from B at a particular value for density?
- How does density affect mean yield?
  - How is the mean yield for density 10 different from density 20 on average?
  - How is the mean yield for density 10 different from density 20 at a particular value for variety?
- How does density affect yield differently for each variety?

For all of these questions, we want to know

- is there any effect and
- if yes, what is the nature of the effect.

Confidence/credible intervals can answer these questions.



# Summary statistics

```
sm = tomato %>%
 group_by(Variety, Density) %>%
 summarize(n = n(),
           mean = mean(Yield).
               = sd(Yield))
sm
# A tibble: 12 x 5
# Groups: Variety [?]
  Variety Density n mean
  <fct>
          <int> <int> <dbl> <dbl>
 1 C
              10
                     3 16.3 1.11
 2 C
              20
                     3 18.1 1.35
 3 C
              30
                     3 19.9 1.68
 4 C
              40
                     3 18.2 0.874
 5 A
              10
                     3 9.2 1.30
 6 A
              20
                     3 12.4 1.10
                     3 12.9 0.985
7 A
              30
 8 A
              40
                     3 10.8 1.7
9 B
              10
                     3 8.93 1.04
              20
10 B
                    3 12.6 1.10
11 B
              30
                     3 14.5 0.854
12 B
              40
                     3 12.8 1.62
```

 $\bullet$  Setup: Two categorical explanatory variables with I and J levels

- Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

- Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

where  $Y_{ijk}$  is the

• kth observation at the

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

- kth observation at the
- ith level of variable 1 (variety) with  $i=1,\ldots,I$  and the

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

- kth observation at the
- ith level of variable 1 (variety) with i = 1, ..., I and the
- jth level of variable 2 (density) with j = 1, ..., J.

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

- kth observation at the
- ith level of variable 1 (variety) with i = 1, ..., I and the
- jth level of variable 2 (density) with j = 1, ..., J.

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

where  $Y_{ijk}$  is the

- kth observation at the
- ith level of variable 1 (variety) with i = 1, ..., I and the
- jth level of variable 2 (density) with j = 1, ..., J.

#### Consider the models:

• Additive/Main effects:  $\mu_{ij} = \mu + \nu_i + \delta_j$ 

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

where  $Y_{ijk}$  is the

- kth observation at the
- ith level of variable 1 (variety) with i = 1, ..., I and the
- jth level of variable 2 (density) with  $j = 1, \dots, J$ .

#### Consider the models:

- Additive/Main effects:  $\mu_{ij} = \mu + \nu_i + \delta_i$
- Cell-means:  $\mu_{ij} = \mu + \nu_i + \delta_j + \gamma_{ij}$

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

where  $Y_{ijk}$  is the

- kth observation at the
- ith level of variable 1 (variety) with i = 1, ..., I and the
- jth level of variable 2 (density) with  $j = 1, \dots, J$ .

#### Consider the models:

- Additive/Main effects:  $\mu_{ij} = \mu + \nu_i + \delta_i$
- Cell-means:  $\mu_{ij} = \mu + \nu_i + \delta_j + \gamma_{ij}$

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

where  $Y_{ijk}$  is the

- kth observation at the
- ith level of variable 1 (variety) with  $i=1,\ldots,I$  and the
- jth level of variable 2 (density) with  $j = 1, \dots, J$ .

#### Consider the models:

- Additive/Main effects:  $\mu_{ij} = \mu + \nu_i + \delta_j$
- Cell-means:  $\mu_{ij} = \mu + \nu_i + \delta_j + \gamma_{ij}$

|   | 10         | 20         | 30         | 40         |
|---|------------|------------|------------|------------|
| Α | $\mu_{11}$ | $\mu_{12}$ | $\mu_{13}$ | $\mu_{14}$ |
| В | $\mu_{21}$ | $\mu_{22}$ | $\mu_{23}$ | $\mu_{24}$ |
| С | $\mu_{31}$ | $\mu_{32}$ | $\mu_{33}$ | $\mu_{34}$ |

### As a regression model

1. Assign a reference level for both variety (C) and density (40).

### As a regression model

- 1. Assign a reference level for both variety (C) and density (40).
- 2. Let  $V_i$  and  $D_i$  be the variety and density for observation i.

# As a regression model

- 1. Assign a reference level for both variety (C) and density (40).
- 2. Let  $V_i$  and  $D_i$  be the variety and density for observation i.
- 3. Build indicator variables, e.g.  $I(V_i = A)$  and  $I(D_i = 10)$ .

# As a regression model

- 1. Assign a reference level for both variety (C) and density (40).
- 2. Let  $V_i$  and  $D_i$  be the variety and density for observation i.
- 3. Build indicator variables, e.g.  $I(V_i = A)$  and  $I(D_i = 10)$ .
- 4. The additive/main effects model:

$$\mu_i = \beta_0 + \beta_1 I(V_i = A) + \beta_2 I(V_i = B) + \beta_3 I(D_i = 10) + \beta_4 I(D_i = 20) + \beta_5 I(D_i = 30).$$

 $eta_1$  is the expected difference in yield between varieties A and C at any fixed density

# As a regression model

- 1. Assign a reference level for both variety (C) and density (40).
- 2. Let  $V_i$  and  $D_i$  be the variety and density for observation i.
- 3. Build indicator variables, e.g.  $I(V_i = A)$  and  $I(D_i = 10)$ .
- 4. The additive/main effects model:

$$\mu_i = \beta_0 + \beta_1 I(V_i = A) + \beta_2 I(V_i = B) + \beta_3 I(D_i = 10) + \beta_4 I(D_i = 20) + \beta_5 I(D_i = 30).$$

