Kontextfreie Sprachen

Programmieren und Software-Engineering Homomorphismen, Formale Sprachen und Syntax-Analyse

22. Februar 2023

$$\{a^nb^n\mid n>0\}.$$

$$\{a^nb^n\mid n>0\}.$$

• Beispiel: {ab, aabb, aaabbb, aaaabbbb, . . . }

$$\{a^nb^n\mid n>0\}.$$

- Beispiel: {ab, aabb, aaabbb, aaaabbbb, . . . }
- Sprache ist nicht regulär, da "Mitzählen" nicht möglich

$$\{a^nb^n\mid n>0\}.$$

- Beispiel: {ab, aabb, aaabbb, aaaabbbb, . . . }
- Sprache ist nicht regulär, da "Mitzählen" nicht möglich
- Lösung:

$$P = \{S \rightarrow aSb|ab\}$$

$$\{a^{n+1}b^{3n} \mid n \geq 0\}.$$

$$\{a^{n+1}b^{3n} \mid n \geq 0\}.$$

• Beispiel: {a, aabbb, aaabbbbbbb, . . . }

$$\{a^{n+1}b^{3n} \mid n \geq 0\}.$$

- Beispiel: { a, aabbb, aaabbbbbbb, . . . }
- Lösung:

$$P = \{S \rightarrow aSbbb|a\}$$

$${a^nb^{n+2}c^md^{m+1} \mid n, m \ge 0}.$$

$${a^nb^{n+2}c^md^{m+1} \mid n, m \ge 0}.$$

• Beispiel: aabbbbcccdddd(n = 2, m = 3)

$${a^nb^{n+2}c^md^{m+1} \mid n, m \ge 0}.$$

- Beispiel: aabbbbcccdddd(n = 2, m = 3)
- Lösung:

$$P = \{S \rightarrow AB, \\ A \rightarrow aAb \mid bb, \\ B \rightarrow cBd \mid d\}$$

$$\{i^n + i^m = i^{n+m} \mid n, m > 0\}, und$$

 $T = \{i, +, =\}.$

$$\{i^n + i^m = i^{n+m} \mid n, m > 0\}, und$$

 $T = \{i, +, =\}.$

• Beispiel: iiii + ii = iiiiii

$$\{i^n + i^m = i^{n+m} \mid n, m > 0\}, und$$

 $T = \{i, +, =\}.$

- Beispiel: iiii + ii = iiiiii
- Lösung:

$$P = \{S \rightarrow iSi \mid i + Ai, A \rightarrow iAi \mid i = i\}$$

- Aufgrund der Ableitungsregeln der Form S → tAB mit t ∈ T und S, A, B ∈ N ist ersichtlich, dass einfache endliche Automaten für kontextfreie Sprachen nicht funktionieren.
- Es ist unmöglich von einem Knoten in einem Schritt über eine Kante zu zwei (oder mehreren) Knoten zu gelangen.
- Endliche Automaten können somit nicht zur Überprüfung, ob ein Wort Element der kontextfreien Sprache ist, herangezogen werden.
- Der Automat für kontextfreie Sprachen ist der Kellerautomat
 - Kellerautomaten verfügen über einen Last-In First-Out Speicher
 - Die Zustandsübergänge hängen vom gelesenen Zeichen, dem Wert im Speicher (und gegebenenfalls dem Automatenzustand) ab.
- Zur grafischen Veranschaulichung, sowie zur Überprüfung (Ableitung) von Gültigkeit von Worten können Syntaxdiagramme verwendet werden.

$$L = \{w \in \{0,1\}^* \mid n_0(w) = n_1(w)\}.$$

- Dabei gibt die Funktion $n_x(w)$ die Anzahl der Vorkommnisse von x in w an.
- Beispiel: 00111101100001 mit $n_0(w) = n_1(w) = 7$.

