Single Choice

- (1) Let dim V=4. Then, there is a $\varphi \in V^*$ with dim ker $\varphi=2$
 - (a) True
 - (b) False

Solution. (b) False.

 $\varphi \in V^* = \text{hom}_K(V, K)[1]$, where V is a vector space over a field F. Let us assume such a function φ exists. We use rank-nullity[2] to realise that

$$\dim \operatorname{Im} \varphi = \dim V - \dim \ker \varphi$$
$$= 4 - 2 = 2$$

The dimension of the image of φ has to be less than the dimensionality of the codomain i.e dim Im $\varphi \leq \dim K = 1$, which is a contradiction.

- (2) Every finite-dimensional vector space is the dual space of another finite-dimensional vector space.
 - (a) True
 - (b) False

Solution. (a) True

We can define an isomorphism from a vector space V to its dual V^* in the following manner.

Since V is finite dimensional, we can pick a basis $\{v_1, v_2, \ldots, v_n\}$ for V. Then we can define the dual basis $\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ of V^* as $\varphi_i(v_j) = \delta_{ij}$ extended linearly.

That means that for a vector $v = a_1v_1 + a_2v_2 + \ldots + a_nv_n \in V$,

$$\varphi_i(v) = a_1 \varphi_i(v_1) + a_2 \varphi_i(v_2) + \ldots + a_n \varphi_i(v_n)$$

= a_i

Remark. Now, just because I call this set a basis for V^* doesn't make it one. Do convince yourself that this indeed a basis. You can go about doing this by showing linear independence and that V^* is spanned by this set

This defines an isomorphism between V and V^* . It is not a canonical isomorphism as the construction of our isomorphism depends on the choice of our basis.

- (3) The set of invertible real $n \times n$ matrices is
 - (a) not a real subspace of $\mathbb{M}_n(\mathbb{R})$
 - (b) a real subspace of $M_n(\mathbb{R})$

Solution. (a) not a real subspace of $\mathbb{M}_n(\mathbb{R})$

The set of invertible matrices is not closed under addition as we can see from the below example

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

as the null matrix is not invertible

- (4) Let $f: V \to W$ be an arbitrary homomorphism between two K-vectorspaces. Which of the following five statements is not equivalent to the others?
 - (a) f is injective
 - (b) The dual mapping $f^*: W^* \to V^*$ is surjective
 - (c) The zero element of V is the only element that is mapped to the zero element of W
 - (d) There is a homomorphism $g:W\to V$ with $f\circ g=\mathrm{id}_W$
 - (e) For every $v \in V \setminus \{0\}$ there exists an $l \in W^*$ with $l(f(v)) \neq 0$
 - (f) All five statements are equivalent.

Solution. Statement (d) is not equivalent to the others

Firstly, notice that (a) and (c) are equivalent. An element $w \in W$ is non-zero only when an $l \in W^*$ exists with $l(w) \neq 0$. (e) is equivalent to saying that $\forall v \in V \setminus \{0\}$: $f(v) \neq 0$ which makes (e) equivalent to (a) and (c). You should have seen the equivalence of (b) and (a) in an earlier exercise (d) is equivalent to the surjectivity of f but not its injectivity.

Multiple Choice

- (1) For which values of x is the matrix $A = \begin{bmatrix} 1 & x & 1 \\ 3 & 3 & x \\ 0 & 3 & 1 \end{bmatrix}$ not invertible?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 4

Solution. (c) 2

A square matrix is invertible if and only if its determinant is non-zero Therefore, we can check by setting the determinant of A to be 0 i.e

$$\det A = 0$$

$$\implies 1(3 - 3x) - 3(x - 3) = 0$$

$$\implies x = 2$$

Write it out

(1) Calculate the determinant of the matrix

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 2 & 3 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 \end{bmatrix}$$

over \mathbb{R} and \mathbb{F}_5 . Is it invertible?

Solution.

Remark. For large square matrices, you can compute the determinant in a smart manner by the choice of the row/column you expand along. More often than not, it is the row/column with most 0s.

In this case, you can start by expanding along C_1 . Figure out which rows/columns you should be expanding along for the two 4×4 sub-matrices to get to the answer (relatively quickly).

