Assignment 3 MATH271

Connor Braun

August 9, 2021

Problem 1

Let $f: \mathbb{Z} \to \mathbb{Z}$ be the function defined by f(x) = 2x - 3 for all $x \in \mathbb{Z}$.

a) Prove or disprove the statement: f is injective.

Solution: the statement is true.

Proof. Let a and b be integers and suppose that f(a) = f(b). Then we have that

$$a = \frac{(2a-3)+3}{2}$$

$$= \frac{f(a)+3}{2}$$
Since $2a-3=f(a)$

$$= \frac{f(b)+3}{2}$$
Since we've supposed that $f(a)=f(b)$

$$= \frac{(2b-3)+3}{2}$$
Since $f(b)=2b-3$

$$= b$$

Therefore, for all integers a and b in the domain of f, whenever f(a) = f(b) it is always the case that a = b. Furthermore, f is injective.

b) Prove or disprove the statement: f is surjective.

Solution: The statement is false.

Negation: f is not surjective $\iff \exists_y \in \mathbb{Z} \text{ such that } \forall_x \in \mathbb{Z}, \ y \neq f(x).$

Proof. Suppose that y = 2 where $2 \in \mathbb{Z}$ be an element of the codomain of f and let $x \in \mathbb{Z}$ be some element of the domain of f. Assume for the purpose of deriving a contradiction that we have f(x) = y. Then we see that

$$y=f(x)$$
 $2=2x-3$ Since we've chosen $y=2$ and by the definition of f $5=2x$ Adding 3 to both sides $\frac{5}{2}=x$ Dividing both sides by 2

However, since 5 and 2 are coprime, we have that $\frac{5}{2} \notin \mathbb{Z}$ and furthermore $x \notin \mathbb{Z}$. This violates our assumption that $x \in \mathbb{Z}$. To resolve the contradiction, it must be the case that $f(x) \neq y$. Therefore, there is no x in the domain of f which satisfies f(x) = 2. However, since f is in the codomain of f. Hence f is not surjective.

c) Prove or disprove the statement: for all functions g and h from $\mathbb{Z} \to \mathbb{Z}$, if $f \circ g = f \circ h$ then g = h.

Solution: The statement is true.

Proof. Let $g: \mathbb{Z} \to \mathbb{Z}$ and $h: \mathbb{Z} \to \mathbb{Z}$ be functions and suppose that $f \circ g = f \circ h$. In order to show that g = h, we must have that g and h share the same domain and that for all elements x of the domain, g(x) = h(x). We've already supposed g and h to have the same domain, so to show that $\forall_x \in \mathbb{Z}$, g(x) = h(x), let $x \in \mathbb{Z}$. Now, for the purpose of deriving a contradiction, suppose that $g(x) \neq h(x)$. Then we have that

$$g(x) \neq h(x)$$

 $f(g(x)) \neq f(h(x))$ Since, as shown in 1.a, f is injective.
 $f \circ g(x) \neq f \circ h(x)$ By the definition of function composition.

However, this violates our assumption that $f \circ g = f \circ h$ since we have shown that there exists some x in the domain of both $f \circ g$ and $f \circ h$ such that $f \circ g(x) \neq f \circ h(x)$. To resolve the contradiction, we must have that g(x) = h(x). Therefore, we have that for any element x of \mathbb{Z} , g(x) = h(x). Therefore, we've shown that g = h.

d) Prove or disprove the statement: for all functions g and h from $\mathbb{Z} \to \mathbb{Z}$, if $g \circ f = h \circ f$ then g = h.

Solution: The statement is false.

Negation: There exists functions g and h from $\mathbb{Z} \to \mathbb{Z}$ such that $g \circ f = h \circ f$ but $g \neq h$.

