SRN								
-----	--	--	--	--	--	--	--	--

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013) UE19CS205

Scheme & Solution

IN SEMESTER ASSESSMENT (ISA-1)- B.TECH III SEMESTER October, 2020

Automata Formal Languages & Logic

Time: 2 Hrs Answer All Questions Max Marks: 60

Note:

- Read all the Questions carefully before answering.
- The Question paper spans over 3 sheets and contains 6 Questions.
- Each Question carries 10 Marks and contains exactly 2 sub-parts (part a and part b).

b Let $\Sigma = \{a, b\}$. Consider the language $L = \{a^*\}$.

Construct a DFA for the language L^c which accepts the complement of the Language L.

Solution:

DFA that accepts the language $L = \{a^*\}$ is given as:

DFA that accepts the complement of the Language L given as:

2 a Minimize the following DFA of 5 States:

Solution:

5

5

SRN					

Transition Table of the given DFA:

	a	b
→1 *	3	2
2	4	1
3	5	4
4	4	4
5*	3	2

We minimize the DFA using the Table Filling algorithm:

2	X			
3	X	X		
4	X	X	X	
5*		X	X	X
	1*	2	3	4

Distinguishable pairs (Pair of Final and Non-Final State) are marked in green color.

We must mark the following states as distinguishable due to the following reasons:

$$\delta((2,4), b) = \{1,4\}$$

$$\delta((2,3), a) = \{4,5\}$$

$$\delta\left((3,4)\,,\, a\right) = \{4,5\}$$

The two final states can be merged as:

$$\delta((1,5), a) = (3)$$
 and $\delta((1,5), b) = (2)$

Hence the minimized DFA is given as:

b Convert the following NFA to DFA:

Solution:

					1
CDVI					1
CDNI					1
>K I/I					1
21111					1
_					1

Transition Table of the given λ -NFA :

	0	1	λ-Closur e
→ q0	q0	q2	q0, q1
q1*	Ф	Φ	q1
q2	Φ	q1, q2	q2

Transition Table of the given DFA:

	0	1
→ q0 q1	q0 q1	q2
q2	Φ	q1, q2
q1q2	Φ	q1, q2
Ф	Ф	Φ

DFA Transition Diagram:

3 a Draw a NFA that accepts the language corresponding to the regular expression: ((01)*+(12)*)01

Solution:

SRN					

		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	b	Let $\Sigma = \{1, 2, \leq\}$ and let L be the language defined as follows: L = $\{w \in \Sigma^* \mid w \text{ is a } \text{ valid } \text{ chain of inequalities relating the numbers 1 and 2} \}$. For example: The following strings belong to the language: $1 \leq 2, 1 \leq 1 \leq 2 \leq 2, 2 \leq 2 \leq 2, 1 \leq 1 \leq 1 \leq 1, 1 \leq 1 \leq 2$ but, the following doesn't: $2 \leq \leq \leq 2, \lambda$, 1, $12 \leq 22$ Note in particular that inequalities involving numbers like 12, 222, 121212, etc. whose digits are 1 and 2 aren't allowed i.e. $121 \leq 112$ (the inequality should only relate the numbers that is, single digit 1 and 2) and any individual number itself isn't allowed(i.e., $1 \notin L$ and $2 \notin L$). Construct a regular expression for L. Solution: $(1 \leq 1) (\leq 1)^* + (1 \leq 2) (\leq 2)^* + (2 \leq 2) (\leq 2)^*$	5
4	a	 Using Pumping lemma, Determine whether the following language on Σ = {a,b } is regular or not. L = {aⁿbⁿ : n >= 1} Solution: The opponent claims that the language L = {aⁿbⁿ : n >= 1} is regular. Let the number of states in the opponent's hypothetical automata for language L is n (Pumping length). 	5

