Rachunek prawdopodobieństwa 2R 2023 lista 4: Martyngały po raz pierwszy

1. Załóżmy, że $\{X_n\}_{n\in\mathbb{N}}$ jest ciągiem niezależnych zmiennych losowych o takim samym rozkładzie, średniej 0 i skończonej wariancji. Rozważmy filtrację $\mathbb{F}=\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ zadaną przez $\mathcal{F}_n=\sigma(X_0,X_1,\ldots,X_n)$. Udowodnij, że ciąg

$$Z_n = X_0 X_1 + X_1 X_2 + \cdots + X_{n-1} X_n$$
, $Z_0 = 0$,

jest F-martyngałem.

2. Ustalmy $\theta \in \mathbb{R}$. Niech X_1, X_2, \ldots będzie ciągiem iid takim, że

$$\mathbb{E}\left[e^{\theta X_1}\right]<\infty.$$

Pokaż, że

$$M_n = \mathbb{E}\left[e^{\theta X_1}\right]^{-n} \prod_{j=1}^n e^{\theta X_j}$$

jest \mathbb{F} -martyngałem dla filtracji $\mathbb{F}=\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ danej przez $\mathcal{F}_n=\sigma(X_1,X_2,\ldots,X_n)$.

3. Niech $\{Y_n\}_{n\in\mathbb{N}}$ będzie ciągiem niezależnych zmiennych losowych o średniej 0 i wariancji σ^2 . Pokaż, że ciąg

$$X_n = \left(\sum_{i=1}^n Y_i\right)^2 - n\sigma^2$$

jest martyngałem.

4. Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie $\mathbb{F}=\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ -martyngałem. Pokaż, że dla każdych naturalnych m i n,

$$\mathbb{E}[X_{n+m}|\mathcal{F}_n]=X_n.$$

- 5. Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie nadmartyngałem takim, że $\mathbb{E}[X_n] = \mathbb{E}[X_0] < \infty$ dla każdego $n \in \mathbb{N}$. Pokaż, że $\{X_n\}_{n\in\mathbb{N}}$ jest martyngałem.
- 6. Pokaż, że jeżeli T_1 i T_2 są czasami zatrzymania, to $\min\{T_1, T_2\}$ i $\max\{T_1, T_2\}$ również są czasami zatrzymania. Czy $T_1^2, T_1 + 1, T_1 + T_2, T_1 1, \min\{T_1, 2T_2\}$ są czasami zatrzymania?
- 7. Niech T będzie czasem zatrzymania. Załóżmy, że istnieje $\epsilon \in (0,1)$ oraz $N \in \mathbb{N}$ takie, że

$$\mathbb{P}[T \le N + n \mid \mathcal{F}_n] > \epsilon$$

dla każdego $n \in \mathbb{N}$. Pokaż, że $\mathbb{E}[T] < \infty$.