

Chapter 5

Synchronous Sequential Logic

E 1

Outline

- Sequential Circuits
- Latches
- Flip-Flops
- Analysis of Clocked Sequential Circuits
- State Reduction and Assignment
- Design Procedure

Sequential Circuits

- Consist of a combinational circuit to which storage elements are connected to form a feedback path
- State the state of the memory devices now, also called current state
- Next states and outputs are functions of inputs and present states of storage elements

Fig. 5-1 Block Diagram of Sequential Circuit

5-3

Two Types of Sequential Circuits

- Asynchronous sequential circuit
 - Depends upon the input signals at any instant of time and their change order
 - May have better performance but hard to design
- Synchronous sequential circuit
 - Defined from the knowledge of its signals at discrete instants of time
 - Much easier to design (preferred design style)
 - Synchronized by a periodic train of clock pulses

(b) Timing diagram of clock pulses

Memory Elements

- Allow sequential logic design
- Latch a level-sensitive memory element
 - SR latches
 - D latches
- Flip-Flop an edge-triggered memory element
 - Master-slave flip-flop
 - Edge-triggered flip-flop
- RAM and ROM a mass memory element
 - Discussed in Chapter 7

_ _

Outline

- Sequential Circuits
- Latches
- Flip-Flops
- Analysis of Clocked Sequential Circuits
- State Reduction and Assignment
- Design Procedure

Latches

- The most basic types of flip-flops operate with signal levels
- The basic circuits from which all flip-flops are constructed
- Useful for storing binary information and for the design of asynchronous sequential circuits
 - Not practical for use in synchronous sequential circuits
 - Avoid to use latches as possible in synchronous sequential circuits to avoid design problems

5-7

SR Latch

- A circuit with two cross-coupled NOR gates or two cross-coupled NAND gates
- Two useful states:
 - S=1, $R=0 \rightarrow$ set state (Q will become to 1)
 - S=0, $R=1 \rightarrow$ reset state (Q will become to 0)
- When S=0 and $R=0 \rightarrow$ keep the current value

- Add an additional control input to determine when the state of the latch can be changed
- C=0: S and R are disabled (no change at outputs)
- C=1: S and R are active-high

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

(b) Function table

Fig. 5-5 SR Latch with Control Input

5-11

D Latch

- D latch has only two inputs: D(data) and C(control)
 - Use the value of D to set the output value
 - Eliminate the indeterminate state in the SR latches
- The D input goes directly to the S input and its complement is applied to the R input
 - \blacksquare D=1 \rightarrow Q=1 \rightarrow S=1, R=0

 $\begin{array}{c|c} C \ D & \text{Next state of } Q \\ \hline 0 \ X & \text{No change} \\ 1 \ 0 & Q = 0; \text{Reset state} \\ 1 \ 1 & Q = 1; \text{Set state} \\ \end{array}$

(b) Function table

Fig. 5-6 D Latch

Outline

- Sequential Circuits
- Latches
- Flip-Flops
- Analysis of Clocked Sequential Circuits
- State Reduction and Assignment
- Design Procedure

Latch vs. Flip-Flop

- Latch:
 - Change stored value under specific status of the control signals
 - Transparent for input signals when control signal is "on"
 - May cause combinational feedback loop and extra changes at the output
- Flip-Flop:
 - Can only change stored value by a momentary switch in value of the control signals
 - Cannot "see" the change of its output in the same clock pulse
 - Encounter fewer problems than using latches

- Constructed with two D latches and an inverter
- The first latch (master) is enabled when CLK=1
 - It reads the input changes but stops before the second one
- The second latch (slave) is enabled when CLK=0
 - Close the first latch to isolate the input changes
 - Deliver the final value at the moment just before CLK changes
- The circuit samples the D input and changes its output Q only at the **negative-edge** of the controlling clock

Edge-Triggered D Flip-Flop

- If only SR latches are available, three latches are required
- Two latches are used for locking the two inputs (CLK & D)
- The final latch provides the output of the flip-flop

