Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1º Appello — 16 giugno 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 si consideri il sottospazio $U=\langle u_1,u_2\rangle$, ove $u_1=(-2,1,1,3)$ e $u_2=(0,-1,2,1)$. Si determini una base di un sottospazio W tale che $U\oplus W=\mathbb{R}^4$ e si dica se un tale sottospazio W è unico. Dato il vettore $v_t=(t,3,t-1,1)$, si dica per quale valore di t si ha $v_t\in U$. Sia V il sottospazio vettoriale definito dalle equazioni $x_1+x_2+x_3+x_4=0$ e $x_1+2x_2-2x_4=0$. Si determini una base di V e una base di V0.

Esercizio 2. Dati i vettori $v_1 = (2, -3, 1, 0)$ e $v_2 = (0, -1, 1, -1)$, sia $f : \mathbb{R}^4 \to \mathbb{R}^4$ una funzione lineare tale che $\operatorname{Ker}(f) = \operatorname{Im}(f) = \langle v_1, v_2 \rangle$. Si scriva la matrice di una tale f rispetto alla base canonica di \mathbb{R}^4 . Si dimostri che f possiede l'autovalore $\lambda = 0$ con molteplicità (algebrica) 4, ma che essa non è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 4 & 0 & 1 & 0 \\ 0 & 2 & -1 & -2 \\ 1 & -1 & 4 & 0 \\ 0 & -2 & 0 & 4 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Nello spazio euclideo tridimensionale sono dati i punti $A=(0,-1,1),\ B=(-1,0,2)$ e C=(1,-1,-4). Si determini l'equazione cartesiana del piano π passante per A,B e C. Si determini la retta r passante per A e per il punto medio M del segmento BC. Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.

Esercizio 5. Nello spazio vettoriale euclideo \mathbb{R}^3 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazione x+y-z=0. Si esprima il vettore v=(3,-2,4) come somma $v=v_1+v_2$, con $v_1\in U$ e $v_2\in U^{\perp}$. Sia $f:\mathbb{R}^3\to\mathbb{R}^3$ la funzione che associa a un vettore $w\in\mathbb{R}^3$ la sua proiezione ortogonale f(w) sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 .

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1º Appello — 16 giugno 2009

Esercizio 1. Nello spazio vettoriale $V = \mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 2 & -1 & 1 & 0 \\ -1 & 3 & 0 & -2 \\ 1 & 0 & 2 & 0 \\ 0 & -2 & 0 & 4 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 2. Nello spazio euclideo tridimensionale sono dati i punti A=(2,0,1), B=(0,3,-2) e C=(1,1,0). Si determini l'equazione cartesiana del piano π passante per $A, B \in C$. Si determini la retta r passante per A e per il punto medio M del segmento BC. Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.

Esercizio 3. Nello spazio vettoriale \mathbb{R}^4 si consideri il sottospazio $U=\langle u_1,u_2\rangle$, ove $u_1=(1,-3,-1,2)$ e $u_2=(2,1,2,-1)$. Si determini una base di un sottospazio W tale che $U\oplus W=\mathbb{R}^4$ e si dica se un tale sottospazio W è unico. Dato il vettore $v_t=(t+3,t-4,-4,5)$, si dica per quale valore di t si ha $v_t\in U$. Sia V il sottospazio vettoriale definito dalle equazioni $x_1+x_2-x_3-x_4=0$ e $x_1+3x_2+x_4=0$. Si determini una base di V e una base di V0.

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^3 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazione x-2y+z=0. Si esprima il vettore v=(2,3,1) come somma $v=v_1+v_2$, con $v_1 \in U$ e $v_2 \in U^{\perp}$. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione che associa a un vettore $w \in \mathbb{R}^3$ la sua proiezione ortogonale f(w) sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 5. Dati i vettori $v_1 = (1, -2, 1, 0)$ e $v_2 = (-1, 0, 2, -1)$, sia $f : \mathbb{R}^4 \to \mathbb{R}^4$ una funzione lineare tale che $\text{Ker}(f) = \text{Im}(f) = \langle v_1, v_2 \rangle$. Si scriva la matrice di una tale f rispetto alla base canonica di \mathbb{R}^4 . Si dimostri che f possiede l'autovalore $\lambda = 0$ con molteplicità (algebrica) 4, ma che essa non è diagonalizzabile.

