Limits

2.1 Limit of a Function

Definition 2.1 Let f be a function and c be a number. If there is number L such that f(x) approaches L as x approaches c, we say that L is the limit of f(x) as x tends to c. Symbolically we write

$$\lim_{x \to c} f(x) = L$$

or

$$f(x) \to L \text{ as } x \to c.$$

Example 2.2 Evaluate

$$\lim_{x \to 2} x^2.$$

solution:

As x approaches the number 2, x^2 approaches $2^2 = 4$. So,

$$\lim_{x \to 2} x^2 = 4.$$

Example 2.3 Evaluate

$$\lim_{x \to 0} \frac{1}{x}.$$

solution:

As x gets closer and closer to 0, $\frac{1}{x}$ becomes as large as one wish. In other words, $\frac{1}{x}$ does not approach to any limit as x approaches 0.

Example 2.4 Evaluate

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}.$$

solution:

Observe that

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1$$

for all $x \neq 1$. We are asking for the behavior of $\frac{x^2 - 1}{x - 1}$ as x approaches 1 but at the same time not equal to 1. Hence it is irrelevant if

$$\frac{x^2 - 1}{x - 1} = x + 1$$

when x=1. As long as we know that it holds for x close to 1, we apply the previous equation to conclude that

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} x + 1 = 2.$$

Remark 2.5 It does not make any sense to evaluate $\frac{x^2-1}{x-1}$ at the number 1. However, the symbol

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

does make sense and it turned out to be 2.

Example 2.6 Let

$$f(x) = \begin{cases} 0 & when \ x < 0 \\ 1 & when \ x \ge 0 \end{cases}$$

Evaluate

$$\lim_{x \to 0} f(x).$$

solution:

As x is close to 0, f(x) can sometimes be 0 and sometimes be 1. In other words, f(x) does not approach any number (neither 0 nor 1) as x approaches 0. We say that the limit

$$\lim_{x \to 0} f(x)$$

does not exist.

Theorem 2.7 Let f and g be functions and c be a number such that both $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist. Then,

1.
$$\lim_{x \to c} (f+g)(x) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$
.

2.
$$\lim_{x \to c} (f - g)(x) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$
.

3.
$$\lim_{x \to c} (fg)(x) = (\lim_{x \to c} f(x)) \times (\lim_{x \to c} g(x)).$$

4.
$$\lim_{x \to c} \frac{f}{g}(x) = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$
 provided that $\lim_{x \to c} g(x) \neq 0$.

5.
$$\lim_{x \to c} (af)(x) = a \lim_{x \to c} f(x)$$
 whenever a is a number.

6.
$$\lim_{x \to c} (f^k)(x) = (\lim_{x \to c} f(x))^k$$
 whenever $(\lim_{x \to c} f(x))^k$ is defined.

proof:

It is way beyond the scope of our course. One is enough to know that there are difficult proofs behind them.

Example 2.8 Evaluate $\lim_{x\to 1} \frac{\sqrt{x+3}-2}{x-1}$.

solution:

First of all,

$$\frac{\sqrt{x+3}-2}{x-1}$$

$$=\frac{\sqrt{x+3}-2}{x-1}\frac{\sqrt{x+3}+2}{\sqrt{x+3}+2}$$

$$=\frac{x+3-4}{(x-1)(\sqrt{x+3}+2)}$$

$$=\frac{1}{\sqrt{x+3}+2}$$

for $x \neq 1$. Now,

$$\lim_{\substack{x\to 1\\ \lim x\to 1}} x+3 \text{ exists and is } 4$$

$$\lim_{\substack{x\to 1\\ x\to 1}} \sqrt{x+3} \text{ exists and is } 2$$

$$\lim_{\substack{x\to 1\\ x\to 1}} \sqrt{x+3}+2 \text{ exists and is } 4$$

$$\lim_{\substack{x\to 1\\ x\to 1}} \frac{1}{\sqrt{x+3}+2} \text{ exists and is } \frac{1}{4}$$

Each step follows by a certain part of the previous theorem. Hence,

$$\lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x - 1} = \frac{1}{4}.$$

Theorem 2.9 (Sandwich) Let c be a number and f, g, h be functions so that $f(x) \leq g(x) \leq h(x)$ for all x near c. If $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$. Then,

$$\lim_{x \to c} g(x) = L.$$

proof:

Again it is too difficult for beginners.

