SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE

Patent number:

JP2000101016

Publication date:

2000-04-07

Inventor:

NAKANISHI HIROYUKI; ISHIO TOSHIYA; IWASAKI

YOSHIHIDE; MORI KATSUNOBU

Applicant:

SHARP CORP

Classification:

- international:

H01L25/065; H01L25/07; H01L25/18

- european:

Application number: JP19980265309 19980918

Priority number(s):

Also published as:

Z

US2001013643 (A1)

Report a data error here

Abstract of JP2000101016

PROBLEM TO BE SOLVED: To facilitate the manufacture of a semiconductor integrated circuit device which maintains the accuracy, by suppressing the quantity of down set of die pads from the reference plane, in the case of providing a package with many semiconductor chips. SOLUTION: For this integrated circuit device, a plurality of semiconductor chips 1-4 are mounted, and these semiconductor chips 1-4 are sealed with a sealing resin layer 10. Then, on both sides of the die pad 5, semiconductor chips 2 and 3 are fixed at the opposite sides from the element formation faces 2a and 3a, and on at least one side of the die pad 5, one pair at least of semiconductor chips 1 and 2, where the element formation faces 1a and 2a are counterposed to each other and the first electrodes made at these element formation faces 1a and 2a are joined with each other by conductive paste material 6 are fixed.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-101016 (P2000-101016A)

(43)公開日 平成12年4月7日(2000.4.7)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H 0 1 L 25/065 25/07 25/18 H01L 25/08

В

審査請求 未請求 請求項の数4 OL (全 11 頁)

(21)出願番号

特願平10-265309

(22)出願日

平成10年9月18日(1998.9.18)

(71)出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 中西 宏之

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 石尾 俊也

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 100080034

弁理士 原 謙三

最終頁に続く

(54) 【発明の名称】 半導体集積回路装置

(57) 【要約】

【課題】 多数の半導体チップを1パッケージに設ける場合において、基準面からのダイパッドのダウンセット量を抑制し、精度を維持した半導体集積回路装置の製造を容易にする。

【解決手段】 複数の半導体チップ1~4が搭載され、これら半導体チップ1~4が封止樹脂層10により封止されている。ダイパッド5の両面にそれぞれ半導体チップ2・3がその素子形成面2a・3aとは反対側の面にて固定され、ダイパッド5の少なくとも一方側の面には、素子形成面1a・2a同士を対向させ、これら素子形成面1a・2aに形成された第1電極部同士が導電性ペースト材6にて接合されている少なくとも一対の半導体チップ1・2が固定されている。

1

【特許請求の範囲】

【請求項1】複数の半導体チップが搭載され、これら半 導体チップが樹脂層により封止されている半導体集積回 路装置において、

ダイパッドの両面にそれぞれ半導体チップがその素子形 成面とは反対側の面にて固定され、

前記ダイパッドの少なくとも一方側の面には、素子形成面同士を対向させ、これら素子形成面に形成された第1電極部同士が導電性接合材にて接合されている少なくとも一対の半導体チップが固定されていることを特徴とす 10る半導体集積回路装置。

【請求項2】前記一対をなす半導体チップのうち、前記 ダイパッド側に位置する半導体チップの素子形成面の端 縁部には、外部との接続用の第2電極部が形成され、こ の第2電極部がこの第2電極部を備える半導体チップの 第1電極部と、素子形成面上に形成された配線パターン により接続されていることを特徴とする請求項1に記載 の半導体集積回路装置。

【請求項3】前記半導体チップのうち、素子形成面をダイパッド側とは反対側に向けて固定されている複数の半 20 導体チップには、外部との接続用の第2電極部が形成され、これら第2電極部のうち、共通の信号が与えられる第2電極部同士は、外部との接続用の共通のリードに接続されていることを特徴とする請求項1に記載の半導体集積回路装置。

【請求項4】前記一対をなす半導体チップの間には、これら半導体チップ間の間隔を一定に保持するスペーサーが設けられていることを特徴とする請求項1に記載の半導体集積回路装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数の半導体集積 回路チップを備えた半導体集積回路装置に関するもので ある。

[0002]

【従来の技術】従来から、半導体集積回路チップ(以下、単に半導体チップと称する)を1個のみ内蔵する半導体集積回路装置が種々提案されている。この半導体集積回路装置は、例えば特開昭63-179554号に開示されており、その構成は、図10に示すものとなって 40いる(第1従来技術)。この半導体集積回路装置は、通常、以下のようにして製造される。

