

LOGIKA DLA INFORMATYKÓW

Zbiory przybliżone

dr hab. Ewa Michalska

Zbiory przybliżone

Zdzisław Pawlak (1926-2006) polski matematyk, informatyk twórca teorii zbiorów przybliżonych sformułowanej w 1982 roku (stanowiącej rozwinięcie klasycznej teorii zbiorów). Teoria zbiorów przybliżonych jest metodą analizy danych.

- Porównując dwa dowolne obiekty (nawet jeśli są bardzo podobne) zawsze możemy znaleźć między nimi różnice, zwłaszcza jeśli uwzględnimy dostatecznie dużo cech (atrybutów), z dostatecznie dużą dokładnością.
- Jeśli zmniejszymy dokładność opisu (ograniczymy się np. tylko do cech istotnych dla danego zastosowania), wówczas obiekty wcześniej rozróżnialne staną się nierozróżnialne.
- Zbiory przybliżone powstały (po odrzuceniu wymogu istnienia ściśle określonych granic) jako zbiory definiowane za pomocą dolnego i górnego przybliżenia zbioru.

Teorie zbiorów

- W klasycznej teorii zbiorów (teorii mnogości), zbiór jest definiowany przez swoje elementy, nie jest potrzebna żadna dodatkowa wiedza o elementach uniwersum, z których tworzymy zbiór.
- W teorii zbiorów przybliżonych (rough set theory), zakładamy, że mamy pewne informacje o elementach uniwersum i dane te są wykorzystywane do tworzenia zbiorów.
- W teorii zbiorów rozmytych (*fuzzy set theory*), elementy mogą należeć do zbioru w pewnym stopniu, a nie definitywnie jak ma to miejsce w klasycznej teorii zbiorów.

Teoria zbiorów przybliżonych

- Elementy, o których mamy identyczną informację są podobne i tworzą tzw. zbiory elementarne, stanowiące podstawę rozumowań w teorii zbiorów przybliżonych.
- Suma dowolnych zbiorów elementarnych jest nazywana zbiorem definiowalnym.
- Zbiory, które nie są zbiorami definiowalnymi nazywamy zbiorami przybliżonymi.

UWAGA:

Zbiorów przybliżonych nie można jednoznacznie scharakteryzować przez własności ich elementów. Dlatego w teorii zbiorów przybliżonych wprowadza się pojęcia dolnego i górnego przybliżenia zbioru, które pozwalają każdy zbiór niedefiniowalny (przybliżony) scharakteryzować za pomocą dwóch zbiorów definiowalnych – dolnego i górnego przybliżenia.

Teoria zbiorów przybliżonych

- Dolnym przybliżeniem zbioru są wszystkie elementy, które (w świetle posiadanej wiedzy) mogą być jednoznacznie zaklasyfikowane do rozważanego zbioru.
- Górnym przybliżeniem zbioru są wszystkie elementy, które (w świetle posiadanej wiedzy) nie mogą być wykluczone jako elementy rozważanego zbioru.
- Różnica między górnym a dolnym przybliżeniem jest nazywana obszarem brzegowym (brzegiem) zbioru.

Dany zbiór jest zbiorem przybliżonym wtedy i tylko wtedy, gdy jego obszar brzegowy jest niepusty.

Główne rodzaje wnioskowania

Wnioskowanie dedukcyjne – wnioskowanie dedukcyjne daje narzędzia służące do wyprowadzania zdań prawdziwych z innych zdań prawdziwych. Wnioskowanie dedukcyjne prowadzi zawsze do konkluzji prawdziwych. Wnioskowanie to jest stosowane w rozumowaniach na gruncie matematyki czy logiki. Rozstrzygania prawdziwości hipotez dokonuje się drogą formalnego rozumowania.

Wnioskowanie indukcyjne – punktem wyjścia do tego typu rozumowań są pewne fakty częściowe o badanej rzeczywistości (przykłady), które są następnie uogólniane, tworząc wiedzę o szerszym świecie, niż ten który stanowił punkt wyjścia wnioskowania. Wnioskowanie indukcyjne nie prowadzi do wniosków prawdziwych, a jedynie do wniosków prawdopodobnych (możliwych). Rozstrzygania prawdziwości hipotez dokonuje się na podstawie eksperymentu (np. w fizyce).

Główne cechy wnioskowania

Wnioskowanie dedukcyjne:

- zastosowania: matematyka, logika
- pełna teoria
- wnioskowanie zawsze prawdziwe
- weryfikacja hipotez dowód

Wnioskowanie indukcyjne:

- zastosowania: nauki przyrodnicze i techniczne
- częściowe teorie
- wnioski prawdopodobne (możliwe)
- weryfikacja hipotez eksperyment

Teoria zbiorów przybliżonych a praktyka

Wykorzystanie zbiorów przybliżonych w analizie danych umożliwia:

- szukanie zależności między danymi
- redukcję danych
- określenie wag danych
- generowanie reguł decyzyjnych z danych

Zastosowania:

- teoria decyzji
- bazy danych
- medycyna
- farmakologia
- bankowość
- lingwistyka
- ekonomia
- teoria sterowania
- teoria konfliktów
- ochrona środowiska

Zbiory przybliżone w analizie danych

System informacyjny jest sposobem przedstawiania informacji o obiektach charakteryzowanych przez ten sam zbiór cech

Systemem informacyjnym nazywamy uporządkowaną czwórkę SI=(U, Q, V, f)

gdzie:

U – niepusty, skończony zbiór obiektów,

Q – zbiór wybranych cech (atrybutów) obiektów ze zbioru U

V – zbiór wszystkich możliwych wartości rozważanych cech

f – funkcja informacyjna, f:U×Q → V

Ponadto:

x – obiekt zbioru U

q – cecha obiektu x

 $v_{\alpha}^{x} = f(x,q)$ to wartość cechy q obiektu x

V_q – zbiór wszystkich możliwych wartości cechy q

 $f(x,q) \in V_q$

$$V = \bigcup_{q \in Q} V_q$$

Tablica decyzyjna

Tablicą decyzyjną nazywamy uporządkowaną piątkę DT=(U, C, D, V, f)

gdzie:

- U niepusty, skończony zbiór obiektów,
- C zbiór cech (atrybutów) warunkowych
- D zbiór cech (atrybutów) decyzyjnych
- V zbiór wszystkich możliwych wartości rozważanych cech
- f funkcja informacyjna

$$C \cup D = Q$$

Przyład 1: Przykład systemu informacyjnego

Wiersze opisują pacjentów, a kolumny tabeli reprezentują symptomy choroby (gorączka, kaszel, zmęczenie, utrata smaku lub węchu). Ostatnia kolumna definiuje podział pacjentów na dwie klasy: chorujących na COVID i niechorujących na COVID.

Pacjent (U)	gorączka (q₁)	kaszel (q ₂)	zmęczenie (q ₃)	utrata smaku lub węchu (q ₄)	COVID (q ₅)
1	Nie	Tak	Tak	Tak	Tak
2	Tak	Nie	Tak	Nie	Tak
3	Nie	Nie	Tak	Nie	Nie
4	Nie	Tak	Nie	Tak	Tak
5	Tak	Nie	Tak	Nie	Nie
6	Tak	Tak	Nie	Tak	Tak

<u>Problem</u>: Znaleźć zależność pomiędzy występowaniem COVID (lub niewystępowaniem) – atrybut decyzyjny, a symptomami opisującymi pacjentów – atrybuty warunkowe. Opisać zbiór przypadków {1,2,4,6} (lub zbiór {3,5}) w kategoriach wartości atrybutów warunkowych.

