

Introdução à Ciência da Computação - 113913 Gabarito da Lista 2 Condicionais

Observações:

- As listas de exercícios serão corrigidas por um corretor automático, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, a não ser que seja pedido na questão, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- As Instâncias de Entrada serão as usadas pelo corretor e suas saídas devem estar **iguais** às apresentadas em Instâncias de Saída.

Questão A.

```
n = int(input())
if(x%2 == 0): #Se o resto da divisão por 2 for 0, então o número é par
    print(x, "é par")
else: #Caso contrário é impar
    print(x, "é impar")
print(x+2)
```

Instâncias de Entrada	Instâncias de Saída
1	1 é ímpar
	3
0	0 é par
	2
-5	-5 é ímpar
	-3
7	7 é ímpar
	9
9	9 é ímpar
	11
-85	-85 é ímpar
	-83
-50	-50 é par
	-48
20	20 é par
	22
-1	-1 é ímpar
	1
-2	-2 é par
	0

Questão B.

```
peso = float(input())
h = float(input())
indice = peso/(h**2)
print("%.2f"%indice)
if(indice < 18.5):</pre>
   print("Baixo peso")
elif(indice <= 24.9):</pre>
   print("Peso normal")
elif(indice <= 29.9):
   print ("Sobrepeso")
    peso_necessario = 24.9*h*h
    print("%.2f"%(peso-peso_necessario))
    #Peso mínimo necessário será aquele suficiente para atingir IMC 24.9
elif(indice <= 34.9):</pre>
   print("Obesidade grau I")
    peso_necessario = 24.9*h*h
    print("%.2f"%(peso-peso_necessario))
elif(indice <= 39.9):</pre>
    print("Obesidade grau II")
    peso necessario = 24.9*h*h
   print("%.2f"%(peso-peso necessario))
else:
    print("Obesidade grau III")
    peso necessario = 24.9*h*h
    print("%.2f"%(peso-peso_necessario))
```

Instâncias de Entrada	Instâncias de Saída
80	23.63
1.84	Peso normal
55	55.00
1	Obesidade grau III
	30.10
90	24.93
1.90	Sobrepeso
	0.11
100	27.70
1.90	Sobrepeso
	10.11
85.54	25.27
1.84	Sobrepeso
	1.24
60	26.67
1.50	Sobrepeso
	3.98
62.5	22.41
1.67	Peso normal
50	25.51
1.40	Sobrepeso
	1.20
50	16.33
1.75	Baixo peso
45	21.40
1.45	Peso normal

Questão C.

```
A = float(input())
maior = A
teste = 0
B = float(input())
if(B > maior):
   maior = B
    teste = 1
C = float(input())
if(C > maior):
    maior = C
    teste = 2
""" Além de sabermos o valor da maior lado, também precisamos saber qual é.
Através da variável teste saberemos qual o maior lado """
if(teste == 0): #Nesse caso A é o maior lado
    if (maior > B + C or maior == B + C):
        print("NAO FORMA TRIANGULO")
    elif(maior*maior == B*B + C*C):
       print ("TRIANGULO RETANGULO")
    elif(A == B and B == C):
        print ("TRIANGULO EQUILATERO")
    elif(A == B or A == C or B == C):
        print ("TRIANGULO ISOSCELES")
    else:
        print ("TRIANGULO ACUTANGULO OU OBTUSANGULO")
elif(teste == 1): #Aqui B é o maior lado
    if (maior > A + C or maior == B + C):
        print("NAO FORMA TRIANGULO")
    elif(maior*maior == A*A + C*C):
       print("TRIANGULO RETANGULO")
    elif(A == B and B == C):
       print ("TRIANGULO EQUILATERO")
    elif(A == B or A == C or B == C):
       print ("TRIANGULO ISOSCELES")
    else:
       print("TRIANGULO ACUTANGULO OU OBTUSANGULO")
else: #Caso contrário C será o maior
    if (maior > A + B or maior == B + C):
       print ("NAO FORMA TRIANGULO")
    elif(maior*maior == B*B + A*A):
       print ("TRIANGULO RETANGULO")
    elif(A == B and B == C):
       print ("TRIANGULO EQUILATERO")
    elif(A == B or A == C or B == C):
       print("TRIANGULO ISOSCELES")
    else:
       print("TRIANGULO ACUTANGULO OU OBTUSANGULO")
""" Podemos usar elif, visto que não é possivel entrar com raiz quadrada
no Python Shell, seja x o valor de dois lados do triângulo e y do terceiro.
Para que y^2 seja igual a 2*(x^2), é necessário que y seja igual a
(2^(1/2)) * x"""
```

