# Modèles linéaires généralisés sur données de comptages Master 2 MIND

### Ryma Lakehal

Faculté des sciences Université de Montpellier

8 novembre 2020



### Plan



#### Introduction

### Le modèle linéaire généralisé

#### Données Parastism

Présentation des données Parastism

Visualisation des Parastism

### Modèle linéaire classique

Normalité des résidus Homoscédasticité

### Régression de Poisson

Ajustement du modèle de régression linéaire de Poisson aux donnéesParastism

#### Régression binomiale négative

Ajustement du modèle de régression binomiale négative aux donnéesParastism Calculs des effets marginaux

#### conclusion

### Introduction



- Régression de Poisson
- Régression binomiale négative

### Pourquoi ces modèles?

• Les modèles linéaires classiques ne sont pas adaptés pour analyser des variables à expliquer (ou réponses) de type "comptage".

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
$$\varepsilon \sim N(0, \sigma)$$

- Les données de type comptage ne sont pas distribuées selon une loi Normale.
- La variance des résidus n'est pas constante mais proportionnelle aux comptages moyens prédits par le modèle.

# Le modèle linéaire généralisé



$$y_i \sim N(\mu_i, \sigma)$$
$$E(Y|X) = \mu$$
$$\mu_i = \beta_0 + \beta_1 x_i$$

Ces modèles sont constitués de trois éléments :

- un prédicteur linéaire,  $\eta = X\beta$
- une distribution de probabilité de la famille exponentielle  $y_i \sim \operatorname{Prob}(\mu_i)$
- une fonction de lien  $\eta_i = g(\mu_i)$

### Présentation des données Parastism



- 196 fruits contient au moins un parasitoïde vivant ou éradiqué
- 63 fruits non infectés "contrôlés"
- 67 fruits avec le parasite A. melinus sans sucre
- 66 fruits infectés du même parasite plus le sucre
- au total : 949 parasitoïdesvivants et 365 parasites éliminés contenant un œuf ou larves d'Aphytis.

|   | Treatment      | Fruit | Alive | Parasitized |
|---|----------------|-------|-------|-------------|
| 0 | Releases_sugar | 1     | 4     | 8           |
| 1 | Releases_sugar | 2     | 0     | 3           |
| 2 | Releases_sugar | 3     | 4     | 3           |
| 3 | Releases_sugar | 4     | 2     | 2           |
| 4 | Releases_sugar | 5     | 1     | 1           |

|       | Fruit      | Alive      | Parasitized |
|-------|------------|------------|-------------|
| count | 196.000000 | 196.000000 | 196.000000  |
| mean  | 33.188776  | 4.841837   | 1.862245    |
| std   | 18.944185  | 6.140282   | 2.955465    |
| min   | 1.000000   | 0.000000   | 0.000000    |
| 25%   | 17.000000  | 2.000000   | 0.000000    |
| 50%   | 33.000000  | 3.000000   | 1.000000    |
| 75%   | 49.250000  | 5.000000   | 2.000000    |
| max   | 67.000000  | 37.000000  | 23.000000   |

### Visualisation des données Parastism





FIGURE - Histogramme des traitements en fonction de la variable Parasitized

### Modèlisation linéaire



Le modèle :

Parasitized<sub>i</sub> = 
$$\beta_0 + \beta_1 Control_i + \beta_2 Realises_i + \beta_3 Realises\_sugar_i + \varepsilon_i$$
  
 $\varepsilon \sim N(0, \sigma)$  (3)



FIGURE - Distribution et normal Q-Q plot des résidus du modèle linéaire ajusté

### Homoscédasticité - scale-location plot





FIGURE - scale-location plot pour vérifier l'homoscédasticité

# Régression de Poisson



Le modèle est :

$$Parasitized_i \sim Poisson(\mu_i)$$
  $\mathbb{E}(Parasitized|Treatment) = \mu$  
$$\mu_i = \exp(\eta_i)$$
 
$$\eta_i = \beta_0 + \beta_1 Control_i + \beta_2 Realises_i + \beta_3 Realises\_sugar_i$$

L'ajustement est réalisé à l'aide de la fonction Poisson.fit du module statsmodels

