

EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018

MATEMATYKA

POZIOM ROZSZERZONY

FORMUŁA DO 2014

("STARA MATURA")

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

(BEZ WSPÓLNYCH Z "NOWĄ MATURĄ")

ARKUSZ MMA-R1

CZERWIEC 2018

Zadanie 1. (0-4)

Rozwiąż nierówność $|2x-1| + x \le 5 + |x+5|$.

Przykładowe rozwiązanie

Wyróżniamy na osi liczbowej przedziały: $(-\infty, -5)$, $\left\langle -5, \frac{1}{2} \right\rangle$, $\left\langle \frac{1}{2}, +\infty \right\rangle$.

Rozwiązujemy nierówności w poszczególnych przedziałach i w każdym przedziale bierzemy część wspólną tego przedziału z otrzymanym zbiorem rozwiązań nierówności.

$$x \in (-\infty, -5)$$

$$x \in \left(-5, \frac{1}{2}\right)$$

$$-2x+1+x+5+x \le 5$$

$$6 \le 5$$

$$x \ge -\frac{9}{2}$$

$$x \in \left(\frac{1}{2}, +\infty\right)$$

$$2x-1-x-5+x \le 5$$

$$x \le \frac{11}{2}$$

$$x \in \left(-\frac{9}{2}, \frac{1}{2}\right)$$

$$x \in \left(\frac{1}{2}, \frac{11}{2}\right)$$

Wyznaczamy sumę tych rozwiązań: $x \in \left\langle -\frac{9}{2}, \frac{11}{2} \right\rangle$.

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp1 p.

Zdający wyróżni na osi liczbowej przedziały $\left(-\infty, -5\right), \left\langle -5, \frac{1}{2}\right\rangle, \left\langle \frac{1}{2}, +\infty\right\rangle$.

Uwaga

Jeżeli zdający popełni błędy w wyznaczaniu przedziałów, ale nie są one konsekwencją błędu rachunkowego popełnionego przy przekształcaniu nierówności, to przyznajemy **0 punktów.**

Pokonanie zasadniczych trudności zadania......2 p.

Zdający zapisze nierówności w poszczególnych przedziałach, np:

I.
$$x \in (-\infty, -5)$$
 $-2x+1+x+5+x \le 5$

II. $x \in \left\langle -5, \frac{1}{2} \right\rangle$ $-2x+1-x-5+x \le 5$

III. $x \in \left\langle \frac{1}{2}, +\infty \right\rangle$ $2x-1-x-5+x \le 5$

Uwagi

- 1. Jeżeli zdający rozwiąże nierówności w poszczególnych przedziałach i na tym zakończy lub nie wyznaczy części wspólnej otrzymywanych wyników z poszczególnymi przedziałami i kontynuuje rozwiązanie, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający rozpatrzy cztery przypadki, rozwiąże nierówności w poszczególnych przedziałach, stwierdzi, że czwarty przypadek jest niemożliwy i na tym zakończy lub nie wyznaczy części wspólnej otrzymywanych wyników z poszczególnymi przedziałami i kontynuuje rozwiązanie, to otrzymuje 2 punkty.

- Zdający poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach, popełni błąd w trzecim przypadku i konsekwentnie doprowadzi rozwiązanie do końca albo
- zdający rozpatrzy cztery przypadki, poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach, stwierdzi, że czwarty jest niemożliwy, popełni błąd w trzecim przypadku i konsekwentnie doprowadzi rozwiązanie do końca.

Rozwiązanie pełne4 p.

Zdający zapisze odpowiedź: $x \in \left\langle -\frac{9}{2}, \frac{11}{2} \right\rangle$.

Uwaga

We wszystkich rozważanych przypadkach zdający może rozpatrywać obie nierówności nieostre (przedziały obustronnie domknięte). Jeżeli natomiast rozważy wszystkie nierówności ostre (przedziały otwarte), to przyznajemy za całe zadanie o **1 p. mniej**, niż gdyby wyróżnił wszystkie przedziały poprawnie.

Zadanie 2. (0-5)

Rozwiąż równanie $4\sin x \cdot \cos^2 x - 1 = 2\sin 2x - \cos x$ w przedziale $(0, 2\pi)$.

Rozwiązanie

Przekształcamy w sposób równoważny równanie

$$4\sin x \cdot \cos^2 x - 4\sin x \cos x + \cos x - 1 = 0$$

$$4\sin x \cos x (\cos x - 1) + \cos x - 1 = 0$$

$$(\cos x - 1)(4\sin x \cos x + 1) = 0.$$

Stąd otrzymujemy: $\cos x = 1$ lub $\sin 2x = -\frac{1}{2}$.

