

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
31. Januar 2002 (31.01.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/08195 A1

(51) Internationale Patentklassifikation⁷: C07D 231/16,
A01N 43/56, C07D 401/12, C07C 251/48, 251/52, C07D
213/30, C07F 5/02, C07C 223/06, 225/22

Kloster 47, 42799 Leichlingen (DE). JAETSCH, Thomas
[DE/DE]; Eintrachtstrasse 105, 50668 Köln (DE).

(21) Internationales Aktenzeichen: PCT/EP01/07990

(74) Gemeinsamer Vertreter: BAYER AKTIENGESELLSCHAFT; 51368 Leverkusen (DE).

(22) Internationales Anmeldedatum:
11. Juli 2001 (11.07.2001)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,
MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

(25) Einreichungssprache: Deutsch

(84) Bestimmungstaaten (regional): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),
OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML,
MR, NE, SN, TD, TG).

(30) Angaben zur Priorität:
100 35 860.8 24. Juli 2000 (24.07.2000) DE
101 22 097.9 7. Mai 2001 (07.05.2001) DE

Veröffentlicht:
— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden
Frist; Veröffentlichung wird wiederholt, falls Änderungen
eintreffen

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme
von US): BAYER AKTIENGESELLSCHAFT [DE/DE];
51368 Leverkusen (DE).

Zur Erklärung der Zweibuchstaben-Codes und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

WO 02/08195 A1

(54) Title: PYRAZOLYL BIPHENYL CARBOXAMIDES

(54) Bezeichnung: PYRAZOLYLBIPHENYL CARBOXAMIDE

(57) Abstract: The invention relates to novel pyrazolyl biphenyl carboxamides of formula (I) wherein R1, R2, X, m, Y and n have the designated meaning as cited in the description. The invention also relates to other methods for producing said materials and the use thereof for controlling undesired microorganisms, in addition to novel intermediate products and the production thereof.

(57) Zusammenfassung: Neue Pyrazolylbiphenylcarboxamide der Formel (I), in welcher R1, R2, X, m, Y und n die in der Beschreibung angegebenen Bedeutungen haben, mehrere Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung unerwünschter Mikroorganismen, sowie neue Zwischenprodukte und deren Herstellung.

- 1 -

PYRAZOLYLBIPHENYLCARBOXAMIDE UND DEREN VERWENDUNG ZUR BEKÄMPFUNG UNERWÜNSCHTER
MIKROORGANISMEN

Die vorliegende Erfindung betrifft neue Pyrazolylbiphenylcarboxamide, mehrere
5 Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von uner-
wünschten Mikroorganismen.

Es ist bereits bekannt geworden, dass zahlreiche Carboxanilide fungizide Eigen-
schaften besitzen (vergleiche WO 93/11 117, EP-A 0 545 099, EP-A 0 589 301, WO
10 99/09013, DE 198 40 322). So lassen sich 1,3-Dimethyl-5-fluorpyrazol-4-carbon-
säure-(2-cyclohexyl)-anilid, 1,3-Dimethyl-pyrazol-4-carbonsäure-(2-phenyl)-anilid
und 1,3-Dimethyl-pyrazol-4-carbonsäure-[2-(2-fluor-phenyl)]-anilid zur Bekämpfung
von Pilzen einsetzen. Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen
Aufwandmengen in manchen Fällen zu wünschen übrig.

15

Es wurden nun neue Pyrazolylbiphenylcarboxamide der Formel (I)

in welcher

20

R¹ für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, Benzyl oder Pyridyl-
methyl steht,

R² für Wasserstoff oder C₁-C₆-Alkyl steht,

25

- 2 -

- X für Halogen, Nitro, Cyano, Hydroxy, Carboxyl, C₁-C₈-Alkyl, C₁-C₆-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₈-Alkoxy, C₁-C₆-Halogenalkoxy mit 1 bis 5 Halogenatomen, C₁-C₈-Alkylthio, C₁-C₆-Halogenalkylthio mit 1 bis 5 Halogenatomen, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxycarbonyl oder für -C(R²)=N-OR¹ steht,
- m für ganze Zahlen von 0 bis 3 steht, wobei X für gleiche oder verschiedene Reste steht, wenn m für 2 oder 3 steht,
- Y für Halogen, Nitro, Cyano, Hydroxy, Carboxyl, C₁-C₈-Alkyl, C₁-C₆-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₈-Alkoxy, C₁-C₆-Halogenalkoxy mit 1 bis 5 Halogenatomen, C₁-C₈-Alkylthio, C₁-C₆-Halogenalkylthio mit 1 bis 5 Halogenatomen, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxycarbonyl oder C₁-C₆-Alkoximino-C₁-C₆-alkyl steht und
- n für ganze Zahlen von 0 bis 4 steht, wobei Y für gleiche oder verschiedene Reste steht, wenn n für 2, 3 oder 4 steht,

gefunden.

20

Weiterhin wurde gefunden, dass man Pyrazolylbiphenylcarboxamide der Formel (I) erhält, indem man

a) Carbonsäure-Derivate der Formel (II)

25

in welcher

- 3 -

G für Halogen, Hydroxy oder C₁-C₆-Alkoxy steht,

mit Anilin-Derivaten der Formel (III)

5

in welcher

R¹, R², X, m, Y und n die oben angegebenen Bedeutungen haben,

10

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

15

b) Carboxamid-Derivate der Formel (IV)

in welcher

20

- 4 -

X und m die oben angegebenen Bedeutungen haben,

mit Boronsäure-Derivaten der Formel (V)

5

in welcher

R¹, R², Y und n die oben angegebenen Bedeutungen haben und

10

G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethylethylen
stehen,

15

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart
eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdün-
nungsmittels umsetzt,

oder

c) Carboxamid-Boronsäure-Derivate der Formel (VI)

20

in welcher

- 5 -

X und m die oben angegebenen Bedeutungen haben und

G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethylethylen stehen,

5

mit Phenyloxim-Derivaten der Formel (VII)

in welcher

10

R¹, R², Y und n die oben angegebenen Bedeutungen haben,

15

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

d) Biphenylacyl-Derivate der Formel (VIII)

20

in welcher

- 6 -

R^2 , X, m, Y und n die oben angegebenen Bedeutungen haben und

mit Alkoxyaminen der Formel (IX)

5

in welcher R^1 die oben angegebenen Bedeutungen hat,

gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in
10 Gegenwart eines Verdünnungsmittels umsetzt,

oder

e) Hydroxylamin-Derivate der Formel (I-a)

15

in welcher

R^2 , X, m, Y und n die oben angegebenen Bedeutungen haben,

20 mit Verbindungen der Formel (X)

in welcher

- 7 -

R³ für C₁-C₆-Alkyl steht und,

E für Chlbr, Brom, Iod, Methansulfonyl oder p-Toluolsulfonyl steht,

5 oder

R³ und E zusammen für (Di-C₁-C₆-alkyl)sulfat stehen,

10 gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in
Gegenwart eines Verdünnungsmittels umsetzt;

oder

f) Carboxamid-Derivate der Formel (IV)

15

in welcher

X und m die oben angegebenen Bedeutungen haben,

20

mit Phenyloxim-Derivaten der Formel (VII)

in welcher

R¹, R², Y und n die oben angegebenen Bedeutungen haben,

5 in Gegenwart eines Palladium- oder Platin-Katalysators, in Gegenwart von
4,4',4",5,5,5',5'-Octamethyl-2,2'-bis-1,3,2-dioxaborolan, gegebenenfalls in
Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines
Verdünnungsmittels umsetzt.

10 Schließlich wurde gefunden, dass die neuen Pyrazolylbiphenylcarboxamide der
Formel (I) sehr gute mikrobizide Eigenschaften besitzen und zur Bekämpfung uner-
wünschter Mikroorganismen sowohl im Pflanzenschutz als auch im Materialschutz
verwendbar sind.

15 Überraschenderweise zeigen die erfindungsgemäßen Pyrazolylbiphenylcarboxamide
der Formel (I) eine wesentlich bessere fungizide Wirksamkeit als die konstitutionell
ähnlichsten, vorbekannten Wirkstoffe gleicher Wirkungsrichtung.

Die erfindungsgemäßen Pyrazolylbiphenylcarboxamide sind durch die Formel (I)
20 allgemein definiert.

R¹ steht bevorzugt für Wasserstoff, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl mit 1 bis 5
Fluor-, Chlor- und/oder Bromatomen, Benzyl oder Pyridylmethyl.

25 R² steht bevorzugt für Wasserstoff oder C₁-C₄-Alkyl.

X steht bevorzugt für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl,
C₁-C₆-Alkyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder
Bromatomen, C₁-C₆-Alkoxy, C₁-C₂-Halogenalkoxy mit 1 bis 5 Fluor-, Chlor-
und/oder Bromatomen, C₁-C₆-Alkylthio, C₁-C₂-Halogenalkylthio mit 1 bis 5

Fluor-, Chlor und/oder Bromatomen, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyloxy, C₃-C₇-Cycloalkyl, C₁-C₄-Alkoxycarbonyl oder für -C(R²)=N-OR¹.

5 m steht bevorzugt für ganze Zahlen von 0 bis 3, wobei X für gleiche oder verschiedene Reste steht, wenn m für 2 oder 3 steht.

10 Y steht bevorzugt für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl, C₁-C₆-Alkyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₆-Alkoxy, C₁-C₂-Halogenalkoxy mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₆-Alkylothio, C₁-C₂-Halogenalkylthio mit 1 bis 5 Fluor-, Chlor und/oder Bromatomen, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyloxy, C₃-C₇-Cycloalkyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkoximino-C₁-C₄-alkyl.

15 n steht bevorzugt für ganze Zahlen von 0 bis 3, wobei Y für gleiche oder verschiedene Reste steht, wenn n für 2 oder 3 steht.

20 R¹ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Chlorethyl, Benzyl, 2-Pyridylmethyl, 3-Pyridylmethyl oder 4-Pyridylmethyl.

25 R² steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl oder n-Butyl.

30 X steht besonders bevorzugt für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, i-Butyl, tert.-Butyl, Trichlormethyl, Trifluormethyl, Difluormethyl, Difluorchlor-methyl, Methoxy, Ethoxy, Disfluormethoxy, Trifluormethoxy, Methylthio, Trifluormethylthio, Difluorchloromethylthio, Allyloxy, Propargyloxy, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Methoxycarbonyl, Ethoxycarbonyl oder für -C(R²)=N-OR¹.

