On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms

Lam M. Nguyen*1 · Trang H. Tran*2

Problem Statement

We consider the following **finite-sum minimization:**

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{n} \sum_{i=1}^n f(w; i) \right\},\tag{1}$$

where $f(\cdot;i):\mathbb{R}^d\to\mathbb{R}$ is smooth and possibly non-convex for $i\in[n]:=\{1,\cdots,n\}$.

Shuffling-Type Gradient Algorithm

Algorithm 1: (Shuffling-Type Gradient Algorithm for Solving (1))

- 1: **Initialization:** Choose an initial point $\tilde{w}_0 \in \text{dom}(F)$.
- 2: **for** $t = 1, 2, \dots, T$ **do**
- Set $w_0^{(t)} := \tilde{w}_{t-1};$
- Generate any permutation $\pi^{(t)}$ of [n] (either deterministic or random);
- for i = 1, ..., n do
- Update $w_i^{(t)'} := w_{i-1}^{(t)} \eta_i^{(t)} \nabla f(w_{i-1}^{(t)}; \pi^{(t)}(i));$
- 7: **end for**
- Set $ilde{w}_t := w_n^{(t)};$
- 9: **end for**

Basic Assumptions

Assumption 1. Suppose that $f_i^* := \min_{w \in \mathbb{R}^d} f(w; i) > -\infty, i \in \{1, \dots, n\}.$

Assumption 2. Suppose that $f(\cdot; i)$ is L-smooth for all $i \in \{1, ..., n\}$, i.e. there exists a constant $L \in (0, +\infty)$ such that:

$$\|\nabla f(w;i) - \nabla f(w';i)\| \le L\|w - w'\|, \quad \forall w, w' \in \mathbb{R}^d.$$
 (2)

Average PL condition

Definition 1 (Polyak-Lojasiewicz condition). We say that f satisfies Polyak-Lojasiewicz (PL) inequality for some constant $\mu > 0$ if

$$\|\nabla f(w)\|^2 \ge 2\mu [f(w) - f^*], \quad \forall w \in \mathbb{R}^d, \tag{3}$$

where $f^* := \min_{w \in \mathbb{R}^d} f(w)$.

Assumption 3. Suppose that $f(\cdot; i)$ satisfies average PL inequality for some constant $\mu > 0$ such that

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f(w;i)\|^2 \ge 2\mu \frac{1}{n} \sum_{i=1}^{n} [f(w;i) - f_i^*], \quad \forall w \in \mathbb{R}^d.$$
 (4)

where $f_i^* := \min_{w \in \mathbb{R}^d} f(w; i)$.

Theorem 1. Let $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$ is a training data set where $x^{(i)} \in \mathbb{R}^m$ is the input data and $y^{(i)} \in \mathbb{R}^c$ is the output data for i = 1, ..., n. We consider an architecture h(w; i) with w be the vectorized weight and

$$h(w; i) = W^T z(\theta; i) + b,$$

where $w = \mathbf{vec}(\{\theta, W, b\})$ and $z(\theta; i)$ are some inner architectures, which can be chosen arbitrarily. Next, we consider the squared loss $f(w; i) = \frac{1}{2} \|h(w; i) - y^{(i)}\|^2$. Then

$$\|\nabla f(w;i)\|^2 \ge 2[f(w;i) - f_i^*], \quad \forall w \in \mathbb{R}^d,$$
 (5)

where $f_i^* := \min_{w \in \mathbb{R}^d} f(w; i)$.

Generalized Star-Smooth-Convex Condition

For any global solution w_* of F, let us define

$$\sigma_*^2 := \inf_{w_* \in \mathcal{W}_*} \left(\frac{1}{n} \sum_{i=1}^n \|\nabla f(w_*; i)\|^2 \right). \tag{6}$$

Assumption 4. Suppose that the best variance at w_* is small, that is, for $\varepsilon > 0$ $\sigma_*^2 \leq P\varepsilon, \tag{7}$

for some P > 0.

Definition 2. The function g is star-M-smooth-convex with respect to a reference point $\hat{w} \in \mathbb{R}^d$ if

$$\|\nabla g(w) - \nabla g(\hat{w})\|^2 \le M\langle \nabla g(w) - \nabla g(\hat{w}), w - \hat{w}\rangle, \quad \forall w \in \mathbb{R}^d.$$
 (8)

For the analysis of shuffling type algorithm in this paper, we consider the general assumption called the *generalized star-smooth-convex condition for shuffling algorithms*:

Assumption 5. Using Algorithm 1, let us assume that there exist some constants M > 0 and N > 0 such that at each epoch t = 1, ..., T, we have for i = 1, ..., n:

$$\|\nabla f(w_{i-1}^{(t)}; \pi^{(t)}(i)) - \nabla f(w_*; \pi^{(t)}(i))\|^2$$

$$\leq M \langle \nabla f(w_{i-1}^{(t)}; \pi^{(t)}(i)) - \nabla f(w_*; \pi^{(t)}(i)), w_{i-1}^{(t)} - w_* \rangle + N \frac{1}{n} \sum_{i=1}^{n} ||w_i^{(t)} - w_0^{(t)}||^2,$$

$$\tag{0}$$

where w_* is a global solution of F.

