

# CS 4375 Binary Classification / Perceptron

Rishabh Iyer
University of Texas at Dallas

#### Reminders



- Homework 1 available soon on eLearning and due in 2 weeks
  - Late homework will not be accepted



Part I: Recap of
Supervised Learning,
Linear Separation and
Basics of Perceptron

### History of Perceptron



- Formally introduced by Rosenblatt in 1958\*
- Introduced more like a General-purpose Machine rather than a classifier
  - This caused a heated controversy in the 1960's (NY times articles) etc.
- Soon, the limitations of perceptron's became evident
  - Works only in Linear separable cases
  - Cannot learn a simple XOR function
- However, these were the seeds for Multi-Layer Perceptron's, today known as Deep Neural Networks!

## Supervised Learning



- Input:  $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ 
  - $x^{(m)}$  is the  $m^{th}$  data item and  $y^{(m)}$  is the  $m^{th}$  label
- Goal: find a function f such that  $f(x^{(m)})$  is a "good approximation" to  $y^{(m)}$ 
  - Can use it to predict y values for previously unseen x values



## Supervised Learning



#### Classification vs Regression

- Input: pairs of points  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^d$
- Regression case:  $y^{(m)} \in \mathbb{R}$
- Classification case:  $y^{(m)} \in [0, k-1]$  [k-class classification]
- If k = 2, we get Binary classification



### Recap: Hypothesis Space



- Hypothesis space: set of allowable functions  $f: X \to Y$
- Goal: find the "best" element of the hypothesis space
  - How do we measure the quality of f?

#### Recap: Supervised Learning Workflow





- Step 4: Obtain Predictions  $\hat{\mathbf{y}}_t = f(x_t)$  on all **Test** Data
- Step 5: Evaluation -- Measure the error  $Err(\hat{y}_t, y_t)$  averaged over all **Test Data.**

# Supervised Learning Workflow Cont...



- Collect Training Data
- Select a hypothesis space (elements of the space are represented by a collection of parameters)
- Choose a loss function (evaluates quality of the hypothesis as a function of its parameters)
- Minimize loss function using gradient descent (minimization over the parameters)
- Evaluate quality of the learned model using test data that is, data on which the model was not trained



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in  $\mathbb{R}^n$  with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in  $\mathbb{R}^n$  with an associated sign (either +/- corresponding to 0/1)
- An example with n=2

What is a good hypothesis space for this problem?



- Input  $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in  $\mathbb{R}^n$  with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



What is a good hypothesis space for this problem?



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in  $\mathbb{R}^n$  with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



that the observations are linearly separable

#### Linear Separators



In n dimensions, a hyperplane is a solution to the equation

$$w^T x + b = 0$$

with  $w \in \mathbb{R}^n$ ,  $b \in \mathbb{R}$ 

- Hyperplanes divide  $\mathbb{R}^n$  into two distinct sets of points (called open halfspaces)  $w^T x + h = 0$ 
  - Half Space 1:  $w^T x + b > 0$
  - Half Space 2:  $w^T x + b < 0$





- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in  $\mathbb{R}^n$  with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



that the observations are linearly separable

# Linear Separable



linearly separable





not linearly separable





## The Linearly Separable Case



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

How should we choose the loss function?

# The 0/1 Loss (Seperable Case)



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

- How should we choose the loss function?
  - Count the number of misclassifications

zero/one loss = 
$$\frac{1}{2} \sum_{m} |y^{(m)} - sign(w^{T} x^{(m)} + b)|$$

Tough to optimize, gradient contains no information

# The Perceptron Loss (Seperable Case)



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

- How should we choose the loss function?
  - Penalize misclassification linearly by the size of the violation

$$perceptron\ loss = \sum_{m} \max\{0, -y^{(m)}(w^Tx^{(m)} + b)\}$$

Modified hinge loss (this loss is convex, but not differentiable)

# 0/1 Loss Vs Perceptron Loss



Zero/One Loss which counts the number of mis-classifications:

zero/one loss = 
$$\frac{1}{2} \sum_{m} \left| y^{(m)} - sign(w^{T} x^{(m)} + b) \right|$$

Perceptron Loss:

$$perceptron \ loss = \sum_{m} \max\{0, -y^{(m)}(w^{T}x^{(m)} + b)\}$$





- Try to minimize the perceptron loss using gradient descent
  - The perceptron loss isn't differentiable, how can we apply gradient descent?
  - Need a generalization of what it means to be the gradient of a convex function



# Part II: (Sub) Gradient Descent and Perceptron

#### **Gradients of Convex Functions**



• For a differentiable convex function g(x) its gradients are linear underestimators



#### **Gradients of Convex Functions**



• For a differentiable convex function g(x) its gradients are linear underestimators



#### **Gradients of Convex Functions**



• For a differentiable convex function g(x) its gradients are linear underestimators: zero gradient corresponds to a global optimum





















- If a convex function is differentiable at a point x, then it has a unique subgradient at the point x given by the gradient
- If a convex function is not differentiable at a point x, it can have many subgradients
  - E.g., the set of subgradients of the convex function |x| at the point x = 0 is given by the set of slopes [-1,1]
- Subgradients only guaranteed to exist for convex functions