Pacjent (U)	gorączka (c ₁ =q ₁)	kaszel (c ₂ =q ₂)	zmęczenie (c ₃ =q ₃)	utrata smaku lub węchu (c ₄ =q ₄)	COVID (d ₁ =q ₅)
1	Nie	Tak	Tak	Tak	Tak
2	Tak	Nie	Tak	Nie	Tak
3	Nie	Nie	Tak	Nie	Nie
4	Nie	Tak	Nie	Tak	Tak
5	Tak	Nie	Tak	Nie	Nie
6	Tak	Tak	Nie	Tak	Tak

Podział zbioru $Q=\{q_1,q_2,q_3,q_4,q_5\}$ na:

- atrybuty warunkowe $C = \{c_1, c_2, c_3, c_4\} = \{q_1, q_2, q_3, q_4\}$
- atrybuty decyzyjne $D=\{d_1\}=\{q_5\}$

Analizowane dane nie są spójne ponieważ przypadki 2 i 5 dostarczają sprzecznych informacji, obaj pacjenci są opisani tymi samymi wartościami atrybutów warunkowych, ale są przydzieleni do różnych klas decyzyjnych. Zatem zbiór pacjentów chorujących na COVID nie może być jednoznacznie opisany w kategoriach {gorączka, kaszel, zmęczenie, utrata smaku lub węchu}.

Można jednak opisać ten zbiór w sposób przybliżony:

- {1,4,6} jest maksymalnym zbiorem przypadków, które są z pewnością zaklasyfikowane do klasy pacjentów chorujących na COVID – dolne przybliżenie
- {1,2,4,5,6} jest zbiorem przypadków, co do których możliwe jest ich przydzielenie do klasy pacjentów chorujących na COVID (nie można ich wykluczyć) – górne przybliżenie
- {2,5} jest zbiorem przypadków, które nie mogą być jednoznacznie przydzielone do klasy COVID lub brak COVID, ze względu na sprzeczny opis atrybutów warunkowych obszar brzegowy.

Obiekty P-nierozróżnialne

Jeśli pewne dwa obiekty $x_a, x_b \in U$ mają takie same wartości wszystkich cech q należących do zbioru $P \subseteq Q$, co możemy zapisać:

$$\forall_{q \in P} f(x_a, q) = f(x_b, q)$$
 (lub inaczej $\forall_{q \in P} f_{x_a}(q) = f_{x_b}(q)$)

to mówimy, że obiekty te są **P-nierozróżnialne** lub, że są ze sobą w relacji **P-nierozróżnialności** $(x_a \tilde{P} x_b)$

gdzie:

U - niepusty, skończony zbiór obiektów,

x – obiekt ze zbioru U

Q - zbiór cech (atrybutów) obiektów ze zbioru U

q – cecha obiektu x

P – podzbiór zbioru cech (atrybutów) obiektów ze zbioru U, P⊆Q

f – funkcja informacyjna, f:U×Q → V

V – zbiór wszystkich możliwych wartości cech

Relacja P-nierozróżnialności

Relacją P-nierozróżnialności nazywamy relację P określoną na przestrzeni U×U, spełniającą zależność:

$$x_a \widetilde{P} x_b \leftrightarrow \forall_{q \in P} f_{x_a}(q) = f_{x_b}(q)$$

w której x_a , $x_b \in U$ oraz $P \subseteq Q$.

UWAGA:

Relacja P jest zwrotna, symetryczna i przechodnia, jest więc relacją równoważności. Relacja równoważności dzieli zbiór, w którym jest określona, na rodzinę rozłącznych podzbiorów - klas abstrakcji tej relacji.

Klasą abstrakcji relacji \tilde{P} w przestrzeni U nazywamy zbiór wszystkich obiektów $x \in U$ będących w relacji \tilde{P} . Dla każdego $x_a \in U$ istnieje dokładnie jeden taki zbiór:

$$[x_a]_{\tilde{p}} = \{x: x_a \tilde{P} x\}.$$

Rodzinę wszystkich klas abstrakcji relacji P w przestrzeni U, nazywamy **zbiorem ilorazowym** i oznaczamy symbolem U/P.

P̃ - dolną aproksymacją zbioru X⊆U nazywamy zbiór P̃X zdefiniowany następująco:

$$\underline{\widetilde{P}}X = \{x \in U \colon \underline{[x]_{\tilde{p}}} \subseteq X\}$$

UWAGA:

Dolną aproksymacją zbioru X jest więc zbiór tych obiektów $x \in U$, o których na podstawie wartości cech P możemy z całą pewnością powiedzieć, że są elementami zbioru X. Inaczej, obiekt $x \in U$ jest elementem dolnej aproksymacji, jeżeli cała klasa abstrakcji, do której on należy, jest podzbiorem zbioru X.

 $\widetilde{\mathbf{P}}$ - górną aproksymacją zbioru X \subseteq U nazywamy zbiór $\overline{\widetilde{\mathbf{P}}}$ X zdefiniowany następująco:

$$\overline{\widetilde{P}}X = \{x \in U : [x]_{\widetilde{p}} \cap X \neq \emptyset\}$$

UWAGA:

Górną aproksymacją zbioru X jest więc zbiór tych obiektów $x \in U$, o których na podstawie wartości cech P nie możemy z całą pewnością powiedzieć, że nie są elementami zbioru X. Inaczej, obiekt $x \in U$ jest elementem górnej aproksymacji, jeżeli klasa abstrakcji, do której on należy, ma niepustą część wspólną ze zbiorem X.

P̃ - pozytywny obszar zbioru X⊆U jest tożsamy z jego dolną aproksymacją

$$\mathsf{Pos}_{\tilde{p}}(\mathsf{X}) = \widetilde{\mathsf{P}}\mathsf{X}$$

P̃ - negatywny obszar zbioru X⊆U jest różnicą zbioru U i górnej aproksymacji zbioru X

$$Neg_{\tilde{p}}(X)=U\setminus \overline{\tilde{P}}X$$

 $\widetilde{\mathbf{P}}$ - **brzegowy obszar zbioru** X \subseteq U jest różnicą górnej aproksymacji zbioru X i dolnej aproksymacji zbioru X

$$Bn_{\tilde{p}}(X) = \overline{\widetilde{P}}X \setminus \widetilde{P}X$$

Zbiór X \subseteq U nazywamy $\widetilde{\mathbf{P}}$ - **dokładnym** jeśli zachodzi równość jego dolnej i górnej aproksymacji

$$\overline{\widetilde{P}}X = \widetilde{P}X$$

lub \widetilde{P} - przybliżonym w przeciwnym razie

$$\overline{\widetilde{P}}X{\neq}\widetilde{P}X$$

Wartość wyrażoną wzorem:

$$\mu_{\tilde{p}}\left(X\right) = \frac{\overline{\tilde{p}}\overline{X}}{\overline{\tilde{p}}\overline{X}}$$

nazywamy P - dokładnością aproksymacji zbioru X.

UWAGA:

Symbolem \overline{A} oznaczamy miarę zbioru A. W przypadku zbiorów skończonych jako miarę możemy przyjąć moc zbioru, w przypadku zbiorów ciągłych – długość przedziału, pole powierzchni, objętość itd..