Proof. Let $g: \mathbb{Z} \to \mathbb{Z}$ and $h: \mathbb{Z} \to \mathbb{Z}$ be the functions defined by:

$$g(a) = 2a$$
 $h(b) = \begin{cases} 2b & \text{if b is odd} \\ b & \text{if b is even} \end{cases}$

for any integers a and b in the domain of g and h respectively. We clearly have that $g \neq h$ since 2 is an element of both of their domains, but g(2) = 2(2) = 4 while h(2) = 2 since 2 is even. Furthermore, $4 \neq 2$ implies that $g(2) \neq h(2)$ and hence $g \neq h$. Now, by composing f with each of these, we see that

$$g \circ f(c) = 2(2c - 3)$$
 $h \circ f(d) = \begin{cases} 2(2d - 3) & \text{if d is odd} \\ 2d - 3 & \text{if d is even} \end{cases}$

for any two integers c and d by the definitions of f, g, h and the composition of functions. Furthermore, we have that for any odd integer x

$$g(x) = 2x = h(x)$$

Therefore, if we can show that $\forall_z \in \mathbb{Z}$, f(z) is an odd integer, then we'll have that

$$g \circ f(z) = g(f(z)) = 2f(z) = h(f(z)) = h \circ f(z)$$

as required. Consider the following lemma.

Lemma 1. Let z be an integer in the domain of f. Then we have that

$$f(z) = 2z - 3$$

= 2z - 4 + 1
= 2(z - 2) + 1

Where since z-2 is an integer, we have that for any integer z in the domain of f, f(z) is odd.

By lemma 1, we now have that for any integer z in the domain of $q \circ f$ and $h \circ f$

$$g \circ f(z) = g(f(z)) = 2(2z - 3) = h(f(z)) = h \circ f(z)$$

since f(z) is an odd integer. This in conjunction with the fact that $g \circ f$ and $h \circ f$ share the same domain (\mathbb{Z}) means we have that $g \circ f = g \circ h$. Therefore, we've shown the existence of functions $g : \mathbb{Z} \to \mathbb{Z}$ and $h : \mathbb{Z} \to \mathbb{Z}$ such that $g \circ f = h \circ f$ but $g \neq h$.

Problem 2

Let $A = \{1, 2, 3, 4\}$. Let $f : A \to A$ be the function defined by $f = \{(1, 2), (2, 3), (3, 2), (4, 4)\}$.

a) How many functions $g: A \to A$ so that $f \circ g(1) = 2$?

Solution: there are $1 \times 4^3 + 1 \times 4^3 = 2(4^3) = 128$ such functions g.

We define 2 different recipes, where using either will construct a unique definition of a function $g: A \to A$ guaranteeing that $f \circ g(1) = 2$. Furthermore, using either of the two recipes allow one to define every function $g: A \to A$ guaranteeing that $f \circ g(1) = 2$ in exactly one way.

Recipe 1.

Setting g(1) = 1, where $1 \in A$, we have that $f \circ g(1) = f(g(1)) = f(1) = 2$ as required. One can construct all possible functions g where $(1,1) \in g$ by the recipe:

- (I) Let the image of $1 \in A$ under g be 1.
- (II) Choose an element of A to be the image of $2 \in A$ under g.
- (III) Choose an element of A to be the image of $3 \in A$ under g.
- (IV) Choose an element of A to be the image of $4 \in A$ under g.

Hence we have that in the case where we require $(1,1) \in g$, there are $1 \times 4 \times 4 \times 4 = 1 \times 4^3$ possible ways to define $g: A \to A$.

Recipe 2.

Setting g(1) = 3, where $1, 3 \in A$, we have that $f \circ g(1) = f(g(1)) = f(3) = 2$ as required. One can construct all possible functions g where $(1,3) \in g$ by the recipe:

- (I) Let the image of $1 \in A$ under q be 3.
- (II) Choose an element of A to be the image of $2 \in A$ under g.
- (III) Choose an element of A to be the image of $3 \in A$ under g.
- (IV) Choose an element of A to be the image of $4 \in A$ under q.

