$egin{array}{c} { m VE203} \\ { m Assignment} \ 4 \end{array}$

Jiang Yicheng 515370910224

October 19, 2016

Exercise 4.1

i)

$$247 = 13 \times 19, 1 = 3 \times 13 - 2 \times 19$$

So the two primes are $p_1 = 13$, $p_2 = 19$, and x = 3, y = -2 such that $1 = p_1 \cdot x + p_2 \cdot y$.

ii)

$$10^{100} \equiv (-3)^{100} \equiv 3^{100} \equiv (27)^{33} \cdot 3 \equiv 1^{33} \cdot 3 \equiv 3 \pmod{13}$$

$$10^{100} \equiv 100^{50} \equiv 5^{50} \equiv 25^{25} \equiv 6^{25} \equiv (-2)^{12} \cdot 6 \equiv 16^{3} \cdot 6 \equiv (-3)^{3} \cdot 6 \equiv 11 \cdot 6 \equiv 9 \pmod{19}$$

So $10^{100} \equiv 3 \pmod{13}, 10^{100} \equiv 9 \pmod{19}$

iii)

Because $11 \cdot 19 \equiv -2 \cdot 6 \equiv 1 \pmod{13}$, $3 \cdot 13 \equiv 1 \pmod{19}$, then according to Chinese Remainder Theorem

$$10^{100} \equiv 3 \cdot 11 \cdot 19 + 9 \cdot 3 \cdot 13 \equiv 978 \equiv 237 \pmod{247}$$

so r = 237.

Exercise 4.2

We see that $2^8 = 256 = 2 \cdot 99 + 58$, so

$$4^8 \equiv 4^2 \equiv 7 \pmod{9}, 2^8 \equiv 3 \pmod{11}$$

So n = 8 satisfies both $4^n \equiv 7 \pmod{9}, 2^n \equiv 3 \pmod{11}$

Exercise 4.3

$$45029^2 < 2027651281 < 45030^2$$

We need to calculate $k^2 - 2027651281$ for

$$45029 < k < \frac{2027651281 + 1}{2} = 1013825641$$

We find:

$$45030^2 - 2027651281 = 49619, 45031^2 - 2027651281 = 139680$$

$$45032^2 - 2027651281 = 229743, 45033^2 - 2027651281 = 319808$$

$$45034^2 - 2027651281 = 409875, 45035^2 - 2027651281 = 499944$$

$$45036^{2} - 2027651281 = 590015, 45037^{2} - 2027651281 = 680088$$
$$45038^{2} - 2027651281 = 770163, 45039^{2} - 2027651281 = 860240$$

$$45040^2 - 2027651281 = 950319,45041^2 - 2027651281 = 1040400 = 1020^2$$

So $2027651281 = 45041^2 - 1020^2 = 46061 \cdot 44021$. And we can check that both 46061 and 44021 are primes. So the factors of 2027651281 are 1,44021,46061,2027651281.

Exercise 4.4

According to Fermat's Little Theorem,

$$5^{7-1} \equiv 1 \pmod{7}, 5^{11-1} \equiv 1 \pmod{11}, 5^{13-1} \equiv 1 \pmod{13}$$

SO

$$5^{2003} \equiv 5^{333 \cdot 6 + 5} \equiv 1^{333} \cdot 4^2 \cdot 5 \equiv 2 \cdot 5 \equiv 3 \pmod{7}$$
$$5^{2003} \equiv 5^{200 \cdot 10 + 3} \equiv 1^{200} \cdot 125 \equiv 4 \pmod{11}$$
$$5^{2003} \equiv 5^{166 \cdot 12 + 11} \equiv 1^{166} \cdot (-1)^5 \cdot 5 \equiv 8 \pmod{13}$$

