Riemann manifold Hamiltonian Monte Carlo methods

Pierre Boyeau Baptiste Kerléguer

École Normale Supérieure Paris-Saclay

10 janvier 2018

Plan

1 Context

Hamiltonian Monte Carlo Variété Riemannienne Riemann Manifold Hamiltonian Monte Carlo

2 Implementation

Plan

1 Context

Hamiltonian Monte Carlo Variété Riemannienne Riemann Manifold Hamiltonian Monte Carlo

2 Implementation

Comme décrit dans [1] Hamiltonian :

$$H(\boldsymbol{\theta}, \boldsymbol{p}) = -\mathcal{L}(\boldsymbol{\theta}) + \frac{1}{2}\log{(2\pi)^2}|\boldsymbol{M}| + \frac{1}{2}\boldsymbol{p}^T\boldsymbol{M}^{-1}\boldsymbol{p}$$

avec M une matrice de masse

Équation d'évolution :

$$\frac{d\theta}{d\tau} = \frac{\partial H}{\partial \mathbf{p}} \tag{1}$$

$$\frac{d\mathbf{p}}{d\tau} = -\frac{\partial H}{\partial \boldsymbol{\theta}} \tag{2}$$

[2] nous décrit les changements à introduire dans le Hamiltinien Changement de variation de masse M pour prendre en compte $\boldsymbol{\theta}$ $G(\boldsymbol{\theta})$. Nous utilisons l'information de Fisher $G(\beta) = \boldsymbol{X}^T \boldsymbol{\Lambda} \boldsymbol{X} + \alpha^{-1} \boldsymbol{I}$ avec $\beta \sim \mathcal{N}(0, \alpha \boldsymbol{I})$ Cependant cela induit le calcule de $G(\boldsymbol{\theta})^{-1}$ car les équations deviennent:

$$\frac{d\boldsymbol{\theta}}{d\tau} = G(\boldsymbol{\theta})^{-1}\boldsymbol{p} \ (3)$$

$$\frac{d\boldsymbol{p}}{d\tau} = \nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta}) - \frac{1}{2}\operatorname{tr}\left(G(\boldsymbol{\theta})^{-1}\frac{\partial G(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right) + \frac{1}{2}\boldsymbol{p}^{T}(\boldsymbol{\theta})^{-1}\frac{\partial G(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta})^{-1}\boldsymbol{p} \ (4)$$

```
Require: G(0) - \mathcal{L}(\theta) p^0 \theta^0
    for i = 0 : N - 1 do
         sample p^{i+1} selon \mathcal{N}(O, G^i)
         for j = 1: Nb_{leapfrogs} do
              p_{tempo} = p_{\tau}
              for k = 1 : N_{pointfixe} do
                   p\left(\tau + \frac{\epsilon}{2}\right) = p\left(\tau\right) - \frac{\epsilon}{2}\nabla_{\theta}H\left(\theta(\tau), p_{\text{tempo}}\right)
              end for
              p\left(\tau + \frac{\epsilon}{2}\right) = p_{tempo}
              \theta_{tempo} = \theta(\tau)
              for k = 1 : N_{pointfixe} do
                   \theta(\tau+\epsilon) = \theta(\tau) + \frac{\epsilon}{2} \left[ G^{-1}(\theta(\tau)) + G^{-1}(\theta_{tempo}) \right] p\left(\tau + \frac{\epsilon}{2}\right)
              end for
              \theta(\tau + \epsilon) = \theta_{tempo}
              p(\tau + \epsilon) = p(\tau + \frac{\epsilon}{2}) - \frac{\epsilon}{2}\nabla_{\theta}H(\theta(\tau + \frac{\epsilon}{2}), p(\tau + \frac{\epsilon}{2}))
         end for
     end for
```

Plan

Context

Hamiltonian Monte Carlo Variété Riemannienne Riemann Manifold Hamiltonian Monte Carlo

2 Implementation

Physics Letters B, 195(2):216–222, 1987.

M. Girolami and B. Calderhead.
Riemann manifold Langevin and Hamiltonian Monte Carlo methods.

The Royal Statistical Society, 73(1):1–37, 2011.