11. Weitere Eigenschaften holomorpher Funktionen

In diesem Paragraphen sei $G \subseteq \mathbb{C}$ stets ein **Gebiet**. Fast wörtlich wie in Analysis I zeigt man:

Satz 11.1 (Identitätssatz für Potenzreihen)

 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ sei eine Potenzreihe mit Konvergenzradius r>0,

es sei
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 für $z \in U_r(z_0)$, es sei (z_k) eine

Folge in $\dot{U}_r(z_0)$ mit $z_k \to z_0$ und es gelte $f(z_k) = 0 \ \forall \ k \in \mathbb{N}$.

Dann: $a_n = 0 \ \forall \ n \in \mathbb{N}_0$.

Satz 11.2 (Identitätssatz für holomorphe Funktionen)

Es sei $f \in H(G)$, $z_0 \in G$, (z_k) eine Folge in $G \setminus \{z_0\}$ mit $f(z_k) = 0 \ \forall \ k \in \mathbb{N}$ und $z_k \to z_0$.

Dann: f = 0 auf G.

Roweis

$$\exists r > 0: U_r(z_0) \subseteq G. \ 10.4 \Rightarrow f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \ \forall \ z \in U_r(z_0)$$

 $\exists k_0 \in \mathbb{N}: z_k \in U_r(z_0) \ \forall \ k \ge k_0. \ 11.1 \Rightarrow f^{(n)}(z_0) = 0 \ \forall \ n \in \mathbb{N}_0$

$$\Rightarrow z_0 \in A := \{z \in G : f^{(n)}(z) = 0 \ \forall \ n \in \mathbb{N}_0\}. \ B := G \setminus A, \ A \cap B = \emptyset$$

Sei
$$a \in A$$
. $\exists \delta > 0 : U_{\delta}(a) \subseteq G$. $10.4 \Rightarrow f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n \ \forall \ z \in U_{\delta}(a)$

$$a \in A \Rightarrow f^{(n)}(a) = 0 \ \forall \ n \in \mathbb{N}_0 \Rightarrow f \equiv 0 \text{ auf } U_\delta(a)$$

$$\Rightarrow f^{(n)} \equiv 0 \text{ auf } U_{\delta}(a) \ \forall \ n \in \mathbb{N}_0$$

 $\Rightarrow U_{(\delta)}(a) \subseteq A$. A ist also offen. Sei $b \in B$. $\exists k \in \mathbb{N}_0 : f^{(k)}(b) \neq 0$;

$$f^{(k)}$$
 stetig $\Rightarrow \exists \epsilon > 0 : U_{\epsilon}(b) \subseteq G \text{ und } f^{(k)}(z) \neq 0 \ \forall \ z \in U_{\epsilon}(b)$

 $\Rightarrow U\epsilon(b)\subseteq B$; d.h. B ist offen. G ist ein Gebiet $\Rightarrow B=\emptyset \Rightarrow G=A\Rightarrow$ Beh.

Bezeichnung

für
$$f \in H(G)$$
: $Z(f) := \{z \in G : f(z) = 0\}.$

Folgerung 11.3

- (1) Ist $f \in H(G)$, $f \not\equiv 0$ auf G und $z_0 \in Z(f)$, so existiert ein $\epsilon > 0$: $U_{\epsilon}(z_0) \subseteq G$, $f(z) \neq 0 \ \forall \ z \in \dot{U}_{\epsilon}(z_0)$
- (2) Ist $f \in H(G)$, $z_0 \in G$ und gilt: $f^{(n)}(z_0) = 0 \ \forall \ n \in \mathbb{N}_0$, so ist f = 0 auf G.

11. Weitere Eigenschaften holomorpher Funktionen

Beweis

- (1) folgt aus 11.2
- (2) Verfahre wie im Beweis von 11.2

Satz 11.4

Sei G ein EG und $f \in H(G)$ mit $Z(f) = \emptyset$

- (1) $\exists h \in H(G): e^h = f \text{ auf } G$
- (2) Ist $n \in \mathbb{N}$, so existiert ein $g \in H(G)$: $g^n = f$ auf G

Beweis

- (1) Es ist $\frac{f'}{f} \in H(G)$. G ist ein EG $\Rightarrow \exists F \in H(G)$: $F' = \frac{f'}{f}$ auf G. $\phi := \frac{e^F}{f}$. Dann: $\phi \in H(G)$ und $\phi' = 0$ auf G. (nachrechnen!) $\exists c \in \mathbb{C}$: $e^F = c \cdot f$ auf G. Klar: $c \neq 0$. $7.1 \Rightarrow \exists a \in \mathbb{C}$: $c = e^a \Rightarrow f = e^{F-a}$ auf G.
- (2) Sei *h* wie in (1), $g := e^{\frac{1}{n}h}$. Dann: $g^n = e^h = f$ auf *G*.

