Московский физико-технический институт
Лабораторная работа:
Определение толщины волоса

_Зажигина Е.А

Студент _____

Цель работы

Получить дифракционную картину на волосе и определить его толщину.

В работе используются

Лазерная указка, набор различных волос разной толщины, картон, скотч, линейка.

Теоретическая часть

Случай геометрической оптики применим лишь тогда, если длина световой волны λ много меньше характерных размеров освещаемых объектов d (λ «d). При приближении размеров объектов к длине световой волны ($\lambda \sim$ d), отклонения от законов геометрической оптики, приводящие к возникновению дифракции, проявляются сильнее. Согласно принципам геометрической оптики за непрозрачным объектом должна находиться резкая геометрическая тень. В случае волновой оптики вместо резкой тени получается сложное распределение интенсивности, называемое дифракционной картиной. Для простоты обратимся к результатам дифракции Фраунгофера на щели. Такая дифракционная картина состоит из центрального максимума и побочных минимумов меньшей интенсивности (рис.1). Положение минимумов такой картины в приближении малых углов описывается следующим соотношением:

$$m\Delta x = m\lambda \frac{L}{d} \tag{1}$$

где $m=\pm 1,\pm 2,\pm 3,...$ – номер минимума, L – расстояние от щели до экрана. Точно так же выглядит дифракционная картина от волоса (или тонкой проволоки).

Экспериментальная установка

Соберем установку следующим образом: на куске картона вырезаем отверствие, натягиваем в нем волос, который закрепляем по бокам скотчем. Устанавливаем картон параллельно стенам. Расстояние между лазером и белой стеной $L=100~{\rm cm}$.

Рис. 1: Установка

Длина волны лазера 630 нм.

Ход работы

- 1. Собираем установку, как описано в разделе.
- 2. Установливаем картонный штатив перпендикулярно экрану стене и измеряем расстояние между ними.
- 3. Светим лазером на волос:наблюдаем дифракционную картину. Для того, чтобы картина была более контрастной, проведем эксперимент в отсутствии дополнительного освещения.
- 4. Измерим координаты минимумов дифракционной картины для первого образца: окрашенный черный волос с затылочной части головы. Чётко можно увидеть много минимумов.

m	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
X, CM	-0,99	-0,83	-0,68	-0,5	-0,3	-0,15	0	0,15	0,3	0,48	0,7	0,86	1
σ_x cm	0,1												

Таблица 2: Результаты эксперимента для образца №1

Расстояние между щелью и экраном $L_1 = (98 \pm 0.5) \ cm$

Рис. 2

По коэффициенту наклона прямой определю среднее расстояние между соседними минимумами.

$$k_1 = (0.17 \pm 0.02) \cdot \text{MM}$$

Тогда:

$$d_1 = L_1 \lambda k_1 = (46.9 \pm 0.2) \cdot \text{MKM}$$

5. Измерим координаты минимумов дифракционной картины для второго образца чётко можно увидеть 3 максимума.

m	-3	-2	-1	0	1	2	3			
x, cm	-2.4	-1.4	-0.8	0	0.7	1.5	2.3			
$\sigma_x = 0.2 \ cm$										

Таблица 3: Результаты эксперимента для образца №2

Расстояние между щелью и экраном $L_2 = (105.0 \pm 0.5) \ cm$

Рис. 3

По коэффициенту наклона прямой определю среднее расстояние между соседними минимумами.

$$k_2 = (0.76 \pm 0.2) \cdot \text{MM}$$

Тогда:

$$d_2 = L_2 \lambda k_2 = (50.2 \pm 0.3) \cdot \text{MKM}$$

6. Измерим координаты минимумов дифракционной картины для третьего образца - натурального волоса с затылка. Чётко можно увидеть 3 максимума (фотография не особо отличается от предыдущей)

m	-3	-2	-1	0	1	2	3			
x cm	-4.1	-3	-1.5	0	1.5	2.8	4.2			
$\sigma_x = 0.2 \ cm$										

Таблица 4: Результаты эксперимента для образца №3

Расстояние между щелью и экраном $L_3 = (140.0 \pm 0.5) \ cm$

Рис. 4

По коэффициенту наклона прямой определю среднее расстояние между соседними минимумами.

$$k_3 = (1.41 \pm 0.02)$$
MM

Тогда:

$$d_3 = L_3 \lambda k_3 = (124 \pm 0.02) \cdot \text{MKM}$$

Погрешности считаем по формуле:

$$\Delta d = \Delta L/L + \Delta k/k$$

 Δk рассчитывается по методу наименьших квадратов. Рассчет проихводится на сайте метод-наименьших-квадратов.рф

Выводы

В данной работе были получены диаметры трёх различных типов волос.

$$d_1 = (46.9 \pm 0.2) \cdot \text{MKM}$$

$$d_2 = (50.2 \pm 0.3) \cdot \text{MKM}$$

$$d_3 = (124 \pm 0.02) \cdot \text{MKM}$$

По толщине волосы подразделяются на:

- 1) Тонкие менее 0.05мм в диаметре.
- 2) Средние (0.05 0.07)мм в диаметре.
- 3) Утолщённые более 0.07мм в диаметре.

Разница между d_1 и d_3 может обосновываться тем, что толщина волос с разных частей головы может варьироваться (височные волоски более тонкие). У членов семьи толщина волос также может отличаться. Это связано с окрашиванием, возрастом и генетикой. Первый образец как раз окрашен и принадлежит взрослому человеку, чем третий.