# **Today topics:**

- · group df
- concate
- sort
- · merge/join

## **Data Preprocess:**

- standardization(standard scaler)
- · Robost scaling
- Range scaling(MinMaxScaler)
- Normalization(L2 Norm)

### **Grouping:**

```
In [1]: import pandas as pd
import numpy as np

In [2]: df=pd.read_csv("weather.csv")
    df.head()
```

Out[2]:

| city       | event   | humidity | winspeed | temparature | est      | s.no |   |
|------------|---------|----------|----------|-------------|----------|------|---|
| guntur     | rain    | 12.50    | 12       | 30          | 1/2/2019 | 1    | 0 |
| vijayawada | rain    | 14.23    | 14       | 33          | 1/2/2019 | 1    | 1 |
| vizag      | rain    | 43.13    | 13       | 43          | 1/3/2019 | 2    | 2 |
| guntur     | fullair | 55.80    | 8        | 55          | 1/4/2019 | 3    | 3 |
| vijayawada | cold    | 66.10    | 10       | 66          | 1/5/2019 | 4    | 4 |

```
In [3]: df['city'].unique()
```

```
Out[3]: array(['guntur', 'vijayawada', 'vizag'], dtype=object)
```

```
In [4]: g=df.groupby('city')
g
```

Out[4]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000023EC2C04860>

```
In [6]: for i,j in g:
    print(i)
    print(j)

guntur
```

```
s.no
                     temparature
                                   winspeed
                                              humidity
                                                           event
                                                                     city
                est
0
      1
          1/2/2019
                               30
                                          12
                                                 12.50
                                                            rain
                                                                   guntur
3
          1/4/2019
      3
                               55
                                           8
                                                 55.80
                                                        fullair
                                                                   guntur
6
      6
          1/7/2019
                               76
                                          17
                                                 76.17
                                                         fullair
                                                                   guntur
      9
                                                 90.11
                                                            cold
9
         1/10/2019
                               90
                                          11
                                                                   guntur
vijayawada
                      temparature
                                    winspeed
                                               humidity
                                                            event
    s.no
                 est
                                                                          city
1
       1
           1/2/2019
                                33
                                           14
                                                  14.23
                                                             rain
                                                                   vijayawada
           1/5/2019
                                66
                                                  66.10
                                                                   vijayawada
4
       4
                                           10
                                                             cold
                                                                    vijayawada
7
       7
                                89
                                                  89.23
           1/8/2019
                                           23
                                                             cold
10
      10
          1/11/2019
                                65
                                           18
                                                  65.18
                                                         fullair
                                                                    vijayawada
vizag
    s.no
                 est
                      temparature
                                    winspeed
                                               humidity
                                                            event
                                                                     city
2
       2
           1/3/2019
                                43
                                           13
                                                  43.13
                                                             rain vizag
5
       5
           1/6/2019
                                34
                                           15
                                                   34.15
                                                             cold
                                                                    vizag
8
                                23
                                                   23.90
       8
           1/9/2019
                                            9
                                                          fullair
                                                                    vizag
11
      11
          1/12/2019
                                78
                                           20
                                                  78.20
                                                          fullair
                                                                    vizag
```

```
In [8]: for i,j in g:
    if(i=='guntur'):
        guntur=pd.DataFrame(j)
    elif(i=="vizag"):
        vizag=pd.DataFrame(j)
    elif(i=="vijayawada"):
        vij=pd.DataFrame(j)
```

```
In [10]: vizag
vij
```

#### Out[10]:

|   |    | s.no | est       | temparature | winspeed | humidity | event   | city       |
|---|----|------|-----------|-------------|----------|----------|---------|------------|
| - | 1  | 1    | 1/2/2019  | 33          | 14       | 14.23    | rain    | vijayawada |
|   | 4  | 4    | 1/5/2019  | 66          | 10       | 66.10    | cold    | vijayawada |
|   | 7  | 7    | 1/8/2019  | 89          | 23       | 89.23    | cold    | vijayawada |
|   | 10 | 10   | 1/11/2019 | 65          | 18       | 65.18    | fullair | vijayawada |

```
In [11]: g=df.groupby('city')
    g.get_group('vijayawada')
```

# Out[11]:

| С | С  | (   | C  | С          | it | :у | / |   |   |
|---|----|-----|----|------------|----|----|---|---|---|
| Е | иa | ıwa | wa | <i>ı</i> a | d  | la | 3 | - | - |
| г | иa | IWa | wa | <i>ı</i> a | ıd | la | 3 |   |   |
| Е | иa | ıwa | wa | ıα         | ıd | la | 3 |   |   |
| Е | иa | ıwa | wa | /a         | d  | la | а |   |   |

