Aula 2 - Introdução ao tidyverse

Table of contents

1	Aula 2	1
2	Bibliotecas	2
3	Funções de R base úteis	2
4	Introdução ao tidyverse	4
	4.0.1 Selecionar colunas com select()	4
	4.0.2 Filtrar colunas com filter()	
	4.0.3 Criar colunas com mutate(), agrupamento com group(), arredondamento	
	$\operatorname{com} \operatorname{round}() \dots \dots$	10
	4.1 Alterando a forma do dataframe com pivot_longer e _wider()	13
5	Estudo de caso - Vulcões do Tidytuesday	14
	5.1 select()	
	5.2 filter()	
	5.3 mutate()	
	5.4 Count e arrange()	
	5.5 Group_by ()	

1 Aula 2

Dr. Gabriel Bertolini

 $2^{\rm o}$ semestre 2023 - PPGGEO UFRGS

Oficina de programação

Aula introdutória sobre tidyverse.

2 Bibliotecas

Função install.packages pode ser usada para baixar arquivos do CRAN - pacotes da comunidade "oficiais" que estão alinhados as praticas e estilo de programação padronizadas do R. Pacotes do github pode ser instalados, utilizando uma função do pacote devtools: devtools::install.github("link_do_github_exemplo:gabertol/ztR")

os pacotes só precisam ser instalados uma vez, e carregados sempre que necessário usando a função library().

```
#install.packages("tidyverse") # Instalar se necessário
  library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
       1.1.1
                   v readr
                                2.1.4
v forcats 1.0.0
                                1.5.0
                    v stringr
v ggplot2 3.4.2
                   v tibble
                               3.2.1
v lubridate 1.9.2
                    v tidyr
                                1.3.0
v purrr
           1.0.1
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

3 Funções de R base úteis

```
vetor<-c(1.1,4.2,2.9,9,1,4,5,0.0001,NA)

# média
mean(vetor,na.rm=TRUE) #média

[1] 3.400012

# desvio padrão
sd(vetor)</pre>
[1] NA
```

```
# minimo
  min(vetor)
[1] NA
  # maximo
  max(vetor)
[1] NA
  # extensão
  length(vetor)
[1] 9
  # cria sequencia de valores
  A<-seq(from=pi,
      to=pi^2,
      by=pi/4)
  length(A)
[1] 9
  # gerador de números com distribuição normal
  PER<-rnorm(n=1000000, mean=350, sd=5)
  mean(PER)
[1] 350.0049
  sd(PER)
[1] 4.999833
```

```
# gerador de numeros randomicos
rep(c("A","B","C"), 2)
[1] "A" "B" "C" "A" "B" "C"
```

4 Introdução ao tidyverse

A biblioteca guarda-chuva tidyverse inclui uma serie de pacotes, cada uma para seu fim. Por hora, vamos explorar o pacote dplyr que trata de manipulação básica de bancos de dados. Para isso, vamos primeiramente importar um banco de dados. Para importar, vamos usar a função read.csv

```
BD<-read.csv("./data/geoquimica_granito.csv")

# Roda o objeto no console
#BD

#Abre tabela estilo excel/ selecionar o objeto com mouse e apertar F2 é a mesma coisa
#view(BD)

BD<-BD %>% as_tibble() # tibble é um tipo particular de dataframe do tidyverse, que facil
```

Trata-se de um banco de dados de XXXX et al. Aqui vamos usar uma série de funções do dplyr e tidyr para operações nesse banco de dados.

4.0.1 Selecionar colunas com select()

```
# Selecionar algumas colunas
 # Usar função names() para examinar quais colunas o banco tem
 names(BD) # o banco tem 117 colunas, vamos selecionar algumas colunas
                          " X "
[1] "X.1"
                                               "Tectonic_setting"
[4] "Location_notes"
                          "Pluton"
                                              "Colour"
[7] "Symbol"
                          "Size rel"
                                              "Size"
[10] "SubGroup"
                         "Group"
                                              "DebonPQ"
[13] "TASMiddlemostPlut" "Villaseca"
                                              "QANOR"
[16] "LaRoche"
                         "Geol_unit_notes"
                                              "Rock_type_notes"
```

```
[19] "Ref"
                            "Age"
                                                  "Latitude"
 [22] "Longitude"
                            "Si02"
                                                  "Ti02"
                            "FeOt"
                                                  "Mn0"
 [25] "A1203"
 [28] "MgO"
                            "CaO"
                                                  "K20"
                            "P205"
 [31] "Na20"
                                                  "H20"
 [34] "H2Ot"
                            "H20.MINUS"
                                                  "LOI"
                                                  "B"
 [37] "Li"
                            "Be"
                            "V"
                                                  "Cr"
 [40] "Sc"
 [43] "Ni"
                            "Cu"
                                                  "Zn"
                            "Sr"
                                                  "Y"
 [46] "Rb"
 [49] "Zr"
                            "Nb"
                                                  "Cs"
 [52] "Ba"
                            "La"
                                                  "Ce"
 [55] "Pr"
                            "Nd"
                                                  "Sm"
 [58] "Eu"
                            "Gd"
                                                  "Tb"
 [61] "Dy"
                                                  "Er"
                            "Ho"
 [64] "Tm"
                            "Yb"
                                                  "Lu"
 [67] "Hf"
                            "Ta"
                                                  "Pb"
 [70] "Th"
                            "U"
                                                  "Co"
                            ''W''
 [73] "Mo"
                                                  "Ga"
 [76] "Ge"
                            "As"
                                                  "In"
                            "Sb"
 [79] "Sn"
                                                  "Cd"
 [82] "Q"
                            "C"
                                                  "0r"
 [85] "Ab"
                            "An"
                                                  "Ne"
 [88] "Ns"
                            "Ks"
                                                  "Di"
 [91] "Wo"
                            "Hy"
                                                  "01"
                                                  "Pf"
 [94] "I1"
                            "Tn"
 [97] "Ru"
                            "Ap"
                                                  "Sum_CIPW"
[100] "Orthoclase"
                            "Albite"
                                                  "Anorthite"
[103] "Quartz"
                            "Apatite"
                                                  "Ilmenite"
[106] "Biotite"
                            "Amphibole"
                                                  "Corundum"
                                                  "P"
[109] "Rest"
                            "sum_meso"
                            "Ti"
[112] "K"
                                                  "Cr203"
[115] "A.NK"
                            "A.CNK"
                                                  "K20.Na20"
```

BD %>% # reparar o uso do comando pype esse codigo significa select(BD,SiO2:Cd)- as funçõ select(SiO2:Cd) # selecionar elementos quimicos - SiO2 até Cd

```
# A tibble: 3,050 x 59
SiO2 TiO2 Al2O3 FeOt MnO MgO CaO K2O Na2O P2O5 H2O H2Ot
<dbl> > dbl> <dbl> Na2O P2O5 Na
```

