

10/578963

Docket No.: 2004P01984

JAP20 RECEIVED PTO 10 MAY 2006

C E R T I F I C A T I O N

I, the below named translator, hereby declare that: my name and post office address are as stated below; that I am knowledgeable in the English and German languages, and that I believe that the attached text is a true and complete translation of PCT/EP2005/052364, filed with the European Patent Office on May 24, 2005.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Hollywood, Florida

Rebekka Pierre

May 10, 2006

Lerner Greenberg Stemer LLP
P.O. Box 2480
Hollywood, FL 33022-2480
Tel.: (954) 925-1100
Fax.: (954) 925-1101

10/578963

1

1A20050510 10 MAY 2006

1 Description

2

3 Method and apparatus for controlling the operation of wheel
4 electronics associated with a vehicle wheel

5

6 The present invention relates to a method and an apparatus
7 for controlling the operation of wheel electronics
8 associated with a wheel of a vehicle, in particular for
9 optimum utilization of the energy reservoir present or more
10 precisely utilization matched to the driving condition.

11

12 Although applicable to any vehicles having one or more
13 tires, the present invention and the problems it seeks to
14 address will be explained in relation to a passenger motor
15 vehicle.

16

17 Active and passive safety systems in the motor vehicle field
18 are playing an increasingly greater role in the ongoing
19 development of vehicles. Customer expectations require both
20 performance and convenience, oriented to ever greater safety
21 for the vehicle occupants.

22

23 In addition to the passive and active safety systems such as
24 airbags, collision protection and seat belt pretensioners,
25 active driving safety with its ever growing possibilities is
26 becoming increasingly important, the development objective
27 being a control system that rapidly detects the
28 instantaneous driving situation and can immediately
29 intervene actively in any critical situation or supply the
30 driver with an appropriate signal for manual adjustment of
31 the driving situation.

32

1 For example, the tire pressure can be monitored whereby in
2 the event of critical tire pressure values the control
3 system can indicate this defect to the driver who is then
4 able to take appropriate action. With tire pressure
5 monitoring systems it is necessary to incorporate sensors
6 inside the tire which detect e.g. the pressure, the
7 temperature, accelerations and possibly other measurands and
8 communicate them to the vehicle's fixed central processing
9 unit.

10

11 For the safe and also economical operation of a motor
12 vehicle, knowledge of particular tire parameters is of
13 fundamental importance. In particular, a flat or
14 underinflated tire constitutes a considerable safety risk
15 given the requirements for today's motor vehicles, it being
16 precisely the positive per se "run-flat" properties of
17 modern vehicle tires that mean that a motor vehicle driver
18 is no longer able simply to detect a tire defect of the
19 abovementioned type directly. A stable drive at up to 80
20 km/h is thus possible with a flat tire and no appreciable
21 loss of comfort, without the driver becoming aware of this
22 defect condition either audibly or due to significantly
23 altered behavior of the vehicle. At a higher speed, a tire
24 of this kind will then abruptly behave uncontrollably.

25

26 A vehicle with a flat tire may therefore behave reliably
27 while driving through a town or village, but immediately
28 after joining a freeway it will then, as its speed
29 increases, get out of the driver's control without any
30 warning having been given.

31

32 Other problems can arise due to unbalance, incorrect
33 adjustment of camber and tracking on a wheel or due to

1 defects of an internal tire structure. These defects also
2 can rapidly inflict serious tire damage, in particular they
3 are liable to cause the vehicle to get out of control in an
4 emergency situation, e.g. in the event of full braking at
5 high speed on a freeway.

6

7 Known from the prior art are wheel-mounted electronics which
8 can be mounted both on the wheel rim and on the tire, e.g.
9 for monitoring the tire pressure by means of sensor devices,
10 the road condition or the wheel load in the tire. The wheel-
11 mounted electronics require electrical energy to perform
12 their functions.

13

14 All the components can feed into a tire information system
15 as part of a comprehensive driver assistance system. Two
16 fundamentally different approaches for tire information
17 systems have evolved: battery-backed and battery-less
18 systems. Because of the extreme service conditions of a
19 tire, signal transmission by radio or more precisely
20 electromagnetic wave has generally supplanted
21 electromechanical transmission methods.

