Software Information

General information

TESPy Version: 0.6.0 - Colored Chemicals

Commit: 1054198a@features/chemical_exergy

CoolProp version: 6.4.1

Python version: 3.8.12 — packaged by conda-forge — (default, Oct 12 2021, 21:19:05) [MSC v.1916 64

Documentation generated: March 14, 2022

Parameter highlighting

Variable component parameters: italic
Specified input parameter: bold
Results of simulation: normalfont

Equations are displayed for input parameters only.

1 Connections in design mode

1.1 Connection specifications and results

Table 1: Connection specifications and results

	$m \text{ in } \frac{\text{kg}}{\text{s}} (1)$	p in bar (2)	h in J/kg	T in °C (3)	s in J/kgK	x in - (4)	Td_bp in °C (5)
label	, , ,	,	, -		, -	,	- ()
1	90.939	1.0130	327,381.60	25.0	6,911.1124	0.00	0.0
2	90.939	10.1300	653,922.98	338.4	6,988.6093	0.00	0.0
3	90.939	9.6235	916,984.02	$\boldsymbol{576.8}$	7,366.2478	0.00	0.0
10	1.647	12.0000	899,139.96	25.0	5,366.9804	-1.00	-
4	92.586	9.1423	1,879,591.92	1,246.8	8,036.5346	0.00	0.0
5	92.586	1.0993	1,234,835.22	738.2	8,145.0316	0.00	0.0
6	92.586	1.0663	976,452.66	521.7	7,866.7572	0.00	0.0
6p	92.586	1.0393	680,441.41	259.7	7,423.4159	0.00	0.0
7	92.586	1.0130	569,451.75	157.3	7,199.7497	0.00	0.0
8	14.000	20.0000	106,676.98	25.0	366.7079	-1.00	-
8p	14.000	20.0000	840,683.94	197.4	2,304.8871	-1.00	-15.0
11	29.005	20.0000	908,498.08	212.4	2,446.7542	0.00	-
11p	29.005	20.0000	1,853,395.34	212.4	4,392.8804	0.50	_
9	14.000	20.0000	2,798,292.60	212.4	6,339.0066	1.00	-

1.2 Equations applied

$$0 = \dot{m} - \dot{m}_{\text{spec}} \tag{1}$$

$$0 = p - p_{\text{spec}} \tag{2}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{3}$$

$$0 = h - h\left(p, x_{\text{spec}}\right) \tag{4}$$

$$0 = \Delta T_{\text{spec}} - T_{\text{sat}} (p) \tag{5}$$

1.3 Specified fluids

Table 2: Specified fluids

		1001C 2. Dr	occinca nan	10	
	CH4 (6)	CO2(7)	H2O (8)	N2 (9)	O2 (10)
label					
1	0.000	0.000	0.012	0.758	0.230
10	1.000	0.000	0.000	0.000	0.000
8	0.000	0.000	1.000	0.000	0.000

1.4 Equations applied

$$0 = x_{\text{CH4}} - x_{\text{CH4,spec}} \tag{6}$$

$$0 = x_{\text{CO2}} - x_{\text{CO2,spec}} \tag{7}$$

$$0 = x_{\rm H2O} - x_{\rm H2O,spec} \tag{8}$$

$$0 = x_{\text{N2}} - x_{\text{N2,spec}} \tag{9}$$

$$0 = x_{\rm O2} - x_{\rm O2,spec} \tag{10}$$

2 Components in design mode

2.1 Components of type Compressor

2.1.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1] \tag{11}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (12)

2.1.2 Specifications and results

Table 3: Parameters of components of type Compressor

	P	eta_s (13)	pr (14)
label			
compressor	29,695,495.55	0.86	10.00

2.1.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(13)

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{14}$$

2.2 Components of type HeatExchanger

2.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{15}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1,2]$$
(16)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(17)

2.2.2 Specifications and results

Table 4: Parameters of components of type HeatExchanger

	Q	ttd_u	ttd_l	pr1 (18)	pr2 (19)
label					
air preheater	-23,922,627.92	161.33	183.30	0.97	0.95
evaporator	-27,406,521.33	309.28	47.35	0.97	1.00
economizer	-10,276,097.34	62.35	132.32	0.97	1.00

2.2.3 Equations applied

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{18}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{19}$$

2.3 Components of type DiabaticCombustionChamber

2.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},1} + \dot{m}_{\text{in},2} - \dot{m}_{\text{out},1} \tag{20}$$

$$\Delta \dot{m}_{\text{fluid}} = \dot{m}_{\text{in},1} \cdot x_{\text{fluid,in},1} + \dot{m}_{\text{in},2} \cdot x_{\text{fluid,in},2} - \dot{m}_{\text{out},1} \cdot x_{\text{fluid,out},1}$$

$$\dot{m}_{\text{fluid,m}} = \frac{\dot{m}_{\text{in},1} \cdot x_{\text{fluid,in},1} + \dot{m}_{\text{in},2} \cdot x_{\text{fluid,in},2}}{M_{\text{fluid}}}$$

