Example of MaBoSS use

Download a model from BioModels

https://www.ebi.ac.uk/biomodels-main/BIOMD000000562

Download SBML (L3 V1)

Open the model in GINsim

- Open latest version of GINsim
- Import => SBML-Qual
- Choose BIOMD0000000562.xls

 Adapt the layout (or open Chaouiya_et_al.zginml by selecting File => Open)

Simulate a model

Select egf and tnfa separately and click on input*

^{*} done for you in Chaouiya_et_al.zginml

Compute stable state solutions of the wild type

Tools => Compute stable states

Click on Run

Export to MaBoSS

File => Export => MaBoSS

- Choose name of the file "chaouiya_maboss"
- •Two files are created:

chaouiya_maboss.bnd

```
chaouiya maboss.bnd
Node erk {
  logic = (mek);
  rate_up = @logic ? $u_erk : 0;
  rate_down = @logic ? 0 : $d_erk;
Node ikk {
  logic = (nik);
  rate_up = @logic ? $u_ikk : 0;
  rate down = @logic ? 0 : $d ikk;
Node gsk3 {
  logic = (!akt);
  rate_up = @logic ? $u_gsk3 : 0;
  rate_down = @logic ? 0 : $d_qsk3;
Node nfkb {
  logic = (!ikb);
  rate_up = @logic ? $u_nfkb : 0;
  rate_down = @logic ? 0 : $d_nfkb;
Node ask1 {
  logic = (traf2);
  rate_up = @logic ? $u_ask1 : 0;
  rate_down = @logic ? 0 : $d_ask1;
```

Definition of the logical rules

chaouiya_maboss.cfg

```
chaouiya_maboss.cfg
mapaki.ia_incernac-
tnfr.is_internal=1;
ap1.is_internal=1;
mek.is_internal=1;
mkk4.is_internal=1;
ex.is_internal=1;
tnfa.is_internal=1;
raf1.is_internal=1;
map3k7.is_internal=1;
mkk7.is_internal=1;
cjun.is_internal=1;
sos.is_internal=1;
ink.is_internal=1;
pi3k.is_internal=1;
p38.is_internal=1;
akt.is_internal=0;
ph.is_internal=1;
nik.is_internal=1;
discrete_time = 0;
use physrandgen = FALSE;
seed_pseudorandom = 100;
sample_count = 50000;
max_time = 5;
time_tick = 0.01;
thread_count = 4;
statdist_traj_count = 100;
statdist cluster threshold = 0.9;
```

Definition of the simulation parameters

Install MaBoSS

- Install MaBoSS
- \$ cd MaBoSS-2.0-env/src
- \$ make install
- gcc: version 4.0.1 or higher
 - bison: version 2.3 or higher
 - flex: version 2.5.35 or higher
- Set the environement variables for using scripts by command line:
- \$ cd MaBoSS-2.0-env/
- \$ source ./MaBoSS.env

Create mutant bnd file

• In bnd file, add parameters to simulate mutations:

```
For KO:
```

```
rate_up = $node_ko ? 0.0 : (@logic ? 1 ; 0);
rate_down = $node_ko ? max_rate : (@logic ? 0 ; 1);

For overexpression:
rate_up = $node_up ? max_rate : ? (@logic ? 1 ; 0);
rate_down = $node_up ? 0.0 : (@logic ? 0 ; 1);
```

Or you can generate the file automatically.

In a terminal, type:

\$ MBSS_MutBnd.pl chaouiya_maboss.bnd "akt erk ras pi3k"

Verify that the nodes are recognized

Catch node erk
Catch node ras
Catch node pi3k
Catch node akt

Create mutant cfg file

A new bnd files is created:

chaouiya_maboss_mut.bnd

Create the corresponding cfg file

\$ MaBoSS -t chaouiya_maboss_mut.bnd > chaouiya_maboss_mut.cfg

Or use directly the command:

