CS:314 Fall 2024

Section **04**Recitation **1**

chris.tu@rutgers.edu

Office hours: 2-3pm Thursday CoRE 335

Today's Topics

Today we'll be reviewing examples of the following:

- Rewrite Systems
- Regular Expressions
- Finite State Machines
- Homework 1

Rewrite System

- A rewrite system is a set of rules which we can apply to transform a string.
- In lecture, we discussed a rewrite system with these characteristics:
 - Input is a binary string, bracketed by \$ and # characters. (e.g. \$0101#)
 - There are six rewrite rules:
 - 1. $$1 \rightarrow 1\&(AMPERSAND)$
 - 2. $\$0 \rightarrow 0\$$
 - $3. \&1 \rightarrow 1$ \$
 - 4. $\&0 \rightarrow 0\&$
 - 5. $\# \rightarrow A$
 - 6. $\&\# \rightarrow B$

- Given input **\$01001#** let's apply the rewrite system from lecture.
- \$01001#
- \bullet \rightarrow ?

- $1. \quad \$1 \rightarrow 1\&$
- 2. $\$0 \to 0\$$
- 3. $\&1 \rightarrow 1\$$
- 4. $\&0 \rightarrow 0\&$
- 5. $$\# \rightarrow A$
- 6. &# \rightarrow B

- Given input **\$01001#** let's apply the rewrite system from lecture.
- \$01001#
- \bullet \rightarrow 0\$1001# by rule 2
- \bullet \rightarrow ?

- 1.~~\$1
 ightarrow~18
- 2. $\$0 \rightarrow 0\$$
- $3. \&1 \rightarrow 1$ \$
- $4. \quad \&0 \rightarrow 0\&$
- 5. $$\# \rightarrow A$
- 6. $\&\# \rightarrow B$

- Given input **\$01001#** let's apply the rewrite system from lecture.
- \$01001#
- \bullet \rightarrow 0\$1001# by rule 2
- \bullet \rightarrow 01&001# by rule 1
- \bullet \rightarrow ?

- 1. \$1 \rightarrow 1&
- 2. $\$0 \to 0\$$
- $3. \quad \&1 \rightarrow 1\$$
- $4. \quad \&0 \rightarrow 0\&$
- 5. $$\# \rightarrow A$
- 6. $\&\# \rightarrow B$

- Given input **\$01001#** let's apply the rewrite system from lecture.
- \$01001#
- \bullet \rightarrow 0\$1001# by rule 2
- \bullet \rightarrow 01<mark>&0</mark>01# by rule 1
- \bullet \rightarrow 010801# by rule 4
- \bullet \rightarrow ?

- $1. \quad \$1 \rightarrow 1\&$
- 2. $\$0 \to 0\$$
- $3. \quad \&1 \rightarrow 1\$$
- $4. \quad \&0 \rightarrow 0\&$
- 5. $$\# \rightarrow A$
- 6. $\&\# \rightarrow B$

- Given input **\$01001#** let's apply the rewrite system from lecture.
- \$01001#
- \bullet \rightarrow 0\$1001# by rule 2
- \bullet \rightarrow 01&001# by rule 1
- \bullet \rightarrow 010<mark>&0</mark>1# by rule 4
- \bullet \rightarrow 010<mark>0&</mark>1# by rule 4
- \longrightarrow ?

- $1. \quad \$1 \rightarrow 1\&$
- $2. \quad \$0 \rightarrow 0\$$
- $3. \quad \&1 \rightarrow 1\$$
- $4. \quad \&0 \rightarrow 0\&$
- 5. $$\# \rightarrow A$
- 6. $\&\# \rightarrow B$

- Given input **\$01001#** let's apply the rewrite system from lecture.
- \$01001#
- \bullet \rightarrow 0\$1001# by rule 2
- \bullet \rightarrow 01&001# by rule 1
- \bullet \rightarrow 010&01# by rule 4
- \bullet \rightarrow 0100<mark>&1</mark># by rule 4
- \bullet \rightarrow 0100<mark>1\$</mark># by rule 3
- \bullet \rightarrow ?

