

Ajustes lineales Cuadrados Mínimos

Laboratorio 1

Departamento de Física -FCEyN -UBA

(Adaptado de J. Sacanell)

Relaciones lineales entre variables

Posición/Velocidad: $pos = pos_0 + vel_0 t$

Resorte: $F = -k \Delta X$

Resistencia eléctrica: V = RI

Densidad Masa = Densidad Volumen

Crecimiento: Altura = Altura $_0$ + Ritmo Edad

y = m x + b

Tabla de valores

Posición/Velocidad: $pos = pos_0 + vel_0 t$

x(t)	y (pos)
X_1	\mathcal{Y}_1
X_2	y_2
<i>X</i> ₃	y_3
X_4	y_4

Graficamos: posibles resultados...

¿Cómo encontramos la mejor recta que ajuste nuestros datos?

$$y = mx + b$$

$$\delta y_i = y_i - (mx_i + b)$$

$$(\delta y_i)^2 = [y_i - (mx_i + b)]^2$$

$$M = \sum (\delta y_i)^2$$

$$= \sum y_i^2 + m^2 \sum x_i^2$$

$$+ nb^2 + 2mb \sum x_i$$

$$- 2m \sum x_i y_i$$

$$- 2b \sum y_i$$

¿Cómo encontramos la mejor recta que ajuste nuestros datos?

Mejor recta: la que minimice *M*

$$M = \sum (\delta y_i)^2$$

$$= \sum y_i^2 + m^2 \sum x_i^2$$

$$+ nb^2 + 2mb \sum x_i$$

$$- 2m \sum x_i y_i$$

$$- 2b \sum y_i$$

$$\frac{\partial M}{\partial m} = 0$$

$$\frac{\partial M}{\partial b} = 0$$

$$2m\sum x_i^2 + 2b\sum x_i - 2\sum (x_iy_i) = 0$$

$$2nb + 2m\sum x_i - 2\sum y_i = 0$$

$$m = \frac{n\sum(x_i y_i) - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

 Δm

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum (x_i y_i)}{n \sum x_i^2 - (\sum x_i)^2}$$

 Δb

¿Todos los puntos son equivalentes? ¿Confiamos más en alguno que en otro?

Valores ponderados: s_{vi}

Más incerteza → menos peso

¿Todos los puntos son equivalentes? ¿Confiamos más en alguno que en otro?

Cuadrados mínimos ponderados

$$b = \frac{\sum \frac{1}{(S_{yi})^2} y_i \sum \frac{1}{(S_{yi})^2} x_i^2 - \sum \frac{1}{(S_{yi})^2} x_i \sum \frac{1}{(S_{yi})^2} x_i y_i}{\sum \frac{1}{(S_{yi})^2} \sum \frac{1}{(S_{yi})^2} x_i^2 - \left(\sum \frac{1}{(S_{yi})^2} x_i\right)^2}$$

$$m = \frac{\sum \frac{1}{(S_{yi})^2} \sum \frac{1}{(S_{yi})^2} (x_i y_i) - \sum \frac{1}{(S_{yi})^2} x_i \sum \frac{1}{(S_{yi})^2} y_i}{\sum \frac{1}{(S_{yi})^2} \sum \frac{1}{(S_{yi})^2} x_i^2 - \left(\sum \frac{1}{(S_{yi})^2} x_i\right)^2}$$

 Δm

Pero, ¿qué hacemos si la relación no es lineal? Si podemos, cambiamos de variables, ¡LINEALIZAMOS!

Ejemplo 1: Período de un péndulo

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T = \frac{2\pi}{\sqrt{g}} \sqrt{l}$$

Leyes de escala - Leyes alométricas

$$y = y_0 M^b$$

Transformamos, linealizamos:

$$log_{10}(y) = log_{10}(y_0 M^b)$$

 $log_{10}(y) = log_{10}(y_0) + log_{10}(M^b)$
 $log_{10}(y) = log_{10}(y_0) + b log_{10}(M)$
 y'

"m" pendiente
"b" $\rightarrow y_0 = 10$ "b"

(cuidado con M^b vs y=mx+b)

Leyes de escala - Leyes alométricas

Leyes de escala - Leyes alométricas

$$y = y_0 M^b$$

Con $b=\pm n/4$ (modelo WBE)

Table 1 Predicted values of scaling exponents for physiological and anato-
mical variables of plant vascular systems.

Variable	Plant mass		Branch radius			
	Exponent	Symbol	Symbol	Exponent		
	predicted			Predicted	Observed	
Number of leaves	3/ ₄ (0.75)	n_0^L	n_k^L	2 (2.00)	2.007 (ref. 12)	
Number of branches	3/4 (0.75)	N ₀	N _k	-2 (-2.00) -	-2.00 (ref. 6)	
Number of tubes	3/4 (0.75)	n _o	n_k	2 (2.00)	n.d.	
Branch length	½ (0.25)	I ₀	l _k	² / ₃ (0.67)	0.652 (ref. 6)	
Branch radius	3/8 (0.375)	r ₀			••••••	
Area of conductive tissue	7 (0.875)	Ag⊤	A_k^{CT}	⁷ / ₃ (2.33)	2.13 (ref. 8)	
Tube radius	1/16 (0.0625)	a ₀	a_k	1/6 (0.167)	n.d.	
Conductivity	1 (1.00)	Κo	K _k	8/ ₃ (2.67)	2.63 (ref. 12)	
Leaf-specific conductivity	½ (0.25)	Lo	L _k	² ₃(0.67)	0.727 (ref. 17)	
Fluid flow rate	•••••••	•••••	Q _k	2 (2.00)	n.d.	
Metabolic rate	3/ ₄ (0.75)	Ċο	••••••	••••••	••••••••••	
Pressure gradient -	· ½ (–0.25)	$\Delta P_0/I_0$	$\Delta P_k/l_k$	$-\frac{2}{3}(-0.67)$	n.d.	
Fluid velocity -	· ‡ (–0.125)	u ₀	U _k	- ½ (-0.33)	n.d.	
Branch resistance -	· ³ / ₄ (–0.75)	Z_0	Z_k	- ½ (-0.33)	n.d.	
Tree height	1/4 (0.25)	h	••••••	••••••		
Reproductive biomass	³ ₄(0.75)	•••••		••••••	••••••	
Total fluid volume	25 24 (1.0415)			••••••	••••••	

Values are given as a function of total plant mass, M, and branch radius, r_k . For the latter case, predictions are compared with measured values in the last column. References cited do not quote confidence levels, except for branch length, where they are given as ± 0.036 . Because botanists rarely report allometric scaling with mass, no values for observed exponents are quoted. n.d., no data available.

ID	Masa [g]	Erro r Masa [g]	Larg o [cm]	Erro r Larg o [cm]	Anch o [cm]	Erro rAnc ho [cm]	Área [cm²]	Erro rÁre a [cm²]
1								
2								
3								
4								
5	C C:							

- Graficar variables originales.
- Transformar logaritmos.
- Transformar los errores (propagar errores).
- Graficar variables transformadas.
- Ajustar.
- Graficar variables originales con la función