МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра физики

Методические указания для проведений практических занятий по дисциплине

"Физика"

семестр 4 (оптика, основы квантовой теории, атомной физики и физики ядра)

Для направлений подготовки:

01.03.02, 01.03.03, 04.03.01, 06.03.01, 08.03.01, 09.03.01, 09.03.02, 09.03.03, 09.03.04, 10.03.01, 12.03.01, 12.03.02, 12.03.04, 13.03.02, 15.03.01, 15.03.02, 15.03.04, 15.03.05, 15.03.06, 19.03.01, 20.03.01, 21.03.02, 22.03.01, 23.03.01, 23.03.02, 23.03.03, 24.03.02, 24.03.03, 27.03.01, 27.03.02, 29.03.03, 49.03.01, 10.05.03, 11.05.01, 15.05.01, 17.05.01, 17.05.02, 21.05.04, 23.05.01, 24.05.01, 24.05.02, 24.05.06

Методические указания подготовлены доц. Ю.Н. Колмаковым, доц. С.Е.Кажарской, доц. Е.В.Якуновой

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	стр.3
Семестр 4.	
1. Условия интерференции. Интерференционная схема Юнга	4
2. Интерференция в тонких пленках	6
3. Многолучевая интерференция. Дифракционная решетка	
4. Дифракция на круглом отверстии и на узкой щели	
5. Поляризованный свет	
6. Законы теплового излучения	
7. Фотоэффект. Эффект Комптона	
8. Волна де Бройля. Постулат Бора и боровские орбиты	
9. Спектральные серии излучения одноэлектронного атома	
10. Вероятностный смысл и нормировка волновой функции	
11. Стационарное уравнение Шредингера	
12. Микрочастица в одномерной потенциальной яме	
13. Формулы квантования. Заполнение электронных оболочек	
14. Закон радиоактивного распада. Энергетический выход реакции распада атомного ядра	

ВВЕДЕНИЕ

В соответствии с рабочей программой в течение 4-го семестра обучения студент должен выполнить две контрольные работы, включающие 5-6 задач в каждой работе по общим для разных направлений подготовки темам. Образцы решения таких задач, рекомендуемые для проведения практических занятий по физике, приводятся ниже. Выбор тем практических занятий и разделов задач контрольных работ соответствует конкретной рабочей программе направления (специальности) подготовки.

Для самостоятельной подготовки к контрольным работам примеры практических задач приведены в пособии: --- Колмаков Ю. Н., Кажарская С.Е., Якунова Е.В. Оптика. Основы квантовой физики: руководство к проведению самостоятельной работы студентов: учебн. пособие [Электронный ресурс]/ Электрон.текстовые данные. — Тула: Изд-во ТулГУ, 2019.— 208 с. .— ISBN 978–5–7679–4250–3.

Примеры задач и их решений, рекомендуемые для проведения практических занятий и самостоятельной подготовки студентов можно также найти на сайте кафедры физики ТулГУ http://physics.tsu.tula/ru/.

Примерное содержание тем практических занятий в соответствии с рабочими программами приведено в следующей таблице:

	Семестр 4
№ занятия	Тема практического занятия
1	Интерференция световых (электромагнитных) волн. Интерференционные схемы. Интерференция в тонких плёнках.
2	Многолучевая интерференция (дифракционная решетка). Разрешающая способность дифракционной решетки. Дифракция света (электромагнитных волн) на узкой щели. Дифракция света (электромагнитных волн) на круглом препятствии.
3	Законы теплового излучения. Использование закона Стефана-Больцмана и закона смещения Вина для теплового излучения абсолютно черного тела. Коэффициент поглощения.
4	Явление фотоэффекта. Применение уравнения Эйнштейна для фотоэффекта. Красная граница фотоэффекта. Эффект Комптона.
5	Волны де Бройля. Квантовые постулаты Бора и боровская модель одноэлектронного атома. Спектральные серии излучения одноэлектронного атома.
6	Волновая функция квантовой микросистемы и её свойства. Квантовый принцип суперпозиции и плотность вероятности обнаружения частицы. Использование стационарного уравнения Шредингера для расчета характеристик квантовых систем. Частица в одномерной потенциальной яме. Спектр разрешенных значений энергий и излучение микросистем. Квантовый гармонический осциллятор и спектр его энергий.
7	Принцип Паули. Система четырех квантовых чисел. Заполнение электронных оболочек и подоболочек в многоэлектронных атомах. Квантование орбитального и собственного момента импульса и магнитного момента электрона (атома). Радиоактивность и закон радиоактивного распада. Закон радиоактивного распада ядер. Энергетический выход реакции радиоактивного распада.
8	Распределение Ферми-Дирака и функция Ферми. Свойства электронного газа при нулевой и ненулевой температуре. Проводимость полупроводника и p-n-переход.

Семестр 4

1. Условия интерференции. Интерференционная схема Юнга

Распространяющаяся вдоль оси х плоская монохроматическая электромагнитная волна описывается вектором напряженности переменного электрического поля $\vec{E} = \vec{E}_0 \cos \left(\frac{\omega t - kx + \alpha}{\phi} \right)$. В частности, та-

кой волной будет видимый свет с циклической частотой $\omega = 2\pi v$. Здесь $k = 2\pi/\lambda = 2\pi c/\omega$ – волновое

число, λ – длина волны, c – её скорость, равная $3 \cdot 10^8$ м/с в вакууме. При сложении двух **когерентных** волн, имеющих одну частоту ω, не зависящую от времени разность фаз Δφ и распространяющихся вдоль одного направления, возникает интерференционная картина чередующихся максимумов и минимумов освещенности. При этом выполняются условия:

в точках интерференционных максимумов $\Delta \varphi = 2m\pi$; в точках интерференционных минимумов $\Delta \varphi = (2m+1)\pi$, где m – любое целое число.

Если начальные фазы α когерентных волн одинаковы, то эти условия удобно записать для оптической разности хода двух волн $|\Delta = n \cdot (x_2 - x_1)|$, где $x_2 - x_1$ - разность проходимых ими путей, n – показатель преломления среды, равный 1 в вакууме:

$$\Delta = 2m\frac{\lambda}{2}$$
 в точке максимума; $\Delta = (2m+1)\frac{\lambda}{2}$ в точке минимума.

1.1. Генератор испускает плоскую электромагнитную монохроматическую волну в направлении оси x. Волна отражается от перпендикулярного плоского зеркала. В точках А и В на оси, разделенных расстоянием l=6 мм, наблюдаются два последовательных интерференционных минимума (см.рисунок). Чему равна частота ν генератора (в ГГц)? Скорость света $c = 3 \cdot 10^8$ м/с.

Решение.

В точку А приходит падающая от генератора волна $\vec{E}_{\text{пад}} = \vec{E}_0 \cos (\omega t - kx)$. Продолжая $E_{\text{пад}}$ движение, эта волна отражается от зеркала и возвращается обратно в точку А, пройдя расстояние $\vec{E}_{\text{пад}} = \vec{E}_0 \cos (\omega t - kx)$. При отгамизму от архими отражается от зеркала и возвращается обратно в точку А, пройдя расстояние $\vec{E}_{\text{пад}} = \vec{E}_0 \cos (\omega t - kx)$. При отгамизму от архими отражается от $\vec{E}_{\text{пад}} = \vec{E}_0 \cos (\omega t - kx)$. В точку A приходит падающая от генератора волна $\vec{E}_{\text{пал}} = \vec{E}_0 \cos(\omega t - kx)$. Продолжая 2x' (рис.3.2): $\vec{E}_{\text{отр}} = \vec{E}_0 \cos(\omega t - k(x + 2x') + \pi)$. При отражении от зеркала фаза волны сдвигается на π. Согласно условию, разность фаз этих волн удовлетворяет условию интерференционного минимума: $\Delta \phi_A = 2kx' + \pi = (2m+1)\pi$.

В точку В отраженная волна, проходящая меньшее дополнительное расстояние 2(x'-l), приходит со сдвигом фаз (соседний интерференционный минимум) $\Delta \phi_{\rm B} = 2k(x'-l) + \pi = (2m-1)\pi$.

Находя разность $\Delta \phi_{\rm A} - \Delta \phi_{\rm B}$ и подставляя $k = 2\pi/\lambda = 2\pi c/\nu$, получаем $2kl = 4\pi l \nu/c = 2\pi$, откуда $v = c/2l = 2,5 \cdot 10^{10} \, \Gamma_{\text{H}} = 25 \, \Gamma \Gamma_{\text{H}}$. ***********

Одним из способов получения интерференционной картины будет интерференционная схема Юнга: два очень узких когерентных источника света S₁ и S₂, расстояние 2d между которыми много меньше расстояния l до экрана \Im , испускают волны, складывающиеся в точке наблюдения P на экране (рис.3.3). Пути s_1 и s_2 , проходимые волнами до точки P, являются гипотенузами прямоугольных треугольников $\Delta S_1 AP$ и $\Delta S_2 BP: \quad s_1^2 = S_1 P^2 = S_1 A^2 + A P^2 = l^2 + \left(x - d\right)^2, \quad s_2^2 = S_2 P^2 = S_2 B^2 + B P^2 = l^2 + \left(x + d\right)^2$

(рис.3.3). Отсюда $s_2^2 - s_1^2 = (s_2 - s_1)(s_2 + s_1) = 4xd$. Размер наблюдаемой интерференционной картины очень мал, и расстояние x от точки P до центра 0 картины мало по сравнению с расстоянием l до экрана $(2d, x \ll l)$. Поэтому $s_2 + s_1 \approx 2l$, и мы получаем оптическую разность хода лучей, приходящих в точку P с координатой x: $\Delta = n(s_2 - s_1) = 2xdn/l$, где n - показатель преломления среды.

Зависимость освещенности I экрана от координаты x показана в правой части рис. 3.3. Интерференционная картина имеет вид узких полос, параллельных узким светящимся щелям S_1 и S_2 . Из условия интерференционных максимумов

 $\Delta = m\lambda$ находим координаты точек с наибольшей освещенностью $x_m = \frac{l\lambda}{2nd}m$, где $m = 0, \pm 1, \pm 2, \pm 3, \dots$ Ширина каждой

интерференционной полосы $\Delta x = x_{m+1} - x_m = \frac{l\lambda}{2nd}$

Всякий раз, когда расстояние между когерентными источниками света много меньше расстояния до симметрично расположенного экрана, выполнено условие оптической схемы Юнга. Можно использовать полученные формулы для определения ширины интерференционных полос.

1.2. Плоская монохроматическая световая волна с $\lambda = 625$ нм падает нормально на плоскую преграду, в которой прорезаны две параллельные узкие щели. За преградой на расстоянии $l=1,8\,\mathrm{m}\,$ установлен параллельный экран Э. Найти ширину центральной интерференционной полосы на экране, если известно, что она в два раза больше расстояния d между щелями, и что $l\gg d$.

Решение.

Не используйте полученные ранее формулы, не сравнив их с условиями задачи. На рис.3.3 расстояние между источниками света было равно 2d, а в данной задаче оно равно d.

Поэтому ширина полосы на экране будет равна $\Delta x = l\lambda/d$ (показатель преломления воздуха $n \cong 1$). А так как по условию $\Delta x = 2d$, то $d = \sqrt{l\lambda/2}$ и $\Delta x = \sqrt{2l\lambda} = 1.5$ мм.

1.3. На каком **минимальном** расстоянии h надо разместить над горизонтальным зеркалом щель), чтобы на вертикальном экране Э, удалённом на большое расстояние l=4 м, на расстоянии x=0,95 мм над зеркалом наблюдался максимум интерференционной картины?

В точке Р экрана складывается волна 1, пришедшая непосредственно от источника света S, и волна 2, отраженная от зеркала в точке А (рис.3.4). Можно считать, что эта волна приходит от изображения S' источника света S в зеркале (SA=S'A). Но отражение от зеркала меняет фазу волны 2.

Во всех задачах учитывайте, что при отражении от зеркальной поверхности фаза волны сдвигается на π . Это приводит к изменению оптической разности хода на $\lambda 2$. По-

этому интерференционные максимумы и минимумы на рис.1.3 и 1.4 меняются местами (ширина интерференционных полос не меняется).

Так как d = h, n = 1, и разность хода Δ изменяется на $\lambda/2$, то координатами интерференционных максимумов будут $x_{m} = \frac{l\lambda}{2h} \left(m - \frac{1}{2} \right)$ (вместо целого числа m записываем соседнее полуцелое число). По условию $x = x_{m} > 0$ задано, и минимальное значение h получится при минимальной величине числа m=1. Отсюда $h_{\min}=l\lambda/4x=0$,6 мм.

1.4. Лучи от двух когерентных точечных источников света S_1 и S_2 с длиной волны $\lambda = 600$ нм интерферируют в точке А экрана. На пути одного из лучей расположена стеклянная пластинка. Если толщину пластинки уменьшить на $\Delta h = 1$ мкм, то максимум освещенности в точке A сменится минимумом. Найти показатель преломления стекла (учесть, что для различных стекол он лежит в интервале $1,5 \le n_{\text{стекла}} \le 2,2$).

Решение.

Вначале оптическая разность хода волн от источников S₁ и S₂ соответствовала условию интерференционного максимума в точке A: $\Delta = 2m\lambda/2$. После уменьшения толщины пластинки изменилась оптическая длина пути, проходимого волной от источника S_2 . Если раньше эта волна проходила расстояние Δh в стекле с показателем преломления n, то теперь она проходит этот путь в воздухе с показателем преломления n_{возд}=1. В результате разность хода изменится на величину $n \cdot \Delta h - n_{\text{возд}} \cdot \Delta h$ и будет соответствовать интерференционному минимуму в точке А: $\Delta' = \Delta + (n-1)\Delta h = (2m'+1)\lambda/2$.

Это не обязательно соседний минимум. Целое число m' может не совпадать с числом m. Устраняя Δ , находим $n=1+\frac{\left(2\Delta m+1\right)\lambda}{2\Delta h}$, где $\Delta m=m$ '—m. Подстановка $\Delta m=0$ даёт n=1,3. При $\Delta m=1$ получим n=1,9. При $\Delta m=2$ имеем n=2,5 и т.п. Условию задачи удовлетворяет единственное значение n = 1,9.

1.5. В интерферометре Майкельсона зеркало 32, от которого отражается горизонтальный луч 2, придвинули на расстояние b=2 мм $\,$ к делительной пластинке Π . На пути лучей 1 и 2 поместили прозрачные пластинки толщины $d_1 = 1,2$ мм и $d_2 = 1,5$ мм с показателями преломления $n_1 = 1,5$ и $n_2 = 1,8$ соответственно (см.рисунок). При этом интерференционная картина на экране Э сдвинулась на N = = 1250 полос Чему равна длина волны света, испускаемого источником S?

Первоначально лучи 1 и 2 проходили расстояния l_1 и l_2 до зеркал и обратно. Оптическая разность хода была равна $\Delta_0 = (2l_2 - 2l_1) \cdot n_{\text{воз}\pi}$, где показатель преломления воздуха $n_{\text{воз}\pi} = 1$. Затем оптические длины меняются в пределах размещенных пластинок, имеющих другие показатели преломления. Как и в предыдущей задаче, оптическая длина пути луча 1 увеличится на $2d_1(n_1-1)$, а оптическая длина пути луча 2 изменится на $2d_2(n_2-1)-2b\cdot 1$ (путь этого луча в воздухе уменьшится на 2b). Оптическая разность хода изменится на величину $2d_2(n_2-1)-2b\cdot 1-2d_1(n_1-1)=\pm N\lambda$ (смещение N полос на экране). Знак в правой части указывает направление смещения полос. Его надо выбрать таким, чтобы оказалось $\lambda > 0$. Отсюда $\lambda = \left[2d_1(n_1 - 1) - 2d_2(n_2 - 1) + 2b \right] / N = 640$ нм.

Примеры задач контрольной работы для самостоятельной подготовки:

1.6. Два когерентных источника света находятся на малом расстоянии 2d = 1,5 мм друг от друга и испускают световые волны с частотой $v = 5.4 \cdot 10^{14} \, \Gamma$ ц в одной фазе. Ширина центральной полосы интерференционной

картины, созданной на удалённом на большое расстояние экране, равна 0.5 мм. Найти расстояние l от щелей до экрана. Ответ: 1,35 м.

1.7. В боковой стенке ящика прорезана узкая горизонтальная щель S, на которую падает монохроматическая световая волна с $\lambda = 500$ нм. Расстояние от щели до зеркального дна ящика h=1 мм много меньше длины ящика l. На противоположной стенке ящика "Э" на той же высоте h от дна наблюдается интерференционный минимум. При какой **наибольшей** длине l ящика это возможно?

Ответ: 4 м.

1.8. На пути лучей в интерференционном опыте Юнга помещают тонкие прозрачные пленки с одинаковым показателем преломления n = 1,7. При этом интерференционная картина на экране Θ сдвигается на N=35 полос. Какой может быть толщина h_2 нижней пленки, если толщина верхней пленки $h_1=0,1$ мм, а когерентные источники S_1 и S_2 испускают свет длиной волны $\lambda = 600$ нм?

Ответ: 0,13 мм или 0,07 мм.

1.9. На пути одного из когерентных световых лучей, проходящих сквозь плоскопараллельную стеклянную пластинку, оказался воздушный пузырек радиуса r = 0.4 мкм (луч S_1A проходит через центр пузырька). При этом в точке А экрана наблюдается интерференционный максимум освещенности. Если бы пузырька не было и стекло было бы сплошным, то в точке А снова был бы интерференционный максимум, но **соседнего** порядка. Найти величину показателя преломления n стекла, если частота света $v = 5 \cdot 10^{14} \, \Gamma_{\rm H}$.

1.10. На пути одного из лучей голубого света с длиной волны $\lambda = 480$ нм в интерферометре Майкельсона поместили прозрачную пластинку толщины d = 1,2 мм с показателем преломления n = 1,8. На какое расстояние *b* надо придвинуть зеркало, от которого отражается второй луч, чтобы интерференционная картина на экране Э сместилась ровно на 5000 полос?

Ответ: 1.75.

Ответ: 0.24 мм.

1.11. Первоначально кюветы с длиной $l_1 = 30$ см и $l_2 = 50$ см заполнял газ с показателем преломления n = 1,0005. После того, как этот газ был выпущен и кюветы заполнили окружающим воздухом с показателем преломления $n_{возл}$ =1,0003, полосы интерференционной картины на экране Э сместились. На сколько полос сместилась картина, если световые лучи красного цвета, проходящие через кюветы, имеют длину волны $\lambda = 640$ нм?

Ответ: на 125 полос.

1.12. В интерферометре Майкельсона используется монохроматический свет с частотой $v = 5 \cdot 10^{14} \, \Gamma_{\rm H}$. Найти длину І каждой из одинаковых кювет, установленных на пути лучей, если они заполнены разными газами с показателями преломления n_1 = 1,000057 и n_2 = 1,000027, а после выпускания этих газов и заполнения обеих кювет воздухом интерференционная картина на экране Э сместится ровно на полторы полосы.

Ответ: 1,5 см.

2. Интерференция в тонких пленках

Другой способ получения двух когерентных волн – деление падающего света на две волны, отражающиеся от разных поверхностей тонкой плёнки (пластинки).

Даже если источник света Ѕ точечный, на большом удалении волновые поверхности АА' будут практически плоскими. Все точки волны в плоскости АА' имеют одну фазу. Падающий под углом а луч 1, преломляясь, отражается в точке B от противоположной поверхности пленки толщиной d и выходит из неё в точке D (рис.3.5). Луч 2, падая на пленку, отражается в точке D от её верхней поверхности. Затем лучи 1 и 2 складываются, интерферируя. Оптическая разность хода этих лучей

 $\Delta = (AB+BC) \cdot n - ED \cdot n_{BO3Д} \pm \lambda/2$ (луч 1 свой путь от поверхности AA' до точки D проходит в прозрачной пленке с показателем преломления n, а луч 2 – в воздухе).

При отражении от оптически более плотной среды с большим показателем преломления n при малых углах падения происходит сдвиг фазы на π (потеря $\lambda/2$, на рис.1.5. это происходит при отражении луча 2 в точке D). При отражении от оптически менее плотной среды с меньшим показателем преломления (отражение луча 1 в точке В от воздуха) или при преломлении луча потери $\lambda/2$ нет!

Из прямоугольных треугольников АВС, CBD и AED, где CD = d, находим: AB = BD = $d/\cos\beta$, $ED = AD \cdot \sin \alpha = 2AC \cdot \sin \alpha = 2d \cdot tg \beta \cdot \sin \alpha.$

Учитывая, что $\sin \alpha = n \sin \beta / n_{\text{возд}} = n \sin \beta$ (закон преломления), получим после подстановки

$$\Delta = 2\frac{d}{\cos\beta}n - 2d\frac{\sin^2\beta}{\cos\beta}n \pm \frac{\lambda}{2} = 2dn\cos\beta \pm \frac{\lambda}{2} \text{ . Ho } \cos\beta = \sqrt{1-\sin^2\beta} = \sqrt{1-\left(\sin\alpha/n\right)^2} \text{ , что даёт } \boxed{\Delta = 2d\sqrt{n^2-\sin^2\alpha} \pm \frac{\lambda}{2}}$$

В том случае, когда толщина d пленки не постоянна, но изменяется очень мало (рис.3.6, где угол $\theta \ll 1$), на её поверхности видна картина в виде полос, цвет которых соответствует условию интерференционного максимума для отраженного света. При нормальном падении (α =0) это условие имеет вид

$$\Delta = 2dn + \lambda/2 = 2m\lambda/2$$
, где $m = 1, 2, 3, ...$.