Cognome	Nome	Matricola
00011011110		111001100100

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1º Appello — 16 giugno 2009

Esercizio 1. Dati i vettori $v_1 = (3,0,1,1)$ e $v_2 = (1,-1,2,1)$, sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ una funzione lineare tale che $\operatorname{Ker}(f) = \operatorname{Im}(f) = \langle v_1, v_2 \rangle$. Si scriva la matrice di una tale f rispetto alla base canonica di \mathbb{R}^4 . Si dimostri che f possiede l'autovalore $\lambda = 0$ con molteplicità (algebrica) 4, ma che essa non è diagonalizzabile.

Esercizio 2. Nello spazio vettoriale euclideo \mathbb{R}^3 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazione 2x-y-z=0. Si esprima il vettore v=(-1,3,5) come somma $v=v_1+v_2$, con $v_1 \in U$ e $v_2 \in U^{\perp}$. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione che associa a un vettore $w \in \mathbb{R}^3$ la sua proiezione ortogonale f(w) sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 3. Nello spazio euclideo tridimensionale sono dati i punti A=(1,-2,0), B=(0,1,-1) e C=(2,0,-3). Si determini l'equazione cartesiana del piano π passante per $A, B \in C$. Si determini la retta r passante per A e per il punto medio M del segmento BC. Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.

Esercizio 4. Nello spazio vettoriale \mathbb{R}^4 si consideri il sottospazio $U=\langle u_1,u_2\rangle$, ove $u_1=(-1,2,3,1)$ e $u_2=(2,0,-1,3)$. Si determini una base di un sottospazio W tale che $U\oplus W=\mathbb{R}^4$ e si dica se un tale sottospazio W è unico. Dato il vettore $v_t=(t-2,4,t+3,5)$, si dica per quale valore di t si ha $v_t\in U$. Sia V il sottospazio vettoriale definito dalle equazioni $x_1+x_2=0$ e $-x_2+x_3+3x_4=0$. Si determini una base di V e una base di $U\cap V$.

Esercizio 5. Nello spazio vettoriale $V = \mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 3 & -2 & 0 & 1 \\ -2 & 3 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 4 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t P G P$.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1º Appello — 16 giugno 2009

Esercizio 1. Nello spazio euclideo tridimensionale sono dati i punti $A=(-1,2,1),\ B=(0,1,-1)$ e C=(1,-1,2). Si determini l'equazione cartesiana del piano π passante per $A, B \in C$. Si determini la retta r passante per A e per il punto medio M del segmento BC. Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.

Esercizio 2. Dati i vettori $v_1 = (-2, 4, 2, 0)$ e $v_2 = (3, -1, -2, 1)$, sia $f : \mathbb{R}^4 \to \mathbb{R}^4$ una funzione lineare tale che $\operatorname{Ker}(f) = \operatorname{Im}(f) = \langle v_1, v_2 \rangle$. Si scriva la matrice di una tale f rispetto alla base canonica di \mathbb{R}^4 . Si dimostri che f possiede l'autovalore $\lambda = 0$ con molteplicità (algebrica) 4, ma che essa non è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^3 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazione 3x-y+2z=0. Si esprima il vettore v=(3,-1,1) come somma $v=v_1+v_2$, con $v_1\in U$ e $v_2\in U^{\perp}$. Sia $f:\mathbb{R}^3\to\mathbb{R}^3$ la funzione che associa a un vettore $w\in\mathbb{R}^3$ la sua proiezione ortogonale f(w) sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 4. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 1 & -2 & 1 & 0 \\ -2 & 5 & 0 & 0 \\ 1 & 0 & 7 & -1 \\ 0 & 0 & -1 & 3 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 5. Nello spazio vettoriale \mathbb{R}^4 si consideri il sottospazio $U=\langle u_1,u_2\rangle$, ove $u_1=(1,-2,3,2)$ e $u_2=(2,1,2,-1)$. Si determini una base di un sottospazio W tale che $U\oplus W=\mathbb{R}^4$ e si dica se un tale sottospazio W è unico. Dato il vettore $v_t=(t-3,-7,t+3,7)$, si dica per quale valore di t si ha $v_t\in U$. Sia V il sottospazio vettoriale definito dalle equazioni $2x_1-x_3=0$ e $x_1+x_3-4x_4=0$. Si determini una base di V e una base di V0.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1º Appello — 16 giugno 2009

Esercizio 1. Dati i vettori $v_1 = (-1, 2, 1, -1)$ e $v_2 = (3, 0, -1, 3)$, sia $f : \mathbb{R}^4 \to \mathbb{R}^4$ una funzione lineare tale che $\text{Ker}(f) = \text{Im}(f) = \langle v_1, v_2 \rangle$. Si scriva la matrice di una tale f rispetto alla base canonica di \mathbb{R}^4 . Si dimostri che f possiede l'autovalore $\lambda = 0$ con molteplicità (algebrica) 4, ma che essa non è diagonalizzabile.