# sorting

```
In [12]: #asending order
df.sort_values(['temparature'])
```

#### Out[12]:

|    | s.no | est       | temparature | winspeed | humidity | event   | city       |
|----|------|-----------|-------------|----------|----------|---------|------------|
| 8  | 8    | 1/9/2019  | 23          | 9        | 23.90    | fullair | vizag      |
| 0  | 1    | 1/2/2019  | 30          | 12       | 12.50    | rain    | guntur     |
| 1  | 1    | 1/2/2019  | 33          | 14       | 14.23    | rain    | vijayawada |
| 5  | 5    | 1/6/2019  | 34          | 15       | 34.15    | cold    | vizag      |
| 2  | 2    | 1/3/2019  | 43          | 13       | 43.13    | rain    | vizag      |
| 3  | 3    | 1/4/2019  | 55          | 8        | 55.80    | fullair | guntur     |
| 10 | 10   | 1/11/2019 | 65          | 18       | 65.18    | fullair | vijayawada |
| 4  | 4    | 1/5/2019  | 66          | 10       | 66.10    | cold    | vijayawada |
| 6  | 6    | 1/7/2019  | 76          | 17       | 76.17    | fullair | guntur     |
| 11 | 11   | 1/12/2019 | 78          | 20       | 78.20    | fullair | vizag      |
| 7  | 7    | 1/8/2019  | 89          | 23       | 89.23    | cold    | vijayawada |
| 9  | 9    | 1/10/2019 | 90          | 11       | 90.11    | cold    | guntur     |

In [13]: #decending order
df.sort\_values(['temparature'],ascending=False)

#### Out[13]:

|    | s.no | est       | temparature | winspeed | humidity | event   | city       |
|----|------|-----------|-------------|----------|----------|---------|------------|
| 9  | 9    | 1/10/2019 | 90          | 11       | 90.11    | cold    | guntur     |
| 7  | 7    | 1/8/2019  | 89          | 23       | 89.23    | cold    | vijayawada |
| 11 | 11   | 1/12/2019 | 78          | 20       | 78.20    | fullair | vizag      |
| 6  | 6    | 1/7/2019  | 76          | 17       | 76.17    | fullair | guntur     |
| 4  | 4    | 1/5/2019  | 66          | 10       | 66.10    | cold    | vijayawada |
| 10 | 10   | 1/11/2019 | 65          | 18       | 65.18    | fullair | vijayawada |
| 3  | 3    | 1/4/2019  | 55          | 8        | 55.80    | fullair | guntur     |
| 2  | 2    | 1/3/2019  | 43          | 13       | 43.13    | rain    | vizag      |
| 5  | 5    | 1/6/2019  | 34          | 15       | 34.15    | cold    | vizag      |
| 1  | 1    | 1/2/2019  | 33          | 14       | 14.23    | rain    | vijayawada |
| 0  | 1    | 1/2/2019  | 30          | 12       | 12.50    | rain    | guntur     |
| 8  | 8    | 1/9/2019  | 23          | 9        | 23.90    | fullair | vizag      |

In [14]: df.sort\_values(['temparature','winspeed'],ascending=[False,True])

#### Out[14]:

|    | s.no | est       | temparature | winspeed | humidity | event   | city       |
|----|------|-----------|-------------|----------|----------|---------|------------|
| 9  | 9    | 1/10/2019 | 90          | 11       | 90.11    | cold    | guntur     |
| 7  | 7    | 1/8/2019  | 89          | 23       | 89.23    | cold    | vijayawada |
| 11 | 11   | 1/12/2019 | 78          | 20       | 78.20    | fullair | vizag      |
| 6  | 6    | 1/7/2019  | 76          | 17       | 76.17    | fullair | guntur     |
| 4  | 4    | 1/5/2019  | 66          | 10       | 66.10    | cold    | vijayawada |
| 10 | 10   | 1/11/2019 | 65          | 18       | 65.18    | fullair | vijayawada |
| 3  | 3    | 1/4/2019  | 55          | 8        | 55.80    | fullair | guntur     |
| 2  | 2    | 1/3/2019  | 43          | 13       | 43.13    | rain    | vizag      |
| 5  | 5    | 1/6/2019  | 34          | 15       | 34.15    | cold    | vizag      |
| 1  | 1    | 1/2/2019  | 33          | 14       | 14.23    | rain    | vijayawada |
| 0  | 1    | 1/2/2019  | 30          | 12       | 12.50    | rain    | guntur     |
| 8  | 8    | 1/9/2019  | 23          | 9        | 23.90    | fullair | vizag      |

