Gabarito da 1^a Lista de Exercícios - MAE514

Professora: Gisela Tunes Monitor: Rodrigo Passos Martins

Exercício 1

Temos T uma v.a. contínua não negativa com:

- f.d.p. igual a $f_T(t)$
- função de Sobrevivência igual a $S_T(t)$
- função de risco igual a $\alpha_T(t)$

Pela definição, temos que:

$$\alpha_T(t) = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t \mid T \ge t)}{\Delta t}$$

Usando o Teorema de Bayes, obtemos:

$$\alpha_T(t) = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t \mid T \ge t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{P(T \ge t \mid t \le T \le t + \Delta t).P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t).\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t + \Delta t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t)}{P(T \ge t)} = \lim_{\Delta t \to 0} \frac{P(t \ge t)}{P(T \ge t)} =$$

Agora, lembremos que $F_T(t) = P(T \le t)$ e que $S_T(t) = P(T > t)$:

$$\alpha_T(t) = \lim_{\Delta t \to 0} \frac{P(T \le t + \Delta t) - P(T \le t)}{P(T \ge t) \cdot \Delta t} = \lim_{\Delta t \to 0} \frac{F_T(t + \Delta t) - F_T(t)}{S_T(t) \cdot \Delta t} = \frac{1}{S_T(t)} \cdot \lim_{\Delta t \to 0} \frac{F_T(t + \Delta t) - F_T(t)}{\Delta t}$$

Podemos notar que o segundo fator é igual a derivada de $F_T(t)$ em t:

$$\alpha_T(t) = \frac{1}{S_T(t)} \cdot \frac{d}{dt} F(t) = \frac{1}{S_T(t)} \cdot \frac{d}{dt} (1 - S_T(t)) = \frac{1}{S_T(t)} \cdot \left(\frac{d}{dt} 1 - \frac{d}{dt} S_T(t) \right) = \frac{1}{S_T(t)} \cdot \left(-\frac{d}{dt} S_T(t) \right) = -\left(\frac{1}{S_T(t)} \cdot \frac{d}{dt} S_T(t$$

Vemos agora que o produto entre parênteses é a derivada de $ln(S_T(t))$ em t. Então:

$$\alpha_T(t) = -\frac{d}{dt}ln(S_T(t)) \Leftrightarrow -\alpha_T(t) = \frac{d}{dt}ln(S_T(t)) \Leftrightarrow -\int_0^t \alpha_T(s)ds = ln(S_T(t)) \Leftrightarrow exp\left\{-\int_0^t \alpha_T(s)ds\right\} = S_T(t) \blacksquare$$

a)

Vamos provar que se $\alpha(t) = \alpha_1(t) + \alpha_2(t)$, em que $\alpha_1(t)$ e $\alpha_2(t)$ são funções de taxa de falha de tempos de falha independentes T_1 e T_2 , então T tem a mesma distribuição de $min(T_1, T_2)$:

Seja S(t) a função de Sobrevivência da variável T. Sabemos que (pelo **Exercício 1**):

$$S(t) = exp\left\{-\int_0^t \alpha_1(s) + \alpha_2(s)ds\right\} = exp\left\{-\left[\int_0^t \alpha_1(s)ds + \int_0^t \alpha_2(s)ds\right]\right\} = exp\left\{-\int_0^t \alpha_1(s)ds - \int_0^t \alpha_2(s)ds\right\}$$

Vamos separar S(t) em termos de $S_1(t)$ e $S_2(t)$:

$$S(t) = exp\left\{-\int_0^t \alpha_1(s)ds\right\} \cdot exp\left\{-\int_0^t \alpha_2(s)ds\right\} = S_1(t) \cdot S_2(t)$$

Agora, vamos lembrar que S(t), por definição, é igual a 1 - F(t):

$$S(t) = 1 - F(t) \Leftrightarrow F(t) = 1 - S(t) = 1 - S_1(t).S_2(t) = 1 - P(T_1 > t).P(T_2 > t)$$

