#### Epoxy resin composition to FRP, prepreg and tubular molding produced therefrom

Publication number: CN1251597 **Publication date:** 2000-04-26

MASAHIRO SUGIMORI (JP); SHININ TAKU (JP); Inventor:

KAZUYA GOTOU (JP)

MITSUBISHI RAYON CO (JP) Applicant:

Classification:

- international: C08G59/22; C08G59/26; C08G59/38; C08G59/00;

(IPC1-7): C08G59/20; C08J5/24; C08L63/00

- European: C08G59/22B; C08G59/26; C08G59/38

Application number: CN19988003769 19980325 Priority number(s): JP19970074794 19970327

Also published as:

EP0970980 (A1) WO9844017 (A1) US6670006 (B1) EP0970980 (A4) EP0970980 (B1)

more >>

Report a data error here

Abstract not available for CN1251597

Abstract of corresponding document: EP0970980

The present invention relates to an epoxy resin composition for FRP that will be used for fishing rods, golf club shafts, and the like, a prepreg that is an intermediate material made up of an epoxy resin composition combined with reinforcing fibers, and a tubular molded article obtained using it. The epoxy resin composition for FRP of the present invention comprises (A) a bisphenol A-type epoxy resin, (B) an epoxy resin having oxazolidone rings, and (C) a curing agent. By using the epoxy resin composition for FRP of the present invention, a prepreg quite excellent in handleability and a tubular molded article improved in flexural strength in the longitudinal direction and crushing strength in the diametrical direction can be obtained.

Data supplied from the esp@cenet database - Worldwide

[51]Int.Cl7

C08G 59/20

C08L 63/00 C08J 5/24

# [12] 发明专利申请公开说明书

[21] 申请号 98803769.6

[43]公开日 2000年4月26日

[11]公开号 CN 1251597A

[22]申请日 1998.3.25 [21]申请号 98803769.6

[30]优先权

[32]1997.3.27 [33]JP[31]074794/97

[86]関降申请 PCT/JP98/01294 1998.3.25

[87]国际公布 WO98/44017 日 1998.10.8

[85]进入国家阶段日期 1999.9.27

[71]申请人 三菱丽阳株式会社

地址 日本东京

[72]发明人 杉森正裕 田口真仁 后藤和也

县丞昭 西本幸雄

[74]专利代理机构 中国国际贸易促进委员会专利商标事 务所

代理人 任宗华

权利要求书6页 说明书46页 附图页数0页

[54]发明名称 用于 FRP 的环氧树脂组合物、预浸渍片和 用其制备的管状模制品

#### [57]摘要

本发明涉及一种用于 FRP——该 FRP 用于渔竿和高尔夫球棒的杆等——的环氧树脂组合物、一种由该环氧树脂组合物和增强纤维联合制 成的中间材料预浸渍片和一种用该预浸渍片制备的管状模制品。本发 明的用于 FRP 的环氧树脂组合物包括(A)双酚—A型环氧树脂、(B) 有恶唑烷酮环的环氧树脂和(C)固化剂。通过使用本发明的用于 FRP 的环氧树脂组合物,可获得加工性能极好的预浸渍片和在长度方向上的抗弯强度和在直径方向上的抗碎强度提高了的管状模制品。



# 权利要求书

1. 一种用于 FRP 的环氧树脂组合物,包括(A)双酚-A型环氧树脂、(B)有噁唑烷酮环的环氧树脂和(C)固化剂,所述的有噁唑烷酮环的环氧树脂(B)是具有下列式(1)所示结构的环氧树脂:

$$\begin{array}{c} R \\ -C \\ -C \\ -C \\ N \end{array} \qquad (1)$$

其中 R 表示氢原子或甲基,粘度为 100-5000 泊。

2. 权利要求 1 要求的用于 FRP 的环氧树脂组合物,其中所述的有 噁唑烷酮环的环氧树脂(B)是具有下列式(2)所示结构的环氧树脂:

其中 R 分别独立地表示氢原子或甲基,  $R_1$  -  $R_4$  分别独立地表示卤原子、 氢原子或有 1-4 个碳原子的烷基,  $R_1$  -  $R_4$  中至少一个表示卤原子,  $R_5$  -  $R_8$  分别独立地表示氢原子或有 1-4 个碳原子的烷基,  $R_9$  是下述式 (3) 或式 (4),

其中 R<sub>1</sub>'-R<sub>4</sub>'分别独立地表示氢原子或有 1-4 个碳原子的烷基;

1



其中  $R_{i}$ ' -  $R_{8}$ '分别独立地表示氢原子或有 1 - 4 个碳原子的烷基,  $R_{9}$ '表示单键、- $CH_{2}$ -、- $C(CH_{3})_{2}$ -、- $SO_{2}$ -、- $SO_{-}$ 、-S-或-O-。

- 3. 权利要求 1 要求的用于 FRP 的环氧树脂组合物, 其中所述的双酚 A型环氧树脂(A)是一种环氧当量 300 或更小的在常温下为液体或半固体的双酚 A型环氧树脂和一种环氧当量 400 或更大的在常温下为液体或半固体的双酚 A型环氧树脂的混合物。
- 4. 权利要求 2 要求的用于 FRP 的环氧树脂组合物, 其中所述的双酚 A 型环氧树脂 (A) 是一种环氧当量 300 或更小的在常温下为液体或半固体的双酚 A 型环氧树脂和一种环氧当量 400 或更大的在常温下为液体或半固体的双酚 A 型环氧树脂的混合物。
- 5. 权利要求1要求的用于 FRP 的环氧树脂组合物,进一步含有(D)一种可溶于所述双酚 A型环氧树脂(A)和所述含有噁唑烷酮环的环氧树脂(B)的混合物的热塑性树脂。
- 6. 权利要求 5 要求的用于 FRP 的环氧树脂组合物, 其中所述的有 噁唑烷酮环的环氧树脂 (B) 是具有下列式 (2) 所示结构的环氧树脂:

其中 R 分别独立地表示氢原子或甲基,  $R_1$  -  $R_1$  分别独立地表示卤原子、氢原子或有 1-4 个碳原子的烷基,  $R_1$  -  $R_1$  中至少一个表示卤原子,  $R_2$  -  $R_3$  分别独立地表示氢原子或有 1-4 个碳原子的烷基,  $R_3$  是下述式 (3) 或式 (4) ,  $R_1$   $R_2$   $R_3$ 

$$R'_{1}$$
  $R'_{2}$  (3)  $R'_{3}$   $R'_{4}$ 



其中 R<sub>1</sub>'-R<sub>4</sub>'分别独立地表示氢原子或有 1-4 个碳原子的烷基;



其中  $R_1$ ' -  $R_8$ ' 分别独立地表示氢原子或有 1 - 4 个碳原子的烷基,  $R_9$ ' 表示单键、- $CH_2$ -、- $C(CH_3)_2$ -、- $SO_2$ -、- $SO_2$ -、- $SO_3$ -、-S-或-O-.

- 7. 权利要求 5 要求的用于 FRP 的环氧树脂组合物,其中所述的可溶于双酚 A 型环氧树脂 (A) 和含有噁唑烷酮环的环氧树脂 (B) 的混合物的热塑性树脂 (D) 是苯氧基树脂和/或聚乙烯醇缩甲醛。
- 8. 权利要求 6 要求的用于 FRP 的环氧树脂组合物,其中所述的可溶于双酚 A 型环氧树脂 (A) 和含有噁唑烷酮环的环氧树脂 (B) 的混合物的热塑性树脂 (D) 是苯氧基树脂和/或聚乙烯醇缩甲醛。
- 9. 权利要求 1-8 中任一项要求的用于 FRP 的环氧树脂组合物,其中还含有另一种环氧树脂 (E),基于包括双酚 A 型环氧树脂 (A)、含有噁唑烷酮环的环氧树脂 (B)和另一种环氧树脂 (E)的环氧树脂成分的总量,其含量为 3-20% 重量。
- 10. 权利要求 3 或 4 要求的用于 FRP 的环氧树脂组合物, 其中基于双酚 A 型环氧树脂 (A), 所述的环氧当量 300 或更小的在常温下为液体或半固体的双酚 A 型环氧树脂的含量为 25-65% 重量, 基于双酚 A 型环氧树脂 (A) 和含有噁唑烷酮环的环氧树脂 (B) 的混合物, 含有噁唑烷酮环的环氧树脂 (B) 的含量为 20-50% 重量。
  - 11. 权利要求 5-8 中任一项要求的用于 FRP 的环氧树脂组合物,



双酚 A 型环氧树脂 (A)、含有噁唑烷酮环的环氧树脂 (B) 和可溶于它们的混合物的热塑性树脂 (D) 的重量组分比为:

- [(A)/(B)] = 15/1-1/5,
- (D)/[(A)/(B)] = 1/100-30/100.
- 12. 权利要求 9 要求的用于 FRP 的环氧树脂组合物,其中基于双酚 A 型环氧树脂 (A)、含有噁唑烷酮环的环氧树脂 (B) 和其它环氧树脂 (E) 的总和,加入的含有噁唑烷酮环的环氧树脂 (B) 的量和加入的其它环氧树脂 (E) 的量的总和为 20-50%重量,含有噁唑烷酮环的环氧树脂 (B) 与其它环氧树脂 (E) 的组分重量比在 1/3-4/1 范围内。
- 13. 权利要求 1-8 中任一项要求的用于 FRP 的环氧树脂组合物, 其中所述临界应变能释放速度 Gic是 400 J/m²或更大。
- 14. 权利要求 9 要求的用于 FRP 的环氧树脂组合物,其中所述临界应变能释放速度  $G_{1c}$  是  $400 J/m^2$  或更大。
- 15. 权利要求 1-8 中任一项要求的用于 FRP 的环氧树脂组合物, 其中所述固化剂 (C) 是氰基胍和一种脲化合物的混合物。
- 16. 权利要求 9 要求的用于 FRP 的环氧树脂组合物,其中所述固化剂(C)是氰基胍和一种脲化合物的混合物。
- 17. 一种预浸渍片,包括用权利要求 1-8 中任一项要求的用于FRP 的环氧树脂组合物浸渍的增强纤维片。
- 18. 一种预浸渍片,包括用权利要求 9 要求的用于 FRP 的环氧树脂组合物浸渍的增强纤维片。



- 19. 一种预浸渍片,包括用权利要求 15 要求的用于 FRP 的环氧树脂组合物浸渍的增强纤维片。
- 20. 一种预浸渍片,包括用权利要求 16 要求的用于 FRP 的环氧树脂组合物浸渍的增强纤维片。
- 21. 一种有多个 FRP 层的管状模制品,其中在至少一个 FRP 层中使用的基体树脂组合物是权利要求 1-8 中任一项要求的用于 FRP 的环氧树脂组合物。
- 22. 一种有多个 FRP 层的管状模制品,其中在至少一个 FRP 层中使用的基体树脂组合物是权利要求 9 要求的用于 FRP 的环氧树脂组合物。
- 25. 一种有多个 FRP 层的管状模制品,其中在至少一个 FRP 层中使用的基体树脂组合物是权利要求 15 要求的用于 FRP 的环氧树脂组合物。
- 26. 一种有多个 FRP 层的管状模制品,其中在至少一个 FRP 层中使用的基体树脂组合物是权利要求 16 要求的用于 FRP 的环氧树脂组合物。
- 27. 一种用于 FRP 的环氧树脂组合物, 其中当将其制成管状时, 抗碎强度为 200N 或更大。
- 28. 一种用于 FRP 的环氧树脂组合物, 其中当将其制成管状时, 抗碎强度为 240N 或更大。



