A Nonstandard Temporal Logic for Continuous-Time Verification

CSCAT 2025

Kei Imada and Justin Hsu
Cornell University, Computer Science

Nozomi 31 (tetsumaru.jp)

Train control system [Po8]

(Liveness) Will the train eventually stop? (Safety) Will the train always stay behind the barrier?

Hybrid systems

Discrete dynamics safety distance checks
Continuous evolutions train position and velocity

Hybrid automata [ACHH93]

Discrete dynamics finite automata

Continuous evolutions differential equations

Differential dynamic logic [Po7; Po8; P12; P17]

Discrete dynamics Kleene algebra with tests Continuous evolutions differential equations

Hybrid automata [ACHH93]

Discrete dynamics finite automata

Continuous evolutions differential equations

Differential dynamic logic [Po7; Po8; P12; P17]

Discrete dynamics Kleene algebra with tests Continuous evolutions **differential equations**

Discrete approaches

Programs

Automata

Kleene algebra with tests

Hoare logic

Separation logic

Relational logic

Linear temporal logic

:

Continuous approaches

Differential equations

Propositional logic

Barrier certificates

Lyapunov functions

:

Discrete approaches

Programs

Automata

Kleene algebra with tests

Hoare logic

Separation logic

Relational logic

Linear temporal logic

:

Continuous approaches

Differential equations

Propositional logic

Barrier certificates

Lyapunov functions

:

Challenge: There is no smallest positive real-valued timestep

Discrete-time traces change states each tick

Continuous-time traces change states continuously over $t \in \mathbf{R}^{\geq 0}$

Continuous-time traces are discrete-time traces with infinitesimal timesteps

Nonstandard analysis

Abraham Robinson 1960s

R becomes R with infinitesimals Transfer definitions and theorems to R

Agenda

What we will be talking about

Trace semantics of While train and the smoothing operation Continuous LTL (CLTL) and a preservation theorem Verify the safety property of the train control system

Agenda

What we will (and won't) be talking about

Trace semantics of While train and the smoothing operation Continuous LTL (CLTL) and a preservation theorem

Verify the safety property of the train control system

Coagenda: category theory

Categorical interpretations are welcome!

Justin Hsu

$\mathsf{WHILE}^{\mathsf{dt}}$

A While language with infinitesimals

Suenaga and Hasuo [SH11]

Programming with Infinitesimals: A WHILE-Language for Hybrid System Modeling*

Kohei Suenaga¹ and Ichiro Hasuo²

JSPS Research Fellow, Kyoto University, Japan
 University of Tokyo, Japan

AExp
$$\ni a \triangleq x \mid r \mid a_1 \text{ aop } a_2 \mid dt \mid \infty$$

BExp
$$\ni b \triangleq \text{true} \mid \text{false} \cdots$$

Cmd
$$\ni c \triangleq x := a \mid c_1; c_2 \mid \text{ while } b \text{ do } c \cdots$$

Train control system in WHILEdt

Suenaga and Hasuo [SH11], modified for presentation

```
while (v > 0) {
  if (decel) {
    v := v - (b * dt)
  };
  z := z + v * dt
  // determine decel
decel: deceleration flag
v: velocity
b: deceleration
z: position
```


WHILE^{dt} Trace Semantics

dt is a variable ranging over \mathbb{R}^+

 $\begin{array}{ll} a \in \mathbf{AExp} & b \in \mathbf{BExp} & c \in \mathbf{Cmd} \\ \llbracket a \rrbracket : \mathbf{R}^+ \to \Sigma \to \mathbf{R} & \llbracket b \rrbracket : \mathbf{R}^+ \to \Sigma \to \{\top, \bot\} & \llbracket c \rrbracket : \mathbf{R}^+ \to \Sigma \to \Sigma \end{array}$

$$[p_{\mathsf{train}}] (0.01) = [q_{\mathsf{train}}] (*)$$

"dt seconds pass every loop iteration"

```
while (v > 0) {
  if (decel) {
   v := v - (b * dt)
  z := z + v * dt
 // determine decel
```

$\tau_{(w,\sigma_0)}: \mathbf{R}^+ \to \mathbf{N} \to \Sigma$

w while b do p

 σ_0 initial program state

R⁺ timestep assigned to dt

N number of loop iterations

 Σ program state

$$\tau_{(w,\sigma_0)}: \mathbf{R}^+ \to \mathbf{N} \to \Sigma$$

- $oldsymbol{w}$ while b do p
- σ_0 initial program state
- R⁺ timestep assigned to dt
 - N number of loop iterations
 - Σ program state

$$\operatorname{sm}(\tau_{(w,\sigma_0)}): \mathbf{R}^{\geq 0} \to \Sigma$$

- $oldsymbol{w}$ while b do p
- σ_0 initial program state
- $\mathbb{R}^{\geq 0}$ time passed (t)
 - Σ program state

