Kartkówka 2

Zadanie 1. Zbadać liczbę rozwiązań w zalezności od parametru $a \in \mathbb{R}$: $x^5 - 5x = a$.

Zadanie 2. Udowodnić, że dla każdego $x \in (-1, \infty)$

$$\frac{x}{x+1} \leqslant \ln(1+x) \leqslant x.$$

Kartkówka 2

Zadanie 1. Zbadać liczbę rozwiązań w zalezności od parametru $a \in \mathbb{R}$: $x^5 - 5x = a$.

Zadanie 2. Udowodnić, że dla każdego $x \in (-1, \infty)$

$$\frac{x}{x+1} \leqslant \ln(1+x) \leqslant x.$$

Kartkówka 2

Zadanie 1. Zbadać liczbę rozwiązań w zalezności od parametru $a \in \mathbb{R}$: $x^5 - 5x = a$.

Zadanie 2. Udowodnić, że dla każdego $x \in (-1, \infty)$

$$\frac{x}{x+1} \leqslant \ln(1+x) \leqslant x.$$

Kartkówka 2

Zadanie 1. Zbadać liczbę rozwiązań w zalezności od parametru $a \in \mathbb{R}$: $x^5 - 5x = a$.

Zadanie 2. Udowodnić, że dla każdego $x \in (-1, \infty)$

$$\frac{x}{x+1} \leqslant \ln(1+x) \leqslant x.$$

Kartkówka 2

Zadanie 1. Zbadać liczbę rozwiązań w zalezności od parametru $a \in \mathbb{R}$: $x^5 - 5x = a$.

Zadanie 2. Udowodnić, że dla każdego $x \in (-1, \infty)$

$$\frac{x}{x+1} \leqslant \ln(1+x) \leqslant x.$$

Kartkówka 2

Zadanie 1. Zbadać liczbę rozwiązań w zalezności od parametru $a \in \mathbb{R}$: $x^5 - 5x = a$.

Zadanie 2. Udowodnić, że dla każdego $x \in (-1, \infty)$

$$\frac{x}{x+1} \leqslant \ln(1+x) \leqslant x.$$