

PATENT COOPERATION TREATY

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

ISHIDA, Takashi
A. Aoki & Associates
Toranomon 37 Mori Building
5-1, Toranomon 3-chome
Minato-ku
Tokyo 105-8423
JAPON

115

Date of mailing (day/month/year)

04 February 1999 (04.02.99)

Applicant's or agent's file reference

F846-PCT

IMPORTANT NOTICE

International application No.

PCT/JP98/03199

International filing date (day/month/year)

16 July 1998 (16.07.98)

Priority date (day/month/year)

25 July 1997 (25.07.97)

Applicant

SUNTORY LIMITED et al

1. Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice:

AU,CN,EP,JP,KR,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

CA,NZ

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on 04 February 1999 (04.02.99) under No. WO 99/05287

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No. (41-22) 740.14.35

Authorized officer

J. Zahra

Telephone No. (41-22) 338.83.38

PCT

世界知的所有権機関
国際事務局
特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C12N 15/54, 9/10, A01H 1/00		A1	(11) 国際公開番号 (43) 国際公開日	WO99/05287 1999年2月4日(04.02.99)
(21) 国際出願番号	PCT/JP98/03199		牽 志忠(GONG, Zhizhong)[CN/JP] 〒263-0031 千葉県千葉市稻毛区稻毛東3丁目12番5号	
(22) 国際出願日	1998年7月16日(16.07.98)		並木コーポ201 Chiba, (JP)	
(30) 優先権データ 特願平9/200571	1997年7月25日(25.07.97)	JP	(74) 代理人 弁理士 石田 敬, 外(ISSHIDA, Takashi et al.) 〒105-8423 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル 青和特許法律事務所 Tokyo, (JP)	
(71) 出願人 (米国を除くすべての指定国について) サントリー株式会社(SUNTORY LIMITED)[JP/JP] 〒530-8203 大阪府大阪市北区堂島浜2丁目1番40号 Osaka, (JP)			(81) 指定国 AU, CA, CN, JP, KR, NZ, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(72) 発明者 ; および			添付公開書類 国際調査報告書	
(75) 発明者 / 出願人 (米国についてのみ) 水谷正子(MIZUTANI, Masako)[JP/JP] 〒615-8083 京都府京都市西京区桂良町18-21 Kyoto, (JP)				
田中良和(TANAKA, Yoshikazu)[JP/JP] 〒520-0246滋賀県大津市仰木の里2-7-4 Shiga, (JP)				
久住高章(KUSUMI, Takaaki)[JP/JP] 〒564-0073 大阪府吹田市山手町2-12-21-402 Osaka, (JP)				
斎藤和季(SAJITO, Kazuki)[JP/JP] 〒289-1106 千葉県八街市榎戸663-86 Chiba, (JP)				
山崎真巳(YAMAZAKI, Mami)[JP/JP] 〒260-0045 千葉県千葉市中央区弁天4-12-6 Chiba, (JP)				

(54) Title: GENES ENCODING PROTEINS HAVING TRANSGLYCOSYLATION ACTIVITY

(54) 発明の名称 糖転移活性を有する蛋白質をコードする遺伝子

(57) Abstract

Genes encoding proteins each having an amino acid sequence represented by any of SEQ ID NOS: 7 to 10 and 12 and showing the activity of transferring a glycosyl group to the 5-position of a flavonoid; genes encoding proteins each having an amino acid sequence derived from any of the above amino acid sequences by modification and showing the activity of transferring a glycosyl group to the 5-position of a flavonoid; and a process for producing the above proteins with the use of these genes. These genes are usable in, for example, artificially improving plant colors.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/03199

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁶ C12N15/54, C12N9/10, A01H1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁶ C12N15/54, C12N9/10, A01H1/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
SwissProt/PIR/GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP, 771878, A1 (PLANT GENETIC SYSTEMS NV), 7 May, 1997 (07. 05. 97) & WO, 97/16559, A1	1-11
A	Science. Vol. 265 (1994) Szerszen, J.B et al., "iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid." p.1699-1701	1-11
A	WO, 96/00291, A1 (RESEARCH CORP TECHNOLOGIES INC.), 4 January, 1996 (04. 01. 96)	1-11

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
18 September, 1998 (18. 09. 98)

Date of mailing of the international search report
29 September, 1998 (29. 09. 98)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

特許協力条約

PCT

E P

US

国際調査報告

(法8条、法施行規則第40、41条)
[PCT18条、PCT規則43、44]

出願人又は代理人 の書類記号 F 8 4 6 - P C T	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220)及び下記5を参照すること。	
国際出願番号 PCT/JP98/03199	国際出願日 (日.月.年) 16.07.98	優先日 (日.月.年) 25.07.97
出願人(氏名又は名称) サントリー株式会社		

国際調査機関が作成したこの国際調査報告を法施行規則第41条(PCT18条)の規定に従い出願人に送付する。
この写しは国際事務局にも送付される。

この国際調査報告は、全部で 2 ページである。

この調査報告に引用された先行技術文献の写しも添付されている。

1. 請求の範囲の一部の調査ができない(第I欄参照)。
2. 発明の単一性が欠如している(第II欄参照)。
3. この国際出願は、ヌクレオチド及び/又はアミノ酸配列リストを含んでおり、次の配列リストに基づき国際調査を行った。
 - この国際出願と共に提出されたもの
 - 出願人がこの国際出願とは別に提出したもの
 - しかし、出願時の国際出願の開示の範囲を越える事項を含まない旨を記載した書面が添付されていない
 - この国際調査機関が書換えたもの
4. 発明の名称は
 - 出願人が提出したものを承認する。
 - 次に示すように国際調査機関が作成した。
5. 要約は
 - 出願人が提出したものを承認する。
 - 第III欄に示されているように、法施行規則第47条(PCT規則38.2(b))の規定により国際調査機関が作成した。出願人は、この国際調査報告の発送の日から1ヶ月以内にこの国際調査機関に意見を提出することができる。
6. 要約書とともに公表される図は、
第_____図とする。
 - 出願人が示したとおりである.
 - 出願人は図を示さなかった。
 - 本図は発明の特徴を一層よく表している。

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl⁶ C12N15/54, C12N9/10, A01H1/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
Int.Cl⁶ C12N15/54, C12N9/10, A01H1/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
SwissProt/PIR/GeneSeq

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	EP, 771878, A1 (PLANT GENETIC SYSTEMS NV) 7.5月. 1997 (07.05.97) & WO, 97/16559, A1	1-11
A	Science. vol. 265 (1994) Szerszen, J. B et al. 「taglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid.」 p. 1699-1701	1-11
A	WO, 96/00291, A1 (RESEARCH CORP TECHNOLOGIES INC.) 4.1月. 1996 (04.01.96)	1-11

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

18.09.98

国際調査報告の発送日

29.09.98

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

新見 浩一

4B 9162

電話番号 03-3581-1101 内線 3448

特許協力条約に基づく国際出願

願書

出願人は、この国際出願が特許協力条約に従って処理されることを請求する。

国際出願番号	理官庁記入欄
PCT	
国際出願日	16.7.98
受領印	
(受付印)	

出願人又は代理人の書類記号
(希望する場合、最大12字) F 846-PCT

第Ⅰ欄 発明の名称

糖転移活性を有する蛋白質をコードする遺伝子

第Ⅱ欄 出願人

氏名(名称)及びあて名: (姓・名の順に記載; 法人は公式の完全な名称を記載; あて名は郵便番号及び国名も記載)

この欄に記載した者は、
発明者である。

サントリー株式会社

電話番号:

SUNTORY LIMITED

ファクシミリ番号:

〒530-8203 日本国大阪府大阪市北区堂島浜2丁目1番40号

加入電信番号:

1-40, Dojimahama 2-chome, Kita-ku, Osaka-shi, OSAKA 530-8203 JAPAN

国籍(国名): 日本国 JAPAN

住所(国名): 日本国 JAPAN

この欄に記載した者は、次の
指定国についての出願人である:
 すべての指定国 米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

第Ⅲ欄 その他の出願人又は発明者

氏名(名称)及びあて名: (姓・名の順に記載; 法人は公式の完全な名称を記載; あて名は郵便番号及び国名も記載)

この欄に記載した者は
次に該当する:

水谷正子 MIZUTANI Masako

出願人のみである。

〒615-8083 日本国京都府京都市西京区桂良町18-21

出願人及び発明者である。

18-21, Katsuraushitora-cho, Nishikyo-ku, Kyoto-shi,
KYOTO 615-8083 JAPAN

発明者のみである。
(こにレ印を付したとき)
は以下に記入しないこと)

国籍(国名): 日本国 JAPAN

住所(国名): 日本国 JAPAN

この欄に記載した者は、次の
指定国についての出願人である:
 すべての指定国 米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

その他の出願人又は発明者が統葉に記載されている。

第Ⅳ欄 代理人又は共通の代表者、通知のあて名

次に記載された者は、国際機関において出願人のために行動する:

代理人

共通の代表者

氏名(名称)及びあて名: (姓・名の順に記載; 法人は公式の完全な名称を記載; あて名は郵便番号及び国名も記載)

電話番号:

弁理士(7751)石田敬 ISHIDA Takashi

03-5470-1900

〒105-8423 日本国東京都港区虎ノ門三丁目5番1号

ファクシミリ番号:

虎ノ門37森ビル 青和特許法律事務所

03-5470-1911

A. AOKI & ASSOCIATES

Toranomon 37 Mori Bldg., 5-1, Toranomon 3-chome, Minato-ku,
TOKYO 105-8423 JAPAN

加入電信番号:

J 26282

代理人又は共通の代表者が選任されておらず、上記枠内に特に通知が送付されるあて名を記載している場合は、レ印を付す

第三欄の続き その他の出願人又は発明者

この統葉を使用しないときは、この用紙を顧客に含めないこと。

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

田 中 良 和 TANAKA Yoshihiko

〒520-0246 日本国滋賀県大津市仰木の里2-7-4

2-7-4, Oginosato, Otsu-shi, SHIGA 520-0246 JAPAN

この欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(こにレ印を付したときは、以下に記入しないこと)

国籍（国名）： 日本国 JAPAN

住所（国名）： 日本国 JAPAN

この欄に記載した者は、次の
指定国についての出願人である：
□すべての指定国 □米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

久 住 高 章 KUSUMI Takaaki

〒564-0073 日本国大阪府吹田市山手町2-12-21-402

2-12-21-402, Yamate-cho, Suita-shi, OSAKA 564-0073 JAPAN

この欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(こにレ印を付したときは、以下に記入しないこと)

国籍（国名）： 日本国 JAPAN

住所（国名）： 日本国 JAPAN

この欄に記載した者は、次の
指定国についての出願人である：
□すべての指定国 □米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

齊 藤 和 季 SAITO Kazuki

〒289-1106 日本国千葉県八街市榎戸663-86

663-86, Ekido, Yachimata-shi, CHIBA 289-1106 JAPAN

この欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(こにレ印を付したときは、以下に記入しないこと)

国籍（国名）： 日本国 JAPAN

住所（国名）： 日本国 JAPAN

この欄に記載した者は、次の
指定国についての出願人である：
□すべての指定国 □米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

山 崎 真 巳 YAMAZAKI Mami

〒260-0045 日本国千葉県千葉市中央区弁天4-12-6

4-12-6, Benten, Chuo-ku, Chiba-shi, CHIBA 260-0045 JAPAN

この欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(こにレ印を付したときは、以下に記入しないこと)

国籍（国名）： 日本国 JAPAN

住所（国名）： 日本国 JAPAN

この欄に記載した者は、次の
指定国についての出願人である：
□すべての指定国 □米国を除くすべての指定国 米国のみ 追記欄に記載した指定国 その他の出願人又は発明者が他の統葉に記載されている。

第三欄の統計 その他の出願人又は発明者

この統計を使用しないときは、この用紙を廃棄に含めないこと。

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

章 志 忠 GONG Zhizhong

〒263-0031 日本国千葉県千葉市稻毛区稻毛東3丁目12番5号
並木コーポ201201, Namikikopo, 12-5, Inagehigashi 3-chome, Inage-ku,
Chiba-shi, CHIBA 263-0031 JAPANこの欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(ここにレ印を付したときは、以下に記入しないこと)

国籍（国名）： 中国 CHINA

住所（国名）： 日本国 JAPAN

この欄に記載した者は、次の

 すべての指定国 米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

指定国についての出願人である：

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

この欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(ここにレ印を付したときは、以下に記入しないこと)

国籍（国名）：

住所（国名）：

この欄に記載した者は、次の

 すべての指定国 米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

指定国についての出願人である：

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

この欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(ここにレ印を付したときは、以下に記入しないこと)

国籍（国名）：

住所（国名）：

この欄に記載した者は、次の

 すべての指定国 米国を除くすべての指定国 米国のみ 追記欄に記載した指定国

指定国についての出願人である：

氏名（名称）及びあて名：（姓・名の順に記載；法人は公式の完全な名称を記載；あて名は郵便番号及び国名も記載）

この欄に記載した者は、
次に該当する： 出願人のみである。 出願人及び発明者である。 発明者のみである。
(ここにレ印を付したときは、以下に記入しないこと)

国籍（国名）：

住所（国名）：

この欄に記載した者は、次の

 すべての指定国 米国を除くすべての指定国 米国のみ 追記欄に記載した指定国 その他の出願人又は発明者が他の統計に記載されている。

第V欄 国の指定

規則4.9(a)の規定に基づき次の指定を行う(該当する□に印を付すこと; 少なくとも1つの□に印を付すこと)。

広域特許

A P アリババ特許: G H ガーナ Ghana, G M ガンビア Gambia, K E ケニア Kenya, L S レソト Lesotho, M W マラウイ Malawi, S D スーダン Sudan, S Z スワジランド Swaziland, U G ウガンダ Uganda, Z W ジンバブエ Zimbabwe, 及びハラレプロトコルと特許協力条約の締約国である他の国

E A ユーラシア特許: A M アルメニア Armenia, A Z アゼルバイジャン Azerbaijan, B Y ベラルーシ Belarus, K C キルギスタン Kyrgyzstan, K Z カザフスタン Kazakhstan, M D モルドヴァ Republic of Moldova, R U ロシア連邦 Russian Federation, T J タジキスタン Tajikistan, T M トルクメニスタン Turkmenistan, 及びユーラシア特許条約と特許協力条約の締約国である他の国

E P ヨーロッパ特許: A T オーストリア Austria, B E ベルギー Belgium, C H and L I スイス及びリヒテンシュタイン Switzerland and Liechtenstein, D E ドイツ Germany, D K デンマーク Denmark, E S スペイン Spain, F I フィンランド Finland, F R フランス France, G B 英国 United Kingdom, G R ギリシャ Greece, I E アイルランド Ireland, I T イタリア Italy, L U ルクセンブルグ Luxembourg, M C モナコ Monaco, N L オランダ Netherlands, P T ポルトガル Portugal, S E スウェーデン Sweden, 及びヨーロッパ特許条約と特許協力条約の締約国である他の国

O A OAPI特許: B F ブルキナ・ファソ Burkina Faso, B J ベニン Benin, C F 中央アフリカ Central African Republic, C G コンゴ Congo, C I 象牙海岸 Côte d'Ivoire, C M カメルーン Cameroon, G A ガボン Gabon, G N ギニア Guinea, M L マリ Mali, M R モーリタニア Mauritania, N E ニジェール Niger, S N セネガル Senegal, T D チャド Chad, T G トーゴ Togo, 及びアフリカ知的所有権機構と特許協力条約の締約国である他の国(他の種類の保護又は取り扱いを求める場合には点線上に記載する)

国内特許(他の種類の保護又は取り扱いを求める場合には点線上に記載する)

A L アルバニア Albania

A M アルメニア Armenia

A T オーストリア Austria

A U オーストラリア Australia

A Z アゼルバイジャン Azerbaijan

B A ボスニア・ヘルツェゴビナ Bosnia and Herzegovina

B B バルバドス Barbados

B G ブルガリア Bulgaria

B R ブラジル Brazil

B Y ベラルーシ Belarus

C A カナダ Canada

C H and L I スイス及びリヒテンシュタイン Switzerland and Liechtenstein

C N 中国 China

C U キューバ Cuba

C Z チェコ Czech Republic

D E ドイツ Germany

D K デンマーク Denmark

E E エストニア Estonia

E S スペイン Spain

F I フィンランド Finland

G B 英国 United Kingdom

G E グルジア Georgia

G H ガーナ Ghana

G M ガンビア Gambia

G W ギニアビサウ Guinea-Bissau

H U ハンガリー Hungary

I D インドネシア Indonesia

I L イスラエル Israel

I S アイスランド Iceland

J P 日本 Japan

K E ケニア Kenya

K G キルギスタン Kyrgyzstan

K R 韓国 Republic of Korea

K Z カザフスタン Kazakhstan

L C セントルシア Saint Lucia

L K スリ・ランカ Sri Lanka

L R リベリア Liberia

L S レソト Lesotho

L T リトアニア Lithuania

L U ルクセンブルグ Luxembourg

L V ラトヴィア Latvia

M D モルドヴァ Republic of Moldova

M G マダガスカル Madagascar

M K マケドニア旧ユーゴスラヴィア The former Yugoslav Republic of Macedonia

M N モンゴル Mongolia

M W マラウイ Malawi

M X メキシコ Mexico

N O ノルウェー Norway

N Z ニュー・ジーランド New Zealand

P L ポーランド Poland

P T ポルトガル Portugal

R O ルーマニア Romania

R U ロシア連邦 Russian Federation

S D スーダン Sudan

S E スウェーデン Sweden

S G シンガポール Singapore

S I スロヴェニア Slovenia

S K スロバキア Slovakia

S L シエラレオネ Sierra Leone

T J タジキスタン Tajikistan

T M トルクメニスタン Turkmenistan

T R トルコ Turkey

T T トリニダード・トバゴ Trinidad and Tobago

U A ウクライナ Ukraine

U G ウガンダ Uganda

U S 米国 United States of America

U Z ウズベキスタン Uzbekistan

V N ヴィエトナム Viet Nam

Y U ユーゴスラビア Yugoslavia

Z W ジンバブエ Zimbabwe

以下の□は、この様式の施行後に特許協力条約の締約国となった国を指定(国内特許のために)するためのものである

.....

.....

.....

.....

.....

.....

出願人は、上記の指定に加えて、規則4.9(b)の規定に基づき、特許協力条約の下で認められる全ての国の指定を行う。

ただし、の国の指定を除く。

出願人は、これらの追加される指定が確認を条件としていること、並びに優先日から15ヶ月が経過する前にその確認がなされない指定は、この期間の経過時に、出願人によって取り下げられたものとみなされることを宣言する。(指定の確認は、指定を特定する通知の提出と指定手数料及び確認手数料の納付からなる。この確認は、優先日から15ヶ月以内に受理官庁へ提出されなければならない。)

追記欄 この追記欄を使用しないときは、この用紙を願書に含めないこと。

以下の場合にこの欄を使用する。

1. 全ての情報を該当する欄の中に記載できないとき。

この場合は、「第何欄…の続き」(欄番号を表示する)と表示し、記載できない欄の指示と同じ方法で情報を記載する。; 特に、

(i) 出願人及び／又は発明者として3人以上いる場合で、「統葉」を使用できないとき。

この場合は、「第Ⅱ欄の続き」と表示し、第Ⅱ欄で求められている同じ情報を、それぞれの者について記載する。

(ii) 第Ⅰ欄又は第Ⅱ欄の枠の中で、「追記欄に記載した指定国」にレ印を付しているとき。

この場合は、「第Ⅱ欄の続き」、「第Ⅲ欄の続き」又は「第Ⅱ欄及び第Ⅲ欄の続き」(このような場合があれば)と記載し、該当する出願人の氏名(名称)を表示し、(それぞれの)氏名(名称)の次にその者が出願人となる指定国(及び／又は、該当する場合は、A R I P O特許・ユーラシア特許・ヨーロッパ特許・O A P I特許)を記載する。

(iii) 第Ⅱ欄又は第Ⅲ欄の枠の中で、発明者又は発明者及び出願人である者が、すべての指定国のために又は米国のために発明者ではないとき。

この場合は、「第Ⅱ欄の続き」、「第Ⅲ欄の続き」又は「第Ⅱ欄及び第Ⅲ欄の続き」(このような場合があれば)と記載し、該当する発明者の氏名を表示し、その者が発明者である指定国(及び／又は、該当する場合は、A R I P O特許・ユーラシア特許・ヨーロッパ特許・O A P I特許)を記載する。

(iv) 第Ⅳ欄に示す代理人以外に代理人がいるとき。

この場合は、「第Ⅳ欄の続き」と表示し、第Ⅳ欄で求められている同じ情報を、それぞれの代理人について記載する。

(v) 第Ⅴ欄において指定国(又は、O A P I特許)が、「追加特許」又は「追加証」を伴うとき、又は、米国が「複続」又は「一部複続」を伴うとき。

この場合は、「第Ⅴ欄の続き」及び該当するそれぞれの指定国(又は、O A P I特許)を表示し、それぞれの指定国(又は、O A P I特許)の後に、原特許又は原出願の番号及び特許付与日又は原出願日を記載する。

(vi) 優先権を主張する先の出願が4件以上あるとき。

この場合は、「第Ⅵの続き」と表示し、第Ⅵ欄で求められている同じ情報を、それぞれの先の出願について記載する。

2. 出願人が、指定官庁について不利にならない開示又は新規性の喪失についての例外に関する国内法の適用を請求するとき。

この場合は、「不利にならない開示又は新規性喪失の例外に関する陳述」と表示し、以下にその内容を記述する。

IV 欄 の 続き

氏 名	弁理士 (8 7 8 7) 福 本 積	FUKUMOTO Tsumoru
氏 名	弁理士 (8 8 2 6) 戸 田 利 雄	TODA Toshio
氏 名	弁理士 (8 2 8 9) 西 山 雅 也	NISHIYAMA Masaya
氏 名	弁理士 (8 1 3 3) 橋 口 外 治	HIGUCHI Sotoji
あて名	IV欄に記載のあて名に同じ	The same address as Box IV

他の優先権の主張（先の出願）が追記欄に記載されている

先の出願日 (日、月、年)	先の出願番号	先の出願		
		国内出願：国名	広域出願：*広域官庁名	国際出願：受理官庁名
(1) 25. 07. 97	特願平9-200571号	日本国 JAPAN		
(2)				
(3)				

上記()の番号の先の出願（ただし、本国際出願が提出されるる受理官庁に対して提出されたものに限る）のうち、次の()の番号のものについては、出願書類の認証原本を作成し国際事務局へ送付することを、受理官庁（日本国特許庁の長官）に対して請求している。

*先の出願が、AR IPOの特許出願である場合には、その先の出願を行った工業所有権の保護のためのパリ条約同盟国の少なくとも1ヶ国を追記欄に表示しなければならない（規則4. 10(b)(ii)）。追記欄を参照。

第VII項 国際調査機関

国際調査機関 (ISA) の選択	先の調査並吉県の利用言語文：当該調査の際（先の調査が、国際調査機関によって既に実施又は請求されている場合）	出願日 (日、月、年)	出願番号	国名（又は広域官庁）
ISA / JP				

