Hausarbeit 30100 Big Data (Kevin Südmersen)

Hausarbeit 30100 Big Data (Kevin Südmersen)

```
Hadoop, Hive, Spak
    Übung 2.1
        (1) Über welches Protokoll werden die Dateiblöcke verteilt?
        (2) Wie viele Mapper gibt es auf welchen Nodes?
        (3) Wie viele Dateiblöcke enthält jeder Node?
    Übung 2.2
    Übung 2.3
    Übung 2.4
    Übung 2.5
        Laden der Daten in Hive
        Cloudera Hive Treiber Installation
        Hive Zugriff über die Applikation
    Übung 2.6
    Übung 2.7
        Tägliche unit_sales
        Wöchentliche unit_sales
    Übung 2.9
Verteilte relationale DBMS
MongoDB
    Teilaufgabe 1
    Teilaufgabe 2
        Lösungsweg 1
        Lösungsweg 2
```

Hadoop, Hive, Spak

Übung 2.1

Ein Hadoopcluster besteht aus 4 DataNodes mit den Parametern blocksize 256 MB und splitsize 512 MB. Es soll die Datei kfz.txt der Größe 1 TB verteilt werden.

(1) Über welches Protokoll werden die Dateiblöcke verteilt?

SSH (Secure Shell)

(2) Wie viele Mapper gibt es auf welchen Nodes?

Ein Mapper bearbeitet einen Split. Ein Split besteht aus 512 / 256 = 2 Blöcken, also bearbeitet ein Mapper 2 Blöcke

Es gibt 1 TB / 512 MB = 2 Millionen Splits, die auf 4 Nodes verteilt sind, also auf jeder Node gibt es 500.000 Splits und deshalb 500.000 Mapper pro Node.

(3) Wie viele Dateiblöcke enthält jeder Node?

Es gibt 1 TB / 256 MB = 4 Millionen Blöcke, die auf 4 Nodes verteilt sind, also enthält jeder Node 1 Millionen Blöcke

Übung 2.2

Welche Ausgabedaten liefern die Prozesse Map-, Shuffle- und Sort- und Reduce für das SELECT-Statement SELECT count(identnr), identnr FROM kfz GROUP BY identnr?

Map Prozess

- Eingabe: Datei kfz.txt
- Ausgabe: Liste von Tupeln mit folgenden Key, Value (identnr, 1) Paaren: [(1, 1), (1, 1), (2, 1), (1, 1)]

Shuffle & Sort Prozess

- Eingabe: Key, Value Paare vom Map Prozess
- Sortiert und gruppiert nach identnr, also erzeugt dabei folgende Gruppen

```
o group(identnr == 1) = [(1, 1), (1, 1), (1, 1)]
o group(identnr == 2) = [(2, 1)]
```

Ausgabe: 1 Datei pro identnr

Reduce Prozess

- Eingabe: Jeder Reduce Prozess bekommt eine Datei/Gruppe von der Ausgabe des Shuffle & Sort Prozesses
- Jeder Reducer berechnet die Summe der Values jeder Gruppe
- Ausgabe: 1 Datei mit den Spalten count(identnr) und identnr

Übung 2.3

Um die SQL Abfragen dieser Aufgabe ausführen zu können, muss eine Tabelle mit Namen verkaufteartikel in Hive existieren. Um die Daten dieser Hive Tabelle in mein lokal installiertes Hadoop Cluster zu transferieren, habe ich im HDFS des Kubernetes Cluster der Hochschule nach einer Datei verkaufteartikel mittels hadoop fs -find / -name "verkaufteartikel*" gesucht. Danach habe ich die gefundenen Dateien mittels hadoop fs -copyToLocal location_of_verkaufteartikel_in_hdfs> <desired_location_on_host> auf den Host des Hadoop Clusters kopiert, und danach habe ich die dazugehörigen Daten mittels WinSCP auf meinen lokalen Rechner kopiert.

