Exercice 1.

Décomposer en éléments simples sur $\mathbb{C}(X)$ les fractions rationnelles suivantes :

1.
$$\frac{1}{X^n-1}$$

2.
$$\frac{X^{n-1}}{X^n-1}$$

1.
$$\frac{1}{X^n - 1}$$
 2. $\frac{X^{n-1}}{X^n - 1}$ 3. $\frac{1}{(X-1)(X^n - 1)}$

Exercice 2.

Décomposer en éléments simples sur $\mathbb{C}(X)$ la fraction rationnelle $F = \frac{1}{X^n(1-X)^n}$.

EXERCICE 3.

Décomposer en éléments simples sur $\mathbb{C}(X)$:

1.
$$F = \frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
.
2. $F = \frac{4}{(X^2 + 1)^2}$.
3. $F = \frac{1}{X(X - 1)^3}$.
4. $F = \frac{2X}{X^2 + 1}$.
5. $F = \frac{1}{X^2 + X + 1}$.
6. $F = \frac{X}{(X^2 - 1)^3}$.

3.
$$F = \frac{1}{X(X-1)^3}$$
.

5.
$$F = \frac{1}{X^2 + X + 1}$$
.

$$2. \ F = \frac{4}{(X^2 + 1)^2}.$$

4.
$$F = \frac{2X}{X^2 + 1}$$
.

6.
$$F = \frac{X}{(X^2 - 1)^3}$$

Exercice 4.

Soit $P \in \mathbb{R}[X]$ dont les racines sont réelles et simples. Montrer que le polynôme Q = $P'^2 - PP''$ n'a pas de racines réelles.

EXERCICE 5.

- 1. Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique polynôme $T_n \in \mathbb{R}[X]$ tel que $T_n(\cos \theta) = \cos n\theta$ pour tout $\theta \in \mathbb{R}$. Quel est son degré?
- **2.** Soit $n \in \mathbb{N}^*$. Quelles sont les racines de T_n ?
- 3. Déterminer la décomposition en éléments simples de $\frac{1}{T}$.

Exercice 6.

- 1. Montrer qu'il existe un unique polynôme $A_n \in \mathbb{C}[X]$ tel que $A_n\left(X + \frac{1}{X}\right) =$ $X^n + \frac{1}{V^n}$.
- 2. Soit $n \in \mathbb{N}^*$. Montrer que les racines de A_n sont les $x_k = 2\cos\frac{(2k+1)\pi}{2n}$ pour
- 3. Décomposer $\frac{1}{A_m}$ en éléments simples.

Exercice 7.

Soient $n \in \mathbb{N}$ un entier naturel supérieur ou égal à 2 et $P_n = \prod_{i=1}^n (X-k)$.

- 1. En considérant $f_n = \frac{P'_n}{P_n}$, montrer que P'_n admet une unique racine x_n dans]0, 1[.
- **2.** Montrer que (x_n) converge vers 0.
- 3. Montrer que $x_n \sim \frac{1}{\ln n}$.

EXERCICE 8.

Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que P' divise P.

EXERCICE 9.

Calculer les limites des suites suivantes :

1.
$$u_n = \sum_{k=1}^n \frac{1}{k^2 + k}$$

2.
$$v_n = \sum_{k=1}^n \frac{1}{4k^2 - 1}$$

3.
$$w_n = \sum_{k=2}^n \frac{1}{k^2 - 1}$$

3.
$$w_n = \sum_{k=2}^n \frac{1}{k^2 - 1}$$

4. $z_n = \sum_{k=1}^n \frac{k - 2}{k^3 + 3k^2 + 2k}$

EXERCICE 10.

Soit $F = \frac{X^2 + 1}{(X - 1)(X + 1)^6}$

- 1. Déterminer la partie polaire de F relative au pôle 1.
- 2. On pose $G = (X + 1)^6 F$. Ecrire un développement limité de G(x) à l'ordre 5 en
- 3. En déduire la décomposition en éléments simples de F.

Exercice 11.

Décomposer en éléments simple sur $\mathbb{R}(X)$ les fractions rationnelles suivantes.

1.
$$F = \frac{X+1}{(X^2+1)(X^2-X+1)}$$
.
2. $F = \frac{1}{X^2(X^2+1)^2}$.
3. $F = \frac{X^2+1}{X(X^2+X+1)^2}$.
4. $F = \frac{2X+3}{X(X^2+X+3)^2}$.