- 29. 一种用于 FRP 的环氧树脂组合物,其中当将其制成单向层压片时,在 90°方向上的抗弯强度为 110MPa 或更大。
- 30. 一种用于 FRP 的环氧树脂组合物, 其中当将其制成单向层压片时, 在 90°方向上的抗弯强度为 125MPa 或更大。

## 说 明 书

用于 FRP 的环氧树脂组合物、预浸渍片和用其制备的管状模制品

#### 技术领域

本发明涉及一种用于纤维增强塑料(在本说明书中缩写为 FRP)的 环氧树脂组合物、一种预浸渍片——由环氧树脂组合物和增强纤维联 合制备的中间材料和用其制备的管状模制品。

本申请基于日本专利申请(日本专利申请 No. Hei 9-74794),在该日本申请中描述的内容作为本说明书的一部分。

由于固化后的环氧树脂的机械性能、电性能和粘着性非常出色,它们在各个领域被广泛应用,例如用于电子材料的密封剂、油漆、涂料和粘合剂。另外,环氧树脂作为用于 FRP 的基体树脂是重要的。特别地,当将碳纤维作为增强纤维用于 FRP 时,优选使用环氧树脂,因为它们对碳纤维的粘着性极好。由碳纤维和环氧树脂制备的 FRP 模制品用途广泛,从在渔竿、高尔夫球棒等上面的一般用途到在飞机上的应用。

从增强纤维——诸如碳纤维——和基体树脂——诸如环氧树脂模制 FRP 模制品的方法包括许多方法。如果使用碳纤维作为增强纤维,就广泛使用这样一种方法,其中使用一种称为预浸渍片的中间材料来模制 FRP 模制品,这种预浸渍片通过预先用一种树脂充满增强纤维来制备。要求在这种预浸渍片中使用的基体树脂在对增强纤维的粘着性和在模制后的机械性能方面非常出色。另外,要求预浸渍片有适宜的粘性,以得到好的处理效果。由于可将环氧树脂进行处理,相对容易地以一种好的平衡方式表现出这些性质,它们被广泛地用作预浸渍片的基体树脂。

这些 FRP 模制品的主要应用包括管状模制品, 诸如渔竿和高尔夫球棒杆。要求这些管状模制品具有作为重要性质的在长度方向的抗弯强度和在直径方向的抗碎强度。



为了管状模制品提高在长度方向的抗弯强度,已知沿长度方向排列 碳纤维是有效的。另外,为了管状模制品提高在直径方向的抗碎强度, 已知环状地排列碳纤维是有效的。但是,当管状模制品在长度方向和 圓周同时增强时,管状模制品的重量无可避免地增加了。管状模制品 重量的增加是与近来制造重量轻的渔竿和高尔夫球棒的趋势背道而驰 的。因此,已经尝试改进基体树脂,减小管状模制品的圓周增强。但 是,现在还不能获得可制备重量轻的管状模制品的基体树脂。

本发明的目的在于提供一种用于FRP的环氧树脂组合物,以得到一种在长度方向的抗弯强度和在直径方向的抗碎强度改进了的管状模制品和一种由该用于FRP的环氧树脂组合物和增强纤维联合制成的预浸渍片。

#### 发明描述

本发明的第一个主题是一种用于 FRP 的环氧树脂,特征在于其包括 (A) 双酚-A型环氧树脂(下文表示为成分(A))、(B) 有所示的 噁唑烷酮环的环氧树脂(下文称为成分(B))和(C)固化剂(下文称为成分(C)),成分(B)是具有下列式(1)所示结构的环氧树脂:

$$\begin{array}{c} R \\ -C - CH_2 \\ O N - \\ O \end{array} \qquad (1)$$

其中 R 表示氢原子或甲基,用下述测定粘度的方法测定的粘度为100-5000泊。

### (测定粘度的方法)

使用动态粘弹性测量仪,将测定其粘度的用于 FRP 的未固化环氧树脂组合物被填充在之间相距 0.5mm 的两个直径 25mm 的圆盘之间,一个圆盘以 10 弧度/秒的剪切速度旋转,在测试环境温度 60℃条件下对环氧树脂的粘度进行测量。



第二个主題是用于 FRP 的一种环氧树脂组合物,特征在于其包括成分 (A)、成分 (B) 和成分 (C),和 (D) 一种可溶于成分 (A) 和成分 (B) 的混合物的热塑性树脂 (下文称为成分 (D)),用上述方法测定的粘度为 100-5000 泊。

另外, 第三个主题是一种预浸渍片, 包括一用增强纤维浸渍有上述用于 FRP 的环氧树脂组合物的片。

第四个主题是具有多层 FRP 层的管状模制品,特征在于用于 FRP 层至少之一中的基体树脂组合物是上述用于 FRP 的环氧树脂组合物。

第五个主题是用于 FRP 的环氧树脂组合物,特征在于当该用于 FRP 的环氧树脂组合物被模制成管状模制品时,抗碎强度为 200N 或更大。

在本发明中,"抗碎强度"指其用下述方法测定的管状模制品的抗碎强度,该管状模制品的内径为  $10\,\mathrm{mm}$ ,外径为  $12\,\mathrm{mm}$ 、纤维的体积含量为  $60\pm1\,\%$ ,用如下方法制备: 用用于 FRP 的环氧树脂组合物浸渍弹性模量  $220-250\,\mathrm{GPa}$  的碳纤维制成单向的预浸渍片,其中碳纤维面积重量为  $150\,\mathrm{g/m^2}$ ,用于 FRP 的环氧树脂的含量为  $31\,\%$  重量,将单向的预浸渍片 层压,从而纤维的方向可以是 +  $45\,\%/-45\,\%/-45\,\%/-45\,\%/-45\,\%/-90\,\%/0\,\%/0\,\%$ 

### (测定抗碎强度的方法)

将上述管状模制品切成长度 10mm 得到试验品。使用压痕机,在试验品上产生负荷,压痕机以 5mm/分的移动速度移动,测定试验品破裂时的最大负荷,定义为抗碎强度。

另外, 第六个主题是一种用于 FRP 的环氧树脂组合物, 特征在于当用于 FRP 的环氧树脂组合物被制成单向薄片时, 在 90°方向上的抗弯强度为 110Mpa 或更大。

在本发明中, "在 90°方向上的抗弯强度"是指用下述方法测定的单向层压片的 90°的抗弯强度,该单向层压片用下列方法制备,即,用用于 FRP 的环氧树脂组合物浸渍弹性模量 220-250GPa 的碳纤维制



成单向的预浸渍片,其中碳纤维面积重量为 150g/m², 用于 FRP 的环氧树脂的含量为 31%重量,将 15 层得到的单向预浸渍片层压(厚度2mm),从而纤维的方向可以是 0°。

## (测定 90°方向上的抗弯强度的方法)

将上述单向层压片切成在纤维方向的 90°方向上长度 60mm、宽 10mm 得到试样。支撑物之间的距离为 32mm, 硬度压头端部直径为 3.2mm, 压头的移动速度为 2mm/分, 在该条件下测定试样破裂的最大负荷, 计 算抗弯强度。

### 实施本发明的最佳方式

作为本发明用于 FRP 的环氧树脂组合物的成分 (A), 可使用通常在市场上购买的那些。作为成分 (A), 可使用那些当在用于 FRP 的环氧树脂组合物中使用时能使其粘度在下文所述的范围内的树脂。成分 (A) 的环氧当量、分子量和常温下的状态并不特别限定。在此, 本发明中的"环氧当量"指含 1 克当量环氧基的树脂的克数。作为成分 (A), 优选使用在常温是液体或半固体的环氧当量 300 或更小的双酚 A 型环氧树脂与在常温是固体的环氧当量 400 或更大的双酚 A 型环氧树脂的混合物,因为可以达到在纤维方向的 90°方向上的强度。另外,特别优选在成分 (A) 中含有 25-65% 重量的环氧树脂当量为 300 或更小的双酚 A 型环氧树脂。

作为在常温是液体或半固体的环氧当量 300 或更小的双酚 A型环氧树脂的典型代表,可例举描述的是由 YuKa Shell Epoxy K. K. 制造的 EPIKOTE 828 和 EPIKOTE 834.

作为在常温是固体的环氧当量 400 或更大的双酚 A 型环氧树脂的典型实例,可例举描述的是 EPIKOTE 1001、EPIKOTE 1002、EPIKOTE 1004、EPIKOTE 1007 和 EPIKOTE 1009。

作为本发明的用于 FRP 的环氧树脂组合物的成分 (B), 使用具有下列式 (1) 所示结构的噁唑烷酮环的环氧树脂。该成分 (B) 是实现



本发明目的获得高抗碎强度的管状模制品的基本组分。不含有该成分 (B)的用于 FRP 的环氧树脂组合物既不能制备具有高抗碎强度和高抗 弯强度的管状模制品,也不能制备加工性能好的预浸渍片。另外,使 用分子中含有噁唑烷酮环和环氧基的环氧树脂也是必须的。含有噁唑烷酮环的化合物和含有环氧基的化合物的混合物既不能制备具有高抗 碎强度和高抗弯强度的管状模制品,也不能制备加工性能好的预浸渍片。

$$\begin{array}{c}
R \\
-C \\
-C \\
-C \\
N
\end{array}$$
(1)

其中 R表示氢原子或甲基。

作为成分(B),特别优选具有下述式(2)表示的结构的环氧树脂。该成分(B)可用日本专利申请、特开昭 No. Hei 5-43655 中公开的方法制备,其中在噁唑烷酮环形成催化剂的存在下,环氧树脂和异氰酸酯化合物反应。另外,市场可购得的环氧树脂可作为成分(B)使用,例如 Asahi-Ciba Limited 制造的 XAC4151 和 XAC4152。

其中 R'分别独立地表示氢原子或甲基,  $R_1$  -  $R_4$  分别独立地表示卤原子、氢原子或有 1-4 个碳原子的烷基,  $R_1$  -  $R_4$  中至少一个表示卤原子,  $R_5$  -  $R_8$  分别独立地表示氢原子或有 1-4 个碳原子的烷基,  $R_9$  是下述式

其中 R<sub>1</sub>'-R<sub>4</sub>'分别独立地表示氢原子或有 1-4 个碳原子的烷基。





其中  $R_1$ ' -  $R_8$ '分别独立地表示氢原子或有 1 - 4 个碳原子的烷基,  $R_9$ '表示单键、- $CH_2$ -、-C ( $CH_3$ ) $_2$ -、- $SO_2$ -、-SO-、-S-或-O-。

作为本发明的用于 FRP 的环氧树脂组合物的成分 (C), 可使用任何固化剂, 其作为用于常规的环氧树脂组合物的固化剂使用。作为典型的固化剂, 可例举的有氰基胍、尿素化合物、胺化合物、酸酐、咪唑化合物、酚化合物等。其中, 特别优选氰基胍和脲系列化合物结合使用, 因为用于 FRP 的环氧树脂组合物的可固化性和固化后得到的模制品的物理性质之间的平衡良好。

在本发明的用于 FRP 环氧树脂组合物中, 可加入成分(D)。通过在本发明的用于 FRP 环氧树脂组合物中加入成分(D),进一步提高了预浸渍片的可加工性,提高并稳定了所得到的管状模制品的性质, 诸如抗碎强度。

