8.11. If $f_k \to f$ in L^p , $1 \le p < \infty$, $g_k \to g$ pointwise, and $||g_k||_{\infty} \le M$ for all k, prove that $f_k g_k \to f g$ in L^p .

Solution. By Minkowski's inequality,

$$||f_k g_k - fg||_p \le ||f_k g_k - fg_k||_p + ||fg_k - fg||_p \le M ||f_k - f||_p + ||fg_k - fg||_p$$

Since $g_k \to g$ pointwise and since $|g_k| \le M$ a.e., it follows that $|g| \le M$ a.e., so $|g_k - g| \le 2M$ a.e. Thus,

$$\int |fg_k - fg|^p \le \int (2M)^p |f|^p < +\infty,$$

so $|fg_k - fg|^p \in L^1$. By the dominated convergence theorem, we then have

$$\lim_{k \to \infty} \int |fg_k - fg|^p = \int \lim_{k \to \infty} |f|^p |g_k - g|^p = 0,$$

so $||fg_k - fg||_p \to 0$. Since $||f_k - f||_p \to 0$ as well, we have

$$\lim_{k \to \infty} ||f_k g_k - fg||_p = 0,$$

as desired. \Box

8.12. Let $f, \{f_k\} \in L^p$. Show that if $||f - f_k||_p \to 0$, then $||f_k||_p \to ||f||_p$. Conversely, if $f_k \to f$ a.e. and $||f_k||_p \to ||f||_p$, $1 \le p < \infty$, show that $||f - f_k||_p \to 0$.

Solution. By Minkowski's inequality, $|||f||_p - ||f_k||_p | \le ||f - f_k||_p$, so $||f - f_k||_p \to 0$ implies $||f||_p \to ||f_k||_p$. (If p < 1, we have $|||f||_p - ||f_k||_p | \le c ||f - f_k||_p$ for some c > 1, so the argument still holds.) For the converse, since $p \ge 1$, we have

$$|f - f_k|^p \le 2^{p-1} (|f|^p + |f_k|^p),$$

so by Fatou's lemma and the fact that $f_k \to f$ a.e., we have

$$\int 2^{p} |f|^{p} = \int \liminf_{k} 2^{p-1} (|f|^{p} + |f_{k}|^{p}) - |f - f_{k}|^{p}$$

$$\leq \liminf_{k} \int 2^{p-1} (|f|^{p} + |f_{k}|^{p}) + \liminf_{k} - \int |f - f_{k}|^{p}$$

$$= \lim_{k} \int 2^{p-1} (|f|^{p} + |f_{k}|^{p}) - \limsup_{k} \int |f - f_{k}|^{p}$$

$$= \int 2^{p} |f|^{p} - \limsup_{k} \int |f - f_{k}|^{p},$$

where the last equality follows by the dominated convergence theorem since $|f|^p$ and $|f_k|^p$ are in L^1 . Thus, $\limsup_k \int |f - f_k|^p \le 0$, so $||f - f_k||_p \to 0$.

8.13. Suppose that $f_k \to f$ a.e. and that $f_k, f \in L^p$, $1 . If <math>||f_k||_p \le M < +\infty$, show that $\int f_k g \to \int f g$ for all $g \in L^{p'}$, 1/p + 1/p' = 1.

Solution. First suppose $|E| < +\infty$: we may assume |E| > 0, M > 0, and $||g||_{p'} > 0$ or else the result is trivial. Let $\varepsilon > 0$. Then $g \in L^{p'}$, so $g^{p'} \in L^1$, so there exists $\delta > 0$ such that

$$\int_{A} \left| g^{p'} \right| < \varepsilon^{p'}$$

for all $|A| < \delta$. Since $f \in L^p$, f is finite a.e. in E; since $f_k \to f$ a.e., by Egorov there exists a closed subset $F \subseteq E$ such that $|E \setminus F| < \delta$ and $f_k \to f$ uniformly on F, so $|f_k(x) - f(x)| < \varepsilon$ for large enough k and all $x \in F$. Then

$$\left| \int_{E} f_{k}g - \int_{E} fg \right| \leq \int_{E} |(f - f_{k})g|$$

$$= \int_{F} |(f - f_{k})g| + \int_{E \setminus F} |(f - f_{k})g|$$

$$\leq \varepsilon \int_{F} |g| + ||f - f_{k}||_{p} \left(\int_{E \setminus F} |g|^{p'} \right)^{1/p'}$$

$$\leq \varepsilon ||\mathbb{1}_{F}||_{p} ||g||_{p'} + 2M\varepsilon$$

$$\leq \varepsilon (|E|^{1/p} ||g||_{p'} + 2M),$$

where we use Hölder's inequality twice.

