#### **PATENT APPLICATION**

#### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Naoki KITAGAKI et al.

Application No.: 10/734,148

Filed: December 15, 2003

Docket No.: 118100

For: INFORMATION-RECORDING METHOD AND INFORMATION-RECORDING

MEDIUM

# **CLAIM FOR PRIORITY**

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2002-364493 filed December 16, 2002

In support of this claim, a certified copy of said original foreign application:

is filed herewith.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

James A. Oliff

Registration No. 27,075

Thomas J. Pardini Registration No. 30,411

JAO:TJP/tmw

Date: March 11, 2004

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400 DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

# 日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月16日

出 願 番 号 Application Number:

特願2002-364493

[ST. 10/C]:

[ J P 2 0 0 2 - 3 6 4 4 9 3 ]

出 願 人
Applicant(s):

日立マクセル株式会社

2003年10月30日

特許庁長官 Commissioner, Japan Patent Office





【書類名】 特許願

【整理番号】 2702-438

【あて先】 特許庁長官殿

【国際特許分類】 G11B 7/007

【発明者】

【住所又は居所】 大阪府茨木市丑寅一丁目1番88号 日立マクセル株式

会社内

【氏名】 北垣 直樹

【発明者】

【住所又は居所】 大阪府茨木市丑寅一丁目1番88号 日立マクセル株式

会社内

【氏名】 宮本 真

【特許出願人】

【識別番号】 000005810

【氏名又は名称】 日立マクセル株式会社

【代表者】 赤井 紀男

【代理人】

【識別番号】 100080193

【弁理士】

【氏名又は名称】 杉浦 康昭

【電話番号】 0297-20-5127

【手数料の表示】

【予納台帳番号】 041911

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9400011

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

情報記録方法及び情報記録媒体

【特許請求の範囲】

【請求項1】 情報記録媒体に対してレーザービームを一定の範囲の線速度で相対的に走査し、前記情報記録媒体のレーザービームが照射された部分の状態を変化させることにより情報の記録を行なう情報記録方法において、前記情報の記録を、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルP1と、第1のパワーレベルPhと、第1のパワーレベルP1の間で制御される第3のパワーレベルPmの間で変調されるパルスからなるパルス列を用い、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmを線速度に応じて変化させることを特徴とする情報記録方法。

【請求項2】 前記第3のパワーレベルPmを前記線速度に比例して増大させることを特徴とする請求項1に記載の情報記録方法。

【請求項3】 情報記録媒体に対してレーザービームを一定の範囲の線速度で相対的に走査し、前記情報記録媒体のレーザービームが照射された部分の状態を変化させることにより情報の記録を行なう情報記録方法において、前記情報の記録を、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルB1と、第1のパワーレベルP1と、第1のパワーレベルP1と第2のパワーレベルP1の間で制御される第3のパワーレベルPmの間で変調されるパルスからなるパルス列を用い、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmの前記第1のパワーレベルPhに対する比Pm/Phを線速度に応じて変化させることを特徴とする情報記録方法。

【請求項4】 前記第3のパワーレベルPmの前記第1のパワーレベルPhに対する比Pm/Phを前記線速度に比例して増大させることを特徴とする請求項3に記載の情報記録方法。

【請求項5】 情報記録媒体に対してレーザービームを一定の範囲の線速度

で相対的に走査し、前記情報記録媒体のレーザービームが照射された部分の状態を変化させることにより情報の記録を行なう情報記録方法において、前記情報の記録を、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルP1と、第1のパワーレベルP1と、第1のパワーレベルP1と、第1のパワーレベルP1と第1のパワーレベルP mの間で変調されるパルスからなるパルス列を用い、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルP1に対する相対比(Pm-P1)/(Ph-P1)を線速度に応じて変化させることを特徴とする情報記録方法。

【請求項6】 前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルPl1に対する相対比(Pm-Pl)/(Ph-Pl)を前記線速度に比例して増大させることを特徴とする請求項5に記載の情報記録方法。

【請求項7】 前記複数のパルスからなるパルス列の先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmに応じて変化させることを特徴とする請求項1~6に記載の情報記録方法。

【請求項8】 前記複数のパルスからなるパルス列の先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmに比例して増大させることを特徴とする、上記請求項7に記載の情報記録方法。

【請求項9】 前記複数のパルスからなるパルス列の先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmの前記第1のパワーレベルPhに対する比Pm/Phに応じて変化させることを特徴とする請求項1~6に記載の情報記録方法。

【請求項10】 前記複数のパルスからなるパルス列の先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmの前記第1のパワーレベルPhに対する比Pm/Phに比例して増大させることを特徴とする、上記請求項9に記載の情報記録方法。

【請求項11】 前記複数のパルスからなるパルス列の先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmと前記第1のパワーレベ

ルPhの、前記第2のパワーレベルPlに対する相対比(Pm-Pl)/(Ph-Pl)に応じて変化させることを特徴とする請求項1~6に記載の情報記録方法。

【請求項12】 前記複数のパルスからなるパルス列の先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルPlに対する相対比(Pm-Pl)/(Ph-Pl)に比例して増大させることを特徴とする請求項11に記載の情報記録方法。

【請求項13】 レーザービームを一定の範囲の線速度で相対的に走査し、前記レーザービームが照射された部分の状態を変化させることにより情報の記録が行われる情報記録媒体において、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルPlの間で制御される第3のパワーレベルPmの間で変調されるパルスからなるパルス列を用いて情報の記録が行われ、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmは線速度に応じて変化させる値であり、前記情報記録媒体には、前記第1のパワーレベルPhと前記第3のパワーレベルPmの比を表す情報と、前記線速度に関する情報の両方が記録されていることを特徴とする情報記録媒体。

【請求項14】 前記第1のパワーレベルPhと前記第3のパワーレベルPmの比を表す情報が、前記線速度に対関する情報に対応して記録されていることを特徴とする請求項13に記載の情報記録媒体。

【請求項15】 レーザービームを一定の範囲の線速度で相対的に走査し、前記レーザービームが照射された部分の状態を変化させることにより情報の記録が行われる情報記録媒体において、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルよりも低い第2のパワーレベルP1と、第1のパワーレベルP1の間で制御される第3のパワーレベルPmの間で変調されるパルスからなるパルス列を用いて情報の記録が行われ、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmで変視させる値であり、前記情報記録媒体には、前

記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルPlに対する相対比(Pm-Pl)/(Ph-Pl)を表す情報と、前記線速度に関する情報の両方が記録されていることを特徴とする情報記録媒体。

【請求項16】 前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルPlに対する相対比(Pm-Pl)/(Ph-Pl)を表す情報が、前記線速度に対関する情報に対応して記録されていることを特徴とする請求項15に記載の情報記録媒体。

## 【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$ 

# 【発明の属する技術分野】

本発明は、レーザービームの照射により情報の記録が可能な情報記録媒体に対する情報の記録方法およびこれに用いる情報記録媒体に係る。より詳しくは、記録の線速度、レーザーパワーの立ち上がり時間、立下り時間が異なる装置および情報記録媒体間において記録の互換性を確保し得る情報記録方法およびこれに用いる情報記録媒体に関する。さらには、記録の線速度が異なる装置において、レーザーパワーの最適化を簡易に行なうことができる情報記録方法およびこれに用いる情報記録媒体に関する。

[0002]

#### 【従来の技術】

近年、DVD-ROM, DVD-Video等の再生専用型光ディスク市場が拡大している。また、DVD-RAMやDVD-RW、DVD-+RWといった書き換え可能なDVDが市場投入され、コンピュータ用バックアップ媒体、VTRに代わる映像記録媒体として、市場が拡大しつつある。さらに、ここ数年、記録型DVDにおける転送レート、アクセススピード向上に対する市場の要求が増大してきている。

#### [0003]

光ディスクに情報を記録する方法として、CLV (ConstantLinearVelocity: 一定線速度)方式と、CAV (ConstantAngularVelocity)方式が挙げられる。 CLV方式は、光ディスクの回転数、すなわち、レーザービームと光ディスクの 相対速度が一定となるような制御方法である。これに対して、CAV方式は、光

ディスクを回転させる際の角速度を一定にして回転を制御する方式である。

## [0004]

CLV方式の特徴として、(1) 記録再生時のデータ転送レートが常に一定のため、信号処理回路を極めて簡素化できる。(2) レーザービームを光ディスクの半径方向に動かした場合、半径位置に応じて、モーターの回転数を制御しなおす必要がある。このため、アクセス速度が大幅に低下する、ことが挙げられる。

#### [0005]

CAV方式の特徴として、(1) 記録再生時のデータ転送レートが半径位置により異なるため、信号処理回路が増大する。(2) レーザービームを光ディスクの半径方向に動かした場合、半径位置に応じて、モーターの回転数を制御しなおす必要がないため、高速アクセスが可能となる、ことが挙げられる。

