Apunte Único: Álgebra Lineal Computacional - Práctica 4

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 24/05/25 @ 14:47

Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- © Ejercicios de la guía:

1.	4.	7.	10.	13.	16.	19.	22.
2.	5.	8.	11.	14.	17.	20.	23.
3.	6.	9.	12.	15 .	18.	21.	??.

- © Ejercicios de Parciales
 - **1**. **2**. **3**. **3**??.

Esta Guía 4 que tenés se actualizó por última vez: $\frac{24/05/25 @ 14:47}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

Guía 4

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

18

Ejercicios de la guía:

Ejercicio 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos (analizar por separado los casos $K = \mathbb{R}$ y $K = \mathbb{C}$):

(a)
$$A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$$
 (c) $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$ (e) $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

(b)
$$A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$$
 (d) $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ (f) $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(a) Ecuación característica, a polinomio característico:

$$(A - \lambda I)v_{\lambda} = 0 \Leftrightarrow \begin{vmatrix} -\lambda & a \\ -a & -\lambda \end{vmatrix} = 0 \Leftrightarrow (\lambda^2 + a^2) = 0 \Leftrightarrow \begin{cases} \lambda = -ia & \text{con } v_{\lambda = -ia} = (1, -i) \\ \lambda = ia & \text{con } v_{\lambda = ia} = (1, i) \end{cases}$$

Quedaría algo así diagonalizada:

$$A = \underbrace{\begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}}_{C} \underbrace{\begin{pmatrix} -ia & 0 \\ 0 & ia \end{pmatrix}}_{D} \underbrace{\begin{pmatrix} \frac{1}{2} & \frac{i}{2} \\ \frac{1}{2} & -\frac{i}{2} \end{pmatrix}}_{C^{-1}}$$

(b) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🤣, o mejor aún si querés subirlo en IAT_EX→ una *pull request* al 😯.

(C) ... hay que hacerlo! 6

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IAT_EX→ una pull request al ③.

(d) Ecuación característica, a polinomio característico:

$$(A - \lambda I)v_{\lambda} = 0 \Leftrightarrow \begin{vmatrix} a - \lambda & 1 & 1 \\ 1 & a - \lambda & 1 \\ 1 & 1 & a - \lambda \end{vmatrix} = 0 \Leftrightarrow (a - \lambda)^{3} - 3(a - \lambda) + 2 = 0$$

Que lindo ejercicio 😉.

Si hago $x = (a - \lambda)$ entonces \star^1 :

$$x^{3} - 3x + 2 = (x - 1)^{2}(x + 2) = 0 \Leftrightarrow ((a - \lambda) - 1)^{2}((a - \lambda) + 2) = 0$$

Por lo tanto:

$$\Leftrightarrow \begin{cases} \lambda_1 = a - 1 & \text{con} & E_{\lambda = a - 1} = \langle (-1, 1, 0), (-1, 0, 1) \rangle \\ \lambda_2 = a + 2 & \text{con} & E_{\lambda = a + 2} = \langle (1, 1, 1) \rangle \end{cases}$$

Quedaría algo así diagonalizada:

$$A = \underbrace{\left(\begin{array}{ccc} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right)}_{C} \underbrace{\left(\begin{array}{ccc} a-1 & 0 & 0 \\ 0 & a-1 & 0 \\ 0 & 0 & a+2 \end{array} \right)}_{D} \underbrace{\left(\begin{array}{ccc} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right)}_{C^{-1}}_{C}$$

(e) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

(f) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 2. Para cada una de la matrices A del ejercicio anterior, sea $f: K^n \to K^n$ la transformación lineal tal que $[f]_{EE} = A$. Decidir si es posible encontrar una base B de K^n tal que $[f]_{EE}$ sea diagonal. En caso afirmativo, calcular C_{BE} .

Sea $A \in K^{n \times n}$ criterios para saber si una matriz es diagonalizable:

A es diagonalizable \Leftrightarrow tiene n autovectores linealmente independientes.

A es diagonalizable si es semejante a una matriz diagonal.

A es diagonalizable si $mg(\lambda_i) = ma(\lambda_i)$ para cada λ_i de A.

a... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $\overline{f 2}$, o mejor aún si querés subirlo en IATEXo una pull request al f Q.

Ejercicio 3. Considerar la sucesión de Fibonacci, dada por la recursión:

$$\begin{cases}
F_0 = 0, \\
F_1 = 1, \\
F_{n+1} = F_n + F_{n-1}
\end{cases}$$

- (a) Hallar una matriz A tal que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = A \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix}$. Mostrar que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = A^n \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$
- (b) Diagonalizar A.
- (c) Dar una fórmula cerrada para F_n .
- (a) Quiero una matriz $A \in \mathbb{R}^{2\times 2}$ tal que:

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = A \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix} \Leftrightarrow \begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix} \Leftrightarrow \begin{cases} aF_{n+1} + bF_n = F_n \\ cF_{n-1} + dF_n = F_{n+1} \stackrel{!}{=} F_n + F_{n-1} \end{cases}$$

Resolviendo ese sistemita:

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right)$$

Para mostrar lo que sigue, inducción. Quiero mostrar la siguiente proposición:

$$p(n): A^n \left(\begin{array}{c} F_0 \\ F_1 \end{array} \right) = \left(\begin{array}{c} F_n \\ F_{n+1} \end{array} \right) \quad \text{con} \quad A = \left(\begin{array}{c} 0 & 1 \\ 1 & 1 \end{array} \right)$$

Caso base:

$$p(1):A^1\left(\begin{array}{c}F_0\\F_1\end{array}\right)=\left(\begin{array}{c}0&1\\1&1\end{array}\right)\left(\begin{array}{c}F_0\\F_1\end{array}\right)=\left(\begin{array}{c}0+F_1\\F_0+F_1\end{array}\right)\stackrel{\mathrm{def}}{=}\left(\begin{array}{c}F_1\\F_2\end{array}\right)$$

Es así que la proposición p(1) resultó verdadera.

