

AD-A183 691 ONSET CRITERIA FOR STRUCTURE IN MAGNETICALLY CONFINED
PLASMA EXPANSIONS(U) NAVAL RESEARCH LAB WASHINGTON DC
J D HUBA 09 JUL 87 NRL-MR-6038

1/1

UNCLASSIFIED

F/G 20/9

NL

IC FILE COPY

Naval Research Laboratory

Washington, DC 20375-5000

NRL Memorandum Report 6030

AD-A183 691

**Onset Criteria for Structure in
Magnetically Confined Plasma Expansions**

J. D. HUBA

*Geophysical and Plasma Dynamics Branch
Plasma Physics Division*

DTIC
SELECTED
S AUG 03 1987 D
CSD

July 9, 1987

This report was sponsored by the Defense Nuclear Agency under Subtask S992MXBC,
work unit 00102 and work unit title "Plasma Structure Evolution."

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE					
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NRL Memorandum Report 6030		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION Naval Research Laboratory	6b. OFFICE SYMBOL (If applicable) Code 4780	7a. NAME OF MONITORING ORGANIZATION			
6c. ADDRESS (City, State, and ZIP Code) Washington, DC 20375-5000		7b. ADDRESS (City, State, and ZIP Code)			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Defense Nuclear Agency	8b. OFFICE SYMBOL (If applicable) RAAE	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
8c. ADDRESS (City, State, and ZIP Code) Washington, DC 20305		10. SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO. 62715H	PROJECT NO. S99QM XBC	TASK NO. 00102	WORK UNIT ACCESSION NO. DN580-072
11. TITLE (Include Security Classification) Onset Criteria for Structure in Magnetically Confined Plasma Expansions					
12. PERSONAL AUTHOR(S) Huba, J.D.					
13a. TYPE OF REPORT Interim	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) 1987 July 9		15. PAGE COUNT 23	
16. SUPPLEMENTARY NOTATION This report was sponsored by the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00102 and work unit title "Plasma Structure Evolution."					
17. COSATI CODES			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Early time HANE structure AMPTE Rayleigh-Taylor instability DNA/NRL laser experiment		
19. ABSTRACT (Continue on reverse if necessary and identify by block number) A set of criteria is proposed for the onset of structure caused by the unmagnetized ion Rayleigh-Taylor instability in magnetically confined plasma expansions. We show that R_c , the critical radius at which structure can begin to develop, is independent of the magnetic field. We also show that there is a critical value of laser energy that needs to be exceeded for structure to develop. These criteria are consistent with available experimental data from AMPTE and the DNA/NRL laser experiment. We recommend a series of laser experiments which will confirm (or refute) these criteria.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS			21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED		
22a. NAME OF RESPONSIBLE INDIVIDUAL J.D. Huba			22b. TELEPHONE (Include Area Code) 202-767-3630	22c. OFFICE SYMBOL Code 4780	

CONTENTS

I. INTRODUCTION.....	1
II. THEORY.....	2
A. Magnetically Confined Expansions.....	2
B. Magnetic Deceleration.....	3
C. Onset Criteria for Structure.....	4
III. APPLICATION.....	5
IV. DISCUSSION.....	7
ACKNOWLEDGMENTS.....	8
REFERENCES.....	8

Accession For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution /	
Availability Codes	
Dist	Avail and/or Special
A-1	

ONSET CRITERIA FOR STRUCTURE IN MAGNETICALLY CONFINED PLASMA EXPANSIONS

I. INTRODUCTION

Recent experiments have shown the rapid development of structure during the early phase of magnetically confined plasma expansions [Bernhardt et al., 1987; Ripin, 1987]. Such plasma expansions can be characterized as sub-Alfvenic, i.e., $v_{d0} < v_{Aa}$ where v_{d0} is the initial expansion velocity and v_{Aa} is the Alfvén velocity in the ambient background plasma. Under this condition the expanding plasma is 'stopped' by the magnetic field. This is in contrast to super-Alfvénic expansions where momentum coupling to the ambient plasma is primarily responsible for 'stopping' the expansion. Another feature of these expansions is that the directed ion Larmor radius ($\rho_i = v_{d0}/\Omega_i$ where Ω_i is the ion cyclotron frequency) can be comparable to or much larger than the scale sizes of interest. For instance, in the cases of AMPTE and the NRL laser experiment, $\rho_i \sim R_B \gg L_n$ where R_B is the maximum radius of expansion and L_n is the scale size of the density shell. In a similar vein, one should note that the time scale (ω^{-1}) for structure development in these experiments is faster than an ion cyclotron period (Ω_i^{-1}), i.e., $\omega \gg \Omega_i$. What makes this regime interesting is that it cannot be described by ideal or finite Larmor radius (FLR) MHD theory because conventional MHD theory requires $\omega \ll \Omega_i$ and $\rho_i \ll L_n$.

