PLANEJAMENTO MVP - E-Commerce

ETAPAS: Definir objetivo, definir perguntas, realizar a busca e coleta de dados, modelar os dados, carregar os dados e por fim, analisar os dados.

OBJETIVO: Desenvolver um pipeline de dados na nuvem para monitorar, analisar e prever o comportamento dos consumidores em uma plataforma de e-commerce. O objetivo é criar um MVP que ajude a melhorar a experiência do usuário e aumentar as vendas.

PERGUNTAS:

- Quais produtos estão tendo maior demanda em diferentes períodos?
- Quais são os padrões de comportamento de compra dos clientes?
- Quais fatores influenciam a decisão de compra dos consumidores?
- Quais produtos são frequentemente comprados juntos?
- Quais são as tendências de vendas futuras com base nos dados históricos?
- Qual categoria é mais comprada para cada gênero?

COLETA DE DADOS: Conjuntos de dados do Kaggle, como "E-Commerce Data".

Catálogo de dados: **Customer ID** (identificador único para cada cliente), **Purchase Date** (data em que foi feita cada compra de cada cliente), **Product Category** (categoria do produto comprado), **Product Price** (preço do produto comprado), **Quantity** (quantidade de produto comprado), **Total Purchase Amount** (total gasto por cliente em cada transação), **Payment Method** (método de pagamento), **Customer Age** (idade do cliente), **Returns** (se foi retornado o produto ou não (0 para não, 1 para sim)), **Customer Name** (nome do cliente), **Age** (idade do cliente), **Gender** (gênero do cliente), **Churn** (se houve ou não churn (1 para sim, 0 para não)).

MODELAGEM:

Irei modelar com o intuito de retificar modelos logicamente incorretos e minimizar redundâncias desses modelos.

TABELA INICIAL:

Customer ID	Purchase Date	Product Category	Product Price	Quantity	Total Purchase Amount	Payment Method	Customer Age	Returns	Customer Name	Age	Gender	Churn
44605	03/05/2023 21:30	Home	177	1	2427	PayPal	31	1.0	John Rivera	31	Female	0
44605	16/05/2021 13:57	Electronics	174	3	2448	PayPal	31	1.0	John Rivera	31	Female	0
44605	13/07/2020 06:16	Books	413	1	2345	Credit Card	31	1.0	John Rivera	31	Female	0
44605	17/01/2023 13:14	Electronics	396	3	937	Cash	31	0.0	John Rivera	31	Female	0
44605	01/05/2021 11:29	Books	259	4	2598	PayPal	31	1.0	John Rivera	31	Female	0
13738	25/08/2022 06:48	Home	191	3	3722	Credit Card	27	1.0	Lauren Johnson	27	Female	0

1a Forma Normal: Deixar valores atômicos.

- Purchase Date será dividida em coluna data e coluna hora. Excluirei a coluna hora para fins de eficiência do modelo.
- Excluirei a coluna age que está duplicando a coluna "customer age".
- Não removi linha duplicada, pois não havia nenhuma.
- Há de ter uma dependência funcional de todos os atributos em relação à chave primária.
- Não pode conter valores nulos em nenhuma das colunas e linhas.

Ao fim de todas as formas normais:
Tabela Fato:
Customer ID (índice, integer)
Purchase Date (date)
Product Category ID (índice, integer, a partir de 1)
Quantity (integer)
Total Purchase Amount (float)
Time Dimension:
Purchase Date
Day (integer)
Month (integer)
Year (integer)
Customer Dimension:
Customer ID
Customer Age (integer)
Customer Name (string)
Gender (string)
Payment Method (string)

Category Dimension:

Churn (integer, 0 ou 1)

Returns (integer, 0 ou 1)

Product Category ID (Index)

Product Category (string)

Product Price (float)

TRATAMENTO DOS DADOS:

Para o tratamento dos dados, optei por realizar essa etapa no colab com os seguintes intuitos: Regularizar coluna data, retirar coluna "Age" duplicada, substituir nulos por 0 e transformar nomes compostos de colunas por nomes simples. Todas as transformações estão documentadas no documento "Tratamento dos dados MVP". Por fim, criei as tabelas de dimensões e fato. Subi elas no github e copiei o "path" para o databricks para análise dos dados.

ANÁLISE DOS DADOS

As análises foram feitas no databricks com auxílio de queries e visualizações da plataforma, em gráficos.

P1: Quais produtos estão tendo maior demanda em diferentes períodos?

Para esta pergunta, obtive como resultado da query o seguinte gráfico:

Podemos ver que os resultados estão bastante alinhados entre si, com crescimento e caídas semelhantes. Analisando a tabela, é possível concluir que eletrônicos e roupas são os mais requisitados durante os meses de 2020. Esta análise nos auxilia a interpretar a quinta pergunta também: **P5: Quais são as tendências de vendas futuras com base nos dados históricos?** Podemos ver que a tendência, visto o comportamento de vendas dos últimos 4 anos, é as vendas aumentarem no início do ano e seguir variando até o mês de agosto. Isto pode ser resultado de um efeito sazonal, pela interpretação do gráfico, ou mesmo da má qualidade da base de dados.

P2: Quais são os padrões de comportamento de compra dos clientes?

