Statystyka

Lista 1

Zadanie 1.

Wygeneruj n obserwacji z rozkładu $N(\theta, \sigma^2)$.

- (a) $n = 50, \theta = 1, \sigma = 1,$
- (b) $n = 50, \theta = 4, \sigma = 1,$
- (c) $n = 50, \theta = 1, \sigma = 2$.

Na tej podstawie oblicz wartość estymatora parametru θ postaci

- (i) $\hat{\theta}_1 = \overline{X} = (1/n) \sum_{i=1}^n X_i$,
- (ii) $\hat{\theta}_2 = Me\{X_1, \dots, X_n\},\$
- (iii) $\hat{\theta}_3 = \sum_{i=1}^n w_i X_i$, $\sum_{i=1}^n w_i = 1$, $0 \le w_i \le 1$, $i = 1, \dots, n$, z własnym wyborem wag,
- (iv) $\hat{\theta}_4 = \sum_{i=1}^n w_i X_{i:n}$, gdzie $X_{1:n} \leq \cdots \leq X_{n:n}$ są uporządkowanymi obserwacjami X_1, \ldots, X_n ,

$$w_i = \varphi\Big(\Phi^{-1}(\frac{i-1}{n})\Big) - \varphi\Big(\Phi^{-1}(\frac{i}{n})\Big),$$

przy czym φ jest gestością, a Φ dystrybuantą standardowego rozkładu normalnego N(0,1).

Doświadczenie powtórz 10 000 razy. Na tej podstawie oszacuj wariancję, błąd średniokwadratowy oraz obciążenie każdego z estymatorów. Przedyskutuj uzyskane wyniki.

Zadanie 2.

Omów komendę set.seed(1) oraz jej potencjalne zastosowania.

Zadanie 3.

Omów konieczność numerycznego wyznaczania estymatorów największej wiarogodności na przykładzie estymacji parametru przesunięcia w rozkładzie logistycznym (przykład 6.1.4, str. 315, Hogg i inni, 2005).

Zadanie 4.

Omów wybraną metodę numeryczną pozwalającą na wyznaczenie estymatora największej wiarogodności (patrz, np., str. 329, Hogg i inni, 2005).

Zadanie 5.

Wygeneruj n obserwacji z rozkładu logistycznego $L(\theta, \sigma)$ z parametrem przesunięcia θ i skali σ .

- (a) $n = 50, \theta = 1, \sigma = 1,$
- (b) $n = 50, \theta = 4, \sigma = 1,$
- (c) $n = 50, \theta = 1, \sigma = 2$.

Oszacuj wartość estymatora największej wiarogodności parametru θ na podstawie wygenerowanej próby. Przedyskutuj wybór punktu początkowego oraz liczbę kroków w algorytmie.

Doświadczenie powtórz 10 000 razy. Na tej podstawie oszacuj wariancję, błąd średniokwadratowy oraz obciążenie estymatora. Przedyskutuj uzyskane wyniki.

1

Zadanie 6.

Wygeneruj n obserwacji z rozkładu Cauchy'ego $C(\theta, \sigma)$ z parametrem przesunięcia θ i skali σ .

- (a) $n = 50, \theta = 1, \sigma = 1,$
- (b) $n = 50, \theta = 4, \sigma = 1,$
- (c) $n = 50, \theta = 1, \sigma = 2$.

Oszacuj wartość estymatora największej wiarogodności parametru θ na podstawie wygenerowanej próby. Przedyskutuj wybór punktu początkowego oraz liczbę kroków w algorytmie.

Doświadczenie powtórz 10 000 razy. Na tej podstawie oszacuj wariancję, błąd średniokwadratowy oraz obciążenie estymatora. Przedyskutuj uzyskane wyniki.

Zadanie 7.

Powtórz eksperyment numeryczny z zadań 1, 5 oraz 6 dla n=20 i n=100. Przedyskutuj uzyskane rezultaty w nawiązaniu do wcześniejszych wyników.

Literatura

Hogg, R. V., McKean, J. W., Craig, A. T. (2005). *Introduction to Mathematical Statistics*. Pearson Education International, London.