IS 508 PROJECT & ORGANIZATION CHANGE MANAGEMENT

Nangosha Elisha May21/PGDIT/577U

In this test, you will design models to predict the number of deaths due to covid-19 Pandemic in Americas region. Data set can be downloaded from URL: https://covid19.who.int/lable • Use python 3.7 or higher for implementation. • Take the screen shots of your codes and upload in the university platform and also share your uploaded codes/output in your Github account with the Instructor. • Use the following methodology with respective performance evaluation metrics such as r-squared, and RMSE:

- 1. Descriptive statistics (4 marks)
- 2. Simple linear Regression. (8 marks)
- 3. Multiple Linear Regression. (8 marks)

Data set from URL: https://covid19.who.int/table As at: July 10th 2021 at 6.01 PM

```
In [1]: #importing libraries for analysis
              ! pip install seaborn
             import pandas as pd
             import matplotlib.pyplot as plt
            import numpy as np
import seaborn as sns
             from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
             %matplotlib inline
            Requirement already satisfied: seaborn in /srv/conda/envs/notebook/lib/python3.6/site-packages (0.11.1)
Requirement already satisfied: pandas>=0.23 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (1.1.5)
Requirement already satisfied: scipy>=1.0 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (1.5.3)
Requirement already satisfied: matplotlib>=2.2 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (3.3.4)
Requirement already satisfied: numpy>=1.15 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (1.19.5)
             Requirement already satisfied: kiwisolver>=1.0.1 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>=2.2-
             >seaborn) (1.3.1)
Requirement already satisfied: cycler>=0.10 in /srv/conda/envs/notebook/lib/python3.6/site-packages/cycler-0.10.0-py3.6.egg (fr
             om matplotlib>=2.2->seaborn) (0.10.0)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)
             Requirement already satisfied: pillow>=6.2.0 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>=2.2->sea
             born) (8.2.0)
             Requirement already satisfied: python-dateutil>=2.1 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>=
             2.2->seaborn) (2.8.1)
Requirement already satisfied: six in /srv/conda/envs/notebook/lib/python3.6/site-packages (from cycler>=0.10->matplotlib>=2.2-
             >seaborn) (1.15.0)
Requirement already satisfied: pytz>=2017.2 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from pandas>=0.23->seabor
             n) (2021.1)
```

In [2]: #load file. This has global regions
Data=pd.read_csv("WHO COVID-19 global table data July 10th 2021 at 12.02.11 PM.csv",sep=",")
#wiew first five rows
Data.head()

Out[2]:

Transmission Classification	Deaths - newly reported in last 24 hours	Deaths - newly reported in last 7 days per 100000 population	Deaths - newly reported in last 7 days	Deaths - cumulative total per 100000 population	Deaths - cumulative total	Cases - newly reported in last 24 hours	Cases - newly reported in last 7 days per 100000 population	Cases - newly reported in last 7 days	Cases - cumulative total per 100000 population	Cases - cumulative total	WHO Region	Name	
NaN	8516	0.711485	55457	51.458988	4010834	458355	37.290076	2906590	2377.196364	185291530	NaN	Global	0
Community transmission	301	0.470000	1551	181.640000	801231	22569	32.630000	108004	10106.250000	33451965	Americas	United States of America	1
Clusters of cases	911	0.410000	5627	29.420000	405939	43393	21.350000	294699	2228.470000	30752950	South- East Asia	India	2
Community transmission	1648	4.930000	10474	248.660000	528540	54022	165.550000	351898	8895.880000	18909037	Americas	Brazil	3
Clusters of cases	728	3.380000	4936	96.960000	141501	25766	117.780000	171858	3928.630000	5733218	Europe	Russian Federation	4

Cleaning of imported Data

In [5]: #Extracting only for Americas region
new_file = Data.loc[(Data['WHO Region'] == 'Americas')]
#preview first five rows of new data set
new_file.head()

Out[5]:

