18/5/7

DIALOG(R) File 351: Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

009698186

WPI Acc No: 1993-391739/199349

XRAM Acc No: C93-173860

Improved yeast expression system - in which new host can express specific.

protein, in which expression cassettes are integrated in different

chromosomes or same chromosome in same host

Patent Assignee: TONEN CORP (TOFU )

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 5292972 A 19931109 JP 91188794 A 19910729 199349 B

Priority Applications (No Type Date): JP 91188794 A 19910729

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 5292972 A 12 C12N-015/14

Abstract (Basic): JP 5292972 A

New host can express specific protein, in which expression cassettes are integrated in the different chromosomes or different sites of the same chromosome in the same host. Expression cassette contains promoter and DNA that encodes fused and specific protein in the downstream. Host is cultured, followed by collecting specific protein from the culture. Pref. (1) host is yeast; (2) promoter is modified promoter, that contains yeast alcohol dehydrogenase I promoter, and a part of yeast glyceryl aldehyde-3-phosphate dehydrogenase promoter, and it exists in different expression cassette; (3) protein is human serum albumin; (4) expression cassette integrating site is leu 2 or his 4 position, on the yeast chromosome; (5) second expression is introduced with human serum albumin high expressible plasmid pRGU-N7-TLy 1; (6) to yeast that contains the first expression cassette fused with yeast alcohol dehydrogenase promoter and prepro-human serum albumin cDNA, at his 4 position, the second expression cassette is introduced to the expression plasmid pRGUON7-TLy 1; (7) first expression cassette contg. yeast can produce human serum albumin efficiently, by mutation; (8) the mutant is 222 strain; (9) the host is respiratory activity deleted strain; (10) the high respiratory ability and high human serum albumin producible host is obtd., by conjugation of the strain (9) with high respiratory activity and highly growthable yeast strain; and (11) the specific protein is human serum

USE/ADVANTAGE - Expression amt. increase to 4 fold.

Dwg.0/0

Title Terms: IMPROVE; YEAST; EXPRESS; SYSTEM; NEW; HOST; CAN; EXPRESS; SPECIFIC; PROTEIN; EXPRESS; CASSETTE; INTEGRATE; CHROMOSOME; CHROMOSOME; HOST

Derwent Class: B04; D16

International Patent Class (Main): C12N-015/14

International Patent Class (Additional): C12N-001/19; C12N-015/81

File Segment: CPI

# (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平5-292972

(43)公開日 平成5年(1993)11月9日

| (51) Int.Cl. <sup>5</sup> C 1 2 N 15/14 1/19 |                    | F内整理番号<br>050-4B | FI      |             |                     |      | 技術表示箇所                    |
|----------------------------------------------|--------------------|------------------|---------|-------------|---------------------|------|---------------------------|
| 15/81                                        |                    | 931 – 4 B        | C 1 2 N | 15/00       |                     |      | Α                         |
|                                              |                    |                  | 1       | <b>審査請求</b> | 未請求                 | 請求項  | の数13(全 12 頁)              |
| (21)出願番号                                     | <b>特顧平3-188794</b> |                  | (71)出願人 |             | 390022998<br>東燃株式会社 |      |                           |
| (22)出願日                                      | 平成3年(1991)7月29日    |                  | (72)発明者 | 八木<br>埼玉県   | 慎太郎                 | 中町西鶴 | 丁目1番1号<br>ヶ岡1丁目3番1<br>究所内 |
|                                              |                    |                  | (72)発明者 | 埼玉県         |                     |      | ヶ岡1丁目3番1<br>究所内           |
|                                              |                    |                  | (72)発明者 | 埼玉県         |                     |      | ケ岡1丁目3番1<br> 宍所内          |
|                                              |                    |                  | (74)代理人 | 弁理士         | 久保田                 | 耕平   | (外5名)                     |

# (54) 【発明の名称】 改良された酵母発現系

# (57) 【要約】

【構成】 プロモーターとその下流に融合した特定の蛋 白質をコードするDNAを含んで成る複数の発現力セッ トが同一の宿主中の異る染色体又は同一の染色体の異る 部位に組込まれている、該蛋白質を発現することができ る宿主、並びにその宿主を用いての該蛋白質の製造方 法。宿主として酵母を、特定の蛋白質としてヒト血清ア ルプミンを、プロモーターとして酵母グリセルアルデヒ ド-3-リン酸デヒドロゲナーゼプロモーターの一部を 含む改変プロモーター、及び酵母アルコールデヒドロゲ ナーゼ I プロモーターを用いる場合を例示する。

【効果】 上記具体例において、発現量が約4倍に増加 した。

### 、【特許請求の範囲】

;.

