Hoja de ejercicios 4 (Ecuaciones lineales de orden alto. Sistemas)

1.- Resolver

$$\begin{cases} y''' - 3y'' + 3y' - y = 0, \\ y(0) = 1, \ y'(0) = 2, \ y''(0) = 3. \end{cases}$$

2.- Sabiendo que i-1 es raíz del polinomio característico, calcular la solución general de

$$y^{(iv)} + 4y''' + 8y'' + 8y' + 4y = 0.$$

- **3.-** Demostrar que si $a_0 \neq 0$ entonces la ecuación $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = x^k$ tiene una única solución polinómica y esta es de grado k.
- **4.-** Hallar la solución general de $y''' 2y'' + y' = x^2$.
- 5.- Sean las funciones vectoriales

$$ec{x_1}(t) = egin{pmatrix} t \ t^2 \end{pmatrix} \,, \quad ec{x_2}(t) = egin{pmatrix} t^2 \ t^3 \end{pmatrix} .$$

- (a) Demostrar que $\vec{x_1}$ y $\vec{x_2}$ son linealmente independientes sobre el eje real.
- **(b)** Calcular el determinante wronskiano $W(\vec{x_1}, \vec{x_2})$ e interpretar el resultado de acuerdo con el apartado anterior.
- 6.- Hallar la solución del sistema

$$\vec{X}' = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \vec{X}, \qquad \vec{X}(0) = \begin{pmatrix} 5 \\ 1 \end{pmatrix}.$$

7.- Para el siguiente sistema, hallar una matriz fundamental $\Phi = \Phi(t)$ que cumpla $\Phi(0) = \mathrm{Id}$:

$$\vec{X}' = \left(\begin{array}{cc} 3 & -4 \\ 1 & -1 \end{array} \right) \vec{X}.$$

8.- Hallar la solución de

$$ec{X}' = \left(egin{array}{cc} 1 & -4 \ 4 & -7 \end{array}
ight) ec{X}, \qquad ec{X}(0) = \left(egin{array}{cc} 3 \ 2 \end{array}
ight).$$

9.- Resolver el sistema

$$ec{X}' = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & -1 & 6 \ 0 & -2 & 6 \end{array}
ight) ec{X}, \qquad ec{X}(0) = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight).$$

10.- Encontrar una matriz fundamental para el sistema

$$ec{X}' = \left(egin{array}{ccc} 3 & 2 & 1 \ -1 & 0 & -1 \ 1 & 1 & 2 \end{array}
ight) ec{X}.$$

11.- Encontrar una matriz fundamental para el sistema

$$\vec{X}' = \begin{pmatrix} 3 & 1 & 0 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix} \vec{X}.$$

12.- Encontrar una matriz fundamental para el sistema

$$ec{X}' = \left(egin{array}{cccc} 0 & 1 & -1 & -1 \ 0 & -1 & 0 & 0 \ -2 & 2 & 1 & -2 \ -1 & -1 & 1 & 0 \end{array}
ight) ec{X}.$$

13.- Hallar la solución general $\vec{Y} = \vec{Y}(x)$ de

$$ec{Y}' = egin{pmatrix} 1 & 2 \ 3 & 2 \end{pmatrix} ec{Y} + egin{pmatrix} x-1 \ -5x-2 \end{pmatrix}.$$

Indicación: Es más rápido buscar una solución particular de un tipo especial que aplicar el método de variación de las constantes.

14.- Resolver

$$ec{X}' = \left(egin{array}{cc} 2 & -5 \\ 1 & -2 \end{array}
ight) ec{X} + \left(egin{array}{c} \operatorname{cosec} t \\ \operatorname{sec} t \end{array}
ight).$$

15.- Hallar la solución $\vec{Y} = \vec{Y}(x)$ del sistema

$$ec{Y}' = \begin{pmatrix} 1 & 0 \\ \operatorname{sen} x & -1 \end{pmatrix} ec{Y}.$$

Escribir su matriz fundamental Φ en la forma $\Phi(x) = B(x)e^{xL}$, donde B(x) sea una matriz cuyas entradas son funciones periódicas y L una matriz constante.

16.- Sean $X_1(t)$ y $X_2(t)$ soluciones de

$$X'' + pX' + qX = 0$$

que cumplen que $X_1(0) = 1$, $X_2(0) = 0$, $X'_1(0) = 0$ y $X'_2(0) = 1$.

- (a) Demostrar que $X_1''(0) + q = 0$, $X_2''(0) + p = 0$, y $X_1' = -qX_2$ y $X_2' = X_1 pX_2$.
- (b) Sea A una matriz real 2×2 cualquiera cuyo polinomio característico es $P(\lambda) = \lambda^2 + p\lambda + q$. Demostrar que

$$exp(tA) = X_1(t)I + X_2(t)A.$$

Indicación: Usar el teorema de Cayley-Hamilton.

17.- Sean $f: \mathbb{R} \to \mathbb{R}^n$ una función periódica de período T > 0 y A una matriz $n \times n$ real.

- (a) Demostrar que todo autovalor de e^A es de la forma e^{λ} , donde λ es un autovalor de A. **Indicación:** Usar las matrices de Jordan.
- (b) Supongamos que ningún autovalor de A tiene parte real nula. Demostrar que la ecuación X' = AX + f(t) tiene una única solución $X_p(t)$ de período T.
- (c) Supongamos que todos los autovalores de A tienen parte real negativa. Demostrar que toda solución de X' = AX + f(t) verifica

$$\lim_{t\to\infty}|X(t)-X_p(t)|=0,$$

siendo X_p la solución periódica de **(b)**.