Esercizio 2. Nello spazio vettoriale euclideo \mathbb{R}^3 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazione 2x - y - 2z = 0. Si esprima il vettore v = (-1, 3, 2) come somma $v = v_1 + v_2$, con $v_1 \in U$ e $v_2 \in U^{\perp}$. Sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ la funzione che associa a un vettore $w \in \mathbb{R}^3$ la sua proiezione ortogonale f(w) sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 3. Nello spazio vettoriale \mathbb{R}^4 si consideri il sottospazio $U = \langle u_1, u_2 \rangle$, ove $u_1 = (-1, -2, 4, 1)$ e $u_2 = (3, 1, -1, 3)$. Si determini una base di un sottospazio W tale che $U \oplus W = \mathbb{R}^4$ e si dica se un tale sottospazio W è unico. Dato il vettore $v_t = (t+4, -3, 7, t+8)$, si dica per quale valore di t si ha $v_t \in U$. Sia V il sottospazio vettoriale definito dalle equazioni $x_1 - x_2 = 0$ e $x_1 + x_2 + x_3 - x_4 = 0$. Si determini una base di V e una base di $U \cap V$.

Esercizio 4. Nello spazio euclideo tridimensionale sono dati i punti $A=(-2,-1,1),\ B=(1,0,2)$ e C=(2,-1,0). Si determini l'equazione cartesiana del piano π passante per $A,\ B$ e C. Si determini la retta r passante per A e per il punto medio M del segmento BC. Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.

Esercizio 5. Nello spazio vettoriale $V = \mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 2 & -2 & -1 & 0 \\ -2 & 3 & 0 & -1 \\ -1 & 0 & 5 & 1 \\ 0 & -1 & 1 & 3 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t P G P$.

Cognome	Nome	Matricola

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1º Appello — 16 giugno 2009

Esercizio 1. Nello spazio vettoriale $V = \mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 3 & 1 & 0 & -1 \\ 1 & 2 & 0 & -1 \\ 0 & 0 & 5 & 1 \\ -1 & -1 & 1 & 3 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 2. Nello spazio vettoriale \mathbb{R}^4 si consideri il sottospazio $U = \langle u_1, u_2 \rangle$, ove $u_1 = (0, -2, 3, 4)$ e $u_2 = (2, 1, -2, 3)$. Si determini una base di un sottospazio W tale che $U \oplus W = \mathbb{R}^4$ e si dica se un tale sottospazio W è unico. Dato il vettore $v_t = (-2, -t - 3, t + 6, 5)$, si dica per quale valore di t si ha $v_t \in U$. Sia V il sottospazio vettoriale definito dalle equazioni $x_1 - 2x_4 = 0$ e $2x_1 + x_2 + 2x_3 + x_4 = 0$. Si determini una base di V e una base di V.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^3 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazione x+2y-2z=0. Si esprima il vettore v=(2,-1,-1) come somma $v=v_1+v_2$, con $v_1\in U$ e $v_2\in U^\perp$. Sia $f:\mathbb{R}^3\to\mathbb{R}^3$ la funzione che associa a un vettore $w\in\mathbb{R}^3$ la sua proiezione ortogonale f(w) sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 4. Dati i vettori $v_1 = (1, 2, 2, -1)$ e $v_2 = (3, -1, 1, 0)$, sia $f : \mathbb{R}^4 \to \mathbb{R}^4$ una funzione lineare tale che $\text{Ker}(f) = \text{Im}(f) = \langle v_1, v_2 \rangle$. Si scriva la matrice di una tale f rispetto alla base canonica di \mathbb{R}^4 . Si dimostri che f possiede l'autovalore $\lambda = 0$ con molteplicità (algebrica) 4, ma che essa non è diagonalizzabile.

Esercizio 5. Nello spazio euclideo tridimensionale sono dati i punti $A=(1,3,-1),\ B=(-1,2,0)$ e C=(2,-1,1). Si determini l'equazione cartesiana del piano π passante per A, B e C. Si determini la retta r passante per A e per il punto medio M del segmento BC. Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.