PERTEMUAN 13

ALJABAR HITUNG LIMIT

A. TUJUAN PEMBELAJARAN

Setelah mempelajari materi ini, mahasiswa mampu materi mengenai aljabar hitung limit dalam matematika.

B. URAIAN MATERI

1. Teknik Aljabar Untuk Menghitung Limit

Sifat-sifat dasar limit yang dinyatakan dalam beberapa teorema berikut ini sangat diperlukan dalam hitung limit.

Teorema 1

(i) $\lim_{x \to c} A = A$ untuk $A, c \in R$.

 $\lim x = c$

(ii). $x \rightarrow c$

Kalkulus 1 [86]

Teorema 2

Fungsi limit $\lim_{x\to c} f(x)$ dan $\lim_{x\to c} g(x)$ keduanya ada dan $k\in R$ maka berlaku

pernyataan-pernyataan berikut:

$$\lim_{x \to c} \left\{ f(x) \pm g(x) \right\} = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$

$$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$$

$$\lim_{x \to c} f(x)g(x) = \lim_{x \to c} f(x). \lim_{x \to c} g(x)$$

iv.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \text{ jika } \lim_{x \to c} g(x) \neq 0$$

v. Untuk
$$n \in N$$
: (a). $\lim_{x \to c} (f(x))^n = \left(\lim_{x \to c} f(x)\right)^n$

Perhatikan soal dan penyelesaian berikut:

Contoh 1.

(a).
$$\lim_{x \to 2} (2x^2 - 7x + 6) = \lim_{x \to 2} 2x^2 - \lim_{x \to 2} 7x + \lim_{x \to 2} 6$$

$$= 2 \lim_{x \to 2} x^2 - 7 \lim_{x \to 2} x + \lim_{x \to 2} 6$$

$$= 2 \lim_{x \to 2} x^2 - 7 \lim_{x \to 2} x + \lim_{x \to 2} 6$$

$$= 2 \lim_{x \to 2} x^2 - 7 \lim_{x \to 2} x + \lim_{x \to 2} 6$$

$$= 2 \cdot 2^2 - 7 \cdot 2 + 6 = 0$$

$$\lim_{x \to 1} 7x\sqrt{2x-1} = \lim_{3.2.2 \text{ (iii)}} 7x. \lim_{x \to 1} \sqrt{2x-1}$$
(b).

$$= \underset{3.2.2 \text{ (ii) & & (v.c)}}{=} \left(7 \lim_{x \to 1} x \right) \sqrt{\lim_{x \to 1} (2x - 1)} = (7.1) \sqrt{2.1 - 1} = 7$$

$$\lim_{x \to -1} \frac{2x+3}{5x+2} = \lim_{3.2.2 \text{ (iv)}} \frac{\lim_{x \to -1} (2x+3)}{\lim_{x \to -1} (5x+2)} = \frac{2.(-1)+3}{5.(-1)+2} = \frac{1}{-3}$$
(c).

Kalkulus 1

Contoh 2. Hitung

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4}$$

Penyelesaian: Dilakukan subtitusi langsung ke persamaan, Didapatkan $\frac{0}{0}$; kondisi ini penyebut sama dengan 0, maka tidak dapat digunakan. Oleh karenanya dilakukan penguraian dengan memanfaatkan teknik-teknik aljabar, untuk $x \neq 2$ sehingga diperoleh:

$$\frac{x^2 - 3x + 2}{x^2 - 4} = \frac{(x - 2)(x - 1)}{(x - 2)(x + 2)} = \frac{x - 1}{x + 2}$$

Sehingga:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \lim_{x \to 2} \frac{x - 1}{x + 2}$$
$$= \frac{2 - 1}{2 + 2} = \frac{1}{4}$$

Contoh 3: Tentukan $\lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16}$

Penyelesaian:

$$\lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16} = \lim_{x \to -2} \frac{x^3 - (-2)^3}{x^4 - (-2)^4} = \lim_{x \to -2} \frac{(x - (-2))(x^2 + x \cdot (-2) + (-2)^2)}{(x - (-2))(x^3 + x^2 \cdot (-2) + x \cdot (-2)^2 + (-2)^3)}$$

$$= \lim_{x \to -2} \frac{(x^2 - 2x + 4)}{(x^3 - 2x^2 + 4x - 8)} = \frac{4 + 4 + 4}{-8 - 8 - 8 - 8} = -\frac{3}{8}$$

Contoh 4. Carilah

$$\lim_{x\to 1}\frac{x-1}{\sqrt{x}-\sqrt{1}}.$$

Penyelesaian:

Kalkulus 1

$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)}{\sqrt{x} - 1}$$

$$= \lim_{x \to 1} (\sqrt{x} + 1)$$
$$= \sqrt{1} + 1 = 2.$$

Contoh 5. Tentukan $\lim_{x\to 0} \left(x\sin\frac{1}{x}\right)$.

