1.绪论

渐进分析

指数

If P = NP is proved ..., mathematics would be transformed, because computers could find a formal proof of any theorem which has a proof of reasonable length.

邓俊辉

deng@tsinghua.edu.cn

- S. Cook

$$\mathcal{O}(2^n)$$

❖指数(exponential function): T(n) = aⁿ

$$n^{1000} = \mathcal{O}(1.0000001^n) = \mathcal{O}(2^n)$$

1.0000001ⁿ =
$$\Omega(n^{1000})$$

❖ 这类算法的计算成本增长极快

通常被认为不可忍受

❖从∅(n°)到∅(2ⁿ)

是从 有效算法 到 无效算法 的分水岭

 $\mathcal{O}(2^n)$

❖ 很多问题的∅(2n)算法往往显而易见

然而,设计出0(nc)算法却极其不易

甚至,有时注定地只能是徒劳无功

❖ 更糟糕的是

这类问题要远比我们想象的多得多

. . .

2-Subset

❖ 【问题描述】

S包含n个正整数 , ∑S = 2m

S是否有子集T,满足ΣT = m?

*【选举人制】

各州议会选出的选举人团投票

而不是由选民直接投票

50个州加1个特区,共538票

获 270 张选举人票,即可当选

55	California	11	Indiana	7	Connecticut	4	Idaho
34	Texas	11	Missouri	7	Iowa	4	Maine
31	New York	11	Tennessee	7	Oklahoma	4	New Hampshire
27	Florida	11	Washington	7	Oregon	4	Rhode Island
21	Illinois	10	Arizona	6	Arkansas	3	Alaska
21	Pennsylvania	10	Maryland	6	Kansas	3	Delaware
20	Ohio	10	Minnesota	6	Mississippi	3	D. C.
17	Michigan	10	Wisconsin	5	Nebraska	3	Montana
15	Georgia	9	Alabama	5	Nevada	3	North Dakota
15	New Jersey	9	Colorado	5	New Mexico	3	South Dakota
15	North Carolina	9	Louisiana	5	Utah	3	Vermont
13	Virginia	8	Kentucky	5	West Virginia	3	Wyoming
12	Massachusetts	8	South Carolina	4	Hawaii		538 = ∑

2-Subset

- ※但是...
- **☆ 若共有两位候选人**

是否可能恰好各得 269 票?

❖【直觉算法】

逐一枚举S的每一子集

并统计其中元素的总和

55	California	11	Indiana	7	Connecticut	4	Idaho
34	Texas	11	Missouri	7	Iowa	4	Maine
31	New York	11	Tennessee	7	Oklahoma	4	New Hampshire
27	Florida	11	Washington	7	Oregon	4	Rhode Island
21	Illinois	10	Arizona	6	Arkansas	3	Alaska
21	Pennsylvania	10	Maryland	6	Kansas	3	Delaware
20	Ohio	10	Minnesota	6	Mississippi	3	D. C.
17	Michigan	10	Wisconsin	5	Nebraska	3	Montana
15	Georgia	9	Alabama	5	Nevada	3	North Dakota
15	New Jersey	9	Colorado	5	New Mexico	3	South Dakota
15	North Carolina	9	Louisiana	5	Utah	3	Vermont
13	Virginia	8	Kentucky	5	West Virginia	3	Wyoming
12	Massachusetts	8	South Carolina	4	Hawaii		538 = ∑

2-Subset

❖定理:|2^S| = 2^{|S|} = 2ⁿ

❖ 亦即:直觉算法需要迭代2°轮,并(在最坏情况下)至少需要花费这么多的时间

— 不甚理想!

//严格讲,这只是程序,而不是算法

❖ 还是直觉:应该有更好的办法吧?

❖定理: 2-Subset is NP-complete

一 什么意思?

❖ 意即:就目前的计算模型而言,不存在可在多项式时间内回答此问题的算法

— 就此意义而言,上述的直觉算法已属最优