Artificial Intelligence

Forest Type Mapping

Prepared by

Shaista Noureen (2023-CS-676)

Mishal Fatima(2023-CS-679)

Shahzaib Sadiq (2023-CS-690)

Submitted to

Ms. Shanfa

Department of Computer Science University of Engineering and Technology, New Campus

1. Objective

The goal of this project is to create a mapping system that classifies forest types based on features from the Forest Cover Type dataset. The system uses machine learning models for classification, and the results are displayed as human-readable forest types, enabling a better understanding of the terrain and vegetation in different regions.

2. Technologies & Libraries Used

Languages: Python 3

Environment: Google Colab

Libraries:

pandas, numpy: Data handling

• matplotlib, seaborn: Data visualization

• scikit-learn: Machine learning algorithms and metrics

• **ipywidgets**: Interactive feature inputs

• PCA, KMeans: Dimensionality reduction and clustering

3. Dataset

Name: Forest CoverType Dataset

Source: UCI Machine Learning Repository / Kaggle

Format: CSV

Instances: ~581,000

Features: 54 numeric and binary features

Target: Cover_Type (7 classes)

4. Data Preprocessing

- Upload & Load Dataset: Dataset is uploaded via files.upload() in Google Colab.
- Feature/Target Split: Features are split into x, and the target Cover_Type is assigned to y.
- **Data Reduction**: 20% of data is sampled for faster experimentation.
- Scaling: Standardization of features using StandardScaler.
- Train-Test Split: 70% for training, 30% for testing.

5. ML Algorithms Used

Algorithm	Library	Purpose
K-Nearest Neighbors	sklearn.neighbors	Classification
Naive Bayes	sklearn.naive_bayes	Classification
Random Forest	sklearn.ensemble	Classification
Decision Tree	sklearn.tree	Classification
K-Means	sklearn.cluster	Clustering
PCA	sklearn.decomposition	Dimensionality Reduction

6. Model Evaluation

Accuracy Scores:

After training the models on a reduced dataset:

Model	Accuracy (Test Set)
K-Nearest Neighbors	~0.94
Naive Bayes	~0.75
Random Forest	~0.96
Decision Tree	~0.90

Classification Reports:

Each model outputs precision, recall, f1-score, and support for each class to assess performance more granularly.

7. K-Means Clustering + PCA

Goal:

To visualize clusters in 2D space using PCA, with n_clusters=7 to match the 7 forest cover types.

Result:

A scatter plot is generated, with clusters colored by their labels, showing separation in the reduced PCA space.

8. Interactive Prediction Tool

Features:

- Users can input the first 10 features using widgets.
- The prediction is made using the **Random Forest** model.

Output:

- Top 3 probable forest types with corresponding percentages.
- The final predicted cover type mapped to human-readable names.

Example Output:

```
matlab
CopyEdit
□ Top 3 Predicted Cover Types:
1. Cover_Type 2 - Lodgepole Pine (82.47%)
2. Cover_Type 1 - Spruce/Fir (13.23%)
3. Cover_Type 3 - Ponderosa Pine (4.12%)
Final Predicted Cover Type: 2 - Lodgepole Pine
```

9. Visualization

- **KMeans PCA Scatter Plot**: Displays the colored clusters from unsupervised KMeans overlaid on a 2D PCA projection.
- **Interactive Widgets**: Provides an easy-to-use UI for real-time forest type prediction based on user inputs.

10. Conclusion

- **Model Performance**: The **Random Forest** model consistently outperforms other algorithms in terms of accuracy.
- **Clustering**: KMeans shows some separability, but the supervised models provide more reliable results.

• **User Interaction**: The interactive widget allows users to input features and receive predictions in real time, making the model more accessible for non-technical users.

11. Future Improvements

- **Include all 54 features** in the interactive tool (currently only 10).
- Implement hyperparameter tuning using GridSearchCV.
- Add **confusion matrix** and **ROC/AUC** visualizations.
- Deploy the model as a web app using Flask or Streamlit for broader use.

