2025年普通高等学校招生全国统一考试(北京卷)

数学

本试卷共 5 页, 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上, 在试卷上作 答无效。考试结束后,将本试卷和答题卡一并交回。

第一部分 (选择题 共 40 分)			
一、选择题共 10 小题,每小题 4 分,共 40 分。	在每小题列出的四个选项中,	选出符合题目	
要求的一项。			
(1) 已知集合 $M = \{x \mid 2x - 1 > 5\}$, $N = \{1, 2, 3\}$, 则 $M \cap N =$			
(A) {1, 2, 3}	(B) {2,3}		
(C) {3}	(D) Ø		
(2) 若复数 z 满足 $i \cdot z + 2 = 2i$,则 $ z =$			
(A) $\sqrt{2}$	(B) $2\sqrt{2}$		

(D) 8

(3) 双曲线 $x^2 - 4y^2 = 4$ 的离心率为

(C) 4

(A)
$$\frac{\sqrt{3}}{2}$$
 (B) $\frac{\sqrt{5}}{2}$ (C) $\frac{5}{4}$ (D) $\sqrt{5}$

(4) 为得到函数 $y=9^x$ 的图像,只需把函数 $y=3^x$ 的图像上的所有点

(A) 横坐标变成原来的 $\frac{1}{2}$,纵坐标不变 (B) 横坐标变成原来的2倍,纵坐标不变 (C) 纵坐标变成原来的 $\frac{1}{2}$,横坐标不变 (D) 纵坐标变成原来的3倍,横坐标不变

(5)设 $\{a_n\}$ 是公差不为 0 的等差数列, $a_1=-2$,若 a_3 , a_4 , a_6 成等比数列,则 $a_{10}=$

(A) -20(B) -18(C) 16 (D) 18

(6))已知 $a>0$, $b>0$,则		
	$(A) a^2 + b^2 > 2ab$	$(B) \ \frac{1}{a} + \frac{1}{b} \geqslant \frac{1}{ab}$	
	(C) $a+b>\sqrt{ab}$	$(D) \ \frac{1}{a} + \frac{1}{b} \leqslant \frac{2}{\sqrt{ab}}$	
(7))已知函数 $f(x)$ 的定义域为 D ,则"函数 $f(x)$	(x) 的值域为 R "是"对任意 $M \in \mathbb{R}$,存在 $x_0 \in D$	
	使得 $ f(x_0) >M$ "的		
	(A) 充分而不必要条件	(B) 必要而不充分条件	
	(C) 充分必要条件	(D) 既不充分也不必要条件	
(8)	(8) 设函数 $f(x) = \sin \omega x + \cos \omega x$ ($\omega > 0$),若 $f(x + \pi) = f(x)$ 恒成立,且 $f(x)$ 在 $[0, \frac{\pi}{4}]$ 上存在		
	零点,则 ω 的最小值为		
	(A) 8	(B) 6	
	(C) 4	(D) 3	
(9) 在一定条件下,某人工智能大语言模型训练 N 个单位的数据量所需要时间 $T = k \log_2 N$			
	(单位:小时),其中 k 为常数.在此条件下,已知训练数据量 N 从 10^6 个单位增加到		
	1.024×10^9 个单位时,训练时间增加 20 小时,当训练数据量 N 从 1.024×10^8 个单位增加		
到 4.096×10 ⁸ 个单位时,训练时间增加			
	(A) 2小时	(B) 4小时	
	(C) 20小时	(D) 40 小时	
(10) 已知平面直角坐标系 xOy 中, $ \overrightarrow{OA} = \overrightarrow{OB} = \sqrt{2}$, $ \overrightarrow{AB} = 2$,设 $C(3,4)$,则 $ 2\overrightarrow{CA} + \overrightarrow{AB} $			
	的取值范围是		
	(A) [6,14]	(B) [6,12]	
	(C) [8,14]	(D) [8,12]	

第二部分 (非选择题 共110分)

二、填空题共5小题,每小题5分,共25分。

- (11) 已知抛物线 $y^2 = 2px$ (p > 0) 的顶点到焦点的距离为3,则 $p = _____.$
- (13) 已知 α , $\beta \in [0, 2\pi]$, 且 $\sin(\alpha + \beta) = \sin(\alpha \beta)$, $\cos(\alpha + \beta) \neq \cos(\alpha \beta)$, 写出满足条件的一组 (α, β)
- (14) 某科技兴趣小组使用 3D 打印机制作的一个零件可以抽象为如图所示的多面体,其中 ABCDEF 是一个平行多边形,平面 ARF \bot 平面 ABC ,平面 TCD \bot 平面 ABC , AB \bot BC , AB // RS // EF // CD , AF // ST // BC // ED . 若 AB = BC = 8 ,

AF = CD = 4 , $AR = RF = TC = TD = \frac{5}{2}$, 则该多面体的体积为_____.

