

Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ZBIÓR ZADAŃ

z matematyki

z rozwiązaniami

50

36

Zbiór zadań maturalnych z matematyki

Centralna Komisja Egzaminacyjna Warszawa 2012

Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Publikacja jest dystrybuowana bezpłatnie.

Publikacja opracowana przez Centralny Zespół Ekspertów Matematycznych działający w ramach projektu: "Pilotaż nowych egzaminów maturalnych" realizowanego przez Centralną Komisję Egzaminacyjną:

Henryk Dąbrowski
Elżbieta Dittmajer
Mieczysław Fałat
Wojciech Guzicki
Halina Kałek
Piotr Ludwikowski
Edyta Marczewska
Anna Olechnowicz
Marian Pacholak
Maria Pająk-Majewska
Waldemar Rożek
Elżbieta Sepko-Guzicka
Agata Siwik
Leszek Sochański
Edward Stachowski

Skład:

Jakub Pochrybniak

Wydawca: Centralna Komisja Egzaminacyjna Warszawa 2012

ISBN 978-83-7400-276-9

Spis treści

W	stęp	6
1.	Liczby rzeczywiste i wyrażenia algebraiczne	7
2.	Równania i nierówności	17
3.	Funkcje	30
4.	Ciągi liczbowe	34
5.	Trygonometria	40
6.	Planimetria	46
7.	Geometria na płaszczyźnie kartezjańskiej	61
8.	Stereometria	75
9.	Elementy statystyki opisowej Teoria prawdopodobieństwa i kombinatoryka	88
Do	odatek	95

Wstęp

"Zbiór zadań maturalnych z matematyki" zawiera zadania otwarte z próbnych egzaminów maturalnych, jakie odbyły się w listopadzie 2009 i 2010 roku oraz zadania z egzaminów maturalnych w 2010 i 2011 roku. Zadania są pogrupowane tematycznie.

W Dodatku znajduje się 40 propozycji zadań ilustrujących typy zadań, jakie mogą pojawić się na egzaminie maturalnym na poziomie rozszerzonym od 2015 roku. Część tych zadań przedstawiona jest w dwóch wersjach: pierwsza w postaci "oblicz...", druga — "uzasadnij, że..." tj. w postaci zadań na dowodzenie. Jesteśmy przekonani, że zadania te — choć zazwyczaj uważane za trudniejsze — są bardziej przyjazne dla ucznia.

W wielu zadaniach podano różne sposoby ich rozwiązania. Ma to na celu pokazanie, że do rozwiązania zagadnienia można dojść różnymi metodami. Niektóre z tych rozwiązań zostały zamieszczone w tym zbiorze dlatego, że są typowymi rozwiązaniami uczniowskimi, choć naszym zdaniem często są zbyt skomplikowane i czasochłonne.

Począwszy od matury w 2010 roku zadania otwarte z matematyki są oceniane tak zwanym systemem holistycznym, który polega na spojrzeniu całościowym na rozwiązanie i jest bliższy sposobowi, w jaki oceniamy rozwiązania uczniowskie w szkole. Opis takiego systemu oceniania zadań z matematyki znajduje się na stronie internetowej CKE.

Nauczyciele przygotowujący uczniów do egzaminu maturalnego z matematyki mogą korzystać również z materiału ćwiczeniowego, jakim są arkusze egzaminacyjne umieszczone na stronach internetowych CKE i OKE, a przede wszystkim z informatora o egzaminie maturalnym z matematyki.

Autorzy

Liczby rzeczywiste i wyrażenia algebraiczne

W dziale dotyczącym liczb rzeczywistych:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) planuje i wykonuje obliczenia na liczbach rzeczywistych; w szczególności oblicza pierwiastki, w tym pierwiastki nieparzystego stopnia z liczb ujemnych,
- b) bada, czy wynik obliczeń jest liczbą wymierną,
- c) wyznacza rozwinięcia dziesiętne; znajduje przybliżenia liczb; wykorzystuje pojęcie błędu przybliżenia,
- d) stosuje pojęcie procentu i punktu procentowego w obliczeniach,
- e) posługuje się pojęciem osi liczbowej i przedziału liczbowego; zaznacza przedziały na osi liczbowej,
- f) wykorzystuje pojęcie wartości bezwzględnej i jej interpretację geometryczną, zaznacza na osi liczbowej zbiory opisane za pomocą równań i nierówności typu: |x-a|=b, |x-a|>b, |x-a|< b,
- g) oblicza potęgi o wykładnikach wymiernych oraz stosuje prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych,
- h) zna definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

- a) stosuje twierdzenie o rozkładzie liczby naturalnej na czynniki pierwsze; wyznacza największy wspólny dzielnik i najmniejszą wspólną wielokrotność pary liczb naturalnych,
- b) stosuje wzór na logarytm potegi i wzór na zamiane podstawy logarytmu.

W dziale dotyczącym wyrażeń algebraicznych:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) posługuje się wzorami skróconego mnożenia: $(a+b)^2$, $(a-b)^2$, $(a+b)^3$, $(a-b)^3$, a^2-b^2 , a^3+b^3 , a^3-b^3 ,
- b) rozkłada wielomian na czynniki stosując wzory skróconego mnożenia, grupowanie wyrazów, wyłączanie wspólnego czynnika poza nawias,
- c) dodaje, odejmuje i mnoży wielomiany,
- d) wyznacza dziedzinę prostego wyrażenia wymiernego z jedną zmienną, w którym w mianowniku występują tylko wyrażenia dające się sprowadzić do iloczynu wielomianów liniowych i kwadratowych za pomocą przekształceń opisanych w punkcie b),
- e) oblicza wartość liczbową wyrażenia wymiernego dla danej wartości zmiennej,

f) dodaje, odejmuje, mnoży i dzieli wyrażenia wymierne; skraca i rozszerza wyrażenia wymierne;

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

- a) posługuje się wzorem $(a-1)(1+a+...+a^{n-1})=a^n-1$,
- b) wykonuje dzielenie wielomianu przez dwumian x-a; stosuje twierdzenie o reszcie z dzielenia wielomianu przez dwumian x-a,
- c) stosuje twierdzenie o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych.

Poziom podstawowy

Zadanie 1. (Matura maj 2010 — zadanie 30 (2 p.))

Wykaż, że jeśli
$$\alpha > 0$$
, to $\frac{\alpha^2 + 1}{\alpha + 1} \geqslant \frac{\alpha + 1}{2}$.

I sposób rozwiązania

Ponieważ a > 0, więc mnożąc obie strony nierówności przez 2(a+1), otrzymujemy kolejno nierówności równoważne z dowodzoną:

$$2(\alpha^{2}+1) \geqslant (\alpha+1)^{2}$$

$$2\alpha^{2}+2 \geqslant \alpha^{2}+2\alpha+1$$

$$\alpha^{2}-2\alpha+1 \geqslant 0$$

$$(\alpha-1)^{2} \geqslant 0.$$

Nierówność ta jest spełniona dla każdego a, co kończy dowód.

II sposób rozwiązania

Przekształcamy nierówność w sposób równoważny:

$$\frac{\alpha^{2}+1}{\alpha+1} - \frac{\alpha+1}{2} \ge 0$$

$$\frac{2(\alpha^{2}+1) - (\alpha+1)^{2}}{2(\alpha+1)} \ge 0$$

$$\frac{\alpha^{2}-2\alpha+1}{2(\alpha+1)} \ge 0$$

$$\frac{(\alpha-1)^{2}}{2(\alpha+1)} \ge 0.$$

Licznik ułamka po lewej stronie nierówności jest nieujemny, a mianownik jest dodatni (ponieważ zgodnie z założeniem a > 0), więc ułamek jest liczbą nieujemną, co kończy dowód.

Zadanie 2. (Próba 2010 — zadanie 30 (2 p.))

Uzasadnij, że jeśli $(a^2+b^2)(c^2+d^2)=(ac+bd)^2$, to ad=bc.

Rozwiązanie

Przekształcając równość $(a^2+b^2)(c^2+d^2)=(ac+bd)^2$, otrzymujemy kolejno:

$$\begin{aligned} a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 &= a^2c^2 + 2abcd + b^2d^2 \\ a^2d^2 - 2abcd + b^2c^2 &= 0 \\ \left(ad - bc\right)^2 &= 0, \end{aligned}$$

stad

$$ad = bc$$
.

Zadanie 3. (Matura maj 2011 — zadanie 25 (2 p.))

Uzasadnij, że jeżeli a+b=1 i $a^2+b^2=7$, to $a^4+b^4=31$.

I sposób rozwiązania

Ponieważ a+b=1, więc $(a+b)^2=1$, czyli $a^2+2ab+b^2=1$.

Ponieważ $a^2 + b^2 = 7$, więc 2ab + 7 = 1. Stąd ab = -3, więc $a^2b^2 = (ab)^2 = 9$.

Wyrażenie $a^4 + b^4$ możemy potraktować jako sumę kwadratów $(a^2)^2 + (b^2)^2$, a następnie wykorzystując wzór skróconego mnożenia na kwadrat sumy, przekształcić to wyrażenie w następujący sposób: $a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 = 7^2 - 2 \cdot 9 = 31$.

II sposób rozwiązania

Przekształcamy tezę w sposób równoważny:

$$a^4 + b^4 = 31$$
$$(a^2 + b^2)^2 - 2a^2b^2 = 31.$$

Ponieważ z założenia

$$a^2+b^2=7,$$

więc

$$49 - 2a^2b^2 = 31$$
,

stąd

$$a^2b^2 = 9$$
.

Wystarczy zatem udowodnić, że $a^2b^2=9$. Korzystamy z założeń $a^2+b^2=7$ oraz a+b=1 i otrzymujemy:

$$7 = a^2 + b^2 = (a+b)^2 - 2ab = 1 - 2ab$$
.

Stąd ab = -3. Zatem $a^2b^2 = 9$, co kończy dowód.

III sposób rozwiązania

Tak jak w sposobie I obliczamy ab = -3.

Z założenia wiemy, że a+b=1, więc $(a+b)^4=1^4=1$.

Korzystamy ze wzoru dwumianowego Newtona i otrzymujemy:

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 = a^4 + 4ab(a^2 + b^2) + 6(ab)^2 + b^4 =$$

$$= a^4 + b^4 + 4(-3) \cdot 7 + 6 \cdot (-3)^2 = a^4 + b^4 - 84 + 54 = a^4 + b^4 - 30.$$

Zatem $1 = a^4 + b^4 - 30$.

Stad $a^4 + b^4 = 31$.

IV sposób rozwiązania

Rozwiązujemy układ równań:

$$\begin{cases} a^2 + b^2 = 7 \\ a + b = 1. \end{cases}$$

Stąd

$$\begin{cases} a = \frac{1 - \sqrt{13}}{2} \\ b = \frac{1 + \sqrt{13}}{2} \end{cases} \quad \text{lub} \quad \begin{cases} a = \frac{1 + \sqrt{13}}{2} \\ b = \frac{1 - \sqrt{13}}{2} \end{cases}.$$

Oto trzy przykładowe sposoby rozwiązania układu równań $\left\{ \begin{array}{l} a^2+b^2=7 \\ a+b=1. \end{array} \right.$

• I sposób Podstawiamy b=1-a do równania $a^2+b^2=7$, skąd otrzymujemy równanie $a^2+(1-a)^2=7$, które jest równoważne równaniu $2a^2-2a-6=0$, czyli

$$a^2-a-3=0$$
.

Rozwiązaniami tego równania są liczby $\frac{1-\sqrt{13}}{2}$ oraz $\frac{1+\sqrt{13}}{2}$. Zatem układ równań ma dwa rozwiązania:

$$\begin{cases} a = \frac{1 - \sqrt{13}}{2} \\ b = \frac{1 + \sqrt{13}}{2} \end{cases} \quad \text{lub} \quad \begin{cases} a = \frac{1 + \sqrt{13}}{2} \\ b = \frac{1 - \sqrt{13}}{2} \end{cases}.$$

• II sposób Oznaczamy: $a = \frac{1}{2} + x$, $b = \frac{1}{2} - x$. Wtedy $a^2+b^2=\frac{1}{2}+2x^2=7$, stąd $2x^2=\frac{13}{2}$, czyli $x^2=\frac{13}{4}$. Zatem $x=\frac{\sqrt{13}}{2}$ lub $x=-\frac{\sqrt{13}}{2}$. Układ równań ma więc dwa rozwiązania:

$$\begin{cases} a = \frac{1 - \sqrt{13}}{2} \\ b = \frac{1 + \sqrt{13}}{2} \end{cases} \quad \text{lub} \quad \begin{cases} a = \frac{1 + \sqrt{13}}{2} \\ b = \frac{1 - \sqrt{13}}{2} \end{cases}.$$

III sposób

Obliczamy ab = -3 tak jak w I sposobie rozwiązania. Mamy zatem układ równań:

$$\begin{cases} a+b=1 \\ ab=-3. \end{cases}$$

Stąd otrzymujemy równanie a(1-a)=3, czyli $a^2-a-3=0$. Zatem $a=\frac{1-\sqrt{13}}{2}$ lub $a=\frac{1+\sqrt{13}}{2}$. Układ równań ma więc dwa rozwiązania:

$$\begin{cases} a = \frac{1 - \sqrt{13}}{2} \\ b = \frac{1 + \sqrt{13}}{2} \end{cases} \quad \text{lub} \quad \begin{cases} a = \frac{1 + \sqrt{13}}{2} \\ b = \frac{1 - \sqrt{13}}{2} \end{cases}.$$

Obliczamy $a^4 + b^4$:

$$a^{4} + b^{4} = \left(\frac{1 + \sqrt{13}}{2}\right)^{4} + \left(\frac{1 - \sqrt{13}}{2}\right)^{4} =$$

$$= \left(\frac{1}{2} + \frac{\sqrt{13}}{2}\right)^{4} + \left(\frac{1}{2} - \frac{\sqrt{13}}{2}\right)^{4} =$$

$$= 2 \cdot \left(\frac{1}{2}\right)^{4} + 12 \cdot \left(\frac{1}{2}\right)^{2} \cdot \left(\frac{\sqrt{13}}{2}\right)^{2} + 2 \cdot \left(\frac{\sqrt{13}}{2}\right)^{4} =$$

$$= \frac{1}{8} + 3 \cdot \frac{13}{4} + \frac{169}{8} = \frac{248}{8} = 31.$$

Uwaga 1.

Przy obliczaniu sumy $(x+y)^4 + (x-y)^4$ warto zauważyć, że składniki pierwszy, trzeci i piąty w rozwinięciach obu wyrażeń $(x+y)^4$ i $(x-y)^4$ są takie same, zaś składniki drugi i czwarty się redukują.

Uwaga 2.

Można też tak:

$$\alpha^4 = \left(\frac{1+\sqrt{13}}{2}\right)^4 = \left(\left(\frac{1+\sqrt{13}}{2}\right)^2\right)^2 = \left(\frac{1+2\sqrt{13}+13}{4}\right)^2 = \left(\frac{14+2\sqrt{13}}{4}\right)^2 = \left(\frac{7+\sqrt{13}}{2}\right)^2 = \left(\frac{7+\sqrt{13}}{2}\right)^2 = \left(\frac{14+2\sqrt{13}+13}{4}\right)^2 = \left(\frac{$$

oraz

$$b^{4} = \left(\frac{1-\sqrt{13}}{2}\right)^{4} = \left(\left(\frac{1-\sqrt{13}}{2}\right)^{2}\right)^{2} = \left(\frac{1-2\sqrt{13}+13}{4}\right)^{2} = \left(\frac{14-2\sqrt{13}}{4}\right)^{2} = \left(\frac{7-\sqrt{13}}{2}\right)^{2} =$$

$$= \frac{49-14\sqrt{13}+13}{4} = \frac{62-14\sqrt{13}}{4} = \frac{31-7\sqrt{13}}{2} \quad \text{albo} \quad b^{4} = \left(\frac{1+\sqrt{13}}{2}\right)^{4} = \frac{31+7\sqrt{13}}{2}.$$

Zatem, w obu przypadkach, $a^4 + b^4 = \frac{31 + 7\sqrt{13}}{2} + \frac{31 - 7\sqrt{13}}{2} = 31$.

Poziom rozszerzony

Zadanie 4. (Matura maj 2011 — zadanie 1 (4 p.))

Uzasadnij, że dla każdej liczby całkowitej k liczba $k^6 - 2k^4 + k^2$ jest podzielna przez 36.

Rozwiązanie

Przekształcamy wyrażenie $k^6 - 2k^4 + k^2$ do postaci:

$$k^{2}(k^{4}-2k^{2}+1) = k^{2}(k^{2}-1)^{2} = [(k-1)k(k+1)]^{2}$$
.

Wśród trzech kolejnych liczb całkowitych k-1, k, k+1 jest co najmniej jedna liczba parzysta i dokładnie jedna liczba podzielna przez 3. Iloczyn tych liczb jest podzielny przez 6, a jej kwadrat przez 36.

Zatem liczba postaci $k^6-2k^4+k^2$, gdzie k jest liczbą całkowitą, jest podzielna przez 36.

Zadanie 5. (Matura maj 2010 — zadanie 4 (4 p.))

Wyznacz wartości współczynników a i b wielomianu $W(x) = x^3 + ax^2 + bx + 1$ wiedząc, że W(2) = 7 oraz że reszta z dzielenia W(x) przez dwumian x-3 jest równa 10.

I sposób rozwiązania

Ponieważ reszta z dzielenia W(x) przez dwumian x-3 jest równa 10 oraz W(2)=7, więc

$$\begin{cases} 8+4a+2b+1=7\\ 27+9a+3b+1=10. \end{cases}$$

Równanie 27+9a+3b+1=10 możemy otrzymać z warunku W(3)=10 lub wykonując dzielenie wielomianów i zapisując, że reszta z dzielenia jest równa 10.

Rozwiązujemy układ równań:

$$\begin{cases} 4a + 2b = -2 \\ 9a + 3b = -18, \end{cases} \begin{cases} b = -2a - 1 \\ 9a - 6a - 3 = -18, \end{cases} \begin{cases} a = -5 \\ b = 9. \end{cases}$$

Współczynniki a i b wielomianu W(x) są równe: a = -5, b = 9.

Poziom rozszerzony 13

II sposób rozwiązania

Zapisujemy wielomian W(x) w postaci $W(x) = (x-3)(x^2+cx+d)+10$, stąd po przekształceniach

$$W(x) = x^3 + (c-3)x^2 + (d-3c)x - 3d + 10.$$

Warunek W(2)=7 zapisujemy w postaci 8+4a+2b+1=7. Otrzymujemy zatem układ równań

$$\begin{cases} 8+4a+2b+1=7\\ a=-3+c\\ b=-3c+d\\ 1=-3d+10. \end{cases}$$

Rozwiązujemy układ równań i otrzymujemy:

$$\begin{cases} d=3 \\ c=-2 \\ b=9 \\ a=-5. \end{cases}$$

Współczynniki a i b wielomianu W(x) są równe: a = -5, b = 9.

Zadanie 6. (Matura maj 2011 — zadanie 2 (4 p.))

Uzasadnij, że jeżeli $a \neq b$, $a \neq c$, $b \neq c$ i a+b=2c, to $\frac{a}{a-c}+\frac{b}{b-c}=2$.

I sposób rozwiązania

Przekształcamy tezę w sposób równoważny.

Mnożymy obie strony równości

$$\frac{a}{a-c} + \frac{b}{b-c} = 2$$

przez (a-c)(b-c) (z założenia $(a-c)(b-c) \neq 0$) i otrzymujemy:

$$a(b-c)+b(a-c)=2(a-c)(b-c)$$
,

czyli

$$ab - ac + ab - bc = 2ab - 2ac - 2bc + 2c^{2}$$
.

Stąd otrzymujemy

$$2c^2 - ac - bc = 0,$$

czyli

$$c(2c-a-b)=0.$$

Ta ostatnia równość jest prawdziwa, bo z założenia 2c-a-b=0. Zatem teza też jest prawdziwa.

II sposób rozwiązania

Z równania a+b=2c wyznaczamy b=2c-a i wstawiamy do danego wyrażenia:

$$\frac{a}{a-c}+\frac{b}{b-c}=\frac{a}{a-c}+\frac{2c-a}{2c-a-c}=\frac{a}{a-c}+\frac{2c-a}{c-a}=\frac{a-(2c-a)}{a-c}=\frac{2\left(a-c\right)}{a-c}=2.$$

Uwaga

Z równania a+b=2c można także wyznaczyć zmienną a lub c.

III sposób rozwiązania

Z równania a+b=2c otrzymujemy c-a=b-c, więc ciąg (a, c, b) jest arytmetyczny. Niech r oznacza różnicę tego ciągu arytmetycznego. Wtedy c=a+r, b=a+2r.

Wstawiamy c i b do danego wyrażenia:

$$\frac{a}{a-c} + \frac{b}{b-c} = \frac{a}{a-(a+r)} + \frac{a+2r}{a+2r-(a+r)} = \frac{a}{-r} + \frac{a+2r}{r} = \frac{-a+a+2r}{r} = \frac{2r}{r} = 2.$$

Uwaga

Możemy też zauważyć, że a-c=c-b i przekształcić wyrażenie bez wprowadzania r, np.

$$\frac{a}{a-c} + \frac{b}{b-c} = \frac{a}{c-b} + \frac{b}{b-c} = \frac{a-b}{c-b} = \frac{2c-b-b}{c-b} = \frac{2c-2b}{c-b} = 2.$$

Zadanie 7. (Matura maj 2010 — zadanie 8 (5 p.))

Rysunek przedstawia fragment wykresu funkcji $f(x) = \frac{1}{x^2}$. Poprowadzono prostą równoległą do osi Ox, która przecięła wykres tej funkcji w punktach A i B.

Niech C = (3, -1). Wykaż, że pole trójkąta ABC jest większe lub równe 2.

Poziom rozszerzony 15

I sposób rozwiązania

Zapisujemy współrzędne dwóch punktów leżących na wykresie funkcji $f(x) = \frac{1}{x^2}$ oraz na prostej równoległej do osi Ox, np. $A = \left(x, \frac{1}{x^2}\right)$, $B = \left(-x, \frac{1}{x^2}\right)$, gdzie x > 0.

Zapisujemy pole trójkąta ABC, gdzie C = (3,-1) w zależności od jednej zmiennej

$$P_{ABC}(x) = \frac{2 \cdot x \cdot (\frac{1}{x^2} + 1)}{2} = \frac{1}{x} + x.$$

Należy jeszcze udowodnić, że $\frac{1}{x} + x \ge 2$, dla dowolnego x > 0.

Mnożymy obie strony nierówności przez x>0 i otrzymujemy nierówność równoważną $1+x^2\geqslant 2x$, czyli $x^2-2x+1\geqslant 0$, a więc nierówność $(x-1)^2\geqslant 0$, która jest prawdziwa. To kończy dowód.

Uwaga

Nierówność $\frac{1}{x} + x \ge 2$ dla x > 0 można także udowodnić powołując się na twierdzenie o sumie liczby dodatniej i jej odwrotności lub powołując się na nierówność między średnią arytmetyczną i geometryczną dla dodatnich liczb x oraz $\frac{1}{x}$:

$$\frac{x+\frac{1}{x}}{2} \geqslant \sqrt{x \cdot \frac{1}{x}} = \sqrt{1} = 1.$$

Stad
$$\frac{1}{x} + x \ge 2$$
.

II sposób rozwiązania

Rozważamy prostą o równaniu y=k, gdzie k>0, równoległą do osi Ox. Ta prosta przecina wykres funkcji $f(x)=\frac{1}{x^2}$ w punktach A i B. Zatem $\frac{1}{x^2}=k$, stąd $x^2=\frac{1}{k}$, czyli $x=\pm\frac{1}{\sqrt{k}}$. Zapisujemy współrzędne punktów A i B: $A=\left(\frac{1}{\sqrt{k}},k\right)$, $B=\left(-\frac{1}{\sqrt{k}},k\right)$, gdzie k>0.

Zapisujemy pole trójkąta ABC, gdzie C = (3,-1) w zależności od jednej zmiennej k:

$$P_{ABC}(k) = \frac{1}{2} \cdot \frac{2}{\sqrt{k}} \cdot (k+1) = \frac{k+1}{\sqrt{k}}.$$

Wystarczy wobec tego udowodnić, że dla dowolnej liczby k>0 zachodzi nierówność $\frac{k+1}{\sqrt{k}}\geqslant 2$. Przekształcamy tę nierówność, w następujący sposób:

$$k+1 \ge 2\sqrt{k}$$
$$k-2\sqrt{k}+1 \ge 0$$
$$\left(\sqrt{k}-1\right)^2 \ge 0.$$

Ta nierówność jest prawdziwa. To kończy dowód.

Uwaga

Nierówność $\frac{k+1}{\sqrt{k}} \geqslant 2$ dla k>0 można także udowodnić powołując się na twierdzenie o sumie liczby dodatniej i jej odwrotności lub powołując się na nierówność między średnią arytmetyczną i geometryczną dla dodatnich liczb k oraz 1:

$$\frac{k+1}{2} \geqslant \sqrt{k \cdot 1} = \sqrt{k}.$$

Równania i nierówności

W dziale dotyczącym równań i nierówności:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) rozwiązuje równania i nierówności kwadratowe; zapisuje rozwiązanie w postaci sumy przedziałów,
- b) rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do równań i nierówności kwadratowych,
- c) rozwiązuje układy równań, prowadzące do równań kwadratowych,
- d) rozwiązuje równania wielomianowe metodą rozkładu na czynniki,
- e) rozwiązuje proste równania wymierne, prowadzące do równań liniowych lub kwadratowych, np. $\frac{x+1}{x+3} = 2$; $\frac{x+1}{x} = 2x$,
- f) rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do prostych równań wymiernych

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

- a) stosuje wzory Viète'a,
- b) rozwiązuje równania i nierówności kwadratowe z parametrem, przeprowadza dyskusję i wyciąga z niej wnioski,
- c) rozwiązuje równania i nierówności wielomianowe,
- d) rozwiązuje proste równania i nierówności wymierne, np. $\frac{x+1}{x+3} > 2$; $\frac{x+1}{x} < 3$,
- e) rozwiązuje proste równania i nierówności z wartością bezwzględną, typu: |x+1|+2|>3; |x+1|+|x+2|<3.

Poziom podstawowy

Zadanie 1. (Matura maj 2011 — zadanie 24 (2 p.))

Rozwiąż nierówność $3x^2 - 10x + 3 \le 0$.

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap może być realizowany na 2 sposoby:

I sposób rozwiązania (realizacja pierwszego etapu)

Znajdujemy pierwiastki trójmianu kwadratowego $3x^2 - 10x + 3$:

• obliczamy wyróżnik tego trójmianu: $\Delta = 100 - 4 \cdot 3 \cdot 3 = 64$ i stąd $x_1 = \frac{10 - 8}{6} = \frac{1}{3}$ oraz $x_2 = \frac{10 + 8}{6} = 3$

albo

• stosujemy wzory Viète'a: $x_1 + x_2 = \frac{10}{3}$ oraz $x_1 \cdot x_2 = 1$ i stąd $x_1 = \frac{1}{3}$ oraz $x_2 = 3$

albo

• podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub postać iloczynową trójmianu:

$$x_1 = \frac{1}{3}$$
, $x_2 = 3$ lub $3\left(x - \frac{1}{3}\right)(x - 3)$,

lub zaznaczając na wykresie:

II sposób rozwiązania (realizacja pierwszego etapu)

Wyznaczamy postać kanoniczną trójmianu kwadratowego $3x^2-10x+3$ i zapisujemy nierówność w postaci, np.

$$3\left(x - \frac{10}{6}\right)^2 - \frac{64}{12} \le 0$$
, stad $3\left[\left(x - \frac{10}{6}\right)^2 - \frac{64}{36}\right] \le 0$,

a następnie

• przekształcamy nierówność, tak by jej lewa strona była zapisana w postaci iloczynowej:

$$3\left(x - \frac{10}{6} - \frac{8}{6}\right) \cdot \left(x - \frac{10}{6} + \frac{8}{6}\right) \le 0,$$
$$3\left(x - 3\right) \cdot \left(x - \frac{1}{3}\right) \le 0$$

czyli

albo

 przekształcamy nierówność do postaci równoważnej, korzystając z własności wartości bezwzględnej

$$\left(x - \frac{10}{6}\right)^2 \leqslant \frac{64}{36}$$
$$\left|x - \frac{10}{6}\right| \leqslant \frac{8}{6}.$$

Drugi etap rozwiązania:

Podajemy zbiór rozwiązań nierówności w jednej postaci: $\frac{1}{3} \le x \le 3$ lub $\left\langle \frac{1}{3}, 3 \right\rangle$, lub $x \in \left\langle \frac{1}{3}, 3 \right\rangle$.

Zadanie 2. (Próba 2009 — zadanie 27 (2 p.))

Rozwiąż równanie $x^3 - 7x^2 + 2x - 14 = 0$.

I sposób rozwiązania

Przedstawiamy lewą stronę równania w postaci iloczynowej, stosując metodę grupowania wyrazów:

$$x^3 - 7x^2 + 2x - 14 = x^2(x-7) + 2(x-7) = (x^2 + 2)(x-7)$$
.

