MAT602 - FUNCTIONAL ANALYSIS

YANNIS BÄHNI

Contents

1	Structures	
	1.1	Topological Spaces
	1.2	Metric Spaces
	1.3	Normed Spaces
2	Line	ear Operators
		Continuous Operators
	2.2	The Hahn-Banach Theorem
	2.3	Reflexivity
	2.4	Hilbert Space Methods
3		re Category Theorem
		Baire Category Theorem and Banach-Steinhaus
		The Open Mapping and Closed Graph Theorems

1. Structures

1.1. Topological Spaces.

Theorem 1.1 (Urysohn's Lemma). Suppose X is a normal topological space. Given disjoint closed subsets $A, B \subseteq X$, there exists a continuous function $f: X \to [0, 1]$ such that $f|_A = 0$ and $f|_B = 1$.

1.2. Metric Spaces.

1.3. Normed Spaces.

Proposition 1.1 (Sequence Spaces). For $1 \le p < \infty$ define

$$\ell^p(\mathbb{K}) := \left\{ x \in \mathbb{K}^{\mathbb{N}} : \sum_{k \in \mathbb{N}} |x_k| < \infty \right\}$$
 (1)

and for $p = \infty$

$$\ell^{\infty}(\mathbb{K}) := \left\{ x \in \mathbb{K}^{\mathbb{N}} : \sup_{k \in \mathbb{N}} |x_k| < \infty \right\}. \tag{2}$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Moreover, for $x \in \ell^p(\mathbb{K})$ *set*

$$\|x\|_p := \left(\sum_{k \in \mathbb{N}} |x_k|^p\right)^{1/p}$$
 (3)

for $1 \le p < \infty$ and

$$||x||_{\infty} := \sup_{k \in \mathbb{N}} |x_k|. \tag{4}$$

Then $(\ell^p, \|\cdot\|_p)$ is a Banach space for all $1 \le p \le \infty$.

Theorem 1.2 (Completion of Normed Spaces). Every normed space X has a completion which is unique up to isometric isomorphisms.

2. Linear Operators

2.1. Continuous Operators.

Definition 2.1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces. An **operator** is a linear mapping $T: X \to Y$. Moreover, we say that an operator $T: X \to Y$ is **bounded** if there exists c > 0 such that

$$||T(x)||_{Y} \le c ||x||_{X} \tag{5}$$

holds for all $x \in X$.

2.2. The Hahn-Banach Theorem.

Lemma 2.1. Let V be a real vector space, $S \subsetneq V$ a linear subspace, $p: V \to \mathbb{R}$ a sublinear functional, $f: S \to \mathbb{R}$ linear and $x_0 \in V \setminus S$. Moreover, assume that $f \leq p$ on S. Then there exists $F: S + \mathbb{R}x_0 \to \mathbb{R}$ linear such that $F \leq p$ on $S + \mathbb{R}x_0$ and $F|_{S} = f$.

Theorem 2.1 (Hahn-Banach, \mathbb{R}). Let V be a vector space over \mathbb{R} , $S \subseteq V$ a linear subspace and $f: S \to \mathbb{R}$ linear. Moreover, let $p: V \to \mathbb{R}$ be a sublinear functional such that $f \leq p$ on S. Then there exists $F: V \to \mathbb{R}$ linear such that $F \leq p$ on V and $F|_{S} = f$.

Theorem 2.2 (Hahn-Banach, \mathbb{R} or \mathbb{C}). Let V be a vector space over \mathbb{K} , $q:V\to\mathbb{R}$ a seminorm, $S\subseteq V$ a linear subspace and $f:S\to\mathbb{K}$ linear with $|f|\leq q$ on S. Then there exists $F:V\to\mathbb{K}$ linear with $F|_S=f$ and $|F|\leq q$ on V.

Corollary 2.1 (Extension). Let $(X, \|\cdot\|)$ be a normed space over \mathbb{K} , $S \subseteq X$ a linear subspace and $f \in S^*$. Then there exists $F \in X^*$ such that $F|_S = f$ and $\|F\|_{X^*} = \|f\|_{S^*}$.

Corollary 2.2 (Separation). Let $(X, \|\cdot\|)$ be a normed space over \mathbb{K} and $x_0 \in X \setminus \{0\}$. Then there exists $f \in X^*$ with $\|f\| = 1$ and $f(x_0) = \|x_0\|$.

2.3. Reflexivity.

Proposition 2.1. Let X be a normed vector space over \mathbb{K} . Then the mapping $\Phi: X \to X^{**}$ defined by $\Phi(x) := \varphi_x$, where $\varphi_x: X^* \to \mathbb{R}$ is defined by $\varphi_x(f) := f(x)$, is a linear isometry.

Theorem 2.3. Let X be a Banach space. Then X is reflexive if and only if X^* is reflexive.

2.4. Hilbert Space Methods.

Theorem 2.4 (Riesz's Representation Theorem). Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbb{K} . The mapping $\Psi : H \to H^*$ defined by $(\Psi(x))(y) := \langle x, y \rangle$ is an anti-linear isometric isomorphism.

Corollary 2.3. Every Hilbert space is reflexive.

Theorem 2.5 (Lax-Milgram). Let H be a Hilbert space over \mathbb{K} and let $a: H \times H \to \mathbb{K}$ be a sesquilinear form. Moreover, suppose that there are constants $0 < c_0 \le C_0 < \infty$ such that

$$|a(x, y)| \le C_0 ||x|| ||y||$$
 (Continuity),
Re $a(x, x) \ge c_0 ||x||^2$ (Coercivity),

for all $x, y \in H$. Then there exists a unique $A \in \mathcal{L}(H)$ such that

$$a(x, y) = \langle Ax, y \rangle \tag{6}$$

for all $x, y \in H$. Moreover, A is invertible with

$$||A|| \le C_0 \quad and \quad ||A^{-1}|| \le \frac{1}{c_0}.$$
 (7)

3. Baire Category Theorem

3.1. Baire Category Theorem and Banach-Steinhaus.

Theorem 3.1 (Baire Category Theorem). *Every complete metric space is a Baire space.*

Theorem 3.2 (Banach-Steinhaus). Let X be a Banach space, Y a normed space and $\mathcal{F} \subseteq \mathcal{L}(X,Y)$. Assume that for all $x \in X$ there exists $c_x \geq 0$ such that

$$\sup_{T \in \mathcal{F}} ||T(x)|| \le c_x. \tag{8}$$

Then there exists $c \geq 0$ with

$$\sup_{T \in \mathcal{F}} \|T\| \le c. \tag{9}$$

3.2. The Open Mapping and Closed Graph Theorems.

Theorem 3.3 (Open Mapping Theorem). Let X and Y be two Banach spaces and $T \in \mathcal{L}(X,Y)$ surjective. Then T(U) is open for all $U \subseteq X$ open.

Theorem 3.4 (Inverse Mapping Theorem). Let X and Y be two Banach spaces and $T \in \mathcal{L}(X,Y)$ bijective. Then $T^{-1} \in \mathcal{L}(Y,X)$.

Theorem 3.5 (Closed Graph Theorem). Let X and Y be Banach spaces and $T: X \to Y$ linear. The following statements are equivalent:

- (i) $T \in \mathcal{L}(X, Y)$.
- (ii) The graph of f, $\Gamma(f)$, is closed in $(X \times Y, \|\cdot\|_X + \|\cdot\|_Y)$.