Structural Machine Learning Models and Their Applications

Final Project

Name: KVDTT Abeywardhana.

Student ID: 7108053024

Selected Papers

- Physics-informed neural network: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.
- Deep Hidden Physics Models: Deep learning of Nonlinear Partial Differential Equations
- 1. The second paper I have already discussed in previous presentation.
- 2. GitHub link to the codes:

https://github.com/Thimira1992/Structural-Machine-Learning-Models-and-Their-Applications---End-final-report

Physics-informed neural network: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.

 Abstract - Data-driven solution and data-driven discovery of partial differential equation (PDE).

Method: Data driven solution of PDE

Burgers' Equation

$$u_t + uu_x - (0.01/\pi)u_{xx} = 0$$
, Import data (solved by numerically)

related to this PDE equation

u(t, -1) = u(t, 1) = 0.

 $u(0, x) = -\sin(\pi x),$

We define f(t, x) to be given by

$$f := u_t + \mathcal{N}[u],$$

Proceed by approximating u(t,x) by a deep neural network (Python code using Tensorflow)

u(t,x) can be simply defined as

```
def u(t, x):
    u = neural_net(tf.concat([t,x],1), weights, biases)
    return u
```

The physics-informed neural network f(t,x) takes the form

```
def f(t, x):
    u = u(t, x)
    u_t = tf.gradients(u, t)[0]
    u_x = tf.gradients(u, x)[0]
    u_xx = tf.gradients(u_x, x)[0]
    f = u_t + u*u_x - (0.01/tf.pi)*u_xx
    return f
```

The shared parameters between the neural networks u(t,x) and f(t,x) can be learned by minimizing the mean squared error loss.

$$MSE = MSE_u + MSE_f$$
,

where

$$MSE_u = \frac{1}{N_u} \sum_{i=1}^{N_u} |u(t_u^i, x_u^i) - u^i|^2,$$

and

$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2.$$

Neural network

```
def initialize NN(layers):
   weights = []
    biases = []
   num layers = len(layers)
   for l in range(0,num layers-1):
        W = xavier_init(size=[layers[1], layers[1+1]])
        b = tf.Variable(tf.zeros([1,layers[1+1]], dtype=tf.float32), dtype=tf.float32)
        weights.append(W)
        biases.append(b)
    return weights, biases
def xavier_init(size):
   in dim = size[0]
   out dim = size[1]
    xavier_stddev = np.sqrt(2/(in_dim + out_dim))
    return tf.Variable(tf.random.truncated_normal([in_dim, out_dim], stddev=xavier_stddev, dtype=tf.float32), dtype=tf.float32)
#@tf.function
def neural_net(X, weights, biases):
   tf.config.run_functions_eagerly(False)
   num_layers = len(weights) + 1
   H = X
   for 1 in range(0,num_layers-2):
        W = weights[1]
        b = biases[1]
        H = tf.nn.relu(tf.add(tf.matmul(H, W), b))
   W = weights[-1]
    b = biases[-1]
   Y = tf.add(tf.matmul(H, W), b)
    return Y
```

Training data, test data and layers

```
if __name__ == "__main__":
    nu = 0.1 #0.01, |0.001 ,0.01/np.pi
    noise = 0.0

N_u = 100
    N_f = 10000
    layers = [2, 20, 20, 20, 20, 20, 20, 20, 20, 1]

data = scipy.io.loadmat('../Data/burgers_shock.mat') 

t = data['t'].flatten()[:,None]
    x = data['x'].flatten()[:,None]
    Exact = np.real(data['usol']).T
```

Construct by numerical methods Using Matlab.

My implementations

Inside the code	Paper	My code implements
Import data	Chebfun package - Matlab	Tailored Finite Point Method - Matlab
Activation functions	Sin, Tanh	Sin. Tanh, relu
tf placeholders for Identification	Tf.placeholder	Tf.compat.v1.placeholder
Optimizer for Identification	Tf.contrib.opt.ScipyOptimizerInterface	Tf.compat.v1.train.GradientDescentO ptimizer Tf.keras.optimizer.SGD
Optimizer for Identification	Tf.train.Adamoptimizer	Tf.compat.v1.train.Adamoptimizer

However, These errors occurs

RuntimeError: Attempting to capture an EagerTensor without building a function.

My results:

u(t,x)

When the diffusion = 0.1

Prediction.

