Sequences of Real Numbers

Mandatory Excercises

Exercise 1: Study the monotonicity, boundedness and convergence of the sequence $(x_n)_{n\in\mathbb{N}}$ of real numbers, having the general term:

a)
$$x_n = \frac{2^n + 3^n}{5^n}$$
, b) $x_n = \frac{(-1)^n}{n}$, c) $x_n = \frac{2^n}{n!}$, d) $x_n = \frac{n}{n^2 + 1}$.

Exercise2: Using the characterising theorem with ε prove that

a)
$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$$
 b) $\lim_{n \to \infty} \frac{n^2}{-2n + 4} = -\infty$.

Exercise 3: Compute the limit of the sequences of real numbers having the following general terms:

a)
$$\frac{5^n+1}{7^n+1}$$
, b) $\frac{4^n+(-2)^n}{4^{n-1}+2}$, c) $\left(\sin\frac{\pi}{10}\right)^n$, $d(\sqrt{9n^2+2n+1}-3n)$

e)
$$\left(5 + \frac{1 - 2n^3}{3n^4 + 2}\right)^2$$
, f) $\sqrt[3]{n^3 + n + 3} - \sqrt[3]{n^3 + 1}$, g) $\left(\frac{n^3 + 5n + 1}{n^2 - 1}\right)^{\frac{1 - 5n^4}{6n^4 + 1}}$,

$$h$$
) $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\ldots\left(1-\frac{1}{n}\right)$.

Exercise 4: Let $t \in \mathbb{R}$.

a) Prove that there exists an increasing sequence of rational numbers converging to t.

b) Prove that there exists a decreasing sequence of irrational numbers converging to t.

Exercise 5: Let a > 0 and let $x_0 \in \mathbb{R}$ be such that $0 < x_0 < \frac{1}{a}$. Consider the sequence $(x_n)_{n \in \mathbb{N}}$ of real numbers, defined recursively by:

$$x_{n+1} = 2x_n - ax_n^2, \forall n \in \mathbb{N}.$$

Study the convergence of the sequence by following the next steps:

- a) Prove by induction that $x_n < \frac{1}{a}, \forall n \in \mathbb{N}$.
- b) Prove by induction that $0 < x_n, \forall n \in \mathbb{N}$.
- c) By using a) and b) prove that $(x_n)_{n\in\mathbb{N}}$ is increasing.
- d) Compute the limit of the sequence.

Elective Exercises

Elective 1: Study the nature (monotonicity and boundedness) of the sequence having the general term

$$x_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right), \ n \ge 2.$$

In case of convergence compute the limit.

Elective 2: Calculați limitele următoareleor șirui de numere reale având ca termen general:

a)
$$\frac{3^n}{4^n}$$
, b) $\frac{2^n + (-2)^n}{3^n}$, c) $\frac{5 - n^3}{n^2 + 1}$, d) $\left(2 + \frac{4^n + (-5)^n}{7^n + 1}\right)^{2n^3 - n^2}$,

e)
$$\frac{1+2+\ldots+n}{n^2}$$
, f) $\left(\frac{n^3+4n+1}{2n^3+5}\right)^{\frac{-2n^4+1}{n^4+3n+1}}$, g) $(\cos(-2013))^n$,
h) $\left(\frac{n^5+3n+1}{2n^5-n^4+3}\right)^{\frac{3n-n^4}{n^3+1}}$.

Elective 3: Compute the limit for each of the following sequences:

a)
$$\left(1 + \frac{1}{-n^3 + 3n}\right)^{n^2 - n^3}$$
, b) $(3n^2 + 5)ln\left(1 + \frac{1}{n^2}\right)$,

$$c)\frac{n^n}{1^1+2^2+\ldots+n^n}$$

$$d)\frac{x_1 + 2x_2 + \dots + nx_n}{n^2},$$

where $(x_n)_{n\in\mathbb{N}}$ is a converging sequence having the limit $x\in\mathbb{R}$.