Introductory Course on Non-smooth Optimisation

Lecture 03 Krasnosel'skii-Mann iteration

Outline

1 Method of alternating projection

- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skii-Manniteration

Recap

Recap of descent methods:

- include gradient descent, proximal gradient descent
- convergence (rate) properties
 - objective function value
 - \circ O(1/k) convergence rate
 - o optimal $O(1/k^2)$ convergence rate
 - sequence
 - o $O(1/\sqrt{k})$ convergence rate
 - o optimal O(1/k) convergence rate
 - linear convergence under e.g. strong convexity

Operator splitting

Consider the problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mu_1 \|\mathbf{x}\|_1 + \mu_2 \|\nabla \mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{f}\|^2.$$

In 1-D, both

$$\operatorname{prox}_{\gamma\|\cdot\|_1}(\cdot)$$
 and $\operatorname{prox}_{\gamma\|\nabla\cdot\|_1}(\cdot)$

have close form solution. However, not for

$$\operatorname{prox}_{\gamma(\|\cdot\|_1+\|\nabla\cdot\|_1)}(\cdot).$$

Operator splitting design properly structured scheme such that

- the proximal mapping of non-smooth functions are evaluated separated
- gradient descent is applied to the smooth part

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skii-Mann iteration

Feasibility problem

Problem (Feasibility problem)

Consider finding a common point

find
$$x \in \mathcal{X} \cap \mathcal{Y}$$
,

where $\mathcal{X}, \mathcal{Y} \in \mathbb{R}^n$ are two closed and convex sets.

Method of alternating projection

Equivalent formulation

$$\min_{\mathbf{x}\in\mathbb{R}^n}\ \iota_{\Omega_1}(\mathbf{x})+\iota_{\Omega_2}(\mathbf{x}).$$

Method of alternating projection (MAP)

initial: $x_0 \in \mathcal{X}$;

repeat:

- 1. Projection onto Ω_2 : $y_k = \text{proj}_{\mathcal{V}}(x_k)$
- 2. Projection onto Ω_1 : $x_{k+1} = \text{proj}_{\mathcal{X}}(y_k)$

until: stopping criterion is satisfied.

- The projection onto two sets are computed separately
- Stopping criterion: $||x_k x_{k-1}|| \le \epsilon$

Method of alternating projection

Convergence analysis

MAP:

$$x_{k+1} = \operatorname{proj}_{\mathcal{X}} \circ \operatorname{proj}_{\mathcal{Y}}(x_k).$$

How to:

- analyse the convergence proerties
- not convergence result for the objective function value
- how about the sequence $\{x_k\}_{k\in\mathbb{N}}$

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skii-Mann iteration

Notations

Given two non-empty sets $\mathcal{X}, \mathcal{U} \subseteq \mathbb{R}^n$, $A : \mathcal{X} \rightrightarrows \mathcal{U}$ is called set-valued operator if A maps every point in \mathcal{X} to a subset of \mathcal{U} , *i.e.*

$$A: \mathcal{X} \rightrightarrows \mathcal{U}, \ x \in \mathcal{X} \mapsto A(x) \subseteq \mathcal{U}.$$

The graph of A is defined by

$$\operatorname{gra}(A) \stackrel{\text{def}}{=} \{(x, u) \in \mathcal{X} \times \mathcal{U} : u \in A(x)\}.$$

The domain and range of A are

$$dom(A) \stackrel{\text{def}}{=} \{x \in \mathcal{X} : A(x) \neq \emptyset\}, \ ran(A) \stackrel{\text{def}}{=} A(\mathcal{X}).$$

The inverse of A defined through its graph

$$\operatorname{gra}(A^{-1}) \stackrel{\text{def}}{=} \{(u,x) \in \mathcal{U} \times \mathcal{X} : u \in A(x)\}.$$

