New theories ...

... to explain autism

Research to do

Computational Psychiatry

Understanding and explaining

Diagnosing

Treating

mechanistically informed psychotherapeutic

Potential benefits

Future

Autism

Current clinical problems and how they can benefit from computational psychiatry

Computational Psychiatry Course Zürich, 29. August 2016

Helene Haker (haker@biomed.ee.ethz.ch)
Translational Neuromodeling Unit, Zürich

New theories ...

... to explain autism

Research to do

Computational Psychiatry

Understanding and explaining

Diagnosing

Treating

Potential benefits

AUISIN

Autism Spectrum Disorders

Diagnostic criteria ICD-10

restricted, regulative behaviour

Aspenger syndrome (F84.5) vs. childhood autism (F84.0) - no general cognitive retardation 80 x70(- no retardation of Language development

Perception

*enhanced sensations [e.g. sounds, visual detail]
 *reduced [e.g. temperature]

distractability
 focus on details vs. the _big picture

Interests

focus on inanimate environment (facts)

stable and predictable

 pleasure by repetition of well known things/actions · reduced exploration of new things/actions

 difficulties with camplex oction sequences
 e.g. de ly routines l'interference pravel

Intuitive actions
 meet prominently, secial interactions (not predictable).

resistance against change

Communication

· most severe forms: lacking verbal communicatio

· conficit communication abla

oriented or facts, truth, reality
(less on the emational reast ion of the other)

high

individual developmental trajectories

Autistic (personality) traits

Autism Spectrum Disorders

autistic (personality) traits severity of impairment Asperger syndrome autism spectrum atypical autism disorder (ASD) early childhood autism ICD-10 (WHO) DSM-5 (APA)

Diagnostic criteria ICD-10

- F8 Disorders of psychological development
- F84 Pervasive developmental disorders

Lifelong

- difficulties in social interaction
- difficulties in communication
- restricted, repetitive behaviour

Asperger syndrome (F84.5) vs. childhood autism (F84.0):

- no general cognitive retardation (IQ > 70)
- no retardation of language development

Perception

- sensory peculiarities
 - enhanced sensations (e.g. sounds, visual detail)
 - reduced (e.g. temperature)
- reduced habituation to continuous stimuli
 - distractability
- focus on details vs. the "big picture"
- focus on formal aspects vs. meaning

Interests

- reduced attraction by social/emotional stimuli
- focus on inanimate environment (facts)
 - rationally understandable
 - stable and predictable
- pleasure by repetition of well known things/actions
- reduced exploration of new things/actions

Behaviour

- clumsy motor skills
- difficulties with
 - complex action sequences
 e.g. daily routines (interference prone)
 - intuitive actions most prominently: social interactions (not predictable)
- compensation by fixed routines ("rituals")
- resistance against change

Communication

- most severe forms: lacking verbal communication
- reduced non-verbal communication
 - reduced/strange prosody, mimics, gestures
- explicit communication style
 - they say what they mean
 - oriented on facts, truth, reality (less on the emotional reaction of the other)

Current clinical problems

Diagnosis

- are well ratidated only for severely affected young children
 are time consuming and rely en specifically trained staff

Behavioral-/Psychotherapy

- for hidden symptoms is less severey! affected adult

Pharmacotherapy

- No individual prediction of treatment respons-

Diagnosis

- Gold-standard diagnostic procedures (ADOS/ADI-R)
 - are well validated only for severely affected young children
 - are time consuming and rely on specifically trained staff
- No (validated) operationalized diagnostic procedure for less severely affected and older individuals
 - careful clinical exploration by experienced clinicians
 - time consuming
 - experts are (still) rare

Behavioral-/Psychotherapy

- Well established treatment concepts exist
 - for severely affected young children (ABA)
 - for less severely affected teenagers (social training)
- but lack
 - for severely affected adults (without spoken language)
 - for hidden symptoms in less severeyl affected adults
 - for the autism-speficic treatment of comorbidities (depression, addiction, eating disorders, psychoses, ...)

Pharmacotherapy

- No pathomechanistically grounded pharmacotherapy
 - with studied effect of developmental trajectory
- No individual prediction of treatment response
 - for treatments of symptoms in adulthood (with stimulants, antidepressants, ...)

