第1章 微分形式

1.1 交错张量代数

引理 1.1

设 α 是有限维线性空间V上的共变k-张量,那么以下几条等价:

- 1. α 是交错的;
- 3. 若 k-向量组中存在相同的项,则 α 在其上取值为 0

$$\alpha(v_1,\cdots,w,\cdots,w,\cdots,v_k)=0$$

Proof 1. \Longrightarrow 2., 1. \Longrightarrow 3. 都显然,接下来说明 3. \Longrightarrow 1. 和 3. \Longrightarrow 2.

设 3. 成立, 那么任取 $v_1, v_2, \dots, v_k \in V$,

$$0 = \alpha (v_1, \dots, v_i + v_j, \dots, v_i + v_j, \dots, v_k)$$

= $\alpha (v_1, \dots, v_i, \dots, v_i, \dots, v_k) + \alpha (v_1, \dots, v_i, \dots, v_i, \dots, v_k)$

这就说明了交错性。

此外, 任取线性相关的 v_1, v_2, \dots, v_k , 不妨设 $v_k = \sum_{i=1}^{k-1} a^i v_i$, 则

$$\alpha(v_1, \dots, v_k) = \alpha\left(v_1, \dots, \sum_{i=1}^{k-1} a^i v_i\right)$$

$$= \sum_{i=1}^{k-1} a^i \alpha(v_1, \dots, v_i, \dots, v_{k-1}, v_i)$$

$$= 0$$

定义 1.1 (交错子)

定义交错子为映射 Alt: $T^{k}\left(V^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$

$$\operatorname{Alt}\alpha := \frac{1}{k!} \sum_{\sigma \in S_k} \left(\operatorname{sgn}\sigma\right) \left(\sigma\alpha\right)$$

Example 1.1 若 α 是 1-张量,那么 $Alt\alpha = \alpha$ 。若 β 是 2-张量,那么

$$(\mathrm{Alt}\beta)(v,w) = \frac{1}{2} (\beta(v,w) - \beta(w,v))$$

 $若 \gamma$ 是 3-张量,则

$$(\operatorname{Alt}\gamma)(v,w,x) = \frac{1}{6} \left(\gamma(v,w,x) + \gamma(w,x,v) + \gamma(x,v,w) \right) - \frac{1}{6} \left(\gamma(w,v,x) - \gamma(v,x,w) - \gamma(x,w,v) \right)$$

命题 1.1

设 α 是有限维线性空间上的交错张量, 那么

- 1. Alt α 是交错的;
- 2. Alt $\alpha = \alpha$ 当且仅当 α 是交错的;

1.1.1 初等交错张量

定义 1.2 (多重指标)

对于给定的正整数 k, 称有序的 k-元组 $I = (i_1, i_2, \dots, i_k)$ 为一个长度为 k 的多重指标。若 I 是这样一个多重指标, $\sigma \in S_k$,令 I_σ 为

$$I_{\sigma} = (i_{\sigma(1)}, \cdots, i_{\sigma(k)})$$

定义 1.3 (初等交错张量)

是 V 是 n-维线性空间, $(\varepsilon_1,\cdots,\varepsilon_n)$ 是 V^* 的一组基。对于每个 $I=(i_1,\cdots,i_k)$,使得 $1\leq i_1,i_2,\cdots,i_k\leq n$,定义一个共变 k-张量 $\varepsilon^I:=\varepsilon^{i_1\cdots i_k}$

$$\varepsilon^{I}(v_{1}, \dots, v_{k}) = \det \begin{pmatrix} \varepsilon^{i_{1}}(v_{1}) & \cdots & \varepsilon^{i_{1}}(v_{k}) \\ \vdots & \cdots & \vdots \\ \varepsilon^{i_{k}}(v_{1}) & \cdots & \varepsilon^{i_{k}}(v_{k}) \end{pmatrix} = \det \begin{pmatrix} v_{1}^{i_{1}} & \cdots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \cdots & v_{k}^{i_{k}} \end{pmatrix}.$$

称为初等交错张量或初等 k-余向量。

定义 1.4

设I,J是长度为k的多重指标,定义 δ_I

$$\delta_J^I = \det \begin{pmatrix} \delta_{j_1}^{i_1} & \dots & \delta_{j_k}^{i_1} \\ \vdots & \ddots & \vdots \\ \delta_{j_1}^{i_k} & \dots & \delta_{j_k}^{i_k} \end{pmatrix}$$

Remark

Proof 当无重复指标,且J是I的置换时

$$\delta_{J}^{I} = \det \begin{pmatrix} \varepsilon^{i_{1}}(E_{j_{1}}) & \cdots & \varepsilon^{i_{1}}(E_{j_{k}}) \\ \vdots & \ddots & \vdots \\ \varepsilon^{i_{k}}(E_{j_{1}}) & \cdots & \varepsilon^{i_{k}}(E_{j_{k}}) \end{pmatrix}$$

$$= \varepsilon^{I}(E_{j_{1}}, \cdots, E_{j_{k}})$$

$$= (\operatorname{sgn} \sigma) (\sigma \varepsilon^{I}) (E_{i_{1}}, \cdots, E_{i_{k}})$$

$$= \operatorname{sgn} \sigma$$

当有重复指标时显然 $\delta_J^I = 0$ 当 J 不是 I 的置换时,不妨设 j_k 不在 I 中,那么 δ_J^I 的行列式的第 k 列为 0。

引理 1.2 (初等 k-余向量的性质)

设 (E_i) 是 V 的一组基, (ε^i) 是 V^* 的对偶基, 则

- 若 I 有重复指标,则 $\varepsilon^I = 0$;
- 若 $J = I_{\sigma}$ 对某个 $\sigma \in S_k$ 成立,则 $\varepsilon^I = (\operatorname{sgn} \sigma) \varepsilon^J$;

