Exposure-Response Analysis User Manual

Document Version:00

Author(s): Pinyan Liu

Table of Contents

1. OVERALL DESCRIPTION
1.1.Description
1.2.Operating Environment······3
1.3.Parameters3
1.4.Required Packages·····4
1.5.Constraints······4
2. EXAMPLE
2.1.Sample Data Used in Following Examples5
2.2.Example1: Summary of Treatment-Emergent Adverse Events6
3. Note
3.1.Install R Packages·····9
3.2.Capital Letters in R9

1. OVERALL DESCRIPTION

1.1 Description

The ER Visualization function is intended to allow the user to plot Exposure-Response relationship of summary of Concentration-Emergent Adverse Events by treatment.

1.2 Operating Environment

The function will be used with R Version 4.0.2 and RStudio.

1.3 Parameters

Parameters	Required	Usage
data	Y	Name of input SAS dataset for scatter plot and logistics regression analysis
data_stat	Y	Name of input SAS dataset for bar plot
ftitle	Y	Name of input Excel filename of footnotes and titles
fname	Y	Name of file in "ftitle" indicating which file should be chosen
xlab	Y	Name of X-axis label
ylab	Y	Name of Y-axis label
user	Y	User's name

Note:

1. data should include at least the following variables:

USUBJID: Unique Subject Identifier

TRT01A: Actual Treatment

PARAMCDR: Parameter Type (eg: AE or SAE)

PARAMCD: Parameter Code

AVAL: Analysis Value

AVALR: Event Indication (Binary)

TRT: Treatment Flag Including Number of Patients in Each Group

2. data stat should include at least the following variables:

QTR: Quartiles Sequences

N: Number of Patients in Each Quartile

MEAN: Mean Probability of The Adverse Event at Interest of Each Quartiles

UPPER: The Upper Confidence Interval for Mean Probability of The Adverse Event of Each Quartiles

LOWER: The Lower Confidence Interval for Mean Probability of The Adverse Event of Each Quartiles

AVAL: The Mean Concentrations of Each Quartile

1.4 Required Packages

Package	Usage
haven	Import and Export 'SPSS', 'Stata' and
Haven	'SAS' Files
ggplot2	Create Graphics
readxl	Read Excel Files
rtf	Rich Text Format (RTF) Output

Packages should be installed in advance by install.packages("package name")

1.5 Constraints

The exposure and response variables should only be "AVAL" and "AVALR".

2. EXAMPLE

2.1 Sample Data Used in Following Examples

Sample data 1 is an analysis ready data set for scatter plot and logistics regression analysis:

Sample Data 1. Analysis Ready Data Set (1)

Sample data 2 is an analysis ready data set for bar plot:

Sample Data 2. Analysis Ready Data Set (2)

2.2 Example1: Summary of Treatment-Emergent Adverse Events

```
Sample Call:
 #Import Useful Packages
 library(haven)
 library(ggplot2)
 library(readxl)
 library(rtf)
 library(extrafont)
 library(r2rtf)
 library(dplyr)
 subsetting=function(data,data stat,ftitle,fname,xlab,ylab,min,max,int,user){
   #Read SAS Data Sets Into RStudio
   er <- read sas(data)
   er_stat <- read_sas(data_stat)
   #Extract Statistical Coefficients
   fit<-glm(AVALR~AVAL,data=er,family=binomial(link="logit"))
   pval<-round(coef(summary(fit))[2,4],4)</pre>
   #Get Statistical Results
   summary(fit)
   #Import Excel Dataset
   titfoot <- read_excel(ftitle)</pre>
   View(titfoot)
   titfootf<-titfoot[which(titfoot$Outfile Name==fname),]
   datetime<-Sys.time()
   #Plotting And Statistical Analysis
   #Scatter Plot
   p<-ggplot()+
       geom point(data=er,aes(x=AVAL,y=AVALR,shape=TRT,color=TRT),
```

```
position=position jitter(width=0.3,height=0.03),size=1.5,alpha=0.5)+
     scale shape manual(values=c(0,1,2))+
     scale color manual(values=c("red","green","blue"))
  print(p)
   #Logistics Regression
  p < -p + geom smooth(data = er, aes(x = AVAL, y = AVALR), formula = y \sim x,
     method = "glm",level=0.95,method.args=list(family="binomial"))
  print(p)
   #Bar Plot for Quartile Analysis
   p<-p+geom errorbar(data=er stat,aes(x=AVAL,ymin=LOWER,ymax=UPPER),
     width=2,size=1,color="green")+
geom point(data=er stat,aes(x=AVAL,y=MEAN),alpha=0.8,shape=21,size=1.5,fill="white")
   #Figure Appearance
   p<-p+theme bw()+theme(panel.border = element rect(colour = "black",size=0.8))+
      labs(x=xlab,y=ylab,title=paste0(titfootf[1,4],"\n",titfootf[1,5],"\n",titfootf[1,7]))+
      theme(legend.position = "bottom",legend.direction = "horizontal",
            legend.title = element blank(),legend.text = element text(size=7),
            legend.key.size = unit(1,"lines"),
            text=element text(family = "Times New Roman"),
            plot.title=element text(family="Times New Roman",size=(12),hjust = 0.5))
  #RTF Package
  rtf<-RTF(paste0(fname,".rtf"),width=11,height=8.5,omi=c(1,1,1,1),font.size=10)
  addPlot(rtf,plot.fun=print,width=9,height=5.6,res=1000,p)
  addHeader(rtf,title="",subtitle=paste0(titfootf[1,10],"\n","(",user," ",datetime," R 4.0.2)."))
  done(rtf)
  #Call Function
  subsetting(data="C:/Users/kgvk524/Desktop/er dataset.sas7bdat",
```

```
data_stat="C:/Users/kgvk524/Desktop/er_stat.sas7bdat",
ftitle="C:/Users/kgvk524/Desktop/m_titles_rpt.xlsx",
fname="T_AE",
xlab="Concentration (mg/L)",
ylab="Probability of Adverse Event",
user="Pinyan.Liu")
```

Sample Output:

Abbreviation: n = number of subjects in the specified category. (Pinyan.Liu 2020-08-13 09:15:29 R 4.0.2).

3. NOTE

3.1 Install R Packages

All R packages should be installed when first used by install.packages(). After that, every time if users want to use it, packages should be imported by library().

3.2 Capital Letters in R

R is sensitive to uppercase and lowercase letters.