École normale supérieure, année universitaire 2018-2019. Cours *Algèbre 1*, corrigé de l'examen partiel du 7 novembre 2018.

Exercice 1.

- (a) Pour tout sous-groupe distingué Γ de G, notons Λ_{Γ} l'ensemble des morphismes de G dans H de noyau Γ . On a alors $\operatorname{Hom}(G,H) = \coprod_{\Gamma \lhd G} \Lambda_{\Gamma}$. Par ailleurs si Γ est un sous-groupe distingué de G, se donner un morphisme de G vers H de noyau Γ revient à se donner un morphisme injectif de G/Γ vers H. On a donc $M(G,H) = \sum_{\Gamma \lhd G} i(G/\Gamma,H)$.
- (b) Si $G = \{e\}$ alors M(G, H) = I(G, H) = 1 pour tout groupe H (il y a un seul morphisme de G dans H, à savoir le morphisme trivial qui est évidemment injectif) et l'assertion requise est vraie avec $\mu_G = 1$ (ici G est le seul sous-groupe distingué de G). On suppose le cardinal de G strictement supérieur à 1 et l'assertion vraie pour les groupes de cardinal strictement inférieur à celui de G.

L'égalité $M(G,H) = \sum_{\Gamma \lhd G} I(G/\Gamma,H)$ peut se récrire

$$I(G,H) = M(G,H) - \sum_{\Gamma \lhd G, \Gamma \neq \{e\}} I(G/\Gamma,H).$$

Par hypothèse de récurrence, il existe pour tout sous-groupe distingué non trivial Γ de G une famille $(\mu_{\Delta}^{\Gamma})_{\Delta}$ d'entiers relatifs (ne dépendant pas de H), indexée par l'ensemble des sous-groupes distingués de G/Γ , telle que $I(G/\Gamma,H)=\sum_{\Delta\lhd(G/\Gamma)}\mu_{\Delta}^{\Gamma}M((G/\Gamma)/\Delta,H)$. Modulo la bijection canonique entre l'ensemble des sous-groupes distingués de G/Γ et l'ensemble des sous-groupes distingués de G contenant Γ , on peut considérer que Δ parcourt l'ensemble des sous-groupes distingués de G contenant Γ , et écrire

$$I(G/\Gamma,H) = \sum_{\Gamma \subset \Delta \lhd G} \mu_{\Delta}^{\Gamma} M(G/\Delta,H).$$

On a dès lors

$$\begin{split} I(G,H) &= M(G,H) - \sum_{\Gamma \lhd G,\Gamma \neq \{e\}} I(G/\Gamma,H) \\ &= M(G,H) - \sum_{\Gamma \lhd G,\Gamma \neq \{e\}} \left(\sum_{\Gamma \subset \Delta \lhd G} \mu_{\Delta}^{\Gamma} M(G/\Delta,H) \right) \\ &= M(G,H) - \sum_{\Delta \lhd G} \left(\sum_{\{e\} \neq \Gamma \subset \Delta,\Gamma \lhd G} \mu_{\Delta}^{\Gamma} \right) M(G/\Delta,H) \\ &= M(G,H) - \sum_{\{e\} \neq \Delta \lhd G} \left(\sum_{\{e\} \neq \Gamma \subset \Delta,\Gamma \lhd G} \mu_{\Delta}^{\Gamma} \right) M(G/\Delta,H) \end{split}$$

(la dernière égalité provient du fait que si $\Delta=\{e\}$ la somme $\sum_{\{e\}\neq\Gamma\subset\Delta}\dots$ est vide). On obtient alors le résultat voulu en posant

 $\mu_{\{e\}}=1$ et $\mu_{\Delta}=-\sum_{\{e\}\neq\Gamma\subset\Delta,\Gamma\lhd G}\mu_{\Delta}^{\Gamma}$ pour tout sous-groupe distingué non trivial Δ de G.

(c)

(c1) Soit G un groupe fini. Comme $X \times H$ est isomorphe à $X \times K$ on a $M(G, X \times H) = M(G, X \times K)$.

