P1 Chapter 1: Algebra

Expanding Brackets

Expanding Brackets

If you have ever been taught 'FOIL' to multiply brackets please purge it from your mind now – instead:

Multiply each term in the first bracket by each term in the second.

$$(x - y)(x + y - 1)$$

$$= x^{2} + xy - x - xy - y^{2} + y$$

$$= x^{2} - y^{2} - x + y$$

Tip: My order is "first term in first brackets times each in second, then second term in first bracket times each in second, etc."

$$(x+1)(x+2)(x+3)$$
= $(x+1)(x^2+5x+6)$
= $x^3+5x^2+6x+x^2+5x+6$
= $x^3+6x^2+11x+6$

Tip: For more than 2 brackets, multiply two out each time to reduce the number of brackets by one.

Test Your Understanding

Expand and simplify

$$(x+5)(x-2)(x+1)$$

$$= (x + 5)(x^{2} - x - 2)$$

$$= x^{3} - x^{2} - 2x + 5x^{2} - 5x - 10$$

$$= x^{3} + 4x^{2} - 7x - 10$$

2

Expand and simplify:

$$2(x-3)(x-4)$$

$$=2(x^2-7x+12)$$

$$=2x^2-14x+24$$

Expand and simplify:

$$(2x-1)^3$$

$$=(2x-1)(2x-1)(2x-1)$$

$$=(2x-1)(4x^2-4x+1)$$

$$= 8x^3 - 8x^2 + 2x - 4x^2 + 4x - 1$$

$$=8x^3-12x^2+6x-1$$

Test Your Understanding

Expand and simplify (x + 5)(x - 2)(x + 1)

Expand and simplify: 2(x-3)(x-4)

Expand and simplify: $(2x-1)^3$

Exercise 1.2

Pearson Pure Mathematics Year 1/AS Page 1

1 [MAT 2002 1B]

Of the following three alleged algebraic identities, at least one is wrong.

 $(i) \ yz (z-y) + zx (x-z) + xy (y-x) \\ = (z-y) (x-z) (y-x)$

(ii) yz(z-y) + zx(x-z) + xy(y-x)= (z-y)(z-x)(y-x)

(iii)
$$yz(x+y) + zx(z+x) + xy(y+x)$$

= $(z+y)(z+x)(y+x)$

Which of the following statements are correct? Tick all that apply.

- **□** (i)
- (ii)
- (iii)

2 [MAT 2007 1E]

If x and n are integers then

$$(1-x)^n(2-x)^{2n}(3-x)^{3n}(4-x)^{4n}(5-x)^{5n}$$

is:

- ullet negative when n>5 and x<5
- \circ negative when n is odd and x>5
- lacktriangle negative when n is a multiple of 3 and x>5
- ullet negative when n is even and x < 5

Exercise 1.2

Pearson Pure Mathematics Year 1/AS Page 1

1 [MAT 2002 1B]

Of the following three alleged algebraic identities, at least one is wrong.

$$\begin{array}{l} \text{(i) } yz\left(z-y\right)+zx\left(x-z\right)+xy\left(y-x\right) \\ &=\left(z-y\right)\left(x-z\right)\left(y-x\right) \\ \text{(ii) } yz\left(z-y\right)+zx\left(x-z\right)+xy\left(y-x\right) \\ &=\left(z-y\right)\left(z-x\right)\left(y-x\right) \\ \text{(iii) } yz\left(x+y\right)+zx\left(z+x\right)+xy\left(y+x\right) \\ &=\left(z+y\right)\left(z+x\right)\left(y+x\right) \end{array}$$

Which of the following statements are correct? Tick all that apply.

7 [MAT 2007 1E]

If x and n are integers then

$$(1-x)^n(2-x)^{2n}(3-x)^{3n}(4-x)^{4n}(5-x)^{5n}$$

is:

- ullet negative when n>5 and x<5
- \circ negative when n is odd and x>5
- lacktriangle negative when n is a multiple of 3 and x>5
- ullet negative when n is even and x < 5

Solution: (ii) only

Solution: n is odd and x > 5

Homework Exercise

1 Expand and simplify if possible:

a
$$(x+4)(x+7)$$
 b $(x-3)(x+2)$

d
$$(x-y)(2x+3)$$

$$g(2x-3)(x-4)$$

j
$$(x+5)(2x+3y-5)$$
 k $(x-1)(3x-4y-5)$ l $(x-4y)(2x+y+5)$

$$m(x+2y-1)(x+3)$$

$$p (4y + 5)(3x - y + 2)$$

b
$$(x-3)(x+2)$$

e
$$(x + 3y)(4x - y)$$

h
$$(3x + 2y)^2$$

$$k(x-1)(3x-4y-5)$$

$$\mathbf{m} (x + 2y - 1)(x + 3)$$
 $\mathbf{n} (2x + 2y + 3)(x + 6)$ $\mathbf{o} (4 - y)(4y - x + 3)$

q
$$(5y-2x+3)(x-4)$$

$$(x-2)^2$$

d
$$(x-y)(2x+3)$$
 e $(x+3y)(4x-y)$ **f** $(2x-4y)(3x+y)$

g
$$(2x-3)(x-4)$$
 h $(3x+2y)^2$ **i** $(2x+8y)(2x+3)$

1
$$(x-4v)(2x+v+5)$$

o
$$(4-y)(4y-x+3)$$

$$\mathbf{p} (4y + 5)(3x - y + 2)$$
 $\mathbf{q} (5y - 2x + 3)(x - 4)$ $\mathbf{r} (4y - x - 2)(5 - y)$

