BÀI TẬP THAM KHẢO GIẢI TÍCH II Nhóm ngành 2 Mã học phần: MI 1122

- 1) Kiểm tra giữa kỳ hệ số 0.3, Tự luận, 60 phút. Nội dung: Từ Chương 1 đến hết bài Ứng dụng của phép tính vi phân trong hình học không gian.
- 2) Thi cuối kỳ hệ số 0.7, Tự luận, 90 phút.

Chương 1

Hàm số nhiều biến số

Bài 1. Tìm miền xác định của các hàm số sau:

a)
$$z = \frac{1}{\sqrt{x^2 + y^2 - 1}}$$

c)
$$z = \arcsin \frac{y-1}{x}$$

b)
$$z = \sqrt{(x^2 + y^2 - 1)(4 - x^2 - y^2)}$$

d)
$$z = \sqrt{x \sin y}$$

Bài 2. Tìm giới hạn (nếu có) của các hàm số sau:

a)
$$f(x,y) = \frac{y^4}{x^4 + y^2}$$
, $(x \to 0, y \to 0)$

b)
$$f(x,y) = \frac{y^2}{x^2 + 3xy}$$
, $(x \to \infty, y \to \infty)$

c)
$$f(x,y) = \frac{1 - \cos\sqrt{x^2 + y^2}}{x^2 + y^2}$$
, $(x \to 0, y \to 0)$

d)
$$f(x,y) = \frac{x(e^y - 1) - y(e^x - 1)}{x^2 + y^2}$$
, $(x \to 0, y \to 0)$

 ${\bf B}$ ài 3. Tính các đạo hàm riêng của các hàm số sau:

a)
$$z = \ln\left(x + \sqrt{x^2 + y^2}\right)$$

c)
$$z = x^{y^3}, (x > 0)$$

b)
$$z = y^2 \sin \frac{x}{y}$$

d)
$$u = e^{\frac{1}{x^2 + y^2 + z^2}}$$

Bài 4. Khảo sát sự liên tục của hàm số và sự tồn tại các đạo hàm riêng của nó

a)
$$f(x,y) = \begin{cases} x \arctan\left(\frac{y}{x}\right)^2, & \text{n\'eu } x \neq 0\\ 0, & \text{n\'eu } x = 0 \end{cases}$$

b)
$$f(x,y) = \begin{cases} \frac{x \sin y - y \sin x}{x^2 + y^2}, & \text{n\'eu}(x,y) \neq (0;0) \\ 0, & \text{n\'eu}(x,y) = (0;0) \end{cases}$$

Bài 5. Giả sử $z=yf(x^2-y^2)$, trong đó f là hàm số khả vi. Chứng minh rằng đối với hàm số z hệ thức sau luôn thỏa mãn

$$\frac{1}{x}z_{x'} + \frac{1}{y}z_{y'} = \frac{z}{y^2}.$$

Bài 6. Tìm đạo hàm riêng các hàm số hợp sau:

a)
$$z = e^{u^2 - 2v^2}$$
, $u = \cos x$, $v = \sqrt{x^2 + y^2}$

b)
$$z = \ln(u^2 + v^2), u = xy, v = \frac{x}{y}$$

c)
$$z = \arcsin(x - y), x = 3t, y = 4t^3$$

Bài 7. Cho f là hàm số khả vi đến cấp hai trên \mathbb{R} . Chứng minh rằng hàm số $\omega(x,t)=f(x-3t)$ thỏa mãn phương trình truyền sóng $\frac{\partial^2 \omega}{\partial t^2}=9\frac{\partial^2 \omega}{\partial x^2}$.

