```
name: <unnamed>
               /Users/prakritishakya/Documents/Stata/pset1.smcl
          log:
     log type:
    opened on:
                9 Nov 2023, 21:29:10
 1 . do "/var/folders/pl/1nqqwb294v9fxc8f33xjhfbw0000gn/T//SD90193.000000"
 2 . /*
  > Title: Causal Methods Problem Set 1
  > Date: 11/02/2023
  > */
 3.
 4 . /* QUESTION 1
  > A. Y = beta0 + beta1 X + beta2 A
  > B. Y = beta0 + beta1 X + beta2 A + beta3 B + beta4 C
  > C. Y = beta0 + beta1 X + beta2 A
  > D. Y = beta0 + beta1 X + beta2 A + beta3 B
  > E. Y = beta0 + beta1 X + beta2 C + beta3 F
  >
  > */
 5.
 6 . clear
7 . cls
 8 . set more off
9.
10 . * QUESTION 2
11.
12 . * QUESTION 2. A)
13.
```

- 14 . set obs 10

  Number of observations (\_N) was 0, now 10.
- 15 .
- 16 . gen consp = 70 in 1
   (9 missing values generated)
- 17 . replace consp = 65 in 2
   (1 real change made)
- 18 . replace consp = 90 in 3
   (1 real change made)
- 19 . replace consp = 95 in 4
   (1 real change made)
- 20 . replace consp = 110 in 5
   (1 real change made)
- 21 . replace consp = 115 in 6
   (1 real change made)
- 22 . replace consp = 80 in 7
   (1 real change made)
- 23 . replace consp = 200 in 8
   (1 real change made)
- 24 . replace consp = 190 in 9
   (1 real change made)
- 25 . replace consp = 100 in 10
   (1 real change made)

- 26 .
- 27 . gen inc = 80 in 1
   (9 missing values generated)
- 28 . replace inc = 100 in 2
   (1 real change made)
- 29 . replace inc = 120 in 3
   (1 real change made)
- 30 . replace inc = 140 in 4
   (1 real change made)
- 31 . replace inc = 160 in 5
   (1 real change made)
- 32 . replace inc = 180 in 6
   (1 real change made)
- 33 . replace inc = 200 in 7
   (1 real change made)
- 34 . replace inc = 220 in 8
   (1 real change made)
- 35 . replace inc = 240 in 9
   (1 real change made)
- 36 . replace inc = 260 in 10
   (1 real change made)
- 37 .
- 38  $\cdot$  \* regressing consumption on income
- 39 .

### 40 . reg consp inc

| = 10                           |       | mber of ob             |                                | MS                     | df                   | SS                       | Source            |
|--------------------------------|-------|------------------------|--------------------------------|------------------------|----------------------|--------------------------|-------------------|
| = 5.80<br>= 0.0426<br>= 0.4202 | =     | 1, 8) ob > F squared   | <b>76</b> Pro<br><b>03</b> R-9 | 8300.0757<br>1431.5530 | 1 8                  | 8300.07576<br>11452.4242 | Model<br>Residual |
| = 0.3477<br>= 37.836           |       | lj R-square<br>oot MSE |                                | 2194.7222              | 9                    | 19752.5                  | Total             |
| f. interval]                   | conf. | [95%                   | P> t                           | t                      | Std. err.            | Coefficient              | consp             |
| .9818088                       |       |                        | 0.043<br>0.503                 | 2.41                   | .2082796<br>37.37444 | .5015152<br>26.24242     | inc<br>cons       |

41 .

42 . \* We find that a unit increase in income increases consumption by 0.50 units > .

43 .

44 . \* QUESTION 2. B)

45 .

46  $\cdot$  \* creating column vector of 1's

47 . matrix ones = J(10,1,1)

## 48 . matrix list ones

ones[10,1]

c1

r1 **1** 

r2 **1** 

r3 **1** 

r4 **1** 

r5 **1** 

r6 **1** 

r7 **1** 

r8 **1** 

r9 **1** 

r10 **1** 

```
49 .
50 \cdot * creating matrix of y
51 . mkmat consp, matrix (y)
52 . matrix list y
   y[10,1]
        consp
    r1
           70
    r2
           65
    r3
           90
    r4
           95
    r5
          110
          115
    r6
           80
    r7
    r8
          200
          190
    r9
   r10
          100
53 .
54 \cdot * creating matrix of X
55 . mkmat inc, matrix (X)
56 . matrix list X
   X[10,1]
        inc
        80
    r1
    r2 100
    r3 120
    r4 140
    r5 160
    r6 180
    r7
       200
    r8 220
    r9 240
   r10 260
```

```
57 .
58 . * joining column vector of 1's and matrix X
59 . matrix X = ones, X
60 . matrix list X
  X[10,2]
             inc
         c1
    r1
          1
              80
    r2
            100
          1
    r3
          1 120
    r4
          1 140
    r5
          1 160
          1 180
    r6
    r7
          1 200
    r8
          1 220
    r9
          1 240
   r10
          1 260
61 .
62 \cdot * finding beta
63 . matrix beta = (invsym(X' * X)) * (X' * y)
64 . matrix list beta
   beta[2,1]
            consp
   c1 26.242424
   inc .50151515
65.
66 \cdot * We find that the beta on income is 0.50 which is the same as the results f
  > rom the previous regression that is a unit increase in income increases cons
  > umption by 0.50 units.
```

```
67 .
```

68 . \* QUESTION 2. C)

69 .

70 . \* regress consumption on income

71 . reg consp inc

| Source            | SS                       | df                   | MS                       |                | er of obs           | =   | 10                       |
|-------------------|--------------------------|----------------------|--------------------------|----------------|---------------------|-----|--------------------------|
| Model<br>Residual | 8300.07576<br>11452.4242 | 1 8                  | 8300.07576<br>1431.55303 | R-sq           | > F<br>uared        | = = | 5.80<br>0.0426<br>0.4202 |
| Total             | 19752.5                  | 9                    | 2194.72222               | -              | R-squared<br>MSE    | =   | 0.3477<br>37.836         |
| consp             | Coefficient              | Std. err.            | t                        | P> t           | [95% co             | nf. | interval]                |
| inc<br>_cons      | .5015152<br>26.24242     | .2082796<br>37.37444 |                          | 0.043<br>0.503 | .021221<br>-59.9431 |     | .9818088<br>112.428      |

72 .

73 . \* predict y\_hat and residuals/error

74 . predict residuals, res

75 .

76  $\cdot$  \* call the residuals es

77 . ren residuals es

78 .

79  $\cdot$  \* turn es to a matrix

80 . mkmat es, matrix (es)

81 . matrix list es

## es[10,1]

es

r1 **3.6363637** 

r2 **-11.393939** 

r3 **3.5757575** 

r4 **-1.4545455** 

r5 **3.5151515** 

r6 **-1.5151515** 

r7 **-46.545456** 

r8 **63.424244** 

r9 **43.39394** 

r10 **-56.636364** 

- 82.
- 83  $\cdot$  \* square the error terms
- 84  $\cdot$  gen es\_squared = es \* es
- 85.
- 86 .  $\ast$  turn squared errors, es\_squared to matrix and named it esqr
- 87 . mkmat es\_squared, matrix (esqr)
- 88 . matrix list esqr

## esqr[10,1]

es\_squared

- r1 **13.223142**
- r2 **129.82185**
- r3 **12.786041**
- r4 **2.1157026**
- r5 **12.35629**
- r6 **2.2956841**
- r7 **2166.4795**
- r8 **4022.6348**
- r9 **1883.0341**
- r10 **3207.6777**
- 89 .
- 90 . \* summarize the squared errors to find the sum
- 91 . sum es\_squared

| Variable   | 0bs | Mean     | Std. dev. | Min      | Max      |
|------------|-----|----------|-----------|----------|----------|
| es_squared | 10  | 1145.242 | 1549.616  | 2.115703 | 4022.635 |

- 92.
- 93  $\cdot$  \* save the sum in a new scalar

```
94 . scalar error_sum = r(sum)
 95 . dis error_sum
    11452.425
 96 .
 97 \cdot * find the squared sigma
 98 . scalar s_squared = error_sum/8
 99 . dis s_squared
    1431.5531
100 .
101 . * find the variance of beta
102 . matrix var_beta = s_squared * (invsym (X' * X))
103 . matrix list var_beta
    symmetric var_beta[2,2]
                 c1
                            inc
          1396.8488
     c1
    inc -7.3746675 .0433804
104 .
105 . * find the standard error of the beta
106 . scalar stderror_beta = sqrt(var_beta[2,2])
107 . dis stderror_beta
    .20827961
108 .
109 . * Therefore, the standard error of the beta is 0.2083.
110 .
111 . * QUESTION 2. D)
```

113 . \* creating a matrix with squared error terms in diagonal with zeros elsewher > e using error term vector esqr (10x10)

114 . matrix mksq\_error = diag(esqr)

### 115 . matrix list mksq\_error

symmetric mksq\_error[10,10] r1 r2 r3 r4 r5 r6 r9 r10 > r7 r8 r1 **13.223142** 0 129.82185 r2 r3 0 0 12.786041 0 2.1157026 r4 r5 0 0 12.35629 0 0 r6 0 0 0 2.2956841 r7 0 2166.47 > 95 r8 0 4022.6348 r9 > 0 0 1883.0341 0 0 r10 3207.6777

116 .

117  $\cdot$  \* creating the inverse variance-covariance matrix (1x1)

118 . matrix vcm = invsym(X' \* X)

#### 119 . matrix list vcm

symmetric vcm[2,2] c1 inc c1 .97575758 inc -.00515152 .0000303

```
120 .
121 . * creating the "meat" with standard error squares matrix in the middle (1x1)
122 . matrix robust = X' * mksq_error * X
123 . matrix list robust
    symmetric robust[2,2]
                         inc
                c1
     c1 11452.425
    inc 2622460.7 6.087e+08
124 .
125 \cdot * finding the variance
126 • matrix var = 1.25 * vcm * robust * vcm
127 . matrix list var
    symmetric var[2,2]
                 c1
                            inc
          865.21963
     c1
    inc -6.8063331 .05508958
128 .
129 . * taking the square root to find robust standard errors
130 . scalar robust_stderror = sqrt(var[1,1])
131 . dis robust_stderror
    29.414616
132 .
133 . * regress consumption on income, robust
134 . reg consp inc, robust
    Linear regression
                                                    Number of obs
                                                                                10
                                                    F(1, 8)
                                                                      =
                                                                              4.57
                                                    Prob > F
                                                                     =
                                                                            0.0651
                                                    R-squared
                                                                            0.4202
                                                                    =
                                                    Root MSE
                                                                            37.836
                                                                    =
```

| consp | Coefficient | Robust<br>std. err. | t    | P> t  | [95% conf. | interval] |
|-------|-------------|---------------------|------|-------|------------|-----------|
| inc   | •           | .2347117            | 2.14 | 0.065 | 039731     | 1.042761  |
| _cons |             | 29.41462            | 0.89 | 0.398 | -41.5878   | 94.07265  |

```
135 .
136 . * The robust standard error is 0.23.
138 . * QUESTION 2. E) Clustered-standard errors
139 .
140 . * assigning villages to each observation
141 . gen vil = 0
142 .
143 . replace vil = 2 if _n == 1 | _n == 2 | _n == 5 | _n == 6 | _n == 8
    (5 real changes made)
144 .
145 . replace vil = 1 if _n == 3 | _n == 4 | _n == 7 | _n == 9 | _n == 10
    (5 real changes made)
146 .
147 . * for village 1, creating X matrix
148 .
149 . mkmat inc if vil == 1, matrix (X1)
150 . matrix list X1
    X1[5,1]
        inc
    r1 120
    r2 140
    r3 200
    r4 240
```

r5 **260** 

```
151 .
152 . * joining column vector of 1's and matrix X1
153 . matrix ones = J(5,1,1)
154 . matrix X1 = ones, X1
155 . matrix list X1
    X1[5,2]
            inc
         c1
    r1
          1 120
    r2
          1 140
    r3
          1 200
    r4
          1 240
    r5
          1 260
156 .
157 \cdot * creating matrix for error term for village 1
158 . mkmat es if vil == 1, matrix (es1)
159 . matrix list es1
    es1[5,1]
                es
    r1
         3.5757575
    r2 -1.4545455
    r3 -46.545456
    r4
          43.39394
    r5 -56.636364
160 .
161 . * "meat" for village 1
162 . matrix vil1 = X1' * (es1 * es1') * X1
```

```
163 .
164 . * for village 2, creating X matrix
165 .
166 . mkmat inc if vil == 2, matrix (X2)
167 . matrix list X2
    X2[5,1]
        inc
    r1
        80
    r2 100
    r3 160
    r4 180
    r5 220
168 .
169 . * joining column vector of 1's and matrix X2
170 . matrix ones = J(5,1,1)
171 . matrix X2 = ones, X2
172 . matrix list X2
    X2[5,2]
            inc
         c1
          1
              80
    r1
    r2
          1 100
    r3
          1 160
    r4
          1 180
          1 220
    r5
173 .
174 . * creating matrix for error term for village 2
175 . mkmat es if vil == 2, matrix (es2)
```

```
176 . matrix list es2
    es2[5,1]
                es
    r1
        3.6363637
    r2 -11.393939
    r3
         3.5151515
    r4 -1.5151515
    r5
         63.424244
177 .
178 . * "meat" for village 2
179 . matrix vil2 = X2' * es2 * es2' * X2
180 .
181 . * "meat" sum
182 .
183 . matrix meat = vil1 + vil2
184 .
185 \cdot * finding the variance
186 . matrix clvar = (invsym (X' * X)) * meat * (invsym (X' * X)) * 2.25
187 . matrix list clvar
    symmetric clvar[2,2]
                 c1
                            inc
    c1
          729.64105
    inc -6.2357401
                     .05329258
188 .
189 . * taking the square root to find robust standard errors
190 . scalar cl_stderror = sqrt(clvar[2,2])
```

# 191 . dis cl\_stderror .23085186

192 .

194 . reg consp inc, cluster(vil)

(Std. err. adjusted for 2 clusters in vil)

| consp | Coefficient | Robust<br>std. err. | t    | P> t  | [95% conf. | interval] |
|-------|-------------|---------------------|------|-------|------------|-----------|
| inc   | .5015152    | .2308519            | 2.17 | 0.275 | -2.431736  | 3.434766  |
| _cons | 26.24242    | 27.01187            | 0.97 | 0.509 | -316.9759  | 369.4608  |

195

196 . \* The clustered standard error is 0.23.

197 .

198  $\cdot$  \* Question 3

199 .

200 . \* Question 3.A)

201 .

202 . clear

203 . cls

204 . set more off

205 .

206 . \* call the dataset

207 .

208 . use "/Users/prakritishakya/Desktop/Classes/Dataset/hh\_98.dta"

209 .

210 .  $\ast$  regressing log of total expenditures on female microcredit program

211 . reg lexptot progvillf

| Source             | SS                       | df                   | MS                       |                | of obs             | =   | 1,129<br>4.03        |
|--------------------|--------------------------|----------------------|--------------------------|----------------|--------------------|-----|----------------------|
| Model<br>Residual  | 1.06259118<br>296.797338 | 1<br>1,127           | 1.06259118<br>.263351676 | R-squa         | > F<br>ared        | =   | 0.0448<br>0.0036     |
| Total              | 297.85993                | 1,128                | .264060221               | _              | -squared<br>1SE    | =   | 0.0027<br>.51318     |
| lexptot            | Coefficient              | Std. err.            | t                        | P> t           | [95% co            | nf. | interval]            |
| progvillf<br>_cons | . 1298466<br>8 . 328525  | .0646421<br>.0626947 | _                        | 0.045<br>0.000 | .003014<br>8.20551 |     | .2566789<br>8.451536 |

212 .

213 . \* The regression shows that a unit increase in female microcredit program in > creases total expenditure by 12.98 percent.

214 .

215 . \* regressing log of total expenditures on male microcredit program

216 . reg lexptot progvillm

| Source             | SS                       | df                   | MS              |                | er of obs         | =   | 1,129                    |
|--------------------|--------------------------|----------------------|-----------------|----------------|-------------------|-----|--------------------------|
| Model<br>Residual  | .605673329<br>297.254256 | 1<br>1,127           | .605673329      | Prob<br>R-sq   | uared             | = = | 2.30<br>0.1300<br>0.0020 |
| Total              | 297.85993                | 1,128                | .26406022       | _              | R-squared<br>MSE  | =   | 0.0011<br>.51357         |
| lexptot            | Coefficient              | Std. err.            | t               | P> t           | [95% co           | nf. | interval]                |
| progvillm<br>_cons | 0473609<br>8.479275      | .0312538<br>.0242912 | -1.52<br>349.07 | 0.130<br>0.000 | 108683<br>8.43161 |     | .0139613<br>8.526936     |

218 . \* The regression shows that a unit increase in male microcredit program decr
> eases total expenditure by 4.73 percent but the result is insignficant. The
> sign on the coefficient is different for male and female program may be beca
> use male may prioritize investment rather than spending on household needs.
> However, due to lack of controls, the coefficients is biased upwards.

219 .

220 • \* Question 3.B)

Source

Model

egg

\_cons

SS

61.1882456

.1195542

7.351443

.0486047

.2286803

221 .

