ACM40290: Numerical Algorithms

Root Finding in Multiple Dimensions

Dr Barry Wardell School of Mathematics and Statistics University College Dublin

Systems of Equations

We now consider fixed-point iterations and Newton's method for systems of nonlinear equations

We suppose that $F: \mathbb{R}^n \to \mathbb{R}^n$, n > 1, and we seek a root $\alpha \in \mathbb{R}^n$ such that $F(\alpha) = 0$

In component form, this is equivalent to

$$F_1(\alpha) = 0$$
 $F_2(\alpha) = 0$
 \vdots
 $F_n(\alpha) = 0$

For a fixed-point iteration, we again seek to rewrite F(x) = 0 as x = T(x) to obtain:

$$x_{k+1} = T(x_k)$$

The convergence proof is the same as in the scalar case if we just replace absolute value |.| with norm ||.||, i.e. if

$$||T(x) - T(y)|| \le ||x - y||$$
, then $||x_k - \alpha|| \le L^k ||x_0 - \alpha||$

Hence, as before, if T is a contraction mapping it will converge to a fixed point α .

Recall that we define the **Jacobian** matrix $J_T \in \mathbb{R}^{n \times n}$

$$(J_T)_{ij} = \frac{\partial T_i}{\partial x_j}, \quad i, j = 1, \dots, n$$

If $||J_T(x)||_{\infty} < 1$, then there is some neighbourhood of α for which the fixed-point iteration converges to α .

The proof is a natural extension of the corresponding scalar (one-dimensional) result.

Once again, we can employ a fixed point iteration to solve F(x) = 0

e.g. consider

$$x_1^2 + x_2^2 - 1 = 0$$
$$5x_1^2 + 21x_2^2 - 9 = 0$$

This can be rearranged to $x_1 = \sqrt{1 - x_2^2}$, $x_2 = \sqrt{(9 - 5x_1^2)/21}$

Hence we define

$$T_1(x_1, x_2) = \sqrt{1 - x_2^2}$$
 $T_2(x_1, x_2) = \sqrt{(9 - 5x_1^2)/21}$

This yields a convergent iterative method

In this case we know the four solutions are:

$$x_1 = \pm \frac{\sqrt{3}}{2}$$
 $x_2 = \pm \frac{1}{2}$

Our iteration converges to the positive solution

k	x_1	x_2
0	1	1
1	0	0.436436
2	0.899735	0.654654
3	0.755929	0.485621
4	0.87417	0.540848
5	0.84112	0.496614
•••	• • •	• • •
18	0.866026	0.500002
19	0.866024	0.5
20	0.866025	0.5

Newton's Method

As in the one-dimensional case, Newton's method is generally more useful than a standard fixed-point iteration

The natural generalization of Newton's method is

$$x_{k+1} = x_k - J_F(x_k)^{-1}F(x_k), \quad k = 0, 1, 2, ...$$

Note that to put Newton's method in the standard form for a linear system, we write

$$J_F(x_k)\Delta x_k = -F(x_k), \quad k = 0, 1, 2, \dots,$$

where $\Delta x_k \equiv x_{k+1} - x_k$

Want
$$F(x) = Q$$

Single Equation $y_{n+1} = y_n - \frac{f(x_n)}{f'(x_n)}$
Assume $x = [x_1, \dots, x_m]^T$
 $F = [f_1, \dots, f_m]^T$

Devivatives such

Higher dimensional nonlinear systems

$$\mathbf{f}(\mathbf{x}) = \mathbf{0} ,$$

where $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is a given vector-valued function of n variables $x_1, \ldots x_n$.

Newton's method

$$\mathbf{x}_{n+1} = \mathbf{x}_n - (J(\mathbf{x}_n))^{-1} \mathbf{f}(\mathbf{x}_n) .$$

$$J(\mathbf{x}) = \left(\frac{\partial f_i}{\partial x_j}(\mathbf{x})\right)_{i,j=1,\dots,n}$$

More realistically this should be written as

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{d}_n ,$$

the Newton correction \mathbf{d}_n is computed by solving the system of n linear equations:

$$(J(\mathbf{x}_n))\mathbf{d}_n = -\mathbf{f}(\mathbf{x}_n)$$
.

· Never compute an inverse!

· Mattab command

can be used to some the linear system of equations.

Inpractice Hard to construct general
robust somers in higher
dimensions. * Large problems - specialised Sparsi-matrix collers need to be used. * Thong and some techniques turautomatic differentiation

Newton's Method Example

Example: Newton's method for the two-point Gauss quadrature rule

$$F_1(x_1, x_2, w_1, w_2) = w_1 + w_2 - 2 = 0$$

 $F_2(x_1, x_2, w_1, w_2) = w_1x_1 + w_2x_2 = 0$
 $F_3(x_1, x_2, w_1, w_2) = w_1x_1^2 + w_2x_2^2 - 2/3 = 0$
 $F_4(x_1, x_2, w_1, w_2) = w_1x_1^3 + w_2x_2^3 = 0$

Newton's Method Example

We can solve this in Matlab using our own implementation of Newton's method

To do this, we require the Jacobian of this system:

$$J_F(x_1, x_2, w_1, w_2) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ w_1 & w_2 & x_1 & x_2 \\ 2w_1x_1 & 2w_2x_2 & x_1^2 & x_2^2 \\ 3w_1x_1^2 & 3w_2x_2^2 & x_1^3 & x_2^3 \end{bmatrix}$$

Alternatively, we can use Matlab's built-in fsolve function

>> help fsolve

FSOLVE solves systems of nonlinear equations of several variables.

FSOLVE attempts to solve equations of the form:

F(X) = 0 where F and X may be vectors or matrices.

Note that fsolve computes a finite difference approximation to the Jacobian by default

(Or we can pass in an analytical Jacobian if we want)

Newton's Method Example

k	x_1	x_2	w_1	w_2
0	-1	1	0.5	1.5
1	-0.333333	0.777778	1	1
2	-0.666667	0.577778	0.92	1.08
3	-0.583019	0.571873	0.985286	1.01471
4	-0.577295	0.577295	0.999996	1
5	-0.57735	0.57735	1	1