#### [0006]

また、DVD-RAM、DVD-RW等の記録消去可能な記録型DVD媒体では、相変化記録方式が採用されている。相変化記録方式では、基本的に[0]と[1]の情報を結晶とアモルファスに対応させて記録を行なっている。この結晶化した部分とアモルファス化した部分にレーザービームを照射し、反射光を再生させることにより、記録された[0]と[1]を検出できる。

#### [0007]

所定の位置をアモルファスにするためには、比較的高いパワーのレーザービームを照射することにより、記録層の温度が記録層材料の融点以上になるように加熱する。また、所定の位置を結晶にするためには、比較的低いパワーのレーザービームを照射することにより、記録層の温度が記録層材料の融点以下の結晶化温度付近になるように加熱する。こうする事により、アモルファス状態と結晶状態を可逆的に変化させることができる。

#### [0008]

相変化記録では、レーザービームにより記録層材料を融点以上に加熱した直後の冷却過程で、溶融領域外縁から結晶成長が起こり、記録マークのサイズを小さくしてしまう、再結晶化とよばれる現象が起こる。この再結晶化による記録マーク形状の劣化を抑えるために、例えば特開昭62-259229号公報、特開平3-185629

号公報に示されているように、記録パワーを直流的に照射するのではなく、記録パワー照射後にいったんパワーを落とし、パルス列として照射する方法が一般的である。この記録するパルス列の構成を記録ストラテジと呼ぶ。

#### [0009]

記録パワーの最適化に関して、DVD-RAMのドライブを例にとると、ディスクに書かれている記録パワーの値を用いて、データの試し書きを行ない、試し書きデータのエラーレートが最小となるように記録パワーの微調を行ない、記録パワーの最適化を行なっている。

## [0010]

## 【特許文献1】

特開平3-185629

## 【特許文献2】

特開昭62-259229

#### $[0\ 0\ 1\ 1]$

## 【発明が解決しようとする課題】

光ディスクのような可換型情報記録媒体では、様々な規格やメーカの情報記録装置に対する互換性を確保することは極めて重要である。例えばDVD-RAM媒体を例にとると、既にCLV回転制御による2倍速(データ転送レート:22Mbps、線速度8.2m/s)に対応したDVD-RAMドライブが市場に存在する。しかしながら、転送レート、アクセススピード向上の市場の要求を満たすため、記録の線速度を高めたCLV対応ドライブ、さらには、CAV対応ドライブが今後主流になると考えられる。このため、記録の線速度、転送レートが異なる、CAV対応ドライブ用と2倍速CLV対応ドライブにおいて記録の互換性を保証することは、消費者の利益には欠かせないことであり、非常に重要である。

#### $[0\ 0\ 1\ 2]$

ところが、記録の線速度が速く、データ転送レートが高いほど、記録信号の周波数を高くする必要がある。前述したようなレーザー光をパルス変調して照射する場合、パルス列を構成するそれぞれのパルスの時間幅は著しく短くなる。これに対し、レーザー発光素子は、駆動電流が印加されてから発光強度がその電流値

に対応する強度に達するまで時間を要する。したがって、転送レートを高くする ために上記パルスの幅が、発光素子の発光強度が駆動電流値に対応する強度に達 するまでの時間より短くなった場合、各パルスに対応するレーザー発光はピーク 値に達する前に減衰してしまう。その結果、レーザーパワーにより記録媒体に加 わる単位面積あたりのエネルギーが最適値からずれ、記録媒体に書かれる記録マークの形状が歪み、正確な情報の記録再生ができなくなってしまう。

# [0013]

また一方で、発光素子の駆動電流が印加されてから発光強度がその電流値に対応する強度に達するまで時間は、同じ波長のレーザー発光素子であっても、情報記録装置に搭載されている発光素子の種類によって大きく異なるため、同じストラテジーで記録を行っても、発光素子の種類によって記録媒体に加わる単位面積あたりのエネルギーが最適値からずれ、記録媒体に書かれる記録マークの形状が歪み、正確な情報の記録再生ができなくなってしまう。

## [0014]

このように、記録媒体に情報を記録する際のパワーの設定は非常に重要であるが、記録の線速度によるレーザーパワーの未飽和現象や、発光素子の種類によるレーザーパワーの立ち上がり時間、立下り時間によりの差により複雑に変化するため、情報記録装置において最適なパワーの設定を行なうことが容易ではない。

## [0015]

したがって、本発明の第1の目的は、上記問題点を解決し、データ記録の線速度、データ転送レートが速くなった場合に、情報記録装置において最適な記録のレーザーパワーの設定を簡単に行なうことができる情報記録方法およびこれに用いる情報記録媒体を提供することにある。

#### [0016]

本発明の第2の目的は、上記問題点を解決し、レーザーパワーの立ち上がり時間、立下り時間が異なる発光素子を搭載している情報記録装置間においても記録 互換性を確保し得る情報記録方法およびこれに用いる情報記録媒体を提供することにある。

## [0017]

本発明の第3の目的は、上記問題点を解決し、データ記録の線速度、データ転送レートが速くなった場合に、情報記録装置において最適な記録のレーザーパワーの設定を簡単に行なうことができ、レーザーパワーの立ち上がり時間、立下り時間が異なる発光素子を搭載している情報記録装置間の影響を考慮したうえで、記録互換性を確保し得る情報記録方法およびこれに用いる情報記録媒体を提供することにある。

# [0018]

## 【課題を解決するための手段】

本発明者らは、上記問題解決のため、記録の線速度が速くなる場合において最適な記録パワーの設定を簡易に行なうことができる記録方法を提案し、また、記録の線速度が異なる情報記録装置およびそれに用いる情報記録媒体において記録の互換性を確保するため以下の情報記録方法およびこれに用いる情報記録媒体を提案する。すなわち、

## [0019]

(1)情報記録媒体に対してレーザービームを一定の範囲の線速度で相対的に走査し、前記情報記録媒体のレーザービームが照射された部分の状態を変化させることにより情報の記録を行なう情報記録方法において、前記情報の記録を、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルPhと、第1のパワーレベルPhと、第2のパワーレベルPLの間で制御される第3のパワーレベルPmの間で変調されるパルスからなるパルス列を用い、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmを線速度に応じて変化させることにより、上記課題を解決することが可能になる。

#### [0020]

以上の情報記録方法を用いれば、本来、記録の線速度が速くなり、データの転送レートが上がり、記録データのクロック長が短くなった場合に起こるレーザーパワーの未飽和により、情報記録媒体に最適値を超える記録パルスのレーザーパワーのエネルギーが加わるのに対し、記録の線速度、データ転送レートあるいは

記録データのクロック長に応じて第3のPmレベルパワーを変化させることで、 記録パルスのレーザーパワーのエネルギーを最適値に保つことができる。これに より、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異な る情報記録装置において記録の互換性を確保することができる。

#### [0021]

(2) さらに、第3のパワーレベルPmを上記線速度に比例して増大させる情報記録方法を用いれば、まず、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保することができる。さらに、レーザーパワーPh、Pl、Pmの最適値を決定するにあたり、本来記録するレーザーパワー値を変えてエラーレートが最小となるように最適なパワーを各々別々に三つ決めなければならないところを、レーザーパワーPmの最適値は記録の線速度に比例して決めることができるので、実際に記録するレーザーパワーの値を変えて最適値を求めるのはPhとPlの二つに減ることから、最適な記録パワーの設定を簡易に行なうことができる。

## [0022]

(3) また、情報記録媒体に対してレーザービームを一定の範囲の線速度で相対的に走査し、前記情報記録媒体のレーザービームが照射された部分の状態を変化させることにより情報の記録を行なう情報記録方法において、前記情報の記録を、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルPhと、第1のパワーレベルPLの間で制御される第3のパワーレベルPmの間で変調されるパルスからなるパルス列を用い、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmの前記第1のパワーレベルPhに対する比Pm/Phを線速度に応じて変化させる情報記録方法を用いることで、レーザーの未飽和状態は変調する第1のパワーレベルPhの大きさによっても変化するので、上記(1)のPmの値を記録の線速度に応じて変化させた場合のほうが、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置におい

て記録の互換性を確保する効果が高くなる。

## [0023]

(4) さらに、Pm/Phを上記線速度に比例して増大させる情報記録方法を用いることで、まず、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保することができる。さらに、レーザーパワーPh、Pl、Pmの最適値を決定するにあたり、本来記録するレーザーパワー値を変えてエラーレートが最小となるように最適なパワーを各々別々に三つ決めなければならないところを、レーザーパワーPmの最適値はPm/Phの値を用いて、記録の線速度とPhの値から決めることができるので、実際に記録するレーザーパワーの値を変えて最適値を求めるのはPhとPlの二つに減ることから、最適な記録パワーの設定を簡易に行なうことができる。

