In-Lab Group Activity for Week 6: Linear Transformations, Block Matrices

Name:

Cole Bardin

first

Question 1: Matrix of a Linear Transformation

last

Consider a linear transformation T that maps vectors from \mathbb{R}^3 to vectors in \mathbb{R}^4 .

We are given the action of T on the standard basis for \mathbb{R}^3 .

$$T(\vec{\mathbf{e}}_1) = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad T(\vec{\mathbf{e}}_2) = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \quad T(\vec{\mathbf{e}}_3) = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \text{ where } \vec{\mathbf{e}}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \vec{\mathbf{e}}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ and } \vec{\mathbf{e}}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

a. What are the dimensions of the matrix A for T in the standard basis?

iii.
$$3 \times 4$$

iv.
$$4 \times 4$$

b. Find the matrix A for T in the standard basis such that for any vector $\vec{\mathbf{x}}$ in \mathbb{R}^3 , $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$

$$A = [T(\vec{\mathbf{e}}_1) \quad T(\vec{\mathbf{e}}_2) \quad T(\vec{\mathbf{e}}_3)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

c. Find the image of the vector $\vec{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ under the linear transformation using your matrix A.

$$A\vec{\mathbf{x}} = \begin{bmatrix} 1\\2\\-3\\0 \end{bmatrix}$$

d. Row reduce your matrix A to find the rank of T. (**Hint**: Same as the rank of its matrix A).

$$A = \begin{bmatrix} T(\vec{\mathbf{e}}_1) & T(\vec{\mathbf{e}}_2) & T(\vec{\mathbf{e}}_3) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

So, the rank of A (and T) is:

3

e. What is the **nullity** of *T*? **Hint**: Same as the number of free variables.

0

Ouestion 2: Matrix of a new Linear Transformation S with Missing Information

Consider a <u>new</u> linear transformation S that also maps vectors from \mathbb{R}^3 to vectors in \mathbb{R}^4 . Unfortunately, we do not (yet) know its action on a complete basis, but only for the first two standard basis vectors.

$$S(\vec{\mathbf{e}}_1) = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad S(\vec{\mathbf{e}}_2) = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \qquad \text{where } \vec{\mathbf{e}}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \vec{\mathbf{e}}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$

We are told nothing about its action on the third basis vector $\vec{\mathbf{e}}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. It could be anything.

a. Select the form which includes every matrix A which might represent S, the unknown values of which will depend on $S(\vec{\mathbf{e}}_3)$. We can denote an arbitrary vector in \mathbb{R}^4 as $\begin{bmatrix} b \\ c \end{bmatrix}$.

$$\mathbf{i.} A = \begin{bmatrix} a & 0 & a \\ b & 1 & b \\ d & 0 & c \\ d & 1 & d \end{bmatrix}$$

$$\mathbf{i.} A = \begin{bmatrix} a & 0 & a \\ b & 1 & b \\ d & 0 & c \\ d & 1 & d \end{bmatrix} \qquad \mathbf{ii.} A = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & c \\ 1 & 1 & d \end{bmatrix} \qquad \mathbf{iii.} A = \begin{bmatrix} 1 & 1 & a \\ 1 & 0 & b \\ 1 & 0 & c \\ 1 & 0 & d \end{bmatrix} \qquad \mathbf{iv.} A = \begin{bmatrix} 1 & c & 1 \\ a & 0 & 1 \\ b & 0 & 1 \\ 1 & d & 1 \end{bmatrix}$$

iii.
$$A = \begin{bmatrix} 1 & 1 & a \\ 1 & 0 & b \\ 1 & 0 & c \\ 1 & 0 & d \end{bmatrix}$$

iv.
$$A = \begin{bmatrix} 1 & c & 1 \\ a & 0 & 1 \\ b & 0 & 1 \\ 1 & d & 1 \end{bmatrix}$$

- **b.** Find the image of the vector $\vec{a} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$ under the linear transformation.
 - i. First write \vec{a} as a linear combination of the vectors \vec{e}_1 and \vec{e}_2 , so that $\vec{a} = 5*e1+3*e2$
 - ii. Now apply the linearity of S to find $S(\vec{a})$:

$$S(\vec{a}) = 5 * S(e1) + 3 * S(e2) = 5 * \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + 3 * \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 0 \\ 8 \end{bmatrix}$$

c. What is $S(\vec{0})$?

d. For which of these can you **not** find its image under S without knowing the additional information for $S(\vec{\mathbf{e}}_3)$?

i.
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

iv.
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

i. $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ ii. $\begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$ iii. $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ iv. $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ v. We can't find any of these.

