Modelli MPHero

alberto.ceselli

December 2022

1 SVR-style models

Data:

- \bullet a feature space J
- a set I of points $x^i = (x^i_1 \dots x^i_{|J|})$, and corresponding response values y^i
- ullet a violation cost C
- \bullet a confidence region parameter ϵ
- ullet a target number of features to select k_0

Variables:

- hyperplane slopes $w = (w_1 \dots w_{|J|})$ and intercept z values
- feature binary selection decisions f_j (1 if feature j is selected, 0 otherwise)

Optimize:

$$\min \frac{1}{2} \sum_{j \in J} w_j^2 + C \cdot \sum_{i \in I} p_i^+ + p_i^- \tag{1}$$

s.t.
$$\left(\sum_{j\in J} w_j \cdot x_j^i\right) + z - y^i \le \epsilon + p_i^+$$
 $\forall i\in I$ (2)

$$-\left(\sum_{i\in I} w_j \cdot x_j^i\right) - z + y^i \le \epsilon + p_i^- \qquad \forall i \in I$$
 (3)

$$w_j \le f_j W_j^U \qquad \forall j \in J \tag{4}$$

$$w_j \ge f_j W_j^L \tag{5}$$

$$\sum_{j \in J} f_j \le k_0 \tag{6}$$

$$p_i^+ \ge 0, p_i^- \ge 0 \qquad \forall i \in I \tag{7}$$

$$f_j \in \{0, 1\} \qquad \forall j \in J \tag{8}$$

Where p_i^+, p_i^- are measurement errors on point i.

1.1 Outliers

Optimize:

$$\min \frac{1}{2} \sum_{j \in J} w_j^2 + C \cdot \sum_{i \in I} (p_i^+ + p_i^-) s_i \tag{9}$$

s.t.
$$\left(\sum_{j\in J} w_j \cdot x_j^i\right) + z - y^i \le \epsilon + p_i^+$$
 $\forall i \in I$ (10)

$$-\left(\sum_{i\in J} w_j \cdot x_j^i\right) - z + y^i \le \epsilon + p_i^- \qquad \forall i\in I$$
 (11)

$$w_j \le f_j W_j^U \qquad \forall j \in J \tag{12}$$

$$w_j \ge f_j W_j^L \qquad \forall j \in J \tag{13}$$

$$\sum_{j \in J} f_j \le k_0 \tag{14}$$

$$\sum_{i \in I} s_i \ge s_0 \tag{15}$$

$$p_i^+ \ge 0, p_i^- \ge 0 \qquad \forall i \in I \qquad (16)$$

$$f_j \in \{0, 1\} \qquad \forall j \in J \tag{17}$$

$$s_i \in \{0, 1\} \qquad \forall i \in I \tag{18}$$

The terms $(p_i^+ + p_i^-)s_i$ need to be linearized in the fashion of our previous regression models.

McCormick's linearization. We first perform a standard McCormick's linearization. Note that the linearization of products $p_i^+s_i$ and $p_i^-s_i$ can be performed in the same way. Then, for the sake of brevity, we denote by $p_i^\pm s_i$ either product. Given a valid upper-bound R_i^\pm on p_i^\pm , and since $s_i \in \{0,1\}$, it is well-known [?] that for every i we can replace $p_i^\pm s_i$ by an additional variable $t_i \geq 0$ and adding the following 3 sets of constraints for every i:

$$\begin{split} t_i^{\pm} &\leq p_i^{\pm} \\ t_i^{\pm} &\leq s_i R_i^{\pm} \\ t_i^{\pm} &\geq p_i^{\pm} - (1-s_i) R_i^{\pm} \end{split}$$

we obtain a MILP whose solutions corresponds to those of (9)–(18). Hence a first linearization of (9)–(18) is:

$$\min \frac{1}{2} \sum_{i \in I} w_j^2 + C \cdot \sum_{i \in I} (t_i^+ + t_i^-)$$
 (19)

s.t.
$$\left(\sum_{j\in J} w_j \cdot x_j^i\right) + z - y^i \le \epsilon + p_i^+$$
 $\forall i\in I$ (20)

