

Module Code	Examiner	Department	Tel
INT201	Yushi Li	Intelligent Science	5351

1st SEMESTER 22-23 RESIT EXAMINATION

Undergraduate

Decision Computation and Language

TIME ALLOWED: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This is a blended close-book exam and the duration is 2 hours.
- 2. Total marks available are 100. This accounts for 100% of the final mark.
- 3. Answer all questions. Relevant and clear steps should be included in the answers.
- 4. Only English solutions are accepted. For online students, answers need to be handwritten and fully and clearly scanned or photographed for submission as one single PDF file via LEARN-ING MALL.
- 5. Online students should use the format "Module Code-Student ID.filetype" to name their files before submitting to Learning Mall. For example, "INT201-18181881.pdf".

Question 1

Indicate true or false of the following statements, and briefly justify your answers. (21 Marks)

- (a) The language $\{a^nb^n \mid n \geq 3\}$ is non-regular (3 Marks)
- (b) Every non-context-free language is also non-regular. (3 Marks)
- (c) If $A \subseteq B$ and A is a regular language, then B is a regular language. (3 Marks)
- (d) There is a language recognized by an NFA but has no DFA. (3 Marks)
- (e) If A has a regular expression, then A has a PDA. (3 Marks)
- (f) There are languages recognized by multi-tape Turing machines that cannot be recognized by single-tape Turing machines. (3 Marks)
- (g) There are languages recognized by nondeterministic Turing machines that cannot be recognized by deterministic Turing machines. (3 Marks)

Question 2

Let L be a language over $\{0,1\}$ consisting of strings which end with 00. (10 Marks)

- (a) Give a regular expression that defines L. (4 Marks)
- (b) Give an NFA diagram that accepts L. (6 Marks)

Question 3

An NFA over alphabet $\Sigma = \{0, 1\}$ is given by the diagram below. Convert it to the equivalent DFA by filling the entries of the table. (16 Marks)

	0	1
{p}		
$\{p, q\}$		
{p, r}		
$\{p, q, r\}$		
$\{p, q, s\}$		
{p, q, r, s}		
{p, r, s}		
{p, s}		

Question 4

Given the following two finite automata, find out their equivalent regular expressions. (10 Marks)

(a)

(5 Marks)

(b)

(5 Marks)

Question 5

The original CFG is shown as follows, and convert it to Chomsky normal form. (16 Marks)

$$S \to TaT$$

$$T \to aTb|bTa|TT|\epsilon$$

Question 6

Answer the following questions. (8 Marks)

INT201/22-23/S1

Page 4 of 6

- (a) Describe the pumping lemma for regular languages. (4 Marks)
- (b) Describe the pumping lemma for context-free languages. (4 Marks)

Question 7

Consider the Turing machine M (B denotes the blank symbol):

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1, x, y, \#, B\}$$

start state: q_0

$$q_{accept} = q_3$$

 δ is defined as follows:

$$\delta(q_0, 0) = (q_0, 0, R)$$

$$\delta(q_0, 1) = (q_1, 1, R)$$

$$\delta(q_1,0) = (q_1,0,R)$$

$$\delta(q_1, \#) = (q_3, \#, R)$$

(12 Marks)

- (a) What does it mean that a language is accepted by a Turing Machine? (4 Marks)
- (b) If initially 1010# is placed on the tape, which state will the machine be halting at? (4 Marks)
- (c) If initially 0100# is placed on the tape, which state will the machine be halting at? (4 Marks)

Question 8

Assume L_{FA} is the set of languages accepted by NFA, L_{DPDA} is the set ac-

cepted by deterministic pushdown automata, and L_{PDA} is the set accepted by general pushdown automata. What are the relations between them? Briefly justify your answer. (7 Marks)