

Substrate Dependence and Tunneling Operation of MoS2 Nanotransistors

Arthur Bowman III, Zhixian Zhou
Nanofabrication and Electron Transport Laboratory
Department of Physics and Astronomy

Overview

- Motivation
- Device Fabrication
- Results
- Conclusions

Metal Oxide Field Effect Transistors (MOSFETs):

Source \rightarrow Gate \rightarrow Channel \rightarrow Drain

Sarkar et al, ACS Nano (2014)

At the Nanoscale:

- Electrostatic effects
- Quantum Mechanical effects

Understanding them → Next-generation biosensors

Atomically thin, 2 Dimensional Channel Materials

→ Transition Metal Dichalcogenides (TMD)

Transitional metal

Mo, W, Ti

(d-block elements)

Chalcogen

S, Se, Te

(Oxygen group)

e.g. MoS₂, MoSe₂, WS₂, WSe₂ etc.

Chemically stable, flexible and super strong with a reasonable band gap!

Hexagonal Layer Structure

How do we measure TMD FET performance?

Carrier Mobility µ

Scattering Mechanisms that limit µ:

- ❖ Optical phonons❖ Acoustic phonons
- Charged impurities at substrate/dielectric interface -
- Surface "traps" due to roughness
- Channel defects
- \rightarrow Achieve high μ with ultra smooth, high k dielectric substrate

Kis et al. reported $\mu \sim 60 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ at 240 K with high–k dielectric for monolayer MoS₂ (Nature Materials 2013)

Which Substrates Should We Study?

willen Substitutes Should we Study:		
~290 nm clean SiO ₂	OTMS SAM treated SiO ₂	h-BN
Al ₂ O ₃ on Si/SiO ₂	❖ Si/SiO₂ substrates	Higher excitation energy of optical
 ❖ Atomic Layer Depostion ~60 nm ❖ Higher dielectric constant compared to SiO₂ 	modified with OTMS SAMto create a hydrophobic surface MoS ₂ Subs Inner probes	 ✦ High dielectric constant ❖ Ultra Smooth Surface ❖ Impurity free ❖ 2D layer structure similar to TMD trate Ti/Au electrode SiO₂ Si
inited product		

 E_{C}

Tunnel Field Effect Transistors (TFET)

- **FET Operation through** quantum tunneling
- Not much supply voltage needed
- → Low Power Applications

How can we improve TFET Performance?

- Subthreshold Swing (SS)
- Thermionic limit
- → Achieve High Performance
- Subthermionic TFET with

Nb-doped WSe₂ source, Novel Gates

Device Fabrication

- Begin with commercial SiO2 on P Type Si Substrate
- Mechanical Exfoliation of TMD
- Transfer onto Substrate
- Electron Beam Lithography
- Metal Deposition
- Liftoff

How do we know we've made a good device?

- Current Voltage
 Characteristics (I-V curves)
- Ohmic contact on all substrates
- HBN looks best

Field Effect Mobility

- Corresponds to bulk material
- I-V curve → Conductivity
- → Field effect mobility, geometric capacitance
- h-BN looks best

$$\sigma\left(\mu S\right) = \frac{I_{DS}}{V_3 - V_2} \frac{l}{w}$$

$$\mu\left(\frac{cm^2}{V_S}\right) = \frac{1}{C} \frac{\partial \sigma}{\partial V_{DS}}$$

Hall Effect Mobility

- Corresponds to bulk + surface material
- I-V curve → Hall coefficient
- → carrier density
- → (along with conductivity) Hall mobility
- Agrees well with field effect mobility on h-BN

$$R\left(\frac{m^3}{C}\right) = \frac{V_{xy}}{I_{DS}} \qquad n(m^{-3}) = \frac{1}{eR}$$

$$\mu_H \left(\frac{cm^2}{Vs} \right) = \frac{\sigma}{ne}$$

Junction Area

MoS₂ Channel Thicknesses:

- **❖** 9 nm
- **❖** 5 nm
- ❖ 2 nm

How do we prove tunneling operation?

Gate Dependence

- TFET channel thickness 9 nm:
- SS = 147 mv/decade
- Channel thickness 2.3 nm:
- SS = 110 mv/decade
- Still above thermionic limit with HBN gate

$$SS\left(\frac{mv}{dec}\right) = \left[\frac{d}{dV_{GS}}\log(I_{DS})\right]^{-1}$$

9 nm

Conclusions

Substrate Dependence

- •Optical-phonon scattering remains dominant below ~ 100 K on h-BN
- •On all other substrates extrinsic scattering mechanisms start to degrade the carrier mobility below ~ 200 K
- The ultra-smoothness and high k environment of h-BN improves mobility

IN THE FUTURE: PHASE-ENGINEERED DIELECTRICS

Tunneling Operation

- •Subthreshold Swing of 0.05 % Nb-doped WSe₂/ MoS₂/h-BN devices were still above thermionic limit of 60 mv/decade
- •This could be due to intrinsic limitations of h-BN gates or non ideal fabrication
- •More h-BN gated devices, experiments with other gate materials needed

IN THE FUTURE: IONIC LIQUID GATING, BV DOPING

Acknowledgement

The authors would like to acknowledge:

- Nanofabrication and Electron Transport Labortatory Senior Students:
 Hsun Jen Chuang, Bhim P. Chamlagain,
 Meeghage M. Perera
- Wayne State University nFab core facility staff:
 William Funk, Dan Durisin
- Initiative for Maximizing Student Development (IMSD) Program
- National Institute of Health

For making this research possible