

# Enumeration and Generation of Simple Unlabelled Graphs

Supervisor: Levente Bodnár Jonathan Glanfield

Warwick Mathematics Institute



## Graph Enumeration and Pólya's Enumeration Theorem

- Enumerating unlabelled graphs is a classical and challenging problem in combinatorics. Unlike labelled graphs, where each vertex has a distinct identity, unlabelled graphs consider graphs equivalent under relabelling of vertices, making their enumeration significantly more complex.
- This task is known to be #P-complete, meaning it is as computationally difficult as counting the solutions to NP problems, and no efficient algorithm is known for solving it in the general case [1].

## **Burnside's Lemma**

Burnside's Lemma relates the number of distinct orbits under a group action to fixed points of group elements:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where  $X^g = \{x \in X : g \cdot x = x\}$  is the set fixed by g.

This lemma allows counting objects up to symmetry by averaging fixed points across group elements.

## **Cycle Index Polynomial**

The cycle index polynomial encodes the structure of a permutation group G acting on a set of size n:

$$Z(G, x_1, x_2, \dots, x_n) = \frac{1}{|G|} \sum_{g \in G} \prod_{j=1}^n x_j^{c_j(g)},$$

where  $c_j(g)$  counts cycles of length j in the permutation g.

This polynomial compactly summarises how group elements permute cycles of different lengths.

### Pólya's Enumeration Theorem

**Pólya's Theorem** [2] states that for a group G acting on a set X and a set of q colours A, the number of distinct colourings up to G-symmetry is:

$$|A^X/G| = Z(G, q, q, \dots, q).$$

For the purposes of graph enumeration, edges are coloured by two colours (either present or absent), and the group acts on vertex labels inducing permutations on edges.

## **Example: Counting Unlabelled Graphs on 4 Vertices**

For n=4, the symmetric group  $S_4$  acts on the vertex set, inducing an action on the  $\binom{4}{2}=6$  edges. Using the conjugacy classes of  $S_4$ , we compute the induced cycle index polynomial for  $S_{4}^{(2)}$ :

| Permutation in $S_4$ | Class Size | Permutation in $S_4^{(2)}$ | Monomial      | Value for $s_k = 2$ |
|----------------------|------------|----------------------------|---------------|---------------------|
| (1)(2)(3)(4)         | 1          | (12)(13)(14)(23)(24)(34)   | $s_1^6$       | $1 \cdot 2^6 = 64$  |
| (1)(2)(34)           | 6          | (12)(34)(1314)(2324)       | $s_1^2s_2^2$  | $6 \cdot 2^4 = 96$  |
| (1)(234)             | 8          | $(12\ 13\ 14)(23\ 34\ 24)$ | $s_3^2$       | $8 \cdot 2^2 = 32$  |
| (12)(34)             | 3          | (12)(34)(1314)(2324)       | $s_1^2 s_2^2$ | $3 \cdot 2^4 = 48$  |
| (1234)               | 6          | (1324)(12233414)           | $s_2s_4$      | $6 \cdot 2^2 = 24$  |

Collecting terms gives the cycle index  $Z(S_4^{(2)}) = \frac{1}{24} (s_1^6 + 9 s_1^2 s_2^2 + 8 s_3^2 + 6 s_2 s_4)$ 

Then by substituting  $s_k = 2$  (two colours: edge present/absent) we have:  $\frac{1}{24}(2^6 + 9 \cdot 2^4 + 8 \cdot 2^2 + 6 \cdot 2^2) = 11$ .

**Result:** There are exactly 11 distinct simple unlabelled graphs on 4 vertices.

## Recursive Generation of Simple Unlabelled Graphs

- We can generate all n-vertex graphs by extending the complete list  $\mathcal{G}_{n-1}$  of non-isomorphic graphs on n-1 vertices.
- For each base graph  $G \in \mathcal{G}_{n-1}$ , we only consider new vertex neighbourhoods up to  $\operatorname{Aut}(G)$  (one representative per orbit). This eliminates many redundant extensions before an computationally intensive isomorphism test.

## **Orbit Representatives & Graph Extension**

Let V = [n-1] be the vertex set of G and let  $\mathrm{Aut}(G)$  act on the power set  $\mathcal{P}(V)$  by

$$\gamma \cdot S = \{ \gamma(v) : v \in S \}, \qquad \gamma \in \text{Aut}(G).$$

This partitions  $\mathcal{P}(V)$  into orbits; choose one representative set from each orbit:

$$S_G = \{S_1, \dots, S_m\} = \mathcal{P}(V)/\operatorname{Aut}(G).$$

For each representative  $S \in \mathcal{S}_G$  define the extension

$$G_{\{S\}} = (V \cup \{n\}, \ E \cup \{\{u,n\} : u \in S\}).$$

Repeating this for all  $G \in \mathcal{G}_{n-1}$  produces a candidate collection  $\mathcal{E}_n$ .

## Removing Isomorphic Duplicates

Different base graphs may produce isomorphic extensions. To obtain the final list  $\mathcal{G}_n$ , we must check for graph isomorphisms and retain only unique graphs (e.g. using McKay's Canonical Labelling Algorithm [3]), keeping a single representative for each canonical label:

$$\mathcal{G}_n = \mathcal{E}_n / \cong$$
.

This two-stage approach (orbit pruning then canonical labelling) can drastically reduce any redundant isomorphism checks in practice.

### **Graph Generation Algorithm**

**Input:** List  $\mathcal{G}_{n-1}$  of all graphs on n-1 vertices with their automorphism groups **Output:** List  $\mathcal{G}_n$  of all graphs on n vertices  $\mathcal{E}_n \leftarrow \emptyset$ ; foreach  $G \in \mathcal{G}_{n-1}$  do compute Aut(G); **foreach** representative  $S \in \mathcal{P}(V) / \operatorname{Aut}(G)$  do declare  $G_{\{S\}} \leftarrow G \cup \{n\}$  with N(n) = S; add  $G_{\{S\}}$  to  $\mathcal{E}_n$ ;

 $\mathcal{G}_n \leftarrow \mathcal{E}_n / \cong$  using McKay's canonical labelling algorithm; return  $\mathcal{G}_n$ 

## **Running Time and Complexity**

• Worst case: If G is asymmetric then  $|\mathcal{P}(V)/\mathrm{Aut}(G)|=2^{n-1}$ , so

$$|\mathcal{E}_n| \le |\mathcal{G}_{n-1}| \cdot 2^{n-1}.$$

In addition, McKay's canonical labelling may require up to O(n!) steps, giving a worst-case runtime of  $O(g_{n-1}n!)$ .

Average case: Since almost all large graphs are asymmetric [4],

$$\mathbb{E}[|\mathcal{E}_n|] = (1 - o(1)) g_{n-1} 2^{n-1}.$$

McKay's exhibits a polynomial average number of labelling steps [3], hence average runtime of  $O(g_{n-1} 2^{n-1} \operatorname{poly}(n))$ .



References

- [1] L. G. Valiant. "The complexity of enumeration and reliability problems". In: SIAM Journal on Computing 8.3 (1979), pp. 410-421.
- [3] B. D. McKay. "Practical graph isomorphism". In: Congressus Numerantium 30 (1981), pp. 45-87. [2] G. Pólya. "Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen". In: Acta Math. Acad. Sci. Hungarica 14.3–4 (1963), pp. 295–315.