MATH-GA.2012.001 Selected Topics in Numerical Analysis: Convex and Nonsmooth Optimization, Spring 2020 Homework Assignment 1
Yves Greatti - yg390

1. Prove that the quadratic cone is convex. Given the quadratic cone $C = \{(x,t) \in \mathbb{R}^{n+1} | ||x||_2 \le t \}$. By triangle inequality, and homogeneity for any $x1, x2 \in C$ and $\theta \in [0,1]$:

$$||\theta \begin{bmatrix} x1 \\ t \end{bmatrix} + (1 - \theta) \begin{bmatrix} x2 \\ t \end{bmatrix}||_2 \le ||\theta \begin{bmatrix} x1 \\ t \end{bmatrix}||_2 + ||(1 - \theta) \begin{bmatrix} x2 \\ t \end{bmatrix}||_2$$

$$= \theta || \begin{bmatrix} x1 \\ t \end{bmatrix}||_2 + (1 - \theta) || \begin{bmatrix} x2 \\ t \end{bmatrix}||_2$$

$$\le \theta t + (1 - \theta)t$$

$$= t$$

2. Prove (using the definition of convexity) that the intersection of two convex sets is convex. (See BV p.36) Let C1, C2 two convex sets and $C3 = C1 \cap C2$. For any $x1, x2 \in C3$ and $\theta \in [0, 1]$:

$$\theta x1 + (1 - \theta)x2 \in C1 \text{ since } x1, x2 \in C1$$

$$\theta x1 + (1 - \theta)x2 \in C2 \text{ since } x1, x2 \in C2$$

$$\Rightarrow \theta x1 + (1 - \theta)x2 \in C1 \cap C2 = C3$$

C3 is convex.

3. Prove that the image of a convex set under an affine function is convex, and that the inverse image is also convex. Given f an affine function, $f: \mathbf{R}^n \to \mathbf{R}^m$, with f(x) = Ax + b, where $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$ and suppose that $C \subseteq \mathbf{R}^n$ is convex,

 $\forall y_1, y_2 \in f(C), \forall \theta \in [0, 1], \text{ and let } f(x_1) = y_1, f(x_2) = y_2, \text{ we have:}$

$$\theta y_1 + (1 - \theta)y_2 = \theta f(x_1) + (1 - \theta)f(x_2)$$

= $\theta (Ax_1 + b) + (1 - \theta)(Ax_2 + b)$
= $\theta A(x_1 + x_2)$

which is a linear combination of x_1, x_2 with b =0, and since C is convex $x_1, x_2 \in C$, so $\theta y_1 + (1 - \theta)y_2 \in f(C)$ and f(C) is convex.

Suppose now $\forall x_1, x_2 \in f^{-1}(C), \forall \theta \in [0, 1]$, and let $f(x_1) = y_1, f(x_2) = y_2$, with $y_1, y_2 \in C$, C is a convex set, we have:

$$f(\theta x_1 + (1 - \theta)x_2) = A[\theta x_1) + (1 - \theta)x_2]$$

= $\theta(Ax_1 + b) + (1 - \theta)(Ax_2 + b)$
= $\theta y_1 + (1 - \theta)y_2$

Since C is convex then $y_3 = \theta y_1 + (1 - \theta)y_2$ is also in C. Therefore we showed that there exist $y_3 \in C$ such that $f(\theta x_1 + (1 - \theta)x_2) = y_3$ which proves that $f^{-1}(C)$ is convex.

- 4. BV Ex 2.1 Let $C \subseteq \mathbf{R}^n$ be a convex set, $x1, \dots, x_k \in C$ and $\theta1, \dots, \theta_k \in C$, with $\theta_i \geq 0$ and $\sum_i \theta_i = 1$. Then by definition of the convexity, for k=2, $\sum_{i=1}^k \theta_i x_i \in C$ holds. Assuming this is also true for k=n-1, then $\sum_{i=1}^n \theta_i x_i = (\sum_{i=1}^{n-1} \theta_i x_i) + \theta_n x_n$, which is the sum of two elements of C which is in C by induction.
- 5. BV Ex 2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that a set is affine if and only if its intersection with any line is affine.

If C is a convex set, a line being affine is also convex and the intersection will be convex. If the intersection of a set with a line is convex and non empty, any points of C will also be in the intersection therefore in C. The same applies to affine set since any affine set is convex.

6. BV Ex 2.10 Let $C \subseteq \mathbb{R}^n$, the solution set of a quadratic inequality,

$$C = \{x \in \mathbf{R}^n | x^T A x + b^T x + c \le 0\}$$

with $A \in \mathbf{S}^n, b \in \mathbf{R}^n$, and $c \in \mathbf{R}$.

