

Advanced Data Structures

Simon Gog – gog@kit.edu

Predecessor data structures

We want to support the following operations on a set of integers from the domain U = [u].

```
insert(x) Add x to S. I.e. S' = S \cup \{x\}.

delete(x) Delete x from S. I.e. S' = S \setminus \{x\}.

member(x) = |\{x \mid x \in S\}|

predecessor(x) = \max\{y \mid y \leq x \land y \in S\}

successor(x) = \min\{y \mid y > x \land y \in S\}
```

where x is an integer in U and S the set of integers of size n stored in the data structure.

- $\min\{S\} = \operatorname{successor}(0)$

Solution know from "Algo I": Balanced search trees. E.g. red-black trees. In all comparison based approaches at least one operation takes $\Omega(\log n)$ time. Why?

Predecessor data structures

 $\Omega(\log n)$ bound can be beaten in the *word RAM* model:

- Memory is organized in words of $b \in O(\log u)$ bits
- A word can be accessed in constant time
- We can address all data using one word
- Standard arithmetic operations take constant time on words (i.e. addition, subtraction, division, shifts . . .)

We first concentrate on the static case: The set S is fixed. I.e. no insert and delete operations.

Conceptional: Complete binary tree of height $w = \lceil \log u \rceil$

Conceptional: Complete binary tree of height $w = \lceil \log u \rceil$

• Conceptional: Complete binary tree of height $w = \lceil \log u \rceil$

• Conceptional: Complete binary tree of height $w = \lceil \log u \rceil$

From $O(\log u)$ to $O(\log \log u)$...

From $O(\log u)$ to $O(\log \log u)$...

- Generate a perfect hash table h_i for each level i (keys are the present nodes)
- Note: Node numbers (represented in binary) are prefixes of keys in S

From $O(\log u)$ to $O(\log \log u)$...

- Generate a perfect hash table h_i for each level i (keys are the present nodes)
- Note: Node numbers (represented in binary) are prefixes of keys in S

Query time from $O(\log u)$ to $O(\log \log u)$...

- Member queries can be answered in constant time by lookup in the leaf level using prefixes of the searched key.
- There are w prefixes, i.e. binary search takes $O(\log w)$ or $O(\log \log u)$ time
- Space: $w \cdot O(n)$ words, i.e. $O(n \log u)$ bits

Predecessor/Successor queries

- For each node store a pointer to the maximal/minimal leaf in its subtree
- Use a double linked list to represent leaf nodes.
- Solving predecessor: Search for a node v which represents the longest prefix of x with any key in S. Two cases:
 - Minimum in subtree of *v* is larger *x*: Return element to the left of the leaf.
 - Maximum in the subtree of v is smaller than x. Return maximum.

Space from $O(n \log u)$ to O(n) words...

- Split S into $\frac{n}{w}$ blocks of $O(\log u)$ elements $B_0, B_1, \ldots, B_{\lceil \frac{n}{m} \rceil 1}$.
- $\max\{B_i\} < \min\{B_{i+1}\} \text{ for } 0 \leq i < \lceil \frac{n}{w} \rceil 1$
- Let $r_i = \max\{B_i\}$ be a *representative* of block B_i .
- Build x-fast trie over representatives.

Total space: $\frac{n}{w} \cdot O(w) + O(n) = O(n)$ words

Space from $O(n \log u)$ to O(n) words...

- Use sorted array to represent B_i
- A member query is answered as follows
 - Search for successor of x in x-trie of r_i 's
 - Let B_k be the block of the successor of x
 - Search in $O(\log w) = O(\log \log u)$ time for x in B_k
- How does predecessor/successor work?

Changes to make structure dynamic

- use cuckoo hashing for x-fast trie
- use balanced search trees of size between $\frac{1}{2}w$ and 2w for B_i s
- representative is not the maximum, but any element separating two consecutive groups

Summary:

Operation	static y-fast trie	dynamic y-fast trie
pred(x)/succ(x)	$O(\log \log u)$ w.c.	$O(\log \log u)$
insert(x)/delete(x)		$O(\log \log u)$ exp. & am.
construction	O(n) exp.	

