

ХАРЬКІВСКИЙ НАЦІОНАЛЬНИЙ ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ ІМЕНІ СЕМЕНА КУЗНЕЦЯ

МЕТОДИ Й ЗАСОБИ ЗАБЕЗПЕЧЕННЯ ЯКОСТІ ОБСЛУГОВУВАННЯ (QOS)

ЛЕКЦІЯ 4

Доцент кафедри кібербезпеки та ІТ к.т.н. Лимаренко Вячеслав Володимирович к.т. 066-0708586 (Viber, Telegram)

Мережа має властивості *семантичної і часової прозорості*.

Під семантичною прозорістю прийнято розуміти здатність мережі забезпечувати доставку інформації від джерела до адресата з прийнятним для даної служби рівнем помилок. Типи помилок і їх кількість визначаються способом передачі інформації та фізичною природою каналу.

Жодна система передачі не ϵ ідеальною. У реальних каналах діють спотворення сигналів, завмирання, шуми, різні перешкоди, які в дискретному каналі з'являються у вигляді помилок, що визначають вірність прийому інформації.

Визначення терміна «якість обслуговування». Відповідно до Рекомендацій ІТU-Т Е.800 якість обслуговування (QoS) — це певна інтегральна оцінка, яка визначає ступінь задоволеності користувача наданою йому послугою зв'язку. Це визначення уточнене в Рекомендації Е.860: «Якість обслуговування — ступінь відповідності обслуговування, надаваного користувачеві постачальником, угоді між ними». Це надає ще більшого значення угодам (Service Level Agreement, SLA) між користувачами та постачальниками послуг.

Одним з найбільш часто використовуваних показників, яким прийнято характеризувати якість цифрових систем передачі, є коефіцієнт довічних помилок (Віт Error Rate, BER). При передачі протягом досить великого (репрезентативного) інтервалу часу коефіцієнт довічних помилок зводиться до ймовірності помилкового прийому двійкового символу (ймовірність помилки на біт)

$$P_{\mathrm{BER}} = \lim_{N_{\Sigma} \to \infty} \frac{N_{\mathrm{BER}}}{N_{\Sigma}}$$

де

N_{BER} - кількість двійкових символів, прийнятих з помилкою;

 $N\Sigma$ — загальна кількість переданих біт.

У пакетних мережах біти формуються в пакети. Тому в якості показника, що характеризує якість передачі пакетів, прийнято використовувати ймовірність прийому пакета з помилками, або ймовірність спотворення пакету (Packet Error Rate, PER)

$$P_{ ext{PER}} = \lim_{N_{ ext{DIAK}} o \infty} rac{N_{ ext{PER}}}{N_{ ext{DIAK}}}$$

де

NPER – кількість пакетів, прийнятих з помилками;

ΝΣпак – кількість переданих пакетів.

Під часовою прозорістью мережі прийнято розуміти її властивість підтримувати значення часу затримки і джиттера (розкиду) затримки, при яких забезпечується необхідна якість обслуговування. Часову прозорість прийнято оцінювати двома показниками: часом затримки і джиттером

затримки

Природа помилок багато в чому визначається технічними пристроями, в яких вони виникають. Помилки, залежні від систем передачі, визначаються в основному фізичним середовищем (коаксіальний кабель, волоконно-оптична лінія і ін.) І рядом інших факторів (видом кодування, скремблювання і т. п.).

Час затримки визначається різницею в часі між початком передачі пакета джерелом і закінченням прийому цього ж пакета отримувачем. Затримка може бути різною для кожного пакета і представляти собою випадкову величину. Числовими характеристиками цієї випадкової величини є середній час затримки і дисперсія часу затримки.

Час доставки ϵ дуже важливою мережевою характеристикою для служб, які потребують доставки в реальному часі, наприклад для телефонії, відеотелефонії та організації розподілених обчислень.

Для кожної служби можуть бути визначені гранично допустимі вероятності помилок і час затримки. У табл. 1 наведені вимоги до затримки, ймовірності помилки на біт, ймовірності втрати пакета і ймовірності засилання пакета не за адрескою для основних служб, отриманий в результаті досліджень Європейського дослідницького центру області телекомунікацій (Research on Advanced Communication in Europe, RACE).