	Name	WHO Region	Cases - cumulative total	Cases - cumulative total per 100000 population	Cases - newly reported in last 7 days	Cases - newly reported in last 7 days per 100000 population	Cases - newly reported in last 24 hours	Deaths - cumulative total	Deaths - cumulative total per 100000 population	Deaths - newly reported in last 7 days	Deaths - newly reported in last 7 days per 100000 population	Deaths - newly reported in last 24 hours	Transmission Classification
1	United States of America	Americas	33451965	10108.25	108004	32.63	22569	601231	181.64	1551	0.47	301	Community transmission
3	Brazil	Americas	18909037	8895.88	351896	185.55	54022	528540	248.66	10474	4.93	1648	Community transmission
8	Argentina	Americas	4593763	10164.14	123389	273.01	19423	97439	215.59	3135	6.94	456	Community transmission
9	Colombia	Americas	4428811	8700.00	185829	385.21	24229	110578	217.32	4034	7.93	559	Community transmission
15	Mexico	Americas	2558389	1984.27	39100	30.33	8507	234192	181.64	1145	0.89	234	Community transmission

/srv/conda/envs/notebook/lib/python3.6/site-packages/pandas/core/frame.py:4308: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,

In [7]: #First five raws new_file.head()

Out[7]:

	Country	WHO Region	Cases(Cum.Total)	Cases(Cum.Total)per 100000 population	Cases(last 7 days)	Cases(last 7 days)per 100000 population	Cases(last 24 hours)	Deaths(Cum.Total)	Deaths(Cum.Total) per 100000 population	Deaths - newly reported in last 7 days	Deaths(last 7 days)per 100000 population
1	United States of America	Americas	33451965	10108.25	108004	32.63	22569	601231	181.64	1551	0.47
3	Brazil	Americas	18909037	8895.88	351896	185.55	54022	528540	248.66	10474	4.93
8	Argentina	Americas	4593763	10164.14	123389	273.01	19423	97439	215.59	3135	6.94
9	Colombia	Americas	4426811	8700.00	185829	385.21	24229	110578	217.32	4034	7.93
15	Mexico	Americas	2558369	1984.27	39100	30.33	8507	234192	181.64	1145	0.89
4											•

```
In [9]: #Data set Summary
                 new_file.info()
                 <class 'pandas.core.frame.DataFrame'>
Int64Index: 56 entries, 1 to 220
Data columns (total 13 columns):
                                                                                                            Non-Null Count Dtype
                  # Column
                                                                                                             -----
                   0
                            Country
                                                                                                             56 non-null
                                                                                                                                           object
                           WHO Region
Cases(Cum.Total)
                                                                                                             56 non-null
                                                                                                                                          object
int64
                                                                                                             56 non-null
                   Cases(Cum.Total)per 100000 population
Cases(last 7 days)
Cases(last 7 days)per 100000 population
Cases(last 24 hours)
                                                                                                             56 non-null
                                                                                                                                           float64
                                                                                                             56 non-null
                                                                                                                                           int64
                                                                                                                                           float64
int64
                                                                                                            56 non-null
                                                                                                             56 non-null
                 6 Cases(last 24 hours) 56 non-null
7 Deaths(Cum.Total) per 100000 population
9 Deaths(last 7 days)per 100000 population
10 Deaths(last 7 days)per 100000 population
11 Deaths(last 24 hours) 56 non-null
12 Transmission Classification 56 non-null
dtypes: float64(4), int64(6), object(3)
memory usage: 6.1+ KB
                                                                                                                                           int64
                                                                                                                                           float64
int64
                                                                                                                                           float64
                                                                                                                                           int64
                                                                                                                                           object
In [10]: #Countrie in Americas region as per dataset
new_file['WHO Region'].value_counts().to_frame()
```

Out[10]:

WHO Region Americas

We have 56 countries in America region

In [11]: #Data Set Description new_file.describe()

Out[11]:

