Homomorphic Secret-Sharing with Certified Deletion

Nikhil Pappu[†]

[†]Portland State University nikpappu@pdx.edu

October 18, 2024

Abstract

Contents

1	Preliminaries
2	HSS with Certified Deletion
	2.1 HSS-CD Syntax
	2.2 Additive HSS-CD Syntax
	2.3 Security Definitions
3	Impossibility Results
4	Feasibility Results
	4.1 FHE-CD based Construction
	4.2 Spooky-Encryption based Construction with Entangled Shares
5	Additive HSS with Weak Certified-Deletion
	5.1 Additive HSS-wCD Syntax
	5.2 Security Definitions

1 Preliminaries

2 HSS with Certified Deletion

Unless otherwise specified, we will consider the following kind of HSS schemes by default:

- Are 2-out-of-2 secret-sharing schemes.
- Allow evaluation for a single secret.

An HSS scheme with certified deletion must have the following syntax and correctness requirements:

2.1 HSS-CD Syntax

A scheme satisfying the HSS-CD syntax for a PPT circuit family \mathcal{C} is a tuple of 5 algorithms HSS-CD = HSS-CD.(Share, Eval, Del, Vrfy, Rec) with the following properties:

Syntax:

 $Share(s) \rightarrow (sh_0^0, vk_0), (sh_1^0, vk_1)$: The sharing algorithm outputs quantum (possibly-entangled) secret-shares sh_0^0, sh_1^0 encoding an input secret s. It also outputs the corresponding classical verification keys vk_0, vk_1 .

 $\text{Eval}(C_j, i, sh_i^{j-1}) \to sh_i^j$: The evaluation algorithm takes the description of a PPT computable circuit C_j , an index $i \in \{0, 1\}$, and an input share sh_i^{j-1} . It outputs a possibly-altered output share sh_i^j .

 $\mathcal{D}el(i, sh_i^j) \to \text{cert}_i$: The deletion algorithm takes an index $i \in \{0, 1\}$, a corresponding share sh_i^j , and produces a deletion certificate cert_i .

 $Vrfy(i, vk_i, cert_i) \to \top/\bot$: The verification algorithm takes an index $i \in \{0, 1\}$, the corresponding verification key vk_i and a certificate $cert_i$. It outputs \top or \bot .

 $Rec(sh_0^q, sh_1^q) \to (d_1, \cdots, d_q)$: The reconstruction algorithm takes two evaluated input shares sh_0^q, sh_1^q and outputs a q-tuple (d_1, \cdots, d_q) .

Evaluation Correctness: $\forall q = \text{poly}(\lambda) \text{ and } \forall (C_1, \dots, C_q) \in \mathcal{C}^q$, the following condition holds:

$$\Pr\left[(s h_0^0, \mathsf{vk}_0), (s h_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s) \\ (d_1, \cdots, d_q) = (C_1(s), \cdots, C_q(s)) : \forall i, j \in \{0, 1\} \times [q] : \mathit{sh}_i^j \leftarrow \mathit{Eval}\left(C_j, i, \mathit{sh}_i^{j-1}\right) \\ (d_1, \cdots, d_q) \leftarrow \mathit{Rec}(\mathit{sh}_0^q, \mathit{sh}_1^q) \\ \end{array} \right] \geq 1 - \mathsf{negl}(\lambda)$$

Deletion Correctness: The following condition holds for all $i \in \{0,1\}$, $q = \text{poly}(\lambda)$ and $(C_1, \ldots, C_q) \in \mathcal{C}^q$:

$$\Pr\left[\begin{array}{c} (\mathit{sh}_0^0, \mathsf{vk}_0), (\mathit{sh}_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s) \\ \mathsf{Vrfy}(i, \mathsf{vk}_i, \mathsf{cert}_i) \to \top : \ \forall j \in [q] : \mathit{sh}_i^j \leftarrow \mathit{Eval}(C_j, i, \mathit{sh}_i^{j-1}) \\ \mathsf{cert}_i \leftarrow \mathit{Del}(i, \mathit{sh}_i^q) \end{array} \right] \geq 1 - \mathsf{negl}(\lambda)$$

Compactness: The following condition holds for all $i \in \{0,1\}$, $q = \text{poly}(\lambda)$ and $(C_1, \ldots, C_q) \in \mathcal{C}^q$, where l_q denotes the output length of the circuit C_q :

$$\left[|\mathit{sh}_i^q| - |\mathit{sh}_i^{q-1}| = \mathsf{poly}(1^\lambda, l_q) : \begin{array}{l} (\mathit{sh}_0^0, \mathsf{vk}_0), (\mathit{sh}_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s) \\ \forall j \in [q] : \mathit{sh}_i^j \leftarrow \mathit{Eval}(C_j, i, \mathit{sh}_i^{j-1}) \end{array}\right]$$

