Toward a Curry-Howard Correspondence for Linear, Reversible Computation

Reversible Computation 2020

Kostia Chardonnet^{1,2}

Alexis Saurin²

Benoît Valiron¹

¹Université Paris Saclay

²Université de Paris

Known:

- Rich Type System
- Classical Control **QRAM** Computer

Types

- Types describe data, structure programs.
- "Well-typed Programs Cannot Go Wrong" Robin Milner

Types

- Types describe data, structure programs.
- "Well-typed Programs Cannot Go Wrong" Robin Milner

Example: $toString : nat \rightarrow string$ toString(5) = "five".

Types

- Types describe data, structure programs.
- "Well-typed Programs Cannot Go Wrong" Robin Milner

Formal Program Verification

λ -calculus	Logic & Proofs
Types	Formulas
Typed terms	Proofs
Evaluation	Cut Elimination

Our Work

Based on [Sabry, Valiron, Vizzotto] and [Baelde, Doumane, Saurin]

	Sabry et al.	Baelde et al.	This Work
Linear	✓	✓	✓
Reversible	✓	×	✓
(Co)-Inductive	×	✓	✓
Curry-Howard	×	×	✓
Quantum Case	✓	×	WIP

(Base types)
$$A,B := \mathbb{1} \mid X \mid A \oplus B \mid A \otimes B \mid \mu X.A \mid \nu X.A$$

(Isos, first-order) $\alpha := A \leftrightarrow B$
(Isos, higher-order) $T := \alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha$

(Base types)
$$A,B::= \mathbb{1} \mid X \mid A \oplus B \mid A \otimes B \mid \mu X.A \mid \nu X.A$$
 (Isos, first-order)
$$\alpha::= A \leftrightarrow B$$
 (Isos, higher-order)
$$T::= \alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha$$

- $nat = \mu X.1 \oplus X$
- $lists(A) = [A] = \mu X$. $\mathbb{1} \oplus (A \otimes X)$
- $streams(A) = \nu X$. $A \otimes X$

(Base types)
$$A, B := \mathbb{1} \mid X \mid A \oplus B \mid A \otimes B \mid \mu X.A \mid \nu X.A$$

(Isos, first-order) $\alpha := A \leftrightarrow B$
(Isos, higher-order) $T := \alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha$
(Isos) $\omega := \{e_1 \leftrightarrow e'_1 \mid \ldots \mid e_n \leftrightarrow e'_n\} \mid \lambda f.\omega \mid \mu f.\omega \mid f \mid \omega_1 \omega_2 \mid \text{inv } \omega$

$$\lambda g.\mu f. \left\{ \begin{array}{c} [\] \qquad \longleftrightarrow \qquad [\] \\ \qquad \qquad \qquad \qquad \qquad \\ h :: t \leftrightarrow \text{let } x = g \text{ } h \text{ in } \\ \qquad \qquad \qquad \qquad \\ \text{let } y = f \text{ } t \text{ in } x :: y \end{array} \right\} : A \leftrightarrow B \rightarrow [A] \leftrightarrow [B]$$

$$(Base types) \qquad A,B ::= 1 \mid X \mid A \oplus B \mid A \otimes B \mid \mu X.A \mid \nu X.A$$

$$(Isos, first-order) \qquad \alpha ::= A \leftrightarrow B$$

$$(Isos, higher-order) \qquad T ::= \alpha_1 \to \cdots \to \alpha_n \to \alpha$$

$$(Isos) \qquad \qquad \omega ::= \{e_1 \leftrightarrow e_1' \mid \dots \mid e_n \leftrightarrow e_n'\} \mid \lambda f.\omega \mid \mu f.\omega \mid f \mid \omega_1 \omega_2 \mid \text{inv } \omega$$

$$\lambda g.\mu f. \left\{ \begin{array}{c} [\] \qquad \leftrightarrow \qquad [\] \\ \qquad h :: t \leftrightarrow \text{let } x = g \text{ } h \text{ in } \\ \qquad \text{let } y = f \text{ } t \text{ in } x :: y \end{array} \right\} : A \leftrightarrow B \to [A] \leftrightarrow [B]$$

```
(Base types) A, B := 1 \mid X \mid A \oplus B \mid A \otimes B \mid \mu X.A \mid \nu X.A
             (Isos, first-order) \alpha := A \leftrightarrow B
             (Isos, higher-order) T ::= \alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha
             (Isos)
                                                          \omega ::= \{e_1 \leftrightarrow e_1' \mid \ldots \mid e_n \leftrightarrow e_n'\} \mid \lambda f \cdot \omega \mid
                                                                         \mu f.\omega \mid f \mid \omega_1 \omega_2 \mid \text{inv } \omega
\lambda g.\mu f. \left\{ egin{array}{ll} [\ ] &\leftrightarrow \ [\ ] \\ h::t &\leftrightarrow \ \mathtt{let}\, x=g \ h \ \mathtt{in} \\ &\mathtt{let}\, y=f \ t \ \mathtt{in}\, x::y \end{array} 
ight\} : A \leftrightarrow B 
ightarrow [A] \leftrightarrow [B]
```