Paso inductivo:

Asumo que para algún $k \in \mathbb{N}$ la proposición:

$$p(k): \underbrace{A^{k} \begin{pmatrix} F_{0} \\ F_{1} \end{pmatrix} = \begin{pmatrix} F_{k} \\ F_{k+1} \end{pmatrix}}_{\text{hipótesis inductiva}}$$

es verdadera. Entonces quiero ver ahora que la proposición:

$$p(k+1): A^{k+1} \begin{pmatrix} F_0 \\ F_1 \end{pmatrix} = \begin{pmatrix} F_{k+1} \\ F_{k+1+1} \end{pmatrix} = \begin{pmatrix} F_{k+1} \\ F_{k+2} \end{pmatrix}$$

también lo sea.

$$A^{k+1} \left(\begin{array}{c} F_0 \\ F_1 \end{array} \right) = A \cdot A^k \left(\begin{array}{c} F_0 \\ F_1 \end{array} \right) \stackrel{\text{HI}}{=} A \cdot \left(\begin{array}{c} F_k \\ F_{k+1} \end{array} \right) = \left(\begin{array}{c} F_{k+1} \\ F_k + F_{k+1} \end{array} \right) \stackrel{\text{def}}{=} \left(\begin{array}{c} F_{k+1} \\ F_{k+2} \end{array} \right)$$

Tuqui, también resulta ser verdadera.

Es así que p(1), p(k) y p(k+1) resultaron verdaderas y por el principio de inducción la proposición p(n) también lo será $\forall n \in \mathbb{N}$.

(b) Ecuación característica a polinomio característico:

$$A = \left(\begin{array}{c} 0 & 1 \\ 1 & 1 \end{array} \right) \xrightarrow[\text{característica}]{\text{ecuación}} (A - \lambda I) v_{\lambda} = 0 \xrightarrow[\text{característico}]{\text{polinomio}} \left| \begin{array}{c} -\lambda & 1 \\ 1 & 1 - \lambda \end{array} \right| = \lambda^2 - \lambda - 1 = 0 \Leftrightarrow \left\{ \begin{array}{c} \lambda_1 = \frac{1 + \sqrt{5}}{2} = \varphi \\ \lambda_2 = \frac{1 - \sqrt{5}}{2} = -\frac{1}{\varphi} \end{array} \right|$$

Esa notación se complementa con:

$$\left\{ \begin{array}{c} \frac{1}{\varphi} = \varphi - 1 \end{array} \right.$$

Diagonalizar esta matriz tiene un montón de droga:

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \varphi \end{pmatrix} \stackrel{!}{=} \varphi \begin{pmatrix} 1 \\ \varphi \end{pmatrix} \qquad y \qquad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -\frac{1}{\varphi} \end{pmatrix} \stackrel{!}{=} -\frac{1}{\varphi} \begin{pmatrix} 1 \\ -\frac{1}{\varphi} \end{pmatrix}$$

No sé si están bien las cuentas, pero, a veces es mejor ni preguntar. Beware 🛕

$$A = \begin{pmatrix} 1 & 1 \\ \varphi & -\frac{1}{\varphi} \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & -\frac{1}{\varphi} \end{pmatrix} \begin{pmatrix} \frac{1}{1+\varphi^2} & \frac{\varphi}{1+\varphi^2} \\ \frac{\varphi^2}{1+\varphi^2} & -\frac{\varphi}{1+\varphi^2} \end{pmatrix}$$

(c) Voy a agarrar la primera coordenada de este 🖴:

$$\begin{pmatrix} 1 & 1 \\ \varphi & -\frac{1}{\varphi} \end{pmatrix} \begin{pmatrix} \varphi^{\mathbf{n}} & 0 \\ 0 & (-\frac{1}{\varphi})^{\mathbf{n}} \end{pmatrix} \begin{pmatrix} \frac{1}{1+\varphi^2} & \frac{\varphi}{1+\varphi^2} \\ \frac{\varphi^2}{1+\varphi^2} & -\frac{\varphi}{1+\varphi^2} \end{pmatrix} \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

Entonces la fórmula cerrada:

$$F_{\mathbf{n}} = \frac{1}{1+\varphi^2} \left((\varphi^{\mathbf{n}} + (\frac{-1}{\varphi})^{\mathbf{n}} \varphi^2) F_0 + (\varphi^{\mathbf{n}+1}) - \frac{-1}{\varphi})^{\mathbf{n}} \varphi \right) F_1 \right),$$

ponele.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 4. Recordando que la solución de la ecuación diferencial

$$x'(t) = ax(t), \quad a \in \mathbb{R}$$

con condición inicial $x(0)c_0$ es $x(t)c_0e^{at}$, resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'(t) = 6x(t) + 2y(t) \\ y'(t) = 2x(t) + 3y(t) \end{cases}$$

con condiciones iniciales x(0) = 3, y(0) = -1.

