Dynamisk Programmering

Tre exempel:

- Maximal delsekvens
- Längsta ökande sekvens
- Växling av pengar

Exempel 1: Maximal delsekvens

Problem: Givet en sekvens $A[1 \dots n]$, finn den största summan i en sammanhängande delsekvens av A.

31	-41	59	26	-53	58	97	-93	-23
----	-----	----	----	-----	----	----	-----	-----

M a o, finn j,k så $\sum_{i=j}^k A[i]$ maximeras.

Experimentera med problemet!

ullet "Hm. . . om alla talen är positiva är svaret hela A"

31 41 59 26 53 58 97 93 23
--

• "Hm. . . om alla talen är negativa är svaret en tom sekvens"

• "Hm. . . en maximal delsekvens börjar alltid med ett positivt tal"

31	-41	59	26	-53	58	97	-93	-23
----	-----	----	----	-----	----	----	-----	-----

• "Hm. . . en maximal delsekvens slutar alltid med ett positivt tal"

En naiv lösning

Konstruera en tabell T[i,j] så att $T[j,k] = \sum_{i=j}^n A[i].$

31	-41	59	26	-53	58	97	-93	-23
----	-----	----	----	-----	----	----	-----	-----

jackslash k	2	3	4	5	6	7	8	9	10
1	-10	49	75	22	80	177	84	61	145
2		18	44	-9	49	146	53	30	114
3			85	32	90	187	94	71	155
4				-27	31	128	35	12	96
5					5	102	9	-14	70
6						155	62	39	123
7							4	-19	65
8								-116	-32
9									61

Kostnad för en naiv lösning

- Att skapa T[i,j] tar $\Theta(n^2)$ utrymme.
- Att hitta maximala delsekvensen tar $\Theta(n^2)$ tid.
- Kan vi göra det på ett billigare sätt?
- Ja, om vi använder dynamisk programmering.

Börja med att hitta en rekursiv formulering

Fråga: Vilken information om de första n-1 elementen, tillsammans med A[n] ger lösningen för hela sekvensen?

Ska 97 tas med?

Ska -53 tas med?

Ska -41 tas med?

Rekursiv formulering

- ullet Maximala summan i $A[1\dots n-1]$ verkar användbar, kalla den S[n-1].
- Värdet på A[n] påverkar också resultatet:
 - Om A[n] > 0 ska den definitivt tas med:

$$S[n] = S[n-1] + A[n]$$

- Om $A[n] \leq 0$ kan den tas med om den inte gör summan negativ:

$$S[n] = \max(S[n-1] + A[n], 0)$$

Rekursiv formulering

Definera den maximala summan i $A[1 \dots i]$ som

$$S[i] = \begin{cases} S[i-1] + A[i] & \text{om } A[i] > 0 \\ \max(S[i-1] + A[i], 0) & \text{om } A[i] \le 0 \end{cases}$$

Låt S[0] = 0 vara ett basfall.

Vi provar. . .

- ullet Lösningen är $\max_i S[i]$.
- \bullet Start- och slutindex kan rekonstrueras från S. Hur?
- Kostnad: $\Theta(n)$ tid och utrymme.

Exempel 2: Längsta ökande sekvens

Problem: Givet $A[1 \dots n]$, finns den längsta ökande sekvensen.

9	5	2	8	7	3	1	6	4	
---	---	---	---	---	---	---	---	---	--

Dvs, de utvalda elementen måste vara sorterade från höger till vänster.

I detta fall finns två lösningar: $\langle 2, 3, 4 \rangle$ och $\langle 2, 3, 6 \rangle$.

Börja med att hitta en rekursiv formulering

Fråga: Vilken information om de första n-1 elementen, tillsammans med A[n] ger lösningen för hela sekvensen?

- Längden av den längsta ökande sekvensen i $A[1\dots n-1]$ verkar användbar.
- ullet Detta $\ddot{a}r$ den längsta sekvensen, om inte A[n] kan utöka den.

• Tyvärr räcker det inte att veta hur lång sekvensen i $A[1 \dots n-1]$ är.

Om jag berättar att den längsta ökande sekvensen i $A[1\dots n-1]$ har längden 5 och A[n]=9, vad ska du göra då?

ullet Vi behöver veta den längsta ökande sekvensen som A[n] kan utöka!

Rekursiv formulering

Låt L[i] vara längden av den längsta ökande sekvensen som slutar med A[i].

$$L[i] = 1 + \max_{0 < j < i} L[j] \qquad \text{där } A[j] < A[i]$$

$$L[0] = 0$$

Längden av den längst ökande sekvensen av hela A:

$$\max_{1 \le i \le n} L[i]$$

Vi provar . . .

$$L[i] = 1 + \max_{0 < j < i} L[j] \quad \operatorname{d\"{a}r} A[j] < A[i]$$

$$L[0] = 0$$

A: 9 5 2 8 7 3 1 6 4

L: $\begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 2 & 1 & 3 & 3 \end{bmatrix}$

Kostnadsanalys

- Varje element A[i] jämförs med $A[1 \dots i-1]$.
- Detta ger $\Theta(n^2)$ tid.
- Med lite smartare datastrukturer: $\Theta(n \lg n)$.
- Hur kan vi rekonstruera lösningen?
 - Varje element A[i] kan peka ut det element som föregår sig själv i den längsta ökande sekvensen.

