Eletrônica digital

Funções de lógica digital

Introdução

- Circuitos lógicos combinacionais podem ser projetados usando álgebra booleana
- Somadores, comparadores, decodificadores, codificadores, conversores de código, multiplexadores, demultiplexadores e geradores/verificadores de paridade
- Existem CI de função fixa que realizam as mesmas operações

Somador

- Meio somador (half adder)
- Somador completo (full adder)

(a) Associação de dois meio-somadores para construir um somador-completo.

Somador paralelo

Somador paralelo de 4 bits

Somador paralelo de 4 bits (74LS283)

Expansão de um somador

(a) Associação em cascata de dois somadores de 4 bits para construir um somador de 8 bits.

Expansão de um somador

Comparador

Comparador 74HC85

Decodificador

DÍGITO DECIMAL	ENTF A ₃	ADAS	BIN.	ÁRIAS A ₀	FUNÇÃO DE DECODIFICAÇÃO	0	1	2	3	4	5	6	7	SAÍD. 8	AS 9	10	11	12	13	14	15
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
4	0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
5	0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
6	0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
7	0	1	1	1	$\overline{A}_3A_2A_1A_0$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
10	1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
11	1	0	1	1	$A_3\overline{A}_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
12	1	1	0	0	$A_3A_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
13	1	1	0	1	$A_3A_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
14	1	1	1	0	$A_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
15	1	1	1	1	$A_3A_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Decodificador

Decodificador 74HC154

Decodificador 74HC154

Decodificador BCD para Decimal

DÍGITO DECIMAL	A ₃	CÕDIG A ₂	O BCD A _I	A _o	FUNÇÃO DE DECODIFICAÇÃO
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$
2	0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$
4	0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$
5	0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$
6	0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$
7	0	1	1	1	$\overline{A}_3 A_2 A_1 A_0$
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$

Decodificador BCD para 7-segmentos

Decodificador 74HC47

(a) Diagrama de pinos

(b) Símbolo lógico

Codificador

		CÓDIG	O BCD	
DÍGITO DECIMAL	A_3	A ₂	A _I	A ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Codificador DEC-to-BCD 74HC147

Codificador DEC-to-BCD 74HC147

Conversor de código

		(MSB)		RESENT				(LSB)
BIT BCD	PESO EM BCD	64	32	16	8	4	2	
A_0	1	0	0	0	0	0	0	1
A_1	2	0	0	0	0	0	1	0
A_2	4	0	0	0	0	1	0	0
A_3	8	0	0	0	1	0	0	0
B_0	10	0	0	0	1	0	1	0
B_1	20	0	0	1	0	1	0	0
B_2	40	0	1	0	1	0	0	0
B_3	80	1	0	1	0	0	0	0

Conversor de código

Multiplexador (seletor de dados)

ENTRADAS DE SELEÇÃO DE DADOS S ₁ S ₀	ENTRADA SELECIONADA				
0 0	D_0				
0 1	D_1				
1 0	D_2				
1 1	D_3				

Multiplexador (seletor de dados)

Multiplexador 74LS151

Multiplexador 74LS151

Multiplexador 74LS157

De-multiplexador

De-multiplexador 74HC154

Gerador de paridade 74LS280

(a) Símbolo lógico tradicional

Número de entradas de	Saídas				
A a I que são nível ALTO	Σ Par	Σĺmpar			
0, 2, 4, 6, 8	Н	L			
1, 3, 5, 7, 9	L	Н			

(b) Tabela de funções

Desafio

- Projete e implemente em Logisim, o circuito completo de uma balança de serviço de autoatendimento
- Assuma como entrada a saída de um ADC com o valor do peso mensurado por um sensor
- Inclua botões e displays de 7 segmentos
- Siga os exemplos dos videoclipes disponibilizados
- Se for o caso, pode usar as funções de multiplicação e divisão disponíveis em Logisim