In order to understand the gross evolution and stability properties of magnetically confined plasma expansions, Hassam and Huba (1987a,b) recently developed a modified set of one-fluid MHD equations. These equations are valid for arbitrary values of ρ_i/L_n (or ω/Ω_i) but require $\rho_e/L_n \ll 1$ (or $\omega/\Omega_e \ll 1$) (i.e., the electrons are strongly magnetized). Linear stability analysis indicates that a fast 'unmagnetized ion' Rayleigh-Taylor instability can develop during the early phase of a magnetically confined plasma expansion when $\rho_i/L_n \gg 1$ (or $\omega \gg \Omega_i$). The instability is driven by the deceleration of the plasma shell which produces an effective gravitational acceleration, i.e., $dV_d/dt = -g_{eff}$, acting on the density gradient associated with the plasma shell. Moreover, the eigenmode structure suggests that the density shell should exhibit plasma 'clumping'

instead of plasma 'rippling' (as is the case with the conventional magnetized ion Rayleigh-Taylor instability). Recent 2D MHD simulations also support this type of behavior (Huba et al., 1987). Both of these features, rapid development and density clumping, are consistent with observational evidence thereby lending support to the Hassam and Huba model.

The purpose of this paper is to develop a rather simple set of criteria for the onset of structure in magnetically confined plasma expansions. We are specifically concerned with structure generated by the unmagnetized ion Rayleigh-Taylor instability discussed in Hassam and Huba (1987a,b). We show that these criteria are consistent with available experimental data, and can be readily tested in future NRL laser experiments.

II. THEORY

A. Magnetically Confined Expansions

We first show that magnetically confined plasma expansions are sub-Alfvénic. We estimate the 'stopping' radius of a magnetically confined expansion by equating the initial kinetic energy of the plasma with the magnetic energy in a volume $(4/3)\pi R_B^3$ where R_B is defined as the magnetic confinement radius,

$$\frac{1}{2} M_0 v_{d0}^2 = \frac{B_0^2}{8\pi} \left(\frac{4}{3}\pi R_B^3\right)^{1/3} \quad (1)$$

where M_0 is the mass of the plasma, v_{d0} is the initial debris expansion velocity, and B_0 is the ambient magnetic field. From (1) we obtain

$$R_B = \left(3M_0 v_{d0}^2 / B_0^2\right)^{1/3} \quad (2)$$

We compare this distance with the equal mass radius R_M

$$R_M = \left(3M_0 / 4\pi n_a m_a\right)^{1/3} \quad (3)$$

which is defined as the radius of the sphere which contains a mass of ambient plasma equal to the mass of the expanding plasma. For the expanding plasma to be confined magnetically we require $R_B < R_M$. This leads to $v_{d0} < v_{Aa}$ from (2) and (3) where $v_{Aa} = B_0 / (4\pi n_a m_a)^{1/2}$ is the

Alfven velocity in the ambient plasma. Basically, when $v_{d0} \ll v_{Aa}$ the expanding plasma is stopped before it sweeps up very much background plasma.

B. Magnetic Deceleration

The driving mechanism of the unmagnetized ion Rayleigh-Taylor instability is the deceleration of the expanding plasma shell. This deceleration can be interpreted as an effective gravitational acceleration, i.e., $dV_d/dt = -g_{eff}$. We estimate g_{eff} based upon conservation of energy. We write

$$\frac{1}{2} M_0 V_d^2(t) + \frac{B_0^2}{8\pi} \frac{4\pi}{3} R^3(t) = \frac{1}{2} M_0 V_{d0}^2 \quad (4)$$

where the LHS of (4) is the sum of the kinetic energy of the expanding debris and the swept-up magnetic energy at time t and position R , and the RHS is the energy at $t = 0$. We solve (4) for $V_d(t)$ and obtain

$$V_d(t) = \left(V_{d0}^2 - \frac{B_0^2}{3M_0} R^3 \right)^{1/2}. \quad (5)$$

We take the time derivative of (5) to obtain

$$g_{eff}(t) = - \frac{dV_d}{dt} = \frac{B_0^2}{2M_0} R^2(t) \quad (6)$$

where we have made use of the fact that $V_d = dR/dt$.