Пример решения задач:

2.1. Угол между противоположными плоскими поверхностями тонкой пленки, лежащей на стекле, очень мал: $\theta = 4 \cdot 10^{-6}$ рад . Показатель преломления пленки n = 1,3, а стекла $n_c = 1,5$. При нормальном отражении от пленки монохроматического света на её поверхности на расстоянии b = 36 мм друг от друга видны интерференционные полосы. Найти частоту у света.

Решение.

В точках A и C на поверхности пленки видны интерференционные максимумы (m+1)-го и m-го порядка (центры полос, рис.3.7). Толщина пленки d_2 и d_1 в этих местах различна. И на верхней поверхности пленки AC, и на нижней поверхности ED свет отражается от оптически более плотной среды. Поэтому потерю $\lambda/2$, происходящую 2 раза, учитывать не надо: оптическая разность хода лучей, отраженных от верхней и нижней поверхности пленки с толщиной d будет равна $\Delta = 2dn$.

Вычитая левые и правые части условий интерференционного максимума $\Delta_2=2d_2n=2(m+1)\lambda/2$ и $\Delta_1=2d_1n=2m\lambda/2$, получим $2(d_2-d_1)n=\lambda=c/\nu$. Из треугольника ABC (рис.1.7) видно, что AB = d_2-d_1 = BC · tg $\theta\simeq b\cdot\theta$, откуда $\nu=c/(2nb\theta)=8,01\cdot10^{14}$ Гц.

2.2. На прозрачную пленку с показателем преломления n=1,5 и с толщиной d падает нормально и отражается белый свет. В отраженном свете наблюдается интерференционный максимум m-го порядка для лучей желтого света с длиной волны $\lambda_{\kappa}=540$ нм. Если с пленки удалить слой толщины $\Delta=0,21$ мкм, то в отраженном свете будет наблюдаться интерференционный минимум того же m-го порядка для лучей фиолетового света с длиной волны $\lambda_{\phi}=420$ нм. Найти величину первоначальной толщины пленки d (в нм).

Решение

С учетом потери $\lambda/2$ при отражении от верхней поверхности, условия интерференционного максимума для лучей желтого цвета на пленке толщины d и интерференционного минимума того же порядка m для лучей фиолетового цвета на пленке толщины (d- $\Delta)$ имеют вид: $\Delta_{\mathbf{ж}} = 2dn - \lambda_{\mathbf{x}}/2 = 2m \cdot \lambda_{\mathbf{x}}/2$; $\Delta_{\mathbf{\varphi}} = 2(d-\Delta)n - \lambda_{\mathbf{\varphi}}/2 = (2m-1) \cdot \lambda_{\mathbf{\varphi}}/2$. Исключая отсюда неизвестное целое число m, получим $\frac{2dn - \lambda_{\mathbf{x}}/2}{2(d-\Delta)n} = \frac{\lambda_{\mathbf{x}}}{\lambda_{\mathbf{\varphi}}} = \frac{9}{7}$, откуда $d = \frac{9}{2}\Delta - \frac{7}{8n}\lambda_{\mathbf{x}} = 630$ нм .

2.3. Интерференционная картина колец Ньютона наблюдается в отраженном свете с длиной волны $\lambda = 640$ нм, падающем нормально на плоско-выпуклую тонкую стеклянную линзу с радиусом сферической поверхности R = 15 см, лежащую на плоской стеклянной пластинке. Найти величину показателя преломления жидкости, заполняющей промежуток между линзой и пластинкой, если радиус m-го темного кольца равен 0,4 мм, а радиус (m+4)-го темного кольца равен 0,693 мм. Найти также число m.

Решение

В данном случае пленкой будет тонкая прослойка между стеклянной линзой и стеклянной опорой. Точки, в которых толщина прослойки равна d, образуют окружность с радиусом r. Из прямоугольного треугольника ABC на рис.3.8 видно, что $r^2 = R^2 - \left(R - d\right)^2 \approx 2Rd$ (малым слагаемым $d^2 \sim \lambda^2$ можно пренебречь, так как длины волн λ видимого света очень малы).

Точки, для которых оптическая разность хода световых волн, отраженных от нижней сферической поверхности линзы и от верхней поверхности опоры, удовлетворяют условию интерференционного минимума $\Delta = 2dn + \lambda/2 = (2m+1)\lambda/2$, образуют темное кольцо интерференцион-

ной картины. Подставляя $2d \simeq r^2/R$, находим радиусы этих темных колец: $r_m = \sqrt{\frac{R\lambda}{n}m}$, где m=1,2,3,...- номер кольца.

Не заданное по условию задачи целое число m можно устранить, вычисляя разность $r_{m+4}^2 - r_m^2 = 4\frac{R\lambda}{n}$, откуда $n = 4R\lambda/\left(r_{m+4}^2 - r_m^2\right) = 1,20$. Вычислив n, находим номер кольца $m = nr_m^2/R\lambda = 2$.

Каким бы ни был показатель преломления n жидкости, заполняющей пространство между стеклами ($n > n_{\text{стекла}}$ или $n < n_{\text{стекла}}$) потеря $\lambda/2$ происходит только при одном отражении. В центре картины (точке В на рис.1.8) всегда будет темное пятно. Радиусы светлых колец Ньютона определяются условием интерференционного максимума и равны

$$r_m = \sqrt{\frac{R\lambda}{n}} \left(m - \frac{1}{2} \right)$$
, где $m = 1, 2, 3, ...$ - номер светлого кольца (m -е светлое кольцо меньше m -го тёмного).

Примеры задач контрольной работы для самостоятельной подготовки:

2.4. Две плоские поверхности тонкой пленки образуют очень малый угол $\theta = 8 \cdot 10^{-6}$ рад (см.рисунок). При нормальном отражении от пленки монохроматического света с длиной волны $\lambda = 560$ нм на поверхности пленки видны интерференционные полосы. Расстояние между центрами соседних полос равно b = 25 мм. Определить величину показателя преломления n пленки.

2.5. На плоскую прозрачную пленку с показателем преломления n и с толщиной d=0.5 мкм нормально падает белый свет. В отраженном свете наблюдается интерференционный максимум т-го порядка для лучей оранжевого света с длиной волны $\lambda_0 = 600$ нм. Слой какой толщины Δ (в нм) надо сошлифовать с пластинки, чтобы в отраженном свете наблюдался интерференционный максимум того же m-го порядка для лучей фиолетового света с длиной волны $\lambda_{\rm d} = 420$ нм?

Ответ: 150 нм.

2.6. Плоско-выпуклая стеклянная линза с радиусом сферической поверхности R=126 см освещается падающей сверху нормально плоской световой волной с длиной волны λ= 560 нм. Четвертое светлое кольцо Ньютона имеет радиус $r_4 = 1,4$ мм. Определить показатель преломления n жидкости, находящейся между линзой и стеклянной опорой. Ответ: 1,26.

2.7. Система колец Ньютона наблюдается в отраженном свете, падающем нормально на плосковыпуклую тонкую стеклянную линзу с радиусом сферической поверхности R=30 см, лежащую на плоской стеклянной пластинке (показатель преломления стекла $n_{\text{стекла}} = 1,5$). Промежуток между линзой и пластинкой залит жидкостью с показателем преломления n = 1,2. Найти длину волны падающего света (в нм), если разница радиусов четвертого светлого и четвертого темного колец Ньютона равна $\Delta r = 50$ мкм. Ответ: 599 нм

3. Многолучевая интерференция. Дифракционная решетка

Дифракционная решетка ширины L, на которую приходится N щелей, имеет постоянную d = L/N (это расстояние между соседними щелями). При нормальном падении на дифракционную решетку монохроматического света с длиной волны λ главные интерференционные максимумы (спектры m-го порядка) наблюдаются под углом φ к направлению падения света (рис.3.9), где $|d\sin\varphi=m\lambda|$, $m=0,\pm 1,\pm 2,\pm 3,...$

На удаленном на большое расстояние l экране видны очень узкие освещенные полосы (спектры m-го порядка) с координатами $x_m = l \cdot \lg \phi$.

Примеры решения задач:

3.1. Свет с длиной волны $\lambda = 600$ нм падает нормально на дифракционную решетку, в которой на 1 см ширины приходится N = 3000 штрихов. Сколько главных интерференционных максимумов можно наблюдать за решеткой? Решение.

Из условия интерференционных максимумов $\sin \varphi = m\lambda/d \le 1$, где d = L/N, L = 1 см, получим $m \le l/N\lambda = 5,56$. Наибольшее целое число $m_{\rm max} = 5$. За решеткой наблюдается 11 главных интерференционных максимумов $(m = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \text{ см. рис.} 3.9).$

3.2. На дифракционную решетку из N = 400 щелей с постоянной d = 4.2 мкм падают нормально две плоские волны с длинами волн λ и λ + $\Delta\lambda$. Два **соседних** главных интерференционных максимума света для света с длиной волны λ наблюдаются за решеткой под углами $\alpha = \arcsin(1/5)$ и $\beta = \arcsin(1/3)$. Определить наименьшую возможную разность длин волн $\Delta\lambda$, при которой интерференционные максимумы двух волн можно увидеть за данной решеткой раздельно.

Решение.

Согласно критерию Рэлея, два пика интенсивности еще можно увидеть раздельно, если максимум одного из них совпадает с минимумом другого. При сложении N лучей (волн), приходящих от одинаковых щелей, между двумя соседними главными интерференционными максимумами на рис.1.9 возникает (N-1) минимум освещенности, удовлетворяющих условию $|d \sin \varphi = m' \lambda / N|$, где m' – целые числа, не равные $0, \pm N, \pm 2N, \pm 3N, \dots$

На рис.3.10 в точке, выделенной на оси $\sin \varphi$, интерференционный максимум m-го порядка для света с длиной волны $\lambda + \Delta \lambda$ совпадает с ближайшим интерференционным минимумом для света с длиной волны λ , что даёт условие $d\sin \phi = m(\lambda + \Delta\lambda) = \left(m + \frac{1}{N}\right)\lambda$. По критерию Рэлея две узкие линии, соответствующие волнам $\lambda + \Delta\lambda$

и λ на экране видны раздельно, если $\Delta\lambda \geq \lambda/(mN)$ (величина $\lambda/\Delta\lambda = mN$ называется разрешающей способностью дифракционной решетки).

Наименьшее значение Δλ, удовлетворяющее критерию Рэлея, определяется в спектре наибольшего возможного порядка m_{\max} . Как и в предыдущей задаче, $m_{\max} = d \sin \phi / \lambda \le d / \lambda$. По условию задачи $d \sin \alpha = d \cdot 1/5 = m\lambda$, $d \sin \beta = d \cdot 1/3 = (m+1)\lambda$ (соседние интерференционные максимумы).

Исключая неизвестное число m, находим $d/\lambda=7.5$, откуда $m_{\rm max}=7$, $\lambda=2d/15=560$ нм. Поэтому $\Delta\lambda_{\rm min}=\lambda/m_{\rm max}N=0,2$ нм.

3.3. Плоская монохроматическая световая волна падает на дифракционную решетку под углом $\alpha = 30^{\circ}$ к нормали. Сколько щелей приходится на один миллиметр ширины решетки, если за решеткой под углом $\phi = 2\alpha$ к нормали виден главный интерференционный максимум порядка m = 5? Длина волны света $\lambda = 450$ нм.

Решение.

Во всех точках волновой поверхности AB падающей на решетку волны её фаза одинакова, как и во всех точках волновой поверхности CD преломленной волны. Поэтому, как видно из рис.3.11, разность хода двух лучей AD и BC от двух соседних щелей, распространяющихся в воздухе (n=1), равна

$$\Delta = AD - BC = d \sin \varphi - d \sin \alpha$$
.

По условию d=L/N, где L=1 мм. Из условия интерференционного максимума $\Delta=m\lambda$ находим $N=\frac{L}{d}=\frac{L}{m\lambda}(\sin 2\alpha-\sin \alpha)\simeq 163$ щелей.

него света с ллиной волны $\lambda = 480$ нм

3.4. Лучи оранжевого света с длиной волны $\lambda_{\rm o}$ = 600 нм и синего света с длиной волны $\lambda_{\rm c}$ = 480 нм падают на дифракционную решетку под углом α =30° к нормали. Какое **наибольшее** число щелей (штрихов) на 3 мм ширины должна иметь решетка, чтобы главные максимумы синего и оранжевого цветов были видны за решеткой под одним и тем же углом ϕ =30°, как показано на рисунке?

Решение.

Из рис.3.12 видно, что разность хода между лучами 1 и 2, приходящими от соседних щелей решетки, равна $\Delta=\mathrm{BC}+\mathrm{CD}=d\sin\alpha+d\sin\phi=m_{\mathrm{o}}\lambda_{\mathrm{o}}=m_{\mathrm{c}}\lambda_{\mathrm{c}}$, где m_{o} и m_{c} – целые числа. Наибольшее число щелей N будет при наименьшей возможной величине постоянной решетки d=L/N, где L=3 мм по условию. Подставляя величины λ_{o} и λ_{c} , получаем $600\cdot m_{\mathrm{o}}=480\cdot m_{\mathrm{c}}$ или $5m_{\mathrm{o}}=4m_{\mathrm{c}}$. Наименьшие возможные целые числа, удов-

Рис.3.12

летворяющие этому условию,
$$m_{\rm o}=4$$
 и $m_{\rm c}=5$. Поэтому $N_{\rm max}=\frac{L}{d_{\rm min}}=\frac{L}{m_{\rm o\,min}\lambda_{\rm o}}(\sin\alpha+\sin\phi)\simeq 1250\,$ щелей.
3.5. Плоская монохроматическая волна падает нормально на дифракционную решетку с посто-

3.5. Плоская монохроматическая волна падает нормально на дифракционную решетку с постоянной d=90 мкм. За решеткой, параллельно её плоскости, установлена тонкая собирающая линза с фокусным расстоянием f=120 см, а в её фокальной плоскости — экран. Координата второго главного интерференционного максимума на экране равна x=12 мм (начало отсчета 0 оси x совпадает с фокусом линзы). Найти длину волны λ падающего света (в нм).

Решение.

Линза соберет в одной точке P фокальной плоскости (экрана) все параллельные лучи, уходящие от каждой щели под углом ϕ к направлению падения волны. Угол ϕ , под которым виден главный интерференционный максимум 2-го порядка, находим из условия $d\sin\phi=2\cdot\lambda$.

Так как луч, проходящий через центр линзы A, не преломляется, то из треугольника AOP на рис.3.13 видно, что $x_2 = f \cdot \lg \phi$, откуда $\lg \phi = x_2/f = 0.01$. Для такого малого угла $\lg \phi \simeq \sin \phi \simeq \phi$ и

мы получим
$$\lambda = \frac{d}{2}\sin\phi \simeq \frac{d}{2}\frac{x_2}{f} = 450$$
 нм .

3.6. Свет с длиной волны $\lambda=450$ нм падает нормально на дифракционную решетку с постоянной d=60 мкм. На очень большом удалении l=9 м за решеткой установлен экран (см. рисунок). Найти расстояние Δx между спектрами 4-го и 2-го порядка, видными с разных сторон от центра 0 экрана.

Решение

Решені В Если п

Если $m\lambda/d\ll 1$, то угол ϕ , под которым наблюдается интерференционный максимум, мал, и можно принять $\sin\phi\simeq tg\,\phi\ll 1$.

В данной задаче $\lambda/d=0,0075\ll 1$. Как видно из рисунка, $\Delta x=l\cdot \operatorname{tg}\phi_4+l\cdot \operatorname{tg}\phi_2\simeq l\left(\sin\phi_4+\sin\phi_2\right)$, где углы определяются условием главных интерференционных максимумов $d\sin\phi_m=m\lambda$. Поэтому $\Delta x=l\left(4+2\right)\lambda/d=0,405$ м.

Примеры задач контрольной работы для самостоятельной подготовки:

3.7. На дифракционную решетку падает нормально плоская монохроматическая световая волна с длиной λ . Два **соседних** главных интерференционных максимума света наблюдаются за решеткой под углами α = arcsin(0,6) и β = arcsin(0,8) к направлению падения света (см.рисунок). Найти порядок главного максимума, наблюдаемого под углом α .

Ответ:
$$m = 3$$
.

3.8. На дифракционную решетку падает нормально плоская монохроматическая световая волна. Ширина освещенного участка решетки, имеющего 800 щелей, равна 4,8 мм. Главные интерференционные макси-

мумы порядка m и m-3 наблюдаются за решеткой под углами $\beta = 30^{\circ}$ и $\alpha = \arcsin(0,25)$ соответственно. Найти длину волны λ света, падающего на решетку (в нм).

Ответ: 500 нм.

3.9. Лучи фиолетового и оранжевого света с длинами волн $\lambda_{\varphi}=450$ нм и $\lambda_{o}=600$ нм падают нормально на дифракционную решетку. Какое **наибольшее** число щелей (штрихов) должно приходиться на один сантиметр ширины решетки, чтобы главные интерференционные максимумы данных цветов наблюдались за решеткой под одним и тем же углом $\phi=30^{\circ}$ к направлению падающего света?

Ответ: 2778.

3.10. На дифракционную решетку с постоянной

d = 6,6 мкм под углом α к нормали падает плоская монохроматическая волна с длиной $\lambda = 600$ нм. За решеткой под одинаковыми углами $\phi = 30^{\circ}$ к нормали наблюдаются главные интерференционные максимумы m-го и (m+1)-го порядков (см. рисунок). Найти величину m.

Ответ: m = 5.

3.11. Монохроматическая плоская световая волна с $\lambda=480$ нм падает на дифракционную решетку с постоянной d=80 мкм под малым углом α . За решеткой параллельно установлена тонкая собирающая линза, а в ее фокальной плоскости — экран. Найти величину фокусного расстояния f линзы, если известно, что лучи света, распространяющиеся перпендикулярно к линзе и к экрану (см.рисунок), образуют главный интерференционный максимум третьего порядка. При этом центральная полоса интерференционной картины (максимум нулевого порядка) наблюдается на экране на расстоянии x=3,6 мм.

Ответ: 20 см.

3.12. Плоская монохроматическая световая волна с λ = 640 нм падает нормально на дифракционную решетку. За решеткой параллельно её плоскости установлена тонкая собирающая линза с фокусным расстоянием f=1,5 м, а в её фокальной плоскости — экран. Расстояние между спектрами 2-го и 4-го порядка с одной стороны от центра интерференционной картины на экране равно $\Delta x=2,4$ см (начало отсчета 0 оси x совпадает с фокусом линзы). Сколько штрихов приходится на 1 см ширины решетки? *Ответ:* 125.

4. Дифракция на круглом отверстии и на узкой щели

На узкую щель-прорезь ширины a в непрозрачной преграде падает нормально плоская монохроматическая световая волна. AB — её волновая поверхность, все точки которой имеют одинаковую фазу (рис.3.14). Рассмотрим волну, распространяющуюся за щелью под углом ϕ . Расстояние $BC = a \sin \phi$ будет раностью хода между отклоненными лучами 1 и 2 (рис.3.14). Разобьем плоскость щели на узкие полосы — **зоны Френеля**, расстояния от противоположных границ которых до новой волновой поверхности AC равны $\lambda/2$, что соответствует сдвигу фаз π . Поэтому световые колебания от двух соседних зон Френеля приходят в противофазе и гасят друг друга. Если щель разбивается на четное число 2m зон, то в этом направлении свет не распространяется: условие дифракционного минимума на щели: $a\sin \phi = m\lambda$, где $m = 0, \pm 1, \pm 2, \pm 3, \dots$

Примеры решения задач:

4.1. За непрозрачной преградой с прорезанной узкой щелью на большом удалении l=9 м установлен экран. На преграду нормально падает свет с длиной волны $\lambda=720$ нм. Найти ширину щели a, если она в четыре раза меньше ширины дифракционного изображения щели на экране.

Рис.1.15

Решение.

Распределение интенсивности света на экране, удаленном на большое расстояние l, показано на рис.1.15. Если $\lambda/a\ll 1$, то $\lg \phi \simeq \sin \phi$ и коор-

динаты дифракционных минимумов $x_m = l \cdot \lg \phi = l \lambda m/a$, где $m = \pm 1, \pm 2, \pm 3, \dots$ В этом случае в центре дифракционной картины видна полоса шириной $\Delta = x_1 - x_{-1} = 2l \lambda/a$, которая называется дифракционным изображением щели.

По условию задачи $\Delta=2l\,\lambda/a=4a$, откуда $a=\sqrt{l\lambda/2}=1,8$ мм.

4.2. Монохроматический свет падает нормально на узкую щель ширины a=0.8 мм в непрозрачной преграде. За щелью установлена параллельная преграде тонкая собирающая линза с фокусным расстоянием f=4 м, а в ее фокальной плоскости — линейка. Координаты дифракционных минимумов, измеряемые по линейке равны 212 мм, 215 мм, 218 мм, 224 мм, 227 мм, 230 мм, Найти длину волны λ падающего света.

Решение.

Как и в задаче 3.5, линза соберет лучи, уходящие за щелью под углом φ , в одну точку экрана-линейки с координатой $x=f\cdot \operatorname{tg}\varphi$ (см. рис.1.13). Распределение интенсивности света показано на рис.1.15, дифракционная картина имеет вид яркой

центральной полосы шириной $\Delta = 2f \lambda/a$, а по её бокам – слабо освещенные полосы, имеющие вдвое меньшую щирину $\Delta x = x_{m+1} - x_m = f \lambda / a.$

Начало отсчета линейки смещено относительно центра этой картины, но из условия видно, что центральная полоса имеет ширину $\Delta = 224\,\mathrm{mm} - 218\,\mathrm{mm} = 6\,\mathrm{mm}$, а остальные интервалы равны 3 мм (боковые полосы). Отсюда $\lambda = a\Delta/2\,f = 600\,\mathrm{mm}$.

