EEE205 – Digital Electronics (II) Lecture 11

Xiaoyang Chen, Jiangmin Gu, Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

General Model of Sequential Circuits

- A sequential circuit consists of a combinational logic section and a memory section (flip-flops).
- To design a sequential circuit (state machine) is to decide the combinational logic.

Step 1: State Diagram

 A state diagram shows the progression of states when the counter is clocked.

Gray code counter, which exhibits only a single bit change from one code number to the next.

Step 2: Next-State Table

• A **next-state table** lists the present state along with the corresponding next state of the counter.

Present State			Ŋ	lext Stat	e
Q_2	Q_1	Qo	Q_2	Q_1	Q 0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1.	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

Step 3: Flip-Flop Transition Table

A transition table lists all possible output transitions and the corresponding inputs.

JK flip flop state diagram.

Output Transitions Q_N Q_{N+1}	Flip-Flop Inputs J K		
$\begin{array}{cccc} 0 & \longrightarrow & 0 \\ 0 & \longrightarrow & 1 \\ 1 & \longrightarrow & 0 \\ 1 & \longrightarrow & 1 \end{array}$	0 1 X X	X X 1 0	

More flip-flop transition tables (q* for next states)

JK flip flop state diagram.

JK flip flop design table.

\boldsymbol{q}	q^*	J	K
0	0	0	Х
0	1	1	Χ
1	0	X	1
1	1	X	0

D flip flop state diagram

D flip flop design table.

\boldsymbol{q}	q *	D
0	0	0
$0 \\ 0$	1	1
1	0	0
1	1	1

More flip-flop transition tables (q* for next states)

SR flip flop state diagram

SR flip flop design table

q	q*	5	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Ιx	0

Tflip flop state diagram

T flip flop design table

q	q*	T
0	0	0
0	1	1
1	0	1
1	1	Ιo

Next-state table

Step 5: Logic Expressions for Flip-Flop Inputs

$$J_{0} = Q_{2}Q_{1} + \overline{Q}_{2}\overline{Q}_{1} = \overline{Q_{2} \oplus Q_{1}}$$

$$K_{0} = Q_{2}\overline{Q}_{1} + \overline{Q}_{2}Q_{1} = Q_{2} \oplus Q_{1}$$

$$J_{1} = \overline{Q}_{2}Q_{0}$$

$$K_{1} = Q_{2}Q_{0}$$

$$J_{2} = Q_{1}\overline{Q}_{0}$$

$$K_{2} = \overline{Q}_{1}\overline{Q}_{0}$$

Step 6: Counter Implementation

$$J_{0} = Q_{2}Q_{1} + \overline{Q}_{2}\overline{Q}_{1} = \overline{Q_{2} \oplus Q_{1}}$$

$$K_{0} = Q_{2}\overline{Q}_{1} + \overline{Q}_{2}Q_{1} = Q_{2} \oplus Q_{1}$$

$$J_{1} = \overline{Q}_{2}Q_{0}$$

$$K_{1} = Q_{2}Q_{0}$$

$$J_{2} = Q_{1}\overline{Q}_{0}$$

$$K_{2} = \overline{Q}_{1}\overline{Q}_{0}$$

Example: Design a counter with **missing states**, as shown in the state diagram. Use J-K flip-flops.

State Diagram

Next-State Table

Present State Q2 Q1 Q0			ν Q2	lext Stat	e Qo
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1

The next state for an invalid state (0, 3, 4 or 6) is "don't care". The J and K inputs are also "don't cares"

$$J_0 = 1, K_0 = \overline{Q}_2$$

 $J_1 = K_1 = 1$
 $J_2 = K_2 = Q_1$

The next state for an invalid state (0, 3, 4 or 6) is originally "don't care" but has a specific value now. From the input equations:

$$J_0 = 1, K_0 = \overline{Q}_2$$

 $J_1 = K_1 = 1$
 $J_2 = K_2 = Q_1$

The next state of missing states can also be derived from the K-map:

New State Diagram

Example: Design a 3-bit up/down counter. Use J-K flip-flops.

x	C	В	A	C*	$B^{\eta t}$	A #
0	0	0	0	0	0	1
0	0	0	1	0	I	0
0	0	1	0	0	1	1
0	0	1	I	1	0	0
0	1	0	0	1	0	1
0	1	0	1	1	1	0
0	1	1	0	1	1	1
0	1	1	1	0	0	0
1	0	0	0	1	1	1
1	0	0	1	0	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	1
1	i	0	1	1	0	0
1	1	i	0	1	0	i
1	1	1	1	1	1	0

x is up/down control, 0 for up and 1 for down.

$$J_C = K_C = x'BA + xB'A'$$

$$J_B = K_B = x'A + xA'$$

J	=K	=1
J_{A}	-1	— I

3-bit up/down counter

$$J_C = K_C = x'BA + xB'A'$$

$$J_B = K_B = x'A + xA'$$

$$J_A = K_A = 1$$