Recepción de datos

Se recibe la cantidad de bits junto con las variables asociadas a sus respectivos valores.

- ▶ bits = 7
- ▶ ooga = d26
- ▶ booga = b11

Convertir datos a binario

Se convierten los datos a listas de 0s y 1s para representar un valor binario.

- ightharpoonup ooga = + [0, 0, 1, 1, 0, 1, 0]
- ightharpoonup booga = + [0, 0, 0, 0, 0, 1, 1]

Tomar el valor absoluto de los números

Se toma el valor absoluto de los números para realizar la multiplicación.

- ightharpoonup abs(ooga) = [0, 0, 1, 1, 0, 1, 0]
- ightharpoonup abs(booga) = [0, 0, 0, 0, 0, 1, 1]

Multiplicación binaria

Se realiza la multiplicación binaria (de valor absoluto) de los dos números binarios.

▶ $abs(ooga) \times abs(booga) =$ [0, 0, 1, 1, 0, 1, 0] × [0, 0, 0, 0, 0, 1, 1] = ...

Inicializar registro y empezar a multiplicar

Inicializar el resultado como una lista de ceros con longitud 2×7 y empezar a recorrer los bits de abs(booga).

resultado = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Si el bit de abs(booga) = 1, sumar abs(ooga) \times 2⁰ al resultado.

▶ $abs(booga)[6] = 1 \Longrightarrow Si$ se hace la suma

Sumar No.1

Sumar abs(ooga) \times 2⁰ al resultado.

- $[0, 0, 1, 1, 0, 1, 0] \ll 0 =$ [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
- resultado + producto = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0]

Si el bit de abs(booga) = 1, sumar abs(ooga) \times 2¹ al resultado.

▶ $abs(booga)[5] = 1 \Longrightarrow Si$ se hace la suma

Sumar No.2

Sumar abs(ooga) \times 2¹ al resultado.

- $[0, 0, 1, 1, 0, 1, 0] \ll 1 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0]$
- resultado + producto = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0]

Si el bit de abs(booga) = 1, sumar abs(ooga) \times 2² al resultado.

▶ $abs(booga)[4] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(booga) = 1, sumar abs(ooga) \times 2³ al resultado.

▶ $abs(booga)[3] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(booga) = 1, sumar abs(ooga) \times 2⁴ al resultado.

▶ $abs(booga)[2] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(booga) = 1, sumar abs(ooga) \times 2⁵ al resultado.

▶ $abs(booga)[1] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(booga) = 1, sumar abs(ooga) \times 2⁶ al resultado.

▶ $abs(booga)[0] = 0 \Longrightarrow No se hace la suma$

Recortar resultado

Recortar el resultado para la cantidad de bits en cuestión.

► [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0] = [1, 0, 0, 1, 1, 1, 0]

Aplicando negativos

Se determina el signo del resultado y se convierte a complemento a dos si es negativo.

$$\blacktriangleright \ + [1, \ 0, \ 0, \ 1, \ 1, \ 1, \ 0] \Longrightarrow [1, \ 0, \ 0, \ 1, \ 1, \ 1, \ 0]$$

Resultado

Se muestra el resultado de la multiplicación binaria.

▶ Resultado = $ooga \times booga = +[0, 0, 1, 1, 0, 1, 0] \times +[0, 0, 0, 0, 1, 1] = [1, 0, 0, 1, 1, 1, 0]$

Diseños Lógicos

Johanel, Fabrizio, Jeaustin

Tecnológico de Costa Rica

Semestre I de 2023