•
$$\varepsilon^I(E_{j_1}, \cdots, E_{j_k}) = \delta^I_J$$

Proof 只证明第二条,

$$\varepsilon^{I_{\sigma}}(v_{1}, \dots, v_{k}) = \det \begin{pmatrix} \varepsilon^{i_{\sigma(1)}}(v_{1}) & \cdots & \varepsilon^{i_{\sigma(1)}}(v_{k}) \\ \vdots & \cdots & \vdots \\ \varepsilon^{i_{\sigma(k)}}(v_{1}) & \cdots & \varepsilon^{i_{\sigma(k)}}(v_{k}) \end{pmatrix} \\
= (\operatorname{sgn} \sigma^{-1}) \det \begin{pmatrix} \varepsilon^{i_{1}}(v_{1}) & \cdots & \varepsilon^{i_{1}}(v_{k}) \\ \vdots & \cdots & \vdots \\ \varepsilon^{i_{k}}(v_{1}) & \cdots & \varepsilon^{i_{k}}(v_{k}) \end{pmatrix} \\
= (\operatorname{sng} \sigma) \varepsilon^{I}(v_{1}, \dots, v_{k})$$

定义 1.5 (递增指标)

称多重指标 $I=(i_1,i_2,\cdots,i_k)$ 是递增的,若 $i_1<\cdots< i_k$

Remark 常用 \sum' 表示对递增指标的求和,例如

$$\sum_{I}^{\prime} \alpha_{I} \varepsilon^{I} := \sum_{\{I: i_{1} < \dots < i_{k}\}} \alpha_{I} \varepsilon^{I}$$

命题 1.2 (交错张量空间的基)

设 $V \in n$ -维线性空间, $(\varepsilon^i) \in V^*$ 的一组基,则对于每个正整数 $k \leq n$,集合

$$\mathcal{E} = \left\{ \varepsilon^I : I$$
是长度为 k 的递增指标 $\right\}$

构成 $\Lambda^k(V^*)$ 的一组基。因此

$$\dim \Lambda^k (V^*) = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Proof 当 k > n 时,任意 $k \land V$ 中的向量都是线性相关的,故由引理**6.1**,V 上的任意交错 k-张量都是零映射。

当 $k \le n$ 时,为了说明 & 张成了 $\Lambda^k(V^*)$,令 $\alpha \in \Lambda^k(V^*)$ 。对于每个多重指标 $I=(i_1,\cdots,i_k)$,定义

$$\alpha_I := \alpha(E_{i_1}, \cdots, E_{i_k})$$

 α 的交错性给出: 若 I 有重复指标,则 $\alpha_I = 0$,并且 $\alpha_J = (\operatorname{sgn} \sigma) \alpha_I$,若 $J = I\sigma$,因此任取多重指标 J,我们有

$$\sum_{I}^{\prime} \alpha_{I} \varepsilon^{I} \left(E_{j_{1}}, \cdots, E_{j_{k}} \right) = \sum_{I}^{\prime} \alpha_{I} \delta^{I}_{J} = \alpha_{J} = \alpha \left(E_{j_{1}}, \cdots, E_{j_{k}} \right)$$

这表明 $\sum_{I}' \alpha_{I} \varepsilon^{I} = \alpha$, 因此 $\mathscr E$ 张成了 $\Lambda^{k}(V^{*})$ 。

为了说明 & 中元素线性无关,设

$$\sum_{I}' k_{I} \varepsilon^{I} = 0$$

对每个 $J=(j_1,\cdots,j_k)$, 上式两端作用在 (E_{j_1},\cdots,E_{j_k}) 上, 即可得到 $k_J=0$, 这就说明了线性无关性。

推论 1.1

对于 n 维线性空间 V, $\Lambda^n(V^*)$ 是由 $\varepsilon^{1\cdots n}$ 张成的 1-维线性空间,并且该初等 k-余向量在 (v_1,\cdots,v_n) 上作用的取值为系数矩阵的行列式。

命题 1.3

设 V 是 n-维线性空间, $\omega \in \Lambda^n(V^*)$ 。若 $T:V \to V$ 是线性映射, v_1,v_2,\cdots,v_n 是 V 上的向量,那么

$$\omega(Tv_1, \dots, Tv_n) = (\det T) \omega(v_1, \dots, v_n)$$

Proof 设 (E_i) 是 V 的一组基 (ε_i) 是对偶基,设 T 的表示矩阵为 $\left(T_i^j\right)$,令 $T_i := TE_i = T_i^j E_j$ 。由引理**6.1**, $\omega = c\varepsilon^{1\cdots n}$ 对于某个实数 c 成立。

由所证式子两端的交错性,不妨只考虑 v_1, \dots, v_n 线性无关的情况,又由多线性不只考虑 $(v_1, \dots, v_n) = (E_1, \dots, E_n)$ 。事实上,

$$\omega (TE_1, \dots, TE_n) = c\varepsilon^{1\dots n} (T_1, \dots, T_n)$$
$$= c \det (\varepsilon^j (T_j))$$
$$= c \det (T_i^j) = c \det T$$

另一方面

$$(\det T) \omega (E_1, \dots, E_n) = (\det T) c \varepsilon^{1 \dots n} (E_1, \dots, E_n) = c \det T$$

这就说明了命题。

1.1.2 楔积

定义 1.6 (楔积)