Sugerencia: Hallar una matriz C tal que $C^{-1}\begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}$ C sea diagonal y hacer el cambio de variables

$$\left(\begin{array}{c} u(t) \\ v(t) \end{array}\right) = C^{-1} \cdot \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right).$$

Enunciado aterrador, pero es un ejercicio para desacoplar las ecuaciones, cosa que no se mezclen la x con las y. Lo primer es escribir la matriz de coeficientes en forma diagonal:

$$\left\{ \begin{array}{ll} x'(t) & = & 6x(t) + 2y(t) \\ y'(t) & = & 2x(t) + 3y(t) \end{array} \right. \xrightarrow{\text{forma}} \left(\begin{array}{ll} x'(t) \\ y'(t) \end{array} \right) = \underbrace{\left(\begin{array}{ll} 6 & 2 \\ 2 & 3 \end{array} \right)}_{A} \left(\begin{array}{ll} x(t) \\ y(t) \end{array} \right)$$

Diagonalizo la matriz:

$$\left| \begin{array}{cc} 6-\lambda & 2 \\ 2 & 3-\lambda \end{array} \right| = \lambda^2 - 9\lambda + 14 = 0 \Leftrightarrow \lambda \in \{7,2\} \implies \left(\begin{array}{cc} 6 & 2 \\ 2 & 3 \end{array} \right) = \left(\begin{array}{cc} 2 & 1 \\ 1 & -2 \end{array} \right) \left(\begin{array}{cc} 7 & 0 \\ 0 & 2 \end{array} \right) \left(\begin{array}{cc} \frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & -\frac{2}{5} \end{array} \right)$$

El cambio de variables planteado:

$$\left(\begin{array}{c} u(t) \\ v(t) \end{array}\right) \stackrel{\bigstar}{=} C^{-1} \cdot \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right) \Leftrightarrow C \left(\begin{array}{c} u(t) \\ v(t) \end{array}\right) = \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right)$$

Multiplico la ecuación diferencial a izquierda por C^{-1} :

$$\underbrace{C^{-1}\left(\begin{array}{c} x'(t) \\ y'(t) \end{array}\right)}_{\left(\begin{array}{c} u'(t) \\ v'(t) \end{array}\right)} = C^{-1}\left(\begin{array}{c} 6 & 2 \\ 2 & 3 \end{array}\right) \underbrace{\left(\begin{array}{c} x(t) \\ y(t) \end{array}\right)}_{C\left(\begin{array}{c} u(t) \\ v(t) \end{array}\right)} \Leftrightarrow \left(\begin{array}{c} u'(t) \\ v'(t) \end{array}\right) = \underbrace{C^{-1}AC}_{\left(\begin{array}{c} u(t) \\ v(t) \end{array}\right)}_{\left(\begin{array}{c} 7 & 0 \\ 0 & 2 \end{array}\right)}$$

Ahora el sistema queda desacoplado, no hay mezcla de las cosas de u con las cosas de v y se puede resolver como dos ecuaciones diferenciales por separación de variables:

$$\begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} \Leftrightarrow \begin{cases} u'(t) = 7u(t) \Leftrightarrow u(t) = c_0 e^{7t} \xrightarrow{\text{condiciones}} u(0) = 1 = c_0 e^{7\cdot 0} \Leftrightarrow c_0 = 1 \\ v'(t) = 2v(t) \Leftrightarrow v(t) = c_1 e^{2t} \xrightarrow{\text{condiciones}} v(0) = 1 = c_1 e^{2\cdot 0} \Leftrightarrow c_1 = 1 \end{cases}$$

Ahora hay que volver a las variables originales:

$$\left(\begin{array}{c} x(t) \\ y(t) \end{array}\right) = C \left(\begin{array}{c} e^{7t} \\ e^{2t} \end{array}\right) = \left(\begin{array}{c} 2e^{7t} + e^{2t} \\ e^{7t} - 2e^{2t} \end{array}\right)$$

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 2e^{7t} + e^{2t} \\ e^{7t} - 2e^{2t} \end{pmatrix}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 5. Sea $A \in K^{n \times n}$. Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.

Demostracion:

Por propiedades del determinante sabemos que:

$$\det(A) = \det(A^t)$$

Sabemos que los autovalores λ son los que tienen la siguiente propiedad:

$$\det(A - \lambda I) = 0$$

Usando la propiedad del determinante, tenemos que:

$$\det(A - \lambda I) = \det((A - \lambda I)^t)$$

Y, como sabemos que λ es un autovalor de A

$$0 = \underbrace{\det(A - \lambda I)}_{\mathcal{X}_A(\lambda)} = \underbrace{\det((A - \lambda I)^t)}_{\mathcal{X}_{A^t}(\lambda)} \Leftrightarrow \mathcal{X}_A(\lambda) = \mathcal{X}_{A^t}(\lambda) = 0$$

Probando así que tienen los mismos autovalores, dado que los *polinomios característicos de ambas expresiones* son iguales

