南开大学

NanKai University

SIMD 编程实验——以高斯消去为例

姓名:文静静

学号:1811507

年级:2018级

专业:计算机科学与技术

2021年4月13日

摘要

本文探究串行的高斯消去法(LU分解)在使用并行优化时性能的提升,同时探究了不同算法策略对性能的提升,如使用SSE和AVX指令、对齐与不对齐、是否完全向量化等,并使用工具VTune具体剖析了性能变化。

关键字: 高斯消去 SSE AVX 对齐 向量化

目录

1	绪论	4
2	实验设计	5
	2.1 实验选题	5
	2.2 算法设计与编程	6
	2.3 SSE的C++编程	7
	2.4 AVX的C++编程	15
3	编译运行	18
4	结果分析	18
	4.1 测试规模与cache	18
	4.2 对齐与不对齐	21
	4.3 向量化	22
	4.4 SSE/AVX	23
	4.5 浮点误差	25
5	使用VTune剖析程序性能	27
6	总结	31

1 绪论

本文通过高斯消去法探究 SSE 指令和 AVX 指令对于性能的提升,理解 SIMD 实现数据并行从而提高运算效率。具体探究了使用 SSE 和 AVX 指令、对齐与不对齐、是否完全向量化的不同情况下的时间性能以及加速比,还探究了算法优化产生的误差。使用了性能剖析根据 VTune 对几种算法进行了具体的剖析,对比了 SSE/AVX 优化与一般串行,对齐与不对齐等策略最终所执行的指令数,周期数,CPI。

2 实验设计

2.1 实验选题

高斯消去的计算模式如图所示,在第 k 步时,对第 k 行从 (k, k) 开始进行除法操作,并且将后续的 k+1 至 N 行进行减去第 k 行的操作。

高斯消去法(LU分解)SIMD并行化为例,具体要求如下:

- 1. 设计实现 SSE (及 AVX 等) 算法,加速计算过程。
- 2. 讨论不同算法策略对性能的影响,如 SSE 和 AVX、对齐与不对齐、4-5行的循环是否向量化、cache 等与体系结构相关的优化、arm 平台等。

2.2 算法设计与编程

初始化系数矩阵:在使用高斯消去法的时候,有除法操作,为了避免出现除数为0以及出现因为算法改变运算顺序导致误差的情况,将系数矩阵初始为单位矩阵以便运算和验证。(N为系数矩阵规模大小)

```
// 初始系数矩阵,为了方便将其设置成单位矩阵A

void init()

{
    A = new float *[N];
    for (int i = 0; i < N; i++)
    {
        A[i] = new float[N];
        A[i][i] = 1.0;
    }
}
```

串行的高斯消去法代码如下:

```
A[i][j] = A[i][j] - A[i][k] * A[k][j];

A[i][k] = 0;

A[i][k] = 0;

A[i][k] | A[i][j] | A[i][k] | A[k][j];
```

2.3 SSE的C++编程

使用SSE进行并行优化的时候,考虑对齐与不对齐、部分优化与完全优化对性能提升的影响,因此使用不同函数进行对比。

SSE指令的数据类型为 __m128, 能同时处理4个float数据。其中指导书的第 4、5 行的内嵌循环和第 9、10 行的内嵌循环都可以进行向量化下面会对这两步进行优化。将分别对 4、5 行和第 9、10 行进行向量化进行对比体现不同部分优化对程序性能提升的影响。

要设计对齐与不对齐的对比,在对齐的情况下,地址总是向量长度的倍数(在 SSE 算法中是 16 字节的倍数),只有一个超级字的读写操作,使用 _mm_load_ps 和 _mm_store_ps。在未对齐的情况下,会产生对齐开销,需要使用 _mm_loadu_ps 和 _mm_storeu_ps。一般而言数据是从起始地址处对齐的,对齐时默认规模N为4的倍数测试,不对齐时可以将N-来处理,这样当串行处理完前面不够组成 4 个的数据,新的起始地址就不是 16 字节的倍数,可以测试未对齐的函数。

