

RISC-V IO Virtualization Implementation on X100

Lv 'ZETALOG' Zheng

X100 - RISC-V Virtualization Infrastructure

RISC-V High Performance Core w/ CPU Virtualization

High Performance RISC-V Core

- 64-bit high performance RISC-V processor
- RVA2023 compatible RV64GCVBH
- Spec2k6Int 9.0/GHz 2.5GHz@П2
- Full RVVI.0 support
- SpacemiT IME (Integrated Matrix Extensions), 4-core fusion Al computing power INT8 2.5TOPS 2.5GHz@TI2
- Multi-core, multi-cluster, maximum 64-cores per chip
- CHI bus interface, and multi-die, multi-chip support
- Server spec security, RAS, debug facilities

Full RISC-V Hypervisor Extension Support

- Hypervisor extended S (HS) mode
 - HS-mode CSR, time delta HPM
 - Guest page/virtual instruction fault/HSmode ECALL
 - VSEI/VSTI/VSSI
- Virtualization Mode (V)
 - Virtualized supervisor (VS) mode/Virtualized user (VU) mode
 - VS-mode background CSR
 - ECALL from VS-mode/VU-mode
- Address translations
 - hgatp pointing to G-stage translation table
 - vsatp pointing to VS-stage translation table
 - PTW/TLB with GPA support
- Instructions
 - HS-mode system barrier
 - Guest memory access

RISC-V IO Virtualization Architecture

RISC-V IO Virtualization

IO Virtualization Solutions

- Community present condition
 - S2 direct DMA access in guest OS
 - VFIO supports PCI and IOMMU
 - IOMMU is a VFIO building block to create S2 remapping of VFIO device IO regions (VFIO_IOMMU_MAP/UNMAP_DMA)
 - VFIO_PCI binds SR-IOV virtual function to guest OS
 - MSI based IRQ virtualization
 - /dev/kvm setup AIA attributes
 - Associate KVM eventfd/irqfd with AIA VS interrupt file using architecture specific hooks
- Community future trends
 - KVM IRQ Bypass
 - S1+S2 support
 - VirtIO Data Path Acceleration (vDPA)
 - Guest OS owns PC, S1 tables, pointers in PC, S1 PPNs should exhibit implicit S2 translations

AIA Applications

- AIA v1.0 compliant
 - Major IRQ priority
 - Virtual interrupt, VTI
 - **GEILEN** >= 8
 - WSI and MSI support
 - 1023 APLIC interrupt sources
 - 2048 IMSIC interrupt sources
- Prioritized platform IRQs:
 - RAS CE, RAS NE, NMI, debug and trace, etc.
- MSI support
- PCle interrupt routing
- IRQ virtualization and remapping
- Interrupt domain
- GSI/IPI support

IOMMU Applications

- IOMMU v1.0 Compliant
 - 20-bit DDI, 16-bit PDI, 44-bit DMA
 - Sv39/Sv48 S1 + Sv39x4 Sv48x4 S2 support
 - PCIe ATS/T2GPA/PRI support
 - MSI flat support
 - IOPMP/PMA check
 - Svpbmt/Svnapot support
- Interrupt remapping and virtualization
- DMA remapping, memory protection
- Pointer-is-a-Pointer in heterogenous computing (accelerators)
- Nested address translation in Guest OS
- Translation Cache in PCIe device
- Demand Paging from PCIe device

IRQ Virtualization Support inside of X100 (X100 AIA)

X100 AIA - RISC-V Advance Interrupt Architecture

AIA Register Models

- Wired Interrupt Pending
 - xip bits wired from real hardware interrupt lines
- Interrupt Filtering (xvien=0)
 - xip bits delegated from lower privileged level
 - Aliased in xvip bits
- Virtual Interrupts (xvien=1)
 - Invisibly stored in xvipn bits when xvien=0
 - Non-aliased bits in xvip, aliased in xvipn bits
- Virtual Trap Interrupt (VTI)
 - Used to save registers for virtual machines
 - Priority specified by DPR rules
- Configurability
 - SUPER_INT_MASK/HYPER_INT_MASK: mutal exclusive platform specific major interrupts
 - VIRT_INT_MASK: platform specific major interrupts that can support virtual interrupt register model

