Computer Architecture

Tutorial 4b – Floating Point Numbers

1) Convert –31.3 to IEEE Single Precision format.

First convert to a binary number $-31.3 = -11111.01001 \ 1001 \ \underline{1001}$

Next Normalise

1.11110 1001 1001 1001 1001 1001 x 2⁴

Significand field is 1111 0100 1100 1100 1100 110 (23 bits with 1. omitted)

Exponent field is 4+127 = 131 = 1000 0011Number is -ve therefore Sign field is 1

Assign Exponent Significand Assignment 11910 ject10 Expand Help

https://powcoder.com

Add WeChat powcoder

2) Convert the IEEE Single Precision format hex value C154 0000 to decimal.

 $C154\ 0000 = 1100\ 0001\ 0101\ 0100\ 0000\ 0000\ 0000\ 0000$

Sign	Exponent	Significand
1	1000 0010	1010 1000 0000 0000 0000 000

Exponent field = $1000\ 0010 = 130 \implies$ Exponent = 130 - 127 = 3

Significand field = 10101 Adding Hidden Bit => 1.10101

Therefore number is $1.10101 \times 2^3 = 1101.01 = Decimal 13.25$

Sign is 1 therefore number is -13.25

Carry out the operation 31.3 + 13.25 in IEEE single precision arithmetic

Number	Sign	Exponent	Significand
31.3	0	1000 0011	1111 0100 1100 1100 1100 110
13.25	0	1000 0010	1010 1000 0000 0000 0000 000

Significand of Larger Number =

Significand of Smaller Number=

1.1010 1000 0000 0000 0000 000

Exponents differ https://ep.de/wacode/spcomber 1 place.

Significand of Sum = $\boxed{10.1100\ 1000\ 1100\ 1100\ 1100\ 1100}$

Sum = 10.1100 1000 1100 1100 1100 1100 x 2⁴

Normalise 1.01100 1000 1100 1100 1100 1100 x 2⁵

Sign	Exponent	Significand
0	1000 0100	0110 0100 0110 0110 0110 011

Bits	Binary value	Decimal value
	or special value	or special value
0 00 00	0	0
0 00 01	0.01	0.25
0 00 10	0.10	0.50
0 00 11	0.11	0.75
0 01 00	1.00	1
0 01 01	1.01	1.25
0 01 10	1.10	1.5
0 01 11	1.11	1.75
0 10 00	10.0	2
0 10 01	10.1	2.5
0 10 10	11.0	3
0 10 11	11.1	3.5
0 11 00	∞	∞
0 11 01	NaN	NaN
0 11 10	NaN	NaN
0 11 11	NaN	NaN

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder