Serial No.: 10/567,438 Filed: February 7, 2006

Final Office Action Mailing Date: October 20, 2010

Examiner: Yara B. GREEN Group Art Unit: 2884 Attorney Docket: **31322** Confirmation No.: 5035

In the Claims:

1-61. (Canceled).

62. (Currently Amended) An infra-red imaging camera comprising: an uncooled and unshielded detector comprising an array of infra-red (IR) sensors arranged to detect infra red radiated energy, said array comprising a plurality of IR sensors,

a non-uniformity corrector, associated with said detector, operable to perform non-uniformity correction on outputs of said array to provide uniform outputs having a uniform response to energy detected at said uncooled sensor, and

a calibrator to carry out periodic calibration operations by taking at least one calibration temperature measurement of a temperature of a shutter of said camera while said shutter is closed, using a first temperature sensor located on said shutter, and to derive a reference temperature from said at least one calibration temperature measurement, said a reference temperature being a temperature indicative of radiated energy not from an external scene, and a reference level comprising an average video signal of said IR sensors at the time of said calibration temperature measurement, said average being taken over said plurality of IR sensors, and to calculate a temperature of objects in said camera's field of view for each of said plurality of IR sensors from a difference between a respective uniform output of said sensor and said reference level, said temperature being calculated using a same signal to temperature function for each of said sensors, wherein said reference temperature is an offset of said function.

63. (Previously Presented) The infra-red imaging camera of claim 62, configured to combine a value from an initial calibration temperature measurement with a second value taken from a second calibration temperature measurement, said combining using a time-dependent function, to produce extrapolations of said

3

In re Application of: Ernest GRIMBERG

Serial No.: 10/567,438 Filed: February 7, 2006

Final Office Action Mailing Date: October 20, 2010

Examiner: Yara B. GREEN Group Art Unit: 2884

Attorney Docket: 31322

Confirmation No.: 5035

reference temperature for later points in time after said calibration temperature

measurements.

64. (Previously Presented) The infra-red imaging camera of claim 63,

wherein said time-dependent function comprises a mathematical extrapolation

function from most recent calibration temperature measurements.

65. (Canceled).

66. (Previously Presented) The infra-red imaging camera of claim 62,

wherein said calibrator is further configured to measure a respective second reference

temperature during an external temperature measurement using a second temperature

sensor located on a housing of said camera, wherein said respective second reference

temperature is a further parameter of said signal to temperature function for said

external temperature measurement.

67. (Previously Presented) The infra-red imaging camera of claim 62,

having a camera thermal time constant of a first duration, and wherein said calibrator

is configured to make a plurality of said calibration temperature measurements during

said first duration.

68. (Previously Presented) The infra-red imaging camera of claim 62,

wherein a first thermistor is located on a shutter of said camera, a second thermistor is

located on an external surface of detector's vacuum packaging of said camera and a

third thermistor is located on a casing surrounding optics of said camera, and wherein

said calibration temperature measurement comprises taking readings from each of said

thermistors.

Serial No.: 10/567,438 Filed: February 7, 2006

Final Office Action Mailing Date: October 20, 2010

Examiner: Yara B. GREEN Group Art Unit: 2884 Attorney Docket: 31322

Confirmation No.: 5035

69. (Previously Presented) The infra-red imaging camera of claim 62, wherein said shutter comprises a sheet having an emissivity substantially approaching 1 within a spectral frequency range used by said detector, and wherein said calibrator is configured to make a further calibration temperature measurement by measuring radiation from said shutter.

- 70. (Previously Presented) The infra-red imaging camera of claim 62, wherein said shutter comprises a sheet having a reflectivity substantially approaching 1 within a spectral frequency range used by said detector, and wherein said calibrator is configured to make a further calibration temperature measurement by measuring radiation reflected from said shutter, said radiation being indicative of a temperature of said uncooled detector.
- 71. (Previously Presented) The infra-red imaging camera of claim 62, wherein said uncooled detector comprises a microbolometer array.
- 72. (Previously Presented) The infra-red detector of claim 62, operable to make said calibration temperature measurements at an interval of time less than the camera thermal time constant.

73. (Canceled).