Bài 8. Tìm vi phân toàn phần của các hàm số sau:

$$a) z = \sin(x^2 + y^3)$$

c)
$$z = \arctan \frac{x+y}{x-y}$$

b)
$$z = \ln \tan \frac{y}{x}$$

$$d) u = x^{y^2 z}$$

Bài 9. Tính gần đúng

a)
$$A = \sqrt{(2,02)^3 + e^{0,03}}$$

b)
$$B = (1,02)^{1,01}$$

Bài 10. Tìm đạo hàm, đạo hàm riêng của các hàm số ẩn xác định bởi các phương trình sau:

a)
$$x^3y - y^3x = a^4$$
, tính y'

b)
$$x^2 + y + z^3 + e^z = 0$$
, tính $z_{x'}, z_{y'}$

c)
$$\arctan \frac{x+y}{a} = \frac{y}{a}$$
, $\tanh y'$

d)
$$x^3 + y^3 + z^3 - 3xyz = 0$$
, tính $z_{x'}, z_{y'}$

Bài 11. Cho hàm số ẩn z=z(x,y) xác định bởi phương trình $2x^2y+4y^2+x^2z+z^3=3$. Tính $\frac{\partial z}{\partial x}(0;1), \frac{\partial z}{\partial y}(0;1)$.

Bài 12. Cho $u=\frac{x+z}{y+z}$, tính u_x',u_y' biết rằng z là hàm số ẩn của x,y xác định bởi phương trình $ze^z=xe^x+ye^y$.

Bài 13. Phương trình $z^2 + \frac{2}{x} = \sqrt{y^2 - z^2}$, xác định hàm ẩn z = z(x,y). Chứng minh rằng

$$x^2 z_x' + \frac{1}{y} z_y' = \frac{1}{z}.$$

Bài 14. Tính các đạo hàm riêng cấp hai của hàm số sau:

a)
$$z = \frac{1}{3}\sqrt{(x^2 + y^2)^3}$$

c)
$$z = \arctan \frac{y}{x}$$

b)
$$z = x^2 \ln(x + y)$$

d)
$$z = \sin(x^3 + y^2)$$

Bài 15. Tính vi phân cấp hai của hàm số sau:

a)
$$z = xy^3 - x^2y$$

b)
$$z = e^{2x}(x + y^2)$$

c)
$$z = \ln(x^3 + y^2)$$

Bài 16. Tìm cực trị của các hàm số sau:

a)
$$z = 4x^3 + 6x^2 - 4xy - y^2 - 8x + 2$$

d)
$$z = \frac{4}{x} + \frac{3}{y} - \frac{xy}{12}$$

b)
$$z = 2x^2 + 3y^2 - e^{-(x^2+y^2)}$$

e)
$$z = e^{2x}(4x^2 - 2xy + y^2)$$

c)
$$z = 4xy - x^4 - 2y^2$$

f)
$$z = x^3 + y^3 - (x+y)^2$$

Bài 17. Tìm cực trị của hàm số $z=x^2+y^2$ với điều kiện 3x-4y=5.

Bài 18. Tìm một điểm thuộc elip $4x^2 + y^2 = 4$ sao cho nó xa điểm A(1;0) nhất.

Bài 19. Tính giá trị lớn nhất và bé nhất của các hàm số

a)
$$z=x^2+y^2+xy-7x-8y$$
 trong hình tam giác giới hạn bởi các đường thẳng $x=0,$ $y=0,$ và $x+y=6$

b)
$$z=4x^2-9y^2$$
 trong miền giới hạn bởi đường elip $\frac{x^2}{9}+\frac{y^2}{4}=1$

Ứng dụng của phép tính vi phân trong hình học

Ứng dụng trong hình học phẳng

Bài 20. Viết phương trình tiếp tuyến và pháp tuyến với đường cong

a)
$$y = x^3 + 2x^2 - 4x - 3$$
 tại điểm $(-2; 5)$

- b) $y=e^{1-x^2}$ tại giao điểm của đường cong với đường thẳng y=1
- c) $x = \cos t + t \sin t, y = \sin t t \cos t$ tại điểm ứng với $t = \pi/2$

Bài 21. Tính độ cong của

- a) $y = \ln(\cos x)$ tại điểm ứng với $x = \pi/4$
- b) $\begin{cases} x = t^3 + 2 \\ y = \ln(2t 1) \end{cases}$ tại điểm M(3; 0)

Bài 22. Tìm điểm M trên parabol $P\colon y=x^2-4x+6$ sao cho độ cong của P tại M đạt lớn nhất.