Hence we have that in the case where we require $(1,3) \in g$, there are $1 \times 4 \times 4 \times 4 = 1 \times 4^3$ possible ways to define $g: A \to A$.

b) How many injective functions $g: A \to A$ so that $f \circ g(1) = 2$?

Solution: there are $1 \times 3 \times 2 \times 1 + 1 \times 3 \times 2 \times 1 = 6 + 6 = 12$ such functions q.

We define 2 different recipes, where using either will construct a unique definition of a function $g: A \to A$ guaranteeing that $f \circ g(1) = 2$. Furthermore, using either of the two recipes allow one to define every function $g: A \to A$ guaranteeing that $f \circ g(1) = 2$ in exactly one way.

Recipe 3.

Setting g(1) = 1, where $1 \in A$, we have that $f \circ g(1) = f(g(1)) = f(1) = 2$ as required. One can construct all possible injective functions g where $(1,1) \in g$ by the recipe:

(I) Let the image of $1 \in A$ under g be 1.

- (II) Choose an element a of A to be the image of $2 \in A$ under g such that for all $2 \neq x \in A$, $(x, a) \notin g$ yet.
- (II) Choose an element b of A to be the image of $3 \in A$ under g such that for all $3 \neq y \in A$, $(y, b) \notin g$ yet.
- (II) Choose an element c of A to be the image of $4 \in A$ under g such that for all $4 \neq z \in A$, $(z,c) \notin g$ yet.

Hence we have that in the case where we require $(1,1) \in g$, there are $1 \times 3 \times 2 \times 1 = 6$ possible ways to define $g: A \to A$.

Recipe 4.

Setting g(1) = 3, where $1, 3 \in A$, we have that $f \circ g(1) = f(g(1)) = f(3) = 2$ as required. One can construct all possible injective functions g where $(1,3) \in g$ by the recipe:

- (I) Let the image of $1 \in A$ under g be 3.
- (II) Choose an element a of A to be the image of $2 \in A$ under g such that for all $2 \neq x \in A$, $(x, a) \notin g$ yet.
- (II) Choose an element b of A to be the image of $3 \in A$ under g such that for all $3 \neq y \in A$, $(y, b) \notin g$ yet.
- (II) Choose an element c of A to be the image of $4 \in A$ under g such that for all $4 \neq z \in A$, $(z,c) \notin g$ yet.

Hence we have that in the case where we require $(1,3) \in g$, there are $1 \times 3 \times 2 \times 1 = 6$ possible ways to define $g: A \to A$.

c) How many functions $h: A \to A$ so that $f \circ h \circ f(2) = 3$?

Solution: there are $1 \times 4^3 = 4^3 = 64$ such functions h.

We define one recipe, which when followed will construct a unique definition of a function $h: A \to A$ guaranteeing that $f \circ h \circ f(2) = 3$. This recipe will be capable of defining all possible functions h that have this property in exactly one way.

Recipe 5.

First, we notice that $f \circ h \circ f(2) = f(h \circ f(2))$. Now, in order for $h : A \to A$ to have the property that $f \circ h \circ f(2) = 3$ we require that $h \circ f(2) = 2$ since by the definition of f, $\forall_x \in A$, f(x) = 3 only when x = 2. Furthermore, we have that

$$2 = h \circ f(2)$$
 As required for the desired property that $f \circ h \circ f(2) = 3$.
 $= h(f(2))$ By the definition of function composition $= h(3)$

Therefore, so long as $(3,2) \in h$, we will have that $f \circ h \circ f(2) = 3$ as required. Now, one can construct any function $h: A \to A$ such that $(3,2) \in h$ by the steps:

- (I) Let the image of $3 \in A$ under h be 2.
- (II) Choose an element of A to be the image of $1 \in A$ under h.
- (III) Choose an element of A to be the image of $2 \in A$ under h.
- (IV) Choose an element of A to be the image of $4 \in A$ under h.

