Project 3

Bharath Karumudi

August 19, 2019

Abstract

This project is to demonstrate the capabilities of implementiong constructing and deconstructing HOL Terms using the tools and techniques - LATEX, AcuTeX, emacs and ML.

Each chapter documents the given problems with a structure of:

- 1. Problem Statement
- 2. Relevant Code
- 3. Execution Transcripts
- 4. Explanation of results

Acknowledgments: Professor Marvine Hamner and Professor Shiu-Kai Chin who taught the Certified Security By Design.

Contents

1	Executive Summary	3
2	Exercise 7.3.1 2.1 Problem Statement 2.2 Relevant Code 2.3 Test Cases 2.4 Execution Transcripts 2.4.1 Explanation of Results	4 4 4 5 5
3	Exercise 7.3.2 3.1 Problem Statement 3.2 Relevant Code 3.3 Test Cases 3.4 Execution Transcripts 3.4.1 Explanation of Results	6 6 7 7
4	Exercise 7.3.3 4.1 Problem Statement 4.2 Relevant Code 4.3 Test Cases 4.4 Execution Transcripts 4.4.1 Explanation of Results	8 8 8 8 8
5	5.1Problem Statement15.2Relevant Code15.3Execution Transcripts1	10 10 10
6	6.1 Problem Statement	11 11 12
7	7.1 Problem Statement17.2 Relevant Code17.3 Execution Transcripts1	13 13 14
8	Appendix A: Chapter 7	15
9	Appendix B: Chapter 8	۱7

Executive Summary

All the requirements for this project are statisfied specifically, and by using HOL proved the below theorems:

Contents

Our report has the following content:

- 1. Chapter 1: Executive Summary
- 2. Chapter 2 Exercise 7.3.1
 - (a) Section 2.1 Problem Statement
 - (b) Section 2.2 Relevant Code
 - (c) Section 2.3 Test Cases
 - (d) Section 2.4 Execution Transcripts
 - (e) Section 2.4.1 Explanation of Results
- 3. Chapter 3 Exercise 7.3.2
 - (a) Section 3.1 Problem Statement
 - (b) Section 3.2 Relevant Code
 - (c) Section 3.3 Test Cases
 - (d) Section 3.4 Execution Transcripts
 - (e) Section 3.4.1 Explanation of Results
- 4. Chapter 4 Exercise 7.3.3
 - (a) Section 4.1 Problem Statement
 - (b) Section 4.2 Relevant Code
 - (c) Section 4.3 Test Cases
 - (d) Section 4.4 Execution Transcripts
 - (e) Section 4.4.1 Explanation of Results

Chapter 8:

$$\begin{array}{l} [\texttt{conjSymThm}] \\ \vdash p \ \land \ q \iff q \ \land \ p \\ \\ [\texttt{conjSymThmAll}] \\ \vdash \forall \ p \ q. \ p \ \land \ q \iff q \ \land \ p \\ \\ [\texttt{problem1Thm}] \\ \vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r \end{array}$$

Reproducibility in ML and LATEX: Our ML and LATEX source files compile with no errors.

Exercise 7.3.1

2.1 Problem Statement

In this exercise we need to create a function and Imp2Imp term, which will take:

$$p \wedge q \subset r$$

and results to:

$$p \subset q \subset r;$$

2.2 Relevant Code

```
fun andImp2Imp term =
let
  val(conjTerm,r)= dest_imp(term)
  val(p,q) = dest_conj(conjTerm)

in
    mk_imp(p,(mk_imp(q,r)))
end;

(**** Test Case ****)
andImp2Imp ''(p/\q) => r''
```

2.3 Test Cases

The required test cases are:

```
andImp2Imp ((p/q) \implies r)
```

2.4 Execution Transcripts

```
HOL-4 [Kananaskis 11 (stdkn1, built Sat Aug 19 09:30:06 2017)]

For introductory HOL help, type: help "hol";
    To exit type <Control>-D

>> >> # # # # # # # * * types trace now on
> *** Globals.show_assums now true ***
> # # # # # # * * Unicode trace now off
>
> # # # # # # val andImp2Imp = fn: term -> term
> >
> andImp2Imp '('p/\q) ==> r'';
val it =
    '('p:bool) ==> (q:bool) ==> (r:bool)'':
    term
>
```

2.4.1 Explanation of Results

The above test results shows the test case has been passed.