ď.

【請求項1】 プロモーターとその下流に融合した特定 の蛋白質をコードするDNAを含んで成る複数の発現力 セットが同一の宿主中の異る染色体又は同一の染色体の 異る部位に組込まれている、該特定の蛋白質を発現する ことができる宿主。

【請求項2】 前配宿主が酵母菌である、請求項1に配 載の宿主。

【請求項3】 前記プロモーターが酵母アルコールデヒ ドロゲナーゼ I プロモーター、及び酵母グリセルアルデ 10 ヒドー3-リン酸デヒドロゲナーゼプロモーターの一部 を含む改変プロモーターであり、これらが異る発現力セ ット中に存在する、請求項1又は2に記載の宿主。

【請求項4】 前記蛋白質がヒト血清アルブミンであ る、韻求項1~3のいずれか1項に記載の宿主。

【請求項5】 前記発現力セットが組込まれている部位 が酵母染色体上の leu2座又は his4座である、請求項 1~4のいずれか1項に記載の宿主。

【請求項6】 第二の発現力セットがヒト血清アルプミ ン高発現プラスミドpRGU-N7-TLy1を用いて導入された 20 ものである、請求項1に記載の宿主。

【請求項7】 酵母アルコールデヒドロゲナーゼプロモ ーターとプレプロヒト血清アルプミンcDNAとが融合され た第一の発現力セットを his 4座位に含む酵母菌に、請 求項6に配載の発現プラスミドにより第二の発現力セッ トが導入されている、宿主。

【請求項8】 前配第一の発現力セットを含む酵母菌 が、突然変異によりヒト血清アルプミンを効率よく産生 するようになったものである、請求項7に記載の宿主。

【請求項9】 前配第一の発現力セットを含む酵母変異 30 株が 222株である、請求項8に記載の宿主。

【請求項10】 呼吸能欠損株である、請求項7~9のい ずれか1項に記載の宿主。

【請求項11】 請求項10に記載の呼吸能欠損株と、呼吸 活性が高く且つ増殖能の高い酵母株との接合により得ら れる、呼吸能が高く且つヒト血清アルプミンの生産能が 高い宿主。

【請求項12】 請求項1~11のいずれか1項に記載の宿 主を培養し、そして培養物から特定の蛋白質を採取する ことを特徴とする、特定の蛋白質の製造方法。

【闘求項13】 前記特定の蛋白質がヒト血清アルブミン である、請求項12に記載の方法。

### 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、特定の蛋白質を効率よ く産生することができる発現宿主、及び該宿主を用いた 特定の蛋白質の製造方法に関する。

[0002]

【従来の技術】酵母を宿主として外来遺伝子産物を高効

を増加させるなどの方法が試みられている。しかしなが ら、外来遺伝子産物は酵母にとり異物であるため、それ を発現遺伝子の数を増加させることにより高効率で発現 させようとすると、酵母にストレスがかかり、酵母の生 育が阻害される、例えば液胞が肥大化するような酵母の 細胞内器官が異常になる、酵母が死滅、破裂しやすくな

【0003】また目的物である遺伝子産物を容易に精製 して得るためには、それを菌体外に効率良く分泌させる ことが必要であるが、上記のような方法をとるならば、 上記の問題点に加え、菌体外に分泌されず菌体内に蓄積 する、分泌された蛋白質が分解されやすくなるなどの問 題が生じる。一方異種蛋白質を大量に生産するために は、その蛋白質を生産する酵母を大量に培養することが 好ましい。その際、もっとも短時間でかつ高い対糖収率 で増殖させるためには、酵母を嫌気的呼吸(醗酵)で生 育させるのでなく、酸素吸収により生育させる必要があ り、そのための増殖制御方法も多数開発されている。し かしながら酵母のなかには、ミトコンドリアDNAの変 異により酸素呼吸が不可能な菌株も多く知られており、 実験室株として著名なAH22株もミトコンドリアDNA に変異を持つ呼吸欠損株である。このような株を用いた 場合にはたとえ菌体当りの異種蛋白質産生量が高いとし ても、短時間でかつ高い対糖収率で菌体を生育させるこ とは困難であり、そのため高い対糖収率で異種蛋白質を 生産することは困難となる。

