Model siete hasičských staníc

Projekt IMS, 2016

Autori: Adam Ormandy (xorman00), Marián Országh (xorsza00)

1. Úvod

Cieľom projektu bolo navrhnúť model, ktorý simuluje sieť hasičských staníc na dvojrozmernej ploche. Tento model bol potom použitý na experimentálne zistenie optimálneho rozmiestnenia a počtu hasičských staníc, vzhľadom na škody spôsobené požiarmi a náklady na údržbu týchto staníc.

1.1. Autori, konzultanti a zdroje

Autormi štúdie sú Adam Ormandy (xorman00) a Marián Országh (xorsza00) - študenti 3. ročníka bakalárskeho štúdia na Fakulte Informačných technológií VUT v Brne. Prioritným zdojom informácií boli oficiálne informácie dostupné na portále HSZ JmK (http://www.firebrno.cz/).

Taktiež sme niektoré aspekty konzultovali z odborníkmi. Títo odborníci boli npor. Ing. Alexandr Ficek, velitel požiarnej stanice Brno-Přehrada a mjr. Mgr. Zoltán Takács, riaditeľ OR HaZZ v Trnave.

1.2. Overenie validity modelu

Overovanie validity modelu prebiehalo pomocou experimentov, a to simuláciou vo vituálnom prostredí (Validace modelu – IMS přednášky [1] slide č. 37). Overovalo sa, či modelovaná situácia zodpovedá reálnej situácií, pričom informácie boli čerpané z vierohodných a oficiálnych zdrojov ako je portál HSZ JmK.

2. Rozbor témy

Informácie, potrebné pre implementáciu modelu boli vyhľadané primárne na verejne dostupných stránkach na internete. Problém bol, že tieto informácie boli buď v sumarizovaných hodnotách alebo prílíš detailné na to, aby sa dali priamo použiť v našej implementácii. Z toho dôvodu sme museli použiť kvalifikovaný odhad podporený údajmi zo štatistík a vedomosťami získanými z telefonických konzultácii s odborníkmi.

Hodnoty, ktoré sme získali:

- Tabuľková rýchlosť hasičského auta je 45 km/h (npor. Ing. Alexandr Ficek)
- V roku 2015 v oblasti Brna vzniklo 624 požiarov [2], čo znamená, že denne sa vyskytlo 1.71 požiaru
- Finančné náklady na stanicu Brno-Přehrada, ktorú sme použili ako referenčnú stanicu, boli 12,389,458.43 Kč za rok 2015 (korešpondencia s HSZ JmK)
- Rôzne podtypy požiarov [3]
- Doby hasenia jednotlivých požiarov [3]
- Maximálne doby horenia požiarov (mjr. Mgr. Zoltán Takács)
- Veľkosť škôd podľa statistík jednotlivých výjazdov [3] (mjr. Mgr. Zoltán Takács)
- Doba na znovupripravenie vozidla na zásah je pre náš okruh zásahov približne 20 minút (npor. Ing. Alexandr Ficek)

2.1. Popis použitých technológií

- C++ http://www.cplusplus.com/
- SIMLIB http://www.fit.vutbr.cz/~peringer/SIMLIB/
- g++ http://www.cprogramming.com/g++.html
- GNU/Linux, distribúcia Arch
 https://www.archlinux.org/
- Python 3 https://www.python.org/

3. Koncepcia modelu

Petriho sieť na obrázku č. 1 zobrazuje zjednodušený mechanizmus nahlásenia požiaru, vyslania potrebného počtu požiarnych áut , uhasenia, vrátenia vozidiel na stanicu a proces prípravy na ďalší zásah. Premenná X ovplyvňuje pravdepodobnosť vzniku požiaru a v našom modeli bola zvolená hodnota tak, aby zodpovedala 1.72 požiaru denne, čo je priemerná hodnota pre Brno [2].

V tomto diagrame nie úplne zobrazený proces hasenia a príchodu hasičkých vozidiel, keďže ten je značne komplexný, a preto je zobrazený na obrázku č. 2.

Premenná Y pri návrate vozidiel sa odvodzuje od vzdušnej vzdialenosti medzi domovskou stanicou a požiarom. Tu sa počíta že vozidlo ide rýchlosťou 45 km/h, čo je tabuľková rýchlosť používaná HSZ (npor. Ing. Alexandr Ficek).

Obrázok 1

Na obrázku č. 2 je znázornený proces hasenia požiaru intenzity 2, ktorý je značne komplexný, kedže je nutné simulovať dobu, ktorá prebehne kým sa dostavia hasišké autá a aj to, že hasičské autá nemusia na miesto prísť súčasne, alebo môže požiar uhasiť menej áut ako je počet vyžadovaný intenzitou požiaru.

Obrázok 2

Rýchlosť hasenia, zvyšovanie sily požiaru a škody ovplyvňuje podtyp požiaru. Jednotlivé podtypy a ich vlastnosti boli získané analýzou výjazdov [3] z obdobia od 1.1.2016 do 15.11.2016. Vlastnosti jednotlivých podtypov sú uvedené v nasledujúcich tabuľkách.

