Global Flux WENO FV and other structure preserving schemes for water equations

Davide Torlo, Mirco Ciallella, Wasilij Barsukow, Mario Ricchiuto

MathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy davidetorlo.it

SHARK-FV2023 - Miñho - 25th May 2023

Table of contents

- Motivation
- 2 (Arbitrarily) high order space discretization
- 3 Well-balanced formulation
- 4 Validation
- **5** Global flux for dispersive equations
- **6** Conclusions

Table of contents

- Motivation
- 2 (Arbitrarily) high order space discretization
- Well-balanced formulation
- 4 Validation
- **5** Global flux for dispersive equations
- **6** Conclusions

Goal

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(x, \mathbf{u}) \xrightarrow{\partial_t \mathbf{u} \to 0} \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(x, \mathbf{u})$$
 (Non-trivial steady states)

- Shallow water equations with topography, friction, ...
- Euler equations with gravity
- Shallow Water/Euler in pseudo-1D form (section variation)

¹with Mirco Ciallella and Mario Ricchiuto

Goal

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(x, \mathbf{u}) \xrightarrow{\partial_t \mathbf{u} \to 0} \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(x, \mathbf{u})$$
 (Non-trivial steady states)

- Shallow water equations with topography, friction, ...
- Euler equations with gravity
- Shallow Water/Euler in pseudo-1D form (section variation)

State-of-the-art

- Reference solution (Berberich et al.. Comp. Flui. 2021.)
- Hydrostatic reconstruction (Castro et al., Math. Mod. Meth. Appl. Sci. 2007.)
- Modified Riemann solvers (Michel-Dansac *et al.*. Jour. Comp. Phys. 2017.)

Our contribution

"Special quadrature" of the source terms

- Arbitrary high order framework
- Schemes agnostic of general moving equilibria
- Preservation of both continuous and discontinuous equilibria
- Easy to generalize to other equilibria

¹with Mirco Ciallella and Mario Ricchiuto

Shallow Water Equations (SWE)

$$egin{aligned} \partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) &= \mathcal{S}(\mathbf{u},x), & \text{on} & \Omega_T &= \Omega imes [0,T] \subset \mathbb{R} imes \mathbb{R}^+. \ & \mathbf{u} &= egin{bmatrix} h \ q \end{bmatrix}, & \mathcal{F}(\mathbf{u}) &= egin{bmatrix} q \ rac{q^2}{h} + g rac{h^2}{2} \end{bmatrix}, \ & \mathcal{S}(\mathbf{u},x) &= egin{bmatrix} 0 \ \mathcal{S}(\mathbf{u},x) \end{bmatrix} &= -gh egin{bmatrix} 0 \ rac{h(\mathbf{u},x)}{2} \end{bmatrix} - gq egin{bmatrix} 0 \ rac{n^2}{h^2/2} |q| \end{bmatrix} \end{aligned}$$

where

$$q=$$
 discharge $(=$ hu),
 $g=$ gravity,
 $n=$ Manning friction,

Classical discretization results in numerical storms.
 ⇒ well-balanced (WB) schemes

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(\mathbf{u}, x).$$

$$\mathbf{u} = \begin{bmatrix} h \\ q \end{bmatrix}, \, \mathcal{F}(\mathbf{u}) = \begin{bmatrix} q \\ rac{q^2}{h} + g rac{h^2}{2} \end{bmatrix},$$

$$S(\mathbf{u},x) = -gh \begin{bmatrix} 0 \\ \frac{\partial b(x)}{\partial x} \end{bmatrix} - gq \begin{bmatrix} 0 \\ \frac{n^2}{h^{7/3}} |q| \end{bmatrix}$$

$$\begin{cases} \partial_t h + \partial_x q = 0 \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + g \frac{h^2}{2} \right) + g h \partial_x b + g \frac{n^2 |q| q}{h^{7/3}} = 0 \end{cases}$$

- Classical discretization results in numerical storms.
 ⇒ well-balanced (WB) schemes
- Lake at rest is often the *only* equilibrium considered: $u=0; \quad \eta(x,t)=h(x,t)+b(x)\equiv \eta_0;$

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(\mathbf{u}, x).$$

$$\mathbf{u} = egin{bmatrix} h \\ q \end{bmatrix}, \, \mathcal{F}(\mathbf{u}) = egin{bmatrix} q \\ rac{q^2}{h} + g rac{h^2}{2} \end{bmatrix},$$

$$\mathcal{S}(\mathbf{u},x) = -gh\left[rac{0}{rac{\partial b(x)}{\partial x}}
ight] - gq\left[rac{0}{rac{
ho^2}{h^{7/3}}|q|}
ight]$$

$$\begin{cases} \partial_t h + \partial_x q = 0 \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + g \frac{h^2}{2} \right) + g h \partial_x b + g \frac{n^2 |q| q}{h^{7/3}} = 0 \end{cases}$$

- Classical discretization results in numerical storms.
 ⇒ well-balanced (WB) schemes
- Lake at rest is often the *only* equilibrium considered: u = 0; $\eta(x, t) = h(x, t) + b(x) \equiv \eta_0$;
- Non-trivial moving water equilibria:
- Strong Form (smooth solutions)

$$\begin{cases} q(x,t) = h(x,t)u(x,t) \equiv q_0 \\ \mathcal{E}(\mathbf{u},x) = \frac{1}{2}u^2 + g(h+b) \equiv \mathcal{E}_0 \end{cases}$$

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(\mathbf{u}, x).$$

$$\mathbf{u} = egin{bmatrix} h \ q \end{bmatrix}, \, \mathcal{F}(\mathbf{u}) = egin{bmatrix} q \ rac{q^2}{h} + g rac{h^2}{2} \end{bmatrix},$$

$$\mathcal{S}(\mathbf{u},x) = -gh\left[rac{0}{rac{\partial b(x)}{\partial x}}
ight] - gq\left[rac{0}{rac{
ho^2}{h^{7/3}}|q|}
ight]$$

$$\begin{cases} \partial_t h + \partial_x q = 0 \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + g \frac{h^2}{2} \right) + g h \partial_x b + g \frac{n^2 |q| q}{h^{7/3}} = 0 \end{cases}$$