Satz 11.5

Sei $D \subseteq \mathbb{C}$ offen.

- (1) Ist $F \in H(D)$, $0 \in D$, F(0) = 0 und $F'(0) \neq 0$, so gilt: $0 \in (F(D))^o$
- (2) Ist $f \in H(G)$ nicht konstant, so ist f(G) offen.
- (3) Satz von der Gebietstreue: Ist $f \in H(G)$ nicht konstant, so ist f(G) ein Gebiet.

Beweis

- (1) $u := \operatorname{Re} F, v := \operatorname{Im} F. \ 4.1 \Rightarrow u_x(0) = v_y(0), u_y(0) = -v_x(0)$ $\operatorname{und} F'(0) = u_x(0) + iv_x(0)$ $\Rightarrow \det \begin{pmatrix} u_x(0) & u_y(0) \\ v_x(0) & v_y(0) \end{pmatrix} = u_x(0)^2 + v_x(0)^2 = |F'(0)|^2 \neq 0$ Umkehrsatz (Analysis II) $\Rightarrow \exists U \subseteq D : 0 \in U, U \text{ ist offen und } F(U) \text{ ist offen. } F(0) = 0 \Rightarrow 0 \in F(U) \Rightarrow \exists \delta > 0 : U_\delta(0) \subseteq F(U) \subseteq F(D).$
- (2) Sei $w_0 \in f(D)$. z.z. $\exists \delta > 0$: $U_{\delta}(w_0) \subseteq f(D)$. O.B.d.A. $w_0 = 0$. $\exists z_0 \in D$: $f(z_0) = w_0 = 0$. O.B.d.A. $z_0 = 0$. Also: f(0) = 0. $\exists \varepsilon > 0$: $U_{\varepsilon}(z_0) \subseteq D$. $10.4 \Rightarrow f(z) = a_0 + a_1 z + a_2 z^2 + \dots \ \forall z \in U_{\varepsilon}(0)$; $f(0) = 0 \Rightarrow a_0 = 0$. $11.3 \Rightarrow \exists n \in \mathbb{N}$: $a_n \neq 0$ $m := \min\{n \in \mathbb{N} : a_n \neq 0\}$ (≥ 1) Dann: $f(z) = z^m(a_m + a_{m+1}z + a_{m+2}z^2 + \dots) = z^m \cdot g(z) \ \forall z \in U_{\varepsilon}(0)$, wobei $g \in H(U_{\varepsilon}(0))$ und $g(0) = a_m \neq 0$. $g \text{ stetig} \Rightarrow \exists r \in (0, \varepsilon)$: $g(z) \neq 0 \ \forall z \in U_r(0)$

```
U_r(0) ist ein EG \stackrel{11.4}{\Rightarrow} \exists h \in H(U_r(0)): h^m = g auf U_r(0)

Def. F \in H(U_r(0)) durch F(z) := zh(z).

Dann: F(0) = 0, F'(z) = h(z) + zh'(z)

also F'(0)^m = h(0)^m = g(0) \neq 0, also F'(0) \neq 0.

Weiter: F^m = f auf U_r(0). (1) \Rightarrow \exists R > 0: U_R(0) \subseteq F(U_r(0)).

\delta := R^m. Sei w \in U_\delta(0). 1.5 \Rightarrow \exists v \in \mathbb{C}: v^m = w

Dann: |v|^m = |w| < \delta = R^m \Rightarrow |v| < R \Rightarrow v \in U_R(0) \subseteq F(U_r(0))

\Rightarrow \exists z \in U_r(0) \subseteq D mit: F(z) = v.

\Rightarrow w = v^m = F(z)^m = f(z) \in f(D)

Also: U_\delta(0) \subseteq f(D)
```

(3) $3.6 \Rightarrow f(G)$ ist zusammenhängend $\stackrel{(2)}{\Rightarrow} f(G)$ ist ein Gebiet.