Main results

Theorem 2. Assume that Assumptions 1, 2, 3, and 5 hold. Let $\{\tilde{w}_t\}_{t=1}^T$ be the sequence generated by Algorithm 1 with the learning rate $\eta_i^{(t)} = \frac{\eta_t}{n}$ where $0 < \eta_t \le \min \left\{ \frac{n}{2M}, \frac{1}{2L} \right\}$. Let the number of iterations $T = \frac{\lambda}{\varepsilon^{3/2}}$ for some $\lambda > 0$ and $\varepsilon > 0$. Constants C_1 , C_2 , and C_3 are defined as below for any $\gamma > 0$. We further define $K = 1 + C_1 D^3 \varepsilon^{3/2}$ and specify the learning rate $\eta_t = K \eta_{t-1} = K^t \eta_0$ and $\eta_0 = \frac{D\sqrt{\varepsilon}}{K \exp(\lambda C_1 D^3)}$ such that $\frac{D\sqrt{\varepsilon}}{K} \le \min \left\{ \frac{n}{2M}, \frac{1}{2L} \right\}$ for some constant D > 0. Then we have

$$\frac{1}{T} \sum_{t=1}^{T} \left[F(\tilde{w}_{t-1}) - F_* \right] \le \frac{K \exp(\lambda C_1 D^3)}{C_3 D \lambda} \|\tilde{w}_0 - w_*\|^2 \cdot \varepsilon + \frac{C_2}{C_3} \sigma_*^2, \tag{10}$$

where $F_* = \min_{w \in \mathbb{R}^d} F(w)$, σ_*^2 is defined in (6), w_* is a global solution of F,

$$C_1 = \frac{8L^2}{3} + \frac{14NL^2}{M} + \frac{4\gamma L^4}{6M}, C_2 = \frac{2}{M} + 1 + \frac{5}{6L^2} + \frac{8N}{3ML^2} + \frac{5\gamma}{12M}, C_3 = \frac{\gamma}{\gamma + 1M}.$$

Corollary 1. Suppose that the conditions in Theorem 2 and Assumption 4 hold. Choose $C_1D\lambda = 1$ and $\varepsilon = \hat{\varepsilon}/G$ such that $0 < \hat{\varepsilon} \leq G$ with the constant $G = \frac{2C_1D^2e}{C_2}||\tilde{w}_0 - w_*||^2 + \frac{C_2P}{C_2}$ where

$$C_1 = \frac{8L^2}{3} + \frac{14NL^2}{M} + \frac{4L^2}{3M}, C_2 = \frac{2}{M} + 1 + \frac{5}{6L^2} + \frac{8N}{3ML^2} + \frac{5}{12ML}, C_3 = \frac{1}{L^2 + 1M}.$$

Then, the we need $T = \frac{\lambda G^{3/2}}{\hat{\epsilon}^{3/2}}$ epochs to guarantee

$$\min_{1 \le t \le T} [F(\tilde{w}_{t-1}) - F_*] \le \frac{1}{T} \sum_{t=1}^{T} [F(\tilde{w}_{t-1}) - F_*] \le \hat{\varepsilon}. \tag{11}$$

Computational Complexity

Comparisons of computational complexity (the number of individual gradient evaluations) needed by SGD algorithm to reach an $\hat{\varepsilon}$ -accurate solution w that satisfies $F(w) - F(w_*) \leq \hat{\varepsilon}$ (or $\|\nabla F(w)\|^2 \leq \hat{\varepsilon}$ in the non-convex case)

Settings	Complexity	Shuffling Schemes	Global Solution
Convex	$\mathcal{O}\left(rac{\Delta_0^2+G^2}{\hat{arepsilon}^2} ight)$	X	
	$\mathcal{O}\left(\frac{n}{\hat{\varepsilon}^{3/2}}\right)$	√	✓
PL condition	$\widetilde{\mathcal{O}}\left(rac{n\sigma^2}{\hat{arepsilon}^{1/2}} ight)$	✓	✓
Star-convex related	$\mathcal{O}\left(\frac{1}{\hat{arepsilon}^2}\right)$	X	✓
Non-convex	$\mathcal{O}\left(\frac{\sigma^2}{\hat{arepsilon}^2}\right)$	X	X
	$\mathcal{O}\left(\frac{n\sigma}{\hat{arepsilon}^{3/2}}\right)$	√	X
Our setting (non-convex)	$\mathcal{O}\left(\frac{n(N\vee 1)^{3/2}}{\hat{\varepsilon}^{3/2}}\right)$	✓	✓

Experiments

We modify the initial data lightly to guarantee the over-parameterized setting in our experiment. We first use GD algorithm to find a weight w that yields a sufficiently small function value, then change the label data to \hat{y}_i such that the weight w yields ϵ loss function

Below is the train loss produced by Shuffling SGD algorithm for three datasets: Diabetes, Life Expectancy and California Housing.

Contributions

- We investigate a new framework for the convergence of a shuffling-type gradient algorithm to a global solution.
- \bullet Our analysis generalizes the class function called star-M-smooth-convex.
- We show the total complexity of $\mathcal{O}(\frac{n}{\hat{\varepsilon}^{3/2}})$ for a class of non-convex functions to reach an $\hat{\varepsilon}$ -accurate global solution. This result matches the same gradient complexity to a stationary point for unified shuffling methods in non-convex settings, however, we are able to show the convergence to a global minimizer.

Key References

- [1] Nesterov, Y., and Polyak, B. Cubic regularization of Newton method and its global performance. *Mathematical Programming*, 108(1):177–205, 2006
- [2] Nguyen, L. M., Tran-Dinh, Q., Phan, D. T., Nguyen, P. H., and van Dijk, M. A unified convergence analysis for shuffling-type gradient methods. *Journal of Machine Learning Research*, 22(207):1–44, 2021
- [3] Zhou, Y., Yang, J., Zhang, H., Liang, Y., and Tarokh, V. Sgd converges to global minimum in deep learning via star-convex path *The 7th International Conference on Learning Representations*, 2019