- Classical discretization results in *numerical storms*.
 ⇒ well-balanced (WB) schemes
- Lake at rest is often the *only* equilibrium considered: u = 0; $\eta(x, t) = h(x, t) + b(x) \equiv \eta_0$;
- Non-trivial moving water equilibria:
- Strong Form (smooth solutions)

$$\begin{cases} q(x,t) = h(x,t)u(x,t) \equiv q_0 \\ \mathcal{E}(\mathbf{u},x) = \frac{1}{2}u^2 + g(h+b) \equiv \mathcal{E}_0 \end{cases}$$

Weak Form

$$\begin{cases} q(x,t) = h(x,t)u(x,t) \equiv q_0 \\ K(\mathbf{u},x) = \frac{q^2}{h} + g\frac{h^2}{2} + \int_{x_0}^x g\left[h\partial_\xi b + \frac{n^2|q|q}{h^{7/3}}\right] d\xi \equiv K_0. \end{cases}$$

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(\mathbf{u}, x).$$

$$\mathbf{u} = egin{bmatrix} h \\ q \end{bmatrix}, \, \mathcal{F}(\mathbf{u}) = egin{bmatrix} q \\ rac{q^2}{h} + g rac{h^2}{2} \end{bmatrix},$$

$$\mathcal{S}(\mathbf{u},x) = -gh\left[rac{0}{rac{\partial b(x)}{\partial x}}
ight] - gq\left[rac{0}{rac{
ho^2}{h^{7/3}}|q|}
ight]$$

$$\begin{cases} \partial_t h + \partial_x q = 0 \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + g \frac{h^2}{2} \right) + g h \partial_x b + g \frac{n^2 |q| q}{h^{7/3}} = 0 \end{cases}$$

Shallow Water Equations (SWE)

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(\mathbf{u}, x).$$

$$\mathbf{u} = \begin{bmatrix} h \\ q \end{bmatrix}, \qquad \mathcal{F}(\mathbf{u}) = \begin{bmatrix} q \\ \frac{q^2}{h} + g\frac{h^2}{2} \end{bmatrix}, \qquad \mathcal{S}(\mathbf{u}, x) = \begin{bmatrix} 0 \\ S(\mathbf{u}, x) \end{bmatrix} = -gh\begin{bmatrix} 0 \\ \frac{\partial b(x)}{\partial x} \end{bmatrix} - gq\begin{bmatrix} 0 \\ \frac{n^2}{h^{7/3}}|q| \end{bmatrix}$$

²Gascon, Corberan. Jour. Comp. Phys. 2001.

³Cheng et al.. Jour. Sci. Comp. 2019.

Shallow Water Equations (SWE)

$$\partial_t \mathbf{u} + \partial_x \mathcal{F}(\mathbf{u}) = \mathcal{S}(\mathbf{u}, x).$$

$$\mathbf{u} = \begin{bmatrix} h \\ q \end{bmatrix}, \qquad \mathcal{F}(\mathbf{u}) = \begin{bmatrix} q \\ \frac{q^2}{h} + g \frac{h^2}{2} \end{bmatrix}, \qquad \mathcal{S}(\mathbf{u}, x) = \begin{bmatrix} 0 \\ S(\mathbf{u}, x) \end{bmatrix} = -gh \begin{bmatrix} 0 \\ \frac{\partial b(x)}{\partial x} \end{bmatrix} - gq \begin{bmatrix} 0 \\ \frac{n^2}{h^{7/3}} |q| \end{bmatrix}$$

Global Flux SWE

$$\partial_t \mathbf{u} + \partial_x \mathcal{G}(\mathbf{u}, x) = 0, \qquad \mathcal{G}(\mathbf{u}, x) = \mathcal{F}(\mathbf{u}) + \begin{bmatrix} 0 \\ \mathcal{R}(\mathbf{u}, x) \end{bmatrix} = \begin{bmatrix} q \\ K \end{bmatrix} = \begin{bmatrix} q \\ \frac{q^2}{h} + g \frac{h^2}{2} + \mathcal{R} \end{bmatrix}$$

$$\mathcal{R}(\mathbf{u},x) := -\int^x \mathcal{S}(\mathbf{u},\xi) \; \mathrm{d}\xi = g \int^x \left[h(\xi,t) rac{\partial b(\xi)}{\partial \xi} + rac{n^2}{h^{7/3}(\xi,t)} |q(\xi,t)| \; \mathrm{d}\xi
ight]$$

²Gascon, Corberan. Jour. Comp. Phys. 2001.

³Cheng et al.. Jour. Sci. Comp. 2019.

Table of contents

- Motivation
- 2 (Arbitrarily) high order space discretization
- Well-balanced formulation
- 4 Validation
- **5** Global flux for dispersive equations
- 6 Conclusions

$$\partial_t \mathbf{u} + \partial_x \mathcal{G}(\mathbf{u}, x) = 0$$

Finite Volume

- Ω is discretized into N_x control volumes $\Omega_i = [x_{i-1/2}, x_{i+1/2}]$ of size Δx centered at $x_i = i\Delta x$ with $i = i_\ell, \ldots, i_r$.
- Cell average at time t:

$$ar{\mathbf{U}}_i(t) := rac{1}{\Delta x} \int_{\mathbf{x}_{i-1/2}}^{\mathbf{x}_{i+1/2}} \mathbf{u}(\mathbf{x},t) \ \mathrm{d}\mathbf{x}.$$

$$\partial_t \mathbf{u} + \partial_x \mathcal{G}(\mathbf{u}, x) = 0$$

Finite Volume

- Ω is discretized into N_x control volumes $\Omega_i = [x_{i-1/2}, x_{i+1/2}]$ of size Δx centered at $x_i = i\Delta x$ with $i = i_0, \ldots, i_r$.
- Cell average at time t:

$$ar{\mathbf{U}}_i(t) := rac{1}{\Delta x} \int_{\mathbf{x}_{i-1/2}}^{\mathbf{x}_{i+1/2}} \mathbf{u}(\mathbf{x},t) \ \mathrm{d}\mathbf{x}.$$

• Semi-discrete finite volume:

$$rac{\mathrm{d}ar{\mathbf{U}}_i}{\mathrm{d}t} + rac{1}{\Delta x}(\mathbf{H}_{i+1/2} - \mathbf{H}_{i-1/2}) = 0$$

where $\mathbf{H}_{i\pm 1/2}$ is a numerical flux consistent with the flux \mathcal{G} .

