Univerzita Jana Evangelisty Purkyně v Ústí nad Labem

Přírodovědecká fakulta

Optimalizace investičních prostředků z hlediska výnosu fotovoltaických elektráren

BAKALÁŘSKÁ PRÁCE

Vypracoval: Petr Kotlan

Vedoucí práce: Ing. Roman Vaibar, Ph.D., MBA

Studijní program: Matematika ve firmách a veřejné správě

Ústí nad Labem 2024

Studijní program: Matematika ve firmách a veřejné správě Forma studia: Prezenční Přírodovědecká fakulta

Akademický rok: 2023/2024

Podklad pro zadání BAKALÁŘSKÉ práce studenta

Petr KOTLAN Jméno a příjmení: Osobní číslo: F21060

Téma práce: Optimalizace investičních prostředků z hlediska výnosu fotovoltaických elektráren

Téma práce anglicky: Optimization of investment funds in terms of photovoltaic power plants

Čeština Jazyk práce:

Vedoucí práce: Ing. Roman Vaibar, Ph.D., MBA

Katedra informatiky

Zásady pro vypracování:

Cílem bakalářské práce je vyvinout aplikaci, která pomocí lineárního programování optimalizuje rozdělení investičních prostředků pro instalaci fotovoltaických elektráren na daných objektech. Optimalizace bude provedena na základě následujících hledisek:

- typu střechy rovná, sedlová, valbová atd.,
- spotřeby v daném místě,
- ceny energie definované odkupem dle spotových cen OTE, a.s.,
- optimalizace uložiště,
- výpočtu předpokládaného ročního výkonu dle osvitových hodin.

Osnova:

- 1. Úvod
- 2. Současné modely výnosů fotovoltaických elektráren v ČR
- Teoretická část
 - Přehled ekonomických pojmů
 - Základní modely matematické optimalizace
- Praktická část
 - Popis aplikace
 - Případové studie
- 5. Zhodnocení výsledků
- 6. Závěr

Seznam doporučené literatury:

- VALACH, Josef. Investiční rozhodování a dlouhodobé financování. 3., přeprac. a rozš. vyd. Praha: Ekopress, 2010. ISBN 978-80-86929-71-2.
- PLEVNÝ, Miroslav a Miroslav ŽIŽKA. IModelování a optimalizace v manažerském rozhodování. Vyd. 2. Plzeň: Západočeská univerzita v Plzni, 2010. ISBN 978-80-
- Krátkodobé trhy. Online. OTE. C2018. Dostupné z: https://www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/vnitrodenni-trh. [cit. 2023-12-03].
- MITCHELL, Stuart; KEAN, Anita; MASON, Andrew; O'SULLIVAN, Michael a PHILLIPS, Antony et al. Optimization with PuLP. Online. COIN-OR Documentation Site. C2009. Dostupné z: https://coin-or.github.io/pulp/. [cit. 2023-12-03].

Podpis studenta:	Datum:
Podpis vedoucího práce:	Datum: © IS/STAG, Portál – Podklad kvalifikační práce , st95134, 26. března 2024 00:37

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně a použil jen pramenů, které cituji a uvádím v přiloženém seznamu literatury.

Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., ve znění zákona č. 81/2005 Sb., autorský zákon, zejména se skutečností, že Univerzita Jana Evangelisty Purkyně v Ústí nad Labem má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Jana Evangelisty Purkyně v Ústí nad Labem oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše.

