Лабораторная работа №2

Тема: Основы теории множеств. Операции над множествами

Цель работы: изучение базовых понятий теории множеств и операций над множествами.

1. Краткие теоретические положения

Определение. Множество – это собрание объектов любой природы.

Например, множество всех станций метро, множество всех букв алфавита, множество всех чисел, множество всех книг, которые когда-то были написаны и т.д.

Множества обозначаются заглавными буквами латинского алфавита: *A*, *B*, *F*, и т.д. Множество может быть задано двумя способами: перечислением своих элементов и характерным свойством.

Пример 2.1. Задание множеств. Определим следующие множества: $A = \{1, 2, 3, 4\}, B = \{$ «Иван», «Андрей» $\}, C = \{5, 10, 15\}$. Данные множества заданы перечислением своих элементов.

Про каждый объект x всегда можно сказать, принадлежит он данному множеству A или нет. В первом случае записывается $x \in A$ и читается как «x принадлежит A», то есть x является элементом множества A. Во втором случае используется запись $x \notin A$, которая, таким образом означает, что объект x не является элементом множества A.

Например, пусть $A = \{10, 15\}$ и x = 10. Тогда имеем $x \in A$. Если же x = 12, то выполняется соотношение $x \notin A$.

При выяснении вопроса принадлежит или нет данный объект некоторому множеству, может оказаться, что множество задано характерным свойством. Тогда нужно проверить, выполняется или нет свойство для данного объекта.

Пусть, например, $A = \{x: x - \text{четно } u \text{ } 1 < x < 12\}$, а x = 17. Тогда $x \notin A$, так как 17 - нечетно. Если x = 18, то также $x \notin A$, так как x = 18 > 12, хотя и x = 18 является четным числом. Наконец, при x = 10 будем иметь, что $x \in A$, так как все условия в данном случае выполняются.

Для удобства рассмотрений вводится одно специальное множество, называемое **пустым и обозначаемое символом** Ø. Оно не содержит ни одного элемента.

Между двумя множествами *А* и *В* может выполняться **отношение включения** *⊂*:

 $A \subseteq B$ тогда и только тогда, когда каждый элемент множества A является в то же время элементом множества B, то есть. является истинной следующая импликация: $(x \in A) \Rightarrow (x \in B)$, а множество A называется **подмножеством множества** B.

Множества считаются **равными**, если они состоят из одних и тех же элементов, то есть одновременно $A \subseteq B$ и $B \subseteq A$. В этом случае является истинной следующая равносильность ($x \in A$) \Leftrightarrow ($x \in B$).

Наряду со знаком включения « \subseteq » используется также знак « \subset » *строгого включения*, который означает «включено, но не совпадает». Если $A \subset B$, то множество A называется *собственным подмножеством множества* B.

Пусть, например, $A = \{1, 2, 3\}$, $B = \{1, 3\}$, $C = \{4, 5, 6\}$, $D = \{3, 2, 1\}$. Тогда $B \subseteq A$, причем, также и $B \subseteq A$. Утверждение, что $C \subseteq A$ является неверным. Выполняется отношение $D \subseteq A$, но отношение $D \subseteq A$ уже не выполняется.

Множество всех подмножеств множества X имеет специальное обозначение: P(X) и называется **Булеан** (степень множества, показательное множество, экспонентой множества, множество частей) X, в связи с чем используется также обозначение 2^X .

Например, если $X = \{1, 2, 3\}$, то $P(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$.

Важнейшей характеристикой множества является его **мощность**, то есть **количество элементов** в нем.

Мощность множества X обозначается одним из двух возможных способов: как |X| или как card(X).

Например, для множества A из примера 1 имеем |A| = 4, что также можно записать в виде card(A) = 4, для множества B имеем |B| = 2.

Интересным является тот факт, что для любого множества A выполняется равенство: $|P(A)| = 2^{|A|}$.

Например, для множества $A = \{1, 2, 3\}$, для которого |A| = 3, множество P(A) уже было выписано нами ранее и, легко видеть, что $|P(A)| = 8 = 2^3$.

Мощность пустого множества равна 0: $|\emptyset| = 0$.

Если *B*<u></u> \subseteq *A*, то |*B*| ≤ |*A*|, если же включение строгое: В \subseteq A, то и неравенство строгое |*B*| < |A|.

