Álgebra 1 - Turma D $-2^{\circ}/2016$

$5^{\underline{a}}$ Lista de Exercícios — Grupos: continuação

Prof. José Antônio O. Freitas

Exercício 1: Quais dos seguintes subconjuntos G de \mathbb{Z}_{13} são grupos com a operação de multiplicação?

(a) $G = \{\overline{1}, \overline{12}\};$

(c) $G = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}, \overline{12}\}$

(b) $G = \{\overline{1}, \overline{5}, \overline{8}, \overline{12}\};$

(d) $G = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{11}\}.$

Exercício 2: Determine $f, g \in S_3$ tais que:

(a) $(f \circ g)^3 \neq f^3 \circ g^3$

(b) $(f \circ g)^2 \neq f^2 \circ g^2$

Exercício 3: Considere o grupo S_3 :

- (a) Determine todos os elementos $f \in S_3$ tais que $f^2 = Id$ e $f \neq Id$.
- (b) Determine todos os elementos $g \in S_3$ tais que $g^3 = Id$ e $g \neq Id$.

Exercício 4: Seja $V = \{1, f, g, h\}$ o seguinte subconjunto do grupo S_4 :

$$1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}; \quad f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}; \quad h = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

- (a) Prove que (V, \circ) é um grupo contendo 4 elementos, onde \circ é a operação de S_4 .
- (b) Prove que (V, \circ) é um grupo abeliano.

Exercício 5: Considere o grupo S_7 e sejam

$$1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 2 & 6 & 7 & 5 & 1 \end{pmatrix}.$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 6 & 7 & 4 & 5 \end{pmatrix}.$$

(a) Encontre o menor $l \ge 0$ tal que $\sigma^l = 1$.

- (b) Encontre $\delta \in S_7$ tal que $\sigma \circ \delta = 1$.
- (c) Encontre o menor $k \geq 0$ tal que $\beta^k = 1$.
- (d) Encontre $\gamma \in S_7$ tal que $\gamma \circ \beta = 1$.

Exercício 6: Seja (G, *) um grupo com elemento neutro e. Para $x \in G$, considere a notação $x^n = x * x * \cdots * x \ (n \text{ vezes})$.

- (a) Seja G um grupo tendo e como elemento neutro. Prove que se $x^2 = e$, para todo $x \in G$, então G é um grupo abeliano.
- (b) Mostre que se $x \in G$ é tal que $x^2 = x$, então x é o elemento neutro.

Exercício 7: Verifique se são subgrupos:

(a)
$$H = \{x \in \mathbb{Q} \mid x > 0\} \text{ de } (\mathbb{Q}^*, \cdot).$$

(b)
$$H = \left\{ \frac{1+2m}{1+2n} \mid m, n \in \mathbb{Z} \right\} de (\mathbb{Q}^*, \cdot).$$

(c)
$$H = \{\cos \theta + i \sin \theta \mid \theta \in \mathbb{Q}\}\ de\ (\mathbb{C}^*, \cdot).$$

(d)
$$H = \{0, \pm 2, \pm 4, \pm 6, \dots\}$$
 de $(\mathbb{Z}, +)$.

(e)
$$H = \{0, \pm 2, \pm 4, \pm 6, \dots\}$$
 do grupo $(\mathbb{Q} - \{1\}, \star)$ onde \star é definida como $x \star y = x + y - xy$.

(f)
$$H = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\ de(\mathbb{R}, +).$$

(g)
$$H = \{a + b\sqrt{2} \in \mathbb{R}^* \mid a, b \in \mathbb{Q}\}\ de\ (\mathbb{R}^*, \cdot).$$

(h)
$$H = \{a + b\sqrt[3]{2} \mid a, b \in \mathbb{Q}\}\ de(\mathbb{R}, +).$$

(i)
$$H = \{a + b\sqrt[3]{2} \in \mathbb{R}^* \mid a, b \in \mathbb{Q}\} \text{ de } (\mathbb{R}^*, \cdot).$$

Exercício 8: Determine todos os subgrupos do grupo aditivo \mathbb{Z}_4 .

Exercício 9: Determine todos os subgrupos de S_3 .

Exercício 10: Seja

$$GL_2(\mathbb{R}) = \left\{ A = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \mid x, y, z, t \in \mathbb{R}, \det(A) \neq 0 \right\}.$$

- (a) Mostre que $GL_2(\mathbb{R})$ com a operação de multiplicação de matrizes é um grupo. Esse grupo é abeliano?
- (b) Seja

$$H = \left\{ A = \begin{pmatrix} \cos a & \sin a \\ -\sin a & \cos a \end{pmatrix} \mid a \in \mathbb{R} \right\}.$$

Mostre que H é um subgrupo de $GL_2(\mathbb{R})$.