Zbiór X⊆U nazywamy:

(a) w przybliżeniu \tilde{P} - definiowalnym, jeżeli

$$\underline{\widetilde{P}}X \neq \varnothing$$

$$\overline{\widetilde{P}}X\neq U$$

(b) w przybliżeniu \tilde{P} - niedefiniowalnym, jeżeli

$$\widetilde{\underline{P}}X = \emptyset$$

(c) zewnętrznie \widetilde{P} - niedefiniowalnym, jeżeli

$$\widetilde{P}X\neq\emptyset$$

$$\overline{\widetilde{P}}X=U$$

(d) całkowicie \tilde{P} - niedefiniowalnym, jeżeli

$$\widetilde{P}X = \emptyset$$

$$\overline{\widetilde{P}}X=U$$

Przyład 2:

Dana jest tablica zawierająca informacje odnotowane przez właściciela komisu samochodowego

obiekt (U)	liczba drzwi (q ₁)	moc silnika (q ₂)	kolor (q ₃)	marka (q ₄)
X ₁	2	60	niebieski	Toyota
x ₂	2	100	czarny	Nissan
X ₃	2	200	czarny	Ferrari
X ₄	2	200	czerwony	Ferrari
X ₅	2	200	czerwony	Toyota
x ₆	3	100	czerwony	Toyota
X ₇	3	100	czerwony	Toyota
x ₈	3	200	czarny	Ferrari
X ₉	4	100	niebieski	Nissan
X ₁₀	4	100	niebieski	Nissan

Dziedziny cech (zbiór wartości funkcji informacyjnych):

 $\begin{aligned} & V_{q_1} = \{2,3,4\}, \ V_{q_2} = \{60,100,200\}, \ V_{q_3} = \{\text{czarny,niebieski,czerwony}\}, \\ & V_{q_4} = \{\text{Ferrari,Nissan,Toyota}\} \end{aligned}$

Przyład 2:

Wykorzystując tablice decyzyjną, stworzymy system ekspertowy, który na podstawie informacji o liczbie drzwi, mocy silnika i kolorze samochodu określi jego markę

Reguła (R)	liczba drzwi (c ₁ =q ₁)	moc silnika (c ₂ =q ₂)	kolor (c ₃ =q ₃)	marka (d ₁ =q ₄)
1	2	60	niebieski	Toyota
2	2	100	czarny	Nissan
3	2	200	czarny	Ferrari
4	2	200	czerwony	Ferrari
5	2	200	czerwony	Toyota
6	3	100	czerwony	Toyota
7	3	100	czerwony	Toyota
8	3	200	czarny	Ferrari
9	4	100	niebieski	Nissan
10	4	100	niebieski	Nissan

Uniwersum U = $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}\}$ Podział zbioru Q= $\{q_1, q_2, q_3, q_4\}$ na:

atrybuty warunkowe

$$C=\{c_1,c_2,c_3\}=\{q_1,q_2,q_3\}=\{liczba\ drzwi,moc\ silnika,kolor\}$$

atrybuty decyzyjne

$$D = \{d_1\} = \{q_4\} = \{marka\}$$

Treść zawartą w tablicy decyzyjnej można przedstawić w postaci reguł:

- R1: JEŻLI $c_1=2$ I $c_2=60$ I $c_3=$ niebieski TO $d_1=$ Toyota
- R2: JEŽLI $c_1=2$ I $c_2=100$ I $c_3=czarny$ TO $d_1=Nissan$
- R3: JEŻLI $c_1=2$ I $c_2=200$ I $c_3=czarny$ TO $d_1=Ferrari$
- R4: JEŻLI $c_1=2$ I $c_2=200$ I $c_3=czerwony$ TO $d_1=Ferrari$
- R5: JEŻLI $c_1=2$ I $c_2=200$ I $c_3=czerwony$ TO $d_1=Toyota$
- R6: JEŻLI c_1 =3 I c_2 =100 I c_3 =czerwony TO d_1 =Toyota
- R7: JEŻLI c_1 =3 I c_2 =100 I c_3 =czerwony TO d_1 =Toyota
- R8: JEŻLI c_1 =3 I c_2 =200 I c_3 =czarny TO d_1 =Ferrari
- R9: JEŻLI $c_1=4$ I $c_2=100$ I $c_3=$ niebieski TO $d_1=$ Nissan
- R10: JEŻLI $c_1=4$ I $c_2=100$ I $c_3=$ niebieski TO $d_1=$ Nissan

Klasy abstrakcji relacji C-nierozróżnialności Č określonej przez zbiór cech C

$$[x_{1}]_{\tilde{c}} = \{x_{1}\}$$

$$[x_{2}]_{\tilde{c}} = \{x_{2}\}$$

$$[x_{3}]_{\tilde{c}} = \{x_{3}\}$$

$$[x_{4}]_{\tilde{c}} = [x_{5}]_{\tilde{c}} = \{x_{4}, x_{5}\}$$

$$[x_{6}]_{\tilde{c}} = [x_{7}]_{\tilde{c}} = \{x_{6}, x_{7}\}$$

$$[x_{8}]_{\tilde{c}} = \{x_{8}\}$$

$$[x_{9}]_{\tilde{c}} = [x_{10}]_{\tilde{c}} = \{x_{9}, x_{10}\}$$

pary obiektów w zbiorach $\{x_4,x_5\},\{x_6,x_7\},\{x_9,x_{10}\}$ są C-nierozróżnialne

Zbiór ilorazowy:

$$U/\tilde{C} = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8\}, \{x_9, x_{10}\}\}$$

W przestrzeni U istnieją trzy zbiory samochodów:

$$X_F = \{x_3, x_4, x_8\}$$

 $X_N = \{x_2, x_9, x_{10}\}$
 $X_T = \{x_1, x_5, x_6, x_7\}$

Dolne aproksymacje zbiorów X_F , X_N , X_T :

$$\underline{\tilde{C}}X_F = \{x_3\} \cup \{x_8\} = \{x_3, x_8\}
\underline{\tilde{C}}X_N = \{x_2\} \cup \{x_9, x_{10}\} = \{x_2, x_9, x_{10}\}
\underline{\tilde{C}}X_T = \{x_1\} \cup \{x_6, x_7\} = \{x_1, x_6, x_7\}$$

Obiekt x∈U jest elementem dolnej aproksymacji, jeżeli cała klasa abstrakcji, do której on należy, jest podzbiorem zbioru X

Górne aproksymacje zbiorów X_F, X_N, X_T:

$$\begin{split} \bar{\tilde{C}}X_F &= \{x_3\} \cup \{x_4, x_5\} \cup \{x_8\} = \{x_3, x_4, x_5, x_8\} \\ \bar{\tilde{C}}X_N &= \{x_2\} \cup \{x_9, x_{10}\} = \{x_2, x_9, x_{10}\} \\ \bar{\tilde{C}}X_T &= \{x_1\} \cup \{x_4, x_5\} \cup \{x_6, x_7\} = \{x_1, x_4, x_5, x_6, x_7\} \end{split}$$

Obiekt x∈U jest elementem górnej aproksymacji, jeżeli klasa abstrakcji, do której on należy, ma niepustą część wspólną ze zbiorem X

