

Methods and programs for the generation of contextual finite geometries

Jessy Colonval

Franche-Comte university FEMTO-ST Institute, DISC department, VESONTIO team ANR project I-QUINS

jessy.colonval@femto-st.fr

Joint work with Henri de Boutray, Alain Giorgetti, Frédéric Holweck and Pierre-Alain Masson

November 28, 2019

Jessy Colonval 1 / 34 GT-IQ'19

Introduction - Context

- Master's degree in research supervised by A. Giorgetti.
- Project ANR I-SITE UBFC I-QUINS (Integrated QUantum Information at the NanoScale).
- Context: study of finite geometries called *quantum geometries* [PGHS15].
- With Magma Computational Algebra System [BCP97].

[PGHS15] M. Planat, A. Giorgetti, F. Holweck, M. Saniga. Quantum contextual finite geometries from dessins d'enfants.

International Journal of Geometric Methods in Modern Physics. 2015

[BCP97] W. Bosma, J. Canon, C. Playoust.

The Magma Algebra System I: The User Language.

Journal of Symbolic Computation.

1997.

Jessy Colonval 2 / 34 GT-IQ'19

Introduction - Contributions

- Implementation of a method for building finite geometries from Pauli groups [PS07].
- Implementation of a Kochen-Specker proof detection method [HS17].
- Implementation of a method for extracting critical Kochen-Specker proofs present in quantum finite geometry.

[PS07] M. Planat, M. Saniga.

On the Pauli graphs of N-qudits.

Quantum Information and Computation. 2007.

[HS17] F. Holweck, M. Saniga.

Contextuality with a Small Number of Observables.

 $\label{lem:condition} \textbf{International Journal of Quantum Information}.$

Jessy Colonval GT-IQ'19 3 / 34

Introduction - Contributions

- Quantum geometries not constructed by the method [PS07] but is obtained by another process [PGHS15].
- Implementation of a correspondence between child's drawings and finite geometries [PGHS15].

[PS07] M. Planat, M. Saniga.

On the Pauli graphs of N-qudits.

Quantum Information and Computation. 2007.

[PGHS15] M. Planat, A. Giorgetti, F. Holweck, M. Saniga.

Quantum contextual finite geometries from dessins d'enfants.

International Journal of Geometric Methods in Modern Physics. 2015.

Jessy Colonval GT-IQ'19

4 / 34

Definition (Block design)

A block is a non-empty part of a set Ω . A $\mathcal B$ block design is a set of blocks.

Definition (Incidence structure)

An incidence structure is a triplet $\mathcal{D} = (\Omega, \mathcal{B}, \mathcal{I})$ where $\Omega = \{1, \dots, n\}$ is a set of finite elements, $\mathcal{B} = \{b_1, \dots, b_p\}$ numbering a block design on Ω and $\mathcal{I} \subseteq \Omega \times \mathcal{B}$ is an incidence relationship, which defines membership of a element in a block.

Example of incidence structure

\mathcal{I}	1	2	3	4	5
b_1	1	1	1	1	1
<i>b</i> ₂	1	0	1	0	0
<i>b</i> ₃	1	0	0	1	0
<i>b</i> ₄	0	1	0	1	0
b_5	0	1	0	0	1
<i>b</i> ₆	0	0	1	0	1

$$b_1 = \{1, 2, 3, 4, 5\}$$

$$b_2 = \{1, 3\}$$

$$b_3 = \{1, 4\}$$

$$b_4 = \{2, 4\}$$

$$b_5 = \{2, 5\}$$

 $b_6 = \{3, 5\}$

nval GT-IQ'19 5 / 34

Vocabulary

MMP hypergraph	Block design	Finite geometry		
k vertices	v elements	p points		
m edges	b blocks	/ lines		
$\geq n$ vertices by edges	k elements by block	no constraint		
edges intersect in at most $n-2$ vertices	each t -subset is in exactly λ blocks	no constraint		

[PWMA19] M. Pavičić, M. Waegell, N. Megill, P.K. Aravind.