另外,指导书串行算法中第 4、5 行的循环中用到了除法,为了提高效率,可以使用 $_{\rm mm_set1_ps}(1/A[k][k])$,将 128 位寄存器的值设置为 4 个 A[k][k] 的倒数,在循环中乘以它的倒数,减少除法的次数。

SSE优化:对齐,4、5行和8、9行向量化:

```
并行优化,对齐,向量化SSE
  void SSE_aligned_45()
      for (int k = 0; k < N; k++)
      {
           _{-m}128 t1, t2, t3, t4;
          // 不能凑够个的部分串行计算4
          int remain = (N - k - 1) \% 4;
          for (int j = k + 1; j \le k + remain; j++)
10
               A[k][j] = A[k][j] / A[k][k];
11
           }
          // 并行计算剩下的倍数个,减少使用除法4
          t1 = _{mm\_set1\_ps}(1 / A[k][k]);
          for (int j = k + remain + 1; j < N; j += 4)
               t2 = _{mm}load_{ps}(A[k] + j);
               t2 = _mm_mul_ps(t1, t2);
18
               _{\text{mm\_store\_ps}}(A[k] + j, t2);
19
           }
          A[k][k] = 1;
21
          for (int i = k + 1; i < N; i++)
           {
               // 不能凑够个的部分串行计算4
               for (int j = k + 1; j \le k + remain; j++)
25
26
                   A[i][j] = A[i][j] - A[i][k] * A[k][j];
               }
               t1 = _{mm\_set1\_ps}(A[i][k]);
               // 并行计算剩下的倍数个4float
               for (int j = k + remain + 1; j < N; j += 4)
               {
32
```

```
t2 = _mm_load_ps(A[k] + j);

t3 = _mm_mul_ps(t1, t2);

t4 = _mm_load_ps(A[i] + j);

t4 = _mm_sub_ps(t4, t3);

_mm_store_ps(A[i] + j, t4);

}

A[i][k] = 0;

}

40 }
```

SSE优化:对齐,4、5行不向量化,8、9行向量化:

```
并行优化,对齐,向量化,不向量化SSE8945
  void SSE_aligned_u45_89()
  {
      for (int k = 0; k < N; k++)
          _{-m}128 t1, t2, t3, t4;
          for (int j = k + 1; j < N; j++)
              A[k][j] = A[k][j] / A[k][k];
          }
10
          A[k][k] = 1.0;
11
          for (int i = k + 1; i < N; i++)
              // 先把不能凑够个的部分串行计算4
14
              int remain = (N - k - 1) \% 4;
              for (int j = k + 1; j \le k + remain; j++)
16
                  A[i][j] = A[i][j] - A[i][k] * A[k][j];
18
19
              t1 = _mm_set1_ps(A[i][k]);
              // 并行计算剩下的倍数个4float
^{21}
```

```
for (int j = k + remain + 1; j < N; j += 4)
23
                      t2 = _mm_load_ps(A[k] + j);
24
                      t3 = _mm_mul_ps(t1, t2);
                      t4 = _mm_load_ps(A[i] + j);
26
                      t4 = _{mm\_sub\_ps}(t4, t3);
27
                      _{\text{mm\_store\_ps}}(A[i] + j, t4);
                 }
                A[i][k] = 0;
            }
31
       }
32
33
```