Como são tempos de falha independentes, temos:

$$F(t) = 1 - P(T_1 > t).P(T_2 > t) = 1 - P(T_1 > t, T_2 > t)$$

Podemos reescrever $P(T_1 > t, T_2 > t)$ com o mínimo entre os dois tempos:

$$F(t) = 1 - P(T_1 > t, T_2 > t) = 1 - P(min(T_1, T_2) > t) = P(min(T_1, T_2) \le t)$$

Note que essa é a definição da função acumulada F:

$$F(t) = P(min(T_1, T_2) \le t) = F_{min(T_1, T_2)}(t)$$

Como as funções acumuladas são as mesmas para T e para $min(T_1, T_2)$, temos que eles têm a mesma distribuição.

b)

Vamos provar que se T é variável aleatória contínua com função de sobrevivência S(t), então, vale a igualdade $E(T-t\mid T>t)=\frac{\int_t^\infty S(u)du}{S(t)}.$ Primeiro, temos que:

$$E(T - t \mid T > t) = \int_0^\infty (u - t) f_{T|T>t}(u) \ du$$

Vamos reescrever a fim de retirar o condicionamento:

$$\int_0^\infty (u-t) \cdot f_{T|T>t}(u) \ du = \frac{\int_0^\infty (u-t) \cdot f_T(u) \cdot \mathbb{1}_{(t,\infty)}(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty (u-t) \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du - t \cdot \int_t^\infty f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du - t \cdot \int_t^\infty f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du - t \cdot \int_t^\infty f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T(u) \ du}{\int_t^\infty u \cdot f_T(u) \ du} = \frac{\int_t^\infty u \cdot f_T($$

Agora, vamos lembrar que $\int_t^\infty f_T(u)\ du = S(t)$ e que $f(t) = -\frac{dS(t)}{dt}$:

$$\frac{\int_{t}^{\infty} u.f_{T}(u) \ du - t. \int_{t}^{\infty} f_{T}(u) \ du}{\int_{t}^{\infty} f_{T}(u) \ du} = \frac{-\int_{t}^{\infty} u.\frac{dS(u)}{du} \ du - t.S(t)}{S(t)} = \frac{-\left(u.S(u) \mid_{t}^{\infty} - \int_{t}^{\infty} S(u) \ du\right) - t.S(t)}{S(t)}$$

Como $\lim_{t\to\infty} S(t) = 0$, temos que:

$$\frac{-\left(u.S(u)\mid_t^\infty-\int_t^\infty S(u)\ du\right)-t.S(t)}{S(t)}=\frac{t.S(t)+\int_t^\infty S(u)\ du-t.S(t)}{S(t)}=\frac{\int_t^\infty S(u)du}{S(t)} \blacksquare$$

Consideremos a distribução com função de taxa de falha constante $\lambda=0,07$ no intervalo t=0 até t=5 e constante igual a $\lambda=0,14$ para t>5.

a)

```
# FAZENDO O GRÁFICO DA FUNÇÃO DE TAXA DE FALHA (EM R)
# Lambda igual a 0.07
taxa_ate_5 = rep(0.07, 6)
# Lambda iqual a 0.14
taxa_depois_5 = rep(0.14, 20)
# Fazendo o gráfico
plot(y = taxa_ate_5, x = 0:5,
     type = "1",
     xlim = c(0, 25), ylim = c(0, 0.2),
     main = "Gráfico de função de taxa de falha",
     ylab = "Taxa de falha", xlab = "t")
par(new = T)
plot(y = taxa_depois_5, x = 5:24,
     type = "1",
     xlim = c(0, 25), ylim = c(0, 0.2),
     main = "",
     xlab = "", ylab = "",
     axes = F)
par(new = T)
plot(5, 0.07,
     type = "p",
     pch = 16,
     xlim = c(0, 25), ylim = c(0, 0.2),
     main = "",
     xlab = "", ylab = "",
     axes = F)
par(new = T)
plot(5, 0.14,
     type = "p",
     xlim = c(0, 25), ylim = c(0, 0.2),
     main = "",
     xlab = "", ylab = "",
     axes = F)
```

