Ecole Publique d'Ingénieurs en 3 ans

Rapport

CHALLENGE DE PROGRAMMATION

Le 27 Mai 2024

Florestan Trillot - Benjamin Boccara - Matthieu Castetz

www.ensicaen.fr

TABLE DES MATIERES

1. I	NTRODUCTION	3
1.1.	. Présentation du projet	3
2. <i>A</i>	APPROCHE ALGORITHMIQUE	4
2.1.	. Présentation du concept	4
2.2.	. Solution algorithmique	5
3. [DEVELOPPEMENT DU PROJET	6
3.1.	. Outil de développement	6
3.2.	. Répartition des tâches	6
4. C	DIFFICULTES ET SOLUTIONS	7
4.1.	. Difficultés	7
4.2.	. Solutions	7
5. C	CONCLUSION	8

TABLE DES FIGURES

FIGURE 1 : EXEMPLE TRAJECTOIRE DU PILOTE : VIRAGES.TXT

1. INTRODUCTION

1.1. Présentation du projet

Le projet consiste à développer un pilote de course capable d'interagir avec un gestionnaire de course. Au premier tour, le gestionnaire communique la position initiale de chaque pilote. À chaque tour, le pilote doit ensuite indiquer la vitesse à laquelle il souhaite avancer. Il ne peut cependant pas occuper une position déjà prise par un autre pilote. Le gestionnaire de course attribue à chaque pilote une quantité de carburant déterminée en fonction de la carte choisie, et le pilote ne peut pas consommer plus de carburant que ce qui lui a été attribué.

FIGURE 1 : EXEMPLE TRAJECTOIRE DU PILOTE : VIRAGES.TXT

2. APPROCHE ALGORITHMIQUE

2.1. Présentation du concept

'M' est la voiture sur le schéma, 'm' sont les positions antérieurs et 'R' est la position antérieur utilisée pour empêcher "

- 1 => radar de rayon 30 pour déterminer si une ligne d'arrivée est accessible
- 2 => radar pour trouver le centre de la route = 'O' sont les cases scannées et 'X' est la case choisie sur le schéma
- 3 = déterminer les cases accessibles en fonction du vecteur vitesse : seulement accélération $\{-1;0;1\}^2 =$ 'o' sur le schéma
- 4 => déterminer la prochaine acceleration à faire = le 'o' le plus proche du 'X' sur le schéma

INTRUCTIONS : je vois bien pour chaques étapes une illustration un peu plus jolie que le printMap (la map avec '#','O','X', etc). En mode vous reprenez la première image de la voiture et vous illustré en mode plus stylé quoi (vous êtes respos com c'est votre taff)

2.2. Solution algorithmique	

3. DEVELOPPEMENT DU PROJET

3.1. Outil de développement

3.2. Répartition des tâches

4. DIFFICULTES ET SOLUTIONS

- 4.1. Difficultés
- 4.2. Solutions

5. CONCLUSION

Ecole Publique d'Ingénieurs en 3 ans

6 boulevard Maréchal Juin, CS 45053 14050 CAEN cedex 04

