A fundamental domain for $\mathrm{SL}_2(\mathbb{Z})$

Fundamental domain

Let $\Gamma \subset \mathrm{PSL}_2(\mathbb{R})$ be a discrete subgroup.

Definition

A subset $D \subset \mathfrak{H}$ is a fundamental domain for Γ if

- 1. D is open,
- 2. $\gamma D \cap D = \emptyset$ for all $\gamma \in \Gamma \{1\}$,
- 3. $\mathfrak{H} = \bigcup_{\gamma \in \Gamma} \gamma \overline{D}$, where \overline{D} is the closure of D inside \mathfrak{H} .

Theorem

Let $D=\{\tau\in\mathfrak{H}\colon |\tau|>1,-1/2<\mathrm{Re}(\tau)<1/2\}$. Then D is a fundamental domain for $\Gamma=\mathrm{PSL}_2(\mathbb{Z})$.

Lemma

$$\textstyle\bigcup_{\gamma\in\Gamma}\gamma\overline{D}=\mathfrak{H}.$$

Proof.

Let $X = \bigcup_{\gamma \in \Gamma} \gamma \overline{D}$. We will show that it is both open and closed.

Openness: only non-trivial to show an open neighborhood around au with non-trivial stabilizer subgroup.

Closedness: use local finiteness.

Lemma

Let $\tau, \tau' \in D$ with $\operatorname{Im}(\tau) \leq \operatorname{Im}(\tau')$. If $\gamma \tau = \tau'$ and $\gamma \in \operatorname{PSL}_2(\mathbb{Z})$, then $\gamma = 1$.

Proof.

Let $\tau = x + yi$ and $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Note that $\operatorname{Im}(\gamma \tau) = \operatorname{Im}(\tau)|c\tau + d|^{-2}$. Since we assumed $\operatorname{Im}(\tau) \leq \operatorname{Im}(\tau')$, it implies that

$$|c\tau + d|^2 = (cx + d)^2 + cy^2 \le 1.$$

Because $y \ge 1/2$, one can deduce $|c| \le 1$.

If c = 0, then γ is unipotent. One can rule this out.

If c = 1, then $|\tau + d| \le 1$. One can rule this out, too.

If c=-1, then $|-\tau+d|\leq 1$. Essentially the same as the previous case. \Box

Theorem

Suppose $\Gamma = \Gamma_1(N)$ with $N \geq 4$. Then, $\Gamma \backslash \mathfrak{H}$ is a topological surface of finite type.

It is customary to denote $\Gamma \backslash \mathfrak{H}$ by Y_{Γ} or $Y(\Gamma)$. Also common is $Y_0(N)$ or $Y_1(N)$.

Corollary

For each $\Gamma = \Gamma_1(N)$, $N \ge 4$, one can talk about genus of $Y(\Gamma)$.