#### [0024]

(5) また、情報記録媒体に対してレーザービームを一定の範囲の線速度で相対 的に走査し、前記情報記録媒体のレーザービームが照射された部分の状態を変化 させることにより情報の記録を行なう情報記録方法において、前記情報の記録を 、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPh と、第1のパワーレベルよりも低い第2のパワーレベルP1と、第1のパワーレベ ルPhと第2のパワーレベルPIの間で制御される第3のパワーレベルPmの間 で変調されるパルスからなるパルス列を用い、前記パルス列は、少なくとも前記 第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパル スを含み、前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第 2のパワーレベルP1に対する相対比(Pm-P1)/(Ph-P1)を線速度に応じて変化さ せる情報記録方法を用いることで、上記(1)のPmの値を記録の線速度に応じ て変化させる場合、あるいは、上記(2)のPm/Phの値を記録の線速度に応じ て変化させる場合よりも、レーザーパワーの未飽和状態を表す数値(Pm-Pl)/(Ph-Pl)を上記線速度に応じて変化させた場合のほうが、記録の線速度およびレーザ ーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互 換性を確保する効果が高くなる。

#### [0025]

(6) さらに、(Pm-P1)/(Ph-P1)を上記線速度に比例して増大させることを特徴とした情報記録方法を用いることで、まず、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保することができる。さらに、レーザーパワーPh、Pl、Pmの最適値を決定するにあたり、本来記録するレーザーパワー値を変えてエラーレートが最小となるように最適なパワーを各々別々に三つ決めなければならないところを、レーザーパワーPmの最適値は(Pm-P1)/(Ph-P1)の値を用いて、記録の線速度とPhとPlの値から決めることができるので、実際に記録するレーザーパワーの値を変えて最適値を求めるのはPhとPlの二つに減ることから、最適な記録パワーの設定を簡易に行なうことができる。

#### [0026]

(7) また、(1) ~ (6) において、複数のパルスからなるパルス列の、先頭パルスあるいは最後尾パルスのパルス幅を、上記第3のパワーレベルPmに応じて変化させることを特徴とする情報記録方法を用いることで、本来、レーザーパワーの未飽和現象によって最適な記録ストラテジのマルチパルス波形の先頭パルスの幅と最後尾のパルス幅が変化すること影響を、先頭パルスあるいは最後尾パルスのパルス幅をPmに応じて変化させることで緩和することができ、(1) ~ (6) の場合よりも、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保することができる。

#### [0027]

(8) さらに、(7) において、複数のパルスからなるパルス列の、先頭パルスあるいは最後尾のパルスのパルス幅を、上記第3のパワーレベルPmに比例して増大させることを特徴とする情報記録方法を用いることで、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保した上で、先頭パルスあるいは最後尾パルスのパルス幅をPmに比例して決めることができるので、記録ストラテジの最適化の工程を簡略化でき、ひいては、最適なストラテジを用いて行なう記録パワーの最適化も簡易に行なうことができる。

#### [0028]

(9) また、(1) ~ (6) において、複数のパルスからなるパルス列の、先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmの前記第1のパワーレベルPhに対する比Pm/Phに応じて変化させることを特徴とする情報記録方法を用いることで、上記(7)の先頭パルスあるいは最後尾のパルスのパルス幅をPmに応じて変化させる場合よりも、先頭パルスあるいは最後尾のパルスのパルス幅をPm/Phの値により応じて変化させた場合のほうが、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保する効果が高くなる。

#### [0029]

(10) さらに(9) において、複数のパルスからなるパルス列の、先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmの前記第1のパワーレベルPhに対する比Pm/Phに比例して増大させることを特徴とする情報記録方法を用いることで、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保した上で、先頭パルスあるいは最後尾パルスのパルス幅をPm/Phに比例して決めることができるので、記録ストラテジの最適化の工程を簡略化でき、ひいては、最適なストラテジを用いて行なう記録パワーの最適化も簡易に行なうことができる。

#### [0030]

(11) また、(1) ~ (6) において、複数のパルスからなるパルス列の、先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルP1に対する相対比(Pm-Pl)/(Ph-Pl)に応じて変化させることを特徴とする情報記録方法を用いることで、上記(7)の先頭パルスあるいは最後尾のパルスのパルス幅をPmに応じて変化させる場合、あるいは、上記(10)の先頭パルスあるいは最後尾のパルスのパルス幅をPm/Phに応じて変化させる場合よりも、先頭パルスあるいは最後尾のパルスのパルス幅をPm/Phに応じて変化させる場合よりも、先頭パルスあるいは最後尾のパルスのパルス幅をレーザーパワーの未飽和状態を表す数値(Pm-Pl)/(Ph-Pl)に応じて変化させた場合のほうが、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保する効果が高くなる。

# [0031]

(12) さらに、(11) において、複数のパルスからなるパルス列の、先頭パルスあるいは最後尾のパルスのパルス幅を、前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルPlに対する相対比(Pm-Pl)/(Ph-Pl)に比例して増大させることを特徴とする情報記録方法を用いることにより、記録の線速度およびレーザーパワーの立下り時間、立ち上がり時間が異なる情報記録装置において記録の互換性を確保した上で、先頭パルスあるいは最後尾パルスのパルス幅を(Pm-Pl)/(Ph-Pl)に比例して決めることができるので、記録ストラテジの最適化の工程を簡略化でき、ひいては、最適なストラテジを用いて行なう記録パワーの最適化も簡易に行なうことができる。

#### [0032]

(13) レーザービームを一定の範囲の線速度で相対的に走査し、前記レーザービームが照射された部分の状態を変化させることにより情報の記録が行われる情報記録媒体において、前記レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルPlと、第1のパワーレベルPhと第2のパワーレベルPlの間で制御される第3のパワーレベルPmの間で変調されるパルスからなるパルス列を用いて情報の記録が行われ、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmは線速度に応じて変化させる値であり、前記情報記録媒体には、前記第1のパワーレベルPhと前記第3のパワーレベルPmの比を表す情報と、前記線速度に関する情報の両方が記録されている情報記録媒体を用いることにより、異なる記録の線速度、レーザーパワーの立ち上がり時間、立下り時間を有する情報記録装置によらず、情報記録媒体に記載されている記録速度とPhとPmの比の情報から、最適な記録パワーを求める工程を簡易に行なうことができ、さらには異なる情報記録装置間で記録互換を実現することができる。

#### [0033]

(14) また、(13) において、前記第1のパワーレベルPhと前記第3のパワーレベルPmの比を表す情報が、前記線速度に対関する情報に対応して記録されている

情報記録媒体を用いることにより、(13)の場合よりも情報記録媒体に記載する情報を簡素化でき、ひいては、記録パワーの最適化も簡易に行なうことができる。

#### [0034]

(15) レーザービームを一定の範囲の線速度で相対的に走査し、前記レーザービ ームが照射された部分の状態を変化させることにより情報の記録が行われる情報 記録媒体において、前記レーザービームのレーザーパワーを、少なくとも第1の パワーレベルPhと、第1のパワーレベルよりも低い第2のパワーレベルPIと、 第1のパワーレベルPhと第2のパワーレベルPlの間で制御される第3のパワー レベルPmの間で変調されるパルスからなるパルス列を用いて情報の記録が行わ れ、前記パルス列は、少なくとも前記第1のパワーレベルPhと前記第3のパワ ーレベルPmで変調される複数のパルスを含み、前記第3のパワーレベルPmは 線速度に応じて変化させる値であり、前記情報記録媒体には、前記第3のパワー レベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルPlに対す る相対比(Pm-P1)/(Ph-P1)を表す情報と、前記線速度に関する情報の両方が記録 されている情報記録媒体を用いれば、上記(13)の情報記録媒体上に記録速度と PhとPmの比の情報が記載されている場合よりも、情報記録媒体上に記録速度 とレーザーパワーの未飽和状態を表す数値(Pm-P1)/(Ph-P1)の情報が記載されて いる場合の方が、記録の線速度およびレーザーパワーの立下り時間、立ち上がり 時間が異なる情報記録装置において記録の互換性を確保する効果が高くなる。

#### [0035]

(16) また、(15) において、前記第3のパワーレベルPmと前記第1のパワーレベルPhの、前記第2のパワーレベルPlに対する相対比(Pm-Pl)/(Ph-Pl)を表す情報が、前記線速度に対関する情報に対応して記録されている情報記録媒体を用いることにより、(15) の場合よりも情報記録媒体に記載する情報を簡素化でき、ひいては、記録パワーの最適化も簡易に行なうことができる。

#### [0036]

#### 【発明の実施の形態】

以下、本発明者らが行なったシミュレーションの結果と実験の結果を詳細に説

明する。

本発明者らは、記録の線速度が速くなり、データ転送レートが高くなるにつれ、記録のパルス波形が歪む現象を、下記の条件のもとにシミュレーションした。
(1) パルスのクロック周波数は、記録の線速度、データ転送レートに比例する。
(2) レーザーパワーの立ち上がりおよび立ち下がりの波形はコサインカーブで近似計算される。
(3) レーザーパワーは、記録の線速度のルートに比例して計算される。
(4) レーザーパワーの立ち上がり時間Trおよび立ち下がり時間Tfは、変調振幅に比例して計算される。
(5) 記録パワーの最適値は、レーザーの立ち上がりおよび立下り時間がゼロの場合を基準として、記録膜に加わるパルスの積算エネルギーが基準と等しくなるように計算される。