\$ MBSS_MutBndCfg.pl chaouiya_maboss.bnd "akt erk ras pi3k"


```
// MaBoSS 1.3.8 configuration template generated at Fri Jan 15 15:04:12
2016
//
                                           time tick = 0.5 => 0.1
// global configuration variables
                                           max time = 1000 \Rightarrow 60
time_tick = 0.5;
max time = 1000;
                                           sample count =
sample_count = 10000;
discrete_time = 0;
                                           10000 => 50000
use physrandgen = 0;
seed_pseudorandom = 0;
display traj = 0;
statdist traj count = 0;
statdist_cluster_threshold = 1;
thread_count = 1;
statdist similarity cache max size = 20000;
// variables to be set in the configuration file or by using the --
config-vars option
akt_ko = 0;
                                            All parameters for
akt_up = 0;
$d_akt = 0;
                                            mutant definition
d_{ap1} = 0;
d_ask1 = 0;
                                            need to be set to 0
$d_cjun = 0;
$d_egf = 0;
                                             (default)
d_{eqfr} = 0;
d_erk = 0;
d_ex = 0;
d_{gsk3} = 0;
dikb = 0;
$d ikk = 0;
d_{jnk} = 0;
d_{map3k1} = 0;
d_map3k7 = 0;
d_mek = 0;
d_mkk4 = 0;
d mkk7 = 0;
d nfkb = 0;
d_nik = 0;
$d_p38 = 0;
d_ph = 0;
d_pi3k = 0;
d_{raf1} = 0;
d_ras = 0;
$d_sos = 0;
$d tnfa = 0;
dtnfr = 0;
$d_traf2 = 0;
erk ko = 0;
erk_up = 0;
pi3k_k = 0;
pi3k_up = 0;
ras_ko = 0;
sras_up = 0;
```

Done for you in folder

```
// set is_internal attribute value to 1 if node is an internal
mek.is_internal = 0;
erk.is_internal = 0;
nik.is_internal = 0;
ikk.is_internal = 0;
akt.is_internal = 0;
gsk3.is_internal = 0;
                                         all variables need to be
ikb.is_internal = 0;
                                         set internal (=1) except
nfkb.is internal = 0;
traf2.is_internal = 0;
                                         for the ones you wish to
ask1.is_internal = 0;
sos.is_internal = 0;
                                         see in the output
ras.is_internal = 0;
egf.is_internal = 0;
                                         (readout)
egfr.is_internal = 0;
tnfr.is_internal = 0;
ex.is_internal = 0;
map3k1.is\_internal = 0;
                                         erk.is internal=0;
tnfa.is_internal = 0;
cjun.is internal = 0;
                                         akt.is internal=0;
ap1.is_internal = 0;
raf1.is_internal = 0;
                                         ras.is internal=0;
map3k7.is\_internal = 0;
mkk4.is internal = 0;
mkk7.is_internal = 0;
ink.is internal = 0;
ph.is_internal = 0;
pi3k.is_internal = 0;
p38.is_internal = 0;
// if NODE initial state is:
// - equals to 1: NODE.istate = 1;
// - equals to 0: NODE.istate = 0;
// - random: NODE.istate = -1; OR [NODE].istate = 0.5 [0], 0.5
[1]; OR skip NODE.istate declaration
// - weighted random: [NODE].istate = P0 [0], P1 [1]; where P0
and P1 are arithmetic expressions
[mek].istate = 0.5 [0], 0.5 [1];
[erk].istate = 0.5 [0], 0.5 [1];
                                         initial conditions.
[nik].istate = 0.5 [0], 0.5 [1];
[ikk].istate = 0.5 [0], 0.5 [1];
[akt].istate = 0.5 [0], 0.5 [1];
[gsk3].istate = 0.5 [0], 0.5 [1]
[ikb].istate = 0.5 [0], 0.5 [1];
                                         By default = all random
[nfkb].istate = 0.5 [0], 0.5 [1];
[traf2].istate = 0.5 [0], 0.5 [1];
[ask1].istate = 0.5 [0], 0.5 [1];
[sos].istate = 0.5 [0], 0.5 [1];
[ras].istate = 0.5 [0], 0.5 [1];
                                         Modify such that:
[eqf].istate = 0.5 [0], 0.5 [1];
[egfr].istate = 0.5 [0], 0.5 [1];
                                         [tnfa].istate = 1 [0], 0 [1]
[tnfr].istate = 0.5 [0], 0.5 [1];
[ex].istate = 0.5 [0], 0.5 [1];
                                         [erk].istate = 1 [0], 0 [1]
[map3k1].istate = 0.5 [0], 0.5 [1];
[tnfa].istate = 0.5 [0], 0.5 [1];
[cjun].istate = 0.5 [0], 0.5 [1];
                                         [akt].istate = 1 [0], 0 [1]
[ap1].istate = 0.5 [0], 0.5 [1];
[raf1].istate = 0.5 [0], 0.5 [1];
                                         [ras].istate = 1 [0], 0 [1]
[map3k7].istate = 0.5 [0], 0.5 [1];
[mkk4].istate = 0.5 [0], 0.5 [1];
[mkk7].istate = 0.5 [0], 0.5 [1];
[jnk].istate = 0.5 [0], 0.5 [1];
```