22

23 Battery-backed systems have the advantage that energy is
24 supplied by a battery both for measuring the tire
25 parameters, e.g. pressure, and for subsequent radio
26 transmission of the information to the vehicle. The vehicle
27 architecture required for this purpose takes up little
28 additional space: four sets of tire electronics and a
29 central radio receiver with associated signal processing
30 suffice.

31

32 However, battery-backed tire information systems have major
33 disadvantages: a battery provided inside a tire additionally

1 constitutes an unbalance which has to be compensated with
2 corresponding cost. Moreover, tires have very high
3 endurance, particularly in the case of trucks, i.e. these
4 tires have extremely long service lives, and so a battery
5 must have an extremely long lifetime in order to be able to
6 ensure the required functionality over the entire operating
7 time. In addition to a long service life, such a battery
8 must also be able to operate reliably across a wide
9 temperature range. An output voltage of conventional
10 batteries would fluctuate quite considerably between the
11 values for winter use and those of long-term use at high-
12 summer outdoor temperatures. This and other requirements
13 currently result in expensive and correspondingly bulky
14 designs.

15

16 In the past, various battery-less systems have therefore
17 been proposed which are based on the following functional
18 principles:

19

20 a) The tire electronics are supplied by an electromagnetic
21 field with energy which is used both for measuring the tire
22 parameters and for information transmission. In general this
23 approach requires four decentrally disposed antennas which
24 are mounted in the region of the wheel housings in order to
25 provide a sufficient field strength. Compared to the above-
26 described battery-backed systems, this means a considerable
27 additional cost in and on a particular vehicle.

28

29 b) Kinetic energy provided by the motion of the tire
30 electronics in the tire is used e.g. with the aid of a piezo
31 generator or a mechanical generator to supply the
32 electronics, similarly to a self-winding watch, for example.

33

1 In general, battery-less systems have the advantage compared
2 to battery-backed systems of a virtually unlimited service
3 life and of being maintenance-free. They are therefore
4 selected as the point of departure for a development
5 according to the invention.

6
7 The advantage of an approach according to b) is that during
8 vehicle operation a sufficient amount of energy and
9 therefore transmission energy is continuously provided for
10 transmitting the tire information to a central receiver. One
11 central radio receiver in a vehicle therefore suffices, as
12 is also the case with the battery-backed systems.

13
14 In the prior art there is specifically to be found the
15 approach of a battery-less concept wherein the necessary
16 electrical energy is transferred contactlessly or by means
17 of a transduction element for converting mechanical energy
18 into electrical energy. This energy is provided on a
19 battery-less basis inter alia from the conversion of
20 mechanical deformation energy from the flexing, the
21 vibrations, the tire oscillations or the like, into
22 electrical energy. Piezoelectric elements, for example,
23 which are incorporated outside the tire or planarly in the
24 tires, are used as transduction elements.

25
26 In the prior art, as already explained above, generators and
27 intermediate energy storage devices are generally connected
28 directly to the ultimate load, i.e. in this case the
29 electronic wheel unit. However, this approach has been found
30 to be disadvantageous in that the operational readiness of
31 the electronic wheel unit depends on the available energy of
32 the generator or the characteristics of the interposed
33 energy storage device. Operational readiness in particular

1 situations is not selectively aimed at. However, in the case
2 of tire pressure control systems, for example, certain
3 driving conditions require increased operational readiness
4 of the electronic wheel unit. Examples of this include
5 initialization and localization phases of the relevant wheel
6 during the start of vehicle operation. According to the
7 prior art, during the start of vehicle operation, because of
8 the low speeds prevailing and the associated low available
9 energy, the generator-supplied wheel units in most cases
10 lack the necessary energy to transmit a radio telegram
11 preferably with an increased frequency, e.g. signals at 15
12 second intervals instead of at 60 second intervals.

13

14 Another example of increased operational readiness of the
15 electronic wheel unit is constituted by driving conditions
16 at high vehicle speeds for which the increased safety risk
17 requires an increased transmission frequency. A disadvantage
18 of this approach according to the prior art is that, in
19 particular driving conditions of the vehicle, limited
20 availability of the energy-supplying generator or of the
21 intermediate storage device may occur and reliable operation
22 of the electronic wheel units is not guaranteed.
Consequently, to ensure reliable operation of the electronic
wheel unit in particular driving conditions an additional
auxiliary battery would have to be provided, resulting in
additional costs.

