- 1. (30 pts) Suppose ${}^{1}\mathbf{x}_{2} = \frac{1}{2} \begin{bmatrix} -\sqrt{3} \\ -1 \end{bmatrix}$.
 - (a) (10pts) What is ${}^1\mathbf{y}_2$? Draw a diagram showing the orientation of axes 2 relative to axes 1.

From the right-hand rule,

$$^{1}\mathbf{y}_{2} = \left[\begin{array}{c} 1\\ -\sqrt{3} \end{array}\right]$$

The dot product shows that these x and y axes are perpendicular.

(b) (10pts) What is the matrix ${}^{1}\mathbf{R}_{2}$?

$${}^{1}\mathbf{R}_{2} = \left[{}^{1}\mathbf{x}_{2} {}^{1}\mathbf{y}_{2} \right] = \frac{1}{2} \left[{}^{-\sqrt{3}} {}^{1} {}^{1} {}_{-1} {}^{-\sqrt{3}} \right]$$

(c) (10pts) What is the rotation angle θ such that ${}^{1}\mathbf{R}_{2} = \mathbf{R}(\theta)$?

$$\theta = \text{atan2}(-1, -\sqrt{3}) = 210^{\circ}$$

- 2. (30pts) Suppose ${}^{1}\mathbf{x}_{2}=\frac{1}{5}\begin{bmatrix}4\\3\end{bmatrix}$.
 - (a) (6pts) What is ${}^{1}\mathbf{y}_{2}$?

We need to find ${}^{1}\mathbf{y}_{2}$, by observing that ${}^{1}\mathbf{x}_{2} \cdot {}^{1}\mathbf{y}_{2} = 0$. By inspection, ${}^{1}\mathbf{y}_{2} = \frac{1}{5} \begin{bmatrix} -3 \\ 4 \end{bmatrix}$. The other choice ${}^{1}\mathbf{y}_{2} = \frac{1}{5} \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ does not obey the right-hand rule.

(b) (6pts) What is ${}^{1}\mathbf{R}_{2}$?

$${}^{1}\mathbf{R}_{2} = \left[\begin{array}{cc} {}^{1}\mathbf{x}_{2} & {}^{1}\mathbf{y}_{2} \end{array} \right] = \frac{1}{5} \left[\begin{array}{cc} 4 & -3 \\ 3 & 4 \end{array} \right]$$

(c) (6pts) What is ${}^{2}\mathbf{R}_{1}$?

$${}^{2}\mathbf{R}_{1} = {}^{1}\mathbf{R}_{2}^{T} = \frac{1}{5} \left[egin{array}{cc} 4 & 3 \\ -3 & 4 \end{array}
ight]$$

(d) (6pts) Given ${}^{2}\mathbf{p}=\left[\begin{array}{c} -1\\ -1 \end{array}\right]$, what is the numerical value of ${}^{1}\mathbf{p}$?

$${}^{1}\mathbf{p} = {}^{1}\mathbf{R}_{2} {}^{2}\mathbf{p} = \frac{1}{5} \left[\begin{array}{cc} 4 & -3 \\ 3 & 4 \end{array} \right] \left[\begin{array}{c} -1 \\ -1 \end{array} \right] = \frac{1}{5} \left[\begin{array}{c} -1 \\ -7 \end{array} \right]$$

(e) (6pts) Given ${}^{1}\mathbf{q} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, what is the numerical value of ${}^{2}\mathbf{q}$?

$$^{2}\mathbf{q} = \ ^{2}\mathbf{R}_{1} \ ^{1}\mathbf{q} = \frac{1}{5} \left[\begin{array}{cc} 4 & 3 \\ -3 & 4 \end{array} \right] \left[\begin{array}{c} 1 \\ -3 \end{array} \right] = \left[\begin{array}{c} -1 \\ -3 \end{array} \right]$$

3. (30 pts) Consider the coordinate system 2 in relation to coordinate system 1 below. Suppose O_2 is located at (-1,2) relative to coordinate system 1, and point P is located at (1,2) relative to coordinate system 2. Let $\mathbf{p}_i = P - O_i$. What are the following vectors (i.e., their x and y components)?

(a) (6 pts) $^{1}\mathbf{x}_{2}$ and $^{1}\mathbf{y}_{2}$.

Answer:
$${}^{1}\mathbf{x}_{2} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 ${}^{1}\mathbf{y}_{2} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

(b) $(8 \text{ pts})^2 \mathbf{p}_2$ and $^1 \mathbf{p}_2$.

Answer:
$${}^2\mathbf{p}_2=\left[\begin{array}{c}1\\2\end{array}\right]$$
 ${}^1\mathbf{p}_2=\left[\begin{array}{c}-1\\-2\end{array}\right]$

(c) (8 pts) $^{1}\mathbf{p}_{1}$ and $^{2}\mathbf{p}_{1}$.

Answer:
$${}^{1}\mathbf{p}_{1}=\left[\begin{array}{c} -2\\ 0 \end{array}\right]$$
 ${}^{2}\mathbf{p}_{1}=\left[\begin{array}{c} 2\\ 0 \end{array}\right]$

(d) $(8 \text{ pts})^{1}\mathbf{d}_{12}$ and $^{2}\mathbf{d}_{12}$.

Answer:
$${}^{1}\mathbf{d}_{12} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 ${}^{2}\mathbf{d}_{12} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

4. (40 pts) Consider the combination of robot, table, block, and camera in the figure below, with associated coordinate systems as shown.

(a) (28pts) Find $^0\mathbf{R}_1,\,^1\mathbf{R}_2,\,^2\mathbf{R}_3$ and $^0\mathbf{R}_3$ by inspection.

$${}^{0}\mathbf{R}_{1} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad {}^{1}\mathbf{R}_{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad {}^{2}\mathbf{R}_{3} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad {}^{0}\mathbf{R}_{3} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

(b) (12pts) Suppose ${}^{0}\mathbf{p}=\left[\begin{array}{c}1\\2\end{array}\right]$. By inspection, find ${}^{1}\mathbf{p}$, ${}^{2}\mathbf{p}$, and ${}^{3}\mathbf{p}$.

$$^{1}\mathbf{p} = \begin{bmatrix} -2\\1 \end{bmatrix}, \qquad ^{2}\mathbf{p} = \begin{bmatrix} 2\\-1 \end{bmatrix}, \qquad ^{3}\mathbf{p} = \begin{bmatrix} -1\\-2 \end{bmatrix}$$