【0003】先ずリードフレーム(図示せず)に形成されたダイパッド51の上に、熱硬化型の銀ペースト52により半導体チップ53をダイボンディングする。

【0004】次に、溶剤を含有する前記銀ペースト52を硬化させ、半導体チップ53をダイパッド51に固定する。

【0005】次に、半導体チップ53の素子形成面(同図では上面)に形成されたボンディングパッド(図示せ 50

ず)とリードフレームに形成されたリード 5 4 のインナ

ーリード部54aとを、金等の細線からなるボンディングワイヤ55によってワイヤボンディングする。

【0006】さらに、これらをエポキシ樹脂等の封止樹脂層56により封止する。その後、封止樹脂層56の樹脂がリード54のアウターリード部54b間に流れ出さないようにリードフレームに形成されたタイバー(図示せず)や、ダイパッド51を保持するために形成されたサポートリード(図示せず)を切断し、アウターリード部54bを所望の形状に折り曲げて完成品となる。なお、ダイパッド51における素子形成面とは反対側の面には、樹脂被膜58がコーティングされている。

【0007】一方、近年のICの高密度化、薄型化の要求に対応し、上記半導体集積回路装置を進展させた構成が提案されている。この半導体集積回路装置は、実開昭62-147360号および特開平8-213412号に開示されており、図11に示すように、ダイパッド51の表裏の面に半導体チップ53a・53bを搭載したものとなっている(第2従来技術)。

【0008】上記半導体集積回路装置において、半導体 チップ53a・53bは裏面(半導体チップ53a・5 3bの素子形成面とは反対側の面)同士がダイパッド5 1を介して互いに対向するように配されている。この半 導体集積回路装置は、以下のようにして製造される。

【0009】先ず、半導体チップ53a・53bを、素子形成面同士が互いに外方を向くように、前記銀ペースト52によりダイパッド51の両面に接合(ダイボンディング)した後、銀ペースト52を硬化させる。

【0010】次に、半導体チップ53a・53bの各素30 子形成面に形成されたボンディングパッドとインナーリード部54aとを、金等の細線からなるボンディングワイヤ55によってそれぞれワイヤボンディングする。その後の封止樹脂層56による封止、前記タイバーおよびサポートリードの切断、並びにアウターリード部54bの折り曲げの各工程については前述の場合と同様である

【0011】半導体チップを積層している他の半導体集積回路装置には、特公昭58-45822号に開示されているものがある。この半導体集積回路装置は、図12に示すように、2個の半導体チップ53c・53dを備え、半導体チップ53cが素子形成面とは反対側の面にて銀ペースト52によりダイパッド51に接合されるとともに、半導体チップ53c・53dが素子形成面を対向させた状態で導電性接合材59により互いにワイヤレスボンディングされている。そして、インナーリード部54aと半導体チップ53cとがワイヤボンディングされている(第3従来技術)。

【0012】半導体チップを積層しているさらに他の半 導体集積回路装置には、特開平5-90486号および 特開平9-186289号に開示されているものがあ 3

る。この半導体集積回路装置は、素子形成面が上向きになっている半導体チップと素子形成面が下向きになっている半導体チップとを交互に重ねていった構造を有している。この構造において、素子形成面が互いに向き合っている半導体チップ同士はバンプにて互いに接合され、素子形成面が上向きになっている半導体チップに形成されたボンディングパッドは外部との接続端子となっている(第4従来技術)。

[0013]

【発明が解決しようとする課題】今日の半導体集積回路 10 装置の大半は、半導体チップあるいは半導体チップ群を 被覆、即ち封止するように、熱で溶融したエポキシ樹脂 を金型内において射出成形することにより形成されてお り、外観が標準化された定型パッケージとなっている。 【0014】また、一般に半導体チップは、リードフレ ーム内において半導体チップを固定するためにパターン 化されて形成された領域、即ちダイパッドに固定されて いる。このダイパッドに対しては、上記射出成形の際に 封止用樹脂の流動化バランスを安定化させるため、基準 面からダイパッドを下方に移動させるダウンセットが行 20 われる。前記の第3従来技術の場合、積層された半導体 チップの数が2個であるから、積層された半導体チップ 群の総厚の半分程度だけダイパッドを基準面からダウン セットすれば、半導体チップ群を容易にパッケージング することが可能である。

