ShenZhen Gather Genius Technology Limited

UA402D WiFi Module user Manual

UA402D Wi-Fi Module

The document is provided "AS IS," without warranty of any kinds, including the implied warranties of merchantability and applies to any guarantee for a particular purpose, or non infringement, and any proposal, specification or sample of any guarantee mentioned anywhere else.

This document does not bear any responsibility, including the use of the document information from infringement of any patent infringement liability.

This document is not here by estoppel or otherwise, any intellectual property rights is granted the license, whether express or implied license.

Hereby declare: belongs to Wi-Fi ALLIANCE. All the LOGOs and trademarks in this document are property of the proprietor.

The information in this document might be modified for upgrade or other reasons. JIXIAN corporation reserves the rights to make change without notice. This document is used for design guide only, JIXIAN corporation try the best to supply the correct information, but it does not assure there is not any error in this document. All the ostensive or implied states, information, suggestion are not guaranteed.

INDEX

1.	GENERA	GENERAL DESCRIPTION				
	1.1.	Features	3			
2.	Pin assi	gnment	5			
3.	Package	e and dimensions	6			
4.	Main fu	nction description	8			
	4.1.	MCU	8			
	4.2.	Memory	8			
	4.3.	Interface	8			
	4.4.	Absolute maximum ratings	8			
	4.5.	Recommended operating range	9			
	4.6.	Digital IO DC characteristics	9			
5.	RF spec	ification	9			
6.	Power c	consumption	10			
7.	Recomn	mended Reflow Profile	11			
8.	AT instr	uction	12			
	8.1.	General AT instruction description	12			
	8.2.	Operation instruction description	13			
	8.3.	TCP/UDP port	16			
	8.4.	GPIO/PWM instructions description	18			
	8.5.	SMART LINK instruction description	19			
	8.6.	SOFT AP instructions description	20			
	8.7.	RF instructions description	21			
	8.8.	Other description	25			

1. GENERAL DESCRIPTION

UA402DWi-Fi module is designed by JIXIAN Corporation. The processor is SV6060P from iComm Corporation, which is an 32bit RISC MCU with integrated PA, LNA, TR switches. The UA402D module integrates antenna in the PCB and reserves various interfaces for use, such as PWM, GPIO for smart application, I2C for extra sensor and UART for communication with external chip or device. The module supports standard IEEE802.11 b/g/n protocol, TCP/IP stack and support STA&AP work mode. It can be used in the present device for additional Wi-Fi feature, or to design standalone network controller.

Figure 1 SV6060P block

SV6060P is a total solution for Wi-Fi network, which can be used separately. In this case, SV6060P can boot from external flash directly. And it can be designed to work with external

MCU. In this case, SV6060P can be added to any micro-controller system through UART interface.

SV6060P is highly integrated with antenna switch, BALUN, PA, PMU. It just needs a few components for external circuit, which help to save the PCB room and cost furthest.

1.1. Features

- Support 802.11 b/g/n;
- Embedded TCP/IP protocol stack;
- Integrated TR switch/Balun/LNA/PA/antenna;
- Integrated 8Mbits SPI flash, support 16Mbits max.;
- Supply voltage range: 3.0V~3.6VDC, single 3.3V is recommended to use.
- Support OTA firmware upgrade;
- Support STA, AP mode;
- Support Smart Link;
- Support UART/I2C/GPIO/PWM;

	parameter	description
	General description	
	Network standard	802.11 b/g/n
	Frequency range	2.4GHz-2.5GHz (2400M-2483.5M)
	Supply voltage	3.0~3.6V (single 3.3V is recommended)
	Operating current	Max: 282mA
Handriana faatiina	FLASH	8M (bits)
Hardware feature	SRAM	192K (Byte)
	Package	16mm * 24mm * 3.3mm
	Pin type and number	Stamp hole, 22pin
	Antenna	In PCB
	Operation temperature range	-10°~70°C
	Storage temperature range	-40°~85°C

	Hardware interface			
	UART	Support 2 UART, one for download and debug, one for communication with external chip or device		
	I2C	Support 1 I2C		
	GPIO	Support 10 GPIO		
	PWM	Support 1 HW PWM, 4 SW PWM		
	USB	Not support		
	SDIO	Not support		
	Work mode	STA/AP		
	Security mechanism	WEP/WPA-PSK/WPA2-PSK		
Software feature	Encryption type	WEP/TKIP/AES		
Software feature	Firmware upgrade	UART/OTA		
	Network protocol	TCP/UDP/DHCP/ARP/ICMP		
	Customer configuration	AT+ Instruction Set, Smart LinkAPP		

Table 1 Major hardware and software features

2. Pin assignment

There are 18 pins in UA402D module, Figure 2 is the pin assignment, Table 2 is the pin definition.

