Computer Network

Lecture-19

Dharmendra Kumar (Associate Professor)

Department of Computer Science and Engineering

United College of Engineering and Research,

Prayagraj

CHECKSUM

- Checksum is an error detection method.
- The checksum is used in the Internet by several protocols.
- The checksum is based on the concept of redundancy.

Internet Checksum

Internet uses 16-bit checksum. The sender calculates the checksum by following these steps.

Sender site:

- 1. The message is divided into 16-bit words.
- 2. The value of the checksum word is set to 0.
- 3. All words including the checksum are added using one's complement addition.
- 4. The sum is complemented and becomes the checksum.
- 5. The checksum is sent with the data.

The receiver uses the following steps for error detection.

Receiver site:

- 1. The message (including checksum) is divided into 16-bit words.
- 2. All words are added using one's complement addition.
- 3. The sum is complemented and becomes the new checksum.
- 4. If the value of checksum is 0, the message is accepted; otherwise, it is rejected.

Example: Calculate the checksum for a text of 8 characters ("Forouzan").

Solution:

ı	0	1	3		Carries
	4	6	6	F	(Fo)
	7	2	6	F	(ro)
	7	5	7	A	luz)
	6	1	6	Ε	(an)
	0	0	0	0	Checksum (initial)
	8	F	C	6	Sum (partial)
				1	
	8	F	С	7	Sum
	7	0	3	8	Checksum (to send)

a. Checksum at the sender site

1	()	1	3		Carries
	4	6	6	F	IFo)
	7	2	6	F	(ro)
	7	5	7	A	(uz)
	6	1	6	Е	(an)
	7	0	3	8	Checksum (received)
	F	F	F	E	Sum (partial)
				1	
	F	F	F	F	Sum
	0	0	0	0	Checksum (new)

b. Checksum at the receiver site

Some questions:

- 1. What is the Hamming distance for each of the following codewords:
 - a. d (10000, 00000)
 - b. d (10101, 10000)
 - c. d (11111,11111)
 - d. d (000, 000)
- 2. Find the minimum Hamming distance for the following cases:
 - a. Detection of two errors.
 - b. Correction of two errors.
 - c. Detection of 3 errors or correction of 2 errors.
 - d. Detection of 6 errors or correction of 2 errors.

3. Which of the following CRC generators guarantee the detection of a single bit error?

- a. $x^3 + x + 1$
- b. $x^4 + x$
- c. 1
- d. $x^2 + 1$
- 4. Sender needs to send the four data items 0x3456, 0xABCC, 0x02BC, and 0xEEEE. Answer the following:
 - a. Find the checksum at the sender site.
 - b. Find the checksum at the receiver site if there is no error.
 - c. Find the checksum at the receiver site if the second data item is changed to 0xABCE.
 - d. Find the checksum at the receiver site if the second data item is changed to 0xABCE and the third data item is changed to 0x02BA.