

WHAT IS CLAIMED IS:

1. A placement device, comprising:

a guide section for guiding an elastic member;

5 a first nip roll and a second nip roll for pressing together
the elastic member and a web;

a transfer section capable of transferring the guide
section across the web; and

an indicating section for indicating a position,

10 wherein when the guide section comes close to the position
while moving in a first direction, the transfer section can stop
transferring the guide section in response to a signal from the
indicating section.

15 2. A placement device according to claim 1, wherein:

the transfer section includes a motor capable of rotating
in a first rotation direction and a second rotation direction
opposite to the first rotation direction, whereby a moving
direction of the guide section can be changed by changing a rotation
20 direction of the motor;

the indicating section is a sensor for detecting the guide
section or the transfer section, and is capable of indicating that
the guide section is located at the position; and

25 if the sensor detects the guide section or the transfer
section when the rotation direction of the motor is the first
direction, a controller can stop the rotation of the motor.

3. A placement device according to claim 1, wherein:

a plurality of the sensors are arranged along a transfer direction of the transfer section;

5 the plurality of sensors indicate a plurality of positions necessary for producing products of different sizes;

the controller selects at least one of the sensors associated with a size of a product to be produced; and

10 the controller controls the motor according to the size of the product to be produced.

4. A placement device according to claim 1, wherein at least one of the first and second nip rolls can be moved.

15 5. A placement device according to claim 1, further comprising a stand on which the transfer section is placed, wherein the stand is movable so that a distance between a nip point between the nip rolls and the guide section can be changed.

20 6. A placement device according to claim 1, wherein the stand is movable along an axial direction of the nip rolls.

7. A placement device according to claim 1, wherein the elastic member is sandwiched between the web and another web.

25

8. A placement device according to claim 1, wherein an adhesive

for fixing the elastic member is applied continuously or intermittently on the web.

9. A placement device according to claim 7, wherein an adhesive
5 is applied continuously or intermittently on the web so as to surround the elastic member when the elastic member is placed on the web.

10. A placement device according to claim 1, wherein the elastic
10 member includes a heat-sealable member, and the elastic member and the web are heat-sealed together by the first and second nip rolls.

11. A placement device according to claim 7, wherein the first
15 nip roll includes a plurality of protrusions while the second nip roll functions as an anvil so that the protrusions melt portions of the web and another web to bond the webs to each other at a plurality of bonding points, whereby a position of the elastic member is restricted by the plurality of bonding points.

20

12. A method for producing a worn article, wherein the guide section is placed at the position by using a placement device according to claim 1, after which a cutter drum including a blade is rotated, and the transfer section starts transferring the guide section
25 when the blade is rotated to reach a predetermined position.

13. A placement device, comprising:

a guide section for guiding an elastic member;

a first nip roll and a second nip roll for pressing together
the elastic member and a first web; and

5 a transfer section capable of transferring the guide
section across the web,

wherein at least one of the first and second nip rolls
is movable.

10 14. A placement device according to claim 13, further comprising
a stand on which the transfer section is placed, wherein the stand
is movable so that a distance between a nip point between the nip
rolls and the guide section can be changed.

15 15. A placement device according to claim 14, wherein the stand
is movable along an axial direction of the nip rolls.

16. A placement device according to claim 13, wherein:

the elastic member is sandwiched between the first web
20 and a second web by the first and second nip rolls; and

an adhesive is applied continuously or intermittently on
at least one of the first and second webs so as to bond the elastic
member to at least one of the first and second webs.

25 17. A placement device according to claim 13, wherein:

the elastic member is sandwiched between the first web

and a second web by the first and second nip rolls; and
an adhesive is applied continuously or intermittently on
at least one of the first and second webs so as to bond the first
and second webs together in such a pattern as to surround the elastic
5 member to be placed on the webs.

18. A placement device according to claim 13, wherein:
the elastic member includes a heat-sealable member; and
the elastic member is sandwiched between the first web
10 and a second web by the first and second nip rolls.

19. A placement device according to claim 13, wherein:
the first nip roll is a heat emboss roll, and the second
nip roll is an anvil roll; and
15 the elastic member is sandwiched between the first web
and a second web by the first and second nip rolls, so as to bond
the first and second webs together through an embossing process,
thereby restricting a position of the elastic member.

20. 20. A placement device according to claim 13, wherein:
the first nip roll is a horn, and the second nip roll is
an anvil roll; and
the elastic member is sandwiched between the first web
and a second web by the first and second nip rolls, and the first
25 and second webs are bonded together ultrasonically, thereby
restricting a position of the elastic member.