 $\beta_1$  is the expected difference in yield between varieties A and C at any fixed density

5. The cell-means model:

$$\mu_{i} = \beta_{0} \\ +\beta_{1}I(V_{i} = A) + \beta_{2}I(V_{i} = B) \\ +\beta_{3}I(D_{i} = 10) + \beta_{4}I(D_{i} = 20) + \beta_{5}I(D_{i} = 30) \\ +\beta_{6}I(V_{i} = A)I(D_{i} = 10) + \beta_{7}I(V_{i} = A)I(D_{i} = 20) + \beta_{8}I(V_{i} = A)I(D_{i} = 30) \\ +\beta_{9}I(V_{i} = B)I(D_{i} = 10) + \beta_{10}I(V_{i} = B)I(D_{i} = 20) + \beta_{11}I(V_{i} = B)I(D_{i} = 30)$$

 $eta_1$  is the expected difference in yield between varieties A and C at a density of 40

#### **ANOVA Table**

ANOVA Table - Additive/Main Effects model

| Source   | SS  | df      | MS            | F       |
|----------|-----|---------|---------------|---------|
| Factor A | SSA | (I-1)   | SSA/(I-1)     | MSA/MSE |
| Factor B | SSB | (J-1)   | SSB/(J-1)     | MSB/MSE |
| Error    | SSE | n-I-J+1 | SSE/(n-I-J+1) |         |
| Total    | SST | n-1     |               |         |

#### **ANOVA Table**

#### ANOVA Table - Additive/Main Effects model

| Source   | SS  | df      | MS            | F       |
|----------|-----|---------|---------------|---------|
| Factor A | SSA | (I-1)   | SSA/(I-1)     | MSA/MSE |
| Factor B | SSB | (J-1)   | SSB/(J-1)     | MSB/MSE |
| Error    | SSE | n-I-J+1 | SSE/(n-I-J+1) |         |
| Total    | SST | n-1     |               |         |

#### ANOVA Table - Cell-means model

| Source         | SS   | df         | MS                          |          |
|----------------|------|------------|-----------------------------|----------|
| Factor A       | SSA  | I-1        | SSA/(I-1)                   | MSA/MSE  |
| Factor B       | SSB  | J-1        | $SSB/(\mathrm{J}\text{-}1)$ | MSB/MSE  |
| Interaction AB | SSAB | (I-1)(J-1) | SSAB /(I-1)(J-1)            | MSAB/MSE |
| Error          | SSE  | n-IJ       | SSE/(n-IJ)                  |          |
| Total          | SST  | n-1        |                             |          |

# Two-way ANOVA in R

```
tomato$Density = factor(tomato$Density)
m = lm(Yield~Variety+Density, tomato)
drop1(m, test="F")
Single term deletions
Model:
Yield ~ Variety + Density
       Df Sum of Sq RSS AIC F value Pr(>F)
                     46.07 20.880
<none>
Variety 2 327.60 373.67 92.235 106.659 2.313e-14 ***
Density 3 86.69 132.76 52.980 18.816 4.690e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m = lm(Yield~Variety*Density, tomato)
drop1(m, test="F")
Single term deletions
Model:
Yield ~ Variety * Density
               Df Sum of Sq RSS AIC F value Pr(>F)
                            38.040 25.984
<none>
Variety: Density 6 8.0317 46.072 20.881 0.8445 0.5484
drop1(m, scope = "Variety+Density+Variety:Density, test="F") # Force
```

Opinions differ on whether to use an additive vs a cell-means model when the interaction is not significant.

Opinions differ on whether to use an additive vs a cell-means model when the interaction is not significant. Remember that an insignificant test does not prove that there is no interaction.

Opinions differ on whether to use an additive vs a cell-means model when the interaction is not significant. Remember that an insignificant test does not prove that there is no interaction.

|                        | Additive | Cell-means       |
|------------------------|----------|------------------|
| Interpretation         | Direct   | More complicated |
| Estimate of $\sigma^2$ | Biased   | Unbiased         |

Opinions differ on whether to use an additive vs a cell-means model when the interaction is not significant. Remember that an insignificant test does not prove that there is no interaction.

|                        | Additive | Cell-means       |
|------------------------|----------|------------------|
| Interpretation         | Direct   | More complicated |
| Estimate of $\sigma^2$ | Biased   | Unbiased         |

We will continue using the cell-means model to answer the scientific questions of interest.



## Two-way ANOVA in R

```
tomato$Density = factor(tomato$Density)
m = lm(Yield~Variety*Density, tomato)
anova(m)
Analysis of Variance Table
Response: Yield
              Df Sum Sq Mean Sq F value Pr(>F)
Variety
            2 327.60 163.799 103.3430 1.608e-12 ***
Density
         3 86.69 28.896 18.2306 2.212e-06 ***
Variety:Density 6 8.03
                        1.339 0.8445
                                          0.5484
Residuals
         24 38 04
                        1.585
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

# Variety comparison

```
library(emmeans)
emmeans(m. pairwise~Variety)
$emmeans
 Variety emmean SE df lower.CL upper.CL
     18.1 0.363 24 17.4 18.9
         11.3 0.363 24 10.6 12.1
12.2 0.363 24 11.5 13.0
Results are averaged over the levels of: Density
Confidence level used: 0.95
$contrasts
 contrast estimate SE df t.ratio p.value
 C - A 6.792 0.514 24 13.214 <.0001
 C - B 5.917 0.514 24 11.512 <.0001
 A - B -0.875 0.514 24 -1.702 0.2249
Results are averaged over the levels of: Density
P value adjustment: tukev method for comparing a family of 3 estimates
```

#### Density comparison

