SITUATION

Une fonction f définie sur I est périodique de période T si et seulement si $orall x \in I$, $x+T \in I$ et

$$f\left(x+T\right) =f\left(x\right) .$$

ÉNONCÉ

Soit la fonction f définie par :

$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = 3\sin \left(4x - 1
ight)$

Étudier la périodicité de f.

Etape 1

Conjecturer si possible la période

On conjecture la période T de la fonction à l'aide de son expression.

Les fonctions sinus et cosinus sont 2π -périodiques. On a donc, pour tout réel X:

$$f\left(X+2\pi\right)=f\left(X\right)$$

Sachant cela, on peut en déduire qu'une fonction f de type $f\left(x
ight)=\cos\left(ax+b
ight)$ (ou

$$f\left(x
ight) =\sin \left(ax+b
ight)$$
) est $rac{2\pi }{a}$ -périodique.

En effet:

$$f\left(X + \frac{2\pi}{a}\right) = \cos\left(a\left(x + \frac{2\pi}{a}\right) + b\right) = \cos\left(ax + b + 2\pi\right) = \cos\left(ax + b\right)$$

EXEMPLE

La fonction définie par :

$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = \cos\left(3x+2
ight)$

est périodique de période $\frac{2\pi}{3}$.

Si une fonction comporte deux expressions trigonométriques, on choisit le plus petit multiple commun aux deux périodes.

APPLICATION

On a,
$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = 3\sin\left(4x-1
ight)$.

On conjecture donc que f est périodique de période $\frac{\pi}{2}$.

Etape 2

Vérifier les conditions de périodicité

On vérifie que pour tout $\,x\in D_f$, on a $\,x+T\in D_f$.

On calcule ensuite $f\left(x+T
ight)$, et on l'exprime en fonction de $f\left(x
ight)$.

APPLICATION

On a, pour tout réel $\emph{x}, \, \emph{x} + \dfrac{\pi}{2} \in \mathbb{R}$.

De plus, pour tout réel x:

$$f\left(x + \frac{\pi}{2}\right) = 3\sin\left(4\left(x + \frac{\pi}{2}\right) - 1\right)$$

D'où, pour tout réel x:

$$f\left(x+rac{\pi}{2}
ight)=3\sin\left(4x+4 imesrac{\pi}{2}-1
ight)$$

$$f\left(x + \frac{\pi}{2}\right) = 3\sin\left(4x - 1 + 2\pi\right)$$

Donc, pour tout réel x:

$$f\left(x + \frac{\pi}{2}\right) = 3\sin\left(4x - 1\right)$$

Etape 3

Conclure

Si $f\left(x
ight)=f\left(x+T
ight)$ alors la fonction est périodique de période T .

APPLICATION

On a, pour tout réel x:

$$f\left(x + \frac{\pi}{2}\right) = f\left(x\right)$$

Donc la fonction f est périodique de période $\frac{\pi}{2}$.