设 V 是有限维实线性空间。给定 $\omega \in \Lambda^k(V^*)$ 和 $\eta \in \Lambda^l(V^*)$, 定义它们的楔积或外积,为 (k+l)-余向量

$$\omega \wedge \eta := \frac{(k+l)!}{k!l!} \text{Alt} (\omega \otimes \eta)$$

上面这坨诡异的系数其实是为了方便下面的引理

引理 1.3

设 V 是 n 维线性空间, $\left(\varepsilon^1,\cdots,\varepsilon^n\right)$ 是 V^* 的一组基。对于任意多重指标 $I=(i_1,\cdots,i_k)$ 和 $J=(j_1,\cdots,j_l)$,

$$\varepsilon^I \wedge \varepsilon^J = \varepsilon^{IJ}$$

其中 $IJ := (i_1, \cdots, i_k, j_1, \cdots, j_l)$ 。

Proof 由多线性,只需要说明

$$\varepsilon^{I} \wedge \varepsilon^{J} \left(E_{p_1}, \cdots, E_{p_{k+l}} \right) = \varepsilon^{IJ} \left(E_{p_1}, \cdots, E_{p_{k+l}} \right)$$

对每一列基向量 (E_1, \cdots, E_{k+l}) 成立,接下来分 4 种情况讨论。

- 1. 当 $P = (p_1, \dots, p_{k+l})$ 中有重复指标时, 两边根据定义均为 0。
- 2. 当 P 中含有均不在 I, J 中出现的指标时,右侧由引理6.2可知为零,此外左侧求和式的每一项,要么包含 ε^I 作用的不是指标为 I 的基向量的置换,要么 ε^J 不是,故每一项均为零,因此左侧式也为零。

3. 当 P = IJ, 且 P 中无重复项时,右侧由引理6.2取 1。左侧

$$\varepsilon^{I} \wedge \varepsilon^{J} \left(E_{p_{1}}, \cdots, E_{p_{k+l}} \right)
= \frac{(k+l)!}{k!l!} \operatorname{Alt} \left(\varepsilon^{I} \otimes \varepsilon^{J} \right) \left(E_{p_{1}}, \cdots, E_{p_{k+l}} \right)
= \frac{1}{k!l!} \sum_{\sigma \in S_{k}} (\operatorname{sgn} \sigma) \varepsilon^{I} \left(E_{p_{1}}, \cdots, E_{p_{k}} \right) \varepsilon^{J} \left(E_{p_{k+1}}, \cdots, E_{p_{k+l}} \right)$$

当存在 $\{1,2,\cdots,k\}$ 的置换 $\tau \in S_k$,和 $\{k+1,\cdots,k+l\}$ 的置换 $\eta \in S_l$,使得 $\sigma = \tau \eta$ 时,最下方和式的一项才会非零,因此

$$\begin{split} & \varepsilon^{I} \wedge \varepsilon^{J} \left(E_{p_{1}}, \cdots, E_{p_{k+l}} \right) \\ & = \frac{1}{k! l!} \sum_{\tau \in S_{k}, \eta \in S_{l}} \left(\operatorname{sgn} \, \tau \right) \left(\operatorname{sgn} \, \eta \right) \varepsilon^{I} \left(E_{p_{\tau(1)}}, \cdots, E_{p_{\tau(k)}} \right) \varepsilon^{J} \left(E_{p_{\tau(k+1)}}, \cdots, E_{p_{\tau(k+l)}} \right) \\ & = \left(\frac{1}{k!} \sum_{\tau \in S_{k}} \left(\operatorname{sgn} \, \tau \right) \varepsilon^{I} \left(E_{p_{\tau(1)}}, \cdots, E_{p_{\tau(k)}} \right) \right) \left(\frac{1}{l!} \sum_{\eta \in S_{l}} \left(\operatorname{sgn} \, \eta \right) \varepsilon^{J} \left(E_{p_{\tau(k+1), \cdots, E_{p_{\tau(k+l)}}}} \right) \right) \\ & = \left(\operatorname{Alt} \, \varepsilon^{I} \right) \left(E_{p_{1}}, \cdots, E_{p_{k}} \right) \left(\operatorname{Alt} \, \varepsilon^{J} \right) \left(E_{p_{k+1}}, \cdots, E_{p_{k+l}} \right) \\ & = \varepsilon^{I} \left(E_{p_{1}}, \cdots, E_{p_{k}} \right) \varepsilon^{J} \left(E_{p_{k+1}}, \cdots, E_{p_{k+l}} \right) \\ & = 1 \end{split}$$

4. 当 $P \neq IJ$ 的置换, 且 P 无重复指标时, 通过一个置换化为第三种情况。

命题 1.4

设 $\omega, \omega', \eta, \eta'$ 和 ξ 是有限维线性空间 V 上的多重余向量,则

1. 双线性: 对于 $a, a' \in \mathbb{R}$,

$$(a\omega + a'\omega') \wedge \eta = a(\omega \wedge \eta) + a'(\omega' \wedge \eta)$$
$$\eta \wedge (a\omega + a'\omega') = a(\eta \wedge \omega) + a'(\eta \wedge \omega')$$

2. 结合律:

$$\omega \wedge (\eta \wedge \xi) = (\omega \wedge \eta) \wedge \xi$$

3. 反交换律: 对于 $\omega \in \Lambda^k(V^*), \eta \in \Lambda^l(V^*)$

$$\omega \wedge \eta = (-1)^{kl} \, \eta \wedge \omega.$$

4. 设 (ε^i) 是 V^* 的任意一组基, $I=(i_1,\cdots,i_k)$,则

$$\varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_k} = \varepsilon^I$$
.