- (a) Show that C is convex if $A \succeq 0$
- (b) Show that the intersection of C and the hyperplane defined by $g^Tx + h = 0$ (where $g \neq 0$) is convex if $A + \lambda gg^T \succeq 0$ for some $\lambda \in \mathbf{R}$.

Are the converses of these statements true?

source: math.stackexchange.com

- (a) rewriting C as $C=\{x\in \mathbf{R}^n|(x^TAx)+(b^Tx)\leq \alpha,\alpha\in \mathbf{R}\}$. Then the condition on x is the sum of two convex functions x^TAx if $A\succeq 0$ and b^Tx and sublevels set of a function are convex (BV 3.1.6). If $A=-1,b=0,c=-1,\ C=\{x\in \mathbf{R}^n|\|x\|_2^2\geq 1\}$ is convex but A is not positive semi-definite so the converse is not true.
- (b)
- 7. BV Ex 2.16

Let S_1, S_2 two convex sets $\in \mathbf{R}^{m+n}$ and $S = \{(x, y_1 + y_2) | x \in \mathbf{R}^m, y_1, y_2 \in \mathbf{R}^n, (x, y_1) \in S_1, (x, y_2) \in S_2\}$. $\forall (x, y_1 + y_2) \in S, (x, z_1 + z_2) \in S, \forall \theta \in [0, 1]$, we have: $\theta(x, y_1 + y_2) + (1 - \theta)(x, z_1 + z_2) = (x, (\theta y_1 + (1 - \theta) y_2) + (\theta z_1 + (1 - \theta) z_2))$ which is in the form (x, t + s) where $x \in \mathbf{R}^m, t = (\theta y_1 + (1 - \theta) y_2) \in S_1, s = (\theta z_1 + (1 - \theta) z_2) \in S_2$ since S_1, S_2 are convex. Thus S is convex.

- 8. BV Ex 2.23 Give an example of two closed convex sets that are disjoint but cannot be strictly separated. $S_1 = \{x \in \mathbf{R}^2 : x_1 > 0, x_2 \ge \frac{1}{x_1}\}$ and $S_2 = \{x \in \mathbf{R}^2 : x_2 = 0\}$. S_1 and S_2 are closed, convex, and disjoints. Any line of separating the two sets must be of the form $[01]^T x = \beta$ but $[01]^T b = 0$ for all $b \in S_2$, on the other hand $\inf_{a \in S_1} [01]^T a = 0$, this implies there cannot be strict separation.
- 9. BV Ex 2.24 (b) Supporting hyperplanes. Let $C=\{x\in\mathbf{R}^n|\|x\|_\infty\leq 1\}$ and let \hat{x} be a point in the boundary of C. Identify the supporting hyperplanes of C at \hat{x} explicitly. By definition if C is supported at \hat{x} iff $\exists v\in\mathbf{R}^n, v\neq 0$ such that $v^T.a\geq v^T.\hat{x}$ for all $a\in C$. If $\|\hat{x}\|=1$, and $\hat{x}=1$ then we take $\mathbf{v}=-1$, if $\|\hat{x}\|=1$, and $\hat{x}=-1$ then we take $\mathbf{v}=1$, and $\|\hat{x}\|\leq 1$, with $-1<\hat{x}<1$ then we take $\mathbf{v}=0$. source: https://pages.wustl.edu/files/pages/imce/nachbar/convexityrn.pdf
- 10. Verify that as stated on BV p.39, the hyperbolic cone is the inverse image of the second order cone under the given affine transformation. Let C, the hyperbolic cone: $C = \{x|x^TPx \leq (c^Tx)^2; c^tx \geq 0\}$ where $P \in \mathbf{S}^n_+$ and $c \in \mathbf{R}^n$, and S, the second-order cone: $S = \{(z,t)|z^Tz \leq t^2; t \geq 0\}$. For any point x of C, we want to show that under affine function $f(x) = (P^{\frac{1}{2}}x, c^Tx), C = \{x|f(x) \in S\}$. $(P^{\frac{1}{2}}x)^T(P^{\frac{1}{2}}x) = x^T(P^{\frac{1}{2}})^TP^{\frac{1}{2}}x = x^TP^{\frac{1}{2}}P^{\frac{1}{2}}x$ since P is symmetric. So $C = \{x|\|P^{\frac{1}{2}}x\|_2^2 \leq (c^Tx)^2\}$ or $C = \{(x,ct)\|\|P^{\frac{1}{2}}x\|_2^2 \leq (c^Tx)^2, (c^Tx) \geq 0\}$, $C = \{(x,ct)|f(x) \in S\}$.