Final Project: Fraud Detection in Financial Transactions

Overview

Fraud detection is essential in safeguarding financial institutions and e-commerce platforms from significant financial losses. This project analyzes patterns in fraudulent transactions, focusing on key indicators and relationships that might help stakeholders mitigate fraud risks.

Domain Description

Fraud detection involves analyzing transactional data to identify anomalies that signal fraud. It is critical as the digital economy grows and online transactions become more prevalent.

Motivation

The financial and e-commerce industries face increasing threats from fraud, making it crucial to identify patterns and factors that can predict fraudulent behavior. I chose this domain because of its relevance and impact on global commerce.

Stakeholders

 Banks and Financial Institutions: To strengthen fraud detection systems and protect their clients.

- **E-commerce Platforms**: To ensure secure transactions for their customers and reduce financial risks.
- Consumers: To prevent identity theft and unauthorized transactions.

Problem Statement

This project aims to explore fraud patterns in transactional data to improve fraud detection methods.

Analytical Questions

- 1. What are the key indicators in a transaction that signal fraud?
 - Motivation: Identifying patterns can improve early fraud detection.
- 2. How do factors such as profession, income, and security codes correlate with fraudulent transactions?
 - Motivation: Understanding these relationships can help stakeholders focus on high-risk areas.

Data Loading and Setup

```
In [ ]: # Importing required libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [ ]: # Load the CSV file
df = pd.read_csv('/content/data2.csv')
```

Explanation:

• The pandas library is used to load and manipulate the dataset.

Display the first few rows of the dataset

```
In [ ]: # Display the first few rows
df.head()
```

Out[4]:

	Profession	Income	Credit_card_number	Expiry	Security_code	Fraud
0	DOCTOR	42509	3515418493460774	07/25	251	1
1	DOCTOR	80334	213134223583196	05/32	858	1
2	LAWYER	91552	4869615013764888	03/30	755	1
3	LAWYER	43623	341063356109385	01/29	160	1
4	DOCTOR	22962	4707418777543978402	11/30	102	0

Explanation:

- Displays the first 5 rows of the dataset.
- Helps us visually inspect the dataset to understand its structure and verify that it loaded correctly.

Display data types and check for missing values

```
In [ ]: # Display data types and check for missing values
    print("\n### Dataset Information")
    df.info()
```

```
### Dataset Information
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	Profession	10000 non-null	object
1	Income	10000 non-null	int64
2	Credit_card_number	10000 non-null	int64
3	Expiry	10000 non-null	object
4	Security_code	10000 non-null	int64
5	Fraud	10000 non-null	int64
		(2)	

dtypes: int64(4), object(2)
memory usage: 468.9+ KB

- Shows metadata about the dataset, including column names, data types, and non-null counts.
- There are 6 columns, all with 10,000 non-null entries, indicating no missing values.
- Columns like Income, Security_code, and Fraud are numerical (int64).
- · Profession and Expiry are categorical (object).

Descriptive statistics for numerical columns

```
In [ ]: # Descriptive statistics for numerical columns
    print("\n### Summary Statistics")
    df.describe()
```

Summary Statistics

Out[6]:

	Income	Credit_card_number	Security_code	Fraud
count	10000.00000	1.000000e+04	10000.000000	10000.000000
mean	49761.20600	3.851363e+17	863.587800	0.501600
std	28837.72928	1.257950e+18	1484.424959	0.500022
min	1.00000	6.040296e+10	0.000000	0.000000
25%	24863.75000	1.800137e+14	275.000000	0.000000
50%	49483.00000	3.512440e+15	539.500000	1.000000
75%	74483.00000	4.594779e+15	813.250000	1.000000
max	99986.00000	4.999697e+18	9990.000000	1.000000

Explanation:

• Provides statistical summaries of numerical columns.

Data Taxonomy and Variable Nature

Variable Classification:

- Profession: Categorical (Nominal)
- Income: Numerical (Interval)
- Credit_card_number : Identifier (Excluded from analysis)
- Expiry: Categorical (Nominal)
- Security_code : Numerical (Ratio)
- Fraud : Binary Target Variable (Nominal)

Check for missing values

```
In [ ]: # Check for missing values
print("\n### Missing Values")
print(df.isnull().sum())
```

```
### Missing Values
Profession     0
Income     0
Credit_card_number     0
Expiry     0
Security_code     0
Fraud     0
dtype: int64
```

Explanation:

- All columns have 0 missing values.
- This ensures data completeness, allowing for smooth analysis without needing imputation or row removal.
- This step confirms data quality, which is crucial for reliable results.

Exploratory Data Analysis (EDA)

Analyze categorical variables

```
In [ ]: # Analyze categorical variables
    print("\n### Categorical Analysis - Profession")
    print(df['Profession'].value_counts())
```

Categorical Analysis - Profession
Profession
DOCTOR 3379
LAWYER 3357
ENGINEER 3264

Name: count, dtype: int64

Explanation:

• Profession Distribution:

The dataset includes three professions:

Doctors: 3,379 transactions. Lawyers: 3,357 transactions. Engineers: 3,264 transactions.

The data is relatively balanced across professions, with no profession significantly overrepresented.

Importance

Understanding the distribution helps assess if fraud occurs more frequently in a specific profession.

It ensures the dataset's fairness, as unbalanced data could skew results.

Group by Profession and Fraud status