Hence we have that in the case where we require $(3,2) \in h$, there are $1 \times 4 \times 4 \times 4 = 1 \times 4^3 = 64$ possible ways to define $h: A \to A$.

d) How many injective functions $h: A \to A$ so that $f \circ h \circ f(2) = 3$?

Solution: there are $1 \times 3 \times 2 \times 1 = 6$ such functions h.

We define one recipe, which when followed will construct a unique definition of a function $h: A \to A$ guaranteeing that $f \circ h \circ f(2) = 3$. This recipe will be capable of defining all possible functions h that have this property in exactly one way.

Recipe 6.

First, we notice that $f \circ h \circ f(2) = f(h \circ f(2))$. Now, in order for $h : A \to A$ to have the property that $f \circ h \circ f(2) = 3$ we require that $h \circ f(2) = 2$ since by the definition of $f, \forall_x \in A, f(x) = 3$ only when x = 2. Furthermore, we have that

$$2 = h \circ f(2)$$
 As required for the desired property that $f \circ h \circ f(2) = 3$.
 $= h(f(2))$ By the definition of function composition $= h(3)$

Therefore, so long as $(3,2) \in h$. we will have that $f \circ h \circ f(2) = 3$ as required. In order to ensure injectivity, we further require that no two distinct elements of the domain A of h can have the same image in the codomain A of h. Now, one can construct any injective function $h: A \to A$ with $(3,2) \in h$ by the steps:

- (I) Let the image of $3 \in A$ under h be 2.
- (II) Choose an element a of A to be the image of $1 \in A$ under h such that for all $1 \neq x \in A$, $(x, a) \notin h$ yet.
- (II) Choose an element b of A to be the image of $2 \in A$ under h such that for all $2 \neq y \in A$, $(y, b) \notin h$ yet.
- (II) Choose an element c of A to be the image of $4 \in A$ under h such that for all $4 \neq z \in A$, $(z,c) \notin h$ yet.

Hence we have that in the case where we require $(3,2) \in h$, there are $1 \times 3 \times 2 \times 1 = 6$ possible ways to define $h: A \to A$ where h is injective.

Problem 3

Let \mathbb{Z}^+ be the set of all positive integers. Let R be the relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$ defined by: For all (a, b), $(c, d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, (a.b)R(c, d) if and only if $a + b \le c + d$.

a) Prove whether or not R is reflexive, symmetric, antisymmetric, transitive.

Solution I: The relation R is reflexive.

Proof. Let $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ be an ordered pair of positive integers. Then we have that

$$x + y = x + y$$
$$x + y \le x + y$$

Which, by the defintion of R, means that we have (x,y)R(x,y). Therefore, for any ordered pair of positive integers $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, (x,y)R(x,y) and R is reflexive.

Solution II: The relation R is not symmetric.

Negation: There exists some $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ and $(u,v) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that (x,y)R(u,v) but $(u,v)\cancel{R}(x,y)$.

Proof. Let x = 1, y = 2, u = 3, v = 4 such that we have $(x, y) = (1, 2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ and $(u, v) = (3, 4) \in \mathbb{Z}^+ \times \mathbb{Z}^+$. Then we can see that

$$3 \le 7$$
$$1+2 \le 3+4$$
$$x+y \le u+v$$

Which implies that (x,y)R(u,v) by the definition of the relation R. However, we also have that

$$7 \nleq 3$$
$$3 + 4 \nleq 1 + 2$$
$$u + v \nleq x + y$$

Which implies that $(u, v) \mathbb{R}(x, y)$ by the definition of the relation R. Therefore, the relation R is not symmetric.

Solution III: The relation R is not antisymmetric.

Negation: There exists some $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ and $(u,v) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that (x,y)R(u,v) and (u,v)R(x,y) but $(x,y) \neq (u,v)$.

