Chapter Ten: Vector Bundles

Lee, An Introduction to Smooth Manifolds

10.1 A nontrivial vector bundle.

(a) \mathbb{Z} acts on \mathbb{R}^2 in the following way:

$$n \cdot (x, y) = (x + n, (-1)^n y).$$

Giving \mathbb{Z} the discrete topology, this is a continuous action, since the map $(x,y) \mapsto n \cdot (x,y)$ is continuous for each n. It is clear that \mathbb{Z} acts freely discontinuously. Since \mathbb{R}^2 is connected and locally path-connected, it follows that the quotient map $q: \mathbb{R}^2 \to E$ is a topological covering map.

To define a smooth structure on E, take $p \in E$ and let V_p be an evenly covered neighborhood containing p. Assume that $V = N_{\epsilon}(p)$ for $\epsilon < 1/2$. Let U_p be the component of $q^{-1}(U)$ intersecting $[0,1] \times \mathbb{R}$ such that $\inf_{(x,y)\in U}|x|$ is minimal. Then $q|_{U_p}^{-1}\colon V_p\to U_p$ is a homeomorphism of U_p with an open subset of \mathbb{R}^2 . A subset of the U_p can be chosen to satisfy the countability and separation hypotheses of the Smooth Manifold Chart Lemma, and transition maps are either the identity or a shift. Therefore these charts define a smooth structure on E (Lemma 1.35). It is clear that q is smooth with respect to this smooth structure since its coordinate representation is either the identity or a shift and/or flip in \mathbb{R}^2 . Also, any smooth structure on E making q a smooth covering map must contain all these charts, since the requirement that q must be a local diffeomorphism forces these local inverses to be smooth.

- (b) Let $\tilde{\phi}: \mathbb{R}^2 \to \mathbb{S}^1$ be the map $(x,y) \mapsto e^{2\pi i x}$. Then $\tilde{\phi}$ is smooth and constant on the fibers of p, so ϕ descends to a smooth map $\phi: E \to \mathbb{S}^1$ (Theorem 4.30). Now for $x \in \mathbb{S}^1$, for sufficiently small $\epsilon > 0$, $\phi^{-1}(N_{\epsilon}(x)) = q(\tilde{\phi}^{-1}(\{x\}))$ is evenly covered by a disjoint union of components $I_k \times \mathbb{R} \subset \mathbb{R}^2$ for $I_k \subset \mathbb{R}$ an open interval, $k \in \mathbb{Z}$. Let V be the component that is either contained on $(0,1) \times \mathbb{R}$ or intersects $0 \times \mathbb{R}$. Then $q|_V$ gives a diffeomorphism between $V = I \times \mathbb{R}$ and $\phi^{-1}(N_{\epsilon}(x))$. Let $F(x,y) = (e^{2\pi i x}, y)$. Then $\Phi = F \circ q|_V^{-1}$ is the desired local trivialization of E over $N_{\epsilon}(x)$ and clearly satisfies the projection coniditon (ii-1). Identifying points of $\phi^{-1}(U)$ with their preimages in \mathbb{R}^2 gives a vector space structure on E_x and Φ clearly restricts to a linear map on each fiber.
- (c) E contains a subset homeomorphic to a Mobius strip so it is not orientable, but $\mathbb{S}^1 \times \mathbb{R}$ is.
- 10.2 Projection from a vector bundle is a homotopy equivalence. Let $\sigma: M \to E$ be the zero section. Then σ is continuous and $\pi \circ \sigma = \mathrm{Id}_M$. On the other hand, $F = \sigma \circ \pi$ is homotopic to Id_E . To see this, define $G: E \times [0,1] \to E$ that sends

$$(x,t) \mapsto (1-t)x.$$

Then G(p,0) = p, and $G(p,1) = \sigma \circ \pi(p)$. To see that G is continuous, cover E by open neighborhoods $\pi^{-1}(U)$ such that there are local trivializations $\Phi_U : \pi^{-1}(U) \simeq U \times \mathbb{R}^k$. Define $H : U \times \mathbb{R}^k \times [0,1] \to U \times \mathbb{R}^k$:

$$H((p, v), t) = (p, (1 - t)v).$$

Then

$$G|_U = [(x,t) \mapsto \Phi_U^{-1} \circ H(\Phi_U(x),t)]$$

and so $G|_U$ is continuous as the composition of continuous maps. This proves that G is continuous.

10.4 Transitions between local trivializations give smooth maps into $GL_k(\mathbb{R})$. Let $e_1, ..., e_k$ be the standard basis for \mathbb{R}^k . In the coordinates on $GL_k(\mathbb{R}) \subset \mathbb{R}^{k^2}$ corresponding to this basis, we can write $\tau(p) = (\tau_{ij}(p))$. Now if $\pi_2 : (U \cap V) \times \mathbb{R}^k$ is the projection onto the second factor, then $F(p, v) = \pi_2 \circ \Phi \circ \Psi^{-1}(p)$ is a smooth map $U \cap V \to \mathbb{R}^k$, and $F(p, e_\ell) = (\tau_{1\ell}(p), ..., \tau_{k\ell}(p))$. This proves that each τ_{ij} is a smooth function $U \cap V \to \mathbb{R}$, which proves that τ is smooth.

