CS 669 Assignment 1

Rohit Patiyal Devang Bacharwar Group 6

September 14, 2015

Contents

1	Obj	ective													2
	1.1	2-D ai	tificial Dat	a of 3 or 4 clas	ses				 	 					2
	1.2	Real V	World data	set					 	 					2
2	Pro	cedure	9												2
3	Obs	ervati	ons												2
	3.1	Bayes	Classifier						 	 					2
		3.1.1	Linearly s	separable data s	set				 	 					2
		3.1.2	Non-Linea	arly separable of	lata set				 	 					4
			3.1.2.1	Data of Interlo	cking Clas	sses			 	 					4
			3.1.2.2	A ring with a c	entral ma	ss .			 	 					6
			3.1.2.3	Spiral Dataset					 	 					7
		3.1.3	Overlappi	ng data set					 	 					9
		3.1.4	Real worl	d data set					 	 					11
	3.2	Naive-	Bayes class	sifier					 	 					13
		3.2.1	Linearly s	separable data s	set				 	 					13
		3.2.2	Non-Linea	arly separable of	lata set				 	 					15
				Data of Interlo											15
				A ring with a c	_										17
				Spiral Dataset											18
		3.2.3		ng data set											20
		3.2.4		d data set											22
4	Con	ıclusio	n												24

1 Objective

To build Bayes and Naive-Bayes classifiers for different types of data sets:

1.1 2-D artificial Data of 3 or 4 classes

- 1. Linearly separable data set
- 2. Nonlinearly separable data sets (3 Data sets)
- 3. Overlapping data set

1.2 Real World data set

2 Procedure

- 1. Data for each class is partitioned into 75 % for training and 25 % for testing
- 2. Mean and Covariances are calculated for each class using the training data.
- 3. For points in a grid, likelihood is calculated for each class and is labeled as of the class with the maximum likelihood probability.
- 4. For bayes classifier, the likelihood is assumed to be a multivariate gaussian distribution
- 5. These labelled points are plotted with different colors to visualize the different regions separated by the decision boundaries.
- 6. The testing data is also plotted over the regions, and observations are made.

3 Observations

3.1 Bayes Classifier

3.1.1 Linearly separable data set

The decision boundary clearly separates the testing data according to the estimated classes, as the data forms widely separated clusters. Results are similar even when the covariance is taken as the average of individual class covariances and when the covariance is calculated using all classes' data together.

Figure 1: Decision region plot for every pair of classes

Correct: 374 Incorrect: 1 Accuracy: 99.733

		Predicted			
		Class 1	Class 2	Class 3	
	Class 1	125	0	0	
Act	Class 2	0	125	0	
L _A	Class 3	0	1	124	

Figure 2: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 374 Incorrect: 1 Accuracy: 99.733

		Predicted			
		Class 1	Class 2	Class 3	
	Class 1	125	0	0	
Act	Class 2	0	125	0	
	Class 3	0	1	124	

Figure 3: Decision region plot for all the classes together with the training data superposed with average covariance

 $\begin{array}{l} {\rm Correct}:\,375 \\ {\rm Incorrect}:\,0 \\ {\rm Accuracy}:\,100 \end{array}$

		Predicted				
		Class 1	Class 2	Class 3		
	Class 1	125	0	0		
Act	Class 2	0	125	0		
¥	Class 3	0	0	125		

Figure 4: Decision region plot for all the classes together with the training data superposed with different covariance

Accuracy comes out to be 100 percentage when variance is taken differently for different classes. In this case the curvature of the decision boundary ensures that the points are accurately clasified.

3.1.2 Non-Linearly separable data set

3.1.2.1 Data of Interlocking Classes As per the decision plots, it can be observed that the spiral data is not easily classifiable even in the case of different covariance (the curvature of the decision boundary does not seem to change much.)

Correct: 239 Incorrect: 11 Accuracy: 95.6000

		Predicted			
		Class 1	Class 2		
ct.	Class 1	118	7		
Ac	Class 2	4	121		

Figure 5: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 239 Incorrect: 11 Accuracy: 95.6000

		Predicted			
		Class 1	Class 2		
بب	Class 1	118	7		
AC	Class 2	4	121		

Figure 6: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 240 Incorrect: 10 Accuracy: 96

		Predicted		
		Class 1	Class 2	
t.	Class 1	118	7	
Ac	Class 2	3	122	

Figure 7: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.2.2 A ring with a central mass The decision boundary remains a straight line for the same covariance cases and are very inaccurate for the ring data.

But, the accuracy significantly improves when the covariance is introduced of each of the classes, leading to an accuracy of 100%.