27

28 The object of the present invention is therefore to specify
29 a method and an apparatus by means of which the electronic
30 wheel unit is provided with sufficient energy in a simple
31 and cost-effective manner even in particular driving
32 conditions of the vehicle to ensure reliable operation in
33 all driving conditions.

1
2 This object is achieved according to the invention in
3 respect of method by the method having the features set
4 forth in claim 1 and in respect of apparatus by the
5 apparatus having the features set forth in claim 15.
6

7 The basic idea of the present invention is that there are
8 provided at least one state detection device for acquiring
9 data relating to the operating state of the wheel and/or at
10 least one energy detection device for acquiring data
11 relating to the energy instantaneously available to the
12 wheel electronics from a generator and/or an energy storage
13 device. The operation of the wheel electronics and therefore
14 the thereby determined energy consumption is controlled in a
15 suitable manner as a function of the acquired data of the at
16 least one state detection device and/or of the at least one
17 energy detection device by means of a central control unit
18 connected to the at least one state detection device and/or
19 the at least one energy detection device. This enables the
20 electronic control unit to be operated in a mode having a
21 low energy consumption during less critical operating states
22 of the wheel, whereby the interposed energy storage device
23 can regenerate or recharge itself if necessary. On the other
24 hand, in a critical operating state of the wheel, the
25 electronic wheel unit can be operated in a mode having a
26 higher energy consumption for transmitting data signals with
27 e.g. an increased transmission frequency, repetition rate,
28 repetition frequency or the like compared to normal
29 operation, it being possible to use e.g. the energy pre-
30 stored in the energy storage device.

31
32 The present invention therefore has the advantage compared
33 to the approaches according to the prior art that the

1 central control unit detects the instantaneous operating
2 state of the wheel and/or the energy instantaneously
3 available to the electronic control unit and selectively
4 controls the behavior of the electronic wheel unit as a
5 function of the overall situation in order to ensure
6 operation which also, at least temporarily, consumes more
7 energy than is available from the generator during
8 particularly important operating states. This ensures a
9 situation-dependent response of the electronic wheel unit
10 which cancels out the disadvantage of limited availability
11 of known generators on one hand and the necessity for an
12 auxiliary battery on the other. The thus increased
13 operational readiness of the electronic wheel unit, e.g. in
14 the initial phase of driving, in particular allows reliable
15 localization and initialization, initialization being
16 specifically to be understood as follows. This function
17 solves the problem that the vehicle must be able to
18 automatically differentiate between the wheel electronics
19 associated with it and external wheel electronics that may
20 likewise be received. The reason behind this is the
21 possibility that new - for the moment unknown - wheel
22 electronics could have been installed by the driver /
23 mechanic. The system is supposed to be automatically capable
24 of learning new wheel electronics of this kind. Typical
25 solutions analyze the frequency with which the wheel
26 electronics identifiers are received by the vehicle receiver
27 during a defined time after moving off. The associated
28 functionality is more stable and converges quicker the more
29 frequently telegrams are transmitted especially during the
30 first minutes after moving off.

31

32 Localization, on the other hand, is specifically to be
33 understood as follows. Even position inversions are to be

1 automatically detected, various analyses being performed,
2 such as the change in acceleration when cornering, the
3 receive field strengths in absolute terms or relative to the
4 driving situation, the direction of rotation of the wheels,
5 etc. As in the case of initialization, the various processes
6 generally converge more rapidly the more frequently the
7 wheel electronics transmit after the vehicle has moved off.
8 Once again the system gains functionality through increased
9 operational readiness.

10

11 Advantageous embodiments and developments of the invention
12 are the subject matter of the further dependent claims and
13 of the description which refers to the accompanying
14 drawings.

15

16 According to a preferred development, the electronic wheel
17 unit is directly connected to the energy storage device for
18 supplying energy, the energy storage device preferably being
19 provided between the generator and the electronic wheel
20 unit. The energy storage device is advantageously
21 implemented with charging electronics for suitable
22 conversion and conditioning of the signals received from the
23 generator. For example, the energy storage device is
24 implemented as a rechargeable battery, capacitor, gold cap
25 capacitor, a foil battery incorporated in a circuit board,
26 or similar. Other designs for an energy storage device are
27 obviously possible.

