Identity based encryption (IBE)

Jiageng Chen

Boneh, D., & Franklin, M. (2001, August). Identity-based encryption from the Weil pairing. In *Annual international cryptology conference* (pp. 213-229). Springer, Berlin, Heidelberg.

Recall: Pub-Key Encryption (PKE)

PKE Three algorithms: (G, E, D)

 $G(\lambda) \rightarrow (pk,sk)$ outputs pub-key and secret-key

 $E(pk, m) \rightarrow c$ encrypt m using pub-key pk

 $D(sk, c) \rightarrow m$ decrypt c using sk

Example: ElGamal encryption

• $G(\lambda)$: $(G, g, q) \leftarrow GenGroup(\lambda)$ $sk := (\alpha \leftarrow F_p) ; pk := (h \leftarrow g^{\alpha})$

- E(pk, m∈G): $s \leftarrow Z_q$ and do $c \leftarrow (g^s, m \cdot h^s)$
- D(sk= α , c=(c₁,c₂)): observe $c_1^{\alpha} = (g^s)^{\alpha} = h^s$
- Security (IND-CPA) based on the DDH assumption:

 (g, h, g^s, h^s) indist. from (g, h, g^s, g^{rand})

Identity based encryption

- IBE: PKE system where PK is an arbitrary string
 - e.g. e-mail address, phone number, ip address

IBE in practice

Bob encrypts message with pub-key:

Aug. 2011: "... Voltage SecureMail ... with over one billion secure business emails sent annually and over 50 million worldwide users."

Four Algorithms

- S is a probabilistic algorithm invoked as $(mpk, msk) \stackrel{\mathbb{R}}{\leftarrow} S()$, where mpk is called the **master** public key and msk is called the **master secret** key for the IBE scheme.
- G is a probabilistic algorithm invoked as $sk_{id} \leftarrow G(msk, id)$, where msk is the master secret key (as output by S), $id \in \mathcal{ID}$ is an identity, and sk_{id} is a secret key for id.
- E is a probabilistic algorithm invoked as $c \stackrel{\mathbb{R}}{\leftarrow} E(mpk, id, m)$.
- D is a deterministic algorithm invoked as $m \leftarrow D(sk_{id}, c)$. Here m is either a message, or a special reject value (distinct from all messages).
- As usual, we require that decryption undoes encryption; specifically, for all possible outputs (mpk, msk) of S, all identities $id \in \mathcal{ID}$, and all messages m, we have

$$\Pr\left[D\big(G(msk,id),\ E(mpk,id,m)\big)=m\right]=1.$$

Semantic security for IBE

Construction

• S(): the setup algorithm runs as follows:

$$\alpha \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q, \quad u_1 \leftarrow g_1^{\alpha}, \quad mpk \leftarrow u_1, \quad msk \leftarrow \alpha, \quad \text{output } (mpk, msk).$$

• G(msk, id): key generation using $msk = \alpha$ runs as:

$$sk_{id} \leftarrow H_0(id)^{\alpha} \in \mathbb{G}_0$$
, output sk_{id} .

• E(mpk, id, m): encryption using the public parameters $mpk = u_1$ runs as:

$$eta \overset{ ext{R}}{\leftarrow} \mathbb{Z}_q, \quad w_1 \leftarrow g_1^eta, \quad z \leftarrow eig(H_0(id), \ u_1^etaig) \in \mathbb{G}_{ ext{T}}, \ k \leftarrow H_1(w_1, z), \quad c \overset{ ext{R}}{\leftarrow} E_{ ext{s}}(k, m), \quad ext{output } (w_1, c).$$

• $D(sk_{id}, (w_1, c))$: decryption using secret key sk_{id} of ciphertext (w_1, c) run as follows:

$$z \leftarrow e(sk_{id}, w_1), \quad k \leftarrow H_1(w_1, z), \quad m \leftarrow D_s(k, c), \quad \text{output } m.$$

$$e(sk_{id}, w_1) = e(H_0(id)^{\alpha}, g_1^{\beta}) = e(H_0(id), g_1^{\alpha\beta}) = e(H_0(id), u_1^{\beta}).$$