Figure 2 UA402D pin assignment

No.	Pin name	description
1	RST	Reset pin, active low
2	NC	
3	NC	
4	NC	
5	SPI_CLK	SPI_CLK
6	SPI_MISO	SPI_MISO
7	SPI_MOSI	SPI_MOSI
8	VCC	VDD 3.3V power

9	GPIO_1	GPIO1; I2C_CLK
10	GPIO_3	GPIO3; I2C_SDA
11	GPIO_15	GPIO15
12	GPIO_18	GBIO18
13	SPI_WP	
14	SPI_NC	
15	GND	GND
16	SPI_CS	SPI_CS
17	GPIO_5	GPIO5; UART_DEBUG_TXD; UART_DATA_RTS
18	GPIO_2	GPIO2
19	GPIO_6	GPIO6; UART_DEBUG_RXD; UART_DATA_CTS
20	GPIO_8	GPIO8
21	RXD	UART_DATA_RXD; GPIO19
22	TXD	UART_DATA_TXD; GPIO20

Table 2 UA402D pin definition

3. Package and dimensions

The dimensions of UA402D module is 16mm * 28Mm * 3.3mm (Figure 3), and it integrates 8Mb SPI Flash and -0.35 dBi PCB antenna.

Figure 3 UA402Dmodule footprint

Figure 4 UA402D module dimensions

Length	width	height	PAD (bottom)	Pin pitch
16 mm	24 mm	3 mm	0.9 mm x 1.7 mm	2 mm

Table 3 UA402D module dimensions

4. Main function description

4.1. MCU

SV6060P is a low-power single chip, it supply integrated solution for embedded smart family system. SV6060P integrated 2.4 GHz WLAN CMOS PA and LNA. The RF front-end is single-ended double-direction. Also, it integrates LDO and DC-DC converter, which can separate digital circuit and analog circuit for lower noise.

4.2. Memory

SV6060P integrates 192KB SRAM and supports external SPI FLASH up to 16M. UA402D module collocates 8Mb FLASH.

4.3. Interface

Туре	Pin name	Description
PWM	GPIO_8 H/W;4S/W PWM	1 HW PWM (GPIO_8) , 4 SW PWM
I2C	GPIO_1; GPIO_3	Can be used for external sensors
	RXD: UART_DATA_RXD,	Support 2 UART interface
UART	TXD:UART_DATA_TXD GPIO_5: UART_DEBUG_TXD GPIO_6: UART_DEBUG_RXD	Download and debug: GPIO_5, GPIO_6 Communication: RXD, TXD

Table 4 Interface description

4.4. Absolute maximum ratings

	conditions	range	unit
Storage temperature		-40 to 85	℃

Highest temperature for soldering	250	℃
Supply voltage	-0.3 to +3.6	V

Table 5 absolute maximum ratings

4.5. Recommended operating range

Operation condition	name	Min.	Туре	Max.	Unit
Temperature		-10	20	70	°C
Voltage	VDD	2.85	3.3	3.6	V

Table 6 recommended work conditions

4.6. Digital IO DC characteristics

Notice: If no special instruction, the test conditions are: the VDD is 3.3V and the temperature is 20 $^{\circ}$ C.

description	Name	Min	Туре	Max	Unit
Input low level	VIL	-0.28		0.6	V
Input high level	VIH	2.0		3.63	V
Output low level	Vol	-0.28		0.4	V
Output high level	Vон	2.4		VDD+0.33	V