Над множествами можно выполнять различные операции. К важнейшим из их относятся объединение, пересечение, дополнение, разность и симметрическая разность.

Определение. Пусть даны два множества А и В.

Их **объединение** $A \cup B$ определяется согласно правилу $A \cup B = \{x: x \in A \text{ или } x \in B\}$;

Пересечение $A \cap B$ – по правилу $A \cap B = \{x: x \in A \text{ и } x \in B\};$

Разность A\B по правилу – **A**\B = {x: x∈**A** и x∉**B**};

Симметрическая разность $A \oplus B = \{x: ((x \in A) \text{ и } (x \notin B)) \text{ или: } ((x \notin A) \text{ и } (x \in B))\}.$

Дополнением (дополнением до универсального множества) множества А называется множество, состоящее из всех элементов универсального множества не содержащихся в A.

Прямым или декартовым произведением множеств А и В, называется множество всех упорядоченных пар (a, b), где первый элемент а из множества A, а второй элемент b из множества B.

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

$$\underbrace{\text{HPHMEP}}_{A = \{4,5,3\}, B = \{8,15,1,7\}}$$

$$A \times B = \{(4,8), (4,15), (4,1), (4,7), \{5,8\}, (5,15), (5,1), (5,7), (3,8), (3,15), (3,1), (3,7)\}$$

Степенью множества называется декартовое произведение множества A само на себя n раз.

$$A^n = \underbrace{A \times A \times A \times ... \times A}_{n}$$
 ПРИМЕР $A = \{3,1\}$, $A^2 = \{(3,3), (3,1), (1,3), (1,1)\}$.

Таким образом, объединение включает все элементы обоих множеств, пересечение – элементы, которые входят в оба множества одновременно, разность – элементы, входящие в первое множество и не входящие во второе, симметрическая разность – элементы, которые не входят одновременно в оба множества.

Свойства операций над множествами

1) Коммутативность.

$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

2) Ассоциативность.

$$(A \cap B) \cap C = A \cap (B \cap C)$$
$$(A \cup B) \cup C = A \cup (B \cup C)$$

3) Дистрибутивность.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4) Закон поглощения.

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

5) Идемпотентность.

$$A \cup A = A$$

$$A \cap A = A$$

6) Инволютивность.

$$\overline{A} = A$$

7) Свойство нуля.

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

8) Свойство единицы.

$$A \cup U = U$$

$$A \cap U = A$$

9) Закон де Моргана

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

2. Задание на лабораторную работу №2 *(номер варианта это номер студента в журнале)*

Во всех последующих задачах универсум имеет состав:

$$U = \{1, 2, 3, 4, a, b, c, d, ee, tt, ww\}.$$

Опираясь на определение базовых операций на множествах найти:

а) – объединение двух множеств;	$C = A \cup B$
б) – пересечение двух множеств;	$C = A \cap B$
в) – разность первого и второго множества;	$C = A \setminus B$
г) – разность второго и первого множества;	$C = B \setminus A$
д) – симметрическая разность двух множеств;	$C = A \oplus B$
е) – дополнение первого множества;	$C = \overline{A}$
ж) – дополнение второго множества;	$C = \overline{B}$
 з) – декартово произведение первого множества на второе; 	$C = A \times B$
e) – декартово произведение второго множества на первое;	$C = B \times A$
и) Множество \overline{C} задано указанной формулой	F(A,B)