222 . \* regressing log of total expenditures on female microcredit program with co > ntrols

MS

12 5.09902047

df

Number of obs

F(12, 1116)

Prob > F

1,129

24.04

0.0000

.2149211

7.800135

=

| Residual  | 236.671684  | 1,116     | .21207140 | <b>1</b> R-sq | uared     | =  | 0.2054    |
|-----------|-------------|-----------|-----------|---------------|-----------|----|-----------|
|           |             |           |           | - Adj         | R-squared | =  | 0.1969    |
| Total     | 297.85993   | 1,128     | .26406022 | 1 Root        | MSE       | =  | .46051    |
| ·         |             |           |           |               |           |    |           |
| lexptot   | Coefficient | Std. err. | t         | P> t          | [95% con  | f. | interval] |
| progvillf | .1120142    | .0587021  | 1.91      | 0.057         | 0031647   |    | .2271932  |
| sexhead   | 053949      | .0481907  | -1.12     | 0.263         | 1485035   |    | .0406056  |
| agehead   | .003601     | .0011206  | 3.21      | 0.001         | .0014023  |    | .0057997  |
| educhead  | .0481461    | .0042581  | 11.31     | 0.000         | .0397912  |    | .056501   |
| lnland    | .1603209    | .0293933  | 5.45      | 0.000         | . 1026485 |    | .2179933  |
| vaccess   | 0158758     | .0385156  | -0.41     | 0.680         | 091447    |    | .0596954  |
| pcirr     | .1684416    | .0466194  | 3.61      | 0.000         | . 07697   |    | .2599131  |
| rice      | .0033335    | .0091713  | 0.36      | 0.716         | 0146614   |    | .0213284  |
| wheat     | 039134      | .01688    | -2.32     | 0.021         | 0722541   |    | 0060139   |
| milk      | .0203634    | .0056485  | 3.61      | 0.000         | .0092806  |    | .0314463  |
| oil       | .0108189    | .0035749  | 3.03      | 0.003         | .0038046  |    | .0178332  |

2.46

32.15

0.014

0.000

.0241872

6.902751

225 . \* carry out white test for heteroskedasticity

226 . estat imtest, white

White's test

H0: Homoskedasticity

Ha: Unrestricted heteroskedasticity

chi2(86) = 155.47Prob > chi2 = 0.0000

Cameron & Trivedi's decomposition of IM-test

| Source                                     | chi2                    | df            | p                          |
|--------------------------------------------|-------------------------|---------------|----------------------------|
| Heteroskedasticity<br>Skewness<br>Kurtosis | 155.47<br>37.66<br>9.73 | 86<br>12<br>1 | 0.0000<br>0.0002<br>0.0018 |
| Total                                      | 202.86                  | 99            | 0.0000                     |

227 .

228 . \* With controls, the coefficient on female microfinance program dropped down > by 1.78 percent.

229 .

230 . reg lexptot progvillm sexhead agehead educhead lnland vaccess pcirr rice whe > at milk oil egg

|   | Source   | SS         | df    | MS         | Number of obs | = | 1,129  |
|---|----------|------------|-------|------------|---------------|---|--------|
| - |          |            |       |            | F(12, 1116)   | = | 24.17  |
|   | Model    | 61.4347274 | 12    | 5.11956061 | Prob > F      | = | 0.0000 |
|   | Residual | 236.425202 | 1,116 | .21185054  | R-squared     | = | 0.2063 |
| - |          |            |       |            | Adj R-squared | = | 0.1977 |
|   | Total    | 297.85993  | 1.128 | .264060221 | Root MSE      | = | .46027 |

| lexptot   | Coefficient | Std. err. | t     | P> t  | [95% conf. | interval] |
|-----------|-------------|-----------|-------|-------|------------|-----------|
| progvillm | 0637731     | .0290828  | -2.19 | 0.029 | 1208363    | 0067099   |
| sexhead   | 0586501     | .0480846  | -1.22 | 0.223 | 1529964    | .0356963  |
| agehead   | .0033787    | .0011201  | 3.02  | 0.003 | .0011811   | .0055764  |
| educhead  | .0482812    | .0042534  | 11.35 | 0.000 | .0399357   | .0566268  |
| lnland    | .1643405    | .0294918  | 5.57  | 0.000 | .1064748   | .2222062  |
| vaccess   | 0269104     | .0383294  | -0.70 | 0.483 | 1021161    | .0482953  |
| pcirr     | .1553286    | .046994   | 3.31  | 0.001 | .0631222   | .2475351  |
| rice      | .0065337    | .0092747  | 0.70  | 0.481 | 0116642    | .0247316  |
| wheat     | 0395366     | .0168738  | -2.34 | 0.019 | 0726445    | 0064286   |
| milk      | .0212032    | .0056556  | 3.75  | 0.000 | .0101064   | .0322999  |
| oil       | .0105296    | .0035735  | 2.95  | 0.003 | .003518    | .0175411  |
| egg       | .1066098    | .0490947  | 2.17  | 0.030 | .0102814   | .2029382  |
| _cons     | 7.522192    | .2219774  | 33.89 | 0.000 | 7.086652   | 7.957732  |

232 .  $\ast$  carry out white test for heteroskedasticity

233 . estat imtest, white

White's test

H0: Homoskedasticity

Ha: Unrestricted heteroskedasticity

chi2(87) = 150.57Prob > chi2 = 0.0000

Cameron & Trivedi's decomposition of IM-test

| р                          | df            | chi2                     | Source                                     |
|----------------------------|---------------|--------------------------|--------------------------------------------|
| 0.0000<br>0.0001<br>0.0013 | 87<br>12<br>1 | 150.57<br>39.43<br>10.27 | Heteroskedasticity<br>Skewness<br>Kurtosis |
| 0.0000                     | 100           | 200.28                   | Total                                      |

235 . \* With controls, the coefficient on female microfinance program dropped down > by 1.65 percent.

236 .

237 . \* Question 3.C)

238 .

239 . \* For both regressions, since p < 0.05, we reject the null hypothesis that t > here is homoskedasticity.

240 .

241 . \* re-running the regression with robust standard errors

242 . reg lexptot progvillf sexhead agehead educhead lnland vaccess pcirr rice whe > at milk oil egg, robust

| lexptot   | Coefficient | Robust<br>std. err. | t     | P> t  | [95% conf. | interval] |
|-----------|-------------|---------------------|-------|-------|------------|-----------|
| progvillf | .1120142    | .0590257            | 1.90  | 0.058 | 0037995    | .227828   |
| sexhead   | 053949      | .0565976            | -0.95 | 0.341 | 1649987    | .0571008  |
| agehead   | .003601     | .0011178            | 3.22  | 0.001 | .0014078   | .0057942  |
| educhead  | .0481461    | .0044472            | 10.83 | 0.000 | .0394202   | .056872   |
| lnland    | .1603209    | .0325314            | 4.93  | 0.000 | .0964913   | .2241505  |
| vaccess   | 0158758     | .0403351            | -0.39 | 0.694 | 095017     | .0632654  |
| pcirr     | .1684416    | .0480318            | 3.51  | 0.000 | .0741988   | . 2626843 |
| rice      | .0033335    | .0085033            | 0.39  | 0.695 | 0133509    | .0200178  |
| wheat     | 039134      | .0168568            | -2.32 | 0.020 | 0722086    | 0060594   |
| milk      | .0203634    | .0056866            | 3.58  | 0.000 | .0092058   | .0315211  |
| oil       | .0108189    | .0032319            | 3.35  | 0.001 | .0044776   | .0171602  |
| egg       | .1195542    | .0495531            | 2.41  | 0.016 | .0223265   | .2167819  |
| _cons     | 7.351443    | .2314452            | 31.76 | 0.000 | 6.897326   | 7.80556   |
| _         | i           |                     |       |       |            |           |

243 .244 . reg lexptot progvillm sexhead agehead educhead lnland vaccess pcirr rice wheat milk oil egg, robust

| Linear regression | Number of obs | = | 1,129   |
|-------------------|---------------|---|---------|
|                   | F(12, 1116)   | = | 25.08   |
|                   | Prob > F      | = | 0.0000  |
|                   | R-squared     | = | 0.2063  |
|                   | Root MSE      | = | . 46027 |

| lexptot   | Coefficient | Robust<br>std. err. | t     | P> t  | [95% conf. | interval] |
|-----------|-------------|---------------------|-------|-------|------------|-----------|
| progvillm | 0637731     | .0297973            | -2.14 | 0.033 | 1222381    | 0053082   |
| sexhead   | 0586501     | .0562908            | -1.04 | 0.298 | 1690978    | .0517977  |
| agehead   | .0033787    | .0011098            | 3.04  | 0.002 | .0012011   | .0055563  |
| educhead  | .0482812    | .0044659            | 10.81 | 0.000 | .0395188   | .0570437  |
| lnland    | .1643405    | .0324936            | 5.06  | 0.000 | .1005852   | .2280959  |
| vaccess   | 0269104     | .0402121            | -0.67 | 0.503 | 1058101    | .0519894  |
| pcirr     | . 1553286   | .0486838            | 3.19  | 0.001 | .0598065   | .2508508  |
| rice      | .0065337    | .0086591            | 0.75  | 0.451 | 0104563    | .0235238  |
| wheat     | 0395366     | .0169433            | -2.33 | 0.020 | 0727808    | 0062923   |
| milk      | .0212032    | .0056546            | 3.75  | 0.000 | .0101084   | .0322979  |
| oil       | .0105296    | .0032401            | 3.25  | 0.001 | .0041722   | .0168869  |
| egg       | .1066098    | .0491095            | 2.17  | 0.030 | .0102524   | .2029671  |
| _cons     | 7.522192    | .2324683            | 32.36 | 0.000 | 7.066068   | 7.978316  |
|           |             |                     |       |       |            |           |

<sup>245 .</sup> 

<sup>246 .</sup>  $\ast$  We only find very small changes in the coefficients, standard error and th  $\gt$  e significance.

<sup>247 .</sup> 

<sup>248</sup>  $\cdot$  \* Question 3.D)

249 .

250 .  $\ast$  regressing total expenditure on the number of female participants in a hou > sehold with controls

251 . reg lexptot dfmfd sexhead agehead educhead lnland vaccess pcirr rice wheat m > ilk oil egg

| Source               | SS                              | df                               | MS                       |                         | er of obs<br>, 1116)        | s =<br>=    | 1,129<br>24.72                  |
|----------------------|---------------------------------|----------------------------------|--------------------------|-------------------------|-----------------------------|-------------|---------------------------------|
| Model<br>Residual    | 62.5500044<br>235.309925        | 12<br>1,116                      | 5.21250037<br>.210851187 | Prob<br>R-sq            | > F<br> uared<br> R-squared | =           | 0.0000<br>0.2100<br>0.2015      |
| Total                | 297.85993                       | 1,128                            | . 264060221              | _                       | MSE                         | =           | .45919                          |
| lexptot              | Coefficient                     | Std. err.                        | t                        | P> t                    | [95% (                      | conf.       | interval]                       |
| dfmfd<br>sexhead     | .090514<br>0585578              | .028452<br>.0479707              | 3.18<br>-1.22            | 0.002<br>0.222          | . 03468<br>15268            |             | .1463393<br>.035565             |
| agehead<br>educhead  | .0033684<br>.049832             | .0011168<br>.004264              | 3.02<br>11.69            | 0.003<br>0.000          | .0011<br>.04146             |             | .0055597<br>.0581984            |
| lnland<br>vaccess    | .1756242<br>0177161             | .029798<br>.038246               | 5.89<br>-0.46            | 0.000<br>0.643          | .11715<br>09275             | 584         | .2340905<br>.0573261            |
| pcirr<br>rice        | .1604492<br>.0039976            | .0465577                         | 3.45<br>0.44             | 0.001<br>0.662          | .06909<br>01394             | <b>1</b> 85 | .2517996                        |
| wheat<br>milk<br>oil | 0391291<br>.0205496<br>.0099927 | .0168306<br>.0056321<br>.0035712 | -2.32<br>3.65<br>2.80    | 0.020<br>0.000<br>0.005 | 07215<br>.0094<br>.00298    | 199         | 0061059<br>.0316003<br>.0169997 |
| egg<br>_cons         | .1164396                        | .0484775                         | 2.40<br>33.86            | 0.016<br>0.000          | . 02132<br>7 . 0183         | 222         | .2115569                        |
|                      |                                 |                                  |                          |                         |                             |             |                                 |

<sup>252 .</sup> 

253 . \* The results show that a unit increase in the number of female microcredit > borrowers increases total expenditure by 9.05 percent.

254 .

255 .  $\ast$  regressing total expenditure on the number of male participants in a house > hold with controls

| Source            | SS                       | df          | MS                      |                  | oer of obs<br>2, 1116) | s =<br>= | 1,129<br>23.71             |
|-------------------|--------------------------|-------------|-------------------------|------------------|------------------------|----------|----------------------------|
| Model<br>Residual | 60.5057616<br>237.354168 | 12<br>1,116 | 5.0421468<br>.212682946 | B Prob<br>B R-sc | > F<br>quared          | =        | 0.0000<br>0.2031<br>0.1946 |
| Total             | 297.85993                | 1,128       | .264060221              | -                | R-squared<br>MSE       | u =<br>= | .46118                     |
| lexptot           | Coefficient              | Std. err.   | t                       | P> t             | [95% (                 | conf.    | interval]                  |
| dmmfd             | 0232267                  | .0357649    | -0.65                   | 0.516            | 09340                  | 007      | .0469473                   |
| sexhead           | 056038                   | .048441     | -1.16                   | 0.248            | 15108                  |          | .0390077                   |
| agehead           | .0034573                 | .0011227    | 3.08                    | 0.002            | .0012                  | 544      | .0056602                   |
| educhead          | .0486288                 | .0042678    | 11.39                   | 0.000            | . 0402                 | 255      | .0570027                   |
| lnland            | .1567296                 | .0294925    | 5.31                    | 0.000            | . 09886                | 626      | .2145967                   |
| vaccess           | 0232387                  | .0383709    | -0.61                   | 0.545            | 09852                  | 258      | .0520485                   |
| pcirr             | .1679713                 | .0467009    | 3.60                    | 0.000            | .07633                 | 398      | .2596028                   |
| rice              | .0041169                 | .0092444    | 0.45                    | 0.656            | 01402                  | 216      | .0222553                   |
| wheat             | 0381749                  | .0169267    | -2.26                   | 0.024            | 07138                  |          | 0049633                    |
| milk              | .0206401                 | .0056634    | 3.64                    | 0.000            | . 00952                |          | .0317523                   |
| oil               | .0106221                 | .003582     | 2.97                    | 0.003            | . 003                  |          | .0176502                   |
| egg               | .117315                  | .0493105    | 2.38                    | 0.018            | . 0205                 | 633      | .2140667                   |
| _cons             | 7.470394                 | .2210315    | 33.80                   | 0.000            | 7.036                  | 671      | 7.904078                   |

<sup>257 .</sup> 

<sup>258 . \*</sup> The results show that a unit increase in the number of male microcredit bo > rrowers decreases total expenditure by 2.32 percent.

260  $\cdot$  \* Question 3.E)

261 .

262 . \* running regression of total expenditure on the number of female participan > ts in a household with controls and cluster effects

(Std. err. adjusted for 4 clusters in villid)

| lexptot  | Coefficient | Robust<br>std. err. | t     | P> t  | [95% conf. | interval] |
|----------|-------------|---------------------|-------|-------|------------|-----------|
| dfmfd    | .090514     | .0214854            | 4.21  | 0.024 | .0221378   | .1588901  |
| sexhead  | 0585578     | . 0395607           | -1.48 | 0.235 | 1844576    | .0673419  |
| agehead  | .0033684    | .0006927            | 4.86  | 0.017 | .0011639   | .0055728  |
| educhead | .049832     | .0077921            | 6.40  | 0.008 | .0250342   | .0746298  |
| lnland   | .1756242    | .0413978            | 4.24  | 0.024 | .0438778   | .3073705  |
| vaccess  | 0177161     | . 045933            | -0.39 | 0.725 | 1638955    | .1284632  |
| pcirr    | .1604492    | .076908             | 2.09  | 0.128 | 0843065    | .4052049  |
| rice     | .0039976    | .0150508            | 0.27  | 0.808 | 0439006    | .0518959  |
| wheat    | 0391291     | .0327602            | -1.19 | 0.318 | 1433869    | .0651286  |
| milk     | .0205496    | .0065372            | 3.14  | 0.052 | 0002546    | .0413539  |
| oil      | .0099927    | .0033873            | 2.95  | 0.060 | 0007874    | .0207727  |
| egg      | .1164396    | .0703207            | 1.66  | 0.196 | 1073523    | .3402315  |
| _cons    | 7.450058    | .1766659            | 42.17 | 0.000 | 6.887828   | 8.012288  |

265 • \* Using clustered standard errors increases standard error and decreases the > stastical significance and allows for significance at 1%.

266 .