Decision-BDH assumption

Pairing: $e: \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$

Generators: $g_0 \in \mathbb{G}_0$ and $g_1 \in \mathbb{G}_1$

Experiment b (b=0,1):

• The challenger computes

$$a, \beta, \gamma, \delta \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q, \quad u_0 \leftarrow g_0^{\alpha}, \quad u_1 \leftarrow g_1^{\alpha}, \quad v_0 \leftarrow g_0^{\beta}, \quad w_1 \leftarrow g_1^{\gamma},$$
 $z^{(0)} \leftarrow e(g_0, g_1)^{\alpha\beta\gamma} \in \mathbb{G}_{\mathrm{T}}, \quad z^{(1)} \stackrel{\mathbb{R}}{\leftarrow} e(g_0, g_1)^{\delta} \in \mathbb{G}_{\mathrm{T}}$

and gives $(u_0, u_1, v_0, w_1, z^{(b)})$ to the adversary.

• The adversary outputs a bit $\hat{b} \in \{0, 1\}$.

$$\mathrm{DBDHadv}[\mathcal{A},e] := \Big|\mathrm{Pr}[W_0] - \mathrm{Pr}[W_1]\Big|.$$

Security of IBE

Theorem. If decision BDH holds for e, H_0 is modeled as random oracle, H_1 is a secure KDF, and Es is semantically secure, then the IBE scheme is semantically secure.

 $\mathrm{SS^{ro}}\mathsf{adv}[\mathcal{A},\mathcal{E}_{\mathrm{BF}}] \leq 2 \cdot 2.72 \cdot (Q_{\mathrm{s}} + 1) \cdot \mathrm{DBDHadv}[\mathcal{B}_{\mathrm{e}},e] + 2 \cdot \mathrm{KDFadv}[\mathcal{B}_{\mathrm{kdf}},H_{1}] + \mathrm{SSadv}[\mathcal{B}_{\mathrm{s}},\mathcal{E}_{\mathrm{s}}].$

 $\alpha, \beta, \tau \stackrel{\scriptscriptstyle{\mathrm{R}}}{\leftarrow} \mathbb{Z}_q$. $u_0=g_0^{lpha},\quad u_1=g_1^{lpha},$ $v_0=g_0^ au,\quad w_1=g_1^eta,\quad z^ au$

 $u_0, u_1, v_0, \quad (1) H_0$ query

BDH attacker B

$$mpk := u_1$$
 , g_0 , g_1

Maintain list (id, H_0, ρ, j)

 w_1, z, g_0, g_1 i If id_j in list: return Q_i else

$$j \neq \omega$$
: $\rho_j \stackrel{R}{\leftarrow} Z_q^*$, $H_0(id_j) = g_0^{\rho_j}$
 $j = \omega$: $H_0(id_j) = v_0$
Add id , H_0 , ρ , j to the list

(2) key query

If
$$j = \omega$$
, fail:
else $sk_j := H_0(id^{(j)})^{\alpha} = g_0^{\rho_j\alpha} = u_0^{\rho_j}$

(3) Challenge phase

$$b \overset{ ext{R}}{\leftarrow} \{0,1\}$$
 If $id_b = id^{(\omega)}$, then $H_0(id_b) = v_0$ $k \leftarrow H_1(w_1,z)$ $c \overset{ ext{R}}{\leftarrow} E_{ ext{s}}(k,m_b)$

idi

 $H_0(id_i)$

 id_j

 sk_i

 (id_0, m_0)

 (id_1,m_1)

 (w_1,c)

If $j = \omega$, $sk_i = H_0(id_i)^{\alpha} = v_0^{\alpha} = u_0^{\tau}$ Doesn' t know α , τ

IBE attacker A

$$ext{if } z = e(g_0,g_1)^{lphaeta au} ext{ then } \ z = e(v_0,g_1^{lphaeta}) = eig(H_0(id_b),u_1^etaig)$$

If z is uniform in GT, then k is uniform in K

 \hat{b}