$$\dot{m}_{\text{H,m}} = \dot{m}_{\text{CH4,m}} \cdot 4$$

$$\dot{m}_{\text{C,m}} = \dot{m}_{\text{CH4,m}} \cdot 1$$

$$\dot{m}_{\text{O2,m,stoich}} = \frac{\dot{m}_{\text{H,m}}}{4} + \dot{m}_{\text{C,m}}$$
(21)

$$0 = \Delta \dot{m}_{\text{CH4}} - \dot{m}_{\text{CH4,m}} \cdot M_{\text{CH4}} \tag{22}$$

$$0 = \Delta \dot{m}_{\rm CO2} + \dot{m}_{\rm C.m} \cdot M_{\rm CO2} \tag{23}$$

$$0 = \Delta \dot{m}_{\rm H2O} + \frac{\dot{m}_{\rm H,m}}{2} \cdot M_{\rm H2O} \tag{24}$$

$$0 = \Delta \dot{m}_{\rm N2} \tag{25}$$

$$0 = \Delta \dot{m}_{\rm O2} - \dot{m}_{\rm O2,m,stoich} \cdot M_{\rm O2} \tag{26}$$

2.3.2 Specifications and results

Table 5: Parameters of components of type DiabaticCombustionChamber

	lamb	ti	pr (27)	eta (28)
label				
combustion chamber	3.18	$82,\!374,\!461.62$	0.95	0.98

2.3.3 Equations applied

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{27}$$

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot (h_{\text{in},i} - h_{\text{in},i,\text{ref}}) - \dot{m}_{\text{out},1} \cdot (h_{\text{out},1} - h_{\text{out},1,\text{ref}})$$

$$+ LHV_{fuel} \cdot \left(\sum_{i} \dot{m}_{\text{in},i} \cdot x_{fuel,\text{in},i} - \dot{m}_{\text{out},1} \cdot x_{fuel,\text{out},1}\right) \cdot \eta$$

$$\forall i \in \text{inlets}$$

$$T_{\text{ref}} = 298.15 \,\text{K} \, p_{\text{ref}} = 10^5 \,\text{Pa}$$

$$(28)$$

2.4 Components of type Turbine

2.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{29}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(30)

2.4.2 Specifications and results

Table 6: Parameters of components of type Turbine

	Р	eta_s (31)	pr
label			
gas turbine	-59,695,495.55	0.86	0.12

2.4.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) + (h_{\text{out.s}} - h_{\text{in}}) \cdot \eta_{s}$$
(31)

2.5 Components of type Drum

2.5.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (32)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (33)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets } \forall j \in \text{outlets}$$
 (34)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(35)

$$0 = h_{\text{out},1} - h(p_{\text{out},1}, x = 0) 0 = h_{\text{out},2} - h(p_{\text{out},2}, x = 1)$$
(36)

3 Busses in design mode

3.1 Bus "total power"

Specified total value of energy flow: $\dot{E}_{\rm bus} = -30,000,000.00\,{\rm W}$

$$0 = \dot{E}_{\text{bus}} - \sum_{i} \dot{E}_{\text{bus},i} \tag{37}$$

Table 7: Results overview for bus total power

	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$
label					
compressor	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	29,695,495.55	$\frac{\dot{E}_{\mathrm{comp}}}{\eta}$	29,695,495.55	1.00
gas turbine	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-59,695,495.55	$\dot{E}_{ m comp} \cdot \eta$	-59,695,495.55	1.00
total	-	-30,000,000.00	-	-30,000,000.00	_

3.2 Bus "heat output"

This bus is used for postprocessing only.

Table 8: Results overview for bus heat output

	Table 6. Results overview for sus fleur output							
	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$			
label								
economizer	$\dot{m}_{\mathrm{in},1} \cdot (h_{\mathrm{out},1} - h_{\mathrm{in},1})$	-10,276,097.34	$\dot{E}_{\mathrm{comp}} \cdot \eta$	10,276,097.34	-1.00			
evaporator	$\dot{m}_{\mathrm{in},1} \cdot (h_{\mathrm{out},1} - h_{\mathrm{in},1})$	$-27,\!406,\!521.33$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	$27,\!406,\!521.33$	-1.00			
total	-	-37,682,618.67	-	37,682,618.67	-			

3.3 Bus "power output"

This bus is used for postprocessing only.

Table 9: Results overview for bus power output

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$
compressor gas turbine total	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in}) \ \dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	29,695,495.55 -59,695,495.55 -30,000,000.00	$\dot{E}_{ ext{comp}} \over \eta \ \dot{E}_{ ext{comp}} \cdot \eta \ -$	29,695,495.55 -59,695,495.55 -30,000,000.00	1.00 1.00

3.4 Bus "fuel input"

This bus is used for postprocessing only.

Table 10: Results overview for bus fuel input

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$
combustion chamber total	$LHV_{\mathrm{fuel}} \cdot \left[\sum_{i} \left(\dot{m}_{\mathrm{in},i} \cdot x_{\mathrm{fuel,in},i}\right) - \dot{m}_{\mathrm{out,1}} \cdot x_{\mathrm{fuel,out,1}}\right]$	82,374,461.62 82,374,461.62		82,374,461.62 82,374,461.62	1.00