Ứng dụng trong hình học không gian

Bài 23. Giả sử $\vec{p}(t), \vec{q}(t), \alpha(t)$ là các hàm khả vi. Chứng minh rằng

a)
$$\frac{d}{dt}(\vec{p}(t)\vec{q}(t)) = \vec{p}(t)\frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt}\vec{q}(t)$$

b)
$$\frac{d}{dt}(\alpha(t)\vec{p}(t)) = \alpha(t)\frac{d\vec{p}(t)}{dt} + \alpha'(t)\vec{p}(t)$$

Bài 24. Đường cong C được biểu diễn bởi hàm vecto $\vec{r}(t)$. Giả sử $\vec{r}(t)$ là hàm khả vi và $\vec{r'}(t)$ luôn vuông góc với $\vec{r}(t)$. Chứng minh rằng C nằm trên một mặt cầu tâm tại gốc tọa độ.

Bài 25. Viết phương trình tiếp tuyến và pháp diện của đường

a)
$$x = a \sin^2 t$$
, $y = b \sin t \cos t$, $z = c \cos^2 t$ tại điểm ứng với $t = \pi/4$, $(a, b, c > 0)$

b) $x=2\cos t,y=4\sin t,z=4\cos^2 t+1$ tại điểm $M(\sqrt{2};2\sqrt{2};3)$

Bài 26. Viết phương trình pháp tuyến và tiếp diện của mặt cong

a)
$$x^2 + 3y + 2z^3 = 3$$
 tại điểm $(2; -1; 1)$

b)
$$z = \ln(2 + 3x^2 - 4y^2)$$
 tại điểm $(1; 1; 0)$

c)
$$2x^2 - y^2 + 2z^2 = 3$$
 tại điểm $(1; -1; 1)$

d)
$$x^2 + 2y^3 - yz = 0$$
 tai điểm (1; 1; 3)

e)
$$(x-1)^2 + (y-1)^2 + z^2 = 25$$
 tại điểm $(4;1;-4)$

Bài 27. Viết phương trình tiếp tuyến và pháp diện của đường

a)
$$\begin{cases} x^2 + y^2 + z^2 = 25 \\ 3x + 4y + 5z = 0 \end{cases}$$
 tại điểm $A(4; -3; 0)$

b)
$$\begin{cases} 2x^2 + 3y^2 + z^2 = 47 \\ x^2 + 2y^2 = z \end{cases}$$
 tại điểm $B(-2; 1; 6)$

Tích phân kép

Tích phân kép

Bài 28. Thay đổi thứ tự lấy tích phân của các tích phân sau

a)
$$\int_{0}^{1} dx \int_{x^{3}}^{\sqrt{x}} f(x, y) dy$$

c)
$$\int_{0}^{\frac{\pi}{2}} dx \int_{\sin x}^{1+x^2} f(x,y) dy$$

b)
$$\int_{0}^{1} dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y)dx$$

d)
$$\int_{0}^{\sqrt{2}} dy \int_{0}^{y} f(x,y)dx + \int_{\sqrt{2}}^{2} dy \int_{0}^{\sqrt{4-y^2}} f(x,y)dx$$

Bài 29. Tính các tích phân sau

a)
$$\iint\limits_{\mathcal{D}} \frac{x}{x^2+y^2} dx dy, \text{ trong d\'o } \mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 1 \leq x \leq 2, 0 \leq y \leq 1\}$$

b)
$$\iint_{\mathcal{D}} (2y-x) dx dy$$
, trong đó \mathcal{D} là miền giới hạn bởi các đường cong $y=x^2$ và $y=1$

c)
$$\iint\limits_{\mathcal{D}}|x-y|dxdy, \text{ trong } \text{d\'o \mathcal{D}}=\{(x,y)\in\mathbb{R}^2: 0\leq x\leq 1, 0\leq y\leq 1\}$$

d)
$$\iint\limits_{\mathcal{D}} x \sqrt{y^2 - x^2} dx dy, \text{ trong đó } \mathcal{D} \text{ là miền giới hạn bởi các đường } y = x, x = 0 \text{ và } y = 1$$

