TD nº 4

Calcul propositionnel 4

Systèmes de preuve

1 La résolution

Exercice 4.1. Une clause C_0 subsume une clause C_1 quand tout littéral de C_0 est aussi un littéral de C_1 . On écrit alors $C_0 \sqsubseteq C_1$.

- Montrez $C_0 \sqsubseteq C_1$ implique $C_0 \models C_1$.
- Montrez que l'ensemble des modèles de \mathscr{C} n'est pas modifié si on retire de \mathscr{C} toute clause C_1 telle qu'il existe une clause $C_0 \in \mathscr{C}$ telle que $C_0 \sqsubseteq C_1$.

Exercice 4.2. (*Principe de résolution*). Soient θ , φ , ψ trois formules propositionnelles. Montrer que si $\Gamma = \{\theta \lor \varphi, \neg \theta \lor \psi\}$, alors $\mathsf{mod}(\Gamma) = \mathsf{mod}(\Gamma \cup \{\varphi \lor \psi\})$.

Exercice 4.3. Utiliser la résolution pour prouver ou infirmer les affirmations suivantes.

- 1. $\models p \Rightarrow p$
- 2. $\models ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
- 3. $\models ((s \Rightarrow r) \land p \land \neg r) \Rightarrow \neg r \land \neg s \land p$
- 4. $\models [(p \land q) \lor (r \land q)] \Rightarrow (p \lor r)$
- 5. $\{q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r)\} \models q \Rightarrow r$
- 6. $\{q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r)\} \models q \land r$
- 7. $\models (p \land (q \lor r)) \Leftrightarrow ((\neg p \Rightarrow r) \land (p \land q)).$
- 8. $\{p \Rightarrow q, q \Rightarrow r, p \lor \neg r\} \models p \land q \land r$.
- 9. $\{p \Rightarrow q, q \Rightarrow r, p \lor \neg r\} \models (p \land q \land r) \lor (\neg p \land \neg q \land \neg r).$

2 Calcul des Séquents

Exercice 4.4. Donner des preuves des séquents suivants :

- 1. $\vdash \neg \neg p \Rightarrow p$
- 2. $p \Rightarrow q \vdash (p \Rightarrow \neg q) \Rightarrow \neg p$
- 3. $\vdash (p \Rightarrow q) \Rightarrow ((p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \Rightarrow r))$
- 4. $p \Rightarrow q \vdash (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$
- 5. $(p \land q) \Rightarrow r \vdash p \Rightarrow (q \Rightarrow r)$
- 6. $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$
- 7. $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$

2.1 Le calcul des séquents avec coupure

On rappelle la règle de coupure :

$$\frac{\Gamma_1 \vdash \varphi, \Delta_1 \quad \Gamma_2, \varphi \vdash \Delta_2}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} \quad (C)$$

Exercice 4.5 (Introduction de la règle de coupure).

- 1. Montrez que la règle de coupure est correcte. Est-elle inversible?
- 2. La propriété de la sous-formule est-elle toujours satisfaite dans le calcul des séquents avec coupure?

Exercice 4.6. En utilisant la règle de coupure, montrez que si il existe une preuve du séquent $\Gamma \vdash p \land \neg p$ alors il existe une preuve du séquent $\Gamma \vdash \varphi$, pour toute formule φ .

Exercice 4.7. Démontrez le séquent $p \Rightarrow q, p \Rightarrow r, q \land r \Rightarrow s \vdash p \Rightarrow s$. Pour cela, vous démontrerez d'abord les séquents $p \Rightarrow q, p \Rightarrow r \vdash p \Rightarrow q \land r$ et $p \Rightarrow q \land r, q \land r \Rightarrow s \vdash p \Rightarrow s$