데이터인프라 구축사업 AI컨설팅 중간 결과보고서

도입	기업명	㈜삼화전	학 -	대표자	구 동 우			
기업	사업자 등록번호	124-81-41567		소재지	경기도 수원/	경기도 수원시 영통구 신원로 167		
협	약기간		202	20. 09. 18 ~	2020. 11. 17 (2	(개월)		
총사업비		정부지원금(90%)	민간부	담금 (10%)	48	· 사업비(100%)	
0	A B A	20,0	000천원		2,220천원		22,220천원	
		구분 소		속기관	성명		직위	
₹	년문가	Al 전문가			정남학	4	전문위원	
		공정 전문가			김정리	A	대표이사	
		Al솔루션 도입	가능성	■ 가능		□ #:	7}	
1 1 1 1 1 1 1 1 1 1 1 1	팅 결과 요약	해결을 위한 또한 생성· 공장별 현정 (2) Al를 활용한 을 파악하기 필요함의 도 (3) 공정에서 추	AI 솔루 저장한 더에 적용 ! 제품의 위해서는 임이 필요 득한 다양	선 도입 방역에이터를 분석가능한 최적 공정별 최적 등 해당 제품 라하다고 판인 당한 데이터	AI 솔루션 분석 생산조건의 제 의 공정별 생산 간됨.	음. 정 문제 첫 및 추 품 불편 조건 집 당요인설	세점 도출하였으며, *천을 하였음. 양 시 불량의 원인 값에 대한 분석이 을 발전하고 품질의	

위 과제의 AI 컨설팅에 대한 중간 결과보고서를 제출합니다.

2020. 10. 26.

도입기업

㈜삼화 전착 (대 표)

구동의

AI전문가

전문위원

공정전문가

대표

중소기업기술혁신협회장 귀하

붙임1. 일자별 수행일지 각1부.

2. 공급기업 기술제안서 각1부. (최소 2개사 이상)

데이터인프라 구축사업 AI컨설팅 중간결과 보고

□ 컨설팅 수행 내용

- 0 문제 정의 내용
 - 1) 도입기업 소개
 - ㈜삼화전착은 1986년 설립된 자동차부품 및 전자부품의 전착도장/정전도장/인삼염 피막 등을 하는 도장 전문 업체이며, 2019년도 기준 매출 38억원이며, 41명의 임직원이 근무하고 있음.
 - 2015년 스마트공장을 구축하여 자재/구매부터 출하/납품에 이르는 전 생산과정을 MES시스템으로 관리하고 있음. 특히 24개 공정의 전착도장 생산라인은 생산공정 설비별 데이터를 실시간 또는 작업자 입력을 통해 생산조건을 모니터링 하고 있음. 그러나 최종 생산된 제품(생산LOT별)이 각 공정마다 어떤 생산 조건에서 생산되었는 지는 시스템 상에서 실시간 파악이 되고 있지 않음으로써, 최종 제품의 품질에 영향을 미치는 요인을 파악하여 최적의 생산조건을 산출하는데 어려움이 있고, 품질관리의 한계를 느끼고 있음.
 - 제품별 최적의 생산조건 산출을 통해 생산 제품의 불량률 감소 및 품질관리체계 확립이 필요함. 정보의 수집, 분석, 제어, 감시를 통한 경영자 및 작업자의 의사결정 지원 필요. 또한 그동안 집계된 공정별 설비 데이터들을 최적화 환경 구축 데이터로 활용이 필요함.

2) 공정 흐름도

- 1. 로딩: 전착도장 할 피도물을 행거에 걸어주는 공정
- 2. 탕세 : 피도물에 묻어있는 오염물을 40~50도의 온도에서 제거하는 공정
- 3. 탈지 : 피도물에 묻어있는 유분 제거 및 산화철, 수산화철로 인한 부동태화를 방지하 기 위한 예비탈지와 알칼리탈지제 및 수산화나트륨을 재료로 하여 실시되는 알 칼리 탈지 공정
- 4. 수세 : 알칼리 성분의 잔류약품을 제거하는 공정
- 5. 표면조정 : 산화티타늄 표면조정제를 재료로 하여 피도물 표면을 활성화하기 위하여 표면 조정하는 전처리공정
- 6. 화성피막 : 내식력의 향상을 위하여 피도물 표면에 불용성의 화성 피막을 형성하기 위한 피막형성공정
- 7. 전착도장 : 전착 성분을 함유하는 수성 도료(전착 도료)의 욕 안에 피도물을 담그고 통전하여 전기영동 현상과 물의 전해를 이용하여 전착성분을 석출·도장하 는 공정
- 8. 여액수세 : 잔류약품을 제거해 주는 공정
- 9. 건조 : 도장이 표면에 정상적으로 흡착이 되도록 건조하는 공정
- 10. 언로딩 : 도장 완료된 제품을 행거에서 탈거하는 공정