267 . \* running regression of total expenditure on the number of female participan > ts in a household with controls and cluster effects

268 . reg lexptot dmmfd sexhead agehead educhead lnland vaccess pcirr rice wheat m
> ilk oil egg, cluster (villid)

 $\hbox{\tt Linear regression}$ 

| Number of obs  | = | 1,129   |
|----------------|---|---------|
| <u>F(2, 3)</u> | = |         |
| Prob > F       | = | -       |
| R-squared      | = | 0.2031  |
| Root MSE       | = | . 46118 |

(Std. err. adjusted for 4 clusters in villid)

| lexptot  | Coefficient | Robust<br>std. err. | t     | P> t  | [95% conf. | interval] |
|----------|-------------|---------------------|-------|-------|------------|-----------|
| dmmfd    | 0232267     | .0363101            | -0.64 | 0.568 | 1387816    | .0923283  |
| sexhead  | 056038      | .0486577            | -1.15 | 0.333 | 2108884    | .0988124  |
| agehead  | .0034573    | .0005161            | 6.70  | 0.007 | .0018148   | .0050997  |
| educhead | .0486288    | .0077954            | 6.24  | 0.008 | .0238203   | .0734374  |
| lnland   | .1567296    | .0413637            | 3.79  | 0.032 | .0250919   | .2883673  |
| vaccess  | 0232387     | .0434608            | -0.53 | 0.630 | 1615504    | .115073   |
| pcirr    | .1679713    | .0775726            | 2.17  | 0.119 | 0788992    | .4148418  |
| rice     | .0041169    | .0154714            | 0.27  | 0.807 | 04512      | . 0533538 |
| wheat    | 0381749     | .033172             | -1.15 | 0.333 | 143743     | .0673932  |
| milk     | .0206401    | .0066964            | 3.08  | 0.054 | 0006709    | .0419511  |
| oil      | .0106221    | .0033907            | 3.13  | 0.052 | 0001686    | .0214128  |
| egg      | .117315     | .0777603            | 1.51  | 0.229 | 1301531    | .3647831  |
| _cons    | 7.470394    | .1708855            | 43.72 | 0.000 | 6.92656    | 8.014228  |

```
269 .
270 . * Using clustered standard errors decreases standard error but remains insig
   > nificant.
271 .
272 \cdot * Question 3.F)
273 .
274 . * using bootstrap to estimate standard errors (non-clustered) for female par
   > ticipants
275 . bootstrap, reps(1000) seed(12345) : reg lexptot dfmfd sexhead agehead eduche
   > ad lnland vaccess pcirr rice wheat milk oil egg
   (running regress on estimation sample)
   Bootstrap replications (1,000): .........10.......20........30.........40..
   > ......50.......60......70.......80.......90.......100..........11
   > 0......120......130......140......150......160......170...
   > ...240..........250.........260.........270.........280..........290...........30
   > 0......310......320.......330.......340......350......360...
   > ......370........380.......390........400.......410........420.......
   > ..430..........440........450........460........470........480..........49
   > 0.......500......510.......520.........530........540.......550...
   > ......560........570........580.........590.........600.........610......
   > ..620........630.......640.......650.......660.......670.........68
   > .....940......950......960.......970......980.......990......
   > ..1,000 done
   Linear regression
                                             Number of obs =
                                                         1,129
                                             Replications = 1,000
                                             Wald chi2(12) = 306.41
                                             Prob > chi2
                                                       = 0.0000
                                             R-squared
                                                       = 0.2100
                                             Adj R-squared = 0.2015
                                             Root MSE
                                                       = 0.4592
```

|          | 0bserved    | Bootstrap |       |       | Normal     | -based    |
|----------|-------------|-----------|-------|-------|------------|-----------|
| lexptot  | coefficient | std. err. | Z     | P> z  | [95% conf. | interval] |
| dfmfd    | .090514     | . 0276476 | 3.27  | 0.001 | . 0363257  | . 1447022 |
| sexhead  | 0585578     | .0561621  | -1.04 | 0.297 | 1686336    | .0515179  |
| agehead  | .0033684    | .0011907  | 2.83  | 0.005 | .0010347   | .005702   |
| educhead | . 049832    | .004522   | 11.02 | 0.000 | .040969    | .058695   |
| lnland   | .1756242    | .0319791  | 5.49  | 0.000 | .1129463   | .238302   |
| vaccess  | 0177161     | .040942   | -0.43 | 0.665 | 097961     | .0625288  |
| pcirr    | .1604492    | .0461503  | 3.48  | 0.001 | .0699963   | .2509021  |
| rice     | .0039976    | .0084018  | 0.48  | 0.634 | 0124696    | .0204648  |
| wheat    | 0391291     | .0172545  | -2.27 | 0.023 | 0729473    | 005311    |
| milk     | .0205496    | .0055856  | 3.68  | 0.000 | .0096021   | .0314971  |
| oil      | .0099927    | .0031004  | 3.22  | 0.001 | .0039159   | .0160694  |
| egg      | .1164396    | .0501807  | 2.32  | 0.020 | .0180871   | .214792   |
| _cons    | 7.450058    | .2244092  | 33.20 | 0.000 | 7.010224   | 7.889892  |

277 . \* using bootstrap to estimate standard errors (non-clustered) for male parti > cipants

| Bootstrap replications ( <b>1,000</b> ):10203040 |
|--------------------------------------------------|
| >506070809010011                                 |
| > 0120130140150160170                            |
| >180190200210220                                 |
| >24025026027028029030                            |
| > 0310320330340350360                            |
| >370380390400410420                              |
| >43044045046047048049                            |
| > 0500510520530540550                            |
| >560570580590600610                              |
| >62063064065066067068                            |
| > 0730740                                        |
| >750760                                          |
| >81082083084085086087                            |
| > 0880890910920930                               |
| >940950960970980990                              |
| >1,000 done                                      |

Linear regression

Number of obs = 1,129
Replications = 1,000
Wald chi2(12) = 305.42
Prob > chi2 = 0.0000
R-squared = 0.2031
Adj R-squared = 0.1946
Root MSE = 0.4612

| lexptot  | Observed coefficient | Bootstrap<br>std. err. | Z     | P> z  |          | l-based<br>. interval] |
|----------|----------------------|------------------------|-------|-------|----------|------------------------|
| dmmfd    | 0232267              | . 0335794              | -0.69 | 0.489 | 0890412  | .0425878               |
| sexhead  | 056038               | .0567134               | -0.99 | 0.323 | 1671942  | .0551182               |
| agehead  | .0034573             | .0011936               | 2.90  | 0.004 | .0011179 | .0057966               |
| educhead | .0486288             | .0044331               | 10.97 | 0.000 | .0399401 | .0573175               |
| lnland   | . 1567296            | .0320375               | 4.89  | 0.000 | .0939372 | .219522                |
| vaccess  | 0232387              | .0407761               | -0.57 | 0.569 | 1031583  | .056681                |
| pcirr    | .1679713             | .0462731               | 3.63  | 0.000 | .0772778 | . 2586648              |
| rice     | .0041169             | .0085356               | 0.48  | 0.630 | 0126126  | .0208464               |
| wheat    | 0381749              | .0173242               | -2.20 | 0.028 | 0721297  | 0042202                |
| milk     | .0206401             | .0055928               | 3.69  | 0.000 | .0096785 | .0316017               |
| oil      | .0106221             | .0031464               | 3.38  | 0.001 | .0044554 | .0167889               |
| egg      | .117315              | .0512133               | 2.29  | 0.022 | .0169389 | .2176912               |
| _cons    | 7.470394             | .2264196               | 32.99 | 0.000 | 7.02662  | 7.914168               |

<sup>279 .</sup> 

280 . \* We find that our normal standard errors are overestimated and could cause  $\,>\,$  Type II error.

281 .

282  $\cdot$  \* Question 3.G)

283 .

284 . \* using bootstrap to estimate standard errors (clustered at village level)

287 . bootstrap, reps(1000) seed(12345) : reg lexptot dfmfd sexhead agehead eduche
> ad lnland vaccess pcirr rice wheat milk oil egg, cluster (villid)
 (running regress on estimation sample)

| Bootstrap replications (1,000) | ):10  | 20    | 30          | 40                                      |
|--------------------------------|-------|-------|-------------|-----------------------------------------|
| >5060                          | 708   | 090   | 100         | 11                                      |
| > 0120130                      | 140   | 150   | 160         | 170                                     |
| >180190                        | 200   | .2102 | 2023        | 30                                      |
| >24025026                      | 60270 | 280   | 290         | 30                                      |
| > 0310320                      | 330   | 340   | 350         | 360                                     |
| >370380 <b>x</b>               | 390   | .4004 | 1042        | 20                                      |
| >4304404                       | 50460 | 470   | 480         | 49                                      |
| > 0500510                      |       |       |             |                                         |
| >560570                        |       |       |             |                                         |
| >62063064                      |       |       |             |                                         |
| > 0690700                      |       |       |             |                                         |
| >750760                        |       |       |             |                                         |
| >81082083                      |       |       |             |                                         |
| > 0880890                      |       |       |             |                                         |
| >940950                        |       |       |             |                                         |
| >1,000 done                    |       |       | 55.11111115 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| , 111,000 dolle                |       |       |             |                                         |

x: Error occurred when bootstrap executed regress.

Linear regression

Number of obs = 1,129
Replications = 997
Wald chi2(12) = 279973.20
Prob > chi2 = 0.0000
R-squared = 0.2100
Adj R-squared = 0.2015
Root MSE = 0.4592

(Replications based on **4** clusters in **villid**)

| lexptot  | Observed<br>coefficient | Bootstrap<br>std. err. | Z     | P> z  | Normal<br>[95% conf. |          |
|----------|-------------------------|------------------------|-------|-------|----------------------|----------|
| dfmfd    | .090514                 | .0202646               | 4.47  | 0.000 | .050796              | .1302319 |
| sexhead  | 0585578                 | .0377071               | -1.55 | 0.120 | 1324624              | .0153467 |
| agehead  | .0033684                | .0006428               | 5.24  | 0.000 | .0021086             | .0046281 |
| educhead | .049832                 | .0066704               | 7.47  | 0.000 | .0367583             | .0629057 |
| lnland   | .1756242                | .0365149               | 4.81  | 0.000 | .1040563             | .247192  |
| vaccess  | 0177161                 | .0420977               | -0.42 | 0.674 | 100226               | .0647938 |
| pcirr    | .1604492                | .0740304               | 2.17  | 0.030 | .0153523             | .3055461 |

| rice  | .0039976 | .0127595  | 0.31  | 0.754 | 0210105  | .0290057 |
|-------|----------|-----------|-------|-------|----------|----------|
| wheat | 0391291  | .0352425  | -1.11 | 0.267 | 1082032  | .0299449 |
| milk  | .0205496 | .007009   | 2.93  | 0.003 | .0068123 | .034287  |
| oil   | .0099927 | .0057062  | 1.75  | 0.080 | 0011913  | .0211766 |
| egg   | .1164396 | .0710737  | 1.64  | 0.101 | 0228622  | .2557414 |
| _cons | 7.450058 | . 1777244 | 41.92 | 0.000 | 7.101725 | 7.798392 |

Note: One or more parameters could not be estimated in 3 bootstrap replicates; standard-error estimates include only complete replications.

288 .

- 289 . \* using bootstrap to estimate standard errors (non-clustered) for male parti
  > cipants

```
Bootstrap replications (1,000): .......10......20......30........40..
> ......50.......60......70.......80.......90.......100..........11
> 0.......120......130......140.......150......160......170...
> ...240..........250.........260.........270.........280..........290..........30
> 0......310......320.......330.......340......350......360...
> ......370........380..x......390........400........410.........420......
> ..430..........440.........450........460........470..........480..........49
> 0.......500.......510.......520........530........540..........550...
> ......560........570.......580........590........600..........610......
> ..620........630.......640.......650.......660.......670........68
> ......750.......760.....x.770.......780......790......800......
> ..810.....x..820.......830......840......850.....x..860........87
> ..1,000 done
x: Error occurred when bootstrap executed regress.
```

Linear regression

Number of obs = 1,129
Replications = 997
Wald chi2(12) = 202799.36
Prob > chi2 = 0.0000
R-squared = 0.2031
Adj R-squared = 0.1946
Root MSE = 0.4612

(Replications based on 4 clusters in villid)

| lexptot  | Observed coefficient | Bootstrap<br>std. err. | z            | P> z  | Normal    | -based<br>interval] |
|----------|----------------------|------------------------|--------------|-------|-----------|---------------------|
|          |                      |                        | <del>-</del> | ····· |           |                     |
| dmmfd    | 0232267              | .0300179               | -0.77        | 0.439 | 0820608   | .0356074            |
| sexhead  | 056038               | .0471943               | -1.19        | 0.235 | 1485371   | .0364611            |
| agehead  | .0034573             | .0004914               | 7.04         | 0.000 | .0024941  | .0044204            |
| educhead | .0486288             | .0066871               | 7.27         | 0.000 | .0355223  | .0617354            |
| lnland   | .1567296             | .0363092               | 4.32         | 0.000 | . 0855649 | .2278943            |
| vaccess  | 0232387              | .0395506               | -0.59        | 0.557 | 1007564   | .0542791            |
| pcirr    | .1679713             | .0741204               | 2.27         | 0.023 | .022698   | .3132446            |
| rice     | .0041169             | .0132949               | 0.31         | 0.757 | 0219406   | .0301744            |
| wheat    | 0381749              | .0351544               | -1.09        | 0.278 | 1070763   | .0307265            |
| milk     | .0206401             | .0070167               | 2.94         | 0.003 | .0068876  | .0343926            |
| oil      | .0106221             | .0059566               | 1.78         | 0.075 | 0010525   | .0222968            |
| egg      | .117315              | .0749104               | 1.57         | 0.117 | 0295067   | .2641368            |
| _cons    | 7.470394             | .169568                | 44.06        | 0.000 | 7.138047  | 7.802741            |

Note: One or more parameters could not be estimated in 3 bootstrap replicates; standard—error estimates include only complete replications.

291 .

292 . \* We find that the normal standard errors are overestimated so this might ca > use Type II error.

293 .

294  $\cdot$  \* Question 4

295

296 .  $\ast$  average treatment effects with regression adjustments

297 . teffects ra (lexptot sexhead agehead educhead lnland vaccess pcirr rice whea > t milk oil egg) (dfmfd)

Iteration 0: EE criterion = 7.218e-27
Iteration 1: EE criterion = 5.362e-31

Treatment-effects estimation Number of obs = 1,129

Estimator : regression adjustment

Outcome model : linear Treatment model: none

| lexptot              | Coefficient | Robust<br>std. err. | z      | P> z  | [95% conf. | interval] |
|----------------------|-------------|---------------------|--------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | . 0842385   | . 0279233           | 3.02   | 0.003 | . 0295098  | . 1389672 |
| POmean dfmfd 0       | 8.397697    | .0209225            | 401.37 | 0.000 | 8.35669    | 8.438704  |

298 .

 $299 \cdot *$  Women are likely to spend 8.42 percent more on expenditure.

300 .

301 .  $\ast$  treatment effect on the treated with regression adjustments

302 . teffects ra (lexptot sexhead agehead educhead lnland vaccess pcirr rice whea > t milk oil egg) (dfmfd), atet

Iteration 0: EE criterion = 7.217e-27
Iteration 1: EE criterion = 2.416e-31

Treatment-effects estimation Number of obs = 1,129

Estimator : regression adjustment

Outcome model : linear Treatment model: none

| lexptot               | Coefficient | Robust<br>std. err. | z      | P> z  | [95% conf. | interval] |
|-----------------------|-------------|---------------------|--------|-------|------------|-----------|
| ATET  dfmfd  (1 vs 0) | .1005064    | .0282498            | 3.56   | 0.000 | . 0451377  | . 1558751 |
| POmean dfmfd 0        | 8.352572    | .0223002            | 374.55 | 0.000 | 8.308865   | 8.39628   |

304 . \* Those women who participated in the microfinance are most likely to spend > 10.05 percentage point more on expenditure.

305 .

306 . \* average treatment effects with inverse probability weights (IPW)

Iteration 0: EE criterion = 5.262e-18
Iteration 1: EE criterion = 1.075e-30

Treatment-effects estimation Number of obs = 1,129

Estimator : inverse-probability weights

Outcome model : weighted mean

Treatment model: logit

| lexptot              | Coefficient | Robust<br>std. err. | Z      | P> z  | [95% conf. | interval] |
|----------------------|-------------|---------------------|--------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | . 0794929   | .0276263            | 2.88   | 0.004 | . 0253464  | . 1336393 |
| POmean dfmfd 0       | 8.39528     | .0207766            | 404.07 | 0.000 | 8.354558   | 8.436001  |

308 .

309 . \* treatment effect on the treated with inverse probability weights (IPW)

310 . teffects ipw (lexptot)(dfmfd sexhead agehead educhead lnland vaccess pcirr r > ice wheat milk oil egg), atet

Iteration 0: EE criterion = 5.262e-18
Iteration 1: EE criterion = 4.404e-31

Treatment-effects estimation Number of obs = 1,129

Estimator : inverse-probability weights

Outcome model : weighted mean

Treatment model: logit

| lexptot               | Coefficient | Robust<br>std. err. | Z      | P> z  | [95% conf. | interval] |
|-----------------------|-------------|---------------------|--------|-------|------------|-----------|
| ATET  dfmfd  (1 vs 0) | .1053432    | .0283003            | 3.72   | 0.000 | . 0498757  | .1608107  |
| POmean dfmfd 0        | 8.347735    | . 022749            | 366.95 | 0.000 | 8.303148   | 8.392323  |

311 .

312 . \* The intuition behind both ra and ipw is to control for confounders to find
> the average treatment effect in observational studies where the treatment a
> ssignment is not random.

313 .

314 . \* how do the results between ra and ipw compare on the Khandker dataset? The > results from ra and ipw are very similar and only point differences.

315 .

316 . \* how are ATE and ATET estimates different? ATE and ATET estimates are diffe > rent in a way that the estimates for ATET are bigger since it is for the tre > atment effects on the treated.

317 .

318  $\cdot$  \* Question 5

319 .

320  $\cdot$  \* Question 5.A)

321 .

322 . \* (i) propensity score matching for female microcredit borrowers

## 323 . capture drop notmatched

324 .

325 . teffects psmatch (lexptot) (dfmfd sexhead agehead educhead lnland vaccess pc
> irr rice wheat milk oil egg), osample (notmatched)

| Treatment-effects | estimation                | Number of obs      | = | 1,129 |
|-------------------|---------------------------|--------------------|---|-------|
| Estimator :       | propensity-score matching | Matches: requested | = | 1     |
| Outcome model :   | matching                  | min                | = | 1     |
| Treatment model:  | logit                     | max                | = | 1     |

| lexptot              | Coefficient | AI robust<br>std. err. | Z    | P> z  | [95% conf. | interval] |
|----------------------|-------------|------------------------|------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | . 0689483   | .0352761               | 1.95 | 0.051 | 0001916    | . 1380882 |

326 .

327 . dis notmatched

0

328 .

