HOMEWORK 3 MATH 270A, FALL 2019, PROF. ROMAN VERSHYNIN

PROBLEM 1 (DISCRETE CONVOLUTION)

Show that if X and Y are independent, integer-valued random variables, then

$$\mathbb{P}\left\{X+Y=n\right\} = \sum_{m \in \mathbb{Z}} \mathbb{P}\left\{X=m\right\} \mathbb{P}\left\{Y=n-m\right\} \quad \text{for all } n \in \mathbb{Z}.$$

PROBLEM 2 (A DIRECT CONSTRUCTION OF INDEPENDENCE)

Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\Omega = (0, 1)$, \mathcal{F} is the Borel σ -algebra, and \mathbb{P} is the Lebesgue measure. Define a sequence of random variables Y_1, Y_2, \ldots by

$$Y_n(\omega) := \begin{cases} 1 & \text{if } \lceil 2^n \omega \rceil \text{ is even,} \\ 0 & \text{if } \lceil 2^n \omega \rceil \text{ is odd.} \end{cases}$$

Show that Y_1, Y_2, \ldots are independent Ber(1/2) random variables.

PROBLEM 3 (WLLN FOR NON-IDENTICALLY DISTRIBUTED R.V.'S)

Let X_1, X_2, \ldots be independent random variables that satisfy

$$\frac{\operatorname{Var}(X_i)}{i} \to 0 \quad \text{as } i \to \infty.$$

Let $S_n := X_1 + \cdots + X_n$. Prove that

$$\frac{S_n - \mathbb{E}[S_n]}{n} \to 0 \quad \text{in probability.}$$

PROBLEM 4 (METRIC FOR CONVERGENCE IN PROBABILITY)

(a). Show that

$$d(X,Y) := \mathbb{E}\left[\frac{|X - Y|}{1 + |X - Y|}\right]$$

defines a metric on the set of random variables (more formally, on the set of equivalence classes defined by the equivalence relation X = Y a.s.)

(b). Prove that $d(X_n, X) \to 0$ if and only if $X_n \to X$ in probability.

PROBLEM 5 (CONVERGENCE IN PROBABILITY AND A.S.)

Let X_1, X_2, \ldots be independent $Ber(p_n)$ random variables.

- (a). Show that $X_n \to 0$ in probability if and only if $p_n \to 0$.
- **(b).** Show that $X_n \to 0$ a.s. if and only if $\sum_n p_n < \infty$.

Problem 6 (Convergence in Probability and A.S. on discrete spaces)

Let $X_1, X_2, ...$ be a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ where Ω is a countable set and $\mathcal{F} = 2^{\Omega}$ (the power set). Show that $X_n \to X$ in probability implies $X_n \to X$ a.s.

PROBLEM 7 (SUPPRESSION)

Show that for any sequence of random variables X_1, X_2, \ldots there exists a sequence of positive real numbers c_1, c_2, \ldots such that Show that $c_n X_n \to 0$ a.s.

Problem 8 (Records)

Let $X_1, X_2, ...$ be independent random variables. Show that $\sup_n X_n < \infty$ if and only if there exists $M \in \mathbb{R}$ such that

$$\sum_{n} \mathbb{P}\left\{X_n > M\right\} < \infty.$$

PROBLEM 9 (KEEP BREAKING THE STICK)

Let $X_0 = 1$ and define X_n inductively by choosing X_{n+1} uniformly at random from the interval $[0, X_n]$. Prove that

$$\frac{\ln X_n}{n} \to c$$
 a.s.

and find the value of the constant c.

PROBLEM 10 (WEAK VS. STRONG LLN)

Let X_2, X_3, \ldots be independent random variables such that X_n takes value n with probability $1/(2n \ln n)$, value -n with the same probability, and value 0 with the remaining probability $1 - 1/(n \ln n)$. Show that this sequence obeys the weak law but not the strong law, in the sense that

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to 0$$

in probability but not a.s.