Numerical Flux

• $\mathbf{H}_{i+1/2}$ upwind numerical flux defined only on the global flux:

$$\mathbf{H}_{i+1/2} = \mathcal{L}^{-1} \Lambda^+ \mathcal{L} \ \mathcal{G}_{i+1/2}^L + \mathcal{L}^{-1} \Lambda^- \mathcal{L} \ \mathcal{G}_{i+1/2}^R.$$

- $\mathcal{G}_{i+1/2}^{L,R} =$ the discontinuous reconstructed values of \mathcal{G}
- $\mathcal{L} = \text{left eigenvectors computed with the Roe's state}^4$
- Λ^{\pm} = upwinding weights such that

$$\Lambda_i^+ = egin{cases} 1, & ext{if } \lambda_i > 0, \ 0, & ext{if } \lambda_i < 0, \end{cases} \qquad \Lambda_i^- = egin{cases} 1, & ext{if } \lambda_i < 0, \ 0, & ext{if } \lambda_i > 0. \end{cases}$$

ullet Rusanov not directly possible (it depends on variable u instead of \mathcal{G})

⁴ Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Jour. Comp. Phys. 1981.

Reconstructed values in ξ are computed using WENO 5

- pHO high order polynomial
- p_i low order polynomials
- β_i smoothness indicators

• Optimal weights
$$d_j^{\xi}$$
:

$$\sum_i d_i^{\xi} p_j(\xi) = p^{HO}(\xi)$$

$$\sum_{j} d_{j}^{\varsigma} p_{j}(\xi) = p^{HO}(\xi)$$

Nonlinear weights

$$\omega_j^{\xi} = \frac{d_j^{\xi}}{(\beta_j + \varepsilon)^2}$$

Jiang, and Shu. Efficient implementation of weighted ENO schemes. Jour. Comp. Phys. 1996.

Reconstructed values in ξ are computed using WENO 5

- p^{HO} high order polynomial
- \bullet p_j low order polynomials
- ullet β_j smoothness indicators

• Optimal weights
$$d_j^{\xi}$$
:

$$\sum_i d_i^{\xi} p_j(\xi) = p^{HO}(\xi)$$

Nonlinear weights

$$\omega_j^{\xi} = \frac{d_j^{\xi}}{(\beta_i + \varepsilon)^2}$$

⁵ Jiang, and Shu. Efficient implementation of weighted ENO schemes. Jour. Comp. Phys. 1996.

Reconstructed values in ξ are computed using WENO 5

- p^{HO} high order polynomial
- p_i low order polynomials
- ullet β_j smoothness indicators

• Optimal weights
$$d_j^{\xi}$$
:

$$\sum_i d_i^{\xi} p_j(\xi) = p^{HO}(\xi)$$

$$\omega_j^{\xi} = \frac{d_j^{\xi}}{(\beta_i + \varepsilon)^2}$$

⁵ Jiang, and Shu. Efficient implementation of weighted ENO schemes. Jour. Comp. Phys. 1996.

Reconstructed values in ξ are computed using WENO 5

- p^{HO} high order polynomial
- p_i low order polynomials
- ullet β_j smoothness indicators

• Optimal weights
$$d_j^{\xi}$$
:

$$\sum_i d_i^{\xi} p_j(\xi) = p^{HO}(\xi)$$

Nonlinear weights

$$\omega_j^{\xi} = \frac{d_j^{\xi}}{(\beta_i + \varepsilon)^2}$$

⁵ Jiang, and Shu. Efficient implementation of weighted ENO schemes. Jour. Comp. Phys. 1996.

Global Flux Finite Volume method: Global Flux Reconstruction

Global Flux Reconstruction

ullet To reconstruct ${\cal G}$ at the interfaces, we need the cell averages ${ar {\cal G}}_i$

$$ar{\mathcal{G}}_i(\mathbf{u},x) = ar{\mathcal{F}}_i(\mathbf{u}) + egin{bmatrix} 0 \ ar{\mathcal{R}}_i \end{bmatrix} \quad ext{with} \quad egin{cases} ar{\mathcal{F}}_i(\mathbf{u}) & pprox \sum_{\omega} w_{\omega} \mathcal{F}(\mathbf{u}(x_{i,\omega})) \ ar{\mathcal{R}}_i & pprox \sum_{\omega} w_{\omega} \mathcal{R}_{i,\omega} \end{cases}.$$

ullet Compute ${\cal R}$ in the quadrature points, using an iterative procedure

$$\mathcal{R}_{i,\omega} = \mathcal{R}_{i-1/2}^{R} + \int_{x_{i-1/2}^{R}}^{x_{i,\omega}} \tilde{S}(\mathbf{u}, x) dx$$

$$= \mathcal{R}_{i-1/2}^{R} + \sum_{\theta} \underbrace{\int_{x_{i-1/2}^{R}}^{x_{i,\omega}} \ell_{\theta}(x) dx}_{r_{\theta}^{\omega}} S(\mathbf{u}_{i,\theta}, x_{i,\theta}), \quad i > i_{\ell}.$$

