Проверка гипотез и А/В тестирование

1. Математический аппарат

2. Примеры критериев

3. Реалии А/В тестирования

4. Самый практичный стат. тест

План

1. Математический аппарат

Проверка гипотез

выборка: $X^n = (X_1, ..., X_n), X \sim P \in \Omega$ нулевая гипотеза H_0 : $P \in \omega, \omega \subset \Omega$

альтернатива H_1 : $P \notin \omega$

статистика: $\mathsf{T}(\mathsf{X}^n)$, $\mathsf{T}(\mathsf{X}^n) \sim \mathsf{F}(\mathsf{x})$ при $\mathsf{P} \in \omega$, $\mathsf{T}(\mathsf{X}^n) \not\sim \mathsf{F}(\mathsf{x})$ при $\mathsf{P} \not\in \omega$

реализация выборки: $x^n = (x_1, ..., x_n)$ реализация статистики: $t = T(x^n)$

достигаемый уровень значимости: $p(x^n)$ — вероятность при H_0 получить $T(X^n)=t\,$ или еще более экстремальное

 $p(x^n) = P(T \ge t \mid H_0) - \text{обычно это значение называют } p - value$ Гипотеза отвергается при $p(x^n) \le \alpha, \alpha - \text{уровень значимости}$

Ошибки первого и второго рода

Задача проверки гипотез несимметрична. Поэтому есть два параметра оценки критерия:

Корректность критерия: $P(p(T) \le \alpha \mid H_0) \le \alpha$

Мощность критерия: pow = $P(p(T) \le \alpha \mid H_1)$ → max

Интерпретация результата

При помощи инструмента проверки гипотез нельзя доказать справедливость нулевой гипотезы. В философии подобные рассуждения встречаются в критерии научности Карла Поппера.

Отсутствие доказательств

 \neq

доказательство отсутствия

Уровень значимости

Достигаемый уровень значимости нельзя интерпретировать как вероятность справедливости нулевой гипотезы!

$$p = P(T \ge t \mid H_0) \ne P(H_0 \mid T \ge t)$$

Однако, отсутствие свидетельств

=

свидетельство отсутствия.

Мощность

 $pow = P(p(T) \le \alpha \mid H_1) - вероятность отвергнуть <math>H_0$, если верна альтернатива

Мощность критерия зависит от следующих факторов:

- 1. размер выборки;
- 2. размер отклонения от нулевой гипотезы;
- 3. чувствительность статистики критерия;
- 4. тип альтернативы.

2. Примеры критериев

Параметрические критерии

Параметрические критерии проверки гипотез допускают дополнительное знание о распределении выборок, что позволяет составлять более мощные критерии.

К сожалению, реальные данные очень редко распределены как табличные распределения. Но есть ряд популярных случаев, когда это так, их и разберём.

Z-критерий меток для доли

выборка: $X^n = (X_1, \dots, X_n), X \sim Ber(p)$

нулевая гипотеза: $H_0 \colon p = p_0$

альтернатива: $H_1: p < \neq > p_0$

статистика: $Z_{S}\left(X^{n}\right) = \frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$

нулевое распределение: N(0,1)

Биномиальный критерий

выборка: $X^n = (X_1, \dots, X_n), X \sim Ber(p)$

нулевая гипотеза: H_0 : $p = p_0$

альтернатива: $H_1: p < \neq > p_0$

статистика: $T\left(X^{n}
ight)=\sum\limits_{i=1}^{n}X_{i}$

нулевое распределение: $Bin(n,p_0)$

Z-критерий разности долей, независимые выборки

выборки: $X_1^{n_1} = (X_{11}, \dots, X_{1n_1}), X_1 \sim Ber\left(p_1\right)$ $X_{2}^{n_2} = (X_{21}, \dots, X_{2n_2}), X_2 \sim Ber\left(p_2\right)$

Выборка Исход	$X_{1}^{n_{1}}$	$X_2^{n_2}$
1	a	b
0	c	d
\sum	n_1	n_2

нулевая гипотеза: $H_0: p_1 = p_2$

альтернатива: $H_1\colon p_1<\neq>p_2$ статистика: $Z\left(X_1^{n_1},X_2^{n_2}\right)=rac{\hat{p}_1-\hat{p}_2}{\sqrt{P(1-P)\left(rac{1}{n_1}+rac{1}{n_2}
ight)}}$ $P=rac{\hat{p}_1n_1+\hat{p}_2n_2}{n_1+n_2},\;\hat{p}_1=rac{a}{n_1},\;\hat{p}_2=rac{b}{n_2}$