Z pierwszego z tych równań otrzymujemy rozwiązania $x=2k\pi$, z drugiego $x=\frac{7\pi}{12}+k\pi$ lub

 $x = \frac{11\pi}{12} + k\pi$, gdzie k- liczba całkowita. Uwzględniając założenie otrzymujemy ostatecznie

rozwiązanie
$$x = \frac{7\pi}{12}$$
, $x = \frac{11\pi}{12}$, $x = \frac{19\pi}{12}$, $x = \frac{23\pi}{12}$.

Schemat oceniania

Rozwiązanie, w którym jest niewielki postęp 1 p.

Zdający zapisze równanie w postaci $4\sin x \cdot \cos^2 x - 4\sin x \cos x + \cos x - 1 = 0$.

Pokonanie zasadniczych trudności zadania 3 p.

• Zdający rozwiąże równanie $\cos x = 1$ w przedziale $(0, 2\pi)$

albo

• zdający przekształci równanie $4\sin x \cos x + 1 = 0$ do postaci $\sin 2x = -\frac{1}{2}$.

Rozwiązanie prawie pełne 4 p.

Zdający rozwiąże równanie $\sin 2x = -\frac{1}{2}$ w zbiorze liczb rzeczywistych:

 $x = \frac{7\pi}{12} + k\pi$ lub $x = \frac{11\pi}{12} + k\pi$, gdzie k jest liczbą całkowitą oraz rozwiąże równanie

 $\cos x = 1$ w zbiorze liczb rzeczywistych: $x = 2k\pi$, gdzie k jest liczbą całkowitą.

Rozwiązanie pełne 5 p.

Zdający zapisze wszystkie rozwiązania z przedziału $(0,2\pi)$: $x = \frac{7\pi}{12}$, $x = \frac{11\pi}{12}$, $x = \frac{19\pi}{12}$,

$$x = \frac{23\pi}{12}.$$

Zadanie 3. (0–5)

Podstawą ostrosłupa prawidłowego *ABCDS* jest kwadrat *ABCD*. Punkt *M* jest środkiem odcinka *AB*, a punkt *N* jest środkiem odcinka *BC*. Trójkąt *MNS* jest równoboczny i jego bok ma długość *m*. Oblicz objętość ostrosłupa *ABCDS* i kąt nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa.

Rozwiązanie

Niech O oznacza spodek wysokości ostrosłupa oraz α niech będzie miara kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny podstawy.

Odcinek MN to przekątna kwadratu BNOM, więc ze wzoru na długość przekątnej kwadratu, otrzymujemy

$$|MN| = |ON|\sqrt{2},$$

$$m = |ON|\sqrt{2},$$

$$|ON| = \frac{m}{\sqrt{2}} = \frac{m\sqrt{2}}{2}.$$

Z twierdzenia Pitagorasa dla trójkąta ONS otrzymujemy

$$|NS|^{2} = |SO|^{2} + |ON|^{2},$$

$$m^{2} = h^{2} + \left(\frac{m\sqrt{2}}{2}\right)^{2},$$

$$h^{2} = m^{2} - \left(\frac{m\sqrt{2}}{2}\right)^{2} = m^{2} - \frac{2m^{2}}{4} = \frac{2m^{2}}{4}.$$

Stąd

$$h = \sqrt{\frac{2m^2}{4}} = \frac{m\sqrt{2}}{2} .$$

Krawędź podstawy ostrosłupa ma długość

$$|AB| = 2|ON| = 2 \cdot \frac{m\sqrt{2}}{2} = m\sqrt{2}.$$

Objętość ostrosłupa jest zatem równa

$$V = \frac{1}{3} \cdot |AB|^2 h = \frac{1}{3} \cdot (m\sqrt{2})^2 \cdot \frac{m\sqrt{2}}{2} = \frac{m^3 \sqrt{2}}{3}.$$

Tangens kąta nachylenia ściany bocznej do płaszczyzny podstawy jest równy

$$tg\alpha = \frac{|SO|}{|NO|} = \frac{\frac{m\sqrt{2}}{2}}{\frac{m\sqrt{2}}{2}} = 1,$$

zatem $\alpha = 45^{\circ}$.

albo

Schemat oceniania

• wyznaczy kąt nachylenia ściany bocznej do płaszczyzny podstawy: $\alpha = 45^{\circ}$.

Rozwiązanie pełne 5 p.

Zdający wyznaczy objętość ostrosłupa: $V = \frac{m^3 \sqrt{2}}{3}$ oraz wyznaczy kąt nachylenia ściany bocznej do płaszczyzny podstawy: $\alpha = 45^{\circ}$.

Zadanie 6. (0-3)

Dodatnie liczby rzeczywiste a i b takie, że a > b, spełniają warunek $\log_2\left(\frac{a-b}{3}\right) = \frac{1}{2}\left(\log_2 a + \log_2 b\right)$. Wykaż, że dla liczb a i b prawdziwa jest równość $a^2 + b^2 = 11ab$.