5. 对于任意余向量 $\omega^1, \cdots, \omega^k$ 和向量 v_1, \cdots, v_k ,

$$\omega^{1} \wedge \cdots \wedge \omega^{k} (v_{1}, \cdots, v_{k}) = \det (\omega^{j} (v_{i}))$$

Proof 双线性由张量积的双线性及 Alt 的线性立即得到。

对于结合律,只需注意到

$$\left(\varepsilon^{I}\wedge\varepsilon^{J}\right)\wedge\varepsilon^{K}=\varepsilon^{IJ}\wedge\varepsilon^{K}=\varepsilon^{IJK}=\varepsilon^{I}\wedge\varepsilon^{JK}=\varepsilon^{I}\wedge\left(\varepsilon^{J}\wedge\varepsilon^{K}\right)$$

再由双线性得到一般的情况。

对于反交换律,设 τ 是IJ到JI的置换,则

$$\varepsilon^I \wedge \varepsilon^J = \varepsilon^{IJ} = (\operatorname{sgn} \tau) \, \varepsilon^{JI} = (\operatorname{sgn} \tau) \, \varepsilon^J \wedge \varepsilon^I$$

再由双线性得到。

性质 4. 由引理6.3归纳得到。

对于性质 5., 考虑 $\omega^1, \ldots, \omega^k$ 是基 (ε^i) 的一部分的情况, 该情况由 4. 和初等余向量的定义立即得到。对于一般的情况, 只需注意到所需等式两端的多线性, 两边分别拆成若干 $\varepsilon^K(v_1,\ldots,v_k)$ 和 $\det(\varepsilon^{k_j}(v_i))$ 的和,每一项两两相等。

定义 1.7 (可分解性)

称 k-余向量是可分解的, 若存在余向量 $\omega^1, \dots, \omega^k$, 使得 $\eta = \omega^1 \wedge \dots \wedge \omega^k$

Remark

- 对于 k > 1,存在不可分解的 k-余向量。
- 任意 k-余向量写作可分解余向量的线性组合。

命题 1.5 (楔积的泛性质)

楔积是唯一的具有结合律、双线性、反交换律且满足

$$\varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_k} = \varepsilon^I$$

的 $\Lambda^{k}\left(V^{*}\right) \times \Lambda^{l}\left(V^{*}\right) \rightarrow \Lambda^{k+l}\left(V^{*}\right)$ 的映射。

Proof 任取 k-余向量和 l-余向量 ω, η , 则 ω, η 均写作 ε^I 的线性组合。将每个 ε^I 写作 $\varepsilon^{i_1} \wedge \cdots \wedge \varepsilon^{i_k}$ 的形式,利用结合律、双线性、反交换律,易见 $\omega \wedge \eta$ 的唯一性。

定义 1.8 (外代数)

设 V 是 n-维线性空间,定义线性空间 $\Lambda(V^*)$

$$\Lambda\left(V^{*}\right) = \bigoplus_{k=0}^{n} \Lambda^{k}\left(V^{*}\right)$$

在楔积下, $\Lambda(V^*)$ 构成反交换的分次代数,称为 V 的外代数 (或 Grassman 代数)。

Remark

• dim $\Lambda(V^*) = 2^n$

1.1.3 内部乘法

定义 1.9

设V是有限维线性空间,对每个 $v \in V$,定义线性映射

$$i_v: \Lambda^k(V^*) \to \Lambda^{k-1}(V^*)$$

称为通过v的内部乘法,

$$i_v\omega\left(w_1,\cdots,w_{k-1}\right):=\omega\left(v,\omega_1,\cdots,\omega_{k-1}\right)$$

Remark

• 约定当 ω 为零向量时, $i_v\omega := 0$

引理 1.4

设V是有限维线性空间, $v \in V$,则

- 1. $i_v \circ i_v = 0$
- 2. 若 $\omega \in \Lambda^k(V^*), \eta \in \Lambda^l(V^*), 则$

$$i_v(\omega \wedge \eta) = (i_v\omega) \wedge \eta + (-1)^k \omega \wedge (i_v\eta)$$

Proof 只证明第二条。

由于每个正 rank 的余向量都可以写作可分解余向量的线性组合,因此只需考虑 ω 和 η 均可分解的情况即可。该特殊情况的公式是下面的公式的直接结果: 对于 $\omega^1, \dots, \omega^k$, 以下成立

$$i_{v}\left(\omega^{1}\wedge\cdots\wedge\omega^{k}\right)=\sum_{i=1}^{k}\left(-1\right)^{i-1}\omega^{i}\left(v\right)\omega^{1}\wedge\cdots\wedge\hat{\omega^{i}}\wedge\cdots\wedge\omega^{k}$$

为此,取 $v_1=v$,并任取 v_2,\cdots,v_k ,接下来证明

$$\left(\omega^{1} \wedge \cdots \wedge \omega^{k}\right)\left(v_{1}, \cdots, v_{k}\right) = \sum_{i=1}^{k} \left(-1\right)^{i-1} \omega^{i}\left(v_{1}\right) \left(\omega^{1} \wedge \cdots \wedge \hat{\omega^{i}} \wedge \cdots \wedge \omega^{k}\right) \left(v_{2}, \cdots, v_{k}\right)$$

左侧取值为 $\det\left(\omega^{i}\left(v_{j}\right)\right)$, 右侧取值为 $\left(\omega^{i}\left(v_{j}\right)\right)$ 按第一行的展开式, 故二者相等。

1.2 流形上的微分形式

定义 1.10

设 M 是 n-维光滑流形,回忆 T^kT^*M 是 M 上的共变 k-张量丛,由全体交错张量的子集记作 Λ^kT^*M

$$\Lambda^k T^*M := \coprod_{p \in M} \Lambda^k \left(T_p^*M \right)$$

Remark

1. $\Lambda^k T^* M$ 是 $T^k T^* M$ 的光滑子丛,进而是 M 上的 rank- $\binom{n}{k}$ 的光滑向量丛。

Proof 在每个坐标上取 T^kT^*M 的坐标标架中交错的项,它构成 λ^kT^*M 的一个局部光滑标架,从而由子丛光滑性的局部标架判据, Λ^kT^*M 是光滑子丛。

定义 1.11 (微分形式)