4.3. На узкую щель в непрозрачной преграде нормально падает монохроматический свет, длина волны λ которого в 1600 раз меньше ширины щели а. Найти расстояние от второго дифракционного минимума освещенности по одну сторону от центра дифракционной картины на экране, удаленном на расстояние l=8м, до третьего дифракционного минимума по другую сторону от этого центра.

Решение. Как видно из рис.3.15, это расстояние равно
$$x_3 - x_{-2} = \frac{(3+2)l\lambda}{a} = 25$$
 мм.

В других задачах рассматривается дифракция света на круглом отверстии. Точечный источник света S находится на оси круглого отверстия, прорезанного в непрозрачной плоской преграде на удалении a (рис.3.16). По другую сторону преграды на удалении bнаходится экран. В задачах контрольной работы радиус отверстия настолько мал, что расстояние $OB = h_m \ll a, b$. Дифракция света рассматривается в центральной точке P экрана, находящейся на оси отверстия. Источник S создает сферическую волновую поверхность радиуса SB = a, которую разбивают на зоны Френеля – кольца, расстояния от противоположных границ которых до точки P отличаются на $\lambda/2$. Если отверстие открывает m зон Френеля, то расстояние от крайней точки открытых зон до точки наблюдения равно

 $AP = b + m\lambda/2$ (рис.3.16). Радиус *m*-й зоны Френеля $OA = r_m$ будет общим катетом двух прямоугольных треугольников SAO и AOP, в которых SO = $a - h_m$, OP = $b + h_m$. Тогда OA² = SA² – SB² = AP² – OP² (теорема Пифагора).

Подставим величины этих отрезков, указанные на рис.3.16:
$$r_m^2 = a^2 - \left(a - h_m\right)^2 = \left(b + m\,\lambda/2\right)^2 - \left(b + h_m\right)^2.$$

Раскроем скобки в правом равенстве: $2(a+b)h_m = bm\lambda + (m\lambda/2)^2$. Последним слагаемым можно пренебречь, так как для видимого света $\lambda \ll r, a, b$. Подставив найденный отрезок $h_m = bm\lambda/2(a+b)$ в левое равенство, снова пренебрежем малой величиной $h_m^2 \sim \lambda^2$. Получаем

$$r_m = \sqrt{\frac{ab}{a+b}m\lambda}$$
, где $m=1,2,3,...$ - радиус m -й зоны Френеля при дифракции света от то-

чечного источника.

Если источник света очень удален $(a \to \infty)$, то на отверстие падает плоская световая волна (рис.3.17). В этом случае

 $\overline{|r_m = \sqrt{bm\lambda}|}$ - радиус m-й зоны Френеля при дифракции плоской световой волны, где $m = 1, 2, 3, \dots$

Чтобы определить интенсивность света в точке Р экрана, используют спираль Френеля (рис.1.18). Проходя расстояние $\lambda/2$, световая волна увеличивает фазу на π , т.е. её вектор \vec{E} поворачивается на 180° . Поэтому вклады двух соседних зон Френеля почти полностью компенсируют друг друга. Цифрами на рис.1.18 обозначены границы зон Френеля. Чтобы определить суммарный вектор \vec{E} волн, прихо-

дящих от всех открытых участков отверстия в точку Р, надо соединить на спирали начало и конец открытых зон Френеля (на рис.3.18 вклады закрытых зон обозначены пунктиром, вектор $\vec{E}_{1.5}$ соответствует 1,5 зонам Френеля, открытых отверстием). Если открыты все зоны (преграды нет), спираль сходится в центральную точку, что дает вектор \vec{E}_0 падающей плоской волны.

Дифракционный максимум освещенности в центральной точке Р экрана наблюдается, если отверстие открывает нечетное число зон Френеля, причем наибольшая освещенность получится, если открыта одна зона Френеля ($E_1 = \max$ на рис.3.18).

Дифракционный минимум в точке Р окажется, если открыто четное число зон Френеля, причем наименьшая освещенность будет при двух открытых зонах Френеля ($E_2 = \min$ на рис.3.18).

4.4. Плоская монохроматическая электромагнитная волна падает нормально на плоскую бесконечную преграду, в которой вырезано круглое отверстие радиуса r = 4 мм. На его оси за преградой на удалении b = 50 см стоит детектор Д. При какой **наибольшей** длине волны λ излучения детектор его не фиксирует?

Решение.

В месте нахождения детектора должен оказаться дифракционный минимум, т.е. отверстие должно

открыть четное число зон Френеля: $r_{\text{отверстия}} = \sqrt{b \cdot 2m\lambda}$. Наибольшее значение λ соответствует наименьшему четному числу 2m=2, откуда $\lambda = r^2/2b = 16$ мкм. Условие $\lambda \ll r$ выполнено.

4.5. Свет с длиной волны $\lambda = 500$ нм падает нормально на непрозрачную ширму с прорезанным отверстием радиуса r = 1,5 мм. За ширмой на удалении b = 3 м установлен экран. Во сколько раз уменьшится освещенность центральной точки P экрана (см. рисунок), если ширму убрать?

Решение.

Определим, сколько зон Френеля открывает отверстие: $r=r_m=\sqrt{bm\lambda}$, откуда $m=r^2/b\lambda=1,5$. Световой экран вектор $\vec{E}_{1,5}$, соответствующий полутора открытым зонам, показан на рис.1.18. Если ширму убрать, то будут открыты все зоны Френеля, создавая в точке P волну, величина светового вектора которой $E_0=E_{1,5}\cos 45^\circ$ (рис.1.18). Так как освещенность $I\sim E^2$, то она уменьшится в $E_{1,5}^2/E_0^2=\cos^{-2}45^\circ=2$ раза.

4.6. В плоской преграде прорезано круглое отверстие радиуса r=1 мм. На его оси находятся точечный монохроматический источник света S и точка наблюдения P на экране. При расстоянии от источника S до преграды a=4 м , отверстие открывало для точки наблюдения P две зоны Френеля. Если расстояние a уменьшить в 4 раза, то отверстие будет открывать три зоны Френеля. Найти длину волны света, испускаемого источником.

Решение.

По условию задачи вначале радиус отверстия был равен радиусу второй зоны Френеля, а затем стал равен радиусу третьей зоны: $r_{\text{отверстия}} = r_2 = \sqrt{\frac{ab}{a+b}} \cdot 2\lambda = r'_3 = \sqrt{\frac{a'b}{a'+b}} \cdot 3\lambda$, где $a' = \frac{a}{4}$. Правое равенство дает $\frac{2a}{a+b} = \frac{3a'}{a'+b}$, откуда $b = \frac{aa'}{2a-3a'} = \frac{a}{5} = 0,8$ м. Подставляя b в левое равенство, находим $\lambda = r^2 \left(a+b\right) / 2ab = 750$ нм.

4.7. Точечный источник света S с длиной волны $\lambda = 600$ нм находится на оси отверстия радиуса r=1 мм, прорезанного в плоской преграде, удаленной на расстояние a=0,3 м (см. рисунок). При каком **наибольшем** расстоянии b от преграды до экрана в центре P дифракционной картины наблюдается минимум освещенности?

Решение.

Отверстие должно открывать четное число зон Френеля (условие дифракционного минимума), т.е. $r=r_{2m}=\sqrt{ab\cdot 2m\lambda/(a+b)}$. Отсюда находим $b=r^2a/\left(a\cdot 2m\lambda-r^2\right)$. Наибольшую величину b получим при наименьшем возможном четном числе 2m. Но знаменатель должен быть положительным, откуда $2m>r^2/a\lambda=5,55$. T.e. $2m_{\min}=6$ и $b_{\max}=r^2a/\left(6a\lambda-r^2\right)=3,75$ м.

 $2m_{\min} = 3 + m_{\max} = r + d / (3dr + r) = 3,73 \text{ M}.$

Примеры задач контрольной работы для самостоятельной подготовки:

4.8. Плоская световая волна с $\lambda = 480$ нм падает нормально на узкую щель ширины a = 1,6 мм в непрозрачной преграде. За щелью установлена тонкая собирающая линза с фокусным расстоянием f = 2 м, оптическая ось которой перпендикулярна к преграде (см. рисунок). В фокальной плоскости линзы размещен экран "Э". Найти ширину дифракционного изображения щели на экране.

Ответ: 1,2 мм.

4.9. За щелью ширины a=0,4 мм, сделанной в непрозрачной плоской преграде, установлена тонкая собирающая линза, а в ее фокальной плоскости — экран "Э". Чему равно фокусное расстояние f линзы, если при нормальном падении света с длиной волны $\lambda=600$ нм наименьшее расстояние между соседними минимумами освещенности на экране $\Delta x=3,6$ мм?

Ответ: 2.4 м.

4.10. Точечный источник света S с длиной волны λ = 560 нм находится на оси круглого отверстия, прорезанного в плоской непрозрачной преграде, удаленной на расстояние a. Отверстие открывает три зоны Френеля для центральной точки P экрана, стоящего за преградой на расстоянии b (см. рисунок). Условия опыта изменили, уменьшив и расстояние a, и расстояние b в 2 раза, а также взяв другой точечный источник света. При этом отверстие будет открывать для точки наблюдения P семь зон Френеля. Чему равна длина волны λ ' нового источника света ?

Ответ: 480 нм.

4.11. В опыте с дифракцией монохроматического света, расстояние от плоской ширмы с прорезанным отверстием до точечного источника света, находящегося на оси отверстия, равно a = 90 см (рис.3.16). Отверстие открывает ровно две зоны Френеля для центральной точки Р дифракционной картины на экране, находящемся на расстоянии b = 30 см за ширмой. На какое расстояние Δa надо придвинуть источник света к ширме, чтобы отверстие открывало три зоны Френеля для точки Р? Отверстие открывало три зоны Френеля для точки Р?

4.12. Расстояние от точечного монохроматического источника света S до экрана равно SP= l=2 м. Линия SP совпадает с осью круглого отверстия радиуса r=0,3 мм в плоской непрозрачной преграде (см.рисунок). На каком расстоянии a от источника света S надо установить эту преграду, чтобы освещенность в точке P экрана стала **наибольшей из всех возможных**? Длина волны света $\lambda=500$ нм.

* Р

Ответ: 1,8 м или 0,2 м.

5. Поляризованный свет

Естественный свет испускается отдельными атомами в виде коротких цугов (рис.3.19), в которых векторы \vec{E} совершают колебания во всех возможных направлениях, перпендикулярных скорости \vec{v} электромагнитной волны.

Пленка или пластинка поляризатора пропускает волну, в которой вектор \vec{E} колеблется в одной плоскости вдоль оси пропускания поляризатора OO' (рис.3.20). Это – **плоскополяризованный** свет.

Если на поляризатор падает плоскополяризованная волна, вектор \vec{E}_0 которой направлен под углом ϕ к оси пропускания OO', то через поляризатор проходит волна с вектором $\vec{E} = \vec{E}_0 \cos \phi$ (рис.3.20). Интенсивность света $I \sim \vec{E}^2$, что приводит к закону Малюса: $I = I_0 \cos^2 \phi$, где $I_0 - I_0 \cos^2 \phi$

интенсивность падающего плоскополяризованного света, I – интенсивность плоскополяризованного света, прошедшего через поляризатор, ϕ – угол между плоскостями поляризации (рис.3.20).

При падении естественного света через поляризатор проходит свет вдвое меньшей интенсивности $I_{\rm прош} = I_{\rm ecr}/2$.

Примеры решения задач:

5.1. Естественный свет с интенсивностью $I_0=16~{\rm BT/m}^2$ проходит через систему из двух поляризаторов, чьи плоскости перпендикулярны к направлению распространения светового луча, а оси пропускания Π_1 и Π_2 повёрнуты на угол 90° . Если между ними поместить третий поляризатор, ось пропускания Π_3 которого образует угол α с осью Π_1 , то интенсивность вышедшего из данной системы света станет равной $I=2~{\rm BT/m}^2$. Чему равна величина угла α ?

Решение

Без поляризатора Π_3 свет не может пройти через систему двух скрещенных под углом $\phi = 90^{\rm o}$ поляризаторов: $I = (I_0/2) \cdot \cos^2 90^{\rm o} = 0$.

Поместим поляризатор Π_3 . После первого поляризатора Π_1 интенсивность естественного света уменьшится вдвое: $I_1=I_0/2$. После поляризатора Π_3 , в соответствии с законом Малюса, $I_2=I_1\cos^2\alpha$. Вышедший из Π_3 свет поляризован в плоскости, составляющей угол $90^{\rm o}-\alpha$ с осью пропускания последнего поляризатора Π_2 (рис.3.21), из которого выйдет свет с интенсивностью $I_3=I_2\cos^2\left(90^{\rm o}-\alpha\right)=I_2\sin^2\alpha=I$.

В результате
$$I = (I_0/2) \cdot \cos^2 \alpha \cdot \sin^2 \alpha = I_0 \sin^2 (2\alpha)/8$$
 и $\sin(2\alpha) = \sqrt{8I/I_0} = 1$, откуда $2\alpha = 90^\circ$ и $\alpha = 45^\circ$.

5.2. Через поляризатор с осью пропускания Π одновременно проходят два некогерентных луча плоскополяризованного света. В пер-вом луче с интенсивностью I_1 =2 Вт/м 2 световой вектор \vec{E}_1 совершает колебания в плоскости, образующей угол α = 30 $^{\circ}$ с осью Π . Во втором луче с интенсивностью I_2 = 4 Вт/м 2 плоскость колебаний \vec{E}_2 образует с осью Π угол $-\alpha$. Поляризатор повернули на тот же угол α (см. рисунок). Во сколько раз изменилась интенсивность I света, прошедшего через поляризатор?

Решение

Интенсивности некогерентного света складываются. Вначале по закону Малюса

 $I = I_1 \cos^2 \alpha + I_2 \cos^2 (-\alpha) = (I_1 + I_2) \cdot \cos^2 30^\circ = (I_1 + I_2) \cdot 3/4 = 4,5 \text{ BT/m}^2$. После поворота ось поляризатора совпадет с плоскостью поляризации второго луча I_2 и составит угол 2α с плоскостью поляризации первого луча I_1 . Интенсивность прошедшего света будет равна $I' = I_1 \cos^2 2\alpha + I_2 \cos^2 0^\circ = I_2 + I_1 \cdot 1/4 = 4,5 \text{ BT/m}^2$. Она не изменится.

5.3. Один луч естественного света с интенсивностью $I_0 = 8$ Вт/м² непосредственно падает на поляризатор Π_2 , а второй луч естественного света с той же интенсивностью I_0 предварительно проходит через поляризатор Π_1 . Чему равна интенсивность I света, вышедшего из данной системы, если угол между осями пропускания поляризаторов равен $\alpha = 30^\circ$? Чему равна степень поляризации света, падающего на поляризатор Π_2 ?

Решение.

Частично поляризованный свет с интенсивностью I_1 будет смесью естественного света с интенсивностью $I_1 = I_0$ и плоскополяризованного света с интенсивностью $I_2 = I_0/2$, прошедшего через поляризатор Π_1 . Чтобы определить <u>степень</u>

его поляризации P, на пути луча ставят поляризатор и вращают его ось на угол $0 \le \phi \le 360^{\circ}$ (рис.3.22). При этом интенсивность прошедшего света меняется в пределах

$$I_{\min} \leq I \leq I_{\max}$$
 . Степень поляризации равна

$$P = rac{I_{
m max} - I_{
m min}}{I_{
m max} + I_{
m min}} imes 100\%$$
 . При любом положе

 $I_{\min} \leq I \leq I_{\max}$. Степень поляризации равна $P = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} \times 100\%$. При любом положении поляризатора Π на рис.3.22 естественный свет будет ослаблен в 2 раза. Поэтому $I_{\max} = I_2 + I_1/2 = I_0$ (при некоторой ориентации оси пропускания Π проходит весь плоскополяризованный свет), и $I_{\min} = 0 + I_1/2 = I_0/2$ (плоскополяризованный свет не проходит). Находим $P = (I_0 - I_0/2)/(I_0 + I_0/2) \times 100\% = 33,3\%$.

Через второй поляризатор Π_2 , если учесть закон Малюса, пройдет свет с интенсивностью $I = \frac{I_1}{2} + I_2 \cos^2 \alpha = \frac{7}{8} I_0 = 7 \text{ Bt/m}^2$. ***************

Плоскополяризованный свет получается также при отражении падающего естественного света (луч "1" на рис.3.23) от плоской границы диэлектрика, если свет падает на эту границу под углом Брю-<u>стера</u> α_{B} . При этом угол падения и угол преломления связаны соотношением $\alpha_{B}+\beta=90^{o}$. Из закона

преломления находим
$$\frac{\sin \alpha_{\rm b}}{\sin \beta} = \frac{\sin \alpha_{\rm b}}{\cos \beta}$$

$$\frac{\sin \alpha_{\rm E}}{\sin \beta} = \frac{\sin \alpha_{\rm E}}{\cos \alpha_{\rm E}} = \left[\operatorname{tg} \alpha_{\rm E} = \frac{n_2}{n_1} \right].$$

преломления находим $\frac{\sin \alpha_{\rm E}}{\sin \beta} = \frac{\sin \alpha_{\rm E}}{\cos \alpha_{\rm E}} = \boxed{ {\rm tg} \, \alpha_{\rm E} = \frac{n_2}{n_1} }$. Отраженный луч "2" будет плоскополяризован (век-

тор \vec{E} в нем колеблется в плоскости, перпендикулярной плоскости падения). Преломленный луч "3" частично поляризован.

5.4. Параллельный пучок естественного света падает из жидкости на плоскую границу с воздухом. Преломленный луч выходит в воздух под углом $\alpha = 60^{\circ}$ к нормали (см. рисунок). При некоторой ориентации оси пропускания поляризатора П, поставленного на пути отраженного луча, поляризатор не пропустит свет. Чему равен показатель преломления n жидкости?

Решение

Если в условии сказано, что поляризатор не пропускает падающий свет, то этот свет плоскополяризован. Поэтому угол падения β луча должен быть углом Брюстера (отраженный к поляризатору свет будет плоско-

поляризованным). Для угла Брюстера $\lg \beta_B = \frac{n_{\text{воздуха}}}{n_{\text{жилкости}}} = \frac{1}{n}$. А так как $\beta_B + \alpha = 90^{\circ}$, то $\lg \beta_B = \lg 30^{\circ} = 1/\sqrt{3}$. Отсю-

да
$$n = \sqrt{3} = 1,73$$
.

Примеры задач контрольной работы для самостоятельной подготовки:

5.5. Естественный свет с интенсивностью I_0 проходит через систему из двух поляризаторов, у которых оси пропускания Π_1 и Π_2 повернуты на угол $\alpha=15^\circ$. Чему равна при этом интенсивность I света, вышедшего из системы? Если угол α между осями Π_1 и Π_2 увеличить в 2 раза то интенсивность света, вышедшего из системы окажется равной $I' = 4 \text{ Br/m}^2$. *Ответ*: 4,976 Вт/м².

5.6. Естественный свет с интенсивностью I_0 проходит через систему из трёх поляризаторов, оси пропускания которых повёрнуты на углы α и 2α (см. рисунок). Из последнего поляризатора Π_3 выходит свет с интенсивностью I=2 Вт/м², а после поляризатора Π_2 интенсивность света равна $I_{\rm np}=3$ Вт/м². Найти интенсивность I_0 падающего света.

5.7. Естественный свет с интенсивностью I_0 проходит через систему из четырёх поляризаторов, чьи оси пропускания Π_2 , Π_3 и Π_4 последовательно повернуты относительно оси Π_1 на углы $\alpha = 30^\circ$, 2α и 3α (см. рисунок). Из системы выходит свет с интенсивностью $I = 0.81 \text{ Bt/m}^2$. Чему равна интенсивность I_0 падающего света?

Ответ: 3,84 Вт/м².

5.8. Через систему из двух поляризаторов одновременно проходят два луча плоскополяризованного света. Оси пропускания Π_1 и Π_2 этих поляризаторов повернуты на угол α друг относительно друга. В первом луче с интенсивностью I_1 =6 Вт/м² световой вектор E_1 совершает колебания вдоль оси Π_1 первого поляризатора, а во втором луче с интенсивностью $I_2 = 4 \text{ Br/m}^2$ световой вектор E_2 колеблется вдоль оси Π_2 второго поляризатора (см. рисунок). Результирующая интенсивность света, прошедшего через систему поляризаторов, равна $I = 4 \text{ Br/m}^2$. Чему равна величина угла α? Ответ: 45°.

5.9. Свет является смесью естественного света с интенсивностью $I_1 = 12 \text{ Br/m}^2$ и плоскополяризованного света с интенсивностью I_2 . Степень поляризации P этого света, которая равна P = 40 %. Чему равна интенсивность I_2 плоскополяризо-*Ответ*: 8 Bт/м^2 . ванного света?

5.10. Луч естественного света падает из воздуха на плоскую поверхность стекла. При этом угол преломления в 2 раза меньше угла падения, а поляризатор, установленный на пути отраженного от стекла луча, при некоторой ориентации его оси не пропускает свет. Чему равен показатель преломления стекла? Ответ: 1,73.

5.11. На пути светового луча, отраженного от стеклянной пластинки с показателем преломления n=2, ставят поляризатор. Поворотом оси его пропускания можно добиться полного исчезновения прошедшего через поляризатор света. Найти синус угла преломления луча из воздуха в стекло.