• The set of zeros of A are the points such that

$$\operatorname{zer}(A) \stackrel{\text{def}}{=} A^{-1}(0) = \{ x \in \mathcal{X} : 0 \in A(x) \}.$$

Monotone operator

Definition (Monotone operator)

Let $\mathcal{X}, \mathcal{U} \subseteq \mathbb{R}^n$ be two non-empty convex sets, $A: \mathcal{X} \rightrightarrows \mathcal{U}$ is monotone if

$$\langle x-y, u-v \rangle \geq 0, \ \forall (x,u), (y,v) \in \operatorname{gra}(A).$$

It is moreover maximal monotone if gra(A) is not strictly contained in the graph of any other monotone operators.

A is called α -strongly monotone for some $\kappa > 0$ if

$$\langle x-y, u-v\rangle \geq \kappa \|x-y\|^2.$$

Lemma

Let $R \in \Gamma_0$, then ∂R is maximal monotone.

Definition (Resolvent and reflection)

The resolvent and reflection of $A: \mathcal{X} \rightrightarrows \mathcal{U}$ are defined by

$$\mathcal{J}_A \stackrel{\text{def}}{=} (\operatorname{Id} + A)^{-1}$$
 and $\mathcal{R}_A \stackrel{\text{def}}{=} 2\mathcal{J}_A - \operatorname{Id}$.

Cocoercive operator

Definition (Cocoercive operator)

An operator $B: \mathbb{R}^n \to \mathbb{R}^n$ is called β -cocoercive if there exists $\beta > 0$ such that

$$\beta \|B(x) - B(y)\|^2 \le \langle B(x) - B(y), x - y \rangle, \ \forall x, y \in \mathbb{R}^n.$$

The above equation implies that *B* is $(1/\beta)$ -Lipschitz continuous.

Theorem (Baillon-Haddad)

Let $F \in C_L^1$, then ∇F is β -cocoercive.

Lemma

Let $C : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be β -strongly monotone, then its inverse C^{-1} is β -cocoercive.

Resolvent of monotone operator

Definition (Resolvent)

Let $A : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be a maximal monotone operator and $\gamma > 0$, the resolvent of A is defined by

$$\mathcal{J}_{\gamma A} \stackrel{\text{def}}{=} (\operatorname{Id} + \gamma A)^{-1}.$$

The reflection of $\mathcal{J}_{\gamma A}$ is defined by

$$\mathcal{R}_{\gamma A} \stackrel{\text{def}}{=} 2 \mathcal{J}_{\gamma A} - \text{Id}.$$

Given a function $R \in \Gamma_0$ and its sub-differential ∂R ,

$$prox_R = \mathcal{J}_{\partial R}$$
.

Set of fixed points,

$$fix(prox_R) = fix(\partial_{\partial R}) = zer(\partial R).$$

Yosida approximation

Theorem (Yosida approximation)

Let $A: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be a maximal monotone operator and $\gamma > 0$, the Yosida approximation of A with γ is

$${}^{\gamma}A\stackrel{\mathrm{def}}{=}rac{1}{\gamma}(\operatorname{Id}-\mathcal{J}_{\gamma A})=(\gamma\operatorname{Id}+A^{-1})^{-1}=\mathcal{J}_{A^{-1}/\gamma}(\cdot/\gamma).$$

Moreover,

$$\mathsf{Id} = \mathcal{J}_{\gamma A}(\cdot) + \gamma \mathcal{J}_{A^{-1}/\gamma} \left(\frac{\cdot}{\gamma} \right).$$

• ${}^{\gamma}A$ is γ -cocoercive

Non-expansive operator

Definition (Non-expansive operator)

An operator $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ is called non-expansive if it is 1-Lipschitz continuous, *i.e.*

$$\|\mathcal{T}(x) - \mathcal{T}(y)\| \le \|x - y\|, \ \forall x, y \in \mathbb{R}^n.$$