Automated generation of Kochen-Specker sets.

Scientific Reports.

2019.

[Col10] C. Colbourn.

CRC Handbook of Combinatorial Designs.

CRC Press.

2010.

Jessy Colonval GT-IQ'19 6 / 34 Pauli groups

Contents

- Pauli groups
- Mochen-Specker proofs
- Child's drawing

Jessy Colonval

GT-IQ'19

The Pauli group

The matrix group composed of the four matrices

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$

$$\sigma_{\mathsf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \sigma_{\mathsf{z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

is called the Pauli group of dimension 2, \mathcal{P}_2 .

[PZ88] J. Patera, H. Zassenhaus.

The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type A_{n-1} . Journal of Mathematical Physics.

Jessy Colonval GT-IQ'19 8 / 34

Tensor products from the Pauli group

It is possible to generalize the Pauli group \mathcal{P}_2 to all dimensions $2^n \times 2^n$ from the tensor product of *n* Pauli's groups, $\mathcal{P}_2 \otimes \ldots \otimes \mathcal{P}_2$.

Definition (Tensor product)

Let A be a matrix of size $m \times n$ and B a matrix of size $p \times q$. Their tensor product is the matrix $A \otimes B$ of size mp by ng, defined by :

$$A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{pmatrix}$$

Jessy Colonval GT-IQ'19 9 / 34

Construction method

Proposition

Let \mathcal{P}_n be a Pauli group of dimension n and a graph Γ where the vertices are matrices of \mathcal{P}_n and the edges are present if two matrices are commutating (A * B = B * A). The finite geometry G_{P_n} is such that :

- a vertex of $G_{\mathcal{P}_n}$ corresponds to a matrix of \mathcal{P}_n ;
- the lines of $G_{\mathcal{P}_n}$ are the cliques of the graph Γ , i.e. the subsets of the vertices that form a complete graph.

Jessy Colonval GT-IQ'19 10 / 34

Pauli groups

```
* Computes incidence structures from groups of matrices.
* For that, this fonction computes a graph where the vertices are matrices of the
* group and the links are present if two matrices are commuting.
* The geometry has for points the matrices of the group and for edges the cliques
* of the graph [PS07].
* @param MatGrp::AlgMat A given group of matrices.
* Oreturn Inc The corresponding incidence structure.
IncFromPauliGroup := function(MatGrp)
 nbGen := NumberOfGenerators(MatGrp);
  generators := {@ i : i in [1..nbGen] | not IsIdentity(MatGrp.i) @}:
  edges := {};
  for i in generators do
   for j in generators do
      if i lt j and MatGrp.i * MatGrp.j eq MatGrp.j * MatGrp.i then
        Include(~edges, {i,j});
      end if:
    end for:
  end for:
  graph := Graph < generators | edges >;
  cliques := AllCliques(graph);
  idCliques := [{generators[Index(vertex)] : vertex in clique} : clique in cliques];
  return IncidenceStructure < generators | idCliques >;
end function:
```

Listing 1: Function of building a finite geometry from a Pauli group.

Jessy Colonval GT-IQ'19 11 / 34

Example

$$M_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, M_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

$$M_5 = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, M_6 = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, M_7 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, M_8 = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \\ i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix},$$

$$M_9 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, M_{10} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, M_{11} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, M_{12} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$

$$M_{13} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, M_{14} = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \end{pmatrix}, M_{15} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, M_{16} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Jessy Colonval 12 / 34 GT-IQ'19

Example

femto-st

[PS07] M. Planat, M. Saniga.

On the Pauli graphs of N-qudits.

Quantum Information and Computation. 2007.