 $\Lambda^k T^* M$ 的一个截面被称为是一个微分 k-形式,或简称 k-形式。即一个 (连续)的张量场,它在每一点处的取值均为一个交错张量。k-被称为是形式的次数。即全体光滑 k-形式构成的向量空间为

$$\Omega^{k}\left(M\right):=\Gamma\left(\Lambda^{k}T^{*}M\right)$$

Remark

- 可以逐点的定义两个微分形式的楔积: $(\omega \wedge \eta)_p := \omega_p \wedge \eta_p$
- 定义 $\Omega^*(M) := \bigoplus_{k=0}^n \Omega^k(M)$, 则 $\Omega^*(M)$ 构成一个反交换的分次代数。

命题 1.6 (基表示)

在每个光滑坐标卡上,k-形式 ω 写作

$$\omega = \sum_{I}' \omega_{I} \, \mathrm{d}x^{i_{1}} \wedge \dots \wedge \, \mathrm{d}x^{i_{k}} = \sum_{I}' \omega_{I} \, \mathrm{d}x^{I}$$

Remark

- 视 ω_I 为 0-形式,数乘无非是 0-形式的楔积。
- 每个 ω_I 都是连续函数,且 ω 光滑当且仅当每个 ω_I 均光滑。
- 引理6.2翻译为

$$\mathrm{d}x^{i_1} \wedge \dots \wedge \mathrm{d}x^{i_k} \left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}} \right) = \delta^I_J$$

分量 ω_I 由

$$\omega_I = \omega \left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_k}} \right)$$

给出

定义 1.12 (微分形式的拉回)

是 $F: M \to N$ 是光滑映射, ω 是 N 上的微分形式,拉回 $F^*\omega$ 被定义为 ω 作为张量场通过 F 的拉回,它是 M 上的一个微分形式:

$$(F^*\omega)_p(v_1,\dots,v_k) = \omega_{F(p)}(dF_p(v_1),\dots,dF_p(v_k))$$

引理 1.5 (拉回的性质)

设 $F: M \to N$ 是光滑映射,则

- 1. $F^*: \Omega^k(N) \to \Omega^k(M)$ 是 \mathbb{R}^2 上的线性映射。
- 2. $F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta);$
- 3. 在任意光滑坐标卡上

$$F^* \left(\sum_{I}' \omega_I \, \mathrm{d} y^{i_1} \wedge \dots \wedge \, \mathrm{d} y^{i_k} \right) = \sum_{I}' \left(\omega_I \circ F \right) \, \mathrm{d} \left(y^{i_1} \circ F \right) \wedge \dots \wedge \, \mathrm{d} \left(y^{i_k} \circ F \right)$$

Proof

- 1. 由逐点拉回的线性立即得到;
- 2.

$$\begin{split} &(F^* \left(\omega \wedge \eta\right))_p \left(v_1, \cdots, v_k, v_{k+1}, \cdots, v_{k+l}\right) \\ &= \left(\omega \wedge \eta\right)_{F(p)} \left(\,\mathrm{d}F_p\left(v_1\right), \cdots, \,\mathrm{d}F_p\left(v_k\right), \,\mathrm{d}F_p\left(v_{k+1}\right), \cdots, \,\mathrm{d}F_p\left(v_{k+l}\right)\right) \\ &= \frac{1}{k! l!} \sum_{\sigma \in S_k} \omega_{F(p)} \left(\,\mathrm{d}F_p\left(v_{\sigma(1)}\right), \cdots, \,\mathrm{d}F_p\left(v_{\sigma(k)}\right)\right) \eta_{F(p)} \left(\,\mathrm{d}F_p\left(v_{\sigma(k+1)}\right), \cdots, \,\mathrm{d}F_p\left(v_{\sigma(k+l)}\right)\right) \\ &= \frac{1}{k! l!} \sum_{\sigma \in S_k} \left(F^* \omega\right)_p \left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) \left(F^* \eta\right)_p \left(v_{\sigma(k+1)}, \cdots, v_{\sigma(k+l)}\right) \\ &= \left(F^* \omega \wedge F^* \eta\right)_p \left(v_1, \cdots, v_{k+l}\right) \end{split}$$

3. 由结合律,

$$\sum_{I}' \omega_{I} \, \mathrm{d} y^{i_{1}} \wedge \cdots \wedge \, \mathrm{d} y^{i_{k}} = \sum_{I}' \left(\omega_{I} \, \mathrm{d} y^{i_{1}} \right) \wedge \cdots \wedge \, \mathrm{d} y^{i_{k}}$$

由性质 1.2. 和结合律归纳地得到

$$F^* \left(\sum_{I}' \omega_I \, \mathrm{d} y^{i_1} \wedge \dots \wedge \, \mathrm{d} y^{i_k} \right) = \sum_{I}' \left(F^* \omega_I \, \mathrm{d} y^{i_1} \right) \wedge \left(F^* \, \mathrm{d} y^{i_2} \right) \wedge \dots \wedge \left(F^* \, \mathrm{d} y^{i_k} \right)$$

由 1-形式拉回的性质, 我们得到上式等于

$$\sum_{I}' ((\omega_{I} \circ F) d(y^{i_{1}} \circ F)) \wedge d(y^{i_{1}} \circ F) \wedge \cdots \wedge d(y^{i_{k}} \circ F)$$

$$= \sum_{I}' (\omega_{I} \circ F) d(y^{i_{1}} \circ F) \wedge \cdots \wedge d(y^{i_{k}} \circ F)$$

Example 1.2 设 $F: \mathbb{R}^2 \to \mathbb{R}^3$, $F(u,v) = (u,v,u^2-v^2)$, ω 是 \mathbb{R}^3 上的 2-形式 $y \, \mathrm{d}x \wedge \mathrm{d}z + x \, \mathrm{d}y \wedge \mathrm{d}z$.

