

64-Channel Serial-to-Parallel Converter with High-Voltage Push-Pull Outputs

Features

- · Up to 300V Output Voltage
- · Low-power Level Shifting from 5V to 300V
- · Shift Register Speed:
 - 8 MHz at V_{DD} = 5V
- · Latched Data Outputs
- · Output Polarity and Blanking
- · CMOS-compatible Inputs
- · Forward and Reverse Shifting Options

Applications

- · Display Driver
- · Print Head Driver
- · Microelectromechanical Systems Applications

General Description

The HV507 is a low-voltage to high-voltage serial-to-parallel converter with 64 push-pull outputs. This device is designed as a printer driver for electrostatic applications. It can also be used in any application requiring multiple-output high-voltage low-current sourcing-and-sinking capabilities.

The device consists of a 64-bit Shift register. 64 latches and control logic to perform the polarity select and blanking of the outputs. A DIR pin controls the direction of data shift through the device. With the DIR grounded, D_{IO}A is data in and D_{IO}B is data out. Data is shifted from HV_{OUT}64 to HV_{OUT}1. When DIR is at logic high, $D_{IO}B$ is data in and $D_{IO}A$ is data out. The data is then shifted from HV_{OUT}1 to HV_{OUT}64 through the Shift register on the low-to-high transition of the clock. Data output buffers are provided for cascading devices. The operation of the shift register is not affected by the latch enable (\overline{LE}) , blanking (\overline{BL}) and polarity (POL) inputs. Transfer of data from the Shift register to the latch occurs when the LE is high. The data in the latch is stored during LE transition from high to low.

Package Type

Functional Block Diagram

Typical Application Circuit <u>VD</u>D **VPP POL** HVOUT1 BL Level Translators and Push-pull Output Buffers 64-bit Shift Register LE 64 Latches and output control Microcontroller DIOA **Print Head** CLK DIR **HVOUT64** DIOB To Data Input for cascading

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Low-supply Voltage, V _{DD}	–0.5V to +6V
High-supply Voltage, V _{PP}	V _{DD} to +320V
Logic Input Levels	
Ground Current (Note 2)	
High-voltage Supply Current (Note 1)	
Operating Ambient Temperature, T _A	
Storage Temperature, T _S	
Continuous Total Power Dissipation:	
80-lead PQFP (Note 2)	1200 mW

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

- **Note 1:** Connection to all power and ground pads is required. Duty cycle is limited by the total power dissipated in the package.
 - 2: For operations above 25°C ambient, derate linearly to 70°C at 26.7 mW/°C.

RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Logic Supply Voltage	V_{DD}	4.5	5	5.5	V	
High-voltage Supply Voltage	V_{PP}	60	_	300	V	
High-level Input Voltage	V _{IH}	V _{DD} -0.9V	_	V_{DD}	V	
Low-level Input Voltage	V _{IL}	0	_	0.9	V	

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: For V _{DD} = 5V, V _{PP} = 300V and T _A = 25°C.									
Parameter		Sym.	Min.	Тур.	Max.	Unit	Conditions		
V _{DD} Supply Current	I _{DD}	_	_	15	mA	$f_{CLK} = 8 \text{ MHz},$ $f_{DATA} = 4 \text{ MHz}, \overline{LE} = \text{low}$			
Quiescent V _{DD} Supply Curre	I _{DDQ}	_	_	200	μΑ	All $V_{IN} = 0V$ or V_{DD}			
High voltage Supply Current			_	_	0.5	mA	V _{PP} = 300V, all outputs high		
High-voltage Supply Current	I _{PP}	_	_	0.5	mA	V _{PP} = 300V, all outputs low			
High-level Logic Input Curren	it	I _{IH}	_	_	10	μΑ	$V_{IN} = V_{DD}$		
Low-level Logic Input Current	t	I _{IL}	_	_	-10	μΑ	V _{IN} = 0V		
	HV _{OUT}		265	_	_	V	V _{PP} = 300V,		
High-level Output	Data Out	V _{OH}	V _{DD} –1	_	_	٧	IHV _{OUT} = –1 mA, ID _{OUT} = –100 μA		
	HV _{OUT}		_	_	35	V	V _{DD} = 5V,		
Low-level Output	Data Out	V _{OL}	_	_	1	V	IHV _{OUT} = 1 mA, ID _{OUT} = 100 μA		
HV. Clamp Voltage		_	_	V _{PP} + 1.5	V	I _{OL} = 1 mA			
HV _{OUT} Clamp Voltage	V _{oc}	_	_	-30	V	$I_{OL} = -1 \text{ mA}$			

