A soft rubber ball of mass 0.20 kg is dropped from rest on to a flat horizontal surface and it is caught at its maximum height of rebound. A sonic data logger is used to record the velocity of the ball as a function of time. The graph below shows how the velocity of the ball varies with time t from the instant it is released to the instant that it is caught.



| (a) | Mark on the graph above the time $t_1$ where the ball hits the surface and the time $t_2$ where it just loses contact with the surface.          | [2] |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | Use data from the graph above to find the change in momentum of the ball between $t_1$ and $t_2$ .                                               | [3] |
|     |                                                                                                                                                  |     |
|     |                                                                                                                                                  |     |
| (c) | Determine the magnitude of the average force that the ball exerts on the surface.                                                                | [4] |
|     |                                                                                                                                                  |     |
|     |                                                                                                                                                  |     |
| (d) | Explain how the collision between the ball and the surface is consistent with the principle of momentum conservation.                            | [2] |
|     |                                                                                                                                                  |     |
|     |                                                                                                                                                  |     |
| (e) | A hard rubber ball of the same mass as the soft rubber ball is dropped from the same height as that from which the soft rubber ball was dropped. |     |
|     | Given that the hard rubber ball exerts a greater force on the surface than the soft rubber ball,                                                 |     |

sketch on the graph opposite how you think the velocity of the hard rubber ball will vary with

[5]

time. (Note that this is a sketch graph; you do not need to add any values.)