Si tengo la siguiente matriz:

$$\underbrace{A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{E_{\lambda_1 = \lambda_2 = 0} = \{(1,0)\}} \xrightarrow{\text{transponiendo}} \underbrace{A^t = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}_{E_{\lambda_1 = \lambda_2 = 0} = \{(0,1)\}}$$

Esas matrices no son diagonalizables. Ambas tienen los mismos autovalores $\lambda_1 = \lambda_2 = 0$, pero no generan una base de au para poder diagonalizar la matriz.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🎖 Iñaki Frutos 😱

👸 naD GarRaz 😯

Ejercicio 6. Sea $A \in \mathbb{C}^{n \times n}$ y λ un autovalor de A. Probar que:

- (a) Si A es triangular, sus autovalores son los elementos de la diagonal.
- (b) λ^k es autovalor de A^k , con el mismo autovector.
- (c) $\lambda + \mu$ es autovalor de $A + \mu I$, con el mismo autovector.
- (d) Si p es un polinomio, $p(\lambda)$ es autovalor de p(A).
- (a) Sea A triangular

Arranca el lema

Voy a usar y demostrar el lema:

Si A es una matriz triangular, entonces su determinante es la multiplicación de sus elementos diagonales.

¡¡A demostrarlo!!

Caso base:

p(2): una matriz $M \in K^{2\times 2}$ triangular, entonces su determinante es la multiplicación de sus elementos diagonales

Sea $M \in K^{2 \times 2}$ triangular inferior (la 1 × 1 es trivial, no es divertido), el caso triangular superior es análogo: $M = \begin{pmatrix} a & 0 \\ c_{21} & b \end{pmatrix}$, entonces $\det(M) = a \cdot b - 0 \cdot c_{21} = a \cdot b$ cumpliendo así el caso base.

Paso inductivo:

Asumo que

$$p(h)$$
: M triangular inferior, $\forall M \in K^{h \times h}$ se tiene que $\det(M) = \prod_{i=1}^{h} m_{ii}$,

es verdadera para algún $h \in \mathbb{N}$, entonces quiero probar que:

$$p(h+1)$$
: M triangular inferior, $\forall M \in K^{(h+1)\times(h+1)}$ se tiene que $\det(M) = \prod_{i=1}^{h+1} m_{ii}$

también sea verdadera.

Nuevamente voy a hacerlo en el caso en que sea triangular inferior, el caso superior es enteramente análogo.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 & 0 \\ a_{21} & a_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{h1} & a_{h2} & \cdots & a_{hh} & 0 \\ a_{(h+1)1} & a_{(h+1)2} & \cdots & a_{(h+1)(h)} & a_{(h+1)(h+1)} \end{pmatrix}$$

Calculo el determinate. Lo voy a hacer desarrollando por la última columna:

$$\det(A) = 0 + 0 + \dots + 0 + a_{(h+1)(h+1)} \cdot \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{h1} & a_{h2} & \dots & a_{hh} \end{vmatrix} \stackrel{\text{HI}}{=} a_{(h+1)(h+1)} \cdot \prod_{i=1}^{h} a_{ii} = \prod_{i=1}^{h+1} a_{ii}$$

El lema queda probado. La demo de cuando es triangular superior que la haga Dios, o vos, pero no yo.

Terminó el lema

Ahora volviendo con la demostración del ejercicio.

$$(A - \lambda I) = \begin{pmatrix} a_{11} - \lambda & 0 & \cdots & 0 \\ a_{21} & a_{22} - \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{pmatrix}$$

Por lema y recordando que A es triangular por lo que la resta de A con una matriz diagonal seguirá siéndolo:

$$\det(A - \lambda I) = \prod_{i=1}^{n} (a_{ii} - \lambda)$$

¡Ta rahh!, los a_{ii} son autovalores de $A \quad \forall i \leq n$.

(b) Supongo que λ es autovalor de A.

Demostracion por inducción:

Caso base:

$$p(1): A^1 v = \lambda^1 v$$

Es verdadera por simple definción de autovalor.

Paso inductivo: Asumo como verdadera la proposición:

$$p(k): A^k v = \lambda^k v$$
 con el autovector de $Av = \lambda v$

para algún $k \in \mathbb{N}$, entonces quiero probar que:

$$p(k+1): A^{k+1}v = A^{k+1}v$$

también lo sea.

$$A^{k+1}v = A \cdot A^k v \stackrel{\text{HI}}{=} A \cdot \lambda^k v \stackrel{!}{=} \lambda^{k+1} v$$

Fin

(c) Sea λ autovalor de A con su autovector correspondiente v . Sea μ un número.

Tenemos que por definición:

$$Av = \lambda v$$

Veamos

$$(A + \mu I)v = Av + \mu Iv \stackrel{\text{def}}{=} \lambda v + \mu Iv = \lambda v + \mu v = (\lambda + \mu)v$$

Fin.

(d) Sea p un polinomio, λ un autovalor con v autovector asociado de ADemostración por inducción en el grado del polinomio p_n . Quiero probar que:

$$p(n): p(\lambda)$$
 es autovalor de $p(A)$

Caso base:

$$p(\operatorname{gr}(p) = 1) : p_1(\lambda)$$
 es autovalor de $p_1(A) = a_1 A + a_0 A^0$

Y de lo que vio en el ítem (c):

$$p_1(A)\mathbf{v} = a_1A\mathbf{v} + a_0I_n\mathbf{v} \Leftrightarrow \underbrace{(a_1A + a_0I_n)}_{p(A)}\mathbf{v} = \underbrace{(a_1\lambda + a_0)}_{p(\lambda)}\mathbf{v}$$

Por lo cual la proposición p(gr(p) = 1) resultó verdadera.

