- 1. Session-1
 - 1.1. Question 1
 - 1.2. Question 2

Note Information

• ID: 202501120904

• Timestamp: Sunday 12th January, 2025 15:11

• Tags: Tutoring, Chhean, Session-1

• References:

Main Content

Main Idea

Suppose a particle is moving on the x-axis in a simple harmonic motion. Its velocity, in meters per second, at time t, for $0 \le t \le 100$ seconds, is given by $v(t) = -\frac{5}{3}\sin(\frac{t}{3})$. The total distance traveled by the particle in the time interval $0 \le t \le 21\pi$ seconds is 70 meters.

Explanation

The velocity of the particle is modeled by $v(t) = -\frac{5}{3}\sin(\frac{t}{3})$. The total distance the particle travels in the time interval $0 \le t \le 21\pi$ is equal to $\int_0^{21\pi} |v(t)| dt$, where $|v(t)| = \frac{5}{3} |\sin(\frac{t}{3})|$. Since $\sin(\frac{t}{3}) = 0$ when $t = 3n\pi$ for all integers n, the velocity function maintains its sign throughout the interval $[3n\pi, 3(n+1)\pi]$. The period for the velocity function is 6π , thus twice the aforementioned interval is equal to the full period. This relationship can be modeled through the following expressions:

$$\frac{5}{3} \int_0^{6\pi} |\sin(\frac{t}{3})| dt = \frac{5}{3} \cdot 2 \int_0^{3\pi} \sin(\frac{t}{3}) dt$$
$$= \frac{5}{3} \cdot 2[-3\cos(\frac{t}{3})]_0^{(3\pi)}$$
$$= \frac{5}{3} \cdot 2[6]$$
$$= 20$$

The interval from 0 to 21π is equal to 3.5 periods. Therefore, the total distance traveled by the particle is equal to

$$3 \cdot 20 + \frac{5}{3} \cdot 6 = 70 \text{ meters}$$

Review

Links to Other Notes

•

Table of Contents

 \bullet TOC

Note Information

• ID: 202501121340

• Timestamp: Sunday 12th January, 2025 15:11

• Tags: Tutoring, Chhean, Session-1

• References:

Main Content

Main Idea

Suppose a particle is moving on the x-axis between the time t = 0 seconds and t = 9 seconds. Its initial position at t = 0 seconds is x(0) = 2 meters. The velocity-time graph of the motion is shown below.

On the x-axis, the abscissa of the farthest point to the right of the origin that the particle reaches over the time interval $0 \le t \le 9$ seconds is 42 meters. **Explanation**

By looking at the graph, we notice that the velocity is positive on the intervals $1 \le t \le 4$ and $7 \le t \le 9$. The velocity is negative on the intervals $0 \le t \le 1$ and $4 \le t \le 7$. The area under the curve between t = 1 and t = 4 is calculated by finding the area of the triangle with base 3 and height 30:

$$A_1 = \frac{1}{2} \cdot 3 \cdot 30 = 45$$

The area under the curve for the other three intervals are computed in a similar way below:

$$A_2 = \frac{1}{2} \cdot 1 \cdot 30 + 1 \cdot 30 = 30$$

$$A_3 = \frac{1}{2} \cdot 1 \cdot 10 = 5$$

$$A_4 = \frac{1}{2} \cdot 3 \cdot 20 = 30$$

Using the areas above, we can compute x(t) at key times, using the fact that x(t) = x(0) + x(0) $\int_0^t v(t)dt:$ At t = 1:

$$x(1) = x(0) - A_3 = 2 - 5 = -3$$

At t = 4:

$$x(4) = x(1) + A_1 = -3 + 45 = 42$$

At t = 7:

$$x(7) = x(4) - A_4 = 42 - 30 = 12$$

At t = 9:

$$x(9) = x(7) - A_2 = 12 + 30 = 42$$

The particle is farthest to the right at t = 4 and t = 9, where:

$$x_{max} = 42$$
 meters

Review

1.

Links to Other Notes

•

Table of Contents

 \bullet TOC