

Computer Security and Cryptography CS381

4. Block cipher DES

来学嘉 计算机科学与工程系 电院3-423室 34205440 13564100825 laix@sjtu.edu.cn 2016-03

Organization

- Week 1 to week 16 (2016-02-24 to 2016-06-08)
- 东上院502
- Monday 3-4节; week 9-16
- Wednesday 3-4节; week 1-16
- lecture 10 + exercise 40 + random tests 40 + other 10
- · Ask questions in class counted as points
- Turn ON your mobile phone (after lecture)
- Slides and papers:
 - http://202.120.38.185/CS381
 - computer-security
 - http://202.120.38.185/references
- TA: '薛伟佳' xue_wei_jia@163.com ,'黄格仕' <huang.ge.shi@foxmail.com>
- · Send homework to: laix@sjtu.edu.cn and to TAs

Rule: do not disturb others!

Contents

- Introduction -- What is security?
- Cryptography
 - Classical ciphers
 - Today's ciphers
 - Public-key cryptography
 - Hash functions/MAC
 - Authentication protocols
- Applications
 - Digital certificates
 - Secure email
 - Internet security, e-banking

Network security

SSL IPSEC Firewall VPN

Computer security

Access control Malware DDos Intrusion

Examples

Bitcoin Hardware Wireless

3

References

- W. Stallings, Cryptography and network security principles and practice, Prentice Hall.
- W. Stallings, 密码学与网络安全: 原理与实践(第4版), 刘玉珍等译, 电子工业出版社, 2006
- Lidong Chen, Guang Gong, *Communication and System Security*, CRC Press, 2012.
- A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, *Handbook of Applied Cryptography*. CRC Press, 1997, ISBN: 0-8493-8523-7, http://www.cacr.math.uwaterloo.ca/hac/index.html
- B. Schneier, *Applied cryptography*. John Wiley & Sons, 1995, 2nd edition.
- 裴定一,徐祥,信息安全数学基础, ISBN 978-7-115-15662-4, 人民邮电出版社,2007.

4

One-way function

- The intrinsic problem of information security is the "one-wayness".
- Cryptography studies one-way function
 - The measure of one-way: difficulty
 - The design of one-way function
 - The attacks on one-way function
 - The use of one-way function

5

One-way functions

- Oneway function f: X ->Y, given x, easy to compute f(x); but for given y in f(X), it is hard to find x, s.t., f(x)=y.
 - Prob[f(A(f(x))=f(x))] < 1/p(n) (TM definition, existence unknown)
 - · Example: hash function, discrete logarithm;
- Keyed function f(X,K)=Y, for known key z, it is easy to compute f(.,k)
 - Block cipher (fix c, f(c,.) is a oneway function)
- Keyed oneway function: f(X,K)=Y, for known key k, it is easy to compute f(.,k) but for given y, it is hard to x,k, s.t., f(x,k)=y.
 - MAC function: keyed hash h(k,X), block cipher CBC
- Trapdoor oneway function f_T(x): easy to compute and hard to invert, but with additional knowledge T, it is easy to invert.
 - Public-key cipher; RSA: y=x^e mod N, T: N=p*q

6

Block cipher

- A block cipher should be easy to use and hard to break.
 - easy to use: the encryption function E(;k) and decryption function D(;k) are easy to compute for all k
 - hard to break: It is hard for attacker to determine the key k (totally break) or to recover plaintexts often (partially break)

Cipher parameters

- · Plaintext size m:
 - Large enough to defeat statistical analysis
 - Multiple of 8 (byte size)
 - 64-bit (DES, IDEA): adequate for encryption, too small for hash;
 - 128-bit (AES): current standard size, too small for hash;
 - 256-bit: big enough but speed and security could suffer, need more rounds for confusion and diffusion.
- Kev size k:
 - 40-bit: so government can read your secret, still in use.
 - 64-bit is too small for today,
 - 128-bit is secure enough against exhaustive search
 - 256, 512, 1024-bit: good for hash, fit into RSA for key-encryption; security up bound can be hard to achieve.
 - If someone is sell a cipher with 5000-bit key "my cipher is more secure), then he is probably selling snake oil (忽悠)

8

Design principles

implementation

- software
 - use operations on subblocks
 - simple and available operations
 - use small look-up tables
- hardware
 - regular structure
 - similarity of encryption and decryption
 - differ in the way of using the key (key schedule)

security

- confusion
 - hard to determine the key from known plaintext and ciphertext
 - e.g: "highly nonlinear"
- diffusion
 - no useful dependence between plaintext X and ciphertext Y=E(X,k) for virtually all k
 - e.g. function E(.,.) should be "complete", i.e., each bit of (X,K) influences every bit of Y.
- Resist known attacks