нулевое распределение:

Z-критерий разности долей, связанные выборки

выборки: $X_1^n = (X_{11}, \dots, X_{1n}), X_1 \sim Ber(p_1)$ $X_2^n = (X_{21}, \dots, X_{2n}), X_2 \sim Ber(p_2)$ выборки связанные

X_1^n	1	0
1	e	f
0	g	h

нулевая гипотеза: $H_0 \colon p_1 = p_2$

 $H_1: p_1 < \neq > p_2$ альтернатива:

 $Z(X_1^n, X_2^n) = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{f+g}{n^2} - \frac{(f-g)^2}{n^3}}} = \frac{f-g}{\sqrt{f+g - \frac{(f-g)^2}{n}}}$ статистика:

N(0, 1)нулевое распределение:

Z-критерий

выборки:
$$X_1^{n_1}=\left(X_{11},\ldots,X_{1n_1}\right),X_1\sim N\left(\mu_1,\sigma_1^2\right)\ X_2^{n_2}=\left(X_{21},\ldots,X_{2n_2}\right),X_2\sim N\left(\mu_2,\sigma_2^2\right)$$

 σ_1, σ_2 известны

нулевая гипотеза: H_0 : $\mu_1 = \mu_2$

альтернатива: $H_1: \mu_1 < \neq > \mu_2$

ьтернатива: $H_1\colon \mu_1< \neq>\mu_2$ статистика: $Z\left(X_1^{n_1},X_2^{n_2}\right)=rac{ar{X}_1-ar{X}_2}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}$

N(0, 1)нулевое распределение:

t-критерий Стьюдента

выборки:
$$X_1^{n_1}=\left(X_{11},\ldots,X_{1n_1}\right),X_1\sim N\left(\mu_1,\sigma_1^2\right)\ X_2^{n_2}=\left(X_{21},\ldots,X_{2n_2}\right),X_2\sim N\left(\mu_2,\sigma_2^2\right)$$

 σ_1, σ_2 неизвестны

нулевая гипотеза: H_0 : $\mu_1 = \mu_2$

альтернатива: $H_1: \mu_1 < \neq > \mu_2$

статистика: $T\left(X_1^{n_1},X_2^{n_2}\right)=rac{ar{X}_1-ar{X}_2}{\sqrt{rac{S_1^2}{n_1}+rac{S_2^2}{n_2}}}$ $u=rac{\left(rac{S_1^2}{n_1}+rac{S_2^2}{n_2}
ight)^2}{rac{S_1^4}{n_1^2(n_1-1)}+rac{S_2^4}{n_2^2(n_2-1)}}$

$$\nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{S_1^4}{n_1^2(n_1 - 1)} + \frac{S_2^4}{n_2^2(n_2 - 1)}}$$

нулевое распределение:

Приближение достаточно точно при $n_1 = n_2$ или $[n_1 > n_2] = [\sigma_1 > \sigma_2]$.

Достойны упоминания

- 1. Доверительные интервалы Вальда, Уилсона— доверительные интервалы для Z-тестов
- 2. Критерии Шапиро-Уилка, Харке-Бера, критерий согласия Пирсона проверка данных на нормальность

Непараметрические критерии

Существует специальный набор критериев, которые можно применять, не зная точного распределения выборки.

Критерий Мана-Уитни

выборки: $X_1^{n_1} = (X_{11}, \dots, X_{1n_1})$

 $X_2^{n_2} = (X_{21}, \dots, X_{2n_2})$

выборки независимые

нулевая гипотеза: $H_0: F_{X_1}(x) = F_{X_2}(x)$

альтернатива: H_1 : $F_{X_1}\left(x\right) = F_{X_2}\left(x+\Delta\right), \Delta < \neq > 0$

