# Compiler Construction Chapter 5(Normal Forms)

Dr. Doaa Shebl
Faculty of Computers and Artificial Intelligence
Beni-Suef University

## **Types of Normal Forms**

The most frequently used normal forms are



#### **Restriction for Normal Form**

- nonrecursive start symbol.
- \* Elimination of Lambda Rules
  - \* Elimination of Chain Rules
- \* Useless Symbols

nonrecursive start symbol.

#### **Example:**

G: 
$$S \rightarrow aS \mid AB \mid AC$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bB \mid bS$$

$$C \rightarrow cC \mid \lambda$$
G':  $S' \rightarrow S$ 

$$S \rightarrow aS \mid AB \mid AC$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bB \mid bS$$

$$C \rightarrow cC \mid \lambda$$

#### Elimination of Lambda Rules

#### **Example:**

$$S \to SaB \mid aB$$

$$B \to bB \mid \lambda.$$

$$S \to SaB \mid Sa \mid aB \mid a$$

$$B \to bB \mid b$$

#### **Elimination of Chain Rules**

$$A \rightarrow aA \mid a \mid B$$

$$B \rightarrow bB \mid b$$

$$A \rightarrow aA \mid a \mid B$$

$$B \rightarrow bB \mid b$$

$$A \rightarrow aA \mid a \mid bB \mid b$$

$$B \rightarrow bB \mid b$$

#### **Useless Symbols**

G: 
$$S \rightarrow AC \mid BS \mid B$$
  
 $A \rightarrow aA \mid aF$   
 $B \rightarrow CF \mid b$   
 $C \rightarrow cC \mid D$   
 $D \rightarrow aD \mid BD \mid C$   
 $E \rightarrow aA \mid BSA$   
 $F \rightarrow bB \mid b$ .

G: 
$$S \rightarrow AC \mid BS \mid B$$

$$A \rightarrow aA \mid aF$$

$$(B) \rightarrow CF \mid b$$

$$C \rightarrow cC \mid D$$

$$D \rightarrow aD \mid BD \mid C$$

$$E \rightarrow aA \mid BSA$$

$$F \rightarrow bB \mid \underline{b}$$
.

| Iteration | TERM             | PREV      |  |
|-----------|------------------|-----------|--|
| 0         | $\{B,F\}$        |           |  |
| 1         | $\{B, F, A, S\}$ | $\{B,F\}$ |  |

$$G: S \to AC \mid BS \mid B$$

$$A \rightarrow aA \mid \underline{aF}$$

$$B \rightarrow CF \mid b$$

$$C \rightarrow cC \mid D$$

$$D \rightarrow aD \mid BD \mid C$$

$$E \rightarrow aA \mid BSA$$

$$F \rightarrow bB \mid \underline{b}$$
.

| Iteration | TERM                | PREV             |
|-----------|---------------------|------------------|
| 0         | $\{B,F\}$           |                  |
| 1         | $\{B, F, A, S\}$    | $\{B,F\}$        |
| 2         | $\{B, F, A, S, E\}$ | $\{B, F, A, S\}$ |

| Iteration                   | TERM                | PREV                        |
|-----------------------------|---------------------|-----------------------------|
| O                           | $\{B,F\}$           |                             |
| 1                           | $\{B, F, A, S\}$    | $\{B,F\}$                   |
| 2                           | $\{B, F, A, S, E\}$ | $\{B, F, A, S\}$            |
| 3                           | $\{B, F, A, S, E\}$ | $\{B, F, A, S, E\}$         |
| G: $S \to AC \mid BS$       | $S \mid B$          | $S \rightarrow BS \mid B$   |
| $A \rightarrow aA \mid aF$  |                     | $A \rightarrow aA \mid aF$  |
| $B \to CF \mid b$           |                     |                             |
| $C \to cC \mid D$           |                     | $B \rightarrow b$           |
| $D \rightarrow aD \mid BI$  | $O \mid C$          | $E \rightarrow aA \mid BSA$ |
| $E \rightarrow aA \mid BS$  | $\boldsymbol{A}$    |                             |
| $F \rightarrow bB \mid b$ . |                     | $F \rightarrow bB \mid b$ . |

#### **Chomsky Normal Form**

From here, we infer- To be in CNF, all the productions must derive either two non-terminals or a single terminal.

CNF restricts the number of symbols on the right side of a production to be two.

The two symbols must be non-terminals or a single terminal.

#### **Chomsky Normal Form**

A context free grammar is said to be in chomsky normal form (CNF) if all its productions are of the form-

 $A \rightarrow BC$  or  $A \rightarrow a$ 

where A, B, C are non-terminals and a is a terminal

## **Example-**

 $S \rightarrow AB$ 

 $A \rightarrow a$ 

 $B \rightarrow b$ 

This context free grammar is in chomsky normal form.

#### **Example1:**

Convert the following grammar to Chomsky normal form

G: 
$$S \rightarrow aAB/aA/bB$$
  
 $A \rightarrow aAb/aB/a$   
 $B \rightarrow bA/b$ 

Solution

#### **Step 1:**

The productions already in chomsky normal form are:

$$A \rightarrow a$$
 $B \rightarrow b$ 

These productions will remain as they are.