Global Flux Finite Volume method: Global Flux Reconstruction

Global Flux Reconstruction

ullet Iterative procedure to obtain ${\mathcal R}$ on both sides of each interface

$$\mathcal{R}_{i+1/2}^{L} = \mathcal{R}_{i-1/2}^{R} + \int_{x_{i-1/2}}^{x_{i+1/2}^{L}} S(\mathbf{u}, x) dx$$

$$= \mathcal{R}_{i-1/2}^{R} + \Delta x \overline{S}_{i}, \quad i > i_{\ell}.$$

 \bar{S}_i being the cell average of S computed as

$$ar{\mathsf{S}}_i := rac{1}{\Delta x} \int_{x_{i-1/2}^R}^{x_{i+1/2}^L} S(\mathbf{u}, \xi) \; \mathsf{d} \xi pprox \sum_{\omega} w_{\omega} S(\mathbf{u}_{i,\omega}, x_{i,\omega}).$$

• Recursive definition of the $\mathcal{R}_{i+1/2}^R$ interface value (discontinuous bathymetry definition)

$$\mathcal{R}_{i+1/2}^R = \mathcal{R}_{i+1/2}^L + \llbracket \mathcal{R}_{i+1/2}
rbracket$$
.

Formulae we want

- $\bar{\mathcal{R}}_i \approx \sum_{\omega} w_{\omega} \mathcal{R}_{i,\omega}$;
- $\mathcal{R}_{i,\omega} = \mathcal{R}_{i-1/2}^R + \sum_{\theta} r_{\theta}^{\omega} S(\mathbf{u}_{i,\theta}, \mathbf{x}_{i,\theta}), \quad i > i_{\ell};$
- $\mathcal{R}_{i+1/2}^L = \mathcal{R}_{i-1/2}^R + \Delta x \overline{S}_i$, $i > i_\ell$;
- $\mathcal{R}_{i+1/2}^R = \mathcal{R}_{i+1/2}^L + [\![\mathcal{R}_{i+1/2}]\!].$

What is still missing

Formulae we want

- $\bar{\mathcal{R}}_i \approx \sum_{\omega} w_{\omega} \mathcal{R}_{i,\omega}$;
- $\mathcal{R}_{i,\omega} = \mathcal{R}_{i-1/2}^R + \sum_{\theta} r_{\theta}^{\omega} S(\mathbf{u}_{i,\theta}, \mathbf{x}_{i,\theta}), \quad i > i_{\ell};$
- $\mathcal{R}_{i+1/2}^L = \mathcal{R}_{i-1/2}^R + \Delta x \overline{S}_i$, $i > i_\ell$;
- $\mathcal{R}_{i+1/2}^R = \mathcal{R}_{i+1/2}^L + [\![\mathcal{R}_{i+1/2}]\!].$

What we have

- Global Flux discretization
- ullet In any steady equilibria we preserve $q\equiv q_0$ and ${\cal K}\equiv {\cal K}_0$

What is still missing

Formulae we want

- $\bar{\mathcal{R}}_i \approx \sum_{\omega} w_{\omega} \mathcal{R}_{i,\omega}$;
- $\mathcal{R}_{i,\omega} = \mathcal{R}_{i-1/2}^R + \sum_{\theta} r_{\theta}^{\omega} S(\mathbf{u}_{i,\theta}, \mathbf{x}_{i,\theta}), \quad i > i_{\ell};$
- $\mathcal{R}_{i+1/2}^L = \mathcal{R}_{i-1/2}^R + \Delta x \overline{S}_i$, $i > i_\ell$;
- $\mathcal{R}_{i+1/2}^R = \mathcal{R}_{i+1/2}^L + [\![\mathcal{R}_{i+1/2}]\!].$

What we have

- Global Flux discretization
- ullet In any steady equilibria we preserve $q\equiv q_0$ and ${\cal K}\equiv {\cal K}_0$

What we do not have

- Preservation of $\eta \equiv \eta_0$ in lake at rest
- Discretization of $S = -gh\partial_x b g\frac{q|q|n^2}{h^{7/3}}$ in quadrature points (bathymetry)
- Definition of $\llbracket \mathcal{R}_{i+1/2} \rrbracket$

What is still missing

Formulae we want

•
$$\bar{\mathcal{R}}_i pprox \sum_{\omega} w_{\omega} \mathcal{R}_{i,\omega}$$
;

•
$$\mathcal{R}_{i,\omega} = \mathcal{R}_{i-1/2}^R + \sum_{\theta} r_{\theta}^{\omega} S(\mathbf{u}_{i,\theta}, x_{i,\theta}), \quad i > i_{\ell}$$

•
$$\mathcal{R}_{i+1/2}^L = \mathcal{R}_{i-1/2}^R + \Delta x \overline{S}_i$$
, $i > i_\ell$;

•
$$\mathcal{R}_{i+1/2}^R = \mathcal{R}_{i+1/2}^L + [\![\mathcal{R}_{i+1/2}]\!].$$

What we have

- Global Flux discretization
- ullet In any steady equilibria we preserve $q\equiv q_0$ and ${\cal K}\equiv {\cal K}_0$

What we want to achieve

- Well balancing also for lake at rest
- High order discretization
- Keeping the global flux formulation
- Definition of $\mathcal{R}_{i,\omega}$, $\mathcal{R}_{i+1/2}^L$, $\llbracket \mathcal{R}_{i+1/2} \rrbracket$

What we do not have

- Preservation of $\eta \equiv \eta_0$ in lake at rest
- Discretization of $S = -gh\partial_x b g\frac{q|q|n^2}{h^{7/3}}$ in quadrature points (bathymetry)
- Definition of $\llbracket \mathcal{R}_{i+1/2} \rrbracket$

Table of contents

- 1 Motivation
- 2 (Arbitrarily) high order space discretization
- 3 Well-balanced formulation
- 4 Validation
- **5** Global flux for dispersive equations
- 6 Conclusions

Well-balanced for the lake at rest

Well balanced for lake at rest $(\eta \equiv \eta_0)$

- WENO reconstruction of h, η and b with the weights from η .
- We highlight η in the source term, given that $h(x) = \eta(x) b(x)$, as

$$S(\mathbf{u},x) = gh\partial_x b = g(\eta - b)\partial_x b = g\eta\partial_x b - g\partial_x \left(\frac{b^2}{2}\right).$$