329 . \* (ii) propensity score matching for male microcredit borrowers

330 . teffects psmatch (lexptot) (dmmfd sexhead agehead educhead lnland vaccess pc > irr rice wheat milk oil egg), osample (notmatched1)

| Treatment-effects estimation       | Number of obs =                      | 1,129 |
|------------------------------------|--------------------------------------|-------|
| Estimator : propensity-score match | <pre>hing Matches: requested =</pre> | = 1   |
| Outcome model : matching           | min =                                | = 1   |
| Treatment model: logit             | max =                                | = 1   |

| lexptot              | Coefficient | AI robust<br>std. err. | Z     | P> z  | [95% conf. | interval] |
|----------------------|-------------|------------------------|-------|-------|------------|-----------|
| ATE  dmmfd  (1 vs 0) | 0251912     | . 0598302              | -0.42 | 0.674 | 1424562    | .0920738  |

332 . dis notmatched1

0

333 .

334 . \* None of the observation remain unmatched.

336 • \* checking balances in covariates

337 . foreach i in sexhead agehead educhead lnland vaccess pcirr rice wheat milk o > il egg {

dis "`i'" 2.

ttest `i', by(dfmfd) 3.

4. }

sexhead

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.           | Std. dev.            | [95% conf.           | interval]            |
|----------|------------|----------------------|---------------------|----------------------|----------------------|----------------------|
| 0        | 534<br>595 | .9157303<br>.9008403 | .0120325<br>.012263 | .2780523<br>.2991277 | .8920934<br>.8767561 | .9393673<br>.9249245 |
| Combined | 1,129      | .9078831             | .0086105            | .2893191             | .8909886             | . 9247775            |
| diff     |            | .01489               | .0172482            |                      | 0189522              | .0487322             |

diff = mean(0) - mean(1)t = 0.8633 Degrees of freedom = 1127

H0: diff = 0

Ha: diff < 0 Pr(T < t) = 0.8059

Ha: diff != 0 Pr(|T| > |t|) = 0.3882

Ha: diff > 0 Pr(T > t) = 0.1941

agehead

## Two-sample t test with equal variances

| Group    | 0bs        | Mean                | Std. err.             | Std. dev.            | [95% conf.           | interval]            |
|----------|------------|---------------------|-----------------------|----------------------|----------------------|----------------------|
| 0 1      | 534<br>595 | 45.91948<br>46.0958 | . 5895908<br>. 482778 | 13.62452<br>11.77622 | 44.76127<br>45.14764 | 47.07768<br>47.04396 |
| Combined | 1,129      | 46.0124             | . 377334              | 12.67865             | 45.27204             | 46.75276             |
| diff     |            | 1763227             | .7560889              |                      | -1.659823            | 1.307178             |

diff = mean(0) - mean(1)

t = -0.2332

H0: diff = 0

Degrees of freedom = 1127 Ha: diff < 0

Ha: diff != 0 Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.4078 Pr(|T| > |t|) = 0.8156 Pr(T > t) = 0.5922

Ha: diff > 0

educhead

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.            | Std. dev.            | [95% conf.           | interval]            |
|----------|------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 0        | 534<br>595 | 2.945693<br>1.752941 | .1658558<br>.1236154 | 3.832669<br>3.015304 | 2.619882<br>1.510165 | 3.271504<br>1.995718 |
| Combined | 1,129      | 2.317095             | . 1034556            | 3.47617              | 2.114108             | 2.520082             |
| diff     |            | 1.192752             | . 2042385            |                      | .7920213             | 1.593482             |

diff = mean(0) - mean(1)

t = 5.8400

H0: diff = 0

Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

Ha: diff > 0

lnland

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.            | Std. dev.           | [95% conf.          | interval]            |
|----------|------------|----------------------|----------------------|---------------------|---------------------|----------------------|
| 0        | 534<br>595 | .5006793<br>.2688537 | .0262664<br>.0147783 | .6069746<br>.360481 | .449081<br>.2398296 | .5522776<br>.2978777 |
| Combined | 1,129      | .3785037             | .0150559             | . 5058872           | .348963             | . 4080444            |
| diff     |            | .2318256             | .0293683             |                     | .174203             | . 2894483            |

diff = mean(0) - mean(1)

t = 7.8937

H0: diff = 0

Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000

Ha: diff > 0 Pr(T > t) = 0.0000

vaccess

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.            | Std. dev. | [95% conf.           | interval]              |
|----------|------------|----------------------|----------------------|-----------|----------------------|------------------------|
| 0 1      | 534<br>595 | .8501873<br>.8218487 | .0154585<br>.0156999 | .3572224  | .8198202<br>.7910147 | . 8805544<br>. 8526828 |
| Combined | 1,129      | .8352524             | .011045              | .371117   | .8135815             | .8569234               |
| diff     |            | . 0283385            | .0221159             |           | 0150545              | .0717315               |

diff = mean(0) - mean(1)t = 1.2814

H0: diff = 0

Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 0.8998 Pr(|T| > |t|) = 0.2003 Pr(T > t) = 0.1002

Ha: diff > 0

pcirr

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.           | Std. dev.           | [95% conf.             | interval]            |
|----------|------------|----------------------|---------------------|---------------------|------------------------|----------------------|
| 0 1      | 534<br>595 | .5423426<br>.5765465 | .014232<br>.0137037 | .328879<br>.3342694 | . 5143849<br>. 5496329 | .5703003<br>.6034601 |
| Combined | 1,129      | .5603686             | .0098815            | .3320238            | .5409804               | .5797567             |
| diff     |            | 0342039              | .0197744            |                     | 0730027                | .0045949             |

diff = mean(0) - mean(1)t = -1.7297H0: diff = 0Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 0.0420 Pr(|T| > |t|) = 0.0840 Pr(T > t) = 0.9580

Ha: diff > 0

rice

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.            | Std. dev.            | [95% conf.           | interval]            |
|----------|------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 0 1      | 534<br>595 | 10.27356<br>10.29144 | .0680716<br>.0640179 | 1.573028<br>1.561565 | 10.13984<br>10.16571 | 10.40729<br>10.41716 |
| Combined | 1,129      | 10.28298             | .0466161             | 1.566328             | 10.19152             | 10.37445             |
| diff     |            | 0178721              | .0934084             |                      | 201146               | .1654019             |

diff = mean(0) - mean(1)t = -0.1913

H0: diff = 0

Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 0.4241 Pr(|T| > |t|) = 0.8483 Pr(T > t) = 0.5759

Ha: diff > 0

wheat

Two-sample t test with equal variances

| Group    | 0bs   | Mean     | Std. err. | Std. dev. | [95% conf.  | interval] |
|----------|-------|----------|-----------|-----------|-------------|-----------|
|          |       |          |           |           |             |           |
| 0        | 534   | 7.453635 | .0378263  | .8741065  | 7.379328    | 7.527941  |
| 1        | 595   | 7.478753 | .0336961  | .8219368  | 7.412575    | 7.544931  |
|          |       |          |           |           | <del></del> |           |
| Combined | 1,129 | 7.466872 | .0251998  | .8467278  | 7.417428    | 7.516316  |
|          |       |          |           |           |             |           |
| diff     |       | 0251181  | .0504901  |           | 1241834     | .0739471  |
| G1       |       |          |           |           |             |           |

diff = mean(0) - mean(1)t = -0.4975H0: diff = 0Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 0.3095 Pr(|T| > |t|) = 0.6189 Pr(T > t) = 0.6905

Ha: diff > 0

milk

Two-sample t test with equal variances

| Group    | 0bs        | Mean                | Std. err.            | Std. dev.            | [95% conf.           | interval]           |
|----------|------------|---------------------|----------------------|----------------------|----------------------|---------------------|
| 0 1      | 534<br>595 | 10.92194<br>10.8724 | .1518803<br>.1338738 | 3.509717<br>3.265534 | 10.62359<br>10.60947 | 11.2203<br>11.13532 |
| Combined | 1,129      | 10.89583            | .1006472             | 3.381805             | 10.69836             | 11.09331            |
| diff     |            | . 0495483           | .2016728             |                      | 3461481              | . 4452447           |

diff = mean(0) - mean(1)t = 0.2457

H0: diff = 0

Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 0.5970 Pr(|T| > |t|) = 0.8060 Pr(T > t) = 0.4030

Ha: diff > 0

oil

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.           | Std. dev.            | [95% conf.           | interval]            |
|----------|------------|----------------------|---------------------|----------------------|----------------------|----------------------|
| 0        | 534<br>595 | 39.13095<br>39.64785 | .1710396<br>.165893 | 3.952458<br>4.046564 | 38.79495<br>39.32205 | 39.46694<br>39.97366 |
| Combined | 1,129      | 39.40337             | .1193099            | 4.008882             | 39.16927             | 39.63746             |
| diff     |            | 5169044              | .2385784            |                      | 9850122              | 0487965              |

diff = mean(0) - mean(1)t = -2.1666H0: diff = 0Degrees of freedom = 1127

Ha: diff < 0

Ha: diff != 0 Pr(T < t) = 0.0152 Pr(|T| > |t|) = 0.0305 Pr(T > t) = 0.9848

Ha: diff > 0

egg

Two-sample t test with equal variances

| Group    | 0bs        | Mean                 | Std. err.            | Std. dev.            | [95% conf.           | interval]            |
|----------|------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 0        | 534<br>595 | 1.935005<br>1.969769 | .0156231<br>.0157782 | .3610246<br>.3848716 | 1.904315<br>1.938781 | 1.965695<br>2.000757 |
| Combined | 1,129      | 1.953326             | .0111314             | .3740207             | 1.931486             | 1.975167             |
| diff     |            | 0347637              | .0222811             |                      | 0784809              | .0089535             |

$$diff = mean(0) - mean(1)$$

$$H0: diff = 0$$

$$Degrees of freedom = 1127$$

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 
$$0.0595$$
 Pr(|T| > |t|) =  $0.1190$  Pr(T > t) =  $0.9405$ 

339 . \* educhead, lnland, and oil has significant differences between treatment an > d control.

340 .

341 . \* regressing treatment dummy on outcome and covariates that are difference b > etween treatment and control

342 .

343 . reg dfmfd lexptot educhead lnland oil

-.5165626

\_cons

| Source                               | SS                             | df                                         | MS                             |                                  | er of obs                                            | =        | 1,129                                      |
|--------------------------------------|--------------------------------|--------------------------------------------|--------------------------------|----------------------------------|------------------------------------------------------|----------|--------------------------------------------|
| Model<br>Residual                    | 21.6019027<br>259.824138       | 4<br>1,124                                 | 5.4004756<br>.23116026         | 8                                | F(4, 1124) Prob > F R-squared Adj R-squared Root MSE |          | 23.36<br>0.0000<br>0.0768                  |
| Total                                | 281.426041                     | 1,128                                      | .24949117                      | _                                |                                                      |          | 0.0735<br>.48079                           |
| dfmfd                                | Coefficient                    | Std. err.                                  | t                              | P> t                             | [95% co                                              | nf.      | interval]                                  |
| lexptot<br>educhead<br>lnland<br>oil | .1068631<br>0205557<br>2078947 | .030292<br>.0045525<br>.0303684<br>.003577 | 3.53<br>-4.52<br>-6.85<br>1.89 | 0.000<br>0.000<br>0.000<br>0.059 | .047427<br>029487<br>267479<br>000246                | '9<br>)9 | .1662983<br>0116234<br>1483096<br>.0137901 |

-1.83

0.068

-1.071336

.0382107

.282748

344 .
345 . reg dmmfd lexptot educhead lnland oil

| Source                                        | SS                                                     | df                                                       | MS                                     |                                           | per of obs                            | =              | 1,129<br>3.36                                           |
|-----------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------|----------------|---------------------------------------------------------|
| Model<br>Residual                             | 2.09376776<br>175.036436                               | 4<br>1,124                                               | .52344194<br>.155726367                | Prob<br>R-so                              | ) > F<br>quared                       | =              | 0.0096<br>0.0118                                        |
| Total                                         | 177.130204                                             | 1,128                                                    | .157030322                             | -                                         | R-squared<br>MSE                      | =              | 0.0083                                                  |
| dmmfd                                         | Coefficient                                            | Std. err.                                                | t                                      | P> t                                      | [95% C                                | onf.           | interval]                                               |
| lexptot<br>educhead<br>lnland<br>oil<br>_cons | 0413688<br>.0116205<br>0557045<br>.0002047<br>.5305503 | .0248629<br>.0037365<br>.0249256<br>.0029359<br>.2320727 | -1.66<br>3.11<br>-2.23<br>0.07<br>2.29 | 0.096<br>0.002<br>0.026<br>0.944<br>0.022 | 09015;<br>.00428;<br>10461(<br>00555; | 91<br>06<br>58 | .0074142<br>.0189519<br>0067985<br>.0059651<br>.9858947 |

347 . \* The effects on female and male are very different.

348

 $349 \cdot * Question 5.B$ 

350 .

351 . \* (i) covariate matching estimator for female microcredit borrowers

352 . teffects nnmatch (lexptot sexhead agehead educhead lnland vaccess pcirr rice
> wheat milk oil egg) (dfmfd)

| Treatment-effect | s estimation              | Number of obs      | = | 1,129 |
|------------------|---------------------------|--------------------|---|-------|
| Estimator :      | nearest-neighbor matching | Matches: requested | = | 1     |
| Outcome model :  | matching                  | min                | = | 1     |
| Distance metric: | Mahalanobis               | max                | = | 1     |

| lexptot              | Coefficient | AI robust<br>std. err. | Z    | P> z  | [95% conf. | interval] |
|----------------------|-------------|------------------------|------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | .098184     | .0309151               | 3.18 | 0.001 | .0375914   | . 1587765 |

354 . \* (ii) covariate matching estimator for male microcredit borrowers

355 . teffects nnmatch (lexptot sexhead agehead educhead lnland vaccess pcirr rice
> wheat milk oil egg) (dmmfd)

Treatment-effects estimation

Estimator : nearest-neighbor matching

Outcome model : matching

Distance metric: Mahalanobis

Number of obs = 1,129

Matches: requested = 1

max = 1

| lexptot              | Coefficient | AI robust<br>std. err. | Z     | P>   z | [95% conf. | interval] |
|----------------------|-------------|------------------------|-------|--------|------------|-----------|
| ATE  dmmfd  (1 vs 0) | 0507796     | . 0368775              | -1.38 | 0.169  | 1230581    | .0214989  |

356 .

357 . \* The results from covariate matching are different than that from propensit > y score matching.

358 .

 $359 \cdot * Question 5.C$ 

360 .

361 . \*

362 . foreach i of numlist 1/5 {

2. teffects nnmatch (lexptot sexhead agehead educhead lnland vaccess
> pcirr rice wheat milk oil egg) (dfmfd), nneighbor(`i')

**3.** }

Treatment-effects estimation

Estimator : nearest-neighbor matching

Outcome model : matching

Distance metric: Mahalanobis

Number of obs = 1,129

Matches: requested = 1

max = 1

| lexptot              | Coefficient | AI robust<br>std. err. | Z    | P> z  | [95% conf. | interval] |
|----------------------|-------------|------------------------|------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | .098184     | .0309151               | 3.18 | 0.001 | .0375914   | . 1587765 |

| Estimator<br>Outcome model                                     | ffects estimation : nearest-neighbor matching el : matching tric: Mahalanobis |                     |      |       | f obs = requested = min = max = | 1,129<br>2<br>2<br>2 |
|----------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------|------|-------|---------------------------------|----------------------|
| lexptot                                                        | Coefficient                                                                   | AI robust std. err. | z    | P> z  | [95% conf.                      | interval]            |
| ATE  dfmfd  (1 vs 0)                                           | .0892153                                                                      | . 0290355           | 3.07 | 0.002 | . 0323067                       | . 146124             |
| Treatment-effe<br>Estimator<br>Outcome model<br>Distance metr: | <pre>: nearest-ne : matching</pre>                                            | ighbor match        | ning |       | f obs = requested = min = max = | 1,129<br>3<br>3<br>3 |
| lexptot                                                        | Coefficient                                                                   | AI robust std. err. | z    | P> z  | [95% conf.                      | interval]            |
| ATE  dfmfd  (1 vs 0)                                           | .0842812                                                                      | .0282422            | 2.98 | 0.003 | . 0289276                       | .1396348             |
| Treatment-effe<br>Estimator<br>Outcome model<br>Distance metri | <pre>: nearest-ne : matching</pre>                                            | ighbor match        | ning |       | f obs = requested = min = max = | 1,129<br>4<br>4<br>4 |
| lexptot                                                        | Coefficient                                                                   | AI robust           | Z    | P> z  | [95% conf.                      | interval]            |
| ATE  dfmfd  (1 vs 0)                                           | .073181                                                                       | .027638             | 2.65 | 0.008 | .0190114                        | .1273505             |

Treatment-effects estimation

Estimator : nearest-neighbor matching

Outcome model : matching

Distance metric: Mahalanobis

Number of obs = 1,129

Matches: requested = 5

max = 5

| lexptot              | Coefficient | AI robust<br>std. err. | z    | P> z  | [95% conf. | interval] |
|----------------------|-------------|------------------------|------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | .0721804    | .027661                | 2.61 | 0.009 | .0179659   | . 126395  |

363 .

364  $\cdot$  \* what are the tradeoffs using more or fewer nearest neighbors

365 . \* how is this tradeoff similar to using nearest neighbors with replacement

366 .

367 **.** \* Question 5.D)

368 .

369 .  $\ast$  What is the difference between Mahalanobis and Euclidean distances in matc > hing

370 .

