

HEXFET® Power MOSFET

Benefits

V _{DS}	20	٧
V _{GS Max}	± 12	V
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	46	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 2.5V)	66	$\mathbf{m}Ω$

Application(s)

• Load/ System Switch

Features and Benefits

Features

Industry-standard SOT-23 Package		Multi-vendor compatibility
RoHS compliant containing no lead, no bromide and no halogen	results in	Environmentally friendly

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.1	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.3	Α
I _{DM}	Pulsed Drain Current	16	
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	10/
P _D @T _A = 70°C	Maximum Power Dissipation	0.8	W
	Linear Derating Factor	0.01	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) @		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			٧	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.03		V/°C	Reference to 25°C, I _D = 1mA
	Static Drain-to-Source On-Resistance		30	46	mΩ	$V_{GS} = 4.5V, I_D = 4.1A$ ②
R _{DS(on)}	Static Diam-to-Source Off-nesistance		45	66	11152	$V_{GS} = 2.5V, I_D = 3.3A$ ②
V _{GS(th)}	Gate Threshold Voltage	0.5	0.8	1.1	V	$V_{DS} = V_{GS}$, $I_D = 5\mu A$
I _{DSS}				1.0		$V_{DS} = 16V$, $V_{GS} = 0V$
	Drain-to-Source Leakage Current			10	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
				150		$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 12V$
	Gate-to-Source Reverse Leakage			-100	IIA.	$V_{GS} = -12V$
R _G	Internal Gate Resistance		4.0		Ω	
gfs	Forward Transconductance	10			s	$V_{DS} = 10V, I_D = 4.1A$
Q_{q}	Total Gate Charge		3.5			$I_D = 4.1A$
Q_{qs}	Gate-to-Source Charge		0.26		nC	$V_{DS} = 10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.7			V _{GS} = 4.5V ⊘
t _{d(on)}	Turn-On Delay Time		3.6			V _{DD} =10V ②
t _r	Rise Time		4.9		ns	$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		11		115	$R_G = 6.8\Omega$
t _f	Fall Time		6.0			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		290			$V_{GS} = 0V$
C _{oss}	Output Capacitance		64		pF	V _{DS} = 16V
C _{rss}	Reverse Transfer Capacitance		41			f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	_		1.3		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	_		16		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 4.1A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		8.6	13	ns	$T_J = 25^{\circ}C, V_R = 15V, I_F = 1.3A$
Q _{rr}	Reverse Recovery Charge		2.8	4.2	nC	di/dt = 100A/µs ②

International Rectifier

IRLML6246TRPbF

≤60μs PULSE WIDTH lp, Drain-to-Source Current (A) 10 VGS 10V 4.5V 3.0V 2.5V 2.0V 1.8V воттом 1.5V 0.1 0.1 100 10 V_{DS} , Drain-to-Source Voltage (V)

100

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML6246TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

120 $R_{\mbox{DS}}(\mbox{on}), \ \mbox{Drain-to -Source On Resistance} \ (\mbox{ } m\Omega)$ 100 80 Vgs = 4.5V60 Vgs = 10V 40 20 5 0 10 15 20 25 30 I_D, Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International Rectifier

IRLML6246TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3™(SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS				
SYMBOL	MILLIMETERS		INCH	HES
STIVIBOL	MIN	MAX	MIN	MAX
Α	0.89	1.12	0.035	0.044
A1	0.01	0.10	0.0004	0.004
A2	0.88	1.02	0.035	0.040
b	0.30	0.50	0.012	0.020
С	0.08	0.20	0.003	0.008
D	2.80	3.04	0.110	0.120
Е	2.10	2.64	0.083	0.104
E1	1.20	1.40	0.047	0.055
е	0.95	BSC	0.037	BSC
e1	1.90	BSC	0.075	BSC
L	0.40	0.60	0.016	0.024
L1	0.54	REF	0.021	REF
L2	0.25	BSC	0.010	BSC
0	0	8	0	8

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 1. DIMENSIONING & TOLEPANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MULIMETERS (INCHES).
 3. CONTROLLING DIMENSION: MILLIMETER

 ADATUM PLANE HIS LOCATED AT THE MICL PARTITING LINE.

 ADATUM A AND B TO BE DETERMINED AT DATUM PLANEH.

 AD IMENSIONS DAND E1 ARE MEASURED AT DATUM PLANEH.

 DIMENSIONS DAND E1 ARE MEASURED AT DATUM PLANEH. DIMENSIONS DOES

 NOT INCLUDE MOLD PHOTRUSIONS OR INTERLEAD FLASH. MOLD PROTRUSIONS. OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3™(SOT-23) Part Marking Information

W= (27-52) IF PRECEDED BY ALETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	Е		
2006	F		
2007	G		
2008	Н		
2009	J	1	7
2010	K	50	X
		51	Υ
		52	Z

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3[™](SOT-23) Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Orderable part number	Package Type	Standard Pack Note		Standard Pack		Note
		Form	Quantity			
IRLML6246TRPbF	Micro3™(SOT-23)	Tape and Reel	3000			

Qualification information[†]

Ovalification level	Consumer ^{††}			
Qualification level	(per JEDEC JESD47F ^{†††} guidelines)			
		MSL1		
Moisture Sensitivity Level	Micro3™(SOT-23)	(per IPC/JEDEC J-STD-020D ^{†††})		
RoHS compliant		Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Revision History

Date	Comments
10/12/2012	Added IDSS @ 16V, T _J = 55C-pg2

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N. Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/2012