

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

BVDSS	RDSON	ID
100V	88m Ω	8.0A

Description

The XR4886S is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR4886S meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	8	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	5	А
I _{DM}	Pulsed Drain Current ²	15	Α
EAS	Single Pulse Avalanche Energy ³	6.1	mJ
P _D @T _A =25°C	Total Power Dissipation ³	5	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient ¹		125	°C/W
R _{θJC}	Thermal Resistance Junction-Case ¹		3.6	°C/W

Electrical Characteristics (TJ=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	cteristic					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	100	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V,	-	-	1.0	μA
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
On Charac	teristics					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.5	2.5	V
В	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =3A	-	88	115	mΩ
$R_{DS(on)}$	note3	V _{GS} =4.5V, I _D =2A	-	100	140	mΩ
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	0.577.77	-	610	-	pF
Coss	Output Capacitance	V _{DS} =25V, V _{GS} =0V, f=1.0MHz	-	40	-	pF
C _{rss}	Reverse Transfer Capacitance	1 I-1.UIVIDZ	-	25	-	pF
Q_g	Total Gate Charge	\/ _E0\/ _2A	-	12	-	nC
Q_gs	Gate-Source Charge	V_{DS} =50V, I_{D} =2A, V_{GS} =10V	-	2.2	-	nC
Q_gd	Gate-Drain("Miller") Charge	VGS-10V	-	2.5	-	nC
Switching	Characteristics					
t _{d(on)}	Turn-on Delay Time		-	7	-	ns
t _r	Turn-on Rise Time	V _{DS} =50V, I _D =3A,	-	5	-	ns
t _{d(off)}	Turn-off Delay Time	R _G =1.8Ω, V _{GS} =10V	-	16	-	ns
t _f	Turn-off Fall Time		-	6	-	ns
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings				
I _S	Maximum Continuous Drain to Source Diode Forward		_	_	3	А
	Current Maying the Rule of Dunin to Course Dia	de Femuend Comment			0	Δ.
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	8	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S =3A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time		-	21	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F =3A, dI/dt=100A/μs	-	21	-	nC

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure 4. Output Observation

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Dual N-Ch 100V Fast Switching MOSFETs

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

SOP-8 Package Information

Cumbal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.270(BSC)		0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°