Syntax Analysis

Sudakshina Dutta

IIT Goa

8th February, 2022

Example

An example context-free grammar

- ightharpoonup E
 ightharpoonup E
 ightharpoonup E + E
- ightharpoonup E
 ightharpoonup E
 ightharpoonup E * E
- ightharpoonup E
 ightarrow -E
- ightharpoonup E
 ightarrow (E)
- ightharpoonup E
 ightarrow id

with the sentence id + id * id

Leftmost derivation

Rightmost derivation

Ambiguity

- ► From the compiler's perspective, it is important that each sentence in the language defined by the grammar to have a unique rightmost (or leftmost) derivation
- ► If multiple rightmost (or leftmost) derivations exist for some sentence, then multiple distinct meanings can be possible for a distinct sentence
- Bad for a programming language

Two parse trees

ightharpoonup Consider the string id + id * id

▶ The same tree is generated by both the derivations

Consider the following grammar

- ightharpoonup stmt ightharpoonup if expr then stmt
- ightharpoonup stmt ightarrow if expr then stmt else stmt
- ightharpoonup stmt ightharpoonup other
- and the following string
- \blacktriangleright if E_1 then if E_2 then S_1 else S_2

Ambiguity

Consider the following grammar

- ightharpoonup stmt ightharpoonup if expr then stmt
- ightharpoonup stmt ightharpoonup if expr then stmt else stmt
- ightharpoonup stmt ightharpoonup other
- and the following string
 - ightharpoonup if E_1 then (if E_2 then S_1 else S_2)
 - \blacktriangleright if E_1 then (if E_2 then S_1) else S_2

The ambiguity can be resolved if some convention from the programming language can be specified in the grammar

Here, The grammar is said to be having an ambiguity since the SAME STRING can have 2 parse/syntax trees under the given grammar.

Resolving ambiguity

- ightharpoonup stmt ightharpoonup if expr then stmt
- ightharpoonup stmt ightharpoonup if expr then WithElse else stmt
- stmt → assignmentStmt
- WithElse → if expr then WithElse else WithElse
- WithElse → assignmentStmt

We need to parse

ightharpoonup if E_1 then if E_2 then S_1 else S_2

Resolving ambiguity

To resolve ambiguity..

Generally meaning and grammatical structure interact

For example,

- \triangleright $E \rightarrow E + E$
- \triangleright $E \rightarrow E * E$
- ightharpoonup E
 ightarrow id

is changed to

- $E \rightarrow E + T T$
- ightharpoonup T
 igh
- ightharpoonup F
 ightarrow id

Don't get confused. Here T & F refers to variable/Expression Names only.. They dont stand for True & False resp.

The change considers the precedence of operators

How to get this type of idea that resolves ambiguity?