Name:	
Roll Number:	

(Odd Semester 2021/22, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{6} \, + \, \mathbf{1}$ questions and is worth $\mathbf{60\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is **true or false**. No justification required.

- (i) If (L, \prec) is a linear ordering and L is uncountable, then there exists an infinite $X \subseteq L$ such that X is well-ordered by \prec .
- (ii) There exists a bijection $f: \mathbb{R}^7 \to \mathbb{R}^9$ satisfying: For every x, y in \mathbb{R}^7 , f(x+y) = f(x) + f(y).
- (iii) The set of all non-computable functions $f:\omega\to\omega$ has the same cardinality as the set of all real numbers.
- (iv) There exists a finite $F \subseteq TA$ such that $PA \cup F$ is a complete \mathcal{L}_{PA} -theory.
- (v) The theory DLO (dense linear orderings without end points) is decidable (as defined on Slide 188).

Solution

- (i) False. Take $L = \omega_1$ and for $\alpha, \beta \in L$, define $\alpha \prec \beta$ iff $\beta < \alpha$.
- (ii) True. Both $(\mathbb{R}^7,+)$ and $(\mathbb{R}^9,+)$ are models of TFDAG of the same uncountable cardinality $\mathfrak{c}.$
- (iii) True. Since the set of computable functions is countable.
- (iv) False. Otherwise TA would be computably axiomatizable.
- (v) True. It is both complete and computably axiomatizable.

Page 3 MTH302A

Question 2. [10 Points]

- (a) [5 Points] Let \mathcal{F} be the set of all strictly increasing functions $f:\omega\to\omega$. Show that $|\mathcal{F}|=\mathfrak{c}$.
- (b) [5 Points] Let \mathcal{E} be the set of all countable subsets of ω_1 . Show that $|\mathcal{E}| = \mathfrak{c}$.

Solution

(a) First note that $|\mathcal{F}| \leq |\omega^{\omega}| \leq |\mathbb{R}^{\omega}| = \mathfrak{c}$.

Next, let W be the set of all infinite subsets of ω . Since the set of all finite subsets of ω is countable, $|W| = \mathfrak{c}$. Define $H: \mathcal{F} \to W$ by $H(f) = \operatorname{range}(f)$. We claim that $\operatorname{range}(H) = W$. This is because for each $S = \{n_0 < n_1 < \dots\} \in W$ the function $f(k) = n_k$ is strictly increasing and has range S. It follows that $|\mathcal{F}| \geq |W| = \mathfrak{c}$.

It follows that $|\mathcal{F}| = \mathfrak{c}$.

(b) As $\mathcal{P}(\omega) \subseteq \mathcal{E}$, we get $\mathfrak{c} = |\mathcal{P}(\omega)| \le |\mathcal{E}|$.

Let \mathcal{W} be the set of all nonempty countable subsets of \mathbb{R} . Note that for each $S \in \mathcal{W}$, there exists $f : \omega \to \mathbb{R}$ such that $\mathsf{range}(f) = S$. So there is a surjection from \mathbb{R}^{ω} to \mathcal{W} . Hence $|\mathcal{W}| \le |\mathbb{R}^{\omega}| = \mathfrak{c}$. Since $|\mathbb{R}| \ge \omega_1$, we get $|\mathcal{E}| \le |\mathcal{W}| \le \mathfrak{c}$.

It follows now that $|\mathcal{E}| = \mathfrak{c}$.

Page 4 MTH302A

Question 3. [10 Points]

Using transfinite recursion, construct a function $f: \mathbb{R} \to \mathbb{R}$ such that for every interval $(a, b) \subseteq \mathbb{R}$,

$$range(f \upharpoonright (a, b)) = \mathbb{R}$$

Solution. Let \mathcal{F} be the set of all pairs (J, y) where J is an open interval in \mathbb{R} and $y \in \mathbb{R}$. It is easy to see that $|\mathcal{F}| = |\mathfrak{c}|$. Let $\langle (J_{\alpha}, y_{\alpha}) : \alpha < \mathfrak{c} \rangle$ be an injective sequence with range \mathcal{F} . Using transfinite recursion define $\langle f_{\alpha} : \alpha < \mathfrak{c} \rangle$ such that the following hold.