Z równania $(x^2+2)(x-7)=0$ otrzymujemy $x^2+2=0$ lub x-7=0.

Równanie $x^2+2=0$ nie ma rozwiązań rzeczywistych. Rozwiązaniem równania x-7=0 jest liczba 7.

Odpowiedź: Jedynym rozwiązaniem równania $x^3 - 7x^2 + 2x - 14 = 0$ jest x = 7.

II sposób rozwiązania

Rozważmy wielomian $W(x) = x^3 - 7x^2 + 2x - 14$. Całkowite dzielniki wyrazu wolnego tego wielomianu to: $\pm 1, \pm 2, \pm 7, \pm 14$.

 $W(7) = 7^3 - 7 \cdot 7^2 + 2 \cdot 7 - 14 = 0$, więc x = 7 jest pierwiastkiem wielomianu.

Dzielimy wielomian W(x) przez dwumian (x-7):

$$\frac{x^{2} + 2}{x^{3} - 7x^{2} + 2x - 14 : (x - 7)}$$

$$\frac{-x^{3} + 7x^{2}}{2x - 14}$$

$$\frac{-2x + 14}{= = =}$$

Z równania $(x^2+2)(x-7)=0$ otrzymujemy $x^2+2=0$ lub x-7=0. Równanie $x^2+2=0$ nie ma rozwiązań rzeczywistych, zatem jedynym rozwiązaniem podanego równania jest x=7.

Zadanie 3. (Matura maj 2010 — zadanie 27 (2 p.))

Rozwiąż równanie $x^3 - 7x^2 - 4x + 28 = 0$.

I sposób rozwiązania

Przedstawiamy lewą stronę równania w postaci iloczynowej stosując metodę grupowania wyrazów:

$$x(x^2-4)-7(x^2-4)=0$$
 lub $x^2(x-7)-4(x-7)=0$,

stad

$$(x-7)(x^2-4)=0$$
,

czyli

$$(x-2)(x+2)(x-7)=0.$$

Stad x = 7 lub x = -2 lub x = 2.

II sposób rozwiązania

• Stwierdzamy, że liczba 2 jest pierwiastkiem wielomianu $x^3-7x^2-4x+28$. Dzielimy wielomian $x^3-7x^2-4x+28$ przez dwumian x-2. Otrzymujemy iloraz $x^2-5x-14$. Zapisujemy równanie w postaci $(x-2)(x^2-5x-14)=0$. Stąd (x-2)(x+2)(x-7)=0 i x=7 lub x=-2 lub x=2.

Albo

• stwierdzamy, że liczba -2 jest pierwiastkiem wielomianu $x^3-7x^2-4x+28$. Dzielimy wielomian $x^3-7x^2-4x+28$ przez dwumian x+2. Otrzymujemy iloraz $x^2-9x+14$. Zapisujemy równanie w postaci $(x+2)(x^2-9x+14)=0$. Stąd (x+2)(x-2)(x-7)=0 i x=-2 lub x=2 lub x=7.

Albo

• stwierdzamy, że liczba 7 jest pierwiastkiem wielomianu $x^3-7x^2-4x+28$. Dzielimy wielomian $x^3-7x^2-4x+28$ przez dwumian x-7. Otrzymujemy iloraz x^2-4 . Zapisujemy równanie w postaci $(x-7)(x^2-4)=0$. Stąd (x-2)(x+2)(x-7)=0 i x=7 lub x=-2 lub x=2.

Zadanie 4. (Próba 2010 — zadanie 27 (2 p.))

Rozwiąż równanie $x^3 + 2x^2 - 5x - 10 = 0$.

I sposób rozwiązania

Przedstawiamy lewą stronę równania w postaci iloczynowej, stosując metodę grupowania wyrazów

$$(x+2)(x^2-5)=0.$$

Stad x = -2 lub $x = -\sqrt{5}$ lub $x = \sqrt{5}$.

II sposób rozwiązania

Stwierdzamy, że liczba -2 jest pierwiastkiem wielomianu. Dzielimy wielomian

$$x^3 + 2x^2 - 5x - 10$$

przez dwumian x+2 i otrzymujemy x^2-5 . Zapisujemy równanie w postaci

$$(x+2)(x^2-5)=0.$$

Stąd x = -2 lub $x = -\sqrt{5}$ lub $x = \sqrt{5}$.

Zadanie 5. (Próba 2009 — zadanie 32 (5 p.))

Uczeń przeczytał książkę liczącą 480 stron, przy czym każdego dnia czytał jednakową liczbę stron. Gdyby czytał każdego dnia o 8 stron więcej, to przeczytałby tę książkę o 3 dni wcześniej. Oblicz, ile dni uczeń czytał tę książkę.

Rozwiązanie

Oznaczamy: x — liczba stron przeczytanych każdego dnia, y — liczba dni, w ciągu których uczeń przeczytał książkę.

Zapisujemy i rozwiązujemy układ równań:

$$\begin{cases} x \cdot y = 480 \\ (x+8) \cdot (y-3) = 480. \end{cases}$$

Z pierwszego równania wyznaczamy x: $x = \frac{480}{y}$ i podstawiamy do drugiego równania

$$\left(\frac{480}{y} + 8\right) \cdot (y - 3) = 480,$$

skąd otrzymujemy równanie równoważne:

$$(480+8y)(y-3)=480y$$
.

Po uporządkowaniu otrzymujemy równanie $y^2 - 3y - 180 = 0$, które ma dwa rozwiązania y = -12 oraz y = 15.

Odpowiedź: Uczeń przeczytał książkę w ciągu 15 dni.

Zadanie 6. (Matura maj 2010 — zadanie 34 (5 p.))

W dwóch hotelach wybudowano prostokątne baseny. Basen w pierwszym hotelu ma powierzchnię 240 m². Basen w drugim hotelu ma powierzchnię 350 m² oraz jest o 5 m dłuższy i 2 m szerszy niż w pierwszym hotelu. Oblicz, jakie wymiary mogą mieć baseny w obu hotelach. Podaj wszystkie możliwe odpowiedzi.

Rozwiązanie

Oznaczmy przez x długość (w metrach) basenu w pierwszym hotelu i przez y szerokość (w metrach) tego basenu. Zapisujemy układ równań:

$$\begin{cases} x \cdot y = 240 \\ (x+5) \cdot (y+2) = 350. \end{cases}$$

Przekształcamy drugie równanie w sposób równoważny: $x \cdot y + 2x + 5y + 10 = 350$, podstawiamy do tego równania $x \cdot y = 240$ i wyznaczamy z tego równania niewiadomą x: $x = \frac{100 - 5y}{2}$. Wyznaczoną wartość x podstawiamy do pierwszego równania $\frac{100 - 5y}{2} \cdot y = 240$ i doprowadzamy to równanie do postaci równania: $y^2 - 20y + 96 = 0$, które ma dwa rozwiązania: $y_1 = 8$, $y_2 = 12$. Zatem:

- jeżeli y = 8, to x = 30 i wtedy basen w pierwszym hotelu ma wymiary 30 m \times 8 m, zaś basen w drugim hotelu: 35 m \times 10 m;
- jeżeli y = 12, to x = 20 i wtedy basen w pierwszym hotelu ma wymiary 20 m × 12 m, zaś basen w drugim hotelu: 25 m × 14 m.

Zadanie 7. (Próba 2009 — zadanie 28 (2 p.))

Przeciwprostokątna trójkąta prostokątnego jest dłuższa od jednej przyprostokątnej o 1 cm i od drugiej przyprostokątnej o 32 cm. Oblicz długości boków tego trójkąta.

Rozwiązanie

Niech x oznacza długość przeciwprostokątnej. Zauważamy, że x>32. Korzystając z twierdzenia Pitagorasa, otrzymujemy równanie $(x-1)^2+(x-32)^2=x^2$ i x>32.

Po przekształceniach otrzymujemy równanie

$$x^2 - 66x + 1025 = 0$$
.

Wtedy $x_1 = 25$ (sprzeczne z założeniem) oraz $x_2 = 41$.

Odpowiedź: Przeciwprostokątna ma długość 41 cm, jedna przyprostokątna ma długość 9 cm, a druga ma długość 40 cm.

Zadanie 8. (Próba 2010 — zadanie 34 (5 p.))

Droga z miasta A do miasta B ma długość 474 km. Samochód jadący z miasta A do miasta B wyrusza godzinę później niż samochód z miasta B do miasta A. Samochody te spotykają się w odległości 300 km od miasta B. Średnia prędkość samochodu, który wyjechał z miasta A, liczona od chwili wyjazdu z A do momentu spotkania, była o 17 km/h mniejsza od średniej prędkości drugiego samochodu liczonej od chwili wyjazdu z B do chwili spotkania. Oblicz średnią prędkość każdego samochodu do chwili spotkania.

I sposób rozwiązania

Niech ν oznacza średnią prędkość samochodu, który wyjechał z miasta B i niech t oznacza czas od chwili wyjazdu tego samochodu do chwili spotkania.

Obliczamy, jaką drogę do chwili spotkania pokonał samochód jadący z miasta A: 174 km. Zapisujemy układ równań:

$$\begin{cases} v \cdot t = 300 \\ (v - 17)(t - 1) = 174. \end{cases}$$

Przekształcamy drugie równanie uwzględniając warunek $v \cdot t = 300$ i otrzymujemy:

$$v = 143 - 17t$$
.

Otrzymaną wartość v podstawiamy do pierwszego równania i otrzymujemy:

$$17t^2 - 143t + 300 = 0$$
.

Rozwiązaniami tego równania są liczby:

$$t_1 = \frac{75}{17} = 4\frac{7}{17}$$
 oraz $t_2 = 4$.

Stąd $v_1 = 68$, $v_2 = 75$.

Wtedy:

- pierwsze rozwiązanie: $v_A = 51 \text{ km/h}$, $v_B = 68 \text{ km/h}$,
- drugie rozwiązanie: $v_A = 58 \text{ km/h}$, $v_B = 75 \text{ km/h}$.

Niech v_A oznacza prędkość samochodu jadącego z miasta A, a v_B oznacza prędkość samochodu jadącego z miasta B.

Obliczenie prędkości obu samochodów:
$$\left\{ \begin{array}{l} \nu_A = 58 \, km/h \\ \nu_B = 75 \, km/h \end{array} \right. \ \, lub \left\{ \begin{array}{l} \nu_A = 51 \, km/h \\ \nu_B = 68 \, km/h \end{array} \right. .$$

Uwaga

Możemy otrzymać inne równania kwadratowe z jedną niewiadomą:

$$17t_A^2 - 109t_A + 174 = 0 \quad \text{lub} \quad v_A^2 - 109v_A + 2958 = 0, \quad \text{lub} \quad v_B^2 - 143v_B + 5100 = 0.$$

II sposób rozwiązania

Niech v_A oznacza średnią prędkość samochodu, który wyjechał z miasta A, zaś v_B oznacza średnią prędkość samochodu, który wyjechał z miasta B oraz niech B oznacza czas od chwili wyjazdu samochodu z miasta B do chwili spotkania samochodów.

Obliczamy, jaką drogę do chwili spotkania pokonał samochód jadący z miasta A: 174 km.

$$\text{Zapisujemy równania: } \nu_A = \frac{174}{t-1}, \nu_B = \frac{300}{t}, \text{ wówczas otrzymujemy równanie } \frac{174}{t-1} + 17 = \frac{300}{t}.$$

Przekształcamy to równanie do równania kwadratowego $17t^2-143t+300=0$.

Rozwiązaniami tego równania są liczby: $t_1 = \frac{75}{17} = 4\frac{7}{17}$, $t_2 = 4$.

Dla
$$t_1 = \frac{75}{17} = 4\frac{7}{17}$$
 otrzymujemy $v_A = 51$, $v_B = 68$ oraz dla $t_2 = 4$ otrzymujemy $v_A = 58$, $v_B = 75$.

Obliczenie prędkości obu samochodów: $\left\{ \begin{array}{ll} \nu_A = 58 \ km/h \\ \nu_B = 75 \ km/h \end{array} \right. \ lub \left\{ \begin{array}{ll} \nu_A = 51 \ km/h \\ \nu_B = 68 \ km/h \end{array} \right.$

Zadanie 9. (Matura maj 2011 — zadanie 32 (5 p.))

Pewien turysta pokonał trasę 112 km, przechodząc każdego dnia tę samą liczbę kilometrów. Gdyby mógł przeznaczyć na tę wędrówkę o 3 dni więcej, to w ciągu każdego dnia mógłby przechodzić o 12 km mniej. Oblicz, ile kilometrów dziennie przechodził ten turysta.

I sposób rozwiązania

Niech x oznacza liczbę dni wędrówki, y — liczbę kilometrów przebytych każdego dnia przez turystę, gdzie x, y > 0. Drogę przebytą przez turystę opisujemy równaniem $x \cdot y = 112$.

Turysta może przeznaczyć na wędrówkę o 3 dni więcej, idąc każdego dnia o 12 km mniej, wówczas zapisujemy równanie: $(x+3)\cdot (y-12)=112$.

Zapisujemy układ równań, np. $\left\{ \begin{array}{l} x \cdot y = 112 \\ (x+3) \cdot (y-12) = 112. \end{array} \right.$

Z pierwszego równania wyznaczamy np. $y = \frac{112}{x}$. Podstawiamy do drugiego równania otrzymując

$$(x+3)\left(\frac{112}{x}-12\right)=112.$$

Sprowadzamy to równanie do równania kwadratowego: $x^2+3x-28=0$, którego rozwiązaniami są $x_1 = \frac{-3-11}{2} = -7$ i $x_2 = \frac{-3+11}{2} = 4$. Odrzucamy rozwiązanie x_1 , gdyż jest sprzeczne z założeniem x>0. Obliczamy y:

$$y = \frac{112}{4} = 28$$
.

Odp.: Turysta przechodził dziennie 28 km.

Uwaga

Możemy z równania $x \cdot y = 112$ wyznaczyć $x = \frac{112}{y}$, otrzymać równanie $y^2 - 12y - 448 = 0$, którego rozwiązaniami są $y_1 = \frac{12 - 44}{2} = -16$ (sprzeczne z zał. y > 0), $y_2 = \frac{12 + 44}{2} = 28$.

Odp.: Turysta przechodził dziennie 28 km.

II sposób rozwiązania

Niech x oznacza liczbę dni wędrówki, y — liczbę kilometrów przebytych każdego dnia przez turystę, gdzie x, y > 0. Drogę przebytą przez turystę opisujemy równaniem $x \cdot y = 112$.

Turysta może przeznaczyć na wędrówkę o 3 dni więcej, idąc każdego dnia o 12 km mniej. Zapisujemy równanie: $(x+3) \cdot (y-12) = 112$.

Zapisujemy układ równań, np.
$$\left\{ \begin{array}{l} x \cdot y = 112 \\ (x+3) \cdot (y-12) = 112. \end{array} \right.$$

Poziom rozszerzony 25

Stad otrzymujemy kolejno

$$\begin{cases} x \cdot y = 112 \\ x \cdot y - 12x + 3y - 36 = 112, \end{cases}$$

$$\begin{cases} x \cdot y = 112 \\ 112 - 12x + 3y - 36 = 112, \end{cases}$$

$$\begin{cases} x \cdot y = 112 \\ -12x + 3y - 36 = 0. \end{cases}$$

Otrzymujemy równanie 4x-y+12=0, stąd wyznaczamy x lub y, podstawiamy do pierwszego równania i dalej postępujemy tak jak w I sposobie rozwiązania.

III sposób rozwiązania

Niech x oznacza liczbę dni wędrówki, y — liczbę kilometrów przebytych każdego dnia przez turystę, gdzie x,y>0. Liczbę kilometrów przebytych każdego dnia przez turystę opisujemy równaniem $y=\frac{112}{x}$.

Turysta może przeznaczyć na wędrówkę o 3 dni więcej, idąc każdego dnia o 12 km mniej, wówczas zapisujemy równanie: $\frac{112}{x} = \frac{112}{x+3} + 12$.

Przekształcamy to równanie do postaci $x^2 + 3x - 28 = 0$.

Rozwiązaniem równania są: $x_1 = \frac{-3-11}{2} = -7$ (sprzeczne z założeniem x>0) i $x_2 = \frac{-3+11}{2} = 4$.

Obliczamy y:
$$y = \frac{112}{4} = 28$$
.

Odp.: Turysta przechodził każdego dnia 28 km.

Poziom rozszerzony

Zadanie 10. (Matura maj 2010 — zadanie 1 (4 p.))

Rozwiąż nierówność $|2x+4|+|x-1| \le 6$.

I sposób rozwiązania

Wyróżniamy na osi liczbowej parami rozłączne przedziały, których sumą jest zbiór liczb rzeczywistych, np.: $(-\infty, -2)$, $\langle -2, 1 \rangle$, $\langle 1, \infty \rangle$.

Rozwiązujemy nierówności w poszczególnych przedziałach i w każdym z nich bierzemy część wspólną tego przedziału z otrzymanym zbiorem rozwiązań nierówności.

$x \in (-\infty, -2)$	$x \in \langle -2, 1 \rangle$	$x \in \langle 1, \infty \rangle$
$-2x-4-x+1 \leqslant 6$	$2x+4-x+1 \leqslant 6$	$2x+4+x-1 \leqslant 6$
$-3x \leqslant 9$	x ≤ 1	$3x \leqslant 3$
$x \geqslant -3$	W tym przypadku	$x \leq 1$
W tym przypadku	rozwiązaniem nierówności	W tym przypadku
rozwiązaniem nierówności	jest $-2 \leqslant x < 1$.	rozwiązaniem nierówności
jest $-3 \leqslant x < 2$.		$\int \text{jest } x = 1.$

Łączymy otrzymane rozwiązania i podajemy odpowiedź w jednej z postaci: $-3 \le x \le 1$ lub $x \in \langle -3, 1 \rangle$ lub $\langle -3, 1 \rangle$.

II sposób rozwiązania (graficznie)

Zapisujemy nierówność $|2x+4|+|x-1| \le 6$ w postaci, np. $|2x+4| \le -|x-1|+6$.

Rysujemy wykresy funkcji: y = |2x+4| oraz y = -|x-1|+6.

Odczytujemy odcięte x = -3, x = 1 punktów przecięcia wykresów obu funkcji i sprawdzamy, czy dla każdego z tych argumentów wartości obu funkcji są równe.

Sprawdzamy, że punkty (-3,2) oraz (1,6) są punktami przecięcia wykresów. Zapisujemy odpowiedź: $x \in \langle -3,1 \rangle$.

Zadanie 11. (Matura maj 2010 — zadanie 6 (5 p.))

Wyznacz wszystkie wartości parametru m, dla których równanie $x^2 + mx + 2 = 0$ ma dwa różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest większa od $2m^2 - 13$.

I sposób rozwiązania

Zapisujemy warunki, jakie muszą być spełnione, aby równanie $x^2 + mx + 2 = 0$ miało dwa różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest większa od $2m^2 - 13$:

$$\begin{cases} \Delta > 0 \\ x_1^2 + x_2^2 > 2m^2 - 13. \end{cases}$$

Rozwiązujemy pierwszą nierówność tego układu:

$$\Delta = m^2 - 8 > 0 \text{ wtedy i tylko wtedy, gdy } m \in \left(-\infty, -2\sqrt{2}\right) \cup \left(2\sqrt{2}, \infty\right).$$

Poziom rozszerzony 27

Aby rozwiązać drugą nierówność, najpierw przekształcimy jej lewą stronę, korzystając ze wzorów Viète'a:

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = (-m)^2 - 2 \cdot 2 = m^2 - 4.$$

Rozwiązujemy nierówność:

 $m^2-4>2m^2-13$, która jest równoważna nierówności $m^2-9<0$, więc $m\in(-3,3)$.

Zatem równanie $x^2+mx+2=0$ ma dwa różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest większa od $2m^2-13$, dla $m\in \left(-3,-2\sqrt{2}\right)\cup \left(2\sqrt{2},3\right)$.

II sposób rozwiązania

Zapisujemy układ nierówności:

$$\begin{cases} \Delta > 0 \\ x_1^2 + x_2^2 > 2m^2 - 13. \end{cases}$$

Rozwiązujemy pierwszą nierówność tego układu:

$$\Delta = m^2 - 8 > 0$$
 wtedy i tylko wtedy, gdy $m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$.

Obliczamy pierwiastki równania kwadratowego:

$$x_1 = \frac{-m + \sqrt{m^2 - 8}}{2}, x_2 = \frac{-m - \sqrt{m^2 - 8}}{2}.$$

Obliczamy sumę kwadratów pierwiastków równania kwadratowego:

$$\begin{aligned} x_1^2 + x_2^2 &= \left(\frac{-m + \sqrt{m^2 - 8}}{2}\right)^2 + \left(\frac{-m - \sqrt{m^2 - 8}}{2}\right)^2 = \\ &= \frac{m^2 - 2m\sqrt{m^2 - 8} + m^2 - 8}{4} + \frac{m^2 + 2m\sqrt{m^2 - 8} + m^2 - 8}{4} = \\ &= \frac{2m^2 + 2m^2 - 16}{4} = m^2 - 4. \end{aligned}$$

Rozwiązujemy drugą nierówność:

$$m^2 - 4 > 2m^2 - 13$$

która jest równoważna nierówności $m^2-9<0$, więc $m\in(-3,3)$.

Zatem równanie $x^2+mx+2=0$ ma dwa różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest większa od $2m^2-13$, dla $m\in\left(-3,-2\sqrt{2}\right)\cup\left(2\sqrt{2},3\right)$.

Zadanie 12. (Matura maj 2011 — zadanie 3 (6 p.))

Wyznacz wszystkie wartości parametru m, dla których równanie $x^2-4mx-m^3+6m^2+m-2=0$ ma dwa różne pierwiastki rzeczywiste x_1 , x_2 takie, że $(x_1-x_2)^2 < 8(m+1)$.

I sposób rozwiązania

Zapisujemy warunki, jakie muszą być spełnione, aby równanie

$$x^2-4mx-m^3+6m^2+m-2=0$$

miało dwa różne pierwiastki rzeczywiste x_1 , x_2 takie, że $(x_1-x_2)^2 < 8(m+1)$:

$$\begin{cases} \Delta > 0 \\ (x_1 - x_2)^2 < 8(m+1). \end{cases}$$

Obliczamy $\Delta = 16m^2 - 4(-m^3 + 6m^2 + m - 2)$.

Nierówność $16m^2-4(-m^3+6m^2+m-2)>0$ jest równoważna nierówności $m^3-2m^2-m+2>0$, czyli (m+1)(m-1)(m-2)>0.

Zatem $m \in (-1,1) \cup (2,+\infty)$.

Przekształcamy nierówność $x_1^2-2x_1x_2+x_2^2<8m+8$ do postaci $x_1^2+2x_1x_2+x_2^2-4x_1x_2<8m+8$. Ta nierówność jest równoważna nierówności $(x_1+x_2)^2-4x_1x_2<8m+8$. Korzystamy ze wzorów Viète'a i otrzymujemy $x_1+x_2=4m$ oraz $x_1\cdot x_2=-m^3+6m^2+m-2$, więc

$$(4m)^2 - 4(-m^3 + 6m^2 + m - 2) < 8m + 8.$$

Przekształcamy tę nierówność do postaci $4m^3-8m^2-12m<0$, stąd 4m(m-3)(m+1)<0. Rozwiązaniem nierówności jest $m \in (-\infty, -1) \cup (0, 3)$.

Zatem równanie $x^2-4mx-m^3+6m^2+m-2=0$ ma dwa różne pierwiastki rzeczywiste x_1 , x_2 takie, że $(x_1-x_2)^2 < 8(m+1)$ dla $m \in (0,1) \cup (2,3)$.

II sposób rozwiązania

Równanie $x^2-4mx-m^3+6m^2+m-2=0$ ma dwa różne pierwiastki rzeczywiste x_1 i x_2 , gdy $\Delta>0$.

Obliczamy $\Delta = 16m^2 - 4(-m^3 + 6m^2 + m - 2) = 4(m^3 - 2m^2 - m + 2)$.

Rozwiązujemy nierówność $\Delta > 0$.

$$m^3-2m^2-m+2>0$$
,
 $(m+1)(m-1)(m-2)>0$.

Zatem $m \in (-1,1) \cup (2,+\infty)$.

Następnie wyznaczamy pierwiastki x_1, x_2 :

$$x_1 = \frac{4m - \sqrt{4(m^3 - 2m^2 - m + 2)}}{2}, \quad x_2 = \frac{4m + \sqrt{4(m^3 - 2m^2 - m + 2)}}{2}.$$

Wówczas

$$\begin{split} x_1 - x_2 &= \frac{4m - 2\sqrt{m^3 - 2m^2 - m + 2}}{2} - \frac{4m + 2\sqrt{m^3 - 2m^2 - m + 2}}{2} = \\ &= \frac{4m - 2\sqrt{m^3 - 2m^2 - m + 2} - 4m - 2\sqrt{m^3 - 2m^2 - m + 2}}{2} = \\ &= \frac{-4\sqrt{m^3 - 2m^2 - m + 2}}{2} = -2\sqrt{m^3 - 2m^2 - m + 2} \end{split}$$

i stad

$$(x_1-x_2)^2 = (-2\sqrt{m^3-2m^2-m+2})^2 = 4(m^3-2m^2-m+2).$$

Z warunku $(x_1-x_2)^2 < 8(m+1)$ otrzymujemy nierówność $4(m^3-2m^2-m+2) < 8(m+1)$. Stąd $m^3-2m^2-3m < 0$, czyli $m(m^2-2m-3) < 0$, m(m+1)(m-3) < 0. Zatem $m \in (-\infty,-1) \cup (0,3)$.

Wyznaczamy te wartości parametru m, dla których obie nierówności $\Delta > 0$ i $(x_1-x_2)^2 < 8(m+1)$ są spełnione: $m \in (0,1) \cup (2,3)$.

Funkcje

W dziale dotyczącym funkcji:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego,
- b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których funkcja rośnie, maleje, ma stały znak,
- c) sporządza wykres funkcji spełniającej podane warunki,
- d) potrafi na podstawie wykresu funkcji y = f(x) naszkicować wykresy funkcji y = f(x+a), y = f(x) + a, y = -f(x), y = f(-x),
- e) sporządza wykresy funkcji liniowych,
- f) wyznacza wzór funkcji liniowej,
- g) wykorzystuje interpretację współczynników we wzorze funkcji liniowej,
- h) sporządza wykresy funkcji kwadratowych,
- i) wyznacza wzór funkcji kwadratowej,
- j) wyznacza miejsca zerowe funkcji kwadratowej,
- k) wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym,
- l) rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do badania funkcji kwadratowej,
- m) sporządza wykres, odczytuje własności i rozwiązuje zadania umieszczone w kontekście praktycznym związane z proporcjonalnością odwrotną,
- n) sporządza wykresy funkcji wykładniczych dla różnych podstawi rozwiązuje zadania umieszczone w kontekście praktycznym

oraz z **poziomu rozszerzonego** powinien opanować umiejętności, w których mając dany wykres funkcji y = f(x) potrafi naszkicować:

- a) wykres funkcji y = |f(x)|,
- b) wykresy funkcji $y = c \cdot f(x)$, $y = f(c \cdot x)$, gdzie f jest funkcją trygonometryczną,
- c) wykres będący efektem wykonania kilku operacji, na przykład y = |f(x+2)-3|,
- d) wykresy funkcji logarytmicznych dla różnych podstaw,
- e) rozwiązuje zadania (również umieszczone w kontekście praktycznym) z wykorzystaniem takich funkcji.

Poziom podstawowy

Zadanie 1. (Matura maj 2011 — zadanie 26 (2 p.))

Na rysunku przedstawiono wykres funkcji f.

Odczytaj z wykresu i zapisz:

- a) zbiór wartości funkcji f,
- b) przedział maksymalnej długości, w którym funkcja f jest malejąca.

Rozwiązanie

Odczytujemy z wykresu zbiór wartości funkcji: $\langle -2, 3 \rangle$.

Zapisujemy maksymalny przedział, w którym funkcja jest malejąca: $\langle -2,2 \rangle$.

Poziom rozszerzony

Zadanie 2. (Matura maj 2010 — zadanie 3 (4 p.))

Bok kwadratu ABCD ma długość 1. Na bokach BC i CD wybrano odpowiednio punkty E i F umieszczone tak, by |CE| = 2|DF|. Oblicz wartość x = |DF|, dla której pole trójkąta AEF jest najmniejsze.

I sposób rozwiązania

32 3. Funkcje

Długości odcinków |BE| i |CF| są równe: |BE| = 1 - 2x, |CF| = 1 - x.

Pole trójkata AEF jest więc równe:

$$P_{AEF} = P_{ABCD} - P_{ABE} - P_{ECF} - P_{FDA} = 1 - \frac{1}{2}(1 - 2x) - \frac{1}{2} \cdot 2x \cdot (1 - x) - \frac{1}{2}x = x^2 - \frac{1}{2}x + \frac{1}{2}.$$

Pole trójkąta AEF jest funkcją zmiennej x: $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$ dla $x \in \left\langle 0, \frac{1}{2} \right\rangle$.