74. (Currently Amended) Temperature correction apparatus, for correcting a response of a radiometer in accordance with a local camera temperature, said radiometer comprising:

an unshielded uncooled infra-red (IR) detector comprising an array of IR sensors, said array comprising a plurality of IR sensors, configured for providing an

Serial No.: 10/567,438 Filed: February 7, 2006

Final Office Action Mailing Date: October 20, 2010

Examiner: Yara B. GREEN Group Art Unit: 2884 Attorney Docket: **31322**

Confirmation No.: 5035

image response in order to form a temperature image in accordance with IR radiation impinging on said IR detector's field of view (FOV), and

a shutter, configured for controllably obscuring said FOV, an internal face of said shutter forming a measurement surface for an internal temperature reference unit;

a non-uniformity corrector, associated with said detector, operable to perform non-uniformity correction on outputs of said array to provide uniform outputs having a uniform response to energy detected at said uncooled sensor,

said temperature correction apparatus comprising:

a temperature sensor configured for determining a local camera temperature while said shutter is closed using said measurement surface,

a referencer, configured for deriving <u>a reference temperature</u> from said local camera temperature, <u>said</u> a—reference temperature <u>being a temperature</u> indicative of radiated energy not from an external scene, and for using a response of said IR sensor to said local camera temperature to approximate a temporal effect of temperature drift of said local temperature; and

a signal corrector associated with said temperature sensor and said referencer, said signal corrector being configured to discount impinging IR radiation not from an external source by calculating a temperature of objects in said radiometer's field of view for each of said <u>plurality of IR</u> sensors from a difference between a respective uniform output of said sensor and a reference level comprising an average video signal of said IR sensors at the time of said local camera temperature measurement, <u>said average being taken over said plurality of IR sensors</u>, said temperature being calculated using a same signal to temperature function for each of said uniform outputs, wherein said reference temperature is an offset of said function.

75. (Canceled).

Serial No.: 10/567,438 Filed: February 7, 2006

Final Office Action Mailing Date: October 20, 2010

Examiner: Yara B. GREEN
Group Art Unit: 2884
Attorney Docket: 31322

Confirmation No.: 5035

76. (Previously Presented) Temperature correction apparatus according to

claim 74, wherein said approximation is a mathematical functional approximation

based on previous measured data.

77. (Previously Presented) Temperature correction apparatus according to

claim 74, wherein said IR sensor array is operable to provide a two-dimensional

image.

78. (Previously Presented) Temperature correction apparatus according to

claim 74, wherein said IR detector comprises an array of microbolometers.

79. (Currently Amended) A method for correcting a response of an

uncooled and unshielded a radiometer in accordance with a calibration temperature

measurement, said radiometer comprising an array of infra-red (IR) sensors, for

providing an image response in order to form a temperature image in accordance with

IR radiation impinging on said IR sensor's field of view (FOV), said array comprising

a plurality of IR sensors, and a shutter, for controllably obscuring said FOV, said

method comprising:

performing, while said FOV is obscured by said shutter, a calibration

temperature measurement to determine a temperature of said shutter;

performing non-uniformity correction (NUC) on outputs of said array to

provide uniform outputs having a uniform response to energy detected at said

uncooled sensor;

deriving from said temperature of said shutter a first reference temperature,

said first reference temperature being a temperature reflecting impinging IR radiation

not from an external source;

Serial No.: 10/567,438 Filed: February 7, 2006

Final Office Action Mailing Date: October 20, 2010

Examiner: Yara B. GREEN Group Art Unit: 2884

Attorney Docket: 31322

Confirmation No.: 5035

determining a reference level comprising an average video signal, said average

being taken over of said plurality of IR sensors at the time of said calibration

temperature measurement; and

calculating a temperature of objects in said radiometer's field of view for each

of said sensors from a difference between a respective uniform output of said sensor

and said reference level, said temperature being calculated using a same signal to

temperature function for each of said uniform outputs, wherein said first reference

temperature is an offset of said function.

80. (Previously Presented) A method according to claim 79, further

comprising determining a time dependent response of said radiation sensor to said

temperature of said shutter; and

using said time-dependent response in modifying said temperature

calculations in between determinations of said reference temperature.

81. (Previously Presented) A method for correcting a response of a

radiometer according to claim 79, further comprising filtering said corrected image

response to compensate camera MTF effects.

82-83. (Canceled).

84. (Previously Presented) A method according to claim 79, further

comprising measuring a respective second reference temperature during an external

temperature measurement using a second temperature sensor located on a housing,

wherein said respective second reference temperature is a further parameter of said

signal to temperature function for said external temperature measurement.