作为本发明的用于 FRP 环氧树脂组合物的成分 (D),使用一种可均匀地溶于成分 (A)和成分 (B)的混合物的热塑性树脂。作为成分 (D),特别优选使用苯氧基树脂和聚乙烯醇缩甲醛树脂。并不特别限定苯氧基树脂,可以使用那些一般市场出售的。例如,可作为典型例子描述的有 Tohto Kasei Co., Ltd. 生产的 PHENOTOHTO YP-50 和PKHP-200等。作为聚乙烯醇缩甲醛树脂 (下文称为 PVF),使用含有60%重量或更多乙烯醇缩甲醛部分余量为乙烯醇、乙酸乙烯酯或类似物的树脂。Chisso corporation 制造的 VINYLEC 可作为可从市场获得的它们的典型例子描述。

要求本发明的用于FRP的环氧树脂组合物具有用下文所述的测定粘度的方法测定的 100-5000 泊的粘度。如果用于FRP 的环氧树脂组合物的粘度在 60℃小于 100 泊,粘性变得太强或在模制时树脂的流动太强,使得不可能在模制后获得预计的性质,这是不希望的。另外,如



果用于 FRP 的环氧树脂组合物的粘度超过 5000 泊,形成预浸渍片时树脂的浸渍就变得不充分,粘性损失非常大,或者预浸渍片变得坚硬,成型后不可能获得预计的性质,这是不希望的.更优选的范围是 300-3000 泊。

在本发明中,粘度是用动态粘弹性测量仪——诸如 Rheometric Scientific F. E. Ltd. 生产的 RDA-700 动态粘弹性测量仪——测量的,将测定其粘度的用于 FRP 的未固化环氧树脂组合物被填充在之间相距 0.5mm 的两个直径 25mm 的圆盘之间,一个圆盘以 10 弧度/秒的剪切速度旋转,在测试环境温度 60℃条件下对环氧树脂的粘度进行测量。

本发明的用于 FRP 的环氧树脂组合物中成分的配比并不特别限定,只要组合物满足上述包括粘度条件的条件。如果不含成分(D),成分(A)和成分(B)的配比[(A)/(B)]优选在重量比 9/1-3/7 范围内。另外,特别优选在成分(A)和成分(B)的混合物中成分(B)含量为 20-50% 重量。

另外,当含有成分(D)时,成分(A)和成分(B)的配比[(A)/(B)]优选在重量比 15/1-1/5 范围内,更优选在重量比 10/1-1/3 范围内。另外特别优选在成分(A)和成分(B)的混合物中成分(B)含量为7-50%重量。

当只有苯氧基树脂用作本发明的用于FRP的环氧树脂组合物的成分(D)时,用于FRP的环氧树脂组合物中配比{(D)/[(A)+(B)]}优选在重量比 1/100-30/100 范围内,更优选 2/100-20/100 范围内。另外,当只有聚乙烯醇缩甲醛树脂用作成分(D)时,用于FRP的环氧树脂组合物中配比{(D)/[(A)+(B)]}优选在重量比 1/100-20/100 范围内,更优选 1/100-10/100 范围内。

在本发明的用于FRP的环氧树脂组合物中,可以满足上述配比的范围内的量加入另一种环氧树脂(E)(下文称为成分(E))。通过在用于FRP的环氧树脂组合物中加入成分(E),可进一步提高管状模制品的性能,诸如耐热性。



作为成分(E),可描述的有例如双酚 F型、双酚 S型、缩水甘油基胺型、氨基酚型、苯酚线型酚醛清漆型和甲酚线型酚醛清漆型环氧树脂,或脂肪族、环脂族和其它环氧树脂。除了别的以外,特别优选软化点在 60 C 或更高的苯酚线型酚醛清漆型环氧树脂,因为它们对用于 FRP 的环氧树脂组合物的整个性能的平衡几乎没有不利影响。作为软化点在 60 C 或更高的苯酚线型酚醛清漆型环氧树脂的典型例子可描述的是 Dainippon Ink and Chemicals Inc. 生产的 EPICLON N-770和 N-775.

当在用于 FRP 的环氧树脂组合物中加入成分(E)时,基于包括成分(A)、成分(B)和成分(E)的环氧树脂组分的总量,成分(E)的含量为 3-20%重量。另外,更优选基于包括成分(A)、成分(B)和成分(E)的环氧树脂组分的总量,加入的成分(B)和成分(E)的总量为 20-50%重量,成分(B)和成分(E)组分比在 1/3-4/1 范围内。

作为本发明的用于 FRP 的环氧树脂组合物,更优选除了上述条件外粗糙度非常好的那些。尤其特别优选  $G_{1c}$  (临界应变能释放速度)为  $400 \text{J/m}^2$ 或更高的用于 FRP 的环氧树脂组合物。在此,可用 ASTM - E399 所述的压紧张力法 (compact tension method)测定  $G_{1c}$ .

将增强纤维片材浸渍以本发明的用于 FRP 的环氧树脂组合物使其结合在一起,从而形成所谓预浸渍片的中间体材料。

并不特别限定在本发明中使用的增强纤维,可单独或联合使用碳纤维、玻璃纤维、芳族聚酰胺类纤维,硼纤维、钢纤维等。除了其它的以外,特别优选使用碳纤维,因为模制后的机械性能好。

作为碳纤维,可使用任何 PAN 前体碳纤维和沥青前体碳纤维。另外, 作为碳纤维,可根据目的选择和使用各种强度和弹性模量不同的碳纤维。

另外,作为本发明的预浸渍片,可述及的有例如一种其中增强纤维 按一个方向排列的单向预浸渍片、一种其中增强纤维是编织的织物、 一种增强纤维的无纺织物或一种通过用本发明的用于 FRP 的环氧树脂



组合物直接浸渍一束增强纤维制备的预浸渍片。

在本发明中,其中增强纤维以一个方向排列的片状产品、其中增强 纤维是编织的织物、增强纤维制成的无纺织物、增强纤维束等被简称 为增强纤维片。

对用本发明的用于FRP的环氧树脂组合物浸渍增强纤维的方法没有特别的限定。作为一种用用于FRP的环氧树脂组合物浸渍增强纤维的方法,在增强纤维片的两面都用树脂浸渍的方法优于在增强纤维片的一面用树脂浸渍的方法,因为在前一种情况下,当该片材模制成本发明要求的管状模制品时,在90°方向上的抗碎强度和抗弯强度得以改进。

当把本发明的用于 FRP 的环氧树脂组合物制成预浸渍片时,预浸渍片有适宜的粘度和柔韧性以及时间稳定性和可固化性之间的良好平衡。特别地,当把本发明的用于 FRP 的环氧树脂组合物制成碳纤维单向预浸渍片时,带来的影响是在模制品纤维轴向的 90°方向上的抗弯强度大大改进了。结果,用该预浸渍片制备的管状模制品在抗碎强度和抗弯强度方面大大改进。使用常规的基体树脂是很难得到这种效果的,从而反映出本发明的环氧树脂组合物的极好性能。

特别地,当使用在纤维轴向的90°方向上抗弯强度为125MPa或更大的预浸渍片时,获得的管状模制品的抗碎强度显著提高了。这样,在纤维轴向的90°方向上的抗弯强度对抗碎强度产生了很大的影响。另外,使用的碳纤维的弹性模量的影响也是巨大的,当使用高弹性模量的碳纤维时,易获得特别好的抗碎强度。

因此,当使用高弹性模量的碳纤维时,即使在碳纤维轴向的90°方向上的抗弯强度略低时,也能获得好的抗碎强度。特别地,在于碳纤维轴向的90°方向上的抗弯强度和使用的碳纤维的弹性模量符合下述关系:

在 90°方向上的抗弯强度[MPa]≥2500/碳纤维的弹性模量[GPa]



的情况下得到了好的抗碎强度。

另一方面,在预浸渍片中的树脂含量越低越好,因为制成的管状模制品重量越轻。但是,树脂含量降低有使在碳纤维轴向的 90°方向上的抗弯强度降低的倾向。特别地,在树脂含量低于 25% 重量的情况下,增加了这种降低的倾向。因此,当使用常规环氧树脂组合物作为基体树脂时,降低预浸渍片的树脂含量制备重量轻的管状模制品很难充分可靠地保证抗碎强度。但是,当使用本发明的环氧树脂组合物作为基体树脂时,即使预浸渍片的树脂含量降低到小于 25% 重量,得到的管状模制品表现出的抗碎强度的改进要好于常规的管状模制品的抗碎强度。因此,可制成重量轻的管状模制品,并且令人满意地保持了其包括抗碎强度在内的性能。

特别地,当使用在纤维轴向的90°方向上的抗弯强度和预浸渍片的树脂含量以及碳纤维的弹性模量满足下列关系的预浸渍片模制管状模制品时,得到的管状模制品在重量降低的影响和包括抗碎强度的物理性能之间具有好的平衡:

在轴向的 90°方向上的抗弯强度[MPa]≥X/碳纤维的弹性模量[GPa] 其中 X 表示 100000×预浸渍片的树脂重量份

其次,描述了一种 FRP 制备的管状模制品, FRP 中使用了上述环氧树脂组合物。

本发明的管状模制品是一种抗碎强度和抗弯强度极好的管状模制品,使用上述用于 FRP 的环氧树脂组合物作为多层 FRP 层中的至少一层 FRP 层的基体树脂获得。

这种管状模制品一般通过将预浸渍片层卷在一个心轴上并对其加热加压制成。要求这些层中至少一层由本发明的第三种模式的预浸渍片组成以得到希望的性能。另外,如果所有层均用本发明的预浸渍片组成,能得到极好的性能而不产生问题。但是,由于各自层一般有各自的性能,不必要求所有的层由本发明的预浸渍片构成。



另外,可以使用本发明的预浸渍片和常规的预浸渍片制成的层状预浸渍片,在许多情况下产生了更好的物理性能。此外,可用将两层预浸渍片卷起来形成层的方法制备管状模制品。作为在模制管状模制品使用的加热和加压方法,可例举的有使用模具——诸如金属模具——的压塑、热压罐内成型法、真空胎式成型、带式搭接成型(tape lapping molding)等等,但是不必局限于这些方法。

优选本发明的用于FRP的环氧树脂组合物,从而当该环氧树脂组合物被模制成管状模制品时,管状模制品的抗碎强度为 200N 或更大,管状模制品的内径为 10mm,外径为 12mm,纤维的体积含量为 60±1%,用如下方法制备:通过用用于FRP的环氧树脂组合物浸渍弹性模量 220-250GPa 的碳纤维形成单向预浸渍片,其中碳纤维面积重量为 150g/m²,用于FRP的环氧树脂的含量为 31%重量,将单向的预浸渍片层压,从而纤维的方向可以是+45°/-45°/+45°/45°/0°/0°/0°。通过定义上述管状模制品的抗碎强度为 200N 或更大,通过减少层压 FRP 层的数量可以制成重量轻的管状模制品。更优选管状模制品的抗碎强度为 240N 或更大。

优选本发明的用于 FRP 的环氧树脂组合物,从而用该用于 FRP 的环氧树脂组合物浸渍弹性模量 220-250GPa 的碳纤维制成单向预浸渍片,其中碳纤维面积重量为 150g/m²,用于 FRP 的环氧树脂的含量为 31%重量,将 15 层这样制备的单向预浸渍片层压,从而纤维的方向可以是 0°,这样制成单向层压片 (厚度 2mm),在 90°方向上的抗弯强度为 110MPa 或更大。因而通过使上述单向层压片在 90°方向上的抗弯强度为 110MPa 或更大,通过减少 FRP 层压层数量可制成重量轻的管状模制品。更优选上述单向层压片在 90°方向上的抗弯强度为 124MPa 或更大,特别优选 140MPa 或更大。