```
2 69.6 0.709 14.9 4.19 0.0540 1.63
                                       1.44 5.02 2.22 0.22098
                                                                    NA
                                                                          NA
3 70.6 0.571 15.3 2.82 0.0532 1.33
                                       1.20 5.60 2.33 0.197212
                                                                    NA
                                                                          NA
4 70.6 0.478 15.7 2.51 0.0407 0.978 1.31 5.28 2.88 0.2001758
                                                                    NA
                                                                          NA
5 70.7 0.532 15.3 2.54 0.0609 1.21
                                       1.24 5.57 2.64 0.2268257
                                                                    NA
                                                                          NA
                                       1.48 5.33 2.56 0.1863152
6 71.0 0.484 15.5 2.47 0.0396 1.01
                                                                    NA
                                                                          NA
7 72.4 0.470 14.3 2.68 0.0422 1.03
                                       1.09 5.05 2.75 0.2026448
                                                                          NA
8 73.2 0.428 14.4 2.40 0.0605 0.769 1.06 5.04 2.46 0.2184707
                                                                    NA
                                                                          NA
9 73.2 0.363 14.4 2.25 0.0211 0.678
                                       1.10 5.05 2.86 0.1591542
                                                                    NA
                                                                          NA
10 74.8 0.530 13.5 2.73 0.0472 1.18
                                       1.43 3.28 2.30 0.1812674
                                                                    NA
                                                                          NA
# i 3,040 more rows
# i 47 more variables: H2O.MINUS <dbl>, LOI <chr>, Li <dbl>, Be <dbl>, B <dbl>,
   Sc <dbl>, V <chr>, Cr <dbl>, Ni <dbl>, Cu <dbl>, Zn <dbl>, Rb <dbl>,
   Sr <dbl>, Y <dbl>, Zr <dbl>, Nb <dbl>, Cs <dbl>, Ba <dbl>, La <chr>,
   Ce <dbl>, Pr <chr>, Nd <chr>, Sm <chr>, Eu <chr>, Gd <chr>, Tb <dbl>,
   Dy <dbl>, Ho <dbl>, Er <dbl>, Tm <dbl>, Yb <dbl>, Lu <dbl>, Hf <dbl>,
   Ta <dbl>, Pb <dbl>, Th <chr>, U <dbl>, Co <dbl>, Mo <chr>, W <dbl>, ...
```

BD %>%
select(X,Tectonic_setting,Latitude,Longitude,Albite:Corundum) %>% # selecionar colunas X
select(-X) # usar - pra retirar a variavel

A tibble: 3,050 x 11

	Tectonic_	setting	${\tt Latitude}$	Longitude	Albite	${\tt Anorthite}$	${\tt Quartz}$	Apatite	Ilmenite
	<chr></chr>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	OROGENIC	BELT	NA	NA	22.5	7.11	27.2	0.680	0.786
2	OROGENIC	BELT	NA	NA	18.8	5.68	35.1	0.522	0.673
3	OROGENIC	BELT	NA	NA	19.7	4.68	33.6	0.465	0.542
4	OROGENIC	BELT	NA	NA	24.4	5.19	31.4	0.472	0.454
5	OROGENIC	BELT	NA	NA	22.4	4.65	32.0	0.535	0.506
6	OROGENIC	BELT	NA	NA	21.7	6.11	33.0	0.440	0.460
7	OROGENIC	BELT	NA	NA	23.3	4.07	35.3	0.478	0.446
8	OROGENIC	BELT	NA	NA	20.8	3.84	37.9	0.516	0.407
9	OROGENIC	BELT	NA	NA	24.2	4.39	35.3	0.376	0.344
10	OROGENIC	BELT	NA	NA	19.5	5.91	46.2	0.428	0.504

[#] i 3,040 more rows

[#] i 3 more variables: Biotite <dbl>, Amphibole <dbl>, Corundum <dbl>

4.0.2 Filtrar colunas com filter()

```
# Filtrar tectonic_setting
  unique(BD$Tectonic_setting) # ver valores unicos de Tectonic_setting para saber qual varia
[1] "OROGENIC BELT"
                              "INTRAPLATE VOLCANICS"
[3] "ARCHAEAN CRATONS"
                              "CONVERGENT MARGIN"
[5] "OCEANIC PLATEAU"
                              "OPHIOLITE"
[7] "RIFT VOLCANICS"
                              "CONTINENTAL FLOOD BASALT"
[9] "OCEAN ISLAND"
  BD %>%
    select(X,Tectonic_setting,Latitude,Longitude,Albite:Corundum) %>% # reparar funções enca
    filter(Tectonic_setting=="OCEANIC PLATEAU") # filtrando somente o Oceanic Plateau
# A tibble: 13 x 12
  Χ
            Tectonic_setting Latitude Longitude Albite Anorthite Quartz Apatite
                                                          <dbl> <dbl>
  <chr>
            <chr>>
                                <dbl>
                                         <dbl>
                                                <dbl>
                                                                        <dbl>
1 46143
            OCEANIC PLATEAU
                                 12.5
                                           -70
                                                 37.3
                                                           8.51 33.3
                                                                        0.135
2 46135
            OCEANIC PLATEAU
                                           -70
                                                 32.7
                                                          9.14 6.31
                                 12.5
                                                                        0.439
3 46142
            OCEANIC PLATEAU
                                           -70
                                                 45.7
                                                         15.0 22.7
                                12.5
                                                                        0.304
                                                          24.6 19.9
4 46139
            OCEANIC PLATEAU
                                 12.5
                                           -70
                                                 31.2
                                                                        0.208
5 46140
            OCEANIC PLATEAU
                                           -70
                                                 37.4
                                                         17.8 22.7
                                12.5
                                                                        0.283
6 46134
            OCEANIC PLATEAU
                                12.5
                                           -70
                                                 36.3
                                                          23.2
                                                                8.53 0.408
7 9157-ARU~ OCEANIC PLATEAU
                                           -70
                                                         16.1 21.2
                                12.5
                                                 39.1
                                                                        0.337
8 10446-A10 OCEANIC PLATEAU
                                -7
                                           156
                                                 31.9
                                                         13.7 14.9 0.378
                                                          2.22 37.5 0.260
9 10446-A11 OCEANIC PLATEAU
                                -7
                                           156
                                                 50.6
10 10446-A6 OCEANIC PLATEAU
                                -7
                                                          17.1 22.6 0.378
                                           156
                                                 32.5
11 10446-A7 OCEANIC PLATEAU
                                -7
                                           156
                                                 31.6
                                                          17.7 15.9
                                                                        0.378
                                -7
12 10446-A8 OCEANIC PLATEAU
                                           156
                                                 34.6
                                                          20.2 18.0
                                                                        0.378
13 10446-A9 OCEANIC PLATEAU
                                 -7
                                                                 20.0
                                           156
                                                 29.1
                                                          21.1
                                                                        0.401
# i 4 more variables: Ilmenite <dbl>, Biotite <dbl>, Amphibole <dbl>,
   Corundum <dbl>
  BD %>%
    filter(Tectonic_setting=="CONTINENTAL FLOOD BASALT",
           SiO2<60,
           Si02>50,
           TiO2>1) # filtrar varias colunas - separadas por ,
```

