Cluster Analysis

Hierarchical Clustering

 Produces a set of nested clusters organized as a hierarchical tree

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - 'cut' the dendogram at the proper level to have a certain number of clusters
- They may correspond to meaningful taxonomies
 - Example in biological sciences e.g.,
 - animal kingdom,
 - phylogeny reconstruction,
 - ...

Hierarchical Clustering

Algorithm

Let each data point be a cluster

Repeat

Merge the two closest clusters

Until only a single cluster remains

 Key operation is the computation of the proximity of two clusters.

First Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average

Cluster Similarity: MIN

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Can handle non-globular shapes

Limitations of MIN

Original Points

Real clusters

Sensitive to noise and outliers

Three clusters computed by MIN:

The green points got wrongly merged with the red ones, as opposed to the green one.

Cluster Similarity: MAX

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strengths of MAX

Original Points

Real clusters

Three clusters computed by MAX:

The upper green points get now merged with the other green one.

Less susceptible with respect to noise and outliers

Limitations of MAX

Original Points

Two Clusters

Tends to break large clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster\\p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{i}|}$$

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Time and Space

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering Example

Hierarchical Clustering Example

From
"Indo-European
languages tree by
Levenshtein
distance"
by M. Serva1 and F.
Petroni

DBSCAN

DBSCAN is a density-based algorithm.

Locates regions of **high density** that are separated from one another by regions of **low density**.

- Density = number of points within a specified radius (Eps)
- A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
- A noise point is any point that is neither a core point nor a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

- Any two core points that are close enough---within a distance Eps of one another---are put in the same cluster.
- Any border point that is close enough to a core point is put in the same cluster as the core point.
- Noise points are discarded.

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

Original Points

Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Why DBSCAN doesn't work well here?

DBSCAN: Determining EPS and MinPts

- Look at the behavior of the distance from a point to its kth nearest neighbor, called the kdist.
- For points that belong to some cluster, the value of kdist will be small [if k is not larger than the cluster size].
- However, for points that are not in a cluster, such as noise points, the kdist will be relatively large.
- So, if we compute the kdist for all the data points for some k, sort them in increasing order, and then plot the sorted values, we expect to see a sharp change at the value of kdist that corresponds to a suitable value of Eps.
- If we select this distance as the Eps parameter and take
 the value of k as the MinPts parameter, then points for
 which kdist is less than Eps will be labeled as core points,
 while other points will be labeled as noise or border
 points.

DBSCAN: Determining EPS and MinPts

- Eps determined in this way depends on *k*, but does not change dramatically as *k* changes.
- If k is too small?
 then even a small number of closely spaced points that are noise or outliers will be incorrectly labeled as clusters.
- If k is too large?
 then small clusters (of size less than k) are likely to be labeled as noise.
- Original DBSCAN used k = 4, which appears to be a reasonable value for most data sets.