[0004]

るなどの問題が生じる。

【発明が解決しようとする課題】したがって本発明は、 同一の宿主の染色体に複数の発現力セットを組み込み、 組み込んだ場合に、異種蛋白質産生に伴う弊害が生じ ず、また高密度大量培養化を目的とした培養に供するこ とが出来、且つ外来蛋白質を効率良く発現させることを 目的とするものである。

[0005]

【課題を解決するための手段】従って本発明は、プロモ ーターとその下流に融合した特定の蛋白質をコードする DNAを含んで成る複数の発現力セットが、同一の宿主 中の異なる染色体、あるいは同一の染色体の異なる部位 に組み込まれており、該特定の蛋白質を障害なく効率良 く分泌発現することができ、酸素呼吸能を持つ宿主、並 びにこの宿主を用いて分解されることなく眩蛋白質を製 造する方法に関する。

[0006]

【具体的な説明】本発明において好ましい宿主は酵母で あり、宿主として酵母を用いる場合について具体的に説 明する。本発明において用いるプロモーターは、選択さ れた宿主細胞中で機能することができるものであり、宿 主が酵母の場合、例えばPGKプロモーター、 ADH2プ ロモーター、 GAL 1 -10プロモーター、PH05プロモータ 率で産生させるために、外来遺伝子を発現する遺伝子数 50 ーや、人工DNA配列又は異種DNA断片由来の酵母で プロモーター機能を持つ断片等が使用できる。好ましく は発現カセットごとに異るプロモーターを使用する。本 発明においては、具体例として、一方のプロモーターが 酵母アルコールデヒドロゲナーゼ I (ADHI) プロモータ ーであり、他方のプロモーターが酵母グリセルアルデヒ ドー3-リン酸デヒドロゲナーゼ(TDH3) プロモーター の一部分を含む改変プロモーターを使用する。

3

【0007】本発明の特定の蛋白質としては、プロテイ ンジスルフィドイソメラーゼなどの酵素インターロイキ ン2、ヒトインターフェロンなどのリンホカイン、肝細 10 胞増殖因子などの各種増殖因子、成長ホルモンなどのポ リペプチドホルモン等、種々の蛋白質を挙げることがで きる。具体例としてヒト血清アルブミンについて記載す る。

# 【0008】1) 高発現ベクターの作成

酵母に外来遺伝子を導入し、発現させるには、酵母にお いて高い転写能力を持つプロモーターの下流に、目的の 外来遺伝子を連結させ、導入するのが望ましい。そのた め本発明においては、まず、強力なプロモーターの制限 のもとにあるヒト血清アルブミン遺伝子が染色体に組込 20 まれている酵母宿主を用意し、次にこれに第二の発現力 セットを挿入する。

【0009】このようなプロモーターとして、酵母のGA PDH の遺伝子の一つである TDH 3 遺伝子の上流活性化配 列(UAS)と、同遺伝子のTATA配列、CAAT配列などから構 成される転写開始領域から成り立ち、強力な転写能力を 持つプロモーターUAS1-N7 (特願平3-106600号) を用 いる。また新たに導入するHSA遺伝子としては、酵母 に適したコドンから成り立つリーダー配列を付加するこ とによって改変したHSA遺伝子である HSA-A遺伝子 30 (特開平2-117384号) を用いる。また転写終了配列と しては、酵母アルコールデヒドロゲナーゼ I (ADHI) 遺 伝子の転写終了配列を用いる。

【0010】また新たに酵母に導入する発現遺伝子は、 染色体と遊離したプラスミドの形にして導入すると、そ の形質転換体を培養している間にプラスミドが脱落して しまい、安定にHSAを産生し続けることができなくな ることが考えられるため、導入する遺伝子は、染色体に 組み込ませることが望ましい。そのため、これらのプロ モーター、HSA遺伝子及びADHI遺伝子の転写終了配列 40 を連結させたものを、酵母組み込み型ベクターpRS305に 導入することにより、酵母の leu2遺伝子座に組み込む ことが可能なHSA発現プラスミドpRG-UAS1-N7-TLY1-3 05を作成する。このHSA発現プラスミド作成の詳細に ついては実施例1に記載する。

[0011]

2) 高分泌株へのHSA高発現プラスミドの導入 pRG-UAS1-N7-TLY1-305をClaiで切断したものを用いて、 HSA高分泌変異株である 222株 (特願平3-110775