SUPER_INT_MASK	SUPER_INT_MASK/HYPER_INT_MASK: mutual exclusive	
HYPER_INT_MASK		
VIRT_INT_MASK	VIRT_INT_MASK: S/	VS specific, M/HS invisible virtual interrupt
Interrupt filtering: xvien=0		m hvip: m hvip alias bit of m hip when m hvien=0
Virtual interrupt: xvien=1		m hvie: s vsie writeable bit when m hvien=1
		m hvipn: m hvip non-alias bit when m hvien=1

AIA/IMSIC/APLIC Verification

- UT level test benches
 - AIA (in-core modules including MSI write port)
 - Fully randomizable, checkable
 - APLIC domain
 - Fully randomizable, checkable
- ST level test benches
 - IMSIC (include AXI MSI write port)
 - AIA + IMSIC + APLIC

IO Virtualization Support outside of X100 (T100)

T100 IOMMU - IO Virtualization Applications

IOMMU IOATS/IOATC Module

IOATS

- CFG cache: 4-way set associative
- DC+PC transaction information
- PTW cache: 4-way set associative
- S1/S2-L0/1/2/3 walk cache
- DTI interface support

IOATC

- Micro TLB: fully associative
- Main TLB: 4-way set associative
- S1+S2 nested translation
- DTI interface support

IOMMU Verification (System-Verilog)

- Page generator
 - DDT/PDT/S1 PT/S2 PT/MSI PT
- Community reference model integration
 - DTI based checker
- Randomizable stimulator
 - DDT level/PDT level
 - S1 mode/S2 mode/S1 granularity/S2 granularity
 - IOVA/IOPA/RWXU
 - Svpbmt/Svnapot
- Direct cq/fq/pq case

IOMMU Validation (System-C)

- Linux Kernel Driver
 - DMA request via DPI-C
 - DUT accesses programmed configuration tables, page tables, queues via DPI-C
 - IOMMU registers programmed via DPI-C
 - DUT memory accesses are monitored and validated
- RIVOS Reference Model
 - DMA/ATS request via DPI-C
 - DUT accesses programmed configuration tables, page tables, queues via DPI-C
 - IOMMU registers programmed via DPI-C
 - IOMMU register contents validated w/ reference model
 - DUT memory contents validated w/ reference model

Community Technical Leadership

- Specification clarification
 - PCIe ATS related ambiguity
 - A/D bit ambiguity
- Reference model correction
 - PCIe TLP v.s. PCIe DTI TB requirement
 - Fault type/value details
- Usage model discussion
 - EN_PRI check
 - Qemu MSI detection
 - DMA_MASK restriction