Since $5 \cdot 11 \cdot 13 \equiv (-2) \cdot 4 \cdot (-1) \equiv 1 \pmod{7}$, $4 \cdot 7 \cdot 13 \equiv 4 \cdot (-4) \cdot 2 \equiv 1 \pmod{11}$, $12 \cdot 7 \cdot 11 \equiv (-1) \cdot 7 \cdot (-2) \equiv 1 \pmod{13}$, then according to Chinese Remainder Theorem,

$$5^{2003} \equiv 3 \cdot 5 \cdot 11 \cdot 13 + 4 \cdot 4 \cdot 7 \cdot 13 + 8 \cdot 12 \cdot 7 \cdot 11 \equiv 10993 \equiv 983 \pmod{1001}$$

So $5^{2003} \equiv 983 \pmod{1001}$.

Exercise 4.5

i)

Assume that $(p-1)! \equiv -1 \pmod{p}$ while p is not a prime. Set $p = a \cdot b, a, b \in \mathbb{N}, a \leq b$. Then $a, b \in \mathbb{N} \cap [1, p-1]$, so $c := \frac{(p-1)!}{a} \in \mathbb{N}$ and

$$b \cdot (p-1)! \equiv b \cdot a \cdot \frac{(p-1)!}{a} \equiv p \cdot c \equiv 0 \pmod{p}$$

While $(p-1)! \equiv -1 \pmod{p}$, then

$$b\cdot (p-1)! \equiv -b \ (mod \ p)$$

So $-b \equiv 0 \pmod{p}$. Since $b \in \mathbb{N} \cap [1, p-1]$, this is impossible. So our assumption is wrong. So p is a prime.

ii)

 $\forall a \in \mathbb{N} \cap [1, m-1], a \equiv -(m-a) \pmod{m}$, so for any odd integer $m, z = \frac{m-1}{2}$,

$$(m-1)! \equiv \prod_{i=1}^{z} i \cdot \prod_{i=z+1}^{m-1} i \equiv \prod_{i=1}^{z} i \cdot \prod_{i=z+1}^{m-1} -(m-i) \equiv \prod_{i=1}^{z} i \cdot (-1)^{z} \prod_{j=1}^{z} j \equiv (-1)^{z} (z!)^{2} \pmod{m}$$

So for any odd integer m, $(m-1)! \equiv (-1)^z (z!)^2 \pmod{m}$

iii)

To see whether an odd integer m is a prime, we can check whether $(-1)^z(z!)^2 \equiv -1 \pmod{m}$ where $z = \frac{m-1}{2}$.

From i)ii), the method is correct. Then we need to see whether the method is practical. It seems that we haven't an easy way to calculate $z! \mod m$ and therefore the method will lead to a complex calculation. However, this is a new way which can be implemented by computer. With proper programme, it can work well.

Exercise 4.6

i)

$$x \equiv 0 \pmod{11} \Rightarrow x^2 \equiv 0 \pmod{11}, x \equiv 1 \pmod{11} \Rightarrow x^2 \equiv 1 \pmod{11}$$

$$x \equiv 2 \pmod{11} \Rightarrow x^2 \equiv 4 \pmod{11}, x \equiv 3 \pmod{11} \Rightarrow x^2 \equiv 9 \pmod{11}$$

$$x \equiv 4 \pmod{11} \Rightarrow x^2 \equiv 5 \pmod{11}, x \equiv 5 \pmod{11} \Rightarrow x^2 \equiv 4 \pmod{11}$$

$$x \equiv 6 \pmod{11} \Rightarrow x^2 \equiv 3 \pmod{11}, x \equiv 7 \pmod{11} \Rightarrow x^2 \equiv 5 \pmod{11}$$

$$x \equiv 6 \pmod{11} \Rightarrow x^2 \equiv 3 \pmod{11}, x \equiv 7 \pmod{11} \Rightarrow x^2 \equiv 5 \pmod{11}$$

$$x \equiv 8 \pmod{11} \Rightarrow x^2 \equiv 9 \pmod{11}, x \equiv 9 \pmod{11} \Rightarrow x^2 \equiv 4 \pmod{11}$$

$$x \equiv 10 \pmod{11} \Rightarrow x^2 \equiv 1 \pmod{11}$$

So $x^2 \equiv a \pmod{11}$ has a solution if and only if $a \equiv 0, 1, 3, 4, 5, 9 \pmod{11}$. Taking gcd(a, 11) = 1 into account, $1 + 11t, 3 + 11t, 4 + 11t, 5 + 11t, 9 + 11t, t \in \mathbb{Z}$ are quadratic residues of 11.

