

Politecnico di Milano

Dipartimento di Elettronica e Informazione

prof.ssa Anna Antola

prof.

Fabrizio Ferrandi

Reti Logiche A - Prova di mercoledì 7 settembre 2005

Matricola		
Cognome	Nome	

Istruzioni

- · Scrivere solo sui fogli distribuiti. Non separare questi fogli.
- È vietato portare all'esame libri, eserciziari, appunti e calcolatrici. Chiunque venga trovato in possesso di documentazione relativa al corso – anche se non strettamente attinente alle domande proposte – vedrà annullata la propria prova.
- Non è possibile lasciare l'aula conservando il tema della prova in corso.
- Tempo a disposizione: 2h:30m (completo), 1h:30m (Parte I, II).

	Parte 1	Parte 2	Completo	
Esercizio 1A	3		3	
Esercizio 1B	3		4	
Esercizio 1C	3		4	
Esercizio 1D	2		2	
Esercizio 2	3		3	
Esercizio 3	2			
Esercizio 4		4	5	
Esercizio 5		10	11	
Esercizio 6		2		

Esercizio n. 1

Data la seguente funzione ad una uscita, non completamente specificata:

F(a,b,c,d) = ONset(0, 4, 15) DCset(1, 2, 5, 6, 8, 9, 10)

- Sulla mappa di Karnaugh individuare gli implicanti primi riportandone la forma algebrica e separando gli implicanti primi da quelli primi ed essenziali.
- Ricavare tutte le forme minime scegliendo una opportuna copertura della funzione sulla mappa, che minimizzi il numero di implicanti utilizzati ed il numero di letterali.
- II) Ricavare il costo della copertura ottenuta, utilizzando come costo il numero di letterali.

Soluzione

(1):	B'D'
(2):	B'C'
(3)	A'C'
(4):	ABCD
(5)	A'D'

Essenziali: 4

Forme minime:

F1: (5) + (3)

Costo letterali: F1 = 4 + 2 = 6

Data la seguente funzione **non completamente** specificata a **due uscite** F1(a, b, c, d, e)= ON_SET (m1, m2, m4, m10, m11, m12, m16, m21 m23) DC_SET (m0, m5)

Soluzione

		f1f2	
m0	00000	11	
m1	00001	11	
m2	00010	10	
m4	00100	11	
m16	10000	10	
m5	00101	11	
m9	01001	01	
m10	01001	10	
m12	01100	01	
m11	01011	11	
m21	10101	10	Α
			В
m23	10111	11	
m31	11111	01	

		f1f2	
m0m1	0000-	11	
m0m2	000-0	10	
m0m8	0-000	11	
m0m16	-0000	10	
m1m5	00-01	11	С
m1m9	0-001	11	
m1m17	-0001	10	
m2m10	0-010	10	
m8m9	0100-	11	
m8m10	010-0	10	
m16m17	1000-	10	
m9m11	010-1	10	
m10m11	0101-	10	
m10m26	-1010	10	D

		f1f2	
m0m1m8m9	0-00-	11	Γ
m0m1m16m17	-000-	10	Γ
m0m2m8m10	0-0-0	10	Γ
			Γ
m8m9m10m11	010	10	Ī
			Ī
			Ī
			Ī
			Ī
			Ī
			Ī
			Ī
			Ī
			r
			r
			H

Esercizio n. 3

Data la seguente tabella di copertura:

	F1					F2					
	mx1	mx2	mx3	mx4	mx5	mx6	mx7	mx8	mx9	mx10	Costo
A	Х	Х				Х	Х				2
В	Х	Х	Х	Х							2
С		0/			Х					X	2
D						Х	X	X			3
Е	х				Х			Х	X	Х	4
F			Х	Х	Х						4
G					X			X			4

- Si trovi una copertura minima utilizzando il metodo di Quine McCluskey (m_{Xn} rappresenta un generico
- Descrivere ogni singolo passo svolto per arrivare alla soluzione nella sequenza di applicazione

Soluzione:

Data la rete multi-livello sopra riportata, applicare in sequenza le trasformazioni sotto indicate e rispondere alle domande dove richiesto. Disegnare anche il modello della rete finale.

Nota Bene: per ogni trasformazione è obbligatorio riportare il risultato della trasformazione e mostrare chiaramente tutti i passaggi effettuati per ottenere il risultato stesso.