- $1. \quad \$1 \rightarrow 1\&$
- $2. \quad \$0 \rightarrow 0\$$
- $3. \quad \&1 \rightarrow 1\$$
- $4. \quad \&0 \rightarrow 0\&$
- 5. $$\# \rightarrow A$
- 6. $\&\# \rightarrow B$

- Given input **\$01001#** let's apply the rewrite system from lecture.
- \$01001#
- \rightarrow 0\$1001# by rule 2
- \bullet \rightarrow 01&001# by rule 1
- \bullet \rightarrow 010&01# by rule 4
- \bullet \rightarrow 0100&1# by rule 4
- \rightarrow 01001 $\frac{$\#}{}$ by rule 3
- \bullet \rightarrow 01001 $\stackrel{\mathsf{A}}{\mathsf{A}}$ by rule 5

- $1. \quad \$1 \rightarrow 1\&$
- $2. \quad \$0 \rightarrow 0\$$
- $3. \quad \&1 \rightarrow 1\$$
- $4. \quad \&0 \rightarrow 0\&$
- 5. $\$\# \rightarrow A$
- 6. $\&\# \rightarrow B$

- Say we want to make a rewrite system to decide if a number is even or odd.
- Assume the input will be a **nonempty binary string**, bracketed by \$ and #.
- Let's design our system to produce "O" if the number is odd, and to produce "E" if the number is even.
- Note that a binary number is odd if and only if it ends with 1.

- Say we want to make a rewrite system to decide if a number is even or odd.
- First, let's create rewrite rules that will get rid of unnecessary digits:

- Say we want to make a rewrite system to decide if a number is even or odd.
- First, let's create rewrite rules that will get rid of unnecessary digits:
 - \circ Rule 1: 10 \rightarrow 0
 - \circ Rule 2: 00 \rightarrow 0
 - \circ Rule 3: 01 \rightarrow 1
 - \circ Rule 4: 11 \rightarrow 1
- Note that "one rule at a time" doesn't apply
- Applying these rules will leave us with either \$0# or \$1#.

- Say we want to make a rewrite system to decide if a number is even or odd.
- First, let's create rewrite rules that will get rid of unnecessary digits:
 - \circ Rule 1: 10 \rightarrow 0
 - \circ Rule 2: 00 \rightarrow 0
 - \circ Rule 3: 01 \rightarrow 1
 - \circ Rule 4: 11 \rightarrow 1
- Finally, let's create rules to produce "E" for even or "O" for odd:
 - Rule 5: $\$0\# \rightarrow E$
 - Rule 6: $\$1\# \rightarrow 0$

- Regular expressions are a way of specifying regular languages.
- They use these rules:
 - (x) accepts x
 - x* accepts 0 or more copies of x
 - x⁺ accepts 1 or more copies of x
 - xy accepts x followed by y
 - x|y accepts either x or y
- The above rules are listed in descending order of precedence.
 - For example: a | bc accepts either "a" or "bc", **not** "ac"
- Note that it's common to use a-z as shorthand for (a|b|...|z)

Precedence of Regex Rules

- 1. Kleene * or Positive +
- 2. Concatenation
- 3. Union

"Clean your Cat on Union Street."

"Kleene*"

conCATenation

Union Street

Parentheses precedes all.