Fig. 5-10 D-Type Positive-Edge-Triggered Flip-Flop

(a) Positive-edg

(a) Negative-edge

Fig. 5-11 Graphic Symbol for Edge-Triggered D Flip-Flop

Setup & Hold Times

- The response time of a flip-flop to input changes must be taken into consideration
- Setup Time: The length of time that data must stabilize before the clock transition
 - The maximum data path is used to determine if the setup time is met
- Hold Time: The length of time that data must remain stable at the input pin after the active clock transition
 - The minimum data path is used to determine if hold time is met

5-19

Setup & Hold Times

Timing Diagram

Valid Data Transition

Other Flip-Flops

- The most economical and efficient flip-flop is the edge-triggered D flip-flop
 - It requires the smallest number of gates
- Other types of flip-flops can be constructed by using the D flip-flop and external logic
 - JK flip-flop
 - T flip-flops
- Three major operations that can be performed with a flip-flop:
 - Set it to 1
 - Reset it to 0
 - Complement its output

Characteristic Equations

- Algebraically describe the next state
- Can be derived from characteristic tables
- D flip-flop:

$$Q(t+1) = D$$

■ JK flip-flop:

$$Q(t+1) = JQ'+K'Q$$

■ T flip-flop:

$$Q(t+1) = T \oplus Q = TQ' + T'Q$$

E 2E

Direct Inputs

- Force the flip-flop to a particular state immediately
 - Independent of clock signal
 - Have higher priority than any other inputs
 - Useful to bring all flip-flops from unknown into known state while power up
- The input that sets the flip-flop to 1 is called preset or direct set
- The input that clears the flip-flop to 0 is called **clear** or **direct reset**
- Also called **asynchronous** set/reset

Outline

- Sequential Circuits
- Latches
- Flip-Flops
- Analysis of Clocked Sequential Circuits
- State Reduction and Assignment
- Design Procedure

Sequential Circuit Analysis

- The behavior of a clocked sequential circuit is determined from
 - The inputs
 - The outputs
 - The state of its flip-flops
- The outputs and the next state are both a function of the inputs and the present state
- To analyze a sequential circuit, we can use
 - State equations
 - State table
 - State diagram
 - Flip-Flop input equations

5-29

State Equations

- Specify the next state as a function of the present state and inputs
 - Also called transition equation
- Analyze the combinational part directly
- EX:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$\implies$$
 A(t+1) = Ax + Bx

$$B(t+1) = A'(t) x(t)$$

$$\implies$$
 B(t+1) = A'x

$$y(t)=[A(t)+B(t)] x(t)$$

 \implies y=(A+B)x'

)-30

State Table

- Enumerate the time sequence of inputs, outputs, and flip-flop states
 - Also called transition table
 - Similar to list the truth table of state equations
- Consist of four sections
 - Present state, input, next state, and output
- A sequential circuit with m flip-flops and n inputs need 2^{m+n} rows in the state table

1	sent ate	input	Next state		output
Α	В	Х	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

E 21

Second Form of State Table

- The state table has only three section: present state, next state, and output
- The input conditions are enumerated under next state and output sections

Pres	sent		Next	Output			
Sta	ate	X=	X=0 X=			X=0	X=1
Α	В	Α	В	Α	В	Υ	Υ
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

State Diagram

- Graphically represent the information in a state table
 - Circle: a state (with its state value inside)
 - Directed lines: state transitions (with inputs/outputs above)
- Ex: starting from state 00
 - If the input is 0, it stays at state 00 with output=0
 - If the input is 1, it goes to state 01 with output=0
- The state table is easier to derive from a given logic diagram and state equations
- The state diagram is suitable for human interpretation