FPGA Demonstrations

IO Virtualization Implementations

X100 FPGA Implementations

- S1 Demo
 - IOMMU+DMAC
- S2 Demo
 - IOMMU+PCle+NVMe+SR-IOV

```
root@buildroot:~# lspci
00:00.0 PCI bridge: Synopsys, Inc. DWC_usb3 / PCIe bridge (rev 01)
01:00.0 Non-volatile memory controller: Dapustor Corporation NVMe SSD Controller DPU600 root@buildroot:-# nvme virt-mgmt /dev/nvme0 -c 1 -r 0 -n 14 -a 8 success, Number of Resources allocated:0xe root@buildroot:-# nvme virt-mgmt /dev/nvme0 -c 1 -r 1 -n 14 -a 8 success, Number of Resources allocated:0xe root@buildroot:-# nvme virt-mgmt /dev/nvme0 -c 1 -a 9 success, Number of Resources allocated:0xe root@buildroot:-# echo 1 > /sys/class/nvme/nvme0/device/sriov_numvfs [ 328.526065] pci 0000:01:00.1: [le3b:0600] type 00 class 0x010802 pci 0000:01:00.1: enabling Extended Tags [ 328.534495] nvme 0000:01:00.1: Adding to iommu group 3 [ 328.570168] domain alloc 4 [ 328.570168] nvme nvme1: pci function 0000:01:00.1 nvme nvme1: pci function 0000:01:00.1 [ 328.599028] nvme nvme1: pci function 0000:01:00.1 [ 328.599028] nvme nvme1: 1/0/0 default/read/poll queues [ 328.706980] nvme1n1: p1 root@buildroot:-# lspci [ 00:00.0 Non-volatile memory controller: Dapustor Corporation NVMe SSD Controller DPU600 01:00.1 semblidge: synopsys, Inc. DwC_usb3 / PcIe bridge (rev 01) 01:00.1 Non-volatile memory controller: Dapustor Corporation NVMe SSD Controller DPU600 01:00.1 semblidge: ## DPU600 01:00.1 semblid
```

```
run init for debuging based on ramdisk ...
    ~ # ls /sys/class/dma
dmaOchanO dmaOchan11
                                                                                                                               dma0chan14 dma0chan3
                                                                                                                                                                                                                                                               dma0chan6
                                                                                                                                                                                                                                                                                                                              dma0chan9
     dma0chari1 dma0chari12 dma0chari15 dma0chari4
     dma0chan10 dma0chan13 dma0chan2
   ~ # cd /sys/module/dmatest/parameters/
/sys/module/dmatest/parameters # echo 1 > iterations
/sys/module/dmatest/parameters # echo 1 > iterations
/sys/module/dmatest/parameters # echo 1 > norandom
/sys/module/dmatest/parameters # echo 1.024 > transfer_size
/sys/module/dmatest/parameters # echo dmaOchanO > channel
[ 131.217454] dmatest: Added 1 threads using dmaOchanO
/sys/module/dmatest/parameters # echo 1 > run
[ 131.246057] dmatest: Started 1 threads using dmaOchanO
/sys/module/dmatest/parameters # [ 131.263895] iommu: map: iova 0xffffc000 pa 0x0000000004f88000 size 0x4000
[ 131.273882] iommu: map: iova 0xffff8000 pa 0x00000000004f8c000 size 0x4000
[ 131.282506] iommu: map: iova 0xffff7000 pa 0x00000000014f4000 size 0x4000
[ 131.300534] dmatest: dmaOchanO-copyO: summary 1 tests, 0 failures 33.71 iops 33 KB/s (0)
                 70.017781 pci-host-generic 30000000.pci: host bridge /soc/pci@30000000 ranges:
70.020960 pci-host-generic 30000000.pci: IO 0x00030000000.0x000300ffff -> 0x00000000000
70.023007 pci-host-generic 30000000.pci: MEM 0x0040000000..0x007ffffffff -> 0x0040000000
70.024489 pci-host-generic 30000000.pci: MEM 0x0040000000..0x007ffffffff -> 0x0040000000
70.027333 pci-host-generic 30000000.pci: MEM 0x040000000..0x07ffffffff -> 0x0040000000
70.043876 pci-host-generic 30000000.pci: ECAM at [mem 0x30000000-0x3fffffff] for [bus 00-ff]
70.043876 pci-host-generic 30000000.pci: PCI host bridge to bus 0000:00
70.045081 pci-bus-generic 30000000.pci: PCI host bridge to bus 0000:00
70.045525 pci-bus 0000:00: root bus resource [bus 00-ff]
70.046809 pci_bus 0000:00: root bus resource [in 0x0000-0xffffffff]
70.046873 pci_bus 0000:00: root bus resource [mem 0x40000000-0xffffffff]
70.046873 pci_bus 0000:00: root bus resource [mem 0x40000000-0xfffffffff]
70.134201 pci 0000:00:00.0: [la3b:0600] type 00 class 0x050000 conventional PCI endpoint pci 0000:00:01.0: BAR 0 [mem 0x00000000-0x0000ffff 64bit]
70.152726 pci 0000:00:01.0: BAR 0 [mem 0x000000000-0x40000fff 64bit]: assigned nvme nvme0: pci function 0000:00:01.0
70.507535 nvme nvme0: pci function 0000:00:01.0
70.507535 nvme nvme0: pci function 0000:00:01.0
70.0000:01.0: enabling device (0000 -> 0002)
70.111146 printk: legacy console [ttys0] disabled
```


THANK YOU!

SpacemiT – High Performance RISC-V Silicon

spacemit.com

