Problemas Curvas en el espacio

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Problemas

- 1. Considerar la curva $r = 3 + 2\cos\theta$. Determinar la curvatura en el punto (0,3).
- 2. Encuentre la ecuación de los planos Normal, Rectificante y Osculador de la curva dada por la intersección de las superficies $x^2 + y^2 + z^2 = 6$ y $x^2 y^2 + z^2 = 4$ en el punto (1, 1, 2).
- 3. Considerar la curva γ , intersección de las superficies x+y+z=4 y $x^2+y^2-x+y+z=4$
 - (a) Encuentre una parametrización para γ .
 - (b) Encuentre el vector Binormal en el punto (1, -1, 4).
 - (c) Encuentre la torsión en el punto (1, -1, 4).
- 4. Una partícula se mueve a lo largo de la curva $y = 2x x^2$, con una componente horizontal de la velocidad de 4[mts/seg], es decir $v_x = 4[mts/seg]$. Hallar las componentes tangencial y normal de la aceleración en el punto (1,1).
- 5. Una partícula se mueve sobre el manto del cilindro $x^2+y^2=1$, de forma tal que $z=z\left(\theta\right)$ es solución de la ecuación diferencial

$$\frac{d^2z}{d\theta^2} = z \; , \; z(0) = 1 \; , \; \frac{dz}{d\theta}(0) = 0$$

- (a) Encuentre una parametrización de la curva γ descrita por la partícula.
- (b) Calcule, en un punto genérico de la curva, el vector Tangente unitario, el vector Normal y el vector Binormal asociado a γ , asi como la torsión y la curvatura.
- 6. Considerar la curva ξ parametrizada como:

$$\xi: \left\{ \begin{array}{l} x = t^2 \\ y = t^3 - 3t^2 \end{array} \right.$$

Hallar la ecuación del círculo osculador en el punto (1, -2).

- 7. Considerar la curva $y = \ln(x)$. Encuentre la ecuación del círculo osculador en el punto de la curva con curvatura máxima.
- 8. Considerar la curva dada en forma polar por la ecuación

$$r = \theta$$
, $\theta > 0$ (espiral de arquimedes)

Encuentre la ecuación del circulo osculador en el punto $(2\pi, 0)$.

9. Espirales de MaClaurin: Estas corresponden a una familia de curvas en el plano que al ser descritas en coordenadas polares las variables r y θ satisfacen la relación:

$$r(\theta) = a \left(\sin\left(n\theta\right)\right)^{1/n}$$

Donde a > 0 y $n \in \mathbb{R} - \{0\}$ corresp
nde al orden de la espiral. Pruebe que la curvatura de una espiral de Ma Claurin de orden n es:

$$\frac{(n+1)}{a}\left(\sin\left(n\theta\right)\right)^{\frac{n-1}{n}}$$

10. Sea γ una curva suave, parametrizada por la longitud de arco $\overrightarrow{\alpha}(s)$, con $s \in [0, L]$. Sea \overrightarrow{w} un vector fijo, unitario, tal que

$$\overrightarrow{\alpha}(s) \cdot \overrightarrow{w} = 0 \; ; \; \forall s \in [0, L]$$

Pruebe que para todo s se cumple que $\kappa(s) = 0$ o bien $\tau(s) = 0$.

11. Sea σ una curva suave en \mathbb{R}^3 parametrizada por longitud de arco $\overrightarrow{r}(s)$, y sea $\tau(s)$ la torsión. Se define la curva:

$$\gamma: \overrightarrow{\alpha}(s) = \int_{0}^{s} \overrightarrow{B}_{\sigma}(u) du$$

- (a) Pruebe que $\overrightarrow{\alpha}(s)$ es una parametrización por longitud de arco de γ .
- (b) Pruebe que $\kappa_{\gamma}(s) = \tau_{\sigma}(s)$.
- (c) Pruebe que $\tau_{\gamma}(s) = \kappa_{\sigma}(s)$.

Soluciones

Problemas

1.
$$\frac{17}{13\sqrt{13}}$$

2. - ecuación plano Normal:
$$2x - z = 0$$

- ecuación plano Osculador:
$$y = 1$$

- ecuación plano Rectificante:
$$x + 2z = 5$$

3. (a)
$$\overrightarrow{r}(t) = (1 + \cos t, \sin t, 3 - \cos t - \sin t)$$
.

(b)
$$\overrightarrow{B} = \frac{1}{\sqrt{3}}(1,1,1).$$

(c)
$$\tau = 0$$

4.
$$\overrightarrow{a}_{\overrightarrow{N}} = 0$$
, $\overrightarrow{a}_{\overrightarrow{N}} = 32$.

5. (a)
$$\overrightarrow{r}(\theta) = (\cos(\theta), \sin(\theta), \cosh(\theta))$$

(b)
$$\overrightarrow{T}(\theta) = \frac{1}{\cosh \theta} (-\sin(\theta), \cos(\theta), \sinh(\theta))$$

$$\begin{aligned} \text{(b)} \quad & \overrightarrow{T}\left(\theta\right) = \frac{1}{\cosh\theta} \left(-\sin(\theta),\cos(\theta),\sinh(\theta)\right) \\ & \overrightarrow{B}\left(\theta\right) = \frac{1}{\sqrt{2}\cosh\theta} \left(\cos(\theta)\cosh(\theta) + \sin(\theta)\sinh(\theta), -\cos(\theta)\sinh(\theta) + \sin(\theta)\cosh(\theta), 1\right) \end{aligned}$$

$$\overrightarrow{N}(\theta) = \frac{1}{\sqrt{2}\cosh^2\theta} \left(\cos(\theta)\cosh^2(\theta) - \sin(\theta)\cosh(\theta)\sinh(\theta), \cos(\theta)\sinh(\theta)\cosh(\theta) + \sin(\theta)\cosh^2(\theta), -\cosh(\theta)\right)$$

$$\kappa(\theta) = \frac{\sqrt{2}}{\cosh^2(\theta)} = \sqrt{2} \operatorname{sech}^2(\theta)$$

$$\tau(\theta) = \frac{\sinh(\theta)}{\cosh^2(\theta)}$$

6.
$$(x-1)^2 + \left(y + \frac{4}{3}\right)^2 = \frac{4}{9}$$

7.
$$(x - 2\sqrt{2})^2 + (y + \frac{1}{2}(\ln(2) + 3))^2 = \frac{27}{4}$$

8.
$$\left(x - \frac{2\pi}{2 + 4\pi^2}\right)^2 + \left(y - \frac{1 + 4\pi^2}{2 + 4\pi^2}\right)^2 = \frac{\left(1 + 4\pi^2\right)^3}{\left(2 + 4\pi^2\right)^2}$$

- 9. Prueba
- 10. Prueba
- 11. Pruebas