статистика: $X_{(1)} \leq \ldots \leq X_{(n_1+n_2)}$ — вариационный ряд

объединённой выборки $X=X_1^{n_1}\bigcup X_2^{n_2}$

 $R_1(X_1^{n_1}, X_2^{n_2}) = \sum_{i=1}^{n_1} \operatorname{rank}(X_{1i})$

нулевое распределение: табличное

Критерий однородности

выборки:
$$X_1^{n_1} = (X_{11}, \dots, X_{1n_1})$$

$$X_2^{n_2} = (X_{21}, \dots, X_{2n_2})$$

выборки независимые

нулевая гипотеза: $H_0 \colon F_{X_1}(x) = F_{X_2}(x)$

альтернатива: $H_1: H_0$ неверна

Критерий Смирнова

статистика:
$$D\left(X_{1}^{n_{1}},X_{2}^{n_{2}}\right)=\sup_{-\infty< x<\infty}\left|F_{n_{1}X_{1}}\left(x\right)-F_{n_{2}X_{2}}\left(x\right)\right|$$

Критерий Андерсона (модификация критерия Смирнова-Крамерафон Мизеса)

статистика:
$$T\left(X_1^{n_1},X_2^{n_2}\right)=rac{1}{n_1n_2(n_1+n_2)}\Biggl(n_1\sum_{i=1}^{n_1}\left(\mathrm{rank}\left(X_{1i}\right)-i
ight)^2+ \ +n_2\sum_{j=1}^{n_1}\left(\mathrm{rank}\left(X_{2j}\right)-j
ight)^2\Biggr)-rac{4n_1n_2-1}{6(n_1+n_2)}$$

Статистики имеют табличные распределения при H_0 .

3. Реалии А/В тестирования

Пример АВ теста

Горные велосипеды. Распродажа 60%

В наличии более 1 000 моделей! bike.ru

Распродажа! Sale! Rebajas! Saldi!

Не пропустите! До 1 числа продаем горные велосипеды по смешным ценам! :) bike.ru

Офисные кресла

Скидка от 10 кресел -15%! Скидка в шоу-рум до 50%! Доставка – бесплатно!!!

Офисные кресла

Скидка от 10 кресел -15%! Скидка в шоу-рум до 50%! Доставка – бесплатно!!!

Практические вопросы

А теперь давайте разберём несколько практических моментов, с которыми каждый, кто проводит АБ тесты рано или поздно сталкивается.

Немного контекста

Вы делаете рекомендацию аксессуаров к заказу в интернет магазине. Вам требуется проверить наличие и оценить экономический эффект от использования вашей модели.

Разбиение на тестовые группы

Мы разбили пользователей на две группы. Как лучше это сделать? Как проверить, что полученное разбиение — хорошее?

Разбиение на тестовые группы

Мы разбили пользователей на две группы. Как лучше это сделать? Как проверить, что полученное разбиение — хорошее?

Для разбиения обычно используют хэш от id-шника пользователя с солью. Как вы думаете, зачем соль?

Разбиение на тестовые группы

Для проверки корректности разбиение обычно сравнивают:

- Статические фичи (пол, возраст и т.п.) распределены одинаково Критерии однородности и др
- 2. Исторические фичи (конверсии за какой-то период, покупки и и.д.). Распределения врядли будут прям совпадать, но стоит проверить разные статистики (среднее, медианы, дисперсии)
- 3. АА-тест. Разбиение всё равно может оказаться плохим, поэтому стоит провести АА тест, в рамках которого убедиться, что в группах нет значимых различий между целевыми метриками.

Кстати, похожий процесс происходит, когда придумывают новую метрику. Ведь нужно убедиться, что она корректно красится в АА тестах.

Сроки теста

Никто не будет запускать тест просто так, нужно заранее оценить на какой срок нужно запускать тест. Как это сделать?

Сроки теста

Никто не будет запускать тест просто так, нужно заранее оценить на какой срок нужно запускать тест. Как это сделать?

Часто встречаются следующие две стратегии:

- 1. Из соображений мощности: нужно взять такое n, чтобы $P(p(X) \le \alpha | H_1) \ge \beta$
- 2. Из соображений эффекта: нужно взять такое n, чтобы $P(X) \leq \alpha$ при условии, что есть эффект. Например, чтобы в Z-тесте pvalue ≤ 0.05 при условии, что $\hat{p}_2 \hat{p}_1 > 0.01$

Как вы думаете, какая оценка даёт бОльшие числа?

