See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/238656359

Excess Molar Volumes of Binary Mixtures of Amino Alcohols with 1,4Dioxane

ARTICLE	in .	JOURN	IAL OF	CHEM	ICAL &	ENGI	NEERIN	\G DA⁻	ГΑ·ЈА	NUARY	1995

Impact Factor: 2.04 · DOI: 10.1021/je00017a044

CITATIONS	READS
10	6

5 AUTHORS, INCLUDING:

Jan Jadżyn

Institute of Molecular Physics, Polish Academ...

215 PUBLICATIONS 1,563 CITATIONS

SEE PROFILE

Excess Molar Volumes of Binary Mixtures of Amino Alcohols with 1,4-Dioxane

Henryk Herba,† Grzegorz Czechowski,‡ Bogusław Żywucki,‡ Manfred Stockhausen,§ and Jan Jadżyn*,‡

Department of Physics, University of Technology, W. Pola 2, 35-969 Rzeszów, Poland, Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland, and Institut für Physikalische Chemie der Universität Münster, D-48149 Münster, Germany

Excess molar volumes, $V_{\rm m}^{\rm E}$, for binary mixtures of eight aliphatic amino alcohols (2-aminoethanol, 3-amino-1-propanol, 4-amino-1-butanol, 5-amino-1-pentanol, 2-amino-1-propanol, 1-amino-2-propanol, 2-amino-2-methyl-1-propanol, and 2-amino-1-butanol) with 1,4-dioxane have been determined from the density measurements at 293.15 K by means of a vibrating tube densimeter.

Introduction

In a previous paper (1) we reported the excess molar volumes, $V_{\rm m}^{\rm E}$, measured in binary mixtures of diols with water. Strong interactions between diols and water molecules via hydrogen bonds O-H···O lead to a negative value of the excess molar volumes ($V_{\rm m}^{\rm E}$ < O) in the whole range of diol concentration.

Here we report the results of measurements of $V_{\rm m}^{\rm E}$ carried out for binary mixtures of amino alcohols with dioxane. The amino alcohol molecules offer several hydrogen bonding possibilities. One may expect the intramolecular hydrogen bonds as for 2-aminoethanol, where the $O-H\cdots N$ bonds exist in isolated molecules (2) and in dilute solutions (3). In the pure amino alcohols a variety of intraand intermolecular H-bonds is possible: $O-H\cdots N$, $O-H\cdots O$, and $N-H\cdots O$ (4, 5).

Experimental Section

The amino alcohols 2-aminoethanol, 3-amino-1-propanol, 2-amino-1-propanol, 1-amino-2-propanol, and 2-amino-1-butanol were supplied by Aldrich and 4-amino-1-butanol, 5-amino-1-pentanol, and 2-amino-2-methyl-1-propanol by Fluka. All were stored with activated 4A molecular sieves. 1,4-Dioxane was double-distilled and degassed before use. Table 1 contains the measured density of pure amino alcohols and dioxane.

Density measurements were carried out with an A. Paar DMA 60/602 vibration tube densimeter. The measuring cell was thermostated (± 0.05 K) by using a Heto Birkeroad ultrathermostat. The density measurements were reproducible to $\pm 1 \times 10^{-5}$ g·cm⁻³. The solutions were prepared by weight; the accuracy in the molar fraction determination was $\pm 1 \times 10^{-4}$.

Results and Discussion

The excess molar volumes $V_{\rm m}^{\rm E}$ for eight mixtures $\{x$ amino alcohol + (1-x)dioxane $\}$, where x denotes the

[.] Table 1. Densities, ϱ , of Pure Components at 293.15 K

<i>Q</i> /(g ·cm ^{−3})	lit. (6)b	
1.01458	1.022	
0.98650	0.98	
0.96003		
1.03179		
0.92829	0.962	
0.95946	0.9611	
0.96233		
0.94288	0.944	
1.03171		
1.02269^a		
	1.01458 0.98650 0.96003 1.03179 0.92829 0.95946 0.96233 0.94288 1.03171	

^a At 298.15 K. ^b Temperature not specified.

Figure 1. Excess molar volumes of $\{x \text{ amino alcohol} + (1-x)\text{-dioxane}\}\$ at 293.15 K: \triangle , 2-aminoethanol; \bigcirc , 3-amino-1-propanol; \bullet , 4-amino-1-butanol; \triangle , 5-amino-1-pentanol.

molar fraction, measured at 293.15 K are collected in Table 2.