12. Appendix

Cover Type Classes Mapping:

Class Forest Type Name

- 1 Spruce/Fir
- 2 Lodgepole Pine
- 3 Ponderosa Pine
- 4 Cottonwood/Willow
- 5 Aspen
- 6 Douglas-fir
- 7 Krummholz

Screen Shots

1:K-Nearest Neighbour

♦ K-Nearest Neighbors ♦
Accuracy: 0.8649

Accuracy. 0.0	0+5			
	precision	recall	f1-score	support
1	0.88	0.86	0.87	12840
_	0.00	0.00	0.07	12040
2	0.88	0.90	0.89	16843
3	0.82	0.83	0.83	2152
4	0.75	0.65	0.70	175
5	0.71	0.57	0.63	554
6	0.70	0.61	0.65	1052
7	0.88	0.85	0.87	1245
accuracy			0.86	34861
macro avg	0.80	0.75	0.78	34861
weighted avg	0.86	0.86	0.86	34861

2:Naïve Bayes:

\Diamond	Naive	Bayes	\Diamond
Acc	curacy:	0.089	7

	precision	recall	f1-score	support
1	0.15	0.02	0.04	12840
2	0.91	0.01	0.02	16843
3	0.30	0.40	0.34	2152
4	0.08	0.99	0.15	175
5	0.03	0.74	0.06	554
6	0.10	0.03	0.04	1052
7	0.09	0.97	0.17	1245
accuracy			0.09	34861
macro avg	0.24	0.45	0.12	34861
weighted avg	0.52	0.09	0.05	34861

3:Random Forest:

\Diamond	Random	Forest	\Diamond
Acc	curacy:	0.9057	

Accuracy.	0.5	00,			
		precision	recall	f1-score	support
					40040
	1	0.92	0.89	0.91	12840
	2	0.90	0.94	0.92	16843
	3	0.87	0.92	0.89	2152
	4	0.88	0.79	0.83	175
	5	0.90	0.54	0.67	554
	6	0.87	0.71	0.78	1052
	7	0.95	0.88	0.91	1245
accura	асу			0.91	34861
macro a	avg	0.90	0.81	0.85	34861
weighted a	avg	0.91	0.91	0.90	34861

Random Forest - Confusion Matrix

4:Decision Tree:

♦ Decision Tree ♦ Accuracy: 0.8645

-	precision	recall	f1-score	support
1	0.86	0.86	0.86	12840
2	0.88	0.89	0.88	16843
3	0.86	0.84	0.85	2152
4	0.75	0.76	0.75	175
5	0.65	0.66	0.65	554
6	0.74	0.72	0.73	1052
7	0.88	0.86	0.87	1245
accuracy			0.86	34861
macro avg	0.80	0.80	0.80	34861
weighted avg	0.86	0.86	0.86	34861

5:K Mean clustering graph:

6:Final Comparison:

✓ Final Model Comparison: K-Nearest Neighbors: 0.8649

Naive Bayes: 0.0897 Random Forest: 0.9057 Decision Tree: 0.8645

7:Input Panel:

Enter feature values to pr	edict Cover_Type (f	irst 10	features):	
Elevation	0			
Aspect	0			
Slope	0			
Horizontal_Distance_To_Hydrology	0			
Vertical_Distance_To_Hydrology	0			
Horizontal_Distance_To_Roadways	0			
Hillshade_9am	0			
Hillshade_Noon	0			
Hillshade_3pm	0			
Horizontal_Distance_To_Fire_Points	0			
Predict Cover_Type				an

8:Data Entry:

,	1: 1 6 - 7 /5	
Enter feature values to pr	redict Cover_Type (†:	irst 10 features):
Elevation	043	
Aspect	045	
Slope	04	
Horizontal_Distance_To_Hydrology	034	
Vertical_Distance_To_Hydrology	056	
Horizontal_Distance_To_Roadways	03	
Hillshade_9am	074	
Hillshade_Noon	064	
Hillshade_3pm	034	
Horizontal_Distance_To_Fire_Points	45	
Predict Cover Type		

9:Predicted Result:

Predict Cover_Type

- Top 3 Predicted Cover Types:
- Cover_Type 6 Douglas-fir (28.00%)
- 2. Cover_Type 2 Lodgepole Pine (26.00%)
- 3. Cover_Type 3 Ponderosa Pine (25.00%)
- ✓ Final Predicted Cover_Type: 6 Douglas-fir