Matrix completion and tensor codes

Joshua Brakensiek, Manik Dhar, Jiyang Gao, Sivakanth Gopi, Matt Larson arXiv:2405.00778

March 20, 2025

Matrix completion

Definition (Matrix completion matroid)

Fix $m \le n$ and $0 \le d \le m$. The matrix completion matroid $\mathcal{B}_{m,n}(d,d)$ is the matroid on $[m] \times [n]$ whose bases are the subsets S of size $dm + dn - d^2$ such that, if you fill in the entries in an $m \times n$ matrix labeled by S with generic complex numbers, you can fill in the remaining entries so the matrix has rank at most d.

Matrix completion

Definition (Matrix completion matroid)

Fix $m \le n$ and $0 \le d \le m$. The matrix completion matroid $\mathcal{B}_{m,n}(d,d)$ is the matroid on $[m] \times [n]$ whose bases are the subsets S of size $dm + dn - d^2$ such that, if you fill in the entries in an $m \times n$ matrix labeled by S with generic complex numbers, you can fill in the remaining entries so the matrix has rank at most d.

Theorem (Bernstein)

S is independent in $\mathcal{B}_{m,n}(2,2)$ if and only if the corresponding bipartite graph has an edge orientation with no alternating or directed cycles.

Bipartite rigidity

- The bipartite rigidity matroid $\mathcal{B}_{m,n}(a,b)$ is a matroid on $[m] \times [n]$ of rank na + mb ab, introduced by Kalai–Nevo–Novik.
- Contraction of a matrix completion matroid.

Bipartite rigidity

- The bipartite rigidity matroid $\mathcal{B}_{m,n}(a,b)$ is a matroid on $[m] \times [n]$ of rank na + mb ab, introduced by Kalai–Nevo–Novik.
- Contraction of a matrix completion matroid.
- Hyperconnectivity matroid (Kalai): matroid on $\binom{[n]}{2}$, generalizing skew symmetric matrix completion.
- Symmetric matrix completion matroid: matroid on $\binom{[n]}{2} \sqcup [n]$.

Tensor codes

- Suppose we have an $m \times n$ array of servers. The data on each server is an element of a field k.
- For redundancy, each column is required to lie in a fixed subspace of k^m , and each row is required to lie in fixed subspace of k^n .
- Suppose the servers labeled by S fail. Can we recover all of the data?
- For simplicity, we will assume that the subspaces are generic.

Tensor codes

- Let k a field of characteristic $p \ge 0$. Let v_1, \ldots, v_m be m generic vectors in k^s and w_1, \ldots, w_n be n generic vectors in k^r .
- We have mn vectors $v_i \otimes w_j$ in $k^s \otimes k^r$.

Definition (Tensor matroid)

Let $T_{m,n}(s,r,p)$ be the matroid on $[m] \times [n]$ whose bases are the sets S of size rs for which $\{v_i \otimes w_j : (i,j) \in S\}$ is a basis for $k^s \otimes k^r$.

• S^c is spanning in $T_{m,n}(s,r,p)$ if and only if no data is lost when the servers labeled by S fail.

Equivalence

• $T_{m,n}(s,r,p)$: vectors in $k^s \otimes k^r$, where k has characteristic p.

Theorem (Brakensiek–Dhar–Gao–Gopi–L.)

 $\mathcal{B}_{m,n}(a,b)$ is the matroid dual of $T_{m,n}(m-a,n-b,0)$.

• No data is lost when the servers labeled by S fail if and only if S is independent in $\mathcal{B}_{m,n}(a,b)$.

Equivalence

• $T_{m,n}(s,r,p)$: vectors in $k^s \otimes k^r$, where k has characteristic p.

Theorem (Brakensiek–Dhar–Gao–Gopi–L.)

 $\mathcal{B}_{m,n}(a,b)$ is the matroid dual of $T_{m,n}(m-a,n-b,0)$.

