🦰 nguaggi Formali e Traduttori

5.1 Definizioni dirette dalla sintassi

- Sommario
- Alberi sintattici annotati
- Definizioni dirette dalla sintassi
- Esempio: espressioni in forma infissa
- Esempio: stringhe della forma aⁿbⁿ
- Esempio: parentesi quadre bilanciate
- Esempio: da forma infissa a forma prefissa
- Attributi sintetizzati
- Attributi ereditati
- Esempio: espressioni senza ricorsione sinistra
- Esempio: lista delle differenze
- Esempio: da forma prefissa a forma infissa
- Ordine di valutazione degli attributi
- Definizioni S-attribuite ed L-attribuite
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Problema

- Tradurre un programma da un linguaggio (sorgente) a un altro (oggetto).
- Il parser risponde solo sì/no alla domanda "il programma è sintatticamente corretto?"

In questa lezione

Introduciamo le definizioni dirette dalla sintassi (SDD), che consistono in:

- Una grammatica libera, che specifica la sintassi dei programmi da tradurre
- Un insieme di **attributi** associati alle variabili della grammatica e che contengono il <u>risultato della traduzione</u> (o comunque informazioni accessorie alla traduzione)
- Un insieme di regole semantiche che specificano come calcolare il valore degli attributi, e quindi come tradurre il programma

Alberi sintattici annotati Grammatica Albero sintattico • $E \rightarrow E + T$ ullet E o T• $T \rightarrow T * F$ ullet T o F• F o (E) • $F ightarrow \mathtt{n}$ Stringa 3 n

Alberi sintattici annotati

Grammatica

- ullet E
 ightarrow E + T
- ullet E o T
- $T \rightarrow T * F$
- ullet T o F
- F o (E)
- ullet $F
 ightarrow { t n}$

Stringa

3 * 5

Albero sintattico

Albero sintattico annotato

Definizioni dirette dalla sintassi

Definizione

Un attributo è una coppia (nome, valore) che rappresenta una qualunque informazione associata ad un nodo di un albero sintattico.

Definizione

Un **albero sintattico annotato** è un albero sintattico i<mark>n cu</mark>i ogni nodo può essere **annotato** c<mark>on zero o più attributi.</mark>

Definizione

Una definizione diretta dalla sintassi (o SDD, da Syntax-Directed Definition) è una grammatica le cui produzioni sono associate a zero o più regole semantiche che specificano come calcolare il valore degli attributi associati ai nodi degli alberi sintattici della grammatica.

Il valore di eventuali attributi associati ai simboli terminali è fornito dal <u>lexer</u>.

Esempio

Produzioni	Regole semantiche
$E ightarrow E_1$ + T	$E.v=E_1.v+T.v$
E o T	E.~v = T.~v
$T o T_1 * F$	$T.v = T_1.v imes F.v$
T o F	T.v=F.v
F o (E)	$\emph{F.}\emph{v}=\emph{E.}\emph{v}$
$F ightarrow \mathtt{n}$	$F.v=\mathtt{n.}v$

Esempio: espressioni in forma infissa

Esempio

• $3*5 \Longrightarrow 15$

SDD

Produzioni	Regole semantiche
$E o E_1$ + T	(1) $E. v = E_1. v + T. v$
E o T	$(2) \mathbf{\textit{E.}} \mathbf{\textit{v}} = \mathbf{\textit{T.}} \mathbf{\textit{v}}$
$T o T_{ ext{ iny 1}} * F$	(3) $T.v = T_1.v \times F.v$
T o F	(4) $T.v = F.v$
F o (E)	(5) $F.v = E.v$
$F o exttt{n}$	(6) $F.v = n.v$

- $\mathbf{n} \cdot \mathbf{v}$ = valore del numero (dal lexer)
- E.v | T.v | F.v = valore di E | T | F

Esempio: stringhe della forma anbn

Obiettivo

Albero annotato per aaabbb

$$S
ightarrow arepsilon \mid aSb$$

Tradurre una stringa della forma a^nb^n nel numero n.

SDD

Produzioni	Regole semantiche
S oarepsilon	S. n = 0
$S o a S_1 b$	$S.n=S_1.n+1$

• S. n = numero di a e b nella stringa generata da S

Esempi

- $\varepsilon \Longrightarrow 0$
- $ab \Longrightarrow 1$
- $aabb \Longrightarrow 2$
- $aaabbb \Longrightarrow 3$

Esempio: parentesi quadre bilanciate

Obiettivo

$$S
ightarrow arepsilon \mid$$
 [S] S

Tradurre una stringa di parentesi quadre bilanciate nel massimo numero di parentesi annidate.

