EUROPEAN PATENT APPLICATION

- 2 Application number: 91110421.4
- 2 Date of filing: 24.06.91

Kaisha Ltd.

(9) Int. CI.⁵: **C07D 213/76**, A61K 31/44, C07D 213/75, C07D 213/77

- Priority: 10.07.90 JP 181999/90 24.05.91 JP 222530/91
- ② Date of publication of application: 15.01.92 Bulletin 92/03
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- Applicant ISHIHARA SANGYO KAISHA, LTD. No. 3-22, Edobori 1-chome Nishi-ku Osaka(JP)
- [23] Inventor: Haga, Takahiro, Ishihara Sangyo Kalsha Ltd.
 Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome
 Kusatsu-shi, Shiga-ken(JP)
 Inventor: Sugi, Hideo, Ishihara Sangyo Kaisha Ltd.
 Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome
 Kusatsu-shi, Shiga-ken(JP)
 Inventor: Shigehara, Itaru, Ishihara Sangyo
- Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome

Kusatsu-shl, Shlga-ken(JP)

Inventor: Odawara, Shinji, Ishihara Sangyo

Kalsha Ltd.

Chuo Kenkyusho, 3-1, Nishi-shibukawa

2-chome

Kusatsu-shi, Shiga-ken(JP)

Inventor: Yotsuya, Syulchi, Ishihara Sangyo

Kaisha Ltd.

Chuo Kenkyusho, 3-1, Nishi-shibukawa

2-chome

Kusatsu-shi, Shiga-ken(JP)

Inventor: Kimura, Hirohiko, Ishihara Sangyo

Kalsha Ltd.

Chuo Kenkyusho, 3-1, Nishi-shibukawa

2-chome

Kusatsu-shi, Shiga-ken(JP)

Inventor: Yamamoto, Kazuhiro, Ishihara

Sangyo Kaisha Ltd.

Chuo Kenkyusho, 3-1, Nishi-shibukawa

2-chome

Kusatsu-shi, Shiga-ken(JP)

- Representative: Wächtershäuser, Günter, Dr. Tal 29 W-8000 München 2(DE)
- Diaminotrifluoromethylpyrimidine derivatives, process for their production and phospholipase A2 inhibitor containing them.
- (I) or its salt:

wherein X is -CW¹R¹, -COCOR², -CW¹NHCOR², -C(=W¹)W²R³ or -CW¹N(R⁴)R⁵, and Y is alkyl, -CW³R⁶, -COCOR², -NHCOR², -C(=W³)W⁴R³, -(NH)_mSO₂R³, -(NH)_mSO₂OR¹⁰ or -(NH)_mSO₂N(R¹¹)R¹², wherein each of R¹, R⁶ and R³, which are independent from one another, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which

may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R² and R³, which are independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, each of R³, R³ and R¹o, which are independent from one another, is alkyl which may be substituted, alkenyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, each of R⁴, R⁵, R¹¹ and R¹², which are independent from one another, is alkyl which may be substituted, each of W¹, W², W³ and W⁴, which are independent from one another, is an oxygen atom or a sulfur atom, and m is 0 or 1, provided that a combination wherein one of X and Y is -COCF₂X¹ wherein X¹ is a hydrogen atom, a halogen atom, alkyl or haloalkyl, and the other is -COCF₂X² wherein X² is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or -COOX³ wherein X³ is alkyl which may be substituted or phenyl which may be substituted, is excluded.

The present invention relates to novel diaminotrifluoromethylpyridine derivatives or their salts, a process for their production, a phospholipase A₂ inhibitor, an anti-inflammatory agent and an anti-pancreatitis agent containing them, and novel trifluoromethylpyridine derivatives as intermediates.

As a diamInotrifluoromethylpyridine derivative, for example, U.S. Patents 3,746,531 and 3,962,263 disclose a pyridine as an active ingredient of a herbicide, which has trifluoromethyl at the 5-position, -NHCO-CF₂-T¹ wherein T¹ is a hydrogen atom, a chlorine atom, a fluorine atom, alkyl or haloalkyl at either the 2-position or the 3-position, and -NHCO-CF₂-T² wherein T² is a hydrogen atom, a chlorine atom, a fluorine atom, alkyl, haloalkyl or alkylcarbonyl, or -NHCOOT³ wherein T³ is C₁₋₄ lower alkyl or phenyl at the other position. However, this is different in the chemical structure from the diaminotrifluoromethylpyridine derivative of the present invention. Further, U.S. Patent 3,961,063 discloses a trifluoromethyl-substituted pyridine as an active Ingredient of an anthelmintic, which has -NHCSNHCOT⁴ wherein T⁴ is alkoxy, at the 2- and 3-positions. However, this compound is different in the chemical structure from the diaminotrifluoromethylpyridine derivative of the present invention.

The present invention provides a diaminotrifluoromethylpyridine derivative of the formula (I) or its salt:

15

20

wherein X is -CW1R1, -COCOR2, -CW1NHCOR2, -C(=W1)W2R3 or -CW1N(R4)R5, and Y is alkyl, -CW3R5 -COCOR⁷, -NHCOR⁷, -C(=W³)W⁴R8, -(NH)_mSO₂R3, -(NH)_mSO₂OR¹° or -(NH)_mSO₂N(R¹¹)R¹², wherein each of R1, R5 and R9, which are independent from one another, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R2 and R7, which are independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, each of R3, R8 and R10, which are independent from one another, is alkyl which may be substituted, alkenyl which may be substituted, alkynyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, each of R4, R5, R11 and R12, which are independent from one another, is alkyl which may be substituted, each of W1, W2, W3 and W4, which are independent from one another, is an oxygen atom or a sulfur atom, and m is 0 or 1, provided that a combination wherein one of X and Y is -COCF₂X¹ wherein X¹ is a hydrogen atom, a halogen atom, alkyl or haloalkyl, and the other is -COCF2X2 wherein X2 is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or -COOX3 wherein X3 is alkyl which may be substituted or phenyl which may be substituted, is excluded; a process for its production; a phospholipase A₂ inhibitor, an anti-inflammatory agent and an anti-pancreatitis agent containing it, and a trifluoromethylpyridine derivative as an intermediate.

Now, the present invention will be described in detail with reference to the preferred embodiments.

In the formula (I), the chain hydrocarbon group for each of R¹, R⁵ and R³ may be alkyl, alkenyl or alkynyl. The monocyclic hydrocarbon group may be cycloalkyl, cycloalkenyl or phenyl. The polycyclic hydrocarbon group such as naphthyl, tetrahydronaphthyl or indanyl, or a bridged polycyclic hydrocarbon group such as adamantyl, noradamantyl, norbornanyl or norbornanonyl. The monocyclic heterocycle group may be pyrrolyl, furanyl, thlenyl, pyrazolyl, Imidazolyl, oxazolyl, Isoxazolyl, Isoxazolyl, Isothlazolyl, pyrrolinyl, pyrrolinyl, pyrrolinyl, dihydrofuranyl, tetrahydrofuranyl, dihydrothienyl, tetrahydrothienyl, pyrazolinyl, hydantoinyl, oxazolinyl, isoxazolinyl, isoxazolidinyl, thiazolidinyl, dioxolanyl, dithiolanyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, dihydropyridyl, tetrahydropyridyl, piperidlinyl, dihydrooxopyrldazlnyl, tetrahydrooxopyrldazlnyl, dihydrooxopyrimidinyl, tetrahydrooxopyrimidinyl, piperazinyl, dihydropyranyl, tetrahydropyranyl, dioxanyl, dihydrodithinyl, dithianyl or morphorinyl. The polycyclic heterocycle group may be a condensed polycyclic heterocycle group such as thienothienyl, dihydrocyclopentathienyl, indolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzothiazolyl, benzolioxalyl, tetrahydrobenzothlenyl, dihydrobenzofuranyl, tetrahydrobenzisoxazolyl, benzodioxolyl, quinolinyl, isoquinolinyl, benzodioxanyl or quinoxalinyl, or a bridged polycyclic heterocycle group such as quinuclidinyl.

The substituent for each of the chain hydrocarbon group which may be substituted for each of R¹, R⁵ and R³, the alkyl which may be substituted and the alkoxy which may be substituted for each of R² and R²,

the alkyl which may be substituted, the alkenyl which may be substituted and the alkynyl which may be substituted for each of R^3 , R^8 and R^{10} , the alkyl which may be substituted for each of R^4 , R^5 , R^{11} and R^{12} and the alkyl which may be substituted for X^3 , may be a halogen atom, alkoxy, haloalkoxy, alkylthio, cycloalkyl, cycloalkoxy, cycloalkenyl, cycloalkenyloxy, alkoxycarbonyl, alkylcarbonyl, alkylcarbonyloxy, aryl, aryloxy, arylthio, amino or alkyl-substituted amino. The number of such substituents or substituents on such substituents may be one or more. When the number is two or more, such substituents may be the same or different.

The substituent for each of the monocyclic hydrocarbon group which may be substituted, the polycyclic hydrocarbon group which may be substituted, the monocyclic heterocycle group which may be substituted and the polycyclic heterocycle group which may be substituted for each of R¹, R⁵ and R³, the phenyl which may be substituted and the phenoxy which may be substituted for each of R² and R³, the cycloalkyl which may be substituted, the phenyl which may be substituted and the benzyl which may be substituted for each of R³, R⁵ and R¹o, and the phenyl which may be substituted for X³, may be a halogen atom, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthlo, cycloalkyl, cycloalkoxy, cycloalkenyl, cycloalkenyloxy, alkoxycarbonyl, alkylcarbonyl, alkylcarbonyloxy, aryl, aryloxy, arylthlo, amino, alkyl-substituted amino, cyano or nitro. The number of such substituents or substituents for such substituents may be one or more. If the number is two or more, such substituents may be the same or different.

In the formula (I), the alkyl group and the alkyl molety contained in each of X and Y may be C_{1-18} alkyl such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl or nonadecyl, and they include linear or branched aliphatic structural isomers. The alkenyl group and the alkenyl moiety contained in each of X and Y may be C_{2-18} alkenyl such as vinyl, propenyl, butenyl, pentenyl, hexenyl, decenyl or nonadecenyl, and they include linear or branched aliphatic structural isomers. The alkynyl group and the alkynyl molety contained in each of X and Y may be C_{2-18} alkynyl such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, decynyl or nonadecynyl, and they include linear or branched aliphatic structural isomers. The cycloalkyl group and the cycloalkyl molety contained in each of X and Y may be c_{3-8} cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloactyl. The cycloalkenyl group and the cycloalkenyl moiety contained in each of X and Y may be C_{5-8} cycloalkenyl such as cyclopentenyl, cyclohexenyl or cyclooctenyl. The halogen atom contained in each of X and Y may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. The aryl group and the aryl molety contained in each of X and Y may be phenyl, thlenyl, furanyl, pyridyl, naphthyl, benzothienyl, benzofuranyl or quinolinyl.

Now, preferred embodiments of the compound of the present invention will be described. In the formula (I), it is preferred that X is -CW¹R¹ or -C(=W¹)W²R³, and Y is -SO₂R³. Each of R¹ and R⁵ is preferably alkyl which may be substituted, alkenyl which may be substituted, cycloalkyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted, tetrahydronaphthyl which may be substituted, indanyl which may be substituted or thlenyl which may be substituted, more preferably, alkyl, haloalkyl, alkenyl, haloalkenyl, cycloalkyl, halogen-substituted cycloalkyl, phenyl, halogen-substituted phenyl, alkyl- or haloalkyl-substituted phenyl, or alkoxy- or haloalkoxy-substituted phenyl. Each of R² and R² is preferably alkoxy which may be substituted phenyl, alkyl or haloalkyl, alkyl or haloalkyl. Each of R³, R³ and R¹0 is preferably alkyl which may be substituted, more preferably alkyl which may be substituted, more preferably alkyl. R³ is preferably alkyl which may be substituted, cycloalkyl which may be substituted, phenyl, haloalkyl, phenyl, halogen-substituted phenyl, alkyl- or haloalkyl-substituted phenyl, or alkoxy- or haloalkoxy-substituted phenyl.

Preferred specific compounds of the present invention include N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)cyclohexanecarboxamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-5-N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)acetoxyacetamide, indanecarboxamide, methylsulfonylamino-5-trifluoromethyl-3-pyridyl)crotonamide, N-(2-methylsulfonylamino-6-trifluoromethyl-3pyridyl)-2-thiophenecarboxamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-3-trifluoromethylbenzamide. N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)-3-fluorobenzamide, N-(2methyl sulfonylamino-5-trifluoromethyl-3-pyridyl)-6-(1,2,3,4-tetrahydronaphthalene) carboxamide, and the sulfonylamino-5-trifluoromethyl-3-pyridyl-3-pyrN-(2ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)crotonamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3pyridyl)-3-(2-thienyl)acrylamide, and their salts.

45

The compound of the formula (I) may form a salt when Y is -SO₂R³ wherein R⁹ Is as defined above. Such a salt may be any pharmaceutically acceptable salt, for example, an alkali metal salt such as a potassium salt or a sodium salt, an alkaline earth metal salt such as a calcium salt, or an organic amine salt such as a triethanol amine salt or a tris(hydroxymethyl)aminomethane salt. Such a salt may have crystal water.

The compounds of the formula (I) and (I-1) can be prepared, for example, by processes represented by the following reactions (A) and (B):

Reaction (A)

5

55

In the above formulas, R¹, R², R³, R⁴, R⁵, W¹, W², X and Y are as defined above, and Z is a halogen atom.

Reaction (B)

CF₃

$$CF_3 \longrightarrow NIIX \qquad \begin{cases} Z-CW^3R^6, & HOOCR^8, \\ (R^6CO)_2 & 0, & Z-COCOR^7, \\ or & Z-C(=W^3)W^4R^8 \end{cases}$$

$$(111)$$

$$CF_3 \longrightarrow NIIX$$

$$(1-1)$$

In the above formulas, Y¹ is -CW³R⁶, -COCOR⁷ or -C(=W³)W⁴R⁸, wherein R⁶, R⁷, R⁸, W⁴, X and Z are as defined above.

