МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСТКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра высшей математики

ТЕОРИЯ ВЕРОЯТНОСТЕЙ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Методические рекомендации и варианты аттестационных работ по курсу «Высшая математика» для студентов технических специальностей.

УДК 519.2.(076)

В настоящей методической разработке приведены вопросы программы, типовые задачи, варианты двух аттестационных работ по разделам «Теория вероятностей» и «Математическая статистика» курса "Высшая математика", которые изучаются студентами технических специальностей очной формы обучения в четвертом семестре, даны решения типовых вариантов. Разработка может быть использована при выполнении аттестационных работ и при подготовке к экзамену.

Составители: О.К. Денисович, ассистент

И.В. Лизунова, доцент.

Рецензент: зав. кафедрой математического моделирования БрГУ им. А.С. Пушкина, к.ф.-м.н., доцент Тузик С. А.

Вопросы учебной программы по разделам "Элементы операционного исчисления", "Теория вероятностей", "Элементы математической статистики"

- 1. Преобразование Лапласа. Оригинал и изображение. Классы оригиналов и изображений.
- 2. Линейность преобразования Лапласа. Теоремы подобия и запаздывания.
- 3. Теорема смещения в изображении.
- 4. Дифференцирования оригинала и изображения.
- 5. Интегрирование оригинала.
- 6. Свертка функций, изображение свертки.
- 7. Решение ЛДУ операционным методом.
- 8. Решение систем ЛДУ операционным методом.
- 9. Пространство элементарных событий.
- 10. Алгебра событий.
- 11. Вероятность события и ее свойства.
- 12. Методы вычисления вероятности (классический, геометрический, статистический).
- 13. Условная вероятность. Теоремы умножения.
- 14. Теоремы сложения.
- 15. Формулы полной вероятности и Байеса.
- 16. Формула Бернулли.
- 17. Локальная и интегральная теоремы Муавра-Лапласа.
- 18. Формула Пуассона.
- 19. Наивероятнейшее число и его вероятность.
- 20. Вероятность малого по абсолютной величине отклонения.
- 21. Случайная величина. ДСВ, ее закон распределения.
- 22. Функция распределения НСВ, ее свойства.
- 23. Плотность распределения вероятностей НСВ, ее свойства.
- 24. Числовые характеристики распределения СВ (математическое ожидание, дисперсия, среднее квадратическое отклонение).
- 25. Важнейшие законы распределения ДСВ (биноминальный, Пуассона).
- 26. Важнейшие непрерывные распределения (равномерное, показательное, нормальное).
- 27. Закон больших чисел.
- 28. Неравенство и теорема Чебышева.
- 29. Понятие центральной предельной теоремы Ляпунова.
- 30. Распределения "хи квадрат", Стьюдента, Фишера Снедекора.
- 31. Выборочный метод. Основные понятия.
- 32. Эмпирическая функция распределения.
- 33. Требования к точечным оценкам параметров распределения.
- 34. Основные характеристики выборки.
- 35. Интервальные оценки. Точность оценки. Доверительная вероятность и доверительный интервал.
- 36. Доверительный интервал для оценки математического ожидания нормального распределения при известном среднем квадратическом отклонении.
- 37. Доверительный интервал для оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении.
- 38. Доверительный интервал для оценки среднего квадратического отклонения нормального распределения.
- 39. Выравнивание частот.

- 40. Построение кривой нормального распределения по эмпирическим данным.
- 41. Проверка статистических гипотез.
- 42. Критерий согласия Пирсона.
- 43. Критерий Колмогорова.
- 44. Функциональная, статистическая и корреляционная зависимости.
- 45. Линейная корреляционная зависимость и прямые регрессии по несгруппированным данным.
- 46. Свойства коэффициента корреляции.
- 47. Корреляционная таблица.

Перечень типовые задачи по темам семестра

1. Из букв разрезной азбуки составлено слово "ремонт". Карточки с отдельными буквами тщательно перемешивают, затем наугад вытаскивают 4 карточки и раскладывают их в порядке извлечения. Какова вероятность получения при этом слова "море".

Ответ:
$$\frac{1}{360}$$
.

- 2. В группе из 8 спортсменов шесть мастеров спорта. Найти вероятность того, что из двух случайным образом отобранных спортсменов хотя бы один мастер спорта. Ответ: 0,9643.
- 3. На железобетонном заводе изготовляют панели, 20 % из которых высшего сорта. Какова вероятность того, что из трех наугад выбранных панелей высшего сорта будут: а) три панели; б) хотя бы одна панель; в) не более одной панели? Ответ: а) 0,729; б) 0,999; в) 0,271.
- 4. Вероятность того, что студент сдаст первый экзамен, равна 0,9, второй 0,7, третий 0,6. Вычислить вероятность того, что студент сдаст: а) два экзамена; б) не менее двух экзаменов; в) не более двух экзаменов?

 Ответ: а) 0,456; б) 0,834; в) 0,622.
- 5. Стрелок произвел четыре выстрела по удаляющейся от него цели, причем вероятность попадания в цель в начале стрельбы равна 0,7, а после каждого выстрела уменьшается на 0,1. Вычислить вероятность того, что цель будет поражена: а) четыре раза; б) три раза; в) не менее трех раз.

Ответ: а) 0,084; б) 0,302; в) 0,38886.

6. На сборку поступает детали с трех конвейеров. Первый дает 25%, второй – 30% и третий – 45% деталей, поступивших на сборку. С первого конвейера в среднем поступает 2% брака, со второго – 3%, с третьего – 1%. Найти вероятность того, что: а) на сборку поступила бракованная деталь; б) поступившая на сборку бракованная деталь – со второго конвейера.

Ответ: а) 0,0185; б) 0,4865.

7. Для поисков спускаемого аппарата космического корабля выделено 4 вертолета первого типа и 6 вертолетов второго типа. Каждый вертолет первого типа обнаруживает находящейся в районе поиска аппарата с вероятностью 0,6, второго типа — вероятностью 0,7. а) Найти вероятность того, что наугад выбранный вертолет

обнаружит аппарат. б) К какому типу вероятнее всего принадлежит вертолет, обнаруживший спускаемый аппарат?

Ответ: а) 0,66; б) ко второму.

8. В вычислительной лаборатории 40 % микрокалькуляторов и 60 % дисплеев. Во время расчета 90 % микрокалькуляторов и 80 % дисплеев работают безотказно. а) Найти вероятность того, что наугад взятая вычислительная машина проработает безотказно во время расчета. б) Вычислительная машина проработала безотказно во время расчета. К какому типу вероятнее всего она принадлежит?

Ответ: а) 0,84; б) к дисплеям.

9. Среди деталей, подвергавшихся термической обработке, в среднем 80 % высшего сорта. Найти вероятность того, что среди пяти изделий: а) хотя бы четыре высшего сорта; б) четыре высшего сорта; в) не более четырех высшего сорта.

Ответ: а) 0,7373; б) 0,4096; в) 0,6723.

10. При штамповке изделий бывает в среднем 20 % брака. Для контроля отобрано 8 изделий. Найти: а) вероятность того, что два изделия окажутся бракованными; б) наивероятнейшее число бракованных изделий; в) вероятность наивероятнейшего числа бракованных изделий.

Ответ: а) 0,2936; б) 1; в) 0,3355.

11. Вероятность того, что изделие — высшего сорта, равна 0,5. Найти вероятность того, что из 1000 изделий 500 — высшего сорта.

Ответ: 0,0252.

12. Вероятность нарушения стандарта при штамповке карболитовых колец равна 0,3. Найти вероятность того, что для 800 заготовок число бракованных колец заключено между 225 и 250.

Ответ: 0,6543.

13. Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не более чем на 0,02.

Ответ: 0,7698.

- 14. Вероятность производства бракованной детали равна 0,008. Найти вероятность того, что из взятых на проверку 1000 деталей 10 бракованных. Ответ: 0,0993.
- 15. Аппаратура состоит из 1000 элементов. Вероятность отказа одного элемента за время Т равна 0,001 и не зависит от работы других элементов. Найти вероятность отказа не менее двух элементов.

Ответ: 0,264.

16. Вероятность безотказной работы в течение гарантийного срока для телевизоров первого типа равна 0,9, второго типа - 0,7, третьего типа - 0,8. СВ X - число телевизоров, проработавших гарантийный срок среди трех телевизоров разных типов. Найти закон распределения СВ X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию $\mathcal{L}(X)$ и среднее квадратическое отклонение $\sigma(X)$. Построить график F(x).

Ответ: M(X) = 2,4; $\mathcal{I}(X) = 0,46$.

17. Дан ряд распределения СВ Х:

x_i	-5	2	3	4
p_{i}	0,4	0,3	0,1	0,2

Вычислить математическое ожидание M(X), дисперсию $\mathcal{L}(X)$, среднее квадратическое отклонение $\sigma(X)$.

Otbet:
$$M(X) = -0.3$$
; $\mathcal{A}(X) = 15.21$; $\sigma(X) = 3.9$.

18. Плотность распределения СВ Х
$$f(x) = \begin{cases} 0, & x \le 0, \\ A \sin x, & 0 < x \le \pi, \end{cases}$$
 Вычислить значение $0, & x > \pi.$

A, математическое ожидание M(X) и дисперсию $\mathcal{L}(X)$.

Other:
$$A = 0.5$$
; $M(X) = \frac{\pi}{2}$; $\mathcal{I}(X) = \frac{\pi^2}{4} - 2$.

- 19. Все значения равномерно распределенной СВ X лежат на отрезке [2;8]. Найти вероятность попадания СВ X в промежуток (3;5). Ответ: 0,3333.
- 20. СВ X распределена нормально с математическим ожиданием 40 и дисперсией 100. Вычислить вероятность попадания СВ X в интервал (30; 80). Ответ: 0,999936.
- 21. Найти значения М(X), Д(X) и $\sigma(X)$ для CB X, интегральная функция распределения которой $F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{3}{4}x^2 \frac{1}{4}x^3, & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2. \end{cases}$

Ответ:
$$M(X)=1$$
; $\Pi(X)=0.2$; $\sigma(X)=0.447$.

22. Дана выборка:

x_{I}	2	4	5	7	10
n_{i}	15	20	10	10	45

Найти эмпирическую функцию распределения, построить ее график. Построить полигон относительных частот выборки.

23. По данным выборки построить гистограмму относительных частот:

№ интервала	интервал	Число вариант в интервале
1	(2;5)	6
2	(5;8)	10
3	(8;11)	5
4	(11;14)	4

24. По выборке признака X, заданной следующей таблицей

\mathcal{X}_{i}	45	50	55	60	65	70	75
n_i	4	6	10	40	20	12	8

Найти выборочное среднее, выборочную и исправленную дисперсию, выборочное и исправленное среднее квадратическое отклонение.

Otbet:
$$\overline{x_e} = 61.7$$
; $\mathcal{I}_e = 49.61$; $S^2 = 50.11$; $\sigma_e = 7.04$; $S = 7.08$.

25. Ниже приведены результаты измерения роста (в см) случайно отобранных 100 студентов.

Рост	154-158	158-162	162-166	166-170	170-174	174-178	178-182
Число студентов	10	14	26	28	112	8	2

Найти выборочную среднюю и выборочную дисперсию роста обследованных студентов.

Ответ:
$$\overline{x_e} = 166$$
; $\mathcal{I}_e = 33,44$.

26. Выборка из большой партии электроламп содержит 100 ламп. Средняя продолжительность горения лампы выборки оказалась равной 1000 ч. Найти с надежностью 0,95 доверительный интервал для средней продолжительности а горения лампы всей партии, если известно, что среднее квадратическое отклонение продолжительности горения лампы $\sigma = 40$ ч.

Otbet:
$$992,76 < a < 1007,84$$
.

27. Найти минимальный объем выборки, при котором с надежностью 0,975 точность оценки математического ожидания а генеральной совокупности по выборочной средней будет равна $\delta=0,3$, если известно среднее квадратическое отклонение $\sigma=1,2$ нормально распределенной генеральной совокупности.

Ответ:
$$n = 81$$
.

28. Из генеральной совокупности известна выборка объема n = 10:

x_i	-2	1	2	3	4	5
n_{i}	2	1	2	2	2	1

Оценить с надежностью 0,95 математическое ожидание а нормально распределенного признака генеральной совокупности по выборочной средней при помощи доверительного интервала.

Ответ:
$$0, 3 < a < 3, 7$$
.

29. По данным выборки объема n из генеральной совокупности нормально распределенного количественного признака найдено исправленное среднее квадратическое отклонение s. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение σ с надежностью 0,999, если: a) n = 10; s = 5, 1; б) n = 50, s = 14.

Otbet:
$$0 < \sigma < 14,28$$
; $7,98 < \sigma < 20,02$.

30. Установить, пользуясь критерием Пирсона, при уровне значимости 0,05, случайно или значимо расхождение между эмпирическими частотами n_i и теоретическими n_i' , которые вычислены, исходя из предположения, что генеральная совокупность распределена нормально:

a)

n_i	6	8	13	15	20	16	10	7	5
n'_i	5	9	14	16	18	16	9	6	7

б)

n_i	14	18	32	70	20	36	10
n'_i	10	24	34	80	18	22	12

Otbet: a)
$$\chi^2_{\text{набл.}} = 1,52$$
, $\chi^2_{\text{крит.}} = 12,6$; б) $\chi^2_{\text{набл.}} = 13,93$, $\chi^2_{\text{крит.}} = 9,5$.

31. Пользуясь критерием Пирсона, при уровне значимости 0,05 установить, согласуется ли гипотеза о нормальном распределении генеральной совокупности с заданным эмпирическим распределением, если

a)

№ интервала, і	Интервал	Частота, n_i
1	(-20;-10)	20
2	(-10;0)	47
3	(0;10)	80
4	(10;20)	89
5	(20;30)	40
6	(30;40)	16
7	(40;50)	8

б)

№ интервала, і	Интервал	Частота, n_i
1	(6;16)	8
2	(-16;26)	7
3	(36;36)	16
4	(36;46)	35
5	(46;56)	15
6	(56;66)	8
7	(66;76)	6
8	(76;86)	5

Otbet: a)
$$\overline{x} = 10.4$$
, $\sigma = 13.6$, $k = 4$, $\chi^2_{\text{набл.}} = 1.52$, $\chi^2_{\text{крит.}} = 9.5$;
6) $\overline{x} = 42.5$, $\sigma = 17.17$, $k = 5$, $\chi^2_{\text{набл.}} = 14$, $\chi^2_{\text{крит.}} = 11.1$.

32. Дана выборка объема n = 10, извлеченная из генеральной совокупности:

x_i	2	4	6	8	10	12
n_{i}	1	2	2	2	2	1

При уровне значимости $\alpha=0,01$ проверить с помощью критерия Колмогорова гипотезу о равномерном распределении генеральной совокупности в интервале (2;12). Ответ: $\lambda_{{\scriptscriptstyle Ha60.}}=0,3162$, $\lambda_{{\scriptscriptstyle KDUM.}}=1,63$.

33. В ОТК были измерены диаметры 60 валиков из партии, изготовленной одним станком-автоматом. Результаты измерений заданы таблицей:

Интервал, мм	n_i	Интервал, мм	n_i
(13,94; 14,04)	1	(14,34; 14,44)	14,5
(14,04; 14,14)	1	(14,44; 14,54)	13,5
(14,14; 14,24)	4	(14,54; 14,64)	9,5
(14,24;14,34)	10,5	(14,64; 14,74)	6

При уровне значимости $\alpha = 0.05$ с помощью критерия Колмогорова проверить гипотезу о том, что выборка согласуется с равномерным распределением генеральной совокупности в интервале (13,94; 14,74).

Otbet:
$$\lambda_{\text{набл.}} = 2,12$$
, $\lambda_{\text{крит.}} = 1,355$.

34. Соответствующие значения признаков X и Y приведены в таблице.

						-			
X	0	1	2	3	4	5	6	7	m_x
25	2	1							3
35		5	3						8
45			4	2	4				10
55					2	3	1	5	11
65							6	2	8
m_y	2	6	7	2	6	3	7	7	40

Найти коэффициент линейной корреляции и записать уравнения прямых регрессий Y на X и X на Y.

Otbet:
$$r_g = 0.9$$
; $\overline{y}_x - 3.9 = 0.17(x - 48.2)$; $\overline{x}_y - 48.2 = 4.8(y - 3.9)$.

35. Значения признаков X и Y заданы корреляционной таблицей.

	1			•		·	
X	10-20	20-30	30-40	40-50	50-60	60-70	m_y
120-140					3	4	7
140-160				2	5	2	9
160-180			3	6	3		12
180-200		5	4	4			13
200-220	7	4	2				13
220-240	5	2					7
240-260	3						3
$m_{_X}$	15	11	9	12	11	6	64

Найти коэффициент линейной корреляции и записать уравнения прямых регрессий Y на X и X на Y.

Otbet:
$$r_e = -0.899$$
; $\overline{y}_x - 185.3 = -1.78(x - 96.72)$; $\overline{x}_y - 96.72 = -0.454(y - 185.3)$.

36. Закон распределения системы СВ (X, Y) задан таблицей

y_i x_i	1	3	5	7
-2	0,05	0,08	0,05	0,02
2	0,07	0,15	0,25	0,03
4	0,02	0,07	0,09	0,12

Найти: а) законы распределения СВ X и Y, входящих в систему; б) условный закон распределения составляющей X при условии $Y = y_2 = 2$; в) математическое ожидание, среднее квадратическое отклонение СВ X и Y, их коэффициент корреляции.

Other:
$$M(X) = 4,2$$
, $M(Y) = 1,8$, $\mathcal{J}(X) = 3,28$, $\mathcal{J}(Y) = 4,36$, $\sigma(X) = 1,81$, $\sigma(Y) = 2,09$, $r_{xy} = -0,54$.

37. Плотность распределения вероятностей системы СВ (X, Y)

$$f(x,y) = \begin{cases} a\sin(x+y), & ecnu \ 0 \le x \le \frac{\pi}{2}, \ 0 \le y \le \frac{\pi}{2}, \\ 0 & eopyeux cnyчаях. \end{cases}$$

Найти: а) коэффициент а; б) математическое ожидание и дисперсию CB X и Y; в) корреляционный момент и коэффициент корреляции.

OTBET: a)
$$a = \frac{1}{2}$$
; 6) $M(X) = M(Y) = \frac{\pi}{4}$; $\mathcal{J}(X) = \mathcal{J}(Y) = 0,1865$; B) $\sigma_{xy} = -0,0461$, $r_{xy} = -0,2472$.

Аттестационная работа по теме «Теория вероятностей»

Задание 1. Бросаются две игральные кости. Определить вероятность того, что: **a)** сумма числа очков не превосходит N; **б)** произведение числа очков не превосходит N; **в)** произведение числа очков делится на N. (См. исходные данные в таблице.)

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
вар.	1				·	•	,)	\	10			10		10	
N	3	4	5	6	7	8	9	10	3	4	5	6	7	8	9	10

№	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
вар.	17	10	1)	1	21	1	1	1	1	1	1	1	1	3	J1
N	11	12	13	14	15	16	17	18	19	20	3	4	5	6	8

 $\it 3adanue 2.$ Среди $\it n$ лотерейных билетов $\it k$ выигрышных. Наудачу взяли $\it m$ билетов. Определить вероятность того, что среди них $\it l$ выигрышных. (См. исходные данные в таблице.)