Table 7 digital level feature

5. RF specification

Parameter	Min.	Туре	Max.	Unit
General parameter				

Frequency	2412		2484	MHz
Input impedance		50		Ω
Input reflex			-10	dB
Transmit power				
Output power (802.11b@11Mbps)	17	18	20	dBm
Output power (802.11g@54Mbps)	14	15	16	dBm
Output power (802.11n@HT20,MCS7)	14	15	16	dBm
Receive sensitivity				
Sensitivity (802.11b@11Mbps,CCK)	-86.0	-87.0	-88.0	dBm
Sensitivity (802.11g@54Mbps,OFDM)	-70	-72	-73.5	dBm
Sensitivity (802.11n@HT20,MCS7)	-68	-70	-72	dBm
Adjacent channel rejection				
OFDM, 6 Mbps		37		dB
OFDM, 54 Mbps		21		dB
HT20, MCS0		37		dB
HT20, MCS7		20		dB

Table 8 RF specification

6. Power consumption

The data in Table 11 are based on 3.3V VCC.

Mode	Min	Туре	Max	Unit
Transmit 802.11b, CCK 11Mbps,		250		mA
Роит=+18.5dBm				

Transmit 802.11g, OFDM 54Mbps, Роит =+15dBm	220	mA
Transmit 802.11n, MCS7, Роит =+15dBm	220	mA
Receive 802.11b,CCK,1Mbp	60	mA
Receive 802.11g,OFDM,54Mbp	60	mA
Receive 802.11n,HT20,MCS7	60	mA
RX Power Saving, DTIM=1	2	mA
Sleep Mode	0.2	mA
Operating Mode	75	mA
Power Off	4	uA

Table 9 power consumption

7. Recommended Reflow Profile

Peak Temperature: <250℃

Number of Times: ≤2 times

Figure 5 Soldering temperature curve

8. AT instruction

8.1. General AT instruction description

8.1.1. Reset

Instruction	AT+REBOOT
parameter	N
return	N

8.1.2. Read firmware version

Instruction	AT+VERSION=?
parameter	N
return	The firmware version number
example	ssv6060>:AT+VERSION=? +VERSION:SSV6060. Z0. 799. 0

8.1.3. Read manufacture information

Instruction	AT+MF_INFO=?
parameter	N
return	Manufacture information
example	ssv6060>:AT+MF_INFO=? +MF_INFO:iComm Company AT+VERSION=OK

8.1.4. Read MAC

Instruction	AT+RADIO_READ_MAC=?
parameter	N
return	Media Access Control Address
example	ssv6060>:AT+GET_LOCALMAC=? local_mac = 00:23:45:67:87:a5

8.1.5. Remove

Instruction	AT+REMOVE_CONF
parameter	N
return	Remove result.
example	<pre>ssv6060>:AT+REMOVE_CONF remove_sysconfig rlt = 0</pre>

8.2. Operation instruction description

8.2.1. Read network configuration

Instruction	AT+GET_CONFIG=?
parameter	N

return	+GET_CONFIG= wifi_mode, AP_SSID, key, key number, dhcp, IP, Submask , Gateway
example	If dhcp =1 +GET_CONFIG=0, 7298A, 12345678, 8, 1, 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0 If dhcp =0 +GET_CONFIG=0, 7298A, 12345678, 8, 0, 192. 168. 55. 243, 255. 255. 0, 192. 168. 55. 1

8.2.2. Set network configuration manually

Instruction	AT+SET_IFCONFIG= <dhcp> , <ip> , <submask> , <gateway></gateway></submask></ip></dhcp>
parameter	<pre><dhcp>: 1:Auto , 0: manual <ip>:xxx.xxx.xxx.xxx (if Dhcp =0) <submask>: xxx.xxx.xxx (if Dhcp =0) <gateway>: xxx.xxx.xxx (if Dhcp =0)</gateway></submask></ip></dhcp></pre>
return	AT+SET_ IFCONFIG =OK
example	AT+SET_IFCONFIG=0, 192. 168. 55. 243, 255. 255. 255. 0, 192. 168. 55. 1 AT+SET_IFCONFIG=1