For any $\alpha \in]0,1[$, \mathcal{T} is α -averaged if there exists a non-expansive operator \mathcal{T}' such that

$$\mathcal{T} = \alpha \mathcal{T}' + (1 - \alpha) \mathrm{Id}.$$

- $\mathcal{A}(\alpha)$ denotes the class of α -averaged operators on \mathbb{R}^n
- $\mathcal{A}(\frac{1}{2})$ is the class of firmly non-expansive operators

Properties: α -averaged operators

Lemma

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be non-expansive and $\alpha \in]0,1[$. The following statements are equivalent:

- T is α -averaged non-expansive.
- The operator

$$\left(1 - \frac{1}{\alpha}\right) \operatorname{Id} + \frac{1}{\alpha} \mathcal{T}$$

is non-expansive.

• For any $x, y \in \mathbb{R}^n$,

$$\|\mathcal{T}(x) - \mathcal{T}(y)\|^2 \le \|x - y\|^2 - \frac{1 - \alpha}{\alpha} \|(\operatorname{Id} - \mathcal{T})(x) - (\operatorname{Id} - \mathcal{T})(y)\|^2.$$

Properties: α -averaged operators

 $A(\alpha)$ is closed under relaxations, convex combinations and compositions.

Lemma

Let $m \in \mathbb{N}_+$, $\{\mathcal{T}_i\}_{i \in \{1,...,m\}}$ be non-expansive operators on \mathbb{R}^n , $(\omega_i)_i \in]0,1]^m$ and $\sum_i \omega_i = 1$, and $(\alpha_i)_i \in]0,1]^m$ such that $\mathcal{T}_i \in \mathcal{A}(\alpha_i)$, $i \in \{1,...,m\}$. Then,

- $\operatorname{Id} + \lambda_i(\mathcal{T}_i \operatorname{Id}) \in \mathcal{A}(\lambda_i \alpha_i), \ \lambda_i \in]0, \frac{1}{\alpha_i}[$ and $i \in \{1, ..., m\}.$
- $\sum_{i} \omega_{i} \mathcal{T}_{i} \in \mathcal{A}(\alpha)$ with $\alpha = \max_{i} \alpha_{i}$.
- $\mathcal{T}_1 \cdots \mathcal{T}_m \in \mathcal{A}(\alpha)$ with $\alpha = \frac{m}{m-1+1/\max_{i \in \{1,\dots,m\}} \alpha_i}$.

Remark

When having the composition of two averaged operators, a sharper bound of α can be obtained for m = 2,

$$\alpha = \frac{\alpha_1 + \alpha_2 - 2\alpha_1\alpha_2}{1 - \alpha_1\alpha_2} \in]0,1[.$$

Properties: firmly non-expansive operators

Lemma

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be non-expansive. The following statements are equivalent:

- T is firmly non-expansive.
- Id T is firmly non-expansive.
- 2T Id is non-expansive.
- $\|\mathcal{T}(x) \mathcal{T}(y)\|^2 \le \langle \mathcal{T}(x) \mathcal{T}(y), x y \rangle, \forall x, y \in \mathbb{R}^n$.
- \mathcal{T} is the resolvent of a maximal monotone operator A, i.e. $\mathcal{T} = \mathcal{J}_A$.

Lemma

Let operator $B: \mathbb{R}^n \to \mathbb{R}^n$ be β -cocoercive for some $\beta > 0$. Then

- $\beta B \in \mathcal{A}(\frac{1}{2})$, i.e. is firmly non-expansive.
- $\operatorname{Id} \gamma B \in \mathcal{A}(\frac{\gamma}{2\beta})$ for $\gamma \in]0, 2\beta[$.

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skii-Manniteration

Fixed point

Definition (Fixed point)

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be a non-expansive operator, $x \in \mathbb{R}^n$ is called the fixed point of \mathcal{T} if

$$x = \mathcal{T}(x)$$
.

The set of fixed points of \mathcal{T} is denoted as $fix(\mathcal{T})$.