Proof. Let x = 1, y = 2, u = 2, v = 1 such that we have $(x, y) = (1, 2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ and $(u, v) = (2, 1) \in \mathbb{Z}^+ \times \mathbb{Z}^+$. Then we have that

$$(1,2) \neq (2,1)$$

 $(x,y) \neq (u,v).$

Furthermore, we can see that

$$3 \le 3$$
$$1+2 \le 2+1$$
$$x+y \le u+v$$

Which means we have that (x,y)R(u,v) by the definition of the relation R. Similarly, we have that

$$3 \le 3$$
$$2+1 \le 1+2$$
$$u+v \le x+y$$

Which means we also have that (u, v)R(x, y) by the definition of the relation R. Hence we've shown the existence of two ordered pairs $(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ and $(u, v) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that (x, y)R(u, v) and (u, v)R(x, y) but $(x, y) \neq (u, v)$. Therefore, the relation R is not antisymmetric.

Solution IV: The relation R is transitive.

Proof. Let $(a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, $(c,d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ and $(e,f) \in \mathbb{Z}^+ \times \mathbb{Z}^+$. Next, suppose that both (a,b)R(c,d) and (c,d)R(e,f). Then we have that both

$$a+b \le c+d$$
 and $c+d \le e+f$

However, these two facts together imply that

$$a+b \le e+f$$

Which means that we have that (a,b)R(e,f) by the definition of the relation R. Therefore, R is transitive.

b) List all pairs $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ so that (x,y)R(2,2).

c) Let $n \in \mathbb{Z}^+$. How many $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ so that (x,y)R(n,n)?

Solution: there are $\sum_{i=0}^{2n-1} i$ ordered pairs $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ so that (x,y)R(n,n) for some $n \in \mathbb{Z}^+$.

Let $n \in \mathbb{Z}^+$ be some positive integer and let $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ be an ordered pair such that (x,y)R(n,n). The number of such ordered pairs depends on the selected value of n. In fact, by the definition of relation R we can see that

$$(x,y)R(n,n) \iff x+y \le n+n$$

 $(x,y)R(n,n) \iff x+y \le 2n$

Now, since $\forall_z \in \mathbb{Z}^+$, $1 \leq z$, and both $x \in \mathbb{Z}^+$ and $y \in \mathbb{Z}^+$, we have that

$$2 = 1 + 1$$
$$\leq x + y$$

Taking together the upper and lower bound of x + y, we see that

$$2 \le x + y \le 2n$$

Which means that for a chosen value of $n \in \mathbb{Z}^+$, there are 2n-1 possible values of x+y such that (x,y)R(n,n) by relation R. Now, let s=x+y be one of the sums on interval $2 \le s \le 2n$. For each s, we define a recipe that, when followed, will generate any ordered pair $(a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that a+b=s (guaranteeing that (a,b)R(n,n) under relation R) in exactly one way. The number of such ordered pairs that can be generated by each recipe is dependent on the corresponding value of s only. Finally, by adding together the number of possible ordered pairs generated by each recipe, we arrive at the total number of ordered pairs $(a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that (a,b)R(n,n) under relation R.

Recipe 7. Let $n \in \mathbb{Z}^+$ and $2 \leq s \leq 2n$. Then we can generate any ordered pair $(a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that (a,b)R(n,n) under relation R in exactly one way by the steps:

- (I) Choose $p \in \mathbb{Z}$ with $1 \leq p \leq s 1$.
- (II) Set a = p.
- (III) Set b = s p.

Then we have that a+b=p+s-p=s. Furthermore, since $s\leq 2n$, we have that $a+b\leq n+n$ implying that (a,b)R(n,n) by the definition of relation R as required. Importantly, the number of ordered pairs (a,b) that can be generated by this recipe is s-1 since that is how many choices of p there are. Since a recipe can be defined for every s where $2\leq s\leq 2n$, and since each recipe generates s-1 unique ordered pairs (a,b) with (a,b)R(n,n), the total number of ordered pairs (a,b) where (a,b)R(n,n) is $1+2+\ldots+2n-1=\sum_{i=1}^{2n-1}i$.