University of South Bohemia

Faculty of Science

Praktika IV

Relativistické chování elektronů

Datum: 20.2.2024 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

- Na HPGe detektoru proměřte spektra γ -záření připravených radioizotopů
- Určete energie peaků plného pohlcení a energie jím příslušejících Comptnových hran
- Vypočtěte hybnosti odražených Comptnovkých elektronů a na grafech ukažte, zda se chovají dle klasické teorie nebo podle teorie relativity

2 Pomůcky

Zdroj gamma záření LABKIT-SR-Cs137, detektor Osprey, program ProSpect, Radiagem 2000, podložka s úhloměrem, ocelový kůl

3 Teorie

Comptnův rozptyl je, když se srazí foton s volným elektronem. Tímto foton předá nehybnému elektronu část svojí energie. Můžou se stát dvě věci. Energie fotonu se plně pohltí eletronem, takže předá elektronu všechnu svojí energii a zmizí. Toto se projeví ve spektru jako peak s maximální energií gamma E_{γ} , což je vlastně energie fotonu. Druhá věc, co se může stát je, že se foton odrazí o 180° a elektron získá maximální hybnost. Toto se projeví ve spektru jako comptona hrana T, což je energie předaná elektronu. Hybnost elektronu pak můžeme určit ze vztahu

$$pc = 2E_{\gamma} - T \tag{1}$$

Comptnova hrana se určí podle vztahu

$$E_e = \frac{2E_\gamma^2}{2E_\gamma + m_e} \tag{2}$$

4 Postup měření

Zapnul jsem počítač a program ProSpect. Nastavil jsem následné parametry podle návodu. Vzal jsem zářič a umístil ho na detektor. Spustil jsem start. Označil jsem pomocí myši začátek a konec fotopeaku. Provedl jsem kalibraci. Data jsem uložil a opakoval pro další zářiče.

5 Data

Data jsem plotnul a určil peaky a jejich náležící comptnovy hrany. Začátek a konec comptnové hrany je v grafu označen vertikálními čárami. Comptnovy hrany jsem určoval pomocí rovnice 2.

Figure 1: Cs137

Figure 2: Co60

Figure 3: Na22

Figure 4: Y88

Tabulka 1:

prvek	E_{γ}	comptnova	hybnost	T	T_r
	(peaky)	hrana	eletronu	klasická	relativistická
Cs137	661.666	480.0	843.332	695.901	475.068
Co60	1173.324	960.0	1386.649	1881.408	966.809
-	1332.598	1118.0	1547.196	2342.289	1118.398
Na22	551.031	345.0	757.061	560.805	402.38
-	1274.698	1062.0	1487.395	2164.725	1061.726
Y88	897.966	700.5	1095.432	1174.142	697.757
-	1460.785	1245.5	1676.07	2748.746	1241.237

Kde hybnost elektronu jsem spočítal podle vztahu 1. Klasická T a relativistická T_r kinetická energie elektronu jsem určil jako

$$T = \frac{p^2}{2m_e}$$

$$T_r = \sqrt{p^2c^2 + m_0^2c^4} - m_0c^2$$

Potom jsem plotnul graf závislosti T(p) a $T_r(p)$ kde p je hybnost elektronu.

Figure 5: Závislosti T(p) a $T_r(p)$

6 Diskuse

Z grafu 5 je vidět, že klasická křivka je polynom 2. stupně, zatímco relativistická křivka je lineární. Podle tabulky je také jasně vidět, že se elektrony chovají relativisticky, protože tyto hodnoty jsou mnohem blíže teoritickým i naměřeným hodnotám.

7 Závěr

Elektrony se chovájí relativisticky

8 Zdroje

https://userswww.pd.infn.it/~moretto/fontana/project/software/2018/03/16/compton-edge.html