Course 6: Theory for exploring nuclear reaction experiments MSU June 2019

IVISU June 2019

Nuclear reactions in a three body model

Jin Lei Ohio University

Nuclear reaction: use light nuclei as projectile

What is a nuclear reaction

Nuclear reaction is the interaction between a projectile and a target

Why three body model

Key word: degree of freedom

Elastic scattering: only relative coordinate between projectile and target

• Transfer reaction: from one Jacobi coordinate set to another

Breakup reaction: stay in one Jacobi coordinate, but from bound state to continuum

The cases can be considered as three body model

- d(n+p)+A reaction

- halo nuclei induced reaction: 11Be(10Be+n)+A; 8B(7Be+p)+A

- clustered structured projectile induced reaction: $^6\text{Li}(\alpha+d)+A$

Three body model

· Assume the projectile has a two body structure

R. Kozack and F. S. Levin, Phys. Rev. C 34 1511 (1986)

OR

· Hamiltonian for effective three body problem: take d+A reaction as an example

$$H = \underbrace{H_0}_{\text{kinetic energy}} + \underbrace{V_{np} + U_{pA} + U_{nA}}_{\text{two body interaction}}$$

- Nucleon-nucleon interaction "well" known
 - chiral interactions, 'high precision' potentials
- Effective proton (neutron) interactions
 - Phenomenological optical potentials fitted to data
 - Optical potentials with theoretical guidance
 - Microscopic optical potentials
 - Ab initio derivation of effective interaction

Solving the three body problem

Faddeev Equations

L. Hlophe, JL, et al., Phys. Rev. C <u>96</u>, 064003 (2017) JL, L. Hlophe, et al., Phys. Rev. C <u>98</u>, 051001(R) (2018)

Solving the three body Schrodinger equation: $two-body\ projectile\ with\ inert\ cores\ on\ inert\ target(take\ d+A\ system\ as\ an\ example)$

$$E|\Psi\rangle = H|\Psi\rangle$$
 \longrightarrow $H = H_0 + V_{np} + U_{nA} + U_{pA}$

Faddeev equation: expand the three body wave function in three Jacobi systems

L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960).

$$|\Psi\rangle = |\psi_{np}\rangle + |\psi_{nA}\rangle + |\psi_{pA}\rangle$$

 $(V-H_0-V_{nn})|\psi_{nn}\rangle=V_{nn}(|\psi_{nA}\rangle+|\psi_{nA}\rangle)$ E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B <u>2</u>, 167(1967).

$$E - H_0 - U_{nA} | \psi_{nA} \rangle = U_{nA} (|\psi_{np}\rangle + |\psi_{pA}\rangle) \qquad U^{ij} = \bar{\delta} G_0^{-1}(E) + \sum_{i=1}^{n} \bar{\delta}_{i\sigma} t^{\sigma}(E) G_0(E) U^{\sigma j}$$

$$t^{\sigma} = v^{\sigma} + v^{\sigma} G_0 t^{\sigma}$$

AGS-equations (momentum space)

Solving the three body problem

Faddeev-AGS equations:

E. O. Alt, P. Grassberger, and W. Sandhas., Nucl. Phys. B2 (1967) 167

$$U^{ij} = \bar{\delta}_{ij}G_0^{-1}(E) + \sum_{k} \bar{\delta}_{ik}t_kG_0(E)U^{kj}$$
$$U^{0j} = G_0^{-1}(E) + \sum_{k} t_kG_0U^{kj}$$

two body t-matrix: $t_k = v_k + v_k g_o t_k$

Observables: $\sigma_{i \leftarrow j} \propto |\langle \Phi_i | U^{ij} | \Phi_j \rangle|^2$

separable potential: $V(p, p') = h(p)\lambda h(p')$

Advantages:

- Elastic, transfer and breakup are treated on equal footing
- Easy boundary conditions

Disadvantages: Coulomb potential

Current implementations (screening)
 unstable for high Z target

Remedy:

Use separable two-body potentials

A. Mukhamedzhanov, et al. Phys.Rev. C86, 034001 (2012).

 Coupled equations in one variable allow full inclusion of Coulomb interaction via reformulation of AGS equation in Coulomb basis