□ 도막 측정 데이터 분석에 의한 현장 업무 표준화 및 관리체계 개선 필요

- 생산LOT별 도막 두께를 측정하여 기록 관리 중
- 측정된 도막 두께 값이 어떠한 조건에서 생산되었는지 확인이 불가함
- 도막 기준치에 최적의 생산 조건 값을 확인할 수 없는 실정임
- 최적의 생산 조건값을 기반으로 생산관리에 적용하여 최적의 제품 생산 및 원가절감 효과 기대

ㅇ 문제 해결 방안

- 현재 수집되는 공정별 데이터를 통해 최적화 분포도 도출
- 신뢰성 있는 품질데이터 관리가 필요하여 설비와 계측기를 mes서버와 연동하여
- 품질데이터를 자동으로 수집할 수 있도록 구축
- 자동 수집을 통한 신뢰성 있는 데이터 확보와 입력시간 단축
- 실시 각종 품질정보를 서버에 전산화하여 실시간 조회를 통해 상황 파악
- 설비 및 계측기에서 서버로 데이터를 전송하기 때문에 신뢰성 있는 데이터 관리
- 정보를 바탕으로 이상현상에 대한 빠른 대처를 하기 위해 구축

적층기 I/F모듈	적층기 품질 데이터 SPC자동 전송 모듈
압착기 I/F모듈	압착기 품질 데이터 SPC자동 전송 및 알람제어 모듈
도금기 I/F모듈	도금기 품질 데이터 SPC자동 전송 및 알람제어 모듈
계측기 데이터 수집 모듈	계측기 데이터 SPC 자동 전송 모듈

□ 현재 수집되는 공정별 데이터 내역

라만형		92.4			维托索加 1			確抗整刀ス			医格拉 1		2.5	71.2	9	#2:	0.83	80	23	화설파막
009	(4)2(SF(B)	85	食子の可信用	일위감도(*)	8£(°C)	会子公司(ber)	(4) 2 S FC B	85(%)	会子型型(ber)	\$9(8)E(P)	6 £(°C)	87 (Dat (bar)	(4)2,5(F)	85(%)	製料別交換室 (P)	● ☆ ひば(bir)	일위라모였도 (P)	WHOISON	211	0.020
9465	2-9	40-50	0.5-1.2	6-9	40-50	0.5+1.2	4-9	40-50	0.5-1.3	4-9	40-50	0.5+1.3	6-9	40~50	2.04	0.3-0.8	1.01	2.0-5.0	9.0-11.0	18-22
항목조건	3	45	8.8	-8	45	0.8	8.2	44.	3.8	1.2	44	3.8	8.2	46.	1.2	0.5	0.5	3.4	9.4	26.8
합/부	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
968	1	\$10	1891		. 0	4+	941	6041				경우호	n' ''	,		a	K1	0.44.5	문수#2	322
099	유리산도(키	@전도(P)	85(%)	출구 업무(Sar)	H 225(P)	● → 公司(har)	산오염도(9)	79 S S (4)(4)	2首至(44)	855(A/OI)	CETE PH	#242(sec)	8.5(%)	YZORE	문학원도도 (ma/i#)	24 E(MV)	225	Status)	전도도(#/10)	28 98 582
본리기준	0.6-1.2	0.6~1.8	35-45	0.4~1.0	5.0	0.3+0.8	1.0	301	17-32	1900 - 1700	5.0~4.0	80-100	28~32	20-45	23-50	34	1000~1500	03-04	80;	170-30
현재조건	1	X.	45	0.0	1.3	9.5	0.5	24	10.15	1461	5.76	70	32	28		0.0	1146	0.5	43	196
\$79	0	0	0	0	0	0	0		0			0	0	0		0	0	0	0	0
E M 2 H											-		258 5 5 6	16831					tors are	Q1
5									-0.92	222000	2000	300	100	110000				75 728	[85 90	
										국 전류 1 국 전류 2	28(v) t	299						- 85	851	_
1)						ΛΛ				국 전류 3	결혼개전류		199					- 85	821	_
						NX1			8	국 전류 4	할류거전류		197	_			_	- 25	1000	_
5						1	_			국 전류 5	전략전투 전략전투		190					3	844	and the second live
0						1	1			국 전투 F	25.58		196					— E5	85.4	300
9						1	-	1		R 四番 8	25.22							85	188 88	1
5						1	12	M		R 20# 9	95.58		195					- 85	WW.1	6
20								121		국 전류 10	25.28	6 1	194						10000	
6						1	1	11-11		국 전류 11	22.28	2 2							28.0	
4							X/	Loth		号 5 帯 13	전략관류	1 1	193							-
5 /	10	100				No	1	11	_		96.50		192						MA 2	•
	They	10				WY)	1	1	-		경국 경류								24.	6
0	1	1				1			-		한국 전투		191						15.5500	_
5		1			Δ						Q 11 D 8		100					o.	MAR	Q
			W		1	4													200	6
			_	-		-							109							

