

Probability & Entropy

Semester 1, 2021 Kris Ehinger

Outline

- Variable types
- Probability basics
- Probability distributions
- Entropy
- Bayes' rule

Variable types

Attribute types

- Each instance can have many attributes
- Attributes can be various types
 - Nominal (or categorical)
 - Ordinal
 - Continuous (or numerical)

Nominal/categorical variable

- Variable can take multiple values which are discrete types or categories
 - outlook: sunny, overcast, rainy
 - object: car, bike, pedestrian, street sign, ...
- There is no natural ordering of the values; they are all equally dissimilar from each other
- boolean is a special type of nominal variable with only two possible values
 - isMonday: true, false

Ordinal variable

- Variable has discrete values, and they have a natural order
 - beverageSize: small medium large
 - rating:
- Ordered but not real numeric values —
 mathematical relations don't make sense, distances
 might not be consistent, can't add/subtract them
- Thresholds are meaningful (e.g., >3 stars)
- Nominal/ordinal distinction can be unclear

Continuous/numerical variable

- Variable is real-valued with a defined zero point and no explicit bound
 - distance
 - time
 - price
- Intervals are consistent, mathematical operations make sense (e.g., 2m + 3m = 5m distance)
- What about int variables?
 - They take discrete values in the computer, but usually represent a continuous variable in the world

how mathematical relation

Attribute types

- Why does it matter?
 - Different variable types imply different types of structure and need to be handled differently in learning
 - Some models can only work with nominal or continuous data

Review: Variable types

- A researcher is modelling how changes in course fees would affect the number of students enrolling in various courses.
- What types are the variables in this model?
 - Course name (e.g., Law, Nursing, Engineering)
 - Course fee
 - Number of students

Probability basics

Why probability?

- Learning implies uncertainty
 - Problem too complex to solve exactly
 - Data is ambiguous or incomplete
- How to make smart decisions under uncertainty?

Probability notation

• P(x) = probability of an event x

P(Queen of spades) =
$$1/52$$

P(diamond) = $13/52 = 1/4$

Joint probability

• $P(x,y)=P(x\cap y)=$ probability of both x and y occurring

$$P(red,3) = 2/52 = 1/26$$

Conditional probability

• $P(x|y) = \frac{P(x \cap y)}{P(y)} = \text{probability x occurring, given y}$

$$P(3|red) = (2/52) / (1/2) = (2*2)/52 = 1/13$$

Probability rules

• Sum rule
$$P(x) = \sum_{y} P(x \cap y)$$

• Product rule $P(x,y) = P(x \cap y) = P(x|y)P(y)$

• Bayes' rule
$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

• Chain rule $P(x_1 \cap \dots \cap x_n) = P(x_1)P(x_2|x_1)P(x_3|x_2 \cap x_1)P(x_n| \cap_{i=1}^{n-1} x_i)$

Probability terminology

- Prior probability: P(x)
 - The probability of x occurring, in general, given no additional information
- Posterior probability: P(x|y)
 - The probability of x occurring given that y occurred

Probability terminology

 Independence: no statistical relation between x and y; neither event influences probability of the other

•
$$P(x|y) = P(x)$$

O no correlated variable

•
$$P(y|x) = P(y)$$

(2) no one cause the other

- P(x,y) = P(x)P(y)
- Conditional independence: x and y are independent conditioned on a third variable, z
 - P(x,y|z) = P(x|z)P(y|z)

Example: Probability and ML

	Age <18	Age 18-45	Age >45
Purchase = Yes	10	100	50
Purchase = No	90	900	100

```
P(age>45|yes)
50/160 = 31%
P(age>45|no)
100/1090 = 9%
```

```
P(yes|age<18) P(yes|age18-45) P(yes|age>45) 10/100 = 10% 100/1000 = 10% 50/150 = 33%
```

- Does knowing customers' ages help you predict purchasing behaviour?
- Does knowing purchase behaviour help you predict customer age?

Probability distributions

Probability distribution

- A list of all possible outcomes of a random variable along with their probability values, or a mathematical function that describes the possibilities of different outcomes
- An empirical probability distribution is created by observing the frequency of events in the world
- A theoretical probability distribution is based on a mathematical model of a random process

Example: Rolling a die

Outcome	1	2	3	4	5	6
Probability	1/6	1/6	1/6	1/6	1/6	1/6

Discrete uniform distribution = all outcomes equally likely

Example: Letters in English text

- **Bernoulli trials** = independent events with only two possible outcomes
 - Coin flips (heads or tails)
- A binomial distribution results from a series of Bernoulli trials
- The probability of an event with probability p occurring exactly m out of n times:

$$B(m; n, p) = \binom{n}{m} p^m (1-p)^{n-m} = \frac{n!}{m! (n-m)!} p^m (1-p)^{n-m}$$

• If we flip a (fair) coin once, what is the probability of heads?

• If we flip a (fair) coin twice, what is the probability of 2 heads?

• If we flip a (fair) coin three times, what is the probability of 3 heads?

• If we flip a (fair) coin four times, what is the probability of 4 heads?