ii)

For any $a \in \mathbb{Z}, p \nmid a$, then

- 1. $x^2 \equiv a \pmod{p}$ has no solutions modulo p
- 2. $x^2 \equiv a \pmod{p}$ has a solution modulo p: $x \equiv b \pmod{p}$, $b \in \mathbb{N}$, then for some x such that $x \equiv p b \pmod{p}$, we can see $x^2 \equiv (p b)^2 \equiv b^2 \equiv a \pmod{p}$. If $p b \equiv b \pmod{p}$, then $2b \equiv p \equiv 0 \pmod{p}$. Since p is an odd prime, $b \equiv 0 \pmod{p}$. So $a \equiv b^2 \equiv 0 \pmod{p}$ which leads to contradiction. So $x \equiv p b \pmod{p}$ and $x \equiv b \pmod{p}$ are two incongruent solutions modulo p.

If $x \equiv c \pmod{p}$ is another solution to $x^2 \equiv a \pmod{m}$ where $c \in \mathbb{N}$, $c \not\equiv b \pmod{p} \land c \not\equiv p-b \pmod{p}$, then $c^2 \equiv a \equiv b^2 \pmod{p}$, furthermore, p|(c-b)(c+b). Since p is a prime, then p|(c-b) or p|(c+b). Since $c \not\equiv b \pmod{p} \land c \not\equiv p-b \pmod{p}$, this is contradiction.

So if $x^2 \equiv a \pmod{p}$ has solutions, it exactly has two incongruent solutions modulo p.

To sum up, the congruence $x^2 \equiv a \pmod{p}$ has either no solutions or exactly two incongruent solutions modulo p.

iii)

From ii) we know that $\forall b \in \mathbb{Z} \cap [1, \frac{p-1}{2}], \ x \equiv b \pmod{p}$ and $x \equiv p-b \pmod{p}$ both lead to $x^2 \equiv b^2 \pmod{p}$, and for different b, b^2 are incongruent modulo p. So for any odd prime, $\forall x \in \mathbb{Z}, \ x^2$ has $\frac{p-1}{2}$ different results modulo p (except 0). And therefore for exactly $\frac{p-1}{2}$ incongruent numbers a among $1, 2, \dots, p-1, \ x^2 \equiv a \pmod{p}$ has solution. (These are all possible result for $x^2 \mod p$ except 0, so all quadratic residues modulo p are among them.) Moreover for any number a among these numbers, gcd(a, p) = 1.

So if p is an odd prime, then there are exactly $\frac{p-1}{2}$ quadratic residues of p among the integers $1, 2, \dots, p-1$.

iv)

Since $a \equiv b \pmod{p}$, then $x^2 \equiv b \equiv a \pmod{p}$. So if $x^2 \equiv a \pmod{p}$ has solution and gcd(a,p) = 1, then $x^2 \equiv b \pmod{p}$ must have a solution and gcd(b,p) = gcd(a+kp,p) = gcd(a,p) = 1 where k is an integer; if $x^2 \equiv a \pmod{p}$ doesn't have a solution, neither will $x^2 \equiv b \pmod{p}$; if $gcd(a,p) \neq 1$, $gcd(b,p) = gcd(a,p) \neq 1$.

