SOLUCIÓN \triangleright En el ejemplo 5.2.6 se observó que π es un espacio vectorial. Para encontrar

una base, primero se observa que si x y z se escogen arbitrariamente y si $\begin{pmatrix} x \\ y \end{pmatrix} \in \pi$, entonces y = 2x + 3z. Así, los vectores en π tienen la forma

$$\begin{pmatrix} x \\ 2x - 3z \\ z \end{pmatrix} = \begin{pmatrix} x \\ 2x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 3z \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$$

lo cual muestra que $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$ generan a π . Como es evidente que estos dos vectores son lineal-

mente independientes (porque uno no es múltiplo del otro), forman una base para π .

Si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ es una base para V, entonces cualquier otro vector $\mathbf{v} \in V$ se puede escribir como $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$ ¿Puede escribirse de otra manera como una combinación lineal de los vectores \mathbf{v}_i ? La respuesta es **no** (vea la observación que sigue a la demostración del teorema 5.4.7, para el caso $V = \mathbb{R}^n$).

Teorema 5.5.1

Si $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es una base para V y si $\mathbf{v} \in V$, entonces existe un conjunto *único* de escalares c_1, c_2, \dots, c_n tales que $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$.

Demostración

Existe cuando menos un conjunto de dichos escalares porque $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V. Suponga entonces que \mathbf{v} se puede escribir de dos maneras como una combinación lineal de los vectores de la base.

Es decir, suponga que

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \dots + d_n \mathbf{v}_n$$

Entonces, restando se obtiene la ecuación

$$(c_1 - d_1)\mathbf{v}_1 + (c_2 - d_2)\mathbf{v}_2 + \cdots + (c_n - d_n)\mathbf{v}_n = \mathbf{0}$$

Pero como los \mathbf{v}_i son linealmente independientes, esta ecuación se cumple si y sólo si $c_1-d_1=c_2-d_2=\cdots=c_n-d_n=0$. Así, $c_1=d_1$, $c_2=d_2$, ..., $c_n=d_n$ y el teorema queda demostrado.

Se ha visto que un espacio vectorial tiene múltiples bases. Una pregunta surge de manera natural: ¿contienen todas las bases el mismo número de vectores? En \mathbb{R}^3 la respuesta es: por supuesto, sí. Para ver esto, se observa que cualesquiera tres vectores linealmente independientes en \mathbb{R}^3 forman una base. Pero menos vectores no pueden formar una base ya que, como se vio en la sección 5.3, el espacio generado por dos vectores linealmente independientes en \mathbb{R}^3 es un plano —y un plano no es todo \mathbb{R}^3 —. De manera similar, un conjunto de cuatro vectores o más en \mathbb{R}^3 no puede ser linealmente independiente, pues si los tres primeros vectores en el conjunto son linealmente independientes, entonces forman una base; por lo tanto, todos los demás vectores en el conjunto se pueden expresar como una combinación lineal de los primeros tres. Entonces, todas las bases en \mathbb{R}^3 contienen tres vectores. El siguiente teorema nos indica que la respuesta a la pregunta anterior es sí para todos los espacios vectoriales.