1.INTRODUCTION:

1.1 Project Overview:

This project leverages Tableau to explore and visualize housing market trends by analyzing historical sales data. The goal is to uncover patterns and insights related to house prices in connection with key features such as square footage, location, number of bedrooms, and construction year. Through interactive dashboards and visual analytics, this project aims to support data-driven decision-making for buyers, sellers, and real estate professionals by highlighting the factors that most significantly influence property values.

1.2 Project Purpose:

The purpose of this project is to analyze and visualize housing market data to identify the key factors influencing property sale prices. By using Tableau to create interactive and insightful dashboards, the project aims to help stakeholders — including potential buyers, sellers, and real estate agents — better understand market trends, make informed decisions, and anticipate pricing patterns based on various housing features and location attributes.

2.IDEATION PHASE:

2.1Problem statement:

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	Real estate analyst	Identify trends and factors driving housing sale prices	The data is scattered and hard to interpret	It lacks clear visualization s and consolidated insights	Overwhelmed and uncertain in my analysis
PS-2	Homebuyer	Understand which property features influence price and value	It's difficult to compare properties effectively	The information is not presented in an intuitive, visual format	Confused and hesitant to make decisions

2.2 Brainstorming & Ideation:

3.REQUIREMENT ANALYSIS:

3.1:Customer Journey Map:

3.2: Solution Requirement:

Functional Requirements:

FR NO	Functional Requirement	Sub Requirement (Story /	
	(Epic)	Sub-Task)	
FR-1	Data Collection and Import	System must allow importing	
		housing dataset from	
		Excel/CSV.	

FR-2	Data Cleaning and	Must calculate house age and
	Transformation	years since renovation;
		handle missing or invalid data
FR-3	Visualization of Key Metrics	Dashboard must display KPIs
		such as average price, total
		houses, and basement area.
FR-4	Sales Analysis by Renovation	Create a histogram that
		groups total sales based on
		years since renovation.
FR-5	Feature-based House Age	Display grouped bar charts
	Distribution	showing house age versus
		bathrooms, bedrooms, and
		floors.
FR-6	Renovation Status	Show proportion of
	Visualization	renovated vs. non renovated
		houses using pie charts.
FR-7	Dashboard Interactivity	Enable users to filter
		dashboard by house age,
		renovation status, bedrooms,
		bathrooms, and floors.
FR-8	Reporting and Export	Allow export of visualizations
		in PDF or image format for
		reporting and presentations.

Non-Functional Requirements:

FR NO	Non-Functional Requirement	Description
NFR-	Usability	Dashboard must be intuitive
		and easy to navigate for non
		technical stakeholders.
NFR-2	Security	Only authorized users should
		be able to access or modify
		the dashboard if published to
		a secure server.
NFR-3	Accessibility	Visuals must be readable on
		standard desktop and tablet
		screens.
NFR-4	Performance	Dashboard should load
		within 5 seconds with a
		dataset of up to 10,000
		records.

NFR-5	Maintainability	The solution must be easily updatable if new scenarios or
		charts are added.
NFR-6	Scalability	The system should be able to
		accommodate additional
		features or larger datasets in
		the future.

3.3:Data Flow Diagram:

3.4:Technology stack:

Component	Technology Used	Description
Data Source	Microsoft Excel / CSV /	Easily accessible and widely
	Google Sheets	used formats for structured
		housing datasets.
Data Cleaning	Tableau Prep / Excel	Quick transformation, field
	Formulas / Power Query	derivation, and cleaning
		within a visual interface.

Data Analysis & Viz	Tableau Desktop / Tableau	Drag-and-drop analytics with
	Public	grouped bar charts, pie
		charts, histograms, etc.
Optional Backend	Python with Pandas (Jupyter	For deeper pre-processing or
	Notebooks)	model based analytics if
		needed in the future
Hosting	Tableau Public (Free) or	Shareable dashboards,
	Tableau Server (Enterprise)	secure access control, and
		collaboration support.
Export / Reporting	Built-in PDF/Image Export	Simplifies reporting and
	from Tableau	snapshot sharing with
		stakeholders.

