LOGISTIC REGRESSION Joseph M Hilbe

Assignment 1 (20 points)

Q1 (2 Points)

What is the formula for the binary logistic regression link function? What does it link together?

Q2 (2 Points)

How does the logistic link function differ from the normal or Gaussian link function?

Q3 (2 Points)

Consider the given tabulation of *died* on HMO membership:

НМО						
died		0	1		Total	
0 1		825 431	157 82		982 513	
Total		1,256	239		1,495	

Calculate the odds ratio of died on HMO. Round to the nearest tenth place.

Q4 (2 Points)

Given the following table of binary logistic parameters estimates, calculate the probability of death for a non-white patient who stayed in the hospital for 10 days. Round to two decimal places.

died	Coef.	Std. Err.	Z	P> z	[95% conf. Interval]
White los cons	.2526808	.2065523	1.22	0.221	1521542 .6575158
	0299868	.0077037	-3.89	0.000	04508580148878
	5986826	.2132683	-2.81	0.005	-1.016681 -0.1806844

05 (2 Points)

Calculate the standard error of *a3* based on the variance-covariance matrix below. Round to two decimal places.

	a2	a3	_cons
a2	.735256		
a3	.533333	1.59199	
_cons	533333	533333	.533333

Q6 (2 Points)

Suppose that the coefficient of predictor a3 for a binary logistic regression model is at -3.344039, calculate its 95% confidence intervals using the variance-covariance matrix displayed for Exercise 5.

Q7 (2 points)

Given the confidence intervals calculated in question 6, is predictor a3 significant at the 95% confidence level.

Q8 (2 Points)

From the binary logistic regression output below, calculate the odds of surviving given being female.

[survived: 1=survived; 0 = died; sex: 1 = male; 0 = female]

Logistic regression					Number of obs LR chi2 (1) Prob > chi2	= 2201 $=$ 434.47 $=$ 0.0000
Log likelihood = -1167.4939					Pseudo R2	= 0.1569
survived	Coef.	Std. Err.	Z	P > z	[95% Conf.	Interval]
	-2.317175 1.00436	.1195885	-19.38 9.65	0.000		-2.082786 1.208455

Q9 (2 Points)

What is the relationship of a probability function and likelihood function?

Q10 (2 Points)

Given the table below, what is the difference in the risk and odds ratios of x? Round and display to the second decimal place.

