

Relembrando: Algoritmo

- Conjunto das regras e procedimentos lógicos perfeitamente definidos que levam à solução de um problema em um número finito de etapas;
- **Em outras palavras,** é um conjunto de instruções bem definidas, **passo a passo**, para resolver um problema específico;
 - Não leva em consideração a utilização de nenhuma linguagem ou ferramenta específica;
 - Um algoritmo pode ser expresso em português claro, notação matemática ou um fluxograma.

O que é uma variável?

- Uma variável é um espaço de armazenamento na memória de um computador que tem um nome associado a ele;
- Esses espaços de armazenamento são utilizados para guardar valores que podem ser modificados e acessados durante a execução de um programa de computador;
- Por enquanto, vamos pensar que uma variável é uma "caixinha" e que, dentro dela, é possível armazenar, consultar ou alterar um determinado valor.

O que é um fluxograma?

- Um fluxograma é uma representação visual de um algoritmo;
- Utiliza símbolos gráficos padronizados para descrever as etapas sequenciais de um processo, as decisões a serem tomadas, as operações a serem realizadas e a direção do fluxo de informações;
- Há um ponto de partida (início) e um ou mais pontos de chegada (fim).

	Indica o inicio ou fim do processo
	Indica cada atividade que precisa ser executada
\Diamond	Indica um ponto de tomada de decisão
	Indica a direção do fluxo
	Indica os documentos utilizados no processo

Estruturas de Controle

- Em algoritmos de programação, as estruturas de controle são ferramentas utilizadas para controlar o fluxo de execução do programa;
- Elas permitem a execução de comandos, tomada de decisões e repetição de determinadas partes do algoritmo com base em condições específicas.

Estruturas de Controle - Sequência

- As estruturas garantem que as operações sejam realizadas de maneira sequencial, uma após a outra, na ordem em que foram escritas;
- As instruções são executadas em ordem linear, uma após a outra, do início ao fim do algoritmo.

 Elabore um fluxograma de um algoritmo que realize a soma de dois números fornecidos pelo usuário e exiba o resultado.

Elabore um fluxograma de um algoritmo que realize a soma de dois números fornecidos pelo usuário

e exiba o resultado.

• Elabore um fluxograma de um algoritmo que calcule a média aritmética de três valores fornecidos pelo usuário e exiba o resultado.

• Elabore um fluxograma de um algoritmo que calcule a média aritmética de três valores fornecidos pelo usuário e exiba o resultado.

• Elabore um fluxograma de um algoritmo que calcule o valor final de um produto com base no seu valor inicial e um desconto (em %). A saída deverá exibir o valor final do produto.

• Elabore um fluxograma de um algoritmo que calcule o valor final de um produto com base no seu valor inicial e um desconto (em %). A saída deverá exibir o valor final do produto.

- 1. Elabore um fluxograma de um algoritmo que leia os valores de dois lados de um retângulo **R** e calcule a área e o perímetro de **R**;
- 2. Elabore um fluxograma de um algoritmo que leia um número inteiro em segundos **S** e calcule a quantidade de horas, minutos e segundos equivalentes a **S**;
- 3. Elabore um fluxograma de um algoritmo que leia dois valores **val1** e **val2**. Em seguida, leia seus respectivos pesos **w1** e **w2**. Por último, calcule a média ponderada e exiba o resultado;
- 4. Elabore um fluxograma de um algoritmo para um caixa eletrônico que, ao receber uma solicitação de saque de **Q** em reais, exiba para o cliente a quantidade de cédulas de 100, 50, 20, 10, 5, 2 e 1 reais que serão sacadas pelo cliente, totalizando a quantidade **Q**;
- 5. Elabore um fluxograma de um algoritmo que leia dois números inteiros e os armazene em duas variáveis **A** e **B**, respectivamente. Após, deve-se realizar a troca desses números, tal que **B** fique com o valor inicial de **A** e **A** fique com o valor inicial de **B**.

Estruturas de Controle - Decisão

- As estruturas condicionais são utilizadas para alterar o fluxo de execução do algoritmo com base em condições específicas;
- Elas permitem que o algoritmo execute diferentes blocos de código com base na avaliação de uma expressão ou condição booleana.

Estruturas de Controle - Decisão

- As estruturas condicionais são utilizadas para alterar o fluxo de execução do algoritmo com base em condições específicas;
- Elas permitem que o algoritmo execute diferentes blocos de código com base na avaliação de uma expressão ou condição booleana;
- Operadores de comparação: <, >, >=, <=, !=, ==;
- Operadores booleanos: && (and), || (or), ! (not).