8.2.3. Set Wi-Fi configuration

Instruction	AT+SET_WIFICONFIG= <mode>, <ap_ssid>, <key></key></ap_ssid></mode>
parameter	<mode>: 0: STA-mode <ap_ssid> : AP name <key> : AP password</key></ap_ssid></mode>
return	AT+SET_WIFICONFIG=OK
example	AT+SET_WIFICONFIG=0, 7298A, 88888888

8.2.4. Scan Wi-Fi router

Instruction	AT+SCAN=?
parameter	N

return	+SCAN:7298A, SSV-AP5_2.4G, QA.DIR524, SSV_AP2, TP-LINK_45FE5E, D-Link_DIR-Jay, APET, test, OOX, for.interchannel.wr845n,
	for.interchannel.c8, Eric_Fw, SSV_AP2, icomm-softap-002345678916,
	Winnie_NB-PC, EnGenius_wpa2aes,
	AT+SCAN=OK

8.2.5. Connect Wi-Fi router

Instruction	AT+WIFICONNECT
parameter	N
return	AT+WIFICONNECT=OK
example	If dhcp =1 Got IP address 192.168.43.16 Got netmask 255.255.255.0 Got DNS server 192.168.43.1 Got default router 192.168.43.1

8.2.6. Disconnect Wi-Fi router

Instruction	AT+WIFIDISCONNECT
parameter	N
return	N

8.2.7. Show the AP information

Instruction	AT+SHOWCONNECTAP
parameter	N
return	[0]7298A, ch: 1, rssi: -29 dBm, rssiLevel: 4, security_type = WPA2/AES , HT-MM SGI MCS7

8.2.8. Show all AP

Instruction	AT+SHOWALLAP
-------------	--------------

parameter	N
return	[0]7298A ch: 1, rssi: - 26 dBm, rssiLevel: 4, security_type = WPA2/AES [1]AP5 2.4G
	ch: 1, rssi: - 42 dBm, rssiLevel: 4, security_type = WPAWPA2/AES [2]QA.DIR524
	ch: 1, rssi: - 47 dBm, rssiLevel: 4, security_type = OPEN/NONE [3]D-Link_DIR-Jay
	ch: 2, rssi: - 80 dBm, rssiLevel: 2, security_type = OPEN/NONE

8.3. TCP/UDP port

8.3.1. Set TCP port

Instruction	AT+TCPCONNECT= <ip>, <port></port></ip>
parameter	IP: xxx. xxx. xxx. xxx, ex:192. 168. 112. 10 PORT: xxxx, ex:2000
return	socket number : create socket:0

8.3.2. TCP transmission

Instruction	AT+TCPSEND= <socket number="">, <data></data></socket>
parameter	socket number: the socket number got through TCPCONNECT data: string, ex:12345678
return	AT+TCPSEND=OK

8.3.3. Clear TCP port

Instruction	AT+TCPDISCONNECT= <socket></socket>
parameter	N
return	AT+TCPDISCONNECT=0K
example	ssv6060>:AT+TCPDISCONNECT=0 ssv6060>:socked:0 closed AT+TCPDISCONNECT=0K

8.3.4. Set up TCP SERVER link

Instruction	AT+TCPLISTEN= <port></port>
parameter	PORT: number ; ex :2000
return	AT+TCPLISTEN=OK
example	ssv6060>:AT+TCPLISTEN=2000 AT+TCPLISTEN=0K ssv6060>:new connected to listen port(2000), socket:0

8.3.5. Clear TCP SERVER link

Instruction	AT+TCPUNLISTEN= <port></port>
parameter	PORT: number ; ex :2000
return	AT+TCPUNLISTEN=OK

8.3.6. Set up UDP port

Instruction	AT+UDPCREATE= <port></port>
parameter	PORT: number ; ex :2000
return	Socket number : create socket:12
example	ssv6060>:AT+UDPCREATE=2000 create socket:12 AT+UDPCREATE=0K

8.3.7. UDP transmission

Instruction	AT+UDPSEND= <socket>, <client ip="">, <port>, <data></data></port></client></socket>
parameter	<pre><socket> : the socket number got through UDPCREATE <client ip=""> : xxx.xxx.xxx.xxx;ex: 192.168.112.10 <port>: port number <data>: string</data></port></client></socket></pre>
return	N

example	AT+UDPSEND=12, 192. 168. 43. 23, 11111, asdfgh
	ssv6060>:UDP socked:12 recvdata:fgshfshfh from 192.168.43.23:61148

