CS 771A: Intro to Machine Learning, IIT Kanpur				Endsem Exam (14 July 2023)		
Name					40 marks	
Roll No		Dept.			Page 1 of 4	

Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in block letters with ink on each page.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases may get 0 marks.

Q1. (Total confusion) The *confusion matrix* is a very useful tool for evaluating classification models. For a C-class problem, this is a $C \times C$ matrix that tells us, for any two classes $c, c' \in [C]$, how many instances of class c were classified as c' by the model. In the example below, C = 2, there were P + Q + R + S points in the test set where P, Q, R, S are strictly positive integers. The matrix tells us that there were Q points that were in class +1 but (incorrectly) classified as -1 by the model, S points were in class -1 and were (correctly) classified as -1 by the model, etc. **Give expressions for the specified quantities in terms of** P, Q, R, S. No derivations needed. Note that Y denotes the true class of a test point and \hat{Y} is the predicted class for that point. (5 x 1 = 5 marks)

		Predicted		
		class \hat{y}		
		+1	-1	
rrue class y	+1	P	Q	
True c	-1	R	S	

Confusion Matrix

Accuracy (ACC)
$$\mathbb{P}[\hat{y} = y]$$

Precision (**PRE**) $\mathbb{P}[y=1|\hat{y}=1]$

Recall (**REC**) $\mathbb{P}[\hat{y} = 1 | y = 1]$

False discovery rate (**FDR**) $\mathbb{P}[y=-1|\hat{y}=1]$

False omission rate (**FOR**) $\mathbb{P}[y=1|\hat{y}=-1]$

]

Q2. (Kernel Smash) Melbi has created two Mercer kernels $K_1, K_2 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with the feature map for the kernel K_i being $\phi_i : \mathbb{R} \to \mathbb{R}^2$. Thus, for any $x, y \in \mathbb{R}$, we have $K_i(x, y) = \langle \phi_i(x), \phi_i(y) \rangle$ for $i \in \{1,2\}$. Melbi knows that $\phi_1(x) = (x, x^3)$ and $\phi_2(x) = (1, x^2)$. Melbo has created a new kernel K_3 using Melbi's kernels so that for any $x, y \in \mathbb{R}$, $K_3(x, y) = (K_1(x, y) + 3 \cdot K_2(x, y))^2$. Design a feature map $\phi_3 : \mathbb{R} \to \mathbb{R}^7$ for the kernel K_3 . Write your answer only in the pace given below. No derivation needed. Note that ϕ_3 must not use more than 7 dimensions. If your solution does not require 7 dimensions leave the rest of the dimensions blank. (5 marks)

$$\phi_3(x) =$$

Q3 (Opt to Prob) Melbo enrolled in an advanced ML course and learnt an unsupervised learning technique called support vector data description (SVDD). Given a set of data points, say in 2D for sake of simplicity, $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2$, SVDD solves the following optimization problem:

$$\min_{\mathbf{c} \in \mathbb{R}^2, r \ge 0} r^2 \text{ s. t. } \|\mathbf{x}_i - \mathbf{c}\|_2^2 \le r^2 \text{ for all } i \in [n]$$

Melbo's friend Melba saw this and exclaimed that this is just an MLE solution. To convince Melbo, create a likelihood distribution $\mathbb{P}[\mathbf{x} \mid \mathbf{c}, r]$ over the 2D space \mathbb{R}^2 with parameters $\mathbf{c} \in \mathbb{R}^2$, $r \geq 0$ s.t.

$$\left[\underset{\mathbf{c} \in \mathbb{R}^2, r \geq 0}{\arg\max} \left\{ \prod_{i \in [n]} \mathbb{P}[\mathbf{x}_i \mid \mathbf{c}, r] \right\} \right] = \left[\underset{\mathbf{c} \in \mathbb{R}^2, r \geq 0}{\arg\min} r^2 \text{ s. t. } ||\mathbf{x}_i - \mathbf{c}||_2^2 \leq r^2 \text{ for all } i \in [n] \right]. \text{ Your solution}$$

must be a proper distribution i.e., $\mathbb{P}[\mathbf{x} \mid \mathbf{c}, r] \geq 0$ and $\int_{\mathbf{x} \in \mathbb{R}^2} \mathbb{P}[\mathbf{x} \mid \mathbf{c}, r] \, d\mathbf{x} = 1$. Give calculations to show why your distribution is correct. Hint: area of a circle of radius r is πr^2 . (4 + 6 = 10 marks)

Write down the density function of your likelihood distribution here.