- (a) Each f_{α} is a function and $dom(f_{\alpha}) \cup range(f_{\alpha}) \subseteq \mathbb{R}$.
- (b) For every $\alpha < \mathfrak{c}$, $|f_{\alpha}| \leq |\alpha + \omega| < \mathfrak{c}$.
- (c) $f_0 = \emptyset$ and if $\alpha < \mathfrak{c}$ is a limit ordinal, then $f_\alpha = \bigcup_{\beta < \alpha} f_\beta$.
- (d) If $\alpha < \beta < \mathfrak{c}$, then $f_{\alpha} \subseteq f_{\beta}$.
- (e) For every $\alpha < \mathfrak{c}$, there exists $x \in J_{\alpha} \cap \text{dom}(f_{\alpha+1})$ such that $f_{\alpha+1}(x) = y_{\alpha}$.

Suppose $\alpha < \mathfrak{c}$ and $\langle f_{\beta} : \beta < \alpha \rangle$ has been defined. We would like to define f_{α} such that Clauses (a)-(e) are preserved. If $\alpha = 0$ or a limit ordinal, we define f_{α} using Clause (c). It is easy to check that Clauses (a)-(e) are preserved.

So it suffices to define $f_{\alpha+1}$ assuming $\langle f_{\beta} : \beta \leq \alpha \rangle$ has already been defined. But this is easy: Since $|\operatorname{dom}(f_{\alpha})| = |f_{\alpha}| < \mathfrak{c}$ and $|J_{\alpha}| = \mathfrak{c}$, we can choose $x \in (J_{\alpha} \setminus \operatorname{dom}(f_{\alpha}))$ and define

$$f_{\alpha+1} = f_{\alpha} \cup \{(x, y_{\alpha})\}\$$

Having constructed $\langle f_{\alpha} : \alpha < \mathfrak{c} \rangle$, define $g = \bigcup_{\alpha < \mathfrak{c}} f_{\alpha}$. Note that $dom(g) \subseteq \mathbb{R}$ and for every open interval J and $g \in \mathbb{R}$, there exists $x \in J \cap dom(g)$ such that g(x) = y. Extend g to a function $f : \mathbb{R} \to \mathbb{R}$ by defining f to be identically zero outside dom(g). It is clear that f is as required.

Page 5 MTH302A

Question 4. [10 Points]

- (a) [4 Points] Suppose $(\mathbb{Q}, <)$ is the usual ordering on rationals and (M, \prec) is a countable dense linear ordering without end points. Suppose $x_1 \prec x_2 \prec \cdots \prec x_n$ are in M and $a_1 < a_2, \cdots < a_n$ are in \mathbb{Q} . Show that there is an isomorphism $f: (M, \prec) \to (\mathbb{Q}, <)$ such that $f(x_k) = a_k$ for every $1 \le k \le n$.
- (b) [6 Points] Use Tarski-Vaught criterion to show that $(\mathbb{Q}, <)$ is an elementary submodel of $(\mathbb{R}, <)$.