- Some regular expressions' languages can be simply described in english.
- How can we describe the languages of the following regular expressions?
- 1. (0|1)*
- 2. 1(0|1)*
- 3. (a-z|A-Z)+
- 4. (a-z|A-Z)(a-z|A-Z|0-9)*

- Some regular expressions' languages can be simply described in english.
- How can we describe the languages of the following regular expressions?
- 1. (0|1)* **Answer: The set of all binary strings.** The Kleene * refers to 0 or more copies of whatever is inside of the parenthesis.
- 2. 1(0|1)*
- 3. (a-z|A-Z)+
- 4. (a-z|A-Z)(a-z|A-Z|0-9)*

- Some regular expressions' languages can be simply described in english.
- How can we describe the languages of the following regular expressions?
- (0|1)*
 Answer: The set of all binary strings. The Kleene * refers to 0 or more copies of whatever is inside of the parenthesis.
- 2. $1(0|1)^*$ Answer: The set of all binary strings that start with a 1.
- 3. (a-z|A-Z)+
- 4. (a-z|A-Z)(a-z|A-Z|0-9)*

- Some regular expressions' languages can be simply described in english.
- How can we describe the languages of the following regular expressions?
- (0|1)*
 Answer: The set of all binary strings.
- 2. $1(0|1)^*$ Answer: The set of all binary strings that start with a 1.
- 3. (a-z|A-Z)+

 Answer: The set of all non-empty alphabetic strings.
- 4. (a-z|A-Z)(a-z|A-Z|0-9)*

- Some regular expressions' languages can be simply described in english.
- How can we describe the languages of the following regular expressions?
- (0|1)*
 Answer: The set of all binary strings.
- 2. $1(0|1)^*$ Answer: The set of all binary strings that start with a 1.
- 3. (a-z|A-Z)+
 Answer: The set of all non-empty alphabetic strings.
- 4. (a-z|A-Z)(a-z|A-Z|0-9)*

 Answer: The set of all alphanumeric strings that start with a letter.

- Let's write regular expressions that produce the following languages.
- Note that these may have multiple solutions.
- 1. All binary strings that are divisible by 4.
- 2. All binary strings that contain **exactly** one 0.
- 3. All binary strings that contain **at least** one 0.
- 4. All alphanumeric strings that do **not** have consecutive digits.

- Let's write regular expressions that produce the following languages.
- Note that these may have multiple solutions.
- 1. All binary strings that are divisible by 4.

 Answer: (0|1)*00|0 Every power of 2 after 2^2 (4) is divisible by 4. Therefore either the last two bits need to be zero, or the binary number is zero itself.
- 2. All binary strings that contain **exactly** one 0.
- 3. All binary strings that contain **at least** one 0.
- 4. All alphanumeric strings that do **not** have consecutive digits.

- Let's write regular expressions that produce the following languages.
- Note that these may have multiple solutions.
- 1. All binary strings that are divisible by 4. Answer: (0|1)*00|0
- 2. All binary strings that contain **exactly** one 0. **Answer: 1*01***
- 3. All binary strings that contain **at least** one 0.
- 4. All alphanumeric strings that do **not** have consecutive digits.

- Let's write regular expressions that produce the following languages.
- Note that these may have multiple solutions.
- 1. All binary strings that are divisible by 4. Answer: (0|1)*00|0
- 2. All binary strings that contain **exactly** one 0. Answer: 1*01*
- 3. All binary strings that contain **at least** one 0. **Answer:** (0|1)*0(0|1)*
- 4. All alphanumeric strings that do **not** have consecutive digits.

- Let's write regular expressions that produce the following languages.
- Note that these may have multiple solutions.
- 1. All binary strings that are divisible by 4. Answer: (0|1)*00|0
- 2. All binary strings that contain **exactly** one 0. Answer: 1*01*
- 3. All binary strings that contain **at least** one 0. Answer: (0|1)*0(0|1)*
- 4. All alphanumeric strings that do **not** have consecutive digits. Answer: $(0-9|\epsilon)((a-z|A-Z)(0-9|\epsilon))^*$

Start with a number or not. Then you pick 0 or more combinations of a substring of fixed size that either is a letter number pair, or just letter(s)

- Not all languages are regular!
- Here are some languages which regular expressions cannot recognize:
 - The set of binary strings with the same number of 0s as 1s.
 - The set of binary strings that are palindromes.
 - The set of prime numbers.
 - The set of correctly formatted Java methods.
- Most of the above examples are context-free languages, which you'll learn more about later in this course.