Obszar brzegowy zbiorów X_F , X_N , X_T :

$$\begin{split} \mathsf{Bn}_{\tilde{\mathbb{C}}}(\mathsf{X}_{\mathsf{F}}) = & \bar{\tilde{\mathbb{C}}} \mathsf{X}_{\mathsf{F}} \backslash \tilde{\mathbb{C}} \mathsf{X}_{\mathsf{F}} = \{\mathsf{x}_{3}, \mathsf{x}_{4}, \mathsf{x}_{5}, \mathsf{x}_{8}\} \backslash \{\mathsf{x}_{3}, \mathsf{x}_{8}\} = \{\mathsf{x}_{4}, \mathsf{x}_{5}\} \\ & \mathsf{Bn}_{\tilde{\mathbb{C}}}(\mathsf{X}_{\mathsf{N}}) = & \bar{\tilde{\mathbb{C}}} \mathsf{X}_{\mathsf{N}} \backslash \tilde{\mathbb{C}} \mathsf{X}_{\mathsf{N}} = \{\mathsf{x}_{2}, \mathsf{x}_{9}, \mathsf{x}_{10}\} \backslash \{\mathsf{x}_{2}, \mathsf{x}_{9}, \mathsf{x}_{10}\} = \varnothing \\ & \mathsf{Bn}_{\tilde{\mathbb{C}}}(\mathsf{X}_{\mathsf{T}}) = & \bar{\tilde{\mathbb{C}}} \mathsf{X}_{\mathsf{T}} \backslash \tilde{\mathbb{C}} \mathsf{X}_{\mathsf{T}} = \{\mathsf{x}_{1}, \mathsf{x}_{4}, \mathsf{x}_{5}, \mathsf{x}_{6}, \mathsf{x}_{7}\} \backslash \{\mathsf{x}_{1}, \mathsf{x}_{6}, \mathsf{x}_{7}\} = \{\mathsf{x}_{4}, \mathsf{x}_{5}\} \end{split}$$

Obszar pozytywny zbiorów X_F , X_N , X_T :

$$Pos_{\tilde{C}}(X_{F}) = \tilde{C}X_{F} = \{x_{3}, x_{8}\}$$

$$Pos_{\tilde{C}}(X_{N}) = \tilde{C}X_{N} = \{x_{2}, x_{9}, x_{10}\}$$

$$Pos_{\tilde{C}}(X_{T}) = \tilde{C}X_{T}\} = \{x_{1}, x_{6}, x_{7}\}$$

Obszar negatywny zbiorów X_F , X_N , X_T :

$$\begin{split} \text{Neg}_{\tilde{\textbf{C}}}(\textbf{X}_{\text{F}}) &= \textbf{U} \backslash \overline{\tilde{\textbf{C}}} \textbf{X}_{\text{F}} = \{\textbf{x}_{1}, \textbf{x}_{2}, \textbf{x}_{6}, \textbf{x}_{7}, \textbf{x}_{9}, \textbf{x}_{10}\} \\ \text{Neg}_{\tilde{\textbf{C}}}(\textbf{X}_{\text{N}}) &= \textbf{U} \backslash \overline{\tilde{\textbf{C}}} \textbf{X}_{\underline{\textbf{N}}} = \{\textbf{x}_{1}, \textbf{x}_{3}, \textbf{x}_{4}, \textbf{x}_{5}, \textbf{x}_{6}, \textbf{x}_{7}, \textbf{x}_{8}\} \\ \text{Neg}_{\tilde{\textbf{C}}}(\textbf{X}_{\text{T}}) &= \textbf{U} \backslash \overline{\tilde{\textbf{C}}} \textbf{X}_{\text{T}} = \{\textbf{x}_{2}, \textbf{x}_{3}, \textbf{x}_{8}, \textbf{x}_{9}, \textbf{x}_{10}\} \end{split}$$

Dokładność aproksymacji zbiorów X_F, X_N, X_T:

$$\mu_{\tilde{C}}(X_F) = \frac{\overline{\tilde{C}X_F}}{\overline{\tilde{C}X_F}} = \frac{2}{4} = 0.5$$

$$\mu_{\tilde{C}}(X_N) = \frac{\overline{\tilde{C}X_N}}{\overline{\tilde{C}X_N}} = \frac{3}{3} = 1$$

$$\mu_{\tilde{C}}(X_T) = \frac{\overline{\tilde{C}X_T}}{\overline{\tilde{C}X_T}} = \frac{3}{5} = 0.6$$

Dokładność aproksymacji zbioru X_N wynosi 1, co potwierdza fakt, że jest on \tilde{C} - dokładny, czyli jednoznacznie zdefiniowany przez cechy należące do zbioru C.

Przyład 3:

 $V_{q_1} = \{0,1,2,3,4,5,6,7,8,9\}, V_{q_2} = [0,1)$

Klasy abstrakcji:

- a) w zbiorze cech Q={q₁,q₂} wszystkie obiekty są rozróżnialne, istnieje zatem nieskończenie wiele jednoelementowych klas abstrakcji relacji Q-nierozróżnialności i każdy element U tworzy własną klasę
- b) w zbiorach $P1 = \{q_1\}, P2 = \{q_2\}$
 - dla relacji P1-nierozróżnialności mamy 10 klas abstrakcji

$$[0]_{\widetilde{P1}} = [0;1)$$

 $[1]_{\widetilde{P1}} = [1;2)$
 $[2]_{\widetilde{P1}} = [2;3)$

 $[9]_{\widetilde{p_1}} = [9;10)$

- dla relacji P2-nierozróżnialności mamy nieskończenie wiele dziesięcioelementowych klas abstrakcji, są to zbiory liczb z przestrzeni U o takiej samej części ułamkowej np.: $[0,6]_{\widetilde{p}_{2}}=\{0,6;\ 1,6;\ 2,6;\ 3,6;\ 4,6;\ 5,6;\ 6,6;\ 7,6;\ 8,6;\ 9,6\}$

Zbiory ilorazowe relacji P1 i P2:

$$U/\widetilde{P1} = \{[0;1);[1;2);[2;3);[3;4);[4;5);[5;6);[6;7);[7;8);[8;9);[9;10)\}$$
 $U/\widetilde{P2}$ - zbiór wszystkich klas abstrakcji

W przestrzeni U wyodrębnijmy pewien zbiór X w postaci przedziału: X=[1,25; 6,78]

Dolne aproksymacje zbioru X względem relacji P1 i P2:

$$\underbrace{\widetilde{P1}}_{X} X = [2]_{P1} \cup [3]_{P1} \cup [4]_{P1} \cup [5]_{P1} = [2;6)$$

$$\widetilde{P2} X = \emptyset$$

Obiekt x∈U jest elementem dolnej aproksymacji, jeżeli cała klasa abstrakcji, do której on należy jest podzbiorem zbioru X

Górne aproksymacje zbioru X względem relacji P1 i P2:

$$\overline{\widetilde{P1}}X = [1]_{P1} \cup [2]_{P1} \cup [3]_{P1} \cup [4]_{P1} \cup [5]_{P1} \cup [6]_{P1} = [1;7)$$

$$\overline{\widetilde{P2}}X = U$$

Obiekt x∈U jest elementem górnej aproksymacji, jeżeli klasa abstrakcji, do której on należy, ma niepustą część wspólną ze zbiorem X