Se donner une application de G dans $X \times H$ revient à se donner un couple (φ, ψ) formé d'une application φ de G vers X et d'une application ψ de G vers H – au couple (φ, ψ) correspond l'application $g \mapsto (\varphi(g), \psi(g))$. Et si on se donne un tel couple (φ, ψ) alors $g \mapsto (\varphi(g), \psi(g))$ est un morphisme de groupes si et seulement si φ et ψ sont des morphismes de groupes – c'est une conséquence immédiate du fait que la loi de groupe de $X \times H$ est définie composante par composante. Par conséquent, se donner un morphisme de G vers $X \times H$ revient à se donner un couple (φ, ψ) formé d'un morphisme φ de G vers X et d'un morphisme ψ de G vers H. Il s'ensuit que $M(G, X \times H) = M(G, X)M(G, H)$, et l'on a évidemment de même $M(G, X \times K) = M(G, X)M(G, K)$. Ceci entraîne, en vertu de l'égalité $M(G, X \times H) = M(G, X \times K)$ vue plus haut, que M(G,X)M(G,H) = M(G,X)M(G,K), et finalement que M(G,H) = M(G,K) (en effet M(G,X) est non nul puisqu'il y a au moins un morphisme de G vers X, à savoir le morphisme trivial).

(c2) Soit G un groupe fini et soit (μ_{Γ}) la famille d'entiers relatifs de la question (b). On a

$$\begin{split} I(G,H) &=& \sum_{\Gamma \lhd G} \mu_{\Gamma} M(G/\Gamma,H) \\ &=& \sum_{\Gamma \lhd G} \mu_{\Gamma} M(G/\Gamma,K) \\ &=& I(G,K) \end{split}$$

(la première et la troisième égalité viennent des propriétés de la famille (μ_{Γ}) , et la seconde de ce qui a été vu en (c1)).

(c3) On a en particulier I(H,H) = I(H,K). Or $i(H,H) \ge 1$ (il y a au moins un morphisme injectif de H dans lui-même : l'identité!); par conséquent $i(H,K) \ge 1$ et il existe donc un morphisme injectif u de H dans K.

Or comme $X \times H$ est isomorphe à $X \times K$ ces deux groupes ont même cardinal. Autrement dit $|X| \cdot |H| = |X| \cdot |K|$ et on a donc |H| = |K| car $|X| \neq 0$ (un groupe est toujours non vide). Il s'ensuit que le morphisme injectif u est un isomorphisme.

(d) Considérons l'application de G dans $G \times G$ qui envoie une suite $(g_i)_{i \in \mathbb{N}}$ sur le couple de suites $((g_{2i})_{i \in \mathbb{N}}, (g_{2i+1})_{i \in \mathbb{N}})$. C'est clairement un morphisme de groupes, et il est bijectif de réciproque

$$((h_i)_{i\in\mathbf{N}},(k_i)_{i\in\mathbf{N}})\mapsto (\ell_i)_{i\in\mathbf{N}}$$

où $\ell_i = h_{i/2}$ si i est pair et $\ell_i = k_{(i-1)/2}$ si i est impair.

Exercice 2. Écrivons $\sigma = C_{1,1} \dots C_{1,n_1} C_{2,1} \dots C_{2,n_2} \dots C_{r,1} \dots C_{r,n_r}$ où les $C_{i,j}$ sont des cycles à supports deux à deux disjoints, $C_{i,j}$ étant de longueur ℓ_i pour tout (i, j).

(a) Soit $\tau \in S_n$. La permutation τ appartient au groupe G si et seulement si $\tau \sigma \tau^{-1} = \sigma$, c'est-à-dire si et seulement si

$$(\tau C_{1,1}\tau^{-1})...(\tau C_{1,n_1}\tau^{-1})(\tau C_{2,1}\tau^{-1})...(\tau C_{2,n_2}\tau^{-1})...(\tau C_{r,1}\tau^{-1})(\tau C_{r,n_r}\tau^{-1}) = \sigma.$$

Compte-tenu de l'unicité de l'écriture comme produit de cycles à supports deux à deux disjoints et du fait que si Γ est un cycle, $\tau\Gamma\tau^{-1}$ est un cycle de même longueur que Γ et de support $\tau(\operatorname{Supp}(\Gamma))$, on voit que $\tau \sigma \tau^{-1} = \sigma$ si et seulement si il existe une famille $(\lambda_i)_{1 \leqslant i \leqslant r}$, où $\lambda_i \in S_{n_i}$ pour tout i, telle que $\tau C_{i,j}\tau^{-1}$ soit égale à $C_{i,\lambda_i(j)}$ pour tout (i,j).

