

Effects of Thermal Fluctuations on Thin-Sheet Materials

Nicholas Carrillo 1,2, Siddhartha Sarkar 1, Mohamed El Hedi Bahri 1, Andrej Košmrlj 1

Questions and Motivations

Want to use materials like graphene in beyond-silicon electronics

How do thermal fluctuations affect mechanical properties?

When do we need to take thermal fluctuations into account?

Background

Explored triangle lattices with different geometries, and bond strengths.

Thermal fluctuations become relevant at length scale $I_{th}^{(1)}$ $I_{th} \sim \kappa_0 / \sqrt{(3k_B TY_0)}$

Mechanical Properties characterized by elastic constants: κ₀ (Bending Rigidity) and Y₀ (Young's Modulus)

Both κ_0 and Y_0 change (renormalize) with temperature in a non-trivial way: $\kappa_0 \rightarrow \kappa_R$, and $Y_0 \rightarrow Y_R$.

Elastic Constant Behavior for Isotropic Flat-Sheets

Both κ_0 and Y_0 renormalize with system size (q~1/I) according to: (1, 2)

$$\kappa_{R}(I) \sim \kappa_{0} \qquad I << I_{th} \qquad \kappa_{R}(q) \sim \kappa_{0} \qquad q >> q_{th}
\kappa_{R}(I) \sim \kappa_{0} (I/I_{th})^{\eta} \qquad I >> I_{th} \qquad \kappa_{R}(q) \sim \kappa_{0} (q/q_{th})^{-\eta} \qquad q << q_{th} \qquad (\eta \sim 0.8)
\qquad Y_{R}(I) \sim Y_{0} \qquad I << I_{th}
Y_{R}(I) \sim Y_{0} (I/I_{th})^{-\eta u} \qquad I >> I_{th} \qquad (\eta u \sim 0.38)$$

Analyze height fluctuations in momentum space via Fourier transformation $h(\mathbf{x}) \to h(\mathbf{q})$. Height fluctuations are related to κ_R by: $\langle h(\mathbf{q})h(-\mathbf{q})\rangle \sim 1/\kappa_R(q)q^4$

Slope of log-log plot gives η ; a change in η means κ_R changes. Similarly for ηu , a change in slope for log-log plot of $Y_R(I) \sim Y_0(I/I_{th})^{-\eta u}$ means a change in Y_R .

References

(1) M. J. Bowick, A. Košmrlj, D. R. Nelson, and Ratsko Sknepnek, <u>PRB</u> **95**, 104109 (2017) (2) A. Košmrlj, and D. R. Nelson, <u>PRB</u> **93**, 125431 (2016)

Acknowledgments

Dr. Andrej Košmrlj – Advisor Siddhartha Sarkar Mohamed El Hedi Bahri Dr. Dan Steinberg – Program Director Ayesha Andrews - Coordinator

Nanotubes

NATIONAL SCIENCE FOUNDATION MATERIALS RESEARCH SCIENCE & BIGNEENING CENTERS

Bending rigidity along the azimuthal direction increases.

Flat-Sheets

