"Individual commitment to a group effort - that is what makes a team work, a company work, a society work, a civilization work." - Vince Lombardi

LECTURE 7

GROUPS

ANDREW MISSELDINE

3.2. Definitions and Examples

In this chapter we introduce the most fundamental and most important structure in abstract algebra, the group.

Definition 3.2.1. A binary operation \circ on a set G is a function \circ : $G \times G \to G$. For an element $(a,b) \in G \times G$, the image of (a,b) under \circ is denoted $a \circ b$ (or just juxtaposition ab when the operation is clear from context), that is, $(a,b) \mapsto a \circ b$. We will use the notation (G,\circ) to denote that G is a set and \circ a binary operation on G.

Example 3.2.2. Addition and multiplication are binary operations on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} . Addition and multiplication also are binary operations on \mathbb{Z}_n , the set of congruence classes modulo n.

Vector addition is a binary operation on \mathbb{R}^n . On the other hand, scalar multiplication of vectors is not a binary operation because it is a product of a scalar and a vector producing a vector, $\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$. To be a binary operation, the two factors and the product must all be elements of the same set. Likewise, the dot product of two vectors is not a binary operation since it is a function of the form $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, that is, the product is not a vector but a scalar. Conversely, the cross product on \mathbb{R}^3 is a binary operation $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ since the product of two vectors is a vector.

Matrix multiplication is a binary operation on the set of $n \times n$ matrices with real scalars, $M_n(\mathbb{R})$, but not on the set of all matrices because the product of two matrices might be undefined if the dimensions are incompatible. This is just a special case of function composition. Recall that B^A is the set of all functions of the form $f: A \to B$. Then while function composition does not form a binary operation for all functions since many composites are undefined, it does form a binary operation on X^X , that is, on functions of the form $f: X \to X$.

Definition 3.2.3. When a binary operation \circ is defined on a set X, we say that a subset $Y \subseteq X$ is <u>closed</u> under \circ if the restriction of \circ to Y forms a binary operation on Y, that is, if $a, b \in Y$ then $a \circ b \in Y$.

Example 3.2.4. Subtraction is a binary operation for \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} . Note that subtraction is NOT a binary operation for \mathbb{N} since the difference of two natural numbers need not be a natural number, e.g. $3-7=-4\notin\mathbb{N}$. In other words, \mathbb{N} is not closed under subtraction.

Division is not a binary operation for \mathbb{Z} , \mathbb{Q} , \mathbb{R} , nor \mathbb{C} since division by zero is undefined. Let \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* , and \mathbb{C}^* denote the subset of nonzero numbers of \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , respectively. Then division is a binary operation on \mathbb{Q}^* , \mathbb{R}^* , and \mathbb{C}^* , but not a binary operation for \mathbb{Z}^* since the quotient of two integers need not be a nonzero integer, e.g. $1 \div 2 = \frac{1}{2} \notin \mathbb{Z}^*$. Thus, \mathbb{Z}^* is not closed under division.

The set of permutations S_X is closed under composition inside of X^X . In this case, function composition is typically called permutation multiplication.

Definition 3.2.5. We say that (G, \circ) is a **group** if the following three axioms are satisfied by the binary operation:

(a) (associativity) For all $g, h, k \in G$, it holds that

$$g \circ (h \circ k) = (g \circ h) \circ k.$$

(b) (identity) There exists an element $e \in G$ such that for all $g \in G$ we have

$$g \circ e = e \circ g = g$$
.

(c) (inverses) For all $g \in G$ there is an element $g^{-1} \in G$ such that

$$g \circ g^{-1} = g^{-1} \circ g = e.$$

When the binary operation \circ is clear from context, we will say that G is a group instead of (G, \circ) .

Furthermore, we say G is an **Abelian group** if G is a group which satisfies an additional axiom:

(d) (commutativity) For all $g, h \in G$, it holds that

$$g \circ h = h \circ g$$
.

For Abelian groups, the operation is often denoted as +, the identity as 0, and the inverse of a as -a.