第VIII項 用紙一覧：出願の書類

この国際出願の用紙の枚数は次のとおりである。	この国際出願には、以下にチェックした書類が添付されている。
順書 6 枚	1. <input checked="" type="checkbox"/> 手数料計算用紙
明細書（配列表を除く） 46 枚	5. <input type="checkbox"/> 優先権書類（上記第VI欄の()の番号を記載する）
請求の範囲 2 枚	2. <input checked="" type="checkbox"/> 納付する手数料に相当する特許印紙を貼付した書面
要約書 1 枚	3. <input type="checkbox"/> 国際事務局の口座への振込みを証明する裏面
図面 枚	4. <input checked="" type="checkbox"/> 別個の記名押印された委任状
明細書の配列表 37 枚	6. <input type="checkbox"/> 国際出願の翻訳文（翻訳に使用した言語名を記載する）
合計 92 枚	7. <input type="checkbox"/> 寄託した微生物又は他の生物材料に関する書面
	8. <input checked="" type="checkbox"/> スクレオチド又はアミノ酸配列表（フレキシブルディスク）
	9. <input checked="" type="checkbox"/> その他（書類名を詳細に記載する）

要約書とともに提出する図面：

本国籍出願の使用言語名：日本語

第IX項 提出者の自己名押印

各人の氏名（名称）を記載し、その次に押印する。

石田 敬

戸田利雄

樋口外治

福本 積

西山雅也

1. 国際出願として提出された書類の実際の受理の日

受理官庁記入欄

2. 図面

3. 国際出願として提出された書類を補完する書類又は図面であって

受理された

その後期間内に提出されたものの実際の受理の日（打正日）

不足図面がある

4. 特許協力条約第11条(2)に基づく必要な補完の期間内の受理の日

5. 出願人により特定された

ISA / JP

6. 調査手数料未払いにつき、国際調査機関に調査用写しを送付していない

記録原本の受理の日

PCT

世界知的所有権機関
国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C12N 15/54, 9/10, A01H 1/00	A1	(11) 国際公開番号 WO99/05287 (43) 国際公開日 1999年2月4日(04.02.99)
(21) 国際出願番号 PCT/JP98/03199 (22) 国際出願日 1998年7月16日(16.07.98) (30) 優先権データ 特願平9/200571 1997年7月25日(25.07.97) JP (71) 出願人（米国を除くすべての指定国について） サントリー株式会社(SUNTORY LIMITED)[JP/JP] 〒530-8203 大阪府大阪市北区堂島浜2丁目1番40号 Osaka, (JP) (72) 発明者；および (75) 発明者／出願人（米国についてのみ） 水谷正子(MIZUTANI, Masako)[JP/JP] 〒615-8083 京都府京都市西京区桂良町18-21 Kyoto, (JP) 田中良和(TANAKA, Yoshikazu)[JP/JP] 〒520-0246 滋賀県大津市仰木の里2-7-4 Shiga, (JP) 久住高章(KUSUMI, Takaaki)[JP/JP] 〒564-0073 大阪府吹田市山手町2-12-21-402 Osaka, (JP) 斎藤和季(SAITO, Kazuki)[JP/JP] 〒289-1106 千葉県八街市榎戸663-86 Chiba, (JP) 山崎真巳(YAMAZAKI, Mami)[JP/JP] 〒260-0045 千葉県千葉市中央区弁天4-12-6 Chiba, (JP)	鞏 志忠(GONG, Zhizhong)[CN/JP] 〒263-0031 千葉県千葉市稻毛区稻毛東3丁目12番5号 並木コー ^ト 201 Chiba, (JP) (74) 代理人 弁理士 石田 敬, 外(ISSHIDA, Takashi et al.) 〒105-8423 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル 青和特許法律事務所 Tokyo, (JP) (81) 指定国 AU, CA, CN, JP, KR, NZ, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). 添付公開書類 国際調査報告書	

(54)Title: GENES ENCODING PROTEINS HAVING TRANSGLYCOSYLATION ACTIVITY

(54)発明の名称 糖転移活性を有する蛋白質をコードする遺伝子

(57) Abstract

Genes encoding proteins each having an amino acid sequence represented by any of SEQ ID NOS: 7 to 10 and 12 and showing the activity of transferring a glycosyl group to the 5-position of a flavonoid; genes encoding proteins each having an amino acid sequence derived from any of the above amino acid sequences by modification and showing the activity of transferring a glycosyl group to the 5-position of a flavonoid; and a process for producing the above proteins with the use of these genes. These genes are usable in, for example, artificially improving plant colors.

(57)要約

配列番号：7～10又は12のいずれかに記載のアミノ酸配列を有しフラボノイドの5位に糖を転移する活性を有する蛋白質をコードする遺伝子、及び上記アミノ酸配列に対して修飾されたアミノ酸配列を有し且つフラボノイドの5位に糖を転移する活性を有する蛋白質をコードする遺伝子、並びに該遺伝子を用いる前記蛋白質の製造方法を提供する。この遺伝子は、植物の色の人工的改良等のために使用することができる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AL	アルバニア	FI	フィンランド	LK	スリ・ランカ	SI	スロヴェニア
AM	アルメニア	FR	フランス	LR	リベリア	SK	スロヴァキア
AT	オーストリア	GA	ガボン	LS	レソト	SL	シエラ・レオネ
AU	オーストラリア	GB	英國	LT	リトアニア	SN	セネガル
AZ	アゼルバイジャン	GD	グレナダ	LU	ルクセンブルク	SZ	スウェーデン
BA	ボスニア・ヘルツェゴビナ	GE	グルジア	LV	ラトヴィア	TD	チード
BB	バルバドス	GH	ガーナ	MC	モナコ	TG	トーゴー
BE	ベルギー	GM	ガンビア	MD	モルドヴァ	TJ	タジキスタン
BF	ブルガニア・ファソ	GN	ギニア	MG	マダガスカル	TM	トルクメニスタン
BG	ブルガリア	GW	ギニア・ビサオ	MK	マケドニア旧ユーゴスラヴィア	TR	トルコ
BJ	ベナン	GR	ギリシャ	共和国	マケドニア旧ユーゴスラヴィア	TT	トリニダッド・トバゴ
BR	ブラジル	HR	クロアチア	ML	マリ	UA	ウクライナ
BY	ベラルーシ	HU	ハンガリー	MN	モンゴル	UG	ウガンダ
CA	カナダ	ID	インドネシア	MR	モーリタニア	US	米國
CF	中央アフリカ	IE	アイルランド	MW	マラウイ	UZ	ウズベキスタン
CG	コンゴー	IL	イスラエル	MX	メキシコ	VN	ヴィエトナム
CH	スイス	IN	インド	NE	ニジェール	YU	ユーゴースラビア
CI	コートジボアール	IS	アイスランド	NL	オランダ	ZW	ジンバブエ
CM	カメールーン	IT	イタリア	NO	ノールウェー		
CN	中国	JP	日本	NZ	ニュージーランド		
CU	キューバ	KE	ケニア	PL	ポーランド		
CY	キプロス	KG	キルギスタン	PT	ポルトガル		
CZ	チエコ	KP	北朝鮮	RO	ルーマニア		
DE	ドイツ	KR	韓国	RU	ロシア		
DK	デンマーク	KZ	カザフスタン	SD	スードン		
EE	エストニア	LC	セントルシア	SE	スウェーデン		
ES	スペイン	LI	リヒテンシュタイン	SG	シンガポール		

明細書

糖転移活性を有する蛋白質をコードする遺伝子

技術分野

本発明は、フラボノイドの5位に糖を転移する活性を有する蛋白質をコードする遺伝子及びその利用方法に関するものである。

背景技術

花産業は新規かつ種々の品種を開発することに努力している。新規な品種の育成のための有効な方法の一つとして花の色を変えることがあり、古典的な育種方法を用いて、ほとんどの商業的品種について広範囲な色を生成することに成功している。しかしながら、この方法では種ごとで遺伝子プールが制限されていることから、単一の種が広範囲の種類の着色品種を有することは稀である。

花の色は主として2つのタイプの色素、即ちフラボノイド及びカロチノイドに基づき、フラボノイドは黄色から赤ないし青色の範囲に寄与し、カロチノイドはオレンジ又は黄色の色調に寄与する。花色に主たる寄与をするフラボノイド分子はシアニジン、デルフィニジン、ペチュニジン、ペオニジン、マルビジン及びペラルゴニジンの配糖体であるアントシアニンであり、異なるアントシアニンが顕著な花の色の変化をもたらす。さらに花の色は無色のフラボノイドの補助発色、金属錯体形成、グルコシル化、アシリ化、メチル化及び液胞のpHにより影響される (Forkmann, Plant Breeding, 106, 1, 1991)。

フェニルアラニンから始まるアントシアニンの生合成経路はよく理解されており (例えばPlant Cell, 7, 1071-1083, 1995)、生合

成に関わる遺伝子はほとんどクローニングされている。たとえば、シソのアントシアニンであるマロニルシソニン（3-O-(6-O-(p-クマロイル)- β -D-グルコシル)-5-O-(6-O-マロニル- β -D-グルコシル)-シアニジン）の生合成にかかわると考えられる遺伝子のうち、そのホモログが現在までに報告されていないものはフラボノイド-3'-ヒドロキシラーゼ、UDP-グルコース：アントシアニン（フラボノイド）5-O-グルコシルトランスフェラーゼ（以下5GT）、マロニル基転移酵素遺伝子のみである。

このうち、フラボノイド-3'-ヒドロキシラーゼはチトクロームP450遺伝子のファミリーに属することが知られており（Plant Ce 11, 7, 1071-1083, 1995）チトクロームP450遺伝子は互いに構造的な相同意を示すことが推察される。

一般に、フラボノイド分子の3位の水酸基はグルコースによって修飾されているが、グルコシル化をはじめとした糖による修飾は、アントシアニンの安定性と溶解性を増大させると考えられている（The Flavonoids, Chapman & Hall, 1994）。

この反応を触媒するUDP-グルコース：アントシアニジンあるいはフラボノイド3-グルコシルトランスフェラーゼ（以下3GT）をコードする遺伝子はトウモロコシ、大麦、金魚草、リンドウなどの多くの植物から得られており、アミノ酸配列はお互いに有意の相同意を示す。たとえば、单子葉植物のトウモロコシと双子葉植物のリンドウの3GTのアミノ酸配列の相同意は32%、单子葉植物のトウモロコシとオオムギの3GTのアミノ酸配列の相同意は73%、双子葉植物のリンドウとナスの3GTでは46%である。

また、ペチュニアのUDP-ラムノース：アントシアニジン3-グルコシドラムノシルトランスフェラーゼ（3RT）をコードする遺伝子もクローニングされている。

ところが、多くの植物のフラボノイドの5位の水酸基がグルコシル化されているのにも関わらず、この反応を触媒する酵素（5 GT）の遺伝子は未だに得られていない。

また、ペチュニアやストックのアントシアニンの5位に糖を転移する反応を測定した例はある（*Planta* 160, 341-347, 1984, *Planta*, 168, 586-591, 1986）が、これらの報告は花弁の粗抽出液か部分精製したもの用いて、酵素学的性質を調べたに留まっており、この酵素を純粋な形にまで精製した例はない。また、一般に糖転移酵素は生化学的に不安定であり、酵素の精製は困難である。

フラボノイド分子に糖が付加されることによるその色調の変化はほとんどないが、色調に大きな影響を与える芳香族アシル基はアントシアニン内のグルコース分子やラムノース分子に転移するため、糖転移反応を制御することはアントシアニンの生合成を制御し、ひいては花の色を制御する上で重要である。なお糖転移酵素遺伝子の発現を調節して花の色を変えた例として、ペチュニアの3RTによる反応を形質転換ペチュニアにおいて制御し、花の色を修飾した例がある。

形質転換可能な植物としては、例えばバラ、キク、カーネーション、ガーベラ、ペチュニア、トレニア、トルコギキョウ、カラコンコエ、チューリップ、グラジオラスなどが知られている。

発明の開示

そこで、本発明者らは、フラボノイドの5位に糖を転移する活性を有する蛋白質をコードする遺伝子を得ることを課題とし、本発明を完成した。

例えばキクのアントシアニン並びにバラおよびカーネーションのアントシアニンの一部は5位の水酸基がグルコシル化されていない

。本発明で得られた 5 GT 遺伝子をこれらの植物に導入する事により、アントシアニンの構造を変えることができる。

また、国際公開公報； WO 96 / 25500 に記載されているアシル基転移酵素遺伝子を用いてフラボノイドをアシル化することにより、花色を変化させることや、フラボノイドを安定化させることができ可能であるが、アシル基は直接フラボノイドと結合するのではなく、糖を介して結合するため、アシル基転移酵素遺伝子を導入しただけでは、花色の変化が十分でなかったり、安定化しない場合もある。

しかしながら、アシル基転移酵素遺伝子と同時に 5 GT 遺伝子を導入することにより、フラボノイドの 5 位に糖を転移させ、さらにそれをアシル化することができ、アントシアニンの構造が変わり、花の色は青くなることも期待される。

また、アントシアニンの 5 位がグルコシル化されている植物の 5 GT 遺伝子の発現をアンチセンス法やコサプレッション法などで抑制すれば、アントシアニンの生合成を阻害することができ、その結果花の色を変化させることができる。たとえば、リンドウやトルコギキョウで 5 GT 活性を抑制すれば、花の色は赤くなることが期待される。

本発明者は、遺伝子組換え技術を用いてシソ、トレニア、バーベナおよびペチュニアから 5 GT の cDNA を単離し、構造遺伝子の塩基配列を決定した。すなわち、これらの植物でアントシアニンの発現している組織に存在する 5 GT をコードしている DNA 配列を提供するものである。さらに、本酵素はアントシアン系色素の 5 位に糖を転移するため、花色の変化に利用することができ、アントシアニンの安定性を増すことができる。

発明の実施の形態

本発明の酵素をコードするDNAを得るには、例えばディファレンシャルディスプレイ(Differential display)法を用いることができる。例えば、シソ(*Perilla frutescens*)においては、アントシアニンを蓄積する品種(例えば紫薫)とアントシアニンを蓄積しない品種(例えば青薫)があり、アントシアニンを蓄積する品種には存在するがアントシアニンを蓄積しない品種には存在しないDNAをクローニングすれば、本発明の酵素をコードするDNAが得られる可能性がある。

より具体的には、紫薫の葉及び青薫の葉からRNAを抽出し、常法に従ってcDNAを合成し、これを電気泳動により分離し、紫薫由来のcDNAライブラリー中に存在し、青薫由来のcDNAライブラリー中には存在しないcDNAを単離する。次にこうして得られたcDNAをプローブとして用いて、紫薫由来のcDNAライブラリーをスクリーニングし、本発明の酵素をコードするDNAを得る。

上記のようにして本発明の酵素をコードするcDNAが得られれば、このcDNA又はその断片をプローブとして用いて、他の植物からのcDNAライブラリーをスクリーニングすることにより、その植物由来の本発明の酵素をコードするDNAを得ることができる。

本発明においては、上記のスクリーニングの例として、ディファレンシャルディスプレーによりシソ由来の本発明の酵素をコードするDNAをクローニングし(実施例1)、次にこうして得られたDNAをプローブとしてバーベナ(*Verbena hybrida*)からのcDNAをスクリーニングすることによりバーベナ由来の本発明の酵素をコードするDNAを得(実施例2)、さらに同様に

してトレニア由来の本発明の酵素をコードするDNAを得た（実施例3）。

そして、これらのDNAが、本発明の酵素の活性を有する蛋白質を発現することを確認した。

さらに、ペチュニア由来の本発明の酵素をコードするDNAを得た（実施例4）。

本発明のDNAとしては、例えば配列番号：7～10又は12のいずれかに記載するアミノ酸配列をコードするものが挙げられる。しかしながら、複数個のアミノ酸の付加、欠失及び／又は他のアミノ酸による置換により修飾されたアミノ酸配列を有する蛋白質も、もとの蛋白質と同様の酵素活性を維持することが知られている。従って本発明は、配列番号：7～10又は12のいずれかに記載のアミノ酸配列に対して1個又は複数個のアミノ酸の付加、欠失及び／又は他のアミノ酸により置換されている修飾されたアミノ酸配列を有し、なお、フラボノイドの5位に糖を転移する活性を維持している蛋白質をコードする遺伝子も本発明に属する。

本発明はまた、配列番号：1～4又は6のいずれかに記載の塩基配列もしくはそこに記載のアミノ酸配列をコードする塩基配列又はそれらの部分、例えばコンセンサス領域の6個以上のアミノ酸をコードする部分に対して、例えば2ないし $5 \times S S C$ 、例えば $5 \times S S C$ 、50°Cの条件下でハイブリダイズし、且つフラボノイドの5位に糖を転移する活性を有する蛋白質をコードする遺伝子に関する。なお、最適なハイブリダイゼーション温度は塩基配列やその長さにより異り、塩基配列が短くなるに従ってハイブリダイゼーション温度は低くするのが好ましく、例えばアミノ酸6個をコードする塩基配列（18塩基）の場合は、50°C以下の温度が好ましい。

このようなハイブリダイゼーションにより選択される遺伝子とし

ては、天然由来のもの、例えば植物由来のもの、例えば、バーベナやトレニア由来の遺伝子が挙げられるが、他の植物、例えばペチュニア、バラ、カーネーション、ヒアシンス等由来の遺伝子であってもよい。また、ハイブリダイゼーションにより選択される遺伝子は、cDNAであってもよく、ゲノムDNAであってもよい。

本発明はさらに、配列番号：7～10又は12のいずれかに記載のアミノ酸配列に対して30%以上、好ましくは50%以上、例えば60%又は70%以上、場合によっては90%以上の相同性を有するアミノ酸配列を有し、且つフラボノイドの5位に糖を転移する活性を有する蛋白質をコードする遺伝子に関する。すなわち、実施例に示すごとく、本発明の酵素をコードするDNAは他の糖転移酵素遺伝子と比較して20～30%の相同性を示す。従って、本発明は、配列番号：7～10又は12に記載のアミノ酸配列と30%以上の相同性を示し、且つ糖転移活性を有する蛋白質をコードする遺伝子を含む。

また、実施例1～4の結果の比較から明らかな通り、本発明の酵素のアミノ酸配列は種によって異り、種間の相同性は50%以上（実施例3及び4参照のこと）、例えば60～70%（実施例2参照のこと）であり、さらに同一種由来の酵素のアミノ酸配列の相同性は90%以上（実施例1参照のこと）である。従って本発明は、配列番号：7～10又は12に記載のアミノ酸配列に対して、50%以上、例えば60～70%以上、場合によってはさらに90%以上の相同性を有するアミノ酸配列を有し、且つ本発明の糖転移酵素活性を維持している蛋白質をコードする遺伝子も本発明の範囲である。

生来の塩基配列を有するDNAは、実施例に具体的に記載するように、例えばcDNAライブラリーのスクリーニングにより得られ

る。

また、修飾されたアミノ酸配列を有する酵素をコードするDNAは、生来の塩基配列を有するDNAを基礎にして、常用の部位特定変異誘発やPCR法を用いて合成することができる。例えば、修飾を導入したい部位を含むDNA断片を、上記により得られたcDNA又はゲノミックDNAの制限酵素消化により得、これを鋳型にして、所望の変異を導入したプライマーを用いて部位特定変異誘発又はPCR法を実施し、所望の修飾を導入したDNA断片を得、これを、目的とする酵素の他の部分をコードするDNAに連結すればよい。

あるいはまた、短縮されたアミノ酸配列を有する酵素をコードするDNAを得るには、例えば目的とするアミノ酸配列より長いアミノ酸配列、例えば全長アミノ酸配列をコードするDNAを、所望の制限酵素により切断し、得られたDNA断片が目的とするアミノ酸配列の全体をコードしていない場合には、不足部分を合成DNAを連結することにより補えばよい。

また、このクローンを大腸菌及び酵母での遺伝子発現系を用いて発現させ、酵素活性を測定することにより、得られた遺伝子が糖転移酵素をコードしていることを確認し、フラボノイドの5位に糖を転移する糖転移酵素遺伝子の翻訳領域を明らかにすることにより本発明に係る糖転移酵素をコードする遺伝子が得られ、更に、当該遺伝子を発現させることにより遺伝子産物である目的のフラボノイドの5位に糖を転移する糖転移酵素蛋白質を得ることができる。

あるいはまた、配列番号7～10又は12のいずれかに記載のアミノ酸配列に対する抗体を用いても、前記蛋白質を得ることができる。

従って本発明はまた、前記のDNAを含んでなる組換えベクター

、特に発現ベクター、及び該ベクターにより形質転換された宿主に関する。宿主としては、原核生物又は真核生物を用いることができる。原核生物としては、細菌、例えばエシェリヒア (E s c h e r i c h i a) 属に属する細菌、例えば大腸菌 (E s c h e r i c h i a c o l i) 、バシルス (B a c i l l u s) 属微生物、例えばバシルス・ズブチリス (B a c i l l u s s u b t i l i s) 、等常用の宿主を用いることができる。

真核性宿主としては、下等真核生物、例えば真核性微生物、例えば真菌である酵母又は糸状菌が使用できる。酵母としては、例えばサッカロミセス (S a c c h a r o m y c e s) 属微生物、例えばサッカロミセス・セレビシエ (S a c c h a r o m y c e s c e r e v i s i a e) 等が挙げられ、また糸状菌としてはアスペルギルス (A s p e r g i l l u s) 属微生物、例えばアスペルギルス・オリゼ (A s p e r g i l l u s o r y z a e) 、アスペルギルス・ニガー (A s p e r g i l l u s n i g e r) 、ペニシリウム (P e n i c i l l i u m) 属微生物等が挙げられる。さらに、動物細胞又は植物細胞が使用でき、動物細胞としては、マウス、ハムスター、サル、ヒト等の細胞系が使用される。さらに、昆虫細胞、例えばカイコの細胞、又はカイコの成虫それ自体も宿主として使用される。

本発明の発現ベクターは、それらを導入すべき宿主の種類に依存して発現制御領域、例えばプロモーター及びターミネーター、複製起点等を含有する。細菌用発現ベクターのプロモーターとしては、常用のプロモーター、例えば *t r c* プロモーター、*t a c* プロモーター、*l a c* プロモーター等が使用され、酵母用プロモーターとしては、例えばグリセロアルデヒド 3 リン酸デヒドロゲナーゼプロモーター、PHO5 プロモーター等が使用され、糸状菌用プロモータ

ーとしては例えばアミラーゼ、trp C等が使用される。また、動物細胞宿主用プロモーターとしてはウイルス性プロモーター、例えばSV40アーリープロモーター、SV40レートプロモーター等が使用される。

発現ベクターの作製は、制限酵素、リガーゼ等を用いて常法に従って行うことができる。また、発現ベクターによる宿主の形質転換も、常法に従って行うことができる。

前記蛋白質の製造方法においては、前記の発現ベクターにより形質転換された宿主を培養、栽培又は飼育し、培養物等から常法に従って、例えば、濾過、遠心分離、細胞の破碎、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー等により目的とする蛋白質を回収、精製することができる。

なお、本明細書においてはシソ、バーベナ、トレニアおよびペチュニア由来の、フラボノイドの5位に糖を転移する糖転移酵素（本発明において、単に「糖転移酵素」と言う場合がある）について述べているが、当該酵素の精製法をそのまま又は一部を改変して、他の植物の糖転移酵素を精製し、当該酵素に係るアミノ酸配列を決定することにより、当該酵素をコードする遺伝子をクローニングすることができる。更に、本発明に係るシソ由来の糖転移酵素のcDNAをプローブとして用いることにより、シソから別の糖転移酵素のcDNA、他の植物から別の糖転移酵素のcDNAを得ることができた。従って、糖転移酵素の遺伝子の一部または全部を用いると、他の糖転移酵素遺伝子を得ることができる。

