EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit No. 9576

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission F	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	
	TPY**			
400	Flare	VOC NO _X SO ₂ CO	2.15 0.26 0.01 0.52	9.41 1.14 0.01 2.28
2A	Dryer I 1A <0.01	VOC PM ₁₀	2.97 <0.01	13.0
2B	Dryer I 2A <0.01	VOC PM ₁₀	0.29 <0.01	1.27
2C1	Dryer I 3A1	VOC PM ₁₀	0.14 <0.01	0.62 0.01
2C2	Dryer I 3A2	VOC PM ₁₀	0.14 <0.01	0.62 0.01
2D	Dryer I 1B <0.01	VOC PM ₁₀	2.97 <0.01	13.0
2E	Dryer I 2B <0.01	VOC PM ₁₀	0.29 <0.01	1.27
2F	Dryer I 3B1	VOC PM ₁₀	0.14 <0.01	0.62 0.01

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	<u> 1b/hr</u>	<u> </u>
2F2	Dryer I 3B2	VOC PM ₁₀	0.14 <0.01	0.62 0.01
3A	Coagulation Vent IA	VOC	0.86	3.78
3B	Coagulation Vent IB	VOC	0.86	3.78
5	Acetic Acid Scrubber	I VOC	0.10	0.45
6A	Chip Wash Vent IA <0.01	VOC	<0.01	
6B	Chip Wash Vent IB <0.01	VOC	<0.01	
7	Cooling Tower I <0.01	VOC	<0.01	
8	Wastewater Pool I	VOC	0.64	2.80
9	Boiler	VOC NO_X	0.25 12.35	1.08
	54.08	SO_2 PM_{10} CO	0.05 0.44 3.09	0.23 1.93
	13.52			
10F	Fugitives - Phase I (4 34.82	4) VOC	7.26	
22A-H	8 Chip Silos	PM_{10}	0.10	0.02
23	5 Pelletizing Silos	PM_{10}	0.01	0.06

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission lb/hr	Rates * TPY**
24	2 Packaging Silos	PM_{10}	<0.01	0.01
51	Flare 10.70	VOC	2.40	
		NO_{x} SO_{2}	0.40 <0.01	1.50
	<0.01	PM ₁₀ CO	0.01 0.08	0.05 0.40
25A	Dryer I1A - I2A <0.01	PM_{10}	<0.01	
25B1	Dryer I2A - I2A <0.01	PM_{10}	<0.01	
25B2	Dryer I2A - I3A2 <0.01	PM_{10}	<0.01	
25C	Dryer I1B - I2B <0.01	PM_{10}	<0.01	
25D1	Dryer I2BB - I3B1 <0.01	PM_{10}	<0.01	
25D2	Dryer I2B - I3B2 <0.01	PM_{10}	<0.01	
26	Dust Collection Vent : <0.01	I PM ₁₀	<0.01	
27	Extruder Hopper I	PM_{10}	<0.01	0.02
28	Pelletizing Dryer I <0.01	PM_{10}	<0.01	

Emission <u>Point No. (1)</u>	Source Name (2)	Air Contaminant Name (3)	Emission lb/hr	Rates * TPY**
29	Pellet Dryer I	PM ₁₀	<0.01	0.01
52A	Dryer II-1A 13.27	VOC	3.10	
	<0.01	PM_{10}	<0.01	
52B	Dryer II-2	VOC	0.30	1.30
	<0.01	PM_{10}	<0.01	
52C	Dryer II-3A	VOC PM ₁₀	0.30 <0.01	1.30 0.02
52D	Dryer II-1B 13.60	VOC	3.10	
	<0.01	PM_{10}	<0.01	
52E	Dryer II-2B	VOC PM ₁₀	0.30 <0.01	1.30
	<0.01			
52F	Dryer II-3B	VOC PM ₁₀	0.30 <0.01	1.30
	<0.01			
53A	Coagulation Vent II-A	VOC PM ₁₀	0.90 <0.01	3.90 0.02
53B	Coagulation Vent II-B	VOC	0.90	3.90
55	Acetic Acid Scrubber I	I VOC	0.10	0.62
56A	Chip Wash Vent II-A	VOC	<0.01	

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission F lb/hr	Rates * TPY**
	<0.01			
56B	Chip Wash Vent II-B <0.01	VOC	<0.01	
57	Cooling Tower <0.01	VOC	<0.01	
58	Wastewater Pit <0.01	VOC	<0.01	
60F	Fugitives (4) 15.95	VOC	3.64	
72A-H	Chip Silos	PM ₁₀	<0.01	0.03
73	5 Pelletizing Silos	PM_{10}	0.02	0.07
74	2 Packing Silos <0.01	PM ₁₀	<0.01	
75A-D	4 Dryer Pneumatic Filt	ers PM ₁₀	<0.01	0.02
76	Dust Collector Vent II <0.01	PM ₁₀	<0.01	
77	Extruder Hopper	PM ₁₀	<0.01	0.02
78	Pelletizing Dryer II <0.01	PM ₁₀	<0.01	
79	Pelletizing Dryer Hopp <0.01	er II 0.01	PM ₁₀	
406	F-3402 Acetic Acid Scr	ubber 2.02	VOC	0.46

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	<u>Emission</u>	
Point No. (1)	Name (2)	Name (3)	<u> 1b/hr</u>	TPY**
403	F-1452-1 Acetic Acid	Scrubber 0.81	VOC	0.18
404	F-1452-2 Acetic Acid	Scrubber 0.53	VOC	0.12
402	F-4402 Filter	PM_{10}	0.24	0.94
405	F-6458 Filter	PM_{10}	0.25	0.69
408-D	F-6303 Filter	PM_{10}	0.25	0.69
408-C	F-6402-2 Filter	PM_{10}	0.25	0.69
408-B	F-6402-1 Filter	PM_{10}	0.25	0.69
408-A	F-6451 Filter	PM_{10}	0.35	1.55
409	Cooling Tower	VOC	0.15	0.66
407	Fugitives (4)	VOC Ammonia	1.44 0.05	6.30 0.22
410	Wastewater Sump	VOC	0.04	0.15

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

 NO_X - total oxides of nitrogen

SO₂ - sulfur dioxide

⁽²⁾ Specific point source name. For fugitive sources use area name or fugitive source name.

⁽³⁾ VOC - volatile organic compounds as defined in 30 Texas Administrative Code Section 101.1

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *
Point No. ((1) Name (2)	Name (3)	lb/hr TPY**
diame part CO - (4) Fugitiv	eter. Where PM is iculate matter greate carbon monoxide	(PM) equal to or less to not listed, it shall be retained to the contract of t	e assumed that no tted.
	n rates are based on maximum operating	on and the facilities a schedule:	are limited by the
	<u>4</u> Hrs/day <u>7</u> [Days/week <u>52</u> Weeks,	/year or <u>8,760</u>
Hrs/year			
** Complia period.	nce with annual emis	sion limits is based on	a rolling 12-month
		Dat	ed