CSD1241 Tutorial 11

Question 1. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the shear with respect to the line l: 3x - 4y = 0 which maps the point $P = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ to $P' = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$.

- (a) What is the matrix of S? (*Hint*. Use $S(\vec{x}) = \vec{x} + \frac{\vec{n} \cdot \vec{x}}{||\vec{n}||} \vec{v}$ to find \vec{v})
- (b) Find the normal equation for the image m' of m: 2x 3y = 6 under S.
- (c) Let Q be the intersection of m' and l. Find the image Q' of Q under S.

Question 2. Consider the point $P = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and the line $l : \begin{cases} x = 2 + t \\ y = 3 - t \\ z = 1 + 2t \end{cases}$

- (a) Find the point P' on l which is at the closest distance to P.
- (b) Let α be the plane through P and perpendicular to l. Find the point Q' on α that is at the closest distance to $Q = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$.

Question 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the shear with respect to the plane $\alpha: z=3$ in the direction of shearing vector $\vec{v} = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}$.

(a) Write T in the form of an affine map

$$T(\vec{x}) = A\vec{x} + \vec{b}$$

- (b) What is the image of the line $l: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ under T?
- (c) What is the image of the plane $\beta: x-z=0$ under T?

Question 4. In this problem, we show that the composition of two reflections in 3D is a rotation.

Let $S \circ T$ be the **composition** of the reflection S through the plane $\alpha: 2x - y + 2z = 0$

and the reflection T through the plane $\beta: x - y = 0$.

- (a) Find the matrix M of $S \circ T$ (Hint: $M = M_S M_T$).
- (b) Find the fixed points of $S \circ T$.
- (c) In b, your answer is a line l. Let \vec{v} be the direction of l. Find the angle θ so that M is a rotation matrix, that is,

$$M = (1 - \cos \theta) \frac{\vec{v}\vec{v}^T}{||\vec{v}||^2} + (\cos \theta)I_3 + \frac{\sin \theta}{||\vec{v}||}C_{\vec{v}}$$