

Disciplina: Mecânica do Voo
Professor: William Reis Silva e-mail: reis.william@unb.br

Lista de exercícios 5 - Estabilidade Estática e Controle - Parte 1

- 1. Uma aeronave de transporte subsônico tem uma asa de varredura afunilada, sem torção, com bordas retas à esquerda e à direita. As pontas das asas são retas e paralelas ao acorde da raiz. A seguir, use os dados do Apêndice C e assuma que a seção local do aerofólio no centro aerodinâmico está no ponto de $\frac{1}{4}$ da corda.
 - i. Faça um desenho preciso de três vistas do plano do acorde de asas. (Ver Fig.1)

Figura 1. Plano do acorde de asas

- ii. Calcule a área da asa S, o aspect ratio A, o taper ratio $\lambda = \frac{c_t}{c_r}$ e a corda aerodinâmica média \bar{c} .
- iii. Calcule a localização do centro aerodinâmico médio da asa e localize-o na vista lateral da asa (com dimensões). (Suponha um coeficiente de sustentação adicional uniforme $C_{l_a}=C_L$ e considere $c(y)=25-\frac{13}{75}y$ em ft para o lado direito da asa)
- iv. A aeronave deve ser operada com a posição mais recuada da CG, limitada a $25\,ft$ (7,62 m) atrás do ápice da asa. A distância entre a asa e o centro aerodinâmicos médio da empenagem é $\bar{l}_t=55\,ft$ (16,76 m). Estimar a área da cauda necessária para fornecer uma margem estática a manche fixo de pelo menos 0,05 em todos os momentos. Assuma que $a_t=a_{wb}$ e $h_{n_w}=h_{n_{wb}}$ e use $\frac{\partial \epsilon}{\partial a}=0$,25.

Dados geométricos:

```
Wing Span, b = 150 ft (45,72 m),
Root Chord, c_r = 25 ft (7,62 m),
Tip Chord, c_t = 12 ft (3,66 m),
Leading edge sweep, \Lambda_0 = 26^{\circ},
Dihedral angle, \gamma = 4^{\circ}
```

2. Avaliar a validade da aproximação feita de (2.2.2) para (2.2.3) usando os dados do avião da Questão (1) e calculando C_{m_w} de ambas as equações. Suponha que $C_{D_w}=$ $C_{D_{min,...}} + KC_{L_w}^2$ e $L = L_w$. Os seguintes dados adicionais são fornecidos:

Dados geométricos

```
Weight, W = 207750 lb (94233,8kg)
\frac{z}{\bar{c}} = 0.15
```

Dados Aerodinâmicos

```
a_w = 0.080 \ deg^{-1}
C_{m_{ac_w}} = -0.05
C_{D_{min_w}} = 0.013
K = 0.054
V = 350 kts (180 m/s)
\rho = 2,377 \times 10^{-3} slugs/ft^3 (1,225 kg/m^3)
```

- 3. Mostre que se $\mathcal{C}_{m_{wh}}$ é uma função linear de $\mathcal{C}_{L_{wh}}$ então $\mathcal{C}_{m_{ac_{wh}}}$ é uma constante.
- 4. Começando de (2.3.1) realize as reduções para encontrar as equações (2.3,20) a (2.3.23).
- 5. Os dados a seguir se aplicam a um modelo em escala de túnel de vento 1/25 de um avião de transporte. A massa total em escala da aeronave é $1552,80 \ slug \ (22680 \ kg)$. Suponha que os dados aerodinâmicos podem ser aplicados em escala total. Para o voo não acelerado nivelado em $V=239\,kts\,(123\,m/s)$ da aeronave em escala total, supondo que os efeitos de propulsão podem ser ignorados,
 - i. Encontre o limite da posição do CG h imposta pela condição $C_{m_{\alpha}} < 0$.
 - ii. Encontre o limite no ângulo de incidência i_t imposta pelas condições $\mathcal{C}_{m_0}>0$.
 - Para o voo trimado com $\delta_e = 0$, plote i_t versus h para a aeronave e indique onde iii. esta linha atende aos limites da parte (i).

