Simulação de Sinais Cerebrais de Espectroscopia por Ressonância Magnética

Da Criação à Corrupção (Por Ruído)

João Victor Dell Agli Floriano Fernando Fernandes Paiva

Curso: Mestrado

Período a que se refere: 02/2025 a 05/2025

Bolsa de Estudos: CAPES

Período de Vigência: 01/08/2024 a 28/02/2026 (19 meses)

1 Resumo

- 1. Descrever o que é "pencil"
- 2. Implementação do MPM sem ruído
- 3. Implementação do MPM com ruído
- 4. Separação de variáveis (s0, phi, omega, T2)
- 5. Testagem do L sem ruído
- 6. Testagem do SVD sem ruído
- 7. Testagem do L com ruído
- 8. Testagem do SVD com ruído
- Testagem do comportamento das variáveis separadas com a introdução de ruído de valores de sigma variados

2 Introdução

O termo "lápis" (do inglês pencil), cunhado por Grantmatcher [?] no contexto de pencil de matrizes, é uma ferramenta que combina matrizes quadradas linearmente a partir de um parâmtero λ , como descrito pela Equação 1. l é um inteiro não-negativo.

$$L(\lambda) = \sum_{i=0}^{l} \lambda^i A_i \tag{1}$$

No contexto de pencil de funções, $f(t,\lambda)$ é pencil de g(t) e h(t) quando segue o formato descrito pela Equação 2.

$$f(t,\lambda) = g(t) + \lambda h(t) \tag{2}$$

O método "lápis de matrizes", do inglês *Matrix Pencil Method* (MPM) é uma técnica numérica de estimativa de parâmetros de sinais, desenvolvido originalmente por Yingbo Hua e Tapan Sakar [2] como uma alternativa a métodos já existentes como o de Prony [1]. O mesmo consiste em modelar os sinais como uma soma de exponenciais complexas amortecidas, como na Equação 3. Partindo dessa ideia, é então aplicada uma série de

etapas, que inclui a utilização de outros métodos, como Decomposição em Valores Singulares (SVD, do inglês Singular Value Decomposition), para estimar os parâmetros dessa função modeladora.

$$y(n) = \sum_{k=1}^{M} R_k e^{i(\omega_k t + \phi_k) + \alpha_k}$$
(3)

3 Métodos

A implementação do MPM em seu trabalho original é descrita originalmente de duas maneiras: a sem ruído, implementada de maneira mais simplificada; e a que leva em conta a presença de ruído, que utiliza algoritmos mais complexos, como a Decomposição em Valores Singulares (SVD, do inglês Singular Value Decomposition).

3.1Caso sem ruído

Assumindo um sinal x de tamanho N, para o caso sem ruído, define-se duas matrizes $(N-L) \times L$, Y_1 e Y_2 , descritas pela Equação 4 e Equação 5.

$$Y_{2} = \begin{bmatrix} x(1) & x(2) & \dots & x(L) \\ x(2) & x(3) & \dots & x(L+1) \\ \vdots & \vdots & & \vdots \\ x(N-L) & x(N-L+1) & \dots & x(N-1) \end{bmatrix}$$

$$Y_{1} = \begin{bmatrix} x(0) & x(1) & \dots & x(L-1) \\ x(1) & x(2) & \dots & x(L) \\ \vdots & \vdots & & \vdots \\ (M-L) & (M-L) & (M-L) & \dots & (M-L) \end{bmatrix}$$

$$(4)$$

$$Y_{1} = \begin{bmatrix} x(0) & x(1) & \dots & x(L-1) \\ x(1) & x(2) & \dots & x(L) \\ \vdots & \vdots & & \vdots \\ x(N-L-1) & x(N-L) & \dots & x(N-2) \end{bmatrix}$$
 (5)

Sendo L o parâmetro de pencil, importante para etapas posteriores. É possível escrever Y_1 e Y_2 como a Equação 6 e a Equação 7, sendo Z_1 descrito pela Equação 8, Z_2 descrito pela Equação 9, Z_0 descrito pela Equação 10, e enfim R, descrito pela Equação 11. Por enquanto, o parâmetro M pode ser considerado como igual a N, porém virá a assumir valores diferentes posteriormente.

