Leçon 159. Formes linéaires et dualité en dimension finie. Exemples et applications.

1. NOTATION. On considère un corps k et un k-espace vectoriel E de dimension $n \in \mathbf{N}$.

1. Espace dual et bidual

1.1. Les formes linéaires et l'espace dual

- 2. DÉFINITION. Une forme linéaire sur l'espace E est une application linéaire $E \longrightarrow k$. L'espace dual de E est l'ensemble des formes linéaires sur E, noté $E^* := \mathcal{L}(E,k)$. Il s'agit d'un k-espace vectoriel.
- 3. NOTATION. Pour une forme $\varphi \in E^*$ et un vecteur $x \in E$, on notera $\langle \varphi, x \rangle := \varphi(x)$.
- 4. EXEMPLE. Pour $\alpha \in k$, l'application d'évaluation $\operatorname{ev}_{\alpha} \colon P \longmapsto P(\alpha)$ est une forme linéaire sur l'espace $k[X]_{\leq n}$.
- 5. EXEMPLE. Soient $\Omega \subset \mathbf{R}^n$ un ouvert et $f : \Omega \longrightarrow \mathbf{R}$ une application différentiable en un point $a \in \Omega$. Alors la différentielle df(a) est une forme linéaire sur \mathbf{R}^n .
- 6. DÉFINITION. La base duale d'une base (e_1,\ldots,e_n) de E est la famille (e_1^*,\ldots,e_n^*) de E^* définie par les égalités

$$e_i^*(e_j) = \delta_{i,j}, \quad i, j \in [1, n].$$

- 7. PROPOSITION. Soit (e_1, \ldots, e_n) une base de E. Alors la famille (e_1^*, \ldots, e_n^*) est une base de E^* .
- 8. EXEMPLE. Soit $(\varepsilon_1, \ldots, \varepsilon_n)$ la base canonique de k^n . Pour tout indice $i \in [1, n]$ et tout vecteur $(x_1, \ldots, x_n) \in k^n$, on a $\varepsilon_i^*(x_1, \ldots, x_n) = x_i$.
- 9. COROLLAIRE. Les espaces E et E^* sont de même dimension et donc isomorphes.
- 10. REMARQUE. Dans le cas de la dimension infinie, une base duale est libre, mais elle n'est pas génératrice.
- 11. Exemple. Toute forme linéaire $f \in \mathcal{M}_n(K)^*$ est de la forme

$$f(M) = \operatorname{tr}(AM), \qquad M \in \mathscr{M}_n(K)$$

pour une matrice $A \in \mathcal{M}_n(K)$.

1.2. L'espace bidual et les bases anté-duales

- 12. DÉFINITION. L'espace bidual de E est l'espace dual de E^* , noté E^{**} .
- 13. THÉORÈME. L'application

$$\Phi \colon \begin{vmatrix} E \longrightarrow E^{**}, \\ x \longmapsto [\varphi \longmapsto \varphi(x)] \end{vmatrix}$$

est un isomorphisme de k-espaces vectoriels.

- 14. REMARQUE. Cette isomorphisme entre un espace et son bidual est canonique. En dimension infinie, il est injective, mais elle n'est pas surjective.
- 15. PROPOSITION. Soit $(\varphi_1, \ldots, \varphi_n)$ une base de E^* . Alors il existe une unique base (e_1, \ldots, e_n) de E telle que

$$e_i^* = \varphi_i, \qquad i \in [1, n].$$

De plus, on a $e_i = \Phi^{-1}(\varphi_i^*)$ pour tout $i \in [1, n]$.

16. DÉFINITION. Une telle base (e_1, \ldots, e_n) est la base anté-duale de $(\varphi_1, \ldots, \varphi_n)$.

17. APPLICATION. Soient $x_1, \ldots, x_n \in k$ des éléments deux à deux distincts. Dans l'espace $k[X]_{\leq n}$, on considère la base anté-duale (L_1, \ldots, L_n) de la base $(ev_{x_1}, \ldots, ev_{x_n})$. Les polynômes

$$L_i = \prod_{j \neq i} \frac{X - x_j}{x_i - x_j} \in k[X]$$

sont les polynômes de Lagrange associés aux points x_i .