Ponieważ $x_w=-\frac{-\frac{1}{2}}{2}=\frac{1}{4}\in\left<0,\frac{1}{2}\right>$, a parabola o równaniu $y=x^2-\frac{1}{2}x+\frac{1}{2}$ ma ramiona skierowane "ku górze", więc dla $x=\frac{1}{4}$ pole trójkąta AEF jest najmniejsze.

II sposób rozwiązania

Długości odcinków |BE| i |CF| są równe: |BE| = 1 - 2x, |CF| = 1 - x.

Pole trójkąta AEF jest więc równe: $P_{AEF} = P_{ABCD} - P_{ABE} - P_{ECF} - P_{FDA}$.

Pole trójkąta AEF jest najmniejsze, gdy suma P pól trójkątów ABE, CEF i FDA jest największa. Ponieważ $P_{ABE} = \frac{1-2x}{2}$, $P_{CEF} = \frac{-2x^2+2x}{2} = -x^2+x$, $P_{ADF} = \frac{1}{2}x$ dla $x \in \left<0, \frac{1}{2}\right>$, więc

$$P(x) = \frac{1}{2}(1 - 2x + 2x - 2x^2 + x) = \frac{1}{2}(-2x^2 + x + 1) = -x^2 + \frac{1}{2}x + \frac{1}{2}.$$

Ponieważ $x_w = -\frac{1}{2} = \frac{1}{4} \in \left<0, \frac{1}{2}\right>$, a parabola o równaniu $y = -x^2 + \frac{1}{2}x + \frac{1}{2}$ ma ramiona skierowane "w dół", więc dla $x = \frac{1}{4}$ pole P jest największe, a tym samym pole trójkąta AEF jest najmniejsze.

III sposób rozwiązania

Umieszczamy kwadrat ABCD w układzie współrzędnych:

Wtedy A = (0, 0), F = (x, 1), E = (1, 1-2x), gdzie $0 \le x \le \frac{1}{2}$. Wyznaczamy pole trójkąta AFE:

$$P = \frac{1}{2} \left| (x - 0) \left(1 - 2x - 0 \right) - (1 - 0) \left(1 - 0 \right) \right| = \frac{1}{2} \left| x \left(1 - 2x \right) - 1 \right| = \frac{1}{2} \left| x - 2x^2 - 1 \right| = \frac{1}{2} \left| 2x^2 - x + 1 \right|.$$

Ponieważ $2x^2 - x + 1 > 0$ dla każdej liczby rzeczywistej x, więc $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$.

Ponieważ $x_w = -\frac{1}{2} = \frac{1}{4} \in \left\langle 0, \frac{1}{2} \right\rangle$, a parabola o równaniu $y = x^2 - \frac{1}{2}x + \frac{1}{2}$ ma ramiona skierowane "ku górze", więc dla $x = \frac{1}{4}$ pole trójkąta AEF jest najmniejsze.

Ciągi liczbowe

W dziale dotyczącym ciągów:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) wyznacza wyrazy ciągu określonego wzorem ogólnym,
- b) bada, czy dany ciąg jest arytmetyczny lub geometryczny,
- c) stosuje wzory na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego, również umieszczone w kontekście praktycznym; oraz z poziomu rozszerzonego powinien opanować umiejętności, w których: wyznacza wyrazy ciągów zdefiniowanych rekurencyjnie.

Poziom podstawowy

Zadanie 1. (Próba 2009 — zadanie 30 (2 p.))

Wykaż, że dla każdego m ciąg $\left(\frac{m+1}{4}, \frac{m+3}{6}, \frac{m+9}{12}\right)$ jest arytmetyczny.

I sposób rozwiązania

Wystarczy sprawdzić, że środkowy wyraz jest średnią arytmetyczną pierwszego i trzeciego wyrazu tego ciągu.

Ponieważ

$$\frac{\frac{m+1}{4} + \frac{m+9}{12}}{2} = \frac{3m+3+m+9}{24} = \frac{4m+12}{24} = \frac{m+3}{6},$$

więc ciąg $\left(\frac{m+1}{4}, \frac{m+3}{6}, \frac{m+9}{12}\right)$ jest arytmetyczny.

II sposób rozwiązania

Mamy
$$a_1 = \frac{m+1}{4}$$
, $a_2 = \frac{m+3}{6}$, $a_3 = \frac{m+9}{12}$.

Wystarczy sprawdzić, czy różnica pomiędzy drugim i pierwszym wyrazem jest równa różnicy pomiędzy trzecim i drugim wyrazem czyli: $a_2 - a_1 = a_3 - a_2$.

Ponieważ

$$a_2 - a_1 = \frac{m+3}{6} - \frac{m+1}{4} = \frac{-m+3}{12}$$

oraz

$$a_3 - a_2 = \frac{m+9}{12} - \frac{m+3}{6} = \frac{-m+3}{12}$$

więc różnice te są równe.

Zatem ciąg $\left(\frac{m+1}{4}, \frac{m+3}{6}, \frac{m+9}{12}\right)$ jest arytmetyczny.

III sposób rozwiązania

Obliczamy różnicę ciągu:

$$r = a_2 - a_1 = \frac{m+3}{6} - \frac{m+1}{4} = \frac{2m+6-3m-3}{12} = \frac{-m+3}{12}$$
(lub $r = a_3 - a_2 = \frac{m+9}{12} - \frac{m+3}{6} = \frac{m+9-2m-6}{12} = \frac{-m+3}{12}$).

Obliczamy trzeci wyraz ciągu, z wykorzystaniem różnicy r:

$$a_3 = a_2 + r = \frac{m+3}{6} + \frac{-m+3}{12} = \frac{2m+6-m+3}{12} = \frac{m+9}{12}$$
(lub $a_3 = a_1 + 2r = \frac{m+1}{4} + 2 \cdot \frac{-m+3}{12} = \frac{3m+3-2m+6}{12} = \frac{m+9}{12}$).

Obliczony wyraz a_3 jest równy trzeciemu wyrazowi podanemu w treści zadania. To kończy dowód.

Zadanie 2. (Próba 2010 — zadanie 32 zmodyfikowane (4 p.))

Ciąg (x, y, 12) jest geometryczny o wyrazach różnych od zera, natomiast ciąg (1, x, y-1) jest arytmetyczny. Oblicz x oraz y i podaj ten ciąg geometryczny.

I sposób rozwiązania

Ponieważ ciąg (1,x,y-1) jest arytmetyczny, więc środkowy wyraz jest średnią arytmetyczną wyrazów skrajnych. Mamy więc równanie $x=\frac{1+y-1}{2}$, czyli y=2x.

Ciąg (x,y,12) jest geometryczny, więc kwadrat środkowego wyrazu jest iloczynem wyrazów skrajnych. Mamy więc równanie $y^2 = x \cdot 12$.

Rozwiązujemy zatem układ równań $\begin{cases} y = 2x \\ y^2 = 12x. \end{cases}$

Otrzymujemy równanie kwadratowe $4x^2-12x=0$, a stąd x=3 lub x=0. Drugie z podanych rozwiązań nie spełnia założeń.

Zatem dla x = 3 i y = 6 otrzymujemy ciąg arytmetyczny (1,3,5) oraz ciąg geometryczny (3,6,12).

Odpowiedź: x = 3, y = 6, ciąg geometryczny to (3, 6, 12).

36 4. Ciągi liczbowe

II sposób rozwiązania

Z własności ciągu arytmetycznego otrzymujemy równanie $x = \frac{1+y-1}{2}$, czyli y = 2x, natomiast z własności ciągu geometrycznego o wyrazach różnych od zera otrzymujemy równanie $\frac{12}{y} = \frac{y}{x}$.

Rozwiązujemy układ równań $\begin{cases} y = 2x \\ \frac{12}{y} = \frac{y}{x} \end{cases}$

Otrzymujemy kolejno
$$\begin{cases} y = 2x \\ \frac{12}{2x} = \frac{2x}{x}, \\ \frac{12}{2x} = 2, \end{cases}$$
 stąd $x = 3$ i $y = 6$.

Zatem x=3 i y=6, stad otrzymujemy ciąg geometryczny (3,6,12).

III sposób rozwiązania

Z własności ciągu arytmetycznego otrzymujemy równanie $x = \frac{1+y-1}{2}$, czyli y = 2x.

Ciąg (x, y, 12) jest ciągiem geometrycznym o wyrazach różnych od zera i y = 2x, zatem iloraz q tego ciągu jest równy 2.

Z własności ciągu geometrycznego otrzymujemy $y = \frac{12}{2} = 6$ oraz $x = \frac{12}{4} = 3$.

Zatem x=3 i y=6, stąd otrzymujemy ciąg geometryczny (3,6,12).

Zadanie 3. (Matura maj 2011 — zadanie 27 (2 p.))

Liczby x, y, 19 w podanej kolejności tworzą ciąg arytmetyczny, przy czym x+y=8. Oblicz x i y.

I sposób rozwiazania

Liczby x, y, 19 w podanej kolejności tworzą ciąg arytmetyczny, stąd 2y = x + 19.

Zapisujemy układ równań

$$\begin{cases} 2y = x + 19 \\ x + y = 8, \end{cases}$$

którego rozwiązaniem jest x = -1 i y = 9.

II sposób rozwiązania

Liczby x, y, 19 w podanej kolejności tworzą ciąg arytmetyczny. Niech r będzie różnicą tego ciągu i $x = a_1$, $y = a_2 = a_1 + r$, $19 = a_3 = a_1 + 2r$.

Zapisujemy układ równań

$$\begin{cases} a_1 + a_1 + r = 8 \\ a_1 + 2r = 19. \end{cases}$$

Rozwiązaniem tego układu jest $a_1 = -1$, r = 10. Stąd $x = a_1 = -1$, $y = a_2 = 9$.

Poziom rozszerzony 37

Uwaga

Możemy również otrzymać następujące układy równań:

$$\begin{cases} 2a_1 + r = 8 \\ \frac{a_1 + 19}{2} = a_1 + r \end{cases} \quad \text{lub} \quad \begin{cases} y = x + r \\ 19 = x + 2r \\ x + y = 8. \end{cases}$$

III sposób rozwiązania

Wprowadzamy oznaczenia $x = a_1$, $y = a_2$, $19 = a_3$.

Obliczamy:

$$S_3 = x + u + 19 = 8 + 19 = 27$$
.

Korzystając ze wzoru na sumę trzech początkowych wyrazów ciągu arytmetycznego, otrzymujemy równanie $\frac{a_1+19}{2}\cdot 3=27$.

Stad $a_1 = -1$, zatem x = -1, y = 9.

Poziom rozszerzony

Zadanie 4. (Matura maj 2010 — zadanie 5 (5 p.))

O liczbach a, b, c wiemy, że ciąg (a,b,c) jest arytmetyczny i a+c=10, zaś ciąg (a+1, b+4, c+19) jest geometryczny. Wyznacz te liczby.

I sposób rozwiązania

Z własności ciągu arytmetycznego mamy: 2b=a+c. Stąd otrzymujemy 2b=10, czyli b=5. Korzystamy z własności ciągu geometrycznego i zapisujemy równanie: $(b+4)^2=(a+1)(c+19)$. Podstawiamy b=5 i a=10-c i otrzymujemy równanie $9^2=(10-c+1)(c+19)$. Przekształcamy to równanie i otrzymujemy równanie kwadratowe z niewiadomą $c: c^2+8c-128=0$. Rozwiązaniami tego równania są: $c_1=8$, $c_2=-16$.

Zatem szukanymi liczbami są: a=2, b=5, c=8 lub a=26, b=5, c=-16.

II sposób rozwiązania

Oznaczamy przez α pierwszy wyraz ciągu arytmetycznego, a przez r różnicę tego ciągu. Wówczas $b=\alpha+r, c=\alpha+2r.$ Wtedy $2\alpha+2r=10,$ czyli $\alpha+r=5.$

Korzystamy z własności ciągu geometrycznego i zapisujemy równanie, np.

$$(a+r+4)^2 = (a+1)(a+2r+19),$$

a następnie zapisujemy układ równań:

$$\begin{cases} a+r=5\\ (a+r+4)^2 = (a+1)(a+2r+19). \end{cases}$$

38 4. Ciągi liczbowe

Z pierwszego równania wyznaczamy a=5-r i podstawiamy do drugiego równania. Otrzymujemy równanie kwadratowe z niewiadomą r:

$$(5-r+r+4)^2 = (5-r+1)(5-r+2r+19),$$

czyli $r^2 + 18r - 63 = 0$.

Rozwiązaniami tego równania są: $r_1 = 3$ i $r_2 = -21$.

Następnie obliczamy a, b, c.

Szukanymi liczbami są: $\begin{cases} a=2 \\ b=5 \\ c=8 \end{cases}$ lub $\begin{cases} a=26 \\ b=5 \\ c=-16. \end{cases}$

Zadanie 5. (Matura maj 2011 — zadanie 5 (4 p.))

O ciągu (x_n) dla $n \ge 1$ wiadomo, że:

- a) ciąg (a_n) określony wzorem $a_n = 3^{x_n}$ dla $n \ge 1$ jest geometryczny o ilorazie q = 27,
- b) $x_1 + x_2 + ... + x_{10} = 145$.

Oblicz x_1 .

I sposób rozwiązania

Korzystamy z własności ciągu geometrycznego i zapisujemy równość:

$$q = \frac{a_{n+1}}{a_n} = \frac{3^{x_{n+1}}}{3^{x_n}} = 3^{x_{n+1}-x_n}$$
.

Zatem $27 = 3^{x_{n+1} - x_n}$. Stąd $x_{n+1} - x_n = 3$ dla $n \ge 1$.

Zauważamy, że jeśli dla dowolnej liczby naturalnej n: $x_{n+1}-x_n=3$, to ciąg (x_n) jest arytmetyczny o różnicy r=3.

Korzystamy z własności ciągu arytmetycznego i zapisujemy układ równań

$$\begin{cases} x_1 + (x_1 + r) + \dots + (x_1 + 9r) = 145 \\ r = 3 \end{cases}$$

Doprowadzamy układ do postaci: $\left\{\begin{array}{ll} 10x_1+45r=145 \\ r=3. \end{array}\right. i \ \text{podstawiamy} \ r=3 \ \text{do pierwszego}$ równania. Otrzymujemy równanie z jedną niewiadomą: $10x_1+135=145.$

Stąd $x_1 = 1$.

II sposób rozwiązania

Korzystamy z warunków zadania i zapisujemy równość: $3^{x_1+x_2+...+x_{10}}=3^{145}$.

Zatem

$$3^{x_1} \cdot 3^{x_2} \cdot \dots \cdot 3^{x_{10}} = 3^{145}$$

Korzystamy z tego, że ciąg (a_n) jest geometryczny o ilorazie q = 27 i otrzymujemy

$$3^{x_1} \cdot 3^{x_1} \cdot 27 \cdot \dots \cdot 3^{x_1} \cdot 27^9 = 3^{145}$$

Stąd

$$3^{10x_1} \cdot 27^{1+2+\dots+9} = 3^{145}$$

$$3^{10x_1} \cdot 3^{3\cdot45} = 3^{145}$$

$$3^{10x_1+135} = 3^{145}$$

$$x_1 = 1.$$

Trygonometria

W dziale dotyczącym trygonometrii:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) wykorzystuje definicje i wyznacza wartości funkcji trygonometrycznych dla katów ostrych,
- b) rozwiązuje równania typu $\sin x = a$, $\cos x = a$, tgx = a, dla $0^{\circ} < x < 90^{\circ}$,
- c) stosuje proste związki między funkcjami trygonometrycznymi kąta ostrego,
- d) znając wartość jednej z funkcji trygonometrycznych, wyznacza wartości pozostałych funkcji tego samego kąta ostrego

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

- a) stosuje miarę łukową i miarę stopniową kąta,
- b) wyznacza wartości funkcji trygonometrycznych dowolnego kąta przez sprowadzenie do przypadku kąta ostrego,
- c) posługuje się wykresami funkcji trygonometrycznych przy rozwiązywaniu nierówności typu $\sin x < \alpha$, $\cos x > \alpha$, $tgx > \alpha$,
- d) stosuje związki: $\sin^2 x + \cos^2 x = 1$, $tgx = \frac{\sin x}{\cos x}$ oraz wzory na sinus i cosinus sumy i różnicy kątów w dowodach tożsamości trygonometrycznych,
- e) rozwiązuje równania i nierówności trygonometryczne, na przykład $\sin 2x = \frac{1}{2}$, $\sin^2 x + \cos x = 1$, $\cos 2x < \frac{1}{2}$.

Poziom podstawowy

Zadanie 1. (Próba 2009 — zadanie 29 (2 p.))

Kąt α jest ostry i $\operatorname{tg} \alpha = \frac{4}{3}$. Oblicz $\sin \alpha + \cos \alpha$.

I sposób rozwiązania

Korzystamy z definicji funkcji tangens i otrzymujemy $\frac{\sin \alpha}{\cos \alpha} = \frac{4}{3}$, zatem $\sin \alpha = \frac{4}{3}\cos \alpha$. Podstawiamy te równość do tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ i otrzymujemy

$$\left(\frac{4}{3}\cos\alpha\right)^2 + \cos^2\alpha = 1,$$

a stąd
$$\cos^2 \alpha = \frac{9}{25}$$
.

Zatem $\cos\alpha=\frac{3}{5}$ lub $\cos\alpha=-\frac{3}{5}$. Ujemny wynik odrzucamy, ponieważ zgodnie z warunkami zadania kąt α jest kątem ostrym. Obliczamy wartość funkcji $\sin\alpha=\frac{4}{5}$, a następnie wartość wyrażenia $\sin\alpha+\cos\alpha=\frac{4}{5}+\frac{3}{5}=\frac{7}{5}$.

Odpowiedź: $\sin \alpha + \cos \alpha = \frac{7}{5}$.

II sposób rozwiązania

$$\cos \alpha = \frac{3}{4} \sin \alpha$$
, więc $\frac{9}{16} \sin^2 \alpha + \sin^2 \alpha = 1$, czyli $\frac{25}{16} \sin^2 \alpha = 1$.

Wynika stąd, że $\sin \alpha = \frac{4}{5}$ lub $\sin \alpha = -\frac{4}{5}$. Ujemny wynik odrzucamy, ponieważ zgodnie z warunkami zadania kąt α jest kątem ostrym. Obliczamy $\cos \alpha = \frac{3}{5}$, a dalej wartość $\sin \alpha + \cos \alpha = \frac{7}{5}$.

III sposób rozwiązania

Rysujemy trójkąt prostokątny, w którym oznaczamy długości przyprostokątnych przez 3x i 4x, gdzie x>0 oraz zaznaczamy kąt ostry α tak, aby $tg\,\alpha=\frac{4}{3}$.

Korzystamy z twierdzenia Pitagorasa i obliczamy długość przeciwprostokątnej:

$$(4x)^2 + (3x)^2 = 25x^2$$
.

Zatem przeciwprostokątna ma długość 5x (odrzucamy ujemne rozwiązanie: -5x). Obliczamy wartości funkcji $\sin \alpha = \frac{4}{5}$ i $\cos \alpha = \frac{3}{5}$. Stąd $\sin \alpha + \cos \alpha = \frac{4}{5} + \frac{3}{5} = \frac{7}{5}$.

Zadanie 2. (Matura maj 2010 — zadanie 29 (2 p.))

Kąt α jest ostry i $\operatorname{tg} \alpha = \frac{5}{12}$. Oblicz $\cos \alpha$.

Rozwiązujemy analogicznie jak poprzednie zadanie.

42 5. Trygonometria

Odp.:
$$\cos \alpha = \frac{12}{13}$$
.

Zadanie 3. (Matura maj 2011 — zadanie 28 (2 p.))

Kąt α jest ostry i $\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = 2$. Oblicz wartość wyrażenia $\sin \alpha \cdot \cos \alpha$.

I sposób rozwiązania

Sprowadzamy wyrażenie $\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = 2$ do wspólnego mianownika i otrzymujemy

$$\frac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha \cdot \cos\alpha} = 2.$$

Korzystamy z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ i otrzymujemy $\frac{1}{\sin \alpha \cdot \cos \alpha} = 2$, a stąd $\sin \alpha \cdot \cos \alpha = \frac{1}{2}$.

II sposób rozwiązania

Rysujemy trójkąt prostokątny, w którym oznaczamy długości przyprostokątnych α i b oraz zaznaczamy kąt ostry α taki, że $\sin\alpha = \frac{a}{c}$ lub $\cos\alpha = \frac{b}{c}$.

Korzystamy z twierdzenia Pitagorasa i wyznaczamy długość przeciw
prostokątnej: $c^2\!=\!\alpha^2+b^2.$

Ponieważ
$$\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = 2$$
, więc $\frac{a}{b} + \frac{b}{a} = 2$, czyli $\frac{a^2 + b^2}{ab} = 2$. Stąd $\frac{c^2}{ab} = 2$.

Ponieważ $\sin \alpha \cdot \cos \alpha = \frac{ab}{c^2}$, więc $\sin \alpha \cdot \cos \alpha = \frac{1}{2}$.

III sposób rozwiązania

Rysujemy trójkąt prostokątny, w którym oznaczamy długości przyprostokątnych α i b oraz zaznaczamy kąt ostry α taki, że $\sin\alpha = \frac{a}{c}$ lub $\cos\alpha = \frac{b}{c}$.

Poziom rozszerzony 43

Ponieważ $\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = 2$, więc otrzymujemy kolejno:

$$\frac{a}{b} + \frac{b}{a} = 2$$
, $\frac{a^2 + b^2}{ab} = 2$, $a^2 + b^2 = 2ab$,

stąd $(a-b)^2 = 0$, więc a = b. Zatem $\alpha = 45^\circ = \frac{\pi}{4}$

Wtedy $\sin \alpha = \sin 45^\circ = \frac{\sqrt{2}}{2} i \cos \alpha = \cos 45^\circ = \frac{\sqrt{2}}{2}$.

Obliczamy $\sin \alpha \cdot \cos \alpha = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2}$.

IV sposób rozwiązania

Wyrażenie $\frac{\sin\alpha}{\cos\alpha} + \frac{\cos\alpha}{\sin\alpha} = 2$ zapisujemy w postaci $\tan\alpha + \frac{1}{\tan\alpha} = 2$.

Stad $tg^2 \alpha - 2tg \alpha + 1 = 0$.

Zatem tg $\alpha=1$ i stąd $\alpha=45^{\circ}$. Obliczamy wartość wyrażenia $\sin 45^{\circ} \cdot \cos 45^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2}$.

V sposób rozwiązania

Zauważamy, że suma liczby i jej odwrotności jest równa 2 wtedy i tylko wtedy, gdy ta liczba jest równa 1. Zatem tg $\alpha = \frac{\sin \alpha}{\cos \alpha} = 1$ i stąd $\alpha = 45^{\circ}$, a więc $\sin 45^{\circ} \cdot \cos 45^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2}$.

Poziom rozszerzony

Zadanie 4. (Matura maj 2010 — zadanie 2 (4 p.))

Wyznacz wszystkie rozwiązania równania $2\cos^2x-5\sin x-4=0$ należące do przedziału $\langle 0,2\pi\rangle$.

Rozwiązanie

Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja trygonometryczna:

$$2(1-\sin^2 x)-5\sin x-4=0.$$

44 5. Trygonometria

Porządkujemy to równanie i wprowadzamy niewiadomą pomocniczą: $-2\sin^2 x - 5\sin x - 2 = 0$, $t = \sin x$, gdzie $t \in \langle -1, 1 \rangle$. Równanie przyjmuje teraz postać:

$$2t^2 + 5t + 2 = 0$$
.

Rozwiązujemy równanie kwadratowe ze zmienną t:

$$\Delta = 9$$
, $t_1 = -2$, $t_2 = -\frac{1}{2}$.

Zauważamy, że $t_1 \notin \langle -1, 1 \rangle$.

Zapisujemy zatem rozwiązania równania $\sin x = -\frac{1}{2}$ należące do przedziału $\langle 0, 2\pi \rangle$:

$$x = \frac{7}{6}\pi$$
 lub $x = \frac{11}{6}\pi$.

Zadanie 5. (Matura maj 2011 — zadanie 4 (4 p.))

Rozwiąż równanie $2\sin^2 x - 2\sin^2 x \cos x = 1 - \cos x$ w przedziale $\langle 0, 2\pi \rangle$.

I sposób rozwiązania

Zapisujemy równanie w postaci

$$2\sin^2 x (1-\cos x) = 1-\cos x,$$

czyli

$$2\sin^2 x (1-\cos x) - (1-\cos x) = 0,$$

$$(2\sin^2 x - 1) (1-\cos x) = 0.$$

Zatem $2\sin^2 x - 1 = 0$ lub $1 - \cos x = 0$.

Stad otrzymujemy:

$$\sin x = -\frac{\sqrt{2}}{2}$$
 lub $\sin x = \frac{\sqrt{2}}{2}$ lub $\cos x = 1$.

Rozwiązaniem równania $\sin x = -\frac{\sqrt{2}}{2}$ jest $x = \frac{5}{4}\pi$ lub $x = \frac{7}{4}\pi$ (albo: $x = 225^{\circ}$ lub $x = 315^{\circ}$).

Rozwiązaniem równania $\sin x = \frac{\sqrt{2}}{2}$ jest $x = \frac{1}{4}\pi$ lub $x = \frac{3}{4}\pi$ (albo: $x = 45^{\circ}$ lub $x = 135^{\circ}$).

Rozwiązaniem równania $\cos x = 1$ jest x = 0 lub $x = 2\pi$ (albo: $x = 0^{\circ}$ lub $x = 360^{\circ}$).

Zatem rozwiązaniami równania $2\sin^2 x - 2\sin^2 x \cos x = 1 - \cos x$ są:

$$x = 0$$
 lub $x = \frac{1}{4}\pi$ lub $x = \frac{3}{4}\pi$ lub $x = \frac{5}{4}\pi$ lub $x = \frac{7}{4}\pi$ lub $x = 2\pi$ (albo: $x = 0^{\circ}$ lub $x = 45^{\circ}$ lub $x = 135^{\circ}$ lub $x = 225^{\circ}$ lub $x = 315^{\circ}$ lub $x = 360^{\circ}$).

II sposób rozwiązania

Zapisujemy równanie, w którym występuje jedna funkcja trygonometryczna:

$$2(1-\cos^2 x) - 2(1-\cos^2 x)\cos x = 1-\cos x$$

i przekształcamy do postaci

$$2-2\cos^{2}x-2\cos x+2\cos^{3}x-1+\cos x=0,$$

$$2\cos^{3}x-2\cos^{2}x-\cos x+1=0.$$

Następnie zapisujemy to równanie w postaci iloczynowej:

$$(2\cos^2 x - 1)(\cos x - 1) = 0.$$

Zatem

$$2\cos^2 x - 1 = 0$$
 lub $\cos x - 1 = 0$.

Stąd otrzymujemy:

$$\cos x = -\frac{\sqrt{2}}{2}$$
 lub $\cos x = \frac{\sqrt{2}}{2}$ lub $\cos x = 1$.

Rozwiązaniem równania $\cos x = -\frac{\sqrt{2}}{2}$ jest $x = \frac{3}{4}\pi$ lub $x = \frac{5}{4}\pi$ (albo: $x = 135^{\circ}$ lub $x = 225^{\circ}$).

Rozwiązaniem równania $\cos x = \frac{\sqrt{2}}{2}$ jest $x = \frac{1}{4}\pi$ lub $x = \frac{7}{4}\pi$ (albo: $x = 45^{\circ}$ lub $x = 315^{\circ}$).

Rozwiązaniem równania $\cos x = 1$ jest x = 0 lub $x = 2\pi$ (albo: $x = 0^{\circ}$ lub $x = 360^{\circ}$).

Zatem rozwiązaniami równania $2\sin^2 x - 2\sin^2 x \cos x = 1 - \cos x$ są:

$$x = 0$$
 lub $x = \frac{1}{4}\pi$ lub $x = \frac{3}{4}\pi$ lub $x = \frac{5}{4}\pi$ lub $x = \frac{7}{4}\pi$ lub $x = 2\pi$

(albo: $x = 0^{\circ}$ lub $x = 45^{\circ}$ lub $x = 135^{\circ}$ lub $x = 225^{\circ}$ lub $x = 315^{\circ}$ lub $x = 360^{\circ}$).

Planimetria

W dziale planimetria:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu,
- b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych w kontekście praktycznym,
- c) znajduje związki miarowe w figurach płaskich, także z zastosowaniem trygonometrii, również w zadaniach umieszczonych w kontekście praktycznym,
- d) określa wzajemne położenie prostej i okręgu

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

- a) stosuje twierdzenia charakteryzujące czworokąty wpisane w okrąg i czworokąty opisane na okręgu,
- b) stosuje twierdzenie o związkach miarowych między odcinkami stycznych i siecznych,
- c) stosuje własności figur podobnych i jednokładnych w zadaniach, także umieszczonych w kontekście praktycznym,
- d) znajduje związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów i twierdzenia cosinusów.