A compound of the formula (I-1) wherein X and Y¹ are the same substituents, can be prepared in the same manner as the Reaction (B) using as the starting material 2,3-diamino-5-trifluoromethylpyridine instead of the compound of the formula (III).

The reactions (A) and (B) are usually conducted in the presence of a solvent, if necessary, by using a base. The solvent may be an aromatic hydrocarbon such as benzene, toluene, xylene or chlorobenzene; a cyclic or non-cyclic aliphatic hydrocarbon such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, trichloroethane, n-hexane or cyclohexane; an ether such as diethyl ether, dioxane or

tetrahydrofuran; a ketone such as acetone, methyl ethyl ketone or methyl isobutyl ketone; a nitrile such as acetonitrile or propionitrile; an aprotic polar solvent such as dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide or sulfolane. The base may be an inorganic base or an organic base. The inorganic base may, for example, be an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide; an alkali metal or alkaline earth metal carbonate such as anhydrous potassium carbonate or anhydrous calcium carbonate; an alkali metal hydride such as sodium hydride; or an alkali metal such as sodium metal. The organic base may be pyridine or triethylamine.

In the Reactions (A) and (B), a dehydrating condensation agent is required for the reaction with HOOCR¹ or HOOCR⁶. Such a dehydrating condensation agent may be dicyclohexylcarbodiimide, N,N¹-carbonyldiimidazole or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The reaction temperature is usually within a range of -30 to +100° C, preferably from 0 to 60° C, and the reaction time is usually within a range of from 1 to 24 hours, preferably from 1 to 10 hours.

The compound of the formula (II) can be prepared, for example, by processes represented by the following Reactions (C), (D) and (E):

Reaction (C)

20

$$CF_3$$
 NO_2
 $Y-NII_2$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 $NIIY$

25

Reduction step

 CF_3
 NO_2
 $NIIY$

(IV)

In the above formulas, Y is as defined above.

The amination step in the above Reaction (C) is conducted usually in the presence of a solvent, if necessary, by using a base. The solvent may be an aromatic hydrocarbon such as benzene, toluene, xylene or chlorobenzene; a cyclic or non-cyclic aliphatic hydrocarbon such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, trichloroethane, n-hexane or cyclohexane; an ether such as diethyl ether, dioxane or tetrahydrofuran; a nitrile such as acetonitrile or propionitrile; or an aprotic polar solvent such as dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide or sulfolane. The base may be the same as the one useful for the above-mentioned Reactions (A) and (B). The reaction temperature is usually within a range of from -30 to +100°C, and the reaction time is usually from 1 to 24 hours.

The reduction reaction in the reduction step in the above Reaction (C) may be conducted by a method wherein an acid such as hydrochloric acid or acetic acid is used together with iron or zinc, a method wherein sodium hydrosulfide, potassium hydrosulfide, sodium sulfide, potassium sulfide or sodium hydrosulfite is used, or a method of catalytic hydrogenation wherein hydrogen is used in the presence of a palladium catalyst or a nickel catalyst. The solvent to be used for the reduction may be optionally selected depending upon the reduction method. Usually, an alcohol such as methanol, ethanol or propanol, water, acetic acid, ethyl acetate, dioxane, tetrahydrofuran or acetonitrile may be employed. The reaction temperature is usually from 0 to 100°C, and the reaction time is usually from 1 to 24 hours.

(i) In a case where Y is -CW3R5 or -COCOR7

55

35

Reaction (D)

In the above formulas, Y2 is -CW3R6 or -COCOR7, wherein R6, R7, W3 and Z are as defined above.

The protecting group addition step and the Y²-modification step in the above Reaction (D) can be conducted in the same manner as in the above Reactions (A) and (B). Further, the protecting group removal step in the above Reaction (D) can be conducted by catalytic hydrogenation by means of a palladium catalyst such as palladium carbon usually in the presence of a solvent or by the hydrolysis usually in the presence of a solvent and an acid or base. The solvent may be water; an alcohol such as methanol or ethanol; or an ether such as diethyl ether, dioxane or tetrahydrofuran. The acid may be hydrobromic acid or trifluoroacetic acid. The base may be lithium hydroxide, potassium hydroxide, sodium hydroxide, potassium carbonate or sodium carbonate. The reaction temperature is usually from 0 to 100°C, and the reaction time is usually from 1 to 24 hours.

(ii) In a case where Y is -SO₂R91

30

45

50

55

Reaction (E)

25

35

45

50

55

In the above formulas, Y³ is -SO₂R⁹', R⁹' is alkyl which may be substituted, alkenyl which may be substituted, cycloalkyl which may be substituted or cycloalkenyl which may be substituted.

The amination step in the above Reaction (E) can be conducted usually in the presence of a solvent by means of a base. The solvent may be an aprotic polar solvent such as dimethyl acetamide, 1,3-dimethyl-2-imidazolidinone or dimethylsulfoxide. The base may be an inorganic base, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or an alkali metal carbonate such as anhydrous potassium carbonate or anhydrous sodium carbonate. The reaction temperature is usually from 80 to 150 °C, and the reaction time is usually from 1 to 10 hours.

The sulfonyl-modification step in the above Reaction (E) can be conducted in the same manner as in the above Reactions (A) and (B).

The nitration step in the above Reaction (E) can be conducted by reacting with nitric acid or nitrate usually in the presence of a solvent. The nitrate may be sodium nitrate or potassium nitrate. The solvent may be acetic acid, acetic anhydride or trifluoroacetic acid. The reaction temperature is usually from 50 to 120°C, and the reaction time is usually from 1 to 10 hours.

The reduction step in the above Reaction (E) can be conducted in the same manner as the reduction step in the above Reaction (C).

The compound of the above formula (III) can be prepared, for example, by a process represented by the following Reaction (F).

Reaction (F)

In the above formulas, R¹, R², R³, R⁴, R⁵, W¹, W², X and Z are as defined above.

The above Reaction (F) can be conducted in the same manner as the above Reactions (A) and (B).

Among the compounds of the formula (IV), those wherein Y is -SO₂R³, -SO₂OR¹o or -SO₂N(R¹¹)R¹², can be produced also by a process represented by the following Reaction (G).

Reaction (G)

20

40

45

50

55

In the above formulas, Y⁴ is -SO₂R⁹, -SO₂OR¹⁰ or -SO₂N(R¹¹)R¹², wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined above

The above Reaction (G) can be conducted in the same manner as the sulfonyi-modification step in the above Reaction (E).

The compound of the formula (I) can also be prepared by the following alternative method represented by a Reaction (H).

Reaction (H)

5

10

20

30

40

45

50

55

In the above formulas, R1, R2, R3, R4, R5, W1, W2, X, Y and Z are as defined above.

The X-modification step in the above Reaction (H) can be conducted in the same manner as the above Reaction (A), and the amination step is conducted in the same manner as the amination step in the above Reaction (C).

Among the compounds of the above formulas (II), (IV), (IV-1), (V), (VI) and (VII), the following compounds are novel compounds and can be produced by the above Reactions (C), (E) and (G).

Trifluoromethylpyridine derivatives of the formula (VIII):

wherein Q is a hydrogen atom, nitro or amino, and Y⁵ is -(NH)_m-SO₂R⁹ wherein R⁹ and m are as defined above, -(NH)_m-SO₂OR¹⁰ wherein R¹⁰ and m are as defined above, or -(NH)_m-SO₂N(R¹¹)R¹² wherein R¹¹, R¹² and m are as defined above, provided that when Q is a hydrogen atom and m is 0, R⁹ is other than naphthyl or phenyl which may be substituted.

Now, Preparation Examples for the compounds of the present invention will be described.

PREPARATION EXAMPLE 1

Preparation of N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)pentafluoropropionamide (Compound No. 19)

(1) 3.1 g of ethanesulfonamide was dissolved in 50 ml of dry tetrahydrofuran, and 1.2 g of 80% sodium hydride was added thereto under cooling with ice. After completion of the addition, the mixture was reacted for one hour under reflux. After cooling, 5.0 g of 2-chloro-3-nitro-5-trifluoromethylpyridine was added thereto, and then the mixture was reacted for 7 hours under reflux. After completion of the reaction, the reaction product was poured into 200 ml of water. Undissolved materials in water were extracted with ethyl ether and removed. Then, the aqueous layer was weakly acidified with dilute hydrochloric acid. Precipitated crystals were collected by filtration and dried to obtain 3.6 g of N-(3-nitro-5-trifluoromethyl-2-pyridyl)ethanesulfonamide having a melting point of from 160 to 163° C.

(2) 1.5 g of N-(3-nitro-5-trifluoromethyl-2-pyridyl)ethanesulfonamide obtained in the above step (1) was dissolved in 30 ml of methanol, and 0.2 g of 5% palladium/carbon was added thereto, and a reduction reaction was conducted under a hydrogen pressure overnight under stirring. After completion of the reaction, 5% palladium/carbon was separated by filtration, and the solvent was distilled off under reduced pressure. The obtained crystals were washed with n-hexane and dried to obtain 1.2 g of N-(3-amino-5-

trifluoromethyl-2-pyridyl)ethanesulfonamide having a melting point of from 118 to 120°C.

(3) 0.50 g of N-(3-amino-5-trifluoromethyl-2-pyridyl)ethanesulfonamide obtained in the above step (2) was suspended in 10 ml of dry diethyl ether, and 1.15 g of perfluoropropionic anhydride was dropwise added under cooling with ice. After the dropwise addition, the mixture was stirred for one hour and further reacted at room temperature for one hour. After completion of the reaction, the reaction product was poured into ice water and extracted with ethyl acetate. The extract layer was washed with water and dried, and the solvent was distilled off under reduced pressure. The obtained crystals were washed with n-hexane/ethyl ether to obtain 0.58 g of the desired product (Compound No. 19) having a melting point of from 168 to 170 °C.

PREPARATION EXAMPLE 2

10

15

20

25

30

35

45

50

55

Preparation of N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-4-fluorobenzamide (Compound No. 10)

(1) 4.4 g of methanesulfonamide was dissolved in 70 ml of dry tetrahydrofuran, and 1.9 g of 60% sodium hydride was added thereto under cooling with ice. After completion of the addition, the mixture was reacted for one hour under reflux. After cooling, 7.0 g of 2-chloro-3-nitro-5-trifluoromethylpyridine was added thereto, and the mixture was reacted for 6 hours under reflux. After completion of the reaction, the reaction product was poured into 300 ml of water and washed with ethyl ether. Then, the aqueous layer was weakly acidified with dilute hydrochloric acid. Precipitated crystals were collected by filtration and dried to obtain 5.8 g of N-(3-nitro-5-trifluoromethyl-2-pyridyl)methanesulfonamide having a melting point of from 138 to 139 °C.

(2) 4.0 g of N-(3-nitro-5-trifluoromethyl-2-pyridyl)methanesulfonamide obtained in the above step (1) was dissolved in 66 ml of methanol, and 0.4 g of 5% palladium/carbon was added thereto. A reduction reaction was conducted under a hydrogen pressure overnight under stirring. After completion of the reaction, 5% palladium/carbon was separated by filtration, and the solvent was distilled off under reduced pressure. The obtained crystals were washed with n-hexane and dried to obtain 3.2 g of N-(3-amino-5-trifluoromethyl-2-pyridyl)methanesulfonamide having a melting point of from 128 to 130° C.

(3) 0.50 g of N-(3-amino-5-trifluoromethyl-2-pyridyl)methanesulfonamideobtained in the above step (2) was dissolved in 6 ml of dry tetrahydrofuran, and 0.37 g of p-fluorobenzoyl chloride was dropwise added under cooling with ice. After the dropwise addition, the mixture was stirred for one hour and further reacted at room temperature overnight. After completion of the reaction, the reaction product was poured into ice water and extracted with ethyl acetate. The extract layer was washed with water and dried. The solvent was distilled off under reduced pressure, and the residue thereby obtained was crystallized from n-hexane/ethyl ether to obtain 0.61 g of the desired product (Compound No. 10) having a melting point of from 211 to 213° C.

PREPARATION EXAMPLE 3

40 Preparation of N-(3-trichloroacetylamino-5-trifluoromethyl-2-pyridyl)trifluoroacetamide (Compound No. 30)

(1) Into 38 ml of dry tetrahydrofuran, 1.5 g of 2,3-diamino-5-trifluoromethylpyridine was dissolved, and a solution mixture comprising 1.54 g of trichloroacetyl chloride and 3.8 ml of dry tetrahydrofuran was dropwise added thereto over a period of 10 minutes. Then, the mixture was reacted at room temperature for 3 hours. After completion of the reaction, precipitated crystals were collected by filtration and washed with tetrahydrofuran to obtain 2.2 g of N-(2-amino-5-trifluoromethyl-3-pyridyl)trichloroacetamide having a melting point of from 210 to 223°C.

(2) 2.20 g of N-(2-amino-5-trifluoromethyl-3-pyridyl)trichloroacetamideobtained in the above step (1) was dissolved in 45 ml of dry tetrahydrofuran, and a solvent mixture comprising 2.15 g of trifluoroacetic anhydride and 3 ml of dry tetrahydrofuran was dropwise added thereto under cooling with ice. After the dropwise addition, the mixture was reacted at room temperature for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the obtained crystals were washed with ethyl ether to obtain 1.20 g of the desired product (Compound No 30) having a melting point of from 166 to 168°C.

PREPARATION EXAMPLE 4

Preparation of N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)cyclohexanecarboxamide (Compound No.

471

5

10

15

20

25

30

35

50

(1) 20.3 g of ethanesulfonamide and 26.0 g of 2-chloro-5-trifluoromethylpyridine were dissolved in 220 ml of dimethylsulfoxide, and 47.4 g of anhydrous potassium carbonate was further added thereto. This solution mixture was heated to 130° C and reacted for 5 hours. After completion of the reaction, the reaction product was poured into 1 *L* of water. Undissolved materials in water were extracted with ethyl ether and removed. Then, the aqueous layer was adjusted to pH4 with concentrated hydrochloric acid, and precipitated crystals were collected by filtration and dried to obtain 26.2 g of N-(5-trifluoromethyl-2-pyridyl)ethanesulfonamide having a melting point of from 164 to 165° C.

