§ 3.1 Galois representation

- 1. Galois rep
- 2. Weil-Deligne rep
- 3. connections
- 4. L-fct
- 5. density theorem

1. Galois rep

Setting G arbitrary topo qp e.g. G any Galvis qpIf G profinite \Rightarrow open subgps are finite index subgps.

A top field e.g. \overline{F}_p , \overline{Q}_p , C, don't want to mention \overline{Z}_p now.

Def (cont Galois rep) $(p, V) \in \operatorname{vep}_{\Lambda, \operatorname{cont}}(G)$ $V \in \operatorname{vect}_{\Delta} + p : G \longrightarrow \operatorname{GL}(V)$ cont

 ∇ $\rho(G)$ can be infinite! for GalgpE.g. When char $F \neq l$, we have l-adic cyclotomic character $\mathcal{E}_{l}: Gal(F^{sep}_{F}) \longrightarrow Z_{l}^{\times} \hookrightarrow \mathcal{Q}_{l}^{\times}$ $\sigma \mapsto \varepsilon_{l}(\sigma)$ satisfying

This is cont by def. (Take usual topo.)

Ex: Compute \mathcal{E}_{l} for $F = \mathbb{F}_{p}$.

A: $\mathcal{Z}_{l} \cong Gal(\mathbb{F}_{p}/\mathbb{F}_{p}) \longrightarrow \mathbb{Z}_{l}^{\times}$ 1 $\longmapsto p$

Notice the following two definitions don't depend on the topo of Λ .

Def (sm Galois rep) $(p, V) \in \operatorname{rep}_{\Lambda, \operatorname{sm}}(G)$ $V \in \operatorname{vect}_{\Lambda} + p : G \longrightarrow \operatorname{GL}(V)$ with open stabilizer.

Def (fin image Galois rep) $(\rho, V) \in \operatorname{vep}_{\Lambda, f_i}(G)$ finite image / finite index $V \in \operatorname{vect}_{\Lambda} + \rho: G \longrightarrow \operatorname{GL}(V)$ with finite image

Rmk.
$$\operatorname{rep}_{\Delta,\operatorname{sm}}(G) = \operatorname{rep}_{\Delta \operatorname{disc},\operatorname{cont}}(G) \longrightarrow \operatorname{rep}_{\Delta,\operatorname{cont}}(G)$$

$$\operatorname{Rep}_{\Delta,\operatorname{sm}}(G) \longleftarrow \operatorname{Rep}_{\Delta \operatorname{disc},\operatorname{cont}}(G) \longrightarrow \operatorname{Rep}_{\Delta,\operatorname{fi}}(G)$$

$$\rightarrow : \text{ if fin index subaps are open}$$

$$\rightarrow : \text{ if } G : \operatorname{profinite ap} \quad (\operatorname{Only need} : \operatorname{open} \Rightarrow \operatorname{fin index})$$

$$\rightarrow : \operatorname{Artin rep} \left(\operatorname{of profinite ap}\right)$$

Artin rep. $\Lambda = (\mathbb{C}, \text{ euclidean topo})$ G profinite

Lemma 1 (No small gp argument)

I U C GL, (C) open nbhd of 1 s.t.

 $\forall H \in GL_n(\mathbb{C})'$, $H \subseteq \mathcal{U} \implies H = \{id\}$. Proof. Take $\mathcal{U} = \{A \in GL_n(\mathbb{C}) \mid \|A - I\| < \frac{1}{3n}\}$ $\|\cdot\| = \|\cdot\|_{max}$, $\|\cdot\| = \|\cdot\|_{max}$ Only need to show, $\forall A \in GL_n(\mathbb{C})$, $A \neq Id$, $\exists m \in M$, s.t $A^m \notin \mathcal{U}$ Consider the Jordan form of A.

Case 1. A unipotent.

Case Z. A not unipotent.

Il I NECT-Soi st. Av=lv. Take mel st /2 -11 > 1/3. = 101 < 12m-1/101 = 1/Am - Id) v11 = n || Am - Id| | 101 => 1/Am - Id| > 1/3n.

Prop. For $(p,V) \in rep_{\mathfrak{C}, cont}(G)$, p(G) is finite. Proof. Take U in Lemma 1, then $\rho^{-1}(\mathcal{U})$ is open \Rightarrow $\exists I \in G_F$ finite index. $\rho(I) \subseteq \mathcal{U}$ \Rightarrow $\rho(I) = Id$ $\Rightarrow \rho(G_F)$ is finite

Rmk. For Artin rep we can speak more:

I. ρ is conj to a rep valued in $GLn(\overline{Q})$ $\rho \text{ can be viewed as cpl} \times \text{rep of fin gp. so } \rho \text{ is semisimple.}$ Since classifications of irr reps for C & \overline{Q} are the same, Levery irr rep is conj to a rep valued in $GL_n(\bar{Q})$.

