Devoir surveillé n°4

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soient a et b deux réels. Montrer que :

- 1) $a \leqslant b \Rightarrow \lfloor a \rfloor \leqslant \lfloor b \rfloor$;
- 2) $[a] + [b] \le [a+b] \le [a] + [b] + 1$.

II. Étude d'une fonction complexe.

On considère la fonction complexe

$$f: z \mapsto \frac{z+1}{\bar{z}+2}.$$

- 1) Déterminer le domaine de définition de f, que l'on notera Δ_f .
- 2) a) Soit $z \in \Delta_f$. Montrer que |f(z)| = 1 si et seulement si |z+1| = |z+2|.
 - b) En déduire une expression explicite de $f^{\leftarrow}(\mathbb{U})$.
- **3)** Montrer que $f^{\leftarrow}(\mathbb{R}) = \Delta_f \cap \left(\mathbb{R} \cup \left\{ z \in \mathbb{C} \mid \operatorname{Re}(z) = -\frac{3}{2} \right\} \right)$.
- 4) a) Pour chaque $z \in f^{\leftarrow}(\mathbb{R})$, que vaut f(z)? Déterminer alors $f(f^{\leftarrow}(\mathbb{R}))$.
 - **b)** L'application $f: \Delta_f \to \mathbb{C}$ est-elle injective? Bijective?
- 5) Résoudre l'équation f(z) = 1. Que peut-on en déduire?

Dans la suite du problème, on considèrera la fonction $g=f_{|\mathbb{U}},$ c'est-à-dire

$$g : \mathbb{U} \to \mathbb{C} \\ z \mapsto \frac{z+1}{\bar{z}+2} .$$

6) Soit u un nombre complexe de module 1, justifier que $g(u) = \frac{u^2 + u}{2u + 1}$.

- 7) a) Résoudre pour $u \in \mathbb{U}$ l'équation $g(u) = \frac{1+3i}{5}$.
 - **b)** Résoudre pour $u \in \mathbb{U}$ l'équation g(u) = i.
- 8) L'application g est-elle surjective?
- 9) a) Soit $u \in \mathbb{U}$, soit $t \in]-\pi,\pi]$ vérifiant $u=\mathrm{e}^{it}$. On pose

$$v = \frac{u+1}{2u+1}.$$

Exprimer $|v|^2$ en fonction de $\cos(t)$ (uniquement!).

- **b)** Étudier sur $]-\pi,\pi]$ la fonction $\varphi:t\mapsto \frac{1+\cos(t)}{5+4\cos(t)}$.
- c) Conclure quant à l'injectivité de g.

III. Construction de la fonction «racine p-ième».

Dans tout ce problème, x_0 désigne un réel strictement positif, et p un entier strictement supérieur à 1.

On établit ici l'existence de la fonction racine p-ième, il est donc interdit d'utiliser cette fonction (ainsi que l'exponentielle, les logarithmes, le théorème des bijections, les théorème des valeurs intermédiaires, etc.). On se bornera donc à utiliser, comme outils d'analyse, les propriétés découlant directement de la définition de la borne supérieure et, éventuellement, des résultats élémentaires de convergence de suite.

On note:

$$A(x_0) = \{ y \in \mathbb{R}_+ \mid y^p \leqslant x_0 \}.$$

- 1) a) Montrer que la fonction « puissance $p \gg \mathbb{R}_+ \to \mathbb{R}_+, x \mapsto x^p$ est strictement croissante.
 - **b)** En utilisant la définition d'un intervalle, montrer que l'ensemble $A(x_0)$ est un intervalle de \mathbb{R} .
- 2) Montrer que $A(x_0)$ est non vide.
- 3) a) Montrer que $(1+x_0)^p \ge 1 + px_0$.
 - b) En déduire que $A(x_0)$ est majoré par $1+x_0$. Que peut-on en conclure ?

On note

$$c = \sup(A(x_0)),$$

et pour tout $n \in \mathbb{N}^*$,

$$u_n = c\left(1 - \frac{1}{n}\right)$$
 et $v_n = c\left(1 + \frac{1}{n}\right)$.

- 4) a) Montrer que 0 < c.

 Indication: on pourra montrer que l'on a toujours $x_0 \in A(x_0)$ ou bien $\frac{1}{x_0} \in A(x_0)$.
 - **b)** Soit $n \in \mathbb{N}^*$. Justifier l'existence d'un réel $a \in A(x_0)$ tel que $u_n < a \le c$.
 - c) En déduire que pour tout $n \in \mathbb{N}^*$, $u_n \in A(x_0)$ puis que $c^p \leqslant x_0$.
- **5)** a) Justifier que pour tout $n \in \mathbb{N}^*$, $v_n^p > x_0$.
 - b) En déduire que $c^p = x_0$. Par définition, le réel c est appelé racine p-ième de x_0 , et noté $\sqrt[p]{x_0}$.
- 6) Soient B et C deux parties de \mathbb{R} , non vides et telles que $B \subset C$, avec C majorée.
 - a) Montrer que B et C admettent des bornes supérieures et que sup $B \leq \sup C$.
 - **b)** En déduire que la fonction racine p-ième est strictement croissante sur $]0, +\infty[$.

— FIN —