Požiare intenzity 1 podtypy							
Názov	Zastúpenie [%]	Počiatočná sila	Maximálna sila	Rast sily [sila/m]	Hasenie [sila/m]	Rast škod [Kč/m]	Maximálne trvanie [m]
Auto	22	10 - 20	60	1	3	400 - 900	120
Porast	8	5 - 15	80	1	3	10 - 60	120
Nízka budova	4	10 - 30	35	1	2	200 - 600	180
Kontajn er	58	2	10	1	2	5 - 10	60
Výšková budova	8	10 - 35	35	1	2	200 - 700	300

Požiare intenzity 2 podtypy							
Názov	Zastúpenie [%]	Počiatočná sila	Maximálna sila	Rast sily [sila/m]	Hasenie [sila/m]	Rast škod [Kč/m]	Maximálne trvanie [m]
Nízka budova	34	15 - 30	120	1	2	500 - 1100	360
Odpad, skládka	5	20 - 30	80	1	2	0 - 10	120
Výšková budova	49	20 - 35	120	1	2	500 - 1200	500
Polný porast	12	10 - 40	100	1	2	0 - 50	180

Poznámka k atribútu hasenie: Uvedená sila hasenia sa týka situácie, keď sú na mieste požiaru prítomné 2 autá. Ak je prítomné 1 auto, je hasenie len na úrovni 0.6 z plnej sily.

Požiare intenzity 3 podtypy							
Názov	Zastúpenie [%]	Počiatočná sila	Maximálna sila	Rast sily [sila/m]	Hasenie [sila/m]	Rast škod [Kč/m]	Maximálne trvanie [m]
Nízka budova	44	100 - 140	600	1	3	900 - 2100	420
Priemysel ná budova	11	200 - 240	600	1	3	1500 - 3500	600
Výšková budova	45	100 - 140	600	1	3	1100 - 2600	600

Poznámka k atribútu hasenie: Uvedená sila hasenia sa týka situácie, keď sú na mieste požiaru prítomné 3 autá. Ak je prítomné 1 auto, je hasenie na úrovni 0.2 z plnej sily, pri 2 autách 0.6 z plnej úrovne hasenia.

4. Architektúra simulačného modelu

Táto kapitola hovorí o implementačnej časti projektu, preto je pre jej pochopenie nutné mať aspoň základné znalosti objektovo orientovaného programovania a programovacieho jazyka C++. K vytvoreniu nášho modelu reálneho systému bolo nutné najprv z nadobudnutých znalostí vytvoriť abstrakný model a potom model simulačný (Princip Modelování a simulace – IMS přednášky [1] slide č. 9-10).

4.1. Návrh objektovo orientovaného modelu

Všetky prvky modelu, ktoré majú značný vplyv na dobu hasenia, alebo materiálne škody sú implementované samostatnou triedou.

• trieda FireEngine

jedná sa o triedu simulujúcu hasičské auto. Trieda obsahuje informácie o stave vozidla (na stanici, na ceste k požiaru, ...) a pozíciu svojej domovskej stanice. Implementuje tiež funckiu travel_time, ktorá vypočítava čas potrebný pre jazdu na miesto požiaru zo svojej domovskej stanice.

trieda Fire, podtrieda Process táto trieda simuluje požiar a stará sa o obstaranie vozidiel potrebných na uhasenie a o celkovú logiku boja z požiarom. Metódy implementované touto triedou sú:

- strength_dec_index, ktorá vypočítava zníženie intenzity požiaru na základe prítomných hasičských áut
- engines_on_site vypočíta počet hasičských áut, ktoré už sú na mieste požiaru
- O current strenght vypočíta aktuálnu silu požiaru
- get_damage vypočíta škody napáchané požiarom
- O Behavior, ktorá ovláda logiku získania áut a hasenia.
- trieda FireAlarm, podtrieda Event táto trieda slúži ako timeout, ktorý simuluje samovoľné, alebo hasičmi spôsobené uhasenie požiaru
- trieda **FireEngineArrival**, podtrieda Event slúži na simuláciu asynchrónneho príchodu hasičských áut na miesto požiaru a následného výpočtu novej dĺžky hasenia požiaru.
- trieda FireEngineReturn, podtreda Process sa stará o asynchrónny návrat vozidiel naspäť na stanicu a ich znovupripravenie na ďalší zásah.

4.2. Simulácia požiaru

Hlavnou triedou pre simuláciu požiaru je trieda **Fire**. Táto trieda vo svojej metóde Behavior určí intenzitu, podtyp a pozíciu požiaru.

Potom má za úlohu z fire_stations, čo je ukazateľ na instanciu triedy Store, ktorá simuluje dostupnosť vozidiel ísť hasiť požiar. Pri každom získanom vozidle sa vytvorí instancia **FireEngineArrival**, ktorá sa ďalej stará o príchod vozidla na miesto požiaru a prepočítanie doby potrebnej na uhasenie.