Jessy Colonval GT-IQ'19 13 / 34

Contents

- - Pauli groups
 - Kochen-Specker proofs
 - Child's drawing

Jessy Colonval

Kochen-Specker proofs

A finite geometry of operators is a KS-proof if:

- the lines of the configuration consist of mutually commuting operators, such a line is called a context:
- all operators square to identity;
- all operators belong to an even number of contexts;
- the product of the operators on the same context is $\pm Id$;
- there is an odd number of contexts giving -Id.

[HS17] F. Holweck, M. Saniga.

Contextuality with a Small Number of Observables.

International Journal of Quantum Information. 2017.

> Jessy Colonval GT-IQ'19 15 / 34


```
/**
 * Verifies that all squares of elements of a finite geometry are equal to the
 * identity matrix.
 * @param MatGrp::AlgMat A given group of matrices.
 * Oparam I:: Inc The corresponding incidence structure.
 * Greturn BoolElt corresponding to the satisfaction of property 2
KSElementsCommuting := function(MatGrp, I)
  B := Blocks(T):
  for block in B do
    for idMat in Support(block) do
      if not IsIdentity(MatGrp.idMat^2) then
        return false:
      end if:
    end for:
  end for:
  return true:
end function;
```

Listing 2: Boolean function that verifies that all operator squares are equal to the identity matrix.

Jessy Colonval GT-IQ'19 16 / 34

```
/**
 * Checks if a finite geometry on matrices has each node in a even number on
 * lines
 *
 * @param MatGrp::AlgMat A given group of matrices.
 * @param I::Inc The corresponding incidence structure.
 * @return BoolElt corresponding to the satisfaction of property 3
 */

*/

**(SElementsContainmentParity := function(MatGrp, I)
    P := Points(I);
    for point in P do
        if (PointDegree(I, point) mod 2) eq 1 or PointDegree(I, point) eq 0 then
            return false;
    end if;
    end for;
    return true;
end function;
```

Listing 3: Boolean function that verifies that points of a finite geometry appear in an even number of lines

Jessy Colonval GT-IQ'19 17 / 34


```
* Checks if a finite geometry on matrices has each product of elements on every
* lines resulting to Id or -Id and if there is an odd number of lines resulting
 * to -Id
* Oparam MatGrp::AlgMat A given group of matrices.
* Oparam I:: Inc The corresponding incidence structure.
 * Greturn BoolElt corresponding to the satisfaction of properties 4 and 5
 */
KSLinesIdentity := function(MatGrp, I)
 B := Blocks(I):
 negCounter := 0;
  for block in R do
    res := 1:
   for idMat in Support(block) do
     res *:= MatGrp.idMat;
    end for;
    if not (IsIdentity(res) or IsIdentity(-res)) then
      return false:
    end if:
    if IsIdentity(-res) then
     negCounter +:= 1:
    end if:
  end for:
 if (negCounter mod 2) eq 0 then
    return false;
 end if:
 return true;
end function:
```

Listing 4: Boolean function that verifies that a finite geometry has an odd number of lines with an eigenvalue equal to -1.

Jessy Colonval GT-IQ'19 18 / 34

Examples of not KS finite geometries

	Lines	Eigenvalues $(1 \text{ or } -1)$
b_1	$\{M_2, M_5, M_6\}$	1
b_2	$\{M_2, M_9, M_{10}\}$	1
<i>b</i> ₃	$\{M_2, M_{13}, M_{14}\}$	1
<i>b</i> ₄	$\{M_3, M_5, M_7\}$	1
<i>b</i> ₅	$\{M_3, M_9, M_{11}\}$	1
<i>b</i> ₆	$\{M_3, M_{13}, M_{15}\}$	1
<i>b</i> ₇	$\{M_4, M_5, M_8\}$	1
<i>b</i> ₈	$\{M_4, M_9, M_{12}\}$	1
b ₉	$\{M_4, M_{13}, M_{16}\}$	1
b_{10}	$\{M_7, M_{10}, M_{16}\}$	1
b_{11}	$\{M_7, M_{12}, M_{14}\}$	-1
b_{12}	$\{M_8, M_{10}, M_{15}\}$	-1
b ₁₃	$\{M_8, M_{11}, M_{14}\}$	1
b_{14}	$\{M_6, M_{11}, M_{16}\}$	-1
<i>b</i> ₁₅	$\{M_6, M_{12}, M_{15}\}$	1