 $fix(\mathcal{T})$ may be empty, e.g. translation by a non-zero vector.

Theorem

Let \mathcal{X} be a non-empty bounded closed convex subset of \mathbb{R}^n and $\mathcal{T}: \mathcal{X} \to \mathcal{X}$ be a non-expansive operator, then fix(\mathcal{T}) $\neq \emptyset$.

Lemma

Let \mathcal{X} be a non-empty closed convex subset of \mathbb{R}^n and $\mathcal{T}: \mathcal{X} \to \mathbb{R}^n$ be a non-expansive operator, then fix(\mathcal{T}) is closed and convex.

Krasnosel'skiĭ-Mann iteration

Fixed-point iteration

$$x_{k+1} = \mathcal{T}(x_k).$$

However, it may not converge, e.g. $\mathcal{T} = -\text{Id}...$

Definition (Krasnosel'skii-Mann iteration)

Let $\mathcal{T}:\mathbb{R}^n\to\mathbb{R}^n$ be a non-expansive operator such that $\mathrm{fix}(\mathcal{T})\neq\emptyset$. Let $\lambda_k\in[0,1]$ and choose x_0 arbitrarily from \mathbb{R}^n , then the Krasnosel'skiĭ-Mann iteration of \mathcal{T} reads

$$x_{k+1} = x_k + \lambda_k(\mathcal{T}(x_k) - x_k). \tag{3.1}$$

• If $\mathcal{T} \in \mathcal{A}(\alpha)$, then $\lambda_k \in [0, 1/\alpha]$

Fejér monotonicity

Definition (Fejér monotonicity)

Let $S \subseteq \mathbb{R}^n$ be a non-empty set and $\{x_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^n . Then

• $\{x_k\}_{k\in\mathbb{N}}$ is Fejér monotone with respect to \mathcal{S} if

$$||x_{k+1} - x|| \le ||x_k - x||, \ \forall x \in \mathcal{S}, \, \forall k \in \mathbb{N}.$$

• $\{x_k\}_{k\in\mathbb{N}}$ is quasi-Fejér monotone with respect to \mathcal{S} , if there exists a summable sequence $\{\epsilon_k\}_{k\in\mathbb{N}}\in\ell_+^1$ such that

$$\forall k \in \mathbb{N}, \quad ||x_{k+1} - x|| \le ||x_k - x|| + \epsilon_k, \quad \forall x \in \mathcal{S}.$$

Example

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a non-empty convex set, and $\mathcal{T}: \mathcal{X} \to \mathcal{X}$ be a non-expansive operator such that $\operatorname{fix}(\mathcal{T}) \neq \emptyset$. The sequence $\{x_k\}_{k \in \mathbb{N}}$ generated by $x_{k+1} = \mathcal{T}(x_k)$ is Fejér monotone with respect to $\operatorname{fix}(\mathcal{T})$.

III: Krasnosel'skii-Manniteration 21/33

Convergence

Lemma

Let $S \subseteq \mathbb{R}^n$ be a non-empty set and $\{x_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^n . Assume the $\{x_k\}_{k \in \mathbb{N}}$ is quasi-Fejér monotone with respect to S, then the following holds

- $\{x_k\}_{k\in\mathbb{N}}$ is bounded.
- $||x_k x||$ is bounded for any $x \in S$.
- $\{\operatorname{dist}(x_k, \mathcal{S})\}_{k \in \mathbb{N}}$ is decreasing and convergent.

If every sequential cluster point of $\{x_k\}_{k\in\mathbb{N}}$ belongs to \mathcal{S} , then $\{x_k\}_{k\in\mathbb{N}}$ converges to a point in \mathcal{S} .

