HW05 [ECE 720]

Digvijay Anand 200478940

Q1. Forward Propagation algorithm:

Solution:

Node	List of incoming edges	Delay known in each path	Path delay	Maximum delay (Node)	
V	b -> V	delay(b) = 0.0; wire_delay(b -> V) = 0.4; gate_delay(V) = 1.0	0.0 + 0.4 + 1.0 = 1.4	1.4	
W	c -> W	delay(c) = 0.0; wire_delay(c -> W) = 0.1; gate_delay(W) = 2.5	0.0 + 0.1 + 2.5 = 2.6	2.6	
	d -> W	delay(d) = 0.1; wire_delay(c -> W) = 0.1; gate_delay(W) = 2.5	0.1 + 0.1 + 2.5 = 2.7	max (2.6, 2.7) = 2.7	
Х	a -> X	delay(a) = 0.0; delay(a -> X) = 1.5; gate_delay(X) = 2.0	0.0 + 1.5 + 2.0 = 3.5	3.5	
	V -> X	delay(V) = 1.4; wire_delay(V -> X) = 0.2; gate_delay(X) = 2.0	1.4 + 0.2 + 2.0 = 3.6	max (3.5, <mark>3.6</mark>) = 3.6	

Y	V -> Y	delay(V) = 1.4; wire_delay(V -> Y) = 0.2; gate_delay(X) = 2.0	1.4 + 0.2 + 2.0 = 3.6	3.6
	W -> Y	delay(V) = 2.7; wire_delay(b -> V) = 0.1; gate_delay(V) = 2.0	2.7 + 0.1 + 2.0 = 4.8	max (3.6, 4.8) = 4.8
Z	X -> Z	delay(X) = 3.6; wire_delay(X -> Z) = 1.3; gate_delay(Z) = 2.0	3.6 + 1.3 + 2.0 = 6.9	6.9
	Y -> Z	delay(Y) = 4.8; wire_delay(Y -> Z) = 0.1; gate_delay(Z) = 2.0	4.8 + 0.1 + 2.0 = 6.9	max (6.9, 6.9) = 6.9
f	Z -> f	delay(Z) = 6.9; wire_delay(Z -> f) = 0.2; op_delay(f) = 0.0	6.9 + 0.2 + 2.0 = 7.1	7.1

Critical path through back-tracing the Forward propagation algorithm:

maximum delay: 7.1

Q2. Static Sensitization:

Solution:

False Path 1: a -> n2 -> d -> n3 -> f -> n4 -> g

False Path 2: b -> n2 -> d -> n3 -> f -> n4 -> g

Q3. Rocket-Chip Simulation Flow

Solution:

For this question, I modified the parameters within each .c file and Makefile. I have reported the set constraints below:

	EMULATOR - RTL			SPIKE - ISS		
Algorithm	parameter	avg. cycles/s	avg. CPI	parameter	avg. cycles/s	avg. CPI
Fibonacci	N = 20, MAXCYCLES = 500000	26054.34	1.12	N = 26 MAXCYCLES = 500000	330024.74	0.999
Gregory-Leibniz	# iterations = 1500, MAXCYCLES = 550000	32036.82	24.158	# iterations = 500000 MAXCYCLES = 550000	352828.71	0.999

Comment:

- In the generated *.emulator.out files, we can see the message Passed after a successful run. I used this to make sure that the design run is successful.
- However, during spike simulation, there was no such message in *.spike.out, so my
 metric for the choice of above parameters are to have the run in tens of seconds as
 instructed.

Explanation:

The discrepancies are included in the following:

- a. Fibonacci is a recursive algorithm, which results in a higher clock cycle count compared to the iterative Gregory-Leibniz algorithm. Each individual integer operation in Fibonacci is relatively inexpensive, leading to an average CPI of around 1.12, which is reasonable.
- b. On the other hand, the Gregory-Leibniz algorithm has a significantly higher average CPI of 24.158 due to the many ALU operations, including floating-point multiplication/division, which typically require 15–25 clock cycles on most modern RISC-V chips. This higher CPI is expected given the nature of the algorithm.
- c. When it comes to average clock cycles per second, Gregory-Leibniz performs better due to its iterative structure, which allows for more efficient memory predictions. In contrast, Fibonacci's recursive nature results in performance degradation.
- d. Since Spike simulation focuses on instruction emulation rather than detailed hardware behavior, there is minimal performance difference between Fibonacci and Gregory-Leibniz in terms of average cycles per second or CPI.