

MOOC 1: Exploratory Data Analysis for Machine Learning - Study Notes

View Original Notion Document: https://www.notion.so/MOOC-1-Exploratory-Data-Analysis-for-Machine-Learning-Study-Notes-27b2d55efe0c809b97e6d9d5c2c30ef0?source=copy_link

MODULE 1: AI, ML & DEEP LEARNING

Core Definitions

©STUDYOPEDIA All rights reserved

ARTIFICIAL INTELLIGENCE (AI)

- · Any program that can sense, reason, act and adapt
- · Simulation of intelligent behavior in computers

MACHINE LEARNING (ML)

- Subset of AI Learns from data, improves over time
- Not explicitly programmed, but learns patterns from data

DEEP LEARNING (DL)

- Subset of ML Uses multi-layered neural networks
- · Automatically learns features, no manual feature engineering needed

Al History Timeline

- 1950s: Turing Test developed, AI term officially coined
- 1960s-70s: First Al Winter Disappointment with early results
- 1980s: Expert Systems boom → Second Al Winter follows
- 1990s-2000s: ML breakthrough successes (Google PageRank, speech recognition)
- 2012+: Deep Learning revolution begins (AlexNet breakthrough)

Real-world Applications

- Computer Vision: Face recognition, autonomous vehicles
- Natural Language Processing: Machine translation, sentiment analysis
- Healthcare: Medical imaging analysis, drug discovery
- Business Intelligence: Fraud detection, recommendation engines

MODULE 2: DATA RETRIEVAL & CLEANING

Machine Learning Workflow

Problem Statement \rightarrow Data Collection \rightarrow Data Exploration & Preprocessing \rightarrow Modeling \rightarrow Validation \rightarrow Deployment

Detailed Workflow Steps:

- 1. Problem Statement: Define the business problem and success metrics
- 2. Data Collection: Gather relevant data from various sources
- 3. Data Exploration & Preprocessing: Clean, explore, and prepare data
- 4. Modeling: Select and train appropriate ML algorithms
- 5. Validation: Evaluate model performance and generalization
- 6. **Deployment**: Implement model in production environment

Data Sources Overview

Туре	Format	Python Library	Use Case
csv	Comma-separated	pd.read _csv()	Tabular data
JSON	JavaScript Object	pd.read _json()	APIs, NoSQL
SQL	Structured queries	sqlite3 , sqlalchemy	Relational DB
NoSQL	Document-based	pymongo	MongoDB

Data Cleaning Strategies

GARBAGE IN = GARBAGE OUT

Data quality determines model performance!

Missing Values Handling

- Remove: Lose data but no bias introduced
- Impute: Replace with mean/median adds uncertainty
- Mask: Treat missing as separate category

Missing values handling examples

df.dropna() # Remove rows with missing values

df.fillna(df.mean()) # Impute with mean

```
df.fillna(df.median()) # Impute with median
df.fillna('Missing') # Mask as separate category
```

Outlier Detection Methods

1. Visual Methods: Histograms, Box plots, Scatter plots

2. Statistical Methods:

• IQR Method: Q3 + 1.5×IQR (upper bound)

• **Z-Score**: |z| > 3 → outlier

• Residuals: Standardized, Deleted, Studentized

```
# Outlier detection using IQR method
Q1 = df['column'].quantile(0.25)
Q3 = df['column'].quantile(0.75)
IQR = Q3 - Q1
outliers = df[(df['column'] < (Q1 - 1.5 * IQR)) | (df['column'] > (Q3 + 1.5 * IQR))]
# Z-score method
z_scores = np.abs((df['column'] - df['column'].mean()) / df['column'].std())
outliers = df[z_scores > 3]
```

Duplicate Data Handling

- Investigate first: Distinguish real duplicates vs. valid repeated observations
- Remove carefully: Ensure no important information is lost

MODULE 3: EXPLORATORY DATA ANALYSIS & FEATURE ENGINEERING

EDA - First Conversation with Data

EDA Goals

- 1. Understand data structure & quality
- 2. Identify patterns & relationships
- 3. Detect issues needing cleaning
- 4. Guide modeling decisions

Statistical Summary Functions

Core EDA functions
df.describe() # Summary statistics

```
df.info()  # Data types & nulls
df.corr()  # Correlations
df.value_counts()  # Category frequencies

# Basic visualizations
df['column'].hist()  # Histogram
df.boxplot()  # Box plot
sns.pairplot(df)  # Pair plot for relationships
```

Visualization Libraries

- Matplotlib: Foundation library maximum flexibility
- **Seaborn**: Beautiful statistical plots pairplot(), heatmap()
- Pandas: Quick plotting df.plot() for rapid insights

VISUALIZATION TYPES FOR

Feature Engineering Techniques

Variable Transformations

- **Log Transform**: Reduces positive skew → normal distribution
- Polynomial Features: x, x^2, x^3 to capture non-linear relationships
- **Box-Cox**: Automatically finds optimal transformation

```
# Variable transformations
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from scipy.stats import boxcox

# Log transformation
df['log_column'] = np.log1p(df['column']) # log(1+x) to handle zeros

# Polynomial features
poly = PolynomialFeatures(degree=2)
X_poly = poly.fit_transform(X)
```

