MA 54400 - Midterm 1 Practice Problems Spring 2016 Prof. D. Danielli

- 1. Let $E \subset \mathbb{R}^n$ be a measurable set, $r \in \mathbb{R}$, and define the set $rE = \{rx \mid x \in E\}$. Prove that rE is measurable, and that $|rE| = |r|^n |E|$.
- 2. Let $\{E_k\}$, $k \in \mathbb{N}$, be a collection of measurable sets. Define the set

$$\liminf_{k\to\infty} E_k = \bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} E_n \right).$$

Show that

$$|\liminf_{k\to\infty} E_k| \leq \liminf_{k\to\infty} |E_k|.$$

 $|\liminf_{k\to\infty} E_k| \le \liminf_{k\to\infty} |E_k|.$ State and prove an analogous result for $\limsup_{k\to\infty} E_k$. (Recall that for a sequence of real numbers $\{a_k\}$, $\liminf_{k\to\infty} a_k = \lim_{k\to\infty} \inf_{n>k} a_n$.)

- 3. Let $E \subset \mathbb{R}^n$ be a measurable set, with $|E| = \infty$. Show that for any C > 0 there exists a measurable set $F \subset E$ such that $C < |F| < \infty$.
- 4. Consider the function

$$F(x) = \begin{cases} |B(0, x)| & x > 0, \\ 0 & x = 0. \end{cases}$$

Here $B(0,r) = \{y \in \mathbb{R}^n \mid |y| < r\}$. Prove that F is monotone increasing and continuous.

- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Let C be the set of all points at which f is continuous. Show that C is a set of type G_{δ} .
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Is it true that if the sets $\{f = r\}$ are measurable for all $r \in \mathbb{R}$, then f is measurable?
- 7. Let $\{f_k\}$ be a sequence of measurable function on \mathbb{R} . Prove that the set $\{x \mid \exists \lim_{k \to \infty} f_k(x)\}$ is measurable.
- 8. A real valued function f on an interval [a,b] is said to be absolutely continuous if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every finite disjoint collection $\{(a_k, b_k)\}_{k=1}^n$ of open intervals in (a, b) satisfying $\sum_{k=1}^{n} (b_k - a_k) < \delta$, one has $\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon$. Show that an absolutely continuous function on [a, b] is of bounded variation on [a, b].
- 9. Let f be a continuous function from [a, b] into \mathbb{R} . Let χ_c be the characteristic function of the singleton $\{c\}$, i.e. $\chi_c(x) = 0$ if $x \neq c$, and $\chi_c(c) = 1$. Show that

$$\int_{a}^{b} f \ d\chi_{c} = \begin{cases} 0 & \text{if } c \in (a, b) \\ -f(a) & \text{if } c = a \\ f(b) & \text{if } c = b \end{cases}$$