ASYMPTOTIC ANALYSIS

Design & Analysis of Algorithms

Saman Riaz (PhD) Associate Professor RSCI, Lahore

Lecture # 03

What's Analysis of Algorithms

- The theoretical study of algorithm's performance and resource usage.
- Other important features of an algorithm are
 - modularity
 - correctness
 - maintainability
 - functionality
 - robustness
 - user-friendliness
 - programmer time
 - Simplicity
 - extensibility
 - Reliability
- During this course our focus will be on the performance and the storage requirements.

Types of Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee that the algorithm would not run longer, no matter what the inputs are
- Best case
 - Provides a lower bound on running time
 - Input is the one for which the algorithm runs the fastest

$$Lower\ Bound \le Running\ Time \le Upper\ Bound$$

- Average case
 - Provides a prediction about the running time
 - Assumes that the input is random

How do we compare algorithms?

- We need to define a number of <u>objective measures</u>.
 - (1) Compare execution times?

 Not good: times are specific to a particular computer!!
 - (2) Count the number of statements executed?

Not good: number of statements vary with the programming language as well as the style of the individual programmer.

Ideal Solution

 Express running time t as a function of problem size n (i.e., t=f(n)).

• Given two algorithms having running times f(n) and g(n), find which functions grows faster.

 Such an analysis is independent of machine time, programming style, etc.

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Algorithm 1

Algorithm 2

arr[0] = 0; arr[1] = 0; arr[2] = 0; arr[N-1] = 0;	Cost C ₁ C ₁ C ₁ 	for(i=0; i <n; i++)<br="">arr[i] = 0;</n;>	Cost C ₂ C ₁
$C_1 + C_1 + \dots + C_1 =$	c ₁ x N	$(N+1) \times C_2 + N$	$x c_1 = (c_2 + c_1) x N + c_2$

Algorithm 3

```
sum = 0;
for(i=0; i<N; i++)
for(j=0; j<N; j++)
sum += arr[i][j];
```

Cost

 C_1

 C_2

 \mathbf{C}_2

 C_3

Comparing algorithms

• Given two algorithms having running times f(n) and g(n), how do we decide which one is faster?

Compare "rates of growth" of f(n) and g(n)

Understanding Rate of Growth

Consider the example of buying elephants and goldfish:

Cost: (cost_of_elephants) + (cost_of_goldfish)

Approximation:

Cost ~ cost_of_elephants

Understanding Rate of Growth (cont'd)

The low order terms of a function are relatively insignificant for <u>large</u> n

$$n^4 + 100n^2 + 10n + 50$$

Approximation:

 n^4

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same rate of growth

Highest order term determines rate of growth!

Work done by an algorithm

Let

T(n): running time

c_{op}: execution time for basic operation

C(n): number of times basic operation is executed

• Then we have: $T(n) \approx c_{op} C(n)$

Types of formulas for basic operation count

Exact formula

e.g.,
$$C(n) = n(n-1)/2$$

Formula indicating order of growth with specific multiplicative constant

e.g.,
$$C(n) \approx 0.5 n^2$$

 Formula indicating order of growth with unknown multiplicative constant

e.g.,
$$C(n) \approx cn^2$$

Example

Let
$$C(n) = 3n(n-1) \approx 3n^2$$

Suppose we double the input size.

How much longer the program will run?

Orders of Growth

n	$\log_2 n$	n	$n\log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Example

- Suppose you are designing a website to process user data (e.g., financial records).
- Suppose program A takes $f_A(n)=30n+8$ microseconds to process any n records, while program B takes $f_B(n)=n^2+1$ microseconds to process the n records.
- Which program would you choose, knowing you'll want to support millions of users?

Compare rates of growth:

Visualizing Orders of Growth

 On a graph, as you go to the right, a faster growing function eventually becomes larger...

Rate of Growth ≡ Asymptotic Analysis

- Using rate of growth as a measure to compare different functions implies comparing them **asymptotically** (i.e., as $n \to \infty$)
- If f(x) is faster growing than g(x), then f(x) always eventually becomes larger than g(x) in the limit (i.e., for large enough values of x).