- 10 -

m steht besonders bevorzugt für ganze Zahlen von 0 bis 2, wobei X für gleiche oder verschiedene Reste steht, wenn m für 2 steht.

Y steht besonders bevorzugt für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, i-Butyl, tert.-Butyl, Trichlormethyl, Trifluormethyl, Difluormethyl, Difluorchlor-methyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Trifluormethylthio, Difluorchlormethylthio, Allyloxy, Propargyloxy, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Methoxycarbonyl, Ethoxycarbonyl oder Methoximinomethyl.

n steht besonders bevorzugt für ganze Zahlen von 0 bis 2, wobei Y für gleiche oder verschiedene Reste steht, wenn n für 2 steht.

15 Bevorzugt sind auch Verbindungen der Formel (I-b)

in welcher

20 R¹, R², X, m, Y und n die oben angegebenen Bedeutungen haben.

- 11 -

Insbesondere bevorzugt sind Verbindungen der Formel (I-b), in welchen R¹, R², X, m, Y und n die oben als bevorzugt oder besonders bevorzugt angegebenen Bedeutungen haben.

5 Bevorzugt sind außerdem Verbindungen der Formel (I-c)

in welcher

10 R¹, R², X, m, Y und n die oben angegebenen Bedeutungen haben.

Insbesondere bevorzugt sind Verbindungen der Formel (I-c), in welchen R¹, R², X, m, Y und n die oben als bevorzugt oder besonders bevorzugt angegebenen Bedeutungen haben.

15

Bevorzugt sind außerdem Verbindungen der Formel (I-d)

in welcher

20

R¹, R², X, m, Y und n die oben angegebenen Bedeutungen haben.

Insbesondere bevorzugt sind Verbindungen der Formel (I-d), in welchen R¹, R², X, m, Y und n die oben als bevorzugt oder besonders bevorzugt angegebenen Bedeutungen haben.

5 Bevorzugt oder besonders bevorzugt sind Verbindungen, welche die unter bevorzugt oder besonders bevorzugt genannten Substituenten tragen.

Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils 10 geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können. Mehrere Reste mit denselben Indizes wie beispielsweise m Reste X für 15 m > 1, können gleich oder verschieden sein.

Durch Halogen substituierte Reste, wie z.B. Halogenalkyl, sind einfach oder mehrfach halogeniert. Bei mehrfacher Halogenierung können die Halogenatome 20 gleich oder verschieden sein. Halogen steht dabei für Fluor, Chlor, Brom und Iod, insbesondere für Fluor, Chlor und Brom.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restdefinitionen bzw. Erläuterungen können jedoch auch untereinander, also zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten 25 für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

Die genannten Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Definitionen entfallen.

- 13 -

Verwendet man 1,3-Dimethyl-5-fluorpyrazol-4-carbonsäurechlorid und 2-(4-Methoximinomethyl-phenyl)-anilin als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema veranschaulicht werden.

5

10

Verwendet man 1,3-Dimethyl-5-fluorpyrazol-4-carbonsäure-(2-brom)-anilid und (4-Methoximinomethyl)-phenylboronsäure als Ausgangsstoffe sowie einen Katalysator, so kann der Verlauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden.

15

Verwendet man 2-[(1,3-Dimethyl-5-fluorpyrazol-4-yl)carbonylamino]phenyl-boronsäure und 1-Brom-2-methoximinomethyl-benzol als Ausgangsstoffe sowie einen Katalysator, so kann der Verlauf des erfindungsgemäßen Verfahrens (c) durch das folgende Formelschema veranschaulicht werden.

- 14 -

Verwendet man 1,3-Dimethyl-5-fluorpyrazol-4-carbonsäure-[2-(4-acetyl-phenyl)-4-fluor]-anilid und Methoxaminhydrochlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (d) durch das folgende Formelschema veranschaulicht werden.

10

Verwendet man 1,3-Dimethyl-5-fluorpyrazol-4-carbonsäure-[2-(4-hydroximino-ethyl)-phenyl]-anilid und Methylbromid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (e) durch das folgende Formelschema veranschaulicht werden.

15

Verwendet man 1,3-Dimethyl-5-fluorpyrazol-4-carbonsäure-(2-brom)-anilid und 1-Brom-4-methoximinomethyl-benzol als Ausgangsstoffe sowie einen Katalysator und 4,4,4',4',5,5,5',5'-Octamethyl-2,2'-bis-1,3,2-dioxaborolan, so kann der Verlauf des erfindungsgemäßen Verfahrens (f) durch das folgende Formelschema veranschaulicht werden.

5

Erläuterung der Verfahren und Zwischenprodukte

10

Die bei der Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Carbonsäure-Derivate sind durch die Formel (II) allgemein definiert. In dieser Formel steht G steht bevorzugt für Chlor, Brom, Hydroxy, Methoxy oder Ethoxy, besonders bevorzugt für Chlor, Hydroxy oder Methoxy.

15

Die Carbonsäure-Derivate der Formel (II) sind bekannt oder lassen sich nach bekannten Verfahren herstellen (vgl. WO 93/11 117, EP-A 0 545 099, EP-A 0 589 301 und EP-A 0 589 313).

20

Die bei der Durchführung des erfindungsgemäßen Verfahrens (a) als Reaktionskomponenten benötigten Anilin-Derivate sind durch die Formel (III) allgemein definiert. In dieser Formel haben R¹, R², X, m, Y und n vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe

- 16 -

der Formel (I) bevorzugt bzw. besonders bevorzugt für diese Reste bzw. diese Indices genannt wurden.

Die Anilin-Derivate der Formel (III) sind neu. Sie lassen sich teilweise nach bekannten Methoden herstellen (vgl. EP-A 0 545 099 und EP-A 0 589 301). Man erhält Anilin-Derivate der Formel (III) außerdem, indem man

g) 2-Halogenanilin-Derivate der allgemeinen Formel (XI)

10

in welcher

X und m die oben angegebenen Bedeutungen haben und,

15

Hal für Halogen steht,

mit Boronsäure-Derivaten der Formel (V)

20

in welcher R1, R2, Y, n, G1 und G2 die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt

5

oder

h) Anilinboronsäuren der Formel (XII)

10

in welcher

X, m, G¹ und G² die oben angegebenen Bedeutungen haben

mit Phenyloxim-Derivaten der Formel (VII)

15

in welcher R¹, R², Y und n die oben angegebenen Bedeutungen haben,

20

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (g) als Reaktionskomponenten benötigten 2-Halogenanilin-Derivate sind durch die Formel (XI) allgemein definiert. In dieser Formel haben X und m vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) bevorzugt bzw. besonders bevorzugt für diese Reste bzw. diese Indices genannt wurden. Hal steht vorzugsweise für Fluor, Chlor oder Brom, besonders bevorzugt für Chlor oder Brom.

Die 2-Halogenanilin-Derivate der Formel (XI) sind kommerziell erhältlich oder lassen sich aus den entsprechenden Nitroverbindungen durch Reduktion herstellen.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (h) als Reaktionskomponenten benötigten Anilinboronsäuren sind durch die Formel (XII) allgemein definiert. In dieser Formel haben X und m vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) bevorzugt bzw. besonders bevorzugt für diese Reste bzw. diese Indices genannt wurden. G¹ und G² stehen bevorzugt jeweils für Wasserstoff oder gemeinsam für Tetramethylethylen.

Die Anilinboronsäuren der Formel (XII) sind kommerziell erhältlich.

Die bei der Durchführung der erfindungsgemäßen Verfahren (b) und (f) als Ausgangsstoffe benötigten Carboxamid-Derivate sind durch die Formel (IV) allgemein definiert. In dieser Formel stehen X und m vorzugsweise für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden.

Die Carboxamid-Derivate der Formel (IV) sind bekannt oder lassen sich nach bekannten Verfahren herstellen (vgl. WO 91/01311, EP-A 0 371 950).

Die bei der Durchführung des erfindungsgemäßen Verfahrens (b) sowie des Verfahrens (g) als Reaktionskomponenten benötigten Boronsäure-Derivate sind durch die Formel (V) allgemein definiert. In dieser Formel haben R¹, R², Y und n vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) bevorzugt bzw. besonders bevorzugt für diese Reste bzw. diese Indices genannt wurden.

Die Boronsäure-Derivate der Formel (V) sind neu und lassen sich herstellen, indem man

10

i) Phenylboronsäuren der Formel (XIII)

in welcher

15

R², Y, n, G¹ und G² die oben angegebenen Bedeutungen haben,

mit Alkoxaminen der Formel (IX)

20

in welcher

R¹ die oben angegebenen Bedeutungen hat,

25

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.

- 20 -

Die bei der Durchführung des erfindungsgemäßen Verfahrens (h) als Reaktionskomponenten benötigten Phenylboronsäuren sind durch die Formel (XIII) allgemein definiert. In dieser Formel haben R², Y und n, vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) bevorzugt bzw. besonders bevorzugt für diese Reste bzw. diese Indices genannt wurden. G¹ und G² stehen bevorzugt jeweils für Wasserstoff oder gemeinsam für Tetramethylethylen.

Die Phenylboronsäuren der Formel (XIII) sind kommerziell erhältlich.

Die bei der Durchführung der erfindungsgemäßen Verfahren (c) als Reaktionskomponenten benötigten Carboxamid-Boronsäure-Derivate sind durch die Formel (VI) allgemein definiert. In dieser Formel stehen X und m vorzugsweise für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden. G¹ und G² stehen bevorzugt jeweils für Wasserstoff oder gemeinsam für Tetramethylethylen.

Die Carboxamid-Boronsäure-Derivate der Formel (VI) sind neu. Sie lassen sich herstellen, indem man

j) Carbonsäure-Derivate der Formel (II)

in welcher

G die oben angegebenen Bedeutungen hat,

mit Anilinboronsäuren der Formel (XII)

5 in welcher

X, m, G¹ und G² die oben angegebenen Bedeutungen haben

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls
10 in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebe-
nenfalls in Gegenwart eines Katalysators umsetzt.

Die bei der Durchführung der erfindungsgemäßen Verfahren (c), (f) und (h) als
15 Reaktionskomponenten benötigten Phenyloxim-Derivate sind durch die Formel (VII)
allgemein definiert. In dieser Formel stehen R¹, R², Y und n vorzugsweise für
diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der
erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt bzw. beson-
ders bevorzugt genannt wurden.