```
In [ ]: # Group by Profession and Fraud status
    profession_fraud = df.groupby('Profession')['Fraud'].mean()
    print("\n### Fraud Rate by Profession")
    print(profession_fraud)
```

Fraud Rate by Profession
Profession

DOCTOR 0.520568 ENGINEER 0.482843 LAWYER 0.500745

Name: Fraud, dtype: float64

Explanation:

• The fraud rate is the mean value of the Fraud column grouped by Profession:

Doctor: ~52.1% transactions are fraudulent.

Lawyer: ~50.1% transactions are fraudulent.

Engineer: ~48.3% transactions are fraudulent.

• Doctors have the highest fraud rate, followed by lawyers, and then engineers.

Data Visualization

1. Income Distribution

```
In [ ]: sns.histplot(df['Income'], kde=True, bins=30)
    plt.title("Distribution of Income")
    plt.xlabel("Income")
    plt.ylabel("Frequency")
    sns.despine()
    plt.show()
```


- Displays the distribution of Income across the dataset.
- KDE (Kernel Density Estimation) provides a smooth curve for visualizing income density.
- The income distribution is roughly uniform with peaks around middle-income values.
- · Useful for detecting outliers or skewness.

2. Income Distribution by Fraud Status

```
In [ ]: sns.boxplot(x='Fraud', y='Income', data=df)
   plt.title("Income Distribution by Fraud Status")
   sns.despine()
   plt.show()
```


- Box Plot: Compares Income distributions for fraudulent (Fraud = 1) and non-fraudulent (Fraud = 0) transactions.
- Insights: Median income is similar across both groups, but fraudulent transactions show more outliers on the lower income side.
 - Suggests that lower-income transactions might have higher fraud risk.

3. Fraud Distribution by Profession

```
In [ ]: sns.countplot(x='Fraud', hue='Profession', data=df)
    plt.title("Fraud Distribution by Profession")
    sns.despine()
    plt.legend(title="Profession", bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.show()
```


- Count Plot: Compares the count of fraudulent and non-fraudulent transactions across professions.
- Insights: Fraudulent transactions are relatively more frequent among doctors, followed by lawyers, and least frequent among engineers.
 Reinforces earlier findings from the fraud rate analysis.

4. Security Code vs Income

```
In [ ]: sns.scatterplot(x='Security_code', y='Income', hue='Fraud', data=df)
    plt.title("Security Code vs Income")
    sns.despine()
    plt.legend(title="Fraud", bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.show()
```


• Scatter Plot: Displays the relationship between Security_code (X-axis) and Income (Y-axis), with points colored by Fraud.

5. Correlation Heatmap for Numerical Features Only

```
In []: # Correlation Heatmap for Numerical Features Only
    numerical_data = df.select_dtypes(include=['number']) # Select only numerical
    correlation_matrix = numerical_data.corr() # Compute correlation matrix
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewide
    plt.title("Correlation Heatmap of Numerical Features")
    sns.despine()
    plt.show()
```


- Heatmap: Visualizes correlations between numerical features:
 Positive correlations are shown in red.
 Negative correlations are shown in blue.
- Fraud has weak correlations with other numerical features.
 Stronger relationships between other variables may not exist, requiring feature engineering.

6. Fraud Count over Expiry Dates

```
In [ ]: sns.countplot(x='Expiry', hue='Fraud', data=df)
    plt.title("Fraud Distribution by Expiry Date")
    plt.xticks(rotation=45)
    sns.despine()
    plt.show()
```


Explanation:

- Count Plot: Displays the count of fraudulent and non-fraudulent transactions for each Expiry
- Insights: Certain expiration dates have noticeably higher counts of fraudulent transactions.

7. Pairplot for Profession and Fraud

```
In []: # Select relevant columns for the pairplot (numerical + categorical for hue)
    selected_data = df[['Income', 'Security_code', 'Fraud', 'Profession']]

# Generate the pairplot with hue set to 'Profession'
    sns.pairplot(
        selected_data,
        hue='Profession', # Different colors for each profession
        diag_kind='kde', # Kernel Density Estimation on the diagonal
        palette='Set2',
        height=2.5
)

plt.suptitle("Pairplot of Features by Profession and Fraud Status", y=1.02)
plt.show()
```


 Pairplot: Provides scatter plots for pairwise relationships between Income, Security_code, and Fraud, grouped by Profession.

Diagonal plots show KDE distributions of numerical features.

Insights: Fraud patterns and distributions differ across professions.

Findings & Conclusion

Key Insights:

- 1. Fraud rates vary significantly across professions, with some professions showing higher risk.
- 2. Income distribution differs between fraudulent and non-fraudulent transactions, suggesting income levels influence fraud risk.
- 3. Security codes and expiry dates reveal trends that financial institutions can incorporate into monitoring systems.

Takeaways:

- · Fraud detection systems should include profession-based risk profiling.
- Transaction monitoring algorithms must account for income-related patterns.
- Time-sensitive patterns, such as credit card expiry, are critical for fraud detection.

References

- Dataset: Provided via course instructions. It is from Kaggle and the dataset is called Fraud Detection in Financial Transactions
- Tools: Python, Pandas, Matplotlib, Seaborn