Problem 1. (W) Let D be the unit disk in the complex plane, and let X be the quotient space of D obtained from the relation $z \sim z \cdot \exp(2\pi i/3)$ for every z on the boundary of D. Find a Δ -structure on X (there exists one with 2 zero-simplices, 4 one-simplices, and 3 two-simplices) and use it to calculate the Δ -homology of X with this structure.

Solution. Certainly all homology groups $H_n^{\Delta}(X)$ with $n \ge 3$ are trivial since there are no simplices of degree 3 or higher in the given Δ -structure. The calculations for the other homology groups are provided below. Please excuse my handwriting.

$$\begin{array}{c} v_{0} \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{6} \\ v_{1} \\ v_{2} \\ v_{2} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{5} \\ v_{6} \\ v_{7} \\ v_{7}$$

Noting that ∂_2 is injective which means $H_2(X)$ is trivial, we summarize:

- $H_n^{\Delta}(X) = 0$ for $n \ge 3$. $H_2^{\Delta}(X) = 0$. $H_1^{\Delta}(X) = \mathbb{Z}/3\mathbb{Z}$. $H_0^{\Delta}(X) = \mathbb{Z}$.

Problem 2. (W) For a finitely generated abelian group *A*, the *rank* of *A* is the maximal rank of a free abelian subgroup of *A*.

(a) Suppose we have a short exact sequence of abelian groups

$$0 \to A \xrightarrow{i} B \xrightarrow{q} C \to 0$$

(this means that i is injective, q is surjective, and Im(i) = Ker(q)). Prove that Rank(B) = Rank(A) + Rank(C).

(b) Prove that the Euler characteristic of a finite Δ -complex X equals

$$\sum_{i=0}^{\infty} (-1)^i \mathsf{Rank}(H_i^{\Delta}(X)).$$

Hint: Observe that there exist short exact sequences

$$0 \to \operatorname{Im}(\partial_{n+1}) \xrightarrow{i} \operatorname{Ker}(\partial_n) \xrightarrow{q} H_n(X) \to 0$$

and

$$0 \to \operatorname{Ker}(\partial_n) \xrightarrow{i} C_n^{\Delta}(X) \xrightarrow{q} \operatorname{Im}(\partial_n) \to 0.$$

Solution.

(a) Let F_A be a maximal free subgroup of A, generated by $\{f_\alpha \mid \alpha \in \mathcal{A}\}$, for some index set \mathcal{A} . By injectivity of i, each of these basis elements f_α are mapped to distinct elements $i(f_\alpha)$. Since A, B, C are abelian, each word $\sum_{\alpha \in \mathcal{A}} f_\alpha^{k_\alpha} \in F_A$ is mapped to

$$i\left(\sum_{\alpha\in\mathscr{A}}f_{\alpha}^{k_{\alpha}}\right)=\sum_{\alpha\in\mathscr{A}}i\left(f_{\alpha}\right)^{k_{\alpha}},$$

so $\operatorname{Im}_i(F_A)$ is a free abelian subgroup of B generated by $\{i(f_\alpha) \mid \alpha \in \mathscr{A}\}$ with rank equal to F_A . By exactness, $\operatorname{Im}(i) = \operatorname{Ker}(q)$ so $\operatorname{Im}(F_A) < \operatorname{Ker}(q)$. The First Isomorphism Theorem implies that $B/\operatorname{Ker}(q) \cong \operatorname{Im}(q) \iff B/\operatorname{Im}(i) \cong \operatorname{Im}(q) = C$, since q is surjective. Take a maximal free subgroup $F_C < C$. Then this is also a maximal free subgroup F'_C of $B/\operatorname{Im}(i)$, which extends to a free subgroup of B by forming the subgroup consisting of words formed by one representative per basis element of F'_C from the preimage of the quotient homomorphism. By abuse of notation, let this group also be denoted by F'_C .