Gráfico de função de taxa de falha

b)

Sabemos que, para taxa de falha $\alpha(t)$, temos:

$$S(t) = \exp\left\{-\int_0^t \alpha(s)ds\right\}$$

Por conta da depedência do valor de t para o valor de $\alpha(t)$, façamos S(t) para $0 \le t \le 5$:

$$S(t) = \exp\left\{-\int_0^t \alpha(s)ds\right\} = \exp\left\{-\int_0^t 0,07ds\right\} = \exp\{-0,07.(t-0)\} = \exp\{-0,07.t\}, \text{ para } 0 \leq t \leq 5$$

Agora, façamos S(t) para t > 5:

$$S(t) = \exp\left\{-\left[\int_{0}^{5} 0,07 ds + \int_{5}^{t} 0,14 ds\right]\right\} = \exp\left\{-\left[0,07.(5-0) + 0,14.(t-5)\right]\right\} = \exp\left\{-0,14.t + 0,35\right\}, \text{ para } t \geq 5$$

Assim, temos que:

$$S(t) = \begin{cases} exp\{-0,07.t\}, & \text{para } 0 \le t \le 5\\ exp\{-0,14.t+0,35\}, & \text{para } t > 5 \end{cases}$$

Façamos o gráfico de S(t):

```
# FAZENDO O GRÁFICO DA FUNÇÃO DE SOBREVIVÊNCIA (EM R)
# Sobrevivência até o tempo 5
sobrevivencia_ate_5 = function(t) \{exp(-0.07*t)\}
# Sobrevivência após o tempo 5
sobrevivencia_depois_5 = function(t)\{exp(-0.14*t + 0.35)\}
plot(y = sobrevivencia_ate_5(0:5), x = 0:5,
     type = "1", 1wd = 2,
     xlim = c(0, 25), ylim = c(0, 1),
    main = "Gráfico de função de sobrevivência",
     ylab = "Probabilidade de Sobrevivência", xlab = "t")
par(new = T)
plot(y = sobrevivencia_depois_5(5:24), x = 5:24,
     type = "1", 1wd = 2,
     xlim = c(0, 25), ylim = c(0, 1),
     main = "",
     xlab = "", ylab = "",
     axes = F)
```

Gráfico de função de sobrevivência

 $\mathbf{c})$

O tempo mediano $t_{mediano}$ de sobrevivência é tal que $S(t_{mediano}) = 0, 5$. Assim:

$$S(t_{mediano}) = exp\{-0, 14.t_{mediano} + 0, 35\} = 0, 5 \Leftrightarrow -0, 14.t_{mediano} + 0, 35 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \cong 7, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 7, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 7, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 7, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 7, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.5) \Leftrightarrow t_{mediano} = \frac{-ln(0.5) + 0, 35}{0, 14} \approx 1, 45 = ln(0.$$

O tempo até o óbito de pacientes submetidos a transplante de rim (em dias) segue uma distribuição log-logística, com função de sobrevivência dada por

$$S(t) = \frac{1}{1 + \lambda t^{\alpha}}, \ t \ge 0, \text{com } \alpha = 1, 5 \text{ e } \lambda = 0,001$$

a)

Probabilidade de sobrevivência no dia 50 (t = 50):

$$S(50) = \frac{1}{1 + 0,001.50^{1,5}} \cong 0,74$$

Probabilidade de sobrevivência no dia 100 (t = 100):

$$S(50) = \frac{1}{1 + 0.001 \cdot 100^{1.5}} \cong 0.5$$

Probabilidade de sobrevivência no dia 150 (t = 150):

$$S(150) = \frac{1}{1+0.001150^{1.5}} \cong 0.35$$

b)