拉回映射 $F^*\omega$ 按以下方式计算

$$F^* (y \, \mathrm{d}x \wedge \, \mathrm{d}z + x \, \mathrm{d}y \wedge \, \mathrm{d}z) = (y \circ f) \, \mathrm{d}(x \circ F) \wedge \mathrm{d}(z \circ F) + (x \circ F) \, \mathrm{d}(y \circ F) \wedge \mathrm{d}(z \circ F)$$

$$= v \, \mathrm{d}u \wedge \mathrm{d}(u^2 - v^2) + u \, \mathrm{d}v \wedge \mathrm{d}(u^2 - v^2)$$

$$= v \, \mathrm{d}u \wedge (2u \, \mathrm{d}u - 2v \, \mathrm{d}v) + u \, \mathrm{d}v \wedge (2u \, \mathrm{d}u - 2v \, \mathrm{d}v)$$

$$= 2uv (\, \mathrm{d}u \wedge \, \mathrm{d}u - \, \mathrm{d}v \wedge \, \mathrm{d}v) - 2v^2 \, \mathrm{d}u \wedge \, \mathrm{d}v + 2u^2 \, \mathrm{d}v \wedge \, \mathrm{d}u$$

$$= -2 (v^2 + u^2) \, \mathrm{d}u \wedge \, \mathrm{d}v$$

Example 1.3 令 $\omega = dx \wedge dy$ 是 \mathbb{R}^2 上的 2-形式,视极坐标变换 $x = r \cos \theta, y = r \sin \theta$ 为单位映射关于不同坐标的坐标表示,我们有

$$dx \wedge dy = \operatorname{Id}^* (dx \wedge dy)$$

$$= d (r \cos \theta) \wedge d (r \sin \theta)$$

$$= (\cos \theta dr - r \sin \theta d\theta) \wedge (\sin \theta dr + r \cos \theta d\theta)$$

$$= -r \sin^2 \theta d\theta dr + r \cos^2 \theta dr d\theta$$

$$= r dr \wedge d\theta$$

命题 1.7 (顶形式的拉回)

设 $F: M \to N$ 是 n-维 (带边) 流形之间的光滑映射。设 (x^i) 和 (y^j) 分别是开子集 $U \subseteq M$ 和 $V \subseteq N$ 上的光滑坐标,且 u 是 V 上的连续实值函数,那么在 $U \cap F^{-1}(V)$ 上有以下成立

$$F^* (u dy^1 \wedge \cdots \wedge dy^n) = (u \circ F) (\det DF) dx^1 \wedge \cdots \wedge dx^n$$

其中 DF 表示 F 在这些坐标上的 Jacobi 矩阵。

Proof 由于 $\Lambda^n T^* M$ 在每一点处的纤维由 $\mathrm{d} x^1 \wedge \cdots \wedge \mathrm{d} x^n$ 张成, 因此只需要说明等式两端在 $\left(\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\right)$ 上的取值相同。一方面

$$F^* (u dy^1 \wedge \dots \wedge dy^n) = (u \circ F) dF^1 \wedge \dots \wedge dF^n$$

命题??给出

$$dF^{1} \wedge \cdots \wedge dF^{n} \left(\frac{\partial}{\partial x^{1}}, \cdots, \frac{\partial}{\partial x^{n}} \right) = \det \left(dF^{j} \left(\frac{\partial}{\partial x^{i}} \right) \right) = \det \left(\frac{\partial F^{j}}{\partial x^{i}} \right)$$

另一方面

$$\left(dx^1 \wedge \dots \wedge dx^n \right) \left(\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n} \right) = 1$$

分别带入即可。

推论 1.2

设 $\left(U,\left(x^{i}\right)\right)$ 和 $\left(\tilde{U},\left(\tilde{x}^{j}\right)\right)$ 是 M 上相交的光滑坐标卡,则以下恒等式在 $U\cap \tilde{U}$ 上成立:

$$d\tilde{x}^1 \wedge \dots \wedge d\tilde{x}^n = \det\left(\frac{\partial \tilde{x}^j}{\partial x^i}\right) dx^1 \wedge \dots \wedge dx^n$$

 \heartsuit

Proof 上面的命题中将 F 取成单位映射,它关于这两个坐标的 Jacobi 就是 $\frac{\partial \tilde{x}^j}{\partial x^i}$

定义 1.13 (内部乘法)

内部乘法自然地推广到向量场和微分形式上,取逐点的作用: 对于 $X \in \mathfrak{X}(M)$ 和 $\omega \in \Omega^k(M)$,定义一个 (k-1)-形式 $i_X\omega$

$$(i_X\omega)_p := i_{X_p}\omega_p$$

命题 1.8

设 $X \neq M$ 上的光滑向量场,则

- 1. 若 ω 是光滑的微分形式,则 $i_X\omega$ 是光滑的;
- 2. $i_X:\Omega^k(M)\to\Omega^{k-1}(M)$ 是 $C^\infty(M)$ -线性的,因此对应与光滑的丛同态 $i_X:\lambda^kT^*M\to\Lambda^{k-1}T^*M$

Proof

1. 读 $\omega = \sum_{I}' \omega_{I} \, \mathrm{d}x^{I}, X = X^{i} \frac{\partial}{\partial x^{i}}$ 读 $i_{x}\omega = \sum_{J}' \omega_{J}' \, \mathrm{d}x^{J}$,则

$$\omega_J = (i_X \omega) \left(dx^J \right) = X^i \omega^{(i,J)} = X^i \omega_{(i,J)}$$

其中 X^i 和 $\omega_{(i,J)}$ 均为光滑函数,因此 $i_X\omega$ 是光滑的。

2. i_X 的 $C^{\infty}(M)$ -线性由逐点内部乘法的线性,以及 1. 得到。

1.3 外微分

定义 1.14 (欧氏空间上的外微分)