Die Daten in verkaufteartikel sehen folgendermaßen aus:

```
2,2016-12-03,3
1,2017-04-17,24
2,2018-05-07,17
3,2019-09-12,33
4,2020-12-20,14
```

Diese Daten habe ich nun in die Namenode meines lokal installierten Hadoop Clusters kopiert und habe auf der Kommandozeile der Namenode den Befehl hadoop fs -mkdir -p hadoopdata/verkaufteartikel ausgeführt, um das Verzeichnis hadoop-data/verkaufteartikel im HDFS zu erzeugen. Danach habe ich mittels hadoop fs -copyFromLocal verkaufteartikel.csv hadoop-data/verkaufteartikel/ die Daten in das gerade erzeugte Verzeichnis kopiert.

Danach habe ich einen SQL Query Editor in dem Hue Dienst (Hue ist ein Cluster Management Dienst so ähnlich wie Ambari) geöffnet und mit dem SQL Statement

```
-- Convert verkaufteartikel into a Hive table

CREATE EXTERNAL TABLE IF NOT EXISTS verkaufteartikel (
   id INT,
   date_ DATE,
   quantity INT)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\n'

LOCATION '/user/root/hadoop-data/verkaufteartikel';
```

die Daten von verkaufteartikel in eine externe Hive Tabelle geladen.

Nun konnte ich endlich die SQL Statements aus der Übungsaufgabe ausführen. Das Ergebnis der ersten SQL Abfrage

```
EXPLAIN SELECT *
FROM verkaufteartikel
WHERE date_ > '2017-01-01';
```

ist wie folgt:

```
Explain
STAGE DEPENDENCIES:
  Stage-0 is a root stage
STAGE PLANS:
 Stage: Stage-0
   Fetch Operator
     limit: -1
     Processor Tree:
        TableScan
          alias: verkaufteartikel
         Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE Column
stats: NONE
          Filter Operator
            predicate: (date_ > 2017-01-01) (type: boolean)
           Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE Column
stats: NONE
           Select Operator
             expressions: id (type: int), date_ (type: date), quantity (type:
int)
              outputColumnNames: _col0, _col1, _col2
              Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE Column
stats: NONE
             ListSink
```

- TableScan bedeutet, dass jede Zeile von verkaufteartikel einmal in den Hauptspeicher geladen werden musste (**TODO: Fragen ob das stimmt**)
- Der Filter Operator kommt durch die WHERE Klausel im SQL Statement zustande und behält nur die Zeilen von verkaufteartikel, die die dazugehörige Bedingung erfüllen
- predicate (date_ > 2017-01-01) ist die zu der WHERE Klausel gehörende Bedingung

• Select Operator ist eine Projektion auf gewisse Spaltennamen, in unserem Fall wurden mittels * alle Spaltennamen selektiert, und deshalb sind in expressions alle Spaltennamen aufgeführt.

Nun zur 2. SQL Abfrage. Das Ergebnis der Abfrage

```
EXPLAIN SELECT date_, count(*)
FROM verkaufteartikel
GROUP BY date_;
```

ist folgendes:

```
Explain
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-O depends on stages: Stage-1
STAGE PLANS:
  Stage: Stage-1
   Map Reduce
      Map Operator Tree:
          TableScan
            alias: verkaufteartikel
            Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE Column
stats: NONE
            Select Operator
              expressions: date_ (type: date)
              outputColumnNames: date_
              Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE Column
stats: NONE
              Group By Operator
                aggregations: count()
                keys: date_ (type: date)
                mode: hash
                outputColumnNames: _col0, _col1
                Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE
Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: date)
                  sort order: +
                  Map-reduce partition columns: _col0 (type: date)
                  Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE
Column stats: NONE
                  value expressions: _col1 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          keys: KEY._col0 (type: date)
          mode: mergepartial
          outputColumnNames: _col0, _col1
          Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE Column
stats: NONE
          File Output Operator
            compressed: false
            Statistics: Num rows: 1 Data size: 79 Basic stats: COMPLETE Column
stats: NONE
```

