4.11

Constant force \Rightarrow impulse $T = \int F dt = Ft$ Steady rate \Rightarrow m = btMomentum at t = 0 \circ P(0) = 0 \circ P(t) = (M+m)VWe have T = P(t) - P(0) $\Rightarrow V = \frac{Ft}{M+m} = \frac{Fm}{(M+m)b}$

Problem 3 W- E theorem Ka - Ko = Wao $K_0 = 0$ $K_a = \frac{1}{2} m V_a^2$ Was = mg x height difference = mg (Z-2R) Force diagram at a: WJN Circular motion $mg + N = \frac{mVa^2}{R}$ (*) We want N=nmg $\implies (n+1)mg = \frac{mVa^2}{R} \quad (**)$ The W-E theorem gives = my (z-2R)

-> Va = 2mg (Z-2R) Substitution in (**) gives $(n+1)g = \frac{2g}{R}(Z-2R)$ => Z-2R= R(n+1) = $Z = \frac{R}{2}(n+5)$