How to proceed

- Substitute the new form of S into the definitions of $\mathcal{R}_{i,\omega}, \mathcal{R}_{i}^{L}$
- Check what we get when $\eta \equiv \eta_0$
- Defining remaining terms so that we are WB for lake at rest

Substitution ($\eta \equiv \eta_0$)

$$S(\mathbf{u},x)=gh\partial_x b=g(\eta-b)\partial_x b=g\eta\partial_x b-g\partial_x\left(\frac{b^2}{2}\right).$$

• $\mathcal{R}_{i+1/2}^L$ reads

$$\begin{split} \mathcal{R}^L_{i+1/2} &= \mathcal{R}^R_{i-1/2} - \int_{x_{i-1/2}^R}^{x_{i+1/2}^L} S(\mathbf{u}(x),x) \, \mathrm{d}x \\ &= \mathcal{R}^R_{i-1/2} + g \int_{x_{i-1/2}^R}^{x_{i+1/2}^L} \eta(x) \partial_x b(x) \, \mathrm{d}x - g \left(\frac{(b_{i+1/2}^L)^2}{2} - \frac{(b_{i-1/2}^R)^2}{2} \right) \\ (\text{if } \eta \equiv \eta_0) &= \mathcal{R}^R_{i-1/2} + g \eta_0 \left(b_{i+1/2}^L - b_{i-1/2}^R \right) - g \left(\frac{(b_{i+1/2}^L)^2}{2} - \frac{(b_{i-1/2}^R)^2}{2} \right). \end{split}$$

Substitution ($\eta \equiv \eta_0$)

$$S(\mathbf{u},x)=gh\partial_x b=g(\eta-b)\partial_x b=g\eta\partial_x b-g\partial_x\left(\frac{b^2}{2}\right).$$

• $\mathcal{R}_{i,\omega}$ reads

$$\begin{split} \mathcal{R}_{i,\omega} &= \mathcal{R}^R_{i-1/2} - \int_{x_{i-1/2}^R}^{x_{i,\omega}} S(\mathbf{u}(x),x) \; \mathrm{d}x \\ &= \mathcal{R}^R_{i-1/2} + g \int_{x_{i-1/2}^R}^{x_{i,\omega}} \eta(x) \partial_x b(x) \; \mathrm{d}x - g \left(\frac{(b_{i,\omega})^2}{2} - \frac{(b_{i-1/2}^R)^2}{2} \right) \\ \text{(if } \eta \equiv \eta_0) &= \mathcal{R}^R_{i-1/2} + g \eta_0 \left(b_{i,\omega} - b_{i-1/2}^R \right) - g \left(\frac{(b_{i,\omega})^2}{2} - \frac{(b_{i-1/2}^R)^2}{2} \right). \end{split}$$

Continue computation with $\eta \equiv \eta_0$, $q \equiv 0$

$$egin{split} \mathcal{K}_{i,\omega} &= \mathcal{F}_{i,\omega} + \mathcal{R}_{i,\omega} = g rac{(\eta_0 - b_{i,\omega})^2}{2} + \mathcal{R}_{i-1/2}^R + g \eta_0 \left(b_{i,\omega} - b_{i-1/2}^R
ight) - g \left(rac{(b_{i,\omega})^2}{2} - rac{(b_{i-1/2}^R)^2}{2}
ight) = \ &= \mathcal{R}_{i-1/2}^R + g rac{\eta_0^2}{2} - g \eta_0 b_{i-1/2}^R + g rac{(b_{i-1/2})^2}{2}. \end{split}$$

Independent of ω , hence, $\bar{K}_i = \mathcal{R}_{i-1/2}^R + g \frac{\eta_0^2}{2} - g \eta_0 b_{i-1/2}^R + g \frac{(b_{i-1/2})^2}{2}$.

We now would like $\bar{K}_i \equiv K_0$ for all i.

$$\begin{split} \bar{K}_{i+1} - \bar{K}_i \ &= \mathcal{R}^R_{i+1/2} - \mathcal{R}^R_{i-1/2} - g\eta_0 b^R_{i+1/2} + g \frac{(b^R_{i+1/2})^2}{2} + g\eta_0 b^R_{i-1/2} - g \frac{(b^R_{i-1/2})^2}{2} \\ &= \mathcal{R}^L_{i+1/2} - \mathcal{R}^R_{i-1/2} + \llbracket \mathcal{R}_{i+1/2} \rrbracket - g\eta_0 b^R_{i+1/2} + g \frac{(b^R_{i+1/2})^2}{2} + g\eta_0 b^R_{i-1/2} - g \frac{(b^R_{i-1/2})^2}{2} = \dots \end{split}$$

Continue computation with $\eta \equiv \eta_0$, $q \equiv 0$

$$\begin{split} \bar{K}_{i+1} - \bar{K}_{i} &= \mathcal{R}_{i+1/2}^{L} - \mathcal{R}_{i-1/2}^{R} + \llbracket \mathcal{R}_{i+1/2} \rrbracket - g\eta_{0}b_{i+1/2}^{R} + g\frac{(b_{i+1/2}^{R})^{2}}{2} + g\eta_{0}b_{i-1/2}^{R} - g\frac{(b_{i-1/2}^{R})^{2}}{2} \\ &= \underbrace{g\eta_{0}\left(b_{i+1/2}^{L} - b_{i-1/2}^{R}\right) - g\left(\frac{(b_{i+1/2}^{L})^{2}}{2} - \frac{(b_{i-1/2}^{R})^{2}}{2}\right)}_{\mathcal{R}_{i+1/2}^{L} - \mathcal{R}_{i-1/2}^{R}} + \llbracket \mathcal{R}_{i+1/2} \rrbracket \\ &- g\eta_{0}b_{i+1/2}^{R} + g\frac{(b_{i+1/2}^{R})^{2}}{2} + g\eta_{0}b_{i-1/2}^{R} - g\frac{(b_{i-1/2}^{R})^{2}}{2} = \\ &= g\eta_{0}\left(b_{i+1/2}^{L} - b_{i-1/2}^{R}\right) - g\left(\frac{(b_{i+1/2}^{L})^{2}}{2} - \frac{(b_{i-1/2}^{R})^{2}}{2}\right) + \llbracket \mathcal{R}_{i+1/2} \rrbracket = 0, \end{split}$$

