Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №9 дисциплины «Алгоритмизация» Вариант___

	Выполнил: Иващенко Олег Андреевич 2 курс, группа ИВТ-б-о-22-1, 09.03.02 «Информационные и вычислительные машины», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем»						
	(подпись)						
	Руководитель практики: Доцент кафедры инфокоммуникации Воронкин Роман Александрович						
	(подпись)						
Отчет защищен с оценкой	Дата защиты						

Ставрополь, 2023 г.

Тема: «Бинарный поиск»

Порядок выполнения работы

Таблица 1 – Код программы (самописные методы)

```
using System;
using System. Diagnostics;
class HelloWorld
  public static SearchNumber SN = new SearchNumber();
  static void Main()
    // Пользовательский ввод
    Console.WriteLine("[System] Введите количество элементов массива");
    Console.Write(">>> ");
    int N = int.Parse(Console.ReadLine());
    Console.WriteLine("[System] Введите искомое число");
    Console.Write(">>> ");
    int searchNumber = int.Parse(Console.ReadLine());
    // Генерация значений в массив и сортировка
    Stopwatch Timer = Stopwatch.StartNew();
    Timer.Start();
    int[] array = new int[N];
    Random rnd = new Random():
    for (int i = 0; i < array.Length; i++) array[i] = rnd.Next(-500, 500);
    array = ArraySort(array);
    // Вывод элементов, если их количество менее 30
    if (N < 30) for (int i = 0; i < array.Length; i++) Console.WriteLine(\{i\}] {array[i]}");
    SN = Binar(array, searchNumber, 0, array.Length - 1);
    if (SN.ID == -1) Console.WriteLine("[System] Искомое значения не было найдено");
    else Console.WriteLine($"[System] Искомое значение: [{SN.ID}] {SN.Number}");
    Console.WriteLine($"[System] Время выполнения: {Timer.Elapsed.TotalSeconds} сек.");
    Timer.Stop();
    Console.ReadKey();
  // Метод сортировки
  static int[] ArraySort(int[] array)
    for (int i = 0; i < array.Length; i++)
       for (int j = 0; j < array.Length; j++)
         if (array[i] > array[i])
            int temp = array[i];
            array[i] = array[j];
            array[j] = temp;
    return array;
  // Метод бинарного поиска
  static SearchNumber Binar(int[] array, int number, int left, int right)
    SearchNumber temp = new SearchNumber();
```

```
while (left <= right)
       int mid = left + (right - left) / 2;
       if (array[mid] == number)
         temp = new SearchNumber(mid, number);
         break;
       if (array[mid] < number) left = mid + 1;
       else right = mid - 1;
    return temp;
}
Класс, созданный для упрощения работы со значениями.
Экземпляр содержит значения ID и Number, которые являются числовым
идентификатором и значением экземпляра соответственно.
class SearchNumber
  public int ID;
  public int Number;
  public SearchNumber()
    ID = -1;
    Number = int.MinValue;
  public SearchNumber(int ID, int Number)
    this.ID = ID:
    this.Number = Number;
```

Таблица 2 – Код программы (встроенные функции)

```
using System.Diagnostics;

class HelloWorld
{
    static void Main()
    {
        Console.WriteLine("[System] Введите количество элементов массива");
        Console.Write(">>> ");
        int N = int.Parse(Console.ReadLine()); Console.WriteLine("[System] Введите искомое число");
        Console.Write(">>> ");
        int searchNumber = int.Parse(Console.ReadLine());

        Stopwatch Timer = Stopwatch.StartNew();
        Timer.Start();
        int[] array = new int[N];
        Random rnd = new Random();
        for (int i = 0; i < array.Length; i++) array[i] = rnd.Next(-500, 500);
```

```
Array.Sort(array); // Сортировка

if (N < 30)
    for (int i = 0; i < array.Length; i++) Console.WriteLine($"[{i}] {array[i]}");

int searchID = Array.BinarySearch(array, searchNumber);
    if (searchID > 0) Console.WriteLine($"[System] Искомое значение: [{Array.BinarySearch(array, searchNumber)}] {searchNumber}");
    else Console.WriteLine("[System] Искомое значение не найдено");
    Console.WriteLine($"[System] Время выполнения: {Timer.Elapsed.TotalSeconds}");
    Timer.Stop();
    Console.ReadKey();
    }
}
```

```
[System] Введите количество элементов массива >>> 20 [System] Введите искомое число >>> 0 [0] -46 [1] -41 [2] -34 [3] -23 [4] -15 [5] -9 [6] -4 [7] 0 [8] 2 [9] 3 [10] 15 [11] 18 [12] 21 [13] 22 [14] 25 [15] 27 [16] 27 [17] 28 [18] 30 [19] 48 [System] Искомое значение: [7] 0 [System] Время выполнения: 0,5128127 сек.
```

Рисунок 1 – Результат выполнения программы

Самописные функции сортировки и бинарного поиска									Сумма		
Размерность массива М	100	200	300	400	500	600	700	800	900	1000	5500
Время выполнения Т, сек	0,0521425	0,006163	0,063014	0,087268	0,004394	0,003434	0,007942	0,016143	0,014528	0,01809	0,273118
M * M	10000	40000	90000	160000	250000	360000	490000	640000	810000	1000000	3850000
M * T	5,21425	1,23258	18,9042	34,90724	2,1968	2,0604	5,55947	12,91432	13,07484	18,0902	114,1543
у	-0,00017083	-0,00021	-0,00024	-0,00026	-0,00027	-0,00028	-0,00029	-0,0003	-0,00031	-0,00032	-0,00266
Корреляция	0,135273527										

Рисунок 2 — Таблица значений для самописных функций сортировки массива и бинарного поиска значений для средних случаев

Рисунок 3 — Графий функции у = -0,000043758 * $\log(M, 2)$ + 0,000119892 для средних исходов программы (значение найдено в середине массива)

Рисунок 4 — Таблица значений и график функции для худших случаев (искомое значение последнее в массиве) самописных методов

Встроенные функции сортировки и бинарного поиска (средние случаи)										Сумма	
Размерность массива М	100	200	300	400	500	600	700	800	900	1000	550
Время выполнения Т, сек	0,025967	0,000417	0,000418	0,000534	0,000397	0,092961	0,001362	0,000527	0,01375	0,082225	0,21855
M * M	10000	40000	90000	160000	250000	360000	490000	640000	810000	1000000	385000
M * T	2,59671	0,08338	0,12552	0,21356	0,1983	55,77678	0,95305	0,42168	12,37455	82,2253	154,968
у	-0,00309	-0,00306	-0,00304	-0,00303	-0,00302	-0,00301	-0,003	-0,003	-0,00299	-0,00299	-0,0302
Корреляция	0,597655										
-0,00296 -0,00298 -0,00302 -0,00304 -0,00306 -0,00308 -0,00310	400	600	800	1000	1200						

Рисунок 5 — Таблица значений и график функции для средних случаев встроенных методов

Рисунок 6 – Таблица значений и график функции для худших случаев встроенных методов