$$\tau_{(w,\sigma_0)}: \mathbf{R}^+ \to \mathbf{N} \to \Sigma$$
w while b do p

initial program state

 \mathbf{R}^{+} timestep assigned to dt

N number of loop iterations

program state

$$\operatorname{sm}(\tau_{(w,\sigma_0)}): \mathbf{R}^{\geq 0} \to \Sigma$$

while b do p

initial program state

 $\mathbf{R}^{\geq 0}$ time passed (t)

program state

$$\tau_{(w,\sigma_0)}: \mathbf{R}^+ \to \mathbf{N} \to \Sigma \qquad \mathrm{sm} \Big(\tau_{(w,\sigma_0)}\Big): \mathbf{R}^{\geq 0} \to \Sigma$$

$$w \quad \text{while } b \text{ do } p \qquad \qquad w \quad \text{while } b \text{ do } p$$

$$\sigma_0 \quad \text{initial program state} \qquad \qquad \sigma_0 \quad \text{initial program state}$$

$$\mathbf{R}^+ \quad \text{timestep assigned to dt} \qquad \qquad \mathbf{R}^{\geq 0} \quad \text{time passed } (t)$$

$$\mathbf{N} \quad \text{number of loop iterations} \qquad \qquad \Sigma \quad \text{program state}$$

$$\Sigma \quad \text{program state}$$

Nonstandard analysis

$$\overset{\bullet}{\tau} : {}^{\bullet}\mathbf{R}^{+} \to {}^{\bullet}\mathbf{N} \to {}^{\bullet}\Sigma \xrightarrow{\varepsilon} {}^{\bullet}\tau(\varepsilon) : {}^{\bullet}\mathbf{N} \to {}^{\bullet}\Sigma$$

$$\downarrow \text{sh}$$

$$\tau : \mathbf{R}^{+} \to \mathbf{N} \to \Sigma$$

$$sm(\tau) : \mathbf{R}^{\geq 0} \to \Sigma$$

$$\overset{\bullet}{\tau} : {}^{\bullet}\mathbf{R}^{+} \to {}^{\bullet}\mathbf{N} \to {}^{\bullet}\Sigma \xrightarrow{\varepsilon} {}^{\bullet}\tau(\varepsilon) : {}^{\bullet}\mathbf{N} \to {}^{\bullet}\Sigma$$

$$\downarrow \text{sh}$$

$$\tau : \mathbf{R}^{+} \to \mathbf{N} \to \Sigma \xrightarrow{\text{sm}} \text{sm}(\tau) : \mathbf{R}^{\geq 0} \to \Sigma$$

Example: braking train

```
while (v > 0) {
   v := v - (b * dt);
   z := z + v * dt
}
```


Restrictions to Whiledt

$$\frac{dx}{dt} = x^2 \text{ with solution } x(t) = \frac{1}{x_0^{-1} - t}$$

Restrictions to Whiledt

```
while (true) {
    x += x*x*dt
}
```

$$\frac{dx}{dt} = x^2 \text{ with solution } x(t) = \frac{1}{x_0^{-1} - t}$$

Problem: $sm(\tau) : \mathbf{R}^{\geq 0} \to \Sigma$ no longer total!

Continuous Whiledt

Separate variables into $Cont \subseteq Var$

 $x_i \in \textbf{Cont}$ ranges over a proper metric space

LExp
$$\ni f$$
 $\triangleq x \ (x \in \textbf{Cont}) \ | \ r \ (r \in \textbf{R}) \ | \ dt \ | \ r \cdot f \ (r \in \textbf{R}) \ | \ R(f_1, \dots, f_n)$ AExp $\ni a$ $\triangleq x \ | \ r \ | \ a_1 \ \text{aop} \ a_2 \ | \ \cdots$ BExp $\ni b$ $\triangleq \text{true} \ | \ \text{false} \ | \ \cdots$ Cmd $\ni p$ $\triangleq x := a \ (x \in \textbf{Var} \setminus \textbf{Cont}) \ | \ x += f \cdot \text{dt} \ (x \in \textbf{Cont}) \ | \ \cdots$ Prog $\ni w$ $\triangleq \text{while} \ b \ \text{do} \ p$

Continuous Whiledt

Separate variables into **Cont** \subseteq **Var**

 $x_i \in \textbf{Cont}$ ranges over a proper metric space

LExp
$$\ni f$$
 $\triangleq x \ (x \in Cont) \ | \ r \ (r \in R) \ | \ dt \ | \ r \cdot f \ (r \in R) \ | \ R(f_1, \dots, f_n)$ AExp $\ni a$ $\triangleq x \ | \ r \ | \ a_1 \ aop \ a_2 \ | \ \cdots$ BExp $\ni b$ $\triangleq true \ | \ false \ | \ \cdots$ Cmd $\ni p$ $\triangleq x := a \ (x \in Var \setminus Cont) \ | \ x += f \cdot dt \ (x \in Cont) \ | \ \cdots$ Prog $\ni w$ $\triangleq while \ b \ do \ p$

Theorem Let $w \in \mathbf{Prog}$. Then $\mathrm{sm} \left(\tau_{(w,\sigma_0)} \right) : \mathbf{R}^{\geq 0} \to \Sigma_{\mathbf{Cont}}$ is total and continuous.