• Map Reduce Tree

- Hier wird wieder zuerst ein Tablescan gemacht, und es wird auf die Spalte date_ projiziert, da dies die einzige Spalte ist, die man braucht, um das Ergebnis der Abfrage zu bekommen
- o Im Group By Operator (Shuffle & Sort Prozess) wird u.a. nach der date_ Spalte gruppiert. Pro Datum gibt es eine Gruppe. In unserem Fall gibt es genau 5 Gruppen, die jeweils ein einziges Datum beinhalten, nämlich:
 - **2016-12-03**
 - **2017-04-17**
 - **2**018-05-07
 - **2019-09-12**
 - **2020-12-20**
- Reduce Operator Tree
 - Hier wird für jede der obigen Gruppen nun die Aggregatsfunktion count(VALUE._co10)
 angewendet

Übung 2.4

Hadoop verteilt Dateien und Spark verteilt Programme und SQL Abfragen, insbesondere JOINs. Aus dem Programm wird ein Directed Acyclic Graph (DAG) generiert und es wird versucht diesen DAG zu parallelisieren. Ein DAG ist ein Berechnungsgraph, der ein Anfang und ein Ende hat (also keine Zyklen), der den Programmablauf darstellt und diesen ausführt.

Der DAG zu der SQL Abfrage

```
SELECT * FROM artikel WHERE artnr IN (SELECT artnr FROM sales)
```

sieht folgendermaßen aus:

Zuerst wird die Subquery SELECT artnr FROM sales ausgeführt, die Ergebnismenge in der Datei output_file_1 zwischengespeichert, und dann werden nur die Artikel aus der Tabelle artikel genommen, die in output_file_1 vorkommen.

Übung 2.5

Der Code mit Erklärungen befindet sich in diesem Notebook.

TODO: Kann ich das alles hierunter löschen?

Laden der Daten in Hive

Zuerst habe ich die Daten der Kaggle Challenge heruntergeladen und in das Volume der Namenode hineinkopiert, sodass es automatisch in das Dateisystem des Namenode Containers durchgeleitet wird. Danach habe ich auf der Kommandozeile der Namenode den Befehl hadoop fs -mkdir -p workspace/eating_and_health ausgeführt um ein Verzeichnis im HDFS zu erstellen, sodass ich direkt im Anschluss mittels hadoop fs -copyFromLocal <path_to_local_kaggle_files> workspace/eating_and_health/ die Daten ins HDFS hineinkopieren konnte.

Danach habe ich über das UI von Hue die Daten vom HDFS in Hive geladen, was in etwa folgendermaßen ausgesehen hat

und im nächsten Schritt so

Danach konnte man auch feststellen, dass die Daten im HDFS nun in das Verzeichnis /user/hive/warehouse/ehresp_2014/ehresp_2014.csv verschoben wurden, also werden die Daten von nun an von Hive verwaltet.

Cloudera Hive Treiber Installation

Wie in der Vorlesung beschrieben, habe ich den aktuellsten Hive JDBC Treiber von der <u>Cloudera Webseite</u> herunter geladen und alle sich darin befindenden Ordner extrahiert. Nun müssen diese Treiber Dateien für die Applikation, die auf Hive zugreifen will, zugänglich sein. In meinem Fall ist befindet sich die Applikation auf dem Jupyter Notebook Server, also in dem <u>Jupyter-spark</u> Container in meinem <u>docker-compose</u> Netzwerk. Über ein Volume dieses Containers gelangen die Treiber Dateien dann in das <u>/drivers</u> Verzeichnis innerhalb dieses Containers.

