CS50's Understanding Technology

OpenCourseWare

Donate (https://cs50.harvard.edu/donate)

David J. Malan (https://cs.harvard.edu/malan/) malan@harvard.edu

(https://www.clubhouse.com/@davidjmalan) f (https://www.facebook.com/dmalan)

(https://github.com/dmalan) (https://www.instagram.com/davidjmalan/) (https://www.linkedin.com/in/malan/) (https://orcid.org/0000-0001-5338-2522) (https://www.quora.com/profile/David-J-Malan) (https://www.reddit.com/user/davidjmalan) (https://www.tiktok.com/@davidjmalan)

(https://davidjmalan.t.me/) > (https://twitter.com/davidjmalan)

Hardware

by Spencer Tiberi

Binary

- We use computers everyday
- Inside a computer are "0s and 1s"
 - Computers use the binary number system to represent info
 - How do computers represent info with just binary?
- Consider the decimal number (what we human typically use) 123
 - The rightmost column is the 1s column
 - The middle, the 10s
 - The leftmost, the 100s

100	10	1
1	2	3

- Thus we have $100 \times 1 + 10 \times 2 + 1 \times 3 = 100 + 20 + 3 = 123$
- Inside a computer, the binary 000 would represent 0, just like in our human world!
 - However, in this case we are dealing with binary so:
 - The right most column is the 1s place
 - The middle, the 2s
 - The leftmost, the 4s

4	2	1
0	0	0

- In the human world (decimal) we use powers of 10 for place values
 - $10^0 = 1$, $10^1 = 10$, $10^2 = 100$, $10^3 = 1000$, etc.
- In the computer world (binary) we use powers of 2 for place values
 - $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, etc.$
- The difference between decimal numbers and binary numbers is changing the base
- For the binary number 000, we have $4 \times 0 + 2 \times 0 + 1 \times 0 = 0 + 0 + 0 = 0$!
- Consider the binary number 001:

4	2	1
0	0	1

- We have $4 \times 0 + 2 \times 0 + 1 \times 1 = 0 + 0 + 1 = 1$
- How do we represent the decimal number 2 in binary?
 - We don't need a 4, be we need a 2, and also no 1

4	2	1
0	1	0

- This gives us $4 \times 0 + 2 \times 1 + 1 \times 0 = 0 + 2 + 0 = 2$
- Likewise, the number 3 would be:

4	2	1
0	1	1

- As we need a 2 and a 1
- Thus, $4 \times 0 + 2 \times 1 + 1 \times 1 = 0 + 2 + 1 = 3$
- Similarly, 4 would be:

4	2	1
1	0	0

■ What about 7?

4	2	1
1	1	1

- Which yields $4 \times 1 + 2 \times 1 + 1 \times 1 = 4 + 2 + 1 = 7$
- What about 8?
 - We can't count to 8 without another bit (binary digit)
 - We run into this in the real world too if we need a four-digit number vs a 3-digit number
 - Start with the 1s, 10s, 100s place and add the 1000s
 - Here we'll add the next power of 2, 8

8	4	2	1
1	0	0	0

- \blacksquare 8 x 1 + 4 x 0 + 2 x 0 + 1 x 0 = 8
- Even though computers only use binary, they can count as high as humans can!
 - They do it with a smaller vocabulary, just 1 and 0.
 - This is because it's easier to represent two states in the physical world
 - If you think of one of these bits as being a light bulb:
 - 0 is off
 - 1 is on
 - Light bulbs just need electricity to turn on or off

- Electricity is sufficient to turn a switch on or off
 - Inside a computer exists these switches called transistors
 - Modern computers have billions!
 - Turned off represents 0
 - Turned on represents 1
- Using these transistors we can store values, store data, compute, and do everything we can with computers
- David demonstrates how transistors work using light bulbs
- So far all that we can represent is numbers
 - A decision needs to be made on what pattern of 1s and 0s to represent letters, words, and paragraphs
 - All computers can store is 0s and 1s
 - To represent letters, we need a mapping of 0s and 1s to characters
 - ASCII (American Standard Code for Information Interchange) does this

