In-EVM Mina State Verification Circuit Description

Cherniaeva Alisa

a.cherniaeva@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

Shirobokov Ilia

i.shirobokov@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

October 23, 2021

1 Introduction

WIP

High level description according to RfP¹

- 1. Computing several hash values from the data of the proof. This involves using the Poseidon hash function with 63 full rounds both over \mathbb{F}_p and \mathbb{F}_q with round constants and MDS matrix specified for \mathbb{F}_p^2 and for \mathbb{F}_q^3 .
- 2. Checking arithmetic equations.
- 3. Performing one multi-scalar multiplication (MSM) of size $2n_2 + 4 + (2 + 25) = 63$, for which some of the bases are fixed and some are variable.
- 4. For each $i \in \{1, 2\}$, performing a multi-scalar multiplication over \mathbb{G}_i of size 2^{n_i} with a fixed array of bases, and with scalars that can be very efficiently computed from the proof.

Note that for MSM in Step 4:

$$\begin{split} \sum_{i=0}^{2^{n_k}-1} s_i \cdot G_i &= H \\ s_i &\coloneqq \prod_{\substack{0 \leq j \leq n_k \\ \mathrm{bits}(i)[j]=1}} \phi(c_j), \end{split}$$

where:

- $\phi: \{0,1\}^{128} \to \mathbb{F}$ is defined as to_field in the implementation⁴.
- Given an integer $i < 2^{n_k}$, bits(i) is defined as the little-endian bit array of length n representing the binary expansion of i.
- $G_0, ..., G_{2^{n_k-1}} \in \mathbb{G}_k$ is a fixed sequence of group elements⁵.
- $c_0, ..., c_{n_k-1} \in \{0,1\}^{128}$ is a sequence of challenges.

We use the same 15-wires PLONK circuits that are designed for Mina.⁶

2 Preliminaries

WIP

¹https://hackmd.io/u_2Ygx8XS5Ss1a0bg0FjkA

²https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fp.rs

³https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fq.rs

 $^{^4 \}text{https://github.com/ol-labs/proof-systems/blob/49f81edc9c86e5907d26ea791fa083640ad0ef3e/oracle/src/sponge.rs\#L33}$

⁵https://github.com/o1-labs/proof-systems/blob/master/dlog/commitment/src/srs.rs#L70

 $^{^6\}mathrm{https://o1-labs.github.io/mina-book/specs/15_wires/15_wires.html}$

2.1 Pasta Curves

Let $n_1 = 17$, $n_2 = 16$. Pasta curves parameters:

- $p = 2^254 + 45560315531419706090280762371685220353$
- $q = 2^254 + 45560315531506369815346746415080538113$
- Pallas:

$$\mathbb{G}_1 = \{(x, y) \in \mathbb{F}_p | y^2 = x^3 + 5\}$$

 $|\mathbb{G}_1| = q$

• Vesta:

$$\mathbb{G}_2 = \{(x, y) \in \mathbb{F}_q | y^2 = x^3 + 5\}$$

 $|\mathbb{G}_2| = p$

2.2 Verification Algorithm

Proof state (here \mathbb{F}_r is a scalar field of \mathbb{G}):

- DLog Commitments:
 - $l_{comm}, r_{comm}, o_{comm}, z_{comm} \in \mathbb{G}$ $t_{comm} = (t_{comm,1}, t_{comm,2}) \in (\mathbb{G}^5 \times \mathbb{G})$
- Openings:
 - $-(L_i, R_i) \in \mathbb{G} \times \mathbb{G} \text{ for } 0 \leq i < \text{lr_rounds}$
 - $-\delta, SG \in \mathbb{G}$
 - $-z_1, z_2 \in \mathbb{F}_r$
- Polynomial Evaluations a, b, for $i = \{1, 2\}$:
 - $-l_i, r_i, o_i, z_i, f_i \in \mathbb{F}_r$
 - $-t_i \in \mathbb{F}_r^5$
 - $-\sigma_{1_i},\sigma_{2_i}\in\mathbb{F}_r$
- $w \in \mathbb{F}_r^{s_w}$ witness
- previous challenges:

$$-(c_i, p_i) \in (\mathbb{F}_r \times \mathbb{G}) \text{ for } 0 \leq i < \text{prev}$$

Let g_r , g_q are generators of \mathbb{F}_r and \mathbb{F}_q accordingly. Verification algorithm:

- 1. for each \mathcal{P} :
 - 1.1 $p_{comm} = \text{MSM}(\text{lgr_comm}, \text{proof.public}) \in \mathbb{G}$ // public input verification
 - 1.2 $ORACLES \rightarrow \{ digest, (\beta, \gamma, \alpha', \alpha, \zeta, v, u, \zeta', v', u'), \}$

 $\alpha_2, (pub_1, pub_2), \text{evlp}, \text{polys}, \zeta_1, \text{combined inner product}\}$:

- 1.2.1 $H_{\mathbb{F}_q}$. $absorb(p_{comm}||l_{comm}||r_{comm}||o_{comm})$
- 1.2.2 $\beta = H_{\mathbb{F}_q}.squeeze()$
- 1.2.3 $\gamma = H_{\mathbb{F}_q}.squeeze()$
- 1.2.4 $H_{\mathbb{F}_q}.absorb(z_{comm})$
- 1.2.5 $\alpha' = H_{\mathbb{F}_q}.squeeze()$
- 1.2.6 $\alpha = \phi(\alpha', endo_r)$
- 1.2.7 $H_{\mathbb{F}_q}.absorb(t_{comm,1}||\infty||...||\infty||t_{comm,2})$
- 1.2.8 $\zeta' = H_{\mathbb{F}_q}.squeeze()$
- 1.2.9 $\zeta = \phi(\zeta', endo_r)$
- 1.2.10 digest = $H_{\mathbb{F}_q}.digest()$
- 1.2.11 $\zeta_1 = \zeta^n$
- 1.2.12 $\zeta_{\omega} = \zeta * g_r$
- 1.2.13 $\alpha_2 = [\alpha^2, ..., \alpha^1 9]$
- 1.2.14 compute Lagrange base evaluation denominators

```
1.2.15 evaluate public input polynomials (return pub_1, pub_2)
```

1.2.16
$$H_{\mathbb{F}_r}.absorb(pub_1||pub_2)$$

1.2.17
$$v' = H_{\mathbb{F}_r}.squeeze()$$

1.2.18
$$v = \phi(v', endo_r)$$

1.2.19
$$u' = H_{\mathbb{F}_r}.squeeze()$$

1.2.20
$$u = \phi(u', endo_r)$$

1.2.21 elvp =
$$\zeta^{\text{mpl}}$$
, $\zeta_{\omega}^{\text{mpl}}$

$$1.2.22$$
 prev chal evals

1.2.23 inner product calculations

1.3 arithmetic operations:

- 1.3.1 polynomial evaluation over a, b (proof evaluations)
- 1.3.2 polynomial evaluation over zkpm at ζ
- 1.3.3 perm_scalars

1.4
$$f_{comm} = MSM(p, s)$$

1.5 linearization polynomial evaluation consistency:

2. srs.verify:

- 2.1 ...
- 2.2 MSM:

$$\sum_{i} r^{i} (c_{i}Q_{i} + delta_{i} - (z_{1,i}(G_{i} + b_{i}U_{i}) + z_{2,i}H))$$

3 Elliptic Curve Arithmetic

WIP

3.1 Addition

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
$$i$$
 x_1 y_1 x_2 y_2 x_3 y_3 r \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots

Constraints:

•
$$(x_2-x_1)\cdot(y_3+y_1)-(y_1-y_2)\cdot(x_1-x_3)$$

•
$$(x_1 + x_2 + x_3) \cdot (x_1 - x_3) \cdot (x_1 - x_3) - (y_3 + y_1) \cdot (y_3 + y_1)$$

•
$$(x_2 - x_1) \cdot r = 1$$

3.2 Doubling and Tripling

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
$$i$$
 x_1 y_1 x_2 y_2 x_3 y_3 r_1 r_2 \vdots \vdots \vdots \vdots \vdots \vdots \vdots

Constraints:

• Doubling:

$$-4 \cdot y_1^2 \cdot (x_2 + 2 \cdot x_1) = 9 \cdot x_1^4$$

$$-2 \cdot y_1 \cdot (y_2 + y_1) = (3 \cdot x_1^2) \cdot (x_1 - x_2)$$

$$-y_1 \cdot r_1 = 1$$

• Addition (for tripling):

$$-(x_2-x_1)\cdot(y_3+y_1)-(y_1-y_2)\cdot(x_1-x_3) -(x_1+x_2+x_3)\cdot(x_1-x_3)\cdot(x_1-x_3)-(y_3+y_1)\cdot(y_3+y_1) -(x_2-x_1)\cdot r_2=1$$

