Tytuł: Basys Invaders

Autorzy: Tomasz Sieja (TS), Antoni Sus (AS)

Ostatnia modyfikacja: 31.08.2025

Spis treści

1.	Repozytorium git	I
	Wstęp	
	Specyfikacja	
	3.1. Opis ogólny algorytmu	
	3.2. Tabela zdarzeń	
	Architektura	
	4.1. Moduł: top	
	4.1.1. Schemat blokowy	
	4.1.2. Porty	
	a) keyboard – keyboard_ctl, input	
	b) vga – vga_ctl, output	
	c) uart – uart_ctl, input	
	d) uart – uart_ctl, output	
	4.1.3. Interfejsy	
	a) vga_if – vga signal pipeline	
	4.2. Rozprowadzenie sygnału zegara	
	Implementacja	
	5.1. Lista zignorowanych ostrzeżeń Vivado	
	5.2. Wykorzystanie zasobów	
	5.3. Marginesy czasowe	
	Konfiguracja sprzętu	
	Film	0

1. Repozytorium git

Adres repozytorium GITa:

https://github.com/Antoni-S/basys-invaders

2. Wstęp

Pomysł na tę grę pojawił się w momencie gdy dowiedzieliśmy się, że projekt może być prostą grą na płytkę FPGA. Jest to dobra okazja aby powrócić do gier klasycznych i spróbować naszych sił w odwzorowaniu ich. W ramach tego projektu staramy się odwzorować Space Invaders, ale z dodanym trybem kooperacyjnym i lekko zmienionym wyglądem.

3. Specyfikacja

3.1. Opis ogólny algorytmu

Algorytm gry jest strukturalnie prosty. Działa na zasadzie maszyny stanów, która przechodzi pomiędzy stanami TITLE, GAME i ENDSCREEN.

Po włączeniu programu przechodzimy do stanu TITLE, w którym czekamy na sygnał wciśniętego klawisza Enter, aby rozpocząć rozgrywkę i przejść do stanu GAME.

W tym stanie dzieje się kilka rzeczy, mianowicie przeciwnicy ciągle poruszają się po ekranie schematem $PRAWO \rightarrow D\acute{O}L \rightarrow LEWO \rightarrow D\acute{O}L$, w tym czasie gracz może kontrolować swoją postać – statek kosmiczny, którym może poruszać się w prawo i w lewo dzięki klawiszom A i D. Gracz jest w stanie też w strzelić pocisk, który leci w pozycji X odpowiadającej pozycji X gracza w momencie, którym gracz w cisnął przycisk W. Pocisk ten leci po prostej linii do góry ekranu i koliduje albo z górną krawędzią w swietlacza, albo przeciwnikiem. W tym czasie gracz nie jest w stanie w strzelić nowego pocisku. w przypadku "nałożenia się" pocisku i przeciwnika, dochodzi do kolizji i kosmita oraz rakieta są w usuwane w ekranu a graczowi odblokowuje się możliwość w strzelenia pocisku, co może poskutkować szybszym "w przeciwników w planszy.

Aby przejść do następnego stanu, musi się wydarzyć jedna z dwóch rzeczy:

- 1. Graczowi powiodło się usunięcie wszystkich przeciwników z pola gry
- 2. Najniższy żywy przeciwnik przedostał się na dolną część ekranu (odległość od dolnej krawędzi ekranu wynosi 70px)

Po spełnieniu jednego z tych warunków, gra przechodzi w stan ENDSCREEN, który wyświetla na ekranie słowa "You Win!" w wypadku wygranej lub "GAME OVER" jeśli gracz przegrał grę.

W grze wieloosobowej gracze "wyścigują się" w tym, kto pierwszy jest w stanie pokonać nadchodzącą inwazję. Na obydwu ekranach wyświetla się "duch" drugiego gracza.

(w zależności od stanu gry wyświetla ekran "You Win" lub "GAME OVER")

3.2. Tabela zdarzeń

Zdarzenie	Kategoria	Reakcja systemu		
Przycisk Enter	Ekran startowy	Uruchomienie gry		
Przycisk "A" Klawiatura		Statek porusza się w lewo		
Przycisk "D"	Klawiatura	Statek porusza się w prawo		
Przycisk "W"	Klawiatura	Statek wypuszcza pocisk, zapisywana jest pozycja gracza		
Wystrzelony pocisk Gracz		Pocisk porusza się w prostej linii do góry, w pozycji X w której gracz kliknął przycisk "W". Gracz nie może wystrzelić kolejnego pocisku		
Pocisk zderza się z przeciwnikiem	Gracz	Przeciwnik zostaje usunięty z "planszy". Gracz może wystrzelić kolejny pocisk		
		Pocisk zostaje usunięty. Gracz może wystrzelić kolejny pocisk		
Wszyscy przeciwnicy usunięci z "planszy"	Gra	Zakończenie gry, ekran zmienia się na ekran wygranej		
Przeciwnik zdążył Gra przejść na dolną część ekranu (odległość od dolnej		Zakończenie gry, ekran zmienia się na ekran przegranej		

części ekranu 70px)		
---------------------	--	--

4. Architektura

4.1. Moduł: top

Osoba odpowiedzialna: AS, TS

Moduł top_vga jest złożony z podmodułów odpowiedzialnych za wyświetlanie elementów na ekranie, kontrolowanie ich oraz z modułów pomocniczych (np. pamięci ROM lub modułu delay).

