LECTURE 4: MODULES FOR DG LIE ALGEBRAS

The enveloping algebra of a Lie algebra recognizes quasi-isomorphisms of dg Lie algebras in the following way/

Lemma 0.1. A map of dg Lie algebras $f : \mathfrak{g} \to \mathfrak{h}$ is a quasi-isomorphism if and only if the induced map

$$U(f): U(\mathfrak{g}) \to U(\mathfrak{h})$$

is a quasi-isomorphism of associative dq algebras.

Proof. We consider the spectral sequences induced by the natural filtrations on the enveloping algebras of \mathfrak{g} and \mathfrak{h} . The map U(f) clearly preserves the natural filtration on the enveloping algebra and so it induces a map of spectral sequences. In particular, it induces a map at the E_1 page, which is simply the associated graded algebras

$$\operatorname{Gr} U(f) : \operatorname{Sym}^*(\mathfrak{g}) \to \operatorname{Sym}^*(\mathfrak{h}).$$

The map of spectral sequence converges to the map $U(f): U(\mathfrak{g}) \to U(\mathfrak{h})$.

Now, it is an easy exercise to show that $\mathfrak{g} \to \mathfrak{h}$ is a quasi-isomorphism if and only if it induces a quasi-isomorphism of free commutative dg algebras $\operatorname{Sym}^*(\mathfrak{g}) \to \operatorname{Sym}^*(\mathfrak{h})$. Thus, in one direction, if $\mathfrak{g} \to \mathfrak{h}$ is a quasi-isomorphism, we obtain a quasi-isomorphism at the E_1 -page, and the result follows.

In the other direction, if $U(\mathfrak{g}) \to U(\mathfrak{h})$ is a quasi-isomorphism, then taking associated gradeds we obtain a quasi-isomorphism $\operatorname{Sym}^*(\mathfrak{g}) \to \operatorname{Sym}^*(\mathfrak{h})$ and hence $\mathfrak{g} \to \mathfrak{h}$ is a quasi-isomorphism by the above remark.

1. Modules and (co)homology

1.1. (dg) Modules. Recall that to every dg vector space V we can associated an associative dg algebra $\operatorname{End}_k(V)$ of endomorphisms.

Definition 1.1. Let \mathfrak{g} be a dg Lie algebra. A dg \mathfrak{g} -module is a dg vector space M together with a map of dg Lie algebras

$$\rho: \mathfrak{g} \to \operatorname{End}_k(M)$$
.

A map of dg modules is defined in the obvious way. Let $\mathsf{Mod}_{\mathfrak{g}}^{\mathsf{dg}}$ denote the category of dg $\mathfrak{g}\text{-modules}.$

Remark 1.2. By the universal property of the enveloping algebra, we see that a dg module for \mathfrak{g} is equivalent to a (left) dg module for the associative dg algebra $U(\mathfrak{g})$.

The category of modules is an abelian category in the obvious way. Also, there is the notion of tensor product.

Definition 1.3. Suppose M, N are two dg \mathfrak{g} -modules. Define the tensor product dg \mathfrak{g} -module $M \otimes N$ to be the tensor product of underlying dg vector spaces with \mathfrak{g} -module structure given by

$$\rho_M \otimes 1 + 1 \otimes \rho_N : \mathfrak{g} \to \operatorname{End}_k(M \otimes_k N) = \operatorname{End}_k(M) \otimes_k \operatorname{End}_k(N).$$

Remark 1.4. If we think of M, N as dg $U\mathfrak{g}$ -modules, then

$$M \otimes N = M \otimes_{U\mathfrak{a}} N$$

as $U\mathfrak{g}$ -modules.

1.2. (Co)Homology. As for ordinary modules, we have a pair of functors

called the invariants/coinvariants respectively.

Remark 1.5. Note that

$$M^{\mathfrak{g}} = \operatorname{Hom}_{U\mathfrak{g}}(k, M)$$

and

$$M_{\mathfrak{g}} = k \otimes_{U\mathfrak{g}} M.$$

Lemma 1.6. Consider the functor

$$\mathrm{triv}_{\mathfrak{g}}:\mathsf{Vect}^{\mathsf{dg}}_k o \mathsf{Mod}^{\mathsf{dg}}_{\mathfrak{g}}$$

that sends a dg vector space to the trivial \mathfrak{g} -module. The functor $M \mapsto M^{\mathfrak{g}}$ is left adjoint to $\operatorname{triv}_{\mathfrak{g}}$. The functor $M \mapsto M_{\mathfrak{g}}$ is right adjoint to $\operatorname{triv}_{\mathfrak{g}}$.

