Normal Extensions

Jiang-Hua Lu

The University of Hong Kong

MATH4302 Algebra II, HKU

Monday, April 7, 2025

Outline

In this file

§3.2.5: Normal Extensions

Definition. An algebraic field extension $K \subset L$ is said to be normal if every irreducible polynomial in K[x] that has a root in L splits over L.

Examples.

- K is a normal extension of itself.
- $\mathbb{Q}[\sqrt[3]{2}]$ is NOT a normal extension of \mathbb{Q} .

$$f(x) = \chi^3 - 2$$

Lemma. A finite normal extension of K must be a splitting field of some $f(x) \in K[x]$.

Proof. Let a_1, \ldots, a_n be a basis of L over K.

- Each a_i is algebraic over K. Let $p_i \in K[x]$ be the minimal polynomial of a_i over K.
- Let $f = p_1 \cdots p_n$. By assumption, each p_i completely splits over L, so f completely splits over L.
- Let R be the set of all roots of f in L. Then

$$\{a_1,\ldots,a_n\}\subset R.$$

- $L = K(a_1, \ldots, a_n) \subset K(R) \subset L$, so L = K(R).
- By definition, L is a splitting field of f over K.

Q.E.D.

Theorem. Any splitting field over K is a finite normal extension.

Proof. Let L be a splitting field of $f(x) \in K[x]$, and let $p(x) \in K[x]$ be irreducible. Let $\alpha \in L$ be a root of p.

- Let M be a splitting field of g(x) = f(x)p(x) over K. Then both f and p completely split over M. Indeed, as f(x)p(x) is a product of linear factors in M[x], uniqueness of prime factorization implies that both f and p are products of linear factors in M[x].
- By Extension Lemma, can identify $K \subset L \subset M$. W75
- Want to prove all roots of *p* in *M* are in *L*.

Let $\beta \in M$ be any root of p. Want to show that $\beta \in L$.

The standard property of p and p and

§3.2.5: Normal Extensions

Proof cont'd:

• Both $\alpha \in L$ and $\beta \in M$ are roots of p, so have isomorphism

$$\varphi: \ K(\alpha) \longrightarrow K[x]/\langle p(x)\rangle \longrightarrow K(\beta) \subset M$$
 with $\varphi|_K = \mathrm{Id}$ and $\varphi(\alpha) = \beta$.

• L is a splitting field of f over K(a). By Extension Lemma again, $\exists \ \tilde{\varphi}: L \to M$ such that

$$\tilde{\varphi}|_{\mathcal{K}(\alpha)} = \varphi : \ \mathcal{K}(\alpha) \longrightarrow \mathcal{K}(\beta).$$

So $\tilde{\varphi}|_{\mathcal{K}} = \mathrm{Id}$ and $\tilde{\varphi}(\alpha) = \varphi(\alpha) = \beta$.

• Now $K \subset M$ is extended to two embeddings $L \subset M$ and $\tilde{\varphi} : L \to M$. Extension Lemma implies that $\tilde{\varphi}(L) = L$, so

$$\beta = \tilde{\varphi}(\alpha) \in L.$$

Thus all roots of p in M are in L.

Q.E.D.

§3.2.5: Normal Extensions

Conclusion.

Theorem

Splitting fields over $K \Leftrightarrow finite and normal extensions of K$.

Example. $\mathbb{Q}[\sqrt[3]{2}]$ is not the splitting field of any $f \in \mathbb{Q}[x]$.