Sparse Linear Algebra in the Deeplearning4j Framework

Thèse n. 1234 2011 présenté le 12 Mars 2011 à la Faculté des Sciences de Base laboratoire SuperScience programme doctoral en SuperScience École Polytechnique Fédérale de Lausanne pour l'obtention du grade de Docteur ès Sciences

Paolino Paperino

acceptée sur proposition du jury:

Prof Name Surname, président du jury Prof Name Surname, directeur de thèse Prof Name Surname, rapporteur Prof Name Surname, rapporteur Prof Name Surname, rapporteur

Lausanne, EPFL, 2011

par

Wings are a constraint that makes it possible to fly.

— Robert Bringhurst

To my parents...

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Lausanne, 12 Mars 2011

D. K.

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Key words:

Contents

Ac	cknowledgements	j
Ał	bstract	iii
Li	ist of figures	vi
Li	ist of tables	ix
In	ntroduction	1
1	Deeplearning4j Library 1.1 Structure of the library	3
2	Sparse Linear Algebra	5
3	Sparse Formats	7
	3.1 Vectors and Matrices	7
	3.2 Tensors / N-dimensional arrays	8
4	Mathematics 4.1 Very important formulas	9
A	An appendix	11
Bi	ibliography	13
C1	urriculum Vitae	15

List of Figures

List of Tables

Introduction

A non-numbered chapter...

Nowadays Machine learning is very popular and widely-used to resolve daily life problem

- deeplearning, neural net, self driving car etc

To work correctly and expect a accurate result, those machine learning problems require a huge amount of data. Such datasets are challenging regarding the execution time of the algorithms, the memory space required, the network usage when working imn a distributed environnement, etc

A big part of those problems used sparse datasets. For example a recommender system typically works with a dataset high-sparsity. This dataset contains the rating of movies or products given by the users. But usually the user only rated a very small subset of products.

That means, that if we know that our dataset will be sparse, we can used the sparse linear algebra to resolve the problem to optimized the memory used and the executing time.

Deeplearing4j didn't support any sparse format for vectors, matrices or tensors, neither the operations.

1 Deeplearning4j Library

Deeplearning4j is a open-source Deep Learning library for the JVM. It runs on distributed CPU's and GPU's.

Structure of the library

The library is composed by several sub-libraries:

- **Deeplearning4j** provides the tools to implement neural networks and build computation graphs
- **Nd4j** is the mathematical back-end of Deeplearning4j. It provides the data structures for the n-dimensional arrays and allow Java to access the native libraries via Libnd4j.
- **Libnd4j** is the computing library that provides native operations on CPU and GPU. It's written in C++ and Cuda.
- **Datavec** provides the operations for the data processing such that data ingestion, normalization and transformation into feature vectors.

2 Sparse Linear Algebra

A sparse matrix is matrix that contains only a very few non-zero element. Conversly, a matrix which contains mostly non-zero elements are dense.

The sparsity coefficient is defined by the number of non-zero element divided by the total number of element in the array.

density = 1 - sparsity

For example the matrix ...

has a sparsity of $\frac{4}{15}$ and a density of $\frac{11}{15}$.

Vectors and Matrices

There exists several different formats to store a sparse array. The idea behind using a sparse format instead of the classic dense one, is to reduce the memory space and the executing time of the operations. Knowing that a matrix is sparse allows to shortcut some operation steps. For example during a matrix multiplication, we can avoid to perform the multiplication for the zero elements of the sparse matrix.

Coordinate format (COO)

This format is the simplest format to encode a sparse array. The coordinates and the value of each non-zero entry are stored in arrays. Typically each element are encoded in a tuple (row, column, value)

Some implementation variations of the COO format exist. The elements can be sorted along a dimension, or it can be some duplicate indexes.

$$A_{(M\times N)} = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{array}{c} Values_{(1\times NNZ)} = \begin{bmatrix} 2 & 3 & 1 & 4 \end{bmatrix} \\ Rows_{(1\times NNZ)} = \begin{bmatrix} 0 & 1 & 2 & 2 \end{bmatrix} \\ Columns_{(1\times NNZ)} = \begin{bmatrix} 1 & 2 & 0 & 2 \end{bmatrix}$$

With this format it's easy and fast to retrieve the value given an index and to insert a new non-zero element.. It's also fast and simple to convert into a dense format.

But this format don't minimize the memory space. It can be reduced with a compressed format such as CSR or CSC as described below.

Compressed Row Format (CSR)

The Compressed Row and the Compressed Column formats are the most general format to store a sparse array. They don't store any unnecessary element. But it requires more steps to access the elements than the COO format.

Each non-zero element of a row are stored contiguously in the memory. Each row are also contiguously stored.

The format requires four arrays:

values All the nonzero values are store contiguously in an array. The array size is NNZ.

column pointers This array keeps the column position for each values.