N₂	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
вар.	•	1		•)	•	,		`	10			10		10
n	10	10	10	10	11	11	11	12	12	12	9	9	9	8	8
l	2	2	3	3	2	3	3	3	2	2	2	3	2	2	2
m	4	3	5	5	5	4	5	8	8	5	4	5	3	4	5
\overline{k}	6	6	7	6	7	8	7	5	3	4	6	6	7	5	4

N₂	16	17	18	19	20	21	22	23	24	25	26	27	28
вар.	10	17	10	1)	1	4 1		20	1	1	20	1	20
n	8	10	10	10	12	8	8	8	8	8	9	9	9
l	3	4	5	4	4	2	2	2	3	1	2	3	2
m	4	6	7	6	8	3	3	4	5	4	3	4	6
k	5	5	7	7	6	4	5	3	4	2	5	4	3

№ вар.	29	30	31
n	9	9	9
l	4	3	2
m	5	5	3
k	5	4	6

Задание 3. В круге радиуса R наудачу появляется точка. Определить вероятность того, что она попадет в одну из двух непересекающихся фигур, площади которых равны S_1 и S_2 . (См. исходные данные в таблице.)

№ вар.	1	2	3	4	5	6	7	8	9	10
R	11	12	13	14	11	12	13	14	11	12
S_{I}	2,25	2,37	2,49	2,55	2,27	2,39	2,51	2,57	2,29	2,41
S_2	3,52	3,52	3,52	1,57	5,57	5,57	1,57	3,52	3,52	3,52

№ вар.	11	12	13	14	15	16	17	18	19	20
R	13	14	15	16	11	12	13	14	15	16
S_{I}	2,53	2,59	2,5	2,6	2,2	2,4	2,5	2,6	2,7	2,7
S_2	3,52	5,57	8,7	8,5	3,5	3,5	3,5	1,8	7,9	8,2

№ вар.	21	22	23	24	25	26	27	28	29	30	31
R	11	12	13	14	15	11	12	13	14	15	12
S_{I}	2,3	2,4	2,5	2,6	2,5	2,3	2,4	2,5	2,6	2,7	2,25
S_2	3,5	3,5	3,5	5,6	8,7	5,6	5,6	3,5	5,6	7,9	3,52

Задание 4. В двух партиях k_1 и k_2 % доброкачественных изделий соответственно. Наудачу выбирают по одному изделию из каждой партии. Какова вероятность обнаружить среди них: **a)** хотя бы одно бракованное; **б)** два бракованных; **в)** одно доброкачественное и одно бракованное? (См. исходные данные в таблице.)

№ вар.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
k_l	71	78	87	72	79	86	73	81	85	74	82	84	75	83	76	77
k_2	47	39	31	46	38	32	45	37	33	44	36	34	43	35	42	41
№ вар.	17	18	19	20	21	22	23	24	25	26	27	28	3 2	9	30	31
k_1	47	39	31	72	38	32	73	81	33	44	36	84	1 7	'5	83	76
k_2	71	78	87	46	79	86	45	37	85	74	82	34	1 4	.3	35	42

Задание 5. В магазин поступают однотипные изделия с трех заводов, причем i-й завод поставляет n_i % изделий (i=1, 2, 3). Среди изделий i-ого завода m_i % первосортных. Куплено одно изделие. Оно оказалось первосортным. Определить вероятность того, что купленное изделие выпущено j-м заводом. (См. исходные данные в таблице.)

№ вар.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n_1	50	50	50	60	60	60	40	40	40	40	40	40	70	70	70
n_2	30	30	30	20	20	20	30	30	30	20	20	20	20	20	20
n_3	20	20	20	20	20	20	30	30	30	40	40	40	10	10	10
m_1	70	70	70	70	70	70	80	80	80	90	90	90	70	70	70
m_2	80	80	80	80	80	80	80	80	80	90	90	90	80	80	80
m_3	90	90	90	90	90	90	90	90	90	80	80	80	90	90	90
j	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3

№	16	17	18	19	20	21	22	23	24	25	26	27	28
вар.	10	17	10	17	20	21		23	24	23	20	41	20
n_1	60	60	60	50	50	50	30	30	30	20	20	20	10
n_2	10	10	10	20	20	20	30	30	30	40	40	40	50
n_3	30	30	30	30	30	30	40	40	40	40	40	40	40
m_1	80	80	80	90	90	90	70	70	70	90	90	90	70
m_2	90	90	90	80	80	80	70	70	70	70	70	70	90
m_3	80	80	80	90	90	90	80	80	80	80	80	80	80
j	1	2	3	1	2	3	1	2	3	1	2	3	1

№ вар.	29	30	31
n_1	10	10	20
n_2	50	50	30
n_3	40	40	50
m_1	70	70	70
m_2	90	90	70
m_3	80	80	90
j	2	3	1

Задание 6. Монета бросается до тех пор, пока герб не выпадет n раз. Определить вероятность того, что цифра выпадет m раз. (См. исходные данные в таблице.)

№ вар.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
n	3	7	4	4	3	6	3	8	6	4	2	5	8	2	2	4
m	2	3	7	3	6	5	5	3	4	5	7	4	6	6	3	2

№ вар.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
n	7	5	4	8	6	5	3	6	5	7	5	6	7	8	7
m	6	3	6	5	3	2	7	8	6	4	7	2	5	4	2

Задание 7. Вероятность выигрыша в лотерею на один билет равна p. Куплено n билетов. Найти наивероятнейшее число выигравших билетов и соответствующую вероятность. (См. исходные данные в таблице.)

№ Bap	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,5	0,4	0,5
n	10	14	13	12	11	15	11	13	14	10	12	15	12	12	11

№ вар.	16	17	18	19	20	21	22	23	24	25	26	27	28
p	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,7	0,7	0,7
n	13	14	15	13	11	12	10	15	14	14	10	15	11

№ вар.	29	30	31
p	0,7	0,7	0,3
n	12	13	13

Задание 8. Вероятность наступления некоторого события в каждом из n независимых испытаний равна p. Определить вероятность того, что число m наступлений события удовлетворяет следующему неравенству. (См. исходные данные в таблице.)

Варианты 1–11: $k_1 \le m \le k_2$

Варианты 12–21: $k_1 \le m$

Варианты 22–31: $m \le k_2$.

№ вар.	1	2	3	4	5	6	7	8	9	10	11
n	100	100	100	100	100	100	100	100	100	100	100
p	0,8	0,8	0,8	0,7	0,7	0,7	0,7	0,6	0,75	0,75	0,75
k_{l}	80	85	70	83	50	65	70	40	65	70	68
k_2	90	95	95	93	60	75	80	50	80	85	78

№ вар.	12	13	14	15	16	17	18	19	20	21
\overline{n}	100	100	100	100	100	100	100	100	100	100
p	0,7	0,7	0,7	0,6	0,6	0,6	0,8	0,8	0,8	0,8
k_1	60	70	80	65	75	50	70	80	90	95
k_2	_	_	_	_	_	_	_	_	_	_

№ вар.	22	23	24	25	26	27	28	29	30	31
n	100	100	100	200	200	200	300	400	400	400
p	0,3	0,3	0,3	0,4	0,4	0,4	0,8	0,6	0,7	0,8
k_1	_	_	_	_	_	_	_	_	_	_
k_2	20	30	40	80	90	100	250	270	290	300

Задание 9. Для данной СВ X: **a)** найти множество возможных значений $x_i \left(i = \overline{I,n} \right)$; **б)** вычислить $P\left(X = x_i \right)$; **в)** записать ряд ее распределения; **г)** вычислить математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение $\sigma\left(\overline{X} \right)$; **д)** найти функцию распределения.

- 1. Вероятность того, что в библиотеке имеется необходимая студенту книга, равна 0,4. В городе 5 библиотек. СВ X—число библиотек, которые посетит студент.
- 2. Имеется 4 ключа, из которых только один подходит к замку. CB X- число попыток открыть замок каждым ключом при условии, что опробованный ключ в последующих попытках не участвует.
- 3. Среди шести изделий имеется одно бракованное. Чтобы его обнаружить отбирают наугад одно изделие за другим и каждое выбранное изделие проверяют. CB X- число проверенных изделий.
- 4. В озере 3000 рыб, причем 2000 из них меченые. Выловили 7 рыб. СВ X- число меченых рыб среди выловленных.
- 5. Батарея состоит из трех орудий. Вероятность попадания в цель при одном выстреле из первого, второго и третьего орудий батареи равны соответственно 0,6,0,8 и 0,7. Каждое орудие стреляет по некоторой цели один раз. CB X—число попаданий в цель.
- 6. Охотник, имеющий 6 патронов, стреляет в цель до первого попадания. Вероятность попадания при каждом выстреле равна 0.5. CBX–число израсходованных патронов.
- 7. Испытуемый прибор состоит из четырех элементов. Вероятности отказа элементов соответственно равны: 0.2; 0.3; 0.4; 0.5. Отказы элементов независимы. CB X- число отказавших элементов.
- 8. Вероятность попадания мячом в корзину при одном броске равна 0,4. СВ X- число попаданий при трех бросках.

- 9. В шестиламповом радиоприемнике, где все лампы различны, перегорела одна лампа. С целью устранения неисправности наудачу выбранную лампу заменяют заведомо годной из запасного комплекта, после чего сразу проверяют работу приемника. CB X число замен ламп.
- 10. Рабочий обслуживает 4 станка. Вероятности того, что первый, второй, третий и четвертый станки не потребуют внимания рабочего в течение часа, соответственно равны: 0,6; 0,9; 0,65; 0,8. СВ X число станков, которые не потребуют внимания рабочего в течение часа.
- 11. В партии хлопка 15% коротких волокон. СВ X число коротких волокон среди случайно отобранных четырех волокон.
- 12. Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Вероятность попадания при одном выстреле равна 0,6. СВ X число выстрелов, производимых охотником.
- 13. В группе из десяти изделий два бракованных. Чтобы их обнаружить выбирают наугад одно изделие за другим и каждое выбранное изделие проверяют. СВ X число проверенных изделий.
- 14. Имеется 5 ключей, из которых только один подходит к замку. СВ X число попыток открыть замок каждым ключом при условии, что опробованный ключ в последующих попытках не участвует.
- 15. Вероятность поражения цели при одном выстреле равна 0.6. CB X- число выстрелов, производимых до первого попадания.
- 16. Производятся последовательные испытания десяти приборов на надежность. Каждый следующий прибор испытывается в том случае, если предыдущий оказался надежным. Вероятность выдержать испытание для каждого прибора равна 0,7. СВ *X* число испытаний, на котором заканчивается проверка.
- 17. Из ящика, содержащего 4 бракованных и 6 стандартных деталей наугад извлекают 3 детали. CB X– число извлеченных стандартных деталей.
- 18. На пути движения автомащины 4 светофора, разрешающих или запрещающих дальнейшее движение с вероятностью 0.5. СВ X- число светофоров, мимо которых автомащина прошла до первой остановки.
- 19. Вероятность наступления некоторого события в каждом испытании постоянна и равна 0,2. Испытания проводятся 5 раз. CB X—число появления события в пяти испытаниях.
- 20. Вероятность попадания в цель при одном выстреле из орудия равна 0,6. Производится 5 выстрелов. CB X— число попаданий в цель.
- 21. Партия из 40 изделий содержит 8 бракованных. Из нее случайным образом отобраны 4 изделия. CB X– число бракованных изделий, содержащихся в случайной выборке.
- 22. Вероятность выпуска нестандартного изделия равна 0,2. Из партии изделий контролер берет одно и проверят его качество. Если изделие оказывается нестандартным, дальнейшие испытания прекращаются, а партия задерживается. Если же изделие оказывается стандартным, контролер берет следующее и т.д. Всего он проверяет не более четырех изделий. СВ X—число проверяемых изделий.

- 23. Вероятность попадания в движущуюся цель при одном выстреле постоянна и равна 0,1. Произведено 4 выстрела. CB X- число попаданий в движущуюся цель.
- 24. В лотерее на 2000 билетов разыгрываются 3 вещи, стоимость которых 420, 120 и 60 руб. СВ X-сумма выигрыша для лица, имеющего один билет.
- 25. В некотором цехе брак составляет 6% всех изделий. СВ X – число бракованных изделий из пяти наугад взятых изделий.
- 26. Снайпер стреляет по замаскированному противнику до первого попадания. Вероятность промаха при отдельном выстреле равна 0,3. СВ X—число промахов, если у снайпера в запасе четыре патрона.
- 27. Вероятность промышленного содержания металла в каждой пробе одинаковая и равна 0.8. Произведено 4 пробы. CB X- число проб с промышленным содержанием металла из четырех проверенных.
- 28. При штамповке металлических клемм для соединительных пластин бывает в среднем 5% брака. CB X – число бракованных клемм из четыре проверяемых.
- 29. Вероятность положительного результата при химическом анализе равна 0,8. СВ Xчисло положительных результатов химического анализа среди пяти проведенных.
- 30. При автоматической прессовке заготовок 2/3 от общего их числа не имеют зазубрин. CB X—число заготовок из трех, не имеющих зазубрин.

Задание 10. Дана функция распределения F(x) CB X. Найти плотность распределения вероятности f(x), математическое ожидание M(X), дисперсию D(X) и вероятность попадания CB X на отрезок [a,b]. Построить графики функций F(x) и f(x).

$$1. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{2}(1 - \cos x), & ecnu \ 0 \le x \le \pi, \\ 1, & ecnu \ x > \pi \end{cases} \qquad a = \frac{\pi}{3}, \ b = \frac{\pi}{2}.$$

$$2. F(x) = \begin{cases} 0, & ecnu \ x < 1, \\ \frac{1}{4}(x-1), & ecnu \ 1 \le x \le 5, \\ 1, & ecnu \ x > 5 \end{cases} \qquad a = 2, b = 4.$$

$$3. F(x) = \begin{cases} 0, & ecnu \ x < \pi/2, \\ -\cos x, & ecnu \ \pi/2 \le x \le \pi, \\ 1, & ecnu \ x > \pi \end{cases} \qquad a = \frac{\pi}{2}, b = \frac{5}{6}$$

$$4. F(x) = \begin{cases} 0, & ecnu \ x < 1, \\ \frac{1}{2}(x^2-x), & ecnu \ 1 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 1,5; b = 1$$

$$3. F(x) = \begin{cases} 0, & ecnu \ x < \pi/2, \\ -\cos x, & ecnu \ \pi/2 \le x \le \pi, \\ 1, & ecnu \ x > \pi \end{cases} \qquad a = \frac{\pi}{2}, \ b = \frac{5\pi}{6}.$$

$$4. F(x) = \begin{cases} 0, & ecnu \ x < 1, \\ \frac{1}{2}(x^2 - x), & ecnu \ 1 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases}$$
 $a = 1,5; \ b = 1,9.$

$$5.F(x) = \begin{cases} 0, & ecnu \ x < 2, \\ (x-2)^2, & ecnu \ 2 \le x \le 3, \\ 1, & ecnu \ x > 3 \end{cases} \qquad a = 2.5; \ b = 2.8.$$

$$6.F(x) = \begin{cases} 0, & ecnu \ x < -1, \\ \frac{1}{2}x + \frac{1}{2}, & ecnu \ -1 \le x \le 1, \\ 1, & ecnu \ x > 1 \end{cases} \qquad a = -0.5; \ b = 0.5.$$

$$7.F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ 1, & ecnu \ x > 6 \end{cases} \qquad a = 2; \ b = 5.$$

$$8.F(x) = \begin{cases} 0, & ecnu \ x < 2, \\ \frac{1}{2}x - 1, & ecnu \ 2 \le x \le 4, \\ 1, & ecnu \ x > 4 \end{cases} \qquad a = 1; \ b = 3$$

$$9.F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{x^2}{4}, & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 1,2; \ b = 1,5$$

$$10.F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ 10.F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ (x^2 + 3x), & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 0; \ b = 1$$

$$11.F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ (x^2 - x)/6, & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 0; \ b = 1$$

$$12.F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ (x^2 - x)/2, & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 0; \ b = 1$$

$$13.F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ (x^3 + 3x)/14, & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 0; \ b = 1$$

$$14. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \sin x, & ecnu \ 0 \le x \le \pi/2, \\ 1, & ecnu \ x > \pi/2 \end{cases} & a = 0, \ b = \frac{\pi}{6}. \end{cases}$$

$$15. F(x) = \begin{cases} 0, & ecnu \ x < -1, \\ \frac{1}{5}(x+1), & ecnu \ -1 \le x \le 4, \\ 1, & ecnu \ x > 4 \end{cases} & a = 0; \ b = 3 \end{cases}$$

$$16. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{15}(x^2 + 2x), & ecnu \ 0 \le x \le 3, \\ 1, & ecnu \ x > 3 \end{cases} & a = 0; \ b = 2 \end{cases}$$

$$17. F(x) = \begin{cases} 0, & ecnu \ x < 3\pi/2, \\ \cos x, & ecnu \ 3\pi/2 \le x \le 2\pi, \\ 1, & ecnu \ x > 2\pi \end{cases} & a = \frac{3\pi}{2}, \ b = \frac{7\pi}{4}. \end{cases}$$

$$18. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{33}(3x^2 + 2x), & ecnu \ 0 \le x \le 3, \\ 1, & ecnu \ x > 0, \end{cases}$$

$$19. F(x) = \begin{cases} 0, & ecnu \ x < -1, \\ \frac{1}{9}(x^3 + 1), & ecnu \ -1 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} & a = 1; \ b = 2 \end{cases}$$

$$20. F(x) = \begin{cases} 0, & ecnu \ x < \pi/2, \\ 1 - \sin x, & ecnu \ \pi/2 \le x \le \pi, \\ 1, & ecnu \ x > \pi \end{cases} & a = 1; \ b = 2 \end{cases}$$

$$21. F(x) = \begin{cases} 0, & ecnu \ x < -1, \\ \frac{1}{9}(x + 1)^2, & ecnu \ -1 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} & a = 1; \ b = 2 \end{cases}$$

$$22. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{96}(x^3 + 8x), & ecnu \ 0 \le x \le 4, \\ 1, & ecnu \ x > 4 \end{cases} & a = 0; \ b = 2 \end{cases}$$

$$23. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ 1 - cos \ x, & ecnu \ 0 \le x \le \pi/2, \\ 1, & ecnu \ x > \pi/2 \end{cases} \qquad a = 0, \ b = \frac{\pi}{3}.$$

$$24. F(x) = \begin{cases} 0, & ecnu \ x < 3\pi/4, \\ cos \ 2x, & ecnu \ 3\pi/4 \le x \le \pi, \\ 1, & ecnu \ x > \pi \end{cases} \qquad a = \frac{3\pi}{4}, \ b = \frac{5\pi}{6}.$$

$$25. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{20}(x^2 + x), & ecnu \ 0 \le x \le 4, \\ 1, & ecnu \ x > 4 \end{cases} \qquad a = 0; \ b = 3$$

$$26. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{10}(x^3 + x), & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 0; \ b = 1$$

$$27. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{24}(x^2 + 2x), & ecnu \ 0 \le x \le 4, \\ 1, & ecnu \ x > 4 \end{cases} \qquad a = 0; \ b = 1$$

$$28. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{9}x^2, & ecnu \ 0 \le x \le 3, \\ 1, & ecnu \ x > 3 \end{cases} \qquad a = 0; \ b = 1$$

$$29. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{33}(2x^2 + 5x), & ecnu \ 0 \le x \le 3, \\ 1, & ecnu \ x > 3 \end{cases} \qquad a = 1; \ b = 2$$

$$30. F(x) = \begin{cases} 0, & ecnu \ x < 0, \\ \frac{1}{8}x^3, & ecnu \ 0 \le x \le 2, \\ 1, & ecnu \ x > 2 \end{cases} \qquad a = 0; \ b = 1$$

Решение типового варианта аттестационной работы по теме «Теория вероятностей»

Задание 1. Бросаются две игральные кости. Определить вероятность того, что:

- а) сумма числа очков не превосходит восьми;
- б) произведение числа очков не превосходит восьми;
- в) произведение числа очков делится на восемь.

Решение.

Обозначим через A событие, состоящее в том, что сумма числа очков не превосходит восьми, B-произведение числа очков не превосходит восьми, C-произведение числа очков делится на восемь.

a) Вероятность события A равна отношению числа m благоприятствующих событию A случаев к общему числу n случаев равновозможных, единственно возможных и несовместных.

Таким образом,
$$P(A) = \frac{m}{n}$$
.

Число всех равновозможных случаев $n=6^2=36$, так как каждая грань первой игральной кости может выпасть с любой гранью другой игральной кости. Из этих 36 случаев 26 случаев, когда сумма числа очков не превосходит восьми, то есть m=26.

Следовательно,
$$P(A) = \frac{26}{36} = 0,72$$
.

6)
$$n = 36$$
.

Число случаев m, благоприятствующих появлению события B, равно 16.

$$P(B) = \frac{16}{36} = 0.44$$

B)
$$n = 36$$
.

Число произведений числа очков, которые делятся на 8 равно пяти. Это: $2\cdot 4$; $4\cdot 2$; $4\cdot 4$; $4\cdot 6$; $6\cdot 4$. Итак, m=5 .

$$P(C) = \frac{5}{36} = 0.14$$
.

Задание 2. Среди 11 лотерейных билетов 5 выигрышных. Наудачу взяли 7 билетов. Определить вероятность того, что среди них 3 выигрышных.

Решение.

Пусть событие A состоит в том, что из взятых наудачу семи билетов три выигрышных. Число всех равновозможных случаев равно числу сочетаний из 11 элементов по 7, то есть

$$n = C_{11}^7 = \frac{11!}{7! \cdot 4!} = \frac{8 \cdot 9 \cdot 10 \cdot 11}{1 \cdot 2 \cdot 3 \cdot 4} = 330.$$

Число групп по три выигрышных билета из пяти равно C_5^3 . Каждая такая тройка может сочетаться с любой группой по 4 невыигрышных билета из 6, а число таких групп равно C_6^4 . Таким образом, число групп по 7 билетов, образованных из группы в 11 билетов, в

каждую из которых будет входить три выигрышных и четыре невыигрышных билета, равно произведению $C_5^3 \cdot C_6^4$.

То есть, число случаев, благоприятствующих событию,

$$m = C_5^3 \cdot C_6^4 = \frac{5!}{3! \cdot 2!} \cdot \frac{6!}{4! \cdot 2!} = \frac{4 \cdot 5}{2} \cdot \frac{5 \cdot 6}{2} = 150.$$
 Тогда $P(A) = \frac{C_5^3 \cdot C_6^4}{C_{11}^7} = \frac{150}{330} = 0,45.$

Задание 3. В круге радиуса R=12 наудачу появляется точка. Определить вероятность того, что она попадет в одну из двух непересекающихся фигур, площади которых равны $S_1=2,25$, $S_2=3,52$.

Решение.

Пусть событие A состоит в том, что точка попадет в одну из двух непересекающихся фигур. Событие B-точка попадет в фигуру, площадь которой S_1 . Событие C-точка попадет в фигуру, площадь которой S_2 .

Суммой нескольких событий называется событие, которое состоит в том, что произойдет хотя бы одно из этих событий. Тогда, событие A равно сумме двух событий B и C.

$$A = B + C$$
.

События B и C несовместны, так как появление одного из них исключает появление другого. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.

$$P(A) = P(B+C) = P(B) + P(C)$$
.

Для нахождения вероятности события В воспользуемся формулой:

$$P(B) = \frac{Mepa\ m}{Mepa\ n}$$
.

Мера m и мера n могут выражать время, длину, площадь, объем, и т.д. В нашем случае в качестве меры выступает площадь.

Тогда
$$P(B) = \frac{S_1}{S}$$
, где S-площадь круга, $S = \pi R^2 = \pi \cdot 12^2 = 452,16$

$$P(B) = \frac{2,25}{452,16} = 0,0049$$
.

Аналогично,
$$P(C) = \frac{S_2}{S} = \frac{3,52}{452,16} = 0,0078$$
.

Следовательно, $P(A) = 0,0049 + 0,0078 = 0,0127 \approx 0,013$.

Задание 4. В двух партиях 76 и 42% доброкачественных изделий соответственно. Наудачу выбирают по одному изделию из каждой партии. Какова вероятность обнаружить среди них: а) хотя бы одно бракованное; б) два бракованных; в) одно доброкачественное и одно бракованное.

Решение.

Введем события:

A-изделие, взятое из первой партии будет доброкачественно B-изделие, взятое из второй партии будет доброкачественно

C-хотя бы одно из взятых изделий бракованно

D-два изделия из взятых бракованны

Е-одно изделие доброкачественно и одно бракованно из взятых двух.

Из условия задачи находим:

$$P(A) = 0.76$$
, $P(B) = 0.42$, $P(\overline{A}) = 1 - 0.76 = 0.24$, $P(\overline{B}) = 1 - 0.42 = 0.58$.

а) Два события, одно из которых обязательно должно произойти, но наступление одного из них исключает возможность наступления другого, называются противоположными.

Вероятность суммы противоположных событий равна сумме их вероятностей и равна единице $P(C) + P(\overline{C}) = 1$.

Событие C противоположно событию, которое состоит в том, что ни одно из взятых изделий не будет бракованно. Тогда $\overline{C}=AB$. Событие A и B независимы и вероятность их произведения равна произведению их вероятностей.

Следовательно, вероятность события С равна:

$$P(C) = 1 - P(\overline{C}) = 1 - P(AB) = 1 - P(A) \cdot P(B) = 1 - 0.76 \cdot 0.42 = 0.6808$$
.

б) Событие D состоит в том, что оба взятых изделия бракованны.

Событие, которое состоит в том, что несколько событий произойдут одновременно, называется их произведением. Поэтому $D=\overline{A}\cdot\overline{B}$.

$$P(D) = P(\overline{A} \cdot \overline{B}) = P(\overline{A}) \cdot P(\overline{B}) = 0,24 \cdot 0,58 = 0,1392.$$

в) Событие E состоит из суммы двух событий. Первое событие: изделие из первой партии доброкачественно, а со второй бракованно $\left(A \cdot \overline{B}\right)$. Второе событие: изделие из первой партии бракованно, а со второй партии доброкачественно $\left(\overline{A} \cdot B\right)$. Таким образом, $E = A\overline{B} + \overline{A}B$.

Оба слагаемых - несовместные события, так как появление одного из них исключает появление другого.

Тогда,
$$P(E) = P(A\overline{B} + \overline{A}B) = P(A\overline{B}) + P(\overline{A}B) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0,76 \cdot 0,58 + 0,24 \cdot 0,42 = 0,5416$$
.

Задание 5. В магазин поступают однотипные изделия с трех заводов, причем 1-ый завод поставляет 20%, второй — 30%, третий — 50%. Среди изделий первого завода 70% первосортных, второго — 70%, третьего — 90%. Куплено одно изделие. Оно оказалось первосортным. Определить вероятность того, что купленное изделие выпущено первым заводом.

Решение.

Возможны гипотезы:

 $H_{\rm 1}$ -куплено изделие, изготовленное первым заводом,

 ${\cal H}_2$ -куплено изделие, изготовленное вторым заводом,

 $H_{\rm 3}$ -куплено изделие, изготовленное третьим заводом.

Событие A – купленное изделие оказалось первосортным.

Вероятности гипотез:

$$P(H_1) = 0.2$$
, $P(H_2) = 0.3$. $P(H_3) = 0.5$.

При данных гипотезах условные вероятности события А заданы:

$$P(A/H_1) = 0.7 , P(A/H_2) = 0.7 , P(A/H_3) = 0.9 .$$

По формуле полной вероятности находим вероятность того, что наудачу купленное изделие оказалось первосортным. Итак,

$$P(A) = P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) + P(H_3) \cdot P(A/H_3) =$$

$$= 0.2 \cdot 0.7 + 0.3 \cdot 0.7 + 0.5 \cdot 0.9 = 0.14 + 0.21 + 0.45 = 0.8.$$

По формуле Байеса находим условную вероятность гипотезы H_1 после того, как событие A произошло.

$$P(H_1/A) = \frac{P(H_1) \cdot P(A/H_1)}{P(A)} = \frac{0.2 \cdot 0.7}{0.8} = 0.175$$
.

Задание 6. Монета бросается до тех пор, пока герб не выпадет 7 раз. Определить вероятность того, что цифра выпадет 3 раза.

Решение.

Если вероятность p наступления события A в каждом испытании постоянна, то вероятность того, что событие A наступит ровно m раз в n независимых испытаниях, равна:

$$P_n(m) = C_n^m p^m q^{n-m},$$

где
$$C_n^m = \frac{n!}{m!(n-m)!}, q = 1-p.$$

При каждом испытании вероятность выпадения цифры одна и та же. $p = \frac{1}{2}$, тогда

$$q = 1 - p = \frac{1}{2}$$
.

Чтобы герб выпал 7 раз, а цифра 3 раза, монету необходимо бросить 10 раз.

Но так как по условию задачи герб должен выпасть при последнем испытании, то цифра должна выпасть 3 раза из первых 9 раз. Поэтому вероятность события A равна произведению вероятности выпадения цифры равно 3 раза при 9 испытаниях на вероятность выпадения герба при десятом испытании. Вероятность выпадения герба при одном испытании 1

равна
$$\frac{1}{2}$$
.

$$P(A) = P_9(3) \cdot \frac{1}{2} = C_9^3 \cdot \left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right)^6 \cdot \frac{1}{2} = \frac{84}{1024} = 0,082.$$

Задание 7. Вероятность выигрыша в лотерею на один билет равна 0,3. Куплено 13 билетов. Найти наивероятнейшее число выигравших билетов и соответствующую вероятность.

Решение.

Число m_0 удовлетворяющее неравенствам $P_n\left(m_0-1\right)\leq P_n\left(m_0\right)\leq P_n\left(m_0+1\right)$, называется наивероятнейшим числом появления события A в n независимых испытаниях. Это число удовлетворяет условиям $np-q\leq m_0\leq np+p$. По условию задачи n=13 , p=0,3 , q=1-0,3=0,7 .

Тогда
$$13\cdot 0, 3-0, 7 \le m_0 \le 13\cdot 0, 3+0, 3$$
 , $3, 2 \le m_0 \le 4, 2$, отсюда следует, что $m_0 = 4$.

Найдем вероятность того, что из 13 купленных билетов будет 4 выигрышных.

$$P_{13}(4) = C_{13}^4 \cdot p^4 \cdot q^9 = C_{13}^4 \cdot 0, 3^4 \cdot 0, 7^9 = 715 \cdot 0,0081 \cdot 0,0404 = 0,234.$$

Задание 8. Вероятность наступления события в каждом из 100 независимых испытаний равна 0,75. Определить вероятность того, что число m наступления события удовлетворяет неравенству: **a)** $70 \le m \le 95$; **б)** $80 \le m$; **в)** $m \le 75$.

Решение.

Если необходимо найти вероятность того, что число наступлений события A заключено в каких-то границах, то в этом случае используют теорему Муавра-Лапласа.

Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, а число испытаний достаточно велико, то вероятность того, что событие A наступит в n независимых испытаний от m_1 , до m_2 раз выражается формулой:

$$P_n(m_1 \le m \le m_2) \approx \Phi(x_2) - \Phi(x_1),$$

где
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$$
, $x_1 = \frac{m_1 - np}{\sqrt{npq}}$, $x_2 = \frac{m_2 - np}{\sqrt{npq}}$.

Функция Лапласа $\Phi(x)$ -нечетная, ее значения приведены в приложении 2. Для значений x>5 полагают $\Phi(x)=0,5$.

а) По условию n=100, $m_1=70$, $m_2=95$, p=0,75, q=1-p=0,25.

Искомую вероятность вычислим по формуле

$$P_{100}(70 \le m \le 95) \approx \Phi(x_2) - \Phi(x_1).$$

Имеем:

$$x_1 = \frac{70 - 100 \cdot 0,75}{\sqrt{100 \cdot 0,75 \cdot 0,25}} \approx -1,15, \quad x_2 = \frac{95 - 100 \cdot 0,75}{\sqrt{100 \cdot 0,75 \cdot 0,25}} \approx 4,62.$$

Из приложения 2 находим

$$\Phi(4,62) = 0,5000, \Phi(-1,15) = -\Phi(1,15) = -0,3749.$$

Следовательно,

$$P_{100}(70 \le m \le 95) \approx \Phi(4,62) - \Phi(-1,15) = 0,5000 + 0,3749 = 0,8749$$
.

б) По условию n=100 , $m_1=80$, $m_2=100$, p=0,75 , q=0,25 . Найдем x_1 и x_2 .

$$x_1 = \frac{80 - 100 \cdot 0,75}{\sqrt{100 \cdot 0,75 \cdot 0,25}} \approx 1,15, \quad x_2 = \frac{100 - 100 \cdot 0,75}{\sqrt{100 \cdot 0,75 \cdot 0,25}} \approx 5,77.$$

Таким образом, искомая вероятность:

$$P_{100}(80 \le m \le 100) \approx \Phi(5,77) - \Phi(1,15) = 0,5000 - 0,3749 = 0,1251.$$

в) По интегральной формуле Муавра-Лапласа

$$P_{100}(0 \le m \le 75) \approx \Phi(x_2) - \Phi(x_1).$$

Вычислим x_1 и x_2 .

$$x_1 = \frac{0 - 100 \cdot 0,75}{\sqrt{100 \cdot 0,75 \cdot 0,25}} \approx -17,32, \qquad x_2 = \frac{75 - 100 \cdot 0,75}{\sqrt{100 \cdot 0,75 \cdot 0,25}} = 0.$$

Тогда,

$$P_{100}(0 \le m \le 75) \approx \Phi(0) - \Phi(-17,32) = \Phi(0) + \Phi(17,32) = 0.5.$$

Задание 9. Вероятность положительного результаты при химическом анализе равно 0.8. СВ X-число положительных результатов химического анализа среди пяти проведенных. Для данной случайной величины X:

- **a)** найти множество возможных значений $x_i (i = \overline{1,n});$
- **б)** вычислить $P(X = x_i)$;
- в) записать ряд ее распределения;
- г) вычислить математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение $\sigma(X)$;
- д) найти функцию распределения.

Решение.

а) $\operatorname{CB} X$ может принимать следующие значения:

$$x_1 = 0$$
, $x_2 = 1$, $x_3 = 2$, $x_4 = 3$, $x_5 = 4$, $x_6 = 5$.

б) Найдем для этих значений случайной величины соответствующие вероятности. Воспользуемся формулой Бернулли:

$$P_n(m) = C_n^m p^m q^{n-m}.$$

По условию задачи n = 5, p = 0.8, q = 1 - p = 0.2.

Найдем p_1 -вероятность того, что среди 5 независимо проведенных химических анализов положительного результата не будет, то есть:

$$p_1 = P_5(0) = C_5^0 \cdot 0.8^0 \cdot 0.2^5 = 0.00032.$$

Вычислим p_2 -вероятность того, что среди 5 независимо проведенных химических анализов будет один положительный результат.

$$p_2 = P_5(1) = C_5^1 \cdot 0.8^1 \cdot 0.2^4 = 0.0064$$
.

Аналогично находим остальные вероятности:

$$p_3 = P_5(2) = C_5^2 \cdot 0.8^2 \cdot 0.2^3 = 0.0512,$$

$$p_4 = P_5(3) = C_5^3 \cdot 0.8^3 \cdot 0.2^3 = 0.2048,$$

$$p_5 = P_5(4) = C_5^4 \cdot 0.8^4 \cdot 0.2^1 = 0.4096,$$

$$p_6 = P_5(5) = C_5^5 \cdot 0.8^5 \cdot 0.2^0 = 0.32768.$$

в) Множество всех возможных значений дискретной случайной величины с их вероятностями называется законом распределения этой случайной величины. Запишем закон распределения $CB\ X$ в виде таблицы:

X	0	1	2	3	4	5
P	0,00032	0,0064	0,0512	0,2048	0,4096	0,32768

Сумма вероятностей всех значений случайной величины должна быть равна единице. Проверим это:

$$0,00032 + 0,0064 + 0,0512 + 0,2048 + 0,4096 + 0,32768 = 1.$$

Следовательно, закон распределения дискретной случайной величины составлен верно.

г) Математическое ожидание дискретной случайной величины равно сумме произведений ее значений на соответствующие вероятности. Имеем,

$$M(X) = \sum_{i} x_{i} \cdot p_{i} = x_{1} \cdot p_{1} + x_{2} \cdot p_{2} + x_{3} \cdot p_{3} + x_{4} \cdot p_{4} + x_{5} \cdot p_{5} + x_{6} \cdot p_{6} =$$

$$= 0 \cdot 0,00032 + 1 \cdot 0,0064 + 2 \cdot 0,0512 + 3 \cdot 0,2048 + 4 \cdot 0,4096 + 5 \cdot 0,32768 = 4.$$

Дисперсию вычислим по формуле: $\mathcal{J}(X) = M(X^2) - M^2(X)$, то есть дисперсия равна математическому ожиданию квадрата дискретной случайной величины без квадрата ее математического ожидания.

Найдем математическое ожидание квадрата ДСВ.

$$\begin{split} M\left(X^2\right) &= \sum_i x_i^2 \cdot p_i = x_1^2 \cdot p_1 + x_2^2 \cdot p_2 + x_3^2 \cdot p_3 + x_4^2 \cdot p_4 + x_5^2 \cdot p_5 + x_6^2 p_6 = \\ &= 0^2 \cdot 0,00032 + 1^2 \cdot 0,0064 + 2^2 \cdot 0,0512 + 3^2 \cdot 0,2048 + 4^2 \cdot 0,4096 + 5^2 \cdot 0,32768 = 16,8 \\ &\quad \text{Тогда, } \mathcal{J}\left(X\right) = M\left(X^2\right) - M^2\left(X\right) = 16,8 - 4^2 = 0,8 \,. \end{split}$$

Средним квадратическим отклонением $\sigma(X)$ случайной величины X называется арифметическое значение квадратного корня из ее дисперсии $\mathcal{L}(X)$.

$$\sigma(X) = \sqrt{\mathcal{J}(X)} = \sqrt{0.8} \approx 0.894.$$

- д) Наидем функцию распределения в таком виде:
- 1. если $x \le 0$, то $F(x) = P(X < x) = P(-\infty < X < x) = 0$, так как на интервале $(-\infty, x)$ не содержится возможных значений X;

2. если
$$0 < x \le 1$$
, то $F(x) = P(X < x) = P(-\infty < X < x) = P(X = 0) = 0,00032$;

3. если
$$1 < x \le 2$$
 , то
$$F(x) = P(X < x) = P(-\infty < X < x) = P(X = 0) + P(X = 1) = 0,00032 + 0,0064 = 0,00672$$

4. если
$$2 < x \le 3$$
, то $F(x) = P(X < x) = P(-\infty < X < x) = P(X = 0) + P(X = 1) + P(X = 2) = 0,00672 + 0,0512 = 0,05792$

5. если
$$3 < x \le 4$$
, то
$$F\left(x\right) = P\left(X < x\right) = P\left(-\infty < X < x\right) = P\left(X = 0\right) + P\left(X = 1\right) + P\left(X = 2\right) + P\left(X = 3\right) = 0,05792 + 0,2048 = 0,26272$$

- 6. если $4 < x \le 5$, то $F(x) = P(X < x) = P(-\infty < X < x) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0,26272 + 0,4096 = 0,67232$
- 7. если x > 5 , то $F(x) = P(X < x) = P(-\infty < X < x) = 1$, т.е. при x > 5 событие X < x достоверно.