(2) 45 g of N-(5-trifluoromethyl-2-pyridyl)ethanesulfonamide was dissolved in 112.5 ml of acetic acid. While heating it to a temperature of from 100 to 105°C, 28 g of furning nitric acid (94%) was dropwise added, and the mixture was reacted for further 6 hours. The reaction product was left to cool to 80°C, and then poured into 2 1 of ice water. Precipitated crystals were collected by filtration, washed with water and dried to obtain 47.8 g of N-(3-nitro-5-trifluoromethyl-2-pyridyl)ethanesulfonamide.

(3) 3.0 g of N-(3-nitro-5-trifluoromethyl-2-pyridyl)ethanesulfonamide was suspended in a solvent mixture comprising 30 ml of water and 30 ml of acetic acid, and 2.2 g of reduced iron was added thereto. Then, the mixture was heated to 50° C and reacted for one hour. After completion of the reaction, the reaction product was cooled to room temperature, and excess iron was separated by filtration. The filtrate was extracted with ethyl acetate. The extract layer was washed with water and dried. Ethyl acetate was distilled off under reduced pressure to obtain 2.5 g of N-(3-amino-5-trifluoromethylethyl-2-pyridyl)-ethanesulfonamide.

An alternative process will be described. To a solution prepared by dissolving 34.9 g of sodium hydrosulfite in 400 ml of water, a solution prepared by dissolving 5.0 g of N-(3-nitro-5-trifluoromethyl-2-pyridyl)ethanesulfonamide in 80 ml of tetrahydrofuran, was dropwise added at room temperature. After completion of the dropwise addition, the mixture was reacted for further 3 hours. After completion of the reaction, sodium chloride was added until the tetrahydrofuran layer was separated. The separated tetrahydrofuran layer was dried, and tetrahydrofuran was distilled off under reduced pressure to obtain 4.2 g of N-(3-amino-5-trifluoromethyl-2-pyridyl)ethanesulfonamide.

(4) 2.36 g of N-(3-amino-5-trifluoromethyl-2-pyridyl)ethanesulfonamide was dissolved in 24 ml of dry tetrahydrofuran, and 1.54 g of cyclohexanecarbonyl chloride was dropwise added thereto under cooling with ice. After the dropwise addition, the mixture was stirred for one hour and further reacted at room temperature overnight. After completion of the reaction, the solvent was distilled off under reduced pressure, the obtained crystals were washed with ethyl ether to obtain 2.94 g of the desired product having a melting point of from 153 to 155 °C.

An alternative process will be described. In 20 ml of methylene chloride, 0.5 g of 4-diemthylaminopyridine was dissolved, and 0.78 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride was added and dissolved. Then, 1 g of N-(3-amino-5-trifluoromethyl-2-pyridyl)ethanesulfonamide was added thereto, and 30 minutes later, 0.52 g of cyclohexanecarboxylic acid was added thereto, and stirring was conducted for 10 hours. After completion of the reaction, 40 ml of methylene chloride was added to the reaction product, and the reaction product was washed with 10% hydrochloric acid and then washed with an aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. From the extract layer, solvent was distilled off and the obtained residue was purified by silica gel column chromatography to obtain 0.88 g of the desired product.

45 PREPARATION EXAMPLE 5

Preparation of sodium (Compound No. 251) salt of N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)cyclohexanecarboxamide

To 10 ml of an ethanol solution containing 1.00 g of N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)-cyclohexanecarboxamide, 2.75 g of a 1N-sodium hydroxide aqueous solution was added under stirring at 40°C, and the mixture was stirred for one hour. After completion of the reaction, the solvent was distilled off under reduced pressure, and the obtained crystals were washed with ethyl ether to obtain 1.02 g of the desired product which decomposed at 299°C.

Trifluoromethylpyridine compounds of the above formula (VIII) are listed in Table 1.

Table 1

10	Intermediate No.	Q	Y.	Melting point
	1	Н	-\$0.cH.	189 ~ 191
	2	Н	- \$0 2 C 2 H 5	164 ~ 165
15	3	Н	-SO ₂ CH ₂ CH ₂ CH ₃	157 ~ 159
	4	Н.	-SO.CH.CH.CH.CH.	148 ^ 150
. 20	5	: 'H	-so₂cit < CH₂	181 ~ 184
	6	H	-SO _R CH < CH _R CH _R	
25 .	7	H.	-SO ₂ CH ₂ CH=CH ₂	
	8	н	-SO₃CH₃CH₃CH < CH₃	
30	9	н	$-SO_{2}CH_{2}C(CH_{3})=CH_{2}$	
	10	н	-SO_CH_CH_OCH_CH_	
95	11	. Н	−SO₂CF₃	215 ~ 218
	12	н	-50, -	
	13	н	-S0 _* -(II)	
	[4	н	-80:	
45	15	Н	-S0.€C.H.⊤(n)	

Table 1 (cont.)

	•		Table I (cont.)	
5	Intermedi ate No.	Q	Y'	Melting point
	16	Н	-S0 ₂ C ₁ ,H ₂₇ (n)	
	17	: н	-SO ₂ CF ₂ CF ₃	
10	18	NO.	- SO ₂ CH ₂	138 ~ 139
	19	NO.	- SO _R CH ₂ CH ₂	160 ~ 163
15	20	NO _z .	-so∗ch< CH*	138 ~ 140
	2!	NO ₂	-SO*CH*CH*CH*	109 ~ 112
	22	NO ₂	-SO*CH*CH*CH*CH*	76 ~ 78
20	23	: NO ₂	-502 -	138 ~ 140
	24	NO:	-S0 ₂ -O-CH ₃	145 ~ 146
25	25	NO _z	-NHSO ₂ CH ₃	175 ~ 182
22	26	NO:	-NHSO ₁ 0 -	
30	27	NO ₂	-\$0:0	
35	28	NO:	-NHSO≥N < CH₃	
	29	NO ₂	-SO ₂ CH ₂ C=CH ₂	
40	·	٠. ا	ĊH.	51 ~ 58
	30	NO.	-so _* -(II)	156 ~ 158
45	31	NO.	-501-00	

55

Table 1 (cont.)

Intermediate No.	Q	Y.	Melting point
32	NO ₂	-203	
33	NO ₂	-so _x - (7)	
		COOC.H.	
34	NO ₂	-so ₂ — N	180 ~ 132
		ĊH.	
35	NO:	-so _* - N	
	·	CH ₃	
36	NO ₂	-so, 0	
37	NO ₂	CH ₃ -SO ₂ CH ₃	***
3.	1102	CF+CH+O TS	192~194
38	NO ₂	-202-	
39	NO.	-so _* -\(\sigma\)	
40	NO ₁	-so, _N	
		(0)	
41	NO ₂	-so ₁ -N	

Table 1 (cont.

	.:		Table 1 (cont.)	
.· 5	Intermediate No.	Q	Y.	Melting point (°C)
· · · · · · · · · · · · · · · · · · ·	42 -	NO:	-so _* -N_0	
10	43	NO ₁	-so. 1 0	
15	44	NO ₂	-so ₂ -(N)	
· 20	45	NO.	-sa: (O(O)	
:	46	NO ₂	-50: -0	
25	47	NO _±	- S0 ₂ CH ₂ -	
30	48	NO.	-SO ₂ N <ch<sub>3</ch<sub>	148 ~ 149
	49	NO:	-S0 ₃ -O-OCH ₃	132
35	50	NO:	-SO _B CP ₃	126 ~ 127
	51 52	NO ₂ :	— SO=CH= — SO=C=H=	93 ~ 94 120 ~ 121
40	53	NO ₁	-30= -02	104 ~ 105
45	54	NO ₂	-so ₂ -	

16

Table 1 (cont.)

			Table 1 (cont.)	
	Intermedi- ate No.	Q	Υ'	Melting point
5	55	NH ₁	÷S0aCHa	128 ~ 130
	56	NH ₁	-SO ₂ CH ₂ CH ₃	118 ~ 120
10	57	NH.	−SO₃CH <ch₃< td=""><td>155 ~ 157</td></ch₃<>	155 ~ 157
	58	NH.	-SO ₃ CH ₂ CH ₂ CH ₃	82 ~ 84
15	59	NH ₂	-SO ₂ CH ₂ CH ₂ CH ₂ CH ₃	102 ~ 103
	60	NH ₂	-80.	200 ~ 204
20 .	61	NH a	-S0*	170 ~ 175
	62	NH.	-NHSO.CH.	128 ~ 133
25	63	NH ₂	-NHS0:0 -(O)	
	64	NH ₂	-so _a o -	
30	65	NH	− NHSO 2N < CH2 CH2	
	66	NH2	-SO_CH_C=CH_	136 ~ 139
35		. •	ĆH₃	
	67	NH2	-\$0 ₂ -(ii)	164 ~ 168
40	68	NH⁵	-\$0 _z	
	69	NH ₂	-\$02	
45	1	٠ ا		

50

EP 0 465 913 A2

Table 1 (cont.)

Intermedi Q Y4 Melting I	point
70 NH ₂ $-SO_2 - C_0$	
COOC _s H _s	
71 NH: -50: - N 171 - 17	4
CH ₃	
72 NH ₂ -SO ₂ N	
CH ₃	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
74 NH ₂ -SO ₂ CH ₃ 168 ~ 173	
CP. CH.O S	
75 NH ₂ -SO ₂ -N	
76 NH_2 $-SO_2 - N$	
77 NH ₂ -SO ₂ N	
78 Nilz -SO ₂ -N	
	: 1 .

Table 1 (cont.)

	Table 1 (cont.)			
	Intermediate No.	Q	Y.	Melting point
5	79	NH₂	- SO ₂ -1 0	
10	80	NH ₂	-so. CH.	
15	81	NH ₂	-so, -⟨ ^N ∑⊙	
. 20	82	NH ₂	-ss. N	
	83	NH ₂	-S0 ₂ -0	
25	84	NH ₂	-50.CH2 -O	
30	85	NH.	-SD≥N < CH₃ CH₃	165 ~ 167
	86	NH ₁	-SO ₃ -O- OCH ₃	134 ~ 136
35 .	87	NH ₂	-SO ₂ CF ₃	122 ~ 124
	88	NH ₂	-SO _a CH _a	97 ~ 100
	89	NH ₂	-SO ₂ C ₁ H ₅	131 ~ 132
40	90	NH ₂	-so ₂ - (s)	223 ~ 227
45	91	NH ₂	-so(O)	

Compounds of the above formula (II) which are not included in the compounds of the above formula (VIII) are listed in Table 2.

55

Table :

CF₃ NH₂

(H)

Intermediate No.	Y	Melting point
100	-NICO -	207 ~ 210
101	-NICOOCH & CH &	187 ~ 192
102	-COOCH2CH3	289 ~ 292
103	-NHCOCH2	
104	-c00 -	
105	- coscii _a -	
106	-CII.	
107	- CII2CH2	
108	-COCII.	
109	-COCII.cH=CH.	
110	-co - ()	
111	-co -(H)	
112	-co 4 _s	

Table 2 (cont.)

Intermediate No.	Y	Meiting point (90)
113	-co - ○ H	
114	-co -O(0)	
115	-co - \o	
116	COCOCH₃	
117	-coco -	

Compounds of the above formula (III) are listed in Table 3.

Table :

CF3 NIX (111)

- COCHC & 2 - COCC & 2 - COOCH2CH3	$170 \sim 171$ $141 \sim 143$ $151 \sim 154$
- COOCH2CH3	151 ~ 154
-cooch* -(O)	156 ~ 158
-cococh,	
-coco - ()	
CONTICOCH:	
-co - 	
-co -(H)	248 ~ 251
	- COCOCH ₃ - COCOCH ₃ - CONICOCH ₃ - CO - O

Compounds of the above formula (IV) which are not included in the compounds of the above formula (VIII) are listed in Table 4.

Table 4

CF₂ NO₂ (IV)

Intermediate No.	Y.	Melting point (°C)
127	-NHCO -(O)	189 ~ 195
128	-NHCOOCH & CH &	97 ~ 99
129	-NHCOCH _s	
130	-CH _s	
131	-CH*CH*	

Typical specific examples of the compound of the formula (I) of the present invention are listed in Table

Table 5

CF. NHIX

(1)

Compound No.	X	Y	Melting point
. 1	-CO(CH ₂) ₂ CH ₃	-SO ₂ CH ₂	113 ~ 114
2	-CO(CH ₁) ₂ CH ₃	-SOzCH3	119 ~ 121
3 .	-CO(CH ₂) «CH ₃	-SO ₂ CH ₃	119 ~ 122
4	-CO(CH ₂),CH ₂	-SO ₂ CH ₂	99 ~ 101
5	-CO(CH ₂) ₁ •CH ₃	-SO ₂ CH ₂	94 ~ 97
6	-CO(CH ₂) ₁₄ CH ₃	-SO.CH.	99 ~ 103
7	-COCH ₁ C(CH ₁) ₁	-SO₂CH.	150 ~ 151
8	-co (I)	-SO ₂ CH ₃	110 ~ 116
9	-coch=cHz	-SO ₁ CH ₃	174 ~ 176
10.	-co-O-F	-S0, CII,	211 ~ 213
11	−COCF±C ℓ	-S0.2CII.	199 ~ 201
12	-COCP,	-S0.CII.	154 ~ 157
13	-cocr _z cr _z	-S0:CII:	186 ~ 189
14	-COCF ₂ CF ₂ CF ₃	-S0.CH.	170 ~ 173
15	-C00C ₁ H ₅	-S0:CH:	180 ~ 182
16	-C00(CH _x) _x CH _x	-S0.CH.	173 ~ 176
17	-C00(CH ₂),CH ₃	-SO ₂ CH ₂	127 ~ 129

Table 5 (cont.)