#### Step 2:

The productions not in chomsky normal form are-

G: 
$$S \rightarrow aAB/aA/bB$$
  
 $A \rightarrow aAb/aB$   
 $B \rightarrow bA$ 

We will convert these productions in chomsky normal form

#### Step 3:

Replace the terminal symbols  $\underline{a}$  and  $\underline{b}$  by new variables  $T_1$  and  $T_2$ 

This is done by introducing the following two new productions in the grammar:

$$T_1 \rightarrow a$$
 $T_2 \rightarrow b$ 

Now, the productions  $S \rightarrow aA$  modifies to  $S \rightarrow T_1A$   $A \rightarrow aAb/aB/a$ 

 $G: S \rightarrow aAB/aA/bB$  $A \rightarrow aAb/aB/a$ 

 $B \rightarrow bA/b$ 

the productions  $S \rightarrow b B$  modifies to  $S \rightarrow T_2 B$ 

the productions  $A \rightarrow a B$  modifies to  $A \rightarrow T_1 B$ 

the productions  $B \rightarrow b A$  modifies to  $B \rightarrow T_2 A$ 

the productions  $A \rightarrow a Ab$  modifies to  $A \rightarrow aAT_2$ 

G: 
$$S \rightarrow aAB/T_1A/T_2B$$
  
 $A \rightarrow aAT_2/T_1B/a$   
 $B \rightarrow T_2A/b$   
 $T_1 \rightarrow a$   
 $T_2 \rightarrow b$ 

G: 
$$S \rightarrow aAB/T_1A/T_2B$$
  
 $A \rightarrow aAT_2/T_1B/a$   
 $B \rightarrow T_2A/b$   
 $T_1 \rightarrow a$   
 $T_2 \rightarrow b$ 

#### Step 3:

Replace AB and AT<sub>2</sub> by new variables  $T_3$  and  $T_4$  respectively.

This is done by introducing the following two new productions in the grammar:

$$T_3 \rightarrow AB$$
 $T_4 \rightarrow AT_2$ 

Now, the productions  $S \rightarrow aAB$ , and  $A \rightarrow aAT2$  modifies to:

$$\begin{array}{c} S \rightarrow T_1 \ T_3 \\ A \rightarrow T_1 \ T_4 \end{array}$$

#### Finally:

G: 
$$S \rightarrow aAB/aA/bB$$
  
 $A \rightarrow aAb/aB/a$   
 $B \rightarrow bA/b$ 



#### **Chomsky normal form:**

G: 
$$S \rightarrow T_1 T_3 / T_1 A / T_2 B$$
  
 $A \rightarrow A \rightarrow T_1 T_4 / T_1 B / a$   
 $B \rightarrow T_2 A / b$   
 $T_1 \rightarrow a$   
 $T_2 \rightarrow b$   
 $T_3 \rightarrow AB$   
 $T_4 \rightarrow AT_2$ 

#### **Greibach Normal Form**

A context-free grammar  $G = (V, \Sigma, P, S)$  is in **Greibach normal form** if each rule has one of the following forms:

- i)  $A \rightarrow aA_1A_2 \dots A_n$
- ii)  $A \rightarrow a$
- iii)  $S \rightarrow \lambda$ ,

## Example 2: Convert the following grammar to <u>Greibach</u> normal form

G: 
$$S \rightarrow aAB/aA/bB$$
  
 $A \rightarrow aAb/aB/a$   
 $B \rightarrow bA/b$ 

Solution

#### Step 1:

The productions already in Greibach normal form are:

$$G: S \rightarrow aAB/aA/bB$$
  
 $A \rightarrow aB/a$   
 $B \rightarrow bA/b$ 

These productions will remain as they are

#### Step 2:

The productions not in Greibach normal form are-

$$A \rightarrow a Ab$$

We will convert this production in Greibach normal form

#### Step 3:

Replace the terminal symbol **b** by new variables T<sub>1</sub>

$$T_1 \rightarrow b$$

#### Finally:

#### **Greibach normal form**

 $G: S \rightarrow aAB/aA/bB$ 

 $A \rightarrow a AT_1/aB/a$ 

 $B \rightarrow bA/b$ 

 $T_1 \rightarrow b$ 

#### **Example 3:**

Convert the following grammar to Greibach normal form

G: 
$$S \rightarrow aAB/aA/Bb$$
  
 $A \rightarrow aAb/aB/a$   
 $B \rightarrow bA/b$ 

Solution

#### **Step 1:**

The productions already in Greibach normal form are:

$$G: S \rightarrow aAB / a A$$
  
 $A \rightarrow aB / a$   
 $B \rightarrow bA / b$ 

These productions will remain as they are

#### Step 2:

The productions not in Greibach normal form are-

$$S \rightarrow B b$$

$$A \rightarrow a Ab$$

We will convert this production in Greibach normal form

#### Step 3:

Replace the terminal symbol **b** by new variables T<sub>1</sub>

$$T_1 \rightarrow b$$

$$S \rightarrow Bb$$
 ?????

G: 
$$S \rightarrow aAB/aA/Bb$$
  
 $A \rightarrow aAT_1/aB/a$   
 $B \rightarrow bA/b$   
 $T_1 \rightarrow b$ 



$$S \rightarrow B$$
 b

$$B \rightarrow bA/b$$

$$S \rightarrow bAb/bb$$

G: 
$$S \rightarrow aAB/aA/bAb/bb$$
  
 $A \rightarrow aAT_1/aB/a$   
 $B \rightarrow bA/b$   
 $T_1 \rightarrow b$ 

G: 
$$S \rightarrow aAB/aA/bAT_1/bT_1$$
  
 $A \rightarrow aAT_1/aB/a$   
 $B \rightarrow bA/b$   
 $T_1 \rightarrow b$