Ответ: 0,447.

6. Законы теплового излучения

Нагретые до температуры T тела испускают с поверхности тепловое излучение – электромагнитные волны со всеми длинами λ . При некоторых условиях энергия электромагнитного излучения, испущенная с единицы поверхности нагретого тела за единицу времени (энергетическая светимость), выражается формулой $R_3 = A\sigma T^4$ $\left[\text{Дж/c} \cdot \text{м}^2 \right]$, где $A - \text{коэффициент} \right]$ поглощения $\left(A \le 1 \right)$, $\sigma = 5,67 \cdot 10^{-8}$ $\text{Дж/c} \cdot \text{м}^2 \text{K}^4$ - постоянная Стефана-Больцмана. Среды, для которых A = 1 называются абсолютно черным телом.

Энергия, испускаемая со всей поверхности нагретого тела за время Δt , равна $W = R_3 S \Delta t = A \sigma T^4 S \Delta t$, где S – плошаль поверхности.

Эта энергия неравномерно уносится волнами с разной длиной волны λ . Максимум излучения приходится на длину волны $\lambda_{\rm m}$ (рис.3.24), которая определяется <u>законом смещения Вина</u> $\lambda_{\rm m} T = b$, где $b = 2,898 \cdot 10^{-3}$ м·К- <u>постоянная Вина</u>.

излучательная способность

0 \(\lambda_m \)

Примеры решения задач:

6.1. Икосаэдр – правильный многогранник, имеющий двадцать одинаковых граней в виде равносторонних треугольников – изготовлен из материала, который можно считать абсолютно черным телом. Температура икосаэдра поддерживается постоянной и равной 227° С. Чему равна величина ребра a икосаэдра, если каждый час он излучает в окружающий вакуум тепловую энергию W = 4 МДж?

Решение.

Площадь поверхности данного тела равна площади 20 равносторонних треугольников со стороной a: $S=20S_\Delta$, где $S_\Delta=\frac{1}{2}ah=\frac{\sqrt{3}a^2}{4}$. Тогда $W=\sigma T^4\cdot 20S_\Delta\cdot \Delta t$, откуда $a=\sqrt{W/\left(5\sqrt{3}\sigma T^4\Delta t\right)}=0$,19 м .

При вычислениях не забывайте переводить все заданные в условии величины в систему СИ: $T=500~{\rm K},~\Delta t=3600~{\rm c},~W=4\cdot10^6~{\rm Дж}$.

6.2. Тонкая квадратная пластинка находится в вакууме и была нагрета до температуры T = 1000 К. Верхнюю плоскость пластинки нагрели до температуры $T_1 = 1050$ К. До какой температуры T_2 надо нагреть нижнюю плоскость пластинки, чтобы мощность испускаемого всей пластинкой теплового излучения увеличилась в полтора раза?

Решение.

Первоначально вся пластинка с площадью поверхности $S=2a^2$ была нагрета одинаково и за время Δt излучала энергию $W_0=A\sigma T^4\cdot 2a^2\Delta t$ (мощность теплового излучения $P=W/\Delta t$). Затем её верхняя и нижняя плоскости с площадью a^2 нагреты по-разному и излучают энергию $W_1+W_2=A\sigma T_1^4\cdot a^2\Delta t+A\sigma T_2^4\cdot a^2\Delta t$. По условию $(W_1+W_2)/W_0==\left(T_1^4+T_2^4\right)/2T^4=3/2$, откуда $T_2=\sqrt[4]{3T^4-T_1^4}=1156$ К .

При вычислениях учтите, что $T^4 = (T^2)^2$, $\sqrt[4]{x} = \sqrt{\sqrt{x}}$.

6.3. Цилиндр длиной l=20 см излучает как тело с коэффициентом поглощения A=0,6. Радиус цилиндра r=20 см, а его температура поддерживается постоянной. За какое время Δt цилиндр испустит тепловую энергию W=4 МДж, если максимум его спектральной излучательной способности приходится на длину волны $\lambda_{\rm m}=1,61$ мкм?

Решение.

Площадь поверхности цилиндра складывается из площади двух его оснований и площади боковой поверхности: $S=2\pi r^2+2\pi r l$. Так как l=r, то $S=4\pi r^2$. Температуру цилиндра можно вычислить с помощью закона смещения Вина: $T=b/\lambda_{\rm m}=1800~{\rm K}$. Время излучения находим по известной величине испущенной энергии $\Delta t=W/\left(A\sigma T^4\cdot 4\pi r^2\right)=22,3~{\rm c}$.

6.4. Постоянный ток I = 0.3 А протекает по прямому тонкому длинному проводнику, имеющему вид половины тонкого цилиндра, разрезанного по диаметру, равному d = 1.2 мм, и нагревает его до температуры $t^{0} = 727^{\circ}$ С. Найти длину l этого проводника, если его материал имеет коэффициент поглощения A = 0.7, а сопротивление проводника при данной температуре равно R = 6 кОм.

Решение

Протекающий ток I приводит к выделению джоулевого тепла, нагревающего проводник до температуры T. При этой температуре устанавливается тепловое равновесие: все выделившееся тепло излучается через боковую поверхность

проводника $S_{60K} = dl + \pi dl/2$ (площадь оснований $\pi d^2/8$ мала, т.к. по условию $d \ll l$, и можно считать, что излучение идет через боковую поверхность тонкого провода). Из уравнения баланса тепловой энергии

$$Q_{
m джоул} = I^2 R \Delta t = W_{
m изл} = A \sigma T^4 S_{
m бок} \Delta t$$
 находим $l = \frac{I^2 R}{A \sigma T^4 \left(1 + \pi/2\right) d} = 4,41$ м.

Примеры задач контрольной работы для самостоятельной подготовки:

6.5. Правильный тетраэдр и шар изготовлены из материала, который можно считать абсолютно черным телом. Рёбра тетраэдра а равны радиусу шара. Температура тетраэдра в два раза больше температуры шара. Во сколько раз мощность теплового излучения, испускаемого тетраэдром больше тепловой мощности, испускаемой шаром?

Ответ: в 2,205 раз.

6.6. Находящийся в вакууме шар был нагрет до температуры Т. Половину шара нагрели в два раза $(T_2 = 2T)$, а половину охладили в два раза $(T_2 = T/2)$. Во сколько раз увеличилась мощность теплового излучения, испускаемого шаром?

Ответ: увеличилась в 8,031 раз.

6.7. В вакууме находится правильный октаэдр, имеющий восемь одинаковых граней в виде равносторонних треугольников со стороной a = 20 см. Этот многогранник, который можно считать абсолютно черным телом, каждую минуту излучает энергию W = 30 кДж (его температура при этом поддерживается постоянной). Найти длину волны (в мкм), на которую приходится максимум спектральной излучательной способности дан-Ответ: 5,77 мкм ного тела.

6.8. Ток $I=2\,\mathrm{A}$ течет по прямой проволоке длины $l=2\,\mathrm{m}$, имеющей сопротивление $R=1\,\mathrm{kOm}$. Температура проволоки $T = 2000 \,\mathrm{K}$ поддерживается постоянной за счёт теплового излучения через её боковую поверхность. Материал проволоки имеет коэффициент поглощения A = 0,4. Найти радиус проволоки.

Ответ: 0,877 мм.

6.9. Найти величину постоянного напряжения U, приложенного к длинной и очень тонкой прямой проволоке диаметра d = 0.5 мм и длины l = 2 м. Температура проволоки, по которой непрерывно течет ток, равна $t^{\circ} = 927^{\circ}$ C, а сопротивление проволоки при данной температуре R = 1, 2 кОм. Коэффициент поглощения материала проволоки A = 0.6.

Ответ: 515,7 В.

6.10. Длинный тонкий прямой проводник с квадратным поперечным сечением 2×2 мм² подключен к источнику постоянного напряжения U. Проводник деформировали, не меняя длины l так, что его поперечное сечение стало круглым, но не изменило своей величины. Как изменилась равновесная температура проводника, если его сопротивление возросло в 1,01 раз?

Ответ: увеличилась в 1,028 раз.

7. Фотоэффект. Эффект Комптона

С точки зрения квантовой теории электромагнитное излучение образовано потоком фотонов.

Используйте соответствующее условиям задачи выражение для энергии фотона $E_{\rm d}$. $E\ddot{e}$ можно записать через

v частоту v, длину волны λ или импульс p_{Φ} фотона: $E_{\Phi} = hv = hc/\lambda = cp_{\Phi}$, где $h = 6,626 \cdot 10^{-34}$ Дж \cdot с — постоянная

Планка, $c = 3.10^8$ м/с – скорость света.

Если вся энергия падающего на металл фотона передается электрону, находящемуся внутри (рис.3.25), то часть этой энергии расходуется на работу выхода $A_{
m BЫX}$ (это минимальная энергия, $E_{
m \varphi}^{-1}$ необходимая электрону для преодоления двойного электрического слоя на поверхности металла и вылету из металла). Такой электрон вылетает с максимальной возможной скоростью v_{max} и выполняется закон сохранения энергии (уравнение Эйнштейна для фотоэффекта):

$$E_{\Phi} = h v = A_{\text{вых}} + m_e v_{\text{max}}^2 / 2$$
, где $m_e = 9.11 \cdot 10^{-31}$ кг - масса электрона (величина его заряда $e = 1.6 \cdot 10^{-19}$ Кл).

рую приобретает электрон, ускоряясь разностью потенциалов в 1 вольт. Поэтому $[1 \text{ 3B} = e \cdot \Delta \phi = 1, 6 \cdot 10^{-19} \text{ Дж}]$.

Учитывайте это соотношение при вычислениях!

При уменьшении энергии падающего фотона уменьшается скорость выбитого электрона. Когда она станет равной нулю, фотоэффект прекращается. Это – красная граница фотоэффекта: фотоэффект возникает (или прекращается) при минимальной частоте падающего фотона $v_{\rm K} = A_{\rm Bbix}/h$ или при максимальной длине волны $\lambda_{\rm K} = hc/A_{\rm Bbix}$.

Вылетевшие из металла электроны можно остановить, если приложить отрицательную задерживающую разность потенциалов $\Delta \phi_3$ (задерживающее напряжение) (рис.3.25). Кинетическая энергия вылетевшего электрона полностью расходуется на работу по преодолению эадерживающего электрического поля: $A = e \cdot \Delta \phi_3 = m_e v_{\max}^2 / 2$

Примеры решения задач:

7.1. При уменьшении частоты падающих на металл фотонов от значения $v_1 = 8 \cdot 10^{14} \, \Gamma$ ц до значения $v_2 = 4 \cdot 10^{14} \, \Gamma$ ц максимальная величина скорости выбиваемого из металла электрона уменьшается в два раза. Чему равна работа выхода электрона из данного металла (в эВ)?

Решение.

Если в условии задано отношение каких-либо величин, то следует получить это отношение с помощью уравнений процесса. Это значительно упрощает математические преобразования.

Поэтому находим отношения левых и правых частей уравнений фотоэффекта для двух разных частот, кото-

рые имеют вид
$$E_{\phi 1} = h v_1 = A_{\text{вых}} + m_e v_1^2 / 2$$
 и $E_{\phi 2} = h v_2 = A_{\text{вых}} + m_e v_2^2 / 2$. Отсюда $\frac{h v_1 - A_{\text{вых}}}{h v_2 - A_{\text{вых}}} = \frac{m_e v_1^2 / 2}{m_e v_2^2 / 2} = \frac{v_1^2}{v_2^2} = 4$

(по условию), что дает $A_{\text{вых}} = h(4v_2 - v_1)/3 = 1,768 \cdot 10^{-19} \text{ Дж} = 1,105 \text{ эВ}$.

7.2. Работа выхода электрона из первого металла $A_1 = 4$ эВ. Найти работу выхода A_2 из второго металла, если при падении на оба металла фотонов с одинаковой длиной волны наибольшая скорость вылета электронов из второго металла в к = 1,1 раз больше, чем из первого, а при увеличении длины волны падающих фотонов в четыре раза фотоэффект на первом металле прекращается.

Решение.

Запишем уравнения фотоэффекта для фотонов с одной длиной волны λ, выбивающих электроны из двух разных металлов: $E_{db} = hc/\lambda = A_1 + m_e v_1^2/2$, $E_{db} = hc/\lambda = A_2 + m_e v_2^2/2$.

Прекращение фотоэффекта в первом металле соответствует красной границе при длине волны $\lambda_{\kappa} = 4\lambda = hc/A_1$, откуда $hc/\lambda = 4A_1$. Как и в предыдущей задаче удобно найти заданное в условии отношение

$$\frac{m_e \mathrm{v}_2^2/2}{m_e \mathrm{v}_1^2/2} = \frac{hc/\lambda - A_2}{hc/\lambda - A_1} = \frac{4A_1 - A_2}{4A_1 - A_1} = \frac{\mathrm{v}_2^2}{\mathrm{v}_1^2} = k^2 \text{ , откуда } A_2 = A_1 \Big(4 - 3k^2 \Big) = 1,48 \text{ эВ }.$$

7.3. Выбиваемые из металла фотонами ультрафиолетового излучения с длиной волны $\lambda = 100$ нм электроны полностью задерживаются электрическим полем с разностью потенциалов $\Delta \phi = 10$ В. При какой длине волны падающих фотонов (в нм) фотоэффект на этом металле прекращается?

Решение.

Условия этой задачи изображены на рис.3.25. Фотоэффект прекращается при длине волны λ_{κ} фотона, соответствующей красной границе, при которой $A_{\text{вых}} = hc/\lambda_{\text{K}}$. Кинетическая энергия выбитого электрона затрачивается на совершение работы над силами задерживающего электрического поля: $m_e v^2/2 = e \cdot \Delta \phi$. Подставляя эти соотношения в уравнение фотоэффекта, $E_{\Phi}=hc/\lambda=A_{\mathrm{BMX}}+m_{e}\mathrm{v}^{2}/2=\\ =hc/\lambda_{\mathrm{K}}+e\Delta \Phi$, находим $\lambda_{\mathrm{K}}=\frac{\lambda}{1-e\Delta \omega \lambda/hc}=512$ нм .

Другое явление, указывающее на корпускулярный характер света — эффект Комптона: если фотон с длиной волны λ падает на покоящуюся частицу с массой m, то рассеянный (отпадающий фотон рассеянный λ рассеянный фотон

 $\Delta \lambda = \lambda' - \lambda = \Lambda (1 - \cos \theta).$

Величина $\Lambda = h/mc$ называется комптоновской длиной волны частицы с массой m. Угол рассеяния может меняться в пределах $0 \le \theta \le 180^\circ$ (в задачах контрольной работы частица покоится, хотя формулу эффекта

Комптона можно получить и при рассеянии на движущейся частице).

Примеры решения задач:

7.4. Фотон с длиной волны $\lambda = 2$ нм испытал рассеяние на угол $\theta = 60^{\circ}$ на покоящейся частице. Определить её массу, если энергия фотона уменьшилась в k = 1,0004 раз.

Так как энергия фотона $E = hc/\lambda$, то при уменьшении энергии рассеянного фотона в k раз его длина волны увеличилась в

$$k$$
 раз: $\lambda' = k\lambda$. Из уравнения Комптона $\lambda' - \lambda = (k-1)\lambda = \frac{h}{mc}(1-\cos 60^{\circ}) = \frac{h}{2mc}$ находим $m = h/(2c(k-1)\lambda) = 1,38\cdot 10^{-30}$ кг.

7.5. Фотон с энергией E = 9 МэВ испытывает комптоновское рассеяние, налетая на покоящуюся частицу с массой m $=5\cdot 10^{-30}$ кг и отклоняясь на угол $\theta=30^{\circ}$ (см.рис.1.33). Во сколько раз уменьшится энергия фотона после рассеяния?

Необходимо найти отношение k = E/E'. Выражая длины волн через энергии фотонов и подставляя E' = E/k, при-

водим уравнение Комптона к виду
$$\lambda' - \lambda = \frac{hc}{E'} - \frac{hc}{E} = (k-1)\frac{hc}{E} = \frac{h}{mc}(1-\cos 30^{\circ})$$
. Отсюда $k = 1 + \frac{E}{mc^2}(1-\cos 30^{\circ}) = 1,43$.

Примеры задач контрольной работы для самостоятельной подготовки:

7.6. Найти работу выхода (в эВ) для металла, из которого фотоны с импульсами $p = 4 \cdot 10^{-27}$ кг·м/с выбивают электроны, вылетающие с максимальной скоростью $v = 9 \cdot 10^5$ м/с.

Ответ: 5.20 эВ

7.7. Максимальная кинетическая энергия электронов, выбиваемых фотонами с частотой $v_1 = 6 \cdot 10^{15} \, \Gamma$ ц из металла с работой выхода A = 4 эВ, в 3 раза больше максимальной кинетической энергии электронов, выбиваемых из того же металла фотонами с другой частотой v_2 . Чему равна частота v_2 ?

Omвет: 2,64·10¹⁵ Ги.

- **7.8.** Фотоны с импульсами $p_1 = 3 \cdot 10^{-27}$ кг·м/с и с импульсами p_2 выбивают электроны из металла с работой выхода A = 3 эВ. В первом случае максимальная кинетическая энергия выбитых электронов в 4 раза меньше, чем во втором. Найти отношение импульсов p_2/p_1 . *Ответ*: 2,4.
- **7.9.** Максимальная скорость вылета электронов, выбиваемых из металла с работой выхода A=4 эВ фотонами с энергией E_1 в n=2,5 раза меньше максимальной скорости вылета электронов, выбиваемых из того же металла фотонами с другой энергией $E_2=36$ эВ. Чему равна энергия фотона E_1 ? *Ответ*: 9,12 эВ.
- **7.10.** Фотоны с энергией 3,9 эВ выбивали из металла с работой выхода 2,6 эВ электроны. Длину волны фотонов уменьшили в 6 раз. Во сколько раз увеличилась максимальная скорость выбиваемых электронов?

Ответ: в 4 раза.

7.11. Падая на металл, фотоны с длиной волны λ выбивали электроны, вылетающие с максимальной скоростью $v_{max} = 2000$ км/с. При увеличении длины волны падающих фотонов в 3 раза фотоэффект прекратится. Чему была равна первоначальная длина волны λ фотонов?

Ответ: 72.8 нм.

7.12. Фотоэффект на металле начинается при величине длины волны падающих фотонов $\lambda_0 = 240$ нм. Чему равна величина задерживающей разности потенциалов внешнего электрического поля для электронов, выбитых из металла излучением с частотой $v = 6 \cdot 10^{15} \, \Gamma \mathrm{u}$?

Ответ: 19,7 В.

- **7.13.** Фотон с частотой $v_1 = 4 \cdot 10^{17} \, \Gamma$ ц испытывает комптоновское рассеяние на угол $\theta = 120^{\circ}$ на покоящейся частице, превращаясь в фотон с частотой $v_2 = 3,6 \cdot 10^{17} \, \Gamma$ ц. Найти комптоновскую длину волны данной частицы (в нм). *Ответ*: 0.0556 нм.
- **7.14.** При комптоновском рассеянии на угол θ_1 = 60° на покоящейся микрочастице, фотон увеличивает длину волны на $\Delta_1\lambda=2\cdot 10^{-13}$ м. На какой угол θ_2 должен рассеяться этот фотон на той же микрочастице, чтобы длина его волны изменилась на величину $\Delta_2\lambda=5\cdot 10^{-13}$ м?

Ответ: на угол 104,5°.

8. Волна де Бройля. Постулат Бора и боровские орбиты

Микрочастица с массой m и с импульсом $\vec{p} = m\vec{v}$, обладает свойствами волны с длиной $\lambda_{\rm E} = 2\pi\hbar/mv$ (волна де Бройля). Постоянная $\hbar = h/(2\pi) = 1{,}055\cdot 10^{-34}$ Дж с также называется постоянной Планка.

Примеры решения задач:

8.1. Чему равен заряд q микрочастицы с массой $m=4,5\cdot 10^{-27}$ кг, если после прохождения ускоряющей разности потенциалов $\Delta \phi = 40~\mathrm{B}$ она имеет длину волны де Бройля $\lambda_\mathrm{B} = 2,21\cdot 10^{-13}~\mathrm{m}$?

Решение.

Ускоряясь в электрическом поле, частица приобретает кинетическую энергию $E_{\text{кин}} = m \text{v}^2/2 = q \Delta \phi$. Импульс частицы связан с этой энергией: $p = m \text{v} = \sqrt{2m E_{\text{кин}}}$. Длина волны де Бройля частицы $\lambda_{\text{Б}} = \frac{h}{m \text{v}} = \frac{h}{\sqrt{2m Q \Delta \phi}}$ и

$$q = \frac{1}{2m\Delta\varphi} \left(\frac{h}{\lambda_{\rm B}}\right)^2 = 2.5 \cdot 10^{-17} \text{ Kp.}$$

В рассматриваемых задачах можно использовать связь кинетической энергии нерелятивистской частицы c её длиной волны де Бройля: $E_{\text{кин}} = h^2/2 \, m \lambda_{\text{D}}^2$.

8.2. Кинетическая энергия нерелятивистского электрона с длиной волны де Бройля $\lambda_{\rm b}=0.3$ нм в 3 раза больше энергии некоторого фотона. Найти длину волны этого фотона (в нм).

По условию $E_{\rm Kuh\ частицы}=h^2\big/2\,m\lambda_{\rm B}^2=3E_{\rm фотона}=3\,hc/\lambda_{\rm фотона}$. Отсюда $\lambda_{\rm фотона}=6\,cm\lambda_{\rm B}^2\big/h\approx222$ нм .