#### 实施例

本发明在下文参考实施例进一步详细说明。



## 化合物缩写和实施例中的试验方法如下:

#### 成分(A)

EP828: 双酚 A 型环氧树脂, EPIKOTE 828 (环氧当量: 184-194; 常温下为液体), 由 YuKa Shell Epoxy K.K.制造。

EP1001: 双酚 A 型环氧树脂, EPIKOTE 1001 (环氧当量: 450 - 500; 常温下为固体), 由 YuKa Shell Epoxy K. K. 制造。

EP1002: 双酚 A 型环氧树脂, EPIKOTE 1002 (环氧当量: 600 - 700; 常温下为固体), 由 YuKa Shell Epoxy K.K.制造。

EP1004: 双酚 A 型环氧树脂, EPIKOTE 1004 (环氧当量: 875 - 975; 常温下为固体), 由 YuKa Shell Epoxy K. K. 制造。

#### 成分(B)

XAC4151: 含噁唑烷酮环的环氧树脂, Asahi-Ciba Limited 制造。 XAC4152: 含噁唑烷酮环的环氧树脂, Asahi-Ciba Limited 制造。

## 成分(C)

PDMU: 苯基二甲基脲

DCMU: 二氯二甲基脲

DICY: 氰基胍

### 成分(D)

PY-50: 苯氧基树脂, PHENOTOHTO, Tohto Kasei Co., Ltd. 生产。

VINYLEC E: 聚乙烯醇缩甲醛树脂, Chisso corporation 制造。

VINYLEC K: 聚乙烯醇缩甲醛树脂, Chisso corporation 制造。

### 成分(E)

N740: 苯酚线型酚醛清漆型环氧树脂, EPICLON N740(在常温下为半固体), Dainippon Ink and Chemicals Inc.生产。

N775: 苯酚线型酚醛清漆型环氧树脂, EPICLON N775(软化点温度:



70-80℃), Dainippon Ink and Chemicals Inc. 生产.

### 测定粘度的方法

使用 Rheometric Scientific F. E. Ltd 制造的动态粘弹性测量仪 RDA - 700. 测定其粘度的用于 FRP 的未固化环氧树脂组合物被填充在之间相距 0.5mm 的两个直径 25mm 的圆盘之间,在测试环境温度 60  $\mathbb{C}$  的测定条件下对环氧树脂的粘度进行测量,剪切速度 10 弧度/秒。

 $G_{1C}$ 

根据 ASTM-E399, 用压紧张力法(compact tension method)测定 Gic.

## 预浸渍片的加工性能的评价

对预浸渍片进行人工感觉测试,基于下列标准进行评价:

- 0: 粘度和柔韧度均好,非常容易地卷在心轴上。
- Δ: 缺乏柔韧性,卷在心轴上有些困难。
- X: 粘性非常强,卷在心轴上困难。

## 测定 90°方向上的抗弯强度的方法

用用于FRP的环氧树脂组合物浸渍弹性模量 220-250GPa 的碳纤维制成单向预浸渍片,其中碳纤维面积重量为 150g/m²,用于 FRP 的环氧树脂的含量为 31%重量。将 15 层这样制备的单向预浸渍片一层放在另一层上地放置,纤维的方向为 0°,从而形成单向层压片(厚度 2mm)。将该单向层压片切成在纤维方向的 90°方向上长度 60mm、宽 10mm 得到试样。支撑物之间的距离为 32mm,硬度压头端部直径为 3.2mm,压头的移动速度为 2mm/分,在该条件下测定试样破裂的最大负荷,计算与纤维轴向成 90°方向的抗弯强度。

更特别地,通过使用可从 Orientec Corporation 获得的通用试验机 TRNSILON,将长度 60mm、宽 10mm、厚 2mm 的试样在下列试验条件下试验: L/D 为 16,硬度压头端部直径为 3.2mm,压头的移动速度为



2mm/分,其中 L/D表示[支撑物之间的距离]/[试样的厚度]。

# 纤维轴向方向的抗弯强度的测定

在纤维轴向方向的抗弯强度的测定中,使用纤维轴向方向上长度 120mm、宽 10mm、厚 2mm 的试样,在下列试验条件下试验:除了 L/D 为 40 以外,用与测定 90°方向上的抗弯强度的方法相同的方法,硬度 压头端部直径为 3.2mm,压头的移动速度为 2mm/分。

### 抗碎强度的测定

用用于FRP的环氧树脂组合物浸渍弹性模量 220-250GPa 的碳纤维制成单向预浸渍片,其中碳纤维面积重量为 150g/m², 用于 FRP 的环氧树脂的含量为 31%重量。将该单向的预浸渍片一层放在另一层上地放置,从而纤维的方向可以是 + 45°/-45°/+45°/-45°/0°/0°/0°。形成的管状模制品的内径为 10mm,外径为 12mm,纤维的体积含量为 60±1%。将该管状模制品切成长 10mm 的试样。用硬度压头对试样施加负荷,测试直到试样破裂所需的最大负荷,压头的移动速度为 5mm/分,最大负荷定义为抗碎强度。

更特别地,通过使用可从 Orientec Corporation 获得的通用试验机 TENSILON, 在 8 个试样之一上从径向用硬度压头施加负荷将其粉碎,测量它们破裂所需的最大负荷。8 个测定值的平均值定义为抗碎强度。

# FRP 管状模制品的四点抗弯试验

作为试样,制备管状模制品,其中为了防止应力集中,在支撑物和硬度压头与管状模制品接触的部分设置内径 11.5mm、壁厚 2mm、宽 10mm的铝环。使用可从 Orientec Corporation 获得的通用试验机TENSILON,在每个这种试样上这样施加负荷:可移动的硬度压头之间的距离为 500mm,固定的硬度压头(支撑物)之间的距离为 150mm,压头的移动速度为 15mm/分,测定抗弯强度。6 个这种测试的平均值定义



为抗弯强度。抗碎强度和四点抗弯试验均在 21℃和 50% RH 的环境条件下进行。

## 固化的树脂的玻璃化温度(Tg)

使用 Rheometric Scientific F. E. Ltd 制造的动态粘弹性测量仪 RDA-700,对 60mm 长、12mm 宽、2mm 厚的试样以 10 弧度/秒的速度施加剪切力,温度以 5℃/STEP 升高,测定储能模量的温度相关性。储能模量曲线对玻璃态区域的正切与对转化区的正切的交点为玻璃化温度。

## 用于扭曲强度测定的杆的制备

用下述方法使用上述预浸渍片制备用作高尔夫球棒的各个杆。

首先,用下述方法切割预浸渍片,当在一个锥形心轴——该心轴直径小的部分外径为 4.6mm,直径大的部分外径为 14.3mm,长度为1500mm——上以纤维的方向形成+45°角的方式卷上预浸渍片时,在正对的两端应形成两层,当以纤维的方向形成-45°角的方式卷上预浸渍片时,确保相同的形成。然后,这些预浸渍片纤维方向互成直角地被粘在一起。层压的预浸渍片被卷在心轴上形成角层(angle layer)。然后,在该角层上卷上3层预浸渍片,形成直层(straight layer),从而上角为0°。在上面以螺距2mm卷上宽20mm、厚30μm的聚丙烯带后,将其置于固化炉中,在145℃加热240分钟固化树脂。固化后,除去芯,撕掉聚丙烯带,从直径小的部分和直径大的部分各切去10mm长,得到测试用的用于高尔夫球棒的杆。

#### 扭曲强度的测定

测定每个用上述方法制备的用于高尔夫球棒的杆的扭曲强度. 根据 Product Safety Society 确定的用于高尔夫球棒的扭曲强度的试验合格标准和标准证明方法(5 San No. 2087 (1993年10月4日) Minister of Japanese Ministry of International Trade & Industry 批准)



进行测定。首先,使用"5KN通用测试仪"(Mechatronics Engineering Inc.生产),固定测试高尔夫球棒杆的直径小的部分,在直径大的部分施加扭矩,当由于扭转杆折断时,该扭矩定义为扭曲强度,其扭转角度定义为破坏角。产品的扭曲强度和破坏角被表示成扭断能。

# 实施例 1-11 和比较实施例 1-5

制备配方如表 1 和 2 所示的环氧树脂组合物(数值表示重量份),它们分别被涂敷在防粘纸上。在环氧树脂组合物上放置单向排列的碳纤维(TR30G-12L,Mitsubishi Rayon Co.,Ltd. 生产),使其被环氧树脂组合物浸渍,从而获得单向预浸渍片,其中碳纤维面积重量为 $150g/m^2$ ,树脂的含量为31%重量。所用环氧树脂组合物的粘度和得到的预浸渍片的加工性能的评价结果如表 1 和 2 所示。

然后,排列碳纤维方向将获得的预浸渍片层压,得到的每个层压片在 130℃的固化条件下进行真空胎式成型 1 小时,得到碳纤维作为增强纤维的 FRP 单向模制品(下文称为单向模制品)。关于获得的单向模制品,进行在纤维轴向方向上和在与纤维轴向成直角的方向上的柔韧性测试和玻璃化温度的测定。结果也如表 1 和 2 所示。

另外,将获得的预浸渍片彼此纤维方向互成直角地粘在一起形成有两层的层压预浸渍片。然后,在直径 10mm 的心轴上将每个层压的预浸渍片卷两次,从而从心轴的长度方面而言纤维的方向为 + 45°,两层 + 45°和两层 - 45°彼此互成直角地安排形成 4 个预浸渍片层。然后,进一步在心轴上以纤维方向与心轴长度方向一致的方式卷预浸渍片三次,形成 3 个 0°层。用聚丙烯模压带(厚度 30μm,宽度 15mm)在其表面以张力6.5kg/15mm 和螺距 3mm 捆绑的方式模塑这样形成的层压片,在 130℃的固化炉中加热 1 小时。固化后,抽掉芯,去掉带子,得到壁厚 1.0mm 的碳纤维作为增强纤维的管状模制品(下文称为管状模制品)。对于这样得到的管状模制品,进行抗碎强度测试。结果如表 1 和 2 所示。