	Cases(Cum.Total)	Cases(Cum.Total)per 100000 population	Cases(last 7 days)	Cases(last 7 days)per 100000 population	Cases(last 24 hours)	Deaths(Cum.Total)	Deaths(Cum.Total) per 100000 population	Deaths - newly reported in last 7 days	Deaths(last 7 days)per 100000 population	Dea 24
count	5.600000e+01	58.000000	56.000000	56.000000	56.000000	58.000000	56.000000	58.000000	56.000000	56
mean	1.311608e+06	4099.591964	17272.714286	90.348393	2733.410714	34481.214286	77.229288	451.392857	1.582500	70
std	5.112890e+08	3312.030801	55956.745585	202.678019	8633.177160	112121.113116	95.639841	1547.820305	2.377306	240
min	7.000000e+00	102.940000	0.000000	0.000000	-9.000000	0.000000	0.000000	0.000000	0.000000	0
25%	2.088500e+03	1395.055000	10.750000	9.005000	0.000000	17.750000	11.247500	0.000000	0.000000	0
50%	1.558400e+04	3181.080000	310.000000	33.020000	25.000000	261.000000	53.310000	3.500000	0.445000	0
75%	3.425358e+05	8288.192500	7568.250000	92.862500	955.500000	5968.250000	93.797500	122.250000	1.912500	18
max	3.345196e+07	10785.670000	351898.000000	1485.090000	54022.000000	601231.000000	587.800000	10474.000000	10.520000	1648
4										•

```
In [12]: new_file.shape
Out[12]: (56, 13)
In [13]: #Transmission classification Counts
new_file['Transmission Classification'].value_counts().to_frame()
```

Out[13]:

	Transmission Classification
Community transmission	42
Sporadic cases	5
Clusters of cases	5
No cases	4

We have 42 community transmissions out of the total of 56 records observed.

```
In [14]: #The country with the highest number of deaths reported in the last 24hrs against transmission classification
death_24hrs=new_file[['Country', 'Deaths(last 24 hours)']]
highdeath_24hrs = death_24hrs.sort_values(by=['Deaths(last 24 hours)'], ascending= False)

# a. check first
highdeath_24hrs.head()
```

Out[14]:

	Country	Deaths(last 24 hours)
3	Brazil	1648
9	Colombia	559
8	Argentina	458
1	United States of America	301
15	Mexico	234

Brazil reported the highest death:1,648 while Puerto Rico registered the lowest 1 in last 24hours as of data report of July 10th 2021

2. Simple Linear regression

We shall use the formula:

y=mx+c y=dependent variable, m=slope, x=independent variable, c=y intercept

```
In [16]: #Confirm importation of model Library
from sklearn.linear_model import LinearRegression
```

```
In [20]: #Prediction of deaths in the next 24 hours using newLy reported cases in last 24 hours
    x = new_file[['Cases(last 24 hours)']]
    y = new_file['Deaths(last 24 hours)']
    lm = LinearRegression()
    lm.fit(x,y)
    lm

Out[20]: LinearRegression()

In [19]: #Calculating the intercept, c
    lm.intercept_

Out[19]: -4.010264462076975

In [21]: #Calculating the slope, m
    lm.coef_
Out[21]: array([0.02708923])
```

Model formular;

Deaths(last 24 hours)= 0.02708923 * Cases(last 24 hours) - 4.010264462076975

```
In [23]: #The correlation
new_file[['Cases(last 24 hours)','Deaths(last 24 hours)']].corr()
```

Out[23]:

Cases(last 24 hours) Deaths(last 24 hours)

Cases(last 24 hours)	1.000000	0.972184
Deaths(last 24 hours)	0.972184	1.000000

```
In [25]: #The simple linear regression graph
sns.regplot(x="Cases(last 24 hours)", y="Deaths(last 24 hours)", data=new_file)
plt.ylim(0,)
```

Out[25]: (0.0, 1731.0014913464813)


```
In [26]: #pLotting a box plot
sns.boxplot(x="Transmission Classification", y="Deaths(Cum.Total)", data=new_file)
```

Out[26]: <AxesSubplot:xlabel='Transmission Classification', ylabel='Deaths(Cum.Total)'>

The Distribution of Deaths(cumu.Total) between cluster transmission and Community transmission, are elaborate enough to take Transmission classification as a potential good predictor of Cummulative total Deaths.

