Que 1.

Determine I_x , I_y and V_z using superposition:

Ans4 (1) Contribution of -2V source:

$$6I_{x!} = I \times I_{y!} - (I)$$

$$2I_{y!} = I_{x!} - (I)$$

$$\Rightarrow I_{x!} = I_{y!} = 0$$

$$Also, -V_{z!} - I \times I_{y!} + (-2V) - 2 \times I_{y!} = 0$$

$$V_{z!} = -2V$$
(ii) Containstion of IIA source:
$$6I_{xz} = 0$$

$$V_{1\Omega} = 6I_{NL}$$

$$V_{1\Omega} = 1 \times I y_{2}$$

$$\Rightarrow 6I_{2L} = I y_{2}$$

$$I_{1} = I_{2} - 2Iy_{2}$$

$$I_{2L} = -1A, \quad I_{2L} = -6A$$

$$Also, \quad 2I_{2L} + I_{2L} + V_{2L} = 0$$

$$\Rightarrow V_{2L} = 8V$$

$$\therefore I_{2L} = I_{2L} + I_{2L} = -1A$$

$$I_{2L} = I_{2L} + I_{2L} = -6A$$

$$V_{2L} = V_{2L} + V_{2L} = 6V$$

Que 2

Determine the power supplied by the 5V source using

- (a) Mesh analysis
- (b) Nodal analysis
- (c) Superposition principle
- (d) Thevenin's equivalent circuit between terminals A and B.

$$20I_{1} + 5(I_{1} - I_{2}) = 5$$

$$\Rightarrow 25I_{1} - \frac{5}{7}(11 - 4I_{1}) = 5$$

$$\Rightarrow 25I_{1} - \frac{55}{7} + \frac{20}{7}I_{1} = 5$$

$$\Rightarrow z_1 = \frac{5 + \frac{55}{7}}{(25 + \frac{20}{7})} = 0.46A$$

Shows that power is supplied by the source. (b) [10 (21+12) +2011) -() 2A = 251 → 101+3012-50+251,+2512 = 5 ⇒1112 + 771=11 - (1)

From (1) and (2),

$$1|I_2 + \frac{7}{8}(10 - 7I_2) = 11$$

 $= 1(11 - \frac{49}{8})I_2 = 11 - \frac{70}{8}$
 $= I_2 = 0.46A$
 $= I_{5V} = -0.46 \times 5W = -2.31W$

Short riscuit noltage source:

Que 3

Use Thevenin's theorem to determine i_o .

Que 4

Determine current i through 2Ω resistor by building Thevenin's equivalent for the rest of the circuit.

Now, the original circuit can be represented as,

Que 5.

Find Voltage V_L across the load resister R_L , and the current I_L flowing through the load resistor R_L , in the below circuit, by using Norton's Theorem. Where $R_L = 1.5\Omega$.

To compute I_N , we will short circuit terminal AB. Then the current supplied from 12V source is $I = \frac{12V}{2+6||3|} = 3A$

$$I = \frac{12V}{2 + 6||3} = 3A$$

From current division, the current in AB is 2A. Hence, $I_N = 2A$,

To calculate the R_N , we will short circuit the voltage source. Looking from terminal A-B, the resistance is (2||6+3)=4.5 ohm.

Now, from current division, the current in R_L will be

$$I_l = I_N \frac{4.5}{4.5 + 1.5} = 1.5A$$

Voltage across R_L is $V_L = I_l R_L = 2.25V$.

Que 6.

Find the Norton resistance R_N , and the Norton current I_N , at the terminals A - B.

 $\textbf{Solution:} \ \textbf{Short the independent voltage source as shown below.}$

Now, $i_{\scriptscriptstyle X}=0\Rightarrow 2i_{\scriptscriptstyle X}=0$, i.e. the dependent current source is open.

Therefore, $R_N=5\Omega$

To find the Norton Current, short a-b, as shown below.

All the branches are in parallel. Therefore,

$$i_x = \frac{10}{4} = 2.5A$$

Applying KCL at node a,

$$I_{sc} = I_N = \frac{10}{5} + 2i_x = 7A$$

Que 7.

Determine the power dissipated in the 10Ω resistor in the following circuit

tage at node a ke V and let b lee

refunce node. Applying KCL at node a, $-5 + \frac{V}{4} - 5v_1 + \frac{V}{4} = 0 \qquad -(1)$ Also, by rultage division, $V_1 = \frac{V \times 4}{2 + 4} = \frac{4V}{6} = \frac{2V}{3} - (2)$ From (1) and (2), $-5 + \frac{V}{6} - 5\left(\frac{2V}{3}\right) + \frac{V}{10} = 0$ $\Rightarrow \frac{V}{6} - \frac{10V}{3} + \frac{V}{10} = 5$ $\Rightarrow \frac{5V - 100V + 3V}{30} = 5$ $\Rightarrow -92V = 5 \times 30$ $\Rightarrow V_2 = 5 \times 30$

$$\Rightarrow V = -\frac{5 \times 30}{92} V$$

... Parver across
$$10_{\Omega} = \left(\frac{5 \times 30}{92}\right)^2 \times \frac{1}{10}W$$

$$= \frac{25 \times 900}{920 \times 92}W = 265.83mW$$

Que 8.

A practical current source provides 10W to 250Ω load and, 20W to 80Ω load. A resistance R_L with voltage v_L across it, and with current i_L through it, is connected to the source. Find the values of R_L , v_L , and i_L if,

- (a) $v_L.i_L$ is maximum.
- (b) v_L is maximum.
- (c) i_L is maximum.