SDD

Produzioni	Regole semantiche
S oarepsilon	S. n = 0
$S ightarrow extbf{[}S_1 extbf{]}S_2$	$S.n=\max\left\{S_{1}.n+1,S_{2}.n\right\}$

• S.n = massimo numero di parentesi annidate nella stringa generata da S

Esempio

•
$$[[][]] \Longrightarrow 2$$

Albero annotato per [[][]]

Esempio: da forma infissa a forma prefissa

Esempio

$$3*(2+1) \Longrightarrow *3+21$$

SDD

Produzioni	Regole semantiche
$E o E_1$ + T	$E.p=$ "+" $\parallel E_1.p\parallel T.p$
E o T	E.p=T.p
$T o T_1 * F$	$T.p=$ "*" $\parallel T_1.p\parallel F.p$
T o F	T.p=F.p
F o (E)	F.p=E.p
$F ightarrow \mathtt{n}$	$F.p=\mathtt{n}.v$

- $\mathbf{n} \cdot \mathbf{v} = \text{cifra (dal lexer)}$
- $E.p \mid T.p \mid F.p$ = forma prefissa di $E \mid T \mid F$
- || = concatenazione tra stringhe

Attributi sintetizzati

Definizione

Un attributo di un nodo N in un albero annotato si dice sintetizzato se il suo valore dipende da quello di attributi dei figli di N ed eventualmente da altri attributi di N stesso.

Il valore di un attributo sintetizzato per un nodo etichettato con la variabile $m{A}$ è determinato da una regola semantica <u>associata a una produzione per $m{A}$:</u>

$$A o X_1X_2\cdots X_n \qquad \qquad A.\,s=f(X_1.\,a_1,X_2.\,a_2,\ldots,X_n.\,a_n)$$

Osservazione

ullet L'attributo $oldsymbol{v}$ usato per la valutazione delle espressioni è sintetizzato.

Attributi ereditati

Definizione

Un attributo di un nodo N in un albero annotato si dice **ereditato** se il suo valore dipende da quello di attributi del padre e dei fratelli di N.

Il valore di un attributo ereditato per un nodo etichettato con la variabile A è determinato da una regola semantica associata a una produzione per B (etichetta del nodo padre) nel cui corpo compare A:

$$B o X_1X_2\cdots A\cdots X_n \hspace{1cm} A.\,e=f(B.\,a,X_1.\,a_1,X_2.\,a_2,\ldots,X_n.\,a_n)$$

Esempio: espressioni senza ricorsione sinistra

SDD

Albero annotato per 3*5

Produzioni	Regole semantiche
T o FT'	(1) T'. e = F. s - fight
	(2) T. s = T'. s
$T' o *FT_1'$	(3) $T_1'.e = T'.e \times F.s$
	(4) $T'.s = T'_1.s$
T' oarepsilon	$(5) T' \cdot s = T' \cdot e$ $(6) F \cdot s = n \cdot v$
$F ightarrow \mathtt{n}$	(6) $F.s = n.v$
	Us let-

- $\mathbf{n} \cdot \mathbf{v}$ = valore del numero (dal lexer)
- T.s = valore del termine
- F. s = valore del fattore
- T'.e = prodotto dei fattori a sinistra di T'
- $oldsymbol{T'}.s$ = prodotto dei fattori a sinistra di e generati da $oldsymbol{T'}$

Esempio: lista delle differenze

SDD

Albero annotato per 3;2;1

Produzioni	Regole semantiche	
$S ightarrow \mathtt{n} \ L$	$L.e=\mathtt{n}.v$	Porto primo el. giu
	S.v=L.s	Sintettizzo copiando
L o arepsilon	$oldsymbol{L.s}=[]$ (lista vuot	ra) /
$L o$; n L_1	$L_1.e=L.e$	
	$L.s=\mathtt{n.}v-L.e$	$\parallel L_1.s$ and \parallel

- $\mathbf{n} \cdot \mathbf{v}$ = valore del numero (dal lexer)
- S.v = risultato
- L.e = primo elemento della lista
- L.s = risultato parziale

Esempio

$$3;2;1 \Longrightarrow -1;-2$$

Esempio: da forma prefissa a forma infissa

Esempio

$$*3+21 \Longrightarrow 3*(2+1)$$

Intuizione

Per <u>minimizzare il numero di parentesi</u> usiamo un attributo ereditato $E.c \subseteq \{+,*\}$ che indica gli operatori che, se presenti in E, richiedono le parentesi.