Weak convergence in general real Hilbert space

III: Krasnosel'skiĭ-Mann iteration 22/33

Convergence

Theorem

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be a non-expansive operator such that fix $(\mathcal{T}) \neq \emptyset$. Consider the Krasnosel'skiĭ-Mann iteration of \mathcal{T} , and choose $\lambda_k \in [0,1]$ such that

$$\sum_{k\in\mathbb{N}}\lambda_k(1-\lambda_k)=+\infty,$$

then the following holds

- $\{x_k\}_{k\in\mathbb{N}}$ is Fejér monotone with respect to $fix(\mathcal{T})$.
- $\{x_k \mathcal{T}(x_k)\}_{k \in \mathbb{N}}$ converges strongly to 0.
- $\{x_k\}_{k\in\mathbb{N}}$ converges to a point in fix (\mathcal{T}) .

When T is α -averaged, then

$$\lambda_k \in [0, 1/\alpha]$$
 such that $\sum_{k \in \mathbb{N}} \lambda_k (1/\alpha - \lambda_k) = +\infty$.

III: Krasnosel'skiĭ-Mann iteration 22/33

Preliminiary

Krasnosel'skii-Mann iteration with constant relaxation

$$x_{k+1} = x_k + \lambda (\mathcal{T}(x_k) - x_k)$$

= $((1 - \lambda) \operatorname{Id} + \lambda \mathcal{T})(x_k)$.

Denote $\mathcal{T}_{\lambda} = (1 - \lambda) \operatorname{Id} + \lambda \mathcal{T}$, and define residual

$$e_k = (\operatorname{Id} - \mathcal{T})(x_k) = \frac{1}{\lambda}(x_k - x_{k+1}).$$

Preliminiary

Krasnosel'skii-Mann iteration with constant relaxation

$$x_{k+1} = x_k + \lambda (\mathcal{T}(x_k) - x_k)$$

= $((1 - \lambda) \operatorname{Id} + \lambda \mathcal{T})(x_k)$.

Denote $\mathcal{T}_{\lambda} = (1 - \lambda) \operatorname{Id} + \lambda \mathcal{T}$, and define residual

$$e_k = (\operatorname{Id} - \mathcal{T})(x_k) = \frac{1}{\lambda}(x_k - x_{k+1}).$$

- $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda)$ if $\lambda \in]0,1[$. If $\mathcal{T} \in \mathcal{A}(\alpha)$, then $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda \alpha)$
- For any $x^* \in fix(\mathcal{T})$,

$$x^{\star} \in \mathsf{fix}(\mathcal{T}) \Leftrightarrow x^{\star} \in \mathsf{fix}(\mathcal{T}_{\lambda}) \Leftrightarrow x^{\star} \in \mathsf{zer}(\mathsf{Id} - \mathcal{T})$$

- If $\lambda \in [\epsilon, 1 \epsilon], \epsilon \in]0, 1/2]$,
 - $-e_k$ converges to 0.
 - $\{x_k\}_{k\in\mathbb{N}}$ is quasi-Fejér monotone with respect to fix(\mathcal{T}), and converges to a x^* ∈ fix(\mathcal{T}).

Pointwise convergence rate

Rate of $||e_k||^2$:

For residual

$$\|e_{k+1}\|^2 \leq \|e_k\|^2 - \frac{1-\lambda}{\lambda} \|e_k - e_{k+1}\|^2$$
.

• $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda)$, $\tau = \lambda(1 - \lambda)$

$$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - \tau ||e_k||^2$$
.

Summation

$$\|(k+1)\|e_k\|^2 \le \tau \sum_{i=0}^k \|e_i\|^2 \le \|x_0 - x^\star\|^2 - \|x_{k+1} - x^\star\|^2.$$

Rate

$$\|e_k\|^2 \leq \frac{\|x_0 - x^*\|^2}{k+1}.$$

If $T \in \mathcal{A}(\alpha)$, then the above holds for $\lambda \in [\epsilon, 1/\alpha - \epsilon]$.

