Análisis Matemático I Clase 13: problemas de optimización. Antiderivadas. Notación Sigma.

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Abril, 2020

Problemas de Optimización: una de las grandes aplicaciones de la teoría de derivadas es a problemas en donde se desea maximizar o minimizar una determinada función, sujeta a determinadas condiciones o circunstancias.

En esta parte del curso, aplicaremos frecuentemente la teoría de derivadas para localizar extremos de funciones. Recordamos esta teoría en las próximas diapositivas

¿Cómo determinar extremos absolutos de una función continua en un intervalo cerrado?

Procedimiento para determinar extremos absolutos de una función continua f en un intervalo cerrado [a,b]

- (1) Determine los puntos críticos de f en (a, b).
- (2) Evalúe f en los puntos críticos y en los extremos del intervalo a y b.
- (3) El valor máximo de f en [a, b] será el mayor de los valores obtenidos en (2), y el valor mínimo, el menor de los valores obtenidos en (2).

Criterio de la derivada segunda para extremos

Criterio de la derivada segunda para extremos

Supongamos que f es una función tal que f'' es continua en (a, b) y que f'(c) = 0 para algún c en (a, b). Entonces:

- Si f''(c) < 0, entonces f tiene un máximo local en x = c.
- Si f''(c) > 0, entonces f tiene un mínimo local en x = c.
- Si f''(c) = 0, entonces f puede tener un máximo local en c, un mínimo local en c, o ninguno de éstos.

Problema 1: determinación de volumen máximo. Un fabricante desea diseñar una caja sin tapa que tenga base cuadrada y un área superficial de 108 pulg². ¿Qué dimensiones debe tener la caja para tener volumen máximo?

Problema 1: determinación de volumen máximo. Un fabricante desea diseñar una caja sin tapa que tenga base cuadrada y un área superficial de 108 pulg². ¿Qué dimensiones debe tener la caja para tener volumen máximo?

Solución: en la siguiente figura, se pueden observar distintas opciones de cajas que posee la misma área superficial (108 pulgadas²) pero diferentes volúmenes.

Pregunta: ¿Cómo determinar las dimensiones de la caja que generen el mayor volumen y que posea área superficial de 108 pulg²?

Solución del Problema 1:

• Hacemos un dibujo y asignamos un nombre a las variables de interés:

Recordar que la caja tiene base cuadrada.

Planteamos la función que se desea maximizar, en este caso, la función volumen de la caja:

$$\mathbf{V} = x^2 h$$
.

Observar que V depende de dos variables.

Solución del Problema 1:

Para expresar V como una función de una variable, debemos encontrar una relación entre h y x. Esta relación surge de las condiciones planteadas por el problema. En este caso, el área superficial de la caja, sin tapa, es 108 pulg². Así:

$$x^2 + 4hx = 108.$$

Por ende:

$$h=\frac{108-x^2}{4x}.$$

Reemplazamos ahora en la función volumen:

$$V = x^2 h = x^2 \left(\frac{108 - x^2}{4x}\right) = \frac{108x - x^3}{4}.$$

Ahora, V es función solamente de x.

Solución del Problema 1:

① Determinamos el máximo de V. Observar que $x \ge 0$. Por otro lado, el área de la base x^2 no puede exceder 108. Por lo tanto el intervalo en donde deseamos maximizar V es:

$$0 \le x \le \sqrt{108}.$$

Hallamos primero los puntos críticos:

$$V'(x)=0.$$

Así:

$$x = 6$$
 o bien $x = -6$.

El último valor debe descartarse pues $x \ge 0$. Observe que V es siempre derivable. Así, el único punto crítico es x = 6.