```
# A tibble: 13 x 117
    X.1 X
                   Tectonic_setting Location_notes Pluton Colour Symbol Size_rel
   <int> <chr>
                                                   <chr> <chr>
                                                                  <int>
                                                                           <dbl>
                   <chr>
                                    <chr>
 1 1952 201163
                   CONTINENTAL FLO~ NORTH ATLANTI~ Skye
                                                                             1.6
                                                          honey~
                                                                      2
2 1953 201168
                   CONTINENTAL FLO~ NORTH ATLANTI~ Skye
                                                          honey~
                                                                      2
                                                                             1.6
   1955 85457
                   CONTINENTAL FLO~ NORTH ATLANTI~ Skye
                                                                      2
                                                          honey~
                                                                             1.6
   1957 85452
                   CONTINENTAL FLO~ NORTH ATLANTI~ Skye
                                                                      2
                                                                             1.6
                                                          honey~
5
   1958 85453
                   CONTINENTAL FLO~ NORTH ATLANTI~ Skye
                                                          honey~
                                                                      2
                                                                             1.6
6
  1959 85455
                   CONTINENTAL FLO~ NORTH ATLANTI~ Skye
                                                                      2
                                                                             1.6
                                                          honey~
7
   1960 85456
                   CONTINENTAL FLO~ NORTH ATLANTI~ Skye
                                                          honey~
                                                                      2
                                                                             1.6
                   CONTINENTAL FLO~ ETENDEKA PROV~ Etane~ honey~
8
   2055 119793
                                                                      2
                                                                             1.6
9 2056 119795
                   CONTINENTAL FLO~ ETENDEKA PROV~ Etane~ honey~
                                                                      2
                                                                             1.6
                   CONTINENTAL FLO~ ETENDEKA PROV~ Etane~ honey~
                                                                      2
10 2057 99730
                                                                             1.6
                   CONTINENTAL FLO~ ETENDEKA PROV~ Messum honey~
11 2111 8564-MC4
                                                                      2
                                                                             1.6
                   CONTINENTAL FLO~ ETENDEKA PROV~ Messum honey~
12 2113 43064
                                                                      2
                                                                             1.6
13 2124 8572-MC44 CONTINENTAL FLO~ ETENDEKA PROV~ Messum honey~
                                                                      2
                                                                             1.6
# i 109 more variables: Size <dbl>, SubGroup <chr>, Group <chr>, DebonPQ <chr>,
   TASMiddlemostPlut <chr>, Villaseca <chr>, QANOR <chr>, LaRoche <chr>,
   Geol_unit_notes <chr>, Rock_type_notes <chr>, Ref <chr>, Age <chr>,
   Latitude <dbl>, Longitude <dbl>, SiO2 <dbl>, TiO2 <dbl>, Al2O3 <dbl>,
   FeOt <dbl>, MnO <dbl>, MgO <dbl>, CaO <dbl>, K2O <dbl>, Na2O <dbl>,
   P205 <chr>, H20 <dbl>, H20t <dbl>, H20.MINUS <dbl>, L0I <chr>, Li <dbl>,
   Be <dbl>, B <dbl>, Sc <dbl>, V <chr>, Cr <dbl>, Ni <dbl>, Cu <dbl>, ...
  BD %>%
    filter(Tectonic_setting %in% c("OROGENIC BELT",
                                   "INTRAPLATE VOLCANICS",
                                   "ARCHAEAN CRATONS",
                                    "CONVERGENT MARGIN")) # filtrar pelos strings usando %in%
# A tibble: 2,642 x 117
    X.1 X
              Tectonic_setting Location_notes
                                                   Pluton Colour Symbol Size_rel
   <int> <chr> <chr>
                                <chr>
                                                   <chr> <chr>
                                                                  <int>
                                                                           <dbl>
       1 CRO3 OROGENIC BELT
                                //////Peninsula~ Cape ~ brown4
                                                                             1.6
1
                                                                     16
2
       2 BB202 OROGENIC BELT
                                //////Peninsula~ Cape ~ brown4
                                                                     16
                                                                             1.6
      3 CBO2 OROGENIC BELT
 3
                                //////Peninsula~ Cape ~ brown4
                                                                     16
                                                                             1.6
      4 HB02 OROGENIC BELT
                                //////Peninsula~ Cape ~ brown4
                                                                     16
                                                                             1.6
      5 CRO1 OROGENIC BELT
5
                                //////Peninsula~ Cape ~ brown4
                                                                     16
                                                                             1.6
                                //////Peninsula~ Cape ~ brown4
6
      6 LL01 OROGENIC BELT
                                                                     16
                                                                             1.6
```

//////Peninsula~ Cape ~ brown4

//////Peninsula~ Cape ~ brown4

16

16

1.6

1.6

7

8

7 MP21 OROGENIC BELT

8 OKO7 OROGENIC BELT