20 Die Phenyloxim-Derivate der Formel (VII) sind bekannt oder lassen sich nach
bekannten Verfahren herstellen (vgl. Synth. Commun. 2000, 30, 665-669, Synth.
Commun. 1999, 29, 1697-1701).

25 Die bei der Durchführung des erfindungsgemäßen Verfahrens (d) als Ausgangsstoffe
benötigten Biphenylacyl-Derivate sind durch die Formel (VIII) allgemein definiert.
In dieser Formel stehen R², X, m, Y und n für diejenigen Bedeutungen, die bereits in
Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I)
für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden.

Die Biphenylacyl-Derivate der Formel (VIII) sind neu. Sie lassen sich herstellen, indem man

5 k) Carbonsäure-Derivate der Formel (II)

in welcher

10 G die oben angegebenen Bedeutungen hat,

mit 2-Benzaldehyd-anilin-Derivaten der Formel (XIV)

15 in welcher

R², X, m, Y und n die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls
20 in Gegenwart eines inerten organischen Verdünnungsmittels umsetzt.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (k) als Reaktionskomponenten benötigten 2-Benzaldehyd-anilin-Derivate sind durch die Formel (XIV) allgemein definiert. In dieser Formel stehen R², X, m, Y und n vorzugsweise für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden.

Die 2-Benzaldehyd-anilin-Derivate der Formel (XIV) sind neu. Sie lassen sich herstellen, indem man

10

I) Anilin-Derivate der Formel (XI)

in welcher

15

X und m die oben angegebenen Bedeutungen haben und

Hal für Halogen steht,

20

mit Phenylboronsäure-Derivaten der Formel (XIII)

in welcher

R^2 , Y, n, G^1 und G^2 die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels umsetzt.

5

Die bei der Durchführung des erfindungsgemäßen Verfahrens (d) sowie des Verfahrens (i) als Reaktionskomponenten benötigten Alkoxamine sind durch die Formel (IX) allgemein definiert. In dieser Formel hat R^1 vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) bevorzugt bzw. besonders bevorzugt für diesen Rest genannt wurden. Bevorzugt werden die in der Beschreibung angegebenen Hydrochloride eingesetzt. Es können aber auch die freien Alkoxamine in dem erfindungsgemäßen Verfahren verwendet werden.

10

15

Die Alkoxamine der Formel (IX) sind kommerziell erhältlich.

20

Die bei der Durchführung des erfindungsgemäßen Verfahrens (e) als Ausgangsstoffe benötigten Hydroxylamin-Derivate sind durch die Formel (I-a) allgemein definiert. In dieser Formel steht R^2 , X, m, Y und n vorzugsweise für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt bzw. besonders bevorzugt genannt wurden.

25

Die erfindungsgemäßen Hydroxylamin-Derivate der Formel (I-a) sind neu. Sie lassen sich nach einem der oben beschriebenen erfindungsgemäßen Verfahren (a), (b), (c), (d) oder (f) herstellen.

30

Die bei der Durchführung des erfindungsgemäßen Verfahrens (e) als Reaktionskomponenten benötigten Verbindungen sind durch die Formel (X) allgemein definiert. In dieser Formel steht R^3 bevorzugt für C₁-C₄-Alkyl, besonders bevorzugt für Methyl, Ethyl, n-Propyl, i-Propyl oder n-Butyl. E steht bevorzugt für Chlor, Brom, Iod,

Methansulfonyl oder p-Toluolsulfonyl. E steht besonders bevorzugt für Chlor oder Brom.

Die Verbindungen der Formel (X) sind kommerziell erhältlich.

- 5 Als Säurebindemittel kommen bei der Durchführung der erfindungsgemäßen Verfahren (a), (b), (c), (d), (e) und (f) jeweils alle für derartige Reaktionen üblichen anorganischen und organischen Basen in Betracht. Vorzugsweise verwendbar sind Erdalkali- oder Alkalimetallhydroxide, wie Natriumhydroxid, Calciumhydroxid,
10 Kaliumhydroxid, oder auch Ammoniumhydroxid, Alkalimetallcarbonate, wie Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogen-carbonat, Alkali- oder Erdalkalimetallacetate wie Natriumacetat, Kaliumacetat, Calciumacetat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, Pyridin, N-Methylpiperidin, N,N-Dimethylaminopyridin,
15 Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU). Es ist jedoch auch möglich, ohne zusätzliches Säurebindemittel zu arbeiten, oder die Aminkomponente in einem Überschuss einzusetzen, so dass sie gleichzeitig als Säurebindemittel fungiert.

20 Als Verdünnungsmittel kommen bei der Durchführung der erfindungsgemäßen Verfahren (a), (b), (c), (d), (e) und (f) jeweils alle üblichen inerten, organischen Solventien in Frage. Vorzugsweise verwendbar sind gegebenenfalls halogenierte aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester

25

30

wie Essigsäuremethylester oder Essigsäureethylester, Sulfoxide, wie Dimethylsulf-
oxid oder Sulfone, wie Sulfolan.

Die Reaktionstemperaturen können bei der Durchführung der erfindungsgemäßen
5 Verfahren (a), (b), (c), (d), (e) und (f) jeweils in einem größeren Bereich variiert
werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 140°C,
vorzugsweise zwischen 10°C und 120°C.

Bei der Durchführung der erfindungsgemäßen Verfahren (a), (b), (c), (d), (e) und (f)
10 arbeitet man im allgemeinen jeweils unter Atmosphärendruck. Es ist aber auch mög-
lich, jeweils unter erhöhtem oder vermindertem Druck zu arbeiten.

Bei der Durchführung des erfindungsgemäßen Verfahrens (a) setzt man auf 1 Mol an
Säurehalogenid der Formel (II) im allgemeinen 1 Mol oder auch einen Überschuss an
15 Anilin-Derivat der Formel (III) sowie 1 bis 3 Mol an Säurebindemittel ein. Es ist
jedoch auch möglich, die Reaktionskomponenten in anderen Verhältnissen einzusetzen.
Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt
man in der Weise, dass man das Reaktionsgemisch mit Wasser versetzt, die orga-
nische Phase abtrennt und nach dem Trocknen unter vermindertem Druck einengt.
20 Der verbleibende Rückstand kann gegebenenfalls nach üblichen Methoden, wie
Chromatographie oder Umkristallisation, von eventuell noch vorhandenen Verun-
reinigungen befreit werden.

Bei der Durchführung des erfindungsgemäßen Verfahrens (b) setzt man auf 1 Mol an
25 Carboxamid der Formel (IV) im allgemeinen 1 Mol oder auch einen Überschuss an
Boronsäure-Derivat der Formel (V) sowie 1 bis 5 Mol an Säurebindemittel ein. Es ist
jedoch auch möglich, die Reaktionskomponenten in anderen Verhältnissen einzusetzen.
Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt
man in der Weise, dass man das Reaktionsgemisch mit Wasser versetzt, den Nieder-
schlag abtrennt und trocknet. Der verbleibende Rückstand kann gegebenenfalls nach

üblichen Methoden, wie Chromatographie oder Umkristallisation, von eventuell noch vorhandenen Verunreinigungen befreit werden.

- Bei der Durchführung des erfindungsgemäßen Verfahrens (c) setzt man auf 1 Mol an Carboxamid-Boronsäure-Derivat der Formel (VI) im allgemeinen 1 Mol oder auch einen Überschuss an Phenyloxim-Derivat der Formel (VII) sowie 1 bis 10 Mol an Säurebindemittel und 0.5 bis 5 Molprozent eines Katalysators ein. Es ist jedoch auch möglich, die Reaktionskomponenten in anderen Verhältnissen einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt man in der Weise, dass man das Reaktionsgemisch mit Wasser versetzt, den Niederschlag abtrennt und trocknet. Der verbleibende Rückstand kann gegebenenfalls nach üblichen Methoden, wie Chromatographie oder Umkristallisation, von eventuell noch vorhandenen Verunreinigungen befreit werden.
- Bei der Durchführung des erfindungsgemäßen Verfahrens (d) setzt man auf 1 Mol an Biphenylacyl-Derivat der Formel (VIII) im allgemeinen 1 Mol oder auch einen Überschuss an Alkoxamin der Formel (IX) sowie 1 bis 5 Mol an Säurebindemittel ein. Es ist jedoch auch möglich, die Reaktionskomponenten in anderen Verhältnissen einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt man in der Weise, dass man das Reaktionsgemisch mit Wasser versetzt, den Niederschlag abtrennt, mit Wasser und Diisopropylether wäscht und anschließend trocknet. Der verbleibende Rückstand kann gegebenenfalls nach üblichen Methoden, wie Chromatographie oder Umkristallisation, von eventuell noch vorhandenen Verunreinigungen befreit werden.
- Bei der Durchführung des erfindungsgemäßen Verfahrens (e) setzt man auf 1 Mol an Hydroxylamin-Derivat der Formel (I-a) im allgemeinen 1 Mol oder auch einen Überschuss an Reagenz der Formel (X) sowie 1 bis 5 Mol an Säurebindemittel ein. Es ist jedoch auch möglich, die Reaktionskomponenten in anderen Verhältnissen einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt man in der Weise, dass man das Reaktionsgemisch mit Wasser versetzt, den Nieder-

schlag abtrennt und trocknet. Der verbleibende Rückstand kann gegebenenfalls nach üblichen Methoden, wie Chromatographie oder Umkristallisation, von eventuell noch vorhandenen Verunreinigungen befreit werden.

5 Bei der Durchführung des erfindungsgemäßen Verfahrens (f) setzt man auf 1 Mol an Carboxamid-Derivat der Formel (IV) im allgemeinen 1 Mol oder auch einen Überschuss an Phenyloxim-Derivat der Formel (VII) sowie 1 bis 5 Mol an Säurebindemittel ein, sowie 1 bis 5 Mol eines Katalysators. Es ist jedoch auch möglich, die Reaktionskomponenten in anderen Verhältnissen einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen verfährt man in der Weise, dass man das Reaktionsgemisch mit Wasser versetzt, den Niederschlag abtrennt und trocknet. Der verbleibende Rückstand kann gegebenenfalls nach üblichen Methoden, wie Chromatographie oder Umkristallisation, von eventuell noch vorhandenen Verunreinigungen befreit werden.

