## Lecture Notes for

## Neural Networks and Machine Learning



Generative Networks and Auto-Encoding Generators





## **Logistics and Agenda**

- Logistics
  - Lab three due date pushed back (see schedule)
- Agenda
  - A historical perspective of generative Neural Networks
  - Variational Auto-Encoding
  - VAE in Keras Demo (if time)
  - Adversarial Auto-Encoders



## **Last Time**

#### Multi-task: Cross Stitch Networks



- Only works for simultaneous multi-label problems.
  - like semantic segmentation and surface normal. segmentation (clustering similarly facing objects).
- Take a learned weighted sum of the activations
- Works a little better than single task, but no worse.

https://anek.org/pdf/1604.03539.pdf



#### Multi-Task Learning in Keras with Multi-Label Data

Fashion week, colors and dresses

"finish demo"

Follow Along: https://www.pyimagesearch.com/ 2018/06/04/keras-multiple-outputs-and-multiplelosses/

#### Multi-task: Deep Relationship Networks



- Start training traditionally.
- Minimize Kroenecker Product between fully connected. task specific layers
  - that is, make Covariance between layers close to identity
  - encourages feature maps in each task to be less. correlated to feature maps of another task

https://arxiv.org/pdV1606.09117.pdf



#### Multi-Task Learning School Data, Computer Surveys





"finish demo"

Follow Along: LectureNotesMaster/ 05 LectureMultiTask.ipynb

## **Motivations: Generative Latent Variables**



Hard: z is expertly chosen



Not as Hard: z is trained, latent variables are uncontrolled

Want: 
$$p(\mathbf{x}) \approx \sum_{\mathbf{z}} p(\mathbf{z}) p_{\theta}(\mathbf{x} \mid \mathbf{z})$$

1

## Motivation: Mixtures for Simplicity

Want: 
$$p(\mathbf{x}) \approx \sum_{\mathbf{z}} p(\mathbf{z}) p_{\theta}(\mathbf{x} \mid \mathbf{z})$$



Lecture Notes for CS8321 Neural Networks and Machine Learning

- Each latent variable is mostly independent of other latent variables
- The sum of various mixtures can approximate most any distribution
- Good choice for conditional is Normal Distribution
- Can parameterize p(x|z) to be a Neural Network

$$p_{\theta}(\mathbf{x} \mid \mathbf{z} = k) = \mathcal{N}(\mathbf{x}, \mu_k, \Sigma_k)$$

mean and covariance learned



## **Motivation: Mixtures for Simplicity**

$$= \mathcal{N}(\mathbf{x}, \mu_k, \Sigma_k)$$

mean and covariance learned



## A History of Generative Networks





### Aside: Notation

$$\mathbf{E}_{s \leftarrow q(s|x)}[f(\,\cdot\,)] = \int q(s\,|\,x) \cdot f(x) \,\,dx \approx \sum_{\forall i}^{\text{could be neural networks}} q(s\,|\,x^{(i)}) \cdot f(x^{(i)})$$

Expected value of f under conditional distribution, q s is latent variable,  $x^{(i)}$  is an observation

$$\mathbf{E}_{s \leftarrow q(s|x)}[\log f(\,\cdot\,)] = \sum_{\forall i} q(s\,|\,x^{(i)}) \cdot \log\left(f(x^{(i)})\right)$$

If function is a probability, this is just the negative of cross entropy of distributions:

$$H(q, p) = -\sum_{x} q(x) \cdot \log(p(x))$$

Recall that KL divergence is a measure of difference in two distribution, and is just:

$$D(p||q) = \sum_{x} p(x) \cdot \log\left(\frac{p(x)}{q(x)}\right) = \mathbf{E}_p \left[\log\left(\frac{p(x)}{q(x)}\right)\right]$$