Regular Expressions are not good at remembering the state.

Finite State Machines (a.k.a. Finite State

 $S \times \Sigma \rightarrow S$

Finite State Machines (a.k.a. Finite State Automata)

- There are two types of finite state machines: deterministic finite automata (DFAs) and non-deterministic finite automata (NFAs).
- Technically speaking, every FSA is an NFA.
- An FSA is also a DFA only if the following conditions are true:
 - Given any <state, input> tuple, there is no more than one possible transition.
 - The empty string (epsilon) is not used for any transitions.

• Let's build an NFA for this regular expression from earlier: 1*01*

- Let's build an NFA for this regular expression from earlier: 1*01*
- Let's start by making state transitions for each of the symbols:

- Let's build an NFA for this regular expression from earlier: 1*01*
- Since Kleene star has highest precedence here, let's handle that now:

- Let's build an NFA for this regular expression from earlier: 1*01*
- Now that we have three FSAs for the subexpressions 1*, 0, and 1*, we can just connect them via concatenation:

- Let's build an NFA for this regular expression from earlier: 1*01*
- Finally, we mark the start state and the final states:

Another FSA Example: Modulo

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
 (Reminder: "x modulo y = z" means that the remainder after dividing x by y is z)
- What states will we need?
 - I.e. what do we need to remember about the parts of the input that we've seen so far?

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
 (Reminder: "x modulo y = z" means that the remainder after dividing x by y is z)
- What states will we need?
- State S0, for the case that the number modulo 2 is 0.
- State S1, for the case that the number modulo 2 is 1.
 - The states' names are arbitrary, but this pattern is convenient.

S0

S1

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- If we're in state S0 and the next input is a 0, what state do we transition to?
 - Hint: appending a 0 to a binary number multiplies its value by 2.

- Say we want an FSA that recognizes odd binary numbers.
 - o In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- If we're in state S0 and the next input is a 0, what state do we transition to?
- Note that if $(x \mod 2) = 0$, then $(2*x \mod 2) = 0$.
- Therefore $\langle S0, 0 \rangle \rightarrow S0$

- Say we want an FSA that recognizes odd binary numbers.
 - o In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- If we're in state S0 and the next input is a 1, what state do we transition to?
 - Hint: appending a 1 to a binary number multiplies its value by 2 and adds 1.

- Say we want an FSA that recognizes odd binary numbers.
 - o In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- If we're in state S0 and the next input is a 1, what state do we transition to?
- Note that if $(x \mod 2) = 0$, then $(2*x+1 \mod 2) = 1$.
- Therefore $\langle S0, 1 \rangle \rightarrow S1$

- Say we want an FSA that recognizes odd binary numbers.
 - o In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- What transition should we have from state S1 on input 0?

- Say we want an FSA that recognizes odd binary numbers.
 - o In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- What transition should we have from state S1 on input 0?
- \bullet <S1, 0> \rightarrow S0

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- What transition should we have from state S1 on input 1?

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- What transition should we have from state S1 on input 1?
- <S1, 1> → S1

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- What should our start state be?

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- What should our start state s be?
- An empty binary string can be considered to have value 0.
- Therefore s = S0

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- Finally, what should our set of final states contain?

- Say we want an FSA that recognizes odd binary numbers.
 - o In other words, the number modulo 2 is 1.
- S0 means the number mod 2 is 0; S1 means the number mod 2 is 1.
- Finally, what should our set of final states contain?
- $F = \{S1\}$

- Say we want an FSA that recognizes odd binary numbers.
 - In other words, the number modulo 2 is 1.
- Each state here has only one outgoing edge per symbol, and none of the transitions use ϵ , so this FSA is actually a DFA.
- A similar strategy as shown in these slides can be used to construct a larger DFA that performs modulo for a larger number than 2.