```
9
                               //////Langebaan~ Cape ~ brown4
                                                                            1.6
      9 LGO5 OROGENIC BELT
                                                                    16
                               //////Peninsula~ Cape ~ brown4
10
     10 BB201 OROGENIC BELT
                                                                     16
                                                                            1.6
# i 2,632 more rows
# i 109 more variables: Size <dbl>, SubGroup <chr>, Group <chr>, DebonPQ <chr>,
   TASMiddlemostPlut <chr>, Villaseca <chr>, QANOR <chr>, LaRoche <chr>,
   Geol_unit_notes <chr>, Rock_type_notes <chr>, Ref <chr>, Age <chr>,
   Latitude <dbl>, Longitude <dbl>, SiO2 <dbl>, TiO2 <dbl>, Al2O3 <dbl>,
   FeOt <dbl>, MnO <dbl>, MgO <dbl>, CaO <dbl>, K2O <dbl>, Na2O <dbl>,
   P205 <chr>, H20 <dbl>, H20t <dbl>, H20.MINUS <dbl>, L0I <chr>, ...
  BD %>%
    filter(Tectonic_setting== "OROGENIC BELT" & SiO2>60) # filtrar condicionalmente
# A tibble: 1,370 x 117
    X.1 X
              Tectonic_setting Location_notes
                                                  Pluton Colour Symbol Size_rel
   <int> <chr> <chr>
                               <chr>
                                                  <chr> <chr>
                                                                 <int>
                                                                           <dbl>
      1 CRO3 OROGENIC BELT
                               //////Peninsula~ Cape ~ brown4
                                                                     16
                                                                             1.6
2
      2 BB202 OROGENIC BELT
                               //////Peninsula~ Cape ~ brown4
                                                                    16
                                                                             1.6
3
      3 CBO2 OROGENIC BELT
                               //////Peninsula~ Cape ~ brown4
                                                                    16
                                                                             1.6
4
      4 HBO2 OROGENIC BELT
                               //////Peninsula~ Cape ~ brown4
                                                                    16
                                                                            1.6
5
      5 CRO1 OROGENIC BELT
                               //////Peninsula~ Cape ~ brown4
                                                                    16
                                                                             1.6
6
      6 LLO1 OROGENIC BELT
                               //////Peninsula~ Cape ~ brown4
                                                                    16
                                                                            1.6
7
                               //////Peninsula~ Cape ~ brown4
      7 MP21 OROGENIC BELT
                                                                    16
                                                                            1.6
8
      8 OKO7 OROGENIC BELT
                               //////Peninsula~ Cape ~ brown4
                                                                    16
                                                                            1.6
9
      9 LG05 OROGENIC BELT
                               //////Langebaan~ Cape ~ brown4
                                                                     16
                                                                            1.6
                               //////Peninsula~ Cape ~ brown4
10
     10 BB201 OROGENIC BELT
                                                                     16
                                                                            1.6
# i 1,360 more rows
# i 109 more variables: Size <dbl>, SubGroup <chr>, Group <chr>, DebonPQ <chr>,
   TASMiddlemostPlut <chr>, Villaseca <chr>, QANOR <chr>, LaRoche <chr>,
   Geol_unit_notes <chr>, Rock_type_notes <chr>, Ref <chr>, Age <chr>,
   Latitude <dbl>, Longitude <dbl>, SiO2 <dbl>, TiO2 <dbl>, Al2O3 <dbl>,
#
   FeOt <dbl>, MnO <dbl>, MgO <dbl>, CaO <dbl>, K2O <dbl>, Na2O <dbl>,
   P205 <chr>, H20 <dbl>, H20t <dbl>, H20.MINUS <dbl>, L0I <chr>, ...
```

4.0.3 Criar colunas com mutate(), agrupamento com group(), arredondamento com round()

```
BD %>%
    select(X,Tectonic_setting,SiO2:MgO) %>%
    mutate(1 Si=log(SiO2)) #cria nova coluna com o log da coluna SiO2
# A tibble: 3,050 \times 9
        Tectonic_setting SiO2 TiO2 Al2O3 FeOt
                                                          MgO l_Si
                                                    Mn0
                         <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
  <chr> <chr>
1 CRO3 OROGENIC BELT
                          65.4 0.827 17.1 4.91 0.0771 1.80
                                                               4.18
2 BB202 OROGENIC BELT
                          69.6 0.709 14.9
                                           4.19 0.0540 1.63
                                                               4.24
3 CBO2 OROGENIC BELT
                          70.6 0.571 15.3 2.82 0.0532 1.33
                                                               4.26
4 HB02 OROGENIC BELT
                          70.6 0.478 15.7 2.51 0.0407 0.978 4.26
5 CRO1 OROGENIC BELT
                          70.7 0.532 15.3 2.54 0.0609 1.21
                                                               4.26
6 LL01 OROGENIC BELT
                          71.0 0.484 15.5 2.47 0.0396 1.01
                                                               4.26
7 MP21 OROGENIC BELT
                          72.4 0.470 14.3 2.68 0.0422 1.03
                                                               4.28
8 OKO7 OROGENIC BELT
                          73.2 0.428 14.4 2.40 0.0605 0.769 4.29
9 LGO5 OROGENIC BELT
                          73.2 0.363 14.4 2.25 0.0211 0.678 4.29
10 BB201 OROGENIC BELT
                          74.8 0.530 13.5 2.73 0.0472 1.18
                                                               4.31
# i 3,040 more rows
  BD %>%
    select(X,Tectonic_setting,SiO2:MgO) %>%
    mutate(across(.cols=SiO2:MgO,~log(.x))) # Operações em massa
# A tibble: 3,050 x 8
        Tectonic_setting SiO2
  Χ
                                 TiO2 Al2O3 FeOt
                                                    Mn0
                                                             MgO
  <chr> <chr>
                         <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                           <dbl>
 1 CRO3 OROGENIC BELT
                          4.18 -0.190 2.84 1.59 -2.56 0.586
2 BB202 OROGENIC BELT
                          4.24 -0.344 2.70 1.43
                                                  -2.92
                                                         0.488
3 CB02 OROGENIC BELT
                          4.26 -0.561 2.73 1.04 -2.93 0.286
4 HB02 OROGENIC BELT
                          4.26 -0.739
                                      2.75 0.920 -3.20 -0.0223
5 CRO1 OROGENIC BELT
                          4.26 -0.631 2.73 0.930 -2.80 0.188
6 LL01 OROGENIC BELT
                          4.26 -0.726 2.74 0.904 -3.23 0.00650
7 MP21 OROGENIC BELT
                          4.28 -0.756 2.66 0.986 -3.16 0.0276
8 OKO7 OROGENIC BELT
                          4.29 -0.848 2.67 0.877 -2.81 -0.263
9 LGO5 OROGENIC BELT
                          4.29 - 1.01
                                       2.66 0.809 -3.86 -0.389
10 BB201 OROGENIC BELT
                          4.31 -0.635 2.61 1.00 -3.05 0.165
# i 3,040 more rows
```