2.2 Additive HSS-CD Syntax

A scheme satisfying the additive HSS-CD syntax for a PPT circuit family \mathcal{C} is a tuple of 5 algorithms HSS-CD = HSS-CD.(*Share*, *Eval*, *Obs*, $\mathcal{D}el$, Vrfy) with the following properties:

Syntax:

- $Share(s) \rightarrow (sh_0^0, vk_0), (sh_1^0, vk_1)$: The sharing algorithm outputs quantum (possibly-entangled) secret-shares sh_0^0, sh_1^0 encoding an input secret s. It also outputs the corresponding classical verification keys vk_0, vk_1 .
- Eval $(C_j, i, sh_i^{j-1}) \to sh_i^j$: The evaluation algorithm takes the description of a PPT computable circuit C_j , an index $i \in \{0, 1\}$ and a share sh_i^{j-1} . It outputs a quantum share sh_i^j .
- $Obs(i, sh_i^j) \to (y_0^1, \dots, y_0^j)$: The observation algorithm takes an index $i \in \{0, 1\}$ and a quantum state sh_i^j and produces a j-tuple of classical shares.
- $\mathcal{D}el(i, \mathfrak{sh}_i^j) \to \operatorname{cert}_i$: The deletion algorithm takes an index $i \in \{0, 1\}$, a corresponding quantum share \mathfrak{sh}_i^j , and produces a deletion certificate cert_i .
- $Vrfy(i, vk_i, cert_i) \to \top/\bot$: The verification algorithm takes an index $i \in \{0, 1\}$, the corresponding verification key vk_i and a certificate $cert_i$. It outputs \top or \bot .

Evaluation Correctness: The following condition holds for all $q = \text{poly}(\lambda)$ and $(C_1, \ldots, C_q) \in \mathcal{C}^q$:

$$\Pr\left[(y_0^1 \oplus y_1^1, \cdots, y_0^q \oplus y_1^q) = (C_1(s), \cdots, C_q(s)) : \begin{array}{l} (\mathit{sh}_0^0, \mathsf{vk}_0), (\mathit{sh}_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s) \\ \forall i, j \in \{0, 1\} \times [q] : \mathit{sh}_i^j \leftarrow \mathit{Eval}\left(C_j, i, \mathit{sh}_i^{j-1}\right) \\ (y_i^1, \dots, y_i^q) \leftarrow \mathit{Obs}(i, \mathit{sh}_i^q) \end{array} \right] \geq 1 - \mathsf{negl}(\lambda)$$

In the case of additive HSS-CD, we will consider the following weaker deletion guarantee:

Deletion Correctness: The following condition holds for all $i \in \{0,1\}$, $q = \text{poly}(\lambda)$ and $(C_1, \ldots, C_q) \in \mathcal{C}^q$:

$$\Pr\left[\begin{aligned} & (\mathit{sh}_0^0, \mathsf{vk}_0), (\mathit{sh}_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s) \\ \mathsf{Vrfy}(i, \mathsf{vk}_i, \mathsf{cert}_i) \rightarrow \top : & \forall j \in [q] : \mathit{sh}_i^j \leftarrow \mathit{Eval}(C_j, i, \mathit{sh}_i^{j-1}) \\ & \mathsf{cert}_i \leftarrow \mathit{Del}(i, \mathit{sh}_i^q) \end{aligned} \right] \geq 1 - \mathsf{negl}(\lambda)$$

2.3 Security Definitions

Deletion Security wrt Share j: The following security notion is defined wrt a non-local quantum adversary $(\mathcal{A}_0, \mathcal{A}_1)$:

 $\mathsf{Expt}^{\mathsf{del}}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},j,b) \textbf{:}$

- 1. \mathcal{A}_0 sends $(s_0, s_1) \in \{0, 1\}^{\lambda}$ to the challenger.
- 2. The challenger runs $(sh_0^0, vk_0), (sh_1^0, vk_1) \leftarrow Share(s_b)$ and sends each sh_i^0 to A_i .
- 3. \mathcal{A}_j sends (cert_j, R_j) and \mathcal{A}_{1-j} sends R_{1-j} where R_0, R_1 are some registers.
- 4. If $Vrfy(j, vk_j, cert_j) = \top$, then output (R_0, R_1) .