Solución del Problema 1:

Finalmente, evaluamos V en el punto crítico y en los extremos del intervalo:

$$V(0) = 0$$

$$V(\sqrt{108})=0$$

$$V(6) = 108.$$

El valor máximo de V se alcanza en x=6. La altura correspondiente es:

$$h = \frac{108 - 6^2}{4.6} = 3.$$

Las dimensiones de la caja con máximo volumen y área superficial $108 \text{ pulg}^2 \text{ son: } x = 6 \text{ pulg. y } h = 3 \text{ pulg.}$

Problema 2: se desea diseñar una lata metálica cerrada con capacidad de 1 litro y con la forma de un cilindro circular recto. Determine las dimensiones de la lata que permitan utilizar la menor cantidad de material.

Problema 2: se desea diseñar una lata metálica cerrada con capacidad de 1 litro y con la forma de un cilindro circular recto. Determine las dimensiones de la lata que permitan utilizar la menor cantidad de material. **Solución al problema 2:**

• Dibujo y variables: r = radio, h = altura. Ambos en centímetros.

• Función a minimizar: área superficial A.

$$A=2\pi r^2+2\pi rh.$$

Solución al problema 2:

 Relación entre r y h: utilizamos los datos del problema sobre el volumen de 1 litro= 1000cm³:

$$V = \pi r^2 h = 1000$$

de donde se obtiene:

$$h = \frac{1000}{\pi r^2}.$$

Reemplazando en la función A se obtiene:

$$A(r) = 2\pi r^2 + 2\pi r \frac{1000}{\pi r^2} = 2\pi r^2 + \frac{2000}{r}.$$

Observe que r tiene que ser positivo.

Solución al problema 2:

 Buscamos dónde A alcanza su mínimo: encontramos primero los puntos críticos.

$$A'(r) = 4\pi r - \frac{2000}{r^2}.$$

Observar que A' existe para todo r > 0. Buscamos r tal que A'(r) = 0. Obtenemos:

$$r = \left(\frac{500}{\pi}\right)^{1/3},$$

es el único punto crítico.

 Para determinar si A tiene un mínimo local en el punto crítico, determinamos la segunda derivada y vemos qué signo tiene en el punto crítico (es decir, usamos el criterio de la derivada segunda para extremos relativos). Se obtiene:

$$A''\left[\left(\frac{500}{\pi}\right)^{1/3}\right] > 0.$$

Solución al problema 2:

Luego, A tiene un mínimo local en $r=\left(\frac{500}{\pi}\right)^{1/3}$. La altura correspondiente es:

$$h = \frac{1000}{\pi r^2} = 2\left(\frac{500}{\pi}\right)^{1/3}.$$

Ejemplos de Ingeniería

Ejercicio del trabajo práctico 3 a resolver en práctica: la resistencia *R* (capacidad para resistir esfuerzos y fuerzas aplicadas sin romperse, adquirir deformaciones permanentes o deteriorarse) de una viga de madera, de sección transversal circular, es proporcional a su ancho por el cuadrado de su espesor:

$$R = Kdw^2, \quad K > 0.$$

Problema: determine las dimensiones de la viga de madera más resistente que se puede cortar de un tronco cilíndrico de 12" (pulgadas) de diámetro.

Solución problema 3

Debemos maximizar la resistencia de la viga, o sea maximizar la función $R(d,w)=Kdw^2$ para K>0 con la restricción que impone el diámetro del tronco del cual debe sacarse la viga, en este caso de 12 pulgadas. Esta restricción se representa mediante la siguiente expresión matemática $d^2+w^2=12^2$ (esta igualdad nos relaciona el diámetro de tronco con las medidas de la viga).

De la restricción podemos despejar $w^2=12^2-d^2$ y al reemplazar en ${\cal R}$ tenemos:

$$R(d) = Kd(144 - d^2)$$

 $R(d) = K(144d - d^3)$

$$R'(d) = K(144 - 3d^2)$$

Si igualamos R' a cero, $K(144-3d^2)=0$ encontramos que $d=+\sqrt{48}=4\sqrt{3}$ o $d=-\sqrt{48}=-4\sqrt{3}$ pero como estamos tratando con longitudes sólo tenemos en cuenta el valor positivo para d.