Instâncias de Entrada	Instâncias de Saída
7.0	TRIANGULO EQUILATERO
7.0	
7.0	
3.0	TRIANGULO RETANGULO
4.0	
5.0	
3	NAO FORMA TRIANGULO
2	
1	
1.50	TRIANGULO ACUTANGULO OU
1.45	OBTUSANGULO
1.30	
3.0	TRIANGULO ACUTANGULO OU
3.5	OBTUSANGULO
4.95	
3.0	TRIANGULO ACUTANGULO OU
3.5	OBTUSANGULO
4.25	
7.5	NAO FORMA TRIANGULO
3	
4.5	
4	TRIANGULO EQUILATERO
4	
4	
5	TRIANGULO ISOSCELES
5	
4	
3.0	TRIANGULO ISOSCELES
3.0	
1.5	

Questão D.

```
a, b = input().split()
a, b = [int(a), int(b)]

if(b == 0):
    print("%d 0 errados"%a)
elif(a - b == 1):
    print("%d %d errados"%(a,b))
elif(b - a == 1):
    print("%d %d ok"%(a,b))
elif(b - a == 0 or a - b == 0):
    print("%d %d ok"%(a,b))
else:
    print("%d %d errados"%(a,b))
```

Instâncias de Entrada	Instâncias de Saída	
5 4	5 4 errados	
9 9	9 9 ok	
0 0	0 0 errados	
0 1	0 1 ok	
10	10 errados	
89 25	89 25 errados	
4 5	4 5 ok	
10 12	10 12 errados	
10 11	10 11 ok	
11 10	11 10 errados	

Questão E.

```
m, d = input().split()
m, d = [int(m), int(d)]

if(m == 1 or m == 3 or m == 5 or m == 7 or m == 8 or m == 10 or m == 12):
    ndays = 31
elif(m == 2):
    ndays = 28
else:
    ndays = 30

print(((d - 1) + ndays - 1)//7 + 1)
""" Você também pode obter o número de colunas analisando caso por caso o valor de d, considerando quantos dias cada mês têm. """
```

Instâncias de Entrada	Instâncias de Saída	
2 7	5	
2 1	4	
8 6	6	
11	5	
12	5	
13	5	
3 6	6	
5 7	6	
12 3	5	
9 7	6	

Questão F.

```
hi, mi, hf, mf = input().split()
hi, mi, hf, mf = [int(hi), int(mi), int(hf), int(mf)]
""" Vamos resolver esse problema por casos.
Note que não é possivel ter um caso em que hf == hi e mf > mi, pois o jogo
tem duração máxima de 24 horas.
if (hf <= hi and mf < mi): \#Exemplo: 7 5 6 4 - 22h59m ou 7 5 7 4 - 23h59m
    """Vamos transformar as horas para minutos e retirarmos os minutos
    já calculados assim é possível ter as horas certas nos dois exemplos acima,
    fazendo a divisão inteira por 60 """
   minutos = (60-mi)+mf
   horas = ((24 - hi) + hf) * 60 - minutos
   print("O jogo durou %d hora(s) e %d minuto(s)."%(horas//60, minutos))
elif(hf == hi and mf == mi):
    print("O jogo durou 24 hora(s) e 0 minuto(s).")
elif(hf < hi and mf >= mi): #Exemplo: 7 5 6 5 - 23h0m ou 7 5 6 6 - 23h1m
    horas = (24 - hi) + hf
    print("O jogo durou %d hora(s) e %d minuto(s)."%(horas, mf-mi))
else: # Exemplo: 7 5 8 4 - 0h59m ou 7 8 9 10 - 2h2m
    """Vamos seguir o mesmo raciocínio para o primeiro caso, aqui teremos
    os casos em que: hi < hf and mi < mf(simples) ou hi < hf and mi >= mf """
   minutoi = hi * 60 + mi
   minutof = hf * 60 + mf
    horas = (minutof - minutoi)//60
    minutos = (minutof - minutoi) %60
    print("O jogo durou %d hora(s) e %d minuto(s)."%(horas, minutos))
```

Instâncias de Entrada	Instâncias de Saída
6564	O jogo durou 23 hora(s) e 59 minuto(s).
7564	O jogo durou 22 hora(s) e 59 minuto(s).
8888	O jogo durou 24 hora(s) e 0 minuto(s).
8 10 8 5	O jogo durou 23 hora(s) e 55 minuto(s).
8593	O jogo durou 0 hora(s) e 58 minuto(s).
6471	O jogo durou 0 hora(s) e 57 minuto(s).
7565	O jogo durou 23 hora(s) e 0 minuto(s).
7566	O jogo durou 23 hora(s) e 1 minuto(s).
7584	O jogo durou 0 hora(s) e 59 minuto(s).
78910	O jogo durou 2 hora(s) e 2 minuto(s).

Questão G.

```
a = input()
b = input()

if(a == b):
    print(-1)
elif(len(a) > len(b)):
    print(len(a))
else:
    print(len(b))
```

Instâncias de Entrada	Instâncias de Saída	
abcde	5	
fghij		
abcde	5	
abcdf		
abcde	5	
bbcde		
abcdef	6	
eabcdf		
abcdefgh	8	
abdcefgh		
mmm	3	
mnm		
mmm	-1	
mmm		
a	2	
ab		
raphael	-1	
raphael		
ab	2	
ba		