#### concat

```
In [15]: d={"city":['Guntur','Vijayawada','Vizag'],"count":[120,150,130],"area":[300.23,50
df1=pd.DataFrame(d)
df1
```

#### Out[15]:

|   | city       | count | area   |
|---|------------|-------|--------|
| 0 | Guntur     | 120   | 300.23 |
| 1 | Vijayawada | 150   | 500.43 |
| 2 | Vizag      | 130   | 450.67 |

#### Out[16]:

|   | city       | count | area   |
|---|------------|-------|--------|
| 0 | Tirupati   | 150   | 200.23 |
| 1 | Srikakulam | 170   | 400.43 |
| 2 | anathapur  | 120   | 350.67 |

```
In [17]: total_df=pd.concat([df1,df2])
    total_df
```

#### Out[17]:

| _ |   | city       | count | area   |
|---|---|------------|-------|--------|
|   | 0 | Guntur     | 120   | 300.23 |
|   | 1 | Vijayawada | 150   | 500.43 |
|   | 2 | Vizag      | 130   | 450.67 |
|   | 0 | Tirupati   | 150   | 200.23 |
|   | 1 | Srikakulam | 170   | 400.43 |
|   | 2 | anathapur  | 120   | 350.67 |

```
In [18]: total_df=pd.concat([df1,df2],ignore_index=True)
    total_df
```

#### Out[18]:

|   | city       | count | area   |
|---|------------|-------|--------|
| 0 | Guntur     | 120   | 300.23 |
| 1 | Vijayawada | 150   | 500.43 |
| 2 | Vizag      | 130   | 450.67 |
| 3 | Tirupati   | 150   | 200.23 |
| 4 | Srikakulam | 170   | 400.43 |
| 5 | anathapur  | 120   | 350.67 |

```
In [19]: total_df=pd.concat([df1,df2],keys=['a','b'])
    total_df
```

#### Out[19]:

|   |   |   | city       | count | area   |
|---|---|---|------------|-------|--------|
| • | а | 0 | Guntur     | 120   | 300.23 |
|   |   | 1 | Vijayawada | 150   | 500.43 |
|   |   | 2 | Vizag      | 130   | 450.67 |
|   | b | 0 | Tirupati   | 150   | 200.23 |
|   |   | 1 | Srikakulam | 170   | 400.43 |
|   |   | 2 | anathapur  | 120   | 350.67 |

```
In [20]: total_df.loc['a']
```

#### Out[20]:

|   | city       | count | area   |
|---|------------|-------|--------|
| 0 | Guntur     | 120   | 300.23 |
| 1 | Vijayawada | 150   | 500.43 |
| 2 | Vizag      | 130   | 450.67 |

# In [21]: total\_df=pd.concat([df1,df2],axis=1) total\_df

#### Out[21]:

| _ |   | city       | count | area   | city       | count | area   |
|---|---|------------|-------|--------|------------|-------|--------|
|   | 0 | Guntur     | 120   | 300.23 | Tirupati   | 150   | 200.23 |
|   | 1 | Vijayawada | 150   | 500.43 | Srikakulam | 170   | 400.43 |
|   | 2 | Vizag      | 130   | 450.67 | anathapur  | 120   | 350.67 |

# merge/join

```
In [69]: d={"sno":[101,102,103,104],"sname":["a","b","c","d"]}
     df1=pd.DataFrame(d)
     df1
```

#### Out[69]:

|   | sno | sname |
|---|-----|-------|
| 0 | 101 | а     |
| 1 | 102 | b     |
| 2 | 103 | C     |
| 3 | 104 | d     |

#### Out[71]:

|   | sno | address |
|---|-----|---------|
| 0 | 101 | ab      |
| 1 | 102 | bc      |
| 2 | 103 | cd      |
| 3 | 104 | dd      |
| 4 | 105 | ee      |
| 5 | 110 | ff      |

```
In [75]: s=pd.merge(df1,df2,on='sno',how='right')
s
```

#### Out[75]:

|   | sno | sname | address |
|---|-----|-------|---------|
| 0 | 101 | а     | ab      |
| 1 | 102 | b     | bc      |
| 2 | 103 | С     | cd      |
| 3 | 104 | d     | dd      |
| 4 | 105 | NaN   | ee      |
| 5 | 110 | NaN   | ff      |

```
In [ ]:
```

```
In [22]: s=pd.DataFrame({"sno":[101,102,103,104],"sname":["a","b","c","d"]})
s
```

