Непараметрические тесты

Заполнить таблицу

- Критерий Манна-Уитни
- Критерий Уилкоксона
- Критерий Крускала Уоллиса
- Критерий Фридмана

Множественны	е сравнения	Сравнение 2	-х групп
Анализ повторных измерений	Независимые выборки	Независимые выборки	Зависимые выборки

Рассчитать критерий Манна-Уитни в ручную.

Решение

Берем 1й элемент из x1 и ставим его в начало x2 Присваиваем ранги этим значениям Берем из массива рангов первое значение и вычитаем из этого значения 1 Складываем значения, полученные в п.3

```
1000 1400 1600 1180 1220

1     4     5     2     3

1-1 = 0

1380 1400 1600 1180 1220

3     4     5     1     2

3-1=2

1200 1400 1600 1180 1220

2     4     5     1     3

2-1 = 1

0+2+1=3
```

```
Paccмотрим пример из книги Стентона Гланца

group_1= np.array ([1000, 1380, 1200])

group_2 = np.array ([1400, 1600, 1180, 1220])

stats.mannwhitneyu(group_1, group_2)

MannwhitneyuResult(statistic=3.0, pvalue=0.4)
```


Средние расходы на обследование одного больного до ознакомления с расходами коллег

X= np.array([20,17, 14, 42, 50, 62, 8, 49, 81, 54, 48, 55, 56])

Y= np.array ([20, 26, 1, 24, 1, 47, 15, 7, 65, 9, 21, 36, 30])

Средние расходы на лечение одного больного до ознакомления с расходами коллег

X= np.array([32, 41, 51, 29, 76, 47, 60, 58, 40, 64, 73, 66, 73])

Y= np.array ([42, 90, 71, 47, 56, 43, 137, 63, 28, 60, 87, 69, 50])

Произошли ли изменения на расходы и лечение?


```
X= np.array([20,17, 14, 42, 50, 62, 8, 49, 81, 54, 48, 55, 56])
Y= np.array([20, 26, 1, 24, 1, 47, 15, 7, 65, 9, 21, 36, 30])
stats.wilcoxon(X,Y)
WilcoxonResult(statistic=3.0, pvalue=0.004741768038406972)
```


до	после	Delta	Ранг
20	20		
17	26		
14	1		
42	24		
50	1		
62	47		
8	15		
49	7		
81	65		
54	9		
48	21		
55	36		
56	30		


```
stats.wilcoxon(x1,y1)
WilcoxonResult(statistic=31.5, pvalue=0.339599609375)
```

до	после	Delta	Ранг
32	42		
41	90		
51	71		
29	47		
76	56		
47	43		
60	137		
58	63		
40	28		
64	60		
73	87		
66	69		
73	50	Ĭ.	

При исследовании препарата для снижения кровяного давления у больных 3 раза измерялся сердечный выброс. Менялся ли сердечный выброс? Найти критерий вручную, проверьте значение функцией и интерпретируйте результат с использованием p-value

A= np.array([3.5, 3.3, 4.9, 3.6])

B = np.array([8.6, 5.4, 8.8, 5.6])

C=np.array([5.1, 8.6, 7.7, 5.0])

	Измерения		
Больной	1	2	3
1	3.5	8.6	5.1
2	3.3	5.4	8.6
3	4.9	8.8	6.7
4	3.6	5.6	5.0

$$\chi_r^2 = \frac{12}{n * k * (k+1)} * \sum (R_i - \bar{R})^2$$

$$\overline{R} = \frac{n * (k+1)}{2}$$

Даны значения проницаемости сосудов сетчатки gr1 (здоровые пациенты), gr 2 (поражение в области центральной ямки), gr3 (в области центральной ямки и на периферии).

Сравнить данные, относящиеся к разным видам поражения.

$$gr1 = ([0.5, 0.7, 1, 1.2, 1.4])$$

$$gr2 = ([1.3, 1.45, 1.6, 1.7, 1.8])$$

	12 $\sum_{i=1}^{k_j}$	T_i^2
H =	$\frac{12}{N*(N+1)}*\sum_{i=1}^{k_j}$	$\frac{1}{n_j} - 3 * (N+1)$

gr1	gr2	gr3
0.5	1.3	6.2
0.7	1.45	12.6
1	1.6	13.2
1.2	1.7	14.1
1.4	1.8	14.2