# Turing's Thesis

# Turing's thesis (1930):

Any computation carried out by mechanical means can be performed by a Turing Machine

## Algorithm:

An algorithm for a problem is a Turing Machine which solves the problem

The algorithm describes the steps of the mechanical means

This is easily translated to computation steps of a Turing machine

# When we say: There exists an algorithm

We mean: There exists a Turing Machine that executes the algorithm

# Variations of the Turing Machine

#### The Standard Model

# Infinite Tape



Read-Write Head (Left or Right)

#### Control Unit



Deterministic

#### Variations of the Standard Model

# Turing machines with:

- Stay-Option
- · Semi-Infinite Tape
- Multitape
- Multidimensional
- Nondeterministic

# Different Turing Machine Classes

# Same Power of two machine classes: both classes accept the same set of languages

# We will prove:

each new class has the same power with Standard Turing Machine

(accept Turing-Recognizable Languages)

#### Same Power of two classes means:

for any machine  $\,M_1\,$  of first class there is a machine  $\,M_2\,$  of second class

such that: 
$$L(M_1) = L(M_2)$$

and vice-versa

Simulation: A technique to prove same power.

Simulate the machine of one class with a machine of the other class

First Class
Original Machine

 $M_1$ 

Second Class
Simulation Machine



simulates  $M_1$ 

# Configurations in the Original Machine $M_1$ have corresponding configurations in the Simulation Machine $M_2$

 $M_1$ Original Machine:  $d_0 \succ d_1 \succ \cdots \succ d_n$ Simulation Machine:

# Accepting Configuration

Simulation Machine:

$$d_f'$$

the Simulation Machine and the Original Machine accept the same strings

$$L(M_1) = L(M_2)$$

# Turing Machines with Stay-Option

The head can stay in the same position

$$\Diamond \Diamond a a b a b b c a c a \Diamond \Diamond \Diamond$$

Left, Right, Stay

L,R,S: possible head moves

# Example:

#### Time 1



#### Time 2



$$q_1 \xrightarrow{a \to b, S} q_2$$

Theorem: Stay-Option machines

have the same power with

Standard Turing machines

Proof: 1. Stay-Option Machines simulate Standard Turing machines

2. Standard Turing machines simulate Stay-Option machines

# 1. Stay-Option Machines simulate Standard Turing machines

Trivial: any standard Turing machine is also a Stay-Option machine

# 2. Standard Turing machines simulate Stay-Option machines

We need to simulate the stay head option with two head moves, one left and one right

# Stay-Option Machine



# Simulation in Standard Machine

# For every possible tape symbol X

### For other transitions nothing changes

# Stay-Option Machine



#### Simulation in Standard Machine

$$\begin{array}{c}
a \to b, L \\
\hline
q_1 \\
\end{array}$$

### Similar for Right moves

# example of simulation



#### Simulation in Standard Machine:



#### END OF PROOF

# A useful trick: Multiple Track Tape

helps for more complicated simulations



It is a standard Turing machine, but each tape alphabet symbol describes a pair of actual useful symbols



# track 1 track 2



track 1 track 2

# Semi-Infinite Tape

The head extends infinitely only to the right



- · Initial position is the leftmost cell
- When the head moves left from the border, it returns back to leftmost position

Theorem: Semi-Infinite machines
have the same power with
Standard Turing machines

Proof: 1. Standard Turing machines simulate Semi-Infinite machines

2. Semi-Infinite Machines simulate Standard Turing machines

# 1. Standard Turing machines simulate Semi-Infinite machines:



Standard Turing Machine

Semi-Infinite machine modifications

a. insert special symbol #at left of input string

b. Add a self-loop
to every state
(except states with no
outgoing transitions)



# 2. Semi-Infinite tape machines simulate Standard Turing machines:



Squeeze infinity of both directions to one direction



Semi-Infinite tape machine with two tracks

Right part  $\# d e \Diamond \Diamond \Diamond$ Left part  $\# c b a \Diamond \Diamond$ 

#### Standard machine



## Semi-Infinite tape machine



#### Standard machine

$$\underbrace{q_1} \quad \stackrel{a \to g, R}{\longrightarrow} \underbrace{q_2}$$

# Semi-Infinite tape machine

Right part

$$\underbrace{q_1^R} \xrightarrow{(a,x) \to (g,x),R} \underbrace{q_2^R}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

# For all tape symbols X

#### Time 1



# Semi-Infinite tape machine

Costas Busch - LSU



#### Time 2



# Semi-Infinite tape machine



#### At the border:

### Semi-Infinite tape machine

Right part

$$\overbrace{q_1^R} \xrightarrow{(\#,\#) \to (\#,\#), R} \overbrace{q_1^L}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(\#,\#)} \xrightarrow{(\#,\#),R} \underbrace{q_1^R}$$

### Semi-Infinite tape machine



Right part  $\# d e \Diamond \Diamond \Diamond ....$ Left part  $\# c b g \Diamond \Diamond ....$ .....