## Taxonomy of Generative Models





9

## **Abridged History of Generative Networks**



#### 2006 Restricted Boltzmann Machine

• Deep Boltzmann Machine  $P\left(v,h^{(t)},h^{(t)},h^{(t)}\right) = \frac{1}{2\pi i t} \exp\left(-2(v,h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{(t)},h^{($ 

To simplify our presentation, we omit the bias parameters below. The DHM energy function is their defined as follows:

$$E(\mathbf{x}, \mathbf{K}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}, \theta) = -\pi^{T} \mathbf{W}^{(1)} \mathbf{h}^{(1)} - \mathbf{K}^{(1)} \mathbf{W}^{(2)} \mathbf{A}^{(3)} - \mathbf{A}^{(2)} \mathbf{W}^{(3)} \mathbf{h}^{(3)}. \tag{39.25}$$

tio now develop the mean field approach by the example with two hidden layers. Let  $Q(W^{-1}, K^{(2)} | q)$  be the approximation of  $P(K^{(2)}, K^{(2)} | q)$ . The mean fixed assumption implies that

$$Q(h^{(1)}, h^{(2)} | | \varphi) = \prod_{i} Q(h_i^{(1)} | | \varphi) \prod_{i} Q(h_i^{(2)} | | \varphi).$$
 (28.29)

#### Not tractable: Can only optimize the Evidence lower bound, ELBO

One can conceive of many ways of measuring how well  $Q(h \mid v)$  if to  $P(h \mid v)$ . The mean field approach is to minimize

Approximate via VCVC ika Olikis Sampling

$$\text{KL}(Q||P) = \sum_{i} Q(\mathbf{A}^{(0)}, \mathbf{h}^{(2)} | v) \log \left( \frac{Q(\mathbf{h}^{(1)}, \mathbf{h}^{(2)} | v)}{P(\mathbf{h}^{(1)}, \mathbf{h}^{(2)} | v)} \right).$$
 (2020)

Spolidov, lan Jaglan Benja, and havor Boggelly Deep earning. Mill press, ET 6.

#### 2009 Deep Boltzmann Machine

Goodfellow, Bengio, Courville





2009, Practical Examples

Salakhutdinov and Hinton



## Contemporary Modeling

- DBNs and DBMs did not become very popular
  - Mathematics detracts from popular understanding
  - Often methods using sampling are not scalable
  - Cannot directly use Gradients (no Back Prop ) 😢



- Popular method for calculating generative networks with Evidence Lower Bound (ELBO) approximation:
  - Variational Auto Encoding
    - Guaranteed NOT to find global minimum
    - But scalable and will converge in finite time



# Variational Auto Encoding





## Can Auto Encoding Generate Samples?



Once trained, is it possible to generate data?



- Does this work for simple auto encoding?
  - Yes, but not satisfactory results
- Learned space is not continuous
- Features could be highly correlated, related in complex ways
  - So, how should we sample from the latent space?
- Need to define some constraints on the latent space...



## Reasonable constraints for p(z)?



- Should be simple, easy to sample from: **Normal**
- Each component should be i.i.d.:
   Diag. Covariance
  - Encourages features that may be semantic, like expert might select







## **Optimizing**

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$
 We need to compute is 
$$p(x) = \int p(x|z)p(z)dz$$
 Denominating

We need this inference in order to compute latent variable

Denominator is of this form

- We can't compute! Intractable computation for all "z"
- So let's define this with variational inference:
  - Only needs to work for z with observed  $x^{(i)}$
  - 1. **Encode** observed  $x^{(i)}$  using network  $q(z \mid x^{(i)})$ ,
  - 2. Use  $q(z \mid x^{(i)})$  to sample z appropriately, then **decode** with another neural network,  $p(x^{(i)} \mid z^{(i)})$
  - 3. Use bounds to make  $q(z \mid x^{(i)})$  as close as possible to what we think  $p(z \mid x)$  might look like



## Need a new formulation



**Step Three: Make conditional p and q Similar** 

$$D_{KL} \left[ q(z | x^{(i)}) || p(z | x^{(i)}) \right] = \mathbf{E}_{q(z|x)} \left[ \log \left( \frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right) \right]$$