As a consequence, taking invariants/coinvariants is left/right exact respectively. This motivates the following definition.

Definition 1.7. Let \mathfrak{g} be a dg Lie algebra. The **Lie algebra homology** of \mathfrak{g} is the left derived functor of coinvariants

$$\begin{array}{cccc} H_*(\mathfrak{g};-): & \mathsf{Mod}_{\mathfrak{g}}^{\mathsf{dg}} & \to & \mathsf{Vect}_k \\ & M & \mapsto & \mathbb{L}_*(-)_{\mathfrak{g}}(M) \end{array}$$

Similarly, the Lie algebra cohomology of \mathfrak{g} is the right derived functor of invariants

$$\begin{array}{cccc} H^*(\mathfrak{g};-): & \mathsf{Mod}^{\mathsf{dg}}_{\mathfrak{g}} & \to & \mathsf{Vect}_k \\ & M & \mapsto & \mathbb{R}_*(-)^{\mathfrak{g}}(M) \end{array}$$

.

Remark 1.8. Using the Tor and Ext notation, we can write

$$H_*^{\operatorname{Lie}}(\mathfrak{g};M) = \operatorname{Tor}_*^{U\mathfrak{g}}(k,M)$$

and

$$H^*_{\operatorname{Lie}}(\mathfrak{g}; M) = \operatorname{Ext}^*_{U\mathfrak{q}}(k, M).$$

To compute the Lie algebra homology, for instance, one uses the usual trick for derived functors. By first finding a projective resolution, tensoring, then computing the cohomology. We proceed by finding a projective resolution of $U\mathfrak{g}$

1.2.1. First, we sketch the following general construction for dg Lie algebras. Given a dg Lie algebra $\mathfrak g$ define its *cone* to be the dg Lie algebra Cone($\mathfrak g$) to be

$$\operatorname{Cone}(\mathfrak{g})_n = \mathfrak{g}_n \oplus \mathfrak{g}_{n-1}$$

with differential

$$d_n = \begin{pmatrix} d_{\mathfrak{g},n} & \mathrm{id}_{\mathfrak{g}_n} \\ 0 & d_{\mathfrak{g},n-1} \end{pmatrix} : \mathrm{Cone}(\mathfrak{g})_n = \mathfrak{g}_n \oplus \mathfrak{g}_{n-1} \to \mathfrak{g}_{n+1} \oplus \mathfrak{g}_n = \mathrm{Cone}(\mathfrak{g})_{n+1}$$

and bracket

$$[(x,y),(x',y')] = ([x,y]_{\mathfrak{g}},[x,y'] + [y,x']).$$

Lemma 1.9. There is a natural map of dq Lie algebras

$$\mathfrak{q} \hookrightarrow \operatorname{Cone}(\mathfrak{q}).$$

Furthermore, $Cone(\mathfrak{g})$ is acyclic.

By functoriality of the enveloping functor, the associative algebra $U(\text{Cone}(\mathfrak{g}))$ is acyclic and hence a resolution for the trivial $U\mathfrak{g}$ -module. Thus, we have

$$H^{\operatorname{Lie}}_*(\mathfrak{g}, M) = H^* \left(U(\operatorname{Cone}(\mathfrak{g})) \otimes_{U\mathfrak{g}} M \right).$$

Definition 1.10. The Chevalley-Eilenberg complex computing Lie algebra homology is the dg vector space

$$C^{\operatorname{Lie}}_*(\mathfrak{g};M) := U(\operatorname{Cone}(\mathfrak{g})) \otimes_{U\mathfrak{g}} M.$$

Its cohomology is precisely the Lie algebra homology of M.