また、本明細書において示したように、シソ、バーベナ、トレニアおよびペチュニア由来の糖転移酵素を精製し、常法に従って当該酵素に対する抗体を得ることにより、その抗体と反応する蛋白質を作るcDNA又は染色体DNAをクローニングすることができる。

従って、本発明はシソ、バーベナ、トレニアおよびペチュニア由來の糖転移酵素の遺伝子のみに限定されるものではなく、広く糖転移酵素に関するものである。

さらに本発明は、糖転移酵素の遺伝子を導入することにより、色が調節された植物もしくはその子孫又はそれらの組織に関するものであり、その形態は切花であってもよい。

また、本明細書においてはアントシアニンを含むフラボノイドの糖転移反応において、糖の供与体として UDP-グルコースが挙げられる。

実施例

以下に本発明を実施例に基づいて詳細に説明する。実験の手順は特に記述しない限り Molecular Cloning (Cold Spring Harbor, 1989) 、新生物化学実験のてびき第3巻 (化学同人 1996) 、国際公開公報 ; WO 96/25500 に記載の方法に従った。

実施例 1. 赤ジソで特異的に発現している遺伝子のクローニング

(1) ディファレンシャルディスプレイ

ジソ (*Perilla frutescens*) には、葉にアントシアニンを蓄積する品種 (例えば紫薫 (サカタのタネ)) とアントシアニンを蓄積しない品種 (例えば、青薫 (サカタのタネ)) があり、主要なアントシアニンの構造はマロニルシソニン (3-O-(6-O-(p-クマロイル)- β -D-グルコシル)-5-O-(6-O-マロニル- β -D-グルコシル)-シアニジン) であることが報告されている (Agri. Biol. Chem. 53:197-198, 1989)。

ディファレンシャルディスプレイは、Science 257, 967-971 (1992) に報告された方法で、組織特異的に発現する遺伝子を得る事などに用いられている。

上記 2 種のシソの葉からホットフェノール法 (Plant Molecular Biology Manual, Kluwer Academic Publishers 1994 pp. D5/1-13) により全 RNA を抽出した。得られた全 RNA から mRNA セパレーター キット (Clonetech 社) を用いて poly A + RNA を精製した。0.9 μg の poly A + RNA をアンカーを付加したオリゴ d T プライマー (GenHunter 社の H-T11G、H-T11A、H-T11C) を用いて反応液 33 μl で、逆転写し、一本鎖 c DNA を得た。この c DNA を鋳型にし、同じアンカーを付加したオリゴ d T プライマーと合成プライマー (GenHunter 社の H-AP1 から 8) をプライマーとし、PCR を行った。

PCR の反応液の体積は 20 μl で、2 μl の c DNA 溶液、0.2 μM の H-T11G、H-T11A、H-T11C のいずれかのプライマー、0.2 μM の H-AP1 から 8 のいずれかのプライマー、0.12 μM dNTP、5 あるいは 10 μCi の [32P]dCTP 、10 mM Tris-HCl (pH 9.0) 、50 mM KCl 、0.01% Triton X-100、1.25 mM MgCl₂ 、1 ユニットの Taq ポリメラーゼを含んでいた。反応条件は、以下の通り。72°C で 20 秒間保持した後、94°C 30 秒、40°C 2 分、72°C 30 秒を 1 サイクルとした反応を 40 サイクル繰り返し、72°C で 5 分間保持した。

以上のようにして増幅した DNA 断片を DNA 塩基配列を決定する際のポリアクリルアミドゲル電気泳動で分離した。ゲルを乾燥後、X 線フィルムに露光した。得られたバンド約 2,600 のうち、2 種の品種のシソを比べ、紫薰でのみみられたバンドは 36 本であった。これらを乾燥したゲルから切り出し、100 μl の水に溶出した。溶出した DNA をエタノール沈殿し、20 μl の水に溶解した。この内半分量の DNA を鋳型にし、上記に述べた PCR 反応をそれぞれ行い、33 種のバンドについて DNA 断片を増幅できた。この DNA 断片を用いて、ライブラリーのスクリーニングとノザン解析を行

った。

(2) ノザン解析

以上の3種のDNAプローブを用いて以下の方法でノザン解析を行った。紫薫と青薫由来のポリA+RNAを1.2%アガロースを含むホルマリンゲルで分離後、ナイロン膜に転写した。この膜を5XSSPE、5Xデンタルト液、0.5%SDS、20μg/mlの変性鮭DNA存在下で65℃で一晩、³²Pで標識した上記DNAプローブとハイブリダイズさせた。ハイブリダイズした膜を1XSSPE、0.1%SDS溶液中で、65℃で洗浄し、オートラジオグラフィーを得た。その結果、5種のプローブのみが紫薫で特異的に発現していた。これらのクローンはアントシアニンの生合成に関わる遺伝子であることが予想される。

(3) cDNAライブラリーのスクリーニング

紫薫の葉から得たポリA+RNAを用い、コンプリートラピッドクローニングシステムλgt10(アマーシャム社)を用いてλgt10をベクターとするcDNAライブラリーを作製した。このcDNAライブラリーを先に述べた5種のDNA断片を用いてスクリーニングし、それぞれに対応するcDNAを得た。このうち、3R5と名付けたクローンは、H-T11AとH-AP3のプライマーに由来するDNA断片を用いて、得られたもので、すでに報告されているトウモロコシのフラボノイド-3-O-糖転移酵素にアミノ酸レベルで約26%のホモロジーを示した。

また、同じプローブを用いたライブラリーのスクリーニングで3R4および3R6としたクローンが得られ、これらは3R5と非常に高いホモロジーを示した。3R4および3R6の全塩基配列と推定アミノ酸配列をそれぞれ配列表・配列番号1と配列番号2に示した。また3R4と3R6にコードされるタンパク質の推定アミノ酸

配列は 9.2 % の相同性を示した。

8 R 6 と名付けたクローンは、H-T11G と H-AP8 のプライマーに由来する DNA 断片を用いて、得られたもので、今までに報告されている DNA 塩基配列とは有意のホモロジーを示さなかった。この配列を配列表・配列番号 5 に示した。8 R 6 は、アントシアニンの生合成に関わる遺伝子である可能性が強いが、その構造が今までに報告されている遺伝子と相同性がないことから、アントシアニン生合成に関わる新規遺伝子であることが予想される。

シソのアントシアニン（前述のマロニルシソニン）の構造を考慮すれば、本遺伝子はマロニル基転移酵素であることが予想される。これを証明するには、この遺伝子を酵母や大腸菌で発現させ、アントシアニンとマロニル CoA を基質として反応させればよい。このような実験は、例えば国際公開公報； WO 96 / 25500 に記載してある方法を用いて行うことができる。マロニル基転移酵素遺伝子もアントシアニンの構造を人為的に改変する上で、有用である。

（4）酵母における 3 R 4 の cDNA の発現

p 3 R 4 の BstXI 切断部位を T 4 DNA ポリメラーゼ（宝酒造）を用いて平滑化し、さらにアダプター内の BamHI 切断部位で切り出して得られる約 1.5 kb の DNA 断片と、 p Y E 2 2 m の EcoRI 切断末端を平滑化し、さらに BamHI 消化して得られる約 8 kb の DNA 断片を連結して得られるプラスミドを p Y 3 R 4 とした。

なお、 p Y E 2 2 m を有する大腸菌 J M 1 0 9 株は、 Escherichia coli S B M 3 3 5 と命名し、 F E R M B P - 5 4 3 5 として工業技術院生命工学工業技術研究所に寄託されている。 p Y 3 R 4 において、糖転移酵素をコードしている cDNA は、酵母の構成的なプロモーターのひとつであるグリセロアルデヒド 3 リン酸脱水素酵素のプロモーターの下流に連結されており、同プロモーターによ

り転写が制御されている。

p Y 3 R 4 を用いて、酵母サッカロミセス・セレビシエー (*Saccharomyces cerevisiae*) G1315 (Ashikari et al.、Appl. Microbiol. Biotechnol. 30, 515-520, 1989) を伊藤らの方法 (Ito et al. J. Bacteriol., 153, 163-168, 1983) で形質転換した。形質転換された酵母はトリプトファンの合成能の回復により選択した。得られた形質転換株を10mlの、1%カザミノ酸 (Difco 社) を含むバークホルダー培地 (Burkholder, Amer. J. Bot. 30, 206-210) にて、30°Cで24時間振盪培養した。

併せて、対照実験のために、トリプトファンの合成能を自然に回復した酵母も同様に培養した。これらを集菌後、懸濁バッファー (100 mM リン酸バッファー (pH 8.5)、0.1% (v/v)2-メルカプトエタノール、10 μM APMSF、100 μM UDP-グルコース) に懸濁し、グラスビーズ (Glass Beads 425-600microns Acid-Wash、シグマ社) を加えて激しく振盪することにより磨碎した。これを15,000 rpm、20分遠心した上清を粗酵素液とし、以下の酵素活性測定に用いた。

(5) 酵素活性の測定

粗酵素液 20 μl を含む50 μl 反応液 (100 mM リン酸バッファー (pH 8.5)、670 μM シアニジン-3-グルコシド、1 mM UDP-グルコース) を30°C、10分反応させた後、0.1% TFAを含む50% アセトニトリル溶液50 μl を添加し反応を停止させた。15,000 rpm、5分遠心した上清をサンプレップ LCR4(T)-LC (ミリポア社) を通して不溶物を除いた。これを液体高速クロマトグラフィー (HPLC) で分析した。分析は逆相カラム (Asahipak ODP-50, 4.6mm φ *250mm 昭和電工株式会社製) を用い移動相はA溶液は0.5% TFA/H₂O、B溶液は0.5% TFA 50%CH₃CN、流速は0.6 ml/min. で B20% →

B100 % (20min)の後B100% 5min保持のグラジエントで溶出した。

分析には反応溶液20μl を供した。検出にはA520 nm, AUFS 0.5 (島津SPD-10A)とフォトダイオードアレイ検出器(島津SPD-M6A)による600-250 nmの吸収を用いた。pY3R4を発現させた酵母の粗酵素液を反応させたものでは、基質シアニジン-3-グルコシド(展開時間17分)に加え、14.5分に展開される新たな物質が生成した。これは対照実験の酵母の粗酵素液を反応させたものでは見られないことから、pY3R4に由来するタンパク質の活性によって生じたものと考えられる。シアニジン-3,5-ジグルコシドとのクロマトグラフィーの結果、この反応生成物の展開時間はシアニジン-3,5-ジグルコシドのものと一致し、また両者の吸収スペクトルも一致した。以上のことから、シソの3R4のcDNAは5GTをコードすることがわかった。

実施例2. バーベナ(*Verbena hybrida*) の5GT遺伝子のクローニング

(1) cDNAライブラリーの作製

バーベナ品種花手鞠バイオレット(サントリー)から花弁を集め、液体窒素中で乳鉢で磨碎した。この磨碎物から、グアニジンチオシアネート／塩化セシウムを用いる方法によりRNAを抽出し、オリゴテックス(宝酒造)を用いて製造者が推奨する方法にてポリA+RNAを得た。グアニジンチオシアネート／塩化セシウムを用いる方法は、R. McGookin, Robert J. Slater らの、Methods in Molecular Biology vol 2, (Humana Press Inc. 1984) に詳細に示されている方法に従った。

得られたポリA+RNAを鋳型とし、ストラタジーン社のZAP-cDNA合成キットを用いて2本鎖cDNAを合成し、さらにUni-ZAP XRクローニングキット(ストラタジーン社)を用いて、製造者の推奨

する方法で c DNA ライブライリーを作製した。

(2) 5 GT の c DNA のクローニング

上記のようにして得られた λ ファージライブライリーをシソの p 3 R 4 の c DNA をプローブとして以下のようにしてスクリーニングした。フィルターをハイブリダイゼーションバッファー (5X SSC, 30% ホルムアミド、50 mM リン酸ナトリウムバッファー (pH 7.0) 、1% SDS、2% Blocking reagent (ベーリンガー社) 、0.1% ラウロイルサルコシン、80 μ g/ml サケ精子DNA) 中で 42 °C で 1 時間保持した。DIG 標識したシソの 5 GT 遺伝子、p 3 R 4 の DNA 断片を、ハイブリダイゼーション液中に加え、さらに 16 時間のインキュベーションを行った。

洗浄液 (5 X SSC 50°C、1% SDS) でフィルターを洗浄した後、アルカリホスファターゼで標識された DIG 特異的な抗体による酵素免疫測定法 (ベーリンガー社) によって、5- プロモ 4- クロロ 3 - インドリルリン酸とニトロブルートラゾリウム塩の発色反応でプローブがハイブリダイズしたクローンを検出した。検出方法は使用説明書に従った。

この結果、7 個の陽性クローンが得られた。ストラタジーン社の推奨する方法で、これら c DNA をプラスミド pBluescript SK 上に回収した。アガロースゲル電気泳動で c DNA の長さを調べたところ、最長 2.0 kb の挿入が認められた。

(3) 塩基配列の決定

得られたクローンからプラスミドを抽出し、シークエンサー ABI 373A (パーキンエルマー社) を用い、同社の推奨する蛍光試薬によるダイデオキシ シークエンス法で、c DNA の 3' および 5' 末端付近側の塩基配列を決定した。その結果、これら 7 クローンのうち 5 個のクローンは、互いに同じ塩基配列を持っており、c DNA

の長さが異なるものと考えられた。このうち p S H G T 8 の全塩基配列を決定した。塩基配列の決定は、Kilo-Sequence 用 deletion キット（宝酒造）を用いて、一連の欠失クローンを得るか、もしくは p S H G T 8 の内部配列に特異的なオリゴプライマーを用いて、上述のように行なった。

(4) 塩基配列とアミノ酸配列の比較

p S H G T 8 に挿入された c D N A は 2 0 6 · 2 b p でありその中に 1 3 8 6 b p (終止コドンを含む) からなるオープンリーディングフレーム (O R F) が見い出された。この配列を配列番号 3 に示す。この O R F のアミノ酸配列は、シソの p 3 R 4 にコードされる 5 G T のアミノ酸配列と 6 8 %、p 3 R 6 にコードされるものとは 6 4 % の相同性を示した。また、単子葉植物及び双子葉植物の 3 G T とは 2 2 ~ 2 5 %、ペチュニアの 3 R T とは 2 1 % の相同性を示した。

(5) 酵母における発現と酵素活性の測定

p S H G T 8 を BamH I / Xba I で消化して得られる約 2.0 kb の D N A 断片と p Y E 2 2 m を BamH I / Sal I で消化して得られる約 8 kb の D N A 断片を連結して得られるプラスミドを p Y H G T 8 とした。実施例 1 同様にして、酵母菌体内で p Y H G T 8 を発現し、p S H G T 8 によってコードされるタンパク質の酵素活性について測定した。その結果、p Y H G T 8 を導入した酵母の粗酵素液を反応させたものでは、シアニジン-3,5-ジグルコシドと展開時間、スペクトル共に一致する生成物ができた。このことから、バーベナの p S H G T 8 の c D N A は 5 G T をコードすることがわかった。

実施例 3. トレニアの 5 G T 遺伝子のクローニング

(1) c D N A ライブラリーの作製

トレニア品種サマーウェーブブルー（サントリー（株））から花

糸を集め、液体窒素中で乳鉢で磨碎した。この磨碎物から、グアニジンチオシアネート／塩化セシウムを用いる方法によりRNAを抽出し、オリゴテックス（宝酒造（株））を用いて製造者が推奨する方法にてポリA+RNAを得た。グアニジンチオシアネート／塩化セシウムを用いる方法は、R. McGookin, Robert J. Slater らの、Methods in Molecular Biology vol 2, (Humana Press Inc. 1984) に詳細に示されている方法に従った。

得られたポリA+RNAを鋳型とし、ストラタジーン社のZAP-cDNA合成キットを用いて2本鎖cDNAを合成し、さらにUni-ZAP XRクローニングキット（ストラタジーン社）を用いて、製造者の推奨する方法でcDNAライブラリーを作製した。

（2）5GTのcDNAのクローニング

上記のようにして得られた入ファージライブラリーをシソのp3R4のcDNAをプローブとして実施例2と同様にしてスクリーニングした。この結果8個の陽性クローンが得られた。cDNAをプラスミドpBluescript SK上に回収したのち、アガロースゲル電気泳動でcDNAの長さを調べたところ、最長1.6kbの挿入が認められた。

（3）塩基配列の決定

得られたクローンからプラスミドを抽出し、実施例2と同様にして両末端付近の塩基配列を決定した。その結果、これらのクローンのうち6個は互いに同じ塩基配列を持っており、cDNAの長さが異なるものと考えられた。この6クローンのうちpSTGT5の全塩基配列を決定した。

（4）塩基配列とアミノ酸配列の比較

pSTGT5に挿入されたcDNAは1671bpでありその中に1437bp（終止コドンを含む）からなるオープンリーディン

グフレーム（O R F）が見い出された。この配列を配列番号4に示す。このO R Fのアミノ酸配列は、シソのp 3 R 4にコードされる5 G Tのアミノ酸配列と58%、p 3 R 6にコードされるものとは57%、バーベナのp S H G T 8にコードされるものとは57%の相同性を示した。また、单子葉植物及び双子葉植物の3 G Tとは19~23%、ペチュニアの3 R Tとは20%の相同性を示した。

(5) 酵母における5 G T遺伝子の発現

p S T G T 5をSmaI/KpnIで消化して得られる約1.6 kbのD N A断片と、p Y E 2 2 mのEcoRI切斷を平滑化し、さらにKpnI消化して得られる約8 kbのD N A断片を連結して得られるプラスミドをp Y T G T 5とした。実施例1と同様にして、酵母菌体内でp Y T G T 5を発現し、p S T G T 5にコードされるタンパク質の酵素活性について測定した。その結果、p Y T G T 5を導入した酵母の粗酵素液を反応させたものでは、シアニジン-3,5-ジグルコシドと展開時間、スペクトル共に一致する生成物が得られた。このことから、トレニアのp S T G T 5のc D N Aは5 G Tをコードすることがわかった。

実施例4. ペチュニアの5 G T遺伝子のクローニング

(1) c D N Aライブラリーの作製

ペチュニア品種Old Glory Blueの花弁より抽出したR N Aとともに、T. Holtonらの報告(Plant Journal, 1993 4: 1003-1010)に詳細に記されているようにして、c D N Aライブラリーを作製した。

(2) 5 G Tのc D N Aのクローニング

前述のようにして得られたシソ、トレニア、バーベナの5 G T c D N Aをプローブとして実施例2と同様にしてスクリーニングした。この結果、得られた陽性クローンのうち4個をプラスミドpBlues

cript SK- 上に回収した。アガロース電気泳動で c DNA の長さを調べたところ、最長 2.0 kb の c DNA が認められた。

(3) 塩基配列の決定

て 5' 末端付近の塩基配列を決定した。その結果これらのクローンのうち 2 つ、 p S P G T 1 は、これまで得られているシソ、トレニア、バーベナの 5 GT と高い相同意を示すアミノ酸配列をコードすることが明らかとなった。そこで p S P G T 1 の全塩基配列を決定した。

(4) 塩基配列とアミノ酸配列の比較

p S P G T 1 に挿入された c DNA は 2105 bp であり、その中に 1407 bp (終始コドンを含む) からなる ORF が見出された。この配列を配列番号 6 に示す。この ORF のアミノ酸配列はシソの p 3 R 4 にコードされる 5 GT のアミノ酸配列と 57%、 p 3 R 6 にコードされるアミノ酸配列と 54%、バーベナの p S H G T 8 にコードされるものとは 55%、トレニアの p T G T 5 にコードされるものとは 51% の相同意を示した。また单子葉植物、双子葉植物の 3 GT とは 20~29%、ペチュニアの 3 RT とは 20% の相同意を示した。このことから、ペチュニアから得られた p S P G T 1 の c DNA は 5 GT をコードすると考えられる。

産業上の利用可能性

以上のようにシソ、バーベナ、トレニアおよびペチュニア由来のフラボノイドの 5 位に糖を転移する酵素をコードする c DNA のクローニングと塩基配列の決定を行った。また、酵母での活性発現を行うことにより、分離した c DNA が 5 GT をコードすることを明らかにした。この c DNA を適当な植物発現ベクターに接続し、植物に導入し、5 GT の活性を付与したり、増加させたり、減少させ

たりすることにより植物の花色調節に利用することが可能となった。また、本酵素活性を利用することにより、植物の中であるいは試験管内でアントシアンの構造を改変し、より安定なアントシアンを合成することができる。

配 列

配列 : 1

配列の長さ : 1 5 0 7

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

起源

生物名 : シソ (*Perilla frutescens*)

組織の種類 : 葉

直接の起源

ライブラリー名 : cDNA library

クローン名 : p 3 R 4

配列

GAAAATTTCC	ACAAAAA	ATG	GTC	CGC	CGC	CGC	GTG	CTG	CTA	GCA	ACG	TTT	49			
		Met	Val	Arg	Arg	Arg	Val	Leu	Leu	Ala	Thr	Phe				
		1					5				10					
CCT	CGC	CAA	GGC	CAC	ATA	AAT	CCC	GCC	CTC	CAA	TTC	GCC	AAG	AGA	CTC	97
Pro	Ala	Gln	Gly	His	Ile	Asn	Pro	Ala	Leu	Gln	Phe	Ala	Lys	Arg	Leu	
		15					20				25					
CTA	AAA	GCC	GGC	ACT	GAC	GTC	ACA	TTT	TTC	ACG	ACC	GTT	TAT	GCA	TGG	145
Leu	Lys	Ala	Gly	Thr	Asp	Val	Thr	Phe	Phe	Thr	Ser	Val	Tyr	Ala	Trp	
		30					35				40					
CGC	CGC	ATG	GCC	AAC	ACA	GCC	TCC	GCC	GCT	GCC	GGA	AAC	CCA	CCG	GGC	193
Arg	Arg	Met	Ala	Asn	Thr	Ala	Ser	Ala	Ala	Gly	Asn	Pro	Pro	Gly		
		45					50				55					

CTC GAC TTC GTG GCG TTC TCC GAC GGC TAC GAC GAC GGG CTG AAG CCC		241
Leu Asp Phe Val Ala Phe Ser Asp Gly Tyr Asp Asp Gly Leu Lys Pro		
60	65	70
TGC GGC GAC GGG AAG CGC TAC ATG TCC GAG ATG AAA GCC CGC GGC TCC		289
Cys Gly Asp Gly Lys Arg Tyr Met Ser Glu Met Lys Ala Arg Gly Ser		
80	85	90
GAG GCC TTA AGA AAC CTC CTT CTC AAC AAC CAC GAC GTC ACG TTC GTC		337
Glu Ala Leu Arg Asn Leu Leu Asn Asn His Asp Val Thr Phe Val		
95	100	105
GTC TAC TCC CAC CTC TTT GCA TGG GCG GCG GAG GTG GCG CGT GAG TCC		385
Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala Arg Glu Ser		
110	115	120
CAG GTC CCG AGC GCC CTT CTC TGG GTC GAG CCC GCC ACC GTG-CTG-TGC		433
Gln Val Pro Ser Ala Leu Leu Trp Val Glu Pro Ala Thr Val Leu Cys		
125	130	135
ATA TAT TAC TTC TAC GAC AAC GGC TAC GCA GAC GAG ATC GAC GCC GGT		481
Ile Tyr Tyr Phe Tyr Phe Asn Gly Tyr Ala Asp Glu Ile Asp Ala Gly		
140	145	150
TCC GAC GAA ATT CAG CTC CCT CGG CTT CCA CCC CTG GAG CAG CGC AGT		529
Ser Asp Glu Ile Gln Leu Pro Arg Leu Pro Pro Leu Glu Gln Arg Ser		
160	165	170
CTT CCG ACC TTT CTG CTG CCG GAG ACA CCG GAG AGA TTC CGG TTG ATG		577
Leu Pro Thr Phe Leu Leu Pro Glu Thr Pro Glu Arg Phe Arg Leu Met		
175	180	185
ATG AAG GAG AAG CTG GAA ACT TTA GAC GGT GAA GAG AAG GCG AAA GTG		625
Met Lys Glu Lys Leu Glu Thr Leu Asp Gly Glu Glu Lys Ala Lys Val		
190	195	200