Statistical Deletion Security wrt Share *j* holds if the following holds:

$$TD\Big(\mathsf{Expt}^{\mathsf{del}}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},j,0),\mathsf{Expt}^{\mathsf{del}}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},j,1)\Big) \leq \mathsf{negl}(\lambda)$$

Computational Deletion Security wrt Share *j* holds if the following holds for all QPT A:

$$\left|\Pr\left[\mathcal{A}\!\left(\mathsf{Expt}^{\mathsf{del}}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},j,0)\right) = 1\right] - \Pr\left[\mathcal{A}\!\left(\mathsf{Expt}^{\mathsf{del}}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},j,1)\right) = 1\right]\right| \leq \mathsf{negl}(\lambda)$$

Double-Deletion Security: The following security notion is defined wrt a non-local quantum adversary $(\mathcal{A}_0, \mathcal{A}_1)$:

$$\mathsf{Exp}^{\mathsf{del}\text{-}2}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},b) \textbf{:}$$

- 1. \mathcal{A}_0 sends $(s_0, s_1) \in \{0, 1\}^{\lambda}$ to the challenger. The challenger runs $(sh_0^0, \mathsf{vk}_0), (sh_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s_b)$ and sends each sh_i^0 to \mathcal{A}_i .
- 2. \mathcal{A}_0 sends (cert₀, R_0) and \mathcal{A}_1 sends (cert₁, R_1) where R_0 , R_1 are some registers.
- 3. If $Vrfy(0, vk_0, cert_0) = Vrfy(1, vk_1, cert_1) = \top$, then output (R_0, R_1) .

Statistical Double-Deletion Security holds if the following holds:

$$TD\Big(\mathsf{Exp}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}^{\mathsf{del}-2}(1^{\lambda},0),\mathsf{Exp}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}^{\mathsf{del}-2}(1^{\lambda},1)\Big) \leq \mathsf{negl}(\lambda)$$

Computational Double-Deletion Security holds if the following holds for all QPT A:

$$\left|\Pr\left[\mathcal{A}\!\left(\mathsf{Exp}_{\mathsf{HSS-CD},(\mathcal{A}_{\!0},\mathcal{A}_{\!1})}^{\mathsf{del-2}}(1^{\lambda},0)\right) = 1\right] - \Pr\left[\mathcal{A}\!\left(\mathsf{Exp}_{\mathsf{HSS-CD},(\mathcal{A}_{\!0},\mathcal{A}_{\!1})}^{\mathsf{del-2}}(1^{\lambda},1)\right) = 1\right]\right| \leq \mathsf{negl}(\lambda)$$

Computational Secrecy wrt Share *j*: The following security notion is defined wrt a QPT adversary \mathcal{A} :

Exptind $(1^{\lambda}, j, b)$:

- 1. \mathcal{A} sends $(s_0, s_1) \in \{0, 1\}^{\lambda}$ to the challenger. The challenger runs $(sh_0^0, \mathsf{vk}_0), (sh_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s_b)$ and sends sh_i^0 to \mathcal{A} .
- 2. \mathcal{A} sends b' to the challenger. The challenger outputs b'.

$$\left|\Pr\left[\mathsf{Expt}^{\mathsf{ind}}_{\mathsf{HSS-CD},\mathcal{A}}(1^{\lambda},j,0) = 1\right] - \Pr\left[\mathsf{Expt}^{\mathsf{ind}}_{\mathsf{HSS-CD},\mathcal{A}}(1^{\lambda},j,1) = 1\right]\right| \leq \mathsf{negl}(\lambda)$$

Hereafter, we will use stat to denote statistical security and comp to denote computational security.

Definition 2.1 ((Additive) (X, Y)-HSS-CD scheme for C). An (Additive) (X, Y)-HSS-CD scheme for C, where X, Y $\in \{stat, comp\}^2$ is a scheme that satisfies the (Additive) HSS-CD syntax for C, the X deletion security for share 0, and the Y deletion security for share 1.

Definition 2.2 ((Additive) (X)-HSS-CD scheme for C). An (Additive) (X)-HSS-CD scheme for C where $X \in \{stat, comp\}$ is a scheme satisfying the (Additive) HSS-CD syntax for C, the X double-deletion security, and computational secrecy wrt share 0 and share 1.

Remark 2.3. Notice that Deletion Security wrt Share j implies Computational Secrecy wrt Share 1 - j, but the Double Deletion security does not imply Computational Secrecy.

Remark 2.4. Observe that a (stat, comp)-HSS-CD scheme for \mathcal{C} is also a (stat)-HSS-CD scheme for \mathcal{C} . Likewise, a (comp, comp)-HSS-CD scheme for \mathcal{C} is also a (comp)-HSS-CD scheme for \mathcal{C} .

3 Impossibility Results

Lemma 3.1. Any (stat, stat)-HSS-CD scheme for C is also an information-theoretic HSS scheme for C.

Proof. Suppose there exists a (stat, stat)-HSS-CD scheme that does not satisfy information-theoretic secrecy. Then, there exists an unbounded adversary \mathcal{D} that receives some share sh_i^0 and distinguishes between the secrets s_0, s_1 . Then, there exists an adversary $(\mathcal{A}_0, \mathcal{A}_1)$ in the statistical security wrt share 1 - i game that works as follows. \mathcal{A}_{1-i} honestly deletes its share and outputs a dummy register while \mathcal{A}_i outputs a register containing its share sh_i^0 . In the second-stage, the distinguisher \mathcal{D} is run on sh_i^0 to tell apart the secrets s_0, s_1 .