Current clinical problems

Diagnosis

- are well ratidated only for severely affected young children
 are time consuming and rely en specifically trained staff

Behavioral-/Psychotherapy

- for hidden symptoms is less severey! affected adult

Pharmacotherapy

- No individual prediction of treatment respons-

Action

Perception

- enhanced sensations (e.g. sounds, visual detail)
 reduced (e.g. temperature) reduced habituation to continuous stimuli
- Interests

Communication

Reduced social motivation

Reduced social salience

Executive dysfunction

Previous theories

a lack of a pathomechanistic model and superficially defined diagnostic criteria fail to capture the huge variance in developmental trajectories

Past

Autism

Current clinical problems

Present

Perception

Action

Perception

- · sensory peculiarities
- · enhanced sensations (e.g. sounds, visual detail)
- · reduced (e.g. temperature)
- reduced habituation to continuous stimuli
 distractability
- focus on details vs. the "big picture"
- · focus on formal aspects vs. meaning

Interests

- · reduced attraction by social/emotional stimuli
- · focus on inanimate environment (facts)
 - · rationally understandable
 - · stable and predictable
- · pleasure by repetition of well known things/actions
- · reduced exploration of new things/actions

Behaviour

- · clumsy motor skills
- · difficulties with
 - complex action sequences
 e.g. daily routines (interference prone)
 - intuitive actions most prominently: social interactions (not predictable)
- compensation by fixed routines ("rituals")
- · resistance against change

Communication

- · most severe forms: lacking verbal communication
- · reduced non-verbal communication
- reduced/strange prosody, mimics, gestures
- · explicit communication style
 - · they say what they mean
 - oriented on facts, truth, reality (less on the emotional reaction of the other)

Weak central coherence

Happé & Frith 2006

Reduced social motivation

Chevallier et al. 2012

Theory of mind deficit

Baron-Cohen et al. 1985

Reduced social salience

Klin et al. 2002

Executive dysfunction

Ozonoff et al. 1991

Previous theories

Perception

- sensory peculiarities
- enhanced sensations (e.g. sounds, visual detail)
 reduced (e.g. temperature)
- reduced habituation to continuous stimuli
 distractability
- · focus on details vs. the "big picture"
- · focus on formal aspects vs. meaning

Interests

- · reduced attraction by social/emotional stimuli
- · focus on inanimate environment (facts)
- · rationally understandable
- stable and predictable
- · pleasure by repetition of well known things/actions
- · reduced exploration of new things/actions

Behaviour

- · clumsy motor skills
- difficulties with
- complex action sequences
- e.g. daily routines (interference prone)
- intuitive actions most prominently: social interactions (not predictable)
- · compensation by fixed routines ("rituals")
- · resistance against change

Communication

- · most severe forms: lacking verbal communication
- · reduced non-verbal communication
- reduced/strange prospdy, mimics, gestures
- · explicit communication style
- · they say what they mea
- oriented on facts, truth, reality
 liess on the emotional reaction of the other

Weak central coherence

Happé & Frith 2006

Reduced social motivation

Chevallier et al. 2012

Theory of mind deficit

Baron-Cohen et al. 1985

Reduced social salience

Klin et al. 2002

Executive dysfunction

Ozonoff et al. 1991

Previous theories

a lack of a pathomechanistic model and superficially defined diagnostic criteria fail to capture the huge variance in developmental trajectories

New theories ...

... to explain autism

Research to do

Computational Psychiatry

Understanding and explaining

Diagnosing

Treating

Potential benefits

New theories

The Bayesian Brain

A computational

framework of

cognition

The Bayesian Brain

Brain: inference machine, resting on a generative model of sensory inputs, which are caused by the environment

internal model: belief about the state of the environment

Dayan et al. 1995 Neural Comput Knill & Pouget 2004 Trends Neurosci

Beliefs as probability distributions

i.e. a probabilistic representation of a particular state of the world.

Bayes theorem describes how a prior belief is updated in light of newly observed data

The role of relative precision

The posterior belief is dominated by an overprecise prior belief and shows little influence of the actual observed sensory data

$$p(x | y) = \frac{p(y | x)p(x)}{p(y)}$$

Posterior belief is shifted away from a very unprecise prior belief towards the observed sensor data

Learning

Minimizing surprise (stress) by learning from new observations and updating the prior belief

Uncertainty

Hierarchy of inner representations

high levels

- represent very general, abstract features on a large temporal and spatial scale
- mature over time after more and more observations in different contexts

... to explain autism

tational

itions

Bayesian brain theories of autism

Autistic perception

Autistic repetitive behaviour

an internal model lacking higher levels of abstraction is able to represent stable environments very precisely

known environment, repetitive actions

Autistic social interaction

... to explain autism

tational

itions

Research to do

Collect evidence

- Apply the theory to existing empirical data
 - post-hoc interpretation

Pellicano & Burr 2012 Trends Cogn Sci; Van de Cruys et al. 2014 Psychol Rev; Lawson et al. 2014 Front Hum Neurosci

• Theory-driven patient studies

Design learning tasks to study pecutiarities in hierarchical inference is individuals hab learning of seasors was

Modeling cognition

Material ST Transaction, Material ST Transaction

Modeling neurophysiology

- Use individual tearning parameters for model-bas imaging analysis (e.g. EEB, 1MRI)
- for madel-based connectivity analyses IDCM to
- Modeling individual medication effects on learning

ing • Do individual to symptoms clus

Cross-sectional patient studies

Do Individuals with and without a current diagnosis of ASD (children, adults) differ in learning

Do individual learning parameters correlate with completes clusters.