$$Y_2 = Z_1 R Z_0 Z_2 \tag{6}$$

$$Y_1 = Z_1 R Z_2 \tag{7}$$

$$Z_{1} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{1} & z_{2} & \dots & z_{M} \\ \vdots & \vdots & & \vdots \\ z_{1}^{N-L-1} & z_{2}^{N-L-1} & \dots & z_{M}^{N-L-1} \end{bmatrix}$$
(8)

$$Z_{2} = \begin{bmatrix} 1 & z_{1} & \dots & z_{1}^{L-1} \\ 1 & z_{2} & \dots & z_{2}^{L-1} \\ \vdots & \vdots & & \vdots \\ 1 & z_{M} & \dots & z_{M}^{L-1} \end{bmatrix}$$
(9)

$$Z_0 = diag(z_1, z_2, \dots, z_M) \tag{10}$$

$$R = diag(R_1, R_2, \dots, R_M) \tag{11}$$

Considerando agora o *pencil*, descrito pela Equação 12: Reescrevendo-o a partir da Equação 6 e da Equação 7, obtém-se a Equação 13, que, reorganizada, rende a Equação 14.

$$Y_2 - \lambda Y_1 \tag{12}$$

$$Y_2 - \lambda Y_1 = Z_1 R Z_0 Z_2 - \lambda Z_1 R Z_2 \tag{13}$$

$$Y_2 - \lambda Y_1 = Z_1 R(Z_0 - \lambda I) Z_2 \tag{14}$$

Escolhendo $\lambda = z_i$ de maneira intencional, a matriz $Z_0 - \lambda I$ é zero, fazendo com que o pencil seja igual a zero, transformando o problema em um problema de autovalores generalizados. Encontrando os autovalores generalizados do par $\{Y_1, Y_2\}$, encontra-se os polos z_i . É possível também encontrar z_i como resultado do problema de autovalores comuns da matriz $Y_1^+Y_2$, como na Equação 15. Y_1^+ , a matriz pseudoinversa de Moore-Penrose de Y_1 , é definida pela Equação 16, no qual H denota o conjugado transposto.

$$Y_1^+ Y_2 - \lambda I = 0 (15)$$

$$Y_1^+ = (Y_1^H Y_1)^{-1} Y_1^H (16)$$

Encontrados os polos z_i , basta encontrar os resíduos R_i a partir de um problema de mínimos quadrados, descritos pela Equação 17.

$$\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_M \\ \vdots & \vdots & \dots & \vdots \\ z_1^{N-1} & z_2^{N-1} & \dots & z_M^{N-1} \end{bmatrix} \cdot \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_M \end{bmatrix}$$
(17)

3.2 Caso com ruído

No caso com ruído, é construída a matriz generalizada Y, descrita pela Equação 18, da qual é possível extrair Y_1 e Y_2 excluindo a última e a primeira coluna, respectivamente.

$$Y = \begin{bmatrix} y(0) & y(1) & y(2) & \dots & y(L) \\ y(1) & y(2) & y(3) & \dots & y(L+1) \\ \vdots & \vdots & \vdots & & \vdots \\ y(N-L-1) & y(N-L) & y(N-L+1) & \dots & y(N-1) \end{bmatrix}$$
(18)

Como citado anteriormente, o parâmtero L viria a ser importante para filtragem do ruído, sendo escolhido entre N/3 e N/2, intervalo no qual a variância dos parâmetros z_i , por conta do ruído, apresentou-se como mínima [2].

Após a construção, aplica-se uma decomposição em Valores Singulares (SVD) nessa matriz.

$$Y = U\Sigma V^H \tag{19}$$

A qual a matriz U, a matriz de vetores singulares à esquerda, contém os autovetores da matriz YY^H . V, chamada de matriz de vetores singulares à direita, contém os autovetores da matriz Y^HY , e Σ , a matriz diagonal de valores singulares, contém os valores singulares de YY^H e Y^HY .

