ST509 Computational Statistics

Lecture 5: LASSO and Its Computation

Seung Jun Shin

Department of Statistics Korea University

E-mail: sjshin@korea.ac.kr

Stein's Paradox I

- Let $\mathbf{X} = (X_1, \cdots, X_p)^T \sim N_p(\boldsymbol{\theta}, \mathbf{I}).$
- ▶ The UMVUE and MLE of θ is

$$\hat{\boldsymbol{\theta}}^0(\mathbf{X}) = \mathbf{X},$$

which is the most obvious estimator that possess desirable properties.

Nevertheless, Stein (1956) showed that $\hat{\boldsymbol{\theta}}^0(\mathbf{X})$ is inadmissible for squared error loss when $p \geq 3$, where

$$L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) = \sum_{i=1}^p (\hat{\theta}_i - \theta_i)^2$$

Stein's Paradox II

▶ James and Stein (1961) showed that

$$\hat{\boldsymbol{\theta}}^{JS}(\mathbf{X}) = \left(1 - \frac{p-2}{\|\mathbf{X}\|^2}\right)\mathbf{X}$$

strictly dominates $\hat{\boldsymbol{\theta}}^0(\mathbf{X})$. (James-Stein Estimator) proof The risk of JS estimator is

$$R(\hat{\boldsymbol{\theta}}^{JS}, \boldsymbol{\theta}) = E\left\{ \left\| \mathbf{X} - \boldsymbol{\theta} - \frac{(p-2)\mathbf{X}}{\|\mathbf{X}\|^2} \right\|^2 \right\}$$
$$= p - 2(p-2) \sum_{j=1}^p E\left\{ \frac{X_j(X_j - \boldsymbol{\theta}_j)}{\|\mathbf{X}\|^2} \right\} + (p-2)^2 E\left(\frac{1}{\|\mathbf{X}\|^2}\right)$$

It turns out that

$$\sum_{j=1}^{p} E\left\{ \frac{X_{j}(X_{j} - \theta_{j})}{\|\mathbf{X}\|^{2}} \right\} = (p - 2)E\left(\frac{1}{\|\mathbf{X}\|^{2}}\right)$$

Stein's Paradox III

since

$$E\left\{\frac{X_{1}(X_{1}-\theta_{1})}{\|\mathbf{X}\|^{2}}\right\}$$

$$=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}\frac{x_{1}}{\|\mathbf{x}\|^{2}}\times\frac{(x_{1}-\theta_{1})}{(2\pi)^{p/2}}e^{-\|\mathbf{x}-\boldsymbol{\theta}\|^{2}/2}dx_{1}\cdots dx_{p}$$

$$=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}\frac{\|\mathbf{x}\|^{2}-2x_{1}^{2}}{\|\mathbf{x}\|^{4}}\times\frac{1}{(2\pi)^{p/2}}e^{-\|\mathbf{x}-\boldsymbol{\theta}\|^{2}/2}dx_{1}\cdots dx_{p}$$

$$=E\left(\frac{\|\mathbf{X}\|^{2}-2X_{1}^{2}}{\|\mathbf{X}\|^{4}}\right).$$

Finally, we have

$$R(\hat{\boldsymbol{\theta}}^{JS}, \boldsymbol{\theta}) = p - (p-2)E\left(\frac{1}{\|\mathbf{X}\|^2}\right) < p.$$

Stein's Paradox IV

- ▶ JS estimator shrinks each component of X towards the origin, and thus the biggest improvement comes when $\|\boldsymbol{\theta}\|$ is close to zero.
- Normality assumption is not critical, and similar results can be shown for a wide class of distributions.
- ▶ Stein phenomenon holds only when our interest is in the simultaneous estimation of all components in θ .

Ridge Regression I

▶ Linear Model:

$$y = X\beta + e$$

where **e** be random errors with $E(\mathbf{e}) = \mathbf{0}$ and $Var(\mathbf{e}) = \sigma^2 \mathbf{I}$.

▶ OLS estimator solves

$$\hat{\boldsymbol{\beta}}_{\text{ols}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

and satisfies

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X} \mathbf{y}.$$

▶ If **X** is of full rank, we have

$$\hat{\boldsymbol{\beta}}_{\text{ols}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

Ridge Regression II

► Ridge Regression estimator is

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \delta \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}.$$

for a given δ .