Ergodic convergence rate

Define
$$\bar{e}_k = \frac{1}{k+1} \sum_{i=0}^k e_i$$
.

Boundedness

$$||x_{k+1} - x^*|| = ||\mathcal{T}_{\lambda}(x_k) - \mathcal{T}_{\lambda}(x^*)|| \le ||x_k - x^*||$$

 $\le ||x_0 - x^*||$

$$\begin{array}{l} \bullet \ \lambda e_k = x_k - x_{k+1} \\ \|\bar{e}_k\| = \frac{1}{k+1} \| \sum_{i=0}^k e_i \| = \frac{1}{\lambda(k+1)} \| \sum_{i=0}^k \left(x_i - x_{i+1} \right) \| \\ = \frac{1}{\lambda(k+1)} \| x_0 - x_{k+1} \| \\ \leq \frac{1}{\lambda(k+1)} (\| x_0 - x^* \| + \| x_{k+1} - x^* \|) \\ \leq \frac{2 \| x_0 - x^* \|}{\lambda(k+1)} \end{array}$$

Both rates (pointwise and ergodic) can be extended to the inexact case...

Metric sub-regularity

Definition (Metric sub-regularity)

A set-valued mapping $A:\mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is called metrically sub-regular at \bar{x} for $\bar{u} \in A(\bar{x})$ if there exists $\kappa \geq 0$ along with neighbourhood \mathcal{X} of \bar{x} such that

$$\operatorname{dist}(x, A^{-1}(\bar{u})) \leq \kappa \operatorname{dist}(\bar{u}, A(x)), \ \forall x \in \mathcal{X}.$$

The infimum of all κ such that above holds is called the modulus of metric sub-regularity, and denoted by subreg(A; $\bar{x}|\bar{u}$).

Example Let $F \in S^1_{\alpha,L}$ and $A = \gamma \nabla F$ with $\gamma \leq 1/L$: $\bar{x} = \operatorname{argmin}_{\mathbb{R}^n} F$ and $\bar{u} = 0$,

$$dist(\bar{u}, A(x)) = \|\gamma \nabla F(x) - \gamma \nabla F(\bar{x})\|$$
$$\geq \gamma \alpha \|x - y\|$$

(Local) linear convergence

Let $x^* \in \text{fix}(\mathcal{T})$, suppose $\mathcal{T}' \stackrel{\text{def}}{=} \text{Id} - \mathcal{T}$ is metrically sub-regular at x^* with neighbourhood \mathcal{X} of x^* , let $\kappa > \text{subreg}(\mathcal{T}'; x^*|0)$:

•
$$0 = \mathcal{T}'(x^*), \, \mathcal{T}'^{-1}(0) = \text{fix}(\mathcal{T})$$

$$\text{dist}(x, \text{fix}(\mathcal{T})) \le \kappa \text{dist}(0, \mathcal{T}'(x)) = \kappa \|x - \mathcal{T}(x)\|.$$

$$\begin{split} \bullet \text{ Denote } d_k &= \mathsf{dist}(x_k, \mathsf{fix}(\mathcal{T})), \, \bar{x} \in \mathsf{fix}(\mathcal{T}) \\ d_{k+1}^2 &\leq \|x_{k+1} - \bar{x}\|^2 \leq \|x_k - \bar{x}\|^2 - \tau \|\mathcal{T}'(x_k) - \mathcal{T}'(\bar{x})\|^2 \\ &\leq d_k^2 - \frac{\tau_k}{\kappa^2} d_k^2 \\ &= \left(1 - \frac{\tau_k}{\kappa^2}\right) d_k^2. \end{split}$$

NB: As metric sub-regularity is a local propery, the linear convergence will happen only when x_k is close enough to $fix(\mathcal{T})$

Optimal relaxation parameter?