TTG GTG AAC ACG TTT GAT GCG TTG GAG CCC GAT GCA CTC ACG GCT ATT		673	
Leu Val Asn Thr Phe Asp Ala Leu Glu Pro Asp Ala Leu Thr Ala Ile			
205	210	215	
GAT AGG TAT GAG TTG ATC GGG ATC GGG CCG TTG ATT CCC TCC GCC TTC		721	
Asp Arg Tyr Glu Leu Ile Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe			
220	225	230	235
TTG GAC GGC GGA GAT CCC TCC GAA ACG TCT TAC GGC GGC GAT CTT TTC		769	
Leu Asp Gly Gly Asp Pro Ser Glu Thr Ser Tyr Gly Gly Asp Leu Phe			
240	245	250	
GAA AAA TCG GAG GAG AAT AAC TGC GTG GAG TGG TTG GAC ACG AAG CCG		817	
Glu Lys Ser Glu Glu Asn Asn Cys Val Glu Trp Leu Asp Thr Lys Pro			
255	260	265	
AAA TCT TCG GTG GTG TAT GTG TCG TTT GGG AGC GTT TTG AGG TTT CCA		865	
Lys Ser Ser Val Val Tyr Val Ser Phe Gly Ser Val Leu Arg Phe Pro			
270	275	280	
AAG GCA CAA ATG GAA GAG ATT GGG AAA GGG CTA TTA GCC TGC GGA AGG		913	
Lys Ala Gln Met Glu Glu Ile Gly Lys Gly Leu Leu Ala Cys Gly Arg			
285	290	295	
CCG TTT TTA TGG ATG ATA CGA GAA CAG AAG AAT GAC GAC GGC GAA GAA		961	
Pro Phe Leu Trp Met Ile Arg Glu Gln Lys Asn Asp Asp Gly Glu Glu			
300	305	310	315
GAA GAA GAA GAG TTG AGT TGC ATT GGG GAA TTG AAA AAA ATG GGG AAA		1009	
Glu Glu Glu Leu Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys			
320	325	330	
ATA GTT TCG TGG TGC TCG CAG TTG GAG GTT CTG GCG CAC CCT GCG TTG		1057	
Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu			
335	340	345	

GGA TGT TTC GTG ACG CAT TGT GGG TGG AAC TCG GCT GTG GAG AGC TTG 1105
 Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu
 350 355 360
 AGT TGC GGG GTT CCG GTG GTG GCG GTG CCG CAG TGG TTT GAT CAG ACG 1153
 Ser Cys Gly Val Pro Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr
 365 370 375
 ACG AAT GCG AAG CTG ATT GAG GAT GCG TGG GGG ACA GGG GTG AGA GTG 1201
 Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val
 380 385 390 395
 AGA ATG AAT GAA GGG GGT GGG GTT GAT GGA TCT GAG ATA GAG AGG TGT 1249
 Arg Met Asn Glu Gly Gly Val Asp Gly Ser Glu Ile Glu Arg Cys
 400 405 410
 GTG GAG ATG GTG ATG GAT GGG GGT GAG AAG AGC AAA CTA GTG AGA GAA 1297
 Val Glu Met Val Met Asp Gly Gly Glu Lys Ser Lys Leu Val Arg Glu.
 415 420 425
 AAT GCC ATA AAA TGG AAG ACT TTG GCC AGA GAA GCC ATG GGA GAG GAT 1345
 Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Glu Ala Met Gly Glu Asp
 430 435 440
 GGA TCT TCA CTC AAG AAT CTC AAC GCC TTT CTT CAT CAA GTT GCA CGT 1393
 Gly Ser Ser Leu Lys Asn Leu Asn Ala Phe Leu His Gln Val Ala Arg
 445 450 455
 GCT TAATACACAA AATGGCTTTC CACTTTAAC TCACTCAAAC ACCGGTTCAA 1446
 Ala
 460
 ATAAATATCC CCTTCCACTT CTTCTATT CACTATCACA TTTATAATT TAGTAACAAA 1506
 A
 配列：2

配列の長さ : 1 4 7 0

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

起源

生物名 : シソ (*Perilla frutescens*)

組織の種類 : 葉

直接の起源

ライブラリーネーム : cDNA library

クローン名 : p 3 R 6

配列

ACCAAAACCAA AACAAAATT CCACAAAA ATG GTC CGC CGC CGC GTG CTG CTA	48		
Met Val Arg Arg Arg Val Leu Leu			
1	5		
GCA ACG TTT CCG GCG CAA GGC CAC ATA AAT CCC GCC CTC CAA TTC GCC	96		
Ala Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln Phe Ala			
10	15	20	
AAG AGA CTC CTA AAA GCC GGC ACT GAC GTC ACG TTT TTC ACG AGC GTT	144		
Lys Arg Leu Leu Lys Ala Gly Thr Asp Val Thr Phe Phe Thr Ser Val			
25	30	35	40
TAT GCA TGG CGC CGC ATG GCC AAC ACA GCC TCC GCC GCT GCC GGA AAC	192		
Tyr Ala Trp Arg Arg Met Ala Asn Thr Ala Ser Ala Ala Gly Asn			
45	50	55	
CCA CCG GGC CTC GAC TTC GTG GCG TTC TCC GAC GGC TAC GAC GAC GGG	240		
Pro Pro Gly Leu Asp Phe Val Ala Phe Ser Asp Gly Tyr Asp Asp Gly			
60	65	70	

CTG AAG CCC GGC GGC GAC GGG AAG CCC TAC ATG TCC GAG ATG AAA GCC	288		
Leu Lys Pro Gly Gly Asp Gly Lys Arg Tyr Met Ser Glu Met Lys Ala			
75	80	85	
CGC GGC TCC GAG GCC TTA AGA AAC CTC CTT CTC AAC AAC GAC GAC GTC	336		
Arg Gly Ser Glu Ala Leu Arg Asn Leu Leu Asn Asn Asp Asp Val			
90	95	100	
ACT TTC GTC GTC TAC TCC CAC CTC TTT GCA TGG GCG GCG GAG GTG GCG	384		
Thr Phe Val Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala			
105	110	115	120
CGT TTG TCC CAC GTC CCG ACC GCC CTT CTC TGG GTC GAG CCC GCC ACC	432		
Arg Leu Ser His Val Pro Thr Ala Leu Leu Trp Val Glu Pro Ala Thr			
125	130	135	
GTG CTG TGC ATA TAC CAC TTC TAC TTC AAC GGC TAC GCA GAC GAG ATC	480		
Val Leu Cys Ile Tyr His Phe Tyr Phe Asn Gly Tyr Ala Asp Glu Ile			
140	145	150	
GAC GCC GGT TCC AAT GAA ATT CAG CTC CCT CGG CTT CCA TCC CTG GAG	528		
Asp Ala Gly Ser Asn Glu Ile Gln Leu Pro Arg Leu Pro Ser Leu Glu			
155	160	165	
CAG CGC AGT CTT CCG ACG TTT CTG CTG CCT GCG ACG CCG GAG AGA TTC	576		
Gln Arg Ser Leu Pro Thr Phe Leu Leu Pro Ala Thr Pro Glu Arg Phe			
170	175	180	
CGG TTG ATG ATG AAG GAG AAG CTG GAA ACT TTA GAC GGT GAA GAG AAG	624		
Arg Leu Met Met Lys Glu Lys Leu Glu Thr Leu Asp Gly Glu Glu Lys			
185	190	195	200
GCG AAA GTA TTG GTG AAC ACG TTT GAT GCG TTG GAG CCC GAT GCA CTC	672		
Ala Lys Val Leu Val Asn Thr Phe Asp Ala Leu Glu Pro Asp Ala Leu			
205	210	215	

ACG GCT ATT GAT AGG TAT GAG TTG ATC GGG ATC GGG CCG TTG ATT CCC			720
Thr Ala Ile Asp Arg Tyr Glu Leu Ile Gly Ile Gly Pro Leu Ile Pro			
220	225	230	
TCC GCC TTC TTG GAC GGC GAA GAT CCC TCC GAA ACG TCT TAC GCC GGC			768
Ser Ala Phe Leu Asp Gly Glu Asp Pro Ser Glu Thr Ser Tyr Gly Gly			
235	240	245	
GAT CTT TTC GAA AAA TCG GAG GAG AAT AAC TGC GTG GAG TGG TTG AAC			816
Asp Leu Phe Glu Lys Ser Glu Glu Asn Asn Cys Val Glu Trp Leu Asn			
250	255	260	
TCG AAG CCG AAA TCT TCG GTG GTG TAT GTG TCG TTT GGG AGC GTT TTG			864
Ser Lys Pro Lys Ser Ser Val Val Tyr Val Ser Phe Gly Ser Val Leu			
265	270	275	280
AGG TTT CCA AAG GCA CAA ATG GAA GAG ATT GGG AAA GGG CTA TTA GCC			912
Arg Phe Pro Lys Ala Gln Met Glu Glu Ile Gly Lys Gly Leu Leu Ala			
285	290	295	
TGC GGA AGG CCC TTT TTA TGG ATG ATA CGA GAA CAG AAG AAT GAC GAC			960
Cys Gly Arg Pro Phe Leu Trp Met Ile Arg Glu Gln Lys Asn Asp Asp			
300	305	310	
GGC GAA GAA GAA GAA GAA GAA GAG TTG ACT TGC ATT GGG GAA TTG			1008
Gly Glu Glu Glu Glu Glu Glu Leu Ser Cys Ile Gly Glu Leu			
315	320	325	
AAA AAA ATG CGG AAA ATA GTG TCG TGG TGC TCG CAG TTG GAG GTT CTG			1056
Lys Lys Met Gly Lys Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu			
330	335	340	
GCG CAC CCT GCG TTG GGA TGT TTC GTG ACG CAT TGT GGG TGG AAC TCG			1104
Ala His Pro Ala Leu Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser			
345	350	355	360

GCT GTG GAG AGC TTG AGT TGC GGG ATT CCG GTG GTG GCG GTG CCG CAG 1152
 Ala Val Glu Ser Leu Ser Cys Gly Ile Pro Val Val Ala Val Pro Gln
 365 370 375
 TGG TTT GAT CAG ACG ACG AAT GCG AAG CTG ATT GAG GAT GCG TGG GGG 1200
 Trp Phe Asp Gln Thr Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly
 380 385 390
 ACA GGG GTG AGA GTG AGA ATG AAT GAA GGG GGT GGG GTT GAT GGA TGT 1248
 Thr Gly Val Arg Val Arg Met Asn Glu Gly Gly Val Asp Gly Cys
 395 400 405
 GAG ATA GAA AGG TGT GTG GAG ATG GTG ATG GAT GGG GGT GAC AAG ACC 1296
 Glu Ile Glu Arg Cys Val Glu Met Val Met Asp Gly Gly Asp Lys Thr
 410 415 420
 AAA CTA GTG AGA GAA AAT GCC ATC AAA TGG AAG ACT TTG GCC AGA CAA 1344
 Lys Leu Val Arg Glu Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Gln
 425 430 435 440
 GCC ATG GGA TAGGATGGAT CTTCACTCAA CAATCTAAC GCCTTTCTTC 1393
 Ala Met Gly
 443
 GTCAAGTTGC ACACTTTAA TCTGCTAAA CAGCGGTTCA AATAAATATC CCCTTCCACT 1453
 TAAAAAAAAA AAAAAAAA 1470

配列 : 3

配列の長さ : 2 0 6 2

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

起源

生物名 : バーベナ (*Verbena hybrida*)

組織の種類：花弁

直接の起源

ライブラリー名：cDNA library

クローン名：p S H G T 8

配列

ATTTTACCAA	AAAAATAAAAAA	AAAAAA	ATG	AGC	AGA	GCT	CAC	GTC	CTC	TTG	GCC	52				
Met Ser Arg Ala His Val Leu Leu Ala																
			1						5							
ACA	TTC	CCA	GCA	CAG	GGA	CAC	ATA	AAT	CCC	GCC	CTT	CAA	TTC	GCC	AAG	100
Thr	Phe	Pro	Ala	Gln	Gly	His	Ile	Asn	Pro	Ala	Leu	Gln	Phe	Ala	Lys	
10															25	
CGT	CTC	GCA	AAT	GCC	GAC	ATT	CAA	GTC	ACA	TTC	TTC	ACC	AGC	GTC	TAC	148
Arg	Leu	Ala	Asn	Ala	Asp	Ile	Gln	Val	Thr	Phe	Phe	Thr	Ser	Val	Tyr	
															30	
GCA	TGG	CGC	CGC	ATG	TCC	AGA	ACC	GCC	GCT	GGC	TCA	AAC	GGG	CTC	ATC	196
Ala	Trp	Arg	Arg	Met	Ser	Arg	Thr	Ala	Ala	Gly	Ser	Asn	Gly	Leu	Ile	
															45	
AAT	TTT	GTG	TCG	TTT	TCC	GAC	GGG	TAT	GAC	GAC	GGG	TTA	CAG	CCC	GGA	244
Asn	Phe	Val	Ser	Phe	Ser	Asp	Gly	Tyr	Asp	Asp	Gly	Leu	Gln	Pro	Gly	
															60	
GAC	GAT	GGG	AAG	AAC	TAC	ATG	TCG	GAG	ATG	AAA	AGC	AGA	GGT	ATA	AAA	292
Asp	Asp	Gly	Lys	Asn	Tyr	Met	Ser	Glu	Met	Lys	Ser	Arg	Gly	Ile	Lys	
															75	
GCC	TTG	AGC	GAT	ACT	CTT	GCA	GCC	AAT	AAT	GTC	GAT	CAA	AAA	AGC	AGC	340
Ala	Leu	Ser	Asp	Thr	Leu	Ala	Ala	Asn	Asn	Val	Asp	Gln	Lys	Ser	Ser	
															90	
															105	

AAA ATC ACG TTC GTG GTG TAC TCC CAC CTC TTT GCA TGG GCG GCC AAG		388	
Lys Ile Thr Phe Val Val Tyr Ser His Leu Phe Ala Trp Ala Ala Lys			
110	115	120	
GTG GCG CGT GAG TTC CAT CTC CGG AGC GCG CTA CTC TGG ATT GAG CCA		436	
Val Ala Arg Glu Phe His Leu Arg Ser Ala Leu Leu Trp Ile Glu Pro			
125	130	135	
GCT ACG GTG TTG GAT ATA TTT TAC TTT TAT TTC AAC GGC TAT AGC GAC		484	
Ala Thr Val Leu Asp Ile Phe Tyr Phe Tyr Phe Asn Gly Tyr Ser Asp			
140	145	150	
GAA ATC GAT GCG GGT TCG GAT GCT ATT CAC TTG CCC GGA GGA CTC CCA		532	
Glu Ile Asp Ala Gly Ser Asp Ala Ile His Leu Pro Gly Gly Leu Pro			
155	160	165	
GTG CTG GCC CAG CGT GAT TTA CCG TCT TTC CTT CCT TCC ACG CAT		580	
Val Leu Ala Gln Arg Asp Leu Pro Ser Phe Leu Leu Pro Ser Thr His			
170	175	180	185
GAG AGA TTC CGT TCA CTG ATG AAG GAG AAA TTG GAA ACT TTA GAA GGT		628	
Glu Arg Phe Arg Ser Leu Met Lys Glu Lys Leu Glu Thr Leu Glu Gly			
190	195	200	
GAA GAA AAA CCT AAG GTC TTG GTG AAC AGC TTT GAT GCG TTG GAG CCT		676	
Glu Glu Lys Pro Lys Val Leu Val Asn Ser Phe Asp Ala Leu Glu Pro			
205	210	215	
GAT GCG CTC AAG GCC ATT GAT AAG TAC GAG ATG ATT GCA ATC GGG CCG		724	
Asp Ala Leu Lys Ala Ile Asp Lys Tyr Glu Met Ile Ala Ile Gly Pro			
220	225	230	
TTG ATT CCT TCC GCA TTC TTG GAC GGT AAA GAT CCT TCG GAC AGG TCT		772	
Leu Ile Pro Ser Ala Phe Leu Asp Gly Lys Asp Pro Ser Asp Arg Ser			
235	240	245	

TTC GGC GGA GAT TTG TTC GAG AAA GGG TCG AAT GAC GAC GAT TGC CTC			820
Phe Gly Gly Asp Leu Phe Glu Lys Gly Ser Asn Asp Asp Asp Cys Leu			
250	255	260	265
GAA TGG TTG AGC ACG AAT CCT CGA TCT TCG GTG GTT TAC GTT TCG TTC			868
Glu Trp Leu Ser Thr Asn Pro Arg Ser Ser Val Val Tyr Val Ser Phe			
270	275		280
GGA AGC TTC GTT AAT ACG ACG AAG TCG CAA ATG GAA GAG ATA GCA AGA			916
Gly Ser Phe Val Asn Thr Thr Lys Ser Gln Met Glu Glu Ile Ala Arg			
285	290		295
GGG CTG TTA GAT TGT GGG AGG CCG TTT TTG TGG GTG GTA AGA GTA AAC			964
Gly Leu Leu Asp Cys Gly Arg Pro Phe Leu Trp Val Val Arg Val Asn			
300	305		310
GAA GGA GAA GAG GTA TTG ATA AGT TGC ATG GAG GAG TTG AAA CGA GTG			1012
Glu Gly Glu Glu Val Leu Ile Ser Cys Met Glu Glu Leu Lys Arg Val			
315	320		325
GGG AAA ATT GTA TCT TGG TGT TCT CAA TTG GAA GTC CTG ACG CAT CCC			1060
Gly Lys Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Thr His Pro			
330	335		340
345			
TCG TTG GGA TGT TTC GTG ACA CAC TGC GGG TGG AAT TCG ACT CTA GAG			1108
Ser Leu Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Thr Leu Glu			
350	355		360
360			
AGT ATA TCT TTC GGG GTT CCG ATG GTG GCT TTT CCG CAG TGG TTC GAT			1156
Ser Ile Ser Phe Gly Val Pro Met Val Ala Phe Pro Gln Trp Phe Asp			
365	370		375
375			
CAA GGG ACG AAT GCG AAG CTG ATG GAG GAT GTG TGG AGG ACG GGT GTG			1204
Gln Gly Thr Asn Ala Lys Leu Met Glu Asp Val Trp Arg Thr Gly Val			
380	385		390

AGA GTG AGA GCT AAT GAG GAG GGT AGC GTC GTT GAT GGT GAT GAA ATT	1252		
Arg Val Arg Ala Asn Glu Glu Gly Ser Val Val Asp Gly Asp Glu Ile			
395	400	405	
AGG AGA TGT ATT GAG GAG GTT ATG GAT GGG GGA GAA AAG AGT AGG AAA	1300		
Arg Arg Cys Ile Glu Glu Val Met Asp Gly Gly Glu Lys Ser Arg Lys			
410	415	420	425
CTT AGA GAG AGT GCT GCC AAG TGG AAG GAT TTG GCA AGA AAA GCT ATG	1348		
Leu Arg Glu Ser Ala Gly Lys Trp Lys Asp Leu Ala Arg Lys Ala Met			
430	435	440	
GAG GAA GAT GGA TCT TCA GTT AAC AAC CTC AAG GTC TTT CTT GAT GAG	1396		
Glu Glu Asp Gly Ser Ser Val Asn Asn Leu Lys Val Phe Leu Asp Glu			
445	450	455	
GTT GTA GGT ATC TAAAGACGTA AATGAGGTCC CCATAGGCAA AATTGCAAAT	1448		
Val Val Gly Ile			
460 461.			
TTCATCTCGT AAGTTGAATA CTTTTGGCT TTAATTTGT TCGAGTTGT TTTTCAAAAT	1508		
TTATCTTGTATTTACATT GAGTGTAAAT TTAGTCTGAT TTTAACTGGA AAAATATAAA	1568		
ATTCATTGTT GAGACTCTTC ATCAAAATCA TCTGATTCC TTTATTGTCT TGGTCAAAAT	1628		
TCTCATATCA ATTGGAAAAAA ATAAATTCA AAATCGTCCA ATTTGAACC AAGAAAGAAG	1688		
TATAATTGA CAAAATAAT AAAAGGATTC AAGTGATCTT GATGAAGTGT CTGAGCGACG	1748		
AGTTCTATAT TTTTCCACCG AATTCTAAC GAGTTTTGA ATTTTTTTA CCCAAAATCG	1808		
GACTAACTTT GTACAAAATG AAAAGTTATA TGATGAAATT TTAAAAAAACA AACTCAGACA	1868		
ATAATAAAGC CCGAAAGTAG TAAAATTACC TGACGAAATT TGCAATTTCG CCTCCTATT	1928		
TAATTTTTT GGTGTGTTA ATAAATCGGT TATTTTACTT TTAATTAAAA TAAAAGTGAG	1988		
ATGCATGATA GCTTGGTGAG TATATATGAG TTGATGGTAA TGTACGATAT TTTCTAAAAA	2048		
AAAAAAAAAA AAAA	2062		

配列：4

配列の長さ : 1 6 7 1

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

起源

生物名 : トレニア

組織の種類 : 花弁

直接の起源

ライブラリーネーム : cDNA library

クローン名 : p S T G T 5

配列

AACACATAAA	AAAAAAATAA	AAGAAGAAAT	AATTAAAAAA	AAAA	ATG	GTT	AAC	53								
					Met	Val	Asn									
								1								
AAA	CGC	CAT	ATT	CTA	CTA	GCA	ACA	TTC	CCA	GCA	CAA	GGC	CAC	ATA	AAC	101
Lys	Arg	His	Ile	Leu	Leu	Ala	Thr	Phe	Pro	Ala	Gln	Gly	His	Ile	Asn	
5																5
																10
																15
CCT	TCT	CTC	GAG	TTC	GCC	AAA	AGG	CTC	CTC	AAC	ACC	GGA	TAC	GTC	GAC	149
Pro	Ser	Leu	Glu	Phe	Ala	Lys	Arg	Leu	Leu	Asn	Thr	Gly	Tyr	Val	Asp	
20																20
																25
CAA	GTC	ACA	TTC	TTC	ACG	AGT	GTA	TAC	GCA	TTG	AGA	CGC	ATG	CGC	TTC	197
Gln	Val	Thr	Phe	Phe	Thr	Ser	Val	Tyr	Ala	Leu	Arg	Arg	Met	Arg	Phe	
40																40
																45
GAA	ACC	GAT	CCG	AGC	AGC	AGA	ATC	GAT	TTC	GTG	GCA	TKT	YCA	GAT	TCT	245
Glu	Thr	Asp	Pro	Ser	Ser	Arg	Ile	Asp	Phe	Val	Ala	X	X	Asp	Ser	
55																55
																60
																60
																65