8.3. Фотоны с длиной волны $\lambda = 66,3$ нм производят фотоэффект на металле с работой выхода электрона A=6 эВ. Найти наименьшую возможную длину волны де Бройля выбитых из металла электронов?

Вспомним уравнение Эйнштейна для фотоэффекта (рис.1.25): $E_{\text{фотона}} = hc/\lambda = A + E_{\text{кин}}$, откуда

 $E_{ ext{кин}} = h^2 / 2 \, m \lambda_{ ext{B}}^2 = h c / \lambda - A$. Максимальная скорость вылетевших электронов соответствует наименьшему значению длины волны де Бройля $\lambda_{ ext{B}} = h / \sqrt{2 m \left(\frac{h c}{\lambda} - A \right)} = 0,344 \, \text{нм}$.

8.4. Фотон с длиной волны $\lambda=10$ нм падает на металл с величиной красной границы фотоэффекта $\lambda_{\rm kp}=100$ нм . Найти наименьшую возможную длину волны де Бройля $\lambda_{\rm E}$ нерелятивистского электрона, который данный фотон может при этом выбить из металла.

Решение.

Так как красная граница фотоэффекта определяется величиной работы выхода электрона из металла, $\lambda_{\rm kp} = hc/A_{\rm BMX}$,

то из уравнения фотоэффекта
$$E_{\text{фотона}} = \frac{hc}{\lambda} = A_{\text{вых}} + E_{\text{кин}} = \frac{hc}{\lambda_{\text{кр}}} + \frac{h^2}{2m_e\lambda_{\text{Б}}^2}$$
 находим $\lambda_{\text{Б}} = \sqrt{h\!\!\left/2m_ec\!\left(\frac{1}{\lambda}\!-\!\frac{1}{\lambda_{\text{кр}}}\right)} = 0,116$ нм .

Волновые свойства электрона позволяют вычислить радиус r его устойчивой атомной орбиты в полуклассической модели атома Бора: на длине круговой орбиты укладывается целое число длин волн де Бройля $n\lambda$ e $m_e vr = n\hbar$, где n = 1, 2, 3, ...

Замечание: записанный в таком виде постулат Бора описывает полуклассическую модель одноэлектронного атома и не соответствует точным результатам квантовой теории. Однако с его помощью можно рассчитать почти правильные значения энергии электрона в атоме.

Совет:

Чтобы в любой задаче найти выражения для радиуса r_n орбиты с номером n, скорости v_n и энергии E_n электрона на этой орбите, решите систему из классического уравнения движения и квантового постулата Бора.

Пусть электрон движется по орбите с номером n со скоростью \mathbf{v}_n (рис.3.27) и с центростремительным ускорением $a_n = \mathbf{v}_n^2/r_n$. Со стороны атомного ядра, в котором находятся Z протонов с общим зарядом +Ze, действует кулоновская сила, позволяющая записать классическое уравнение движения электрона:

 $m_e a_n = F_{\text{кул}}$ или $m_e \frac{{
m v}_n^2}{r_n} = k \frac{e \cdot Ze}{r_n^2}$, где $k = \frac{1}{4\pi \epsilon_0} = 9 \cdot 10^9 \, \frac{{
m M}}{\Phi}$. Подставляя ${
m v}_n = \frac{n\hbar}{m_e r_n}$, полученное из постулата

Бора, находим $r_n = \frac{n^2\hbar^2}{kZe^2m_e}$ - это радиус n-й боровской орбиты, который удобно выразить через радиус первой боровской

орбиты: $\boxed{r_n = n^2 r_1}$, где $r_1 = 5,291 \cdot 10^{-11} \big/ Z$ м .

Видно, что скорость электрона уменьшается с ростом радиуса орбиты: $\mathbf{v}_n = n\hbar/m_e r_n = kZe^2/n\hbar$ или $\sqrt{\mathbf{v}_n = \mathbf{v}_1/n}$.

Энергия находящегося на *n*-й орбите электрона складывается из кинетической и потенциальной энергии:

$$E_n = \frac{m_e v_n^2}{2} - k \frac{Ze^2}{r_n}$$
. Подставляя r_n и v_n имеем $E_n = -\frac{k^2 Z^2 e^4 m_e}{2\hbar^2 n^2}$ или $E_n = E_1/n^2$, где $E_1 = -13, 6 \cdot Z^2$ эВ, $n = 1, 2, 3, \dots$

Примеры решения задач:

8.5. В боровском одноэлектронном атоме электрон переходит с одной орбиты на другую. Скорость движения электрона по боровской орбите при этом уменьшается в 1,2 раза. Во сколько раз увеличивается радиус боровской орбиты?

Решение.

Момент импульса электрона на боровской орбите с номером n имеет величину $L_n = m_e \mathbf{v}_n \cdot r_n = n\hbar$ (постулат Бора). Неизвестный номер орбиты можно найти, зная её радиус $r = r_n = n^2 \hbar^2 / \left(kZe^2 m_e\right)$. Отсюда

$$L_n = n\hbar = \sqrt{kZe^2 m_e r} = 2,11 \cdot 10^{-34}$$
 Дж · с .

8.7. Электрон движется по орбите радиуса r = 0.09555 нм со скоростью v = 3640 км/с в одноэлектронном атоме (ионе). Во сколько раз величина заряда ядра этого иона больше величины заряда электрона?

Решение.

Неизвестный номер орбиты n находим с помощью квантового постулата Бора: $n=m_e {\bf v}\cdot r/\hbar=3$, где $m_e=9,1\cdot 10^{-31}$ кг. Отношение заряда ядра к заряду электрона равно числу Z протонов в ядре (см. рис.3.27). Это число можно вычислить, зная, например величину скорости электрона: ${\bf v}=kZe^2/n\hbar$, откуда $Z={\bf v}\cdot n\hbar/kZe^2=5$.

8.8. В некотором одноэлектронном ионе электрон движется по орбите радиуса r = 0,11944 нм, имея при этом энергию E = -24,112 эВ. Определить номер n этой орбиты.

Решение.

Кроме номера n неизвестен заряд Ze ядра, который можно найти, если перемножить полученные ранее выражения для энергии электрона и радиуса орбиты: $E_n \cdot r_n = -\frac{k^2 Z^2 e^4 m_e}{2\hbar^2 n^2} \cdot \frac{n^2 \hbar^2}{kZe^2 m_e} = -\frac{kZe^2}{2}$. Отсюда $Z = -\frac{2Er}{ke^2} = 4$ и

$$n = \sqrt{\frac{kZe^2m_er}{\hbar^2}} = \frac{r}{\hbar}\sqrt{-2m_eE} = 3$$
 (в системе СИ $E = -3,8579 \cdot 10^{-18}$ Дж.).

Примеры задач контрольной работы для самостоятельной подготовки:

8.9. Нерелятивистский электрон имел кинетическую энергию $E_{\kappa} = 36$ эВ. Величина этой энергии увеличилась на $\Delta E_{\kappa} = 64$ эВ. Во сколько раз изменилась при этом длина волны де Бройля электрона?

Ответ: уменьшилась в 1,667 раз.

- **8.10.** Покоившаяся частица с зарядом $q=1,3\cdot 10^{-16}$ Кл начинает ускоряться в постоянном электрическом поле. Чему равна величина напряженности E этого поля, если спустя промежуток времени t=3 с после начала ускорения длина волны де Бройля частицы станет равной $\lambda_{\rm b}=4\cdot 10^{-20}$ м? *Ответ*: 42,5 В/м.
- **8.11.** Фотоны с импульсом $p = 4 \cdot 10^{-27}$ кг·м/с выбивают из металла электроны, наименьшая возможная длина волны де Бройля которых равна $\lambda_{\rm E} = 0,51$ нм. Чему равна величина работы выхода A электрона из этого металла (в эВ)? *Ответ*: 1.70 эВ.
- **8.12.** Падающие на металл фотоны выбивают электроны, имеющие наименьшую длину волны де Бройля $\lambda_{\rm E}=0,4$ нм. Найти частоту ν таких фотонов. Известно, что увеличение длины волны падающих фотонов в 4 раза приводит к прекращению фотоэффекта. *Ответ*: $3,03\cdot10^{15}$ Гц.
- **8.13.** При внутреннем фотоэффекте фотон с энергией $E_{\phi}=8$ эВ падает на атом с энергией ионизации $E_{\text{ион}}=5$ эВ. Найти длину волны де Бройля электрона, который при этом может вылететь из атома.

Ответ: 0,709 нм.

8.14. Электрон перешел со второй на четвертую боровскую орбиту атома водорода. На какую величину изменилась его длина волны де Бройля (радиус первой боровской орбиты равен $r_1 = 5,29 \cdot 10^{-11}$ м)?

Ответ: увеличилась на 0,665 нм.

- **8.15.** Электрон в одноэлектронном ионе находится на боровской орбите с радиусом $r_n = 0,07963$ нм. Заряд ядра иона равен +6e. Чему равен номер n данной орбиты? *Ответ*: 3.
- **8.16.** В боровском одноэлектронном атоме электрон переходит с одной боровской орбиты на другую, радиус которой в 36/25 раз меньше радиуса первой орбиты. Во сколько раз при этом уменьшится величина момента импульса электрона? *Ответ*: в 1,2 раза.
- **8.17.** Длина волны де Бройля свободного электрона, движущегося со скоростью $v = 1,941 \cdot 10^6$ м/с, в полтора раза больше длины волны де Бройля электрона, находящегося на третьей боровской орбите одноэлектронного атома (иона). Чему равно число Z протонов в ядре иона? *Ответ*: 4.

9. Спектральные серии излучения одноэлектронного атома

Решение стационарного уравнения Шредингера для электрона в кулоновском электрическом поля ядра с зарядом +Ze дает те же значения разрешенных значений энергии (энергетических уровней), что и постулат Бора:

$$E_n = -rac{k^2 Z^2 e^4 m_e}{2\hbar^2 n^2}$$
 или $E_n = E_1/n^2$, где $E_1 = -13, 6 \cdot Z^2$ эВ , $n = 1, 2, 3, 4, \dots$ главное $E_4 = E_3$

квантовое число.

Переход электрона с уровня на уровень сопровождается излучением или поглощением фотона с энергией $E_{\Phi}=\hbar\omega$. Излучение при переходах со всех вышележащих уровней на уровень n=1 образует спектральную серию Лаймана, при переходах на уровень n=2- спектральную серию Бальмера, при переходах на уровень n=3- спектральную серию Пашена (рис.3.28).

серия Лаймана

Рис.3.29

серия ′Бальмера

В боровской модели одноэлектронного атома эти уровни соответствуют боровским орбитам (рис.3.29).

При переходе с энергетического уровня с номером n' на уровень с номером n (или при переходе с n'-й боровской орбиты на n-ю) испускается фотон с циклической частотой

$$\omega_{n' \to n} = \frac{E_{n'} - E_n}{\hbar} = \frac{|E_1|}{\hbar} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right)$$

или с длиной волны
$$\overline{ \lambda_{n' \to n} = \frac{2\pi c}{\omega_{n' \to n}} = \frac{2\pi c\hbar}{E_{n'} - E_n} = \frac{2\pi c\hbar}{\left|E_1\right|} \left/ \left(\frac{1}{n^2} - \frac{1}{n'^2}\right) \right| }.$$

$$\lambda_{n' o 1} = rac{2\pi c\hbar}{|E_1|} igg/ igg(1 - rac{1}{n'^2} igg)$$
, где $n' = 2, 3, 4, ..., \infty$.

Решение.

Изобразите условия задачи на диаграмме энергетических уровней, аналогичной рис.1.36. Это позволит лучше понять, как испускаются и поглощаются фотоны, и что требуется найти.

Для данной задачи такая диаграмма изображена на рис.3.30. Видно, что $\omega_1 = (E_4 - E_2)/\hbar$, $\omega_2 = (E_4 - E_1)/\hbar$ (линия серии Лаймана).

Отсюда, подставив
$$E_n = - \left| E_1 \right| / n^2$$
 , находим $\frac{\omega_2}{\omega_1} = \frac{E_4 - E_1}{E_4 - E_2} = \left(\frac{1}{1^2} - \frac{1}{4^2} \right) / \left(\frac{1}{2^2} - \frac{1}{4^2} \right) = 5$.

9.2. Электрон в атоме водорода перешел с 1-й на 5-ю боровскую орбиту, а потом совершил второй переход, испустив фотон с минимальной возможной частотой и оказавшись в возбужденном состоянии. Фотон с каким импульсом p_{ϕ} , соответствующим спектральной серии Бальмера, испускает затем такой возбужденный атом?

Решение.

Диаграмма переходов электрона между энергетическими уровнями, заданных в условии, показана на рис.3.31. Минимальная частота фотона, испускаемого электроном, соответствует переходу с 5-го на 4-й уровень $\omega_{\min} = (E_5 - E_4)/\hbar$ (максимальная частота соответствует переходу 5 \to 1). Последний переход электрон совершает с 4-го на 2-й уровень (серия Бальмера), испуская фотон с импульсом

$$p_{\Phi} = \frac{E_{\Phi}}{c} = \frac{E_4 - E_2}{c} = \frac{|E_1|}{c} \left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{3|E_1|}{16c} \; . \; \text{Подставляя} \; \left|E_1\right| = 13,6 \; \text{эВ} = \; = 2,176 \cdot 10^{-18} \; \text{Дж} \; \; \text{и} \; \; c = 3 \cdot 10^8 \; \text{м/c} \; , \; \text{на-кодим} \; p_{\Phi} = 1,36 \cdot 10^{-27} \; \text{кг} \cdot \text{м/c} \; .$$

9.3. Электрон в атоме водорода перешел с 1-й на 6-ю боровскую орбиту, а потом совершил второй переход, испустив фотон с максимальной возможной длиной волны λ₁. Затем электрон совершает третий переход, соответствующий спектральной серии Пашена, и при этом испускает второй фотон с длиной волны λ_2 . Найти разность длин волн испущенных фотонов $\Delta \lambda = \lambda_1 - \lambda_2$ (в нм).

Заданные в условии задачи переходы электрона показаны на рис.3.32. Максимальная длина волны фотона $\lambda_1 = \frac{2\pi c\hbar}{E_6 - E_5} = \frac{2\pi c\hbar}{|E_1|} / \left(\frac{1}{5^2} - \frac{1}{6^2}\right)$ соответствует переходу $6 \to 5$, при котором изменение энергии минимально. При последнем переходе $5 \rightarrow 3$ на третью боровскую орбиту (серия Пашена) испускается фотон с длиной волны $\lambda_2 = \frac{2\pi c\hbar}{E_5-E_3} = \frac{2\pi c\hbar}{|E_1|} \left/ \left(\frac{1}{3^2} - \frac{1}{5^2}\right)\right.$ После подстановки величин $|E_1|,c$ и \hbar , находим $\Delta\lambda = \lambda_1 - \lambda_2 = 6186$ нм.

Рис.3.32

9.4. При переходе с n-й боровской орбиты на третью боровскую орбиту электрон в атоме водорода испускает фотон с циклической частотой $\omega_1 = 1,46809 \cdot 10^{15} \, \mathrm{c}^{-1}$. Найти циклическую частоту ω_2 фотона, испущенного электроном при переходе с *п*-й боровской орбиты на четвертую боровскую орбиту.

Решение.

переходах $n \to 3$ и $n \to 4$ испускаются фотоны с частотами $\omega_1 = \frac{E_n - E_3}{\hbar} = \frac{|E_1|}{\hbar} \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$ $\omega_2 = \frac{E_n - E_4}{\hbar} = \frac{|E_1|}{\hbar} \left(\frac{1}{4^2} - \frac{1}{n^2} \right)$ соответственно. Исключив из этих уравнений неизвестную величину $1/n^2$, получим

$$\omega_2 = \omega_1 + \frac{|E_1|}{\hbar} \left(\frac{1}{16} - \frac{1}{9} \right) = 4,645 \cdot 10^{14} \,\mathrm{c}^{-1}.$$

Примеры задач контрольной работы для самостоятельной подготовки:

9.5. Электрон в атоме водорода перешел с 1-й на 6-ю боровскую орбиту, а затем, испустив фотон с минимальной возможной частотой, оказался в возбужденном состоянии. Фотон с какой циклической частотой ю, соответствующей спектральной серии Лаймана, испускает затем такой возбужденный атом?

Ответ: 1,982·10¹⁶ с⁻¹.

- 9.6. Электрон в атоме водорода перешел с 1-й на 5-ю боровскую орбиту, а потом совершил второй переход, испустив фотон с максимальной возможной длиной волны λ_1 . Затем электрон совершает третий переход, испуская второй фотон с длиной волны λ_2 , соответствующий спектральной серии Бальмера. Найти отношение λ_1/λ_2 длин волн испущенных фотонов. Ответ: 8,333.
- **9.7.** Электрон в атоме водорода перешел с 4-й на 6-ю боровскую орбиту, поглотив фотон с длиной волны λ_1 , а затем совершил второй переход, испустив фотон с **минимальной возможной** величиной длины волны λ_2 . Найти отношение длин Ответ: 28. волн λ_1/λ_2 .
- 9.8. Электрон в атоме водорода переходит с 1-й на 3-ю боровскую орбиту. Затем он может совершить новый переход на орбиту с меньшим радиусом, испустив при этом фотон или с наибольшей p_1 , или с наименьшей p_2 возможной величиной импульса. Найти разность величин импульсов этих фотонов $\Delta p = p_1 - p_2$.

Ответ: 5,44·10⁻²⁷ кг·м/с.

9.9. Электрон в атоме водорода перешел с 3-й на 5-ю боровскую орбиту, поглотив фотон с длиной волны λ_1 , а затем совершил второй переход, испустив фотон с максимальным возможным значением длины волны λ_2 . Найти разность длин волн этих фотонов $\Delta \lambda = \lambda_2 - \lambda_1$.

Ответ: 2774 нм.

9.10. Электрон в возбужденном атоме водорода переходит с шестой на n-ю боровскую орбиту и при этом испускает фотон с длиной волны $\lambda = 2629,534$ нм. Найти номер n последней орбиты.

Ответ: 4.

10. Вероятностный смысл и нормировка волновой функции

В квантовой теории состояние микрочастицы, совершающей одномерное движение вдоль оси х, описывается волновой функцией $\Psi(x)$. Её физический смысл – величина $dP = \left|\Psi(x)\right|^2 dx = \Psi^*(x)\Psi(x)dx$ будет вероятностью того, что частица находится в интервале от x до x+dx.

Поэтому волновая функция обязана удовлетворять <u>условию нормировки</u>: $\left| \int_{-\infty}^{+\infty} \left| \Psi(x) \right|^2 dx = 1 \right|$.

Величина $dP/dx = |\Psi(x)|^2 = \Psi^*(x)\Psi(x)$ называется <u>плотностью вероятности обнаружения частицы</u>.

При движении частицы в атоме рассматривают задачи, в которых волновая функция зависит от расстояния r до его центра. В этом случае $dP = \left| \Psi(r) \right|^2 dV$ — вероятность обнаружения частицы в заштрихованном на рис.3.33 объёме $dV = 4\pi r^2 dr$ на расстоянии от r до r+dr до центра атома.

Функция плотности вероятности обнаружения частицы на этом расстоянии имеет вид

$$dP/dr = |\Psi(r)|^2 \cdot 4\pi r^2 = \Psi^*(r)\Psi(r)4\pi r^2,$$

а <u>условие нормировки</u> волновой функции $\left|\int_0^{+\infty} \left|\Psi(r)\right|^2 4\pi r^2 dr = 1\right|$.

Примеры решения задач:

10.1. Частица находится в одномерной потенциальной яме прямоугольной формы с бесконечными стенширины 2a. Состояние микрочастицы описывается волновой функцией $\psi = C \cdot \sqrt{a^2 - x^2}$, где $C = \sqrt{6} \cdot 10^{15} \text{ м}^{-3/2}$. Найти ширину ямы.

В задачах на эту тему для определения неизвестных констант используйте условие нормировки волновой функции.

Вне ямы $\Psi = 0$. Подставляя заданную в условии волновую функцию в условие нормировки $\int_{-a}^{+a} \Psi^2(x) dx = 1$, вычисляем интеграл $C^2 \int_{-a}^{+a} \left(a^2 - x^2\right) dx = C^2 \left(a^2 \int_{-a}^a dx - \int_{-a}^a x^2 dx\right) = 4C^2 a^3/3 = 1$, откуда $a^3 = 3/4C^2 = (1/8) \cdot 10^{-30} \text{ m}^3$ и $2a = 10^{-10}$ м = 0,1 нм.

10.2. Состояние микрочастицы описывается сферически симметричной волновой функцией $\psi = A \cdot \frac{\exp\left(-\alpha \, r\right)}{r}$, где $\alpha = 10^{10} \, \mathrm{m}^{-1}$. Чему равна постоянная A (в $\mathrm{m}^{-1/2}$)?

Решение

В данной задаче состояние частицы определено в трехмерном пространстве, и условие нормировки волновой функции имеет вид $\int_0^\infty \Psi^2(r) 4\pi r^2 dr = 1 = 4\pi A^2 \int_0^\infty e^{-2\alpha r} dr = 4\pi A^2 \left(e^{-2\alpha r}/(-2\alpha)\right)\Big|_0^\infty = 4\pi A^2/2\alpha$. Отсюда $A = \sqrt{\alpha/2\pi} = 3,99\cdot 10^4$ м $^{-1/2}$.

10.3. Микрочастица находится в одномерной потенциальной яме прямоугольной формы с бесконечными стенками ширины a. Состояние микрочастицы описывается волновой функцией $\psi = C \cdot x(a-x)$. Вычислите вероятность нахождения частицы в интервале с координатами $0 \le x \le a/4$.