```
BD %>%
    select(X,Tectonic_setting,Si02:Mg0) %>%
    group_by(Tectonic_setting) %>%
    mutate(contagem=n())
# A tibble: 3,050 x 9
           Tectonic_setting [9]
# Groups:
  Х
        Tectonic_setting SiO2 TiO2 Al2O3 FeOt
                                                    MnO
                                                          MgO contagem
   <chr> <chr>
                         <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                  <int>
1 CRO3 OROGENIC BELT
                          65.4 0.827 17.1 4.91 0.0771 1.80
                                                                   1471
2 BB202 OROGENIC BELT
                          69.6 0.709 14.9 4.19 0.0540 1.63
                                                                   1471
3 CB02 OROGENIC BELT
                          70.6 0.571 15.3 2.82 0.0532 1.33
                                                                   1471
4 HB02 OROGENIC BELT
                          70.6 0.478 15.7 2.51 0.0407 0.978
                                                                   1471
5 CRO1 OROGENIC BELT
                          70.7 0.532 15.3 2.54 0.0609 1.21
                                                                   1471
6 LL01 OROGENIC BELT
                          71.0 0.484 15.5 2.47 0.0396 1.01
                                                                   1471
7 MP21 OROGENIC BELT
                          72.4 0.470 14.3 2.68 0.0422 1.03
                                                                   1471
                          73.2 0.428 14.4 2.40 0.0605 0.769
8 OKO7 OROGENIC BELT
                                                                   1471
9 LG05 OROGENIC BELT
                          73.2 0.363 14.4 2.25 0.0211 0.678
                                                                   1471
10 BB201 OROGENIC BELT
                          74.8 0.530 13.5 2.73 0.0472 1.18
                                                                   1471
# i 3,040 more rows
  BD %>%
    select(X,Tectonic_setting,SiO2:MgO) %>%
    group_by(Tectonic_setting) %>%
    count()
# A tibble: 9 x 2
# Groups:
           Tectonic_setting [9]
 Tectonic_setting
 <chr>
                           <int>
1 ARCHAEAN CRATONS
                             310
2 CONTINENTAL FLOOD BASALT
                             191
3 CONVERGENT MARGIN
                             763
4 INTRAPLATE VOLCANICS
                             98
5 OCEAN ISLAND
                             56
6 OCEANIC PLATEAU
                             13
7 OPHIOLITE
                             19
8 OROGENIC BELT
                           1471
9 RIFT VOLCANICS
                             129
```

```
BD %>%
    select(X,Tectonic_setting,Si02:Mg0) %>%
    group_by(Tectonic_setting) %>% # Agrupa os valores por grupos baseados nos tipos tecton
    mutate(across(SiO2:MgO,~ifelse(.x==0,mean(.x),.x)), # substituir O por média por grupo
           SiO2=round(SiO2,digits=2)) #arredondar para dois digitos
# A tibble: 3,050 x 8
           Tectonic_setting [9]
# Groups:
        Tectonic_setting SiO2 TiO2 Al2O3 FeOt
                                                   MnO
  <chr> <chr>
                         <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 CRO3 OROGENIC BELT
                          65.4 0.827 17.1 4.91 0.0771 1.80
2 BB202 OROGENIC BELT
                          69.6 0.709 14.9 4.19 0.0540 1.63
3 CB02 OROGENIC BELT
                          70.6 0.571 15.3 2.82 0.0532 1.33
4 HB02 OROGENIC BELT
                          70.6 0.478 15.7 2.51 0.0407 0.978
5 CRO1 OROGENIC BELT
                          70.7 0.532 15.3 2.54 0.0609 1.21
                          71.0 0.484 15.5 2.47 0.0396 1.01
6 LL01 OROGENIC BELT
7 MP21 OROGENIC BELT
                          72.4 0.470 14.3 2.68 0.0422 1.03
8 OKO7 OROGENIC BELT
                          73.2 0.428 14.4 2.40 0.0605 0.769
9 LG05 OROGENIC BELT
                          73.2 0.363 14.4 2.25 0.0211 0.678
                          74.8 0.530 13.5 2.73 0.0472 1.18
10 BB201 OROGENIC BELT
# i 3,040 more rows
```

4.0.4

4.0.5 Contar com count() ou remoldar dataframe com reframe()

```
3 CONVERGENT MARGIN
                          763 66.4 0.52 15.7 3.92 0.08 1.7
                           98 70.3 0.32 14.1 3.35 0.08 0.49
4 INTRAPLATE VOLCANICS
5 OCEAN ISLAND
                           56 65.2 0.53 16.2 4.02 0.16 0.44
6 OCEANIC PLATEAU
                           13 63.6 0.52 16.1 5.05 0.1
                                                          2.59
                              61.6 1.07 15.0 6.03 0.17 2.41
7 OPHIOLITE
                           19
8 OROGENIC BELT
                              69.8 0.41 14.4 2.85 0.07 1.31
                         1471
9 RIFT VOLCANICS
                              69.3 0.43 13.8 3.66 0.1 0.49
```

4.1 Alterando a forma do dataframe com pivot_longer e _wider()

```
# Dado longo
  BD %>%
    select(X,Tectonic_setting,SiO2:MgO) %>%
    group_by(Tectonic_setting) %>% # Agrupa os valores por grupos baseados nos tipos tecton
    mutate(across(SiO2:MgO, ~ifelse(.x==0, mean(.x),.x)), # substituir O por média por grupo
           across(SiO2:MgO,~round(.x,digits=2))) %>%
    reframe(n=n(),
            across(.cols=SiO2:MgO,~round(mean(.x,na.rm = TRUE),2))) %>%
    pivot_longer(cols=Si02:Mg0)
# A tibble: 54 x 4
  Tectonic_setting
                               n name value
  <chr>
                           <int> <chr> <dbl>
1 ARCHAEAN CRATONS
                             310 SiO2 69.6
2 ARCHAEAN CRATONS
                             310 TiO2
                                        0.31
3 ARCHAEAN CRATONS
                             310 Al203 15.4
4 ARCHAEAN CRATONS
                             310 FeOt
                                        2.43
5 ARCHAEAN CRATONS
                             310 MnO
                                        0.04
6 ARCHAEAN CRATONS
                             310 MgO
                                        1.33
7 CONTINENTAL FLOOD BASALT 191 SiO2 67.5
8 CONTINENTAL FLOOD BASALT 191 TiO2 0.53
9 CONTINENTAL FLOOD BASALT 191 Al203 14.6
10 CONTINENTAL FLOOD BASALT 191 FeOt 4.21
# i 44 more rows
  #dado largo
  BD %>%
    select(X,Tectonic_setting,SiO2:MgO) %>%
    group_by(Tectonic_setting) %>% # Agrupa os valores por grupos baseados nos tipos tecton
```

mutate(across(SiO2:MgO,~ifelse(.x==0, mean(.x),.x)), # substituir O por média por grupo

#	A tibble: 9 x 7						
	Tectonic_setting	Si02	TiO2	A1203	FeOt	MnO	MgO
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	ARCHAEAN CRATONS	69.6	0.31	15.4	2.43	0.04	1.33
2	CONTINENTAL FLOOD BASALT	67.5	0.53	14.6	4.21	0.13	0.5
3	CONVERGENT MARGIN	66.4	0.52	15.7	3.92	0.08	1.7
4	INTRAPLATE VOLCANICS	70.3	0.32	14.1	3.35	0.08	0.49
5	OCEAN ISLAND	65.2	0.53	16.2	4.02	0.16	0.44
6	OCEANIC PLATEAU	63.6	0.52	16.1	5.05	0.1	2.59
7	OPHIOLITE	61.6	1.07	15.0	6.03	0.17	2.41
8	OROGENIC BELT	69.8	0.41	14.4	2.85	0.07	1.31
9	RIFT VOLCANICS	69.3	0.43	13.8	3.66	0.1	0.49

5 Estudo de caso - Vulcões do Tidytuesday

Objetivo: Revisar tidyverse e fazer exercícios. Os dados são disponibilizados no link, e contem o video para analise desse banco no youtube (https://github.com/rfordatascience/tidytuesday/tree/master).

Esse link apresenta mais infos sobre o banco de dado e fontes:

https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-05-12/readme.md Importação de dados de um banco em excel com readxl:

