світло випромінюючий діод SN-HPIR940nm-1W). Значення параметрів, які використовувалися під час розрахунків, наведені в Таблиці 1. Як видно, параметрами, які варіювалися під час моделювання були концентрація бору в базі, її товщина, концентрація домішкового заліза в шарах з дірковою провідністю та температура.

Таблиця 1 — Параметри структур $n^+ - p - p^+$, що використовувалися при моделюванні ВАХ

d_n , мкм	0.5
d_p , мкм	150 ÷ 380
d_{SBF} , мкм	1
N_D , cm ⁻³	10 ¹⁹
N_B , cm ⁻³	$10^{15} \div 10^{17}$
N_{BSF} , cm ⁻³	5×10^{18}
N_{Fe} , cm ⁻³	$10^{10} \div 10^{14}$
T, K	290 ÷ 340
Освітлення	відсутнє, АМ1.5, 940 нм

При моделюванні проводилися розрахунки положення рівня Фермі, які застосовувалися для оцінки просторового розподілу дефектів різного типу.

Зауважимо, що основною метою даного моделювання є створення бази розмічених даних, які в подальшому використовуються для тренування та тестування ГНМ, орієнтованої на оцінку концентрації домішок за величиною фактору неідеальності КСЕ. У зв'язку з цим отримані в результаті моделювання ВАХ можна розділити на декілька наборів.

Наприклад, у випадку темнових ВАХ для створення тренувального набору були проведені симуляції з використанням 4 значень d_p , 9 значень N_B , 11 значень T та 19 значень N_{Fe} , рівномірно розподілених по вказаних у Таблиці 1 діапазонах (для d_p і T використовувалась рівномірність у