Решение

Вначале из условия нормировки надо определить неизвестную постоянную C: $\int_0^a \Psi^2(x) dx = C^2 \int_0^a x^2 (a-x)^2 dx = 1 \ .$ Раскрывая скобки и вычисляя простые интегралы, находим $C^2 \left(a^2 \int_0^a x^2 dx - 2a \int_0^a x^3 dx + \int_0^a x^4 dx \right) = C^2 a^5 \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5} \right) = C^2 a^5 / 30 = 1 \ .$

Это равная 1 (или 100%) вероятность обнаружения частицы в яме, откуда частица вылететь не может, так как плотность вероятности её обнаружения вне ямы $\left|\Psi_{\rm BHe}\right|^2=0$. Отсюда $C=\sqrt{30/a^5}$.

Вероятность обнаружения частицы в заданном интервале (левой четверти ямы) определяется аналогичным интегралом:

$$P = \int_{0}^{a/4} \Psi^{2}(x) dx = C^{2} \left(a^{2} \int_{0}^{a/4} x^{2} dx - 2a \int_{0}^{a/4} x^{3} dx + \int_{0}^{a/4} x^{4} dx \int_{0}^{a/4} x^{4} dx \right) = \frac{53C^{2}a^{5}}{15360}.$$
 Подставив C , имеем $P = \frac{53}{512} = 0,1035$ (10,35%).

10.4. Состояние микрочастицы описывается волновой функцией $\psi = C \cdot \frac{\exp\left(-\gamma r\right)}{r}$, где $C = \sqrt{\frac{\gamma}{2\pi}}$, $\gamma = 10^9 \, \text{м}^{-1}$. Известно, что вероятность обнаружения частицы в сферическом объеме с координатами $0 \le r \le a$ равна 25%. Чему равна величина a (в нм)?

Решение.

В сферически симметричной задаче вероятность обнаружения частицы в заданной области $\int_0^a \left|\Psi(r)\right|^2 4\pi r^2 dr = 0,25$ (по условию). Подставляя волновую функцию и заданную C, вычисляем интеграл:

$$\int\limits_{0}^{a} \frac{C^{2}}{r^{2}} e^{-2\gamma r} \cdot 4\pi r^{2} dr = 4\pi C^{2} \int\limits_{0}^{a} e^{-2\gamma r} dr = 4\pi C^{2} \frac{1 - e^{-2\gamma a}}{2\gamma} = 1 - e^{-2\gamma a} = \frac{1}{4} \,. \quad \text{Отсюда} \ e^{-2\gamma a} = 3/4 \ \text{и} \ a = -\ln\left(3/4\right) / \left(2\gamma\right) = 0,144 \ \text{нм} \,.$$

10.5. Состояние частицы описывается сферически симметричной волновой функцией $\psi = A \cdot \frac{\exp\left(-\alpha r\right)}{\sqrt{r}}$, где

 $A = \frac{\alpha}{\sqrt{\pi}}$, $\alpha = 5 \cdot 10^9 \, \mathrm{m}^{-1}$. Чему равна максимальная величина плотности вероятности dP/dr обнаружения частицы?

Решение.

Функция плотности вероятности обнаружения частицы имеет вид $dP/dr = \left|\Psi(r)\right|^2 \cdot 4\pi r^2 = 4\pi A^2 r \cdot \exp(-2\alpha r) = 4\alpha^2 r \cdot \exp(-2\alpha r)$. В точке максимума должна быть равна нулю её производная: $\frac{d}{dr} \left(4\alpha^2 r \cdot \exp(-2\alpha r) \right) = 4\alpha^2 \left(e^{-2\alpha r} - 2\alpha r e^{-2\alpha r} \right) = 0$, откуда $r = \frac{1}{2\alpha}$ (на таком удалении от центра r = 0 вероятность обнаружить частицу максимальна). Подставляя это значение в функцию dP/dr, находим $\left(dP/dr \right)_{\rm max} = 2\alpha \exp(-1) = 3,68 \cdot 10^9 \, {\rm m}^{-1}$.

Примеры задач контрольной работы для самостоятельной подготовки:

10.6. Состояние микрочастицы, совершающей одномерное движение, описывается волновой функцией $\psi = \begin{cases} 0 & \text{при } x < 0; \\ A\sqrt{x} \cdot \exp\left(-\alpha x\right) & \text{при } x \ge 0, \end{cases}, \text{ где } A = 2\alpha \text{ , } \alpha = 2 \cdot 10^9 \text{ м}^{-1} \text{ . Чему равна координата } x \text{ точки, в которой плотность вероятности обнаружения частицы } dP/dx$ максимальна?

Ответ: 0.25 нм

10.7. Волновая функция микрочастицы, зависит от единственной координаты x и имеет вид $\psi = \begin{cases} A \cdot \exp\left(-\alpha x\right) \text{ при } x \geq 0, \\ A \cdot \exp\left(+\alpha x\right) \text{ при } x < 0, \end{cases}$ где $A = 4 \cdot 10^5 \text{ м}^{-1/2}$. Чему равна постоянная величина α (в м $^{-1}$)?

10.8. Микрочастица находится в одномерной потенциальной яме прямоугольной формы с бесконечными стенками ширины *a*. Состояние микрочастицы описывается волновой функцией $\psi = \sqrt{\frac{2}{a}} \cdot \sin\left(\frac{\pi x}{a}\right)$. Чему равна вероятность (в %) нахождения частицы в интервале с координатами $0 \le x \le a/4$?

Ответ: 9.085%.

10.9. Микрочастица находится в одномерной потенциальной яме прямоугольной формы с бесконечными стенками ширины 2a (см. рисунок). Состояние микрочастицы описывается волновой функцией $\psi = \frac{1}{\sqrt{a}} \cdot \cos\left(\frac{3\pi x}{2a}\right)$. Чему равна вероятность (в %) нахождения частицы в интервале с координатами $-\frac{a}{3} \le x \le \frac{a}{3}$.

10.10. Состояние микрочастицы описывается волновой функцией $\psi = C \cdot r \exp\left(-\alpha r^5\right)$, где $\alpha = 6, 25 \cdot 10^{48} \, \text{m}^{-5}$, $C = \sqrt{5\alpha/2\pi}$. Чему равна вероятность (в %) обнаружения частицы в сферическом объеме с координатами $0 \le r \le r_0$, где $r_0 = 2 \cdot 10^{-10} \,\mathrm{m}$? Ответ: 98,2%.

11. Стационарное уравнение Шредингера

Если потенциальная энергия $E_{\text{пот}}$ микрочастицы не зависит от времени, то её полная энергия (сумма кинетической и потенциальной энергии) постоянна: $E = E_{\text{кин}} + E_{\text{пот}} = \text{const}$. Волновую функцию состояния ψ такой частицы можно найти из <u>стационарного уравнения Шредингера</u>: $\Delta \psi(x,y,z) + \frac{2m}{\hbar^2} (E - E_{\text{пот}}) \psi(x,y,z) = 0$ (при движении в трехмерном простран-

стве) или $\left| \frac{d^2 \psi(x)}{dx^2} + \frac{2m}{\hbar^2} (E - E_{\text{пот}}) \psi(x) = 0 \right|$ (при одномерном движении). Здесь m – масса частицы, $\hbar = 1,055 \cdot 10^{-34} \, \text{Дж} \cdot \text{с}$ – постоянная Планка, $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2} + \frac{\partial^2}{\partial z^2}$ - оператор Лапласа.

Если в условии задачи задана волновая функция – подставьте её в стационарное уравнение Шредингера. Учтите, что потенциальная энергия определена c точностью до константы. Eсли задано E_{пот} = const , то можно положить $E_{ ext{not}} = 0$. B этом случае при вычислении производной должна получиться комбинация $\Delta \psi ig(x,y,zig) = C \cdot \psi ig(x,y,zig)$ или $d^2\psi(x)/dx^2 = C \cdot \psi(x)$, где C – постоянная величина. Если это соотношение не получается – ищите ошибку в вычислении производной. После подстановки вычисленной производной получите уравнение, не содержащее производных: $C\psi + \frac{2m}{\hbar^2}E\psi = 0 \text{ unu } C + \frac{2mE}{\hbar^2} = 0.$

Примеры решения задач:

11.1. Две микрочастицы находятся в области с координатами $x, y \ge 0$. Волновая функция первой частицы $\psi_1 = A_1 \sin(\alpha x) \exp(-\beta y)$ а состояние второй частицы описывается функцией $\psi_2 = A_2 \exp(-\gamma x) \cos(\delta y)$, где A_1, A_2 — постоянные нормировочные множители; $\alpha = 5 \cdot 10^{10} \text{ м}^{-1}$, $\beta = 4 \cdot 10^{10} \text{ м}^{-1}$, $\gamma = 2 \cdot 10^{10} \text{ м}^{-1}$, $\delta = 3 \cdot 10^{10} \text{ м}^{-1}$. Масса первой частицы в полтора раза больше массы второй частицы. Во сколько раз кинетическая энергия первой частицы больше кинетической энергии второй частицы?

Вначале вычислим производные: $\Delta \psi_1 = \frac{\partial^2 \psi_1}{\partial x^2} + \frac{\partial^2 \psi_1}{\partial y^2} = A_1 \frac{\partial^2 \sin \alpha x}{\partial x^2} \cdot e^{-\beta y} + A_1 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_1 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_2 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_2 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3 \sin \alpha x \cdot \frac{\partial^2 e^{-\beta y}}{\partial y^2} = A_3$ $=A_{1}\left(-\alpha^{2}+\left(-\beta\right)^{2}\right)\sin\alpha x\cdot e^{-\beta y}=\left(-\alpha^{2}+\beta^{2}\right)\cdot\psi_{1}\,.\quad\text{И, аналогично, }\Delta\psi_{2}=\left(\gamma^{2}-\delta^{2}\right)\cdot\psi_{2}\,.$

Подставляем этот результат в стационарное уравнение Шредингера для первой частицы, где $E-E_{\mathrm{пот}}=E_{\mathrm{кин}}$:

$$\Delta\psi_1 + \frac{2m_1}{\hbar^2} E_{\text{кин 1}} \psi_1 = 0 \text{ , и сокращаем на } \psi_1 \colon \frac{2m_1}{\hbar^2} E_{\text{кин 1}} = \alpha^2 - \beta^2 \,.$$

Для второй частицы аналогично получим $2m_2E_{\text{кин}\,2}/\hbar^2=\delta^2-\gamma^2$. Так как по условию $m_1/m_2=3/2$, то взяв отношение левых и правых частей полученных равенств, находим $\frac{E_{\text{кин 1}}}{E_{\text{кин 2}}} = \frac{m_2}{m_1} \cdot \frac{\alpha^2 - \beta^2}{\delta^2 - \gamma^2} = 1,2.$

11.2. Состояние первой частицы описывается волновой функцией $\psi_1 = A_1 \left[\sin(\alpha x) + \exp(-i\alpha x) \right]$, а волновая функ-

ция второй частицы $\psi_2 = A_2 \left[\cos(\beta x) + \exp(i\beta x)\right]$, где x – координата, A_1, A_2 – постоянные нормировочные множители, i – мнимая единица; $\alpha = 4 \cdot 10^{10}$ м⁻¹, $\beta = -3 \cdot 10^{10}$ м⁻¹. Массы частиц одинаковы, а энергия первой частицы равна $E_1 = 4$ эВ. Чему равна энергия второй частицы (в эВ) (потенциальную энергию микрочастиц принять равной нулю)?

В одномерной задаче
$$\frac{d^2\psi_1}{dx^2} = A_1 \left[\frac{d^2\sin\alpha x}{dx^2} + \frac{d^2e^{-i\alpha x}}{dx^2} \right] = A_1 \left[-\alpha^2\sin\alpha x + \left(-i\alpha\right)^2e^{-i\alpha x} \right] = -\alpha^2\psi_1$$
 так как $i^2 = -1$. Для

второй функции $d^2\psi_2/dx^2 = -\beta^2\cdot\psi_2$. С учетом этих производных уравнения Шредингера приводятся к виду

$$\frac{d^2 \psi_1}{dx^2} = -\alpha^2 \cdot \psi_1 = -\frac{2m}{\hbar^2} E_1 \cdot \psi_1, \quad \frac{d^2 \psi_2}{dx^2} = -\beta^2 \cdot \psi_2 = -\frac{2m}{\hbar^2} E_2 \cdot \psi_2.$$

Сокращая ψ_i и взяв отношения правых и левых частей, находим $E_2 = E_1 \cdot \beta^2 / \alpha^2 = 2,25$ эВ .

11.3. Первоначально состояние свободной частицы с массой $m=-5\cdot 10^{-30}$ кг описывалось волновой функцией $\psi_1=A_1\cdot\sin(\alpha x)\cdot\exp(-i\beta y)$. Затем она испустила фотон и перешла в новое состояние, с волновой функцией $\psi_2=A_2\cdot\sin(\alpha x)\cdot\exp(-\beta y)$, где x,y- координаты $(x,y\ge 0)$, i- мнимая единица, A_1,A_2- постоянные множители, $\alpha=4\cdot 10^{10}$ м $^{-1}$, $\beta=-2\cdot 10^{10}$ м $^{-1}$. Считая постоянную Планка равной $\hbar=10^{-34}$ Дж \cdot с, найти величину энергии E_{φ} испущенного фотона (в эВ). *Решение.*

Вычислим производные, как это было сделано в предыдущих задачах: $\Delta \psi_1 = \frac{\partial^2 \psi_1}{\partial x^2} + \frac{\partial^2 \psi_1}{\partial y^2} = \left(-\alpha^2 - \beta^2\right) \cdot \psi_1$,

$$\Delta \psi_2 = \left(-\alpha^2 + \beta^2\right) \cdot \psi_2 \; . \; \text{Подставляя их в уравнение Шредингера, находим} \quad \frac{2m}{\hbar^2} E_1 \cdot \psi_1 = -\Delta \psi_1 = \left(\alpha^2 + \beta^2\right) \cdot \psi_1 \; ,$$

 $\frac{2m}{\hbar^2}E_2\cdot\psi_2=-\Delta\psi_2=\left(\alpha^2-\beta^2\right)\cdot\psi_2$ (потенциальная энергия свободной частицы равна нулю).

Из первого уравнения находим $E_1 = \frac{\hbar^2}{2m} (\alpha^2 + \beta^2) = 2 \cdot 10^{-18} \, \text{Дж} = 12,5 \, \text{эВ.}$ Отношение левых и правых частей полу-

ченных уравнений дает $\frac{E_2}{E_1} = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}$. Подставив значения α и β , находим $E_2 = 3E_1/5$. После излучения фотона энергия частицы уменьшилась: $E_2 = E_1 - E_{\Phi}$, откуда энергия испущенного фотона $E_{\Phi} = 2E_1/5 = 5$ эВ.

11.4. Вначале состояние микрочастицы описывалось волновой функцией $\psi_1 = A_1 \cdot \sin(\alpha x) \cdot \exp(-\beta y)$. Затем, испустив фотон с циклической частотой $\omega = 4 \cdot 10^{14} \text{ c}^{-1}$, она переходит в новое состояние, определяемое волновой функцией $\psi_2 = A_2 \cdot \exp(-\alpha x) \cdot \cos(\beta y)$, где x, y – координаты $(x, y \ge 0)$, A_1, A_2 – постоянные нормировочные множители, $\alpha = 4 \cdot 10^{10} \text{ m}^{-1}$, $\beta = 3 \cdot 10^{10} \text{ m}^{-1}$. Считая потенциальную энергию частицы постоянной и принимая постоянную Планка равной $\hbar = 10^{-34} \text{ Дж} \cdot \text{с}$, найти массу микрочастицы (в кг).

Решение.

Вычислим производные $\Delta \psi$ и подставим их в уравнения Шредингера, описывающие частицу в начальном и конечном состоянии. С учетом того, что энергия частицы уменьшается на величину энергии испущенного фотона, $E_2 = E_1 - \hbar \omega$, а её постоянную потенциальную энергию можно считать равной нулю, $E_{\text{пот}} = 0$, получаем систему

$$\Delta\psi_1 = \left(\alpha^2 - \beta^2\right) \cdot \psi_1 = \frac{2m}{\hbar^2} E_1 \cdot \psi_1 \,, \quad \Delta\psi_2 = \left(\beta^2 - \alpha^2\right) \cdot \psi_2 = \frac{2m}{\hbar^2} \left(E_1 - \hbar\omega\right) \cdot \psi_2 \,, \text{ откуда следует } E_1 - \hbar\omega = -E_1 \quad \text{или } \hbar\omega = 2E_1 \,.$$

Подставляя сюда выражение для первоначальной энергии частицы, которую можно найти из первого уравнения, $E_1 = \hbar^2 \left(\alpha^2 - \beta^2\right) / 2m$, получим $m = \hbar \left(\alpha^2 - \beta^2\right) / \omega = 1,75 \cdot 10^{-28} \, \mathrm{kr}$.

Примеры задач контрольной работы для самостоятельной подготовки:

11.5. Состояние первой микрочастицы описывается волновой функцией $\psi_1 = A_1 \cdot \cos(\alpha x) \cdot \cos(\beta y)$, а состояние второй микрочастицы, которая находится в области x,y,z>0, где x,y,z- координаты, определяется волновой функцией $\psi_2 = A_2 \cdot \cos(\alpha x) \cdot \exp(-\delta y - \gamma z)$, где A_1, A_2- постоянные нормировочные множители; $\alpha = 4 \cdot 10^{10} \, \mathrm{m}^{-1}$, $\beta = 2 \cdot 10^{10} \, \mathrm{m}^{-1}$, $\gamma = 3 \cdot 10^{10} \, \mathrm{m}^{-1}$, $\delta = 10^{10} \, \mathrm{m}^{-1}$. Известно, что при этом энергия первой частицы равна энергии второй частицы. Во сколько раз масса первой частицы больше массы второй частицы (потенциальную энергию микрочастиц считать равной нулю)?

Ответ: в 3,33 раз.

11.6. Первоначально состояние микрочастицы описывалось волновой функцией $\psi_1 = A_1 \cdot \sin(\alpha x) \cdot \sin(\beta y) \cdot \cos(\gamma z)$, где x, y, z — координаты $(x, y, z \ge 0)$, $\alpha = 4 \cdot 10^{10}$ м $^{-1}$, $\beta = 2 \cdot 10^{10}$ м $^{-1}$, $\gamma = 3 \cdot 10^{10}$ м $^{-1}$. В этом состоянии энергия частицы была равна $E_1 = 5,8$ эВ. Затем частица изменила состояние. Её новая волновая функция $\psi_2 = A_2 \cdot \sin(\alpha x) \cdot \sin(\beta y) \cdot \exp(-\gamma z)$ $(A_1, A_2$ — постоянные нормировочные множители). На какую величину ΔE (в эВ) уменьшилась энергия частицы при переходе в новое состояние (потенциальную энергию принять равной нулю)?

Ответ: 3,6 эВ.

11.7. Первоначально состояние микрочастицы описывалось волновой функцией $\psi_1 = A_1 \cdot \sin(\alpha x)$, а затем она испусти-

ла фотон с энергией E_{φ} =0,25 эВ и перешла в новое состояние, которое описывается волновой функцией $\psi_2 = A_2 \cdot \sin(\alpha x) \cdot \exp(-\beta z)$, где $x, z \ge 0$ – координаты, A_1, A_2 – постоянные множители, $\alpha = 2 \cdot 10^{10}$ м⁻¹, $\beta = 10^{10}$ м⁻¹. Принимая постоянную Планка равной $\hbar = 10^{-34}$ Дж·с и считая потенциальную энергию микрочастицы постоянной, найти её массу. *Ответ*: 1,25·10⁻²⁹ кг.

- **11.8.** Вначале состояние микрочастицы с массой $m = 4 \cdot 10^{-29}$ кг описывалось волновой функцией $\psi_1 = A_1 \cdot \sin(\alpha x) \cdot \exp(-\beta y)$, а затем она поглотила фотон с энергией $E_{\Phi} = 5$ эВ и перешла в новое состояние, которое описывается волновой функцией $\psi_2 = A_2 \cdot \sin(\alpha x)$, где x, y – координаты $(x, y \ge 0)$, A_1, A_2 – постоянные нормировочные множители, $\alpha = 6 \cdot 10^{10} \, \mathrm{m}^{-1}$. Принимая постоянную Планка равной $\hbar = 10^{-34} \, \mathrm{Дж} \cdot \mathrm{c}$ и считая потенциальную энергию микрочастицы равной нулю, найти величину постоянной β (в м⁻¹).
- **11.9.** Первоначально состояние микрочастицы описывалось волновой функцией $\psi = A \cdot \sin(\alpha x) \cdot \cos(\beta y) \cdot \exp(-\gamma z)$, а затем она перешла в состояние с волновой функцией $\psi' = A' \cdot \sin(\alpha' x) \cdot \cos(\beta y) \cdot \exp(-\gamma z)$, где x, y, z – координаты $(x, y, z \ge 0)$, A, A' – постоянные нормировочные множители, $\alpha = 5 \cdot 10^{10}$ м⁻¹, $\beta = 4 \cdot 10^{10}$ м⁻¹, $\gamma = 3 \cdot 10^{10}$ м⁻¹. Величина энергии частицы при таком переходе увеличилась в 4 раза. Во сколько раз новая постоянная а больше постоянной а (потенциальную энергию микрочастицы принять равной нулю)? Ответ: в 2,2 раз.
- **11.10.** Сначала состояние микрочастицы с массой $m = 4 \cdot 10^{-29}$ кг описывалось волновой функцией $\psi_1 = A_1 \cdot \sin(\alpha x) \cdot \sin(\beta y) \cdot \exp(-\gamma z)$, а затем она поглотила фотон и перешла в новое состояние, определяемое волновой функцией $\psi_2 = A_2 \cdot \sin(\alpha x) \cdot \sin(\beta y) \cdot \exp(-i\gamma z)$, где x, y, z – координаты $(x, y, z \ge 0)$, i – мнимая единица, A_1, A_2 – постоянные нормировочные множители, $\alpha = 4 \cdot 10^{10} \text{ m}^{-1}$, $\beta = 2 \cdot 10^{10} \text{ m}^{-1}$, $\gamma = 3 \cdot 10^{10} \text{ m}^{-1}$. Принимая постоянную Планка равной $\hbar = 10^{-34} \text{ Дж} \cdot \text{с}$ и считая потенциальную энергию микрочастицы постоянной, найти величину циклической частоты ю поглощенного фотона. *Ответ*: 2,25·10¹⁵ с⁻¹.
- **11.11.** Состояние первой микрочастицы описывается волновой функцией $\psi_1 = A_1 \cdot \sin(\alpha x) \cdot \exp(-\beta y)$, а состояние второй микрочастицы определяется волновой функцией $\psi_2 = A_2 \cdot \sin(\alpha x) \cdot \exp(-i\beta y)$, где x, y – координаты $(x, y \ge 0)$, i – мнимая единица, A_1 , A_2 – постоянные нормировочные множители, $\alpha = 9 \cdot 10^{10}$ м⁻¹. Известно, что при этом энергия второй частицы в n = 13раз больше энергии первой частицы, а масса первой частицы в k=5 раз больше массы второй частицы. Считая потенциальную энергию микрочастицы равной нулю, найти величину постоянной β (в м⁻¹).