```
emmeans(m, pairwise~Density)
$emmeans
Density emmean SE df lower.CL upper.CL
10 11.5 0.42 24 10.6 12.3
     14.4 0.42 24 13.5 15.3
20
30 15.8 0.42 24 14.9 16.6
   13.9 0.42 24 13.0 14.8
40
Results are averaged over the levels of: Variety
Confidence level used: 0.95
$contrasts
contrast estimate SE df t.ratio p.value
10 - 20 -2.911 0.593 24 -4.905 0.0003
10 - 30 -4.300 0.593 24 -7.245 <.0001
10 - 40 -2.433 0.593 24 -4.100 0.0022
20 - 30 -1.389 0.593 24 -2.340 0.1169
1.867 0.593 24 3.145 0.0213
30 - 40
Results are averaged over the levels of: Variety
```

P value adjustment: tukev method for comparing a family of 4 estimates

#### \$emmeans

| Variety | Density | emmean | SE    | df | lower.CL | upper.CL |
|---------|---------|--------|-------|----|----------|----------|
| C       | 10      | 16.30  | 0.727 | 24 | 14.80    | 17.8     |
| A       | 10      | 9.20   | 0.727 | 24 | 7.70     | 10.7     |
| В       | 10      | 8.93   | 0.727 | 24 | 7.43     | 10.4     |
| C       | 20      | 18.10  | 0.727 | 24 | 16.60    | 19.6     |
| A       | 20      | 12.43  | 0.727 | 24 | 10.93    | 13.9     |
| В       | 20      | 12.63  | 0.727 | 24 | 11.13    | 14.1     |
| C       | 30      | 19.93  | 0.727 | 24 | 18.43    | 21.4     |
| A       | 30      | 12.90  | 0.727 | 24 | 11.40    | 14.4     |
| В       | 30      | 14.50  | 0.727 | 24 | 13.00    | 16.0     |
| C       | 40      | 18.17  | 0.727 | 24 | 16.67    | 19.7     |
| A       | 40      | 10.80  | 0.727 | 24 | 9.30     | 12.3     |
| В       | 40      | 12.77  | 0.727 | 24 | 11.27    | 14.3     |

Confidence level used: 0.95

#### \$contrasts

| 400H010D0D  |          |      |    |         |         |
|-------------|----------|------|----|---------|---------|
| contrast    | estimate | SE   | df | t.ratio | p.value |
| C,10 - A,10 | 7.1000   | 1.03 | 24 | 6.907   | <.0001  |
| C,10 - B,10 | 7.3667   | 1.03 | 24 | 7.166   | <.0001  |
| C,10 - C,20 | -1.8000  | 1.03 | 24 | -1.751  | 0.8276  |
| C,10 - A,20 | 3.8667   | 1.03 | 24 | 3.762   | 0.0356  |
| C,10 - B,20 | 3.6667   | 1.03 | 24 | 3.567   | 0.0543  |
| C,10 - C,30 | -3.6333  | 1.03 | 24 | -3.535  | 0.0582  |
| C,10 - A,30 | 3.4000   | 1.03 | 24 | 3.308   | 0.0932  |
| C,10 - B,30 | 1.8000   | 1.03 | 24 | 1.751   | 0.8276  |
| C,10 - C,40 | -1.8667  | 1.03 | 24 | -1.816  | 0.7947  |
| C,10 - A,40 | 5.5000   | 1.03 | 24 | 5.350   | 0.0008  |
| C,10 - B,40 | 3.5333   | 1.03 | 24 | 3.437   | 0.0714  |
| A,10 - B,10 | 0.2667   | 1.03 | 24 | 0.259   | 1.0000  |
| A.10 - C.20 | -8.9000  | 1.03 | 24 | -8.658  | <.0001  |

R09 - Two-way ANOVA

16 / 49

• Use emmeans to answer questions of scientific interest.

- Use emmeans to answer questions of scientific interest.
- Check model assumptions

- Use emmeans to answer questions of scientific interest.
- Check model assumptions
- Consider alternative models, e.g. treating density as continuous

#### Unbalanced design

Suppose for some reason that a variety B, density 30 sample was contaminated.

## Unbalanced design

Suppose for some reason that a variety B, density 30 sample was contaminated. Although you started with a balanced design, the data is now unbalanced.

## Unbalanced design

Suppose for some reason that a variety B, density 30 sample was contaminated. Although you started with a balanced design, the data is now unbalanced. Fortunately, we can still use the tools we have used previously.

```
tomato_unbalanced = tomato[-19,]
ggplot(tomato_unbalanced, aes(x=Density, y=Yield, color=Variety)) + geom_jitter(height=0, width=0.1) + theme_t
```



# Summary statistics

```
sm_unbalanced = tomato_unbalanced %>%
  group_by(Variety, Density) %>%
  summarize(n = n(),
           mean = mean(Yield).
                = sd(Yield))
sm unbalanced
# A tibble: 12 x 5
# Groups: Variety [?]
   Variety Density
                      n mean
   <fct>
          <fct> <int> <dbl> <dbl>
 1 C
          10
                      3 16.3 1.11
 2 C
          20
                      3 18.1 1.35
 3 C
                      3 19.9 1.68
          30
                      3 18.2 0.874
 4 C
          40
 5 A
          10
                      3 9.2 1.30
 6 A
          20
                      3 12.4 1.10
 7 A
          30
                      3 12.9 0.985
 8 A
          40
                      3 10.8 1.7
9 B
          10
                      3 8.93 1.04
10 B
          20
                      3 12.6 1.10
11 B
          30
                      2 14.9 0.707
12 B
          40
                      3 12.8 1.62
```

# Two-way ANOVA in R