Compound No.	X	Y	Melting point
18.	-CSNHCOOC ±Ha	-SO.CH.	More than 30
19	-cocpacpa	-\$0.c.ll.	168 ~ 170
20	-COCPaC &	-S0.C.H.	171 ~ 174
21	-CSNIICOOC:II.	-S0.C.H.	More than 30
22	-COCF ₂ CF ₃	-SO ₂ C ₂ II ₇ (n)	129 ~ 133
23	-COCF_CF_	-S0 ₂ C ₄ H _{1,7} (n)	109 ~ 112
24	-COCPa	-50, -(0)	160 ~ 163
25	- CSNHCOOC #H #	-soCH.	195 ~ 200
26	-CO(CH ₂) ₂ OC ₂ H ₆	-CO(CH ₂) 20C2H4	75 ~ 76
27	-cocp.	-cocic e .	117 ~ 119
28	- COCHC & .	-cociic e a	158 ~ 159
29	-COCHC & a	-cocp _a	177 ~ 178
30	- COCC & .	-cocp:	166 ~ 168
31	-coo -(II)	-SO ₂ C ₃ II ₅	135 ~ 137
32	-co- ()	-cocpacp.	228 ~ 230
33	-сосн{	-SD ₂ C ₂ H ₅	130 ~ 134
34		-SO _E Clia	218 ~ 222

T	ble	5	(co	nt.	١

 Compound No.	X	Y	Melting point
35		-SO.CH.	219 ~ 224
36	-co — S	-SO ₂ C ₂ H ₃	
37	-C00CsHe	-COOCalis	112 ~ 114
38	-C00CH ₂ -(O)	-C00C ±11.	134 ~ 137
39	-COCF ₁ CF ₃	-NICO -	214 ~ 217
40.	-COCF _a CF _a	-NHSO:CII:	136 ~ 138
41	-COCF ₂ CF ₃	-CH ₃	89 ~ 90
12 [.]	-c-H	O II -NHCCH:	
13	-co -	—SO₂CH₃	189 ~ 192
44	-co -OCH.	-SO ₂ CH ₂	217 ~ 220
. 45	-co -	-SO _s CII _s	153 ~ 155
46	-CO(CH2).C @	-SO _z CH ₃	79 ~ 85
-17	-co - (II)	-SO_CII_CII_	153 ~ 155

5.5

Table 5 (cont.)

ЗO

	Compound No.	X	Υ	Melting point (°C)
	48	-co - ()	-SO ₂ CH ₂ Cli ₃	204 ~ 210
	49	-coch=ch.	-SO.CH.CH.	148 ~ 151
	50	−cocc æ .	-SO _a CH < CH _a CH _a	178 ~ 180
	51	-COCPaCPa	-SO.cH.CH.	161 ~ 163
	52	-COCF2CF2	-SO_CH_CH_CH_CH_CH_	146 ~ 149
	53	-co-(H)	-SO ₂ CH ₂ CH ₂ CH ₃ CH ₃	152 ~ 154
	54	-CSNHCOOC +H =	-сн.	191 ~ 193
	55	-COCH=CHCH.	-SO ₂ CH ₃	158 ~ 161
•	56.	-co-O-F	-SO ₁ C ₂ H ₄	234 ~ 237
	57	-co - CO	-SO ₂ Cit ₃	210 ~ 214
	58	- co - CO F	-SO ₂ CH ₂	220 ~ 222
	59	-CO-CFzCFzH	-SO ₂ C ₃ II ₃	
	60	-cocii*-	-S0 ₂ Cll ₂	163 ~ 166
		*		

	••	-	
Table	"	~**	•

Compound No.	x	Y	delting point (°C)
61	-coch ₂ — S	-SO _s CH _s	172 ~ 174
62	-COCH _s -	-S9 ₂ CH ₃	147 ~ 148
63	- COCH*OCOCH*	-SO _a CH _a	155 ~ 156
64	-COCH*CH* -	-SO _x CH _x	163 ~ 165
65	-CDCH(C+H+)(CH+)+CH+	-SO ₂ CH ₂	141 ~ 144
66	-coch(-O>)ch,ch,	-S0:CH:	128 ~ 130
67	-co -	-SO₂CH₃	126 ~ 130
68	-co - 	-S0,CH,	143 ~ 145
69	-co- 	-\$0,CH,	176 ~ 179
70	-COCH=C(CH ₃) ₂	-SO:CH:	187 ~ 188
71	-coch=cit-	—SO₂CH₃	215 ~ 218
72	$-\cot = \cot - \sqrt{s}$	—S0₂CH₃	227 ~ 229
73:	-coch=clicit=clich;	-SO ₂ CH ₂	300 以上
74	-CO(CH ₂) ₂ CH=CH ₂	-50°CH*	91 ~ 93

EP 0 465 913 A2

			٠.	
Tab	he.	57	άOΕ	t.)

Compound No.	X	Y	Melting po (°C)
<i>7</i> 5	-coc=c-(○)	-SO _B CH _B	209 ~ 210
76	-co- ⟨○ ⟩-F	-SO _E CH _a	245 ~ 245
77	-co-O-F	-SO.CH.	229 ~ 231
78	-co-(O) CH ₃	-SO _E CH ₂	187 ~ 189
79	-co-(O) C &	-SO ₂ CH ₂	198 ~ 201
80	-co - CP.	-SO ₂ CH ₂	230 ~ 23
81	-co-C ₂ H ₆	-\$0°CH°	211 ~ 215
82	-co- - ON	-SO ₂ CH ₃	206 ~ 210
83	-co-{\sqrt_s\tag{CH}.	-SO _z CH ₃	207 ~ 210
81	-co -v-v	-SO _T CH ₃	202 ~ 205

Table 5 (cont.)

Compound No.	X	Y	Melting point
85	-coC ₀	-50±CII±	227 ~ 231
86	-co 1510	-SO∗CH•	250 ~ 252
87	-co <u>(</u>)	-SO₃CH₃	194 ~ 197
88	-co _s	−so₂cH₃	229 ~ 233
89	-cocc & 2Cil3	-SO.CH.	212 ~ 214
90	- coco - (O)	-so.cH.	231 ~ 234
91	-co -(1)	-S0 ₂ CF ₃	175 ~ 178
92	-co -(s)	-SO _z CF ₃	209 ~ 210
93	-coch=chch,	-SO ₂ C ₂ H ₄	158 ~ 160
94	-co -	-SO _a C _a H _a	157 ~ 161
95	-co-	-SO ₂ C ₂ H ₆	147 ~ 148
96	-co -	- S0 2 C 2 H 3	163 ~ 165

	(cont.	

	• •	Table 5 (cont.)		
	Compound No.	X	Y	Melting point
5	97	-co -	-SO _x C _x H _x	163 ~ 166
10	98	-co - P	−S0±C±He	204 ~ 208
15	99	-∞-(CF,	-SO _a C _a H _a	215 ~ 218
·	100	-co-(C)-CF.	-SO ₂ C ₂ H ₆	233 ~ 237
20	101	-co	−S0±C±Hs	208 ~ 209
25	102	-co <u>-</u> (⊙()	—S0₂C±H±	188 ~ 190
зõ	103	-co -(H)	—50€CaH7(iso)	152 ~ 154
	104	-co-O	-\$0 ₂ C ₃ H ₁ (iso)	216 ~ 217
95 ·	105	-co	-\$0 ₂ C ₂ H ₇ (iso)	227 ~ 230
40	106	-C00C ₃ H ₇ (jj)	-SO ₂ C ₃ H ₇ (isp)	161 ~ 163
	107	-co-(-S0 ₂ C ₄ H ₂ (n)	138 ~ 139
45		<u> </u>		

Table 5 (cont.)

Compound No.	х	Y	Melting poin
108	-cocp.ce	-SO ₂ C ₄ H ₄ (n)	156
109	-co -(s)	-50 - OCH.	202 ~ 205
110	-CO(CH ₈) ₄ CH ₈	-\$0.N(CH.).	97
111	-co -	-S0 ₂ N(CH ₂) ₂	168 ~ 169
112	- COCF a CIP a	-SO.N(CH.).	157 ~ 159
113	-co - F	-SO _a N(CH _a) _a	189 ~ 191
114	-C00C ₃ H ₇ (n)	-SO ₂ N(CH ₂) ₂	174 ~ 176
115.	-co-(H)	-\$0±0CH±	147 ~ 148
116	-co _O	-50°0CH°	163 ~ 164
117	-co (H)	-S0:0C:H.	140 ~ 141
118	-co _O	-S020C2H2	160 ~ 162
119	-COCH ₁ -(H)	-SO ₂ C ₂ H ₃	137 ~ 139
120	-co _{s}	-s0 _e cn ₅	202 ~ 203

EP 0 465 913 A2

Ta	1 -1-	٠.	-	-	٠,
1.2	عرم	- 3:	: 1 (3)	ш	

	Compound No.	X	Υ	Meiting poin
	121	-coo - (II)	-SO ₂ CH ₂	145 ~ 147
	100	CH:		
::	122	-co- ()	-SO _s CIIs	221 ~ 224
·		CH:		
·	123	-co _ () (H)	- SO _± CH ₅	184 ~ 185
	124	-CO(CH ₂) ₆ CH ₃	-SO ₂ CH ₃	94 ~ 96
- 1	125	-CO(CH ₂).CH ₃	-SO _z CH _z	94 ~ 96
	126	-co-(H)	-50(5)	178 ~ 180
	127	-co - CO	-50	226 ~ 228
:	128	-C-C-0C ₂ H ₆ II II 0 0	-S0.CH.	
	129	-c-c-0-O	-S0:CII:	
	130	O II -C-OCH ₂ CII=CH ₂	-S0 _z CH _z	
	131	O II -C-OCH₂C=CH	-50±CH3	

Table	5-	ζáo	ňt.	5	•

	•	Table 's (dotter)	•	•
5	Compound No.	X	Y	Melting poin (℃)
	132	0 -C-S-C ₄ ₆	- SO ₂ CH ₂	
10	133	0 -c -(H)	0 -c-o-©	
15	134	0 - C - H	-NHSO₂O -	
20 .	135	-c-H>	-50.0	
25	136	O CH.	-S02C2H2	
	137	-C -(H)	-NHSO N CH.	
30	138	0 -c —H	0 -c-s-cit ₂ -	
35	139	0 -C-(H)	-SO ₂ CH ₂ -C=CH ₂	138 ~ 140
40	140	0 -c — H	CH ₃ -\$0° - ⟨II⟩	190 ~ 192
45				

Table 5 (cont.)

	Compound No.	х	Y	(%).
5 :	141	-c -(H)	-50:	
10	142	-6-00	−SO _B C _E H _B	210~211
15	143	-C-HO	-SO _z C _z H _e	
20	144	-c-CO	-SOzCzHs	
25	145	- C - H	-50:	
30	146	C = 0	-SO ₂ C ₂ H ₆	
	1.17	-c -Q	—SO _a C∉H₄	
40	L18	-c	−SO _® C _® H _€	

EP 0 465 913 A2

		:				
•	Table 5 (cont.)		•		••	

	Compound No.	X	Y	Melting point
	149	O - C Had CCM O CHa	-SO _z C _z H _z	
	150	-C-(H)	- c - c	
	151	-c-H	-50,	
· · · · · · · · · · · · · · · · · · ·	152		-SO ₂ C ₂ H ₈	
• 4	153	CH ₃ O H	-so ₂ {_0}	
	154	-C -(H)	-so ₁ - ()	166 ~ 167
	155	0 -c — H	C00C 2H 5	144 ~ 146

Table 5 (cont.)

Compound No.	X	Y	Melting poin
156	-c-H	-so N CH.	
157	-c - c - cH.	-SO₂C₂H₅	
158	-C CH3	−SO ₂ C ₂ H ₈	
159	CH*	-SO _z CH ₃	
160	0 -C — H	CHSO. ZN CH.	
161	0 -c - C - C N	—SO₂C₄H₀	
162	- C - H	-SO ₂ CH ₂ CF ₃ CII ₂ O S N	133 ~ 135

Table 5 (cont.)				
	Compound No.	X	Y	Malting point
5 	163	-c-Z-X	-SO _# C _# II _#	
	164	-c-N	-SO ₂ C ₁ H ₈	
15	165	-c - \(\frac{1}{N} \)	-SO ₂ C ₂ H ₄	
20	166	o -c →(−SO₂C₂H₅	
25	167	0 -c — H >	-50 ₂ -N	
30 .	168	0	−S0∗C∗H∗	
35		0	OUZUZIIS	
40	1 G D	-ë-(₀)	-SO ₂ C ₂ H ₈	

Table 5 (cont.)

Compound No.	X	Υ	(°C)
170	-c	−S0₂C₂H₃	
171		-SO ₃ C ₃ H ₃	
172	-C	-SO ₂ C ₂ H ₆	
173	CH ₃ O D N — CH ₃ CH ₃	−S0±C±H±	
174	0 -C	—SO₂C₂H₅	
175	0 -c - N-0	-S0 ₂ C ₂ II ₅	
176	0 CH ₃ -C 0 CH ₂ -N C ₂ H ₈	-S0 ₂ C ₂ II ₈	

Table	500	orit.	300

Table 5-(cont.)				
	Compound No.	X	Y	(°C)
5	177	-c -c N	-SO ₂ C ₂ H ₈	
10	178	0 /CH: -C -C >	-S0 ₂ C ₂ H ₈	
15	179	0 -C	-SO ₂ C ₂ H ₅	
20		O CH.		
25	180	-c cych.	—S0₂CeHe	
30	181	0 -C -C-CF;	−SO _® C _® H _®	
35	. 182		−SO2CaHe	
40	183	0 -c - (O) N	−S02C2He	
	·			

EP 0 465 913 A2

Tabl	e 5 (con	:.)
------	--------------	-----	-----

Compound No.	X	Y	Melting poin (°C)
184	0 -c - H	-so+ -{\object{O}}	
185	0 -C \ N \ CH3	-SO _e C _e H _e	
186		-50 ₁ (N)	
187		-SO _a C _a H _a	
101	CH:	— QUILLINS.	
88	0 -C -CH ₃	-SO ₂ C ₂ H ₆	
189	O -C N CHI.	−SO₂C₂H₅	
190	Cita O	−SQ ₂ C ₂ H ₃	

Table 5 (cont.)				
Compound No.	Х	Y	Melting point	
191	-c -(H)	-S0 ₄ -N		
192	0 11 N-N CH: -c — 0	-SO _z C _z H _s		
193	0 -c - N-N CH ₂	-SO ₂ C ₂ H ₄		
194	0 -CH ₂ -CH ₃	−SO _z C _z H _s		
195	$-c \xrightarrow{N} N$	—SO₂C₂Hs		
196	0 CH ₀	—SO₂C₂H₄		
197		—SO∗C∗H•		

Table 5 (cont.)

