Національний університет «Львівська політехніка» Кафедра програмного забезпечення

Організація комп'ютерних мереж

к.т.н., ст. викл. Тушницький Р.Б. ruslan4yk@lp.edu.ua

Лекція 3.

- <u>І. Лінії зв'язку.</u>
- 1. Класифікація ліній зв'язку.
- 2. Характеристики ліній зв'язку.
- 3. Типи кабелів.
- II. Кодування і мультиплексування даних.
- 1. <u>методи кодування.</u>
- 2. Виявлення і корекція помилок.

Класифікація ліній зв'язку

Первинні мережі, лінії і канали зв'язку.

Первинна мережа – сукупність всіх каналів без поділу їх за призначенням і видам зв'язку: лінії і мережеве обладнання.

Ланка = link – сегмент, що забезпечує передачу даних між двома сусідніми вузлами мережі. Не містить проміжних пристроїв комутації і мультиплексування.

Канал = channel — частина пропускної здатності ланки. # ланка первинної мережі може складатись з 30 каналів, кожний канал із пропускною здатністю 64 kbps.

Складовий канал = circuit – шлях між двома кінцевими вузлами мережі => ланки + комутатори.

Лінія зв'язку — синонім до ланки, каналу, складового каналу.

Класифікація ліній зв'язку

Рис. 8.1. Состав линии связи

Фізичне середовище передачі даних

Набір провідників, по яким передаються сигнали.

Рис. 8.2. Типы сред передачи данных

Фізичне середовище передачі даних

Кабельні лінії: ізоляція електрична, електромагнітна, механічна, кліматична.

- 1. Неекранована вита пара = Unshielded Twisted Pair = UTP
- 2. Екранована вита пара = Shielded Twisted Pair = STP
- 3. Коаксільний кабель з мідною жилкою
- 4. Волоконно-оптичний кабель

Радіоканали

- 1. Широкомовне радіо = AM-діапазон = Amplitude Modulation далекий але повільний зв'язок.
- 2. Діапазони високих частот = Very High Frequency = VHF використовується частотна модуляція Frequency Modulation = FM.
- 3. Ультрависові частоти = діапазон мікрохвиль Ultra High Frequency = UHF > 300 MHz.

Апаратура передачі даних

Апаратура передачі даних = Data Circuit Equipment = DCE:

- 1. Модеми
- 2. Термінальні адаптери мереж ISDN
- 3. Пристрої для підключення до цифрових каналів первинних мереж

Кінцеве обладнання даних = Data Terminal Equipment = DTE:

- 1. Комп'ютери
- 2. Комутатори
- 3. Маршрутизатори

Проміжна апаратура:

- 1. Повторювачі
- 2. Концентратори
- 3. Підсилювачі
- 4. Регенератори
- 5. Мультиплексори
- 6. Демультиплексори
- 7. Комутатори

1. Спектральний аналіз сигналів на лініях зв'язку

Будь-який періодичний процес можна представити у вигляді суми синусоїдальних коливань різних частот і різних амплітуд.

Кожна складова синусоїда – гармоніка.

Набір всіх гармонік – спектральний розклад вихідного сигналу (спектр). Ширина спектра сигналу – різниця між макс і мінім. Частотами того набору синусоїд, які в сумі дають вихідний сигнал.

Неперіодичні сигнали можна представити у вигляді інтеграла синусоїдальних сигналів з неперервним спектром частот.

Спектр обчислюється на основі формул Фур'є. Спектральні аналізатори.

Ідеальна передача – опір =0, ємність = 0, індуктивність = 0 Внутрішні перешкоди - наводки одної пари провідників на іншу. Зовнішні перешкоди – електричні двигуни, пристрої, атмосферні явища

Рис. 8.3. Представление периодического сигнала суммой синусоид

Рис. 8.4. Спектральное разложение идеального импульса

Рис. 8.5. Искажение импульсов в линии связи

2. Затухання і хвильовий опір

Ступінь спотворення синусоїдальних сигналів лініями зв"язку оцінюється затуханням і смугою пропускання.

Затухання (А, дБ) показує, наскільки зменшується потужність еталонного синусоїдального сигналу на виході (Роut) лінії зв'язку у відношенні до потужності сигналу на вході (Ріп) цієї лінії.

$$A = 10 lg Pout / Pin$$

Затухання залежить від довжини лінії зв'язку => **Погонне затухання** – затухання на лінії зв'язку визначеної довжини (# 100 м, 1 км)

Pout << Pin (без підсилювачів і регенераторів) => A < 0

Чим більше затухання – тим краща лінія.

cat5: -23.6 дБ + 100 MHz + 100м

cat6: -20.6 дБ + 100 MHz

out year in o

Рис. 8.8. Затухание неэкранированного кабеля на витой паре

Характеристики потужності сигналу:

Відносний рівень потужності — дБ
Абсолютний рівень потужності - Вт
Опорна потужність — децибели на міліват = дБм
(відносна одиниця)
(абсолютна одиниця)

Поріг чутливості приймача — мін опорна потужність сигналу на вході приймача, при якому він може коректно розпізнати дискретну інформацію, що міститься в сигналі.

Хвильовий опір – повний (комплексний) опір, який зустрічає електромагнітна хвиля визначеної частоти при розповсюдженні вздовж однорідного ланцюга (Ом).

Залежить від: активний опір, погонна індуктивність, погонна ємність, частота сигналу.

3. Завадостійкість і достовірність

Завадостійкість — визначає здатність лінії протистояти впливу завад, що створюються у зовнішньому середовищі чи на внутрішніх провідниках самого кабеля.

Залежить від: типу фізичного середовища, засобів екранування, подавлення завад самої лінії.

