

TD 12 : MODÉLISATION COMPUTATIONNELLE É2022

SOLUTIONNAIRE

Exercice 1. Donnez la grammaire **G** qui génère le langage reconnu par l'automate suivant. Vous devez préciser l'alphabet **V**, l'ensemble des symboles terminaux **T**, l'axiome **S**, et l'ensemble des règles de production **P**.

Réponse :

Soit les symboles non terminaux associés aux états comme suit :

- État 0 : Symbole non terminal S, axiome de la grammaire
- État 1 : Symbole non terminal A
- État 2 : Symbole non terminal B
- État 3 : Symbole non terminal C
- État 4 : Symbole non terminal D
- État 5 : Symbole non terminal E
- État 6 : Symbole non terminal F

Nous avons les ensembles suivants : $N = \{S, A, B, C, D, E, F\}$, $T = \{a, b\}$, $V = \{a, b, S, A, B, C, D, E, F\}$. Les productions de P sont :

 $S \rightarrow a \mid aA \mid bB$ $A \rightarrow a \mid aC \mid b \mid bE$ $B \rightarrow a \mid aE \mid bD$ $C \rightarrow a \mid b \mid aF \mid bF$ $D \rightarrow a \mid aF \mid bD$ $E \rightarrow a \mid b \mid aF \mid bF$ $F \rightarrow a \mid b \mid aF \mid bF$

Exercice 2. Soit les grammaires G = (V, T, S, P) où $V = \{a, b, S, A, B, C, D, E\}$, $T = \{a, b\}$. **S** est l'axiome, **P** l'ensemble des règles de production suivantes.

 $S \rightarrow ACaB$ $Ca \rightarrow aaC$ $CB \rightarrow DB \mid E$ $aD \rightarrow Da$ $AD \rightarrow AC$ $aE \rightarrow Ea$ $AE \rightarrow E$

Quel est le type de la grammaire **G** ? Justifiez votre réponse.

Réponse : Elle est de type 0.

- Elle n'est pas de type 3, car aucune production de P n'est de la forme $w_1 \rightarrow a \mid aH$ ou de la forme $S \rightarrow \mathcal{E}$, a étant un symbole terminal et H un symbole non terminal.
- Elle n'est pas de type 2 du fait de la présence de la production $Ca \rightarrow aaC$ dont la partie gauche n'est pas un symbole non terminal, mais un mot. Il en est de même pour :

 $CB \rightarrow DB \mid E$ $aD \rightarrow Da$ $AD \rightarrow AC$ $aE \rightarrow Ea$ $AE \rightarrow E$

■ Elle n'est pas de type 1, car la production $CB \rightarrow E$ est tel que I(CB) > I(E).

Exercice 3. Soit le langage $L = \{(a + b)^*ba^*\}$ construit sur l'alphabet $X = \{a, b\}$. Proposez une grammaire G = (V, T, S, P) qui engendre le langage L. Vous devez préciser V, T, et P.

Réponse:

Note: Plusieurs solutions sont possibles. Celle qui est proposée ici n'est qu'une solution parmi tant d'autres.

- G = (V, T, S, P)
- $V = \{a, b, S, A\}$
- T = {a, b}
- P est constitué des productions suivantes :

$$S \rightarrow aS \mid bS \mid bA \mid b$$

 $A \rightarrow aA \mid a$

Exercice 4. Soit les grammaires G = (V, T, S, P) où $V = \{a, b, S\}$, $T = \{a, b\}$. **S** est l'axiome, **P** est l'ensembles de règles de production.

$$P = \{S \rightarrow aSa \mid bSb \mid SS \mid \mathcal{E}\}\$$

Montrez que $aabaab \in L(G)$.

Réponse :

Il existe plusieurs façons de faire la preuve. On propose ici la dérivation (chaîne de dérivation ou arbre de dérivation)

Dérivation

• Arbre de dérivation

 $S \rightarrow SS$

 $S \rightarrow aSaS (car S \rightarrow aSa)$

 $S \rightarrow aaS (car S \rightarrow \varepsilon)$

 $S \rightarrow aabSb (car S \rightarrow bSb)$

 $S \rightarrow aabaSab (car S \rightarrow aSa)$

 $S \rightarrow aabaab (car S \rightarrow \varepsilon)$

Exercice 5. Déterminisez l'automate suivant.

Réponse:

Table d'états-transition

États	Entrée	
	a	b
0	{0, 1}	{0, 2}
{0, 1}	{0, 1, 3}	{0, 1, 2}
{0, 2}	{0, 1, 2}	{0, 2, 3}
{0, 1, 3}	{0, 1, 3}	{0, 1, 2}
{0, 1, 2}	{0, 1, 2, 3}	{0, 1, 2, 3}
{0, 2, 3}	{0, 1, 2}	{0, 2, 3}
{0, 1, 2, 3}	{0, 1, 2, 3}	{0, 1, 2, 3}

- États finaux : {0, 1, 3}, {0, 2, 3}, {0, 1, 2, 3}.
- Automate

Exercice 6. Construisez un automate fini à 5 états au plus qui accepte les mots sur {a, b}* qui contiennent au moins une fois la sous-chaîne aaaa.

Réponse :

Exercice 7 (facultatif). On considère l'alphabet $V = \{a, b\}$ et les langages L_1 et L_2 . $L_1 = \{ab, bab\}$ et $L_2 = \{a, ab, bbc, ca\}$

a. Déterminez L₁.L₂

Réponse:

 $L_1.L_2 = \{aba, abab, abbbc, abca, baba, babab, babbbc, babca\}$

b. Déterminez L₁³

Réponse :

 $L_1^3 = \{(ab + bab)^3\}$

 $L_1^3 = \{ababab, abbabab, bababab, babbabab, ababbab, abbabbab, bababbab, babbababbab\}$

c. Déterminez L₂*

Réponse:

 $L_2^* = \{(a + ab + bbc + ca)^*\}$