

2D Image Processing & Augmented Reality Winter Semester 2019/2020 Survey on Face Tracking with Deep Learning

Vinay Balasubramanian

v_balasubr18@cs.uni-kl.de

Supervisor: Jilliam Diaz Barros

Outline

Face tracking is a computer vision task that involves tracking a specific number of landmarks(keypoints around facial components) on the face detected across all frames of a video.

Applications include Face analysis, Person identification, Activity recognition, Expression analysis, Face modeling etc.

It is a challenging problem as the videos can be captured in unconstrained conditions which may include illumination variations, large head poses, occlusions, etc.

Image source: Google

Methods

- Image-based methods use models trained on still images in each frame.
- Video-based methods make use of temporal information to predict facial landmarks in each frame.
- Various approaches
 - Regression-based methods
 - Video-based face alignment
 - Encoder-Decoder Networks

1. Recurrent Encoder-Decoder Network for Video-based Face Alignment

- Employs recurrent learning at both spatial and temporal dimensions.
- At spatial level, face alignment is done in a coarse-fine manner.
- At temporal level, Temporal-variant features such as pose and expression are separated from Temporal-invariant features such as facial identity.

2. Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network

- Previous approaches for dynamic facial analysis use Kalman/Particle filters.
- Bayesian filters require problem-specific design and tuning.
- This RNN based method avoids tracker engineering by learning from data (sufficient data).
- CNN layers followed by recurrent layers as dense layers.

3. Dual-Agent Deep Reinforcement Learning for Deformable Face Tracking

- Exploits the fact that bounding box tracking and landmark detection tasks are dependent.
- The two tasks are modeled in a probabilistic manner by following a Bayesian model.

4. Two-stream Transformer Networks for Video-based Face Alignment

- Two stream deep learning method to capture spatial as well as temporal information.
- Facial landmarks are determined by a weighted fusion of spatial and temporal streams.

5. Face Alignment Recurrent Neural Network

input							
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.2
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.76
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.2
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.2
0,32	0.74	0.21	0.39	0.34	0.03	0.33	0.4
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.3
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.4
0.83	0,24	0.97	0.04	0.24	0.35	0.50	0.9

- Recurrent regression based approach
- Uses LSTM to exploit both spatial and temporal information.

Comparison metrics

Following are some of the metrics that will be used to compare the various methods in this survey:—

- Dataset used for training (In the wild vs constrained)
- Evaluation metrics
- Number of landmarks tracked
- Kind of landmarks retrieved (2D or 3D)
- Robustness to large pose variations, illumination changes

References

- 1. Xi Peng, Rogerio S. Feris, Xiaoyu Wang, Dimitris N. Metaxas: RED-Net: A Recurrent Encoder-Decoder Network for Video-based Face Alignment (2017).
- 2. Jinwei Gu, Xiaodong Yang, Shalini De Mello, Jan Kautz: Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network(2017).
- 3. Minghao Guo, Jiwen Lu, and Jie Zhou: Dual-Agent Deep Reinforcement Learning for Deformable Face Tracking (2018).
- 4. Hao Liu, Jiwen Lu, Jianjiang Feng, Jie Zhou: Two-Stream Transformer Networks for Video-based Face Alignment (2017).
- 5. Qiqi Hou, Jinjun Wang, Ruibin Bai, Sanping Zhou, Yihong Gong: Face Alignment Recurrent Network(2017).

Thank You