### Régression de Poisson



#### Generalized Linear Model Regression Results

| Dep. Variable:   | Parasitized      | No. Observations: |   | 196    | 5      |
|------------------|------------------|-------------------|---|--------|--------|
| Model:           | GLM              | Df Residuals:     |   | 19:    | 3      |
| Model Family:    | Poisson          | Df Model:         |   |        | 2      |
| Link Function:   | log              | Scale:            |   | 1.0000 | 9      |
| Method:          | IRLS             | Log-Likelihood:   |   | -460.4 | 5      |
| Date:            | Sun, 08 Nov 2020 | Deviance:         |   | 595.68 | 8      |
| Time:            | 03:02:42         | Pearson chi2:     |   | 818    |        |
| No. Iterations:  | 5                |                   |   |        |        |
| Covariance Type: | nonrobust        |                   |   |        |        |
|                  |                  |                   |   |        |        |
|                  | CC               | oef std err       | Z | P>   z | [0.025 |
|                  |                  |                   |   |        |        |

| Intercept                      | 0.3112 | 0.108 | 2.886 | 0.004 | 0.100  | 0.523 |
|--------------------------------|--------|-------|-------|-------|--------|-------|
| C(Treatment)[T.Releases]       | 0.0274 | 0.149 | 0.184 | 0.854 | -0.265 | 0.320 |
| C(Treatment)[T.Releases sugar] | 0.7195 | 0.131 | 5.513 | 0.000 | 0.464  | 0.975 |

Le ratio residual deviance/ddl est égal à 5304.4/193, soit 27,48. Ce ratio est très largementsupérieur à 1 et permet de mettre en évidence la présence d'une surdispersion

0.9751



#### Generalized Linear Model Regression Results

| Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations: | Parasitized<br>GLM<br>NegativeBinomial<br>log<br>IRLS<br>Sat, 07 Nov 2020<br>22:45:25 | Df<br>Df<br>Sca<br>Log<br>Dev | . Observations<br>Residuals:<br>Model:<br>ale:<br>g-Likelihood:<br>viance:<br>arson chi2: | :                       | 199<br>19<br>1.0000<br>-355.4<br>228.5<br>290 | 3<br>2<br>9<br>2<br>3     |                         |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------|---------------------------|-------------------------|
| Covariance Type:                                                                       | nonrobust                                                                             |                               |                                                                                           |                         |                                               |                           |                         |
| =======================================                                                |                                                                                       |                               |                                                                                           |                         |                                               |                           |                         |
|                                                                                        | (                                                                                     | oef                           | std err                                                                                   | Z                       | P>   z                                        | [0.025                    | 0.975]                  |
| Intercept C(Treatment)[T.Relea C(Treatment)[T.Relea                                    | ises] 0.0                                                                             | 3112<br>3274<br>7195          | 0.166<br>0.230<br>0.219                                                                   | 1.877<br>0.119<br>3.282 | 0.061<br>0.905<br>0.001                       | -0.014<br>-0.424<br>0.290 | 0.636<br>0.479<br>1.149 |

HMMA307 8 novembre 2020 11 / 13

# Calculs des effets marginaux

--+:..-D:----:-1 M---:--1 [ff--+-



Les effets marginaux sont utilisées pour décrire l'impactvd'un prédicteur sur la variable à expliquer.

On s'intéresse aux effects marginaux à la moyenne, pour ce faire, on a la fonction .get\_margeff() de la bibliothèque Statsmodels.

| NegativeBinomial Margin                 | al Effects   |         |       |        |        |        |  |
|-----------------------------------------|--------------|---------|-------|--------|--------|--------|--|
|                                         |              |         |       |        |        |        |  |
| Dep. Variable:                          | Parasitized  |         |       |        |        |        |  |
| Method:                                 | dydx         |         |       |        |        |        |  |
| At:                                     | mean         |         |       |        |        |        |  |
| ======================================= |              |         |       |        |        |        |  |
|                                         | dy/dx        | std err | Z     | P>   z | [0.025 | 0.975] |  |
|                                         |              |         |       |        |        |        |  |
| C(Treatment)[T.Releases]                | 0.0481       | 0.438   | 0.110 | 0.913  | -0.811 | 0.907  |  |
| C(Treatment)[T.Releases_s               | ugar] 1.2632 | 0.429   | 2.948 | 0.003  | 0.423  | 2.103  |  |
|                                         |              |         |       |        |        |        |  |

La valeur de **Releases\_sugar** est 1.26 ce qui peut être interprété que quand la valeur de **Releases\_sugar** augmente d'une unité, la probabilité des parasitoïdes éliminé ou le taux de parasitism augmente de 126%.

### Conclusion



En appliquant les différents modèles de modélisation, nous avons constaté que le modèle linéaire généralisé de distribution binomiale négative est celui qui s'adapte le mieux à notre jeu de données **Parastism**. Et de ce dernier modèle, on conclut que les provisions de sucre aident les parasitoïdes à maintenir leurs réserves de sucre ce qui fera augmenter leurs fécondités et ainsi le taux de parasitisme (Parasitism)