Where does the error come from?

Review

知道誤差來源才能有效地修改模型

A more complex model does not always lead to better performance on *testing data*.

Estimator

Only Niantic knows \hat{f}

From training data, we find f^*

Variance

\$\hat{f}\$

Variance

\$\hat{f}\$

\$\

Bias +

 f^* is an estimator of \hat{f}

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \neq \mu$$

$$E[m] = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \mu$$

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \neq \mu$$

$$Var[m] = \frac{\sigma^2}{N}$$

Variance depends on the number of samples

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n}$$
 $s = \frac{1}{N} \sum_{n} (x^{n} - m)^{2}$

Biased estimator

$$E[s] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Parallel Universes

• In all the universes, we are collecting (catching) 10 Pokémons as training data to find $f^{\,*}$

Parallel Universes

• In different universes, we use the same model, but obtain different f^{\ast}

Simpler model is less influenced by the sampled data

Consider the extreme case f(x) = 5

Bias

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f} ?

Black curve: the true function \hat{f}

Bias v.s. Variance

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias Underfitting
 - If you can fit the training data, but large error on testing data, then you probably have large

variance Overfitting

- For bias, redesign your model:
 - Add more features as input
 - A more complex model

因model本身就不好

What to do with large variance?

蒐集更多資料

More data

Very effective, but not always practical

若實際執行上無法蒐集更多資料,

可以->• Regularization |

May increase bias

(雖然變異變小,但誤差可能變大<mark>,</mark> 故要取得平衡)

Model Selection

- There is usually a trade-off between bias and variance.
- Select a model that balances two kinds of error to minimize total error
- What you should NOT do:

public

private

Training Set

Testing Set

Testing Set

Model 1 \longrightarrow Err = 0.9

Model 2 \longrightarrow Err = 0.7

Model 3 \longrightarrow Err = 0.5

Err > 0.5

I beat baseline!

No, you don't

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

Cross Validation

N-fold Cross Validation

分很多種不同的樣子

Reference

• Bishop: Chapter 3.2