```
m = lm(Yield~Variety*Density, tomato_unbalanced)
anova(m)

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

Variety 2 329.99 164.994 102.343 3.552e-12 ***
Density 3 84.45 28.150 17.461 3.947e-06 ***

Variety:Density 6 8.80 1.467 0.910 0.5052

Residuals 23 37.08 1.612
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### Variety comparison

emmeans(m, pairwise~Variety)

## Density comparison

```
emmeans(m, pairwise~Density)
$emmeans
Density emmean SE df lower.CL upper.CL
10 11.5 0.423 23 10.6 12.4
      14.4 0.423 23 13.5 15.3
20
30 15.9 0.457 23 15.0 16.9
   13.9 0.423 23 13.0 14.8
40
Results are averaged over the levels of: Variety
Confidence level used: 0.95
$contrasts
contrast estimate SE df t.ratio p.value
10 - 20 -2.911 0.599 23 -4.864 0.0004
10 - 30 -4.433 0.623 23 -7.116 <.0001
10 - 40 -2.433 0.599 23 -4.065 0.0025
20 - 30 -1.522 0.623 23 -2.443 0.0967
20 - 40 0.478 0.599 23 0.798 0.8545
        2.000 0.623 23 3.210 0.0189
30 - 40
Results are averaged over the levels of: Variety
P value adjustment: tukev method for comparing a family of 4 estimates
```

#### emmeans(m, pairwise~Variety\*Density)

#### \$emmeans

| Variety | Density | emmean | SE    | df | lower.CL | upper.CL |
|---------|---------|--------|-------|----|----------|----------|
| C       | 10      | 16.30  | 0.733 | 23 | 14.78    | 17.8     |
| A       | 10      | 9.20   | 0.733 | 23 | 7.68     | 10.7     |
| В       | 10      | 8.93   | 0.733 | 23 | 7.42     | 10.4     |
| C       | 20      | 18.10  | 0.733 | 23 | 16.58    | 19.6     |
| A       | 20      | 12.43  | 0.733 | 23 | 10.92    | 13.9     |
| В       | 20      | 12.63  | 0.733 | 23 | 11.12    | 14.1     |
| C       | 30      | 19.93  | 0.733 | 23 | 18.42    | 21.4     |
| A       | 30      | 12.90  | 0.733 | 23 | 11.38    | 14.4     |
| В       | 30      | 14.90  | 0.898 | 23 | 13.04    | 16.8     |
| C       | 40      | 18.17  | 0.733 | 23 | 16.65    | 19.7     |
| A       | 40      | 10.80  | 0.733 | 23 | 9.28     | 12.3     |
| В       | 40      | 12.77  | 0.733 | 23 | 11.25    | 14.3     |

#### Confidence level used: 0.95

#### \$contracts

| φCUIICI as cs |          |      |    |         |         |
|---------------|----------|------|----|---------|---------|
| contrast      | estimate | SE   | df | t.ratio | p.value |
| C,10 - A,10   | 7.1000   | 1.04 | 23 | 6.849   | <.0001  |
| C,10 - B,10   | 7.3667   | 1.04 | 23 | 7.106   | <.0001  |
| C,10 - C,20   | -1.8000  | 1.04 | 23 | -1.736  | 0.8341  |
| C,10 - A,20   | 3.8667   | 1.04 | 23 | 3.730   | 0.0396  |
| C,10 - B,20   | 3.6667   | 1.04 | 23 | 3.537   | 0.0597  |
| C,10 - C,30   | -3.6333  | 1.04 | 23 | -3.505  | 0.0638  |
| C,10 - A,30   | 3.4000   | 1.04 | 23 | 3.280   | 0.1008  |
| C,10 - B,30   | 1.4000   | 1.16 | 23 | 1.208   | 0.9828  |
| C,10 - C,40   | -1.8667  | 1.04 | 23 | -1.801  | 0.8022  |
| C,10 - A,40   | 5.5000   | 1.04 | 23 | 5.305   | 0.0011  |
| C,10 - B,40   | 3.5333   | 1.04 | 23 | 3.408   | 0.0778  |
| A,10 - B,10   | 0.2667   | 1.04 | 23 | 0.257   | 1.0000  |
| A.10 - C.20   | -8.9000  | 1.04 | 23 | -8 585  | < .0001 |

The analysis can be completed just like the balanced design using emmeans to answer scientific questions of interest.

#### Incomplete design

Suppose none of the samples from variety B, density 30 were obtained.

