Neural Network

5. 오차역전파

Chain rule

$$\mathbb{R} \xrightarrow{f} \mathbb{R} \xrightarrow{g} \mathbb{R} \xrightarrow{h} \mathbb{R}$$

Numerical Differentiation

Chain rule

$$\frac{h(g(f(x+\varepsilon))) - h(g(f(x)))}{\varepsilon}$$

$$h'(g(f(x)))g'(f(x))f'(x) \\$$

$$f(x) = 2x + 1, \ g(y) = y^2, \ h(z) = \sin(z)$$

$$\frac{\sin\left((2(x+\varepsilon)+1)^2\right)-\sin\left((2x+1)^2\right)}{\varepsilon}$$

$$\cos\left((2x+1)^2\right) \times 2(2x+1) \times 2$$

Graph

Forward

- 사과 가격: 100원/개, 사과 수: 2개, 소비세: 10%

- 총 금액: 100 x 2 x 1.1 = 220

Forward

- 사과 가격: 100원/개, 사과 수: 2개

- 귤 가격: **150**원/개, 귤 수: **3**개

- 총 금액: (100 x 2 + 150 x 3) x 1.1 = 715

Computation Graph

Backpropagation

- 곱셈 노드: 반대편 값을 곱함

Backpropagation

- 덧셈 노드: 유지

- 사과 가격: x 원/개, 사과 수: m 개, 소비세: t
- 총 금액: f(x,m,t)=xmt

$$\frac{\partial f}{\partial x}(x,m,t)=mt,\quad \frac{\partial f}{\partial m}(x,m,t)=xt,\quad \frac{\partial f}{\partial t}(x,m,t)=xm$$

$$\frac{\partial f}{\partial x}(100,2,1.1)=2.2,\quad \frac{\partial f}{\partial m}(100,2,1.1)=110,\quad \frac{\partial f}{\partial t}(100,2,1.1)=200$$

- 사과 가격: x 원/개, 사과 수: m 개
- 귤 가격: y 원/개, 귤 수: n 개, 소비세: t
- 총 금액: f(x,m,y,n,t)=(xm+yn)t

$$\frac{\partial f}{\partial x}(x,m,y,n,t) = mt, \quad \frac{\partial f}{\partial m}(x,m,y,n,t) = xt \qquad \frac{\partial f}{\partial y}(x,m,y,n,t) = nt, \quad \frac{\partial f}{\partial n}(x,m,y,n,t) = yt, \quad \frac{\partial f}{\partial t}(x,m,y,n,t) = xm + yn$$

$$\frac{\partial f}{\partial x}(100,2,150,3,1.1) = 2.2, \quad \frac{\partial f}{\partial m}(100,2,150,3,1.1) = 110$$

$$\frac{\partial f}{\partial y}(100, 2, 150, 3, 1.1) = 3.3, \quad \frac{\partial f}{\partial n}(100, 2, 150, 3, 1.1) = 165, \quad \frac{\partial f}{\partial t}(100, 2, 150, 3, 1.1) = 650$$

$$y = f(x)$$

$$L(y) = L(f(x))$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x}$$

Addition

$$L(z) = L(x+y)$$

$$\frac{\partial}{\partial x} L(x+y) = L'(x+y) \times 1$$

$$\frac{\partial}{\partial y} L(x+y) = L'(x+y) \times 1$$

Multiplication

$$\begin{split} L(z) &= L(xy) \\ \frac{\partial}{\partial x} L(xy) &= L'(xy) \times y \\ \frac{\partial}{\partial y} L(xy) &= L'(xy) \times x \end{split}$$

- 사과 가격: x 원/개, 사과 수: m 개
- 귤 가격: y 원/개,귤 수: n 개,소비세: t
- 총 금액: f(x,m,y,n,t)=(xm+yn)t

$$f_1(x) = mx, \qquad f_2(z) = z + yn, \qquad f_3(w) = wt$$

$$f_3 \circ f_2 \circ f_1(x) = (xm + yn)t$$

$$(f_3 \circ f_2 \circ f_1)'(x) = f_3'(f_2(f_1(x))) \times f_2'(f_1(x)) \times f_1'(x) = t \times 1 \times m$$