Hence, we define

$$\llbracket \mathcal{R}_{i+1/2} \rrbracket := g \frac{\eta_{i+1/2}^R + \eta_{i+1/2}^L}{2} \left(b_{i+1/2}^R - b_{i+1/2}^L \right) - g \left(\frac{(b_{i+1/2}^R)^2}{2} - \frac{(b_{i+1/2}^L)^2}{2} \right).$$

Summary of the method

Global Flux WENO FV method

- $\mathcal{R}_{i_{\ell}-1/2} := 0$, then for every cell *i*
- Reconstruct h, η and b in each quadrature point $\Rightarrow \tilde{h}_{i,\theta}$, $\tilde{\eta}_{i,\theta}$ and $\tilde{b}_{i,\theta}$
- Reconstruct q in the quadrature points obtaining $\tilde{q}_{i,\theta}$

$$\circ \ \mathcal{R}_{i,\omega} = \mathcal{R}_{i-1/2}^{R} + g \sum_{\theta} \int_{x_{i-1/2}^{R}}^{x_{i,\omega}} \ell_{\theta}(x) \, \mathrm{d}x \left(\tilde{\eta}_{i,\theta} \sum_{s} \ell_{s}'(x_{i,\theta}) \tilde{b}_{i,s} + g \frac{\tilde{q}_{i,\theta} |\tilde{q}_{i,\theta}| n^{2}}{\tilde{h}_{i,\theta}^{7/3}} \right) - g \left[\frac{(b_{i,\theta})^{2}}{2} - \frac{(b_{i-1/2}^{R})^{2}}{2} \right]$$

$$\circ \ \mathcal{R}_{i+1/2}^{L} = \mathcal{R}_{i-1/2}^{R} + g \sum_{\theta} \int_{x_{i-1/2}^{R}}^{x_{i+1/2}} \ell_{\theta}(x) \mathrm{d}x \left(\tilde{\eta}_{i,\theta} \sum_{s} \ell_{s}'(x_{i,\theta}) \tilde{b}_{i,s} + g \frac{\tilde{q}_{i,\theta} |\tilde{q}_{i,\theta}| n^{2}}{\tilde{h}_{i,\theta}^{7/3}} \right) - g \left[\frac{(b_{i+1/2}^{L})^{2}}{2} - \frac{(b_{i-1/2}^{R})^{2}}{2} \right].$$

$$\circ \ \, \mathcal{R}^{L}_{i+1/2} = \mathcal{R}^{R}_{i-1/2} + g \sum_{\theta} \int_{\mathbf{x}^{R}_{i-1/2}}^{\mathbf{x}_{i+1/2}} \!\! \ell_{\theta}(\mathbf{x}) \mathrm{d}\mathbf{x} \left(\tilde{\eta}_{i,\theta} \sum_{s} \ell'_{s}(\mathbf{x}_{i,\theta}) \tilde{b}_{i,s} + g \frac{\tilde{q}_{i,\theta} |\tilde{q}_{i,\theta}| n^{2}}{\tilde{h}_{i,\theta}^{7/3}} \right) - g \left[\frac{(b_{i+1/2}^{L})^{2}}{2} - \frac{(b_{i-1/2}^{R})^{2}}{2} \right]$$

$$\circ \ \llbracket \mathcal{R}_{i+1/2} \rrbracket := g^{\frac{\eta_{i+1/2}^R + \eta_{i+1/2}^L}{2}} \left(b_{i+1/2}^R - b_{i+1/2}^L \right) - g \left(\frac{(b_{i+1/2}^R)^2}{2} - \frac{(b_{i+1/2}^L)^2}{2} \right).$$

$$\circ \ \mathcal{R}^{R}_{i+1/2} := \mathcal{R}^{L}_{i+1/2} + [\![\mathcal{R}_{i+1/2}]\!]$$

Properties

• Preserves moving equilibria ($q \equiv q_0$ and $K \equiv K_0$) • Preserves lake at rest equilibria (also $\eta \equiv \eta_0$)

High order time discretization

Deferred Correction Method

Arbitrarily high order

Explicit method (there exists also implicit)

- Based on two operators
 - High order implicit operator, we do not invert
 - Explicit low order operator, we solve
- Based on iterations (as many as the order)
- Similar to ADER prediction step
- Can be written as a RK

Many RK stages (see Lorenzo's talk in 1 hour)

• We test 3rd order 5 stages and 5th order 13 stages

Table of contents

- 1 Motivation
- 2 (Arbitrarily) high order space discretization
- Well-balanced formulation
- 4 Validation
- **5** Global flux for dispersive equations
- **6** Conclusions

Validation: Lake at rest

Domain and Bathymetry

$$\Omega = [0, 25],$$
 $b(x) = 0.05 \sin{(x - 12.5)} \exp{\left(1 - (x - 12.5)^2\right)},$ $g = 9.812.$

b(x) is chosen \mathcal{C}^{∞} and such that it has values smaller than machine precision at the boundaries.

Lake at rest test

$$h(x,0)=1-b(x), \qquad q(x,0)\equiv 0$$

BC: subcritical inflow/outflow

Validation: Lake at rest

Table: Lake at rest: errors and estimated order of accuracy (EOA) with WB and non-WB schemes and GF-WENO3 and GF-WENO5.

