Post-BERT Era

Model distillation

Learning goals

- soft vs. hard targets
- understand how distillation works
- DistilBERT
- other approaches towards compression

MODEL COMPRESSION

Motivation: • Bucila et al., 2006

- Existence of computationally expensive, cumbersome ensemble models
- Accuracy/Performance not everything the should be taken into account
- Time and space requirements also of importance
- Model Compression to "to obtain fast, compact yet highly accurate models"
- The fast and compact model should approximate the function learned by the slower and larger model

MODEL COMPRESSION

Advantages:

- Compressing the knowlegde of the ensemble into a single model has the benefits of
 - easier deployment
 - better generalization
 - (potential) interpretability

Reasoning:

- Cumbersome model generalizes well, because it is the average of an ensemble
- Small model trained to generalize in the same way typically better than small model trained "the normal way"

MODEL COMPRESSION

Challenge:

- Bucila et al. assumed only knowledge about the weights of the large (ensemble) model
- No access to its training data
 - \rightarrow Their work is mainly on generating suitable pseudo data for model compression

NLP:

- Abundant amounts of data; no need for creating pseudo data
- Self-supervised objectives can be used for model compression

MODEL DISTILLATION

Types of targets

"Hard" Targets

- Present when learning from labeled data
- Ordinary way of training models
- Knowledge transfer possible via "soft" targets from original model
- Possible "soft" targets
 - Logits + L2 loss → Bucila et al., 2006
 - Softmax scores
 - Temperature T in the softmax → Hinton et al., 2015

$$q_i = \frac{\exp(z_i/T)}{\sum_i \exp(z_j/T)}$$

MODEL DISTILLATION

Temperature:

$$q_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

- z_i/z_i are the raw logits
- Parameter T controls to smoothness of the distribution
 - Higher T: "softer" distribution
 - Lower T: more pronounced distribution
- Distillation phase: Apply same temperature to teacher and student
- Inference: Set T=1 to recover standard softmax

MODEL DISTILLATION

Intuition

- Train the student to *mimick* the teacher's behaviour
- Question: Advantage of the soft targets:
 - → No need to know the true labels of the training instances
 - ightarrow More fine-grained information about the teacher's behaviour
- When true labels are known:
 - Weighted average of two different objective functions possible
 - → On soft targets (Be close to the teacher) and
 - → on hard targets (be close to the "ground truth")

Motivation:

Characteristics of the student architecture:

- Half the number of layers compared to BERT¹ (6 instead of 12)
- Remove segment embeddings² (required for NSP objective)
- Half of the size of BERT, but retains up to 97% of the performance
- Initialize from BERT (taking one out of two hidden layers)
- Same pre-training data as BERT (Wiki + BooksCorpus)

² Sanh et al. call them "token-type embeddings" in their paper

Post-BERT Era - 8 / 15 (C)

¹Rationale for "only" reducing the number of layers: Larger influence on the computation efficiency compared to e.g. hidden size dimension

Combination of three different loss functions:

- Soft targets:
 - Distillation loss $L_{ce} = \sum_{i} t_i \cdot \log(s_i)$
- Hard targets:

Masked language modeling loss L_{mlm} (cf. BERT)

• Alignment:

Cosine-Embedding-Loss *L*_{cos}

(Rationale: Keep DistilBERT's embeddings close to BERT's)

Adopt improvement from RoBERTa:

- Stop using the NSP loss (hence removed segment embeddings)
- Dynamic masking for MLM
- Train with large batches

Performance differences to BERT:

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	0,710	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6		92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5		91.3	86.9	56.3

► Source: Sanh et al., 2019

Takeaways:

- Largest performance on textual entailment task (RTE)
- Even better reported performance on Winograd schemas (WNLI)
- Overall: Very consistent performance a little worse than BERT

Ablation study regarding the loss:

Table 4: **Ablation study.** Variations are relative to the model trained with triple loss and teacher weights initialization.

Ablation	Variation on GLUE macro-score
\emptyset - L_{cos} - L_{mlm}	-2.96
L_{ce} - \emptyset - L_{mlm}	-1.46
L_{ce} - L_{cos} - \emptyset	-0.31
Triple loss + random weights initialization	-3.69

Source: Sanh et al., 2019

Takeaways:

- Start training from BERT's weights is crucial
- Removing MLM loss has little impact
 - → Signal in the soft targets sufficiently strong
- Notable contribution of the cosine embedding loss

Size and speed:

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

➤ Source: Sanh et al., 2019

© Post-BERT Era - 12 / 15

RELATED APPROACHES (1)

Quantization:

- In General: Mathematical procedure of converting a number from a continuous scale to a discrete scale
- In Machine Learning (usually): Convert a number from high precision (float16/float32) to a lower precision (float8/int8)
- For models with billions of parameters, this can save enormous amount of memory
- Given that model sizes (at the moment) grow faster than GPU memory, this can be crucial for even making inference of large models feasible
- Trade-Off: Memory savings vs. model quality

RELATED APPROACHES (2)

Pruning:

- Remove ("prune") certain parts of the model according to some score measuring the importance of that part for performance
- Common importance score (in NLP):
 Sensitivity of the loss wrt the values of the neurons Yang et al., 2022

$$\operatorname{IS}(\mathbf{\Theta}) = \mathbb{E}_{\mathbf{x} \sim \mathbf{X}} \left| \frac{\partial \mathcal{L}(\mathbf{x})}{\partial \mathbf{\Theta}} \mathbf{\Theta} \right|$$

- Common choices for Θ (in Transformers):
 - Output of an attention head
 - An intermediate neuron in the FFN layer

RELATED APPROACHES (2)

Self-supervised Pruning > Yang et al., 2022

• Substitute $\mathcal L$ by

$$\mathcal{L}_{\mathrm{KL}}(x) = \mathrm{KL}(\mathrm{stopgrad}(q(x))||p(x)),$$

- where
 - q(x) is the original model prediction distribution,
 - p(x) is the to-be-pruned model prediction distribution,
 - and stopgrad is used to stop back-propagating gradients