Пусть дано векторное пространство V над \mathbb{R} . Операция $\cdot: V \times V \to \mathbb{R}$ называется скалярным произведением, если она удовлетворяет следующим трём условиям:

- **1.** (коммутативность) для любых векторов $\vec{v}_1, \vec{v}_2 \in V$ верно равенство $\vec{v}_1 \cdot \vec{v}_2 = \vec{v}_2 \cdot \vec{v}_1$;
- **2.** (линейность) для любых векторов $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in V$ и чисел $x, y \in \mathbb{R}$ верно равенство $\vec{v}_1 \cdot (x\vec{v}_2 + y\vec{v}_3) = x\vec{v}_1 \cdot \vec{v}_2 + y\vec{v}_1 \cdot \vec{v}_3;$
- 3. (неотрицательность) для любого вектора $\vec{v} \in V$ верно неравенство $\vec{v} \cdot \vec{v} \geqslant 0$, причём равенство выполняется если и только если $\vec{v} = \vec{0}$.

Третье условие позволяет определить длину вектора \vec{v} как $|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}}$. Из линейности скалярного произведения следует, что оно однозначно задано значениями произведений $\vec{e}_i \cdot \vec{e}_j$ по всем парам (\vec{e}_i, \vec{e}_j) базисных векторов. Однако, из-за третьего условия, эти значения нельзя выбрать произвольно, как показывает следующее упражнение.

- 1. Докажите, что для любых $\vec{v}_1, \vec{v}_2 \in V$ верно неравенство $\vec{v}_1 \cdot \vec{v}_1 + \vec{v}_2 \cdot \vec{v}_2 \geqslant 2\vec{v}_1 \cdot \vec{v}_2$.
- 2. **Неравенство треугольника:** докажите, что для любых $\vec{v}_1, \vec{v}_2 \in V$ верно неравенство $|\vec{v}_1| + |\vec{v}_2| \geqslant |\vec{v}_1 + \vec{v}_2|$.
- 3. **Неравенство Коши-Буняковского-Шварца:** для любых $\vec{v}_1, \vec{v}_2 \in V$ докажите неравенство $|\vec{v}_1|^2 \cdot |\vec{v}_2|^2 \geqslant (\vec{v}_1 \cdot \vec{v}_2)^2$.

Последнее неравенство показывает, как задать углы между векторами в произвольном векторном пространстве, а именно: угол между векторами $\vec{v_1}$ и $\vec{v_2}$ равен $\arccos(\frac{\vec{v_1} \cdot \vec{v_2}}{|\vec{v_1}||\vec{v_2}|})$. При таком задании наш старое определение "произведение длин векторов и косинуса угла между ними" получается, как свойство, однако, неплохо бы убедиться, что так определённые углы совпадают с привычным геометрически определением. Заметим, что привычное нам скалярное произведение также удовлетворяет условиям $\mathbf{1} - \mathbf{3}$ и, следовательно, однозначно определено значениями на некотором базисе.

- 4. Проверьте, что скалярное произведение получается, если для базиса $\vec{e}_1(1,0)$, $\vec{e}_2(0,1)$ положить $\vec{e}_1 \cdot \vec{e}_1 = 1$, $\vec{e}_1 \cdot \vec{e}_2 = 0$ и $\vec{e}_2 \cdot \vec{e}_2 = 1$.
- 5. Запишите формулу такого скалярного произведения в координатах.

Ортогональность.

Векторы $\vec{v_1}, \vec{v_2} \in V$, для которых верно равенство $\vec{v_1} \cdot \vec{v_2} = 0$, называются ортогональными. В последней задаче видно, что скалярное произведение удобно записывать, если все базисные векторы имеют единичную длину и попарно ортогональны (такой базис называется ортонормированным). Базис называется ортогональным, если он состоит из попарно ортогональных векторов.

- 6. Пусть $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ множество ненулевых векторов в n-мерном векторном пространстве V. Докажите следующие утверждения:
 - (a) Если $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$ попарно ортогональны, то они линейно независимы.
 - (b) Множество векторов, которые ортогональны каждому из $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$, образует подпространство размерности $n \dim \langle \vec{u}_1, \vec{u}_2, \dots, \vec{u}_k \rangle$.
 - (с) Любой набор попарно ортогональных векторов можно дополнить до ортогонального базиса.
 - (d) Если векторы $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$ попарно образуют тупые углы (т.е. их скалярное произведение отрицательно), то любые k-1 из них линейно независимы.
 - (е) Если попарные скалярные произведения векторов $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$ неположительны, то $k \leqslant 2n$. Исследуйте случай k=2n.
- 7. Запишите неравенства треугольника и Коши-Буняковского в координатной форме для векторов, записанных в ортонормированном базисе.

$3адачи^1$.

- 8. Докажите, что в любом параллелепипеде $ABCDA_1B_1C_1D_1$ плоскости A_1BD и CB_1D_1 делят диагональ AC_1 на три равные части.
- 9. Функция f каждому вектору v линейного n-мерного пространства ставит в соответствие число f(v), причём для любых векторов u, v и любых чисел α , β значение $f(\alpha u + \beta v)$ не превосходит хотя бы одного из чисел f(u) или f(v). Какое наибольшее количество значений может принимать такая функция?
- 10. В множестве $\{1,\ldots,n\}$ выбрали n+1 различное подмножество A_1,A_2,\ldots,A_{n+1} . Докажите, что можно выбрать два непустых набора $\{A_{i_1},\ldots,A_{i_p}\}$ и $\{Aj_1,\ldots,A_{j_q}\}$ так, что все числа i_s и j_ζ различны, а объединение подмножеств первого набора совпадает с объединением подмножеств второго набора.
- 11. В множестве $\{1,2,\ldots,n\}$ выбрали различные подмножества S_1,S_2,\ldots,S_m так что S_i содержит нечётное количество элементов, а пересечение любых двух из них содержит чётное количество элементов. Докажите, что $m\leqslant n$.
- 12. Известно, что в тетраэдре две пары скрещивающихся ребер перепндикулярны. Докажите, что и третья пара скрещивающихся ребер обладает этим свойством.
- 13. Белоснежка и семь гномов живут в своём домике в лесу. В течение каждого из 16 последовательных дней некоторые гномы работали на алмазной шахте, в то время как остальные собирали грибы. Каждый гном выполнял только один вид работы в течение одного дня. Известно, что какие бы два дня ни выбрать, найдутся хотя бы три гнома, которые в эти два дня выполняли оба вида работы. Кроме того, в первый день все семь гномов работали на шахте. Докажите, что в один из этих 16 дней все гномы ходили за грибами.

¹Подсказка: эти задачи относятся и к этой теме, и к предыдущей.