Devoir à la maison n°16

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 —

Dans tout le problème, E est un \mathbb{R} -espace vectoriel de <u>dimension 3</u>.

Pour u endomorphisme de E et n entier naturel non nul, on note $u^n = u \circ u \circ \cdots \circ u$ (n fois).

On note $\mathcal{M}_3(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées d'ordre 3, $GL_3(\mathbb{R})$ le groupe des matrices inversibles de $\mathcal{M}_3(\mathbb{R})$, et I_3 la matrice unité de $\mathcal{M}_3(\mathbb{R})$.

On notera par 0 l'endomorphisme nul, la matrice nulle et le vecteur nul.

Pour deux matrices A et B de $\mathcal{M}_3(\mathbb{R})$, on dira que la matrice A est **semblable** à la matrice B s'il existe une matrice P de $GL_3(\mathbb{R})$ telle que : $A = P^{-1}BP$. On rappelle que si \mathcal{B} et \mathcal{B}' sont deux bases de E, si P est la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' , si u est un endomorphisme de E de matrice A dans la base \mathcal{B}' et de matrice B dans la base \mathcal{B} alors $A = P^{-1}BP$ (c'est-à-dire, la matrice A est semblable à la matrice B).

Partie I -

- 1. On notera $A \sim B$ pour dire que la matrice A est semblable à la matrice B. Démontrer que la relation \sim est une relation d'équivalence sur $\mathcal{M}_3(\mathbb{R})$. On pourra désormais dire que les matrices A et B sont semblables.
- **2.** Démontrer que deux matrices de $\mathcal{M}_3(\mathbb{R})$ de déterminants différents ne sont pas semblables.
- 3. Soit u un endomorphisme de E et soit i et j deux entiers naturels. On considère l'application w de Ker u^{i+j} vers E définie par : $w(x) = u^j(x)$.
 - **a.** Montrer que Im $w \subset \text{Ker } u^i$.
 - **b.** En déduire que dim $(\operatorname{Ker} u^{i+j}) \le \dim(\operatorname{Ker} u^i) + \dim(\operatorname{Ker} u^j)$.
- **4.** Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et rg u = 2.
 - **a.** Montrer que dim(Ker u^2) = 2. (On pourra utiliser deux fois la question **I.3.b**).
 - **b.** Montrer que l'on peut trouver un vecteur a non nul de E tel que $u^2(a) \neq 0$, et en déduire que la famille $(u^2(a), u(a), a)$ est une base de E.
 - **c.** Ecrire alors la matrice U de u et la matrice V de $u^2 u$ dans cette base.
- **5.** Soit *u* un endomorphisme de E vérifiant : $u^2 = 0$ et rg u = 1.
 - **a.** Montrer que l'on peut trouver un vecteur b non nul de E tel que $u(b) \neq 0$.
 - **b.** Justifier l'existence d'un vecteur c de Ker u tel que la famille (u(b), c) soit libre, puis montrer que la famille (b, u(b), c) est une base de E.
 - **c.** Ecrire alors la matrice U' de u et la matrice V' de $u^2 u$ dans cette base.

Partie II -

Soit désormais une matrice A de $\mathcal{M}_3(\mathbb{R})$ semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ de $\mathcal{M}_3(\mathbb{R})$.

On se propose de montrer que la matrice A est semblable à son inverse A^{-1} .

On pose alors $N = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$, et soit une matrice P de $GL_3(\mathbb{R})$ telle que $P^{-1}AP = T = I_3 + N$.

- 1. Expliquer pourquoi la matrice A est bien inversible.
- 2. Calculer N^3 et montrer que $P^{-1}A^{-1}P = I_3 N + N^2$.
- 3. On suppose dans cette question que N = 0, montrer alors que les matrices A et A^{-1} sont semblables.
- **4.** On suppose dans cette question que rg N = 2. On pose $M = N^2 N$.
 - **a.** Montrer que la matrice N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et en déduire, en utilisant la question
 - I.4, une matrice semblable à la matrice M.
 - **b.** Calculer M³ et déterminer rg M.
 - c. Montrer que les matrices M et N sont semblables.
 - **d.** Montrer alors que les matrices A et A^{-1} sont semblables.
- 5. On suppose dans cette question que rg(N) = 1. On pose $M = N^2 N$. Montrer que les matrices A et A^{-1} sont semblables.
- **6. Exemple**: soit la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

On note (a, b, c) une base de E et u l'endomorphisme de E de matrice A dans cette base.

- a. Montrer que $Ker(u id_E)$ est un sous-espace vectoriel de E de dimension 2 dont on donnera une base (e_1, e_2) .
- **b.** Justifier que la famille (e_1, e_2, c) est une base de E, et écrire la matrice de u dans cette base.
- **c.** Montrer que les matrices A et A^{-1} sont semblables.
- 7. Réciproquement, toute matrice de $\mathcal{M}_3(\mathbb{R})$ semblable à son inverse est-elle nécessairement semblable à $\begin{pmatrix} 1 & \alpha & \beta \end{pmatrix}$

une matrice du type
$$T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$$
?