Exempel 3: Växling av pengar

Problem: För en given summa N och ett obegränsat antal mynt med värden $d_1 \dots d_n$, beräkna det minsta antalet mynt som behövs för N.

Exempel: För N=86 öre och $d_1=1$, $d_2=2$, $d_3=5$, $d_4=10$, $d_5=25$, $d_6=50$, $d_7=100$ är en 50-öring, en 25-öring, en 10-öring och en 1-öring optimalt.

En girig algoritm

Greedy-Make-Change(N)

1.
$$D = \langle 100, 50, 25, 10, 5, 2, 1 \rangle$$

- 2. $S \leftarrow \emptyset$
- 3. $s \leftarrow 0$
- 4. while $s \neq N$
- 5. **do** $d \leftarrow \text{largest coin} \in D \text{ such that } s + d \leq N$
- 6. **if** no such d
- 7. **then return** "No solution"
- 8. $S \leftarrow S \cup \{d\}$
- 9. $s \leftarrow s + d$
- 10. return S

En girig algoritm är inte alltid optimal

- Antag att vi bara har $D = \langle 100, 25, 10, 1 \rangle$.
- \bullet Hitta ett N så att Greedy-Make-Change inte ger en optimal lösning.
- Exempel: N = 30.
 - Girig algoritm \Rightarrow 25+1+1+1+1+1
 - Optimalt val \Rightarrow 10+10+10
- Hur hitta ett optimal val? Dynamisk programmering!

En lösning med dynamisk programmering

- ullet Antag en mängd mynt d_1,\ldots,d_n och en summa N.
- ullet Använd en tabell $C[1\dots n,0\dots N]$.

C[i,j] är det minsta antalet mynt som krävs för att betala j öre, med endast mynten $d_1, \ldots d_i$.

- ullet Lösningen till hela problemet är då C[n,N].
- Vi rekonstruerar lösningen senare.

Hitta en rekursiv formulering

C[i,j] är det minsta antalet mynt som krävs för att betala j öre, med endast mynten $d_1, \ldots d_i$.

- Att betala j öre med mynten d_1, \ldots, d_i ger två val:
 - 1. Använd inte mynt d_i (även om det går!):

$$C[i,j] = C[i-1,j]$$

2. Använd ett mynt d_i och reducera summan:

$$C[i,j] = 1 + C[i,j-d_i]$$

En rekursiv formulering

Vi väljer givetvis den lösning med minst antal mynt:

$$C[i,j] = \min(C[i-1,j], 1 + C[i,j-d_i])$$

- Om i < 1 eller $j < d_i$ kommer vi att referera utanför tabellen.
- Låt $C[i,j] = +\infty$ i sådana situationer.

Vi provar. . .

• Låt $d_1 = 1$, $d_2 = 4$, $d_3 = 6$ och N = 8.

Summa:									
$d_1 = 1$	0	1	2	3	4	5	6	7	8
$d_2 = 4$	0	1	2	3	1	2	3	4	2
$d_1 = 1$ $d_2 = 4$ $d_3 = 6$	0	1	2	3	1	2	1	2	2

- $C[3,8] = \min(C[2,8], 1 + C[3,8-d_3])$
- ullet Lösningen använde alltså *inte* d_3 .

Make-Change(N)

- 1. $D = \langle 1, 4, 6 \rangle$ \triangleright must be sorted
- 2. for $i \leftarrow 0$ to n
- 3. do $C[i,0] \leftarrow 0$
- 4. for $i \leftarrow 1$ to n
- 5. do for $j \leftarrow 1$ to N
- 6. do if i = 1 and $j < d_i$ then $C[i, j] \leftarrow +\infty$
- 7. elsif i = 1 then $C[i, j] \leftarrow 1 + C[i, j d_1]$
- 8. elsif $j < d_i$ then $C[i,j] \leftarrow C[i-1,j]$
- 9 else $C[i,j] = \min(C[i-1,j], 1 + C[i,j-d_i])$
- 10. return C[n, N]

Analys

- Om en 1-öring finns med kan vi alltid hitta en lösning.
- Annars returneras $+\infty$.
- Tidsanalysen är enkel: $\Theta(nN)$.
- Lösningen kan rekonstrueras genom att starta i C[n,N] och studera alternativen bakåt.

Slutsater om Dynamisk Programmering

- Alla lösningar har egenskapen "optimal substructure":
 En optimal lösning innehåller optimala lösningar till delproblemen.
- ullet Motexempel: Hitta längsta vägen från A till C.
- Inte säkert att LV(A,C) = LV(A,B) + LV(B,C) om B ligger på den längsta vägen från A till C.

