Informatique - MPI

Exercice 1

On considère une table France qui regroupe certaines données des communes françaises. Le tableau suivant contient Illustre le contenu de certains enregistrements.

code	nom	dpt	region	pop	alt	CLR
75 000	Paris	75	Ile-de-France	2 165 423	35	oui
33 000	Bordeaux	33	Nouvelle Aquitaine	260 958	18	oui
73 320	Tignes	73	Auvergne Rhône Alpes	2 020	1810	non

Description des différents attributs de la table.

- La colonne code contient le code postal de la commune, de type entier et qui est une clé primaire de la table.
- La colonne nom contient le nom de la commune, de type chaîne de caractères.
- La colonne dpt contient le numéro du département de la commune, de type chaîne de caractères (les numéros des départements de corse sont '2A' et '2B').
- La colonne region contient le nom de la région à laquelle appartient la commune, de type chaîne de caractères.
- La colonne pop continent le nombre d'habitants de la commune, de type entier.
- La colonne alt contient l'altitude moyenne de la commune, de type flottant.
- La colonne CLR contient la chaîne 'oui' ou 'non' selon que la commune est ou non le chef lieu de sa région.

Question 1. Serait-il possible sur cette table de choisir un autre attribut (ou ensemble d'attributs) de façon à définir une clé primaire? Justifier votre réponse.

```
Question 2. Que renvoient les requêtes suivantes?
```

- □ 2.1. SELECT code FROM France WHERE region = 'Ile-de-France' AND dpt <> '75'
- □ 2.2. SELECT MIN(alt), MAX(alt) FROM France WHERE pop > 10000
- □ 2.3. SELECT dpt, COUNT(nom) FROM France GROUP BY dpt
- □ 2.4. SELECT region, MIN(pop), MAX(pop)

FROM France

WHERE dpt < '10'

GROUP BY region

HAVING AVG(alt) < 1000

Question 3. Quel est le problème des requêtes suivantes?

- □ 3.1. SELECT dpt, MAX(alt) FROM France WHERE MIN(alt)>100
- □ 3.2. SELECT dpt, MAX(alt) FROM France HAVING MIN(alt)>100
- □ 3.3. SELECT dpt, MAX(alt) FROM France GROUP BY region HAVING MIN(alt)>100

Question 4. Écrire des requêtes en langage SQL permettant d'identifier ce qui est demandé dans les questions suivantes.

- □ 4.1. Toutes les données des communes de Gironde (département 33 pour ceux qui l'ignoreraient...)
- □ **4.2.** La liste des noms des régions de France, dans l'ordre alphabétique.
- □ 4.3. Le nombre de départements de France.
- □ 4.4. La liste de tous les chefs lieux de région, avec leur nom, leur code postal et la région.
- □ 4.5. Le code, le nom, et le code de dpt des 10 communes les plus peuplées de France.
- □ **4.6.** La population de chaque département et son numéro.
- □ 4.7. La population de France métropolitaine (hors corse et DOM de numéros '971' à '976').
- □ **4.8.** Les données de la ville la plus haute de France.
- □ **4.9.** Le nom des 10 villes de Nouvelle Aquitaine les plus peuplées qui ne sont pas son chef lieu (il n'y a qu'un chef lieu par région).
- □ **4.10.** La liste des départements métropolitains, leurs altitudes maximales et minimales.
- □ 4.11. La liste des départements dont la population dépasse 50000 habitants.

Exercice 2

D'après Mines 2018

Une base de données relationnelle Vagues comporte trois tables. La première table est Bouee. On se limite aux attributs suivants : le numéro d'identification idBouee, le nom du site nomSite, le nom de la mer ou de l'océan localisation, le type du capteur typeCapteur et la fréquence d'échantillonnage frequence.

idBouee nomSite		localisation	typeCapteur	frequence
831	Porquerolles	Mediterranee	Datawell non directionnelle	2.00
291	Les pierres noires	Mer d'iroise	Datawell directionnelle	1.28
•••			•••	

La deuxième table est Campagne. On se limite aux attributs suivants : le numéro d'identification idCampagne, le numéro d'identification de la bouée idBouee, la date de début debutCampagne et la date de fin finCampagne.

\sim			
\mathtt{Cam}^{\cdot}	na	σn	_
oam	բա	ᆽᆢ	•

idCampagne	idBouee	debutCampagne	finCampagne
08301	831	01/01/2010 00h00	15/01/2010 00h00
02911	291	15/10/2005 18h30	18/10/2005 08h00
		•••	•••

La troisième table est Tempete. On se limite aux attributs suivants : le numéro d'identification de la tempête idTempete, le numéro d'identification de la bouéee idBouee, la date de début debutTempete, la date de fin finTempete, la valeur maximale de hauteur de vague Hmax.

Tempete

idTempete idBouee		debutTempete	finTempete	Hmax
083010	831	07/01/2010 20h00	09/01/2010 15h30	5.3
029012	291	16/10/2005 08h30	18/10/2005 09h00	8.5
•••				•••

Le schéma de la base de donnée est donc : Vagues=Bouee, Campagne, Tempete. Formuler les requêtes SQL permettant de répondre aux questions suivantes.

Question 1. Quels sont le numéro d'identification et le nom de site des bouées localisées en Méditerranée?

Question 2. Quel est le numéro d'identification des bouées où il n'y a pas eu de tempêtes?

Question 3. Pour chaque site, quelle est la hauteur maximale enregistrée lors d'une tempête?

Exercice 3

D'après Centrale 2018

On dispose d'un programme qui permet la simulation de l'évolution des particules à l'intérieur d'un gaz parfait contenu dans un récipient. Les résultats sont stockés dans une base de donnée qui comporte trois tables et dont la structure est donnée ci dessous.