2 Expand and simplify if possible:

a
$$5(x+1)(x-4)$$

d
$$x(x-y)(x+y)$$

$$y(3x-2y)(4x+2)$$

$$i x(x+2)(x+3y-4)$$

$$m x(2x + 3)(x + y - 5)$$

$$p(x+3)(x+2)(x+1)$$

$$(x-5)(x-4)(x-3)$$

$$\mathbf{v} (3x-2)(2x+1)(3x-2)$$
 $\mathbf{w} (x+y)(x-y)(x-1)$ $\mathbf{x} (2x-3y)^3$

a
$$5(x+1)(x-4)$$
 b $7(x-2)(2x+5)$ **c** $3(x-3)(x-3)$

$$e^{-x(2x+v)(3x+4)}$$

h
$$v(7-x)(2x-5)$$

$$\mathbf{k} \ v(2x+v-1)(x+5)$$

$$2x(3x-1)(4x-y-3)$$

$$q(x+2)(x-4)(x+3)$$

$$t (2x+1)(x-2)(x+1)$$

$$\mathbf{w} (x + y)(x - y)(x - 1)$$

c
$$3(x-3)(x-3)$$

d
$$x(x-y)(x+y)$$
 e $x(2x+y)(3x+4)$ **f** $y(x-5)(x+1)$

g
$$y(3x-2y)(4x+2)$$
 h $y(7-x)(2x-5)$ **i** $x(2x+y)(5x-2)$

j
$$x(x+2)(x+3y-4)$$
 k $y(2x+y-1)(x+5)$ l $y(3x+2y-3)(2x+1)$

$$\mathbf{m} \ x(2x+3)(x+y-5)$$
 $\mathbf{n} \ 2x(3x-1)(4x-y-3)$ $\mathbf{o} \ 3x(x-2y)(2x+3y+5)$

$$\mathbf{p} (x+3)(x+2)(x+1)$$
 $\mathbf{q} (x+2)(x-4)(x+3)$ $\mathbf{r} (x+3)(x-1)(x-5)$

s
$$(x-5)(x-4)(x-3)$$
 t $(2x+1)(x-2)(x+1)$ u $(2x+3)(3x-1)(x+2)$

$$x (2x - 3y)^3$$

Homework Exercise

3 The diagram shows a rectangle with a square cut out. The rectangle has length 3x - y + 4 and width x + 7. The square has length x - 2. Find an expanded and simplified expression for the shaded area.

- 4 A cuboid has dimensions x + 2 cm, 2x 1 cm and 2x + 3 cm. Show that the volume of the cuboid is $4x^3 + 12x^2 + 5x - 6$ cm³.
- 5 Given that $(2x + 5y)(3x y)(2x + y) = ax^3 + bx^2y + cxy^2 + dy^3$, where a, b, c and d are constants, find the values of a, b, c and d. (2 marks)

Challenge

Expand and simplify $(x + y)^4$.

Links You can use the binomial expansion to expand expressions like $(x + y)^4$ quickly. \rightarrow Section 8.3

Homework Answers

1 a
$$x^2 + 11x + 28$$

b $x^2 - x - 6$
c $x^2 - 4x + 4$
d $2x^2 + 3x - 2xy - 3y$
e $4x^2 + 11xy - 3y^2$
f $6x^2 - 10xy - 4y^2$
g $2x^2 - 11x + 12$
h $9x^2 + 12xy + 4y^2$
i $4x^2 + 6x + 16xy + 24y$
j $2x^2 + 3xy + 5x + 15y - 25$
k $3x^2 - 4xy - 8x + 4y + 5$
l $2x^2 + 5x - 7xy - 4y^2 - 20y$
m $x^2 + 2x + 2xy + 6y - 3$
n $2x^2 + 15x + 2xy + 12y + 18$
o $13y - 4x + 12 - 4y^2 + xy$
p $12xy - 4y^2 + 3y + 15x + 10$
q $5xy - 20y - 2x^2 + 11x - 12$
r $22y - 4y^2 - 5x + xy - 10$

2 a
$$5x^2 - 15x - 20$$

b $14x^2 + 7x - 70$
c $3x^2 - 18x + 27$
d $x^3 - xy^2$
e $6x^3 + 8x^2 + 3x^2y + 4xy$
f $x^2y - 4xy - 5y$
g $12x^2y + 6xy - 8xy^2 - 4y^2$
h $19xy - 35y - 2x^2y$
i $10x^3 - 4x^2 + 5x^2y - 2xy$
j $x^3 + 3x^2y - 2x^2 + 6xy - 8x$
k $2x^2y + 9xy + xy^2 + 5y^2 - 5y$
l $6x^2y + 4xy^2 + 2y^2 - 3xy - 3y$
m $2x^3 + 2x^2y - 7x^2 + 3xy - 15x$
n $24x^3 - 6x^2y - 26x^2 + 2xy + 6x$
o $6x^3 + 15x^2 - 3x^2y - 18xy^2 - 30xy$
p $x^3 + 6x^2 + 11x + 6$
q $x^3 + x^2 - 14x - 24$
r $x^3 - 3x^2 - 13x + 15$
s $x^3 - 12x^2 + 47x - 60$
t $2x^3 - x^2 - 5x - 2$
u $6x^3 + 19x^2 + 11x - 6$
v $18x^3 - 15x^2 - 4x + 4$
w $x^3 - xy^2 - x^2 + y^2$
x $8x^3 - 36x^2y + 54xy^2 - 27y^3$

3
$$2x^2 - xy + 29x - 7y + 24$$

4 $4x^3 + 12x^2 + 5x - 6$ cm³
5 $a = 12, b = 32, c = 3, d = -5$