Beginning of row pointers Each pointer i points to the first element of the row i in the values array. The array size is the number of rows of the array.

End of row pointers Each pointer i points to the first element in the values array that does not belong to the row i. The array size is the number of rows of the array.

$$A_{(N\times M)} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} Values_{(1\times NNZ)} = \begin{bmatrix} 2 & 3 & 1 & 4 & 1 \end{bmatrix} \\ Columns_{(1\times NNZ)} = \begin{bmatrix} 1 & 2 & 0 & 2 & 2 \end{bmatrix} \\ pointersB_{(1\times N)} = \begin{bmatrix} 0 & 1 & 2 & 4 \end{bmatrix} \\ PointersE_{(1\times N)} = \begin{bmatrix} 1 & 2 & 4 & 5 \end{bmatrix}$$

Tensors / N-dimensional arrays

Coordinate format(COO)

4 Mathematics

In this chapter we will see some examples of mathematics.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Very important formulas

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} P_0 \\ P_1 \\ P_T \end{bmatrix} = \begin{bmatrix} \frac{P_1}{\tau_{10}} + \frac{P_T}{\tau_T} - \frac{P_0}{\tau_{ex}} \\ -\frac{P_1}{\tau_{10}} - \frac{P_1}{\tau_{isc}} + \frac{P_0}{\tau_{ex}} \\ \frac{P_1}{\tau_{isc}} - \frac{P_T}{\tau_T} \end{bmatrix}$$
(4.1)

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

$$\bar{I}_{f}(\vec{r}) = \gamma(\vec{r}) \left(1 - \frac{\tau_{T} P_{T}^{eq} \left(1 - \exp\left(-\frac{(T_{p} - t_{p})}{\tau_{T}} \right) \right)}{1 - \exp\left(-\frac{(T_{p} - t_{p})}{\tau_{T}} + k_{2} t_{p} \right)} \times \frac{\left(\exp\left(k_{2} t_{p} \right) - 1 \right)}{t_{p}} \right)$$

$$(4.2)$$

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

A An appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Bibliography

[Applied Technology Council(1985)] Applied Technology Council. Earthquake damage evaluation data for California. Technical report, Seismic Safety Commission, Applied Technology Council (ATC), California, 1985.

Personal details:

Name : Mr. Sample CV Address : Samplestreet

70

6005 Luzern Switzerland

Date of Birth: 2nd of October 1981

Nationality: Swiss

Legally work : legally work in EU
Marital status : with partner
Children : none

Languages: Chinese/Mandarin, English, French, German

Education level: Bachelors degree

Hospitality work 3-5 years

experience :

Special experience : Europe work experience

Date of availability : September 2009

Current location: Africa

Travelling Status : will be travelling single status

Telephone : 0041 41 370 6759 Email address : jeff@h-g-r.com

Position(s) sought : Permanent position for graduates
Department(s) sought : Food & Beverage Bar/Sommelier

Personal profile:

As a Bachelor of Business Administration and after obtaining first relevant international work experience within the hospitality industry, I am now ready to take on new responsibilities to further my professional career. My key strengths include strong analytical and logical skills, an eye for detail, communication and interpersonal skills.

I enjoy working in a team and help others progress. At the same time I work well independently. As a highly motivated and driven individual I strive on taking up challenges.

Interests:

Travelling Foreign Cultures Photography Sports

Educational qualifications:

Oct 99 - Feb 02 Higher Diploma (Hotel Management)

Swiss Hotelmanagement School, SHL

Employment history:

Mar 04 - Ongoing Assistant Manager (Rooms Division/Food & Beverage)

Hotel Atlantic Kempinski Hamburg www.kempinski.com 5 star business hotel, part of Leading Hotels of the World 412 guest rooms, large function facilities, 3

food & beverage outlets

Optimization of bar procedures, reinforcing SOPs

Developing & implementing promotions Responsible for day-to-day operations

Optimization and streamlining of housekeeping and laundry procedures

Implementation of new SOPs

Analyzing monthly reports for rooms division performance and sub departments

Mar 03 - Mar 04 Management Trainee

Hospitality Graduate Recruitment www.h-g-r.com Leading company for

placements within the Hospitality industry.

Traineeship covering all aspects of an online recruitment agency.

Mar 02 - Mar 03 Management Trainee (Rooms Division)

Hyatt Regency Xian, China www.hyatt.com 5 star business hotel 404 guest rooms,

4 food & beverage outlets

Traineeship covering all rooms division departments on operational as well as

supervisory level.

Training courses attended:

Mar 02 - Ongoing OpenOffice - IT Courses

May 01 - Jan 03 Language Course - Chinese

References:

Hyatt Regency Xian

Patrick Sawiri, Phone: 86 22 2330 7654

Hospitality Graduate Recruitment Jeff Ross, Phone: 41 41 370 99 88