- COST(): Calcolo del numero di letterali. La funzione COST() calcola il costo in letterali indipendentemente dalla forma (SOP o Multilivello) delle espressioni algebriche dei nodi.
- 2. SWEEP: Eliminazione dei nodi costituiti da un solo letterale.
 - 2a. Mostrare <u>formalmente</u> che il costo della rete ottenuta applicando tale trasformazione è non peggiorativo.
- 3. SIMPLIFY(q): Minimizzazione a due livelli di q.
 - 2a. Mostrare <u>formalmente</u> che il costo della rete ottenuta applicando tale trasformazione al nodo r è non peggiorativo.
- 4. FACTOR(f2): Fattorizzazione del nodo f2.
- 5. COST()
- ELIMINATE(q,0): eliminazione vincolata del nodo s. Il parametro 0 indica la soglia di incremento di area: la trasformazione è accettata se l'incremento di area, in letterali, è minore della soglia indicata
- 7. COST(): Calcolo del numero di letterali.

Soluzione

1. COST(): 21 letterali

2. SWEEP: Eliminazione dei nodi costituiti da un solo letterale.

Viene eliminato il solo nodo p. Quindi

q=ab' + ab + c'er=ae + c'

f2 = c'd'a + c'd'b + r

Nel caso di nodi costituiti da un solo letterale, la loro eliminazione porta sempre ad un incremento di area pari a –1 (è sempre migliorativa, vedi formula).

3. SIMPLIFY(q): Minimizzazione a due livelli di q.

Tramite mappe di Karnaugh o manipolazione algebrica ottima, il risultato della minimizzazione è

$$q = a + c'e$$

L'espressione da minimizzare a due livelli è già una forma SOP, quindi la sua ottimizzazione non può essere peggiorativa (da SOP a SOP minima).

4. FACTOR(f2): Fattorizzazione del nodo f2.

L'algoritmo di fattorizzazione porta alla seguente soluzione

f2 = c'd'(a+b) + r

5. COST(): 15 letterali

6. **ELIMINATE(q,0):** eliminazione vincolata del nodo s. Il parametro 0 indica la soglia di incremento di area: la trasformazione è accettata se l'incremento di area, in letterali, è minore della soglia indicata.

Applicando l'espressione per il calcolo di incremento di area $n^*I - n - I$ (con I=3, numero di letterali di s e n=1, un solo nodo -I2- assorbe q), l'incremento ri sulta = -1. E' quindi inferiore al valore 0 della soglia di accettazione. La trasformazione viene accettata.

Lo stesso risultato si poteva ottenere eliminando il nodo e calcolando il nuovo costo della rete.

7. COST(): 14 letterali

La rete è composta dai seguenti nodi

f1=(a+c'e)d + ab r=ae + c'f2=c'd'(a+b) + r

Dati A= -13 e B= -33 codificati in decimale:

- a) dire quale è il numero minimo di bit per rappresentare in complemento a 2 ciascun valore
- b) dire quale è il numero minimo di bit per rappresentare il prodotto dei due valori
- utilizzando il numero di bit individuato al punto a), eseguire la moltiplicazione A-B (B moltiplicatore) secondo uno degli algoritmi noti. Nello svolgimento si mostrino tutti i passaggi effettuati.

Esercizio n. 6

Si disegni il diagramma degli stati di un circuito sequenziale sincrono di tipo Mealy in grado di riconoscere le sequenze di ingresso $S_1=$ 0110 e $S_2=$ 1001: il circuito mette l'uscita z a 1 quando ha riconosciuto una delle due sequenze, nelle altre situazioni l'uscita assume valore 0.

Per il **riconoscimento**, è valida la parziale sovrapposizione delle sequenze ma **SOLO** come sotto specificato:

. . . . 0101 . .

Soluzione

(CORRISPONDE AL GRAFO MINIMO)

Uscita

	0	1
Α	B,0	C,0
В	B,0	D,0
С	E,0	C,0
D	E,0	F,0
Ε	G,0	D,0
F	E,1	C,0
G	B,0	C,1

Si realizzi il circuito di minimo costo la cui funzionalità è espressa dal diagramma degli stati qui di seguito illustrato, indicando in modo chiaro ogni passo del processo di sintesi e ogni scelta effettuata/tecnica adottata. Si utilizzino flip-flop di tipo JK.

Soluzione

La tabella derivata è minima.

Esercizio n. 8

Data la seguente descrizione di circuito in VHDL

```
ENTITY ex IS
    PORT(clk: in bit;
         a: in bit_vector(7 downto 0);
         b: in bit_vector(7 downto 0);
         o: out bit_vector(7 downto 0));
ARCHITECTURE arc OF ex IS
SIGNAL c,d: bit_vector(7 downto 0);
BEGIN
    P1: PROCESS(clk)
    BEGIN
         IF(clk='1' and clk'event) THEN
             o<=d;
         END IF;
    END PROCESS;
    P2: PROCESS(c,b)
         d <= c + b;
    END PROCESS;
    c <= a * b;
END arc;
```

- I) Dire se la macchina descritta è di Mealy o di Moore, giustificando la risposta.
- II) Disegnare un circuito composto da componenti elementari (porte logiche, multiplexer, bistabili) che implementi il modello VHDL proposto.