SSE优化:对齐,4、5行向量化,8、9行不向量化:

```
// 并行优化,对齐,向量化,不向量化SSE4589
  void SSE_aligned_45_u89()
      for (int k = 0; k < N; k++)
           _{-m}128 t1, t2, t3, t4;
          // 不能凑够个的部分串行计算4
          int remain = (N - k - 1) \% 4;
           for (int j = k + 1; j \le k + remain; j++)
           {
              A[k][j] = A[k][j] / A[k][k];
          // 并行计算剩下的倍数个,减少使用除法4
13
          t1 = _{mm\_set1\_ps}(1 / A[k][k]);
14
          for (int j = k + remain + 1; j < N; j += 4)
           {
16
               t2 = _{mm}load_{ps}(A[k] + j);
               t2 = _mm_mul_ps(t1, t2);
               _{\text{mm\_store\_ps}}(A[k] + j, t2);
19
```

```
}
A[k][k] = 1;

for (int i = k + 1; i < N; i++)

{
    for (int j = k + 1; j < N; j++)

    {
        A[i][j] = A[i][j] - A[i][k] * A[k][j];

        }

A[i][k] = 0;

}

}
</pre>
```

SSE优化:不对齐, 4、5行和8、9行向量化:

```
// 并行优化,不对齐,向量化SSE4589
  void SSE_unaligned_45_89()
      for (int k = 0; k < N; k++)
          _{-m}128 t1, t2, t3, t4;
          // 不能凑够个的部分串行计算4
          int remain = (N - k - 1) \% 4;
          for (int j = k + 1; j \le k + remain; j++)
              A[k][j] = A[k][j] / A[k][k];
          // 并行计算剩下的倍数个,减少使用除法4
13
          t1 = _{mm\_set1\_ps}(1 / A[k][k]);
14
          for (int j = k + remain + 1; j < N; j += 4)
16
              t2 = _mmloadu_ps(A[k] + j);
              t2 = _mm_mul_ps(t1, t2);
               _{\text{mm\_storeu\_ps}}(A[k] + j, t2);
19
```

```
}
           A[k][k] = 1.0;
21
           for (int i = k + 1; i < N; i++)
22
           {
                // 不能凑够个的部分串行计算4
24
                for (int j = k + 1; j \le k + remain; j++)
26
                    A[i][j] = A[i][j] - A[i][k] * A[k][j];
                t1 = _mm_set1_ps(A[i][k]);
                // 并行计算剩下的倍数个4float
30
                for (int j = k + remain + 1; j < N; j += 4)
                {
                    t2 = _mm_loadu_ps(A[k] + j);
                    t3 = _{mm_{mul_{ps}}}(t1, t2);
                    t4 = _{mm}loadu_{ps}(A[i] + j);
                    t4 = _{mm\_sub\_ps}(t4, t3);
                    _{\text{mm\_storeu\_ps}}(A[i] + j, t4);
38
               A[i][k] = 0;
           }
40
       }
41
  }
42
```

SSE优化:不对齐, 4、5行不向量化, 8、9行向量化:

```
// 并行优化,不对齐,不向量化,向量化SSE4589

void SSE_unaligned_u45_89()

for (int k = 0; k < N; k++)

{
    __m128 t1, t2, t3, t4;

for (int j = k + 1; j < N; j++)

{
```

```
A[k][j] = A[k][j] / A[k][k];
           }
10
           A[k][k] = 1.0;
           for (int i = k + 1; i < N; i++)
           {
13
               // 先把不能凑够个的部分串行计算4
14
               int remain = (N - k - 1) \% 4;
               for (int j = k + 1; j \le k + remain; j++)
                    A[i][j] = A[i][j] - A[i][k] * A[k][j];
18
19
               t1 = _mm_set1_ps(A[i][k]);
20
               // 并行计算剩下的倍数个4float
               for (int j = k + remain + 1; j < N; j += 4)
                    t2 = _{mm}loadu_{ps}(A[k] + j);
                    t3 = _mm_mul_ps(t1, t2);
                    t4 = _mm_loadu_ps(A[i] + j);
26
                    t4 = _mm_sub_ps(t4, t3);
27
                    _{\text{mm\_storeu\_ps}}(A[i] + j, t4);
               }
29
               A[i][k] = 0;
30
           }
31
       }
32
33
```