We also note that the position of the debris shell can be determined as a function of time from (5). Namely, (5) can be rewritten as

$$t = \int^R \frac{dR'}{V_d(R')} = \int^R \frac{dR'}{\left(V_{d0}^2 - \frac{B_0^2}{3M_0} R'^3 \right)^{1/2}} \quad (7)$$

Using (7) we can determine the time t when the debris shell is at a radius R .

C. Onset Criteria for Structure

The unmagnetized ion Rayleigh-Taylor instability discussed by Hassam and Huba (1987a,b) can only be excited if $\gamma_0 > \Omega_i$ where $\gamma_0 = (g_{\text{eff}}/L_n)^{1/2}$. That is, the maximum growth rate of the magnetized ion Rayleigh-Taylor instability has to be greater than the ion cyclotron frequency in order for the ions to behave as unmagnetized particles. When this occurs then the unmagnetized ion interchange mode can be excited. Making use of this fact, and the expression for g_{eff} derived above, we then arrive at the following onset criterion for structure development in magnetically confined expansions:

$$\frac{B_0^2}{2M_0} \frac{R^2(t)}{L_n} > \Omega_i^2 \quad (8)$$

or

$$R(t) > R_c = \left(2L_n M_0\right)^{1/2} \frac{eZ}{m_i c} \quad (9)$$

where Z is the charge state of the ions. Note that R_c , the critical radius for structure development, is independent of the magnetic field. This is because both Ω_i and γ_0 are proportional to B_0 . We do not expect that structure will be observed at $R = R_c$ but that this is the radius at which structure can begin to grow. Since it will take a number of e-folding times for the structure to be observable, we anticipate that structure should be observed at $R_{\text{obs}} = \alpha R_c$ where $\alpha \approx 1.5 - 2.0$.

Another constraint on structure development is that $R_{\text{obs}} = \alpha R_c < R_B$. That is, the magnetic confinement radius must be large enough to accommodate structure development. Alternatively, if $R_{\text{obs}} = \alpha R_c > R_B$ then the maximum deceleration of the plasma shell is not fast enough for the ions to behave as unmagnetized. Thus, we also require

$$\left(\frac{3M_0 V_{d0}^2}{B_0^2}\right)^{1/3} > \alpha \left(2L_n M_0\right)^{1/2} \frac{eZ}{m_i c} \quad (10)$$

where we have used (2) and (9). With regard to the DNA/NRL laser experiment we can rewrite (10) as

$$W > W_c = \alpha^3 \frac{(2L_n M_0)^{3/2}}{6} \frac{e^3 Z^3}{m_i^3 c^3} B_0^2 \quad (11)$$

where W is the laser energy, i.e., we have assumed $M_0 V_{d0}^2/2 = W$. Thus, (11) suggests that the laser energy must exceed a critical energy (W_c) in order to observe structuring of the expanding plasma.

III. APPLICATION

We now apply the criterion developed in Sec. II to the structure observed in AMPTE and the DNA/NRL laser experiment. We rewrite (9) as

$$R > R_c = 1.3 \times 10^4 \frac{Z}{\mu} \left(L_n M_0 \right)^{1/2} \text{cm} \quad (12)$$

where $\mu = m_i/m_p$, m_p is the proton mass, and we have evaluated the physical constants. For AMPTE we note that $Z = 1$, $\mu = 137$, and $L_n \approx 4.0 \times 10^6$ cm. We take $M_0 = N_0 \mu m_p$ where N_0 is the total number of ions produced. From Bernhardt et al. (1987) we take $N_0 = 7.5 \times 10^{24}$ ions so that $M_0 = 1.7 \times 10^3$ gm. Thus, for AMPTE we find that $R_c \approx 80$ km and anticipate structure to be observed at $R_{obs} \approx \alpha R_c \approx 120 - 160$ km. This is consistent with observations which indicate structure is evident at $R \approx 150$ km. For the laser experiment we take $L_n = 0.5$ cm, $M_0 = 2.0 \times 10^{-7}$ gm, $\mu = 28$, and $Z = 10$. We choose the value of Z based on the NRL HANEX simulations (Mulbrandon et al., 1987). We find that $R_c \approx 1.5$ cm so that structure should be observed at $R_{obs} \approx 2.2 - 3.0$ cm. This is consistent with experimental observations for both $B_0 = 1$ kG and 10 kG.

