Vergleich von Mitose und Meiose

Phase	Mitose	Meiose
	Herkunft : Körperzelle	Herkunft : Körperzelle
	-	(Urkeimzelle)
Interphase	Chromosomen nicht sichtbar-	Chromosomen nicht sichtbar-
	Chromatingerüst	Chromatingerüst
	Zellwachstum, Zellsteuerung,	Identische Replikation der DNA
	Identische Replikation der DNA	
Prophase	Chromosomen werden sichtbar	Chromosomen werden sichtbar.
	(maximale Verkürzung in der	Paarung der homologen
	Metaphase).	(Zweichromatid-) Chromosomen.
		Es entstehen Tetraden
		(Vierchromatid-Chromosomen).
	Kernmembran zerfällt am Ende	Kernmembran zerfällt am Ende der
	der Prophase.	Prophase.
Metaphase	Anordnung der Zweichomatid-	Tetraden ordnen sich in der
	Chromosomen in der	Äquatorialebene an.
	Äquatorialebene.	
Anaphase	Auftrennen der Zweichomatid-	Auftrennen der Tetraden in
	Chromosomen zu Einchromatid-	Zweichromatid-Chromosomen.
	Chromosomen.	Die Zweichromatid-Chromosomen
	Zu jedem Pol wird eine	werden zu den Polen gezogen. Die
	Chromatide des Zweichromatid-	homologen Chromosomen werden
	Chromosomens gezogen, sodass	dadurch wieder getrennt. Jeder
	jeder Pol am Ende einen	Zellteil enthält einen haploiden
	vollständigen (diploiden) und	Chromosomensatz. Die Verteilung
	identischen Chromosomensatz	der mütterlichen und väterlichen
	enthält.	Chromosomen ist zufallsbedingt.
Telophase	Entschrauben der Chromosomen.	Bildung zweier Zellen (einziehen
	Bildung einer neuen	einer Zellmembran). Es folgt keine
	Kernmembran. Es sind zwei	Interphase. Die beiden Zellen sind
	genetisch völlig identische Zellen	genetisch nicht identisch.
	entstanden	
		Die zweite Reifeteilung erfolgt wie
		die Mitose (siehe erste Spalte).

Fragen:

- 1a) Wie unterscheiden sich Mitose und Meiose?
- 1b) Welches Ziel haben Meiose bzw. Mitose?
- 2.) Überlegen Sie welche Bedeutung gerade die erste Reifeteilung der Meiose für die sexuelle Fortpflanzung hat.

Zu den Fragen:

- 1a) In der Prophase der Meiose erfolgt die Paarung der homologen Chromosomen, aus denen Vierchromatid-Chromosomen entstehen. Dieser Vorgang fehlt in der Mitose. In der Anaphase werden bei der Meiose die Vierchromatidchromosomen (Tetraden), bei der Mitose die Zweichromatid-Chromosomen geteilt. Bei der Mitose entstehen in der Telophase zwei genetisch identische Zellen mit diploiden Chromosomensatz, bei der Meiose zwei genetisch unterschiedliche Zellen mit haploidem Chromosomensatz.
- 1b) Durch die Mitose findet eine Vermehrung bzw. Erneuerung von Körperzellen statt. Es ist wichtig das genetisch identische Zellen gebildet werden. Durch die Meiose werden Keimzellen gebildet. Diese müssen einen einfachen Chromosomensatz haben, da sonst die Anzahl der Chromosomen bei der Fortpflanzung dramatisch ansteigen würde.
- 2.) Bei der sexuellen Fortpflanzung kommt es auf eine möglichst große Rekombinationsmöglichkeit von Chromosomen an. Für eine diploide Zelle mit 46 Chromosomen (23+23) gibt es 2 ²³ Kombinationsmöglichkeiten, d.h. es könnten 8,4 Millionen verschiedene Keimzellen entstehen. Dadurch wird eine größere Variabilität der Nachkommen erreicht, was bedeutsam für die Evolution ist.