1.3. Continuité, forme linéaire et une application

18. Théorème (Hahn-Banach, forme analytique). Soient E un \mathbf{R} -espace vectoriel et $p \colon E \longrightarrow \mathbf{R}$ une semi-norme. Soient $G \subset E$ un sous-espace vectoriel et $g \in G^*$ une forme linéaire vérifiant

$$\forall x \in G, \qquad g(x) \leqslant p(x).$$

Alors il existe une forme linéaire $f \in E^*$ prolongeant la forme linéaire g telle que

$$\forall x \in E, \qquad f(x) \leqslant p(x).$$

19. COROLLAIRE. Soient E un espace vectoriel normé de dimension finie et $C \subset E$ un convexe ouvert non vide avec $C \neq E$. Soit $x_0 \in E \setminus C$ un point. Alors il existe une forme linéaire continue $f \in E^*$ telle que

$$\forall x \in C, \qquad f(x) < f(x_0).$$

20. APPLICATION. Munissons l'espace $\mathcal{M}_n(\mathbf{R})$ de la norme $\| \|_2$. Alors l'enveloppe convexe de O(n) est la boule unité fermé de $\mathcal{M}_n(\mathbf{R})$.

2. Orthogonalité et hyperplan

2.1. L'orthogonal d'une partie

21. DÉFINITION. L'orthogonal d'une partie $A\subset E$ est le sous-espace vectoriel

$$A^{\perp} := \{ \varphi \in E^* \mid \forall x \in A, \ \varphi(x) = 0 \}.$$

L'orthogonal d'une partie $B \subset E^*$ est le sous-espace vectoriel

$$B^{\circ} := \{ x \in E \mid \forall \varphi \in B, \ \varphi(x) = 0 \}.$$

- 22. EXEMPLE. Pour une forme $\varphi \in E^*$, on a $\{\varphi\}^* = \operatorname{Ker} \varphi$. On a $E^{\perp} = \{0\}$.
- 23. Proposition. Soient $A, B \subset E$ et $U, V \subset E^*$ quatre parties. Alors
 - si $A \subset B$, alors $B^{\perp} \subset A^{\perp}$;
 - si $U \subset V$, alors $V^{\circ} \subset U^{\circ}$;
 - $-A^{\perp} = (\operatorname{Vect} A)^{\perp} \text{ et } U^{\circ} = (\operatorname{Vect} U)^{\circ}.$
- 24. Proposition. On rappel que l'espace E est de dimension finie. Soient $F\subset E$ et $G\subset E^*$ des sous-espace vectoriel. Alors
 - $-\dim F + \dim F^{\perp} = \dim E \text{ et } (F^{\perp})^{\circ} = F;$
 - $-\dim G + \dim G^{\circ} = \dim E \text{ et } (G^{\circ})^{\perp} = G;$
- 25. Contre-exemple. L'égalité $(G^{\circ})^{\perp} = G$ est fausse en dimension infinie : on peut considérer l'ensemble $\{P \longmapsto P^{(n)}(0)\}_{n \in \mathbb{N}} \subset \mathbb{R}[X]^*$
- 26. Proposition. On rappel que l'espace E est de dimension finie. Soient $A, B \subset E$

et $U, V \subset E^*$ quatre parties. Alors

- $-(A+B)^{\perp} = A^{\perp} \cap B^{\perp};$
- $-(A \cap B)^{\perp} = A^{\perp} + B^{\perp};$ - $(U + V)^{\circ} = U^{\circ} \cap V^{\circ};$
- $-(U \cap V)^{\circ} = U^{\circ} + V^{\circ};$

2.2. L'application transposée d'une application linéaire

27. DÉFINITION. Soient E et F deux k-espaces vectoriels. La transpos'ee d'une application linéaire $u \in \mathscr{L}(E,F)$ est l'application linéaire

$${}^{\mathsf{t}}u \colon \begin{vmatrix} F^* \longrightarrow E^*, \\ f \longmapsto f \circ u. \end{vmatrix}$$

