Algorytmy geometryczne - sprawozdanie z ćw. 1

1. Cel ćwiczenia:

Ćwiczenie wprowadzające w zagadnienia geometrii obliczeniowej – implementacja podstawowych predykatów geometrycznych, przeprowadzenie testów, wizualizacja i opracowanie wyników.

2. Dane techniczne:

Język implementacji: Python

Środowisko programistyczne: Jupyter Notebook

System operacyjny: Microsoft Windows 10 Pro x64

Procesor: Intel(R) Core(TM) i5-10400F CPU @ 2.90GHz, 2904 MHz

3. Zestawy danych i ich wizualizacja:

Na początku zaimplementowałem kod, w którym tworzę cztery zbiory punktów oraz wizualizuje je:

• 10⁵ losowych punktów o współrzędnych z przedziału [-1000, 1000] (Wykres 1),

• 10⁵ losowych punktów o współrzędnych z przedziału [-10¹⁴, 10¹⁴] (**Wykres 2**),

• 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu R=100 (Wykres 3),

• 1000 losowych punktów o współrzędnych z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor (a, b), gdzie a = [-1.0, 0.0], b = [1.0, 0.1] (**Wykres 4**).

4. Implementacja wyznaczników:

Zaimplementowałem własne funkcje liczące wyznaczniki macierzy 2x2, 3x3 (odpowiednio *det2x2*, *det3x3*) oraz korzystając z biblioteki Numpy *detNxN_lib*. Przetestowałem również szybkość działania tych funkcji na zbiorze danych o liczebności 10⁵.

Funkcja	det2x2	detNxN_lib dla 2x2	det3x3	detNxN_lib dla 3x3
Czas obliczeń	0,0409s	0,5585s	0,0838s	0,6443s

Tabela 1 Porównanie czasów wykonywania danych funkcji

5. Kategoryzacja punktów:

Zaimplementowałem funkcje *categorize_points*, która dla danego zbioru punktów *X*, punktów *a*, *b* oraz podanych trzech dokładności *eps=(10⁻⁶, 10⁻¹², 10⁻¹⁸)* przyporządkowuje położenie każdego punktu z X względem prostej wytyczonej przez punkty *a*, *b*. Ze względu na ograniczoną dokładność sprzętu, dane dokładności *eps* służą do umożliwiania określenia danego punktu jako leżącego na podanej prostej, a użycie różnych funkcji liczących wyznacznik macierzy możliwość ich porównania.

6. Porównywanie wyników dla danych funkcji liczących wyznaczniki przy podanym eps:

W tabelach poniżej zamieściłem w zależności od użytej funkcji liczącej wyznacznik liczbę punktów na każdym możliwym położeniu prostej. Za wielkość tolerancji dla zera przyjąłem *eps*=10⁻¹². Poniżej każdej tabeli zamieściłem wykresy odnoszące się bezpośrednio do wyników z tabel.

Zestaw danych 1:

Położenie	detNxN_lib dla 2x2	det2x2	detNxN_lib dla 3x3	det3x3
Po lewej	50291	50291	50291	50291
Po prawej	49709	49709	49709	49709
Współliniowe	0	0	0	0

Tabela 2 Porównanie dla zestawu danych 1 przy eps= 10⁻¹²

Wykres 5 We wszystkich wariantach identyczny przy eps= 10-12

• Zestaw danych 2:

Wykres 8 Wyznacznik 3x3 z Numpy

Położenie	detNxN_lib dla 2x2	det2x2	detNxN_lib dla 3x3	det3x3
Left	49738	49736	49739	49739
Right	50259	50259	50261	50261
Collinear	3	5	0	0

Tabela 3 Porównanie dla zestawu danych 2 przy eps= 10⁻¹²

Wykres 9 Wyznacznik 3x3 własny

• Zestaw danych 3:

Położenie	Położenie detNxN_lib dla 2x2		detNxN_lib dla 3x3	det3x3
Left	494	496	496	494
Right	506	504	504	506
Collinear	0	0	0	0