The following theorem shows that the classical impossibility result regarding information-theoretic HSS by [BGI⁺18] also applies to the setting of quantum shares.

Theorem 3.2. TBD.

Theorem 3.3. There does not exist an Additive (comp)-HSS-CD scheme HSS-CD for any PPT circuit class C, given that HSS-CD. Share(s) outputs shares sh_0 , sh_1 that are not entangled with each other.

Proof. In fact, we will prove that this holds even for a weaker notions of evaluation and deletion correctness, where $\mathbb{E}val$ and $\mathbb{D}el$ support only a single evaluation. Specifically, for shares (sh_0, sh_1) output by Share(s), $\mathbb{E}val(i, C, sh_i)$ outputs a share \widetilde{sh}_i , and $Obs(i, \widetilde{sh}_i)$ outputs a value y_i such that $y_0 \oplus y_1 = C(s)$. Moreover, $\mathbb{D}el(i, \widetilde{sh}_i)$ outputs cert_i such that $\operatorname{Vrfy}(i, \mathsf{vk}_i, \operatorname{cert}_i) = \top$. Furthermore, we will not need to rely on computational secrecy of either share, but only the computational double deletion security. The argument proceeds as follows:

Let $(|\psi_0\rangle, \mathsf{vk}_0), (|\psi_1\rangle, \mathsf{vk}_1)$ be some pure state output by *Share*(s), where $|\psi_0\rangle, |\psi_1\rangle$ are not entangled with each other. Let $|\psi_i\rangle$ be the state output by Eval $(i, C, |\psi_i\rangle)$. Wlog, let $\{\Pi_0, \mathbb{I} - \Pi_0\}$ be the projective measurement equivalent of $Obs(0, |\widetilde{\psi_0}\rangle)$, i.e., Π_0 corresponds to $y_0 = 0$ and $\mathbb{I} - \Pi_1$ corresponds to $y_0 = 1$. Let Y_0 denote the random variable of the output y_0 . Likewise, consider the projective measurement $\{\Pi_1, \mathbb{I} - \Pi_1\}$ equivalent of $Obs(1, |\widetilde{\psi_1}\rangle)$ and let Y_1 be the corresponding output random variable. Notice that for every outcome y_0 of Y_0 , there is a single outcome y_1 of Y_1 that satisfies $y_1 = C(s) \oplus y_0$. Let \widetilde{Y}_0 be the random variable for \widetilde{y}_0 sampled as $\widetilde{y}_0 = C(s) \oplus y_1 : y_1 \leftarrow Y_1$. By the evaluation correctness requirement, we require that $\Pr\left[Y_0 = \widetilde{Y_0}\right] \geq 1 - \mathsf{negl}(\lambda)$. Since Y_0 and $\widetilde{Y_0}$ are independent random variables, this is only possible if there exists y_0^{\star} such that $\Pr[Y_0 = y_0^{\star}] \ge 1 - \operatorname{negl}(\lambda)$ and $\Pr\left[\widetilde{Y}_0 = y_0^{\star}\right] \ge 1 - \operatorname{negl}(\lambda)$. In other words, the measurement $\{\Pi_0, \mathbb{I} - \Pi_0\}$ either accepts the state $|\psi_0\rangle$ with probability $1 - \mathsf{negl}(\lambda)$ or rejects it with probability $1 - \text{negl}(\lambda)$. Consequently, by the gentle measurement lemma, the leftover state is close in trace distance to the state $|\psi_0\rangle$. As a result, it can be certifiably deleted after obtaining y_0 . By a similar argument, y_1 can be obtained in the same way. Since this holds for every possible pure state output by Share(s), it also holds for arbitrary mixed states. As a result, the adversary can efficiently compute $y_0 \oplus y_1 = C(s)$ in the second-stage, breaking the computational double-deletion security. Since this security notion is the weakest one, this also rules out the other notions.

4 Feasibility Results

4.1 FHE-CD based Construction

We construct a (stat, comp)-HSS-CD scheme HSS-CD = HSS-CD. (Share, Eval, Del, Vrfy, Rec) using the following building blocks.

- Fully Homomorphic Encryption with Certified Deletion (FHE-CD) scheme FHE-CD = FHE-CD. (Setup, Enc, Dec, Eval, Del, Vrfy).
- Secret Sharing with Certified Deletion (SS-CD) scheme SS-CD = SS-CD.(Share, Rec, Del, Vrfy).

The construction is as follows.

