p-adic asymptotic properties of integer sequences

Eric Rowland

Joint work with Reem Yassawi

Hofstra University

2017 May 6

Fibonacci sequence

$$F(n)_{n\geq 0}: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \dots$$

$$F(n) = F(n-1) + F(n-2)$$

 $(F(n) \mod m)_{n>0}$ is periodic.

$$(F(n) \mod 2)_{n \ge 0}$$
: 0,1,1,0,1,1,0,1,1,0,1,1,0,...

$$(F(n) \mod 4)_{n \ge 0}$$
: 0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,...

$$(F(n) \bmod 8)_{n \ge 0}$$
: 0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,...

only attains $\frac{6}{8}$ of all residues

$$(F(n) \bmod 16)_{n\geq 0}: 0,1,1,2,3,5,8,13,5,2,7,9,0,9,9,2,\ldots$$

attains $\frac{11}{16}$ of all residues

Density modulo 2^{α} : $1, 1, 1, \frac{6}{8}, \frac{11}{16}, \frac{21}{32}, \frac{21}{32}, \frac{21}{32}, \frac{21}{32}, \frac{21}{32}, \dots$ stable at $\frac{21}{32}$?

Limiting density

What is the limiting density $\lim_{\alpha \to \infty} \frac{|\{F(n) \bmod p^{\alpha} : n \ge 0\}|}{p^{\alpha}}$? This limit exists.

Density modulo 2^{α} : $1, 1, 1, \frac{6}{8}, \frac{11}{16}, \frac{21}{32}, \frac{21}{32}, \frac{21}{32}, \frac{21}{32}, \frac{21}{32}, \dots$

Burr (1971): F(n) attains all residues modulo 3^{α} and 5^{α} .

Density modulo 11^{α} : $1, \frac{7}{11}, \frac{67}{121}, \frac{732}{1331}, \frac{8042}{14641}, \frac{88457}{161051}, \dots$ $\approx 1., .63636, .55372, .54996, .54928, .54925, \dots$

Theorem (Rowland-Yassawi 2017)

For p = 11 the limiting density is $\frac{145}{264}$.

Structure in $F(2^n)$

$$F(1) = 1 = 1_2$$
 $F(2) = 1 = 1_2$
 $F(4) = 3 = 11_2$
 $F(8) = 21 = 10101_2$
 $F(16) = 987 = 1111011011_2$
 $F(32) = 2178309 = 10000100111110100000101_2$

Theorem (Rowland-Yassawi 2017)

The limits $\lim_{n\to\infty} F(2^{2n})$ and $\lim_{n\to\infty} F(2^{2n+1})$ are equal to $\pm \sqrt{-\frac{3}{5}}$ in \mathbb{Z}_2 .

Two limits

Values of $F(2^{2n})$:

Values of $F(2^{2n+1})$:

Subtract the limits

Values of $F(2^{2n}) - \lim_{m \to \infty} F(2^{2m})$:

Values of $F(2^{2n+1}) - \lim_{m \to \infty} F(2^{2m+1})$:

Shift

Values of $\frac{F(2^{2n})-\lim_{m\to\infty}F(2^{2m})}{2^{2n}}$:

Values of $\frac{F(2^{2n+1})-\lim_{m\to\infty}F(2^{2m+1})}{2^{2n+1}}$:

These pictures suggest two 2-adic power series:

$$F(x) = a_0 + a_1 x + \cdots$$
 for $x = 2^{2n}$

$$F(x) = -a_0 + a_1 x + \cdots$$
 for $x = 2^{2n+1}$

Interpolation to \mathbb{R}

Let $\phi = \frac{1+\sqrt{5}}{2}$ and $\bar{\phi} = \frac{1-\sqrt{5}}{2}$. Binet's formula:

$$F(n) = \frac{\phi^n - \bar{\phi}^n}{\sqrt{5}}$$

$$F(x) = \frac{\exp(x \log \phi) - \cos(\pi x) \exp(x \log(-\bar{\phi}))}{\sqrt{5}}$$

Twisted interpolation to \mathbb{Z}_3

Let $\phi = \frac{1+\sqrt{5}}{2}$ and $\bar{\phi} = \frac{1-\sqrt{5}}{2}$ in $\mathbb{Q}_3(\sqrt{5})$. Let $\omega(\phi), \omega(\bar{\phi}) \in \mathbb{Q}_3(\sqrt{5})$ be 8th roots of unity congruent to $\phi, \bar{\phi} \mod 3$.