So if a is a quadratic residue, so will b; and if a isn't a quadratic residue, neither will b. So

$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$$

$\mathbf{v})$

If a is a quadratic residue of p, then $\exists x \in \mathbb{Z} \cap [1, p-1]$ such that $x^2 \equiv a \pmod{p}$. Since p is a prime and $p \nmid x$, according to Fermat's Little Theorem,

$$x^{p-1} \equiv 1 \pmod{p}$$

Since $\left(\frac{a}{p}\right) = 1$ when a is a quadratic residue of p,

$$a^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{p-1} \equiv 1 \equiv \left(\frac{a}{p}\right) \pmod{p}$$

If a is not a quadratic residue of p,

 $\forall m \in \mathbb{N} \cap [1, p-1], \ gcd(m, p) = 1$, so there exists a unique $n_0 \in \mathbb{N} \cap [1, p-1]$ such that $m \cdot n_0 \equiv 1 \pmod{p}$, and therefore

$$m \cdot (a \cdot n_0) \equiv a \pmod{p}$$

If $a \cdot n_0 \equiv a \cdot n_0' \pmod{p}$, then since a is not divisible by p and p is a prime, gcd(a,p) = 1 and $n_0 \equiv n_0' \pmod{p}$. So $\forall m \in \mathbb{N} \cap [1, p-1]$, there exists a unique $n \in \mathbb{N} \cap [1, p-1]$ such that $m \cdot n \equiv a \pmod{p}$, and for different m, n will be different. Since a is not a quadratic residue of p, $m \neq n$. So for $1, 2, \dots, p-1$, they can be grouped into $\frac{p-1}{2}$ pairs m, n where $m \neq n$ and $m \cdot n \equiv a \pmod{p}$, and therefore

$$2 \cdot 3 \cdot \dots \cdot (p-1) \equiv a^{(p-1)/2} \pmod{p}$$

According to Wilson's Theorem,

$$a^{(p-1)/2} \equiv (p-1)! \equiv -1 \equiv \left(\frac{a}{p}\right) \; (mod \;\; p)$$

To sum up, if p is an odd prime and a is a positive integer not divisible by p, then

$$a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \pmod{p}$$

vi)

According to v), we obtain that if p is an odd prime and a and b are integers not divisible by p,

$$\left(\frac{ab}{p}\right) \equiv (ab)^{(p-1)/2} \equiv a^{(p-1)/2} \cdot b^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \; (mod \; p)$$

Since
$$\left(\frac{a}{p}\right)$$
, $\left(\frac{b}{p}\right)$, $\left(\frac{ab}{p}\right) \in \{1, -1\}$, $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

vii)

If p is an odd prime and a is a positive integer not divisible by p, then according to Fermat's Little Theorem,

$$a^{p-1} \equiv 1 \pmod{p}$$

so $(a^{(p-1)/2}+1)(a^{(p-1)/2}-1) \equiv 0 \pmod{p}$. Since p is a prime,

$$a^{(p-1)/2} \equiv -1 \ (mod \ p) \vee a^{(p-1)/2} \equiv 1 \ (mod \ p)$$

then with v) we obtain that: If p is an odd prime and a is a positive integer not divisible by p, then

- 1. a is a quadratic residue of p if and only if $a^{(p-1)/2} \equiv 1 \pmod{p}$
- 2. a is not a quadratic residue of p if and only if $a^{(p-1)/2} \equiv -1 \pmod{p}$

If -1 is a quadratic residue of p $(p \nmid -1)$, then

$$(-1)^{(p-1)/2} \equiv 1 \ (mod \ p)$$

so (p-1)/2 = 2k where $k \in \mathbb{Z}$. So p = 4k+1 which implies that

$$p\equiv 1\ (mod\ 4)$$

If -1 is not a quadratic residue of $p \ (p \nmid -1)$, then

$$(-1)^{(p-1)/2} \equiv -1 \pmod{p}$$

so (p-1)/2 = 2k+1 where $k \in \mathbb{Z}$. So p=4k+3 which implies that

$$p\equiv 3\ (mod\ 4)$$

To sum up, if p is an odd prime, then -1 is a quadratic residue of p if $p \equiv 1 \pmod{4}$, and -1 is not a quadratic residue of p if $p \equiv 3 \pmod{4}$.

