$11a_{34} (K11a_{34})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{63} - u^{62} + \dots + b - u, \ u^{39} - 18u^{37} + \dots - 2u^2 + a, \ u^{64} + 2u^{63} + \dots + u - 1 \rangle$$

$$I_2^u = \langle b - 1, -u^3 + a + 2u, \ u^5 - u^4 - 2u^3 + u^2 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 69 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{63} - u^{62} + \dots + b - u, \ u^{39} - 18u^{37} + \dots - 2u^2 + a, \ u^{64} + 2u^{63} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{39} + 18u^{37} + \dots + 6u^{3} + 2u^{2} \\ u^{63} + u^{62} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{63} + u^{62} + \dots - u^{2} + 2u \\ -u^{63} - u^{62} + \dots - u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{63} + u^{62} + \dots - u - 1 \\ u^{63} + u^{62} + \dots + u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-6u^{63} 4u^{62} + \cdots 13u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{64} - 6u^{63} + \dots + 3u - 1$
c_2	$u^{64} + 30u^{63} + \dots + 3u + 1$
c_{3}, c_{7}	$u^{64} + u^{63} + \dots + 96u + 32$
<i>C</i> ₅	$u^{64} - 6u^{63} + \dots + 5u - 1$
c_6, c_9, c_{10}	$u^{64} + 2u^{63} + \dots + u - 1$
<i>c</i> ₈	$u^{64} - 2u^{63} + \dots + 8204u - 1960$
c_{11}	$u^{64} + 14u^{63} + \dots + 2787u + 207$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{64} - 30y^{63} + \dots - 3y + 1$
c_2	$y^{64} + 14y^{63} + \dots + 13y + 1$
c_3, c_7	$y^{64} - 33y^{63} + \dots - 14848y + 1024$
<i>C</i> 5	$y^{64} - 2y^{63} + \dots - 9y + 1$
c_6, c_9, c_{10}	$y^{64} - 58y^{63} + \dots - y + 1$
c_8	$y^{64} - 18y^{63} + \dots - 40328176y + 3841600$
c_{11}	$y^{64} + 18y^{63} + \dots + 1021851y + 42849$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.004890 + 0.212052I		
a = 0.250176 - 1.256930I	3.37131 - 1.86053I	0
b = -0.972468 + 0.330740I		
u = 1.004890 - 0.212052I		
a = 0.250176 + 1.256930I	3.37131 + 1.86053I	0
b = -0.972468 - 0.330740I		
u = -1.055590 + 0.097412I		
a = 0.83771 - 1.53205I	-1.58334 + 2.05666I	0
b = -0.452362 + 0.922072I		
u = -1.055590 - 0.097412I		
a = 0.83771 + 1.53205I	-1.58334 - 2.05666I	0
b = -0.452362 - 0.922072I		
u = 1.08657		
a = 0.517514	-2.98700	0
b = 1.28011		
u = 1.076070 + 0.243448I		
a = 0.50549 + 1.44435I	1.75966 - 7.47908I	0
b = 0.069484 - 0.831677I		
u = 1.076070 - 0.243448I		
a = 0.50549 - 1.44435I	1.75966 + 7.47908I	0
b = 0.069484 + 0.831677I		
u = 0.292951 + 0.725218I		
a = -3.13866 + 0.47208I	2.46662 - 11.29940I	-1.16462 + 9.08913I
b = -2.45175 + 0.82611I		
u = 0.292951 - 0.725218I		
a = -3.13866 - 0.47208I	2.46662 + 11.29940I	-1.16462 - 9.08913I
b = -2.45175 - 0.82611I		
u = 0.674453 + 0.386464I		
a = -0.00066 - 2.55544I	1.05339 + 7.31803I	-3.59936 - 4.11166I
b = -1.110180 - 0.550037I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.674453 - 0.386464I		
a = -0.00066 + 2.55544I	1.05339 - 7.31803I	-3.59936 + 4.11166I
b = -1.110180 + 0.550037I		
u = 0.705088 + 0.302401I		