设 $\omega = \sum_J' \omega_J \, \mathrm{d} x^J$ 是开集 $U \subseteq \mathbb{R}^n$ (或 \mathbb{H}^n) 上的光滑 k-形式。定义 $\mathrm{d} \omega$ 为以下 (k+1)-形式

$$d\left(\sum_{J}' \omega_{J} dx^{J}\right) := \sum_{J}' d\omega_{J} \wedge dx^{J}$$

具体地

$$d\left(\sum_{J}' \omega_{J} dx^{j_{1}} \wedge \cdots \wedge x^{j_{k}}\right) := \sum_{J}' \sum_{i} \frac{\partial \omega_{J}}{\partial x^{i}} \wedge dx^{j_{1}} \wedge \cdots \wedge dx^{j_{k}}$$

1. 当 ω 是 1-形式时,

$$d(\omega_j dx^j) = \sum_{i,j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j$$

$$= \sum_{i < j} \left(\frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j + \frac{\partial \omega_i}{\partial x^j} dx^j \wedge dx^i \right)$$

$$= \sum_{i < j} \left(\frac{\partial \omega_j}{\partial x^i} - \frac{\partial \omega_i}{\partial x^j} \right) dx^i \wedge dx^j$$

此时 ω 是闭的, 当且仅当 $d\omega = 0$.

2. 当 f 是零形式时

$$\mathrm{d}f = \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i$$

命题 1.9 (\mathbb{R}^n 上外微分的性质)

- 1. d 在 ℝ 上是线性的;
- 2. 若 ω 是光滑 k-形式, η 是光滑 l-形式,它们定义在开集 $U\subseteq \mathbb{R}^n$ (或 \mathbb{H}^n) 上,则

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$$

- 3. $d \circ d \equiv 0$;
- 4. d 与拉回交换: 若 $U \in \mathbb{R}^n$ 或 \mathbb{H}^n 上的开集, $V \in \mathbb{R}^m$ 或 \mathbb{H}^m 上的开集, $F: U \to V$ 是光滑映射, $\omega \in \Omega^k(V)$, 则

$$F^* (d\omega) = d(F^*\omega)$$

- 1. 线性由定义和切向量 $\frac{\partial}{\partial x^i}$ 的线性显然;
- 2. 由 d 和 \wedge 的线性,只需考虑 $\omega = u \, \mathrm{d} x^I$ 和 $\eta = v \, \mathrm{d} x^J$ 的情况。需要先说明对于一般的多重指标 I (不要求递增),有 d $(u \, \mathrm{d} x^I) = \mathrm{d} u \wedge \mathrm{d} x^I$ 成立:事实上,设 J 是递增指标, $\sigma \in S_k$,使得 $J = I_\sigma$,则

$$d(u dx^{I}) = (\operatorname{sgn} \sigma) d(u dx^{J}) = (\operatorname{sgn} \sigma) du \wedge dx^{J} = du \wedge dx^{I}$$

接下来,

$$d(\omega \wedge \eta) = d(u dx^{I} \wedge v dx^{J})$$

$$= d(uv) \wedge (dx^{I} \wedge dx^{J})$$

$$= (v du + u dv) \wedge (dx^{I} \wedge dx^{J})$$

$$= (du \wedge dx^{I}) \wedge (v dx^{J}) + (-1)^{k} u dx^{I} \wedge (dv \wedge dx^{J})$$

$$= d\omega \wedge \eta + (-1)^{k} \omega \wedge d\eta$$

3. 对于k=0的情况, 我们有

$$d(du) = d\left(\frac{\partial u}{\partial x^{j}} dx^{j}\right)$$
$$= \sum_{i \leq j} \left(\frac{\partial^{2} u}{\partial x^{i} \partial x^{j}} - \frac{\partial^{2} u}{\partial x^{j} \partial x^{i}}\right) dx^{i} \wedge dx^{j} = 0$$

利用上面的结果和 2., 考虑一般的情况

$$d(d\omega) = d\left(\sum_{J}' d\omega_{J} \wedge dx^{j_{1}} \wedge \dots \wedge dx^{j_{k}}\right)$$

$$= \sum_{J}' d(d\omega_{J}) \wedge dx^{j_{1}} \wedge \dots \wedge dx^{j_{k}}$$

$$+ \sum_{J}' \sum_{i=1}^{k} (-1)^{k} d\omega_{J} \wedge dx^{j_{1}} \wedge \dots \wedge d(dx^{j_{1}}) \wedge \dots \wedge dx^{j_{k}} = 0$$

4. 由线性, 只需要检查 $\omega = u \, \mathrm{d} x^{i_1} \wedge \cdots \wedge \, \mathrm{d} x^{i_k}$ 的情况, 此时, 左侧为

$$F^* (d\omega) = F^* (du \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k})$$

= $d(u \circ F) \wedge d(x^{i_1} \circ F) \wedge \dots \wedge d(x^{i_k} \circ F)$

利用这些性质将微分形式的定义移植到流形上去

定理 1.1 (流形上外微分的存在唯一性)

设 M 是光滑带边流形。则对所有的 k 存在唯一的算子 $d:\Omega^k(M)\to\Omega^{k+1}(M)$,使得以下性质成立:

- d 在 ℝ 上线性;

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta.$$

- 3. $d \circ d \equiv 0$;
- 4. 对于 $f \in \Omega^0(M) = C^{\infty}(M)$, df 是 f 的微分, 由 df (X) = Xf 给出。