Train control system in Continuous Whiledt

WHILE

```
while (v > 0) {
   if (decel) {
      v := v - (b * dt)
   };
   z := z + v * dt;
   // determine decel
}
```

Continuous Whiledt

```
cont b, v, z;
while (v > 0) {
   if (decel) {
      v += -b * dt
   };
   z += v * dt;
   // determine decel
}
```

Continuous LTL

(Liveness) The train will eventually stop

$$sm(\tau_{train}) \models F[v = 0]$$

(Safety) The train will always stay behind the barrier

$$sm(\tau_{train}) \models G[z \leq m]$$

(Liveness) The train will eventually stop $sm(\tau_{train}) \models F[v = 0]$

(Safety) The train will always stay behind the barrier
$$sm(\tau_{train}) \models G[z \leq m]$$

Using discrete methods on au_{train}

$$\tau \models_d \Phi \text{ implies } \mathsf{sm}(\tau) \models_c \Phi$$

$$\begin{array}{ccc}
^{\bullet}\tau (\models_{d}) & \Phi & \stackrel{\varepsilon}{\Longrightarrow} & ^{\bullet}\tau(\varepsilon) (\models_{d}) & \Phi \\
\downarrow & & & & & \\
\uparrow & & & & & \\
\tau \models_{d} & \Phi & \Longrightarrow & \operatorname{sm}(\tau) \models_{c} & \Phi
\end{array}$$

Train control system verification


```
cont b, v, z;
while (v > 0) {
  if (decel) {
   v += -b * dt
  };
  z += v * dt;
  timer += dt;
  if (timer >= ep) {
   timer := 0;
   if (m - s < z) {
     decel := true
```

```
cont b, v, z;
                                                 while (v > 0) {
                                                   if (decel) {
                                                     v += -b * dt
sm(\tau_{train}) \models_{c} F[v = 0]
                                                   };
                                                   z += v * dt;
                                                   timer += dt;
                                                   if (timer >= ep) {
                                                     timer := 0:
                                                     if (m - s < z) {
                                                       decel := true
sm(\tau_{train}) \models_{c} G[z \leq m]
```

```
cont b, v, z;
                                                        while (v > 0) {
                                                          if (decel) {
     \tau_{\mathsf{train}} \models_d \mathsf{F}[v=0]
                                                            v += -b * dt
sm(\tau_{train}) \models_{c} F[v=0]
                                                          }:
                                                          z += v * dt:
                                                          timer += dt;
                                                          if (timer >= ep) {
                                                            timer := 0;
                                                            if (m - s < z) {
    \tau_{\mathsf{train}} \models_d \mathsf{G}[z \leq m]
                                                               decel := true
sm(\tau_{train}) \models_{c} G[z \leq m]
```

Decrementing functions to show

$$au_{\mathsf{train}} \models_{d} \mathsf{F}[v=0]$$
 $\mathsf{sm}(au_{\mathsf{train}}) \models_{c} \mathsf{F}[v=0]$

Loop invariants to show

```
\tau_{\text{train}} \models_d G[z \leq m]

\text{sm}(\tau_{\text{train}}) \models_c G[z \leq m]
```

```
cont b, v, z;
while (v > 0) {
  if (decel) {
    v += -b * dt
 }:
  z += v * dt:
  timer += dt:
  if (timer >= ep) {
    timer := 0;
    if (m - s < z) {
      decel := true
```

