Towards the Automation of Proofs in Real Analysis

Luís Cruz-Filipe

July 12, 2002

University of Nijmegen, The Netherlands Centro de Lógica e Computação, Portugal

Overview

- 1. Introduction
- 2. The Library of Real Analysis
- 3. The Hints mechanism
- 4. The Reflection mechanism
- 5. Conclusions and Future Work

Goal:
$$\forall_{x \in \mathbb{R}} \sin(2x) = (\cos(x) + \sin(x))^2 - 1$$

```
\sin(2x) = 2\sin(x)\cos(x)
= 2\sin(x)\cos(x) + 1 - 1
= 2\sin(x)\cos(x) + (\cos^2(x) + \sin^2(x)) - 1
= (\cos^2(x) + \sin^2(x) + 2\cos(x)\sin(x)) - 1
= (\cos(x) + \sin(x))^2 - 1
```

Goal: $\forall_{x \in \mathbb{R}} \sin(2x) = (\cos(x) + \sin(x))^2 - 1$

```
sin(2x) = 2sin(x)cos(x)
         = 2\sin(x)\cos(x) + 0
         = 2\sin(x)\cos(x) + (1 + (-1))
         = 2\sin(x)\cos(x) + 1 + (-1)
         = 2\sin(x)\cos(x) + 1 - 1
         = 2\sin(x)\cos(x) + (\cos^2(x) + \sin^2(x)) - 1
         = 2(\sin(x)\cos(x)) + (\cos^2(x) + \sin^2(x)) - 1
         = 2(\cos(x)\sin(x)) + (\cos^2(x) + \sin^2(x)) - 1
         = 2\cos(x)\sin(x) + (\cos^2(x) + \sin^2(x)) - 1
         = (\cos^2(x) + \sin^2(x) + 2\cos(x)\sin(x)) - 1
         = (\cos(x) + \sin(x))^2 - 1
```

Goal:
$$\forall_{x \in \mathbb{R}} \operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$$

$$\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

$$= \frac{\left(e^{x} + e^{-x}\right)^{2}}{2^{2}} - \frac{\left(e^{x} - e^{-x}\right)^{2}}{2^{2}}$$

$$= \frac{\left(e^{x} + e^{-x}\right)^{2} - \left(e^{x} - e^{-x}\right)^{2}}{2^{2}}$$

$$= \frac{\left[\left(e^{x}\right)^{2} + \left(e^{-x}\right)^{2} + 2e^{x}e^{-x}\right] - \left[\left(e^{x}\right)^{2} + \left(e^{-x}\right)^{2} - 2e^{x}e^{-x}\right]}{4}$$

$$= e^{x}e^{-x}$$

$$= 1$$

Reflection

Aim Solve through symbolic computation decision problems, that is, given a domain \mathbb{D} and a predicate $P: \mathbb{D}^n \to \mathbf{Prop}$ automatically prove goals of the form $P(x_1, \ldots, x_n)$.

Process

- 1. Encoding in an (inductive) type S;
- 2. Interpretation $[\cdot]$: $\mathbb{S} \to \mathbb{D}$;
- 3. Decision function $f: \mathbb{S}^n \to \{0, 1\}$;
- 4. Lemma $L: \forall_{e_1, \dots, e_n: \mathbb{S}} [(f(e_1, \dots, e_n) = 1) \rightarrow P([e_1], \dots, [e_n])].$

Example: Equality in Rings

- Interpretation as expected;
- ullet Normalization function $\mathcal N: \mathtt{Rexpr} o \mathtt{Rexpr};$
- Lemma: $\forall_{e:\text{Rexpr}}[\![e]\!] =_R [\![\mathcal{N}(e)]\!].$

Given x, y : R,

- find e, f: Rexpr s. t. [e] = x, [f] = y;
- supposing that $\mathcal{N}(e) = \mathcal{N}(f) = g$ s. t. $[\![g]\!] = z$,

Lemma: $\forall_{e_1,e_2:\text{Rexpr}}(\mathcal{N}(e_1) \stackrel{R}{=} \mathcal{N}(e_2)) \stackrel{R}{\to} \llbracket e_1 \rrbracket =_R \llbracket e_2 \rrbracket$

Partial Reflection

• [[·]] is partial (functional relation);

• The lemma now reads:

$$L: \forall_{e_1,\dots,e_n:\mathbb{S}} \quad (\llbracket e_1 \rrbracket \downarrow) \to \dots \to (\llbracket e_n \rrbracket \downarrow) \to$$
$$\llbracket (f(e_1,\dots,e_n) = 1) \to P(\llbracket e_1 \rrbracket,\dots,\llbracket e_n \rrbracket) \rrbracket$$

Sometimes we can internalize the proofs in the expressions:

$$\bullet \ \overline{\mathbb{S}} = \{ \overline{\mathbb{S}}_d : d \in \mathbb{D} \};$$

- a forgetful map $|\cdot|: \overline{\mathbb{S}} \to \mathbb{S}$;
- a *total* interpretation $[\![\cdot]\!]':\overline{\mathbb{S}}\to\mathbb{D}$

such that

- for every $e : \overline{\mathbb{S}}$, $[[|e|]] \downarrow$ and [[|e|]] = [[e]]';
- for every $e: \overline{\mathbb{S}}_d$ we have $[\![e]\!]'=d$.

Given $x_1, \ldots, x_n : \mathbb{D}$

- find $e_1 \in \overline{\mathbb{S}}_{x_1}, \dots, e_n \in \overline{\mathbb{S}}_{x_n};$
- then $\llbracket |e_1| \rrbracket \downarrow, \ldots, \llbracket |e_n| \rrbracket \downarrow$;
- and $[e_1]' = x_1, \ldots, [e_n]' = x_n;$
- compute $f(|e_1|, ..., |e_n|)$;
- \bullet apply L.

Applications:

- \rightarrow Equality in Fields;
- \rightarrow Given partial functions f, g, prove that f' = g

Conclusion

The best way to prove equalities is by an intelligent combination of both mechanisms.

Future Work

New tactic RealEq to prove equalities between real numbers
 This tactic should know about:

 $|\cdot|, \exp, \log, x^y, \sin, \cos, \arcsin, \arccos, \dots$

- Improve tactics for reasoning in real analysis (continuity proofs, derivative relation);
- Automatically integrate rational functions.