371 • \* covariate matching estimator for female microcredit borrowers using Mahala > nobis distances

372 . teffects nnmatch (lexptot sexhead agehead educhead lnland vaccess pcirr rice
> wheat milk oil egg) (dfmfd), metric(mahalanobis)

Treatment-effects estimation

Estimator : nearest-neighbor matching

Outcome model : matching

Distance metric: Mahalanobis

Number of obs = 1,129

Matches: requested = 1

min = 1

max = 1

| lexptot              | Coefficient | AI robust<br>std. err. | Z    | P> z  | [95% conf. | interval] |
|----------------------|-------------|------------------------|------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | .098184     | .0309151               | 3.18 | 0.001 | .0375914   | . 1587765 |

374  $\cdot$  \* covariate matching estimator for female microcredit borrowers using Euclid > ean distances

375 . teffects nnmatch (lexptot sexhead agehead educhead lnland vaccess pcirr rice
> wheat milk oil egg) (dfmfd), metric(euclidean)

| lexptot              | Coefficient | AI robust<br>std. err. | Z    | P> z  | [95% conf. | interval] |
|----------------------|-------------|------------------------|------|-------|------------|-----------|
| ATE  dfmfd  (1 vs 0) | . 0870838   | .0312358               | 2.79 | 0.005 | . 0258628  | . 1483049 |

376 .

377 . \* The results are somewhat similar. However, using euclidean metric, the res > ults are significant at 5% level whereas, using mahalanobis, it is more sign > ificant at 1% level.

378 .

end of do-file

379 . log close

name: <unnamed>

log: /Users/prakritishakya/Documents/Stata/pset1.smcl

log type: smcl

closed on: 9 Nov 2023, 21:30:15

## pset1

## 2023-11-07

```
# running the library first
library(MatchIt)
library(haven)
library(readstata13)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.3 v readr
                                   2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.3
                     v tibble
                                   3.2.1
## v lubridate 1.9.2
                     v tidyr
                                   1.3.0
## v purrr
              1.0.2
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(lmtest)
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(sandwich)
library(whitestrap)
##
## Please cite as:
## Lopez, J. (2020), White's test and Bootstrapped White's test under the methodology of Jeong, J., Lee
library(estimatr)
library(parameters)
library(clubSandwich)
## Registered S3 method overwritten by 'clubSandwich':
    method
##
              from
    bread.mlm sandwich
library(ggplot2)
```

Question 2. A)

```
# defining multiple vectors
consp \leftarrow c(70,65,90,95,110,115,80,200,190,100)
inc < c(80,100,120,140,160,180,200,220,240,260)
# creating a matrix
x <- cbind(consp, inc)</pre>
# print matrix x
print(x)
         consp inc
## [1,] 70 80
## [2,]
         65 100
## [3,] 90 120
## [4,]
           95 140
## [5,] 110 160
## [6,] 115 180
## [7,]
           80 200
## [8,] 200 220
## [9,] 190 240
## [10,] 100 260
# regressing consumption on income
model <- lm(consp ~ inc)</pre>
model
##
## Call:
## lm(formula = consp ~ inc)
## Coefficients:
## (Intercept)
                         inc
                     0.5015
##
       26.2424
Question 2. B)
# change consp and inc to individual matrices
matrix_inc <- as.matrix(inc)</pre>
ones \leftarrow c(1,1,1,1,1,1,1,1,1)
matrix_inc <- as.matrix(cbind(ones,inc))</pre>
matrix_consp <- as.matrix(consp)</pre>
# transpose of income matrix
t_inc <- as.matrix(t(matrix_inc))</pre>
dim(t_inc)
## [1] 2 10
dim(matrix_inc)
## [1] 10 2
# multiply transpose and original consumption matrix
covar <- (t_inc %*% matrix_inc)</pre>
dim(covar)
```

```
## [1] 2 2
# find the beta
beta <- solve(covar) %*% (t_inc %*% matrix_consp)</pre>
beta
##
              Γ.17
## ones 26.2424242
## inc 0.5015152
Question 2. C)
# predict the regression
forecast <- predict(lm(consp ~ inc))</pre>
forecast
                     2
           1
## 66.36364 76.39394 86.42424 96.45455 106.48485 116.51515 126.54545 136.57576
           9
                    10
## 146.60606 156.63636
# calculate residuals
es <- forecast - consp
# display residuals
es
                       2
                                  3
                                      1.454545 -3.515152
                                                           1.515152 46.545455
## -3.636364 11.393939 -3.575758
##
           8
                       9
## -63.424242 -43.393939 56.636364
# square the residuals
esqr = es * es
# calculate sigma
es_squared = sum(esqr)/8
# display sigma
es_squared
## [1] 1431.553
# calculate the variance of the beta
var_beta <- es_squared * (solve(covar))</pre>
# find the standard deviation by taking the square root of absolute values in the variance matrix
std = sqrt(abs(var_beta))
# display standard deviation
std
                        inc
             ones
## ones 37.374439 2.7156338
## inc 2.715634 0.2082796
Question 2. D)
```

```
# creating diagonal matrix with squared individual errors as the principal diagonal elements
matrix_esqr = as.matrix(diag(esqr))
# display diagonal matrix
matrix_esqr
##
           [,1]
                   [,2]
                           [,3]
                                   [,4]
                                           [,5]
                                                   [,6]
                                                           [,7]
                                                                   [,8]
##
   [1,] 13.22314
                 0.000
                                                                  0.000
  [2,] 0.00000 129.8219 0.00000 0.000000 0.000000 0.000000
                                                          0.000
                                                                  0.000
  [3,] 0.00000
                 0.0000 12.78604 0.000000 0.00000 0.000000
                                                          0.000
                                                                  0.000
##
   [4,] 0.00000
##
                 0.0000 0.00000 2.115702 0.00000 0.000000
                                                          0.000
                                                                  0.000
##
  [5,] 0.00000
                 0.0000 0.00000 0.000000 12.35629 0.000000
                                                          0.000
                                                                  0.000
  [6,] 0.00000
                 0.0000 0.00000 0.000000 0.00000 2.295684
                                                          0.000
                                                                  0.000
  [7,] 0.00000
                 0.000
##
   [8,] 0.00000
                 0.000 4022.635
##
  [9,] 0.00000
                                                          0.000
##
                 0.000
                 0.000
                                                                  0.000
## [10,] 0.00000
##
           [,9]
                  [,10]
##
  [1,]
          0.000
                  0.000
## [2,]
          0.000
                  0.000
## [3,]
          0.000
                  0.000
## [4,]
          0.000
                  0.000
## [5,]
          0.000
                  0.000
## [6,]
          0.000
                  0.000
## [7,]
          0.000
                  0.000
## [8,]
          0.000
                  0.000
## [9,] 1883.034
                  0.000
## [10,]
          0.000 3207.678
# calculate the "meat"
mid_matrix = as.matrix(t(matrix_inc) %*% matrix_esqr %*% matrix_inc)
# calculating robust standard errors
robust_std = 1.25 * (solve(covar) %*% mid_matrix %*% solve(covar))
# taking the square root of the standard errors
robust std <- sqrt(abs(robust std))</pre>
# display robust standard errors
robust_std
##
           ones
                     inc
## ones 29.414616 2.6088950
       2.608895 0.2347117
# find the robust standard errors in R using regression
robust_model <- coeftest(model, vcov = vcovHC, type = "HC1")</pre>
# display the model
robust_model
##
## t test of coefficients:
##
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.24242 29.41462 0.8922 0.39835
## inc
                0.50152
                          0.23471 2.1367 0.06511 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Both the robust standard errors found are 0.23.
Question 2. E)
# creating village variable
village \leftarrow c(2,2,1,1,2,2,1,2,1,1)
# combining all the variables together
tmatrix <- as.matrix(cbind(village, es, consp, inc))</pre>
# taking a subset of village 1 and creating error variable, income variable
tmatrix1 <- subset(tmatrix, village == 1)</pre>
es1 <- tmatrix1[, 2]</pre>
X1 <- tmatrix1[, 4]</pre>
ones \leftarrow c(1,1,1,1,1)
X1 <- as.matrix(cbind(ones,X1))</pre>
# calculate the "meat" for village 1
mid1 = as.matrix(t(X1) %*% (es1 %*% t(es1)) %*% X1)
# taking a subset of village 2 and creating error variable, income variable
tmatrix2 <- subset(tmatrix, village == 2)</pre>
es2 <- tmatrix2[, 2]</pre>
X2 <- tmatrix2[, 4]</pre>
ones \leftarrow c(1,1,1,1,1)
X2 <- as.matrix(cbind(ones,X2))</pre>
# calculate the "meat" for village 2
mid2 = as.matrix(t(X2) %*% (es2 %*% t(es2)) %*% X2)
# summing the meat
meat = mid1 + mid2
# calculating the variance
cl_std = 2.25 * (solve(covar) %*% meat %*% solve(covar))
# taking the square root of the standard errors
cl_std <- sqrt(abs(cl_std))</pre>
# display clustered standard errors
{\tt cl\_std}
             ones
                         inc
## ones 27.011869 2.4971464
        2.497146 0.2308519
## inc
# find the clustered standard errors in R using regression
cl_model <- coeftest(model, vcov = vcovHC, cluster = "village")</pre>
# display the model
```

```
cl_model
##
## t test of coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.24242 37.86113 0.6931
                                              0.5079
## inc
                0.50152
                           0.29656 1.6911
                                              0.1293
# Both the clustered standard errors found are 0.23.
Question 3. A)
# calling the dataset
gbank <- read_dta("hh_98.dta")</pre>
# run regression on total expenditure and female micro credit program
reg1 <- lm(lexptot ~ progvillf, data = gbank)</pre>
# display the regression model
reg1
##
## Call:
## lm(formula = lexptot ~ progvillf, data = gbank)
## Coefficients:
## (Intercept)
                  progvillf
        8.3285
                     0.1298
# The regression shows that a unit increase in female microcredit program increases total expenditure b
# run regression on total expenditure and male micro credit program
reg2 <- lm(lexptot ~ progvillm, data = gbank)</pre>
# display the regression model
reg2
##
## Call:
## lm(formula = lexptot ~ progvillm, data = gbank)
## Coefficients:
## (Intercept)
                  progvillm
       8.47927
                   -0.04736
##
\# The regression shows that a unit increase in male microcredit program decreases total expenditure by
Question 3. B)
# run regression on total expenditure and female micro credit program with controls
reg3 <- lm(lexptot ~ progvillf + sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat
# display regression model
reg3
##
## Call:
```

```
## lm(formula = lexptot ~ progvillf + sexhead + agehead + educhead +
##
       lnland + vaccess + pcirr + rice + wheat + milk + oil + egg,
       data = gbank)
##
##
## Coefficients:
## (Intercept)
                                 sexhead
                                                                          lnland
                 progvillf
                                              agehead
                                                           educhead
     7.351443
                               -0.053949
                                             0.003601
                                                           0.048146
                                                                        0.160321
##
                   0.112014
                                                                             oil
##
       vaccess
                      pcirr
                                    rice
                                                wheat
                                                               milk
##
     -0.015876
                   0.168442
                                0.003333
                                            -0.039134
                                                          0.020363
                                                                        0.010819
##
##
      0.119554
# conducting the White test
white_test(reg3)
## White's test results
##
## Null hypothesis: Homoskedasticity of the residuals
## Alternative hypothesis: Heteroskedasticity of the residuals
## Test Statistic: 12.76
## P-value: 0.001695
# We see that the p-value is less than 0.05 so we reject the null hypothesis that there is homoskedasti
# run regression on total expenditure and male micro credit program with controls
reg4 <- lm(lexptot ~ progvillm + sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat
# With controls, the coefficient on female microfinance program dropped down by 1.78 percentage point.
# display the regression model
reg4
##
## Call:
## lm(formula = lexptot ~ progvillm + sexhead + agehead + educhead +
       lnland + vaccess + pcirr + rice + wheat + milk + oil + egg,
##
       data = gbank)
## Coefficients:
## (Intercept)
                  progvillm
                                 sexhead
                                              agehead
                                                           educhead
                                                                          lnland
     7.522192
                  -0.063773
                               -0.058650
                                             0.003379
                                                           0.048281
                                                                        0.164341
##
##
       vaccess
                      pcirr
                                    rice
                                                 wheat
                                                               milk
                                                                             oil
##
    -0.026910
                   0.155329
                                0.006534
                                            -0.039537
                                                           0.021203
                                                                        0.010530
##
           egg
##
      0.106610
# With controls, the coefficient on female microfinance program dropped down by 1.65 percentage point.
# conducting the White test
white_test(reg4)
## White's test results
## Null hypothesis: Homoskedasticity of the residuals
## Alternative hypothesis: Heteroskedasticity of the residuals
```

## Test Statistic: 15.37

```
## P-value: 0.000461
Question 3. C)
# For both regressions, since p < 0.05, we reject the null hypothesis that there is homoskedasticity.
# robust standard errors for female microfinance program
reg5 <- coeftest(reg3, vcov = vcovHC, type = "HC1")</pre>
# display regression
reg5
##
## t test of coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.3514430 0.2314452 31.7632 < 2.2e-16 ***
## progvillf
             0.1120142 0.0590257 1.8977 0.0579907 .
## sexhead
            -0.0539490 0.0565976 -0.9532 0.3406941
             0.0036010 0.0011178 3.2215 0.0013119 **
## agehead
            0.0481461 0.0044472 10.8261 < 2.2e-16 ***
## educhead
## lnland
            ## vaccess
            ## pcirr
## rice
            0.0033335 0.0085033 0.3920 0.6951178
            ## wheat
            0.0203634 0.0056866 3.5809 0.0003571 ***
## milk
## oil
            0.0108189 0.0032319 3.3475 0.0008426 ***
## egg
            0.1195542 0.0495531 2.4127 0.0159975 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# robust standard errors for male microfinance program
reg6 <- coeftest(reg4, vcov = vcovHC, type = "HC1")</pre>
# display regression
reg6
##
## t test of coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.5221921 0.2324683 32.3579 < 2.2e-16 ***
## progvillm
           -0.0637731 0.0297973 -2.1402 0.0325520 *
## sexhead
            -0.0586501 0.0562908 -1.0419 0.2976785
## agehead
             0.0033787 0.0011098 3.0444 0.0023863 **
## educhead
            ## lnland
            -0.0269104 0.0402121 -0.6692 0.5034988
## vaccess
            0.1553286  0.0486838  3.1906  0.0014596 **
## pcirr
## rice
            0.0065337 0.0086591 0.7545 0.4506796
## wheat
            -0.0395366  0.0169433  -2.3335  0.0198004 *
## milk
             0.0105296  0.0032401  3.2498  0.0011894 **
## oil
            0.1066098 0.0491095 2.1709 0.0301521 *
## egg
```

## ---

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# We only find very small changes in the coefficients, standard error and the significance.
Question 3. D)
# regress total expenditure on the number of female participants in the household with controls
reg7 <- lm(lexptot ~ dfmfd + sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat + m
# display regression
reg7
##
## Call:
## lm(formula = lexptot ~ dfmfd + sexhead + agehead + educhead +
       lnland + vaccess + pcirr + rice + wheat + milk + oil + egg,
##
       data = gbank)
## Coefficients:
                      dfmfd
                                                                          lnland
## (Intercept)
                                 sexhead
                                              agehead
                                                           educhead
                                                          0.049832
##
     7.450058
                   0.090514
                               -0.058558
                                             0.003368
                                                                        0.175624
##
       vaccess
                      pcirr
                                    rice
                                                wheat
                                                               milk
                                                                             oil
                                                                        0.009993
##
     -0.017716
                   0.160449
                                0.003998
                                            -0.039129
                                                          0.020550
##
           egg
##
     0.116440
# The results show that a unit increase in the number of female microcredit borrowers increases total e
# regress total expenditure on the number of male participants in the household with controls
reg8 <- lm(lexptot ~ dmmfd + sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat + m
# display regression
reg8
##
## Call:
## lm(formula = lexptot ~ dmmfd + sexhead + agehead + educhead +
       lnland + vaccess + pcirr + rice + wheat + milk + oil + egg,
##
##
       data = gbank)
##
## Coefficients:
## (Intercept)
                                                                          lnland
                      dmmfd
                                 sexhead
                                              agehead
                                                           educhead
##
     7.470394
                  -0.023227
                               -0.056038
                                             0.003457
                                                           0.048629
                                                                        0.156730
##
       vaccess
                      pcirr
                                    rice
                                                wheat
                                                               milk
                                                                             oil
##
     -0.023239
                   0.167971
                                0.004117
                                            -0.038175
                                                           0.020640
                                                                        0.010622
##
           egg
      0.117315
# The results show that a unit increase in the number of male microcredit borrowers decreases total exp
Question 3. E)
# regress total expenditure on the number of female participants in the household with controls and clu
clreg <- lm robust (lexptot ~ dfmfd + sexhead + agehead + educhead + lnland + vaccess + pcirr + rice +
```

summary(clreg)