10.6 Vector bundle construction theorem. Let

$$E = \left(\coprod_{\alpha \in \mathcal{A}} U_{\alpha} \times \mathbb{R}^k \right) / \sim$$

where $(p,v) \in U_{\alpha} \times \mathbb{R}^k \sim (q,w) \in U_{\beta} \times \mathbb{R}^k$ if p=q and $w=\tau_{\beta\alpha}v$. This is an equivalence relation: (10.7) gives transitivity directly, and it implies that $\tau_{\alpha\alpha} = \mathrm{Id}$, giving reflexivity, and $\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$, giving symmetry. Then projection π onto the first factor is well-defined on the equivalence classes of E, so $E_p = \pi^{-1}(\{p\})$ is a well-defined subset of E. Further, E_p is a vector space for each p. For let [(p,v)] and [(p,w)] be two equivalence classes in E_p . We can choose representatives (p,v) and (p,w) contained in $U_{\alpha} \times \mathbb{R}^k$ for some α and define $[(p,v)] + [(p,w)] = [(p,v+w)] \in E_p$. This operation is well-defined, because if we had chosen some other chart (U,β) , then we would have evaluated $(p,\tau_{\alpha\beta}v) + (p,\tau_{\alpha\beta}w) = (p,\tau_{\alpha\beta}(v+w)) \in U_{\beta} \times \mathbb{R}^k$ and these two points define the same class.

Now, for each α , $\pi^{-1}(U_{\alpha})$ is represented by $U_{\alpha} \times \mathbb{R}^k \subseteq U$. Define the map $\Phi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^k$ such that

$$\Phi_{\alpha}([(p,v)]) = (p,v)$$

where (p, v) is the representative in U_{α} . Now for $(q, v) \in (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^k$,

$$\Phi_{\beta} \circ \Phi_{\alpha}^{-1}(q,v) = \Phi_{\beta}([(q,v) \in U_{\alpha}]) = \Phi_{\beta}([(q,\tau_{\beta\alpha}v) \in U_{\beta}]) = (q,\tau_{\beta\alpha}v).$$

The map $p \mapsto \tau_{\beta\alpha}$ is certainly smooth because it is constant. Therefore, the hypotheses of Lemma 10.6 are satisfied, and E is a smooth vector bundle over M.

- 10.8 Image of a vector bundle under covariant functor. The new vector bundle is $\coprod p \times \mathcal{F}(E_p)$, and the rest of the problem is using the smoothness of \mathcal{F} to verify Lemma 10.6.
 - **10.10** Ask someone for help with this one!

10.12 Conditions on transition maps guaranteeing the existence of a smooth bundle isomorphism. Say that the collection $\{\sigma_{\alpha}\}$ exists as described in the problem. Define the map $E \to \tilde{E}$ as follows: given $x \in E$, let $(p,v) = \Phi_{\alpha}(x) \in U_{\alpha}$, and let F(x) = y where y is the unique point such that $\tilde{\Phi}_{\alpha}(y) = (p, \sigma_{\alpha}(v))$. Then F is well-defined. For if $x \in U_{\alpha} \cap U_{\beta}$, then $\Phi_{\beta}(x) = (p, \tau_{\beta\alpha}v)$, and $\tilde{\Phi}_{\beta}(y) = \tilde{\tau}_{\beta\alpha}\sigma_{\alpha}v$, which is equal to $\sigma_{\beta}\tau_{\beta\alpha}v$ by the relation. It is clear that F defined this way is a bundle homomorphism over M. It is smooth because in a neighborhood of each point it can be written as the composition of smooth maps. Since the inverse is constructed the same way, interchanging the role of E and \tilde{E} , it is also a smooth bundle homomorphism, so F is a smooth bundle isomorphism.

Conversely, say a smooth bundle isomorphism exists. For each α define the smooth map $\sigma_{\alpha}(p): v \mapsto \pi_2 \circ \tilde{\Phi}_{\alpha} \circ F \circ \Phi_{\alpha}^{-1}(p,v)$. If $w = \tau_{\beta\alpha}v$, then $\phi_{\beta}^{-1}(p,w) = \phi_{\alpha}^{-1}(p,v)$, so $\sigma_{\beta}(p)w = \tau_{\beta\alpha}\tilde{\sigma}_{\alpha}(p)v$, which gives the desired relation.

10.14 Tangent bundle to an embedded submanifold is a subbundle. Apply Lemma 10.32 to the local frame corresponding to a slice chart at each point.