Solution

- (a) Since any two countable dense linear ordering without end points are isomorphic, we can find functions $f_0, f_1, \ldots, f_{n+1}$ such that
 - (i) f_0 is an order isomorphism from $(\{x \in M : x \prec x_1\}, \prec)$ to $(\{a \in \mathbb{Q} : a < a_1\}, <)$.
 - (ii) For each $1 \leq k \leq n$, f_k is an order isomorphism from $(\{x \in M : a_k \prec x \prec x_{k+1}\}, \prec)$ to $(\{a \in \mathbb{Q} : a_k \prec a < a_{k+1}\}, \prec)$.
 - (iii) f_{n+1} is an order isomorphism from $(\{x \in M : x_n \prec x\}, \prec)$ to $(\{a \in \mathbb{Q} : a_n < a\}, <)$.
 - Let $g = \bigcup_{0 \le k \le n+1} f_k$. Define $f: M \to \mathbb{Q}$ by $g \subseteq f$ and for each $1 \le k \le n$, $f(x_k) = a_k$. Then f is as required.
- (b) Let $\mathcal{L} = \{ \prec \}$ where \prec is a binary relation symbol. Suppose $\psi(x, y_1, \ldots, y_n)$ is an \mathcal{L} -formula whose free variables are among x, y_1, \ldots, y_n and a_1, \ldots, a_n are in \mathbb{Q} . Assume that there exists $a \in \mathbb{R}$ such that $(\mathbb{R}, <) \models \psi(a, a_1, \ldots, a_n)$. We will show that there exists $b \in \mathbb{Q}$ such that $(\mathbb{R}, <) \models \psi(b, a_1, \ldots, a_n)$. By the Tarski-Vaught criterion, it will follow that $(\mathbb{Q}, <)$ is an elementary submodel of $(\mathbb{R}, <)$.

Using the Lemma on Slide 157, choose a countable $M \subseteq \mathbb{R}$ such that $\mathbb{Q} \subseteq M$ and (M, <) is an elementary submodel of $(\mathbb{R}, <)$. Since (M, <) is elementary submodel of $(\mathbb{R}, <)$ and $(\mathbb{R}, <) \models (\exists x)(\psi(x, a_1, \ldots, a_n))$ we can find $c \in M$ such that $(M, <) \models \psi(c, a_1, \ldots, a_n)$.

By using an argument similar to part (a), we can find an isomorphism $f:(M,<)\to (M,<)$ such that $f(a_k)=a_k$ for every $1\leq k\leq n$ and $f(c)\in\mathbb{Q}$. Put f(c)=b.

We claim that $(\mathbb{R}, <) \models \psi(b, a_1, \ldots, a_n)$ and therefore $b \in \mathbb{Q}$ is as required. Since f is an isomorphism, by the Lemma on Slide 148, we get $(M, <) \models \psi(c, a_1, \ldots, a_n)$ iff $(M, <) \models \psi(f(c), f(a_1), \ldots, f(a_n))$ iff $(M, <) \models \psi(b, a_1, \ldots, a_n)$. So $(M, <) \models \psi(b, a_1, \ldots, a_n)$. As (M, <) is an elementary submodel of $(\mathbb{R}, <)$, it follows that $(\mathbb{R}, <) \models \psi(b, a_1, \ldots, a_n)$ as claimed.

Page 6 MTH302A

Question 5. [10 Points]

- (a) [5 Points] Let $W \subseteq \omega$ be an infinite c.e. set. Show that there is a computable injective function $f: \omega \to \omega$ such that $\operatorname{range}(f) = W$.
- (b) [5 Points] Show that $True_{\mathcal{N}}$ (defined on Slide 199) is not c.e.

Solution

(a)	By Homework problem 31, we can fix a computable $g:\omega\to\omega$ such that range $(g)=W$.	Define
	$f:\omega\to\omega$ as follows: $f(0)=0$ and $f(n+1)=g(k)$ where k is the least number such that	$g(k) \notin$
	$\{f(0), f(1), \dots, f(n)\}$. Note that f is well-defined because range $(g) = W$ is infinite. It is clear the	at f is
	computable injective and range $(f) = \text{range}(g) = W$.	

(b) First note that the solution to Homework problem 35 shows that every c.e. subset of ω is definable in $\mathcal{N} = (\omega, 0, S, +, \cdot)$. By Tarksi's theorem, $True_{\mathcal{N}}$ is not definable in \mathcal{N} . So it cannot be c.e.

Page 7 MTH302A

Question 6. [10 Points]

Let $\mathcal{N} = (\omega, 0, +, \cdot)$ be the standard model of PA.