#### **Step Four: Simplify Optimization**

we can manipulate step three to yield the following approximation:

$$\log p(x^{(i)}) \approx \mathbf{E}_{\mathbf{z} \leftarrow q(z|x^{(i)})} \left[\log p(x^{(i)})\right]$$

**Intuition MLE**: maximize probability of observed  $x^{(i)}$  given function q

Output of network, q, are the mean and covariance for sampling a variable z

## Need a new formulation

$$\log p(x^{(i)}) \approx \mathbf{E}_{\mathbf{z} \leftarrow q(z|x)} \left[\log p(x^{(i)})\right]$$
 Maximize!

$$= \mathbf{E}_q \left[ \log \frac{p(x^{(i)} \mid z) p(z)}{p(z \mid x^{(i)})} \frac{q(z \mid x^{(i)})}{q(z \mid x^{(i)})} \right] \quad \text{Bayes rule + multiply by one}$$

$$= \mathbf{E}_{q} \left[ \log p(x^{(i)} | z) \right] + \mathbf{E}_{q} \left[ \log \frac{p(z)}{q(z | x^{(i)})} \right] + \mathbf{E}_{q} \left[ \log \frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right]$$

$$= \mathbf{E}_q \left[ \log p(x^{(i)} | z) \right] - \mathbf{E}_q \left| \log \frac{q(z | x^{(i)})}{p(z)} \right| + \mathbf{E}_q \left| \log \frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right|$$

$$= \mathbf{E}_{q} \left[ \log p(x^{(i)} | z) \right] - D_{KL} \left[ q(z | x^{(i)}) || p(z) \right] + D_{KL} \left[ q(z | x^{(i)}) || p(z | x^{(i)}) \right]$$

always non-negative

$$\log p(x^{(i)}) \ge \mathbf{E}_q \left[\log p(x^{(i)}|z)\right] - D_{KL} \left[q(z|x^{(i)})\|p(z)\right]$$
 Will Maximize Lower Bound

What have we really done here? Could we have motivated this differently?



## The Loss Function

Maximize through Error of Reconstruction Same as minimizing cross entropy want p(z) to be  $\mathcal{N}(\mu=0,\Sigma=I)$ because it makes nice latent space

$$q(z \mid x^{(i)}) \to (\mu_{z\mid x}, \Sigma_{z\mid x}) \quad p(z) \to \mathcal{N}(0,1)$$

$$D_{KL}\left((\mu,\Sigma)\|\mathcal{N}(0,1)\right) = \frac{1}{2}\left(\mathrm{tr}(\Sigma) + \mu \cdot \mu^T - \underbrace{k}_{|z|} - \log\left(\det(\Sigma)\right)\right)^{\text{Determinant of diagonal matrix is simple.}}_{\text{Motivates diagonal covariance...}}$$

$$= \frac{1}{2} \left( \sum_{k} \Sigma_{k,k} + \sum_{k} \mu_k^2 - \sum_{k} 1 - \log \left( \prod_{k} \Sigma_{k,k} \right) \right)$$

$$\geq \mathbf{E}_{q(z|x^{(i)})} \left[ \log p(\widehat{x}^{(i)}|\widehat{z_{k}}) \right] \sum_{k,k} \sum_{k} \mu_{k}^{2} - \sum_{k} 1 - \sum_{k} \log \Sigma_{k,k}$$

$$= \frac{1}{2} \sum_{k} \left( \Sigma_{k,k} + \mu_{k}^{2} - 1 - \log \Sigma_{k,k} \right)$$



## The Covariance Output

$$\geq \mathbf{E}_{q(z|x^{(i)})} \left[ \log p(x^{(i)}|z) \right] - D_{KL} \left[ q(z|x^{(i)}) || p(z) \right]$$

