

Table of Content What will We Learn Today?

- 1. Text Classification
- 2. Sentiment analysis
- 3. Classification using Machine Learning models

- Text classification juga dikenal sebagai text tagging atau text categorization adalah proses mengkategorikan teks ke dalam kelompok tertentu.
- Text classification adalah salah satu tugas dasar dalam natural language processing (NLP) dengan aplikasi yang luas contohnya sentiment analysis, topic labeling, spam detection, dan intent detection.

- Ada tiga pendekatan dalam text classification
- Rule-based System
 - Teks dipisahkan ke dalam kelompok terorganisir menggunakan handicraft linguistic rules.
- Machine Learning-based System
 - ML-based classifier membuat klasifikasi berdasarkan pengamatan sebelumnya dari kumpulan data
- Hybrid System
 - Menggabungkan machine learning classifier dengan rule-based system, digunakan untuk meningkatkan performa.

Sentiment analysis

Sentiment Analysis-Definition

- Salah satu contoh aplikasi dari text classification adalah sentiment analysis.
- Adalah metode yang secara otomatis memahami persepsi pelanggan terhadap suatu produk atau layanan berdasarkan komentar mereka.

Pre-processing the Text

- 1. Tokenization
- 2. Removing stop words
- 3. Stemming or Lemmatization

sudah dijelaskan di pertemuan sebelumnya

```
Text

"The cat sat on the mat."

Tokens

"the", "cat", "sat", "on", "the", "mat", "."
```


Feature extraction

- 1. Bag of Words
- 2. TF-IDF (Term frequency-inverse document frequency)
- 3. Word Embedding

sudah dijelaskan di pertemuan sebelumnya

doc1 = "saya belajar pemrograman dan belajar melukis"

doc2 = "saya membantu adik saya belajar menulis"

doc3 = "ibu belajar menjahit"

adik	belajar	dan	ibu	melukis	membantu	menjahit	menulis	pemrograman	saya
0	2	1	0	1	0	0	0	1	1
1	1	0	0	0	1	0	1	0	2
0	1	0	1	0	0	1	0	0	0

adik	belajar	dan	ibu	melukis	membantu	menjahit	menulis	pemrograman	saya
0	2	2.0986123	0	2.0986	0	0	0	2.09861229	1.405465
2.098612	1	0	0	0	2.09861229	0	2.0986123	0	2.81093
0	1	0	2.0986	0	0	2.09861229	0	0	0

Word Embedding

- Word embedding
 - Mampu menangkap konteks kata dalam dokumen, kesamaan semantik, hubungan dengan kata lain, dll.
 - Dengan word embedding, kata-kata yang memiliki properti tertentu, misalnya berada pada konteks yang sama, atau memiliki semantic meaning yang sama berada tidak jauh satu sama lain pada space tersebut.

Word2Vec

- Menggunakan model ANN untuk mempelajari asosiasi kata dari kumpulan teks yang besar.
- Word2Vec terdiri dua teknik yaitu Continous Bag of Words (CBOW) dan Skip Gram Model.
- The CBOW model memprediksi kata saat ini berdasarkan konteksnya.
- · Skip-gram model belajar dengan memprediksi kata-kata di sekitarnya dengan diberikan kata saat ini.

https://machinelearningmastery.com/what-are-word-embeddings/

Classification using Machine Learning models

Multilayer perceptron (MLP)

- Type dari Artificial Neural Network Model yang terdiri dari tiga jenis layer input layer, hidden layer, output layer.
- Kecuali node input, setiap node adalah neuron yang menggunakan fungsi aktivasi nonlinier.
- MLP menggunakan backpropagation untuk training-nya.

General Structure of MLP

Activation function

tanh

tanh(x)

ReLU

 $\max(0, x)$

Multilayer perceptron

Hidden nodes

$$O_k = \frac{1}{1 + e^{-\sum h_j w_{jk} + \theta_k}}$$

$$h_j = \frac{1}{1 + e^{-\sum x_i w_{ij} + \theta_j}}$$

Sentiment analysis using MLP

Use X_train as features for MLP

Discussion on NN

- Keuntungan
 - Robust -berfungsi baik ketika training set mengandung error
 - Output bisa discrete, real-valued, atau vector
- Kekurangan
 - Waktu yang lama saat training
 - Sulit untuk dipahami

Decision Tree Induction

- Basic algorithm
 - 1. At start, all the training examples are at the root
 - 2. Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
 - 3. Examples are partitioned recursively based on selected attributes

Training Dataset

No.	age	income	student	credit_rating	buys_computer
1	<=30	<=30 high		fair	no
2	<=30 high		no	excellent	no
3	3140	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	3140	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	3140	medium	no	excellent	yes
13	3140	high	yes	fair	yes
14	>40	medium	no	excellent	no

Algorithm for DT Induction - Example

Sentiment analysis using DT

Use X_train as features for DT

	Term 1	Term 2	Term 3	Term 4	Term 5	Term 6	Term n	class
Doc 1	0	0	0	0	0	3	0	
Doc 2	2	0	9	8	7	3	1	
Doc 3	49	39	28	73	64	100	92	
Doc 4								
Doc 5					-			
Doc 6								
Doc n								

Discussion on DT

- Kelebihan
 - Dapat diubah menjadi aturan klasifikasi yang dapat dipahami
 - Relatif cepat
- Kekurangan
 - Sensitive (not robust) terhadap noises
 - Continuous-valued attributes partisi secara dinamis nilai atribut kontinu ke dalam set interval diskrit

Let's practice

Thank YOU