We wszystkich przedstawionych przez nas zadaniach korzystamy z następujących twierdzeń geometrycznych:

- 1. Suma kątów trójkąta jest równa 180°.
 - a) Suma katów ostrych trójkata prostokatnego jest równa 90°.
 - Kąt zewnętrzny trójkąta jest równy sumie kątów wewnętrznych nieprzylegających do niego.
 - c) Suma katów czworokata jest równa 360°.
- 2. Kąty wierzchołkowe są równe.
- 3. Suma katów przyległych jest równa 180°.
- 4. Kąty przy podstawie trójkąta równoramiennego są równe.
- 5. Kąty odpowiadające i naprzemianległe przy dwóch prostych równoległych są równe.
 - a) Suma kątów położonych przy tym samym boku równoległoboku jest równa 180°.
 - b) Przeciwległe katy równoległoboku są równe.
- 6. Suma dwóch boków trójkąta jest większa od boku trzeciego.
- 7. Boki trójkata położone naprzeciw równych katów są równe.

Korzystamy także z trzech cech przystawania trójkątów.

Poziom podstawowy 47

Poziom podstawowy

Zadanie 1. (Próba 2009 — zadanie 31 (2 p.))

Trójkąty ABC i CDE są równoboczne. Punkty A, C i E leżą na jednej prostej. Punkty K, L i M są środkami odcinków AC, CE i BD (zobacz rysunek). Wykaż, że punkty K, L i M są wierzchołkami trójkąta równobocznego.

I sposób rozwiązania

Z treści zadania wynika, że $| \not \subset BAC| = | \not \subset DCE| = 60^\circ$, więc odcinki AB i CD są równoległe. Czworokąt ACDB jest trapezem. Wynika stąd, że odcinek KM łączy środki boków nierównoległych w tym trapezie, więc jest równoległy do jego podstaw. Wobec tego $| \not \subset MKL| = 60^\circ$.

Analogiczne rozumowanie przeprowadzamy dla trapezu CEDB i wykazujemy, że trójkąt KLMjest równoboczny.

II sposób rozwiązania

Z treści zadania wynika, że $| \not \in BAC| = | \not \in DCE| = 60^\circ$, więc odcinki AB i CD są równoległe. Czworokąt ACDB jest trapezem. Wynika stąd, że długość odcinka KM jest równa średniej arytmetycznej długości podstaw trapezu i równa długości odcinka KL.

Analogiczne rozumowanie przeprowadzamy dla trapezu CEDB i wykazujemy, że trójkąt KLMjest równoboczny.

48 6. Planimetria

III sposób rozwiązania

Prowadzimy odcinek MN prostopadły do prostej AE i oznaczmy $|AB|=\alpha$ oraz |DE|=b. Ze wzoru na wysokość trójkąta równobocznego $|BK|=\frac{\alpha\sqrt{3}}{2}$ i $|DL|=\frac{b\sqrt{3}}{2}$, ponadto

$$|KL| = \frac{a}{2} + \frac{b}{2} = \frac{a+b}{2}.$$

Punkt N jest środkiem odcinka KL, więc

$$|KN| = \frac{1}{2} \cdot \frac{a+b}{2} = \frac{a+b}{4}.$$

Odcinek MN łączy środki ramion trapezu prostokątnego LDBK, więc

$$|MN| = \frac{|BK| + |DL|}{2} = \frac{\frac{a\sqrt{3}}{2} + \frac{b\sqrt{3}}{2}}{2} = \frac{(a+b)\sqrt{3}}{4} = |KN|\sqrt{3},$$

co oznacza, że trójkąt KNM jest "połową trójkąta równobocznego", więc trójkąt KLM jest równoboczny.

Uwaga

Zamiast wyznaczania związku między długościami odcinków MN i KN możemy też obliczyć długość boku KM (lub LM) z twierdzenia Pitagorasa:

$$|MK|^{2} = |KN|^{2} + |MN|^{2} = \left(\frac{a+b}{4}\right)^{2} + \left(\frac{(a+b)\sqrt{3}}{4}\right)^{2} =$$

$$= \left(\frac{a+b}{4}\right)^{2} + 3\left(\frac{a+b}{4}\right)^{2} = 4\left(\frac{a+b}{4}\right)^{2} = \frac{(a+b)^{2}}{4},$$

stad

$$|MK| = \frac{a+b}{2}$$
.

Zatem

$$|MK| = |ML| = |KL| = \frac{a+b}{2}.$$

IV sposób rozwiązania

Umieszczamy oba trójkąty w układzie współrzędnych, tak jak na rysunku, i oznaczamy: AB=4a, CE=4b.

Wtedy $A = (-2\alpha, 0)$, $B = (0, 2\alpha\sqrt{3})$, $C = (2\alpha, 0)$, $L = (2\alpha + 2b, 0)$, $D = (2\alpha + 2b, 2b\sqrt{3})$ oraz $E = (2\alpha + 4b, 0)$.

Punkt M to środek odcinka BD, więc $M = (a+b, a\sqrt{3}+b\sqrt{3}) = (a+b, (a+b)\sqrt{3})$.

Prosta KM ma współczynnik kierunkowy równy $\frac{a\sqrt{3}+b\sqrt{3}}{a+b}=\sqrt{3}$, więc jest nachylona do osi Ox pod kątem 60°. Współczynnik kierunkowy prostej ML jest równy

$$\frac{(a+b)\sqrt{3}-0}{(a+b)-(2a+2b)} = \frac{(a+b)\sqrt{3}}{-(a+b)} = -\sqrt{3},$$

co oznacza, że kąt nachylenia prostej ML do osi Ox jest równy 120°, więc kąt MLK ma miarę 60°. Stąd wnioskujemy, że trójkąt KLM jest równoboczny.

Zadanie 2. (Próba 2009 — zadanie 34 (4 p.))

Pole trójkąta prostokątnego jest równe $60\,\mathrm{cm}^2$. Jedna przyprostokątna jest o 7 cm dłuższa od drugiej. Oblicz długość przeciwprostokątnej tego trójkąta.

I sposób rozwiązania

Oznaczamy: a, b — długości przyprostokątnych danego trójkąta.

Zapisujemy układ równań

$$\begin{cases} a = b + 7 \\ \frac{1}{2}a \cdot b = 60. \end{cases}$$

Otrzymujemy równanie z jedną niewiadomą $\frac{1}{2}(b+7)b=60$, którego rozwiązaniami są liczby b=8 oraz b=-15.

Odrzucamy rozwiązanie ujemne, gdyż b jest długością odcinka. Zatem b=8, a=8+7=15. Obliczamy długość przeciwprostokątnej $c=\sqrt{a^2+b^2}=\sqrt{8^2+15^2}=\sqrt{289}=17$.

50 6. Planimetria

Odpowiedź: Przeciwprostokątna ma długość 17 cm.

II sposób rozwiązania

Wykonujemy rysunek trójkąta z oznaczeniami lub wprowadzamy oznaczenia wynikające z treści zadania:

Zapisujemy równanie: $\frac{1}{2}\alpha(\alpha+7) = 60$ lub $\frac{1}{2}b(b-7) = 60$.

Rozwiązujemy otrzymane równanie:

$$a(a+7) = 120$$
 $a^2 + 7a - 120 = 0$
 $a_1 = 8$ lub $a_2 = -15$

lub

$$b(b-7) = 120$$

 $b^2-7b-120=0$
 $b_1 = 15$ lub $b_2 = -8$.

Odrzucamy rozwiązanie ujemne jako sprzeczne z warunkami zadania.

Obliczamy długości przyprostokątnych, a następnie długość przeciw
prostokątnej trójkąta: c=17.

III sposób rozwiązania

Wykonujemy rysunek trójkąta z przyjętymi oznaczeniami lub wprowadzamy oznaczenia wynikające z treści zadania

Stosujemy wzór Herona na pole trójkąta i zapisujemy równanie

$$\sqrt{p(p-a)(p-a-7)(p-c)} = 60$$
,

gdzie $p = \frac{1}{2}(a + a + 7 + c)$.

Przekształcamy otrzymane równanie:

$$\left(\frac{2\alpha+7+c}{2}\right)\left(\frac{7+c}{2}\right)\left(\frac{c-7}{2}\right)\left(\frac{2\alpha+7-c}{2}\right) = 3600,$$

$$(2\alpha+7+c)(2\alpha+7-c)(7+c)(c-7) = 3600 \cdot 16,$$

$$((2\alpha+7)^2-c^2)(c^2-49) = 3600 \cdot 16.$$

Z twierdzenia Pitagorasa wynika, że $c^2 = a^2 + (a+7)^2$. Stąd otrzymujemy

$$(2a^2+14a)^2=3600\cdot 16$$
.

Stad

$$2\alpha^2 + 14\alpha = 60.4$$
 lub $2\alpha^2 + 14\alpha = -60.4$ (równanie sprzeczne).

Zatem mamy równanie $a^2+7a-120=0$, stąd a=-15 lub a=8.

Odrzucamy rozwiązanie ujemne jako sprzeczne z warunkami zadania i obliczamy długość przeciwprostokątnej trójkąta: c = 17.

IV sposób rozwiązania

Przyjmijmy oznaczenia jak na rysunku:

Ze wzoru na pole trójkąta mamy $\frac{1}{2}$ h·c=60. Ponieważ h²=x(c-x), więc dostajemy równanie $\frac{120^2}{c^2}$ =cx-x², stąd 120^2 =xc³-x²c², czyli 120^2 =xc(c²-xc). Ale xc=a², więc w rezultacie otrzymujemy

$$120^2 = \alpha^2 (c^2 - \alpha^2).$$

Z twierdzenia Pitagorasa $c^2 = a^2 + (a+7)^2$, więc dostajemy równanie

$$120^2 = \alpha^2(\alpha^2 + (\alpha + 7)^2 - \alpha^2).$$

Stad

$$120^{2} = \alpha^{2}(\alpha+7)^{2},$$
$$(\alpha(\alpha+7))^{2} - 120^{2} = 0,$$

52 6. Planimetria

$$(\alpha(\alpha+7)-120)(\alpha(\alpha+7)+120) = 0,$$

 $\alpha(\alpha+7)-120 = 0$ lub $\alpha(\alpha+7)+120 = 0,$
 $120 = \alpha(\alpha+7)$ lub $120 = -\alpha(\alpha+7).$

Drugie z tych równań jest sprzeczne, więc otrzymujemy jedno równanie: a(a+7)=120, czyli $a^2+7a-120=0$. Zatem a=-15 lub a=8.

Odrzucamy rozwiązanie ujemne jako niezgodne z warunkami zadania i obliczamy długość przeciwprostokątnej trójkąta: c=17.

Zadanie 3. (Matura maj 2010 — zadanie 28 (2 p.))

Trójkąty prostokątne równoramienne ABC i CDE są położone tak jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że |AD| = |BE|.

Rozwiązanie

Dorysowujemy odcinki AD i BE. Uzasadniamy, że trójkąty ACD i BCE są przystające:

- |AC| = |BC|, bo trójkąt ABC jest równoramienny;
- |CD| = |CE|, bo trójkat CDE jest równoramienny;
- $\angle ACD = 90^{\circ} |\angle DCB| = |\angle BCE|$.

Trójkaty ACD i BCE są więc przystające (cecha przystawania bkb), zatem |AD| = |BE|.

Uwaga

Możemy zauważyć, że trójkąt CBE powstaje z trójkąta CAD przez obrót wokół punktu C o kąt 90° w kierunku przeciwnym do ruchu wskazówek zegara.

Zadanie 4. (Matura maj 2010 — zadanie 31 (2 p.))

W trapezie prostokątnym ABCD krótsza przekątna AC dzieli go na trójkąt prostokątny i trójkąt równoboczny. Dłuższa podstawa trapezu jest równa 6. Oblicz obwód tego trapezu.

Rozwiązanie

Prowadzimy wysokość CE trójkąta równobocznego ABC. Wówczas |AE|=3 i stąd |CD|=|AE|=3. Następnie |BC|=|AB|=6 oraz $|DA|=|CE|=3\sqrt{3}$. Stąd obwód trapezu jest równy

$$6+6+3+3\sqrt{3}=15+3\sqrt{3}$$
.

Zadanie 5. (Matura maj 2011 — zadanie 29 (2 p.))

Dany jest czworokąt ABCD, w którym AB \parallel CD. Punkt E leży na boku BC oraz |EC| = |CD| i |EB| = |BA|. Wykaż, że kąt AED jest prosty.

I sposób rozwiązania

Niech $| \angle CED | = \alpha i | \angle AEB | = \beta$.

Ponieważ trójkąt DCE jest równoramienny i |EC|=|CD|, więc $|\not \in EDC|=|\not \in CED|=\alpha$. Zatem $|\not \in DCE|=180^{\circ}-2\alpha$. Podobnie, ponieważ trójkąt ABE jest równoramienny i $|\not \in AEB|=|\not \in EAB|=\beta$, więc $|\not \in ABE|=180^{\circ}-2\beta$.

Kąty ABE i DCE są kątami wewnętrznymi trapezu ABCD i | ≮DCE|+| ≮ABE|=180°.

Stąd $180^{\circ} - 2\alpha + 180^{\circ} - 2\beta = 180^{\circ}$, czyli $2\alpha + 2\beta = 180^{\circ}$, więc $\alpha + \beta = 90^{\circ}$. Zatem

$$| \neq AED | = 180^{\circ} - | \neq CED | - | \neq AEB | = 180^{\circ} - \alpha - \beta = 180^{\circ} - (\alpha + \beta) = 90^{\circ}.$$

54 6. Planimetria

II sposób rozwiązania

Niech $|\angle CED| = \alpha i |\angle AEB| = \beta$.

 $Tr\'ojkaty\ DCE\ i\ ABE\ sa\ r\'ownoramienne.\ Zatem\ |\not< EDC| = |\not< CED| = \alpha\ oraz\ |\not< AEB| = |\not< EAB| = \beta.$

Dorysowujemy w danym trapezie odcinek EF równoległy do podstaw trapezu ABCD.

Kąty naprzemianległe CDE i DEF mają równe miary, zatem $|\not\in EDC| = |\not\in DEF| = \alpha$. Analogicznie $|\not\in EAB| = |\not\in AEF| = \beta$.

Zatem $| \neq BEC| = 180^{\circ} = 2\alpha + 2\beta$, wiec $\alpha + \beta = 90^{\circ}$.

Stąd $|\neq AED| = 90^{\circ}$, co kończy dowód.

III sposób rozwiązania

Niech $| \angle ABC | = \alpha$, stad $| \angle BCD | = 180^{\circ} - \alpha$.

Ponieważ |CE| = |CD| i |EB| = |BA|, więc trójkąty DCE i ABE są równoramienne.

$$Zatem \mid \not < AEB \mid = \mid \not < EAB \mid = \frac{180^{\circ} - \alpha}{2} = 90^{\circ} - \frac{\alpha}{2} \text{ oraz } \mid \not < EDC \mid = \mid \not < CED \mid = \frac{\alpha}{2}.$$

Poziom rozszerzony 55

Dorysowujemy w danym trapezie odcinek EF równoległy do podstaw trapezu ABCD. Zachodzi równość: $|\not\in EDC| = |\not\in CED| = |\not\in DEF| = \frac{\alpha}{2}$ i $|\not\in AEB| = |\not\in ABF| = |\not\in AEF| = 90^{\circ} - \frac{\alpha}{2}$.

Stąd otrzymujemy $|\!\!\downarrow\!\!AED|\!=\!|\!\!\downarrow\!\!AEF|\!+\!|\!\!\downarrow\!\!DEF|\!=\!90^\circ-\frac{\alpha}{2}+\frac{\alpha}{2}\!=\!90^\circ.$

IV sposób rozwiązania

Niech $| \angle CED | = \alpha i | \angle AEB | = \beta$.

Ponieważ trójkąt DCE jest równoramienny i |EC| = |CD|, więc $| \not \in EDC| = | \not \in CED| = \alpha$. Podobnie, ponieważ trójkąt ABE jest równoramienny, więc $| \not \in AEB| = | \not \in EAB| = \beta$.

Kąty ADC i BAD są kątami wewnętrznymi trapezu ABCD i | ≮ADC|+|≮BAD|=180°.

Stad
$$| \angle ADE | + | \angle EAD | = 180^{\circ} - (\alpha + \beta)$$
.

Zatem w trójkącie DAE mamy:

$$| \neq AED | = 180^{\circ} - (180^{\circ} - (\alpha + \beta)) = \alpha + \beta.$$

Stąd $|\not \times BEC| = 180^\circ = |\not \times DEC| + |\not \times AED| + |\not \times AEB| = 2\alpha + 2\beta$, czyli $\alpha + \beta = 90^\circ$. Zatem $|\not \times AED| = 90^\circ$.

Poziom rozszerzony

Zadanie 6. (Matura maj 2010 — zadanie 9 (4 p.))

Na bokach BC i CD równoległoboku ABCD zbudowano kwadraty CDEF i BCGH (zobacz rysunek). Udowodnij, że |AC| = |FG|.

56 6. Planimetria

Rozwiązanie

Czworokąt ABCD jest równoległobokiem, czworokąt DCFE jest kwadratem, więc |AB| = |CD| = |CF|. W kwadracie CBHG odcinki BC i CG są równe.

Niech α oznacza kąt ABC danego równoległoboku. Wówczas $|\not\in BCD| = 180^{\circ} - \alpha$. W kwadratach CDEF oraz CBHG mamy $|\not\in DCF| = |\not\in BCG| = 90^{\circ}$, więc

$$| \neq FCG| = 360^{\circ} - (180^{\circ} - \alpha) - 90^{\circ} - 90^{\circ} = \alpha = | \neq ABC|.$$

W trójkątach ABC i FCG mamy zatem: |AB| = |CF|, |BC| = |CG| oraz $| \not \downarrow FCG| = | \not \downarrow ABC|$. Stąd trójkąty ABC i FCG są przystające (cecha bkb). Zatem |AC| = |FG|.

Zadanie 7. (Matura maj 2011 — zadanie 6 (4 p.))

Podstawa AB trójkąta równoramiennego ABC ma długość 8 oraz $|\xi BAC| = 30^{\circ}$. Oblicz długość środkowej AD tego trójkąta.

I sposób rozwiązania

Z treści zadania mamy, że $|BD| = \frac{1}{2} |BC| i | \neq ABC | = 30^{\circ} \text{ oraz } |BE| = 4.$

Z trójkąta prostokątnego BEC otrzymujemy: $\cos 30^{\circ} = \frac{|BE|}{|BC|}$.

Zatem
$$\frac{4}{|BC|} = \frac{\sqrt{3}}{2}$$
. Stąd $|BC| = \frac{8}{\sqrt{3}}$ i $|BD| = \frac{4}{\sqrt{3}}$.

Poziom rozszerzony 57

Obliczamy |AD|, stosując twierdzenie cosinusów dla trójkąta ABD:

$$|AD|^{2} = |AB|^{2} + |BD|^{2} - 2|AB| \cdot |BD| \cdot \cos \times ABD,$$

$$|AD|^{2} = 8^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2},$$

$$|AD|^{2} = 64 + \frac{16}{3} - 32 = \frac{16 \cdot 7}{3}.$$

Stad

$$|AD| = 4\sqrt{\frac{7}{3}} = \frac{4}{3}\sqrt{21}$$
.

II sposób rozwiązania

Wprowadzamy oznaczenia: x — długość ramienia trójkąta ABC, y — długość środkowej AD tego trójkąta.

Zapisujemy twierdzenie cosinusów dla trójkąta ABC, gdzie |≮ACB| = 120°:

$$8^2 = x^2 + x^2 - 2x^2 \cos 120^\circ$$
. Ponieważ $\cos 120^\circ = -\frac{1}{2}$, więc mamy równanie: $3x^2 = 64$.

Stąd otrzymujemy rozwiązanie $x = \frac{8}{\sqrt{3}}$, bo x > 0. Ponieważ $|CD| = \frac{1}{2}x$, więc $|CD| = \frac{4}{\sqrt{3}}$.

Obliczamy |AD| stosując twierdzenie cosinusów dla trójkąta ADC:

$$y^{2} = \left(\frac{8}{\sqrt{3}}\right)^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot \frac{8}{\sqrt{3}} \cdot \frac{4}{\sqrt{3}} \cdot \cos 120^{\circ} =$$

$$= \left(\frac{8}{\sqrt{3}}\right)^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot \frac{8}{\sqrt{3}} \cdot \frac{4}{\sqrt{3}} \cdot \left(-\frac{1}{2}\right) = \frac{64}{3} + \frac{16}{3} + \frac{32}{3} = \frac{112}{3}.$$

Stąd otrzymujemy $y = \frac{4\sqrt{7}}{\sqrt{3}} = \frac{4\sqrt{21}}{3}$.

III sposób rozwiązania

Wprowadzamy oznaczenia: x — długość ramienia trójkąta ABC, y — długość środkowej AD tego trójkąta.

58 6. Planimetria

Zapisujemy twierdzenie cosinusów dla trójkąta ABC, gdzie $| \neq ABC | = 30^{\circ}$:

$$x^2 = 8^2 + x^2 - 2 \cdot 8 \cdot x \cdot \cos 30^\circ$$
.

Przekształcamy równanie do postaci: $64 = 2 \cdot 8 \cdot x \cdot \frac{\sqrt{3}}{2}$.

Stąd otrzymujemy: $x = \frac{8}{\sqrt{3}}$. Ponieważ $|BD| = \frac{1}{2}x$, stąd $|BD| = \frac{4}{\sqrt{3}}$.

Obliczamy |AD|, stosując twierdzenie cosinusów dla trójkąta ABD:

$$y^{2} = 8^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \cos 30^{\circ} =$$

$$= 8^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = 64 + \frac{16}{3} - 32 = \frac{112}{3}.$$

Stąd otrzymujemy $y = \frac{4\sqrt{21}}{3}$.

IV sposób rozwiązania

Z treści zadania wynika, że |AE| = |EB| = 4. Ponieważ DF || CE i D jest środkiem odcinka BC, to F jest środkiem odcinka EB. Stąd |FB| = 2.

Trójkąt BDF jest "połową" trójkąta równobocznego o wysokości FB, więc $|FB| = \frac{2|DF|\sqrt{3}}{2}$.

Stad
$$|DF| = \frac{|FB|}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$
.

Z twierdzenia Pitagorasa dla trójkąta ADF obliczamy długość środkowej AD:

$$|AD| = \sqrt{|AF|^2 + |DF|^2} = \sqrt{6^2 + \left(\frac{2}{\sqrt{3}}\right)^2} = \sqrt{36 + \frac{4}{3}} = \sqrt{\frac{112}{3}} = 4\sqrt{\frac{7}{3}} = \frac{4\sqrt{21}}{3}.$$

V sposób rozwiązania

Z treści zadania wynika, że |AE| = |EB| = 4. Trójkąt CEB jest "połową" trójkąta równobocznego o wysokości EB, więc $|EB| = \frac{2|CE|\sqrt{3}}{2}$. Stąd $|CE| = \frac{|EB|}{\sqrt{3}} = \frac{4}{\sqrt{3}}$.

Poziom rozszerzony 59

Z twierdzenia o środku ciężkości trójkąta wynika, że $|AS| = \frac{2}{3}|AD|$ i $|SE| = \frac{1}{3}|CE| = \frac{1}{3} \cdot \frac{4}{\sqrt{3}} = \frac{4}{3\sqrt{3}}$. Z twierdzenia Pitagorasa dla trójkąta ASE mamy:

$$|AS|^2 = |AE|^2 + |SE|^2$$
, czyli $\left(\frac{2}{3}|AD|\right)^2 = 4^2 + \left(\frac{4}{3\sqrt{3}}\right)^2$.

Stąd

$$\frac{4}{9}|AD|^2 = 16 + \frac{16}{27}$$
, czyli $\frac{4}{9}|AD|^2 = \frac{448}{27}$.

Zatem

$$|AD| = \sqrt{\frac{112}{3}} = 4\sqrt{\frac{7}{3}} = \frac{4\sqrt{21}}{3}.$$

VI sposób rozwiązania

Z treści zadania wynika, że |AE| = |EB| = 4. Trójkąt CEB jest "połową" trójkąta równobocznego o wysokości EB, więc $|BC| = \frac{8}{\sqrt{3}} = |AC|$. Zaznaczamy punkt F tak, że $\overrightarrow{AD} = \overrightarrow{DF}$. Otrzymujemy równoległobok ABFC (zobacz rysunek),

w którym $|ABF| = 150^{\circ}$, |BF| = |AC| i |AF| = 2|AD|. Stosujemy twierdzenie cosinusów w trójkącie ABF.

$$(2 \cdot |AD|)^2 = |AB|^2 + |BF|^2 - 2 \cdot |AB| \cdot |BF| \cdot \cos 150^\circ.$$

Stad

$$4 \cdot |AD|^2 = 64 + \frac{64}{3} - 2 \cdot 8 \cdot \frac{8}{\sqrt{3}} \cdot \left(-\frac{\sqrt{3}}{2}\right) = 64 \cdot \frac{7}{3}$$
$$|AD|^2 = \frac{16 \cdot 7}{3}$$
$$|AD| = \frac{3\sqrt{21}}{3}.$$

Zadanie 8. (Matura maj 2011 — zadanie 10 (3 p.))

Dany jest czworokąt wypukły ABCD niebędący równoległobokiem. Punkty M, N są odpowiednio środkami boków AB i CD. Punkty P, Q są odpowiednio środkami przekątnych AC i BD. Uzasadnij, że MQ \parallel PN.

Rozwiązanie

Ponieważ punkty N i P są środkami boków DC i AC trójkąta ADC, więc NP \parallel AD. Punkty M i Q są środkami boków AB i DB trójkąta ABD, więc MQ \parallel AD. Zatem NP \parallel MQ.

Geometria na płaszczyźnie kartezjańskiej

W dziale geometria na płaszczyźnie kartezjańskiej:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) wykorzystuje pojęcie układu współrzędnych na płaszczyźnie,
- b) podaje równanie prostej w postaci Ax + By + C = 0 lub y = ax + b, mając dane dwa jej punkty lub jeden punkt i współczynnik a w równaniu kierunkowym,
- c) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych,
- d) interpretuje geometrycznie układ dwóch równań liniowych z dwiema niewiadomymi,
- e) oblicza odległości punktów na płaszczyźnie kartezjańskiej,
- f) wyznacza współrzędne środka odcinka,
- g) posługuje się równaniem okręgu $(x-a)^2 + (y-b)^2 = r^2$

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

- a) interpretuje geometrycznie nierówność liniową z dwiema niewiadomymi i układy takich nierówności,
- b) rozwiązuje zadania dotyczące wzajemnego położenia prostej i okręgu, oraz dwóch okręgów na płaszczyźnie kartezjańskiej,
- c) oblicza odległość punktu od prostej,
- d) opisuje koła za pomocą nierówności,
- e) oblicza współrzędne oraz długość wektora; dodaje i odejmuje wektory oraz mnoży je przez liczbę,
- f) interpretuje geometrycznie działania na wektorach,
- g) stosuje wektory do rozwiązywania zadań, a także do dowodzenia własności figur,
- h) stosuje wektory do opisu przesunięcia wykresu funkcji.

Poziom podstawowy

Zadanie 1. (Próba listopad 2009 — zadanie 28 (2 p.))

W układzie współrzędnych na płaszczyźnie punkty A = (2,5) i C = (6,7) są przeciwległymi wierzchołkami kwadratu ABCD. Wyznacz równanie prostej BD.

I sposób rozwiązania

Obliczamy współczynnik kierunkowy prostej AC: $a_{\rm AC} = \frac{7-5}{6-2} = \frac{1}{2}$, a następnie wyznaczamy współczynnik kierunkowy prostej BD prostopadłej do AC: $a_{\rm BD} = -2$.

Wyznaczamy współrzędne środka S odcinka AC: $S = \left(\frac{2+6}{2}, \frac{5+7}{2}\right) = (4,6)$ i wyznaczamy równanie prostej o współczynniku kierunkowym -2, przechodzącej przez punkt S.

Odpowiedź: y = -2x + 14.

II sposób rozwiązania

Wykonujemy rysunek w prostokątnym układzie współrzędnych, zaznaczając punkty A i C.

Na podstawie wyznaczonych punktów określamy współrzędne środka odcinka AC: S = (4,6), a następnie zaznaczamy punkty B = (5,4) i D = (3,8).

Wyznaczamy równanie prostej BD w dowolnej postaci, np. y = -2x + 14. W szczególności, możemy znaleźć punkty przecięcia prostej BD z osiami układu współrzędnych i zapisać równanie odcinkowe $\frac{x}{7} + \frac{y}{14} = 1$. Możemy również odczytać z rysunku współczynnik kierunkowy prostej BD i punkt przecięcia z osią Oy.

III sposób rozwiązania

Wyznaczamy równanie symetralnej odcinka AC, np.

$$(x_C - x_A)x + (y_C - y_A)y - (x_C - x_A)x_S - (y_C - y_A)y_S = 0$$

gdzie: $A = (x_A, y_A)$, $C = (x_C, y_C)$ i $S = (x_S, y_S)$ jest środkiem odcinka AC. Symetralną odcinka AC jest prosta o równaniu 2x + y - 14 = 0. Ta prosta przechodzi przez punkty B i D.