Satz 11.6 (Maximimum-, Minimimumsprinzip (I))

 $f \in H(G)$ sei nicht konstant.

- (1) |f| hat auf G kein lokales Maximum
- (2) Ist $Z(f) = \emptyset$, so hat |f| auf G kein lokales Minimum.

Beweis

- (1) Sei $z_0 \in G$ und $\epsilon > 0$ so, dass $U_{\epsilon}(z_0) \subseteq G$. $w_0 := f(z_0)$. 11.5 $\Rightarrow f(U_{\epsilon}(z_0))$ ist offen. $w_0 \in f(U_{\epsilon}(z_0)) \Rightarrow \exists \delta > 0 : U_{\delta}(w_0) \subseteq f(U_{\epsilon}(z_0))$. $\exists w \in U_{\delta}(w_0) : |w| > |w_0|$. $\exists z \in U_{\epsilon}(z_0) : w = f(z)$. Dann: $|f(z)| = |w| > |w_0| = |f(z_0)|$
- (2) Wende (1) auf $\frac{1}{f}$ an.

Satz 11.7 (Maximimum-, Minimimumsprinzip (II))

G sei beschränkt, $f \in C(\overline{G})$ und es sei $f \in H(G)$.

- (1) $|f(z)| \le \max_{w \in \partial G} |f(w)| \ \forall z \in \overline{G}$
- (2) Ist $f(z) \neq 0 \ \forall z \in G$, so gilt $|f(z)| \geq \min_{w \in \partial G} |f(w)| \ \forall z \in \overline{G}$

Beweis

- (1) \overline{G} ist kompakt, $3.3 \Rightarrow \exists w_0 \in \overline{G} : |f(z)| \leq |f(w_0)| \ \forall z \in \overline{G}$ Fall 1: $w_0 \in \partial G$: fertig Fall 2: $w_0 \in G$. Dann: $|f(z)| \leq |f(w_0)| \ \forall z \in G$. 11.6 $\Rightarrow f$ ist konstant auf G. f stetig $\Rightarrow f$ konstant auf $\overline{G} \Rightarrow \text{Beh}$.
- (2) Fall1: $f(z) \neq 0 \ \forall z \in \overline{G}$. Wende (1) auf $\frac{1}{f}$ an. Fall 2: $\exists z_0 \in \overline{G} : f(z_0) = 0 \ \text{Vor.} \Rightarrow z_0 \in \partial G \Rightarrow \min_{w \in \partial G} |f(w)| = 0 \Rightarrow \text{Behauptung.}$

Definition

Sei $A \subseteq G$. A heißt **diskret in G**: \iff A hat in G keinen Häufungspunkt. (\iff $\forall z_0 \in G \exists r = r(z_0) > 0 : A \cap \dot{U}_r(z_0) = \emptyset$)

Aufgabe: Ist A diskret in G, so ist A höchstens abzählbar.

Satz 11.8

Sei $f \in H(G)$ und f nicht identisch 0 auf G.

Dann ist Z(f) diskret in G.

Ist $z_0 \in Z(f)$, so existiert ein $m \in \mathbb{N}$ und ein $g \in H(G)$:

$$f(z) = (z - z_0)^m g(z) \ \forall z \in G \ \underline{\text{und}} \ g(z_0) \neq 0$$

m und g sind eindeutig bestimmt. m heißt **Ordnung** (oder **Vielfachheit**) der Nullstelle z_0 von f. ("f hat eine m-fache Nullstelle")

Beweis

 $11.3 \Rightarrow Z(f)$ ist diskret in G. O.B.d.A: $z_0 = 0$. $\exists r > 0 : U_r(0) \subseteq G$.

$$10.4 \Rightarrow f(z) = a_0 + a_1 z + a_2 z^2 + \dots \ \forall z \in U_r(0). \ f(0) = 0 \Rightarrow a_0 = 0$$

 $11.2 \Rightarrow \exists n \in \mathbb{N} : a_n \neq 0, \ m := \min\{n \in \mathbb{N} : a_n \neq 0\}$

