## 4.3 1次関数と図形

## 図形の面積の変化について調べてみよう

目標:図形の辺上を動く点によってできる図形の面積の変化を,1次関数の式やグラフで表すことができる。

- 調べてみよう ―

右の図の長方形 ABCD で, 点 P は A を出発して, 辺上を点 P が A から xcm 動いたときの  $\triangle$  APD の 面積yは、どのように変化するでしょうか?

x: 点 P の移動距離

y: △ APD の面積



- 考えよう ―

点 P が動くとき、 $\triangle$  ADP の面積はどのように変化するだろう。

STEP1: 点 P が、AB 上にあるとき、BC 上にあるとき、CD 上にあるとき、 $\triangle ADP$  は、どのような形になる か、概形を下の図1~図3に描きましょう。

STEP2: △ADP の面積がどのように変化するか、予想してみましょう。

**STEP3:** STEP1 のとき, y を x の式で表してみましょう。(図の下に書く)



4cm D Α C В



図1 点P が AB 上にあるとき 図2 点P が BC 上にあるとき 図3 点P が CD 上にあるとき

予想:

式:

式:

式:

**STEP4:**  $\triangle$ ADP の面積の変化の様子をグラフに書き込んでみましょう。



STEP5: 1~4の結果から、考えたことを話し合って書き留めておきましょう。

## 振り返り

目標 図形の辺上を動く点によってできる図形の面積の変化を, 1 次関数の式やグラフで表すことができる。自分の理解度がどれに当てはまるか,近いものを○で囲み,その理由を書きましょう。

| 自己評価 | 内容                                           |
|------|----------------------------------------------|
| 4    | xと $y$ の関係を式グラフに描くことができた $(STEP4)$           |
| 3    | xと $y$ の関係を式で表すことができた $(STEP3)$              |
| 2    | 点 P が動くことによる面積の変化を捉えることができた。(STEP1~2)        |
| 1    | 点 P によって,△ADP どのように変化するか図に書き込むことができた。(STEP1) |