O tempo mediano $t_{mediano}$ de sobrevivência é tal que $S(t_{mediano}) = 0, 5$, então:

$$S(t_{mediano}) = \frac{1}{1 + 0,001.t_{mediano}^{1.5}} = 0.5 \Leftrightarrow 2 = 1 + 0.001.t_{mediano}^{1.5} \Leftrightarrow t_{mediano}^{3/2} = 1000 \Leftrightarrow t_{mediano} =$$

 $\mathbf{c})$

Usando o resultado do Exercício 1, temos:

$$S(t) = exp\left\{-\int_0^t \alpha(s)ds\right\} \Leftrightarrow lnS(t) = -\int_0^t \alpha(s)ds \Leftrightarrow -lnS(t) = \int_0^t \alpha(s)ds \Leftrightarrow -\frac{d}{dt}(lnS(t)) = \alpha(t)$$

Então, temos que a função de taxa de falha é dada por:

$$\alpha(t) = -\frac{d}{dt}(lnS(t)) = -\frac{d}{dt}\left[ln\left(\frac{1}{1+0,001.t^{1,5}}\right)\right] = \frac{d}{dt}\left[ln(1+0,001.t^{1,5})\right] = \frac{1}{1+0,001.t^{1,5}}.1, 5.0,001.t^{0,5} = \frac{0,0015.t^{0,5}}{1+0,001.t^{1,5}}$$

Vamos simplificar um pouco a expressão:

$$\alpha(t) = \frac{0,0015.t^{0,5}}{1+0,001.t^{1,5}} = \frac{1,5.t^{0,5}}{1000+t^{1,5}}$$

Agora, vamos derivar $\alpha(t)$ para que possamos verificar o comportamento da função:

$$\alpha^{'}(t) = \frac{(1, 5.t^{0,5})^{'}.(1000 + t^{1,5}) - (1, 5.t^{0,5}).(1000 + t^{1,5})^{'}}{(1000 + t^{1,5})^{2}} = \frac{750.t^{-0,5} - 1, 5.t}{(1000 + t^{1,5})^{2}}$$

Para achar o ponto de mudança, façamos $\alpha^{'}(t) = 0$:

$$\alpha^{'}(t) = 0 \Leftrightarrow \frac{750.t^{-0.5} - 1, 5.t}{(1000 + t^{1.5})^2} = 0 \Leftrightarrow 750.t^{-0.5} - 1, 5.t = 0 \Leftrightarrow 750.t^{-0.5} = 1, 5.t \Leftrightarrow 500 = t^{1.5} \Leftrightarrow t \cong 62,996$$

Portanto, até $t \cong 62,996$ a função de taxa de falha é crescente e depois fica decrescente, como podemos ver no gráfico:

Gráfico de função de taxa de falha

d)

O tempo médio de vida dos pacientes após o transplante é dado por (livro do Klein e Moeschberger, pág. 38):

$$\frac{\pi.cossec\left(\frac{\pi}{\alpha}\right)}{\alpha.\lambda^{1/\alpha}} = \frac{\pi.cossec\left(\frac{\pi}{1,5}\right)}{1,5.0,001^{1/1,5}} = \frac{\pi.cossec\left(\frac{2\pi}{3}\right)}{0,015} \cong 241.84$$

Vamos considerar a distribuição **Weibull**, com função de sobrevivência dada por $S(t) = exp\{-\lambda t^{\rho}\}$. Usando o software R, vamos fazer gráficos para a função de taxa de falha dessa distribuição, que é dada por:

$$\alpha(t) = -\frac{dlnS(t)}{dt} = -\frac{dln(exp\{-\lambda t^{\rho}\})}{dt} = -\frac{d(-\lambda t^{\rho})}{dt} = \lambda \rho t^{\rho-1}$$