V Ústí nad Labem dne 21. května 2024 Podpis:	
--	--

OPTIMALIZACE INVESTIČNÍCH PROSTŘEDKŮ Z HLEDISKA VÝNOSU FOTOVOLTAICKÝCH ELEKTRÁREN

Abstrakt

Klíčová slova

fotovoltaika, lineární programování, optimalizace, investice

OPTIMIZATION OF INVESTMENT FUNDS IN TERMS OF PHOTOVOLTAIC POWER PLANTS

Abstract

Keywords

photovoltaics, linear programming, optimization, investment

Obsah

Ú١	/od		10
1	Foto	ovoltaika	12
	1.1	Komponenty fotovoltaické elektrárny	12
		1.1.1 Fotovoltaický panel	
	1.2	Druhy fotovoltaických systémů	
		1.2.1 Ostrovní elektrárna	
		1.2.2 Standardní elektrárna	13
		1.2.3 Hybridní elektrárna	13
2	Teo	retická část	14
	2.1	Přehled ekonomických pojmů	14
		2.1.1 Ukazatele výnosnosti investice	14
	2.2	Matematická optimalizace	
		2.2.1 Formulace úlohy lineárního programování	15
		2.2.2 Maticový zápis úlohy LP	16
		2.2.3 Typy úloh lineárního programování	16
3	Pral	ktická část	17
	3.1	Popis aplikace	17
		3.1.1 Data	17
	3.2	Případové studie	17
4	Zho	dnocení výsledků a závěr	18
Se	znan	n zdrojů	18

Úvod

Fotovoltaika

Úvodní část si klade za cíl seznámit čtenáře s problematikou fotovoltaiky a návratnosti investic do fotovoltaických elektráren.

1.1 Komponenty fotovoltaické elektrárny

Fotovoltaická elektrárna se skládá z několika základních komponent.

1.1.1 Fotovoltaický panel

Fotovoltaický panel je základním stavebním kamenem fotovoltaické elektrárny. Jeho úkolem je přeměna slunečního záření na elektrickou energii.

1.2 Druhy fotovoltaických systémů

Rozdílem mezi jednotlyvími druhy fotovoltaických systémů je jejich napojení do veřejné elektrické sítě a integrace akumulátorů. Podle těchto kritérií je lze rozdělit do tří základních kategorií:

- ostrovní
- standardní
- hybridní

1.2.1 Ostrovní elektrárna

Ostrovní (tzv. off-grid) fotovoltaická elektrárna je samostatný systém, který není připojen k elektrické síti. Klíčovou částí toho systému je baterie (akumulátor), která slouží k ukládání přebytků energie. Jsou užitečné v oblastech, kde připojení k elektrické síti není možné.

Výhody:

- nezávislost na dodavatelích elektřiny,
- pokud dojde k výpadku elektřiny, ostrovní elektrárna bude sloužit jako záložní zdroj, • nutnost udržování a výměny baterií.

Nevýhody:

- počáteční náklady mohou být vyšší, kvůli potřebě akumulátorů,

1.2.2 Standardní elektrárna

Standardní (tzv. on-grid) fotovoltaická elektrárna je připojena k elektrické síti.

Výhody:

- možnost prodeje přebytků elektřiny,
- nižší počáteční náklady.

Nevýhody:

- závislost na dodavatelích elektřiny,
- v případě výpadku elektřiny, fotovoltaická elektrárna nebude fungovat.

1.2.3 Hybridní elektrárna

Výhody:

Nevýhody:

Teoretická část

Tato část je rozdělena do dvou kapitol. První kapitola se zabývá hodnotícími metodami investic, které jsou využívány v ekonomice. Druhá kapitola se zabývá lineárním programováním.

2.1 Přehled ekonomických pojmů

2.1.1 Ukazatele výnosnosti investice

Čistá současná hodnota (NPV – Net Present Value)

$$NPV = \frac{P_1}{(1+i)} + \frac{P_2}{(1+i)^2} + \dots + \frac{P_n}{(1+i)^n} - K$$

Vnitřní výnosové procento (IRR – Internal Rate of Return)

$$\frac{P_1}{(1+IRR)} + \frac{P_2}{(1+IRR)^2} + \ldots + \frac{P_n}{(1+IRR)^n} = K,$$

kde

n – počet let,

 P_1, P_2, \dots, P_n – peněžní příjmy z investice v jednotlivých letech,

K – kapitálový výdaj,

i – požadovaná míra výnosnosti.

2.2 Matematická optimalizace

Tato kapitola vychází ze dvou učebních textů. Prvním je *Matematika pro ekonomy* od R. Stolína [2] a druhým je *Operační výzkum* od J. Demela [3].

V úvodu této kapitoly jsou popsány základní pojmy a formulace úlohy lineárního programování.