Или,
$$F(x) = P(X < x) = P(-\infty < X < x) = 0,67232 + 0,32768 = 1.$$

Итак,
$$F(x) = \begin{cases} 0, & npu \quad x \le 0 \\ 0,00032 & npu \quad 0 < x \le 1 \\ 0,00672 & npu \quad 1 < x \le 2 \\ 0,05792 & npu \quad 2 < x \le 3 \\ 0,26272 & npu \quad 3 < x \le 4 \\ 0,67232 & npu \quad 4 < x \le 5 \\ 1 & npu \quad x > 5 \end{cases}$$

Построим график функции распределения F(x).

Задание 10. Дана функция распределения F(x) CB X. Найти плотность распределения вероятности f(x), математическое ожидание M(X), дисперсию $\mathcal{L}(X)$ и вероятность попадания CB X на отрезок [1,2]. Построить графики функций F(x) и f(x).

$$F(x) = \begin{cases} 0, & ecnu \quad x < 0 \\ \frac{1}{33} (2x^2 + 5x), & ecnu \quad 0 \le x \le 3 \\ 1, & ecnu \quad x > 3 \end{cases}$$

Решение.

Плотностью распределения вероятностей f(x) непрерывной случайной величины называется производная ее функции распределения F(x):

$$f(x) = F'(x).$$

Плотность распределения вероятностей данной случайной величины имеет вид:

$$f(x) = \begin{cases} 0, & ecnu \quad x < 0 \\ \frac{4}{33}x + \frac{5}{33}, & ecnu \quad 0 \le x \le 3 \\ 0, & ecnu \quad x > 3 \end{cases}$$

Математическое ожидание M(X) непрерывной случайной величины X с известной плотностью вероятностей f(x) есть величина интеграла:

$$M(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

Найдем математическое ожидание заданной случайной величины:

$$M(X) = \int_{-\infty}^{0} x \cdot 0 dx + \int_{0}^{3} x \left(\frac{4}{33}x + \frac{5}{33}\right) dx + \int_{3}^{+\infty} x \cdot 0 dx =$$

$$= \int_{0}^{3} \left(\frac{4}{33}x^{2} + \frac{5}{33}x\right) dx = \frac{4}{33} \frac{x^{3}}{3} \Big|_{0}^{3} + \frac{5}{33} \frac{x^{2}}{2} \Big|_{0}^{3} = \frac{12}{11} + \frac{15}{22} = \frac{39}{22} \approx 1,77.$$

Дисперсия непрерывной случайной величины X равна интегралу

$$\int_{0}^{+\infty} (x - M(X))^{2} f(x) dx.$$

при условии, что этот интеграл сходится. Для нахождения дисперсии воспользуемся другой формулой:

$$\mathcal{J}(X) = M(X^2) - M^2(X),$$

где
$$M(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx$$
.

Имеем,

$$M(X^{2}) = \int_{-\infty}^{0} x^{2} \cdot 0 dx + \int_{0}^{3} x^{2} \left(\frac{4}{33}x + \frac{5}{33}\right) dx + \int_{3}^{+\infty} x^{2} \cdot 0 dx =$$

$$= \int_{0}^{3} \left(\frac{4}{33} x^{3} + \frac{5}{33} x^{2} \right) dx = \frac{4}{33} \cdot \frac{x^{4}}{4} \Big|_{0}^{3} + \frac{5}{33} \cdot \frac{x^{3}}{3} \Big|_{0}^{3} = \frac{27}{11} + \frac{15}{11} = \frac{42}{11}.$$

Тогда дисперсия

$$\mathcal{I}(X) = \frac{42}{11} - \left(\frac{39}{22}\right)^2 = \frac{327}{484} \approx 0,676.$$

Найдем вероятность попадания CBX на отрезок [1,2].

$$P(1 \le x \le 2) = F(2) - F(1) = \frac{1}{33} (2 \cdot 2^2 + 5 \cdot 2) - \frac{1}{33} (2 \cdot 1^2 + 5 \cdot 1) = \frac{18}{33} - \frac{7}{33} = \frac{11}{33} = \frac{1}{3}.$$

Построим графики функций F(x) и f(x):

Аттестационная работа "Математическая статистика"

Задание 1. В результате статистических наблюдений некоторой совокупности относительно количественного признака X получены выборочные данные. Требуется:

- 1. составить дискретный и интервальный ряды распределения частот и относительных частот, построить гистограмму и полигон относительных частот выборки;
- 2. найти эмпирическую функцию $F^*(x)$ распределение признака X и построить ее график;
- 3. найти числовые характеристики выборки $\overline{x_e}$, \mathcal{A}_e , σ_e , S^2 , S;
- 4. найти доверительные интервалы для оценки неизвестных математического ожидания и среднего квадратического отклонения с надежностью $\gamma=0,95\,$ в предположении, что Xимеет нормальное распределение;
- 5. с помощью критерия согласия Пирсона при уровне значимости $\alpha = 0,05\,$ проверить гипотезу H_0 : генеральная совокупность имеет нормальное распределение;
- 6. с помощью критерия Колмогорова при уровне значимости $\alpha = 0,05$ проверить ту же нулевую гипотезу H_0 ;
- 7. записать аналитическое выражение функции плотности вероятностей и интегральной функции распределения для подтвердившегося нормального распределения, используя оценки, полученные в пункте 3.

76	28	151	91	60	204	177	102	128	217
120	66	207	126	124	152	27	221	131	51
241	77	250	134	123	147	184	195	47	160
159	74	169	178	79	129	250	223	182	96
135	199	56	25	82	116	44	229	145	203
88	209	146	224	239	103	201	245	130	163
71	165	176	194	78	154	99	78	127	69
171	173	31	181	117	84	73	161	240	149
247	107	140	53	205	155	29	132	185	179
180	128	42	114	93	191	174	210	133	226

Вариант 2

157,2	137,1	136,0	131,1	142,1	152,0	150,2	125,7	146,6	141,6
138,5	143,4	147,3	144,2	158,3	146,0	140,8	135,8	150,9	156,4
145,1	122,4	139,1	155,5	150,2	146,2	159,6	146,2	164,1	140,5
156,4	141,6	134,4	149,2	145,3	128,4	150,6	133,7	142,1	136,9
127,2	138,2	160,8	155,2	121,8	150,5	144,5	150,5	141,4	128,0
136,2	145,9	162,5	136,9	142,9	146,4	153,2	161,4	150,8	141,6
149,8	154,1	148,4	144,8	150,8	129,3	145,3	141,2	146,4	135,5
134,8	147,1	137,5	159,7	142,7	145,7	150,3	123,5	139,6	153,6
138,4	166,8	148,8	152,5	151,6	133,4	145,6	144,5	144,4	140,8
152,1	137,4	132,1	149,7	166,2	151,1	145,1	139,5	130,1	145,6

2,85	5,92	3,06	2,47	6,28	3,86	2,19	5,81	3,88	3,01
3,91	3,11	1,46	4,67	3,95	5,76	3,08	3,99	6,38	1,51
2,34	4,19	5,72	4,14	3,03	4,08	6,47	4,05	5,96	4,01
4,23	2,16	6,55	3,14	4,26	4,31	1,48	4,45	2,71	5,69
6,60	4,69	2,93	7,68	0,65	6,68	3,18	5,64	4,56	3,36
2,64	3,23	6,75	4,57	5,61	3,29	7,08	2,91	4,59	2,59
4,61	1,98	6,21	3,39	4,62	2,28	4,64	3,45	5,56	4,07
3,58	4,73	3,61	2,24	4,31	3,81	5,52	4,26	4,17	7,49
1,29	4,45	4,78	5,01	7,85	5,49	2,01	4,89	0,98	4,84
2,26	5,47	4,63	4,98	5,42	4,60	5,10	4,96	4,63	5,05

76,23	45,29	92,41	35,48	56,81	45,67	54,01	45,88	25,56	65,91
48,11	6,32	26,31	74,27	27,82	88,04	36,12	56,97	4,97	46,31
55,78	46,85	57,31	37,28	66,41	28,53	72,48	29,34	38,34	62,35
46,82	39,47	81,04	54,06	48,64	61,22	40,56	30,11	78,45	48,53
86,24	47,51	66,92	42,74	4,83	47,83	64,02	57,84	41,63	53,75
65,21	43,82	58,31	33,71	44,95	68,91	32,84	45,21	84,47	31,27
49,29	83,09	55,11	94,75	49,85	58,86	55,30	69,44	50,41	35,07
67,24	41,78	50,56	34,05	37,91	71,25	17,84	14,51	18,23	51,93
50,89	9,41	16,31	51,33	70,58	15,91	51,84	59,31	25,01	60,31
85,52	59,77	75,26	52,22	95,73	19,04	60,85	22,91	53,84	15,02

Вариант 5

1,58	1,95	0,89	1,76	1,54	2,18	1,13	2,59	1,91	1,60
1,19	1,70	2,58	1,31	2,54	1,90	2,20	1,49	2,69	1,51
1,77	1,93	1,48	2,21	1,64	2,92	1,25	1,97	0,90	1,78
1,12	2,48	1,38	1,79	1,75	0,67	2,22	1,62	1,82	1,09
1,61	1,71	0,95	2,23	1,46	1,99	2,24	1,72	2,03	1,25
1,28	2,04	1,83	1,69	1,81	1,22	2,05	1,07	1,74	1,88
1,80	0,69	2,07	1,29	2,27	2,75	1,41	2,08	2,30	2,15
1,34	1,84	1,73	2,31	1,86	1,40	2,46	0,73	2,33	1,85
1,02	2,13	1,66	2,84	1,16	2,34	1,44	2,89	2,09	2,90
1,87	1,43	2,11	0,84	1,91	2,44	2,10	1,75	2,60	1,68

19,3	44,5	49,9	26,9	50,2	51,1	18,6	72,7	35,4	25,4
42,7	17,5	51,7	49,3	26,2	47,1	71,4	27,1	75,7	43,2
25,5	27,2	80,4	50,4	70,2	14,9	52,4	62,3	41,7	49,5
40,6	14,5	62,8	34,5	53,4	26,1	69,3	52,5	27,3	80,3
25,3	43,1	27,4	80,1	68,4	63,3	13,4	55,4	39,5	33,1
38,4	19,7	63,8	40,4	80,8	56,4	66,1	27,5	79,1	24,6
28,6	47,9	78,4	57,4	66,5	37,3	23,4	67,6	11,1	64,3
22,7	64,8	36,2	58,7	10,8	47,7	58,4	29,2	46,7	77,2
51,9	31,3	44,7	66,3	20,1	65,3	45,5	76,3	67,8	35,1
66,9	18,9	42,9	50,7	34,9	43,5	32,5	48,4	53,1	65,8

56,5	47,3	23,1	38,6	92,5	50,9	74,9	65,7	47,5	83,9
11,8	70,1	57,1	39,9	54,7	70,9	47,4	28,1	39,1	76,2
32,3	92,1	20,7	48,6	87,1	66,3	45,8	41,4	56,9	22,6
45,8	58,4	53,4	51,4	11,6	30,9	31,4	37,4	65,8	19,3
45,3	74,4	21,2	25,7	56,7	20,3	48,3	60,1	46,2	64,1
15,1	47,7	12,7	92,6	29,5	52,0	60,2	32,1	74,5	54,2
36,1	47,2	26,1	65,3	42,0	50,1	72,1	56,4	25,1	75,1
83,8	38,7	81,2	65,1	87,4	35,3	92,4	85,6	83,5	20,5
76,3	69,4	41,6	35,9	29,7	80,9	49,9	59,5	83,4	76,5
24,4	55,9	74,2	27,3	76,7	29,9	69,1	30,1	65,4	18,4

Вариант 8

15,2	23,1	27,1	18,6	25,1	27,5	16,0	28,8	22,7	18,8
24,9	26,3	21,2	28,0	25,5	27,7	20,9	31,9	16,8	29,1
26,8	17,4	31,5	21,4	24,8	17,2	30,8	23,7	29,7	21,1
20,4	24,5	26,0	28,7	20,0	33,0	27,9	24,5	20,6	32,1
26,9	19,7	21,5	19,8	16,8	21,7	26,4	23,2	22,9	26,6
25,3	25,8	16,6	23,6	15,0	22,3	24,0	22,4	32,5	19,1
24,7	29,8	18,2	29,6	23,4	18,1	16,9	24,2	24,1	32,2
24,4	18,4	22,1	30,1	22,0	17,8	28,0	25,7	30,9	22,5
30,7	22,5	30,0	27,3	25,4	26,2	20,7	28,1	19,3	28,9
20,3	30,4	24,3	31,6	30,0	22,6	29,2	32,7	26,7	15,8

19,1	23,5	19,6	27,5	33,3	31,2	27,7	21,4	27,3	20,5
21,9	20,7	15,2	27,3	23,0	31,7	18,9	23,7	33,1	27,9
23,9	18,5	24,1	28,1	22,0	16,4	30,8	27,1	19,9	30,4
20,5	30,9	31,9	26,9	19,8	28,3	22,7	15,6	22,4	18,3
28,5	16,2	22,5	18,1	28,4	33,9	30,8	19,6	26,7	32,5
21,1	24,3	26,5	15,4	24,5	26,4	28,7	17,9	30,6	23,1
32,1	23,2	17,7	28,9	22,9	20,1	30,4	26,3	16,0	25,4
26,1	15,8	30,2	19,4	25,1	25,3	17,5	24,7	21,7	29,1
21,2	21,8	17,3	33,5	29,3	24,9	30,0	15,0	25,2	25,8
33,7	24,5	25,6	23,3	29,8	17,2	25,1	22,4	29,6	19,3

81	106	135	170	206	60	181	178	154	103
78	176	31	204	145	85	229	47	108	234
110	207	241	168	133	68	174	143	89	182
203	153	172	93	48	228	255	134	112	58
144	235	114	77	208	183	59	170	95	154
104	202	39	164	247	226	100	67	121	193
123	91	164	57	209	30	185	162	250	225
201	160	239	211	131	142	101	153	76	125
137	54	127	87	66	190	158	241	33	221
100	195	156	146	231	220	129	83	151	56

Вариант 11

17,1	21,4	15,9	19,1	22,4	20,7	17,9	18,6	21,8	16,1
19,1	20,5	14,2	16,9	17,8	18,1	19,1	15,8	18,8	17,2
16,2	17,3	22,5	19,9	21,1	15,1	17,7	19,8	14,9	20,5
17,5	19,2	18,5	15,7	14,0	18,6	21,2	16,8	19,3	17,8
18,8	14,3	17,1	19,5	16,3	20,3	17,9	23,0	17,2	15,2
15,6	17,4	21,3	22,1	20,1	14,5	19,3	18,4	16,7	18,2
16,4	18,7	14,3	18,2	19,1	15,3	21,5	17,2	22,6	20,4
22,8	17,5	20,2	15,5	21,6	18,1	20,5	14,0	18,9	16,5
20,8	16,6	18,3	21,7	17,4	23,0	21,1	19,8	15,4	18,1
18,9	14,7	19,5	20,9	15,8	20,2	21,8	18,2	21,2	20,1

16,8	17,9	21,4	14,1	19,1	18,1	15,1	18,2	20,3	16,7
19,5	18,5	22,5	18,4	16,2	18,3	19,1	21,4	14,5	16,1
21,5	14,9	18,6	20,4	15,2	18,5	17,1	22,4	20,8	19,8
17,2	19,7	16,3	18,7	14,4	18,8	19,5	21,6	15,3	17,3
22,8	17,4	22,2	16,5	21,7	15,4	21,3	14,3	20,5	16,4
20,6	15,5	19,4	17,5	20,9	23,0	18,9	15,9	18,2	20,7
17,9	21,8	14,2	21,2	16,1	18,4	17,5	19,3	22,7	19,6
22,1	17,6	16,7	20,4	15,7	18,1	16,6	18,3	15,5	17,7
19,2	14,8	19,7	17,7	16,5	17,8	18,5	14,0	21,9	16,9
15,8	20,8	17,1	20,1	22,6	18,9	15,6	21,1	20,2	15,1

189	207	213	208	186	210	198	219	231	227
202	211	220	236	227	220	210	183	213	190
197	227	187	226	213	191	209	196	202	235
211	214	220	195	182	228	202	207	192	226
193	203	232	202	215	195	220	233	214	185
234	215	196	220	203	236	225	221	193	215
204	184	217	193	216	205	197	203	229	204
225	216	233	223	208	204	207	182	216	191
210	190	207	205	232	222	198	217	211	201
185	217	225	201	208	211	189	205	207	199

Вариант 14

30,2	51,9	43,1	58,9	34,1	55,2	47,9	43,7	53,2	34,9
47,8	65,7	37,8	68,6	48,4	67,5	27,3	66,1	52,0	55,6
54,1	26,9	53,6	42,5	59,3	44,8	52,8	42,3	55,9	48,1
44,5	69,8	47,3	35,6	70,1	39,5	70,3	33,7	51,8	56,1
28,4	48,7	41,9	58,1	20,4	56,3	46,5	41,8	59,5	38,1
41,4	70,4	31,4	52,5	45,2	52,3	40,2	60,4	27,6	57,4
29,3	53,8	46,3	40,1	50,3	48,9	35,8	61,7	49,2	45,8
45,3	71,5	35,1	57,8	28,1	57,6	49,6	45,5	36,2	63,2
61,9	25,1	65,1	49,7	62,1	46,1	39,9	62,4	50,1	33,1
33,3	49,8	39,8	45,9	37,3	78,0	64,9	28,8	62,5	58,7

88	72	100	60	116	74	36	143	114	70
56	75	30	76	89	53	117	90	135	103
35	128	71	86	43	76	61	113	34	83
62	84	50	69	120	91	102	47	119	99
33	76	91	37	85	17	85	63	121	74
4Ь	85	63	104	77	92	54	78	42	105
85	79	49	80	93	32	106	81	64	79
73	19	80	65	107	123	51	94	80	108
52	83	124	81	96	82	109	20	95	68
66	41	82	98	111	67	125	97	112	58