Obszar brzegowy zbioru X=[1,25; 6;78] dla zbioru cech P1 i P2

$$Bn_{\widetilde{P1}}(X) = \overline{\widetilde{P1}}X \setminus \widetilde{P1}X = [1;7) \setminus [2;6) = [1;2) \cup [6;7)$$

$$Bn_{\widetilde{P2}}(X) = \overline{\widetilde{P2}}X \setminus \widetilde{P2}X = U \setminus \emptyset = U$$

Obszar pozytywny zbioru X=[1,25; 6;78] dla zbioru cech P1 i P2 $\operatorname{Pos}_{\widetilde{\mathbb{P}_{1}}}(\mathsf{X}) = \widetilde{\mathbb{P}_{1}}\mathsf{X} = [2;6) \\ \operatorname{Pos}_{\widetilde{\mathbb{P}_{2}}}(\mathsf{X}) = \widetilde{\mathbb{P}_{2}}\mathsf{X} = \varnothing$

Obszar negatywny zbioru X=[1,25; 6;78] dla zbioru cech P1 i P2

$$\begin{aligned} \operatorname{\mathsf{Neg}}_{\widetilde{P1}}(\mathsf{X}) &= \mathsf{U} \backslash \overline{\widetilde{P1}} \mathsf{X} = \mathsf{U} \backslash [1;7) = [0;1) \cup [7;10) \\ \operatorname{\mathsf{Neg}}_{\widetilde{P2}}(\mathsf{X}) &= \mathsf{U} \backslash \overline{\widetilde{P2}} \mathsf{X} = \mathsf{U} \backslash \mathsf{U} = \varnothing \end{aligned}$$

Dokładność aproksymacji zbioru X=[1,25; 6;78] dla zbioru cech P1 i P2

$$\mu_{\widetilde{P1}}(X_F) = \frac{\overline{\widetilde{P1}X}}{\overline{\widetilde{P1}X}} = \frac{4}{6} = \frac{2}{3}$$

$$\mu_{\widetilde{P2}}(X_{N}) = \frac{\overline{\widetilde{P2}X}}{\overline{\widetilde{P2}X}} = \frac{0}{10} = 0$$

Dokładność aproksymacji zbioru X dla zbioru cech P2 wynosi 0, co oznacza, że jest on całkowicie $\widetilde{P2}$ - niedefiniowalny.

Aproksymacja (przybliżenie) rodziny zbiorów

 \widetilde{P} - dolną aproksymacją rodziny zbiorów $X = \{X_1, X_2, ..., X_n\}$, gdzie $X \subseteq U$ nazywamy zbiór $\widetilde{P}X$ opisany następująco:

$$\underline{\underline{\widetilde{P}}}X = \{\underline{\widetilde{P}}X_1, \underline{\widetilde{P}}X_2, ..., \underline{\widetilde{P}}X_n\}$$

UWAGA:

Dolną aproksymacją zbioru X jest więc zbiór dolnych aproksymacji zbiorów należących do zbioru X (rodziny zbiorów).

 $\widetilde{\mathbf{P}}$ - górną aproksymacją rodziny zbiorów X={X₁, X₂, ..., X_n}, gdzie X \subseteq U nazywamy zbiór \widetilde{P} X opisany następująco:

$$\overline{\widetilde{P}}X = {\{\overline{\widetilde{P}}X_1, \overline{\widetilde{P}}X_2, ..., \overline{\widetilde{P}}X_n\}}$$

UWAGA:

Górną aproksymacją zbioru X jest więc zbiór górnych aproksymacji zbiorów należących do zbioru X (rodziny zbiorów).

Aproksymacja (przybliżenie) rodziny zbiorów

 $\widetilde{\mathbf{P}}$ - pozytywny obszar rodziny zbiorów $X = \{X_1, X_2, ..., X_n\}$, gdzie $X \subseteq U$ definiujemy jako sumę pozytywnych obszarów zbiorów X_i , dla i = 1,...,n

$$\mathsf{Pos}_{\tilde{p}}(\mathsf{X}) = \bigcup_{X_i \in X} \mathsf{Pos}_{\tilde{p}}(\mathsf{X}i)$$

 $\widetilde{\mathbf{P}}$ - negatywny obszar rodziny zbiorów $X = \{X_1, X_2, ..., X_n\}$, gdzie $X \subseteq U$ jest różnicą zbioru U i sumy negatywnych obszarów zbiorów X_i , dla i = 1, ..., n

$$Neg_{\tilde{p}}(X) = U \setminus U_{X_i \in X} Neg_{\tilde{p}}(Xi)$$

 $\widetilde{\mathbf{P}}$ - brzegowy obszar rodziny zbiorów $X = \{X_1, X_2, ..., X_n\}$, gdzie $X \subseteq U$ definiujemy jako sumę obszarów brzegowych zbiorów X_i , dla i = 1, ..., n

$$\operatorname{\mathsf{Bn}}_{\tilde{\mathsf{p}}}(\mathsf{X}) = \bigcup_{X_i \in \mathsf{X}} \operatorname{\mathsf{Bn}}_{\tilde{\mathsf{p}}}(\mathsf{X}i)$$

Aproksymacja (przybliżenie) rodziny zbiorów

 $\widetilde{\mathbf{P}}$ - jakość aproksymacji rodziny zbiorów X={X₁, X₂, ..., X_n}, gdzie X \subseteq U wyraża się wzorem

$$\gamma_{\tilde{P}}(X) = \frac{\overline{Pos_{\tilde{P}}(X)}}{\overline{U}}$$

 $\widetilde{\mathbf{P}}$ - dokładność aproksymacji rodziny zbiorów $X = \{X_1, X_2, ..., X_n\}$, gdzie $X \subseteq U$ wyraża się wzorem

$$\beta_{\tilde{P}}(X) = \frac{\overline{\overline{Pos_{\tilde{P}}(X)}}}{\sum_{X, \in X} \overline{\tilde{P}X_i}}$$

Rozważmy rodzinę zbiorów X, której elementami są trzy zbiory samochodów:

$$X_F = \{x_3, x_4, x_8\}, X_N = \{x_2, x_9, x_{10}\}, X_T = \{x_1, x_5, x_6, x_7\}$$

$$\widetilde{C}$$
-dolna aproksymacja rodziny zbiorów $X = \{X_F, X_N, X_T\}:$ $\underline{\widetilde{C}}X = \{\underline{\widetilde{C}}X_F, \underline{\widetilde{C}}X_N, \underline{\widetilde{C}}X_T\} = \{\{x_3, x_8\}, \{x_2, x_9, x_{10}\}, \{x_1, x_6, x_7\}\}$

$$\tilde{C}$$
-górna aproksymacja rodziny zbiorów X={X_F, X_N, X_T}: $\bar{\tilde{C}}X = {\bar{\tilde{C}}X_F, \bar{\tilde{C}}X_N, \bar{\tilde{C}}X_T} = {\{x_3, x_4, x_5, x_8\}, \{x_2, x_9, x_{10}\}, \{x_1, x_4, x_5, x_6, x_7\}}$