Loss: 0.027766367

Loss: 1.0744218

Loss: 0.025212226

Loss: 0.02296518

Loss: 0.022312945

Loss: 0.0222618

Loss: 3.475343e-06

Loss: 3.4752852e-06

Loss: 3.4752852e-06

Loss: 3.4752852e-06

Training time: 667.8828

Error u: 3.031867e-02

• When the diffusion = 0.01

Loss: 0.05958105 Loss: 0.6459013 Loss: 0.050138526 Loss: 0.28813097 Loss: 0.0028513304

Loss: 0.0021960451

Loss: 7.218465e-06

Loss: 7.216982e-06

Loss: 7.2142543e-06

Loss: 7.2124844e-06

Training time: 61.6658

Error u: 1.750651e-01

• When the diffusion = 0.001

Loss: 0.03907715 Loss: 0.10187675 Loss: 0.14202361 Loss: 0.0012227248 Loss: 0.00034217525 Loss: 0.00017722331

Loss: 3.6610425e-07 Loss: 3.6037773e-07 Loss: 3.5983453e-07 Loss: 3.589055e-07

Training time: 8.8428 Error u: 1.874392e-01

Deep Hidden Physics Models: Deep learning of Nonlinear Partial Differential Equations

- In this paper:
 - Method is how to discover closed form mathematical models of the physical world expressed by partial differential equations from scattered data collected in space and time.
 - we construct structured nonlinear regression models that can uncover the dynamic dependencies in a given set of spatio-temporal data, and return a closed form model that can be subsequently used to forecast future states.

Methodology

• Define the deep hidden physics model f,

$$f := u_t - \mathcal{N}(t, x, u, u_x, u_{xx}, \dots)$$

 Parameters of the neural networks u and N can be learned by minimizing the sum of squared errors loss function

$$SSE := \sum_{i=1}^{N} (|u(t^{i}, x^{i}) - u^{i}|^{2} + |f(t^{i}, x^{i})|^{2})$$

We solve the learned Partial differential equation by PINNs algorithm.

Code:

```
class DeepHPM:
   def __init__(self, t, x, u,
                      x0, u0, tb, X f,
                      u layers, pde layers,
                       lavers,
                      lb idn, ub idn,
                      lb sol, ub sol):
        # Domain Boundary
       self.lb idn = lb idn
       self.ub idn = ub idn
       self.lb sol = lb sol
       self.ub sol = ub sol
       # Init for Identification
       self.idn init(t, x, u, u layers, pde layers)
       # Init for Solution
       self.sol init(x0, u0, tb, X f, layers)
       # tf session
       self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                                     log device placement=True))
```

```
def idn_init(self, t, x, u, u_layers, pde_layers):
    # Training Data for Identification
    self.t = t
    self.x = x
    self.u = u
    # Layers for Identification
    self.u layers = u layers
    self.pde layers = pde layers
    # Initialize NNs for Identification
    self.u weights, self.u biases = initialize NN(u layers)
    self.pde weights, self.pde biases = initialize NN(pde layers)
    # tf placeholders for Identification
    self.t_tf = tf.placeholder(tf.float32, shape=[None, 1])
    self.x tf = tf.placeholder(tf.float32, shape=[None, 1])
    self.u tf = tf.placeholder(tf.float32, shape=[None, 1])
    self.terms_tf = tf.placeholder(tf.float32, shape=[None, pde_layers[0]])
    # tf graphs for Identification
    self.idn u pred = self.idn net u(self.t tf, self.x tf)
    self.pde pred = self.net pde(self.terms tf)
    self.idn f pred = self.idn net f(self.t tf, self.x tf)
    # loss for Identification
    self.idn u loss = tf.reduce sum(tf.square(self.idn u pred - self.u tf))
```

```
### Load Data ###
data_idn = scipy.io.loadmat('../Data/burgers_sine_0.1_tfp.mat')
t idn = data idn['t'].flatten()[:,None]
x idn = data idn['x'].flatten()[:,None]
Exact idn = np.real(data idn['usol'])
T_idn, X_idn = np.meshgrid(t_idn,x_idn)
keep = 2/3
index = int(keep*t idn.shape[0])
T_{idn} = T_{idn}[:,0:index]
X_{idn} = X_{idn}[:,0:index]
Exact idn = Exact idn[:,0:index]
t_idn_star = T_idn.flatten()[:,None]
x idn star = X idn.flatten()[:,None]
X_idn_star = np.hstack((t_idn_star, x_idn_star))
u_idn_star = Exact_idn.flatten()[:,None]
data sol = scipy.io.loadmat('../Data/burgers sine 0.1 tfp.mat')
t sol = data sol['t'].flatten()[:,None]
x sol = data sol['x'].flatten()[:,None]
Exact sol = np.real(data sol['usol'])
```

```
# Layers
u_layers = [2, 50, 50, 50, 50, 1]
pde_layers = [3, 100, 100, 1]
layers = [2, 50, 50, 50, 50, 1]
```

My implementations

• For diffusion = 0.001

Figure: A solution to the Burger's equation (left panel) is compared to the corresponding solution of the learned partial differential equation (right panel).

Loss of Iterations

Loss: 1.327886e-03

When activation function as RELU

Conclusions:

- Activation fun ReLU is not suitable for both methods.
- Sinoid and Tanh activations functions give better results.
- Even the low diffusion terms can be approximate by the two methods by importing high resolution data.

The End!