3.
$$F = \frac{X^2 + 1}{X(X^2 + X + 1)^2}.$$

2.
$$F = \frac{1}{X^2(X^2+1)^2}$$
.

4.
$$F = \frac{2X+3}{X(X^2+X+3)^2}$$

Exercice 12.

Trouver une primitive de la fonction

$$\varphi: \mathbb{R}\setminus\{-1,1\} \longrightarrow \mathbb{R}, \ x \longmapsto \frac{4x}{x^4-1}.$$

EXERCICE 13.

Démontrer qu'il n'existe pas de fraction rationnelle $R \in \mathbb{K}(X)$ telle que $R' = \frac{1}{X}$.

Exercice 14.

Calculer $\int_{0}^{\pi} \frac{\sin t \, dt}{4 - \cos^2 t}.$

Exercice 15.

Calculer les intégrales de fractions rationnelles suivantes.

- 1. $\int_0^1 \frac{dx}{x^2+2}$.
- 2. $\int_{-1/2}^{1/2} \frac{dx}{1-x^2}$
- 3. $\int_{2}^{3} \frac{2x+1}{x^2+x-3} dx$.
- 4. $\int_{0}^{2} \frac{x \, dx}{x^{4} + 16}$
- 5. $\int_0^3 \frac{x^4 + 6x^3 5x^2 + 3x 7}{(x 4)^3} dx.$
- 6. $\int_{-2}^{0} \frac{dx}{x^3 7x + 6}$
- 7. $\int_{-1}^{1} \frac{2x^4 + 3x^3 + 5x^2 + 17x + 30}{x^3 + 8} dx.$
- 8. $\int_{2}^{3} \frac{4x^{2}}{x^{4}-1} dx$.
- 9. $\int_{-1}^{0} \frac{x^3 + 2x + 1}{x^3 3x + 2} dx$.
- **10.** $\int_{1}^{2} \frac{2x^{8} + 5x^{6} 12x^{5} + 30x^{4} + 36x^{2} + 24}{x^{4}(x^{2} + 2)^{3}} dx.$
- 11. $\int_0^\alpha \frac{-2x^2+6x+7}{x^4+5x^2+4} dx \text{ pour } \alpha \in \mathbb{R}. \text{ Y a-t-il une limite quand } \alpha \to +\infty ?$
- 12. $\int_{0}^{2} \frac{dx}{x^{4}+1}$.

Exercice 16.

Calculer

- 1. $\int_0^{\pi} \frac{\sin t \, dt}{4 \cos^2 t}$ en posant $u = \cos t$;
- 2. $\int_{\pi}^{x} \frac{dt}{\sin t} \text{ pour } x \in]0, \pi[\text{ en posant } u = \cos t;$
- 3. $\int_{-\pi}^{\pi} \frac{dt}{\cos^3 t} \text{ en posant } u = \sin t;$
- 4. $\int_{0}^{\frac{\pi}{2}} \frac{dt}{\sin t + \cos t}$ en posant $u = \tan \frac{t}{2}$.

Exercice 17.

Le but est de déterminer l'ensemble $\mathcal A$ de toutes les suites réelles $(\mathfrak u_n)$ vérifiant :

$$\forall n \in \mathbb{N}, u_{n+2} - u_n = n - 1$$

- 1. Trouver une suite réelle vérifiant cette relation de récurrence.
- 2. Montrer que $\mathcal A$ est un sous-espace affine de $\mathbb R^\mathbb N$. On précisera la direction de $\mathcal A$ et on en donnera une base.

Exercice 18.

Montrer que $\mathcal{F}=\left\{P\in\mathbb{R}[X]\;\middle|\;X^2P''-3XP'+4P=4-X\right\}$ est un sous-espace affine de $\mathbb{R}[X]$ et déterminer sa direction.

Exercice 19.

Soit E l'ensemble des fonctions continues de $\mathbb R$ dans $\mathbb R$ telles que

$$\forall x \in \mathbb{R}, f(x+1) - f(x) = x^2$$

- 1. Déterminer une fonction polynomiale P élément de E.
- **2.** Montrer que E est un sous-espace affine de $\mathcal{C}(\mathbb{R})$ et donner sa direction.

Exercice 20.

Soient $\mathcal F$ et $\mathcal G$ deux sous-espaces affines de E de direction respectives F et G.

- **1.** Montrer que si E = F + G, alors $\mathcal{F} \cap \mathcal{G} \neq \emptyset$.
- **2.** Montrer que si $E = F \oplus G$, alors $\mathcal{F} \cap \mathcal{G}$ est un singleton.