EE5801: CSP Lab/ EE5301: DSP Lab

Assignment 2

Problem:

Design of digital filters such as LPF, HPF, BPF and HBF.

Technical details:

1. LPF or Half band filter with $f_c=400~Hz$, $\omega_c=\pi/2$, N=39

$$h_d[n] = \begin{cases} \frac{Sin(\omega_c n)}{\pi n}, & -(N-1)/2 \le n \le (N-1)/2 \\ \frac{\omega_c}{\pi}, & n = 0 \end{cases}$$

- **2. LPF** with $f_c = 400 \; Hz$, $\omega_c = \pi/4$, N = 39, $h_d[n]$ is same as above.
- **3.** HPF with $f_c = 1200 \ Hz$, $f_s = 4800 \ Hz$, N = 39

$$h_d[n] = \begin{cases} \frac{Sin(\pi n)}{\pi n} - \frac{Sin(\omega_c n)}{\pi n}, & -(N-1)/2 \le n \le (N-1)/2 \\ 1 - \frac{\omega_c}{\pi}, & n = 0 \end{cases}$$

3. HPF with
$$f_c = 1200~Hz$$
, $f_s = 4800~Hz$, $N = 39$

$$h_d[n] = \begin{cases} \frac{Sin(\pi n)}{\pi n} - \frac{Sin(\omega_c n)}{\pi n} , & -(N-1)/2 \le n \le (N-1)/2 \\ 1 - \frac{\omega_c}{\pi} , & n = 0 \end{cases}$$
4. BPF with $f_{c1} = 500~Hz$, $f_{c2} = 1200~Hz$, $f_s = 6000~Hz$, $N = 39$

$$h_d[n] = \begin{cases} \frac{Sin(\omega_{c2}n)}{\pi n} - \frac{Sin(\omega_{c1}n)}{\pi n} , & -(N-1)/2 \le n \le (N-1)/2 \\ \frac{\omega_{c2} - \omega_{c1}}{\pi} , & n = 0 \end{cases}$$

Window functions

Hamming window

$$W_H[n] = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), & if \ 0 \le n \le N-1 \\ 0, & otherwise \end{cases}$$

Instructions:

ullet In case of 1 and 2 decide the sampling frequency $f_{\scriptscriptstyle S}$ as discussed in lecture.

- Generate the N samples of $h_d[n]$ in time domain for the filter you want to design.
- Multiply the window function $W_H[n]$ with $h_d[n]$ to get practical impulse response h[n].

Submission Details:

- Write C code to implement above system.
- <u>Coding format:</u> Write main.c and two separate files named common_functions.c which contains 3 separate functions corresponding to LPF and HPF and BPF and header file named common_functions.h which contains function declarations.
- For both LPF 1 and LPF 2 you need to call same LPF function with appropriate parameter. Input to any filter functions are f_c , f_s and N. Output of any filter function is h[n].
- Take this output h[n] from C to Matlab and plot impulse response and magnitude response for all 4 case using 'fvtool' command.
- Write your understanding about above filters in your own words in MS word or latex.
- Upload the below files in a single zip file with your id, Example: EE20MTECH11010_A2.zip.
 - o main.c
 - o common_functions.c
 - o common functions.h
 - \circ A text file containing your practical impulse response h[n]
 - o 8 pdf file of plots saved from Matlab
 - o Pdf of your MS word or latex document.

Grading:

- Output 50% (Output in text file: 25% and Matlab plots: 25%)
- coding format 30%
- writting submission(pdf file) 20%
- late submission (-5)%