8.3.8. Close UDP

Instruction	AT+UDPCLOSE = <socket></socket>
parameter	<pre><socket> : the socket number got through UDPCREATE</socket></pre>
return	AT+UDPCLOSE=OK
example	ssv6060>:AT+UDPCLOSE=12 AT+UDPCLOSE=0K

8.3.9. NSLOOKUP

Instruction	AT+NSLOOKUP= <domain name=""></domain>
parameter	<pre>⟨domain name⟩ : the URL domain name</pre>
return	The ip address of domain name.
example	ssv6060>:AT+NSL00KUP=www.163.com start nslookup www.163.com ssv6060>:AT+NSL00KUP=218.92.220.55

8.4. GPIO/PWM instructions description

8.4.1. Set GPIO direction

Instruction	AT+SET_GPIO= <id>, <mode></mode></id>
parameter	<pre><id>: GPIO ID. <mode>: 0:input ; 1:output.</mode></id></pre>
return	+0K
example	ssv6060>:AT+SET_GPI0=2, 1

8.4.2. Write GPIO

Instruction	AT+WRITE_GPIO= <id>, <value></value></id>
parameter	<pre><id>: GPIO ID. <value>: 0:low ; 1:high.</value></id></pre>
return	+0K
example	ssv6060>:AT+WRITE_GPI0=2, 1

8.4.3. Read GPIO

Instruction	AT+READ_GPIO= <number></number>
parameter	<number></number>
return	On: 1 ; Off: 0
example	ssv6060>:AT+READ_GPI0=3 +GPI0:1

8.4.4. Set PWM

Instruction	AT+SET_PWM= <id>, <enable>, <cycle></cycle></enable></id>
parameter	<id>:GPIO ID = 5 (default GPIO8) <enable>: 0 , 1 <cycle>: 0 ~ 10</cycle></enable></id>
return	ssv6060>:AT+SET_PWM=5, 1, 0 +OK

8.5. SMART LINK instruction description

8.5.1. Change mode

Instruction	AT+ENABLE_SMARTREBOOT= <type></type>
parameter	<type> : 0 : NO Smart Link 1 : ICOMM Smart Link 2 : WECHAT</type>

	3 : USER
return	N
Note	Need reset to change the mode

8.6. SOFT AP instructions description

8.6.1. Enter AP mode

Instruction	AT+AP
parameter	N
return	[At_AP] : +++

8.6.2. Exit AP mode

Instruction	AT+AP_EXIT
parameter	N
return	[At_AP_EXIT] : +++

8.6.3. Set SSID name in AP mode

Instruction	AT+SET_AP_SSID= <name></name>
parameter	<name>:SSID</name>
return	<pre></pre>
example	<pre>ssv6060>:AT+SET_AP_SSID=ABC [At_SET_AP_SSID] : +++ <gconfig_set_softap_ssid> new_softap_ssid=ABC <gconfig_set_softap_ssid> i_config. softap_ssid=ABC</gconfig_set_softap_ssid></gconfig_set_softap_ssid></pre>

8.7. RF instructions description

8.7.1. Start RF test mode

Instruction	AT+RADIO_RF_START= <range></range>
parameter	<range> = 0</range>
return	N
example	AT+RADIO_RF_START=0

8.7.2. SET CHANNEL

Instruction	AT+RADIO_CHANNEL= <range></range>
parameter	<range> =1~13</range>
return	N
example	AT+RADIO_CHANNEL=12

8.7.3. Wi-Fi PACKET FORMAT

Instruction	AT+RADIO_RF_RATE= <range></range>
parameter	<range>:0~30</range>
return	N
example	AT+RADIO_RF_RATE=22

8.7.4. G/N MODE GAIN

Instruction	AT+RADIO_RF_GNGAIN= <range></range>
parameter	<range>:5~15</range>
return	N

example	AT+RADIO_RF_GNGAIN=7
---------	----------------------

8.7.5. B MODE GAIN

Instruction	AT+RADIO_RF_BGAIN= <range></range>
parameter	<range>:5~15</range>
return	N
example	AT+RADIO_RF_BGAIN=2

8.7.6. Read IC temperature

Instruction	AT+RADIO_RF_READ_TEMPCS=?
parameter	N
return	temperature ° C Ex: AT+RADIO_RF_READ_TEMPCS=28
example	AT+RADIO_RF_READ_TEMPCS=?

