Verilog Lab2

Note: Follow the instructions to reach the best clean code.

1-Write Verilog code to convert from binary to gray, write testbensh to test your design

Decimal Equivalent	Binary			Gray Code		
Equivalent	B2	B1	B 0	G2	G1	G0
0	0	0	0	0	0	0
1	0	0	1	0	0	1
2	0	1	0	0	1	1
3	0	1	1	0	1	0
4	1	0	0	1	1	0
5	1	0	1	1	1	1
6	1	1	0	1	0	1
7	1	1	1	1	0	0

2-Implement a Verilog code for 4-bit PISO (parallel to serial), write Testbensh to check result.

3- Implement a Verilog code for 4-bit SIPO (serial to parallel), write Testbensh to check result.

4- Write a Verilog code that implements this state machine. Use the signal or register names and state assignments given on the below graph. Used Testbensh to verify your design.

- 5- Write code this sequence detector by 2 different methods code style and Used mealy. [Sequence = 10110101]
- 5- Write Clock divider by (2, 4, 8, 16) have 4 outputs.
- 6- Write Clock Divider by 3 by two different methods.
- 7- Write Clock Divider by 6.
- 8- Write Synchronous FIFO have (data_width=32,Depth=8).