FPGA Cheatsheet for Spacecraft and Missions

This cheat sheet provides an overview of the essential characteristics, types, and considerations for space-grade FPGAs used in spacecraft, rockets, satellites, and other space missions.

Table of Contents

- 1. Key FPGA Characteristics for Space
- 2. Common FPGA Types for Space
- 3. Space-Grade FPGA Examples
- 4. Selection Criteria for FPGAs in Space
- 5. Common Space Applications for FPGAs
- 6. FPGA Design Tips for Space
- 7. Resources and Standards

1. Key FPGA Characteristics for Space

Radiation Tolerance

- Must withstand Total Ionizing Dose (TID), Single Event Upsets (SEUs), and Single Event Latch-ups (SELs).
- Mitigation techniques:
 - Antifuse technology (non-volatile, robust).
 - Triple Modular Redundancy (TMR) to handle SEUs.
 - o Error Correction Codes (ECC).

Thermal Resistance

- Operating temperature: -55 °C to +125 °C.
- Ceramic packaging enhances thermal performance.

Power Efficiency

- Low power consumption is crucial for space missions.
- Static and dynamic power optimization techniques are employed.

Robust Packaging

• Hermetically sealed ceramic or metal packages are used for extreme environments.

2. Common FPGA Types for Space

FPGA Type	Examples	Features	Applications
Antifuse	Microsemi RTAX/RTSX	Radiation-hardened, non-volatile, one-time programmable.	Flight control systems, low-power subsystems.
SRAM-Ba sed	Xilinx Virtex Q Pro (Rad-Hard)	High-performance, reconfigurable, requires mitigation.	Image processing, communications.
Flash-Ba sed	Microsemi RTG4, NanoXplore NG	Reconfigurable, radiation-resistant, low power.	General-purpose space applications.

3. Space-Grade FPGA Examples

Microsemi RTG4

- TID tolerance: 100 krad.
- Integrated **SEU** mitigation.
- Suitable for **control** and **processing** systems.

Xilinx Kintex UltraScale Space-Grade

- High DSP count and memory bandwidth.
- Used in advanced payload and communication systems.

NanoXplore NG-Large

- European-manufactured, **ESA-compliant**.
- Optimized for radiation resistance and reconfigurability.

BAE Systems RAD750 FPGA

• Proven reliability in numerous NASA missions.

4. Selection Criteria for FPGAs in Space

Factor Considerations

Radiation Level Mission orbit (LEO, GEO, or interplanetary) affects radiation

requirements.

Thermal Range Wider temperature tolerances are needed for deep space missions.

Application

Type

Compute-intensive tasks require high **DSP** and **memory capacity**.

Budget SRAM and Flash-based FPGAs can be more cost-effective than

antifuse types.

5. Common Space Applications for FPGAs

Application FPGA Role

Attitude and Orbit Control Control signal processing and redundancy management.

Image Processing On-board data compression and analysis for Earth imaging.

Communication Systems Encoding/decoding, signal filtering, and custom protocols.

Payload Processing High-performance tasks such as radar or hyperspectral

imaging.

6. FPGA Design Tips for Space

Implement Redundancy

Use TMR for critical logic paths to mitigate SEUs.

Radiation Testing

• Simulate radiation effects and validate mitigation strategies during the design phase.

Use Proven IP Cores

• Opt for radiation-hardened IP cores certified for space use.

Optimize Power Consumption

• Leverage **clock gating** and **voltage scaling** to minimize power consumption.

Verification Tools

• Use simulators like **Synopsys** or **Mentor Graphics** for detailed validation.

7. Resources and Standards

Standard/Resource	Description
MIL-STD-883	Testing procedures for electronics in aerospace applications.
NASA EEE-INST-002	Guidelines for selecting EEE parts for space applications.
ESA Space Standards (ECSS)	Framework for European space missions.
Microsemi Space-Grade FPGA Guide	Comprehensive guide for Microsemi FPGAs in space.

For more in-depth design details and guidance, consult the official documentation from manufacturers and aerospace standards.

License

Distributed under the MIT License. See LICENSE for more information.