Jessy Colonval GT-IQ'19 19 / 34

Examples of not KS finite geometries

Lines	M_2	M ₃	M_4	M_5	M_6	M ₇	M ₈	M_9	M ₁₀	M_{11}	M_{12}	M ₁₃	M ₁₄	M ₁₅	M ₁₆
b_1	1			1	1										
b_2	1							1	1						
<i>b</i> ₃	1											1	1		
<i>b</i> ₄		1		1		1									
<i>b</i> ₅		1						1		1					
<i>b</i> ₆		1									İ	1		1	
b ₇			1	1			1								
<i>b</i> ₈			1					1			1	İ			
<i>b</i> ₉			1								İ	1			1
b_{10}						1			1						1
b ₁₁						1					1	İ	1		
b ₁₂							1		1		İ			1	
b ₁₃							1			1			1		
b ₁₄					1					1					1
b_{15}					1						1			1	

GT-IQ'19 20 / 34

Critical Kochen-Specker proof

Proposition

Let G be a finite geometry being a Kochen-Specker proof of and B the lines of G. Then critical Kochen-Specker's proofs are all the finite geometries G' respecting the properties of a Kochen-Specker proof and having a set of lines $B' \subset B$ such that $\nexists B'', B'' \subset B'$ who respecting the properties of a Kochen-Specker proof.

Jessy Colonval GT-IQ'19 21 / 34


```
/**
 * Calculates the finite geometry from a group of Pauli matrices.
 * Remove the lines one by one and return all geometries that are
 * Kotchen-Specker proofs.
  Oparam MatGrp::AlgMat A given group of matrices.
  @return SetEnum::allCriticalKS The list of the all incidence structures being
      Kochen-Specker's proofs.
 */
function KSOfInc(matGrp, I)
  B := { Support(block) : block in Blocks(I) };
  allKS := {}:
  for i := 0 to #B do
    allInc:= SubInc(B. i):
   for inc in allInc do
      if KSProof(matGrp, inc) then
        Include(~allKS, inc);
      end if:
    end for:
  end for:
  return allKS;
end function:
```

Listing 5: Function that finds the critical Kochen-Specker proofs in a finite geometry.

Jessy Colonval GT-IQ'19 22 / 34

femto-st

For the finite geometry W(2) there are 10 critical Kochen-Specker proofs with 9 points and 6 lines, they are Mermin squares. One of 10 Mermin's squares is:

Jessy Colonval

GT-IQ'19

Contents

- Pauli groups
- 2 Kochen-Specker proofs
- Child's drawing
- Conclusion

Definition

A child's drawing is a bicolour map, drawn on an orientable surface, with all white vertices having a degree 1 or 2.

$$\begin{split} \sigma &= (1,2,4,8,7,3)(5,9,6) \\ \alpha &= (2,5)(3,6)(4,7)(8,9) \\ \phi &= (1,6,8,7,9,2)(3,4,5) \end{split}$$

25 / 34

Construction method

Proposition

Let be \mathcal{D} a child's drawing encoded by the permutation group P. Then the finished geometry $G_{\mathcal{D}}$ is such that [PGHS15]:

- ▶ one point of G_D corresponds to a half edge of D;
- all pairs of points in a line share the same stabilizer in P;
- the cardinality of the line stabilizer is the minimum value of all possible cardinalities.

This construction allows to associate $G_{\mathcal{D}^i}$ finite geometries of n points to a child's drawing, where $i \in [2; n[$ represents the number of points per line.