Correct: 188 Incorrect: 187 Accuracy: 50.133

		Predicted		
		Class 1	Class 2	
Act.	Class 1	46	29	
A	Class 2	158	142	

Figure 8: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 188 Incorrect: 187 Accuracy: 50.133

		Predicted		
		Class 1	Class 2	
ct.	Class 1	46	29	
Ac	Class 2	158	142	

Figure 9: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 375 Incorrect: 0 Accuracy: 100

		Predicted			
		Class 1	Class 2		
Act.	Class 1	75	0		
Ac	Class 2	0	300		

Figure 10: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.2.3 Spiral Dataset The bayesian classifier is in all cases unable to classify the spiral data accurately resulting in accuracies less than 55 %.

Correct: 350 Incorrect: 302 Accuracy: 53.68

		Predicted			
		Class 1	Class 2		
ct.	Class 1	175	151		
Ac	Class 2	151	175		

Figure 11: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 350 Incorrect: 302 Accuracy: 53.68

		Predicted			
		Class 1	Class 2		
بب	Class 1	175	151		
Act	Class 2	151	175		

Figure 12: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 350 Incorrect: 302 Accuracy: 53.68

		Predicted		
		Class 1	Class 2	
ct.	Class 1	175	151	
Ac	Class 2	151	175	

Figure 13: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.3 Overlapping data set

Overlapping data is classified to a satisfactory level by the bayesian classifier, clearly, the more overlapped the data is more are the chances of incorrect labelling leading to less than best accuracies.

Correct: 450 Incorrect: 50 Accuracy: 90.000

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	111	4	4	6
ا بر	Class 2	1	116	0	8
Act.	Class 3	9	0	116	0
	Class 4	6	12	0	107

Figure 15: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Figure 14: Decision region plot for every pair of classes

 $\begin{array}{l} {\rm Correct}: 453 \\ {\rm Incorrect}: 47 \\ {\rm Accuracy}: 90.600 \end{array}$

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	111	6	4	4
<u>;</u>	Class 2	2	118	0	5
Act	Class 3	9	0	116	0
	Class 4	5	12	0	108

Figure 16: Decision region plot for all the classes together with the training data superposed with average covariance

 $\begin{array}{l} {\rm Correct}: 452 \\ {\rm Incorrect}: 48 \\ {\rm Accuracy}: 90.400 \end{array}$

			Pred	icted	
		Class 1	Class 2	Class 3	Class 4
	Class 1	113	4	4	4
نب ا	Class 2	2	118	0	5
Act.	Class 3	12	0	113	0
	Class 4	5	12	0	108

Figure 17: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.4 Real world data set

In case of real world data, bayesian classifier is put to a test where the accuracies drop to 80s, not significantly different for the three cases. When covariance matrix is taken as same, the decision boundaries are straight lines, but when different covariances are considered, elliptical regions are observed.

Correct: 1386 Incorrect: 391 Accuracy: 77.9966

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	510	1	30
rct	Class 2	21	332	261
	Class 3	7	71	544

Figure 18: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 1509 Incorrect: 268 Accuracy: 84.9184

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	510	5	26
Act.	Class 2	20	397	197
₹,	Class 3	7	13	602

Figure 19: Decision region plot for all the classes together with the training data superposed with average covariance

Figure 21: Decision region plot for every pair of classes

Correct: 1433 Incorrect: 344 Accuracy: 80.6415

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	509	19	13
Act.	Class 2	5	392	217
L _A	Class 3	7	83	532

Figure 20: Decision region plot for all the classes together with the training data superposed with different covariance

3.2 Naive-Bayes classifier

3.2.1 Linearly separable data set

The decision boundaries are very similar to the bayes classifier, where most of test data fit in the estimated class regions for the linearly separable data set.

Correct: 374 Incorrect: 1 Accuracy: 99.733

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
rct	Class 2	0	125	0
	Class 3	0	1	124

Figure 22: Decision region plot for all the classes together with the training data superposed with $Same(\sigma^2I)$ covariance

Correct: 374 Incorrect: 1 Accuracy: 99.733

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act	Class 2	0	125	0
₹,	Class 3	0	1	124

Figure 23: Decision region plot for all the classes together with the training data superposed with average covariance $\frac{1}{2}$

Figure 25: Decision region plot for every pair of classes

Correct: 374
Incorrect: 1

Accuracy: 99.7333

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act.	Class 2	0	125	0
L _A	Class 3	0	1	124

Figure 24: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.2 Non-Linearly separable data set

3.2.2.1 Data of Interlocking Classes The decision region plots show that the naive bayes performes worse than bayes, leading to drop in accuracies, although there is not much difference in their shape.