```
##
## Call:
## lm_robust(formula = lexptot ~ dfmfd + sexhead + agehead + educhead +
     lnland + vaccess + pcirr + rice + wheat + milk + oil + egg,
##
     data = gbank, clusters = villid)
##
## Standard error type: CR2
##
## Coefficients:
##
            Estimate Std. Error t value Pr(>|t|)
                                         CI Lower CI Upper
## (Intercept) 7.450058 0.1942383 38.3552 0.0000985 6.7857043 8.114412 2.666
## dfmfd
           0.090514 0.0213037 4.2488 0.0333387 0.0149725 0.166055 2.529
## sexhead
           -0.058558 0.0403197 -1.4523 0.2797348 -0.2267600 0.109644 2.067
            0.003368 0.0007767 4.3366 0.0338784 0.0005488 0.006188 2.448
## agehead
## educhead
            0.049832 0.0080595 6.1830 0.0133167 0.0215133 0.078151 2.562
## lnland
            0.175624 0.0439012 4.0004 0.0411679 0.0151491 0.336099 2.425
## vaccess
           -0.017716 0.0505861 -0.3502 0.7595821 -0.2351042 0.199672 2.003
           ## pcirr
## rice
           ## wheat
## milk
           0.020550 0.0072063 2.8516 0.0914157 -0.0074680 0.048567 2.241
## oil
            0.009993 0.0041639 2.3998 0.1325329 -0.0071361 0.027121 2.099
## egg
            0.116440 0.0736711 1.5805 0.2480863 -0.1845319 0.417411 2.115
                   0.21, Adjusted R-squared: 0.2015
## Multiple R-squared:
## F-statistic:
              NA on 12 and 3 DF, p-value: NA
# Using clustered standard errors decreases standard error and increases the statistical significance a
# regress total expenditure on the number of male participants in the household with controls and clust
clregm <- lm_robust (lexptot ~ dmmfd + sexhead + agehead + educhead + lnland + vaccess + pcirr + rice +
summary(clregm)
##
## Call:
## lm robust(formula = lexptot ~ dmmfd + sexhead + agehead + educhead +
     lnland + vaccess + pcirr + rice + wheat + milk + oil + egg,
##
     data = gbank, clusters = villid)
##
## Standard error type: CR2
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
## (Intercept) 7.470394 0.1889098 39.5448 9.209e-05 6.823475 8.117313 2.661
           ## dmmfd
## sexhead
           ## agehead
## educhead
           ## lnland
            ## vaccess
## pcirr
           0.167971 0.0845561 1.9865 1.660e-01 -0.148484 0.484426 2.351
```

```
## rice
## wheat
             0.020640 0.0075350 2.7392 9.860e-02 -0.008683 0.049963 2.239
## milk
              ## oil
## egg
              ##
## Multiple R-squared: 0.2031, Adjusted R-squared: 0.1946
                NA on 12 and 3 DF, p-value: NA
## F-statistic:
# Using clustered standard errors increases standard error but remains insignificant.
Question 3. F)
# bootstrap standard errors of regression of male participants on total expenditure and controls
standard_error(reg8, bootstrap = TRUE, vcov = "HC1", summary = TRUE, iterations = 1000)
##
       Parameter
    (Intercept) 0.228912072
## 1
## 2
          dmmfd 0.032833469
## 3
        sexhead 0.056610496
## 4
        agehead 0.001121414
## 5
       educhead 0.004474779
        lnland 0.032838151
## 6
## 7
        vaccess 0.040223185
          pcirr 0.047969706
## 8
           rice 0.008626033
## 9
## 10
          wheat 0.016965973
## 11
           milk 0.005681194
## 12
            oil 0.003230389
## 13
            egg 0.050422357
# bootstrap standard errors of regression of female participants on total expenditure and controls
standard_error(reg7, bootstrap = TRUE, vcov = "HC1", summary = TRUE, iterations = 1000)
##
      Parameter
## 1 (Intercept) 0.227073034
## 2
          dfmfd 0.027701344
## 3
        sexhead 0.056174064
## 4
        agehead 0.001115049
## 5
       educhead 0.004546877
## 6
        lnland 0.032778486
## 7
        vaccess 0.040128205
          pcirr 0.047865605
## 8
## 9
          rice 0.008530786
## 10
          wheat 0.016865054
## 11
          milk 0.005684321
## 12
            oil 0.003198162
            egg 0.049553907
## 13
# We find that our normal standard errors are overestimated and could cause Type II error.
Question 3. G)
# bootstrap standard errors of regression of male participants on total expenditure and controls with c
standard_error(reg8, bootstrap = TRUE, vcov = "CR1", vcov_args = list(cluster = gbank$villid), summary =
##
       Parameter
## 1 (Intercept) 0.1699741164
```

```
## 2
            dmmfd 0.0361164401
## 3
          sexhead 0.0483981475
## 4
          agehead 0.0005133471
## 5
         educhead 0.0077538486
## 6
           lnland 0.0411430772
## 7
          vaccess 0.0432290155
            pcirr 0.0771588294
## 8
## 9
            rice 0.0153888837
## 10
            wheat 0.0329950856
## 11
            milk 0.0066607114
## 12
              oil 0.0033726105
## 13
              egg 0.0773456155
# bootstrap standard errors of regression of female participants on total expenditure and controls with
standard_error(reg7, bootstrap = TRUE, vcov = "CR1", vcov_args = list(cluster = gbank$villid), summary =
##
        Parameter
                             SE
## 1
     (Intercept) 0.1757236794
## 2
            dfmfd 0.0213708110
## 3
          sexhead 0.0393496908
## 4
          agehead 0.0006890057
## 5
         educhead 0.0077505038
## 6
           lnland 0.0411770220
## 7
          vaccess 0.0456880356
## 8
           pcirr 0.0764978617
## 9
            rice 0.0149705019
## 10
            wheat 0.0325855269
             milk 0.0065023168
## 11
## 12
              oil 0.0033692755
## 13
              egg 0.0699456701
# We find that our normal standard errors are overestimated and could cause Type II error.
Question 4
# ra
# running model and estimate outcomes on treated
lm_treated_ra <- lm(lexptot ~ sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat + reated_ra</pre>
summary(lm_treated_ra)
##
## Call:
## lm(formula = lexptot ~ sexhead + agehead + educhead + lnland +
##
       vaccess + pcirr + rice + wheat + milk + oil + egg, data = subset(gbank,
##
       dfmfd == 1)
##
## Residuals:
                  1Q
                       Median
                                             Max
## -1.00479 -0.31675 -0.04016 0.25085 2.16170
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                           0.321285 24.750 < 2e-16 ***
## (Intercept) 7.951888
## sexhead
               -0.084616
                           0.064947 -1.303 0.19314
```

```
## agehead
               0.004109
                          0.001672
                                    2.457 0.01431 *
               0.050946
                          0.006746 7.552 1.67e-13 ***
## educhead
## lnland
               0.045223
                         0.056338
                                  0.803 0.42247
## vaccess
              -0.023544
                         0.051936 -0.453 0.65048
## pcirr
               0.163329
                        0.064028
                                    2.551 0.01100 *
## rice
              -0.005192 0.012849 -0.404 0.68631
                          0.024041 -2.047 0.04111 *
## wheat
              -0.049210
## milk
              0.027499
                          0.008587
                                   3.203 0.00144 **
## oil
              0.006592
                          0.005050
                                   1.305 0.19225
## egg
               0.036985
                          0.068841
                                    0.537 0.59130
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.465 on 583 degrees of freedom
## Multiple R-squared: 0.1283, Adjusted R-squared: 0.1118
## F-statistic: 7.799 on 11 and 583 DF, p-value: 1.107e-12
gbank$lexptot_t1_ra <- predict(lm_treated_ra, gbank)</pre>
# running model and estimate outcomes on untreated
lm_untreated_ra <- lm(lexptot ~ sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat</pre>
summary(lm_untreated_ra)
##
## Call:
## lm(formula = lexptot ~ sexhead + agehead + educhead + lnland +
      vaccess + pcirr + rice + wheat + milk + oil + egg, data = subset(gbank,
##
      dfmfd == 0))
##
## Residuals:
                 1Q
                     Median
## -1.08980 -0.28373 -0.05336 0.23947
                                      2.00672
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                          0.303571 23.400 < 2e-16 ***
## (Intercept) 7.103682
                          0.071721 -0.408 0.68363
## sexhead
              -0.029244
## agehead
               0.002831
                          0.001514 1.870 0.06210 .
## educhead
              0.050039 0.005483 9.126 < 2e-16 ***
## lnland
               0.229058 0.035284
                                   6.492 1.98e-10 ***
## vaccess
              -0.007449 0.056733 -0.131 0.89559
## pcirr
               0.131539
                         0.068896
                                  1.909 0.05678 .
## rice
              0.012206
                         0.013187
                                  0.926 0.35506
## wheat
              -0.029244
                         0.023724 -1.233 0.21826
## milk
              0.013463
                          0.007598 1.772 0.07699 .
## oil
              0.013550
                          0.005108 2.653 0.00823 **
                          0.069531
                                    2.447 0.01471 *
## egg
               0.170177
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4512 on 522 degrees of freedom
## Multiple R-squared: 0.3066, Adjusted R-squared: 0.292
## F-statistic: 20.98 on 11 and 522 DF, p-value: < 2.2e-16
```

```
gbank$lexptot_t0_ra <- predict(lm_untreated_ra, newdata = gbank)</pre>
# creating the difference between treated and untreated
gbank$ATE_ra <- (gbank$lexptot_t1_ra - gbank$lexptot_t0_ra)</pre>
# average treatment effects with regression adjustments
t.test(gbank$ATE_ra, data = gbank)
##
##
   One Sample t-test
##
## data: gbank$ATE_ra
## t = 25.522, df = 1128, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.07776257 0.09071444
## sample estimates:
## mean of x
## 0.0842385
# create a subset for just the treated group
gbank_t1 <- gbank[gbank$dfmfd==1,]</pre>
# treatment effects on the treated with regression adjustments
t.test(gbank_t1$ATE_ra, data = gbank_t1)
## One Sample t-test
##
## data: gbank t1$ATE ra
## t = 26.83, df = 594, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.09314945 0.10786341
## sample estimates:
## mean of x
## 0.1005064
# ipw
# find logit
logit_ipw <- glm(dfmfd ~ sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat + milk</pre>
summary(logit_ipw)
##
## glm(formula = dfmfd ~ sexhead + agehead + educhead + lnland +
       vaccess + pcirr + rice + wheat + milk + oil + egg, family = binomial,
##
       data = gbank)
##
## Deviance Residuals:
       Min
                 1Q
                     Median
                                    3Q
                                            Max
## -1.6629 -1.1969
                     0.8382 1.0452
                                         2.1547
##
```

```
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.410320 1.003560 -1.405 0.159927
## sexhead
              -0.029784 0.217550 -0.137 0.891106
## agehead
               0.006780 0.005108
                                   1.327 0.184420
              ## educhead
## lnland
              -0.887878   0.147941   -6.002   1.95e-09 ***
                         0.175109 -1.509 0.131227
## vaccess
              -0.264289
                                   1.811 0.070091 .
## pcirr
              0.382918
                         0.211403
## rice
              -0.026409
                         0.041201 -0.641 0.521537
## wheat
              0.016489
                         0.076412 0.216 0.829147
                         0.025690 -0.165 0.868645
## milk
              -0.004249
## oil
              0.034651
                         0.016364 2.118 0.034215 *
              0.279835
## egg
                         0.220247 1.271 0.203889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1561.8 on 1128 degrees of freedom
## Residual deviance: 1473.2 on 1117 degrees of freedom
## AIC: 1497.2
##
## Number of Fisher Scoring iterations: 4
# get estimates of propensity scores on each observations
gbank$logit_pscore <- predict(logit_ipw, newdata = gbank, type = "response")</pre>
gbank <- mutate(gbank, lexptot_wt = ifelse(dfmfd==1, lexptot/logit_pscore, lexptot/(1-logit_pscore)))</pre>
# running model and estimate outcomes on treated
lm_treated_ipw <- lm(lexptot ~ sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat +</pre>
summary(lm_treated_ipw)
##
## Call:
## lm(formula = lexptot ~ sexhead + agehead + educhead + lnland +
##
      vaccess + pcirr + rice + wheat + milk + oil + egg, data = subset(gbank,
##
      dfmfd == 1), weights = lexptot wt)
##
## Weighted Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -5.6285 -1.2984 -0.2658 0.9199 9.4096
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.947228
                        0.331136 24.000 < 2e-16 ***
              -0.095855
                         0.069689 -1.375 0.16951
## sexhead
                                   2.349 0.01917 *
## agehead
               0.004062 0.001730
## educhead
                         0.006202 8.043 4.92e-15 ***
              0.049886
## lnland
              0.020883
                         0.045916
                                   0.455 0.64942
## vaccess
              -0.028979
                         0.054546 -0.531 0.59543
## pcirr
              0.131301
                         0.065121
                                   2.016 0.04423 *
## rice
              -0.008222 0.012983 -0.633 0.52681
```

```
## wheat
             -0.046587
                        0.024991 -1.864 0.06280 .
## milk
             0.026594
                        0.009135 2.911 0.00374 **
             0.006777
## oil
                        0.005062 1.339 0.18119
              0.081602
                        0.072722
                                 1.122 0.26228
## egg
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.905 on 583 degrees of freedom
## Multiple R-squared: 0.1404, Adjusted R-squared: 0.1242
## F-statistic: 8.656 on 11 and 583 DF, p-value: 2.776e-14
gbank$lexptot_t1_ipw <- predict(lm_treated_ipw, gbank)</pre>
# running model and estimate outcomes on untreated
lm_untreated_ipw <- lm(lexptot ~ sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat</pre>
summary(lm_untreated_ipw)
##
## Call:
## lm(formula = lexptot ~ sexhead + agehead + educhead + lnland +
##
      vaccess + pcirr + rice + wheat + milk + oil + egg, data = subset(gbank,
##
      dfmfd == 0), weights = lexptot_wt)
##
## Weighted Residuals:
##
      Min
              1Q Median
                             3Q
                                   Max
## -4.5457 -1.2349 -0.3058 0.9073 8.1033
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.986641 0.308733 22.630 < 2e-16 ***
## sexhead
             ## agehead
              0.003656 0.001494
                                 2.447 0.01472 *
## educhead
              ## lnland
             0.054339 -0.520 0.60348
## vaccess
            -0.028241
             0.151741
                        0.068161
                                 2.226 0.02643 *
## pcirr
## rice
             0.014788 0.012939 1.143 0.25361
                        0.023576 -1.308 0.19155
## wheat
             -0.030830
## milk
             0.016347
                        0.007598 2.152 0.03189 *
                        0.005300 2.756 0.00606 **
## oil
              0.014607
              0.167883
                        0.069195
                                 2.426 0.01559 *
## egg
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.893 on 522 degrees of freedom
## Multiple R-squared: 0.284, Adjusted R-squared: 0.2689
## F-statistic: 18.82 on 11 and 522 DF, p-value: < 2.2e-16
gbank$lexptot_t0_ipw <- predict(lm_untreated_ipw, newdata = gbank)</pre>
# creating the difference between treated and untreated
gbank$ATE_ipw <- (gbank$lexptot_t1_ipw - gbank$lexptot_t0_ipw)</pre>
# average treatment effects with regression adjustments
```

```
t.test(gbank$ATE_ipw, data = gbank)
##
##
  One Sample t-test
##
## data: gbank$ATE_ipw
## t = 22.699, df = 1128, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.07585031 0.09020399
## sample estimates:
## mean of x
## 0.08302715
# create a subset for just the treated group
gbank_t1_ipw <- gbank[gbank$dfmfd==1,]</pre>
# treatment effects on the treated with regression adjustments
t.test(gbank_t1_ipw$ATE_ipw, data = gbank_t1_ipw)
## One Sample t-test
##
## data: gbank_t1_ipw$ATE_ipw
## t = 25.145, df = 594, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.09472696 0.11077791
## sample estimates:
## mean of x
## 0.1027524
Question 5. A)
# estimate propensity score on yet unmatched data for female microcredit borrowers
f_ps <- glm(dfmfd ~ sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat + milk + oil
summary(f_ps)
##
## glm(formula = dfmfd ~ sexhead + agehead + educhead + lnland +
       vaccess + pcirr + rice + wheat + milk + oil + egg, family = binomial(link = ("probit")),
##
##
       data = gbank)
##
## Deviance Residuals:
##
      Min
                 10
                     Median
                                   3Q
                                           Max
                     0.8418 1.0482
## -1.6672 -1.1991
                                        2.1981
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.877930
                           0.617867 -1.421 0.155344
                           0.134096 -0.114 0.909080
## sexhead
               -0.015314
## agehead
               0.003973
                           0.003139
                                     1.266 0.205558
## educhead
              -0.040097
                           0.012010 -3.339 0.000842 ***
```

```
## lnland
              -0.542055
                          0.088269 -6.141 8.2e-10 ***
## vaccess
              -0.160977
                          0.107536 -1.497 0.134404
                                    1.792 0.073064
## pcirr
               0.233379
                          0.130202
                          0.025464 -0.623 0.533331
## rice
              -0.015862
## wheat
               0.013008
                          0.047081
                                    0.276 0.782328
## milk
              -0.003136
                          0.015804 -0.198 0.842694
## oil
               0.021283
                          0.010051
                                    2.117 0.034218 *
## egg
               0.171692
                          0.135652
                                   1.266 0.205626
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1561.8 on 1128 degrees of freedom
##
## Residual deviance: 1473.4 on 1117 degrees of freedom
## AIC: 1497.4
## Number of Fisher Scoring iterations: 4
# estimate propensity score on yet unmatched data for male microcredit borrowers
m_ps <- glm(dmmfd ~ sexhead + agehead + educhead + lnland + vaccess + pcirr + rice + wheat + milk + oil
summary(m_ps)
##
## glm(formula = dmmfd ~ sexhead + agehead + educhead + lnland +
      vaccess + pcirr + rice + wheat + milk + oil + egg, family = binomial(link = ("probit")),
      data = gbank)
##
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -1.1960 -0.7040 -0.5699 -0.2943
                                       3.1833
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.156928 0.718479 -1.610 0.107344
                          0.218707
                                     3.632 0.000281 ***
## sexhead
               0.794383
## agehead
              -0.006529
                          0.003690 -1.770 0.076807 .
## educhead
               0.025272
                          0.013390
                                    1.887 0.059117 .
## lnland
              -0.274878
                          0.104918 -2.620 0.008795 **
                          0.128130
                                   0.533 0.593856
## vaccess
               0.068326
## pcirr
              -0.137786
                          0.152299 -0.905 0.365620
## rice
               0.111413
                          0.029077
                                    3.832 0.000127 ***
               0.086570
                          0.054700
                                    1.583 0.113506
## wheat
## milk
               0.029079
                          0.019066
                                    1.525 0.127204
## oil
              -0.013908
                          0.011118 -1.251 0.210961
                          0.167665 -5.164 2.41e-07 ***
              -0.865880
## egg
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1113.6 on 1128 degrees of freedom
```

```
## Residual deviance: 1038.1 on 1117 degrees of freedom
## AIC: 1062.1
##
## Number of Fisher Scoring iterations: 5
# assign each observation a propensity score for female and male microcredit borrowers
prs_f <- data.frame(pr_score = predict(f_ps, type = "response"), dfmfd = f_ps$model$dfmfd)</pre>
prs_m <- data.frame(pr_score = predict(m_ps, type = "response"), dmmfd = m_ps$model$dmmfd)</pre>
head(prs_f)
      pr_score dfmfd
## 1 0.6212929
## 2 0.3723999
## 3 0.5130929
## 4 0.6219732
## 5 0.4338388
                    1
## 6 0.4988592
hh_98cb <- cbind(gbank, prs_f$pr_score)</pre>
hh_98cbm <- cbind(gbank, prs_m$pr_score)</pre>
# examine the region of common support in unmatched data for female microcredit borrowers
labs <- paste(c("Female_Borrower in HH", "No Female Borrower in HH"))</pre>
prs_f %>%
  mutate(dfmfd = ifelse(dfmfd == 1, labs[1], labs[2])) %>%
  ggplot(aes(x = pr_score)) +
  geom_histogram(color = "white") +
 facet_wrap(~dfmfd) +
  xlab("Probability of Having a Female Microcredit Borrower") +
 theme_bw()
```

## `stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.