#### Out[22]:

|   | sno | sname |
|---|-----|-------|
| 0 | 101 | а     |
| 1 | 102 | b     |
| 2 | 103 | С     |
| 3 | 104 | d     |

```
In [30]: s2=pd.DataFrame({'sno':[101,102,103,110],"saddress":["srikakulam","kadapa","Tuni
s2
```

#### Out[30]:

|   | sno | saddress   |
|---|-----|------------|
| 0 | 101 | srikakulam |
| 1 | 102 | kadapa     |
| 2 | 103 | Tuni       |
| 3 | 110 | hyd        |

```
In [31]: merge_df=pd.merge(s,s2,on='sno')
    merge_df
```

#### Out[31]:

|   | sno | sname | saddress   |
|---|-----|-------|------------|
| 0 | 101 | а     | srikakulam |
| 1 | 102 | b     | kadapa     |
| 2 | 103 | С     | Tuni       |

```
In [32]: merge_df=pd.merge(s,s2,on='sno',how='outer')
    merge_df
```

#### Out[32]:

| saddress   | sname | sno |   |
|------------|-------|-----|---|
| srikakulam | а     | 101 | 0 |
| kadapa     | b     | 102 | 1 |
| Tuni       | С     | 103 | 2 |
| NaN        | d     | 104 | 3 |
| hyd        | NaN   | 110 | 4 |

```
In [33]: merge_df=pd.merge(s,s2,on='sno',how='inner')
merge_df
```

#### Out[33]:

|   | sno | sname | saddress   |
|---|-----|-------|------------|
| 0 | 101 | а     | srikakulam |
| 1 | 102 | b     | kadapa     |
| 2 | 103 | С     | Tuni       |

```
In [34]: merge_df=pd.merge(s,s2,on='sno',how='right')
    merge_df
```

#### Out[34]:

|   | sno | sname | saddress   |
|---|-----|-------|------------|
| 0 | 101 | а     | srikakulam |
| 1 | 102 | b     | kadapa     |
| 2 | 103 | С     | Tuni       |
| 3 | 110 | NaN   | hyd        |

```
In [35]: merge_df=pd.merge(s,s2,on='sno',how='left')
merge_df
```

#### Out[35]:

|   | sno | sname | saddress   |
|---|-----|-------|------------|
| 0 | 101 | а     | srikakulam |
| 1 | 102 | b     | kadapa     |
| 2 | 103 | С     | Tuni       |
| 3 | 104 | d     | NaN        |

```
In [37]: merge_df.sort_values('sno')
```

#### Out[37]:

|   | sno | sname | saddress   |
|---|-----|-------|------------|
| 0 | 101 | а     | srikakulam |
| 1 | 102 | b     | kadapa     |
| 2 | 103 | С     | Tuni       |
| 3 | 104 | d     | NaN        |

# **DataPreprocessing:**

- Data preprocessing is used for improve the quality of data
- Problems in data:
  - insufficient data

- Too much data
- Missing data
- Duplicate data
- outliers
- Outliers: In general term it is a data point that is significantly further away from the other data points
- Standardization(Standard Scaler)
- RobostScalling
- Data Range(MinMaxScaler)
- Normalization

#### Standardize data:

- SD is a useful technique to transform the attributes with a gaussian distribution
- when data can take a any range of values it makes difficult to interpret. so, datascientists will convert the data into standard format

0=> mean 1=>standara diviation

```
In [38]: df=pd.read_csv("Advertisement.csv") # d://folder1/filename.csv
df.head()
```

#### Out[38]:

|   | TV    | radio | newspaper | sales |
|---|-------|-------|-----------|-------|
| 0 | 230.1 | 37.8  | 69.2      | 22.1  |
| 1 | 44.5  | 39.3  | 45.1      | 10.4  |
| 2 | 17.2  | 45.9  | 69.3      | 9.3   |
| 3 | 151.5 | 41.3  | 58.5      | 18.5  |
| 4 | 180.8 | 10.8  | 58.4      | 12.9  |

```
In [40]: df['TV'].min()
```

Out[40]: 0.7

```
In [41]: df['TV'].max()
```

Out[41]: 296.4

```
In [42]: df.mean()
```

Out[42]:TV147.0425radio23.2640newspaper30.5540sales14.0225

dtype: float64

```
In [43]: | df.median()
Out[43]: TV
                       149.75
                        22.90
         radio
                        25.75
         newspaper
         sales
                        12.90
         dtype: float64
In [44]:
         df.std()
Out[44]: TV
                       85.854236
         radio
                       14.846809
         newspaper
                       21.778621
         sales
                        5.217457
         dtype: float64
In [45]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 4 columns):
                       200 non-null float64
         TV
         radio
                       200 non-null float64
         newspaper
                       200 non-null float64
                       200 non-null float64
         sales
         dtypes: float64(4)
         memory usage: 6.3 KB
In [47]: | df.isnull().sum()
Out[47]: TV
                       0
         radio
                       0
                       0
         newspaper
         sales
         dtype: int64
In [51]: df['TV'].isna().sum()
Out[51]: 0
```

```
In [50]: df.describe()
```