Досрочная остановка теста

Вы распланировали АБ тест. По вашим оценкам(вы использовали биномиальный тест) за 81 день отклонение изменяемой величины на 1 процент является значимым. Вы ежедневно мониторили результаты теста и через 9 дней обнаружили отклонение в 5 процентов, что является значимым для теста длиной 9 дней. Можно в этом случае досрочно завершить АБ тест?

Последовательный анализ

Как с этим жить: Нужно применять Статистический последовательный анализ (Sequential analysis). Он даёт, во-первых, корректные, а во-вторых, более мощные критерии, пользуясь дополнительным знанием о потоковости данных.

Поиск разных эффектов

Допустим, что вы проверяете средний чек, среднее число товаров в чеке, среднее число аксессуаров в чеке. Для каждой из этих величин вы составили свой критерий для проверки гипотезы о наличие эффекта. Каков уровень значимости для такой одновременной проверки гипотез?

Множественная проверка гипотез

Поскольку величина чека, число товаров в нём и число аксессуаров в нём— зависимые величины, то нельзя в точности найти уровень значимости, но можно его оценить:

$$\alpha \leq P(p_1 \leq \alpha \text{ or } p_2 \leq \alpha \text{ or } p_3 \leq \alpha | H_0) \leq \sum_i P(p_i \leq \alpha | H_0) = 3\alpha$$

Причём скорее всего самое первое неравенство строгое.

Получается, что из-за того, что мы проверяем несколько гипотез, вероятность ошибки первого рода повышается. Она будет вызвана не особенностью данных, а тем, что мы несколько раз её проверяем.

Множественная проверка гипотез

Ошибка первого рода вызвана не особенностью данных, а тем, что мы несколько раз её проверяем.

Как с этим жить: Нужно применять методы Множественной проверки гипотез (гуглите Multiple comparisons problem). Самый простой способ — уменьшить α в число гипотез раз, но есть и более сложные подходы.

Есть хорошая реализация в Python — statsmodels.sandbox.stats.multicomp.multipletests.

Пример реального теста

Допустим, вы сравниваете конверсию пользовательской сессии в приложении в клик по рекламному блоку. Тест длится около месяца. Вы для всех сессий имеет величину 0 или 1— сконвертировалась ли она в клик. Значимость оценивается с помощью Z-теста на выборках из вышеописанных величин.

Оцените насколько хороша такая схема теста.

Пример реального теста

Допустим, вы сравниваете конверсию пользовательской сессии в приложении в клик по рекламному блоку. Тест длится около месяца. Вы для всех сессий имеет величину 0 или 1— сконвертировалась ли она в клик. Значимость оценивается с помощью Z-теста на выборках из вышеописанных величин.

Оцените насколько хороша такая схема теста.

Объекты выборки зависимы. Из-за этого вы будете занижать pvalue! На практике эта ситуация сплошь и рядом, поэтому давайте разберёмся как решить эту проблему.

4. Самый практичный стат. тест

Данные

Две "выборки"вида $\{(k_i, x_i)\}_{i=1}^n$,

где k_i - ключ i-го события, x_i - произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Данные

Две "выборки"вида $\{(k_i, x_i)\}_{i=1}^n$,

где k_i - ключ i-го события, x_i - произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Примеры

- 1. Конверсия сессии в поездку, ключ id пользователя
- 2. Стоимость заказа, ключ id пользователя
- 3. Конверсия предложения заказа в его принятие, ключ id водителя
- 4. Количество заказов в день, ключ id водителя

Данные

Две "выборки"вида $\{(k_i, x_i)\}_{i=1}^n$,

где k_i - ключ i-го события, x_i - произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Метод обсчёта

Функция f, которая для произвольного набора $\left\{\left(\mathbf{k}_{j},\mathbf{x}_{j}\right)\right\}_{j=1}^{m}$ находит значение статистики

Данные

Две "выборки"вида $\{(k_i, x_i)\}_{i=1}^n$,

где k_i - ключ i-го события, x_i - произвольная статистика события (может несколько чисел). События не независимы, независимость есть только между событиями разных ключей.