La seguente funzione ausiliaria racchiude una stringa \boldsymbol{s} tra parentesi se questa compare in un contesto in cui l'operatore \boldsymbol{o} le richiede:

$$ext{PAR}(o,s) \stackrel{\mathsf{def}}{=} egin{cases} " \ " \ " \ & s \ \end{bmatrix} \stackrel{\mathsf{m}}{=} egin{cases} s \ & s \ \end{bmatrix} \stackrel{\mathsf{m}}{=} egin{cases} s \ & s \ \end{bmatrix} \stackrel{\mathsf{m}}{=} egin{cases} s \ & s \ \end{bmatrix}$$

SDD

Produzioni	Regole semantiche
S o E	$E.c=\emptyset$
	S.i = E.i
$m{E} ightarrow extsf{+} m{E}_1 m{E}_2$	$E_1.c=\emptyset$
	$E_{ extsf{2}}.c=\left\{ extsf{+} ight\}$
	$E.i= exttt{PAR}(exttt{+},E_1.i\parallel exttt{"+"}\parallel E_2.i)$
$m{E} ightarrow *m{E}_1m{E}_2$	$E_1.c=\{ ext{+}\}$
	$E_{ extsf{2}}.c=\{ extsf{+},*\}$
	$E.i= exttt{PAR}(*,E_1.i\parallel$ "*" $\parallel E_2.i)$
$E ightarrow \mathtt{n}$	$E.i=\mathtt{n}.v$

- **n.** *v* = cifra (dal lexer)
- E.c = operatori da racchiudere in (...) se incontrati in E
- E.i = forma infissa di E
- | = concatenazione tra stringhe

Ordine di valutazione degli attributi

Grafo delle dipendenze

Le regole semantiche inducono un **grafo di dipendenze** tra attributi. Se l'attributo A.a dipende dall'attributo B.b, è necessario conoscere il valore di B.b prima di calcolare A.a:

$$A. a = f(\ldots, B. b, \ldots)$$

Negli esempi precedenti, il grafo è definito dalle frecce rosse tratteggiate.

Dipendenze circolari

Se il grafo delle dipendenze contiene dei cicli, non è possibile trovare un ordine di valutazione degli attributi:

Produzione	Regole semantiche
A o B	(1) $A. s = B. e$
	(2) $B.e = A.s + 1$

Definizioni S-attribuite ed L-attribuite

Definizione

Una definizione diretta dalla sintassi si dice S-attribuita se contiene solo attributi sintetizzati.

Definizione

Una definizione diretta dalla sintassi si dice L-attribuita se, per ogni produzione $A \to X_1 X_2 \cdots X_n$ ed ogni attributo ereditato X_i . e, la regola semantica che definisce il valore di X_i . e dipende solo da:

- 1. attributi ereditati di A;
- 2. attributi sintetizzati ed ereditati dei simboli $X_1, X_2, \ldots, X_{i-1}$ alla sinistra di X_i .

Osservazioni

- Ogni SDD S-attribuita è anche L-attribuita.
- Ogni SDD L-attribuita ha un grafo delle dipendenze aciclico, in quanto gli attributi sintetizzati hanno solo dipendenze "dal basso verso l'alto" mentre quelli ereditati solo "dall'alto verso il basso" e/o "da sinistra verso destra".
- Tutte le SDD viste fino ad ora sono S-attribuite o L-attribuite.

Esercizi

- 1. Definire una SDD per la grammatica seguente che traduca sequenze di bit con la <u>cifra meno</u> <u>significativa più a sinistra</u> nel numero naturale in base 10 corrispondente:
 - \circ $S \rightarrow BL$
 - $\circ \ L
 ightarrow arepsilon \mid BL$
 - \circ $B \rightarrow 0$ | 1

Alcuni esempi di traduzione: $1010 \Longrightarrow 5$ e $1011 \Longrightarrow 13$.

- 2. Ripetere l'esercizio precedente assumendo che <u>la cifra meno significativa sia quella più a destra</u>. Alcuni esempi di traduzione: $1010 \Longrightarrow 10$ e $1011 \Longrightarrow 11$.
- 3. In riferimento alla SDD della slide 13, disegnare l'albero annotato per *3+21.