Comparision queries on encrypted data

Alexandru Ionita

May 17, 2018

Abstract

The abstract text goes here.

1 Introduction

The scheme definition:

 $setup_{AI}(n = log(Max_index))$: It generates $P = p_1 * p_2 * ... * p_n$, where p_1 , p_2 ... p_n are random primes.

It creates than a multilinear group G of composite order P.(Having the subgroups $G_{p_1}, G_{p_2} \dots G_{p_n}$), and a random generator $g \in G$.

For each index x, we generate the following: a secret array a: $a_1, a_2 \dots a_n$, some random exponents $r_1, r_2, \dots r_n \in \mathbb{Z}_P$ and $r'_1, r'_2, \dots r'_n \in \mathbb{Z}_P$, the keys $k_1, k_2, \dots k_n \in \mathbb{Z}_P \times \mathbb{Z}_P$ as follows:

$$k_i = \begin{cases} (r_i p_i, \ r_i p_i p_{i+1} ... p_n) & x = 1 \\ (r'_i, \ r_i p_i) & x = 0 \end{cases}$$

This table may help in viewing the values of the keys.

	$b_i = 1$	$b_i = 0$
$x_i = 1$	$r_i p_i$	$r_i p_i p_{i+1} \dots p_n$
$x_i = 0$	r_i	$r_i p_i$

 $encrypt_{AI}(M,b)$: We want to encrypt element M based on the index b. We will compute $C=M*e(g,g...,g)^{a_{1,b}a_{2,b}...a_{n,b}}$, where $a_{i,b}$ is the value a_i for index b. Compute $D_i=e(g^{k_1},g^{k_2},...,g^{k_{i-1}},g^{k_i}g^{a_{i,b}},...,g^{k_n})$.

 $decrypt_{AI}(k,(C,D))$: First compute $B_i=e(g^{k_1},g^{k_2},...g^{k_{i-1}},g,g^{k_{i+1}},...,g^{k_n})$. To decrypt, we need to compute $C*\frac{D_1D_2...D_n}{B_1B_2...B_n}$