【0015】一方、前記第4従来技術の構造では、基準面から一方向、即ち上方向へ2個を越える半導体チップが積層されている。この半導体チップの積層体が半導体集積回路装置内において固定される際には、最下部の半導体チップの裏面のみがダイパッドと接合される。した30がって、半導体チップの積層体を前記ダイパッドを有するリードフレームに搭載する場合には、ダイパッドのダウンセット量を大きくする必要があり、精度を維持した半導体集積回路装置の製造が困難である。

【0016】そこで、半導体チップ厚を薄くしてダウンセット量を抑えることも考えられるが、半導体チップ厚を薄くするためには、半導体チップを形成するウエハーを薄くしなければならない。そして、今日大型化しているウエハーをより薄くすることは、取り扱い上において割れや欠け等を生じ易くなるため、困難である。

【0017】また、機能が同じ半導体チップを積層する場合、共通信号線をなるべく相互接続して外部に導き出す信号線を少なくすることが好ましいものの、このような構成とする場合には各半導体チップ毎に相互接続できるように電極パッドの配置を決定する必要があり、設計が複雑化するという問題点を招来する。

【0018】また、半導体チップの積層体を樹脂で封止 する構成において、積層された半導体チップの間隔のば らつきおよび平衡度は、半導体集積回路装置に内蔵され る半導体チップの数が多いほど、あるいは半導体集積回 50 路装置の厚さが薄いほど悪化し易い。これを抑制するためには、半導体チップの間隔において高い寸法精度を維持する必要がある。

[0019]

【課題を解決するための手段】上記の課題を解決するために、請求項1の発明の半導体集積回路装置は、複数の半導体チップが搭載され、これら半導体チップが樹脂層により封止されている半導体集積回路装置において、ダイパッドの両面にそれぞれ半導体チップがその素子形成面とは反対側の面にて固定され、前記ダイパッドの少なくとも一方側の面に、素子形成面同士を対向させ、これら素子形成面に形成された第1電極部同士が導電性接合材にて接合されている少なくとも一対の半導体チップが固定されていることを特徴としている。

【0020】請求項1の構成によれば、ダイパッドの両面にそれぞれ半導体チップが固定され、前記ダイパッドの少なくとも一方側の面に、素子形成面同士を対向させ、これら素子形成面に形成された第1電極部同士が導電性接合材にて接合されている少なくとも一対の半導体チップが固定されているので、複数の半導体チップはダイパッドを中心としてダイパッドの両側に分散され、かつ複数の半導体チップが、それらの積層方向に嵩張ることを抑制され、かつ効率よく設けられている。

【0021】したがって、多数の半導体チップを1パッケージに設ける場合において、基準面からのダイパッドのダウンセット量が抑制され、精度を維持した半導体集積回路装置の製造が容易である。

【0022】請求項2の発明の半導体集積回路装置は、 請求項1の発明の半導体集積回路装置において、前記一 対をなす半導体チップのうち、前記ダイパッド側に位置 する半導体チップの素子形成面の端縁部に、外部との接 続用の第2電極部が形成され、この第2電極部がこの第 2電極部を備える半導体チップの第1電極部と、素子形 成面上に形成された配線パターンにより接続されている ことを特徴としている。

【0023】請求項2の構成によれば、請求項1の発明の作用に加え、一対をなす半導体チップと外部との接続を良好に行い得るとともに、第1および第2電極部の配置の設計が容易である。

【0024】請求項3の発明の半導体集積回路装置は、請求項1の発明の半導体集積回路装置において、前記半導体チップのうち、素子形成面をダイパッド側とは反対側に向けて固定されている複数の半導体チップに、外部との接続用の第2電極部が形成され、これら第2電極部のうち、共通の信号が与えられる第2電極部同士が、外部との接続用の共通のリードに接続されていることを特徴としている。

【0025】請求項3の構成によれば、請求項1の発明の作用に加え、素子形成面をダイパッド側とは反対側に向けて固定されている複数の半導体チップの第2電極部

のうち、共通の信号が与えられる第2電極部同士が外部 との接続用の共通のリードに接続されているので、前記 リードの数を減らすことができる。特に、前記半導体チ ップとして機能が同じ半導体チップが設けられている場 合、前記リードの数を大幅に減らすことができる。この 結果、半導体集積回路装置は、構成が簡素化して低コス トとなり、また設計が容易となる。