HSS-CD.Share(s):

- 1. Generate (pk, sk) \leftarrow FHE-CD.Setup(1^{λ}).
- 2. Compute (fhecd. ct^0 , fhecd.vk) \leftarrow FHE-CD. $\mathcal{E}nc(s)$.
- 3. Compute (sscd.sh, sscd.csh), sscd.vk \leftarrow SS-CD.Share(sk).
- 4. Set $sh_0^0 := (\text{fhecd.pk}, \text{fhecd.}ct^0, \text{sscd.csh})$ and $\text{vk}_0 := \text{fhecd.vk}$.
- 5. Set $sh_1^0 := sscd.sh$ and $vk_1 := sscd.vk$.
- 6. Output $(sh_0^0, vk_0), (sh_1^0, vk_1)$.

HSS-CD. *Eval* (C_i, i, sh_i^{j-1}) : If i = 1, set $sh_1^j := sh_1^{j-1}$. Else, execute the following:

- 1. Parse \mathfrak{sh}_0^{j-1} as (fhecd.pk, fhecd. \mathfrak{ct}^{j-1} , sscd.csh).
- 2. Compute fhecd. $ct^j \leftarrow \mathsf{FHE}\text{-CD}$. $\mathfrak{E}val(\mathsf{fhecd.pk}, C_i, \mathsf{fhecd}.ct^{j-1})$
- 3. Set $sh_0^j := (\text{fhecd.pk}, \text{fhecd.} ct^{j-1} \text{sscd.csh}).$
- 4. Output sh_i^j .

$\mathsf{HSS}\text{-}\mathsf{CD}.\mathcal{D}el\left(i,sh_{i}^{j}\right)$:

- 1. If i = 0, execute the following:
 - (i) Parse sh_0^j as (fhecd.pk, fhecd. ct^j , sscd.csh).
 - (ii) Compute and output $cert_0 \leftarrow FHE-CD.\mathcal{Del}(fhecd.ct^j)$.
- 2. If i = 1, execute the following:
 - (i) Parse sh_1^j as sscd.sh.
 - (ii) Compute and output $cert_1 \leftarrow SS-CD.\mathcal{D}el(sscd.sh)$.

$HSS-CD.Vrfy(i, vk_i, cert_i)$:

- 1. If i = 0, output ans₀ \leftarrow FHE-CD.Vrfy(vk₀, cert₀).
- 2. If i = 1, output ans₀ \leftarrow SS-CD.Vrfy(vk₁, cert₁).

$\mathsf{HSS\text{-}CD}.\mathcal{R}ec(\mathit{sh}_0^q,\mathit{sh}_1^q) \textbf{:}$

- 1. Parse sh_0^q as (fhecd.pk, fhecd. ct^q , sscd.csh).
- 2. Parse sh_1^q as sscd.sh.
- 3. Compute $sk \leftarrow SS-CD.\mathcal{D}ec(sscd.sh, sscd.csh)$.
- 4. Compute and output $(d_1, \ldots, d_q) \leftarrow \mathsf{FHE}\text{-CD}.\mathcal{D}ec(\mathsf{sk}, \mathsf{fhecd}.ct^q)$.

Theorem 4.1. There exists a (stat, comp)-HSS-CD scheme assuming the existence of a fully homomorphic encryption scheme with certified deletion (FHE-CD), and a secret-sharing scheme with certified deletion (SS-CD).

Proof. We will prove that the construction HSS-CD is a (stat, comp)-HSS-CD scheme. First, we will assume that $(\mathcal{A}_0, \mathcal{A}_1)$ is a non-local adversary that breaks the statistical deletion security of share 0. We will use this adversary to break the certified deletion security of the FHE-CD scheme FHE-CD. Consider a QPT reduction \mathcal{R} that runs as follows in the FHE-CD game:

Execution of $\mathcal{R}^{(\mathcal{A}_0,\mathcal{A}_1)}$ in $\mathsf{Exp}^\mathsf{fhe-cd}_\mathsf{FHE-CD},\mathcal{R}(1^\lambda,b)$:

- 1. \mathcal{A}_0 sends $(s_0, s_1) \in \{0, 1\}^{\lambda}$ to \mathcal{R} , which \mathcal{R} forwards to the challenger.
- 2. The challenger samples $(pk, sk) \leftarrow Setup(1^{\lambda})$ and sends pk to \Re .
- 3. The challenger encrypts s_b as $ct \leftarrow \mathcal{E}nc(\mathsf{pk}, s_b)$ and sends ct to \mathcal{R} .
- 4. \mathcal{R} computes $\mathfrak{sh}_0^0 := (\mathsf{pk}, ct, \mathsf{sscd.csh})$, where $\mathsf{sscd.csh} \leftarrow \mathsf{SS-CD.Sim}(1^\lambda)$.
- 5. \mathcal{R} runs \mathcal{A}_0 on input \mathfrak{sh}_0^0 . If \mathcal{A}_0 outputs (cert₀, \mathcal{R}_0), \mathcal{R} sends cert₀ to the challenger.
- 6. The challenger computes ans $\leftarrow \mathsf{Vrfy}(\mathsf{vk},\mathsf{cert}_0)$. If ans $= \top$, it sends sk to \mathcal{R} . Else, it outputs \bot .
- 7. R computes sscd.sh conditioned on (sscd.sh, sscd.sh) encoding sk.
- 8. \mathcal{R} sends $sh_1^0 := \operatorname{sscd}.sh$ to \mathcal{A}_1 . If \mathcal{A}_1 outputs R_1 , send (R_0, R_1) to the challenger.