Addition

```
class AddLayer:
    def __init__(self):
        pass

def forward(self, x, y):
        out = x + y
        return out

def backward(self, dout):
        dx = dout * 1
        dy = dout * 1
        return dx, dy
```

```
apple = 100
apple num = 2
orange = 150
orange num = 3
tax = 1.1
# 계층들
mul apple layer = MulLayer()
mul orange layer = MulLayer()
add apple orange layer = AddLayer()
mul tax layer = MulLayer()
# 순전파
apple price = mul apple layer forward(apple apple num) #(1)
orange_price = mul_orange_layer.forward(orange, orange_num) #(2)
all price = add apple orange layer forward(apple price orange price) #(3)
price = mul tax layer.forward(all price tax) #(4)
# 역전파
dprice = 1
dall price dtax = mul tax layer_backward(dprice) #(4)
dapple_price_ dorange_price = add_apple_orange_layer.backward(dall_price) #(3)
dorange_num = mul_orange_layer.backward(dorange_price) #(2)
dapple_dapple_num = mul_apple_layer_backward(dapple_price) #(1)
print(price) # 715
print(dapple num, dapple, dorange num, dtax) # 110 2.2 3.3 165 650
```

Multiplication

```
class MulLayer:
                                                 apple = 100
   def init (self):
                                                 apple num = 2
       self x = None
                                                 tax = 1.1
       self.y = None
                                                 # 계층들
   def forward(self x y):
                                                 mul apple layer = MulLayer()
       self x = x
                                                 mul tax layer = MulLayer()
       self.y = y
       out = x * y
                                                 # 순정파
                                                 apple price = mul apple layer.forward(apple, apple num)
       return out
                                                 price = mul tax layer.forward(apple price tax)
   def backward(self, dout):
                                                 print(price) # 220
       dx = dout * self.y # x와 y를 바꾼다.
       dy = dout * self_x
       return dx, dy
```

Inverse

$$\frac{\partial L}{\partial x} = -\frac{\partial L}{\partial y} \cdot y^2$$

$$\frac{\partial L}{\partial y}$$

$$y = 1/x$$

$$\frac{dy}{dx} = -x^{-2} = -y^2$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x} = -\frac{\partial L}{\partial y} \cdot y^2$$

Exponential

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot y$$

$$\frac{\partial L}{\partial y}$$

$$\frac{\partial L}{\partial y}$$

$$y = e^x$$

$$\frac{dy}{dx} = e^x = y$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x} = \frac{\partial L}{\partial y} \cdot y$$

Log

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{1}{x}$$

$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial y} \cdot \frac{1}{x}$$

$$y = \log x$$

$$\frac{dy}{dx} = \frac{1}{x}$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{1}{x}$$

Repeat & Sum

Sigmoid vs ReLU

ReLU

$$y = \left\{egin{array}{ll} x & (x > 0) \ 0 & (x \leq 0) \end{array}
ight.$$

$$\frac{\partial y}{\partial x} = \begin{cases} 1 & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

Sigmoid

$$y = \frac{1}{1 + e^{-x}} = (1 + e^{-x})^{-1}$$

$$y' = -(1 + e^{-x})^{-2}(-e^{-x})$$

$$= \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$= \frac{1 + e^{-x} - 1}{(1 + e^{-x})^2}$$

$$= \frac{1}{1 + e^{-x}} - \frac{1}{(1 + e^{-x})^2}$$

$$= y - y^2$$

$$= y(1 - y)$$

Sigmoid

$$y = \frac{1}{1 + e^{-x}} = (1 + e^{-x})^{-1}$$

Vanishing Gradient

input layer hidden layer output layer

Vanishing Gradient

Vanishing Gradient

Affine

$$Y = XW + B$$

$$egin{pmatrix} egin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} = egin{pmatrix} x_1 & x_2 \end{pmatrix} egin{pmatrix} w_{11} & w_{12} & w_{13} \ w_{21} & w_{22} & w_{23} \end{pmatrix} + egin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$$

$$\frac{1}{\partial \mathbf{X}} = \frac{\partial L}{\partial \mathbf{Y}} \quad \mathbf{W}^{\mathrm{T}}$$
(2,) (3,) (3, 2)

$$\frac{\partial L}{\partial \mathbf{W}} = \mathbf{X}^{\mathrm{T}} \quad \frac{\partial L}{\partial \mathbf{Y}}$$

$$(2, 3) \quad (2, 1) \quad (1, 3)$$

Affine (Batch)