 \tilde{C} -brzegowy obszar rodziny zbiorów $X = \{X_F, X_N, X_T\}$:

$$\mathsf{Bn}_{\tilde{\mathsf{C}}}\left(\mathsf{X}\right) = \mathsf{Bn}_{\tilde{\mathsf{C}}}\left(\mathsf{X}_{\mathsf{F}}\right) \cup \mathsf{Bn}_{\tilde{\mathsf{C}}}\left(\mathsf{X}_{\mathsf{N}}\right) \cup \mathsf{Bn}_{\tilde{\mathsf{C}}}\left(\mathsf{X}_{\mathsf{T}}\right) = \left\{\mathsf{x}_{\mathsf{4}},\mathsf{x}_{\mathsf{5}}\right\} \cup \varnothing \cup \left\{\mathsf{x}_{\mathsf{4}},\mathsf{x}_{\mathsf{5}}\right\} = \left\{\mathsf{x}_{\mathsf{4}},\mathsf{x}_{\mathsf{5}}\right\}$$

 \tilde{C} -pozytywny obszar rodziny zbiorów $X = \{X_F, X_N, X_T\}$:

$$\begin{aligned} \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{X}\right) = & \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{X}_{\textbf{F}}\right) \cup \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{X}_{\textbf{N}}\right) \cup \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{X}_{\textbf{T}}\right) = & \{\textbf{x}_{3}, \textbf{x}_{8}\} \cup \{\textbf{x}_{2}, \textbf{x}_{9}, \textbf{x}_{10}\} \cup \{\textbf{x}_{1}, \textbf{x}_{6}, \textbf{x}_{7}\} = \\ & = & \{\textbf{x}_{1}, \textbf{x}_{2}, \textbf{x}_{3}, \textbf{x}_{6}, \textbf{x}_{7}, \textbf{x}_{8}, \textbf{x}_{9}, \textbf{x}_{10}\} \end{aligned}$$

 \tilde{C} -negatywny obszar rodziny zbiorów $X = \{X_F, X_N, X_T\}$:

$$Neg_{\tilde{C}}(X)=U\setminus(Neg_{\tilde{C}}(X_F)\cup Neg_{\tilde{C}}(X_N)\cup Neg_{\tilde{C}}(X_T))=\\=U\setminus\{x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_9,x_{10}\}=\varnothing$$

 \tilde{C} - jakość aproksymacji rodziny zbiorów X={X_F, X_N, X_T}:

$$\gamma_{\tilde{C}}(X) = \frac{\overline{\overline{Pos_{\tilde{C}}(X)}}}{\overline{\overline{U}}} = \frac{8}{10}$$

 \tilde{C} - dokładność aproksymacji rodziny zbiorów X={X_F, X_N, X_T}:

$$\beta_{\tilde{C}}(X) = \frac{\overline{\overline{Pos_{\tilde{C}}(X)}}}{\sum_{X \in X} \overline{\tilde{C}X_i}} = \frac{8}{4+3+5} = \frac{2}{3}$$

Analiza tablic decyzyjnych

Wykrycie zależności między cechami (atrybutami) systemu informacyjnego pozwala stwierdzać czy do jednoznacznego opisu obiektu należącego do zbioru U konieczna jest znajomość wartości wszystkich jego cech.

Stopień zależności zbioru atrybutów P2 od zbioru atrybutów P1, gdzie P1,P2⊆Q, jest określony następująco:

$$k=\gamma_{\widetilde{P1}}$$
 (P2*)

gdzie $\gamma_{\widetilde{p_1}}$ oznacza jakość aproksymacji

UWAGA:

Zapis $P1 \xrightarrow{k} P2$ oznacza, że zbiór atrybutów P2 zależy od atrybutów P1 w stopniu k<1, gdy k=1, piszemy $P1 \rightarrow P2$

Analiza tablic decyzyjnych

Reguły tablicy decyzyjnej nazywamy **deterministycznymi**, jeżeli dla każdej pary reguł $R_a \neq R_b$ z równości wartości wszystkich atrybutów warunkowych C wynika równość wartości atrybutów decyzyjnych D, tzn.:

$$\forall_{\substack{R_{a'}, R_b = 1, \dots, N \\ R_a \neq R_b}} : \forall_{c \in C} f_{R_a}(c) = f_{R_b}(c) \rightarrow \forall_{d \in D} f_{R_a}(d) = f_{R_b}(d)$$

Reguły tablicy decyzyjnej nazywamy **niedeterministycznymi**, jeżeli dla każdej pary reguł $R_a \neq R_b$ z równości wartości wszystkich atrybutów warunkowych C nie wynika równość wartości atrybutów decyzyjnych D, tzn.:

$$\exists_{\substack{\mathbf{R}_{\mathbf{a}'}\mathbf{R}_{\mathbf{b}} \\ \mathbf{R}_{\mathbf{a}} \neq \mathbf{R}_{\mathbf{b}}}} : \forall_{c \in C} f_{R_{a}}(c) = f_{R_{b}}(c) \rightarrow \exists_{d \in D} f_{R_{a}}(d) \neq f_{R_{b}}(d)$$

UWAGA:

Tablica decyzyjna jest **dobrze określona** jeśli jej wszystkie reguły są deterministyczne. W przeciwnym przypadku mówimy, że jest **źle określona**.

Analiza tablic decyzyjnych

Tablica decyzyjna posiadająca zbiór atrybutów warunkowych C oraz zbiór atrybutów decyzyjnych D jest **dobrze określona**, jeśli zbiór atrybutów decyzyjnych zależy od zbioru atrybutów warunkowych w stopniu równym 1 (C \rightarrow D), czyli

$$\gamma_{\widetilde{p_1}}(D^*)=1$$

UWAGA:

Źle określoną tablicę decyzyjną (tablicę zawierającą reguły niedeterministyczne) można przekształcić w tablicę dobrze określoną poprzez:

- usunięcie reguł niedeterministycznych
- rozszerzenie zbioru atrybutów warunkowych

Zbadamy stopień zależności zbioru atrybutów warunkowych C od zbioru atrybutów decyzyjnych D

$$k = \gamma_{\tilde{C}} (D^*) = \frac{\overline{Pos_{\tilde{C}}(D^*)}}{\overline{U}}$$

Klasy abstrakcji relacji D-nierozróżnialności to zbiory X_F , X_N , X_T , zatem: $U/\widetilde{D}=D^*=\{X_F, X_N, X_T\}$

C-pozytywny obszar zbioru D*:

$$\begin{aligned} \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{D}^{*}\right) = & \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{X}_{\textbf{F}}\right) \cup \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{X}_{\textbf{N}}\right) \cup \text{Pos}_{\tilde{\textbf{C}}}\left(\textbf{X}_{\textbf{T}}\right) = & \{\textbf{x}_{3},\textbf{x}_{8}\} \cup \{\textbf{x}_{2},\textbf{x}_{9},\textbf{x}_{10}\} \cup \{\textbf{x}_{1},\textbf{x}_{6},\textbf{x}_{7}\} = \\ & = & \{\textbf{x}_{1},\textbf{x}_{2},\textbf{x}_{3},\textbf{x}_{6},\textbf{x}_{7},\textbf{x}_{8},\textbf{x}_{9},\textbf{x}_{10}\} \\ & & \textbf{k} = & \gamma_{\tilde{\textbf{C}}}\left(\textbf{D}^{*}\right) = \frac{8}{10} \end{aligned}$$

Stopień zależności zbioru atrybutów warunkowych C zależy od zbioru atrybutów decyzyjnych D w stopniu k=0,8, co zapisujemy

$$C \xrightarrow{0.8} D$$

Otrzymana wartość k<1 oznacza, że tablica decyzyjna jest źle określona. Na podstawie zbioru atrybutów warunkowych nie można jednoznacznie wnioskować o przynależności obiektów przestrzeni U do poszczególnych zbiorów X_F , X_N , X_T , będących klasami abstrakcji relacji D-nierozróżnialności.