Exercise 7.3.2

3.1 Problem Statement

In this exercise, we have to create and Imp2Imp term, which takes the term

$$p \subset q \subset r;$$

and results to:

$$p \wedge q \subset r$$

and also should act as a reverse function for 7.3.1

3.2 Relevant Code

```
(****Function and Imp2Imp ~ same as from 7.3.1 ****)
\mathbf{fun} and \mathbf{Imp2Imp} term =
 val(conjTerm,r)= dest_imp(term)
 val(p,q) = dest\_conj(conjTerm)
  mk_{imp}(p, (mk_{imp}(q, r)))
end;
(**** Function impImpAnd ****)
fun impImpAnd term =
let
 val(term1, imp) = dest_imp(term)
 val(term2, term3) = dest_imp(imp)
 val new_conj = mk_conj(term1, term2)
 mk_imp(new_conj, term3)
end;
(***** Test Cases ********)
andImp2Imp ((p/q) \implies r)
impImpAnd ''p \Longrightarrow q \Longrightarrow r'';
impImpAnd(andImp2Imp '(p/q) \implies r');
andImp2Imp(impImpAnd ''p=>q=>r'');
```

3.3 Test Cases

The required test cases are:

```
 \begin{array}{c} \operatorname{andImp2Imp} \ ``(p/\backslash q) \Longrightarrow r `` \\ \operatorname{impImpAnd} \ ``p \Longrightarrow q \Longrightarrow r ``; \\ \operatorname{impImpAnd}(\operatorname{andImp2Imp} \ ``(p/\backslash q) \Longrightarrow r ``); \\ \operatorname{andImp2Imp}(\operatorname{impImpAnd} \ ``p \Longrightarrow q \Longrightarrow r ``); \\ \end{array}
```

3.4 Execution Transcripts

```
HOL-4 [Kananaskis 11 (stdknl, built Sat Aug 19 09:30:06 2017)]
       For introductory HOL help, type: help "hol";
       To exit type <Control>-D
> > > >
> # # # # # # # # ** types trace now on
> *** Globals.show_assums now true ***
> # # # # # # # # ** Unicode trace now off
> # # # # # # wal andImp2Imp = fn: term -> term
> # # # # # # # # wal impImpAnd = fn: term -> term
> val it =
   "(p:bool) ==> (q:bool) ==> (r:bool)":
   term
> val it =
   "((p :bool) /\ (q :bool) ==> (r :bool)":
   term
> val it = ''(p :bool) /\ (q :bool) ==> (r :bool)'':
   term
> val it =
   ''(p :bool) ==> (q :bool) ==> (r :bool)'':
```

3.4.1 Explanation of Results

The above transcript shows the given test cases has been passed.

Exercise 7.3.3

4.1 Problem Statement

In this exercise we have to create a function $notExists\ term$ which takes the term $\neg \exists x. P(x)$ and returns $\forall x. \neg P(x)$.

4.2 Relevant Code

```
fun notExists term =
let
  val (t1, t2) = dest_exists(dest_neg(term))
in
  mk_forall(t1,t2)
end;

(***** Test Cases ********)
notExists ''~?z.Q z'';
```

4.3 Test Cases

The required test cases are:

```
notExists ''~?z.Q z'';
```

4.4 Execution Transcripts

4.4.1 Explanation of Results

The above transcript shows the given tests has been passed.

Exercise 8.4.1

5.1 Problem Statement

In this exercise we need to prove the theorem: $\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r$

5.2 Relevant Code

```
val problem1Thm =
let
val th1 = ASSUME ''p:bool''
val th2 = ASSUME ''p \Rightarrow q''
val th3 = ASSUME ''q \Rightarrow r''
val th4 = MP th2 th1
val th5 = MP th3 th4
val th6 = DISCH (hd(hyp th3)) th5
val th7 = DISCH (hd(hyp th2)) th6
in
  DISCH (hd(hyp th1)) th7
end;

val _ = save_thm("problem1Thm", problem1Thm);
```

5.3 Execution Transcripts

5.3.1 Explanation of Results

The above results shows that theorem is proved.

Exercise 8.4.2

6.1 Problem Statement

In this exercise we need to prove the theorem: $\vdash \forall p \ q. \ p \land q \iff q \land p$

6.2 Relevant Code

```
val conj1Thm =
 val th1 = ASSUME "p / q"
 val th2 = CONJUNCT1 th1
 val th3 = CONJUNCT2 th1
 val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conj2Thm =
 val th1 = ASSUME 'q / p''
 val th2 = CONJUNCT1 th1
 val th3 = CONJUNCT2 th1
 val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val _ = save_thm("conjSymThm", conjSymThm);
```

6.3 Execution Transcripts

```
1
       HOL-4 [Kananaskis 11 (stdknl, built Sat Aug 19 09:30:06 2017)]
       For introductory HOL help, type: help "hol";
       To exit type <Control>-D
> > > # # # # # # # # ** types trace now on
> *** Globals.show_assums now true ***
> # # # # # # # ** Unicode trace now off
> # # # # # # # # val conj1Thm =
[] |- (p :bool) /\ (q :bool) ==> q /\ p:
   thm
> > # # # # # # # wal conj2Thm =
[] |- (q:bool) /\ (p:bool) ==> p /\ q:
   thm
> > # val conjSymThm =
   [] |- (p :bool) /\ (q :bool) <=> q /\ p:
   thm
> > > >
*** Emacs/HOL command completed ***
```

6.3.1 Explanation of Results

The above results shows that theorem is proved.

