# Computer Instructions

- The basic computer has three instruction code formats.
- Each format has 16 bits.
- The operation code(op-code) part of the instruction contains three bits and the meaning of remaining 13 bits depends upon the op-code encountered.





# Computer Instructions/Instruction Set

| Basic | Computer | Instructions |
|-------|----------|--------------|
|-------|----------|--------------|

|        | Hexadecimal code |              |                                      |
|--------|------------------|--------------|--------------------------------------|
| Symbol | I = 0            | <i>I</i> = 1 | Description                          |
| AND    | 0xxx             | 8xxx         | AND memory word to AC                |
| ADD    | 1xxx             | 9xxx         | Add memory word to AC                |
| LDA    | 2xxx             | Axxx         | Load memory word to AC               |
| STA    | 3xxx             | Bxxx         | Store content of AC in memory        |
| BUN    | 4xxx             | Cxxx         | Branch unconditionally               |
| BSA    | 5xxx             | Dxxx         | Branch and save return address       |
| ISZ    | 6xxx             | Exxx         | Increment and skip if zero           |
| CLA    | 78               | 00           | Clear AC                             |
| CLE    | 74               | 00           | Clear E                              |
| CMA    | 72               | .00          | Complement AC                        |
| CME    | 71               | 00           | Complement E                         |
| CIR    | 70               | 80           | Circulate right AC and E             |
| CIL    | 70               | 40           | Circulate left AC and E              |
| INC    | 70               | 20           | Increment AC                         |
| SPA    | 70               | 10           | Skip next instruction if AC positive |
| SNA    | 70               | 08           | Skip next instruction if AC negative |
| SZA    | 70               | 004          | Skip next instruction if AC zero     |
| SZE    | 7002             |              | Skip next instruction if $E$ is 0    |
| HLT    | 70               | 01           | Halt computer                        |
| INP    | F                | 300          | Input character to AC                |
| OUT    | F400             |              | Output character from AC             |
| SKI    | F                | 200          | Skip on input flag                   |
| SKO    | F                | 100          | Skip on output flag                  |
| ION    | F                | 080          | Interrupt on                         |
| IOF    | F                | 040          | Interrupt off                        |

- The program is executed in the computer by going thru a cycle for each instruction.
- In basic computer, each instruction cycle consists of the following phases:
- 1. Fetch an instruction from memory.
- Decode the instruction.
- 3. Read the effective address from memory.
- Execute the instruction.



Micro-operations for fetch & decode

```
T_0: AR \leftarrow PC

T_1: IR \leftarrow M[AR], PC \leftarrow PC + 1

T_2: D_0, \ldots, D_7 \leftarrow \text{Decode } IR(12-14), AR \leftarrow IR(0-11), I \leftarrow IR(15)
```



Flowchart for instruction cycle (initial configuration).