8.7.7. Exit RF test mode

Instruction	AT+RADIO_RF_STOP
parameter	N
return	N
example	AT+RADIO_RF_STOP

8.7.8. Reset

Instruction	AT+REBOOT
parameter	N
return	N

example	AT+REBOOT
---------	-----------

8.7.9. Close compensation table

Instruction	AT+RADIO_RF_ENABLE_TCSR= <on off=""></on>
parameter	<pre><on off="">: 0:0ff ; 1:0n</on></pre>
return	N
example	AT+RADIO_RF_ENABLE_TCSR=0

8.7.10. Frequency offset compensation

Instruction	AT+RADIO_RF_FREQOFFSET= <pre>range>, <n range=""></n></pre>
parameter	<pre></pre>
return	N
example	AT+RADIO_RF_FREQOFFSET=7, 7

8.7.11. List ALL RF compensation

Instruction	AT+RADIO_RF_DUMP
parameter	N
return	List ALL RF compensation Ex:
	channel = 1 B power = 11 G/N power = 9 Freq. Offset = 2, 2 LDO = 4b661c PA1 = 3d5e84ff PA2 = 1457d79 PA3 = fcccce27 Boundary = 0, 0

	=======================================
example	AT+RADIO_RF_DUMP

8.7.12. RF_LDO TUNING

Instruction	AT+RADIO_RF_LDO= <n range="">, <m range=""></m></n>
parameter	<pre><n range="">:1~8 <m range="">:5~8</m></n></pre>
return	N
example	AT+RADIO_RF_LDO=7, 7

8.7.13. RF_ PA1 TUNING

Instruction	AT+RADIO_RF_PA1= <range></range>
parameter	<pre><range>:6~12</range></pre>
return	N
example	AT+RADIO_RF_PA1=8

8.7.14. RF_ PA2 TUNING

Instruction	AT+RADIO_RF_PA2= <range></range>
parameter	<range>:1~7</range>
return	N
example	AT+RADIO_RF_PA2=1

8.7.15. RF_ PA3 TUNING

Instruction	AT+RADIO_RF_PA3= <range></range>
parameter	<pre><range>:7~14</range></pre>

return	N
example	AT+RADIO_RF_PA3=14

8.7.16. RF_ IQ PHASE

Instruction	AT+RADIO_RF_IQPHASE= <range></range>
parameter	$\langle \text{range} \rangle$: $(-7^{\sim}7)$
return	N
example	AT+RADIO_RF_IQPHASE=0

8.7.17. RF_ IQ AMP

Instruction	AT+RADIO_RF_IQAMP= <range></range>
parameter	<range>: (-7~7)</range>
return	N
example	AT+RADIO_RF_IQAMP=0

8.8. Other description

8.8.1. Uart to Wi-Fi transfer

Instruction	AT+WIFIUART_DEMO= <en></en>
parameter	<en>: (enable, disable)</en>
return	N. After enable WIFIUART mode, user use smart phone app or PC program connect to this module, the socket port is 12345, then, user can transfer data to wifi network by Data_Uart. The data string must be end with hex value 0x0D, or the length of string is equal to 128, then the datas will be sent out.
example	ssv6060>:AT+WIFIUART_DEMO=enable Call AT_WIFIUART_DEMO wifiUartDemo_process begin tcp server wifiUartProcess begin

8.9. Label

When a host manufacture's using this modular, the label of the host which used this modular need to be contained "Contains Transmitter Module FCC ID: 2ALLFUA402D", the host OEM user manual also need to contain clear instructions on how end users can find the module and the FCC ID: 2ALLFUA402D.

FCC Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not

occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception,

- —Reorient or relocate the receiving antenna.
- —Increase the separation between the equipment and receiver.
- —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.

FCC RF Radiation Exposure Statement

This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.