Now, the group F_B generated by the generators of $Im(F_A)$ together with the generators of F_C' is a free subgroup of B of rank R = Rank(A) + Rank(C), since $Rank(Im(F_A)) = Rank(F_A) = Rank(A)$, $Rank(F_C') = Rank(F_C) = Rank(C)$ and F_C' and $Im(F_A)$ are mutually disjoint. The restriction of F_B to $Rank(F_C) = Im(i)$ is isomorphic to F_A and the quotient of F_B by $Rank(F_C)$ is isomorphic to F_C . The claim is that this group is maximally free in B; suppose on the contrary that there is some free group $F_B' < B$ of higher rank than F_B . Since $B/Rank(Q) \cong C$ and F_C is maximally free in C, we cannot have that the image of F_B' under the quotient homomorphism by Rank(Q) has higher rank than R_C . Hence, the only possibility is that the restriction of R_B' to Rank(Q) has higher rank than R_C but this is also impossible since R_C is maximally free in R_C . Hence, R_C is maximally free in R_C has higher rank than R_C but this is also impossible since R_C is maximally free in R_C has higher rank than R_C but this is also impossible since R_C is maximally free in R_C has higher rank R_C has R_C and R_C has R_C and R_C has R_C has

(b) Recall that the Euler characteristic is

$$\chi(X) = \sum_{n=0}^{\infty} (-1)^n c_n,$$

where c_n is the number of n-cells (which in our case will be n-simplices) of X. By definition, c_n is equal to $\mathsf{Rank}(C_n^\Delta(X))$.

The existence of a short exact sequence

$$0 \to \operatorname{Im}(\partial_{n+1}) \xrightarrow{i} \operatorname{Ker}(\partial_n) \xrightarrow{q} H_n(X) \to 0.$$

follows from the fact that $\operatorname{Ker}(\partial_n)/\operatorname{Im}(\partial_{n+1}) \cong H_n(X)$ by definition. Moreover, certainly $C_n^{\Delta}(X)/\operatorname{Ker}(\partial_n) \cong \operatorname{Im}(\partial_n)$ by the first isomorphism theorem since ∂_n is a homomorphism, which implies the existence of a short exact sequence

$$0 \to \operatorname{Ker}(\partial_n) \xrightarrow{i} C_n^{\Delta}(X) \xrightarrow{q} \operatorname{Im}(\partial_n) \to 0.$$

By part (a), we have that

$$Rank(C_n^{\Delta}(X)) = Rank(Ker(\partial_n)) + Rank(Im(\partial_n))$$

while

$$Rank(Ker(\partial_n)) = Rank(Im(\partial_{n+1})) + Rank(H_n(X)),$$

SO

$$\operatorname{Rank}(C_n^{\Delta}(X)) = \operatorname{Rank}(\operatorname{Im}(\partial_{n+1})) + \operatorname{Rank}(H_n(X)) + \operatorname{Rank}(\operatorname{Im}(\partial_n)).$$

Plugging into the formula for the Euler characteristic we find

$$\begin{split} \chi(X) &= \sum_{n=0}^{\infty} (-1)^n c_n = \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(C_n^{\Delta}(X)) \\ &= \sum_{n=0}^{\infty} (-1)^n \left[\operatorname{Rank}(\operatorname{Im}(\partial_{n+1})) + \operatorname{Rank}(H_n(X)) + \operatorname{Rank}(\operatorname{Im}(\partial_n)) \right] \\ &= \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(H_n(X)) + \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(\operatorname{Im}(\partial_{n+1})) + \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(\operatorname{Im}(\partial_n)) \\ &= \operatorname{Rank}(\operatorname{Im}(\partial_0)) + \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(H_n(X)) + \sum_{n=1}^{\infty} (-1)^n \left[-\operatorname{Rank}(\operatorname{Im}(\partial_n)) + \operatorname{Rank}(\operatorname{Im}(\partial_n)) \right] \\ &= \operatorname{Rank}(\operatorname{Im}(\partial_0)) + \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(H_n(X)) \\ &= \operatorname{Rank}(\operatorname{Im}(\partial_0)) + \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(H_n(X)) \\ &= \sum_{n=0}^{\infty} (-1)^n \operatorname{Rank}(H_n(X)), \end{split}$$

since the image of ∂_0 is the trivial group.