□ 현재 수집되는 설비별 데이터 내역

	2.0	제어시	시스템		DAQ 수	집시스템 저	付장 현황(단	위: 개)		저장	저장	DB
No 설	설비명	Maker	Model	AI (Analog In)	AO (Analog Out)	DI (Digital In)	DO (Digital Out)	SV (Setup Value)	제어 주기	기간 (월)	위치	Туре
1	전극봉	NC.	MT	14	14	1	1	14	40ms	2	Local	RDBMS
2	온도	0.0	TZ	9	9	1	1	9	900ms	2	Local	RDBMS
3	온도타점기	0.0	KRN	6	6	1	1	6	50ms	2	Local	RDBMS
4	Ph메타	85	WSP100	1	1	1	1	1	50ms	2	Local	RDBMS
5	전도도	80	HC4000	1	1	1	1	1	1000ms	2	Local	RDBMS
6	전압		MT	2	2	1	1	2	30ms	2	Local	RDBMS
7	전압제어			1	1	1	1	1	2000ms	2	Local	RDBMS

- □ AI를 활용한 제품의 공정별 최적 생산조건의 도출 제품 불량 시 불량의 원인을 파악하기 위해서는 해당 제품의 공정별 생산조건 값에 대한 분석이 필요함
- □ 제안 시스템 전체 구조도

□ 데이터 수집대상

No.	데이터 유형	데이터 종류
1	장비 데이터	탕세 온도
2	장비 데이터	예비탈지1 온도
3	장비 데이터	예비탈지2 온도
4	장비 데이터	본탈지1 온도
5	장비 데이터	본탈지2 온도
6	장비 데이터	화성피막 온도
7	장비 데이터	전착조 전도도
8	장비 데이터	전착조 여액PH
9	장비 데이터	전착조 전압A
10	장비 데이터	전착조 전압B
11	장비 데이터	전착조 전류A
12	장비 데이터	전착조 전류B
13	장비 데이터	전착조 온도
14	장비 데이터	전착조 냉각수 온도
15	장비 데이터	건조로 온도
16	장비 데이터	도막두께

□ 실시간 생산 조건값 모니터링

- 각 공정에서 생산 시 발생되는 생산 조건 데이터에 대하여 실시간 수집 저장
- 공정 진행시에 생산 LOT별 제품의 생산 조건 데이터를 저장
- 문제점 : 전착도장 공정전에 제품(생산LOT에 해당하는 제품) 변경 가능.
- 해결방안 : 전착도장 공정이 끝나면 제품 변경이 불가하므로 전착도장 공정 완료 후에 각 공정 진행된 시간을 역산하여 도출
- 생산 LOT별 실시간 생산 조건 값 모니터링 가능한 UI 구성

□ 최적의 도막두께 값 산출 AI 개발

- 생산 LOT별 각 공정 생산 조건 데이터 수집 저장
- 생산 LOT별 측정된 품질 데이터(도막두께 측정 데이터) 수집
- 도막두께 측정 데이터의 산포도를 분석할 수 있는 대한 공정능력 분석 AI 개발
- 도막두께 최적 값을 산출하여 사용자가 모니터링 가능하도록 UI 구성

탕세 온도, 예비탈지1 온도, 예비탈지2 온도, 본탈지1 온도, 본탈지2 온도, 화성피막 온도, 전착조(전도도, 여액PH, 전압A, 전압B, 정류기전류A, 정류기전류B, 온도, 냉각수 온도) , 건조 온도

○ 기능 구성도

□ AI 솔루션 분석 결과

o 솔루션 우선 순위 (AI 전문가 의견)

