

Parallel Computing

Simone

Parallel Algorithms	Linear Array and Ring
Parallel sorting	Linear Array
Merge sort	Ring
Bitonic Merging Bitonic Sorting	Binary Hypercube
Prefix Computation	Binary Hypercube
Binary Adder	
forse?	Multidimensional Meshes and Tori
FFT for Powers of Two	
Benes Permutation	Embeddings and simulations
Network Definitions	

Degree

In an undirected graph G=(V,E), the **degree of a node** $a\in V$ is the number of its immediate neighbours, that is:

$$degree(a) = |\{b \in V : (a, b) \in E\}|$$

The degree of a graph is the maximum degree of any of its nodes, that is:

$$\operatorname{degree}(G) = \max_{a \in V} (degree(a))$$

A graph is said to be **regular of degree** Δ if all its nodes have degree Δ

Diameter

In an undirected graph G = (V, E), the distance $dist_G(a, b)$ between two nodes a and b is defined as the length of a shortest path in G from a to b. The **diameter of** G is defined as the maximum distance between any pair of nodes, that is:

$$diam(G) = \max_{a,b \in V} (dist_G(a,b))$$

Diameter and Degree Lower bound for any connected graph G with P nodes and $\operatorname{degree}(G) = \delta \geq 3$:

$$diam(G) > log_{\delta-1}(P-1) + log_{\delta-1}((\delta-2)/\delta)$$

Bandwidth

Let G = (V, E) be an undirected graph. Let $S \subseteq V$ be a subset of nodes. $\delta_G(S)$ is the number of edges between set S and its complement V - S

$$\delta_G(S) = |(S \times (V - S)) \cap E|$$

Dichotomy width Given m integer $0 \le m \le |V|$:

$$\delta_G(m) = \min_{S \subseteq V, |S| = m} \delta_G(S)$$

Bisection width Bisection width with $m = \lfloor |V|/2 \rfloor$:

$$b_G = \delta_G(||V|/2|)$$

Altri blocchi di embedding specifiche

Tipo LA e H, H e M, M e LA presi anche da esami e soluzioni del prof oltre che dalle slide viste a lezione