```
# Ilustrativo
#volc<-read_excel("volcano.xlsx") %>%
# as_tibble()
```

Opção B, baixar diretamente do github do tidytuesday:

```
volc <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/mas</pre>
```

Rows: 958 Columns: 26

-- Column specification -----

Delimiter: ","

chr (18): volcano_name, primary_volcano_type, last_eruption_year, country, r... dbl (8): volcano_number, latitude, longitude, elevation, population_within_...

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

5.1 select()

volc %>% select(volcano_name,-country,latitude:elevation)

A tibble: 958 x 4

	volcano_name	latitude	longitude	elevation
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Abu	34.5	132.	641
2	Acamarachi	-23.3	-67.6	6023
3	Acatenango	14.5	-90.9	3976
4	Acigol-Nevsehir	38.5	34.6	1683
5	Adams	46.2	-121.	3742
6	Adatarayama	37.6	140.	1728
7	Adwa	10.1	40.8	1733
8	Afdera	13.1	40.9	1250
9	Agrigan	18.8	146.	965
10	Agua	14.5	-90.7	3760
ш.	. 040			

i 948 more rows

volc %>% select(!latitude:elevation)

A tibble: 958 x 23

	${\tt volcano_number}$	volcano_name	<pre>primary_volcano_type</pre>	<pre>last_eruption_year</pre>	country
	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1	283001	Abu	Shield(s)	-6850	Japan
2	355096	Acamarachi	Stratovolcano	Unknown	Chile
3	342080	Acatenango	Stratovolcano(es)	1972	Guatem~
4	213004	Acigol-Nevseh~	Caldera	-2080	Turkey
5	321040	Adams	Stratovolcano	950	United~
6	283170	Adatarayama	Stratovolcano(es)	1996	Japan

```
7
           221170 Adwa
                                 Stratovolcano
                                                      Unknown
                                                                         Ethiop~
8
           221110 Afdera
                                 Stratovolcano
                                                      Unknown
                                                                         Ethiop~
                                 Stratovolcano
9
                                                      1917
                                                                         United~
           284160 Agrigan
10
           342100 Agua
                                 Stratovolcano
                                                      Unknown
                                                                         Guatem~
# i 948 more rows
# i 18 more variables: region <chr>, subregion <chr>, tectonic_settings <chr>,
   evidence_category <chr>, major_rock_1 <chr>, major_rock_2 <chr>,
   major_rock_3 <chr>, major_rock_4 <chr>, major_rock_5 <chr>,
   minor_rock_1 <chr>, minor_rock_2 <chr>, minor_rock_3 <chr>,
  minor_rock_4 <chr>, minor_rock_5 <chr>, population_within_5_km <dbl>,
   population_within_10_km <dbl>, population_within_30_km <dbl>, ...
```

volc %>% select(starts_with("population"))

A tibble: 958 x 4

	population_within_5_km	${\tt population_within_10_km}$	population_within_30_km
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	3597	9594	117805
2	0	7	294
3	4329	60730	1042836
4	127863	127863	218469
5	0	70	4019
6	428	3936	717078
7	101	485	18645
8	51	6042	8611
9	0	0	0
10	9890	114404	2530449

[#] i 948 more rows

volc %>% select(contains("within"))

A tibble: 958 x 4

	population_within_5_km	population_within_10_km	population_within_30_km
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	3597	9594	117805
2	0	7	294
3	4329	60730	1042836
4	127863	127863	218469
5	0	70	4019

[#] i 1 more variable: population_within_100_km <dbl>

```
6
                       428
                                               3936
                                                                      717078
7
                       101
                                                485
                                                                       18645
8
                        51
                                               6042
                                                                        8611
9
                         0
                                                                            0
10
                      9890
                                             114404
                                                                     2530449
```

i 948 more rows

i 1 more variable: population_within_100_km <dbl>

```
#- **stars_with()**: colunas que começam com um prefixo
#- **ends_with()**: colunas que terminam com um sufixo
#- **contains()**: colunas que contêm uma string
#- **last_col()**: última coluna
```

5.2 filter()

#	# A tibble: 17 x 5							
	volcano_name	country	latitude	longitude	${\tt elevation}$			
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
1	Andrus	${\tt Antarctica}$	-75.8	-132.	2978			
2	Berlin	${\tt Antarctica}$	-76.0	-136	3478			
3	Buckle Island	${\tt Antarctica}$	-66.8	163.	1239			
4	Deception Island	${\tt Antarctica}$	-63.0	-60.7	602			
5	Erebus	${\tt Antarctica}$	-77.5	167.	3794			
6	Hudson Mountains	Antarctica	-74.3	-99.4	749			
7	James Ross Island	Antarctica	-64.2	-57.8	1630			
8	Melbourne	Antarctica	-74.4	165.	2732			
9	Morning	${\tt Antarctica}$	-78.5	164.	2723			
10	Penguin Island	Antarctica	-62.1	-57.9	180			
11	Pleiades, The	${\tt Antarctica}$	-72.7	166.	3040			
12	Royal Society Range	${\tt Antarctica}$	-78.2	163.	3000			
13	Seal Nunataks Group	${\tt Antarctica}$	-65.0	-60.0	368			
14	Siple	Antarctica	-73.4	-127.	3110			
15	Takahe	${\tt Antarctica}$	-76.3	-112.	3460			

```
16 Toney Mountain
                       Antarctica
                                     -75.8
                                              -116.
                                                           3595
                       Antarctica
17 Waesche
                                     -77.2
                                              -127.
                                                           3292
  volc %>% select(volcano_name,country,latitude:elevation) %>%
           filter(!country== "Chile") %>%
           filter(elevation>1000,
                  latitude>0,
                  longitude>0)
# A tibble: 252 x 5
```

volcano_name country latitude longitude elevation <chr> <chr> <dbl> <dbl> <dbl> 1 Acigol-Nevsehir Turkey 38.5 34.6 1683 37.6 2 Adatarayama Japan 140. 1728 3 Adwa Ethiopia 10.1 40.8 1733 4 Afdera Ethiopia 13.1 40.9 1250 5 Aira Japan 31.6 131. 1117 6 Akademia Nauk Russia 54.0 159. 1180 7 Akagisan Japan 36.6 139. 1828 43.4 144. 1499 8 Akan Japan 9 Akita-Komagatake Japan 39.8 141. 1637 10 Akita-Yakeyama 141. Japan 40.0 1366 # i 242 more rows

A tibble: 809 x 5

	volcano_name	country	latitude	longitude	elevation
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Acatenango	Guatemala	14.5	-90.9	3976
2	Acigol-Nevsehir	Turkey	38.5	34.6	1683
3	Adams	United States	46.2	-121.	3742
4	Adwa	Ethiopia	10.1	40.8	1733
5	Afdera	Ethiopia	13.1	40.9	1250
6	Agrigan	United States	18.8	146.	965
7	Agua	Guatemala	14.5	-90.7	3760
8	Agua de Pau	Portugal	37.8	-25.5	947

