EM384: Analytical Methods for Engineering Management

Lesson 13: Resource Allocation Problem

Table of contents

- 1. Lesson Objectives
- 2. Excel Solver
- 3. Resource Allocation Problems
- 4. Conclusion

Lesson Objectives

Lesson 13 Objectives

- Understand and recognize resource allocation problems.
- Formulate resource allocation problems algebraically.
- · Solve linear resource allocation problems using Excel Solver.

Excel Solver

Installing Excel Solver

Instructions for enabling Excel Solver in Excel: https://www.youtube.com/watch?v=LKV6fT8xApAt=2s

Resource Allocation Problems

Resource Allocation Problems

Linear programming problems involving the allocation of resources to activities.

Identifying feature: Resource constraint!

- Amount of resources used \leq amount of resources available.
- Objective: Maximize

Example Exercise

Cake A requires 200g of flour and 25g of sugar. There's a total of 5000g of flour and 1000g of sugar available. Cake A is sold for \$10 and cake B for \$8. How many of each cake should be made to maximize profit?

- 1. Formulate your linear program algebraically.
- 2. Design an Excel model to solve your linear program. Using Excel Solver, confirm the answer you got above.

Problem Formulation

Decision variables:

 x_1 : Number of cakes of type A that are made x_2 : Number of cakes of type B that are made

Objective function:

Maximize $Z = 10x_1 + 8x_2$ (profit)

Constraints:

 $200x_1 + 100x_2 \le 5000$ (flour) $25x_1 + 50x_2 < 1000$ (sugar)

 $x_1, x_2 \ge 0$ (non-negativity)

Graphical Solution Review

Graphical Solution Review

Enumeration of extreme points:

$$Z(20, 10) = 10(20) + 8(10) = 280$$

 $Z(0, 20) = 10(0) + 8(20) = 160$
 $Z(25, 0) = 10(25) + 8(0) = 250$
 $Z(0, 0) = 10(0) + 8(0) = 0$

Therefore, $x_1 = 20$ and $x_2 = 10$ maximizes the profit, which is \$280. The optimal number of cakes is 20 cakes of type A and 10 cakes of type B.

8

Excel Solution

A	А	В	С	D	E	F	
1	Parameters						
2							
3	Cake	Flour	Sugar	Resource Available			
4	Α	200	100	5000			
5	В	25	50	1000			
6	Profit	10	8	S .			
7							
8	Decision Variables						
9							
10		Cake A	Cake B				
11	Amount	20	10	N I			
12							
13	Objective Function						
14							
15	Total Profit	280					
16							
17	Constraints						
18		Cake A	Cake B	LHS		RHS	
19	Flour	200	100	5000	<=	5000	
20	Sugar	25	50	1000	<=	1000	
21							

Practical Exercise

You are the S3 Air of a battalion deploying to the Joint Readiness Training Center. Your battalion commander wants to deploy as many soldiers as possible.

- There are twelve C130 and ten C17 aircraft available from the Air Force at a cost of \$4K and \$5K per aircraft, respectively.
- \$80K is budgeted for airlift. For this type mission, the maximum pax load is 3 dozen for a C130 and 4 dozen for a C17.
- Only 36 hours of ground support are available to support your missions at the arrival airfield. A C130 requires 2 hours for service and a C17 requires 3 hours.

The S3 wants your recommendation for an airlift plan to support the deployment.

REQUIREMENT: Formulate the LP (Objective Function, Decision Variables, and Constraints) and solve using Excel Solver.

Algebraic Formulation

Decision variables:

 x_1 : Number of C130s used x_2 : Number of C17s used

Objective function:

Maximize $Z = 3x_1 + 4x_2$ (Soldiers deployed, in dozens)

Constraints:

 $x_1 \le 12$ (C130s available)

 $x_2 \le 10$ (C17s available)

 $2x_1 + 3x_2 \le 36$ (Ground support)

 $4x_1 + 5x_2 \le 80$ (Budget, in \$1000's)

 $x_1, x_2 \ge 0$ (non-negativity)

Excel Solution

Conclusion

Next Class

Homework:

- · Finish Homework Set 4
- Read Chapter 3.4 (Stop at Distribution Unlimited on page 59

Next Lesson:

- · Understand and recognize cost-benefit trade-off problems.
- · Formulate cost-benefit trade-off problems algebraically.
- · Solve cost-benefit trade-off problems using Excel Solve