TOF10120

Time-of-Flight ranging Sensor

Description / Descripti

TOF10120 ranging sensor provides accurate and repeatable long-distance measurement for high-speed autofocus (AF). Innovative TOF time-of-flight Technology makes the performance of this sensor independent of the reflectivity of the target object.

TOF10120's TOF (time-of-flight) measurement technology is implemented with Sharp's original low-cost CMOS process SPAD (single photon avalanche diode). It makes the measurement result accurate and has higher anti-interference ability to ambient light.

TOF10120 range sensor provides accurate and repeatable long range distance measurement for high-speed autofocus (AF). The innovative time-of-flight technology allows performance independent of object reflectance.

TOF10120's time-of-flight sensing technology is realized by Sharp's original SPAD (Single Photon Avalanche Diodes) using low-cost standard CMOS process. It enables accurate ranging result, higher immunity to ambient light and better robustness to cover-glass optical cross-talk by special optical package design.

Features / Features

- $\bullet \ \, \text{The 940nm laser meets the Class 1 operating conditions specified in the third edition of IEC 60825-1: 2014}$
- Sensor size (20 × 13.2 × 2.0mm)
- Maximum measurement distance indoors up to 1.8 meters with accuracy within 5%
- The measurement range is independent of the reflectance of the target object
- Can work in high infrared light environment
- · High optical crosstalk compensation
- Measurement time less than 30ms
- Standard reflow soldering process
- · No additional optics required
- Single power supply
- Standard TTL level serial port
- · Lead free, RoHS compliant
- 940nm laser classified as class 1 under operation condition

by IEC 60825-1: 2014-3rd edition

- + Small ceramic package (20 \times 13.2 \times 2.0mm)
- Long range absolute range measurement up to 1.8m
 within 5% accuracy at indoor
- Reported range is independent of the target reflectance
- Operates in high infrared ambient light levels
- · Advanced optical cross-talk compensation
- High speed ranging MAX 30ms
- · Standard solder reflow compatible
- · No additional optics
- Single power supply
- Txd interface for device control and data transfer
- · Lead-free, RoHS compliant

Applications / Applications

- · High-speed autofocus
- Video continuous autofocus
- User detection of computers and other equipment
- Obstacle detection
- Automatic gesture recognition of white goods
 (Such as faucet, refrigerator, etc.)
- · High-speed AF
- · Continuous AF for video
- User detection for Personal Computers /
 Laptops / Tablets
- Robotics (obstacle detection)
- White goods (hand detection in automatic
 Faucets, refrigerator etc.)

1 7

Page 2 TOF10120

2.1 Recommended Operating Conditions / Recommended Operating Conditions

F	project	Rated	unit
I	tems	Rating	Unit
Measuring Ran	nge Ranging Range	.00 ~ 1800	mm
Working voltag	ge VCC	3~5	v
Working currer	nt ICC_VDD	35	mA
Working tempe	erature Topr	- 20 + 70	°C
Storage temper	rature Tstg	- 40 ± 85	°C

2.2 Pin Description / Pin Description

Pin	Pin name	condition	Features
Pin	Pin name	Condition	Function
1	GND		Power ground GND
2	VDD		Power supply positive electrode 3 $^{\sim}$ 5V
3	RXD	INPUT	Serial input TTL level RXD OUTPUT TTL
4	TXD	OUTPUT	Serial output TTL level TXD OUTPUT TTL
(5)	SDA	INPUT / OUTPUT	I2C data TTL level I2C DATA I / O TTL
6	SCL	OUTPUT	I2C clock TTL level I2C CLK OPUTPUT TTL

2.3 Communication Protocol / Communication protocol

Baud rate Bits per Second:	9600
Data Bits:	8
Parity without Parity:	None
Stop bits:	1
Flow Control Flow Control:	None

2 ~ 7

Page 3 TOF10120

2.4.1 Data transmission format / Data delivery format

1				
① Read deviation value	command	r1 #	Return value D = xx	Note $xx = 00$ $^{\sim}$ 99mm is 0 before calibration
② Read the serial port sending into	ersonhmand	r2 #	Return value T = xxxx	Note $xxx = 10 \sim 9999$ ms default 100ms
3 Reading distance mode	command	r3#	Return value M = x	Note $x = 0$ filtered distance $x = 1$ real-time distance default = 0 filtered distance
Maximum reading distance	command	r4#	Return value Max = x	Note xxx = 100 \sim 2000mm The default is not to limit the maximum distance> 2000mm
⑤ Reading distance sending methods	odommand	r5#	Return value S = x	Note $x = 0$ active sending (UART) $x = 1$ passive reading (UART / I2C) default = 0 active sending
© Reading distance	command	r6#	Return value L = xxxx	Note xxx = $100 \sim 2000$ mm is valid only when the sending mode is passive reading
Tead module I2C slave ID	command	r7#	Return value I = xxx	Note xxx = $1 \sim 254$ (0x01 \sim 0xFE) default 164 (0xA4)
Read xtal calibration parameter	rs command	r8 #	Return value X = xxx	Note $xx = 0 \sim 200 0$ before calibration