You should obtain det B=55. Notice, that in \mathbb{R} , B is invertible as the determinant is non zero. In $\mathbb{F}_5[3]$, det $B=\overline{55}=\overline{0}$. Hence, B is not invertible.

Remark. If you have to compute the determinant of a matrix in \mathbb{F}_n , you can reduce the elements of the matrix modulo n before computing the determinant to make calculations (and life) easier. You will get the same value of the determinant modulo n. Reason to yourself why that works.

(2) (a) Let K be a field, $\lambda \in K$ and let $A \in M_{n \times n}(K)$. Show that:

i. Let B be so that $A \xrightarrow{\lambda L_i \to L_i} B$. Then, det $B = \lambda \det A$

ii. Let B be so that $A \xrightarrow{L_i \leftrightarrow L_i} B$. Then, det $B = -\det A$

iii. Let B be so that $A \xrightarrow{\lambda L_i + L_j \to L_j} B$ with $i \neq j$. Then, $\det B = \det A$

Solution. We follow a general template for all three proofs. Without loss of generality, we assume that the operations are being performed on R_1 and R_2 Consider a matrix E such EA = B. If E is invertible, then $\det B = \det E \times \det A$ as A is already known to be invertible.

i.

$$E = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Then, $\det E = \lambda$

ii.

$$E = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Then, $\det E = -1$

iii.

$$E = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Then, $\det E = 1$

Remark. Why can you do this without loss of generality? You can make this kind of augmentation to other entries of E to affect the corresponding rows. To do the same thing for columns, consider the same matrices but with B=AE instead of B=EA

(b) The numbers 2014, 1484, 3710 and 6996 are all divisible by 106. Show without calculating that

$$\det \begin{bmatrix} 2 & 1 & 3 & 6 \\ 0 & 4 & 7 & 9 \\ 1 & 8 & 1 & 9 \\ 4 & 4 & 0 & 6 \end{bmatrix}$$

is also divisible by 106

Hint: Read the numbers in each column from top to bottom.

Solution. Assume $2014 = 106a_1$, $1484 = 106a_2$, $3710 = 106a_3$ and $6996 = 106a_4$

$$\det\begin{bmatrix} 2 & 1 & 3 & 6 \\ 0 & 4 & 7 & 9 \\ 1 & 8 & 1 & 9 \\ 4 & 4 & 0 & 6 \end{bmatrix} \stackrel{i}{=} \det\begin{bmatrix} 2 & 1 & 3 & 6 \\ 0 & 4 & 7 & 9 \\ 1 & 8 & 1 & 9 \\ 2014 & 1484 & 3710 & 6996 \end{bmatrix}$$

$$\stackrel{ii}{=} 106 \det\begin{bmatrix} 2 & 1 & 3 & 6 \\ 0 & 4 & 7 & 9 \\ 1 & 8 & 1 & 9 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix}$$

Step i: $1000R_1 + 100R_2 + 10R_3 + R_4 \rightarrow R_4$

Step ii: $106R_4 \rightarrow R_4$

The determinant is divisible by 106

(3) Compute the determinants for the matrices,

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ -1 & 2 & 0 & 1 \\ 1 & 2 & -3 & 1 \\ 0 & -4 & 2 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} 2 & -3 & 5 & 1 & 4 \\ 2 & -3 & 1 & -6 & 18 \\ 4 & -3 & 9 & 6 & 10 \\ -2 & 4 & -6 & -1 & -1 \\ -6 & 11 & -23 & -14 & 9 \end{bmatrix}$$

Solution. You can observe that for B, $R_1 = R_3 + R_5$ which leads you to conclude that det B = 0. The rest we compute by Gaussian elimination[4].

$$\det A = -4$$
$$\det B = 0$$
$$\det C = 24$$

References

- [1] Wikipedia contributors, "Dual space Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Dual_space&oldid=1206157626, 2024. [Online; accessed 17-February-2024].
- [2] Wikipedia contributors, "Rank-nullity theorem Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Rank%E2%80%93nullity_theorem&oldid=1181211794, 2023. [Online; accessed 17-February-2024].
- [3] Wikipedia contributors, "Cyclic group Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Cyclic_group&oldid=1194831654, 2024. [Online; accessed 17-February-2024].
- [4] Wikipedia contributors, "Gaussian elimination Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Gaussian_elimination&oldid=1200010964, 2024. [Online; accessed 17-February-2024].