우선순위	공급기업명	솔루션 명	솔루션 특징
1	㈜유림테크	도막두께 최적화 AI 솔루션	- 수집된 생산 LOT별 생산 조건 빅데이터를 토대로 최적의 생산 조건 AI 산출 알고리즘을 개발하고, 산출된 최적 조건을 사용자가 모니터링하여 도막두께의 품질을 일정하게 유지함으로서 생산성 향상 및 원자재 절감 효과에 기여 - 실시간 생산 조건 데이터를 기반으로 생산 LOT별로 각 공정에서 생산된 조건을 매칭후 모니터링할 수 있도록 구성하여 업무 LOSS 감소
2	㈜티라유텍	AI(M/L))기법을통 해공정의중요인자 도출및생산환경최 적화	- 표준분석방법을 기반으로 주요공정 및 관리인자를 정제된 데이터로 변환하여 M/L 알고리즘(공정인자가분석, 검사Data와 공정 인자가분석)을 통해분석하여 결과를 도출
3	㈜제이케스트	AI 알고리즘을 통한 False Negative, False Positive 항목들 최소화	- 장기 연속 운영 DB를 통한 실시간 패턴 모니터링 분석 시스템 - AI 알고리즘을 적절히 적용하여 False Negative, False Positive를 최소화 하도록 의사결정함

ㅇ 솔루션 우선 순위 (공정 전문가 의견)

우선순위	공급기업명	솔루션 명	솔루션 특징
1	㈜유림테크	도막두께 최적화 AI 솔루션	- 금번 사업을 통해 도입기업 개선하고자 하는 사업은 실시간 생산조건 값 모니터링과 최적의 도막두께 산출임 - 동 공급기업은 2014.12.~2015.4. 기간 동안 도입기업의 POP시스템을 개발하여 현재까지 유지보수를 진행하고 있음. 따라서 도입기업의 생산 데이터 구조에 대한 이해가 높고, 본 사업에 필요한데이터의 취합과 활용에 가장 강점이 있을 것으로 판단됨 여러 AI 개발 방법론을 통해 도입기업의 최적의 AI 솔루션을 도출가능할 것으로 사료됨

2	㈜티라유텍	M/L기법을 통한 공정 분석과 및 THiRA Analytics 솔루션 적용	- 삼화 전착의 주요 공정 및 인자에 대한 맞춤형 공정 Data 유형 분석을 M/L알고리즘을 통해 결과 도출함 - 동 공급기업의 AI기반 통계분석 솔루션인 THiRA Analytics를 통해 최종적인 솔루션을 제공 - 반도체, 전자부품, 2차전지 등 다양한 reference 사이트가 있으나, 도입기업의 상황에 맞는 솔루션의 제공에 적합한지는 판단하기 어려움
3	㈜제이케스트	JCAST AI 솔루션	- 대상 전착공정부터 최종 공정 후까지의 흐름을 분석하여 이상 및 불량 유/무를 Check하고 개선 및 보강 방안을 검토 AI 알고리즘을 적절히 적용하여 False Negative, False Positive를 최소화 하도록 의사결정함 - 정상운영 자료와 비정상운영 자료를 얻는데 시간 이 많이 걸리고, 본 솔루션을 통해 도입기업의 문제 해결을 확신할 수 없음

o 솔루션 비교분석

구분	주요기능	장점	단점	고려사항
도막두께 최적화 AI 솔루션 (솔루션A)	- 수집된 생산 LOT별 생산 조건 비데이터를 토대로 최적의 생산 조건 AI 산출 알고리즘을 개발하고, 산출된 최적 조건을 사용자가 모니터 링하여 도막두께의 품질을 일정하게 유지함으로서 생산성 향상 및원자재 절감 효과에 기여 여 의시간 생산 조건데이터를 기반으로 생산 LOT별로 각 공정에서 생산된 조건을 매칭 후모니터링할 수 있도록구성하여 업무 LOSS 감소	- 표적 품질관리를 통해 리뷰의 정확도 및 효율성 향상 - 생산공정에서 다양한데이터를 활용하여 불량요인을 발견. 품질의 저하 문제원인을 실시간으로 찾아낼 수 있는 AI 솔루션을 확보 - 비전검사시스템 적용한 MES 공급기업이며, 도입기업의 유지보수만족도가 높음	없음	-전략적 AI 활 용으로 빠르고 효율적인 리뷰 -AI 기반 리뷰 는 인간의 실수 를 줄이고 속도 와 정확성을 향 상
AI(M/L)기법을 통해공정의중 요인자도출및 생산환경최적 화 (솔루션B)	- 표준분석방법을 기반으로 주요공정 및 관리인자를 정제된 데이터로 변환하여 M/L 알고리즘 (공정인자 가분석, 검사Data와 공정 인자 가분석)을 통해 분석하여 결과를 도출	- 머신러닝 기법과 전착 형태 모델링을 이용하여 수율예측 모델개발	- 가격 대비 솔루션 효과	관리인자를 정제된 데이터로 변환하여 M/L 알고리즘
AI 알고리즘을 통한 False Negative, False Positive 항목들 최소화 (솔루션C)	- 연속공정 제어특성을 반영한 생산성 분석, 공정 추이분석, 예측진단 및 부 품 수명관리		- 정상운영과비정상운영데이터의수집기간이너무 김	False Negative, False Positive 항목들 최소화