Give calculations showing why your likelihood distribution does indeed result in the optimization problem as MLE.

Q4. (A one-class SVM?) For anomaly detection tasks, the "one-class" approach is often used. Given a set of data points $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$, the 1CSVM solves the following problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d, \boldsymbol{\xi} \in \mathbb{R}^n, \rho \in \mathbb{R}} \left\{ \frac{1}{2} \|\mathbf{w}\|_2^2 - \rho + \sum_{i \in [n]} \xi_i \right\} \text{ s. t. } \mathbf{w}^\mathsf{T} \mathbf{x}_i \ge \rho - \xi_i \text{ and } \xi_i \ge 0 \text{ for all } i \in [n]$$

- 1. Write down the Lagrangian for this optimization problem by introducing dual variables.
- 2. Write down the dual problem as a max-min problem (no need to simplify it at this stage).
- 3. Now simplify the dual problem (eliminate \mathbf{w} , $\boldsymbol{\xi}$, $\boldsymbol{\rho}$). Show major steps. (3 + 2 + 5 = 10 marks)

CS 771A: Intro to Machine Learning, IIT Kanpur Endsem Exam (14 July 20				
Name		40 marks		
Roll No	Dept.	Page 3 of 4		
Write down t	he Lagrangian here (you will need to introduce dual variable	s and give them names)		
Derive and si	mplify the dual for this problem. Show major calculations ste	eps.		

Pa	ge	4	of	4
	_			

Q5 (Kernelized Anomaly Detection?) Let's kernelize the 1CSVM. Suppose d is large and instead of receiving $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$, we receive pairwise dot products of the features as an $n \times n$ matrix $G = [g_{ij}] \in \mathbb{R}^{n \times n}$ where $g_{ij} \stackrel{\text{def}}{=} \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ for all $i, j \in [n]$. Rewrite the (simplified) dual that you derived in **Q4** but using only the dot products g_{ij} . No derivations required – just rewrite the dual using the dot products. Note: your rewritten dual must not use feature vectors \mathbf{x}_i at all. (2 marks)

Q6 (Delta Likelihood) Melbo has n data points $\{\mathbf{x}_i, y_i\}$ with $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$. The likelihood of a model $\mathbf{w} \in \mathbb{R}^d$ w.r.t. data point i is $s_i \stackrel{\text{def}}{=} 1/(1 + \exp(-y_i \cdot \mathbf{w}^\mathsf{T} \mathbf{x}_i))$ and w.r.t. the entire data is $\mathcal{L}(\mathbf{w}) \stackrel{\text{def}}{=} \prod_{i \in [n]} s_i$. Notice that if the label of the j-th point is flipped (for any single $j \in [n]$), then the likelihood of the same model \mathbf{w} changes to $\tilde{\mathcal{L}}_j(\mathbf{w}) \stackrel{\text{def}}{=} 1/(1 + \exp(y_j \cdot \mathbf{w}^\mathsf{T} \mathbf{x}_i)) \cdot (\prod_{i \neq j} s_i)$.

- i. Given a **fixed** model \mathbf{w} , $j \in [n]$, give an expression for $\Delta_j(\mathbf{w}) \stackrel{\text{def}}{=} \tilde{\mathcal{L}}_j(\mathbf{w})/\mathcal{L}(\mathbf{w})$, i.e., the factor by which likelihood of \mathbf{w} changes if j-th label is flipped. Give brief derivation.
- ii. If n=5 and $s_1=0.1, s_2=0.3, s_3=0.9, s_4=0.6, s_5=0.2$, find the point $j^*\in[5]$ for which $\Delta_{j^*}(\mathbf{w})$ is the largest and value of $\Delta_{j^*}(\mathbf{w})$. Give brief justification.
- iii. If n = 5 and $s_1 = 0.4$, $s_2 = 0.6$, $s_3 = 0.2$, $s_4 = 0.7$, $s_5 = 0.8$, find $k^* \in [5]$ for which $\Delta_{k^*}(\mathbf{w})$ is the smallest and value of $\Delta_{k^*}(\mathbf{w})$. Give brief justification. (2 + 3 + 3 = 8 marks)

$$\Delta_j(\mathbf{w}) =$$

$$j^* = \underline{\qquad} \quad \Delta_{j^*}(\mathbf{w}) = \underline{\qquad} \quad k^* = \underline{\qquad} \quad \Delta_{k^*}(\mathbf{w}) = \underline{\qquad}$$

Give brief derivation for part i and justification for parts ii and iii below.