Ответ: 6·10¹⁰ м⁻¹.

11.12. Вначале микрочастица с массой $m = 8 \cdot 10^{-30}$ кг находилась в состоянии с волновой функцией $\psi_1 = A_1 \cdot \sin(\alpha x) \cdot \exp(-\beta y)$, а затем перешла в состояние с волновой функцией $\psi_2 = A_2 \cdot \sin(\beta y) \cdot \exp(-\alpha x)$, где x, y – координаты $(x, y \ge 0)$, A_1, A_2 – постоянные нормировочные множители, $\alpha = 4 \cdot 10^{10}$ м⁻¹, $\beta = 5 \cdot 10^{10}$ м⁻¹. Принимая постоянную Планка равной $\hbar = 10^{-34}\,\mathrm{Дж}\cdot\mathrm{c}$, найти, на какую величину ΔE (в эВ) увеличилась при таком переходе кинетическая энергия частицы.

Ответ: 7,03 эВ.

12. Микрочастица в одномерной потенциальной яме

Вначале рассмотрим одномерный квантовый гармонический осциллятор. Это микрочастица с массой т и с потенциальной энергией $E_{\text{пот}} = kx^2/2$, способная совершать колебания с частотой ω вдоль оси x, называется одномерным квантовым осциллятором (пример – отдельный ион в кристаллической решетке).

Согласно стационарному уравнению Шредингера, такая квантовая система может иметь только отдельные разрешенные значения энергии $E_n = \hbar\omega(n+\frac{1}{2})$, где n=0,1,2,3,... – <u>главное квантовое число</u>. Состояние с наименьшей возмож-

ной энергией $E_{n=0} = \hbar \omega/2$ называется <u>основным состоянием</u> осциллятора. Следующий энергетический уровень с энергией $E_{n=1}$ соответствует первому возбужденному <u>состоянию</u> осциллятора, уровень с энергией $E_{n=2}$ – <u>второму возбужденному состоя-</u> нию и т.д. (рис.3.34).

При переходе с n'-го уровня на уровень с номером n испускается или поглощается фотон с энергией $E_{\Phi} = \hbar \omega_{\Phi} = |E_{n'} - E_n| = \hbar \omega_{O} |n' - n|$ или с длиной волны $|\lambda_{\rm d}| = 2\pi c/\omega_{\rm d} = 2\pi c/\omega_{\rm o} |n'-n|$, где $\omega_{\rm o} = \sqrt{k/m}$ – циклическая частота осциллятора.

Рис.3.34

Примеры решения задач:

12.1. Переходя из основного в пятое возбужденное состояние, первый одномерный квантовый гармонический осциллятор должен поглотить фотон с энергией $E_{\rm d}$. Поглощая этот же фотон, второй одномерный квантовый гармонический осциллятор, находившийся в первом возбужденном состоянии и имевший в этом состоянии энергию E = 2,5 эВ, переходит в четвертое возбужденное состояние. Чему равна собственная циклическая частота ω₀₁ первого осциллятора?

Решение.

Изобразите переходы осцилляторов на диаграмме энергетических уровней, аналогичной рис.3.34. Это позволит лучше понять, как испускаются и поглощаются фотоны.

Такая диаграмма показана на рис. 3.35, в соответствии с которым

 $E_{\Phi} = \hbar \omega_{o1} (5-0) = \hbar \omega_{o2} (4-1)$, и $\omega_{o1} = 3\omega_{o2}/5$, где ω_{o1} , ω_{o2} – частоты первого и второго осцилляторов. По

условию для второго осциллятора

$$E = \hbar\omega_{o2} (1+1/2) = 2,5$$
 эВ = $4\cdot10^{-19}$ Дж, откуда $\omega_{o2} = \frac{2E}{3\hbar}$ и $\omega_{o1} = \frac{2E}{5\hbar} = 1,52\cdot10^{15}$ с⁻¹.

12.2. Первый одномерный квантовый гармонический осциллятор переходит из основного в третье возбужденное состояние, поглощая фотон с энергией $E_{\phi 1}$, а второй одномерный квантовый гармонический осциллятор переходит из основного в четвертое возбужденное состояние, поглощая фотон с энергией $E_{\phi 2} = E_{\phi 1} + \Delta E$. Чему равна величина ΔE (в эВ), если известно, что энергия первого осциллятора в третьем возбужденном состоянии равна энергии второго осциллятора в первом возбужденном состоянии, а энергия второго осциллятора в основном состоянии равна $E'_0 = 2,1$ эВ?

осциллятор Рис.3.36

Переходы осцилляторов с циклическими частотами ω_{o1} и ω_{o2} показаны на рис.3.36, где также указаны энергии разрешенных состояний осцилляторов. Видно, что $E_{\oplus 1}=3\hbar\omega_{o1}$, $E_{\oplus 2}=E_{\oplus 1}+\Delta E=4\hbar\omega_{o2}$. Отсюда $\Delta E=4\hbar\omega_{o2}-3\hbar\omega_{o1}$.

Но по условию известно, что $E_3=7\hbar\omega_{o1}/2=E'_1=3\hbar\omega_{o2}/2$, откуда $\hbar\omega_{o1}=3\hbar\omega_{o2}/7$. Кроме того известно, что $E'_0 = \hbar \omega_{o2}/2 = 2,1$ эВ.

Поэтому
$$\Delta E = \left(4 - \frac{9}{7}\right)\hbar\omega_{02} = \frac{38}{7}E'_{0} = 11,4$$
 эВ

***************** Второй случай – частица в прямоугольной одномерной потенциальной

яме с бесконечными стенками ширины a (рис.3.37), частица с массой m имеет нулевую потенциальную энергию. Волновая функция её состояния подчиняется

стационарному уравнению Шредингера
$$\frac{d^2\psi(x)}{dx^2} + k^2\psi(x) = 0$$
, где

$$k^2 = \frac{2m}{\hbar^2}E = {
m const.}$$
 Это уравнение имеет решение $\psi(x) = A \sin(kx + \alpha)$, что лег-

ко проверить подстановкой этой функции. Вылететь из ямы с бесконечными стенками частица не может. Вероят-

ность её обнаружения или волновая функция на границах равны нулю: $\psi|_{r=0} = 0$, откуда $\sin \alpha = 0$ и $\alpha = 0$ На правой гра-

нице условие $\psi|_{x=a}=0$ дает $\sin ka=0$, откуда $ka=\sqrt{2mE}/\hbar=\pi n$ и $E_n=\frac{\pi^2\hbar^2n^2}{2ma^2}=E_1n^2$, где n=1,2,3,... - разрешенные

значения энергии частицы. Состояние с наименьшей энергией E_1 будет <u>основным состоянием</u> частицы. Другие состояния будут возбужденными (рис.3.37).

При переходе частицы из состояния с квантовым числом n' в состояние с квантовым числом n частица излучает

или поглощает фотон с энергией
$$E_{\Phi} = \hbar \omega_{\Phi} = \left| E_{n'} - E_{n} \right| = \frac{\pi^{2} \hbar^{2}}{2ma^{2}} \left| n'^{2} - n^{2} \right|$$
 (рис.3.37).

Замечание: в отличие от квантового осциллятора (рис.3.34), квантовому числу n и энергии E_n частицы в одномерной потенциальной яме соответствует (n-1)-й возбужденный уровень (рис.3.37). Следите за этим соответствием при решении задач!

Примеры решения задач:

12.3. Две разные микрочастицы находятся в двух разных одномерных прямоугольных ямах с бесконечными стенками. Первая частица имеет энергию E = 81 эВ и находится во втором возбужденном состоянии. Чтобы перейти в третье возбужденное состояние, она должна поглотить фотон. Если тот же фотон поглотит вторая частица во второй яме, то она перейдет из первого в четвертое возбужденное состояние с энергией E'. Чему равна энергия E'?

Решение.

Переходы, указанные в условии, изображены на рис.3.38. Энергии фотонов, поглощенных обеими частицами, оди-

наковы:
$$E_{\Phi} = E_4 - E_3 = \frac{\pi^2 \hbar^2}{2m_1 a_1^2} \left(4^2 - 3^2\right) = E'_5 - E'_2 = \frac{\pi^2 \hbar^2}{2m_2 a_2^2} \left(5^2 - 2^2\right)$$
. Отсюда
$$\frac{\pi^2 \hbar^2}{2m_2 a_2^2} = \frac{1}{3} \cdot \frac{\pi^2 \hbar^2}{2m_1 a_1^2} \text{. Но по условию } E = E_3 = \frac{\pi^2 \hbar^2 3^2}{2m_1 a_1^2} \text{, а найти надо}$$

$$E' = E'_5 = \frac{\pi^2 \hbar^2 5^2}{2m_2 a_2^2} = \frac{25}{3} \cdot \frac{\pi^2 \hbar^2}{2m_1 a_1^2} = \frac{25}{3} \cdot \frac{E}{9} = 75 \text{ эВ}.$$

Рис.3.38

12.4. Две микрочастицы с массами m_1 и m_2 находятся в двух разных одномерных прямоугольных ямах с бесконечными стенками. Чтобы первая частица с массой m_1 перешла из основного во второе возбужденное состояние, она должна поглотить фотон с энергией $E_{\phi 1}$. Вторая частица m_2 перейдетиз основного в третье возбужденное состояние, поглотив фотон с энергией $E_{\phi 2} = E_{\phi 1} + \Delta E$. Чему равна величина ΔE (в эВ), если вторая частица в первом возбужденном состоянии и первая частица во втором возбужденном состоянии имеют одинаковую энергию E = 0.72 эВ?

Решение

В соответствии с расположением возбужденных уровней (рис.3.37), изобразим диаграмму переходов частиц в данной задаче на рис.3.38.

Вычитаем энергии фотонов, поглощенных при этих переходах

$$E_{\phi 1} = E_3 - E_1 = \frac{\pi^2 \hbar^2}{2m_1 a_1^2} \left(3^2 - 1^2\right) = \frac{4\pi^2 \hbar^2}{m_1 a_1^2} \quad \text{if} \quad E_{\phi 2} = E_{\phi 1} + \Delta E = E'_4 - E'_1 = \frac{\pi^2 \hbar^2}{2m_2 a_2^2} \left(4^2 - 1^2\right) =$$

$$= \frac{15\pi^2\hbar^2}{2m_2a_2^2}$$
 , и используем заданные в условии соотношения $E=E_3=\frac{\pi^2\hbar^23^2}{2m_1a_1^2}=E'_2=\frac{\pi^2\hbar^22^2}{2m_2a_2^2}$.

Получим
$$\Delta E = \frac{15\pi^2\hbar^2}{2m_2a_2^2} - \frac{8\pi^2\hbar^2}{2m_1a_1^2} = \frac{15}{4}E - \frac{8}{9}E = \frac{103}{36}E = 2,06$$
 эВ .

Примеры задач контрольной работы для самостоятельной подготовки:

- **12.5.** Испустив фотон с длиной волны $\lambda = 120$ нм, одномерный квантовый гармонический осциллятор перешел из пятого возбужденного в основное состояние. Чему равна энергия такого осциллятора (в эВ) в третьем возбужденном состоянии? Ответ: 7,243 эВ.
- **12.6.** Энергия основного состояния первого одномерного квантового гармонического осциллятора равна $E_0 = 1,5$ эВ. Чтобы перейти из основного в четвертое возбужденное состояние, он должен поглотить фотон. Если этот же фотон поглотит второй одномерный квантовый гармонический осциллятор, то он перейдет из основного в третье возбужденное состояние. Чему равна энергия второго осциллятора во втором возбужденном состоянии (в эВ)?

Ответ: 10 эВ.

12.7. Известно, что первый одномерный квантовый гармонический осциллятор переходит из основного в третье возбужденное состояние, поглощая фотон с длиной волны λ_1 , а второй одномерный квантовый гармонический осциллятор переходит из основного во второе возбужденное состояние, поглощая фотон с длиной волны $\lambda_2 = -\lambda_1/2$. Чему равна собственная циклическая частота первого осциллятора, если энергия второго осциллятора, находящегося во втором возбужденном состоянии равна $E'_2 = 4$ эВ?

12.8. Известно, что первый одномерный квантовый гармонический осциллятор переходит из основного в третье возбужденное состояние, поглощая фотон с длиной волны $\lambda_1 = 560$ нм, а второй одномерный квантовый гармонический осциллятор переходит из основного в четвертое возбужденное состояние, поглощая фотон с длиной волны $\lambda_2 = \lambda_1 + \Delta \lambda$. Чему равна величина $\Delta \lambda$ (в нм), если известно, что энергия первого осциллятора в третьем возбужденном состоянии в три раза больше энергии второго осциллятора в четвертом возбужденном состоянии?

Ответ: 1060 нм.

12.9. Поглотив фотон с длиной волны $\lambda = 180$ нм, микрочастица, находящаяся в одномерной прямоугольной потенциальной яме с бесконечными стенками, перешла из второго возбужденного в четвертое возбужденное состояние. Чему равна энергия микрочастицы (в эВ) в основном состоянии?

Ответ: 0,431 эВ.

12.10. Испустив фотон с импульсом $p = 6.4 \cdot 10^{-27}$ кг·м/с, микрочастица, находящаяся в одномерной прямоугольной потенциальной яме с бесконечными стенками, перешла из четвертого возбужденного во второе возбужденное состояние. Чему стала равной энергия микрочастицы (в эВ)?

Ответ: 6,75 эВ.

12.11. Первая микрочастица имеет массу $m_1 = 2 \cdot 10^{-29}$ кг и находится в одномерной прямоугольной потенциальной яме с бесконечными стенками ширины $a_1 = 0.3$ нм. Чтобы перейти из основного в третье возбужденное состояние, она должна поглотить фотон. Если этот же фотон поглотит вторая микрочастица с массой $m_2 = 5 \cdot 10^{-29}$ кг, находящаяся во второй одномерной прямоугольной потенциальной яме с бесконечными стенками, то она перейдет из основного в четвертое возбужденное состояние. Найти ширину a_2 второй потенциальной ямы.

Ответ: 0,24 нм.

12.12. Две разные микрочастицы находятся в одной прямоугольной потенциальной яме с бесконечными стенками, имеющей ширину a=0,1 нм. Переходя из основного в третье возбужденное состояние, первая частица должна поглотить фотон с энергией E_{ϕ} . Поглощая такой же фотон, вторая частица перейдет из первого возбужденного состояния с энергией E=4 эВ в четвертое возбужденное состояние. Чему равна масса первой микрочастицы?

12.13. Переходя из основного состояния в третье возбужденное состояние, первая микрочастица, находящаяся в первой одномерной прямоугольной потенциальной яме с бесконечными стенками, должна поглотить фотон с длиной волны λ_1 =

=40 нм. Вторая микрочастица, находящаяся во второй одномерной прямоугольной потенциальной яме с бесконечными стенками, перейдет из основного состояния в первое возбужденное состояние, поглощая фотон с длиной волны $\lambda_2 = \lambda_1 + \Delta \lambda$. Чему равна величина $\Delta \lambda$ (в нм), если известно, что энергия первой микрочастицы в третьем возбужденном состоянии в два раза меньше энергии второй микрочастицы в первом возбужденном состоянии?

Ответ: 60 нм

13. Формулы квантования. Заполнение электронных оболочек

Согласно принципу Паули состояния электронов в атоме должны отличаться хотя бы одним значением одного из квантовых чисел:

$$n=1,2,3,4,...$$
 — главное квантовое число $l=0,1,2,...,n-1$ — орбитальное квантовое число $m=0,\pm 1,\pm 2,...\pm l$ — магнитное квантовое число $\sigma=\pm s=\pm 1/2$ — спиновое квантовое число

Электроны с одинаковыми значениями орбитального квантового числа l образуют <u>подоболочку</u> многоэлектронного атома. В полностью заполненной подоболочке находится $2 \cdot (2l+1)$ электронов, различающихся значениями чисел m и σ .

Подоболочки обозначают буквами: \underline{s} -подоболочка (l=0), \underline{p} -подоболочка (l=1); \underline{d} -подоболочка (l=2); \underline{f} -подоболочка (l=3),... Электроны с одинаковыми значениями главного квантового числа n образуют оболочку многоэлектронного атома.

В полностью заполненной оболочке находится
$$\sum_{l=0}^{n-1} 2(2l+1) = 2n^2$$
 электронов.

Помимо энергии, каждый электрон в атоме имеет определенную величину <u>орбитального момента импульса</u> \vec{L} , <u>собственного</u> (или <u>спинового</u>) <u>момента импульса</u> \vec{L}_s , <u>орбитального магнитного момента</u> \vec{p}_m и <u>собственного</u> (<u>спинового</u>) <u>магнитного момента</u> \vec{p}_{ms} .

Как и энергии, эти векторы квантуются, т.е. могут иметь только отдельные разрешенные значения величины (модуля) и проекции на выделенную ось z:

Здесь \hbar = 1,054 · 10⁻³⁴ Дж · c ; магнетон Бора μ_{B} = 9,274 · 10⁻²⁴ A · м² .

Примеры решения задач:

13.1. В многоэлектронном атоме полностью заполнены электронами две **соседние** оболочки A и B. Известно, что в оболочке A находится на $\Delta n = 14$ электронов больше, чем в оболочке B. Во сколько раз максимальная величина орбитального момента импульса электрона из оболочки A превышает максимальную величину проекции на выделенную ось z орбитального момента импульса электрона из оболочки B?

Решение.

Соседние оболочки имеют главные квантовые числа $n_{\rm A}=n+1$ и $n_{\rm B}=n$. Разность числа электронов в них $2n_{\rm A}^2-2n_{\rm B}^2=4n+2=\Delta n=14$, откуда n=3.

Максимальная величина квантового числа l для электрона из оболочки A равна $l_A=n_A-1=n=3$, а для электрона из оболочки B $l_B=n_B-1=n-1=2$. Из формул квантования видно, что максимальная величина орбитального момента импульса электрона из оболочки A равна $L_{A\max}=\hbar\sqrt{n(n+1)}=\hbar\sqrt{12}$, а максимальная величина проекции этого вектора для электрона из оболочки B $L_{zB\max}=\hbar m_{\max}==\hbar l_B=\hbar(n-1)=2\hbar$. Их отношение $L_{A\max}/L_{zB\max}=\sqrt{3}=1,732$.

13.2. Оболочка многоэлектронного атома полностью заполнена. Известно, что отношение наибольшей величины орбитального магнитного момента электрона из этой оболочки к наибольшей величине проекции орбитального магнитного момента на выделенную ось z равно

k = 1,1547. Найти число электронов, заполняющих эту оболочку.

Решение.

Если номер оболочки n, то максимальные значения квантовых чисел l и m для электрона из этой оболочки равны $l_{\max} = n-1$ и $m_{\max} = l_{\max}$. Поэтому из заданного в условии отношения $\frac{p_{m\max}}{p_{mz\max}} = \frac{\mu_{\rm E}\sqrt{l_{\max}\left(l_{\max}+1\right)}}{\mu_{\rm E}m_{\max}} = \sqrt{\frac{n}{n-1}} = k$ находим

$$\frac{n}{n-1} = k^2 = 1,333 = 4/3$$
, т.е. $n = 4$. Число электронов в этой оболочке $2n^2 = 32$.

13.3. Известно, что в полностью заполненной оболочке многоэлектронного атома находится в k = 16/7 = 2,2857 раз больше электронов, чем в последней подоболочке A из этой оболочки. Найти отношение величины орбитального магнитного момента электрона из подоболочки A к величине собственного (спинового) магнитного момента электрона из этой же подоболочки.

Решение.

Электроны из последней подоболочки A из оболочки с номером n имеют орбитальное квантовое число l=n-1, и в ней находится 2(2(n-1)+1)=2(2n+1) электронов. Согласно условию это число меньше числа электронов во всей оболочке

в
$$\frac{2n^2}{2(2n-1)} = \frac{16}{7}$$
 раз. Отсюда получаем квадратное уравнение $7n^2 - 32n + 16 = 0$, имеющее решение $n = 4$ (можно найти это число, проверяя записенное выше отношение подстановкой целых чисел $n = 1, 2, 3, ...$).

