Matrix Theory (EE5609) Challenging Problem

Arkadipta De MTech Artificial Intelligence AI20MTECH14002

Abstract—This document proves some properties of Hence from (2.1.4) and (2.1.5) we can write, matrices.

Download latex codes from

https://github.com/Arko98/EE5609/tree/master/ Challenge 7

1 Problem

Given two $n \times n$ matrices **A** and **B** prove the following using determinant properties,

- $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$
- $\det(\mathbf{A}^{\mathrm{T}}) = \det(\mathbf{A})$
- If A is a matrix with orthonormal columns then $det(\mathbf{A}) = 1$

2 Proof

2.1 Proof 1

Case 1: If A is not invertible, then AB is not invertible. Hence,

$$det(\mathbf{AB}) = 0$$
 [: \mathbf{AB} is not invertible] (2.1.1)

$$det(\mathbf{A}) = 0$$
 [: A is not invertible] (2.1.2)

Hence,

$$\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B}) = 0 \tag{2.1.3}$$

Case 2: If A is invertible then, there exists a series of elementary row operations $\boldsymbol{E}_k, \boldsymbol{E}_{k-1}, \dots \boldsymbol{E}_1$ such that,

$$\mathbf{A} = \mathbf{E}_{\mathbf{k}} \mathbf{E}_{\mathbf{k}-1} \dots \mathbf{E}_{\mathbf{1}} \tag{2.1.4}$$

Again, If **E** represents an elementary row operation and A is a $n \times n$ matrix then,

$$det(\mathbf{E}\mathbf{A}) = det(\mathbf{E}) det(\mathbf{A})$$
 (2.1.5)

$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{E}_{\mathbf{k}} \dots \mathbf{E}_{\mathbf{1}}\mathbf{B}) \tag{2.1.6}$$

$$= \det(\mathbf{E}_{\mathbf{k}}) \det(\mathbf{E}_{\mathbf{k}-1} \dots \mathbf{E}_{\mathbf{1}} \mathbf{B}) \tag{2.1.7}$$

$$= \text{det}(E_k) \, \text{det}(E_{k-1}) \ldots \text{det}(E_1) \, \text{det}(B)$$

1

$$= \det(\mathbf{E}_{\mathbf{k}}\mathbf{E}_{\mathbf{k}-1}\dots\mathbf{E}_{\mathbf{1}})\det(\mathbf{B}) \tag{2.1.9}$$

$$= \det(\mathbf{A}) \det(\mathbf{B}) \tag{2.1.10}$$

Hence from (2.1.3) and (2.1.10) proved.

2.2 Proof 2

Case 1: If rank(A) < n then A is not invertible and $det(\mathbf{A}) = 0$. Since the row rank and the column rank are equal, it follows that $det(A^{T}) = 0$, hence for Case 1.

$$\det(\mathbf{A}) = \det(\mathbf{A}^{\mathrm{T}}) \tag{2.2.1}$$

Case 2: A is invertible. By Gauss elimination A can be reduced to the identity matrix, I by elementary row operations. Thus A is a product of elementary matrices. Hence,

$$\mathbf{A} = \mathbf{E_1} \mathbf{E_2} \dots \mathbf{E_r} \tag{2.2.2}$$

Now, each elementary matrix is either symmetric or lower-triangular or upper-triangular and by properties of matrices, determinant of a lower-triangular or upper-triangular matrix is product of it's diagonal elements, hence for every elementary matrix E_i we have,

$$\det(\mathbf{E_i}) = \det(\mathbf{E_i^T}) \tag{2.2.3}$$

Hence from (2.2.2) we can write,

$$\det(\mathbf{A}) = \prod_{i=1}^{r} \det(\mathbf{E_i})$$
 (2.2.4)

$$= \prod_{i=1}^{r} \det(\mathbf{E}_{\mathbf{i}}^{\mathbf{T}}) \tag{2.2.5}$$

$$= \prod_{i=1}^{r} \det(\mathbf{E}_{i}^{T})$$

$$= \prod_{i=1}^{r} \det(\mathbf{E}_{r-i}^{T})$$
(2.2.5)
$$= \sum_{i=1}^{r} \det(\mathbf{E}_{r-i}^{T})$$
(2.2.6)

$$= \det(\mathbf{A}) \tag{2.2.7}$$

Hence, from (2.2.1) and (2.2.7), Proved.

2.3 Proof 3

If A has orthonormal columns then,

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I} \tag{2.3.1}$$

Again from properties of determinant we have,

$$\det(\mathbf{I}) = 1 \tag{2.3.2}$$

Hence, we can write from (2.3.1) and (2.3.2),

$$\det(\mathbf{I}) = 1 \tag{2.3.3}$$

$$\implies \det(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = 1 \tag{2.3.4}$$

$$\implies \det(\mathbf{A}^{\mathbf{T}})\det(\mathbf{A}) = 1$$
 [By Proof 1] (2.3.5)

$$\implies$$
 det(**A**) det(**A**) = 1 [By Proof 2] (2.3.6)

$$\implies \det(\mathbf{A}) = 1$$
 (2.3.7)

Hence from (2.3.7) Proved.