- 1. Find the multiplicity of the root r = 0 for $f(x) = \sin 2x 2x$. Find the forward and backward errors of the approximate root $r_A = 0.005$.
- 2. Use the sensitivity formula to approximate the root nearest to 4 of

$$f(x) = (x-1)(x-2)(x-3)(x-4) - 10^{-6}x^{6}.$$

Find the error magnification factor. Use fzero to check your approximation.

- **3.** (a) Use fzero to find the root of $f(x) = 2x \cos x 2x + \sin x^3$ on [-0.1, 0.2]. Report the forward and backward errors. (b) Run the Bisection Method with starting interval [-0.1, 0.2] to find as many correct digits as possible, and report your conclusion. Can you explain the results?
- **4. Big-**O **notation.** By definition, $f(\varepsilon) = O(\psi(\varepsilon))$ as $\varepsilon \to 0$ means there exists positive constants K and η such that $|\varepsilon| < \eta \implies |f(\varepsilon)| \le K|\psi(\varepsilon)|$. [Note: in numerical analysis ε is $\varepsilon_{\text{mach}}$, and we are interested only in the one-sided limit $\varepsilon \to 0^+$. The definition above is easily adjusted to this case.] Similarly, $g(x) = O(\varphi(x))$ as $x \to \infty$ means there exists constants C and ρ such that $x > \rho \implies |g(x)| \le C|\varphi(x)|$. Are the following statements **true** or **false**? Justify your answers.
 - (a) $\sin(\varepsilon) = O(1)$, as $\varepsilon \to 0$
 - **(b)** $\sin(\varepsilon) = O(\varepsilon)$, as $\varepsilon \to 0$
 - (c) $\sin(\varepsilon) = O(\varepsilon^2)$, as $\varepsilon \to 0$
 - (d) $100x = O(x^{1.1})$, as $x \to \infty$.

Hint: You may use the fact that $|\sin(\varepsilon)/\varepsilon| \leq 1$.

5. Consider the problem $y = h(x_1, x_2) = x_1 x_2$ of multiplying two nonzero real numbers. On a computer the algorithm for approximating the product is $y_A = h_A(x_1, x_2) = fl(x_1) \odot fl(x_2)$, where \odot is the inexact floating point multiplication. Show that the algorithm is backwards stable. That is, show $h_A(x_1, x_2) = h(x_1 + \delta x_1, x_2 + \delta x_2)$, where $|\delta x_1/x_1| = O(\varepsilon_{\text{mach}})$ and $|\delta x_2/x_2| = O(\varepsilon_{\text{mach}})$. Is the perturbation of the inputs unique?