- RR originally proposed for mitigate the collinearity in X.
- ▶ It is not difficult to show that (Unconstraint Form):

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \frac{1}{2n} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \frac{\lambda}{2} \|\boldsymbol{\beta}\|_2^2$$

where $\|\boldsymbol{\beta}\|_2^2 = \boldsymbol{\beta}^T \boldsymbol{\beta}$.

▶ Equivalently, we can rewrite (Constraint Form):

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}), \quad \text{s.t. } \|\boldsymbol{\beta}\|_2^2 \le t.$$

Ridge Regression III

▶ Prediction Error for $y_0 = \mu_0 + \epsilon_0 = \mathbf{x}_0^T \boldsymbol{\beta} + \epsilon_0$:

$$E\{(y_0 - \hat{y}_0)^2\} = \sigma^2 + E(\mu_0 - \hat{y}_0)^2$$
Irreducible Model Error

where $\hat{y}_0 = \mathbf{x}_0^T \hat{\boldsymbol{\beta}}$.

▶ Model error can be decomposed as:

$$E(\mu_0 - \hat{y}_0)^2 = E\{\mu_0 - E(\hat{y}_0) + E(\hat{y}_0) - \hat{y}_0\}^2$$

$$= \underbrace{\{\mu_0 - E(\hat{y}_0)\}^2}_{\text{Bias}^2} + \underbrace{\text{Var}(\hat{y}_0)}_{\text{Variance}}$$

Ridge Regression IV

- ▶ Principle: The larger (smaller) model space, the larger (smaller) variance and the smaller (larger) bias of the fitted model.
- ▶ RR restricts the parameter space from \mathbb{R}^p to $\{\beta \in \mathbb{R}^p : \|\beta\|_2^2 \leq t\}$.
- ▶ Compared to $\hat{\boldsymbol{\beta}}_{ols}$ known to be BLUE, $\hat{\boldsymbol{\beta}}_{ridge}$ is biased but tends to have smaller variance.
- ▶ Thus $\hat{\beta}_{\text{ridge}}$ with a carefully selected λ (or t) can beat $\hat{\beta}_{\text{ols}}$.

Figure: Geometry of Ridge Regression (from ELS)

LASSO I

▶ LASSO proposed by Tibshirani (1996) solves (unconstraint form):

$$\hat{\boldsymbol{\beta}}_{\text{lasso}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \frac{1}{2n} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|_1$$

where $\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$.

▶ Its constraint form is given by

$$\hat{\boldsymbol{\beta}}_{\text{lasso}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2n} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}), \quad \text{s.t. } \|\boldsymbol{\beta}\|_1 \le t$$

for some t.

LASSO II

- ► LASSO produces a sparse solution and thus achieves variable selection and estimation simultaneously.
- ▶ LASSO can beat OLS estimator, just like RR.

Figure: Geometry of LASSO (from ELS)

LASSO III

▶ Let z_i be the standardized s.t.

$$\sum_{i=1}^{n} z_i = 0$$
 and $\sum_{i=1}^{n} z_i^2 = n$

▶ OLS estimator is

$$\hat{\beta}_{\text{ols}} = \frac{1}{n} \sum y_i z_i$$

▶ RR estimator is

$$\hat{\beta}_{\rm ridge} = \hat{\beta}_{\rm ols}/(1+\lambda)$$

LASSO estimator is

$$\hat{\beta}_{\text{lasso}} = \begin{cases} \hat{\beta}_{\text{ols}} - \lambda & \text{if } \hat{\beta}_{\text{ols}} > \lambda \\ 0 & \text{if } |\hat{\beta}_{\text{ols}}| \leq \lambda \\ \hat{\beta}_{\text{ols}} + \lambda & \text{if } \hat{\beta}_{\text{ols}} < -\lambda \end{cases}$$

LASSO IV

▶ Define the soft-thresholding operator, $S_{\lambda}(x)$ as

$$S_{\lambda}(x) = \operatorname{sign}(x) (|x| - \lambda)_{+}.$$

▶ Then we have

$$\hat{\beta}_{\text{lasso}} = S_{\lambda}(\hat{\beta}_{\text{ols}})$$

Figure: Comparison to OLS: one-dimensional orthogonal regression.

Computation I

▶ Our goal is to solve

$$\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (1)

or

$$\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2, \quad \text{s.t. } \sum_{j=1}^{p} |\beta_j| < t$$

► This is standard form of Quadratic Programing (QP).