Para a segunda pergunta realizei uma query que avalia as compras dos clientes que não retornaram nem desistiram do produto. Para cada cliente, pedi uma média da compra, o valor da compra máxima e mínima, assim como a soma de todas as compras feitas pelo cliente. Com esses dados, consigo observar o padrão de compra de cada cliente em específico, facilitando o processo de venda futura.

Complementando a P2, decidi observar qual produto é mais devolvido pelos clientes. Com isso, realizando um query, é possível realizar a análise de cada produto devolvido por cada cliente.

Destrinchando ainda mais a pergunta, decidi analisar quem é o cliente que mais devolve produtos. Chegando à conclusão de que é o Michael Smith.

Por fim, fiz uma query para descobrir qual o produto mais devolvido ou desistido. Sendo esse o da classe de eletrônicos.

P3: Quais fatores influenciam a decisão de compra dos consumidores?

Para esta pergunta avaliei alguns fatores:

 PASSO 1: Preço do Produto vs. Total de Compras: Analisa a relação entre o preço médio dos produtos e o valor total gasto, agrupado pela categoria do produto.

 PASSO 2: Categoria do Produto vs. Total de Compras: Examina quais categorias de produtos têm maior demanda, medido pelo valor total gasto. PRIMEIRO VOU CHECAR SE A CATEGORIA E A QUANTIDADE POSSUEM RELAÇÃO.

 PASSO 2: Categoria do Produto vs. Total de Compras: Examina quais categorias de produtos têm maior demanda, medido pelo valor total gasto. POR FIM VOU CHECAR SE A CATEGORIA E O VALOR TOTAL DA COMPRA POSSUEM RELAÇÃO.

	1 ² ₃ Total	A ^B _C product_category
1	171138916	Home
2	170716122	Clothing
3	170146025	Electronics
4	169345236	Books

 PASSO 3: Idade do Cliente vs. Total de Compras: Verifica como a idade do cliente está relacionada ao total gasto.

- -- COMPLEMENTANDO A ANÁLISE DA PERGUNTA ANTERIOR, DECIDI CHECAR A MÉDIA DAS COMPRAS
 - PASSO 4: Gênero do Cliente vs. Total de Compras: Analisa a influência do gênero do cliente no valor total gasto.

	△B Gender	1 ² ₃ Total
1	Male	1294942936
2	Female	1282800824

 PASSO 5: Forma de Pagamento vs. Total de Compras: Analisa a influência do método de pagamento do cliente no valor total gasto.

	△B _C Pagamento	1 ² ₃ Total
1	Credit Card	861209602
2	PayPal	859849684
3	Cash	856684474

É possível concluir que a idade é de fato um fator, pois clientes mais velhos possuem maior gastos registrados. Por uma pequena diferença, concluo que o método de pagamento também é um fator, visto à procura pelo credit card. Já as demais hipóteses não possuem resultados claros.

P4: Quais produtos são frequentemente comprados juntos?

Para essa análise, realizei uma query com o seguinte resultado:

	ABC product1_name	ABC product2_name	1 ² ₃ count
1	Clothing	Clothing	1
2	Clothing	Home	1
3	Clothing	Books	1
4	Books	Electronics	1
5	Clothing	Clothing	1
6	Books	Electronics	1
7	Electronics	Books	1
8	Electronics	Books	1
9	Books	Books	1
10	Books	Clothing	1

P6: Qual categoria é mais comprada para cada gênero?

Conclui-se que homens preferem itens de casa, assim como as mulheres.

	△B Gender	${\tt A}^{\tt B}_{\tt C}$ product_category	1 ² 3 Total
1	Male	Home	324469092
2	Male	Clothing	324235310
3	Male	Electronics	323260216
4	Male	Books	322978318
5	Female	Home	322707660
6	Female	Electronics	321295140
7	Female	Clothing	320783341
8	Female	Books	318014683

CONCLUSÃO

Com este trabalho, conclui-se que, dentro da base de dados analisada, há diversos fatores que podem auxiliar a garantir a melhoria da experiência do usuário e aumento das vendas. Analisou-se diversos pontos, porém a base parece ser um tanto quanto montada, pois os valores estavam muito conformes, parecidos, com poucas divergências entre si. Isso impediu que muitos fatores viessem a se tornar um influenciador nas vendas, porém é importante ter em mente que é uma base teste e que as mesmas queries devem ser realizadas para uma nova base de dados. Desta forma, poderão aparecer novos influenciadores, fatores.

Deve-se, portanto, seguir o passo a passo da pipeline realizada para uma nova base de dados. Assim, garantir-se-á um bom planejamento para aumento de vendas.

Para fins de aprendizado, posso afirmar que o trabalho em questão me auxiliou muito na descoberta e conhecimento da plataforma databricks, assim como no desenvolvimento de minhas skills de programação e análise de dados. Embora não tenha sido criado um dash atrelado à base de dados, consegui realizar diversas análises por meio das visualizações do próprio databricks.

Minhas maiores dificuldades rondaram as questões práticas, isto é, como manusear a plataforma. Dificuldade, esta, combatida com maestria por meio do auxílio acadêmico da faculdade, permitindo que eu concluísse o projeto final. Para trabalhos futuros na nova sprint, espero conhecer um pouco mais sobre as visualizações e o poder de análise que elas têm a fornecer.