IV sposób rozwiązania

Obliczamy współrzędne wektora $\overrightarrow{AC} = [4,2]$.

Zapisujemy równanie prostej BD wynikające z iloczynu skalarnego dwóch wektorów: $4 \cdot x' + 2 \cdot y' = 0$, gdzie $x' = x - x_S$ oraz $y' = y - y_S$, $4(x - x_S) + 2(y - y_S) = 0$, gdzie $S = (x_S, y_S)$ jest środkiem przekątnej AC.

Obliczamy współrzędne środka kwadratu ABCD: S = (4,6).

Wyznaczamy równanie prostej BD w postaci np. y = -2x + 14.

V sposób rozwiązania

Wyznaczamy współrzędne wektora \overrightarrow{AC} =[4,2] oraz wektora do niego prostopadłego, np. [-2,4].

Zapisujemy równanie parametryczne prostej prostopadłej przechodzącej przez punkt S=(4,6)

— środek przekątnej kwadratu ABCD:
$$\begin{cases} x = 4-2t \\ y = 6+4t. \end{cases}$$

Wyznaczamy równanie prostej BD w dowolnej postaci, przekształcając układ równań, np. y-6+2(x-4)=0.

VI sposób rozwiązania

Na podstawie współrzędnych punktów A = (2,5) i C = (6,7) zapisujemy równość odległości od punktu P = (x,y), gdzie P jest dowolnym punktem leżącym na symetralnej odcinka AC: $(x-2)^2 + (y-5)^2 = (x-6)^2 + (y-7)^2$.

Wyznaczamy równanie prostej BD w postaci np. y = -2x + 14.

Zadanie 2. (Próba listopad 2009 — zadanie 33 (4 p.))

Punkty A = (2,0) i B = (12,0) są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB. Wierzchołek C leży na prostej o równaniu y = x. Oblicz współrzędne punktu C.

I sposób rozwiązania

Punkt C leży na prostej o równaniu y = x i na okręgu, którego środkiem jest środek przeciwprostokątnej, a promień jest równy połowie długości tej przeciwprostokątnej.

Obliczamy długość przeciwprostokątnej AB:
$$|AB| = \sqrt{(12-2)^2 + (0-0)^2} = 10$$
.

Wyznaczamy współrzędne środka przeciwprostokątnej: S = (7, 0).

Zapisujemy równanie okręgu: $(x-7)^2 + y^2 = 25$.

Rozwiązujemy układ równań
$$\begin{cases} y = x \\ (x-7)^2 + y^2 = 25 \end{cases}$$

Otrzymujemy równanie z jedną niewiadomą: $x^2 - 7x + 12 = 0$.

Rozwiązaniem tego równania są liczby: $x_1 = 4$, $x_2 = 3$.

Odpowiedź: Warunki zadania spełniają dwa punkty: C = (4,4) oraz C = (3,3).

II sposób rozwiązania

Oznaczamy współrzędne punktu C przez (x,y). Wtedy

$$|AB| = \sqrt{(12-2)^2 + (0-0)^2} = 10,$$

 $|AC| = \sqrt{(x-2)^2 + (y-0)^2},$
 $|BC| = \sqrt{(x-12)^2 + (y-0)^2}.$

Trójkąt ABC jest prostokątny, więc spełniona jest równość $|AC|^2 + |BC|^2 = |AB|^2$, czyli

$$(x-2)^2 + y^2 + (x-12)^2 + y^2 = 10^2$$
.

Punkt C leży też na prostej o równaniu y = x, zatem, aby obliczyć jego współrzędne, rozwiązujemy układ równań:

$$\begin{cases} (x-2)^2 + y^2 + (x-12)^2 + y^2 = 10^2 \\ y = x \end{cases}$$

$$x^2 - 4x + 4 + x^2 + x^2 - 24x + 144 + x^2 = 100$$

$$x^2 - 7x + 12 = 0$$

$$x_1 = 4, \quad x_2 = 3.$$

Odpowiedź: Warunki zadania spełniają dwa punkty: C = (4,4) oraz C = (3,3).

III sposób rozwiązania

Oznaczamy współrzędne punktu C przez (x,y). Punkt C leży na prostej o równaniu y=x i jednocześnie jest początkiem dwóch wektorów prostopadłych \overrightarrow{CA} i \overrightarrow{CB} .

Wyznaczamy współrzędne wektorów \overrightarrow{CA} i \overrightarrow{CB} :

$$\overrightarrow{CA} = [2-x, -y], \quad \overrightarrow{CB} = [12-x, -y].$$

Rozwiązujemy układ równań

$$\begin{cases} y = x \\ (2-x)(12-x) + (-y)(-y) = 0 \end{cases}$$

$$\begin{cases} y = x \\ 24 - 2x - 12x + x^2 + y^2 = 0 \\ 2x^2 - 14x + 24 = 0 \\ x^2 - 7x + 12 = 0 \end{cases}$$

$$x_1 = 3, \quad x_2 = 4.$$

Odpowiedź: Warunki zadania spełniają dwa punkty: C = (4,4) oraz C = (3,3).

IV sposób rozwiązania

Punkt C leży na prostej o równaniu y = x, więc C = (x, x).

Punkt D jest spodkiem wysokości poprowadzonej z wierzchołka kąta prostego na przeciwprostokątną AB, więc D=(x,0). Korzystając ze związków miarowych w trójkącie prostokątnym otrzymujemy zależność $|CD|^2=|AD|\cdot|DB|$. Długości tych odcinków to: |CD|=|x|, |AD|=|x-2|, |DB|=|12-x|.

Otrzymujemy równanie $|x|^2 = |x-2| \cdot |12-x|$ dla $x \in \langle 2, 12 \rangle$, czyli

$$x^2 = 14x - 24 - x^2,$$

 $x^2 - 7x + 12 = 0.$

$$x_1 = 4, \quad x_2 = 3.$$

Odpowiedź: Warunki zadania spełniają dwa punkty: C = (4,4) oraz C = (3,3).

V sposób rozwiązania

Zapisujemy układ równań złożony z równania prostej y = x oraz równań pęków prostych przechodzących odpowiednio przez punkty A i B.

$$\begin{cases} y = x \\ y = \alpha(x-2) \\ y = -\frac{1}{\alpha}(x-12). \end{cases}$$

Przekształcamy układ równań do równania z niewiadomą a:

$$\frac{2\alpha}{\alpha(1-\alpha)} + \frac{12}{\alpha} + \frac{2\alpha}{1-\alpha} = 0.$$

Przekształcamy równanie wymierne do równania kwadratowego: $a^2-5a+6=0$, skąd otrzymujemy 2 rozwiązania: a=2 lub a=3.

Otrzymujemy współrzędne dwóch punktów spełniających warunki zadania, odpowiednio C = (4,4) oraz C = (3,3).

Zadanie 3. (Matura maj 2011 — zadanie 31 (4 p.))

Okrąg o środku w punkcie S = (3,7) jest styczny do prostej o równaniu y = 2x - 3. Oblicz współrzędne punktu styczności.

I sposób rozwiązania

Współczynnik kierunkowy m prostej prostopadłej do prostej o równaniu y=2x-3 jest równy $m=-\frac{1}{2}$.

Zapisujemy równanie prostej prostopadłej do stycznej i przechodzącej przez punkt S=(3,7): $y=-\frac{1}{2}x+\frac{17}{2}$.

Zapisujemy i rozwiązujemy układ równań:

$$\begin{cases} y = 2x - 3 \\ y = -\frac{1}{2}x + \frac{17}{2}, \end{cases}$$

$$-\frac{1}{2}x + \frac{17}{2} = 2x - 3,$$
$$x = \frac{23}{5}.$$

Stąd
$$y = \frac{31}{5}$$
.

Zatem punkt styczności ma współrzędne $\left(\frac{23}{5}, \frac{31}{5}\right)$.

II sposób rozwiązania

Obliczamy odległość d środka okręgu S = (3,7) od prostej o równaniu 2x - y - 3 = 0:

$$d = \frac{|6-7-3|}{\sqrt{4+1}} = \frac{4}{\sqrt{5}}.$$

Punkt P = (x, 2x - 3) jest punktem styczności okręgu o środku w punkcie S = (3,7) i prostej y = 2x - 3. Zatem |PS| = d oraz $|PS| = \sqrt{(x - 3)^2 + (2x - 10)^2}$.

Przekształcamy równanie $\sqrt{(x-3)^2 + (2x-10)^2} = \frac{4}{\sqrt{5}}$ do postaci $5x^2 - 46x + 109 - \frac{16}{5} = 0$.

Rozwiązujemy równanie $5x^2 - 46x + 105\frac{4}{5} = 0.$

Stąd
$$x = \frac{23}{5}$$
.

Zatem punkt styczności ma współrzędne: $P = \left(\frac{23}{5}, \frac{31}{5}\right)$.

III sposób rozwiązania

Punkt P = (x, y) jest punktem styczności okręgu o środku S = (3, 7) i prostej y = 2x - 3.

Zapisujemy układ równań:
$$\left\{ \begin{array}{l} (x-3)^2+(y-7)^2=r^2 \\ y=2x-3. \end{array} \right.$$

Przekształcamy układ równań do równania kwadratowego z niewiadomą x:

$$(x-3)^2 + (2x-10)^2 = r^2$$
,
 $5x^2 - 46x + 109 - r^2 = 0$.

Zapisujemy warunek $\Delta=0$, dla którego okrąg ma jeden punkt wspólny z prostą y=2x-3 i obliczamy r^2 :

$$\Delta = -64 + 20r^2$$
, $20r^2 - 64 = 0$, $20r^2 = 64$, $r^2 = \frac{64}{20} = \frac{16}{5}$.

Rozwiązujemy równanie:

$$5x^{2} - 46x + 109 - \frac{16}{5} = 0,$$
$$5x^{2} - 46x + 105 + \frac{4}{5} = 0,$$
$$x = \frac{23}{5}.$$

Zatem punkt styczności ma współrzędne: $P = \left(\frac{23}{5}, \frac{31}{5}\right)$.

Zadanie 4. (Próba listopad 2010 — zadanie 33 (4 p.))

Punkty A=(1,5), B=(14,31), C=(4,31) są wierzchołkami trójkąta. Prosta zawierająca wysokość tego trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz długość odcinka BD.

I sposób rozwiązania

Wyznaczamy równanie prostej AB: y = 2x + 3.

Wyznaczamy równanie prostej CD, prostopadłej do prostej AB: $y = -\frac{1}{2}x + 33$.

Obliczamy współrzędne punktu D: D = (12, 27).

Obliczamy długość odcinka BD: $|BD| = 2\sqrt{5}$.

II sposób rozwiązania

Wyznaczamy równanie prostej AB: y = 2x + 3.

Wyznaczamy równanie prostej CD, prostopadłej do prostej AB: $y = -\frac{1}{2}x + 33$, czyli x + 2y - 66 = 0.

Obliczamy odległość punktu B = (14,31) od prostej CD o równaniu x + 2y - 66 = 0:

$$\frac{|14+2\cdot 31-66|}{\sqrt{5}} = 2\sqrt{5}$$
, wiec $|BD| = 2\sqrt{5}$.

III sposób rozwiązania

Wyznaczamy równanie prostej AB: y = 2x + 3.

Obliczamy odległość punktu C = (4, 31) od prostej AB o równaniu 2x - y + 3 = 0:

$$|CD| = \frac{|2 \cdot 4 - 31 + 3|}{\sqrt{5}} = \frac{20}{\sqrt{5}}.$$

Obliczamy długość odcinka CB: |CB| = 10.

Korzystamy z twierdzenia Pitagorasa dla trójkąta CDB i obliczamy długość odcinka BD:

$$\left(\frac{20}{\sqrt{5}}\right)^2 + |BD|^2 = 10^2$$
, wiec $|BD| = 2\sqrt{5}$.

IV sposób rozwiązania

Obliczamy długość odcinka CB oraz wysokość trójkąta ABC opuszczoną z wierzchołka A: |CB| = 10, $h_A = 26$.

Obliczamy pole trójkąta ABC: $P_{ABC} = \frac{10 \cdot 26}{2} = 130.$

Obliczamy długość odcinka AB: $|AB| = \sqrt{845} = 13\sqrt{5}$.

Pole trójkąta ABC możemy zapisać następująco: $P_{ABC} = \frac{|AB| \cdot |CD|}{2}$. Zatem $\frac{13\sqrt{5} \cdot |CD|}{2} = 130$. Stad $|CD| = 4\sqrt{5}$.

Korzystamy z twierdzenia Pitagorasa dla trójkąta CDB i obliczamy długość odcinka BD:

$$(4\sqrt{5})^2 + |BD|^2 = 10^2$$
, wiec $|BD| = 2\sqrt{5}$.

V sposób rozwiązania

Obliczamy długości wszystkich boków trójkąta ABC: $|AB| = \sqrt{845}$, $|AC| = \sqrt{685}$, |CB| = 10. Korzystamy z twierdzenia Pitagorasa dla trójkątów CDB i ADCi zapisujemy układ równań:

$$\begin{cases} |CB|^2 = |BD|^2 + |CD|^2 \\ |CA|^2 = (|AB| - |BD|)^2 + |CD|^2. \end{cases}$$

Wyznaczamy $|CD|^2$ z pierwszego równania i podstawiamy do drugiego równania. Otrzymujemy:

$$\left(\sqrt{685}\right)^2 = \left(\sqrt{845} - |BD|\right)^2 + 10^2 - |BD|^2$$
.

Stad $|BD| = 2\sqrt{5}$.

Poziom rozszerzony

Zadanie 5. (Matura maj 2010 — zadanie 7 (6 p.))

Punkt A = (-2,5) jest jednym z wierzchołków trójkąta równoramiennego ABC, w którym |AC| = |BC|. Pole tego trójkąta jest równe 15. Bok BC jest zawarty w prostej o równaniu y = x + 1. Oblicz współrzędne wierzchołka C.

I sposób rozwiązania

Obliczamy odległość punktu A od prostej o równaniu x-y+1=0: $d=\frac{|-2-5+1|}{\sqrt{1+1}}=3\sqrt{2}$.

Poziom rozszerzony 69

Obliczona odległość d jest równa wysokości trójkąta ABC poprowadzonej do boku BC. Znamy pole trójkąta ABC, więc obliczamy długość boku BC.

$$P_{ABC} = 15,$$

 $\frac{1}{2} d \cdot |BC| = 15,$
 $|BC| = \frac{30}{3\sqrt{2}} = 5\sqrt{2}.$

Punkt C = (x, y) leży na prostej o równaniu y = x + 1, zatem C = (x, x + 1).

Ponieważ |AC| = |BC|, więc korzystając ze wzoru na długość odcinka, zapisujemy równanie:

$$\sqrt{(x+2)^2 + (x+1-5)^2} = 5\sqrt{2}$$

Rozwiązujemy otrzymane równanie:

$$x^2+4x+4+x^2-8x+16=50,$$

 $x^2-2x-15=0,$

 $x_1 = 5$, $x_2 = -3$ i następnie $y_1 = 6$ oraz $y_2 = -2$.

Ostatecznie otrzymujemy dwa punkty: $C_1 = (5,6)$ oraz $C_2 = (-3,-2)$.

II sposób rozwiązania

Punkty B i C leżą na prostej o równaniu y = x+1, zatem $B = (x_B, x_B+1)$, $C = (x_C, x_C+1)$. Wyznaczamy współrzędne wektorów \overrightarrow{AC} i \overrightarrow{AB} : $\overrightarrow{AC} = [x_C+2, x_C+1-5] = [x_C+2, x_C-4]$,

$$\overrightarrow{AB} = [x_B + 2, x_B - 4]$$
.

Pole trójkąta ABC obliczamy ze wzoru

$$\begin{split} P_{ABC} &= \frac{1}{2} \left| \det \left(\overrightarrow{AC}, \overrightarrow{AB} \right) \right| = \frac{1}{2} \left| (x_C + 2) \cdot (x_B - 4) - (x_C - 4) \cdot (x_B + 2) \right| = \\ &= \frac{1}{2} \left| x_C \cdot x_B - 4x_C + 2x_B - 8 - x_C \cdot x_B - 2x_C + 4x_B + 8 \right| = \\ &= \frac{1}{2} \cdot \left| 6x_B - 6x_C \right| = 3 \cdot \left| x_B - x_C \right|. \end{split}$$

Stąd i z tego, że |AC| = |BC|, otrzymujemy układ równań

$$\begin{cases} |AC| = |BC| \\ 3 \cdot |x_B - x_C| = 15. \end{cases}$$

Zatem mamy dwa układy równań:

$$\begin{cases} 3 \cdot (x_B - x_C) = 15 \\ \sqrt{(x_C + 2)^2 + (x_C - 4)^2} = \sqrt{(x_C - x_B)^2 + (x_C - x_B)^2} \end{cases}$$

lub

$$\begin{cases} -3 \cdot (x_B - x_C) = 15 \\ \sqrt{(x_C + 2)^2 + (x_C - 4)^2} = \sqrt{(x_C - x_B)^2 + (x_C - x_B)^2}. \end{cases}$$

• Rozwiązujemy pierwszy układ równań.

$$\begin{cases} x_{B} - x_{C} = 5 \\ \sqrt{x_{C}^{2} + 4x_{C} + 4 + x_{C}^{2} - 8x_{C} + 16} = \sqrt{25 + 25}. \end{cases}$$

Z drugiego równania otrzymujemy równanie kwadratowe

$$2x_C^2 - 4x_C + 20 = 50$$
,

$$x_C^2 - 2x_C - 15 = 0$$
.

Rozwiązaniami równania są liczby $x_C = 5$ i $x_C = -3$.

Współrzędne punktów B i C to $C_1 = (5,6)$, $C_2 = (-3,-2)$, $B_1 = (10,11)$, $B_2 = (2,3)$.

• Rozwiązujemy drugi układ równań.

$$\begin{cases} x_{B} - x_{C} = -5 \\ \sqrt{x_{C}^{2} + 4x_{C} + 4 + x_{C}^{2} - 8x_{C} + 16} = \sqrt{25 + 25}. \end{cases}$$

Z drugiego równania otrzymujemy równanie kwadratowe

$$2x_C^2 - 4x_C + 20 = 50,$$

 $x_C^2 - 2x_C - 15 = 0.$

Rozwiązaniami równania są liczby $x_C = 5$ i $x_C = -3$.

Stąd otrzymujemy $C_1 = (5,6)$, $B_1 = (0,1)$ oraz $C_2 = (-3,-2)$, $B_2 = (-8,-7)$.

Wierzchołkiem C trójkąta ABC jest zatem punkt C = (5,6) lub C = (-3,-2).

Zadanie 6. (Matura maj 2011 — zadanie 7 (4 p.))

Oblicz miarę kąta między stycznymi do okręgu $x^2 + y^2 + 2x - 2y - 3 = 0$ poprowadzonymi przez punkt A = (2, 0).

I sposób rozwiązania

Stwierdzamy, że prosta o równaniu x=2 nie jest styczna do okręgu $x^2+y^2+2x-2y-3=0$ (odległość środka okręgu od tej prostej jest większa od promienia). Zapisujemy równanie kierunkowe prostej przechodzącej przez punkt A=(2,0): y=a(x-2) lub y=ax-2a w zależności od parametru a (gdzie a jest współczynnikiem kierunkowym prostej stycznej).

Zapisujemy układ równań
$$\begin{cases} x^2+y^2+2x-2y-3=0\\ y=ax-2a \end{cases}$$
 i doprowadzamy go do równania

kwadratowego z niewiadomą x, np. $x^2+(\alpha x-2\alpha)^2+2x-2(\alpha x-2\alpha)-3=0$. Prosta $y=\alpha x-2\alpha$ jest styczna do okręgu wtedy, gdy układ ten ma dokładnie jedno rozwiązanie, czyli gdy równanie kwadratowe $x^2+(\alpha x-2\alpha)^2+2x-2(\alpha x-2\alpha)-3=0$ ma dokładnie jedno rozwiązanie. Przekształcamy równanie

$$x^2 + a^2x^2 - 4a^2x + 4a^2 + 2x - 2ax + 4a - 3 = 0$$

$$x^{2}(1+\alpha^{2})+x(-4\alpha^{2}-2\alpha+2)+4\alpha^{2}+4\alpha-3=0.$$

Poziom rozszerzony 71

Zapisujemy warunek na to, aby równanie $x^2(1+\alpha^2)+x(-4\alpha^2-2\alpha+2)+4\alpha^2+4\alpha-3=0$ miało jedno rozwiązanie: $\Delta=0$.

Obliczamy $\Delta = \left(-4\alpha^2 - 2\alpha + 2\right)^2 - 4\cdot\left(1+\alpha^2\right)\cdot\left(4\alpha^2 + 4\alpha - 3\right)$ i otrzymujemy równanie

$$4(2\alpha^2 + \alpha - 1)^2 - 4 \cdot (1 + \alpha^2) \cdot (4\alpha^2 + 4\alpha - 3) = 0.$$

Stad $2a^2 + 3a - 2 = 0$.

Rozwiązujemy równanie $2\alpha^2 + 3\alpha - 2 = 0$:

$$a_1 = -2$$
 lub $a_2 = \frac{1}{2}$.

Ponieważ a_1 , a_2 oznaczają współczynniki kierunkowe prostych stycznych i $a_1 \cdot a_2 = -1$, więc te styczne są do siebie prostopadłe.

Stąd miara kąta między stycznymi jest równa 90°.

Możemy też skorzystać ze wzorów Viète'a i zapisać $a_1 \cdot a_2 = \frac{-2}{2} = -1$, gdzie a_1 i a_2 są pierwiastkami równania $2a^2 + 3a - 2 = 0$.

Ponieważ a_1 , a_2 oznaczają współczynniki kierunkowe prostych stycznych i $a_1 \cdot a_2 = -1$, więc te styczne są do siebie prostopadłe.

Zatem kąt między stycznymi jest równy 90°.

II sposób rozwiązania

Przekształcamy równanie okręgu $x^2+y^2+2x-2y-3=0$ do postaci $(x+1)^2+(y-1)^2=5$.

Wyznaczamy współrzędne środka S i promień r tego okręgu: $S = (-1,1), r = \sqrt{5}$.

Stwierdzamy, że prosta o równaniu x=2 nie jest styczna do okręgu $x^2+y^2+2x-2y-3=0$.

Zapisujemy równanie kierunkowe prostej przechodzącej przez punkt A=(2,0) i stycznej do okręgu:

y=a(x-2) lub y=ax-2a lub ax-y-2a=0 w zależności od parametru a (gdzie a oznacza współczynnik kierunkowy prostej stycznej).

Wyznaczamy odległość środka S okręgu od prostej o równaniu $\alpha x - y - 2\alpha = 0$:

$$d = \frac{|-\alpha - 1 - 2\alpha|}{\sqrt{\alpha^2 + 1}}.$$

Ponieważ promień okręgu jest równy odległości środka okręgu S od stycznej, więc otrzymujemy równanie

$$\sqrt{5} = \frac{|-\alpha - 1 - 2\alpha|}{\sqrt{\alpha^2 + 1}}$$
.

Przekształcamy to równanie:

$$\sqrt{5\alpha^2+5} = |-3\alpha-1|,$$

 $5\alpha^2+5=9\alpha^2+6\alpha+1,$

stad

$$2a^2 + 3a - 2 = 0$$
.

Dalej postępujemy jak w sposobie I.

III sposób rozwiązania

Przekształcamy równanie okręgu $x^2+y^2+2x-2y-3=0$ do postaci $(x+1)^2+(y-1)^2=5$.

Wyznaczamy współrzędne środka S i promień r tego okręgu: $S = (-1,1), r = \sqrt{5}$.

Rysujemy okrąg o środku S = (-1,1) i promieniu $r = \sqrt{5}$ oraz punkt A = (2,0).

Niech punkty B i C będą punktami styczności prostych poprowadzonych z punktu A = (2, 0) do okręgu o równaniu $(x+1)^2 + (y-1)^2 = 5$.

Wówczas $| \xi SBA | = | \xi SCA | = 90^{\circ}$ i | SA | jest przeciwprostokątną w trójkątach ACS i ABS.

Obliczamy lub odczytujemy długość odcinka |SA|:

$$|SA| = \sqrt{(2+1)^2 + (0-1)^2} = \sqrt{9+1} = \sqrt{10}.$$

Ponieważ $|SB|^2 + |AB|^2 = |SA|^2$ i $|SC|^2 + |CA|^2 = |SA|^2$, więc $|AB| = \sqrt{5}$ i $|AC| = \sqrt{5}$. Stąd |SB| = |AB| = |AC| = |SC|.

Zapisujemy równanie okręgu o środku w punkcie A = (2,0) i promieniu $|AB| = \sqrt{5}$:

$$(x-2)^2+y^2=5$$
.

Punkty przecięcia okręgów o równaniach $(x+1)^2+(y-1)^2=5$ i $(x-2)^2+y^2=5$, które są jednocześnie punktami styczności prostych stycznych do okręgu $(x+1)^2+(y-1)^2=5$, poprowadzonych przez punkt A=(2,0), to punkty B i C. Wyznaczamy ich współrzędne rozwiązując układ równań

$$\begin{cases} (x+1)^2 + (y-1)^2 = 5\\ (x-2)^2 + y^2 = 5 \end{cases}$$

lub odczytujemy z wykresu: B = (1, 2) i C = (0, -1).

Przekształcamy układ równań do równania i wyznaczamy u w zależności od x:

$$(x+1)^{2} + (y-1)^{2} = (x-2)^{2} + y^{2},$$

$$x^{2} + 2x + 1 + y^{2} - 2y + 1 = x^{2} - 4x + 4 + y^{2},$$

$$-4x + 4 - 2x + 2y - 2 = 0,$$

$$-6x + 2y + 2 = 0,$$

$$2y = 6x - 2,$$

$$y = 3x - 1.$$

Podstawiamy y = 3x - 1 do równania $(x-2)^2 + y^2 = 5$. Przekształcamy to równanie:

$$(x-2)^{2} + (3x-1)^{2} = 5$$
$$10x^{2} - 10x = 0,$$
$$10x(x-1) = 0.$$

Stad x = 0 lub x - 1 = 0.

Zatem x = 0 lub x = 1.

Zatem y = -1 lub y = 2.

Punkty styczności mają współrzędne B = (1, 2) i C = (0, -1).

Zapisujemy równania prostych AB i AC stycznychdo okręgu $(x+1)^2 + (y-1)^2 = 5$:

$$y = -2x + 4$$
 i $y = \frac{1}{2}x - 1$ lub tylko ich współczynniki kierunkowe: $a_1 = -2$, $a_2 = \frac{1}{2}$.

Ponieważ $-2 \cdot \frac{1}{2} = -1$, to proste AB i AC są prostopadłe.

IV sposób rozwiązania

Wyznaczamy współrzędne środka S i promień r tego okręgu: $S=(-1,1), r=\sqrt{5}$. Rysujemy okrąg o środku S=(-1,1) i promieniu $r=\sqrt{5}$ oraz punkt A=(2,0).

Mamy: $|SB| = \sqrt{5}$ oraz $|SA| = \sqrt{(-1-2)^2 + (1-0)^2} = \sqrt{10}$, a trójkąt SAB jest prostokątny, z kątem prostym przy wierzchołku B.

Obliczamy
$$\sin | \lesssim SAB | = \frac{\sqrt{5}}{\sqrt{10}} = \frac{\sqrt{2}}{2}.$$

Stąd $| \le SAB | = 45^{\circ}$, czyli $| \le BAC | = 90^{\circ}$.

Stereometria

W dziale stereometria:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) wskazuje i oblicza kąty między ścianami wielościanu, między ścianami i odcinkami oraz między odcinkami takimi jak krawędzie, przekątne, wysokości,
- b) wyznacza związki miarowe w wielościanach i bryłach obrotowych z zastosowaniem trygonometrii

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

- a) wyznacza przekroje wielościanów płaszczyzną,
- b) stosuje twierdzenie o trzech prostych prostopadłych.

Poziom podstawowy

Zadanie 1. (Matura maj 2010 — zadanie 32 (4 p.))

Podstawą ostrosłupa ABCD jest trójkąt ABC. Krawędź AD jest wysokością ostrosłupa (zobacz rysunek). Oblicz objętość ostrosłupa ABCD, jeśli wiadomo, że |AD| = 12, |BC| = 6, |BD| = |CD| = 13.

76 8. Stereometria

Strategia rozwiązania tego zadania sprowadza się do realizacji następujących etapów rozwiązania:

- obliczenie długości krawędzi AB lub AC podstawy ostrosłupa bądź wysokości DE ściany bocznej BCD;
- zastosowanie poprawnej metody obliczenia pola podstawy i obliczenie tego pola;
- obliczenie objętości ostrosłupa.

I sposób rozwiązania ("krawędź podstawy, wysokość AE podstawy i wzór na pole trójkąta ABC")

Z twierdzenia Pitagorasa zastosowanego do trójkąta ABD wynika, że $|AB|^2 = |BD|^2 - |AD|^2 = 25$, stąd |AB| = 5. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta ACD wynika, że |AC| = 5.