ㅇ 추천 솔루션 : ㈜유림테크

구분	주요기능	장점	단점	고려사항
도막두께 최적화 AI 솔루션 (솔루션A)	- 수집된 생산 LOT별 생 산 조건 빅데이터를 토 대로 최적의 생산 조건 AI 산출 알고리즘을 개 발하고, 산출된 최적 조 건을 사용자가 모니터 링하여 도막두께의 품 질을 일정하게 유지함 으로서 생산성 향상 및 원자재 절감 효과에 기 여 - 실시간 생산 조건 데이터를 기반으로 생산 LOT별로 각 공정에서 생산된 조건을 매칭 후 모니터링할 수 있도록 구성하여 업무 LOSS 감소	- 표적 품질관리를 통해 리뷰의 정확도 및 효율성 향상 - 생산공정에서 다양한 데이터를 활용하여 불량요인을 발견. 품질의 저하 문제원인을 실시간으로 찾아낼 수 있는 AI 솔루션을 확보 - 비전검사시스템 적용한 MES 공급기업이며, 도입기업의 유지보수만족도가 높음	쉾	-전략적 AI 활용으로 빠르고효율적인 리뷰 -AI 기반 리뷰는 인간의 실수를 줄이고 속도와 정확성을 향상

- 소요 비용

총 사업비	62,500,000원						
그님	급	액 (단위 : 원/VAT	별도)	비고			
구분	도입기업부담금	정부지원금	계	미ᅶ			
S/W 개발비	원	21,254,026원	21,254,026원				
H/W 구입비	원	원	0원				
S/W 구입비	1,250,000원	28,750,000원	30,000,000원				
도입기업의 사업관리 인력 인건비	11,250,000원	원	11,250,000원				
기타 할인비용	원	-4,026원	-4,026원				
합 계	12,500,000 원	50,000,000 원	62,500,000 원				

<직접인건비 산출내역>

※ 투입인력의 수와 기간에 의한 산정방식

성명	S/W기술자등급	단가	투입일수	금액	비고
심현보	특급	406,342원	6	2,438,052원	
김진구	특급	406,342원	8	3,250,736원	
김운섭	중급	239,748원	15	3,596,220원	
남민규	중급	239,748원	15	3,596,220원	
	합기	12,881,228원			

[※] 투입일수는 소수점 불가

가. S/W 개발비(개발 용역비)

(단위 : 워 / VAT 별도)

구분	산출내역	금액	비고
직접인건비	특급6, 특급8, 중급15, 중급15	12,881,228원	"2018년도 적용 S/W기술자 평균임금 공표"
제경비	직접인건비 X 50%	6,440,614원	제경비 비율은 100%를 초과할 수 없음
기술료	(직접인건비+제경비) X 10%	1,932,184원	기술료 비율은 10%를 초과할 수 없음
	합 계	21,254,026원	

^{* &}quot;소프트웨어사업대가의 기준"의 소프트웨어개발비 산정기준에 의해 작성

나. H/W 구입비

(단위 : 원/VAT 별도)

구 분	품 명	규 격	단 가	수량	소계
전산기기			원	개	원
주변기기			원	개	원
통신장비			원	개	원
N/W장비			원	개	원
		합계			원

※AI 학습 및 검증을 위한 컴퓨팅 자원에 대한 H/W 구입비 산정 불가(고성능컴퓨팅 지원사업 활용)

다. S/W 구입비

(단위 : 원/VAT 별도)