• Try to minimize the perceptron loss using (sub)gradient descent



Try to minimize the perceptron loss using (sub)gradient descent

$$\nabla_{w}(perceptron\ loss) = -\sum_{m=1}^{M} \left( y^{(m)} x^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

$$\nabla_b(perceptron\ loss) = -\sum_{m=1}^{M} \left( y^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$



Try to minimize the perceptron loss using (sub)gradient descent

$$\nabla_{w}(perceptron\ loss) = -\sum_{m=1}^{M} \left( y^{(m)} x^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

$$\nabla_b(perceptron\ loss) = -\sum_{m=1}^{M} \left( y^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

Is equal to zero if the  $m^{th}$  data point is correctly classified and one otherwise



Try to minimize the perceptron loss using (sub)gradient descent

$$w^{(t+1)} = w^{(t)} + \gamma_t \sum_{m=1}^{M} \left( y^{(m)} x^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

$$b^{(t+1)} = b^{(t)} + \gamma_t \sum_{m=1}^{M} \left( y^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

- With step size  $\gamma_t$  (also called the learning rate)
- Note that, for convergence of subgradient methods, a diminishing step size, e.g.,  $\gamma_t = \frac{1}{1+t}$  is required

#### Stochastic Gradient Descent



- To make the training more practical, stochastic (sub)gradient descent is often used instead of standard gradient descent
- Approximate the gradient of a sum by sampling a few indices (as few as one) uniformly at random and averaging

$$\nabla_{x} \left[ \sum_{m=1}^{M} g_{m}(x) \right] \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{x} g_{m_{k}}(x)$$

here, each  $m_k$  is sampled uniformly at random from  $\{1, ..., M\}$ 

 Stochastic gradient descent converges to the global optimum under certain assumptions on the step size

#### Stochastic Gradient Descent



• Setting K=1, we pick a random observation m and perform the following update

#### if the $m^{th}$ data point is misclassified:

$$w^{(t+1)} = w^{(t)} + \gamma_t y^{(m)} x^{(m)}$$
$$b^{(t+1)} = b^{(t)} + \gamma_t y^{(m)}$$

#### if the $m^{th}$ data point is correctly classified:

$$w^{(t+1)} = w^{(t)}$$
  
 $b^{(t+1)} = b^{(t)}$ 

• Sometimes, you will see the perceptron algorithm specified with  $\gamma_t=1$  for all t

#### Perceptron Example



#### For example in 2D

- Initialize  $\mathbf{w} = 0$
- Cycle though the data points { x<sub>i</sub>, y<sub>i</sub> }
  - if  $\mathbf{x}_i$  is misclassified then  $\mathbf{w} \leftarrow \mathbf{w} + \alpha \operatorname{sign}(f(\mathbf{x}_i)) \mathbf{x}_i$
- Until all the data is correctly classified

#### before update



#### after update



NB after convergence  $\mathbf{w} = \sum_{i}^{N} \alpha_i \mathbf{x}_i$ 



# Part III: More On Perceptron

## More on Perceptron



Perceptron example



- if the data is linearly separable, then the algorithm will converge
- convergence can be slow ...
- separating line close to training data
- we would prefer a larger margin for generalization

#### **Applications of Perceptron**



- Spam email classification
  - Represent emails as vectors of counts of certain words (e.g., sir, madam, Nigerian, prince, money, etc.)
  - Apply the perceptron algorithm to the resulting vectors
  - To predict the label of an unseen email
    - Construct its vector representation, x'
    - Check whether or not  $w^Tx' + b$  is positive or negative

## Perceptron Learning Drawbacks



- No convergence guarantees if the observations are not linearly separable
- Can overfit
  - There can be a number of perfect classifiers, but the perceptron algorithm doesn't have any mechanism for choosing between them



## What If the Data Isn't Separable?



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in  $\mathbb{R}^n$  with an associated sign (either +/- corresponding to 0/1)
- An example with n=2

What is a good hypothesis space for this problem?

## What If the Data Isn't Separable?



- Input  $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$  with  $x^{(m)} \in \mathbb{R}^n$  and  $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in  $\mathbb{R}^n$  with an associated sign (either +/- corresponding to 0/1)
- An example with n=2



What is a good hypothesis space for this problem?



Perceptron algorithm only works for linearly separable data

Can add features to make the data linearly separable in a higher dimensional space!

Essentially the same as higher order polynomials for linear regression!



- The idea, choose a feature map  $\phi: \mathbb{R}^n \to \mathbb{R}^k$ 
  - Given the observations  $x^{(1)}, \dots, x^{(M)}$ , construct feature vectors  $\phi(x^{(1)}), \dots, \phi(x^{(M)})$
  - Use  $\phi(x^{(1)}), \dots, \phi(x^{(M)})$  instead of  $x^{(1)}, \dots, x^{(M)}$  in the learning algorithm
  - Goal is to choose  $\phi$  so that  $\phi(x^{(1)}), ..., \phi(x^{(M)})$  are linearly separable in  $\mathbb{R}^k$
  - Learn linear separators of the form  $w^T \phi(x)$  (instead of  $w^T x$ )
- Warning: more expressive features can lead to overfitting!

## Adding Features: Examples



• 
$$\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

This is just the input data, without modification

$$\bullet \ \phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

 This corresponds to a second-degree polynomial separator, or equivalently, elliptical separators in the original space









#### **Support Vector Machines**



How can we decide between two perfect classifiers?



What is the practical difference between these two solutions?