	Non-WB				WB			
	h		q		h		q	
N_e	L_2 error	EOA	L_2 error	EOA	L ₂ error	EOA	L_2 error	EOA
	GF-WENO3				GF-WENO3			
25	1.0384E-4	_	4.7943E-5	_	9.8858E-14	_	1.2228E-15	_
50	1.5496E-5	2.67	9.2488E-6	2.31	9.8667E-14	_	1.4249E-15	_
100	1.2117E-6	3.62	3.6777E-7	4.59	9.8276E-14	_	1.6041E-15	_
150	2.6776E-7	3.69	1.5898E-7	2.05	1.9644E-13	_	3.3908E-15	_
200	9.6323E-8	3.53	7.6469E-8	2.53	1.9619E-13	_	3.6713E-15	_
400	8.2671E-9	3.53	6.0441E-9	3.65	2.9360E-13	_	6.1689E-15	_
800	6.8811E-10	3.58	4.7122E-10	3.67	5.8655E-13	-	1.3035E-14	_
	GF-WENO5				GF-WENO5			
25	5.1800E-5	_	6.1657E-5	_	9.8947E-14	_	1.3247E-15	_
50	4.4066E-6	3.45	1.5244E-6	5.18	9.8661E-14	-	1.4060E-15	_
100	6.7998E-7	2.66	3.5908E-7	2.06	9.8289E-14	_	1.5992E-15	_
150	1.5437E-7	3.63	8.8535E-8	3.42	1.9639E-13	_	3.4157E-15	_
200	4.1973E-8	4.50	2.3725E-8	4.55	1.9611E-13	-	3.7034E-15	_
400	1.3952E-9	4.89	7.5991E-10	4.95	2.9357E-13	-	6.2007E-15	_
800	4.3120E-11	5.01	2.2633E-11	5.06	5.8648E-13	_	1.3039E-14	_

GF-WENO5 (top) and WENO5 (bottom): $h - h_{eq}$ (red) and rescaled b (blue)

Supercritical flow test

$$h(x,0) = 2 - b(x),$$
 $q(x,0) \equiv 0,$
 $h(0,t) = 2,$ $q(0,t) = 24,$

Subcritical flow test

$$h(x,0) = 2 - b(x),$$
 $q(x,0) \equiv 0,$ $q(0,t) = 4.42,$ $h(25,t) = 2,$

Transcritical flow test

$$b(x) = \begin{cases} 0.2 \exp\left(1 - \frac{1}{1 - \left(\frac{|x - 10|}{5}\right)^2}\right), & \text{if } |x - 10| < 5, \\ 0, & \text{else}, \end{cases}$$

$$h(x, 0) = 0.33 - b(x), \quad q(x, 0) \equiv 0,$$

$$q(0, t) = 0.18, \quad h(25, t) = 0.33.$$

Figure: Supercritical flow: characteristic variables compute by means of the GF-WENO5 (red continuous line) and WENO5 (black dashed line) schemes with $N_e=100$.

Figure: Subcritical flow: characteristic variables compute by means of the GF-WENO5 (red continuous line) and WENO5 (black dashed line) schemes with $N_e=100$.

Figure: Supercritical flow: convergence tests with WENO3 and WENO5.

Figure: Subcritical flow: convergence tests with WENO3 and WENO5.

Validation: Small perturbation of supercritical flow without friction (n = 0)

Figure: Perturbation on a subcritical flow: $\eta - \eta^{eq}$

Validation: Small perturbation of subcritical flow without friction (n = 0)

Figure: Perturbation on a supercritical flow: $\eta - \eta^{eq}$

Validation: Discontinuous steady states without friction (n = 0)

Figure: Transcritical flow: characteristic variables compute by means of the GF-WENO5 (red continuous line), WENO5 (black dashed line) schemes and b (blue continuous line) with $N_e=100$.

Validation: Discontinuous steady states without friction (n = 0)

Figure: Supercritical flow: relevant variables computed with GF-WENO5 (red continuous line) and WENO5 (black dashed line) schemes and rescaled b (blue dotted line) with $N_e = 100$.

Validation: Discontinuous steady states without friction (n = 0)

Figure: Subcritical flow: relevant variables computed with GF-WENO5 (red continuous line), WENO5 (black dashed line) schemes and rescaled b (blue dotted line) with $N_e=100$.

Validation: Steady states with friction (n = 0.05)

Figure: Supercritical flow with friction: characteristic variables compute by means of the GF-WENO5 (red continuous line) and WENO5 (black dashed line) schemes.

Validation: Steady states with friction (n = 0.05)

Figure: Subcritical flow with friction: characteristic variables compute by means of the GF-WENO5 (red continuous line) and WENO5 (black dashed line) schemes.

Table of contents

- Motivation
- 2 (Arbitrarily) high order space discretization
- Well-balanced formulation
- 4 Validation
- **5** Global flux for dispersive equations
- 6 Conclusions

Dispersive models⁶

BBM-KdV

$$\partial_t u + \partial_x f(u) + \mathcal{D} = 0$$
$$\mathcal{D} = -\alpha \partial_{xxt} u + \beta \partial_{xxx} u$$

A Boussinesq system (Madsen and Søresen)

$$\begin{cases} \partial_t u + \partial_x q = 0, \\ \partial_t q - \mathcal{T}^t[\partial_t q] + \partial_x (qu) + gh\partial_x u - \mathcal{T}^x[u] = 0, \end{cases}$$

$$\mathcal{T}^t[\cdot] := B_1 \bar{h}^2 \partial_{xx}[\cdot] + \frac{1}{3} \bar{h} \partial_x \bar{h} \partial_x[\cdot]$$

$$\mathcal{T}^x[\cdot] := gB_2 \bar{h}^2 \left(2\partial_x \bar{h} + \bar{h} \partial_x \right) \partial_{xx}[\cdot],$$

Properties

- Both are some approximation of water waves
- Both includes dispersive terms (∂_{xxx})
- Both have some solitary waves as exact solution

$$\exists \varphi(x): \quad u(x,t) = \varphi(x-ct).$$

⁶with Wasilij Barsukow and Mario Ricchiuto

Global Flux for Dispersive equations

$$\partial_t u + \partial_x f(u) - \alpha \partial_{xxt} u + \beta \partial_{xxx} u = 0$$

Again, using the hypothesis $u(x,t) = \phi(x-ct)$, we can derive a ""Global Flux"" recipe.

