Lecture 10 Truss Structure (II)

What is rigid structure?

A rigid structure is a structure that is intrinsically geometrical deformation-resistant under any set of equilibrium forces passing through its interior.

What is rigid structure?

$$\delta\theta_A + \delta\theta_B + \delta\theta_C > 0$$

The sum of all interior angles is equal to π .

The sum of all interior solid angles is equal to 4π .

What is rigid structure?

The sum of all interior angles is equal to π .

This is NOT a rigid structure.

A rigid simple truss requires all its sub-units are rigid triangles or rigid tetrahedrons.

Planar truss vs. Space truss

Geodesic Dome(A curved rigid Structure)

Tensegrity Structure

The word 'tensegrity' is a contraction of 'tensional integrity'.

Tensegrity describes the integrity of structures as being based on a synergy between balanced tension and compression components.

- Richard Buckminster Fuller
- (exerpt from Synergetics, p. 372.)

This is a story of statics, and a story of American ingenuity.

Needle Tower

At Washington DC

Smithsonian Museum

Pre-stressed tensegrity structure as novel meta-materials

Today's Lecture Attendance Password: Tensegrity

Tensegrity Metamaterials: Toward Failure-Resistant Engineering Systems through Delocalized Deformation

Jens Bauer, Julie A. Kraus, Cameron Crook, Julian J. Rimoli,* and Lorenzo Valdevit*

(1) System Constraints (2D Truss)

Simple Truss: $\mathbf{m} + \mathbf{3} = 2\mathbf{n} \rightarrow m + r = 2n$ General Trusses

Case (a):
$$m(members) + r(reactions) < 2n(nodes)$$

— Partially constrained;

Case (b):
$$m+r > 2n$$

— Statically indeterminate (over constrained);

Case (c) m + r = 2n is a necessary condition for statically is a necessary condition for statically determinate system, but the condition is not sufficient.

For some structures that satisfy m + r = 2n, the structures can be improperly constrainted.

To find out whether or not a structure is completely constrainted and statically determined, one has to be able to determine all the reactions as well as internal forces.

Category of Truss Structures

- 1. Statically indeterminant (overly constrained): m+r > 2n;
- 2. Statically determinant: m+r = 2n; (necessary condition but not sufficient)
- 3. Partially constrained: m+r < 2n; (you do not have enough constraints to satisfy all the equations, which means some nodes are free to move)
- 4. *Improperly constrained* (such that the equilibrium state may not be maintained, even though you have mathematically enough constraints, but physically not)

Simple truss: 2n=m+3,

This tells you that you CAN solve simple truss problem only when r=3. Otherwise, you cannot solve it.

System Constraints

$$m = 9, n = 6 \rightarrow 2n - m > ? = ?r</math$$

$$2n - m = 3$$

- More unknowns than equations (2n < m + r; over-constrained) (r = 4)
- Fewer unknowns than equations, partially constrained: 2n > m+r (r=2)
- Equal number in unknowns and equations 2n = m+r (r = 3)

• Equal number unknowns and equations but it may be improperly constrained

$$2n - m = r, \quad r = 3$$

(2) Zero-force Member

General Case

Special Case I

Special Case II

Zero force member

Zero force member

II:

PROBLEM 6.21

For the given loading, determine the zero-force members in the truss shown.

P6.31 Find the zero-force member

Classify each of the structures shown as completely, partially, or improperly constrained; if completely constrained, further classify as determinate or indeterminate. (All members can act both in tension and in compression.)

Structure (a)

Number of members:

$$m = 12$$

Number of joints:

$$n = 8$$

Reaction components:

$$r = 3$$

$$m+r=15$$
, $2n=16$

Thus: m+r < 2n

Structure is partially constrained ◀

Structure (b)

$$m = 13, n = 8$$

 $r = 3$
 $m + r = 16, 2n = 16$

m+r=2n

 \triangleleft

Thus:

To verify that the structure is actually completely constrained and determinate, we observe that it is a simple truss (follow lettering to check this) and that it is simply supported by a pin-and-bracket and a roller. Thus:

Structure (c)

$$m = 13, n = 8$$

 $r = 4$
 $m + r = 17, 2n = 16$
 $m + r > 2n$

Thus:

Structure is completely constrained and indeterminate ◀

This result can be verified by observing that the structure is a simple truss (follow lettering to check thus), therefore rigid, and that its supports involve 4 unknowns.

6.47 and 6.48 Classify each of the structures shown as completely, partially, or improperly constrained; if completely constrained, further classify as determinate or indeterminate. (All members can act both in tension and in compression.)

$$m=12, r=3, n=8$$
 $m=13, r=3, n=8$ $m=13, r=4, n=8$ $15 < 16 \rightarrow m+r < 2n$ $16=16 \rightarrow m+r=2n$ $m=13, r=4, n=8$ $17 > 16 \rightarrow m+r > 2n$

Summary

- 1. Tensegrity, or tensile integrity, describes a system of isolated, compressed components within a network of chords that are under continuous tension.
- 2. Statically indeterminant system (overly constrained) : m + r > 2n;
- 3. Statically determinant system: m + r = 2n; (necessary condition but not sufficient)
- **4. Partially constrained system**: m + r < 2n; (you do not have enough constraints to satisfy all the equations, which means some nodes are free to move)
- 5. Improperly constrained system (such that the equilibrium state may not be maintained, even though you have enough constraints mathematically, but not physically,)
- **6. Zero force member:** Some members of a truss have zero force under a given external load.