Exercise 8.4.3

7.1 Problem Statement

In this exercise we need to prove the theorem: $\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r$

7.2 Relevant Code

```
val conj1Thm =
val th1 = ASSUME "p / q"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conj2Thm =
val th1 = ASSUME 'q / p''
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val conjSymThmAll = GENL[''p:bool'', ''q:bool''] conjSymThm;
val _ = save_thm("conjSymThmAll", conjSymThmAll)
```

7.3 Execution Transcripts

```
1
       HOL-4 [Kananaskis 11 (stdknl, built Sat Aug 19 09:30:06 2017)]
       For introductory HOL help, type: help "hol";
       To exit type <Control>-D
> > > # # # # # # # # ** types trace now on
> *** Globals.show_assums now true ***
> # # # # # # # ** Unicode trace now off
> # # # # # # # # val conj1Thm =
[] |- (p :bool) /\ (q :bool) ==> q /\ p:
   thm
> > # # # # # # # wal conj2Thm =
[] |- (q:bool) /\ (p:bool) ==> p /\ q:
   thm
> > # val conjSymThm =
    [] |- (p :bool) /\ (q :bool) <=> q /\ p:
   thm
> > val conjSymThmAll =
    [] |- !(p :bool) (q :bool). p /\ q <=> q /\ p:
   thm
*** Emacs/HOL command completed ***
```

7.3.1 Explanation of Results

The above results shows that theorem is proved.

Appendix A: Chapter 7

The following code is from the file chapter7Answers.sml

```
(* Exercise 7...3
(* Author: Bharath Karumudi
                                                * )
(* Date: Jul 25, 2019
                                                * )
(* Exercise 7.3.1
fun \ and Imp2Imp \ term =
let
val(conjTerm, r) = dest_imp(term)
val(p,q) = dest\_conj(conjTerm)
 mk_{-}imp(p,(mk_{-}imp(q,r)))
end;
(**** Test Case *****)
andImp2Imp ''(p/q) \Longrightarrow r''
(* Exercise 7.3.2
(**** Function and Imp2Imp ~ same as from 7.3.1 ****)
fun \ and Imp2Imp \ term =
val(conjTerm, r) = dest_imp(term)
val(p,q) = dest\_conj(conjTerm)
 mk_{-}imp(p,(mk_{-}imp(q,r)))
end;
(**** Function impImpAnd ****)
fun\ impImpAnd\ term =
```

```
let
 val(term1, imp) = dest_imp(term)
 val(term2, term3) = dest_imp(imp)
val\ new\_conj = mk\_conj(term1, term2)
in
mk_{-}imp(new_{-}conj, term3)
end;
(***** Test Cases *******)
andImp2Imp ''(p/\q) \Longrightarrow r''
impImpAnd ''p \implies q \implies r'';
impImpAnd(andImp2Imp ''(p/q) \Longrightarrow r'');
andImp2Imp(impImpAnd ``p==>q==>r``);
(* Exercise 7.3.3
                                                                 *)
fun\ notExists\ term =
let
 val\ (t1,\ t2) = dest_exists(dest_neg(term))
mk_{-}forall(t1,t2)
end;
(***** Test Cases *******)
notExists ''^{\circ}?z.Qz'';
```

(*

Appendix B: Chapter 8

The following code is from the file project3bScript.sml (* Exercise: Chapter 8 (* Author: Bharath Karumudi *) Date: Jul 26, 2019 structure chapter8Script = struct open HolKernel Parse boolLib bossLib; val _ = new_theory "chapter8"; Exercise: 8.4.1 $val\ problem 1 Thm =$ *) $\lceil \rceil \mid -p \implies (p \implies q) \implies (q \implies r) \implies r$ (* val problem1Thm = let val th1 = ASSUME 'p:bool' $val th2 = ASSUME "p \implies q"$ $val th3 = ASSUME 'q \Longrightarrow r''$ val th4 = MP th2 th1val th5 = MP th3 th4val th6 = DISCH (hd(hyp th3)) th5val th7 = DISCH (hd(hyp th2)) th6DISCH (hd(hyp th1)) th7 end; val _ = save_thm("problem1Thm", problem1Thm); (* Exercise: 8.4.2 *) (* val conjSymThm =*) $[] \mid - p \land q \iff q \land p$: thm *)

*)

```
val conj1Thm =
let
val th1 = ASSUME "p / q"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conj2Thm =
val th1 = ASSUME 'q / p''
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val _ = save_thm("conjSymThm", conjSymThm);
(* Exercise: 8.4.3
                                                             *)
(* val conjSymThmAll =
                                                             * )
(* // |- !p q. p \wedge q \iff q \wedge p
(*
   : thm
(*
                                                             * )
val conj1Thm =
let
val th1 = ASSUME "p / q"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end:
val conj2Thm =
val th1 = ASSUME "q / p"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
in
```