Paso inductivo:

Asumo como verdadera la proposición:

$$p(\operatorname{gr}(p) = k) : p_k(\lambda)$$
 es autovalor de $p_k(A) = \sum_{i=0}^k a_i A^i$ hipótesis inductiva

para algún $ken \mathbb{N}$. Entonces quiero probar que

$$p(\operatorname{gr}(p) = k+1) : p_{k+1}(\lambda)$$
 es autovalor de $p_k(A) = \sum_{i=0}^{k+1} a_i A^i$

Veamos un polinomio de grado k + 1:

$$p_{k+1}(X) = \sum_{i=0}^{k+1} a_i \cdot X^i = a_{k+1}X^{k+1} + \sum_{i=0}^{k} a_i \cdot X^i$$

Evalúo en A y multiplico por v autovector de A:

$$p_{k+1}(A)v = a_{k+1}A^{k+1}v + \sum_{i=0}^{k} a_i \cdot A^i v \stackrel{\text{HI}}{=} a_{k+1}\lambda^{k+1}v + \sum_{i=0}^{k} a_i \cdot \lambda^i v = \underbrace{\sum_{i=0}^{k+1} a_i \cdot \lambda^i}_{p(k+1)(\lambda)} v$$

Concluyendo así que

$$p_{k+1}(A)v \stackrel{!!}{=} p_{k+1}(\lambda)v$$

Entonces, probé que es verdadera la proposición.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Iñaki Frutos 😯

Ejercicio 7.

- (a) Sea $A \in \mathbb{R}^{3\times 3}$ diagonalizable con $\operatorname{tr}(A) = -4$. Calcular los autovalores de A sabiendo que los autovalores de $A^2 + 2A$ son -1, 3 y 8.
- (b) Sea $A \in \mathbb{R}^{4\times 4}$ tal que $\det(A) = 6$; 1 y -2 son autovalores de A y -4 es autovalor de la matriz A 3I. Hallar los restantes autovalores de A.
- (a) Truquini de escribir la cosita y sacar factor común las cositas de los costaditos:

$$A = CDC^{-1} \implies \left\{ \begin{array}{l} A^2 = CD^2C^{-1} \\ 2A = C2DC^{-1} \end{array} \right. \implies A^2 + 2A = CD^2C^{-1} + C2DC^{-1} \stackrel{!}{=} C\underbrace{\left(D^2 + 2D\right)}_{\lambda_i' = \lambda_i^2 + 2\lambda_i} C^{-1}$$

Donde λ_i' son los autovalores de A^2+2A mientras que los λ_i los autovalores de A. Por enunciado:

$$\begin{cases}
-1 &= \lambda_1^2 + 2\lambda_1 \Leftrightarrow \lambda_1 = -1 \\
3 &= \lambda_2^2 + 2\lambda_2 \Leftrightarrow \lambda_2 \in \{-3, 1\} \\
8 &= \lambda_3^2 + 2\lambda_3 \Leftrightarrow \lambda_3 \in \{-4, 2\}
\end{cases}$$

Tenemos un millón de posibles autovalores para A, busquemos la combineta que haga que tr(A) = -4:

$$\begin{cases} \lambda_1 &= -1 \\ \lambda_2 &= 1 \\ \lambda_3 &= -4 \end{cases}$$

(b) Sabemos que determinante de una matriz es igual al producto de sus autovalores:

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

En este caso:

$$\det(A) = 6 = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 \cdot \lambda_4 \Leftrightarrow \lambda_3 \cdot \lambda_4 = -3$$

Luego tenemos por la definición de lo que es un autovector:

$$(A - 3I)v = -4v \Leftrightarrow Av = -v$$

Es decir que encontré otro autovalor:

$$\lambda_3 = -1 \implies \lambda_3 \cdot \lambda_4 = -3 \Leftrightarrow \lambda_4 = 3$$

Los autovalores de A:

$$\begin{cases} \lambda_1 &= 1\\ \lambda_2 &= -2\\ \lambda_3 &= -1\\ \lambda_4 &= 3 \end{cases}$$

Dale las gracias y un poco de amor 🛡 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

Ejercicio 8. Sea $A \in \mathbb{R}^{n \times n}$. Probar:

- (a) Si los autovalores de A son todos reales, sus autovectores pueden tomarse con coordenadas reales.
- (b) Si A es simétrica, entonces sus autovalores son reales.
- (c) Si A es simétrica y definida positiva (negativa), entonces todos sus autovalores son positivos (negativos)
- (d) Si A es simétrica y λ_1 y λ_2 son autovalores distintos, entonces sus correspondientes autovectores son ortogonales entre sí.