【0026】請求項4の発明の半導体集積回路装置は、 請求項1の発明の半導体集積回路装置において、前記一 対をなす半導体チップの間に、これら半導体チップ間の 10 間隔を一定に保持するスペーサーが設けられていること を特徴としている。

【0027】請求項4の構成によれば、請求項1の発明 の作用に加え、半導体チップの積層体を樹脂で封止する 構成において、積層された半導体チップの間隔のばらつ きおよび平衡度を改善することができる。この結果、半 導体集積回路装置の樹脂封止が容易となり、かつ良質の 半導体集積回路装置を得ることができる。

[0028]

【発明の実施の形態】〔実施の形態1〕本発明の実施の20 一形態を図1ないし図5に基づいて以下に説明する。本 実施の形態の半導体集積回路装置は、図1ないし図3に 示す構成を有している。なお、図1は半導体集積回路装 置の縦断面図であり、図2は半導体集積回路装置の透視 図としての斜視図であり、図3は平面図である。

【0029】この半導体集積回路装置は、ダイパッド5 の上面側に半導体チップ1・2を有し、ダイパッド5の 下面側に半導体チップ3・4を有している。半導体チッ プ1~4は、図4および図5に示すように、長方形の板 状をなし、半導体チップ1と半導体チップ2および半導 30 体チップ3と半導体チップ4とが、それぞれ、互いに活 性面である素子形成面1 a・2 aおよび3 a・4 aを対 向させた状態で、交差するように設けられている。

【0030】半導体チップ1、2には、図4に示すよう に、素子形成面1a・2aの中央部付近に、多数の第1 電極パッド1b・2b(第1電極部)が形成されてい る。また、素子形成面1 a・2 aには、長手方向の端縁 部に沿って、ワイヤーボンディング用の多数の第2電極 パッド1 c・2 c (第2電極部)が形成されている。こ れら第2電極パッド1 c・2 cと上記第1電極パッド1 b・2 bとは、素子形成面1 a・2 a上に形成された導 電性の配線パターン1 d・2 dにより接続されている。 なお、上記第1電極パッド16・26、第2電極パッド 1 c・2 cおよび配線パターン1 d・2 dは、素子形成 面1a・2a上に設けられた絶縁層(図示せず)の上に 形成されている。

【0031】上記半導体チップ1・2は、図1に示すよ うに、電極パッド1b・2b同士を導電性ペースト材6 により接合することにより、互いに電気的に接続されか

2 b、第2電極パッド1 c・2 c および配線パターン1 d・2 dを有する構成、並びに半導体チップ1・2を接 合した構成は、半導体チップ3・4においても同様であ り、半導体チップ3・4は、図5に示すように、第1電 極パッド3 b・4 b (第1電極部)、第2電極パッド3 c・4c(第2電極部)および配線パターン3d・4d を有している。また、半導体チップ1・2の積層体は第 1 積層体 1 1 を構成し、半導体チップ 3・4の積層体は

【0032】半導体チップ2は、素子形成面2aとは反 対側の面がダイアタッチ材7によりダイパッド5に接合 されることによりダイパッド5の上面に固定され、同様 に、半導体チップ3は、素子形成面とは反対側の面がダ イアタッチ材7によりダイパッド5に接合されることに よりダイパッド5の下面に固定されている。

第2積層体12を構成している。

【0033】半導体チップ2の第2電極パッド2cは、 ボンディグワイヤとしての金線8aにてインナーリード 部9aとアウターリード部9bとを有するリード9のイ ンナーリード部9 a と接続されている。同様に、半導体 チップ3の第2電極パッド3cは、金線8bにてリード 9のインナーリード部9aと接続されている。

【0034】そして、半導体チップ1~4およびダイパ ッド5からなる積層体、金線8a・8b、並びにリード 9のインナーリード部 9 a は、封止樹脂層 1 0 によって 封止されている。

【0035】ここで、本半導体集積回路装置において、 リード9とワイヤボンディングされていない例えば半導 体チップ1の電気信号は、第1電極パッド1b、導電性 ペースト材6および第1電極パッド2bを介して全て半 導体チップ2内の回路に伝送可能である。即ち、本半導 体チップでは、半導体チップ1と半導体チップ2とが共 通の電気信号(以下、共通信号と称する)を有している ので、その共通信号に対応する第1電極パッド16・2 b同士を電気的に接続し、半導体チップ1 · 2 でリード 9にワイヤボンディングされている半導体チップ2の第 2電極パッド2cを共有している。このような第2電極 パッド2cを共有する半導体チップ1・2同士の関係 は、半導体チップ3・4においても同様である。

