

# An Android Application for Pedestrian Localization using WiFi fingerprinting and inertial navigation

developed in Android Lollipop 5.0.1

Computer Engineering, Università di Pisa Mobile And Pervasive Systems

A.Y. 2017

Nicola Messina



## Motivation

- Requirement of obtaining location-aware service is rapidly increasing, due to
  - Rapid development of mobile communication and pervasive computing technology
  - Need for location awareness in most real life applications
    - Navigation

**Pedestrian tracking** 

- Object or people tracking
- GPS is the most common positioning service
  - Power hungry and not always available
- What if we want to locate peoples indoor?
  - Firefighters inside a building
  - Old people movements inside their apartments



# **Application Concept**

- Use smathphone capabilities to reconstruct pedestrian movement without relying on GPS
- Wifi for absolute, coarse grain location synchronization
  - Inertial Sensors (compass, gyro, accelerometer) for relative, fine grain location estimation





#### Wifi Localization

- Range free method based on wifi fingerprints
  - Fingerprint:
    - set of access point s(APs) BSSID
    - received signal strength from each BSSID
    - geographical coordinates
- Wifi AP can be sensed since periodically they emit beacon frames carrying the BSSID and used by the Wifi receiver to estimate the RSSI.
  - Delay between scans is high (between 3-5 seconds) since receiver must listen for a certain period of time on all channels sequentially



## Wifi Phases

- Offline phase: the fingerprint is acquired, associated to a certain position and stored in a database
- Online phase: the fingerprint in an unknown location is built and compared with the ones in the database





# Wifi Matching

#### • Online phase:

- The best K fingerprints found in the database are used to estimate current phone location
- Similarity criterion needed for defining the best K fingerprints
  - Needed the concept of distance among fingerprints.
     Lots of distances introduced in fingerprinting literature

$$d = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (RSS_{mi} - RSS_{pi})^2}$$

BSSIDs of fingerprint A that don't compare in fingerprint B are considered having strength of -120 db

AP orientated Euclidean Distance [3]



## Wifi Matching, position estimation

Wifi matching flow:





## **Inertial Navigation**

- Once initial position is known, if we know magnitude( $\Delta s$ ) of movement and its direction( $\theta i$ ), we car reconstruct the pedestrian path.  $\begin{cases} x_{i+1} = x_i + \Delta s \cos \theta_i \\ y_{i+1} = y_i + \Delta s \sin \theta_i \end{cases}$ 
  - Initial position given by previously seen wifile location algorithm
  - Magnitude given by step length (step detected through accelerometer)
  - Direction estimated using Android rotation sensor



# **Direction Estimation (1)**

- Android rotation sensor uses sensor fusion (using compass, accelerometer, gyroscope) to obtain the phone rotation to respect earth reference frame
  - It outputs a rotation matrix R<sub>wp</sub> that express rotation of phone to respect world
- We need to estimate R<sub>wu</sub>
  - Rotation of user to respect world
- If phone and users are aligned on their y axis, there is no problem.
  - What if the phone is facing an arbitrary direction to respect the user? (e.g. user has the phone in the pocket)



# Direction Estimation (2)

- We need to estimate R<sub>up</sub>, the rotation matrix that transforms user space into phone space
  - We estimate it in a calibration process,
    - The user keeps the phone facing his own direction ( $R_{wu}$  is known), then he puts it in the pocket ( $R_{wp}$  is known)

$$R_{up} = \bar{R}_{wu}^T \bar{R}_{wp}$$

- Given  $R_{up}$  then, the rotation  $R_{wu}$  can be estimated:

$$R_{wu} = R_{wp} R_{up}^T$$

So now direction unit vector(x,y) can be estimated:

$$[x,y,0]^T=R_{wu}[0,1,0]^T$$
 Y points toward north



# Direction Filtering

- Calibration matrix R<sub>up</sub> filtering
  - Both  $R_{wu}$  and  $R_{wp}$  are sensed 15 times. Then, their mean is computed
- Direction vector (x,y) filtering:
  - exponential moving average filtering applied on both dimensions

$$S_{t} = \begin{cases} Y_{1}, & t = 1\\ \alpha \cdot Y_{t} + (1 - \alpha) \cdot S_{t-1}, & t > 1 \end{cases}$$



## Application Structure (1)

- WifiLocatorActivity (the main activity)
  - FPMapFragment, containing the map for visualizing movement
  - FPLocateFragment, UI for controlling fingerprint matching
  - FPStoreFragment, UI for storing new fingerprints
- WifiFingerprintingService
  - for wifi fingerprinting acquisition and matching)
- InertialPedestrianNavigationService
  - for steps counting/rotation acquisition





# **Application GUI**

- The 3 fragments are organized in a tabbed activity
  - From menu other 2 activities (Calibration and Settings) can be accessed





#### **Indoor Localization Test**

- Very low physical distance between wifi sync points
  - Physical distance, however, is quite well reflected on fingerprint distance (for example, different floors are not mismatched)
- Lot of magnetic noise brings high errors in the inertial system





Min Matching APs: 2 Max number of NN: 2 Max FP distance: 26

曾

Store

Step length: 0.74m



- [1] Pei Jiang, Yunzhou Zhang, Wenyan Fu, Huiyu Liu and Xiaolin Su, Indoor Mobile Localization Based on Wi-Fi Fingerprint's Important Access Point, March 2015
- [2] Xuxing Ding, Li Gao, and Zaijian Wang, Modified Fingerprinting Algorithm for Indoor Location, Journal of Communications Vol. 12, No. 3, March 2017
- [3] Aare Puussaar, Indoor Positioning Using WLAN Fingerprinting with Post-Processing Scheme, 2014
- [4] Joaquin Torres-Sospedra, Raul Montoliu, Sergio Trilles, Oscar Belmonte, Joaquin Huerta Comprehensive Analysis of Distance and Similarity Measures for Wi-Fi Fingerprinting Indoor Positioning Systems
- [5] Alex T. Mariakakis DirectMe: A Mobile Phone Algorithm for Direction Detection, 2013