Exercise 6.30: Suppose that $\phi: Z_{50} \to Z_{50}$ is an automorphism with $\phi(11) = 13$. Determine a formula for $\phi(x)$.

Let us first determine $\phi(1)$. Note that:

```
x = [1:50];
_{2} >> [x; mod(11.*x, 50)]
    Columns 1 through 12:
                                      6
                                                                    11
                                                                           12
7
                   33
                                5
                                            27
      11
             22
                         44
                                     16
                                                  38
                                                        49
                                                              10
                                                                    21
                                                                           32
8
9
    Columns 13 through 24:
10
11
      13
             14
                   15
                         16
                               17
                                     18
                                           19
                                                  20
                                                        21
                                                              22
                                                                    23
                                                                           24
12
      43
              4
                   15
                         26
                               37
                                     48
                                             9
                                                  20
                                                              42
                                                                      3
                                                                           14
13
14
    Columns 25 through 36:
15
16
      25
             26
                   27
                         28
                               29
                                     30
                                            31
                                                  32
                                                        33
                                                              34
                                                                    35
                                                                           36
17
      25
             36
                   47
                               19
                                     30
                                            41
                                                   2
                                                        13
                                                              24
                                                                    35
                                                                           46
18
19
    Columns 37 through 48:
20
21
                                     42
      37
             38
                   39
                         40
                               41
                                            43
                                                  44
                                                        45
                                                              46
                                                                    47
                                                                           48
22
                                     12
                                            23
       7
             18
                   29
                         40
                                1
                                                  34
                                                        45
                                                               6
                                                                    17
                                                                           28
23
24
    Columns 49 and 50:
25
26
      49
             50
27
      39
28
30 >> diary off
```

Now we can see that $11^{41} = 1$ and thus $\phi(1) = \phi(11^{41}) = 13^{41} = 33$. And now $\phi(x) = \phi(1^x) = \phi(1)^x = 33 * x \mod 50$.

Exercise 6.37: Prove that \mathbb{Z} under addition is not isomorphic to \mathbb{Q} under addition. Suppose $q = \frac{i}{j}$ is a generator of \mathbb{Q} . Note that 0 cannot be the generator of \mathbb{Q} and thus $i \neq 0$. Consider $q' = \frac{i}{2j} \in \mathbb{Q}$. Note that there must be some integer k such that q * k = q', since q is a generator. Now we see that $k = j/i * q * k = j/i * q' = 1/2 \notin \mathbb{Z}$, a contradiction to k being a integer. We now conclude that \mathbb{Q} has no generator, and thus is not cyclic. Since \mathbb{Z} is cyclic we can conclude $\mathbb{Q} \not\approx \mathbb{Z}$.

Exercise 6.42: Suppose that G is a finite Abelian group and G has no element of order 2. Show that the mapping $\phi: g \to g^2$ is an automorphism of G. Show, by example, that there is an infinite Abelian group for which the mapping $g \to g^2$ is one-to-one and operation-preserving but not an automorphism.

Suppose $a \in G$ and $2 \mid n = |a|$. Note that $a^{n/2} \in G$ and $|a^{n/2}| = 2$, a contradiction conclude that no elements have order advisable by 2.

Suppose |a| = n and $|a^2| = m$. Note that $(a^2)^n = (a^n)^2 = e$ thus $m \le n$. Note that $a^{2m} = e$ thus $n \mid 2m$ and since n and 2 are relatively prime we see $n \mid m$ thus $m \ge n$ or n = m. We now know $|a| = |a^2|$ for all $a \in G$.

Suppose $a^2 = b^2$ where $a, b \in G$. Note that |a| = |b| = 2k + 1 for some integer k. Note that $a^{2k}a = e = b^{2k}b$ and that $a^{2k} = (a^2)^k = (b^2)^k = b^{2k}$ thus by cancellation we see that a = b. We now conclude that ϕ is one-to-one, thus since G is finite ϕ is also onto. Note that $\phi(ab) = (ab)^2 = a^2b^2 = \phi(a)\phi(b)$, thus ϕ is a automorphism of G.

Let $G = \mathbb{Z}$ under addition. Note that $\phi : g \to g^2$ is one-to-one, since $2a = 2b \Rightarrow a = b$. And note that $\phi(ab) = 2 * (a + b) = 2 * a + 2 * b = \phi(a)\phi(b)$. Note that there is no element of \mathbb{Z} that maps to 1 under ϕ , thus ϕ is not a automorphism.

Exercise 6.48: Let ϕ be an isomorphism from a group G to a group \bar{G} and let a belong to G. Prove that $\phi(C(a)) = C(\phi(a))$.

Choose $\bar{x} \in \phi(C(a))$. Note that there exists a $x \in C(a)$ such that $\phi(x) = \bar{x}$. Note that ax = xa since $x \in C(a)$ thus $\phi(a)\bar{x} = \phi(ax) = \phi(xa) = \bar{x}\phi(a)$, thus $\bar{x} \in C(\phi(a))$ and $\phi(C(a)) \subseteq C(\phi(a))$.

Choose $\bar{x} \in C(\phi(a))$. Note that there exists a $x \in G$ such that $\phi(x) = \bar{x}$. Note that $\phi(a)\bar{x} = \bar{x}\phi(a)$ since $\bar{x} \in C(\phi(a))$ thus $\phi(ax) = \phi(a)\bar{x} = \bar{x}\phi(a) = \phi(xa)$, thus due to bijectivity ax = xa and so $x \in C(a)$ or $\bar{x} \in \phi(C(a))$ and $C(\phi(a)) \subseteq \phi(C(a))$. We conclude $\phi(C(a)) = C(\phi(a))$.

Exercise 6.51: Suppose that *G* is an Abelian group and ϕ is an automorphism of *G*. Prove that $H = \{x \in G \mid \phi(x) = x^{-1}\}$ is a subgroup of *G*.

Choose $a, b \in H$. Note that $\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = a^{-1}(\phi(b))^{-1} = a^{-1}b = (b^{-1}a)^{-1} = (ab^{-1})^{-1}$, thus $ab^{-1} \in H$. By the one step test we know that H is a subgroup of G.

Exercise 6.53: Let a belong to a group G and let |a| be finite. Let ϕ a be the automorphism of G given by $\phi_a(x) = axa^{-1}$. Show that $|\phi_a|$ divides |a|. Exhibit an element a from a group for which $1 < |\phi_a| < |a|$.

Note that $\phi_a^{|a|}(x) = a^{|a|}xa^{-|a|} = exe = x$, thus $|\phi_a|$ divides |a|.

Recall in D_4 that R_{180} commutes with all elements but R_{90} does not. Let $a=R_{90}$. Note that $\phi_a(x)=axa^{-1}=R_{90}xR_{270}$ witch is not x for all x, in particular if x=H, $\phi_a(x)=V\neq H$, thus $|\phi_a|\neq 1$ or $|\phi_a|>1$. Note that $\phi_a(\phi_a(x))=R_{180}xR_{180}=xR_{180}R_{180}=x$ thus $|\phi_a|\leq 2$. Note that $1<|\phi_a|\leq 2<4=|a|$.