り、 222株の leu 2 遺伝子座にこの発現プラスミドを組 み込ませることができる。ここで用いた変異株、 222株 は、AH22株の his 4遺伝子座に酵母 ADH1遺伝子のブ ロモーターを利用したHSA発現プラスミドを導入して 得られたHIS23株にEMS (エチルメタンスルホン酸) を用いた変異処理を施すことにより得られたHSAを高 分泌するようになった株である(特願平3-110775)。

【0012】形質転換株は、ロイシンの非要求性を指標 に選択する。得られた形質転換体のHSA生産能は、Y PD培地中に分泌されたHSAをSDS-PAGEにより分析す ることにより調べる。この新たな発現ベクターの導入に より得られた株、U1N7TLY1/222 株は、元の 222株の倍 以上の量のHSAを培地に分泌する能力を持っていた。 これらの実験の詳細は実施例2に記載した。

### 【0013】3)接合による株の創製

AH22由来の 222株は、ミトコンドリアDNAに変異を 持つρ 体であるため、エタノール資化能などを持たな い所謂呼吸欠損株である。そのため、菌体の高密度培養 に適した株ではない。故に 222株の形質転換体であるU1 N7TLY1/222 株も同様に高密度培養に適した株とはいえ ない。この性質を補うためには、例えば接合により、正 常なミトコンドリアDNAを持つミトコンドリアを導入 する必要がある。

【0014】しかしながら、接合を行なうことにより、 呼吸欠損が補われるのみでなく、接合に供する相手株の 好ましくない形質も導入される可能性があるため、供す る株を選ぶ必要がある。そのような株の候補としては、 以下のような形質を持つことが好ましい。高密度化を図 るためには、増殖能力が高い株が望ましく、またHSA の生産を行なうためには、例えばプロテアーゼなどが分 **必されにくい株が好ましい。また当然呼吸欠損でない株** であることは必須である。このような株として本発明に おいては A8207BNK1株 (ATCC, 52299) を用いる。

【0015】UAS1+N7/222 株と A8207BNK1株を接合さ せ、2倍体を得る。これを胞子形成培地に移すことによ り胞子を作らせ、得られた胞子を持つ20個の子嚢から80 個の胞子を単離する。これらの胞子由来株から、HSA を多く生産し、且つヒスチジンの要求性を持たない株を ニトロセルロース膜を用いたHSAの検出方法と、SDS-PAGEを用いた分泌HSAの定量方法を用いて評価するこ とにより、 222株の形質である高いHSA産生能を持 ち、かつ呼吸能を持つ株を選択する。

【0016】これらの操作の結果、本発明の提供する 株、YY9C株とYY12A株を得た。なおこれ等の実験 の詳細については、実施例3,4,5に記載したが、Y Y9C株、及びYY12A株は元の 222株の3倍以上のH SAを培地に分泌する能力を持っていた。また、 222株 が利用することのできなかった非発酵性の炭素源である グリセロール、乳酸、エタノールを利用し増殖すること 号:微工研菌寄第 12186号)を形質転換することによ 50 が可能であり、くわえて、これらの炭素顔を利用してH

SAを生産することもできる。

【0017】なお、これらの酵母株、Saccbaromyces cerevisiae YY9Cは工業技術院微生物工業技術研究 所に微工研菌寄第12369号として寄託されており、 Saccbaromyces cerevisiae YY12Aは同様に微工研 菌寄第12370号として寄託されている。

[0018]

【実施例】次に実施例により本発明をさらに具体的に説 明する。

<u>実施例1</u>. <u>H S A 発現ペクターpRG-UAS1-N7-TLY1-305の</u> *10* 作成

制限酵素処理方法の詳細、制限酵素断片の調整方法の詳細、T4 DNAリガーゼを用いた連結、環状化反応の詳細、 大腸菌の形質転換、形質転換体の選択、形質転換体の持 つプラスミドDNAの検定などについては、一般的な実 験としてまとめて最後に記載した。

【0019】TDH3の欠失変異プロモーターを有する pX X05から単離された約0.6 kbのHindIII-XhoI断片を、プロモーター検定ベクターpJDB-NeoC-ATE のHindII-XhoI サイトに挿入したプラスミド (詳細は特願平3-106000 20 に配載済み)、pXX05-NeoC-ATEをHindIII とSalIで切断し、 TDH3遺伝子のプロモーター断片とネオマイシン耐性遺伝子とADHI遺伝子のターミネーターを含む2kbの断片を調整した。