顺便,包括那些在下列实施例和比较实施例中的单向模制品和管状模制品除非另有说明均制成碳纤维体积含量为60±1%。

|                                     | 1         | !     |       |       |       |       |
|-------------------------------------|-----------|-------|-------|-------|-------|-------|
|                                     |           |       |       | 实施例   | į     |       |
|                                     | .1        |       | 2     | 3     | 4     | 5     |
|                                     | 86861     | 83    | 30    | 20    | 20    | 30    |
|                                     | 1 020 III | 95    | 30    | 30    |       |       |
| 成分 (A)                              | EP1002    |       |       |       | 30    | 9     |
|                                     | EP1004    |       |       |       |       |       |
|                                     | XAC4151   | 30    | 40    | 50    |       |       |
| 成分(B)                               | XAC4152   |       |       |       | 20    | 30    |
|                                     | DICY      | 5     | 5     | 2     | 5     | 2     |
| 成分 (C)                              | DCM       | ħ     | 4     | 4     | 4     | 4     |
|                                     | PDMU      |       |       |       |       |       |
|                                     | N740      |       |       |       |       |       |
| 成分(E)                               | N775      |       |       |       |       |       |
|                                     |           | 1700  | 758   | 702   | 2040  | 868   |
| 粘度(消, 60℃)                          |           | 640   | 069   | 200   | 710   | 009   |
| <b>树脂的</b> G <sub>LC</sub> ( J/m² ) |           | 0     | 0     | 0     | 0     | 0     |
| 预浸渍片的加工性能                           |           | TR30C | TR30G | TR30C | TR30G | TR30G |
| <b>碳纤维</b>                          | 大好像松木伯卜   | 1637  | 1627  | 1646  | 1637  | 1656  |
| 单向模制品的抗弯强度(MPa)                     | 在分分子      | 131   | 133   | 137   | 127   | 132   |
|                                     | 7 C - 1   | 122   | 126   | 127   | 125   | 120   |
| 玻璃化温度(C)                            |           | 235   | 245   | 255   | 245   | 245   |
| 管状模制品的抗碎强度 (N)                      |           | 13.1  | 13.1  | 13.2  | 13.0  | 13.3  |
| 拉曲强度 (N·m)                          |           | 101   | 101   | 102   | 100   | 100   |
| <b>破坏角(°)</b>                       |           | 1323  | 1323  | 1346  | 1300  | 1330  |
| <b> </b>                            |           |       |       |       |       |       |



**TR30G** 13.1 I ヷ TR30G 12. 1 S **TR30G** 12.0 S ₹ ဘ 实施包 **TR30G** 13.1 S  $\infty$ **TR30G** 13.2 S **TR30G** 13.0 മ ~ 表1(獎) 在纤维的方向上 在90°方向上 XAC4152 XAC4151 EP1002 FP 1004 EP1001 **FP828** DICY DOM **DWO** N775 单向模制品的抗弯强度(MPa) 管状模制品的抗砷强度(N) 拉曲成坏能 (N·m°) 预浸渍片的加工性能 树脂的 Grc ( J/m²) 扭曲强度 (N·m) 粘度(消, 60°C) 玻璃化温度(C) 成坏角(°) 成分(C) 成分 (A) 成分(B) 成分(E) 碳纤维



**TR30G** 1646 73.5 5390 730 124 167 7.5 413 22 ◁ 47 20 2 4 က S TR30G 1686 13.2 1346 137 132 255 102 670 93 40 99 വ 4 对比实施例 **TR30G** 1646 1186 748 23 123 123 176 12. 1 98 8 0 65 വ 2  $\sim$ ഹ **TR30G** 1102 11.6 1646 176 775 125 280 111 95 20 0 50 rC ゼ 2 **TR30G** 11.8 1133 1637 115 122 186 320 901 8 8 0 65 S 4 S 在纤维的方向上 表2 在90°方向上 XAC4151 XAC4152 EP1002 EP1004 EP1001 EP828 N775 DOM PDMU N740 DICY 单向模制品的抗弯强度 (MPa) 管状模制品的抗母强度 (N) | 抽曲破坏能 (N·m°) 预浸渍片的加工性能 树脂的 G<sub>IC</sub> (J/m²) 扭曲强度 (N·m) 玻璃化温度(C) 粘度(消, 60°C) **城坏角(°)** 成分(A) 成分(C) 成分(E) 成分(B) 碳纤维



实施例 12-14 和比较实施例 6-8

用与实施例 1 相同的方法制备,除了制备具有表 3 和 4 所示配方的 环氧树脂组合物和使用 Mitsubishi Rayon Co., Ltd. 生产的 HR40-12M 作为碳纤维以外。评价预浸渍片的加工性能和单向模制品和管状模制 品的性能。结果如表 3 和 4 所示。

| 成分(A)     EP828     20     20     30       成分(A)     EP1001     50     20     30       成分(B)     EP1002     30     40       成分(B)     XAC4151     30     40       成分(C)     DCMU     4     4     2       取成成片(B)     XAC4152     5     5     5       成分(C)     DCMU     4     4     4     2       DCMU     4     4     4     4       取成成片(B)     DCMU     4     4     4     4       成分(E)     DCMU     4     4     4     4       取成成片(B)     N740     1700     2040     748       成分(E)     N740     1700     2040     748       取存模型の大域の大域を使機に関係(MPa)     在900方向上     99     98     101       取り破りに     186     206     196       取りの方向上     76     76     77       東外成り(N)     76     76     77       東外成り(N)     76     76     76       東外成り(N)     77     762     772                                                                                                                                                                                                                    | **            | 表 3      |      | 守海鱼    |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------|--------|------|
| EP828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          |      | tank X | 7 -  |
| EP0828     20     20       EP1001     50     30       EP1002     30     30       EP1004     30     50       KAC4151     30     50       Le (J/m²)     DICY     5     5       DOMU     4     4     4       PDMU     4     4     4       PDMU     1700     2040       Apazter     186     206       Apazter     186     206       Apazter     186     206       Apazter     186     206       Apazter     186     9.9     9.9       Apazter     775     775                                                                                                                                                                                                                                                                                                                                    |               |          | 12   | 13     | 14   |
| EP1001       50         EP1002       30         EP1004       30         EP1004       50         KAC4151       30         C (J/m²)       5       5         BOKU       4       4         DICY       5       5         DICY       4       4         DICY       4       4         DICY       5       5         DICY       4       4         DICY       4       4         DICY       4       4         DICY       5       5         DICY       4       4         DICY       5       5         DICY       7       7         DICY       7       7         DICY       7       7         BOMU       1       7         BOMU       1       1         BOMU       1       <                                                                                                                                                 |               | EP828    | 20   | 20     | 30   |
| c D C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | EP1001   | 50   |        |      |
| (b0C)       AC4151       30         (b0C)       AC4152       50         (b0C)       DICY       5       5         (c)       DICY       4       4         (c)       NY40       4       4         (c)       DICMU       4       4         (c)       NY40       1700       2040         (d)       AV40       1840       1617         (e)       DO       O       O       O         (e)       DO       O       O       O         (e)       DO       O       O       O         Abhit       Apple       1840       1617         Abhit       Apple       186       206         (n)       Apple       186       9.9       9.9         (n)       Apple       76       76       76         (e)       Apple       Apple       76       76         Apple       Apple       Apple                                                               |               | EP1002   |      | 30     | 40   |
| (b0C)     AAC4151     30       (b0C)     DICY     5     5       (b0C)     DCMU     4     4       (b0C)     DCMU     4     4       (c) J(m²)     N740     1700     2040       (d) math     AAC4152     5     5       (a) math     N740     1700     2040       (a) math     AAC4152     5     5       (a) math     AAC4152     5     5       (b) math     AAC4152     5     5       (a) math     AAC4152     5     5       (b) math     AAC4152     7     7       (a) math     AAC4152     7     7       (b) math     AAC4152     7     7       (a) math     AAC4152     7     7       (a) math     AAC416     7     7       (a) math     AAC416 <t< td=""><td></td><td>EP1004</td><td></td><td></td><td></td></t<> |               | EP1004   |      |        |      |
| AACC4152     50       (b) CV     DICY     5     5       (c) CV     NT40     4     4       (c) J/m²)     NT40     1700     2040       (d) 加工性能     640     710       品的抗療發度(MPa)     在纤维的方向上     1578     1617       品的抗療發度(N)     4     4     4       (N·m)     在纤维的方向上     1578     125       (N·m)     76     76     76       (N·m)     752     752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | XAC4151  | 30   |        | 30   |
| b DLCMU     4     4       c (J/m²)     N740     1700     2040       c (J/m²)     0     0     0       sh 放土性能     44     4     4       sh か工性能     N740     1700     2040     710       sh か工性能     640     710     0     0       sh が 東後 (MPa)     在纤维的方向上     99     98     125       sh が 神程度 (N)     186     206     186     206       (N·m)     76     76     76       o)     752     752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3)            | XAC4152  |      | 50     |      |
| c (J/m²)     DCMU     4     4       b (DMU)     N740     1700     2040       c (J/m²)     0     0     0       的加工性能     HR40     HR40     HR40       品的抗療機度(MPa)     在纤维的方向上     1578     1617       正的抗學後(N)     490°方向上     99     98       この     122     125       この     186     206       この     186     206       この     76     76       の)     76     76       の)     752     752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | DICY     | 5    | 5      | 2    |
| (1)       PDMU         (4)       (0.C.)         (5)       (1700         (6)       (1700         (7)       (100         (100       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110       (110         (110 <td></td> <td>DCMU</td> <td>4</td> <td>4</td> <td></td>                                                                                  |               | DCMU     | 4    | 4      |      |
| (1)     N740     1700     2040       (b)     (c)     (c)     (c)     (c)       (c)     (c)     (c)     (c)     (c)       (c)     (d)     (c)     (c)     (c)       (c)     (d)     (c)     (c)     (c)       (d)     (d)     (d)     (d)     (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | PDMU     |      |        | 2    |
| 1, 60 C)     1700     2040       1, 60 C)     640     710       1, 60 C)     0     0       1, 60 C)     0     0       1, 60 C)     1, 10       1, 60 C)     1, 10       1, 60 C)     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10     1, 10       1, 1, 10                                                        |               | N740     |      |        |      |
| 4,60 C)640710GLC (J/m²)OO片的加工性能HR40HR40制品的抗導强度(MPa)在 90°方向上9998關底(C)122125制品的抗弹强度(N)186206以同的抗弹强度(N)9.99.9使(N·m)7676(°)752752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | 1700 | 2040   | 748  |
| Glc (J/m²)OO片的加工性能在纤维的方向上IR78IR40制品的抗導發度 (MPa)在纤维的方向上15781617温度(C)在90°方向上9998関度(C)186206制品的抗弹强度 (N)9.99.9度 (N·m)7676(°)752752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,60℃)        |          | 640  | 710    | 019  |
| 片的加工性能HR40HR40開品的抗導强度 (MPa)在纤维的方向上15781617温度 (C)在 90°方向上9998制品的抗弹强度 (N)122125関品的抗弹强度 (N)9.99.9度 (N·m)7676(°)752752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gic (J/m')    |          | 0    | 0      | 0    |
| 度 (MPa)在纤维的方向上15781617在 90°方向上9998122125186206度 (N)9.99.97676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 片的加工性能        |          | HR40 | HR40   | HR40 |
| 度 (MPa) 在 90°方向上 99 98 98 125 125 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 在纤维的方向上  | 1578 | 1617   | 1617 |
| 及(N) 122 125 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 制品的抗弯强度 (Mra) | 在 90°方向上 | 66   | 86     | 101  |
| 及(N) 186 206 9.9 9.9 9.9 76 76 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |          | 122  | 125    | 120  |
| 及(N)<br>(A)<br>(A)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 温度(10)        |          | 186  | 206    | 196  |
| 76     76       752     752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 制品的抗碎强度(N)    |          | 9.6  | 9.9    | 9.9  |
| 752 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 度 (N·B)       |          | 92   | 92     | 11   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0)           |          | 752  | 752    | 762  |

|                           |      | 比较实施例 |      |
|---------------------------|------|-------|------|
| 1                         | 12   | 13    | 14   |
| 86863                     | 5    |       | 5    |
|                           | 65   |       | 65   |
| 成分(A)<br>EP1002           |      | 50    |      |
| EP1004                    |      |       |      |
|                           |      |       |      |
| 成分(B) XAC4152             |      |       |      |
|                           | 5    | 5     | 5    |
| 成分(C)                     | 4    | 4     |      |
| IMU                       |      |       | 2    |
|                           | 30   | 50    | 30   |
|                           | 901  | 775   | 748  |
| 粘度(消, 60C)                | 320  | 280   | 290  |
| <b>英脂的</b> Grc ( J/m²)    | 0    | 0     | 0    |
| 预浸渍片的加工性能                 | HR40 | HR40  | HR40 |
| <b>碳纤维</b>                | 1588 | 1578  | 1568 |
| 单向模制品的抗弯强度 (MPa) 在 900方向上 | 80   | 62    | 81   |
|                           | 122  | 125   | 123  |
| 玻璃化温度(C)                  | 137  | 127   | 132  |
| 管状模制品的抗碎强度(N)             | 8.2  | 8.1   | 8.2  |
| 扣曲强度 (N·m)                | 67   | 99    | 29   |
| 破坏角(0)                    | 549  | 535   | 549  |
| 扭曲破坏能 (N·m°)              |      |       |      |



