Automates - CM4

 $\begin{array}{c} \text{Cl\'ement } A_{\mathrm{GRET}} \\ \text{clement.agret@cyu.fr} \end{array}$

CY Cergy Paris Université

Programme du jour

Déterminisation

Proposition 1

Tout langage reconnu par un automate est reconnu par automate déterministe.

Plan du cours

Constructions d'automates faciles

Opérations sur les langages reconnus par automate

Lemme de l'étoile

Automates de Thompson

Constructions d'automates faciles : \emptyset, ε

Constructions d'automates faciles (2) : le mot aba.

Constructions d'automates faciles (3) : mots qui commencent, finissent par un motif.

Constructions d'automates faciles (4).

Plan du cours

Constructions d'automates faciles

Opérations sur les langages reconnus par automate

Lemme de l'étoile

Automates de Thompson

Langages reconnaissables par automates

Définition 1: $Rec(A^*)$

On note $Rec(A^*)$ l'ensemble des langages inclus dans A^* reconnaissables par automate.

Proposition 2

Un langage $L \in Rec(A^*)$ est reconnaissable par automate :

- synchrone,
- déterministe.
- complet.

Automate pour le complémentaire

Proposition 3: Complémentaire

Si $L \in \text{Rec}(A^*)$, alors le complémentaire $\overline{L} = A^* \setminus L$ est dans $\text{Rec}(A^*)$.

On part d'un automate :

- déterministes,
- complets.

Proposition 4

Si $\mathcal A$ est déterministe complet, l'automate $\mathcal A'$ obtenu en inversant états finaux et non finaux reconnaît $\overline{L(\mathcal A)}$.

Automate produit

Idée : suivre le calcul de deux automates en même temps.

On part d'automates

- déterministes,
- complets.

Automate produit : exemple

Automate produit : conséquences

Soit A_1 et A_2 deux L_1 et L_2 , d'états finaux F_1 et F_2 . Dans l'automate produit, pour reconnaître :

• I'union $L_1 \cup L_2$:

• l'intersection $L_1 \cap L_2$:

• la différence $L_1 \cap L_2$:

Conséquences

Proposition 5: $Rec(A^*)$

Soit $L_1, L_2 \in \text{Rec}(A^*)^2$. Alors les langages

Plan du cours

Constructions d'automates faciles

Opérations sur les langages reconnus par automate

Lemme de l'étoile

Automates de Thompson

Langages non reconnaissables

Quelles sont les limites des automates?

Idée : propriété que doivent vérifier tous les langages reconnus par automates.

Lemme de l'étoile

Lemma (étoile)

Soit L un langage $\in \text{Rec}(A^*)$. Alors : il existe N tel que tout mot w de longueur $|w| \ge N$ peut s'écrire w = xyz tel que

- $|xy| \leq N$
- $|y| \ge 1$
- $\forall j \in \mathbb{N} \ xy^i z \in L$.

Application : $L = \{a^n b^n : n \in \mathbb{N}\}$ non reconnaissable.

Plan du cours

Constructions d'automates faciles

Opérations sur les langages reconnus par automate

Lemme de l'étoile

Automates de Thompson

Automate de Thompson

Façon standardisée de construire des automates en assurant :

- un état initial, un état final
- aucun calcul possible de l'état final vers l'état initial.

Automate de Thompson pour a :

Constructions de Thompson

Comment combiner deux automates ?

Construction de Thompson pour $L_1 + L_2$:

Construction de Thompson pour $L_1 \cdot L_2$:

Construction de Thompson pour L_1^* :

Récapitulatif : union

Récapitulatif : concaténation

Récapitulatif : étoile

Exemples