Para determinar si se alcanza máximo analizamos el signo de la derivada segunda:

$$R''(d) = K(-6d)$$

 $R''(4\sqrt{3}) = -24K\sqrt{3} < 0$ por lo tanto alcanza máximo.

Si reemplazamos el valor de d en la restricción obtenemos que $w=\sqrt{96}=4\sqrt{6}.$

Por lo tanto las dimensiones de la viga que maximizan la resistencia R son $d=4\sqrt{3}$ y $w=4\sqrt{6}$

Antiderivadas

Definición de antiderivada

Decimos que una función F es una antiderivada de f en (a,b) si:

$$F'(x) = f(x)$$
 para todo $x \in (a, b)$.

Dar ejemplos.

Observación: si F es una antiderivada de f en (a, b), entonces:

$$G(x) = F(x) + C,$$

donde C es cualquier constante, es también una antiderivada de f.

Antiderivadas

Recordar la siguiente consecuencia del teorema del valor medio:

Teorema

Si F y G son funciones continuas en [a, b] y derivables en (a, b) tales que:

$$F'(x) = G'(x)$$

para toda x de (a, b), entonces existe una constante C tal que:

$$G(x) = F(x) + C$$

para todo x en [a, b].

Así, dos antiderivadas de una función difieren en una constante.

Notación

Sea f una función definida en (a, b). El símbolo:

$$\int f(x)dx$$

representa una antiderivada general de f en (a, b) y se denomina integral indefinida de f.

Ejemplos:

- $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ para $n \neq -1$.
- $\int cos(x)dx = sen(x) + C$
- $\int sen(x)dx = -cos(x) + C$

Antiderivadas

Propiedades de la integral indefinida

Sean f y g funciones definidas en (a,b), y sea $c \in \mathbb{R}$. Entonces:

- $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$.
- $\int (f(x) g(x))dx = \int f(x)dx \int g(x)dx$
- $\int cf(x)dx = c \int f(x)dx$.

Ejemplos:

- $\int (x^4 + 5x 1)dx = \int x^4 dx + 5 \int x dx \int 1 dx = \frac{x^5}{5} + \frac{5x^2}{2} x + C$.
- $\int (sen(x) 4cos(x))dx = -cos(x) 4sen(x) + C$

Notación para sumas finitas

Sea la siguiente suma finita:

$$a_1 + a_2 + a_3 + \cdots + a_n$$
.

Utilizamos la notación sigma para representar la suma finita:

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \cdots + a_n.$$

Ejemplo:

$$\sum_{k=1}^{10} k^2 = 1 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2.$$

Notación para sumas finitas

Una suma en notación sigma	La suma en forma extendida, un término para cada valor de k	El valor de la suma
$\sum_{k=1}^{5} k$	1 + 2 + 3 + 4 + 5	15
$\sum_{k=1}^{3} (-1)^k k$	$(-1)^{1}(1) + (-1)^{2}(2) + (-1)^{3}(3)$	-1 + 2 - 3 = -2
$\sum_{k=1}^{2} \frac{k}{k+1}$	$\frac{1}{1+1} + \frac{2}{2+1}$	$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$
$\sum_{k=4}^{5} \frac{k^2}{k-1}$	$\frac{4^2}{4-1} + \frac{5^2}{5-1}$	$\frac{16}{3} + \frac{25}{4} = \frac{139}{12}$

Propiedades de las sumas finitas

Reglas algebraicas para sumas finitas

- 1. Regla de la suma: $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$
- 2. Regla de la diferencia: $\sum_{k=1}^{n} (a_k b_k) = \sum_{k=1}^{n} a_k \sum_{k=1}^{n} b_k$
- 3. Regla del múltiplo constante: $\sum_{k=1}^{n} ca_k = c \cdot \sum_{k=1}^{n} a_k$ (c cualquier número)
- **4.** Regla del valor constante: $\sum_{k=1}^{n} c = n \cdot c$ (c es cualquier valor constante)

Una fórmula útil es la siguiente:

suma de los primeros n números naturales $=\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.