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: For V_{DD} = 5V, V_{PP} = 300V and T_A = 25°C. Shift register speed can be as low as DC as long as data set-up and hold time meet the specifications.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Clock Frequency	f _{CLK}	_	_	8	MHz	
Clock Width High or Low	t _{WL} , t _{WH}	62	_	_	ns	
Data Set-up Time before Clock Rises	t _{SU}	35	_	_	ns	
Data Hold Time after Clock Rises	t _H	30	_	_	ns	
Time from Latch Enable to HV _{OUT}	t _{ON} , t _{OFF}	_	_	4	ns	C _L = 20 pF
Latch Enable Pulse Width	t _{WLE}	80	_	_	ns	
Delay Time Clock to Latch Enable Low to High	t _{DLE}	35	_	_	ns	
Latch Enable Set-up Time before Clock Rises	t _{SLE}	40	_	_	ns	
Delay Time Clock to Data Low to High	t _{DLH}	_	_	125	ns	C _L = 20 pF
Delay Time Clock to Data High to Low	t _{DHL}	_	_	125	ns	C _L = 20 pF
All Logic Inputs	t _r , t _f	_	_	5	ns	

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
TEMPERATURE RANGE									
Operating Ambient Temperature	T_A	0	_	+70	°C				
Storage Temperature	T _S	-65	_	+150	°C				
PACKAGE THERMAL RESISTANCE									
80-lead PQFP	$\theta_{\sf JA}$	_	37		°C/W				

Timing Waveforms

2.0 PIN DESCRIPTION

The details on the pins of HV507 are listed on Table 2-1. Refer to **Package Type** for the location of pins.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	HVOUT41	High-voltage output
2	HVOUT42	High-voltage output
3	HVOUT43	High-voltage output
4	HVOUT44	High-voltage output
5	HVOUT45	High-voltage output
6	HVOUT46	High-voltage output
7	HVOUT47	High-voltage output
8	HVOUT48	High-voltage output
9	HVOUT49	High-voltage output
10	HVOUT50	High-voltage output
11	HVOUT51	High-voltage output
12	HVOUT52	High-voltage output
13	HVOUT53	High-voltage output
14	HVOUT54	High-voltage output
15	HVOUT55	High-voltage output
16	HVOUT56	High-voltage output
17	HVOUT57	High-voltage output
18	HVOUT58	High-voltage output
19	HVOUT59	High-voltage output
20	HVOUT60	High-voltage output
21	HVOUT61	High-voltage output
22	HVOUT62	High-voltage output
23	HVOUT63	High-voltage output
24	HVOUT64	High-voltage output
25	VPP	High-voltage power supply
26	DIOA	Serial Data Input/Output A
27	NC	No connection
28	NC	No connection
29	BL	Blanking
30	POL	Polarity
31	VDD	Low-voltage power supply
32	DIR	Direction
33	GND	Logic voltage ground
34	HVGND	High-voltage power supply
35	NC	No connection
36	NC	No connection

HV507

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description								
37	CLK	Data Shift Register Clock. Inputs are shifted into the Shift register on the positive edge of the clock.								
38	LE	Latch Enable								
39	DIOB	Serial Data Input/Output B								
40	VPP	High-voltage power supply								
41	HVOUT1	High-voltage output								
42	HVOUT2	High-voltage output								
43	HVOUT3	High-voltage output								
44	HVOUT4	High-voltage output								
45	HVOUT5	High-voltage output								
46	HVOUT6	High-voltage output								
47	HVOUT7	High-voltage output								
48	HVOUT8	High-voltage output								
49	HVOUT9	High-voltage output								
50	HVOUT10	High-voltage output								
51	HVOUT11	High-voltage output								
52	HVOUT12	High-voltage output								
53	HVOUT13	High-voltage output								
54	HVOUT14	High-voltage output								
55	HVOUT15	High-voltage output								
56	HVOUT16	High-voltage output								
57	HVOUT17	High-voltage output								
58	HVOUT18	High-voltage output								
59	HVOUT19	High-voltage output								
60	HVOUT20	High-voltage output								
61	HVOUT21	High-voltage output								
62	HVOUT22	High-voltage output								
63	HVOUT23	High-voltage output								
64	HVOUT24	High-voltage output								
65	HVOUT25	High-voltage output								
66	HVOUT26	High-voltage output								
67	HVOUT27	High-voltage output								
68	HVOUT28	High-voltage output								
69	HVOUT29	High-voltage output								
70	HVOUT30	High-voltage output								
71	HVOUT31	High-voltage output								
72	HVOUT32	High-voltage output								
73	HVOUT33	High-voltage output								
74	HVOUT34	High-voltage output								
75	HVOUT35	High-voltage output								
76	HVOUT36	High-voltage output								

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description
77	HVOUT37	High-voltage output
78	HVOUT38	High-voltage output
79	HVOUT39	High-voltage output
80	HVOUT40	High-voltage output

3.0 FUNCTIONAL DESCRIPTION

Follow the steps in Table 3-1 to power up and power down the HV507.

