Paintbrush

1. Experimental purpose

Use the camera of the car to draw with your fingers on the computer screen.

2. Experimental path source code

Enter the command in the terminal to directly start the python script

cd /home/pi/Rider-pi_class/5.AI Visual Recognition Course/14. Brush
python3 VirtualPaint_USB.py

3. Experimental phenomenon

After running the source code, you can see that the car displays the camera image on the computer screen. Because the car screen is too small, it cannot be displayed on the car screen synchronously.

4. Main program source code analysis

```
if __name__ == '__main__':
    capture = cv.VideoCapture(0)
    capture.set(cv.CAP_PROP_AUTO_EXPOSURE, 0) #关闭自动曝光
    capture.set(6, cv.VideoWriter.fourcc('M', 'J', 'P', 'G'))
    capture.set(cv.CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv.CAP_PROP_FRAME_HEIGHT, 480)
    print("capture get FPS : ", capture.get(cv.CAP_PROP_FPS))
   hand_detector = handDetector(detectorCon=0.85)
   while capture.isOpened():
        ret, frame = capture.read()
        # frame = cv.flip(frame, 1)
        h, w, c = frame.shape
        frame,lmList = hand_detector.findHands(frame, draw=False)
        if len(lmList) != 0:
            # print(lmList)
            # tip of index and middle fingers
           x1, y1 = lmList[8][1:]
            x2, y2 = lmList[12][1:]
            fingers = hand_detector.fingersUp()
            if fingers[1] and fingers[2]:
                # print("Seclection mode")
                if y1 < top_height:</pre>
                    if 0 < x1 < int(w / 5) - 1:
                        boxx = 0
```

```
Color = "Red"
                    if int(w / 5) < x1 < int(w * 2 / 5) - 1:
                        boxx = int(w / 5)
                        Color = "Green"
                    elif int(w * 2 / 5) < x1 < int(w * 3 / 5) - 1:
                        boxx = int(w * 2 / 5)
                        Color = "Blue"
                    elif int(w * 3 / 5) < x1 < int(w * 4 / 5) - 1:
                        boxx = int(w * 3 / 5)
                        Color = "Yellow"
                    elif int(w * 4 / 5) < x1 < w - 1:
                        boxx = int(w * 4 / 5)
                        Color = "Black"
                cv.rectangle(frame, (x1, y1 - 25), (x2, y2 + 25),
ColorList[Color], cv.FILLED)
                cv.rectangle(frame, (boxx, 0), (boxx + int(w / 5), top_height),
ColorList[Color], cv.FILLED)
                cv.rectangle(frame, (0, 0), (int(w / 5) - 1, top_height),
ColorList['Red'], 3)
                cv.rectangle(frame, (int(w / 5) + 2, 0), (int(w * 2 / 5) - 1,
top_height), ColorList['Green'], 3)
                cv.rectangle(frame, (int(w * 2 / 5) + 2, 0), (int(w * 3 / 5) -
1, top_height), ColorList['Blue'], 3)
                cv.rectangle(frame, (int(w * 3 / 5) + 2, 0), (int(w * 4 / 5) -
1, top_height), ColorList['Yellow'], 3)
                cv.rectangle(frame, (int(w * 4 / 5) + 2, 0), (w - 1, 0)
top_height), ColorList['Black'], 3)
           if fingers[1] and fingers[2] == False and math.hypot(x^2 - x^1, y^2 - y^2
y1) > 50:
                # print("Drawing mode")
                if xp == yp == 0: xp, yp = x1, y1
                if Color == 'Black':
                    cv.line(frame, (xp, yp), (x1, y1), ColorList[Color],
eraserThickness)
                    cv.line(imgCanvas, (xp, yp), (x1, y1), ColorList[Color],
eraserThickness)
                else:
                    cv.line(frame, (xp, yp), (x1, y1), ColorList[Color],
brushThickness)
                    cv.line(imgCanvas, (xp, yp), (x1, y1), ColorList[Color],
brushThickness)
                cv.circle(frame, (x1, y1), 15, ColorList[Color], cv.FILLED)
                xp, yp = x1, y1
            else: xp = yp = 0
        imgGray = cv.cvtColor(imgCanvas, cv.COLOR_BGR2GRAY)
        _, imgInv = cv.threshold(imgGray, 50, 255, cv.THRESH_BINARY_INV)
        imgInv = cv.cvtColor(imgInv, cv.COLOR_GRAY2BGR)
        frame = cv.bitwise_and(frame, imgInv)
        frame = cv.bitwise_or(frame, imgCanvas)
        if cv.waitKey(1) & 0xFF == ord('q'): break
        cTime = time.time()
        fps = 1 / (cTime - pTime)
        pTime = cTime
        text = "FPS : " + str(int(fps))
```

From the source code analysis, we can see that the car will call the camera to display the brush on the computer screen. Press the 'Q' key on the keyboard to exit the program.