a = 0.83956 + 1.15317I	3.02952 + 1.83201I	-0.533486 + 0.085386I
b = 0.077388 - 0.254328I		
u = 0.705088 - 0.302401I		
a = 0.83956 - 1.15317I	3.02952 - 1.83201I	-0.533486 - 0.085386I
b = 0.077388 + 0.254328I		
u = 0.265999 + 0.717941I		
a = 1.40926 + 0.47850I	4.64833 - 5.64259I	2.08406 + 5.05177I
b = 1.178360 + 0.621823I		
u = 0.265999 - 0.717941I		
a = 1.40926 - 0.47850I	4.64833 + 5.64259I	2.08406 - 5.05177I
b = 1.178360 - 0.621823I		
u = -0.268310 + 0.684190I		
a = -3.11925 - 1.34879I	-0.18871 + 5.19299I	-2.32409 - 6.82469I
b = -2.29400 - 1.31119I		
u = -0.268310 - 0.684190I		
a = -3.11925 + 1.34879I	-0.18871 - 5.19299I	-2.32409 + 6.82469I
b = -2.29400 + 1.31119I		
u = 0.166461 + 0.708672I		
a = -1.78632 + 0.78559I	5.88443 - 1.71228I	4.06856 + 3.31380I
b = -1.57846 + 0.71331I		
u = 0.166461 - 0.708672I		
a = -1.78632 - 0.78559I	5.88443 + 1.71228I	4.06856 - 3.31380I
b = -1.57846 - 0.71331I		
u = -1.27342		
a = 0.512497	-2.82174	0
b = -0.111947		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.379910 + 0.618311I		
a = 0.888593 - 0.950785I	-1.309430 + 0.220190I	-2.16669 + 0.94520I
b = 0.785579 + 0.082329I		
u = -0.379910 - 0.618311I		
a = 0.888593 + 0.950785I	-1.309430 - 0.220190I	-2.16669 - 0.94520I
b = 0.785579 - 0.082329I		
u = 0.116871 + 0.709884I		
a = 1.79401 - 0.11144I	4.64291 + 3.88634I	2.43594 - 2.51707I
b = 1.312960 + 0.524885I		
u = 0.116871 - 0.709884I		
a = 1.79401 + 0.11144I	4.64291 - 3.88634I	2.43594 + 2.51707I
b = 1.312960 - 0.524885I		
u = -0.460178 + 0.533945I		
a = 0.637038 - 0.795810I	-1.65255 + 3.56868I	-3.94595 - 7.64427I
b = 1.111230 - 0.236500I		
u = -0.460178 - 0.533945I		
a = 0.637038 + 0.795810I	-1.65255 - 3.56868I	-3.94595 + 7.64427I
b = 1.111230 + 0.236500I		
u = 0.259055 + 0.653388I		
a = 1.06464 + 0.97600I	-1.20405 - 2.76775I	-0.87874 + 6.15771I
b = 0.990905 - 0.182467I		
u = 0.259055 - 0.653388I		
a = 1.06464 - 0.97600I	-1.20405 + 2.76775I	-0.87874 - 6.15771I
b = 0.990905 + 0.182467I		
u = -0.204298 + 0.641678I		
a = 2.07861 - 0.64563I	0.748257 + 0.939190I	0.11212 - 1.46039I
b = 1.34976 - 0.78269I		
u = -0.204298 - 0.641678I		
a = 2.07861 + 0.64563I	0.748257 - 0.939190I	0.11212 + 1.46039I
b = 1.34976 + 0.78269I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.319680 + 0.270463I		
a = 0.628923 - 0.555572I	0.150980 - 0.347116I	0
b = 2.00427 + 0.11792I		
u = -1.319680 - 0.270463I		
a = 0.628923 + 0.555572I	0.150980 + 0.347116I	0
b = 2.00427 - 0.11792I		
u = -1.353850 + 0.278392I		
a = -0.922498 + 0.572074I	1.08775 + 5.28117I	0
b = -1.59733 - 1.65323I		
u = -1.353850 - 0.278392I		
a = -0.922498 - 0.572074I	1.08775 - 5.28117I	0
b = -1.59733 + 1.65323I		
u = -0.556271 + 0.257738I		
a = 1.06140 + 2.71158I	-1.60289 - 1.70495I	-6.10429 + 1.65168I
b = -0.484179 + 0.678880I		
u = -0.556271 - 0.257738I		
a = 1.06140 - 2.71158I	-1.60289 + 1.70495I	-6.10429 - 1.65168I
b = -0.484179 - 0.678880I		
u = 1.387450 + 0.186851I		
a = -0.335032 + 0.455289I	-5.22435 - 3.56448I	0