Sposoby przekształcania tablicy decyzyjnej zawierającej reguły niedeterministyczne w tablicę dobrze określoną

- usuwanie reguł niedeterministycznych (reguły 4 i 5)

Reguła (R)	liczba drzwi (c ₁ =q ₁)	moc silnika (c ₂ =q ₂)	kolor (c ₃ =q ₃)	marka (d ₁ =q ₄)
1	2	60	niebieski	Toyota
2	2	100	czarny	Nissan
3	2	200	czarny	Ferrari
6	3	100	czerwony	Toyota
7	3	100	czerwony	Toyota
8	3	200	czarny	Ferrari
9	4	100	niebieski	Nissan
10	4	100	niebieski	Nissan

$$k = \gamma_{\tilde{C}}(D^*) = \frac{\overline{\{x_{1}, x_{2}, x_{3}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\}}}{\overline{\{x_{1}, x_{2}, x_{3}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\}}} = \frac{8}{8} = 1 - tablica jest dobrze określona$$

rozszerzenie zbioru atrybutów warunkowych
 (dodajemy kolejne atrybuty np.: c₄ - tapicerka, c₅ – felgi)

Reguła (R)	liczba drzwi (c ₁)	moc silnika (c ₂)	kolor (c ₃)	tapicerka (c ₄)	felgi (c ₅)	marka (d ₁)
1	2	60	niebieski	tkanina	stal	Toyota
2	2	100	czarny	tkanina	stal	Nissan
3	2	200	czarny	skóra	Al	Ferrari
4	2	200	czerwony	skóra	Al	Ferrari
5	2	200	czerwony	tkanina	stal	Toyota
6	3	100	czerwony	skóra	stal	Toyota
7	3	100	czerwony	tkanina	stal	Toyota
8	3	200	czarny	skóra	Al	Ferrari
9	4	100	niebieski	tkanina	stal	Nissan
10	4	100	niebieski	tkanina	Al	Nissan

Nowy zbiór atrybutów warunkowych $C' = \{c_1, c_2, c_3, c_4, c_5\}$ Dziedziny atrybutów:

$$\begin{aligned} &V_{c_1} \!=\! \{2,3,4\}, \ V_{c_2} \!=\! \{60,100,200\}, \ V_{c_3} \!=\! \{\text{czarny,niebieski,czerwony}\}, \\ &V_{c_4} \!=\! \{\text{tkanina,skóra}\}, \ V_{c_5} \!=\! \{\text{stal,Al}\}, \ V_{d_1} \!=\! \{\text{Ferrari,Nissan,Toyota}\} \end{aligned}$$

Klasy abstrakcji relacji C'-nierozróżnialności \widetilde{C}' określonej przez zbiór cech C' to zbiory jednoelementowe, ponieważ każdy element przestrzeni U ma przynajmniej jedną różną wartość cechy

Zbiór ilorazowy:

$$U/\widetilde{C}' = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}, \{x_9\}, \{x_{10}\}\}$$

Obszar pozytywny zbiorów X_F , X_N , X_T :

$$\begin{aligned} & \text{Pos}_{\widetilde{C}'}(X_F) = \widetilde{C}'X_F = \{x_3, x_4, x_8\} = X_F \\ & \text{Pos}_{\widetilde{C}'}(X_N) = \widetilde{C}'X_N = \{x_2, x_9, x_{10}\} = X_N \\ & \text{Pos}_{\widetilde{C}'}(X_T) = \widetilde{C}'X_T\} = \{x_1, x_5, x_6, x_7\} = X_T \end{aligned}$$

Górne aproksymacje zbiorów X_F, X_N, X_T:

$$\begin{split} & \overline{\widetilde{C}'}X_F = \{x_3\} \cup \{x_5\} \cup \{x_8\} = \{x_3, x_4, x_8\} = X_F \\ & \overline{\widetilde{C}'}X_N = \{x_2\} \cup \{x_9\} \cup \{x_{10}\} = \{x_2, x_9, x_{10}\} = X_N \\ & \overline{\widetilde{C}'}X_T = \{x_1\} \cup \{x_5\} \cup \{x_6\} \cup \{x_7\} = \{x_1, x_5, x_6, x_7\} = X_T \end{split}$$

C'-pozytywny obszar rodziny zbiorów D*:

$$\begin{aligned} \text{Pos}_{\tilde{C}'}(\mathsf{D}^*) &= \{x_3, x_4, x_8\} \cup \{x_2, x_9, x_{10}\} \cup \{x_1, x_5, x_6, x_7\} = \\ &= \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_9, x_{10}\} = \mathsf{U} \end{aligned}$$

 \widetilde{C}' - jakość aproksymacji rodziny zbiorów D*:

$$\gamma_{\tilde{C}'}(D^*) = \overline{\overline{Pos_{\tilde{C}'}(D^*)}} / \overline{\overline{U}} = \frac{10}{10} = 1$$

 \widetilde{C}' - dokładność aproksymacji rodziny zbiorów D*:

$$\beta_{\tilde{C}'}(D^*) = \overline{\overline{\operatorname{Pos}_{\tilde{C}'}(D^*)}} / \sum_{X_i \in D^*} \overline{\overline{\tilde{C}'}X_i} = \frac{\overline{\overline{U}}}{\overline{\overline{U}}} = \frac{10}{10} = 1$$

Obie wartości wynoszą 1, rozszerzona tablica decyzyjna jest zatem dobrze określona.

Analiza tablic decyzyjnych c.d.

Zbiór atrybutów P1 \subseteq Q, jest **niezależny** w danym systemie informacyjnym, jeżeli dla każdego P2 \subset P1 zachodzi $\widetilde{P1} \neq \widetilde{P2}$. W przeciwnym przypadku zbiór P1 jest zależny

Zbiór atrybutów P1 \subseteq Q, jest **niezależny** ze względu na zbiór atrybutów P2 \subseteq Q (P2-niezależny), jeśli dla każdego P3 \subset P1 zachodzi $\widetilde{P1} \neq \widetilde{P2}$.

$$\mathsf{Pos}_{\widetilde{\mathsf{P}}_{1}}(\mathsf{P}2^{*}) \neq \mathsf{Pos}_{\widetilde{\mathsf{P}}_{3}}(\mathsf{P}2^{*})$$

W przeciwnym przypadku zbiór P1 jest P2-zależny

Analiza tablic decyzyjnych c.d.

Reduktem zbioru atrybutów P1 \subseteq Q nazywamy każdy niezależny zbiór P2 \subset P1, dla którego $\widetilde{P2} = \widetilde{P1}$

Reduktem względnym zbioru atrybutów P1 \subseteq Q ze względu na P2 (tzw. P2-reduktem) nazywamy każdy P2-niezależny zbiór P3 \subset P1, dla którego $\widetilde{P3} = \widetilde{P1}$

Atrybut $p \in P1$ jest **nieusuwalny** ze zbioru P1, jeżeli dla P2=P1\{p} zachodzi $\widetilde{P2} \neq \widetilde{P1}$. W przeciwnym przypadku atrybut p jest **zbędny**.

Zbiór wszystkich atrybutów nieusuwalnych ze zbioru P nazywa się **rdzeniem** P, co zapisujemy następująco:

CORE(P)=
$$\{p \in P: \widetilde{P'} \neq \widetilde{P}, P'=P \setminus \{p\}\}$$

Analiza tablic decyzyjnych c.d.