A	В	NOT A	A AND B	A OR B	A XOR B
Falso	Falso	Verdadeiro	Falso	Falso	Falso
Falso	Verdadeiro	Verdadeiro	Falso	Verdadeiro	Verdadeiro
Verdadeiro	Falso	Falso	Falso	Verdadeiro	Verdadeiro
Verdadeiro	Verdadeiro	Falso	Verdadeiro	Verdadeiro	Falso

Elabore um fluxograma de um algoritmo que leia um número inteiro e verifique se ele é par ou ímpar.

• Elabore um fluxograma de um algoritmo que leia um número inteiro e verifique se ele é par ou ímpar.

- Elabore um fluxograma de um algoritmo que calcule o IMC (Índice de Massa Corporal). Os valores de peso (em quilos) e altura (em metros) devem ser lidos e o IMC calculado como IMC = peso / (altura)². Por fim, a resposta do IMC deve ser interpretada de acordo com os intervalos abaixo:
 - Abaixo de 18,5: Abaixo do peso ideal
 - 18,5 a 24,9: Peso ideal
 - 25 a 29,9: Excesso de peso
 - 30 a 34,9: Obesidade classe I
 - o **35 a 39,9:** Obesidade classe II
 - Acima de 40: Obesidade classe III

• Elabore um fluxograma de um algoritmo para o método de avaliação do curso. Considere AV1 e AV2 como notas oriundas apenas de avaliações do Qstione.

- Avaliações especiais:
 - 2ª chamada (24/06/24): somente para alunos que faltaram em uma das avaliações do Qstione.
 - Reavaliação (08/07/24): somente para os alunos com a nota final presente no intervalo [40, 60).

^{*} Frequência abaixo dos 75% das aulas resulta em reprovação por faltas;

^{**} A prova de reavaliação compreende toda a matéria do curso e é elaborada livremente pelo professor.

Estruturas de Controle - Decisão - Exercícios

- 1. Elabore um fluxograma de um algoritmo que simule o procedimento de saque de uma conta bancária. Dada uma quantia **Q** a ser retirada e um saldo **S**, exiba uma mensagem caso não seja possível executar o procedimento; caso contrário, exiba o valor atualizado de **S**;
- 2. Elabore um fluxograma de um algoritmo que conceda um reajuste de 30% a um funcionário que possua, no mínimo, 4 anos de casa, salário de até R\$ 5.000,00 e, pelo menos, 1 dependente. Exiba o novo salário do colaborador e o valor do reajuste em reais;
- 3. Elabore um fluxograma de um algoritmo que leia 3 valores **a**, **b** e **c** e efetue o cálculo das raízes da equação de Bhaskara. Caso haja uma divisão por 0 ou a raiz de número negativo, a mensagem "Impossível calcular" deverá ser exibida.

Estruturas de Controle - Repetição

- A estrutura de controle de repetição, também conhecida como estrutura de repetição ou laço de repetição (loop), é utilizada para executar um bloco de código várias vezes de forma iterativa com base em um critério de decisão;
- O loop infinito ocorre quando o critério de decisão nunca é satisfeito, fazendo com que o mesmo bloco de código seja executado indefinidamente.

• Elabore um fluxograma de um algoritmo que some todos os números de 1 a 100. Ao final, exiba o resultado.

Elabore um fluxograma de um algoritmo que some todos os números de 1 a 100. Ao final, exiba o

resultado.

Elabore um fluxograma de um algoritmo que verifique se um determinado número n é primo.

 Elabore um fluxograma de um algoritmo que verifique se um determinado número inteiro n > 0 é um número perfeito (a soma dos seus divisores, excluindo n, é igual a n).

1. Elabore um fluxograma de um algoritmo que leia um número inteiro **n >= 0** e retorne o n-ésimo termo da sequência de Fibonacci. A fórmula para calcular a sequência de Fibonacci encontra-se abaixo:

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$

- Elabore um fluxograma de um algoritmo que realize o cálculo de um fatorial de um número inteiro n
 >= 0 fornecido pelo usuário. O fatorial de um número n (n!) é representado por n * n-1 * n-2 * ... * 2
 * 1. Considere 0! = 1;
- 3. Elabore um fluxograma de um algoritmo que leia uma quantidade **n** de números inteiros aleatórios do tipo **k**, tal que **0 <= k <= 100**, e conte quantos deles estão nos seguintes intervalos: [0, 25], [26, 50], [51, 75] e [76, 100];
- 4. Elabore um fluxograma de um algoritmo que leia **n** números e mostre o maior, o menor e a média dos números lidos.