Dados geométricos

Wing area,
$$S=1,50~ft^2~(0,139~m^2)$$

Wing mean aerodynamics chord, $\bar{c}=6,145~in~(15,61~cm)$
 $\bar{l}_t=15,29~in~(38,84~cm)$
Tail area, $S_t=0,368~ft^2~(0,0342~m^2)$

Dados Aerodinâmicos

$$a_{wb} = 0.077 \ deg^{-1}$$

 $a_t = 0.064 \ deg^{-1}$
 $\epsilon_0 = 0.72^{\circ}$

$$\begin{split} \frac{\partial \epsilon}{\partial \alpha} &= 0.30 \\ C_{m_{ac_{wb}}} &= -0.018 \\ h_{n_{wb}} &= 0.25 \\ \rho &= 2.377 \times 10^{-3} \ slugs/ft^3 \ (1.225 \ kg/m^3) \end{split}$$

- O McDonnell Douglas C-17 é um avião de transporte a jato com quatro motores STOL.
 - i. Encontre A e \bar{c} para a asa usando os dados geométricos e o Apêndice C.
 - ii. Use o Apêndice B para estimar a_w , inclinação da curva de sustentação da asa, assumindo que $\beta=1$ e $\kappa=1$.
 - iii. Se $a_t=0.068~deg^{-1}$ e $a_w=a_{wb}$ encontre a inclinação da curva de elevação, a, da aeronave. Assuma $\frac{\partial \epsilon}{\partial a}$ =

e h_n . Encontre C_{m_α} para h=0.30.

Figura 2. McDonnell Douglas C-17

- elevação, a, da aeronave. Assuma $\frac{\partial \epsilon}{\partial a} = \frac{2a_w}{\pi A}$ (com a_w expresso em rad^{-1}). iv. Encontre C_{m_α} para o caso em que $l_t = \bar{l}_t = 92~ft~(28,04~m)$. Ignore os efeitos de
- propulsão. v. Das curvas experimentais das Fig. 3 e Fig. 4 da geometria especificada, localize $C_{m_{\delta_e}}$
 - Dados geométricos

Wing area, $S = 3.800 \ ft^2 \ (353,0 \ m^2)$ Wing span, $b = 165 \ ft \ (50,29 \ m)$ Root chord, $c_r = 37,3 \ ft \ (11,37 \ m)$ Tip chord, $c = 8,8 \ ft \ (2,68 \ m)$ $\frac{1}{4} \ chord \ line \ sweep, \ \Lambda = 25^\circ$ $\frac{1}{2} \ chord \ line \ sweep, \ \Lambda_{c/2} = 22^\circ$ Tail area, $S_t = 870 \ ft^2 \ (80,83 \ m^2)$

Figura 4. Dados do Exercício 6

Figura 3. Dados do Exercício 6

- 7. Considere uma aeronave com sua cauda idêntica à sua asa (ou seja, a mesma extensão, área, corda, etc). Negligenciar efeitos de interação corpo-asa e corpo-asa [isto é, em geral $()_{wb} = ()_{w}$], negligenciar os efeitos de propulsão e assumo zero desvios do profundo e tab. Assumir (2.2.7) neste exemplo é aproximado por $M_t = -l_t L_t + M_{ac_t}$
 - Que mudanças devem ser feitas nas expressões de a (2.3.18), $C_{m_{\alpha}}$ (2.3.21a), e $C_{m_{\alpha}}$ (2.3,22a)?
 - O que $rac{\partial \epsilon}{\partial lpha}$ teria que ter numericamente para que o ponto neutro h_n esteja meio ii. caminho entre os centros aerodinâmicos médios da asa e cauda?
 - Para o voo nivelado trimado, encontre uma expressão para a relação entre a iii. sustentação gerada pela asa e a sustentação gerada pelo tail em função do ângulo incidência do *tail*. Assumir que: $\epsilon_0=0$; $\frac{\partial \epsilon}{\partial a}=0.2$; $a=5~rad^{-1}$; $C_{m_0}=0.2$ e $(h - h_n) = -0.3.$
 - iv. Esboce o gráfico de iii.
- 8. Os seguintes dados foram obtidos de um teste de voo de um avião Cherokee-6 PA-32R-300.

