Arithmétique: Examen du 18 décembre 2023

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée: 3h. Sans document. Les exercices sont indépendants.

- EXERCICE 1. Soit α un élément d'ordre 9 dans une extension de \mathbb{F}_2 .
 - a) Quel est le degré du polynôme minimal de α dans $\mathbb{F}_2[X]$?
 - b) Quel est le polynôme minimal de α dans $\mathbb{F}_2[X]$?
 - c) Soit $\beta = \alpha + \alpha^{-1}$. Montrer que β est dans le sous-corps à 8 éléments de $\mathbb{F}_2(\alpha)$.
 - d) Quel est le polynôme minimal de β ?
- EXERCICE 2. Soit α un élément du corps \mathbb{F}_{2^m} à 2^m éléments. On considère le polynôme $X^2+X+\alpha$.
 - a) Montrer que si $X^2 + X + \alpha$ a au moins une racine β dans \mathbb{F}_{2^m} alors il a exactement deux racines, soit β et $\beta + 1$, dans \mathbb{F}_{2^m} .
 - b) Montrer que si $X^2 + X + \alpha$ a une racine dans \mathbb{F}_{2^m} , alors $\operatorname{Tr}(\alpha) = 0$, où $\operatorname{Tr}()$ désigne l'application trace de \mathbb{F}_{2^m} dans \mathbb{F}_2 .
 - c) Montrer que lorsque t parcourt \mathbb{F}_{2^m} , l'expression $t+t^2$ parcourt un ensemble à 2^{m-1} éléments.
 - d) Combien y a-t-il d'éléments de \mathbb{F}_{2^m} de trace nulle?
 - e) En déduire que $X^2+X+\alpha$ a une racine dans \mathbb{F}_{2^m} si et seulement si $\mathrm{Tr}(\alpha)=0$.
 - f) On réalise le corps à 16 éléments comme $\mathbb{F}_{16} = \mathbb{F}_2(\alpha)$ où α est une racine du polynôme $X^4 + X + 1$. Trouver les racines de $X^2 + X + \alpha$: on les cherchera sous la forme $a + b\alpha + c\alpha^2 + d\alpha^3$ où $a, b, c, d \in \mathbb{F}_2$.
- EXERCICE 3. On représente tout 7-uple binaire (c_0, c_1, \ldots, c_6) par le polynôme $c(X) = c_0 + c_1 X + \cdots + c_6 X^6$. Soit C le code cyclique de polynôme générateur $g(X) = X^3 + X + 1$.
 - a) Quelle est la dimension de C? Quelle est sa distance minimale?
 - b) Montrer que le n-uple (1001011) est un mot de C. Quel est le mot de C le plus proche de (1100010)?
 - c) Donner le polynôme générateur h(X) du code orthogonal C^{\perp} de C.
 - d) Quelle est la distance minimale de C^{\perp} ?

- EXERCICE 4. On réalise le corps à 16 éléments comme l'extension $\mathbb{F}_2(\alpha)$ de \mathbb{F}_2 où α est une racine du polynôme X^4+X+1 .
 - a) Quelle est la période des suites binaires solutions de la récurrence linéaire

$$a_i = a_{i-1} + a_{i-2} + a_{i-3} + a_{i-4}$$
?

- b) Donner une de ces solutions (a_i) sous la forme $\text{Tr}(\beta^i)$ où β est un élément de $\mathbb{F}_2(\alpha)$ judicieusement choisi, et où Tr() désigne l'application trace de \mathbb{F}_{16} vers \mathbb{F}_2 .
- c) Donner deux autres solutions (b_i) et (c_i) de la récurrence sous la forme $b_i = \text{Tr}(x\beta^i)$ et $c_i = \text{Tr}(y\beta^i)$ où $x, y \in \mathbb{F}_2(\alpha)$ et de sorte qu'aucune des suites binaires $(a_i), (b_i), (c_i)$ ne soit la décalée circulaire d'une autre.
- EXERCICE 5. Soit le polynôme $g(X) = (X^3 + X + 1)(X^4 + X^3 + X^2 + X + 1) = X^7 + X^6 + X^4 + X^3 + 1$ dans $\mathbb{F}_2[X]$.
 - a) Quel est la plus petite extension de \mathbb{F}_2 dans laquelle g(X) se factorise en facteurs de degrés 1?
 - b) Quel est le plus petit n pour lequel il existe un code cyclique C de longueur n et de polynôme générateur g(X)? Quelle est la dimension de ce code?
 - c) Donner les degrés des facteurs irréductibles sur \mathbb{F}_2 de $X^{35} + 1$.
 - d) Écrire $X^{35}+1$ sous la forme $(X^5)^7+1$, en déduire une première décomposition de $X^{35}+1$ en produit d'un facteur de degré 5 et de deux facteurs de degrés 15, puis factoriser les deux polynômes de degré15 pour trouver la décomposition en facteurs irréductibles sur \mathbb{F}_2 de $X^{35}+1$.