الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

في رف من رفوف مكتبة "ثانوية النجاح"، يوجد 150 كتاب رياضيات و 50 كتاب فلسفة، حيث 40% من كتب الرياضيات و 70% من كتب الفلسفة تخص شعبة التسيير والاقتصاد.

نختار عشوائيا من الرف كتابا واحدا.

عيّن مع التبرير، الجواب الصحيح الوحيد من بين الأجوبة المقترحة، في كل حالة من الحالات التالية:

1) احتمال أن يكون الكتاب المختار كتاب رياضيات هو:

$$\frac{1}{150}$$
 (÷) $\frac{2}{5}$ (÷) $\frac{3}{4}$ (أ)

- 2) احتمال أن يكون الكتاب المختار خاصا بشعبة التسيير والاقتصاد هو:
 - $0.21 (\Rightarrow) 0.475 (\downarrow)$
- 0,24 (1)
- 3) احتمال أن يكون الكتاب المختار كتاب رياضيات خاصا بشعبة التسيير والاقتصاد هو:

 - $0.3 (\Rightarrow) 0.4 (\downarrow)$
- (أ**)** 0**,15**
- 4) إذا كان الكتاب المختار يخص شعبة التسيير والاقتصاد، فإنّ احتمال أن يكون كتاب رياضيات هو:

 - $\frac{3}{10}$ (\(\darphe\)) $\frac{12}{19}$ (\(\darphe\)) $\frac{2}{75}$ (\(\darphe\))

التمرين الثاني: (04 نقاط)

الجدول التالي يعطى تطور النسب المئوية من ميز انية إحدى الجامعات، والمخصّصة للإنفاق على البحث العلمي بين سنتي 2005 و2012:

				10	745		COLUMN TO A STATE OF THE STATE	C-C-MCI
السنة	2005	2006	2007	2008	2009	2010	2011	2012
رتبة السنة X_i	1	2	3	4	5	6	7	8
النسبة المئوية $y_i\%$	3,3	3,8	4,5	4,7	5	5,2	5,7	6,2

- مثّل سحابة النقط $M_{j}(x_{j}; y_{j})$ في معلم متعامد.
- 2) جدْ إحداثيتي G النقطة المتوسطة لسحابة النقط، ثمّ مثلّها.

- 3) بيّن أنّ المعادلة المختصرة لمستقيم الانحدار بالمربعات الدنيا هي: y = 0.38x + 3.09 ، ثمّ ارسمه.
 - 4) بفرض أن تغيّر النسب المئوية يبقى على هذه الوتيرة في السنوات القادمة.
 - أ- قدر النسبة المئوية لإنفاق هذه الجامعة على البحث العلمي في سنة 2015.

ب- في أية سنة تصبح النسبة المئوية المتوقعة للإنفاق على البحث العلمي لهذه الجامعة هي 9,93% ؟

التمرين الثالث: (05 نقاط)

 $u_0=3:$ المتتالية العددية المعرفة ب $u_0=3:$ المتتالية العددية المعرفة ب

. وسيط حقيقي
$$a$$
 عيث a وسيط حقيقي $u_{n+1} = \left(\frac{2a+1}{3}\right)u_n - \frac{2a+4}{3}$

- التي من أجلها تكون المتتالية (u_n) ثابتة. -1
- a حدا a عيّن قيمة a حتى تكون المتتالية (u_n) حسابية، ثمّ احسب عندئذ a ومجموع a حدا الأولى من المتتالية.
- حدا u_{50} عيّن قيمة a حتى تكون المتتالية u_{a} هندسية، ثمّ عيّن في هذه الحالة كلا من u_{50} ومجموع 50 حدا الأولى منها.
 - نفر نفر ناس a=4 . بر هن بالتر اجع أنّه، من أجل كل عدد طبيعي a=4 ، فإنّ: a=4 . $u_n=4$ نفر نس $u_n=4$. $u_0+u_1+u_2+\ldots+u_n=\frac{1}{2}\big(3^{n+1}+4n+3\big)$

التمرين الرابع: (07 نقاط)

الدالة العددية f معرفة على \mathbb{R}^* كما يلي \mathbb{R}^* كما يلي $f(x)=2x-1+rac{1}{e^x-1}$ و $f(x)=2x-1+rac{1}{e^x-1}$ المستوي المستوي المنسوب إلى المعلم المتعامد المتجانس $f(x)=2x-1+rac{1}{e^x-1}$.