28

29 According to another preferred development, there are
30 provided a plurality of state detection devices for
31 recording e.g. acceleration data, vibration data, noise
32 data, forces, movements, temperature data, pressure data,
33 etc. The central control unit is connected to all the state

1 detection devices and can analyze and condition individual
2 received signals or any combination of signals. The central
3 control unit evaluates, for example, the overall situation
4 recorded by the individual signals for suitable control
5 action. Other operating states can be e.g. state changes
6 selectively introduced from outside. For example,
7 electrical, magnetic or electromagnetic signals can be
8 sensed which are produced by a vehicle's fixed transmitter
9 in order to signal the operating state of the wheel.

10

11 According to another preferred embodiment, there are
12 provided a plurality of energy detection devices for
13 detecting the instantaneously available energy of the
14 generator and the instantaneous utilization state of the
15 energy storage device. The energy detection devices are
16 preferably implemented as sensors which are operated
17 completely passively, i.e. for which any change in the state
18 variable itself generates the necessary operating energy to
19 indicate this change to the central control unit via the
20 sensor. Examples of such sensors and piezoelectric elements
21 for detecting mechanical deformations, pickup coils for
22 detecting electromagnetic signals by means of induction,
23 pyroelectric elements or thermopile devices for detecting
24 temperature changes or the like.

25

26 The central control unit preferably analyzes the data
27 received from the state detection devices and/or the energy
28 detection devices in respect of the following operating
29 states: start of driving, e.g. a predetermined time interval
30 after moving off; wheel initialization, whereby an
31 initialization procedure is executed e.g. on the vehicle
32 receiver; wheel localization, whereby a localization
33 procedure is executed on the vehicle receiver; risk area,

1 e.g. for below-threshold pressure and/or above-threshold
2 speed; danger area, e.g. for greatly below-threshold
3 pressure; charging area, e.g. for high available energy at
4 the generator output and/or low fill level of the energy
5 storage device; discharging area, e.g. for low available
6 energy at the generator output and/or high fill level of the
7 energy storage device; or the like.

8

9 According to another preferred embodiment, the central
10 control unit controls the following responses of the
11 electronic wheel unit as a function of the data acquired:
12 the transmission frequency, the measurement frequency, the
13 accuracy of the measurements, the transition to or from a
14 power saving mode of the wheel electronics or the like; the
15 repetition frequency of a radio telegram to improve
16 transmission reliability; which measurements are to be
17 performed by the electronic wheel unit; the connection of
18 the electronic wheel unit to the energy storage device;
19 adaptation or selection of the transmitted data, e.g. the
20 telegram is reduced to the most necessary core data for
21 energy saving (only identifiers and possibly additional
22 pressure and temperature data), whereas without the need to
23 save energy all the sensor data together with calibration
24 the manufacturing data is transmitted; or the like.

25

26 In particular, during particularly important operating
27 states, the central control unit guarantees operation which
28 at least temporarily consumes more energy than is
29 instantaneously available from the generator and/or the
30 energy storage device. On the other hand, during less
31 important operating states the central control unit
32 advantageously reduces the functionality below the degree
33 available in terms of the available energy of the generator

1 in order to top up the energy storage device to compensate
2 for the energy previously over-consumed or to be over-
3 consumed. This means that also in important driving
4 conditions such as at the start of vehicle operation,
5 reliable functioning of the electronic wheel unit is
6 guaranteed.

7

8 The invention will now be explained in greater detail with
9 reference to the embodiments schematically illustrated in
10 the Figures of the accompanying drawings in which:

11

12 Fig. 1 schematically illustrates an apparatus
13 incorporated in a wheeled vehicle according to one
14 embodiment of the present invention; and

15

16 Fig. 2 is a block diagram of the apparatus according to
17 the invention according to a preferred embodiment of the
18 present invention.

19

20 In the Figures, unless otherwise stated, the same or
21 functionally identical components have been provided with
22 the same reference numerals.