Se donner un élément de G revient donc à choisir :

- (α) pour tout i compris entre 1 et r, une permutation λ_i de $\{1,\ldots,n_i\}$ (ce qui fait $\prod_i n_i!$ choix);
- (β) une permutation τ telle que $\tau C_{i,j}\tau^{-1} = C_{i,\lambda_i(j)}$ pour tout (i,j). Il reste donc, une famille (λ_i) comme en (α) étant donnée, à compter le nombre de permutations τ satisfaisant (β) . Pour tout (i, j), notons $E_{i,j}$ le support de $C_{i,j}$, et notons F le complémentaire de $\coprod E_{i,j}$. Se donner une permutation τ satisfaisant (β) revient à se donner :
- (γ) une permutation ξ de F (il y a $(n-\sum_i \ell_i n_i)!$ choix); (δ) pour tout (i,j), une bijection $\tau_{i,j}$ entre $E_{i,j}$ et $E_{i,\lambda_i(j)}$ telle que $\tau_{i,j}C_{i,j}\tau_{i,j}^{-1}=C_{i,\lambda_i(j)}$ (en identifiant par abus un cycle avec la permutation qu'il induit sur son support).

Fixons i et j. Écrivons $C_{i,j}=(a_1\ldots a_{\ell_i})$ et $C_{i,\lambda_i(j)}=(b_1\ldots b_{\ell_i})$. Une bijection ζ de $E_{i,j}$ sur $E_{i,\lambda_i(j)}$ vérifie l'égalité $\zeta C_{i,j} \zeta_{i,j}^{-1} = C_{i,\lambda_i(j)}$ si et seulement si $(\zeta(a_1),\ldots,\zeta(a_{\ell_i})) = (b_1,\ldots,b_{\ell_i})$. Or si t est un entier compris entre 1 et ℓ_i tel que $\zeta(a_1) = b_t$ on a $(\zeta(a_1), \ldots, \zeta(a_{\ell_i})) = (b_1, \ldots, b_{\ell_i})$ si et seulement si $\zeta(a_k) = b_{[t+k]}$ pour tout k, où [t+k] désigne l'unique entier compris entre 1 et ℓ_i égal à t+k modulo ℓ_i . Il y a donc exactement ℓ_i bijections ζ de $E_{i,j}$ sur $E_{i,\lambda_i(j)}$ telles que $\zeta C_{i,j} \zeta_{i,j}^{-1} = C_{i,\lambda_i(j)}$: on peut choisir $\zeta(a_1)$ librement, et les autres valeurs sont imposées par l'égalité requise. On a en conséquence ℓ_i choix possibles pour $\tau_{i,j}$ à (i,j) fixé; l'indice i parcourt $\{1,\ldots,r\}$ et pour chaque i l'indice jparcourt $\{1,\ldots,n_i\}$. On a donc $\prod_{1\leqslant i\leqslant r}\ell_i^{n_i}$ choix pour la famille (τ_{ij}) . En récapitulant, on obtient l'égalité

$$|G| = \underbrace{\prod_{i=1}^r n_i!}_{\text{choix des } \lambda_i} \times \underbrace{(n - \sum_{i=1}^r n_i \ell_i)!}_{\text{choix de } \xi} \times \underbrace{\prod_{i=1}^r \ell_i^{n_i}}_{\text{choix des } \tau_{i,j}}.$$