(a)
$$Av_i = \lambda_i v_i \quad \text{v} \quad \overline{Av_i} = \overline{\lambda_i v_i} \Leftrightarrow A\overline{v}_i = \lambda_i \overline{v}_i$$

Ahora la papa está en usar que $(\triangle + \overline{\triangle}) \in \mathbb{R}$:

$$Av_{i} + A\overline{v}_{i} = \lambda_{i}v_{i} + \lambda_{i}\overline{v}_{i} \Leftrightarrow A(v_{i} + \overline{v}_{i}) = \lambda_{i}(v_{i} + \overline{v}_{i})$$

$$\Leftrightarrow A(\underbrace{2\operatorname{Re}(v_{i})}_{=w_{i}\in\mathbb{R}^{n}}) = \lambda_{i}(\underbrace{2\operatorname{Re}(v_{i})}_{=w_{i}\in\mathbb{R}^{n}})$$

$$\Leftrightarrow Aw_{i} = \lambda_{i}w_{i}$$

Queda por lo tanto que si $A \in \mathbb{R}^{n \times n}$ con un autovector $\lambda \in \mathbb{R}$ entonces su autovector asociado tendrá coordenadas reales.

(b) A es simétrica:

$$v^*Av = \lambda v^*v \stackrel{\stackrel{\bullet}{=}}{=} \lambda ||v||_2^2 \in \mathbb{R}$$

Ahora la idea es conjugar esa expresión y ver que da lo mismo:

$$(v^*Av)^* = (v^*\lambda v)^* \xrightarrow{\text{fua el loco vivía las implicaciones al } 1000\%} v^*Av \stackrel{\stackrel{\longleftarrow}{=}}{=} \overline{\lambda} ||v||_2^2$$

$$(v^*Av)^* = v^*(Av^*)^* = v^*A^*v \stackrel{\stackrel{!}{=}}{=} v^*Av^{\frac{1}{*}}$$

$$= (v^*\lambda v)^* = \overline{\lambda} ||v||_2^2$$

$$= (v^*\lambda v)^* = \overline{\lambda} ||v||_2^2$$

De ahí sale que \star^1 y \star^2 tienen que ser iguales, si bien en la expresión de \star^2 el autovalor está conjugado. Por lo tanto para que se cumpla la igualdad tengo que tener:

$$\lambda = \overline{\lambda} \iff \lambda \in \mathbb{R}$$

(C) ... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $extbf{0}$, o mejor aún si querés subirlo en IATEX o una pull request al $extbf{Q}$

(d) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm EX}$ \rightarrow una pull request al \bigcirc

Ejercicio 9. Una transformación lineal $f: K^n \to K^n$ se llama proyector si verifica f(f(x)) = f(x) para todo $x \in K^n$. Probar que los únicos autovalores de un proyector son 1 y 0.

Dejame escribir al proyector como P en vez de f, porque me da cosita sino. Tenemos un proyector y por definición:

$$P\circ P=P$$

Si el proyector tiene forma diagonal:

$$P = CDC^{-1} \Leftrightarrow P = C \begin{pmatrix} \lambda_1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_n \end{pmatrix} C^{-1}$$

$$P \circ P = CDC^{-1}CDC^{-1} = CD^2C^{-1} = C \begin{pmatrix} \lambda_1^2 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_n^2 \end{pmatrix} C^{-1} = C \begin{pmatrix} \lambda_1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_n \end{pmatrix} C^{-1}$$

$$\Leftrightarrow \begin{pmatrix} \lambda_1^2 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_n \end{pmatrix} \Leftrightarrow \begin{cases} \lambda_1^2 = \lambda_1 & \Leftrightarrow & \lambda_1 \in \{0, 1\} \\ \vdots & \vdots & \vdots \\ \lambda_n^2 = \lambda_n & \Leftrightarrow & \lambda_n \in \{0, 1\} \end{cases}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

Ejercicio 10. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por:

$$[f] = \begin{pmatrix} -3 & 2 & 0 \\ -6 & 4 & 0 \\ -9 & 6 & 0 \end{pmatrix}$$

Probar que f es un proyector y hallar una base B tal que $[f]_{BB}$ sea diagonal.

Por inspección, sino calculalos, ese proyector tiene:

$$\operatorname{Im}(P) = \{(1,2,3)\}\ , \quad \operatorname{Nu}(P) = \{(2,3,0), (0,0,1)\}\ \ \text{y} \quad \operatorname{Nu}(P) \cap \operatorname{Im}(P) = \{0\}$$

Se ve que $Pv = v \ \forall v \in \text{Im}(P)$, y ya esa ecuación que escribí te dice que:

$$E_{\lambda=1} = \{v\} = \{(1,2,3)\} = \operatorname{Im}(P)$$

Similar sucede con los elementos del núcleo:

$$E_{\lambda=0} = \{(2,3,0), (0,0,1)\} = \text{Nu}(P)$$

En forma diagonal para <u>una</u> base $B = \{(1, 2, 3), (2, 3, 0), (0, 0, 1)\}$:

$$P = CDC^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 3 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -3 & 2 & 0 \\ 2 & -1 & 0 \\ 9 & -6 & 1 \end{pmatrix}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 11. Considerar la matrices

$$A = \begin{pmatrix} 1 & \frac{1}{\epsilon} \\ \epsilon & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & \frac{1}{\epsilon} \\ 0 & 1 \end{pmatrix},$$

donde $\epsilon \ll 1$ es arbitrario. Calcular los polinomios característicos y los autovalores de A y de B. Concluir que pequeñas perturbaciones en los coeficientes de un polinomio pueden conducir a grandes variaciones en sus raíces (el problema está mal condicionado). En particular, esto afecta el cómputo de autovalores como raíces del polinomio característico.

