Novel algorithms for population-scale analysis of plant genomes

Annual Plan Review

Kevin Murray

Borevitz Lab, CPEB, ANU

24 July 2015

Understanding Plant Function and Variation

- ▶ We want to understand function of plant systems
- ▶ Genetic variation in these systems important

irri.org

Existing genetic approaches

- Forward genetics
 - Select trait/phenotype
 - Randomly mutate genome
 - Screen, map loci affecting phenotype
 - (read backwards is reverse genetics)
- Association mapping in populations
 - Select parents by phenotype, cross
 - Examine variation in phenotype across population
 - Associate phenotype with genotype, map loci

Existing genetic approaches

- Forward genetics
 - Select trait/phenotype
 - Randomly mutate genome
 - Screen, map loci affecting phenotype
 - (read backwards is reverse genetics)
- Association mapping in populations
 - Select parents by phenotype, cross
 - Examine variation in phenotype across population
 - Associate phenotype with genotype, map loci
- ► These approaches diversity limited: "missing heritability"

Missing heritability in the field?

- Find more diversity in the field!
- Sample natural populations
 - Ecological hypotheses of trait selection, adaptation
 - ► Sample widely as possible across non-uniform genetic diversity

Missing heritability in the field?

- Find more diversity in the field!
- Sample natural populations
 - Ecological hypotheses of trait selection, adaptation
 - Sample widely as possible across non-uniform genetic diversity
- Now complexity limited: complex kinship & population structure
- Mandates development of economic, accurate large scale population genomics

Large-scale genome analysis

▶ Moving from 100s to 1000s and 10000s of samples per PhD!

Large-scale genome analysis

- ▶ Moving from 100s to 1000s and 10000s of samples per PhD!
- ▶ Efficient algorithms to analyse large-scale genomic data
 - ▶ Reference & alignment free: *less bias, de novo*
 - ▶ Platform/protocol agnostic: *future proof*
 - ► Computationally efficient: not the bottleneck
 - ► Cross scale: one tool to rule them all

Fraction of genome

after Peterson et al. [1]

k-mer analysis

► Analyse *k*-length words of sequences

```
k = 3
ACGTGT
ACG
CGT
GTG
TGT
```


k-mer analysis

- ► Analyse *k*-length words of sequences
- Computationally and biologically appropriate
 - Fast
 - Constant-memory (using khmer)
 - Scalable and parallelisable
 - Cross-scale

k = 3ACGTGT
ACG
CGT
GTG
TGT

- ▶ in silico, experiment-driven software development
 - New tools, and new combinations of tools (pipelines)
 - ▶ Multi-layered analysis of large population sequencing projects

- ▶ *in silico*, experiment-driven software development
 - New tools, and new combinations of tools (pipelines)
 - Multi-layered analysis of large population sequencing projects
- ► Chapter 1: k-mer based clustering of next gen sequencing
 - First-pass basic clustering
 - kinship/relatedness

- ▶ *in silico*, experiment-driven software development
 - New tools, and new combinations of tools (pipelines)
 - Multi-layered analysis of large population sequencing projects
- ► Chapter 1: k-mer based clustering of next gen sequencing
 - ► First-pass basic clustering
 - kinship/relatedness
- ► Chapter 2: Machine learning for population genomics
 - ▶ Detailed analysis of k-mer genetic distance
 - population structure, visualisation, sample classification

- ▶ *in silico*, experiment-driven software development
 - New tools, and new combinations of tools (pipelines)
 - Multi-layered analysis of large population sequencing projects
- ► Chapter 1: k-mer based clustering of next gen sequencing
 - First-pass basic clustering
 - kinship/relatedness
- Chapter 2: Machine learning for population genomics
 - ▶ Detailed analysis of *k*-mer genetic distance
 - population structure, visualisation, sample classification
- ► Chapter 3: Population "genome-typing by sequencing"
 - ► Pan-genome variant calling
 - genome-wide genotyping through whole genome sequencing

k-mer based clustering

- Extend alignment-free sequence comparison to raw NGS data
- Have released new software package: kWIP