We can also rewrite (11) as

$$W > W_c = 3.3 \times 10^{11} \alpha^3 B_0^2 \frac{Z^3}{\mu^3} \left(L_n M_0 \right)^{3/2} \text{erg} . \quad (13)$$

For the laser experiment we note that $W_c = 16 - 38$ J for $B_0 = 10$ kG and $W_c = 0.16 - 0.38$ J for $B_0 = 1$ kG. Since $W \approx 30$ J, (13) is marginally satisfied for $B_0 = 10$ kG and easily satisfied for $B_0 = 1$ kG. We would expect that the unmagnetized ion Rayleigh-Taylor instability would not develop if $W < W_c$.

We now present a series of plots which graphically illustrate the above criteria. We consider the following parameters which are relevant to the laser experiment: $B_0 = 10$ kG, $L_n = 0.5$ cm, $M_0 = 2.0 \times 10^{-7}$ gm, $V_{d0} = 6.0 \times 10^7$ cm/sec, $Z = 10$, and $\mu = 28$. In Fig. 1 we plot the position of the shell R (cm) versus the time t (nsec). Curve A shows the position of a 'free streaming' debris shell and is based upon $R(t) = V_{d0}t$. Curve B shows the position of a 'decelerating' debris shell and is based upon (7). The two curves are identical for $t < 20$ nsec. The maximum expansion radius in this case is $R_{\max} = 2.8$ cm. In Fig. 2 we plot the effective gravitational acceleration g_{eff} (cm/sec²) versus the time t (nsec). It is based upon (6). We note that g_{eff} increases substantially during the expansion. In Fig. 3 we plot γ_0/Ω_i versus the time t (nsec). Here, $\gamma_0 = (g_{\text{eff}}/L_n)^{1/2}$ is the growth rate of the magnetized ion Rayleigh-Taylor instability. We show the regions of stability and instability based upon the criterion $\gamma_0/\Omega_i < 1$ and $\gamma_0/\Omega_i > 1$, respectively. We point out that structure was observed to develop at $t \approx 45$ nsec in the laser experiment which is in the unstable regime (Ripin, 1987). Finally, we present a plot of R_B , R_c , and R_{obs} (cm) versus laser energy W (joules). In calculating R_{obs} we have taken $\alpha = 1.5$. For $W < 8$ J we do not expect that structure caused by the unmagnetized ion Rayleigh-Taylor instability will develop since $R_c < R_B$. However, structure may not be observed if $W < 20$ J because it may not have time to develop.

The structure criteria suggested in this paper [(12) and (13)] can be checked with a series of laser experiments. The experiments should be designed to determine the scaling of the observed structure radius with relevant physical parameters (e.g., μ , M_0 , Z), and to determine if structuring stops at sufficiently small laser energies (i.e., $W < W_c$). In the former case, the scaling $R_{\text{obs}} \propto M_0^{1/2}$ would probably be the easiest to verify. Different target materials could be used to scale R_{obs} with Z/μ . In the case of aluminum we estimate $Z/\mu = 10/28$, while for carbon we expect $Z/\mu = 1/2$. Much heavier targets (e.g., gold) may yield values of $Z/\mu < 10/28$. Thus, there may be a sufficient range Z/μ to determine if R_{obs} scales linearly with Z/μ . Of course, there is uncertainty in determining Z which could hinder this analysis. On the other hand, if the scaling with $M_0^{1/2}$ is verified, lending credence to (9), then we could use the experimental measurement of R_{obs} vs. Z/μ as means to estimate Z for different target materials. With regard to checking if structure is not observed for sufficiently small laser energies, it is recommended that the

parameters $B_0 = 10$ kG and $Z/\mu = 10/28$ are used, and to reduce the laser energy to 10 J. It could then be checked if structure is observed for $W > W_c$ and not observed for $W < W_c$.