Encoding Categorical Variables

ENCODING METHODS

- Binary Encoding: True/False → 0/1
- One-Hot Encoding: Multiple categories → multiple binary columns
- Ordinal Encoding: Low/Medium/High → 1/2/3 (preserves order)

Categorical encoding examples
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder

One-hot encoding
df_encoded = pd.get_dummies(df, columns=['category_column'])

Binary/Label encoding
le = LabelEncoder()
df['encoded_column'] = le.fit_transform(df['category_column'])

Ordinal encoding (preserves order)
ordinal_encoder = OrdinalEncoder(categories=[['Low', 'Medium', 'High']])
df['ordinal_encoded'] = ordinal_encoder.fit_transform(df[['ordered_column']])

Feature Scaling Comparison

Method	Formula	Range	Outlier Effect
Standard Scaling	$(x-\mu)/\sigma$	Unbounded	Moderate
Min-Max Scaling	(x-min)/(max-min)	[0,1]	High Risk
Robust Scaling	(x-median)/IQR	Unbounded	Low Risk

Feature scaling examples

from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler

Standard scaling

scaler = StandardScaler()

X_standard = scaler.fit_transform(X)

Min-Max scaling

min_max_scaler = MinMaxScaler()

X_minmax = min_max_scaler.fit_transform(X)

Robust scaling (recommended for outliers)

robust_scaler = RobustScaler()

X_robust = robust_scaler.fit_transform(X)

MODULE 4: STATISTICAL INFERENCE & HYPOTHESIS TESTING

Key Statistical Concepts

ESTIMATION vs INFERENCE

• Estimation: Point estimate (e.g., mean = 25)

• Inference: Interval + uncertainty (e.g., 95% CI: 20-30)

Parametric vs Non-parametric Approaches

• Parametric: Assumes specific distribution (e.g., Normal) + finite parameters

• Non-parametric: Distribution-free, relies on actual data structure

Common Statistical Distributions

Distribution	Use Case	Parameters	Example
Normal	Heights, test scores	μ (mean), $σ$ (std)	Most natural phenomena
Binomial	Success/Failure trials	n (trials), p (probability)	Coin flips, A/B testing
Poisson	Count events in time	λ (rate parameter)	Website visits per hour
Exponential	Time between events	λ (rate parameter)	Time to next customer

Hypothesis Testing Framework

HYPOTHESIS SETUP

- Ho (Null Hypothesis): No effect exists, status quo
- H₁ (Alternative Hypothesis): Effect exists, change from status quo
- α (Significance Level): Type I error tolerance (typically 0.05)

Error Types in Hypothesis Testing

- Type I Error (α): False Positive Incorrectly reject true H_o
- Type II Error (β): False Negative Fail to reject false H_o

• Statistical Power: 1-β = Probability of correctly rejecting false H_o

P-value Interpretation

P-value = Probability of observing data this extreme if H_0 is true

Decision Rules:

- p < 0.05: Reject H_o (statistically significant result)
- p ≥ 0.05: Fail to reject H_o (insufficient evidence)

MULTIPLE TESTING PROBLEM

With n independent tests: $P(\ge 1 \text{ Type I error}) \approx n \times \alpha$

Solution: Bonferroni Correction \rightarrow Use α/n for each test

Correlation vs Causation

CORRELATION ≠ CAUSATION

Four Possible Relationships:

- 1. X → Y: X directly causes Y
- 2. Y → X: Y directly causes X (reverse causation)
- 3. Z → X,Y: Confounding variable Z causes both
- 4. Spurious: Random correlation, no real relationship

Business Examples

- Incorrect Interpretation: More customer service calls → Lower satisfaction
- Correct Interpretation: Lower satisfaction → More customer service calls

BUSINESS APPLICATION: CUSTOMER CHURN PREDICTION

CHURN PREDICTION WORKFLOW

Target Variable: Customer leaves (1) or stays (0)

Feature Variables: Tenure, purchase history, demographics, usage patterns

Model Output: Probability score (0.0 to 1.0)

Hypothesis Testing Example:

- Ho: Customer tenure has no effect on churn probability
- H₁: Longer tenure significantly reduces churn probability

PYTHON TOOLS & LIBRARIES

Essential Libraries

```
import pandas as pd  # Data manipulation and analysis import numpy as np  # Numerical computing and arrays import matplotlib.pyplot as plt # Basic plotting and visualization import seaborn as sns  # Statistical data visualization import scipy.stats as stats  # Statistical functions and tests from sklearn.preprocessing import StandardScaler, LabelEncoder
```

Key Functions by Category

```
# Data Loading and I/O
pd.read_csv(), pd.read_json(), pd.read_sql()

# Exploratory Data Analysis
df.describe(), df.info(), df.corr()
sns.pairplot(), sns.heatmap(), sns.boxplot()

# Data Preprocessing
StandardScaler(), MinMaxScaler(), LabelEncoder()
pd.get_dummies() # One-hot encoding

# Statistical Testing
scipy.stats.ttest_1samp() # One-sample t-test
scipy.stats.pearsonr() # Pearson correlation test
scipy.stats.chi2_contingency() # Chi-square test
```