Vamos fazer os gráficos com pares de $\lambda = (0,1;2)$ e $\rho = (0,5;1;2)$:

```
# FAZENDO O GRÁFICO DA FUNÇÃO DE TAXA DE FALHA (EM R)
# Função de taxa de falha
taxa_de_falha = function(t, lambda, p){lambda*p*t^(p-1)}
# Gráfico da função de taxa de falha
x = seq(from = 0, to = 10, by = 0.01)
plot(y = taxa_de_falha(x, 2, 0.5), x,
     ylim = c(0, 5),
     type = "1", 1wd = 2,
    main = "Gráfico de função de taxa de falha da Weibull",
     ylab = "Probabilidade de sobrevivência", xlab = "t")
curve(taxa de falha(x, 2, 1), 0, 10, add = TRUE, col = "red", lwd = 2)
curve(taxa_de_falha(x, 2, 2), 0, 10, add = TRUE, col ="blue", lwd = 2)
curve(taxa_de_falha(x, 0.1, 0.5), 0, 10, add = TRUE, col ="green", lwd = 2)
curve(taxa_de_falha(x, 0.1, 1), 0, 10, add = TRUE, col ="purple", lwd = 2)
curve(taxa de falha(x, 0.1, 2), 0, 10, add = TRUE, col ="orange", lwd = 2)
legend("topright",
       legend = c("p = 0,5 e lambda = 2",
                  "p = 1 e lambda = 2",
                  "p = 2 e lambda = 2",
                  "p = 0,5 e lambda = 0,1",
                  "p = 1 e lambda = 0,1",
                  "p = 2 e lambda = 0,1"),
       lwd = 2,
       col = c("black", "red", "blue", "green", "purple", "orange"),
       cex = 0.6)
```

Gráfico de função de taxa de falha da Weibull

Note que, como esperado algebricamente, quando $\rho = 0$, a taxa de falha é constante igual a λ (pois, $\lambda \rho t^{\rho-1} \Rightarrow \lambda 1 t^0$). Agora, vamos fazer as respectivas funções de sobrevivência:

```
# FAZENDO O GRÁFICO DA FUNÇÃO DE SOBREVIVÊNCIA (EM R)
# Função de sobrevivência
taxa_de_falha = function(t, lambda, p){exp(-lambda*t^(p))}
# Gráfico da função de sobrevivência
x = seq(from = 0, to = 1, by = 0.01)
plot(y = taxa_de_falha(x, 2, 0.5), x,
     ylim = c(0, 1),
     type = "1", 1wd = 2,
    main = "Gráfico de função de sobrevivência da Weibull",
    ylab = "Taxa de falha", xlab = "t")
curve(taxa_de_falha(x, 2, 1), 0, 1, add = TRUE, col = "red", lwd = 2)
curve(taxa_de_falha(x, 2, 2), 0, 1, add = TRUE, col ="blue", lwd = 2)
curve(taxa_de_falha(x, 0.1, 0.5), 0, 1, add = TRUE, col ="green", lwd = 2)
curve(taxa_de_falha(x, 0.1, 1), 0, 1, add = TRUE, col ="purple", lwd = 2)
curve(taxa_de_falha(x, 0.1, 2), 0, 1, add = TRUE, col ="orange", lwd = 2)
legend("bottomleft",
       legend = c("p = 0.5 e lambda = 2",
                  "p = 1 e lambda = 2",
                  "p = 2 e lambda = 2"
                  "p = 0,5 e lambda = 0,1",
                  "p = 1 e lambda = 0,1",
                  "p = 2 e lambda = 0,1"),
       lwd = 2,
```

```
col = c("black", "red", "blue", "green", "purple", "orange"),
cex = 0.6)
```

Gráfico de função de sobrevivência da Weibull

Vamos considerar a distribuição Weibull do **Exercício 5** e escolher uma das combinações de λ e ρ utilizadas. No caso, serão utilizadas $\lambda = 0, 1$ e $\rho = 2$. Com o R, vamos gerar uma amostra de tamanho n = 100 dessa distribuição Weibull.