5 ,	Compound No.	Х	Y	Melting poin
10	198		— SO₂C₂H₅	٠.,
15	199		—SO2C2H5	
20	200		— SO₂C₂H₅	·
30	201		—SO2C2H5	
35	202	- C - N _ 0	—SO₂C₂H₅	
40	203	-c -H	- S0 ₂ - N 0	
50	204	0 -C -C CH ₃	—S02°C2115	

Table 5 (cont.)

		Table V (contr)		
5 .	Compound No.	Х	Y	Melting point (°C)
10	205	- " S S	—SO₂C₂H₅	
15	206	O CH ₃	— SO₂C₂H₅	
20	207		—S02C2H5	265 ~ 266
25				
30	208	-C -(H)	-20° CH3	
35	209	$-\overset{0}{\overset{\parallel}{c}} \xrightarrow{0} c e$	— SO₂C₂H₅	
40	210		-S0 ₂ C ₂ II ₅	
45			.*	
50	211	-C -C S OCH 2	-SOzCzIIs	

Table 5 (cont.)

	Compound No.	Х	Y	Melting point
5	212	0 -C — H	-so ₂ - (S)	
10	213		— SO₂C₂H₅	·
15	,	CH ³		
20	214 .	-c S H	-S0 ₂ C ₂ H ₅	248 ~ 249
25	215	-c -	—S02C2H5.	·
30		0 -C -		·
35	216	N,⁻ ⁰	- \$0 ₂ C ₂ H ₅	
40	217		-S0 ₂ C ₂ H ₅	219 ~ 221
45	218		−SO ₂ € ₂ H ₅	241~242

50

Table 5 (cont.)

	Compound No.	X	· Y	Melting point (℃)
5	219	-c -(H)	-50 ₂	
10	220	-c-\(\infty\)	−\$02C2H5	
20	221	-c -(H)	-502	
25	222	-c N	-S02C2Hs	
30	223	0 -c \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	—SO₂C₂H₅	
35	224	-c - (O)	−S02C2Hs	
40	225	0 -C-CH2-OCH2CF3	-S02C2H5	
45	226 ·	O II — C — CH₂ SCH₃	−S02C2Hs	

55

Table 5 (cont.)

	Compound No.	X	Y	Melting point
5	227	0 - C - CH₂0 - CH₂0	−SO2C2H5	
10	228	0 - CCH.2-	—S02C2H5	
15	229	0 -CCH ₂ -0 -	-502C2H5	
20	230	O II —CCH2COOCH3	-S02C2H5	
25	231	0 0 -C(CH ₂)-2CCH ₂	-\$0₂C₂H6	
25	232	0 -cch-ch — 0	-S02C2H5	; .
. 40	233	O II - CCH ₂ - O	-S0 ₂ C ₂ II ₅	
45	231	0 -CCH ₂ 0 -	-S02C2H5	

55

Table 5 (cont.)

	Compound No.	· X	. Y	Melting point (°C)
	235	O —CCH₂S —O	—SO₂C₂H₅	
10	236	0 -CCH≥0	−SO₂C₂Hs	
15	230	\$,		·
20	237	O N N -CCH ₂ -S	— SO₂C₂H₅	
25	238	O II - CCH ² N < CH ²	-S02C2H5	
30	239	0 -C - SCH.	−SO ₂ C ₂ H ₅	·
40	240	0 -C -C - CH₃ -CH₃	— SO₂C₂H₅	·
45	241	0 -C -C -CN	- \$0 ₂ C ₂ 1 ₃	·
		·	·	

48

50

Table 5 (cont.)

	Compound No.	X	· Y	Melting point
5	242	0 -C - NO ₂	—S0₂C₂H₅	(e.C)
15	243	0 11 -C -C -COOCH3	—S02C2H5	
20	244	-C -C - OCCH³	—SO₂C₂H₅	
25	245	-C -CCH³	—SO₂C₂H₅	
30	246	-c -(H)	-SO ₂ CH ₂	
35	247	-CH3	- SO ₂ C ₂ H ₅	
40	248	-c H	-50 ₂ -	
45	249	-co-(H)	-S0 ₂ C ₃ H ₇ (n)	
50			<u> </u>	

Table 5 (cont.)

5	Compound No.	X	Y	Type of	Melting point
10	250	-co OH	—SO₂C₃H₁(n)		
	251	-CO-(H)	SO ₂ C ₂ H ₅	Nasalt	299 (decomposed)
15	252	-co-(H)	SO ₂ C ₂ H ₅	(salt	More than
20	253	-co-(H)	SO₂C₃H₁(iso)	Na _{salt}	
25	254	-co-(H)	SO ₂ CF ₃	Na salt	
<i>30</i>	255	-co-(H)	SO ₂ -	Na selt	
35	250	-co-C	SO ₂ C ₂ H ₅	Na salt	
40	257	-co-(S) F	SO ₂ C ₂ H ₅	Na salt	-
45	258	-co-	SO ₂ C ₂ H _B	Na salt	
50					

Table 5 (cont.)

Compound No.	Х	Y	Type of	Melting poin (°C)
259	-co-(C)-P	-SO ₂ CH ₂	Na salt	More than
260	-COCF ₂ CF ₂	-SO ₂ CH ₃	Na salt	More than
261	-COCF ₂ CF ₃	-SO ₂ C ₂ H ₅	Na salt	*
262	-co-(H)	-S02C2H5	Ca salt	245 (decomposed

The compound of the formula (I) of the present invention is useful as an active ingredient for a phospholipase A2 inhibitor, an anti-inflammatory agent or an anti-pancreatitis agent. Phospholipase A2 can be detected in various tissues or cells in a body. It is said that in platelets or cells related to inflammatory symptoms, phospholipase A2 is secreted or activated by various stimulations and contributes to the production of a platelet activating factor (PAF) or some arachidonic acid methabolites. The arachidonic acid methabolites have been found to be closely related to various diseases, for example, inflammatory symptoms such as rheumatoid arthritis, arthritis deformans, tenontitis, psoriasis and related dermatitis; nasal and bronchial airway troubles such as allergic rhinitis and allergic bronchial asthma; and immediate hypersensitive reactions such as allergic conjunctivitis. On the other hand, phospholipase A2 secreted from pancreas is activated in the intestine and exhibits a digestive action, but once activated in the pancreas, it is believed to be one of the factors causing pancreatitis. The compound of the present invention inhibits phospholipase A2 and thus is effective for the treatment of the above-mentioned diseases caused by phospholipase A2 such as inflammatory symptoms, nasal and bronchial airway troubles, immediate hypersensitive reactions or pancreatitis. Thus, it is useful as an anti-inflammatory agent, an agent for treating bronchial asthma, an anti-allergy agent, an anti-pancreatitis agent, anti-nephritis agent, or anti-MOFC (Multiple Organ Failure).

In regard to the efficacy against pancreatilts, the compound of the present invention is expected to be more efficient by using in combination with other drugs, for example, a proteinase inhibitor, such as galexate mesilate, camostat mesilate, or nafamostat mesilate.

The compound of the present invention is particularly suitable for use as an anti-inflammatory agent and/or an anti-pancreatitis agent.

TEST EXAMPLE 1

45

5

10

15

Phospholipase A₂ inhibitory activity, method A

(1) Preparation of substrate

To 10 mg of egg yolk lecithin (manufactured by Wako Pure Chemical Industries Ltd.), 1 ml of glycerine, 2 ml of a 50 mM Tris-HCl buffer solution (pH7.5) [Tris(hydroxymethyl)aminomethane (manufactured by Nacalai Tesque K.K.) was adjusted to pH7.5 with hydrochioric acid], 0.5 ml of a 150 mM calcium chloride solution (calcium chloride was dissolved in a 50 mM Tris-HCl buffer solution) and 0.5 ml of a 0.05% Triton-X100 (manufactured by Nacalai Tesque K.K.) solution (Triton-X100 was dissolved in a 50 mM Tris-HCl buffer solution), were added and dispersed by an agate mortar or dispersed by an ultrasonic processor (Model W-225, manufactured by Heat System-Ultrasonics, Inc.) for 5 minutes (30W) to obtain a substrate.

(2) Enzyme

5

20

25

30

35

40

45

50

55

Porcine pancreatic phospholipase A₂ [(161454*122416) manufactured by Boehringer Mannhelm*Yamanouchl K.K.] was used.

(3) Measurement of phospholipase A2 activity

To a 96 well microtitration plate (flat bottom, manufactured by Sumitomo Bakelite Medical Co., Ltd.), 40 μl of the substrate, 5 μl of a solution prepared by dissolving 10 mg of a test compound in 500 μl of dimethylsulfoxide, followed by an addition of 500 μl of a 50 mM Tris-HCl buffer solution, and 6 μl of an enzyme solution of 20 ng/ml (prepared by diluting the enzyme in a 50 mM Tris-HCl buffer solution), were added and reacted at 37 °C for 30 minutes. After termination of the reaction, the released free fatty acid was quantitatively analyzed in accordance with the ACS-ACOD (acyl CoA synthetase-acyl CoA oxidase) method [a kit of NEFA C test wako (manufactured by Wako Pure Chemical Industries, Ltd.) was used]. The quantitative analysis was made by means of Microplate ELISA Reader (Model 2550EIA Reader, manufactured by Bio-Rad Laboratories) at a wavelength of 540 nm. Separately, such experiments as mentioned above, were carried out at various concentrations (2 μg/ml, 1 μg/ml and 0.5 μg/ml) of phospholipase A₂ without a test compound. Then, the concentration of the free fatty acid versus the concentration of phospholipase A₂ was plotted.

From this standard curve, the apparent concentration of phospholipase A₂ in the case with a test compound, was read. Then, the percent Inhibition of the enzyme was calculated by the following formula. The results are shown in Table 6.

Percent inhibition (%) = $(1 - \frac{A}{B}) \times 100$

A: Apparent enzyme concentration when a test compound is added.

B: True enzyme concentration when a test compound is added.

Table 6

5	Com- pound No.	% inhibition of PLA ₂ (1,000 ppm)
•	1	. 45
10	2	. 55
	3	6 7·
	4	7 4
15	5	3.9
	8	8 1
	9	7 1
20	10	6 0
	11	5 2
	12	8 9
25	13	8 7
	14	5 4
·	15	6 2
30	16	4 3
	17	4 6
	18	6 4
35	19	> 9 0
	20	7 4
	21	6 2
	22	7 4
40	23	3 7
	24	6 6
	26	3 5

Table 6 (cont.)

Com- pound	% inhibition PLA ₂		
No.	(1,000 ppm)		
27	6 2		
28	7 1		
29	4 7		
30	8 7		
32 ·	5 0		
38	3 5		
39	4 1		
41	8 9		
43	4 7		
44	4 3		
45	5 0		
46	4 7		
47	7 5		
48	· 48		
49	3 0		
50	7 8		
51	6 3		
52	4 9		
53	37		
51	3 7		
55	4 9		
57	5 7		
58	7 4		

TEST EXAMPLE 2

5

10

15

20

25

30

35

40

45

50 Phospholipase A₂ inhibitory activity, method B

(1) Preparation of substrate

To a solution prepared by dissolving 9.2 mg of L-\(\alpha\)-dipalmitoylphosphatidylcholine (manufactured by Nichiyu Liposome K.K.) in 0.5 ml of chloroform, a solution prepared by dissolving 32 mg of sodium cholate (manufactured by Wako Pure Chemical Industries, Ltd.) in 0.5 ml of methanol, was added, followed by mixing. The solvent of the mixture was removed under a nitrogen stream, and then 2.5 ml of a 250 mM sodium chloride solution [prepared by dissolving sodium chloride in a 100 mM Tris-HCl buffer solution {tris-

(hydroxymethyl)aminomethane (manufactured by Nacalai Tesque K.K.) was adjusted to pH8.0 with hydrochloric acid}] was added thereto, and the mixture was dissolved under stirring to obtain a substrate.

(2) Enzyme

5

10

30

35

40

45

50

55

Porcine pancreatic phospholipase A₂ [(161454*122416) manufactured by Boehringer Mannhelm*Yamanouchi K.K.] was used.

(3) Measurement of phospholipase A2 activity

To a 96 well microtitration plate, 20 μI of a solution containing calcium chloride, bovine serum alubmin (manufactured by Sigma Chemical, Co.) and a Tris-HCl buffer solution (pH8.0) at concentrations of 25 mM, 4.5 mg/ml and 100 mM, respectively, 5 μI of a solution prepared by dissolving 10 mg of a test compound in 500 μI of diemthylsulfoxide, followed by an addition of 500 μI of a 200 mM Tris-HCl buffer solution, 5 μI of an enzyme solution (10 μg/ml) [prepared by dissolving the enzyme in a bovine serum alubmin solution (prepared by dissolving bovine serum alubmin in a 100 mM Tris-HCl buffer solution at a concentration of 1 mg/ml)] and 20 μI of the substrate, were added and reacted at 37 °C for 30 minutes. After termination of the reaction, the released free fatty acid was quantitatively analyzed in accordance with the ACS-ACOD (acyl CoA synthetase-acyl CoA oxidase) method [a kit of NEFA C test wako (manufactured by Wako Pure Chemical Industries, Ltd.) was used]. The quantitative analysis was made by means of Microplate ELISA Reader (Model 2550EIA Reader, manufactured by Bio-Rad Laboratories) at a wavelength of 540 nm. Separately, such experiments as mentioned above, were carried out at various concentrations (1 μg/ml, 0.75 μg/ml, 0.5 μg/mol and 0.25 μg/ml) of phospholipase A₂ without a test compound. Then, the concentration of the free fatty acid versus the concentration of phospholipase A₂ was plotted.