Из формул квантования для
$$p_m = \mu_{\rm B} \sqrt{l \left(l+1\right)}$$
 и $p_{ms} = 2\mu_{\rm B} \sqrt{s \left(s+1\right)}$, где $l=n-1$, $s=\frac{1}{2}$, находим искомое отношение

$$\frac{p_m}{p_{ms}} = \frac{\sqrt{(n-1)n}}{2 \cdot \sqrt{3/4}} = 2 \; .$$

13.4. Максимальное возможное значение проекции орбитального момента импульса на выделенную ось z для электрона в некоторой оболочке многоэлектронного атома равно $L_{\rm z \ max} = 4,216 \cdot 10^{-34} \ {\rm Дж \cdot c}$. Последняя, самая большая подоболочка А в этой оболочке заполнена электронами наполовину. Найти максимальную возможную величину суммы $\Sigma L_{\rm z}$ проекций орбитального момента импульса всех находящихся в подоболочке А электронов.

Решение

Максимальную величину $L_{\rm z\ max}$ имеет электрон из последней подоболочки с наибольшим числом l, которое можно найти из формулы $L_{z\ max}=\hbar m_{\rm max}$, где $m_{\rm max}=l$. Отсюда $l=L_{z\ max}/\hbar=4$.

Сделайте таблицу всех возможных значений квантовых чисел т и σ для всех 2(2l+1) электронов из подоболочки.

m=	<u>4</u>	<u>3</u>	2	1	0	-1	-2	-3	-4	<u>4</u>	<u>3</u>	2	1	0	-1	-2	-3	-4
$\sigma =$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

 $oxed{2}$ $oxed{2}$

В приведенной таблице подчеркнута половина чисел m (подоболочка заполнена наполовину), которые дадут максимальный положительный вклад в сумму $(\sum L_z)_{\max} = \sum m\hbar = 2(4+3+2+1)\hbar = 20\hbar = 2,108\cdot 10^{-33}$ Дж·с.

13.5. Максимальное возможное значение проекции орбитального момента импульса на выделенную ось z для электрона в некоторой оболочке многоэлектронного атома равно $L_{\rm z \ max} = 4,216 \cdot 10^{-34} \ Дж \cdot c$. Последняя, самая большая подоболочка А в этой оболочке заполнена электронами на одну треть. Найти максимальную возможную величину суммы $\Sigma L_{\rm sz}$ проекций собственного момента импульса всех электронов, находящихся в подоболочке A.

Решение

Как и в предыдущей задаче, $l=L_{z\max}/\hbar=4$. Но вычислить надо сумму других величин $\sum L_{sz}=\sum \sigma \hbar$.

Внимательно следите за тем, какие величины указаны в условии задачи: орбитальные или собственные моменты; моменты импульса или магнитные моменты; их величины (модули векторов) или проекции, имеющие разный знак!

Из приведенной выше таблицы выбираем шесть электронов с $\sigma = 1/2$. Поэтому

$$(\sum L_{sz})_{\text{max}} = 6 \cdot (1/2) \hbar = 3\hbar = 3,162 \cdot 10^{-34} \,$$
Дж · с .

13.6. В некоторой полностью заполненной электронами оболочке многоэлектронного атома находится 18 электронов. Чему равна сумма величин орбитальных магнитных моментов всех электронов из последней, самой большой подоболочки этой оболочки и сумма модулей их проекций на выделенную ось *z*?

Решение.

Число электронов в оболочке $2n^2=18$ даёт номер этой оболочки n=3 и квантовое число l=n-1=2 электронов из её последней подоболочки. Эта подоболочка содержит 2(2l+1)=10 электронов, которые отличаются значениями квантовых чисел $m=0,\pm 1,\pm 2$ и $\sigma=\pm 1/2$. Величины вектора \vec{p}_m этих электронов одинаковы: $p_m=\mu_{\rm B}\sqrt{l\left(l+1\right)}$. Их сумма

$$\Sigma \big| p_m \big| = 10 \cdot \mu_{\rm B} \sqrt{2 \cdot 3} = 10 \sqrt{6} \, \mu_{\rm B} = 2,272 \cdot 10^{-22} \; {\rm A \cdot m}^2 \; .$$

В сумму модулей $\Sigma |p_{mz}|$ всех проекций $p_{mz}=m\mu_{\rm B}$ с положительным знаком войдут вклады всех электронов: $\Sigma |p_{mz}|=2\cdot 2\cdot (0+1+2)\mu_{\rm B}=12\mu_{\rm E}=1,11\cdot 10^{-22}~{\rm A\cdot m}^2$.

Примеры задач контрольной работы для самостоятельной подготовки:

13.7. Известно, что оболочка многоэлектронного атома полностью заполнена, а наибольшая величина орбитального

магнитного момента электрона из этой оболочки равна $p_{\text{m max}} = 3,21261 \cdot 10^{-23} \text{ A} \cdot \text{м}^2$. Сколько электронов заполняют эту оболочку? *Ответ*: 32.

13.8. Некоторая оболочка многоэлектронного атома полностью заполнена электронами, и в ней находится в k=16/7=2,285 раз больше электронов, чем в последней подоболочке из этой оболочки. Какую максимальную величину орбитального момента импульса может иметь электрон из данной оболочки?

- **13.9.** В полностью заполненной оболочке многоэлектронного атома находится в k = 25/9 = 2,778 раз больше электронов, чем в последней подоболочке А из этой оболочки. Найти отношение максимальной величины орбитального магнитного момента к максимальной величине проекции орбитального магнитного момента на выделенную ось z для электрона из этой оболочки. *Ответ*: 1,118.
- **13.10.** В полностью заполненной оболочке многоэлектронного атома находится в k = 16/7 = 2,286 раз больше электронов, чем в последней подоболочке A из этой оболочки. Найти отношение максимальных величин орбитального магнитного момента электрона из последней подоболочки A электрона из предпоследней подоболочки B этой оболочки.

Ответ: 1,414.

13.11. В некоторой полностью заполненной электронами оболочке многоэлектронного атома находится 32 электрона. Чему равна сумма $\Sigma |L_z|$ модулей проекций на выделенную ось z орбитальных моментов импульса всех электронов из последней, самой большой подоболочки этой оболочки?

13.12. Максимальное возможное значение величины орбитального магнитного момента электрона в некоторой полностью заполненной электронами оболочке атома равно $p_{\text{m max}} = 2,27166 \cdot 10^{-23} \text{ A·m}^2$. Чему равна сумма $\Sigma |p_{msz}|$ модулей проекций на выделенную ось z собственных (спиновых) магнитных моментов всех электронов из последней, самой большой подоболочки этой оболочки?

14. Закон радиоактивного распада. Энергетический выход реакции распада атомного ядра

Если N_0 – число нестабильных ядер в начальный момент времени $t_0 = 0$, то спустя время t сохраняется $N = N_0 e^{-\lambda t}$

ядер (<u>закон радиоактивного распада</u>). За это время распадается $\Delta N = N_0 \left(1 - e^{-\lambda t}\right)$ ядер. Здесь $\lambda - \underline{\text{постоянная распада}}$.

<u>Период полураспада</u> T – это время, за которое распадается половина атомных ядер. Поэтому $N = N_0/2 = N_0 e^{-\lambda T}$, откуда

$$\ln 2^{-1} = \ln e^{-\lambda T}$$
 и $T = \frac{\ln 2}{\lambda}$ или $\lambda = \frac{\ln 2}{T}$.

За каждый интервал времени $\Delta t = T$ число сохранившихся ядер уменьшается в 2 раза. Поэтому, если t/T = n - целое число, то спустя время t число сохранившихся ядер равно

 $N = N_0 / 2^n$ (рис.3.39). Это соотношение удобнее использовать для расчета, чем анало-

гичный закон радиоактивного распада $N = N_0 \exp(-t \ln 2/T)$.

Примеры решения задач:

14.1. В начальный момент t_0 =0 число ядер первого радиоактивного изотопа с периодом полураспада T_1 = 2 с было равно N_{10} = 1,6·10¹¹, а число ядер второго радиоактивного изотопа было равно N_{20} = 4·10¹⁰. Спустя промежуток времени Δt = 6 с число распавшихся за время Δt ядер второго изотопа оказалось равным числу еще не распавшихся ядер первого изотопа. Найти период полураспада T_2 второго изотопа.

Решение

По условию $\Delta N_2 = N_{20} \left(1 - \exp\left(-\lambda_2 \Delta t\right)\right) = N_1 = N_{10} \exp\left(-\lambda_1 \Delta t\right)$. Но $\Delta t/T_1 = 3$, т.е. спустя время Δt , равное трем печисло распавшихся ядер

риодам полураспада, сохранится $N_1 = N_{10}/2^3 = N_{10}/8$ ядер первого изотопа (рис.3.39).

Из записанного выше уравнения находим $\exp(-\lambda_2 \Delta t) = 1 - N_1/N_{20} = 1 - N_{10}/(8N_{20}) = 1/2$.

Взяв логарифм от обеих частей, $-\lambda_2 \Delta t = \ln \left(1/2 \right) = -\ln 2$, и подставляя $\lambda_2 = (\ln 2)/T_2$, получим $T_2 = \Delta t = 6$ с.

14.2. Известно, что в начальный момент времени t_0 =0 число ядер первого радиоактивного изотопа с периодом полураспада T_1 = 0,2 с было в четыре раза больше числа ядер второго радиоактивного изотопа, имеющего период полураспада T_2 = 0,25 с. Спустя время Δt = 4 с число сохранившихся ядер второго изотопа превышает число сохранившихся ядер первого изотопа на величину ΔN = $3 \cdot 10^{10}$. Сколько ядер второго изотопа сохранилось к этому моменту времени?

Так как $\Delta t/T_1=20\,$ и $\Delta t/T_2=16$, то число сохранившихся спустя время Δt ядер $N_1=N_{10}\big/2^{20}$, $N_2=N_{20}\big/2^{16}$. В начальный момент $N_{10}=4N_{20}$. Поэтому $N_1=N_{20}\big/2^{18}=N_2/4$.

Согласно условию, $\Delta N = N_2 - N_1 = 3N_2/4$, и величина числа сохранившихся ядер второго изотопа $N_2 = 4\Delta N/3 = 4\cdot 10^{10}\,$ ядер.

14.3. В начальный момент времени t_0 =0 число ядер первого радиоактивного изотопа, имеющего постоянную распада $\lambda_1 = 1$ с⁻¹, было равно $N_{10} = 4 \cdot 10^{10}$ и на величину $\Delta N = 10^{10}$ превышало число ядер второго радиоактивного изотопа. Спустя время $\Delta t = 1$ с, наоборот, число сохранившихся ядер второго изотопа превышало число сохранившихся ядер первого изотопа на ту же величину ΔN . Найти величину постоянной распада λ_2 второго изотопа.

Решение

По условию в момент $t = \Delta t = 1$ с числа ядер двух изотопов связаны соотношением

$$N_2 - N_1 = N_{20} e^{-\lambda_2 \Delta t} - N_{10} e^{-\lambda_1 \Delta t} = \Delta N \; . \; \text{C} \; \; \text{учетом} \quad N_{20} = N_{10} - \Delta N \; , \; \text{получим} \quad e^{-\lambda_2 \Delta t} = \left(N_{10} e^{-\lambda_1 \Delta t} + \Delta N\right) \middle/ \left(N_{10} - \Delta N\right) \; . \; \text{Подста-N}$$

новка в это равенство численных значений, заданных в условии, даёт $e^{-\lambda_2 \Delta t} = \left(4e^{-1} + 1\right)/3$.

Вычисляя логарифм от левой и правой частей равенства, находим $\lambda_2 = -\frac{1}{\Delta t} \ln \left(\frac{4e^{-1} + 1}{3} \right) = 0,1938 \text{ c}^{-1}$.

<u>Энергетический выход ядерной реакции</u> E_1 – это энергия, выделяющаяся в результате распада покоящегося ядра в виде кинетической энергии его осколков. В сумме такие энергии превращаются в тепловую энергию беспорядочного движения частиц среды.

Выделившееся за время t тепло $Q = E_1 \Delta N = E_1 N_0 \left(1 - e^{-\lambda t}\right)$ будет суммарным энергетическим выходом распада всех

 ΔN ядер, распавшихся за это время в соответствии с законом радиоактивного распада. Энергию E_1 обычно определяют в мега-электрон-вольтах: 1 МэВ = 10^6 эВ.

Примеры решения задач:

14.4. В начальный момент t_0 =0 в образце находилось $N_{10} = 8 \cdot 10^{12}$ ядер первого радиоактивного изотопа, имеющего постоянную распада λ_1 =1 c^{-1} , и $N_{20} = 6 \cdot 10^{12}$ ядер второго радиоактивного изотопа с постоянной распада λ_2 =2 c^{-1} . Известно, что энергетический выход реакции распада ядра первого изотопа равен $E_1 = 4$ МэВ, и что за последующий интервал времени $\Delta t = 1$ с в образце при распада ядра второго изотопов выделилось суммарное тепло Q = 4 Дж. Найти величину E_2 энергетического выхода реакции распада ядра второго изотопа (в МэВ).

Решение.

Суммарное выделившееся за время Δt тепло равно $Q=E_1N_{10}\left(1-e^{-\lambda_1\Delta t}\right)+E_2N_{20}\left(1-e^{-\lambda_2\Delta t}\right)$, откуда

$$E_2 = \frac{Q - E_1 N_{10} \left(1 - e^{-\lambda_1 \Delta t}\right)}{N_{20} \left(1 - e^{-\lambda_2 \Delta t}\right)}$$
 . Так как величину E_2 надо вычислить в МэВ, то при вычислениях удобнее перевести в эти еди-

ницы величину $Q = \frac{4}{1,6 \cdot 10^{-19}} \cdot \frac{1}{10^6} = 2,5 \cdot 10^{13} \,\mathrm{MpB}$. Тогда, подставляя числовые данные, приведенные в условии, и сокращая

числитель и знаменатель на 10^{12} , находим $E_2 = \frac{25 - 4 \cdot 8 \cdot \left(1 - e^{-1}\right)}{6 \cdot \left(1 - e^{-2}\right)}$ МэВ = 0,9198 МэВ .

14.5. В начальный момент времени t_0 =0 в образце находилось N_{10} ядер первого радиоактивного изотопа, имеющего период полураспада T_1 = 0,5 с, и N_{20} = $8\cdot 10^{10}$ ядер второго радиоактивного изотопа с периодом полураспада T_2 = 1 с. Известно, что энергетические выходы реакции распада ядра первого и второго изотопов равны E_1 = 4 МэВ и E_2 = 3 МэВ соответственно. Известно также, что за счет распада ядер второго изотопа за последующий интервал времени Δt = 1 с выделяется в k = 4 раза больше тепла, чем за счет распада ядер первого изотопа. Чему равно начальное число N_{10} ядер первого изотопа? Pewenue.

Так как $\Delta t/T_1=2$ и $\Delta t/T_2=1$, то за время Δt в образце сохранится $N_{10}/4$ ядер первого изотопа и $N_{20}/2$ ядер второго изотопа (рис.17). Число распавшихся ядер, соответственно, $\Delta N_1=N_{10}\left(1-1/4\right)=3N_{10}/4$ и $\Delta N_2=N_{20}/2$. По условию задачи $Q_2=E_2\Delta N_2=4Q_1=4\cdot E_1\Delta N_1$, откуда $E_2N_{20}/2=4\cdot 3E_1N_{10}/4$ и $N_{10}=N_{20}E_2/6E_1=10^{10}$ ядер.

14.6. В начальный момент t_0 =0 в образце находилось $N_0 = 8 \cdot 10^{12}$ ядер радиоактивного изотопа с постоянной распада $\lambda = 0.5$ с⁻¹. За счет распада этих ядер за первый интервал времени $0 \le t \le 2$ с в образце выделяется тепло Q_1 , а за последующий интервал времени 2 с $\le t \le 4$ с в этом же образце выделяется меньшее тепло $Q_2 = Q_1 - \Delta Q$, причем $\Delta Q = 4$ Дж. Найти величину E_1 энергетического выхода реакции распада ядра данного изотопа (в МэВ).

Решение.

За первый интервал времени $0 \le t \le \tau = 2$ с в образце распадется $\Delta N_1 = N_0 \left(1 - e^{-\lambda \tau}\right)$ и сохранится $N_0 e^{-\lambda \tau}$ ядер. За второй такой же интервал $\tau \le t \le 2\tau = 4$ с распадется $\Delta N_2 = N_0 e^{-\lambda \tau} \left(1 - e^{-\lambda \tau}\right)$ ядер. Из уравнения баланса выделившегося те-

пла
$$E_1 \Delta N_2 = E_1 \Delta N_1 - \Delta Q$$
 находим $E_1 = \frac{\Delta Q}{\Delta N_1 - \Delta N_2} = \frac{\Delta Q}{N_0 \left(1 - \exp\left(-\lambda \tau\right)\right)^2} = 7,82$ МэВ .

Примеры задач контрольной работы для самостоятельной подготовки:

14.7. В начальный момент t_0 =0 в образце находилось в n = 3 раза меньше ядер первого радиоактивного изотопа, чем ядер второго изотопа. Период полураспада первого изотопа T_1 =1 мин. Чему равен период полураспада T_2 второго изотопа (в минутах), если число ядер первого изотопа, распавшихся к моменту времени t_1 =2 мин, равно числу ядер второго изотопа, распавшихся к моменту времени t_2 =1 мин?

Ответ: 2.41 мин.

14.8. В начальный момент времени t_0 =0 число ядер первого радиоактивного изотопа с постоянной распада λ_1 =0,02 с совпадает с числом ядер второго радиоактивного изотопа с постоянной распада λ_2 =0,06 с . Спустя какой промежуток времени Δt число еще не распавшихся ядер первого изотопа окажется в k = 64 раза больше числа еще не распавшихся ядер второго изотопа?

Ответ: спустя 104 с.

14.9. Известно, что в начальный момент t_0 =0 число ядер первого радиоактивного изотопа было в три раза меньше числа ядер второго радиоактивного изотопа, имеющего постоянную распада $\lambda_2 = 0.5 \, \mathrm{c}^{-1}$. Спустя время $\Delta t = 4 \, \mathrm{c}$ число сохранившихся ядер второго изотопа превышает число сохранившихся ядер первого изотопа на величину $\Delta N = 10^{10}$. Найти величину постоянной распада λ_1 первого изотопа, если в момент $t = 4 \, \mathrm{c}$ сохранилось $5 \cdot 10^{10} \, \mathrm{ero}$ ядер.

Ответ: 0,271 c⁻¹.

14.10. В начальный момент времени t_0 =0 в образце находилось $N_{10}=2\cdot 10^{10}$ ядер первого радиоактивного изотопа, имеющего период полураспада T_1 =0,5 с, и $N_{20}=4\cdot 10^{10}$ ядер второго радиоактивного изотопа. Известно, что энергетические выходы реакций распада ядер первого и второго изотопов равны E_1 = 4 МэВ и E_2 = 3 МэВ соответственно. Известно также, что за последующий интервал времени $\Delta t=1$ с при распаде ядер как первого изотопа, так и второго изотопа, выделяется одинаковое количество тепла. Чему равна величина периода полураспада T_2 второго изотопа?

Ответ: 1 с.

14.11. В начальный момент времени t_0 =0 в образце находилось $N_{10} = 8 \cdot 10^{10}$ ядер первого радиоактивного изотопа и $N_{20} = 4 \cdot 10^{10}$ ядер второго радиоактивного изотопа, имеющего постоянную распада $\lambda_2 = 1 \text{ c}^{-1}$. Известно, что энергетический выход реакции распада ядра первого изотопа равен $E_1 = 4$ МэВ, а энергетический выход реакции распада ядра второго изотопа равен $E_2 = 3$ МэВ. Известно также, что количество тепла, выделившееся в образце за последующий интервал времени $\Delta t = 1$ с за счет распада ядер первого изотопа, в k = 3 раза превышает количество тепла, выделившееся в образце за то же время за счет распада ядер второго изотопа. Чему равна постоянная распада λ_1 первого изотопа?

Ответ: 1,24 с⁻¹.

14.12. За интервал времени $0 \le t \le 6$ с в образце, за счет распада ядер радиоактивного изотопа, имеющего период полураспада T=2 с, выделяется тепло Q=4 Дж. Какое количество тепла выделится в данном образце за последующий интервал времени 6 с $\le t \le 12$ с?

Ответ: 0,5 Дж.

14.13. В образце находятся ядра радиоактивного изотопа, имеющего период полураспада T=2 с. За счет распада этих ядер за первый интервал времени $0 \le t \le 1$ с в образце выделяется тепло Q. За последующий интервал времени 1 с $\le t \le t_2$ с в образце выделяется то же самое тепло Q. Найти момент времени t_2 (границу второго интервала наблюдения).

Ответ: 2,543 с.

14.14. Период полураспада свободного нейтрона T = 12 мин. Какой энергией (в МэВ) должен обладать нейтрон, что-бы с вероятностью 50 % он мог долететь до Земли от звезды, удаленной на 10 световых лет, не распавшись?

оы с вероятностью 30 70 он мог долегеть до земли ст загода, у, ... (Указание: энергия релятивистской частицы вычисляется по формуле $E = \frac{mc^2}{\sqrt{1-{\bf v}^2/c^2}}$, масса нейтрона $m=1,675\cdot 10^{-27}~{\rm kr}$.)

Ответ: 4.1·10⁸ МэВ.