#### [0037]

図1および図2は、光記録媒体情報記録再生装置において、レーザーパワーの立ち上がりおよび立下り応答を調べた結果である。図中の点線は、コサインカーブであり、実機の応答と照合することから、本レーザーパワーの立ち上がりおよび立下りの計算は妥当であると言える。

#### [0038]

図3に、レーザーパワーの立ち上がり時間と立下り時間を説明するレーザーパルスの模式図を示す。本計算では、レーザーパワーの立ち上がり時間Trは、レーザーパワーのピーク値の10%に到達したときからピーク値の90%までに増加するのに要する時間である。また、レーザーパワーの立ち下り時間Tfは、レーザーパワーのピーク値の90%に到達したときからピーク値の10%までに減少するまでに要する時間である。

#### [0039]

次に、シミュレーションを用いて、実際に計算を行なった結果について説明する。

また、以下のシミュレーションでは、DVD-RAMの2倍速記録の場合の、転送レート22Mbps、線速8.2m/s、クッロク長T=17.13nsで、Ph=11.0mW、Pl=5.0mWを基準としてシミュレーションする。記録速度が5倍、線速が20.1m/sになった場合を計算すると、クロック長T=6.85ns、Ph=17.4mW、

PI=7.9 mWとなる。5倍速でTr=Tf=0.0 n s とすると、記録のパルス波形は図4のようになる。図4中において、記録膜に加わる積算エネルギーは、陰影部の面積で計算される。

## [0040]

つぎに、5倍速でTr=Tf=3nsになった場合を計算すると、記録のパルス 波形は図5のようになる。図5からわかるように、記録の線速度が上がり、クロック長が短くなることで、本来、P1レベルまで下がらなければいけないパルスの 立下りが、レーザーパワーが飽和しなくなることにより、Pmレベルまでしか下がらなくなってしまう。これにより、図5中の陰影部の面積で計算される記録膜 に加わるパルスの積算エネルギーは、図4の場合よりも相対的に大きくなり、図4の記録パルス波形で記録したマークとは異なる。図4の記録パルス波形と同じマークの記録を行なうためには、レーザーパワーの未飽和を考慮して、記録するPhレベルをあらかじめ低めに設定して、積算エネルギーを合わすようにしなければならない。

# [0041]

#### [0042]

このように、レーザーパワーの未飽和現象により、レーザーパワーの立ち上がり時間、立下り時間が異なると、最適なレーザーパワーレベルPhが異なること

、さらには記録の線速度が速くなればなるほどこの傾向が顕著になることは、レーザーパワーの立ち上がり、立下り時間および記録の線速度の異なる記録装置、 記録媒体の記録互換をとる上で著しい問題となる。

#### [0043]

また、図7に、2倍、3倍、4倍、5倍、6倍、7倍、8倍速記録において、Tr(=Tf)が0.5 n s か 63.5 n sまで変化したときに、上記レーザーパワーの未飽和を考慮して、Tr(=Tf)が0.0 n s の場合と積算エネルギーが等しくなるように設定したP h の値におけるP m の値をシミュレーションにより求めた結果を示す。2 倍速記録においては、Tr(=Tf)が0.5 n s か 64.0 n s まで、レーザーパワーの未飽和現象が起こらないので、<math>P m = P 1 のパワーレベルで記録することが可能である。しかしながら、記録速度が速くなるにつれ、レーザーパワーの未飽和現象が起こるため、例えば8 倍速記録においては、Tr(=Tf)が1.0 n s と 2.5 n s では、レーザーパワー<math>P m の値が異なってしまう。

#### [0044]

このように、レーザーパワーの未飽和現象により、レーザーパワーの立ち上がり時間、立下り時間が異なると、最適なレーザーパワーレベルPhのみならず最適なレーザーパワーレベルPmが異なること、さらには記録の線速度が速くなればなるほどこの傾向が顕著になることは、レーザーパワーの立ち上がり、立下り時間および記録の線速度の異なる記録装置、記録媒体の記録互換をとる上で著しい問題となる。

# [0045]

また、図6および図7において、横軸を記録速度に取り直した結果を図8および図9に示す。ここで記録速度は、1倍速(データ転送レート:11Mbps、線速度4.1m/sec)に対する倍数であらわしている。図8および図9に示すように、レーザーの立ち上がり時間、立下り時間が同じ場合においても、レーザーパワーレベルPh, Pmが記録速度に対して非線形に変化する。また、その傾向は、レーザーの立ち上がり時間、立下り時間が大きいほど顕著である。このように、記録速度に対して、レーザーパワーPh, Pmが非線形に変化することは、記録の線速度が変わる情報記録装置において、最適な記録のレーザーパワーを決定する際に、

エラーレートが最小となるように、Ph、Pl、Pmの三つのパワーを、各記録 線速度ごとに各々別個に変化させなければならず、レーザーパワーの試し書きの 手順が複雑になり、著しい問題となる。

## [0046]

本発明者らは、上記のようなレーザーパワーの未飽和現象により、レーザーパワーの立ち上がり、立下り時間および記録時の線速度が異なると、記録装置、記録媒体の記録互換をとることが難しくなること、さらに、最適なレーザーパワーレベルPh、PI、Pmを決定する工程が複雑になることを解決する方法として、以下の方法を提案する。

#### [0047]

レーザーレベルの未飽和をあらわす因子として(Pm-P1)/(Ph-P1)を考え、上記図6および図7の結果を、横軸を記録速度、縦軸を[(Pm-P1) / (Ph-P1)  $] \times 100$ とし、Tr(=Tf)が0.5 n s から3.5 n s の場合に、未飽和レベルがどのように変化するかまとめた結果を図10に示す。Tr(=Tf)が0.5 nsであると、2から8倍速記録までレーザーパワーの未飽和現象が起きないので、未飽和レベル[(Pm-P1) / (Ph-P1) ]×100は0%となる。しかしながら、Tr(=Tf)が1.0 n s から3.5 n s では、この未飽和レベルが非線形に変化する。このままでは、ATr(=Tf)、記録速度における、未飽和レベル、パワーレベルATP に ATP を簡便に求めることができない。

## [0048]

しかしながら、図11中の太線で示すように、あらかじめ生じる未飽和レベルを超えるように、[(Pm-P1)/(Ph-P1)]と記録速度の関係を簡便に線形になるように設定しておけば、レーザーパワーの立ち上がり時間、立下り時間による未飽和現象に左右されず、記録速度を決めることにより、[(Pm-P1)/(Ph-P1)]の値を用いて、パワーレベルPh、Pmを求めることができる。今、図11中に示す太線で[(Pm-P1)/(Ph-P1)]と記録速度の関係をあらわすとすると、[(Pm-P1)/(Ph-P1)]= (記録速度) ×(80/6)-(80/3)(%)となる。ここで記録速度は、1倍速に対する倍数であらわしている。

#### [0049]

上記[(Pm-P1) / (Ph-P1)]と記録速度の関係式を用い、2倍、3倍、4倍、5倍、6倍、7倍、8倍速記録において、Tr(=Tf)が0.5 n s から3.5 n s まで変化したときに、Tr(=Tf)が0.0 n s の場合と積算エネルギーが等しくなるように求めたPh の値およびPmの値を図12と図13に示す。

# [0050]

図12と図6を較べて分かるように、図6のレーザーパワーの未飽和の影響を受ける場合とくらべ、図11の未飽和レベルを超えるように、[(Pm-Pl)/(Ph-Pl)]と記録速度において一定の関係式を立てる場合では、各記録速度においてTr、TfによるパワーレベルPhの変動が生じていない。

#### [0051]

また、図13と図7を較べて分かるように、図7のレーザーパワーの未飽和の影響を受ける場合とくらべ、図11の未飽和レベルを超えるように、[(Pm-Pl)/(Ph-Pl)]と記録速度において一定の関係式を立てる場合では、各記録速度においてTr、TfによるパワーレベルPmの変動が生じていない。

## [0052]

図12、13の結果から、レーザーパワーの立ち上がり、立下り時間が異なっても、記録時の線速度によって記録するレーザーパワーレベルPh, Pmは一定であることから、レーザーパワーの立ち上がり時間、立下り時間および記録時の線速度が異なっても、[(Pm-Pl)/(Ph-Pl)]と記録速度において一定の関係式を立てておくことで、情報記録装置間の記録互換をとることが可能であることがわかる。

#### [0053]

図12と図13において、横軸を記録速度に取り直した結果を図14および図15に示す。ここで記録速度は、1倍速に対する倍数であらわしている。

図14と図8を較べて分かるように、図8のレーザーパワーの未飽和の影響を受ける場合とくらべ、図14の未飽和レベルを超えるように、[(Pm-P1)/(Ph-P1)]と記録速度において一定の関係式を立てる場合では、レーザーの立ち上がり時間、立下り時間に依存せず、記録速度からレーザーパワーPhを一意に決めることができる。