Now suppose $|E| = +\infty$: apply the result for $|E| < +\infty$ to obtain

$$\lim_{k} \int (f_k - f)g_j = 0$$

for all $j \geq 1$, where $g_j = g \mathbb{1}_{E \cap \{|x| < j\}}$. Since $g \in L^p(E)$ and $|g_j| \nearrow |g|$, by the monotone convergence theorem

$$\lim_{j} \int |g_{j}|^{p'} = \int |g|^{p'},$$

so we can find j such that

$$\int_{E \setminus \{|x| < j\}} |g|^{p'} = \int_{E} |g|^{p'} - \int_{E} |g_{j}|^{p'} < \varepsilon^{p'}.$$

Then by Hölder's inequality we have

$$\int |(f_k - f)g| \le \int |(f_k - f)g_j| + \int |(f_k - f)(g - g_j)| = \int |(f_k - f)g_j| + ||f - f_k||_p ||g - g_j||_{p'} < \varepsilon + 2M\varepsilon.$$

8.16. A sequence $\{f_k\}$ in L^p is said to converge weakly to a function f in L^p if $\int f_k g \to \int f g$ for all $g \in L^{p'}$. Prove that if $f_k \to f$ in L^p norm, $1 \le p \le \infty$, then $\{f_k\}$ converges weakly to f in L^p . Note by Exercise 15 that the converse is not true.

Solution. Given $g \in L^{p'}$, by Hölder's inequality we have

$$\left| \int_{E} f_{k}g - \int_{E} fg \right| \leq \int_{E} \left| (f - f_{k})g \right| \leq \left| |f - f_{k}| \right|_{p} \left| |g| \right|_{p'}.$$

If $f_k \to f$ in L^p norm, then $\int_E f_k g \to \int_E f g$, so f_k converges weakly to f.

8.17. Suppose that $f_k, f \in L^2$ and that $\int f_k g \to \int f g$ for all $g \in L^2$ (that is, $\{f_k\}$ converges weakly to f in L^2). If $||f_k||_2 \to ||f||_2$, show that $f_k \to f$ in L^2 norm.

Solution. Let $\langle f, g \rangle = \int fg$ be the inner product in L^2 . Since $f_k \to f$ weakly in L^2 , we have

$$\langle f_k, f \rangle \to \langle f, f \rangle = ||f||_2^2$$
 and $\langle f, f_k \rangle \to \langle f, f \rangle = ||f||_2^2$.

Then

$$||f_k - f||_2^2 = ||f||_2^2 - \langle f_k, f \rangle - \langle f, f_k \rangle + ||f_k||_2^2$$

Since $f_k \to f$ weakly, the middle terms limit to $-2||f||_2^2$. Since $||f_k||_2 \to ||f||_2$, the last term limits to $||f||_2^2$. Thus, $||f_k - f||_2^2 \to 0$, so $f_k \to f$ in L^2 norm.

8.18. Prove the parallelogram law for L^2 :

$$||f + g||^2 + ||f - g||^2 = 2 ||f||^2 + 2 ||g||^2$$
.

Is this true for L^p when $p \neq 2$? The geometric interpretation is that the sum of the squares of the diagonals of a parallelogram equals the sum of the squares of the sides.

Solution. Since L^2 is a Hilbert space, we have the identity $||h||^2 = \langle h, h \rangle$:

$$||f+g||^{2} + ||f-g||^{2} = \langle f+g, f+g \rangle + \langle f-g, f-g \rangle$$

$$= (||f||^{2} + \langle f, g \rangle + \langle g, f \rangle + ||g||^{2}) + (||f||^{2} - \langle f, g \rangle - \langle g, f \rangle + ||g||^{2})$$

$$= 2(||f||^{2} + ||g||^{2}).$$

The identity need not hold if $p \neq 2$; there are many counterexamples.

8.22. Let $\{\varphi_k\}$ be a complete orthonormal system in L^2 , and let $m = \{m_k\}$ be a given sequence of numbers. If $f \in L^2$, $f \sim \sum c_k \varphi_k$, define Tf by $Tf \sim \sum m_k c_k \varphi_k$. Show that T is bounded on L^2 , i.e., that there is a constant c independent of f such that $||Tf||_2 \leq c ||f||_2$ for all $f \in L^2$, if and only if $m \in \ell^{\infty}$. Show that the smallest possible choice for c is $||m||_{\infty}$.

Solution. By Parseval's identity, we have

$$||Tf||^2 = \sum_{k=1}^{\infty} |m_k c_k|^2$$
.

If $||m||_{\infty} < +\infty$, then

$$||Tf||^2 \le ||m||_{\infty}^2 \sum_{k=1}^{\infty} |c_k|^2 = ||m||_{\infty}^2 ||f||^2.$$

If $||m||_{\infty} = +\infty$, for every M > 0 there exists $m_k > M$ for some k. Let $f = \varphi_k$: then

$$||Tf|| = |m_k| > M ||f||$$
.

Since M can be arbitrarily large, there is no constant c such that $||Tf|| \le c ||f||$ for all f. If $||m||_{\infty} < +\infty$, for every $\varepsilon > 0$ there is some k such that $||m||_{\infty} - m_k < \varepsilon$. Let $f = \varphi_k$: then

$$||Tf|| = |m_k|.$$

So there is sequence of functions such that $||Tf|| \nearrow ||m||_{\infty}$, so $||m||_{\infty}$ is the smallest possible choice for c.