Exercice 1:

On considère la fonction f définie sur $I =]0, +\infty[$ par $f(x) = x + \ln x.$

- 1. Montrer que f a un unique point fixe sur I que l'on déterminera.
- 2. Montrer que f réalise une bijection de I vers un intervalle J à déterminer.

On note g l'application de J dans I, bijection réciproque de $f: I \to J$.

- 3. Montrer que g est dérivable sur J et que : $\forall x \in J, g'(x) = \frac{g(x)}{1+g(x)}$. En déduire la valeur de g'(1).
- 4. Montrer que $g(y) \underset{y \to +\infty}{\sim} y$.

Exercice 2:

On définit la fonction f sur \mathbb{R} par $f(x) = \frac{e^x + e^{-x}}{5}$.

- 1. Montrer que f possède sur [0,1] un unique point fixe noté α .
- 2. Soit $(a,b) \in [0,1]^2$. Montrer $|f(b)-f(a)| \le \frac{8}{15} |b-a|$. (Indication: on vérifiera l'inégalité si a=b et, si $a \ne b$, on appliquera la formule des accroissements finis à f sur le segment d'extrémités a et b).
- 3. On définit la suite $u=(u_n)_{n\geq 0}$ par : $u_0=\frac{1}{2}$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=f(u_n)$.
 - (a) Justifier : $\forall n \in \mathbb{N}, u_n \in [0, 1]$.
 - (b) Montrer: $\forall n \in \mathbb{N}, |u_n \alpha| \le \left(\frac{8}{15}\right)^n \times |u_0 \alpha|.$
 - (c) En déduire que la suite $(u_n)_{n\geq 0}$ converge et déterminer sa limite.
- 4. Écrire une fonction Python prenant un réel strictement positif ε en entrée et donnant en sortie une valeur approchée de α à ε près.

Exercice 3 : Les deux questions 1) et 2) sont indépendantes.

- 1. Soit $f:[a,b] \longrightarrow \mathbb{R}$ dérivable telle que f(a)=f(b)=0. On fixe $c \in \mathbb{R} \setminus [a,b]$. On veut montrer qu'il existe une tangente à la courbe de f passant par le point de coordonnées (c,0).
 - (a) Faire un dessin représentant sur un exemple ce que l'on doit montrer.
 - (b) On pose $g(x) = \frac{f(x)}{x-c}$. Justifier l'existence d'un réel $u \in]a,b[$ tel que g'(u)=0.
 - (c) Conclure.
- 2. Soit $f:[0,a] \longrightarrow \mathbb{R}$ dérivable, telle que f(0)=0 et $\forall x \in [0,a], f'(x)>0$. On veut montrer l'existence d'un réel k strictement positif tel que $\forall x \in [0,a], f(x) \ge kx$.

Pour cela, on posera $g(x) = \frac{f(x)}{x}$ pour tout $x \in]0, a]$.

- (a) Montrer que g est prolongeable par continuité en 0. On notera encore g la fonction ainsi prolongée (donc définie et continue sur [0, a]).
- (b) Justifier : $\forall x \in [0, a], g(x) > 0.$
- (c) Conclure.