We will now argue that if $(\mathcal{A}_0, \mathcal{A}_1)$ break statistical security wrt share 0, then \mathcal{R} breaks the certified-deletion security of FHE-CD. Observe that the view of \mathcal{A}_0 in the reduction is identically distributed to its view in $\mathsf{Expt}^{\mathsf{del}}_{\mathsf{HSS-CD},(\mathcal{A}_0,\mathcal{A}_1)}(1^\lambda,0,b)$. Now, notice that if $\mathsf{HSS-CD}.\mathsf{Vrfy}(0,\mathsf{vk}_0,\mathsf{cert}_0)$ passes, then $\mathsf{FHE-CD}.\mathsf{Vrfy}(\mathsf{vk},\mathsf{cert}_0)$ also passes. Consequently, \mathcal{R} receives the secret key sk. By the information-theoretic secrecy of the scheme SS-CD, the view of \mathcal{A}_1 is identically distributed to that in the original experiment. As a result, (R_0,R_1) are identically distributed to that of the $\mathsf{HSS-CD}$ game. By assumption, there exists an unbounded algorithm that can use (R_0,R_1) to guess b with non-negligible probability. This breaks the certified-deletion security of $\mathsf{FHE-CD}$.

Next, we will assume that $(\mathcal{A}_0, \mathcal{A}_1)$ is a non-local adversary that breaks the computational deletion security of share 1. We will use this adversary to break the certified deletion security of the SS-CD scheme SS-CD. Consider a non-local reduction $(\mathcal{R}_0, \mathcal{R}_1)$ that runs as follows:

Execution of $(\mathcal{R}_0^{\mathcal{A}_0}, \mathcal{R}_1^{\mathcal{A}_1})$ in $\mathsf{Exp}_{\mathsf{SS-CD},(\mathcal{R}_0,\mathcal{R}_1)}^{\mathsf{ss-cd}}(1^{\lambda}, b)$:

- 1. \mathcal{R}_0 samples $(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{FHE}\text{-}\mathsf{CD}.\mathsf{Setup}(1^\lambda)$. It sets $s_0 := 0^\lambda$ and $s_1 := \mathsf{sk}$ and sends (s_0, s_1) to the challenger.
- 2. The challenger computes $(sh, csh, vk) \leftarrow Share(s_h)$. It sends csh to \mathcal{R}_0 and sh to \mathcal{R}_1 .
- 3. \mathcal{R}_0 runs \mathcal{A}_0 . \mathcal{A}_0 sends (s'_0, s'_1) to \mathcal{R}_0 .
- 4. \mathcal{R}_0 sends (pk, ct, csh) to \mathcal{A}_0 , where $ct \leftarrow \mathsf{FHE-CD}.\mathcal{E}nc(\mathsf{pk}, s_c')$ and $c \leftarrow \{0, 1\}$.
- 5. \mathcal{A}_0 sends R'_0 to \mathcal{R}_0 . \mathcal{R}_0 sets $R_0 := (R'_0, c)$ and sends it to the challenger.
- 6. \mathcal{R}_1 runs \mathcal{A}_1 on input sh. If \mathcal{A}_1 outputs (cert₁, R'_1), then \mathcal{R}_1 sets $R_1 := R'_1$ and sends it to the challenger.
- 7. The challenger computes ans = $Vrfy(vk, cert_1)$. If ans = \top , it outputs (R_0, R_1) .

Consider now the experiment $\mathsf{Exp}_{\mathsf{SS-CD},(\mathscr{R}_0,\mathscr{R}_1)}^{\mathsf{ss-cd}}(1^\lambda,0)$. Notice that if there exists a QPT algorithm \mathscr{A} that obtains the registers (R'_0,R'_1) and outputs c'=c with probability $\frac{1}{2}+\mathsf{non-negl}(\lambda)$, then the security of FHE-CD is broken. This is because a reduction can obtain an FHE-CD ciphertext and simulate the view os \mathscr{A}_0 , \mathscr{A}_1 as needed, because knowledge of sk is not required.