b = 0.124901 + 1.401000I		
u = 1.387450 - 0.186851I		
a = -0.335032 - 0.455289I	-5.22435 + 3.56448I	0
b = 0.124901 - 1.401000I		
u = 1.384430 + 0.250118I		
a = 0.470700 + 0.975593I	-4.32280 - 4.18388I	0
b = 2.41332 + 0.37758I		
u = 1.384430 - 0.250118I		
a = 0.470700 - 0.975593I	-4.32280 + 4.18388I	0
b = 2.41332 - 0.37758I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.410150 + 0.091621I		
a = 0.171722 - 0.446103I	-3.31779 - 0.73149I	0
b = -0.051337 - 0.869147I		
u = -1.410150 - 0.091621I		
a = 0.171722 + 0.446103I	-3.31779 + 0.73149I	0
b = -0.051337 + 0.869147I		
u = -1.404660 + 0.156512I		
a = -0.481712 - 0.823798I	-7.96725 + 2.25757I	0
b = 1.44039 + 0.27511I		
u = -1.404660 - 0.156512I		
a = -0.481712 + 0.823798I	-7.96725 - 2.25757I	0
b = 1.44039 - 0.27511I		
u = 1.407530 + 0.132731I		
a = 1.36353 - 0.57844I	-7.47816 + 0.17720I	0
b = 0.66427 - 2.25478I		
u = 1.407530 - 0.132731I		
a = 1.36353 + 0.57844I	-7.47816 - 0.17720I	0
b = 0.66427 + 2.25478I		
u = -1.40289 + 0.25793I		
a = -0.099708 - 0.974841I	-6.51086 + 6.10114I	0
b = 0.717554 + 0.201107I		
u = -1.40289 - 0.25793I		
a = -0.099708 + 0.974841I	-6.51086 - 6.10114I	0
b = 0.717554 - 0.201107I		
u = 1.40734 + 0.26932I		
a = -1.68136 - 0.99882I	-5.53651 - 8.66838I	0
b = -2.91941 + 2.36420I		
u = 1.40734 - 0.26932I		
a = -1.68136 + 0.99882I	-5.53651 + 8.66838I	0
b = -2.91941 - 2.36420I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.40814 + 0.28394I		
a = 0.280476 - 0.719527I	-0.68966 + 9.28326I	0
b = 1.97690 - 0.33914I		
u = -1.40814 - 0.28394I		
a = 0.280476 + 0.719527I	-0.68966 - 9.28326I	0
b = 1.97690 + 0.33914I		
u = -1.42115 + 0.28534I		
a = -1.34480 + 1.32214I	-3.0092 + 14.9742I	0
b = -3.09851 - 1.54301I		
u = -1.42115 - 0.28534I		
a = -1.34480 - 1.32214I	-3.0092 - 14.9742I	0
b = -3.09851 + 1.54301I		
u = -1.44601 + 0.10453I		
a = 0.955221 + 0.877194I	-5.55732 - 5.80431I	0
b = -0.16080 + 1.87965I		
u = -1.44601 - 0.10453I		
a = 0.955221 - 0.877194I	-5.55732 + 5.80431I	0
b = -0.16080 - 1.87965I		
u = 1.44004 + 0.23244I		
a = -0.095745 + 0.853500I	-7.13968 - 3.33308I	0
b = 0.714563 + 0.171726I		
u = 1.44004 - 0.23244I		
a = -0.095745 - 0.853500I	-7.13968 + 3.33308I	0
b = 0.714563 - 0.171726I		
u = 1.44782 + 0.18947I		
a = -0.258808 + 0.695694I	-7.74951 - 6.19199I	0
b = 1.43274 + 0.05713I		
u = 1.44782 - 0.18947I		
a = -0.258808 - 0.695694I	-7.74951 + 6.19199I	0
b = 1.43274 - 0.05713I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.234891 + 0.464221I		
a = 0.496892 - 0.920682I	-0.038168 + 1.118320I	-0.73760 - 6.33469I
b = 0.051241 - 0.444007I		
u = -0.234891 - 0.464221I		
a = 0.496892 + 0.920682I	-0.038168 - 1.118320I	-0.73760 + 6.33469I
b = 0.051241 + 0.444007I		
u = 0.382966 + 0.305636I		
a = 0.015592 + 1.148670I	-2.38212 - 0.33638I	-5.62748 - 1.67456I
b = 1.170900 + 0.079635I		
u = 0.382966 - 0.305636I		
a = 0.015592 - 1.148670I	-2.38212 + 0.33638I	-5.62748 + 1.67456I
b = 1.170900 - 0.079635I		

II.