【0036】上記のような構成により、例えば半導体チ ップ1・2からなる第1積層体11において、この第2 電極パッド1cとリード9とのワイヤボンディングは不 要となる。この結果、半導体集積回路装置の構成が簡素 化され、その製造が容易となる。

【0037】また、本半導体集積回路装置では、ダイパ ッド5の両側に複数の半導体チップ、即ち半導体チップ 1・2と半導体チップ3・4とが分散して設けられ、か つ複数の例えば半導体チップ1・2が、前記第1電極パ ッド1 b・2 b同士の接合構造により、それらの積層方 向に嵩張ることを抑制され、かつ効率よく設けられてい つ接合されている。このような、第1電極パッド1b・ 50 る。したがって、多数の半導体チップ、即ち半導体チッ

プ1~4を1パッケージに設ける場合において、基準面からのダイバッド5のダウンセット量が抑制され、精度を維持した半導体集積回路装置の製造が容易である。

【0038】また、本半導体集積回路装置では、半導体チップ1・2からなる第1積層体11と半導体チップ3・4からなる第2積層体12との間においても共通信号を有しているので、その共通信号に対応する第2電極パッド2cと第2電極パッド3cとを同一のインナーリード部9aにそれぞれワイヤボンディングしている。この場合、半導体チップ2の第2電極パッド2cはインナー 10リード部9aの上面と、半導体チップ3の第2電極パッド3cはインナーリード部9aの下面とワイヤボンディングされている。したがって、半導体チップ2と半導体チップ3とでリード9を共有している。これにより、本半導体集積回路装置では、リード9の数を減少させることができ、半導体集積回路装置のパッケージを小型化することができる。

【0039】ここで、本半導体集積回路装置が備える4個の半導体チップ1~4が全て同じ機能を有するメモリーC、例えば1チップあたりn-bitsの容量のフラ 20ッシュメモリであるとすれば、本半導体集積回路装置は、パッケージ単体として4n-bits容量のフラッシュメモリとなるものの、アウターリードの本数はn-bits容量の場合の4倍分必要としない。これは、入力信号およびアドレス信号等の定義された各信号を、共通信号として各1本のリード9にて外部に引き出すことができるからである。ただし、どのメモリーCにデータを書き込むか、あるいは消去するかを選択するためには、半導体チップ1~4を選択するためのチップセレクト端子としてのリード9が複数本必要であり、これらを 30共通信号線として共有することはできない。

【0040】なお、本半導体集積回路装置においては、半導体チップ1~4のチップ厚を0.15mm、第1積層体11および第2積層体12における半導体チップ1と2および半導体チップ3と4のチップ間隔を0.05mm、ダイバッド5を構成するリードフレーム厚を0.125mm、半導体チップ2・3とダイパッド5とを接合するダイアタッチ材7の厚さを0.02mmとした。これにより、4個の半導体チップ1~4をボディ厚1mmのTSOP(Thin Small Outline Package)に収納することができ、小型かつ薄型の大容量メモリバッケージを得ることができた。

【0041】上記の構成において、本半導体集積回路装置の製造方法を以下に説明する。先ず、ダイシングによりウエハーから分離した半導体チップ2を素子形成面2aが上を向くように配し、その第1電極パッド2bにディスペンサーにて導電性ペースト材6を塗布する。

【0042】次に、ダイシングによりウエハーから分離 した半導体チップ1を、フリップチップボンダーにより 素子形成面1aが下を向く状態で前記半導体チップ2上 50 8

に位置合わせして配し、半導体チップ1の第1電極パッド1 bと半導体チップ2の第1電極パッド2 bとを前記 導電性ペースト材6にて接合する。このとき、半導体チップ1・2を上記のように重ね合わせた状態にでオープン内にてキュアし、導電性ペースト材6を硬化させる。これにより、半導体チップ1・2からなる第1積層体11を得る。