END OF PROOF

# Multi-tape Turing Machines



# Input string appears on Tape 1



$$\underbrace{q_1}^{(b,f) \to (g,d),L,R} \underbrace{q_2}$$

Theorem: Multi-tape machines
have the same power with
Standard Turing machines

Proof: 1. Multi-tape machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-tape machines

## 1. Multi-tape machines simulate Standard Turing Machines:

Trivial: Use one tape

## 2. Standard Turing machines simulate Multi-tape machines:

#### Standard machine:

- Uses a multi-track tape to simulate the multiple tapes
- A tape of the Multi-tape machine corresponds to a pair of tracks

### Multi-tape Machine





### Standard machine with four track tape

|   | a        | b | C |   |   |   |
|---|----------|---|---|---|---|---|
|   | 0        | 1 | 0 |   |   |   |
|   | e        | f | g | h |   |   |
|   | 0        | 0 | 1 | 0 |   |   |
| l | <u> </u> | I | I | l | 1 | I |

Tape 1
head position
Tape 2
head position

Reference point



Tape 1 head position Tape 2 head position

## Repeat for each Multi-tape state transition: 1. Return to reference point some dispersion and a solutions.

- 2. Find current symbol in Track 1 and update
- 3. Return to reference point
- 4. Find current symbol in Tape 2 and update

END OF PROOF

### Same power doesn't imply same speed:

$$L = \{a^n b^n\}$$

Standard Turing machine:  $O(n^2)$  time Go back and forth  $O(n^2)$  times to match the a's with the b's

- 2-tape machine: O(n) time
  - 1. Copy  $b^n$  to tape 2 (O(n) steps)
  - 2. Compare  $a^n$  on tape 1 and  $b^n$  on tape 2 (O(n) steps)

### Multidimensional Turing Machines



MOVES: L,R,U,D

U: up D: down

HEAD

Position: +2, -1

Theorem: Multidimensional machines have the same power with Standard Turing machines

Proof: 1. Multidimensional machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-Dimensional machines

## 1. Multidimensional machines simulate Standard Turing machines

Trivial: Use one dimension

## 2. Standard Turing machines simulate Multidimensional machines

#### Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

#### 2-dimensional machine



#### Standard machine:

Repeat for each transition followed in the 2-dimensional machine:

- 1. Update current symbol
- 2. Compute coordinates of next position
- 3. Find next position on tape

#### END OF PROOF

### Nondeterministic Turing Machines



#### Allows Non Deterministic Choices

#### Time 0



#### Time 1





#### Choice 2



## Input string w is accepted if there is a computation:



Initial configuration

Final Configuration

Any accept state

There is a computation:



Theorem: Nondeterministic machines have the same power with Standard Turing machines

Proof: 1. Nondeterministic machines simulate Standard Turing machines

2. Standard Turing machines simulate Nondeterministic machines

## 1. Nondeterministic Machines simulate Standard (deterministic) Turing Machines

Trivial: every deterministic machine is also nondeterministic

2. Standard (deterministic) Turing machines simulate Nondeterministic machines:

#### Deterministic machine:

Uses a 2-dimensional tape
 (equivalent to standard Turing machine with one tape)

• Stores all possible computations of the non-deterministic machine on the 2-dimensional tape

### All possible computation paths



## The Deterministic Turing machine simulates all possible computation paths:

·simultaneously

·step-by-step

·with breadth-first search

depth-first may result getting stuck at exploring an infinite path before discovering the accepting path

#### NonDeterministic machine





#### Deterministic machine

| # | #     | # | #                          | # | # |  |
|---|-------|---|----------------------------|---|---|--|
| # | a     | b | $\boldsymbol{\mathcal{C}}$ | # |   |  |
|   | $q_1$ |   |                            | # |   |  |
| # | #     | # | #                          | # |   |  |
|   |       |   |                            |   |   |  |

current configuration

### NonDeterministic machine



#### Deterministic machine

| #        | # | #     | # | # | # |                 |
|----------|---|-------|---|---|---|-----------------|
| #        | b | b     | C | # |   | Computation 1   |
| $\# q_2$ | 2 |       |   | # |   | — comparation i |
| #        | C | b     | C | # |   | Computation 2   |
| #        |   | $q_3$ |   | # |   | — Computation 2 |

### Deterministic Turing machine

### Repeat

For each configuration in current step of non-deterministic machine, if there are two or more choices:

- 1. Replicate configuration
- 2. Change the state in the replicas

Until either the input string is accepted or rejected in all configurations

# If the non-deterministic machine accepts the input string:

The deterministic machine accepts and halts too

The simulation takes in the worst case exponential time compared to the shortest length of an accepting path

## If the non-deterministic machine does not accept the input string:

1. The simulation halts if all paths reach a halting state

OR

2. The simulation never terminates if there is a never-ending path (infinite loop)

In either case the deterministic machine rejects too (1. by halting or 2. by simulating the infinite loop)

