Problem 1. Prove that $\sin x$ is continuous on \mathbf{R} .

Proof. Fix a point $c \in \mathbf{R}$. Pick an arbitrary $\epsilon > 0$. We are interested to make the distance |f(x) - f(c)| as small as we please. Let's explore the expression |f(x) - f(c)|. We have:

$$|f(x) - f(c)| = |\sin(x) - \sin(c)|$$

$$= 2 \left| \cos\left(\frac{x+c}{2}\right) \sin\left(\frac{x-c}{2}\right) \right|$$

$$\leq 2 \left| \sin\left(\frac{x-c}{2}\right) \right|$$

$$\{\because |\cos \theta| \leq 1\}$$

If we replace the expression |f(x) - f(c)| by an upper bound in the inequality $|f(x) - f(c)| < \epsilon$, we strengthen the condition we are interested to prove. So, let's show that:

$$2\left|\sin\left(\frac{x-c}{2}\right)\right| < \epsilon \tag{1}$$

The Maclaurin's series expansion for $f(x) = \sin(x - c)$ is given by,

$$\sin(x-c) = (x-c) - \frac{(x-c)^3}{3!} + \frac{(x-c)^5}{5!} - \dots +$$
$$= (x-c) - \left[\frac{(x-c)^3}{3!} - \frac{(x-c)^5}{5!} + \dots \right]$$

Assume that $\delta < 1$.

If $(x-c) \ge 0$, then $\sin(x-c) \le (x-c) \le |x-c|$. If (x-c) < 0, then $\sin(x-c) \ge (x-c)$. Therefore, $\sin(x-c) \ge -|x-c|$. Consequently,

$$-(|x-c|) \le \sin(x-c) \le (|x-c|)$$

So, $|\sin(x - c)| \le |(x - c)|$.

So, if we replace $\left|\sin\left(\frac{x-c}{2}\right)\right|$ by its upper bound $\left|\frac{x-c}{2}\right|$, we again strengthen the condition we want to prove. Therefore, we must prove that:

$$2\left|\frac{x-c}{2}\right| < \epsilon$$

$$\iff \left|\frac{x-c}{2}\right| < \frac{\epsilon}{2}$$

Pick $\delta < \frac{\epsilon}{2}$. Then, $|x - c| < \delta$ implies that $|(x - c)/2| < \delta$. This in turn would mean $|f(x) - f(c)| < \epsilon$. Consequently, f(x) is continuous at $c \in \mathbf{R}$. As the choice of δ does not depend on the point c, f is uniformly continuous on \mathbf{R} .

1