DM N°8 (pour le 22/01/2013)

L'objectif du problème est de présenter des suites de fonctions polynomiales qui convergent uniformément sur [-1,1] vers la fonction valeur absolue.

Les deux parties du problème sont indépendantes.

Notations et rappels

Si α est un réel et n un entier naturel, on pose

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} \quad \text{si} \quad n \ge 1 \quad \text{et} \quad \binom{\alpha}{0} = 1.$$

On rappelle que si n et m sont des entiers naturels avec $n \le m$, $\binom{m}{n}$ est le nombre de parties à n éléments d'un ensemble à m éléments.

1^{re} Partie

Approximation par les polynômes de Lebesgue

A. Une relation entre coefficients binomiaux

1. Soient n et m deux entiers naturels avec $n \le m$; montrer que $\sum_{p=0}^{n} \binom{m}{p} \binom{m}{n-p} = \binom{2m}{n}$.

On pourra considérer deux ensembles disjoints E et F ayant m éléments chacun, puis calculer de deux façons différentes le nombre de parties à n éléments de $E \cup F$.

- **2.** Soit n un entier naturel.
 - a) Vérifier que l'application $\alpha \mapsto \binom{2\alpha}{n} \sum_{p=0}^{n} \binom{\alpha}{p} \binom{\alpha}{n-p}$ est polynomiale puis en donner des zéros.
 - **b)** Montrer alors que pour tout réel α , $\binom{2\alpha}{n} = \sum_{p=0}^{n} \binom{\alpha}{p} \binom{\alpha}{n-p}$.

B. Recherche d'un équivalent

- 1. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positifs tels que, pour tout $n\in\mathbb{N}$, $\frac{a_{n+1}}{a_n}=1+w_n$ où $(w_n)_{n\in\mathbb{N}}$ est le terme général d'une série absolument convergente. Étudier la suite $(\ln(a_n))_{n\in\mathbb{N}}$ et en déduire que la suite $(a_n)_{n\in\mathbb{N}}$ converge vers un réel **strictement positif**.
- 2. Soient $(b_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positifs et γ un réel tel que, pour tout $n\in\mathbb{N}^*$, $\frac{b_{n+1}}{b_n}=1-\frac{\gamma}{n}+w_n'$ où $(w_n')_{n\in\mathbb{N}}$ est le terme général d'une série absolument convergente.
 - a) Étudier la suite $(n^{\gamma}b_n)_{n\geqslant 1}$ et en déduire qu'il existe une constante $\ell>0$ telle que $b_n \sim \frac{\ell}{n^{\gamma}} c dot$
 - **b)** Quelle est la nature de la série de terme général b_n ?
- **3.** Pour tout $n \in \mathbb{N}^*$, on pose $c_n = (-1)^{n-1} \binom{1/2}{n}$.
 - a) Vérifier que pour tout $n \in \mathbb{N}^*$, $\frac{c_{n+1}}{c_n} = \frac{2n-1}{2(n+1)}$

b) Établir qu'il existe une constante
$$C > 0$$
 telle que $\binom{1/2}{n} \sim C \frac{(-1)^{n-1}}{n^{3/2}}$.

C. Résultat d'approximation

- 1. Préciser pour quelles valeurs du complexe z la série $\sum_{n\geq 0} {1/2 \choose n} (-1)^n z^n$ est convergente.
- 2. Montrer que cette série converge normalement sur le disque fermé de \mathbb{C} , de centre 0 et de rayon 1; sa somme sera notée f(z) pour $|z| \leq 1$.
- **3.** Montrer soigneusement que si $|z| \le 1$ alors $f(z)^2 = 1 z$.
- **4.** Montrer que la fonction $x \mapsto f(x)$ ne s'annule pas sur l'intervalle]-1,1[et justifier soigneusement que f(x) > 0 pour tout $x \in]-1,1[$, puis que $f(x) = \sqrt{1-x}$, $x \in [-1,1]$.
- 5. Pour tout $n \in \mathbb{N}$, on pose $L_n = -\sum_{k=0}^n \binom{2k}{k} \frac{1}{(2k-1)2^{2k}} (1-X^2)^k$ (n^e polynôme de Lebesgue).
 - a) Vérifier que pour tout $n \in \mathbb{N}$, $\binom{1/2}{n} = (-1)^{n-1} \binom{2n}{n} \frac{1}{(2n-1)2^{2n}}$.
 - **b)** Vérifier que pour tout $x \in [-1,1]$, $|x| = f(1-x^2)$ et montrer que la suite $(L_n)_{n \in \mathbb{N}}$ des polynômes de Lebesgue converge uniformément sur [-1,1] vers la fonction $x \mapsto |x|$.

2e Partie

Approximation par d'autres suites de polynômes plus simples

A. Intégrales de Wallis

Pour tout entier naturel n, on pose $I_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$.