- الحسب f(x) و $\lim_{x \to 0} f(x)$ فسر النتيجتين هندسيا. الحسب أ $\lim_{x \to 0} f(x)$
 - $\lim_{x \to -\infty} f(X)$ و $\lim_{x \to +\infty} f(X)$ احسب (ب
- . (C_f) مقارب مائل للمنحنى (Δ) ذا المعادلة y=2x-1 أن المستقيم (Δ) ذا المعادلة (Δ) بيّن أنّ
- ب) تحقق أنّه، من أجل كل عدد حقيقي x غير معدوم، فإنّ: $\frac{e^x}{e^x-1}$ نمّ استنتج أنّ $y=2x-2+\frac{e^x}{e^x-1}$ المستقيم (C_f) ذا المعادلة y=2x-2 ، مقارب للمنحنى (C_f)
 - $f'(x) = \frac{2e^{2x} 5e^x + 2}{(e^x 1)^2}$: غير معدوم، فإنّ عدد حقيقي x غير عدد عقيقي x غير معدوم، فإنّ -3

استنتج اتجاه تغير الدالة f، ثمّ شكّل جدول تغيّر اتها.

- $.(C_{f})$ و (Δ') و (Δ) مثّل بیانیا کلاّ من -4
- العدد: $\int_{1}^{2} f(x) dx$ ، ثمّ فسره هندسيا.

الموضوع الثاتي

التمرين الأول: (04 نقاط)

$$u_{n+1} = -\frac{1}{2}u_n + 6$$
 ، u_n ومن أجل كل عدد طبيعي $u_0 = 6$: المتتالية العددية المعرفة ب

 $u_4 = u_3 \cdot u_2 \cdot u_1 \cdot u_2 \cdot u_3 \cdot u_4 = (1)$

ب- هل المتتالية (u_n) رتيبة على \mathbb{N} ؟ برر إجابتك.

$$u_{n+1} - 4 = -\frac{1}{2}(u_n - 4)$$
 ، $u_{n+1} - 4 = -\frac{1}{2}(u_n - 4)$ ، $u_{n+1} - 4 = -\frac{1}{2}(u_n - 4)$ ، $u_{n+1} - 4 = -\frac{1}{2}(u_n - 4)$ ، $u_{n+1} - 4 = -\frac{1}{2}(u_n - 4)$

... استتج أن المتتالية (v_n) المعرفة على \mathbb{N} بـــ: $v_n = u_n - 4$ هندسية، يطلب تعيين أساسها وحدها الأول.

n اکتب u_n ثمّ v_n بدلالة (ج

د) بیّن أن (u_n) متقاربة.

. باستعمال عبارة u_n ، تأكد ثانية من نتيجة السؤال 1) ب

التمرين الثاني: (05 نقاط)

وُضِعِت أسئلة امتحان شفوي في علبتين متماثلتين A و B. العلبة A تحتوي على 4 أسئلة في الثقافة العامة،

و 6 أسئلة في مادة الاختصاص؛ والعلبة B تحتوي على 3 أسئلة في الثقافة العامة، و 7 أسئلة في مادة

الاختصاص. (عمليات سحب الأسئلة واختيار إحدى العلبتين متساوية الاحتمال)

1) يختار مترشح إحدى العلبتين ليسحب منها عشوائيا، سؤالا واحدا.

أ- شكّل شجرة الاحتمالات المتوازنة.

A با هو احتمال سحب المترشح لسؤال في مادة الاختصاص من العلبة

*B ما هو احتمال سحب المترشح لسؤال في مادة الاختصاص من العلبة

د- ما هو احتمال سحب المترشح لسؤال في مادة الاختصاص؟

 $^\circ$ B علما أن المترشح سحب سؤالا في الثقافة العامة، ما احتمال أن يكون من العلبة

. B مترشح آخر يسحب عشوائيا سؤالا واحدا من العلبة A وسؤالا واحدا من العلبة (2

بيّن أن احتمال سحب سؤالين في مادة الاختصاص هو 0,42.

التمرين الثالث: (04 نقاط)

الجدول التالي يعطى تطور عدد مستعملي الهاتف النقال في مدينة ما من سنة 2006 إلى سنة 2012:

السنة	2006	2007	2008	2009	2010	2011	2012
رتبة السنة X_i	1	2	3	4	5	6	7
عدد المستعملين y_i	21400	32400	48000	75600	121200	207000	280000

1) أ- مثّل سحابة النقط $M_i(x_i;y_i)$ في معلم متعامد (نأخذ على محور الفواصل 1cm لكل سنة وعلى محور التراتيب 1cm لكل 1cm محور التراتيب

ب- هل يمكن تسوية سحابة النقط السابقة بتعديل خطى؟ برر إجابتك.