図15と図9を較べて分かるように、図9のレーザーパワーの未飽和の影響を受ける場合とくらべ、図15の未飽和レベルを超えるように、[(Pm-P1)/(Ph-P1)]と記録速度において一定の関係式を立てる場合では、レーザーの立ち上がり、立下り時間に依存せず、記録速度からレーザーパワーPmを一意に決めることができる。

# [0055]

図14、15の結果から、レーザーパワーの立ち上がり、立下り時間が異なっても、記録の線速度によって記録するレーザーパワーレベルPh, Pmを一意に決めることができることから、レーザーパワーの立ち上がり時間、立下り時間および記録時の線速度が異なっても、[(Pm-P1)/(Ph-P1)]と記録の線速度において一定の関係式を立てておくことで、記録の線速度からPhとPmの最適な記録パワーを一意に求めることができることがわかる。

#### [0056]

このように、レーザーパワーの立ち上がり時間、立下り時間および記録の線速度の使用する範囲で生じる未飽和レベルを超えるように、[(Pm-P1)/(Ph-P1)]と記録の線速度において一定の関係を設定しておけば、レーザーパワーの立ち上がり時間、立下り時間によるレーザーの未飽和現象を考慮せず、レーザーパワーPmを、記録線速度による一定の関係から導き出すことができる。つまり、レーザーパワーPhとPlを決めることにより、Pmの値を計算により求めることができる。このことにより、本来最適な記録パワーとして、Ph、Pl、Pmの3つの値を別々に決定しなければならないのに対し、PhとPlを決めることによりおのずとPmの値も決まることから、最適な記録レーザーパワーの決定を行なう工程が簡単になる。

#### [0057]

また、この方法を記録装置に使用するか、あるいは記録媒体にあらかじめ情報 として記録しておけば、記録時の線速度、レーザービームの立ち上がり時間、立 下り時間が異なる装置において、最適な記録パワーを求める工程が簡単になると ともに、記録の互換性も確保することができる。

# [0058]

また、同様に、上記図5および図6の結果を、横軸を記録速度、縦軸をPm/P hとし、Tr(=Tf)が0.5 n s から3.5 n s の場合に、未飽和レベルがどのように変化するかまとめた結果を図16に示す。上記図11 の場合と同様に、図16中の太線で示すように、あらかじめ生じる未飽和レベルを超えるように、Pm/P h と記録速度の関係を簡便に線形近似しておけば、レーザーパワーの立ち上がり、立下り時間による未飽和現象に左右されず、記録速度を決めることにより、Pm/P h の値をから、P h の値を用いて、P m の値を求めることも可能である。

## [0059]

また、同様に、図16における縦軸のPm/Phの比を、ある記録の線速度、例えば図17に示すように、2倍速記録におけるPm/Phの比 $Pm \times 2/Ph \times 2$ で規格化した場合でも、図17中の太線で示すように、あらかじめ生じる未飽和レベルを超えるように、 $(Pm/Ph)/(Pm \times 2/Ph \times 2)$ と記録速度の関係を簡便に線形近似しておけば、レーザーパワーの立ち上がり、立下り時間による未飽和現象に左右されず、記録速度を決めることにより、Pm/Phの値から、Phの値を用いて、Pmの値を求めることも可能である。

#### [0060]

なお、本シミュレーションでは、Tr=TfであるTr/Tf=1の場合について述べたが、Tr/Tf<1あるいはTr/Tf>1の場合でも、あらかじめTr/Tfを別の値に決めた上で、上記した場合と同様にレーザーパワーPh、Pm、Pl と記録の線速度に一定の関係を設定することで、Tr/Tf の値によらずTr/Tf=1.0の場合と同様の効果が得られる。また、想定される変動のほぼ中心にTr/Tf の値を決定したのちに、上記した場合と同様にレーザーパワーPh、Pm、Pl と記録時の速度に一定の関係を設定すれば、Tr/Tf の値が変動することによるレーザーパワーの最適値の変動を、最小に抑えることができる。

#### $[0\ 0\ 6\ 1]$

さらに、上記シミュレーションにより得た結果をもとに、実際に実験を行なった本発明の実施例を示す。

4.7GBDVD-RAMのフォーマットを基準とする、トラックピッチ1.2μm

、溝深さ65 n mの凹凸の案内溝で表面が覆われている半径120mm、厚さ0.6mm のポリカーボネート基板の上に、スパッタリングプロセスにより、第1保護層としてZnS-Si02を100 n m、第1界面層としてGeCrNを10 n m、記録層としてBiGeTeを10 n m、第2界面層としてGeCrNを10 n m、第2保護層としてZnS-Si02を50 n m、熱吸収率補正層層としてGeCrを50 n m、熱拡散層としてAlを80 n m、順次成膜し、実施例に使用した情報記録媒体を得た。

# [0062]

この情報記録媒体を、レーザー初期化装置を用いて結晶化させた後、記録再生 特性を調べるにあたり、図18に示す光記録媒体情報記録再生装置を用いた。

#### [0063]

以下に本実施例で用いた光記録媒体情報記録再生装置の動作、記録再生過程を説明する。まず、記録装置外部からの情報は8ビットを1単位として、8-16変調器18-7に伝送される。情報記録媒体18-1に情報を記録する際には、情報8ビットを16ビットに変換する変調方式、いわゆる8-16変調方式を使う。この変調方式では情報記録媒体上に、8ビットの情報に対応させた3T~14Tのマーク長の情報の記録を行なっている。図中8-16変調器18-7はこの変調を行なっている。なお、ここでTとは情報記録時のデータのクロック長を表しており、本実施例では、記録の線速度8.2m/sのときに17.1ns、20.5m/sのときに6.9nsとした。

#### $[0\ 0\ 6\ 4]$

8-16変調器2-8により変換された3T~14Tのデジタル信号は、記録波形発生回路18-5に転送され、高パワーである第1のパワーレベルPhのパワーのパルスの幅を約T/2とし、Phのレーザー照射時間に幅が約T/2の、第2のパワーレベルPlあるいは第1のパワーレベルPhと第2のパワーレベルPlの間の第3のパワーレベルPmのレーザー照射を行ない、上記一連のPhレベルのパルス間に中間パワーレベルPlあるいはPmのレーザー照射が行なわれるマルチパルス記録波形が生成される。また、上記記録波形発生回路18-5内において、3T~14Tの信号を時系列的に交互に「0」と「1」と「2」に対応させ、「0」の場合にはPlのパワーレベルのレーザーパワー、「2」の場合にはPhのパワーレベルのレーザーパワーを照射している。この際、情

報記録媒体18-1上のPlのパワーレベルのレーザービームが照射された部位は結晶となり、Phのパワーレベルのパルスを含む一連のパルス列で照射された部位はアモルファス(マーク部)に変化する。また、上記記録波形発生回路18-5は、マーク部を形成するためのPhのパワーレベルのパルスを含む一連のパルス列を形成する際に、マーク部の前後のスペース長に応じて、図19に示すようなマルチパルス波形の先頭パルスの幅Tfpと最後尾のパルス幅Tlpを変化させる方式(適応型記録波形制御)に対応したマルチパルス波形テーブルを有しており、これによりマーク間に発生するマーク間熱干渉の影響を極力排除できるマルチパルス記録波形を発生している。

#### [0065]

波形発生回路18-5により生成された記録波形は、レーザー駆動回路18-6に転送され、レーザー駆動回路18-6はこの記録波形をもとに、光ヘッド18-3内の半導体レーザーを発光させる。本光記録媒体情報記録再生装置に搭載された光ヘッド18-3は、情報記録用のレーザービームとして、波長655 n mの半導体レーザーが使用されている。また、このレーザー光をNA0.6の対物レンズにより上記情報記録媒体18-1の記録層上に絞込み、上記記録波形に対応したレーザーのレーザービームを照射することにより記録を行なった。

#### [0066]

また、本光記録媒体情報記録再生装置は、グルーブとランド(グルーブ間の領域)の両方に情報を記録する方式(いわゆるランドグルーブ記録方式)に対応している。本光記録媒体情報記録再生装置ではL/Gサーボ回路18-8により、ランドとグルーブに対するトラッキングを任意に選択することができる。記録された情報の再生も上記光ヘッド18-3を用いて行なった。レーザービームを記録されたマーク上に照射し、マークとマーク以外の部分からの反射光を検出することにより、再生信号を得る。この再生信号の振幅をプリアンプ回路18-4により増大させ、8-16復調器18-9に転送する。8-16復調器18-9では16ビットごとに8ビットの情報に変換する。以上の動作により、記録されたマークの再生が完了する。以上の条件で上記光情報記録媒体18-1に記録を行なった場合、最短マークである3Tマークのマーク長は約0.42μm、最長マークである14Tマークのマーク長は約1.96

μmとなる。

# [0067]

なお、ジッタの評価を行なう際には、 $3T\sim14T$ を含むランダムパターンの信号の記録再生を行ない、再生信号に波形等価、2値化、PLL(PhaseLocked Loop)処理を行ない、ジッタを測定した。