Benchmark separable and non-separable Faddeev-AGS equations

- Take $n+p+\alpha$ three body system as an example
- n-p interaction: CD-Bonn R. Machleidt, Phys. Rev. C 63, 024001 (2001)
- n/p- α interaction: J. Bang potential J. Bang et al., Nucl. Phys. A 405, 126 (1983) n I. J. Thompson et al, .Phys. Rev. C 61, 024318 (2000)
- · Omit the Coulomb interaction
- EST scheme: $\nu^{EST} = VP(PVP)^{-1}PV$ Ernst et al., Phys.Rev. C9, 1780 (1974)

⁶Li three body bound state

L. Hlophe, JL, et al., Phys. Rev. C 96, 064003 (2017)

•		•				•	
CD-Bonn np potential				Bang $n\alpha$ potential			
label	rank	E_3 [MeV]		label	rank	E_{3b} [MeV]	
						_	
EST5-1	5	- 3.78 47		EST6-1	6	- 3.785 6	
EST5-2	5	- 3.78 48		EST6-2	6	- 3.785 2	
EST5-3	5	- 3.78 55		EST6-3	6	- 3.785 2	
EST6-1	6	- 3.78 67		EST7-1	7	- 3.786 8	
EST6-2	6	- 3.78 68		EST7-2	7	-3.786 4	
EST6-3	6	- 3.78 71		EST7-3	7	- 3.786 7	
EST7-1	7	-3.7867	L	EST8-1	8	- 3.78 70	
EST7-2	7	-3.7867		EST8-2	8	- 3.78 70	
EST7-3	7	-3.7867		EST8-3	8	- 3.78 66	
non-separable:		-3.787	V	non-separable:		-3.787	

Benchmark separable and non-separable Faddeev-AGS equations

- Breakup reaction: $d+\alpha \rightarrow n+p+\alpha$
- S-curve for selected angles $dS = \sqrt{dE_P^2 + dE_\alpha^2}$

Separable and nonseparable calculations agree very well

Solving the three body problem

N. Austern, M. Yahiro, and M. Kawai Phys. Rev. Lett. <u>63</u>, 2649 (1989)

CDCC Equations: Distorted Faddeev Equations

Solving the three body Schrodinger equation: $two-body\ projectile\ with\ inert\ cores\ on\ inert\ target(take\ d+A\ system\ as\ an\ example)$

$$E|\Psi\rangle = H|\Psi\rangle$$
 \longrightarrow $H = H_0 + V_{np} + U_{nA} + U_{pA}$

Faddeev equation: expand the three body wave function in three Jacobi systems

$$|\Psi\rangle = |\psi_{np}\rangle + |\psi_{nA}\rangle + |\psi_{pA}\rangle$$

$$\begin{split} \left(E - H_0 - V_{np} - \mathcal{P}(U_{nA} + U_{pA})\mathcal{P}\right) |\psi_{np}\rangle &= V_{np} \left(|\psi_{nA}\rangle + |\psi_{pA}\rangle\right) \\ \left(E - H_0 - U_{nA}\right) |\psi_{nA}\rangle &= \left(U_{nA} - \mathcal{P}U_{nA}\mathcal{P}\right) |\psi_{np}\rangle + U_{nA} |\psi_{pA}\rangle \\ \left(E - H_0 - U_{pA}\right) |\psi_{pA}\rangle &= \left(U_{pA} - \mathcal{P}U_{pA}\mathcal{P}\right) |\psi_{np}\rangle + U_{pA} |\psi_{nA}\rangle \end{split}$$

$$(E-H_0-U)(\left|\psi_{pA}\right\rangle+\left|\psi_{nA}\right\rangle)=(U-\mathcal{P}U\mathcal{P})\left|\psi_{np}\right\rangle \ \ \text{weak coupling to the first equation}$$

$$\mathcal{P} = \sum_{\alpha b} \int R^2 dR \, |\phi_{bx}^b R\alpha\rangle \langle \phi_{bx}^b R\alpha| + \sum_{\alpha} \int R^2 dR \int dk \, |\phi_{bx}^k R\alpha\rangle \langle \phi_{bx}^k R\alpha|$$

Inclusion of the continuum in CC calculations: continuum discretization

Continuum discretization: represent the continuum by a finite set of square-integrable states

True continuum
 Non normalizable
 Continuous
 → Discretized continuum
 Normalizable
 Discrete

Bound versus scattering states

Continuum state:

$$\phi_{k,\ell j}^m(\mathbf{r}) = \frac{u_{k,\ell j}(r)}{r} [Y_\ell(\hat{r}) \otimes \chi_s]_{jm}$$