El polinomio característico de A y B:

$$\mathcal{X}_A = (1-\lambda)^2 - 1 = \lambda \cdot (\lambda - 2) = 0 \Leftrightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 2 \end{cases}$$

$$\mathcal{X}_B = (1-\lambda)^2 = 0 \Leftrightarrow \begin{cases} \lambda_1 = 1 \\ \lambda_2 = 1 \end{cases}$$

Medio que el enunciado cuenta todo. En particular se puede acotar la condición de esas matrices. Por ejemplo para $C = \begin{pmatrix} 1 & \frac{1}{\epsilon} \\ 0 & 0 \end{pmatrix}$:

$$\operatorname{cond}_{\infty}(A) \ge \frac{\|A\|_{\infty}}{\|A - C\|_{\infty}} = \frac{1 + \frac{1}{\epsilon}}{\epsilon + 1} \xrightarrow{\epsilon \to 0} \infty$$

Lo mismo se puede hacer para la matriz B. Esas matrices están mal condicionadas y como se puede ver en los autovalores, a pesar de tener elementos similares los resultados en el cálculo de los autovalores las resultados pueden variar mucho.

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 12. Una matriz $P = (p_{ij})_{1 \le i,j \le n}$ se dice estocástica (o de Markov) si sus elementos son todos no negativos y sus columnas suman uno. Los elementos p_{ij} representan la proporción de individuos que pasan del estado j al estado i en cada iteración (también pueden interpretarse) como la probabilidad de pasar j a i).

- (a) Probar que si λ es autovalor de P, entonces $|\lambda| \leq 1$.
- (b) Sea 1 el vector con todas sus coordenadas iguales a 1. Mostrar que $\mathbf{1}^t P = \mathbf{1}$. De hecho: P es estocástica si y solo si sus elementos son no negativos y $\mathbf{1}^t P = \mathbf{1}$
- (c) Probar que toda matriz estocástica tiene a 1 por autovalor.

🖭... hay que hacerlo! 👦

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 13. Probar que P y Q son matrices estocásticas, entonces:

- (a) PQ es estocástica.
- (b) P^n es estocástica $(n \in \mathbb{N})$.
- (c) P^nQ^m es estocástica $(n, m \in \mathbb{N})$.

😕... hay que hacerlo! 🙃

Si querés mandá la solución o al grupo de Telegram extstyle o, o mejor aún si querés subirlo en LATEXo una pull request al extstyle o

Ejercicio 14. En el instante inicial 20 ratones se encuentran en el compartimiento I. Las puertas que separan los compartimientos permanecen cerradas salvo durante

un breve lapso cada hora, donde los ratones pueden pasar a un compartimiento adyacente o permanecer en el mismo. Se supone que nada distingue un compartimiento de otro, es decir que es igualmente probable que un ratón pase a cualquier de los adyacentes o se quede en el compartimiento en el que está. Se realizan observaciones cada hora y se registra el número de ratones en cada compartimiento.

- (a) Determinar la matriz de transición del proceso P.
- (b) Determinar cuántos ratones habrá en cada celda al cabo de 4 horas.
- (c) Decidir si existe o no un estado de equilibrio.
- (d) Decidir si existe P^{∞} y en tal caso calcularla. ¿Qué aspecto tiene? ¿Por qué?

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IAT_PX→ una *pull request* al

Ejercicio 20. O... hay que hacerlo!

Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 22. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 23. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Liercicios de parciales:

- **§1.** Sea $A = \begin{pmatrix} r & s & t \\ -12 & 6 & 16 \\ 0 & 0 & 2 \end{pmatrix} \in \mathbb{R}^{3\times 3}$ una matriz tal que v = (1, 2, 0), w = (2, 6, 0) y u = (-2, -2, -1) son autovectores de A.
 - a) Probar que A es diagonalizable.
 - b) Calcular los autovalores de A y determinar r, s y t.
 - a) Es diagonalizable porque estamos en $reales^{3\times3}$ y hay una base de dimensión 3 de autovectores:

$$B = \{(1, 2, 0), (2, 6, 0), (-2, -2, -1)\},\$$

son autovectores de A.

b) Los autovectores, son vectores que cumplen la ecuación característica:

$$A \cdot v_{\lambda} = \lambda \cdot v_{\lambda}$$

Es solo cuestión de pedirle a los autovectores del enunciado que cumplan esa ecuación y despejar.

$$A \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \lambda \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \xrightarrow{\text{de las cuentas}} \left\{ \begin{array}{c} r \stackrel{\stackrel{!}{=}}{=} -2s \\ \lambda = 0 \end{array} \right.$$

Siguiente autovector:

$$A \cdot \begin{pmatrix} 2 \\ 6 \\ 0 \end{pmatrix} = \lambda \cdot \begin{pmatrix} 2 \\ 6 \\ 0 \end{pmatrix} \xrightarrow{\text{de las cuentas}} \begin{cases} s = 1 \implies r \stackrel{\bigstar^1}{=} -2 \\ \lambda = 2 \end{cases}$$

Siguiente y último autovector

$$A \cdot \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} = \lambda \cdot \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \xrightarrow{\text{de las cuentas}} \begin{cases} t = 6 \\ \lambda = 2 \end{cases}$$