Dann:
$$f(z) = z^m (a_m + a_{m+1}z + \dots) = z^m \varphi(z) \ \forall z \in U_r(0)$$

 $:=\varphi(z)$

Es ist $\varphi \in H(U_r(0))$ und $\varphi(0) = a_m \neq 0$

Definiere $g: G \to \mathbb{C}$ durch

$$g(z) := \begin{cases} \frac{f(z)}{z^m} & , z \neq 0 \\ a_m & , z = 0 \end{cases}$$

Dann: $f(z) = z^m g(z) \ \forall z \in G, \ g(0) = a_m \neq 0, \ g = \varphi \ \text{auf} \ U_r(0), \ \text{also} \ g \in H(G)$

Aufgabe: Sei f wie in 11.8, $z_0 \in G$ und $m \in \mathbb{N}$. Dann:

f hat in z_0 eine m-fache Nullstelle $\iff f(z_0) = f'(z_0) = \ldots = f^{(m-1)}(z_0) = 0$ und $f^{(m)}(z_0) \neq 0$

Satz 11.9

Sei $f \in H(G)$.

(1) Sei $g: G \times G \to \mathbb{C}$ definiert durch

$$g(z,w) := \begin{cases} \frac{f(z) - f(w)}{z - w} &, z \neq w \\ f'(z) &, z = w \end{cases}$$

Dann ist g stetig.

(2) Ist $z_0 \in G$, so existiert ein $\epsilon > 0$:

$$U_{\epsilon}(z_0) \subseteq G \text{ und } (*) |f(z) - f(w)| \ge \frac{1}{2} |f'(z_0)| |z - w| \ \forall z, w \in U_{\epsilon}(z_0)$$

Ist $f'(z_0) \neq 0$, so ist f auf $U_{\epsilon}(z_0)$ injektiv und f^{-1} ist auf $f(U_{\epsilon}(z_0))$ stetig.

Beweis

(1) Es genügt zu zeigen: ist $z_0 \in G$, so ist g stetig in $(z_0, z_0) \in G \times G$, $\epsilon > 0$: $|g(z, w) - f'(z_0)| < \epsilon$ Sei $\epsilon > 0$. $\exists \delta > 0 : U_{\delta}(z_0) \subseteq G$ und $|f'(w) - f'(z_0)| \le \epsilon \ \forall w \in U_{\delta}(z_0)$ Seien $z, w \in U_{\delta}(z_0).\gamma(t) := z + t(w - z) \ (t \in [0, 1]), \ dann :$ $Tr(\gamma) \subseteq U_{\delta}(z_0).$

 $U_{\delta}(z_0)$ ist ein Sterngebiet und f' hat auf $U_{\delta}(z_0)$ die Stammfunktion f.

$$9.2 \Rightarrow \int_{\gamma} f'(\xi)d\xi = f(w) - f(z) \Rightarrow f(w) - f(z) = \int_{0}^{1} f'(\gamma(t))(w - z)dt$$

Ist
$$z \neq w \Rightarrow g(z, w) = \int_{0}^{1} f'(\gamma(t))dt$$

Ist
$$z = w \Rightarrow \gamma(t) = z \ \forall t \in [0, 1]$$

$$\Rightarrow \int_{0}^{1} f'(\gamma(t))dt = \int_{0}^{1} f'(z)dt = f'(z) = g(z, z)$$

Also:
$$g(z, w) = \int_{0}^{1} f'(\gamma(t))dt$$

Dann:

$$|g(z,w) - f'(z_0)| = |\int_0^1 f'(\gamma(t)) - f'(z_0)dt| \le \int_0^1 \underbrace{|f'(\gamma(t)) - f'(z_0)|}_{\le \epsilon} dt \le \epsilon$$

(2) Aus (1): $|g(z,w)| \to |f'(z_0)| ((z,w) \to (z_0,z_0)) \Rightarrow \exists \epsilon > 0 : U_{\epsilon}(z_0) \subseteq G \text{ und } |g(z,w)| \ge$ $\frac{1}{2}|f'(z_0)| \ \forall z, w \in U_{\epsilon}(z_0) \Rightarrow (*)$