## [0068]

## [0069]

以下、Tr、Tfが異なる光記録媒体評価装置を使用して、記録パルス列の構成(記録ストラテジ)と記録の線速度を変えてデータを記録し、さらに再生の線速度を変えてデータを再生し、装置間において記録再生の互換としてデータ再生時のジッタの値を調べた手順について説明する。本実施例では、2倍速記録として、記録の線速度を8.2m/s、記録データのクロック長を17.1ns、データ転送レートを22Mbpsに設定している。また、5倍速記録として、記録の線速度を20.5m/s、記録データのクロック長を6.9ns、データ転送レートを55Mbpsに設定している。

# [0070]

なお、ジッタの測定は、連続5トラックに内周から外周に順番にランダムパターンを10回記録した後に、5トラック中の中心のトラックで、再生のレーザーパワーを1.0mWに設定し、ジッタ値を測定した。本実施例では、5倍速記録の記録の線速度20.5m/s、クロック長6.9 n s、データ転送レート55M b p s のときのジッタの目標値を8%以下、規格上限値として9%以下を設定している。

### [0071]

## [比較例1]

(手順1-1) まず最初に、Tr、Tfの値が小さい装置Bにおいて、上記情報記録媒体を線速度8.2m/sの条件で、PmとPlのパワーレベルが等しくなるようにランドで適応型記録波形制御によりマルチパルス波形の先頭パルスの幅と最後尾のパルス幅の最適化を行ない、作成した記録ストラテジSb0を用いて最適なパワーでグルーブおよびランドにランダム信号の記録を行ない、線速度8.2m/sで信号を再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々パワーを変化させて決定した。

#### [0072]

(手順1-2) 次に、Tr、Tfが大きい装置Aにおいて、上記情報記録媒体を線速度8.2m/sの条件で、記録ストラテジSb0を用いて最適なパワーをグルーブおよびランドで決定したのち、ランダム信号の記録を行ない、線速度8.2m/sで信号を再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々変化させて決定した。

#### [0073]

#### [比較例2]

(手順2-1) 今度は、装置Bにおいて、上記情報記録媒体を線速度20.5m/sの条件で、PmとPlのパワーレベルが等しくなるようにランドで適応型記録波形制御によりマルチパルス波形の先頭パルスの幅と最後尾のパルス幅の最適化を行ない、作成した記録ストラテジSblを用いて最適なパワーでグルーブおよびランドにランダム信号の記録を行ない、線速度20.5m/sで信号を再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々変化させて決定した。

#### [0074]

(手順2-2) 次に、装置Aにおいて、上記情報記録媒体を線速度20.5m/sの条件で、記録ストラテジSb1を用いてPmとPlのパワーレベルが等しくなるよう

にグルーブおよびランドで最適なパワーを決定したのち、ランダム信号の記録を行ない、線速度20.5m/sで信号を再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々変化させて決定した。

## [0075]

#### 「実施例1]

(手順3-1) さらに、装置Bにおいて、Pm/Ph=0.65となるように適応型記録 波形制御によりランドでマルチパルス波形の先頭パルスの幅と最後尾のパルス幅 の最適化を行ない、作成した記録ストラテジSb2を用いて最適なパワーでグルーブおよびランドにランダム信号の記録を行ない、線速度20.5m/sで信号を再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々変化させて決定し、Pmの値は決定したPhの値からPm=0.65\*Phの関係式を用いて求めた。

## [0076]

(手順3-2、3-3) また、装置Aにおいて、装置Bで記録したこの信号を、線速度20.5m/sと線速度8.2m/sで再生を行ない、グルーブおよびランドで再生ジッタを調べた。

#### [0077]

(手順3-4)次に、装置Aにおいて、上記情報記録媒体を線速度20.5m/sの条件で、記録ストラテジSb2を用いてPm/Ph=0.65となるように最適なパワーをグルーブおよびランドで決定したのち、ランダム信号の記録を行ない、線速20.5 m/sで再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々変化させて決定し、Pmの値は決定したPhの値からPm=0.65\*Phの関係式を用いて求めた。

#### [0078]

(手順3-5、3-6) また、装置Bにおいて、装置Aで記録したこの信号を、線速度20.5m/sと線速度8.2m/sで再生を行ない、グルーブおよびランドで再生ジッ

タを調べた。

# [0079]

# [実施例2]

(手順4-1) さらに、装置Bにおいて、Pm/Ph=0.75となるように適応型記録 波形制御によりランドでマルチパルス波形の先頭パルスの幅と最後尾のパルス幅 の最適化を行ない、作成した記録ストラテジSb3を用いて最適なパワーでグルーブおよびランドにランダム信号の記録を行ない、線速度20.5m/sで信号を再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々変化させて決定し、Pmの値は決定したPhの値からPm=0.75\*Phの関係式を用いて求めた

# [0080]

(手順4-2、3-3) また、装置Aにおいて、装置Bで記録したこの信号を、線速度20.5m/sと線速度8.2m/sで再生を行ない、グルーブおよびランドで再生ジッタを調べた。

#### [0081]

(手順4-4)次に、装置Aにおいて、上記情報記録媒体を線速度20.5m/sの条件で、記録ストラテジSb3を用いてPm/Ph=0.75となるように最適なパワーをグルーブおよびランドで決定したのち、ランダム信号の記録を行ない、線速度20.5m/sで信号を再生し、グルーブおよびランドで再生ジッタを調べた。なお、最適な記録パワーの決定として、ジッタが最小となるように、PhとPlの値を各々変化させて決定し、Pmの値は決定したPhの値からPm=0.75\*Phの関係式を用いて求めた。

# [0082]

(手順4-5、4-6) また、装置Bにおいて、装置Aで記録したこの信号を、線速度20.5m/sと線速度8.2m/sで再生を行ない、グルーブおよびランドで再生ジッタを調べた。

#### [0083]

上記、Tr、Tfが異なる光記録媒体評価装置を使用して、記録パルス列の構

成(記録ストラテジ)と記録の線速度を変えてデータを記録し、さらに再生の線速度を変えてデータを再生し、装置間において記録再生の互換としてデータ再生時のジッタの値を調べた結果を表1にまとめる。なお、表1において未飽和レベルは、(Pm-Pl)/(Ph-Pl)で計算される数値である。

[0084]

# 【表1】

|       | 手順       | 1     | 記録 |       | 再生 | 再生    | グルーブ | Ph   | PI   | Pm   | Pm/Ph | 未飽和  | ジッタ  |
|-------|----------|-------|----|-------|----|-------|------|------|------|------|-------|------|------|
|       |          | ストラテジ | 装置 | 線速度   | 装置 | 線速度   | ランド  | (mW) | (mW) | (mW) |       | レベル  | (%)  |
|       |          |       |    | (m/s) |    | (m/s) | 1    |      |      |      |       |      |      |
| 比較例 1 | 1-1      | Sb0   | В  | 8.2   | В  | 8.2   | グルーブ | 10.2 | 4.2  | 4.2  | 0.41  | 0.00 | 8.5  |
|       |          |       |    |       |    |       | ランド  | 10.5 | 4.4  | 4.4  | 0.42  | 0.00 | 8.2  |
|       | 1-2      | Sb0   | Α  | 8.2   | Α  | 8.2   | グルーブ | 10.0 | 4.2  | 4.2  | 0.42  | 0.00 | 8.6  |
|       | <u> </u> |       |    |       |    |       | ランド  | 10.4 | 4.4  | 4.4  | 0.42  | 0.00 | 8.4  |
| 比較例 2 | 2-1      | Sb1   | В  | 20.5  | В  | 20.5  | グルーブ | 14.7 | 6.4  | 6.4  | 0.44  | 0.00 | 7.7  |
|       |          |       |    |       |    |       | ランド  | 15.1 | 6.5  | 6.5  | 0.43  | 0.00 | 7.4  |
|       | 2-2      | Sb1   | Α  | 20.5  | Α  | 20.5  | グルーブ | 13.9 | 6.2  | 6.2  | 0.45  | 0.00 | 10.4 |
|       |          |       |    |       |    |       | ランド  | 14.2 | 6.5  | 6.5  | 0.46  | 0.00 | 9.8  |
| 実施例 1 | 3-1      | Sb2   | В  | 20.5  | В  | 20.5  | グルーブ | 11.8 | 6.2  | 7.7  | 0.65  | 0.27 | 7.6  |
|       | <u> </u> |       |    |       |    |       | ランド  | 12.4 | 6.5  | 8.1  | 0.65  | 0.27 | 7.3  |
|       | 3-2      | Sb2   | В  | 20.5  | Α  | 20.5  | グルーブ | -    | _    |      |       |      | 7.7  |
|       |          |       |    |       |    |       | ランド  |      |      | _    |       |      | 7.5  |
|       | 3-3      | Sb2   | В  | 20.5  | Α  | 8.2   | グルーブ | _    | _    | _    |       |      | 7.7  |
| İ     |          |       |    |       |    |       | ランド  |      | -    | _    |       |      | 7.5  |
|       | 3-4      | Sb2   | Α  | 20.5  | Α  | 20.5  | グルーブ | 11.7 | 6.2  | 7.6  | 0.65  | 0.25 | 7.7  |
|       |          |       |    |       |    |       | ランド  | 12.2 | 6.5  | 7.9  | 0.65  | 0.25 | 7.4  |
|       | 3-5      | Sb2   | Α  | 20.5  | В  | 20.5  | グルーブ | _    | _    | _    | _     |      | 7.6  |
|       |          |       |    |       |    |       | ランド  | _    | _    |      | _     |      | 7.4  |
|       | 3–6      | Sb2   | Α  | 20.5  | В  | 8.2   | グルーブ |      |      | _    | _     |      | 7.7  |
|       |          |       |    |       |    |       | ランド  |      | _    | _    | _     |      | 7.5  |
| 実施例 2 | 4-1      | Sb3   | В  | 20.5  | В  | 20.5  | グルーブ | 10.3 | 6.2  | 7.7  | 0.75  | 0.37 | 7.5  |
|       |          |       |    |       |    |       | ランド  | 10.8 | 6.5  | 8.1  | 0.75  | 0.37 | 7.2  |
|       | 4-2      | Sb3   | В  | 20.5  | Α  | 20.5  | グルーブ | _    |      | _    |       | _    | 7.6  |
|       |          |       |    |       |    |       | ランド  |      |      | _    |       |      | 7.4  |
|       | 4-3      | Sb3   | В  | 20.5  | Α  | 8.2   | グルーブ |      |      | _    |       |      | 7.7  |
|       |          |       |    |       |    |       | ランド  | _    |      |      | _     | _    | 7.5  |
|       | 4-4      | Sb3   | Α  | 20.5  | Α  | 20.5  | グルーブ | 10.2 | 6.2  | 7.6  | 0.75  | 0.35 | 7.6  |
|       | L        |       |    |       |    |       | ランド  | 10.6 | 6.5  | 7.9  | 0.75  | 0.34 | 7.3  |
|       | 4-5      | Sb3   | Α  | 20.5  | В  | 20.5  | グルーブ |      |      |      |       | ]    | 7.6  |
|       |          |       |    |       |    |       | ランド  |      |      |      |       |      | 7.4  |
|       | 4–6      | Sb3   | Α  | 20.5  | В  | 8.2   | グルーブ |      |      | _    |       | ]    | 7.7  |
|       |          |       |    |       |    |       | ランド  | _    |      |      | _=_1  |      | 7.4  |

