Data Structure Mock CCEE

yogeshwari

Aug. 21, 2022, 10:44 p.m.

Thanks for taking the mock. Schedule of next mock will be shared to you in the group. Please keep an eye on the group.

Your score: 52% 21/40

Duration: 0:12:18

1. How many numbers of comparisons will be done in worst case using Binary Search if 1/1 point the number of elements in the array are 32?

Your Answer: ✓ Correct

- \bigcirc 10
- \bigcirc 2
- **✓ ○** 5
 - $\bigcirc 4$
- 2. if the list is a circular linked list with first point to the first node and temp points to the last node .Which of the following code snippet will delete a node, which is after temp? class Node{

0 / 1 point

int data;

Node next;

}

Your Answer: X Incorrect

★ ● mynode=first;

mynode.next = temp.next;

mynode.next=first;

Omynode=first;

temp.next = mynode;

mynode.next=first;

```
✓ ○ temp.next = first.next;
       mynode=first;
       first=first.next;
       mynode.next=null;
     O None of the above
    In singly linked list if headpoints to the first node, which of the following code will print
3.
    data in the last node?
    Your Answer: ✓ Correct
     Otemp=head;
       while(temp!= null){
       temp=temp.next;
       }
       System.out.println(temp.data);

✓ ○ temp=head;

       while(temp.next != null){
       temp=temp.next;
       }
       System.out.println(temp.data);
     Otemp=head;
       while(temp.next == null){
       temp=temp.next;
       }
```

System.out.println(temp.data);

	○ temp=head;	
	while(temp == null){	
	temp=temp.next;	
	}	
	System.out.println(temp.data);	
4.	What is the worst case time complexity of Search()operation in an unbalanced Binary Search Tree having 'n' nodes?	1 / 1 point
	Your Answer: ✓ Correct	
	○ O(1)	
	○ O(log n)	
•	✓	
	○ O(nlogn)	
5.	In computational thinking terms, breaking down a complex problem into smaller,more	1 / 1 point
	specific sub-problems is called as	
	Your Answer: ✓ Correct	
	O Problem Identification	
•	Decomposition	
	○ Pattern Recognition	
	○ Algorithmic Thinking	
6.	Conside the stack shown below	0 / 1 point
	12 11 34 56 5 45 4 45	
	top	

Your Answer: X Incorrect

 \bigcirc 29

 \bigcirc 30

× 0 5

✓ ○ 56

7. Which of the given options provides the increasing order of asymptotic complexity of ^{0/1 point} functions f1,f2,f3 and f4?

f1(n)=2^n;

 $f2(n)=n^{3/2}$

f3(n)=nLogn

 $f4(n)=n^{(Logn)}$

Your Answer: **X** Incorrect

✓ ○ f3,f2,f4,f1

× ○ f3,f2,f1,f4

○f2,f3,f1,f4

○f2,f3,f4,f1

8. Which node pointer should be updated if a new node B is to be inserted in the middle 1/1 point of A and C nodes of a doubly linked list?

Your Answer: ✓ Correct

- O Next pointer of A, Previous Pointer of B, Next Pointer of C, and Previous of C
- ✓ Next pointer of A, Previous of B, Next of B, and Previous of C
 - O Next Pointer of A, Previous Pointer of A, next pointer of B, and Previous Pointer of C
 - O None of the Above

9.	Which of the following algorithm can be used to efficiently sort a linked list?	0 / 1 point
	Your Answer: X Incorrect	
•	[▶] ○ Merge Sort	
>	Quick Sort	
	○ Heap Sort	
	○ Selection Sort	
10.	What is the maximum height of any AVL Tree with 7 nodes? Assume that height of a tree with single node is 0.	0 / 1 point
	Your Answer: X Incorrect	
	O2	
•	^ ○ 3	
>	₹ ○ 4	
	○ 5	
11.	The time complexity of merge sort algorithm is	0 / 1 point
	Your Answer: × Incorrect	
	○ O(n)	
	○O(log n)	
>	C ○ O(n^2)	
•	O(nlog n)	
12.	In Hash Table, which collision handling technique results in Secondary Clustering?	0 / 1 point
	Your Answer: X Incorrect	
>	♥	
•	Quadratic Probing	
	○ Linear Probing	