$$Y = XW + B$$

$$\begin{pmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ \vdots & \vdots & \vdots \\ y_{N1} & y_{N2} & y_{N3} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{21} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{N1} & x_{N2} \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{pmatrix} + \begin{pmatrix} b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ \vdots & \vdots & \vdots \\ b_1 & b_2 & b_3 \end{pmatrix}$$

$$\frac{\partial L}{\partial \mathbf{X}} = \frac{\partial L}{\partial \mathbf{Y}} \cdot \mathbf{W}^{\mathsf{T}} \tag{2, 3}$$

$$(N, 2) (N, 3) (3, 2)$$

$$\frac{\partial L}{\partial \mathbf{W}} = \mathbf{X}^{\mathsf{T}} \cdot \frac{\partial L}{\partial \mathbf{Y}}$$
(2, 3) (2, N) (N, 3)

$$\frac{\partial L}{\partial \mathbf{B}} = \frac{\partial L}{\partial \mathbf{Y}}$$
 의 첫 번째 축(0축, 열방향)의 합
(3) (N, 3)

Affine (Batch)

Softmax-with-Loss

$$\xrightarrow{(a_1,a_2,a_3)}$$
 Softmax $\xrightarrow{(y_1,y_2,y_3)}$ Cross Entropy \xrightarrow{L}

$$\begin{split} L(a_1, a_2, a_3) &= -t_1 \log y_1 - t_2 \log y_2 - t_3 \log y_3 \\ &= -t_1 \log \frac{e^{a_1}}{e^{a_1} + e^{a_2} + e^{a_3}} - t_2 \log \frac{e^{a_2}}{e^{a_1} + e^{a_2} + e^{a_3}} - t_3 \log \frac{e^{a_3}}{e^{a_1} + e^{a_2} + e^{a_3}} \\ &= -t_1 \log e^{a_1} - t_2 \log e^{a_2} - t_3 \log e^{a_3} + (t_1 + t_2 + t_3) \log(e^{a_1} + e^{a_2} + e^{a_3}) \\ &= -t_1 a_1 - t_2 a_2 - t_3 a_3 + \log(e^{a_1} + e^{a_2} + e^{a_3}) \end{split}$$

$$\frac{\partial L}{\partial a_i} = -t_i + \frac{e^{a_i}}{e^{a_1} + e^{a_2} + e^{a_3}} = -t_i + y_i$$

$$\frac{\partial L}{\partial a} = (y_1 - t_1, y_2 - t_2, y_3 - t_3) = y - t$$

Softmax-with-Loss

$$\left(\frac{e^{a_1}}{e^{a_1} + e^{a_2} + e^{a_3}}, \frac{e^{a_2}}{e^{a_1} + e^{a_2} + e^{a_3}}, \frac{e^{a_3}}{e^{a_1} + e^{a_2} + e^{a_3}}\right) - t_1 \log y_1 - t_2 \log y_2 - t_3 \log y_3$$

Forwardpass

Backwardpass

인스턴스 변수	설명
params	딕셔너리 변수로, 신경망의 매개변수를 보관
	params(W1')은 1번째층의 가중치, params(b1')은 1번째층의 편향
	params[W2]는 2번째 층의 가중치, params[b2]는 2번째 층의 편향
layers	순서가 있는 딕셔너리 변수로, 신경망의 계층을 보관
	layers['Affine1'], layers['Relu1'], layers['Affine2']와 같이 각계층을 순 서대로 유지
lastLayer	신경망의 마지막 계층
	이 에에서는 SoftmaxWithLoss 계층

메서드	설명
init(self, input_size, hidden_	초기화를 수행한다.
size, output_size, weight_init_	인수는 앞에서부터 입력층 뉴런 수, 은닉층 뉴런 수, 출력층 뉴런 수, 가중치
std)	초기화시 정규분포의 스케일
predict(self, x)	예측(추론)을 수행한다.
	인수 x는 이미지 데이터
loss(self, x, t)	손실 함수의 값을 구한다.
	인수 X는 이미지 데이터, 1는 정답 레이블
accuracy(self, x, t)	정확도를 구한다.
numerical_gradient(self, x, t)	가중치 매개변수의 기울기를 수치 미분 방식으로 구한다(앞 장과 같음).
gradient(self, x, t)	가중치 매개변수의 기울기를 오차역전파법으로 구한다.

Question?

자료 출처

Deep learning from scratch, 한빛미디어, 사이토고키

https://github.com/youbeebee/deeplearning_from_scratch