LISTA DE EXERCÍCIOS II DE MAT 271 - CÁLCULO NUMÉRICO

PER3/2021/UFV

(Prof. Amarísio da Silva Araújo)

Obs: Use arredondamento com 5 casas decimais nas respostas

- **1 –** Usando o Método da Newton, encontre uma aproximação da solução \bar{x} de cada uma das seguintes equações (única nos intervalos indicados), com erro absoluto menor que $\varepsilon=0.001$.
 - a) senx x 1 = 0; $\bar{x} \in [-2.5, -1]$, com aproximação inicial $x_0 = -1.5$;
 - b) lnx x + 2 = 0; $\bar{x} \in [0.01, 1]$, com aproximação inicial $x_0 = 0.01$.
 - c) lnx x + 2 = 0; $\bar{x} \in [2, 4]$, com aproximação inicial $x_0 = 2.0$.
 - d) $e^{-x^2} x = 0$; $\bar{x} \in [0.5, 1]$, com aproximação inicial $x_0 = 0.5$.
- **2 –** Dada a equação $e^{-x^2}-x=0$ é equivalente à equação $x=\varphi(x)$, onde $\varphi(x)=e^{-x^2}$, e possui uma solução única $\bar{x}\in[0.5,1]$. Usando o Método das Aproximações Sucessivas, com a função φ e aproximação inicial $x_0=0.5$, calcule os seis termos seguintes da sequência de aproximações de \bar{x} . É possível concluir que a sequência está convergindo para \bar{x} ?
- **3 –** Resolva os seguintes exercícios da Apostila: 1.3, 1.6, 1.9 (página 18), 1.10, 1.12 e 1.17 (página 19).

GABARITO PARA OS EXERCÍCIOS 1 E 2:

EXERCÍCIO 1:

- a) $\bar{x} \cong x_4 = -1.93456$
- **b)** $\bar{x} \cong x_6 = 0.15859$
- **c)** $\bar{x} \cong x_4 = 3.14619$
- **d)** $\bar{x} \cong x_4 = 0.65292$

EXERCÍCIO 2:

$$x_1 = 0.77880$$
; $x_2 = 0.54524$;

$$x_3 = 0.74283$$
; $x_4 = 0.57591$;

$$x_5 = 0.71772$$
; $x_6 = 0.59743$.