13.	Which of the following data structure is BEST suited to implement Priority Queue?	1 / 1 point
	Your Answer: ✔ Correct	
	O Doubly Linked List	
~	✓	
	O Queue using Linked List	
	○Array	
14.	The inorder traversal of will yeild a sorted listing of elements	1 / 1 point
	Your Answer: ✔ Correct	
	○ Binary Trees	
~	Binary search trees	
	○Heaps	
	O AVL Trees	
15.	Which of the following is recursive preorder traversal function, if class node is defined	0 / 1 point
	as follows?	
	class Node{	
	int data;	
	Node left,right;	
	public Node(int key){	
	data = key;	
	left=right=null;	
	}	

Your Answer: **x** Incorrect

```
✓ ○ void preorder(Node node){
    if(node == null)
     return;
     System.out.print(node.data+"---->");
     preorder(node.left);
     preorder(node.right);
× ○ void preorder(Node node){
     if(node != null)
     return;
     System.out.print(node.data+"---->");
     preorder(node.left);
     preorder(node.right);
     }
  Ovoid preorder(Node node){
     if(node != null)
     return;
     preorder(node.left);
     preorder(node.right);
     System.out.print(node.data+"---->");
     }
```

	○ void preorder(Node node){
	if(node != null)
	return;
	preorder(node.left);
	preorder(node.right);
	System.out.print(node.data+">");
	}
16.	An ADT is defined to be a mathematical model of a user-defined type along with the collection of all operations on that model.
	Your Answer: ✔ Correct
	○ Cardinality
	○Assignment
~	Primitive
	○Structure
17.	You are very hungry and you decide to bake a batch by following your grandmother's 1/1 point chocolate chip cookie recipe. Which of the following computational thinking skills required to complete the above task?
	Your Answer: ✔ Correct
	OAbstraction
~	Algorithm Design
	O Pattern Recognition
	Opecomposition

18. What is the best-case time complexity of Bubble sort to sort an array of 'n' elements? 0 / 1 point

Your Answer: **X** Incorrect ○ O(n^2)

- ○O(n log n)
- **×** O(1)
- **✓** O(n)

19. What does the following return?

1 / 1 point

```
public int getval(Bnode T)
{ // T = root node
int value = 0;
if(T)
{ // LC = Left child and RC = Right child
if((T.LC == NULL) && (T.RC) == NULL))
value=1;
else
value=value+getval(T.LC) + getval(T.RC);
}
return value;
```

Your Answer: ✓ Correct

- O Number of internal nodes in the tree
- Oheight of the tree
- O Number of nodes without right sibling in the tree
- ✓ Number of leaf nodes in the tree

Consider the following type declaration for a doubly linked list node:

20.	class DListNode{
	int data;
	DListNode prev;
	DListNode next;
	}
	Which of the following statements (in correct order) will correctly insert a newNode, before the node reference by current? Assume that current is neither first nor last node in the linked list.
	Your Answer: X Incorrect
	O newNode.next=current;current.prev=newNode;newNode.prev=current;current.next = newNode;
	O current.prev=newNode;newNode.next = current;newNode.prev=current;
×	newNode.prev=current;newNode.next=current;current.prev.next=newNode;current.next.prev=newNode;
~	onewNode.prev=current.prev;newNode.next=current;current.prev.next=newNode;current.prev=newNode;
21.	Which of the following algorithm can be used to detect negative cycle in a Graph? 0 / 1 point
	Your Answer: X Incorrect
	○ Prim
×	© Krushal
	○ Dijkstra
•	O Bellman Ford
22.	An algorithm that calls itself directly or indirectly is known as
	Your Answer: ✔ Correct
	○ sub algorithm
V	Recursive algorithm

○ Traversal algoritm

23. If already sorted array is passed to a sorting algorithm, which one will be slowest?

1 / 1 point

Your Answer: ✓ Correct

O Insertion sort

○ Heap sort

O Merge sort

24. What is the time complexity of the following code?

0 / 1 point

```
int sum=0;
```

for(int
$$i=0$$
; $i< n$; $i++$){

sum=sum+10;

for(int j=0;j<n;j++){

sum=sum+j;

break;

}

ι

Your Answer: **X** Incorrect

- **X** O(n^2)
- **✓** O(n)
 - O(1)
 - ○O(log n)

