

criterion of Néron-Ogg-Shafarevich

Canonical name CriterionOfNeronOggShafarevich

Date of creation 2013-03-22 17:14:58

Last modified on 2013-03-22 17:14:58

Owner alozano (2414)

Last modified by alozano (2414)

Numerical id 4

Author alozano (2414) Entry type Theorem Classification msc 14H52

Synonym criterion of Neron-Ogg-Shafarevich

Related topic EllipticCurve

Related topic ArithmeticOfEllipticCurves

In this entry, we use the following notation. K is a local field, complete with respect to a discrete valuation ν , R is the ring of integers of K, \mathcal{M} is the maximal ideal of R and \mathbb{F} is the residue field of R.

Definition. Let Ξ be a set on which $\operatorname{Gal}(K/K)$ acts. We say that Ξ is unramified at ν if the action of the inertia group I_{ν} on Ξ is trivial, i.e. $\zeta^{\sigma} = \zeta$ for all $\sigma \in I_{\nu}$ and for all $\zeta \in \Xi$.

Theorem (Criterion of Néron-Ogg-Shafarevich). Let E/K be an elliptic curve defined over K. The following are equivalent:

- 1. E has good reduction over K;
- 2. E[m] is unramified at ν for all $m \geq 1$, $gcd(m, char(\mathbb{F})) = 1$;
- 3. The Tate module $T_l(E)$ is unramified at ν for some (all) $l, l \neq \text{char}(\mathbb{F})$;
- 4. E[m] is unramified at ν for infinitely many integers $m \geq 1$, $\gcd(m, \operatorname{char}(\mathbb{F})) = 1$.

Corollary. Let E/K be an elliptic curve. Then E has potential good reduction if and only if the inertia group I_{ν} acts on $T_l(E)$ through a finite quotient for some prime $l \neq \operatorname{char}(\mathbb{F})$.

Proof of Corollary. (\Rightarrow) Assume that E has potential good reduction. By definition, there exists a finite extension of K, call it K', such that E/K' has good reduction. We can extend K' (if necessary) so K'/K is a Galois finite extension.

Let ν' and $I_{\nu'}$ be the corresponding valuation and inertia group for K'. Then the theorem above ($(1)\Rightarrow(3)$) implies that $T_l(E)$ is unramified at ν' for all l, $l \neq \operatorname{char}(\mathbb{F}) = \operatorname{char}(\mathbb{F}')$ (since \mathbb{F}' is a finite extension of \mathbb{F}). So $I_{\nu'}$ acts trivially on $T_l(E)$ for all $l \neq \operatorname{char}(\mathbb{F}')$. Thus $I_{\nu} \hookrightarrow T_l(E)$ factors through the finite quotient $I_{\nu}/I_{\nu'}$.

 (\Leftarrow) Let $l \neq \operatorname{char}(\mathbb{F})$, and assume $I_{\nu} \hookrightarrow T_{l}(E)$ factors through a finite quotient, say I_{ν}/J . Let \overline{K}^{J} be the fixed field of J, then $\overline{K}^{J}/\overline{K}^{I_{\nu}}$ is a finite extension, so we can find a finite extension K'/K so that $\overline{K}^{J} = K'\overline{K}^{I_{\nu}}$. So the inertia group of K' is equal to J, and J acts trivially on $T_{l}(E)$. Hence the criterion ((3) \Rightarrow (1)) implies that E has good reduction over K', and since K'/K is finite, E has potential good reduction.

Proposition. Let E/K be an elliptic curve. Then E has potential good reduction if and only if its j-invariant is integral (i.e. $j(E) \in R$).

Proof. (\Leftarrow) Assume char(\mathbb{F}) \neq 2, it is easy to prove that we can extend K to a finite extension K' so that E has a Weierstrass equation:

$$E: y^2 = x(x-1)(x-\lambda) \quad \lambda \neq 0, 1 \tag{1}$$

Since we are assuming $j(E) \in R$, and:

$$(1 - \lambda(1 - \lambda))^3 - j\lambda^2(1 - \lambda)^2 = 0$$
 (2)

then $\lambda \in R$ and $\lambda \neq 0, 1 \mod \mathcal{M}'$ ($\Rightarrow \Delta' \in (R')^*$). Hence E/K' has good reduction, i.e. E has potential good reduction.

(⇒) Assume that E has potential good reduction, so there exists K' so that E/K' has good reduction. Let Δ' , c'_4 the usual quantities associated to the Weierstrass equation over K'. Since E/K' has good reduction, $\Delta' \in (R')^*$, and so $j(E) = \frac{(c_4')^3}{\Delta'} \in R'$. But since E is defined over K, $j(E) \in K$, so $j(E) \in K \cap R' = R$.