- CC2-S1 -

- 2019-2020

- Correction - Algèbre -

EXERCICE 1

On considère la matrice

$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}$$

1. Montrer que la matrice A est diagonalisable dans \mathbb{R} .

$$\chi_A = (X-2)^2(X-4). \ A-2I_3 = \begin{pmatrix} 1 & -3 & 2 \\ -1 & 3 & -2 \\ -1 & 3 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On a donc $\operatorname{rg}(A-2\operatorname{I}_3)=1$ d'où $\dim(E_2)=m(2)$ et comme de plus $m(4)=1=\dim(E_4)$, on en déduit que A est diagonalisable.

2. Montrer qu'il existe deux matrices M et N telles que pour tout entier naturel n,

$$A^n = 2^n M + 4^n N$$

D'après la question précédente, il existe $P \in GL_3(\mathbb{R})$ telle que

$$P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + 4 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 2M_1 + 4N_1$$

donc il existe deux matrices $M = PM_1P^{-1}$ et $N = PN_1P^{-1}$ telles que A = 2M + 4N.

On a : $M_1N_1 = 0$ et $N_1M_1 = 0$ donc $MN = PM_1N_1P^{-1} = 0 = PN_1M_1P^{-1} = NM$, donc les matrices commutent et on peut appliquer la formule du binôme de Newton. On obtient pour tout entier naturel $n : A^n = 2^nM + 4^nN$.

3. Déterminer M et N.

D'après la question précédente, on a :
$$\begin{cases} I_3 = M + N \\ A = 2M + 4N \end{cases}$$

On en déduit que
$$M = 2I_3 - \frac{1}{2}A$$
 et $N = \frac{1}{2}A - I_3$.

Remarque: On peut aussi calculer P et P^{-1} , mais c'est plus long!

4. Calculer $\sum_{n=0}^{+\infty} \frac{A^{2n}}{(2n)!}$.

D'après les questions précédentes, en passant à la limite dans les sommes partielles, on a :

$$\sum_{n=0}^{+\infty} \frac{A^{2n}}{n!} = M \sum_{n=0}^{+\infty} \frac{2^{2n}}{(2n)!} + N \sum_{n=0}^{+\infty} \frac{4^{2n}}{(2n)!} = M \operatorname{ch}(2) + N \operatorname{ch}(4).$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 2

EXERCICE 2

On considère la matrice

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

1. La matrice B est-elle diagonalisable dans \mathbb{R} ?

 $\chi_B = (X-1)^3$ donc A n'est pas diagonalisable dans \mathbb{R} , sinon elle serait égale à la matrice I_3 .

2. Montrer que B est semblable à la matrice

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

On note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à B. On cherche une base (e'_1, e'_2, e'_3) de \mathbb{R}^3 telle que $f(e'_1) = e'_1, f(e'_2) = e'_2$ et $f(e'_3) = e'_2 + e'_3$.

On a :
$$B - I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
; rg $(B - I_3) = 1$ donc dim $(E_1) = 2$; on prend (e'_1, e'_2) une base de Ker $(f - Id)$, par exemple $e'_1 = e_1 = (1, 0, 0)$ et $e'_2 = (0, 1, -1)$. On cherche $e'_3 = (a, b, c)$ tel que $f(e'_3) = e'_2 + e'_3$ c'est-à-dire :

$$\begin{cases} a = a \\ -c = 1 + b \\ b + 2c = -1 + c \end{cases}$$
. $e'_3 = (0, 0, -1)$ convient.

Enfin, on a $\det(e_1',e_2',e_3')=-1\neq 0$, ce qui assure qu'il s'agit d'une base de \mathbb{R}^3 , dans laquelle fa pour matrice T, qui est donc semblable à B.

3. Calculer B^n pour $n \in \mathbb{N}$, en remarquant que $T = I_3 + N$, avec N matrice nilpotente.

On a
$$T = I_3 + N$$
, avec $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. $N^2 = 0$ (donc N est nilpotente).

Comme I₃ et N commutent, on peut appliquer la formule du binôme de Newton, et pour tout entier n on $a: T^n = I_3 + nN$.

On note
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$
 la matrice de passage de la base canonique à (e_1', e_2', e_3') .

Un calcul rapide donne $P^{-1} = P$

On a : B = PTP, donc une récurrence immédiate donne $B^n = I_3 + nPNP$.

4. Justifier que B est inversible, et déterminer B^{-n} pour $n \in \mathbb{N}$.

 $det(B) \neq 0$ donc B est inversible. De plus, on a $T = I_3 + N$, avec $N^2 = 0$ donc $T^{-1} = I_3 - N$. La formule du binôme de Newton donne pour tout entier $n: T^{-n} = I_3 - nN$ et par suite $B^{-n} = I_3 - nPNP.$

Spé PT Page 2 sur 2