Sei $f'(z_0) \neq 0.(*) \Rightarrow f$ ist injektiv auf $U_{\epsilon}(z_0)$

Seien
$$\lambda, \mu \in f(U_{\epsilon}(z_0)); z := f^{-1}(\lambda), w := f^{-1}(\mu)$$

Seien
$$\lambda, \mu \in f(U_{\epsilon}(z_0)); z := f^{-1}(\lambda), w := f^{-1}(\mu)$$

 $|f^{-1}(\lambda) - f^{-1}(\mu)| = |z - w| \le \frac{2}{|f'(z_0)|} |\lambda - \mu|$

Satz 11.10

Sei $f \in H(G)$, $z_0 \in G$ und $f'(z_0) \neq 0$

Dann existiert ein r > 0: $U_r(z_0) \subseteq G$,

- (1) f ist auf $U_r(z_0)$ injektiv und $f'(z) \neq 0 \ \forall z \in U_r(z_0)$
- (2) $f(U_r(z_0))$ ist ein Gebiet
- (3) $f^{-1} \in H(f(U_r(z_0)))$ und $(f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))} \ \forall w \in f(U_r(z_0))$

Beweis

- (1) Sei $\epsilon > 0$ wie in 11.9(2), f' ist stetig $\Rightarrow \exists r \in (0, \epsilon) : f'(z) \neq 0 \ \forall z \in U_r(z_0)$
- (2) folgt aus 11.5
- (3) Sei $w_0 \in f(U_r(z_0))$ und (w_n) eine Folge in $f(U_r(z_0)) \setminus \{w_0\}$ mit: $w_n \to w_0$. $z_{n} := f^{-1}(w_{n}), \ \tilde{z} := f^{-1}(w_{0}). \ 11.4 \Rightarrow f^{-1} \ \text{stetig in } w_{0} \Rightarrow z_{n} \to \tilde{z}$ $\Rightarrow \frac{f^{-1}(w_{n}) - f^{-1}(w_{0})}{w_{n} - w_{0}} = \frac{z_{n} - \tilde{z}}{f(z_{n}) - f(\tilde{z})} \to \frac{1}{f'(\tilde{z})} = \frac{1}{f'(f^{-1}(w_{0}))}$ Also ist f^{-1} in w_{0} komplex difference and $(f^{-1})'(w_{0}) = \frac{1}{f'(f^{-1}(w_{0}))}$

Satz 11.11

Sei $f \in H(G)$ auf G injektiv. Dann:

- $(1) \ Z(f') = \emptyset$
- (2) $f^{-1} \in H(f(G))$ und $(f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))}$ für $\forall w \in f(G)$

Beweis

- (1) Annahme: Sei $z_0 \in G$ mit $f'(z_0) = 0$, $w_0 := f(z_0)$. O.B.d.A. $w_0 = 0 = z_0$. Also f(0) = f'(0) = 0 $11.8 \Rightarrow \exists m \geq 2; \exists g \in H(G) \text{ mit } f(z) = z^m g(z) \ \forall z \in G \text{ und } g(0) \neq 0.$ $11.3 \Rightarrow \exists \varepsilon > 0 : f(z) \neq 0 \ \forall z \in \dot{U}_{\varepsilon}(0) \text{ und } U_{\varepsilon}(0) \subseteq G. \text{ Also } g(z) \neq 0 \ \forall z \in U_{\varepsilon}(0). 11.4 \Rightarrow \exists \psi \in H(U_{\varepsilon}(0)) \text{ mit } \psi^m = g \text{ auf } U_{\varepsilon}(0). \text{ Def. } \varphi \in H(U_{\varepsilon}(0)) \text{ durch } \varphi(z) := z\psi(z) \ (z \in U_{\varepsilon}(0)).$ Dann: $\varphi^m = f \text{ auf } U_{\varepsilon}(0); \ \varphi(0) = 0, \ \varphi'(z) = \psi(z) + z\psi'(z), \ \varphi'(0)^m = \psi(0)^m = g(0) \neq 0$ also $\varphi'(0) \neq 0$. O.B.d.A. $\varphi'(z) \neq 0 \ \forall z \in U_{\varepsilon}(0)$. Klar: φ ist auf $U_{\varepsilon}(0)$ injektiv. $0 = \varphi(0) \in \varphi(U_{\varepsilon}(0)). \ 11.5 \Rightarrow \exists \delta > 0: U_{\delta}(0) \subseteq \varphi(U_{\varepsilon}(0)) \ 11.10 \Rightarrow \varphi^{-1} \in H(\varphi(U_{\varepsilon}(0))), \ 11.5 \Rightarrow U := \varphi^{-1}(U_{\delta}(0)) \text{ ist offen. Klar: } 0 \in U, \ U \subseteq U_{\varepsilon}(0) \text{ und } (*)\varphi(U) = U_{\delta}(0).$ Sei $z_1 \in U \setminus \{0\}; \ a_1 := \varphi(z_1); \ w_1 := f(z_1) \neq 0. \ a_1^m = \varphi(z_1)^m = f(z_1) = w_1 \Rightarrow a_1 \neq 0. \ 1.5 \Rightarrow a_1 \text{ ist eine m-te Wurzel von } w_1; \ m \geq 2 \Rightarrow \exists a_2 : a_2^m = a_1^m = w_1 \text{ mit } a_1 \neq a_2.$ $a_2^m = w_1 = \varphi(z_1)^m; \ |a_2| = |\varphi(z_1)| \stackrel{(*)}{<} \delta \Rightarrow a_2 \in \varphi(U) \Rightarrow \exists z_2 \in U : a_2 = \varphi(z_2) \Rightarrow f(z_2) = \varphi(z_2)^m = a_2^m = w_1 = a_1^m = f(z_1) \Rightarrow f(z_1) = f(z_2) \text{ Widerspruch zu f injektiv!}$
- (2) folgt aus (1) und 11.10

