Generiranje naselja pomoću LSTM mreže

Čogelja, Granić, Lubina, Jurković, Juvančić, Logarušić 22. listopada 2024.

prijedlog

(I.) Ishod projekta

Ishod projekta je LSTM rekurzivna neuronska mreža na razini znakova koja generira realistična imena hrvatskih naselja.

Mreža radi sa vektorima koji predstavljaju slova hrvatske abecede proširene specijalnim znakovima $\Sigma = \{\text{hrv. abeceda}\} \cup \{\langle start \rangle, " \setminus 0"\}$. Ulaz mreže je one-hot vektor $\mathbf{x}^{(t)}$ dimezije $|\Sigma| = 32 + 2$.

$$\mathbf{x}_{i}^{(t)} = \begin{cases} 1, & \text{ako } i = j \\ 0, & \text{inače} \end{cases}$$
 (1)

Izlaz dobiven na kraju pojedinog vremenskog koraka t je vektor vjerojatnosti pojave pojednog znaka abecende.

$$\hat{\mathbf{y}}^{(t)} = \begin{bmatrix} p(c_0) \\ p(c_1|c_0) \\ \vdots \\ p(c_{|\Sigma|-1}|\bigcap_{i=0}^{|\Sigma|-2} c_i) \end{bmatrix} \qquad \text{Gdje} \quad c \in \Sigma$$
 (2)

Vjerojatnosti su dobivene softmax funkcijom parametriziranom hiperparametrom temperature $\tau.$

Na temelju tih vjerojatnosti se uzorkuje konačni izlazni vektor $\mathbf{y}^{(t)}$, odnosno t-ti znak u imenu naselja.

$$\mathbf{y}^{(t)} \sim \hat{\mathbf{y}}^{(t)} = \sigma_{\tau}(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}))$$
 (3)

 $f(\mathbf{x}; \pmb{\theta})$ predstavlja ukupno djelovanje ćelija modela nad njenim ulazom parametrizirano hiperparametrima modela $\pmb{\theta} = \begin{bmatrix} |\mathbf{a}| & \mu & \tau \end{bmatrix}$ (opisani u poglavlju (II.))

Temperaturno uzorkovanje je izabrano, jer omogućava eksperimentiranje i generiranje zanimljivih toponima.

Izlaz mreže je niz znakova $\{\mathbf{y}^{(t)}\}\bigg|_{t=0}^{T-1},$ odnosno ime naselja.

(II.) Tema i kratki opis

Tema projekta je generiranje realističnih imena hrvatskih naselja. U tu svrhu će se izraditi LSTM mreža parametrizirana sljedećim hiperparametrima:

- 1. Dimenzije skrivenog stanja: |a|
- 2. Stopa učenja: μ
- 3. Temperatura: τ
- 4. Broj LSTM ćelija

LSTM ćelija i mreža će biti implementirane u radnom okviru pyTorch. Dizajn mreže i podešavanje hiperparametara se odvija paralelno sa implementacijom mreže u radnom okviru Keras.

Točan izgled ćelije i dizajn mreže će biti određeni naknadno.

(III.) Zadatci na projektu i raspodjela posla

Ostvarenje projekta podrazumijeva slijedeće zadatke:

	ime	studenti
pisani rad	kratki uvod	N/A
	opis problema	N/A
	opis eksperimentalnih re-	N/A
	zultata	
	diskusija i usporedba re-	N/A
	zultata	
	lektoriranje	N/A
	zaključak	N/A
administrativni poslovi		Lubina
izrada prezentacije		N/A

	priprema skupa podataka	N/A
implementacija	implementacija mreže	N/A
	implementacija uzorko-	N/A
	vanja	
treniranje	implementacija algo-	N/A
	ritma učenja	
	treniranje	N/A
validacija	ručna validacija modela	N/A
	podešavanje hiperpara-	N/A
	metara	

Tablica 1: zadatci i raspored