$$-\left(\sum_{j\in J} w_j \cdot x_j^i\right) - z + y^i \le \epsilon + p_i^- \qquad \forall i \in I$$
 (21)

$$t_i^+ \le p_i^+ \qquad \forall i \in I \tag{22}$$

$$t_i^+ \le s_i R_i^+ \qquad \forall i \in I \tag{23}$$

$$t_i^+ \ge p_i^+ - (1 - s_i)R_i^+$$
 $\forall i \in I$ (24)

$$t_i^- \le p_i^- \qquad \qquad \forall i \in I \qquad \qquad (25)$$

$$t_i^- \le s_i R_i^- \qquad \forall i \in I \tag{26}$$

$$t_i^- \ge p_i^- - (1 - s_i)R_i^- \qquad \forall i \in I$$
 (27)

$$w_{j} \leq f_{j}W_{j}^{U} \qquad \forall j \in J \qquad (28)$$

$$w_{j} \geq f_{j}W_{j}^{L} \qquad \forall j \in J \qquad (29)$$

$$\sum_{j \in J} f_j \le k_0 \tag{30}$$

$$\sum_{i \in I} s_i \ge s_0 \tag{31}$$

$$p_i^+ \ge 0, p_i^- \ge 0 \qquad \forall i \in I \tag{32}$$

$$f_i \in \{0, 1\} \qquad \forall j \in J \tag{33}$$

$$s_i \in \{0, 1\} \qquad \forall i \in I \qquad (34)$$

$$t_i^+, t_i^- \ge 0 \qquad \forall i \in I \tag{35}$$

Disjunctive linearization (Projected McCormick's linearization). We observe that there exists an optimal solution to (19)–(35) satisfying (24) with equality for every $i \in I$. Indeed, if $s_i = 0$ then, given the validity of R_i^{\pm} , we may always set $p_i^{\pm} = R_i^{\pm}$ in an optimal solution (whose value depends only on the t_i^{\pm} values); when $s_i = 1$ constraint (24) boils down to $t_i^{\pm} >= p_i^{\pm}$, which together with (25), gives $t_i^{\pm} = p_i^{\pm}$. So, we can restrict the McCormick's linearization to the set of solutions satisfying (24) with equality. This allows a projection of the t_i^{\pm} 's variables. After substitution we obtain the following valid MILP for the

starting problem:

$$\min \frac{1}{2} \sum_{j \in J} w_j^2 + C \cdot \sum_{i \in I} (p_i^+ - (1 - s_i) R_i^+) + C \cdot \sum_{i \in I} (p_i^- - (1 - s_i) R_i^-)$$

$$\text{s.t. } (\sum_{j \in J} w_j \cdot x_j^i) + z - y^i \le \epsilon + p_i^+$$

$$\forall i \in I$$

$$(37)$$

$$-\left(\sum_{j\in J} w_j \cdot x_j^i\right) - z + y^i \le \epsilon + p_i^-$$
 $\forall i\in I$

(38)

$$R_i^+(1-s_i) \le p_i^+ \le R_i^+ \tag{39}$$

$$R_i^-(1-s_i) \le p_i^- \le R_i^- \tag{40}$$

$$w_j \le f_j W_j^U \qquad \forall j \in J \tag{41}$$

$$w_j \ge f_j W_j^L \tag{42}$$

$$\sum_{i \in J} f_j \le k_0 \tag{43}$$

$$\sum_{i \in I} s_i \ge s_0 \tag{44}$$

$$p_i^+ \ge 0, p_i^- \ge 0 \qquad \forall i \in I$$

$$\tag{45}$$

$$f_j \in \{0, 1\} \qquad \forall j \in J$$

$$\tag{46}$$

$$s_i \in \{0, 1\}$$

$$\forall i \in I$$
 (47)

1.2 The Lagrangian Dual of the Disjunctive Linearization Model

In order to easily describe the dual formulation we introduce and fix some notations:

- v represents a generic variables (that is, any of $w_j, z, p_i^{\pm}, f_j, s_i$) and \mathbf{v} is their vector (following the ordering $w_j, z, p_i^{\pm}, f_j, s_i$).
- $\Gamma \mathbf{v} \leq \gamma$ is the constraint matrix of the available generic cuts obtained from the ILP. The column corresponding to variable v is indicated with Γ^v . Then Γ^v_h is the h-th entry of that column. We assume that the matrix Γ has $m \geq 0$ row.