[ph].istate = 0.5 [0], 0.5 [1]; [pi3k].istate = 0.5 [0], 0.5 [1]; [p38].istate = 0.5 [0], 0.5 [1];

Simulate the wild type with MaBoSS

- Type in a terminal the command:
- \$ MBSS_FormatTable.pl chaouiya_maboss_mut.bnd chaouiya_maboss_mut.cfg
- Visualize the results
 - For each simulation, a new folder is created
 - In this folder, open chaouiya_maboss_mut_fp.csv
 - 3 stable states are found with the probabilities associated to each of them

FP	Proba	State	mek	erk	nik	ikk	akt	gsk3	ikb	nfkb	traf2	ask1	sos	ras	egf	egfr	tnfr	ex	map3k1	tnfa	cjun	ap1	raf1	map3k7	mkk4	mkk7	jnk	ph	pi3k	p38
#1	0.5003	akt ikb egf egfr ph pi3k	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	
#2	0.37334	gsk3 ikb ph	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
#3	0.12636	gsk3 ikb	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

		state						• • •	•				3	*		_											
160	e _{ju}	34.	901	ask r	chun	984	4/6	ž	95k3	ĝ.	克	1	Saper	Salar	TIBK	mkka	mick?	7Acb	ž.	P3g	ψ	Pi3k	'911	Š	808	ţ,	Sec.
0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0

In this folder, open chaouiya_maboss_mut_probtraj_table.csv

→ plot the sum of the three outputs

→ verify with the initial article

NB: to compare with publication, compute sum of each component: [ERK]=sum(erk)=prob[erk]+prob[erk-ras]+prob[erk-akt]+prob[erk-ras-akt]

Simulate a mutant with MaBoSS

In cfg file, set parameters to simulate ras gain of function mutations:

```
$ras_ko=0; (not modified)
$ras_up=1;
[ras].istate = 0 [0], 1 [1];
```

Save the cfg file as: ras_oe.cfg

Simulate mutant in MaBoSS:

\$ MBSS_FormatTable.pl chaouiya_maboss_mut.bnd ras_oe.cfg

FP	Proba	mek	erk	nik	ikk	akt	gsk3	ikb	nfkb	traf2	ask1	sos	ras	egf	egfr	tnfr	ex	map3k1	tnfa	cjun	ap1	raf1	map3k7	mkk4	mkk7	jnk	ph	pi3k	p38
#1	0.5003	1	1	0	0	1	0	1	0	0	0	0	1	1	1	0	0	1	0	1	1	1	0	0	1	1	1	1	0
#2	0.4997	1	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1	0	0	1	1	1	0	0

Three ways to visualize the results

1. Stable states:

FP	Proba	mek	erk	nik	lik	k a	akt	gsk3	ikb	nfkb	traf2	ask1	sos	ras	egf	egfr	tnfr	ex	map3k1	tnfa	cjun	ap1	raf1	map3k7	mkk4	mkk7	jnk	ph	pi3k	p38
#1	0.5003	1	1	. (0	1	0	1	0	0	0	0	1	1	1	0	0	1	0	1	1	1	0	0	1	1	1	1	0
#2	0.4997	1	1	. (0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1	0	0	1	1	1	0	0

useful to verify with GINsim, for instance

2. Evolution over time:

interesting if transient behaviours

3. distribution of asymptotic solutions

interesting if presence of limit cycles