viii)

$$x^2 \equiv 29 \pmod{35} \Rightarrow x^2 \equiv 29 \equiv 4 \pmod{5} \land x^2 \equiv 29 \equiv 1 \pmod{7}$$

$$x \equiv 0 \pmod{5} \Rightarrow x^2 \equiv 0 \pmod{5}, x \equiv 1 \pmod{5} \Rightarrow x^2 \equiv 1 \pmod{5}$$

$$x \equiv 2 \pmod{5} \Rightarrow x^2 \equiv 4 \pmod{5}, x \equiv 3 \pmod{5} \Rightarrow x^2 \equiv 4 \pmod{5}$$

$$x \equiv 4 \pmod{5} \Rightarrow x^2 \equiv 1 \pmod{5}$$

So $x^2 \equiv 4 \pmod{5} \Leftrightarrow x \equiv 2 \pmod{5} \lor x \equiv 3 \pmod{5}$.

$$x \equiv 0 \pmod{7} \Rightarrow x^2 \equiv 0 \pmod{7}, x \equiv 1 \pmod{7} \Rightarrow x^2 \equiv 1 \pmod{7}$$

$$x \equiv 2 \pmod{7} \Rightarrow x^2 \equiv 4 \pmod{7}, x \equiv 3 \pmod{7} \Rightarrow x^2 \equiv 2 \pmod{7}$$

$$x \equiv 4 \pmod{7} \Rightarrow x^2 \equiv 2 \pmod{7}, x \equiv 5 \pmod{7} \Rightarrow x^2 \equiv 4 \pmod{7}$$

$$x \equiv 6 \pmod{7} \Rightarrow x^2 \equiv 1 \pmod{7}$$

So $x^2 \equiv 1 \pmod{7} \Leftrightarrow x \equiv 1 \pmod{7} \lor x \equiv 6 \pmod{7}$.

Because $3.7 \equiv 1 \pmod{5}$, $3.5 \equiv 1 \pmod{7}$, then according to Chinese Remainder Theorem

1.
$$x \equiv 2 \pmod{5} \land x \equiv 1 \pmod{7}$$

$$x \equiv 2 \cdot 3 \cdot 7 + 1 \cdot 3 \cdot 5 \equiv 57 \equiv 22 \pmod{35}$$

so
$$x = 22 + 35t, t \in \mathbb{Z}$$
.

2. $x \equiv 2 \pmod{5} \land x \equiv 6 \pmod{7}$

$$x \equiv 2 \cdot 3 \cdot 7 + 6 \cdot 3 \cdot 5 \equiv 132 \equiv 27 \pmod{35}$$

so
$$x = 27 + 35t, t \in \mathbb{Z}$$
.

3. $x \equiv 3 \pmod{5} \land x \equiv 1 \pmod{7}$

$$x \equiv 3 \cdot 3 \cdot 7 + 1 \cdot 3 \cdot 5 \equiv 78 \equiv 8 \pmod{35}$$

so
$$x = 8 + 35t, t \in \mathbb{Z}$$
.

4. $x \equiv 3 \pmod{5} \land x \equiv 6 \pmod{7}$

$$x \equiv 3 \cdot 3 \cdot 7 + 6 \cdot 3 \cdot 5 \equiv 153 \equiv 13 \pmod{35}$$

so
$$x = 13 + 35t, t \in \mathbb{Z}$$
.

With simple check we can see that all these are solutions to the origin congruence. So the solution set of the congruence $x^2 = 29 \pmod{35}$ is

$$\{x: x = 8 + 35t \lor x = 13 + 35t \lor x = 22 + 35t \lor x = 27 + 35t, t \in \mathbb{Z}\}\$$