Asymptotic Notation

O notation: asymptotic "less than":

```
f(n)=O(g(n)) implies: f(n) \le c g(n) in the limit
```

(used in WOrst-case analysis)

Asymptotic Notation

Ω notation: asymptotic "greater than":

```
f(n) = \Omega (g(n)) \text{ implies:} f(n) "\ge" c g(n) in the limit"
```

(used in best-case analysis)

Asymptotic Notation

Θ notation: asymptotic "equality":

```
f(n) = \Theta(g(n)) implies: f(n) "=" c g(n) in the limit"
```

(provides a **tight bound** of running time) (best and worst cases are same)

Asymptotic notations (Big O, Omega, Theta)

- Worst Case
- Upper Bound (At most)

- Best Case
- ➤ Lower Bound(At least)

- Average Case
- Exact time

Why study algorithms?

- If you are given two brand new algorithms from two different companies to perform sorting. Which one you would go for ? Lets assume companies are not willing to install the software at your end for testing but are willing to share their pseudo-code with you.
 - You need an objective analysis of both the algorithms before you can choose one. Like:-
 - Scalability of algorithms
 - Real life constraints like time and storage
 - Behavior of the algorithms
 - Quickness (speed is fun)

Machine Independent Time

- What is insertion sort's worst-case time?
- It depends on the speed of our computer:
 - relative speed (on the same machine),
 - absolute speed (on different machines).
- BIG IDEA
- Ignore machine-dependent constants.
- Look at the growth of running time T(n) as n → ∞
 - "Asymptotic Analysis"

Θ-notation

- Commonly used notation
- Idea is to drop low-order terms, ignore leading constants
 - Example: $3n^3+90n^2-5n+6046 = \Theta(n^3)$
- Mathematically:
 - $\Theta(g(n)) = \{ f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 <= c_1 g(n) <= f(n) <= c_2 g(n) \text{ for all } n >= n_0 \}$

Asymptotic Performance

- As n gets large enough, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm.
- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.

Example Sorting (Insertion Sort)

```
Insertion-Sort(A,n) \rightarrow A[1 ... n]

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j-1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i-1

A[i+1] = key
```


Running time of Insertion Sort

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input,
 - short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Analysis of Insertion Sort

• Time to compute the **running time** as a function of the **input size**

	cost	times
1.for j=2 to length(A)	\mathtt{c}_1	n
2. do key=A[j]	\mathtt{C}_2	n-1
3."insert A[j] into the	0	n-1
sorted sequence A[1j-1]"		
4. i=j-1	C ₃	n-1
5. while i>0 and A[i]>key	C ₄	$\sum_{j=2}^{n} t_j$
6. do A[i+1]=A[i]	C ₅	$\sum_{j=2}^{n} (t_{j} - 1)$ $\sum_{j=2}^{n} (t_{j} - 1)$
7. i	C ₆	$\sum_{j=2}^{n} (t_j - 1)$
8. A[i+1]:=key	C ₇	n-1

Insertion-Sort Running Time

$$T(n) = c_{1} \cdot [n] + c_{2} \cdot (n-1) + c_{3} \cdot (n-1) + c_{4} \cdot (n-1) + c_{5} \cdot (\Sigma_{j=2,n} t_{j}) + c_{6} \cdot (\Sigma_{j=2,n} (t_{j}-1)) + c_{7} \cdot (\Sigma_{j=2,n} (t_{j}-1)) + c_{8} \cdot (n-1)$$

 $c_3 = 0$, of course, since it's the comment

Best/Worst/Average Case

- **Best case**: elements already sorted ® t_j =1, running time = f(n), i.e., linear time.
- Worst case: elements are sorted in inverse order $\otimes t_j = j$, running time = $f(n^2)$, i.e., *quadratic* time
- Average case: $t_j = j/2$, running time = $f(n^2)$, i.e., quadratic time

Best Case Result

Occurs when array is already sorted.