- No data is lost when the servers labeled by S fail if and only if S is independent in $\mathcal{B}_{m,n}(a,b)$.
- The hyperconnectivity matroid is dual to a ∧² matroid, and the symmetric matrix completion matroid is dual to a Sym² matroid.

- If m-a is small, then we can analyze $\mathcal{B}_{m,n}(a,b)$ using $\mathsf{T}_{m,n}(m-a,n-b,0)$.
- We describe cocircuits in $\mathcal{B}_{m,n}(a,b)$ when $m-a \leq 3$ and give a polynomial time algorithm to check independence.

- If m-a is small, then we can analyze $\mathcal{B}_{m,n}(a,b)$ using $\mathsf{T}_{m,n}(m-a,n-b,0)$.
- We describe cocircuits in $\mathcal{B}_{m,n}(a,b)$ when $m-a \leq 3$ and give a polynomial time algorithm to check independence.

Theorem (Brakensiek-Dhar-Gao-Gopi-L.)

Write $S = \bigcup_{i=1}^m \{i\} \times A_i \subseteq [m] \otimes [n]$. Let S_k be the set of $j \in [n]$ which appear in exactly k of the A_i . S is independent in $T_{m,n}(3,r,0)$ if and only if

$$|A_{i} \cap A_{j} \cap A_{k} \cap A_{\ell}| = 0$$

$$|A_{i} \setminus S_{3}| + |S_{3}| \le r$$

$$|(A_{i} \cap A_{j}) \setminus S_{3}| + |(A_{k} \cap A_{\ell}) \setminus S_{3}| + |S_{3}| \le r$$

$$|A_{i} \setminus S_{3}| + |A_{j} \setminus S_{3}| + |S_{2} \setminus (S_{3} \cup A_{i} \cup A_{j})| + 2|S_{3}| \le 2r$$

$$|S_{1}| + 2|S_{2}| + 3|S_{3}| \le 3r$$

- We do not know a nice description of the independent sets or circuits of $\mathcal{B}_{m,n}(a,b)$ when m-a=3.
- $\mathcal{B}_{m,n}(a,b)$ has a Laman-like description when $m-a \leq 2$.

- We do not know a nice description of the independent sets or circuits of $\mathcal{B}_{m,n}(a,b)$ when m-a=3.
- $\mathcal{B}_{m,n}(a,b)$ has a Laman-like description when $m-a \leq 2$.

• A circuit of $T_{m,n}(4,4,p)$ for any p.

Positive characteristic

- Applications use $T_{m,n}(s,r,p)$ when p>0, especially p=2.
- We have

 $\mathrm{T}_{m,n}(m-d,n-d,p)^{\perp}\subseteq \mathsf{matrix}$ completion in char $p\subseteq \mathcal{B}_{m,n}(d,d)$.

Theorem (Brakensiek–Dhar–Gao–Gopi–L.)

If $s \le 3$, $m - s \le 1$, or m - s = n - r = 2, then $T_{m,n}(s,r,p)$ is independent of p.

Rank 2 matrix completion in characteristic p

Theorem (Bernstein)

S is independent in $\mathcal{B}_{m,n}(2,2)$ if and only if the corresponding bipartite graph has an edge orientation with no alternating or directed cycles.

- We show that if the corresponding bipartite graph has an edge orientation with no alternating or directed cycles, then S is independent in the dual of $T_{m,n}(m-2,n-2,p)$ for any p.
- We prove a determinant is nonzero by constructing an explicit monomial with coefficient ± 1 . Bicoloring the edges of a bipartite graph is equivalent to orienting the edges.

Linear algebraic matroids

- In all examples, $T_{m,n}(s,r,p)$ is independent of $p \ge 0$.
- Also true for the \wedge^2 matroid, and for the Sym² matroid except when p=2.

Theorem (Bernstein)

S is independent in the rank 2 skew-symmetric matrix completion matroid if and only if the corresponding graph has an edge orientation with no directed cycles or alternating closed trails.

• Our argument produces bases (in any characteristic) which satisfy a different-looking condition.