Puisque G s'interprète comme le stabilisateur de σ sous l'action de S_n sur lui-même par conjugaison, et puisque C s'interprète comme l'orbite de σ pour cette même action, il vient

$$|C| = \frac{n!}{(\prod_{i=1}^{r} n_i!) \cdot (n - \sum_{i=1}^{r} n_i \ell_i)! \cdot (\prod_{i=1}^{r} \ell_i^{n_i})}$$

(b) Supposons tout d'abord que $G \subset A_n$ et montrons que (i), (ii) et (iii) sont satisfaites. Fixons i. Le cycle $C_{i,1}$ commute avec σ ; puisque $G \subset A_n$, la permutation $C_{i,1}$ est paire, ce qui veut dire que la longueur ℓ_i du cycle C_i est impaire. Supposons qu'il existe un indice i avec n_i au moins égal à 2. Écrivons $C_{i1} = (a_1 \dots a_{\ell_i})$ et $C_{i2} = (b_1 \dots b_{\ell_i})$. Le produit $\tau = (a_1b_1)(a_2b_2)\dots(a_{\ell_i}b_{\ell_i})$ est une permutation impaire (car ℓ_i est impaire); par construction, la conjugaison par τ échange C_{i1} et C_{i2} et laisse invariant les autres cycles de la décomposition de σ . On a donc $\tau \sigma \tau^{-1} = \sigma$, ce qui veut dire que $\tau \in G$ et contredit l'hypothèse que $G \subset A_n$. Enfin supposons que $\sum n_i \ell_i < n-1$. Dans ce cas σ a au moins deux points fixes a et b, et (ab) est alors une permutation impaire commutant avec σ , ce qui contredit là encore l'inclusion $G \subset A_n$.

Réciproquement, supposons que (i), (ii) et (iii) sont satisfaites, et montrons que $G \subset A_n$; écrivons C_i au lieu de $C_{i,1}$ pour tout i. Soit τ une permutation telle que $\tau\sigma\tau^{-1} = \sigma$. En reprenant le raisonnement de la première question et en utilisant le fait que les C_i sont de longeurs deux à deux distinctes on voit que $\tau C_i \tau^{-1} = C_i$ pour tout i. Fixons i; si $C_i = (a_1 \dots a_{\ell_i})$ il existe t_i compris entre 1 et ℓ_i tel que $\tau(a_k) = a_{[t_i+k]}$ pour tout k (voir le traitement de la question (a), nous reprenons les notations que nous avons introduites à cette occasion); la restriction de τ au support de C_i coïncide alors avec $C_i^{t_i}$. Par ailleurs le complémentaire de $\coprod \operatorname{Supp}(C_i)$ comprend au plus un point (en vertu de l'hypothèse (iii)), qui est le cas échéant nécessairement fixe par τ . Il s'ensuit que τ est le produit des $C_i^{t_i}$, qui sont tous des permutations paires car chaque C_i est de longueur impaire d'après l'hypothèse (i).

(c) Commençons par une remarque générale. Soit τ appartenant à C et soit H le commutant de τ dans S_n . L'orbite de τ sous l'action de S_n par conjugaison est C, qui a donc pour cardinal n!/|H|; quant à l'orbite de τ sous l'action de A_n par conjugaison, elle est contenue dans C et son cardinal est $|A_n|/|H\cap A_n|=n!/(2|H\cap A_n|)$.

Supposons que (i), (ii) et (iii) soient satisfaites. Dans ce cas pour tout $\tau \in C$ de commutant H dans S_n on a $H \subset A_n$ (car τ a le même type de décomposition que σ , puisqu'il appartient à C). Par conséquent la classe de conjugaison de τ dans A_n a pour cardinal n!/(2|H|) = |C|/2. Comme ceci vaut pour tout élément τ de C, on voit que celle-ci est réunion de deux classes de conjugaison de A_n , chacune de cardinal |C|/2.

Supposons que (i), (ii) et (iii) ne sont pas satisfaites. Dans ce cas G n'est pas contenu dans A_n . La signature induit par conséquent un morphisme surjectif de G vers $\{-1,1\}$, de noyau $G \cap A_n$. Ce dernier est donc d'indice 2 dans G, si bien que

$$\frac{n!}{2|G\cap A_n|} = \frac{n!}{2\frac{|G|}{2}} = \frac{n!}{|G|} = |C|.$$

Ainsi la classe de conjugaison dans A_n de σ est de cardinal |C|, et est donc égale à C toute entière, ce qui achève la démonstration.