实施例 15-38 和比较实施例 9-20

用与实施例 1 相同的方法制备,除了制备具有表 5-8 所示配方的环氧树脂组合物和使用 Mitsubishi Rayon Co., Ltd. 生产的 TR30S-12L 作为碳纤维以外。评价预浸渍片的加工性能和单向模制品和管状模制品的性能。结果如表 5-8 所示。



|                  | ************************************** |       |       |       |          |       |          |
|------------------|----------------------------------------|-------|-------|-------|----------|-------|----------|
|                  |                                        |       |       | 实施例   | <b>E</b> |       |          |
|                  | -                                      | 15    | 16    | 17    | 18       | 19    | 20       |
|                  | 80808                                  | 30    | 30    | 30    | 55       | 45    | 35       |
|                  | EP1001                                 |       |       |       |          |       |          |
| 成分 ( A )         | EP1002                                 |       |       |       | 25       | 35    | 45       |
|                  | XAC4151                                |       |       |       |          |       |          |
| 成分(B)            | XAC4152                                | 70    | 7.0   | 70    | 20       | 20    | 20       |
|                  | DICY                                   | 4     | 4     | 4     | 4        | 4     | 4        |
| 成分(C)            | DCMI                                   | 4     | 4     | 4     | 4        | 4     | 4        |
|                  | Phylli                                 |       |       |       |          |       |          |
|                  | VD_50                                  | 9     | 12    | 18    | 8        | 8     | <b>∞</b> |
| 成分(0)            | N740                                   |       |       |       |          |       |          |
|                  | N 40                                   | 001   | 1500  | 3500  | 1500     | 2800  | 4900     |
| 粘度 (泊, 60C)      |                                        | 720   | 730   | 750   | 530      | 550   | 540      |
| 树脂的 G1c ( J/m²)  |                                        | 0     | 0     | 0     | 0        | 0     | 0        |
| 预浸渍片的加工性能        |                                        | TR30S | TR30S | TR30S | TR30S    | TR30S | TR30S    |
| <b>碳纤维</b>       | 大好给的六向上                                | 1705  | 1686  | 1676  | 1656     | 1666  | 1656     |
| 单向模制品的抗弯强度 (MPa) | 在900方向上                                | 140   | 138   | 133   | 135      | 137   | 136      |
|                  | ł                                      | 130   | 129   | 129   | 124      | 123   | 121      |
| 玻璃化温度(C)         |                                        | 254.8 | 245   | 245   | 255      | 255   | 255      |
| 管状模制品的抗碎强度 (N)   |                                        | 13.7  | 13.4  | 13.3  | 13.3     | 13.4  | 13.4     |
| 扭曲强度 (N·m)       |                                        | 104   | 102   | 101   | 101      | 101   | 102      |
| 成坏角(°)           |                                        | 1394  | 1367  | 1343  | 1343     | 1353  | 1367     |
| 拉曲破坏能 (N·mo)     |                                        |       |       |       |          |       |          |



|                                    | (被)     |       |       |       |       |       |       |
|------------------------------------|---------|-------|-------|-------|-------|-------|-------|
|                                    |         |       |       | 实施例   | 室     |       |       |
|                                    | _1      | 21    | 22    | 23    | 24    | 25    | 26    |
| 8680                               |         | 20    | 20    | 90    | 40    | 40    | 40    |
|                                    |         | 09    | 30    |       |       |       |       |
| 成分 (V) FP1002                      | 2       |       |       | 20    | 40    | 40    |       |
|                                    | 51      |       |       | 30    |       |       | 30    |
| 成分(B) xAC4152                      | 52      | 20    | 50    |       | 20    | 20    |       |
|                                    |         | 4     | 4     | 4     | 4     | 4     | 4     |
| 成分(C)                              |         | 4     | 4     | 1     | 4     |       |       |
|                                    |         |       |       |       |       | 4     | 4     |
| OHO I                              |         | oc.   | ∞     | œ     | ∞     | 8     | 10    |
| 成分(D) 以240                         |         |       |       |       |       |       | 30    |
| 成分(E)                              |         | 9500  | 3300  | 2000  | 2900  | 2600  | 2100  |
| 粘度(消, 60C)                         |         | 5.90  | 630   | 610   | 540   | 530   | 490   |
| <b>树脂的</b> G <sub>1c</sub> ( J/m²) |         | 230   | 0     | 0     | 0     | 0     | 0     |
| 预浸渍片的加工性能                          |         | TR30S | TR30S | TR30S | TR30S | TR30S | TR30S |
|                                    | 左好维粉方向上 | 1676  | 1715  | 1705  | 1695  | 1676  | 1646  |
| 单向模制品的抗弯强度 (MPa)                   | 900方向上  | 134   | 139   | 141   | 138   | 137   | 136   |
| 4                                  |         | 120   | 126   | 127   | 124   | 123   | 133   |
| 玻璃化温度(C)                           |         | 245   | 245   | 255   | 255   | 255   | 245   |
| 管状模制品的抗碎强度(N)                      |         | 13.3  | 13.4  | 13.7  | 13.4  | 13.3  | 13.3  |
| 扭曲强度 (N·m)                         |         | 101   | 102   | 104   | 102   | 102   | 101   |
| <b>成坏角(°)</b>                      |         | 1343  | 1367  | 1425  | 1367  | 1357  | 1343  |
| 扣由破坏能 (N·mo)                       |         |       |       |       |       |       |       |
|                                    |         |       |       |       |       |       |       |

|                        | * 6      |       |       |       |       |       |       |
|------------------------|----------|-------|-------|-------|-------|-------|-------|
|                        |          |       |       | 比较实施例 | 為     |       |       |
|                        | J        | 6     | 10    | 11    | 12    | 13    | 14    |
|                        | EP828    | 25    | 80    | 01    | 01    | 10    | 10    |
|                        | EP1001   |       |       | 09    | 09    | 40    | 20    |
| 成分(A)                  | EP1002   | 55    |       |       |       |       |       |
|                        | XAC4151  |       |       |       |       |       |       |
| 成分(5)                  | XAC4152  | 20    | 20    |       |       |       |       |
|                        | DICY     | 4     | 4     | 4     | 4     | 4     | 4     |
| 成分 ( C )               | DCMU     | 4     | 4     | 4     | 4     | 4     | 4     |
|                        | PDMU     |       | -     |       |       |       |       |
|                        | VP-50    | ∞     | 2     | 9     | 12    | 9     | 9     |
|                        | NZA0     |       |       | 30    | 30    | 20    | 70    |
|                        | OT IN    | 6400  | 06    | 2000  | 2800  | 2400  | 2100  |
| 粘度(消, 60°C)            |          | 550   | 510   | 300   | 350   | 270   | 260   |
| <b>树脂的</b> Grc ( J/m²) |          | V     | ×     | 0     | 0     | 0     | 0     |
| 预浸渍片的加工性能              |          | TR30S | TR30S | TR30S | TR30S | TR30S | TR30S |
|                        | 在纤维的方向上  | 1637  | 1685  | 1676  | 1656  | 9991  | 1627  |
| 单向模制品的抗胃强度(MPa)        | 在 900方向上 | 93    | 129   | 801   | 103   | 86    | 70    |
|                        |          | 120   | 132   | 125   | 123   | 126   | 132   |
| 玻璃化温度(C)               |          | 186   | 961   | 176   | 176   | 186   | 167   |
| P. E. I                |          | 9.8   | 12.8  | 11.4  | 10.5  | 10.0  | 7.3   |
| 扭曲發度 (N·m)             |          | 77    | 66    | 95    | 85    | 75    | 53    |
| 破坏角 (°)                |          | 755   | 1267  | 1083  | 893   | 750   | 387   |
| 扭曲破坏能 (N·mo)           |          |       |       |       |       |       |       |

|                 | 7           |       |       |       |       |       |       |
|-----------------|-------------|-------|-------|-------|-------|-------|-------|
|                 | 4           |       |       | 实施包   | 趸     |       |       |
|                 | <b>_J</b>   | 2.7   | 28    | 59    | 30    | 31    | 32    |
|                 | 0000        | 30    | 30    | 30    | 50    | 40    | 30    |
| ±1 (c           | EF820       | 3     |       |       |       |       |       |
| 成分 ( V )        | EP1001      |       |       |       | 30    | 40    | 50    |
|                 | EF 1002     |       |       |       |       |       |       |
| 成分(B)           | XAC4151     | 70    | 70    | 70    | 20    | 20    | 20    |
|                 | XAC4132     | 5 4   | 4     | 4     | 4     | 4     | 4     |
| 成分(C)           | DICI        | 4 4   | 4     | 4     | 4     | 4     | 4     |
|                 | DUM         |       |       |       |       |       |       |
|                 | VINVIEC E   | 3     | 9     | 6     | 4     | 4     | 4     |
| 成分(1)           | VINVIEC K   |       |       |       |       |       |       |
|                 | INTER IN    |       |       |       |       |       |       |
| 展分(E)           | N/40        | 080   | 1400  | 3000  | 1200  | 2500  | 4900  |
| 粘度 (泊, 60℃)     |             | 730   | 730   | 740   | 910   | 570   | 550   |
| 英語名 Grc ( ]/m²) |             | 0     | 0     | 0     | 0     | 0     | 0     |
| 预浸清片的加工性能       |             | TR30S | TR30S | TR30S | TR30S | TR30S | TR30S |
|                 | 大好強化小面上     | 1715  | 1695  | 1676  | 1646  | 1637  | 1646  |
| 制品的抗弯强度 (MPa)   | 在りないからしたのから | 144   | 143   | 149   | 145   | 140   | 137   |
|                 |             | 129   | 130   | 128   | 126   | 124   | 121   |
| 玻璃化温度(C)        |             | 265   | 255   | 265   | 274   | 265   | 255   |
| 管状模制品的抗碎强度(N)   |             | 13.7  | 13.5  | 13.8  | 13.7  | 13.8  | 13.4  |
| 扭曲强度 (N·m)      |             | 103   | 103   | 104   | 102   | 105   | 101   |
| 破坏角(0)          |             | 1411  | 1391  | 1435  | 1397  | 1449  | 1353  |
| 拉曲破坏能 (N·mo)    |             |       |       |       |       |       |       |
|                 |             |       |       |       |       |       |       |

