

78010 / 45011 Algoritmer og Datastrukturer Løsningsforslag til eksamen 13.12.97

Oppgave 1

- a) P(i,j) er sannsynligheten for at A vinner serien (dvs. n kamper), gitt at
 - A må vinne *i* av de resterende kampene, dvs. *n-i* kamper er vunnet.
 - B må vinne *j* av de resterende kampene, dvs. *n-j* kamper er vunnet.
- b) T(1) = c

$$T(k) \le 2 T (k-1) + d, k > 1$$

 $T(k) \le n T (k-2) + 2d + d, k > 2$
...
 $T(k) \le 2^{k-1} T(1) + (2^{k-2} + 2^{k-3} + ... + 2 + 1)d$
 $= 2^k (c/2 + d/2) - d$
 $\Rightarrow T = O(2^k) = O(2^{i+j}),$
som er $O(4^n)$ hvis $i = j = n$.

Følgende avsnitt er ikke del av et svar på oppgave, bare et eksempel på hvordan dynamisk programmering skal brukes.

Selvsagt skal dynamisk programmering brukes i praksis. Ser følgende sammenheng i en matrise (i,j):

					i				
		0	1	2	3	4	5	6	
j	0		1	1	1 .p	1 p	<u>1</u> p	1 ·p	
	1	0	p	pq+p	-q ▼	▼ P	▼	▼ .	
	2	0	·q						↓ ·i
	3	0	<u>·q</u>		P(i-1,j)				·
	4	0	• <i>q</i> →	P(i,j-1)	P = P(i,j)				
	5	0	$\cdot q$						
			1	1	→ ·a			1	

Vi kan da lett lage en dynamisk programmeringsalgoritme for å beregne P(i,j):

Denne har kjøretid $O(n^2)$. Se også oppgave 3, eksamen aug. 1997.

Oppgave 2

MERK: Pr. def. kan det kun være 1 kjendis

a) Idé: Ta 2 <u>vilkårlige</u> personer A og B. Hvis A kjenner $B \Rightarrow A$ er ikke kjendisen. Hvis A ikke kjenner $B \Rightarrow B$ er ikke kjendisen.

Vi kan altså gå sekvensielt gjennom par (A,B) av kandidater, for så å eliminere enten A eller B. Den eliminerte erstattes med neste kandidat. Når alle n personene har inngått i en partest står en igjen med den eneste mulige kandidaten. $\mathbf{M}\mathbf{\mathring{a}}$ sjekke om denne faktisk er en kjendis.

b) Algoritme, skrevet i Java:

```
int Kjendis (Bool K[n, n]) {
   // Returnerer kjendisnummeret (p) dersom kjendis
   // finnes, ellers 0
         p, i = 1, j = 2, neste = 3;
   // Finn muliq kandidat
   while (neste <= n+1) do {</pre>
      if (K[i,j]) i = neste;
      else j = neste;
     neste++;
   if (i == n+1) p = j;
   else p = i;
   // Må sjekke om p virkelig er kjendisen
   int k = 1;
   Bool muligkjendis = true;
   K[p,p] = false;
                    // For å lette test-arbeidet
   while (muligkjendis && k \le n) do {
      if (K[p,k])
                    muligkjendis = false;
      if (!K[k,p])
        if (k != p) muligkjendis = false;
      k++;
    if (muligkjendis)
      return p;
   return 0; // ingen kjendis
```

C-variant:

Oppgave 3

a) Bruker Floyd-Warshall som kjent algoritme. Fordi det ikke er mulig å padle motstrøms, trenger vi bare beregne halve *D* matrisen i algoritmen. (Superindeks *k* kan fjernes i en implementasjon.)

b) Floyd-Warshalls algoritme er bedre enn |V| ganger Dijkstra. De modifikasjoner som er gjort ovenfor halverer minst konstanten i kjøretiden for Floyd-Warshall. (Fortsatt er asymptotisk kjøretid $O(|V|^3)$).

Alternativ løsning:

Bruk DAG-SHORTEST-PATH |V| ganger. Denne algoritmen har O(|V| + |E|) kjøretid etter at nodene er topologisk sortert. Vi antar at vi kan lage grafen slik at denne er topologisk sortert i utgangspunktet.

Antall kanter i grafen blir da : $V + V - I + V - 2 + ... + 2 + 1 = O(|V|^2)$. Kjøretiden for DAG-SHORTEST-PATH blir da $O(|V| + |V|^2) = O(|V|^2)$. Denne må kjøres |V| ganger, noe som gir total kjøretid $O(|V|^3)$. Siden DAG-SHORTEST-PATH vil evaluere færre kanter enn DIJKSTRA vil denne algoritmen ha en konstant i noenlunde samme størrelse som den modifiserte Floyd-Warshall algoritmen.

Oppgave 4

a) $n \theta(q) = \theta(q n)$. Enkel innenfor/utenfor algoritme som i kompendiet.

b)	Sorter på y-verdier:	$\theta(q \log q)$
	n stk binære søk	$n \theta(\log q)$
	n stk Behandling av 0,1 eller 2 skjæringer	$n \Theta(1)$
	Totalt	$\Theta((q+n)\log q) + \Theta(n)$
		$= \Theta((q+n) \log q)$
c)	Sortere på y-verdier	$\theta(q \log q)$
	n stk binære søk	$n \theta(\log q)$
	<i>n</i> Behandling av inntil \sqrt{q} skjæringer	$n O(\sqrt{q})$
	Totalt	$\theta(q \log q) + n(\theta(\log q) + O(\sqrt{q}))$
		$= O((q+n)\log q + n\sqrt{q})$