Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа РЗ115	_ К работе допущен				
Студент Конаныхина А.А.	Работа выполнена				
Преподаватель Боярский К.К.	Отчет принят				
Рабочий протокол и отчет по лабораторной работе №3.06					

«Изучение электрических свойств

сегнетоэлектриков»

Цель работы:

- 1. Определение значений электрического смещения насыщения
- Ds, остаточной поляризации Pr, коэрцитивной силы Ec для предельной петли гистерезиса сегнетоэлектрика.
- 2. Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
- 3. Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E.
- 4. Определение значений начальной и максимальной диэлектрической проницаемости.

Схема установки:

Измерительные приборы:

Nº	Наименование	Используемый диапазон	Погрешность прибора		
п/п					
1	Осциллограф	Настраиваемый	Настраиваемый		

Исходные данные:

Электрическая постоянная (физическая константа):

$$\varepsilon_0 = 8.854 \cdot 10^{-12} \, \Phi \cdot \text{M}^{-1}$$

Параметры установки:

Номиналы резисторов:

 $R_1 = 47 \ \kappa \text{Ом} = 47000 \ \text{Ом}$

 $R_2 = 470 \ \kappa O M = 470000 \ O M$

Ёмкость эталонного конденсатора:

 $C_1 = 1$ мк $\Phi = 0,000001$ Φ

Площадь обкладок конденсатора:

 $S = 500 \text{ mm}^2 = 0.0005 \text{ m}^2$

Расстояние между пластинами конденсатора:

d = 0.5 MM = 0.0005 M

Результаты прямых измерений:

Для 1 эксперимента был получен набор координат крайней точки предельной петли гистерезиса (D_s по оси ординат и E_s по оси абсцисс) и точек пересечения петли с осями координат (D_r и E_c) в делениях (см. Рис. 1 и Приложение 1).

D_s = 2,7 дел

E_s = 2,6 дел

 $D_r = 0,4$ дел

E_c = 1 дел

Так как 1 дел = 5В согласно размерности, то для получения напряжения U_{C_1} и U_{R_1} , напряжений на вертикальной и горизонтальной развёртках осциллографа соответственно, домножим значения на 5:

$$U_{C_1} = 2.7 * 5 = 13.5B$$

$$U_{R_1} = 13B$$

Рис. 1. Петля гистерезиса сегнетоэлектрика

Рассчитаем значения коэрцитивного поля E_c и электрической индукции в состоянии насыщения D_s по следующим формулам:

(1) $D_S = \frac{c_1}{S} * U_{c_1}$, где C_1 – ёмкость эталонного конденсатора, S – площадь обкладок сегнетоэлектрического конденсатора.

(2) $E_c = \frac{R_1 + R_2}{R_1} * \frac{U_{R_1}}{d}$, где d — расстояние между обкладками конденсатора, а U_{R_1} - напряжение на горизонтальной развёртке осциллографа.

Расчеты:

$$D_s = \frac{0,000001}{0,0005} * 13,5 = 0,027 \text{ K}\pi/\text{m}^2$$
 $E_c = \frac{47000 + 470000}{47000} * \frac{5}{0.0005} = 110000 \text{ B/m}$

Для второго эксперимента заполним Таблицу 1: уменьшаем напряжение каждый шаг на ΔU = 2,0B в диапазоне U= 5÷17B и ΔU = 0,6B в диапазоне U= 0,4÷5,0B, заполним второй и третий столбец горизонтальной X и вертикальной Y координатами правой вершины предельной петли гистерезиса в делениях шкалы экрана, также указывая значения коэффициентов усиления по каждому из каналов осциллографа K_x и K_y , соответственно. Оставшиеся столбцы заполним по формулам:

$$D = \frac{C_1}{S} * U_{c_1}$$

$$E = \frac{R_1 + R_2}{R_1} * \frac{U_{R_1}}{d}$$

$$\varepsilon = \frac{D}{\varepsilon_0 E}$$

Таблица 1.