Probability distribution for 1000 coin flips

Multinomial distribution

- A multinomial distribution results from a series of independent trials with more than two outcomes
 - Dice rolls (1, 2, 3, 4, 5, or 6)
 - Game outcomes (win, lose, or draw)
- The probability of events X_1 , X_2 , ... X_n with probabilities p_1 , p_2 , ... p_n occurring exactly x_1 , x_2 , ... x_n times, respectively:

$$P(X_1 = x_1, X_2 = x_2, ... X_n = x_n) = \left(\sum_{i=1}^n x_i\right)! \prod_{i=1}^n \frac{p_i^{x_i}}{x_i!}$$

$$\sum_{i=1}^n x_i = \sum_{i=1}^n x_i = \sum_{i=1}^n x_i$$

$$\sum_{i=1}^n x_i = \sum_{i=1}^n x_i = \sum_{i=1}^n x_i$$

$$\sum_{i=1}^n x_i = \sum_{i=1}^n x_i = \sum$$

Week 2, Lecture 1 COMP30027 Machine Learning 29

Gaussian (normal) distribution

- A **normal distribution** (or **Gaussian distribution**) is often used to represent a noisy continuous variable, when the exact type of noise is unknown
- The probability of observing value x from a variable with mean (expected value) μ and standard deviation σ :

$$N(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Gaussian (normal) distribution

Probability models

- Probability model = a mathematical representation of a random event
- It consists of
 - A sample space the set of possible outcomes
 - Events a subset of the sample space
 - A probability distribution of the events
- The model predicts the relative frequency of each event x: P(x)

Examples

- Probability model for a fair coin:
 - P(heads) = 0.5, P(tails) = 0.5
- Probability model for a fair die:
 - P(1) = ? , P(2) = ? , ... P(6) = ?
- Probability model for guessing a multiple-choice question with 4 answers:
 - P(correct) = ? , P(incorrect) = ?

Entropy

Why entropy?

- Measure of information
 - How much information is available for learning?
 - How much did the model learn?
 - Are two models representing the same information?

Entropy (information theory)

- (Shannon) **Entropy** is a measure of unpredictability, the information required to predict an event
- Entropy is measured in bits (binary digits)
- Entropy of a discrete random variable X with possible states $x_1, x_2, ... x_n$ is

$$H(X) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i) \qquad 0 \log_2 0 \stackrel{\text{def}}{=} 0$$

Entropy

Entropy of a fair coin flip (P(heads)=0.5)?

$$H(X) = -(P(h) \log_2 P(h)) - (P(t) \log_2 P(t))$$

$$H(X) = -(0.5 \log_2 0.5) - (0.5 \log_2 0.5)$$

$$H(X) = -(0.5 * -1) - (0.5 * -1) = 1$$

Entropy of a trick coin flip (P(heads)=0.9)?

$$H(X) = -(P(h) \log_2 P(h)) - (P(t) \log_2 P(t))$$

$$H(X) = -(0.9 \log_2 0.9) - (0.1 \log_2 0.1)$$

$$H(X) = -(0.9 * -0.14) - (0.1 * -0.33) = 0.47$$

Entropy values

- Entropy depends on both the number of possible states, and the likelihood of those states
 - Low entropy = outcomes highly predictable
 - High entropy = outcomes unpredictable
- Range of entropy depends on the number of possible outcomes
 - 2 outcomes: entropy range is 0-1
 - N outcomes: entropy range is $0 \log(n)$ range 0 2
 - Entropy = 0 means only one outcome is possible
 - Entropy = log(n) means all outcomes equally likely

$$H(x) = -\sum_{i=1}^{n} \frac{1}{n} \log(\frac{1}{n}) = -h \cdot \frac{1}{n} \cdot \log(\frac{1}{n}) = \log(n)$$

Entropy and message encoding

- What's the entropy of English text?
 - 26 letters = 26 outcomes = log(26) = 4.70 bits
 - ...assuming every letter is equally likely to appear

Actual entropy = 4.14 Minimum letters needed to achieve this entropy:

$$2^{4.14} = 17.63$$

entcomes
$$0-10g(n)$$
.
 $(09)_2(n)=4.14 \rightarrow n=2$

Shannon, C. E. (1951). Prediction and Entropy of Printed English. *The Bell System Technical Journal*, 30(1), 50-64.

Entropy and compression

 To send a message with the minimum possible bits, assign shorter codes to the most frequent letters

- How to pack maximum information into limited bandwidth?
- Example: a camera with 1 bit per pixel

Threshold so 0% of pixels are white P(0) = 1, P(1) = 0
Entropy = 0

- How to pack maximum information into limited bandwidth?
- Example: a camera with 1 bit per pixel

Threshold so 1% of pixels are white P(0) = 0.99, P(1) = 0.01 Entropy = 0.08

- How to pack maximum information into limited bandwidth?
- Example: a camera with 1 bit per pixel

Threshold so 10% of pixels are white P(0) = 0.9, P(1) = 0.1 **Entropy = 0.47**

- How to pack maximum information into limited bandwidth?
- Example: a camera with 1 bit per pixel

Threshold so 50% of pixels are white P(0) = 0.5, P(1) = 0.5 **Entropy = 1**

most informative

- How to pack maximum information into limited bandwidth?
- Example: a camera with 1 bit per pixel

Signal with higher entropy conveys more information

More entropy - more information

Week 2, Lecture 1 COMP30027 Machine Learning

Example: Entropy and ML

Temperature (T)	Play?	
6	no	
7	no	
10	no	_
14	yes	
17	yes	_
18	yes	
19	yes	_
22	no	
23	yes	
24	yes	

 What threshold gives the most information about whether or not to play outside?