Proof 对于 M 上的任意一个光滑坐标卡 (U,φ) , 在其上定义

$$d\omega := \varphi^* d \left(\varphi^{-1*} \omega \right)$$

右侧式为上面定义的 \mathbb{R}^n 上的外微分在 φ 下的拉回。需要说明此定义是良定义的,为此,考虑两个重叠的光滑坐标卡 (U,φ) 和 (V,ψ) ,则 $\varphi\circ\psi^{-1}$ 是它们之间的过渡函数,为 \mathbb{R}^n (或 \mathbb{H}^n) 上的开子集的微分同胚。由命题6.9,

$$(\varphi \circ \psi^{-1})^* d(\varphi^{-1*}\omega) = d((\varphi \circ \psi^{-1})^* \varphi^{-1*}\omega)$$

又 $(\varphi \circ \psi^{-1})^* = \psi^{-1*} \varphi^*$ 因此

$$\psi^{-1*}\varphi^* d(\varphi^{-1*}\omega) = d(\psi^{-1*}\omega)$$

从而

$$\varphi^* d (\varphi^{-1*}\omega) = \psi^* d (\psi^{-1*}\omega)$$

这就说明了良定义性。再来说明这样定义的外微分满足性质 1.-4. 首先线性由 \mathbb{R}^n 上 d 的线性和 拉回的线性是显然的。再来考虑 2,

$$d(\omega \wedge \eta) = \varphi^* d(\varphi^{-1*}(\omega \wedge \eta))$$

$$= \varphi^* d(\varphi^{-1*}\omega \wedge \varphi^{-1*}\eta)$$

$$= \varphi^* (d(\varphi^{-1*}\omega) \wedge \varphi^{-1*}\eta + (-1)^k \varphi^{-1*}\omega \wedge d(\varphi^{-1*}\eta))$$

$$= \varphi^* d(\varphi^{-1*}\omega) \wedge \varphi^* \varphi^{-1*}\eta + (-1)^k \varphi^* \varphi^{-1*}\omega \wedge \varphi^* d(\varphi^{-1*}\eta)$$

$$= d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$$

对于3,

$$d \circ (d\omega) = d (\varphi^* d (\varphi^{-1*}\omega))$$
$$= \varphi^* d (\varphi^{-1*}\varphi^* d (\varphi^{-1*}\omega))$$
$$= \varphi^* d (d\varphi^{-1*}\omega) \equiv 0$$

对于 4.

$$df(X) = \varphi^* d(f \circ \varphi^{-1})(X) = d(f \circ \varphi^{-1} \circ \varphi)(X) = Xf$$

其中第二个等号后的 d 既可以表示外微分,又可以表示函数微分,从而可以通过 φ^* 拉回为函数的微分 df。

为了说明唯一性,设 d 是任意满足上面四条性质的算子。首先需要说明 dω 是被局部决定的:若 ω_1 和 ω_2 是在开集 $U \subseteq M$ 上相等的微分形式,任取 $p \in U$,设 ψ 是 p 点的支撑在 U 的光滑 bump 函数,令 $\eta = \omega_1 - \omega_2$,则 $\psi\eta$ 通过补充 U 以外的定义为 0,是恒为 0 的微分形式,从而 $0 = \mathrm{d}\psi\eta = \psi\,\mathrm{d}\eta + \mathrm{d}\psi \wedge \eta$,在 p 的附近,我们有 $\psi \equiv 1$,且 $d\psi \equiv 0$,因此 $\mathrm{d}\omega_1|_p - \mathrm{d}\omega_2|_p = 0$.

现在任取 $\omega \in \Omega^k(M)$, 设 (U,φ) 是任意光滑坐标卡,则 ω 在 U 上可以写作 $\sum_I' \omega_I \, \mathrm{d} x^I$,任 取 $p \in U$,通过延拓 ω_I 和 x^I 得到新的微分形式 $\sum_I' \tilde{\omega}_I \, \mathrm{d} \tilde{x}^I$,它在 p 的附近与 ω 相等。上面的四条性质和前文的讨论表明,d $(\sum_I' \tilde{\omega}_I \, \mathrm{d} \tilde{x}^I)$ 在 p 的附近由 ω_I 和 $\mathrm{d} x^I$ 唯一确定,因此 ω 是被唯一决定了的。

定义 1.15

$$T(x,y) = (Tx) y + (-1)^k x(Ty), \quad x \in A^k, y \in A^l$$

Remark 上面的定理由此可以表述为:函数的微分可以唯一地延拓到 $\Omega^*(M)$ 上次数为 +1 且平方为 0 的反导子。

命题 1.10 (内部乘法的反导子性)

设 M 是光滑流形, $X \in \mathfrak{X}(M)$ 。内部乘法 $i_X: \Omega^*(M) \to \Omega^*(M)$ 是次数为 -1 且平方为 0 的反导子。

Proof 次数为 -1 和平方为 0 是显然的,接下来考虑反导子性。由引理6.4得到反导子性。

命题 1.11 (外微分与拉回的交换性)

设 $F: M \to N$ 是光滑映射,对于每个 k,拉回映射 $F^*: \Omega^k(N) \to \Omega^k(M)$ 与 d 交换:

$$F^* (d\omega) = d(F^*\omega), \quad \omega \in \Omega^k(N)$$

Proof 分别任取 M 和 N 的光滑坐标卡 (U,φ) 和 (V,ψ) , 在 $U \cap F^{-1}(V)$ 上

$$F^* (d\omega) = F^* \psi^* d (\psi^{-1*}\omega)$$

$$= \varphi^* \circ (\psi \circ F \circ \varphi^{-1})^* d (\psi^{-1*}\omega)$$

$$= \varphi^* d (\omega \circ \psi^{-1} \circ \psi \circ F \circ \varphi^{-1})$$

$$= \varphi^* d (\varphi^{-1*} F^* \omega)$$

$$= d (F^* \omega)$$

定义 1.16

称光滑微分形式 $\omega\in\Omega^k(M)$ 是闭的,若 $\mathrm{d}\omega=0$ 。称它是恰当的,若存在 (k-1) 形式 η ,使得 $\omega=\mathrm{d}\eta$ 。