Maximize through
Error of Reconstruction
Same as minimizing cross entropy

want p(z) to be  $\mathcal{N}(\mu=0,\Sigma=I)$  because it makes nice latent space  $q(z\,|\,x^{(i)}) \to (\mu_{z|x},\Sigma_{z|x}) \quad p(z) \to \mathcal{N}(0,1)$ 

$$=\frac{1}{2}\sum_k \left(\Sigma_{k,k}+\mu_k^2-1-\log\Sigma_{k,k}\right)$$
 
$$\log\Sigma_{k,k}=\widehat{\Sigma_{k,k}}$$

$$\frac{-\kappa,\kappa}{q(z|x^{(i)})} = \frac{1}{2} \sum_{k} \left( \exp\left(\widehat{\Sigma_{k,k}}\right) + \mu_k^2 - 1 - \widehat{\Sigma_{k,k}} \right)$$

so we will have the neural network output log variance

Also, remember we assume **diagonal covariance**, so z's are not correlated This means covariance is only a vector of variances (the diagonal of  $\Sigma$ )





$$\geq \mathbf{E}_{q(z|x^{(i)})} \left[ \log p(x^{(i)}|z) \right] - D_{KL} \left[ q(z|x^{(i)}) || p(z) \right]$$

This is partially differentiable by chain rule...

$$\begin{split} \mathcal{N}(\mu_{z|x}, \exp(\widehat{\Sigma_{z|x}})) &= z \\ &= \mu(x^{(i)}) + \exp(\widehat{\Sigma(x^{(i)})}) \cdot \mathcal{N}(0, 1) \end{split}$$

To update q, we need to back propagate through sampling layer. How?

## The Loss Function Implementation

```
# Encode the input into a mean and variance parameter
z mean, z log variance = encoder(input img)
 \mu(x^{(i)}) \Sigma(x^{(i)})
# Draw a latent point using a small random epsilon
z = z mean + exp(z log variance) * epsilon
                                                     z = \mu(x^{(i)}) + \exp(\Sigma(x^{(i)})) \cdot \mathcal{N}(0,1)
# Then decode z back to an image
reconstructed img = decoder(z)
                      \hat{x}^{(i)} = p(x^{(i)} \mid z)
# Instantiate a model
model = Model(input img, reconstructed img)
def vae loss(self, x, z decoded):
     x = K.flatten(x)
     z decoded = K.flatten(z_decoded)
     xent_loss = keras.metrics.binary_crossentropy(x, z_decoded) -\mathbf{E}_{q(z|x^{(i)})} \left| \log p(x^{(i)}|z) \right|
     kl loss = -5e-4 * K.mean(
          1 + z log var - K.square(z mean) - K.exp(z log var), axis=-1)
     return K.mean(xent loss + kl loss)
                                                    -\lambda \sum_{i} 1 + \widehat{\Sigma}(x^{(i)}) - \mu(x^{(i)})^2 - \exp(\widehat{\Sigma}(x^{(i)}))
   Note:
```

Flipped from maximization to minimization and added lambda for tradeoff in reconstruction, normal latent space

$$= -\mathbf{E}_{q(z|x^{(i)})} \left[ \log p(x^{(i)}|z) \right] - \lambda \sum_{k} 1 + \widehat{\Sigma(x^{(i)})} - \mu(x^{(i)})^2 - \exp(\widehat{\Sigma(x^{(i)})})$$



## **VAE Examples**



Encoding faces, then finding the "z" that relates to smiling.



## **VAE Examples**

Different, automatically found z, latent variables





## **VAEs in Keras**

Sampling from variational auto encoder

using MNIST



**Demo by Francois Chollet** 

In Master Repo: 07a VAEs in Keras.ipynb

Follow Along: <a href="https://github.com/fchollet/deep-">https://github.com/fchollet/deep-</a> <u>learning-with-python-notebooks/blob/master/8.4-</u> generating-images-with-vaes.ipynb 24