From this standard curve, the apparent concentration of phospholipase A₂ In the case with a test compound, was read. Then, the percent Inhibition of the enzyme was calculated by the following formula. The results are shown in Table 7.

Percent inhibition (%) = $(1 - \frac{A}{B}) \times 100$

A: Apparent enzyme concentration when a test compound is added.

B: True enzyme concentration when a test compound is added.

Table 7

Compound	% inhibition of		
No.	PLA ₂ (1,000 ppm)		
7	5 0		
10	5 1		
13	5 1		
18	4 9		
19	7 5		
43	4 9		
44	6 4		
.45	4 1		
47	9 0		
53 ·	100		
58	4 2		
60	41 .		
61	3 6		
62	5 3		
63	3 4		
64	6 1		
65	7 1		
66	5 2		
67	8 2		
68	8 1		
69	6 3		
70	4 0		

Table 7 (cont.)

Compound	O':-hibition of
Compound No.	
NO.	PLA ₂ (1,000 ppm).
71	7 7
72	7 3
73	5 3
74	3 3
75	8 1
76	· 6 ·1
77	6 1
78	5 l
79	6 5
80	7 3
81	9 4
82	3 8
83	6.4
84 .	5 6
85	3 3
86	9 3
87	8 8
88	8 3
89	. 5 1
90	7 9
91	8 1
92	7 5
93	4 8
94	6 3
95	8 5
97	8-8
98	6 5
99	8 6
100	83.

Table 7 (cont.)

Compound No.	% inhibition of PLA ₂ (1,000 ppm)
103	8.6
10-1	61.
106	7 8
108	· 6 I
109	6 7
110	5 8
111	4 1
112	7 9
113	3 5
114 .	5.3
115	5 2
116	6 9
117	6 5
118	8 4
121	9 0
122	5 6
123	8 6
124	7 8
125	8 6
126	8 4
127	8 9
251	8 5
259	6 1
260	5 3

TEST EXAMPLE 3

 $\frac{\text{Inhibitory}}{\text{method }C} \stackrel{\text{activity}}{=} \stackrel{\text{on}}{=} \frac{\text{increased}}{\text{method,}} \frac{\text{vascular}}{\text{permeability}} \stackrel{\text{permeability}}{=} \frac{\text{induced}}{\text{by}} \stackrel{\text{by}}{=} \frac{\text{acid}}{\text{ecid}} \stackrel{\text{(Mouse}}{=} \frac{\text{Whittle}}{\text{method,}}$

Using ddy male mice, each test group consisted of 4 or 5 mice. A test compound was mixed with Tween 80 [polyoxyethylenesorbitan monooleate (manufactured by Nacalai Tesque K.K.)], and distilled water was added thereto to obtain a 2% Tween 80 suspension, or it was dissolved in the form of a salt in water to obtain an aqueous solution. A test compound was orally administered, and upon expiration of one hour from the administration, 0.7% acetic acid was intraperitonially injected to each mouse in an amount of 0.1 ml/10

g, and at the same time, 2% brilliant blue was intravenously injected into the tail vein in an amount of 0.1 ml/20 g. Thirty minutes after the injection of brilliant blue, the cervical vertebrae were dislocated under anesthesia by chloroform, and the abdorminal cavity was washed with 5 ml of a physiological saline. The washing solution was subjected to centrifugal separation at 3,000 rpm for 10 minutes, and the amount of the dye in the supernatant was measured at 600 nm absorbance by Microplate ELISA Reader (Model 2550EIA Reader, manufactured by Bio-Rad Laboratories). The inhibition rate of the amount of leaked dye in the group in which a test compound was administered relative to the control group was obtained by the following formula. The results are shown in Table 8.

10 Inhibition rate (%) = (1 - C) x 100

15

20

25

30

35

40

45

- C: Amount of leaked dye in the group to which a test compound was administered.
- D: Amount of leaked dye in the control group.

Table 8

6		
Comr pound No.	Dose (mg/kg)	Inhibition rate (%).
i	5 0	4 6
· 2	2 0	. 51
3.	5 0	5 8
4	5 0	. 43
5	5.0	5 3
7	2 0	5 3
. 8	2 0	4 8
9	5 0	8 1
10	2 5 1 8	5 3 4 2
11	0 0 1	4 9
13	100	5 7
15	5 0	4 1
16	2 0	5 5
17.	5 0	31.
18	2 5	4 9
20	2 0	4 8
22	8 1	8 1
23	2 0	3 3

Table 8 (cont.)

Com- pound	Dose (mg/kg)	Inhibition rate (%)
39	2 0	5 3
41	. 100	8 5 .
43	2 0	4 8
45	2 0	2 9
47	28	7 2 4 6
49	2 0	5 0
55	2 5	5 9
57	2 0	4 3
63	1 0	4 1
78	78	5 <u>1</u> 3 2
79	2 0	6 7
86	2 0	4 2
87.	10	28
93	2 8	4 7
94	2 0	5 3
101	2 0	4 6
120	2 0	4 3
251	20	43

TEST EXAMPLE 4

Inhibitory activity on increased vascular permeability induced by acetic acid (Rat Whittle method, method D

Using SD (Cr]: CD) male rats, each test group consisted of from 3 to 5 rats. A test compound was mixed with Tween 80 [polyoxyethylenesorbitan monooleate (manufactured by Nacalal Tesque K.K.)], and distilled water was added thereto to obtain a 2% Tween 80 suspension, or it was dissolved in the form of a salt in water to obtain an aqueous solution. A test compound was orally administered, and one hour later, 0.7% acetic acid was intraperitonially injected to each rat in an amount of 0.05 ml/10 g, and at the same time, 2% brilliant blue was intravenously injected into the tail vein in an amount of 0.05 ml/20 g. Thirty minutes after the injection of brilliant blue, the cervical vertebrae were dislocated under anesthesia by chloroform, and the abdorminal cavity was washed with 10 ml of a physiological saline. The washing solution was subjected to centrifugal separation at 3,000 rpm for 10 minutes, and the amount of the dye in the supernatant was measured at 600 nm absorbance by Microplate ELISA Reader (Model 2550EIA Reader, manufactured by Bio-Rad Laboratories). The inhibition rate of the amount of leaked dye in the group to which a test compound was administered relative to the control group was obtained from the following formula, and the results are shown in Table 9.

7 2

4 8

Inhibition rate (%) = $(1 - \frac{C}{C}) \times 100$

5

55

C: Amount of leaked dye in the group to which a test compound was administered.

D: Amount of leaked dye in the control group.

		Table 9	
10	Com- pound No:	Dose (mg/kg)	Inhibition rate (%)
	2	100	3 8
15	. 3	100	7 5
	10	1 0 0	3 7
20	16	100	9 6
	17	5 0	4 0
	19	5 0	3 4
25	20	100	4 9
	22	100	5 8
	23	100	4 0
30	43	5 0	7 2
	45	5 0	2 7
	46	5 0	3 1
35	47	5 0 2 5	8 2 5 6
	49	5 0	3 0
40	55	2 5 I 2 5	6 9 4 3
	57	5 0	4 7
45	58	5 0	3 1.
	60	5 0	7 2
	61	2 5	6 1
50	63	5 0 2 5	3 9

66

69

61

Table 9 (cont.)

	1	·
Com- pound No.	Dose (mg/kg)	Inhibition rate (%)
72	2 5	6 6
78	5 0	5 5 4 0
79	5 O ·	. 7 4
80	5 0 2 5	3 5 3 3
82	2 5	3 8
86	5 0	3 7
87	2 5 1 2. 5	6 I 4 7
93	5 8	. 7 <u>1</u>
94	5 0 2 5	5 5 4 5
98	5 0	3 2
101	5 0	4 1
113	5 0	6 7
120	l 0 0 5 0	5 G 3 5
121	12.5	31
251	2 5 1 2. 5	7 0 4 6

TEST EXAMPLE 5

5

10

15

20

25

30

35

40

Inhibitory activity on carrageenin edema

Using Wister male rats (body weight: about 100 g), each test group consisted of 5 rats. A test compound was mixed with Tween 80 [polyoxyethylenesorbitan monocleate (manufactured by Nacalai Tesque K.K.)], and distilled water was added thereto to obtain a 2% Tween 80 suspension, or it was dissolved in the form of a salt in water to obtain an aqueous solution. Either the suspension or the aqueous solution was orally administered in an amount of 200 mg/kg, 100 mg/kg, 50 mg/kg or 25 mg/kg. One hour later, 0.1 ml of a 1% λ-carrageenin solution dissolved in a physiological saline was injected subcutaneously to the right hind paw of each rat to cause inflamation. Three hours later, the paw volume was measured by a paw volume measuring device (manufactured by Ugobasiee K.K.). A swelling volume was obtained from the difference from the value before the inflammation. The inhibition rate was calculated by the following formula, and the results are shown in Table 10.

Inhibition rate (%) = $(1 - \frac{F}{E}) \times 100$

F: Average swelling volume in the group to which a test compound was administered. E: Average swelling volume in the control group.

Table 10

Com- pound No.	Dose (mg/kg)	Inhibition rate (%)
2.	100	17
3:	1 0 0	2 0
- 5	100	3 7
10	100	28
11	100	2 4
13	100	2 1
16	100	2 4
19.	100	31
22	100	2 9
23	100	3 0
25	200	2 7
28	5 0	2 5
39	100	2 .5
43 .	5 0	-3 1
45	5 0	2 3
46	5 0	3 0
47	50.	4 1
57	100	3 5
60	5 0	2 7
65	5 0	3 7
66	5 0	3 1
67	2 5	19 -
69	5 0	2 5
72	2 5	2 1
73	5 0	2 0
77	5 0	. 22

Table 10 (cont.)

Compound No. Dose (mg/kg) Inhibition rate (%) 78 50 26 79 50 20 80 50 29 82 50 19 86 50 27 87 50 21 91 50 23 93 50 22 94 50 23 98 50 45 101 50 24 104 50 48 106 50 25 113 50 26 114 50 28 120 50 27 123 50 22 150 50 23 251 50 30 259 50 17			
No. 78 5 0 2 6 79 5 0 2 0 80 5 0 2 9 82 5 0 1 9 86 5 0 2 7 87 5 0 2 1 91 5 0 2 3 93 5 0 2 2 94 5 0 2 3 98 5 0 4 5 101 5 0 2 4 104 5 0 4 8 106 5 0 1 9 110 5 0 2 5 113 5 0 2 6 114 5 0 2 8 120 5 0 2 7 123 5 0 2 2 150 50 23 251 5 0 3 0			
79 5 0 2 0 80 5 0 2 9 82 5 0 1 9 86 5 0 2 7 87 5 0 2 1 91 5 0 2 3 93 5 0 2 2 94 5 0 2 3 98 5 0 4 5 101 5 0 2 4 104 5 0 4 8 106 5 0 1 9 110 5 0 2 5 113 5 0 2 6 114 5 0 2 8 120 5 0 2 7 123 5 0 4 2 125 5 0 2 3 251 5 0 3 0		(, , , , , ,	
80 50 29 82 50 19 86 50 27 87 50 21 91 50 23 93 50 22 94 50 23 98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 22 150 50 23 251 50 30	78	5 0	2 6
82 50 19 86 50 27 87 50 21 91 50 23 93 50 22 94 50 23 98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 22 150 50 23 251 50 30	79	5 0	2 0
86 50 27 87 50 21 91 50 23 93 50 22 94 50 23 98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 23 251 50 30	80	5 0	2 9
86 50 27 87 50 21 91 50 23 93 50 22 94 50 23 98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 22 150 50 23 251 50 30	82	5 0	1 9
91 50 23 93 50 22 94 50 23 98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 22 150 50 23 251 50 30	86	. 50	2 7
93 50 22 94 50 23 98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 22 150 50 23 251 50 30	87	5 0	2 1
94 50 23 98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 22 150 50 23 251 50 30	91	5 0	2 3
98 50 45 101 50 24 104 50 48 106 50 19 110 50 25 113 50 26 114 50 28 120 50 27 123 50 42 125 50 22 150 50 23 251 50 30	93	5 0	2 2
101 5 0 2 4 104 5 0 4 8 106 5 0 1 9 110 5 0 2 5 113 5 0 2 6 114 5 0 2 8 120 5 0 2 7 123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	94	5 0	2 3
104 5 0 4 8 106 5 0 1 9 110 5 0 2 5 113 5 0 2 6 114 5 0 2 8 120 5 0 2 7 123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	98	5 0	4 5
106 5 0 1 9 110 5 0 2 5 113 5 0 2 6 114 5 0 2 8 120 5 0 2 7 123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	101	5 0	2 4
110 5 0 2 5 113 5 0 2 6 114 5 0 2 8 120 5 0 2 7 123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	104	5 0	4 8
113 5 0 2 6 114 5 0 2 8 120 5 0 2 7 123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	106	5 0	1 9
114 5 0 2 8 120 5 0 2 7 123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	110	5 0	2 5
120 5 0 2 7 123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	113	5 0	2 6
123 5 0 4 2 125 5 0 2 2 150 50 23 251 5 0 3 0	114	5 0	2 8
125 5 0 2 2 150 50 23 251 5 0 3 0	120	5 O ·	2 7
150 50 23 251 50 30	123	5 0	4 2
251 5.0 3.0	125	5 0	2 2
<u> </u>	150	50	23
259 5.0 1.7	251	5.0	3 0
	259	5 0	17

TEST EXAMPLE 6

60 Acute toxicity

Administration route: Intravenous injection

Using ddy male mice (body weight: 25 - 30 g), each test group consisted of 5 mice. A test compound was dissolved in the form of a sodium salt in a physiological saline or in a 5% glucose aqueous solution, and intravenously injected in an amount of 0.1 ml/10 g body weight. After the injection, the mortality rate was obtained over one week, and the median lethal dose LD₅₀ (mg/kg) was determined. The results are shown in Table 11.