Figura 5. Cherokee-6 PA-32R-300

Altitude		V_E		Mass		i_{r}	x_{CG}	
(ft)	(km)	(mph)	(m/s)	(slugs)	(kg)	(deg)	(in)	(cm)
4540	1.384	91.0	40.7	113.4	1656	1.5	93.89	238.5
4560	1.390	109	48.7	113.0	1650	0	93.89	238.5
4700	1.433	126	56.3	112.9	1649	-1.0	93.89	238.5
4580	1.396	155	69.3	112.7	1646	-2.0	93.89	238.5
5320	1.622	89.0	39.8	100.4	1466	4.5	86.82	220.5
4620	1.408	105	46.9	100.2	1463	2.0	86.82	220.5
4740	1.445	123	55.0	100.0	1461	0.3	86.82	220.5
4900	1.494	151	67.5	99.84	1458	-1.0	86.82	220.5
4880	1.487	87.0	38.9	88.51	1293	7.2	80.43	204.3
4820	1.469	103	46.0	88.35	1290	3.5	80.43	204.3
4880	1.487	122	54.5	88.20	1288	1.5	80.43	204.3
4740	1.445	152	68.0	88.04	1286	0	80.43	204.3

Figura 6. Dados do Exercício 8

Os dados foram coletados em voo nivelado trimado. x_{CG} é a distância do CG após o nariz da aeronave. A aeronave tem uma empenagem toda móvel e, portanto, i_t é usada em vez de δ_e , para trimar a aeronave. A área da asa é $S = 174,5 ft^2 (16,21 m^2)$.

i. Faça uma tabela com o ângulo de incidência da empenagem i_t , em relação ao coeficiente de sustentação da aeronave para cada um dos três locais de CG.

- ii. Plote os pontos de dados em (i) com três linhas retas tendo uma interceptação comum (consulte a Fig. 2.18).
- iii. Use uma técnica gráfica para encontrar a localização do ponto neutro à manche fixo em relação ao nariz da aeronave (consulte a Fig. 2.21).
 - 9. Começando com (2.6, 11b), encontre (2.6,13).
 - 10. A força de controle do profundor para trimar um avião em particular a uma velocidade de 300~kts~(154~m/s) é zero. Usando os dados a seguir, calcule a força necessária para trimar o avião alterando a velocidade para 310~kts~(159~m/s). Suponha que $C_{L_{\delta_e}}$ seja suficientemente pequeno para que $C_{L_{\delta_e}}=0$ possa ser usado na expressão para força de controle.

Dados geométricos

Elevator gearing, $G = 3^{\circ}/in (1.18^{\circ}/cm)$

Elevator área after of hinge line, $S_e = 40 ft^2 (3.72 m^2)$

Mean elevator chord, $\bar{c}_e = 2.0 \ ft \ (0.61 \ m)$

 $\bar{V}_{H} = 0.56$

CG location, h = 0.38

Wing loading, w = 50 psf(2.395 Pa)

Dados Aerodinâmicos

Elevator hinge moment coefficient, $b_2=\frac{\partial C_{he}}{\partial \delta_e}=-0.005~deg^{-1}$

 $a_e = 0.025 \ deg^{-1}$

Neutral point, elevator free , $h'_n = 0.45$

11. Um acidente de avião fatal levou a um processo judicial civil. Alega-se que o avião em questão era instável - "que o ponto neutro estava à frente do centro de gravidade".

Você é chamado como testemunha especialista para explicar ao tribunal (ou seja, ao juiz e à advogados) o significado e a importância da estabilidade, centro de gravidade e ponto. Você sabe que seu público é composto de pessoas inteligentes educadas em ciências humanas e legislação, e você deve assumir que eles têm apenas um rudimentar conhecimento de ciência e matemática.

Escreva um ensaio descrevendo como você enfrentaria esse desafio. Você é livre para usar diagramas e modelos simples, mas você deve evitar qualquer uso de matemática. Você deve mantenha sua linguagem simples, evitando qualquer jargão técnico. Até a palavra momento deveria ser evitado. Seu objetivo é esclarecer, não impressionar o tribunal com seu superior conhecimento técnico.