#### Out[50]:

|       | TV         | radio      | newspaper  | sales      |
|-------|------------|------------|------------|------------|
| count | 200.000000 | 200.000000 | 200.000000 | 200.000000 |
| mean  | 147.042500 | 23.264000  | 30.554000  | 14.022500  |
| std   | 85.854236  | 14.846809  | 21.778621  | 5.217457   |
| min   | 0.700000   | 0.000000   | 0.300000   | 1.600000   |
| 25%   | 74.375000  | 9.975000   | 12.750000  | 10.375000  |
| 50%   | 149.750000 | 22.900000  | 25.750000  | 12.900000  |
| 75%   | 218.825000 | 36.525000  | 45.100000  | 17.400000  |
| max   | 296.400000 | 49.600000  | 114.000000 | 27.000000  |

# Visulize the data using KDE

Keranal Dencity Estimate plot is used for display the multiple samples data into one graph.

```
In [52]: import matplotlib.pyplot as plt
import seaborn as sns

In [53]: plt.title("Before scaling data")
    sns.kdeplot(df['TV'])
    sns.kdeplot(df['radio'])
    sns.kdeplot(df['newspaper'])
    sns.kdeplot(df['sales'])
```

Out[53]: <matplotlib.axes.\_subplots.AxesSubplot at 0x23ec764c2b0>



```
In [54]: from sklearn.preprocessing import StandardScaler
    std=StandardScaler()
    std_data=std.fit_transform(df)
    std_data
```

```
In [55]: std_data_df=pd.DataFrame(std_data,columns=df.columns)
    std_data_df.head()
```

#### Out[55]:

|   | TV        | radio     | newspaper | sales     |
|---|-----------|-----------|-----------|-----------|
| 0 | 0.969852  | 0.981522  | 1.778945  | 1.552053  |
| 1 | -1.197376 | 1.082808  | 0.669579  | -0.696046 |
| 2 | -1.516155 | 1.528463  | 1.783549  | -0.907406 |
| 3 | 0.052050  | 1.217855  | 1.286405  | 0.860330  |
| 4 | 0.394182  | -0.841614 | 1.281802  | -0.215683 |

```
In [56]: plt.title("After scaling data")
    sns.kdeplot(std_data_df['TV'])
    sns.kdeplot(std_data_df['radio'])
    sns.kdeplot(std_data_df['newspaper'])
    sns.kdeplot(std_data_df['sales'])
```

Out[56]: <matplotlib.axes.\_subplots.AxesSubplot at 0x23ec83849e8>



## **Robost Scalling**

Robost scalling also used for scale the outliers, it scale using median and Inter Quartail Range(IQR)

## Range scaling(Min Max Scaller)

By using MinMaxScaller we can provide custom range for scaling the data

\_ \_

```
In [64]: plt.title("After scaling data using range scaler")
    sns.kdeplot(m_data_df['TV'])
    sns.kdeplot(m_data_df['radio'])
    sns.kdeplot(m_data_df['newspaper'])
    sns.kdeplot(m_data_df['sales'])
```

Out[64]: <matplotlib.axes.\_subplots.AxesSubplot at 0x23ec83c3470>



#### Normalization:

- upto now we are scale by using features(columns)
- In certain cases we want to scale the individual data observation(rows)
- when clustering data we need to apply normalization

#### Out[67]:

|   | TV       | radio    | newspaper | sales    |
|---|----------|----------|-----------|----------|
| 0 | 0.942116 | 0.154767 | 0.283331  | 0.090486 |
| 1 | 0.591135 | 0.522059 | 0.599106  | 0.138153 |
| 2 | 0.201426 | 0.537527 | 0.811561  | 0.108911 |
| 3 | 0.898632 | 0.244974 | 0.346997  | 0.109734 |
| 4 | 0.947881 | 0.056621 | 0.306174  | 0.067631 |

```
In [68]: plt.title("After scaling data using normalize scaler")
    sns.kdeplot(n_data_df['TV'])
    sns.kdeplot(n_data_df['radio'])
    sns.kdeplot(n_data_df['newspaper'])
    sns.kdeplot(n_data_df['sales'])
```

Out[68]: <matplotlib.axes.\_subplots.AxesSubplot at 0x23ec84b6da0>