Uhasenie požiaru oznamuje timeout vo forme instancie triedy **FireAlarm**. Ak došlo k uhaseniu požiarov, vytvorí sa pre každé vozidlo, ktoré bolo alokované pre požiar instancia **FireEngineReturn**, ktorá zabezpečí návrat vozidla a znovupripravenie vozidla na ďalší zásah. Môže sa stať, že požiar bude uhasený skôr, ako sa dostane vozidlo k požiaru. Toto nie je nijako špeciálne ošetrené, lebo pri testovaní sa to nestávalo často a pri frekvencii približne 2 požiarov za deň a dojazdových vzdialenostiach to nie je faktor, ktorý by výrazne ovplyvnil výsledky.

5. Podstata simulačných experimentov a ich priebeh

Podstatou experimentov je zistiť optimálne rozmiestnenie variabilného počtu staníc na nejakej poloche tak, aby boli finančné výdaje (teda výdaje na údržbu hasičských staníc a finančné škody spôsobené požiarmi) minimálne. Každý experiment pracuje s časovým obdobím jedného roka.

5.1. Popis použitia simulátoru

make preloží aplikáciu a vytvorí spustitelný súbor

make run spustí aplikáciu z rôznymi nastaveniami rozloženia a počtu požiarnych staníc a po vykonaní experimentov vypíše výsledky simulácie

make clean odstráni súbory vytvorené príkazmi make a make run

5.2. Dokumentácia jednotlivých experimentov

Každý typ experimentu pracoval s iným rozložením a počtom staníc. Dané rozmiestnenia na ploche 12x12 km sú ilustrované nasledujúcimi obrázkami:

Obr. 3. Rozloženie 1

Obr. 4. Rozloženie 2

Obr. 5. Rozloženie 3

Obr. 6. Rozloženie 4

Obr. 7. Rozloženie 5

5.3. Závery experimentov

5.3.1 Finančné škody

Prvým a hlavným sledovaným faktorom boli finančné škody spôsobené požiarmi. Získané hodnoty popisuje nasledujúci graf:

Podľa očakávaní sa so zvýšeným počtom požiarných staníc znížili materiálne škody. Rozdiel medzi 3. a 4. typom experimentu tiež ukazuje, že na ovplyvnení škod sa podieľa aj priestorové rozmiestnenie jednotlivých požiarnych staníc.

5.3.2 Celkový čas horenia

Pre objektívnejší výsledok štúdie bol tiež vypočítaný celkový čas horenia požiarov, teda súčet trvania každého požiaru za celý rok. Dané výsledky sú zaznamenané v grafe:

Zvýšenie počtu staníc malo za následok zníženie času horenia medzi jednotlivými rozmiestneniami o približne 1000 minút za rok. Pri priemernom počte požiarov 624 za rok to činí 1.6 minúty na jeden požiar.

5.3.2 Priemerné využitie vozidiel

Ďalej sme sa zamerali na priemerné využitie vozidiel. Touto metrikou sme sa snažili zistiť v efektivitu využitia požiarnickych áut a či sa máme v experimentovaní presunúť k rozloženiam z viacerími autami.

Výsledky ukázali, že rozdiel medzi vybranými rozloženiami boli na úrovni stotín, z čoho pri vývoji modelu vyplynulo že nie je nutné pri frekvencií 1.72 požiaru za deň pridávať ďalšie vozidlá.

5.3.2 Pomer priamich škôd ku nákladom

Hlavnou úlohou nášho projektu bolo optimalizovať náklady na prevádzku požiarnych staníc vzhľadom na priame škody spôsobené požiarmi. Výsledkom experimentov z vybranými rozmiestneniami je nasledujúca tabulka.

Z nej vyplýva, že nejlepší pomer priamych škôd ku nákladom má rozloženie 4 a to takmer 1:1. Tesne za ním sa umiestnilo rozloženie 3. Najhoršie sa umiestnilo roloženie 5.

6. Súhrn experimentov a záver

Experimentáciu sme zistili, že medzi jednotlivými rozloženiami nie je výrazný rozdiel vzhľadom na priame škody napáchané požiarmi a ani vzhľadom na celkovú dobu aktivity požiarov.

Predpokladali sme teda, že najväčší vplyv na optimálnosť riešenia bude mať počet požiarnych staníc umiestnených v jednotlivých rozloženiach. Tádo domnienka sa ukázala ako pravdivá, keďže ako najoptimálnejšie riešenia sa ukázali rozloženia 3 a 4, ktoré simulujú sieť troch staníc. Preto na výsledný pomer bude mať väčší vplyv cena údržby jednej stanice, ktorá sa pohybuje v okolí 12 miliónov korún.

Z nášich experimentov teda vyplynulo, že najlepší pomer priamych škôd má rozloženie 4, z rozložením 3 tesne za ním.

7. Referencie

[1] Peringer, P.: Modelování a simulace, Přednášky. Brno, 2016

[2] HSZ JmK. Statistická ročenka 2015 [online]. 2.3.2016 [cit: 4.12.2016]. Dostupné na

http://www.firebrno.cz/uploads/statistiky/Statisticka_rocenka_2015.pdf

[3] Události. Portál HSZ JmK. [online]. 6.12.2016 [cit. 2016-12-06].

Dostupné z: http://www.firebrno.cz/modules/incidents/index.php