SSE优化:不对齐, 4、5行向量化, 8、9行不向量化:

```
// 并行优化,不对齐,向量化,不向量化SSE4589
void SSE_unaligned_45_u89()

for (int k = 0; k < N; k++)

{
__m128 t1, t2, t3, t4;
```

```
// 不能凑够个的部分串行计算4
           int remain = (N - k - 1) \% 4;
           for (int j = k + 1; j \le k + remain; j++)
           {
               A[k][j] = A[k][j] / A[k][k];
11
           }
12
           // 并行计算剩下的倍数个,减少使用除法4
13
           t1 = _mm_set1_ps(1 / A[k][k]);
14
           for (int j = k + remain + 1; j < N; j \leftarrow 4)
16
               t2 = _{mm}loadu_ps(A[k] + j);
17
               t2 = _mm_mul_ps(t1, t2);
18
               _{\text{mm\_storeu\_ps}}(A[k] + j, t2);
           }
20
           A[k][k] = 1.0;
           for (int i = k + 1; i < N; i++)
               for (int j = k + 1; j < N; j++)
24
               {
25
                   A[i][j] = A[i][j] - A[i][k] * A[k][j];
27
               A[i][k] = 0;
           }
29
       }
```

2.4 AVX的C++编程

AVX的指令与SSE类似,使用_m256来存储8个float,由于SSE中已经比较了部分向量化的影响,因此AVX只测试对齐与不对齐的情况。

AVX优化:对齐,4、5行和8、9行向量化:

```
// 并行优化,对齐,向量化AVX
  void AVX_aligned_4589()
       for (int k = 0; k < N; k++)
           _m256 t1, t2, t3, t4;
           // 不能凑够个的部分串行计算8
           int remain = (N - k - 1) \% 8;
           for (int j = k + 1; j \le k + remain; j++)
               A[k][j] = A[k][j] / A[k][k];
           }
12
           // 并行计算剩下的倍数个,减少使用除法8
13
           t1 = _{mm}256_{set}1_{ps}(1 / A[k][k]);
           for (int j = k + remain + 1; j < N; j += 8)
           {
16
               t2 = _mm256\_load\_ps(A[k] + j);
               t2 = _{mm}256_{mulps}(t1, t2);
               _{\text{mm}}256_{\text{store}} \operatorname{ps}(A[k] + j, t2);
19
           }
20
           A[k][k] = 1.0;
           for (int i = k + 1; i < N; i++)
23
               // 不能凑够个的部分串行计算8
               for (int j = k + 1; j \le k + remain; j++)
               {
```

```
A[i][j] = A[i][j] - A[i][k] * A[k][j];
                 }
                 t1 = _mm256_set1_ps(A[i][k]);
29
                 // 并行计算剩下的倍数个8float
30
                 for (int j = k + remain + 1; j < N; j += 8)
32
                     t2 = _{mm}256_{load_{ps}}(A[k] + j);
33
                     t3 = _{mm}256_{mulps}(t1, t2);
                     t4 = _mm256 load_ps(A[i] + j);
                     t4 = _{mm}256_{sub_{ps}}(t4, t3);
                     _{\text{mm}}256_{\text{store}} ps(A[i] + j, t4);
38
                A[i][k] = 0;
            }
40
       }
41
```

AVX优化:不对齐,4、5行和8、9行向量化:

```
{
16
                t2 = _mm256\_loadu\_ps(A[k] + j);
                t2 = _{mm256\_mul\_ps(t1, t2)};
18
                _{\rm mm256\_storeu\_ps}(A[k] + j, t2);
19
            }
20
            A[k][k] = 1.0;
21
            for (int i = k + 1; i < N; i++)
22
            {
23
                // 不能凑够个的部分串行计算8
                for (int j = k + 1; j \le k + remain; j++)
                {
26
                     A[i][j] = A[i][j] - A[i][k] * A[k][j];
27
                }
                t1 = _{mm}256_{set}1_{ps}(A[i][k]);
                // 并行计算剩下的倍数个8float
30
                for (int j = k + remain + 1; j < N; j += 8)
                     t2 = _mm256\_loadu\_ps(A[k] + j);
33
                     t3 = _mm256_mul_ps(t1, t2);
34
                     t4 = _mm256\_loadu_ps(A[i] + j);
                     t4 = _{mm}256_{sub_{ps}}(t4, t3);
36
                     _{\rm mm} 256_{\rm storeu\_ps} (A[i] + j, t4);
                }
                A[i][k] = 0;
            }
40
       }
41
   }
```