Unbound states are not suitable for CC calculations:

- Continuous (infinite) distribution in energy.
- Non-normalizable: $\langle u_{k,\ell sj}(r)^* | u_{k',\ell sj}(r) \rangle \propto \delta(k-k')$

SOLUTION ⇒ continuum discretization

CDCC formalism: construction of the bin wave functions

Bin wavefunction:

$$u_{\ell sj,n}(r) = \sqrt{\frac{2}{\pi N}} \int_{k_1}^{k_2} w(k) u_{k,\ell sj}(r) dk$$

- k: linear momentum
- $u_{k,\ell sj}(r)$: scattering states (radial part)
- w(k): weight function

Continuum discretization for deuteron scattering

- \Rightarrow Select a number of partial waves $(\ell = 0, ..., \ell_{max})$.
- \Rightarrow For each ℓ , set a maximum excitation energy ε_{max} .
- \Rightarrow Divide the interval $\varepsilon = 0 \varepsilon_{\text{max}}$ in a set of sub-intervals (*bins*).
- \Rightarrow For each *bin*, calculate a representative wavefunction.

CDCC equations for deuteron scattering

• Hamiltonian:

$$H = T_R + h_r(\mathbf{r}) + V_{pt}(\mathbf{r}_{pt}) + V_{nt}(\mathbf{r}_{nt})$$

• Model wavefunction:

$$\Psi(\mathbf{R}, \mathbf{r}) = \phi_{gs}(\mathbf{r})\chi_0(\mathbf{R}) + \sum_{n>0}^{N} \phi_n(\mathbf{r})\chi_n(\mathbf{R})$$

$$[E - \varepsilon_n - T_R - V_{n,n}(\mathbf{R})] \chi_n(\mathbf{R}) = \sum_{n' \neq n} V_{n,n'}(\mathbf{R}) \chi_{n'}(\mathbf{R})$$

Transition potentials:

$$V_{n,n'}(\mathbf{R}) = \int d\mathbf{r} \phi_n(\mathbf{r})^* \left[V_{pt}(\mathbf{R} + \frac{\mathbf{r}}{2}) + V_{nt}(\mathbf{R} - \frac{\mathbf{r}}{2}) \right] \phi_{n'}(\mathbf{r})$$

What observables can we study with CDCC

- ⇒ Breakup angular distribution, as a function of excitation energy:
- ⇒ Breakup energy distribution, as a function of c.m. angle:

From the S-matrices, more complicated breakup observables can be obtained, such as angular/energy distribution of one of the fragments

Application of the CDCC formalism: d+ 58Ni

- $\ell = 0, 2$ continuum
- $p+^{58}$ Ni and $n+^{58}$ Ni from Koning-Delaroche OMP.
- $V_{pn}(r) = -72.15 \exp[-(r/1.484)^2]$

© Coupling to breakup channels has a important effect on the reaction dynamics

Application of the CDCC method: 6Li and 6He scattering

The CDCC has been also applied to nuclei with a cluster structure:

•
$$^6\text{Li}=\alpha + d$$

•
$${}^{11}\text{Be} = {}^{10}\text{Be} + \text{n}$$

In Fraunhofer scattering the presence of the continuum produces a reduction of the elastic cross section

Compare Faddeev with CDCC

Test case
¹²C(d,pn)¹²C
⁵⁸Ni(d,d)⁵⁸Ni

Good agreement in both elastic scattering and breakup

A. Deltuva et al., Phys. Rev. C <u>76</u>, 064602 (2007)

θ (deg)

Test case ${}^{12}C(d,p){}^{13}C$ ${}^{12}C(d,pn){}^{12}C$

Disagreement in transfer and breakup

N. J. Upadhyay, A. Deltuva, and F. M. Nunes, Phys. Rev. C <u>85</u>, 054621 (2012)

Compare Faddeev with CDCC

Test case
¹²C(d,pn)¹²C
⁵⁸Ni(d,d)⁵⁸Ni

Good agreement in both elastic scattering and breakup

A. Deltuva et al., Phys. Rev. C <u>76</u>, 064602 (2007)

Test case ¹²C(d,pn)¹²C@12MeV ¹⁰Be(d,p)¹⁰Be@21MeV

Agree with Faddeev when including the close channels

K. Ogata and K. Yoshida Phys. Rev. C <u>94</u>, 051603(R) (2016)