<u>Lab 8</u>

Problem 1: The tables are as follows:

For $h = 0.05000$:			
t 1.000000 2.000000 3.000000 4.000000 5.000000	Approx 0.997428 2.142621 3.348041 4.594682 5.873061	Exact 1.000000 2.143547 3.348370 4.594793 5.873095	Error 0.002572 0.000926 0.000328 0.000111 0.000033
For h = 0.0 t 1.000000 2.000000	2500: Approx 0.998739 2.143088	Exact 1.000000 2.143547	Error 0.001261 0.000459
3.000000 4.000000 5.000000	3.348204 4.594735 5.873075	3.348370 4.594793 5.873095	0.000166 0.000059 0.000020
For h = 0.0 t 1.000000 2.000000 3.000000	Approx 0.999398 2.143327 3.348289	Exact 1.000000 2.143547 3.348370	Error 0.000602 0.000220 0.000080
4.000000 5.000000	4.594764 5.873085	4.594793 5.873095	0.000029 0.000010
For h = 0.0 t 1.000000 2.000000 3.000000 4.000000 5.000000	0625: Approx 0.999716 2.143443 3.348331 4.594780 5.873090	Exact 1.000000 2.143547 3.348370 4.594793 5.873095	Error 0.000284 0.000104 0.000038 0.000014 0.000005
h 0.050000 0.025000 0.012500 0.006250	Max Error 0.006810 0.003385 0.001627 0.000770	log2(E(n)/E 1.008720 1.056438 1.078703	E(2n))

Figures for Approximation vs. Exact solution and Error vs. t(i) for different values of h are as follows:

For h = 0.05:

For h = 0.025:

For h = 0.0125:

For h = 0.00625:

Problem 2: The table of values obtained is:

t	Approx	Exact	Error
0.007812	0.000051	0.000061	0.000010
0.007612	0.000031	0.000001	0.000010
0.013023	0.000223	0.000244	0.000021
0.031250	0.000935	0.000977	0.000042
0.039062	0.001474	0.001526	0.000053
0.046875	0.002135	0.002198	0.000063
0.054688	0.002918	0.002992	0.000074
0.062500	0.003824	0.003909	0.000084
0.070312	0.004853	0.004948	0.000095
0.078125	0.006004	0.006110	0.000106
0.085938	0.007278	0.007394	0.000116
0.093750	0.008675	0.008802	0.000127
0.101562	0.010195	0.010333	0.000138
0.109375	0.011839	0.011987	0.000148
0.117188	0.013606	0.013765	0.000159
0.125000	0.015496	0.015666	0.000170
0.132812	0.017511	0.017691	0.000180
0.140625	0.019650	0.019841	0.000191
0.148438	0.021913	0.022115	0.000202
0.156250	0.024301	0.024515	0.000213
0.164062 0.171875	0.026815 0.029453	0.027039 0.029688	0.000224 0.000235
0.171675	0.029455	0.029066	0.000235
0.179000	0.032218	0.032404	0.000240
0.187300	0.033108	0.033300	0.000257
0.193312	0.036126	0.036394	0.000208
0.203123	0.041209	0.041349	0.000273
0.210930	0.044341	0.044031	0.000291
0.216750	0.047940	0.040242	0.000302
0.234375	0.051407	0.055447	0.000315
0.242188	0.053123	0.059244	0.000325
0.250000	0.062822	0.063170	0.000330
0.257812	0.066867	0.067227	0.000340
0.265625	0.071043	0.071414	0.000333
0.273438	0.075350	0.075733	0.000371
0.281250	0.079789	0.080183	0.000395
0.289062	0.084360	0.084767	0.000407
0.296875	0.089065	0.089484	0.000419
0.304688	0.093904	0.094334	0.000431
0.312500	0.098877	0.099320	0.000443
0.320312	0.103986	0.104441	0.000455
0.328125	0.109230	0.109698	0.000468
0.335938	0.114612	0.115092	0.000480
0.343750	0.120131	0.120624	0.000493