#### Incomplete design

Suppose none of the samples from variety B, density 30 were obtained. Now the analysis becomes more complicated.

```
tomato_incomplete = tomato %>%
  filter(!(Variety == "B" & Density == 30)) %>%
  mutate(VarietyDensity = paste0(Variety,Density))
ggplot(tomato_incomplete, aes(x=Density, y=Yield, color=Variety)) + geom_jitter(height=0, width=0.1) + theme_bw
```



# Summary statistics

```
sm_incomplete = tomato_incomplete %>%
  group_by(Variety, Density) %>%
  summarize(n
              = n()
           mean = mean(Yield).
                = sd(Yield))
sm_incomplete
# A tibble: 11 x 5
# Groups: Variety [?]
   Variety Density
                      n mean
   <fct>
         <fct> <int> <dbl> <dbl>
 1 C
          10
                      3 16.3 1.11
 2 C
          20
                      3 18.1 1.35
 3 C
          30
                      3 19.9 1.68
 4 C
          40
                      3 18.2 0.874
 5 A
          10
                      3 9.2 1.30
 6 A
          20
                      3 12.4 1.10
7 A
          30
                      3 12.9 0.985
 8 A
          40
                      3 10.8 1.7
9 B
          10
                      3 8.93 1.04
10 B
          20
                      3 12.6 1.10
11 B
          40
                      3 12.8 1.62
```

When the design is incomplete, use a one-way ANOVA combined with contrasts to answer questions of interest.

When the design is incomplete, use a one-way ANOVA combined with contrasts to answer questions of interest. For example, to compare the average difference between B and C, we want to only compare at densities 10, 20, and 40.

When the design is incomplete, use a one-way ANOVA combined with contrasts to answer questions of interest. For example, to compare the average difference between B and C, we want to only compare at densities 10, 20, and 40.

|   | 10         | 20         | 30         | 40         |
|---|------------|------------|------------|------------|
| Α | $\mu_{11}$ | $\mu_{12}$ | $\mu_{13}$ | $\mu_{14}$ |
| В | $\mu_{21}$ | $\mu_{22}$ | $\mu_{23}$ | $\mu_{24}$ |
| С | $\mu_{31}$ | $\mu_{32}$ | $\mu_{33}$ | $\mu_{34}$ |

When the design is incomplete, use a one-way ANOVA combined with contrasts to answer questions of interest. For example, to compare the average difference between B and C, we want to only compare at densities 10, 20, and 40.

|   | 10         | 20         | 30         | 40         |
|---|------------|------------|------------|------------|
| Α | $\mu_{11}$ | $\mu_{12}$ | $\mu_{13}$ | $\mu_{14}$ |
| В | $\mu_{21}$ | $\mu_{22}$ | $\mu_{23}$ | $\mu_{24}$ |
| С | $\mu_{31}$ | $\mu_{32}$ | $\mu_{33}$ | $\mu_{34}$ |

Thus, the contrast is

$$\gamma = \frac{1}{3}(\mu_{31} + \mu_{32} + \mu_{34}) - \frac{1}{3}(\mu_{21} + \mu_{22} + \mu_{24}) 
= \frac{1}{3}(\mu_{31} + \mu_{32} + \mu_{34} - \mu_{21} - \mu_{22} - \mu_{24})$$

(STAT587@ISU)

The regression model here considers variety-density combination as a single explanatory variable with 11 levels: A10, A20, A30, A40, B10, B20, B40, C10, C20, C30, and C40.

The regression model here considers variety-density combination as a single explanatory variable with 11 levels: A10, A20, A30, A40, B10, B20, B40, C10, C20, C30, and C40. Let C40 be the reference level.

The regression model here considers variety-density combination as a single explanatory variable with 11 levels: A10, A20, A30, A40, B10, B20, B40, C10, C20, C30, and C40. Let C40 be the reference level. For observation i, let

- Y<sub>i</sub> be the yield
- ullet  $V_i$  be the variety
- $D_i$  be the density

The regression model here considers variety-density combination as a single explanatory variable with 11 levels: A10, A20, A30, A40, B10, B20, B40, C10, C20, C30, and C40. Let C40 be the reference level. For observation i, let

- Y<sub>i</sub> be the yield
- ullet  $V_i$  be the variety
- $D_i$  be the density

The model is then  $Y_i \overset{ind}{\sim} N(\mu_i, \sigma^2)$  and

$$\begin{array}{ll} \mu_i &= \beta_0 \\ &+ \beta_1 \mathbf{I}(V_i = A, D_i = 10) + \beta_2 \mathbf{I}(V_i = A, D_i = 20) + \beta_3 \mathbf{I}(V_i = A, D_i = 30) \\ &+ \beta_5 \mathbf{I}(V_i = B, D_i = 10) + \beta_6 \mathbf{I}(V_i = B, D_i = 20) \\ &+ \beta_8 \mathbf{I}(V_i = C, D_i = 10) + \beta_9 \mathbf{I}(V_i = C, D_i = 20) + \beta_{10} \mathbf{I}(V_i = C, D_i = 30) \end{array}$$

#### Two-way ANOVA in R

```
m <- lm(Yield ~ Variety*Density, data=tomato_incomplete)
anova(m)

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

Variety 2 347.38 173.691 104.462 5.868e-12 ***

Density 3 66.65 22.218 13.362 3.514e-05 ***

Variety:Density 5 7.06 1.412 0.849 0.53

Residuals 22 36.58 1.663

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

# Two-way ANOVA in R

```
m <- lm(Yield ~ Variety*Density, data=tomato_incomplete)</pre>
anova(m)
Analysis of Variance Table
Response: Yield
               Df Sum Sq Mean Sq F value Pr(>F)
                2 347.38 173.691 104.462 5.868e-12 ***
Variety
               3 66.65 22.218 13.362 3.514e-05 ***
Density
Variety:Density 5 7.06
                          1.412 0.849
                                              0.53
Residuals
            22 36 58
                          1.663
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### How can you tell the design is not complete?

