Practice Sheet 1 Chapter 10 of Hayt – Kemmerly, 8th Edition

- Evaluate 5 $\sin(5t 9^{\circ})$ at t = 0.01, 0.1 s
- Express 2.7 $\sin(50t + 5^{\circ}) 10\cos(50t)$ as a single cosine function
- Determine which waveform in the following pair is lagging, $cos(4t + 80^\circ)$, cos 4t + sin 4t

Assuming there are no longer any transients present, determine the current labeled i_L in the following circuit. Also calculate the power dissipated in the 2Ω resistor.

• Find i_L in the following circuit. Also find the power dissipated in the 10Ω resistor.

• Express the following in both rectangular and polar forms

•
$$\frac{2+j3}{1+8 \angle 90^{\circ}} - 4$$

•
$$\frac{2+j3}{1+8\angle 90^{\circ}} - 4$$

• $\left[\frac{(1-j)(1+j)+1\angle 90^{\circ}}{-j}\right] (3\angle - 90^{\circ}) + \frac{j}{5\angle - 45^{\circ}}$

- Transform the following into phasor form
 - $3 \cos 100t 3 \sin 100t$
 - $-\sin(8000t + 14^\circ)$
- Assuming an operating frequency of 1 KHz, transform the following phasor expression, $\frac{2 \angle 31^{\circ}}{4 \angle 25^{\circ}}$, into a single cosine function in the time domain. Compute the instantaneous value at t=10ms and t=25 ms
- A series connection is formed between a 1Ω resistor, a 1F capacitor and a 1 H inductor in that order. Assuming operation at ω = 1rad/s, what is the phasor current which yields a voltage of 1∠30° V across the resistor. (b) Compute the ratio of the phasor voltage across the resistor to the phasor voltage which appears across the capacitor-inductor combination.

• The circuit show below is represented in the phasor/frequency domain. If $I_R = 4 \angle 35^\circ A$, $V = 10 \angle 35^\circ V$ and $I = 2 \angle 35^\circ A$, across what type of element does V appear, and what is its value?

 Consider the network depicted in the figure, and determine the equivalent impedance seen looking into the open terminals if the angular frequency is 1 rad/s.

• Calculate the equivalent impedance seen at the open terminals of the network shown below if the frequency is 1 Hz.

• For the circuits shown below, determine the two nodal voltages $v_1(t)$ and $v_2(t)$.

• Determine I_g in the circuit if $I_1=5 \angle -18^\circ A$ and $I_2=2 \angle 5^\circ A$.

• Consider the ideal op-amp in the circuit shown below. What is $\frac{V_0}{V_c}$?

• Obtain the Thevenin equivalent seen by the $(2 - j)\Omega$ impedance and employ it to determine the current I_1 .

• In the circuit shown below, $i_{s1}(t) = 8 \cos(4t - 9^{\circ})A$, $i_{s2}(t) = 5 \cos(4t)A$, and $v_{s3}(t) = 2 \sin(4t)V$. Using source transformation, calculate the voltage across the inductor.

• In the circuit shown below, find values of I_1 , I_2 and I_3