Таблиця 1

Параметри основних служб

Служба	$\mathbf{P}_{_{\mathrm{BER}}}$	$\mathbf{P}_{_{\mathtt{PLR}}}$	$\mathbf{P}_{_{\mathtt{PIR}}}$	Затримка, мс
Телефонія	10-7	10^{-3}	10^{-3}	25/400
Передача даних	10 ⁻⁷	10-6	10-6	1000 (50)
Телевізіне мовлення	10-6	10-8	10-8	1000
Звукові сигнали з високою точністю відтворення Звукові сигнали з високою				
точністю відтворення	10-5	10^{-7}	10^{-7}	1000
Управління обробкою в розподілених базах даних				Dec. 1997-1998
	10-5	10-3	10-3	1000

Якість послуги характеризується сукупністю таких основних споживчих властивостей: забезпеченістю, зручністю використання, дієвістю, безпекою та іншими властивостями, специфічними для кожної послуги.

Крім таких технічних характеристик мереж, як продуктивність, латентність, масштабованість, ступінь прозорості для кінцевих користувачів, вкрай важливими характеристиками ϵ комплексні показники надійності: коефіцієнт готовності і середній час недоступності в рік .

Для оцінки комплексного показника ефективності були розроблені опорні таблиці, що дозволяють виділити діапазони зміни необхідних параметрів і визначити їх в умовних балах.

an in Man in in the Market Man in the

Цей простий метод дозволяє отримати досить адекватні результати оцінки, і крім того, об'єднати їх з результатами точних розрахунків за окремими конкретними параметрами.

Таблиця 1 – Вартість розгортання мережі

Бали	Опис параметру
1	Дуже висока вартість
2	Висока вартість
3	Середня вартість
4	Низька вартість
5	Дуже низька вартість

Таблиця 2 – Швидкість передачі даних

Бали	Опис параметру
1	Мала (10Мб/с)
2	Середня (100 Мб/с)
3	Висока (1Гб/с)
4	Дуже висока (10Гб/с)
5	Надзвичайно висока (40 Гб/с)

Таблиця 3 – Ймовірність доставки пакету

D	= lim	N_{nom}
1 nomn	$- \lim_{O3as} \rightarrow \infty$	$\overline{N_{3ae}}$

Бали	Опис параметру	
1	Мала (> 0)	де <i>Р</i>
2	Середня (0.95)	— де <i>1</i> паке
3	Висока (0.97546)	приі
4	Дуже висока (0.99999)	(пак
		— кодс

де $P_{nom n}$ — ймовірність помилкового прийому пакету; N_{nom} — кількість помилково прийнятих кодових послідовностей (пакетів); N_{3ae} — загальна кількість переданих кодових послідовностей (пакетів).

Таблиця 4 – Час доставки пакету

Бали	Опис параметру		
1	Дуже великий (1875 с)		
2	Великий Час достав		вки інформації – інтервал часу від
3	ССРСДПИ		дходження повідомлення даних
4	Малий (0.006 c)	на вхід передавальної частини комп'ютер мережі до початку його видачі одержув	
5	Дуже малий (0.0003 с)	ороні прийому.	

Таблиця 5 – Затримка пакету

Бали	Опис параметру
1	Велика
2	Середня
3	Мала

Таблиця 6 – Продуктивність мережі

Бали	Опис параметру
1	Мала
2	Середня
3	Висока

Таблиця 7 – Порівняльна характеристика протоколу *Ethernet*

Технологія ГОМ	Вартість	Швидкість передачі даних, Мбіт/с	Довжина пакету, біт	Ймовірність правильної доставки пакету, Р _{пр.п}	Час доставки пакету, t _д , с
Ethernet	середня	10	1518	0.95	0.006
Fast Ethernet	середня	100	1518	0.95	0.006
Gigabit Ethernet	висока	1000	1518	0.99999	0.006
10 GbE	висока	10 000	1518	0.99999	0.006
40GbE	висока	40 000	1518	0.99999	0.006

Таблиця 8 – Ймовірнісно-часові характеристики технологій ГОМ

Технологія ГОМ	Вартість	Швидкість передачі даних, Мбіт/с	Довжина пакету, біт	Ймовірніст ь Р _{пр.п}	Час доставки пакету, t _д , с
X.25 (V.34)	середня	10	1056	0.97546	1875
Frame Relay	середня	100	12048	> 0	0.0003
Fast Ethernet	середня	100	1518	0.95	0.006

