Linear Algebra and its Applications HW#07

- 1. If V is the subspace spanned by (1, 1, 0, 1) and (0, 0, 1, 0), find
 - (a) a basis for the orthogonal complement V^{\perp}
 - (b) the projection matrix P onto V^{\perp}
 - (c) the vector in V closest to the vector b = (0, 1, 0, -1) in V^{\perp}
- 2. (a) Find the bases for the null space and the row space of

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}.$$

- (b) Split $x = (3, 3, 3)^T$ into a row-space component x_r and a null-space component x_n .
- (c) Find the pseudoinverse A^+ such that $A^+Ax=x_r$.
- (d) Let $Ax = (9, 21)^T$. Recover the row space component of x.
- (e) Show that the pseudoinverse found in (c) is the right inverse of A.
- 3. Find the best straight-line fit to the following measurements, and sketch your solution:

$$y = -2$$
 at $t = -1$, $y = 0$ at $t = 0$,
 $y = -3$ at $t = 1$, $y = -5$ at $t = 2$.

- 4. Suppose that instead of a straight line, we fit the data in Problem 3 by a parabola: $y=C+Dt+Et^2$. Formulate the problem into the Ax=b system and find the least-squares solution of x if the system is not solvable.
- 5. Project the vector b=(1, 2) onto a 2-dimensional space with two basis vectors, (1, 0) and (1, 1), and show that, unlike the orthogonal basis, the sum of the two projections does not equal to b.
- 6. If Q_1 and Q_2 are orthogonal matrices, so that $Q^TQ = I$, show that Q_1Q_2 is also orthogonal.
- 7. Find a third column so that the following matrix is orthogonal

$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} \\ \frac{1}{\sqrt{3}} & -\frac{3}{\sqrt{14}} \end{bmatrix}.$$

It must be a unit vector that is orthogonal to the other columns; how much freedom

does this leave? Verify that the rows automatically become orthonormal at the same time.

8. Show that an orthogonal matrix that is upper triangular must be diagonal.