e)
$$\iint_{\mathcal{D}} 2xydxdy$$
, trong đó \mathcal{D} giới hạn bởi các đường $x=y^2, x=-1, y=0$ và $y=1$

f)
$$\iint\limits_{|x|+|y|\leq 1} (|x|+|y|)dxdy$$

g)
$$\int_{0}^{1} dx \int_{4\sqrt{x}}^{1} \frac{dy}{y^{5} + 1}$$

Bài 30. Tìm cận lấy tích phân trong toạ độ cực của $\iint\limits_D f(x,y) dx dy$, trong đó D là miền xác định như sau

a)
$$a^2 \le x^2 + y^2 \le b^2$$

b)
$$x^2 + y^2 \ge x, x^2 + y^2 \le 2x, x < y, y < \sqrt{3}x$$

c)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$
, $y \ge 0$, $(a, b > 0)$

Bài 31. Dùng phép đổi biến trong toạ độ cực, hãy tính các tích phân sau

a)
$$\int_{0}^{R} dx \int_{-\sqrt{Rx-x^2}}^{\sqrt{Rx-x^2}} \sqrt{Rx-x^2-y^2} dy$$
, $(R > 0)$

b)
$$\iint\limits_{\mathcal{D}} x \sqrt{x^2 + y^2} dx dy, \text{ v\'oi } \mathcal{D}: x^2 + y^2 \leq x$$

c)
$$\iint_{\mathcal{D}} (x^2 + y^2) dx dy$$
, với $\mathcal{D}: \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4, 0 \le y \le x\}$

d)
$$\iint\limits_{\mathcal{D}} xydxdy,$$
 với

1)
$$\mathcal{D}$$
 là mặt tròn: $(x-2)^2 + y^2 < 1$

2)
$$\mathcal D$$
là nửa mặt tròn: $(x-2)^2+y^2\leq 1, y\geq 0$

e)
$$\iint\limits_{\mathcal{D}} |x-y| dx dy$$
, với $\mathcal{D}: x^2 + y^2 \leq 1$

Bài 32. Chuyển tích phân sau theo hai biến u và v

a)
$$\int\limits_0^1 dx \int\limits_{-x}^x f(x,y) dy$$
, nếu đặt $\begin{cases} u=x+y \\ v=x-y \end{cases}$

b) Áp dụng tính với $f(x,y) = (2-x-y)^2$.

Bài 33. Tính các tích phân sau

a)
$$\iint\limits_{\mathcal{D}} \frac{dxdy}{(x^2+y^2)^2}, \text{ trong $d\'{o}$ $\mathcal{D}:$ } \begin{cases} y \leq x^2+y^2 \leq 2y \\ x \leq y \leq \sqrt{3}x \end{cases}$$

b)
$$\iint\limits_{\mathcal{D}} \frac{1}{\sqrt{1+x^2+y^2}} dx dy, \text{ trong d\'o } \mathcal{D}: x^2+y^2 \leq 1$$

c)
$$\iint\limits_{\mathcal{D}} \frac{xy}{x^2+y^2} dx dy, \text{ trong } \mathring{\text{do}} \mathcal{D} : \begin{cases} 2x \leq x^2+y^2 \leq 12 \\ x^2+y^2 \geq 2\sqrt{3}y \\ x \geq 0, y \geq 0 \end{cases}$$

d)
$$\iint\limits_{\mathcal{D}} |9x^2-4y^2| dxdy$$
, trong đó $\mathcal{D}: \frac{x^2}{4}+\frac{y^2}{9} \leq 1$

e)
$$\iint\limits_{\mathcal{D}} (4xy + 3y) dx dy, \text{ trong d\'o } 1 \leq xy \leq 4, x \leq y \leq 9x$$

3.1 Ứng dụng của tích phân bội

Bài 34. Tính diện tích của miền \mathcal{D} giới hạn bởi các đường $\begin{cases} y^2 = x, y^2 = 2x \\ x^2 = y, x^2 = 2y. \end{cases}$

Bài 35. Tính diện tích của miền $\mathcal D$ giới hạn bởi $\begin{cases} y=0, y^2=4ax\\ x+y=3a, y\leq 0, (a>0). \end{cases}$

Bài 36. Tính diện tích của miền \mathcal{D} xác định bởi $\begin{cases} 2x \leq x^2 + y^2 \leq 4x \\ 0 \leq y \leq x. \end{cases}$

Bài 37. Tính diện tích của miền \mathcal{D} xác định bởi $r \geq 1; r \leq \frac{2}{\sqrt{3}}\cos\varphi$.