Nº	U, B	K _x	K _y	Х	Υ	Е	D	3
1	17	5	5	2,6	2,7	286000	0,027	10662,48
2	15	5	5	2,3	2,5	253000	0,025	11160,41
3	13	5	5	2	2,1	220000	0,021	10780,95
4	11	5	5	1,65	1,65	181500	0,0165	10267,57
5	9	5	5	1,3	1	143000	0,01	7898,13
6	7	5	5	1,05	0,5	115500	0,005	4889,32
7	5	5	5	0,75	0,2	82500	0,002	2738,02
8	4,4	2	2	0,66	0,14	29040	0,00056	2177,97
9	3,8	2	2	0,58	0,12	25520	0,00048	2124,33
10	3,2	2	2	0,48	0,1	21120	0,0004	2139,08
11	2,6	2	2	0,4	0,06	17600	0,00024	1540,14
12	2	0,5	0,5	0,305	0,04	3355	0,00004	1346,57
13	1,4	0,5	0,5	0,215	0,02	2365	0,00002	955,12
14	0,8	0,5	0,5	0,12	0,01	1320	0,00001	855,63
15	0,2	0,5	0,5	0,025	0,005	275	0,000005	2053,51

Расчет результатов косвенных измерений:

Для 1 эксперимента найдём остаточную поляризацию P_r и тангенс угла диэлектрических потерь tg δ . Для этого посчитаем смещение D_r :

$$D_r = \frac{0,000001}{0,0005} * 2 = 0,004 \text{ Кл/м}^2$$

Проведём расчёты по формулам:

$$D_{\mathrm{r}}$$
 = P_{r} + $arepsilon_0 E_{\mathrm{c}}$, откуда P_r = D_r - $arepsilon_0 E_{\mathrm{c}}$

$$tg \; \delta \; = rac{1}{\pi} * rac{\oint D_r dE_c}{D_S E_S}$$
, где D_S и E_S в дел.

Расчёт

$$P_r = 0.004 - 8.854 * 10^{-12} * 110000 = 0.004 \ Kл/м^2$$

$$tg \ \delta = \frac{1}{3,14} * \frac{0,004 * 110000}{2,7 * 2,6} = 19,95$$

Расчет погрешностей:

Найдём погрешности исходных величин.

Электрическое смещение насыщения:

$$D_s = \frac{C_1}{S} * U_{c_2}$$

 $\Delta {\it C}_1 = 0$,1 * ${\it C}_1$ (Табличная погрешность с лабораторного стенда)

 $\Delta U_{c_1} = 0,5$ (Цена деления)

$$\Delta S = 0.1 * S$$

Возьмём сумму квадратов частных производных, умноженных на погрешности величин.

$$\Delta D_S = \sqrt{\left(\left(\frac{1}{S} * U_{c_1}\right) * \Delta C_1\right)^2 + \left(\left(\frac{C_1}{S}\right) * \Delta U_{c_1}\right)^2 + \left(\left(-\frac{C_1}{S^2} U_{c_1}\right) * \Delta S\right)^2}$$

$$\Delta D_s = \sqrt{\left(\left(\frac{1}{0,0005} * 13,5\right) * 0,000001 * 0,1\right)^2 + \left(\left(\frac{0,000001}{0,0005}\right) * 0,5\right)^2 + \left(\left(-\frac{0,000001}{0,0005^2} 13,5\right) * 0,0005 * 0,1\right)^2}$$