 $\#\{\ fin\ subgps\ in\ GL_n(C)\ of\ "exponent\ m"\ \}\ is\ bounded,\ see:$

2. Weil-Deligne rep

Now we work over "the skeloton of the Galois gp" in general. Setting A NA local field with char kn = 1 Q: What would happen if Λ is only a NA local field?

Finite field

Task. For Λ NA local field with char $K_{\Lambda} = 1$, understand rep_ Λ , cont (\widehat{Z}) .

Def/Prop. Let $A \in GLn(\Lambda)$, TFAE. $O. \widehat{Z} \longrightarrow GLn(\Lambda)$ is a well-defined cont gp homo @ = g & GLn(A), g/Ag-1 & GLn(On) 3 det $(\lambda I - A) \in \mathcal{O}_{\Delta}[\lambda]$, with det $A \in \mathcal{O}_{\Delta}^{\times}$ A is called bounded in these cases.

 $0 \Rightarrow 0$: \hat{Z} is opt, so image lies in a max opt subgp of $GL_n(\Lambda)$, which conjugates to GLn(Oa)
https://math.stackexchange.com/questions/4461815/maximal-compact-subgroups-of-mathrmgl2-mathbb-q-p

Another method:

Lemma 1.
$$\rho$$
, μ , two ways of expressions of gp action $\rho: \widehat{Z} \to GL_n(Z)$ is cont $\Rightarrow \mu: \widehat{Z} \times \Lambda^n \longrightarrow \Lambda^n$ is cont $\Rightarrow \mu: \widehat{Z} \times \Lambda^n \xrightarrow{\rho \times Id_{\Lambda^n}} GL_n(\Lambda) \times \Lambda^n \longrightarrow \Lambda^n$ is cont. \downarrow
 \downarrow Is that true?

Lemma 2. I, Iz lattice in $\Lambda^n \Rightarrow 1.+1$ lattice in Λ

$$\begin{bmatrix} \mathcal{L}_{1} \supseteq (p^{k})^{\oplus n} \\ \mathcal{L}_{2} \supseteq (p^{k})^{\oplus n} \end{bmatrix} \Rightarrow \# \mathcal{L}_{1} + \mathcal{L}_{2} < +\infty \Rightarrow \mathcal{L}_{1} + \mathcal{L}_{2} \text{ is a lottice} \end{bmatrix}$$

Take
$$1 = \mathcal{O}_{\Lambda}^{n} \subseteq \Lambda^{n}$$
, then the stabilizer

Stab(\mathcal{L}) = $g \in \mathcal{Z} \mid g \cdot \mathcal{L} = \mathcal{L}$

= $g \in \mathcal{Z} \mid g \cdot e_{i} \in \mathcal{L} \quad \forall i$

= $\bigcap_{i} \mu_{e_{i}}^{-1}(\mathcal{L})$

is open, where

 $\text{Mei} \ \widehat{\mathcal{Z}} \longrightarrow \Lambda^n \qquad q \mapsto q \cdot e_i \quad (\text{cont by Lemma } 1)$

After conjugation,
$$A, A^{-1} \in \mathcal{M}^{n \times n}(\mathcal{O}_{\Delta}) \Rightarrow A \in GL_n(\mathcal{O}_{\Delta})$$

$$Q \Rightarrow 0$$
: w.l.o.g. $A \in GL_n(\mathcal{O}_A)$. Then we get a lift

$$\widehat{\mathbb{Z}} \xrightarrow{\exists ! \text{ cont}} \widehat{GL_n(\mathcal{O}_{\Delta})} \cong GL_n(\mathcal{O}_{\Delta})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathbb{Z} \longrightarrow GL_n(\mathcal{O}_{\Delta})$$

$$\sum_{i \in \mathbb{Z}} A^{i} \mathcal{L} = \sum_{i=0}^{n-1} A^{i} \mathcal{L}$$
 is a lattice fixed by $A_{i}A^{-1}$ (Lemma 2)

After conjugation,
$$A$$
, $A^{-1} \in \mathcal{M}^{n \times n}(\mathcal{O}_{\Delta}) \Rightarrow A \in GL_n(\mathcal{O}_{\Delta})$