(c) Seja $K = \left\{ A = \begin{pmatrix} a & b \\ 1 & b \end{pmatrix} \mid a, b \in \mathbb{R} \text{ e não nulc} \right\}$

 $K = \left\{ A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \text{ e não nulos simultaneamente} \right\}$

Mostre que K é um subgrupo de $GL_2(\mathbb{R})$.

Exercício 11: Sejam G um grupo e $x, y, z \in G$. Prove que:

- (a) Se xy = xz, então y = z.
- (b) Se yx = zx, então y = z.

Exercício 12: Sejam H e K subgrupos de um grupo G (com notação multiplicativa).

- (a) Mostre que $H \cap K$ também é subgrupo de G.
- (b) Seja $g \in G$ um elemento fixado. Mostre que o conjunto $g^{-1}Hg = \{g^{-1}xg \mid x \in H\}$ é um subgrupo de G.
- (c) Prove que $H \cup K$ é subgrupo de G se, e somente se, $H \subseteq K$ ou $K \subseteq H$.

Exercício 13: Seja G um grupo com notação multiplicativa e a um elemento de G. Prove que $N(a) = \{x \in G \mid ax = xa\}$ é um subgrupo de G.

Exercício 14: Seja G um grupo com notação multiplicativa. Considere o subconjunto $Z(G) = \{x \in G \mid xg = gx, \text{ para todo } x \in G\}$. Mostre que:

- (a) Z(G) é um subgrupo de G.
- (b) G é abeliano se, e somente se, Z(G) = G.

Exercício 15: Sejam G e J grupos multiplicativos, $f: G \to J$ um homomorfismo de grupos e H um subgrupo de J. Mostre que $f^{-1}(H) = \{x \in G \mid f(x) \in H\}$ é um subgrupo de G.

Exercício 16: Seja (G, *) um grupo e $g \in G$ um elemento fixado e g^{-1} seu inverso. Mostre que a aplicação $i_g : G \to G$ definida por $i_g(x) = g^{-1} * x * g$, para todo $x \in G$, é um isomorfismo.

Exercício 17: Sejam $f: G \to H$ e $g: H \to J$ isomorfismos de grupos. Mostre que

- (a) $q \circ f$ é também isomorfismo de grupos;
- (b) f^{-1} é isomorfismo de grupos.

Exercício 18: Prove que um grupo G é abeliano se, e somente se, $f: G \to G$ definada por $f(x) = x^{-1}$ é um homomorfismo.

Exercício 19: Seja $f: G \to H$ um homomorfismo sobrejetivo de grupos e K um subgrupo de H.

- (a) Mostre que $f^{-1}(K)$ é um subgrupo de G, onde $f^{-1}(K)$ é a imagem inversa de K.
- (b) Mostre que o núcleo $\operatorname{Ker}(f)$ de f é um subgrupo de G e que $\operatorname{Ker}(f) \subset f^{-1}(K)$.

Exercício 20: Seja $f: G \to J$ um homomorfismo de grupos e $g \in G$ tal que o(g) = n.

- (a) Mostre que f(g) tem ordem positiva e que a ordem de f(g) divide n.
- (b) Mostre que se f é isomorfismo, então o(f(g)) = n.

Exercício 21: Verificar em cada caso se f é um homomorfismo de grupos.

(a) $f: \mathbb{Z} \to \mathbb{Z}$ dada por f(x) = kx, sendo \mathbb{Z} o grupo aditivo dos inteiros e k um número inteiro fixo.

- (b) $f: \mathbb{R}^* \to \mathbb{R}^*$ dada por f(x) = |x| sendo \mathbb{R}^* o grupo multiplicativo dos reais.
- (c) $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = x + 1, onde \mathbb{R} é o grupo aditivo dos reais.
- (d) $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ dada por f(x) = (x, 0), onde \mathbb{Z} e $\mathbb{Z} \times \mathbb{Z}$ denotam grupos aditivos.
- (e) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ dada por f(x,y) = x, onde $\mathbb{Z} \times \mathbb{Z}$ e \mathbb{Z} são grupos aditivos.
- (f) $f: \mathbb{Z} \to \mathbb{R}_+^*$ dada por $f(x) = 2^x$, onde \mathbb{Z} é grupo aditivo e \mathbb{R}_+^* é grupo multiplicativo.

Exercício 22: Determinar os homomorfismos injetores e os sobrejetores do exercício anterior.

Exercício 23: Determine o núcleo em cada homomorfismo do Exercício 21.

Exercício 24: Seja $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definida por f(x,y) = (x-y,0). Provar que f é um homomorfimo do grupo aditivo $\mathbb{Z} \times \mathbb{Z}$ em si próprio. Obter $\ker(f)$.

Exercício 25: Seja G um grupo finito com elemento neutro e e suponha que H e K são subgrupos de G tais que |H| = p e |K| = q, onde p e q são primos distintos. Mostre que $H \cap K = \{e\}$.