CE5312: River mechanics

Lecturer:

Dr. Yuan Jing, Assistant Professor

Office: E2-05-20, Email: ceeyuan@nus.edu.sg, Tel: 6516 2160

Module discription:

This module introduces the student to basic concepts of open-channel flow. Students will first learn fundamentals of steady open-channel flows, e.g. flow resistance calculation, the concepts of normal and critical flows, gradually varied flow and surface profile calculation. Some artificial flow controls, e.g. sluice gate and weir, will also be introduced to allow students see how basic concepts can be used in engineering applications. The second part of the module focuses on unsteady open-channel flow. Students will first learn the derivation of governing equations, i.e. continuity equation and momentum equation. The method of characteristic for solving the governing equations will be introduced based on a few applications, e.g. dam-breaking problem. Fundamentals of river routing, e.g. kinematic wave, dynamic waves and Muskingum-Cunge method, will be briefly covered. While there will be many chances for students to put their mathematical skills to use in this module, the emphasis is on physical understanding of nature phenomenon and solving actual engineering problems.

Grading policies:

The assessment consists of homework, quiz and final exams, and the weightages are 20% for homework, 30% for quizzes, 10% for a small project and 40% for the final exam.

Homework (20%):

There will be 5 homework assignments. Each assignment will be published on IVLE after a Wednesday lecture and will be due on the next Wednesday's lecture. Hard copies of homework solution should be submitted.

Quizzes (30%):

There will be two in-class quizzes in Week 7 and 13 (subject to change). The quizzes will be open-book and take 1.5 hours.

Project (10%):

Students will conduct a small project (in group of 2-3) on numerical modeling of unsteady open-channel flow. Details to be announced later.

Final (40)%

This is a 2.5-hour and open-book exam.

Reference book:

Chaudhry, M. Hanif (2008), Open-channel flow, Springer, ISBN 9780387301747 (digital version available through NUS library)

Subash C. Jain. (2001), Open Channel Flow, John Wiley & Sons, Inc. ISBN 0-471-35641-7

Syllabus:

Week	Content	Homework
	Part I: Steady Open-Channel Flows	
1	Module introduction	
-	Topic 1: Uniform steady open-channel flows	
	Basic hydraulic formula	
	Flow resistance	
2	Topic 1 (cont'd)	HW1
	Normal depth and rating curve	
	Energy equation	
	Topic 2: Rapidly-varying steady open-channel flows	
	Energy principle and critical flow	
	Flow over a step	
	Momentum principle	
3	Topic 2: (cont'd)	
J	Unassisted hydraulic jump	
	Topic 3: Gradually-varying steady open-channel flows	
	Governing equation	
	Surface profiles	
	 Surface profiles Determination of surface profiles 	
4	The two-lake problem Topic 3: (cont'd)	HW2
5		HVV2
	Determination of surface profiles The two lake problem.	
	The two-lake problem Topic 4: Artificial channel control	
•		
	Sluice gateWeir	
c		LIVA/2
6	Topic 5: Boundary layers for uniform steady open-channel flows	HW3
	Concept of boundary layers	
	Laminar boundary layers Turbulant boundary layers	
	Turbulent boundary layers	
	Part II: Unsteady Open-Channel Flows	
7	Topic 6: Governing equation for unsteady open-channel flows	
	In-class Quiz 1	
8	Topic 7: Modeling unsteady open-channel flows using the method of characteristic	Project
	 Method of Characteristics 	
	Numerical method	
9	Tonic Or Simula vyava myahlama	
9	Topic 8: Simple-wave problems	
	Negative surge Desitive surge	
10	Positive surge Tonic 8 (cont/d)	111/4/4
10	Topic 8 (cont'd)	HW4
	Dam-break problem Shire parts problem	
	Sluice-gate problem Tania Discouranting	
11	Topic 9: River routing	
	Level-pool method	
12	Muskingum method Tani O Picara at in a	11147=
12	Topic 9: River routing	HW5
	Kinematic-wave routing	
	Diffusion-wave routing	
	Muskingum-Cunge routing	
13	In-class Quiz 2	
	Review	