10 15 Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

20 Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

25 Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

30 Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;

- Pseudomonas-Arten, wie beispielsweise *Pseudomonas syringae* pv. *lachrymans*;
- Erwinia-Arten, wie beispielsweise *Erwinia amylovora*;
- Pythium-Arten, wie beispielsweise *Pythium ultimum*;
- Phytophthora-Arten, wie beispielsweise *Phytophthora infestans*;
- 5 Pseudoperonospora-Arten, wie beispielsweise *Pseudoperonospora humuli* oder
Pseudoperonospora cubensis;
- Plasmopara-Arten, wie beispielsweise *Plasmopara viticola*;
- Bremia-Arten, wie beispielsweise *Bremia lactucae*;
- Peronospora-Arten, wie beispielsweise *Peronospora pisi* oder *P. brassicae*;
- 10 Erysiphe-Arten, wie beispielsweise *Erysiphe graminis*;
- Sphaerotheca-Arten, wie beispielsweise *Sphaerotheca fuliginea*;
- Podosphaera-Arten, wie beispielsweise *Podosphaera leucotricha*;
- Venturia-Arten, wie beispielsweise *Venturia inaequalis*;
- Pyrenophora-Arten, wie beispielsweise *Pyrenophora teres* oder *P. graminea*
- 15 (Konidienform: Drechslera, Syn: *Helminthosporium*);
- Cochliobolus-Arten, wie beispielsweise *Cochliobolus sativus*
(Konidienform: Drechslera, Syn: *Helminthosporium*);
- Uromyces-Arten, wie beispielsweise *Uromyces appendiculatus*;
- Puccinia-Arten, wie beispielsweise *Puccinia recondita*;
- 20 Sclerotinia-Arten, wie beispielsweise *Sclerotinia sclerotiorum*;
- Tilletia-Arten, wie beispielsweise *Tilletia caries*;
- Ustilago-Arten, wie beispielsweise *Ustilago nuda* oder *Ustilago avenae*;
- Pellicularia-Arten, wie beispielsweise *Pellicularia sasakii*;
- Pyricularia-Arten, wie beispielsweise *Pyricularia oryzae*;
- 25 Fusarium-Arten, wie beispielsweise *Fusarium culmorum*;
- Botrytis-Arten, wie beispielsweise *Botrytis cinerea*;
- Septoria-Arten, wie beispielsweise *Septoria nodorum*;
- Leptosphaeria-Arten, wie beispielsweise *Leptosphaeria nodorum*;
- Cercospora-Arten, wie beispielsweise *Cercospora canescens*;
- 30 Alternaria-Arten, wie beispielsweise *Alternaria brassicae*;
- Pseudocercosporella-Arten, wie beispielsweise *Pseudocercosporella herpotrichoides*.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

5

Dabei lassen sich die erfundungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Krankheiten im Wein-, Obst- und Gemüseanbau einsetzen, wie beispielsweise gegen Venturia-, Botrytis-, Sclerotinia-, Rhizoctonia-, Uncinula-, Sphaerotheca-, Podosphaera-, Alternaria- und Colletotrichum-Arten. Mit gutem Erfolg werden auch Reiskrankheiten, wie Pyricularia- und Pellicularia-Arten, bekämpft.

10

Die erfundungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Erntertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

15

Erfundungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

20

25

30

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

- 5 Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
- 10
- 15
- 20
- 25
- 30
- Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
- Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum,

Polyporus, wie Polyporus versicolor,
Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
5 Escherichia, wie Escherichia coli,
Pseudomonas, wie Pseudomonas aeruginosa,
Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen
10 und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt
werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten,
Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen
für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

15 Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen
der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck
stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter
Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder
Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von
20 Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungs-
mittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in
Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder
chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder
Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine,
25 z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und
Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclo-
hexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid,
sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind
solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter
Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasser-
stoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe

- kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte 5 natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstägel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen 10 in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
- Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche 15 und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
- 20 Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
- 25 Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
- Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden 30 oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei

synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

5

Fungizide:

Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,

10

Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,

15

Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram,

20

Debacarb, Dichlorophen, Diclobutrazol, Diclofuanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dini-
conazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dode-
morph, Dodine, Drazoxolon,

25

Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol, Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fenthydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxy, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox, Guazatin,

30

Hexachlorobenzol, Hexaconazol, Hymexazol, Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadintriacetat, Iodocarb, Ipconazol, Iprobenos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovalledione,

Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,

5 Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,

Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,

10 Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin, Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyrazophos, Pyrifenoxy, Pyrimethanil, Pyroquilon, Pyroxyfur,

15 Quinconazol, Quintozen (PCNB), Quinoxyfen, Schwefel und Schwefel-Zubereitungen,

Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolyfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol, Uniconazol,

20 Validamycin A, Vinclozolin, Viniconazol, Zarilamid, Zineb, Ziram sowie Dagger G,

OK-8705,

OK-8801,

25 α -(1,1-Dimethylethyl)- β -(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,

α -(2,4-Dichlorphenyl)- β -fluor- β -propyl-1H-1,2,4-triazol-1-ethanol,

α -(2,4-Dichlorphenyl)- β -methoxy- α -methyl-1H-1,2,4-triazol-1-ethanol,

α -(5-Methyl-1,3-dioxan-5-yl)- β -[[4-(trifluormethyl)-phenyl]-methylen]-1H-1,2,4-triazol-1-ethanol,

30 (5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon, (E)- α -(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,

- {2-Methyl-1-[[[1-(4-methylphenyl)-ethyl]-amino]-carbonyl]-propyl}-carbaminsäure-
1-isopropylester,
- 1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,
- 1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,
- 5 1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
- 1-[(Diodmethyl)-sulfonyl]-4-methyl-benzol,
- 1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,
- 1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,
- 1-[1-[2-(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,
- 10 1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
- 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluoromethyl-1,3-thiazol-5-carboxanilid,
- 2,2-Dichlor-N-[1-(4-chlorphenyl)-ethyl]-1-ethyl-3-methyl-cyclopropancarboxamid,
- 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
- 15 2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
- 2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
- 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
- 2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
- 2-[[6-Deoxy-4-O-(4-O-methyl- β -D-glycopyranosyl)- α -D-glucopyranosyl]-amino]-4-
- 20 methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
- 2-Aminobutan,
- 2-Brom-2-(brommethyl)-pentandinitril,
- 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
- 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
- 25 2-Phenylphenol(OPP),
- 3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
- 3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid,
- 3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
- 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
- 30 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,
- 4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,

- 8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro[4.5]decan-2-methanamin,
8-Hydroxychinolininsulfat,
- 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,
bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
- 5 cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
- cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin-
hydrochlorid,
- Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
- Kaliumhydrogencarbonat,
- 10 Methantetrathiol-Natriumsalz,
- Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,
- Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
- Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
- N-(2,3-Dichlor-4-hydroxyphenyl)-1-methyl-cyclohexancarboxamid.
- 15 N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
- N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
- N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
- N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
- N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
- 20 N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
- N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
- N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
- N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid,
- N-Formyl-N-hydroxy-DL-alanin-Natriumsalz,
- 25 O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
- O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
- S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,
- spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on,

Bakterizide:

Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

5

Insektizide / Akarizide / Nematizide:

- Abamectin, Acephat, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,
- 10 Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben,
- 15 Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaphorthrin, Cis-Resmethrin, Cispermethrin, Clopythrin, Cloethocarb, Clofentezine, Cyanophos, Cyclopene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,
- 20 Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, Elfusilanate, Emamectin, Empenthrin, Endosulfan, Entomopthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimphos,
- 25 Fenamiphos, Fenazaquin, Fenbutatinoxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxy carb, Fenpropathrin, Fenpyrad, Fenpyriithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazinam, Fluazuron, Flubrocyclurate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,
- 30 Granuloseviren,
- Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,

- Imidacloprid, Isazophos, Isofenphos, Isoxathion, Ivermectin,
 5 Kempolyederviren,
 Lamda-cyhalothrin, Lufenuron,
 Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae,
 Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl, Methoxyfenozide,
 Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Monocrotophos,
 Naled, Nitenpyram, Nithiazine, Novaluron,
 Omethoat, Oxamyl, Oxydemethon M,
 Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthroate,
 10 Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A,
 Pirimiphos M, Profenophos, Promecarb, Propoxur, Prothiophos, Prothoat,
 Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion,
 Pyrimidifen, Pyriproxifen,
 Quinalphos,
 15 Ribavirin,
 Salithion, Sebufos, Silafluofen, Spinosad, Sulfotep, Sulprofos,
 Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron,
 Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos,
 Thetacypermethrin, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen
 20 oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin,
 Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon,
 Triflumuron, Trimethacarb,
 Vamidothion, Vaniliprole, Verticillium lecanii
 YI 5302
 25 Zeta-Cypermethrin, Zolaprofos

(1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-
 furanylidene)-methyl]-2,2-dimethylcyclopropancarboxylat,
 (3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat,
 30 1-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-
 imin,

- 40 -

- 2-(2-Chlor-6-fluorphenyl)-4-[4-(1,1-dimethylethyl)phenyl]-4,5-dihydro-oxazol,
2-(Acetoxy)-3-docecy1-1,4-naphthalinidion,
2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid,
2-Chlor-N-[[[4-(2,2-dichlor-1,1-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid,
5 3-Methylphenyl-propylcarbamat,
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol,
4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-
3(2H)-pyridazinon,
4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)-
10 pyridazinon,
4-Chlor-5[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon,
Bacillus thuringiensis strain EG-2348,
Benzoësäure (2-benzoyl-1-(1,1-dimethylethyl)-hydrazid,
Butan 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl-ester,
15 [3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid,
Dihydro-2-(nitromethylen)-2H-1,3-thiazine-3(4H)-carboxaldehyd,
Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat,
N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin,
N-(4-Chlorphenyl)-3-[4-Difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-
20 1-carboxamid,
N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin,
N-Methyl-N'-(1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid,
N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid,
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat.
25
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit
Düngemitteln und Wachstumsregulatoren ist möglich.

Darüber hinaus weisen die erfundungsgemäßen Verbindungen der Formel (I) auch
30 sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites

antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sproßpilze, Schimmel und diphasische Pilze,

z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata, Epidermophyton-Spezies wie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii.

Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfaßbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10 000 g/ha, vorzugsweise zwischen 10 und 1 000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10 000 g/ha, vorzugsweise zwischen 1 und 5 000 g/ha.

Die zum Schutz technischer Materialien verwendeten Mittel enthalten die Wirkstoffe im allgemeinen in einer Menge von 1 bis 95 %, bevorzugt von 10 bis 75 %.