9,4	7,9	0,3	6,8	4,2	11,9	7,8	1,7	5,1	8,8
8,7	11,1	7,7	1,8	5,5	10,5	4,3	3,8	1,4	11,2
1,1	7,3	3,7	4,4	11,8	8,6	1,9	5,6	10,1	8,4
10,0	11,6	5,2	2,1	5,7	4,8	7,4	0,8	4,7	3,6
8,3	7,6	0,7	7,3	3,4	11,4	5,7	9,9	2,2	7,2
2,3	4,7	9,7	11,3	5,8	4,9	3,3	0,5	7,5	4,6
5,0	0,4	8,9	7,1	9,6	11,5	5,9	9,0	5,3	2,4
9,5	5,9	1,0	9,1	2,5	6,0	8,2	3,2	10,9	6,1
10,2	2,6	4,5	3,1	6,2	11,7	6,3	0,2	7,0	9,2
1,2	6,4	11,9	6,9	4,0	6,5	2,9	6,2	4,4	10,3

Вариант 17

1,6	4,4	10,9	6,4	4,0	2,8	5,2	1,2	7,6	3,4
2,9	5,3	1,7	7,7	6,9	10,1	5,4	4,1	8,8	6,5
6,6	4,2	5,5	0,5	8,9	4,5	1,8	5,6	7,8	3,0
1,9	10,2	7,9	2,5	5,7	3,1	6,7	4,3	0,6	9,0
6,8	3,2	4,4	9,1	10,3	6,0	7,9	6,9	8,0	2,0
7,0	10,7	8,1	2,1	5,8	6,4	0,3	4,5	9,2	3,3
7,6	9,3	3,4	4,6	5,0	3,8	5,9	8,2	2,2	7,1
2,3	0,8	7,2	8,3	11,1	6,5	3,5	9,4	10,8	4,7
4,8	6,1	3,6	9,5	8,4	2,4	6,2	7,3	5,7	0,9
7,4	8,5	5,8	1,1	5,9	4,9	3,7	9,6	2,6	6,1

20	26	32	34	26	28	22	30	17	24
30	28	18	22	24	26	34	23	22	20
34	24	28	20	32	17	22	24	26	30
30	22	26	35	28	24	30	32	28	18
20	30	17	24	32	28	22	26	24	30
34	26	24	28	22	30	35	32	20	17
28	22	36	30	20	26	28	23	24	32
20	26	30	24	32	17	22	28	35	26
28	35	32	22	26	24	26	24	30	24
18	24	26	28	35	30	26	22	26	28

57	46	33	49	29	50	38	41	27	34
37	49	51	26	55	42	59	43	46	30
31	43	58	41	35	47	33	45	49	37
47	34	54	39	60	49	25	50	31	53
38	41	30	51	37	55	47	43	35	42
35	46	27	45	41	34	50	29	51	39
42	59	43	31	38	58	54	37	26	43
29	42	33	41	24	39	53	45	33	51
45	25	54	50	37	30	41	60	42	46
38	53	34	47	35	49	57	39	55	31

Вариант 20

37	49	43	31	44	38	40	31	28	43
32	44	47	29	51	25	43	38	41	32
38	24	49	40	32	34	31	28	37	46
41	35	43	25	37	46	38	24	41	50
38	29	41	32	34	49	44	37	31	47
50	34	25	37	40	32	35	28	44	43
46	37	41	35	29	43	38	31	26	34
49	32	46	26	38	35	40	51	37	46
37	25	40	34	24	44	32	28	34	38
44	34	29	47	37	49	43	35	47	50

70	95	75	85	60	77	55	63	80	67
90	78	57	76	84	82	75	68	73	62
62	81	77	72	97	68	85	56	92	71
73	78	98	63	83	85	70	90	66	91
86	68	55	93	71	96	77	81	86	72
82	62	70	78	67	87	91	99	78	87
91	58	81	97	75	83	71	66	61	76
73	85	65	90	86	61	54	75	78	93
87	58	72	92	66	98	65	81	76	63
95	83	65	57	80	87	61	92	56	71

57,3	75,1	78,1	69,3	60,1	77,3	66,1	69,5	72,1	68,7
81,1	69,4	63,1	67,4	77,1	82,6	64,8	72,5	62,5	80,7
77,6	65,8	78,3	57,7	80,7	64,4	72,8	67,3	83,1	70,6
75,3	58,0	60,7	81,3	67,1	69,6	82,4	62,3	66,9	80,6
62,7	73,8	68,9	83,8	57,0	72,6	65,6	78,7	59,5	70,0
73,5	58,1	64,0	83,9	84,0	63,5	74,1	77,7	68,5	80,5
66,3	73,0	79,1	71,1	80,4	62,1	66,7	83,7	76,8	59,3
71,3	63,7	71,2	78,9	65,2	77,9	74,9	69,1	70,8	74,8
71,6	72,9	61,9	71,5	75,4	71,7	59,9	74,3	76,1	70,9
61,3	71,4	71,8	65,0	67,8	75,5	71,9	64,9	74,7	62,9

Вариант 23

181	141	162	103	136	124	41	117	69	153
101	24	67	154	172	ПО	62	59	197	121
135	58	199	159	81	39	142	87	179	85
171	107	125	192	163	200	133	150	178	98
148	56	113	169	73	138	104	31	90	109
127	116	190	20	111	94	157	119	53	7Ь
66	132	166	91	44	115	72	26	128	149
46	75	105	137	82	64	186	96	176	47
156	33	188	58	112	139	86	174	106	77
152	130	43	108	119	129	37	71	96	114

32	105	48	80	144	128	64	112	18	81
66	129	113	17	94	78	90	51	104	34
110	149	36	103	82	53	93	130	68	150
114	84	55	131	70	38	102	77	16	135
41	19	142	61	85	159	115	57	72	101
56	100	86	146	73	40	141	25	87	126
151	71	94	15	125	76	54	99	39	140
17	124	52	98	139	37	147	88	69	109
35	158	67	30	93	123	50	138	21	97
96	121	49	137	89	145	91	65	92	33

2,1	2,3	1,5	3,1	2,7	1,9	2,4	0,9	2,5	1,1
1,3	2,9	2,3	3,9	2,4	3,6	1,6	3,2	2,9	2,0
2,1	3,3	0,8	3,5	1,7	2,6	4,1	2,8	1,2	2,5
1,1	2,4	1,5	3,2	2,7	1,5	3,7	1,9	3,1	4,0
4,1	2,9	2,0	2,0	1,1	0,7	3,3	2,5	1,6	2,4
2,1	3,2	0,9	2,8	4,2	2,8	1,9	1,2	1,7	3,5
2,7	3,9	2,4	1,7	3,6	2,5	0,8	3,1	2,1	1,3
3,2	1,6	0,7	2,6	1,3	2,0	3,7	2,9	4,0	3,1
2,8	4,1	1,9	3,6	3,3	2,9	0,6	1,5	1,2	2,4
1,1	3,5	1,6	2,4	3,9	2,7	2,5	1,9	2,6	3,2

Вариант 26

1,66	2,21	1,21	1,46	1,16	1,81	0,86	1,74	2,08	1,38
2,27	0,81	2,39	2,19	2,25	1,67	1,84	1,37	2,12	2,37
1,15	2,17	1,45	1,75	1,14	1,94	1,53	0,83	1,68	1,35
2,39	1,63	1,86	1,24	1,73	1,07	2,10	1,13	1,91	1,31
1,78	2,09	1,54	1,79	1,08	1,42	0,80	1,96	1,19	0,85
1,88	1,27	0,84	2,60	1,44	1,77	2,45	1,10	2,16	1,59
1,56	2,30	2,48	0,99	1,18	2,11	1,64	2,28	1,29	1,93
2,15	1,72	1,83	1,47	1,87	1,17	2,29	1,90	1,71	2,55
2,31	1,39	1,85	2,38	1,65	2,51	1,48	1,28	2,18	1,49
2,14	1,76	1,51	1,82	0,91	2,51	2,34	2,59	1,69	2,13

0,76	0,82	0,70	0,86	0,78	0,96	0,68	0,83	0,92	0,86
0,86	0,84	0,66	0,92	0,76	0,95	0,84	1,91	0,78	0,70
0,78	0,70	0,82	0,99	0,83	0,86	0,67	0,91	0,75	0,86
0,83	0,75	0,95	0,79	0,65	0,84	0,78	0,88	0,70	0,95
0,87	0,71	0,92	1,00	0,75	0,87	0,80	0,79	0,66	0,90
0,79	0,82	0,65	0,83	0,88	0,96	0,75	0,91	0,71	0,87
0,76	0,90	0,71	0,87	0,74	0,94	0,80	1,00	0,95	0,79
0,96	0,98	0,84	0,79	0,91	0,71	0,65	0,90	0,88	0,74
0,74	0,67	0,94	0,72	1,01	0,82	0,80	0,83	0,99	0,83
0,88	0,80	0,72	0,91	0,84	0,74	0,94	0,72	0,83	0,87

0,86	1,04	1,45	1,31	1,22	1,09	0,73	1,11	0,95	0,84
0,96	0,78	1,23	1,13	1,04	1,44	1,32	1,29	0,68	0,86
1,33	1,08	0,87	0,67	1,28	0,97	1,14	0,83	1,33	1,40
1,24	1,43	0,98	1,34	0,81	0,88	1,10	0,70	1,15	1,23
1,34	1,09	0,80	1,16	1,24	0,75	0,99	1,41	0,88	0,79
1,36	1,25	0,89	1,26	1,42	1,35	0,80	1,17	0,90	1,00
1,11	0,69	1,18	0,82	1,01	0,90	1,36	1,25	0,67	0,91
1,37	1,02	0,92	1,27	1,19	1,38	1,46	0,93	1,27	0,83
1,04	1,11	1,47	1,07	0,72	0,93	1,26	0,77	1,20	1,28
0,77	1,10	0,95	1,05	1,08	1,11	1,10	1,48	1,07	0,92

Вариант 29

0,26	0,34	0,28	0,36	0,30	0,38	0,41	0,038	0,30	0,28
0,28	0,30	0,34	0,38	0,40	0,36	0,34	0,23	0,32	0,26
0,34	0,32	0,24	0,36	0,32	0,26	0,30	0,28	0,38	0,34
0,38	0,41	0,28	0,26	0,30	0,034	0,032	0,40	0,36	0,32
0,30	0,36	0,34	0,32	0,23	0,32	0,28	0,32	0,26	0,38
0,026	0,32	0,28	0,40	0,38	0,30	0,32	0,24	0,036	0,30
0,024	0,032	0,30	0,36	0,28	0,41	0,32	0,38	0,34	0,26
0,41	0,34	0,23	0,38	0,26	0,30	0,28	0,36	0,40	0,28
0,30	0,26	0,34	0,28	0,24	0,36	0,32	0,30	0,38	0,34
0,28	0,34	0,40	0,36	0,30	0,38	0,23	0,34	0,32	0,26

0,53	0,26	0,37	0,56	0,41	0,35	0,31	0,46	0,21	0,54
0,35	0,39	0,43	0,32	0,38	0,23	0,45	0,26	0,37	0,42
0,30	0,41	0,21	0,47	0,26	0,46	0,33	0,38	0,53	0,35
0,049	0,54	0,39	0,34	0,51	0,29	0,46	0,23	0,38	0,43
0,026	0,39	0,33	0,20	0,42	0,50	0,25	0,37	0,41	0,29
0,029	0,38	0,27	0,43	0,35	0,30	0,49	0,55	0,39	0,34
0,022	0,45	0,34	0,55	0,37	0,25	0,33	0,51	0,27	0,45
0,041	0,51	0,27	0,46	0,29	0,38	0,42	0,20	0,39	0,31
0,025	0,47	0,30	0,50	0,23	0,39	0,35	0,49	0,30	0,47
0,034	0,22	0,2	0,31	0,49	0,33	0,56	0,37	0,50	0,25

Задание 2. В результате группировки данных статистического наблюдения над признаками X и Y получена корреляционная таблица. С целью изучения линейной связи между этими признаками требуется:

- 1) найти их числовые характеристики $\overline{x_{_{\! g}}}$, $\overline{y_{_{\! g}}}$, $\sigma_{_{\! x}}$, $\sigma_{_{\! y}}$;
- 2) вычислить выборочный коэффициент корреляции $r_{_{\it g}}$ и оценить его надежность с уровнем значимости $\alpha=0,01$;
- 3) найти уравнения прямых регрессий Y на X и X на Y;
- 4) найти эмпирические и теоретические значения условных средних и рассмотреть отклонения между ними;
- 5) построить корреляционное поле и прямые регрессий.

Вариант 1

X	2,2	3,6	5,0	6,4	7,8	9,2	10,6	12	m_{x}
200	5	3	4	1	1	-	ı	-	12
360	-	7	8	-	-	-	-	-	15
520	ı	-	9	10	14	-	ı	-	33
680	ı	-	ı	8	7	6	ı	-	21
840	ı	-	ı	ı	2	3	2	-	7
1000	-	-	-	-	-	-	6	6	12
m_y	5	10	21	18	23	9	8	6	100

Вариант 2

X	2,3	3,8	5,3	6,8	7,3	8,8	10,3	11,8	$m_{_X}$
210	-	4	3	5	-	-	-	-	12
340	ı	6	7	8	ı	-	-	-	21
470	ı	-	10	11	12	-	-	-	33
600	ı	-	ı	-	5	4	3	-	12
730	ı	-	ı	-	ı	6	8	-	14
860	-	-	-	=	-	-	3	5	8
m_y	-	10	20	25	16	10	14	5	100

X	22,0	22,4	22,8	23,2	23,6	24,0	24,4	24,8	m_x
1,00	3	2	1	-	-	-	-	-	6
1,20	ı	ı	4	5	ı	-	ı	-	9
1,40	-	-	10	7	6	-	-	-	23
1,60	ı	ı	ı	12	9	5	ı	-	26
1,80	ı	ı	ı	ı	7	4	3	-	14
2,00	ı	ı	ı	ı	ı	5	9	8	22
m_y	3	2	15	24	22	14	12	8	100

X	21,0	21,3	21,6	21,9	22,2	22,5	22,8	23,1	m_x
0,90	1	3	2	-	-	-	-	-	6
1,05	-	4	2	3	-	-	-	-	9
1,20	ı	ı	5	7	6	-	ı	ı	18
1,35	ı	ı	ı	6	14	9	ı	ı	29
1,50	ı	ı	ı	-	7	6	7	ı	20
1,65	-	-	-	-	-	6-	7	5	18
m_y	1	7	9	16	27	21	14	5	100

Вариант 5

X	64	72	80	88	96	104	112	120	$m_{_X}$
1,0	6	2	4	-	-	-	-	-	12
1,3	ı	3	8	6	-	-	-	-	17
1,6	ı	-	ı	8	14	5	-	-	27
1,9	-	-	-	7	8	9	-	-	24
2,2	-	-	-	-	4	5	6	-	15
2,5	-	-	-	-	-	1	1	3	5
m_y	6	5	12	21	26	20	7	3	100

Вариант 6

X	56	68	80	92	104	116	128	140	$m_{_X}$
0,9	2	3	5	-	-	-	-	-	10
1,3	1	6	3	5	-	-	ı	ı	14
1,7	I	ı	5	8	15	-	ı	ı	28
2,1	ı	ı	ı	6	9	10	ı	ı	25
2,5	ı	ı	ı	ı	1	6	8	ı	15
2,9	ı	ı	ı	ı	-	3	4	1	8
m_y	2	9	13	19	25	19	12	1	100

X	20	40	60	80	100	120	140	160	$m_{_X}$
1000	2	7	3	-	-	-	ı	-	12
2000	-	6	4	5	-	-	ı	-	15
3000	-	-	8	9	7	-	-	-	24
4000	-	-	-	7	14	5	-	-	26
5000	-	-	-	-	5	7	4	-	16
6000	-	-	-	-	-	-	4	3	7
m_y	2	13	15	21	26	12	8	3	100

X	15	30	45	60	75	90	105	120	m_{x}
750	2	4	2	-	ı	-	ı	-	8
1250	ı	ı	6	7	3	-	ı	-	16
1750	ı	ı	ı	6	13	9	ı	-	28
2250	ı	ı	ı	6	8	9	ı	-	23
2750	ı	ı	ı	-	7	8	1	-	16
3250	ı	ı	ı	-	ı	1	5	3	9
m_y	2	4	8	19	31	27	6	3	100

Вариант 9

X	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	$m_{_X}$
250	3	4	5	-	-	-	-	-	12
450	ı	6	2	8	ı	-	ı	-	16
650	ı	-	ı	5	14	9	ı	-	28
850	-	-	1	6	8	6	-	-	20
1050	ı	-	ı	-	5	7	4	-	16
1250	-	-	-	-	-	-	5	3	8
m_y	3	10	7	19	27	22	9	3	100

Вариант 10

X	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	$m_{_X}$
300	2	3	6	ı	-	-	ı	-	11
400	ı	-	3	6	5	-	ı	-	14
500	-	-	-	4	15	8	-	-	27
600	-	-	-	8	5	10	-	-	23
700	ı	-	ı	ı	7	6	3	-	16
800	ı	-	ı	ı	-	-	6	3	9
m_y	2	3	9	18	32	24	9	3	100

X	160	200	240	280	320	360	400	440	$m_{_X}$
11,6	1	4	5	ı	-	-	ı	ı	10
16,6	-	6	7	2	-	-	ı	ı	15
21,6	-	-	5	8	6	-	-	-	19
26,6	-	-	-	9	13	6	-	-	28
31,6	-	-	-	-	7	8	4	-	19
36,6	-	ı	ı	ı	-	-	6	3	9
m_y	1	10	17	19	26	14	10	3	100

X	110	130	150	170	190	210	230	250	m_x
10	1	3	4	ı	-	-	ı	-	8
13	ı	5	6	5	-	-	ı	-	16
16	ı	ı	4	8	6	-	ı	-	18
19	ı	ı	6	15	9	-	ı	-	30
22	ı	ı	ı	ı	5	6	7	-	18
25	ı	ı	ı	ı	-	1	7	2	10
m_y	1	8	20	28	20	7	14	2	100

Вариант 13

X	16	18	20	22	24	26	28	30	m_{x}
2,3	3	2	4	-	-	-	-	-	9
2,7	ı	5	6	1	ı	-	ı	-	12
3,1	ı	-	6	9	4	-	ı	-	19
3,5	-	-	-	8	16	7	-	-	31
3,9	ı	-	ı	ı	8	6	5	-	19
4,3	-	-	-	-	-	4	5	1	10
m_y	3	7	16	18	28	17	10	1	100

Вариант 14

X	14	17	20	23	26	29	32	35	$m_{_X}$
1,8	2	4	6	-	-	-	-	-	12
2,4	1	2	7	6	-	-	ı	-	15
3,0	I	ı	6	8	5	-	ı	-	19
3,6	ı	ı	ı	8	14	4	ı	-	26
4,2	ı	ı	ı	ı	3	6	8	-	17
4,8	-	-	-	-	-	-	5	6	11
m_y	2	6	19	22	22	10	13	6	100

X	1200	2700	4200	6700	8200	9700	11200	12700	$m_{_X}$
20	4	2	5	-	-	-	-	-	11
520	ı	-	7	5	2	-	ı	ı	14
1020	-	-	-	9	14	6	-	1	29
1520	-	-	-	7	8	60	-	-	21
2020	-	-	-	-	4	5	7	-	16
2520	-	-	-	-		33	2	4	9
m_y	4	2	12	21	28	20	9	4	100

X	800	2200	3600	5000	6400	7800	9200	10800	$m_{_X}$
40	3	5	2	-	-	-	-	-	10
200	1	5	4	5	-	-	ı	1	14
360	ı	-	7	5	15	-	ı	ı	27
520	1	-	1	8	9	4	1	ı	21
680	1	-	1	ı	7	5	4	ı	16
840	ı	-	ı		-	5	4	3	12
m_y	3	10	13	18	31	14	8	3	100