► The *k*-mer Weighted Inner Product

kWIP

- ▶ The *k*-mer Weighted Inner Product
- Algorithm:
 - ► For each sample: count all *k*-mers into a Count-Min Sketch

kWIP

- ► The *k*-mer Weighted Inner Product
- Algorithm:
 - ▶ For each sample: count all k-mers into a Count-Min Sketch
 - For each analysis set, i.e "population":
 - Calculate the informational entropy of CMS bins (H)
 - ▶ For each pair of samples A and B, calculate $\sum_{i=0}^{n} A_i \cdot B_i \cdot H_i$

kWI

- ► The *k*-mer Weighted Inner Product
- Algorithm:
 - ▶ For each sample: count all k-mers into a Count-Min Sketch
 - For each analysis set, i.e "population":
 - ► Calculate the informational entropy of CMS bins (*H*)
 - ▶ For each pair of samples A and B, calculate $\sum_{i=0}^{n} A_i \cdot B_i \cdot H_i$
- ► The software:
 - ► C++, >2000 lines of code
 - Uses khmer for k-mer counting & hashing
 - ▶ Parallelised, \approx 10 hrs for 96 rice samples.
 - GNU GPL licensed, source code released on GitHub
- Paper in Prep

kWIP Experiments

- ▶ 3000 rice genomes:
 - 3000 rice lines from known families
 - ▶ Analysing in sets of \approx 200, from all major groups
 - Recover known grouping w/ kWIP, not w/ unweighted IP
 - Sensitive to read depth
- Simulation
 - ► Fake population genome sequencing studies
 - Experiments in progress, early results positive
 - ► Test limitations of kwip
- Protocol optimisation
 - ▶ Effect of varying *k*
 - Effect of CMS size
 - More appropriate normalisation

Machine learning for Population Genomics

- ► How to maximise amount of information *k*-mer abundance provides?
 - ► Pairwise genetic distance: kWIP
 - Admixture
 - Online clustering (not all pairs)
 - Visualisation of distance and confidence

Machine learning for Population Genomics

- How to maximise amount of information k-mer abundance provides?
 - ► Pairwise genetic distance: kWIP
 - Admixture
 - Online clustering (not all pairs)
 - Visualisation of distance and confidence
- Experiments
 - Detect known introgression and admixture in 3000 rice lines dataset
 - Investigate on-line classifier for novel rice samples: "who am I"
 - Develop HTML5 visualisation of kWIP output

Progress

- First-pass basic clustering
 - ▶ kWIP implemented & optimised
 - ► Experiments in progress, some complete
 - ▶ Paper in prep

Progress

- First-pass basic clustering
 - ▶ kWIP implemented & optimised
 - Experiments in progress, some complete
 - Paper in prep
- Machine Learning
 - Collaborations started
 - Initial experiments planned

Progress

- First-pass basic clustering
 - kWIP implemented & optimised
 - Experiments in progress, some complete
 - Paper in prep
- Machine Learning
 - Collaborations started
 - Initial experiments planned
- Population pan-genome variant calling: "genome-typing by sequencing"
 - Initial collaborations started (DIB-lab)
 - Evaluating published tools

Thanks

- Justin, Norman, Sylvain, Gavin and Barry
- Cheng Soon Ong, Christfried Webers
- C. Titus Brown, Michael Crusoe, Camille Scott (DIB-lab) @ UC Davis
- Kenneth McNally/IRRI
- Yourselves

References

- Peterson, B. K. *et al.* Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. *PLoS ONE* **7**, e37135 (2012).
- Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. *Genome biology* **12**, 232 (2011).

Side Projects

- Reduced Representation Sequence Filtering
 - de Bruijn graph based filter/normaliser
 - With GDU/ABC
- ▶ *k*-mer approaches to detect horizontal gene transfer
 - ► Collaboration with Adam Taranto

kWIP Distance Matrices

Population Re-structuring

after Brachi et al. [2]

Population Re-structuring

after Brachi et al. [2]

Population Re-structuring

after Brachi et al. [2]