Example 2.10 Evaluate $\lim_{x\to 0} \sin x$.

solution:

Let P be the point on the unit circle whose inclination is x radians. Now, $\sin x$ is the perpendicular (and hence shortest) distance from P to the x-axis. x is the length of a curve (indeed an arc) connecting P to the x-axis. $-|x| < \sin x < |x|$ for x near 0. Moreover,

$$\lim_{x \to 0} |x| = \lim_{x \to 0} -|x| = 0.$$

By the sandwich theorem, $\lim_{x\to 0} \sin x = 0$.

Remark 2.11 The limit $\lim_{x\to c} \sin x$ is simply $\sin c$. A similar result holds for other trigonometric functions, whenever it is defined at c.

2.2 One-sided Limits

Definition 2.12 Let f be a function and c be a number. If f(x) approaches a number L when x is bigger (smaller) than but close to the number c, we say that f(x) approaches (tends to) L as x approaches c from the right (left). Symbolically we write

$$\lim_{x\to c^+} f(x) = L \quad (\lim_{x\to c^-} f(x) = L).$$

Theorem 2.13 Let f be a function and c be a number. $\lim_{x\to c} f(x)$ exists if and only if both

$$\lim_{x \to c^+} f(x) \text{ and } \lim_{x \to c^-} f(x)$$

exist and $\lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x)$. In this case all the three limits mentioned are the same.

proof:

Not as difficult as the previous ones but we will still omit it.

Example 2.14 Let

$$f(x) = \begin{cases} x & when \ x \ge 0\\ 1 - x^2 & when \ x < 0 \end{cases}$$

Determine if the limit

$$\lim_{x \to 0} f(x)$$

exists.

solution:

Since f(x) = x whenever x > 0,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0.$$

On the other hand $f(x) = 1 - x^2$ whenever x < 0,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 1 - x^{2} = 1.$$

We see that $\lim_{x\to 0^+} f(x)$ is different from $\lim_{x\to 0^-} f(x)$. The limit $\lim_{x\to 0} f(x)$ does not exist by the previous theorem.

Example 2.15 Determine if the limit

$$\lim_{x \to 0} \sin |x|$$

exists.

Since |x|=x whenever x>0, $\lim_{x\to 0^+}\sin|x|=\lim_{x\to 0^+}\sin x=0$. On the other hand |x|=-x whenever x<0, $\lim_{x\to 0^-}\sin|x|=\lim_{x\to 0^-}\sin(-x)=0$. We see that both $\lim_{x\to 0^+}\sin|x|$ and $\lim_{x\to 0^-}\sin|x|$ exist and they are the same. The limit $\lim_{x\to 0}\sin|x|$ exists and is 0.

Remark 2.16 The results concerning sums and products of limits and the sandwich theorem hold for one-sided limits.

Theorem 2.17

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

proof:

First of all, suppose that x > 0. Let O be the center of the unit circle. X is the point on the unit circle whose inclination is x. A is the intersection of the positive x-axis and the unit circle. The line OX extends to meet the tangent of the unit circle at A in the point Y. The foot of perpendicular from X and Y to the x-axis are X', Y' respectively. Then,

area of $\Delta OXX' \leq$ area of the sector $XOA \leq$ area of $\Delta OYY'$.

Therefore,

$$\frac{1}{2}\sin x \cos x \le \frac{1}{2}x \le \frac{1}{2}\tan x.$$

Rearranging yields (remember that x > 0)

$$\cos x \le \frac{x}{\sin x} \le \frac{1}{\cos x}.$$

Now, both $\lim_{x\to 0^+} \cos x$ and $\lim_{x\to 0^+} \frac{1}{\cos x}$ exist and they are both 1. By the sandwich theorem, $\lim_{x\to 0^+} \frac{x}{\sin x} = 1$. By a similar reasoning, $\lim_{x\to 0^-} \frac{x}{\sin x} = 1$. Therefore, $\lim_{x \to 0} \frac{x}{\sin x}$ exists and is 1.

