Capteurs électrochimiques

Agrégation 2020

Mesure du potentiel de l'électrode Cu²⁺/Cu

 $Cu^{2+}_{(aq)} + 2e^{-} = Cu(s)$

Électrodes de référence

Couple Ox/Red:

 $Hg_2Cl_2(s)/Hg(l)$

Demi-équation:

$$Hg_2Cl_2(s) + 2e^- = 2Hg(l) + 2Cl^-(aq)$$

Électrode au calomel saturée (ECS)

Électrodes de référence

Couple Ox/Red:

 $H^{+}(aq) / H_{2}(g)$

Demi-équation:

$$2H^{+}(aq) + 2e^{-} = H_{2}(g)$$

Électrode standard à hydrogène (ESH)

Potentiel d'électrode :

$$[Fe^{3+}] = \frac{V_0(Fe^{3+}) \times C_0(Fe^{3+})}{V tot}$$

$$[Fe^{2+}] = \frac{V_{vers\acute{e}}(Fe^{2+}) \times C_0(Fe^{2+})}{V tot}$$

$$\frac{[Fe^{3+}]}{[Fe^{2+}]} = \frac{V_0(Fe^{3+})}{V_{vers\acute{e}}(Fe^{2+})} \operatorname{car} C_0(Fe^{3+}) = C_0(Fe^{2+})$$
Pt
$$V_0(Fe^{2+}) = 20 \text{ mL}$$

$$C_0(Fe^{2+}) = 1,0.10^{-2} \text{ mol.L}^{-1}$$

Analyse chimique d'une eau souterraine:

Eau souterraine : très enrichie en fer Le fer est sous forme d'ions ferreux. Conséquence d'une eau trop ferreuse

• Réglementation : Concentration < 0,2 mg/L [Fe²⁺]<3,6.10⁻⁶ mol.L⁻¹

Afin de mettre au point un <u>processus de traitement</u>, il faut auparavant réaliser une analyse chimique : Titrage des ions Fe²⁺ dans l'eau soutteraine

Titrage potentiométrique des ions Fer (II)

	Fe ²⁺ (aq)	+ Ce ⁴⁺ (aq) =	= Fe ³⁺ _(aq) +	- Ce ³⁺ (aq)
Avant l'équivalence	V ₀ .C ₀ ≈0	≈0	7	
A l'équivalence	$V_0.C_0-x_{\acute{e}q}\approx 0$	V _{versé} .C-x _{éq} ≈0	$X_{\acute{e}q} = V_0 \cdot C_0$	$X_{\text{\'eq}} = V_0 \cdot C_0$
Après l'équivalence	≈0		V ₀ .C ₀	<i>V</i> ₀ . <i>C</i> ₀

Sulfate de cérium Ce(SO₄)₂

 $C=1,0.10^{-1} \text{ mol.L}^{-1}$

En tout point du dosage :

$$E = E_{\text{Fe}^{3+/\text{Fe}^{2+}}} = E_{\text{Fe}^{3+/\text{Fe}^{2+}}} + 0.06 \log(\frac{[Fe^{3+}]}{[Fe^{2+}]})$$

$$E = E_{\text{Ce}^{3+/\text{Ce}^{2+}}} = E_{\text{Ce}^{4+/\text{Ce}^{3+}}} + 0.06 \log(\frac{[Ce^{4+}]}{[Ce^{3+}]})$$

$$E = E_{\text{Ce}^{3+}/\text{Ce}^{2+}} = E_{\text{Ce}^{4+}/\text{Ce}^{3+}} + 0.06 \log(\frac{[ce^{4+}]}{[ce^{3+}]})$$

Solution de Sel de Mohr

 $V_0 = 20 \text{ mL}$

 C_0 =Inconnue

Cellule Conductimétrique

À gauche : schéma d'une cellule conductimétrique. *À droite* : zoom sur les plaques.

Contrôle qualité d'un sérum physiologique

Sérum Physiologique concentration massique 9g/L