IV. DISCUSSION

We have proposed a set of criteria for the onset of structure caused by the unmagnetized ion Rayleigh-Taylor instability in magnetically confined plasma expansions. The AMPTE magnetotail barium release (Bernhardt et al., 1987) and the recent NRL laser experiments (Ripin et al., 1987) are excellent examples of such expansions. In both cases, structure was observed on time scales fast compared to the ion cyclotron period, and the unstable density shell exhibited 'clumping' as opposed to 'rippling'. Both these features are consistent with linear theory (Hassam and Huba, 1987a,b) and 2D MHD simulations (Huba et al., 1987). Furthermore, the onset criteria proposed is also consistent with the AMPTE and laser observations. Aside from predicting R_c (the critical radius at which structure can develop), we also find that R_c is independent of the magnetic field. This latter point has recently been observed in the NRL laser experiment. Finally, we have recommended a series of experiments which will help confirm (or refute) these onset criteria. Of particular interest is the scaling of R_c with M_0 , and the onset of structure for $W > W_c$.

Finally, we comment that a critical parameter in determining R_{obs} is α . At this point, the values assumed for α have guided by observational data. Although R_c is independent of B_0 , it may be that α is dependent on B_0 (e.g., through the growth rate) so that R_{obs} could be dependent on B_0 . For example, we find that the linear growth rate of the unmagnetized Rayleigh-Taylor instability is sufficiently fast to explain the observed structure position for both AMPTE and the $B_0 = 10$ kG laser experiment. However, for the $B_0 = 1$ kG laser experiment, the growth rate of the instability (at the observed wavelength) is too slow to account for the structure at the observed position. We note that the growth rate is proportional to the wavenumber (k) or mode number (m) so that rapid growth of short wavelength modes is anticipated. We speculate that there may be a rapid nonlinear cascade of energy from the short wavelength modes to the long wavelength modes that are observed. We are currently investigating this hypothesis.

ACKNOWLEDGMENTS

This research has been supported by the Defense Nuclear Agency.

REFERENCES

Bernhardt, P.A., R. Roussel-Dupre, M.B. Pongratz, G. Haerendel, A. Valenzuela, D.A. Gurnett, and R.R. Anderson, "Observations and theory of the AMPTE barium releases," to be published in J. Geophys. Res., 1987; LANL Report LA-10904-MS, 1987.

Hassam, A.B. and J.D. Huba, "Structuring of the AMPTE magnetotail barium releases," Geophys. Res. Lett., 14, 60, 1987.

Hassam, A.B. and J.D. Huba, "Magnetohydrodynamic equations for systems with large Larmor radius," to be submitted to Phys. Fluids, 1987.

Huba, J.D., J.G. Lyon, and A.B. Hassam, "Theory and simulation of the Rayleigh-Taylor instability in the large Larmor radius limit," to be submitted to Phys. Rev. Lett., 1987.

Mulbrandon, M., J. Giuliani, Jr., and E. Hyman, "Target expansion into a vacuum for the NRL laser experiment," ETHANL, 1987.

Ripin, B., NRL Early Time Meeting, February, 1987; ETHANL, 1987.

Fig. 1 - Plot of R (cm) versus time t (nsec). The parameters considered are $B_0 = 10$ kG, $M_0 = 2.0 \times 10^{-7}$ gm, $L_n = 0.5$ cm, $V_{d0} = 6.0 \times 10^7$ cm/sec, $Z = 10$, and $\mu = 28$. Curve A is for a 'free streaming' debris shell, while curve B is for a 'decelerating' debris shell and is based upon (7).

Fig. 2 — Plot of g_{eff} (cm/sec^2) versus time t (nsec). The parameters are the same as in Fig. 1.

Fig. 3 — Plot of γ_0/Ω_i versus time t (nsec). The parameters are the same as in Fig. 1. The stable and unstable regions are defined by $\gamma_0/\Omega_i < 1$ and $\gamma_0/\Omega_i > 1$, respectively.