Example 2.18 Evaluate $\lim_{x\to 0} \frac{\sin 2x}{\sin 3x}$

solution:

First of all

$$\frac{\sin 2x}{\sin 3x}$$

$$= \frac{2}{3} \frac{\sin 2x}{2x} \frac{3x}{\sin 3x}.$$

Now, $\lim_{x\to 0} \frac{\sin 2x}{2x} = 1$, $\lim_{x\to 0} \frac{3x}{\sin 3x} = 1$. Thus, the limit of the product $\lim_{x\to 0} \frac{2}{3} \frac{\sin 2x}{2x} \frac{3x}{\sin 3x}$ exists and is $\frac{2}{3} \times 1 \times 1 = \frac{2}{3}$. Finally

$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \frac{2}{3}.$$

Example 2.19 Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

solution:

Since

$$\frac{1 - \cos x}{x^2} = \frac{1 - \cos 2(\frac{x}{2})}{1 - \cos 2(\frac{x}{2})}$$
$$= \frac{1}{2} \frac{\sin^2 \frac{x}{2}}{(\frac{x}{2})^2}$$

and

$$\lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} = 1.$$

So,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

2.3 Limits at Infinity

Definition 2.20 Let f be a function. If f(x) approaches a number L when x is sufficiently large, we say that f(x) approaches L as x tends to positive infinity, or we write symbolically as

$$\lim_{x \to +\infty} f(x) = L.$$

Remark 2.21 The symbol $\lim_{x\to-\infty} f(x) = L$ is defined in a similar way.

Remark 2.22 Results concerning sums and products of limits and the sandwich theorem hold for limits at infinity.

Example 2.23 Evaluate $\lim_{x\to +\infty} \frac{1}{x}$.

solution:

Since $\frac{1}{x}$ is as small as we wish provided that $\frac{1}{x}$ is sufficiently large,

$$\lim_{x \to +\infty} \frac{1}{x} = 0.$$

Example 2.24 Evaluate

$$\lim_{x \to +\infty} \frac{3x^4 + 2x^2 + 1}{x^4 + 2x^2 + 3}.$$

solution:

$$\begin{aligned} &\frac{3x^4 + 2x^2 + 1}{x^4 + 2x^2 + 3} \\ &= \frac{3 + 2\frac{1}{x^2} + \frac{1}{x^4}}{1 + 2\frac{1}{x^2} + 3\frac{1}{x^4}} \end{aligned}$$

Now, both $\frac{1}{x^2}$ and $\frac{1}{x^4}$ tend to 0 as x tends to positive infinity. The denominator $3+2\frac{1}{x^2}+\frac{1}{x^4}$ tends to 3 as x tends to positive infinity. Similarly, the denominator $1+2\frac{1}{x^2}+3\frac{1}{x^4}$ tends to 1 as x tends to positive infinity. Therefore, the quotient tends to $\frac{3}{1}=3$ as x tends to positive infinity. Symbolically,

$$\lim_{x \to +\infty} \frac{3x^4 + 2x^2 + 1}{x^4 + 2x^2 + 3} = 3.$$

Example 2.25 Evaluate

$$\lim_{x \to +\infty} \frac{\cos x}{x}.$$

solution:

Since $-1 \le \cos x \le 1$,

$$-\frac{1}{x} \le \frac{\cos x}{x} \le \frac{1}{x} \text{ for } x > 0.$$

Now,

$$\lim_{x\to +\infty}\frac{1}{x}=\lim_{x\to +\infty}-\frac{1}{x}=0.$$

By the sandwich theorem,

$$\lim_{x \to +\infty} \frac{\cos x}{x} = 0.$$

Definition 2.26 If either $\lim_{x \to +\infty} f(x) = L$ or $\lim_{x \to -\infty} f(x) = L$, we say that the graph of f has a horizontal asymptote y = L (that is, the graph of the constant function L).

2.4 Infinite Limits

Definition 2.27 Let f be a function and c be a number. If f(x) is as large as we wish when x is sufficiently close to c, we say that f(x) tends to positive infinity as x approaches c. Symbolically,

$$\lim_{x \to c} f(x) = +\infty.$$

Remark 2.28 One-sided infinite limits $\lim_{x\to c^+} f(x) = +\infty$ and $\lim_{x\to c^-} f(x) = +\infty$ are defined in a similar way, except that "x approaches c" is modified into "x approaches and is bigger (smaller) than c".

The symbol $\lim_{x\to c} f(x) = -\infty$ means that $\lim_{x\to c} -f(x) = +\infty$. The one-sided analogues are defined similarly.

We may also have the limits $\lim_{x\to+\infty} f(x) = +\infty$ or other similar symbols. The spirit is there already and we do not formulate them one by one here.

