Algorithmen & Datenstrukturen

Transform-and-Conquer-Algorithmen

Literaturangaben

Diese Lerneinheit basiert größtenteils auf dem Buch "The Design and Analysis of Algorithms" von Anany Levitin.

In dieser Einheit behandelte Kapitel:

- 6 Transform-and-Conquer
- 6.1 Presorting
- 6.3 Balanced Search Trees
- 6.6 Problem Reduction

Transform-and-Conquer

- Designtechniken, die ein Problem durch Transformation lösen
- Drei Varianten
 - Vereinfachung
 Transformation in eine einfachere/bequemere Form desselben Problems
 - Änderung der Darstellung
 Transformation in eine andersartige Darstellung
 - Problemreduktion
 Transformation in einen anderen Problemtyp, für den algorithmische Lösungen bereits bekannt sind

Vereinfachung des Problems: Vorsortieren

- Viele Probleme, bei denen mit Listen gearbeitet wird, werden einfacher, wenn die Listen sortiert sind:
 - Suche in Listen
 - Medianbestimmung/Auswahlproblem
 - Prüfung auf Unterschiedlichkeit der Elemente
- Außerdem
 - Topologische Sortierung hilft bei einigen Problemen mit DAGs
 - Vorsortierung ist bei vielen geometrischen Problemen nützlich

Wie schnell kann man sortieren?

- Algorithmus A verwendet Sortieralgorithmus S
 - Effizienz von A abhängig von Effizienz von S
- Theorem (siehe Levitin, Kap. 11.2):
 - Sei S ein Sortieralgorithmus,
 - S basiere auf Vergleichen,
 - zu sortierende Liste enthalte n Elemente, dann gilt:
 - S benötigt im schlechtesten Fall mindestens:

 「log₂ n!] ≈ n log₂ n Vergleiche

Hinweis:

 Ungefähr n log₂ n Vergleiche sind zum Sortieren von n Elementen auch hinreichend (siehe Mergesort)

Suche mit Vorsortierung

- Problem: Suche nach einem Schlüsselwert k in einem gegebenen Array A[0..n-1]
- Algorithmus mit Vorsortierung
 - Phase 1: Sortiere Array mit effizientem Sortieralgorithmus
 - Phase 2: Verwende binäre Suche
- Effizienz: $\Theta(n \log n) + O(\log n) = \Theta(n \log n)$
- Vorsortierung hier sinnvoll?
 - Warum sind Lexika, Telefonbücher usw. geordnet?

Prüfung auf Unterschiedlichkeit ohne Vorsortierung

- Brute force-Algorithmus: Vergleiche alle Elemente
- Effizienz: O(n²)

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct 
//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct 
// and "false" otherwise 
for i \leftarrow 0 to n-2 do 
for j \leftarrow i+1 to n-1 do
```

if A[i] = A[j] return false

return true

Prüfung auf Unterschiedlichkeit mit Vorsortierung

- Phase 1: Sortiere Array effizient
- Phase 2: Prüfe alle benachbarten Elemente auf Unterschiedlichkeit
- Effizienz: $\Theta(n \log n) + O(n) = \Theta(n \log n)$

```
ALGORITHM PresortElementUniqueness(A[0..n-1])
```

```
//Solves the element uniqueness problem by sorting the array first //Input: An array A[0..n-1] of orderable elements //Output: Returns "true" if A has no equal elements, "false" otherwise sort the array A for i \leftarrow 0 to n-2 do

