

Adaptative Friction Shock Absorbers and Reverse Thrust for Fast Multirotor Landing on Inclined Surfaces

John.Bass@USherbrooke.ca Isaac.Tunney@USherbrooke.ca Alexis.Lussier.Desbiens@USherbrooke.ca

Authors

Isaac Tunney

In real life, landing surfaces are not often horizontal...

Rooftops:

- Very common
- Clear of obstacles
- Inclinations mostly under 60°

[4] maps.google.com

Landing at high speeds on slopes is not an easy task!

Slow Landing

Fast Landing

Landing on steep slopes

Wider range of conditions

Friction shock absorbers (FSA)

- No elastic energy accumulated
- Adjustable friction
- Simple and lightweight

Reverse thrust (RVT)

- Increased friction force on ground
- Create forces that counter flipping motion
- No added weight

- Lightweight passive landing gear
- Adjustable friction levels
- Automatic legs reset

- 2D dynamic model in MATLAB
 - Validated using experimental drop recorded with motion capture equipment

 Allowed to find the best parameters for hundreds of impact conditions

THANK YOU!

John.Bass@USherbrooke.ca Isaac.Tunney@USherbrooke.ca Alexis.Lussier.Desbiens@USherbrooke.ca