Таблиця 9 – Порівняння *Ethernet*, пакетної комутації та *Frame Relay*

Показники	Fast Ethernet	Пакетна комутація (Х.25)	Frame Relay	
Мультиплексування з	HAMOC	HeMac	нема€	
часовим розділенням	нема€	нема€		
Статистичне	Tore	Tore	Так	
мультиплексування	Так	Так	Так	
Поділ портів	Поділ портів Так		Так	
Висока продуктивність Так		нема€	Так	
Затримка	низька	висока	низька	

Таблиця 10 – Узагальнена ефективність мереж передачі даних

	Умовні бали							
Технологія	група					Узагальнений	Відносна	
ТСАНОЛОГІЯ	1	2	3	4	5	6	індекс ефективності	ефективність, %
X.25	3	1	3	1	1	1	9	0,25
Frame Relay	3	2	1	5	3	3	270	7,37
Ethernet	3	1	2	4	3	3	216	5,89
Fast Ethernet	3	2	2	4	3	3	432	11,79
Gigabit Ethernet	2	3	4	4	3	3	864	23,59
10 Gb Ethernet	2	4	4	4	3	3	1152	31,45
40 Gb Ethernet	1	5	4	4	3	3	720	19,66
	Всього:							100

Група: 1 – вартість розгортання мережі;

2 – швидкість передачі даних;

3 – ймовірність доставки пакету;

4 – час доставки пакету;

5 – затримка пакету;

6 – продуктивність мережі.

Доступність мережі - властивість мережі надавати ресурс для приймання номера абонента протягом певного проміжку часу.

Доступність з'єднання - властивість мережі надавати з'єднання з показниками якості передачі в межах певних допусків після отримання достатньої кількості знаків номера.

Безперервність встановленого з'єднання - властивість мережі зберігати цілісність встановленого з'єднання протягом сеансу зв'язку.

Якість передачі сигналу по сполучному тракту - властивість мережі забезпечувати виконання вимог до характеристик каналів і трактів мережі доступу, магістральної та систем передачі.

Готовність до обслуговування - властивість мережі, що складається в безвідмовності, довговічності, ремонтопридатності і зберігання або в поєднанні цих властивостей.

Правильність нарахування плати за послугу - властивість служб мережі правильно нараховувати плату за послугу відповідно до встановленого та відомим абоненту тарифом.

Секретність надання послуги - властивість мережі (або служби) зберігати таємницю змісту розмови або даних користувача.

Якість послуги з точки зору користувача може бути виражено сукупністю показників. Ці показники описуються в термінах, зрозумілих як користувачу, так і службі, і не залежать від структури мережі.

Показники якості послуги орієнтовані переважно на ефект, що сприймається користувачем, повинні бути гарантовані користувачеві службою і піддаватися об'єктивного виміру в точці доступу до послуги (Рекомендація ІТU-Т І.350).

В рекомендації ITU-Т Е.862 наведені можливі підходи до обліку економічних втрат оператора (при плануванні, проектуванні, експлуатації та технічному обслуговуванні мереж електрозв'язку) і користувача, пов'язаних з відмовами технічних засобів. Оператори мереж, працюючи в умовах ринку, зацікавлені в оцінці можливих втрат через відмови і в зіставленні їх з витратами на підвищення надійності своїх коштів.

В рекомендації ITU-Т I.350 визначені три функції, які реалізуються мережею і її службами, а три останніх параметри кожної з функцій. Кожна з функцій мережі може бути описана трьома параметрами. Так отримано дев'ять *родових первинних параметрів*, які можуть бути використані для визначення специфічних параметрів QoS і NP

Під *доступом розуміють* можливість в отриманні ресурсів мережі або служби. Процедура доступу починається в момент появи запиту від користувача в інтерфейсі «користувач-мережа» і закінчується при появі хоча б одного біта інформації від його терміналу.

Процедура *перенесення інформації користувача* починається в момент завершення доступу і закінчується в момент передачі повідомлення «запит звільнення», що знаменує закінчення сеансу зв'язку.