Example 3.2.6. The structures $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are all Abelian groups, where the identity element is 0 and the inverse of x is just -x. The structure $(\mathbb{N}, +)$ is not a group because not all elements have an additive inverse, e.g. $-1 \notin \mathbb{N}$. The set \mathbb{Z}^+ of positive integers with addition is also not a group since it has no identity element.

Similarly, (\mathbb{Q}^*, \cdot) , (\mathbb{R}^*, \cdot) , and (\mathbb{C}^*, \cdot) are all Abelian groups, where the identity element is 1 and the inverse of x is just 1/x, but (\mathbb{N}^*, \cdot) and (\mathbb{Z}^*, \cdot) are not because not all elements have inverses.

The structures $(\mathbb{Z}, -)$, $(\mathbb{Q}, -)$, $(\mathbb{R}, -)$, and $(\mathbb{C}, -)$ are not groups. Although each set has an identity[†] and all elements have inverses, the operation is not associative. Note that $3 - (2 - 1) = 3 - 1 = 2 \neq 0 = 1 - 1 = (3 - 2) - 1$. Of course, the operation of subtraction is noncommutative.

The structure (X^X, \circ) where \circ is just function composition and (S_X, \circ) with permutation multiplication (function composition) are both non-Abelian groups since their binary operation is noncommutative. The group S_X is called the **symmetric group** on X.

Example 3.2.7. The set of congruence classes modulo n, $\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$ is an Abelian group under addition. The identity element of \mathbb{Z}_n is the congruence class of all multiples of n, namely [0]. For a congruence class [k], the inverse is the class [-k]. The fact that addition is associative and commutative is an immediate consequence of associativity and commutativity on $(\mathbb{Z}, +)$ and the division algorithm.

When working with \mathbb{Z}_n , it is common to identify a class [k] with its unique representative between 0 and n, that is, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ and $k + \ell$ is the unique representative of $[k + \ell]$ between 0 and n. With this notation, the identity of \mathbb{Z}_n is 0 and the inverse of k is n - k.

Let $\mathbb{Z}_n^* = \{k \in \mathbb{Z}_n \mid \gcd(k,n) = 1\}$ (the book uses the notation U(n) to denote the set of **units** in \mathbb{Z}_n). Then (\mathbb{Z}_n^*, \cdot) is also an Abelian group where the identity is 1. The Euclidean algorithm is used to compute inverses in this group because it computes a linear combination ak + bn = 1 which implies that ak = 1 - bn, that is, $ak \equiv 1 \pmod{n}$. Thus, $a = k^{-1}$.

[†]Actually, these algebraic structures only have a **right identity**, that is, an element e such that $g \circ e = g$, $\forall g \in G$. Similarly, we can define a **left identity** as an element e such that $e \circ g$, $\forall g \in G$. A left- or right-identity is called a **one-sided identity**. The identity defined in Definition 3.2.5 could more precisely be called a **two-sided identity**. It can be proven that with an associative operation, a one-sided identity is necessarily a two-sided identity is unique. Analogous definitions and statement can be said about one- and two-sided inverses.

The importance of the group structure is that groups are exactly the setting where we can solve equations.

Example 3.2.8. Solve the equation $2x + 1 \equiv 5 \pmod{7}$ for x.

To begin we apply the additive inverse of 1 to both sides of the equation:

$$(2x+1) + (-1) \equiv 5 + (-1) \pmod{7}$$

 $2x + (1 + (-1)) \equiv 4 \pmod{7}$
 $2x + 0 \equiv 4 \pmod{7}$
 $2x \equiv 4 \pmod{7}$

Notice that to "move" 1 to the other side of the equation we used inverses, associativity, and identity.

The Euclidean algorithm (or guess-and-check) can be used to show that (4)2 + (-1)7 = 1. Thus, $2^{-1} \equiv 4 \pmod{7}$.

$$(4)(2x) \equiv 4(4) \pmod{7}$$

$$(4 \cdot 2)x \equiv 16 \pmod{7}$$

$$8x \equiv 16 \pmod{7}$$

$$x \equiv \boxed{2} \pmod{7}$$

Homework:

Judson 3.5: 1, Pick 2 (7, 10, 12-14), Pick 2 (19-24)