Rozwiązanie

Mnożymy obie strony danego równania przez 2 i otrzymujemy:

$$2\log_2\left(\frac{a-b}{3}\right) = \log_2 a + \log_2 b$$

Stosujemy twierdzenia o logarytmach i przekształcamy równość do postaci:

$$\log_2\left(\frac{a-b}{3}\right)^2 = \log_2 ab.$$

Wykorzystujemy różnowartościowość funkcji logarytmicznej i zapisujemy równość w postaci:

$$\left(\frac{a-b}{3}\right)^2 = ab.$$

Przekształcamy równoważnie wyrażenie:

$$\frac{\left(a-b\right)^2}{9} = ab,$$

$$a^2 - 2ab + b^2 = 9ab.$$

Stąd $a^2 + b^2 = 11ab$.

Schemat oceniania

Zdający zapisze równanie w postaci $\log_2 \left(\frac{a-b}{3}\right)^2 = \log_2 ab$.

Zdający wykorzysta różnowartościowość funkcji logarytmicznej i zapisze $\left(\frac{a-b}{3}\right)^2 = ab$.

Zdający wykaże tezę.

Zadanie 10. (0-6)

Wielomian $W(x) = x^3 + cx^2 - 10x + d$ jest podzielny przez dwumian P(x) = x + 2. Przy dzieleniu wielomianu W(x) przez dwumian Q(x) = x - 1 otrzymujemy resztę (-30). Oblicz pierwiastki wielomianu W(x) i rozwiąż nierówność $W(x) \ge 0$.

Wielomian $W(x) = x^3 + cx^2 - 10x + d$ jest podzielny przez dwumian P(x) = x + 2. Przy dzieleniu wielomianu W(x) przez dwumian Q(x) = x - 1 otrzymujemy resztę (-30). Oblicz pierwiastki wielomianu W(x) i rozwiąż nierówność $W(x) \ge 0$.

Rozwiązanie

Wielomian W(x) jest podzielny przez dwumian P(x) = x + 2, stąd x = -2 jest pierwiastkiem tego wielomianu. Korzystając z warunków zadania zapisujemy układ równań

$$\begin{cases} W(-2) = 0 \\ W(1) = -30 \end{cases}$$
$$\begin{cases} 4c + d + 12 = 0 \\ c + d - 9 = -30 \end{cases}$$

Z układu równań obliczamy c i d

$$\begin{cases} 4c+d=-12\\ c+d=-21 \end{cases}$$

$$\begin{cases} c=3\\ d=-24 \end{cases}$$

Dla c = 3 i d = -24 otrzymujemy $W(x) = x^3 + 3x^2 - 10x - 24$.

Obliczamy pozostałe pierwiastki wielomianu wykonując, np. dzielenie wielomianu W(x) przez (x+2).

$$W(x): (x+2) = x^2 + x - 12,$$

 $x^2 + x - 12 = 0,$
 $\Delta = 49, x_1 = 3, x_2 = -4.$

Pierwiastkami wielomianu W(x) są liczby: -4, -2, oraz 3.

Wykonujemy szkic

i odczytujemy rozwiązanie nierówności: $W(x) \ge 0$ dla $x \in \langle -4, -2 \rangle \cup \langle 3, \infty \rangle$.

Schemat oceniania Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny do rozwiązania zadania1 pkt Zdający zapisze jedno z równań: 4c+d+12=0 albo c+d-9=-30Uwaga Wystarczy, że zdający zapisze $\begin{cases} W(-2) = 0 \\ W(1) = -30 \end{cases}$ Zdajacy zapisze układ równań 4c + d + 12 = 0c+d-9=-30Pokonanie zasadniczych trudności zadania 4 pkt Zdający rozwiąże układ równań: c = 3 i d = -24. Uwaga Jeśli zdający rozwiąże układ równań z błędem rachunkowym, to otrzymuje 3 punkty. Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)5 pkt Zdający • wykona poprawnie dzielenie wielomianu W(x) przez (x+2): $W(x):(x+2)=x^2+x-12$ albo rozwiąże układ równań z błędem rachunkowym i obliczy pozostałe pierwiastki konsekwentnie do popełnionego błędu albo podzieli wielomian z błędem rachunkowym i obliczy pozostałe pierwiastki konsekwentnie do popełnionego błędu albo błędnie poda rozwiązanie nierówności $W(x) \ge 0$. Rozwiązanie pełne6 pkt Zdający obliczy pozostałe pierwiastki wielomianu: -4, oraz 3 i zapisze rozwiązanie

nierówności $W(x) \ge 0$: $x \in \langle -4, -2 \rangle \cup \langle 3, \infty \rangle$.