Computation II

- ▶ Wu & Lange (2008) proposed the coordinate decent algorithm to solve LASSO.
 - 1. Initialize $\boldsymbol{\beta}^{(0)}$.
 - 2. At the t^{th} iteration, we update $\beta_j, j \in \{1, \dots, p\}$ in a cyclic way;

$$\beta_j^{(t+1)} = \operatorname*{argmin}_{\beta_j} f(\beta_1^{(t+1)}, \cdots, \beta_{j-1}^{(t+1)}, \textcolor{red}{\beta_j}, \beta_{j+1}^{(t)}, \cdots, \beta_p^{(t)})$$

3. Repeat the above until convergence.

Algorithm 1: (Cyclic) Coordinate Decent Algorithm to solve $\min_{\beta} Q(\beta)$.

Computation III

- ightharpoonup Stochastic CD algorithm randomly chooses the coordinate j to be updated.
- ▶ CD algorithm is thus particularly useful when one-dimensional problem has a closed form of solution.
- ▶ CD can be viewed as a version of the gradient decent algorithm.

Computation IV

▶ For LASSO problem, we have the following updating equation for β_j

$$\underset{\beta}{\operatorname{argmin}} \frac{1}{2n} (\mathbf{r}_{-j} - \beta_j \mathbf{x}_j)^T (\mathbf{r}_{-j} - \beta_j \mathbf{x}_j) + \lambda |\beta_j|$$

where

$$\mathbf{r}_{-j} = \mathbf{y} - \mathbf{X}_{-j} \hat{\boldsymbol{\beta}}_{-j},$$
 (partial residual)

with $\hat{\boldsymbol{\beta}}$ is the most recently updated value of $\boldsymbol{\beta}$.

▶ The updating equation is

$$\hat{\beta}_j = S_{\lambda} \left(\frac{1}{n} \mathbf{x}_j^T \mathbf{r}_{-j} \right) = S_{\lambda} \left(\hat{\beta}_j + \frac{1}{n} \mathbf{x}_j^T \mathbf{r} \right)$$

where $\mathbf{r} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ (full residual).

Computation V

1. WLOG, \mathbf{x}_i are marginally standardized and y_i are centered such that

$$\sum_{i=1}^{n} x_{ij} = 0, \sum_{i=1}^{n} x_{ij}^{2} = n, \text{ and } \sum_{i=1}^{n} y_{i} = 0$$

You may need to compute $\bar{x}_j = \sum_{i=1}^n x_{ij}/n$, $s_j = \sqrt{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2/n}$, and $\bar{y} = \sum_{i=1}^n y_i/n$.

- 2. Initialize $\hat{\boldsymbol{\beta}} = \boldsymbol{\beta}_0$ and compute $\mathbf{r} = \mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}}$.
- 3. For $j = 1, \dots, p$,
 - 3.1 Update coefficients:

$$\hat{\beta}_j^{(t+1)} = S_{\lambda/s_j} \left(\hat{\beta}_j^{(t)} + \frac{1}{n} \mathbf{x}_j^T \mathbf{r} \right).$$

3.2 Update residuals:

$$\mathbf{r} = \mathbf{r} - \left(\beta_j^{(t+1)} - \beta_j^{(t)}\right) \mathbf{x}_j.$$

- 4. Repeat Step 2.1–2 until convergence.
- 5. Transform back to the original scale: $\hat{\beta}_0 \leftarrow \bar{y} \sum_{j=1}^p \hat{\beta}_j \bar{x}_j / s_j$ and $\hat{\beta}_j \leftarrow \hat{\beta}_j / s_j$.

Computation VI

- Convergence of CD algorithm is guaranteed by that the objective function is continuously differentiable and strictly convex in each coordinate.
- ▶ Suppose that the objective function $f(\beta)$ is

$$f(\beta_1, \dots, \beta_p) = g(\beta_1, \dots, \beta_p) + \sum_{j=1}^p h_j(\beta_j)$$

where

- \triangleright g is differentiable and convex;
- \blacktriangleright h_i is convex (but not necessarily differentiable).
- ▶ Then CD converges to the global minimum $\beta^* = \operatorname{argmin} f(\beta)$.

Tuning Parameter Selection I

- ▶ In LASSO, λ (tuning parameter) plays a crucial role for performance.
- ▶ Too large λ under-fits the model and too small λ over-fits the model.
- ▶ This is generally true for other penalized methods beyond LASSO.
- ▶ Grid search via Cross-validation (CV) is popular.
- ▶ However, CV is often too computationally heavy, due to the numerical optimization should be repeatedly carried out for many different λ s in the grid.
- ▶ More importantly, the choice of grid is often very subjective for both range and coarseness.

