CURSO DE MATEMÁTICA - LICENCIATURA

PRODUTO ESCALAR, VETORIAL E MISTO

GABARITO EXERCÍCIOS DE FAMILIARIZAÇÃO – PRODUTO ESCALAR

- 1) Calcule
- a) $(1, 0, 1) \bullet (-2, 10, 2) = -2 + 2 = 0$

b)
$$(\vec{i} + \vec{j} + \vec{k}) \bullet (\vec{i} - \vec{j} - 5\vec{k}) = (1,1,1) \bullet (1,-1,-5) = 1 - 1 - 5 = -5$$

c)
$$(\frac{1}{2}, 0, 0) \bullet (1, 2, 7) = \frac{1}{2}$$

d)
$$(0,0,0) \bullet (-1,-9,10) = 0$$

e)
$$(\sqrt{3}, 1, 0) \bullet (1, 3, -7) = \sqrt{3} + 3$$

f)
$$(2,1,1) \bullet (1,-4,2) = 0$$

2) Calcular o ângulo entre os vetores:

a)
$$\vec{u} = (1, 2, 2)$$
 e $\vec{v} = (1, -4, 8)$

$$|\vec{u}| = \sqrt{1+4+4} = 3$$
 $|\vec{v}| = \sqrt{1+16+64} = 9$

$$\cos\theta = \overrightarrow{u} \cdot \overrightarrow{r} = 9 = 1$$

$$|\overrightarrow{v}| + |\overrightarrow{r}| = 3 \times 9$$

$$\theta = \arccos \frac{1}{3} = 71^{\circ}$$

b)
$$\vec{r} = (4, -1, 3)$$
 e $\vec{s} = (1, 1, -1)$

$$\vec{R} = (4, -1, 3) \in \vec{R} = (1, 1, -1)$$

PUC-SP CURSO DE MATEMÁTICA - LICENCIATURA

- 3) Qual o valor de m para que os vetores sejam ortogonais?
- a) $\vec{u} = (m, 2, 3)$ e $\vec{v} = (2, -1, 2)$

 $\vec{n} = (m, 2, 3) \cdot \vec{v} = (2, -1, 2)$

 $\vec{u} \cdot \vec{r} = 2m - 2 + 6 = 2m + 4 = 0 \iff 2(m-2) = 0$ $\iff m = -2.$

b) $\vec{r} = (m, 3, 4)$ e $\vec{s} = (m, -2, 3)$

 $\vec{R} = (m, 3, 4) \in \vec{R} (m, -2, 3)$

 $\vec{R} \cdot \vec{\beta} = m^2 - 6 + 12 = m^2 + 6 = 0 \iff m^2 = -6$

4) Achar os ângulos diretores do vetor $\vec{v} = \vec{i} + 2\vec{j} + 2\vec{k}$

 $\vec{v} = \vec{L} + 2\vec{j} + 2\vec{k}$ $|\vec{r}| = \sqrt{1+4+4} = 3$

 $\cos \alpha = \frac{\alpha}{|\vec{r}|} = \frac{1}{3}$ $\alpha = \arccos \frac{1}{3} = 71^{\circ}$

 $pos pos = \frac{y}{|\vec{x}|} = \frac{2}{3}$ $psi = arccos \frac{2}{3} = 480$

COS N = 3 = 2 :. N = precos 2 = 480

- 5) Determine a medida, em radianos do arco determinado pelo ângulo formado pelos vetores \overrightarrow{u} e \overrightarrow{v} nos seguintes casos:
- a) $\vec{u} = (1, 0, 1)$ e $\vec{v} = (-2, 10, 2)$

 $\vec{u} = (1,0,1) \times \vec{v} = (-2,10,2)$

 $\cos \theta = \vec{x} \cdot \vec{r} = -2 + 0 + 2 = 0 \quad ; \quad \theta = \underline{T}$ $|\vec{x}||\vec{r}| \quad \sqrt{2} \cdot \sqrt{104}$

b) $\vec{u} = (3, 3, 0)$ e $\vec{v} = (2, 1, -2)$

 $\vec{n} = (3,3,0) \in \vec{r} = (2,1,-2)$

 $cos 0 = \frac{6+3+0}{\sqrt{18}} = \frac{9}{9} = \frac{\sqrt{2}}{2}, \frac{1}{9}, 0 = \frac{17}{4}$

