AXA Data Challenge 2016 Yellow

BELLEC Maxime, HUNG Chia-Man, LIU Zhengying

Master Data Science

January 18, 2017

Summary

- 1 Data pre-processing & Feature engineering
- Data visualization & Preliminary analysis
- Our approaches
 - A first simple approach
 - A generalized version: Linear LinEx Regression
 - Random Forest
- 4 Conclusion

Summary

- 1 Data pre-processing & Feature engineering
- 2 Data visualization & Preliminary analysis
- Our approaches
 - A first simple approach
 - A generalized version: Linear LinEx Regression
 - Random Forest
- 4 Conclusion

Data pre-processing

- Only a few columns of the training data are in test data
 ⇒ Keep only 3 columns: DATE, ASS_ASSIGNMENT and
 CSPL_RECEIVED_CALLS
- Multiple columns for each (DATE, ASS_ASSIGNMENT)
 - \Rightarrow sum the CSPL_RECEIVED_CALLS

Sum the repeated rows

	ASS_ASSIGNMENT	DATE	CSPL_RECEIVED_CALLS
9696073	Téléphonie	2013-11-18 11:30:00	53
9696307	Téléphonie	2013-11-18 11:30:00	72
9696347	Téléphonie	2013-11-18 11:30:00	24
9696369	Téléphonie	2013-11-18 11:30:00	28
9696372	Téléphonie	2013-11-18 11:30:00	53
9696375	Téléphonie	2013-11-18 11:30:00	33
9696392	Téléphonie	2013-11-18 11:30:00	24
9696404	Téléphonie	2013-11-18 11:30:00	135
9696415	Téléphonie	2013-11-18 11:30:00	26
9696441	Téléphonie	2013-11-18 11:30:00	40
9696444	Téléphonie	2013-11-18 11:30:00	53
9696527	Téléphonie	2013-11-18 11:30:00	92

Feature engineering

	DATE	ASS_ASSIGNMENT	CSPL_RECEIVED_CALLS	slot	dayofweek	month	year	day_off	day_after_day_off
0	2011-01-01	Crises	0	0	5	1	2011	True	False
1	2011-01-01	Domicile	0	0	5	1	2011	True	False
2	2011-01-01	Gestion	0	0	5	1	2011	True	False
3	2011-01-01	Gestion - Accueil Telephonique	0	0	5	1	2011	True	False
4	2011-01-01	Gestion Assurances	0	0	5	1	2011	True	False

Summary

- 1 Data pre-processing & Feature engineering
- 2 Data visualization & Preliminary analysis
- Our approaches
 - A first simple approach
 - A generalized version: Linear LinEx Regression
 - Random Forest
- 4 Conclusion

Data visualization

Data visualization - ASS_ASSIGNMENT

Data visualization - Year

Data visualization - Month

Data visualization - Weekday

Data visualization - DAY_OFF

Data visualization - DAY_AFTER_DAY_OFF

Summary

- 1 Data pre-processing & Feature engineering
- 2 Data visualization & Preliminary analysis
- Our approaches
 - A first simple approach
 - A generalized version: Linear LinEx Regression
 - Random Forest
- 4 Conclusion

- For a given ASS_ASSIGNMENT and weekly time slot, such as Tuesday 09:00-09:30, the CSPL_RECEIVED_CALLS are more or less stationary
- The idea is to predict for each the best stationary value by minimizing the empirical loss

The empirical loss function

$$R(\hat{y}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \hat{y})$$

The empirical loss function

$$R(\hat{y}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \hat{y})$$

The best constant value

$$R'(\hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (-\alpha e^{\alpha(y_i - \hat{y})} + \alpha) = 0$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} e^{\alpha(y_i - \hat{y})} = 1$$

$$\implies \hat{y} = \log \frac{1}{n} \sum_{i=1}^{n} e^{\alpha y_i} = \operatorname{softmax}(\alpha Y) - \log n$$
(1)

Advantages

- Simple model
- Explainable
- Use the real loss function LinEx

Disadvantages

- Too many parameters (about 10000 lines in predict_table)
- Many of these parameters are correlated

Result

2.55 on the leader board

2nd approach - a generalized version

- Our 1st approach can be regarded as a linear regression model
 - where the feature vector is one-hot encoding for all possible (ASS_ASSIGNMENT, slot, dayofweek) tuples.
- We extend it by considering more features (month, day_off)
- More general: consider all possible combinations of all features!