Listo hay subespacios para justificar aún más la diagonabilidad de la matriz:

$$E_{\lambda=0} = \langle 1, 2, 0 \rangle$$
 y $E_{\lambda=2} = \langle (-2, -2, -1), (2, 6, 0) \rangle$

La multiplicidad geométrica es igual a la multiplicidad aritmética:

$$\operatorname{mg}_A(\lambda=2)=\operatorname{ma}_A(\lambda=2)=2$$
 y $\operatorname{mg}_A(\lambda=0)=\operatorname{ma}_A(\lambda=0)=1$

La matriz en forma diagonal:

$$\begin{pmatrix} -2 & 1 & 6 \\ -12 & 6 & 16 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & -2 & 6 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -2 & 6 \\ 0 & -1 & 0 \end{pmatrix}^{-1}$$

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:
8 naD GarRaz •

2.

a) Sea $A \in \mathbb{R}^{n \times n}$. Probar que si A es inversible y diagonalizable, entonces A^{-1} y $A^k - kI_n$ son diagonalizables para cualquier $k \in \mathbb{N}$.

b) Sea
$$J = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
.

- i) Probar que J es una matriz diagonalizable.
- ii) Calcular $J^5 5I_3$.
- a) Truquito destacable: $I_n = PP^1$ para luego sacar factor común al calcular $A^k kI_n$ Por otro lado, la inversibilidad de una matriz diagonalizable asegura que los autovalores son distintos de cero:

$$|A| = |PDP^{-1}| = |P||D||P^{-1}| \stackrel{!}{=} |D| = \prod_{i=1}^{n} \lambda_i$$

Las matrices inversibles tienen $det(A) \neq 0$.

b) i) Se calculan los autovectores y autovalores:

$$E_{\lambda=2} = \{(1,0,1), (-1,1,0)\} \quad \text{y} \quad E_{\lambda=4} = \{(0,1,1)\} \implies P = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Te debo la inversa por pajilla.

ii) Sale combinando lo que se usó hasta ahora.

♦3. Dadas las matrices $A, B \in \mathbb{C}^{n \times n}$ y un vector $v \in \mathbb{C}^n$, para cada una de las siguientes afirmaciones, determinar su validez. En caso de ser falsas, dar un contraejemplo, y en caso de ser verdaderas demostrarlas:

- (a) Si v es un autovector de A, y A es inversible, entonces v es un autovector de A^{-1} .
- (b) Si A y B son diagonalizables, A + B también lo es.
- (c) Si A y B son diagonalizables, entonces AB es diagonalizable.
- (d) Si A o B es inversible y AB es diagonalizable entonces BA también es diagonalizables.

A

Ejercicio de demostraciones. Dependiendo las horas que dormiste la noche anterior esto puede salir enseguida o en horas. La matriz que uso en los contraejemplos suele ser un *caballito de batalla* para estos problemas, guardátela.

(a) Si v es un autovector y además $\exists A^{-1}$ entonces:

$$Av = \lambda v \stackrel{!}{\Leftrightarrow} A^{-1}Av = \lambda A^{-1}v \stackrel{!}{\Leftrightarrow} A^{-1}v = \frac{1}{\lambda}v$$

Por lo tanto:

resultó verdadera

(b) Si las matrices son diagonalizables, ¿La suma también lo es?:

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \quad \text{y} \quad B = \left(\begin{array}{cc} -1 & 1 \\ 0 & 0 \end{array}\right)$$

Esas matrices son diagonalizables, porque cada una tiene todos sus autovalores distintos.

$$A + B = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

Matriz que no es diagonalizable, ya que tiene a 0 como un autovalor doble, pero el autoespacio asociado es de dimensión 1:

$$\mathcal{X}(\lambda) = \lambda^2 = 0$$
, luego $E_{\lambda=0} = \{(1,0)\}$

Por lo tanto:

resultó falsa

(c) Si las matrices son diagonalizables, ¿El producto también lo es?:

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$$

Esas matrices son diagonalizables, porque cada una tiene todos sus autovalores distintos.

$$AB = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

Matriz que no es diagonalizable, ya que tiene a 0 como un autovalor doble, pero el autoespacio asociado es de dimensión 1:

$$\mathcal{X}(\lambda) = \lambda^2 = 0$$
, luego $E_{\lambda=0} = \{(1,0)\}$

Por lo tanto:

resultó falsa

(d) Alguna de las dos matrices es inversible y AB es diagonalizable, entonces BA es diagonalizable también? Supongo que A^{-1} :

$$AB = CDC^{-1} \xleftarrow{\rightarrow \times A^{-1}} A^{-1}ABA = A^{-1}CDC^{-1}A \Leftrightarrow BA = A^{-1}CD(A^{-1}C)^{-1} \xleftarrow{P = A^{-1}C} BA = PDP^{-1}ABA = A^{-1}CDC^{-1}A \Leftrightarrow BA = A^{-1}CD(A^{-1}C)^{-1} \Leftrightarrow A^{-1}ABA = A^{-1}CDC^{-1}A \Leftrightarrow BA = A^{-1}CD(A^{-1}C)^{-1} \Leftrightarrow A^{-1}ABA = A^{-1}CDC^{-1}A \Leftrightarrow A^{-1}ABA = A^{-$$

La expresión de BA resultó diagonalizable. La demostración con B diagonal es análoga. Por lo tanto:

resultó verdadera