Iterated block ciphers

- *f*: round function is easy to implement
- k: the key
- k⁽ⁱ⁾ the round subkey generated from k by an algorithm called key schedule
- r: number of rounds (iterations)

10

Reasons for Iteration

- a simple round function f is easy to implement
- · iterations provide confusion and diffusion
 - complexity of differential analysis ≈ c^r (under certain conditions)
 - complexity of implementation $\approx rc(f)$

DES (Data Encryption Standard)

- 1972 the NBS (National Bureau of Standards), now NIST (the National Institute of Standards and Technology), call for encryption algorithm that could be standardized.
- 1974, IBM responded with a design based on their 'Lucifer' algorithm.
 - Data Encryption Standard. FIPS PUB 46, Appendix A, Federal Information Processing Standards Publication, January 15, 1977, US Dept. of Commerce, National Bureau of Standards.
 - C. Meyer and S. Matyas: Cryptography, John Willy & Sons, 1982.

12

11

DES

- DES has a effective key-length of 56 bits and a block-length of m = 64 bits.
- A DES key consists of 64 bits, of which 56 bits are randomly generated and used directly by the algorithm.
 - The effective key length is 56 bits
 - The other 8 bits are the parity check: there is an odd number of "1"s in each 8-bit byte.

13

Initial permutation

the first bit of L_0R_0 is the 58th bit of M, the second bit is the 50th bit of M and so on, the last, the 64th bit of L_0R_0 being the 7th bit of M

Based on implementation consideration; no cryptographic significance

IP58 50 42 34 26 18 10 260 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

15

•encryption: $L_i = R_{i-1}$; $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$

•decryption: $R_{i-1} = L_i$

 $L_{i-1} = R_i \oplus F(R_{i-1}, K_i)$ $= R_i \oplus F(L_i, K_i)$

17

The expansion E

The 32 bits of R are expanded into 48 bits as 6x8 inputs for 8 S-boxes

1st and 6th bits are used to choose the row number, the middle 4 bits determine the column

- •To achieve better diffusion effect of input bits
- •1-bit change in input difference causes >1 bits change in output difference

- 1. 32 | 01 02 03 04 | 05
- 2. 04 | 05 06 07 08 | 09
- 3. 08 | 09 10 11 12 | 13
- 4. 12 | 13 14 15 16 | 17
- 5. 16 | 17 18 19 20 | 21
- 6. 20 | 21 22 23 24 | 25
- 7. 24 | 25 26 27 28 | 29
- 8. 28 | 29 30 31 32 | 01

18

8 S-boxes

S114 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 **S2**15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13 **S7**

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 **S8**

 $\begin{array}{c} 13\,2\,8\,4\,6\,15\,11\,1\,10\,9\,3\,14\,5\,0\,12\,7\\ 1\,15\,13\,8\,10\,3\,7\,4\,12\,5\,6\,11\,0\,14\,9\,2\\ 7\,11\,4\,1\,9\,12\,14\,2\,0\,6\,10\,13\,15\,3\,5\,8\\ 2\,1\,14\,7\,4\,10\,8\,13\,15\,12\,9\,0\,3\,5\,6\,11 \end{array}$

19

Permutations of S1

S1

Column Number

Row No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0	1	4	4 1	3	1	2 '	15	11	8	3 1	U	6	12	5	9	0	1
1		0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2		4	1 1	4	8	13	6	2	11	15	12	2 9	7	3	10	5	0
3	1	5	12	8	2	4	9	1	7	5	1	1 3	14	10	0 0	6	13

S1-0

0 >14> 0; 1>4>2 >13>9 >10>6 >11>12 >5 >15 >7 >8 >3 >1 S1-1

0>0; 1>15>8>10>12>9>6>13>5>2>7>1; 4>14>3>4; 11>11

Design principles

Design principles are not published (removed by NSA)

Claims

- Non-linear binary representation of the permutation has the highest number of terms [Meyer & Matyas, Cryptography, 1982]
- Each permutation consists of a long cycle, plus some short cycles (why? Uniform for random permutation)
- Change of each input will cause at least 2 bits of output to change (to against differential attacks?) [Coppersmith, 1993]