Rysujemy trójkąt ABC i prowadzimy w nim wysokość AE. Trójkąt ABC jest równoramienny (|AB| = |AC|), więc |BE| = |EC| = 3. Z twierdzenia Pitagorasa dla trójkąta AEB mamy $|AE|^2 = |AB|^2 - |BE|^2 = 16$, stąd |AE| = 4.

Zatem
$$P_{ABC} = \frac{1}{2} \cdot 6 \cdot 4 = 12$$
.

Objętość ostrosłupa jest równa $V = \frac{1}{3} \cdot 12 \cdot 12 = 48$.

II sposób rozwiązania ("krawędź podstawy, cosinus jednego z kątów trójkąta ABC, wzór z sinusem na pole trójkąta ABC")

Z twierdzenia Pitagorasa zastosowanego do trójkąta ABD wynika, że $|AB|^2 = |BD|^2 - |AD|^2 = 25$, stąd |AB| = 5. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta ACD wynika, że |AC| = 5.

Rysujemy trójkąt ABC, prowadzimy w nim wysokość AE i oznaczamy $\alpha = | \neq ABC|$.

• Wariant I obliczenia pola podstawy. Trójkąt ABC jest równoramienny (|AC|=|BC|), więc |BE|=|EC|=3. Stąd $\cos \alpha = \frac{|BE|}{|BA|} = \frac{3}{5}$. Zatem

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}.$$

Pole trójkąta ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot |BC| \cdot |BA| \cdot \sin \alpha = \frac{1}{2} \cdot 6 \cdot 5 \cdot \frac{4}{5} = 12.$$

Wariant II obliczenia pola podstawy.
 Z twierdzenia cosinusów dla trójkąta ABC obliczamy cos β:

$$6^2 = 5^2 + 5^2 - 2 \cdot 5 \cdot 5 \cos \beta$$

stąd $\cos \beta = \frac{7}{25}$. Następnie obliczamy

$$\sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \frac{24}{25}.$$

Pole trójkąta ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot |AB| \cdot |AC| \cdot \sin \beta = \frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{24}{25} = 12.$$

Po obliczeniu pola podstawy obliczamy objętość V ostrosłupa:

$$V = \frac{1}{3} \cdot 12 \cdot 12 = 48.$$

III sposób rozwiązania ("krawędź podstawy, wzór Herona na pole trójkąta ABC")
Z twierdzenia Pitagorasa zastosowanego do trójkąta ABD wynika, że

$$|AB|^2 = |BD|^2 - |AD|^2 = 25,$$

78 8. Stereometria

stąd |AB|=5. Podobnie, z twierdzenia Pitagorasa zastosowanego do trójkąta DAC wynika, że |AC|=5. Pole trójkąta ABC obliczamy ze wzoru Herona

$$P_{ABC} = \sqrt{p(p-a)(p-b)(p-c)},$$
 gdzie $p = \frac{5+5+6}{2} = 8,$ $p-a = 8-6 = 2,$ $p-b = p-c = 8-5 = 3.$ $P_{ABC} = \sqrt{8 \cdot 2 \cdot 3 \cdot 3} = 12.$

Objętość ostrosłupa jest równa

$$V = \frac{1}{3} \cdot P_{ABC} \cdot |AD| = \frac{1}{3} \cdot 12 \cdot 12 = 48.$$

IV sposób rozwiązania ("wysokość ściany bocznej BCD, wysokość AE podstawy i wzór na pole trójkąta ABC")

Przyjmijmy oznaczenia jak na rysunku.

Trójkąt BCD jest równoramienny, więc środek E boku BC jest spodkiem wysokości DE tego trójkąta. Z twierdzenia Pitagorasa zastosowanego do trójkąta BED wynika, że

$$|DE|^2 = |BD|^2 - |BE|^2 = 13^2 - 3^2 = 160.$$

Z twierdzenia Pitagorasa w trójkącie DAE obliczamy wysokość AE trójkąta ABC:

$$|AE|^2 = |DE|^2 - |AD|^2 = 160 - 12^2 = 16$$

stąd |AE| = 4. Pole trójkąta ABC jest równe $P_{ABC} = \frac{1}{2} \cdot 6 \cdot 4 = 12$.

Objętość ostrosłupa jest równa $V = \frac{1}{3} \cdot 12 \cdot 12 = 48$.

Zadanie 2. (Matura maj 2011 — zadanie 33 (4 p.))

Punkty K, L i M są środkami krawędzi BC, GH i AE sześcianu ABCDEFGH o krawędzi długości 1 (zobacz rysunek). Oblicz pole trójkąta KLM.

Rozwiązanie

Trójkąt ABK jest trójkątem prostokątnym, zatem $|AK|^2 = \left(\frac{1}{2}\right)^2 + 1$. Stąd $|AK|^2 = \frac{5}{4}$.

Trójkat MAK jest trójkatem prostokatnym, zatem

$$|MK|^2 = |MA|^2 + |AK|^2 = \left(\frac{1}{2}\right)^2 + \frac{5}{4} = \frac{3}{2}.$$

Analogicznie dla trójkątów MEL i LGK obliczamy kwadraty długości boków ML i KL: $|\mathsf{ML}|^2 = |\mathsf{KL}|^2 = \frac{3}{2}.$

Ponieważ $|ML|^2 = |KL|^2 = |MK|^2$, więc trójkąt KLMjest równoboczny.

Zatem jego pole jest równe $P = \frac{|MK|^2 \cdot \sqrt{3}}{4}$, stąd $P = \frac{\frac{3}{2} \cdot \sqrt{3}}{4} = \frac{3}{8}\sqrt{3}$.

Poziom rozszerzony

Zadanie 3. (Matura maj 2010 — zadanie 11 (5 p.))

W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość α . Ściany boczne są trójkątami ostrokątnymi. Miara kąta między sąsiednimi ścianami bocznymi jest równa 2α . Wyznacz objętość tego ostrosłupa.

Uwaga

Strategię rozwiązania zadania można zrealizować na wiele sposobów. W każdym z nich wyróżniamy następujące etapy rozwiązania:

80 8. Stereometria

• poprawna interpretacja bryły i podanego kąta dwuściennego w tej bryle;

- wyznaczenie m lub h w zależności od α i α;
- wyznaczenie jednej z wielkości: x, b, h_b (w zależności od α i α), z której można już wyznaczyć H;
- wyznaczenie H w zależności od α i α ;
- wyznaczenie V w zależności od α i α.

Użyliśmy oznaczeń takich jak na rysunku.

I sposób rozwiązania (wyznaczenie m, wyznaczenie x, wyznaczenie H z podobieństwa trójkątów OCS i ECF)

Wysokość podstawy ostrosłupa jest równa $h_p=\frac{\alpha\sqrt{3}}{2}.$

Wyznaczamy wysokość FE trójkąta równoramiennego ABE:

$$tg\alpha = \frac{|FB|}{|BE|} = \frac{\frac{1}{2}a}{m}$$
, stad $m = \frac{a}{2tg\alpha}$.

Wyznaczamy długość odcinka EC z twierdzenia Pitagorasa w trójkącie FEC: $x=\sqrt{h_p^2-m^2}$, czyli

$$x = \sqrt{\left(\frac{\alpha\sqrt{3}}{2}\right)^2 - \left(\frac{\alpha}{2tg\alpha}\right)^2} = \alpha\sqrt{\frac{3tg^2\alpha - 1}{4tg^2\alpha}} = \frac{\alpha\sqrt{4\sin^2\alpha - 1}}{2\sin\alpha}.$$

Z podobieństwa trójkątów OCS i ECF mamy:

$$\frac{|OS|}{|OC|} = \frac{|EF|}{|EC|}, \quad \text{czyli } \frac{H}{\frac{2}{3}h_p} = \frac{m}{\kappa}.$$

Stad

$$H = \frac{m \cdot \frac{2}{3} \cdot \frac{\alpha \sqrt{3}}{2}}{\frac{\alpha \sqrt{4 \sin^2 \alpha - 1}}{2 \sin \alpha}} = \frac{\frac{\alpha}{2 \tan \alpha} \cdot \frac{\alpha \sqrt{3}}{3}}{\frac{\alpha \sqrt{4 \sin^2 \alpha - 1}}{2 \sin \alpha}} = \frac{\alpha \cos \alpha}{\sqrt{3} \cdot \sqrt{4 \sin^2 \alpha - 1}}.$$

Wyznaczamy objętość ostrosłupa:

$$V = \frac{1}{3} \cdot \frac{\alpha^2 \sqrt{3}}{4} \cdot H = \frac{1}{3} \cdot \frac{\alpha^2 \sqrt{3}}{4} \cdot \frac{\alpha \cos \alpha}{\sqrt{3} \sqrt{4 \sin^2 \alpha - 1}} = \frac{\alpha^3 \cos \alpha}{12 \sqrt{4 \sin^2 \alpha - 1}}.$$

II sposób rozwiązania (wyznaczenie h, wyznaczenie x, wyznaczenie b z podobieństwa trójkątów DCS i ECB, wyznaczenie H)

Wysokość podstawy ostrosłupa jest równa $h_p = \frac{a\sqrt{3}}{2}$.

Wyznaczamy wysokość BE ściany bocznej BCS ostrosłupa:

$$\sin \alpha = \frac{|FB|}{|BE|} = \frac{\frac{1}{2}\alpha}{h}$$
, stad $h = \frac{\alpha}{2\sin \alpha}$.

82 8. Stereometria

(Albo z twierdzenia cosinusów: $a^2 = h^2 + h^2 - 2 \cdot h \cdot h \cos 2\alpha$, skąd $h = \frac{a}{\sqrt{2(1-\cos 2\alpha)}}$).

Wyznaczamy długość odcinka EC z twierdzenia Pitagorasa w trójkącie BEC:

$$x=\sqrt{\alpha^2-h^2}=\sqrt{\alpha^2-\frac{\alpha^2}{4\sin^2\alpha}}=\frac{\alpha\sqrt{4\sin^2\alpha-1}}{2\sin\alpha}.$$

Trójkąty DCS i ECB są podobne. Stąd obliczamy długość krawędzi bocznej:

$$\frac{b}{\frac{1}{2}a} = \frac{a}{x}, \quad \text{wiec } b = \frac{\frac{1}{2}a^2}{\frac{a\sqrt{4\sin^2\alpha - 1}}{2\sin\alpha}} = \frac{a\sin\alpha}{\sqrt{4\sin^2\alpha - 1}}.$$

Wyznaczamy wysokość ostrosłupa, korzystając z twierdzenia Pitagorasa dla trójkąta COS:

$$\begin{split} H^2 + \left(\frac{2}{3}h_p\right)^2 &= b^2, \\ H^2 = \left(\frac{\alpha \sin \alpha}{\sqrt{4 \sin^2 \alpha - 1}}\right)^2 - \left(\frac{\alpha \sqrt{3}}{3}\right)^2 &= \\ &= \frac{9\alpha^2 \sin^2 \alpha - 3\alpha^2 \left(4 \sin^2 \alpha - 1\right)}{9\left(4 \sin^2 \alpha - 1\right)} &= \\ &= \frac{\alpha^2 \left(1 - \sin^2 \alpha\right)}{3\left(4 \sin^2 \alpha - 1\right)} = \frac{\alpha^2 \cos^2 \alpha}{3\left(4 \sin^2 \alpha - 1\right)}, \end{split}$$

zatem

$$H = \frac{\alpha \cos \alpha}{\sqrt{3\left(4\sin^2 \alpha - 1\right)}}.$$

Wyznaczamy objętość ostrosłupa:

$$V = \frac{1}{3} \cdot \frac{\alpha^2 \sqrt{3}}{4} \cdot H = \frac{1}{3} \cdot \frac{\alpha^2 \sqrt{3}}{4} \cdot \frac{\alpha \cos \alpha}{\sqrt{3 \left(4 \sin^2 \alpha - 1\right)}} = \frac{1}{12} \frac{\alpha^3 \cos \alpha}{\sqrt{4 \sin^2 \alpha - 1}}.$$

III sposób rozwiązania (wyznaczenie h, wyznaczenie x, wyznaczenie hb, wyznaczenie H)

Wysokość podstawy ostrosłupa jest równa $h_p = \frac{a\sqrt{3}}{2}$.

Wyznaczamy wysokość BE ściany bocznej BCS ostrosłupa:

$$\sin \alpha = \frac{|FB|}{|BE|} = \frac{\frac{1}{2}a}{h}$$
, stad $h = \frac{a}{2\sin \alpha}$.

(Albo z twierdzenia cosinusów: $a^2 = h^2 + h^2 - 2 \cdot h \cdot h \cos 2\alpha$, skąd $h = \frac{\alpha}{\sqrt{2(1-\cos 2\alpha)}}$).

Pole trójkąta BCS możemy zapisać na dwa sposoby:

$$P_{BCS} = \frac{1}{2} \cdot |BC| \cdot |DS| = \frac{1}{2} \alpha \cdot h_b \quad \text{oraz} \quad P_{BCS} = \frac{1}{2} \cdot |CS| \cdot |BE| = \frac{1}{2} \cdot b \cdot \frac{\alpha}{2 \sin \alpha}.$$

Stąd otrzymujemy równość

$$\frac{1}{2}a \cdot h_b = \frac{1}{2} \cdot b \cdot \frac{a}{2\sin \alpha},$$

a z niej: $b = 2h_b \sin \alpha$.

(Zależność między b, h, a, h_b uzyskać możemy też z podobieństwa trójkątów SDC i BEC

$$\frac{b}{h_b} = \frac{a}{h}$$
, skąd kolejno $bh = ah_b$, $b \cdot \frac{a}{2\sin\alpha} = ah_b$, $b = 2h_b\sin\alpha$).

Korzystamy z twierdzenia Pitagorasa w trójkącie CDS i otrzymujemy:

$$h_b^2 = b^2 - \left(\frac{1}{2}a\right)^2$$
.

Stąd i z poprzedniej równości mamy:

$$h_b^2 = (2h_b \sin \alpha)^2 - (\frac{1}{2}a)^2$$
.

Wyznaczamy teraz

$$h_b^2 = \frac{\alpha^2}{4\left(4\sin^2\alpha - 1\right)}.$$

84 8. Stereometria

Korzystamy z twierdzenia Pitagorasa dla trójkąta DOS i wyznaczamy wysokość ostrosłupa

$$H = \sqrt{h_b^2 - \left|OD\right|^2} = \sqrt{\frac{\alpha^2}{4\left(4\sin^2\alpha - 1\right)} - \left(\frac{1}{3} \cdot \frac{\alpha\sqrt{3}}{2}\right)^2} = \frac{\alpha\cos\alpha}{\sqrt{3}\sqrt{4\sin^2\alpha - 1}}.$$

Wyznaczamy objętość ostrosłupa

$$V = \frac{1}{3} P_{ABC} \cdot h = \frac{1}{3} \cdot \frac{\alpha^2 \sqrt{3}}{4} \cdot \frac{\alpha \cos \alpha}{\sqrt{3} \cdot \sqrt{4 \sin^2 \alpha - 1}} = \frac{\alpha^3 \cos \alpha}{12 \sqrt{4 \sin^2 \alpha - 1}}.$$

Zadanie 4. (Matura maj 2011 — zadanie 8 (4 p.))

Wśród wszystkich graniastosłupów prawidłowych sześciokątnych, w których suma długości wszystkich krawędzi jest równa 24, jest taki, który ma największe pole powierzchni bocznej. Oblicz długość krawędzi podstawy tego graniastosłupa.

Rozwiązanie

Wprowadzamy oznaczenia: a — długość krawędzi podstawy graniastosłupa, h — długość krawędzi bocznej graniastosłupa.

Z tego, że suma długości wszystkich krawędzi graniastosłupa prawidłowego sześciokątnego jest równa 24, mamy $12\alpha+6h=24$.

Wyznaczamy jedną ze zmiennych: h=4-2a lub $a=2-\frac{h}{2}$.

Pole P powierzchni bocznej jest równe P = 6ah dla $a \in (0, 2)$ oraz $h \in (0, 4)$.

Aby wyznaczyć długość krawędzi podstawy graniastosłupa, którego pole powierzchni bocznej jest największe:

• zapisujemy funkcję P w zależności od zmiennej α:

$$P(\alpha) = 6\alpha(4-2\alpha), P(\alpha) = -12\alpha^2 + 24\alpha,$$

pole P ma największą wartość, gdy a = 1;

albo

• zapisujemy funkcję P w zależności od zmiennej h:

$$P(h) = 6h\left(2 - \frac{h}{2}\right), P(h) = -3h^2 + 12h,$$

pole P ma największą wartość, gdy h=2.

Zatem $\alpha = 1$.

Zadanie 5. (Matura maj 2011 — zadanie 11 (6 p.))

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD. W trójkącie równoramiennym ASC stosunek długości podstawy do długości ramienia jest równy |AC|:|AS|=6:5. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

I sposób rozwiązania

Wprowadzamy oznaczenia: $\alpha = |\not\downarrow HMS|$, |AC| = 6x, |AS| = 5x. Ponieważ $|AH| = \frac{1}{2} |AC|$, więc |AH| = 3x.

Korzystamy z twierdzenia Pitagorasa dla trójkąta CHS i otrzymujemy:

$$|SH| = \sqrt{|CS|^2 - |HC|^2} = \sqrt{(5x)^2 - (3x)^2} = \sqrt{25x^2 - 9x^2} = 4x.$$

Ponieważ
$$|BC| = \frac{|AC|}{\sqrt{2}}$$
, więc $|BC| = \frac{6x}{\sqrt{2}}$.

Zatem
$$|CM| = \frac{1}{2}|BC| = \frac{1}{2} \cdot \frac{6x}{\sqrt{2}} = \frac{3x}{\sqrt{2}}.$$

Korzystamy z twierdzenia Pitagorasa dla trójkąta CMS i otrzymujemy $|SM|^2 = |CS|^2 - |CM|^2$. Stad

$$|SM| = \sqrt{25x^2 - \frac{9}{2}x^2} = \sqrt{\frac{50 - 9}{2}x^2} = \sqrt{\frac{41}{2}x^2} = \frac{\sqrt{41}}{\sqrt{2}} \cdot x.$$

86 8. Stereometria

Zatem

$$\sin \alpha = \frac{|SH|}{|SM|} = \frac{4x}{\frac{\sqrt{41}}{\sqrt{2}} \cdot x} = \frac{4\sqrt{2}}{\sqrt{41}} = \frac{4\sqrt{82}}{41}.$$

II sposób rozwiązania

Wprowadzamy oznaczenia: $\alpha = | \not\downarrow HMS |$, $\alpha = |AB| = |BC| = |CD| = |AD|$, stąd $|AC| = \alpha \sqrt{2}$ i $|AH| = \frac{1}{2}\alpha\sqrt{2}$.

Zapisujemy równość wynikającą z treści zadania:

$$\frac{|AC|}{|AS|} = \frac{6}{5}, \quad \text{czyli } \frac{a\sqrt{2}}{|AS|} = \frac{6}{5}.$$

Stad
$$|AS| = \frac{5a\sqrt{2}}{6}$$
.

Korzystamy z twierdzenia Pitagorasa dla trójkąta prostokątnego ASH i otrzymujemy:

$$|SH| = \sqrt{|AS|^2 - |AH|^2}.$$

Stad

$$|SH| = \sqrt{\left(\frac{5\alpha\sqrt{2}}{6}\right)^2 - \left(\frac{\alpha\sqrt{2}}{2}\right)^2} = \sqrt{\frac{25\alpha^2 \cdot 2}{36} - \frac{\alpha^2}{2}} = \sqrt{\frac{16\alpha^2}{18}} = \frac{4\alpha}{3\sqrt{2}}.$$

Korzystamy z twierdzenia Pitagorasa dla trójkąta prostokątnego SHM i otrzymujemy:

$$|SM| = \sqrt{|SH|^2 + |HM|^2}$$
 (gdzie $|HM| = \frac{1}{2}a$).

Stad

$$|SM| = \sqrt{\left(\frac{4\alpha}{3\sqrt{2}}\right)^2 + \left(\frac{\alpha}{2}\right)^2} = \sqrt{\frac{16\alpha^2}{18} + \frac{\alpha^2}{4}} = \sqrt{\frac{32\alpha^2 + 9\alpha^2}{36}} = \sqrt{\frac{41\alpha^2}{36}} = \frac{\sqrt{41}}{6} \cdot \alpha.$$

Zatem

$$\sin \alpha = \frac{|SH|}{|SM|} = \frac{\frac{4a}{3\sqrt{2}}}{\frac{\sqrt{41}a}{6}} = \frac{4a}{3\sqrt{2}} \cdot \frac{6}{\sqrt{41}a} = \frac{4\sqrt{82}}{41}.$$

III sposób rozwiązania

Wprowadzamy oznaczenia: $\alpha = | \not\prec HMS|$, |AC| = 6x, |HC| = 3x, |SC| = 5x. Ponieważ $|AH| = \frac{1}{2}|AC|$ stąd |AH| = 3x.

Wtedy
$$|BC|\sqrt{2} = 6x$$
, stąd $|BC| = \frac{6x}{\sqrt{2}}$.

Zatem
$$|BM| = \frac{3x}{\sqrt{2}}$$
, $|HM| = \frac{3x}{\sqrt{2}}$.

Korzystamy z twierdzenia Pitagorasa dla trójkąta BMS i otrzymujemy $\left|SM\right|^2 = \left|BS\right|^2 - \left|BM\right|^2$.

Stąd

$$|SM| = \sqrt{25x^2 - \frac{9}{2}x^2} = \sqrt{\frac{41}{2}x^2} = \frac{\sqrt{41}}{\sqrt{2}}x.$$

Zatem

$$\cos \alpha = \frac{|\mathsf{HM}|}{|\mathsf{SM}|} = \frac{3x}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{41} \cdot x} = \frac{3}{\sqrt{41}}.$$

Stad

$$\sin\alpha = \sqrt{1 - \cos^2\alpha} = \sqrt{1 - \frac{9}{41}} = \sqrt{\frac{32}{41}} = \frac{4\sqrt{2} \cdot \sqrt{41}}{41} = \frac{4\sqrt{82}}{41}.$$

Elementy statystyki opisowej Teoria prawdopodobieństwa i kombinatoryka

W dziale elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka:

Zdający powinien opanować umiejętności z **poziomu podstawowego**, rozwiązując zadania, w których:

- a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych,
- b) zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych; stosuje zasadę mnożenia,
- c) wykorzystuje sumę, iloczyn i różnicę zdarzeń do obliczania prawdopodobieństw zdarzeń,
- d) wykorzystuje własności prawdopodobieństwa i stosuje klasyczny model prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń;

oraz z poziomu rozszerzonego powinien opanować umiejętności, w których:

• wykorzystuje wzory na liczbę permutacji, kombinacji i wariacji do zliczania obiektów w sytuacjach kombinatorycznych.

Poziom podstawowy

Zadanie 1. (Matura maj 2010 — zadanie 33 (4 p.))

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w pierwszym rzucie otrzymamy parzystą liczbę oczek i iloczyn liczb oczek w obu rzutach będzie podzielny przez 12. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.

I sposób rozwiązania

 Ω jest zbiorem wszystkich par (a,b) takich, że $a,b \in \{1,2,3,4,5,6\}$. Mamy model klasyczny.

$$|\Omega| = 36$$
.

Zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$(2,6), (4,3), (4,6), (6,2), (6,4), (6,6)$$
. Zatem $|A| = 6$ i stad $P(A) = \frac{|A|}{|O|} = \frac{6}{36} = \frac{1}{6}$.

Poziom podstawowy

89

II sposób rozwiązania

$$P(A) = 6 \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6}.$$

III sposób rozwiązania

II kostka

		1	2	3	4	5	6
I kostka	1						
	2						×
	3						
	4			×			×
	5						
	6		×		×		×

$$P(A) = \frac{6}{36} = \frac{1}{6}.$$

Zadanie 2. (Próba 2010 — zadanie 31 (2 p.))

Ile jest liczb naturalnych czterocyfrowych, w zapisie których pierwsza cyfra jest parzysta, a pozostałe nieparzyste?

Rozwiązanie

W zapisie danej liczby na pierwszym miejscu może wystąpić jedna z cyfr: 2, 4, 6, 8, czyli

mamy 4 możliwości. Na drugim miejscu może być jedna z cyfr: 1, 3, 5, 7, 9, czyli mamy 5 możliwości. Tak samo na trzecim i czwartym miejscu. Zatem mamy $4 \cdot 5^3 = 500$ takich liczb.

Zadanie 3. (Matura maj 2011 — zadanie 30 (2 p.))

Ze zbioru liczb {1,2,3,...,7} losujemy kolejno dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo wylosowania liczb, których suma jest podzielna przez 3.

I sposób rozwiązania

Zdarzeniami elementarnymi są wszystkie pary (a, b) liczb z podanego zbioru. Jest to model klasyczny. Obliczamy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 7^2$.

Obliczamy liczbę zdarzeń elementarnych sprzyjających zdarzeniu A polegającemu na otrzymaniu liczb, których suma jest podzielna przez 3, np. wypisując je i zliczając:

$$A = \{ (1,2), (1,5), (2,1), (2,4), (2,7), (3,3), (3,6), (4,2), (4,5), (5,1), (5,4), (5,7), (6,3), (6,6), (7,2), (7,5) \},$$

czyli |A| = 16.

Obliczamy prawdopodobieństwo zdarzenia A: $P(A) = \frac{16}{49}$.

II sposób rozwiązania

Zdarzeniami elementarnymi są wszystkie pary (a, b) liczb z podanego zbioru. Jest to model klasyczny. Tworzymy tabelę ilustrującą sytuację opisaną w zadaniu:

	1	2	3	4	5	6	7
1		×			×		
2	×			×			×
3			×			×	
4		×			×		
5	×			×			×
6			×			×	
7		×			×		

Obliczamy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 7^2$.

Zliczamy oznaczone krzyżykami zdarzenia elementarne sprzyjające zdarzeniu A: |A| = 16.

Obliczamy prawdopodobieństwo zdarzenia A: $P(A) = \frac{16}{49}$.

III sposób rozwiązania

Rysujemy drzewo, uwzględniając tylko istotne gałęzie. Prawdopodobieństwo na każdym odcinku tego drzewa jest równe $\frac{1}{7}$.

Obliczamy prawdopodobieństwo zdarzenia A: $P(A) = 16 \cdot \frac{1}{7} \cdot \frac{1}{7} = \frac{16}{49}$.

IV sposób rozwiązania

Rysujemy drzewo, uwzględniając tylko istotne gałęzie i zapisujemy na nich prawdopodobieństwo.

Obliczamy prawdopodobieństwo zdarzenia A: $P(A) = \frac{2}{7} \cdot \frac{2}{7} + \frac{3}{7} \cdot \frac{2}{7} + \frac{2}{7} \cdot \frac{3}{7} = \frac{16}{49}$.

Poziom rozszerzony

Zadanie 4. (Matura maj 2010 — zadanie 10 (4 p.))

Oblicz prawdopodobieństwo tego, że w trzech rzutach symetryczną sześcienną kostką do gry suma kwadratów liczb uzyskanych oczek będzie podzielna przez 3.

I sposób rozwiązania

Zdarzeniami elementarnymi są trzywyrazowe ciągi o wartościach w zbiorze sześcioelementowym. Mamy model klasyczny, $|\Omega| = 6^3 = 216$.

Reszta z dzielenia kwadratu liczby całkowitej przez 3 może być równa 0 lub 1. Suma trzech kwadratów będzie podzielna przez 3 wtedy, gdy każdy z nich będzie podzielny przez 3 albo gdy reszta z dzielenia każdego z nich przez 3 będzie równa 1.

Kwadraty liczb 3 i 6 są liczbami podzielnymi przez 3.

Kwadraty liczb 1, 2, 4 i 5 dają z dzielenia przez 3 resztę 1.

|A| możemy obliczać następująco:

- I sposób
 - ciągi o wartościach ze zbioru $\{3,6\}$ jest ich $2^3 = 8$,
 - ciągi o wartościach ze zbioru $\{1,2,4,5\}$ jest ich $4^3 = 64$, czyli $|A| = 2^3 + 4^3 = 72$,
- II sposób
 - ciągi stałe jest ich 6,
 - ciągi, w których występują dwie liczby ze zbioru $\{3,6\}$ jest ich $2 \cdot 3 = 6$,
 - ciągi, w których występują dwie liczby ze zbioru $\{1,2,4,5\}$ jest ich $4\cdot 3\cdot 3=36$,
 - ciągi różnowartościowe o wartościach ze zbioru $\{1,2,4,5\}$ jest ich $4 \cdot 3 \cdot 2 = 24$, czyli |A| = 6 + 6 + 36 + 24 = 72,
- III sposób
 - ciągi, w których występują liczby dające tę samą resztę przy dzieleniu przez 3 jest ich $3 \cdot 2^3 = 24$,
 - ciągi, w których występują dwie liczby dające przy dzieleniu przez 3 resztę 1 i jedna liczba dająca przy dzieleniu przez 3 resztę 2 jest ich $3 \cdot 2 \cdot 2^2 = 24$,
 - ciągi, w których występują dwie liczby dające przy dzieleniu przez 3 resztę 2 i jedna liczba dająca przy dzieleniu przez 3 resztę 1 jest ich $3 \cdot 2 \cdot 2^2 = 24$, czyli |A| = 24 + 24 + 24 = 72,

Zatem
$$P(A) = \frac{72}{216} = \frac{1}{3}$$
.