```
9 Agung
                   Indonesia
                                     -8.34
                                                116.
                                                           2997
10 Ahyi
                   United States
                                     20.4
                                                145.
                                                            -75
# i 799 more rows
  # | ou
  # & e
  volc %>%
    select(volcano_name, country, latitude:elevation) %>%
    filter(country == "Antarctica" | latitude < 10)</pre>
# A tibble: 382 x 5
  volcano_name country
                                  latitude longitude elevation
                <chr>
                                               <dbl>
   <chr>
                                     <dbl>
                                                          <dbl>
1 Acamarachi
                Chile
                                    -23.3
                                                -67.6
                                                           6023
                                                -73.8
2 Aguilera
                Chile
                                    -50.3
                                                           2546
3 Agung
                Indonesia
                                     -8.34
                                                116.
                                                           2997
4 Alcedo
                Ecuador
                                     -0.43
                                                -91.1
                                                           1130
5 Aliso
                                     -0.53
                                               -78
                                                           4267
                Ecuador
6 Alutu
                Ethiopia
                                      7.77
                                                38.8
                                                           2335
7 Amasing
                Indonesia
                                     -0.53
                                                127.
                                                           1030
8 Ambae
                Vanuatu
                                    -15.4
                                                168.
                                                           1496
9 Ambang
                Indonesia
                                      0.75
                                                124.
                                                           1795
10 Ambitle
                                     -4.08
                                                154.
                Papua New Guinea
                                                            450
# i 372 more rows
  volc %>%
    select(volcano_name, country, latitude:elevation) %>%
    filter(country == "Antarctica" & elevation > 500)
# A tibble: 15 x 5
   volcano_name
                                   latitude longitude elevation
                       country
   <chr>
                        <chr>
                                      <dbl>
                                                 <dbl>
                                                           <dbl>
                                      -75.8
                                                            2978
 1 Andrus
                       Antarctica
                                                -132.
2 Berlin
                                      -76.0
                                               -136
                       Antarctica
                                                            3478
3 Buckle Island
                       Antarctica
                                      -66.8
                                                163.
                                                            1239
4 Deception Island
                       Antarctica
                                      -63.0
                                                -60.7
                                                             602
5 Erebus
                                      -77.5
                       Antarctica
                                                167.
                                                            3794
```

Antarctica

6 Hudson Mountains

-74.3

-99.4

749

7	James Ross Island	Antarctica	-64.2	-57.8	1630
8	Melbourne	Antarctica	-74.4	165.	2732
9	Morning	Antarctica	-78.5	164.	2723
10	Pleiades, The	Antarctica	-72.7	166.	3040
11	Royal Society Range	Antarctica	-78.2	163.	3000
12	Siple	Antarctica	-73.4	-127.	3110
13	Takahe	Antarctica	-76.3	-112.	3460
14	Toney Mountain	Antarctica	-75.8	-116.	3595
15	Waesche	Antarctica	-77.2	-127.	3292

5.3 mutate()

```
volc %>%
  select(volcano_name, country,last_eruption_year) %>%
  filter(!last_eruption_year== "Unknown") %>%
  mutate(last_eruption_year=as.numeric(last_eruption_year),
      ultima_erupcao=(2022-last_eruption_year),
      ultima_erupcao_milhar=ultima_erupcao/1000,
      ultima_erupcao_milhao=ultima_erupcao/1000000)
```

A tibble: 657 x 6

volcano_name	country	<pre>last_eruption_year</pre>	ultima_erupcao	ultima_erupcao_milhar
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Abu	Japan	-6850	8872	8.87
Acatenango	${\tt Guatem~}{\tt \sim}$	1972	50	0.05
Acigol-Nevse~	Turkey	-2080	4102	4.10
Adams	${\tt United} {\tt \sim}$	950	1072	1.07
Adatarayama	Japan	1996	26	0.026
Agrigan	${\tt United} {\tt \sim}$	1917	105	0.105
Agua de Pau	Portug~	1564	458	0.458
Aguilera	Chile	-1250	3272	3.27
Agung	Indone~	2019	3	0.003
Ahyi	${\tt United} {\tt \sim}$	2014	8	0.008
	<pre><chr> Abu Acatenango</chr></pre>	<pre><chr></chr></pre>	<chr><chr><dbl>AbuJapan-6850AcatenangoGuatem~1972Acigol-Nevse~Turkey-2080AdamsUnited~950AdatarayamaJapan1996AgriganUnited~1917Agua de PauPortug~1564AguileraChile-1250AgungIndone~2019</dbl></chr></chr>	<chr> <chr> <dbl> <dbl> Abu Japan -6850 8872 Acatenango Guatem~ 1972 50 Acigol-Nevse~ Turkey -2080 4102 Adams United~ 950 1072 Adatarayama Japan 1996 26 Agrigan United~ 1917 105 Agua de Pau Portug~ 1564 458 Aguilera Chile -1250 3272 Agung Indone~ 2019 3</dbl></dbl></chr></chr>

[#] i 647 more rows

[#] i 1 more variable: ultima_erupcao_milhao <dbl>

```
TRUE~"volcanica acida")) %>%
    count(rocha)
# A tibble: 3 x 2
 rocha
                         n
  <chr>
                     <int>
1 volcanica acida
                       108
2 vulcanica alcalina
                       75
3 vulcanica basica
                       775
  unique(volc$major_rock_1)
 [1] "Andesite / Basaltic Andesite"
 [2] "Dacite"
 [3] "Rhyolite"
 [4] "Basalt / Picro-Basalt"
 [5] "Trachyte / Trachydacite"
 [6] "Phono-tephrite / Tephri-phonolite"
 [7] "Trachyandesite / Basaltic Trachyandesite"
 [8] "Trachybasalt / Tephrite Basanite"
 [9] "Foidite"
[10] "Phonolite"
5.4 Count e arrange()
  volc %>%
    count(country) %>%
    arrange(desc(n))
# A tibble: 89 x 2
  country
                        n
   <chr>
                    <int>
1 United States
                       99
2 Indonesia
                       95
3 Japan
                       92
4 Russia
                       79
5 Chile
                       43
6 Iceland
                       28
```

