

Project presentation

A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem

Konstantin Leladze

HSE 2022

Algorithm summary

How to find an eigencomposition of an arbitrary

Divide

$$\left(\begin{array}{c|c}
6 & 0 \\
\hline
6 & 0 \\
\hline
6 & 0
\end{array}\right) = \left(\begin{array}{c|c}
1 & 6 \\
\hline
6 & -3
\end{array}\right) + \frac{6}{6} \left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) \cdot \left(0 & 1 & 1 & 0\right)$$

$$T = \left(\frac{T_1}{T_2}\right) + 3 \text{V}^{\text{T}}$$

Conquer

$$T_{1} = Q_{1} D_{1} G_{1}^{T}$$

$$T_{2} = Q_{2} D_{2} Q_{2}^{T}$$

$$T = \begin{pmatrix} Q_{1} D_{1} Q_{1}^{T} & & & \\ Q_{2} D_{2} Q_{2}^{T} & & & \end{pmatrix} + \mathcal{Y} \mathcal{V} \mathcal{V}^{T} = \begin{pmatrix} Q_{1} & & \\ Q_{2} \end{pmatrix} \cdot \begin{pmatrix} D_{1} & & \\ D_{2} \end{pmatrix} \cdot \begin{pmatrix} Q_{1}^{T} & & \\ Q_{2}^{T} & & \end{pmatrix} + \mathcal{Y} \mathcal{V} \mathcal{V}^{T} \stackrel{(C)}{=}$$

$$= \begin{pmatrix} Q_{1} & & \\ Q_{2} \end{pmatrix} \cdot \begin{pmatrix} D_{1} & & \\ D_{2} \end{pmatrix} + \mathcal{Y} \mathcal{U} \mathcal{U}^{T} \cdot \begin{pmatrix} Q_{1}^{T} & & \\ Q_{2}^{T} & & \end{pmatrix} \qquad \begin{array}{c} \mathcal{V} \mathcal{V} \mathcal{V}^{T} \stackrel{(C)}{=} \\ \text{let } Q_{1} & & \\ Q_{2} & & \text{let } Q_{2} & \\ \text{let } Q_{2} & & \text{let } Q_{3} & \\ \text{let } Q_{3} & & \text{let } Q_{3} & \\$$

Conquer

Eigenvalues
$$0 \neq \overline{1}$$

Eigenvalues D_1
 D_2
 D_3
 D_4
 D_5
 D_6
 D_6
 D_7
 D_8
 D_8

Solving the equation

Obtaining the eigen vectors

Multithread implementation

Performance

Performance

Project presentation

A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem

Konstantin Leladze

HSE 2022