Fig. 5-16 State Diagram of the Circuit of Fig. 5-15

E 22

Flip-Flop Input Equations

- To draw the logic diagram of a sequential circuit, we need
 - The type of flip-flops
 - A list of Boolean expressions of the combinational circuits
- The Boolean functions for the circuit that generates external outputs is called output equations
- The Boolean functions for the circuit that generates the inputs to flip-flops is flip-flop input equations
 - Sometimes called excitation equations
- The flip-flop input equations provide a convenient form for specifying the logic diagram of a sequential circuit

■ Ex: (Fig. 5-15)

Input:

Output:

 $D_A = Ax + Bx$

y=(A+B)x'

 $D_B = A'x$

Analysis with Other Flip-Flops

- The sequential circuit using other flip-flops such as JK or T type can be analyzed as follows
 - Determine the flip-flop input equations in terms of the present state and input variables
 - List the binary values of each input equation
 - Use the corresponding flip-flop characteristic table to determine the next state values in the state table

Analysis with JK Flip-Flops (2/2)

Step 3: state table

	esent tate	Input		ext ate		-	-Flop puts		
Α	В	Х	Α	В	J _A	K _A	J _B	K _B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

Step 4: state diagram

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

Outline

- Sequential Circuits
- Latches
- Flip-Flops
- Analysis of Clocked Sequential Circuits
- State Reduction and Assignment
- Design Procedure

State Reduction

- Reducing the number of states in a state table, while keeping the external input-output requirements unchanged
- Example:
 - Total 7 states
 - A sequence as follows

state	a	а	b	С	d	е	f	f	g	f	g	а
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

Fig. 5-22 State Diagram

5-43

State Reduction Rules

 Two states are said to be equivalent if, for every possible inputs, they give exactly the same output and have equivalent next state

Present	Next	State	Output			
State	X=0	X=1	X=0	X=1		
a	a	b	0	0		
b	С	d	0	0		
С	a	d	0	0		
d	е	f	0	1		
e	а		0	1		
f	g	f	0	1		
g	а		0	1		

Present	Next	State	Output		
State			X=0	•	
a	а	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	е	f	0	1	
е	a	f	0	1	
f	e	f	0	1	

delete state g and replaced with state e

Further State Reduction

- After the first reduction, we can see that state d and state f will have the same output and next state for both x=0 and x=1
 - Further reduce one state

Present		State	Output		
State	X=0	X=1	X=0	X=1	
а	a	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	е	f	0	1	
е	a	f	0	1	
	е	f	0	1	

Present	Next		Output		
State	X=0	X=1	X=0	X=1	
а	а	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	е	a	0	1	
е	a	d	0	1	

delete state f and replaced with state d

5-45

Reduced State Diagram

- After reduction, the circuit has only 5 states with same input/output requirements
- Original output sequence:

_												
state	а	a	b	С	d	е	f	f	g	f	g	а
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

• Reduced output sequence:

state	а	а	b	С	d	е	d	d	e	d	e	a
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

Fig. 5-23 Reduced State Diagram

Implication Chart Method (1/3)

■ Step 1: build the implication chart

Present	Next S	Present	
State	X = 0	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

b	d-f c-h	←	← a≡b iff d ≡f and c ≡h								
С	X	X	←	b≠c	sin	ce o	utpu	ıts	diff	er	
d	များ များ	a-f e-h	X								
е	X	X	a-d	X							
f	X	X	e-f b-d	X	c-f a-b						
g	b-d c-h	b-f	X	a-b e-h	X	X					
h	X	X	c-e d-g	X	a-g	c-f b-g	X				
	а	b	С	d	е	f	g				

*For details, see "Fundamentals of Logic Design", 4th Ed., by C. H. Roth, Jr.