$$I_2^u = \langle b-1, -u^3+a+2u, u^5-u^4-2u^3+u^2+u+1 \rangle$$

(i) Arc colorings

a) Art colorings
$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u^3 - 2u \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u^3 + 2u \\ -u^3 + u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -u^3 + u + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^3 - 2u \\ u^3 - u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -u^3 + u + 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^3 u^2 8u 9$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^5$
c_2, c_4	$(u+1)^5$
c_3, c_7	u^5
<i>C</i> 5	$u^5 - 3u^4 + 4u^3 - u^2 - u + 1$
<i>C</i> ₆	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
c_8, c_{11}	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_9, c_{10}	$u^5 - u^4 - 2u^3 + u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_{3}, c_{7}	y^5
<i>C</i> ₅	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$
c_6, c_9, c_{10}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_8, c_{11}	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.21774		
a = 0.629714	-4.04602	-9.76980
b = 1.00000		
u = -0.309916 + 0.549911I		
a = 0.871221 - 1.107660I	-1.97403 + 1.53058I	-5.05737 - 4.09764I
b = 1.00000		
u = -0.309916 - 0.549911I		
a = 0.871221 + 1.107660I	-1.97403 - 1.53058I	-5.05737 + 4.09764I
b = 1.00000		
u = 1.41878 + 0.21917I		
a = -0.186078 + 0.874646I	-7.51750 - 4.40083I	-9.05774 + 4.18967I
b = 1.00000		
u = 1.41878 - 0.21917I		
a = -0.186078 - 0.874646I	-7.51750 + 4.40083I	-9.05774 - 4.18967I
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{64} - 6u^{63} + \dots + 3u - 1)$
c_2	$((u+1)^5)(u^{64}+30u^{63}+\cdots+3u+1)$
c_3, c_7	$u^5(u^{64} + u^{63} + \dots + 96u + 32)$
c_4	$((u+1)^5)(u^{64} - 6u^{63} + \dots + 3u - 1)$
<i>C</i> 5	$(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)(u^{64} - 6u^{63} + \dots + 5u - 1)$
c_6	$ (u^5 + u^4 - 2u^3 - u^2 + u - 1)(u^{64} + 2u^{63} + \dots + u - 1) $
c_8	$ (u5 + u4 + 2u3 + u2 + u + 1)(u64 - 2u63 + \dots + 8204u - 1960) $
c_9,c_{10}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{64} + 2u^{63} + \dots + u - 1)$
c_{11}	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)(u^{64} + 14u^{63} + \dots + 2787u + 207)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^5)(y^{64} - 30y^{63} + \dots - 3y + 1)$
c_2	$((y-1)^5)(y^{64}+14y^{63}+\cdots+13y+1)$
c_3, c_7	$y^5(y^{64} - 33y^{63} + \dots - 14848y + 1024)$
<i>C</i> 5	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)(y^{64} - 2y^{63} + \dots - 9y + 1)$
c_6, c_9, c_{10}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{64} - 58y^{63} + \dots - y + 1)$
c_8	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)$ $\cdot (y^{64} - 18y^{63} + \dots - 40328176y + 3841600)$
c_{11}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)(y^{64} + 18y^{63} + \dots + 1021851y + 42849)$