Correct: 231 Incorrect: 19 Accuracy: 92.400

		Predicted		
		Class 1	Class 2	
ŗ,	Class 1	112	13	
Ac	Class 2	6	119	

Figure 26: Decision region plot for all the classes together with the training data superposed with $Same(\sigma^2I)$ covariance

Correct: 219 Incorrect: 31 Accuracy: 87.6000

		Predicted		
		Class 1	Class 2	
j.	Class 1	106	19	
Ac	Class 2	12	113	

Figure 27: Decision region plot for all the classes together with the training data superposed with average covariance $\frac{1}{2}$

Correct: 240 Incorrect: 10 Accuracy: 96.000

		Predicted		
		Class 1	Class 2	
ct.	Class 1	118	7	
Ac	Class 2	3	122	

Figure 28: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.2.2 A ring with a central mass Again the plots shows similar behaviour as the bayes case, but a slight drop in accuracy is observed. This can be reasoned with the help of fact that naive bayes assumed independence between the attributes.

Correct: 188 Incorrect: 187 Accuracy: 50.133

		Predicted	
		Class 1	Class 2
t.	Class 1	46	29
A	Class 2	158	142

Figure 29: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 192 Incorrect: 183 Accuracy: 51.2000

		Predicted		
		Class 1	Class 2	
ct.	Class 1	47	28	
Ac	Class 2	155	145	

Figure 30: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 375 Incorrect: 0 Accuracy: 100

		Predicted	
		Class 1	Class 2
j.	Class 1	75	0
Ac	Class 2	0	300

Figure 31: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.2.3 Spiral Dataset Similar to the bayes classifier with inaccuracies which are worst as compare to other data sets.

Correct: 354 Incorrect: 298 Accuracy: 54.2945

		Predicted	
		Class 1	Class 2
Ţ,	Class 1	117	149
Ac	Class 2	149	177

Figure 32: Decision region plot for all the classes together with the training data superposed with Same(σ^2 I) covariance

Correct: 353 Incorrect: 299 Accuracy: 54.1411

		Predicted	
		Class 1	Class 2
j.	Class 1	176	150
AC	Class 2	149	177

Figure 33: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 354 Incorrect: 298 Accuracy: 54.2945

		Predicted	
		Class 1	Class 2
ct.	Class 1	177	149
Ac	Class 2	149	177

Figure 34: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.3 Overlapping data set

There is a drop in accuracies as compared to the bayes plots. The boundaries are similar to those generated by the bayesian classifier.

Correct: 449 Incorrect: 51 Accuracy: 89.800

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	112	5	4	4
<u>;</u>	Class 2	2	117	1	5
Act.	Class 3	9	2	114	0
	Class 4	6	13	0	106

Figure 36: Decision region plot for all the classes together with the training data superposed with Same(σ^2 I) covariance

Figure 35: Decision region plot for every pair of classes

Correct: 445 Incorrect: 55 Accuracy: 89.000

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	111	6	4	4
نب ا	Class 2	2	117	1	5
Act	Class 3	13	0	112	0
	Class 4	5	15	0	105

Figure 37: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 445 Incorrect: 55 Accuracy: 89.000

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	110	6	5	4
نب ا	Class 2	2	115	1	7
Act.	Class 3	11	0	114	0
	Class 4	5	14	0	106

Figure 38: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.4 Real world data set

The results are comparable to the results obtained in the bayesian classifier with minute ups and downs in different cases of covariance matrices.

Correct: 1487 Incorrect: 290 Accuracy: 83.6804

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	512	5	24
ct	Class 2	43	400	171
	Class 3	7	40	575

Figure 39: Decision region plot for all the classes together with the training data superposed with Same(σ^2)I covariance

Correct: 1482 Incorrect: 295 Accuracy: 83.3990

			Predicted	
		Class 1	Class 2	Class 3
	Class 1	512	5	24
Act.	Class 2	44	398	172
¥	Class 3	7	43	572

Figure 40: Decision region plot for all the classes together with the training data superposed with average covariance

Figure 42: Decision region plot for every pair of classes

Correct: 1466 Incorrect: 311 Accuracy: 82.4986

		Predicted		
		Class 1	Class 2	Class 3
Act.	Class 1	510	16	15
	Class 2	19	410	185
	Class 3	7	69	546

Figure 41: Decision region plot for all the classes together with the training data superposed with different covariance

4 Conclusion

As per the observations, we can make the following conclusions :

- 1. The Decision Boundaries are more accurate in the case of different covariance for different classes as compared to the other cases.
- 2. The curvature of the decision boundaries is due to the covariance term in the likelihood probabilty which makes the surface quadratic.

- 3. The Decision Boundaries are better in cases where data is not overlapping and is separable either linearly or non linearly.
- 4. In case of real data, the data is more overlapping and non linear, resulting in lesser accuracy of the testing data.