【0020】この断片をHindIII とXholで切断したpRS3 05 (SikorskiとHieter, Genetics, 122, p19-27, 198 9) とT4 DNAリガーゼを用いて連結・現状化させ、その反応液を用いて大脇菌XL1-Blue (Stratagene社)を形質転換させ、アンピシリン耐性コロニーを選択することにより目的とするプラスミドpXX05-NeoC-305を含むクロー 30ンを得た。次にHSA発現プラスミドであるpJDB-ADH-nHSA-A(特開平3-22984)をXhoIとBamHIで切断し、HSAのcDNAを含む2kbの断片を単離した。この断片とXhoIとBamHIで切断したpXX05-NeoC-305の大断片とをT4 DNAリガーゼを用いて連結・現状化させた。

【0021】この反応液を用いて大腸菌XL1-Blueを形質 転換させ、アンピシリン耐性コロニーを選択することに より目的とするプラスミドpXX05-LyO-305 を含むクロー ンを得た。次に、UAS検定ペクターpRG-N7L-Lac2Cの HindII, BglII サイトに、TDH3遺伝子のUAS領域を 40 持つプラスミドpUAS1から単離した約 150bpのHindIII-BglII 断片を挿入することによって作成した TDH3遺伝 子の改変プロモーター断片UAS1-N7 を持つプラスミド (詳細は特願平3-106600に配載済み)、pRG-UAS1-N7-Lac2C をNotiとXboiで切断し、1.5kbの断片を単離し た。

【0022】一方pXX05-Ly0-305 をNot1とXho1で切断し 10kbの断片を単離し、上記1.5kbの断片とT4 DNAリガー ゼを用いて連結・環状化させた。この反応液を用いて大 脇南XL1-Blueを形質転換させ、アンピシリン耐性コロニ ーを選択することにより目的とするプラスミドpRG-UAS1-N7-LyO-305 を含むクローンを得た。

【0023】改変リーダー配列を持つHSA遺伝子発現ベクター、pJDB-ADH-HSA-A(特開平2-117384)をXhoIとBamHIで切断し、2kbの断片を単離した。この断片をXhoIとBamHIで切断したベクターpT3T7-U19X(特開平2-222689)とT4DNAリガーゼを用いて連結・環状化させ、この反応液を用いて大腸菌XL1-Blueを形質転換させ、アンピシリン耐性コロニーを選択することにより目的とするプラスミドpLY1-37を含むクローンを得た。pLY1-37をEcoRIで切断し、フェノール抽出、エタノール沈殿法によりDNAを純化した後、XhoIリンカー(5′-AATTGCTCGAGC)とT4DNAリガーゼを用いて連結・環状化させた。この反応液に1/10反応液分の0.5M NaCIを加え、68℃、10分処理した後、EcoRIで再切断した。

【0024】この反応液を用いて大腸菌XL1-Blueを形質 転換させ、アンピシリン耐性コロニーを選択することに より目的とするプラスミドpLY1X-37を含むクローンを得た。このプラスミドをHindIII で切断した後、68℃、10 分処理し、ヌクレオチド混合液(1 ml ATP, 1 ml TTP, 1 ml GTP, 1 ml CTP)を1/10容、2 UのDNAポリメラーゼ(クレノー断片)を加え、37℃、15分間処理することにより、BindIII切断末端を平滑末端化させた。

【0025】フェノール抽出、エタノール沈殿法により DNAを純化した後、Xholで切断し、2kbの断片を単離 した。この断片をSmalとXholで切断したpT3T7-U18X(特 開平2-222689)とT4 DNAリガーゼを用いて連結・環状 化させ、この反応液を用いて大腸菌XL1-Blueを形質転換 し、アンピシリン耐性コロニーを選択することにより目 的とするプラスミドpTLY1を含むクローン得た。

【0026】次にこのプラスミドをXhoIとBamHI で切断し、1.8 Kbの断片を単離した。またpRG-UAS1-N7-LyO-305をXhoIとBamHI で切断し8 Kbの断片を単離した。これらの断片をT4 DNAリガーゼを用いて連結・環状化させ、この反応液を用いて大腸菌XL1-Blueを形質転換させ、アンピシリン耐性コロニーを選択することにより目的とするプラスミドpRG-UAS1-N7-TLY1-305を含むクローンを得た。