Die Anwendungskonzentrationen der erfindungsgemäßen Wirkstoffe richten sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale Einsatzmenge kann durch Testreihen ermittelt werden. Im allgemeinen liegen die Anwendungskonzentrationen im Bereich von 0,001 bis 5 Gew.-%, vorzugsweise von 0,05 bis 1,0 Gew.-% bezogen auf das zu schützende Material.

- 10 Die Wirksamkeit und das Wirkungsspektrum der erfindungsgemäß im Materialschutz zu verwendenden Wirkstoffe bzw. der daraus herstellbaren Mittel, Konzentrate oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z.B. dem zusätzlichen Schutz vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als die erfindungsgemäßen Verbindungen.
- 15 20 Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.

Herstellungsbeispiele**Beispiel 1**5 **Verfahren (a):**

Eine Lösung von 1,3 g (0,0057 Mol) 2'-Amino-1,1'-biphenyl-4-carbaldehyde-O-methyloximin in 20 mL Toluol wird bei Raumtemperatur mit 0,57 g (0,0057 Mol) Triethylamin versetzt. In dieses Gemisch lässt man bei Raumtemperatur unter Rühren eine Lösung von 1,0 g (0,0057 Mol) 5-Fluoro-1,3-dimethyl-1H-pyrazol-4-carbonylchlorid in 5 mL Toluol eintropfen. Nach beendeter Zugabe wird das Reaktionsgemisch auf 50°C erwärmt und 2 h bei dieser Temperatur weiter gerührt. Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur abgekühlt, mit weiteren 25 mL Toluol versetzt und mit Wasser gewaschen. Die organische Phase wird abgetrennt, über Natriumsulfat getrocknet, filtriert und unter verminderter Druck eingengegt. Der verbleibende Rückstand wird aus Diisopropylether umkristallisiert. Man erhält auf diese Weise 1,45 g (69,4 % der Theorie) an 5-Fluor-N-[(4'-(methoxyimino)methyl)-1,1'-biphenyl-2-yl]-1,3-dimethyl-1H-pyrazol-4-carboxamid als farblose Kristalle vom Schmelzpunkt 114 bis 116°C.

Beispiel 2

Verfahren (b):

- 5 Ein Gemisch aus 0,35 g (0,001 Mol) N-(2-Brom-4,6-difluorphenyl)-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid, 0,06 g (0,00005 Mol) Tetrakis-(triphenylphosphin) palladium, 0,32 g (0,0018 Mol) 4-[((Methoxyimino)methyl]phenylboronsäure und 10 mL 1,2-Dimethoxyethan wird bei Raumtemperatur mit einer Lösung von 0,5 g (0,0047 Mol) Natriumcarbonat in 3 mL Wasser versetzt. Das Reaktionsgemisch wird anschließend auf Rückfluss-Temperatur gebracht und für 15 h dort gehalten.
- 10 Zur Aufarbeitung wird das Reaktionsgemisch in 200 mL Wasser verrührt. Der entstehende Niederschlag wird abgesaugt und getrocknet. Der verbleibende Rückstand wird mit Cyclohexan : Essigsäureethylester = 1:1 als Laufmittel an Kieselgel chromatographiert. Nach dem Einengen des Eluates erhält man 0,20 g (48 % der Theorie)
- 15 an N-{3,5-Difluor-4'-[{(methoxyimino)methyl]-1,1'-biphenyl-2-yl}-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid in Form eines Feststoffes mit einem Schmelzpunkt von 164 bis 167°C.

Beispiel 3

Verfahren (c):

5 Zu einem Gemisch aus 0,71 g (2 mmol) 5-Fluoro-1,3-dimethyl-N-[2-(4,4,5,5-tetra-
methyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-pyrazol-4-carboxamid, 1,39 g (6 mmol)
4-Brom-2-fluorbenzaldehyde-O-methyloxim, 0,03 g (0,05 mmol) PdCl₂(dpff) und
40 mL Dimethylsulfoxid werden bei Raumtemperatur 1,28 g (12 mmol) Natrium-
carbonat, gelöst in 6 mL Wasser, zugegeben. Das Reaktionsgemisch wird 15 Stunden
10 bei 80°C gerührt.

15 Zur Aufarbeitung wird das Reaktionsgemisch in 400 ml Wasser verrührt, der Niederschlag abgesaugt und getrocknet. Das Rohprodukt wird anschließend an Kieselgel mit Cyclohexan : Essigester = 1 : 1 als Laufmittel säulenchromatographisch gereinigt. Nach dem Einengen erhält man 0,11 g (14 % d. Th.) an 5-Fluoro-N-{3'-fluoro-
4'-(methoxyimino)methyl}-1,1'-biphenyl-2-yl}-1,3-dimethyl-1H-pyrazol-4-carbox-
amid als Kristalle mit einem Schmelzpunkt von 158 bis 161°C.

Beispiel 4**Verfahren (d):**

- 5 Ein Gemisch aus 1,0 g (0,0028 Mol) N-(4'-Acetyl-1,1'-biphenyl-2-yl)-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid, 0,30 g (0,0036 Mol) O-Methylhydroxylamin-hydrochlorid, 0,30 g (0,0036 Mol) Natriumacetat und 6 mL Methanol wird 12 h bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch in Wasser verrührt, der entstehende Niederschlag abgesaugt, mit Wasser und anschließend wenig Diisopropylether gewaschen und getrocknet. Man erhält 0,91 g (85,4 % der Theorie) an 5-Fluoro-N-[4'-(N-methoxyethanimidoyl)-1,1'-biphenyl-2-yl]-1,3-dimethyl-1H-pyrazol-4-carboxamid vom Schmelzpunkt 153°C.
- 10

¹H-NMR-Spektrum (DMSO/TMS): δ = 3,60 ppm.

Herstellung von Ausgangssubstanzen

Verfahren (g):

5

Ein Gemisch aus 2,9 g (0,017 Mol) 2-Bromanilin, 0,68 g Tetrakis-(triphenylphosphin) palladium, 5,5 g (0,031 Mol) 4-[(Methoxyimino)methyl]phenylboronsäure und 40 mL 1,2-Dimethoxyethan wird bei Raumtemperatur mit einer Lösung von 8,2 g (0,077 Mol) Natriumcarbonat in 35 mL Wasser versetzt. Das Reaktionsgemisch wird anschließend auf Rückfluss-Temperatur gebracht und für 12 h gekocht. Zur Aufarbeitung wird auf Raumtemperatur abgekühlt und mit Diethylether extrahiert. Die organische Phase wird abgetrennt und mit Wasser versetzt. Die organische Phase wird erneut abgetrennt, über Natriumsulfat getrocknet und schließlich unter verminderter Druck eingeengt. Der verbleibende Rückstand wird mit Cyclohexan : Essigsäureethylester = 3:1 als Laufmittel an Kieselgel chromatographiert. Nach dem Einengen des Eluates erhält man 3,8 g (98,8 % der Theorie bezogen auf 2-Bromanilin) an 2'-Amino-1,1'-biphenyl-4-carbaldehyd-O-methyloxim in Form eines Öles.

¹H-NMR-Spektrum (DMSO/TMS): $\delta = 3,90$ (3H) ppm.

20

Verfahren (i):

Ein Gemisch aus 5,0 g (0,033 Mol) 4-Formylphenylboronsäure, 3,4 g (0,041 Mol) O-Methylhydroxylamin-hydrochlorid, 3,4 g (0,041 Mol) Natriumacetat, 40 mL Methanol und 10 mL Wasser werden 12 h bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch in Wasser verrührt, der entstehende Niederschlag

abgesaugt, mit Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhält 5,56 g (93,1 % der Theorie) an 4-[(Methoxyimino)methyl]phenylboronsäure als farblose Kristalle mit einem Schmelzpunkt von 199 bis 200°C.

5

Verfahren (j):

- Zu einem Gemisch aus 0,39 g (1,5 mmol) 2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)anilin-hydrochlorid und 20 mL Acetonitril werden 0,55 g (4 mmol) Kaliumcarbonat und 0,30 g (0,0017 Mol) 5-Fluor-1,3-dimethyl-1H-pyrazol-4-carbonylchlorid bei Raumtemperatur zugegeben. Das Reaktionsgemisch wird 20 h bei Raumtemperatur gerührt.
- 10 Zur Aufarbeitung wird das Reaktionsgemisch in 150 mL Wasser verrührt, mit Essigsäureethylester extrahiert und über Natriumsulfat getrocknet. Die organische Phase wird unter verminderter Druck eingeengt und der feste Rückstand in Diisopropyl-ether verrührt. Man erhält 0,25 g (46 % d. Th.) 5-Fluor-1,3-dimethyl-N-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-pyrazol-4-carboxamid in Form von Kristallen vom Schmelzpunkt 100 bis 103°C
- 15
- 20

Nach den zuvor beschriebenen Methoden werden auch die in der folgenden Tabelle aufgeführten Biphenylcarboxamide der Formel (I) hergestellt.

Tabelle 1

Bsp.-Nr.	Verbindung	Physikal. Konstante
5		Fp. 122-125°C
6		Fp. 144-145°C
7		logP 3,20 ^{a)}
8		logP 3,39 ^{a)}
9		logP 2,51 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
10		logP 3,26 ^{a)}
11		logP 3,05 ^{a)}
12		logP 1,75 ^{a)}
13		logP 4,02 ^{a)}
14		logP 3,68 ^{b)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
15		logP 1,81 ^{a)}
16		logP 1,72 ^{a)}
17		logP 1,89 ^{a)}
18		logP 1,69 ^{a)}
19		logP 1,60 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
20		Fp. 115-117°C
21		Fp. 124-126°C
22		Fp. 115-117°C
23		Fp. 115-117°C
24		Fp. 102-104°C

Bsp.-Nr.	Verbindung	Physikal. Konstante
25		logP 3,38 ^{a)}
26		logP 3,40 ^{a)}
27		logP 3,15 ^{a)}
28		logP 3,67 ^{a)}
29		logP 3,39 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
30		logP 3,27 ^{a)}
31		logP 3,34 ^{a)}
32		logP 3,10 ^{a)}
33		logP 3,79 ^{a)}
34		logP 3,74 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
35		logP 3,11 ^{a)}
36		logP 3,48 ^{a)}
37		logP 3,01 ^{a)}
38		logP 3,58 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
39		logP 3,91 ^{a)}
40		logP 4,63 ^{a)}
41		logP 3,89 ^{a)}
42		logP 4,09 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
43		logP 4,06 ^{a)}
44		logP 4,63 ^{a)}
45		Fp. 147-149°C
46		logP 3,47 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
47		logP 3,30 ^{a)}
48		logP 3,25 ^{a)}
49		
50		logP 3,89 ^{a)}

Bsp.-Nr.	Verbindung	Physikal. Konstante
51		logP 4,67 ^{a)}
52		
53		logP 2,24 ^{a)}
54		Fp. 97-99°C
55		logP 4,33 ^{a)}

Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP-Werte erfolgt gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43°C.

