PLP - 34 TOPIC 34—COMPOSITIONS

Demirbaş & Rechnitzer

COMPOSITIONS

CHAINING FUNCTIONS TOGETHER

DEFINITION:

Let f:A o B and g:B o C .

The **composition** of f and g, denoted $g \circ f$, defines a new function

$$g\circ f:A o C \qquad \left(g\circ f
ight)(a)=g\left(f(a)
ight) \qquad orall a\in A$$

Note composition is associative: $h\circ (g\circ f)=(h\circ g)\circ f$.

COMPOSITIONS, INJECTIONS AND SURJECTIONS

Compositions play nicely with injections and surjections.

THEOREM:

Let f:A o B and g:B o C be functions.

- If f and g are injective then so is $g \circ f$.
- ullet If f and g are surjective then so is $g\circ f$.

Consequently if f, g are bijective then so is $g \circ f$.

COMPOSITION OF INJECTIONS

Use injection property — different map to different

PROOF.

Let $\overline{a_1,a_2}\in A$ so that $a_1\neq a_2$.

Since \overline{f} is injective, we know that $\overline{f(a_1)}
eq f(a_2)$. And thus since g is injective, we know that $g(f(a_1))
eq g(f(a_2))$.

Thus $(g \circ f)(a_1) \neq (g \circ f)(a_2)$ as required.

COMPOSITION OF SURJECTIONS

Use surjection property — everything is mapped to by something

PROOF.

Let $c \in C$.

Since g is surjective, we know that there is $b \in B$ so that g(b) = c. Then since f is surjective, we have some $a \in A$ so that f(a) = b.

Thus g(f(a))=g(b)=c, and so for any $c\in C$ we can find $a\in A$ so that $(g\circ f)(a)=c$ as required.

PARTIAL CONVERSE

THEOREM:

Let f:A o B and g:B o C be functions, then

- if $g \circ f$ is an injection then f is an injection.
- if $g \circ f$ is a surjection then g is a surjection.

The proofs of these statements make excellent exercises.

Note that you *cannot* extend this to a full converse. There exist f, g so that

- $g \circ f$ is an injection, but g is **not** injective
- $g \circ f$ is a surjection, but f is *not* surjective

DISPROOF OF FULL CONVERSE

- $g \circ f$ is an injection, but g is **not** injective
- $g \circ f$ is a surjection, but f is *not* surjective

PROOF.

Consider functions f, g defined by the diagram below.

- ullet Since g(f(1))
 eq g(f(2)) , $g \circ f$ is injective. But g(4) = g(5) , so g not an injection.
- Since 6=g(f(1)), 7=g(f(2)), $g\circ f$ is surjective. But, f(1), f(2)
 eq 5 so f is not a surjection.