For each j = 2, 3,....n we find that A[i]<=key in line 5 when I has its initial value of j-1.

```
T(n) = c_1 \cdot n + (c_2 + c_4) \cdot (n-1) + c_5 \cdot (n-1) + c_8 \cdot (n-1)
= n \cdot (c_1 + c_2 + c_4 + c_5 + c_8)
+ (-c_2 - c_4 - c_5 - c_8)
= c_9 n + c_{10}
= f_1(n^1) + f_2(n^0)
```

Worst Case T(n)

- Occurs when the loop of lines 5-7 is executed as many times as possible, which is when A[] is in reverse sorted order.
- key is A[j] from line 2
- i starts at j-1 from line 4
- i goes down to 0 due to line 7
- So, t_j in lines 5-7 is [(j-1) 0] + 1 = j

The '1' at the end is due to the test that fails, causing exit from the loop.

$$T(n) = c_{1} \cdot [n] + c_{2} \cdot (n-1) + c_{4} \cdot (n-1)$$

$$+ c_{5} \cdot (\Sigma_{j=2,n} j) + c_{6} \cdot [\Sigma_{j=2,n} (j-1)] + c_{7} \cdot [\Sigma_{j=2,n} (j-1)] + c_{8} \cdot (n-1)$$

$$(n-1)$$

```
T(n) = c_{1} \cdot n + c_{2} \cdot (n-1) + c_{4} \cdot (n-1) + c_{8} \cdot (n-1) + c_{5} \cdot (\Sigma_{j=2,n} j) + c_{6} \cdot [\Sigma_{j=2,n} (j-1)] + c_{7} \cdot [\Sigma_{j=2,n} (j-1)]
= c_{9} \cdot n + c_{10} + c_{5} \cdot (\Sigma_{j=2,n} j) + c_{11} \cdot [\Sigma_{j=2,n} (j-1)]
```

$$T(n) = c_9 \cdot n + c_{10} + c_5 \cdot (\Sigma_{j=2,n} j) + c_{11} \cdot [\Sigma_{j=2,n} (j-1)]$$
But
$$\Sigma_{j=2,n} j = [n(n+1)/2] - 1$$
so that
$$\Sigma_{j=2,n} (j-1) = \Sigma_{j=2,n} j - \Sigma_{j=2,n} (1)$$

$$= [n(n+1)/2] - 1 - (n-2+1)$$

$$= [n(n+1)/2] - 1 - n + 1 = n(n+1)/2 - n$$

$$= [n(n+1)-2n]/2 = [n(n+1-2)]/2 = n(n-1)/2$$

Wasn't that fun?

```
In conclusion,

T(n) = c_9 \cdot n + c_{10} + c_5 \cdot [n(n+1)/2] - 1 + c_{11} \cdot n(n-1)/2
= c_{12} \cdot n^2 + c_{13} \cdot n + c_{14}
= f_1(n^2) + f_2(n^1) + f_3(n^0)
```

Best/Worst/Average Case (2)

• For a specific size of input *n*, investigate running times for different input instances:

Insertion Sort Analysis

- Is insertion sort a fast sorting algorithm?
 - Moderately so, for small n
 - Not at all, for large n

Merge Sort (Divide and Conquer)

MERGE-SORT A[1 ...n]

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

Merge Sort Example

Analysis of Merge Sort

```
T(n)
\Theta(1)
2T(n/2)
Abuse
\Theta(n)
\Theta(n)
MERGE-SORT A[1 ... n]
1. \text{ If } n = 1, \text{ done.}
2. \text{ Recursively sort } A[1 ... \lceil n/2 \rceil]
and A[\lceil n/2 \rceil + 1 ... n].
3. \text{ "Merge" the 2 sorted lists}
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

Visual Representation of the Recurrence for Merge Sort

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. #leaves = n $Total = \Theta(n \lg n)$

Conclusion

- $\Theta(nlgn)$ grows more slowly than $\Theta(n^2)$
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n >=3

Quiz 1

Marks: 10

Time: 10 mins

Question 1:

Design flowchart and calculate the running time of the given pseudo-code.

```
Start
Total=0
For i=1- n
Input x
If x>100
then total=total+1
end If
++i
Print total
End
```