# 【0027】実施例2. 222株の改良

HSA高分泌変異株、222株(特願平3-110775)をYPD培地(1%酵母エキス、2%ペプトン、2%グルコース)で1夜培養し、そのうちの0.1 mlを5 mlのYPD培地に接種した。OD600が1.0に達するまで培養した後、遠心により菌体を集め、集めた菌体を0.5 mlの0.1 M酢酸リチウム液(0.1 M酢酸リチウム、10mNトリス塩酸 [plf7.5]、1 ml EDTA)にて1回洗った。再度遠心により菌体を集め、70μ1の0.1 M酢酸リチウム液に再懸濁し、30℃、1時間保温した。

ゼを用いて連結・現状化させた。この反応液を用いて大 【0028】ClaIで切断することによって直鎖状にした 脇菌XL1-Blueを形質転換させ、アンピシリン耐性コロニ 50 発現プラスミドpRG-UAS1-N7-TLY1-305のDNAを $5\,\mu\,\mathrm{g}$ 

:.

加えた後、30℃、30分保温した。 500 μ l の P E G 溶液 (40%ポリエチレングリコール(平均分子量4,000)を 含む0.1 M酢酸リチウム液) を加え、ピペットマンを用 いてよく混合した後、45分、30℃で保温した。

【0029】この細胞懸濁液を42℃、5分熱処理し、5 00μ1の滅菌水を加えた後、遠心により菌体を集め、1 00μlの滅菌蒸留水に再懸濁した後、SD (-Leu)寒天 培地(20μg/mlアデニン硫酸塩、20μg/mlアルギニ ン塩酸塩、20μg/mlメチオニン、20μg/mlヒスチジ シル、30μg/mlイソロイシン、30μg/ml塩酸塩リジ ン、 $30\mu$ g/mlチロシン、 $50\mu$ g/mlフェニルアラニ\* \*ン、 150 μ g/mlパリン、0.67%アミノ酸不含イースト ニトロゲンペース、2%デキストロース、2%寒天) に ひろげ、30℃におき3日間培養することによりコロニー を形成させた。

【0030】コロニーを形成した株から分泌されるHS Aの量の定量を、下に示したSDS-PAGEによるHSAの定 量方法によって行ない、 222株よりも大量のHSAを分 必する株、U1N7TLY1/222 株を得た。U1N7TLY1/222 株 の培地中に分泌するHSA量を定量した結果を表1に示 ン硫酸塩、 $20 \mu$  g/mlトリプトファン、 $20 \mu$  g/mlウラ 10 す。また比較のために、 222株についてもHSA分必量 を定量した結果を示した。

[0031]

表 1

| 菌 株            | HSA分泌量<br>(24時間培養)(mg/1) | HSA分泌量<br>(48時間培養)(mg/1) |
|----------------|--------------------------|--------------------------|
| 222株           | 2.48                     | 2.92                     |
| U1N7TLY1/222 株 | 5. 88                    | 6.66                     |

【0032】実施例3. U1N7TLY1/222 株の改良

YPD寒天培地 (2%寒天を含むYPD培地) に形成さ せたU1N7TLY1/222 株のコロニーを白金耳でかきとり、 同じくYPD寒天培地に形成させたA8207BNK1株 (ATCC. 52299) の白金耳でかきとったコロニーを、YPD寒天 培地上で混合した後、30℃、4時間培養することにより 接合させた。培養終了後、白金耳で寒天培地上にコロニ ーを形成するように広げ、30℃、2日間増殖させた。

【0033】形成したコロニーの菌体を位相差顕微鏡で 観察し、倍数体の形態を持つ菌体からなるコロニーを選 8%酵母エキス、0.3%ペプトン、10%グルコース、2 %寒天)上に移し、30℃、24時間培養した。さらにこれ らの菌体を胞子形成寒天培地(2%酢酸カリウム、2% 寒天)上に広げ、30℃、2日間培養することにより、胞 子を形成させた。

【0034】胞子形成した子嚢、20個から、ミクロマニ ピュレーターを用いて80個の胞子をYPD寒天培地上に 分離し、30℃、2日間培養することによりコロニーを形 成させた。これらのコロニーのうち、SD (-His)寒天 培地  $(20 \mu g/m]$ アデニン硫酸塩、 $20 \mu g/m]$ アルギニ 40 を示した。 ン塩酸塩、20μg/mlメチオニン、30μg/mlロイシ ン、20 μ g/mlトリプトファン、20 μ g/mlウラシル、

