Mathematical Methods Notes

Camila Restrepo

Last updated January 23, 2024

$1 \quad the \ Laplace \ Transform$

 $\mathbf{2}$

Note: Theorem numbers come from the order they are presented in lecture, and do not correspond to any textbook or written course material.

Week 1

the Laplace Transform

Example of transformations:

Let's ponder for a moment some of the many fantastic transformations we've studied in the past:

1.
$$f(x) = x^2$$

$$2. \ \frac{d}{dx}x^2 = 2x$$

3.
$$\int x^2 dx = \frac{1}{3}x^3 + C$$

4.
$$\int_0^3 x^2 dx = g$$

Definition of the Laplace Transform:

For a function f(t),

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st}dt, s > 0$$

where $\mathcal{L}\{f(t)\}\$ is a function of s.

Remark: \mathcal{L} provides an efficient method to solve ODEs.

Theorem 1.1 Linearity of the Laplace transform

For a, b constants, and f, g functions, The Laplace transform satisfies

$$\mathcal{L}\left\{af(t) + bg(t)\right\} = a \mathcal{L}\left\{f(t)\right\} + b \mathcal{L}\left\{g(t)\right\}$$

Definition of the kernel:

 e^{-st} is called the **kernel** of the Laplace transform.

Definition of the domain:

The **domain** of $F(s) = \mathcal{L}\{f(t)\}\$ is the set of values of s such that F(s)converges.

Example of computing $\mathcal{L}\{t\}$:

Recall integration by parts: $\int u dv = uv - \int v du$

$$\begin{split} \mathcal{L}\left\{t\right\} &= \int_{0}^{\infty} t e^{-st} dt \\ &= \lim_{\beta \to \infty} \left(\int_{0}^{\beta} t e^{-st} dt \right) \\ &= \lim_{\beta \to \infty} \left(t \left(-\frac{1}{s} \right) e^{st} \Big|_{0}^{\beta} - \int_{0}^{\beta} \left(-\frac{1}{s} e^{-st} dt \right) \right) \\ &= \lim_{\beta \to \infty} \left(-\frac{\beta}{s} e^{s\beta} + \frac{1}{s} \int_{0}^{\beta} e^{-st} dt \right) \\ &= \lim_{\beta \to \infty} \left(-\frac{\beta}{s} e^{-s\beta} + \frac{1}{s} \left[-\frac{1}{s} e^{-st} \right]_{0}^{\beta} \right) \\ &= \lim_{\beta \to \infty} \left(-\frac{\beta}{s} e^{-s\beta} + \frac{1}{s^2} \left[1 - e^{s\beta} \right] \right) \\ &= \frac{1}{s^2} \end{split}$$

Wow, that computation sucked! Luckily, we will be given formula sheets to speed up these calculations. This is because the objective of this class is to solve ODEs using Laplace as a tool, not to practice computing integration by parts.

Recall: $\Gamma(n) = (n-1)!$

Theorem 1.2 Laplace transformations of power functions We have, in general, $\mathcal{L}\left\{t^p\right\} = \int_0^\infty t^p e^{-st} dt = \frac{1}{s^{p+1}} \int_0^\infty x^p e^- x dx$ where x = st. So

$$\mathcal{L}\left\{t^{p}\right\} = \frac{1}{s^{p+1}}\Gamma(p+1)$$

When $p = n \in \mathbb{N}$, we have

$$\mathcal{L}\left\{t^{n}\right\} = \frac{n!}{s^{n+1}}$$

4

Theorem 1.3 Properties of the Gamma function

- 1. When p > 0, $\Gamma(p+1) = p\Gamma(p)$ (Recurrence Relation)
- 2. When $p \in \mathbb{N}, \, \Gamma(p) = (p-1)!$ (Generalization of Factorial)
- 3. When $p \leq 0$ and $p \in \mathbb{Z}$, $\Gamma(p)$ does not exist
- 4. When p<0 and $p\notin\mathbb{Z},$ use successive applications of the Recurrence Relation $\Gamma(p)=\frac{1}{p}\Gamma(p+1)$

Remark: From the definition we can find $\Gamma(\frac{1}{2})=\sqrt{\pi}$

Example of $\Gamma\left(\frac{3}{2}\right)$:

$$\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$
$$= \frac{1}{2}\sqrt{\pi}$$

Example of $\mathcal{L}\left\{t^{\frac{1}{2}}\right\}$:

$$\mathcal{L}\left\{t^{\frac{1}{2}}\right\} = \Gamma\left(\frac{3}{2}\right)$$