Математический анализ 1.

Направление 38.03.01 Экономика

Семинар 12. Элементы выпуклого анализа. Графики – І

- 1. Использовав свойства выпуклых функций, исследуйте функцию f(x) на выпуклость и вогнутость на заданном промежутке X:
 - (1) $f(x) = x^2(2\ln x 3), X = (0, 1);$ (2) $f(x) = x^2(2\ln x 3), X = (1, +\infty);$
 - (3) $f(x) = 5x^4 + 3x^2 7\cos x$, $X = \left(0, \frac{\pi}{2}\right)$; (4) $f(x) = x^2(2 + \sin x)$, $X = \left(\frac{3\pi}{2}, 2\pi\right)$;
 - (5) $f(x) = \sin^2 x$, $X = \left(0, \frac{\pi}{2}\right)$; (6) $f(x) = (1 \sin x)^2$, $X = \left(0, \frac{\pi}{2}\right)$;
 - (7) $f(x) = \left(\frac{1}{2} \sin x\right)^2$, $X = \left(0, \frac{\pi}{2}\right)$; (8) $f(x) = e^x(x^2 4x + 5)$, $X = \left(-\frac{1}{2}, \frac{1}{2}\right)$;
 - (9) $f(x) = x^2 6x 6(x 2)\ln(x 2), X = (3, 5);$
 - (10) $f(x) = e^x(x^2 4x + 5), X = [3, 10];$
 - (11) $f(x) = -4\ln(1+x) + 5x^2 11\cos x, X = \left(0, \frac{\pi}{2}\right).$
- 2. Пусть f(x) непрерывна на сегменте [a,b] и выпукла на сегментах [a,c] и [c,b], где a < c < b. Верно ли, что тогда она выпукла на сегменте [a,b]?
- 3. (1) Исследуйте функцию $f(x) = x^2 \ln(2x)$ на выпуклость или вогнутость (на всей области определения).
 - (2) Использовав полученный результат, найдите точку глобального минимума функции f(x) и ее область значений.
 - (3) Использовав полученные результаты, найдите максимальное значение функции f(x) на сегменте $\left[\frac{1}{2}, \frac{3}{4}\right]$.
- 4. (1) Исследуйте функцию $f(x) = -x^2 + x + \ln(4x)$ на выпуклость или вогнутость (на всей области определения).
 - (2) Использовав полученный результат, найдите точку глобального минимума функции f(x) (на всей области определения) и ее область значений.
 - (3) Использовав полученные результаты, найдите максимальное значение этой функции на сегменте $\left[\frac{1}{4},1\right]$.
- 5. Средним гармоническим положительных чисел x_1, x_2, \dots, x_n называется число

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}}.$$

Использовав выпуклость функции $f(x) = \frac{1}{x}$, докажите, что среднее гармоническое чисел x_1, x_2, \ldots, x_n не превосходит их среднего арифметического.

При каких $x_1, x_2, ..., x_n$ это неравенство является строгим?

6. Средним геометрическим положительных чисел x_1, x_2, \dots, x_n называется число

$$\sqrt[n]{x_1x_2\dots x_n}$$
.

Использовав выпуклость функции $f(x) = x \ln x$, докажите, что среднее гармоническое чисел x_1, x_2, \ldots, x_n не превосходит их среднего геометрического.

При каких $x_1, x_2, ..., x_n$ это неравенство является строгим?

7. Для следующих степенных функций f(x) найдите область определения, корни, f'(x), исследуйте характер монотонности и найдите точки локального минимума и максимума. Найдите также f''(x), исследуйте функции на выпуклость и вогнутость и найдите точки перегиба. Нарисуйте эскизы графиков:

(1)
$$f(x) = 3x^2 - 2x^3$$
; (2) $f(x) = 2x^6 - 3x^4$; (3) $f(x) = 3x^5 - 5x^3$;

(4)
$$f(x) = x^3 - 3x^2 + 3x - 1$$
; (5) $f(x) = x^3 - 6x^2 + 9x$; (6) $f(x) = x(4-x)^3$;

(7)
$$f(x) = x^2(5-x)^3$$
; (8) $f(x) = (x-2)^3(10-x)^5$;

(9)
$$f(x) = x(x-1)(x+1)$$
.

8. Для следующих иррациональных функций f(x) найдите область определения, корни, f'(x), исследуйте характер монотонности и найдите точки локального минимума и максимума. Найдите также f''(x), исследуйте функции на выпуклость и вогнутость и найдите точки перегиба. Нарисуйте эскизы графиков:

(1)
$$f(x) = x\sqrt{2-x}$$
; (2) $f(x) = x\sqrt{3-x}$; (3) $f(x) = (3-x)\sqrt{x}$; (4) $f(x) = (4-x)\sqrt[3]{x}$;

(5)
$$f(x) = (6-x)\sqrt[5]{x}$$
; (6) $f(x) = \sqrt[3]{x} \cdot \sqrt[3]{2-x}$; (7) $f(x) = \sqrt{x} \cdot \sqrt[3]{6-x}$;

(8)
$$f(x) = \sqrt{x(4-x)}$$
; (9) $f(x) = \sqrt[5]{x} \cdot \sqrt[5]{64-x}$; (10) $f(x) = \sqrt[3]{x} \cdot \sqrt{12-x}$.