|                   | 4 / 一類)   |       |       |       |            |       |       |
|-------------------|-----------|-------|-------|-------|------------|-------|-------|
|                   | × × ×     |       |       | 实施例   | <u>(A)</u> |       |       |
|                   | <u></u>   | 33    | 34    | 35    | 36         | 37    | 38    |
|                   | 00000     | 200   | 90    | 50    | 40         | 40    | 40    |
|                   | EP828     | 000   | 200   |       |            |       |       |
| 本今 ( Y )          | EP1001    | no    | 200   | 00    | 40         | 40    |       |
|                   | EP1002    |       |       | 000   |            |       | 30    |
| よみ(B)             | XAC4151   | 18    | ١     | 3     | 90         | 20    |       |
|                   | XAC4152   | 0.7   | DC.   | 1.    | 3          | 3 -   | A     |
|                   | DICY      | 4     | 4     | 4     | 4          | 4     | r     |
| 成分(C)             | ncwii     | 4     | 4     | 4     | 4          |       |       |
|                   | DUNI      |       |       |       |            | 4     | 4     |
|                   | VINVIEC E | 4     | 4     | 4     |            | 4     | 5     |
| 成分(D)             |           |       |       |       | 5          |       |       |
|                   | VINILEC A |       |       |       |            |       | 30    |
| 成分(E)             | N/40      | 9900  | 3100  | 1800  | 2700       | 2500  | 2000  |
| 粘度 (消, 60℃)       |           | 520   | 640   | 009   | 540        | 540   | 500   |
| 树脂的 Grc ( J/m²)   |           | 0     | 0     | 0     | 0          | 0     | 0     |
| 预浸渍片的加工性能         |           | TR30S | TR30S | TR30S | TR30S      | TR30S | TR30S |
|                   | 大好维格子向上   | 1656  | 1705  | 1715  | 1705       | 1695  | 1646  |
| 单向模制品的抗弯强度 (Ml'a) | 在 000方向上  | 141   | 146   | 139   | 138        | 136   | 134   |
|                   |           | 120   | 125   | 127   | 123        | 123   | 133   |
|                   |           | 265   | 265   | 265   | 265        | 255   | 245   |
| 管状模制品的抗碎强度(N)     |           | 14.1  | 13.8  | 13.5  | 13.5       | 13.4  | 13.3  |
| 和曲强度 (N·m)        |           | 107   | 104   | 102   | 102        | 101   | 101   |
| <b>校坏角(º)</b>     |           | 1509  | 1435  | 1377  | 1377       | 1353  | 1343  |
| 拉曲破坏能 (N·m°)      |           |       |       |       |            |       |       |

|                             | **<br>**  |       |       |       |       |       |       |
|-----------------------------|-----------|-------|-------|-------|-------|-------|-------|
|                             |           |       |       | 比较实施例 | 施例    |       |       |
|                             | •         | 15    | 91    | 17    | 18    | 19    | 20    |
|                             | FD898     | 25    | 80    | 10    | 10    | 10    | 10    |
|                             | FP1001    |       |       | 09    | 09    | 40    | 20    |
| 成分 ( N )                    | EP1002    | 55    |       |       |       |       |       |
| (0) (1)                     | XAC4151   |       |       |       |       |       |       |
| 成分(B)                       | XAC4152   | 20    | 20    |       |       | 1     | ,     |
|                             | DICY      | 4     | 4     | 4     | 4     | 4     | 4     |
| 成分(C)                       | DCMU      | 4     | 4     | 4     | 4     | 4     | 4     |
|                             | PDMU      |       |       |       |       |       | 6     |
|                             | VINYLEC E | 4     | 2     | 3     | 9     | 2     | 2     |
| 成分(1))                      | VINYLEC K |       |       |       |       | ,     | 0,0   |
|                             | N740      |       |       | 30    | 30    | 20    | 0)    |
| 成分(E)                       |           | 6200  | 06    | 1800  | 2500  | 2200  | 1800  |
| 粘度(消, 60C)                  |           | 530   | 520   | 290   | 360   | 270   | 240   |
| 树脂的 G <sub>1c</sub> ( J/m²) |           | <     | ×     | 0     | 0     | 0     | 0     |
| 预浸渍片的加工性能                   |           | TR30S | TR30S | TR30S | TR30S | TR30S | TR30S |
| 碳纤维                         | 左好维的方向上   | 1656  | 1705  | 1666  | 1666  | 1656  | 1637  |
| 单向模制品的抗弯强度 (MPa)            | 在 900方向上  | 86    | 131   | 113   | 108   | 103   | 78    |
|                             |           | 121   | 133   | 124   | 123   | 127   | 134   |
| 玻璃化湿度(C)                    |           | 961   | 216   | 206   | 196   | 196   | 206   |
| ₽E                          |           | 10.1  | 13    | 11.5  | 11.4  | 10.8  | 7.5   |
| 扭曲强度 (N·m)                  |           | 82    | 100   | 92    | 94    | 85    | 26    |
| 成坏角(0)                      |           | 828   | 1300  | 1420  | 1072  | 918   | 420   |
| 拉曲破坏能 (N·m°)                |           |       |       |       |       |       |       |



实施例 39-41 和比较实施例 21-23

用与实施例 1 相同的方法制备,除了使用表 9 和 10 所示的碳纤维和环氧树脂组合物以外。评价单向模制品在 90°方向上的抗弯强度和管状模制品的抗碎强度。结果如表 9 和 10 所示。

| <br> |     |     |     |
|------|-----|-----|-----|
|      |     | • • |     |
| <br> | •   |     | •   |
|      |     |     | 4 * |
|      | -   | _   | -   |
| <br> | ~ ~ |     |     |

| ي<br>ب                 |        |            |        |        |
|------------------------|--------|------------|--------|--------|
|                        |        | 多紫砂        | 重      |        |
|                        |        | K          |        |        |
|                        | 30     | 39         | 40     | 41     |
|                        | TR30S  | MR40       | HR40   | HS40   |
| 碳纤维                    | 300    | 106        | 392    | 451    |
| 磁纤维的弹性模量 (GPa)         | 667    | 1.07       |        |        |
|                        | 实施例 30 | 实施例 30     | 实施例 30 | 来卷例 30 |
| <b>苏</b> 敦树脂组合初        | 30     | 30         | 30     | 30     |
| 树脂合量(重量%)              | 201    | <b>4</b> 0 | 64     | 26     |
| 95000/兹好维的弹性模量         | 101    | 20         |        |        |
| 700007                 | 145    | 124        | 103    | 91     |
| 90°方向上的抗胃强度(Ml'a)      | 274    | 255        | 221    | 211    |
| <b>窗状凝制店的汽车波及(1/1)</b> | 19 7   | 19.3       | 10. 2  | 9.0    |
| 扭曲强度 (N·m)             | 13.    | 77.0       |        |        |
| 4 X & (0)              | 102    | 93         | 79     | 70     |
| <b>数</b> 外 用 (         | 7001   | 1144       | 806    | 630    |
| 扭曲破坏能 (N·m°)           | 1397   | 111        |        |        |
|                        |        |            |        |        |

| 表 10                                                          |       |       |      |              |
|---------------------------------------------------------------|-------|-------|------|--------------|
|                                                               |       | 比较实施例 | 流倒   |              |
|                                                               | 19    | 21    | 22   | 23           |
|                                                               | TR30S | MR40  | HR40 | HS40         |
| <b>碳纤维</b>                                                    | 235   | 294   | 392  | 451          |
| 碳纤维的弹性模量 (GPa)                                                | 比较实施例 | 比较实施  | 比较实施 | 比较实施         |
| 环氧树脂组合物                                                       | 19    | 4列 19 | 例 19 | <b>44</b> 19 |
|                                                               | 30    | 30    | 30   | 30           |
| 树脂含量(重重%)                                                     | 107   | 85    | 64   | 56           |
| 25000/碳纤维的弹性模量                                                | 103   | 80    | 59   | 54           |
| 90°方向上的抗霄强度 (MPa)<br>本山桉甸 E 船长硅铝度 (N)                         | 196   | 162   | 136  | 130          |
| で久久のはようと、このでは、このでは、これのは、このでは、このでは、このでは、このでは、このでは、このでは、このでは、この | 10.8  | 8.8   | 7.0  | 6.2          |
| 祖明说及(17 111)                                                  | 85    | 89    | 53   | 48           |
| <b>成本표( )</b><br>古老年が第(N·mo)                                  | 918   | 598   | 371  | 298          |
| · 対西教科語(1 Ⅲ /                                                 |       |       |      |              |



## 实施例 42 和比较实施例 24

用与实施例 1 相同的方法制备,除了使用 Mitsubishi Rayon Co., Ltd. 生产的 HR40-12M 作为碳纤维和使用实施例 30 的组合物和比较实 施例 19 的组合物作为基体树脂以外。评价单向模制品在 90°方向上的 抗弯强度和管状模制品的抗碎强度。结果如表 11 所示。



| -  | コ |
|----|---|
|    |   |
| ¥, | × |
|    | ` |

|                                    | 实施例    |        | 比校实港倒    | 八卷色               |
|------------------------------------|--------|--------|----------|-------------------|
|                                    | 40     | 42     | 22       | 24                |
| 12 by 45                           | HR40   | 111840 | HR40     | HR40              |
| 象汇件<br>去文学品等法律(CDo)                | 392    | 392    | 392      | 392               |
| 族纤维的评估校里 (VI a)                    | 实施例 30 | 实施例 30 | 比较实施例 19 | 比较实施例 19 比较实施例 19 |
| <b>外到然脂组合物</b>                     | 30     | 20     | 30       | 20                |
| 树脂含重(里里的)                          | 77     | 51     | 77       | 51                |
| 1000000×投资资内与包围的数/数2/451414以4      | 103    | 68     | 59       | 46                |
| 90°为同二的优号联及(mi a)<br>态中被创品的技体路路(N) | 221    | 147    | 136      | 86                |
|                                    |        |        |          |                   |



实施例 43-48 和比较实施例 25-26

用实施例 23 和比较实施例 13 制备的环氧树脂组合物和下列两种碳纤维制备四种重量大的预浸渍片,预浸渍片面积重量为 180g/m²,树脂含量 30%重量。

## [使用的碳纤维]

TR30S-12L: Mitsubishi Rayon Co., Ltd,; 弹性模量 235GPa MR40-12M: Mitsubishi Rayon Co., Ltd,; 弹性模量 294Gpa

