RENDSZER- ÉS IRÁNYÍTÁSTECHNIKA

HÁZI FELADAT

Réda Vince – Z697LX

1. táblázat. Házi feladat kódja

Mechatronika, Optika és Gépészeti Informatika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

2020. október 20.

TARTALOMJEGYZÉK

Tartalomjegyzék

	a.	Az egyenáramú motor paraméterei	2
1.	BDC	C motor leírása	3
	a.	A BDC motor hatásvázlata	3
	b.	A feszültség – szögsebesség átviteli függvény felírása	3

Megjegyzések:

- Ahol nincs kiírva mértékegység, ott az SI értendő.
- Az egységugrás függvényt $\theta(t)$ -vel jelölöm.

a. Az egyenáramú motor paraméterei

2. táblázat. A motor és a hajtómű paraméterei

Név Jelölés Katalógus-beli érték SI-beli érték

1. BDC motor leírása

a. A BDC motor hatásvázlata

Legyen

$$W_{\rm el} = \frac{1}{R_{\rm a} + L_{\rm a}s} \tag{1}$$

az elektromos kör átviteli függvénye, és

$$W_{\rm me} = \frac{1}{b + J_{\rm a}s} \stackrel{b=0}{=} \frac{1}{J_{\rm a}s}$$
 (2)

a mechanikai kör átviteli függvénye.

Ekkor a rendszer hatásvázlatát az 1. ábra mutatja.

1. ábra. Hatásvázlat

b. A feszültség – szögsebesség átviteli függvény felírása

Vegyük az 1. ábrát, és legyen $\tau_{\rm t}=0$. A visszacsatolt kör átviteli függvénye a keresett árviteli függvény:

$$W_{u_0,\omega_1} = \frac{W_{\rm el} k_{\rm m} W_{\rm me}}{1 + W_{\rm el} k_{\rm m}^2 W_{\rm me}} = \frac{k_{\rm m}}{(R_{\rm a} + L_{\rm a}) J_{\rm a} s + k_{\rm m}^2}.$$
 (3)

Réda Vince, Z697LX HIVATKOZÁSOK

Hivatkozások

- [1] https://www.yaang.com/data-center/Tool-steel/115crv3.html
- [2] https://www.aluminco.com/media/155961/ALUMINIUM-ALLOY-EN-AW-6060_MATERIAL-DATA-SHEET_ALUMINCO.pdf