第 2 章	1	采样和量化: 原理及产生的效果
	2	像素间关系,连通悖论,距离测度
2.2 形态学		图像网格采集效率
2.2 ///心子	4	方盒量化、网格量化原理
	5	数字弦、紧致弦的判定方法
		2D 距离变换 图像变换
	'	1 1100000
		■ 可分离和正交图像变换定义
		■ 2D DFT 变换(定义,图像空域的变换对频谱的影响)
		■ KL 变换原理,2D DWT 基本框架
	8	二值形态学
		■ 腐蚀、膨胀、开启、闭合、击中击不中 ■ 皮 田質は原理
		■ 实用算法原理
	9	灰度形态学
		■ 腐蚀、膨胀、开启、闭合
<i>★</i> ★ a ★		■ 实用算法原理
第3章	1	图像增强和图像恢复的区别
3.1 图像增强	2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.2 图像恢复		■ 空域灰度变换(基本灰度变换、直方图处理)
		■ 空域滤波(定义,平滑、锐化)
		■ 频域增强(三种低通、高通滤波,同态滤波)
		SSR/MSR/MSRCR
		■ 伪彩色和颜色迁移的定义
		■ 图像去雾原理
	3	图像恢复方法
		■ 降质模型
		■ 空域滤波、频率滤波
		■ 运动恢复建模估计
		■ 几何校正(插值方法、TPS 原理)
第4章 图像分割	1	边缘模型,边缘参数描述
	2	边缘检测算子
		■ Marr 算子、Canny 算子、SUSAN 算子
	3	边缘拟合:灰度阶跃拟合,斜面模型及边缘检测
	4	图像分割定义
	5	传统分割方法
		■ 阈值分割,区域生长法,分裂合并法,分水岭分割算法,
		聚类分割算法
	6	水平集分割的基本思想和优势
		■ 从曲线演化到水平集演化推导
		■ 利用变分法和梯度下降法推导演化方程
		■ 如何基于演化实现图像分割
	7	Graph Cut 分割的基本思想
第5章	1	全局特征: 灰度直方图、LBP、HOG、GIST
图像特征表达	2	二值局部特征:形状上下文(shape context)

	3	灰度局部特征
		■ 基本框架
		■ 关键点检测: Harris 角点检测子推导过程,块检测(DoG,
		MSER)
		■ 局部区域描述方法: SIFT 特征描述子生成方法;
		■ 视觉特征不变性内涵,SIFT 如何实现(亮度、平移、旋
		转、缩放变换)不变性;
		■ 图像发生灰度变换(如反色)后,其 SIFT 特征如何变化
		■ BOW 和 VLAD
		■ 乘积量化原理
第6章	1	形状识别:
		■ Hough 变换原理,如何基于 Hough 变换检测直线、圆、
		椭圆等,理解广义 Hough 变换
		■ 距离变换,如何基于 Chamfer Distance 进行目标检测
	2	人脸检测与识别方法基本思想,一般目标检测基本思想
	3	图像分类: SPM, KNN, SVM
	4	图像检索:倒排索引,几何校验(RANSAC,空间编码),二
		值哈希基本思想
第7章	1	运动分析
运动与跟踪		■ 相机运动建模
		■ 光流定义,光流方程推导以及二义性问题
		■ 运动表达方法:全局、基于像素的、基于块的、基于区
		域的
		■ 运动参数估计准则
		■ 穷举块匹配算法(MBMA)
		■ 层级块匹配算法(HBMA)
		■ 相位相关法
	2	目标跟踪
		■ 贝叶斯跟踪框架
		■ 粒子滤波跟踪
		■ 均值漂移跟踪
		■ 相关滤波跟踪
第8章	1	基本概念
深度学习基础		■ 前馈神经网络
		■ 卷积神经网络
		■循环神经网络
	2	图像分类的经典模型
		AlexNet, VGGNet, GoogLeNet, ResNet, DenseNet
		■ 不同层的参数规模和计算复杂度(FLOPs,浮点运算次数)