L5 - RC FILTERS

PHYS 301: ANALOG AND DIGITAL ELECTRONICS

MATTHEW FERGUSON ISAAC WOODARD

DECEMBER 2, 2020

REVIEW

IMPEDANCE

$$Z_{R} = R$$

$$Z_{C} = \frac{1}{j\omega C}$$

$$Z_{L} = j\omega L$$

$$\omega = 2\pi f$$

RC Voltage Divider (AC)

$$V_{out}=rac{Z_C}{R+Z_C}V_{in}$$
 Gain $=rac{V_{out}}{V_{in}}=rac{1}{\sqrt{1+\omega^2R^2C^2}}$ $\Delta\phi=- an^{-1}(\omega RC)$

FILTERS

MIXED FREQUENCIES

Low Pass Filter

Gain
$$=rac{V_{out}}{V_{in}}=rac{1}{\sqrt{1+(\omega RC)^2}}$$
 $\Delta\phi=- an^{-1}(\omega RC)$

$$\Delta\phi = -\tan^{-1}\left(\omega RC\right)$$

DECIBEL SCALE

- Used as a logarithmic power scale
- Can be applied to voltage gain

$$dB = 10 \log \left| \frac{V_{out}}{V_{in}} \right|^{2}$$
or
$$dB = 20 \log \left| \frac{V_{out}}{V_{in}} \right|$$

BODE MAGNITUDE PLOT

$$f_c = f_{-3dB} = rac{1}{2\pi RC}$$

$$Gain = \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$= \frac{1}{\sqrt{1 + 1}}$$

CRITICAL POINT

$$f_{
m c},~~f_{
m -3dB}$$
 $\omega_{
m c}$ RC $=$ 1 $ightarrow$ $\omega_{
m c}$ $=$ $rac{1}{RC}$ $ightarrow$ $f_{
m c}$ $=$ $rac{1}{2\pi RC}$

$$dB = 20 \log \left| \frac{V_{out}}{V_{in}} \right|$$

$$dB_{\frac{1}{2}} = 20 \log \left| \frac{1}{\sqrt{2}} \right| = -10 \log 2 = -3.03 dB$$

BODE TABLE

f	V_{in}	Vout	Gain	$\Delta \phi$
1Hz				
:				
100kHz				

BODE PHASE PLOT

HIGH PASS FILTER

$$Gain = \frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{1 + (\frac{1}{\omega RC})^2}} \qquad \Delta \phi = \tan^{-1} \left(\frac{1}{\omega RC}\right)$$

HIGH PASS BODE PLOTS

BLOCKING CAPACITOR

$$V_{out} = \frac{R_2}{R_1 + R_2} V + V_{in} - \frac{I_1}{j\omega C}$$