Table 11

Table II		
Compound No.	LD50 (mg/kg)	
1	100~150	
2 .	50~100	
3 .	>100	
8	>25	
9	>150	
10	50~100	
11	>150	
12	>150	
13	>70	
15	100~150	
16	>100	
17	50~100	
18	>150	
19	50~100	
21	>75	
22	>100 ·	
24	>150	
40	50~100	
43	78	

Table 11 (cont.)

Compound No.	LD ₅₀
45	98
-17	· 58
-19	175
55	237
57	83
60	>60 ·
61	>80
63	>130
68	>80
73	>80
77	>80
78	>60
80	· >80
86	>40
87	75
91	>80
106	>20
120	. 83
251	65

TEST EXAMPLE 7

Effects against acute pancreatitis

Using Crj-CD male rats (for Compound No. 19, rats having a body weight of from 371 to 484 g were used, and for Compound No. 10, rats having a body weight of from 444 to 574 g were used), each test group consisted of 3 rats. An experimental acute pancreatitis model was prepared by a closed duodenal loop method under anesthesia with halothane (manufactured by Hoechst Japan) and nitrous oxide (manufactured by Sumitomo Selka K.K.) applied by means of a general inhalation anesthesia machine (Model EM-2 and halothane evaporator F-Model). Then, Compound No. 19 or Compound No. 10 was

continuously intravenously injected into the tail vein in an amount of 50 mg per kg or 40 mg per kg, respectively, at a rate of 0.05 ml per minute by means of a pump (Technicon AA il Proportioning Pump III, manufactured by Technicon Instruments Corporation). No injection was made to a control group. Gross pathological examination was conducted upon expiration of 6 hours after the ventrotomy in the case of the test group to which Compound No. 19 was administered, or upon expiration of 3 hours after the ventrotomy in the case of the test group to which Compound No. 10 was administered. As a result, as shown in the following Table 12, the groups to which the compounds of the present invention were administered, show distinct usefulness for treating acute pancreatitis.

10

50

55

Table 12

	Groups	Pancreatic hemorrhage		Pancreatic		
15		Petech	Petechia		edema	
		Grade	Distribu- tion	Grade	Distribu- tion	
ro	Control group (against the group to	++	++	++	++	
	which Compound No. 19 was administered)	++	++	+++	++	
5	·	. +++	. +++	+++	++	
	Group to which Compound No. 19		_	+	+	
0	was administered			++	++	
		_		+	+	
5	Control group (against the group to	. ++	++	++	++	
	which Compound No. 10 was administered)	+	+	++	++	
)		±	±	++	++	
	Group to which Compound No. 10	±	±	±	±	
i	was administered			+	+	
		+	+	++	+	

```
Grade of pancreatic lesions
-: No significant lesions, ±: Minimal, +: Light,
++: Moderate, +++: Marked
```

Distribution of pancreatic lesions
-: No significant lesions, ± ~ +++: Focal-diffuse

TEST EXAMPLE 8

20

25

30

35

40

45

50

55

Effects against acute pancreatitis

Using Crj-CD male rats, each test group consisted of 3 rats. An experimental acute pancreatitis model was prepared by a closed duodenal loop method under anethesia with halothane (manufactured by Hoechst Japan) and nitrous oxide (manufactured by Sumitomo Selka K.K.) applied by a general inhalation anesthesia machine (Model EM2 and halothane evaporator F-Model). Each compound (subjected to the test in the form of a sodium salt) was continuously intravenously injected into the tail vein in an amount of 0.4 ml/100 g to 0.6 ml/100 g at a rate of 0.05 ml per minute by a pump (Technicon AA II Proportioning Pump III, manufactured by Technicon Instruments Corporation) or rapidly intravenously injected. No injection was made to a control group. Gross pathological examination was conducted upon expiration of 6 hours after the ventrotomy in the case of the group to which the compound was administered. With respect to each of four lesions among pancreatic lesions i.e. petechia, ecchymosis, pancreatic necrosis and abdominal fatty necrosis, the grade and the distribution of lesions were scored with five grades of 0, 0.5, 1, 2 and 3 (severe lesions are 3). The sum of all lesions was designated as scores of pancreatitis lesions, and the sum of the score of petechia and the score of ecchymosis only was designated as scores of hemorrhagic lesions. The pancreatitis inhibition rate (%) and the hemorrhage inhibition rate (%) were obtained by the following formulas, and the results are shown in Table 13.

Pancreatitis inhibition rate (%) = $(1 - \frac{H}{G}) \times 100$

- H: Scores of pancreatitis lesions of the group to which a test compound was administered.
- G: Scores of pancreatitis lesions of the control group.

Hemorrhage inhibition rate (%) = $(1 - \frac{1}{1}) \times 100$

- J: Scores of hemorrhagic lesions of the group to which a test compound was administered.
- I: Scores of hemorrhagic lesions of the control group.

Table 13

Com-	Dose	*1	+2
pound No.	(mg/kg	·	
· i .	10	66	49
2	26*	-16	
3	10	49	51
9	10	36	.21
11	23*	52	
13	23*	100	
14	19*	52	
15	10	45 .	61
16	20*	52	
17	20*	73	
21	27*	57	
24	11*	68	
34	10	30	30
35 .	10	. 35	35
43	20*	81	
45	25*	62	
46	46*	36	
.47	20*	68	
49	42*	G8	
55	40*	. 65	
57	20 •	60	
58	10	70	51
60	10	92	94
61	10	79	64
62	10	-15_	61 ·
63	10	83	66

Com-	Dose	*1	+2
pound No.	(mg/kg	}	
. 64	10	60 .	68
65	10	67	74
.66	10	53	63
68	10	74	77
72	10	62	32
73 .	10.	74	79
74	10	66	67
77	10	66	70
78	10	96	91
79	10	23	39
80	10	11	8
81	10	49	58
83.	10	53	51.
85	10	57	67
86	10	87	. 85
87 ·	- 10	83	87
93	10	70	70
94	10	11	11
97	10	35	35
106	10	96	97
107	10	63	61
113	10	41	36
114	10	32	27
117	10	. 30	30
120	24*	100	
122	10	51	51
123	-10	56	56
124	10	51	51
251	10	79	. 80

Note: Symbol * in the column for "Dose" indicates a case of continuous intravenous injection, and no symbol indicates a case of single intravenous injection.

*1: Inhibition rate of hemorrhagic lesions (%)

*2: Inhibition rate of pancreatitis lesions (%)

To administer the compound of the present invention for the treatment of the above-mentioned diseases caused by phospholipase A₂, it is formulated alone or together with a pharmaceutically acceptable carrier into a drug composition suitable for peroral, or parenteral administration, such as a tablet, a powder, a capsule, a granule, an injection drug, an ointment, an inhalant or a suppository, and it is administered in the form of such a drug formulation.

As a drug formulation suitable for peroral administration, a solid composition such as a tablet, a capsule, a powder, a granule or a troach; or a liquid composition such as a syrup suspension, may be mentioned. The solid composition such as a tablet, a capsule, a powder, a granule or a troach may contain a binder such as fine crystalline cellulose, gum arable, tragacanth gum, gelatine or polyvinyl chloride; an exciplent such as starch, lactose or carboxymethyl cellulose; a disintegrator such as arginic acid, corn starch or carboxymethyl cellulose; a lubricant such as magnesium stearate, light silicic anhydride or colloidal silicon dioxide; a sweetener such as sucrose; or a flavoring agent such as peppermint or methyl salicylate. The liquid composition such as a syrup or a suspension may contain sorbitol, gelatine, methyl cellulose, carboxymethyl cellulose, a vegetable oil such as a peanut oil, an emulsifier such as lecithin as well as a sweetener, a preservative, a colorant or a flavoring agent, as the case requires. Such a composition may be provided in the form of a dried formulation. These formulations preferably contain from 1 to 95% by weight of the active compound.

A drug formulation suitable for parenteral administration may, for example, be an injection drug. The injection drug may be prepared by dissolving the compound in the form of a salt in usual water for injection, or may be formulated into a formulation suitable for injection such as a suspension or an emulsion (in a mixture with a pharmaceutically acceptable oil or liquid). In such a case, it may contain benzyl alcohol as an antibacterial agent, ascorbic acid as an antioxidant, a pharmaceutically acceptable buffer solution or a reagent for adjusting the osmotic pressure. Such an injection drug preferably contains from 0.1 to 8% by weight of the active compound.

A drug formulation suitable for topical or per rectal administration may, for example, be an inhalant, an olntment or a suppository. The inhalant may be formulated by dissolving the compound of the present invention alone or together with a pharmaceutically acceptable inert carrier in an aerosol or nebulizer solution, or may be administered to the resiratory airway in the form of fine powder for inhalation. In the case of fine powder for inhalation, the particle size is usually not more than 50 µm, preferably not more than 10 µm. Such an inhalant may be used, if neccesary, in combination with other antiasthematic agent or bronchodilator.

An ointment may be prepared by a conventional method by an addition of a commonly employed base or the like. The ointment preferably contains from 0.1 to 30% by weight of the active compound.

The suppository may contain a carrier for formulation which is well known in this field, such as polyethylene glycol, lanolin, cacao butter or fatty acid triglyceride. The suppository preferably contains from 1 to 95% by weight of the active compound.

The above-mentioned drug compositions suitable for peroral, parenteral, topical or per rectal administration, may be formulated by conventional methods so that after administration to a patient, the active component will be rapidly discharged, gradually discharged or belatedly discharged.

The dose of the compound of the present Invention varies depending upon the type of the compound, the administration method, the condition of the patient or the animal to be treated. The optimum dose and the number of administration under a specific condition must be determined by the judgement of a competent doctor. Usually, however, a daily dose to an adult is from about 0.01 g to about 10 g, preferably from about 0.05 g to about 5 g. In the case of the above inhalation method, the dose of the compound of the present invention is preferably from about 0.01 mg to about 100 mg per administration.

Now, specific Formulation Examples of the phospholipase A₂ inhibitor, the anti-inflammatory agent or the anti-pancreatitis agent of the present invention will be given.

F	FORMULATION EXAMPLE 1 (tablet)		
(1)	(1) Compound No. 30 200 mg		
(2)	Lactose	150 mg	
(3)	Starch	30 mg	
(4)	Magnesium stearate	6 mg	

The above composition is tabletted so that the components (1) to (4) constitute one tablet.

55

50

45

	FORMULATION EXAMPLE 2 (powder or microgranule)	
(1) (2) (3) (4)	Compound No. 35 Sugar ester (DK ester F-160, manufactured by Dalichl Kogyo) Surfactant (Dekagreen 1-L, manufactured by Nikko Chemicals) Light silicic anhydride	200 mg 180 mg 15 mg 25 mg

The component (1) is wet-pulverized in an aqueous solution containing 5% of the component (3). Then, 180 mg of the component (2) is added thereto, and the mixture is freeze-dried. The dried product is pulverized and mixed with the component (4).

The mixture is formed into a powder or microgranule. Such a powder or microgranule may be sealed in a capsule to obtain a capsule drug.

FOI	RMULATION EXAMPLE 3 (hard gelating	e capsule)
(1) (2) (3)	Sodium salt of Compound No. 10 Starch Magnesium stearate	250 mg 200 mg 10 mg

The components (1) to (3) Is packed in a hard gelatine capsule to obtain a hard gelatine capsule drug.

	FORMULATION EXAMPLE 4 (Injection	drug)
(1)	Sodium salt of Compound No. 19	1 g
(2)	Glucose	10 g
(3)	Distilled water for injection	200 ml

The components (1) to (3) are formulated into an injection drug in accordance with a usual method for preparation of an injection drug.

FORMU	LATION EXAMPLE 5 (ointment for externa	al skin application)
(1)	Sodium salt of Compound No. 10	5 g
(2)	White vaseline	25 g
(3)	Stearyl alcohol	22 g
(4)	Propylene glycol	12 g
(5)	Sodium lauryl sulfate	1.5 g
(6)	Ethyl para-hydroxybenzoate	0.025 g
(7)	Propyl para-hydroxybenzoate	0.015 g
(8)	Purified water	100 g

The components (1) to (8) are formulated into an ointment for external skin application by a usual 45 method for preparation of an ointment.

Claims

5

15

20

25

35

40

55

1. A diaminotrifluoromethylpyridine derivative of the formula (I) or its salt:

wherein X is -CW¹R¹, -COCOR², -CW¹NHCOR², -C(=W¹)W²R³ or -CW¹N(R⁴)R⁵, and Y is alkyl, -CW³R⁵, -COCOR⁷, -NHCOR⁷, -C(=W³)W⁴R⁸, -(NH)_mSO₂R⁹, -(NH)_mSO₂OR¹⁰ or -(NH)_mSO₂N(R¹¹)R¹²,

5

10

15

20

25

30

35

40

45

55

wherein each of R¹, R⁶ and R³, which are independent from one another, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R² and R², which are independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, each of R³, R³ and R¹⁰, which are independent from one another, is alkyl which may be substituted, alkenyl which may be substituted, alkynyl which may be substituted, each of R⁴, R⁵, R¹¹ and R¹², which are independent from one another, is alkyl which may be substituted, each of W¹, W², W³ and W⁴, which are independent from one another, is an oxygen atom or a sulfur atom, and m is 0 or 1, provided that a combination wherein one of X and Y is -COCF₂X¹ wherein X¹ is a hydrogen atom, a halogen atom, alkyl or haloalkyl, and the other is -COCF₂X² wherein X² is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or -COOX³ wherein X³ is alkyl which may be substituted or phenyl which may be substituted, is excluded.