23

24 Fig. 1 schematically illustrates an apparatus provided in a
25 vehicle for controlling the operation of an electronic wheel
26 unit 2 assigned to a wheel 1 according to a preferred
27 embodiment of the present invention.

28

29 As shown in Fig. 1, each vehicle wheel 1 preferably has an
30 assigned electronic wheel unit 2 which is mounted e.g. in
31 the tire or internal rim surface or rim edge. The present
32 invention will now be explained in greater detail with
33 reference to a wheel 1 with assigned electronic wheel unit

1 2, the present invention obviously being applicable
2 analogously to all the wheels.

3

4 Measured wheel state variables are transmitted by the
5 electronic wheel unit 2 from same to a central control unit
6 e.g. by means of a radio link and a superordinate radio
7 receiver 8 which is directly connected to the control unit
8 9. The central control unit 9, as likewise shown in Fig. 1,
9 is connected to preferably a plurality of sensors 3 which
10 sense different operating states of the wheel 1.

11

12 Said sensors 3 can be implemented either as sensors
13 separately provided in the motor vehicle or as sensors
14 incorporated in the electronic wheel unit 2 or directly
15 connected to same. Advantageously, the sensors 3 provided
16 are used simultaneously e.g. for the recording of the
17 pressure, temperature, acceleration or the like of the wheel
18 1 by the central control unit 9 and by the electronic wheel
19 unit 2.

20

21 The sensors 3 thus sense variables which provide indications
22 of the instantaneous operating state of the wheel 1. Such
23 measured variables can be, for example, vibrations, noise,
24 forces, movements, temperatures, pressures or other state
25 variables of the wheel 1.

26

27 In addition, state changes selectively introduced from
28 outside can also be detected by means of the sensors 3 and
29 acquired data transmitted to the central control unit. For
30 example, electrical, magnetic or electromagnetic signals
31 emitted by a fixed transmitter in the vehicle can be
32 detected by the sensors 3 in order to signal the
33 instantaneous operating state of the wheel 1.

1
2 The apparatus according to the present embodiment
3 additionally has one or more energy detection devices 4, 4'
4 which will be explained in greater detail with reference to
5 Fig. 2. The energy detection devices 4, 4' detect the
6 instantaneously available energy of a generator 5 supplying
7 the wheel unit and the instantaneous fill level or the
8 instantaneous utilization state of an energy storage device
9 6 connected between the electronic wheel unit 2 and the
10 generator 5.

11
12 The generator 5 can be any kind of energy transducer which
13 e.g. converts mechanical energy into electrical energy. An
14 example of such a generator is contained in patent
15 application US 5 741 966.

16
17 The sensors 3 or the energy detection devices 4, 4' are
18 preferably implemented as completely passively operating
19 devices so that any change in a state variable to be
20 detected itself generates the energy to transmit this change
21 in the state variable to the central control unit via the
22 corresponding sensor or corresponding device. For example,
23 the sensors can be implemented as piezoelectric elements for
24 detecting mechanical deformations, as pickup coils for
25 detecting electromagnetic signals by means of induction, or
26 the like.

27
28 Fig. 2 shows a block diagram of the individual components of
29 an apparatus according to the invention according to a
30 preferred embodiment of the present invention. As can be
31 seen in Fig. 2, the central control unit 9, as already
32 explained above, is connected to sensors 3, an energy
33 detection device 4 of the generator 5 and an energy

1 detection device 4' of the interposed energy storage device
2 6. The central control unit 9 thus registers the
3 instantaneously available energy of the generator 5 and of
4 the interposed energy storage device 6 as well as the
5 instantaneous operating state of the wheel by analyzing the
6 data received by the individual devices 3, 4 and 4'.
7

8 As is also illustrated in Fig. 2, the central control unit 9
9 is connected to the electronic wheel unit 2 or the wheel
10 electronics 2 e.g. via a radio link. The wheel electronics 2
11 are in turn connected, for energy feeding of same, to the
12 generator 5 via the energy storage device 6. The energy
13 storage device 6 preferably has charging electronics 7 which
14 convert the signals received from the energy-generating
15 generator 5 in a suitable manner and condition them for
16 direct use for the energy storage device 6.
17