II sposób rozwiązania

Rysujemy drzewo (jest wiele wariantów), opisujemy odcinki prawdopodobieństwami i obliczamy prawdopodobieństwo zgodnie z regułami.

$$P(A) = \left(\frac{1}{3}\right)^3 + \left(\frac{2}{3}\right)^3 = \frac{1}{3}.$$

Zadanie 5. (Matura maj 2011 — zadanie 9 (4 p.))

Oblicz, ile jest liczb ośmiocyfrowych, w zapisie których nie występuje zero, natomiast występują dwie dwójki i występują trzy trójki.

Rozwiązanie

Wybieramy miejsce dla dwójek. Jest $\binom{8}{2} = 28$ takich miejsc.

Wybieramy miejsce dla trójek. Jest $\binom{6}{3} = 20$ takich miejsc.

Na pozostałych trzech miejscach mogą wystąpić cyfry: 1, 4, 5, 6, 7, 8, 9. Jest 7³ ciągów trójelementowych ze zbioru siedmioelementowego.

Zatem jest $28 \cdot 20 \cdot 7^3 = 4^2 \cdot 5 \cdot 7^4 = 192080$ liczb spełniających warunki zadania.

Zadanie 6. (Matura maj 2011 — zadanie 12 (3 p.))

A, B są zdarzeniami losowymi zawartymi w Ω . Wykaż, że jeżeli P(A) = 0,9 i P(B) = 0,7, to $P(A \cap B') \le 0,3$ (B'oznacza zdarzenie przeciwne do zdarzenia B).

I sposób rozwiązania

Wiemy, $\dot{z}e\ A \cup B = (A \cap B') \cup B\ i\ (A \cap B') \cap B = \emptyset \text{ oraz } P(A \cup B) \leq 1.$

Zatem mamy: $1 \ge P(A \cup B) = P(A \cap B') + P(B)$, stad $P(A \cap B') \le 0,3$.

II sposób rozwiązania

Wiemy, $\dot{z}e\ 1 \geqslant P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Stad $P(A \cap B) \geqslant 0.6$.

Zatem mamy: $P(A \cap B') = P(A) - P(A \cap B) \le 0.9 - 0.6 = 0.3$.

III sposób rozwiązania

Z faktu, że $A \cap B' \subset B'$ wynika, że $P(A \cap B') \leq P(B')$.

Ponieważ P(B) = 0,7, więc P(B') = 0,3. Stąd wynika, że $P(A \cap B') \leq P(B') = 0,3$.

Dodatek

Zadanie 1.

Oblicz granicę ciągu: $\lim_{n\to\infty} \left(\frac{3n+7}{8n+4} + \frac{3n-4}{6n+5}\right)$.

Rozwiązanie

Ta granica jest równa

$$\lim_{n\to\infty}\left(\frac{3n+7}{8n+4}+\frac{3n-4}{6n+5}\right)=\lim_{n\to\infty}\left(\frac{3+\frac{7}{n}}{8+\frac{4}{n}}+\frac{3-\frac{4}{n}}{6+\frac{5}{n}}\right)=\frac{3}{8}+\frac{1}{2}=\frac{7}{8}=0,875.$$

Zadanie 2.

Dana jest funkcja f określona wzorem: $f(x) = \frac{2x+7}{x^2+3}$ dla każdej liczby rzeczywistej x. Oblicz wartość pochodnej tej funkcji w punkcie $x = -\frac{1}{2}$.

Rozwiązanie

Mamy:

$$f'(x) = \frac{(2x+7)^{'}(x^{2}+3) - (2x+7)(x^{2}+3)^{'}}{(x^{2}+3)^{2}} = \frac{2(x^{2}+3) - 2x(2x+7)}{(x^{2}+3)^{2}} = \frac{-2x^{2} - 14x + 6}{(x^{2}+3)^{2}}.$$

Zatem

$$f'\left(-\frac{1}{2}\right) = \frac{-2 \cdot \frac{1}{4} + 7 + 6}{\left(\frac{13}{4}\right)^2} = \frac{200}{169}.$$

Zadanie 3.

Dany jest okrąg o środku w punkcie S = (60,40) i promieniu równym 97. Prosta o równaniu 3x+4y+20=0 przecina ten okrąg w dwóch punktach A i B. Oblicz długość odcinka AB.

Rozwiązanie

Niech C będzie środkiem odcinka AB, a S środkiem danego okręgu. Wówczas trójkąt ACS jest prostokątny, z kątem prostym przy wierzchołku C. Zatem korzystając z twierdzenia

Pitagorasa, mamy $|AC|^2 = |AS|^2 - |CS|^2$. Z założenia wiemy, że promień |AS| = 97. Obliczamy odległość punktu S od prostej k:

$$|SC| = \frac{|3 \cdot 60 + 4 \cdot 40 + 20|}{\sqrt{3^2 + 4^2}} = 72.$$

Zatem

$$|AC|^2 = 97^2 - 72^2 = (97 - 72) \cdot (97 + 72) = 25 \cdot 169 = 5^2 \cdot 13^2 = 65^2.$$

Stąd wynika, że |AC| = 65, a więc |AB| = 130.

Zadanie 4.

Ramię AD trapezu ABCD (w którym AB || CD) przedłużono do punktu E takiego, że $|AE| = 2 \cdot |AD|$. Punkt M leży na podstawie AB oraz $|AM| = 2 \cdot |MB|$. Odcinek ME przecina przekątną BD w punkcie P. Udowodnij, że |BP| = |PD|.

I sposób rozwiązania

Niech N będzie punktem przecięcia odcinka EM z prostą DC.

Ponieważ AB || CD, więc odcinek DN jest równoległy do AM, a ponieważ D jest środkiem odcinka AE, więc N jest środkiem odcinka ME. Oznacza to, że odcinek DN łączy środki boków AE i ME trójkąta AME. Stąd wnioskujemy, że

$$|DN| = \frac{1}{2} |AM|.$$

Stąd i z założenia $|AM| = 2 \cdot |MB|$ wynika, że

$$|DN| = |MB|$$
.

Równość i równoległość odcinków DN i MB oznacza, że trójkąty PDN i PBM są przystające. Stąd wynika więc, że

$$|BP| = |PD|$$
.

To właśnie należało udowodnić.

II sposób rozwiązania

Niech N będzie punktem przecięcia odcinka EM z prostą DC.

Ponieważ AB || CD, więc odcinek DN jest równoległy do AM. Wnioskujemy stąd, że

$$|\neq EDN| = |\neq EAM|$$
 oraz $|\neq END| = |\neq EMA|$.

To oznacza, że trójkąty DNE i AME są podobne (cecha kkk podobieństwa trójkątów). Stąd wynika proporcja

$$\frac{|DE|}{|DN|} = \frac{|AE|}{|AM|},$$

ale $|AE| = 2 \cdot |AD|$, czyli $|AE| = 2 \cdot |DE|$, więc

$$\frac{|DE|}{|DN|} = \frac{2 \cdot |DE|}{|AM|}.$$

Stąd wnioskujemy, że $|AM|=2\cdot |DN|$. Równość ta, wraz z równością $|AM|=2\cdot |MB|$, prowadzi do wniosku, że

$$|DN| = |MB|$$
.

To z kolei, wraz z równościami kątów $|\not \times PMB| = |\not \times PND|$ i $|\not \times PBM| = |\not \times PDN|$, prowadzi do wniosku, że trójkąty MBP i NDP są przystające.

Stąd wnioskujemy, że boki BP i DP tych trójkątów mają tę samą długość, co kończy dowód.

Zadanie 5.

Wyznacz zbiór wartości funkcji f określonej wzorem $f(x) = \frac{x+3}{x^2+7}$ dla każdej liczby rzeczywistej x.

I sposób rozwiązania

Aby wyznaczyć zbiór wartości funkcji $f(x) = \frac{x+3}{x^2+7}$, wystarczy sprawdzić, dla jakich wartości parametru m równanie $\frac{x+3}{x^2+7} = m$ ma rozwiązanie.

Przekształcamy to równanie i zapisujemy w postaci równoważnej $mx^2 - x + 7m - 3 = 0$. Dla m = 0 równanie $mx^2 - x + 7m - 3 = 0$ jest równaniem liniowym -x - 3 = 0 i ma rozwiązanie x = -3.

Dla $m \neq 0$ jest to równanie kwadratowe o wyróżniku $\Delta = 1 - 4m(7m - 3)$. Wystarczy zatem sprawdzić, dla jakich $m \neq 0$ wyróżnik jest nieujemny. Mamy więc nierówność $28m^2 - 12m - 1 \leqslant 0$ (gdzie $m \neq 0$), której zbiorem rozwiązań jest przedział $\left\langle -\frac{1}{14}, \frac{1}{2} \right\rangle$ z wyłączeniem liczby 0.

Ponieważ dla m=0 równanie m $x^2-x+7m-3=0$ ma rozwiązanie, więc równanie $\frac{x+3}{x^2+7}=m$ ma rozwiązanie dla m $\in \left\langle -\frac{1}{14},\frac{1}{2}\right\rangle$.

Ostatecznie stwierdzamy, że zbiorem wartości funkcji $f(x) = \frac{x+3}{x^2+7}$ jest przedział $\left\langle -\frac{1}{14}, \frac{1}{2} \right\rangle$.

II sposób rozwiązania

Znajdujemy najmniejszą i największą wartość funkcji $f(x) = \frac{x+3}{x^2+7}$ w zbiorze liczb rzeczywistych.

Wyznaczamy pochodną tej funkcji: $f'(x) = \frac{1(x^2+7)-2x(x+3)}{(x^2+7)^2} = \frac{-x^2-6x+7}{(x^2+7)^2}.$

Następnie znajdujemy miejsca zerowe tej pochodnej:

$$\frac{-x^2-6x+7}{(x^2+7)^2}=0.$$

Otrzymane równanie jest równoważne równaniu

$$-x^2-6x+7=0$$

stąd $x_1 = -7$, $x_2 = 1$.

Teraz zauważamy, że:

- jeśli x < -7, to f'(x) < 0,
- jeśli -7 < x < 1, to f'(x) > 0,
- jeśli x > 1, to f'(x) < 0.

Zatem funkcja f jest malejąca w przedziale $(-\infty, -7)$, rosnąca w przedziale $\langle -7, 1 \rangle$ i malejąca w przedziale $\langle 1, +\infty \rangle$.

Następnie obliczamy $f(-7) = -\frac{1}{14}$, $f(1) = \frac{1}{2}$.

Ponadto

- jeśli $x \leq -7$, to f(x) < 0,
- jeśli $x \ge 1$, to f(x) > 0.

Stad wynika, że:

- jeśli $x \le -7$, to $-\frac{1}{14} \le f(x) < 0$,
- jeśli $x \ge 1$, to $0 < f(x) \le \frac{1}{2}$.

Zatem $-\frac{1}{14}$ jest najmniejszą wartością funkcji f, a $\frac{1}{2}$ jest największą wartością tej funkcji.

Z ciągłości funkcji f wynika, że zbiorem jej wartości jest przedział $\left\langle -\frac{1}{14},\frac{1}{2}\right\rangle$.

Zadanie 6.

Oblicz, ile jest nieparzystych liczb czterocyfrowych, w których zapisie dziesiętnym występuje co najmniej jedna siódemka.

I sposób rozwiązania (dopełnienie)

Obliczamy, ile jest nieparzystych liczb naturalnych czterocyfrowych. Pierwszą cyfrę (tysięcy) możemy wybrać na 9 sposobów, następne dwie cyfry na 10 sposobów i ostatnią (jedności) na 5 sposobów. Mamy zatem $9 \cdot 10^2 \cdot 5 = 4500$ liczb czterocyfrowych nieparzystych.

Obliczamy, ile jest nieparzystych liczb naturalnych czterocyfrowych, w zapisie których nie występuje cyfra 7. Pierwszą cyfrę możemy wówczas wybrać na 8 sposobów, każdą z następnych dwóch na 9 sposobów i cyfrę jedności na 4 sposoby. Mamy zatem $8 \cdot 9^2 \cdot 4 = 2592$ takich liczb czterocyfrowych nieparzystych.

Stąd wnioskujemy, że liczb nieparzystych czterocyfrowych, w których zapisie dziesiętnym co najmniej jedna cyfra jest siódemką, jest 4500–2592 = 1908 (liczby te należą do zbioru liczb czterocyfrowych nieparzystych i nie należą do zbioru nieparzystych liczb czterocyfrowych, w zapisie których nie występuje cyfra 7).

Uwaga

Możemy także zauważyć, że jest 9000 liczb czterocyfrowych, a ponieważ co druga jest nieparzysta, to istnieje 4500 liczb czterocyfrowych nieparzystych.

II sposób rozwiązania (liczba siódemek)

Rozważamy cztery parami rozłączne zbiory nieparzystych liczb czterocyfrowych:

- zbiór liczb, w których zapisie dziesiętnym cyfra 7 występuje dokładnie jeden raz;
- zbiór liczb, w których zapisie dziesiętnym cyfra 7 występuje dokładnie dwa razy;
- zbiór liczb, w których zapisie dziesiętnym cyfra 7 występuje dokładnie trzy razy;
- zbiór liczb, w których zapisie dziesiętnym cyfra 7 występuje cztery razy.

Najpierw obliczamy, ile jest nieparzystych liczb czterocyfrowych, w zapisie których cyfra 7 występuje dokładnie **jeden raz**.

- 1. Jeśli pierwszą cyfrą (tysięcy) jest siódemka, to dwie następne cyfry możemy wybrać na 9 sposobów, a cyfrę jedności na 4 sposoby. Mamy zatem 9²·4=324 takich liczb.
- 2. Jeśli siódemka jest cyfrą setek, to cyfrę tysięcy możemy wybrać na 8 sposobów, cyfrę dziesiątek na 9 sposobów i cyfrę jedności na 4 sposoby. Takich liczb jest 8.9.4 = 288.
- 3. Analogicznie wykazujemy, że jest 288 liczb, w zapisie których cyfra dziesiątek jest siódemką.
- 4. Jeśli siódemka jest cyfrą jedności, to cyfrę tysięcy możemy wybrać na 8 sposobów, a każdą z dwóch następnych cyfr na 9 sposobów. Takich liczb jest zatem $8 \cdot 9^2 = 648$.

Mamy więc 324+288+288+648=1548 nieparzystych liczb czterocyfrowych, w zapisie których cyfra 7 występuje jeden raz.

Następnie obliczamy, ile jest nieparzystych liczb czterocyfrowych, w zapisie których cyfra 7 występuje dokładnie **dwa razy**.

- 1. Jeśli dwie pierwsze cyfry to siódemki, to następną cyfrę możemy wybrać na 9 sposobów, a cyfrę jedności na 4 sposoby. Mamy zatem $9 \cdot 4 = 36$ takich liczb.
- 2. Analogicznie wykazujemy, że jest 36 liczb, w zapisie których pierwszą i trzecią cyfrą jest siódemka.
- 3. Jeśli pierwszą i ostatnią cyfrą jest siódemka, to każdą z cyfr: setek i dziesiątek możemy wybrać na 9 sposobów. Mamy zatem $9^2 = 81$ takich liczb.
- 4. Jeśli drugą i trzecią cyfrą jest siódemka, to cyfrę tysięcy możemy wybrać na 8 sposobów i cyfrę jedności na 4 sposoby. Takich liczb jest $8 \cdot 4 = 32$.

- 5. Jeśli drugą i czwartą cyfrą jest siódemka, to cyfrę tysięcy możemy wybrać na 8 sposobów, a cyfrę dziesiątek na 9 sposobów. Mamy zatem $8 \cdot 9 = 72$ takie liczby.
- 6. Jeśli trzecią i czwartą cyfrą jest siódemka, to cyfrę tysięcy możemy wybrać na 8 sposobów i cyfrę setek na 9 sposobów. Takich liczb jest $8 \cdot 9 = 72$.

Mamy więc 36+36+81+32+72+72=329 nieparzystych liczb czterocyfrowych, w których zapisie dziesiętnym cyfra 7 występuje dwa razy.

Obliczamy, ile jest nieparzystych liczb czterocyfrowych, w zapisie których cyfra 7 występuje dokładnie trzy razy.

- 1. Jeśli cyfrą jedności nie jest cyfra 7, to mamy 4 takie liczby (cyfrę jedności możemy wybrać na 4 sposoby spośród cyfr nieparzystych 1,3,5,9).
- 2. Jeśli cyfrą dziesiątek nie jest cyfra 7, to mamy 9 takich liczb (cyfrę dziesiątek możemy wybrać na 9 sposobów spośród cyfr 0,1,2,3,4,5,6,8,9).
- 3. Analogicznie wykazujemy, że jest 9 liczb, w zapisie których cyfra setek nie jest siódemką.
- 4. Jeśli cyfra 7 nie jest cyfrą tysięcy, to mamy 8 takich liczb (cyfrę tysięcy możemy wybrać na 8 sposobów spośród cyfr 1,2,3,4,5,6,8,9).

Mamy więc 4+9+9+8=30 nieparzystych liczb, w zapisie których cyfra 7 występuje trzy razy.

Ponadto jest jedna liczba czterocyfrowa nieparzysta, w zapisie której występują 4 siódemki.

Z reguły dodawania mamy: 1548+329+30+1=1908 nieparzystych liczby czterocyfrowych, w których zapisie dziesiętnym co najmniej jedna cyfra to 7.

Zadanie 7.

Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem

$$a_n = \frac{2}{\left(\sqrt{3}\right)^n}$$
 dla $n = 1, 2, 3, \dots$

Oblicz sumę wszystkich wyrazów tego ciągu.

Rozwiązanie

Pierwszy wyraz i iloraz tego ciągu są odpowiednio równe: $a_1 = \frac{2}{\sqrt{3}}, \ q = \frac{1}{\sqrt{3}}.$

Ponieważ
$$|q| = \left| \frac{1}{\sqrt{3}} \right| < 1$$
, więc $S = \frac{a_1}{1 - q} = \frac{\frac{2}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \sqrt{3} + 1$.

Zadanie 8.

Dana jest funkcja f określona wzorem $f(x) = x^3 - 3x + 1$ i leżący na wykresie tej funkcji punkt A o współrzędnej x równej 2. Wyznacz równanie stycznej do wykresu funkcji f w punkcie A.

Rozwiązanie

Styczna do wykresu wielomianu y = f(x) w punkcie $A = (x_0, f(x_0))$ ma równanie postaci y = ax + b, gdzie współczynnik kierunkowy a jest równy $a = f'(x_0)$. W naszym przypadku $f(x) = x^3 - 3x + 1$ oraz $x_0 = 2$.

Mamy zatem $f'(x) = 3x^2 - 3$, skąd dostajemy $a = 3 \cdot 2^2 - 3 = 9$. Punkt A ma współrzędne (2, f(2)), czyli A = (2, 3). Prosta o równaniu y = 9x + b ma przechodzić przez punkt A, więc $3 = 9 \cdot 2 + b$. Zatem b = -15 i ostatecznie równanie stycznej ma postać y = 9x - 15.

Zadanie 9.

Rozwiąż równanie $\sin 4x - \cos 5x = 0$ w przedziale $\left\langle 0, \frac{\pi}{2} \right\rangle$.

I sposób rozwiązania

Równanie możemy zapisać w postaci równoważnej

$$\sin 4x = \cos 5x$$
.

Ponieważ $\cos 5x = \sin\left(\frac{\pi}{2} - 5x\right)$, więc równanie możemy zapisać w postaci

$$\sin 4x = \sin \left(\frac{\pi}{2} - 5x\right)$$
.

Stad wynika, że

$$4x = \frac{\pi}{2} - 5x + 2k\pi$$
 lub $4x = \pi - \left(\frac{\pi}{2} - 5x\right) + 2k\pi$, gdzie k jest liczbą całkowitą.

Zatem

$$x = \frac{\pi}{18} + k \cdot \frac{2\pi}{9}$$
 lub $x = -\frac{\pi}{2} - 2k\pi$, gdzie k jest liczbą całkowitą.

Wybierając te rozwiązania, które należą do przedziału $\left<0,\frac{\pi}{2}\right>$, dostajemy:

$$x = \frac{\pi}{18}$$
, $x = \frac{5\pi}{18}$, $x = \frac{\pi}{2}$.

II sposób rozwiązania

Ponieważ $\cos 5x = \sin\left(\frac{\pi}{2} - 5x\right)$, więc równanie możemy zapisać w postaci

$$\sin 4x - \sin \left(\frac{\pi}{2} - 5x\right) = 0.$$

Ze wzoru na różnicę sinusów otrzymujemy

$$2\cos\frac{4x + \frac{\pi}{2} - 5x}{2}\sin\frac{4x - \left(\frac{\pi}{2} - 5x\right)}{2} = 0.$$

Stad

$$\cos\left(\frac{\pi}{4} - \frac{x}{2}\right) = 0 \text{ lub } \sin\left(\frac{9}{2}x - \frac{\pi}{4}\right) = 0.$$

Zatem

$$\frac{\pi}{4}-\frac{x}{2}=\frac{\pi}{2}+k\pi \text{ lub } \frac{9}{2}x-\frac{\pi}{4}=k\pi, \text{ gdzie } k \text{ jest liczbą całkowitą,}$$
czyli

$$x = -\frac{\pi}{2} - 2k\pi$$
 lub $x = \frac{\pi}{18} + k \cdot \frac{2\pi}{9}$, gdzie k jest liczbą całkowitą.

Wybierając te rozwiązania, które należą do przedziału $\left<0,\frac{\pi}{2}\right>$, dostajemy:

$$x = \frac{\pi}{18}$$
, $x = \frac{5\pi}{18}$, $x = \frac{\pi}{2}$.

Zadanie 10.

Wykaż, że jeżeli zdarzenia losowe $A, B \subset \Omega$ są takie, że P(A) = 0, 6 oraz P(B) = 0, 8, to $P(A|B) \ge 0, 5$. (P(A|B) oznacza prawdopodobieństwo warunkowe zajścia zdarzenia A pod warunkiem zajścia zdarzenia B).

Rozwiązanie

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
. Nierówność $P(A|B) \geqslant 0,5$ jest równoważna nierówności $\frac{P(A \cap B)}{0,8} \geqslant 0,5$, więc wystarczy wykazać, że $P(A \cap B) \geqslant 0,4$.

Ponieważ $P(A \cup B) \le 1$ oraz $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, więc $P(A \cap B) \ge 0,6+0,8-1=0,4$, co należało udowodnić.

Zadanie 11.

Niech m =
$$\log_{21} 7$$
. Wykaż, że $\log_7 27 = \frac{3(1-m)}{m}$.

I sposób rozwiązania

Zauważamy, że
$$\log_7 21 = \frac{1}{\log_{21} 7} = \frac{1}{m}$$
.

Zapisujemy kolejno

$$\log_7 27 = \log_7 3^3 = 3\log_7 3 = 3\log_7 \left(\frac{21}{7}\right) = 3\left(\log_7 21 - \log_7 7\right) = 3\left(\frac{1}{m} - 1\right) = 3 \cdot \frac{1 - m}{m}.$$

To kończy dowód.

II sposób rozwiązania

Zauważamy, że

$$\frac{3(1-m)}{m} = 3\left(\frac{1}{m}-1\right) = 3(\log_7 21 - 1) = 3(\log_7 21 - \log_7 7) = 3\log_7 \frac{21}{7} = \log_7 3^3 = \log_7 27.$$

To kończy dowód.

III sposób rozwiązania

Z założenia $m = \log_{21} 7$ wynika, że

$$\frac{1}{m} = \log_7 21 = \log_7 7 + \log_7 3 = 1 + \log_7 3,$$

czyli

$$\log_7 3 = \frac{1}{m} - 1$$
.

Zatem

$$\log_7 27 = \log_7 3^3 = 3\log_7 3 = 3 \cdot \left(\frac{1}{m} - 1\right) = 3 \cdot \frac{1 - m}{m}.$$

Zadanie 12.

Oblicz najmniejszą liczbę naturalną n spełniającą nierówność $\left|\frac{2n-10}{3n+1}-\frac{2}{3}\right|<\frac{1}{30}$.

Rozwiązanie

Rozwiązujemy nierówność $\left|\frac{2n-10}{3n+1}-\frac{2}{3}\right|<\frac{1}{30}$. Stąd kolejno otrzymujemy:

$$\left| \frac{3(2n-10)-2(3n+1)}{3(3n+1)} \right| < \frac{1}{30},$$
$$\left| \frac{-32}{3(3n+1)} \right| < \frac{1}{30}.$$

Wartość bezwzględna ilorazu jest równa ilorazowi wartości bezwzględnych, więc

$$\frac{|-32|}{|3(3n+1)|} < \frac{1}{30}.$$

Stad

$$\frac{32}{3(3n+1)} < \frac{1}{30},$$

gdyż 3(3n+1) > 0 dla każdej liczby naturalnej n. Stąd

$$3n+1>320$$
,

$$n > 106\frac{1}{3}$$
.

Zatem najmniejszą liczbą naturalną spełniającą podaną nierówność jest

$$n = 107$$
.

Zadanie 13.

Okręgi o równaniach $x^2+y^2=625$ i $(x-36)^2+(y-15)^2=1600$ mają dwa punkty przecięcia: A i B. Oblicz długość odcinka AB.

I sposób rozwiązania

Oznaczamy:

- środek pierwszego okręgu O,
- środek drugiego okręgu P,
- punkty przecięcia okręgów A i B.

Niech C będzie punktem przecięcia odcinków AB i OP, |AC| = h, |OC| = x.

Zauważamy, że |AB|=2h oraz |OP|=39. Korzystamy z twierdzenia Pitagorasa i otrzymujemy: $h^2=25^2-x^2$ oraz $h^2=40^2-(39-x)^2$. Rozwiązujemy równanie $25^2-x^2=40^2-(39-x)^2$, otrzymując x=7. Zatem $h^2=25^2-7^2=576$, stąd h=24, czyli |AB|=2h=48.

II sposób rozwiązania (ze wzoru Herona)

Oznaczamy wszystko tak jak w sposobie I. Boki trójkąta oznaczamy tak jak na rysunku.

Obliczamy pole trójkąta OPA ze wzoru Herona.

Niech p oznacza połowę obwodu trójkąta OPA. Wtedy p=52, p-a=13, p-b=27, p-c=12 i $P_{OPA} = \sqrt{52 \cdot 13 \cdot 27 \cdot 12} = 468$.

Z drugiej strony $P_{OPA} = \frac{1}{2} \cdot 39 \cdot h$. Zatem h = 24, czyli |AB| = 2h = 48.

Uwaga

Pole trójkąta OPA można obliczyć również z twierdzenia cosinusów:

$$25^2 + 40^2 - 2 \cdot 25 \cdot 40 \cos \alpha = 39^2, \text{ stąd } \cos \alpha = \frac{625 + 1600 - 1521}{2000} = \frac{704}{2000} = \frac{44}{125}.$$

$$\text{Zatem} \sin \alpha = \sqrt{1 - \left(\frac{44}{125}\right)^2} = \frac{117}{125}. \text{ Obliczamy pole trójkąta OPA: } P_{\text{OPA}} = \frac{1}{2} \cdot 25 \cdot 40 \cdot \frac{117}{125} = 468.$$

III sposób rozwiązania (punkty przecięcia okręgu)

Rozwiązujemy układ równań, aby znaleźć punkty przecięcia dwóch okręgów:

$$\begin{cases} x^2 + y^2 = 625 \\ (x - 36)^2 + (y - 15)^2 = 1600 \end{cases}$$
$$\begin{cases} x^2 + y^2 = 625 \\ x^2 - 72x + y^2 - 30y = 79. \end{cases}$$

Odejmujemy stronami drugie równanie od pierwszego i otrzymujemy równanie 12x+5y=91. Stąd $y=\frac{91-12x}{5}$ wstawiamy do pierwszego równania i rozwiązujemy równanie kwadratowe: $x^2+\left(\frac{91-12x}{5}\right)^2=625$.

Po uporządkowaniu otrzymujemy równanie kwadratowe: $169x^2-2184x-7344=0$, którego wyróżnik jest równy $\Delta=3120^2$ oraz $x_1=-\frac{36}{13}$, $x_2=\frac{204}{13}$. Obliczamy drugą współrzędną:

$$y_1 = \frac{323}{13}, y_2 = -\frac{253}{13}.$$

Mamy zatem 2 punkty przecięcia: $A = \left(-\frac{36}{13}, \frac{323}{13}\right)$ oraz $B = \left(\frac{204}{13}, -\frac{253}{13}\right)$.

Obliczamy odległość między nimi:

$$|AB|^2 = \left(\frac{204}{13} + \frac{36}{13}\right)^2 + \left(-\frac{253}{13} - \frac{323}{13}\right)^2 = \left(\frac{240}{13}\right)^2 + \left(\frac{576}{13}\right)^2 = \frac{24^2 \cdot 10^2}{13^2} + \frac{24^2 \cdot 24^2}{13^2} = \frac{24^2 \cdot 10^2}{13^2} + \frac{24^2 \cdot 24^2}{13^2} = \frac{24^2 \cdot 26^2}{13^2} = 24^2 \cdot 2^2 = 48^2.$$

Zatem |AB| = 48.