Theorem (Rowland-Yassawi 2017)

For each $0 \le i \le 7$, define the function $F_i : \mathbb{Z}_3 \to \mathbb{Z}_3$ by

$$F_i(x) := \frac{\omega(\phi)^i \exp_3\left(x \log_3 \frac{\phi}{\omega(\phi)}\right) - \omega(\bar{\phi})^i \exp_3\left(x \log_3 \frac{\bar{\phi}}{\omega(\bar{\phi})}\right)}{\sqrt{5}}.$$

is the unique continuous function s.t. $F(n) = F_i(n)$ for all $n \equiv i \mod 8$.

Since $3^{2n} \equiv 1 \mod 8$,

$$\lim_{n \to \infty} F(3^{2n}) = \lim_{n \to \infty} F_1(3^{2n}) = F_1(0) = \frac{\omega(\phi) - \omega(\bar{\phi})}{\sqrt{5}} = \pm \sqrt{\frac{2}{5}}.$$

Limits

$$p = 2$$
:

p = 3:

Because convergence is "backward" in \mathbb{Z}_p , truncating a power series gives correct least-significant digits.

This is good for number theory (congruence modulo p^{α}).

p = 11:

Extensions of Q

• If $p \equiv 1$ or 4 mod 5, then $x^2 = 5$ has solutions in \mathbb{Z}_p .

• If $p \equiv 2$ or 3 mod 5, then $x^2 = 5$ has no solutions in \mathbb{Z}_p . \Longrightarrow Work in $\mathbb{Q}_p(\sqrt{5})$.

• If p = 5, work in $\mathbb{Q}_5(\sqrt{5})$.

Density of residues modulo 11^{α}

Let μ be the Haar measure on \mathbb{Z}_p defined by $\mu(m+p^{\alpha}\mathbb{Z}_p)=\frac{1}{p^{\alpha}}$.

Theorem (Rowland-Yassawi 2017)

The limiting density of residues attained by the Fibonacci sequence modulo 11^{α} is

$$\lim_{\alpha \to \infty} \frac{|\{F(n) \bmod 11^{\alpha} : n \ge 0\}|}{11^{\alpha}} = \mu \left(\bigcup_{i=0}^{9} F_i(\mathbb{Z}_{11}) \right) = \frac{145}{264}.$$

The twisted interpolation of F(n) to \mathbb{Z}_{11} consists of 10 functions $F_0(x), \ldots, F_9(x)$.

Residues modulo 11^{α}

Constant-recursive sequences

Let $s(n)_{n\geq 0}$ be a sequence of p-adic integers satisfying a recurrence

$$s(n+\ell) + a_{\ell-1}s(n+\ell-1) + \cdots + a_1s(n+1) + a_0s(n) = 0$$

with constant coefficients $a_i \in \mathbb{Z}_p$.

Theorem (Rowland-Yassawi 2017)

 $s(n)_{n\geq 0}$ has an approximate twisted interpolation to \mathbb{Z}_p . That is, there exists q a power of p, a finite partition $\mathbb{N} = \bigcup_{j\in J} A_j$ with each A_j dense in $r+q\mathbb{Z}_p$ for some $0\leq r\leq q-1$, finitely many continuous functions $s_j:\mathbb{Z}_p\to K$, and non-negative constants C,D with D<1 such that

$$|s(n)-s_j(n)|_p \leq C \cdot D^n$$

for all $n \in A_j$ and $j \in J$.