Exercice 3.

(a) Soit $g \in G$, et soit ι_g l'automorphisme intérieur correspondant. Soit φ un automorphisme de G. On a pour tout $h \in G$ les égalités

$$\begin{aligned} (\varphi \circ \iota_g \circ \varphi^{-1})(h) &=& \varphi(\iota_g(\varphi^{-1}(h))) \\ &=& \varphi(g\varphi^{-1}(h)g^{-1}) \\ &=& \varphi(g)h\varphi(g)^{-1} \\ &=& \iota_{\varphi(g)}(h). \end{aligned}$$

Par conséquent $\varphi \circ \iota_g \circ \varphi^{-1} = \iota_{\varphi(g)}$; le sous-groupe $\operatorname{Int}(G)$ de $\operatorname{Aut}(G)$ est donc stable par conjugaison dans $\operatorname{Aut}(G)$, c'est-à-dire distingué.

(b) Soit s une section de p. On lui associe d'après le cours le morphisme de Q dans $\operatorname{Aut}(G)$ défini par la formule

$$q \mapsto [g \mapsto u^{-1}(s(q)u(g)s(q)^{-1})].$$

Faisons deux commentaires:

- \diamond comme u est injective elle induit un isomorphisme de G sur u(G); c'est sa réciproque que nous notons u^{-1} ;
- \diamond comme $u(G)=\mathrm{Ker}(p)$ il est distingué dans Γ ; pour tout $g\in G$ l'élément $s(q)u(g)s(q)^{-1}$ appartient donc bien à u(G) et il est dès lors licite de lui appliquer u^{-1} .
- (c) Soit q un élément de Q. Choisissons un antécédent γ arbitraire de q dans Γ . Notons a_{γ} l'automorphisme $g \mapsto u^{-1}(\gamma u(g)\gamma^{-1})$ de G (cette formule a un sens pour les mêmes raisons que celles citées ci-dessus). Nous allons vérifier que sa classe $\pi(a_{\gamma})$ dans $\operatorname{Out}(G)$ ne dépend que de q, et pas de γ . Soit donc δ un autre antécédent de q. Comme $p(\delta) = p(\gamma)$ on a $\delta \gamma^{-1} \in \operatorname{Ker}(p) = u(G)$; il existe donc $h \in G$ tel que $\delta = u(h)\gamma$. On a alors pour tout $g \in G$ les égalités

$$a_{\delta}(g) = u^{-1}(\delta u(g)\delta^{-1})$$

$$= u^{-1}(u(h)\gamma u(g)\gamma^{-1}u(h^{-1}))$$

$$= hu^{-1}(\gamma u(g)\gamma^{-1})h^{-1}$$

$$= \iota_{h}(a_{\gamma}(g)).$$

On a donc $a_{\delta} = \iota_h \circ a_{\gamma}$, si bien que a_{δ} et a_{γ} ont même classe dans $\operatorname{Out}(G)$, comme annoncé.

On a donc construit pour tout élément q de Q un automorphisme extérieur b_q de G caractérisé par le fait que $b_q = \pi(a_\gamma)$ pour tout antécédent γ de q dans Γ . L'application $q \mapsto b_q$ est un morphisme de groupes de Q dans $\mathrm{Out}(G)$. En effet, soient q_1 et q_2 deux éléments de Q; choisissons un antécédent γ_1 de q_1 et un antécédent γ_2 de q_2 . Le produit $\gamma_1\gamma_2$ est alors un antécédent de q_1q_2 . Pour tout élément q de q0 on a

$$\begin{array}{lcl} a_{\gamma_1\gamma_2}(g) & = & u^{-1}(\gamma_1\gamma_2u(g)\gamma_2^{-1}\gamma_1^{-1}) \\ & = & u^{-1}(\gamma_1u(u^{-1}(\gamma_2u(g)\gamma_2^{-1}))\gamma_1^{-1}) \\ & = & u^{-1}(\gamma_1u(a_{\gamma_2}(g))\gamma_1^{-1}) \\ & = & a_{\gamma_1}(a_{\gamma_2}(g)). \end{array}$$

Par conséquent $a_{\gamma_1\gamma_2}=a_{\gamma_1}\circ a_{\gamma_2}$. En appliquant π on obtient l'égalité $b_{q_1q_2}=b_{q_1}\circ b_{q_2}$ ce qu'il fallait démontrer (par abus, on note encore \circ la loi interne de $\operatorname{Out}(G)$).