10 W to 250 Ω corresponds to 200mA. Similarly, 20W to 80 Ω corresponds to 500 mA. By Voltage division, we have

$$I_R = I_N \frac{R_N}{R + R_N}$$

So, we have

$$0.2 = I_N \frac{R_N}{250 + R_N}$$

$$0.5 = I_N \frac{R_N}{80 + R_N}$$

Solving, we get $I_N=1.7$ A and $R_N=33.33$ Ω .

- (a) If $v_L i_L$ is a maximum, then we have $R_L = R_N = 33.33~\Omega, i_L = 1.7 \times \frac{33.33}{33.33+33.33} = 850$ mA, $v_L = 33.33~i_L = 28.33~\mathrm{V}$
- (b) If v_L is a maximum, then $v_L = I_N(R_N||R_L)$. Then v_L is a maximum when $R_N||R_L$ is a maximum, which occurs at $R_L = \infty$. Then $i_L = 0$ and $v_L = 1.7 \times R_N = 56.66$ V.
- (c) If i_L is a maximum, then $i_L = i_N \frac{R_N}{R_N + R_L}$ is maximum when $R_L = 0 \Omega$. So, $i_L = 1.7A$, and $v_L = 0 V$.

Que 9.

Determine the value of R_L in the below circuit, such that maximum power is delivered into R_L . Calculate the value of the maximum power.

For maximum power transfer, $R_L = R_{TH}$.

10. For the circuit shown below, determine the voltage across the 2K resistor (vertical) as a function of time after the switch is opened at t=0.

Solution:

$$i_L(\infty) = 0$$

$$i_{\scriptscriptstyle L}(0^+)=i_{\scriptscriptstyle L}(0^-)$$

Circuit before opening the switch (t < 0) and assuming steady state condition:

Voltage across the 2K resistor:

$$v(t) = -2 \times 10^{3} \times i_{L}(t) = -4 \times e^{-4000t}V$$

$$v(t) = -2 \times 10^{3} \times i_{L}(t) = -4 \times e^{-4000t}V$$

11. Find $v_c(t)$ for t > 0 in the following circuit if the capacitor voltage is zero for t < 0.

Solution:

Before the circuit is closed:

Applying KVL in the first loop

$$5 - V_x - V_x = 0$$
$$V_x = 2.5V$$

After the switch is closed

Thevenin voltage Vth = 2.5V

Short circuit current=
$$Isc = \frac{2.5A}{20} = 125 \ mA$$

$$R_{th} = \frac{2.5v}{125mA} = 20\Omega$$

Hence, the time constant is

$$\tau = 20 \times 10^{-6} = 20 \mu s$$

The voltage is given as

$$V_{c}(t) = V_{c}(\infty) + [V_{c}(0) - V_{c}(\infty)]e^{-\frac{t}{\tau}}$$

$$= 2.5 + (0 - 2.5)e^{-\frac{t}{2 \times 10^{-5}}}V$$

$$= 2.5 \left(1 - e^{-\frac{t}{2 \times 10^{-5}}}\right)V$$

12. Assuming that the capacitor does not have any initial charge, determine the voltage across the capacitor V(t) as a function of time after the switch is closed at t = 0.

Solution:

$$v(t) = v(\infty) + \{v(0^+) - v(\infty)\}e^{-t/\tau}$$
$$v(0^+) = 0 \ [\mathbf{1}$$

At $t \to \infty$, the capacitor is open circuit. Therefore,

$$v_X = \frac{2K}{2K + 2K} * 10 = 5V$$

$$v(\infty) = V_X - (-3V_X) = 4V_X = 20V \text{ [1 most production of the content of th$$

Req can be found from the circuit:

$$R_{eq} = \frac{v_Z}{i_Z}$$

$$v_Z = v_X - -3v_X = 4v_X$$

$$i_Z = \frac{v_X}{1K}$$

$$R_{eq} = \frac{v_Z}{i_Z} = 4K \quad [\mathbf{1}$$

$$au = CR_{eq} = 1s$$
 [1 $v(t) = 20\{1 - e^{-t}\}$ [1

13. In the following circuit the switch S1 is closed and S2 is left open for a long time. At t=0, S1 is opened and S2 is closed. Determine the current, i_5 , through the 5Ω resistor for all time

Solution:

For $t = 0^{-}$

 $t \to \infty$

$$5 - 20i - 20v_5 - 5i_5 = 0$$

$$5 - 20i - 20i_5 - 10i = 0$$

$$i = 5/70 \; A$$
 , $i_5 = 10/70 \; A$

$$R_{th} = (20||5) + 10 = 14\Omega$$

Therefore, $\tau = 4.4/14 = 0.314 \text{ s}$

t > 0

$$i(t)=i(\infty)+[i(0^+)-i(\infty)]e^{-t/\sqrt{t}}$$

therefore, $i(t)=(1/14)+((1/4)-(1/14))e^{-3.2t} A$

$$v_{5\Omega} = 10i + L\left(\frac{di}{dt}\right) = \frac{5}{7} + \left(\frac{5}{2} - \frac{5}{7}\right)e^{-3.2t} + (4.4)\left(\frac{1}{4} - \frac{1}{14}\right)e^{-3.2t}(-8.2)V$$

therefore,
$$V_{5\Omega} = \left(\frac{10}{14}\right) (1 - e^{-3.2t}) V$$

therefore,

$$i_{5\Omega} = \left(\frac{1}{7}\right)(1 - e^{-3.2t})A$$