Substituting $\partial_t = -c\partial_x$

$$0 = \partial_t u + f(u)_x - \alpha \partial_{xxt} u + \beta \partial_{xxx} u$$

= $-c\partial_x u + f(u)_x + (c\alpha + \beta)\partial_{xxx} u$

This suggests that exact traveling solutions preserve a global flux of the form

$$\mathcal{G} = -cu + f(u) + (c\alpha + \beta)\partial_{xx}u$$

Without replacing $\partial_t = -c\partial_x$

$$\mathcal{U}: \partial_x \mathcal{U} = \partial_t u \Longleftrightarrow \mathcal{U} = \mathcal{U}_0 + \int_{x_0}^x \partial_t u dx$$

$$\begin{split} \partial_t u + \partial_x f(u) - \alpha \partial_{xxt} u + \beta \partial_{xxx} u &= 0 \\ \partial_x \mathcal{U} + \partial_x f(u) - \alpha \partial_{xxx} \mathcal{U} + \beta \partial_{xxx} u &= 0 \\ \partial_x \left((1 - \alpha \partial_{xx}) \mathcal{U} + f(u) + \beta \partial_{xx} u \right) &= 0 \end{split}$$

Then, the ""Global Flux""

$$\mathcal{G} := (1 - \alpha \partial_{xx}) \mathcal{U} + f(u) + \beta \partial_{xx} u.$$

Discrete Global Flux for Dispersive equations

$$\partial_{\mathsf{x}}\left((1-\alpha\partial_{\mathsf{xx}})\mathcal{U}+f(\mathsf{u})+\beta\partial_{\mathsf{xx}}\mathsf{u}\right)$$

Discrete operators

$$\mathcal{I}pprox \int_{x_0}^x & \mathbb{M} = \mathbb{D}_1\mathcal{I} \ \mathbb{D}_1pprox \partial_x & \mathbb{D}_1\mathcal{U} = \mathcal{I}\partial_t u \ \mathbb{D}_2pprox \partial_{xx}$$

Method

$$\begin{split} \mathbb{D}_1 \left((1 - \alpha \mathbb{D}_2) \mathcal{U} + f(u) + \beta \mathbb{D}_2 u \right) &= 0 \\ (1 - \alpha \mathbb{D}_2) \mathbb{D}_1 \mathcal{I} \partial_t u + \mathbb{D}_1 \left(f(u) + \beta \mathbb{D}_2 u \right) &= 0 \end{split}$$

For a soliton...

Assumption on IC

$$\mathbb{D}_1\left(f(u) + \beta \mathbb{D}_2 u\right) = -c(1 - \alpha \mathbb{D}_2)\mathbb{D}_1 u$$

In the method we obtain...

$$\underbrace{(1-\alpha\mathbb{D}_2)}_{>0}(\mathbb{D}_1\mathcal{I}\partial_t u-c\mathbb{D}_1 u)=0$$

$$\mathbb{M}\partial_t u - c\mathbb{D}_1 u = 0$$

Transport equation!

Discrete Global Flux Accuracy

$$\mathbb{M}\partial_t u - c\mathbb{D}_1 u = 0 \tag{1}$$

Choose mass first

For a given \mathbb{M} can we optimize \mathbb{D}_1 such that $\mathbb{M}^{-1}\mathbb{D}_1$ is a higher order operator?

$$\begin{cases} \mathbb{M} = \left(\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right) \\ \mathbb{D}_1 = \left(-\frac{1}{2}, 0, \frac{1}{2}\right) \frac{1}{\Delta x} \end{cases}$$
 (FEM),

$$\begin{cases} \mathbb{M} = \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right) \\ \mathbb{D}_1 = \left(-\frac{1}{2}, 0, \frac{1}{2}\right) \frac{1}{\Delta x} \end{cases}$$
 (GF) (from RD)
$$O(\Delta x^2)$$

Choose derivative First

Not today

Benchmark and other operators

$$\begin{cases} \mathbb{M}=1\\ \mathbb{D}_1=\left(-\frac{1}{2},0,\frac{1}{2}\right)\frac{1}{\Delta x} & \text{(Dbench)}\\ \mathbb{D}_2=\left(1,-2,1\right)\frac{1}{\Delta x^2}\\ \mathbb{D}_3=\left(-\frac{1}{2},1,0,-1,\frac{1}{2}\right)\frac{1}{\Delta x^3} \end{cases}$$

Test on soliton: Lobatto IIIA 2nd order, CFL 1.2

Test on soliton: Lobatto IIIA 4nd order, CFL 1.2

Test on soliton: SDIRK3, CFL 1.2

Table of contents

- 1 Motivation
- 2 (Arbitrarily) high order space discretization
- Well-balanced formulation
- 4 Validation
- **5** Global flux for dispersive equations
- **6** Conclusions

Conclusion

Global Flux FV for SW

- ullet Formulation in ${\cal G}$
- Well balanced for LAR and moving equilibria
- WENO + DeC \Longrightarrow Arbitrarily High order
- Intrinsically 1D method
- 2D extension on Cartesian grids
- Ciallella, Torlo, Ricchiuto https://arxiv. org/abs/2205.13315

Other GF applications

- Dispersive Waves (some preliminary results)
 - o Connection to SBP operators?
- Other residual to balance
 - o Divergence free schemes
 - Low Mach/Low Froude schemes
 - o IMEX versions...

Global Flux FV for SW

- ullet Formulation in ${\cal G}$
- Well balanced for LAR and moving equilibria
- WENO + DeC ⇒ Arbitrarily High order
- Intrinsically 1D method
- 2D extension on Cartesian grids
- Ciallella, Torlo, Ricchiuto https://arxiv. org/abs/2205.13315

Other GF applications

- Dispersive Waves (some preliminary results)
 - o Connection to SBP operators?
- Other residual to balance
 - o Divergence free schemes
 - Low Mach/Low Froude schemes
 - o IMEX versions...

THANK YOU!