0.351562	0.125789	0.126295	0.000506
0.359375	0.131587	0.132106	0.000519
0.367188	0.137525	0.138056	0.000532
0.375000	0.143604	0.144149	0.000545
0.382812	0.149826	0.150384	0.000558
0.390625	0.156190	0.156762	0.000571
0.398438	0.162700	0.163285	0.000585
0.406250	0.169355	0.169953	0.000599
0.414062	0.176156	0.176769	0.000613
0.421875	0.183105	0.183732	0.000627
0.429688	0.190203	0.190844	0.000641
0.437500	0.197452	0.198107	0.000655
0.445312	0.204852	0.205522	0.000670
0.453125	0.212406	0.213090	0.000684
0.460938	0.220113	0.220813	0.000699
0.468750	0.227977	0.228691	0.000715
0.476562	0.235998	0.236728	0.000713
0.484375	0.244178	0.244924	0.000746
0.492188	0.252519	0.253280	0.000761
0.500000	0.261022	0.261799	0.000777
0.507812	0.269689	0.270483	0.000794
0.515625	0.278523	0.279333	0.000810
0.523438	0.287524	0.288351	0.000827
0.531250	0.296696	0.297540	0.000844
0.539062	0.306039	0.306901	0.000862
0.546875	0.315557	0.316437	0.000879
0.554688	0.325252	0.326149	0.000898
0.562500	0.335125	0.336041	0.000916
0.570312	0.345180	0.346115	0.000935
0.578125	0.355419	0.356373	0.000954
0.585938	0.365845	0.366818	0.000973
0.593750	0.376460	0.377454	0.000993
0.601562	0.387268	0.388282	0.001014
0.609375	0.398272	0.399306	0.001035
0.617188	0.409474	0.410530	0.001056
			0.001030
0.625000	0.420879	0.421957	
0.632812	0.432490	0.433591	0.001100
0.640625	0.444311	0.445434	0.001123
0.648438	0.456346	0.457492	0.001147
0.656250	0.468598	0.469769	0.001171
0.664062	0.481073	0.482268	0.001195
0.671875	0.493774	0.494995	0.001221
0.679688	0.506708	0.507955	0.001247
0.687500	0.500700	0.507953	0.001247
0.695312	0.533292	0.534594	0.001302

0.703125	0.546954	0.548285	0.001331
0.710938	0.560871	0.562231	0.001360
0.718750	0.575048	0.576439	0.001391
0.726562	0.589494	0.590917	0.001423
0.734375	0.604216	0.605672	0.001456
0.742188	0.619222	0.620713	0.001490
0.750000	0.634521	0.636047	0.001526
0.757812	0.650121	0.651684	0.001563
0.765625	0.666033	0.667634	0.001601
0.773438	0.682268	0.683909	0.001642
0.781250	0.698836	0.700520	0.001684
0.789062	0.715752	0.717480	0.001728
0.796875	0.733028	0.734802	0.001774
0.804688	0.750680	0.752503	0.001823
0.812500	0.768723	0.770598	0.001874
0.820312	0.787177	0.789106	0.001929
0.828125	0.806060	0.808047	0.001987
0.835938	0.825395	0.827443	0.002048
0.843750	0.845207	0.847321	0.002113
0.851562	0.865523	0.867707	0.002184
0.859375	0.886374	0.888633	0.002259
0.867188	0.907796	0.910136	0.002340
0.875000	0.929828	0.932256	0.002429
0.882812	0.952516	0.955041	0.002525
0.890625	0.975915	0.978545	0.002631
0.898438	1.000087	1.002834	0.002748
0.906250	1.025106	1.027984	0.002878
0.914062	1.051063	1.054088	0.003025
0.921875	1.078068	1.081260	0.003192
0.929688	1.106257	1.109641	0.003384
0.937500	1.135804	1.139414	0.003610
0.945312	1.166937	1.170818	0.003881
0.953125	1.199965	1.204179	0.004214
0.960938	1.235327	1.239965	0.004638
0.968750	1.273680	1.278886	0.005206
0.976562	1.316106	1.322134	0.006027
0.984375	1.364636	1.372011	0.007375
0.992188	1.424139	1.434420	0.010281
1.000000	1.519125	1.570796	0.051671

The figures obtained are:

<u>Problem 3:</u> Using the Runge-Kutta method of order four to determine the units of potassium hydroxide formed after 0.2s , we get 2079.408617 units as the answer.

The table of values obtained is:

t	Approx
0.001000	219.534990
0.002000	375.342074
0.003000	495.011252
0.004000	591.552569
0.005000	672.097472
0.006000	740.960860
0.007000	800.943572
0.008000	853.962135
0.009000	901.383021
0.010000	944.213200
0.011000	983.215089
0.012000	1018.979157
0.013000	1051.971576
0.014000	1082.566508
0.015000	1111.068607
0.016000	1137.729068
0.017000	1162.757326
0.018000	1186.329738
0.019000	1208.596127
0.020000	1229.684802
0.180000	2045.828213
0.181000	2047.607345
0.182000	2049.375201
0.183000	2051.131912
0.184000	2052.877608
0.185000	2054.612417
0.186000	2056.336463
0.187000	2058.049871
0.188000	2059.752762
0.189000	2061.445254
0.191000	2063.127466
0.191000	2064.799512
0.192000	2066.461506
0.193000	2068.113560
0.194000	2069.755783

0.1950002071.3882840.1960002073.0111690.1970002074.6245430.1980002076.2285080.1990002077.8231660.2000002079.408617

Problem 4:

Part a) Using exact starting values:

By Adams-Moulton method:

Using starting values obtained from RK method of order 4:

By Adams- Moulton method:

Part b) Using exact starting values:

By Adams-Moulton method:

Using starting values obtained from RK method of order four:

By Adams-Moulton method:

<u>Problem 5:</u> For h=0.01, we get:

Adams- Bashforth method doesn't converge.

By Adams-Moulton, we get:

For h = 0.001, By Adams – Bashforth, we get:

By Adams-Moulton, we get:

