Assignment-1 Electronics Engineering(KOE-048) Unit - 4

Abhay Shanker Pathak United Institute of Technology, Prayagraj IT-Department

$March\ 2020$

About

This assignmet contains information about OPERATIONAL AMPLIFIER All the questions are catagorized section and subsectionwise

Contents

1	$\mathbf{W}\mathbf{h}$	at is Operational Amplifier?	1				
	1.1	Operation	1				
	1.2	Classification	2				
	1.3	Applications	2				
		1.3.1 Use in electronics system design	2				
		1.3.2 Other applications	2				
2	2 Explain IC 741						
	-	IC 741 Operational Amplifier	4				
	2.2						
3	Operation Amplifier Characteristics						
	3.1	Block Diagram of an Op-Amp	6				
4 Differential gain and Common-mode gain							
	4.1	Differential Amplifier	7				
	4.2						
	4.3	Common-mode gain					

5	Inpu	ut Impdence, Output Impedence, Offset Voltage	9
	5.1	Input Impdence (Z_{in})	9
	5.2	Output Impedance (Z_{out})	9
	5.3	Offset $Voltage(V_{io})$	9
\mathbf{Li}	st c	of Tables	
	1	characterstics of op-amp	6
\mathbf{Li}	st c	of Figures	
	1	Circuit Diagram for an op-amp. Pins are labeled below	1
	2	An op-amp without negative feedback	2
	3	DIP pinout for 741-type operational amplifier	2
	4	IC 741 Op-Amp	4
	5	Pin Diagram of IC 741 Op-Amp	5
	6	block diagram of an Op-Amp	6

1 What is Operational Amplifier?

The $operational\ amplifier$ is a direct coupled, $high\ gain,\ negative\ feed-back$ amplifier.

Op-Amp is a *high gain* differential amplifier. It has high input impedence(ideally infinites) and low output impedence.

Type: - Discrete Circuit Integrated Circuit

Invented: - Karl D. Swartzel Jr.

Figure 1: Circuit Diagram for an op-amp. Pins are labeled below

 $\mathbf{V_1} = \text{Input voltage at non-inverting terminal}$ $\mathbf{V_2} = \text{Input voltage at inverting terminal}$ $\mathbf{V_0} = \text{Output Voltage}$

(+) = Non-inverting input point

(-) = Inverting input terminal

+Vcc = Positive Voltage Supply

 $-\mathbf{V}\epsilon\epsilon$ = Negative supply

 $Vid = Diffrential input = (V_1 - V_2)$

The power supply pins $+\mathbf{Vcc}$ and $-\mathbf{V}\epsilon\epsilon$ can also be labeled in different ways. As shown in **Figrue:** 1

1.1 Operation

The amplifier's differential inputs consist of a non-inverting input(+) with voltage V_+ an inverting input() with Voltage V_- ; ideally the op-amp amplifies only the difference in voltage between the two, which is called the differential input voltage. The output voltage of the op-amp $V_{\rm out}$ is given in the equation

$$\hat{V}_{out} = A_{OL}(V_+ - V_-)$$

where A_{OL} is the open-loop gain of the amplifier (the term "open-loop" refers to the absence of a fedd-back loop from the output to the input)

Figure 2: An op-amp without negative feedback

1.2 Classification

Op-amps may be classified by their construction:

- discrete (built from individual transistors or tubes/valves)
- IC (fabricated in an Integrated Circuit) most common
- hybrid

1.3 Applications

1.3.1 Use in electronics system design

The use of op-amps as circuit blocks is much easier and clearer than specifying all their individual circuit elements(transistors, resistors, etc.), whether the amplifiers used are integrated or discrete circuits.

Figure 3: DIP pinout for 741-type operational amplifier

Circuit design follows the same lines for all electronic circuits. A specification is drawn governing

what the circuit is required to do, with allowable limits. For example, the gain may be required to be 100 times, with a tolerance of 5% but drift of less than 1% in a specified temperature range; the input impedence not less than one megohm; etc.

1.3.2 Other applications

- audio- and video-frequency pre-amplifiers and buffers
- differential amplifiers
- differentiators and integrators

- filters
- precision peak detectors
- ullet volatage and current regulators
- analog calculators
- ullet analog-to-digital convertors
- digital-to-analog convertors
- Voltage clamping
- \bullet oscillators and waveform generators
- clipper
- clamper(dc inserter or restorer)
- LOG and ANITLOG amplifiers

Most single, dual and quad op-amps available have a standardized pin-out which permits one type to be substituted for another without writing changes.

2 Explain IC 741

The short form of the operational amplifier is op-amp, is a one kind of solid state IC. The first operational amplifier is designed by **Fairchild Semiconductors** in the year 1963.

These ICs uses an exterior feedback to regulate its functions and these components are used as a multipurpose device in various electronic instruments. It consists of two inputs and two outputs, namely inverting and non-inverting terminals. The main intention of this 741 op amp is to strength AC & DC signals and for mathematical operations. It's applications mainly involves in filter, comparators, pulse generators, oscillators, etc.

2.1 IC 741 Operational Amplifier

The IC 741 operational amplifier looks like a small chip. The representation of 741 IC op-amp is given below that comprises of eight pins. The most significant pins are 2, 3 and 6, where pin 2 and 3 are pin 2 and 3 denote inverting & non-inverting terminals and pin 6 denotes output voltage. The triangular form in the IC signifies an op-amp integrated circuit. The main function of this IC 741 is to do mathematical operations in various circuits. IC 741 op amp is made from various stages of transistor which commonly have three stages like differential i/p, a push-pull o/p and an intermediate gain stage. The differential op-amps comprises of a set of FETs or BJTs.