- Conceptual bitvector B of length u with B[i] = 1 for all $i \in S$
- Split B into u/\sqrt{u} blocks (blue blocks) $B_0, B_1, ...$
- Set bit in R[i] if there is at least one bit set in Bi
- Also store the minimum/maximum of S

Here: u = 16

- Define van Emde Boas tree (vEB tree) recursively
- I.e. use vEB to represent B_i 's and R
- vEB(u) denotes the vEB tree on a universe of size u
- Base case: u = 2. Only one node and variables min, max.

Technicalities

- $\sqrt[4]{u} = 2^{\lfloor (\log u)/2 \rfloor}$
- $high(x) = \left| \frac{x}{\sqrt[4]{u}} \right|$ (block that contains x)
- $low(x) = x \mod \sqrt[4]{u}$ (relative position of x in $B_{high(x)}$)

Predecessor(x, B) (first attempt)

- Let y = height(x) and $z = Predecessor(low(x), B_y)$
- If $z \neq \bot$ return $z + y \cdot \sqrt[4]{u}$
- Let b = Predecessor(high(x), R)
- If $b \neq \bot$ return $max(B_b) + b \cdot \sqrt[4]{u}$
- Return ⊥

Predecessor(x, B) (first attempt)

- Let y = height(x) and $z = Predecessor(low(x), B_v)$
- If $z \neq \bot$ return $z + y \cdot \sqrt[4]{u}$
- Let b = Predecessor(high(x), R)
- If $b \neq \bot$ return $max(B_b) + b \cdot \sqrt[4]{u}$
- Return 1

Problem

- Recurrence for time complexity: $T(u) = 2T(\sqrt{u}) + \Theta(1)$
- Substitute *u* by 2^k and define $S(k) = T(2^k)$

Predecessor(x, B) (first attempt)

- Let y = height(x) and $z = Predecessor(low(x), B_v)$
- If $z \neq \bot$ return $z + y \cdot \sqrt[4]{u}$
- Let b = Predecessor(high(x), R)
- If $b \neq \bot$ return $max(B_b) + b \cdot \sqrt[4]{u}$
- Return 1

Problem

- Recurrence for time complexity: $T(u) = 2T(\sqrt{u}) + \Theta(1)$
- Substitute *u* by 2^k and define $S(k) = T(2^k)$
- $S(k) = 2S(\frac{k}{2}) + \Theta(1)$ (solved by Master Theorem)
- We get $T(u) = O(\log u \log \log u)$.

Predecessor(x, B) (first attempt)

- Let y = height(x) and $z = Predecessor(low(x), B_y)$
- If $z \neq \bot$ return $z + y \cdot \sqrt[4]{u}$
- Let b = Predecessor(high(x), R)
- If $b \neq \bot$ return $max(B_b) + b \cdot \sqrt[4]{u}$
- Return ⊥

Problem

- Recurrence for time complexity: $T(u) = 2T(\sqrt{u}) + \Theta(1)$
- Substitute u by 2^k and define $S(k) = T(2^k)$
- $S(k) = 2S(\frac{k}{2}) + \Theta(1)$ (solved by Master Theorem)
- We get $T(u) = O(\log u \log \log u)$.
- Next: improve time to $O(\log \log u)$

Predecessor(x, B) (second attempt)

- If x > max return max
- Let y = high(x), if $min(B_v) < x$ return $Predecessor(low(x), B_v)$
- Let b = Predecessor(high(x), R)
- If $b \neq \bot$ return $max(B_b) + b \cdot \sqrt[4]{u}$
- Return 1

- Recurrence for time complexity: $T(u) = T(\sqrt{u}) + O(1)$
- Solution (Master Theorem or drawing recursion tree): $T(u) = \Theta(\log \log u)$

Space complexity

- Recurrence: $S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \Theta(1)$
- Solution: $S(u) \in O(u)$

Note

- Space complexity of x-fast and y-fast tries are better for small sets
- Van Emde Boas Tree does not rely on hashing