TAC GAT GAT GGC TTA AAG AAA GGC GAC GAT GGC AAA AAC TAC ATG TCG		293	
Tyr Asp Asp Gly Leu Lys Lys Gly Asp Asp Gly Lys Asn Tyr Met Ser			
70	75	80	
GAG ATG AGA AAG CGC GGA ACG AAG GCC TTA AAG GAC ACT CTT ATT AAG		341	
Glu Met Arg Lys Arg Gly Thr Lys Ala Leu Lys Asp Thr Leu Ile Lys			
85	90	95	
CTC AAC GAT GCT GCG ATG GGA AGT GAA TGT TAC AAT CGC GTG AGC TTT		389	
Leu Asn Asp Ala Ala Met Gly Ser Glu Cys Tyr Asn Arg Val Ser Phe			
100	105	110	115
GTG GTG TAC TCT CAT CTA TTT TCG TGG GCA GCT GAA GTG GCG CGT GAA		437	
Val Val Tyr Ser His Leu Phe Ser Trp Ala Ala Glu Val Ala Arg Glu			
120	125	130	
GTC GAC GTG CCG AGT GCC CTT CTT TGG ATT GAA CCG GCT ACG GTT TTC		485	
Val Asp Val Pro Ser Ala Leu Leu Trp Ile Glu Pro Ala Thr Val Phe			
135	140	145	
GAT GTG TAC TAT TTT TAC TTC AAT GGG TAT GCC GAT GAT ATC GAT GCG		533	
Asp Val Tyr Tyr Phe Tyr Phe Asn Gly Tyr Ala Asp Asp Ile Asp Ala			
150	155	160	
GGC TCA GAT CAA ATC CAA CTG CCC AAT CTT CCG CAG CTC TCC AAG CAA		581	
Gly Ser Asp Gln Ile Gln Leu Pro Asn Leu Pro Gln Leu Ser Lys Gln			
165	170	175	
GAT CTC CCC TCT TTC CTA CTC CCT TCG AGC CCC GCG AGA TTC CGA ACC		629	
Asp Leu Pro Ser Phe Leu Leu Pro Ser Ser Pro Ala Arg Phe Arg Thr			
180	185	190	195
CTA ATG AAA GAA AAG TTC GAC ACG CTC GAC AAA GAA CCG AAA GCG AAG		677	
Leu Met Lys Glu Lys Phe Asp Thr Leu Asp Lys Glu Pro Lys Ala Lys			
200	205	210	

GTC TTG ATA AAC ACG TTC GAC GCA TTA GAA ACC GAA CAA CTC AAA GCC		725	
Val Leu Ile Asn Thr Phe Asp Ala Leu Glu Thr Glu Gln Leu Lys Ala			
215	220	225	
ATC GAC AGG TAT GAA CTA ATA TCC ATC GGC CCA TTA ATC CCA TCA TCG		773	
Ile Asp Arg Tyr Glu Leu Ile Ser Ile Gly Pro Leu Ile Pro Ser Ser			
230	235	240	
ATA TTC TCA GAT GGC AAC GAC CCC TCA TCA AGC AAC AAA TCC TAC GGT		821	
Ile Phe Ser Asp Gly Asn Asp Pro Ser Ser Ser Asn Lys Ser Tyr Gly			
245	250	255	
GGA GAC CTC TTC AGA AAA GCC GAT GAA ACT TAC ATG GAC TGG CTA AAC		869	
Gly Asp Leu Phe Arg Lys Ala Asp Glu Thr Tyr Met Asp Trp Leu Asn			
260	265	270	275
TCA AAA CCC GAA TCA TCG GTC GTT TAC GTT TCG TTC GGG AGC CTC CTG		917	
Ser Lys Pro Glu Ser Ser Val Val Tyr Val Ser Phe Gly Ser Leu Leu			
280	285	290	
AGG CTC CCG AAA CCC CAA ATG GAA GAA ATA GCA ATA GGG CTT TCA GAC		965	
Arg Leu Pro Lys Pro Gln Met Glu Glu Ile Ala Ile Gly Leu Ser Asp			
295	300	305	
ACC AAA TCG CCA GTT CTC TGG GTG ATA AGA AGA AAC GAA GAG GGC GAC		1013	
Thr Lys Ser Pro Val Leu Trp Val Ile Arg Arg Asn Glu Glu Gly Asp			
310	315	320	
GAA CAA GAG CAA GCA GAA GAA GAG AAG CTG CTG AGC TTC TTT GAT		1061	
Glu Gln Glu Gln Ala Glu Glu Glu Lys Leu Leu Ser Phe Phe Asp			
325	330	335	
CGT CAC GGA ACT GAA CGA CTC GGG AAA ATC GTG ACA TGG TGC TCA CAA		1109	
Arg His Gly Thr Glu Arg Leu Gly Lys Ile Val Thr Trp Cys Ser Gln			
340	345	350	355

TTG GAT GTT CTG ACG CAT AAG TCG GTG GGA TGC TTC GTG ACG CAT TGC 1157
 Leu Asp Val Leu Thr His Lys Ser Val Gly Cys Phe Val Thr His Cys
 360 365 370
 GGT TGG AAT TCT GCT ATC GAG AGC CTG GCT TGT GGT GTG CCC GTG GTG 1205
 Gly Trp Asn Ser Ala Ile Glu Ser Leu Ala Cys Gly Val Pro Val Val
 375 380 385
 TGC TTT CCT CAA TGG TTC GAT CAA GGG ACT AAT GCG AAG ATG ATC GAA 1253
 Cys Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys Met Ile Glu
 390 395 400
 GAT GTG TGG AGG AGT GGT GTG AGA GTC AGA GTG AAT GAG GAA GGC GGC 1301
 Asp Val Trp Arg Ser Gly Val Arg Val Arg Val Asn Glu Glu Gly Gly
 405 410 415
 GTT GTT GAT AGG CGT GAG ATT AAG AGG TGC GTC TCG GAG GTT ATA AAG 1349
 Val Val Asp Arg Arg Glu Ile Lys Arg Cys Val Ser Glu Val Ile Lys
 420 425 430 435
 AGT CGA GAG TTG AGA GAA AGC GCA ATG ATG TGG AAG GGT TTG GCT AAA 1397
 Ser Arg Glu Leu Arg Glu Ser Ala Met Met Trp Lys Gly Leu Ala Lys
 440 445 450
 GAA GCT ATG GAT GAA GAA CGT GGA TCA TCA ATG AAC AAT CTG AAG AAT 1445
 Glu Ala Met Asp Glu Glu Arg Gly Ser Ser Met Asn Asn Leu Lys Asn
 455 460 465
 TTT ATT ACT AGG ATT ATT AAT GAA AAT GCC TCA TAAGTTGTAC 1488
 Phe Ile Thr Arg Ile Ile Asn Glu Asn Ala Ser
 470 475 478
 TATATATGTT ATTATTGTTG TTATGGACGT CGAATTAAGT ATTAGTTAAA TGATATGTAT 1548
 TTAGAGGAAG GCCAAAACGG GCTACACCCG GCAGGCCACG GGTTGGAAAA GCCCGCCATG 1608
 ATTTAAAATA TATATTAAATAATAATTTTAA TTCTACTATT AAACTAAAAA AAAAAAAA 1668

AAA

1671

配列 : 5

配列の長さ : 1 4 3 7

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

起源

生物名 : シソ (*Perilla frutescens*)

組織の種類 : 葉

直接の起源

ライブラリーネーム : cDNA library

クローン名 : p 8 R 6

配列

TTCAAAACTC ATAACGTGAT TGAGCTAATG TGCACATCTT CCTCTTCAAA GTCTACAGTG 60

TCATCCTACC AGCATCATCA TGATCAATCT CTTTATAATG AGGAGAATGG AGTAACAAGG 120

AGTGGGTTTT GTTACTCAGC TTCAACCTAC GTACGTACTA CTACTGACTC AACTCTCAAG 180

AGAATGAATA TAATATATAA TGGCGATAG ATCTTTGTAG ATATCTAGGT GTAGCCTGCA 240

GGTGGTTAAT TAATTCCGG TGTGGAAAAA TAAATAAATA AATAAATATA GCG ATG AGC 299

Met Ser

1

AGC AGC AGC AGC AGA AGG TGG AGA GAG AAT GAG GGG ATG CGA AGG ACA 347

Ser Ser Ser Ser Arg Arg Trp Arg Glu Asn Glu Gly Met Arg Arg Thr

5

10

15

TTG CTG GGG TTG GGT TTG GGG CAG TTG GTT TCT TTC GAT TTG GCT ATC 395

Leu Leu Gly Leu Gly Leu Gly Gln Leu Val Ser Phe Asp Leu Ala Ile

20

25

30

ATG ACC TTT TCT GCT TCT TTG GTT TCA ACC ACA GTG GAT GCA CCA CTT 443

Met Thr Phe Ser Ala Ser Leu Val Ser Thr Thr Val Asp Ala Pro Leu
 35 40 45 50
 ACT ATG TCG TTC ACT ACA TAC ACT GTT GTG GCC CTG CTC TAT GGA ACC 491
 Thr Met Ser Phe Thr Thr Tyr Thr Val Val Ala Leu Leu Tyr Gly Thr
 55 60 65
 ATC TTG CTT TAC CGC CGC CAC AAA TTC TTG GTT CCA TGG TAC TGG TAT 539
 Ile Leu Leu Tyr Arg Arg His Lys Phe Leu Val Pro Trp Tyr Trp Tyr
 70 75 80
 GCT CTC CTG GGG TTC GTG GAC GTC CAC GGC AAT TAT CTT GTT AAT AAA 587
 Ala Leu Leu Gly Phe Val Asp Val His Gly Asn Tyr Leu Val Asn Lys
 85 90 95
 GCA TTC GAG TTG ACA TCG ATT ACG AGT GTG AGC ATA CTG GAT TGT TGG 635
 Ala Phe Glu Leu Thr Ser Ile Thr Ser Val Ser Ile Leu Asp Cys Trp
 100 105 110
 ACA ATC GTG TGG TCC ATC ATC TTT ACA TGG ATG TTC CTA GCC ACA AAA 683
 Thr Ile Val Trp Ser Ile Ile Phe Thr Trp Met Phe Leu Gly Thr Lys
 115 120 125 130
 TAC TCT GTA TAC CAG TTT GTC GGT GCT GCT ATT TGT GTA GGA GGC CTC 731
 Tyr Ser Val Tyr Gln Phe Val Gly Ala Ala Ile Cys Val Gly Gly Leu
 135 140 145
 CTC CTC GTG CTT CTT TCC GAC TCA GGG GTC ACT GCT GCT GGT TCG AAT 779
 Leu Leu Val Leu Leu Ser Asp Ser Gly Val Thr Ala Ala Gly Ser Asn
 150 155 160
 CCT CTT TTG GGT GAT TTT CTT GTC ATA ACA GCC TCT ATT TTG TTC ACA 827
 Pro Leu Leu Gly Asp Phe Leu Val Ile Thr Gly Ser Ile Leu Phe Thr
 165 170 175

CTC AGC ACT GTT GGT CAG GAA TAC TGC GTG AAG AGG AAA GAT CGT ATT 875
 Leu Ser Thr Val Gly Gln Glu Tyr Cys Val Lys Arg Lys Asp Arg Ile
 180 185 190
 GAA GTA GTA GCA ATG ATC GGT GTA TTT GGT ATG CTC ATC AGT GCA ACC 923
 Glu Val Val Ala Met Ile Gly Val Phe Gly Met Leu Ile Ser Ala Thr
 195 200 205 210
 GAG ATT ACT GTG CTG GAG AGG AAT GCC CTC TCA TCA ATG CAG TGG TCT 971
 Glu Ile Thr Val Leu Glu Arg Asn Ala Leu Ser Ser Met Gln Trp Ser
 215 220 225
 ACT GGA CTT TTG GCA GCC TAT GTT TAT GCA CTG TCC AGC TTC CTC 1019
 Thr Gly Leu Leu Ala Ala Tyr Val Val Tyr Ala Leu Ser Ser Phe Leu
 230 235 240
 TTC TGC ACA CTC ACC CCT TTT CTT CTC AAG ATG AGT GGC GCT GCA TTT 1067
 Phe Cys Thr Leu Thr Pro Phe Leu Leu Lys Met Ser Gly Ala Ala Phe
 245 250 255
 TTC AAT CTT TCC ATG CTT ACA TCT GAT ATG TGG GCT GTT GCA ATT AGG 1115
 Phe Asn Leu Ser Met Leu Thr Ser Asp Met Trp Ala Val Ala Ile Arg
 260 265 270
 ACA TTC ATA TAC AAC CAG GAG GTT GAT TGG TTA TAC TAT TTG GCC TTT 1163
 Thr Phe Ile Tyr Asn Gln Glu Val Asp Trp Leu Tyr Tyr Leu Ala Phe
 275 280 285 290
 TGT CTC GTT GTT GGA ATA TTC ATA TAT ACA AAA ACA GAG AAG GAT 1211
 Cys Leu Val Val Val Gly Ile Phe Ile Tyr Thr Lys Thr Glu Lys Asp
 295 300 305
 CCT AAC AAT ACG AGA GCC CTT GAG AAT GGA AAC TTG GAT CAT GAA TAT 1259
 Pro Asn Asn Thr Arg Ala Leu Glu Asn Gly Asn Leu Asp His Glu Tyr
 310 315 320

AGT CTC CTT GAG GAT CAA GAT GAC ACA CCA AGA AAA CCA TAGCTAGCTT 1308

Ser Leu Leu Glu Asp Gln Asp Asp Thr Pro Arg Lys Pro

325 330 335

TGCCCACAAAT CTTTCATCA ACAGTTTAA ATAATTCGTG AGGGGGAGAG AGATCGAGAT 1368

ACTAATTAAAT GGACGTCTAT TATATAGTTG GAGGTTTTG TTTTATTAT TTATTTGAGT 1428

AAAAAAAAAA 1437

配列 : 6

配列の長さ : 2 1 0 5

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

起源

生物名 : ペチュニア

組織の種類 : 花弁

直接の起源

ライブラリーネーム : cDNA library

クローン名 : p S P G T 1

配列

ACTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCATT AGGCACCCCCA GGCTTTACAC 60

TTTATGCTTC CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG GATAACAATT TCACACAGGA 120

AACAGCTATG ACCATGATTA CGCCAAGCTC GAAATTAAACC CTCACTAAAG GGAACAAAAG 180

CTGGAGCTCC ACGCGGTGGC GGCCGCTCTA GAACTAGTGG ATCCCCCGGG CTGCAGGAAT 240

TCCGTTGCTG TCGCCACAAT TTACAAACCA AGAAATTAAAG CATCCCTTTC CCCCCCTTAA 300

AAAACATACA AGTTTTAAT TTTTCACTAA GCAAGAAAAT ATG GTG CAG CCT CAT GTC 358

Met Val Gln Pro His Val

1

5

ATC TTA ACA ACA TTT CCA GCA CAA GGC CAT ATT AAT CCA GCA CTT CAA			406
Ile Leu Thr Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln			
10	15	20	
TTT GCC AAG AAT CTT GTC AAG ATG GGC ATA GAA GTG ACA TTT TCT ACA			454
Phe Ala Lys Asn Leu Val Lys Met Gly Ile Glu Val Thr Phe Ser Thr			
25	30	35	
AGC ATT TAT GCC CAA AGC CGT ATG GAT GAA AAA TCC ATT CTT AAT GCA			502
Ser Ile Tyr Ala Gln Ser Arg Met Asp Glu Lys Ser Ile Leu Asn Ala			
40	45	50	
CCA AAA GGA TTG AAT TTC ATT CCA TTT TCC GAT GGC TTT GAT GAA GGT			550
Pro Lys Gly Leu Asn Phe Ile Pro Phe Ser Asp Gly Phe Asp Glu Gly			
55	60	65	70
TTT GAT CAT TCA AAA GAC CCT GTA TTT TAC ATG TCA CAA CTT CGT AAA			598
Phe Asp His Ser Lys Asp Pro Val Phe Tyr Met Ser Gln Leu Arg Lys			
75	80	85	
TGT GGA ACT GAA ACT GTC AAA AAA ATA ATT CTC ACT TGC TCT GAA AAT			646
Cys Gly Ser Glu Thr Val Lys Lys Ile Ile Leu Thr Cys Ser Glu Asn			
90	95	100	
GGA CAG CCT ATA ACT TGC CTA CTT TAC TCC ATT TTC CTT CCT TGG GCA			694
Gly Gln Pro Ile Thr Cys Leu Leu Tyr Ser Ile Phe Leu Pro Trp Ala			
105	110	115	
GCA GAG GTA GCA CGT GAA GTT CAC ATC CCT TCT GCT CTT CTT TGG AGT			742
Ala Glu Val Ala Arg Glu Val His Ile Pro Ser Ala Leu Leu Trp Ser			
120	125	130	
CAA CCA GCA ACA ATA TTG GAC ATA TAT TAC TTC AAC TTT CAT GGA TAT			790
Gln Pro Ala Thr Ile Leu Asp Ile Tyr Tyr Phe Asn Phe His Gly Tyr			
135	140	145	150

GAA AAA GCT ATG GCT AAT GAA TCC AAT GAT CCA AAT TGG TCC ATT CAA		838	
Glu Lys Ala Met Ala Asn Glu Ser Asn Asp Pro Asn Trp Ser Ile Gln			
155	160	165	
CTT CCC GGG CTT CCA CTA CTG GAA ACT CGA GAT CTT CCT TCA TTT TTA		886	
Leu Pro Gly Leu Pro Leu Leu Glu Thr Arg Asp Leu Pro Ser Phe Leu			
170	175	180	
CTT CCT TAT GGT GCA AAA GGG AGT CTT CGA GTT GCA CTT CCA CCA TTC		934	
Leu Pro Tyr Gly Ala Lys Gly Ser Leu Arg Val Ala Leu Pro Pro Phe			
185	190	195	
AAA GAA TTG ATA GAC ACA TTA GAT GCT GAA ACC ACT CCT AAG ATT CTT		982	
Lys Glu Leu Ile Asp Thr Leu Asp Ala Glu Thr Thr Pro Lys Ile Leu			
200	205	210	
GTG AAT ACA TTT GAT GAA TTA GAG CCT GAG GCA CTC AAT GCA ATT GAA		1030	
Val Asn Thr Phe Asp Glu Leu Glu Pro Glu Ala Leu Asn Ala Ile Glu			
215	220	225	230
GGT TAT AAG TTT TAT GGA ATT GGA CCG TTG ATT CCT TCT GCT TTC TTG		1078	
Gly Tyr Lys Phe Tyr Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu			
235	240	245	
GGT GGA AAT GAC CCT TTA GAT GCT TCA TTT GGT GAT CTT TTT CAA		1126	
Gly Gly Asn Asp Pro Leu Asp Ala Ser Phe Gly Gly Asp Leu Phe Gln			
250	255	260	
AAT TCA AAT GAC TAT ATG GAA TGG TTA AAC TCA AAG CCA AAT TCA TCA		1174	
Asn Ser Asn Asp Tyr Met Glu Trp Leu Asn Ser Lys Pro Asn Ser Ser			
265	270	275	
GTT GTT TAT ATA TCT TTT GGG AGT CTA ATG AAT CCA TCT ATT AGC CAA		1222	
Val Val Tyr Ile Ser Phe Gly Ser Leu Met Asn Pro Ser Ile Ser Gln			
280	285	290	

ATG GAG GAG ATA TCA AAA GGG TTG ATA GAC ATA CGA AGG CCG TTT TTA		1270
Met Glu Glu Ile Ser Lys Gly Leu Ile Asp Ile Gly Arg Pro Phe Leu		
295	300	305
TGG GTG ATA AAA GAA AAT GAA AAA GGC AAA GAA GAA GAG AAT AAA AAG		1318
Trp Val Ile Lys Glu Asn Glu Lys Gly Lys Glu Glu Asn Lys Lys		
315	320	325
CTT GGT TGT ATT GAA GAA TTG GAA AAA ATA CGA AAA ATA GTT CCA TGG		1366
Leu Gly Cys Ile Glu Glu Leu Glu Lys Ile Gly Lys Ile Val Pro Trp		
330	335	340
TGT TCA CAA CTT GAA GTT CTA AAA CAT CCA TCT TTA CGA TGT TTT GTT		1414
Cys Ser Gln Leu Glu Val Leu Lys His Pro Ser Leu Gly Cys Phe Val		
345	350	355
TCT CAT TGT GGA TGG AAT TCA GCC TTA GAG AGT TTA GCT TGT GGA GTG		1462
Ser His Cys Gly Trp Asn Ser Ala Leu Glu Ser Leu Ala Cys Gly Val		
360	365	370
CCA GTT GTG GCA TTT CCT CAA TGG ACA GAT CAA ATG ACA AAT GCC AAA		1510
Pro Val Val Ala Phe Pro Gln Trp Thr Asp Gln Met Thr Asn Ala Lys		
375	380	385
CAA GTT GAA GAT GTG TGG AAA AGT GGA GTA AGA GTG AGA ATA AAT GAA		1558
Gln Val Glu Asp Val Trp Lys Ser Gly Val Arg Val Arg Ile Asn Glu		
395	400	405
GAT GGT GTT GAA AGT GAG GAA ATC AAA AGG TGT ATT GAA TTG GTA		1606
Asp Gly Val Val Glu Ser Glu Glu Ile Lys Arg Cys Ile Glu Leu Val		
410	415	420
ATG GAT GGA GGA GAG AAA GGG GAA GAA TTG AGA AAG AAT GCT AAG AAA		1654
Met Asp Gly Gly Glu Lys Gly Glu Glu Leu Arg Lys Asn Ala Lys Lys		
425	430	435

TGG AAA GAA TTG GCT AGA GAA GCT GTG AAG GAA GGT GGA TCT TCA CAC 1702
Trp Lys Glu Leu Ala Arg Glu Ala Val Lys Glu Gly Gly Ser Ser His
440 445 450
AAG AAT TTA AAG GCT TTT ATT GAT GAT GTT GCC AAA GGG TTT TAATATTTAC 1754
Lys Asn Leu Lys Ala Phe Ile Asp Asp Val Ala Lys Gly Phe
455 460 465 468
AGGCTTTGC CGTGATATTA CTTCCCTAG TTGGCGATTG ACTCTTGTG GACTTGCTTG 1814
ACAAAAAACT GAGGGAATGT GCTAACACAC GCTAATGCTT TAAGAAGTCA TTTCCAAGGC 1874
TTGAAGCCTG CTTTTAAAAC TTATTAGCCA GTAATCTATA GGGTTCTCTT CTATTTTCT 1934
CTGCTCTCTCT TTGTTAGCCTT TTTCTTTCCA AGGTTTAAGA ATAGCGTGAA CATAGCTTAG 1994
TACGTAGTCT TGGTATCTCT ATCTTACCAA GTGCAAGATT ATGCTTATGC TGTCCCTCTA 2054
AATTTCTTAA TAAAATGCAA GATGAAAAAG TACAAAAAAA AAAAAAAA A 2105