Вариант 17

X	12000	12570	13140	13710	14280	14850	15420	15990	$m_{_X}$
1500	1	6	4	ı	ı	-	ı	ı	11
1600	ı	-	4	7	5	-	ı	ı	16
1700	ı	-	ı	6	15	6	ı	ı	27
1800	-	-	-	8	8	4	-	-	20
1900	-	-	-	-	5	5	6	-	16
2000	ı	-	ı	ı	ı	5	2	3	10
m_y	1	6	8	21	33	20	8	3	100

Вариант 18

X	25200	25350	25500	25650	25800	25950	26100	26250	$m_{_X}$
3150	3	4	2	-	-	-	1	-	9
3200	-	5	7	5	ı	ı	1	ı	17
3250	-	-	-	8	14	6	ı	1	28
3300	-	-	-	-	8	9	-	-	23
3350	-	ı	ı	ı	ı	5	6	3	14
3400	-	-	-	-	-	-	5	4	9
m_y	3	9	9	19	22	20	11	7	100

X	8,0	8,8	9,6	10,4	11,2	12,0	12,8	13,6	$m_{_X}$
120	5	6	-	ı	ı	-	ı	-	11
130	ı	3	4	6	ı	-	ı	-	13
140	-	-	4	5	615	-	-	-	15
150	-	-	-	6	13	7	-	-	26
160	ı	ı	ı	ı	ı	6	9	5	20
170	ı	ı	ı	ı	ı	-	7	8	15
m_y	5	9	8	17	19	13	16	13	100

X	7,5	8,0	8,5	9,0	9,5	10,0	10,5	11,0	m_x
115	2	3	4	ı	-	-	ı	-	9
120	-	-	7	8	-	-	-	-	15
125	-	-	4	7	8	-	-	-	19
130	-	-	-	3	15	7	-	-	25
135	-	ı	ı	ı	8	9	2	-	19
140	-	-	-	-	-	8	4	1	13
m_y	2	3	15	18	31	24	6	1	100

Вариант21

X	300	500	700	900	1100	1300	1500	1700	$m_{_X}$
5	1	2	5	-	-	-	-	-	8
10	ı	2	7	4	ı	-	ı	ı	13
15	ı	ı	9	6	4	-	ı	ı	19
20	-	-	1	14	6	7	-	-	27
25	ı	ı	-	ı	1	8	9	ı	18
30	-	-	-	-	-	4	5	6	15
m_y	1	4	21	24	11	19	14	6	100

Вариант 22

X	260	360	460	560	660	760	860	960	$m_{_{X}}$
3	27	3	-	-	-	-	-	-	9
7	-	8	7	ı	-	-	ı	ı	15
11	-	-	9	5	15	-	-	-	29
15	-	-	-	7	6	6	-	-	19
19	-	ı	ı	ı	2	9	5	ı	16
23	-	-	-	-	-	6	4	2	12
m_y	2	15	16	12	23	21	9	2	100

X	1470	1540	1610	1680	1750	1820	1890	1960	$m_{_X}$
210	3	2	3	1	ı	ı	ı	ı	8
220	ı	1	4	5	ı	ı	ı	ı	10
230	ı	ı	7	13	8	ı	ı	ı	28
240	-	-	-	-	9	6	6	-	21
250	ı	ı	ı	1	ı	7	8	3	18
260	-	-	-	-	-	4	6	5	15
m_y	3	3	14	18	17	17	20	8	100

X	2400	2440	2480	2520	2560	2600	2640	2680	$m_{_X}$
300	2	3	5	ı	ı	ı	ı	-	11
305	-	6	3	5	-	-	-	-	7
310	ı	ı	5	8	15	ı	ı	ı	31
315	ı	ı	ı	6	9	10	ı	ı	19
320	ı	ı	ı	ı	1	6	8	ı	20
325	-	-	-	-	-	3	4	1	12
m_y	5	5	12	22	20	12	11	13	100

Вариант 25

X	120	200	280	360	440	520	600	680	$m_{_X}$
10,5	2	3	5	-	-	-	-	-	11
14,5	ı	6	3	5	ı	-	ı	ı	18
18,5	ı	ı	5	8	15	-	ı	ı	28
22,5	I	ı	-	6	9	10	ı	ı	23
26,5	ı	ı	-	ı	1	6	8	ı	10
30,5	ı	ı	-	ı	ı	3	4	1	10
m_y	4	11	15	13	32	18	5	2	100

Вариант 26

X	350	400	450	500	550	600	650	700	$m_{_{X}}$
28	-	7	8	4	-	-	-	-	19
40	-	ı	6	9	5	-	ı	ı	20
52	-	-	1	-	12	8	6	-	26
64	-	-	-	-	-	7	5	3	15
76	-	-	-	-	-	-	4	9	13
88	-	-	-	-		-	ı	7	7
m_y	•	7	14	13	17	15	15	19	100

X	36	56	76	96	116	136	156	176	$m_{_X}$
5,4	6	4	4	-	-	-	-	-	14
7,0	ı	8	7	2	-	-	-	-	17
8,6	-	-	3	8	9	-	-	-	20
10,2	ı	-	-	16	5	8	-	-	29
11,8	ı	-	-	ı	-	6	5	-	11
13,4	-	-	-	-	-	4	3	2	9
m_y	6	12	14	26	14	18	8	2	100

	Вариант 28								
X	18,5	19,7	20,9	22,1	23,3	24,5	25,7	26,9	m_{x}
125	4	3	6	-	-	-	-	-	13
200	ı	7	4	7	ı	ı	-	-	18
275	ı	-	ı	15	9	7	-	-	31
350	ı	-	ı	-	8	5	6	=	19
425	-	-	-	-	-	4	3	1	8
500	-	-	-	-	-	-	6	5	11
m_y	4	10	10	22	17	16	15	6	100
				Ва	ариант29				
X	5	12	19	26	33	40	47	54	$m_{_X}$
0,54	5	3	2	2	-	-	-	-	12
0,68	ı	4	8	9	4	ı	-	-	25
0,82	ı	-	ı	-	17	9	6	-	32
0,96	-	-	-	-	1	6	5	-	12
1,10	-	-	-	-	-	6	3	2	11
1,24	-	-	-	-	-	-	4	4	8
m_y	5	7	10	11	22	21	18	6	100
		ı		Ba	риант 30		ı	ı	1
X	0,58	1,08	1,58	2,08	2,58	3,08	3,58	4,08	$m_{_X}$
50	3	3	4	6	-	-	-	-	16
74	-	5	8	9	-	-	-	-	22
98	-	-	-	13	8	9	-	-	30
122	•	-	•	-	9	2	4	-	15
146	-	-	-	-	-	1	3	5	9
170	-	-	-	-	-	-	5	3	8
m_y	3	8	12	28	17	12	12	8	100

Задание 3. Известно интервальное распределение признака X. Требуется:

- 1) построить гистограмму и полигон относительных частот выборки;
- 2) найти числовые характеристики выборки $\overline{x_{\scriptscriptstyle g}}$, $\sigma_{\scriptscriptstyle g}$;
- 3) выдвинуть гипотезу о показательном распределении случайной величины X и проверить ее по критерию согласия Пирсона, приняв уровень значимости $\alpha=0,05$.

Вариант 1

Интервалы	(0,128)	(128,256)	(256,384)	(384,512)
Частоты	42	30	10	8
Интервалы	(512,640)	(640,768)	(768,896)	(896,1024)
Частоты	5	2	1	2

Интервалы	(0,136)	(136,272)	(272,408)	(408,544)
Частоты	38	25	14	10
Интервалы	(544,680)	(680,816)	(816,952)	(952,1088)
Частоты	7	3	1	2

Интервалы	(0,208)	(208,416)	(416,624)	(624,832)
Частоты	49	23	10	7
Интервалы	(832,1040)	(1040,1248)	(1248,1456)	(145,1664)
Частоты	5	3	2	1

Вариант 4

Интервалы	(0,146)	(146,292)	(292,438)	(438,646)
Частоты	40	23	15	10
Интервалы	(646,584)	(584,730)	(730,876)	(876,1022)
Частоты	6	2	3	1

Вариант 5

Интервалы	(0,254)	(254,508)	(508,762)	(762,1016)
Частоты	45	20	12	10
Интервалы	(1016,1270)	(1270,1524)	(1524,1778)	(1778,2032)
Частоты	7	3	1	2

Вариант 6

Интервалы	(0,158)	(158,316)	(316,474)	(474,632)
Частоты	44	20	15	10
Интервалы	(632,790)	(790,948)	(948,1106)	(1106,1264)
Частоты	5	2	1	3

Вариант 7

Интервалы	(0,186)	(186,372)	(372,558)	(558,744)
Частоты	40	22	16	12
Интервалы	(774,930)	(930,1116)	(1116,1302)	(1302,1488)
Частоты	4	2	3	1

Вариант 8

Интервалы	(0,194)	(194,316)	(1388,582)	(582,776)
Частоты	40	20	16	10
Интервалы	(776,970)	(970,1164)	(1164,1358)	(1358,1552)
Частоты	7	4	2	1

Вариант 9

Интервалы	(0,238)	(238,476)	(476,714)	(714,952)
Частоты	42	26	13	8
Интервалы	(952,1190)	(1190,1428)	(1428,1666)	(1666,1904)
Частоты	5	3	1	2

Интервалы	(0,325)	(325,650)	(650,975)	(975,1300)
Частоты	41	30	12	7
Интервалы	(1300,1625)	(1625,1950)	(1950,2275)	(2275,2600)
Частоты	4	3	2	1

Интервалы	(0,176)	(176,352)	(352,528)	(528,704)
Частоты	42	28	14	6
Интервалы	(704,880)	(880,1056)	(1056,1232)	(1232,1408)
Частоты	4	3	1	2

Вариант 12

Интервалы	(0,312)	(312,624)	(624,936)	(936,1248)
Частоты	40	25	13	10
Интервалы	(1248,1560)	(1560,1872)	(1872,2184)	(2184,2496)
Частоты	6	3	2	1

Вариант 13

Интервалы	(0,318)	(318,636)	(636,954)	(954,1272)
Частоты	41	20	15	11
Интервалы	(1272,1590)	(1590,1908)	(1908,2226)	(2226,2544)
Частоты	7	2	3	1

Вариант 14

Интервалы	(0,296)	(296,592)	(592,888)	(888,1184)
Частоты	40	22	16	12
Интервалы	(1184,1480)	(1480,1776)	(1776,2072)	(2072,2368)
Частоты	5	1	3	1

Вариант 15

Интервалы	(0,356)	(356,712)	(712,1068)	(1068,1424)
Частоты	40	25	15	10
Интервалы	(1424,1780)	(1780,2136)	(2136,2492)	(2492,2848)
Частоты	6	2	1	1

Вариант 16

Интервалы	(0,173)	(173,346)	(346,519)	(519,692)
Частоты	42	22	16	11
Интервалы	(692,865)	(865,1038)	(1038,1211)	(1211,1384)
Частоты	4	2	2	1

Вариант 17

Интервалы	(0,214)	(214,428)	(428,642)	(642,856)
Частоты	41	25	16	10
Интервалы	(856,1070)	(1070,1284)	(1284,1498)	(1498,1712)
Частоты	4	2	1	1

Вариант 18.

Интервалы	(0,217)	(217,434)	(434,651)	(651,868)
Частоты	37	24	18	10
Интервалы	(868,1085)	(1085,1302)	(1302,1519)	(1519,1736)
Частоты	6	1	2	2

Интервалы	(0,343)	(343,686)	(686,1029)	(1029,1372)
Частоты	43	30	13	7
Интервалы	(1372,1715)	(1715,2058)	(2058,2401)	(2401,2244)
Частоты	2	3	1	1

Вариант 20

Интервалы	(0,276)	(276,552)	(552,828)	(828,1104)
Частоты	41	31	16	5
Интервалы	(1104,1380)	(1380,1656)	(1656,1932)	(1932,2208)
Частоты	3	2	1	1

Вариант 21

Интервалы	(0,327)	(327,654)	(654,981)	(981,1308)
Частоты	42	26	14	8
Интервалы	(1308,1635)	(1635,1962)	(1962,2289)	(2289,2616)
Частоты	6	1	1	2

Вариант 22

Интервалы	(0,183)	(183,366)	(366,549)	(549,732)
Частоты	44	26	13	7
Интервалы	(732,915)	(915,1098)	(1098,1281)	(1281,1464)
Частоты	4	2	3	1

Вариант 23

Интервалы	(0,347)	(347,694)	(694,1041)	(1041,1388)
Частоты	46	24	14	6
Интервалы	(1388,1735)	(1735,2082)	(2082,2429)	(2429,2776)
Частоты	3	4	2	1

Вариант 24

Интервалы	(0,267)	(267,534)	(534,801)	(801,1068)
Частоты	41	25	17	8
Интервалы	(1068,1335)	(1335,1602)	(1602,1869)	(1869,2135)
Частоты	4	2	2	1

Вариант 25

Интервалы	Интервалы (0,328)		(656,984)	(984,1312)	
Частоты	39	21	18	12	
Интервалы	(1312,1640)	(1640,1968)	(1968,2296)	(2296,2624)	
Частоты	4	1	3	2	

Интервалы	(0,177)	(177,354)	(354,531)	(531,708)	
Частоты	Частоты 37		18	10	
Интервалы	(708,885)	(885,1062)	(1062,1239)	(1239,1416)	
Частоты	5	2	3	1	

Интервалы	(0,288)	(288,576)	(576,864)	(864,1152)
Частоты	46	24	14	10
Интервалы	(1152,1440)	(1440,1728)	(1728,2016)	(2016,2304)
Частоты	2	2	1	1

Вариант 28

Интервалы	(0,321)	(321,642)	(642,963)	(963,1284)	
Частоты	40	28	17	8	
Интервалы	(1284,1605)	(1605,1926)	(1926,2247)	(2247,2568)	
Частоты	3	1	2	1	

Вариант 29

Интервалы	Інтервалы (0,269)		(538,807)	(807,1076)
Частоты	41	27	16	9
Интервалы	(1076,1345)	(1345,1614)	(1614,1883)	(1883,2152)
Частоты	3	1	1	2

Вариант 30

Интервалы	(0,341)	0,341) (341,682)		(1023,1364)	
Частоты	40	28	15	9	
Интервалы	(1364,1705)	(1705,2046)	(2046,2387)	(2387,2728)	
Частоты	4	1	2	1	

Решение типового варианта аттестационной работы по теме «Математическая статистика»

Задание 1. В результате статистических наблюдений некоторой совокупности относительно признака X получены выборочные данные.

	-		-	-					
61,60	52,99	71,23	95,60	44,69	90,42	77,64	56,66	55,25	51,18
80,97	41,16	45,90	97,22	89,71	65,81	40,47	62,46	75,19	63,08
38,68	46,90	86,63	57,65	65,94	90,17	75,91	50,88	57,29	95,32
63,71	60,09	59,24	83,17	65,88	96,62	77,70	67,55	83,79	60,00
81,48	84,43	48,64	65,12	50,52	81,34	86,49	70,97	56,81	74,65
73,94	60,93	82,19	79,33	70,71	95,56	47,53	64,26	61,95	69,60
49,28	54,73	83,78	65,87	33,97	72,22	84,05	66,54	67,67	71,92
66,58	55,10	94,64	78,84	65,07	57,41	79,12	74,70	80,09	65,35
78,39	64,88	91,93	68,92	108,14	56,55	47,83	72,44	75,78	65,81
69,37	63,70	61,35	55,71	120,00	36,20	68,17	53,46	33,89	75,76

Решение

1) Так как повторяющихся значений практически нет, признак X будем считать непрерывным. Построим для него интервальное распределение. Определяем объем выборки: n=100, находим наименьшую и наибольшую варианты: $x_{\min}=33,89$, $x_{\max}=120,00$. Длину интервала варьирования определим по формуле Стерджеса:

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{1 + 3,322 \lg n} = \frac{120,00 - 33,89}{1 + 3,322 \lg 100} = \frac{86,11}{7,644} = 11,26.$$

В качестве границы первого интервала выберем значение $a_0=x_{\min}-h=33,89-11,26=22,63$. Границы следующих частичных интервалов вычисляем по формуле $a_i=a_{i-1}+h$ (i=1,2,...,n). Получим $a_i=33,89;$ $a_2=45,15;$ $a_3=56,41;$ $a_4=67,67;$ $a_5=78,93;$ $a_6=90,19;$ $a_7=101,45;$ $a_8=112,71;$ $a_9=123,97$. С помощью таблицы подсчитаем количество вариант, попавших в каждый интервал, или интервальные частоты.

Таблица 1.1

№ интервала	Интервалы	Подсчет частот	Частоты, n_i
1	(22,63;33,89)		1
2	(33,89;45,15)		6
3	(45,15;56,41)		15
4	(56,41;67,67)		30
5	(67,67;78,93)		22
6	(78,93;90,19)		16
7	(90,19;101,45)		8
8	(101, 45; 112, 71)		1
9	(112,71;123,97)		1
	Объем вы	борки	n = 100

Последовательно просматривая выборку, каждую варианту отмечаем чертой в строке соответствующего интервала, формируя квадратики с диагональю, это соответствует пяти вариантам, попавшим в интервал, и удобно при подсчете частот n_i . Все последующие вычисления будем вносить в таблицу 1.2.

Таблица 1.2

	Границы интервала	Середина	II	Относит. частота,	Функция распределения,
i	$\left(a_{i-1},a_{i}\right)$	интервала, x_i	Частота n_i	ω_{i}	F(x)
1	2	3	4	5	6
1	(22,63;33,89)	28,26	1	0,01	0,01
2	(33,89;45,15)	39652	6	0,06	0,07
3	(45,15;56,46)	50,78	15	0,15	0,22
4	(56,41;67,67)	62,04	30	0,30	0,52
5	(67,67;78,93)	73,30	22	0,22	0,74
6	(78,93;90,19)	84,56	16	0,16	0,90
7	(90,19;101,45)	95,82	8	0,08	0,98
8	(101, 45; 112, 71)	107,08	1	0,01	0,99
9	(1127,71;123,97)	118,34	1	0,01	7,00
10	123,97				
	Сумма ∑		100	1	

Интервальное распределение образует совокупность граф 2 и 4. Середины интервалов $x_i = \frac{a_{i-1} + a_i}{2}$ вместе с соответствующими им интервальными частотами n_i составляют дискретный или вариационный ряд (графы 3 и 4). Если вместо частот n_i рассматривать относительные частоты $\omega_i = \frac{n_i}{n}$, то совокупность граф 2 и 5 образует интервальное распределение относительных частот, а граф 3 и 5 – дискретный ряд относительных частот.