Hive Zugriff über die Applikation

Im jupyter-spark Container habe ich dann ein Jupyter Notebook mit R Kernel erstellt. Mittels

```
# List all jar files in /drivers

cp = list.files(
   path=c('/drivers/ClouderaHiveJDBC-2.6.2.1002/ClouderaHiveJDBC4-2.6.2.1002'),
   pattern='jar',
   full.names=T,
   recursive=T)
print(cp)
```

Werden alle .jar (Java Archive) Dateien innerhalb des Hive JDBC Treibers der Version 2.6.2 aufgelistet, was bei mir erstaunlicherweise nur eine einzige Datei gewesen ist, nämlich:

```
[1] "/drivers/ClouderaHiveJDBC-2.6.2.1002/ClouderaHiveJDBC4-2.6.2.1002/HiveJDBC4.jar"
```

```
# Connect to Hive
.jinit()
drv = JDBC(
   driverClass="com.cloudera.hive.jdbc4.HS2Driver",
    classPath=cp)
conn = dbConnect(
   drv,
    "jdbc:hive2://hiveserver:10000/default;AuthMech=3",
   "hive",
    "hive",
    identifier.quote=" ")
show_databases = dbGetQuery(conn, "show databases")
print(show_databases)
# Read the data from Hive (make sure to upload ehresp_2014 into Hive first)
em <- dbGetQuery(conn, "select * from default.ehresp_2014 where euexercise > 0
and erbmi > 0")
summary(em)
```

eine Verbindung zu Hive erstellt, wobei man beachten muss, dass der host im Connection String hiveserver, also der Container Name des Hive Servers ist, was funktioniert, weil der jupyerspark und hiveserver Container beide im gleichen docker-compose Netzwerk sind. Im Anschluss werden die Daten der Tabelle ehresp_2014 eingelesen. Hier ist vielleicht erwähnenswert, dass man im Big Data Kontext eigentlich keine ganzen Tabellen in den Hauptspeicher lesen sollte, aber da ehresp_2014 eine relativ kleine Tabelle ist, macht das hier nicht so viel aus.

Die Befehle um die Plots zu erzeugen und deren Ergebnisse sehen folgendermaßen aus:

Übung 2.6

TODO: Siehe den Code, Erklärungen und Ergebnisse zu Übung 2.6 in diesem Notebook

Übung 2.7

Tägliche unit_sales

Wie bereits in anderen Übungen beschrieben habe ich zuerst die Dateien holiday_events.csv, items.csv, quito_stores_sample2016_2017.csv und transactions.csv in den namenode Container, dann in das HDFS und dann mittels dem Hue UI in Hive geladen. Folgendes HiveQL Statement soll die täglichen unit_sales berechnen:

```
select sum(unit_sales) as sum_unit_sales, year(date_quito) as current_year,
month(date_quito) as current_month, day(date_quito) as current_day
from quito_stores_sample2016_2017
where date_format(date_quito ,'u') = 4
group by year(date_quito), month(date_quito), day(date_quito)
order by current_year, current_month, current_day;
```

In Retroperspektive, kam mir obiges Statement ein bisschen umständlich vor (weil zuerst das Jahr, der Monat und der Tag extrahiert, und danach wieder nach Jahr, Monat und Tag gruppiert werden muss), habe ich im folgenden Statement wieder die Summe der unit_sales berechnet, aber dieses mal habe ich nach dem Datum gruppiert.

```
select sum(unit_sales) as sum_unit_sales, date_quito
from quito_stores_sample2016_2017
where date_format(date_quito ,'u') = 4
group by date_quito;
```

Output:

Der Output scheint mir komplett identisch zu sein.

Wöchentliche unit_sales

TODO: Folgendes Statement löschen?