Tabela 4 Porównanie dla zestawu danych 3 przy eps= 10⁻¹²

Wykres 10 We wszystkich wariantach identyczny przy eps= 10⁻¹²

• Zestaw danych 4:

Położenie	Położenie <i>detNxN_lib</i> dla 2x2		detNxN_lib dla 3x3	det3x3
Left	88	75	0	0
Right	101	75	0	0
Collinear	811	850	1000	1000

Tabela 5 Porównanie dla zestawu danych 2 przy eps= 10⁻¹²

Wykres 10 We wszystkich wariantach praktycznie identyczny przy eps= 10⁻¹²

7. Porównywanie wyników dla różnych dokładności oraz wyznaczników:

W tabelach poniżej zamieściłem wyniki obliczeń dla różnych dokładności *epsilon*, zestawów danych oraz funkcji liczących wyznaczniki macierzy.

Zestaw danych 1

Epsilon	detNx	N_lib dla	a 2x2		det2x2			κN_lib dla	3x3	det3x3		
	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.
10 ⁻⁶	50291	49709	0	50291	49709	0	50291	49709	0	50291	49709	0
10 ⁻¹²	50291	49709	0	50291	49709	0	50291	49709	0	50291	49709	0
10 ⁻¹⁸	50291	49709	0	50291	49709	0	50291	49709	0	50291	49709	0

Tabela 6 Pełne porównanie wyników dla zestawu danych 1

Zestaw danych 2

Epsilon	detNx	N_lib dla	a 2x2		det2x2			ιN_lib dla	a 3x3	det3x3		
	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.
10 ⁻⁶	49738	50259	3	49736	50259	5	49736	50261	0	49736	50261	0
10-12	49738	50259	3	49736	50259	5	49736	50261	0	49736	50261	0
10 ⁻¹⁸	49738	50259	3	49736	50259	5	49736	50261	0	49736	50261	0

Tabela 7 Pełne porównanie wyników dla zestawu danych 2

Zestaw danych 3

Epsilon	detNxN_lib dla 2x2			det2x2			detNxN_lib dla 3x3			det3x3		
	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.
10 ⁻⁶	494	506	0	494	506	0	494	506	0	494	506	0
10 ⁻¹²	494	506	0	494	506	0	494	506	0	494	506	0
10 ⁻¹⁸	494	506	0	494	506	0	494	506	0	494	506	0

Tabela 8 Pełne porównanie wyników dla zestawu danych 3

Zestaw danych 4

Epsilon	detN	ιN_lib dla	2x2	det2x2			detNxN_lib dla 3x3			det3x3		
	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.	Lewo	Prawo	Wsp.
10 ⁻⁶	0	0	1000	0	0	1000	0	0	1000	0	0	1000
10 ⁻¹²	88	101	811	75	75	850	0	0	1000	0	0	1000
10 ⁻¹⁸	144	137	719	150	138	712	398	326	276	195	404	401

Tabela 9 Pełne porównanie wyników dla zestawu danych 4

8. Podsumowanie i wnioski:

Podczas wykonywania ćwiczenia 1. udało mi się dobrze zapoznać z środowiskiem Jupyter Notebook oraz oswoić się z programem graficznym. Zaimplementowałem funkcję tworzące dane zbiory punktów, określające położenia tych punktów względem podanej prostej oraz wizualizujące je. Z testów czasowych funkcji wyznaczników wynika, że te zaimplementowane przeze mnie są szybsze niż te korzystające z biblioteki Numpy. Z analizy wyników obliczeń można stwierdzić, że arytmetyka komputera jest dosyć ograniczona i nie zawsze istnieje możliwość na uzyskania obliczeń zgodnych z rzeczywistością. Widzimy to szczególnie w tabeli 9, gdzie wszystkie punkty powinny zostać skategoryzowane jako współliniowe. Bardzo niska tolerancja dla zera również (10⁻¹⁸) również powoduje błędy w obliczeniach. Z pełnej analizy danych nasuwa się wniosek, że najwierniejsze wyniki można uzyskać używając funkcji $detNxN_lib$ dla macierzy 3x3 lub det3x3 z tolerancją dla zera równą około 10^{-12} .