- -- -- definition of mechanistically defined subgroups?

Longitudinal patient studies

- Are specific constellations of individual characteristics of libyesian learning related to specific developmental trajectories in children
 ———progressis trade?
- Do specific learning parameters predict

Collect evidence

- Apply the theory to existing empirical data
 - post-hoc interpretation

Pellicano & Burr 2012 Trends Cogn Sci; Van de Cruys et al. 2014 Psychol Rev; Lawson et al. 2014 Front Hum Neurosci

Theory-driven patient studies

Modeling cognition

- Design learning tasks to study peculiarities in hierarchical inference in individuals
- · high levels of sensory noise
- temporal uncertainty

Modeling neurophysiology

- Use individual learning parameters for model-based imaging analysis (e.g. EEG, fMRI)
- ... for model-based connectivity analyses (DCM for EEG, fMRI)
- Modeling individual medication effects on learning parameters

Cross-sectional patient studies

Open research questions:

- Do individuals with and without a current diagnosis of ASD (children, adults) differ in learning parameters?
- \Longrightarrow ... first step toward the development of diagnostic tools
- Do individual learning parameters correlate with symptoms clusters
- —> ... definition of mechanistically defined subgroups?

Longitudinal patient studies

- Are specific constellations of individual characteristics of Bayesian learning related to specific developmental trajectories in children?
 - · -> ... prognostic tools?
- Do specific learning parameters predict the response to a pharmacological intervention?
- · -> ... treatment selection tools?

Mathys et al. 2011 Front Ham Neurosci, Mathys et al. 2015 Frant Ham Neurosci

Modeling cognition

- Design learning tasks to study peculiarities in hierarchical inference in individuals
 - high levels of sensory noise
 - temporal uncertainty

Modeling neurophysiology

- Use individual learning parameters for model-based imaging analysis (e.g. EEG, fMRI)
- ... for model-based connectivity analyses (DCM for EEG, fMRI)
- Modeling individual medication effects on learning parameters

Cross-sectional patient studies

Open research questions:

- Do individuals with and without a current diagnosis of ASD (children, adults) differ in learning parameters?
 - —> ... first step toward the development of diagnostic tools
- Do individual learning parameters correlate with symptoms clusters
 - —> ... definition of mechanistically defined subgroups?

Longitudinal patient studies

- Are specific constellations of individual characteristics of Bayesian learning related to specific developmental trajectories in children?
 - —> ... prognostic tools?
- Do specific learning parameters predict the response to a pharmacological intervention?
 - —> ... treatment selection tools?

Research to do

Collect evidence

- Apply the theory to existing empirical data
 - post-hoc interpretation

Pellicano & Burr 2012 Trends Cogn Sci; Van de Cruys et al. 2014 Psychol Rev; Lawson et al. 2014 Front Hum Neurosci

• Theory-driven patient studies

Design learning tasks to study pecutiarities in hierarchical inference is individuals hab learning of seasors was

Modeling cognition

Material ST Transaction, Material ST Transaction

Modeling neurophysiology

- Use individual tearning parameters for model-bas imaging analysis (e.g. EEB, 1MRI)
- for madel-based connectivity analyses IDCM to
- Modeling individual medication effects on learning

ing • Do individual to symptoms clus

Cross-sectional patient studies

Do Individuals with and without a current diagnosis of ASD (children, adults) differ in learning

Do individual learning parameters correlate with completes clusters.

- -- -- definition of mechanistically defined subgroups?

Longitudinal patient studies

- Are specific constellations of individual characteristics of libyesian learning related to specific developmental trajectories in children
 ———progressis trade?
- Do specific learning parameters predict

Understanding and explaining

the huge variance, to affected, to relatives, to clinicians, ...

Diagnosing

quick, easy to apply, reliable tests

Treating

mechanistically informed psychotherapeutic and pharmacological concepts

Potential benefits

New theories ...

... to explain autism

Research to do

Computational Psychiatry

Understanding and explaining

the huge variance, to affected, to relatives, to clinicians,

Diagnosing

Treating

mechanistically informed psychotherapeution
and pharmacological concepts

Potential benefits

Future

