Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering / Science End Sem (Odd) Examination Dec-2022 CS3CO29 / CS3CO33 / EC3CO07 / IT3CO26 / BC3CO38 Digital Electronics

Programme: B.Tech./ Branch/Specialisation: CS/EC/IT/

B.Sc.(CS)

Computes Science

Durati	on: 3	3 Hrs.	(03)					Maxin	num	Marks	: 6
Note: A	All q	uestions are c	ompulsor	y. Inte	ernal	choices, if	any	, are indica	ted.	Answer	s c
Q.1 (M	[CQs) should be wi	ritten in fu	ıll ins	tead	of only a, b	o, c c	or d.			
Q.1	i.	In Boolean properties?	algebra,	the	OR	operation	is	performed	by	which	1
		(a) Associativ	ve propert	ies	(b)	Commutat	ive p	properties			
		(c) Distributiv	ve propert	ies	(d)	All of thes	e				
	ii.	Binary number	er 1001 is	equa	l to o	ctal numbe	er-				1
		(a) 13	(b) 9		(c)	10	(d)	11			
	iii.	Decimal num	ber 7 in C	ray c	ode i	.S-					1
		(a) 1100	(b) 0101		(c)	0100	(d)	0111			
	iv.	Half-adders	have a ma	jor liı	mitat	ion in that	they	cannot-			1
		(a) Accept a d	carry bit f	rom a	pres	ent stage					
		(b) Accept a	carry bit f	rom a	next	stage					
		(c) Accept a c	carry bit f	rom a	prev	ious stage					
		(d) Accept a	carry bit f	rom t	he fo	llowing sta	iges				
	v.	Latches const	tructed wi	th NO	OR a	nd NAND	gate	es tend to re	main	in the	1
		latched condi	tion due t	o whi	ch co	onfiguration	n fea	ture?			
		(a) Low input	t voltages		(b)	Gate imped	danc	ee			
		(c) Synchrono	ous operat	ion	(d)	Cross coup	oling	,			
	vi.	In T flip flop,	, when T =	= 1, th	ne flij	p-flop will	be ir	n the	_•		1
		(a) Set mode			(b)	Compleme	ent n	node			
		(c) Reset mod			` ′	Store mode					
	vii.	The total capa	-	memo	ory tl	nat has 102	4 ad	dresses and	can	store 8	1
		bits at each ac	ddress is-								
		(a) 2048	(b) 1638		` ′	128	` /	8192			
	viii.	How many ac		es req				• •			1
		(a) 13	(b) 11		(c)	12	(d)	8			

P.T.O.

	ix.	Which logic has higher speed among all the logic families?	1
		(a) DTL (b) RTL (c) TTL (d) ECL	
	х.	A TTL circuit acts as a current sink in the-	1
		(a) High state (b) Low state (c) High impedance state (d) Ideal state	
Q.2	i.	Convert the decimal number 250.5 to Base 7.	2
	ii.	Convert the following in other canonical form:	3
		(a) $F(A,B,C) = \sum (0,2,6,7)$ (b) $F(W,X,Y,Z) = \prod (0,1,2,3,4,6,12)$	_
	iii.	Reduce the following function using K-map technique-	5
OD		$F(A, B, C, D) = \Pi(0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6).$	_
OK	iv.	8 8	5
		F=m2+m3+m4+m6+m7+m9+m11+m13.	
Q.3	i.	Show that a positive logic AND gate is a negative-logic OR gate and	3
Q.5	1.	vice versa.	3
	ii.	Design full adder circuit on the basis of following-	7
		(a) Circuit diagram (b) Truth table	•
		(c) Characteristic equation	
OR	iii.	Define multiplexer. Implement the Boolean function using 8:1 mux.	7
		F(A, B, C, D) = A'BD' + ACD + B'CD + A'C'D.	
Q.4	i.	Define flip-flop. Write down its applications.	2
	ii.	Explain race around condition with neat diagram.	3
	iii.	Draw the circuit diagram of JK flip flop and explain its operation using	5
		truth table.	
OR	iv.	Design an asynchronous MOD 10 up counter with neat diagram &	5
		truth table.	
			_
Q.5	1.	State the classification of memories. Write down differences between	3
		RAM & ROM.	_
	ii.	Write notes on any two of the following:	7
OD		(a) EPROM (b) PAL (c) SRAM	7
OR	iii.	A combinational circuit is defined by the functions. F1 (a, b, c) = $m(3, 5, 6, 7)$	7
		F1 (a, b, c) = m (3, 5, 6, 7) F2 (a, b, c) = m (0, 2, 4, 7) implement the circuit with a PLA.	
		1 2 (a, b, c) - III (b, 2, 7, 7) implement the cheuit with a 1 LA.	

Q.6		Attempt any two:		
i.		Write down following specification for logic familia	es 5	
		(a) Propagation delay (b) Figure of merit (c) Far	n out	
ii	i.	State five characteristic of TTL logic.	5	
ii	ii.	Write note on CMOS, NMOS, PMOS.	5	
		ىلەرلەپ ئەرلەپ ئارلەپ ئارلىپ ئارلەپ ئارلەپ ئارلەپ ئارلەپ ئارلەپ ئارلەپ ئارلەپ ئارلەپ ئارلىپ ئارلەپ ئارلىپ ئ		

Marking Scheme CS3CO29 - CS3CO33 -EC3CO07 - IT3CO26 -BC3CO38 Digital Electronics

0.1	i)	d) All of the Mentioned	1
Q.1	1	<u> </u>	
	ii)	(d) 11	1
	iii)	(c) 0100	1
	iv)	(c) Accept a carry bit from a previous stage	1
	v)	(d) Cross coupling	1
	vi)	(b) complement mode	1
	vii)	(d) 8192	1
	viii)	(a) 13	1
	ix)	(d) ECL	1
	x)	(b) low state	1
Q.2	i.	$(505.333)_7$	2
	ii.	As Per the solution	3
	iii.	Give proper solution	5
OR	iv.	Step by step solution. marks as per step	5
Q.3	i.	Give proper reason	3
	ii.	(a) circuit diagram	2.5
		(b) truth table	2.5
		(c) characteristic equation	2
OR	iii.	Give proper solution	7
Q.4	i.	definition	1
		applications	1
	ii.	Explanation & diagram	2,1
OR	iii.	circuit diagram	2
		operation	2
		truth table	1
	iv.	Diagram	2 2
		Operation	
		Truth table	1

Q.5	i.	Classification	1.5
		Difference	1.5
	ii.	Explanation for each	3.5+3.5
OR	iii.	Implementation & diagram	7
Q.6	i.	(a) Propagation delay (b) figure of merit (c) fan out	1.5+1.5
			+2
	ii.	five characteristic	5
	iii.	CMOS, NMOS, PMOS	2+1.5+
			1.5