[PGHS15] M. Planat, A. Giorgetti, F. Holweck, M. Saniga.

Quantum contextual finite geometries from dessins d'enfants.

International Journal of Geometric Methods in Modern Physics. 2015.

Jessy Colonval GT-IQ'19 26 / 34


```
/**

* Verifies that all stabilizers of element pair are equal.

* * $param grpPerm::GrpPerm A given permutations group.

* $param line::SetEnum A given set of elements.

* $Preturn BoolElt Returns true if all stabilizers are equal else false.

*/

StabPairsAreEqual := function(grpPerm, line)

allPairs := { Setseq(pair) : pair in Subsets(line, 2) };

//Caution: different results between a set and a sequence of elements

return forall(t) { <irist, second : first in allPairs, second in allPairs

| Stabilizer(grpPerm, first) eq Stabilizer(grpPerm, second) };

end function;
```

Listing 6: Boolean function that indicates if the stabilizers of all point pairs are equal.

```
/**

* Computes all stabilizer cardinalities.

* Operam grpPerm::GrpPerm A given permutations group.

* Oreturn SeqEnum Sequence of all stabilizer cardinalities.

*/
ListCardStabilizers: = function(grpPerm)
nbElements: = Degree(grpPerm);
return [#Stabilizer(grpPerm, [i,e]): e in [i..nbElements]];
end function;
```

Listing 7: Compute all possible stabilizer cardinalities.

Jessy Colonval GT-IQ'19 27 / 34

```
/**
 * Gives a finite geometry, if any, with a given cardinality of blocks from a
 * permutation group corresponding to a child drawing.
 *
 * Oparam PermGrp::GrpPerm A given permutation group.
 * Oparam card::RngIntElt The cardinality of blocks.
 * Oreturn BlockDesign::SetEnum The corresponding block design.
 */
ChildDrawToFiniteGeoByStabMin := function(grpPerm, card)
    elements := Degree(grpPerm);
    SubSets := Subsets({1..elements}, card);
    blocks := { block : block in SubSets |
        CardStabBlockIsMin(grpPerm, block) and StabPairsAreEqual(grpPerm, block) };
    return IncidenceStructure<elements | blocks>;
end function;
```

Listing 8: Method of constructing a finite geometry from a child's drawing.

Jessy Colonval GT-IQ'19 28 / 34

Pauli groups Kochen-Specker proofs

Child's drawing Conclusion

Finite geometries found

index	name	vertices	edges	number of points per line	occurrence
3	2-simplex (triangle)	3	3	2	3
4	3-simplex (tethahedron)	4	6	4	6
	square/quadrangle	4	4	2	4
5	4-simplex (5-cell)	5	10	2	15
6	5-simplex	6	15	2	31
	3-orthoplex (octahedron)	6	12	2	16
	bipartite graph $K(3, 3)$	6	9	2	9
7	6-simplex	7	21	2	131
	Fano plane (7 ₃)	7	21	3	10
8	7-simplex	8	28	2	377
	4-orthoplex (16-cell)	8	24	2	51
	completed cube $K(4, 4)$	8	16	2	54
9	8-simplex	9	36	2	1490
	Hesse (9 ₄ 12 ₃)	9	36	3	14
	K(3) ³	9	27	2	60
	Pappus (9 ₃)	9	27	3	4
	(3 × 3)-grid	9	18	3	1
10	9-simplex	10	45	2	5277
	5-orthoplex	10	40	2	284
	bipartite graph $K(5, 5)$	10	25	2	345
	Mermin's pentagram	10	30	4	3
	Desargues (10 ₃)	10	30	2	7

Jessy Colonval GT-IQ'19 29 / 34

New finite geometry (2 points per line)

Mermin's square (3 points per line)

Jessy Colonval

GT-IQ'19

Contents

- Pauli groups
- Mochen-Specker proofs
- Child's drawing
- Conclusion

Conclusion - Not shown today

- Implementation of two Pauli group generalization methods for all dimensions [Kib09, PZ88].
- Implementation of a third method for constructing finite geometries from primitive permutation groups [Cd19].