Model performance evaluation metrics

```
In [28]: #R-squared Calculation
    print('The R-squared is: ', lm.score(x, y))
        The R-squared is: 0.9451426883656249

In [29]: #Importation of function mean_squared_error % sqrt from the module metrics
    from sklearn.metrics import mean_squared_error #for calculating MSE
    from math import sqrt #for calculating RSME

In [30]: #calculating MSE
    y=lm.predict(x)
    mse = mean_squared_error(new_file['Deaths(last 24 hours)'], y)
    print('Mean squared Error:', mse)

Mean Squared Error: 3117.7858489231335

In [31]: #calculating RMSE
    #since; mse=sqrt(mean_squared_error(new_df['Deaths(last 24 hours'], y))
    print('Root Mean Squared_error:', sqrt(mse))
```

Root Mean Squared Error: 55.8371368259793

3. Multiple Linear Regression

In this case we are predicting Deaths(last 24 hours) in America by looking at three variables;

Cases reported in the last 24 hours; Cases(last 24 hours) Cases reported in the last 7 days; Cases(last 7 days) Total cumulative Cases reported; Cases(Cum.Total)

Lets use this formula:

y=b1x1+b2x2+b3x3+c y=dependent-variable, b1,b2,b3=slope, x1,x2,x3=independent-variables, c=y-intercept

```
In [32]: # We are assigning the variables identified above; in a new dataset,z
z = new file[['Cases(last 24 hours)', 'Cases(last 7 days)', 'Cases(Cum.Total)']]
#Fitting the linear model using the three above variables.
lm.fit(z, new_file['Deaths(last 24 hours)'])
Out[32]: LinearRegression()
In [33]: #Calculating the intercept, c
             lm.intercept_
Out[33]: -3.152937889926207
In [34]: #Calculating the slope; b1,b2,b3
Out[34]: array([ 4.70509139e-02, -2.10651332e-03, -1.45131908e-05])
            # Model formular:
             Deaths(last 24 hours)= 4.70509139 * Cases(last 24 hours) - 2.10651332 * Cases(last 7 days) - 1.45131908 * Cases(Cum.Total) -
            3.152937889926207
In [36]: #correlation
             new_file[['Cases(last 24 hours)','Cases(last 7 days)','Cases(Cum.Total)']].corr()
Out[36]:
                                    Cases(last 24 hours) Cases(last 7 days) Cases(Cum.Total)
                                                                                     0.745889
             Cases(last 24 hours)
                                               1.000000
                                                                  0.992458
                Cases(last 7 days)
                                               0.992458
                                                                   1.000000
                                                                                       0.673512
             Cases(Cum.Total)
                                             0.745889
                                                                  0.873512
                                                                                    1.000000
            print('The R-squared is:',lm.score(z, new_file['Deaths(last 24 hours)']))
             The R-squared is: 0.9707863962523477
  In [38]: #Calculate: The Mean Squared Error; MSE
#prediction based on model
y_predict_multifit = lm.predict(z)
  In [39]: #compare the predicted results with the actual results and print
mse=mean_squared_error(new_file['Deaths(last 24 hours)'], y_predict_multifit)
print('Mean Squared Error:',mse)
              Mean Squared Error: 1660.3394815906993
  In [40]: #calculate: RMSE
              #mse=mean_squared_error(new_df['Deaths(last 24 hours)'], y_predict_multifit), we call mse
print('Root Mean Squared Error:',sqrt(mse))
               Root Mean Squared Error: 40.74726348591644
```

The End

Analysis by Elisha Nangosha Email: nangoshaelisha@gmail.com Contact: 0777514549

```
In [ ]:
```