21/22, 10):44 PM	Data Stru	cture Mock CCEE			
25.	How many stacks are required to implement Queue data structure?			i / i politi		
	Your Answer: ✔ Correct					
	○5					
	O1					
~	• 2					
	○3					
26.	Using	in java, one can sort the arr	ays.	0 / 1 point		
	Your Answer: X Incorrect					
×	S System.sort()					
	○ Collection.sort()					
•	○ Arrays.sort()					
	○ Array.sort()					
27.	is a collision-re	esolution that searches the h	ash table for an unoccupied	0 / 1 point		
	location beginning with the original location that the hash function specifies and continuing at					
	the increments of 1 ² ,2	2 , 3^2 , and so on				
	Your Answer: X Inco	rrect				
×	■ Linear Probing					
	○ Double Hashing					
•	O Quadratic probing					
	○ Separate chaining					

28. Create a Binary Search Tree for the given set of strings:

0 / 1 point

 ${\sf MAR,MAY,NOV,AUG,APR,JAN,DEC,JULY,FEB,JUN,OCT,SEPT}$

What are the leaf nodes generated in the tree?

Your Answer: **x** Incorrect

>	♦ OPR,FEB,DEC,JULY,SEPT	
•	FEB,JUNE,SEPT	
	○ Can't create the tree	
	○ None of the above	
29.	Which data structure is required to convert the infix to prefix notation?	1 / 1 point
	Your Answer: ✔ Correct	
•	✓	
	○ Linked List	
	○ Binary Tree	
	○ Queue	
30.	Which algorithm builds up a solution by choosing the option that looks the best at	0 / 1 point
	every step.	
	Your Answer: X Incorrect	
	○ Brute Force algorithm	
•	✓ Greedy algorithm	
	○ Recursive algorithm	
>	■ Backtracking algorithm	
31.	Which of the following is false about a binary search tree?	0 / 1 point
	Your Answer: X Incorrect	
	○ The left child is always lesser than its parent	
	○ The right child is always greater than its parent	
>	● The left and right sub-trees should also be binary search trees	
•	○ In order sequence gives decreasing order of elements	

- 32. Your Answer: ✔ Correct
 - Stack
 - OArray
 - Queue
 - Tree
- **33.** What is the time complexity of following code:

0 / 1 point

```
int a = 0, i = N;
while (i > 0)
{
a += i;
i /= 2;
}
```

Your Answer: **X** Incorrect

- **×** ⊙ O(N)
 - \bigcirc O(Sqrt(N))
 - O(N / 2)
- ✓ O(log N)
- **34.** What is the time complexity of the following code?

1 / 1 point

```
int count(int n)
{
  int c = 0;
  for(int i = n; i > 0; i/= 2)
  for(int j = 0; j < i; j++)
  c += 1;
  return c;
}</pre>
```

Your Answer: ✓ Correct

	○ O(n^2)	
	○O(n*Logn)	
~		
	○O(n*Logn*Logn)	
35.	Which of the following ways can be used to represent a graph?	1 / 1 point
	Your Answer: ✓ Correct	
	○ Incidence Matrix	
	OAdjacency List and Adjacency Matrix	
	○ No way to represent	
•	[▶] ■ Adjacency List, Adjacency Matrix as well as Incidence Matrix	
36.	Kruskal's Algorithm for finding the Minimum Spanning Tree of a graph is a kind of a?	0 / 1 point
	Your Answer: X Incorrect	
	○ DP Problem	
~	[→] ○ Greedy Algorithm	
×	Adhoc Problem	
	○ None of the above	
37.	Which of the following is not part of ADT description?	1 / 1 point
	Your Answer: ✔ Correct	
	○ Data	
	○ Operations	
	○ Both of the above	
~	None of the above	

38. In a circular queue, value of r will be

1 / 1 point

https://testmozusercontent.com/q/12086252/student/review

IUUI AIISWEI.	•	COLLEG	JL
○ r=r+1			
O (. 4)0/50		٥.	

 \bigcirc r=(r+1)%[Queue_Size-1]

- ✓ r=(r+1)%Queue_Size
 - ○r=(r-1)%Queue_Size
- 39. Any node in the path from root node to the node is called

1 / 1 point

Your Answer: ✔ Correct

- O Successor Node
- ✓ O Ancestor Node
 - O Internal Node
 - O None of the above
- **40.** The disadvantage in using circular linked list is

1 / 1 point

Your Answer: ✔ Correct

- ✓ It is possible to get into an infinite loop
 - O Last node points to first node
 - Time consuming
 - Requires more memory space