$$L = \{w \in \{0,1\}^* \mid n_0(w) = n_1(w)\}.$$

- Dabei gibt die Funktion $n_x(w)$ die Anzahl der Vorkommnisse von x in w an.
- Beispiel: 00111101100001 mit $n_0(w) = n_1(w) = 7$.
- Lösung:

$$P = \{S \rightarrow 0E \mid 1N \mid \varepsilon$$

$$E \rightarrow 0EE \mid 1S,$$

$$N \rightarrow 0S \mid 1NN \}$$

```
00111101100001
0E
```

00111101100001	
0E	
00EE	

00111101100001	
0E	
OOEE	
001SE	

00111101100001	
0E	
OOEE	
001SE	
001E	

00111101100001	
0E	
OOEE	
001SE	
001E	
0011S	

00111101100001	
0E	
OOEE	
001SE	
001E	
0011S	
00111N	

00111101100001	
0E	
OOEE	
001SE	
001E	
0011S	
00111N	
001111NN	

00111101100001	
0E	
OOEE	
001SE	
001E	
0011S	
00111N	
001111NN	
0011110SN	

00111101100001	00111101100001
0E	0011110N
OOEE	
001SE	
001E	
0011S	
00111N	
001111NN	
0011110SN	

00111101100001	00111101100001
0E	0011110N
OOEE	0011110N
001SE	
001E	
0011S	
00111N	
001111NN	
0011110SN	

00111101100001	00111101100001
0E	0011110N
OOEE	0011110N
001SE	00111101NN
001E	
0011S	
00111N	
001111NN	
0011110SN	

00111101100001	00111101100001
0E	0011110N
00EE	0011110N
001SE	00111101NN
001E	001111011NNN
0011S	
00111N	
001111NN	
0011110SN	

00111101100001	00111101100001
0E	0011110N
OOEE	0011110N
001SE	00111101NN
001E	001111011NNN
0011S	001111011000S
00111N	
001111NN	
0011110SN	

00111101100001	00111101100001
0E	0011110N
OOEE	0011110N
001SE	00111101NN
001E	001111011NNN
0011S	001111011000S
00111N	0011110110000E
001111NN	
0011110SN	

00111101100001	00111101100001
0E	0011110N
OOEE	0011110N
001SE	00111101NN
001E	001111011NNN
0011S	001111011000S
00111N	0011110110000E
001111NN	00111101100001S
0011110SN	

00111101100001	00111101100001
0E	0011110N
OOEE	0011110N
001SE	00111101NN
001E	001111011NNN
0011S	001111011000S
00111N	0011110110000E
001111NN	00111101100001S
0011110SN	00111101100001

$$L = \{a^i b^{2j+3} c^j c^k \mid k > 0, j \ge 0, k \le i \le 3k\}.$$

$$L = \{a^i b^{2j+3} c^j c^k \mid k > 0, j \ge 0, k \le i \le 3k\}.$$

• Beispiel: aaaaaabbbccc

$$L = \{a^{i}b^{2j+3}c^{j}c^{k} \mid k > 0, j \ge 0, k \le i \le 3k\}.$$

- Beispiel: aaaaaabbbccc
- Lösung:

$$P = \{S \rightarrow aSc \mid aaSc \mid aAc \mid aaAc \mid aaAc \mid aaAc, A \rightarrow bbAc \mid bbb\}$$

• Gesucht sei die Grammatik zur kontextfreien Sprache

$$L = \{w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) + 2n_c(w)\}.$$

• Gesucht sei die Grammatik zur kontextfreien Sprache

$$L = \{w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) + 2n_c(w)\}.$$

• Beispiel: aaacabccabaaa

• Gesucht sei die Grammatik zur kontextfreien Sprache

$$L = \{w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) + 2n_c(w)\}.$$

- Beispiel: aaacabccabaaa
- Lösung:

$$P = \{S \rightarrow \varepsilon \mid aA \mid bB \mid cC, \\ A \rightarrow aD \mid bS \mid cB, \\ B \rightarrow aS \mid bC \mid cBC, \\ C \rightarrow aB \mid bC \mid cCC, \\ D \rightarrow aAD \mid aDA \mid bA \mid cS\}$$

- Bemerkungen:
 - A ... ein a zuviel
 - B ... ein b zuviel, bzw. 1 a zuwenig
 - C ... zwei a's zuwenig
 - D ... zwei a's zuviel

