Dimensionality Reduction: PCA

High Dimensional Data

 With technological advancements, a vast amount of data has been collected, both in terms of the number of samples and variables.

Problems with high dimensional data

- There may be many irrelevant variables in the high dimensional data.
- In some cases, some variables are closely correlated, resulting in multicollinearity.
- It is difficult to visualize the data and analytic results.
- As the number of variables increases, the computational costs of models increase.
- We can consider reducing the dimensionality of data. (Dimensionality reduction)

The Curse of Dimensionality

Avoid the curse of dimensionality

• Curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-dimensional space

• As the dimensionality increases, we need more data to fill the space (filling the space is required to model data patterns both in supervised and unsupervised learning).

Hughes Phenomenon

 With a fixed number of training samples, the predictive power of a classifier or regressor first increases as number of dimensions/features used is increased but then decreases

Getting Rid of the Unnecessary

- Dimensionality reduction
 - The process of reducing the number of variables
- Hierarchy of dimensionality reduction

Which feature is the most helpful to distinguish one house from another?

ID	Value	Area	Floors	Household
1	148	72	4	20
2	156	76	4	22
3	160	86	4	22
4	165	79	4	24
5	169	88	5	30
6	184	90	5	35

- It's a good thing to have features with high variance, since they will be more informative and more important
 - → Maximize variance
- It's a bad thing to have highly correlated features, or high covariance, since they can be deduced from one another with little loss in information, and thus keeping them together is redundant
 - → Obtain orthogonal features

- PCA is the orthogonal transformation to possibly correlated variables into a set of values into linearly uncorrelated variables
 - Uncorrelated variables are called principal components
- The number of principal components is less than or equal to the number of original variables
 - Even though the number of principal components are equal to the number of original variables,
 we can select smaller number of components among them and then use for analysis
- PCA can be understood as finding new axes that preserve variance of original data as much as possible and projecting original data onto these new axes.
 - If we use small number of axes than the number of variables (= the number of original axes), we can reduce data dimensionality.

- Criterion to find principal component is to achieve the highest variance
 - Variance of projected data samples on principal component

- First principal component has the highest possible variance
- Each succeeding component in turn has the highest variance possible and it should be orthogonal to the preceding components

X Projection on the Line

Projected point on the line of data point ${\bf x}$

$$t = \mathbf{w} \cdot \mathbf{x}$$

Direction of line is defined as **w** and **w** is unit length vector

$$\mathbf{w} = (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}})$$

$$\mathbf{x} = (1,2)$$

$$t = \mathbf{w} \cdot \mathbf{x} = \mathbf{w}^T \mathbf{x} = \frac{2}{\sqrt{5}} + \frac{2}{\sqrt{5}} = \frac{4}{\sqrt{5}}$$

■ Find first component, w₁ for data set that each dimension has zero mean

$$\mathbf{w}_1 = \underset{\|\mathbf{w}\|=1}{\operatorname{argmax}} \sum_{i} (t_{1i})^2 = \underset{\|\mathbf{w}\|=1}{\operatorname{argmax}} \sum_{i} (\mathbf{x}_i \cdot \mathbf{w})^2$$

- t_{1i} is the score(projected point on the first component) of i-th data point
- Define data matrix

The second data matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & T \\ \mathbf{x}_1 & T \\ \mathbf{x}_2 & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{n1} & \mathbf{x}_{n2} & \dots & \mathbf{x}_{np} \end{bmatrix} \qquad \mathbf{X} \mathbf{W} = \begin{bmatrix} \mathbf{x}_1 & T \\ \mathbf{x}_1 & T \\ \mathbf{x}_2 & \mathbf{w} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & \mathbf{w} \end{bmatrix}$$

$$\mathbf{X} \mathbf{W} = \begin{bmatrix} \mathbf{x}_1 & T \\ \mathbf{x}_2 & \mathbf{w} \\ \vdots & \vdots & \mathbf{w} \\ \mathbf{x}_n & \mathbf{w} \end{bmatrix}$$

$$\mathbf{X} \mathbf{W} = \begin{bmatrix} \mathbf{x}_1 & T \\ \mathbf{x}_2 & \mathbf{w} \\ \vdots & \vdots & \mathbf{w} \\ \mathbf{x}_n & \mathbf{w} \end{bmatrix}$$

$$\mathbf{X} \mathbf{W} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{w} \\ \mathbf{x}_2 & \mathbf{w} \\ \vdots & \vdots & \mathbf{w} \\ \mathbf{x}_n & \mathbf{w} \end{bmatrix}$$

$$\mathbf{X}\mathbf{w} = \begin{bmatrix} \mathbf{x}_1 & T \\ \mathbf{x}_2 & T \\ \vdots & T \\ \mathbf{x}_n \end{bmatrix} \mathbf{w} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{w} \\ \mathbf{x}_1 & \mathbf{w} \\ \mathbf{x}_2 & \mathbf{w} \\ \vdots & T \\ \mathbf{x}_n & \mathbf{w} \end{bmatrix}$$

