Computer Engineering Technology Introduction to Boolean Algebra

Learning Expectation Evaluate boolean expressions.

Boolean algebra is a branch of math used to process and manipulate binary information. Binary information is anything that can be described using two values (1 or 0, on or off).

Why is it useful?

We can use boolean algebra to design, simplify and help us predict the output from digital circuits – circuits inside your computer made using logic gates that process digital (on/off) electric signals.

Truth Table

We will learn how to perform operations on boolean values (1 or 0).

A truth table shows the relationship between the input values and the result (output) of a boolean operator or function on the input values.

Boolean Operators

Not

Input	Output	
x	\bar{x}	
1	0	
0	1	

And True when both x and y are true

And is known as the boolean product: xy, x * y

Inputs		Output	
x	y	xy	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

Or True when at least one of x and y are true

And is known as the boolean sum: x + y

Inputs		Output	
x	y	x + y	
1	1	1	
1	0	1	
0	1	1	
0	0	0	

Andy Zhang

Feb 6 2023

Name:

Date:

Operation Precedence

Just like in math, operations are completed from left to right in the following order:

Brackets Not And Or

	Inputs				Output
х	у	Z	!y	(!y)z	$x + \bar{y}z$
1	1	1	0	0	1
0	1	1	0	0	0
1	0	1	1	1	1
0	0	1	1	1	1
1	1	0	0	0	1
0	1	0	0	0	0
1	0	0	1	0	1
0	0	0	1	0	0

Practice Determine the output for each boolean expression.

In English	х	0	0	1	1
	у	0	1	0	1
Always true	$x + \bar{x}$	1	1	1	1
Always false	$x\bar{x}$	0	0	0	0
x and not y	$x\bar{y}$	0	0	1	0
XOR	$x\bar{y} + \bar{x}y$	0	1	1	0
NOR	$\overline{(x+y)}$	1	0	0	0
NOR	$\bar{x}\bar{y}$	1	0	0	0
Equality	$xy + \bar{x}\bar{y}$	1	0	0	1
NAND	$\overline{(xy)}$	1	1	1	0
NAND	$\bar{x} + \bar{y}$	1	1	1	0
if y then x	$x + \bar{y}$	1	0	1	1
if x then y	$y + \bar{x}$	1	1	0	1
Equality	$(\bar{x}+y)(x+\bar{y})$	1	0	0	1