21

DES key schedule

PC-1											
49	41	33	25	17	9						
58	50	42	34	26	18						
2	59	51	43	35	27						
11	3	60	52	44	36						
55	47	39	31	23	15						
62	54	46	38	30	22						
6	61	53	45	37	29						
13	5	28	20	12	4						
	49 58 2 11 55 62 6	49 41 58 50 2 59 11 3 55 47 62 54 6 61	49 41 33 58 50 42 2 59 51 11 3 60 55 47 39 62 54 46 6 61 53	49 41 33 25 58 50 42 34 2 59 51 43 11 3 60 52 55 47 39 31 62 54 46 38 6 61 53 45	49 41 33 25 17 58 50 42 34 26 2 59 51 43 35 11 3 60 52 44 55 47 39 31 23 62 54 46 38 30						

PC-1: select 56 bits from 64 bits key (with parity)

- •1-st bit of C_0D_0 is the 57th bit of master key,
- •2-nd bit is the 49th bit of *master* key and so on,
- •the last, the 56th bit of C_0D_0 being the 4th bit of *master key*

PC-2 : select 48 bits from CnDn

the first bit of K_n is the 14th bit of C_nD_n , the second bit is the 17th bit of C_nD_n , and so on, the last, the 48th bit of K_n being the 32th bit of C_nD_n

23

DES-E/D similarity

- Same process for encryption and decryption, only subkeys are different
- round function: $Y = P_I[In(X,K)],$
- Fix k, In(In(x,k),k)=x; $P_1^2=Identity$

DES –key length

- DES key-length of k = 56 bits is too short [Diffie-Hellman 77]
- A design for a DES key search machine [Wiener 96] for \$1M can find key in 3.5 hours, on average.
- 1997 version of this machine would be capable of finding DES keys in 35 minutes, on average.
- A \$10,000 version would be capable of finding DES keys in 2.5 days.
- distributed Internet computing project DESCHALL[97], key search was done in running in idle time. 3 months with 10,000 computers
- · A solution is multiple encryption

25

- Triple DES
- $C = E_{K3}(D_{K2}(E_{K1}(P)))$
- Two-key Triple DES $C=E_{KI}(D_{K2}(E_{KI}(P)))$
- Backwards compatible: single DES for k1=k2=k3
- FIPS 46-3, 1999 October 25, DES-EDE3
 - NIST no longer support the use of single D■S for many applications

Meet-in-the-middle attack

• Double DES

$$C=E_{K2}(E_{K1}(P)))$$

Meet-in-the-middle attack (known plaintext):

From known P, compute 2^{56} values of $E_{KI}(P)$ for all choices of \mathbf{k}_1 From given C, compute 2^{56} values of $D_{K2}(C)$ for all choices of \mathbf{k}_2 then $D_{K2}(C) = E_{KI}(P)$ holds for the correct k1 and k2.

Complexity: time 2⁵⁶, memory 2⁵⁶

Key size is 112-bit, but real strength is still 56-bit How about 3DES, 4DES, 5DES,...?

27

Attacks on DES

- Differential Cryptanalysis [Biham-Shamir C91, Murphy 90, NSA 70s?]
 - Complexity:
 - Data: 247 chosen texts, Process: 237
- Linear analysis [Matsui EC93]
 - Linear approximations with prob p ≠ ½

 $P[i1,...,ia] \oplus C[j1,...,jb] = K[k1,...,kc], i_a,j_b,k_c$ are bit locations in P,C,K

- Complexity:
 - data: 243 known texts, Process.: 243
- Key search
 - Special hardware (1M\$): 1 hour
 - Computers: 3 months with 10,000 computers

28

Weak keys

- DES Weak keys $(E_k=D_k, E_k^2=Identity)$
 - 0000000 0000000
 - 0000000 FFFFFF
 - FFFFFF 0000000
 - FFFFFFF FFFFFFF
- 16 semi-weak keys $E_{k1}(.) = D_{k2}(.)$:

01FE01FE01FE01FE and FE01FE01FE01FE01 1FE01FE00EF10EF1 and E01FE01FF10EF10E 01E001E001F101F1 and E001E001F101F101 1FFE1FFE0EFE0EFE and FE1FFE1FFE0EFE0E 011F011F010E010E and 1F011F010E010E01 E0FEE0FEF1FEF1FE and FEE0FEE0FEF1FEF1

• 48 keys which produce only 4 distinct subkeys (instead of 16)

29

Exercise 4 - DES

- 1. Let M' be the bitwise inversion of M. Prove that, for DES, if $Y=E_k(X)$, then $Y'=E_{k'}(X')$
- Hint: (A ⊕B)'=A' ⊕ B.
- 2. prove that for DES, if key k is all-0, then $E_k=D_k$. Can you find a method to avoid this problem?

Deadline: 1 day before next lecture

Format: Subject: CS381 -EX.# -某某某