請 求 の 範 囲

1. フラボノイドの 5 位に糖を転移する活性を有する蛋白質をコードする遺伝子。
2. 配列番号 7 ~ 10 又は 12 のいずれかに記載のアミノ酸配列を有しフラボノイドの 5 位に糖を転移する活性を有する蛋白質、あるいはそれらのアミノ酸配列に対して 1 個又は複数個のアミノ酸の付加、欠失及び／又は他のアミノ酸による置換により修飾されているアミノ酸配列を有し且つフラボノイドの 5 位に糖を転移する活性を維持している蛋白質をコードする請求項 1 記載の遺伝子。
3. 配列番号 7 ~ 10 又は 12 のいずれかに記載のアミノ酸配列に対して 30 % 以上の相同性を有するアミノ酸配列を有し、且つフラボノイドの 5 位に糖を転移する活性を有する蛋白質をコードする請求項 1 記載の遺伝子。
4. 配列番号 7 ~ 10 又は 12 のいずれかに記載のアミノ酸配列に対して 50 % 以上の相同性を有するアミノ酸配列を有し、且つフラボノイドの 5 位に糖を転移する活性を有する蛋白質をコードする請求項 1 記載の遺伝子。
5. 配列番号 7 ~ 10 又は 12 のいずれかに記載のアミノ酸配列をコードする塩基配列の一部又は全部に対して、5 × S S C、50 °C の条件下でハイブリダイズすることができ、且つフラボノイドの 5 位に糖を転移する活性を有する蛋白質をコードする請求項 1 記載の遺伝子。
6. 請求項 1 ~ 5 のいずれか 1 項に記載の遺伝子を含んでなるベクター。
7. 請求項 6 に記載のベクターにより形質転換された宿主。
8. 請求項 1 ~ 5 のいずれか 1 項に記載の遺伝子によってコード

される蛋白質。

9. 請求項 7 に記載の宿主を培養し、又は成育させ、そして該宿主からフラボノイドの 5 位に糖を転移する活性を有する蛋白質を採取することを特徴とする該蛋白質の製造方法。

10. 請求項 1 ~ 5 のいずれか 1 項に記載の遺伝子が導入された植物もしくはこれと同じ性質を有するその子孫又はそれらの組織。

11. 請求項 10 に記載の植物又はこれと同じ性質を有するその子孫の切花。

配 列 表
SEQUENCE LISTING

< 1 1 0 > Suntory Limited

< 1 2 0 > Gene Coding for Protein Having Sugar-Transfer Activity

< 1 3 0 > STY-F846-PCT

< 1 5 0 > JP PH9-200571

< 1 5 1 > 1997-07-25

< 1 6 0 > 1 1

< 2 1 0 > 1 -

< 2 1 1 > 1 5 0 7

< 2 1 2 > DNA

< 2 1 3 > Perilla frutescens

< 4 0 0 > 1

gaaaatttcc acaaaa atg gtc cgc cgc cgc gtg ctg cta gca acg ttt 49

Met Val Arg Arg Arg Val Leu Leu Ala Thr Phe

1 5 10

cct gcg caa ggc cac ata aat ccc gcc ctc caa ttc gcc aag aga ctc 97

Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gin Phe Ala Lys Arg Leu

15 20 25

cta aaa gcc ggc act gac gtc aca ttt ttc acg agc gtt tat gca tgg 145

Leu Lys Ala Gly Thr Asp Val Thr Phe Phe Thr Ser Val Tyr Ala Trp

30 35 40

cgc cgc atg gcc aac aca gcc tcc gcc gct gcc gga aac cca ccg ggc 193

Arg Arg Met Ala Asn Thr Ala Ser Ala Ala Gly Asn Pro Pro Gly

45 50 55

ctc gac ttc gtg gcg ttc tcc gac ggc tac gac gac ggg ctg aag ccc		241	
Leu Asp Phe Val Ala Phe Ser Asp Gly Tyr Asp Asp Gly Leu Lys Pro			
60	65	70	75
tgc ggc gac ggg aag cgc tac atg tcc gag atg aaa gcc cgc ggc tcc		289	
Cys Gly Asp Gly Lys Arg Tyr Met Ser Glu Met Lys Ala Arg Gly Ser			
80	85	90	
gag gcc tta aga aac ctc ctt ctc aac aac cac gac gtc acg ttc gtc		337	
Glu Ala Leu Arg Asn Leu Leu Asn Asn His Asp Val Thr Phe Val			
95	100	105	
gtc tac tcc cac ctc ttt gca tgg gcg gcg gag gtg gcg cgt gag tcc		385	
Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala Arg Glu Ser			
110	115	120	
cag gtc ccg agc gcc ctt ctc tgg gtc gag ccc gcc acc gtg ctg tgc		433	
Gln Val Pro Ser Ala Leu Leu Trp Val Glu Pro Ala Thr Val Leu Cys			
125	130	135	
ata tat tac ttc tac ttc aac ggc tac gca gac gag atc gac gcc ggt		481	
Ile Tyr Tyr Phe Tyr Phe Asn Gly Tyr Ala Asp Glu Ile Asp Ala Gly			
140	145	150	155
tcc gac gaa att cag ctc cct cgg ctt cca ccc ctg gag cag cgc agt		529	
Ser Asp Glu Ile Gln Leu Pro Arg Leu Pro Pro Leu Glu Gln Arg Ser			
160	165	170	
ctt ccg acc ttt ctg ctg ccg gag aca ccg gag aga ttc cgg ttg atg		577	
Leu Pro Thr Phe Leu Leu Pro Glu Thr Pro Glu Arg Phe Arg Leu Met			
175	180	185	
atg aag gag aag ctg gaa act tta gac ggt gaa gag aag gcg aaa gtg		625	
Met Lys Glu Lys Leu Glu Thr Leu Asp Gly Glu Glu Lys Ala Lys Val			
190	195	200	

ttg gtg aac acg ttt gat gcg ttg gag ccc gat gca ctc acg gct att			673
Leu Val Asn Thr Phe Asp Ala Leu Glu Pro Asp Ala Leu Thr Ala Ile			
205	210	215	
gat agg tat gag ttg atc ggg atc ggg ccg ttg att ccc tcc gcc ttc			721
Asp Arg Tyr Glu Leu Ile Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe			
220	225	230	235
ttg gac ggc gga gat ccc tcc gaa acg tct tac ggc ggc gat ctt ttc			769
Leu Asp Gly Gly Asp Pro Ser Glu Thr Ser Tyr Gly Gly Asp. Leu Phe			
240	245	250	
gaa aaa tcg gag gag aat aac tgc gtg gag tgg ttg gac acg aag ccg			817
Glu Lys Ser Glu Glu Asn Asn Cys Val Glu Trp Leu Asp Thr Lys Pro			
255	260	265	
aaa tct tcg gtg tat gtg tcg ttt ggg agc gtt ttg agg ttt cca			865
Lys Ser Ser Val Val Tyr Val Ser Phe Gly Ser Val Leu Arg Phe Pro			
270	275	280	
aag gca caa atg gaa gag att ggg aaa ggg cta tta gcc tgc gga agg			913
Lys Ala Gln Met Glu Glu Ile Gly Lys Gly Leu Leu Ala Cys Gly Arg			
285	290	295	
ccg ttt tta tgg atg ata cga gaa cag aag aat gac gac ggc gaa gaa			961
Pro Phe Leu Trp Met Ile Arg Glu Gln Lys Asn Asp Asp Gly Glu Glu			
300	305	310	315
gaa gaa gaa gag ttg agt tgc att ggg gaa ttg aaa aaa atg ggg aaa			1009
Glu Glu Glu Glu Leu Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys			
320	325	330	
ata gtt tcg tgg tgc tcg cag ttg gag gtt ctg gcg cac cct gcg ttg			1057
Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu			
335	340	345	

gga tgt ttc gtg acg cat tgt ggg tgg aac tcg gct gtg gag agc ttg 1105
 Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu
 350 355 360
 agt tgc ggg gtt ccg gtg gtc gcg cag tgg ttt gat cag acg 1153
 Ser Cys Gly Val Pro Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr
 365 370 375
 acg aat gcg aag ctg att gag gat gcg tgg ggg aca ggg gtg aga gtg 1201
 Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val
 380 385 390 395
 aga atg aat gaa ggg ggt ggg gtt gat gga tct gag ata gag agg tgt 1249
 Arg Met Asn Glu Gly Gly Val Asp Gly Ser Glu Ile Glu Arg Cys
 400 405 410
 gtg gag atg gtg atg gat ggg ggt gag aag agc aaa cta gtg aga gaa 1297
 Val Glu Met Val Met Asp Gly Gly Glu Lys Ser Lys Leu Val Arg Glu
 415 420 425
 aat gcc ata aaa tgg aag act ttg gcc aga gaa gcc atg gga gag gat 1345
 Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Glu Ala Met Gly Glu Asp
 430 435 440
 gga tct tca ctc aag aat ctc aac gcc ttt ctt cat caa gtt gca cgt 1393
 Gly Ser Ser Leu Lys Asn Leu Asn Ala Phe Leu His Gln Val Ala Arg
 445 450 455
 gct taatacacaa aatggcttcc cactttaat ctactcaaacc accggttcaa 1446
 Ala
 460
 ataaaatcc cttccactt cttctattt cactatcaca ttataattt tagtaacaaa 1506
 a 1507
 < 2 1 0 > 2

< 2 1 1 > 1 4 7 0

< 2 1 2 > D N A

< 2 1 3 > Perilla frutescens

< 4 0 0 > 2

acccaaaccaa aacaaaattt ccacaaaa atg gtc cgc cgc cgc gtg ctg cta 48

Met Val Arg Arg Arg Val Leu Leu

1 5

gca acg ttt ccg gcg caa ggc cac ata aat ccc gcc ctc caa ttc gcc 96

Ala Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln Phe Ala

10 15 20

aag aga ctc cta aaa gcc ggc act gac gtc acg ttt ttc acg agc gtt 144

Lys Arg Leu Leu Lys Ala Gly Thr Asp Val Thr Phe Phe Thr Ser Val

25 30 35 40

tat gca tgg cgc cgc atg gcc aac aca gcc tcc gcc gct gcc gga aac 192

Tyr Ala Trp Arg Arg Met Ala Asn Thr Ala Ser Ala Ala Gly Asn

45 50 55

cca ccg ggc ctc gac ttc gtg gcg ttc tcc gac ggc tac gac gac ggg 240

Pro Pro Gly Leu Asp Phe Val Ala Phe Ser Asp Gly Tyr Asp Asp Gly

60 65 70

ctg aag ccc ggc ggc gac ggg aag cgc tac atg tcc gag atg aaa gcc 288

Leu Lys Pro Gly Gly Asp Gly Lys Arg Tyr Met Ser Glu Met Lys Ala

75 80 85

cgc ggc tcc gag gcc tta aga aac ctc ctt ctc aac aac gac gac gtc 336

Arg Gly Ser Glu Ala Leu Arg Asn Leu Leu Leu Asn Asn Asp Asp Val

90 95 100

act ttc gtc gtc tac tcc cac ctc ttt gca tgg gcg gcg gag gtg gcg			384
Thr Phe Val Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala			
105	110	115	120
cgt ttg tcc cac gtc ccg acc gcc ctt ctc tgg gtc gag ccc gcc acc			432
Arg Leu Ser His Val Pro Thr Ala Leu Leu Trp Val Glu Pro Ala Thr			
125	130	135	
gtg ctg tgc ata tac cac ttc tac ttc aac ggc tac gca gac gag atc			480
Val Leu Cys Ile Tyr His Phe Tyr Phe Asn Gly Tyr Ala Asp Glu Ile			
140	145	150	
gac gcc ggt tcc aat gaa att cag ctc cct cgg ctt cca tcc ctg gag			528
Asp Ala Gly Ser Asn Glu Ile Gln Leu Pro Arg Leu Pro Ser Leu Glu			
155	160	165	
cag cgc agt ctt ccg acg ttt ctg ctg cct gcg acg ccg gag aga ttc			576
Gln Arg Ser Leu Pro Thr Phe Leu Leu Pro Ala Thr Pro Glu Arg Phe			
170	175	180	
cgg ttg atg atg aag gag aag ctg gaa act tta gac ggt gaa gag aag			624
Arg Leu Met Met Lys Glu Lys Leu Glu Thr Leu Asp Gly Glu Glu Lys			
185	190	195	200
gcg aaa gta ttg gtg aac acg ttt gat gcg ttg gag ccc gat gca ctc			672
Ala Lys Val Leu Val Asn Thr Phe Asp Ala Leu Glu Pro Asp Ala Leu			
205	210	215	
acg gct att gat agg tat gag ttg atc ggg atc ggg ccg ttg att ccc			720
Thr Ala Ile Asp Arg Tyr Glu Leu Ile Gly Ile Gly Pro Leu Ile Pro			
220	225	230	
tcc gcc ttc ttg gac ggc gaa gat ccc tcc gaa acg tct tac ggc ggc			768
Ser Ala Phe Leu Asp Gly Glu Asp Pro Ser Glu Thr Ser Tyr Gly Gly			
235	240	245	

gat	ctt	ttc	gaa	aaa	tcg	gag	gag	aat	aac	tgc	gtg	gag	tgg	ttg	aac	816
Asp Leu Phe Glu Lys Ser Glu Glu Asn Asn Cys Val Glu Trp Leu Asn																
250		255		260												
tcg	aag	ccg	aaa	tct	tcg	gtg	gtg	tat	gtg	tcg	ttt	ggg	agc	gtt	ttg	864
Ser Lys Pro Lys Ser Ser Val Val Tyr Val Ser Phe Gly Ser Val Leu																
265		270		275		280										
agg	ttt	cca	aag	gca	caa	atg	gaa	gag	att	ggg	aaa	ggg	cta	tta	gcc	912
Arg Phe Pro Lys Ala Gln Met Glu Glu Ile Gly Lys Gly Leu Leu Ala																
285		290		295												
tgc	gga	agg	ccc	ttt	tta	tgg	atg	ata	cga	gaa	cag	aag	aat	gac	gac.	960
Cys Gly Arg Pro Phe Leu Trp Met Ile Arg Glu Gln Lys Asn Asp Asp																
300		305		310												
ggc	gaa	gaa	gaa	gaa	gaa	gaa	gag	ttg	agt	tgc	att	ggg	gaa	ttg	1008	
Gly Glu Glu Glu Glu Glu Glu Glu Leu Ser Cys Ile Gly Glu Leu																
315		320		325												
aaa	aaa	atg	ggg	aaa	ata	gtg	tcg	tgg	tgc	tcg	cag	ttg	gag	gtt	ctg	1056
Lys Lys Met Gly Lys Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu																
330		335		340												
gcg	cac	cct	gcg	ttg	gga	tgt	ttc	gtg	acg	cat	tgt	ggg	tgg	aac	tcg	1104
Ala His Pro Ala Leu Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser																
345		350		355		360										
gct	gtg	gag	agc	ttg	agt	tgc	ggg	att	ccg	gtg	gtg	gcf	gtg	ccg	cag	1152
Ala Val Glu Ser Leu Ser Cys Gly Ile Pro Val Val Ala Val Pro Gln																
365		370		375												
tgg	ttt	gat	cag	acg	acg	aat	gcf	aag	ctg	att	gag	gat	gcf	tgg	ggg	1200
Trp Phe Asp Gln Thr Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly																
380		385		390												

aca ggg gtg aga gtg aga atg aat gaa ggg ggt ggg gtt gat gga tgt 1248
Thr Gly Val Arg Val Arg Met Asn Glu Gly Gly Val Asp Gly Cys
395 400 405
gag ata gaa agg tgt gtg gag atg gtg atg gat ggg ggt gac aag acc 1296
Glu Ile Glu Arg Cys Val Glu Met Val Met Asp Gly Gly Asp Lys Thr
410 415 420
aaa cta gtg aga gaa aat gcc atc aaa tgg aag act ttg gcc aga caa 1344
Lys Leu Val Arg Glu Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Gln
425 430 435 440
gcc atg gga taggatggat cttcactcaa caatctcaac gcctttcttc 1393
Ala Met Gly
443
gtcaagttgc acacttttaa tctgctcaaa cagcggttca aataaatatc cccttccact 1453
taaaaaaaaaaaaaaaa aaa 1470
< 2 1 0 > 3
< 2 1 1 > 2 0 6 2
< 2 1 2 > D N A
< 2 1 3 > Verbena hybrida
< 4 0 0 > 3
attttaccaa aaaaataaaaa aaaaa atg agc aga gct cac gtc ctc ttg gcc 52
Met Ser Arg Ala His Val Leu Leu Ala
1 5
aca ttc cca gca cag gga cac ata aat ccc gcc ctt caa ttc gcc aag 100
Thr Phe Pro Ala Gin Gly His Ile Asn Pro Ala Leu Gln Phe Ala Lys
10 15 20 25

cgt ctc gca aat gcc gac att caa gtc aca ttc ttc acc agc gtc tac 148
 Arg Leu Ala Asn Ala Asp Ile Gln Val Thr Phe Phe Thr Ser Val Tyr
 30 35 40

 gca tgg cgc cgc atg tcc aga acc gcc gct ggc tca aac ggg ctc atc 196
 Ala Trp Arg Arg Met Ser Arg Thr Ala Ala Gly Ser Asn Gly Leu Ile
 45 50 55

 aat ttt gtg tcg ttt tcc gac ggg tat gac gac ggg tta cag ccc gga 244
 Asn Phe Val Ser Phe Ser Asp Gly Tyr Asp Asp Gly Leu Gln Pro Gly
 60 65 70

 gac gat ggg aag aac tac atg tcg gag atg aaa agc aga ggt ata aaa 292
 Asp Asp Gly Lys Asn Tyr Met Ser Glu Met Lys Ser Arg Gly Ile Lys
 75 80 85

 gcc ttg agc gat act ctt gca gcc aat aat gtc gat caa aaa agc agc 340
 Ala Leu Ser Asp Thr Leu Ala Ala Asn Asn Val Asp Gln Lys Ser Ser
 90 95 100 105

 aaa atc acg ttc gtg gtg tac tcc cac ctc ttt gca tgg gcg gcc aag 388
 Lys Ile Thr Phe Val Val Tyr Ser His Leu Phe Ala Trp Ala Ala Lys
 110 115 120

 gtg gcg cgt gag ttc cat ctc cgg agc gcg cta ctc tgg att gag cca 436
 Val Ala Arg Glu Phe His Leu Arg Ser Ala Leu Leu Trp Ile Glu Pro
 125 130 135

 gct acg gtg ttg gat ata ttt tac ttt tat ttc aac ggc tat agc gac 484
 Ala Thr Val Leu Asp Ile Phe Tyr Phe Tyr Phe Asn Gly Tyr Ser Asp
 140 145 150

 gaa atc gat gcg ggt tcg gat gct att cac ttg ccc gga gga ctc cca 532
 Glu Ile Asp Ala Gly Ser Asp Ala Ile His Leu Pro Gly Gly Leu Pro
 155 160 165

gtg ctg gcc cag cgt gat tta ccg tct ttc ctt cct tcc acg cat		580
Val Leu Ala Gln Arg Asp Leu Pro Ser Phe Leu Leu Pro Ser Thr His		
170	175	180
gag aga ttc cgt tca ctg atg aag gag aaa ttg gaa act tta gaa ggt		628
Glu Arg Phe Arg Ser Leu Met Lys Glu Lys Leu Glu Thr Leu Glu Gly		
190	195	200
gaa gaa aaa cct aag gtc ttg gtg aac agc ttt gat gcg ttg gag cct		676
Glu Glu Lys Pro Lys Val Leu Val Asn Ser Phe Asp Ala Leu Glu Pro		
205	210	215
gat gcg ctc aag gcc att gat aag tac gag atg att gca atc ggg ccg		724
Asp Ala Leu Lys Ala Ile Asp Lys Tyr Glu Met Ile Ala Ile Gly Pro		
220	225	230
ttg att cct tcc gca ttc ttg gac ggt aaa gat cct tcg gac agg tct		772
Leu Ile Pro Ser Ala Phe Leu Asp Gly Lys Asp Pro Ser Asp Arg Ser		
235	240	245
ttc ggc gga gat ttg ttc gag aaa ggg tcg aat gac gac gat tgc ctc		820
Phe Gly Gly Asp Leu Phe Glu Lys Gly Ser Asn Asp Asp Cys Leu		
250	255	260
gaa tgg ttg agc acg aat cct cga tct tcg gtg gtt tac gtt tcg ttc		868
Glu Trp Leu Ser Thr Asn Pro Arg Ser Ser Val Val Tyr Val Ser Phe		
270	275	280
gga agc ttc gtt aat acg acg aag tcg caa atg gaa gag ata gca aga		916
Gly Ser Phe Val Asn Thr Thr Lys Ser Gln Met Glu Glu Ile Ala Arg		
285	290	295
ggg ctg tta gat tgt ggg agg ccg ttt ttg tgg gtg gta aga gta aac		964
Gly Leu Leu Asp Cys Gly Arg Pro Phe Leu Trp Val Val Arg Val Asn		
300	305	310

gaa gga gaa gag gta ttg ata agt tgc atg gag gag ttg aaa cga gtg 1012
 Glu Gly Glu Glu Val Leu Ile Ser Cys Met Glu Glu Leu Lys Arg Val
 315 320 325
 ggg aaa att gta tct tgg tgt tct caa ttg gaa gtc ctg acg cat ccc 1060
 Gly Lys Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Thr His Pro
 330 335 340 345
 tcg ttg gga tgt ttc gtg aca cac tgc ggg tgg aat tcg act cta gag 1108
 Ser Leu Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Thr Leu Glu
 350 355 360
 agt ata tct ttc ggg gtt ccg atg gtg gct ttt ccg cag tgg ttc gat 1156
 Ser Ile Ser Phe Gly Val Pro Met Val Ala Phe Pro Gln Trp Phe Asp
 365 370 375
 caa ggg acg aat gcg aag ctg atg gag gat gtg tgg agg acg ggt gtg. 1204
 Gln Gly Thr Asn Ala Lys Leu Met Glu Asp Val Trp Arg Thr Gly Val
 380 385 390
 aga gtg aga gct aat gag gag ggt agc gtc gtt gat ggt gat gaa att 1252
 Arg Val Arg Ala Asn Glu Glu Gly Ser Val Val Asp Gly Asp Glu Ile
 395 400 405
 agg aga tgt att gag gag gtt atg gat ggg gga gaa aag agt agg aaa 1300
 Arg Arg Cys Ile Glu Glu Val Met Asp Gly Gly Glu Lys Ser Arg Lys
 410 415 420 425
 ctt aga gag agt gct ggc aag tgg aag gat ttg gca aga aaa gct atg 1348
 Leu Arg Glu Ser Ala Gly Lys Trp Lys Asp Leu Ala Arg Lys Ala Met
 430 435 440
 gag gaa gat gga tct tca gtt aac aac ctc aag gtc ttt ctt gat gag 1396
 Glu Glu Asp Gly Ser Ser Val Asn Asn Leu Lys Val Phe Leu Asp Glu
 445 450 455

gtt gta ggt atc taaagacgta aatgagggcc ccataggcaa aattgcaa at 1448

Val Val Gly Ile

460 461

ttcatctcgta aagttgaata cttttggt ttaattttgt tcgagttgt tttcaaaat 1508
 ttatcttgta attttacatt gagtgaaat ttagtctgat ttaactgga aaaatataaa 1568
 attcattgtt gagactcttc atcaaaatca tctgattcc ttattgtct tggtaaaaat 1628
 tctcatatca attggaaaaa ataaattca aaatcgcca atttgaacc aagaaagaag 1688
 tataatttga ccaaaataat aaaaggattc aagtgtatctt gatgaagtgt ctgagcgacg 1748
 agttctatat ttttccacccg aatttctaac gagttttga atttttttta gccaaaatcg 1808
 gactaactt gtacaaaatg aaaagttata tgatgaaatt taaaaaaaca aactcagaca 1868
 ataataaagc ccgaaagtag taaaattacc tgacgaaatt tgcaatttcg cctccttattt 1928
 taattttttt ggtgtgttta ataaatcggt tattttactt ttaattaaaaaaa taaaagttag 1988
 atgcataatgata gcttggtgag tataatgag ttgatggtaa tgtacgataat ttctaaaaaa 2048
 aaaaaaaaaaaa aaaa 2062

< 2 1 0 > 4

< 2 1 1 > 1 6 7 1

< 2 1 2 > D N A

< 2 1 3 > Torenia hybrira

< 2 2 0 >

< 2 2 1 >

< 2 2 2 >

< 2 2 3 > Xaa (64) is Cys or Phe, Xaa (65) is Ser or Pro.