5

Die Bestimmung erfolgt im sauren Bereich bei pH 2.3 mit 0,1% wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10% Acetonitril bis 90% Acetonitril (in der Tabelle mit a) markiert).

10

Die Bestimmung erfolgt im neutralen Bereich bei pH 7.5 mit 0,01-molare wässriger Phosphatpuffer-Lösung und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril (in der Tabelle mit b) markiert).

15

Die Eichung erfolgt mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).

20

Die lambda-max-Werte wurden an Hand der UV-Spektren von 200 nm bis 400 nm in den Maxima der chromatographischen Signale ermittelt.

AnwendungsbeispieleBeispiel A5 **Podosphaera-Test (Apfel) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

Emulgator: 1,0 Gewichtsteile Alkyl-Aryl-Polyglykolether

10

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehltauerregers *Podosphaera leucotricha* inkuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % aufgestellt.

20

10 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

25

Bei diesem Test zeigen z.B. die folgenden erfindungsgemäßen Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:

Tabelle A: Podosphaera-Test (Apfel) / protektiv

Wirkstoff	Aufwandmenge an Wirkstoff in g/ha	% Wirkungsgrad
(I-1)		100
(I-8)		100
(I-11)		100

Wirkstoff	Aufwand- menge an Wirkstoff in g/ha	% Wir- kungsgrad
(I-20)	100	95
(I-22)	100	99
(I-23)	100	100
(I-26)	100	100

Wirkstoff		Aufwand- menge an Wirkstoff in g/ha	% Wir- kungsgrad
(I-29)		100	94
(I-37)		100	100
(I-39)		100	100
(I-46)		100	100

Wirkstoff		Aufwand- menge an Wirkstoff in g/ha	% Wir- kungsgrad
(I-47)		100	100
(I-50)		100	100

Beispiel B**Sphaerotheca-Test (Gurke) / protektiv**

- 5 Lösungsmittel: 24,5 Gewichtsteile Aceton
10 24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1,0 Gewichtsteile Alkyl-Aryl-Polyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Sphaerotheca fuliginea inkuliert. Die Pflanzen werden dann bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % im Gewächshaus aufgestellt.

20 10 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Bei diesem Test zeigen z.B. die folgenden erfindungsgemäßen Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:

Tabelle B: Sphaerotheca-Test (Gurke) / protektiv

Wirkstoff	Aufwand- menge an Wirkstoff in g/ha	% Wirk- ungsgrad	
(I-1)		100	100
(I-11)		100	93
(I-20)		100	77

Wirkstoff	Aufwand- menge an Wirkstoff in g/ha	% Wir- kungsgrad	
(I-22)		100	95
(I-23)		100	95
(I-26)		100	95
(I-29)		100	83

- 69 -

Wirkstoff	Aufwand- menge an Wirkstoff in g/ha	% Wir- kungsgrad
(I-37)	100	77
(I-39)	100	97
(I-46)	100	100

- 70 -

Wirkstoff	Aufwand- menge an Wirkstoff in g/ha	% Wir- kungsgrad
(I-47)	100	100
(I-50)	100	100

Beispiel C**Venturia - Test (Apfel) / protektiv**

- 5 Lösungsmittel: 24,5 Gewichtsteile Aceton
 24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1,0 Gewichtsteile Alkyl-Aryl-Polyglykolether
- 10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
- 15 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubations-kabine.
- 20 Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.
- 25 12 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
- Bei diesem Test zeigen z.B. die folgenden erfindungsgemäßen Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:

Tabelle C: Venturia- Test (Apfel) / protektiv

Wirkstoff		Aufwand- menge an Wirkstoff in g/ha	% Wir- kungsgrad
(I-1)		100	100
(I-8)		100	99
(I-11)		100	100

Wirkstoff		Aufwand-menge an Wirkstoff in g/ha	% Wir-kungsgrad
(I-20)		100	100
(I-22)		100	100
(I-23)		100	100
(I-26)		100	100

Wirkstoff		Aufwandmenge an Wirkstoff in g/ha	% Wirkunggrad
(I-29)		100	100
(I-37)		100	100
(I-39)		100	100
(I-46)		100	100

Wirkstoff		Aufwand-menge an Wirkstoff in g/ha	% Wir-kungsgrad
(I-47)		100	100
(I-50)		100	100

Beispiel D**Puccinia-Test (Weizen) / protektiv**

5 Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von *Puccinia recondita* besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

20 Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.

25 10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Bei diesem Test zeigen z.B. die folgenden erfindungsgemäßen Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:

Tabelle D: Puccinia-Test (Weizen) / protektiv

Wirkstoff		Aufwandmenge an Wirkstoff in g/ha	% Wirkungsgrad
(I-1)		250	100
(I-3)		250	100
(I-9)		250	100
(I-20)		250	100

Wirkstoff		Aufwandmenge an Wirkstoff in g/ha	% Wirkungsgrad
(I-22)		250	100
(I-26)		250	100

Beispiel E**Alternaria-Test (Tomate) / protektiv**

5 Lösungsmittel: 49 Gewichtsteile N,N-Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Tomatenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Alternaria solani inkokuliert und stehen dann 24 h bei 100 % rel. Feuchte und 20°C. Anschließend stehen die Pflanzen bei 96% rel. Luftfeuchtigkeit und einer Temperatur von 20°C.

20 7 Tage nach der Inkokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Bei diesem Test zeigen z.B. die folgenden erfindungsgemäßen Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:

Tabelle E: Alternaria-Test (Tomate) / protektiv

Wirkstoff		Aufwandmenge an Wirkstoff in g/ha	% Wirkungsgrad
(I-1)		750	95
(I-2)		750	90
(I-4)		750	90
(I-5)		750	90

Wirkstoff		Aufwandmenge an Wirkstoff in g/ha	% Wirkungsgrad
(I-7)		750	100

Beispiel F**Hemmtest an Riesenkolonien von Basidiomyceten**

- 5 Aus Kolonien von *Gloeophyllum trabeum*, *Coniophora puteana*, *Poria placenta*,
Lentinus tigrinus und *Coriolus versicolor* wurden Myzelstücke ausgestochen und auf
einem Malzextrakt-Pepton-haltigen Agarnährboden bei 26°C inkubiert. Die
Hemmung des Hyphenwachstums auf wirkstoffhaltigen Nährböden wurde mit dem
Längenwachstum auf Nährboden ohne Wirkstoffzusatz verglichen und als
10 prozentuale Hemmung bonitiert.

Bei diesem Test zeigen z.B. die folgenden erfundungsgemäßen Verbindungen der
Herstellungsbeispiele gute Wirksamkeit:

Tabelle F: Hemmtest an Riesenkolonien von Basidiomyceten

Wirkstoff		Aufwandmenge an Wirkstoff in ppm	% Wirkungsgrad
(I-1)		6	100
(I-3)		6	100
(I-4)		6	100
(I-9)		6	100

Patentansprüche

1. Pyrazolylbiphenylcarboxamide der Formel (I)

(I),

5

in welcher

R¹ für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, Benzyl oder Pyridylmethyl steht,

10

R² für Wasserstoff oder C₁-C₆-Alkyl steht,

15

X für Halogen, Nitro, Cyano, Hydroxy, Carboxyl, C₁-C₈-Alkyl, C₁-C₆-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₈-Alkoxy, C₁-C₆-Halogenalkoxy mit 1 bis 5 Halogenatomen, C₁-C₈-Alkylthio, C₁-C₆-Halogenalkylthio mit 1 bis 5 Halogenatomen, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxycarbonyl oder für -C(R²)=N-OR¹ steht,

20

m für ganze Zahlen von 0 bis 3 steht, wobei X für gleiche oder verschiedene Reste steht, wenn m für 2 oder 3 steht,

25

Y für Halogen, Nitro, Cyano, Hydroxy, Carboxyl, C₁-C₈-Alkyl, C₁-C₆-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₈-Alkoxy, C₁-C₆-Halogenalkoxy mit 1 bis 5 Halogenatomen, C₁-C₈-Alkylthio, C₁-C₆-Halogenalkylthio mit 1 bis 5 Halogenatomen, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxycarbonyl oder für -C(R²)=N-OR¹ steht,

genalkylthio mit 1 bis 5 Halogenatomen, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinylloxy, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxycarbonyl oder C₁-C₆-Alkoximino-C₁-C₆-alkyl steht und

5 n für ganze Zahlen von 0 bis 4 steht, wobei Y für gleiche oder verschiedene Reste steht, wenn n für 2, 3 oder 4 steht.

2. Pyrazolylbiphenylcarboxamide der Formel (I) gemäß Anspruch 1, in welcher

10 R¹ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, Benzyl oder Pyridylmethyl steht,

R² für Wasserstoff oder C₁-C₄-Alkyl steht,

15 X für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl, C₁-C₆-Alkyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₆-Alkoxy, C₁-C₂-Halogenalkoxy mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₆-Alkylthio, C₁-C₂-Halogenalkylthio mit 1 bis 5 Fluor-, Chlor und/oder Bromatomen, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinylloxy, C₃-C₇-Cycloalkyl, C₁-C₄-Alkoxycarbonyl oder für -C(R²)=N-OR¹ steht,

20 25 m für ganze Zahlen von 0 bis 3 steht, wobei X für gleiche oder verschiedene Reste steht, wenn m für 2 oder 3 steht,

Y für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl, C₁-C₆-Alkyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₆-Alkoxy, C₁-C₂-Halogenalkoxy mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₆-Alkylthio, C₁-C₂-Halogenalkylthio mit 1 bis 5 Fluor-, Chlor und/oder Bromatomen, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinylloxy, C₃-C₇-Cycloalkyl, C₁-C₄-Alkoxycarbonyl oder für -C(R²)=N-OR¹ steht,

30

Alkenyloxy, C₂-C₆-Alkinyloxy, C₃-C₇-Cycloalkyl, C₁-C₄-Alkoxy-carbonyl oder C₁-C₄-Alkoximino-C₁-C₄-alkyl steht,

- 5 n für ganze Zahlen von 0 bis 3 steht, wobei Y für gleiche oder verschiedene Reste steht, wenn n für 2 oder 3 steht.