• Gesucht sei die Grammatik zur Sprache

$$\{a^nb^nc^n\mid n>0\}.$$

• Gesucht sei die Grammatik zur Sprache

$$\{a^nb^nc^n\mid n>0\}.$$

• Beispiel: {abc, aabbcc, aaabbbccc, aaaabbbbcccc, ...}

• Gesucht sei die Grammatik zur Sprache

$$\{a^nb^nc^n\mid n>0\}.$$

- Beispiel: {abc, aabbcc, aaabbbccc, aaaabbbbcccc, ...}
- Die Sprache ist nicht kontextfrei, da die in den Beispielen gezeigten Mechanismen zur Generierung zweier Elemente mit der selben Anzahl nicht auf den Fall von drei Elementen übertragbar ist.

• Gesucht sei die Grammatik zur Sprache

$$\{a^nb^nc^n\mid n>0\}.$$

- Beispiel: {abc, aabbcc, aaabbbccc, aaaabbbbcccc, . . . }
- Die Sprache ist nicht kontextfrei, da die in den Beispielen gezeigten Mechanismen zur Generierung zweier Elemente mit der selben Anzahl nicht auf den Fall von drei Elementen übertragbar ist.
- Die Grammatik ist kontextsensitiv (kontextabhängig, umgebungsabhängig)

Die Produktionsregeln der kontextsensitiven Gr. zu $\{a^nb^nc^n \mid n>0\}$ lauten:

$$P = \{S \rightarrow aSAB \mid aAB \\ BA \rightarrow AB \\ aA \rightarrow ab \\ bA \rightarrow bb \\ bB \rightarrow bC \\ CB \rightarrow cc\}$$

Ableitung von aabbcc

$$S \Rightarrow aSAB$$

 $\Rightarrow aaABAB$
 $\Rightarrow aabBAB$
 $\Rightarrow aabABB$
 $\Rightarrow aabbBB$
 $\Rightarrow aabbCB \Rightarrow aabbcc$

$a^n b^n c^n \mid n > 0$ mittels Typ-0 Grammatik

Ableitung von aaabbbccc:

Produktionsregeln:

$$P = \{S \rightarrow abc$$

 $S \rightarrow A$
 $A \rightarrow aABc$
 $A \rightarrow abc$
 $cB \rightarrow Bc$
 $bB \rightarrow bb\}$

$$\begin{array}{ccc} S & \Rightarrow & \\ & \Rightarrow & \end{array}$$

$$\Rightarrow$$
 aABc \Rightarrow aaABcBc (mittels $A \rightarrow aABc$) \Rightarrow aaabcBcBc (mittels $A \rightarrow abc$)

$$\Rightarrow$$
 aaabBccBc (mittels cB \rightarrow Bc)

$$\Rightarrow$$
 aaabBcBcc (mittels cB \rightarrow Bc)

$$\Rightarrow$$
 aaabbcBcc (mittels bB \rightarrow bb)

$$\Rightarrow$$
 aaabbBccc (mittels cB \rightarrow Bc)

$$\Rightarrow$$
 aaabbbccc (mittels bB \rightarrow bb)

Syntaxdiagramme

- Für eine ausführliche Darstellung sei auf das Skriptum [1] Seiten 24/25 verwiesen!
- Die Terminalsymbole sind durch Kreise oder Ellipsen dargestellt.
- Die Nonterminale sind durch Rechtecke dargestellt.

Syntaxdiagramme: PL/SQL

select into statement ::=

Quelle: [6]

Syntaxdiagramme: PL/SQL

select item ::=

Quelle: [6]

Literaturübersicht I

- [1] Berger, Krieger, Mahr: "Grundlagen der elektronischen Datenverarbeitung", Skriptum
- [2] Dirk W. Hoffmann: "Theoretische Informatik", Hanser, 3. Auflage
- [3] Gernot Salzer: "Einführung in die Theorie der Informatik", Skriptum, TU Wien, 2001
- [4] Wikipedia (Englisch): https://en.wikipedia.org/
- [5] Wikipedia (Deutsch): https://de.wikipedia.org/
- [6] Oracle: https://docs.oracle.com/cd/B19306_01/appdev.102/ b14261/selectinto_statement.htm#i36066