Corrigé 6 du mardi 25 octobre 2016

Exercice 1.

Soient $f, g : \mathbb{R} \to \mathbb{R}$, définies par:

$$f(x) = \left\{ \begin{array}{ll} x+3, & \text{si } x \geq 0, \\ x^2, & \text{si } x < 0, \end{array} \right., \quad \text{ et } \quad g(x) = \left\{ \begin{array}{ll} 2x+1, & \text{si } x \geq 3, \\ x, & \text{si } x < 3. \end{array} \right.$$

• $g \circ f$:

$$g(f(x)) = \begin{cases} 2f(x) + 1, & \text{si } f(x) \ge 3, \\ f(x), & \text{si } f(x) < 3, \end{cases} = \begin{cases} 2f(x) + 1, & \text{si } x \ge 0 \text{ ou } x \le -\sqrt{3}, \\ f(x), & \text{si } -\sqrt{3} < x < 0, \end{cases}$$
$$= \begin{cases} 2x + 7, & \text{si } x \ge 0 \\ 2x^2 + 1, & \text{si } x \le -\sqrt{3}, \\ x^2, & \text{si } -\sqrt{3} < x < 0. \end{cases}$$

• $f \circ g$:

$$f(g(x)) = \begin{cases} g(x) + 3, & \text{si } g(x) \ge 0, \\ g(x)^2, & \text{si } g(x) < 0, \end{cases} = \begin{cases} g(x) + 3, & \text{si } 0 \le x < 3 \text{ ou } x \ge 3, \\ g(x)^2, & \text{si } x < 0, \end{cases}$$
$$= \begin{cases} x + 3, & \text{si } 0 \le x < 3 \\ 2x + 4, & \text{si } x \ge 3, \\ x^2, & \text{si } x < 0. \end{cases}$$

Exercice 2.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{2x}{x^2 + 25}$.

• Rappel: L'image de la fonction f est définie par

$$Im(f) = \{ y \in \mathbb{R} : \exists x \in D(f), \text{ tel que } y = f(x) \}.$$

On cherche donc les $y \in \mathbb{R}$ tels que l'équation suivante admette des solutions:

$$y = f(x) \iff y = \frac{2x}{x^2 + 25} \iff x^2y - 2x + 25y = 0.$$

Si y = 0, l'équation est du premier degré et admet pour unique solution x = 0. Si $y \neq 0$, l'équation est du deuxième degré et admet des solutions réelles si et seulement si

$$\Delta = 4 - 100y^2 \ge 0 \iff -\frac{1}{5} \le y \le \frac{1}{5}.$$

On conclut donc que $Im f = \left[-\frac{1}{5}, \frac{1}{5} \right]$.

• f n'est pas injective car, pour tout $y \in \left] - \frac{1}{5}, \frac{1}{5} \right[\setminus \{0\}$, il existe deux éléments distincts de D(f)

$$x_{1,2} = \frac{1 \pm \sqrt{1 - 25y^2}}{y},$$

tels que $f(x_1) = y = f(x_2)$.

Exercice 3.

a) Soient $f,g:\mathbb{R}\to\mathbb{R}$ deux fonctions croissantes. Montrons que la fonction composée $f\circ g:\mathbb{R}\to\mathbb{R}$ est croissante.

Démonstration : Soient $a \leq b$. Puisque g est croissante, on a $x := g(a) \leq g(b) =: y$.

Mais comme f est croissante et $x \leq y$, on a

$$f(x) \leq f(y) \quad \Leftrightarrow \quad f(g(a)) \leq f(g(b)) \quad \Leftrightarrow \quad (f \circ g)(a) \leq (f \circ g)(b).$$

b) Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions décroissantes. Montrons que la fonction composée $g \circ f : \mathbb{R} \to \mathbb{R}$ est croissante.

Démonstration : Soient $a \le b$. Puisque f est décroissante, on a $x := f(a) \ge f(b) =: y$.

Mais comme g est décroissante et $x \geq y$, on a

$$g(x) \leq g(y) \quad \Leftrightarrow \quad g(f(a)) \leq g(f(b)) \quad \Leftrightarrow \quad (g \circ f)(a) \leq (g \circ f)(b).$$

Exercice 4.

Soit $f: \mathbb{R} \to \mathbb{R}$ bijective et impaire. Montrons que f^{-1} est aussi impaire.

Démonstration : Soit $y \in \mathbb{R}$. Par bijectivité, il existe $x \in \mathbb{R}$ tel que y = f(x) et $x = f^{-1}(y)$.

Par conséquent, on a :

$$f^{-1}(-y) = f^{-1}(-f(x)) \stackrel{f \text{ imp.}}{=} f^{-1}(f(-x)) = -x = -f^{-1}(y).$$

On montre ainsi que f^{-1} est impaire.