Figure 4: IC 741 Op-Amp

2.2 Pin Diagram of IC 741 Op-Amp

The pin configuration of the IC 741 operational amplifier is shown below. It comprises of eight pins where the function of each pin is discussed below.

• Pin-1 is Offset null.

Figure 5: Pin Diagram of IC 741 Op-Amp

- Pin-2 is Inverting (-) i/p terminal
- Pin-3 is a non-inverting (+) i/p terminal
- Pin-4 is -Ve voltage supply (Vcc)
- Pin-5 is offset null
- Pin-6 is the o/p voltage.
- Pin-7 is +ve voltage supply (+Vcc)
- Pin-8 is not connected.

The IC 741 operation amplifier is used in two methods such as an inverting (-) and a non inverting (+)

Whenever any input voltage is applied at the <u>non-inverting input terminal</u>, the output voltage waveform phase does not change. (No phase shift is obtained between output and input) (0° or 360° phase shift is obtained)

When input voltage is applied at inverting terminal, 180° phase shift is obtained at the output waveform.

3 Operation Amplifier Characterstics

In the table given below, ideal and practical characteristics of an opamp are listed:

<u>Parameter</u>	Ideal	<u>Practical</u>
Op Amp	Vid	$(V_1 - V_2)$
	$(V_1 - V_2)$	$^{1/2}(V_{1}-V_{2})$
		Ad ->very large, Ac ->very small
Gain	$\infty(\mathrm{Ad})$	Finite, Very large
Input resistance	∞	Very high
Rin		$(\text{in } M\Omega)$
Ouptut resistance	0	Very Small
Rout		
Ad/AC = CMRR	∞	very large
Slow Rate	∞	Finite Very large
Bandwidth	∞	High/large
Input Offset voltage	0	Very low
Input Offset current	0	Very low

Table 1: characteristics of op-amp

3.1 Block Diagram of an Op-Amp

Figure 6: block diagram of an Op-Amp

- 1. Dual i/p balanced o/p differential amplifier
- 2. Dual $^{\mathrm{i}/_{\mathrm{P}}}$ unbalanced $^{\mathrm{o}/_{\mathrm{P}}}$ differential amplifier
- 3. Emitter follows with constant current source
- 4. Push-Pull Amplifier

4 Differential gain and Common-mode gain

4.1 Differential Amplifier

Fig.- Differential Amplifier Circuit

The difference amplifier shown in the circuit is a combination of both inverting and non - inverting amplifiers. If the non-inverting terminal is connected to ground, the circuit operates an inverting amplifier and the input signal V_1 is amplified by (R_3/R_1) .

Similarly, if the inverting input terminal is connected to ground, the circuit behaves as a non-inverting amplifier. With the inverting input terminal grounded, R_3 and R_1 function as the feedback components of a non-inverting amplifier.

Input V_2 is potentially divided across resistors R_2 and R_4 to give V_{R4} , and then V_{R4} is amplified by $(R_3 + R_1)/R_1$.

With $V_2 = 0$,

$$V_{O1} = -(R_3/R_1) * V_1$$

With $V_1 = 0$,

$$V_{R4} = \{R_4/(R_2 + R_4)\} * V_2$$

and

$$V_{02} = \{R_1 + (R_3/R_1)\} * V_{R4}$$

Therefore,

$$V_{02} = \{R_1 + (R_3/R_1)\} * \{R_1 + (R_3/R_1)\} * V_{R4}$$

If the input resistance are chosen such that, $R_2 = R_1$ and $R_4 = R_3$, then

$$V_{O2} = \{R_3/R_1\} * V_2$$

Now, according to superposition principle if both the input signals V_1 and V_2 are present, then the output voltage is

$$V_{\rm O} = V_{\rm O1} + V_{\rm O2}$$

= $\{-(R_3/R_1) * V_1\} + \{R_3/R_1\} * V_2$

Which results in,

$$V_0 = (3/R_1) * \{V_2 - V_1\}$$

When the resistors R_3 and R_1 are of the same value, the output is the direct difference of the input voltages applied. By selecting R_3 greater than R_1 , the output can be made an amplified version of the difference of the input voltages.

4.2 Differential Gain

The differential gain of a difference amplifier **4.1** is defined as the gain obtained at the output signal with respect to the difference in the input signals applied.

The output voltage of a difference amplifier is given as,

$$V_{\rm O} = A_{\rm D}(V_1 - V_2)$$

where, $A_D = -(R_3/R_1)$ is the differential gain of the amplifier.

4.3 Common-mode gain

A perfect operational amplifier amplifies only the voltage difference between its two inputs, completely rejecting all voltages that are common to both. However, the differential input stage of an operational amplifier is never perfect, leading to the amplification of these common voltages to some degree. The standard measure of this defect is called the common-mode rejection ratio (denoted CMRR). Minimization of common mode gain is usually important in non-inverting amplifiers (described below) that operate at high amplification.

5 Input Impdence, Output Impedence, Offset Voltage

5.1 Input Impdence (Z_{in})

Input Impedance is defined as the input voltage by the input current. The input impedance of an ideal op amp is ∞ . That is there no current flowing in the input circuit. However, an ideal op amp has certain current flowing in the input circuit of the magnitude of few pico-amps to a few milli-amps.

5.2 Output Impedance(Z_{out})

Output impedance is defined as the ratio of the output voltage to the input current. The output impedance of an ideal op amp is 0, however, real op amps have an output impedance of 10-20 k Ω . An ideal op amp behaves like a perfect voltage source delivering current without any internal losses. The internal resistance reduce the voltage available to the load.

5.3 Offset Voltage(V_{io})

The offset voltage of an ideal op amp is zero, which means that the output voltage will be zero if the difference between the inverting and non-inverting terminal is zero. If both the terminals are grounded, the output voltage will be zero. But real **op amps** have an offset voltage.