Matrix-Rotation

In der Mathematik beschreibt der Begriff der Rotation oder Wirbelstärke eines Vektorfeldes das Ausmaß und die Richtung der kleinräumigsten Drehung, die durch das Feld an einem Punkt induziert wird.

Definition der Rotation in 2D und 3D

Die Rotation eines Vektorfeldes v in 2D und 3D ist durch folgende Definitionen gegeben:

• Rotation in 2D: Für ein Vektorfeld $\mathbf{v}: \mathbb{R}^2 \to \mathbb{R}^2$ mit den Komponenten $\mathbf{v}(x^1, x^2) = \begin{bmatrix} v^1(x^1, x^2) \\ v^2(x^1, x^2) \end{bmatrix}$, ist die Rotation definiert als

$$rot(\mathbf{v}) = v_{,1}^2 - v_{,2}^1.$$

Diese ist ein skalares Feld.

• Rotation in 3D: Für ein Vektorfeld $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$ mit den Komponenten $\mathbf{v}(x^1, x^2, x^3) = \begin{bmatrix} v^1(x^1, x^2, x^3) \\ v^2(x^1, x^2, x^3) \\ v^3(x^1, x^2, x^3) \end{bmatrix}$, ist die Rotation definiert als

$$rot(\mathbf{v}) = \begin{bmatrix} v_{,2}^3 - v_{,3}^2 \\ v_{,3}^1 - v_{,1}^3 \\ v_{,1}^2 - v_{,2}^1 \end{bmatrix}.$$

Diese ist ein Vektorfeld.

Physikalische und geometrische Interpretation

- Die 2D-Rotation misst die Tendenz des Vektorfeldes, um einen Punkt zu zirkulieren, was als ein Maß für den lokalen Drehimpuls interpretiert werden kann.
- In 3D gibt $rot(\mathbf{v})$ die Achse und Stärke der Rotation oder Wirbel des Vektorfeldes an. Die Richtung von $rot(\mathbf{v})$ ist senkrecht zur Ebene der maximalen Zirkulation.

Anwendungen

Die Konzepte der Rotation werden in verschiedenen physikalischen Disziplinen angewandt, inklusive der Fluidmechanik, Elektromagnetismus und in der kontinuumsmechanischen Beschreibung von Deformationsfeldern.