 $(10^{-2}$ من أجل $z_i = \ln y_i$. (تدوّر النتائج إلى $z_i = \ln y_i$) بوضع: (2

أ- أنقل الجدول التالى على ورقة الإجابة، ثمّ أكمله:

X_{i}	1	2	3	4	5	6	7
$z_i = \ln y_i$							

U'(0;9) ب مثّل سحابة النقط $M'_i(x_i;z_i)$ في معلم متعامد آخر مبدؤه O'(0;9) وبوحدة O'(0;9) وبوحدة على محور الثر اتب.

 $M_i'(x_i; z_i)$ النقطة المتوسطة لسحابة النقط G النقطة المتوسطة المتوسطة النقط

z=0,44x+9,51: $\left(x_{i}\;;\;z_{i}\;
ight)$ هي: $\left(x_{i}\;;\;z_{i}\;\right)$ هي: z=0,44x+9,51

(3 أ- تحقق أنّ: $y = k e^{0.44x}$ إلى الوحدة) عدد حقيقي يطلب تعيينه. (تدوّر النتيجة إلى الوحدة)

ب- بفرض أنّ عدد مستعملي الهاتف النقال بهذه المدينة يتزايد بنفس الوتيرة، قدر عددهم سنة 2014.

التمرين الرابع: (07 نقاط)

- . $g(x) = \frac{-x^2 + x + 2}{x^2}$ الدالة العددية g معرفة على $g(x) = \frac{-x^2 + x + 2}{x^2}$ الدالة العددية ال
 - g(x) عين، تبعا لقيم x، إشارة (1
 - $g(x) = -1 + \frac{1}{x} + \frac{2}{x^2}$ ، $]0; +\infty[$ من أجل كل x من أجل كل $f(x) = -1 + \frac{1}{x} + \frac{2}{x^2}$ ، $]0; +\infty[$ على $f(x) = -1 + \frac{1}{x} + \frac{2}{x^2}$ ، $]0; +\infty[$ على $f(x) = -1 + \frac{1}{x} + \frac{2}{x^2}$ ، $]0; +\infty[$ على $f(x) = -1 + \frac{1}{x} + \frac{2}{x^2}$ ، $[0; +\infty[$ على $f(x) = -1 + \frac{1}{x} + \frac{2}{x^2}$ ، $[0; +\infty[$ على $f(x) = -1 + \frac{1}{x} + \frac{2}{x^2}$ ، $[0; +\infty[$ $f(x) = -1 + \frac{2}{x} + \frac{2}{x^2}$ ، $[0; +\infty[$ $f(x) = -1 + \frac{2}{x} + \frac{2}{x^2}$ ، $[0; +\infty[$ $f(x) = -1 + \frac{2}{x} + \frac{2}{x^2}$ ، $[0; +\infty[$ $f(x) = -1 + \frac{2}{x} + \frac{2}{x^2}$ ، $[0; +\infty[$ $f(x) = -1 + \frac{2}{x} + \frac{2}{x} + \frac{2}{x}$ ، $[0; +\infty[$ $f(x) = -1 + \frac{2}{x} + \frac{2}{x} + \frac{2}{x} + \frac{2}{x} + \frac{2}{x} + \frac{2}{x} + \frac{2}{x}$ ، $[0; +\infty[$ $f(x) = -1 + \frac{2}{x} + \frac{2$
- . $f(x) = 3 x \frac{2}{x} + \ln x$ الدالة العددية f معرفة على المجال [8] كما يلي:
- . $\left(O;\overrightarrow{i},\overrightarrow{j}
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}
 ight)$
- 1) أ- تحقق أن f هي الدالة الأصلية للدالة g على المجال [0;8] والتي تتعدم عند [0;8] ب- استتج اتجاه تغير الدالة f على المجال [0;8].
 - ج- احسب f(x) ، ثمّ فسّر النتيجة هندسيا. $\lim_{x \to 0} f(x)$
 - د- شكّل جدول تغيرات الدالة f.
 - 3,8<lpha<3,9 : بيّن أن المعادلة $f\left(x
 ight) =0$ تقبل حلين، أحدهما lpha
 - $\cdot(C_f)$ مثّل بیانیا (3
 - . h(x) = f(3x + 2) كما يلي: $\left[-\frac{2}{3}; 2 \right]$ معرفة على الدالة العددية h معرفة على الدالة العددية العد
- $0 \le 3x + 2 \le 3$ فإن $0 \le x \le 2$ فإن $0 \le 3x + 2 \le 3$ فإن $0 \le 3x + 2 \le 3$ فإن $0 \le 3x + 2 \le 3$.
 - (عبارة h(x) غير مطلوبة) د h'(x) غير مطلوبة)
 - شكّل جدول تغيرات h.

