- Para deformar um corpo é necessário executar trabalho sobre ele. Nesse processo, para além de deformar o objeto pode também ser dissipada energia por outros modos (calor, ondas sonoras, etc)
- Princípio do trabalho virtual
- Num determinado momento o corpo está sujeito a uma força resultante \vec{f}^R com contribuição das forças de volume e superfície: $f_i^R = f_{Vi} + \sigma_{ij,j}$
- ullet Para manter o corpo em equilíbrio seria então necessário aplicar uma força $-\vec{f}^R$, para contrariar a resultante \vec{f}^R .

- Para deformar um corpo é necessário executar trabalho sobre ele. Nesse processo, para além de deformar o objeto pode também ser dissipada energia por outros modos (calor, ondas sonoras, etc)
- Princípio do trabalho virtual
- Num determinado momento o corpo está sujeito a uma força resultante \vec{f}^R com contribuição das forças de volume e superfície: $f_i^R = f_{Vi} + \sigma_{ij,j}$
- Para manter o corpo em equilíbrio seria então necessário aplicar uma força $-\vec{f}^R$, para contrariar a resultante \vec{f}^R .
- Um modo de determinar o trabalho realizado é considerar que o corpo é então sujeito a uma pequena deformação devido às forças de superfície exteriores aplicadas nele. Nesse processo ele sofre um deslocamento $d\vec{u}=(du_1,du_2,du_3)$.
- O trabalho realizado para provocar essa deformação é dW:

$$dW = \int_{V} -f_{i}^{R} du_{i} dV + \oint_{S} \sigma_{ij} du_{i} n_{j} dS$$

• Pelo teorema de Gauss

$$dW = \int_{V} -f_{i}^{R} du_{i} dV + \int_{V} \frac{\partial (\sigma_{ij} du_{i})}{\partial x_{j}} dV = \int_{V} -f_{i}^{R} du_{i} dV + \int_{V} \frac{\partial \sigma_{ij}}{\partial x_{j}} du_{i} dV + \int_{V} \sigma_{ij} \frac{\partial du_{i}}{\partial x_{j}} dV$$

$$dW = \int_{V} -f_{i}^{R} du_{i} dV + \int_{V} \sigma_{ij,j} du_{i} dV + \int_{V} \sigma_{ij} du_{i,j} dV$$

- Considerando que a transformação é suficientemente lenta de tal modo que entre o início e o fim passa sempre por pontos intermédio de equilíbrio, então $-f_i^R$ aplicada do exterior compensa sempre f_i^R do corpo, para cada pequena deformação.
- Como se viu, $f_i^R = f_{Vi} + \sigma_{ij,j}$.
- Nessa situação:

$$dW = \int_{V} -(f_{Vi} + \sigma_{ij,j}) \, du_{i} \, dV + \int_{V} \sigma_{ij,j} \, du_{i} \, dV + \int_{V} \sigma_{ij} \, du_{i,j} \, dV$$

$$dW = \int_{V} -f_{Vi} \, du_{i} \, dV + \int_{V} -\sigma_{ij,j} \, du_{i} \, dV + \int_{V} \sigma_{ij,j} \, du_{i} \, dV + \int_{V} \sigma_{ij,j} \, du_{i} \, dV + \int_{V} \sigma_{ij} \, du_{i,j} \, dV$$

$$dW = \int_{V} -f_{Vi} du_{i} dV + \int_{V} \sigma_{ij} du_{i,j} dV$$

De notar, que o σ_{ij} que aparece nestas equações é dependente de $\mathrm{d}u_i$ e como tal é uma função dependente de $\mathrm{d}u_i$, ou seja $\sigma_{ii}(du_i)$.

• Uma vez que se considerou que o sistema estava em equilíbrio, então estes termos contribuem apenas para a sua energia interna.

$$dW = \underbrace{\int_{V} -f_{Vi} \ du_{i} \ dV}_{relacionado \ com \ energia \ potencial} + \underbrace{\int_{V} \sigma_{ij} \ du_{i,j} dV}_{trabalho \ para \ deformar \ o \ corpo}$$

• Uma vez que se considerou que o processo de transformação entre a situação inicial e a situação final de deformação, é suficientemente lento, então podemos definir um parâmetro λ que irá variar entre 0 e 1 e que irá descrever a percentagem de variação em relação ao deslocamento final, \vec{u} , e em relação ao estado de tensão final σ_{ii} .

finais

- $0 < \lambda < 1$.
- $du_i = u_i d\lambda$
- $\sigma_{ij}(du_i) = \lambda \cdot \sigma_{ij}$
- Nessa situação:

$$dW = \int_{V} \sigma_{ij}(du_i) du_{i,j} dV = \int_{V} \lambda \sigma_{ij} u_{i,j} d\lambda dV = \lambda d\lambda \int_{V} \sigma_{ij} u_{i,j} dV$$

• Conjugando todas os processos de deformação sucessivos entre a situação inicial e a final:

$$W = \left(\int_0^1 \lambda \ d\lambda\right) \left(\int_V \sigma_{ij} u_{i,j} dV\right) = \left[\frac{\lambda^2}{2}\right]_0^1 \left(\int_V \sigma_{ij} u_{i,j} dV\right) = \frac{1}{2} \int_V \sigma_{ij} u_{i,j} dV$$

- O tensor $u_{i,j}=\frac{\partial u_i}{\partial x_i}$ é o tensor das distorções $e_{ij}=\frac{\partial u_i}{\partial x_i}$, já referido, que contém contribuições do tensor das deformações $arepsilon_{ij}$ e o das rotações de corpo rígido ω_{ij} : $e_{ij}=arepsilon_{ij}+\omega_{ij}$
- ullet Ignorando as rotações de corpo rígido, então $u_{i,j}=arepsilon_{ij}$ e podemos escrever:

Energia de deformação
$$\longrightarrow$$
 $W=rac{1}{2}\int_{V}\sigma_{ij}\varepsilon_{ij}dV$ Por unidade de volume: $w=rac{1}{2}\sigma_{ij}\varepsilon_{ij}$

$$w = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$