Для построения гистограммы относительных частот в прямоугольной системе координат на горизонтальной оси откладывает интервалы варьирования и на каждом из них строим прямоугольник с высотой $\omega_i = \frac{n_i}{n}$. Если последовательно соединить середины верхних оснований прямоугольников отрезками прямых, то получим полигон относительных частот. n_i

 $F_{(x)}^* = \frac{n_x}{n} = \sum_{x_i < x} \frac{n_i}{n},$

где n_x - число вариант, меньших x, строится поинтервально, исходя из столбцов 2 и 5 по правилу накопления частот (графа 6 в таблице 1.2).

npu $x \le 22,63$;

$$F_{(x)}^{*} = \begin{cases} 0.01 & npu & 22.63 < x \le 33.69; \\ 0.07 & npu & 33.69 < x \le 45.15; \\ 0.22 & npu & 45.15 < x \le 56.41; \\ 0.52 & npu & 56.41 < x \le 67.67; \\ 0.74 & npu & 67.67 < x \le 78.93; \\ 0.90 & npu & 78.93 < x \le 90.19; \\ 0.98 & npu & 90.19 < x \le 101.45; \\ 0.99 & npu & 101.45 < x \le 112.71; \\ 1.00 & npu & 112.71 < x \le 123.97; \\ 1.00 & npu & x > 123.97. \end{cases}$$

Графиком $F^*(x)$ является ступенчатая линия.

Плавная кривая, "окаймляющая" снизу график $F_{(x)}^*$, называется кумулятой.

3) Для нахождения числовых характеристик выборки заполним расчетную таблицу 1.3. Графа 9 заполняется для контроля правильного заполнения таблицы 1.3. Если $\sum \left(x_i+1\right)^2 n_i = \sum x_i^2 n_i + 2\sum x_i n_i + n \text{ , то вычисления выполнены верно. В нашем случае } 509641,37 = 495849,73 + 2 \cdot 6845,82 + 100 \text{ .}$

Найдем
$$\overline{x_e} = \frac{1}{n} \sum x_i n_i = \frac{1}{100} \cdot 6845,82 \approx 68,46$$
;
$$\mathcal{J}_e = \frac{1}{n} \sum x_i^2 n_i - x_e^2 = \frac{1}{100} \cdot 495849,73 - \left(68,46\right)^2 \approx 271,73$$
;
$$\sigma_e = \sqrt{\mathcal{J}_e} = 16,48$$
;
$$S^2 = \frac{n}{n-1} \mathcal{J}_e = 274,47$$
;
$$S = \sqrt{274,47} \approx 16,57$$
.

Таблица 1.3

	Границы интервала	Середина	Частота		_	
i	$\left(a_{i-1},a_i\right)^{-1}$	интервала, x_i	n_i	$x_i n_i$	$x_i^2 n_i$	$\left(x_i+1\right)^2 n_i$
1	2	3	4	7	8	9
1	(22,63;33,89)	28,26	1	28,26	798,63	856,15
2	(33,69;45,15)	39,52	6	237,12	9370,98	9851,22
3	(45,15;56,41)	50,78	15	761,7	38679,13	40217,53
4	(56,41;67,67)	62,04	30	1861,2	115468,85	119221,25
5	(67,67;78,93)	73,30	22	1612,6	118203,58	121450,78
6	(78,93;90,19)	84,56	16	1352,96	1144006,30	117128,22
7	(90,19;101,45)	95,82	8	766,56	73451,78	74992,90
8	(101, 45; 112, 71)	107,08	1	107,08	11466,13	11681,29
9	(112,71;123,97)	118,34	1	118,34	14004,35	14242.03
10	123,97					
	Сумма ∑		100	6845,82	495849,73	509641.37

- 4) Предположение о том, что X имеет нормальное распределение, подтверждают следующие факты:
 - а) полигон относительных частот напоминает кривую Гаусса;
 - б) оценивая математическое ожидание а величиной $x_e = 68, 46$, получим

$$(a - 3\sigma; a + 3\sigma) \approx (\overline{x_e} - 3S_e; \overline{x_e} + 3S_e) = (68, 46 - 3.16, 57.68, 46 + 3.16, 57) =$$

$$= (19, 75; 118, 17)$$

Так как лишь одна варианта из 100 не попадает в полученный интервал, то можно считать, что выборочные данные удовлетворяют правилу 3σ нормального распределения.

Будем предполагать, что выборка взята из нормально распределенной совокупности. Доверительный интервал для математического ожидания а найдем по формуле

$$\overline{x_e} - t_{\gamma} \frac{S}{\sqrt{n}} < a < \overline{x_e} + t_{\gamma} \frac{S}{\sqrt{n}}$$
.

По таблице (приложение 3) при n=100 и $\gamma=0,95$ найдем $t_{_{\gamma}}=1,984$.

Следовательно,
$$68,46-1,984\frac{16,57}{\sqrt{100}} < a < 68,46+1,984\frac{16,57}{\sqrt{100}}$$
.

Или окончательно

$$65,17 < a < 71,75$$
.

Доверительный интервал для среднего квадратического отклонения σ найдем по формуле $S(1-q) < \sigma < S(1+q)$, где q определим по таблице значений $q = q(\gamma, n)$. (приложение 5)

В данном случае
$$q=q\left(0,95;100\right)=0,143$$
 , а
$$16,57\left(1-0,143\right)<\sigma<16,57\left(1+0,143\right)$$
 или $14,20<\sigma<18,94$.

5) Для проверки нулевой гипотезы о нормальном распределении генеральной совокупности с помощью критерия Пирсона потребуются выравнивающие частоты $n_i' = np_i$. Определим их, исходя из интервального распределения. Вероятности p_i попадания X в i-тый вариационный интервал вычислим по формулам

$$p_i = P\left(a_{i-1} < X < a_i\right) = \Phi\left(\frac{a_i - \overline{x_e}}{S}\right) - \Phi\left(\frac{a_{i-1} - \overline{x_e}}{S}\right),$$

где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ - функция Лапласа, значения которой находим по таблице (приложение 2). Все вычисления заносим в таблицу 1.4.

Таблица 1.4.

i	$\frac{a_{i-1} - \overline{x_e}}{S}$	$\Phi\left(\frac{a_i - \overline{x_e}}{S}\right)$	p_{i}	$n_i' = np_i$	n_{i}	$\frac{\left(n_i-n_i'\right)^2}{n_i'}$
1	10	11	12	13	14	15
1.	-2,76	-0,4971	0,0150	1,50 = 7,64	1 $= 7$	0,0536
2.	-2,10	-064821	0,0614	$6,14$ $\int_{0}^{1} (-7,04)$	$\left 6 \right ^{-\gamma}$	0,0075
3.	-1,41	-0,4207	0,1534	15,34	15	0,0075

Продолжение таблицы 1.4

	должение п	астирит.				
4.	-0,73	-0,2673	0,2474	24,74	30	1,1183
5.	-0,05	-0,0199	0,2556	25,56	22	0,4958
6.	0,63	0,2357	0,1692	16,92	16	0,0500
7.	1,31	0,4049	0,0718	7,18)	8)	
8.	1,99	0,4767	0,0195	1,95 = 9,46	$\left 1 \right\rangle = 10$	0,0308
9.	2,67	0,4962	0,0033	0,33	1)	
10	3,35	0,4995				
	Всего		0,9966	99,66	100	1,756

В графах 11 и 12 таблицы 1.4 вычисления сделаны для начал интервалов и только в 10-ой строке - для конца последнего интервала. Выравнивающие частоты n_i' в графе 14 в основном близки к эмпирическим частотам в графе 15. Это еще одно подтверждение правильности выдвинутой гипотезы H_0 .

В таблице 1.4 интервалы, имеющие частоты меньше 5, объединены с соседними интервалами (графы 14 и 15). В графе 16 вычислено значение критерия согласия Пирсона

$$\chi^2 = \sum \frac{(n_i - n_i')^2}{n_i'} \cdot \chi^2_{\text{набл.}} \equiv 1,756$$

Далее определим число степеней свободы по формуле v=k-r-1, где k=6 - число интервалов, с учетом их объединения, а r=2 - число параметров распределения $\begin{pmatrix} a & \sigma^2 \end{pmatrix}$, v=3. По таблице распределения χ^2 (приложение 4) при уровне значимости $\alpha=0,05$ и v=3 находим $\chi^2_{\rm криm}=7,815$.

Так как $\chi^2_{{\scriptscriptstyle Ha67.}} < \chi^2_{{\scriptscriptstyle Kpum.}}$, то нет оснований отвергнуть гипотезу H_0 и с 95% уверенностью можно утверждать, что признак X распределен нормально.

 ${f 6}$) Для проверки гипотезы H_0 о нормальном распределении генеральной совокупности по критерию Колмогорова необходимо вычислить наблюдаемое значение критерия

$$\lambda = \sqrt{n} \max_{x} \left| F^*(x) - F(x) \right|,$$

где $F^*(x)$ - эмпирическая функция распределения, а F(x) - теоретическая функция распределения.

Функция $F^*(x)$ найдена (графа 6 в табл. 1.2), а функцию F(x) вычислим по формуле $F(x) = 0.5 + \Phi\left(\frac{a_i - \overline{x_s}}{S}\right)$, где a_i - правые концы интервалов распределения.

Правый конец последнего интервала будем считать равным $+\infty$. Все расчеты, необходимые для вычисления $\lambda_{{\scriptscriptstyle Ha6n.}}$ сведем в таблицу 1.5.

Из графы 20 видно, что наибольший модуль разности между эмпирической и теоретической функцией распределения $\max_x \left|F_{(x)}^* - F_{(x)}\right| = 0,0399$. Тогда $\lambda_{{\scriptscriptstyle Ha60.}} = \sqrt{100} \cdot 0,0399 = 0,399$.

i	Частоты <i>п</i> _i	Эмпир. функц. распр. $F^*(x)$	a_{i}	$\frac{a_i - \overline{x_e}}{S}$	$\Phi = \left(\frac{a_i - \overline{x_e}}{S}\right)$	Теорепич. функция распред. $F(x)$	Разности $\left F^*(x) - F^*(x)\right $
1	4	6	16	17	18	19	20
1	1	0,01	33,89	-2,10	-0,4821	0,0179	0,0079
2	6	0,07	45,15	-1,41	-0,4207	0,0792	0,0092
3	15	0,22	56,41	0,73	-0,2673	0,2327	0,0127
4	30	0,52	67,67	-0,05	-0,0199	0,4801	0,0399
5	22	0,74	78,93	0,63	0,2357	0,4757	0,0043
6	16	0,90	90,19	1,31	0,4049	0,9049	0,0049
7	8	0.98	101.45	1,99	0,4767	0,9767	0,0033
8	1	0,99	112,71	2,67	0,4962	0,9962	0,0062
9	1	7,00	123,97	3,35	0,4995	0,9995	0,0005
10		1,00	$+\infty$	+8	0,5	1,000	0,0000

По приложению 6 при уровне значимости $\alpha=0,05$ находим $\lambda_{\kappa pum.}=1,36$. Так как $\lambda_{{\scriptscriptstyle Habh.}}<\lambda_{{\scriptscriptstyle Kpum.}}$, то нет оснований отвергнуть гипотезу о нормальном распределении.

7) Итак, принимаем гипотезу о нормальном распределении генеральной совокупности, плотность вероятностей которого имеет вид $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-a)^2}{2\sigma^2}}$. В качестве точечной оценки параметра a возьмем $\overline{x_e} = 68,46$, а в качестве точечной оценки параметра σ возьмем S = 16,57.

Таким образом, функцию плотности вероятностей признака X, будем считать равной

$$f(x) = \frac{1}{16,57\sqrt{2\pi}}e^{\frac{-(\chi-68,46)^2}{2\cdot16,57^2}}.$$

Интегральная функция распределения при этом имеет вид:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-(t-a)^2}{2\sigma^2}} dt$$
 или $F(x) = \frac{1}{16,57\sqrt{25}} \int_{-\infty}^{x} e^{\frac{-(t-68,46)^2}{2\cdot16,57^2}} dt$.

Задание 2. В результате группировки данных статистического наблюдения над признаками X и Y получена корреляционная таблица.

X	2	3	4	5	6
5	2	4			
7		4	11	8	
9		8	16	15	
11			10	7	5
13				6	4

Решение

1) Для подсчета числовых характеристик составим расчетную таблицу 2.1.

	_	_	1
Ta	ОПИ	ua ∕	

									астица 2.1
X	2	3	4	5	6	$m_{_X}$	xm_x	x^2m_x	\overline{Y}_x
5	2	4				6	30	150	2,67
7		4	11	8		23	161	1127	4,17
9		8	16	15		39	351	3159	4,18
11			10	7	5	22	242	2662	4,77
13				6	4	10	130	1690	5,40
m_y	2	16	37	36	9	n=100	914	8788	
ym_y	4	48	148	180	54	434			
y^2m_y	8	144	592	900	324	1968			
\bar{X}_y	5	7,50	8,94	9,61	11,89				

Правильность заполнения таблицы 2.1 можно проверить с помощью равенств:

$$\sum m_{x} = \sum m_{y} = n = 100;$$

$$\sum \sum m_{xy} x = \sum m_{x} x = 914;$$

$$\sum \sum m_{xy} y = \sum m_{y} y = 434;$$

Вычислим выборочные средние x, y.

$$\overline{x} = \frac{\sum xm_x}{n} = \frac{914}{100} = 9,14; \quad \overline{y} = \frac{\sum ym_y}{n} = \frac{434}{100} = 4,34.$$

Выборочные средние квадратические отклонения находим по формулам:

$$\sigma_{x} = \sqrt{\frac{1}{n} \sum x^{2} m_{x} - \overline{x}^{2}} = \sqrt{\frac{8788}{100} - 9.14^{2}} = 2.08;$$

$$\sigma_{y} = \sqrt{\frac{1}{n} \sum y^{2} m_{y} - \overline{y}^{2}} = \sqrt{\frac{1968}{100} - 4.34^{2}} = 0.92.$$

2) Выборочный коэффициент корреляции вычисляем по формуле

$$r_{g} = \frac{\sum \sum xym_{xy} - n \cdot \overline{x} \cdot \overline{y}}{n\sigma_{x}\sigma_{y}}.$$

Так как
$$\sum \sum xym_{xy} = 5 \left(2 \cdot 2 + 3 \cdot 4\right) + 7 \left(3 \cdot 4 + 4 \cdot 11 + 5 \cdot 8\right) + 9 \left(3 \cdot 8 + 4 \cdot 16 + 5 \cdot 15\right) + \\ + 11 \left(4 \cdot 10 + 5 \cdot 7 + 6 \cdot 5\right) + 13 \left(5 \cdot 6 + 6 \cdot 4\right) = 4076 \; ,$$
 то $r_{e} = \frac{4076 - 100 \cdot 9 , 14 \cdot 4 , 34}{100 \cdot 2 , 08 \cdot 0 , 92} = 0,57 \; .$

Для проверки значимости полученного выборочного коэффициента корреляции вычислим статистику $t=r_e\sqrt{\frac{n-2}{1-r_e^2}}$, $t_{{\scriptscriptstyle Ha651.}}=0.57\sqrt{\frac{98}{1-0.57^2}}=6.89$.

По таблице распределения Стьюдента (приложение3) при уровне значимости $\alpha=0,01$ и числу степеней свободы v=100-2=98 найдем $t_{\kappa p.}=2,626$.

Так как $t_{{\scriptscriptstyle Ha67.}} > t_{{\scriptscriptstyle \kappa p.}}$, то нулевую гипотезу H_0 : $r_r = 0$ отвергаем. Другими словами, выборочный коэффициент корреляции значимо отличается от нуля или с 99% уверенностью можно говорить о существенности тесной связи между признаками Xи Y.

3) Теперь найдем уравнения прямых регрессий по формулам:

$$\overline{y_x} - \overline{y} = r_e \frac{\sigma_y}{\sigma_x} (x - \overline{x}); \quad \overline{x_y} - \overline{x} = r_e \frac{\sigma_x}{\sigma_y} (y - \overline{y}).$$

$$\overline{y_x} - 4.34 = 0.57 \frac{0.92}{2.08} (x - 9.14); \quad \overline{x_y} - 9.14 = 0.57 \frac{2.08}{0.92} (y - 4.34).$$

После преобразований получим

$$\overline{y_x} = 0.25x + 2.03$$
, $\overline{x_y} = 1.29y + 3.55$ (*)

4) Вычислим эмпирические условные средние \overline{Y}_x и \overline{X}_y по формулам $\overline{Y}_x = \frac{\displaystyle\sum_y m_{xy}}{mx}$; $\overline{X}_y = \frac{\displaystyle\sum_x x m_{xy}}{m_y}$ (последний столбец и последняя строка в табл. 2.1). Найдем

теоретические значения условных средних $\overline{y_x}$ и $\overline{x_y}$ по формулам (*) и затем отклонения между теоретическими условными средними $\overline{y_x}$ и $\overline{x_y}$ и экспериментальными $\overline{Y_x}$ и $\overline{X_y}$ (табл. 2.2 и 2.3).

Таблица 2.2 7 9 5 11 13 3,28 3,78 4,28 4,78 5,28 2,67 4,17 4,77 5,40 4,18 0,10 0.61 -0,39 0.01 -0,12

Таблица 2.3 3 4 5 6 7,42 8,71 10,00 11,29 7.50 8,94 9,61 11,89 -0.23 -0.080.39 -0,60

Сравнение \overline{Y}_x и \overline{y}_x (\overline{X}_y и \overline{x}_y)

показывает, что их отклонения малы (табл.2.2 и 2.3). Следовательно, эмпирические данные согласуются с теоретическими. Между признаками X и Y существует линейная корреляционная зависимость.

5) В одной и той же системе координат построим корреляционное поле (пары значений X и Y) и прямые регрессий (*).

Задание 3. Дано интервальное распределение признака *X*.

Интервалы	(0,342)	(342,684)	(684,1026)	(1026,1368)
Частоты	40	26	14	9
Интервалы	(1368,1710)	(1710,2052)	(2052, 2394)	(2394, 2736)
Частоты	5	1	3	2

Решение

Для выполнения задания 3 заполним таблицу 3.1

Таблица 3.1

					T		ı	тамища 5.1
i	$\left(a_{\scriptscriptstyle i-1},a_{\scriptscriptstyle i}\right)$	X_i	n_{i}	$\frac{n_i}{n}$	$u_i = \frac{x_i - 1197}{342}$	$u_i n_i$	$u_i^2 n_i$	$\left(u_i+1\right)^2 n_i$
1	2	3	4	5	6	7	8	9
1	(0,342)	171	40	0,4	-3	-120	360	160
2	(342,684)	513	26	0,26	-2	-52	104	26
3	(684,1026)	855	14	0,14	-1	-14	14	0
4	(1026,1368)	1197	9	0,09	0	0	0	9
5	(1368,1710)	1539	5	0,05	1	5	5	20
6	(1710, 2052)	1881	1	0,01	2	2	4	9
7	(2052, 2394)	2223	3	0,03	3	9	27	48
8	(2394, 2736)	2565	2	0,02	4	8	32	50
9	2736							
			100	1,00		-162	546	322

Так как значения x_i большие, то для упрощения вычислений ввели условные варианты

$$u_i = \frac{x_i - 1197}{342}$$
 (графа 6).

Правильность заполнения таблицы проверим по формуле

$$\sum (u_i + 1)^2 n_i = \sum u_i^2 n_i + 2 \sum u_i n_i + \sum n_i.$$

В нашем случае

$$546 - 2 \cdot 162 + 100 = 322$$
.

1) В одной и той же системе координаты построим гистограмму и полигон относительных частот (на оси Ox в скобках указывая номера интервалов).

Полученная картина позволяет сделать предположения о показательном распределении признака.

2) Вычисляем числовые характеристики выборки $\overline{x_{_{\! g}}}$, $\sigma_{_{\! g}}$.