PUC-SP CURSO DE MATEMÁTICA - LICENCIATURA

c) $\vec{u} = (-1, 1, 1)$ e $\vec{v} = (1, 1, 1)$

$$\vec{u} \cdot \vec{V} = -1 + 1 + 1 = 1$$
 $|\vec{u}| = \sqrt{3}$ $|\vec{v}| = \sqrt{3}$

$$cor \theta = 1$$
 = 1 , $cor \theta = \frac{1}{3}$

d) $\vec{u} = (\frac{\sqrt{3}}{2}, \frac{1}{2}, 0)$ e $\vec{v} = (\frac{\sqrt{3}}{2}, \frac{1}{2}, \sqrt{3})$

$$\vec{u} = \begin{pmatrix} \sqrt{3} & 1 & 0 \\ 2 & 2 & 0 \end{pmatrix} \quad \vec{\mathcal{F}} = \begin{pmatrix} \sqrt{3} & 1 & \sqrt{3} \\ 2 & 2 & 0 \end{pmatrix}$$

$$\vec{u} \cdot \vec{r} = 3 + 4 = 1 \quad |\vec{u}| = \sqrt{3 + 4} = 1 \quad |\vec{r}| = \sqrt{4} = 2$$

$$cos \theta = \frac{1}{2}$$
 , $\theta = \frac{\pi}{3}$

e) $\vec{u} = (300, 300, 0)$ e $\vec{v} = (-2000, -1000, 2000)$

$$\vec{u} = (300, 300, 0)$$
 $\vec{v} = (-2000, -1000, 2000)$ $\vec{u} = 300 (1, 1, 0)$ $\vec{v} = 1000 (-2, -1, 2)$

$$\cos\theta = -3 = -\sqrt{2} \text{ (1) } \theta = 3 \text{ (2)}$$

- 6) Determine x de modo que $\overrightarrow{u} \perp \overrightarrow{v}$ nos casos.
- a) $\vec{u} = (x, 0, 3)$ e $\vec{v} = (1, x, 3)$

$$\vec{n} = (x, 0, 3) \in \vec{v} = (1, x, 3)$$

b)
$$\vec{u} = (x+1, 1, 2)$$
 e $\vec{v} = (x-1, -1, -2)$

$$\vec{n} = (x+1, 1, 2) \cdot \vec{v} = (x-1, -1, -2)$$

$$\vec{u} \cdot \vec{v} = (x+1)(x-1)-1-4=0$$

$$x^2-1-1-4=0 \implies x^2=$$

CURSO DE MATEMÁTICA - LICENCIATURA

- 7) Determine a projeção do vetor \vec{w} na direção do \vec{v} nos casos:
- a) $\vec{w} = (-1, 1, 1)$ e $\vec{v} = (-2, 1, 2)$

$$\vec{w} \cdot \vec{r} = 2 + 1 + 2 = 5$$

$$|\vec{v}|^2 = 4 + 1 + 4 = 9$$

$$proj_{\vec{v}} = \frac{5}{9} (-2, 1, 2) = (-\frac{10}{9}, \frac{5}{9}, \frac{10}{9})$$

b)
$$\vec{w} = (1, 3, 5)$$
 e $\vec{v} = (-3, 1, 0)$

$$\vec{w} \cdot \vec{v} = -3 + 3 = 0$$

8) Decomponha $\vec{w} = (-1, -3, 2)$ como soma de dois vetores \vec{w}_1 e \vec{w}_2 de tal forma que \vec{w}_1 seja paralelo e \vec{w}_2 seja ortogonal ao vetor (0, 1, 3).