- 28. Proposition. Soient E et F deux k-espaces vectoriels de dimension finie. Alors
 - $-\operatorname{rg} u = \operatorname{rg}^{t} u \text{ et } \operatorname{Im}^{t} u = (\operatorname{Ker} u)^{\perp};$
 - Ker ${}^{\mathrm{t}}u = (\operatorname{Im} u)^{\perp}$.
- 29. PROPOSITION. Soient E, F et G trois k-espaces vectoriels. Soient $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Alors
 - ${}^{\mathsf{t}}(v \circ u) = {}^{\mathsf{t}}u \circ {}^{\mathsf{t}}v;$
 - ${}^{\mathrm{t}}\mathrm{Id}_E = \mathrm{Id}_{E^*};$
 - si $u \in GL(E)$, alors ${}^{t}(u^{-1}) = ({}^{t}u)^{-1}$.
- 30. Proposition. Soient E un k-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ un endomorphisme. Alors un sous-espace vectoriel $F \subset E$ est stable par l'endomorphisme u si et seulement si son orthogonal F^{\perp} est stable par la transposée ^{t}u .
- 31. PROPOSITION. Soient E et F deux k-espaces vectoriels de dimensions m et n. Soient \mathscr{B} et \mathscr{C} deux bases de E et F. On considère les bases duales associées \mathscr{B}^* et \mathscr{C}^* . Soit $u \in \mathscr{L}(E, F)$ une application linéaire. Alors

$$\operatorname{Mat}_{\mathscr{C}^*,\mathscr{B}^*}({}^{\operatorname{t}}u) = {}^{\operatorname{t}}\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(u).$$

2.3. Lien avec les hyperplans

- 32. Proposition. On rappel que l'espace E est de dimension n.
 - Soit $\varphi_1, \ldots, \varphi_p \in E^*$ des formes linéaires formant une famille de rang $r \in [0, n]$. Alors le sous-espace vectoriel $\{x \in E \mid \varphi_1(x) = \cdots = \varphi_p(x) = 0\}$ est de dimension n r.
 - Soit $F \subset E$ un sous-espace vectoriel de dimension $q \in [0, n]$. Alors il existe des formes linéaires $\varphi_1, \ldots, \varphi_{n-q} \in E^*$ telles que

$$F = \{x \in E \mid \varphi_1(x) = \dots = \varphi_{n-q}(x) = 0\}.$$

- 33. Proposition. Soit $F \subset E$ un sous-espace vectoriel. Alors il s'agit d'un hyperplan si et seulement s'il existe une forme linéaire non nulle $\varphi \in E^*$ telle que $F = \operatorname{Ker} \varphi$.
- 34. COROLLAIRE. Soit $H \subset E$ un hyperplan. Alors l'orthogonal H^{\perp} est une droite.
- 35. Remarque. Plus généralement, si un sous-espace vectoriel $F \subset E$ est de codimension finie r, alors son orthogonal F^{\perp} est un sous-espace vectoriel de dimension r.

3. Utilisation de la dualité

3.1. Le théorème des extrema liés

36. LEMME. Soient $\varphi_1, \ldots, \varphi_m \in E^*$ des formes linéaires indépendantes et $f \in E^*$ une forme linéaire. Alors

$$f \in \operatorname{Vect}(\varphi_1, \dots, \varphi_m) \iff \bigcap_{i=1}^m \operatorname{Ker} \varphi_i \subset \operatorname{Ker} f.$$

- 37. COROLLAIRE. Deux formes linéaires non nulles sont de même noyau si et seulement si elles sont colinéaires.
- 38. THÉORÈME (des extrema liés). Soient $g_1, \ldots, g_m \colon \mathbf{R}^n \longrightarrow \mathbf{R}$ des fonctions de classe \mathscr{C}^1 . On considère l'ensemble

$$C := \{ x \in \mathbf{R}^n \mid g_1(x) = \dots = g_m(x) = 0 \}.$$

Soit $\Omega \subset \mathbf{R}^n$ un ouvert avec $C \subset \Omega$. Soit $f \colon \Omega \longrightarrow \mathbf{R}$ une fonction. On suppose que

- la fonction $f|_C$ admet un extremum local en un point $x^* \in \Omega$,
- la fonction f est différentiable en ce point x^* ,
- la famille $(dg_1(x^*), \ldots, dg_m(x^*))$ est libre.

