Topologie des espaces vectoriels normés

Exemples 🟵

1) \emptyset et E sont deux ouverts de E

En effet,
$$\forall x \in E, \forall r > 0, \mathcal{B}(x,r) = \{y \in E \mid \|y - x\| < r\} \subset E$$
 Et $\forall x \in \emptyset, \exists r > 0, \mathcal{B}(x,r) \subset \emptyset$

2) Dans \mathbb{R} muni de $|\cdot|$, soient $a, b \in \mathbb{R}$, a < b alors $]a, b[,] - \infty, a[,]b, +\infty[$ sont des ouverts de \mathbb{R}

```
Soit r > 0, x \in \mathbb{R}, \mathcal{B}(x,r) = \{y \in \mathbb{R} \mid -r < y - x < r\} = ]x - r, x + r[ Montrons que ]a, b[ est une partie ouverte de \mathbb{R}. Soit x \in ]a, b[ Posons r = \min(x - a, b - x), alors r > 0 Soit y \in ]x - r, x + r[, alors x - r \le y \le x + r Donc a < y < b Donc \mathcal{B}(x,r) \subset ]a, b[, donc ]a, b[ est ouvert.
```

Exemples à propos des ouverts &

- 1) \emptyset est un fermé de E car $E \setminus \emptyset = E$ est un ouvert de E E est un fermé de E car $E \setminus E = \emptyset$ est un ouvert de E
- 2) Dans \mathbb{R} muni de $|\cdot|$, $\forall a, b \in \mathbb{R}$ avec a < b, [a, b], $] \infty$, a] et $[b, +\infty[$ sont des fermés de \mathbb{R} . En effet, $\mathbb{R} \setminus [a, b] =] \infty$, $a[\cup]b$, $+\infty[$ est un ouvert de \mathbb{R} en tant qu'union d'ouverts de \mathbb{R} .
- 3) Dans $(E, \|\cdot\|)$, $\forall a \in E, \{a\}$ est un fermé de E. On va montrer que $E \setminus \{a\}$ est un ouvert de E. Soit $x \in E \setminus \{a\}$, posons $r = \|x a\|$, alors r > 0 car $x \neq a$. Soit $y \in B(x, r)$, montrons que $y \in E \setminus \{a\}$ Supposons par l'absurde que $y \notin E \setminus \{a\}$ ie y = a Alors $\|a x\| = \|y x\| < r$, Absurde.

Ainsi $y \in E \setminus \{a\}$, d'où $B(x,r) \in E \setminus \{a\}$

Donc $E \setminus \{a\}$ est un ouvert de E

Exemple: *

Soit $(E, \|\cdot\|)$ un evn. Soit $a \in E$ et r > 0. Montrons que $\overline{B}(a, r)$ est un fermé de E.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\overline{B}(a,r)$ qui converge vers l (dans $(E,\|\cdot\|)$).

$$\forall n \in \mathbb{N}, x_n \in \overline{B}(a,r), \text{ ie } ||x_n - a|| \le r$$

Essayons de montrer que
$$\underbrace{\|x_n-a\|}_{\in\mathbb{R}} \xrightarrow[n \to +\infty]{} \underbrace{\|l-a\|}_{\in\mathbb{R}}$$

On a
$$\forall n \in \mathbb{N}$$
, $||x_n - a|| - ||l - a||| \underset{\text{ineg. tri. inv.}}{\leq} ||(x_n - a) - (l - a)|| = ||x_n - l|| \underset{n \to +\infty}{\longrightarrow} 0$

Ainsi $\|x_n-a\|\underset{n\to+\infty}{\longrightarrow}\|l-a\|$. En faisant tendre n vers $+\infty$ dans la première inégalité, il vient :

$$||l - a|| \le r \Longrightarrow l \in \overline{B}(a, r)$$

Ainsi par caractérisation séquentielle des fermés, $\overline{B}(a,r)$ est un fermé de E.

De même, S(a,r) est un fermé de E (même preuve en remplaçant les $\overline{B}(a,r)$ par S(a,r).

Exemple: 🕏

Soient $(E, \|\cdot\|)$ un evn, $a \in E$ et r > 0.

On va montrer que $\overline{B(a,r)} = \overline{B}(a,r)$

On a vu que $\overline{B}(a,r)$ est un fermé contenant B(a,r) donc par la propriété 2.7,

$$\overline{B(a,r)} \subset \overline{B}(a,r)$$

On a $\overline{B}(a,r) = B(a,r) \cup S(a,r)$, or $B(a,r) \subset \overline{B(a,r)}$. Reste donc à montrer que

$$S(a,r) \subset \overline{B(a,r)}$$

Soit $x \in S(a,r)$, on va construire une suite $(x_n)_n$ d'éléments de B(a,r)

qui converge vers
$$x$$

Posons $u = \frac{x-a}{\|x-a\|} = \frac{1}{r}(x-a)$ et $\forall n \in \mathbb{N}, x_n = \underbrace{a}_{\in E} + r\left(1 - \frac{1}{n+1}\right)\underbrace{u}_{\in E}$
Alors $\forall n \in \mathbb{N}, \|x_n - a\| = \left|r\left(1 - \frac{1}{n+1}\right)\right| \|u\| = r\left(1 - \frac{1}{n+1}\right) < r$
Ainsi $x_n \in B(a,r)$

Alors
$$\forall n \in \mathbb{N}$$
, $||x_n - a|| = \left| r \left(1 - \frac{1}{n+1} \right) \right| ||u|| = r \left(1 - \frac{1}{n+1} \right) < r$

Enfin,
$$||x_n - x|| = \left\| a + r \left(1 - \frac{1}{n+1} \right) \times \frac{1}{r} (x - a) - x \right\| = \left\| -\frac{1}{n+1} (x - a) \right\| = \frac{1}{n+1} r \underset{n \to +\infty}{\longrightarrow} 0,$$

ie $x_n \xrightarrow[n \to +\infty]{} x$. Donc $x \in \overline{B(a,r)}$, ce qui amène à l'inclusion voulue.