Tutorial Sheet 3: Single Phase AC Networks

- **Q1.** (a) Calculate the (i) rms value, (ii) average value, (iii) form factor and (iv) peak factor of the signal x(t) as shown in Fig 1(a).
- (b) The waveform of the Fig. 1(b) is derived from a sine function and has zero value when the sine function is negative and also from t=0 to t=0.1 and for the corresponding interval of each period. Find the rms value and the average value of this waveform.

Q2. For the circuit of Fig. 2, calculate I_2 , I_3 , V_1 and V_2 . Draw suitable phasor diagrams to represent them. Calculate the active and reactive powers absorbed by each parallel branch and also the active and reactive power supplied by the current source.

 ${f Q3}$. (a) In the circuit shown in Fig. 3, the magnitudes of V_L and V_C are twice that of V_R . Calculate the inductance of the coil.

- Q4. Draw the phasor diagram for current in the circuit, V_{AB} and V_{AC} , when 200 V, 50 Hz source is connected across the circuit shown in Fig. 4. Indicate the angles and magnitudes in the diagram with supply voltage as reference.
 - (a) Calculate the reactive power drawn by the circuit.
 - (b) Find the value of capacitance to be connected in parallel across the circuit to raise the overall power factor of the combination to unity.
 - (c) Calculate the current and real power drawn by the combination.

Q5. Calculate the current through the j5 Ω impedance of Fig. 5 using (a) Mesh Analysis, (b) Nodal Analysis and (c) Superposition theorem.

 $\mathbf{Q6}$. Find I_L and the voltage across the current source in Fig. 6 using (a) Thevenin's theorem (b) Norton's theorem

Q7. If G₂ of Fig. 7 supplies 5 kW at 0.707 pf lagging, find amount of power supplied by G₁ with pf.

Q8. Assuming both the voltage sources are in phase, the value of R for which maximum power is transferred from circuit A to circuit B in Fig. 8 is

- **Q9**. (a) A single phase, 100V, 50Hz source supplies a single phase load having impedance of 10Ω and power factor of 0.8 (lag) through a line of impedance $Z_{\text{line}} = (2+j6)\Omega$, as shown in Fig. 9. A pure capacitor is connected in parallel (shunt) with the load. Two voltmeters, V_1 and V_2 , are connected at the source and load terminals respectively as shown in the figure. Find the minimum value of the capacitance (C_{sh}) such that the readings of the two voltmeters are exactly same. Find the load current (\bar{I}_L) and the source current (\bar{I}_S) under this condition.
- (b) Taking the source voltage as the reference, draw a phasor diagram showing the load terminal voltage, source current, load current and the current into the capacitor (\bar{I}_C) .

Fig. 9