Model Documentation of the 'NN12'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^6 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^6 z$ $\in \mathbb{R}^6 y \in \mathbb{R}^2$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

-	
Symbol	Value
A	
	$\begin{bmatrix} 1.0 & 0 & 0 & 0 & -1.0 \end{bmatrix}$
	0 1.0 0 0 0 0
	0 0 0 1.0 0 0
	$\begin{bmatrix} 0 & 0 & -1.0 & 0 & 1.0 & 0 \end{bmatrix}$
В	$\begin{bmatrix} -1.0 & -3.0 \end{bmatrix}$
	0 0
	0 1.0
	0 -1.0
	0 -1.0
B_1	$\begin{bmatrix} -1.0 & -3.0 \end{bmatrix}$
	0 1.0
	$\begin{bmatrix} 0 & -1.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & -1.0 \end{bmatrix}$
C_1	$\begin{bmatrix} 1.0 & 0 & 0 & 0 & 0 \\ 0 & 1.0 & 0 & 0 & 0 & 0 \end{bmatrix}$
	0 0 1.0 0 0 0
	0 0 1.0 0 0
	0 0 0 1.0 0 0
	I I
C	$\begin{bmatrix} 0 & 0 & 1.0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1.0 \end{bmatrix}$
D_{11}	
	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
D_{12}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$
	1.0 0
D_{21}	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
ν_{21}	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
-	

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

NN12 J. Rosenthal and X. A. Wang, "Output Feedback Pole Placement with

Dynamic Compensators", TOAC, Vol. 41, Nr. 6, pp.830-843, 1996, Example $3.14\,$

4 Simulation

Figure 1: Simulation of the NN12.

References

[1] . Rosenthal and X. A. Wang, "Output Feedback Pole Placement with Dynamic Compensators", TOAC, Vol. 41, Nr. 6, pp.830-843, 1996, Example 3.14