Penyelesaian: Untuk $x \neq 0$, $\left| \sin \frac{1}{x} \right| \leq 1$. Oleh karena itu, untuk $x \neq 0$ berlaku:

$$\left| x \sin \frac{1}{x} \right| = \left| x \right| \left| \sin \frac{1}{x} \right| \le \left| x \right|$$

Hal ini berakibat:

$$-|x| \le \left| x \sin \frac{1}{x} \right| \le |x|$$

Selanjutnya, karena $\lim_{x\to 0} \left(-|x|\right) = \lim_{x\to 0} |x| = 0$ maka $\lim_{x\to 0} \left(x\sin\frac{1}{x}\right) = 0$.

C. SOAL LATIHAN/TUGAS

Untuk soal 1 – 6, tunjukkan pernyataan berikut dengan definisi limit.

$$\lim_{x \to 1} (x+2) =$$

2.
$$\lim_{x\to 2} \frac{1}{x} =$$

2.
$$\lim_{x \to 2} \frac{1}{x} =$$
 3. $\lim_{x \to -1} x^2 =$

$$\lim_{x \to 0} \frac{x+2}{x-1} =$$

5.
$$\lim_{x \to 4} \sqrt{x} =$$

5.
$$\lim_{x \to 4} \sqrt{x} =$$
 6. $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} =$

7. Jika
$$f(x) = \begin{cases} 1, & x \ge 0 \\ & \text{tunjukkan bahwa } \lim_{x \to 0} f(x) \text{ tidak ada.} \\ -1, & x < 0 \end{cases}$$

Untuk soal 8 – 20, hitunglah masing-masing limit jika ada.

$$\lim_{x \to 5} (x^2 - 20)$$

$$\lim_{8. \ x \to 5} (x^2 - 20) \qquad \lim_{9. \ x \to -2} (x^2 + 3x + 1) \qquad \lim_{10. \ x \to 0} \frac{x + 2}{x - 3}$$

$$\lim_{x \to 0} \frac{x+2}{x-3}$$

$$\lim_{x \to 2} \frac{x^2 + 2x - 8}{x^2 - 4}$$
12.
$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1}$$
13.
$$\lim_{x \to 2} \frac{x^6 - 64}{x^3 - 8}$$

12.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1}$$

$$\lim_{x \to 2} \frac{x^6 - 64}{x^3 - 8}$$

$$\lim_{s \to -1} \frac{s^4 - 1}{s^3 + 1}$$

15.
$$\lim_{u \to 1} \frac{u^{3/2} - 1}{1 - u}$$

$$\lim_{s \to -1} \frac{s^4 - 1}{s^3 + 1}$$
15. $\lim_{u \to 1} \frac{u^{3/2} - 1}{1 - u}$

$$16^{x \to -1} \frac{2 - \sqrt{x^2 + 3}}{1 - x^2}$$

17.
$$\lim_{x \to 2} \frac{x^2 - 4}{3 - \sqrt{x^2 + 5}}$$
 18. $\lim_{x \to a} \frac{x^n - a^n}{x - a}$ 19. $\lim_{x \to -a} \frac{x^n + a^n}{x + a}$

$$\lim_{x \to a} \frac{x^n - a^n}{x - a}$$

$$\lim_{x \to -a} \frac{x^n + a^n}{x + a}$$

$$\lim_{20. h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \qquad \lim_{21. x \to 2} \frac{(1/x) - (1/2)}{x-2} \qquad \lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x}$$

$$\lim_{x \to 2} \frac{(1/x) - (1/2)}{x - 2}$$

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x}$$

D. DAFTAR PUSTAKA

Thomas (2005), Calculus 11e with Differential Equations, Pearson Wesley

Weltner, Klaus (2009), Mathematics-for-physicists-and-engineers-fundamentals-andinteractive-study-guide, Springer

Kalkulus 1 [91]