Optimizing a Weighted Moderate Deviation for Motor Imagery Brain Computer Interfaces

J. Fumanal Idocin, J. Fernández, M. Gómez, C. Vidaurre, M. Papco, H. Bustince

Public University of Navarre

September 27, 2021

Introduction

- Brain Computer Interfaces (BCIs)
- Motor Imagery (MI)
- Enhanced Multimodal Fusion Framework MI-BCI framework
- Multichannel Weighted Moderate Deviations
- Application and Results

Brain Computer Interfaces

- They are means to communicate brain signals and a computer.
- The target: to understand commands to execute in a external device.

- An individual rehearses or simulates a given action.
- We measure the **ElectroEncephalogram signal** while the simulation happens.
- We try to **identify** the imagined movement.

Image taken from: http://www.traumatrucos.es/?p=395

Enhanced Multimodal Fusion Framework

- A MI-BCI framework based on EEG signal¹.
- Tested on left hand, right hand, tongue and foot movement identification.
- Special focus on signal derivation and decission making based on the Multimodal Fuzzy Fusion framework².

¹Javier Fumanal-Idocin et al. "Motor-Imagery-Based Brain-Computer Interface Using Signal Derivation and Aggregation Functions". In: *IEEE Transactions on Cybernetics* (2021).

²Li-Wei Ko et al. "Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-Based Brain Computer Interface". In: *IEEE Computational Intelligence Magazine* 14.1 (2019), pp. 96–106.

Enhanced Multimodal Fusion Framework

- EEG signal collection.
- Past Fourier Transform.
- Oifferentiation.
- Common Spatial Patterns.
- Classifier training.
- Extended Multimodal decision making phase.

EMF

Moderate Deviation-based aggregation

- Aggregation based on finding the point that minimizes sums of distances³.
- Based on Darózcy means: A Darózcy mean is a mapping $M_D(x) = y$, such that $\sum_{i=1}^n D(x_i, y) = 0, x_i, y \in R$.
- As D, we use a Moderate Deviation function. A mapping $I^2 \to R$ is said to be a Moderate Deviation function if and only if:
 - (D1) for every $x \in I, D(x, \cdot) \to R$ is non-decreasing.
 - (D2) for every $x \in I$, $D(\cdot, y) \to R$ is non-increasing.
 - (D3) D(x, y) = 0 if and only if $x = y, x, y \in I$.

Example: D(x, y) = y - x

J. Fumanal Idocin, J. Fernández, M. Gómez, C. Vid

³Abdulrahman H Altalhi et al. "Moderate deviation and restricted equivalence functions for measuring similarity between data". In: Information Sciences 501 (2019), pp. 19–29.

Moderate Deviation-based aggregation

Different versions of Moderate Deviation-based aggregation:

- For numerical data:
 Abdulrahman H Altalhi et al. "Moderate deviation and restricted equivalence functions for measuring similarity between data". In: *Information Sciences* 501 (2019), pp. 19–29.
- For interval-valued data:
 Javier Fumanal-Idocin et al. "Interval-valued aggregation functions based on moderate deviations applied to Motor-Imagery-Based Brain Computer Interface". In: IEEE Transactions on Fuzzy Systems (2021).
- For multi-valued data using weights:
 Martin Papčo et al. "A fusion method for multi-valued data". In: *Information Fusion* 71 (2021), pp. 1–10. ISSN: 1566-2535.

(We opted for the multi-valued data fusion)

Defined as:

$$MD_{D,W} = \frac{1}{2} \left(\sup y \in I | \sum_{i=1}^{s} \sum_{j=1}^{t} w_{ij} D(x_{ij}, y) < 0 + \inf y \in I | \sum_{i=1}^{j} \sum_{j=1}^{t} w_{ij} D(x_{ij}, y) > 0 \right)$$
 (1)

Using as deviation function D:

$$D_{\epsilon} = (x + \epsilon)(y - x) \tag{2}$$

Then, we know the resulting MD:

$$MD_{\epsilon}(u,v) = \frac{u(u+\epsilon) + v(v+\epsilon)}{u+v+2\epsilon}$$
(3)