3. Pyrazolylbiphenylcarboxamide der Formel (I) gemäß Anspruch 1, in welcher

10 R¹ für Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Chlorethyl, Benzyl, 2-Pyridylmethyl, 3-Pyridylmethyl oder 4-Pyridylmethyl steht,

R² für Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl oder n-Butyl steht,

15 X für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, i-Butyl, tert.-Butyl, Trichlormethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Trifluormethylthio, Difluorchlormethylthio, Allyloxy, Propargyloxy, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Methoxycarbonyl, Ethoxycarbonyl oder für -C(R²)=N-OR¹ steht,

20 m für ganze Zahlen von 0 bis 2 steht, wobei X für gleiche oder verschiedene Reste steht, wenn m für 2 steht,

25 Y für Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxyl, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, i-Butyl, tert.-Butyl, Trichlormethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Trifluormethylthio, Difluorchlormethylthio, Allyloxy, Propargyloxy,

- 87 -

Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Methoxycarbonyl, Ethoxycarbonyl oder Methoximinomethyl steht,

5

n für ganze Zahlen von 0 bis 2 steht, wobei Y für gleiche oder verschiedene Reste steht, wenn n für 2 steht.

10

4. Verfahren zur Herstellung von Pyrazolylbiphenylcarboxamiden der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man

a) Carbonsäure-Derivate der Formel (II)

in welcher

15

G für Halogen, Hydroxy oder C₁-C₆-Alkoxy steht,

mit Anilin-Derivaten der Formel (III)

20

in welcher

R^1 , R^2 , X , m , Y und n die in Anspruch 1 angegebenen Bedeutungen haben,

5

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in
Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart
eines Verdünnungsmittels umsetzt,

10

b) Carboxamid-Derivate der Formel (IV)

(IV)

in welcher

15

X und m die in Anspruch 1 angegebenen Bedeutungen haben,

mit Boronsäure-Derivaten der Formel (V)

20

in welcher

R^1 , R^2 , Y und n die in Anspruch 1 angegebenen Bedeutungen haben und

G^1 und G^2 jeweils für Wasserstoff oder zusammen für Tetramethyl-
5 ethylen stehen,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in
Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart
eines Verdünnungsmittels umsetzt,

10

oder

c) Carboxamid-Boronsäure-Derivate der Formel (VI)

15

in welcher

X und m die in Anspruch 1 angegebenen Bedeutungen haben und

20

G^1 und G^2 jeweils für Wasserstoff oder zusammen für Tetramethyl-
ethylen stehen,

mit Phenyloxim-Derivaten der Formel (VII)

- 90 -

in welcher

R^1 , R^2 , Y und n die in Anspruch 1 angegebenen Bedeutungen haben,

5

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

10

oder

d) Biphenylacyl-Derivate der Formel (VIII)

15

in welcher

R^2 , X , m , Y und n die in Anspruch 1 angegebenen Bedeutungen haben,

20

mit Alkoxaminen der Formel (IX)

- 91 -

in welcher R¹ die in Anspruch 1 angegebenen Bedeutungen hat,

gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

5

oder

e) Hydroxylamin-Derivate der Formel (I-a)

10

in welcher

R², X, m, Y und n die in Anspruch 1 angegebenen Bedeutungen haben,

15

mit Verbindungen der Formel (X)

20

in welcher

R³ für C₁-C₆-Alkyl steht und

25

E für Chlor, Brom, Iod, Methansulfonyl oder p-Toluolsulfonyl steht,

- 92 -

oder

5 R³ und E zusammen für (Di-C₁-C₆-alkyl)sulfat stehen,

gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

10

f) Carboxamid-Derivate der Formel (IV)

in welcher

15

X und m die in Anspruch 1 angegebenen Bedeutungen haben,

mit Phenyloxim-Derivaten der Formel (VII)

20

in welcher

R^1 , R^2 , Y und n die in Anspruch 1 angegebenen Bedeutungen haben,

5

in Gegenwart eines Palladium- oder Platin-Katalysators und in Gegenwart von 4,4,4',4',5,5,5',5'-Octamethyl-2,2'-bis-1,3,2-dioxaborolan, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

5. Pyrazolylbiphenylcarboxamide der Formel (I-b)

10

in welcher

R^1 , R^2 , X , m , Y und n die in Anspruch 1 angegebenen Bedeutungen haben.

15

6. Pyrazolylbiphenylcarboxamide der Formel (I-c)

- 94 -

in welcher

 R^1, R^2, X, m, Y und n die in Anspruch 1 angegebenen Bedeutungen haben.

5 7. Pyrazolylbiphenylcarboxamide der Formel (I-d)

in welcher

10 R^1, R^2, X, m, Y und n die in Anspruch 1 angegebenen Bedeutungen haben.

8. Anilin-Derivate der Formel (III)

15 in welcher

 R^1, R^2, X, m, Y und n die in Anspruch 1 angegebenen Bedeutungen haben.

- 95 -

9. Verfahren zur Herstellung von Anilin-Derivaten der Formel (III) gemäß Anspruch 8, dadurch gekennzeichnet, dass man

g) 2-Halogenanilin-Derivate der allgemeinen Formel (XI)

5

in welcher

X und m die in Anspruch 1 angegebenen Bedeutungen haben und

10

Hal für Halogen steht,

mit Boronsäure-Derivaten der Formel (V)

15

in welcher R¹, R², Y und n die in Anspruch 1 angegebenen Bedeutungen haben und

20

G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethyl-ethylen stehen,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt

5 oder

h) Anilinboronsäuren der Formel (XII)

10 in welcher

X und m die in Anspruch 1 angegebenen Bedeutungen haben und

15 G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethylethylen stehen,

mit Phenyloxim-Derivaten der Formel (VII)

20

in welcher R¹, R², Y und n die in Anspruch 1 angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.

5 10. Boronsäure-Derivate der Formel (V)

in welcher

10 R¹, R², Y und n die in Anspruch 1 angegebenen Bedeutungen haben und

G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethylethylen stehen.

15 11. Verfahren zur Herstellung von Boronsäure-Derivaten der Formel (V) gemäß Anspruch 10, dadurch gekennzeichnet, dass man

i) Phenylboronsäuren der Formel (XIII)

20

in welcher

R², Y und n die in Anspruch 1 angegebenen Bedeutungen haben und

- 98 -

G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethylethylen stehen,

5 mit Alkoxaminen der Formel (IX)

in welcher

10 R¹ die in Anspruch 1 angegebenen Bedeutungen hat,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.

15

12. Carboxamid-Boronsäure-Derivate der Formel (VI)

20 in welcher

X und m die in Anspruch 1 angegebenen Bedeutungen haben und

25 G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethylethylen stehen.

- 99 -

13. Verfahren zur Herstellung von Carboxamid-Boronsäure-Derivaten der Formel (VI) gemäß Anspruch 12, dadurch gekennzeichnet, dass man

j) Carbonsäure-Derivate der Formel (II)

5

in welcher

10

G die in Anspruch 1 angegebenen Bedeutungen hat,

mit Anilinboronsäuren der Formel (XII)

15

in welcher

20

X und m die in Anspruch 1 angegebenen Bedeutungen haben und

G¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethyl-ethylen stehen,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels, sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.

- 100 -

14. Biphenylacyl-Derivate der Formel (VIII)

5 in welcher

R^2 , X , m , Y und n die in Anspruch 1 angegebenen Bedeutungen haben.

15. Verfahren zur Herstellung von Biphenylacyl-Derivaten der Formel (VIII)

10 gemäß Anspruch 14, dadurch gekennzeichnet, dass man

k) Carbonsäure-Derivate der Formel (II)

15 in welcher

G die in Anspruch 1 angegebenen Bedeutungen hat,

mit 2-Benzaldehyd-anilin-Derivaten der Formel (XIV)

- 101 -

in welcher

5. R^2 , X , m , Y und n die in Anspruch 1 angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels umgesetzt.

10

16. 2-Benzaldehyd-anilin-Derivate der Formel (XIV)

in welcher

15

R^2 , X , m , Y und n die in Anspruch 1 angegebenen Bedeutungen haben.

17. Verfahren zur Herstellung von 2-Benzaldehyd-anilin-Derivaten der Formel (XIV) gemäß Anspruch 16, dadurch gekennzeichnet, dass man

20

- 102 -

I) Anilin-Derivate der Formel (XI)

in welcher

5

X und m die in Anspruch 1 angegebenen Bedeutungen haben und

Hal für Halogen steht,

10

mit Phenylboronsäure-Derivaten der Formel (XIII)

in welcher

15

R², Y und n die in Anspruch 1 angegebenen Bedeutungen haben undG¹ und G² jeweils für Wasserstoff oder zusammen für Tetramethylethylen stehen,

20

gegebenenfalls in Gegenwart eines Säurebindemittels, sowie gegebenenfalls in Gegenwart eines inerten organischen Verdünnungsmittels umsetzt.