Процедура *звільнення* починається в момент передачі повідомлення «запит звільнення» і завершується для кожного користувача після звільнення мережевих ресурсів, що виділялися під час сеансу зв'язку.

Звільнення включає в себе дії, пов'язані як з руйнуванням раніше існуючого фізичного або віртуального з'єднання, так і з завершенням виконання протоколу верхнього рівня OSI. QoS і NP при реалізації функцій мережі або служби описується трьома параметрами: швидкість, безпомилковість, надійність.

Швидкість характеризує проміжок часу, необхідний для виконання функції, або швидкість виконання.

Безпомилковість характеризує ступінь правильності виконання функції.

Безпомилковість характеризує ступінь правильності виконання функції.

Надійність визначає ступінь впевненості у виконанні функції протягом заданого періоду спостереження (незалежно від швидкості і безпомилковості виконання).

У мультисервісної мережі можуть використовуватися технології IP / MPLS, IP / DWDM, IP / ATM, IP / Ethernet і ін. Якість послуг, що надаються за допомогою IP, може характеризуватися такими атрибутами, як затримка, джиттер, втрата пакетів. В рекомендації ITU-TY.1241 наведені приклади атрибутів, що характеризують якість послуг.

Таблиця 2

Приклади атрібутів, характеризуючих якість послуг, які предоставляються за лопомогою IP

допомогою ІР			
Послуги	Види послуги	Атрибути якості	
Мовні послуги	інтернет-телефоніявідеоконференціявідеотелефоніяінтерактивні ігри	затримка, джитер пакетів, втрати пакетів	
Послуги передачі		D	
повідомлень	— Покупки в Інтернеті — голосова пошта — інтернет-факс — відеопошта — групова пошта	Втрати пакетів Ні	
Послуги доставки доставки даних	 Перегляд Web доставка новостей загрузка файлів 	Hi	
Послуги трансляції без індивідуального контролю вмісту	 Відео-по-запросу Електронна корес- понденция реклама в Інтернет 	Втрати та джитер пакетів Ні	
	 Трансляція в реальному часі 	Втрати пакетів	
Послуги трансляції з індивідуальним контролем змісту	Новини-по-запросувідео-по-запросу	Втрати та джитер пакетів	

1, audurrandar

ЯКІСТЬ	ПІДГОТОВКИ	CEAHC	су зв'язку
XAPAKTEPI	ІЗУЄТЬСЯ НАСТ	УПНИМИ ПО	ОКАЗНИКАМИ:
затримкон	о в мережі до	ступу IP, щ	о включає часи
ініціалізац	ції транспортно	ого рівня,	конфігурації і
настройки	и модему, входу в	мережу через	шлюз IP;
_			відомленнями в
магістралі	ьної мережі ІР;		
затримкон	о підготовки сез	ансу в елеме	ентах управління
шлюзами;			
затримкон	о доступу і обр	обки внутрії	иніх прикладних
послуг, та	аких, як послуга	а каталогу (d	irectory-service) i
перевірка	прав доступу;		
затримкон	о підготовки сеан	су в шлюзах;	
часом під	дготовки сеансу	в транзитн	их комутованих
мережах.			

Показниками якості доставки інформації ϵ наскрізні (сприймаються користувачем) затримки і якість сприйманої мови. Затримки відповідно до рекомендації ITU-T G.114 і стандартами ETSI ETR 250 і ETR 275 розділені на чотири класи:

- ▶ малі (10 ... 15 мс), що не дратують користувачів і не потребують в зв'язку з цим придушення акустичного та електричного ехо-сигнала;
- невеликі (до 150 мс), що вимагають придушення відлуння, але не впливають критично на взаємодію користувачів;
- ▶ допустимі (від 200 до 400 мс), при яких якість взаємодії хоча і погіршується, але може бути прийнятним;
- неприпустимі (більше 400 мс), при яких інтерактивне мовленнєвий взаємодія утруднено і необхідне введення деяких правил розмови (наприклад, як в портативних дуплексних радіостанціях walkie-talkie).