Uma observação: o R utiliza uma parametrização diferente da apresentada na lista de exercícios. Nossa distribuição de Weibull é assim:

$$S(t) = \exp\{-\lambda t^{\rho}\}$$

O que nos dá a seguinte as seguintes expressões:

$$\alpha(t) = \lambda \rho t^{\rho - 1}$$

$$f(t) = \alpha(t).S(t) = \lambda \rho t^{\rho-1}.exp\{-\lambda t^{\rho}\}$$

Já no R, segundo a documentação, a distribuição Weibull utilizada é diferente:

$$f(t) = a.b^{-a}.t^{a-1}.exp\{-b^{-a}.t^a\} = \left(\frac{1}{b}\right)^a.a.t^{a-1}.exp\left\{-\frac{1}{b}.t^a\right\}$$

Então, podemos notar que, na nossa parametrização, $a = \rho$ e $b = \lambda^{-1/\rho}$. Sendo assim, vamos fazer a amostragem:

```
# FAZENDO A AMOSTRA DA DISTRIBUIÇÃO WEIBULL (EM R)

lambda <- 0.1
p <- 2

# Reparametrizando
a = p
b = lambda^(-1/p)

# Fazendo amostra (n = 100)
set.seed(132000)
amostra_100 <- rweibull(100, a, b)</pre>
```

a)

Boxplot dos dados da amostra (n = 100)


```
# Histograma com a curva empirica
hist(amostra_100,
    main = "Histograma dos dados da amostra (n = 100)",
    xlab = "Dados da amostra", ylab = "Probabilidade",
    xlim = c(0, 20), ylim = c(0, 1),
    col = "chartreuse2",
    probability = T)
curve(dweibull(x, a, b), 0, 20, add = TRUE, lwd = 2)
# Curvas
library(survival)
```

Histograma dos dados da amostra (n = 100)

Curvas de Sobrevivência (Empírica e Teórica) (n = 100)

b)

Usando a mesma distribuição do item **a)** vamos fazer um gráfico de quantis (QQ Plot) comparando os quantis empíricos com os quantis teóricos:

QQ Plot para a distribuição Weibull (n = 100)

c)

Vamos padronizar os dados da amostra, ou seja, subtrair a média amostral e dividir pelo desvio padrão:

```
amostra_100_padronizada <- scale(amostra_100)
```

Agora vamos fazer um gráfico de quantis (QQ Plot) comparando os quantis empíricos com os dados agora padronizados com os quantis da distribuição Normal:

QQ Plot para a distribuição Normal (n = 100)

O gráfico acima mostra que os dados não se adequam a distribuição Normal, pois, os primeiros dados deixam a cauda mais pesada.

d)

Vamos repetir os itens **b**) e **c**) para n = 40, n = 300 e n = 1200:

```
# FAZENDO A AMOSTRA DA DISTRIBUIÇÃO WEIBULL (EM R)

lambda <- 0.1
p <- 2

# Reparametrizando
a = p
b = lambda^(-1/p)

# Fazendo amostras
set.seed(132000)
amostra_40 <- rweibull(40, a, b)
amostra_300 <- rweibull(300, a, b)
amostra_1200 <- rweibull(1200, a, b)
# Gráfico do QQPlot (n = 40)
qqPlot(x = amostra_40, y = "weibull",</pre>
```

```
main = "QQ Plot para a distribuição Weibull (n = 40)",
xlab = "Quantis empíricos (amostra com n = 40)", ylab = "Quantis da distribuição Weibull")
```

QQ Plot para a distribuição Weibull (n = 40)

QQ Plot para a distribuição Weibull (n = 300)

QQ Plot para a distribuição Weibull (n = 1200)

Como esperado, quanto maior a amostra, mais alinhados com os quantis empíricos os quantis amostrais ficam. Agora, vejamos, com a padronização, a adequabilidade com a distribuição Normal:

QQ Plot para a distribuição Normal (n = 40)

Quantis empíricos (amostra com n = 40)

QQ Plot para a distribuição Normal (n = 300)

Quantis empíricos (amostra com n = 300)

QQ Plot para a distribuição Normal (n = 1200)

A adequabilidade da distribuição Normal para todas as amostras não é vista, exceto para n=40. Quanto maior o tamanho da amostra, mais distorcido é o QQ Plot.