This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

5

WHAT IS CLAIMED IS:

- 1. An anodic zinc electrode for use in an alkaline based electrochemical cell, comprising:
 - a current collector; and
- an active material composition applied to the current collector, wherein the active material composition includes Zn and ZnO, and wherein the weight ratio of the Zn to ZnO ranges from approximately 1-2 to approximately 1 which enables the anodic zinc electrode to be associated with an electrochemical cell assembled in a charged or discharged state.
- 2. The anodic zinc electrode according to claim 1, further comprising a zincate solubility modifier selected from the group consisting of Be(OH)₂, Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, Ra(OH)₂, and mixtures thereof.
- 3. The anodic zinc electrode according to claim 1, further comprising a hydrogen gas suppressant selected from the group consisting of PbO, CdO, Bi₂O₃, In₂O₃, and mixtures thereof.
- 4. The anodic zinc electrode according to claim 1, further comprising a binding agent selected from the group consisting of CMC, PTFE, PVA, and mixtures thereof.
- 5. The anodic zinc electrode according to claim 1, wherein the weight ratio of the Zn to ZnO ranges from approximately 1.5-2:1.

- 6. The anodic zinc electrode according to claim 5, further comprising a zincate solubility modifier selected from the group consisting of Be(OH)₂, Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, Ra(OH)₂, and mixtures thereof.
- 7. The anodic zinc electrode according to claim 5, further comprising a hydrogen gas suppressant selected from the group consisting of PbO, CdO, Bi₂O₃, In₂O₃, and mixtures thereof.
- 8. The anodic zinc electrode according to claim 5, further comprising a binding agent selected from the group consisting of CMC, PTFE, PVA, and mixtures thereof.
- 9. An electrochemical cell, comprising:
 - a cathodic electrode;
 - a separator/absorber;
 - an alkaline electrolyte; and
 - an anodic zinc electrode comprising:
 - a current collector; and
 - an active material composition applied to the current collector, wherein the active material composition includes Zn and ZnO, and wherein the weight ratio of the Zn to ZnO ranges from approximately 1-2 to approximately 1 which enables the anodic zinc electrode to be associated with an electrochemical cell assembled in a charged or discharged state.

- 10. The electrochemical cell according to claim 9, wherein the anodic zinc electrode further comprises a zincate solubility modifier selected from the group consisting of Be(OH)₂, Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, Ra(OH)₂, and mixtures thereof.
- 11. The electrochemical cell according to claim 9, wherein the anodic zinc electrode further comprises a hydrogen gas suppressant selected from the group consisting of PbO, CdO, Bi₂O₃, In₂O₃, and mixtures thereof.
 - 12. The electrochemical cell according to claim 9, wherein the anodic zinc electrode further comprises a binding agent selected from the group consisting of CMC, PTFE, PVA, and mixtures thereof.
 - 13. The electrochemical cell according to claim 9, wherein the cathodic electrode comprises manganese dioxide.
 - 14. The electrochemical cell according to claim 9, wherein the cathodic electrode comprises nickel-hydroxide and/or nickel-oxide.
 - 15. The electrochemical cell according to claim 9, wherein the cathodic electrode comprises silver and/or silver-oxide.
 - 16. The electrochemical cell according to claim 9, wherein the weight ratio of the Zn to ZnO ranges from approximately 1.5-2:1.

- 18. The electrochemical cell according to claim 16, wherein the anodic zinc electrode further comprises a hydrogen gas suppressant selected from the group consisting of PbO, CdO, Bi₂O₃, In₂O₃, and mixtures thereof.
- 19. The electrochemical cell according to claim 16, wherein the anodic zinc electrode further comprises a binding agent selected from the group consisting of CMC, PTFE, PVA, and mixtures thereof.
- 20. The electrochemical cell according to claim 16, wherein the cathodic electrode comprises manganese dioxide.
- 21. The electrochemical cell according to claim 16, wherein the cathodic electrode comprises nickel-hydroxide and/or nickel-oxide.
- 22. The electrochemical cell according to claim 16, wherein the cathodic electrode comprises silver and/or silver-oxide.

- 24. A method for manufacturing an anodic zinc electrode for use in an alkaline based electrochemical cell, comprising the steps of:
 - providing a current collector;
- providing an active material composition, wherein the active material composition includes Zn and ZnO, and wherein the weight ratio of the Zn to ZnO ranges from approximately 1-2 to approximately 1 which enables the anodic zinc electrode to be associated with an electrochemical cell assembled in a charged or discharged state; and
 - associating the active material composition with the current collector.
- 25. A method for manufacturing an anodic zinc electrode for use in an alkaline based electrochemical cell, comprising the steps of:
 - providing a current collector;
- providing an active material composition, wherein the active material composition includes Zn and ZnO, and wherein the weight ratio of the Zn to ZnO ranges from approximately 1.5-2 to approximately 1 which enables the anodic zinc electrode to be associated with an electrochemical cell assembled in a charged or discharged state; and
 - associating the active material composition with the current collector.