【0043】次に、上記の手順と同様にして、半導体チップ3・4からなる第2積層体12を得る。

【0044】次に、ダイパッド5の上面にディスペンサーにてダイアタッチ材7を塗布し、ダイボンダにより第1積層体11を半導体チップ2の素子形成面2aが上を向く状態で上記ダイアタッチ材7上に配し、ダイアタッチ材7がダイパッド5上で薄く広がるようにスクラブをかける。その後、ダイアタッチ材7を硬化させるためにオープン内でキュアを行い、第1積層体11をダイパッド5に固定する。

【0045】次に、リードフレームを上下反転させて、 上記の手順と同様にして、ダイアタッチ材7の裏面に第 2積層体12を固定する。

【0046】ここで、ダイパッド5への第1積層体11・12の固定は、ダイアタッチ材7にて行っているものの、ポリイミドフィルムを介してダイパッド5に第1積層体11・12を熱圧着する方法も採用可能である。

【0047】次に、ワイヤボンダにより、半導体チップ2の第2電極パッド2cと所定のインナーリード部9aの上面とを金線8aにて接続する。そして、リードフレームを上下反転させて、同様に、半導体チップ3の第2電極パッド3cと所定のインナーリード部9aの下面とを金線8bにて接続する。

【0048】次に、モールディング装置を使用して、第1積層体11・12、ダイパッド5およびインナーリード部9aを、これらが被覆されるようにエポキシ樹脂により封止する。そしてこの封止体をオーブン内でキュアし、封止樹脂層10となる前記エポキシ樹脂を硬化させる。

【0049】最後に、前記エポキシ樹脂の漏れ出しを防止しするために設けられていたアウターリード部9b間のダムパターンを金型で打ち抜く。さらに、リードフレームから半導体集積回路装置のパッケージとして最終製品となる部分を金型で打ち抜き、アウターリード部9bを所定の形状に金型で折り曲げて半導体集積回路装置を完成する。

【0050】なお、本実施の形態においては、ダイパッド5の一方側の面に一対をなす半導体チップ1・2からなる1個の第1積層体11のみが設けられ、ダイパッド5の他方側の面に一対をなす半導体チップ3・4からなる1個の第2積層体12のみが設けられた構成となっているが、これら第1積層体11と第2積層体12はそれぞれ複数個積層されていてもよい。この場合、第1積層

体 1 1 · 1 1 間、および第 2 積層体 1 2 · 1 2 間にはダイアタッチ材 7 が設けられる。

【0051】 [実施の形態2] 本発明の実施の他の形態を図6ないし図9に基づいて以下に説明する。なお、説明の便宜上、前記の実施の形態に示した部材と同一の機能を有する部材には同一の符号を付記し、その説明を省略する。

【0052】図6に示す半導体集積回路装置は、図1に示した半導体集積回路装置において、前記半導体チップ3・4に代えて半導体チップ21を備えた構成となって10いる。この半導体チップ21は、前記半導体チップ3と同様、素子形成面21aとは反対側の面がダイアタッチ材7を介してダイパッド5と接合されている。また、半導体チップ21は、前記半導体チップ3の第2電極パッド3cに対応する第2電極パッド(図示せず)を素子形成面21aに備え、この第2電極パッドが金線8bによりインナーリード部9aの下面に接続されている。半導体チップ2と半導体チップ21とは、前記共通信号線としてリード9を共有している。この半導体集積回路装置の基本的な製造方法は、図1に示した半導体集積回路装置の基本的な製造方法は、図1に示した半導体集積回路装置の基本的な製造方法は、図1に示した半導体集積回路装置の基本的な製造方法は、図1に示した半導体集積回路装20置と同様である。

【0053】なお、この半導体集積回路装置では、ダイパッド5の一方側の面に一対をなす半導体チップ1・2からなる1個の第1積層体11のみが設けられた構成となっているが、この第1積層体11は複数個積層されていてもよい。

【0054】図7に示す半導体集積回路装置は、図6に示した半導体集積回路装置において、半導体チップ1の上にダイアタッチ材7を介して半導体チップ22が設けられた構成となっている。半導体チップ21と半導体チ 30ップ22とは、それぞれの素子形成面21a・22aとは反対側の面同士が接合されている。半導体チップ22は素子形成面22aに第2電極パッド(図示せず)を備え、この第2電極パッドが金線8cによりインナーリード部9aの上面に接続されている。半導体チップ2・21・22は、前記共通信号線としてリード9を共有している。半導体チップ2のワイヤボンディングと同時に行われる。

