Algorithms and their complexity Lecture 9a

Waterford Institute of Technology

March 9, 2015

John Fitzgerald

Algorithm

Description

What is a software algorithm?

- Program that solves problem
- Algorithm examples:
 - Sorting data
 - Searching data
 - Graphs (social networks)
 - Cryptography
 - Image processing
 - From labs:
 - Generate PIN
 - Validate PIN

Modelling social network

Algorithm

Requirements

In developing an algorithm we are interested in:

- Does it produce correct answer for all valid inputs?
- How long to solve task?
- How much computer memory used?
- Is code easy to understand & thus maintain?
 - Conceptual complexity
 - Computational complexity

Algorithm output

Expect correct result for all valid inputs

Easier said than done

Examples of incorrect output:

- Timsort
 - Extensively used on Android
 - Bug recently discovered
- Binary search
 - Small & conceptually simple
 - Yet took years to eliminate all bugs for all inputs

Algorithm performance

How long to run?

Goal not measurement run time because of variations in

- Computer speeds
- Language implementation
- Inputs

Instead, determine inherent complexity

- Classes of complexity exist
- Provide comparison of growth of number computing operations

Big-O Complexity Chart

Linear search algorithm

How long to run?

Consider the linear search algorithm below

Running times could vary significantly:

- If String search near start of String[] target
 - method returns immediately
- But if towards end of list
 - return might be much later
 - providing very different run times for same algorithm

```
boolean linearSearch(String search, String[] target)
{
  for (int i = 0; i < target.length; i += 1)
    if (target[i].contains(search))
      return true;
  return false;
}</pre>
```

Algorithm efficiency

Choices available

We have a choice to make:

- Best case
 - Considering all possible inputs
 - Linear search runs in constant time
 - Returns immediately
- Worst case
 - Search time proportional input size
 - Linear search is *linear* in size list
- Average

We will choose worst case.

 We will seek an upper bound on number operations in algorithm.

Counting operations

Agree some rules

Basic assumptions

- Concept of random access machine (RAM)
- An abstract computer
- Measure size of input
- Sequential execution operations
- Operations take constant time
 - Assignment (a = 10)
 - Comparison (a==10)
 - Arithmetic (a/10)
 - Memory access (b[i])

Counting operations

Simple example

Approximate number operations or steps in *countOperations*:

 $2001 + 2n + 2n^2$

```
Number
                                          operations
static int countOperations(int n)
 int ans = 0;
  for (int i = 0; i < 1000; i += 1)
    ans += 1: ←
                                             2000
  for (int i = 0; i < n; i += 1)
     ans +=1:
                                             2n
  for (int i = 0; i < n; i += 1)
    for (int j = 0; j < n; j += 1)
                                             2n^2
      ans += 1: ←
  return ans:
```

Count operations

Number steps or operations

 $2001 + 2n + 2n^2$ (ignoring for overhead)

- If n small output dominated by 2000 term
- For large n 2000 term insignificant
 - If n is 10 output is 2221
 - If n is 10,000 output exceeds 200 million (2.0002E+08)

```
static int countOperations(int n)
{
  int ans = 0;
  for (int i = 0; i < 1000; i += 1)
    ans += 1;
  for (int i = 0; i < n; i += 1)
    ans +=1;
  for (int i = 0; i < n; i += 1)
    for (int j = 0; j < n; j += 1)
    ans += 1;
  return ans;
}</pre>
```


Comparing measurement formulae

In the case of $2001 + 2n + 2n^2$ we use n^2

- We use the highest order variable
- And disregard any coefficient
- Provides approximate upper bound measurement
- Importantly, it provides representation of growth of complexity as input becomes very large.

Use of asymptotic notation

Last example: Some constant times n² provides upper bound on number operations

Asymptotic notation used to describe growth of algorithm operations as input size approaches infinity.

We now introduce **Big O** notation

- Running time of $2001 + 2n + 2n^2$
 - **O**(**n**²) or
 - Big-O(n²)

Further asymptotic notation

Big Θ (Big Theta)

- For large *n* :
 - k · f(n) provides upper bound
 - $c \cdot f(n)$ provide lower bound
- k and c are some constants.

Further asymptotic notation

Big Ω (Big Omega)

- For large n, $c \cdot f(n)$ provides lower bound run time
- c is some constant.

Alternative measurement approach

Tilde notation

- Proposed by Robert Sedegwick
- Denoted by: ~f(n)
- Differs from Big-O
 - Coefficient of term with highest exponent retained
- Consider: $f(x) = 2000 + 2n + 2n^2$
 - ~2n² is considered the complexity of this algorithm

Big-O complexity

Categories

- Constant O(1): independent of input
- Linear O(n): find smallest item unsorted array
- Logarithmic O(log n): binary search
- Linearithmic O(n log n): mergesort
- Polynomial $O(n^c)$, c>0: selection sort quadratic (c==2)
- Exponential O(2ⁿ): Binary exponential backoff (networking)
- Factorial O(n!): Brute force search travelling salesman problem

Big-O complexity

Categories

- Constant O(1)
- Logarithmic O(log n)
- Linear O(n)
- Linearithmic O(n log n)
- Polynomial O(n^c)
- Exponential O(2ⁿ)
- Factorial O(n!)

Big-O Complexity

Acceptable categories

Very large performance differences between categories

Does this really matter?

- For small problems, not really
- For very large problems, definitely yes.

Size array	Merge sort	Selection sort
20,000	2ms	868ms
100,000	10ms	13s 230ms
1,000,000	117ms	21m 55s 254ms
500,000,000	2m 2s 652ms	10.25 years

Search algorithms

Binary search

Linear search complexity is O(n).

A more efficient *Binary search* has complexity O(log n)

- Works with a sorted array
- Array considered as upper and lower half
- Check carried out: is item in upper or lower?
- Check repeated in the half array containing item.
- This search method repeated until item found if it exists.
- Each iteration reduces the search space in two.
- This explains the O(log n) order of complexity.

Search algorithms

Binary search

Binary search (22)

Search algorithms

Binary search

Binary search (0)

Summary

- Methods to measure complexity
 - Elapsed time
 - Big O
 - Big Θ
 - Big Ω
 - Tilde notation
- Example algorithms
 - Selection sort
 - Merge sort
 - Linear search
 - Binary search
- Relative performance of algorithms

Referenced Material

1. Algorithms (Khan Academy)

www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation [Accessed 2015-03-03]

2. TimSort bug fixed with formal methods http://www.cwi.nl/news/2015/java-bug-fixed-formal-methods-cwi

[Accessed 2015-03-03]

3. edX \mid MITx: 6.00.1x Introduction to Computer Science and Programming

https://www.edx.org [Accessed 2015-03-05]

Referenced Material

4. Robert Sedgewick: Algorithms for the masses

http://osric.com/chris/accidental-developer/2012/04/robert-sedgewick-algorithms-for-the-masses/[Accessed 2015-03-05]