另外,用相同的两种类型的环氧树脂组合物和TR30-3L制备两种重量轻的预浸渍片,预浸渍片面积重量为48g/m²,树脂含量40%重量。

然后,将得到的重量大的预浸渍片和重量轻的预浸渍片粘在一起,从而彼此的碳纤维方向呈直角,得到层压的预浸渍片。获得的预浸渍片是好的预浸渍片,其中没有有缺陷的结合部分,接触评价表明表面光滑。每个预浸渍片在直径 10mm 的心轴上卷 4 次,重量轻的预浸渍片在内侧 (等于 8 层),从而可以增强圆周方向。然后用与实施例 1 制备管状模制品的方法相同的工艺进行成型,得到长 600mm、壁厚0.58mm,重量 18g 的管状模制品。该管状模制品的平均碳纤维体积含量为 56%。对获得的模制品进行柔韧性试验。结果如表 12 和 13 所示。

|                                        | 表 12                                    |        |              |        |        |
|----------------------------------------|-----------------------------------------|--------|--------------|--------|--------|
|                                        |                                         |        | 实着鱼          | (A)    |        |
|                                        |                                         | 43     | 44           | 45     | 46     |
|                                        | <b>张</b>                                | TR30S  | TR30S        | TR30S  | MR40   |
| 名心道路所                                  | 环氧树脂组合物                                 | 实施例 23 | 实施例 23 比较实施例 | 实施例 23 | 实施例 23 |
| , , , , , , , , , , , , , , , , , , ,  |                                         |        | 13           |        |        |
|                                        | 按照今署(香譽%)                               | 30     | 30           | 30     | 30     |
|                                        | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TR30   | TR30         | TR30   | TR30   |
| 医医院外外                                  | 环氧树脂组合物                                 | 实施例 23 | 实施例 23       | 比较实施例  | 实施例 23 |
| <b>闻厄油饮</b> ん                          |                                         |        |              | 13     |        |
|                                        | 林昭今署(香豐%)                               | 40     | 40           | 40     | 40     |
|                                        | MP <sub>2</sub>                         | 1216   | 1193         | 1193   | 1298   |
| ************************************** |                                         | 131    | 131          | 131    | 164    |
| 四点等曲性能                                 |                                         | 1.19   | 1. 28        | 1. 28  | 1.19   |
|                                        |                                         |        |              |        |        |

|        | 表 13                      |        |        |                   |       |
|--------|---------------------------|--------|--------|-------------------|-------|
|        |                           | 实施例    | Ø.     | 比核实施例             | 着鱼    |
|        |                           | 47     | 48     | 25                | 26    |
|        | <b>新女袋</b>                | MR40   | MR40   | TR30S             | MR40  |
|        | <b>秋</b>   分<br>订置 掉脂组 合物 | 比较实施例  | 实施例 23 | 比较实施例 比较实施例       | 比较实施例 |
| 轴向增强层  |                           | 13     |        | 13                | 13    |
|        | 如此今居(香馨》)                 | 30     | 30     | 30                | 30    |
|        | <b>6.至口州、川代</b><br>好才袭    | TR30   | TR30   | TR30              | TR30  |
|        | 大二子                       | 实施例 23 | 比较实施例  | 比较实施例 比较实施例 比较实施例 | 比较实施例 |
| 圆周增强层  |                           |        | 13     | 13                | 13    |
|        | 14的人员(古华以)                | 40     | 40     | 40                | 40    |
|        | <b>阿尔斯</b>                | 1271   | 1199   | 1173              | 1250  |
|        | 级度(Mra)<br>路中苗科(CD。)      | 163    | 163    | 127               | 155   |
| 四点弯曲性能 | 许在庆宣(11日)                 | 1.15   | 1.01   | 1. 22             | 1.14  |
|        | 四米石人。                     |        |        |                   |       |



实施例 49-53 和比较实施例 27-28

用与实施例 43-48 和比较实施例 27-28 相同的方法制备和评价管 状模制品,除了用实施例 30 和比较实施例 19 制备的环氧树脂组合物 以外。

结果如表 14和 15所示。

|   | _ | _ |   |   |   |   |   |   |   |   |   |   |   |   |   |   | • | -   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|---|
|   |   |   | ٠ | ٠ |   |   |   |   | • |   | _ | • |   |   | • |   | • |     | • |
| - |   |   |   | , |   |   | ٠ |   |   |   | - | ٠ |   |   | • |   |   |     | • |
|   |   | _ |   |   |   |   |   | - |   |   | ~ |   | ٠ |   | • | • |   | ^   |   |
|   |   |   | : |   | - | - | Ξ |   |   |   | - |   |   |   |   |   |   | •   |   |
|   | - | - | • |   | • | ٠ | ٠ |   |   | • |   |   | ٠ | • |   |   | • | • ~ | • |

|        |                                       | 表 14          |        |        |        |        |
|--------|---------------------------------------|---------------|--------|--------|--------|--------|
|        |                                       |               |        | 突着鱼    |        |        |
|        |                                       | 49            | 90     | 51     | 52     | 53     |
|        | 3 3 4                                 | TR30S         | TR30S  | TR30S  | MR40   | MR40   |
| 1      | <b>妖</b> 字架<br>T 密 译 配 组 合 为          | <b>宗洛何</b> 30 | 比较实施例  | 实施例 30 | 实施例 30 | 比较实施例  |
| 相向增强层  | スカサルストル                               |               | 19     |        |        | 19     |
|        | 12.18 人员(市场区)                         | 30            | 30     | 30     | 30     | 30     |
|        | M.                                    | TR30          | TR30   | TR30   | TR30   | TR30   |
| 1      | <b>条</b> 字母<br>红密 華語館 仝物              | 实施例 30        | 实施例 30 | 比较实施例  | 实施例 30 | 实施例 30 |
| 圆用增强后  |                                       |               |        | 19     |        |        |
|        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 40            | 40     | 40     | 40     | 40     |
|        | hal .                                 | 1931          | 1213   | 1203   | 1308   | 1281   |
|        | 發展 (MPa)                              | 139           | 132    | 132    | 165    | 164    |
| 四点弯曲性能 | 學院後世 (OFA)                            | 1. 29         | 1. 29  | 1. 29  | 1. 20  | 1.16   |
|        | 断条位义(70)                              |               |        |        |        |        |

|     | <br>    | 4 6 | • 5  |
|-----|---------|-----|------|
| - • | <br>    |     |      |
|     | <br>•   |     | •    |
|     |         |     |      |
|     |         |     |      |
|     | <br>~ • | 7.0 | ** * |

|        | 61 🛠                                          |          |          |
|--------|-----------------------------------------------|----------|----------|
|        |                                               | 比较实施例    | 海例       |
|        | •                                             | 27       | 28       |
|        | <b>张</b> 华徐                                   | TR30S    | MR40     |
|        | <b>东</b> 女子<br>东 <b>室</b> 树 脂 组 合 物           | 比较实施例 19 | 比较实施例 19 |
| 轴向增设层  | <b>坩脂今量(重量%)</b>                              | 30       | 30       |
|        | 大学など                                          | TR30     | TR30     |
| 1      | 次二子女童母后组合物                                    | 比较实施例 19 | 比较实施例 19 |
| 國周增發尽  | 水红的 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.    | 40       | 40       |
|        | 名品の大、イイン<br>紹序(NDa)                           | 1173     | 1250     |
|        | 以及、min n)<br>译本药品(Gpa)                        | 127      | 155      |
| 四点弯曲性能 | 片石穴里、Si Si S | 1.22     | 1.14     |
|        | 三や行く、こ                                        |          |          |



实施例 53-58 和比较实施例 29-30

用与实施例 43-48 和比较实施例 27-28 相同的方法制备和评价管 状模制品,除了用 Nitto Boseki Co., Ltd. 生产的一种玻璃纤维斯克 林布预浸渍片(生产号 No.: WP(A) 03 104; 面积重量: 24.5g/m²; 环氧树脂含量: 26%重量)代替低重量预浸渍片构成管状模制品的内层以外。

结果如表 16 和 17 所示。

|            | <b>♦</b> 10             |       |        |        |        |
|------------|-------------------------|-------|--------|--------|--------|
|            |                         |       | 实施例    | 鱼      |        |
|            | 1                       | 55    | 56     | 29     | 58     |
|            | おなな                     | TR30S | MR40   | TR30S  | MR40   |
| 预浸渍片       | <b>火二汗</b><br>打磨掉配伍人物   | 3     | 实施例 23 | 实施例 30 | 实施例 30 |
|            | そとと ほぶり ア<br>はは 80 年(N) | 220   | 151    | 230    | 165    |
|            | 4. 年 2 年 (110~)         | 135   | 78.7   | 136    | 78.9   |
| 管状模制品的物理性能 | 本来が、(mra)<br>はは本華 (mpa) | 7281  | 6840   | 7291   | 6689   |
|            | 年在後里(MF3/)              | 1.86  | 1. 25  | 1.88   | 1.14   |
|            | 可然点头(为)                 |       |        |        |        |
|            |                         |       |        |        |        |

| <u></u> |   |
|---------|---|
| -       |   |
| ųγ      | ś |
| w       | 5 |

|              |                 | 比较实施例    | 海甸       |
|--------------|-----------------|----------|----------|
|              | 1               | 29       | 30       |
| <b>元沙李</b> 山 | <b>森</b>        | TR30S    | MR40     |
| <b>域资调力</b>  | <b>双</b> 鱼树脂组合物 | 比较实施例 13 | 比校实施例 13 |
|              | 法存储器(N)         | 172      | 107      |
| 经计图计打口计计机    | 中國 特殊 (Mpa)     | 86.2     | 48.8     |
| 官状模制而即物廷住机   |                 | 7193     | 5762     |
|              |                 | 1. 20    | 0.87     |
|              |                 |          |          |



## 实施例 59-61

将实施例 1、5和 9中的环氧树脂组合物涂敷在防粘纸片上,用其浸渗单向排列的碳纤维(TR30G-12L,Mitsubishi Rayon Co., Ltd. 生产),排列的碳纤维的相对两侧夹在片材之间,从而得到碳纤维面积重量  $150g/m^2$ 和树脂含量 31% 重量的单向预浸渍片。

评价结果如表 18 所示。

|                                         | 及10       |       |       |       |
|-----------------------------------------|-----------|-------|-------|-------|
|                                         |           |       | 实施例   |       |
|                                         | !         | 50    | 09    | 61    |
|                                         | 80808     | 20    | 30    | 30    |
|                                         | E1 020    | 50    |       |       |
| 成分 ( N )                                | EP1002    |       | 40    |       |
|                                         | EP1004    |       |       | 000   |
| 表入(B)                                   | XAC4151   | 30    |       | 0)    |
|                                         | XAC4152   |       | 30    | 1     |
|                                         | DICY      | 5     | 5     | c     |
| <b>成分</b> (し)                           | DCMU      | 4     | 4     | 4     |
|                                         | DMOd      |       |       |       |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N740      |       |       |       |
| 成分(比)                                   |           | 1700  | 868   | 745   |
| 粘度(消, 60C)                              |           | 640   | 009   | 720   |
| <b>英語的</b> Grc ( J/m²)                  |           | 0     | 0     | 0     |
| 预浸渍片的加工性能                               |           | TR30G | TR30G | TR30G |
| 碳纤维                                     | 左好给你方向上   | 1640  | 1662  | 1705  |
| 单向模制品的抗肾强度(MPa)                         | 本 4000分向上 | 141   | 143   | 138   |
|                                         |           | 122   | 132   | 130   |
| 玻璃化温度 ( C )                             |           | 255   | 260   | 250   |
| 管状模制品的抗辟强度(N)                           |           | 13.6  | 13.8  | 13.3  |
| 扭曲强度 (N·m)                              |           | 104   | 106   | 103   |
| 破坏角(0)                                  |           | 1414  | 1463  | 1370  |
| 拉由政坏能 (N·mo)                            |           | *     | *2    | *3    |
|                                         |           |       |       |       |



- \*1 与实施例 1 相同的树脂组合物
- \*2 与实施例 5 相同的树脂组合物
- \*3 与实施例 9 相同的树脂组合物

## 工业应用

本发明的用于FRP的环氧树脂组合物在对增强纤维的粘性方面优于常规主流的环氧树脂组合物——其主要成分是双酚 A 型环氧树脂和苯酚线型酚醛清漆型环氧树脂,其预浸渍片在加工性能方面非常出色。

另外,由于使用了这种环氧树脂组合物的 FRP 管状模制品在物理柔韧性和物理抗碎性方面极好,可用该 FRP 管状模制品制成重量轻的渔竿和高尔夫球棒用杆。