TABLE 3-1: POWER-UP AND POWER-DOWN SEQUENCE

	Power-up	Power-down			
Step	Description	Step	Description		
1	Connect ground.	1	Remove V _{PP.} (Note 1)		
2	Apply V _{DD} .	2	Remove all inputs.		
3	Set all inputs (Data, CLK, Enable, etc.) to a known state.	3	Remove V _{DD.}		
4	Apply V _{PP.} (Note 1)	4	Disconnect ground.		

Note 1: The V_{PP} should not drop below V_{DD} or float during operation.

TABLE 3-2: TRUTH FUNCTION TABLE

			Inp	uts			Outputs					
Function	Doto	CLK	LE	BL	POL	DIR	Shift	Register	High-vo	oltage Output	Data Out	
	Data	CLK	LE	DL	POL	אוט	1	264	1	264	*	
All On	Х	Х	Х	L	L	Х	*	**	Н	НН	*	
All Off	Х	Х	Х	L	Н	Х	*	**	L	LL	*	
Invert Mode	Х	Х	L	Н	L	Х	*	**	*	**	*	
Load S/R	H or L	1	L	Н	Н	Х	H or L	**	*	**	*	
Store Data in	Х	Х	\downarrow	Н	Н	Х	*	**	*	**	*	
Latches	Х	Х	\downarrow	Н	L	Х	*	**	*	**	*	
Transparent	L	1	Н	Н	Н	Х	L	**	L	**	*	
Latch Mode	Н	1	Н	Н	Н	Х	Н	**	Н	**	*	
I/O Relation	D _{IO} A	1	Х	Х	Х	L	$Q_N \rightarrow$	Q _{N+1}		_		
I/O Relation	D _{IO} B	1	Х	Х	Х	Н	$Q_N \rightarrow$	Q _{N+1}		_	D _{IO} A	

Note: H = High-logic level

L = Low-logic level

X = Irrelevant

↑ = Low-to-high transition

↓ = High-to-low transition

^{* =} Dependent on the previous stage's state before the last CLK or last $\overline{\text{LE}}$ high

FIGURE 3-1: Input and Output Equivalent Circuits.

4.0 PACKAGE MARKING INFORMATION

4.1 Packaging Information

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

e3 Pb-free JEDEC® designator for Matte Tin (Sn)

* This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

80-Lead PQFP Package Outline (PG)

20.00x14.00mm body, 3.40mm height (max), 0.80mm pitch, 3.90mm footprint

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ	θ1
Dimen-	MIN	2.80*	0.25	2.55	0.30	23.65*	19.80*	17.65*	13.80*		0.73			0°	5°
sion	NOM	-	-	2.80	-	23.90	20.00	17.90	14.00	0.80 BSC	0.88	1.95 REF	0.25 BSC	3.5°	-
(mm)	MAX	3.40	0.50*	3.05	0.45	24.15*	20.20*	18.15*	14.20*		1.03			7 °	16º

JEDEC Registration MO-112, Variation CB-1, Issue B, Sept. 1995.
* This dimension is not specified in the JEDEC drawing.
Drawings not to scale.

APPENDIX A: REVISION HISTORY

Revision A (October 2017)

- Converted Supertex Doc # DSFP-HV507 to Microchip DS20005845A
- Removed "Processed with HVCMOS® Technology" in the Features section
- Changed the package marking format
- Changed the quantity of the 80-lead PQFP PG package from 1000/Reel to 66/Tray
- · Made minor changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	XX	-	<u> </u>		X	Exa	mple:	
Device	Package Options		Environmental	Media	а Туре	a)	HV507PG-G:	64-Channel Serial-to-Parallel Converter with High-Voltage Push-Pull Outputs, 80-lead
Device:	HV507	=	64-Channel Serial-to with High-Voltage P					PQFP, 66/Tray
Package:	PG	=	80-lead PQFP					
Environmental:	G	=	Lead (Pb)-free/RoH	S-complia	int Package			
Media Type:	(blank)	=	66/Tray for a PG Pa	ckage				
L								

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2262-4

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138

Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 **Taiwan - Hsin Chu**

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820