

Bike and Pedestrian Traffic Incidents in Chicago

Nathan Rickert, Dharti Seagraves, Raman Hundal, Michael Goodman

Background

- City of Chicago faces challenges in mitigating traffic accidents and improving road safety
- Our goal is to understand and prevent traffic accidents by identifying patterns and key factors contributing to three categories of crashes
 - O No Injury
 - Non-incapacitating Injuries
 - Incapacitating Injury/Fatalities

Goals of Analysis

- Classifying accident can help us:
 - Prioritize emergency response allocation
 - Identifying high-risk areas and times to increase/decrease surveillance teams
 - O Informing City of Chicago residents of traffic safety issue and plan to alleviate stress

Data Acquisition

- Utilized the Chicago Data Portal SOCRATA API
- Queried all people affected by traffic accidents in the last 5 years that were classified as pedestrians or cyclists.
- Joined with crash event features and the associated vehicle information.
- This resulted in over 22,000 records.
- ~1,500 resulted in fatalities or incapacitating injuries

Model Preparation

- Remove unnecessary columns (Nulls to No)
- Engineer target variable
 - 0 No injury
 - 1 Non-incapacitating injury
 - 2 Incapacitating injury/ Fatal
- Encode text categorical features into integers

Methodology

Feature Selection

- Principal Component Analysis (PCA
- K-mean clustering
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Latent Class Analysis (LCA)

Model

Cross-validation: Repeated k-Folds

Algorithms

- Naïve Bayes (baseline)
- Logistic Regression
- Support vector machines
- Random Forest
- Gradient Boosting
- Poisson Regression

Class	Naïve Bayes	Logistic	SVM	Random Forest	Gradient Boosting
No Injury	0.182162	0.001079	0	0.297126	0.020105
Non Incapacitating	0.775907	0.999246	1	0.645137	0.984083
Fatal/Incapacitating	0.091884	0	0	0.085145	0.005513

Model Interpretation

- Logistic regression was best for predicting non incapacitating features
- When combining incapacitating and non incapacitating into one variable (1), Random Forest accuracy was still strong and we identified the following key features

Accuracy	: 68.4	1%			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		precision	recall	f1-score	support
	0	0.56	0.14	0.22	1476
	1	0.70	0.95	0.80	3053
accu	racy			0.68	4523
macro	avg	0.63	0.54	0.51	4523
weighted	avg	0.65	0.68	0.61	4523
[[203 1	267]				
[162 2	891]]				

InterpretML- Explainable Boost Classifer

Global Term/Feature Importances

InterpretML- Explainable Boost Classifer

Improvements

- Data collection Police Report
- More sensors and studies for road safety
- More data audit and standardization
- More accountability