Tuning Parameter Selection II

- ▶ To reduce computational burden, Friedman et al. (2007) proposed pathwise coordinate optimization.
- ▶ The idea is to apply a CD procedure for each value of λ , varying λ along the path.
- ▶ Each solution is used as a warm start for the next problem.

LARS I

- ▶ Efron et al (2004) proposed.
- ▶ Possible to compute entire path of $\beta_{LASSO}(\lambda)$ as a function of λ .
- ▶ Forward addition sequentially builds a model by adding one variable at a time; identifies variables ($\in S$), then computes OLS for all variables S.
- ▶ LARS shares a similar spirit to FA, but a sort of democratic version.

LARS II

Without loss of generality, we assume

$$\sum_{i=1}^{n} y_i = 0, \qquad \sum_{i=1}^{n} x_{ij} = 0, \qquad \sum_{i=1}^{n} x_{ij}^2 = 1 \qquad \text{for } j = 1, \dots, p.$$

lackbox Let $\hat{\mu}_{\mathcal{S}}$ denote a current model estimate, then the correlations are

$$\hat{\mathbf{c}}(\hat{\boldsymbol{\mu}}_{\mathcal{S}}) = \mathbf{X}_{\mathcal{S}^c}^T \mathbf{r}(\hat{\boldsymbol{\mu}}_{\mathcal{S}}) = \mathbf{X}_{\mathcal{S}^c}^T (\mathbf{y} - \hat{\boldsymbol{\mu}}_{\mathcal{S}})$$

▶ Forward Stagewise (FS) updates $\hat{\mu}$:

$$\hat{\boldsymbol{\mu}}_{\mathcal{S} \cup \hat{j}} \to \hat{\boldsymbol{\mu}}_{\mathcal{S}} + \epsilon \cdot \operatorname{sign}(\hat{c}_{\hat{j}}) \cdot \mathbf{x}_{\hat{j}}$$

where $\hat{j} = \operatorname{argmax}_{j \in \mathcal{S}^c} |\hat{c}_j|$ for a given $\epsilon > 0$.

Classical Forward Addition updates

$$\hat{\boldsymbol{\mu}}_{\mathcal{S}\cup\hat{j}}
ightarrow \hat{\boldsymbol{\mu}}_{\mathcal{S}} + \hat{c}_{\hat{j}} \cdot \mathbf{x}_{\hat{j}}$$

LARS III

▶ LARS algorithm:

$$\hat{m{\mu}}_{\mathcal{S} \cup \hat{j}}
ightarrow \hat{m{\mu}}_{\mathcal{S}} + \hat{\gamma}_{\hat{j}} \cdot \mathbf{u}_{\mathcal{S}}$$

where

- ▶ $\mathbf{u}_{\mathcal{S}}$: an equiangular vector for $\mathbf{X}_{\mathcal{S}}$, i.e., the angles between $\mathbf{u}_{\mathcal{S}}$ and $\mathbf{x}_{j}, j \in \mathcal{S}$ are identical.
- $\hat{\gamma}_{\hat{j}}$: the smallest step (> 0) such that the new index \hat{j} joins the active set, $\mathcal{S} \to \mathcal{S} \cup \hat{j}$.

LARS IV

Figure: LARS on $(\mathbf{x}_1, \mathbf{x}_2)$; $\bar{\mathbf{y}}_2$ is the projection of \mathbf{y} into $\mathrm{span}(\mathbf{x}_1, \mathbf{x}_2)$. Beginning at $\hat{\boldsymbol{\mu}}_0 = \mathbf{0}$, the residual vector $\bar{\mathbf{y}}_2 - \hat{\boldsymbol{\mu}}_0$ has greater correlation with \mathbf{x}_1 than \mathbf{x}_2 ; the next LARS estimate is $\hat{\boldsymbol{\mu}}_1 = \hat{\boldsymbol{\mu}}_0 + \hat{\gamma}_1 \mathbf{x}_1$, where $\hat{\gamma}_1$ is chosen such that $\bar{\mathbf{y}}_2 - \hat{\boldsymbol{\mu}}_1$ bisects the angle between \mathbf{x}_1 and \mathbf{x}_2 ; then $\hat{\boldsymbol{\mu}}_2 = \hat{\boldsymbol{\mu}}_1 + \hat{\gamma}_2 \mathbf{u}_2$, where \mathbf{u}_2 is the unit bisector; $\hat{\boldsymbol{\mu}}_2 = \bar{\mathbf{y}}_2$ in this case with two predictors.

