Problem statement

predicting the house price in USA. To create a model to help him estimate of what the house would sell for.

To display top 10 rows

In [3]: 1 df.head(10)

Out[3]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residua
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	0.41978	0.29678	2.51738
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	0.14145	0.43630	2.70201
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	0.48357	0.34139	2.49204
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	0.36503	0.34699	2.46531
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	0.32957	0.45811	2.45176
5	Finland	Western Europe	6	7.406	0.03140	1.29025	1.31826	0.88911	0.64169	0.41372	0.23351	2.6195
6	Netherlands	Western Europe	7	7.378	0.02799	1.32944	1.28017	0.89284	0.61576	0.31814	0.47610	2.4657(
7	Sweden	Western Europe	8	7.364	0.03157	1.33171	1.28907	0.91087	0.65980	0.43844	0.36262	2.37119
8	New Zealand	Australia and New Zealand	9	7.286	0.03371	1.25018	1.31967	0.90837	0.63938	0.42922	0.47501	2.2642!
9	Australia	Australia and New Zealand	10	7.284	0.04083	1.33358	1.30923	0.93156	0.65124	0.35637	0.43562	2.2664(
4 6			_	_			_				_	— •

Data Cleaning And Pre-Processing

In [4]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Country	158 non-null	object
1	Region	158 non-null	object
2	Happiness Rank	158 non-null	int64
3	Happiness Score	158 non-null	float64
4	Standard Error	158 non-null	float64
5	Economy (GDP per Capita)	158 non-null	float64
6	Family	158 non-null	float64
7	Health (Life Expectancy)	158 non-null	float64
8	Freedom	158 non-null	float64
9	Trust (Government Corruption)	158 non-null	float64
10	Generosity	158 non-null	float64
11	Dystopia Residual	158 non-null	float64

dtypes: float64(9), int64(1), object(2)

memory usage: 14.9+ KB

In [5]:

- 1 # Display the statistical summary
- 2 df.describe()

Out[5]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	0.143422	0.237296	2.098977
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	0.120034	0.126685	0.553550
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.328580
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	0.061675	0.150553	1.759410
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	0.107220	0.216130	2.095415
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	0.180255	0.309883	2.462415
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	0.551910	0.795880	3.602140

```
In [6]:
          1 # To display the col headings
          2 df.columns
Out[6]: Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
               'Standard Error', 'Economy (GDP per Capita)', 'Family',
               'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruption)',
               'Generosity', 'Dystopia Residual'],
              dtype='object')
In [7]:
          1 cols=df.dropna(axis=1)
In [8]:
          1 cols.columns
Out[8]: Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
               'Standard Error', 'Economy (GDP per Capita)', 'Family',
               'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruption)',
               'Generosity', 'Dystopia Residual'],
              dtype='object')
```

EDA and Visualization

```
In [9]: 1 sns.pairplot(cols)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x231ad840cd0>

In [10]: 1 sns.displot(df['Happiness Score'])

Out[10]: <seaborn.axisgrid.FacetGrid at 0x231b297b310>

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a dep recated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='Happiness Score', ylabel='Density'>

Out[12]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family
0	1	7.587	0.03411	1.39651	1.34951
1	2	7.561	0.04884	1.30232	1.40223
2	3	7.527	0.03328	1.32548	1.36058
3	4	7.522	0.03880	1.45900	1.33095
4	5	7.427	0.03553	1.32629	1.32261
153	154	3.465	0.03464	0.22208	0.77370
154	155	3.340	0.03656	0.28665	0.35386
155	156	3.006	0.05015	0.66320	0.47489
156	157	2.905	0.08658	0.01530	0.41587
157	158	2.839	0.06727	0.20868	0.13995

158 rows × 5 columns

```
In [13]: 1 sns.heatmap(df1.corr())
Out[13]: <AxesSubplot:>
```


To train the model - MODEL BUILD

Going to train linear regression model; We split our data into 2 variables x and y where x is independent var(input) and y is dependent on x(output), we could ignore address col as it is not required for our model

To split the dataset into test data

```
In [15]:
           1 # importing lib for splitting test data
           2 from sklearn.model_selection import train_test_split
In [16]:
           1 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [17]:
           1 from sklearn.linear_model import LinearRegression
             lr=LinearRegression()
           4 lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]:
           1 print(lr.intercept )
         [1.42108547e-14]
In [19]:
           1 print(lr.score(x_test,y_test))
         1.0
In [20]:
           1 coeff=pd.DataFrame(lr.coef_)
           2 coeff
Out[20]:
              0
                          1
                                     2
                                                 3
          0 1.0 -1.576490e-15 -1.097963e-13 -5.413673e-16 8.067434e-15
```

```
In [21]:
           1 pred = lr.predict(x_test)
           plt.scatter(y_test,pred)
Out[21]: <matplotlib.collections.PathCollection at 0x231b42bb9a0>
          160
          140
          120
          100
           80
           60
           40
           20
                                   80
                                        100
                                             120
                    20
                               60
                                                   140
                                                        160
           1 from sklearn.linear_model import Ridge,Lasso
In [22]:
In [23]:
           1 rr=Ridge(alpha=10)
           2 rr.fit(x_train,y_train)
Out[23]: Ridge(alpha=10)
           1 rr.score(x_test,y_test)
In [24]:
Out[24]: 0.999999946793897
In [25]:
           1 la=Lasso(alpha=10)
           2 la.fit(x_train,y_train)
Out[25]: Lasso(alpha=10)
In [26]:
           1 la.score(x_test,y_test)
Out[26]: 0.9999767157462808
```

ELASTIC NET

```
1 from sklearn.linear_model import ElasticNet
In [28]:
           2 en=ElasticNet()
           3 en.fit(x_train,y_train)
Out[28]: ElasticNet()
           1 print(en.coef )
In [29]:
         [ 0.99952014 -0.
                                   0.
                                             -0.
                                                         -0.
In [30]:
           1 print(en.intercept )
         [0.03882978]
           1 prediction=en.predict(x_test)
In [41]:
           2 prediction
Out[41]: array([ 69.00571912, 81.99948087, 96.9922829 , 41.01915533,
                 24.02731303, 129.97644737, 63.0085983, 13.03259154,
                148.96732994, 136.97308831, 1.03834992, 126.97788696,
                 68.00619898, 47.01627614, 35.02203452, 28.02539357,
                 37.02107479, 15.03163181, 6.03595059, 103.98892385,
                110.9855648 , 80.99996074 , 85.99756141 , 66.00715871 ,
                124.97884669, 42.01867546, 17.03067208, 64.00811844,
                139.97164872, 150.96637021, 154.96445075, 140.97116885,
                 53.01339695, 76.00236006, 93.9937225, 86.99708155,
                114.98364534, 20.02923249, 30.02443384, 151.96589034,
                 19.02971235, 138.97212858, 23.02779289, 100.99036344,
                 59.01051776, 56.01195736, 91.99468223, 90.99516209])
In [42]:
           1 print(en.score(x test,y test))
```

0.9999997672691823

EVALUATION METRICS