Consider
$$\lambda_k \in [0, 1]$$
 and $x_{k+1} = (1 - \lambda_k)x_k + \lambda_k \mathcal{T}(x_k)$. Then
$$\|x_{k+1} - x^*\|^2 = \|(1 - \lambda_k)(x_k - x^*) + \lambda_k (\mathcal{T}(x_k) - x^*)\|^2$$

$$= (1 - \lambda_k)\|x_k - x^*\|^2 + \lambda_k \|\mathcal{T}(x_k) - x^*\|^2$$

$$- \lambda_k (1 - \lambda_k)\|x_k - \mathcal{T}(x_k)\|^2$$

$$= \lambda_k^2 \|x_k - \mathcal{T}(x_k)\|^2$$

$$- \lambda_k (\|x_k - x^*\|^2 - \|\mathcal{T}(x_k) - x^*\|^2 + \|x_k - \mathcal{T}(x_k)\|^2)$$

$$+ \|x_k - x^*\|^2,$$

which is a quadratic function of λ_k , and minimises at

$$\lambda = \frac{1}{2} + \frac{\|x_k - x^*\|^2 - \|\mathcal{T}(x_k) - x^*\|^2}{2\|x_k - \mathcal{T}(x_k)\|^2}.$$

Approximation:

$$\lambda = \frac{1}{2} + \frac{\|x_k - \mathcal{T}(x_k)\|^2 - \|\mathcal{T}(x_k) - \mathcal{T}^2(x_k)\|^2}{2\|(x_k - \mathcal{T}(x_k)) - (\mathcal{T}(x_k) - \mathcal{T}^2(x_k))\|^2}.$$

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skii-Manniteration

Inertial Krasnosel'skii-Mann iteration

An inertial Krasnosel'skii-Mann iteration

Initial:
$$x_0 \in \mathbb{R}^n$$
, $x_{-1} = x_0$;

$$y_k = x_k + a_k(x_k - x_{k-1}), \ a_k \in [0, 1],$$

$$z_k = x_k + b_k(x_k - x_{k-1}), \ b_k \in [0, 1],$$

$$x_{k+1} = (1 - \lambda_k)y_k + \lambda_k \mathcal{T}(z_k), \ \lambda_k \in [0, 1].$$

- Covers heavy-ball method, Nesterov's scheme, inertial FB and FISTA
- Convergence analysis is much harder than the inertial version of descent methods
- No convergence rate
- May perform very poorly in practice, slower than the original scheme

A multi-step inertial scheme

A multi-step inertial Krasnosel'skii-Mann iteration

Initial:
$$x_0 \in \mathbb{R}^n$$
, $x_{-1} = x_0$ and $\gamma \in]0, 2/L[$;
 $y_k = x_k + a_{0,k}(x_k - x_{k-1}) + a_{1,k}(x_{k-1} - x_{k-2}) + \cdots,$
 $z_k = x_k + b_{0,k}(x_k - x_{k-1}) + b_{1,k}(x_{k-1} - x_{k-2}) + \cdots,$
 $x_{k+1} = (1 - \lambda_k)y_k + \lambda_k \mathcal{T}(z_k), \ \lambda_k \in [0, 1].$

- Even harder to analyse convergence
- No rate
- However, can outperform the original scheme...

Convergence

• Conditional convergence, i = 0, 1, ...

$$\sum_{k \in \mathbb{N}} \max \big\{ \max_{i} |a_{i,k}|, \max_{i} |b_{i,k}| \big\} \sum_{i} \|x_{k-i} - x_{k-i-1}\| < +\infty.$$

• Online updating rule

$$a_{i,k} = \min \left\{ a_i, c_{i,k} \right\}$$

where

$$c_{i,k} = \frac{c_i}{k^{1+\delta} \sum_i \|x_{k-i} - x_{k-i-1}\|}, \ \delta > 0.$$

Reference

- H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2011.
- J. Liang, J. Fadili, and G. Peyré. Convergence rates with inexact non-expansive operators. Mathematical Programming 159.1-2 (2016): 403-434.