Lineární programování patří k metodám *operačního výzkumu*. Je zaměřeno na hledání optimálního řešení při kterém, jsou zároveň splněny omezující podmínky.

2.2.1 Formulace úlohy lineárního programování

Účelová funkce je lineární funkcí n proměnných ve tvaru

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n, \tag{2.1}$$

kde $c_1, c_2, \ldots c_n$ jsou konstanty, které nazýváme cenové koeficienty nebo koeficienty účelové funkce a $x_1, x_2, \ldots x_n$ jsou strukturní neznámé.

Účelová funkce se buď maximalizuje

$$\max z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n, \tag{2.2}$$

nebo minimalizuje

$$\min z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n. \tag{2.3}$$

Omezující podmínky jsou lineární rovnice nebo nerovnice ve tvaru

$$a_{11}x_{1} + a_{12}x_{2} + \ldots + a_{1n}x_{n} \leq b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \ldots + a_{2n}x_{n} \leq b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \ldots + a_{mn}x_{n} \leq b_{m}$$

$$(2.4)$$

kde na místě $\buildrel \le$ může být \le , \ge nebo =.

Prvky a_{ij} jsou konstanty, které nazýváme strukturní koeficienty nebo koeficienty omezení, b_1, b_2, \ldots, b_m jsou konstanty (tzv. požadavková čísla) jsou konstanty, které nazýváme strukturní koeficienty nebo koeficienty omezení, b_i jsou konstanty (tzv. požadavková čísla) a $x_1, x_2, \ldots x_n$ jsou strukturní neznámé.

Zároveň omezující podmínky vymezují pro každou proměnnou $x_1, x_2, \dots x_n$ množinu hodnot, kterýh může nabývat. Nejčastěji se jedná o podmínky tvaru $x_i \ge 0$ (nezápornost). Jinými případy mohou být například podmínky tvaru $x_i \le 0$ (nekladnost) nebo x_i může nabývat libovolné hodnoty ("neomezeno").

2.2.2 Maticový zápis úlohy LP

Celý problém lineárního programování můžeme pro přehlednost zapsat maticově. Účelovou funkci vyjádříme jako jako

$$z = \boldsymbol{c}^T \boldsymbol{x} \to \max,$$

nebo

$$z = \boldsymbol{c}^T \boldsymbol{x} \to \min,$$

kde \boldsymbol{c} je vektor cenových koeficientů a \boldsymbol{x} je vektor strukturních neznámých.

Omezující podmínky můžeme vyjádřit jako maticový součin

$$Ax \leq b$$
,

kde \boldsymbol{A} je matice strukturních koeficientů a \boldsymbol{b} je vektor pravých stran omezujících podmínek.

2.2.3 Typy úloh lineárního programování

Praktická část

3.1 Popis aplikace

3.1.1 Data

Český hydrometeorologický ústav $\check{\mathrm{C}}\mathrm{HM}\check{\mathrm{U}}$

Podmínky užití dat

OTE, a.s. OTE (Otevřený trh s elektřinou)

3.2 Případové studie

Zhodnocení výsledků a závěr

Seznam zdrojů

- [1] Krátkodobé trhy. Online. OTE. C2018. Dostupné z: https://www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/vnitrodenni-trh.
- [2] STOLÍN, Radek. *Matematika pro ekonomy*. 2., upr. vyd. Jihlava: Vysoká škola polytechnická Jihlava, 2011. ISBN ISBN978-80-87035-35-1.
- [3] DEMEL, Jiří. *Operační výzkum*. Dostupné z: https://kix.fsv.cvut.cz/~demel/ped/ov/ov.pdf.
- [4] Stroj na peníze: Fotovoltaika při vysokých cenách elektřiny ušetří desetitisíce korun ročně. Online. TZB-info - Portál pro stavebnictví, technická zařízení budov. 2001. Dostupné z: https://oze.tzb-info.cz/fotovoltaika/ 24229-stroj-na-penize-fotovoltaika-pri-vysokych-cenach-elektriny-usetri-desetiti
- [5] Typy fotovoltaických elektráren. Online. Fotovia. 2023. Dostupné také z: https://www.fotovia.cz/blog/typy-fotovoltaickych-elektraren.