Найменш завадостійкі – радіолінії, добре – кабельні лінії, супер – волокно.

Електричний зв'язок визначається відношенням наведеного струму в ланцюзі, на який здійснюється вплив, до напруги, що діє ланцюзі, який здійснює вплив.

Магнітний зв'язок — відношення елетрорушійної сили, наведеної до ланцюга, на який здійснюється вплив, до струму у ланцюзі, який здійснює вплив.

Результатом електр і магн є **наведені сигнали (наводки)** в ланцюгу, на який здійснюється вплив.

Параметри, що характеризують стійкість кабеля до наводок:

1. Перехресні наводки на ближньому кінці (Near End Cross Tall, NEXT) — визначає стійкість кабеля в тому випадку, якщо наводка утворюється в результаті дії сигналу, що генерується передавачем, який підключений до однієї із сусідніх пар на тому ж кінці кабеля, на якому працює приймач.

Чим менше значення NEXT – тим кращий кабель.

2. Перехресні наводки на дальному кінці (Far End Cross Talk, FEXT) — передавач і приймач підключені до різним кінцям кабеля.

Має бути кращим за NEXT.

PS = PowerSum = об'єднана наводка – сумарні наводки на одну з пар кабеля

Р ind-far - мощность наведенного сигнала на дальнем конце кабеля

Рис. 8.10. Переходное затухание

Рис. 8.11. Суммарное переходное затухание

Захищеність кабеля (Attenuation/Crosstalk Ratio, ACR)- різниця міє рівнями корисних сигналів і завад.

Рис. 8.12. Защищенность витой пары

Достовірність передачі даних = ймовірність бітових помилок (Bit Error Rate, BER) характеризує ймовірність спотворення кожного біта даних, що передається.

4. Смуга пропускання і пропускна здатність

Смуга пропускання — неперервний діапазон частот, для якого затухання не перевищує деякий наперід задану межу. Визначає діапазон частот sin-сигнала, при яких цей сигнал передається по лінії зв'язку без значних спотворень.

Пропускна здатність лінії характеризаує максимально можливу швидкість передачі даних, яка може бути досягнута на цій лінії.

Залежить від параметрів фізичного середовища і визначається способом передачі даних.

Неможна говорити про пропускну здатність лінії до того як для неї визначений протокол фізичного рівня.

цифрові лінії — відомо протокол фізичного рівня, що задає бітову швидкість передачі даних => пропускна здатність 64 kbps, 2 Mbps etc

кілобіт = 1000 біт !! Передача побітова. 2^10=1024.

Рис. 8.13. Полосы пропускания линий связи и популярные частотные диапазоны

Рис. 8.14. Соответствие между полосой пропускания линии связи и спектром сигнала

Біти і боди

Фізичне = лінійне кодування — вибір способу представлення дискретної інформації у вигляді сигналів, що подаються на лінію зв'язку.

Від вибраного способу кодування залежить спектр сигналів, і відповідно пропускна здатність.

UTP CAT3: 10Mbps - 10Base-T, 33Mbps - 100Base-T4.

Кодування: зміна параметра періодичного сигналу: частота, амплітуда і фаза sin, знак потенціала послідовності імпульсів.

Несучий сигнал – періодичний сигнал, параметри якого змінюють. **Несуча частота** – частота несучого сигналу, якщо сигнал sin-їдальний. **Модуляція** – процес зміни параметрів несучого сигналу у відповідності до інформації, яка передається.

Зміна двох станів = біт, більше станів – рядок бітів.

Такт – фіксований інтервал часу, протягом якого відбувається зміна сигналу.

```
# такт = 0.3c, сигнал має два стани, 1 = потенціал 5 В.
# на приймачу 5 В протягом 3 с = інформація: { 111111111 } = 10 "1"
```

Кількість змін інформаційного параметра несучого періодичного сигналу в секунду вимірюється в бодах.

1 бод = 1 зміні інформаційного параметра в секунду.

такт передачі інфи = 0.1 с => сигнал змінюється зі швид. 10 бод.

Інформаційна швидкість < ? > швидкості зміни інформаційного сигналу в бодах.

- = сигнал має два стани, тобто несе інформацію в 1 біт
- < кожний біт кодується декількома змінами інформаційного параметра несучого сигналу.
- > ##
- ## 4 стани фази = 0, 90, 180, 270, 2 амплітуда sin. Інформаційний сигнал має 8 різних значень. Любий стан сигналу несе інформацію в 3 біти.
- Модем шв. 2400 бод (змінює інфу 2400 раз / с) передає інфу 7200 bps, бо при зміні сигналу передається 3 біти інформації.

Чим вища частота несучого періодичного сигналу, тим вища може бути частота модуляції і тим вища може бути пропускна здатність лінії зв'язку. Зі збільшенням частоти— збільшується ширина спектра.

Співвідношення смуги пропускання і пропускної здатності

Зв'язок між смугою пропускання лінії і її пропускною здатністю без врахування прийнятого способу фізичного кодування встановив Клод Шенон:

$$C = F \log_2 (1 + P_s / P_n)$$

C – пропускна здатність лінії в бітах в секунду = bps

F - ширина смуги пропускання лінії в герцах = Hz

Ps – потужність сигналу

Pn - потужність шуму

⇒ Теоретичної межі пропускної здатності лінії з фіксованою смугою пропускання не існує.

Максимально можлива пропускна здатність лінії зв'язку без врахування шуму в лінії – Найквіст:

$$C = 2 F \log_2 M$$

М – кількість різних станів інформаційного параметра.

Рис. 8.15. Повышение скорости передачи за счет дополнительных состояний сигнала