## Multi Armed Bandits for Many Task Optimization

Le Tien Thanh - Ta Bao Thang Supervisor: Professor Huynh Thi Thanh Binh

January 9, 2021

- Introduction
- 2 Related works
- Proposed method
- Experimental results

- Introduction
- 2 Related works
- 3 Proposed method
- 4 Experimental results

## Many task optimization - MaTSOO benchmark





- Introduction
- 2 Related works
- 3 Proposed method
- Experimental results

### **MFEA**

#### **MFEA**

A. Gupta, Y.-S. Ong, and L. Feng, "Multifactorial evolution: Toward evolutionary multitasking," *IEEE Transactions on Evolutionary Computation*, vol. 20, no. 3, pp. 343–357, 2015

### **Problem**

• Do not group ideal assist tasks

### MaTGA

#### MaTGA

Y. Chen, J. Zhong, L. Feng, et al., "An adaptive archive-based evolutionary framework for many-task optimization," *IEEE Transactions on Emerging Topics in Computational Intelligence*, 2019

#### **Problem**

- Store past solutions
- Measure KLD between past solutions
- Complex, many parameters

- Introduction
- 2 Related works
- Proposed method
- Experimental results

## Task selection as a Multi Armed Bandit (MAB) problem

#### Action

- Given a K task MTO problem
- Given a parent  $p_1$ , skill factor  $\tau_{source}$
- Action is  $\tau_{target} \in \{1, \dots, K | \tau_{source} \neq \tau_{source} \}$
- Then, select  $p_2$  from  $P_{\tau_{target}}$  to reproduce.

#### Reward

- Given  $y_{\tau_{source}}$ , list of fitness of  $P_{\tau_{source}}$
- Reward

$$r = \begin{cases} 1 \text{ if } y_c < \min(y_{\tau_{source}}) \\ 0 \text{ otherwise} \end{cases}$$
 (1)

### UCB function to solve MAB

### Estimate expected reward

Each source task  $au_{source}$  estimate the expected reward of selecting a target task

$$Q[\tau_{target}] = Q[\tau_{target}] + \alpha(r - Q[\tau_{target}])$$
 (2)

where  $Q \in \mathbb{R}^{K-1}$  is the estimated expected reward, r is the given reward,  $\alpha$  is the discount factor.

### **UCB** function

Each source task  $au_{source}$  select target task by

$$\tau_{target} = \underset{k}{\operatorname{argmin}} \ Q[k] + c \sqrt{\frac{\log(t)}{N[k]}}$$
 (3)

where c is exploration-exploitation trade off coefficient, t is the total number of selection, N[k] is number of times task k is selected.

## Linear decay of rmp

High rmp first, low rmp after

$$rmp = \frac{rmp_{max} - rmp_{min}}{T} \times (T - t)$$
 (4)

### Basic structure of MAB-MFEA

#### **Parameters**

- α discounted factor, c exploration exploitation trade-off
- rmp<sub>max</sub>, rmp<sub>min</sub>

#### MAB-MFEA evolution step

### Algorithm 1 Multi-step SR

```
1: Get current generation's rmp
1: Get current generation:
2: for i \in \{1, 2, ...\} do
3: Select parents p_1, p
4: if \tau_1 = \tau_2 then
5: SBX, Polynomia
6: else if rand() < rm
7: Select \tau_{target} for
8: Select p_2 from \tau
9: SBX, Polynomia
           Select parents p_1, p_2 randomly.
                 SBX, Polynomial p_1, p_2 to c_1, c_2, evaluate them
           else if rand() < rmp then
                 Select \tau_{target} for \tau_1 (Equation.3)
                 Select p_2 from \tau_{target}
                 SBX, Polynomial p_1, p_2 to c_1, c_2, evaluate them
10:
                   Update estimate (Equation.2)
11.
             else
12:
                   Select p_2 from \tau_1
13:
                  SBX, Polynomial p_1, p_2 to c_1, c_2, evaluate them
             end if
15: end for
 16: Elitist selection
```

- Introduction
- 2 Related works
- 3 Proposed method
- Experimental results

### Benchmark

| Task                    | Function       | Ideal Assisted Task   |
|-------------------------|----------------|-----------------------|
| $T_1$                   | Sphere1        | None                  |
| $T_2$                   | Sphere2        | None                  |
| $T_3$                   | Sphere3        | None                  |
| $T_4$                   | Weierstrass25D | None                  |
| $T_5$                   | Rosenbrock     | $T_1$                 |
| $T_6$                   | Ackley         | $T_2$                 |
| $T_7$                   | Weierstrass50D | $T_3, T_4$            |
| <i>T</i> <sub>8</sub>   | Schwefel       | None                  |
| $T_9$                   | Griewank       | <i>T</i> <sub>4</sub> |
| <i>T</i> <sub>1</sub> 0 | Rastrigin      | None                  |

## Parameter setting

### **MFEA**

Population size: 30

• rmp: 0.3

sbxdi: 2

pmdi: 5

### MAB-MFEA

- *rmp<sub>min</sub>*: 0.1
- *rmp<sub>max</sub>*: 0.9
- $\bullet$   $\alpha$ : 0.01 discounted coefficient
- c: 0.5 UCB explore/exploit trade-off coefficient

### MaTGA

- NP:
- $\lambda$ : 0.8 reward shrink rate
- $\rho$ : 0.8 attenuation coefficient
- ullet  $\alpha$ : 0.1 knowledge transfer rate
- UR: 0.2 archive update rate
- AcS: 300 archive size

### Table

|        | MFEA     | MaTGA    | MAB-MFEA |
|--------|----------|----------|----------|
| $T_1$  | 1.32E+00 | 2.45E-04 | 2.85E-03 |
| $T_2$  | 1.27E+00 | 4.75E-04 | 1.15E-12 |
| $T_3$  | 1.17E+00 | 0        | 6.30E-09 |
| $T_4$  | 3.37E+00 | 1.00E-06 | 5.37E-04 |
| $T_5$  | 8.15E+02 | 2.16E-02 | 1.01E+01 |
| $T_6$  | 1.99E+01 | 3.61E-03 | 1.05E-07 |
| $T_7$  | 1.05E+01 | 5.57E-04 | 1.52E-03 |
| $T_8$  | 2.34E+03 | 3.40E-02 | 9.21E+02 |
| $T_9$  | 4.11E-02 | 4.52E-03 | 4.50E-03 |
| $T_10$ | 1.55E+01 | 1.57E+01 | 7.77E+00 |

Table 1: The performance of 3 algorithms for 30 independent runs

## **Analysis**



Figure 1: The average times of choosing knowledge transfer target, the assisted task is highlighted in red

## **Analysis**



Figure 2: The UCB function value 3 for choosing knowledge transfer target, the assisted task is highlighted in red

### Conclusion

#### Contribution

- Trade of between explore and exploit task relationship.
- Better than MFEA, less complex but performs equally well to MaTGA.
- The best on 5/10 tasks.
- Analyse on 10 task benchmark shows MAB-MFEA correctly identify ideal assist task.

### Future task to complete the study

- Adjust rmp\_min and rmp\_max paramter.
- Finish experiment on CEC Complex 50 tasks benchmark.

# Thank you for your attention!