# One-way ANOVA in R

```
m = lm(Yield~Variety:Density, tomato_incomplete)
anova(m)

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

Variety:Density 10 421.09 42.109 25.326 8.563e-10 ***

Residuals 22 36.58 1.663
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### Contrasts

```
# Note the -1 in order to construct the contrast

m = lm(Yield ~ VarietyDensity, tomato_incomplete)
em <- emmeans(m, ~ VarietyDensity)

contrast(em, method = list(

# A10 A20 A30 A40 B10 B20 B40 C10 C20 C30 C40

"C-B" = c( 0, 0, 0, 0, -1, -1, -1, 1, 1, 0, 1)/3,

"C-A" = c( -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1)/4,

"B-A" = c( -1, -1, -1, 1, 1, 1, 0, 0, 0, 0, 0)/3)) %>%

confint

contrast estimate SE df lower.CL upper.CL

C-B 6.078 0.608 22 4.817 7.34

C-A 6.792 0.526 22 5.700 7.88

B-A 0.633 0.608 22 -0.627 1.89

Confidence level used: 0.95
```

```
m = lm(Yield~Variety:Density, tomato_incomplete)
emmeans(m, pairwise~Variety:Density)
```

#### \$emmeans

| 40mmo dario |         |        |       |    |          |          |
|-------------|---------|--------|-------|----|----------|----------|
| Variety     | Density | emmean | SE    | df | lower.CL | upper.CL |
| C           | 10      | 16.30  | 0.744 | 22 | 14.76    | 17.8     |
| A           | 10      | 9.20   | 0.744 | 22 | 7.66     | 10.7     |
| В           | 10      | 8.93   | 0.744 | 22 | 7.39     | 10.5     |
| C           | 20      | 18.10  | 0.744 | 22 | 16.56    | 19.6     |
| A           | 20      | 12.43  | 0.744 | 22 | 10.89    | 14.0     |
| В           | 20      | 12.63  | 0.744 | 22 | 11.09    | 14.2     |
| C           | 30      | 19.93  | 0.744 | 22 | 18.39    | 21.5     |
| A           | 30      | 12.90  | 0.744 | 22 | 11.36    | 14.4     |
| В           | 30      | nonEst | NA    | NA | NA       | NA       |
| C           | 40      | 18.17  | 0.744 | 22 | 16.62    | 19.7     |
| A           | 40      | 10.80  | 0.744 | 22 | 9.26     | 12.3     |
| В           | 40      | 12.77  | 0.744 | 22 | 11.22    | 14.3     |

Confidence level used: 0.95

#### \$contrasts

contrast estimate SE df t.ratio p.value C.10 - A.10 7.1000 1.05 22 6.744 <.0001 C,10 - B,10 7.3667 1.05 22 6.997 <.0001 C.10 - C.20 -1.8000 1.05 22 -1.710 0.8458 C,10 - A,20 3.8667 1.05 22 3.673 0.0465 C,10 - B,20 3.6667 1.05 22 3.483 0.0688 C,10 - C,30 -3.6333 1.05 22 -3.451 0.0734 C.10 - A.30 3.4000 1.05 22 3.229 0.1136 C,10 - B,30 nonEst NA NA NΑ NA C,10 - C,40 -1.8667 1.05 22 -1.773 0.8156 C,10 - A,40 5.5000 1.05 22 5.224 0.0014 C.10 - B.40 3.5333 1.05 22 3.356 0.0887 A,10 - B,10 0.2667 1.05 22 0.253 1.0000

#### Summary

When dealing with an incomplete design, it is often easier to treat the analysis as a one-way ANOVA and use contrasts to answer scientific questions of interest.

Now suppose you have the same data set, but your scientific question is different.

Now suppose you have the same data set, but your scientific question is different. Specifically, you are interested in choosing a variety-density combination that provides the optimal yield.

Now suppose you have the same data set, but your scientific question is different. Specifically, you are interested in choosing a variety-density combination that provides the optimal yield.

You can use the ANOVA analysis to choose from amongst the 3 varieties and one of the 4 densities

Now suppose you have the same data set, but your scientific question is different. Specifically, you are interested in choosing a variety-density combination that provides the optimal yield.

You can use the ANOVA analysis to choose from amongst the 3 varieties and one of the 4 densities, but there is no reason to believe that the optimal density will be one of those 4.



Considering a single variety, if we assume a linear relationship between Yield  $(Y_i)$  and Density  $(D_i)$  then the maximum Yield will occur at either  $-\infty$  or  $+\infty$  which is unreasonable.

Considering a single variety, if we assume a linear relationship between Yield  $(Y_i)$  and Density  $(D_i)$  then the maximum Yield will occur at either  $-\infty$  or  $+\infty$  which is unreasonable. The easiest way to have a maximum (or minimum) is to assume a quadratic relationship, e.g.

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

Considering a single variety, if we assume a linear relationship between Yield  $(Y_i)$  and Density  $(D_i)$  then the maximum Yield will occur at either  $-\infty$  or  $+\infty$  which is unreasonable. The easiest way to have a maximum (or minimum) is to assume a quadratic relationship, e.g.

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

Now we can incorporate Variety  $(V_i)$  in many ways.

Considering a single variety, if we assume a linear relationship between Yield  $(Y_i)$ and Density  $(D_i)$  then the maximum Yield will occur at either  $-\infty$  or  $+\infty$  which is unreasonable. The easiest way to have a maximum (or minimum) is to assume a quadratic relationship, e.g.

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

Now we can incorporate Variety  $(V_i)$  in many ways. Two options are parallel curves or completely independent curves.

Considering a single variety, if we assume a linear relationship between Yield  $(Y_i)$ and Density  $(D_i)$  then the maximum Yield will occur at either  $-\infty$  or  $+\infty$  which is unreasonable. The easiest way to have a maximum (or minimum) is to assume a quadratic relationship, e.g.

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

Now we can incorporate Variety  $(V_i)$  in many ways. Two options are parallel curves or completely independent curves.

Parallel curves:

$$\mu_{i} = \beta_{0} + \beta_{1}D_{i} + \beta_{2}D_{i}^{2} + \beta_{3}I(V_{i} = A) + \beta_{4}I(V_{i} = B)$$

Independent curves:

$$\begin{array}{ll} \mu_i = & \beta_0 + \beta_1 D_i + \beta_2 D_i^2 \\ + \beta_3 \mathrm{I}(V_i = A) + \beta_4 \mathrm{I}(V_i = B) \\ + \beta_5 \mathrm{I}(V_i = A) D_i + \beta_6 \mathrm{I}(V_i = B) D_i \\ + \beta_7 \mathrm{I}(V_i = A) D_i^2 + \beta_8 \mathrm{I}(V_i = B) D_i^2 \end{array}$$



#### Finding the maximum

For a particular variety, there will be an equation like

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

where these  $\beta_1$  and  $\beta_2$  need not correspond to any particular  $\beta_1$  and  $\beta_2$  we have discussed thus far.

#### Finding the maximum

For a particular variety, there will be an equation like

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

where these  $\beta_1$  and  $\beta_2$  need not correspond to any particular  $\beta_1$  and  $\beta_2$  we have discussed thus far.

If  $\beta_2 < 0$ , then the quadratic curve has a maximum and it occurs at  $-\beta_1/2\beta_2$ .

#### No variety