Si p possède une section s alors s(q) est pour tout q un antécédent de q et on a donc $b_q = \pi(a_{s(q)}) = \pi(\varphi_s(q))$.

(d) Si G est abélien alors $\operatorname{Int}(G)=\{\operatorname{Id}\}$ et $\operatorname{Out}(G)$ s'identifie donc à $\operatorname{Aut}(G)$. L' «action extérieure» $Q\to\operatorname{Out}(G)$ que nous avons construite est dans ce cas une vraie action $Q\to\operatorname{Aut}(G)$, même si p n'a pas de section (et si p a une section s on retrouve l'action induite par s, qui ne dépend donc pas de s – on a vu un exemple de ce phénomène lorsqu'on a étudié le groupe affine en cours).

Terminons cet extercie par une remarque : pour alléger les notations, on pouvait également dire dès le début «on identifie G via u à un sous-groupe de Γ ». Dans ce cas, les formules obtenues sont nettement plus simple. Le morphisme φ_s de Q dans $\operatorname{Aut}(G)$ devient $g \mapsto s(q)gs(q)^{-1}$, et le morphisme a_{γ} devient $g \mapsto \gamma g \gamma^{-1}$.

Exercice 4.

(a) Comme $i: a \mapsto (a, \overline{0})$ est un morphisme injectif de $\mathbb{Z}/m\mathbb{Z}$ dans D, il préserve l'ordre. L'ordre d'un élément (a,0) de D est donc l'ordre de a dans $\mathbb{Z}/m\mathbb{Z}$ (si $a = \overline{z}$, c'est donc $m/(\operatorname{PGCD}(m,z))$; puisque m est impair, cet ordre est impair.

Déterminons maintenant l'ordre d'un élément de D de la forme (a,1). On remarque que

$$(a,1) \cdot (a,1) = (a-a,0) = (0,0).$$

Ainsi (a, 1) est de 2-torsion et comme il n'est pas égal au neutre (0, 0) il est d'ordre 2.

(b) Soit u un automorphisme de D. Posons $H = i(\mathbf{Z}/m\mathbf{Z}) = \mathbf{Z}/m\mathbf{Z} \times \{0\}$; comme i est injectif il induit un isomorphisme de $\mathbf{Z}/m\mathbf{Z}$ sur H dont on note i^{-1} la réciproque Par la question (a), H est l'ensemble des éléments d'ordre impair de D. Comme un automorphisme préserve l'ordre, H est stable sous tout automorphisme u de D; un tel automorphisme u induit donc par restriction un automorphisme r(u) de H, et $u \mapsto r(u)$ est un morphisme de $\mathrm{Aut}(D)$ dans $\mathrm{Aut}(H)$. L'application $u \mapsto i^{-1} \circ r(u) \circ i$ est alors un morphisme de $\mathrm{Aut}(D)$ dans $\mathrm{Aut}(\mathbf{Z}/m\mathbf{Z})$. Or on sait d'après le cours que $\alpha \mapsto (a \mapsto \alpha a)$ définit un isomorphisme de $(\mathbf{Z}/m\mathbf{Z})^{\times}$ sur $\mathrm{Aut}(\mathbf{Z}/m\mathbf{Z})$. Par conséquent il existe un morphisme μ de $\mathrm{Aut}(D)$ dans $(\mathbf{Z}/m\mathbf{Z})^{\times}$ tel que $(i^{-1} \circ r(u) \circ i)(a) = \mu(u)a$ pour tout u et tout a, ce qui signifie exactement que $u(a,0) = (\mu(u)a,0)$.