			D. E.				_		34		_	٥, ١	440
0	NUL	16	DLE	32	SP	48	0	64	@	80	Р	96 `	112 p
1	<u>SOH</u>	17	DC1	33	1	49	1	65	Α	81	Q	97 a	113 q
2	<u>STX</u>	18	DC2	34	"	50	2	66	В	82	R	98 b	114 r
3	<u>ETX</u>	19	DC3	35	#	51	3	67	С	83	S	99 c	115 s
4	EOT	20	DC4	36	\$	52	4	68	D	84	T	100 d	116 t
5	ENQ	21	NAK	37	%	53	5	69	Е	85	U	101 e	117 u
6	ACK	22	SYN	38	æ	54	6	70	F	86	٧	102 f	118 v
7	<u>BEL</u>	23	<u>ETB</u>	39	1	55	7	71	G	87	W	103 g	119 w
8	<u>BS</u>	24	CAN	40	(56	8	72	Н	88	X	104 h	120 x
9	HT	25	EM	41)	57	9	73	-1	89	Υ	105 i	121 y
10	<u>LF</u>	26	<u>SUB</u>	42	*	58	:	74	J	90	Z	106 j	122 z
11	VT	27	<u>ESC</u>	43	+	59	;	75	K	91	[107 k	123 {
12	FF	28	FS	44	,	60	<	76	L	92	1	108 l	124
13	CR	29	GS	45	14.	61	=	77	M	93]	109 m	125 }
14	<u>SO</u>	30	<u>RS</u>	46	•	62	>	78	N	94	^	110 n	126 ~
15	<u>SI</u>	31	<u>US</u>	47	1	63	?	79	0	95	-	111 o	127 <u>DEL</u>

- 65 -> A, 66 -> B, 67 -> C, etc.
- 97 -> a, 98 -> b, 99 -> c, etc.
- ASCII also has mapping for punctuation symbols
- Programs like notepad, textedit, and MicroSoft Word decide weather to display patterns
 of bits as letters or words
 - Computers only store 0s and 1s, but the programs interpret those bits in a certain way
 - For example, if MicroSoft word sees a pattern of buts representing the number 65, it will interpret that as "A"
- ASCII is limited
 - Original ASCII is 7 bits, thus giving 128 characters
 - Extended ASCII is 8 bits, yielding 256 characters

- Many symbols are not represented
- UNICODE is a bigger set of characters that includes written languages other than
 English and even emoji! **
 - All are still represented by a pattern of bits
- Consider this pattern of bits: 01001000 01001001
 - 16 bits or 2 bytes (1 byte = 8 bits)

128	64	32	16	8	4	2	1	128	64	32	16	8	4	2
0	1	0	0	1	0	0	0	0	1	0	0	1	0	0
4														•

1 x 64 + 1 x 8	1 x 64 + 1 x 8 + 1 x 1
72	73
Н	I

Using ASCII we get the word "HI"

CPU

• If you have heard that your computer has "Intel Inside," it has an Intel processor in it

- The backside of the processor has pins that connect into the motherboard
 - The motherboard is a circuit board made of silicon
- The CPU is the brain of the computer
 - Does all the thinking
 - Performs math in numbers fed to it
 - Helps display numbers on a screen
 - Adds or deletes numbers
- CPUs now can have multiple cores

- Cores are the devices inside the CPU that can preform mathematical operations, load info from memory, save info to memory, etc.
- The more cores, the more tasks a CPU can do at once
- CPUs now also support hyper-threading
 - Where a single core will present itself as multiple cores to a computer's operating system
- Systems on a Chip (SoaC) are when a CPU and more are all interconnected at once rather than attached to a motherboard
 - Popular in phones, tables, and game consoles
 - Raspberry Pi

RAM (Random Access Memory)

Circuit board with chips that slides into a slot on the motherboard

- The chips store data
 - Only stores data when the power is on
- Files and programs are loaded onto these chips when ran
- Fast memory
- You can check your RAM and other specs:
 - Windows Task Manager

- CPU chart shows when peak usage occurs
- GHz is the number of operations a CPU can perform per second (in billions)
 - 1.94 GHz = 1.94 billion operations per second
- Logical processors in this case is 4, which means both cores support hyperthreading
 - Each core will do two things at once as if 4 cores exist
- Mac System Profiler

Hardware Overview:

Model Name: MacBook Pro Model Identifier: MacBookPro12,1 Intel Core i7 Processor Name:

Processor Speed: 3.1 GHz

Number of Processors: 1 Total Number of Cores: L2 Cache (per Core): 256 KB L3 Cache: 4 MB Memory: 16 GB

Hard Drives

- When you turn a computer off, you need a place to store data
 - A hard disk drive (HDD) stores this information

- RAM may store 1 GB, 2 GB, 4 GB, through 16 GB or so
- HDD stores 256 GB, 1024 GB (AKA terabyte or TB), 2 TB
- Inside a HDD, metal platters physically spin around