18 The central control unit 9 generates from one or more
19 signals of one or more sensors 3 an associated signal which
20 characterizes the instantaneous operating state of the wheel
21 1. For example, this resulting signal can represent one or
22 more of the following operating states of the wheel 1: start
23 of driving, e.g. a predetermined time interval after moving
24 off; initialization, whereby an initialization procedure is
25 executed preferably on the vehicle receiver; localization,
26 whereby a localization procedure is executed e.g. likewise
27 on the vehicle receiver; a risk operating state, e.g. for a
28 detected below-threshold pressure and/or a detected above-
29 threshold speed; a dangerous operating state, e.g. for
30 greatly below-threshold pressure or the like. In addition,
31 the data of the energy detection devices 4 and/or 4' can be
32 evaluated separately by the central control unit 9 or in
33 conjunction with the signals of the sensors 3. Thus, for

1 example, a resulting signal indicating e.g. the charging
2 state of the energy system comprising the generator 5 and
3 the energy storage device 6 can also be generated by the
4 central control unit 9. For example, it can be registered by
5 the central control unit 9 that the energy system is in a
6 charging state e.g. in the event of high available energy at
7 the generator output and/or of a low fill level of the
8 energy storage device 6. In addition, the central control
9 unit 9 can if necessary also indicate a discharging state of
10 the energy system by a correspondingly assigned signal if,
11 for example, low available energy is present at the
12 generator output and/or a high fill level of the energy
13 storage device 6 is available.

14

15 The control unit 9 transmits the signal characterizing the
16 driving condition of the wheel 1 and the energy state of the
17 energy system to the electronic wheel unit 2 and controls
18 the operation of the electronic wheel unit 2 such that a
19 mode of the electronic wheel unit 2 matched to the detected
20 instantaneous driving condition and the instantaneously
21 available energy is executed.

22

23 Accordingly, the operation or mode of the electronic wheel
24 unit 2 is controlled as a function of the signals registered
25 by the central control unit 9 and thus the energy
26 consumption of the wheel electronics 2 is controlled by the
27 central control unit 9 in a cost-effective manner matched to
28 the wheel and energy state. For example, the central control
29 unit 9 suitably adjusts: the transmitting frequency of the
30 wheel electronics depending on the signals detected, i.e. as
31 a function of the driving condition of the wheel 1 and of
32 the energy reservoir available from the energy system; the
33 measuring frequency of the wheel electronics; the repetition

1 frequency of a radio telegram to improve transmission
2 reliability; the precision of the measurements of the wheel
3 electronics; selection as to which measurements are
4 performed by the wheel electronics; a transition to or from
5 a power saving mode of the wheel electronics, connection of
6 the wheel electronics to the energy storage device, or the
7 like.

8

9 The central control unit 9 thus influences the response of
10 the electronic wheel unit 2 as a function of the detected
11 signals in order, for example, during particularly important
12 operating states, to ensure operation which at least
13 temporarily consumes more energy than is instantaneously
14 available from the generator 5. During comparatively less
15 important operating states, the functionality is in some
16 cases reduced below the degree available from the available
17 energy of the generator 5 in order to charge or top up the
18 energy storage device 6 to compensate for the energy
19 previously over-consumed or to be over-consumed. Thus even
20 during operating states in which, at the start of driving,
21 for example, insufficient energy can be generated or made
22 available, a reliable functionality matched to the driving
23 condition is guaranteed for the electronic wheel unit 2
24 without needing to use additional auxiliary batteries.

25

26 The central control unit 9 implements, together with the
27 suitably dimensioned energy storage element 6, a situation-
28 dependent response of the electronic wheel unit 2 which
29 eliminates the limited availability of known generators.
30 Increasing the operational readiness of the electronic wheel
31 unit 2 in this way, particularly in the initial driving
32 phase, allows reliable localization and/or initialization of
33 the associated wheels.

1
2 Although the present invention has been described above with
3 reference to preferred embodiments, it is not limited
4 thereto but can be modified in a variety of ways.

5
6 For example, the electronic wheel unit 2 can be directly
7 connected to the generator 5 to supply it with energy, the
8 energy storage device 6 only being used to supply the
9 electronic wheel unit 2 with energy in the event of
10 particular detected operating states.

11
12