2nd approach - a generalized version

- Our 1st approach can be regarded as a linear regression model
 - where the feature vector is one-hot encoding for all possible (ASS_ASSIGNMENT, slot, dayofweek) tuples.
- We extend it by considering more features (month, day_off)
- More general: consider all possible combinations of all features!
 - ⇒ Linear LinEx Regression on Combined Features

Combined Feature matrix

For the row

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

 We associate a vector of 0 and 1s, where the 1s are in columns corresponding to

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

• (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)
- (dayofweek=5, month=1, slot=0)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)
- (dayofweek=5, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1, slot=0)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)
- (dayofweek=5, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, slot=0)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)
- (dayofweek=5, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)
- (dayofweek=5, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1)
- (month=1, slot=0)

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)
- (dayofweek=5, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1)
- (month=1, slot=0)
- (dayofweek=5, slot=0)

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1, slot=0)
- (dayofweek=5, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, slot=0)
- (ASS_ASSIGNMENT=Crises, dayofweek=5, month=1)
- (month=1, slot=0)
- (dayofweek=5, slot=0)
- (dayofweek=5, month=1)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

• (ASS_ASSIGNMENT=Crises, slot=0)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)
- (slot=0)

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)
- (slot=0)
- (month=1)

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)
- (slot=0)
- (month=1)
- (dayofweek=5)

```
(ASS ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)
- (slot=0)
- (month=1)
- (dayofweek=5)
- (ASS_ASSIGNMENT=Crises)

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)
- (slot=0)
- (month=1)
- (dayofweek=5)
- (ASS_ASSIGNMENT=Crises)
- ()

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)
- (slot=0)
- (month=1)
- (dayofweek=5)
- (ASS_ASSIGNMENT=Crises)
- ()

```
(ASS_ASSIGNMENT, dayofweek, month, slot) = (Crises, 5, 1, 0)
```

- (ASS_ASSIGNMENT=Crises, slot=0)
- (ASS_ASSIGNMENT=Crises, month=1)
- (ASS_ASSIGNMENT=Crises, dayofweek=5)
- (slot=0)
- (month=1)
- (dayofweek=5)
- (ASS_ASSIGNMENT=Crises)
- ()
 - ↑ intercept

Combined Feature matrix

- A feature matrix of shape (1030829,147784)!
- But each row has only 16 non-zero terms
- ⇒ Use scipy.sparse.csr_matrix

Linear linex regression

The loss function

$$\frac{1}{n}\sum_{i=1}^n \ell(y_i, x_i^\top \theta) + \frac{\lambda}{2} \|\theta\|_2^2$$

where
$$\ell(x,y) = LinEx(x,y) = \exp(\alpha(x-y)) - \alpha(x-y) - 1$$
 (LinEx regression)

A first simple approach
A generalized version: Linear LinEx Regression
Random Forest

Learning algorithm

SVRG (Stochastic Variance Reduced Gradient) algorithm

SVRG algorithm

Input: starting point θ_0 , learning rate $\eta > 0$

Put
$$\tilde{\theta}^1 \leftarrow \theta_0$$

For k = 1, 2, ... until convergence do

- $\bullet \ \mathsf{Put} \ \theta_0^k \leftarrow \tilde{\theta}_0^1$
- **2** Compute $\mu = \nabla f(\tilde{\theta}^k)$
- **3** For t = 0, ..., m 1:
 - Pick uniformly at random i in $\{1, ..., n\}$
 - Apply the step

$$\theta_{t+1}^k \leftarrow \theta_t^k - \eta(\nabla f_i(\theta_t^k) - \nabla f_i(\tilde{\theta}^k) + \mu)$$

Set

$$\tilde{\theta}^k \leftarrow \frac{1}{m} \sum_{t=1}^m \theta_t^k$$

Return last θ_t^k

2nd approach - Linear LinEx Regression

Advantages

- The loss function is convex
- Very general, containing many approaches as special case
- Explainable
- Use the real loss function LinEx

Disadvantages

- Many parameters (about 150000 of them)
- Hard to optimize

Result

1.99 on the leader board

3rd approach - Random Forest

- Use all the features in feature engineering
- No categorical values in sklearn ⇒ one-hot encoding
- Remove Evenements and Gestion Amex
- Cross validation (80% training, 20% testing)
- Multiply by C = 2.4

3rd approach - Random Forest

Advantages

- Robust model
- Existing library
- Relatively good results

Disadvantages

- Parameter tuning
- Hard to use a custom loss function

Result

1.175 on the leaderboard

Summary

- 1 Data pre-processing & Feature engineering
- Data visualization & Preliminary analysis
- Our approaches
 - A first simple approach
 - A generalized version: Linear LinEx Regression
 - Random Forest
- 4 Conclusion

Conclusion

- For prediction, when collecting data on past time, make sure this data will also be available for future times, otherwise they are not useful features for prediction
- A lot of features can be created on DATE and it can be enough when the data actually mostly depends on DATE