Encontradas as submatrizes, o número M de polos a serem calculados é escolhido, sendo eles os M valores singulares de Σ que mais contribuem para a matriz final. A sugestão de exclusão segue a Equação 20, sendo σ_c o valor singular analisado, σ_{max} o maior valor

singular e p a ordem do número de algarismos significativos. A partir disso, é possível filtrar os autovalores, separando os mais significativos de ruído.

$$\frac{\sigma_c}{\sigma_{max}} > 10^{-p} \tag{20}$$

Encontrado o valor singular limite de filtragem, a matriz Y' é construída a partir de Y com menos valores singulares, e a partir dela, Y'_1 e Y'_2 são derivadas. Realizada essa etapa, basta calcular os autovalores generalizados do par $\{Y'_2, Y'_1\}$, ou o autovalor da matriz $Y'^+_1Y'_2$, e os resíduos R_i , seguindo o procedimento descrito anteriormente, concluindo o processo do MPM. O sinal pode ser reconstruído com os polos z_i e resíduos R_i pela Equação 21.

$$y(kT_s) \approx \sum_{i=1}^{M} R_i z_i^k, \quad k = 0, ..., N - 1$$
 (21)

O algoritmo do MPM pode ser resumido, então, pelas seguintes etapas:

- 1. Calcular a matriz Y.
- 2. Calcular a SVD de Y.
- 3. Filtrar os valores singulares de acordo com o critério de seleção da Equação 20.
- 4. Reconstruir a matriz filtrada Y'.
- 5. Obter Y'_1 e Y'_2 a partir de Y'.
- 6. Calcular os autovalores generalizados do par $\{Y_2', Y_1'\}$ ou calcular os autovalores da matriz $Y_1'^+Y_2'$.
- 7. Encontrar os resíduos por meio do problema de mínimos quadrados descrita pela Equação 17.

Essas etapas foram traduzidas em um algoritmo na linguagem python, implementado em uma biblioteca própria customizada. Para sua implementação, foram usadas funções já prontas da biblioteca numpy, como a função para o cálculo da pseudoinversa de Moore-Penrose, cálculo de autovalores e de resolução de mínimos quadrados. É importante ressaltar que, por se tratar de um algoritmo com características numéricas em múltiplas etapas, algumas adaptações e aproximações foram feitas de maneira a viabilizar seu funcionamento. Foi necessário aproximar valores de saída dos cálculos dos polos z_i e resíduos R_i para zero em casos os quais seus valores calculados eram significativamente baixos. Essa aproximação

foi feita a partir de um valor limite, definido a critérios do usuário, para o qual valores abaixo ou igual ao valor limite eram truncados. Além disso, para as funções externas, foi necessário se atentar ao seus parâmetros próprios de filtro, usados em etapas intermediárias de cálculos que utilizam o SVD. Nesse último caso, foi definido como filtro de corte o valor de 1^{-7} .

3.3 Separação de variáveis

Com o intuito de melhorar o controle e entendimento dos parâmetros calculados pelo MPM, foi feita uma correspondência entre os polos z_i e resíduos R_i com os parâmetros originais que compõe o sinal, nesse caso, $S_{0,i}$, ϕ_i , ω_i e $T_{2,i}$. Considerando que um sinal de Espectroscopia por Ressonância Magnética (do inglês *Magnetic Resonance Spectroscopy*, MRS) pode ser representado pela Equação 22, sua versão discreta pode ser escrita assumindo $t = kT_S$, sendo T_s o período de sampling do sinal, e k um inteiro representando o passo, como na Equação 23.

$$S = \sum_{i=1}^{M} S_{0,i} e^{j\omega_i t - \frac{t}{T_2}} e^{j\phi_i}$$
 (22)

$$S = \sum_{i=1}^{M} S_{0,i} e^{j\phi_i} \left(e^{j\omega_i T_s - \frac{T_s}{T_2}} \right)^k$$
 (23)

Considerando que a aproximação feita por meio da Equação 21 é uma representação suficientemente correta do sinal, é possível estabelecer uma equivalência entre os parâmetros originais e calculados, a partir da Equação 24.

$$\sum_{i=1}^{M} S_{0,i} e^{j\phi_i} \left(e^{j\omega_i T_s - \frac{T_s}{T_2}}\right)^k = \sum_{i=1}^{M} R_i z_i^k$$
(24)