```
summary(lm(Yield~Density+I(Density^2), tomato))
Call:
lm(formula = Yield ~ Density + I(Density^2), data = tomato)
Residuals:
  Min
       1Q Median
                     30
                          Max
-4.898 -2.721 -1.320 3.364 6.109
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.744444 3.128242 1.836 0.0753 .
Density 0.684111 0.285384 2.397 0.0223 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.371 on 33 degrees of freedom
Multiple R-squared: 0.1854, Adjusted R-squared: 0.136
F-statistic: 3.755 on 2 and 33 DF, p-value: 0.03395
```

#### Parallel curves

```
summary(lm(Yield~Density+I(Density^2) + Variety, tomato))
Call:
lm(formula = Yield ~ Density + I(Density^2) + Variety, data = tomato)
Residuals:
   Min
          10 Median 30
                               Max
-2.3422 -0.9039 0.1744 0.8082 2.1828
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.980556 1.184193 8.428 1.61e-09 ***
Density 0.684111 0.104707 6.534 2.71e-07 ***
VarietyA -6.791667 0.504942 -13.450 1.76e-14 ***
VarietyB -5.916667 0.504942 -11.718 6.39e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.237 on 31 degrees of freedom
Multiple R-squared: 0.897, Adjusted R-squared: 0.8837
F-statistic: 67.48 on 4 and 31 DF, p-value: 7.469e-15
```

#### Independent curves