SIMULATION						
SI_NUM	integer					
SI_DEB	datetime					
SI_DUR	float					
SI_DIM	integer					
SI_N	integer					
SI_L	float					

REBOND					
SI_NUM	integer				
RE_NUM	integer				
PA_NUM	integer				
RE_T	float				
RE_DIR	integer				
RE_VIT	float				
RE_P	float				

P	PARTICULE						
PA_NUM	integer						
PA_NOM	varchar (100)						
PA_M	float						
PA_R	float						

La table SIMULATION, de clef primaire SI_NUM, donne les caractéristiques de chaque simulation effectuée. Elle contient les colonnes :

- SI_NUM :numéro d'ordre de la simulation (clef primaire)
- SI_DEB : date et heure du lancement du programme de simulation
- SI_DUR : durée (en secondes) de la simulation
- SI_DIM:nombre de dimensions de l'espace de simulation
- SI_N : nombre de particules pour cette simulation
- SI_L : taille (en mètres) du récipient utilisé pour la simulation

La table PARTICULE, de clef primaire PA_NUM des types de particules considérées. Elle contient les colonnes :

- PA NUM : numéro (entier) identifiant le type de particule (clef primaire)
- PA_NOM : nom de ce type de particule
- PA_M:masse de la particule (en grammes)

• PA_R : rayon (en mètres) de la particule

La table REBOND, de clef primaire (SI_NUM, RE_NUM), liste les chocs des particules avec les parois du récipient. Elle contient les colonnes

- SI_NUM : numéro d'ordre de la simulation ayant généré ce rebond
- RE_NUM : numéro d'ordre du rebond au sein de cette simulation
- PA_NUM : numéro du type de particule concernée par ce rebond
- RE_T temps de simulation (en secondes) auquel ce rebond est arrivé
- RE_DIR paroi concernée : entier non nul de l'intervalle [-SI_DIM, SI_DIM] donnant la direction de la normale à la paroi.
- RE_VIT norme de la vitesse de la particule qui rebondit
- RE_VP valeur absolue de la composante de la vitesse normale à la paroi

Question 1. Écrire une requête SQL qui donne le nombre de simulations effectuées pour chaque nombre de dimensions de l'espace de simulation.

Question 2. Écrire une requête SQL qui donne, pour chaque simulation, le nombre de rebonds enregistrés et la vitesse moyenne des particules qui frappent une paroi.

Question 3. Écrire une requête SQL qui, pour une simulation n donnée, calcule, pour chaque paroi, la variation de quantité de mouvement due aux chocs des particules sur cette paroi tout au long de la simulation. On se rappellera que lors du rebond d'une particule sur une paroi la composante de sa vitesse normale à la paroi est inversée, ce qui correspond à une variation de quantité de mouvement de $2m|v_{nor}|$ où m désigne la masse de la particule et v_{nor} la composante de sa vitesse normale à la paroi.

Exercice 4

Pour suivre la propagation des épidémies, de nombreuses données sont recueillies par les institutions internationales comme l'OMS. Par exemple, pour le paludisme, on dispose de deux tables, dont certaines lignes sont données en exemple ci-dessous

- La table palu recense le nombre de nouveaux cas confirmés et le nombre de décès liés au paludisme. iso est un identifiant unique pour chaque pays.
- La table demographie recense la population totale de chaque pays.

nom	iso	annee	cas	deces	pays	periode	pop
Bresil	BR	2009	309 316	85	BR	2009	193 020 000
Bresil	BR	2010	334 667	76	BR	2010	194 946 000
Kenya	KE	2010	898 531	26 017	KE	2010	40 909 000
Mali	ML	2011	307 035	2 128	ML	2011	14 417 000
Ouganda	UG	2010	1 581 160	8 431	UG	2010	33 987 000

Extrait de la table palu.

Extrait de la table demographie.

Question 1. Au vu des données présentées dans la table palu, parmi les attributs nom, iso et année, quels attributs peuvent servir de clé primaire? Un couple d'attributs pourrait-il servir de clé primaire? Si oui, en préciser un.

Question 2. Écrire une requête en langage SQL qui récupère depuis la table palu toutes les données de l'année 2010 qui correspondent à des pays où le nombre de décès dus au paludisme est supérieur ou égal à 1 000.

Question 3. On appelle *taux d'incidence d'une épidémie* le rapport du nombre de nouveaux cas pendant une période donnée sur la taille de la population-cible pendant la même période, exprimée en *nombre de nouveaux cas pour 100 000 personnes par année*. Écrire une requête en langage SQL qui détermine le taux d'incidence du paludisme en 2011 pour les différents pays de la table palu.

Question 4. Écrire une requête en langage SQL qui détermine le nom du pays ayant eu le deuxième plus grand nombre de nouveaux cas de paludisme en 2010. On pourra supposer qu'il n'y a pas de pays *ex æquo* pour les nombres de cas.

Annexe SQL

SELECT *	sélection des colonnes
SELECT DISTINCT *	sélection sans doublon
FROM table	nom d'une ou plusieurs tables
WHERE condition	imposer une condition
GROUP BY expression	grouper les résultats
HAVING condition	condition sur un groupe
UNION INTERSECT EXCEPT	opérations ensemblistes sur les requêtes
ORDER BY expression	trier les résultats
LIMIT number	limiter à n enregistrements
OFFSET start	débuter à partir de n enregistrements

FIGURE 1 – Requêtes de base SQL

COUNT()	nombre d'enregistrements sur une table ou une colonne distincte
MAX()	valeur maximale d'une colonne
MIN()	valeur minimale de la même manière que MAX()
SUM()	calcul de la somme sur un ensemble d'enregistrements
AVG()	calcul de la moyenne sur un ensemble d'enregistrements

FIGURE 2 – Fonctions d'agrégation