4.1.1. Schemat blokowy

4.1.2. Porty

a) keyboard - keyboard_ctl, input

nazwa portu	opis		
PS2Data szeregowe wejście danych z klawiatury			
PS2Clk	zegar klawiatury		

b) vga - vga_ctl, output

nazwa portu	opis		
vga_vs	sygnał synchronizacji pionowej VGA		
vga_hs	gnał synchronizacji poziomej VGA		
vga_r [3:0]	gnał koloru czerwonego VGA		
vga_g [3:0]	3:0] sygnał koloru zielonego VGA		
vga_b [3:0]	vga_b [3:0] sygnał koloru niebieskiego VGA		

c) uart – uart_ctl, input

nazwa portu	opis
test_Rx	sygnał wejściowy UART używany do testu poprawności działania
JB1	sygnał wejściowy UART odpowiedzialny za przekazywanie pozycji gracza

d) uart - uart_ctl, output

·/ · · · · · · · · · · · · · · · · · ·					
nazwa portu	opis				
test_Tx sygnał wyjściowy UART używany do testu poprawności działania					
JC1 sygnał wyjściowy UART odpowiedzialny za przekazywanie pozycj					

4.1.3. Interfejsy

a) vga_if - vga signal pipeline

nazwa sygnału	opis		
hcount [10:0]	licznik horyzontalny VGA		
vcount [10:0]	icznik wertykalny VGA		
hsync	synchronizacja pozioma VGA		
vsync	synchronizacja pionowa VGA		
hblnk	sygnał blank poziomy VGA		
vblnk	sygnał blank pionowy VGA		
rgb [11:0]	sygnał z informacją o kolorze		

Każdy moduł, który w jakikolwiek sposób jest rysowany (wyświetlany) na ekranie korzysta z powyższego interfejsu vga_if. Dla czytelności, każdy interfejs w projekcie jest nazywany zgodnie z konwencją vga_[element_wyświetlany]_if. Dla przejrzystości tego raportu, nie będzie wymieniana każda instancja tego interfejsu.

4.2. Rozprowadzenie sygnału zegara

Osoba odpowiedzialna: TS

Cały projekt działa na zegarze o częstotliwości 65 MHz, który został wygenerowany za pomocą Clock Wizard-a w Vivado. Wartość tej częstotliwości wynika z wymagania projektu dyktującego minimalną rozdzielczość monitora jako 1024x768 pikseli.

5. Implementacja

5.1. Lista **zignorowanych** ostrzeżeń Vivado.

Identyfikator ostrzeżenia		Uzasadr	nienie	9						
8-7080	1	Projekt	nie	jest	na	tyle	rozbudowany,	aby	spełniać	zasady

		równoległej syntezy
8-7129	2	Zegar 100 MHz nie jest używany w projekcie
8-6014	1	Element FIFO_Rx instancji modułu u_uart_test nie jest wykorzystywany ponieważ ten moduł UART służy tylko do wysyłania danych do terminala w celu debugowania
8-3332	2	Element FSM_sequential_state_reg w instancji modułu u_uart_rx_unit nie jest wykorzystywany ponieważ ten moduł UART służy tylko do wysyłania danych do terminala w celu debugowania

5.2. Wykorzystanie zasobów

Tabela z wykorzystaniem zasobów z Vivado

Resource	Utilization	Available	Utilization %
LUT	2259	20800	10.86
LUTRAM	40	9600	0.42
FF	975	41600	2.34
BRAM	11	50	22.00
IO	23	106	21.70
BUFG	2	32	6.25
MMCM	1	5	20.00

Marginesy czasowe

Marginesy czasowe (WNS) dla setup i hold.

Timing		Setup Hold
Worst Negative Slack (WNS):	3.863 ns	
Total Negative Slack (TNS):	0 ns	
Number of Failing Endpoints:	0	
Total Number of Endpoints:	1676	

Timing		Setup Hold
Worst Hold Slack (WHS):	0.052 ns	
Total Hold Slack (THS):	0 ns	
Number of Failing Endpoints:	0	
Total Number of Endpoints:	1676	

6. Konfiguracja sprzętu

Schemat połączenia ze sobą płytek Basys3 w trybie multiplayer:

Basys3: Pmod Pin-Out Diagram

Źródło: https://digilent.com/reference/_media/basys3:basys3_rm.pdf

- 1. JB1 UART linia RX
- 2. JC1 UART linia TX

Podłączane piny na płytce Basys3		
Płytka 1	Płytka 2	
JB1 (Rx)	JC1(Tx)	
JB5 (GND)	JC5 (GND)	
JC1 (Tx)	JB1 (Rx)	
JC5 (GND)	JB5 (GND)	

Schematy podłączenia dodatkowych urządzeń peryferyjnych:

7. Film.

Link do ściągnięcia filmu:

https://drive.google.com/file/d/13FWwOM_-nNacsuViIdWcqBM9EEG047PF