 $\Delta D_s = 0,004$

Для значения коэрцитивного поля:

$$\begin{split} E_{c} &= \frac{R_{1} + R_{2}}{R_{1}} \frac{U_{R_{1}}}{d} \\ \Delta E_{c} &= \sqrt{\left(\left(-\frac{R_{2}}{R_{1}^{2}} * \frac{U_{R_{1}}}{d}\right) * \Delta R_{1}\right)^{2} + \left(\left(\frac{1}{R_{1}} * \frac{U_{R_{1}}}{d}\right) * \Delta R_{2}\right)^{2} + \left(\left(\frac{R_{1} + R_{2}}{R_{1}} * \frac{1}{d}\right) * \Delta U_{R_{1}}\right)^{2} + \left(\left(-\frac{R_{1} + R_{2}}{R_{1}} \frac{U_{R_{1}}}{d^{2}}\right) * \Delta d\right)^{2}} \\ &= \sqrt{\left(\left(-\frac{470000}{47000^{2}} * \frac{5}{0,0005}\right) 47000 * 0,1\right)^{2} + \left(\left(\frac{1}{47000} * \frac{5}{0,0005}\right) * 470000 * 0,1\right)^{2} + \left(\left(\frac{47000 + 470000}{47000} * \frac{1}{0,0005}\right) * 0,5\right)^{2} + \left(\left(-\frac{47000 + 470000}{47000} \frac{5}{0,0005^{2}}\right) * 0,0005 * 0,1\right)^{2}} \end{split}$$

 $\Delta E_c = 4000$

Для значения остаточной поляризации:

$$P_r = D_r - \varepsilon_0 E_c$$

Для этого посчитаем погрешность D_r :

$$\begin{split} \Delta D_r &= \sqrt{\left(\left(\frac{1}{S}*U_{c_1}\right)*\Delta C_1\right)^2 + \left(\left(\frac{C_1}{S}\right)*\Delta U_{c_1}\right)^2 + \left(\left(-\frac{C_1}{S^2}U_{c_1}\right)*\Delta S\right)^2} \\ \Delta D_r &= \\ &= \sqrt{\left(\left(\frac{1}{0,0005}*2\right)*0,0000001*0,1\right)^2 + \left(\left(\frac{0,000001}{0,0005}\right)*0,5\right)^2 + \left(\left(-\frac{0,000001}{0,0005^2}2\right)*0,0005*0,1\right)^2} \\ \Delta D_r &= 0,0011 \\ \Delta P_r &= \sqrt{\left((1)\Delta D_r\right)^2 + \left((\varepsilon_0)*\Delta E\right)^2 + \left((E)*\Delta \varepsilon_0\right)^2} \\ \Delta P_r &= \sqrt{\left((1)0,0011\right)^2 + \left((8,8541878*10^{-12})*4000\right)^2 + \left((110000)*0,000000005*10^{-12}\right)^2} \\ \Delta P_r &= 0,0011 \end{split}$$

Графики:

В ходе обработки результатов из таблицы 1 2-го эксперимента получились следующие графики:

По этому графику видна нелинейность роста индукции с ростом напряженности электрического поля.

На данном графике есть хорошо видимый максимум, а также видно, что есть значение $\epsilon_{\text{нач}}$ при E=0. График начинается не с нуля, значит есть минимум диэлектрической проницаемости.

Результаты:

В ходе выполнения лабораторной работы были получены следующие значения:

Для 1-го эксперимента:

 $D_s = 0.027 \pm 0.004 \text{ Кл/m}^2 - Электрическая индукция в состоянии насыщения (электрическое смещение насыщения).$

 $E_c = 110000 \pm 4000 \text{ B/м}$ – Коэрцитивное поле.

 $P_r = 0.004 \pm 0.004 \text{ Кл/м}^2 - Остаточная поляризация.}$

 $tg \ \delta$ = 19,95 — Тангенс угла диэлектрических потерь.

 $S \approx 2,5 \text{ cm}^2 - Примерная площадь петли гистерезиса.}$

Для 2-го эксперимента:

 ϵ_{max} = 11160 – Максимальная диэлектрическая проницаемость.

 $\epsilon(0) \approx 2000$ – Минимум диэлектрической проницаемости.

Вывод:

В ходе эксперимента была изучена петля гистерезиса, изучены некоторые свойства сегнетоэлектриков, такие как поляризация под действием электрического поля и влияние потенциала поля на этот процесс: чем сильнее поле, тем сильнее смещение D, но зависимость не линейна как у проводников и диэлектриков.