Interpolacja funkcjami sklejanymi

Łukasz Wala

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 11 kwietnia 2022

1 Opis problemu

Główną ideą zadania jest zbadanie zachowania wielomianów interpolacyjnych dla poniższej funkcji skonstruowanych za pomocą funkcji sklejanych drugiego oraz trzeciego stopnia dla różnych warunków brzegowych.

Badana funkcja:

$$f(x) = x^2 - m \cdot \cos\left(\frac{\pi x}{k}\right)$$

Gdzie $k = \frac{1}{2}$, m = 4 oraz $x \in [-6, 6]$.

2 Opracowanie

2.1 Wielomiany interpolacyjne

Do skonstruowania wielomianów i narysowania wykresów zostanie użyty załączony program w języku Python. Pierwszym krokiem będzie zbadanie zachowania i różnic pomiędzy wielomianami sklejanymi drugiego oraz trzeciego stopnia. Różnice wynikające z zmiany warunków brzegowych zostaną zbadane w kolejnej sekcji. Warunki brzegowe użyte tutaj:

- dla wielomianów trzeciego stopnia przybliżanie trzecich pochodnych w pierwszym i ostatnim punkcie ilorazami różnicowymi,
- dla wielomianów drugiego stopnia zastąpienie drugiej pochodnej w pierwszym punkcie zerem.

Zakres liczb węzłów, dla których badane będą wielomiany wynosi 4-50. Wezły rozłożone są równomiernie, ponieważ, jako że stopnie wielomianów są niewielkie, nie występuje efekt Rungego.

Rysunek 1: Interpolacja splajnami dla 4 punktów

Rysunek 2: Interpolacja splajnami dla 8 punktów

Dla 9 węzłów w przypadku wielomianów drugiego stopnia pojawiają się oscylacje, może być to spowodowane wachającymi się wartościami funkcji w węzłach. Warto również zauważyć, że oscylacja występuje po prawej stronie wykresu, ponieważ dla lewego krańca określony jest warunek brzegowy. W przypadku wielomianów 3 stopnia podobny problem nie występuje.

Rysunek 3: Interpolacja splajnami dla 9 punktów

Rysunek 4: Interpolacja splajnami dla 13 punktów

Dla kolejnych liczb węzłów (większych niż 9) efekt oscylacji nie pojawia się,

wielomiany zachowują się przewidywalnie. Podobny problem pojawia się w okolicy liczby 22 węzłów. Tutaj, z racji dużej liczby węzłów, warunek brzegowy nieznacznie wpływa na obszar oscylacji. Dla wielomianów 3 stopnia, podobnie jak w poprzednim przypadku, efekt nie występuje, poprawnie przybliżają badaną funkcję.

Rysunek 5: Interpolacja splajnami dla 22 punktów

Rysunek 6: Interpolacja splajnami dla 26 punktów

Oscylacja nasila się do liczby 26 węzłów, następnie efekt maleje, a wielomniany drugiego stopnia coraz lepiej przybliżają badaną funkcję.

Rysunek 7: Interpolacja splajnami dla 31 punktów

Rysunek 8: Interpolacja splajnami dla 35 punktów

Na wykresie dla 35 punktów można zauważyć, że przybliżenie jest relatywnie dokładne dla wielomianów trzeciego stopnia oraz niewiele mniej dokładne dla wielomianów drugiego stopnia.

Rysunek 9: Interpolacja splajnami dla 50 punktów

2.2 Warunki brzegowe

Zarówno dla wielomianów interpolowanych sklejanymi funkcjami trzeciego jak i drugiego stopnia zbadano dwa rodzaje warunków brzegowych:

- dla wielomianów trzeciego stopnia:
 - warunek 1 przybliżanie trzecich pochodnych w pierwszym i ostatnim węźle ilorazami różnicowymi,
 - warunek 2, free boundary drugie pochodne w pierwszym i ostatnim węźle zastąpione zerami,
- dla wielomianów drugiego stopnia:
 - -warunek 1 zastąpienie pierwszej pochodnej w pierwszym węźle zerem,
 - warunek 2 przybliżanie drugiej pochodnej w pierwszym węźle ilorazem różnicowymi,

Rozpocznijmy od zbadania zachowania wielomianów interpolowanych funkcjami sklejanymi trzeciego stopnia.