[0085]

まず、表1の比較例1をみて分かるように、第2の記録パワーレベルP1と第3の

パワーレベル P mが同じ場合、2倍速記録の記録の線速度8.2m/s、20 ロック長17.1nsのときは、レーザーパワーの立ち上がり時間 170 下、立下り時間 170 が各々1.1ns、10.9nsと小さい装置 100 において最適化を行なった記録ストラテジ 100 を用いて、100 で 100 で

# [0086]

しかしながら、比較例2をみても分かるように、第2の記録パワーレベルP1と第3のパワーレベルPmが同じ場合、5倍速記録の記録の線速度20.5m/s、クロック長6.9 n s のときは、装置Bにおいて最適化を行なった記録ストラテジSb1を用いて、装置Aにおいて最適なパワーで記録を行なうと、装置Bで記録再生されるジッタが目標の8%以下であるのに対し、装置Aで記録再生されるジッタは規格の上限値である9%を超えてしまっている。このことから、記録の線速度が上がることにより、Tr、Tf の異なる装置において記録の互換がとれなくなることが分かる。なお、比較例1において、第1のパワーレベルPhと第3のパワーレベルPmの比Pm/Ph=0.43~0.46であり、レーザーパワーの未飽和レベルを表す数値(Pm-P1) / (Ph-P1) の値は0である。

# [0087]

次に、実施例1として、第3のパワーレベルPmを記録の線速度に応じて変化させ、第1のパワーレベルPhと第3のパワーレベルPmの比Pm/Ph=0.65に設定した場合を示す。5倍速記録の記録の線速度20.5m/sのときに、装置Bにおいて最適化を行なった記録ストラテジSb2を用いて、線速度20.5m/sで装置Bにおいて記録再生を行なうと、このときのジッタの値は、比較例2で示した値とほぼ同じ値になっており、目標の8%以下である。また、この装置Bで記録したデータを、装置Aにおいて線速度20.5m/sと線速度8.2m/sで再生した場合のジッタの値も、装置Bで再生した場合とほぼ同じ値で、目標の8%以下である。さらに、装置Aにおいて線速度20.8m/sで、記録ストラテジSb2を用いてPm/Ph=0.65となるように決定した最適なパワーで記録再生を行なうと、ジッタは、装置Bで記録再生した場合とほぼ同じ値となっており、目標の8%以下である

。また、この装置Aで記録したデータを、装置Bにおいて線速度20.5m/sと線速度8.2m/sで再生した場合のジッタの値も、装置Bで再生した場合とほぼ同じ値で、目標の8%以下である。このことから、第3のパワーレベルPmを記録の線速度に応じて変化させ、Pm/Ph=0.65に設定することで、記録の線速度が上がっても、Tr、Tfの異なる装置において記録の互換がとれることが分かる。なお、実施例1において、レーザーパワーの未飽和レベルを表す数値(Pm-Pl)/(Ph-Pl)の値は $0.25\sim0.27$ である。

## [0088]

さらに、実施例2として、第3のパワーレベルPmを記録の線速度に応じて変化させ、第1のパワーレベルPhと第3のパワーレベルPmの比Pm/Ph=0.75に設定した場合を示す。5倍速記録の記録の線速度20.5m/sのときに、装置Bにおいて最適化を行なった記録ストラテジSb3を用いて、線速度20.5m/sで装置Bにおいて記録再生を行なうと、このときのジッタの値は、比較例2で示した値とほぼ同じ値になっており、目標の8%以下である。また、この装置Bで記録したデータを、装置Aにおいて線速度20.5m/sと線速度8.2m/sで再生した場合のジッタの値も、装置Bで再生した場合とほぼ同じ値で、目標の8%以下である。

#### [0089]

さらに、装置Aにおいて線速度20.8m/sで、記録ストラテジSb3を用いてPm/Ph=0.75となるように決定した最適なパワーで記録再生を行なうと、ジッタは、装置Bで記録再生した場合とほぼ同じ値となっており、目標の8%以下である。また、この装置Aで記録したデータを、装置Bにおいて線速度20.5m/sと線速度8.2m/sで再生した場合のジッタの値も、装置Bで再生した場合とほぼ同じ値で、目標の8%以下である。このことから、第3のパワーレベルPmを記録の線速度に応じて変化させ、Pm/Ph=0.75に設定することで、記録の線速度が上がっても、Tr、Tf の異なる装置において記録の互換がとれることが分かる。なお、実施例2において、レーザーパワーの未飽和レベルを表す数値(Pm-P1)/ (Ph-P1) の値は $0.34\sim0.37$ である。

# [0090]

このように、本来、最適な記録パワーの決定が、PhとPlとPmの3値を決

める複雑な工程であるのに対し、記録速度に応じてPh/Pmの値を設定することにより、Pmの値をPhの値から求めることができるので、最適な記録パワーの決定を、PhとPlの2値を決める工程に簡素化することができる。

## [0091]

さらに、本実施例1および実施例2におけるPhの値が比較例2におけるPhの値よりも小さいことから分かるように、本発明を用いることにより、記録パワーの最大レベルを下げることが可能となる。このことから、本発明を、レーザーパワーの出力値に上限がある情報記録装置に適用すれば、記録の線速度およびデータ転送レートをより高め、記録データのクロック長をより短くする効果が得られる。

#### [0092]

また、実施例で用いた記録ストラテジSb1、Sb2、Sb3の、例えば3T信号のあとの7T信号におけるパルス幅に言及すれば、図19で示す先頭パルスのパルス幅Tfpと、最終パルスのパルス幅Tlpは、クロック長Tを基準として、Sb1の場合はTfp=1.75T、Tlp=0.63T、Sb2の場合はTfp=2.06T、Tlp=0.50Tである。このように、各記録ストラテジにおいてTfp、Tlpの値が変化していることから、記録の線速度、あるいは第3のパワーレベルPm、あるいは第1のパワーレベルPhと第3のパワーレベルPmの比Pm/Ph、あるいはレーザーパワーの未飽和レベルを表す数値(Pm-P1)/(Ph-P1)に応じて、記録ストラテジの先頭パルスのパルス幅Tfpと、最終パルスのパルス幅Tlpを変えることにより、記録ストラテジの最適化を簡略に行なうことができ、ひいては、最適な記録ストラテジを用いて行なう記録パワーの最適化の工程も簡略化できる。

# [0093]

以上説明したように、本発明によれば、データ記録の線速度、データ転送レートが速くなった場合に、レーザーの立ち上がり時間、立下り時間の影響を考慮したうえで、情報記録装置において最適な記録のレーザーパワーの設定を簡単に行なうことができる。さらに、本発明によれば、データ記録の線速度、データ転送レート、レーザーの立ち上がり時間、立下り時間が異なる情報記録装置間におい