Alors il existe des réels $\lambda_1, \ldots, \lambda_m \in \mathbf{R}$ tels que

$$df(x^*) = \lambda_1 dg_1(x^*) + \dots + \lambda_m dg_m(x^*). \tag{(*)}$$

- 39. Contre-exemple. L'hypothèse d'indépendance est nécessaire. Le minimum de la fonction $x+y^2$ sous la contrainte x^3-y^2 se situe au point (0,0). Pourtant, la différentielle de la fonction x^3-y^2 en ce point est nulle : la relation (*) n'est pas vraie. 40. Application $(théorème\ spectral)$. Soient E un espace euclidien et $u\in \mathcal{L}(E)$ un endomorphisme symétrique. L'application $x\in E\longmapsto \langle u(x),x\rangle$ admet un maximum sur la sphère unité $S\subset E$ en un point $e_1\in S$. Le théorème des extrema liés nous donne ensuite un réel $\lambda_1\in \mathbf{R}$ tel que $u(e_1)=\lambda_1e_1$. En raisonnant par récurrence, l'endomorphisme u est diagonalisable en base orthonormée.
- 41. APPLICATION (inégalité arithmético-géométrique). En optimisant la fonction $f(x_1, \ldots, x_n) = x_1 \cdots x_n$ sous la contrainte $x_1 + \cdots + x_n = s$ avec $x_i, s > 0$, on obtient

$$(x_1 \cdots x_n)^{1/n} \leqslant \frac{x_1 + \cdots + x_n}{n}.$$

3.2. Les invariants de similitude et la réduction de Frobenius

- 42. DÉFINITION. L'espace E est de dimension n. Un endomorphisme $u \in \mathcal{L}(E)$ est cyclique s'il existe un vecteur $x \in E$ tel que la famille $(x, u(x), \dots, u^{n-1}(x))$ soit une base de E.
- 43. LEMME. Soit $u \in \mathcal{L}(E)$ un endomorphisme de polynôme minimal $\pi_u \in k[X]$. Pour tout vecteur $x \in E$, on considère l'unique polynôme unitaire $\pi_{u,x} \in k[X]$ de l'idéal $\{P \in k[X] \mid P(u)(x) = 0\}$. Alors il existe un vecteur $x \in E$ tel que $\pi_{u,x} = \pi_u$. 44. Théorème (réduction de Frobenius). Soient E un **K**-espace vectoriel et $u \in \mathcal{L}(E)$.
- Alors il existe des uniques polynômes unitaires $P_1, \ldots, P_r \in \mathbf{K}[X]$ et des uniques sousespaces vectoriels $E_1, \ldots, E_r \subset E$ stables par l'endomorphisme u tels que
 - $-E = E_1 \oplus \cdots \oplus E_r;$

- $-P_r \mid \cdots \mid P_1;$
- pour tout entier $i \in [1, r]$, l'endomorphisme induit $u|_{E_i}$ sur E_i est cyclique de polynôme P_i .
- 45. DÉFINITION. La suite $(P_1, \dots P_r)$ de polynômes sont les *invariants de similitude* de l'endomorphisme u.
- 46. NOTATION. Pour un polynôme unitaire $P \in \mathbf{K}[X]$ de degré d, on note $C_p \in \mathcal{M}_d(\mathbf{K})$ sa matrice compagnon. Plus précisément, si $P = X^d + a_{d-1}X^{d-1} + \cdots + a_0$, alors

$$C_P = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}.$$

47. COROLLAIRE. Sous les mêmes hypothèses, il existe une base de E dans laquelle l'endomorphisme u ait pour matrice

$$\operatorname{diag}(C_{P_1},\ldots,C_{P_r}).$$

48. COROLLAIRE. Deux endomorphismes de E sont semblables si et seulement s'ils ont les mêmes invariants de similitude.

^[1] Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.

Haïm Brézis. Analyse fonctionnelle. 2e tirage. Masson, 1983.

^[3] Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2009.