Rysunek 10: Interpolacja funkcjami trzeciego stopnia dla 16 punktów

Rysunek 11: Interpolacja funkcjami trzeciego stopnia dla 37 punktów

Dla powyższych przypadków różnice są marginalne, jednak pojawiają się również takie, gdzie, w zależności od warunku, funkcja zachowuje się inaczej.

Rysunek 12: Interpolacja funkcjami trzeciego stopnia dla 26 punktów

W zakresie ok. 21-30 węzłów funkcja wygenerowana z wykorzystaniem warunku 1 osiąga większą wartość w maksimach lokalnych przy krańcach przedziału niż dla warunku 2, jest mniej gładka. Podobny efekt, jednak z mniejszym natężeniem, można zaobserwować dla dużych liczb węzłów, np. 48-50. gdzie z kolei funkcja dla warunku 1 osiąga mniejsze wartości w minimach przy krańcach przedziału, niż dla warunku 2. Generalnie, funkcje dla warunku 2 są bardziej gładkie przy krańcach przedziału.

Rysunek 13: Interpolacja funkcjami 3 stopnia dla 50 punktów

Natomiast w przypadku wielomianów interpolowanych funkcjami sklejanymi drugiego stopnia dla niewielkich liczb węzłów można zauważyć istotne różnice w wykresach funkcji dla różnych warunków:

Rysunek 14: Interpolacja funkcjami 2 stopnia dla 5 punktów

Rysunek 15: Interpolacja funkcjami 2 stopnia dla 8 punktów

Jednak dla od pewnej liczby węzłów (ok. 8) wykresy funckcji interpolowanych wielomianami drugiego stopnia stają się bardzo podobne niezależnie od warunku. Poniżej wykresy praktycznie całkowicie się pokrywają.

Rysunek 16: Interpolacja funkcjami 2 stopnia dla 20 punktów

Jak można zaobserwować, w przypadku wielomianów 2 stopnia warunek brzegowy ma niewielki wpływ na funkcje sklejane dla większych liczb węzłów.

2.3 Dokładność

Pozostaje obliczenie dokładności oraz skonfrontowanie wyników z wnioskami uzyskanymi na podstawie analizy wykresów. Miarami dokładności będą:

- \bullet średnia kwadratów odległości wartości wielomianu oraz funkcji fdla 1000 równo oddalonych punktów,
- $\bullet\,$ maksymalna odległość wartości wielomianu oraz funkcji fdla 1000 równo oddalonych punktów.

Dla funkcji sklejanych interpolowanych wielomianami trzeciego stopnia:

Liczba	Śred. kwadratów		Maks. odległości	
węzłów	war. 1	war. 2	war. 1	war. 2
4	23.976	20.688	8.000	8.750
5	23.976	22.394	8.000	8.159
6	12.348	12.269	7.326	7.060
7	23.976	23.451	8.000	8.093
8	14.922	14.353	7.812	7.736
9	16.951	15.484	9.239	7.691
10	13.882	13.907	7.510	7.510
11	15.939	15.439	7.959	7.995
12	15.992	15.819	7.996	7.995
13	23.976	23.893	8.000	8.024
14	15.988	15.876	7.997	7.997
15	15.993	15.766	7.992	7.987
16	15.880	15.535	7.959	7.987
17	15.449	15.116	6.088	6.115
18	14.594	14.436	7.741	7.741
19	13.364	13.440	7.506	7.505
20	11.914	12.124	7.131	7.131
21	10.403	10.551	6.643	6.642
22	8.934	8.842	6.041	6.041
23	7.549	7.144	5.367	5.370
24	6.259	5.585	4.697	4.674
25	1.081	0.254	5.014	2.443
26	4.021	3.165	5.076	3.374
27	3.117	2.326	4.942	2.825
28	2.372	1.696	4.669	2.529
29	1.778	1.234	4.319	2.430
30	1.318	0.900	3.929	2.301
31	0.969	0.660	3.526	2.163
32	0.709	0.488	3.141	2.018
33	0.517	0.364	2.773	1.880
34	0.376	0.274	2.433	1.747

Tabela 1: Dokładności dla wielomianów trzeciego stopnia

Dla wielomianów trzeciego stopnia dokładności są bardzo podobne z niewielkimi wyjątkami np. w okolicach liczby 26 węzłów, gdzie miara maksymalnej odległości pomiędzy punktami rzeczywistej funkcji a funkcji sklejanej odzwierciedla zjawisko opisane na stronie 8.