18. Mittel zur Bekämpfung unerwünschter Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Pyrazolylbiphenylcarboxamid der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
5
19. Verwendung von Pyrazolylbiphenylcarboxamiden der Formel (I) gemäß Anspruch 1 zur Bekämpfung unerwünschter Mikroorganismen.
20. Verfahren zur Bekämpfung unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Pyrazolylbiphenylcarboxamide der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen und/oder deren Lebensraum aus bringt.
10
21. Verfahren zur Herstellung von Mitteln zur Bekämpfung unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Pyrazolylbiphenylcarboxamide der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
15

INTERNATIONAL SEARCH REPORT

Inte
al Application No
PCT/EP 01/07990

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D231/16	A01N43/56	C07D401/12	C07C251/48	C07C251/52
C07D213/30	C07F5/02	C07C223/06	C07C225/22	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D C07C C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BEILSTEIN Data, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00 14071 A (MAULER MACHNIK ASTRID ; KUGLER MARTIN (DE); STENZEL KLAUS (DE); BAY) 16 March 2000 (2000-03-16) cited in the application page 44 -page 51; claims 1-10 ---	1-8, 18-21
X	US 5 763 450 A (MASCIADRI RAFFAELLO ET AL) 9 June 1998 (1998-06-09) column 17, line 26 - line 32 ---	10,11 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

12 October 2001

Date of mailing of the international search report

14.01.02

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Fink, D

INTERNATIONAL SEARCH REPORT

Inter
nal Application No
PCT/EP 01/07990

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CROSSFIRE BEILSTEIN [Online] Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; die Verbindung mit der BRN: 3118739, XP002179759 & JOURNAL OF ORGANIC CHEMISTRY., vol. 33, no. 12, 1968, pages 4483-4486, AMERICAN CHEMICAL SOCIETY. EASTON., US ISSN: 0022-3263 ----	10
X	WO 92 00273 A (BOOTS CO PLC) 9 January 1992 (1992-01-09) Seite 14; die Verbindungen der allgemeinen Formel VI Seite 34; die Zeilen 2-12 des Beispiels 19 -----	16

INTERNATIONAL SEARCH REPORT
Information on patent family members

Int'l Application No
PCT/EP 01/07990

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0014071	A	16-03-2000		DE 19840322 A1 AU 5970399 A BR 9913383 A WO 0014071 A2 EP 1161420 A2	09-03-2000 27-03-2000 22-05-2001 16-03-2000 12-12-2001
US 5763450	A	09-06-1998		AU 704911 B2 AU 4116196 A BR 9509768 A CN 1166831 A CZ 9701575 A3 WO 9616046 A2 EP 0793656 A1 FI 972194 A HU 77372 A2 JP 11507009 T JP 3117721 B2 NO 972393 A PL 320458 A1 TR 960499 A2	06-05-1999 17-06-1996 07-07-1998 03-12-1997 17-09-1997 30-05-1996 10-09-1997 22-05-1997 30-03-1998 22-06-1999 18-12-2000 29-05-1997 29-09-1997 21-07-1996
WO 9200273	A	09-01-1992		IN 172842 A1 AT 111445 T AU 637695 B2 AU 7639491 A BG 61260 B1 CA 2041846 A1 CN 1072173 A ,B CS 9101334 A3 DE 69104041 D1 DK 536151 T3 WO 9200273 A1 EP 0536151 A1 ES 2064103 T3 FI 925871 A ,B, GB 2244486 A ,B HR 930699 A1 HU 210200 B IE 911439 A1 IL 98029 A JP 8009589 B MX 25770 A1 NO 179204 B NZ 238119 A PL 167657 B1 PT 97700 A ,B RO 111764 B1 RU 2099323 C1 US 5302720 A ZA 9103438 A	11-12-1993 15-09-1994 03-06-1993 21-11-1991 30-04-1997 18-11-1991 19-05-1993 19-02-1992 20-10-1994 20-02-1995 09-01-1992 14-04-1993 16-01-1995 23-12-1992 04-12-1991 30-06-1995 28-02-1995 20-11-1991 31-10-1995 31-01-1996 31-03-1994 20-05-1996 27-07-1993 31-10-1995 28-02-1992 30-01-1997 20-12-1997 12-04-1994 26-08-1992

INTERNATIONALER RECHERCHENBERICHT

Inter
ales Aktenzeichen

PC, -P 01/07990

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7	C07D231/16	A01N43/56	C07D401/12	C07C251/48	C07C251/52
	C07D213/30	C07F5/02	C07C223/06	C07C225/22	

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C07D C07C C07F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, BEILSTEIN Data, WPI Data, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 00 14071 A (MAULER MACHNIK ASTRID ; KUGLER MARTIN (DE); STENZEL KLAUS (DE); BAY) 16. März 2000 (2000-03-16) in der Anmeldung erwähnt Seite 44 -Seite 51; Ansprüche 1-10	1-8, 18-21
X	US 5 763 450 A (MASCIADRI RAFFAELLO ET AL) 9. Juni 1998 (1998-06-09) Spalte 17, Zeile 26 - Zeile 32	10,11
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :
"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

12. Oktober 2001

13. 10. 02

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Fink, D

INTERNATIONALER RECHERCHENBERICHT

Intern	des Aktenzeichen
PC,,	01/07990

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DATABASE CROSSFIRE BEILSTEIN [Online] Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; die Verbindung mit der BRN: 3118739, XP002179759 & JOURNAL OF ORGANIC CHEMISTRY., Bd. 33, Nr. 12, 1968, Seiten 4483-4486, AMERICAN CHEMICAL SOCIETY. EASTON., US ISSN: 0022-3263 ----	10
X	WO 92 00273 A (BOOTS CO PLC) 9. Januar 1992 (1992-01-09) Seite 14; die Verbindungen der allgemeinen Formel VI Seite 34; die Zeilen 2-12 des Beispiels 19 -----	16

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichung die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT-EP 01/07990

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 0014071	A 16-03-2000	DE	19840322 A1	09-03-2000
		AU	5970399 A	27-03-2000
		BR	9913383 A	22-05-2001
		WO	0014071 A2	16-03-2000
		EP	1161420 A2	12-12-2001
US 5763450	A 09-06-1998	AU	704911 B2	06-05-1999
		AU	4116196 A	17-06-1996
		BR	9509768 A	07-07-1998
		CN	1166831 A	03-12-1997
		CZ	9701575 A3	17-09-1997
		WO	9616046 A2	30-05-1996
		EP	0793656 A1	10-09-1997
		FI	972194 A	22-05-1997
		HU	77372 A2	30-03-1998
		JP	11507009 T	22-06-1999
		JP	3117721 B2	18-12-2000
		NO	972393 A	29-05-1997
		PL	320458 A1	29-09-1997
		TR	960499 A2	21-07-1996
WO 9200273	A 09-01-1992	IN	172842 A1	11-12-1993
		AT	111445 T	15-09-1994
		AU	637695 B2	03-06-1993
		AU	7639491 A	21-11-1991
		BG	61260 B1	30-04-1997
		CA	2041846 A1	18-11-1991
		CN	1072173 A ,B	19-05-1993
		CS	9101334 A3	19-02-1992
		DE	69104041 D1	20-10-1994
		DK	536151 T3	20-02-1995
		WO	9200273 A1	09-01-1992
		EP	0536151 A1	14-04-1993
		ES	2064103 T3	16-01-1995
		FI	925871 A ,B,	23-12-1992
		GB	2244486 A ,B	04-12-1991
		HR	930699 A1	30-06-1995
		HU	210200 B	28-02-1995
		IE	911439 A1	20-11-1991
		IL	98029 A	31-10-1995
		JP	8009589 B	31-01-1996
		MX	25770 A1	31-03-1994
		NO	179204 B	20-05-1996
		NZ	238119 A	27-07-1993
		PL	167657 B1	31-10-1995
		PT	97700 A ,B	28-02-1992
		RO	111764 B1	30-01-1997
		RU	2099323 C1	20-12-1997
		US	5302720 A	12-04-1994
		ZA	9103438 A	26-08-1992

INTERNATIONALER RECHERCHENBERICHT

ationales Aktenzeichen
PCT/EP 01/07990

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr.,
weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich

Für die Ansprüche 19 und 20 - insoweit sie sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen - wurde ebenfalls eine Recherche durchgeführt die sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung gründet.
2. Ansprüche Nr.,
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr.,
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

siehe Zusatzblatt

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
1-11, 14-21

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1-11, 14-21

die Pyrazolbiphenylcarboxamide der allgemeinen Formel (I) gemäß vorliegenden Ansprüchen 1-3 und 5-7, die Verfahren zu deren Herstellung gemäß vorliegendem Anspruch 4; diese enthaltende Mittel gemäß vorliegendem Anspruch 18, deren Verwendung (in einem Verfahren / in einem Verfahren zur Herstellung von Mitteln) zur Bekämpfung unerwünschter Mikroorganismen gemäß vorliegenden Ansprüchen 19 - 21, Zwischenprodukte zu deren Herstellung gemäß vorliegenden Ansprüchen 8, 10, 14 und 16 und die Verfahren zur Herstellung letztgenannter Zwischenprodukte gemäß vorliegenden Ansprüchen 9, 11, 15 und 17;

2. Ansprüche: 12, 13

die Zwischenprodukte gemäß vorliegendem Anspruch 12 und das Verfahren zur Herstellung dieser Zwischenprodukte gemäß vorliegendem Anspruch 13;

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

BERICHTIGTE FASSUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
31. Januar 2002 (31.01.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/08195 A1

(51) Internationale Patentklassifikation⁷: C07D 231/16,
A01N 43/56, C07D 401/12, C07C 251/48, 251/52, C07D
213/30, C07F 5/02, C07C 223/06, 225/22

Kloster 47, 42799 Leichlingen (DE). JAETSCH, Thomas
[DE/DE]; Eintrachtstrasse 105, 50668 Köln (DE).

(21) Internationales Aktenzeichen: PCT/EP01/07990

(74) Gemeinsamer Vertreter: BAYER AKTIENGESELLSCHAFT; 51368 Leverkusen (DE).

(22) Internationales Anmeldedatum:
11. Juli 2001 (11.07.2001)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,
MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),
OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML,
MR, NE, SN, TD, TG).

(26) Veröffentlichungssprache: Deutsch

Veröffentlicht:

(30) Angaben zur Priorität:
100 35 860.8 24. Juli 2000 (24.07.2000) DE
101 22 097.9 7. Mai 2001 (07.05.2001) DE

— mit internationalem Recherchenbericht

(48) Datum der Veröffentlichung dieser berichtigten
Fassung: 4. April 2002

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme
von US): BAYER AKTIENGESELLSCHAFT [DE/DE];
51368 Leverkusen (DE).

(49) Informationen zur Berichtigung:
siehe PCT Gazette Nr. 14/2002 vom 4. April 2002, Section
II

[Fortsetzung auf der nächsten Seite]

(54) Title: PYRAZOYL BIPHENYL CARBOXAMIDES AND THE USE THEREOF FOR CONTROLLING UNDESIRABLE MI-CROORGANISMS

(54) Bezeichnung: PYRAZOYLBIPHENYLCARBOXAMIDE UND DEREN VERWENDUNG ZUR BEKÄMPFUNG UNER-WÜNSCHTER MIKROORGANISMEN

(57) Abstract: The invention relates to novel pyrazoyl biphenyl carboxamides of formula (I) wherein R1, R2, X, m, Y and n have the designated meaning as cited in the description. The invention also relates to other methods for producing said materials and the use thereof for controlling undesired microorganisms, in addition to novel intermediate products and the production thereof.

(57) Zusammenfassung: Neue Pyrazoylbiphenylcarboxamide der Formel (I), in welcher R1, R2, X, m, Y und n die in der Beschreibung angegebenen Bedeutungen haben, mehrere Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung unerwünschter Mikroorganismen, sowie neue Zwischenprodukte und deren Herstellung.

WO 02/08195 A1

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)