■ Rewrite w₁

$$\mathbf{w}_1 = \underset{\|\mathbf{w}\|=1}{\operatorname{argmax}} \|\mathbf{X}\mathbf{w}\|^2 = \underset{\|\mathbf{w}\|=1}{\operatorname{argmax}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$$

Dot product

 $\mathbf{x}_1 \cdot \mathbf{w}$

Since unit vector constraint

$$\mathbf{w}_1 = \arg\max\left(\frac{\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}}{\mathbf{w}^T \mathbf{w}}\right)$$

- The larger $\|\mathbf{w}\|$ is, the larger $\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$ is
- $\mathbf{w}^T \mathbf{w}$ is the penalty term on $||\mathbf{w}|| (||\mathbf{w}|| = \mathbf{w}^T \mathbf{w})$

$$\mathbf{x} = (1,2)$$

$$\mathbf{w}_{1} = (1,2), \mathbf{w}_{2} = (2,4)$$

$$t_{1} = \mathbf{w}_{1} \cdot \mathbf{x} = \mathbf{w}_{1}^{T} \mathbf{x} = 1 + 4 = 5$$

$$t_{2} = \mathbf{w}_{2} \cdot \mathbf{x} = \mathbf{w}_{2}^{T} \mathbf{x} = 2 + 8 = 10$$

$$\therefore t_{1}^{2} < t_{2}^{2}$$

Solution of optimization problem

- \mathbf{w}_1 = eigenvector of $\mathbf{X}^T\mathbf{X}$ with the largest eigenvalue
- $\mathbf{X}^T\mathbf{X}$ is proportional to covariance matrix of data when mean of each dimension is zero

X Covariance

• Variance of a random variable X is the expected value of the squared deviation from the mean($\mu = \mathbb{E}[X]$)

$$Var(X) = \mathbb{E}[(X - \mu)^2]$$

Sample variance is calculated by

$$Var(x) = \frac{\sum_{i=1}^{n} (x - \bar{x})^2}{(n-1)}$$

Covariance is a measure of how much two random variables change together

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

• Variance is the covariance of a random variable with itself

$$Var(X) = Cov(X, X)$$

Sample covariance is calculated by

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_j - \bar{y})}{n-1}$$

X Covariance

Covariance matrix, C

 Matrix whose elements correspond to possible covariance values between all the different dimensions

$$\mathbf{C} = \begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) & \cdots & cov(x_1, x_p) \\ cov(x_2, x_1) & cov(x_2, x_2) & \cdots & cov(x_2, x_p) \\ \vdots & & \vdots & & \vdots \\ cov(x_p, x_1) & cov(x_p, x_2) & \cdots & cov(x_p, x_p) \end{bmatrix}$$

If mean of each dimension is zero in data matrix, X,

$$\mathbf{C} \propto \mathbf{X}^T \mathbf{X}$$

X Eigenvector and Eigenvalue

■ For some matrix A, the vector x satisfying following relation is eigenvector of matrix A

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

- λ is the eigenvalue of eigenvector ${\bf x}$
- The number of eigenvectors depends on matrix
- Example

• For vector
$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

• For vector
$$\mathbf{y} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$$
NOT eigenvector
$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \end{bmatrix}$$

$$\mathbf{A}\mathbf{y} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ 8 \end{bmatrix} = 4 \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 eigenvalue

eigenvector

X Eigenvector and Eigenvalue

How to get eigenvector and eigenvalue?