Liczba	Śred. kwadratów		Maks. odległości	
węzłów	war. 1	war. 2	war. 1	war. 2
4	25.262	25.014	11.751	8.469
5	26.673	24.009	10.250	8.250
6	13.946	16.113	7.399	8.222
7	24.509	23.981	8.753	8.075
8	16.511	16.257	9.161	8.761
9	152.841	154.855	30.441	30.573
10	17.466	17.331	10.941	10.713
11	16.692	16.376	9.140	8.804
12	15.813	15.909	7.909	7.865
13	24.009	23.976	8.250	8.023
14	15.865	15.946	8.326	8.095
15	16.272	16.177	8.581	8.389
16	16.266	16.239	8.938	8.794
17	17.821	17.720	7.459	7.376
18	18.279	18.263	9.918	9.893
19	22.025	22.083	10.610	10.644
20	23.873	23.925	11.435	11.519
21	33.679	33.942	12.989	13.115
22	43.049	42.921	15.408	15.564
23	90.338	90.737	20.369	20.546
24	251.218	247.394	31.368	31.180
25	1533.187	1523.763	91.909	91.717
26	173.490	170.268	25.912	25.720
27	46.838	47.260	14.855	15.042
28	15.441	15.514	9.847	10.026
29	10.174	10.539	7.380	7.548
30	5.348	5.591	5.888	6.045
31	4.512	4.809	4.938	5.083
32	2.988	3.218	4.246	4.378
33	2.758	2.990	3.594	3.714
34	2.084	2.272	3.330	3.439

Tabela 2: Dokładności dla wielomianów drugiego stopnia

W przypadku wielomianów drugiego stopnia wyniki potwierdzają tezę, że wybór warunku (spośród dwóch przedstawionych tutaj) nie ma dużego wpływu na dokładność. Widoczne są również spadki dokładności wynikające z oscylacji opisanych na stronie 4.

Liczba węzłów	wiel. 2 stopnia, war. 2	wiel. 3 stopnia, war. 1	
4	25.014	23.976	
5	24.009	23.976	
6	16.113	12.348	
7	23.981	23.976	
8	16.257	14.922	
9	154.855	16.951	
10	17.331	13.882	
11	16.376	15.939	
12	15.909	15.992	
13	23.976	23.976	
14	15.946	15.988	
15	16.177	15.993	
16	16.239	15.880	
17	17.720	15.449	
18	18.263	14.594	
19	22.083	13.364	
20	23.925	11.914	
21	33.942	10.403	
22	42.921	8.934	
23	90.737	7.549	
24	247.394	6.259	
25	1523.763	1.081	
26	170.268	4.021	
27	47.260	3.117	
28	15.514	2.372	
29	10.539	1.778	
30	5.591	1.318	
31	4.809	0.969	
32	3.218	0.709	
33	2.990	0.517	
34	2.272	0.376	

Tabela 3: Średnie kwadratów odległości dla wielomianów

Dla obu metod wybrane zostały warunki brzegowe w jakiś sposób przybliżające wartość pochodnych wielomianu. W ogólności interpolowanie funkcjami sklejanymi trzeciego stopnia konsekwentnie wykazuje lepszą dokładność oraz nie cierpi z powodu oscylacji.

3 Wnioski

Interpolacje funkcjami sklejanymi drugiego i trzeciego stopnia to skuteczne sposoby na przybliżanie funkcji, które pozwalają na uniknięcie skutków używania wielomianów wysokich stopni (efekt Rungego), jak w metodach Lagrange'a czy Newtona. Ażeby skutecznie przybliżyć funkcję splajnami przy większej liczbie węzłów, lepiej skorzystać z wielomianów trzeciego stopnia, które produkują gładszą funkcję wynikową i nie cierpią z powodu oscylacji. Metody te wymagają również skrzystania z warunku brzegowego, np. "free boundary", które są koniecznie do rozwiązania układu równań dostarczającego funkcję wynikową i mogą wpływać na dokładność przybliżenia w zależności od liczby węzłów i wykorzystania.