1. Список вариантов индивидуальных заданий

1	$A = \begin{bmatrix} 1, a, d \end{bmatrix}, B = \begin{bmatrix} a, ee, 4, d \end{bmatrix}, F = ((A \oplus B) \cap (A \setminus B))$
2	$A = ee, a, d , B = a, ee, 4, 2 , F = ((A \cup B) \cap (A \setminus B))$
3	$A = [1, 2, ee, a, d], B = [a, ee, 4, 2], F = ((A \cap B) \cap (A \setminus B))$
4	$A = [1,2,ee,a,d], B = [d,ee,4,3], F = ((A \oplus B) \cap (A \cup B))$
5	$A = [1,2,ee,a,d], B = [1,d,ee,4,3], F = ((A \oplus B) \cap (A \cap B))$
6	$A = \begin{bmatrix} 1, 2, ee, ww, a, d \end{bmatrix}, B = \begin{bmatrix} 1, d, tt, 4, 3 \end{bmatrix}, F = ((A \cup B) \setminus (A \setminus B))$
7	$A = \begin{bmatrix} 1, 2, ee, ww, a, d \end{bmatrix}, B = \begin{bmatrix} 1, a, c, tt, 4, 3 \end{bmatrix}, F = ((A \setminus B) \cap (A \oplus B))$
8	$A = [1,2,ee,a,d], B = [1,d,tt,4,3], F = ((A \cup B) \cap (A \setminus B))$
9	$A = [1, 2, ee, ww, a, d], B = [2, a, c, tt, 4, 3], F = ((A \cap B) \cup (A \setminus B))$
10	$A = [1, 2, ee, ww, a, d], B = [2, a, b, tt, 4, 3], F = ((A \cup B) \setminus (A \setminus B))$
11	$A = \begin{bmatrix} 1, 2, ee, ww, a, d \end{bmatrix}, B = \begin{bmatrix} 2, a, b, tt, 4, 3 \end{bmatrix}, F = ((A \oplus B) \cup (A \setminus B))$
12	$A = 1, 2, ee, ww, a, d , B = 2, a, b, tt, 1, 3 , F = ((A \oplus B) \cap (B \setminus A))$
13	$A = \begin{bmatrix} 1, 2, ee, ww, c, d \end{bmatrix}, B = \begin{bmatrix} 2, a, b, tt, 1, 3 \end{bmatrix}, F = ((A \oplus B) \cap (A \setminus B))$
14	$A = [1, 2, ee, ww, c, d], B = [4, a, b, tt, 1, 3], F = ((A \oplus B) \cap (A \setminus B))$
15	$A = \begin{bmatrix} 1, a, ee, ww, c, d \end{bmatrix}, B = \begin{bmatrix} 4, a, b, tt, 1, 3 \end{bmatrix}, F = ((A \setminus B) \setminus (A \cap B))$
16	$A = [1, a, ee, ww, c, d], B = [4, a, b, ee, 1, 3], F = ((A \oplus B) \cup (A \setminus B))$
17	$A = \begin{bmatrix} 1, a, ee, ww, c, d \end{bmatrix}, B = \begin{bmatrix} c, a, b, ee, 1, 3 \end{bmatrix}, F = ((A \cup B) \cap (A \setminus B))$
18	$A = [1, a, b, ww, c, d], B = [c, a, b, ee, 1, 3], F = ((A \oplus B) \cap (\neg B))$
19	$A = [1, a, b, ww, 2, d], B = [tt, a, b, ee, 1, 3], F = ((\neg B) \cap (A \setminus B))$
20	$A = [1, a, b, ww, 2, d], B = [c, a, b, ee, 1, 3], F = ((A \oplus B) \cap (\neg B))$
21	$A = [1, a, b, ww, 2, d], B = [2, a, b, ee, 1, 3], F = ((A \cup B) \cap (\neg A))$
22	$A = [1, a, b, ww, tt, d], B = [2, a, b, ee, 1, 3], F = ((A \oplus B) \cap (A \cup B))$
23	$A = [1, a, b, ww, d], B = [2, a, b, ee, 1, 3], F = ((A \oplus B) \cap (A \cap B))$
24	$A = [1, a, b, ww, d], B = [2, a, c, ee, 1, 3], F = ((A \setminus B) \cup (A \cap B))$
25	$A = [1, a, b, ww, d], B = [1, a, c, ee, 4, 3], F = ((A \oplus B) \cap (A \setminus B))$

3. Контрольные вопросы

- 1. Дать определение объединения двух множеств.
- 2. Дать определение пересечения двух множеств.
- 3. Привести определение разности двух множеств.
- 4. Привести определение симметрической разности двух множеств.
- 5. Привести определение дополнения множества.

6. Дать определение декартового произведения двух множеств.

4. Литература

- 4.1. Маслов А.В. Дискретная математика: учебное пособие / А.В. Маслов Томск: Изд-во Томского политехнического университета, 2008. 148 с.
- 4.2. Хаггард Г. Дискретная математика для программистов : учебное пособие / Г. Хаггард, Дж. Шлипф, С. Уайтсайдс ; пер. с англ. М. : БИНОМ. Лаборатория знаний, 2010. 627 с. : ил.
- 4.3. Новиков Ф. А. Дискретная математика для программистов: Учебник для вузов. 3-е изд. СПб.: Питер, 2009. 384 с.: ил.