

COA-22 Lab Assignment-1

Part 1:- Ripple Carry Adder

Hardik Pravin Soni 20CS30023 Abhay Kumar Keshari 20CS10001

Contents

1	Half Adder	3
	1.1 Circuit Diagram	3
	1.2 Truth Table	3
	1.3 Logic Expression	4
2	Full Adder	4
	2.1 Circuit Diagram	4
	2.2 Truth Table	5
	2.3 Logic Expression	5
3	Ripple Carry Adder for 8-bit	6
	3.1 Circuit Diagram	6
4	Ripple Carry Adder for 16-bit	7
	4.1 Circuit Diagram	7
5	Ripple Carry Adder for 32-bit	7
	5.1 Circuit Diagram	8
6	Ripple Carry Adder for 64-bit	8
	6.1 Circuit Diagram	9
7	Synthesis Table	10
	7.1 Table	10
8	Difference of two n-bit Numbers	10
	8.0.1 How can you use the above circuit, to compute the difference between two	
	n-hit numbers?	10

1 Half Adder

1.1 Circuit Diagram

1.2 Truth Table

(i)						
a	b	s	c			
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	0	1			

1.3 Logic Expression

$$s = a \oplus b \tag{1}$$

$$c = a \& b \tag{2}$$

2 Full Adder

2.1 Circuit Diagram

2.2 Truth Table

	(ii)					
a	b	c_{in}	s	\mathbf{c}_{out}		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
1	0	0	1	0		
1	1	0	0	1		
1	0	1	0	1		
0	1	1	0	1		
1	1	1	1	1		

2.3 Logic Expression

$$s = a \oplus b \oplus c_{in} \tag{3}$$

$$c_{out} = (a \& b)|(c \& (a \oplus b)$$

$$\tag{4}$$

3 Ripple Carry Adder for 8-bit

3.1 Circuit Diagram

4 Ripple Carry Adder for 16-bit

4.1 Circuit Diagram

5 Ripple Carry Adder for 32-bit

5.1 Circuit Diagram

6 Ripple Carry Adder for 64-bit

6.1 Circuit Diagram

7 Synthesis Table

7.1 Table

	Design Summary				
Delay	Slice LUT's	Bonded IOB's			
2.523 ns	12	26			
$4.467~\mathrm{ns}$	24	50			
$8.356~\mathrm{ns}$	48	98			
16.134 ns	96	194			

8 Difference of two n-bit Numbers

8.0.1 How can you use the above circuit, to compute the difference between two n-bit numbers?

We have constructed 8-bit, 16-bit, 32-bit, 64-bit Ripple Carry Adder using Half-Adders and Full-Adders Circuit.

We see for n-bit numbers p and q, the difference between them can be written as,

$$p - q = p + (-q) \tag{5}$$

We observe that (-b) is the two's complement of b:-

$$-b = b + 1 \tag{6}$$

So,

$$a - b = rca_n(a, \sim b, 1) \tag{7}$$

Wherein,

a = First Number

b = Second Number

carry-in = 1

To obtain the difference, we may use the 64-bit RCA Adder and enter an as the first number and b as the second number (negative number), which will be saved in the 2's complement form of b.

The second method we may make a difference is as follows: A switch connected to the adder's carry-in, as well as XOR gates connected to each of the input bits for bit b, may be added to the circuit. When the switch is turned on, the carry-in is set to 1 and all of the bits of b are flipped at the same time (xor with 1 flip all bits). This will get the result a-b. If the switch is flipped, the output will be a+b.