LARS V

- ▶ LARS algorithm:
 - 1. Marginally transform the data with $\sum_{i=1}^{n} y_i = 0$, $\sum_{i=1}^{n} x_i = 0$ and $\sum_{i=1}^{n} x_i^2 = 1$ and initialize $\hat{\mu}_0 = \mathbf{0}$ (or $\hat{\boldsymbol{\beta}}_0 = \mathbf{0}$).
 - 2. Let $\mathcal S$ be an index set of variables for the current step.
 - 3. Compute the equiangular unit vector $\mathbf{u}_{\mathcal{S}}$:

$$\mathbf{u}_{\mathcal{S}} = \tilde{\mathbf{X}}_{\mathcal{S}}\omega_{\mathcal{S}}, \qquad \omega_{\mathcal{S}} = A_{\mathcal{S}}G_{\mathcal{S}}^{-1}\mathbb{1}_{\mathcal{S}}$$
 (2)

where

$$\tilde{\mathbf{X}}_{\mathcal{S}} = \{s_j \mathbf{x}_j; j \in \mathcal{S}\}$$
 with some $s_j \in \{-1, 1\}$

$$G_{\mathcal{S}} = \tilde{\mathbf{X}}_{\mathcal{S}}^T \tilde{\mathbf{X}}_{\mathcal{S}}$$

$$A_{\mathcal{S}} = (\mathbb{1}_{\mathcal{S}}^T G_{\mathcal{S}}^{-1} \mathbb{1}_{\mathcal{S}})^{-1/2}$$

LARS VI

4. Compute current correlation:

$$\hat{\mathbf{c}} = (\hat{c}_1, \cdots, \hat{c}_d)^T = \mathbf{X}^T (\mathbf{y} - \hat{\boldsymbol{\mu}}_{\mathcal{S}})$$

and

$$\hat{C} = \max_{j} \{|\hat{c}_{j}|\}$$
 and $S = \{j : |\hat{c}_{j}| = \hat{C}\}$

5. The LARS updates

$$\hat{\boldsymbol{\mu}}_{\mathcal{S}+} = \hat{\boldsymbol{\mu}}_{\mathcal{S}} + \hat{\gamma} \mathbf{u}_{\mathcal{S}}$$

where $\mathbf{u}_{\mathcal{S}}$ is defined in (2) with $s_j = \text{sign}(\hat{c}_j)$ for $j \in \mathcal{S}$. Equivalently we can update $\boldsymbol{\beta}$ by (2)

$$\hat{\beta}_j^+ = \hat{\beta}_j + \hat{\gamma} \times s_j \times \omega_j, \quad \text{for } j \in \mathcal{S}$$

where ω_j is the jth element of $\omega_{\mathcal{S}}$.

LARS VII

6. The step size $\hat{\gamma}$ is chosen as

$$\hat{\gamma} = \min_{j \in \mathcal{S}^c} + \left\{ \frac{\hat{C} - \hat{c}_j}{A_{\mathcal{S}} - a_j}, \frac{\hat{C} + \hat{c}_j}{A_{\mathcal{S}} + a_j} \right\}$$
(3)

where $a_j = \mathbf{x}_j^T \mathbf{u}_{\mathcal{S}}$ where $j \in \mathcal{S}^c$.

• (Interpretation of (3)) Define for $\gamma > 0$

$$\boldsymbol{\mu}(\gamma) = \hat{\boldsymbol{\mu}}_{\mathcal{S}} + \gamma \mathbf{u}_{\mathcal{S}}$$

The current correlation between $\mathbf{y} - \mu(\gamma)$ and $\mathbf{x}_j, j \in \mathcal{S}^c$ is

$$c_j(\gamma) = \mathbf{x}_j^T(\mathbf{y} - \boldsymbol{\mu}(\gamma)) = \hat{c}_j - \gamma a_j, \qquad j \in \mathcal{S}^c.$$
 (4)