20 30 μg/mlイソロイシン、30 μg/ml塩酸塩リジン、30  $\mu$  g/ml  $\mathcal{F}$   $\mu$  D  $\mathcal{F}$   $\mathcal{F}$  μg/mlパリン、0.67%アミノ酸不含イーストニトロゲ ンペース、2%デキストロース、2%寒天)上で成育す るものを選択した。

【0035】成育するコロニーを、YPD寒天培地上に のせたニトロセルロース膜の上に移して、30℃で24時間 培養し、コロニーから分泌された蛋白質をニトロセルロ ース膜に吸着させた。このニトロセルロース膜から付着 した菌体を蒸留水で洗浄して除去した後、膜を80℃で2 択した。この倍数体コロニーを前胞子形成寒天培地(0. 30 時間乾燥させた。この膜上のHSAを下に示した抗体を 用いたHSAの検出方法によって検出し、比較的大量の HSAが検出された株をさらに選択した。

> 【0036】これらの株から分泌されるHSAの量の定 量を下に示した、SDS-PACEによるHSAの定量方法によ って行ない、そのうち大量のHSAを分泌生産している YY12A株、YY9C株を選択した。YY9C株、YY 12A株の培地中に分泌するHSA量を定量した結果を表 2、表3、表4に示す。また比較のために、 222株、U1 N7TLY1/222 株についてもHSA分泌量を定量した結果

[0037]

表 2 YDP培地におけるHSA発現量

| 菌株             | HSA発現量<br>(24時間培養)(咳/1) | HSA発現量<br>(48時間培養)(域/1) |
|----------------|-------------------------|-------------------------|
| 222株           | 2.48                    | 2.92                    |
| U1N7TLY1/222 株 | 5. 88                   | 6.66                    |
| YY9C株          | 7. 62                   | 5. 32                   |

YY12A株

6. 41

12, 68

[0038]

# <u>表3</u> YPCL培地におけるHSA発現量

[0039]

# <u>表4</u> YPE培地におけるHSA発現量

| 菌株     | HSA発現量        |
|--------|---------------|
|        | (48時間培養)(喊/1) |
| YY9C株  | 1.47          |
| YY12A株 | 4. 12         |

【0040】なお、前記ニトロセルロース膜上のHSA 20の検出は次のようにして行った。ニトロセルロース膜上のHSAの検出は、西洋ワサビベルオキシダーゼ標識ヤギ抗HSA抗体を用いて以下のように行なった。まず、HSAを吸着したニトロセルロース膜を3%ゼラチンを含むTBS液(0.5 M塩化ナトリウム、20mMトリス-塩酸緩衝液(pE7.5))中で30分処理した。次にこの膜をTTBS液(0.05%のTween20を含むTBS液)で5分間処理し、さらに同じ操作をもう一度行なった後に、1%のゼラチンを含むTTBS液で西洋ワサビベルオキシダーゼ標 臓ヤギ抗HSA抗体を1000倍に希釈した溶液中に膜を移 30して、8分間振盪した。

【0041】膜をTTBS液で2回、TBS液で1回、それぞれ5分間洗浄した後、0.015%過酸化水素、0.05%HRP-カラーデベロップメント試薬(バイオラド社)、20%メタノールを含むTBS液に膜を移して発色反応させた。反応終了後は、膜を蒸留水で洗浄した。

【0042】また、前記SDS-PAGEによるHSA分泌量の 定量は次のようにして行った。HSA分泌酵母株から分 泌されるHSA量をSDS-PAGEによって測定する方法は、 以下にしたがって行なった。まずHSA分泌酵母株を5 40 mlのYPD培地に懸濁し、30℃で24時間培養した。培養 被50μ1を新しい5mlの培地(YPD培地、YPGL培地 〔1%酵母エキス、2%ペプトン、1%グリセリン、1 %乳酸〕、YPE培地〔1%酵母エキス、2%ペプトン、1%エタノール〕)に接種し、さらに30℃で培養し た。培養液を10,000rpmで40秒遠心して得られた培養上 清を125μ1分取し、エタノール 125μ1を加えよく混 合した後、水中に1時間静置した。