```
# examine the region of common support in unmatched data for male microcredit borrowers
labs <- paste(c("Male_Borrower in HH", "No Male Borrower in HH"))
prs_m %>%
  mutate(dmmfd = ifelse(dmmfd == 1, labs[1], labs[2])) %>%
  ggplot(aes(x = pr_score)) +
  geom_histogram(color = "white") +
  facet_wrap(~dmmfd) +
  xlab("Probability of Having a Male Microcredit Borrower") +
  theme_bw()
```

## `stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.



```
# checking balances in covariates
hh_98_cov <- c('sexhead', 'agehead', 'educhead', 'lnland', 'vaccess', 'pcirr', 'rice', 'wheat', 'milk',
# carry out t-tests to see if differences are significant
attach(gbank)
t.test(sexhead ~ dfmfd)
##
##
   Welch Two Sample t-test
##
## data: sexhead by dfmfd
## t = 0.86669, df = 1125.6, p-value = 0.3863
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.01881904 0.04859905
## sample estimates:
## mean in group 0 mean in group 1
         0.9157303
                         0.9008403
t.test(agehead ~ dfmfd)
##
   Welch Two Sample t-test
##
```

## data: agehead by dfmfd

## t = -0.23139, df = 1059.8, p-value = 0.8171

```
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -1.671584 1.318939
## sample estimates:
## mean in group 0 mean in group 1
##
          45.91948
                          46.09580
t.test(educhead ~ dfmfd)
##
##
   Welch Two Sample t-test
##
## data: educhead by dfmfd
## t = 5.7661, df = 1010, p-value = 1.077e-08
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## 0.7868373 1.5986662
## sample estimates:
## mean in group 0 mean in group 1
          2.945693
                          1.752941
t.test(lnland ~ dfmfd)
##
##
   Welch Two Sample t-test
##
## data: lnland by dfmfd
## t = 7.6921, df = 847.64, p-value = 4.017e-14
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## 0.1726711 0.2909802
## sample estimates:
## mean in group 0 mean in group 1
         0.5006793
                         0.2688537
t.test(vaccess ~ dfmfd)
##
## Welch Two Sample t-test
##
## data: vaccess by dfmfd
## t = 1.2862, df = 1125.3, p-value = 0.1986
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.01489186 0.07156891
## sample estimates:
## mean in group 0 mean in group 1
         0.8501873
                         0.8218487
t.test(pcirr ~ dfmfd)
## Welch Two Sample t-test
##
## data: pcirr by dfmfd
## t = -1.7312, df = 1117.5, p-value = 0.08369
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
```

```
## 95 percent confidence interval:
## -0.07296898 0.00456121
## sample estimates:
## mean in group 0 mean in group 1
        0.5423426
                         0.5765465
t.test(rice ~ dfmfd)
## Welch Two Sample t-test
##
## data: rice by dfmfd
## t = -0.19126, df = 1112.1, p-value = 0.8484
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.2012212 0.1654770
## sample estimates:
## mean in group 0 mean in group 1
##
          10.27356
                          10.29144
t.test(wheat ~ dfmfd)
##
## Welch Two Sample t-test
##
## data: wheat by dfmfd
## t = -0.49583, df = 1095.5, p-value = 0.6201
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.12451624 0.07428002
## sample estimates:
## mean in group 0 mean in group 1
          7.453635
                          7.478753
t.test(milk ~ dfmfd)
##
## Welch Two Sample t-test
##
## data: milk by dfmfd
## t = 0.24473, df = 1091.7, p-value = 0.8067
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.3477054 0.4468020
## sample estimates:
## mean in group 0 mean in group 1
##
          10.92194
                          10.87240
t.test(egg ~ dfmfd)
##
## Welch Two Sample t-test
##
## data: egg by dfmfd
## t = -1.5656, df = 1124.8, p-value = 0.1177
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
```

```
## -0.078330251 0.008802826
## sample estimates:
## mean in group 0 mean in group 1
                          1.969769
##
          1.935005
detach(gbank)
# educhead, Inland, and oil has significant differences between treatment and control.
# omitting missing values for female
hh_98_nomiss <- hh_98cb %>%
  select(lexptot, dfmfd, one_of(hh_98_cov)) %>%
  na.omit()
# omitting missing values for male
hh_98_nomissm <- hh_98cbm %>%
  select(lexptot, dmmfd, one_of(hh_98_cov)) %>%
  na.omit()
# using propensity score matching to match using nearest neighbor for female
mod_match <- matchit(data = hh_98_nomiss, dfmfd ~ sexhead + agehead + educhead + lnland + vaccess + pci
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
summary(mod_match)
##
## Call:
## matchit(formula = dfmfd ~ sexhead + agehead + educhead + lnland +
       vaccess + pcirr + rice + wheat + milk + oil + egg, data = hh_98_nomiss,
       method = "nearest", distance = "glm", discard = "both", caliper = c(0.1,
##
##
           lnland = 0.5, educhead = 2), ration = 1, estimated = "ATT")
##
## Summary of Balance for All Data:
           Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
                                                            0.5870
## distance
                  0.5627
                                 0.4872
                                                 0.6615
                                                                      0.1509
                  0.9008
## sexhead
                                 0.9157
                                                -0.0498
                                                                      0.0149
## agehead
                  46.0958
                                45.9195
                                                0.0150
                                                            0.7471
                                                                      0.0312
## educhead
                   1.7529
                                 2.9457
                                                -0.3956
                                                            0.6190
                                                                      0.0762
## lnland
                   0.2689
                                 0.5007
                                                -0.6431
                                                            0.3527
                                                                      0.1170
## vaccess
                  0.8218
                                 0.8502
                                                -0.0741
                                                                      0.0283
## pcirr
                                                 0.1023
                                                          1.0330
                  0.5765
                                0.5423
                                                                      0.0411
## rice
                  10.2914
                                10.2736
                                                 0.0114
                                                            0.9855
                                                                      0.0160
## wheat
                                                 0.0306
                                                            0.8842
                                                                      0.0152
                  7.4788
                                7.4536
## milk
                  10.8724
                                10.9219
                                                -0.0152
                                                            0.8657
                                                                      0.0145
                                                 0.1277
                                                                      0.0185
## oil
                  39.6479
                                39.1309
                                                            1.0482
                                1.9350
                                                 0.0903
                                                                      0.0283
## egg
                   1.9698
                                                            1.1365
##
            eCDF Max
## distance 0.2209
## sexhead
              0.0149
## agehead
              0.0833
## educhead 0.1567
## lnland
              0.1824
## vaccess
              0.0283
```

```
## pcirr
              0.0985
## rice
              0.0457
## wheat
              0.0272
## milk
              0.0408
## oil
              0.0838
## egg
              0.0542
## Summary of Balance for Matched Data:
##
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
                                                              1.0564
## distance
                   0.5456
                                  0.5367
                                                  0.0779
                                                                        0.0272
## sexhead
                   0.9106
                                  0.9129
                                                 -0.0079
                                                                        0.0024
## agehead
                                                  0.0034
                                                              0.6573
                                                                        0.0370
                  45.1482
                                 45.1082
## educhead
                   2.0188
                                  2.2494
                                                 -0.0765
                                                              0.9742
                                                                        0.0169
## lnland
                                                 -0.0299
                   0.2946
                                  0.3054
                                                              0.9123
                                                                        0.0079
## vaccess
                   0.8518
                                  0.8494
                                                  0.0061
                                                                        0.0024
## pcirr
                   0.5628
                                  0.5474
                                                  0.0461
                                                              1.0453
                                                                        0.0288
## rice
                  10.3272
                                 10.3057
                                                  0.0138
                                                              1.0704
                                                                        0.0132
## wheat
                   7.4753
                                  7.4809
                                                 -0.0068
                                                              0.8430
                                                                        0.0120
## milk
                                                  0.0375
                  10.8906
                                 10.7680
                                                              0.9876
                                                                        0.0193
## oil
                  39.3813
                                 39.3192
                                                  0.0153
                                                              1.2353
                                                                        0.0145
                                                              1.2385
## egg
                   1.9588
                                  1.9377
                                                  0.0548
                                                                        0.0316
            eCDF Max Std. Pair Dist.
## distance
              0.0706
                               0.0822
## sexhead
              0.0024
                               0.5432
## agehead
              0.1035
                               1.0676
## educhead
              0.0541
                               0.5478
## lnland
                               0.2518
              0.0471
## vaccess
              0.0024
                               0.5842
## pcirr
              0.0706
                               1.0043
## rice
              0.0541
                               1.1034
## wheat
              0.0353
                               1.0780
## milk
              0.0400
                               1.0497
## oil
              0.0588
                               0.9109
## egg
              0.0518
                               1.0167
## Sample Sizes:
##
             Control Treated
## All
                 534
                         595
## Matched
                 425
                         425
                 105
## Unmatched
                          165
## Discarded
                            5
# using propensity score matching to match using nearest neighbor for male
mod_match1 <- matchit(data = hh_98_nomissm, dmmfd ~ sexhead + agehead + educhead + lnland + vaccess + p
summary(mod_match1)
##
## Call:
## matchit(formula = dmmfd ~ sexhead + agehead + educhead + lnland +
##
       vaccess + pcirr + rice + wheat + milk + oil + egg, data = hh_98_nomissm,
##
       method = "nearest", distance = "glm", discard = "both", caliper = c(0.1,
           lnland = 0.5, educhead = 2), ration = 1, estimated = "ATT")
##
```

##

## Summary of Balance for All Data:

```
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## distance
                    0.2519
                                   0.1811
                                                    0.6523
                                                                1.2798
                                                                           0.1861
## sexhead
                    0.9773
                                   0.8911
                                                    0.5783
                                                                           0.0862
                   44.0364
                                  46.4906
                                                   -0.2089
                                                                           0.0430
## agehead
                                                                0.8353
## educhead
                    2.7409
                                   2.2145
                                                    0.1434
                                                                1.1516
                                                                           0.0345
## lnland
                    0.3243
                                   0.3916
                                                   -0.1700
                                                                0.5617
                                                                           0.0346
## vaccess
                    0.8500
                                   0.8317
                                                    0.0513
                                                                           0.0183
## pcirr
                    0.5532
                                   0.5621
                                                   -0.0252
                                                                1.1482
                                                                           0.0266
## rice
                   10.5316
                                  10.2228
                                                    0.1731
                                                                1.4065
                                                                           0.0513
## wheat
                    7.5296
                                   7.4517
                                                    0.1006
                                                                0.8055
                                                                           0.0344
## milk
                   10.6085
                                  10.9654
                                                   -0.1070
                                                                0.9682
                                                                           0.0284
## oil
                   39.4259
                                  39.3979
                                                    0.0064
                                                                1.2295
                                                                           0.0218
## egg
                    1.8509
                                   1.9781
                                                   -0.3710
                                                                0.8270
                                                                           0.0836
##
            eCDF Max
## distance
               0.3022
## sexhead
               0.0862
## agehead
               0.1217
## educhead
               0.0790
## lnland
              0.0639
## vaccess
               0.0183
## pcirr
              0.0528
## rice
               0.1258
## wheat
              0.0756
## milk
               0.0861
## oil
               0.0531
## egg
               0.1483
##
## Summary of Balance for Matched Data:
##
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## distance
                    0.2422
                                   0.2416
                                                    0.0060
                                                                1.0166
                                                                           0.0029
                    0.9758
## sexhead
                                   0.9710
                                                    0.0324
                                                                           0.0048
## agehead
                   44.6039
                                  44.2560
                                                    0.0296
                                                                0.8495
                                                                           0.0156
## educhead
                    2.4203
                                   2.2319
                                                    0.0513
                                                                1.1899
                                                                           0.0177
## lnland
                                                                1.0664
                    0.3007
                                   0.2869
                                                    0.0348
                                                                           0.0168
## vaccess
                    0.8551
                                   0.8164
                                                    0.1082
                                                                           0.0386
                                                                1.0239
## pcirr
                    0.5554
                                   0.5221
                                                    0.0949
                                                                           0.0348
## rice
                   10.4341
                                  10.5109
                                                   -0.0431
                                                                1.3500
                                                                           0.0355
## wheat
                    7.5252
                                   7.6315
                                                   -0.1372
                                                                0.8211
                                                                           0.0478
## milk
                   10.6863
                                  10.6733
                                                    0.0039
                                                                1.1356
                                                                           0.0245
                                                   -0.0180
## oil
                                                                1.3855
                   39.4175
                                  39.4960
                                                                           0.0238
## egg
                    1.8641
                                   1.8805
                                                   -0.0477
                                                                0.9891
                                                                           0.0150
##
            eCDF Max Std. Pair Dist.
                                0.0155
## distance
              0.0242
## sexhead
              0.0048
                                0.0972
## agehead
               0.0773
                                1.0223
## educhead
              0.0483
                                0.5197
## lnland
              0.0870
                                0.2593
## vaccess
               0.0386
                                0.7576
## pcirr
               0.0773
                                1.0650
## rice
               0.0966
                                0.9173
## wheat
                                1.0994
               0.1256
## milk
              0.0918
                                1.0621
## oil
              0.0531
                                0.9421
## egg
               0.0290
                                0.8530
```

```
##
## Sample Sizes:
             Control Treated
##
                 909
                         220
## All
## Matched
                 207
                         207
## Unmatched
                 700
                         12
## Discarded
# creating a dataset of successful matches for female
dta_m <- match.data(mod_match)</pre>
# creating a dataset of successful matches for male
dta_m1 <- match.data(mod_match1)</pre>
# obtaining ATT on the matched data for female
t.test(lexptot ~ dfmfd, data = dta_m)
## Welch Two Sample t-test
##
## data: lexptot by dfmfd
## t = -3.0805, df = 847.95, p-value = 0.002133
\#\# alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.1721071 -0.0381451
## sample estimates:
## mean in group 0 mean in group 1
          8.359695
                          8.464821
# obtaining ATT on the matched data for male
t.test(lexptot ~ dmmfd, data = dta_m1)
##
## Welch Two Sample t-test
##
## data: lexptot by dmmfd
## t = 0.32575, df = 405.24, p-value = 0.7448
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.07442333 0.10398739
## sample estimates:
## mean in group 0 mean in group 1
         8.410672
                          8.395890
# regress treatment dummy on outcome and covariates that are different between treatment and control
lm(lexptot ~ dfmfd + educhead + lnland + oil, data = dta_m)
## Call:
## lm(formula = lexptot ~ dfmfd + educhead + lnland + oil, data = dta_m)
## Coefficients:
## (Intercept)
                      dfmfd
                                educhead
                                                lnland
                                                                oil
```

0.050424

0.005437

0.117853

##

7.991774

```
lm(lexptot ~ dmmfd + educhead + lnland + oil, data = dta_m1)
##
## Call:
## lm(formula = lexptot ~ dmmfd + educhead + lnland + oil, data = dta_m1)
## Coefficients:
## (Intercept)
                      dmmfd
                                educhead
                                               lnland
                                                                oil
##
       7.46349
                   -0.02227
                                 0.03729
                                               0.15187
                                                            0.02077
# The effects on female and male are very different.
Question 5. B)
# covariate matching estimator for female microcredit borrowers
mod_match3 <- matchit(data = hh_98_nomiss, dfmfd ~ sexhead + agehead + educhead + lnland + vaccess + pc
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
summary (mod_match3)
##
## Call:
## matchit(formula = dfmfd ~ sexhead + agehead + educhead + lnland +
       vaccess + pcirr + rice + wheat + milk + oil + egg, data = hh_98_nomiss,
       method = "nearest", distance = "mahalanobis", ratio = 1,
##
##
       estimated = "ATT")
##
## Summary of Balance for All Data:
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## sexhead
                   0.9008
                                 0.9157
                                                -0.0498
                                                                       0.0149
## agehead
                  46.0958
                                                 0.0150
                                                             0.7471
                                                                       0.0312
                                45.9195
## educhead
                   1.7529
                                 2.9457
                                                -0.3956
                                                             0.6190
                                                                       0.0762
## lnland
                   0.2689
                                 0.5007
                                                -0.6431
                                                             0.3527
                                                                       0.1170
## vaccess
                   0.8218
                                 0.8502
                                                -0.0741
                                                                       0.0283
                                                 0.1023
                                                             1.0330
## pcirr
                   0.5765
                                 0.5423
                                                                       0.0411
## rice
                  10.2914
                                10.2736
                                                 0.0114
                                                             0.9855
                                                                       0.0160
## wheat
                   7.4788
                                 7.4536
                                                 0.0306
                                                             0.8842
                                                                       0.0152
## milk
                  10.8724
                                10.9219
                                                -0.0152
                                                             0.8657
                                                                       0.0145
## oil
                  39.6479
                                39.1309
                                                 0.1277
                                                             1.0482
                                                                       0.0185
                   1.9698
                                1.9350
                                                 0.0903
                                                             1.1365
                                                                       0.0283
## egg
##
            eCDF Max
## sexhead
             0.0149
              0.0833
## agehead
## educhead 0.1567
## lnland
              0.1824
## vaccess
              0.0283
## pcirr
              0.0985
## rice
              0.0457
## wheat
              0.0272
## milk
              0.0408
## oil
              0.0838
## egg
              0.0542
##
```

## Summary of Balance for Matched Data:

```
Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
                   0.9026
                                                 -0.0439
                                                                        0.0131
## sexhead
                                 0.9157
                                                                  .
                  46.0187
                                 45.9195
                                                                        0.0305
## agehead
                                                  0.0084
                                                              0.7604
## educhead
                   1.7734
                                 2.9457
                                                 -0.3888
                                                             0.6117
                                                                        0.0745
## lnland
                   0.2805
                                 0.5007
                                                 -0.6109
                                                             0.3730
                                                                        0.1105
## vaccess
                   0.8539
                                 0.8502
                                                  0.0098
                                                                        0.0037
## pcirr
                   0.5945
                                 0.5423
                                                  0.1561
                                                             1.0311
                                                                        0.0595
## rice
                  10.3371
                                10.2736
                                                  0.0407
                                                             1.0730
                                                                        0.0115
## wheat
                   7.4302
                                 7.4536
                                                 -0.0285
                                                             0.9102
                                                                        0.0098
## milk
                  10.7864
                                10.9219
                                                 -0.0415
                                                             0.7984
                                                                        0.0205
## oil
                  39.5529
                                 39.1309
                                                  0.1043
                                                             1.1132
                                                                        0.0143
                                                 -0.0313
                   1.9230
                                                                        0.0162
## egg
                                  1.9350
                                                             0.9294
##
            eCDF Max Std. Pair Dist.
## sexhead
              0.0131
                              0.0689
## agehead
              0.0805
                              0.6585
## educhead
              0.1498
                              0.6633
## lnland
                              0.9619
              0.1723
## vaccess
              0.0037
                              0.0881
## pcirr
                              0.4782
              0.1255
## rice
              0.0300
                              0.5108
## wheat
              0.0225
                              0.4695
## milk
              0.0506
                              0.4901
## oil
                              0.4694
              0.0674
                              0.4807
## egg
              0.0337
##
## Sample Sizes:
##
             Control Treated
## All
                 534
                         595
                 534
                         534
## Matched
## Unmatched
                   0
                          61
## Discarded
                   0
                           0
# creating a dataset of successful matches for female
dta_m3 <- match.data(mod_match3)</pre>
# obtaining ATT on the matched data for female
t.test(lexptot ~ dfmfd, data = dta_m3)
##
## Welch Two Sample t-test
##
## data: lexptot by dfmfd
## t = -0.42794, df = 1057.1, p-value = 0.6688
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.07505290 0.04817764
## sample estimates:
## mean in group 0 mean in group 1
##
          8.447977
                          8.461414
# covariate matching estimator for male microcredit borrowers
mod_match4 <- matchit(data = hh_98_nomissm, dmmfd ~ sexhead + agehead + educhead + lnland + vaccess + p
summary (mod_match4)
```

```
##
## Call:
## matchit(formula = dmmfd ~ sexhead + agehead + educhead + lnland +
       vaccess + pcirr + rice + wheat + milk + oil + egg, data = hh_98_nomissm,
##
       method = "nearest", distance = "mahalanobis", ratio = 1,
##
##
       estimated = "ATT")
##
## Summary of Balance for All Data:
##
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## sexhead
                   0.9773
                                  0.8911
                                                   0.5783
                                                                         0.0862
## agehead
                  44.0364
                                 46.4906
                                                  -0.2089
                                                               0.8353
                                                                         0.0430
## educhead
                    2.7409
                                  2.2145
                                                   0.1434
                                                               1.1516
                                                                         0.0345
## lnland
                    0.3243
                                  0.3916
                                                  -0.1700
                                                               0.5617
                                                                         0.0346
## vaccess
                   0.8500
                                  0.8317
                                                   0.0513
                                                                         0.0183
## pcirr
                   0.5532
                                                  -0.0252
                                                              1.1482
                                                                         0.0266
                                  0.5621
## rice
                   10.5316
                                 10.2228
                                                   0.1731
                                                              1.4065
                                                                         0.0513
## wheat
                                                              0.8055
                   7.5296
                                  7.4517
                                                   0.1006
                                                                         0.0344
## milk
                  10.6085
                                 10.9654
                                                  -0.1070
                                                              0.9682
                                                                         0.0284
## oil
                  39.4259
                                 39.3979
                                                   0.0064
                                                              1.2295
                                                                         0.0218
## egg
                    1.8509
                                  1.9781
                                                  -0.3710
                                                              0.8270
                                                                         0.0836
##
            eCDF Max
## sexhead
              0.0862
## agehead
              0.1217
## educhead
              0.0790
## lnland
              0.0639
## vaccess
              0.0183
## pcirr
              0.0528
## rice
              0.1258
## wheat
              0.0756
## milk
              0.0861
## oil
              0.0531
## egg
              0.1483
##
## Summary of Balance for Matched Data:
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
##
## sexhead
                   0.9773
                                  0.9773
                                                   0.0000
                                                                         0.0000
## agehead
                  44.0364
                                 44.2318
                                                  -0.0166
                                                               0.9766
                                                                         0.0182
## educhead
                   2.7409
                                  2.4091
                                                   0.0904
                                                               1.1420
                                                                         0.0218
## lnland
                   0.3243
                                  0.3220
                                                   0.0057
                                                               0.9383
                                                                         0.0186
## vaccess
                                                                         0.0000
                   0.8500
                                  0.8500
                                                   0.0000
## pcirr
                   0.5532
                                                  -0.0497
                                                                         0.0216
                                  0.5707
                                                              1.0054
## rice
                  10.5316
                                 10.4537
                                                   0.0437
                                                              1.0765
                                                                         0.0186
## wheat
                   7.5296
                                  7.4604
                                                   0.0893
                                                              1.2025
                                                                         0.0136
## milk
                  10.6085
                                 10.5470
                                                   0.0184
                                                              1.0335
                                                                         0.0167
## oil
                  39.4259
                                                  -0.0332
                                 39.5705
                                                               0.9971
                                                                         0.0084
                                                  -0.0291
## egg
                    1.8509
                                  1.8609
                                                               1.0207
                                                                         0.0076
##
            eCDF Max Std. Pair Dist.
              0.0000
                               0.0000
## sexhead
## agehead
              0.0682
                               0.5444
## educhead
              0.0545
                               0.3429
## lnland
              0.0773
                               0.4391
## vaccess
              0.0000
                               0.0000
## pcirr
              0.0500
                               0.1597
## rice
              0.0545
                               0.1443
```

```
## wheat
              0.0318
                              0.2244
## milk
              0.0500
                              0.1254
              0.0227
## oil
                              0.1477
              0.0227
                              0.1457
## egg
##
## Sample Sizes:
             Control Treated
##
## All
                 909
                         220
## Matched
                 220
                         220
                 689
                           0
## Unmatched
## Discarded
                   0
                           0
# creating a dataset of successful matches for male
dta_m4 <- match.data(mod_match4)</pre>
# obtaining ATT on the matched data for female
t.test(lexptot ~ dmmfd, data = dta_m4)
##
## Welch Two Sample t-test
##
## data: lexptot by dmmfd
## t = -0.35349, df = 426.43, p-value = 0.7239
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.10445885 0.07261365
## sample estimates:
## mean in group 0 mean in group 1
          8.396819
                          8.412741
# The results from covariate matching are different than that from propensity score matching.
Question 5. C)
for (x in 1:5) {
  print(x)
mod_model <- matchit(data = hh_98_nomiss, dfmfd ~ sexhead + agehead + educhead + lnland + vaccess + pci
summary(mod_model)
# creating a dataset of successful matches for female
dta <- match.data(mod_model)</pre>
# obtaining ATT on the matched data for female
t.test(lexptot ~ dfmfd, data = dta)
}
## [1] 1
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
## [1] 2
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
## [1] 3
```

```
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
## [1] 4
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
## [1] 5
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
# The trade offs for using more nearest neighbors is that the coefficients will be biased whereas, trad
Question 5. D)
# matching using euclidean distance
mod_euclidean <- matchit(data = hh_98_nomiss, dfmfd ~ sexhead + agehead + educhead + lnland + vaccess +
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
summary(mod_euclidean)
##
## Call:
## matchit(formula = dfmfd ~ sexhead + agehead + educhead + lnland +
       vaccess + pcirr + rice + wheat + milk + oil + egg, data = hh_98_nomiss,
      method = "nearest", distance = "euclidean", ratio = 1, estimated = "ATT")
##
##
## Summary of Balance for All Data:
           Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
                   0.9008
                                                -0.0498
## sexhead
                                 0.9157
                                                                       0.0149
                                                 0.0150
                                                                       0.0312
## agehead
                  46.0958
                                45.9195
                                                            0.7471
## educhead
                   1.7529
                                 2.9457
                                                -0.3956
                                                            0.6190
                                                                      0.0762
## lnland
                   0.2689
                                 0.5007
                                                -0.6431
                                                            0.3527
                                                                      0.1170
                                                -0.0741
                                                                      0.0283
## vaccess
                   0.8218
                                 0.8502
## pcirr
                  0.5765
                                0.5423
                                                 0.1023
                                                            1.0330
                                                                      0.0411
## rice
                  10.2914
                                10.2736
                                                 0.0114
                                                            0.9855
                                                                      0.0160
## wheat
                  7.4788
                                7.4536
                                                 0.0306
                                                            0.8842
                                                                      0.0152
## milk
                  10.8724
                                10.9219
                                                -0.0152
                                                            0.8657
                                                                      0.0145
## oil
                  39.6479
                                39.1309
                                                 0.1277
                                                            1.0482
                                                                      0.0185
## egg
                  1.9698
                                1.9350
                                                 0.0903
                                                            1.1365
                                                                      0.0283
           eCDF Max
##
## sexhead
              0.0149
## agehead
             0.0833
## educhead 0.1567
## lnland
              0.1824
## vaccess
              0.0283
## pcirr
              0.0985
## rice
              0.0457
## wheat
              0.0272
## milk
              0.0408
## oil
              0.0838
## egg
              0.0542
```

## Summary of Balance for Matched Data:

```
0.9026
                                                 -0.0439
                                                                        0.0131
## sexhead
                                 0.9157
                                                                  .
                  46.0187
                                                                        0.0305
## agehead
                                 45.9195
                                                  0.0084
                                                              0.7604
## educhead
                   1.7734
                                 2.9457
                                                 -0.3888
                                                             0.6117
                                                                        0.0745
## lnland
                   0.2805
                                 0.5007
                                                 -0.6109
                                                             0.3730
                                                                        0.1105
## vaccess
                   0.8539
                                 0.8502
                                                  0.0098
                                                                        0.0037
## pcirr
                   0.5945
                                 0.5423
                                                  0.1561
                                                             1.0311
                                                                        0.0595
## rice
                  10.3371
                                10.2736
                                                  0.0407
                                                             1.0730
                                                                        0.0115
## wheat
                   7.4302
                                 7.4536
                                                 -0.0285
                                                             0.9102
                                                                        0.0098
## milk
                  10.7864
                                10.9219
                                                 -0.0415
                                                             0.7984
                                                                        0.0205
## oil
                  39.5529
                                 39.1309
                                                  0.1043
                                                             1.1132
                                                                        0.0143
                   1.9230
                                                                        0.0162
## egg
                                  1.9350
                                                 -0.0313
                                                             0.9294
##
            eCDF Max Std. Pair Dist.
## sexhead
              0.0131
                              0.5326
              0.0805
                              0.2530
## agehead
## educhead
              0.1498
                              0.5440
## lnland
                              1.2399
              0.1723
## vaccess
              0.0037
                              0.5677
## pcirr
              0.1255
                              0.8716
## rice
              0.0300
                              0.7340
## wheat
              0.0225
                              0.8333
## milk
                              0.5033
              0.0506
## oil
              0.0674
                              0.4055
                              0.6618
## egg
              0.0337
##
## Sample Sizes:
##
             Control Treated
## All
                 534
                         595
                 534
                         534
## Matched
## Unmatched
                   0
                          61
## Discarded
                   0
                           0
# creating a dataset of successful matches for female
dta_euclidean <- match.data(mod_euclidean)</pre>
# obtaining ATT on the matched data for female
t.test(lexptot ~ dfmfd, data = dta_euclidean)
##
## Welch Two Sample t-test
##
## data: lexptot by dfmfd
## t = -0.42794, df = 1057.1, p-value = 0.6688
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.07505290 0.04817764
## sample estimates:
## mean in group 0 mean in group 1
##
          8.447977
                          8.461414
# matching using mahalanobis distance
mod_mhs <- matchit(data = hh_98_nomiss, dfmfd ~ sexhead + agehead + educhead + lnland + vaccess + pcirr
## Warning: Fewer control units than treated units; not all treated units will get
## a match.
```

Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean

## summary(mod\_mhs)

```
##
## Call:
## matchit(formula = dfmfd ~ sexhead + agehead + educhead + lnland +
       vaccess + pcirr + rice + wheat + milk + oil + egg, data = hh_98_nomiss,
##
       method = "nearest", distance = "mahalanobis", ratio = 1,
##
       estimated = "ATT")
##
## Summary of Balance for All Data:
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## sexhead
                   0.9008
                                  0.9157
                                                 -0.0498
                                                                        0.0149
                  46.0958
                                                              0.7471
                                                                        0.0312
## agehead
                                 45.9195
                                                  0.0150
## educhead
                   1.7529
                                  2.9457
                                                 -0.3956
                                                              0.6190
                                                                        0.0762
## lnland
                   0.2689
                                  0.5007
                                                 -0.6431
                                                              0.3527
                                                                        0.1170
## vaccess
                   0.8218
                                  0.8502
                                                 -0.0741
                                                                        0.0283
## pcirr
                   0.5765
                                  0.5423
                                                  0.1023
                                                              1.0330
                                                                        0.0411
## rice
                                                              0.9855
                  10.2914
                                 10.2736
                                                  0.0114
                                                                        0.0160
## wheat
                   7.4788
                                                  0.0306
                                                              0.8842
                                                                        0.0152
                                 7.4536
## milk
                  10.8724
                                 10.9219
                                                 -0.0152
                                                              0.8657
                                                                        0.0145
## oil
                  39.6479
                                 39.1309
                                                  0.1277
                                                              1.0482
                                                                        0.0185
## egg
                   1.9698
                                 1.9350
                                                  0.0903
                                                              1.1365
                                                                        0.0283
##
            eCDF Max
## sexhead
              0.0149
## agehead
              0.0833
## educhead 0.1567
## lnland
              0.1824
## vaccess
              0.0283
## pcirr
              0.0985
## rice
              0.0457
## wheat
              0.0272
## milk
              0.0408
## oil
              0.0838
## egg
              0.0542
## Summary of Balance for Matched Data:
            Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
## sexhead
                   0.9026
                                  0.9157
                                                 -0.0439
                                                                        0.0131
## agehead
                  46.0187
                                                  0.0084
                                                              0.7604
                                                                        0.0305
                                 45.9195
## educhead
                   1.7734
                                  2.9457
                                                 -0.3888
                                                              0.6117
                                                                        0.0745
## lnland
                   0.2805
                                  0.5007
                                                 -0.6109
                                                              0.3730
                                                                        0.1105
## vaccess
                   0.8539
                                  0.8502
                                                  0.0098
                                                                        0.0037
## pcirr
                   0.5945
                                 0.5423
                                                  0.1561
                                                              1.0311
                                                                        0.0595
## rice
                  10.3371
                                 10.2736
                                                  0.0407
                                                              1.0730
                                                                        0.0115
## wheat
                                                              0.9102
                   7.4302
                                 7.4536
                                                 -0.0285
                                                                        0.0098
## milk
                  10.7864
                                 10.9219
                                                 -0.0415
                                                              0.7984
                                                                        0.0205
## oil
                  39.5529
                                 39.1309
                                                  0.1043
                                                                        0.0143
                                                              1.1132
## egg
                   1.9230
                                  1.9350
                                                 -0.0313
                                                              0.9294
                                                                        0.0162
##
            eCDF Max Std. Pair Dist.
## sexhead
              0.0131
                               0.0689
## agehead
              0.0805
                               0.6585
## educhead
                               0.6633
              0.1498
## lnland
              0.1723
                               0.9619
## vaccess
              0.0037
                               0.0881
```

```
## pcirr
                              0.4782
             0.1255
## rice
             0.0300
                              0.5108
## wheat
             0.0225
                              0.4695
## milk
             0.0506
                              0.4901
## oil
              0.0674
                              0.4694
              0.0337
                              0.4807
## egg
## Sample Sizes:
##
            Control Treated
## All
                534
                         595
## Matched
                 534
                         534
                         61
## Unmatched
                  0
## Discarded
                   0
# creating a dataset of successful matches for female
dta_mhs <- match.data(mod_mhs)</pre>
# obtaining ATT on the matched data for female
t.test(lexptot ~ dfmfd, data = dta_mhs)
##
## Welch Two Sample t-test
##
## data: lexptot by dfmfd
## t = -0.42794, df = 1057.1, p-value = 0.6688
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## -0.07505290 0.04817764
## sample estimates:
## mean in group 0 mean in group 1
##
          8.447977
                         8.461414
```