Показники якості доставки пакетів з речовою информацією - службою з комутацієй пакетів

	Рівні якості послуги			
Показник	Відмінний	Добрий	Середній	Недостатній
	(Excellent)	(Good)	(Fain)	(Poor)
Час встановлення				
з'єднання, с	0–1	1–3	3-5	Более 5
Час доставки пакета, мс	0-150	150-250	250-400	Более 400

Мультисервісна мережа обслуговує трафік всіх видів служб. Пред'являти однакові вимоги до показників якості доставки інформації для всіх видів служб не є розумним з технічних і економічних міркувань. Т

ому в рекомендації ITU-T Y.1541 виділено шість класів, що розрізняються величинами показників якості доставки. У табл. 3 наведені значення показників якості доставки інформації для всіх шести класів.

Ці значення визначаються для таких показників, як IPTD - затримка перенесення IP-пакетів, IPDV - варіація затримки IP-пакетів, IPLR - частка втрачених IP-пакетів, IREP - частка перекручених IP-пакетів. Символ «U» (перша буква в слові «Unspecified») вказує на те, що показник для даного класу обслуговування не нормується.

Таблиця 3 Показники якості доставки інформації в мережі з пакетною комутацією

Клас яості доставки	IPTD 1)	IPDV 2)	IPLR	IREP
0 (пріорітет 1)	100 мс	50 мсз)	10-3 4)	
1 (пріорітет 1)	400 мс	50 мсз)	10-3 4)	
2 (пріорітет 2)	100 мс	U	10_3	10-45)
3 (пріорітет 2)	400 мс	U	10_3	10000
4 (пріорітет 3)	1 c	U	10_3	
5 (пріорітет 3)	U	U	U	U

Клас обслуговування 0 призначений для обміну інформацією в реальному часі (зокрема, для мови з використанням ІР-технології). Він передбачає створення окремої черги з пріоритетною обробкою пакетів. Для цього класу характерні обмеження на принципи маршрутизації (максимальне число транзитів) і допустима відстань між взаємодіючими терміналами (час поширення сигналів).

Інтерактивність (ймовірність використання діалогового режиму) для класу 0 визначається як «висока» (high). Клас обслуговування 0 може використовуваться, наприклад, для телефонного зв'язку високої якості (perfectly). Природно, що тарифи за подібні послуги будуть максимальними.

Клас обслуговування 1 також призначений для обміну інформацією в реальному часі, але з менш жорсткими вимогами. Тому накладаються менш істотні обмеження на принципи маршрутизації і час поширення сигналів, ніж для класу 0. Також передбачається створення окремої черги з пріоритетною обробкою пакетів. Клас обслуговування 1 забезпечує хорошу (good) якість телефонного зв'язку.

Клас обслуговування 2 орієнтований на обмін даними з високим ступенем інтерактивності. До цього класу належить, зокрема, сигнальна інформація. Для класу обслуговування 2 характерні такі ж обмеження на принципи маршрутизації і час поширення сигналів, як для класу 0. Для пакетів цього класу формується своя чергу на обробку, яка здійснюється з другим пріоритетом. Це означає, що пакети класів 0 і 1 мають перевагу по обслуговуванню в порівнянні з пакетами інших класів.

Класу обслуговування 3, призначеному для обміну з менш високим рівнем інтерактивності, притаманні ті ж обмеження на принципи маршрутизації і час поширення сигналів, що і класу 1. Обслуговування пакетів цього класу має здійснюватися з другим пріоритетом. Цей клас вважається прийнятним для інтерактивного обміну даними.

Клас обслуговування 4 призначений для обміну різною інформацією з низькою ймовірністю втрати (короткі транзакції, потокове відео та інші). Допускаються довгі черги пакетів на обробку, яка здійснюється з другим пріоритетом. Ніякі обмеження на маршрутизацію і час доставки повідомлень не накладаються.

Клас обслуговування 5 орієнтований на IP-додатки, які не вимагають високих показників якості доставки інформації. Відповідні пакети формують окрему чергу; обслуговування здійснюється з найнижчим пріоритетом (в даному випадку він має третій номер). Ніякі обмеження на маршрутизацію і час доставки повідомлень не накладаються. Типовим прикладом послуг, що надаються до класу обслуговування 5, можна вважати електронну пошту.

Захист від перевантажень

Управління трафіком на увазі цілеспрямоване розподіл ресурсів мережі для задоволення вимог користувачів.