Definition

Sei $z_0 \in G$; a > 0; $\gamma_1, \gamma_2 : [0, a] \to \mathbb{C}$ seien glatte Wege und $\gamma'_j(t) \neq 0 \ \forall t \in [0, a], j = 1, 2 \ \text{und} \ \gamma_1(0) = z_0 = \gamma_2(0). \ \angle(\gamma_1, \gamma_2, z_0) := arg\gamma'_2(0) - arg\gamma'_1(0) = arg\frac{\gamma'_2(0)}{\gamma'_1(0)}$ Orientierter Winkel von γ_1 nach γ_2 in z_0 .

Sei $f \in H(G)$, $z_0 \in G$ und $f'(z_0) \neq 0$. Dann: $\angle (f \circ \gamma_1, f \circ \gamma_2, f(z_0)) = \angle (\gamma_1, \gamma_2, z_0)$

Beweis

$$\begin{split} &\Gamma_{j} := f \circ \gamma_{j} \ (j=1,2). \ \Gamma'_{j}(t) = f'(\gamma_{j}(t))\gamma'_{j}(t) \ \Gamma'_{j}(0) = f'(z_{0})\gamma'_{j}(0) \neq 0. \\ &\exists b \in (0,a) \ \text{mit} \ \Gamma'_{j}(t) \neq 0 \ \forall t \in [0,b]. \\ &\angle(\Gamma_{1},\Gamma_{2},f(z_{0})) = arg \frac{\Gamma'_{2}(0)}{\Gamma'_{1}(0)} = arg \frac{\gamma'_{2}(0)}{\gamma'_{1}(0)} = \angle(\gamma_{1},\gamma_{2},z_{0}) \end{split}$$

Definition

- (1) G_1 und G_2 seien Gebiete in \mathbb{C} . Ist $f \in H(G_1)$ injektiv auf G_1 und gilt $f(G_1) = G_2$, so heißt f eine **konforme Abbildung** von G_1 auf G_2 .
- (2) Ist $f: G \to G$ eine konforme Abbildung von G auf G, so heißt f ein **Automorphismus** von G: $f \in \operatorname{Aut}(G).$

Satz 11.13

 G_1, G_2 seien Gebiete, $f: G_1 \to G_2$ sei eine konforme Abbildung von G_1 auf G_2 und G_1 sei ein Elementargebiet. Dann ist G_2 ebenfalls ein Elementargebiet.

Beweis

Sei $g \in H(G_2)$, $h := (g \circ f)f'$. Dann $h \in H(G_1), G_1 \to \exists$ eine Stammfunktion Φ von h, $F := \Phi \circ f^{-1}$ ist dann SF von g, g war beliebig $\Rightarrow G_2$ ebenfalls EG.