3.3 Variable Base Scalar Multiplication

For S = [r]T, where $r = 2^n + k$ and $k = [k_n...k_0], k_i \in \{0, 1\}$:

- 1. S = [2]T
- 2. for i from n-1 to 0:

$$2.1 \ Q = k_{i+1} ? T : -T$$

$$2.2 R = S + Q$$

$$2.3 \ S = R + S$$

3.
$$S = k_0 ? S - T : S$$

Constraints for i + z, where $z \mod 2 = 0$:

- $b_1 \cdot (b_1 1) = 0$
- $b_2 \cdot (b_2 1) = 0$
- $(x_P x_T) \cdot s_1 = y_P (2b_1 1) \cdot y_T$
- $s_1^2 s_2^2 = x_T x_R$
- $(2 \cdot x_P + x_T s_1^2) \cdot (s_1 + s_2) = 2y_P$
- $\bullet \quad (x_P x_R) \cdot s_2 = y_R + y_P$
- $(x_R x_T) \cdot s_3 = y_R (2b_2 1) \cdot y_T$
- $s_3^2 s_4^2 = x_T x_S$
- $(2 \cdot x_R + x_T s_3^2) \cdot (s_3 + s_4) = 2 \cdot y_R$
- $\bullet \quad (x_R x_S) \cdot s_4 = y_S + y_R$
- $n = 32 \cdot \text{next}(n) + 16 \cdot b_1 + 8 \cdot b_2 + 4 \cdot \text{next}(b_1) + 2 \cdot \text{next}(b_2) + \text{next}(b_3)$

Constraints for i + z, where $z \mod 2 = 1$:

- $b_1 \cdot (b_1 1) = 0$
- $b_2 \cdot (b_2 1) = 0$
- $b_3 \cdot (b_3 1) = 0$
- $(x_P x_T) \cdot s_1 = y_P (2b_1 1) \cdot y_T$
- $(2 \cdot x_P + x_T s_1^2) \cdot ((x_P x_R) \cdot s_1 + y_R + y_P) = (x_P x_R) \cdot 2y_P$
- $(y_R + y_P)^2 = (x_P x_R)^2 \cdot (s_1^2 x_T + x_R)$
- $(x_T x_R) \cdot s_3 = (2b_2 1) \cdot y_T y_R$
- $(2x_R s_3^2 + x_T) \cdot ((x_R x_V) \cdot s_3 + y_V + y_R) = (x_R x_V) \cdot 2y_R$
- $(y_V + y_R)^2 = (x_R x_V)^2 \cdot (s_3^2 x_T + x_V)$
- $(x_T x_V) \cdot s_5 = (2b_3 1) \cdot y_T y_V$
- $(2x_V s_5^2 + x_T) \cdot ((x_V x_S) \cdot s_5 + y_S + y_V) = (x_V x_S) \cdot 2y_V$
- $(y_S + y_V)^2 = (x_V x_S)^2 \cdot (s_5^2 x_T + x_S)$

3.4 Variable Base Endo-Scalar Multiplication

For
$$S = [r]T$$
, where $r = [r_n ... r_0]$ and $r_i \in \{0, 1\}$: 8

1.
$$S = [2](\phi(T) + T)$$

2. for i from
$$\frac{\lambda}{2} - 1$$
 to 0:

⁷Using the results from https://arxiv.org/pdf/math/0208038.pdf

⁸Using the results from https://eprint.iacr.org/2019/1021.pdf

Constraints:

• $b_1 \cdot (b_1 - 1) = 0$

2.2 R = S + Q

- $b_2 \cdot (b_2 1) = 0$
- $b_3 \cdot (b_3 1) = 0$
- $b_4 \cdot (b_4 1) = 0$
- $((1+(\mathtt{endo}-1)\cdot b_2)\cdot x_T-x_P)\cdot s_1=(2\cdot b_1-1)\cdot y_T-y_P$
- $(2 \cdot x_P s_1^2 + (1 + (\text{endo} 1) \cdot b_2) \cdot x_T) \cdot ((x_P x_R) \cdot s_1 + y_R + y_P) = (x_P x_R) \cdot 2 \cdot y_P$
- $(y_R + y_P)^2 = (x_P x_R)^2 \cdot (s_1^2 (1 + (endo 1) \cdot b_2) \cdot x_T + x_R)$
- $\begin{array}{l} \bullet \ \ ((1+(\verb"endo"-1")\cdot b_2)\cdot x_T-x_R)\cdot s_3=(2\cdot b_3-1)\cdot y_T-y_R \\ \bullet \ \ (2\cdot x_R-s_3^2+(1+(\verb"endo"-1")\cdot b_4)\cdot x_T)\cdot ((x_R-x_S)\cdot s_3+y_S+y_R)=(x_R-x_S)\cdot 2\cdot y_R \\ \end{array}$
- $(y_S + y_R)^2 = (x_R x_S)^2 \cdot (s_3^2 (1 + (endo 1) \cdot b_4) \cdot x_T + x_S)$
- $n = 16 \cdot \text{next}(n) + 8 \cdot b_1 + 4 \cdot b_2 + 2 \cdot b_3 + b_4$

2.1 $Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$

4 Multi-Scalar Multiplication Circuit

WIP

Input: $G_0,...,G_{k-1} \in \mathbb{G}, s_0,...,s_{k-1} \in \mathbb{F}_r$, where \mathbb{F}_r is scalar field of \mathbb{G} . Output: $S = \sum_{i=0}^{k} s_i \cdot G_i$

4.1 Naive Algorithm

Using endomorphism:

- 1. $A = \infty$
- 2. for j from 0 to k-1:

$$2.1 \ r \coloneqq s_j, T \coloneqq G_j$$

$$2.2 S = [2](\phi(T) + T)$$

2.3 for i from $\frac{\lambda}{2} - 1$ to 0:

2.3.1
$$Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$$

$$2.3.2 R = S + Q$$

$$2.3.3 S = R + S$$

$$2.4 \ A = A + S$$

rows
$$\approx k \cdot (sm_rows + 1 + 2) \approx 67k$$
,

where sm_rows is the number of rows in the scalar multiplication circuit.

Without endomorphism:

1.
$$A = \infty$$

2. for
$$j$$
 from 0 to $k-1$:

$$2.1 \ r \coloneqq s_j, T \coloneqq G_j$$

$$2.2 S = [2]T$$

2.3 for i from n-1 to 0:

$$2.3.1 \ Q = k_{i+1} ? T : -T$$

$$2.3.2 R = S + Q$$

$$2.3.3 \ S = R + S$$

$$2.4 \ S = k_0 ? S - T : S$$

$$2.5 \ A = A + S$$

rows
$$\approx k \cdot (sm_rows + 1 + 1) \approx 104k$$
,

where sm_rows is the number of rows in the scalar multiplication circuit.

4.2 Simultanious Doubling

Using endomorphism:

1.
$$A = \sum_{j=0}^{k} [2](\phi(G_j) + G_j)$$

2. for
$$i$$
 from $\frac{\lambda}{2} - 1$ to 0:

2.1 for
$$j$$
 from 0 to $k-1$:

$$2.1.1 \ r := s_i, T := G_i$$

2.1.2
$$Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$$

$$2.1.3 \ A = A + Q$$

2.2 if $i \neq 0$:

$$2.2.1 \ A = 2 \cdot A$$

$$rows \approx \frac{\lambda}{2} \cdot (k \cdot add_rows + dbl_rows) + 2k \approx 64 \cdot (k+1) \approx 66k + 64,$$

where

- add_rows is the number of rows in the addition circuit.
- dbl_rows is the number of rows in the doubling circuit.

Without endomorphism:

1.
$$A = \sum_{j=0}^{k} [2]G_j$$

2. for i from n-1 to 0:

2.1 for j from 0 to k-1:

$$2.1.1 \ r \coloneqq s_j, T \coloneqq G_j$$

$$2.1.2 \ Q = k_{i+1} ? T : -T$$

$$2.1.3 \ A = A + Q$$

2.2 if
$$i \neq 0$$
:

$$2.2.1 \ A = 2 \cdot A$$

3.
$$A = A + \sum_{j=0}^{k} [1 - s_{j,0}]G_j$$

5 Poseidon Circuit

WIP

Constraints:

- $\bullet \ \operatorname{STATE}(i+1) = \operatorname{STATE}(i)^\alpha \cdot \operatorname{MDS} + \operatorname{RC}$
- $\mathbf{5.1}$ \mathbb{F}_p
- $\mathbf{5.2}$ \mathbb{F}_q
- 6 Other Circuits

WIP

7 Bringing it all together

WIP

References