By assumption, there exists a QPT algorithm $\mathcal A$ that obtains (R'_0,R'_1) and outputs c'=c with probability $\frac{1}{2}+\mathsf{non-negl}(\lambda)$ in the experiment $\mathsf{Exp}^{\mathsf{ss-cd}}_{\mathsf{SS-CD},(\mathcal R_0,\mathcal R_1)}(1^\lambda,1)$.

Now, consider an algorithm $\mathcal R$ that obtains $(R_0=(c,R_0'),R_1=R_1')$. It runs $\mathcal A$ on (R_0',R_1') and checks if the value c' equals c or not. If it is, then $\mathcal R$ outputs b'=1, otherwise it outputs b'=0. Consequently, $\mathcal R$ outputs b'=b with probability $\frac12+\mathsf{non-negl}(\lambda)$, breaking the security of the scheme SS-CD. This gives us a contradiction.

4.2 Spooky-Encryption based Construction with Entangled Shares

5 Additive HSS with Weak Certified-Deletion

5.1 Additive HSS-wCD Syntax

A scheme satisfying the additive HSS-wCD syntax for a PPT circuit family \mathcal{C} is a tuple of 4 algorithms HSS-wCD = HSS-wCD.(*Share*, *Eval*, $\mathcal{D}el$, Vrfy) with the following properties:

Syntax:

 $Share(s) \rightarrow (sh_0^0, vk_0), (sh_1^0, vk_1)$: The sharing algorithm outputs quantum (possibly-entangled) secret-shares sh_0^0, sh_1^0 encoding an input secret s. It also outputs the corresponding classical verification keys vk_0, vk_1 .

 $\textit{Eval}(C_j, i, sh_i^{j-1}) \to (y_i^j, sh_i^j)$: The evaluation algorithm takes the description of a PPT computable circuit C_j , an index $i \in \{0, 1\}$ and a share sh_i^{j-1} . It outputs a quantum share sh_i^j and a classical additive share y_i^j .

 $\mathcal{D}el(i, \mathfrak{s}h_i^j) \to \text{cert}_i$: The deletion algorithm takes an index $i \in \{0, 1\}$, a corresponding quantum share $\mathfrak{s}h_i^j$, and produces a deletion certificate cert_i .

 $Vrfy(i, vk_i, cert_i) \to \top/\bot$: The verification algorithm takes an index $i \in \{0, 1\}$, the corresponding verification key vk_i and a certificate $cert_i$. It outputs \top or \bot .

Evaluation Correctness: The following condition holds for all $q = \text{poly}(\lambda)$ and $(C_1, \dots, C_q) \in \mathcal{C}^q$:

$$\Pr\left[(y_0^1 \oplus y_1^1, \cdots, y_0^q \oplus y_1^q) = (C_1(s), \cdots, C_q(s)) \ : \ \frac{(s h_0^0, \mathsf{vk}_0), (s h_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s)}{\forall i, j \in \{0, 1\} \times [q] : (y_i^j, \mathit{sh}_i^j) \leftarrow \mathit{Eval}\left(C_j, i, \mathit{sh}_i^{j-1}\right)} \ \right] \geq 1 - \mathsf{negl}(\lambda)$$

Deletion Correctness: The following condition holds for all $i \in \{0,1\}$, $q = \text{poly}(\lambda)$ and $(C_1, \ldots, C_q) \in \mathcal{C}^q$:

$$\Pr\left[\begin{array}{c} (\mathit{sh}_0^0, \mathsf{vk}_0), (\mathit{sh}_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s) \\ \mathsf{Vrfy}(i, \mathsf{vk}_i, \mathsf{cert}_i) \rightarrow \top : \ \forall j \in [q] : (y_i^j, \mathit{sh}_i^j) \leftarrow \mathit{Eval}(C_j, i, \mathit{sh}_i^{j-1}) \\ \mathsf{cert}_i \leftarrow \mathit{Del}(i, \mathit{sh}_i^q) \end{array} \right] \geq 1 - \mathsf{negl}(\lambda)$$

5.2 Security Definitions

Deletion Security wrt Share j, **Circuit Class** C, **and Distribution** D: The following security notion is defined wrt a non-local quantum adversary $(\mathcal{A}_0, \mathcal{A}_1)$:

 $\mathsf{Exp}^{\mathsf{del\text{-}weak}}_{\mathsf{HSS\text{-}wCD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},j,\mathcal{C},\mathcal{D},b) \textbf{:}$

- 1. The challenger samples $(s_0, s_1) \leftarrow \mathcal{D}$ and sends (s_0, s_1) to both $\mathcal{A}_0, \mathcal{A}_1$.
- 2. The challenger runs $(sh_0^0, vk_0), (sh_1^0, vk_1) \leftarrow Share(s_b)$ and sends each sh_i^0 to A_i .
- 3. \mathcal{A}_i sends (cert_i, R_i) and \mathcal{A}_{1-i} sends R_{1-i} where R_0 , R_1 are some registers.
- 4. If $Vrfy(j, vk_j, cert_j) = \top$, then output (R_0, R_1) .