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$$

Eigenvector and eigenvalue should satisfy $Ax = \lambda x$

$$\begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \lambda \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 2 & 1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

• If there exist nontrivial solution(trivial solution= $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$), determinant of $\begin{bmatrix} 2-\lambda & 3 \\ 2 & 1-\lambda \end{bmatrix}$ should be 0

$$(2 - \lambda)(1 - \lambda) - 6 = 0 \rightarrow \lambda^2 - 3\lambda + 4 = 0$$
eigenvector
 $\lambda = 4 \text{ or } -1$

- When $\lambda = 4$, $\mathbf{x} = [3 \ 2]^T$
- When $\lambda = -1$, $\mathbf{x} = [1 \ -1]^T$

🔪 🦼 eigenvalue

Succeeding process

• Subtracting preceding components from $X \rightarrow$ Create new data matrix

$$\widehat{\mathbf{X}}_k = \mathbf{X} - \sum_{i=1}^{k-1} \mathbf{X} \, \mathbf{w}_i \mathbf{w}_i^T$$

Find the principal component that extracts the maximum variance from new data matrix

$$w_k = \underset{\|\mathbf{w}\|=1}{\operatorname{argmax}} \|\widehat{\mathbf{X}}_k \mathbf{w}\|^2 = \operatorname{argmax} \left(\frac{\mathbf{w}^T \widehat{\mathbf{X}}_k^T \widehat{\mathbf{X}}_k \mathbf{w}}{\mathbf{w}^T \mathbf{w}} \right)$$

- ✓ Solve above equation is the also same as calculated the remaining eigenvectors of $\mathbf{X}^T\mathbf{X}$
- \checkmark **w**₂ = eigenvector of **X**^T**X** with the second largest eigenvalue

Finally,

$$T = XW$$

• W is p-by-p matrix whose columns are the eigenvectors of $\mathbf{X}^T\mathbf{X}$ and it is called loading matrix

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_p \end{bmatrix}$$

 Principal component is linear combinations of original features and transformation by loading matrix is linear transformation

Dimensionality reduction by PCA

• Keeping only the first l principal components (where p > l)

$$\mathbf{W}_l = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_l \end{bmatrix}$$

✓ \mathbf{W}_l is $p \times l$ matrix

Dimension-reduced data set is obtained by truncated transformation

$$\mathbf{T}_l = \mathbf{X}\mathbf{W}_l$$

2-dimensional data set and its principal components

- Web applet
 - https://setosa.io/ev/principal-component-analysis/

X Linear transformation

■ Linear transformation is a mapping $f \colon V \to W$ that preserves the operations of addition and scalar multiplication

Addition:
$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

Scalar multiplication:
$$f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$$

Example

• Identity map $f(\mathbf{x}) = \mathbf{x}$ is linear transformation

$$\checkmark f(\mathbf{x} + \mathbf{v}) = \mathbf{x} + \mathbf{v} = f(\mathbf{x}) + f(\mathbf{v})$$

$$\checkmark f(\alpha \mathbf{x}) = \alpha \mathbf{x} = \alpha f(\mathbf{x})$$

• map $f: x \to x^2$ is not linear transformation

$$\checkmark$$
 $f(x + y) = x^2 + 2x y + y^2 ≠ f(x) + f(y)$

$$\checkmark f(\alpha \mathbf{x}) = \alpha^2 \mathbf{x}^2 \neq \alpha f(\mathbf{x})$$

• map $f: x \to x + 1$ is not linear transformation

$$\checkmark f(x + y) = x + y + 1 \neq f(x) + f(y) (f(x) + f(y) = x + 1 + y + 1)$$

$$\checkmark f(\alpha \mathbf{x}) = \alpha \mathbf{x} + 1 \neq \alpha f(\mathbf{x}) (\alpha f(\mathbf{x}) = \alpha \mathbf{x} + \alpha)$$

• If **A** is $m \times n$ matrix, then map $f: \mathbf{x} \to \mathbf{A}\mathbf{x}$ is linear transformation

X Linear Combination

• If v_1, v_2, \dots, v_n are vectors and a_1, a_2, \dots, a_n are scalars, then linear combination of those vectors with those scalars as coefficient is

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n$$

■ 3-dimensional vector (a_1, a_2, a_3) is linear combination of $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$

$$(a_1, a_2, a_3) = (a_1, 0, 0) + (0, a_2, 0) + (0, 0, a_3)$$

= $a_1(1, 0, 0) + a_2(0, 1, 0) + a_3(0, 0, 1) = a_1e_1 + a_2e_2 + a_3e_3$

■ Principal component $\mathbf{w} = (w_1, w_2, ..., w_p)$ is linear combination of unit vectors on each dimension representing by each variables

Example: PCA

Find principal components of given data

x	2.5	0.5	2.2	1.9	3.1	2.3	2.0	1.0	1.5	1.1
y	2.4	0.7	2.9	2.2	3.0	2.7	1.6	1.1	1.6	0.9