```
7 Mexico
                       28
8 Papua New Guinea
                       28
9 Philippines
                       27
10 Ecuador
                       26
# i 79 more rows
  volc %>%
    count(country) %>%
    arrange(n)
# A tibble: 89 x 2
  country
                             n
  <chr>>
                       <int>
1 Algeria
                             1
2 Armenia-Azerbaijan
                             1
3 Burma (Myanmar)
4 Cape Verde
5 Chile-Peru
6 China-North Korea
7 Colombia-Ecuador
                             1
8 Comoros
                             1
9 Djibouti
10 El Salvador-Guatemala
# i 79 more rows
```

5.5 Group_by ()

```
volc %>%
  filter(!last_eruption_year=="Unknown") %>%
  group_by(last_eruption_year,country) %>%
  count(last_eruption_year,sort = TRUE) %>%
  ungroup()
```

A tibble: 591 x 3

	<pre>last_eruption_year</pre>	country	n
	<chr></chr>	<chr></chr>	<int></int>
1	2020	Indonesia	8
2	2020	Japan	5
3	-550	Russia	4

```
4 2019
                      Indonesia
                                         4
5 2020
                      Russia
                                         4
6 1992
                      United States
                                         3
7 1996
                      Japan
                                         3
                                         3
8 2000
                      Indonesia
9 2008
                      United States
                                         3
                      Indonesia
                                         3
10 2015
# i 581 more rows
```

Summarise ou reframe()

```
# Função SE
SE<-function(vetor,IC){</pre>
  SD<-sd(vetor)
  N<-length(vetor)
  SE<-(SD*IC)/sqrt(N)
  return(
    SE
  )
}
# Summarise
volc %>%
  group_by(country) %>%
  summarise(n=n(),
            media_pop_5km=mean(population_within_5_km),
            sd_pop_km=sd(population_within_5_km),
            se_pop_5km=SE(population_within_5_km,1),
            max_pop_5km=max(population_within_5_km),
            min_pop_5km=min(population_within_5_km)) %>%
  arrange(desc(media_pop_5km)) %>%
  filter(n>15) %>%
  mutate(across(.cols=media_pop_5km:min_pop_5km,~round(.x,digits=0)))
```

A tibble: 16 x 7

country	n	media_pop_5km	sd_pop_km	se_pop_5km	max_pop_5km	min_pop_5km
<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 Mexico	28	269105	1091616	206296	5783287	0
2 Philippines	27	102291	306707	59026	1349742	11
3 Nicaragua	16	97064	251139	62785	989888	100
4 New Zealand	16	71199	261129	65282	1049110	0

5	Ethiopia	26	69227	148454	29114	565206	0
6	Guatemala	17	63078	88080	21362	240892	1373
7	Ecuador	26	41014	117168	22979	534403	0
8	Indonesia	95	35195	129642	13301	1092929	3
9	Japan	92	6355	19149	1996	130474	0
10	Iceland	28	3496	8458	1598	33526	0
11	Papua New G~	28	2978	5215	986	24509	1
12	United Stat~	99	1745	7356	739	52801	0
13	Chile	43	459	1233	188	5951	0
14	Canada	18	444	1559	367	6635	0
15	Russia	79	24	96	11	669	0
16	Antarctica	17	0	0	0	0	0

```
# México
#n=28

#269105.1 ± 206295.9 habitantes(sigma 1)

# Guatemala
# n = 17
# 63078 ± 21362 habitantes
```

#3 Exercicio

- 1) Em qual país existem mais vulcões?

```
volc %>%
  count(country,sort=TRUE)
```

A tibble: 89 x 2

	country	n
	<chr></chr>	<int></int>
1	United States	99
2	Indonesia	95
3	Japan	92
4	Russia	79
5	Chile	43
6	Iceland	28
7	Mexico	28
8	Papua New Guinea	28
9	Philippines	27
10	Ecuador	26

i 79 more rows

```
volc %>%
    group_by(country) %>%
    summarise(n=n()) %>%
    arrange(desc(n))
# A tibble: 89 x 2
  country
  <chr>
                    <int>
1 United States
                       99
2 Indonesia
                       95
3 Japan
                       92
                       79
4 Russia
5 Chile
                       43
6 Iceland
                       28
7 Mexico
                       28
8 Papua New Guinea
                       28
9 Philippines
                       27
10 Ecuador
                       26
```

- 2) Nesse país, qual o tipo de vulcão mais comum?

```
volc %>%
  filter(country=="United States") %>%
  count(primary_volcano_type,sort=TRUE)
```

A tibble: 15 x 2

i 79 more rows

```
primary_volcano_type
                           n
  <chr>
                       <int>
1 Stratovolcano
                          32
2 Shield
                          15
3 Volcanic field
                          13
4 Stratovolcano(es)
                           8
5 Submarine
                           6
6 Pyroclastic cone(s)
                           5
7 Shield(s)
                           5
8 Lava dome(s)
                           4
9 Caldera
                           3
```

```
10 Maar(s) 3
11 Caldera(s) 1
12 Complex 1
13 Pyroclastic cone 1
14 Stratovolcano? 1
15 Tuff cone(s) 1
```

- 3) Na América do Sul, quantos e quais vulcões entraram em erupção em 2020?

```
volc %>%
    filter(region=="South America",
           last_eruption_year==2020) %>%
    count(volcano_name,sort=TRUE)
# A tibble: 6 x 2
  volcano_name
                          n
  <chr>
                      <int>
1 Chillan, Nevados de
                          1
2 Reventador
3 Ruiz, Nevado del
4 Sabancaya
                          1
5 Sangay
                          1
6 Villarrica
                          1
```

- 4) Quais os países nos quais os vulcões apresentam maior risco para a população local (até 100 km)? Filtre países em que existam mais de 20 vulcões.

```
volc %>%
    group_by(country) %>%
    summarise(n=n(),
              media=mean(population_within_100_km),
              se=SE(population_within_100_km,1)) %>%
    filter(n>20) %>%
    arrange(desc(media))
# A tibble: 11 x 4
  country
                             media
                       n
                                          se
  <chr>
                   <int>
                              <dbl>
                                       <dbl>
                      27 10247171. 1948086.
 1 Philippines
2 Indonesia
                      95 9126614. 1148771.
```

3	Mexico	28	7034976.	1863798.
4	Japan	92	4057450.	537928.
5	Ethiopia	26	3318110.	683117.
6	Ecuador	26	1819886.	317923.
7	Chile	43	362838.	42331.
8	United States	99	250535.	55360.
9	Papua New Guinea	28	102845.	10647.
10	Iceland	28	65432.	16041.
11	Russia	79	60141.	20473.