Zadanie 14.

Dany jest wykres funkcji kwadratowej $f(x) = x^2$ oraz punkt A = (3,0). Znajdź punkt na wykresie funkcji f leżący najbliżej punktu A.

I sposób rozwiązania

Dowolny punkt leżący na wykresie funkcji f ma współrzędne: (x, x^2) . Obliczamy odległość takiego punktu od punktu A: $d = \sqrt{(x-3)^2 + (x^2-0)^2}$.

Wprowadzamy funkcję $g(x) = (x-3)^2 + (x^2-0)^2 = x^4 + x^2 - 6x + 9$, gdzie x jest liczbą rzeczywistą.

Obliczamy pochodną funkcji q i rozkładamy na czynniki:

$$g'(x) = 4x^3 + 2x - 6 = 2(2x^3 + x - 3) = 2(x - 1)(2x^2 + 2x + 3)$$
.

Obliczamy wyróżnik trójmianu kwadratowego $2x^2 + 2x + 3$:

 $\Delta = 4 - 4 \cdot 2 \cdot 3 < 0$, zatem $2x^2 + 2x + 3 > 0$, więc jedynym miejscem zerowym funkcji g'(x) jest x = 1.

Zauważamy również, że:

- g'(x) < 0 dla x < 1,
- g'(x) > 0 dla x > 1.

A więc funkcja g ma minimum lokalne dla x=1, które jest jednocześnie jej najmniejszą wartością.

Zatem punktem na wykresie funkcji f leżącym najbliżej punktu A jest punkt (1,1).

II sposób rozwiązania

Znajdziemy taki punkt B należący do wykresu funkcji $y=x^2$, że styczna do wykresu w punkcie B jest prostopadła do prostej AB oraz punkt A i parabola leżą po różnych stronach tej stycznej. Wówczas dla dowolnego punktu $C \neq B$ należącego do paraboli zachodzi

gdzie C' to punkt przecięcia stycznej i odcinka AC.

Szukamy punktu B: $B=(a,a^2)$. Styczna ma współczynnik kierunkowy 2a. Prosta AB ma współczynnik kierunkowy $\frac{a^2}{a-3}$, gdy $a \neq 3$ (przypadek a=3 sprawdzamy bezpośrednio).

Styczna będzie prostopadła do prostej AB, gdy

$$2\alpha \cdot \frac{\alpha^2}{\alpha - 3} = -1$$
$$2\alpha^3 + \alpha - 3 = 0$$
$$\alpha = 1.$$

Odp.: Punkt B = (1,1) ležy najbližej punktu A.

Zadanie 15.

Wykaż, że funkcja $f(x) = x^3 - 12x$ w przedziale (3,5) jest rosnąca.

Rozwiązanie

Wyznaczamy pochodną funkcji f: $f'(x) = 3x^2 - 12$. Pochodna funkcji przyjmuje wartości dodatnie dla $x \in (-\infty, -2) \cup (2, +\infty)$, w szczególności w przedziale (3, 5). Zatem funkcja f jest rosnąca w przedziale (3, 5).

Zadanie 16.

W ostrosłupie prawidłowym czworokątnym krawędź podstawy jest równa 10 cm, a kąt nachylenia ściany bocznej do płaszczyzny podstawy jest równy 60°. Ostrosłup ten przecięto płaszczyzną przechodzącą przez krawędź podstawy i nachyloną do płaszczyzny podstawy pod kątem 30°. Oblicz pole otrzymanego przekroju.

Rozwiązanie

Omawianym przekrojem jest trapez BCLK.

Rozważamy przekrój ostrosłupa płaszczyzną przechodzącą przez wierzchołek S i środki E, F krawędzi AD i BC. Ponieważ $|\not\leftarrow$ FES $|=60^\circ$, więc trójkąt równoramienny FES jest trójkątem równobocznym o boku 10, stąd wysokość PF przekroju BCLK (jako wysokość trójkąta FES) jest równa $5\sqrt{3}$. Punkt P jest spodkiem wysokości trójkąta równobocznego FES, czyli jest środkiem odcinka ES. Odcinek KL jest równoległy do AD, stąd K jest środkiem odcinka AS.

Korzystamy z twierdzenia o odcinku łączącym środki boków trójkąta i otrzymujemy KL=5. Pole przekroju jest równe $P = \frac{1}{2} (10+5) \cdot 5\sqrt{3} = \frac{75}{2} \sqrt{3}$.

Zadanie 17.

Dany jest trójkąt ABC, w którym A=(0,0), B=(6,0), C=(6p,6q), gdzie p,q>0 oraz $p \neq \frac{1}{2}$.

Punkt H jest punktem przecięcia wysokości (ortocentrum) tego trójkąta.

Punkt O jest środkiem okręgu opisanego na tym trójkącie.

Punkt S jest środkiem ciężkości tego trójkąta.

Wyznacz równanie prostej OH i wykaż, że punkt S leży na tej prostej.

Rozwiązanie

Oznaczamy, tak jak na rysunku:

E — środek odcinka AC,

F-środek odcinka AB,

BD i CG — wysokości trójkąta ABC.

Zauważamy, że: E = (3p, 3q), F = (3, 0), G = (6p, 0).

Równanie prostej AC ma postać y = ax. Punkt C leży na tej prostej, więc $6q = a \cdot 6p$, zatem $a = \frac{q}{p}$. Stąd wynika, że prosta AC ma równanie: $y = \frac{q}{p} \cdot x$.

Równanie prostej EO ma postać: $y=-\frac{p}{q}\cdot x+c$ dla pewnego c. Punkt E leży na tej prostej, więc $3q=-\frac{p}{q}\cdot 3p+c$. Stąd $c=3q+\frac{3p^2}{q}=\frac{3\left(p^2+q^2\right)}{q}$.

więc
$$3q = -\frac{p}{q} \cdot 3p + c$$
. Stąd $c = 3q + \frac{3p^2}{q} = \frac{3(p^2 + q^2)}{q}$.

Prosta EO ma zatem równanie: $y = -\frac{p}{a} \cdot x + \frac{3(p^2 + q^2)}{a}$.

Prosta FO ma równanie: x=3. Stąd punkt O ma współrzędne: $O = \left(3, -\frac{3p}{q} + \frac{3\left(p^2 + q^2\right)}{q}\right)$, czyli $O = \left(3, \frac{3\left(p^2 + q^2 - p\right)}{q}\right)$.

Równanie prostej BD ma postać $y = -\frac{p}{q} \cdot x + d$ dla pewnego d. Punkt B leży na prostej BD, więc $0 = -\frac{p}{q} \cdot 6 + d$, stąd $d = \frac{6p}{q}$. Prosta BD ma zatem równanie: $y = -\frac{p}{q} \cdot x + \frac{6p}{q}$.

Prosta CG ma równanie x = 6p. Zatem punkt H ma współrzędne: H = $\left(6p, \frac{6(p-p^2)}{q}\right)$.

Wreszcie
$$S = \left(\frac{0+6+6p}{3}, \frac{0+0+6q}{3}\right)$$
, czyli $S = (2p+2, 2q)$.

Wyznaczamy równanie prostej OH.

Równanie to jest postaci: y = ax + b.

$$O = \left(3, \frac{3\left(p^2 + q^2 - p\right)}{q}\right) \text{ oraz } H = \left(6p, \frac{6\left(p - p^2\right)}{q}\right) \text{ spełniają to równanie, zatem:}$$

$$\frac{3\left(p^2 + q^2 - p\right)}{q} = a \cdot 3 + b \text{ oraz } \frac{6\left(p - p^2\right)}{q} = a \cdot 6p + b.$$

Rozwiązaniem tego układu równań jest:

$$a = \frac{3p - 3p^2 - q^2}{q(2p - 1)}$$

$$6p(p^2 + q^2 - 1)$$

$$b = \frac{6p(p^2 + q^2 - 1)}{q(2p - 1)}.$$

Zatem prosta OH ma równanie:

$$y = \frac{3p - 3p^2 - q^2}{q(2p - 1)} \cdot x + \frac{6p(p^2 + q^2 - 1)}{q(2p - 1)}.$$

Sprawdzamy, że współrzędne punktu S spełniają to równanie, tzn. że zachodzi równość:

$$2q = \frac{3p - 3p^2 - q^2}{q(2p - 1)} \cdot (2p + 2) + \frac{6p(p^2 + q^2 - 1)}{q(2p - 1)}.$$

Po wykonaniu działań i uporządkowaniu wyrażeń otrzymujemy równość prawdziwą, co kończy dowód, że współrzędne punktu S spełniają równanie prostej OH.

Uwaga

Można pokazać, że $\overrightarrow{OH} = 3 \cdot \overrightarrow{OS}$, skąd wynika, że punkt S leży na prostej OH. Obliczamy współrzędne wektorów \overrightarrow{OS} oraz \overrightarrow{OH} :

$$\overrightarrow{OS} = \left[2p + 2 - 3, 2q - \frac{3(p^2 + q^2 - p)}{q} \right] = \left[2p - 1, \frac{3p - 3p^2 - q^2}{q} \right]$$

oraz

$$\overrightarrow{OH} = \left[6p - 3, \frac{6(p - p^2)}{q} - \frac{3(p^2 + q^2 - p)}{q}\right] = \left[6p - 3, \frac{9p - 9p^2 - 3q^2}{q}\right] = 3 \cdot \overrightarrow{OS}.$$

Zatem punkt S leży na prostej OH.

Zadanie 18.

Dany jest trójkąt prostokątny ABC, w którym $|\not\prec A| = 90^\circ$. Przeciwprostokątna BC ma długość a, dwusieczna AD kąta prostego ma długość d. Udowodnij, że pole trójkąta ABC jest równe $P = \frac{1}{4} \left(d^2 + d\sqrt{d^2 + 2\alpha^2} \right)$.

I sposób rozwiązania

Oznaczamy, tak jak na rysunku: |AB| = c, |AC| = b.

Pole trójkąta ABC jest równe: $P = \frac{bc}{2}$, skąd bc = 2P.

Obliczamy inaczej pole trójkąta ABC:

$$P = \frac{c d\sqrt{2}}{4} + \frac{b d\sqrt{2}}{4} = (b+c) \cdot \frac{d\sqrt{2}}{4}.$$

Chcemy obliczyć b+c. Zauważamy, że $(b+c)^2 = b^2 + 2bc + c^2$.

Z twierdzenia Pitagorasa: $b^2+c^2=a^2$, więc $(b+c)^2=a^2+2bc$. Zatem $(b+c)^2=a^2+4P$, czyli

$$b+c=\sqrt{\alpha^2+4P}$$
.

Wobec tego

$$P = (b+c) \cdot \frac{d\sqrt{2}}{4} = \sqrt{\alpha^2 + 4P} \cdot \frac{d\sqrt{2}}{4},$$

czyli

$$P = \sqrt{\alpha^2 + 4P} \cdot \frac{d\sqrt{2}}{4}.$$

Chcemy z tego równania wyznaczyć P.

Otrzymujemy kolejno:

$$P^{2} = (\alpha^{2} + 4P) \cdot \frac{d^{2}}{8}$$
$$8P^{2} - 4d^{2}P - \alpha^{2}d^{2} = 0$$

Rozwiązujemy to równanie kwadratowe: $\Delta=16d^2\left(d^2+2\alpha^2\right)$, $P=\frac{d^2+d\sqrt{d^2+2\alpha^2}}{4}$ (drugie rozwiązanie odrzucamy, gdyż jest ujemne).

To kończy dowód.

II sposób rozwiązania

Rozpatrujemy okrąg opisany na trójkącie ABC. Dwusieczna dzieli łuk BC (do którego nie należy A) na połowy. Stąd EF jest średnicą prostopadłą do średnicy BC. Trójkąty EDO i EAF są prostokątne, zatem $x = |ED| = \frac{\alpha}{2\cos\alpha}$, $|AE| = \alpha\cos\alpha$. Stąd

$$d = |AE| - |ED| = a \left(\cos \alpha - \frac{1}{2 \cos \alpha} \right),$$
$$\cos \alpha - \frac{1}{2 \cos \alpha} = \frac{d}{a},$$
$$2 \cos^2 \alpha - \frac{2d}{a} \cos \alpha - 1 = 0.$$

Rozwiązujemy równanie kwadratowe z niewiadomą $\cos \alpha$, interesuje nas jedynie dodatnie rozwiązanie.

$$\begin{split} \Delta &= \frac{4d^2}{\alpha^2}, \\ \cos \alpha &= \frac{\frac{2d}{\alpha} + \sqrt{\frac{4d^2 + 8\alpha^2}{\alpha^2}}}{4} = \frac{d + \sqrt{\alpha^2 + 2\alpha^2}}{2\alpha}, \\ P_{\Delta ABC} &= \frac{1}{2}\alpha h = \frac{1}{2}\alpha(d\cos\alpha) = \frac{1}{2}\alpha d\frac{d + \sqrt{d^2 + 2\alpha^2}}{2\alpha} = \frac{1}{4}(d^2 + d\sqrt{d^2 + 2\alpha^2}), \end{split}$$

co kończy dowód.

III sposób rozwiązania

Na czworokącie ODAF można opisać okrąg, bo kąty przy wierzchołku O i A są proste. Z twierdzenia o odcinkach stycznych i siecznych wynika

$$|EO| \cdot |EF| = |ED| \cdot |EA|$$

$$\frac{\alpha}{2} \cdot \alpha = x(x+d)$$

$$x^2 + xd - \frac{\alpha^2}{2} = 0.$$

Rozwiązujemy to równanie kwadratowe, bierzemy tylko dodatnie rozwiązanie.

$$\Delta = d^2 + 2\alpha^2$$
, $x = \frac{-d + \sqrt{d^2 + 2\alpha^2}}{2}$.

Zauważmy, że $\Delta EDO \sim \Delta ADA'$, stąd $\frac{h}{d} = \frac{\frac{a}{2}}{x}$, więc

$$h = \frac{ad}{2x} = \frac{ad}{-d + \sqrt{d^2 + 2^2}}.$$

$$\begin{split} P_{\Delta ABC} = & \frac{1}{2} \alpha h = \frac{1}{2} \frac{\alpha^2 d}{-d + \sqrt{d^2 + 2\alpha^2}} \cdot \frac{d + \sqrt{d^2 + 2\alpha^2}}{d + \sqrt{d^2 + 2\alpha^2}} = \frac{1}{2} \frac{\alpha^2 d (d + \sqrt{d^2 + 2\alpha^2})}{-d^2 + d^2 + 2\alpha^2} = \\ = & \frac{1}{4} (d^2 + d\sqrt{d^2 + 2\alpha^2}), \end{split}$$

co kończy dowód.

Zadanie 19.

Udowodnij, że jeśli $\alpha > 0$, to dokładnie jedna liczba rzeczywista x spełnia równanie

$$x^3 + \alpha x^2 + \alpha (\alpha + 1) x - (\alpha + 1)^2 = 0.$$

I sposób rozwiązania

Zauważamy, że 1 jest pierwiastkiem tego równania, więc równanie możemy zapisać w postaci:

$$(x-1)(x^2+(a+1)x+(a+1)^2)=0.$$

Stad x = 1 lub $x^2 + (\alpha + 1)x + (\alpha + 1)^2 = 0$.

Równanie $x^2 + (\alpha + 1)x + (\alpha + 1)^2 = 0$ nie ma rozwiązania, gdyż $\Delta = -3(\alpha + 1)^2 < 0$.

Zatem jedyną liczbą x, która spełnia równanie $x^3 + \alpha x^2 + \alpha (\alpha + 1) x - (\alpha + 1)^2 = 0$, jest x = 1.

II sposób rozwiązania

Niech

$$f(x) = x^3 + \alpha x^2 + \alpha (\alpha + 1) x - (\alpha + 1)^2$$
.

Obliczamy pochodną funkcji f:

$$f'(x) = 3x^2 + 2\alpha x + \alpha(\alpha + 1)$$
.

Obliczamy wyróżnik tej funkcji kwadratowej:

$$\Delta = -4\alpha(2\alpha+3)$$
.

Ponieważ z założenia $\alpha > 0$, więc $\Delta < 0$. Zatem dla każdego $\alpha > 0$ pochodna f'(x) > 0, czyli funkcja f jest rosnąca, a więc ma co najwyżej jedno miejsce zerowe. Ponieważ f(1) = 0, więc f ma dokładnie jedno miejsce zerowe. To kończy dowód.

Zadanie 20.

Dany jest ostrosłup prawidłowy czworokątny. Kąt α jest kątem dwuściennym między dwiema sąsiednimi ścianami bocznymi. Kąt β jest kątem przy podstawie ściany bocznej (tzn. kątem między krawędzią podstawy i krawędzią boczną ostrosłupa) — zob. rysunek. Wykaż, że $\cos\alpha\cdot tg^2\beta=-1$.

Rozwiązanie

Oznaczmy, tak jak na rysunku na następnej stronie: a — krawędź podstawy, h — wysokość ściany bocznej poprowadzona z wierzchołka podstawy, c — odcinek łączący wierzchołek podstawy ze spodkiem wysokości h.

Na podstawie twierdzenia cosinusów mamy:

$$\left(\alpha\sqrt{2}\right)^2 = h^2 + h^2 - 2h \cdot h \cdot \cos\alpha.$$

Stad

$$h^2 \cos \alpha = h^2 - a^2$$
.

Na podstawie twierdzenia Pitagorasa mamy:

$$h^2 + c^2 = a^2$$
.

Zatem

$$h^2 \cos \alpha = -c^2$$

Stąd

$$\frac{h^2}{c^2}\cdot\cos\alpha\!=\!-1,$$

czyli

$$\cos \alpha \cdot tg^2 \beta = -1$$
.

To kończy dowód.

Zadanie 21.

Rozpatrujemy odcinki równoległe do osi Oy, których jeden koniec leży na wykresie funkcji kwadratowej f określonej wzorem $f(x) = x^2 + 2$, a drugi koniec leży na wykresie funkcji g określonej wzorem $g(x) = \sqrt{x}$ dla $x \ge 0$.

Oblicz długość najkrótszego takiego odcinka.

Rozwiązanie

Niech $A = (x, x^2 + 2)$, $B = (x, \sqrt{x})$ dla pewnego $x \ge 0$. Wówczas długość odcinka AB jest równa $x^2 + 2 - \sqrt{x}$.

Rozważmy funkcję $h(t) = t^4 - t + 2$. Wówczas długość odcinka AB jest równa $h(\sqrt{x})$.

Wyznaczymy minimum funkcji h w przedziale $(0, +\infty)$.

Obliczamy pochodną funkcji h: $h'(t) = 4t^3 - 1$.

Jeśli
$$0 < t < \frac{1}{\sqrt[3]{4}}$$
, to $h'(t) < 0$,

jeśli
$$t > \frac{1}{\sqrt[3]{4}}$$
, to $h'(t) > 0$.

Zatem w przedziale $\left\langle 0, \frac{1}{\sqrt[3]{4}} \right\rangle$ funkcja h jest malejąca i w przedziale $\left\langle \frac{1}{\sqrt[3]{4}}, +\infty \right\rangle$ funkcja h jest rosnąca. Stąd wynika, że h przyjmuje najmniejszą wartość w punkcie $t = \frac{1}{\sqrt[3]{4}}$. Ta najmniejsza wartość jest długością szukanego najkrótszego odcinka:

$$h\left(\frac{1}{\sqrt[3]{4}}\right) = \frac{1}{4\sqrt[3]{4}} - \frac{1}{\sqrt[3]{4}} + 2 = 2 - \frac{3}{4\sqrt[3]{4}}.$$

Odp.:
$$|AB| = 2 - \frac{3}{4\sqrt[3]{4}}$$
.

Zadanie 22.

Dana jest funkcja kwadratowa f określona wzorem $f(x) = x^2$ i punkt $P = (p, p^2)$ leżący na wykresie tej funkcji, gdzie p jest dowolną liczbą rzeczywistą. Wyznacz α i b tak, by prosta o równaniu $y = \alpha x + b$ była styczna do wykresu funkcji f w punkcie P. Wykaż, że dla każdego x zachodzi nierówność $x^2 \geqslant \alpha x + b$.

Rozwiązanie

Pochodna funkcji f jest określona wzorem f'(x) = 2x. Stąd wynika, że współczynnik kierunkowy stycznej w punkcie P jest równy a = 2p. Prosta o równaniu y = 2px + b przechodzi przez punkt P, więc $p^2 = 2p \cdot p + b$. Zatem $b = -p^2$, czyli równanie stycznej ma postać $y = 2px - p^2$. Nierówność $x^2 \ge 2px - p^2$ jest równoważna nierówności $x^2 - 2px + p^2 \ge 0$, czyli nierówności $(x-p)^2 \ge 0$, a więc jest prawdziwa dla każdego x.

Zadanie 23.

Dana jest funkcja f określona wzorem $f(x) = x^3$ dla dowolnej liczby rzeczywistej x. Wyznacz punkt $P = (p, p^3)$ leżący na wykresie funkcji f najbliżej punktu A = (4,0).

Rozwiązanie

Wystarczy rozpatrywać punkty $P = (p, p^3)$ dla $p \ge 0$, gdyż dla p < 0 punkt o współrzędnych (0,0) leży bliżej punktu A niż punkt P:

$$|AP| > |AC| > |AB|$$
.

Odległość |AP| dla $p \ge 0$ jest równa |AP| = $\sqrt{(p-4)^2 + (p^3)^2}$.

Definiujemy wielomian W wzorem

$$W(x) = x^6 + (x-4)^2 = x^6 + x^2 - 8x + 16$$
.

Mamy zatem znaleźć $p \ge 0$, dla którego wartość W(p) wielomianu W jest najmniejsza. Rozważamy zatem pochodną wielomianu W:

$$W'(x) = 6x^5 + 2x - 8 = 2(x - 1)(3x^4 + 3x^3 + 3x^2 + 3x + 4).$$

Ponieważ dla $x \ge 0$

$$3x^4 + 3x^3 + 3x^2 + 3x + 4 > 0$$

więc:

- W'(x) < 0 dla $x \in (0,1)$,
- W'(x) > 0 dla $x \in (1, +\infty)$.

Stąd wynika, że:

- wielomian W(x) jest funkcją malejącą w przedziale (0,1),
- wielomian W(x) jest funkcją rosnącą w przedziale $(1, +\infty)$.

Zatem szukaną wartością p, dla której wartość wielomianu W jest najmniejsza, jest p=1. Szukanym punktem P jest zatem P=(1,1).

Zadanie 24.

Prosta o równaniu y = kx przecina parabolę o równaniu $y = \frac{1}{2}x^2 - \frac{1}{2}$ w dwóch punktach A i B. Udowodnij, że styczne do tej paraboli w punktach A i B są prostopadłe.

Rozwiązanie

Najpierw wyznaczamy współrzędne punktów A i B. W tym celu rozwiązujemy układ równań

$$\begin{cases} y = kx \\ y = \frac{1}{2}x^2 - \frac{1}{2} \end{cases}$$

$$\frac{1}{2}x^2 - kx - \frac{1}{2} = 0$$

$$\Delta = k^2 + 1$$

$$x_1 = \frac{k - \sqrt{k^2 + 1}}{2 \cdot \frac{1}{2}} = k - \sqrt{k^2 + 1}, x_2 = k + \sqrt{k^2 + 1}.$$
Stąd $A = \left(k - \sqrt{k^2 + 1}, k^2 - k\sqrt{k^2 + 1}\right), B = \left(k + \sqrt{k^2 + 1}, k^2 + k\sqrt{k^2 + 1}\right).$

Wyznaczamy teraz współczynniki kierunkowe stycznych. Niech $f(x)=\frac{1}{2}x^2-\frac{1}{2}$. Wówczas mamy równania stycznych: $y=a_Ax+b_A$ oraz $y=a_Bx+b_B$, gdzie $a_A=f'\left(k-\sqrt{k^2+1}\right)$ oraz $a_B=f'\left(k+\sqrt{k^2+1}\right)$. Ponieważ f'(x)=x, więc $a_A=k-\sqrt{k^2+1}$, $a_B=k+\sqrt{k^2+1}$. Stąd

$$a_A \cdot a_B = (k - \sqrt{k^2 + 1}) \cdot (k + \sqrt{k^2 + 1}) = k^2 - (k^2 + 1) = -1,$$

czyli obie styczne są prostopadłe.

119

Zadanie 1a.

Uzasadnij, że
$$\lim_{n\to\infty}\left(\frac{3n+7}{8n+4}+\frac{3n-4}{6n+5}\right)=\frac{7}{8}.$$

Zadania — II wersja

Zadanie 2a.

Dana jest funkcja f określona wzorem: $f(x) = \frac{2x+7}{x^2+3}$ dla każdej liczby rzeczywistej x. Uzasadnij, że $f'\left(-\frac{1}{2}\right) = \frac{200}{169}$.

Zadanie 3a.

Dany jest okrąg o środku w punkcie S = (60,40) i promieniu równym 97. Prosta o równaniu 3x+4y+20=0 przecina ten okrąg w dwóch punktach A i B. Uzasadnij, że |AB|=130.

Zadanie 5a.

Dana jest funkcja fokreślona wzorem $f(x) = \frac{x+3}{x^2+7}$ dla każdej liczby rzeczywistej x. Uzasadnij, że zbiór wartości funkcji f jest przedziałem domkniętym $\left\langle -\frac{1}{14}, \frac{1}{2} \right\rangle$.

Zadanie 6a.

Uzasadnij, że istnieje dokładnie 1908 nieparzystych liczb czterocyfrowych, w których zapisie dziesiętnym występuje co najmniej jedna siódemka.

Zadanie 7a.

Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem

$$a_n = \frac{2}{(\sqrt{3})^n}$$
 dla $n = 1, 2, 3,$

Uzasadnij, że suma wszystkich wyrazów tego ciągu jest równa $S=1+\sqrt{3}.$

Zadanie 8a.

Dana jest funkcja f określona wzorem $f(x) = x^3 - 3x + 1$ i leżący na wykresie tej funkcji punkt A o współrzędnej x równej 2. Uzasadnij, że styczna do wykresu funkcji f w punkcie A ma równanie y = 9x - 15.

Zadanie 12a.

Uzasadnij, że najmniejszą liczbą naturalną n spełniającą nierówność $\left|\frac{2n-10}{3n+1}-\frac{2}{3}\right|<\frac{1}{30}$ jest n=107.

Zadanie 13a.

Okręgi o równaniach $x^2+y^2=625$ i $(x-36)^2+(y-15)^2=1600$ mają dwa punkty przecięcia: A i B. Uzasadnij, że |AB|=48.

Zadanie 14a.

Dany jest wykres funkcji kwadratowej $f(x) = x^2$ oraz punkt A = (3,0). Uzasadnij, że punktem na wykresie funkcji f leżącym najbliżej punktu A jest punkt o współrzędnych (1,1).

Zadanie 16a.

W ostrosłupie prawidłowym czworokątnym krawędź podstawy jest równa 10 cm, a kąt nachylenia ściany bocznej do płaszczyzny podstawy jest równy 60 stopni. Ostrosłup ten przecięto płaszczyzną przechodzącą przez krawędź podstawy i nachyloną do płaszczyzny podstawy pod kątem 30 stopni. Uzasadnij, że pole otrzymanego przekroju jest równe $P=\frac{75}{2}\sqrt{3}$.

PRZYDATNE ADRESY

CENTRALNA KOMISJA EGZAMINACYJNA

ul. Lewartowskiego 6, 00-190 Warszawa

tel. (22) 536 65 00, tel./fax (22) 536 65 04 www.cke.edu.pl, ckesekr@cke.edu.pl

OKREGOWE KOMISJE EGZAMINACYJNE

ul. Na Stoku 49, 80-874 Gdańsk

tel. (58) 320 55 90, fax (58) 320 55 91

www.oke.gda.pl, komisja@oke.gda.pl ul. Mickiewicza 4, 43-600 Jaworzno

tel. (32) 784 16 01, fax (32) 784 16 08 www.oke.jaworzno.pl, sekretariat@oke.jaworzno.pl

os. Szkolne 37, 31-978 Kraków tel. (12) 683 21 01, fax (12) 683 21 00 www.oke.krakow.pl, oke@oke.krakow.pl

ul. Nowa 2, 18-400 Łomża tel./fax(86) 216 44 95 www.oke.lomza.pl, sekretariat@oke.lomza.pl

ul. Praussa 4, 94-203 Łódź

tel. (42) 634 91 33, fax (42) 634 91 54 www.komisja.pl, komisja@komisja.pl ul. Gronowa 22, 61-655 Poznań

tel. (61) 854 01 60, fax (61) 852 14 41

www.oke.poznan.pl, sekretariat@oke.poznan.pl ul. Grzybowska 77, 00-844 Warszawa tel. (22) 457 03 35, fax (22) 457 03 45

www.oke.waw.pl, info@oke.waw.pl ul. Zielińskiego 57, 53-533 Wrocław

tel. (71) 785 18 52, fax (71) 785 18 73 www.oke.wroc.pl, sekretariat@oke.wroc.pl

ISBN 978-83-7400-276-9