- (15) 已知函数 f(x) 的定义域为 \mathbf{R} ,则下列说法正确的有 .
 - ①存在在 R 上单调递增的函数 f(x), 使得 f(x)+f(2x)=-x 恒成立;
 - ②存在在 \mathbf{R} 上单调递减的函数 f(x), 使得 f(x) f(2x) = -x 恒成立;
 - ③使得 $f(x) + f(-x) = \cos x$ 恒成立的函数存在且有无穷多个;
 - ④使得 $f(x) f(-x) = \cos x$ 恒成立的函数存在且有无穷多个.

- 三、解答题共6小题,共85分。解答应写出文字说明、演算步骤或证明过程。
 - (16)(本小题 13分)

在
$$\triangle ABC$$
中, $\cos A = -\frac{1}{3}$, $a\sin C = 4\sqrt{2}$.

(I) 求c:

(II) 再从条件①、条件②、条件③这三个条件中选择一个作为已知,求BC边上的高.

条件①: a=6:

条件②:
$$b \sin C = \frac{10\sqrt{2}}{3}$$
;

条件③: $\triangle ABC$ 面积为 $10\sqrt{2}$.

注:若选择的条件不符合要求,第(II)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.

(17) (本小题 14 分)

如图,在四棱锥 P-ABCD 中, $\triangle ACD$ 与 $\triangle ABC$ 均为等腰直角三角形, $\angle BAC=90^\circ$, $\angle ADC=90^\circ$,E 为线段 BC 的中点.

- (I)若F, G分别为PD, PE 的中点,证明: FG // 平面 PAB;
- (II) 若 PA 上 平面 ABCD , PA = PC ,求 AB 与 平面 PCD 所成角的正弦值.

(18)(本小题 13分)

有一个选择题考查了一个知识点. 甲、乙两校各随机抽取100人,甲校有80人答对,乙校有75人答对,用频率估计概率.

- (I)从甲校随机抽取1人,求这个人做对该题目的概率;
- (II)从甲、乙两校各随机抽取1人,设X为做对的人数,求恰有1人做对的概率以及X的数学期望:
- (III) 若甲校学生掌握这个知识点则有100%的概率做对该题目,乙校学生掌握这个知识点则有85%的概率做对该题目,未掌握该知识点的学生都是从四个选项里面随机选择一个. 设甲校学生掌握该知识点的概率为 p_1 ,乙校学生掌握该知识点的概率为 p_2 ,试比较 p_1 与 p_2 的大小. (结论不要求证明)

数学(北京卷) 第4页(共5页)

(19) (本小题 15 分)

已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离心率为 $\frac{\sqrt{2}}{2}$,椭圆 E 上的点到两个焦点的距离之和为 4 .

- (I) 求椭圆 E 的方程;
- (II)设O为原点, $M(x_0, y_0)(x_0 \neq 0)$ 为椭圆E上一点,直线 $x_0x + 2y_0y 4 = 0$ 与y = 2 和 y = -2 分别交于A,B 两点.设 $\triangle OMA$ 和 $\triangle OMB$ 的面积分别为 S_1 和 S_2 ,比较 $\frac{S_1}{S_2}$ 与 $\frac{|OA|}{|OB|}$ 的大小.

(20) (本小题 15 分)

函数 f(x) 的定义域为 $(-1,+\infty)$,且 f(0)=0, $f'(x)=\frac{\ln(x+1)}{x+1}$,直线 l_1 是曲线 y=f(x) 在 A(a,f(a)) 处的切线.

- (I) 求 f'(x)的最大值;
- (II)证明: 当-1 < a < 0时,除切点A外,y = f(x)均在l,上方;
- (III) 当a > 0时,过点A作与 l_1 垂直的直线 l_2 , l_1 , l_2 与x轴的交点横坐标分别为 x_1 , x_2 ,求 $\frac{2a x_2 x_1}{x_2 x_2}$ 的取值范围.

(21)(本小题 15 分)

已知集合 $A = \{1,2,3,4,5,6,7,8\}$, $M = \{(x_i,y_i) | x_i \in A, y_i \in A\}$,从集合 M 中选出 n 个元素构成序列: $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$,若任意相邻两项 (x_i,y_i) , (x_{i+1},y_{i+1}) 满足

$$\begin{cases} |x_{i+1} - x_i| = 3, & \exists \vec{k} \\ |y_{i+1} - y_i| = 4, \end{cases} \exists \vec{k} \begin{cases} |x_{i+1} - x_i| = 4, \\ |y_{i+1} - y_i| = 3, \end{cases}$$

则称该序列为" k 列".

- (I) 若"k列"的第一项为(3,3), 求第二项;
- (II) 若 τ 为"k列",且满足: i为奇数时, $x_i \in \{1,2,7,8\}$; i为偶数时, $x_i \in \{3,4,5,6\}$. 判断 (3,2)与(4,4)能否同时在 τ 中,并说明理由;
- (III) 证明:集合M中的所有元素不能构成"k列".

(考生务必将答案答在答题卡上,在试卷上作答无效)