الإجابة النموذجية لمادة: رياضيات الشعبة: تسيير واقتصاد امتحان شهادة البكالوريا دورة: 2013

العلامة		7.1-89				
مجموع	مجزأة	عناصر الإجابة				
04	1 1 1	$\frac{p_{1}}{p_{1}} = \frac{150}{200} = \frac{3}{4} \qquad \qquad 1$ $p_{1} = \frac{150}{200} = \frac{3}{4} \qquad \qquad 1$ $p_{2} = \frac{3}{4} \times \frac{2}{5} + \frac{1}{4} \times \frac{7}{10} = 0,475 \qquad \qquad 2$ $p_{3} = \frac{3}{4} \times \frac{2}{5} = 0,3 \qquad \qquad 3$ $p_{4} = \frac{0,3}{\frac{19}{40}} = \frac{12}{19} \qquad \qquad \qquad 4$				
04	1 3×0.25 0.75+0.25 0.25 0.5 0.5	$(bai \ 04)$: $(ba$				
05	0.5 0.5×3 0.5×3	$a = \frac{5}{2}$ نجد $a = \frac{5}{2}$ نجد $a = 1$ من $a = \frac{5}{2}$ عنا $a = 1$ نجد $a = \frac{5}{2}$ ومنه $a = 1$ ومن				

العلامة		7 4 544 4 4				
مجموع	مجزأة	عناصر الإجابة				
		<u>التمرين الرابع:</u> (07 نقط)				
	0.25×3	\dots معادلة مستقيم مقارب $X=0$ ، $\lim_{x \to 0} f(x) = +\infty$ ، $\lim_{x \to 0} f(x) = -\infty$ (أ (1				
	0.25×2	$\lim_{x \to -\infty} f\left(x\right) = -\infty \qquad \text{i} \qquad \lim_{x \to +\infty} f\left(x\right) = +\infty \text{(} \hookrightarrow$				
	0.5	$\ldots \in (C_f)$ مستقیم مقارب مائل لے $\lim_{x \to +\infty} [f(x) - (2x-1)] = 0$ (أ $(2 - 1)$				
	0.5	$f(x) = 2x - 2 + \frac{e^x}{e^x - 1}$ ب) النحقق				
	0.5	$\ldots \in [f(x)-(2x-2)]=0$ مستقیم مقارب مائل لے $[f(x)-(2x-2)]=0$				
	0.5+0.75	$f'(x) = \frac{2e^{2x} - 5e^x + 2}{(e^x - 1)^2} = \frac{(2e^x - 1)(e^x - 2)}{(e^x - 1)^2}$ (3				
		الدالة f متزايدة على كل من المجالين $[\ln 2] = -\infty$ و $[\ln 2] = -\infty$ ومتناقصة على كل				
07	0.5	من المجالين [0; ln 2] و [1n 2; 0]				
	0.25	جدول التغير ات				
	1	4) الرسم				
	1	3- 2- 1- 5-4-3-2-10/1 2 3 4 x -2- -2- -2- -3- -4- -4- -4- -6- -7- -8- -9-				
		(5				
	0.25	$\int_{1}^{2} f(x) dx = \int_{1}^{2} \left(2x - 2 + \frac{e^{x}}{e^{x} - 1} \right) dx$ $= \left[x^{2} - 2x + \ln(e^{x} - 1) \right]_{1}^{2} = 1 + \ln(e + 1)$				
		: هندسيا هو مساحة الحيز من المستوي المحدد ب (C_f) و المستقيمات التي معادلاتها $y=0$ ، ن $x=2$ ، $x=1$				

