EC330: Applied Algorithms for Engineers

Asymptotic Notation

What is an algorithm?

- An unambiguous list of steps (program) to transform some input into some output
- Pick a Problem (set)
- Find method to solve
 - 1. Correct for all cases (elements of set)
 - 2. Each step is finite ($\Delta t_{step} < max time$)
 - 3. Next step is unambiguous
 - 4. Terminate in finite number of steps

What is an Algorithm?

Selection Sort(A[1...n])

for (i=1 to n)

for j=i+1 to n

if A[i]>A[j] then

swap A[i] and A[j]

``loop invariant"

Lemma: After iteration *j* of the inner loop A[i] is the smallest element of A[i...j].

Theorem: Selection Sort puts the elements of A[] into increasing order.

Proof by induction.

How fast is Selection Sort?

Selection Sort(A[1...n])
for (i=1 to n)
for j=i+1 to n
if A[i]>A[j] then
swap A[i] and A[j]
$$2 \qquad \sum_{j=i+1}^{n} 2$$

It depends!

- What computer? What language? What compiler?
 What operating system? What architecture?
- How long does it take to compare A[i] and A[j]?
 ...to swap A[i] and A[j]? To find A[i]?
- If swap and comparison take 1 unit of time, how much time do they take?
 \(\bar{\cap}\)\(\bar{\cap}\)\(\bar{\cap}\)\(\bar{\cap}\)

 $\sum_{i=1}^{n} \sum_{j=i+1}^{n} 2$

How does this compare to n³, n², n³/100?

Running Time

- Most algorithms transform input objects into output objects
- The running time of an algorithm typically grows with the input size
- Average case time is often difficult to determine
- We often focus on the worst case running time
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Experimental Studies

- Write a program to implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like clock() to get an accurate measure of the actual running time
- Plot the results

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment
- In order to compare two algorithms, the same hardware and software environments must be used

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Theoretical Analysis

- la avithm
- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/ software environment

© 2010 Goodrich, Tamassia

Analysis of Algorithms

The Land of O()

- Which function is "bigger"?
 - Only care about eventual size (asymptotic)

Don't care about multiplicative constants

The Land of O()

<u>Big-O</u>: for functions that map real numbers (or a subset) to real numbers (or a subset)

Intuitively: f(n) is O(g(n)) if f is eventually smaller or equal to g or some multiple of g

"Real" Definition: f(n) is O(g(n)) iff $\exists c>0 \ \exists n_0>0 \ |f(n)| \le c|g(n)| \text{ whenever } n>n_0.$

"Math-freak" Definition: f(n) is O(g(n)) if $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ is finite.

O() Examples

"Real" Definition: f(n) is O(g(n)) iff

 $\exists c > 0 \ \exists n_0 > 0 \ |f(n)| \le c|g(n)| \text{ whenever } n > n_0.$

 $\begin{array}{ccccc} & \underline{n}_0 \\ \text{n is O(n)} & 1 & 1 \\ \text{n is O(5n)} & 1 & 1 \\ \text{n is O(n/2-17)} & 100 & 1 \\ \text{n is O(n/10^{100})} & 10^{100} & 1 \\ \end{array}$

5n+3 is O(n²) 25 6 [proof by induction]

 n^2 is not O(5n+3)

Big-Oh Example

- Example: the function n² is not O(n)
 - $-n^2 \leq cn$
 - n < c</p>
 - The above inequality cannot be satisfied since c must be a constant

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Why is big-O Important?

input size		(machine does 1,000,000 steps per second)				
time	10	20	30	40	50	60
log n	3.3µsec	4.4µsec	5µsec	5.3µsec	5.6µsec	5.9µsec
n	10µsec	20μsec	30µsec	40μsec	50μsec	60μsec
n^2	100μsec	400μsec	900µsec	1.5msec	2.5msec	3.6msec
n^5	0.1sec	3.2sec	24.3sec	1.7min	5.2min	13min
3 ⁿ	59msec	48min	6.5yrs	385,500yrs 2x108 centuries		
n!	3sec	7.8x10 ⁸ millenia				

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Properties of big-O

If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$ then

- $f_1(n) + f_2(n)$ is $O(g_1(n)+g_2(n))$
- $f_1(n) + f_2(n)$ is $O(max\{g_1(n),g_2(n)\})$
- $f_1(n) * f_2(n)$ is $O(g_1(n)*g_2(n))$

[prove these to yourself!]

If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))

• Examples:

Cousins of O() $ \frac{f(n) \text{ is } O(g(n)) \text{ ["big oh"] iff }}{\exists C > 0 \exists n_0 f(n) \leq C g(n) \text{ whenever } n > n_0. } $	<u>Like</u> ≤
f(n) is Ω(g(n)) ["big Omega"] iff ∃C>0 ∃n ₀ f(n) ≥ C g(n) whenever n > n ₀ . ⇔ g(n) is O(f(n))	2
$f(n)$ is $\Theta(g(n))$ ["big Theta"] iff $f(n)$ is $O(g(n))$ and $g(n)$ is $O(f(n))$	=
f(n) is $o(g(n))$ ["little oh"] iff $\forall C > 0 \exists n_0 f(n) < C g(n) \text{ whenever } n > n_0.$ $\Leftarrow \lim_{n \to \infty} f(n)/g(n) = 0$ intuitively: $f(n)$ is $O(g(n))$ but $f(n)$ is not $O(g(n))$	<
$\begin{split} f(n) &\text{ is } \omega(g(n)) \text{ ["little omega" - not doubleyou] iff} \\ &g(n) \text{ is } o(f(n)) \\ &\Leftarrow \lim_{n\to\infty} f(n)/g(n) = \infty \end{split}$	>

Rules of Thumb

- For polynomials, only the largest term matters. $a_k x^k + a_{k-1} x^{k-1} + ... + a_0$ is $\Theta(x^k)$
- log n is o(n) Proof: $\lim_{n\to\infty} \log(n)/n = 0$
- Some common functions in "non-decreasing" order: 1 log(n) $\forall n$ n nlog(n) n^2 n^3 n^{100} 2^n 3^n n!
- Selection sort requires $\Theta(n^2)$ time.


```
"Math-freak" Definition: f(n) is O(g(n)) if
       \lim_{n\to\infty}\frac{f(n)}{g(n)} is finite
                                                                                            Like
f(n) is O(g(n)) [ "big oh" ] iff
    \exists C > 0 \ \exists n_0 \ |f(n)| \le C|g(n)| \text{ whenever } n > n_0.
                                                                                               ≤
f(n) is \Omega(g(n)) [ "big Omega" ] iff
    \exists C > 0 \ \exists n_0 \ |f(n)| \ge C|g(n)| \text{ whenever } n > n_0.
                                                                                               ≥
           \Leftrightarrow g(n) is O(f(n))
f(n) is \Theta(g(n)) [ "big Theta" ] iff
    f(n) is O(g(n)) and g(n) is O(f(n))
f(n) is o(g(n)) ["little oh"] iff
   \forall C > 0 \exists n_0 | f(n)| < C|g(n)| \text{ whenever } n > n_0.
                                                                                               <
   \Leftarrow \lim_{n\to\infty} f(n)/g(n) = 0
intuitively: f(n) is O(g(n)) but f(n) is not \Theta(g(n))
f(n) is \omega(g(n)) ["little omega" - not doubleyou] iff
                                                                                               >
    g(n) is o(f(n))
    \Leftarrow \lim_{n\to\infty} f(n)/g(n) = \infty
```