2.4.2 Write Command / Write a command

① Set deviation value positive and negative deviation command s1 + xx Return information > Successful setting: ok Setting failed: fail Command s1-xx # s1 + xx # (positive deviation) or s1-xx # (negative deviation) Explanation $xx = 00 \sim 99 mm \ s1 + 0 \# or \ s1-0 \# deviation clear to 0$ $\ensuremath{\mathfrak{D}}$ Set the serial port sending intervalommand s2-xxxx # Return information > Successful setting: ok Setting failed: fail Note xxx = $10 \sim 9999$ ms default 100ms Command s3-x # 3 Set distance mode Return information $\,>\,$ Setting success: ok Setting failure: fail Note x = 0 filtered distance x = 1 real-time distance default = 0 filtered distance Set the maximum distance Command s4-xxxx # Return information $\,>\,$ Successful setting: ok Setting failed: fail Note xxx = 100 \sim 2000mm xxxx = 0 means unlimited maximum distance © Set the distance sending method Command s5-x # Return information > Successful setting: ok Setting failed: fail Note x = 0 active sending x = 1 passive reading Command s7-xxx # © Set I2C slave ID Return information $\,>\,$ Successful setting: ok Setting failed: fail Note xxx = $1 \sim 254$ (0x01 \sim 0xFE) default 164 (0xA4) Talibration command Command s8-x # $Calibration \ successful; \ x = 0 \ returns > \ offset \ deviation \ value \ x = 1 \ returns > \ xtalk \ deviation \ parameter \ setting \ failure: \ fail \ failure \ failure$ Description offset deviation value (-99 \sim 99mm) xtalk deviation parameter 0 \sim 200

2.4.3 Routine / Routine

3

command send Explanation returned messages

String input box \$4-1000 # OK Successful setting: ok means the distance is set to a maximum of 1000mm

3 ~ 7

Page 4

TOF10120

2.5 Ranging characteristics / Ranging Characteristics

parameter	meets the	Minimum value	typical	Maximum	unit	condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Minimum distance and accuracy (indoor white) Min Range distance & accuracy	Rmin	-	10	-	cm	※ Condition ①
(White indoor)	Rminacc	-	-	±5	%	contains
Maximum range distance and accuracy (indoor white) Max Range distance & accuracy	Rinw	120	180	-	cm	* Condition ②
(White indoor)	Rinaccw	-	-	± 4	%	contains
Maximum range distance and accuracy (indoor gray) Max Range distance & accuracy	Ring	70	80	-	cm	* Condition ③
(White indoor)	Rinaccw	-	-	± 7	%	* Condition 9
Maximum range distance and accuracy (white outdoor) Max Range distance & accuracy	Routw	60		-	cm	
(White outdoor)	Routaccw	-	-	± 7	%	
Maximum range distance and accuracy (gray outdoor) Max Range distance & accuracy	Routg	40	-	-	cm	* Condition ®
(Gray outdoor)	Routaccg	-	-	± 12	%	* Condition
Ranging speed Ranging speed	Trange	-		33	msec	

2.5.1 * Ranging condition

condition	Target and reflectivity	surroundings	Distance accuracy and offset conditions	
Condition	Target & Reflectance	Environment	Range Accuracy & Offset condition	
	White card White 88%	Indoor: no infrared	10cm	
1	white card white 88%	Indoor: no infrared	I)CIII	
2	White card White 88%	Indoor: no infrared	120cm	
w .	White Card White 6070	Indoor: no infrared		
3	Gray card Gray 17%	Indoor: no infrared	70cm	
		Indoor: no infrared		
④	White card White 88%	Outdoor: equivalent to 5KLUX daylight	60cm	
9	winte card writte 60%			

40cm

Outdoor: equivalent to 5kLux daylight

4 ~ 7

Outdoor: equivalent to SKLUX daylight

S Gray card Gray 17%

Outdoor: equivalent to 5kLux daylight

Page 5 TOF10120

${\bf 2.6} \ {\bf Electrical} \ {\bf and} \ {\bf Optical} \ {\bf Characteristics} \ / \ {\bf Electrical} \ {\bf and} \ {\bf Optical} \ {\bf Characteristics}$

paramete	r	meets the	Minimum value	typical	Maximum	unit	Remarks
Parameter		Symbol	Min.	Тур.	Max.	Unit	Remarks
Peak wavelength of vertical	avity surface emitting laser	ln no	-	0.40		nm	
VCSEL peak wavelength		λP_PS		940	-		
Vertical cavity surface emitti	ng laser peak current						
VCSEL peak current		Ivcsel		59		mA	

2.7 with a cover slip / with cover window

It is important to keep the cover window surface finish smooth.

5 ~ 7

Page 6

TOF10120

2.8 Size / Outline Dimensions

PIN	Signal Name		
1	GND		
2	VDD		
3	RXD		
4	TXD		
S	SDA		
6	SCL		

Unit: mm

Product weight: about 1.0g

Product mass: Approx. 1.0g

6 ~ 7

Page 7

TOF10120

Shenzhen Hongchengji Technology Co., Ltd.

Address: 1311, 13th Floor, Block A, Jiahe Huaqiang Building, Shennan Middle Road, Futian District, Shenzhen

Tel: 0755-83788789 / 83783789

Fax: 0755-83662789

E-mail: hcj@ichcj.com

7 ~ 7