て記録互換性を確保することができる。

# [0094]

なお、本実施例では、レーザーの立ち上がり時間、立下り時間が小さい装置Bで最適化したストラテジを用いて記録互換の検証を行なったが、本発明により、レーザーの立ち上がり時間、立下り時間が大きい装置Bで最適化したストラテジを用いた場合でも、記録の互換性を得ることが確認できている。

# [0095]

なお、本明細書中では、レーザービームと表現しているが、本発明は情報記録 媒体の情報記録部の状態を変化させることが可能なエネルギービームであれば本 発明の効果は得られるので、電子ビーム等のエネルギービームを使用した場合に も、本発明の効果は失われない。

#### [0096]

また、本発明の実施例では波長655 n mの赤色レーザーを用いているが、本発明は特にレーザーの波長によるものではなく、青色レーザー、紫外線レーザー等の比較的短波長のレーザーを使用する情報記録装置およびこれに用いる情報記録媒体に対しても効果を発揮する。

#### [0097]

また、本発明の実施例では、上記情報記録媒体に相変化ディスクを用いているが、本発明はエネルギービームの照射により情報の記録が行なわれる情報記録媒体であれば適用可能であるので、特に情報記録媒体を構成する材料および構造あるいは情報記録媒体の形状によらず、光カード等の円盤状情報記録媒体以外の情報記録媒体にも適用できる。

#### [0098]

#### 【発明の効果】

本発明では、情報記録媒体とレーザービームを一定の範囲の線速度で相対的に 走査させ、レーザービームのレーザーパワーを、少なくとも第1のパワーレベル Phと、第1のパワーレベルよりも低い第2のパワーレベルPlをパワー変調し、 パワーレベルが第1のパワーレベルPhである複数のパルスからなるパルス列を 用いて、情報記録媒体の情報記録部の状態を変化させることにより情報の記録を 行なう情報記録方法において、上記複数のパルス間のパワーレベルを第1のパワーレベルPhと第2のパワーレベルPlの間の第3のパワーレベルPmとし、第3のパワーレベルPmを上記線速度に応じて変化させることで、記録時の線速度およびレーザーパワーの立ち上がり時間、立下り時間が異なる情報記録装置間において記録の互換性を確保することができる。

## [0099]

また、上記Pmを上記線速度に比例して増大させることで、記録パワーの最適化を簡易に行なうことができる。

## 【図面の簡単な説明】

## 【図1】

レーザーパワーの立ち上がり時間がコサインカーブで計算されうることを示す 概略図である。

## 【図2】

レーザーパワーの立ち下がり時間がコサインカーブで計算されうることを示す 概略図である。

## 【図3】

本発明におけるレーザーパワーの立ち上がり時間 Tr、立下り時間 Tf をあらわす模式図である。。

#### 【図4】

レーザーパワーが飽和状態にある記録パルス波形の計算結果である。

## 【図5】

レーザーパワーが未飽和状態にある記録パルス波形の計算結果である。

## 【図6】

縦軸をパワーレベル Ph、横軸をレーザーパワーの立ち上がり時間 Tr、立下り時間 Tf とし、レーザーパワーの未飽和現象により、Phが、Tr、Tf および記録速度とともに変化することを示す図である。

## 【図7】

縦軸をパワーレベルPm、横軸をレーザーパワーの立ち上がり時間Tr、立下り時間Tfとし、レーザーパワーの未飽和現象により、Pmが、Tr、Tfおよ

び記録速度とともに変化することを示す図である。

## 【図8】

縦軸をパワーレベルPh、横軸を記録速度とし、レーザーパワーの未飽和現象により、Phが、記録速度およびレーザーの立ち上がり時間Tr、立下り時間Tfとともに変化することを示す図である。

## 【図9】

縦軸をパワーレベルPm、横軸を記録速度とし、レーザーパワーの未飽和現象により、Pmが、記録速度およびレーザーの立ち上がり時間Tr、立下り時間Tfとともに変化することを示す図である。

## 【図10】

レーザーパワーの未飽和レベル[(Pm-P1)/(Ph-P1)]と記録速度の関係が、レーザーパワーの未飽和現象により、レーザーパワーの立ち上がり時間 Tr、立下り時間 Tf とともに非線形に変化することを示す図である。

## 【図11】

図10において、レーザーパワーの未飽和レベル[(Pm-P1)/(Ph-P1)]と記録速度の関係が、レーザーパワーの未飽和現象の影響を受けないように、[(Pm-P1)/(Ph-P1)]を記録速度により変化させ、線形の関係をもつように設定することを示す図である。

#### 【図12】

レーザーパワーの未飽和レベル[(Pm-P1)/(Ph-P1)]と記録速度の間に、図[(Pm-P1)/(Ph-P1)]と記録速度のついた、図[(Pm-P1)/(Ph-P1)]と記録速度のである。

## 【図13】

レーザーパワーの未飽和レベル[(Pm-P1)/(Ph-P1)]と記録速度の間に、図[11]に示す設定の関係を与えた結果、パワーレベル[Pmが、レーザーパワーの立ち上がり時間[T] によって変化しなくなることを示す図である。

#### 【図14】

レーザーパワーの未飽和レベル[(Pm-P1)/(Ph-P1)]と記録速度の間に、図[Recolor Phi]に示す設定の関係を与えた結果、パワーレベル[Recolor Phi]の立ち上がり時間[Recolor Phi]では存しなくなり、記録速度によって一意に決めることができることを示す図である。

## 【図15】

レーザーパワーの未飽和レベル[(Pm-P1)/(Ph-P1)]と記録速度の間に、図[(Pm-P1)/(Ph-P1)]と記録速度のつかに、図[(Pm-P1)/(Ph-P1)]と記録速度の中の立ち上がり時間[(Pm-P1)/(Ph-P1)]と記録速度によって一意に決めることができることを示す図である。

## 図16】

図11の縦軸を、レーザーパワーレベルの比Pm/Phに置き換えて、Pm/Phと記録速度の関係が、レーザーパワーの未飽和現象の影響を受けないように、Pm/Phを記録速度により変化させ、線形の関係をもつように設定する場合を示す図である。

## 【図17】

図16の縦軸を、レーザーパワーレベルの比Pm/Phを2倍速記録におけるレーザパワーレベルの比Ph x 2/Pm x 2で規格化した値(Pm/Ph)/(Pm x 2/Ph x 2)に置き換えて、(Pm/Ph)/(Pm x 2/Ph x 2)と記録速度の関係が、レーザーパワーの未飽和現象の影響を受けないように、(Pm/Ph)/(Pm x 2/Ph x 2)を記録速度により変化させ、線形の関係をもつように設定する場合を示す図である。

#### 【図18】

本発明の実施例で記録再生特性を調べるのに用いた光記録媒体情報記録再生装置の概略図である。

#### 【図19】

本発明の実施例で記録再生特性を調べるのに用いた記録パルスのストラテジを 説明する図である。

#### 【符号の説明】

#### 18-1 情報記録媒体

- 18-2 モータ-
- 18-3 光ヘッド
- 18-4 プリアンプ回路
- 18-5 記録波形発生回路
- 18-6 レーザー駆動回路
- 18-78-16 変調器
- 18-8 L/Gサーボ回路
- 18-98-16 復調器

【書類名】

図面

【図1】



【図2】



【図3】



【図4】



【図5】



【図6】



【図7】



図8]













# 【図12】



【図13】



【図14】



【図15】



【図16】



7





【図18】





【図19】





【書類名】 要約書

【要約】

【課題】 記録の線速度、レーザービームの立ち上がり、立下り時間が異なる情報記録装置において、最適な記録パワーを簡易に求めることができる情報記録方法、および、上記情報記録装置間において記録互換性を確保し得る情報記録方法及びこれに用いる情報記録媒体を提供する。

【解決手段】 情報記録媒体とレーザービームを一定の範囲の線速度で相対的に走査させ、レーザービームのレーザーパワーを、少なくとも第1のパワーレベルPhと、第1のパワーレベルよりも低い第2のパワーレベルPlをパワー変調し、パワーレベルが第1のパワーレベルPhである複数のパルスからなるパルス列を用いて、情報記録媒体の情報記録部の状態を変化させることにより情報の記録を行なう情報記録方法において、上記複数のパルス間のパワーレベルを第1のパワーレベルPhと第2のパワーレベルPlの間の第3のパワーレベルPmとし、第3のパワーレベルPm を上記線速度に応じて変化させることを特徴とした情報記録方法。

【選択図】 図11



## 認定・付加情報

特許出願の番号 特願 2 0 0 2 - 3 6 4 4 9 3

受付番号 50201905302

書類名 特許願

担当官 第八担当上席 0097

作成日 平成14年12月17日

<認定情報・付加情報>

【提出日】 平成14年12月16日



# 特願2002-364493

## 出願人履歴情報

識別番号

[000005810]

1. 変更年月日 [変更理由]

2002年 6月10日 住所変更

住所氏名

大阪府茨木市丑寅1丁目1番88号

日立マクセル株式会社

-