Properties

Syntax

- Language comes with a rewriting system and a type system.
- Ensuring exhaustivity and non-overlapping of clauses.
- Ensuring productivity.

Semantic

• Isos denote computations from $A \rightarrow B$ and $B \rightarrow A$.

Syntax - Example 2

$$\mathtt{map} = \lambda \mathtt{g.}\mu\mathtt{f.} \left\{ egin{array}{ll} [\] & \leftrightarrow & [\] \\ h :: t & \leftrightarrow & \mathtt{let}\, x = g \ h \ \mathtt{in} \\ & \mathtt{let}\, y = f \ t \ \mathtt{in}\, x :: y \end{array}
ight\} : \mathtt{A} \leftrightarrow \mathtt{B} \rightarrow [\mathtt{A}] \leftrightarrow [\mathtt{B}]$$

Syntax - Example 2

$$\mathtt{map} = \lambda \mathtt{g}.\mu\mathtt{f}. \left\{ egin{array}{ll} [\] & \leftrightarrow & [\] \ h :: t & \leftrightarrow & \mathtt{let}\,x = g \ h \ \mathtt{in} \ & \mathtt{let}\,y = f \ t \ \mathtt{in}\,x :: y \end{array}
ight\} : \mathtt{A} \leftrightarrow \mathtt{B} \rightarrow [\mathtt{A}] \leftrightarrow [\mathtt{B}]$$

$$\mathtt{map}^{\perp} = \lambda \mathtt{g}.\mu\mathtt{f}. \left\{ egin{array}{ll} [\] & \leftrightarrow & [\] \ \\ \mathtt{let}\, x = g \,\, h \,\, \mathtt{in} & \leftrightarrow & h :: t \ \\ \mathtt{let}\, y = f \,\, t \,\, \mathtt{in}\, x :: y \end{array}
ight\} : \mathtt{A} \leftrightarrow \mathtt{B}
ightarrow [\mathtt{B}] \leftrightarrow [\mathtt{A}]$$

Syntax - Example 2

$$\mathtt{map} = \lambda \mathtt{g}.\mu\mathtt{f}. \left\{ egin{array}{ll} [\] & \leftrightarrow & [\] \\ h :: t & \leftrightarrow & \mathtt{let}\, x = g \ h \ \mathtt{in} \\ & \mathtt{let}\, y = f \ t \ \mathtt{in}\, x :: y \end{array}
ight\} : \mathtt{A} \leftrightarrow \mathtt{B} \rightarrow [\mathtt{A}] \leftrightarrow [\mathtt{B}]$$

$$\mathtt{map}^{\perp} = \lambda \mathtt{g}.\mu\mathtt{f}. \left\{ \begin{array}{l} [\] \\ \mathtt{let} \, x = g \, h \, \mathtt{in} \\ \mathtt{let} \, y = f \, t \, \mathtt{in} \, x :: y \end{array} \right\} : \mathtt{A} \leftrightarrow \mathtt{B} \rightarrow [\mathtt{B}] \leftrightarrow [\mathtt{A}]$$

$$\mathtt{map}^{\perp} = \lambda \mathtt{g}.\mu\mathtt{f}. \left\{ \begin{array}{l} [\] \\ \mathtt{x} :: y \, \leftrightarrow \, \mathtt{let} \, h = (\mathtt{inv} \, (g)) \, x \, \mathtt{in} \\ \mathtt{let} \, t = f \, y \, \mathtt{in} \, h :: t \end{array} \right\} : \mathtt{A} \leftrightarrow \mathtt{B} \rightarrow [\mathtt{B}] \leftrightarrow [\mathtt{A}]$$

Results

-Confluence-

$$\begin{array}{ccc} t_1 \stackrel{*}{\longrightarrow} t_2 \\ \downarrow_* & \vdots \\ t_3 & & \vdots \\ t_4 & & \vdots \\ \end{array}$$

-Type Preservation–

If
$$\vdash t : A$$
 and $t \rightarrow t'$ then $\vdash t' : A$.