Functions of the form

$$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1} = x(1-x) \sum_i A_i (2x-1)^i$$
 (1)

have been fitted to the experimental data by the least-squares method for each mixture. The values of the coefficients A_i and the standard deviation σ of the fits are listed in Table 2. An estimated accuracy of the values of the excess volumes is $\pm 2 \times 10^{-4}$ cm³·mol⁻¹.

[†] University of Technology.

[‡] Polish Academy of Sciences. § Universität Münster.

Table 2. Excess Molar Volumes, V_{m}^{E} , Coefficients A_{i} of Equation 1, and Standard Deviations, σ , for Amino Alcohol + Dioxane Mixtures at 293.15 K

	V^{E}				V _m ^E /
x	$V_{\mathrm{m}}^{\mathrm{E}}/(\mathrm{cm}^{3}\mathrm{mol}^{-1})$	\boldsymbol{x}	$V_{\mathrm{m}}^{\mathrm{E}}/(\mathrm{cm}^{3}\mathrm{mol}^{-1})$	x	(cm ³ mol ⁻¹)
			ol + (1-x)D		
$0.0459 \\ 0.0924$	$0.0458 \\ 0.0658$	$0.2796 \\ 0.3780$	0.0538 0.0397	$0.6801 \\ 0.7859$	-0.0316 -0.0414
0.1391	0.0740	0.4783	0.0182	0.8471	-0.0385
.1863	0.0708	0.5793	-0.0078	0.8892	-0.0325
	4 - 0.04	00 4 -	0.4571 4 -	0.9432	-0.0195
	$A_0 = 0.04$ A	$A_1 = -0.35$	$-0.4571, A_2 = 17, A_4 = 0.594$	-0.1219, 14	
	σ	(V _m)/(cm ³ ·r	$mol^{-1}) = 0.003$	19	
.0456	<i>x</i> 3-Ami 0.0371	no-1-propa 0.2821	$ \begin{array}{c} \operatorname{anol} + (1 - x) \\ 0.1184 \end{array} $	Dioxane 0.6819	0.0047
.0921	0.0776	0.3782	0.1026	0.7811	-0.0099
1379	0.0940	0.4765	0.0726	0.8362	-0.0227
1861	0.1169	0.5776	0.0408	$0.8906 \\ 0.9444$	$-0.0227 \\ 0.0149$
	$A_0 = 0.2$ A_3	$589, A_1 = -0.018$	$-0.6832, A_2 = 4, A_4 = -0.21$	= 0.2244, .11	
			$mol^{-1}) = 0.002$		
.0458	x 4-Am 0.0235	ino-1-buta 0.2815	nol + (1-x)l	Dioxane 0.6830	0.0500
.0455	0.0235	0.2815 0.3794	$0.1376 \\ 0.1366$	0.7830	$0.0502 \\ 0.0179$
1394	0.0999	0.4783	0.1127	0.8364	0.0075
1860	0.1183	0.5792	0.0930	$0.8868 \\ 0.9425$	-0.0112 -0.0073
	$A_0 = 0.4$	$398, A_1 = 0.0127$	$-0.5642, A_2 = 0.444$	= 0.1334, 17	
	6	$\sigma(V_{\rm m}^{\rm E})/({ m cm}^3)$	$mol^{-1} = 0.003$	2	
			anol $+(1-x)$	Dioxane	
.0459 .0924	0.0362	0.2799	0.1247	0.6807	0.0975
1383	0.0706 0.0963	$0.3782 \\ 0.4770$	$0.1343 \\ 0.1330$	$0.7845 \\ 0.8366$	$0.0648 \\ 0.0476$
1847	0.1111	0.5810	0.1229	0.8875 0.9435	-0.0311 -0.0144
			-0.1828, A ₂ =	0.0292,	0.0111
			$49, A_4 = 0.054$ $nol^{-1}) = 0.002$		
		***	anol $+(1-x)$		
.0456	0.0521	0.2806	0.1929	0.6789	0.1367
.0924 .1381	$0.1037 \\ 0.1426$	$0.3785 \\ 0.4778$	$0.2110 \\ 0.1942$	$0.7844 \\ 0.8362$	0.0993
1864	0.1428	0.5786	0.1844	0.8821	$0.0713 \\ 0.0507$
	4 - 0.7	947 4 -	09746 4	0.9422	0.0259
	A	$a_3 = -0.130$	$-0.3746, A_2 = 0.092$	24	
			$mol^{-1}) = 0.008$		
.0455	0.0947	0.2810°	$ \begin{array}{c} \operatorname{anol} + (1-x) \\ 0.2732 \end{array} $	0.6808	0.2067
0.0921 0.1388	$0.1741 \\ 0.2108$	$0.3776 \\ 0.4670$	$0.2795 \\ 0.2715$	$0.7848 \\ 0.8370$	$0.1581 \\ 0.1235$
.1902	0.2309	0.5779	0.2474	0.8912	0.0774
	$A_0 = 1.00$	$682. A_1 = -$	-0.3363, A ₂ =	0.9409 0.3024.	0.0463
	A	$_{.3} = -0.539$	$93, A_4 = 0.323$ $1000^{-1} = 0.003$	31	
~ O A					200 15 V
x 2-A 0.0459	mino-2-methy 0.0595	0.2811	0.3517	0.6791	0.3174
.0924	0.1574	0.3792	0.3875	0.7849	0.2341
.1334 .1864	$0.2252 \\ 0.2651$	$0.4788 \\ 0.5766$	$0.3997 \\ 0.3651$	0.8374 0.8901	$0.1882 \\ 0.1367$
	A 1 F	5Q7 A —	0.9957 A =	0.9381	0.0734
	A	$_3 = 0.1468$	$-0.3857, A_2 = 0.317$ $A_4 = -0.317$ $A_4 = 0.005$	75	
.0459	0.1063	0.2818	$ \begin{array}{r} \text{nol} + (1 - x) \\ 0.2973 \\ 0.2020 \end{array} $	0.6740	0.1575
.0923 .1364	$0.1884 \\ 0.2118$	$0.3759 \\ 0.4771$	$0.3020 \\ 0.2505$	$0.7867 \\ 0.8351$	0.0914 0.0494
.1863	0.2516	0.5813	0.2118	0.8919 0.9461	0.0242 0.0095
			$-0.8497, A_2 = 75, A_4 = 0.218$	0.0902,	0.0000
			$n_0(-1) = 0.210$		