МЕРЕЖА МАЄ ТАКІ РЕСУРСИ:

- -продуктивність вузлів;
- -смуга пропускання цифрових трактів;
- -обсяг буферних накопичувачів, призначених для зберігання пакетів в процесі обробки їх заголовків у вузлу мережі.

У ПРОЦЕСІ УПРАВЛІННЯ ТРАФІКОМ ВИРІШУЮТЬСЯ НАСТУПНІ ЗАВДАННЯ:

- -вжиття заходів для ліквідації перевантаження у вузлах;
- -управління вхідними потоками (для попередження перевантаження і запобігання поширенню перевантаження, що виникло в даному вузлі, на інші об'єкти мережі);
- -маршрутизація (для вибору оптимальних шляхів передачі потоків);
- -надання користувачам необхідних ресурсів з урахуванням необхідної якості послуг.

Захист від перевантажень

При перевантаженнях має місце таке явище, як деградація мережі, коли виконана навантаження різко знижується, що викликається різким збільшенням затримки, джиттера і втрати пакетів.

Можна по різному класифікувати методи боротьби з перевантаженнями. Якщо в якості ознаки класифікації прийняти реакцію мережі на перевантаження, то можна виділити три категорії:

- -менеджмент перевантажень;
- -запобігання перевантаження;
- -відновлення працездатності мережі або її елементів після перевантаження.

Захист від перевантажень

Менеджмент	перевантаження	здійснюється	В	області,	де
перевантаження нема ϵ , з метою запобігання перевантаження.					
Основними заходами захисту від перевантажень в цьому випадку ϵ :					
🗖 розподіл ресу	рсів;				
 скидання пакетів при контролі параметрів трафіку користувача; 					
🗖 контроль доступу в мережу по пікової швидкості потоку пакетів, що					
гарантує відсу	утність перевантаженн	ня смуги пропуск	ання;		
□ вдосконаленн	я архітектури мережі.				

Основними методами запобігання перевантажень ϵ :

- > так звана явна пряма вказівка перевантаження (Explicit Forward Congestion Indication, EFCI);
- > маркування пакетів при контролі параметрів користувача;
- управління доступом до мережі на основі доступної швидкості за принципом «overbooking»;
- > блокування заявок;
- ▶ контроль потоку служб ПД без встановлення з'єднання на основі вікна, швидкості і кредиту.

Захист від перевантажень

Застосування методу контролю потоку на *основі вікна* дозволяє обмежити обсяг потоку даних (званий вікном), який передається джерелом, і здійснити регулювання розміру вікна за допомогою зворотного зв'язку. Контроль потоку на основі вікна дуже простий. Він був першим методом, використаним в мережах передачі даних. З деякими уточненнями метод використовується в Інтернеті.

При контролі потоку на *основі швидкості* замість розміру вікна контролюється швидкість передачі джерела, що виражається в кількості пакетів, що передаються за період відгуку. Спочатку швидкість передачі дорівнює нулю. З кожним періодом відгуку комутатор забезпечує зворотний зв'язок з джерелом, збільшуючи або зменшуючи допустиму швидкість джерела.

При контролі потоку на *основі швидкості* забезпечується більш рівномірна розстановка пакетів, а також більш висока пропускна здатність, в порівнянні з управлінням на основі вікна.

Захист від перевантажень

При управлінні потоком на *основі кредиту* джерело може продовжувати відправляти пакети до тих пір, поки відлік кредиту перевищує нуль. У кожен період відгуку комутатор посилає повідомлення зворотного зв'язку, оголошуючи нове значення кредиту кожному джерелу. Кредит розраховується комутатором як число решти осередків в буфері для кожного віртуального з'єднання.

Метод кредиту призводить до дуже переривчастої, але регулярної передачі осередків, дозволяє ізолювати всі віртуальні з'єднання один від одного.

Відновлення мережі після розпочатих перевантажень - це реакція на потрапляння мережі в зону сильних перевантажень.

ОСНОВНИМИ МЕТОДАМИ ВІДНОВЛЕННЯ €:

- -селективне скидання пакетів при контролі параметрів потоку користувача;
- -динамічне управління параметрами потоку користувача;
- -зменшення інтенсивності навантаження під впливом зворотного свяяі;
- -зворотний зв'язок при наявності втрат;
- -роз'єднання (скидання) з'єднань;
- -керуючі впливи операторів.