3 编译运行

在CodeBlocks中编译运行:通过QueryPerformance来精确计时,同时运行epoch=10次取平均值。

SSE的编译选项:-march=corei7、-march=native AVX的编译选项:-march=corei7-avx、-march=native 串行算法时可以选择打开-O3选项,会对程序做向量化。

4 结果分析

4.1 测试规模与cache

使用CPU-Z查看本机cache的信息如下:

一级数据缓存大小为 32KBytes,二级缓存为 256KBytes,三 级缓存为 6MBytes。一级数据缓存能放下 8192 个 float,,二级缓存

能放下 256*256 个 float, 三级缓存能放下 1024*1536 个 float, 所以选择矩阵大小 N=8、16、32、64、128、256、512、1024、2048 九组数据进行测试。

得到如下表的运行结果:

规模N	串行	串行-03 优化	SSE(对 齐,45向 量化,89 向量化)	SSE(对 齐,45不 向量化, 89向量 化)	SSE(对 齐,45向 量化,89 不向量 化)	AVX(对 齐,45向 量化,89 向量化)
8	0.00115	0.00083	0.00094	0.00146	0.00186	0.00517
16	0.00716	0.00546	0.00564	0.00606	0.00766	0.00638
32	0. 05325	0.04296	0. 03071	0. 03377	0. 05383	0. 02361
64	0. 47586	0. 33988	0. 2188	0. 22346	0. 40211	0. 15987
128	3. 88653	2. 68532	1. 98478	2. 11676	3. 52207	0. 95414
256	28. 9206	21. 6384	15. 4225	15. 6266	28. 3865	6. 39229
512	235. 784	160. 638	115. 489	116.855	229. 47	51. 6315
1024	1981. 5	1296. 83	986. 349	954. 323	1866. 02	468. 935
2048	15429. 9	10539. 1	7959. 8	7971. 22	13313. 3	3784. 13

其中串行算法的时间随规模变化如下图:

可以发现当规模超过256时,时间增加明显增多,规模到1024时,时间开始急速增长,跟我们的cache存储还是比较符合的。串行算法的第二个内层循环,是逐行访问矩阵元素的,这相比于逐列访问已经很好地利用了 cache 的特点,因此算法在cache上的优化暂无法做到更好。

4.2 对齐与不对齐

补充未对齐时的实验结果如下表:

规模N	串行	SSE (对 齐, 45向 量化, 89 向量化)	SSE(不 对齐,45 向量化, 89向量 化)	AVX(对 齐,45向 量化,89 向量化)	AVX(不 对齐,45 向量化, 89向量 化)
8	0.00115	0.00094	0.0028	0.00517	0.00263
16	0.00716	0.00564	0.00681	0.00638	0.00791
32	0. 05325	0.03071	0.03816	0.02361	0. 03618
64	0. 47586	0. 2188	0. 19836	0. 15987	0. 16504
128	3. 88653	1. 98478	1. 51893	0. 95414	0. 96584
256	28. 9206	15. 4225	15. 7674	6. 39229	6. 50446
512	235. 784	115. 489	117. 9799	51. 6315	50. 5042
1024	1981. 5	986. 349	997. 705	468. 935	470. 778
2048	15429. 9	7959. 8	7961. 93	3784. 13	3822. 77

可以看出大部分时间上,对齐均优于不对齐的情况,由此可见数据不对齐时带来的开销对性能的影响。

4.3 向量化

对比不同部分向量化带来的影响:

可见当串行45行不进行向量化时,时间比全部向量化略多,但 是当串行89行不进行向量化时,时间远多于全部向量化的处理,主 要还是89行的代码比较多,向量化能提升的性能比较多。

4.4 SSE/AVX

串行、SSE优化、AVX优化的时间随规模变化如下:

对于高斯消去法的串行算法的时间复杂度是 $O(n^3)$ 。假设 SSE 寄存器的读写、计算所用时间是普通寄存器用时的 k1 倍,对于全部并行的 SSE 算法,复杂度大致为 $O(k1/4*n^2+k1/4*n^3)$,加速比约为 4/k1。同理,假设 AVX 寄存器的读写、计算所用时间是普通寄存器用时的 k2 倍,那么加速比约为 8/k2。

计算加速比得到表如下:

规模N	串行-03 优化	SSE (对 齐, 45向 量化, 89 向量化)	SSE(不 对齐,45 向量化, 89向量 化)	AVX (对 齐,45向 量化,89 向量化)	AVX (不 对齐, 45 向量化, 89向量 化)
8	1. 38554	1. 2234	0. 410714	0. 22243	0. 43726
16	1. 31136	1. 2695	1. 051395	1. 122257	0. 9052
32	1. 23953	1. 73396	1. 39544	2. 2554	1. 47181
64	1. 40008	2. 17486	2. 0991	2. 9765	2. 8833
128	1. 4473	1. 9582	2. 0587	4. 07333	4. 02399
256	1. 33654	1.8752	1.8342	4. 52429	4. 4463
512	1. 4678	2. 0416	1. 99851	4. 56667	4. 6686
1024	1. 52796	2. 0089	1. 9861	4. 85662	4. 8455
2048	1. 4641	2. 10384	1. 9379	5. 0029	4. 95375

可以发现SSE的最大加速比为 2.17486, 而AVX的最大加速比为 5.0029。当数据规模较小,小于 256 时,SSE 和 AVX 优化的加速比随着数据规模的增加而增加,当数据规模较大后,加速比有时不再上升,反而有一些下降,并且与上面复杂度分析中 SSE 的加速比约为 4/k1, AVX 的加速比为 8/k2 的结论并不完全相符,分析原因,可能是打包、解包、对齐的开销抵消了一部分 SIMD 并行带来的收益,数据规模较小时并行的数据量不足,收益很小;后期数据规模增加时,并行的收益在增加但是代价也在增加。

4.5 浮点误差

关于指令运算顺序导致的浮点数的误差的探究,在上一次实验中已经通过代码和测试得出了相应结论。此次测试通过comp()函数来对高斯消去(串行)和高斯消去(SSE并行优化)得到的矩阵进行比较,如果误差超出10e-6,将会返回false。

同时将初始化进行修改,初始成上三角矩阵,确保高斯消去能运行,不会出现除数为0的情况,又能测试结果。

测试N=32时,还未出现误差:

当N=32时: 高斯串行算法与SSE并行优化的比较; 误差未超出10e-6

Process returned 0 (0x0) execution time: 0.263 s Press any key to continue.

测试N=64时,就已经出现超出10e-6了。

当N=64时: 高斯串行算法与SSE并行优化的比较: 误差超出10e-6,误差为: 1.90735e-006

Process returned 0 (0x0) execution time: 0.271 s
Press any key to continue.