العلامة						
مجموع	مجزأة	عناصر الإجابة				
04	4×0.25 0.5 0.5	التمرين الأول: (04) نقط) $u_4 = \frac{33}{8}$ ، $u_3 = \frac{15}{4}$ ، $u_2 = \frac{9}{2}$ ، $u_1 = 3$. $(1$ ب المست رتبية على \mathbb{R} لأن مثلا الحدود u_1 ، u_2 ، u_1 ، u_2 ، u_3 . u_4 . u_4 . u_5				
	3×0.25 2×0.25 0.25 2×0.25	$v_{0}=2$ و منه $v_{0}=1$ ومنه $v_$				
05	1 0.75 0.75 0.75 1 0.75	التمرين الثاني: (20 نقط) التمرين الثاني: (50 نقط) $(1 \circ (1) \circ (1) \circ (1) \circ (1)$ $(1 \circ (1) \circ $				
04	0.5 0.25 0.5 0.5 2×0.25 0.75 2×0.25 2×0.25	التمرين الثالث: (40) نقط (1) أ- تمثيل سحابة النقط (1) أ- تمثيل سحابة النقط (1) أ- تمثيل سحابة النقط (1) ب-لا يمكن تسويتها بتعديل خطي لأن السحابة ليس لها شكلا متطاولا (أ (2 x_i 1 2 3 4 5 6 7 7 z_i 9.97 10.39 10.78 11.23 11.71 12.24 12.54 ب) تمثيل السحابة $M_i'(x_i; z_i)$ $M_i'(x_i; z_i)$ (\Rightarrow (6 (4;11.27) (\Rightarrow (2 - 0,44 x + 9,51 \Rightarrow (3 - 1) \Rightarrow (4 (3 - 1) \Rightarrow (4 (3 - 1) \Rightarrow (5 (4) \Rightarrow (6 (4) \Rightarrow (7 (4) \Rightarrow (7 (5 (4) \Rightarrow (8 (4) \Rightarrow (9 (4) \Rightarrow (9 (4) \Rightarrow (9 (4) \Rightarrow (9 (5 (4) \Rightarrow (9 (5 (4) \Rightarrow (1 (5 (4) \Rightarrow (1 (5 (4) \Rightarrow (2 (5 (4) \Rightarrow (3 (5 (4) \Rightarrow (4 (5 (4) \Rightarrow (4 (5 (4) \Rightarrow (4 (5 (4) \Rightarrow (4 (5 (4) \Rightarrow (5 (4) \Rightarrow (5 (4) \Rightarrow (6 (4) \Rightarrow (7 (4) \Rightarrow (7 (4) \Rightarrow (9 (4) \Rightarrow (1 (4) \Rightarrow (9 (4) \Rightarrow (9 (4) \Rightarrow (1 (4) \Rightarrow (9				

تابع الإجابة النموذجية لمادة: رياضيات الشعبة: تسيير واقتصاد امتحان شهادة البكالوريا دورة: 2013

العلامة		7 1 596 - 1*-
مجموع	مجزأة	عناصر الإجابة
	4×0.25	$\frac{x \mid 0 z}{g(x) \mid \ + 0} = \frac{x \mid 0 z}{+\infty}$: $g(x)$ اشارة $g(x) \mid \ + 0$: $g(x)$ اشارة $g(x)$: $g(x)$
	0.25	$g(x) = -1 + \frac{1}{x} + \frac{2}{x^2} \left({}^{\dagger} \left(2 \right) \right)$
	0.5	$c \in \mathbb{R} G(x) = -x - \frac{2}{x} + \ln x + c (\because$
	0.5+0.25	$f(1) = 0$ $g(x)$ $f'(x) = g(x)$
	0.5	ب) $_f$ متزايدة تماما على $_{[0;2]}$ ومتناقصة تماما على $_{[2;8]}$
	2×0.25	$X=0$ ومنه $X=0$ معادلة مستقيم مقارب $\lim_{x\longrightarrow 0}f\left(x ight) =-\infty$
	0.5	$f(8) = -\frac{21}{4} + 3 \ln 2$ د) جدول التغير ات
	0.25	f (1) = 0 لنيناً (2
07	0.25	تطبيق مبرهنة القيم المتوسطة
	0.25	f(3,9) = -0.05 + f(3,8) = 0.008
	0.5	$\left(C_{f} ight)$ تمثیل المنحنی (C_{f}) تمثیل المنحنی
	0.25	$0 < 3x + 2 \le 2$ فإن $0 < 3x + 2 \le 0$ إذا كانت $0 < 3x + 2 \le 0$
	0.25	$2 < 3x + 2 \le 8$ فإن $0 < x \le 2$
	0.5	$h'(x) = 3f'(3x+2)$ (2
	0.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$