구 분	품 명	규 격	단가	수량	소 계
O/S	최적의 생산조건 산출 AI	라이선스	30,000,000원	1개	30,000,000원
	합기	1			원

※기술검증 대상 솔루션에 대한 라이선스 비용 산정 불가

라. 도입기업 인건비

(단위 : 원/VAT 별도)

수행업무	성명	월급여	투입기간(월)	투입률(%)	금액	
Al솔루션 기술 검증 및 현장 적용	김덕중	3,500,000원	4	35	4,900,000원	
Al솔루션 기술 검증 및 현장 적용	권진희	2,500,000원	4	30	3,000,000원	
Al솔루션 기술 검증 및 현장 적용	이준호	3,000,000원	4	30	3,600,000원	
최대 현물 신청 금액 대비 삭제					-250,000원	
	합 계					

마. 기타(할인) 비용

구 분	품 명	규 격	단가	수량	소 계
기타비용	할인비용	천원단위 절삭	-4,026원	1개	-4,026원
		합 계			-4,026원

- 사업기간 (2020년 12월 15 ~ 2021년 3월 14일)

Phase	Activity	Task				일	정					공급 투입 (M	기업 인력 /D)	
			N	M	M·	+1	M·	+2	M [.]	+3	1	2	3	4
	현행업무분석	업무 현황 조사									1			
	201727	현행 업무 분석									1			
ㅂ서리긔	요구사항분석	요구사항 정의									1			
분석단계	기능 분석	기능비교분석									1			
	서귀	아키텍처 설계									1			
	설계	AI 분석 모델 설계									1	8	8	9
		단위테스트 수행											1	1
현장적용	현장 적 용	통합테스트 수행											1	1
단계		솔루션 현장 설치											1	1
		검증 환경 세팅											1	1
	コ ヘコス	검증 수행											1	1
기술검증 단계	기눌심당	검증결과 도출											1	1
· ·	조정 및 종료	조정 및 종료											1	
	합 계]									6	8	15	15

※ 공급기업 투입인력(M/D) 부분 분류 기준

- 1 : 심현보 , 2 : 김진구 , 3 : 김운섭 , 4 : 남민규

- 기대효과 (정량적 목표)

No	성과지표	단위	현재 (구축 전)	목표	가중치	비고
1	도료비 절감	천원	240,000	216,000	0.2	1년
2	Gas 및 전기비 절감	천원	360,000	312,000	0.2	1년
3	Data 수집시간 단축	분	60	1	0.2	1일
4	생산시간 감소	SEC	134	110	0.2	1Cycle
5	품질비용 감소	천원	670	600	0.2	월평균
	합 계	1				

항목	개선 전	개선 후	개선 효과
도료비 절감	240,000천원 / 년	216,000천원 / 년	24,000천원 / 년
Gas 및 전기비	360,000천원 / 년	312,000천원 / 년	48,000천원 / 년
Data 수집	60분 / 일	1분/일	시간 95% 절감
생산시간	134sec / Cycle	110sec / Cycle	생산성 18% 향상
품질비용	50만원 / 월평균	40만원 / 월평균	품질비용 20% 절감

- 생산 LOT별 생산조건 모니터링을 통해 업무 LOSS 감소 및 고객사 신뢰성 확보
- 최적 생산조건 기반의 지능형 제어를 통한 생산성 향상
- 원자재, 첨가제 및 에너지 자원 절감을 통한 제품의 원가절감
- 도막두께 편차의 최소화를 통한 제품의 품질 향상

□ 종합 의견

- ㅇ 최종 추천 솔루션 의견
 - 3개 제안 솔루션 중에 도막두께 최적화 AI 솔루션 ("(주)유립테크 제안 솔루션")
 - 수집된 생산 LOT별 생산 조건 빅데이터를 토대로 최적의 생산 조건 AI 산출 알고리즘을 개발하고, 산출된 최적 조건을 사용자가 모니터링하여 도막두께의 품질을 일정하게 유지함으로서 생산성 향상 및 원자재 절감 효과에 기여
 - 실시간 생산 조건 데이터를 기반으로 생산 LOT별로 각 공정에서 생산된 조건을 매칭 후 모니터링할 수 있도록 구성하여 업무 LOSS 감소
 - 제조 리드타임 단축, 완제품불량률 감소 등의 성과가 예상 됨.

