Outline for today

- 1. Classification Metrics
- 2. Image Features
- 3. Data Set
- 4. Submission System

Classification Metrics

- Numbers which tell how well a classification problem is solved
- Example: Detect lung cancer from CT images
- Labels:
 - N: no cancer
 - P: cancer
- Build a classifier, than evaluate it on known cases

Different possible outcomes

Outcome	Predicted Label	True Label	
true positive (TP)	Р	Р	
false positive (FP)	Р	N	Type I error
false negative (FN)	N	Р	
true negative (TN)	N	N	Type II error

Accuracy

Accuracy: Proportion of true results among all cases

$$\frac{TP + TN}{TP + FP + TN + FN}$$

- Problematic in unbalanced dataset
 - E.g. # Positives < # Negatives

$$\frac{TP + TN}{TP + FP + TN + FN}$$

Easy to always predict "Negative"

$$\frac{TP + TN}{TP + FP + TN + FN} \approx 1$$

Sensitivity and Specificity

- Sensitivity or true positive rate (TPR)
 - Proportion of true positive among all positives

$$\frac{TP}{TP+FN}$$

- Specificity or true negative rate (TNR)
 - Proportion of true positive among all positives

$$\frac{TN}{TN+FP}$$

Sensitivity and Specificity

False positive rate (FPR)

$$\frac{FP}{TN+FP} = \frac{TN+FP}{TN+FP} - \frac{TN}{TN+FP} = 1 - \frac{TN}{TN+FP} = 1 - TNR$$

False negative rate (FNR)

$$\frac{FN}{TP+FN} = \frac{TP+FN}{TP+FN} - \frac{TP}{TP+FN} = 1 - \frac{TP}{TP+FN} = 1 - TPR$$

Receiver Operating Characteristic (ROC)

- Balance Sensitivity and Specificity
- Plots TPR (Sensitivity) against FPR (1-Specificity)
- Can also be used to find thresholds

Recall, Precision, F1 score

Recall = TPR = Sensitivity

$$\frac{TP}{TP + FN}$$

Precision

$$\frac{TP}{TP + FP}$$

F1 Score (harmonic mean of recall and precision)

$$F_1 = 2 \frac{Precision * Recall}{Precision + Recall}$$

Outline for today

- 1. Classification Metrics
- 2. Image Features
- 3. Data Set
- 4. Submission System

Image Features

Goal: Extract information as a list of numbers from images

- What properties can be used to distiguish benign from malignant?
 - Color
 - Shape
 - Texture

Image Features

Color Histograms

Moments

General spatial moments:

$$M_{pq} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^p \, y^q f(x, y) dx dy$$

Analogy in Mechanics:

$$\bar{x} = \frac{M_{10}}{M_{00}} = \frac{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^1 \rho(x, y) dx dy}{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \rho(x, y) dx dy}$$

Higher order moments capture distribution of "mass"

Hue Moments

Central moments:

$$\mu_{pq} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - \bar{x})^p (y - \bar{y})^q f(x, y) dx dy$$

For digital images:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^p (y - \bar{y})^q$$

 Seven Hue moments [1] are calculated from combinations of central moments

e.g.
$$(\mu_{20} - \mu_{02})^2 + {\mu_{11}}^2$$

Hue Moments (2)

- Hue moments are invaraint to:
 - Image scale
 - Translations
 - Rotations
 - Reflections (partially)

Other feature descriptors

• Texture, e.g. Haarlick

Histogram of Oriented Gradients (HOG)

 Make sure different features are on the same scale, normalize!

 Search for more feature descriptors and try out different combinations

- 1. Classification Metrics
- 2. Image Features
- 3. Data Set
- 4. Submission System

Data Set

Link to dataset:

https://challenge2018.isic-archive.com/task3/

10k training images with labels, 1.5k test images without labels

Validation split of 2.5k images in Stud.IP

Two tasks: Multiclass and binary classification

Outline for today

- 1. Classification Metrics
- 2. Image Features
- 3. Data Set
- 4. Submission System

Submission System

Link to website:

https://cgi.tu-harburg.de/~c00e1fn1/

Groups