HiveQL Statement:

```
select weekofyear(tr.date_trans) as week, sum(tr.transactions) as
weekly_unit_sales
from items inner join quito_stores_sample2016_2017 AS quito_store on
quito_store.item_nbr_quito = items.item_nbr_item
inner join transactions AS tr on tr.store_nbr_trans =
quito_store.store_nbr_quito
inner join holidays_events on holidays_events.datum_holi = tr.date_trans
group by weekofyear(tr.date_trans)
order by week;
```

Ergebnis:

```
week
     weekly_unit_sales
1 28567434275
2 9830893906
6 8730851354
7 8149803877
8 8729617503
9
  27677998583
10 13910862599
12 4080833575
13 10579847436
14 17302118505
15 54653669532
16 57646139981
17 42643974148
18 68828867443
19 88542663017
20 11272350430
21 32300823752
24 8108878613
```

```
25 46405889614
26 62945616169
27 51432764895
28 17027589597
29 19450255582
30 46223357002
31 9531701329
32 38449772542
33 26209142984
34 13882155606
35 3979359634
39 14157756766
40 13135696715
41 32857151812
44 35150332788
45 66891536748
46 28736604080
47 5014115514
48 13026132482
49 57633576346
50 8591347588
51 77485626478
52 126260907220
53 5832310146
```

HiveQL Statement:

```
select weekofyear(date_trans) as week, sum(transactions) as weekly_unit_sales
from transactions
group by weekofyear(date_trans)
order by week;
```

Ergebnis:

```
weekly_unit_sales
week
1 2904264
2 2876856
3 2828681
4 2787688
5 2890639
6 2914532
7 2944731
8 2836890
9 2947415
10 2967329
11 2889503
12 2872067
13 2893670
14 2999954
15 2919038
16 2997701
17 2884039
18 3057556
19 3031439
20 2891410
21 2835168
```

```
22 3013612
23 2966299
24 2925681
25 2861633
26 2848133
27 2998279
28 2852663
29 2851306
30 2847369
31 2986859
32 2881863
33 2472897
34 2272435
35 2312863
36 2413073
37 2282162
38 2258478
39 2231450
40 2364076
41 2279355
42 2246341
43 2205255
44 2256071
45 2348502
46 2265909
47 2284200
48 2321219
49 2479496
50 2558796
51 3016656
52 2885163
53 520281
```

Übung 2.9

Siehe die Lösungen zu Übung 2.9 in hier: github.com/kevinsuedmersen/hadoop-sandbox/blob/master/jupyter-spark/work/assignments/uebung 29 pyspark.ipynb

Verteilte relationale DBMS

Folgendes SQL Statement wurde in Amazon Redshift ausgeführt:

```
select
    referenzdatum,
    bundesland,
    landkreis,
    -- Get the average of the last 7 days in the current bundesland and
landkreis
    (select avg(infiziert) as durchschnitt
    from vcoronaerkrankung vc2
    where vc2.referenzdatum <= vc1.referenzdatum
    and vc2.referenzdatum > (vc1.referenzdatum - 7)
    and vc2.bundesland = vc1.bundesland
    and vc2.landkreis = vc1.landkreis)
from vcoronaerkrankung vc1
```

und liefert folgene Ergebnismenge (insgesammt 22761 Zeilen):

6 1 .			1 1 1 1 1
referenzdatum	bundesland	landkreis	durchschnitt
2021-02-15	Sachsen	LK Bautzen	35
2021-02-15	Sachsen	LK Mittelsachsen	29
2021-02-15	Bayern	SK Augsburg	21
2021-02-15	Mecklenburg-Vorpommern	SK Rostock	7
2021-02-15	Sachsen	LK Vogtlandkreis	48
2021-02-15	Thüringen	LK Unstrut-Hainich-Kreis	25
2021-02-15	Nordrhein-Westfalen	LK Herford	14
2021-02-15	Hessen	LK Kassel	13
2021-02-15	Bayern	SK Regensburg	5
2021-02-15	Bayern	SK Schweinfurt	1
2021-02-15	Niedersachsen	LK Osnabrück	51
2021-02-15	Nordrhein-Westfalen	LK Borken	31
2021-02-15	Nordrhein-Westfalen	SK Mönchengladbach	9
2021-02-15	Rheinland-Pfalz	LK Bad Kreuznach	11
2021-02-15	Bremen	SK Bremerhaven	17
2021-02-15	Baden-Württemberg	LK Rems-Murr-Kreis	24
2021-02-15	Bayern	LK Dachau	9
2021-02-15	Bayern	LK Erlangen-Höchstadt	5
2021-02-15	Thüringen	LK Saale-Orla-Kreis	20
2021-02-15	Rheinland-Pfalz	SK Trier	5

Obige Ergebnismenge soll die durchschnittliche Anzahl an Infektionen innerhalb der letzten 7 Tage (relativ zu einem bestimmtem Referenzdatum) für ein gewissen Landkreis in einem gewissen Bundesland zeigen.