< 4 0 0 > 4

aacacataaa aaaaaataaa aagaagaaat aattaaaaaaa aaaa atg gtt aac 53

Met Val Asn

aaa cgc cat att cta cta gca aca ttc cca gca caa ggc cac ata aac		101	
Lys Arg His Ile Leu Leu Ala Thr Phe Pro Ala Gln Gly His Ile Asn			
5	10	15	
cct tct ctc gag ttc gcc aaa agg ctc ctc aac acc gga tac gtc gac		149	
Pro Ser Leu Glu Phe Ala Lys Arg Leu Leu Asn Thr Gly Tyr Val Asp			
20	25	30	35
caa gtc aca ttc ttc acg agt gta tac gca ttg aga cgc atg cgc ttc		197	
Gln Val Thr Phe Phe Thr Ser Val Tyr Ala Leu Arg Arg Met Arg Phe			
40	45	50	
gaa acc gat ccg agc agc aga atc gat ttc gtg gca tkt yca gat tct		245	
Glu Thr Asp Pro Ser Ser Arg Ile Asp Phe Val Ala Xaa Xaa Asp Ser			
55	60	65	
tac gat gat ggc tta aag aaa ggc gac gat ggc aaa aac tac atg tcg		293	
Tyr Asp Asp Gly Leu Lys Lys Gly Asp Asp Gly Lys Asn Tyr Met Ser			
70	75	80	
gag atg aga aag cgc gga acg aag gcc tta aag gac act ctt att aag		341	
Glu Met Arg Lys Arg Gly Thr Lys Ala Leu Lys Asp Thr Leu Ile Lys			
85	90	95	
ctc aac gat gct gcg atg gga agt gaa tgt tac aat cgc gtg agc ttt		389	
Leu Asn Asp Ala Ala Met Gly Ser Glu Cys Tyr Asn Arg Val Ser Phe			
100	105	110	115
gtg gtg tac tct cat cta ttt tcg tgg gca gct gaa gtg gcg cgt gaa		437	
Val Val Tyr Ser His Leu Phe Ser Trp Ala Ala Glu Val Ala Arg Glu			
120	125	130	
gtc gac gtg ccg agt gcc ctt ctt tgg att gaa ccg gct acg gtt ttc		485	
Val Asp Val Pro Ser Ala Leu Leu Trp Ile Glu Pro Ala Thr Val Phe			
135	140	145	

gat	gtg	tac	tat	ttt	tac	ttc	aat	ggg	tat	gcc	gat	gat	atc	gat	gct	533
Asp	Val	Tyr	Tyr	Phe	Tyr	Phe	Asn	Gly	Tyr	Ala	Asp	Asp	Ile	Asp	Ala	
150							155							160		
ggc	tca	gat	caa	atc	caa	ctg	ccc	aat	ctt	ccg	cag	ctc	tcc	aag	caa	581
Gly	Ser	Asp	Gln	Ile	Gln	Leu	Pro	Asn	Leu	Pro	Gln	Leu	Ser	Lys	Gln	
165							170							175		
gat	ctc	ccc	tct	ttc	cta	ctc	cct	tcg	agc	ccc	gct	aga	ttc	cga	acc	629
Asp	Leu	Pro	Ser	Phe	Leu	Leu	Pro	Ser	Ser	Pro	Ala	Arg	Phe	Arg	Thr	
180							185							190		195
cta	atg	aaa	gaa	aag	ttc	gac	acg	ctc	gac	aaa	gaa	ccg	aaa	gct	aag	677
Leu	Met	Lys	Glu	Lys	Phe	Asp	Thr	Leu	Asp	Lys	Glu	Pro	Lys	Ala	Lys	
200							205							210		
gtc	ttg	ata	aac	acg	ttc	gac	gca	tta	gaa	acc	caa	ctc	aaa	gcc	725	
Val	Leu	Ile	Asn	Thr	Phe	Asp	Ala	Leu	Glu	Thr	Glu	Gln	Leu	Lys	Ala	
215							220							225		
atc	gac	agg	tat	gaa	cta	ata	tcc	atc	ggc	cca	tta	atc	cca	tca	tcg	773
Ile	Asp	Arg	Tyr	Glu	Leu	Ile	Ser	Ile	Gly	Pro	Leu	Ile	Pro	Ser	Ser	
230							235							240		
ata	ttc	tca	gat	ggc	aac	gac	ccc	tca	tca	agc	aac	aaa	tcc	tac	ggt	821
Ile	Phe	Ser	Asp	Gly	Asn	Asp	Pro	Ser	Ser	Asn	Lys	Ser	Tyr	Gly		
245							250							255		
gga	gac	ctc	ttc	aga	aaa	gcc	gat	gaa	act	tac	atg	gac	tgg	cta	aac	869
Gly	Asp	Leu	Phe	Arg	Lys	Ala	Asp	Glu	Thr	Tyr	Met	Asp	Trp	Leu	Asn	
260							265							270		275
tca	aaa	ccc	gaa	tca	tcg	gtc	gtt	tac	gtt	tcg	ttc	ggg	agc	ctc	ctg	917
Ser	Lys	Pro	Glu	Ser	Ser	Val	Val	Tyr	Val	Ser	Phe	Gly	Ser	Leu	Leu	
280							285							290		

agg ctc ccg aaa ccc caa atg gaa gaa ata gca ata ggg ctt tca gac 965
 Arg Leu Pro Lys Pro Gln Met Glu Glu Ile Ala Ile Gly Leu Ser Asp
 295 300 305
 acc aaa tcg cca gtt ctc tgg gtg ata aga aga aac gaa gag ggc gac 1013
 Thr Lys Ser Pro Val Leu Trp Val Ile Arg Arg Asn Glu Glu Gly Asp
 310 315 320
 gaa caa gag caa gca gaa gaa gag aag ctg ctg agc ttc ttt gat 1061
 Glu Gln Glu Gln Ala Glu Glu Glu Lys Leu Leu Ser Phe Phe Asp
 325 330 335
 cgt cac gga act gaa cga ctc ggg aaa atc gtg aca tgg tgc tca caa 1109
 Arg His Gly Thr Glu Arg Leu Gly Lys Ile Val Thr Trp Cys Ser Gln
 340 345 350 355
 ttg gat gtt ctg acg cat aag tcg gtg gga tgc ttc gtg acg cat tgc 1157
 Leu Asp Val Leu Thr His Lys Ser Val Gly Cys Phe Val Thr His Cys
 360 365 370
 ggt tgg aat tct gct atc gag agc ctg gct tgt ggt gtg ccc gtg gtg 1205
 Gly Trp Asn Ser Ala Ile Glu Ser Leu Ala Cys Gly Val Pro Val Val
 375 380 385
 tgc ttt cct caa tgg ttc gat caa ggg act aat gcg aag atg atc gaa 1253
 Cys Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys Met Ile Glu
 390 395 400
 gat gtg tgg agg agt ggt gtg aga gtc aga gtg aat gag gaa ggc ggc 1301
 Asp Val Trp Arg Ser Gly Val Arg Val Arg Val Asn Glu Glu Gly Gly
 405 410 415
 gtt gtt gat agg cgt gag att aag agg tgc gtc tcg gag gtt ata aag 1349
 Val Val Asp Arg Arg Glu Ile Lys Arg Cys Val Ser Glu Val Ile Lys
 420 425 430 435

agt cga gag ttg aga gaa agc gca atg atg tgg aag ggt ttg gct aaa	1397	
Ser Arg Glu Leu Arg Glu Ser Ala Met Met Trp Lys Gly Leu Ala Lys		
440	445	450
gaa gct atg gat gaa gaa cgt gga tca tca atg aac aat ctg aag aat	1445	
Glu Ala Met Asp Glu Glu Arg Gly Ser Ser Met Asn Asn Leu Lys Asn		
455	460	465
ttt att act agg att att aat gaa aat gcc tca taaggtagtac	1488	
Phe Ile Thr Arg Ile Ile Asn Glu Asn Ala Ser		
470	475	478
tatatatgtt attattgttg ttatggacgt cgaattaagt attagttaaa tgatatgtat	1548	
tttagaggaag gccaaaacgg gctacaccccg gcaggccacg gttggaaaa gcccgcacg	1608	
atttaaaata tatatttaa aataaatatt ttctactatt aaactaaaaa aaaaaaaaaa	1668	
aaa	1671	
< 2 1 0 > 5		
< 2 1 1 > 1 4 3 7		
< 2 1 2 > D N A		
< 2 1 3 > Perilla frutescens		
< 4 0 0 > 5		
ttcaaaaactc ataacgtgat tgagctaattg tgcacatctt cctttcaaa gtctacagt	60	
tcatcctacc agcatcatca tgatcaatct ctttataatg aggagaatgg agtaacaagg	120	
agtgggtttt gttactcagc ttcaacctac gtacgtacta ctactgactc aactctcaag	180	
agaatgaata taatataaa tgggcgatag atctttgttag atatgttaggt gtggcgtca	240	
gggtggtaat taattccgg tgtggaaaa taaataaata aataaaataa gcg atg agc	299	

Met Ser

agc	agc	agc	agc	aga	agg	tgg	aga	gag	aat	gag	ggg	atg	cga	agg	aca	347
Ser	Ser	Ser	Ser	Arg	Arg	Trp	Arg	Glu	Asn	Glu	Gly	Met	Arg	Arg	Thr	
	5				10							15				
ttg	ctg	ggg	ttg	ggt	ttg	ggg	cag	ttg	gtt	tct	ttc	gat	ttg	gct	atc	395
Leu	Leu	Gly	Leu	Gly	Leu	Gly	Gln	Leu	Val	Ser	Phe	Asp	Leu	Ala	Ile	
	20				25							30				
atg	acc	ttt	tct	gct	tct	ttg	gtt	tca	acc	aca	gtg	gat	gca	cca	ctt	443
Met	Thr	Phe	Ser	Ala	Ser	Leu	Val	Ser	Thr	Thr	Val	Asp	Ala	Pro	Leu	
	35				40						45		50			
act	atg	tcg	ttc	act	aca	tac	act	gtt	gtg	gcc	ctg	ctc	tat	gga	acc	491
Thr	Met	Ser	Phe	Thr	Thr	Tyr	Thr	Val	Val	Ala	Leu	Leu	Tyr	Gly	Thr	
										55	60		65			
atc	ttg	ctt	tac	cgc	cgc	cac	aaa	ttc	ttg	gtt	cca	tgg	tac	tgg	tat	539
Ile	Leu	Leu	Tyr	Arg	Arg	His	Lys	Phe	Leu	Val	Pro	Trp	Tyr	Trp	Tyr	
	70					75					80					
gct	ctc	ctg	ggg	ttc	gtg	gac	gtc	cac	ggc	aat	tat	ctt	gtt	aat	aaa	587
Ala	Leu	Leu	Gly	Phe	Val	Asp	Val	His	Gly	Asn	Tyr	Leu	Val	Asn	Lys	
	85					90					95					
gca	ttc	gag	ttg	aca	tcg	att	acg	agt	gtg	agc	ata	ctg	gat	tgt	tgg	635
Ala	Phe	Glu	Leu	Thr	Ser	Ile	Thr	Ser	Val	Ser	Ile	Leu	Asp	Cys	Trp	
	100				105						110					
aca	atc	gtg	tgg	tcc	atc	atc	ttt	aca	tgg	atg	ttc	cta	ggc	aca	aaa	683
Thr	Ile	Val	Trp	Ser	Ile	Ile	Phe	Thr	Trp	Met	Phe	Leu	Gly	Thr	Lys	
	115					120				125		130				
tac	tct	gta	tac	cag	ttt	gtc	ggt	gct	gct	att	tgt	gta	gga	ggc	ctc	731
Tyr	Ser	Val	Tyr	Gln	Phe	Val	Gly	Ala	Ala	Ile	Cys	Val	Gly	Gly	Leu	
										135	140		145			

ctc ctc gtg ctt ctt tcc gac tca ggg gtc act gct gct ggt tcg aat		779	
Leu Leu Val Leu Leu Ser Asp Ser Gly Val Thr Ala Ala Gly Ser Asn			
150	155	160	
cct ctt ttg ggt gat ttt ctt gtc ata aca ggc tct att ttg ttc aca		827	
Pro Leu Leu Gly Asp Phe Leu Val Ile Thr Gly Ser Ile Leu Phe Thr			
165	170	175	
ctc agc act gtt ggt cag gaa tac tgc gtg aag agg aaa gat cgt att		875	
Leu Ser Thr Val Gly Gln Glu Tyr Cys Val Lys Arg Lys Asp Arg Ile			
180	185	190	
gaa gta gta gca atg atc ggt gta ttt ggt atg ctc atc agt gca acc		923	
Glu Val Val Ala Met Ile Gly Val Phe Gly Met Leu Ile Ser Ala Thr			
195	200	205	210
gag att act gtg ctg gag agg aat gcc ctc tca tca atg cag tgg tct		971	
Glu Ile Thr Val Leu Glu Arg Asn Ala Leu Ser Ser Met Gln Trp Ser			
215	220	225	
act gga ctt ttg gca gcc tat gtt gtt tat gca ctg tcc agc ttc ctc		1019	
Thr Gly Leu Leu Ala Ala Tyr Val Val Tyr Ala Leu Ser Ser Phe Leu			
230	235	240	
ttc tgc aca ctc acc cct ttt ctt ctc aag atg agt ggc gct gca ttt		1067	
Phe Cys Thr Leu Thr Pro Phe Leu Leu Lys Met Ser Gly Ala Ala Phe			
245	250	255	
ttc aat ctt tcc atg ctt aca tct gat atg tgg gct gtt gca att agg		1115	
Phe Asn Leu Ser Met Leu Thr Ser Asp Met Trp Ala Val Ala Ile Arg			
260	265	270	
aca ttc ata tac aac cag gag gtt gat tgg tta tac tat ttg gcc ttt		1163	
Thr Phe Ile Tyr Asn Gln Glu Val Asp Trp Leu Tyr Tyr Leu Ala Phe			
275	280	285	290

tgt ctc gtt gtt gga ata ttc ata tat aca aaa aca gag aag gat 1211
 Cys Leu Val Val Val Gly Ile Phe Ile Tyr Thr Lys Thr Glu Lys Asp
 295 300 305
 cct aac aat acg aga gcc ctt gag aat gga aac ttg gat cat gaa tat 1259
 Pro Asn Asn Thr Arg Ala Leu Glu Asn Gly Asn Leu Asp His Glu Tyr
 310 315 320
 agt ctc ctt gag gat caa gat gac aca cca aga aaa cca tagtagtt 1308
 Ser Leu Leu Glu Asp Gln Asp Asp Thr Pro Arg Lys Pro
 325 330 335
 tgcccaacaat cttttcatca acagtttaa ataattcgtg agggggagag agatcgagat 1368
 actaattaat ggacgtctat tatatagttg gaggttttg ttttatttat ttatttgagt 1428
 aaaaaaaaaa 1437
 < 2 1 0 > 6
 < 2 1 1 > 2 1 0 5
 < 2 1 2 > D N A
 < 2 1 3 > Petunia hybrida
 < 4 0 0 > 6
 agt gagcgcga acgcaattaa tgtgagtttgcactcatt aggcacccca ggcttacac 60
 tttatgcttc cggctcgat gttgtgtgga attgtgagcg gataacaatt tcacacagga 120
 aacagctatg accatgatta cgccaagctc gaaattaacc ctcactaaag ggaacaaaag 180
 ctggagctcc acgcggtgcc gggcgctcta gaactagtgg atccccggg ctgcaggaat 240
 tccgttgctg tcgccacaat ttacaaacca agaaattaag catcccttc ccccccattaa 300
 aaaacataca agttttaat tttcactaa gcaagaaaat atg gtg cag cct cat gtc 358
 Met Val Gln Pro His Val

1

5

atc tta aca aca ttt cca gca caa ggc cat att aat cca gca ctt caa			406
Ile Leu Thr Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln			
10	15	20	
ttt gcc aag aat ctt gtc aag atg ggc ata gaa gtg aca ttt tct aca			454
Phe Ala Lys Asn Leu Val Lys Met Gly Ile Glu Val Thr Phe Ser Thr			
25	30	35	
agc att tat gcc caa agc cgt atg gat gaa aaa tcc att ctt aat gca			502
Ser Ile Tyr Ala Gln Ser Arg Met Asp Glu Lys Ser Ile Leu Asn Ala			
40	45	50	
cca aaa gga ttg aat ttc att cca ttt tcc gat ggc ttt gat gaa ggt			550
Pro Lys Gly Leu Asn Phe Ile Pro Phe Ser Asp Gly Phe Asp Glu Gly			
55	60	65	70
ttt gat cat tca aaa gac cct gta ttt tac atg tca caa ctt cgt aaa			598
Phe Asp His Ser Lys Asp Pro Val Phe Tyr Met Ser Gln Leu Arg Lys			
75	80	85	
tgt gga agt gaa act gtc aaa aaa ata att ctc act tgc tct gaa aat			646
Cys Gly Ser Glu Thr Val Lys Lys Ile Ile Leu Thr Cys Ser Glu Asn			
90	95	100	
gga cag cct ata act tgc cta ctt tac tcc att ttc ctt cct tgg gca			694
Gly Gln Pro Ile Thr Cys Leu Leu Tyr Ser Ile Phe Leu Pro Trp Ala			
105	110	115	
gca gag gta gca cgt gaa gtt cac atc cct tct gct ctt ctt tgg agt			742
Ala Glu Val Ala Arg Glu Val His Ile Pro Ser Ala Leu Leu Trp Ser			
120	125	130	
caa cca gca aca ata ttg gac ata tat tac ttc aac ttt cat gga tat			790
Gln Pro Ala Thr Ile Leu Asp Ile Tyr Tyr Phe Asn Phe His Gly Tyr			
135	140	145	150

gaa aaa gct atg gct aat gaa tcc aat gat cca aat tgg tcc att caa	838		
Glu Lys Ala Met Ala Asn Glu Ser Asn Asp Pro Asn Trp Ser Ile Gln			
155	160	165	
ctt ccc ggg ctt cca cta ctg gaa act cga gat ctt cct tca ttt tta	886		
Leu Pro Gly Leu Pro Leu Leu Glu Thr Arg Asp Leu Pro Ser Phe Leu			
170	175	180	
ctt cct tat ggt gca aaa ggg agt ctt cga gtt gca ctt cca cca ttc	934		
Leu Pro Tyr Gly Ala Lys Gly Ser Leu Arg Val Ala Leu Pro Pro Phe			
185	190	195	
aaa gaa ttg ata gac aca tta gat gct gaa acc act cct aag att ctt	982		
Lys Glu Leu Ile Asp Thr Leu Asp Ala Glu Thr Thr Pro Lys Ile Leu			
200	205	210	
gtg aat aca ttt gat gaa tta gag cct gag gca ctc aat gca att gaa	1030		
Val Asn Thr Phe Asp Glu Leu Glu Pro Glu Ala Leu Asn Ala Ile Glu			
215	220	225	230
ggt tat aag ttt tat gga att gga ccg ttg att cct tct gct ttc ttg	1078		
Gly Tyr Lys Phe Tyr Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu			
235	240	245	
ggt gga aat gac cct tta gat gct tca ttt ggt ggt gat ctt ttt caa	1126		
Gly Gly Asn Asp Pro Leu Asp Ala Ser Phe Gly Gly Asp Leu Phe Gln			
250	255	260	
aat tca aat gac tat atg gaa tgg tta aac tca aag cca aat tca tca	1174		
Asn Ser Asn Asp Tyr Met Glu Trp Leu Asn Ser Lys Pro Asn Ser Ser			
265	270	275	
gtt gtt tat ata tct ttt ggg agt cta atg aat cca tct att agc caa	1222		
Val Val Tyr Ile Ser Phe Gly Ser Leu Met Asn Pro Ser Ile Ser Gln			
280	285	290	

atg gag gag ata tca aaa ggg ttg ata gac ata gga agg ccg ttt tta 1270
 Met Glu Glu Ile Ser Lys Gly Leu Ile Asp Ile Gly Arg Pro Phe Leu
 295 300 305 310
 tgg gtg ata aaa gaa aat gaa aaa ggc aaa gaa gaa gag aat aaa aag 1318
 Trp Val Ile Lys Glu Asn Glu Lys Gly Lys Glu Glu Asn Lys Lys
 315 320 325
 ctt ggt tgt att gaa gaa ttg gaa aaa ata gga aaa ata gtt cca tgg 1366
 Leu Gly Cys Ile Glu Glu Leu Glu Lys Ile Gly Lys Ile Val Pro Trp
 330 335 340
 tgt tca caa ctt gaa gtt cta aaa cat cca tct tta gga tgt ttt gtt 1414
 Cys Ser Gln Leu Glu Val Leu Lys His Pro Ser Leu Gly Cys Phe Val
 345 350 355
 tct cat tgt gga tgg aat tca gcc tta gag agt tta gct tgt gga gtg 1462
 Ser His Cys Gly Trp Asn Ser Ala Leu Glu Ser Leu Ala Cys Gly Val
 360 365 370
 cca gtt gtg gca ttt cct caa tgg aca gat caa atg aca aat gcc aaa 1510
 Pro Val Val Ala Phe Pro Gln Trp Thr Asp Gln Met Thr Asn Ala Lys
 375 380 385 390
 caa gtt gaa gat gtg tgg aaa agt gga gta aga gtg aga ata aat gaa 1558
 Gln Val Glu Asp Val Trp Lys Ser Gly Val Arg Val Arg Ile Asn Glu
 395 400 405
 gat ggt gtt gtt gaa agt gag gaa atc aaa agg tgt att gaa ttg gta 1606
 Asp Gly Val Val Glu Ser Glu Glu Ile Lys Arg Cys Ile Glu Leu Val
 410 415 420
 atg gat gga gga gag aaa ggg gaa gaa ttg aga aag aat gct aag aaa 1654
 Met Asp Gly Gly Glu Lys Gly Glu Glu Leu Arg Lys Asn Ala Lys Lys
 425 430 435

tgg aaa gaa ttg gct aga gaa gct gtg aag gaa ggt gga tct tca cac 1702
 Trp Lys Glu Leu Ala Arg Glu Ala Val Lys Glu Gly Gly Ser Ser His
 440 445 450
 aag aat tta aag gct ttt att gat gat gtt gcc aaa ggg ttt taatattac 1754
 Lys Asn Leu Lys Ala Phe Ile Asp Asp Val Ala Lys Gly Phe
 455 460 465 468
 aggctttgc cgtgatatta cttccctag ttggcgattc actcttgcgacttgcttg 1814
 acaaaaaact gagggaatgt gctaagacac gctaattgtt taagaagtca ttccaaggc 1874
 ttgaaggcctg cttaaaaac ttattagcca gtaatctata gggttctctt ctatccc 1934
 ctgtctctct tttagcctt ttcttcca aggttaaga atagcgtgaa catagcttag 1994
 tacgtatctct tatctaccaa gtgcaagatt atgcttatgc tgtcctccata 2054
 aatttcttaa taaaatgcaa gatgaaaaag tacaaaaaaaaaaaaaaa a 2105
 < 2 1 0 > 7
 < 2 1 1 > 4 6 0
 < 2 1 2 > P R T
 < 2 1 3 > Perilla frutescens
 < 4 0 0 > 7
 Met Val Arg Arg Arg Val Leu Leu Ala Thr Phe Pro Ala Gin Gly His
 1 5 10 15
 Ile Asn Pro Ala Leu Gin Phe Ala Lys Arg Leu Leu Lys Ala Gly Thr
 20 25 30
 Asp Val Thr Phe Phe Thr Ser Val Tyr Ala Trp Arg Arg Met Ala Asn
 35 40 45
 Thr Ala Ser Ala Ala Ala Gly Asn Pro Pro Gly Leu Asp Phe Val Ala
 50 55 60
 Phe Ser Asp Gly Tyr Asp Asp Gly Leu Lys Pro Cys Gly Asp Gly Lys
 65 70 75 80

