Name - Ayush Chauhan Sec - B ROLL NO. -3+

- 1	01	1 6
111	rourial	- 3
12		

-		
1.	BFS	DFS
	It stands for Breadth	It stands for Depth
	first Search	first Search
	Truses Quice Data	It was stack data
	Storedure.	stouden.
	It is more subtable for	It is more purtable who
	searching vertices which	there are solutions away
	are closes to given source	from source
(du)	Here, siblings are visited	Here children are visited
	before children	before siblings
(v)	There is no concept of	It is a recursive algo.
	back+ backing.	that uses backbacking
(w)	It requires more	It requires less
	memory,	memory.
	Harman Maria	Market Con
	0 10 00	

- (1) BFS Bipartite graph and shortest path, peerto peen networking, GPS manigation system.
 (2) DFS Acyclic graph, topological sorts
 Scheduling problems.
- for implementing BFS, we need a quie data node. We use quice because things don't have to be processed Immediately, but have to be processed in FIFO order

Dense Craph Sparse Graph For sparse graph, it is preferred to use. Adjacency for duse graph, it is preferred to use Adjacucy matrix

4. For detecting cycle in BFS: Use Kohn's algorithm for Topological Sorting 1. Compute in-degree for each of vertex presenting graph. s initialize count of visited moder as O. Pick all vertices with in-degree as O and add them on queul

	Date ://
71	V2 {a3 (b) {c} {d} {e} {f} {g} {h} {i} {j})
	Ezsab) (asc) {b,c) {b,d} {e,f) {e,g) {h,i}
	(9,6) { 9,6) { c) { d) { e) {f) {g} {h} {û} {û}} {û}} } (9,6) { d) { e) { f} {g} {h} {û} {û} {û} {û} {û} {û} {û} {û} {û} {û
	(b)d) {a,b,c,d) {e}{f}{g}{h}{i}{f}{g}{h}{i}{f}{g}{f}{g}{h}{i}{f}{f}{g}{g}{h}{f}{f}{f}{g}{g}{h}{f}{f}{f}{g}{g}{h}{f}{f}{f}{g}{g}{f}{h}{f}{f}{f}{g}{g}{f}{h}{f}{f}{f}{g}{g}{f}{h}{f}{f}{f}{g}{g}{f}{f}{g}{g}{f}{h}{f}{f}{f}{g}{g}{f}{f}{g}{g}{f}{f}{g}{g}{f}{g}{g}{f}{g}{g}{f}{g}{g}{g}{g}{g}{g}{g}{g}{g}{g}{g}{g}{g}
	(h,d) 29,b,c,ds) est,gl(h,d)(g)
8.	No. of connected components = 3 We take source node as 5
	Applying Topological South
	DES(5) 2:5/4, POP 5
	DES (0) 2:4/2, POP 4
	20 €5(2), 9:2/0, POP 2

DFS(3) R 9:0/3, POPO, POP3 1 9:1, POP1 DFS(1) Asswer:542031

		Wash Mash
10.	Min Heap	Max Heap
10	Key present in nort node	Key present at rootnode
	must be less than or	must be greater than or
	equal to among keys	equal to among keys
	present at all of its	present of all of its
11/1	children.	children
	11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 10
2'	It uses as conding	It was descarding
	It uses ascending priority.	priority.
	A STATE OF STATE	cally the
3.	The smallest elementis	The larger clement is
	first to be popped	the first to be popped
	from the heap,	from the heap.
	F S S S S S S S S S S S S S S S S S S S	WHEN TO BE OUT

-