Метод обсчёта

Функция f, которая для произвольного набора $\{(k_j, x_j)\}_{j=1}^m$ находит значение статистики

Задача

Ответить на вопрос стат. значимо ли
$$f\left(\left\{\left(k_i^{test}, x_i^{test}\right)\right\}_{i=1}^{n_{test}}\right)$$
 отличается от $f\left(\left\{\left(k_i^{control}, x_i^{control}\right)\right\}_{i=1}^{n_{control}}\right)$

Возможные решения

Задача

```
Ответить на вопрос стат. значимо ли f\left(\left\{\left(k_i^{test}, x_i^{test}\right)\right\}_{i=1}^{n_{test}}\right) отличается от f\left(\left\{\left(k_i^{control}, x_i^{control}\right)\right\}_{i=1}^{n_{control}}\right)
```

Возможные решения

Задача

Ответить на вопрос стат. значимо ли $f\left(\left\{\left(k_i^{test}, x_i^{test}\right)\right\}_{i=1}^{n_{test}}\right)$ отличается от $f\left(\left\{\left(k_i^{control}, x_i^{control}\right)\right\}_{i=1}^{n_{control}}\right)$

Простой случай

Все ключи различные, f – среднее, медиана, гистограмма.

Тогда можно использовать обычные тесты для соответсвующей нулевой гипотезы

Описание

Случайно разобьём события на бакеты (от 1 до В) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив В чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Описание

Случайно разобьём события на бакеты (от 1 до В) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив В чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Основные вопросы

- 1. Почему в итоге получается выборка?
- 2. Почему применение теста корректно?
- 3. Почему мы не потеряем в мощности теста?

Описание

Случайно разобьём события на бакеты (от 1 до В) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив В чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Выборочность. Нестрого

Все зависимые события (события одного ключа) попадают в один бакет. То есть все события разных бакетов попарно независимы.

Описание

Случайно разобьём события на бакеты (от 1 до В) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив В чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Корректность. Нестрого

Если эффекта нет и данных достаточно много, то f(bucket) будет распределено одинаково в тесте и контроле. Кстати, поэтому требуется, чтобы размер теста и контроля совпадали.

Описание

Случайно разобьём события на бакеты (от 1 до В) при помощи некоторой хэш-функции от ключа. Для каждого бакета применим функцию f, получив В чисел. Теперь у нас две выборки (уже без кавычек). К ним можно применить произвольный статистический тест.

Мощность. Нестрого

Если все ключи уникальны, то в результе бакетирования количество объектов выборки уменьшается в $\frac{n}{B}$ раз. Но дисперсия значений выборки тоже уменьшется в $\frac{n}{B}$ раз. Эти два эффекта компенсируют друг друга и дают надежду на мощность теста.

Бакетное сэмплирование на примере

Пусть $k_i = i, x_i \sim Bern(p)$, то есть x_i — независимые конверсии. Метод обсчёта — это среднее, а поверх бакетов применяется ttest.

B ttest-е статистика это
$$\frac{\bar{x}_{test} - \bar{x}_{control}}{\sqrt{\frac{\bar{s}^2_{test} + \bar{s}^2_{control}}{n_{test}}}}$$

 \overline{x} из-за бакетов не сильно изменится, так как размеры бакетов примерно одинаковые и среднее средних будет почти совпадать с исходным средним.

 $\overline{s^2}$ из-за усреднения бакетов уменьшится примерно в $\frac{n}{B}$ раз. Но и размер выборки будет не n, а B, то есть знаменатель тоже уменьшится в $\frac{n}{B}$ раз. Получается, что статистика изменится не сильно.

Локальное резюме

- Бакетное сэмплирование позволяет быстро сравнивать почти произвольные метрики на выборках больших размеров.
- 2. Но нужно быть аккуратным с размером групп и с метриками (не везде так хорошо как со средними). Требуется проводить АА тесты.
- 3. Если у вас небольшая выборка, то лучше использовать классические тесты
- 4. Практически все метрики, которые используются, можно представить в виде $\frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}$ и поэтому бакетный тест можно эффективно реализовать на MapReduce
- 5. Ttest + Mahn Whitney + Shapiro

Глобальное резюме

- 1. Существует концепция проверки статистических гипотез.
- 2. Для проверки гипотез применяются различные статистические критерии.
- 3. Бывают параметрические и непараметрические критерии.
- 4. На практике машинного обучения это всё применяют для AB и AA тестирования.
- 5. Существуют разные подводные камни, но с ними можно жить