- Data is stored on these disks
- The reading heads move back and forth reading data from the device
- Uses tiny magnetic particles where north pole orientation represents 1 and south pole orientation represents 0
 - Power is only needed to read or change the data
 - Data is preserved when power is off
- David shows a video of a HDD running in slowmo
- To store data in a hard drive, RAM sends data and instructions to the HDD
 - The hard drive translates that data into voltage fluctuations
 - Some signals spin the platters, others move the read/write heads
 - Pulses sent to the read/write head turn on a magnet which creates a field that changes the polarity of a tiny portion of the metal platter's surface
 - Power is sent in different directions as to change polarity
 - To read, the particles on the disk use their charge to move the read/write head.
 - Pieces of a file can be spread out around the platters

- A special file keeps track of data's location
- Anytime you have a physical device that moves over a period of time, things go wrong
 - Dropping a HDD can corrupt files
- Platters spin slower than how fast electrons move

Flash Memory

Solid state disk (SSD)

- Smaller (3.5 inch width for HDD vs 2.5 inch width for SSD)
 - Still fits where old HDDs are
- No moving particles
- Inside, it looks a lot like RAM

- Much faster than HDD
 - Programs/files load and save more quickly
- SSD theoretically don't last as long as HDD
 - Finite number of writes
- Hybrid Drives
 - Some GB of solid state memory and more GB or TB of HDD space
 - Stores as much of frequently-needed data on the SSD
 - Stores less frequently-needed data on HDD
- Flash memory also exists in the form of USB sticks

- Might store 1 GB, 16 GB, or more
- Portable
- External SSDs exist for more storage
 - Might store 256 GB or more
 - Can be used to share data with others without network usage
- Can also have external HDD

Types of Memory and Funneling

There is a tradeoff between space, money, and speed of data transfer

- Data is pushed "down the funnel" to your CPU
 - From the hard drive, data first goes to the RAM

- Theoretically, the CPU never has to wait for data to crunch
- There is a tiny amount of memory (bytes) called registers where numbers are stored for operations.
- Memory at the bottom is more expensive
- Disk is important for the long-term storage

- RAM is important as it stores programs you use simultaneously
- L3, L2, L1 cache are on the motherboard
- As an analogy for memory, picture a candy store
 - A customer approaches the counter and requests candy
 - The shop owner then leaves the counter to grab the candy before returning moments later
 - Not super efficient to walk all the way to the store room to grab candy
 - Better to have a cache of memory
 - Instead, the shop owner leaves the counter to ready a cache of candy before the customers arrive
 - When a customer comes, the candy can be distributed quickly
 - Cache memory similarly helps the CPU in this manner
- We can see sizes of cache looking at computer specs like before

Display Connectors

- These sockets all connect to monitors or displays
- Mini DisplayPort are used form monitors
- HDMI is not only on laptops and computers but also TVs
- VGA is older, but still commonly uses on projectors

USB (Universal Serial Bus)

- Can plug in a whole range of peripheral devices including printers, keyboards, mice, scanners, etc.
- USB-A most common
- USB-B is often used for printers and scanners
- USB-C is newer and can be plugged in coming from different directions
- Other variants often exist for phones
- Older USB connections are slower when transferring data
 - Hard drives can connect via USB
 - Even if a hard drive is fast, if the USB is slow, the transfer of data will be slow

Wireless

- Wifi is wireless internet
- Bluetooth allows devices such as wireless keyboards and headphones to connect to your computer
 - Limited range
 - This is ok as it is used for you to connect to your own device

Operating System (OS)

- Software that ensures all devices work and can intercommunicate
- MacOS and Windows are popular OS

- Can be installed by the user, but is typically done so by a manufacturer
 - Installed on HDD or SDD so that it exists persistently without power
- When you hit power on your computer, the OS is loaded into RAM
- Gives you the graphical interface that you see
- Knows how to:
 - Talk to your keyboard and mouse
 - Display info on the screen
 - Move things around in memory
- This is all thanks to device drivers installed with the OS
 - Special software designed to talk to certain model of printer, camera, scanner, etc.
- When an OS doesn't recognize a device, perhaps because it's too new, you can download new device drives from the device manufacturer
 - Teaches Window, MacOS, or Linux about that new hardware
 - Future-proofing structure
- It's this intersection of hardware and software that makes computers powerful!

Looking Underneath the Hood

- David and Colton Ogden look at the exterior of an old ThinkPad computer, examining ports
 - Power bricks convert power from the wall into safe amounts for the computer
- David and Colton examine the inside of an old window desktop, highlighting the motherboard, heatsink, RAM, Hard Drive, etc.
- David and Colton then look inside a HDD
 - Once exposed to air and dust, it's no longer reliable enough to use
- David and Colton then look at a motherboard examining all the ports on it