Soit $\alpha \in (\mathbf{Z}/m\mathbf{Z})^{\times}$ et soit $s(\alpha)$ l'application de D dans D qui envoie (a,b) sur $(\alpha a,b)$. On a pour tout couple $(a_1,b_1),(a_2,b_2)$ d'éléments de D

les égalités

$$s(\alpha)((a_1,b_1)\cdot(a_2,b_2)) = s(\alpha)(a_1+(-1)^{b_1}a_2,b_1+b_2)$$

$$= (\alpha a_1+(-1)^{b_1}\alpha a_2,b_1+b_2)$$

$$= (\alpha a_1,b_1)\cdot(\alpha a_2,b_2)$$

$$= s(\alpha)(a_1,b_1)\cdot s(\alpha)(a_2,b_2).$$

Ainsi $s(\alpha)$ est un endomorphisme du groupe D. Il est immédiat que $s(\alpha_1\alpha_2) = s(\alpha_1) \circ s(\alpha_2)$, et que $s(1) = \operatorname{Id}$. On en déduit que $s(\alpha)$ est pour tout α un automorphisme de D de réciproque $s(\alpha^{-1})$, puis que s est un morphisme de groupes de $(\mathbf{Z}/m\mathbf{Z})^{\times}$ dans $\operatorname{Aut}(D)$. On a par construction $\lambda \circ s = \operatorname{Id}_{(\mathbf{Z}/m\mathbf{Z})^{\times}}$; ainsi s est une section de λ . Son existence même entraîne la surjectivité de λ (pour tout α , l'automorphisme $s(\alpha)$ est un antécédent de α pour λ).

(c) Pour tout $u \in \text{Aut}(D)$ l'élément u(0,1) de D est d'ordre 2, donc de la forme $(\lambda(u),1)$, d'après (a). Nous allons montrer que l'application λ induit un isomorphisme de $\text{Ker}(\mu)$ sur $\mathbf{Z}/m\mathbf{Z}$. Vérifions pour commencer que $\lambda|_{\text{Ker}((\mu)}$ est un morphisme. Soient donc u et v dans $\text{Ker}(\mu)$. On a alors

$$\begin{array}{rcl} (u \circ v)(0,1) & = & u(\lambda(v),1) \\ & = & u((\lambda(v),0) \cdot (0,1)) \\ & = & u(\lambda(v),0) \cdot (\lambda(u),1) \\ & = & (\lambda(v),0) \cdot (\lambda(u),1) \\ & = & (\lambda(u) + \lambda(v),1) \end{array}$$

(l'avant-dernière égalité provient du fait que u appartient à $\operatorname{Ker}(\mu)$, c'està-dire agit trivialement sur H). On a donc bien $\lambda(u \circ v) = \lambda(u) + \lambda(v)$. Montrons que $\lambda|_{\operatorname{Ker}(\mu)}$ est injectif. Soit $u \in \operatorname{Ker}(\mu)$. On a alors pour tout $(a,b) \in D$ les égalités

$$u(a,b) = u((a,0) \cdot (0,b)$$

= $(a,0) \cdot u(0,b)$

(la seconde provenant du fait que $u \in \text{Ker}(\mu)$. On en déduit que u(a,0) = (a,0) pour tout a et $u(a,1) = (a,0) \cdot (\lambda(u),1) = (a+\lambda(u),1)$. Ainsi u est entièrement déterminé par λ , et λ est en conséquence injectif.

Montrons que λ est surjectif. Soit u la conjugaison par (1,0). Comme (1,0) appartient à H qui est abélien, l'automorphisme u agit trivialement sur H; autrement dit, $u \in \text{Ker}(\mu)$. On a par ailleurs les égalités

$$u(0,1) = (1,0) \cdot (0,1) \cdot (-1,0)$$

= (1,1) \cdot (-1,0)
= (2,1).

Par conséquent $\lambda(u) = 2 \in \mathbf{Z}/m\mathbf{Z}$. Mais comme m est impair, 2 engendre $\mathbf{Z}/m\mathbf{Z}$. Par conséquent $\lambda|_{\mathrm{Ker}(\mu)}$ est surjectif.