- (a) [6 Points] Define $False_{\mathcal{N}} = \{ \ulcorner \psi \urcorner : \mathcal{N} \models \neg \psi \}$. Show that $False_{\mathcal{N}}$ is not definable in \mathcal{N} .
- (b) [4 Points] Show that there are \mathcal{L}_{PA} -sentences ϕ and ψ such that PA does not prove either one of the following four sentences.
 - (i) ϕ
 - (ii) $\neg \phi$
 - (iii) $\phi \implies \psi$
 - (iv) $\phi \implies (\neg \psi)$

Solution

(a) Define $f: \omega \to \omega$ as follows. If n is the Gödel number of an \mathcal{L}_{PA} formula ϕ , then f(n) is the Gödel number of $\neg \phi$. Otherwise, f(n) = 0.

It is clear that f is computable and hence definable in \mathcal{N} . so we can fix an \mathcal{L}_{PA} -formula $\psi(y,x)$ such that for every $(m,n) \in \omega^2$, f(m) = n iff $\mathcal{N} \models \psi(n,m)$.

Note that $n \in True_{\mathcal{N}}$ iff $f(n) \in False_{\mathcal{N}}$. Towards a contradiction, suppose $False_{\mathcal{N}}$ is definable in \mathcal{N} and fix an \mathcal{L}_{PA} -formula $\theta(x)$ such that for every $n < \omega$, $n \in False_{\mathcal{N}}$ iff $\mathcal{N} \models \theta(n)$. Consider the formula $\phi(x) \equiv (\exists y)(\psi(y,x) \land \theta(y))$. Observe that for every $n < \omega$, $\mathcal{N} \models \phi(n)$ iff $\mathcal{N} \models \theta(f(n))$ iff $f(n) \in False_{\mathcal{N}}$ iff $n \in True_{\mathcal{N}}$. Hence $True_{\mathcal{N}}$ is definable in \mathcal{N} via the formula $\phi(x)$. But this contradicts Tarksi's theorem.

(b) Using the incompleteness theorem on Slide 200, choose $\phi \in TA$ such that PA does not prove either one of ϕ and $\neg \phi$. Since $PA \cup \{\phi\}$ is computable subset of TA, we can choose $\psi \in TA$ such that neither one of ψ and $\neg \psi$ is a theorem of $PA \cup \{\phi\}$. By the deduction theorem (Slide 127), it follows that ϕ and ψ are as required.

Page 8 MTH302A

Bonus Question [5 Points]

Let X be an uncountable set and suppose \prec_1 and \prec_2 are two well-orders on X. Show that there is an uncountable $Y \subseteq X$ such that for every $a, b \in Y$,

$$a \prec_1 b \iff a \prec_2 b$$

Solution. Put $\alpha = \mathsf{type}(X, \prec_1)$ and let $f: (X, \prec) \to (\alpha, \in)$ be the unique order isomorphism. Since X is uncountable, $\alpha \ge \omega_1$. Put $Z_1 = \{x \in X : f(x) < \omega_1\}$. Then $\mathsf{type}(Z_1, \prec_1) = \omega_1$. Repeating this argument with (Z_1, \prec_2) , we can get $Z \subseteq Z_1$ such that $\mathsf{type}(Z, \prec_2) = \mathsf{type}(Z, \prec_1) = \omega_1$.

Using transfinite recursion, construct $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ as follows. $x_0 \in Z$ is arbitrary. Having defined x_{β} for $\beta < \alpha$, choose x_{α} as follows: Let $W = \{x \in Z : (\exists \beta < \alpha)((x \prec_1 x_{\beta}) \text{ or } (x \prec_2 x_{\beta}))\}$. Note that W is countable since $\mathsf{type}(Z, \prec_1) = \mathsf{type}(Z, \prec_2) = \omega_1$. Define x_{α} to be any member of $Z \setminus W$. This complete the construction of $\langle x_{\alpha} : \alpha < \omega_1 \rangle$.

Put $Y = \{x_{\alpha} : \alpha < \omega_1\}$. Then it is easy to see that for every $\alpha < \beta < \omega_1$, we have $x_{\alpha} \prec_1 x_{\beta}$ and $x_{\alpha} \prec_2 x_{\beta}$. So Y is as required.