For example, for $I^4 \rightarrow R$ (2 x 2 patch):

$$MD_{\epsilon,w}(X) = MD_{\epsilon}(wX) = \frac{\sum_{i=1}^{2} \sum_{j=1}^{2} wx_{ij}(wxij + \epsilon)}{4w\epsilon + \sum_{i=1}^{2} \sum_{j=1}^{2} wx_{ij}}$$
(4)

J. Fumanal Idocin, J. Fernández, M. Gómez, C. Vid

• Multimodal fusion scheme:

• Multimodal fusion scheme:

$$MD_{\epsilon}(X_{LDA}) = \frac{\sum_{i=1}^{N_{bands}} w_1 x_i(x_i \epsilon)}{N_{bands} w_1 \epsilon + \sum_{i=1}^{N_{bands}} w_1 x_i}$$

Multimodal fusion scheme:

$$MD_{\epsilon}(X_{LDA}) = \frac{\sum_{i=1}^{N_{bands}} w_1 x_i(x_i \epsilon)}{N_{bands} w_1 \epsilon + \sum_{i=1}^{N_{bands}} w_1 x_i} \quad MD_{\epsilon}(X_F) = \frac{\sum_{i=1}^{N_{classifiers}} w_c f_i(x_i \epsilon)}{N_{classifiers} w_c f \epsilon + \sum_{i=1}^{N_{classifiers}} w_c f x_i}$$

- Once we apply the weighted-MD:
 - (1) **Fixing** the weights for all the channels to the same value.
 - (2) Learning the weights using an optimization algorithm.

We tried both, using backpropagation with Pytorch in the second case:

Test performed

- We use the BCI IV 2a dataset to test the new aggregation proposal⁴.
- We randomly generate 90 50%/50% train/test splits for evaluation.

Two classes: left/right hand.

Four classes: left hand, right hand, tongue, foot.

⁴Michael Tangermann et al. "Review of the BCI competition IV". In: Front. in neuroscience 6 (2012), p. 55.

Results for binary classification

Table 1: Results for the binary classification using the EMF with different configurations.

Aggregation	Accuracy	F1 Score
Weighted-MD learnt Weighted-MD fixed	$86.97\% \pm 3.98$ $85.80\% \pm 4.08$	$86.95\% \pm 4.00 \\ 85.77\% \pm 4.09$
Arithmetic Mean Choquet Integral Sugeno Integral	$85.80\% \pm 4.04$ $86.39\% \pm 4.20$ $81.39\% \pm 4.39$	$85.77\% \pm 4.04 \\ 86.37\% \pm 4.21 \\ 81.37\% \pm 4.39$

Results for 4 classes classification

Table 2: Results for the four classification using the EMF with different configurations.

Aggregation	Accuracy	F1 Score
Weighted-MD learnt Weighted-MD fixed	$65.91\% \pm 13.15 \\ 72.93\% \pm 2.29$	$65.91\% \pm 13.15 \\ 72.93\% \pm 2.29$
Arithmetic Mean Choquet Integral Sugeno Integral	$72.22\% \pm 2.31 \\ 72.93\% \pm 1.85 \\ 64.45\% \pm 2.66$	$72.22\% \pm 2.31$ $72.93\% \pm 1.85$ $64.45\% \pm 2.66$

- Multivalued MD-aggregations seem to be effective in this problem in any case.
- Learning the weights seem to be effective in the binary case, but not in the four classes. Probably more data is needed.
- Further learning algorithms for the weights should be studied.

References & Questions

Aggregations implementation library: https://github.com/Fuminides/ Fancy_aggregations BCI frameworks implementation (WIP): https:

//github.com/Fuminides/athena

Main references:

- Javier Fumanal-Idocin et al. "Motor-Imagery-Based Brain-Computer Interface Using Signal Derivation and Aggregation Functions". In: IEEE Transactions on Cybernetics (2021)
- Martin Papco et al. "A fusion method for multi-valued data". In: Information Fusion 71 (2021), pp. 1–10. ISSN: 1566-2535