[Kib09] M. Kibler.

An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group.

Journal of Physics A: Mathematical and Theoretical. 2009.

[PZ88] J. Patera, H Zassenhaus.

The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type A_{n-1} .

Journal of Mathematical Physics.

1988

[Cd19] J. Colonval, H. de Boutray.

Formalisation et validation d'une méthode de construction de systèmes de blocs.

18e journées Approches Formelles dans l'Assistance au Développement de Logiciels. 2019.

> Jessy Colonval GT-IQ'19 32 / 34

- Use generation from child's drawings to identify geometries built from Pauli groups.
- Link geometry constructed from child's drawings to contextuality and determine if all generated geometries are Kochen-Specker proofs.

GT-IQ'19 33 / 34

Thank you for your attention

Contents

Primitive groups

Jessy Colonval GT-IQ'19 1 / 4

Construction method

Proposition

Let G be a finite primitive permutation group acting on the set Ω of size n. Let $\alpha \in \Omega$, and let $\Delta \neq \{\alpha\}$ be an orbit of the stabilizer G_{α} of α . If

$$\mathcal{B} = \{\Delta^g : g \in G\}$$

and, given $\delta \in \Delta$.

$$\varepsilon = \{ \{\alpha, \delta\}^g : g \in G \},\$$

then $\mathcal{D} = (\Omega, \mathcal{B})$ forms a symmetric 1- $(n, |\Delta|, |\Delta|)$ design. Further, if Δ is a self-paired orbit of G_{α} then $\Gamma = (\Omega, \varepsilon)$ is a regular connected graph of valency $|\Delta|$, \mathcal{D} is self-dual [...]

[KM08] J.D. Key, J. Moori.

Correction to: Codes, Designs and Graphs from the Janko Groups J_1 and J_2 . 2008.

> 2 / 4 Jessy Colonval GT-IQ'19

Orbit Δ calculation function

Proposition (Excerpt)

Let G be a finite primitive permutation group acting on the set Ω of size n. Let $\alpha \in \Omega$, and let $\Delta \neq \{\alpha\}$ be an orbit of the stabilizer G_{α} of α . [...]

```
/**
 * Compute orbits of stabilizers of a primitive group [KM02, Proposition 1].
 * Oparam G::GrpPerm A primitive group
 * Oreturn Deltas::Assoc An associative array indexed by alpha
      and containing the corresponding delta set
 */
AllDelta := function(G)
 n := Degree(G);
  Omega := {1..n}:
  Deltas := AssociativeArray();
  for alpha in Omega do
    Galpha := Stabilizer(G. alpha):
   orbits := Orbits(Galpha):
    Deltas[alpha] := { IndexedSetToSet(Delta) : Delta in orbits | Delta ne { alpha } };
  end for:
  return Deltas:
end function;
```

Jessy Colonval GT-IQ'19 3 / 4

Function for building block systems

Proposition (Excerpt)

Let G be a finite primitive permutation group acting on the set Ω of size n. [...]

$$\mathcal{B} = \{\Delta^g : g \in G\}[\dots]$$

```
/**
  * Builds all block designs from a primitive group [KM02, Proposition 1]
  * @param G::GrpPerm A primitive group
  * @return blocks::Assoc An associative array indexed by orbits delta
  * and containing corresponding block designs
  */
BlckDsgnsFromPrmtvGrp := function(G)
  Deltas := AllDelta(G);
  blocks := AssociativeArray();
  for alpha in Keys(Deltas) do
    for Delta in Deltas[alpha] do
        blocks[Delta] := { Delta^g : g in G };
    end for;
  end for;
  return blocks;
end function;
```

Jessy Colonval GT-IQ'19 4 / 4