We must have for $j \in \mathcal{S}$

$$\mathbf{c}_{\mathcal{S}}(\gamma) = \{c_j(\gamma); j \in \mathcal{S}\} = \mathbf{X}_{\mathcal{S}}^T(\mathbf{y} - \hat{\boldsymbol{\mu}} - \gamma \mathbf{u}_{\mathcal{S}}) = \mathbf{X}_{\mathcal{S}}^T(\mathbf{y} - \hat{\boldsymbol{\mu}}) - \gamma \tilde{\mathbf{X}}_{\mathcal{S}}^T \mathbf{u}_{\mathcal{S}}$$

which yields

$$|c_j(\gamma)| = \hat{C} - \gamma A_{\mathcal{S}}, \quad \text{for } j \in \mathcal{S}.$$
 (5)

Equating (4) and (5) yields (3).

7. Update $S \to S \cup \hat{j}$ where \hat{j} is the index in S^c associated with $\hat{\gamma}$ in (3).

LARS VIII

- (Termination) In the last d step, (3) cannot be applied to get $\hat{\gamma}$, since $S^c = \phi$, but we know that it will be OLS. After some calculation, we have $\hat{\gamma} = \hat{C}/A_S$ in the final step.
- ▶ LARS takes only *d* steps and does NOT involve any numerical optimization.

Modification of LARS for LASSO I

▶ LARS and LASSO solution paths are nearly identical, but not exactly.

Figure: LARS vs LASSO: LASSO paths involves more steps due to additional deleting steps.

Modification of LARS for LASSO II

▶ In LARS, we have for all $j \in \mathcal{S}$,

$$\mathbf{x}_{j}^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \gamma \times \operatorname{sign}\{c_{j}\}$$
 for some common γ ,

whereas we have for all $j \in \mathcal{S}^c$

$$|\mathbf{x}_j^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})| \le \gamma$$

▶ In LASSO, we have for all $j \in \mathcal{B} = \{j : \hat{\beta}_j \neq 0\}$,

$$\mathbf{x}_j^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \lambda \times \operatorname{sign}\{\beta_j\}$$

and for $j \in \mathcal{B}^c$,

$$|\mathbf{x}_j^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})| \le \lambda.$$

Modification of LARS for LASSO III

- Now you can see both similarity and difference between LARS and LASSO.
- ▶ LARS will produce different values if the sign of β_j is changed while the sign of correlation is not.
- ▶ LASSO modification: If a non-zero coefficient, say β_j hits zero, then drop it from $S = S \setminus j$ and recalculate direction \mathbf{u}_S .

Degrees of Freedom of LASSO

► For $y_i|\mathbf{x}_i \stackrel{ind}{\sim} (f(\mathbf{x}_i), \sigma^2)$,

$$df(\hat{f}) = \frac{1}{\sigma^2} \sum_{i=1}^n \text{Cov}(\hat{f}(\mathbf{x}_i), y_i)$$

▶ Under the linear model, we have

$$df(\hat{f}) = \operatorname{tr}\left[\frac{1}{\sigma^2}\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\operatorname{Cov}(\mathbf{y}, \mathbf{y})\right] = \operatorname{tr}(\mathbf{H}) = p$$

- \blacktriangleright Degrees of freedom of ridge regression is smaller than p even with p predictor.
- Degrees of freedom of LASSO:

$$df(\hat{f}(\lambda)) = |\mathcal{S}(\lambda)| = \#$$
 of nonzero coefficients.

▶ Compare BIC and AIC at the knot points of the paths only.

Reference

- Friedman, Hastie, & Tibshirani (2009) The Elements of Statistical Learning; 2nd edition, Springer.
- ▶ Tibshirani, Wainwright, & Hastie (2015) Statistical Learning with Sparsity: the lasso and generalizations Chapman and Hall/CRC.
- ► Samworth (2008) Stein's Paradox. Eureka, 62, 38-41.
- Tibshirani (1996) Regression shrinkage and selection via the lasso JRSSb, 58(1), 267-288.
- Wu & Lange (2008) Coordinate descent algorithms for lasso penalized regression AOAS, 2(1), 224-244.
- ► Efron, Hastie, Johnstone, & Tibshirani (2004) Least angle regression (with Discussions) AOS, 32(2), 407-499
- Friedman, Hastie, Hfling, & Tibshirani (2007) Pathwise coordinate optimization AOAS, 1(2), 302-332.
- ▶ (2012) Zhou, Hastie, & Tibshirani (2007) On the "degrees of freedom" of the lasso AOS, 35(5), 2173-2192.