Example 2.29 Evaluate

$$\lim_{x \to 0^-} \frac{1}{x}.$$

solution:

As x approaches 0, the magnitude of $\frac{1}{x}$ is as large as one wish. If x is restricted to be a negative number and approaches 0 at the same time, $\frac{1}{x}$ is a negative quantity as large as one wish. Therefore,

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty.$$

Remark 2.30 Although we had the symbols like $\lim_{x\to c} f(x) = +\infty$ to mean something as defined above. We still consider the limit $\lim_{x\to c} f(x)$ fail to exist under such circumstances.

Definition 2.31 Let f be a function and c be a number. If either $\lim_{x\to c^-} f(x)$ or $\lim_{x\to c^+} f(x)$ is $+\infty$ or $-\infty$, we say that the graph of f has a vertical asymptote x=c (that is, the vertical line collecting the points whose first coordinate is c).

Example 2.32 Find the vertical asymptotes of the function f if

$$f(x) = \frac{x}{x^2 - 1}$$
 for all $x \neq 1$ or -1 .

solution

For all $c \neq 1$ or -1, $\lim_{x \to c} x^2 - 1 = c^2 - 1$ exists and is not zero. Therefore, the limit

$$\lim_{x \to c} \frac{x}{x^2 - 1}$$

exists and the graph of f does not have a vertical asymptote x = c. On the other hand,

$$\lim_{x \to 1^-} \frac{x}{x^2 - 1} = -\infty$$

and

$$\lim_{x \to -1^{-}} \frac{x}{x^2 - 1} = -\infty.$$

Thus, the graph of f has vertical asymptotes x = 1 and x = -1.

2.5 Continuity

Definition 2.33 Let f be a function and c be a number. f is continuous at c if

$$\lim_{x \to c} f(x) = f(c).$$

We also say that f is continuous if f is continuous at all numbers.

Example 2.34 1. All polynomials are continuous.

- 2. All rational functions are continuous except at the zeros of their denominators.
- 3. All trigonometric functions are continuous, except at the points where they are not defined.
- 4. The exponential function is continuous.
- 5. The logarithm function is continuous at all positive numbers.

Example 2.35 1. The sum of two continuous functions is continuous.

- 2. The difference between two continuous functions is continuous.
- 3. The product of two continuous functions is continuous.
- 4. The quotient of two continuous functions is continuous, except at the zeros of the latter function.
- 5. The composition of two continuous functions is continuous.
- 6. The inverse of a one-to-one continuous function is continuous.
- 7. The power of a continuous function is continuous, whenever it is defined.

Remark 2.36 Intuitively, a function is continuous means that we are able to draw its graph so that the pencil never have to leave the paper.

Theorem 2.37 Let f, g be functions so that f is continuous. Then,

$$\lim_{x \to c} f(g(x)) = f(\lim_{x \to c} g(x))$$

proof:

difficult

Theorem 2.38 Let f be continuous on [a,b]. Then there is a number c such that $a \le c \le b$ such that $f(x) \le f(c)$ for all x.

proof: difficult

Theorem 2.39 (Intermediate Value) Let f be a continuous function so that f(a) > 0 and f(b) < 0. Then, there is a c between a and b such that f(c) = 0.

proof: difficult

Example 2.40 Two guys are moving along a line segment so that they are at different endpoints initially and ultimately reach the opposite endpoints. Prove that these guys meet somewhere in the line segment.

proof:

Let the initial location of a first guy be O, and call another guy the second guy, who is at a distance a meters away from O on the line segment initially. Denote the distance of the first and second guy from O after t seconds by f(t), g(t) respectively, and define h = f - g. Then if the first guy reaches the other endpoint after T seconds,

$$h(0) = -a < 0$$
, and $h(T) = a - g(T) \ge 0$.

Note that both f and g are continuous, so is h = f - g. We apply intermediate value theorem to yield a number c such that $0 < c \le T$ and h(c) = 0. In other words, f(c) = g(c) so that these guys meet after c seconds.

Example 2.41 Show that the equation

$$2^x = 4x^2$$

has a root.

solution:

Let $f(x) = 2^x - 4x^2$ for all x. Then f is continuous and

$$f(0) = 1 > 0, \ f(1) = -2 < 0.$$

By intermediate value theorem, there exists a number c such that 0 < c < 1 and f(c) = 0. That is, $2^c = 4c^2$, so that the given equation has a root.