Essa equivalência demonstra que enquanto os polos z_i representam $e^{j\omega_i T_s}e^{-\frac{T_s}{T_2}}$, os resíduos representam a multiplicação $S_{0,i}e^{j\phi_i}$. Considerando a representação polar de um número complexo, na Equação 25, é possível visualizar uma maneira simples de cálculo dos parâmetros originais a partir de z_i e R_i , concluindo que $e^{-\frac{T_s}{T_2}}$ corresponde ao módulo de z, $\omega_i T_s$ ao argumento de z, $S_{0,i}$ ao módulo de R, e ϕ_i ao argumento de R. A Tabela 1 reúne as equivalências resultantes.

$$z = Ae^{j\theta} \tag{25}$$

S_0	ϕ	ω	T_2
R	arg(R)	$-\frac{1}{T_s}arg(z)$	$-\frac{T_s}{\log(z)}$

Tabela 1: Relação entre os parâmetros calculados e originais.

3.4 Sinal de controle completo

Com o objetivo de caracterizar o comportamento do algoritmo com relação à suas variáveis L e p, foi gerado um sinal de controle de comportamento previsível e variáveis geradoras conhecidas. O sinal se trata de uma simulação de MRS elaborada a partir de um algoritmo próprio, gerada a partir de parâmetros já caracterizados de metabólitos conhecidos. O sinal, gerado com um campo de $B_0 = 3T$, começa em $t_0 = 0.0$ s e termina $t_n = 1.0$ s, com um passo de $dt \approx 0.0005$ s, resultando em um sinal com 2048 pontos, de maneira a se adequar ao padrão de medidas clínicas. O sinal pode se conferido pela Figura 1.

Figura 1: Sinal de controle gerado para caracterização das variáveis.

3.5 Testagem de L sem ruído.

Foi testado para o algoritmo implementado como as variáveis resultantes do processo se comportavam com relação à variação de L, no sinal anteriormente apresentado, livre de ruído. Para isso, o algoritmo foi rodado com L variando de $L_0 = 20\%$ do N a $L_N = 80\%$ do N, limites além de N/3 e N/2 previamente estabelecidos, com o objetivo de verificar se havia alguma flutuação significativa nos valores das variáveis resultantes. Para cada L, variado nesse intervalo com um passo de 5% do N foram feitas 10 médias.

3.6 Testagem de SVD sem ruído.

Também foi testado, para o mesmo sinal, como as variáveis resultantes se comportavam com relação ao outro parâmetro do MPM, nesse caso, a ordem da variável de corte do SVD. p foi variado entre $p_0 = -3$ e $p_N = -15$, com um passo de uma unidade. Para cada p, foram feitas também 10 médias.

3.7 Sinal de controle de pico único

Além de averiguar a influência dos parâmetros tradicionais no processo do algoritmo, foi também verificada a necessidade de avaliar o comportamento dos parâmetros resultantes do processo, S_0 , ϕ , ω e T_2 , com relação à qualidade do sinal, traduzida pela sua relação sinal-ruído (do inglês, Signal-to-Noise Ratio, SNR). Para prosseguir, foi escolhido um novo sinal de controle: a simulação de MRS de um único metabólito, no caso o N-Acetylaspartato, ou NAA. Essa escolha foi motivada pela simplificação apresentada, visto que um único pico facilitaria o processo de investigação de possíveis fenômenos associados à distorções causada pela presença de ruído. A simulação foi feita com as mesmas condições de contorno apresentadas na Subseção 3.4, podendo ser conferida pela Figura 2.

Figura 2: Sinal de controle de pico único gerado para estudo dos parâmetros resultantes.

4 Resultados

5 Conclusão

Referências

- [1] J.F. Hauer, C.J. Demeure, and L.L. Scharf. Initial results in prony analysis of power system response signals. *IEEE Transactions on Power Systems*, 5(1):80–89, 1990.
- [2] T.K. Sarkar and O. Pereira. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. *IEEE Antennas and Propagation Magazine*, 37(1):48–55, 1995.