–Progress-

If $\vdash t : A$ either $t \rightarrow t'$ or t is a value.

-Isos

$$\frac{A \vdash B[X \leftarrow \mu X.B]}{A \vdash \mu X.B} \ \mu_R$$

$$\llbracket 0 \rrbracket = \underbrace{\mu X. \mathbb{1} \oplus X}_{nat}$$

$$\llbracket 0 \rrbracket = \frac{\vdash \mathbb{1} \oplus \mu X. \mathbb{1} \oplus X}{\vdash \mu X. \mathbb{1} \oplus X} \ \mu_R$$

$$\llbracket 0 \rrbracket = \frac{ \vdash \mathbb{1} \\ \vdash \mathbb{1} \oplus \mu X. \mathbb{1} \oplus X}{ \vdash \mu X. \mathbb{1} \oplus X} \stackrel{\bigoplus_{1}}{\mu_{R}}$$

$$\llbracket 0 \rrbracket = \frac{ \frac{ }{\vdash 1} \, ^{1}R}{ \stackrel{\vdash 1 \oplus \mu X.1 \oplus X}{\vdash \mu X.1 \oplus X}} \, ^{\oplus_1}$$

$$\llbracket 0 \rrbracket = \frac{ \overbrace{ \vdash \mathbb{1}} \ ^{\mathbb{1}_R}}{ \overbrace{ \vdash \mu X. \mathbb{1} \oplus X} \ ^{\oplus 1}} \ _{\mu_R} \qquad \llbracket n+1 \rrbracket = \\ \underbrace{ \vdash \mu X. \mathbb{1} \oplus X} \ \vdash nat$$

$$\llbracket 0 \rrbracket = \frac{ \overbrace{\vdash \mathbb{1}}^{\mathbb{1}_R} \stackrel{\mathbb{1}_R}{\vdash \mathbb{1} \oplus \mu X. \mathbb{1} \oplus X} \stackrel{\oplus_1}{\longleftarrow} \underset{\mu_R}{} \qquad \llbracket \mathit{n} + 1 \rrbracket = \underbrace{\vdash \mathbb{1} \oplus \mathit{nat}}_{\vdash \mathit{nat}} \; \mu_R$$

$$\llbracket 0 \rrbracket = \frac{ \overbrace{ \vdash \mathbb{1}} \quad \mathbb{1}_R }{ \overbrace{ \vdash \mu X. \mathbb{1} \oplus X} \quad \mu_R } \quad \llbracket n+1 \rrbracket = \frac{ \overbrace{ \vdash nat} \quad \oplus_2 }{ \overbrace{ \vdash nat} \quad \mu_R } \quad \bigoplus_{R} \quad \Pi_R = \frac{ [n] \quad \mu_R \quad \oplus_2 \quad \Pi_R = \mathbb{1}_R }{ [n+1] \quad \oplus_R = \mathbb{1}_R \quad \oplus_R = \mathbb{1}_R } \quad \Pi_R = \mathbb{1}_R = \mathbb{1}$$

$$\llbracket 0 \rrbracket = \frac{ \frac{}{\vdash 1} \, ^{1}R}{ \frac{\vdash 1 \oplus \mu X. 1 \oplus X}{\vdash \mu X. 1 \oplus X}} \, ^{\oplus_{1}} \qquad \llbracket n+1 \rrbracket = \frac{ \frac{\llbracket n \rrbracket}{\vdash nat}}{ \frac{\vdash 1 \oplus nat}{\vdash nat}} \, ^{\oplus_{2}}$$

$$\llbracket 1 \rrbracket = \frac{ \begin{matrix} \dfrac{-1}{\vdash 1} & \mathbb{1}_R \\ \dfrac{\vdash 1 \oplus \mathit{nat}}{\vdash \mathit{nat}} & \oplus_1 \\ \dfrac{\vdash \mathit{nat}}{\vdash \mathit{nat}} & \oplus_2 \\ \dfrac{\vdash \mathit{nat}}{\vdash \mathit{nat}} & \mu_R \end{matrix}$$

$$\llbracket \mathit{Stream}_0
rbracket = rac{ \llbracket 0
bracket}{ dash \mathit{nat}} rac{ dash \mathit{vX}.\mathit{nat} \otimes \mathit{X}}{ dash \mathit{vX}.\mathit{nat} \otimes \mathit{X}} \otimes \ rac{dash \mathit{vX}.\mathit{nat} \otimes \mathit{X}}{ dash \mathit{vX}.\mathit{nat} \otimes \mathit{X}} \
u_R$$