- The diaminotrifluoromethylpyridine derivative or its salt according to Claim 1, wherein said hydrocarbon group for each of R1, R6 and R9 is alkyl, alkenyl or alkynyl; said monocyclic hydrocarbon group for each of R1, R5 and R3 is cycloalkyl, cycloalkenyl or phenyl; said polycyclic hydrocarbon group for each of R1, R5 and R9 is a condensed polycyclic hydrocarbon group such as naphthyl, tetrahydronaphthyl or indanyl, or a bridged polycyclic hydrocarbon group such as adamantyl, noradamantyl, norbornanyl or norbornanonyl; said monocyclic heterocycle group for each of R1, R5 and R9 is pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, dihydrofuranyl, tetrahydrofuranyl, dihydrothienyl, tetrahydrothienyl, pyrazolinyl, hydantoinyl, oxazolinyl, isoxazolinyi, isoxazolidinyi, thiazolinyi, thiazolidinyi, dioxolanyi, dithiolanyi, pyridyi, pyridazinyi, pyrazinyl, dihydropyridyl, tetrahydropyridyl, piperidinyl, dihydrooxopyridazinyl, pyrimidinyl, tetrahydrooxopyridazinyl, dihyrooxopyrimidinyl, tetrahydrooxopyrimidinyl, piperazinyl, dihydropyranyl, tetrahydropyranyl, dioxanyl, dihydrodithlnyl, dithianyl or morphorinyl; sald polycyclic heterocycle group for each of R1, R5 and R5 is a condensed polycyclic heterocycle group such as thienothienyl, dihydrocyclopentathlenyl, indolyl, benzofuranyl, benzothlenyl, benzoxazolyl, benzisoxazolyl, benzisoxazolyl, benzisoxazolyl, zothiazolyl, benzimidazolyl, tetrahydrobenzothienyl, dihydrobenzofuranyl, tetrahydrobenzisoxazolyl, benzodioxolyl, quinolinyl, isoquinolinyl, benzodioxanyl or quinoxalinyl, or a bridged polycyclic heterocycle group such as quinuclidinyl; the substituent for each of the chain hydrocarbon groups which may be substituted for each of R1, R6 and R9, the alkyl which may be substituted and the alkoxy which may be substituted for each of R2 and R7, the alkyl which may be substituted, the alkenyl which may be substituted and the alkynyl which may bed substituted for each of R3, R8 and R10, the alkyl which may be substituted for each of R4, R5, R11 and R12, and the alkyl which may be substituted for X3, is a halogen atom, alkoxy, haloalkoxy, alkylthio, cycloalkyl, cycloalkoxy, cycloalkenyl, cycloalkenyl, cycloalkenyl, alkoxycarbonyl, alkylcarbonyl, alkylcarbonyloxy, aryl, aryloxy, arylthio, amino or alkyl-substituted amino; and the substituent for each of the monocyclic hydrocarbon group which may be substituted, the polycyclic hydrocarbon group which may be substituted, the monocyclic heterocyclic group which may be substituted and the polycyclic heterocycle group which may be substituted for each of R1, R6 and R9, the phenyl which may be substituted and the phenoxy which may be substituted for each of R2 and R7, the cycloalkyl which may be substituted, the phenyl which may be substituted and the benzyl which may be substituted for each of R3, R8 and R10, and the phenyl which may be substituted for X3, Is a halogen atom, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, cycloalkyl, cycloalkoxy, cycloalkenyl, cycloalkenyloxy, alkoxycarbonyl, alkylcarbonyl, alkylcarbonyloxy, aryl, aryloxy, arylthio, amino, alkylsubstituted amino, cyano or nitro.
- 3. The diaminotrifluoromethylpyridine derivative or its salt according to Claim 1, wherein X is -CW¹R¹ or -C(=W¹)W²R³, and Y is -SO₂R⁵.
- 4. The diaminotrifluoromethylpyridine derivative or its salt according to Claim 1, wherein X is -CW¹R¹ or -C(=W¹)W²R³, wherein R¹ is alkyl which may be substituted, alkenyl which may be substituted, cycloalkenyl which may be substituted, phenyl which may be substituted, tetrahydronaphthyl which may be substituted, indanyl which may be substituted or thienyl which may be substituted, and R³ is alkyl which may be substituted, and Y is -SO₂R³, wherein R³ is alkyl which may be substituted, cycloalkyl which may be substituted.

cycloalkenyl which may be substituted or phenyl which may be substituted.

5

20

25

30

35

40

45

50

55

- 5. The diaminotrifluoromethylpyridine derivative or its salt according to Claim 1, wherein X is -CW¹R¹ or -C(=W¹)W²R³, wherein R¹ is alkyl, haloalkyl, alkenyl, haloalkenyl, cycloalkyl, halogen-substituted cycloalkyl, phenyl, halogen-substituted phenyl, alkyl- or haloalkyl-substituted phenyl, or alkoxy- or haloalkyr-substituted phenyl, and R³ is alkyl or haloalkyl, and Y is -SO₂R³, wherein R³ is alkyl, haloalkyl, phenyl, halogen-substituted phenyl, alkyl- or haloalkyl-substituted phenyl, or alkoxy- or haloalkoxy-substituted phenyl.
- The diaminotrifluoromethylpyridine derivative or its salt according to Claim 1, wherein the diaminotrifluoromethylpyridine derivative is at least one derivative selected from the group consisting of N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)-cyclohexanecarboxamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-acetoxyacetamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-acetoxyacetamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-2-thlophenecarboxamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-3-trifluoromethyl-3-pyridyl)-3-trifluoromethyl-3-pyridyl)-3-fluorobenzamide, N-(2-methylsulfonylamino-5-trifluoromethyl-3-pyridyl)-6-(1,2,3,4-tetrahydronaphthalene)carboxamide, N-(2-ethylsulfonylamino-5-trifluoromethyl-3-pyridyl)-3-(2-thilenyl)acrylamide.
 - 7. A process for producing a diaminotrifluoromethylpyridine derivative of the formula (I) or its salt:

wherein X is -CW1R1, -COCOR2, -CW1NHCOR2, -C(=W1)W2R3 or -CW1N(R4)R5, and Y is alkyl, -CW3R5, -COCOR7, -NHCOR7, -C(=W3)W4R8, -(NH)mSO2R9, -(NH)mSO2OR10 or -(NH)mSO2N(R11)R12, wherein each of R1, R6 and R9, which are independent from one another, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R2 and R7, which are independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, each of R3, R8 and R10, which are independent from one another, is alkyl which may be substituted, alkenyl which may be substituted. alkynyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, each of R4, R5, R11 and R12, which are independent from one another, is alkyl which may be substituted, each of W1, W2, W3 and W4, which are independent from one another, is an oxygen atom or a sulfur atom, and m is 0 or 1, provided that a combination wherein one of X and Y is -COCF2X' wherein X' is a hydrogen atom, a halogen atom, alkyl or haloalkyl, and the other is -COCF₂X² wherein X² is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or -COOX3 wherein X3 is alkyl which may be substituted or phenyl which may be substituted, is excluded, which comprises reacting a compound of the formula (II):

wherein Y is as defined above, with a compound of the formula Z-CW¹R¹ wherein W¹ and R¹ are as defined above, and Z is a halogen atom, a compound of the formula Z-COCOR² wherein R² and Z are as defined above, a compound of the formula Z-C(=W¹)W²R³ wherein W¹, W², R³ and Z are as defined above, a compound of the formula Z-CW¹N(R⁴)R⁵ wherein W¹, R⁴, R⁵ and Z are as defined above, a compound of the formula R¹COOH wherein R¹ is as defined above, a compound of the formula (R¹CO)-

₂O wherein R¹ is as defined above or a compound of the formula R²CONCW¹ wherein W¹ and R² are as defined above.

8. A process for producing a diaminotrifluoromethylpyridine derivative of the formula (I-1) or its salt:

10

15

20

25

30

35

40

45

50

55

$$(I-1)$$

$$NHX$$

$$NHY'$$

wherein X is -CWIR1, -COCOR2, -CWINHCOR2, -C(=WI)W2R3 or -CWIN(R4)R5, and Y1 is -CW3R6, -COCOR7 or -C(=W3)W4R8, wherein each of R1 and R5, which are independent from each other, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R2 and R7, which are independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, each of R3 and R8. which are independent from each other, is alkyl which may be substituted, alkenyl which may be substituted, alkynyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, each of R4 and R5, which are independent from each other, is alkyl which may be substituted, each of W1, W2, W3 and W4, which are independent from one another, is an oxygen atom or a sulfur atom, provided that a combination wherein one of X and Y is -COCF₂X¹ wherein X¹ is a hydrogen atom, a halogen atom, alkyl or haloalkyl and the other is -COCF₂X² wherein X2 is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or -COOX3 wherein X3 is alkyl which may be substituted or phenyl which may be substituted, is excluded, which comprises reacting a compound of the formula (III):

wherein X is as defined above, with a compound of the formula Z-CW³R⁶ wherein W³ and R⁶ are as defined above, and Z is a halogen atom, a compound of the formula Z-COCOR⁷ wherein R⁷ and Z are as defined above, a compound of the formula Z-C(=W³)W⁴R⁸ wherein W³, W⁴, R⁸ and Z are as defined above, a compound of the formula R⁶COOH wherein R⁶ is as defined above, or a compound of the formula (R⁶CO)₂O wherein R⁶ is as defined above.

 A phospholipase A₂ Inhibitor which contains as an active ingredient a diaminotrifiuoromethylpyridine derivative of the formula (I) or its salt:

wherein X is -CW¹R¹, -COCOR², -CW¹NHCOR², -C(=W¹)W²R³ or -CW¹N(R⁴)R⁵, and Y is alkyl, -CW³R⁶, -COCOR², -NHCOR², -C(=W³)W⁴Rঙ, -(NH)_mSO₂Rঙ, -(NH)_mSO₂OR¹⁰ or -(NH)_mSO₂N(R¹¹)R¹², wherein each of R¹, R⁶ and Rঙ, which are independent from one another, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R² and R², which are

5

10

15

20

25

30

35

50

55

independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, each of R³, R³ and R¹⁰, which are independent from one another, is alkyl which may be substituted, alkenyl which may be substituted, alkynyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, each of R⁴, R³, R¹¹ and R¹², which are independent from one another, is alkyl which may be substituted, each of W¹, W², W³ and W⁴, which are independent from one another, is an oxygen atom or a sulfur atom, and m is 0 or 1, provided that a combination wherein one of X and Y is -COCF₂X¹ wherein X¹ is a hydrogen atom, a halogen atom, alkyl or haloalkyl, and the other is -COCF₂X² wherein X² is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or -COOX³ wherein X³ is alkyl which may be substituted or phenyl which may be substituted, is excluded.

10. An anti-inflammatory agent which contains as an active ingredient a diaminotrifluoromethylpyridine derivative of the formula (I) or its salt:

wherein X is -CWIRI, -COCOR2, -CWINHCOR2, -C(=WI)W2R3 or -CWIN(R4)R5, and Y is alkyl, $-CW^3H^5$, $-COCOR^7$, $-NHCOR^7$, $-C(=W^3)W^4H^8$, $-(NH)_mSO_2R^9$, $-(NH)_mSO_2OR^{10}$ or $-(NH)_mSO_2N(R^{11})R^{12}$. wherein each of R1, R6 and R9, which are independent from one another, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R2 and R7, which are independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, each of R^3 , R^8 and R^{10} , which are independent from one another, is alkyl which may be substituted, alkenyl which may be substituted, alkynyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, each of R4, R5, R11 and R12, which are independent from one another, is alkyl which may be substituted, each of W1, W2, W3 and W4, which are independent from one another, is an oxygen atom or a sulfur atom, and m is 0 or 1, provided that a combination wherein one of X and Y is -COCF2X1 wherein X1 is a hydrogen atom, a halogen atom, alkyl or haloalkyl, and the other is -COCF₂X² wherein X² is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or -COOX3 wherein X3 is alkyl which may be substituted or phenyl which may be substituted, is excluded.

2 11. An anti-pancreatitis agent which contains as an active ingredient a diaminotrifluoromethylpyridine derivative of the formula (I) or its salt:

wherein X is -CW¹R¹, -COCOR², -CW¹NHCOR², -C(=W¹)W²R³ or -CW¹N(R⁴)R⁵, and Y is alkyl, -CW³R⁶, -COCOR², -NHCOR², -C(=W³)W⁴R³, -(NH)_mSO₂R³ -(NH)_mSO₂OR¹o or -(NH)_mSO₂N(R¹¹)R¹² wherein each of R¹, R⁶ and R³, which are independent from one another, is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a polycyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, each of R² and R², which are independent from each other, is alkyl which may be substituted, alkoxy which may be substituted, phenyl which may be substituted or phenoxy which may be substituted, alkenyl which may be substituted, alkenyl which may be substituted, alkenyl which may be substituted,

alkynyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, each of R^4 , R^5 , R^{11} and R^{12} , which are independent from one another, is alkyl which may be substituted, each of W^1 , W^2 , W^3 and W^4 , which are independent from one another, is an oxygen atom or a sulfur atom, and m is 0 or 1, provided that a combination wherein one of X and Y is $-COCF_2X^1$ wherein X^1 is a hydrogen atom, a halogen atom, alkyl or haloalkyl, and the other is $-COCF_2X^2$ wherein X^2 is a hydrogen atom, a halogen atom, alkyl, haloalkyl or alkylcarbonyl, or $-COOX^3$ wherein X^3 is alkyl which may be substituted or phenyl which may be substituted, is excluded.

a 12. A trifluoromethylpyridine derivative of the formula (VIII):

wherein Q is a hydrogen atom, nitro or amino, and Y⁵ is $-(NH)_mSO_2R^9$ wherein R⁹ is a chain hydrocarbon group which may be substituted, a monocyclic hydrocarbon group which may be substituted, a monocyclic heterocycle group which may be substituted, a monocyclic heterocycle group which may be substituted or a polycyclic heterocycle group which may be substituted, and m is 0 or 1, $-(NH)_mSO_2OR^{10}$ wherein R¹⁰ is alkyl which may be substituted, alkenyl which may be substituted, alkynyl which may be substituted, cycloalkyl which may be substituted, phenyl which may be substituted or benzyl which may be substituted, and m is as defined above, or $-(NH)_mSO_2N(R^{11})R^{12}$ wherein each of R¹¹ and R¹² is alkyl which may be substituted, and m is as defined above, provided that when Q is a hydrogen atom and m is 0, R⁹ is other than naphthyl or phenyl which may be substituted.

This Page Blank (uspto)

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	BLACK BORDERS
0	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
প্র	FADED TEXT OR DRAWING
O	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
Ö	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox

THIS PAGE BLANK (USPTO)