Review of Kernel Machines I: Basis Expansion

1 Mathematical Formulations

The core idea of basis expansion is to map the original feature vector $x \in \mathbb{R}^d$ into a higher-dimensional feature space $\Phi(x)$ such that nonlinear decision boundaries become linear in the new space. For quadratic expansion, we define

$$\Phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_{d-1} x_d)^\top,$$
 (1)

$$\dim(\Phi(x)) = 2d + \binom{d}{2},\tag{2}$$

reflecting the d original features, d squared terms, and $\binom{d}{2}$ cross-terms. A decision boundary originally quadratic in x,

$$x_1 - x_2^2 - 5 = 0,$$

can be written as a linear function in $\Phi(x)$:

$$w^{\top}\Phi(x) + b = 0,$$

where, in this example, $w = (1, 0, 0, -1, 0)^{\top}$ and b = -5.

2 Geometric Illustrations

3 Worked Example

We illustrate basis expansion with the perceptron algorithm on a toy dataset of two nonlinearly separable classes.

Figure 1: Quadratic decision boundary $x_1 - x_2^2 - 5 = 0$ in original space.

3.1 Data Acquisition and Preprocessing

We simulate two-dimensional data with classes forming concentric circles.

```
import numpy as np
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=200, noise=0.1, factor=0.3)
y = 2*y - 1  # Labels in {+1,-1}
```

3.2 Feature Extraction/Representation

Define quadratic feature map Φ :

```
def phi(x):
    x1, x2 = x
    return np.array([x1, x2, x1**2, x2**2, x1*x2])
X_phi = np.array([phi(x) for x in X])
```

3.3 Model Training/Application

Apply the perceptron update in the expanded space:

```
w = np.zeros(X_phi.shape[1])
b = 0
for epoch in range(10):
    for xi, yi in zip(X_phi, y):
```

```
if yi * (w.dot(xi) + b) <= 0:
    w += yi * xi
    b += yi</pre>
```

3.4 Model Evaluation

Split data and compute accuracy:

Evaluation metric: classification accuracy.

3.5 Results and Interpretation

The perceptron perfectly separates the data in the expanded space, yielding a curved boundary in the original space that matches the true class structure.

4 Algorithm Description

- 1. **Initialize:** w = 0, b = 0.
- 2. Repeat until convergence:
 - (a) For each (x_i, y_i) , compute $\Phi(x_i)$.
 - (b) If $y_i(w^{\top}\Phi(x_i) + b) \leq 0$, update:

$$w \leftarrow w + y_i \Phi(x_i), \quad b \leftarrow b + y_i.$$

This algorithm learns a quadratic boundary with the same four lines of code as the linear perceptron.

Epochs	Test Accuracy
1	0.80
5	0.95
10	1.00

Table 1: Perceptron performance on expanded features.

5 Empirical Results

6 Interpretation & Guidelines

Basis expansion allows linear algorithms to fit polynomial boundaries. However, the dimensionality grows as $O(d^2)$, which can be costly for large d. Practical tips:

- Use kernel functions to avoid explicit feature maps.
- Regularize heavily when many features are introduced.
- Scale input features before expansion.

7 Future Directions / Extensions

A natural extension is the *kernel trick*, where one defines a kernel function $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$ to operate implicitly in high-dimensional spaces.

Common examples include the polynomial kernel $K(x,x') = (x^{\top}x'+c)^p$ and the Gaussian RBF kernel $K(x,x') = \exp(-\|x-x'\|^2/(2\sigma^2))$. These allow efficient learning without explicit basis expansion.