4.PROJECT DESIGN:

4.1:Problem Solution Fit:

4.2:Proposed Solution:

S.NO	Parameter	Description

1.	Problem statement	Lack of clear ,visual insights into housing market trends and pricing makes it difficulty for buyers ,sellers, and analysts to make informed decisions
2.	Idea/Solution description	Develop interactive Tableau dashboards to visualize housing sales data, including sale price trends ,property features, and neighborhood analysis .This solution enables users to explore and filter data easily ,understand market dynamics and identify patterns.
3.	Novelty/Uniqueness	The project combines multiple visualization techniques in a single dynamic dashboard ,offering a comprehensive ,user friendly tool that updates automatically with new data inputs.
4.	Social impact/Customer Satisfaction	By making market data transparent and accessible ,the solution empowers home buyers and sellers to make informed choices ,reduces reliance on intermediate ,and promotes fair pricing practices ,ultimately increasing trust and satisfaction .
5.	Business Model(Revenue model)	The dashboard can be offered as a subscription base service for real estate agencies and financial institutions.

4.2:Solution Architecture:

Solution Architecture

5.PROJECT PLANNING&SCHEDULING:

5.1:Project Planning:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint-1	Registration	USN-1	Import housing sales dataset	2	High
Sprint-1	Registration	USN-2	Clean and preprocess data	1	High

Sprint-1	Registration	USN-3	Create initial data visualizations	2	Low
Sprint-2	Login	USN-4	Develop filters for dashboards	2	Medium
Sprint-2	Dashboard	USN-5	Configure calculated fields	1	High

6.FUNCTIONAL & PERFORMANCE TESTING:

S.NO	Parameter	Screenshot/Values
1.	Data Rendered	21,609 records successfully loaded into Tableau 31
		columns, including numeric, categorical, and calculated
		fields No data truncation or errors
2.	Data Preprocessing	Null values handled in relevant columns (e.g., bathrooms,
		renovations) Derived fields like House Age, Years Since
		Renovation, and flags generated
3.	Utilisation of Filters	Filters applied: Bedrooms, Bathrooms, Floors, Renovation
		Status, House Age ranges Interactivity verified across all
		dashboard scenarios
4.	Calculation fields used	House Age (in Years), Years Since Renovation, Renovated
		Flag (Yes/No) Grouped bins for visualization e.g., price
		ranges, age groups
5.	Dashboard design	No of Visualisations / Graphs – 4 • KPI Cards (Avg Price,
		Total Houses, Basement Area) • Pie Chart • Histogram •
		Grouped Bar Chart
6.	Story Design	No of Visualisations / Graphs -Each dashboard scenario
		visualized as a story step 4 story points: • Overview •
		Sales by Renovation • Renovation vs Age • Age by
		Features

7.RESULTS:

7.1:Output Screenshots:

8.ADVANTAGES & DISADVANTAGES:

Advantages:

- Interactive and easy-to-use visual analysis
- Supports data-driven real estate decisions
- Saves time compared to manual analysis
- Easy to share insights with others

Disadvantages:

- Requires Tableau skills or training
- May depend on data quality and freshness
- Can be overwhelming for first-time users
- Needs regular updates to stay relevant

9.CONCLUSION:

Conclusion

This project demonstrates how Tableau can effectively visualize housing market trends, making complex data accessible and actionable. By analyzing sale prices and property features, stakeholders can gain valuable insights to support smarter real estate decisions. While there are some challenges, such as the need for user training and consistent data updates, the benefits of interactive, data-driven analysis far outweigh these limitations, enabling more confident and informed choices in the housing market.

10.FUTURE SCOPE:

Future Scope

- Integrate real-time housing market data feeds
- Add predictive analytics and forecasting features
- Expand to include rental market trends
- Incorporate more demographic and economic factors

11.APPENDIX:

Dataset link:

https://www.kaggle.com/datasets/rituparnaghosh18/transformed-housing-data-2

Project demo link:

https://drive.google.com/file/d/1riucpFHBd2BkPZp0vzdl8oKgWexbzhQM/view?us p=drive_link