Fig. 4 — Plot of R_B , R_c , and R_{obs} (cm) versus laser energy W (joules). The parameters are the same as in Fig. 1. We assume that $W = M_0 V_{d0}^2 / 2$. Since R_c is taken to be constant (i.e., M_0 is a constant), V_{d0} must vary as $W^{1/2}$.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, DC 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, DC 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA 22209
01CY ATTN NUCLEAR
MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DDST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT PROGRAM MANAGEMENT OFFICE
WASHINGTON, DC 20330
01CY ATTN J-3 WWMCCS EVALUATION
OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NB 68113
01CY ATTN JSTPS/JLKS
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20301
01CY ATTN STRATEGIC & SPACE
SYSTEMS (OS)

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO, F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, DC 20310
01CY ATTN C- E-SERVICES DIVISION

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. HUACHUCA, AZ 85613
01CY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
01CY ATTN DRXST-SD

COMMANDER
U.S. ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J.A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
01CY ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH
LABORATORY
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN TECH LIBRARY,
EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
01CY ATTN DOCUMENT CONTROL

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
01CY ATTN JIM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS
ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN ATAA-SA
01CY ATTN TCC/F. PAYAN JR.
01CY ATTN ATTA-TAC LTC J. HESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, DC 20360
01CY ATTN NAVALEX 034 T. HUGHES
01CY ATTN PME 117
01CY ATTN PME 117-T
01CY ATTN CODE 5011

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLAND ROAD, BLDG. 5
WASHINGTON, DC 20390
01CY ATTN MR. DUBBIN STIC 12
01CY ATTN NISC-50
01CY ATTN CODE 5404 J. GALET

COMMANDER
NAVAL OCCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
01CY ATTN J. FERGUSON

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375
01CY ATTN CODE 4700 S.L. OSSAKOW,
26 CYS IF UNCLASS
(01CY IF CLASS)
ATTN CODE 4780 J.D. HUBA, 50
CYS IF UNCLASS, 01CY IF CLASS
01CY ATTN CODE 4701 I. VITKOVITSKY
01CY ATTN CODE 7500
01CY ATTN CODE 7550
01CY ATTN CODE 7580
01CY ATTN CODE 7551
01CY ATTN CODE 7555
01CY ATTN CODE 4730 E. MCLEAN
01CY ATTN CODE 4752
01CY ATTN CODE 4730 B. RIPIN
20CY ATTN CODE 2628

22
COMMANDER
NAVAL SPACE SURVEILLANCE SYSTEM
DAHLGREN, VA 22448
01CY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MD 20910
01CY ATTN CODE F31

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20376
01CY ATTN NSP-2141
01CY ATTN NSSP-2722 FRED WIMBERLY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHlgren LABORATORY
DAHlgren, VA 22448
01CY ATTN CODE DF-14 R. BUTLER

OFFICER OF NAVAL RESEARCH
ARLINGTON, VA 22217
01CY ATTN CODE 465
01CY ATTN CODE 461
01CY ATTN CODE 402
01CY ATTN CODE 420
01CY ATTN CODE 421

COMMANDER
AEROSPACE DEFENSE COMMAND/XPD
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
01CY ATTN XPDQQ
01CY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY
HANSCom AFB, MA 01731
01CY ATTN OPR HAROLD GARDNER
01CY ATTN LKB
KENNETH S.W. CHAMPION
01CY ATTN OPR ALVA T. STAIR
01CY ATTN PHD JURGEN BUCHAU
01CY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY
KIRTLAND AFT, NM 87117
01CY ATTN SUL
01CY ATTN CA ARTHUR H. GUENTHER

AFTAC
PATRICK AFB, FL 32925
01CY ATTN TN

AIR FORCE AVIONICS LABORATORY
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN AAD WADE HUNT
01CY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACQ
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
01CY ATTN AFRDQ

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION
DEPARTMENT OF THE AIR FORCE
HANSCom AFB, MA 01731-5000
01CY ATTN J. DEAS
ESD/SCD-4

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN NICD LIBRARY
01CY ATTN ETDP B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE V. COYNE

STRATEGIC AIR COMMAND/XPFS
OFFUTT AFB, NB 68113
01CY ATTN XPFS

SAMSO/MN
NORTON AFB, CA 92409
(MINUTEMAN)
01CY ATTN MNML

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCom AFB, MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, DC 20545
01CY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR D. SHERWOOD

COMSAT LABORATORIES
22300 COMSAT DRIVE
CLARKSBURG, MD 20871
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, CA 90401
01CY ATTN C.B. GABBARD
01CY ATTN R. LELEVIER

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M.H. BORTNER
SPACE SCI LAB

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
01CY ATTN J.M. AEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED
STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIA
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM McNAMARA
01CY ATTN B. GAMBILL

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS

EG&G, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 85544
01CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR TECH INFO
DEPT
01CY ATTN DOC CON FOR L-389 R. OTT
01CY ATTN DOC CON FOR L-31 R. HAGER

