Soluzioni prova scritta

Ingegneria Informatica 08/06/2023

Esercizio 1

- 1. 2 Puntil Siano $x, y, z \in \mathbb{R}$ numeri floating point, ovvero esattamente rappresentati nel formato in virgola mobile, e si indica con RN il metodo di arrotondamento round-to-nearest. Inoltre si denota con u la precisione di macchina e, nelle affermazioni che seguono, si assume che non vengano generati errori di overflow ed underflow.
- V F In generale $RN(x+y) \neq RN(y+x)$.
- V F In generale $RN(RN(x+y)+z) \neq RN(x+RN(y+z))$.
- V F In generale $x \cdot RN(x^{-1}) \neq 1$.
- V F In generale $x \cdot RN(x)^{-1} \neq 1$.
- \overline{V} F Nel caso si usi il formato *precisione doppia*, rappresentare x richiede 32 bit.
- V F Nel caso si usi il formato precisione doppia, si ha $u \approx 2.22 \times 10^{-16}$.
- 2. Punti Data $A \in \mathbb{R}^{m \times n}$, con $m \ge n$, ed il vettore $b \in \mathbb{R}^m$, si consideri il problema lineare ai minimi quadrati $\min_{x \in \mathbb{R}^n} ||Ax b||_2$. Allora:
- V F Esiste sempre almeno una soluzione ottima $x^* \in \mathbb{R}^n$, ovvero tale che $||Ax^* b||_2 = \min_{x \in \mathbb{R}^n} ||Ax b||_2$.
- V F Quando esiste, la soluzione ottima è unica.
- \overline{V} F Quando esiste, la soluzione ottima è unica se e solo se A è di rango massimo.
- \overline{V} F Se A non è di rango massimo, può esserci un'unica soluzione ottima.
- V F Se $x^* \in \mathbb{R}^n$ soluzione ottima, allora $||Ax^* b||_2 = 0$
- V F Se $x^* \in \mathbb{R}^n$ soluzione ottima, allora $||Ax^* b||_2 > 0$

• N.B. le soluzioni qui riportate sono in forma schematica e concisa. Quando si compila la prova d'esame è necessario fornire chiare giustificazioni di tutti i passaggi risolutivi degli esercizi che non sono a risposta multipla.

- 3. 2 Punti Sia $A \in \mathbb{C}^{n \times n}$ una matrice invertibile; si indichi con $\mu(A)$ il numero di condizionamento della matrice rispetto alla norma 2 e con $\rho(A)$ il raggio spettrale di A.
- $\overline{\mathbf{V}}$ F Se $Q \in \mathbb{C}^{n \times n}$ è una matrice unitaria allora $\mu(A) = \mu(AQ)$.
- **V** F Se $Q \in \mathbb{C}^{n \times n}$ è una matrice unitaria allora $\mu(A) = \mu(Q^H A Q)$.
- V F Se $S \in \mathbb{C}^{n \times n}$ è invertibile allora $\mu(A) = \mu(S^{-1}AS)$.
- \overline{V} Per ogni matrice $B \in \mathbb{C}^{n \times n}$ $\mu(AB) = \mu(A)\mu(B)$.
- [V] **F** Se A è Hermitiana allora $\mu(A) = \rho(A)$
- V F Se A è Hermitiana allora $\mu(A) = \rho(A)\rho(A^{-1})$.
- 4. 2 Punti Si indichi con $I_N(f)$ la formula dei trapezi composita su $N \in \mathbb{N}$ intervalli per l'approssimazione di $\int_{-1}^1 f(x)dx$ (ovvero $I_N(f) \approx \int_{-1}^1 f(x)dx$).
- V F Calcolare $I_N(f)$, per un dato N, richiede di valutare f in N nodi in [-1,1].
- V F Se f è un polinomio di grado 1 allora $I_1(f)$ è esatta, ovvero $I_1(f) = \int_{-1}^1 f(x) dx$.
- V F Se f è un polinomio di grado N allora $I_N(f)$ è esatta, ovvero $I_N(f) = \int_{-1}^1 f(x) dx$.
- V F Nel caso f(x) = |x| si ha $I_N(f) = \int_{-1}^1 f(x) dx$ per ogni N intero positivo.
- V F Nel caso f(x) = |x| si ha $I_N(f) = \int_{-1}^1 f(x) dx$ per ogni N intero positivo pari.
- V F Nel caso f(x) = |x| si ha $I_N(f) = \int_{-1}^1 f(x) dx$ per ogni N intero positivo dispari.

Esercizio 2

(i) 5 Punti Data la tabella di valori

si determini la retta y = mx + q che approssima nel senso dei minimi quadrati la funzione f(x).

(ii) 3 Punti Data la tabella di valori

si determinino i valori del parametro $\alpha \in \mathbb{R}$ che fanno passare per l'origine la retta che approssima nel senso dei minimi quadrati f(x) (ovvero tali per cui q=0).

- (i) Risolvendo il sistema delle equazioni normali si ottiene $y = \frac{9}{5}x + \frac{8}{5}$.
- (ii) Calcolando la soluzione in funzione del parametro α si ottiene una retta passante per l'origine quando $\alpha=\frac{25}{4}$

Esercizio 3

Si consideri il sistema non lineare

$$\begin{cases} x^2 + y^2 = 1\\ xy - \frac{1}{2}x = 0 \end{cases}.$$

- (i) 2 Punti Si determinino tutte le soluzioni $(x, y) \in \mathbb{R}^2$.
- (ii) 6 Punti Per ognuna delle soluzioni trovate si dica (giustificando la risposta) se il metodo iterativo

$$\begin{cases} x_{k+1} = x_k - x_k^2 - y_k^2 + 1 \\ y_{k+1} = y_k - x_k(y_k - \frac{1}{2}) \end{cases},$$

è localmente convergente.

(i) Il sistema ha esattamente 4 soluzioni date da

$$p_1 = (0, 1),$$
 $p_2 = (0, -1),$ $p_3 = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),$ $p_4 = \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right).$

(ii) Calcolando esplicitamente il raggio spettrale del Jacobiano della mappa iterativa, nei 4 punti, si conclude che il metodo è localmente convergente per p_3 e non localmente convergente negli altri punti.

Esercizio 4

(i) 5 Punti Si calcoli l'approssimazione dell'integrale definito

$$\int_0^3 \sqrt{2x} \ dx,$$

mediante la formula di Simpson composita con una suddivisione equispaziata in 3 intervalli. In particolare, si mostri il calcolo passo per passo senza sostituire valori numerici a quantità radicali (ad esempio non c'è bisogno di sostituire $\sqrt{2}$ con 1.41 o simili).

(ii) 3 Punti Si calcoli l'approssimazione dell'integrale definito

$$\int_0^5 3x^2 + 2x + 1 \ dx$$

mediante la formula di Simpson composita con una suddivisione equispaziata in 25 intervalli.

(i) Applicando la formula di Simpson composita con 3 intervalli su [0, 3] si ottiene

$$\int_0^3 \sqrt{2x} \ dx \approx 8 + 2\sqrt{2} + 4\sqrt{3} + 4\sqrt{5} + \sqrt{6}.$$

(ii) Essendo la formula di Simpson esatta per funzioni polinomiali di grado 2 si ha che l'approssimazione equivale al valore esatto dell'integrale, ovvero

$$\int_0^5 3x^2 + 2x + 1 \ dx = 155.$$