 $\sigma(V_{\rm m}^{\rm E})/({\rm cm}^3 {\rm mol}^{-1}) = 0.0044$

Figure 2. Excess molar volumes of $\{x \text{ aminobutanol} + (1-x) - (1$ dioxane} at 293.15 K: ●, 4-amino-1-butanol; ○, 2-amino-1-butanol.

Figure 3. Excess molar volumes of $\{x \text{ aminopropanol} + (1-x) - ($ dioxane} at 293.15 K: ●, 2-amino-1-propanol; △, 1-amino-2propanol; ▲, 2-amino-2-methyl-1-propanol (at 298.15 K).

Figure 1 shows the concentration dependence of $V_{\rm m}^{\rm E}$ for the mixtures of $NH_2(CH_2)_nOH$, n = 2, 3, 4, and 5, with dioxane. Strong self-association leads to a negative value of $V_{\rm m}^{\rm E}$ in concentrated solutions of 2-aminoethanol, 3amino-1-propanol, and 4-amino-1-butanol. In diluted and moderately concentrated solutions $V_{\mathrm{m}}^{\mathrm{E}}$ is positive due to the heteroassociation of amino alcohols with dioxane molecules: the energy value of O-H-O hydrogen bonds formed between alcohol-dioxane molecules is much less than that between alcohol-alcohol or alcohol-water mol-

Figure 2 shows $V_{\mathrm{m}}^{\mathrm{E}}$ for mixtures of 4- and 2-aminobutanols and dioxane, respectively. In Figure 3 we compare $V_{\rm m}^{\rm E}$ in solutions of three aminopropanols in dioxane.

Literature Cited

- (1) Czechowski, G.; Żywucki, B.; Jadzyn, J. J. Chem. Eng. Data 1988,
- (2) Penn, R. E.; Curl, R. F. J. Chem. Phys. 1971, 55, 651.
- (3) Kreuger, P. J.; Mettec, H. D. Can. J. Chem. 1965, 43, 2970.
- (4) Dachwitz, E.; Stockhausen, M. Z. Naturforsch. 1988, 43A,
- Witt, U.; Stockhausen, M.; Jadżyn, J.; Kędziora, P. Z. Naturforsch. 1992, 47A, 678.
- (6) Römpp's Chemie-Lexikon, 8th ed.; Stuttgart, 1983.

Received for review June 1, 1994. Accepted August 11, 1994.8 JE940099N

[®] Abstract published in Advance ACS Abstracts, November 15, 1994.