MongoDB

Zuerst habe ich versucht die Datei listingsAndReviews.json mittels docker exec mongo mongoimport --username=kevinsuedmersen --password=secret --host=mongo:27017 --db=airbnb --collection=listings_and_reviews --authenticationDatabase=admin --file=/mongo-data/airbnb/listingsAndReviews.json in eine MongoDB Instanz in meinem lokalen docker-compose Netzwerk zu importieren, jedoch kamen dabei verschiedenste Importfehler, die wahrscheinlich damit zu tun hatten, dass manche Felder in listingsAndReviews.json Werte wie z.B. NumberDecimal("1.0") hatten, also Werte, die nicht durchgehend als Strings formatiert waren, wie es in json Datein normalerweise üblich ist.

Deshalb habe ich mich mit meinem lokal installierten MondoDB Compass auf das MongoDB Cluster der Hochschule verbunden. Dabei musste ich lediglich den Connection String mongodb+srv://thomas:Morgen0007@cluster1.u6ruv.mongodb.net/test in Mongo Compass einfügen. Für alle folgenden Aufgaben habe ich als Basis die Daten in sample_airbnb.listingsAndReviews verwendet.

Teilaufgabe 1

Ermitteln Sie die Adresse mit dem höchsten Preis.

In dem Aggregations Tab habe ich folgende Aggregation erzeugt

die, wenn man sie in Python Code exportieren möchte folgendermaßen aussehen würde:

```
Ε
   # Select relevant fields
    {
        '$project': {
            'price': 1,
            'address': 1
        }
   },
   # Sort by price in descending order
    {
        '$sort': {
           'price': -1
        }
   },
   # Select the first result, i.e. the document with the highest price
        '$limit': 1
   }
]
```

Teilaufgabe 2

Ermitteln Sie pro Adresse die Anzahl an amenities.

Lösungsweg 1

Aggregation Pipeline in MongoDB Compass:

Pipeline exportiert nach Python Code:

```
{
       '$project': {
            'address': 1,
            'amenities': 1
   # Calculate the number of amenities per listing, i.e. for each document
   {
        '$set': {
            'n_amenities_per_listing': {
               '$size': '$amenities'
       }
   # Group by address and calculate the sum of amenities per listing
   {
        '$group': {
            '_id': '$address',
            'n_amenities_per_address': {
                '$sum': '$n_amenities_per_listing'
           }
       }
```

```
}
```

Hier wird in der \$set Stage zuerst die Länge der amenities array pro Listing, also pro Dokument in der Collection listingsAndReviews bestimmt und als zusätzliches Feld n_amenities_per_listing hinzugefügt. Danach wird nach address gruppiert und n_amenities_per_listing aufsummiert.

Lösungsweg 2

```
{
        '$project': {
            'address': 1,
            'amenities': 1
        }
   },
   # Create one document per address and amenity by unrolling the amenities
array
    {
        '$unwind': {
            'path': '$amenities'
   },
   # Group by address and count how many elements we have in each group
        '$group': {
            '_id': '$address',
            'n_amenities': {
                '$sum': 1
            }
        }
    }
]
```

Hier wird die amenities array aufgerollt, d.h. dass als Zwischenergebnis der unwind Stage ein Dokument pro Adresse *und* Item in der amenities Array zurückkommt (siehe Screenshot).

Anschließend wird einfach nach address gruppiert und die Elemente in jeder Gruppe gezählt.