Signature Schemes Designs: RSA Full Domain Hash

- ▶ Public Functions A hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$
- **Keygen:** Run RSA.Keygen. pk = (e, N), sk = (d, N).
- ▶ Sign: Input: sk, M. Output $\sigma = \mathsf{RSA.Dec}(sk, H(M)) = H(M)^d \mod N$
- ▶ **Verify**: Input: pk, M, σ . If RSA.Enc $(pk, \sigma) = H(M)$ output accept, else reject
- ▶ If $\sigma^e \mod N = H(M)$, output accept, else reject.

Correctness

Suppose $\sigma = \operatorname{Sign}(sk, M)$. This implies $\sigma = H(M)^d \mod N$. This implies

$$\sigma^e \mod N = (H(M)^d \mod N)^e \mod N = H(M)^{ed} \mod N$$

. As $ed \equiv 1 \mod \phi(N)$ and H maps to \mathbb{Z}_N^* , we have

$$\sigma^e \mod N = H(M) \mod N = H(M)$$

which is the acceptance condition in the verification algorithm.

