Quiz 11

Name: SOLUTIONS

1. Use L'Hôpital's rule to evaluate the following limits:

(a)
$$\lim_{x\to 0} \frac{\cos(x^2)-1}{x^2}$$
 $=$ $\lim_{x\to \infty} \left(-\frac{2x\sin(x^2)}{2x}\right) = \lim_{x\to \infty} \left(-\sin(x^2)\right) = 0$ form: $\frac{\cos(x^2)-1}{\cos(x^2)} = 0$

(b)
$$\lim_{x \to \pi} \frac{\sin(x - \pi)}{\ln x - \ln \pi} = \lim_{x \to \pi} \left(\frac{\cos(x - \pi)}{x} \right) = \frac{1}{x} = \pi$$
form:

(c)
$$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \left(\frac{x^2}{e^x} \right) = \lim_{x \to \infty} \left(\frac{2x}{e^x} \right)$$
form: $\frac{d}{d}$

$$= \lim_{x \to \infty} \left(\frac{2x}{e^x} \right)$$

$$= \lim_{x \to \infty} \left(\frac{2x}{e^x} \right)$$

$$= \lim_{x \to \infty} \left(\frac{2x}{e^x} \right)$$