Znormalizowany współczynnik istotności podzbioru zbioru atrybutów warunkowych C′⊆ C ma postać

$$\sigma_{(C,D)}(C') = \frac{\gamma_{\tilde{C}}(D^*) - \gamma_{\tilde{C}''}(D^*)}{\gamma_{\tilde{C}}(D^*)}$$

gdzie $C''=C\setminus C'$

UWAGA:

Wartość zerowa znormalizowanego współczynnika istotności otrzymana dla danego podzbioru atrybutów warunkowych C wskazuje, że podzbiór ten może być usunięty ze zbioru atrybutów warunkowych bez szkody dla aproksymacji rodziny zbiorów D*

Dowolny podzbiór atrybutów warunkowych C'⊆ C nazywamy przybliżonym D-reduktem zbioru atrybutów C, a **błąd przybliżenia** tego reduktu wyznaczamy ze wzoru:

$$\varepsilon_{(C,D)}(C') = \frac{\gamma_{\tilde{C}}(D^*) - \gamma_{\tilde{C'}}(D^*)}{\gamma_{\tilde{C}}(D^*)}$$

Rozszerzony zbiór atrybutów warunkowych $C'=\{c_1,c_2,c_3,c_4,c_5\}$ Przykładowe podzbiory zbioru C': $C1=\{c_1,c_3,c_4,c_5\}$, $C2=\{c_1,c_2,c_3\}$, $C3=\{c_1,c_2\}$, $C4=\{c_1,c_3\}$, $C5=\{c_2,c_3\}$, $C6=\{c_1\}$, $C7=\{c_2\}$, $C8=\{c_3\}$

 Zbiór C' jest zbiorem zależnym, ponieważ podzbiór C1⊂C' generuje takie same klasy abstrakcji jak C'

Zbiory ilorazowe:

$$U/\widetilde{C}' = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6,\}, \{x_7\}, \{x_8\}, \{x_9\}, \{x_{10}\}\}\}$$

$$U/\widetilde{C}1 = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6,\}, \{x_7\}, \{x_8\}, \{x_9\}, \{x_{10}\}\}\}$$

 Zbiór C2 jest zbiorem niezależnym, ponieważ wszystkie podzbiory różne od C2 generują inne niż dla C2 klasy abstrakcji Zbiory ilorazowe:

$$\begin{array}{l} \text{U/\widetilde{C2}} = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8\}, \{x_9, x_{10}\}\} \\ \text{U/\widetilde{C3}} = \{\{x_1\}, \{x_2\}, \{x_3, x_4, x_5\}, \{x_6, x_7\}, \{x_8\}, \{x_9, x_{10}\}\} \\ \text{U/\widetilde{C4}} = \{\{x_1\}, \{x_2, x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8\}, \{x_9, x_{10}\}\} \\ \text{U/\widetilde{C5}} = \{\{x_1\}, \{x_2\}, \{x_3, x_8\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_9, x_{10}\}\} \\ \text{U/\widetilde{C6}} = \{\{x_1, x_2, x_3, x_4, x_5\}, \{x_6, x_7, x_8\}, \{x_9, x_{10}\}\} \\ \text{U/\widetilde{C7}} = \{\{x_1\}, \{x_2, x_6, x_7, x_9, x_{10}\}, \{x_3, x_4, x_5, x_8\}\} \\ \text{U/\widetilde{C8}} = \{\{x_1, x_9, x_{10}\}, \{x_2, x_3, x_8\}, \{x_4, x_5, x_6, x_7\}\} \\ \end{array}$$

Rozszerzony zbiór atrybutów warunkowych $C'=\{c_1,c_2,c_3,c_4,c_5\}$ Przykładowe podzbiory zbioru $C1=\{c_1,c_3,c_4,c_5\}$: $C9=\{c_1,c_3,c_4\}$, $C4=\{c_1,c_3\}$, $C6=\{c_1\}$, $C7=\{c_2\}$, $C8=\{c_3\}$,

 Zbiór C' jest zbiorem zależnym, ponieważ podzbiór C1⊂C' generuje takie same klasy abstrakcji jak C'

Zbiory ilorazowe:

$$U/\widetilde{C}' = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}, \{x_9\}, \{x_{10}\}\}\}$$

$$U/\widetilde{C}1 = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}, \{x_9\}, \{x_{10}\}\}\}$$

 Zbiór C1 jest zbiorem niezależnym, ponieważ wszystkie podzbiory różne od C1 generują inne niż dla C1 klasy abstrakcji

Zbiory ilorazowe:

$$\begin{array}{l} \text{U/$\widetilde{\text{C4}}$=} \{\{x_1\}, \{x_2, x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8\}, \{x_9, x_{10}\}\} \\ \text{U/$\widetilde{\text{C6}}$=} \{\{x_1, x_2, x_3, x_4, x_5\}, \{x_6, x_7, x_8\}, \{x_9, x_{10}\}\} \\ \text{U/$\widetilde{\text{C7}}$=} \{\{x_1\}, \{x_2, x_6, x_7, x_9, x_{10}\}, \{x_3, x_4, x_5, x_8\}\} \\ \text{U/$\widetilde{\text{C8}}$=} \{\{x_1, x_9, x_{10}\}, \{x_2, x_3, x_8\}, \{x_4, x_5, x_6, x_7\}\} \\ \text{U/$\widetilde{\text{C9}}$=} \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6, \}, \{x_7\}, \{x_8\}, \{x_9, x_{10}\}\} \\ \end{array}$$

(UWAGA: Sprawdzić klasy abstrakcji dla pozostałych podzbiorów zbioru C1!!!)

Rozszerzony zbiór atrybutów warunkowych $C' = \{c_1, c_2, c_3, c_4, c_5\}$

- Zbiór C1= $\{c_1,c_3,c_4,c_5\}\subset C'$ jest reduktem zbioru C', ponieważ generuje takie same klasy abstrakcji jak zbiór C' i jest zbiorem niezależnym
- Atrybut c_2 jest zbędny ponieważ $C1=C'\setminus\{c_2\}$ oraz $U/\widetilde{C'}=U/\widetilde{C1}$
- Rdzeniem zbioru C' są atrybuty {c₁,c₃,c₄,c₅} tzn.:

$$CORE(C') = \{c_1, c_3, c_4, c_5\}$$

 Jakość aproksymacji rodziny zbiorów D* ze względu na zbór cech C1 (Ĉ1-jakość):

$$\gamma_{\widetilde{C1}}(D^*) = \overline{\overline{Pos_{\widetilde{C1}}(D^*)}} / \overline{\overline{U}} = \frac{10}{10} = 1$$

Współczynnik istotności podzbioru {c₂} zbioru atrybutów warunkowych C

$$\sigma_{(C',D)}(\{c_2\}) = (\gamma_{\tilde{C'}}(D^*) - \gamma_{\tilde{C_1}}(D^*))/\gamma_{\tilde{C'}}(D^*) = (1-1)/1 = 0$$

Wartość 0 oznacza, że atrybut c₂ jest nieistotny, jego usunięcie nie wpłynie zatem na jakość aproksymacji rodziny zbiorów D*. Ponadto dla wyjściowego zbioru reguł warunkowych C, błąd przybliżenia wynosi 0,2

