MN lab - zadanie domowe nr 1

Zadanie składa się z dwóch części:

1. Napisać funkcję rozwiązującą LZNK metodą Householdera dla macierzy A wymiaru $m \times n, m > n$, o kolumnach liniowo niezależnych, oraz wektora y długości m:

Jako dane wejściowe przyjmujemy macierz A z LZNK oraz wektor y. Funkcja ma zwracać:

- wektor x będący rozwiązaniem LZNK,
- macierz górnotrójkątną R wymiaru $n \times n$ z odpowiedniego rozkładu QR macierzy A (macierz R spełnia $A = Q * \begin{bmatrix} \mathsf{R} \\ 0 \end{bmatrix}$),
- macierz B, której kolumny to wektory \vec{h}_i definiujące kolejne macierze Householdera H_i takie, że $Q = H_1 H_2 \cdots H_n$.
- 2. Napisać program (skrypt demoLZNK.m) testujący działanie funkcji na przykładzie zadania znalezienia współczynników wielomianu $y = ax^2 + bx + c$ przybliżającego dane punkty $(x_k, y_k), k = 1, \ldots, m$, w sensie LZNK:
 - (a) Dla m=10, 20, 100 punktów x_k równomiernie rozłożonych w przedziale [0, 10] policzyć $y_k=x_k^2-5x_k+2+\varepsilon_k$, dla losowych $\varepsilon_k\in[-10^{-2},10^{-2}]$ (wartość dla każdego punktu jest obarczona innym błędem).

 Testujemy, czy funkcja zwróci wartości zbliżone do a=1, b=-5, c=2. W tym celu należy rozwiązać odpowiednie LZNK i wypisać rozwiązanie.
 - (b) Sprawdzić poprawność otrzymanego rozkładu QR obliczając błąd $\frac{\|A QR\|_2}{\|A\|_2}$ (nie można wyznaczać macierzy H_i ani Q do obliczenia QR).

Po uruchomieniu programu wyniki wszystkich testów wraz z opisem powinny wyświetlić się na ekranie. Proszę nie wypisywać na ekran żadnych macierzy, ani wektorów x i y.

UWAGA!

- 1. W rozwiązaniach nie można jawnie wyznaczać macierzy H_i ani Q.
- 2. Można definiować dodatkowe funkcje (nie wyszczególnione powyżej).
- 3. Skrypt demoLZNK.m musi być tak napisany, aby wywołanie demoLZNK w linii poleceń Octave wypisało żądane wartości.