• The x^i 's are column vectors in \mathbb{R}^d , so that x_j^i is the j-th entry of x^i .

We define the duals of the disjunctive-based formulation.

- α^+ (resp. α^-) is the dual vector of constraints (37) (resp. (38))
- π^+ and ψ^+ (resp. π^- and ψ^-) are the dual vectors of upper- and lower-bound constraints (39) (resp. (40))
- λ^U and λ^L are the dual vectors of constraints (41) and (42) respectively
- β_1 and β_2 are the duals of constraints (43) and (44)
- η^+ and η^- are the dual vectors of constraints (45)
- φ (resp. σ) are the dual vectors of upper- and lower bound constraints $f_j \leq 1$ and $f_j \geq 0$ (resp. $s_i \leq 1$ and $s_i \geq 0$).

We have that the dual of the disjunctive-based formulation is:

$$\min \frac{1}{2} \sum_{j \in J} \left(\sum_{i \in I} x_{j}^{i} (\alpha_{i}^{-} - \alpha_{i}^{+}) \right)^{2} + \sum_{j \in J} \left(\left(\lambda_{j}^{L} - \lambda_{j}^{U} - \sum_{h=1}^{m} \xi_{h} \Gamma_{h}^{\omega_{j}} \right) \sum_{i \in I} x_{j}^{i} (\alpha_{i}^{-} - \alpha_{i}^{+}) \right) + \frac{1}{2} \sum_{j \in J} \left(\lambda_{j}^{L} - \lambda_{j}^{U} - \sum_{h=1}^{m} \xi_{h} \Gamma_{h}^{\omega_{j}} \right)^{2} - \sum_{i \in I} (\alpha_{i}^{+} (y_{i} + \epsilon) - \alpha_{i}^{-} (y_{i} - \epsilon)) - \sum_{i \in I} \left((\pi_{i}^{+} - \psi_{i}^{+}) R_{i}^{+} + (\pi_{i}^{-} - \psi_{i}^{-}) R_{i}^{-} \right) - k_{0} \beta_{1} + s_{0} \beta_{2}$$

$$- \sum_{j \in J} \varphi_{j} - \sum_{i \in I} \sigma_{i} - \sum_{h=1}^{m} \xi_{h} \gamma_{h}$$

$$(48)$$

s.t.

$$\sum_{i \in I} (\alpha_i^+ - \alpha_i^-) + \sum_{h=1}^m \xi_h \Gamma_h^z = 0 \tag{\partial z}$$

$$\psi_{i}^{+} + \alpha_{i}^{+} - \pi_{i}^{+} - \sum_{h=1}^{m} \xi_{h} \Gamma_{h}^{p_{i}^{+}} \le C \quad \forall i \in I$$
 (∂p_{i}^{+})

$$\psi_i^- + \alpha_i^- - \pi_i^- - \sum_{l=1}^m \xi_h \Gamma_h^{p_i^-} \le C \quad \forall i \in I$$
 (∂p_i^-)

$$\lambda_j^L W_j^L - \lambda_j^U W_j^U + \varphi_j + \beta_1 + \sum_{h=1}^m \xi_h \Gamma_h^{f_j} \ge 0 \quad \forall j \in J$$
 (\delta f_j)

$$\psi_i^+ R_i^+ + \psi_i^- R_i^- + \beta_2 - \sigma_i - \sum_{h=1}^m \xi_h \Gamma_h^{s_i} \le C(R_i^+ + R_i^-) \quad \forall i \in I$$
 (\delta s_i)

$$\alpha^{\pm}, \pi^{\pm}, \psi^{\pm}, \lambda^{U}, \lambda^{L}, \beta_{1}, \beta_{2}, \varphi, \sigma, \xi \ge \mathbf{0}$$

$$\tag{49}$$