Remark 1.11. Explicitly, as a graded vector space, the CE complex is of the form

$$C_*^{\operatorname{Lie}}(\mathfrak{g}; M) = U(\operatorname{Cone}(\mathfrak{g})) \otimes_{U\mathfrak{g}} M$$
$$= (\operatorname{Sym}(\mathfrak{g}[1]) \otimes_k U(\mathfrak{g})) \otimes_{U\mathfrak{g}} M$$
$$= \operatorname{Sym}(\mathfrak{g}[1]) \otimes_k M.$$

Tracing through these isomorphisms, one can deduce that the differential is

$$d_{CE}(x_1, \dots, x_n) = \sum_{i=1}^n (\pm) x_1 \cdots x_{i-1} (dx_i) x_{i+1} \cdots x_n$$
$$+ \sum_{i < j} (\pm) x_1 \cdots \widehat{x_i} \cdots x_{j-1} [x_i, x_j] x_{j+1} \cdots x_n.$$

1.2.2. There is a completely analogous construction for Lie algebra cohomology.

Definition 1.12. The Chevalley-Eilenberg complex computing Lie algebra *cohomology* is the dg vector space

$$C^*_{Lie}(\mathfrak{g}; M) := U(Cone(\mathfrak{g})) \otimes_{U\mathfrak{g}} M.$$

Its cohomology is precisely the Lie algebra homology of M

$$H^*_{\text{Lie}}(\mathfrak{g}; M) = H^* \left(\text{Hom}_{U\mathfrak{g}}(U(\text{Cone}(\mathfrak{g})), M) \right).$$

Remark 1.13. One can identify $C_{Lie}^*(\mathfrak{g};M)$ with a complex of the form

$$C_{Lie}^*(\mathfrak{g}; M) = (Sym(\mathfrak{g}^{\vee}[-1]) \otimes_k M, d^{CE}).$$

Note that, when M = k there is an identification

$$C_{Lie}^*(\mathfrak{g};k) = (C_*^{Lie}(\mathfrak{g};k))^{\vee} = Hom_k(C_*^{Lie}(\mathfrak{g};k),k).$$

1.2.3. The CE complexes for homology and cohomology are functorial in the module input. They both determine functors

$$\begin{array}{cccc} \mathrm{C}^{\mathrm{Lie}}_*(\mathfrak{g};-): & \mathsf{Mod}^{\mathsf{dg}}_{\mathfrak{g}} & \to & \mathsf{Vect}^{\mathsf{dg}}_k \\ \mathrm{C}^*_{\mathrm{Lie}}(\mathfrak{g};-): & \mathsf{Mod}^{\mathsf{dg}}_{\mathfrak{g}} & \to & \mathsf{Vect}^{\mathsf{dg}}_k. \end{array}$$

We are interested in a different type of functoriality in the case that M=k, the trivial module. In this case, we write $C^{\text{Lie}}_*(\mathfrak{g})=C^{\text{Lie}}(\mathfrak{g};k)$ and similarly for cohomology. A silly statement is that this trivial module is universal in the sense that it is a module for all dg Lie algebras. Thus, we can contemplate the functoriality of homology/cohomology in the Lie algebra factor.

Lemma 1.14. The CE complex for homology/cohomology determine functors

$$\begin{array}{cccc} \mathbf{C}^{\mathrm{Lie}}_*(-): & \mathsf{Lie}^{\mathsf{dg}}_k & \to & \mathsf{Vect}^{\mathsf{dg}}_k \\ \mathbf{C}^*_{\mathrm{Lie}}(-): & \mathsf{Lie}^{\mathsf{dg}}_k & \to & \left(\mathsf{Vect}^{\mathsf{dg}}_k\right)^{op}. \end{array}$$

Moreover, if $f: \mathfrak{g} \to \mathfrak{h}$ is a quasi-isomorphism of dg Lie algebras, then the induced maps

$$\begin{array}{cccc} \mathbf{C}^{\mathrm{Lie}}_*(f): & \mathbf{C}^{\mathrm{Lie}}_*(\mathfrak{g}) & \to & \mathbf{C}^{\mathrm{Lie}}_*(\mathfrak{h}) \\ \mathbf{C}^*_{\mathrm{Lie}}(\mathfrak{g}): & \mathbf{C}^*_{\mathrm{Lie}}(\mathfrak{h}) & \to & \mathbf{C}^*_{\mathrm{Lie}}(\mathfrak{g}) \end{array}$$

are quasi-isomorphisms.