Wait! We were just handed some new info about S! Only use this new info in the parts below!

We are now given $S(\vec{\mathbf{b}}) = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ where $\vec{\mathbf{b}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Note that $\vec{\mathbf{b}}$ is <u>not</u> one of the standard basis vectors!

- **e.** Find the image of the third standard basis vector $\vec{\mathbf{e}}_3 = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$ under *S*.
- i. First you must write \vec{e}_3 in terms of the given vectors $\{\vec{e}_1, \vec{e}_2, \vec{b}\}$. You can do this in your head.

$$\vec{\mathbf{e}}_3 = x_1 \vec{\mathbf{e}}_1 + x_2 \vec{\mathbf{e}}_2 + x_3 \vec{\mathbf{b}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} + x2 * \begin{bmatrix} 0\\1\\0 \end{bmatrix} + x3 * \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

ii. Now use your expansion (and linearity) to find:

$$S(\vec{\mathbf{e}}_3) = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix}$$

f. Give the matrix A for S in the standard basis using the new info. Now you know all three columns!

$$A = [S(\vec{\mathbf{e}}_1) \quad S(\vec{\mathbf{e}}_2) \quad S(\vec{\mathbf{e}}_3)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

g. Using your matrix A, confirm $S(\vec{\mathbf{b}}) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ where we recall $\vec{\mathbf{b}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Just multiply A times $\vec{\mathbf{b}}$.

$$S(\vec{\mathbf{b}}) = A\vec{\mathbf{b}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 3 \end{bmatrix}$$

Ouestion 3: Block Matrices: Find the inverse of the 2×2 block matrix A where a, b, c and d are symbolic variables. Note block forms are treated in Lecture 7, but you can do it now.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & a & b \\ 1 & 0 & 0 & 0 & b & a \\ 0 & 0 & 0 & 1 & c & d \\ 0 & 0 & 1 & 0 & d & c \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$
This is a 2×2 block decomposition of the 6×6 matrix A.

a. Write out each of the block matrices A_{ij} below. Some blocks are partially filled for free.

$$A_{11} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad A_{12} = \begin{bmatrix} a & b \\ b & a \\ c & d \\ d & c \end{bmatrix}, \qquad A_{21} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad A_{22} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$A_{12} = \begin{bmatrix} a & b \\ b & a \\ c & d \\ d & c \end{bmatrix},$$

$$A_{21} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$A_{22} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

b. Which of these block matrices are their own inverse? That's unusual but was designed to make your work easier. **Hint**: Just check if $M^2 = I$.

i. Only
$$A_{11}$$

ii. Only
$$A_{22}$$

iii. Both
$$A_{11}$$
 and A_{22}

iii. Neither
$$A_{11}$$
 nor A_{22}

c. In lectures, we will derive a formula for the inverse of a block upper triangular matrix.

Recall if $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$ is invertible with A_{11} and A_{22} both square, then the diagonal blocks A_{11} and A_{22} are also invertible; and the inverse of the entire matrix A is:

$$A^{-1} = \begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1} A_{12} A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{bmatrix}$$

where we are <u>also</u> using B to denote the inverse. Compute B_{12} by explicitly performing the matrix products:

$$B_{12} = -A_{11}^{-1} A_{12} A_{22}^{-1} = -\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ b & a \\ c & d \\ d & c \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ b & a \\ c & d \\ d & c \end{bmatrix}$$

d. Notice that **magically**, for this special matrix, $B_{12} = A_{12}$. Thus, the inverse of the entire matrix A is:

iii. the identity matrix
$$I_6$$