Вначале найдем
$$\overline{u} = \frac{\sum u_i n_i}{n} = \frac{-162}{100} = -1,62$$
;
$$\sigma\left(u\right) = \frac{\sum u_i^2 n_i}{n} - \left(\overline{u}\right)^2 = \frac{546}{100} - \left(-1,62\right)^2 = 2,84$$
,

а затем

$$\overline{x_{s}} = \overline{u} \cdot 342 + 1197 = 642,96,$$

 $\sigma_{s} = \sigma(u) \cdot 342 = 971,28.$

3) Так как $\frac{1}{\overline{x}_e} = 0,0015$, $\frac{1}{\sigma_e} = 0,0010$ близки между собой, то это еще одно подтверждение того, что признак X распределен по показательному закону с параметром $\lambda = \frac{1}{\overline{x}_e} = 0,0015$ и функцией плотности

$$f(x) = \begin{cases} 0 & npu \quad x < 0; \\ 0,0015 & e^{-0,0015x} & npu \quad x \ge 0. \end{cases}$$

Для проверки нулевой прямой гипотезы о показательном распределении признака X по критерию согласия Пирсона заполним таблицу.

 $n_i' = np_i$ i n_{i} p_i 12 13 14 0.0004 0,00 1.00 0,4013 40,13 40 2 -0,513 0,5987 0.2403 24,03 26 0,1615 3 -1,020 0,3584 0,1438 14,38 14 0,0100 4 -1,539 0,2146 0,0861 8,61 0.0177 -2,052 0,1285 0,0050 0,0516 5,16 -2,565 0,0769 0,0157 6 1,57 I-3,078 0,612 0,0152 1,52 = 6,043 6 0.0003 8 -3,591 0,046 0,0295 2,95 9 **-4.104** 0,0165 98.35 100 0.1949

Таблица 3.2

Вероятности p_i попадания признака в интервалы разбиения (графа 12) вычислим по формуле

$$p_i = P(a_{i-1} \le x \le a_i) = e^{-\lambda a_{i-1}} - e^{-\lambda a_i},$$

предварительно заполнив графы 10 и 11.

После вычисления теоретических частот (графа 13), интервалы 6-8 объединяем, как содержащие малое число вариант (графы 13, 14). С учетом этого объединения $\chi^2_{{\scriptscriptstyle Hadol}} = 0,1949$

Так как после объединения число групп получилось равным 6, то число степеней свободы k=6-1-1=4 и показательное распределение имеет один расчетный параметр $-\lambda$. При уровне значимости $\alpha=0,05$ по таблице распределения χ^2 (приложение 4) находим критическое значение

$$\chi^2_{\kappa pum.} = \chi^2 (4;0,05) = 9,5.$$

Так как $\chi^2_{{\scriptscriptstyle Ha67.}} < \chi^2_{{\scriptscriptstyle \kappa pum.}}$ то с 95% уверенностью следует принять гипотезу о показательном распределении изучаемого признака X с функцией плотности

$$f(x) = \begin{cases} 0 & npu \ x < 0, \\ 0,0015e^{-0,0015x} & npu \ x \ge 0. \end{cases}$$

Литература

- 1. Гмурман В.Е. Теория вероятностей и математическая статистика. Мн.: ВШ., 1991.
- 2. Рябушко А.П., Бархатов В.В. и др. Сборник индивидуальных заданий по теории вероятностей и математической статистике. Мн.: ВШ., 1992.
- 3. Годунов Б.А., Рубанов В.С., Тузик Т.А. Математическая статистика. Брест.: БГТУ., 2002.
- 4. Гусева С.Т., Санюкевич А.В. и др. Лабораторные работы по курсу "Высшая математика" для студентов технических специальностей. Часть II. Брест.: 2002.

Приложения

1. Таблица значений функции $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$.

					ν 4	271				
				Co	ТЫ	е д	о л	И		
\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9
00	0.2000	2000	3989	2000	3986	3984	3982	2000	2077	2072
0,0	0,3989 3970	3989 3965	3989 3961	3988 3956	3980 3951	398 4 3945	3982 3939	3980 3932	3977 3925	3973 3918
0,1	3910	3903	3894	3885	3876	3867	3857	3932 3847	3836	3825
0,2	3814	3802	3790				3739		3712	3697
0,3	3683	3668	3653	3778 3637	3765 3621	3752 3605	3589	3726 3572	3555	3538
0,4	3521	3503	3485		3448	3429	3369 3410		3372	3352
0,5	3332	3312	3292	3467 3271	3251	3230	3209	3391 3187		3332 3144
0,6	3332 3123	3101	3292 3079	3056	3034	3011	3209 2989		3166 2943	2920
0,7	2897		2850	2827	2803	2780		2966 2732	2943 2709	2685
0,8 0,9		2874					2756			
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2331	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2,7	01040079	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0060	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9		0058	0056	0055	0053	0051	0050	0048	0047	0046
	0,0044									
3,0	0033	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0024	0032	0031	0030	0029	0028	0027	0026	0025	0025
3,2	0017	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0012	0017	0016	0016	0015	0015	0014	0014	0013	0013
3,4	0009	0012	0012	0011	0011	0010	0010	0010	0009	0009
3,5	0006	0008	0008	0008	0008	0007	0007	0007	0007	0006
3,6	0004	0006	0006	0005	0005	0005	0005	0005	0005	0004
3,7	0003	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,8	0002	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9		0002	0002	0002	0002	0002	0002	0001	0001	0001

2. Таблица значений функции $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$.

	1	1				\	0				1
\boldsymbol{x}	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	$\boldsymbol{\mathcal{X}}$	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	$\boldsymbol{\mathcal{X}}$	$\Phi(x)$
									()		
0.00	0.0000	0.45	0.1736	0.90	0.3159	135	0.4115	1.80	0.4641	2.50	0.4938
0.01	0.0040	0.46	0.1772	0.91	0.3186	136	0.4131	1.81	0.4649	2.52	0.4941
0.02	0.0080	0.47	0.1808	0.92	0.3212	137	0.4147	1.82	0.4656	2.54	0.4945
0.03	0.0120	0.48	0.1844	0.93	0.3238	138	0.4162	1.83	0.4664	2.56	0.4948
0.04	0.0160	0.49	0.1879	0.94	0.3264	139	0.4177	1.84	0.4671	2.58	0.4951
0.05	0.0199	0.50	0.19150.1	0.95	0.3289	1.40	0.4192	1.85	0.4678	2.60	0.4953
0.06	0.0239	0.51	950	0.96	0.3315	1.41	0.4207	1.86	0.4686	2.62	0.4956
0.07	0.02790.0	0.52	0.1985	0.97	0.3340	1.42	0.4222	1.87	0.4693	2.64	0.4959
0.08	319	0.53	0.2019	0.98	0.3365	1.43	0.4236	1.88	0.4699	2.66	0.4961
0.09	0.0359	0.54	0.2054	0.99	0.3389	1.44	0.4251	1.89	0.4706	2.68	0.4963
0.10	0.0398	0.55	0.2088	1.00	0.3413	1.45	0.4265	1.90	0.4713	2.70	0.4965
0.11	0.04380.0	0.56	0.2123	1.01	0.3438	1.46	0.4279	1.91	0.4719	2.72	0.4967
0.12	478	0.57	0.2157	1.02	0.3461	1.47	0.4292	1.92	0.4726	2.74	0.4969
0.13	0.0517	0.58	0.2190	1.03	0.3485	1.48	0.4306	1.93	0.4732	2.76	0.4971
0.14	0.0557	0.59	0.2224	1.04	0.3508	1.49	0.4319	1.94	0.4738	2.78	0.4973
0.15	0.0596	0.60	0.2257	1.05	0.3531	1.50	0.4332	1.95	0.4744	2.80	0.4974
0.16	0.0636	0.61	0.2291	1.06	0.3554	1.51	0.4345	1.96	0.4750	2.82	0.4976
0.17	0.0675	0.62	0.2324	1.07	0.3577	1.52	0.4357	1.97	0.4756	2.84	0.4977
0.18	0.0714	0.63	0.23570.2	1.08	0.3599	1.53	0.4370	1.98	0.4761	2.86	0.4979
0.19	0.0753	0.64	389	1.09	0.3621	1.54	0.4382	1.99	0.4767	2.88	0.4980
0.20	0.0793	0.65	0.2422	1.10	0.3643	1.55	0.4394	2.00	0.4772	2.90	0.4981
0.21	0.0832	0.66	0.2454	1.11	0.3665	1.56	0.4406	2.02	0.4783	2.92	0.4982
0.22	0.0871	0.67	0.2486	1.12	0.3686	1.57	0.4418	2.04	0.4793	2.94	0.4984
0.23	0.0910	0.68	0.2517	1.13	0.3708	1.58	0.4429	2.06	0.4803	2.96	0.4985
0.24	0.0948	0.69	0.2549	1.14	0.3729	1.59	0.4441	2.08	0.4812	2.98	0.4986
0.25	0.0987	0.70	0.2580	1.15	0.3749	1.60	0.4452	2.10	0.4821	3.003	04987
0.26	0.1026	0.71	0.2611	1.16	0.3770	1.61	0.4463	2.12	0.4830	.20	0.4993
0.27	0.1064	0.72	0.2642	1.17	0.3790	1.62	0.4474	2.14	0.4838	3.40	0.4997
0.28	0.1103	0.73	0.2673	1.18	0.3810	1.63	0.4484	2.16	0.4846	3.60	0.4998
0.29	0.1141	0.74	0.2703	1.19	0.3830	1.64	0.4495	2.18	0.4854	3.80	0.4999
0.30	0.1179	0.75	0.2734	1.20	0.3849	1.65	0.45150.	2.20	0.4861	4.004	0.4999
0.31	0.1217	0.76	0.2764	1.21	0.3869	1.66	4505	2.22	0.4868	.50	0.5000
0.32	0.1255	0.77	0.2794	1.22	0.3883	1.67	0.4525	2.24	0.4875	5.00	0.5000
0.33	0.1293	0.78	0.2823	1.23	0.3907	1.68	0.4535	2.26	0.4881		
0.34	0.1331	0.79	0.2852	1.24	0.3925	1.69	0.4545	2.28	0.4887	\downarrow	\downarrow
0.35	0.1368	0.80	0.2881	1.25	0.3944	1.70	0.4554	2.30	0.4893	+∞	0.5
0.36	0.1406	0.81	0.2910	1.26	0.3962	1.71	0.4564	2.32	0.4898		
0.37	0.1443	0.82	0.2939	1.27	0.3980	1.72	0.4573	2.34	0.4904		
0.38	0.1480	0.83	0.2967	1.28	0.3997	1.73	0.4582	2.36	0.4909		
0.39	0.1517	0.84	0.2995	1.29	0.4015	1.74	0.4591	2.38	0.4913		
0.40	0.1554	0.85	0.3023	130	0.4032	1.75	0.4599	2.40	0.4918		
0.41	0.1591	0.86	0.3051	131	0.4049	1.76	0.4608	2.42	0.4922		
0.42	0.1628	0.87	0.3078	1.32	0.4066	1.77	0.4616	2.44	0.4927		
0.43	0.1654	0.88	0.3106	1.33	0.4082	1.78	0.4625	2.46	0.4931		
0.44	0.1700	0.89	0.3133	1.34	0.4099	1.79	0.4633	2.48	0.4934		

3. Распределение Стьюдента (двусторонняя критическая область). α - уровень значимости, $\gamma = 1$ - α - доверительная вероятность, ν - число степеней свободы, $n = \nu + 1$ -объем выборки.

α	0,10	0,05	0,02	0,01	0,002	0,001
γ	0,90	0,95	0,98	0,99	0,998	0,999
<i>v</i> ↓	Í		•		,	,
·						
1	6,314	12,71	31,82	63,66	318,3	636,6
2	2,920	4,303	6,965	9,925	22,33	31,60
3	2,353	3,182	4,541	5,841	10,22	12,94
4	2,132	2,776	3,747	4,604	7,173	8,610
5	2,015	2,571	3,365	5,032	5,893	6,859
			•	-	-	-
6	1,943	2,447	3,143	3,707	5,208	5,959
7	1,895	2,365	2,998	3,499	4,785	5,405
8	1,860	2,306	2,896	3,355	4,501	5,041
9	1,833	2,262	2,821	3,250	4,297	4,781
10	1,812	2,228	2,764	3,169	4,144	4,587
11	1,796	2,201	2,718	3,106	4,025	4,437
12	1,782	2,179	2,681	3,055	3,930	4,318
13	1,771	2,160 2,145	2,650	3,012	3,852	4,221
14	1,761	2,131	2,624	2,977	3,787	4,140
15	1,753		2,602	2,947	3,733	4,073
	1.746	2,120				
16	1,746	2,110	2,583	2,921	3,686	4,015
17	1,740	2,101	2,567	2,898	3,646	3,965
18	1,734	2,093	2,552	2,878	3,611	3,922
19	1,729	2,086	2,539	2,861	3,579	3,883
20	1,725		2,528	2,845	3,562	3,850
	1.701	2,080				
21	1,721	2,074	2,518	2,831	3,527	3,819
22	1,717	2,069	2,508	2,819	3,505	3,792
23	1,714	2,064	2,500	2,807	3,485	3,767
24	1,711	2,060	2,492	2,797	3,467	3,745
25	1,708	• 0.76	2,485	2,787	3,450	3,725
26	1.706	2,056	2.470	2.770	2.425	2.707
26	1,706	2,052	2,479	2,779	3,435	3,707
27	1,703	2,048	2,473	2,771	3,421	3,690
28	1,701	2,045	2,467	2,763	3,408	3,674
29	1,699 1,697	2,042	2,462	2,756	3,396	3,659
30	1,09/	2021	2,457	2,750	3,385	3,646
40	1,684	2,021 2,009	2,423	2,704	3,307	3,551
50	1,676	2,009	2,423	2,704	3,262	3,495
60	1,671	1,990	2,390	2,660	3,232	3,460
80	1,664	1,984	2,374	2,639	3,195	3,415
100	1,660	1,972	2,374	2,626	3,174	3,389
200	1,653	1,965	2,345	2,601	3,131	3,339
300	1,648	1,960	2,334	2,586	3,106	3,310
	1,645	1,700	2,326	2,576	3,090	3,291
∞	1,010		4,340	10 ليوك	3,050	3,431

4. χ^2 – распределение. (*v-число степеней свободы, \alpha-уровень значимости.*)

α						
v	0,20	0,10	0,05	0,02	0,01	0,001
1	1,642	2,706	3,841	5,412	6,635	10,827
2	3,219	4,605	5,991	7,824	9,210	13,815
3	4,642	6,251	7,815	9,837	11,345	16,266
4	5,989	7,779	9,488	11,668	13,237	18,467
5	7,289	9,236	11,070	13,388	15,086	20,515
6	8,558	10,645	12,592	15,033	16,812	22,457
7	9,803	12,017	14,067	16,622	18,475	24,322
8	11,030	13,362	15,507	18,168	20,090	26,125
9	12,242	14,684	16,919	19,679	21,666	27,877
10	13,442	15,987	18,307	21,161	23,209	29,588
11	14,631	17,275	19,675	22,618	24,795	31,264
12	15,812	18,549	21,026	24,054	24,217	32,909
13	16,985	19,812	22,362	25,472	27,688	34,528
14	18,151	21,064	23,685	26,783	29,141	36,123
15	19,311	22,307	24,996	28,259	30,578	37,697
16	20,465	23,542	26,296	29,633	32,000	39,252
17	21,615	24,769	27,587	30,995	32,409	40,790
18	22,760	25,989	28,869	32,346	34,805	42,312
19	23,900	27,204	30,144	33,678	36,191	43,820
20	25,038	28,412	31,410	35,020	37,566	45,315
21	26,171	29,615	32,671	36,343	38,932	46,797
22	27,301	30,813	33,924	37,659	40,289	48,268
23	28,429	32,007	35,172	38,968	41,638	49,728
24	29,553	33,196	36,415	40,270	42,980	51,179
25	30,675	34,382	37,652	41,566	42,314	52,620
26	31,795	35,563	38,885	42,856	45,642	54,052
27	32,912	36,741	40,113	44,140	46,963	55,476
28	34,027	37,916	41,337	45,419	48,278	56,893
29	35,139	39,087	42,557	46,693	49,588	58,302
30	36,250	40,256	43,773	47,962	50,892	59,703

5. Таблица значений $q=q\left(\gamma,n\right)$. $\left(1-q\right)s<\sigma<\left(1+q\right)s$, если q<1 , $0<\sigma<\left(1+q\right)s$, если q>1 .

$$\left(s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}\right)$$

ny	0,95	0,99	0,999	n y	0,95	0,99	0,999
5	1,37	2,67	5,64	20	0,37	0,58	0,88
6	1,09	2,01	3,88	25	0,32	0,49	0,73
7	0,92	1,62	2,98	30	0,28	0,43	0,63
8	0,80	1,38	2,42	35	0,26	0,38	0,56
9	0,71	1,20	2,06	40	0,24	0,35	0,50
10	0,65	1,08	1,80	45	0,22	0,32	0,46
11	0,59	0,98	1,60	50	0,21	0,30	0,43
12	0,55	0,90	1,45	60	0,188	0,269	0,38
13	0,52	0,83	1,33	70	0,174	0,245	0,34
14	0,48	0,78	1,23	80	0,161	0,226	0,31
15	0,46	0,73	1,15	90	0,151	0,211	0,29
16	0,44	0,70	1,07	100	0,143	0,198	0,27
17	0,42	0,66	1,01	150	0,115	0,160	0,211
18	0,40	0,63	0,96	200	0,099	0,136	0,185
19	0,39	0,60	0,92	250	0,089	0,120	0,162

6. Значения функции Колмогорова

$$P(\lambda) = \sum_{k=-\infty}^{+\infty} (-1)^k e^{-2k^2 \lambda^2}$$

Уровень значимости α	0,25	0,20	0,10	0,05	0,02	0,01	0,005	0,0001
$P(\lambda_{\kappa p.}) = 1 - a$	0,75	0,80	0,90	0,95	0,98	0,99	0,995	0,999
$\lambda_{\kappa p}$.	1,02	1,07	1,22	1,36	1,52	1,63	1,73	1,95

СОДЕРЖАНИЕ

_	_	_	ю разделам		_	
	_	_	ностей», «Э			
			•••••••			
_			м семестра			
	_		Теория вероя			
			•••••			
, ,						
			•••••			
		-	тестационної	-		_
•			•••••••			
			•••••			
, ,						
			••••••			
	_		тическая ста			
Решение т	ипового	варианта	аттестацио	риной ра	аботы по	теме
			•••••••			
Задание 3				•••••		
Литература.	•••••	••••••	••••••	••••••	••••••	
Приломение	т					

Учебное издание

Составители: Денисович Ольга Константинова Лизунова Ирина Владимировна

ТЕОРИЯ ВЕРОЯТНОСТЕЙ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Методические рекомендации и варианты аттестационных работ по курсу «Высшая математика» для студентов технических специальностей

Ответственный за выпуск: Лизунова И.В.

Редактор: Строкач Т.В. **Корректор:** Никитчик Е.В.

Компьютерная верстка: Кармаш Е.Л.

Подписано к печати 19.12.2005 г. Формат 60х84 ½. Усл. п. л. 3,95. Усл. изд. л. 4,25. Заказ № 1211. Тираж 200 экз. Отпечатано на ризографе Учреждение образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.