【0043】これを15,000rpm で5分間遠心し、得られ -mB た沈殿を滅圧乾燥させた後、10μlのサンプル液(2% 50 す。

SDS 、 5 % 2 - メルカプトエタノール、10%グリセリン、0.0625%プロモフェノールブルー、0.0625Mトリス塩酸級衝液 (pH6.8)) に溶解し、 100℃中、5 分間処理した。この溶液を4%から20%の勾配ゲル濃度のSDSポリアクリルアミドゲルにより電気泳動 (Laemali, Nature, 277, p680-685, 1970) した後、クマシーブリリアントブルーR250 で蛋白質を染色した。ゲルを脱色した後、HSAに対応するパンドをデンシトメーター(TEF 10 CO社、TIAS-100)により測定し、標準HSA試料と比較定量した。

10

【0044】なお、本発明の実施例において一般的実験方法は次の通りであった。DNAは以下のような条件で制限酵素処理した。例えば1μgのDNAを10μlの反応液中(反応後はメーカーの推奨する条件のものを用いた)、5ユニットの制限酵素を加え、37℃に1時間保温した。制限酵素断片を調製するためには、例えば反応終了した反応液に1/10容のBPB液(50%グリセリン、0.01%プロモフェノールブルー、50mM EDTA)を加えた後、0.7%アガロースゲルにのせ電気泳動を行なった。電気泳動はTAE緩衝液(40mMトリス、20mM酢酸ナトリウム、10mM EDTA、酢酸を用いてPHを8.0に調整したもの)を用いて行った。

【0045】電気泳動終了後、必要なパンドを切り出し、GENECLEAN Kit (B10101社)を用いてゲルからDNAを回収した。T4 DNAリガーゼを用いた連結反応は、例えばゲルから回収したDNA、100ngと10ngのプラスミドを10μ1の反応液(50mNトリス塩酸(pH7.5]、10mN MgCl:、10mNデチオスレイトール、1 mN ATP)で17ユニットのT4 DNAリガーゼを加え、16℃、1時間保温した。大腸菌の形質転換はHanahanの方法(p109-135 In D.M.G lover(ed.), DNA cloning: a plactical approach, vol.1. IRL Press, Oxford, England, 1985)で行った。

【0046】大腸菌はL培地(0.5%酵母エキス、1%トリプトン、0.5%塩化ナトリウム)を用いて培養した。また大腸菌形質転換体はLamp寒天培地(50µg/mlアンピシリン、1.5%寒天を含むし培地)によって選択した。大腸菌形質転換体のプラスミドDNAをミニプレパレーション法(例えば、Manatis等、Molecular cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, 1982)を用いて調製し、回収したDNAを適当な制限酵素によって切断し、その切断パターンをアガロース電気泳動などによって調べることにより、目的とするプラスミドを持つ形質転換体を選択した。

#### 【図面の簡単な説明】

【図1】図1はプラスミドpXX05-NeoC-ATE及びpRS305からプラスミドpXX05-NeoC-305の作製過程を示す。

【図2】図2はプラスミドpXX05-NeoC-305及びpJDB-ADH -□BSA-A からプラスミドpXX05-LyO-305 の作製過程を示す。

【図3】図3はプラスミドpJDB-ADH-nHSA-A 及びPT3T7-019XからプラスミドpLY1-37の作製過程を示す。

【図4】図4はプラスミドpLY1-37及びpT3T7-018Xから プラスミドpTLY 1 の作製過程を示す。

【図5】図5はプラスミドpXX05-Ly0-305 及びpRG-USA1

-N7-Lac2C からプラスミドpRG-UAS1-N7-Ly0-305 の作製 過程を示す。

【図6】図6はプラスミドpTLY1及びpRG-UAS1-N7-Ly0-305からプラスミドpRG-UAS1-N7-TLY1-305の作製過程を示す。

### [図1]



【図2】



# 【図3】



BamHI

Hindill

[図4]

pLY1-37 licoRIで切断 Xholリンオー(5'-AATTGCTCGAGC) とT4 DNAリガーをを用いた連結、環状化反応 EcoRIで切断 XL1-Blue株を形質転換 Xhol pLYIX-37 Hindiii **BamHI** HIndill llindIIで切断 DNAがリメターゼを用いて平滑末端化 Xholで切断 SmalとXhoIで切断したpT3T7-U18X - 2kbの断片を単離 T4 DNAyガーゼによる連結、環状化反応 Xhol XL1-Blue株を形質転換 pTLY1



### [図6]