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN DOC CON FOR J. WOLCOTT
01CY ATTN DOC CON FOR R.F. TASCHEK
01CY ATTN DOC CON FOR E. JONES
01CY ATTN DOC CON FOR J. MALIK
01CY ATTN DOC CON FOR R. JEFFRIES
01CY ATTN DOC CON FOR J. ZINN
01CY ATTN DOC CON FOR D. WESTERVELT
01CY ATTN D. SAPPENFIELD

LOS ALAMOS NATIONAL LABORATORY
MS D438
LOS ALAMOS, NM 87545
01CY ATTN S.P. GARY
01CY ATTN J. BOROVSKY

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR W. BROWN
01CY ATTN DOC CON FOR A.
THORNBROUGH
01CY ATTN DOC CON FOR T. WRIGHT
01CY ATTN DOC CON FOR D. DAHLGREN
01CY ATTN DOC CON FOR 3141
01CY ATTN DOC CON FOR SPACE PROJECT
DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR B. MURPHEY
01CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, DC 20545
01CY ATTN DOC CON DR. YO SONG

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
01CY ATTN R. GRUBB

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN I. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78758
01CY ATTN L. SLOAN
01CY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN
01CY ATTN C. PRETTIE
01CY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D.B. COX
01CY ATTN J.P. GILMORE

LOCKHEED MISSILES & SPACE CO., INC
P.O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-12
01CY ATTN W.L. IMHOF DEPT 52-12
01CY ATTN RICHARD G. JOHNSON
DEPT 52-12
01CY ATTN J.B. CLADIS DEPT 52-12

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.O. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

MCDONNELL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
01CY ATTN N. HARRIS
01CY ATTN J. MOULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
01CY ATTN R.W. HALPRIN
01CY ATTN TECHNICAL
LIBRARY SERVICES

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
01CY ATTN W.F. CREVIER
01CY ATTN STEVEN L. GUTSCHE
01CY ATTN R. BOGUSCH
01CY ATTN R. HENDRICK
01CY ATTN RALPH KILB
01CY ATTN DAVE SOWLE
01CY ATTN F. FAJEN
01CY ATTN M. SCHEIBE
01CY ATTN CONRAD L. LONGMIRE
01CY ATTN B. WHITE
01CY ATTN R. STAGAT

MISSION RESEARCH CORP.
1720 RANDOLPH ROAD, S.E.
ALBUQUERQUE, NM 87106
01CY R. STELLINGWERF
01CY M. ALME
01CY L. WRIGHT

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
01CY ATTN W. HALL
01CY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
12340 SANTA MONICA BLVD.
LOS ANGELES, CA 90025
01CY ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASS TO THIS ADDRESS)
01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
4 ARROW DRIVE
WOBURN, MA 01801
01CY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS, INC.
P.O. BOX 3027
BELLEVUE, WA 98009
01CY ATTN E.J. FREMOUW

PHYSICAL DYNAMICS, INC.
P.O. BOX 10367
OAKLAND, CA 94610
ATTN A. THOMSON

R & D ASSOCIATES
P.O. BOX 9695
MARINA DEL REY, CA 90291
01CY ATTN FORREST GILMORE
01CY ATTN WILLIAM B. WRIGHT, JR.
01CY ATTN WILLIAM J. KARZAS
01CY ATTN H. ORY
01CY ATTN C. MACDONALD
01CY ATTN BRIAN LAMB
01CY ATTN MORGAN GROVER

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY, MA 01776
01CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
330 WEST 42nd STREET
NEW YORK, NY 10036
01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS
INTERNATIONAL INCORPORATED
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
01CY ATTN LEWIS M. LINSON
01CY ATTN DANIEL A. HAMLIN
01CY ATTN E. FRIEMAN
01CY ATTN E.A. STRAKER
01CY ATTN CURTIS A. SMITH

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MA 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
01CY ATTN: N. ZABUSKY

SCIENCE APPLICATIONS
INTERNATIONAL CORPORATION
1710 GOODRIDGE DR.
MCLEAN, VA 22102
01CY J. COCKAYNE
01CY E. HYMAN

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
01CY ATTN J. CASPER
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN R. TSUNODA
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. McDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W.P. BOQUIST

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCHULER
01CY ATTN D. DEE
01CY ATTN D/ STOCKWELL
SNTF/1575

E N V

9 - 87

Dtic