Need to Formalize this: Let \mathcal{D} be a distribution such that for (s_0, s_1) drawn from \mathcal{D} , any QPT oracle algorithm $\mathcal{B}^{\mathcal{C}(\cdot)}$ cannot distinguish between (s_0, s_1) .

Statistical (*likewise*, Computational) Deletion Security holds if the following holds for all *hard-given-C* distributions \mathcal{D} and unbounded (*likewise*, QPT) algorithms \mathcal{A} :

$$\left|\Pr\left[\mathcal{A}\Big(\mathsf{Exp}_{\mathsf{HSS-wCD},(\mathcal{A}_0,\mathcal{A}_1)}^{\mathsf{del-weak}}(1^{\lambda},j,\mathcal{C},\mathcal{D},0)\right)=1\right]-\Pr\left[\mathcal{A}\Big(\mathsf{Exp}_{\mathsf{HSS-wCD},(\mathcal{A}_0,\mathcal{A}_1)}^{\mathsf{del-weak}}(1^{\lambda},j,\mathcal{C},\mathcal{D},1)\right)=1\right]\right|\leq \mathsf{negl}(\lambda)$$

Double-Deletion Security wrt Circuit Class C, and Distribution D: The following security notion is defined wrt a non-local quantum adversary $(\mathcal{A}_0, \mathcal{A}_1)$:

$$\mathsf{Exp}^{\mathsf{del-weak-2}}_{\mathsf{HSS-wCD},(\mathcal{A}_0,\mathcal{A}_1)}(1^{\lambda},\mathcal{C},\mathcal{D},b) \textbf{:}$$

- 1. The challenger samples $(s_0, s_1) \leftarrow \mathcal{D}$ and sends (s_0, s_1) to both $\mathcal{A}_0, \mathcal{A}_1$.
- 2. The challenger runs $(sh_0^0, vk_0), (sh_1^0, vk_1) \leftarrow Share(s_b)$ and sends each sh_i^0 to A_i .
- 3. \mathcal{A}_0 sends (cert₀, R_0) and \mathcal{A}_1 sends (cert₁, R_1) where R_0 , R_1 are some registers.
- 4. If $Vrfy(0, vk_0, cert_0) = Vrfy(1, vk_1, cert_1) = \top$, then output (R_0, R_1) .

Statistical (*likewise*, Computational) Double-Deletion Security holds if the following holds for all *hard-given-C* distributions \mathcal{D} and unbounded (*likewise*, QPT) algorithms \mathcal{A} :

$$\left|\Pr\left[\mathcal{A}\Big(\mathsf{Exp}_{\mathsf{HSS-wCD},(\mathcal{A}_0,\mathcal{A}_1)}^{\mathsf{del-weak-2}}(1^{\lambda},\mathcal{C},\mathcal{D},0)\Big)=1\right]-\Pr\left[\mathcal{A}\Big(\mathsf{Exp}_{\mathsf{HSS-wCD},(\mathcal{A}_0,\mathcal{A}_1)}^{\mathsf{del-weak-2}}(1^{\lambda},\mathcal{C},\mathcal{D},1)\Big)=1\right]\right|\leq \mathsf{negl}(\lambda)$$

Computational Secrecy wrt Share j: The following security notion is defined wrt a QPT adversary A:

 $\mathsf{Expt}^{\mathsf{ind}}_{\mathsf{HSS-wCD},\mathcal{A}}(1^{\lambda},j,b)$:

- 1. \mathcal{A} sends $(s_0, s_1) \in \{0, 1\}^{\lambda}$ to the challenger. The challenger runs $(sh_0^0, \mathsf{vk}_0), (sh_1^0, \mathsf{vk}_1) \leftarrow \mathit{Share}(s_b)$ and sends sh_i^0 to \mathcal{A} .
- 2. \mathcal{A} sends b' to the challenger. The challenger outputs b'.

$$\left|\Pr\left[\mathsf{Expt}^{\mathsf{ind}}_{\mathsf{HSS-wCD},\mathcal{A}}(1^{\lambda},j,0) = 1\right] - \Pr\left[\mathsf{Expt}^{\mathsf{ind}}_{\mathsf{HSS-wCD},\mathcal{A}}(1^{\lambda},j,1) = 1\right]\right| \leq \mathsf{negl}(\lambda)$$

References

[BGI⁺18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of homomorphic secret sharing. In Anna R. Karlin, editor, *ITCS 2018*, volume 94, pages 21:1–21:21. LIPIcs, January 2018. (Cited on page 6.)