○ 생산 LOT별 생산조건 모니터링을 통해 업무 LOSS 감소 및 고객사 신뢰성 확보

해결책

- 최적 생산조건 기반의 지능형 제어를 통한 생산성 향상
- 원자재, 첨가제 및 에너지 자원 절감을 통한 제품의 원가절감
- 도막두께 편차의 최소화를 통한 제품의 품질 향상

핵심관리 인자	설명
전압	제품 표면에 도막의 두께 산포 발생에 영향을 미침
통전시간	도막의 두께 및 부착성 영향
도료함유량	전착도료의 고용분 비율(성분 비율 낮으면 도막 두께 낮아짐)
전착조 온도	도막의 두께 영향(도료입자 커져 도막두께 높아짐)
행거 박리 상태	행거 사용 횟수에 따라 통전률 달라짐. (도막두께 편차 발생)

문제점 표면처리 제품의 피막을 형성하는 주요 인자는 온도, 전압, 전류, 통전시간 등이 있으며, 온도의 변화에 따라 제품의 피막 형성이 일정하지 못 함.

- 온도가 1で 변화할 시 4µm이상 편차가 발생하고 있지만, 인력으로는 유동적인 생산 환경에 따라 설비제어가 불가능한 실정임.
- 불량발생을 줄이기 위해 도막두께를 기준 값 보다 20%이상 상향 관리하여 원자재 소모량이 증가하고 불필요한 자원(전기, 가스, 공업용수 등) 낭비 발생

모든 전착도장 공정에서 다루는 공통 핵심관리 인자들인 전압, 통전시간, 도료함유랑, 전착조 온도, 행거 박리 상태 등을 1~5초 단위로 계속 수집하며, 매 LOT 수집된 도막두께 데이터를 분석 후 최적의 생산 조건을 산출하여 사용자에게 전달

o AI 솔루션 실증지원 사업 연계 가능성

- 인공지능(AI)을 활용해 제조업 사출공정 품질 향상 역학조사를 돕는 AI 방법론
- 데이터 주도 혁신을 통해 각 산업 분야의 중소기업과의 경쟁력을 강화하고, 데이터 경제로 이행을 가속화할 수 있도록 데이터 활용 AI 솔루션
- 중간 제조공정 가공업무에 포함해 분야별 정보 수요를 집중 발굴 및 지원 가능
- 데이터를 수집 및 저장, 관리하고 활용할 수 있는 생산데이터 플랫폼 구축에 중점 및 정보주체 중심의 데이터 유통 및 활용체계를 조성
- 중소기업의 컴퓨터 수치제어(CNC) 머신, 프레스 등 핵심설비의 데이터셋 구축과 인공지능(AI) 솔루션 도입을 위한 전문가 컨설팅과 솔루션 실증을 통한 도입
- 제조생산공정 제품의 품질 100 PPM 범위의 정품측정과 오탐의 AI 검증방법론을 통해 동종기업에 전파 가능 (뿌리기술(금형,소성가공,용접,열처리,주조 등) 관련 업종)

- ㅇ 향후 도입기업이 나아 가야할 방향
 - 최종 생산된 제품(생산LOT별)이 각 공정마다 어떤 생산 조건에서 생산되었는지는 시스템 상에서 실시간 파악이 되고 있지 않음으로써, 최종 제품의 품질에 영향을 미치는 요인을 파악하여 최적의 생산조건을 산출하는데 어려움이 있고, 품질관리의 한계를 느끼고 있음.
 - 제품별 최적의 생산조건 산출을 통해 생산 제품의 불량률 감소 및 품질관리체계 확립이 체계화하여 정보의 수집, 분석, 제어, 감시를 통한 경영자 및 작업자의 의사결정지원하고 그동안 집계된 공정별 설비 데이터들을 최적화 환경 구축 데이터로 활용이가능함으로써 SQ 기준 이상의 제품이 되어야함,
 - (자동화, 품질 최적화)에서 고객 요구수요와 품질 및 납기 대응을 위해 공정의 표준화 및 꾸준하게 증가하고 있는 주문 물량의 적기 납품과 품질수준에 대응하기 위해 AI 솔루션 도입으로 세계적인 품질과 가격 경쟁력 부품 생산기업으로 나아가기를 기대함..