Words on μ MALL

Linear Logic with Induction ($\mu X.A$) and Co-Induction ($\nu X.A$)

$$\llbracket \textit{Stream}_0 \rrbracket = \frac{ \boxed{ 0 \rrbracket } }{ \dfrac{ \vdash \textit{nat} }{ \dfrac{ \vdash \nu \textit{X}.\textit{nat} \otimes \textit{X} }{ \dfrac{ \vdash \textit{nat} \otimes (\nu \textit{X}.\textit{nat} \otimes \textit{X}) }{ \dfrac{ \vdash \nu \textit{X}.\textit{nat} \otimes \textit{X} }{ } } \otimes } } } \times$$

Words on μ MALL

Linear Logic with Induction and Co-Induction

$$\frac{\vdots}{\vdash \mu X.X} \underset{\vdash \mu X.X}{\mu_R} \qquad \frac{\vdash \mu X.X}{\vdash \mu X.X} \underset{\downarrow}{\mu_R}$$

Infinite derivations represented as graphs

Words on $\mu \mathsf{MALL}$

A derivation is valid if in every infinite branch:

- Infinity of rules μ_L
- Infinity of rules ν_R

From Type Derivation To Proofs

Typed Terms ~~~~ Proofs

$$\omega: A \leftrightarrow B \rightsquigarrow \pi: A \vdash B$$

$$\omega^{\perp}: B \leftrightarrow A \xrightarrow{} \pi^{\perp}: B \vdash A$$

Let us take the recursive *identity* on lists

$$\mu f. \left\{ \begin{array}{l} [\] & \leftrightarrow [\] \\ h :: t \leftrightarrow \mathtt{let} \ t' = f \ t \ \mathtt{in} \\ h :: t' \end{array} \right\} : [A] \leftrightarrow [A]$$

$$\frac{A, [A] \vdash [A]}{1 \vdash [A]} 1_L \qquad \qquad \frac{A, [A] \vdash [A]}{A \otimes [A] \vdash [A]} \otimes_L \\
\frac{1 \oplus (A \otimes [A]) \vdash [A]}{[A] \vdash [A]} \mu_L$$

$$\mu f. \left\{ \begin{array}{l} [\] & \leftrightarrow [\] \\ h :: t \leftrightarrow \mathtt{let} \ t' = f \ t \ \mathtt{in} \\ h :: t' \end{array} \right\}$$

$$\frac{\overline{\vdash 1} \stackrel{1}{=} R}{\vdash 1 \oplus (A \otimes [a])} \stackrel{\oplus_{R}^{1}}{\mu_{R}} \\
\frac{\vdash [A]}{1 \vdash [A]} \stackrel{1}{=} L \qquad \qquad \frac{A, [A] \vdash [A]}{A \otimes [A] \vdash [A]} \stackrel{\otimes_{L}}{\oplus_{L}} \\
\frac{1 \oplus (A \otimes [A]) \vdash [A]}{[A] \vdash [A]} \mu_{L}$$

$$\mu f. \left\{ \begin{array}{l} [\] & \leftrightarrow [\] \\ h :: t \leftrightarrow \mathtt{let} \ t' = f \ t \ \mathtt{in} \\ h :: t' \end{array} \right\}$$

$$\frac{\frac{\square}{\vdash 1} \stackrel{1}{\Vdash}_{R}}{\vdash 1 \oplus (A \otimes [a])} \stackrel{\oplus^{1}_{R}}{\mu_{R}} \qquad \underbrace{\frac{[A] \vdash [A]}{A, [A] \vdash [A]}} \stackrel{A, [A] \vdash [A]}{\underbrace{\vdash [A]}} \underbrace{\text{cut}} \\
\frac{\frac{A, [A] \vdash [A]}{A \otimes [A] \vdash [A]} \otimes_{L}}{\underbrace{\vdash [A] \vdash [A]}} \underbrace{\oplus_{L}}$$

$$\frac{1 \oplus (A \otimes [A]) \vdash [A]}{[A] \vdash [A]} \mu_{L}$$

$$\mu f. \left\{ \begin{array}{l} [\] & \leftrightarrow [\] \\ h :: t \leftrightarrow \mathtt{let} \ t' = f \ t \ \mathtt{in} \\ h :: t' \end{array} \right\}$$

Conclusion

Results

- Confluence.
- Type Preservation.
- Progress.
- Isos are isomorphisms.

In Progress

- Show that derivations built isos are valid.
- Show that our reduction simulates cut-elimination.
- Show that π , π^{\perp} are isomorphisms.
- Consider the quantum case.