Arg Tyr Met Ser Glu Met Lys Ala Arg Gly Ser Glu Ala Leu Arg Asn
85 90 95
Leu Leu Leu Asn Asn His Asp Val Thr Phe Val Val Tyr Ser His Leu
100 105 110
Phe Ala Trp Ala Ala Glu Val Ala Arg Glu Ser Gln Val Pro Ser Ala
115 120 125
Leu Leu Trp Val Glu Pro Ala Thr Val Leu Cys Ile Tyr Tyr Phe Tyr
130 135 140
Phe Asn Gly Tyr Ala Asp Glu Ile Asp Ala Gly Ser Asp Glu Ile Gln
145 150 155 160
Leu Pro Arg Leu Pro Pro Leu Glu Gln Arg Ser Leu Pro Thr Phe Leu
165 170 175
Leu Pro Glu Thr Pro Glu Arg Phe Arg Leu Met Met Lys Glu Lys Leu
180 185 190
Glu Thr Leu Asp Gly Glu Glu Lys Ala Lys Val Leu Val Asn Thr Phe
195 200 205
Asp Ala Leu Glu Pro Asp Ala Leu Thr Ala Ile Asp Arg Tyr Glu Leu
210 215 220
Ile Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu Asp Gly Gly Asp
225 230 235 240
Pro Ser Glu Thr Ser Tyr Gly Gly Asp Leu Phe Glu Lys Ser Glu Glu
245 250 255
Asn Asn Cys Val Glu Trp Leu Asp Thr Lys Pro Lys Ser Ser Val Val
260 265 270
Tyr Val Ser Phe Gly Ser Val Leu Arg Phe Pro Lys Ala Gln Met Glu
275 280 285
Glu Ile Gly Lys Gly Leu Leu Ala Cys Gly Arg Pro Phe Leu Trp Met

290	295	300
Ile Arg Glu Gln Lys Asn Asp Asp Gly Glu Glu Glu Glu Glu Leu		
305	310	315
Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys Ile Val Ser Trp Cys		
325	330	335
Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu Gly Cys Phe Val Thr		
340	345	350
His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu Ser Cys Gly Val Pro		
355	360	365
Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr Thr Asn Ala Lys Leu		
370	375	380
Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val Arg Met Asn Glu Gly		
385	390	395
Gly Gly Val Asp Gly Ser Glu Ile Glu Arg Cys Val Glu Met Val Met		
405	410	415
Asp Gly Gly Glu Lys Ser Lys Leu Val Arg Glu Asn Ala Ile Lys Trp		
420	425	430
Lys Thr Leu Ala Arg Glu Ala Met Gly Glu Asp Gly Ser Ser Leu Lys		
435	440	445
Asn Leu Asn Ala Phe Leu His Gln Val Ala Arg Ala		
450	455	460
< 2 1 0 > 8		
< 2 1 1 > 4 4 3		
< 2 1 2 > P R T		
< 2 1 3 > Perilla frutescens		
< 4 0 0 > 8		

Met Val Arg Arg Arg Val Leu Leu Ala Thr Phe Pro Ala Gln Gly His
1 5 10 15
Ile Asn Pro Ala Leu Gln Phe Ala Lys Arg Leu Leu Lys Ala Gly Thr
20 25 30
Asp Val Thr Phe Phe Thr Ser Val Tyr Ala Trp Arg Arg Met Ala Asn
35 40 45
Thr Ala Ser Ala Ala Ala Gly Asn Pro Pro Gly Leu Asp Phe Val Ala
50 55 60
Phe Ser Asp Gly Tyr Asp Asp Gly Leu Lys Pro Gly Gly Asp Gly Lys
65 70 75 80
Arg Tyr Met Ser Glu Met Lys Ala Arg Gly Ser Glu Ala Leu Arg Asn
85 90 95
Leu Leu Leu Asn Asn Asp Asp Val Thr Phe Val Val Tyr Ser His Leu
100 105 110
Phe Ala Trp Ala Ala Glu Val Ala Arg Leu Ser His Val Pro Thr Ala
115 120 125
Leu Leu Trp Val Glu Pro Ala Thr Val Leu Cys Ile Tyr His Phe Tyr
130 135 140
Phe Asn Gly Tyr Ala Asp Glu Ile Asp Ala Gly Ser Asn Glu Ile Gln
145 150 155 160
Leu Pro Arg Leu Pro Ser Leu Glu Gln Arg Ser Leu Pro Thr Phe Leu
165 170 175
Leu Pro Ala Thr Pro Glu Arg Phe Arg Leu Met Met Lys Glu Lys Leu
180 185 190
Glu Thr Leu Asp Gly Glu Glu Lys Ala Lys Val Leu Val Asn Thr Phe
195 200 205

Asp Ala Leu Glu Pro Asp Ala Leu Thr Ala Ile Asp Arg Tyr Glu Leu
210 215 220
Ile Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu Asp Gly Glu Asp
225 230 235 240
Pro Ser Glu Thr Ser Tyr Gly Gly Asp Leu Phe Glu Lys Ser Glu Glu
245 250 255
Asn Asn Cys Val Glu Trp Leu Asn Ser Lys Pro Lys Ser Ser Val Val
260 265 270
Tyr Val Ser Phe Gly Ser Val Leu Arg Phe Pro Lys Ala Gln Met Glu
275 280 285
Glu Ile Gly Lys Gly Leu Leu Ala Cys Gly Arg Pro Phe Leu Trp-Met
290 295 300
Ile Arg Glu Gln Lys Asn Asp Asp Gly Glu Glu Glu Glu Glu
305 310 315 320
Glu Leu Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys Ile Val Ser
325 330 335
Trp Cys Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu Gly Cys Phe
340 345 350
Val Thr His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu Ser Cys Gly
355 360 365
Ile Pro Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr Thr Asn Ala
370 375 380
Lys Leu Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val Arg Met Asn
385 390 395 400
Glu Gly Gly Gly Val Asp Gly Cys Glu Ile Glu Arg Cys Val Glu Met
405 410 415

Val Met Asp Gly Gly Asp Lys Thr Lys Leu Val Arg Glu Asn Ala Ile
 420 425 430
 Lys Trp Lys Thr Leu Ala Arg Gln Ala Met Gly
 435 440 443
 < 2 1 0 > 9
 < 2 1 1 > 4 6 1
 < 2 1 2 > P R T
 < 2 1 3 > Verbena hybrida
 < 4 0 0 > 9
 Met Ser Arg Ala His Val Leu Leu Ala Thr Phe Pro Ala Gln Gly His
 1 5 10 15
 Ile Asn Pro Ala Leu Gln Phe Ala Lys Arg Leu Ala Asn Ala Asp Ile
 20 25 30
 Gln Val Thr Phe Phe Thr Ser Val Tyr Ala Trp Arg Arg Met Ser Arg
 35 40 45
 Thr Ala Ala Gly Ser Asn Gly Leu Ile Asn Phe Val Ser Phe Ser Asp
 50 55 60
 Gly Tyr Asp Asp Gly Leu Gln Pro Gly Asp Asp Gly Lys Asn Tyr Met
 65 70 75 80
 Ser Glu Met Lys Ser Arg Gly Ile Lys Ala Leu Ser Asp Thr Leu Ala
 85 90 95
 Ala Asn Asn Val Asp Gln Lys Ser Ser Lys Ile Thr Phe Val Val Tyr
 100 105 110
 Ser His Leu Phe Ala Trp Ala Ala Lys Val Ala Arg Glu Phe His Leu
 115 120 125
 Arg Ser Ala Leu Leu Trp Ile Glu Pro Ala Thr Val Leu Asp Ile Phe
 130 135 140

Tyr Phe Tyr Phe Asn Gly Tyr Ser Asp Glu Ile Asp Ala Gly Ser Asp
145 150 155 160
Ala Ile His Leu Pro Gly Gly Leu Pro Val Leu Ala Gln Arg Asp Leu
165 170 175
Pro Ser Phe Leu Leu Pro Ser Thr His Glu Arg Phe Arg Ser Leu Met
180 185 190
Lys Glu Lys Leu Glu Thr Leu Glu Gly Glu Glu Lys Pro Lys Val Leu
195 200 205
Val Asn Ser Phe Asp Ala Leu Glu Pro Asp Ala Leu Lys Ala Ile Asp
210 215 220
Lys Tyr Glu Met Ile Ala Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu
225 230 235 240
Asp Gly Lys Asp Pro Ser Asp Arg Ser Phe Gly Gly Asp Leu Phe Glu
245 250 255
Lys Gly Ser Asn Asp Asp Asp Cys Leu Glu Trp Leu Ser Thr Asn Pro
260 265 270
Arg Ser Ser Val Val Tyr Val Ser Phe Gly Ser Phe Val Asn Thr Thr
275 280 285
Lys Ser Gln Met Glu Glu Ile Ala Arg Gly Leu Leu Asp Cys Gly Arg
290 295 300
Pro Phe Leu Trp Val Val Arg Val Asn Glu Gly Glu Glu Val Leu Ile
305 310 315 320
Ser Cys Met Glu Glu Leu Lys Arg Val Gly Lys Ile Val Ser Trp Cys
325 330 335
Ser Gln Leu Glu Val Leu Thr His Pro Ser Leu Gly Cys Phe Val Thr
340 345 350

His Cys Gly Trp Asn Ser Thr Leu Glu Ser Ile Ser Phe Gly Val Pro
 355 360 365
 Met Val Ala Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys Leu
 370 375 380
 Met Glu Asp Val Trp Arg Thr Gly Val Arg Val Arg Ala Asn Glu Glu
 385 390 395 400
 Gly Ser Val Val Asp Gly Asp Glu Ile Arg Arg Cys Ile Glu Glu Val
 405 410 415
 Met Asp Gly Gly Glu Lys Ser Arg Lys Leu Arg Glu Ser Ala Gly Lys
 420 425 430
 Trp Lys Asp Leu Ala Arg Lys Ala Met Glu Glu Asp Gly Ser Ser Val
 435 440 445
 Asn Asn Leu Lys Val Phe Leu Asp Glu Val Val Gly Ile
 450 455 460 461
 < 2 1 0 > 1 0
 < 2 1 1 > 4 7 8
 < 2 1 2 > P R T
 < 2 1 3 > Torenia hybrida
 < 2 2 0 >
 < 2 2 1 >
 < 2 2 2 >
 < 2 2 3 > Xaa (64) is Cys or Phe, Xaa (65) is Ser or Pro.
 < 4 0 0 > 1 0
 Met Val Asn Lys Arg His Ile Leu Leu Ala Thr Phe Pro Ala Gln Gly
 1 5 10 15
 His Ile Asn Pro Ser Leu Glu Phe Ala Lys Arg Leu Leu Asn Thr Gly
 20 25 30

Tyr Val Asp Gln Val Thr Phe Phe Thr Ser Val Tyr Ala Leu Arg Arg
35 40 45
Met Arg Phe Glu Thr Asp Pro Ser Ser Arg Ile Asp Phe Val Ala Xaa
50 55 60
Xaa Asp Ser Tyr Asp Asp Gly Leu Lys Lys Gly Asp Asp Gly Lys Asn
65 70 75 80
Tyr Met Ser Glu Met Arg Lys Arg Gly Thr Lys Ala Leu Lys Asp Thr
85 90 95
Leu Ile Lys Leu Asn Asp Ala Ala Met Gly Ser Glu Cys Tyr Asn Arg
100 105 110
Val Ser Phe Val Val Tyr Ser His Leu Phe Ser Trp Ala Ala Glu Val
115 120 125
Ala Arg Glu Val Asp Val Pro Ser Ala Leu Leu Trp Ile Glu Pro Ala
130 135 140
Thr Val Phe Asp Val Tyr Tyr Phe Tyr Phe Asn Gly Tyr Ala Asp Asp
145 150 155 160
Ile Asp Ala Gly Ser Asp Gln Ile Gln Leu Pro Asn Leu Pro Gln Leu
165 170 175
Ser Lys Gln Asp Leu Pro Ser Phe Leu Leu Pro Ser Ser Pro Ala Arg
180 185 190
Phe Arg Thr Leu Met Lys Glu Lys Phe Asp Thr Leu Asp Lys Glu Pro
195 200 205
Lys Ala Lys Val Leu Ile Asn Thr Phe Asp Ala Leu Glu Thr Glu Gln
210 215 220
Leu Lys Ala Ile Asp Arg Tyr Glu Leu Ile Ser Ile Gly Pro Leu Ile
225 230 235 240

Pro Ser Ser Ile Phe Ser Asp Gly Asn Asp Pro Ser Ser Ser Asn Lys
245 250 255
Ser Tyr Gly Gly Asp Leu Phe Arg Lys Ala Asp Glu Thr Tyr Met Asp
260 265 270
Trp Leu Asn Ser Lys Pro Glu Ser Ser Val Val Tyr Val Ser Phe Gly
275 280 285
Ser Leu Leu Arg Leu Pro Lys Pro Gln Met Glu Glu Ile Ala Ile Gly
290 295 300
Leu Ser Asp Thr Lys Ser Pro Val Leu Trp Val Ile Arg Arg Asn Glu
305 310 315 320
Glu Gly Asp Glu Gln Glu Gln Ala Glu Glu Glu Lys Leu Leu Ser
325 330 335
Phe Phe Asp Arg His Gly Thr Glu Arg Leu Gly Lys Ile Val Thr Trp
340 345 350
Cys Ser Gln Leu Asp Val Leu Thr His Lys Ser Val Gly Cys Phe Val
355 360 365
Thr His Cys Gly Trp Asn Ser Ala Ile Glu Ser Leu Ala Cys Gly Val
370 375 380
Pro Val Val Cys Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys
385 390 395 400
Met Ile Glu Asp Val Trp Arg Ser Gly Val Arg Val Arg Val Asn Glu
405 410 415
Glu Gly Gly Val Val Asp Arg Arg Glu Ile Lys Arg Cys Val Ser Glu
420 425 430
Val Ile Lys Ser Arg Glu Leu Arg Glu Ser Ala Met Met Trp Lys Gly
435 440 445

Leu Ala Lys Glu Ala Met Asp Glu Glu Arg Gly Ser Ser Met Asn Asn

450 455 460

Leu Lys Asn Phe Ile Thr Arg Ile Ile Asn Glu Asn Ala Ser

465 470 475 478

< 2 1 0 > 1 1

< 2 1 1 > 3 3 5

< 2 1 2 > P R T

< 2 1 3 > Perilla frutescens

< 4 0 0 > 1 1

Met Ser Ser Ser Ser Ser Arg Arg Trp Arg Glu Asn Glu Gly Met Arg

1 5 10 15

Arg Thr Leu Leu Gly Leu Gly Leu Gly Gln Leu Val Ser Phe Asp Leu

20 25 30

Ala Ile Met Thr Phe Ser Ala Ser Leu Val Ser Thr Thr Val Asp Ala

35 40 45

Pro Leu Thr Met Ser Phe Thr Thr Tyr Thr Val Val Ala Leu Leu Tyr

50 55 60

Gly Thr Ile Leu Leu Tyr Arg Arg His Lys Phe Leu Val Pro Trp Tyr

65 70 75 80

Trp Tyr Ala Leu Leu Gly Phe Val Asp Val His Gly Asn Tyr Leu Val

85 90 95

Asn Lys Ala Phe Glu Leu Thr Ser Ile Thr Ser Val Ser Ile Leu Asp

100 105 110

Cys Trp Thr Ile Val Trp Ser Ile Ile Phe Thr Trp Met Phe Leu Gly

115 120 125

Thr Lys Tyr Ser Val Tyr Gln Phe Val Gly Ala Ala Ile Cys Val Gly

130 135 140

Gly Leu Leu Leu Val Leu Leu Ser Asp Ser Gly Val Thr Ala Ala Gly
 145 150 155 160
 Ser Asn Pro Leu Leu Gly Asp Phe Leu Val Ile Thr Gly Ser Ile Leu
 165 170 175
 Phe Thr Leu Ser Thr Val Gly Gln Glu Tyr Cys Val Lys Arg Lys Asp
 180 185 190
 Arg Ile Glu Val Val Ala Met Ile Gly Val Phe Gly Met Leu Ile Ser
 195 200 205
 Ala Thr Glu Ile Thr Val Leu Glu Arg Asn Ala Leu Ser Ser Met Gln
 210 215 220
 Trp Ser Thr Gly Leu Leu Ala Ala Tyr Val Val Tyr Ala Leu Ser Ser
 225 230 235 240
 Phe Leu Phe Cys Thr Leu Thr Pro Phe Leu Leu Lys Met Ser Gly Ala
 245 250 255
 Ala Phe Phe Asn Leu Ser Met Leu Thr Ser Asp Met Trp Ala Val Ala
 260 265 270
 Ile Arg Thr Phe Ile Tyr Asn Gln Glu Val Asp Trp Leu Tyr Tyr Leu
 275 280 285
 Ala Phe Cys Leu Val Val Val Gly Ile Phe Ile Tyr Thr Lys Thr Glu
 290 295 300
 Lys Asp Pro Asn Asn Thr Arg Ala Leu Glu Asn Gly Asn Leu Asp His
 305 310 315 320
 Glu Tyr Ser Leu Leu Glu Asp Gln Asp Asp Thr Pro Arg Lys Pro
 325 330 335
 < 2 1 0 > 1 2
 < 2 1 1 > 4 6 8
 < 2 1 2 > P R T

< 2 1 3 > Petunia hybrida

< 4 0 0 > 1 2

Met Val Gln Pro His Val Ile Leu Thr Thr Phe Pro Ala Gln Gly His
1 5 10 15
Ile Asn Pro Ala Leu Gln Phe Ala Lys Asn Leu Val Lys Met Gly Ile
20 25 30
Glu Val Thr Phe Ser Thr Ser Ile Tyr Ala Gln Ser Arg Met Asp Glu
35 40 45
Lys Ser Ile Leu Asn Ala Pro Lys Gly Leu Asn Phe Ile Pro Phe Ser
50 55 60
Asp Gly Phe Asp Glu Gly Phe Asp His Ser Lys Asp Pro Val Phe Tyr
65 70 75 80
Met Ser Gln Leu Arg Lys Cys Gly Ser Glu Thr Val Lys Lys Ile Ile
85 90 95
Leu Thr Cys Ser Glu Asn Gly Gln Pro Ile Thr Cys Leu Leu Tyr Ser
100 105 110
Ile Phe Leu Pro Trp Ala Ala Glu Val Ala Arg Glu Val His Ile Pro
115 120 125
Ser Ala Leu Leu Trp Ser Gln Pro Ala Thr Ile Leu Asp Ile Tyr Tyr
130 135 140
Phe Asn Phe His Gly Tyr Glu Lys Ala Met Ala Asn Glu Ser Asn Asp
145 150 155 160
Pro Asn Trp Ser Ile Gln Leu Pro Gly Leu Pro Leu Leu Glu Thr Arg
165 170 175
Asp Leu Pro Ser Phe Leu Leu Pro Tyr Gly Ala Lys Gly Ser Leu Arg
180 185 190

Val Ala Leu Pro Pro Phe Lys Glu Leu Ile Asp Thr Leu Asp Ala Glu
195 200 205
Thr Thr Pro Lys Ile Leu Val Asn Thr Phe Asp Glu Leu Glu Pro Glu
210 215 220
Ala Leu Asn Ala Ile Glu Gly Tyr Lys Phe Tyr Gly Ile Gly Pro Leu
225 230 235 240
Ile Pro Ser Ala Phe Leu Gly Gly Asn Asp Pro Leu Asp Ala Ser Phe
245 250 255
Gly Gly Asp Leu Phe Gln Asn Ser Asn Asp Tyr Met Glu Trp Leu Asn
260 265 270
Ser Lys Pro Asn Ser Ser Val Val Tyr Ile Ser Phe Gly Ser Leu Met
275 280 285
Asn Pro Ser Ile Ser Gln Met Glu Glu Ile Ser Lys Gly Leu Ile Asp
290 295 300
Ile Gly Arg Pro Phe Leu Trp Val Ile Lys Glu Asn Glu Lys Gly Lys
305 310 315 320
Glu Glu Glu Asn Lys Lys Leu Gly Cys Ile Glu Glu Leu Glu Lys Ile
325 330 335
Gly Lys Ile Val Pro Trp Cys Ser Gln Leu Glu Val Leu Lys His Pro
340 345 350
Ser Leu Gly Cys Phe Val Ser His Cys Gly Trp Asn Ser Ala Leu Glu
355 360 365
Ser Leu Ala Cys Gly Val Pro Val Val Ala Phe Pro Gln Trp Thr Asp
370 375 380
Gln Met Thr Asn Ala Lys Gln Val Glu Asp Val Trp Lys Ser Gly Val
385 390 395 400

Arg Val Arg Ile Asn Glu Asp Gly Val Val Glu Ser Glu Glu Ile Lys
405 410 415

Arg Cys Ile Glu Leu Val Met Asp Gly Gly Glu Lys Gly Glu Glu Leu
420 425 430

Arg Lys Asn Ala Lys Lys Trp Lys Glu Leu Ala Arg Glu Ala Val Lys
435 440 445

Glu Gly Gly Ser Ser His Lys Asn Leu Lys Ala Phe Ile Asp Asp Val
450 455 460

Ala Lys Gly Phe
465 468

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/03199

A. CLASSIFICATION OF SUBJECT MATTER
Int.C1⁶ C12N15/54, C12N9/10, A01H1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.C1⁶ C12N15/54, C12N9/10, A01H1/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
SwissProt/PIR/GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP, 771878, A1 (PLANT GENETIC SYSTEMS NV), 7 May, 1997 (07. 05. 97) & WO, 97/16559, A1	1-11
A	Science. Vol. 265 (1994) Szerszen, J.B et al., "iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid." p.1699-1701	1-11
A	WO, 96/00291, A1 (RESEARCH CORP TECHNOLOGIES INC.), 4 January, 1996 (04. 01. 96)	1-11

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:		
"A" document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 18 September, 1998 (18. 09. 98)	Date of mailing of the international search report 29 September, 1998 (29. 09. 98)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

国際調査報告

国際出願番号 PCT/JP98/03199

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl⁶ C12N15/54, C12N9/10, A01H1/00

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl⁶ C12N15/54, C12N9/10, A01H1/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
SwissProt/PIR/GeneSeq

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	EP, 771878, A1(PLANT GENETIC SYSTEMS NV) 7.5月. 1997 (07.05.97) & WO, 97/16559, A1	1-11
A	Science. vol. 265(1994) Szerszen, J. B et al. 「taglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid.」 p. 1699-1701	1-11
A	WO, 96/00291, A1(RESEARCH CORP TECHNOLOGIES INC.) 4.1月. 1996(04.01.96)	1-11

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

18. 09. 98

国際調査報告の発送日

29.09.98

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)
郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

新見 浩一

印

4B 9162

電話番号 03-3581-1101 内線 3448