□ 향후 절차

- ㅇ (연계 시)
 - AI 솔루션 도입 절차
 - * 제조데이터 · AI 기술 및 솔루션을 기업별 제조현장에 적용하여 PoC(Proof of Concept) 를 통한 기술검증 및 현장적용 지원
 - (1) 수요기업 및 공급기업 매칭
 - (2) 프로토다입 검증 및 설계

Machine Learning Types	<u>Tasks</u>	Analysis methods/Algorithms
지도학습 (Supervised Learning) 분류 (Classification) (Prediction, Estimation) • SVM(Support Vector Machies Neural Network, Deep Learning) • Decision Tree • Logistic Regression, Discring • k-NN(k-Nearest Neighbor), CB • Naïve Bayes Classification • SVM, Neural Network	(Prediction,	 Regression Tree, Model Tree SVM(Support Vector Machine) Neural Network, Deep Learning
	 Decision Tree Logistic Regression, Discriminant Analysis k-NN(k-Nearest Neighbor), CBR(Case-Based Reasoning) Naïve Bayes Classification 	
	패턴/구조 발견 (Pattern/Rule)	 Association Rule Analysis, Sequence Analysis Network Analysis, Link Analysis, Graph theory Structural Equation Modeling, Path Analysis
비지도학습	그룹화 (Grouping)	 k-Means Clustering, Hierarchical Clustering, Density-based Clustering, Fuzzy Clustering SOM(Self-Organizing Map)
(Unsupervised Learning)	차원 축소 (Dimension Reduction)	 PCA(Principal Component Analysis), Factor Analysis, SVD(Singular Value Decomposition)
	영상,이미지,문자 (Video, Image, Text, Signal processing)	 Wavelet/Fast Fourier Transformation, DTW(Dynamic Time Warping), SAX(Symbolic Aggregate Approximation), Line/Circular Hough Transformation Text mining, Sentiment Analysis [R 분석과 프로그래밍] http://rfriend.tistory.com

(3) AI 솔루션 도입 방법 제시 및 도입 방법에 대해 기술적 타당성 검토

(4) AI 솔루션 도입에 따른 기대효과 심층 분석 등

- 비용 절감 및 생산성 개선
- 인공지능으로 쉽고 간편한 SET-UP
- 가편한 Image기반 Recheck 시스템
 - 인공지능을 통한 진석/가성 분류
 - 95% 이상 신뢰도로 불량 유형 판정
- ●5배 이상 빨라진 티칭 시간
 - 모든 위치에 ROI 설정하고 검사
 - Threshold 설정하는 번거로움 제거
 - -> 기존 5시간 이상 티칭을 1시간 이내로 수행
- 인공지능으로 스마트 팩토리를 위한 데이터까지 관리
- ●불량 이미지 및 정보를 데이터 베이스로 관리
 - 향후 데이터 관리를 위해 분석용 이미지 데이터 저장
 - 불량 유형에 대한 분류 기능 제공
- ●빅데이터 스마트 팩토리 변화 용이
- 데이터 서버 ADAMS or 단순 저장소 Data

- 인공지능 검사장비를 통한 불량 검출부터 정밀 검사까지 하나의 장비로 가능
- ●높은 검사 정확도
 - 딥러닝 기반의 알고리즘을 적용하여 재검 필요한 가성 불량 포인트를 혁신적 감소
- ●재검을 위한 추가 인력 감축 가능
- 가성 불량 포인트를 기존 대비 1/10 줄여 재검에 필요한 인원을 줄일 수 있음
- 품질 편차 문제 해소
- 인공지능이 365일 균일한 품질 기준으로 판정
- 불필요한 불량 발생 차단
- 물리적 제품 이송없이 의심 포인트는 Review SW를 이용하여 원격 확인 및 재판정수행 특징
- 품질 개선 효과
- ●검사 결과를 즉시 확인할 수 있으므로 이상 상태에 대한 즉시 대처 가능
- ●주요 불량과 비주요 불량에 대한 선택적 관리로 품질과 수율의 밸런스 조정 가능
- ●인공지능 기반의 검사로 365일 일정한 품질 유지
- ●Human Error, 작업자에 따른 품질 편차 문제 해소
- ●All-In-One Type의 장비로 이송 중 발생하는 필요한 불량 원천 차단

(5) AI 솔루션 도입

- 전착 설비에서 이상 징후와 관련된 DATA의 정의
- 관련 DATA의 적합성(타당성) 검토
- 센서에서 추출되는 데이터의 생산 조건 최적화 정의
- 공정전문가가 제시한 원인 DATA에 대한 AI적용 가능성 및 적합도 검토
- 해당 DATA기반으로 한 AI모델링 방법론 적용
- 일정기간 TEST DATA를 통해 머신러닝 후 최적의 환경 도출
- (6) AI 솔루션 실증지원 단계 중 '프로토타입 검증 설계 '와 병행하여 진행