$$\vec{w} = \vec{w}_1 + \vec{w}_2$$

$$|\vec{u}|^2 = 1 + 9 = 10 \quad \vec{w} \cdot \vec{u} = -3 + 6 = 3$$

$$|\vec{w}_1| = proj_1 \vec{w} = \frac{3}{10} (0, 1, 3) = (0, \frac{3}{10}, \frac{9}{10})$$

$$\vec{w}_2 = \vec{w} - \vec{w}_1 = (-1, -3, 2) - (0, \frac{3}{10}, \frac{9}{10}) - (-1, \frac{-33}{10}, \frac{-29}{10})$$

9) Os vetores \vec{a} e \vec{b} são ortogonais, o vetor \vec{c} forma com \vec{a} e \vec{b} ângulos iguais a $\frac{\pi}{3}$. Sabendo-se que $|\vec{a}|=3$, $|\vec{b}|=5$ e $|\vec{c}|=8$, calcule:

a)
$$(3\vec{a} - 2\vec{b}) \bullet (\vec{b} + 3\vec{c})$$

$$(3\vec{a} - 2\vec{b}) \cdot (\vec{b} + 3\vec{c}) =$$
= $3\vec{a} \cdot \vec{b} + 9\vec{a} \cdot \vec{c} - 2\vec{b} \cdot \vec{b} - 6\vec{b} \cdot \vec{c}$

Como $\vec{a} \cdot \vec{b}$ pao entregonais entre $\vec{a} \cdot \vec{b} = 0$

Como
$$\vec{a}$$
 e \vec{b} pao ortogonais entas \vec{a} . \vec{b} = 0 \vec{a} . \vec{c} = $|\vec{a}||\vec{c}|$ cos $\vec{\Pi}$ = $3\times8\times1$ = 12.

$$\vec{b} \cdot \vec{c} = |\vec{b}||\vec{c}||\cos \vec{\pi} = 5 \times 8 \times \frac{1}{2} = 20$$

$$(3\vec{a}-2\vec{b}).(\vec{b}+3\vec{c}) = 3x0+9x12-2x25-6x20 =$$

$$= 108-50-120=-62.$$

CURSO DE MATEMÁTICA - LICENCIATURA

b) $(\vec{a} + \vec{b} + \vec{c})^2$

c) $(\vec{a} + 2\vec{b} - 3\vec{c})^2$

$$\begin{array}{l} \left(\vec{a} + 2\vec{b} - 3\vec{c}\right)^2 = \\ = \left(\vec{a} + 8\vec{b} - 3\vec{c}\right) \cdot \left(\vec{a} + 2\vec{b} - 3\vec{c}\right) = \\ = \vec{a} \cdot \vec{a} + 2\left(\vec{a} \cdot \vec{b}\right) - 3\left(\vec{a} \cdot \vec{c}\right) + 2\left(\vec{a} \cdot \vec{b}\right) + 4\left(\vec{b} \cdot \vec{b}\right) - 6\left(\vec{b} \cdot \vec{c}\right) - 3\left(\vec{a} \cdot \vec{c}\right) - \\ - 6\left(\vec{b} \cdot \vec{c}\right) + 9\left(\vec{c} \cdot \vec{c}\right) = \\ = |\vec{a}|^2 + 4|\vec{b}|^2 + 9|\vec{c}|^2 + 4(\vec{a} \cdot \vec{b}) - 6(\vec{a} \cdot \vec{c}) - 12\left(\vec{b} \cdot \vec{c}\right) = \\ = 9 + 4x25 + 9x64 - 6x12 - 12x20 = \\ = 9 + 100 + 576 - 72 - 240 = 373. \end{array}$$

10) O ângulo entre \vec{a} e \vec{b} mede 120°. Sendo $|\vec{a}| = 4$, $|\vec{b}| = 3$, $\vec{u} = \vec{a} + \vec{b}$ e $\vec{v} = \vec{a} - 2\vec{b}$, o ângulo entre \vec{u} e \vec{v} é agudo, reto ou obtuso?