• Step1) substract from of the data dimensions for each dimension to have zero mean

$$\sqrt{\bar{x}} = 1.81, \bar{y} = 1.91$$

\boldsymbol{x}	0.69	-1.31	0.39	0.09	1.29	0.49	0.19	-0.81	-0.31	-0.71
y	0.49	-1.21	0.99	0.29	1.09	0.79	-0.31	-0.81	-0.31	-1.01

• Step 2) Calculate covariance matrix of new data($\mathbf{X}^T\mathbf{X}$)

$$C = \begin{bmatrix} 0.617 & 0.615 \\ 0.615 & 0.717 \end{bmatrix}$$

Example: PCA

Find principal components of given data

x	2.5	0.5	2.2	1.9	3.1	2.3	2.0	1.0	1.5	1.1
y	2.4	0.7	2.9	2.2	3.0	2.7	1.6	1.1	1.6	0.9

- Step 3) Calculate the eigenvectors and eigenvalues of the covariance matrix
 - ✓ The largest eigenvalue is 1.28 and corresponding eigenvector is

$$\mathbf{w}_1 = \begin{bmatrix} -0.678 \\ -0.735 \end{bmatrix}$$

✓ The second largest eigenvalue is 0.049 and corresponding eigenvector is

$$\mathbf{w}_2 = \begin{bmatrix} -0.735\\ 0.678 \end{bmatrix}$$

X Check eigenvector is unit vector!

Example: PCA

Find principal components of given data

x	2.5	0.5	2.2	1.9	3.1	2.3	2.0	1.0	1.5	1.1
y	2.4	0.7	2.9	2.2	3.0	2.7	1.6	1.1	1.6	0.9

- Step 4) Choosing components and forming a loading matrix
 - ✓ If you choose two principal components both

$$\mathbf{W} = \begin{bmatrix} -0.678 & -0.735 \\ -0.735 & 0.678 \end{bmatrix}$$

✓ If you want to reduce dimensionality

$$\mathbf{W} = \begin{bmatrix} -0.678 \\ -0.735 \end{bmatrix}$$

• Step 5) Derive the new data set

$$T = XW$$

x'	-0.83	1.78	-0.99	-0.27	-1.68	-0.91	0.99	1.14	0.44	1.22
y'	-0.18	0.14	0.38	0.13	-0.21	0.18	-0.35	0.46	0.02	-0.16

Feature Scaling

PCA finds principal component to achieve the highest variance

• The variable with large scale is dominated on principal component ex) When distance measure is change from m to cm, variance increases $10000(100^2)$ times

Length(m)	Length(cm)
1.5	150
1.7	170
2.3	230
3.3	330
2.7	270
1.9	190

Sample variance(m)=0.46 Sample variance(cm)=4586

- Before apply PCA to data samples, standardization is applied
 - Transform each dimension to have unit variance

Reconstruct to Original Space

- Transformed data by PCA can be reconstructed to original space
 - Recall the final transformation

$$T = XW$$

Old data can be written as

$$X = TW^{-1}$$

✓ If **W** consists of unit vectors which are orthogonal to each other, inverse matrix of **W** is the same as the transpose of **W**, \mathbf{W}^T

$$: \mathbf{X} = \mathbf{T}\mathbf{W}^T$$

✓ If you substract mean of each dimension from original data

$$X = TW^T + \mu$$

- μ is mean vector of \mathbf{X} ($\mu = \left[\bar{x}_1 \bar{x}_2 \cdots \bar{x}_p\right]^T$)
- ✓ Actually, if **W** is not square matrix(if you choose the smaller number of principal components than original dimension), \mathbf{W}^{-1} does not exist. However, in this case, reconstruction is performed through \mathbf{W}^{T}

Application: PCA

Extract important features through PCA for face recognition

For image recognition, simple way to represent each image is to vectorization

- Apply PCA to the set of image vectors and obtain principal components
 - → transform image vector to lower dimensional space by loading matrix
 - ✓ Usually image is high-dimensional data
 - ✓ Through PCA, image can be compressed to low-dimensional data

Application: PCA

Eigenfaces

 A set of eigenvectors when they are used in the computer vision problem of human face recognition

- ✓ Eigenface can be viewed as a sort of map of the variations between faces
- ✓ PCA analysis has identified the statistical patterns in the data

Thank you! Thank you!