- **1.** a) Calculer I_0 et I_1 et justifier que $I_n > 0$ pour tout $n \in \mathbb{N}$.
 - **b)** Montrer que pour tout entier $n \ge 2$, $nI_n = (n-1)I_{n-2}$.
 - c) En déduire que pour tout entier $n \ge 1$, $nI_nI_{n-1} = \frac{\pi}{2}$
- **2.** a) Montrer que la suite $(I_p)_{p \in \mathbb{N}}$ est décroissante et que pour tout $n \ge 1$, $\frac{n-1}{n} \le \frac{I_n}{I_{n-1}} \le 1$.
 - **b)** Justifier alors que $I_n \sim \sqrt{\frac{\pi}{2n}}$.

B. Étude d'une suite de fonctions

1. Montrer que pour tout entier $n \ge 1$, la fonction $t \mapsto \frac{1 - (1 - t^2)^n}{t^2}$ se prolonge en une fonction continue sur [0,1].

Dans la suite, on considère les fonctions u_n et v_n définies, pour tout entier $n \ge 1$, par

$$v_n(0) = u_n(0) = 0$$
; $v_n(x) = \int_0^x \frac{1 - (1 - t^2)^n}{t^2} dt$ et $u_n(x) = \frac{\binom{2n}{n}}{2^{2n}} v_n(x)$ si $x \in]0,1].$

2. Étude de la suite $(v_n(1))_{n\geqslant 1}$

- a) Montrer que pour tout entier $p \ge 0$, $\int_0^1 (1-t^2)^p dt = I_{2p+1}$.
- **b)** En déduire que pour tout entier $n \ge 1$, $v_n(1) = \sum_{p=0}^{n-1} I_{2p+1}$.
- c) Montrer alors que $v_n(1) \underset{n \to +\infty}{\sim} \frac{\sqrt{\pi}}{2} \int_1^n \frac{\mathrm{d}t}{\sqrt{t}}$ puis justifier que $v_n(1) \underset{n \to +\infty}{\sim} \sqrt{n\pi}$.
- **3.** Étude de la suite $(u_n(1))_{n\geqslant 1}$
 - **a)** Montrer que $\frac{\binom{2n}{n}}{2^{2n}} = \frac{2}{\pi} I_{2n}$.
 - **b)** En déduire un équivalent de $\frac{\binom{2n}{n}}{2^{2n}}$ et préciser la constante C de la question **B.**3(b) de la première partie.
 - c) Montrer alors que la suite $(u_n(1))_{n\geq 1}$ converge vers 1.
- **4.** Soit $a \in]0,1[$.
 - a) Montrer que pour tout entier $n \ge 1$, la restriction de la fonction u_n au segment [a,1] est k_n -lipschitzienne avec $k_n = \frac{\binom{2n}{n}}{a^2 2^{2n}}$.
 - **b)** En utilisant ce qui précède et le fait que la suite $(u_n(1))_{n\geqslant 1}$ converge vers 1, montrer que la suite de fonctions $(u_n)_{n\geqslant 1}$ converge uniformément vers 1 sur le segment [a,1].
- 5. a) Justifier que pour tout entier $n \ge 1$, la fonction u_n est croissante sur le segment [0,1].
 - **b)** En déduire qu'il existe une constante M > 0 telle que

$$\forall (n, x) \in \mathbb{N}^* \times [0, 1], \quad 0 \le u_n(x) \le M.$$

C. D'autres suites de polynômes approchant uniformément la valeur absolue sur [-1,1]

On considère la suite $(P_n)_{n\geq 1}$ des polynômes suivants :

$$P_n = \frac{\binom{2n}{n}}{2^{2n}} \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{1}{2k-1} X^{2k}, \quad n \in \mathbb{N}^*.$$

- **1.** Montrer que pour tout $(n,x) \in \mathbb{N}^* \times [0,1]$, $P_n(x) = xu_n(x)$.
- 2. Déduire des questions 4. et 5. de la section précédente que la suite $(P_n)_{n\geqslant 1}$ converge uniformément vers la valeur absolue sur le segment [-1,1]; on remarquera que les polynômes P_n sont pairs et on choisire convenablement le a de la question 4.
- 3. On pose $Q_n = \frac{\binom{2n}{n}}{2^{2n}} \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{2k}{2k-1} X^{2k}$, $n \in \mathbb{N}^*$. Montrer que la suite $(Q_n)_{n\geqslant 1}$ converge uniformément vers la valeur absolue sur [-1,1].
- **4.** Montrer de même que les suites $(\widetilde{P}_n)_{n\geqslant 1}$ et $(\widetilde{Q}_n)_{n\geqslant 1}$ convergent vers la valeur absolue sur le segment [-1,1], où

$$\widetilde{P}_n = \frac{1}{\sqrt{n\pi}} \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{1}{2k-1} X^{2k} \quad \text{et} \quad \widetilde{Q}_n = \frac{1}{\sqrt{n\pi}} \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{2k}{2k-1} X^{2k}, \quad n \in \mathbb{N}^*.$$