【0055】なお、本半導体集積回路装置のように、下端部に位置する半導体チップ21と上端部に位置する半 40 導体チップ22との何れもがそれぞれの素子形成面21 a・22aを外方に向けた状態で設けられている場合、ダイボンディングやワイヤーボンディングの際に、半導体チップ21・22のうち、ボンディングしている半導体チップとは反対側の半導体チップの素子形成面が治工具類と接触し、その素子形成面を破損する可能性がある。しかしながら、この破損は、弾性体を使用した特開平8-213412号、あるいは特開平8-33050 8号に開示されている方法により回避可能である。

【0056】図8に示す半導体集積回路装置は、半導体 50

10

チップ1の素子形成面1aとは反対側の面、即ち半導体チップ1における封止樹脂層10との対向面に、例えばポリイミドからなるコーティング樹脂被膜23が設けられている。このコーティング樹脂被膜23は、半導体チップ1と封止樹脂層10との間に良好な密着性を得るためのものである。一般に封止樹脂層10との間で剥離が生じ易くなっている。

【0057】即ち、半導体チップが積層され、あるいは 積層された半導体チップが混載された半導体集積回路装 置においては、一般に、物性値の異なる材料が複雑な構 造で接触し合っている。この場合、熱変化により局部的 に大きな力を受け、異なる材料の界面にて剥離が発生し 易くなる。また、封止樹脂は吸湿性が高いので、半導体 集積回路装置をプリント基板に実装した際、封止樹脂に 吸収された水分が凝集し易い界面にて水蒸気として気化 し、その圧力に耐えきれず半導体集積回路装置が破壊さ れることある。

【0058】このような問題は、上記のコーティング樹脂被膜23を設けることにより防止することができる。また、ダイパッド5における封止樹脂層10との対向面にも、同様の目的でコーティング樹脂被膜23が設けられている。

【0059】図9の半導体集積回路装置は、図1に示した半導体集積回路装置において、半導体チップ1・4における素子形成面1a・4aとは反対側の面に、それぞれコーティング樹脂被膜23が設けられている。

【0060】さらに、この半導体集積回路装置では、半導体チップ1・2の間、および半導体チップ3・4の間に、例えばポリイミドからなるスペーサー24が挿入されている。このスペーサー24を有することにより、本半導体集積回路装置では、半導体チップ1・2同士および半導体チップ3・4同士の間隔のばらつき、および平衡度を所定範囲内に保ち、封止樹脂層10を成形する際の寸法精度を安定化させている。

【0061】例えば、半導体チップ1・2間を0.05 mmとする場合には、スペーサー24の厚さを0.05 mmとする。なお、スペーサー24は、例えば半導体チップ1・2をフリップチップボンダで重ね合わせる以前に、片方の半導体チップにディスペンサでポリイミドのワニスを塗布し、オーブン内でキュアを行って所定の厚さに硬化させることにより形成する。あるいは、予めテープ状になったポリイミドフィルムを適当なサイズに金型で打ち抜いて半導体チップ1または2に貼り付けてもよい。

【0062】スペーサー24は、例えば半導体チップ1・2間において、半導体チップ1・2同士が重合する領域のなるべく周辺部に設けるのが、半導体チップ1・2の間隔の平衡度の精度を高める上において好ましい。但し、第2電極パッド2cを覆ってはならない。

【0063】また、例えば半導体チップ1・2において、その素子形成面1a・2aに、ダイシングする前、つまりウエハーの状態で、スピンコータによりコーティング樹脂被膜25を0.03~0.05mm厚で形成しておくと、上記ポリイミドフィルムを適当なサイズに金型で打ち抜いて貼り付ける際、素子形成面2aの破損を防ぐことができる。なお、コーティング被覆材としてポリイミドを使用しているので、上記スピンコートの際には、フリップ接合用の第1電極パッド2bおよびワイヤボンディング用の第2電極パッド2cを、コーティング 10被覆材にて覆われないように、マスキングしておく。

[0064]

【発明の効果】以上のように、請求項1の発明の半導体集積回路装置は、ダイパッドの両面にそれぞれ半導体チップがその素子形成面とは反対側の面にて固定され、前記ダイパッドの少なくとも一方側の面に、素子形成面同士を対向させ、これら素子形成面に形成された第1電極部同士が導電性接合材にて接合されている少なくとも一対の半導体チップが固定されている構成である。