5-47

Implication Chart Method (2/3)

■ Step 2: delete the node with unsatisfied conditions

Implication Chart Method (3/3)

■ Step 3: repeat Step 2 until equivalent states found

Present	Next S	Present	
State	X = 0	1	Output
a	a	c	0
b	f	h	0
c	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

E 40

State Assignment

- Assign coded binary values to the states for physical implementation
- For a circuit with m states, the codes must contain n bits where 2ⁿ >= m
- Unused states are treated as don't care conditions during the design

Assign	Assignment:					
a = 000	d = 011					
b = 001	e = 100					
c = 010						

- Don't cares can help to obtain a simpler circuit
- There are many possible state assignments
 - Have large impacts on the final circuit size

Present	Next	State	Output		
State	X=0	X=1	X=0	X=1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	
				E E0	

Popular State Assignments

- Binary: assign the states in binary order
 - Typical method without other considerations
- Gray code: assign the states by gray code
 - Lower power consumption during state transitions (if in order)
- One-hot: assign a specific flip-flop for each state
 - Simplify the circuit design but may have larger hardware cost

State	Assignment 1	Assignment 2	Assignment 3
	Binary	Gray code	One-hot
а	000	000	00001
b	001	001	00010
С	010	011	00100
d	011	010	01000
е	100	110	10000

_ _.

Outline

- Sequential Circuits
- Latches
- Flip-Flops
- Analysis of Clocked Sequential Circuits
- State Reduction and Assignment
- Design Procedure

Design Procedure

- Design procedure of synchronous sequential circuits:
 - Derive a state diagram for the circuit from specifications
 - Reduce the number of states if necessary
 - Assign binary values to the states
 - Obtain the binary-coded state table
 - Choose the type of flip-flop to be used
 - Derive the simplified flip-flop input equations and output equations
 - Draw the logic diagram
- Step 4 to 7 can be automated
 - Use HDL synthesis tools

E E2

Synthesis Using D Flip-Flops

Ex: design a circuit that detects 3 or more consecutive 1's at inputs

$$A(t+1) = D_A(A, B, x) = \sum (3,5,7)$$

$$B(t+1) = D_B(A, B, x) = \sum (1,5,7)$$

$y(A,B,x) = \sum_{i=1}^{n} x_i dx_i$	(6,7)
--------------------------------------	-------

	sent ate	Input	Next state		Output	
Α	В	Х	Α	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Excitation Tables

- Record the flip-flop input conditions that will cause the required transition in STG
 - Equal to next state equations for D flip-flop
- For JK flip-flop:
 - J=0, K=X: no change (JK=00) or set to zero (JK=01)
 - J=1, K=X: toggle (JK=11) or set to one (JK=10)
 - J=X, K=1: toggle (JK=11) or set to zero (JK=01)
 - J=X, K=0: no change (JK=00) or set to one (JK=10)

JK F/F	Q(t)	Q(t+1)	J	K	Q(t)	Q(t+1)	T	Т
F/F	0	0	0	Х	0	0	0	F/F
	0	1	1	Χ	0	1	1	
	1	0	Χ	1	1	0	1	
	1	1	Χ	0	1	1	0	F F6
								5-56

Synthesis Using JK Flip-Flops

- Derive the state table with the excitation inputs
- Other design procedures are the same

	sent ate	Input		Next State		Flip-Flop Inputs			
Α	В	X	Α	A B		J_A	K_A	J_{B}	K _B
0	0	0	0	0		0	Χ	0	X
0	0	1	0	1		0	Χ	1	Χ
0	1	0	1	0		1	Χ	Χ	1
0	1	1	0	1		0	Χ	Χ	0
1	0	0	1	0		Χ	0	0	Χ
1	0	1	1	1		Χ	0	1	Χ
1	1	0	1	1		Χ	0	Χ	0
1	1	1	0	0		Χ	1	Χ	1

Synthesis Using T Flip-Flops

- Derive the state table with the excitation inputs
- Other design procedures are the same

3-bit binary counter
(000)
(001) (111)
(010) (110)
100
(10)

Pre	sent S	state	Next State			Flip-Flop Inputs		
A2	A1	Α0	A2	A1	Α0	T _{A2}	T _{A1}	T _{A0}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