Bài 38. Tính diện tích của miền \mathcal{D} giới hạn bởi đường $r=a(1+\cos\varphi),\ (a>0).$

Bài 39. Chứng minh rằng diện tích miền \mathcal{D} xác định bởi $x^2 + (\alpha x - y)^2 \leq 4$ không đổi $\forall \alpha \in \mathbb{R}$.

Bài 40. Tính thể tích của miền xác định bởi

$$x + y \ge 1$$
, $x + 2y \le 2$, $y \ge 0$, $0 \le z \le 2 - x - y$.

Bài 41. Tính thể tích của miền giới hạn bởi các mặt

$$z = 4 - x^2 - y^2$$
, $2z = 2 + x^2 + y^2$.

Tích phân đường

Tích phân đường loại 1

Tính các tích phân sau:

Bài 42.
$$\int\limits_C (xy+x+2y)ds$$
, trong đó C là đường cong $x=\cos t,y=\sin t$ với $0\leq t\leq \pi/2$

Bài 43.
$$\int\limits_C xyds$$
, trong đó C là nửa đường elip $\frac{x^2}{4}+y^2=1, y\geq 0$

Bài 44.
$$\int_C (x-y)ds$$
, C là đường tròn $x^2 + y^2 = 2x$

Bài 45.
$$\int_C y^2 ds$$
, C là đường có phương trình
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t), (0 \le t \le 2\pi, a > 0) \end{cases}$$

Tích phân đường loại 2

Tính các tích phân sau:

Bài 46.
$$\int\limits_L (x^2+y^2)dx + (3xy+1)dy, \text{ trong đó } L \text{ là cung parabol } y=x^2 \text{ từ } O(0;0) \text{ đến } M(1;1)$$

Bài 47.
$$\int\limits_C (2x-y)dx + xdy, \text{ trong đó } C \text{ là đường cong } \begin{cases} x=a(t-\sin t) \\ y=a(1-\cos t) \end{cases}$$
 theo chiều tăng của $t, (0 \le t \le 2\pi, a > 0)$

Bài 48.
$$\int\limits_{ABCA} 2(x^2+y^2)dx + x(4y+3)dy \text{ trong đó } ABCA \text{ là đường gấp khúc đi qua } A(0;0),$$
 $B(1;1), \stackrel{ABCA}{C}(0;2)$

Bài 49.
$$\int\limits_{ABCDA} \frac{dx+dy}{|x|+|y|}, \text{ trong đó } ABCDA \text{ là đường gấp khúc đi qua } A(1;0), B(0;1), C(-1;0)$$
 và $D(0;-1)$

Bài 50. Tính tích phân sau

$$\int\limits_C (xy+x+y)dx + (xy+x-y)dy$$

bằng hai cách: tính trực tiếp, tính nhờ công thức Green rồi so sánh các kết quả, với C là đường

a)
$$x^2 + y^2 = R^2$$

b)
$$x^2 + y^2 = 2x$$

c)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a, b > 0)$$

Bài 51.
$$\oint_{x^2+y^2=2x} x^2 \left(y+\frac{x}{4}\right) dy - y^2 \left(x+\frac{y}{4}\right) dx$$

Bài 52. $\oint e^x \left[(1 - \cos y) dx - (y - \sin y) dy \right]$, trong đó OABO là đường gấp khúc qua O(0;0), A(1;1) và B(0;2)

Bài 53.
$$\oint_{x^2+y^2=2x} (xy+e^x\sin x+x+y)dx-(xy-e^{-y}+x-\sin y)dy$$

Bài 54. $\oint\limits_C \left(xy^4+x^2+y\cos(xy)\right)dx+\left(\frac{x^3}{3}+xy^2-x+x\cos(xy)\right)dy, \text{ trong d\'o } C \text{ là d\'u\'ong } \cos x=a\cos t, y=a\sin t, (a>0)$

Bài 55. Dùng tích phân đường loại hai tính diện tích của miền giới hạn bởi một nhịp cycloid: $x = a(t - \sin t); y = a(1 - \cos t)$ và trục Ox, (a > 0).

