MODÉLISATION D'UN AMPLIFICATEUR PAR UN RÉSEAU DE NEURONES

MAPRENE[XXI]

Tilddeli layer i Tilddeli layer 2

PERCEPTRON MULTI-COUCHES (MLP)

une couche de neurones d'entrée (paramètres du système), des couches de neurones cachées (fonction non linéraire appliquée à une combinaison linéaire des sorties des neurones de la couche précédente), et une couche de sortie (prévision du réseau pour chaque paramètre de sortie)

LONG SHORT TERM MEMORY (LSTM)

Une alternative au MLP, utilisant un système de "gates" afin d'apprendre des données

passées. Réseau de neurones récursif.

Baptiste MOALIC

Amplificateur non linéaire

modélisation:

$$y = \sum_{i} h_{i} * x^{i}$$

génération signal

- -> CNA + passe-bas
- -> modulation I/Q
 - -> amplification
 - -> démodulation
- -> CAN + passe-bas
- -> mesure oscilloscope

Entraînement

Paramètres:

- Nombre de couches cachées
- Nombre de neurones par couche
- Fonction d'activation pour chaque couche
- Mémoire de l'amplificateur (taille de hi pour tout i)
 - = taille de la couche d'entrée / 2