```
summary(lm(Yield~Density*Variety+I(Density^2)*Variety, tomato))
Call:
lm(formula = Yield ~ Density * Variety + I(Density^2) * Variety,
   data = tomato)
Residuals:
    Min
              10 Median
                               3Q
                                      Max
-2.04500 -0.82125 -0.01417 0.94000 1.71000
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    11.808333 1.968364 5.999 2.12e-06 ***
                    0.520167 0.179570 2.897 0.00739 **
Density
VarietyA
                   -8.458333 2.783687 -3.039 0.00523 **
VarietvB
                   -9.733333 2.783687 -3.497 0.00165 **
                -0.008917 0.003535 -2.522 0.01787 *
I(Density^2)
Density: VarietyA 0.199167
                               0.253951 0.784 0.43971
Density:VarietyB 0.292667
                               0.253951 1.152 0.25924
VarietvA:I(Densitv^2) -0.004417
                               0.005000 -0.883 0.38482
VarietyB:I(Density^2) -0.004667
                               0.005000 -0.933 0.35889
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.225 on 27 degrees of freedom
Multiple R-squared: 0.912.Adjusted R-squared: 0.886
F-statistic: 34.99 on 8 and 27 DF, p-value: 2.678e-12
```

#### Completely randomized design (CRD)

This semester, we have assumed a completely randomized design.

#### Completely randomized design (CRD)

This semester, we have assumed a completely randomized design. As an example, consider 36 plots and we are randomly assigning our variety-density combinations to the plots such that we have 3 reps of each combination.

# Completely randomized design (CRD)

This semester, we have assumed a completely randomized design. As an example, consider 36 plots and we are randomly assigning our variety-density combinations to the plots such that we have 3 reps of each combination. The result may look something like this

| A20 | A30 | A40 | C20 | A40 | B40 |
|-----|-----|-----|-----|-----|-----|
| C20 | C40 | C40 | B30 | A10 | A40 |
| B40 | C30 | B40 | C10 | A20 | C10 |
| C10 | B20 | B20 | A30 | B10 | A20 |
| A10 | C40 | A10 | B10 | A30 | B10 |
| C20 | B30 | B20 | B30 | C30 | C30 |

#### Complete randomized block design (RBD)

A randomized block design is appropriate when there is a nuisance factor that you want to control for.

#### Complete randomized block design (RBD)

A randomized block design is appropriate when there is a nuisance factor that you want to control for. In our example, imagine you had 12 plots at 3 different locations and you expect these locations would have impact on yield.

# Complete randomized block design (RBD)

A randomized block design is appropriate when there is a nuisance factor that you want to control for. In our example, imagine you had 12 plots at 3 different locations and you expect these locations would have impact on yield. A randomized block design might look like this.

| A30 | B40 |
|-----|-----|
| C10 | B10 |
| C30 | C20 |
| B30 | B20 |
| A10 | A20 |
| C40 | A40 |

| A20 | B40 |
|-----|-----|
| C10 | B20 |
| C30 | C40 |
| A10 | A30 |
| B30 | A40 |
| C20 | B10 |

| A10 | B40 |
|-----|-----|
| C20 | B30 |
| C10 | A40 |
| A20 | C40 |
| A30 | B10 |
| B20 | C30 |

Block 1

Block 2

Block 3

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor.

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction.

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction. Let's compute the degrees of freedom for the ANOVA tables for this current design considering the variety-density combination as the treatment.

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction. Let's compute the degrees of freedom for the ANOVA tables for this current design considering the variety-density combination as the treatment.

$$V+D+B \parallel T+B \parallel Cell$$
-means Factor df Factor df Factor df

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction. Let's compute the degrees of freedom for the ANOVA tables for this current design considering the variety-density combination as the treatment.

| V+D+B   |    | T+B       |    | Cell-means        |    |
|---------|----|-----------|----|-------------------|----|
| Factor  | df | Factor    | df | Factor            | df |
| Variety | 2  |           |    |                   |    |
| Density | 3  | Treatment | 11 | Treatment         | 11 |
| Block   | 2  | Block     | 2  | Block             | 2  |
|         |    |           |    | Treatment x Block | 22 |
| Error   | 28 | Error     | 22 | Error             | 0  |
| Total   | 35 | Total     | 35 | Total             | 35 |

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction. Let's compute the degrees of freedom for the ANOVA tables for this current design considering the variety-density combination as the treatment.

| V+D+B   |    | T+B       |    | Cell-means        |    |
|---------|----|-----------|----|-------------------|----|
| Factor  | df | Factor    | df | Factor            | df |
| Variety | 2  |           |    |                   |    |
| Density | 3  | Treatment | 11 | Treatment         | 11 |
| Block   | 2  | Block     | 2  | Block             | 2  |
|         |    |           |    | Treatment x Block | 22 |
| Error   | 28 | Error     | 22 | Error             | 0  |
| Total   | 35 | Total     | 35 | Total             | 35 |

The cell-means model does not have enough degrees of freedom to estimate the interacion because there is no replication of the treatment within a block.

(STAT587@ISU) R09 - Two-way ANOVA April 26, 2019 46 / 49

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction. Let's compute the degrees of freedom for the ANOVA tables for this current design considering the variety-density combination as the treatment.

| V+D+B   |    | T+B       |    | Cell-means        |    |
|---------|----|-----------|----|-------------------|----|
| Factor  | df | Factor    | df | Factor            | df |
| Variety | 2  |           |    |                   |    |
| Density | 3  | Treatment | 11 | Treatment         | 11 |
| Block   | 2  | Block     | 2  | Block             | 2  |
|         |    |           |    | Treatment x Block | 22 |
| Error   | 28 | Error     | 22 | Error             | 0  |
| Total   | 35 | Total     | 35 | Total             | 35 |

The cell-means model does not have enough degrees of freedom to estimate the interacion because there is no replication of the treatment within a block.

(STAT587@ISU) R09 - Two-way ANOVA April 26, 2019 46 / 49

Consider a simple experiment with 2 blocks each with 3 experimental units and 3 treatments (A, B, C).

Consider a simple experiment with 2 blocks each with 3 experimental units and 3 treatments (A, B, C).





Let's consider 3 possible analyses:

- Blocked experiment using an additive model for treatment and block (RBD)
- Unblocked experiment using only treatment (CRD)
- Unblocked experiment using an additive model for treatment and block

Now suppose, the true model is

$$\mu_{ij} = \mu + T_i + B_j$$

where  $T_1 = T_2 = T_3$  and  $B_1 = 0$  and  $B_2 = \delta$ .

Now suppose, the true model is

$$\mu_{ij} = \mu + T_i + B_j$$

where  $T_1 = T_2 = T_3$  and  $B_1 = 0$  and  $B_2 = \delta$ .

In the Blocked experiment using an additive model for treatment and block, the expected treatment differences to all be zero.

Now suppose, the true model is

$$\mu_{ij} = \mu + T_i + B_j$$

where  $T_1 = T_2 = T_3$  and  $B_1 = 0$  and  $B_2 = \delta$ .

In the Blocked experiment using an additive model for treatment and block, the expected treatment differences to all be zero.

In the Unblocked design using only treatment, the expected difference between treatments is

$$\mu_C - \mu_B = \delta$$
 and  $\mu_C - \mu_A = \delta/2$ .

Now suppose, the true model is

$$\mu_{ij} = \mu + T_i + B_j$$

where  $T_1 = T_2 = T_3$  and  $B_1 = 0$  and  $B_2 = \delta$ .

In the Blocked experiment using an additive model for treatment and block, the expected treatment differences to all be zero.

In the Unblocked design using only treatment, the expected difference between treatments is

$$\mu_C - \mu_B = \delta$$
 and  $\mu_C - \mu_A = \delta/2$ .

In the Unblocked design using an additive model for treatment and block, we would have an unbalanced design and it would be impossible to compare B and C.

#### Summary

Block what you can control; randomize what you cannot.