Bài 56.
$$\int_{(-2;-1)}^{(3;0)} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy$$

Bài 57.
$$\int_{(1;\pi)}^{(2;2\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x}\right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}\right) dy$$

Bài 58. Tính tích phân đường $\int\limits_C (y^2-e^y\sin x)dx+(x^2+2xy+e^y\cos x)dy, \text{ với } C \text{ là nửa đường}$ tròn $x=\sqrt{2y-y^2},$ đi từ O(0;0) đến P(0;2).

Bài 59. Tìm hằng số a, b để biểu thức $(y^2 + axy + y\sin(xy))dx + (x^2 + bxy + x\sin(xy))dy$ là vi phân toàn phần của một hàm số u(x,y) nào đó. Hãy tìm hàm số u(x,y) đó.

Bài 60. Tìm hàm số h(y) để tích phân

$$\int_{AB} h(y)[y(2x+y^{3})dx - x(2x-y^{3})dy]$$

không phụ thuộc vào đường đi trong miền xác định. Với h(y) vừa tìm được, hãy tính tích phân trên từ A(0;1) đến B(-3;2).

Lý thuyết trường

Bài 61. Tính đạo hàm theo hướng $\vec{\ell}$ của hàm $u=3x^3+y^2+2z^3-2xyz$ tại điểm A(1;2;1) với $\vec{\ell}=\overrightarrow{AB}, B(2;4;2)$.

Bài 62. Cho hàm số $u(x,y,z)=x^3+3x^2y+2yz^3$. Tính đạo hàm $\frac{\partial u}{\partial \overrightarrow{n}}$ tại điểm A(1;1;-1), trong đó \overrightarrow{n} là vectơ pháp tuyến hướng ra ngoài của mặt cầu $x^2+y^2+z^2=3$ tại điểm A.

Bài 63. Tính môđun của $\overrightarrow{\operatorname{grad}}u$, với

$$u = x^3 + y^3 + z^3 - 3xyz$$

tại A(2;1;1). Khi nào thì $\overrightarrow{\text{grad}}u$ vuông góc với Oz, khi nào thì $\overrightarrow{\text{grad}}u = \overrightarrow{0}$?

Bài 64. Tính $\overrightarrow{\operatorname{grad}}u$, với

$$u = r^2 + \frac{1}{r} + \ln r$$
, với $r = \sqrt{x^2 + y^2 + z^2}$.

Bài 65. Theo hướng nào thì sự biến thiên của hàm số $u=x\sin z-y\cos z$ từ gốc O(0;0;0) là lớn nhất?

Bài 66. Tính góc giữa hai vector $\overrightarrow{\text{grad}}z$ của các hàm số $z=\sqrt{x^2+y^2}$ và $z=x-3y+\sqrt{3xy}$ tại (3;4).

Bài 67. Trong các trường vectơ sau đây, trường nào là trường thế? Tìm hàm thế vị (nếu có)

a)
$$\vec{F} = (x^2 - 4xy)\vec{i} + (2x^3 - 2z)\vec{j} + e^z\vec{k}$$

b)
$$\vec{F} = (yz+1)\vec{i} + (xz+2y)\vec{j} + (xy-3)\vec{k}$$

c)
$$\vec{F} = (x+y)\vec{i} + (x+z)\vec{j} + (z+y)\vec{k}$$

d)
$$\vec{F} = C \frac{x\vec{i} + y\vec{j} + z\vec{k}}{\sqrt{(x^2 + y^2 + z^2)^3}}, C \neq 0$$
 hằng số

e)
$$\vec{F} = (3x^2 + 2yz)\vec{i} + (y^2 + 2xz + e^y)\vec{j} + (9z^2 + 2xy)\vec{k}$$

Viện Toán ứng dụng và Tin học