if A[i] = A[i+1] return false
return true
```

Suchen: Überblick

Problem:

- Gegeben sei eine (Multi-) Menge M und ein Suchschlüssel S
- Finde S in M soweit vorhanden
- Welche Aspekte sind zu berücksichtigen?
 - Größe der Datenmenge (interne/externe Speicherung)
 - Dynamik der Daten (viele/wenige Änderungen)
- Wichtigste Operationen
 - find(S)
 - insert(S)
 - delete (S)

Taxonomie der Suchalgorithmen

Listenbasierte Suche

- Sequentielle Suche
- Binäre Suche
- Interpolationssuche

Baumbasierte Suche

- Binärer Suchbaum
- Balancierte binäre Suchbäume
 - AVL-Bäume
 - Rot/Schwarz-Bäume
- Balancierte Mehrwegbäume
 - 2-3 oder 2-3-4 Bäume
 - B-Bäume

Hashing

- Verkettung/separate chaining
- Sondieren/open addressing

Transformand-Conquer: Änderung der Darstellung

Binäre Suchbäume: Suchen und Einfügen

 Anordnung der Schlüssel gemäß der Eigenschaft binärer Suchbäume:

- Suche gemäß
 Suchbaumeigenschaft
- Einfügen Suche nach Schlüssel, Einfügen unterhalb des letzten gefundenen Blattes

Beispiel: 6, 2, 1, 11, 13, 8, 10

Binäre Suchbäume: Löschen

Drei Fälle: Zu löschender Schlüssel steht in

- einem Blatt
 - direktes Löschen des Blattes möglich
- einem Knoten mit einem Nachfolger
 - Nachfolger mit Vorgänger (soweit vorhanden) verbinden
 - Knoten mit Schlüssel löschen
- in einem Knoten mit zwei Nachfolgern
 - Lösche Schlüssel aus Knoten
 - Trage Schlüssel des Ordnungsnachfolgers/ -vorgängers in den Knoten ein
 - Lösche Knoten des Ordnungsnachfolgers/
 -vorgängers (gemäß erstem oder zweitem Fall)

Ordnungsnachfolger/
-vorgänger von k:
Knoten mit
nächstgrößtem/
-kleinstem Wert im
Baum

Binäre Suchbäume: Effizienz

Effizienz abhängig von der Höhe h des Baums:

$$\lfloor \log_2 n \rfloor \leq h \leq n-1$$

- Durchschnittliche Höhe (bei Zufallsdaten) etwa
 3log₂n
- Für alle drei Grundoperationen gilt:
 - Schlechtester Fall: O(n)
 - Mittlerer Fall $\approx \log n$
- Bonus:

Inorder-Traversierung liefert sortierte Liste der Schlüssel

Balancierte Suchbäume

Attraktivität binärer Suchbäume durch schlechten (linearen) Worst-Case beeinträchtigt

Zwei Lösungsansätze

- Baum rebalancieren, wenn er zu unausgeglichen ist
 - AVL–Bäume
 - Rot/Schwarz-Bäume
- Mehr als einen Schlüssel pro Knoten zulassen
 - 2-3-Bäume/2-3-4-Bäume
 - B–Bäume

Balancierte Suchbäume: AVL-Bäume

AVL-Baum

- Binärer Suchbaum
- Für alle Knoten gilt: Unterschied der Höhe des linken und rechten Unterbaums beträgt höchstens 1

(b) Kein AVL-Baum

Rotationen

Falls nach Einfügen eines Knotens die Balance-Eigenschaft verletzt ist:

- Transformiere den Unterbaum des unbalancierten Knotens durch Rotation (vier Varianten möglich)
- Rotiere immer den Unterbaum mit dem unbalancierten Knoten als Wurzel, der dem eingefügten Blatt am nächsten ist

Einfache R-Rotation

Doppelte LR-Rotation

Allgemeiner Fall: Einfache R-Rotation

Allgemeiner Fall: Doppelte LR-Rotation

AVL-Baum-Konstruktion: Beispiel (Teil 1)

Konstruiere schrittweise einen AVL-Baum mit den Elementen 5, 6, 8, 3, 2, 4, 7

AVL-Baum-Konstruktion: Beispiel (Teil 2)

Analyse von AVL-Bäumen

Höhe

- $h \le 1.4404 \log_2 (n+2) 1.3277$
- Durchschnittliche Höhe für große n: 1,01 log₂n + 0.1 (empirisch ermittelt)

Operationen

- Suchen und Einfügen: O(log n)
- Löschen etwas komplizierter, aber auch in O(log n) möglich

Nachteile

- Häufige Rotationen
- Operationen komplex
- Ähnlicher Ansatz: Rot-Schwarz-Bäume (Höhe der Unterbäume darf um den Faktor 2 unterschiedlich sein)

Mehrweg-Suchbäume

- Mehrweg-Suchbaum: Suchbaum, dessen Knoten mehr als einen Schlüssel enthalten können
- n-Knoten: Knoten eines Suchbaums, der n-1 geordnete Schlüssel enthält

 n Kinder des n-Knotens formen n Intervalle des Schlüsselbereichs

Knoten eines binären Suchbaums sind 2-Knoten

2-3-Bäume

- Definition: Ein 2-3-Baum ist ein Suchbaum der
 - 2-Knoten oder 3-Knoten besitzen kann und
 - vollständig höhenbalanciert ist (alle Blätter befinden sich auf der gleichen Ebene)

Einfügen in 2-3-Bäume

- Einfügen in 2-3-Baum:
 - Einfügen in bestehendes Blatt (außer beim ersten Schlüssel)
 - Falls Blatt bereits 3-Knoten → spalte in zwei Knoten und reiche mittleres Element zum Elternknoten (soweit vorhanden)

Analyse von 2-3-Bäumen

- Höhe h eines 2–3–Baumes:
 - $\log_3(n+1) 1 \le h \le \log_2(n+1) 1$
- Suche, Einfügen und Löschen in ⊕(log n)
- Idee erweiterbar auf Bäume mit noch mehr Schlüsseln pro Knoten
 - 2-3-4-Bäume
 - B-Bäume

Transform-and-Conquer: Problemreduktion

- Transformiere
 - das gegebene Problem
 - in ein andersartiges Problem
 - mit bekannter algorithmischer Lösung
- Praktisch nur sinnvoll wenn

Aufwand für Transformation

+

Aufwand zur Lösung des anderen Problems

<

Aufwand zur Lösung des originalen Problems

Beispiele für Problemreduktion

Originalproblem	gelöst mittels
Kleinstes gemeinsames Vielfaches	Größter gemeinsamer Teiler
Anzahl der Pfade der Länge n in einem Graphen	Berechnung der n-ten Potenz der Adjazenzmatrix
Maximierungsproblem	Minimierungsproblem
Verschiedene Denksportaufgaben	Graphen Probleme