$$\frac{-\left\{\varphi \wedge b\right\}p\left\{\varphi\right\}}{\text{while }b\text{ do }p\vdash\mathsf{G}\,\varphi}\text{ Global }$$

```
cont b, v, z;
while (v > 0) {
  if (decel) {
  v += -b * dt
  };
  z += v * dt;
  timer += dt;
  if (timer >= ep) {
    timer := 0;
    if (m - s < z) {
     decel := true
```

```
cont b, v, z;
while (v > 0) {
                                                   \varphi_{\text{train}} \triangleq \varphi_t \wedge \varphi_0
   if (decel) {
                                                       \varphi_t \triangleq s > 0 \land b > 0 \land ep > 0
       v += -b * dt
                                                      \varphi_0 \triangleq v^2 < 2b(m - z - v \cdot ep)
   };
   z += v * dt:
                                               \underline{\vdash \left\{\varphi_{\mathsf{train}} \land [v > 0]\right\} p \left\{\varphi_{\mathsf{train}}\right\}}
    timer += dt;
                                                          c_{\text{train}} \vdash \mathsf{G}\,\varphi_{\text{train}}
    if (timer >= ep) {
       timer := 0;
       if (m - s < z) {
           decel := true
```

```
cont b, v, z;
while (v > 0) {
                                                     \varphi_{\text{train}} \triangleq \varphi_t \wedge \varphi_0
    if (decel) {
                                                         \varphi_t \triangleq s > 0 \land b > 0 \land ep > 0
        v += -b * dt
                                                        \varphi_0 \triangleq v^2 < 2b(m - z - v \cdot ep)
    };
    z += v * dt:
                                                 -\frac{\left\{\varphi_{\mathrm{train}} \wedge [v>0]\right\} p \left\{\varphi_{\mathrm{train}}\right\}}{\mathrm{Global}} \ \mathrm{Global}
    timer += dt;
                                                             c_{\text{train}} \vdash \mathsf{G} \varphi_{\text{train}}
    if (timer >= ep) {
        timer := 0;
                                                               \varphi_{\text{train}} implies z \leq m
        if (m - s < z) {
            decel := true
```

```
cont b, v, z;
while (v > 0) {
                                                      \varphi_{\text{train}} \triangleq \varphi_t \wedge \varphi_0
    if (decel) {
                                                          \varphi_t \triangleq s > 0 \land b > 0 \land ep > 0
        v += -b * dt
                                                          \varphi_0 \triangleq v^2 < 2b(m - z - v \cdot ep)
    };
    z += v * dt:
                                                  -\frac{\left\{\varphi_{\mathrm{train}} \wedge [v>0]\right\} p \left\{\varphi_{\mathrm{train}}\right\}}{\mathrm{Global}} \ \mathrm{Global}
    timer += dt:
                                                              c_{\text{train}} \vdash \mathsf{G} \varphi_{\text{train}}
    if (timer >= ep) {
        timer := 0;
                                                                 \varphi_{\text{train}} implies z \leq m
        if (m - s < z) {
                                                                  c_{\text{train}} \vdash \mathsf{G}[z \leq m]
            decel := true
```

```
cont b, v, z;
while (v > 0) {
                                                       \varphi_{\text{train}} \triangleq \varphi_t \wedge \varphi_0
    if (decel) {
                                                           \varphi_t \triangleq s > 0 \land b > 0 \land ep > 0
        v += -b * dt
                                                           \varphi_0 \triangleq v^2 < 2b(m - z - v \cdot ep)
    };
    z += v * dt:
                                                   -\frac{\left\{\varphi_{\mathrm{train}} \wedge [v>0]\right\} p \left\{\varphi_{\mathrm{train}}\right\}}{\mathrm{Global}} \ \mathrm{Global}
    timer += dt:
                                                                c_{\text{train}} \vdash \mathsf{G} \varphi_{\text{train}}
    if (timer >= ep) {
        timer := 0;
                                                                  \varphi_{\text{train}} implies z \leq m
        if (m - s < z) {
                                                                   c_{\text{train}} \vdash \mathsf{G}[z \leq m]
             decel := true
                                                                    c_{\text{train}} \models G[z \leq m]
```

```
cont b, v, z;
while (v > 0) {
                                                     \varphi_{\text{train}} \triangleq \varphi_t \wedge \varphi_0
    if (decel) {
                                                         \varphi_t \triangleq s > 0 \land b > 0 \land ep > 0
        v += -b * dt
                                                         \varphi_0 \triangleq v^2 < 2b(m - z - v \cdot ep)
    }:
    z += v * dt:
                                                 -\frac{\left\{\varphi_{\mathrm{train}} \wedge [v>0]\right\} p \left\{\varphi_{\mathrm{train}}\right\}}{\mathrm{Global}} \ \mathrm{Global}
    timer += dt:
                                                             c_{\text{train}} \vdash \mathsf{G} \varphi_{\text{train}}
    if (timer >= ep) {
        timer := 0;
                                                                \varphi_{\text{train}} implies z \leq m
        if (m - s < z) {
                                                                 c_{\text{train}} \vdash \mathsf{G}[z \leq m]
            decel := true
                                                                  c_{\text{train}} \models \mathsf{G}[z \leq m]
                                           The train will always stay behind the barrier!
```

Today's talk

A programming language Continuous Whiledt

Continuous-time trace semantics using the smoothing operation

Continuous LTL and a preservation theorem

Loop invariants to verify safety properties of continuous-time traces

Decrementing functions to verify liveness properties

Verification of other classical hybrid systems

An implementation that verifies continuous-time properties

Thank you for listening!

Kei Imada

kei [at] cs [dot] cornell [dot] edu keikun555.github.io