Esquissons à titre indicatif une autre preuve de la surjectivité de $\lambda|_{\mathrm{Ker}(\mu)}$, qui demande moins de sens divinatoire. D'après les plus haut que s'il

existait u dans $\operatorname{Ker}(\mu)$ tel que $\lambda(u)=1$ on devrait avoir u(a,0)=(a,0) et u(a,1)=(a+1,1) pour tout a. L'idée est donc de vérifier que ces formules définissent bien un morphisme de groupes u de D dans D, ce qui est un peu fastidieux mais sans difficulté. Il est ensuite immédiat que u est bijectif, qu'il appartient à $\operatorname{Ker}(\mu)$ et que $\lambda(u)=1$.

(d) Pour tout $x \in \mathbf{Z}/m\mathbf{Z}$, notons u_x l'unique automorphisme appartenant à $\operatorname{Ker}(\mu)$ dont l'image par λ vaut x. D'après les formules vues plus haut, on a $u_x(a,0)=(a,0)$ et $u_x(a,1)=(a+x,1)$ pour tout a. On dispose d'une suite exacte

$$1 \longrightarrow \mathbf{Z}/m\mathbf{Z} \xrightarrow{x \mapsto u_x} \operatorname{Aut}(D) \xrightarrow{\lambda} (\mathbf{Z}/m\mathbf{Z})^{\times} \longrightarrow 1$$

et d'une section s de λ . La formule

$$(x,\alpha) \mapsto u_x \circ s(\alpha) = (a,b) \mapsto \begin{cases} (\alpha a, 0) & \text{si } b = 0 \\ (\alpha a + x, 1) & \text{si } b = 1 \end{cases}$$
.

induit alors un isomorphisme du produit semi-direct $\mathbf{Z}/m\mathbf{Z} \rtimes_{\psi} (\mathbf{Z}/m\mathbf{Z})^{\times}$ vers $\mathrm{Aut}(D)$, où ψ est caractérisé par le fait que

$$s(\alpha) \circ u_x \circ s(\alpha^{-1}) = u_{\psi(\alpha)(x)}$$

pour tout α et tout x. En appliquant cette égalité de morphismes à (0,1) il vient $(\alpha x,1)=(\psi(\alpha)(x),1)$ pour tout α et tout x. Ainsi ψ envoie α sur la multiplication par α : c'est donc simplement l'isomorphisme canonique de $(\mathbf{Z}/m\mathbf{Z})^{\times}$ dans $\mathrm{Aut}(\mathbf{Z}/m\mathbf{Z})$.

Soit (x, y) un élément de D et soit u la conjugaison par (x, y). On a pour tout $(a, b) \in D$ les égalités

$$u(a,b) = (x,y) \cdot (a,b) \cdot ((-1)^{y+1}x,y)$$

= $(x,y) \cdot (a+(-1)^{b+y+1}x,b+y)$
= $((-1)^y a + x(1+(-1)^{b+1}),b).$

Ce dernier terme vaut $((-1)^y a, 0)$ si b = 0, et $((-1)^y a + 2x, 1)$ si b = 1. Par conséquent, (x, y) est envoyé sur l'automorphisme de D correspondant à l'élément $(2x, (-1)^y)$ de $\mathbf{Z}/m\mathbf{Z} \rtimes_{\psi} (\mathbf{Z}/m\mathbf{Z})^{\times}$.

Comme 2 est inversible modulo m tout élément de $\mathbf{Z}/m\mathbf{Z}$ est de la forme 2x pour $x \in \mathbf{Z}/m\mathbf{Z}$. Le groupe des automorphismes intérieurs de D s'identifie donc à $(\mathbf{Z}/m\mathbf{Z}) \rtimes_{\psi} \{-1,1\} \subset \mathbf{Z}/m\mathbf{Z} \rtimes_{\psi} (\mathbf{Z}/m\mathbf{Z})^{\times} \simeq \operatorname{Aut}(D)$.