SRN		
b	 We choose a string w = aⁿbⁿ such that, w > n (length of the string is greater than the number of states in the machine) and w ∈ L. ∀w = xyz (for any break up of the string in 3 parts) such that, xy <= n (y- loop is within the n states) and y >= 1 (loop is made up of at least one symbol) In our string w = aⁿbⁿ, the first n symbols are made up only of a's. Hence if we assume the loop is made up of single 'a', we can break the string as: aⁿ⁻¹ (a)¹bⁿ We see that, if we pump down the loop that is choose i=0, the resultant string does not belong to the language L, as the number of a's and b's become unequal i.e., aⁿ⁻¹bⁿ∉ L Hence proved that the language L is not regular. Convert the following Finite Automata to Regular Grammar: 	5
5 a	Solution: S → aA A → aA aC aB λ B → bC C → A λ Construct a Context free grammar to generate variable declaration statements in a C language. For example, your grammar should be able to generate strings of the following kind: int a; int a, b, c, d; int a, b = 2, c = 5, d; int d = 8; Assume you are handling only the basic types int and float. The Terminals in your grammar are: {int, float, id, num, =, , , ;} Here id denotes an identifier (that is a variable name) and num denotes a number.	5

Here id denotes an identifier (that is a variable name) and num denotes a number.

Assume the Start symbol is D.

Solution:

SKN		SRN										
-----	--	-----	--	--	--	--	--	--	--	--	--	--

		$D \rightarrow T L$;							
		$T \rightarrow int \mid fl$	oat						
		$L \rightarrow L, X \mid X$							
		$X \rightarrow id \mid id$	= num						
	b	Let G be	the gramm	ar below.					5
				(S	$\rightarrow AR \mid S$	$SS \mid a$			
				A	$\rightarrow BS \mid C$	$CD \mid b$			
				B	$\rightarrow DD \mid b$)			
				$\int C$	$\rightarrow DE \mid a$	$a \mid b$			
				D	$ \begin{array}{ccc} \rightarrow & AB \mid S \\ \rightarrow & BS \mid C \\ \rightarrow & DD \mid b \\ \rightarrow & DE \mid a \\ \rightarrow & a \\ \rightarrow & SS \end{array} $				
				(E	\rightarrow SS				
					following n	nembership	question:		
		Does the st		baab belor	ig to L(G)?				
			S, E]				
		4	S, E	S, A		1			
		3	Ф	S, A	S		1		
		2	Ф	A	S, E, A, B	Ф			
		1	S, C, D	A, B, C	S, C, D	S, C, D	A, B, C		
			a	b	a	a	b		
6	a	With an exa	ample, expl	ain what is	an Ambigu	ous gramm	ar?		3
		Solution:							
		A	. C . W T F) () :ll-	ما ما ما الما الما الما الما الما الما		: £ 41		
		leftmost de	-	-	_	_		exists 2 different	
		structures)			_	derivation.	s (basically	2 different	
		For exampl	le:						
		S-> 2	λ is an am	higuous gr	ammar ac u	ze can obtai	in string a i	n two different	
		ways:	, is an alli	Diguous gr	ammar as v	re can obtai	m sumg a i	ii two dillelellt	
		IMD 1				IMD 2			
		$\begin{array}{c} LMD 1 \\ S \Rightarrow aS \end{array}$				LMD 2 $S \Rightarrow a$			
			$ng S \rightarrow \lambda$)			_ ~			

SRN

Let $\Sigma = \{(,), [,]\}$. Consider the language L as b L = {properly nested strings from $\Sigma *$ }. So ([]()) is in L, but not ([)) and not ([)]. I. Construct a PDA to accept the language L. [4 Marks] II. Do a short trace of the state sequence and sequence of stack contents as this machine recognizes the string "[()()]".[3 Marks] Solution: I. [,(;([]];],] [,Z0;[Z0 (, Z0; (Z0 λ, Z0; Z0. II.Trace of String : [()()] $\delta(q0, [()), z0)$ (Push [) $\vdash \delta(q0, ()()], [z0)$ (Push () $\vdash \delta (q0,)()], ([z0)$ (Match (and)) $\vdash \delta (q0, ()), (z0)$ (**Push** () $\vdash \delta (q0,)], ([z0)$ (Match (and)) ⊢ δ (q0,], [z0) (Match [and]) $\vdash \delta$ (q0, λ , z0) \vdash (q1, λ , z0) Since q1 is a final state and input is completely processed, the string is accepted by the PDA.