5 使用VTune剖析程序性能

SSE/AVX 优化与一般串行,对齐与不对齐等策略最终所执行的指令数,周期数,CPI 是不一样的。使用 VTune 分析对比以上不同策略在 N=1024(未对齐情况取 N=1023)下的执行的指令数和 CPI。

⊙ Elapsed Time [©]: 1.103s

\odot	CPU Time ①:	1.062s	
	○ Effective Time ②:	1.062s	
	Spin Time ①:	Os	
	Overhead Time ①:	Os	
	Instructions Retired:	15,064,804,687	
\odot	Microarchitecture Usage ①:	93.5%	of Pipeline Slots
	CPI Rate ^⑦ :	0.280	
	Total Thread Count:	2	
	Paused Time ①:	Os	

图 1: Gauss_plain

○ CPU Time ②:	0.557s	
② Effective Time ②:	0.557s	
Spin Time ①:	Os	
Overhead Time ①:	Os	
Instructions Retired:	5,518,344,772	
	67.6%	of Pipeline Slots
CPI Rate ①:	0.399	
Total Thread Count:	2	
Paused Time ①:	Os	

图 2: Gauss_SSE_aligned_45_89

○ CPU Time ②: 0.587s
 ○ Effective Time ③: 0.587s
 Spin Time ③: 0s
 Overhead Time ③: 0s
 Instructions Retired: 6,577,287,693
 ○ Microarchitecture Usage ③: 72.7% of Pipeline Slots
 CPI Rate ③: 0.352

Total Thread Count: 2
Paused Time ©: 0s

图 3: Gauss_SSE_unaligned_45_89

Paused Time ①:

0.562s Effective Time ②: 0.562s Spin Time ①: 0s Overhead Time ①: 0s Instructions Retired: 5,532,643,296 Microarchitecture Usage ②: 66.4% of Pipeline Slots CPI Rate ?: 0.399 Total Thread Count: 2

0s

图 4: Gauss_SSE_aligned_u45_89

○ CPU Time ②: 0.592s
 ○ Effective Time ②: 0.592s
 Spin Time ③: 0s
 Overhead Time ③: 0s
 Instructions Retired: 6,593,351,587
 ○ Microarchitecture Usage ②: 71.3% of Pipeline Slots
 CPI Rate ③: 0.354
 Total Thread Count: 2

Total Thread Count: 2
Paused Time ①: 0s

图 5: Gauss_SSE_unaligned_u45_89

0.305s Effective Time ②: 0.305s Spin Time ①: 0s Overhead Time ?: 0s Instructions Retired: 2,831,652,936 Microarchitecture Usage ②: 63.4% of Pipeline Slots CPI Rate ①: 0.420 **Total Thread Count:** 2 Paused Time ①: 0s

图 6: Gauss_AVX_aligned_45_89

Paused Time ①:

 ○ CPU Time ②: 0.323s Effective Time ②: 0.323s Spin Time ①: 0s Overhead Time 19: 0s Instructions Retired: 3.368.112.150 Microarchitecture Usage ②: 77.5% of Pipeline Slots CPI Rate ?: 0.378 Total Thread Count: 2

图 7: Gauss_AVX_unaligned_45_89

0s

由此可得到时间与指令数、CPI的对比表格如下:

算法	时间	指令数	CPI
串行	1. 103	15064804687	0. 28
SSE, 对齐, 全部向量化	0. 586	5518344772	0. 399
SSE, 不对齐, 全部向量化	0. 626	6577287693	0. 352
SSE, 对齐, 45不向量化	0. 585	5532643296	0. 399
SSE, 不对齐, 45不向量化	0. 623	6593351587	0. 354
AVX, 对齐, 全部向量化	0. 323	2831652936	0.42
AVX, 不对齐, 全部向量化	0. 346	3368112150	0. 378

可以发现,AVX 优化算法的指令数最少,CPI 最大,串行算法的指令数比其他优化算法多出了一个数量级,其他优化策略下的CPI 是串行算法的2倍左右。这说明 SSE/AVX 优化可以减少指令条数,提高 CPI,从而提高程序的运行效率。而且对齐时的指令周期数明显少于不对齐时的指令周期数,CPI 大于不对齐时的 CPI。

6 总结

这次实验理解了 SIMD 实现数据并行从而提高运算效率。也体会到 SIMD还有很多瓶颈,如地址不对齐、运算顺序带来的误差、数据重组和控制相关的向量化等问题。