【0065】これにより、複数の半導体チップはダイパ 20 ッドを中心としてダイパッドの両側に分散され、かつ複数の半導体チップが、それらの積層方向に嵩張ることを抑制され、かつ効率よく設けられている。したがって、多数の半導体チップを1パッケージに設ける場合において、基準面からのダイパッドのダウンセット量が抑制され、精度を維持した半導体集積回路装置の製造が容易であるという効果を奏する。

【0066】請求項2の発明の半導体集積回路装置は、 請求項1の発明の半導体集積回路装置において、前記一 対をなす半導体チップのうち、前記ダイパッド側に位置 30 する半導体チップの素子形成面の端縁部に、外部との接 続用の第2電極部が形成され、この第2電極部がこの第 2電極部を備える半導体チップの第1電極部と、素子形 成面上に形成された配線パターンにより接続されている 構成である。

【0067】これにより、請求項1の発明の効果に加え、一対をなす半導体チップと外部との接続を良好に行い得るとともに、第1および第2電極部の配置の設計が容易であるという効果を奏する。

【0068】請求項3の発明の半導体集積回路装置は、 請求項1の発明の半導体集積回路装置において、前記半 導体チップのうち、素子形成面をダイバッド側とは反対 側に向けて固定されている複数の半導体チップに、外部 との接続用の第2電極部が形成され、これら第2電極部 のうち、共通の信号が与えられる第2電極部同士が、外 部との接続用の共通のリードに接続されている構成であ る。

【0069】これにより、請求項1の発明の効果に加え、リードの数を減らすことができる。特に、前記半導体チップとして機能が同じ半導体チップが設けられてい 50

12

る場合、前記リードの数を大幅に減らすことができる。 この結果、半導体集積回路装置は、構成が簡素化して低 コストとなり、また設計が容易となるという効果を奏す る。

【0070】請求項4の発明の半導体集積回路装置は、 請求項1の発明の半導体集積回路装置において、前記一 対をなす半導体チップの間に、これら半導体チップ間の 間隔を一定に保持するスペーサーが設けられている構成 である。

【0071】これにより、請求項1の発明の効果に加え、半導体チップの積層体を樹脂で封止する構成において、積層された半導体チップの間隔のばらつきおよび平衡度を改善することができる。この結果、半導体集積回路装置の樹脂封止が容易となり、かつ良質の半導体集積回路装置を得ることができるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施の一形態における半導体集積回路 装置の縦断面図である。

【図2】図1に示した半導体集積回路装置の内部を透視して示す斜視図である。

【図3】図1に示した半導体集積回路装置の平面図である。

【図4】図1に示した半導体集積回路装置の第1積層体を示す分解斜視図である。

【図5】図1に示した半導体集積回路装置の第1積層体、ダイパッドおよび第2積層体を示す分解斜視図であっる。

【図6】本発明の実施の他の形態における半導体集積回路装置の縦断面図である。

0 【図7】本発明の実施のさらに他の形態における半導体 集積回路装置の縦断面図である。

【図8】コーティング樹脂被膜が設けられている半導体 集積回路装置の縦断面図である。

【図9】本発明の実施のさらに他の形態における半導体 集積回路装置の縦断面図である。

【図10】従来の半導体集積回路装置の縦断面図である。

【図11】他の従来の半導体集積回路装置の縦断面図である。

【図12】さらに他の従来の半導体集積回路装置の縦断面図である。

【符号の説明】

- 1 半導体チップ
- 1 a 素子形成面
- 1 b 第1電極パッド (第1電極部)
- 1 c 第2電極パッド(第2電極部)
- 2 半導体チップ
- 2 a 素子形成面
- 2 b 第1電極パッド(第1電極部)
- 2 c 第2電極パッド(第2電極部)

3 半導体チップ	プ
----------	---

3 a 素子形成面

3 b 第1電極パッド (第1電極部)

3 c 第2電極パッド (第2電極部)

4 半導体チップ

4 a 素子形成面

4 b 第1電極パッド (第1電極部)

4 c 第2電極パッド(第2電極部)

5 ダイパッド

6 導電性ペースト材

7 ダイアタッチ材

8 a 金線

8 b 余線

9 リード

9 a インナーリード部

9 b アウターリード部

10 封止樹脂層

【図1】

【図2】

[図6]

【図3】

【図7】

[図8]

【図9】

【図10】

【図11】

【図12】

フロントページの続き

(72) 発明者 岩崎 良英

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

(7.2) 発明者 森 勝信

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内