COMPUTER LOGIC AND DIGITAL CIRCUIT DESIGN (PHYS306/COSC330): WEEK 1

Jordan Hanson February 3, 2020

Whittier College Department of Physics and Astronomy

SUMMARY

SUMMARY

- 1. Logic functions
 - Basic gate ideas
 - Combinatorial logic functions
 - · Serial and parallel
- 2. Programmable logic (PL) vs. fixed integrated circuits (ICs)
- 3. Test instruments
 - Oscilloscope
 - · Signal generator
 - Digital voltmeter and DC power supply

First of all, what is an analog circuit?

Figure 1: An example of an analog signal from a temperature sensor, converted from voltage.

First of all, what is an analog circuit?

Figure 2: An example of that same signal, digitized and sampled.

Digital data forms the basis of computation:

- · Noise issues, lossless transmission
- · Constructed from digits ... 1 and 0

First of all, what is an analog circuit?

Figure 3: An example of a digital signal converted from binary to analog voltage signal.

One set of examples of analog circuits is RC/LC filters. We must apply *Ohm's Law* (Eq. 1) and *Kirchhoff's Rules* (Eqs. 2-3) to understand these circuits, so let's review those.

$$V = IR \tag{1}$$

$$\sum_{i,node}^{N} j_i = 0 \tag{2}$$

$$\sum_{i,loop}^{N} v_i = 0 \tag{3}$$

A node: a point in a circuit where conductors meet.

A loop: a path in a circuit that returns to the same node.

Figure 4: A two-resistor voltage divider.

- Using Ohm's Law, find expressions for $v_{\rm in}(t)$ and $v_{\rm out}(t)$ in terms of the resistances and the current.
- Take the ratio of the output voltage to the input voltage to find the transfer function, H(t).

Answer:

$$H(t) = \frac{R_2}{R_1 + R_2} \tag{4}$$

Only the amplitude is affected:

- Original signal: $s_{in}(t) = A \cos(2\pi f t + \phi)$
- New signal: $s_{out}(t) = A\left(\frac{R_1}{R_1 + R_2}\right) \cos(2\pi f t + \phi)$

Other actions we can do in the time-domain:

- · Delay: shift the signal in time
- · Filter: change which frequencies are most powerful
- Integral/derivative: circuit output is proportional to the integral or derivative of input

How do we build up digital data from analog signals?

Figure 5: Logical "1" and "0."

Terminology for digital signals:

- 1. Frequency, f and period, T: Signals per second, time between signals (f = 1/T).
- 2. Pulse width, $t_{\rm W}$: time duration a pulse is HIGH.
- 3. Duty cycle: $t_{\rm W}/T \times 100\%$

Figure 6: A clock signal is an example of a digital bitstream: alternating 1 and 0. It has a period and a frequency. Data can be *periodic* or *non-periodic*. (Professor: do some examples here).

Figure 7: A periodic pulse demonstrating the concept of duty cycle. (Professor: do an example here and vary duty cycle).

What is the duty cycle in Fig. 7? What is the frequency?

Logic function: mapping digital inputs to outputs. A *timing diagram* displays three digital inputs.

Figure 8: A logic function can be displayed as a timing diagram. Add a forth input, labeled OUT. Suppose OUT is only high when A, B, and C are all high. Draw OUT versus time.

Logic gates: fundamental blocks of logic functions.

Figure 9: NOT, AND, and OR. These gates are built from transistors, and have *truth tables*.

Logic gates: combinatoric functions are built from gates.

Figure 10: NOT, AND, and OR gates build up other functions. What function is being described here? What three states (values for A and B) would make OUT go high?

Logic gates: combinatoric functions are built from gates.

Figure 11: Combinatoric functions can exchange data in serial and parallel form.

PL VERSUS IC

Figure 12: Programmable logic falls into several categories. (a) Programmable logic devices (PLDs), simple and complex. (b) Field Programmable Gate Arrays (FPGAs).

Figure 13: Programmable logic devices (PLDs), simple and complex. Combinatoric logic functions can be built using these systems.

Figure 14: This function reduces to $\bar{B} + AB$.

SPLD could be used to temporarily create this function.

Figure 15: Field Programmable Gate Arrays (FPGAs) can be used to design vast, complex systems of logic functions.

Figure 16: Various types of integrated circuits (ICs), that represent fixed combinatoric functions. They come in through-hole and surface mount varieties.

Figure 17: The oscilloscope plots digital and analog signals versus time. The scope needs to *trigger*.

Figure 18: The scope needs to *sample* at a high enough sampling rate to compensate for frequency of data. There's also the issue of AC versus DC coupling. (Professor: do some examples here).

Figure 19: With this issue, we begin our laboratory activity.

CONCLUSION

- 1. Logic functions
 - Basic gate ideas
 - Combinatorial logic functions
 - · Serial and parallel
- 2. Programmable logic (PL) vs. fixed integrated circuits (ICs)
- 3. Test instruments
 - Oscilloscope
 - · Signal generator
 - Digital voltmeter and DC power supply