Points	30	28-29	26-27	24-25	22-23	20-21	18-19	16-17	14-15	12-13	< 12
Grade	1.0	1.3	1.7	2.0	2.3	2.7	3.0	3.3	3.7	4.0	5.0

9 December 2021

Final Examination in Stochastic Signals and Systems

Do NOT use red pens! Do NOT use pencils! Solutions written with pencil are VOID. Duration 120 minutes. Allowed means: 1 page (size A4, single-sided), handwritten only. Participants at the university: Write your solutions in the answer form only. Online participants: Write your solutions on a blank sheet.

Problem #1: Power Spectral Density (10 points)

Analyze the MATLAB program and answer the following questions.

a) Match the output plots (see next page) to the corresponding program line number(s). If you detect the corresponding line number(s) then write it (them) in the appropriate box of the answer form (see below). Leave blank all other boxes of the answer form. (4 points)

```
123
       clc;
124
       clear all;
125
       close all;
126
       f1 = 1;
127
       f2 = 20;
128
       N = 1000;
129
       Fs = 200; % Sampling rate 200 Hz
       t = ((-N/2):(N/2)-1)/Fs; % Time axis from -2.5 sec to 2.495 sec
130
       y = 1*sin(2*pi*f1*t) + 0.6*cos(2*pi*f2*t);
131
132
       windowLength = 3; % 3 seconds
133
       rectWindow = [zeros(1, 1*Fs) rectwin(windowLength*Fs)' zeros(1, 1*Fs)];
134
       hammingWindow = [zeros(1, 1*Fs) hamming(windowLength*Fs)' zeros(1, 1*Fs)];
135
136
       figure('Name','');
137
       subplot(3,2,1)
138
       plot(t,y),title(''),ylim([-1.5 1.5]), xlim([-2.5 2.5]), xlabel('Time (in sec)'), ylabel('Amplitude')
139
       subplot(3,2,2)
140
141
       plot(t,rectWindow),title("),ylim([-1.5 1.5]), xlim([-2.5 2.5]), xlabel('Time (in sec)'), ylabel('Amplitude')
142
       grid on
143
       sig1 = y.*rectWindow;
144
       subplot(3.2.3)
145
       plot(t,sig1),title(''),ylim([-1.5 1.5]), xlim([-2.5 2.5]), xlabel('Time (in sec)'), ylabel('Amplitude')
146
       grid on
147
       [r1,lags1] = xcorr(sig1,'biased');
148
       tau1 = lags1/Fs;
149
       subplot(3,2,4)
150
       plot(tau1,r1),title("), xlabel('Time difference \tau (in sec)'), ylabel('Amplitude')
151
       grid on
       Rxxdft1 = abs(fftshift(fft(r1)))/N;
152
153
       freq1 = -Fs/2:Fs/length(r1):Fs/2-(Fs/length(r1));
154
155
       plot(freq1,Rxxdft1),title("), xlabel('Frequency f (in Hz)'),ylabel('Spectral Power')
156
       grid on
       sig2 = y.*hammingWindow;
157
158
       subplot(3,2,3)
159
       plot(t,sig2),title(''),ylim([-1.5 1.5]), xlim([-2.5 2.5]), xlabel('Time (in sec)'), ylabel('Amplitude')
160
161
       [r2,lags2] = xcorr(sig2,'biased');
       tau2 = lags2/Fs;
162
163
       subplot(3,2,4)
164
       plot(tau2,r2),title("), xlabel('Time difference \tau (in sec)'), ylabel('Amplitude')
165
       grid on
166
       Rxxdft2 = abs(fftshift(fft(r2)))/N;
       freq2 = -Fs/2:Fs/length(r2):Fs/2-(Fs/length(r2));
167
168
       plot(freq2,Rxxdft2),title("), xlabel('Frequency f (in Hz)'),ylabel('Spectral Power')
169
170
       grid on;
```


- b) Explain in one sentence the major advantage of the window used in line 157. (2 points)
- c) Write down the mathematical equation corresponding to line 147 as detailed as possible. (2 points)
- d) Calculate the alias frequency if the sampling rate would be changed to 25 Hz. (2 points)

Answer form for problem #1

Please fill in the right answer.

a)	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
b)	157) i	s that	it helps	reduce	e spec	tral lea	kage in	vindow the fre Fourie	quenc	y doma	ain wh	en
c)	The information of the control of th	where or appropriate consistent and the formation is a simple of the boundary of the boundary of the simple of the boundary of the simple of the simple of the boundary of the simple o	Copping which receive that the report of the receive that where the receive the received the									
d)	mean: (folde Now, i	s that any frequence d) back into the fre	ampling rate is 200 by components about quency range from mpling rate to 25 H bove the new Nyqu	ve 100 Hz in the ori 0 to 100 Hz when s z, we need to deter	ginal signal would ampled at 200 Hz mine the alias frec	be aliased						
	backi	nto the frequency	onent in the original range from 0 to 12.5 requency when the	Hz when sampled	at 25 Hz.							

Problem #2: Random processes and correlation functions (10 points)

Let the statistically independent stationary random processes, x (ζ , t) and y (ζ , t). Their mean values are positive and are their autocorrelation functions are:

$$s_{xx}(\tau) = \frac{4 + \frac{\tau^2}{T^2}}{2 + \frac{\tau^2}{T^2}} \qquad T > 0$$

$$s_{yy}(\tau) = 4 + e^{-\frac{|\tau|}{T}} \qquad T > 0$$

Let $z(\zeta, t)$ be zero-mean random process defined as

$$z(\zeta, t) = a x(\zeta, t) + b y(\zeta, t)$$

The random process $z(\zeta, t)$ has the same variance as the random process $x(\zeta, t)$.

- a) Determine all possible pairs of coefficients a and b. (6 points)
- b) Determine the autocorrelation function $s_{zz}(\tau)$. (4 points)

Answer form for problem #2

Fill in the final results only. No calculation.

	a)	
ŀ	b)	
	D)	
ı		

Problem #3: Correlation functions and Optimum Systems (10 points)

- a) Explain the difference between a causal Wiener-Kolmogorov filter and a noncausal Wiener-Kolmogorov filter. (4 points)
- b) Draw a simple block diagram illustrating the usage of an adaptive filter and a second microphone for noise suppression in order to improve the audibility of a telephone conversation. (2 points)
- c) Maximum Likelihood estimation uses the so-called likelihood function $f_w(\underline{w} | x)$. Please explain this function and give a statement how it is used. (2 **points**)
- d) Calculate the autocorrelation function of $x(e,t) = \check{x}\sin(\omega_0 t + \varphi(e))$ with $f_{\varphi}(\varphi) = \frac{1}{2\pi}$ for $0 < \varphi < 2\pi$ and $f_{\varphi}(\varphi) = 0$ elsewhere. (2 points)

Useful antiderivatives $\int \sin^2 a da = \frac{1}{2}a - \frac{1}{4}\sin 2a$ $\int \cos^2 a da = \frac{1}{2}a + \frac{1}{4}\sin 2a$ $\int \sin a \cos a da = \frac{1}{2}\sin^2 a$	Useful addition theorems $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Answer form for problem #3

a)	
b)	

Final Examination in Stochastic Signals and Systems $-\,22$ July 2021

c)	
d)	Only final result, no calculation: