Analog Circuits

Day-9

Power Amplifiers

Contents:

- □Classification of Amplifier
- □ Class A Power amplifier and its Analysis
 - Example
- ☐ Harmonic Distortions
- Class B push-pull amplifiers and its Analysis
 - Example
- □Complementary Symmetry push-pull Amplifier
- □ Class AB Power Amplifier
- □ Class C Power Amplifier
- ☐ Thermal Stability and Heat sinks
- □ Distortion in Amplifiers

Introduction

- Power amplifiers are used to deliver a relatively **high amount of power**, usually **to** a **low resistance load**.
- Typical load values range from 300W (for transmission antennas) to 8W (for audio speaker).
- Although these load values do not cover every possibility, they do illustrate the fact that power amplifiers **usually drive low-resistance loads**.
- Typical output power rating of a power amplifier will be **1W α higher**.
- Ideal power amplifier will deliver 100% of the power it draws from the supply to load. In **practice**, this can never occur.
- ☐ The reason for this is the fact that the components in the amplifier will all **dissipate** some of the power that is being drawn form the supply.

Concept of Power Amplifier

- Provide *sufficient power* to an output load to drive other power device.
- ☐ To deliver a large current to a small load resistance e.g. audio speaker;
- ☐ To deliver a large voltage to a large load resistance e.g. switching power supply;
- ☐ To provide a low output resistance in order to avoid loss of gain and to maintain linearity (to minimize harmonic distortion)
- ☐ To deliver power to the *load efficiently*

Power Amplifier Power Dissipation

The **total** amount of power being dissipated by the amplifier, P_{tot} , is

$$P_{tot} = P_1 + P_2 + P_C + P_T + P$$

The difference between this total value and the total power being drawn from the supply is the power that actually goes to the **load** – **i.e. output power**.

Power Amplifier Efficiency η

- $\hfill \Box$ A \hfill A \hfill for the power amplifier is its efficiency, η .
- $\Box Efficiency$ (η) of an amplifier is defined as the ratio of ac output power (power delivered to load) to dc input power .
- By formula: $\eta = \frac{ac \ output \ power}{dc \ input \ power} \times 100\% = \frac{P_o(ac)}{P_i(dc)} \times 100\%$
- \square As we will see, certain amplifier configurations have much higher efficiency ratings than others.
- This is primary consideration when deciding which type of power amplifier to use for a specific application.

Power Amplifiers Classification (Depending on Type of output load)

- ☐ AUDIO AMPLIFIERS
- ☐ RADIO FREQUENCY AMPLIFIERS
- □ D C POWER AMPLIFIERS

Power Amplifiers Classification

Class-A Power Amplifier:

Class-B Power Amplifier:

Class-C Power Amplifier:

Class A - The transistor conducts during the whole cycle of sinusoidal input signal

Class C - The transistor conducts for less than half a cycle of input signal

Class B - The transistor conducts during one-half cycle of input signal

Class AB - The transistor conducts for slightly more than half a cycle of input signal

Class	Α	В	С	AB
Conduction Angle	360°	180°	Less than 90°	180 to 360°
Position of the Q-point	Centre Point of the Load Line	Exactly on the X-axis	Below the X-axis	In between the X-axis and the Centre Load Line
Overall Efficiency	Poor 25 to 30%	Better 70 to 80%	Higher than 80%	Better than A but less than B 50 to 70%
Signal Distortion	None if Correctly Biased	At the X-axis Crossover Point	Large Amounts	Small Amounts

Efficiency Ratings

☐ The **maximum theoretical efficiency** ratings of class-A, B, and C amplifiers are:

Amplifier

Maximum Theoretical

Efficiency, η_{max}

Class A

25%

Class B

78.5%

Class C

99%

Steps for Analysis of Power Amplifiers:

- Draw the Circuit Diagram of relevant type of Power Amplifer
- Draw the Graphical operating point representation
- ☐ Make DC analysis (AC components as 0) & Calculate 'Pdc'
- ☐ Make AC analysis (DC components as 0) & Calculate 'Pac'
- Measure the Percentage Efficiency of the amplifier (% n)
- Show the Power Dissipation
- ☐ Advantages and Disadvantages

Class A Amplifier

- $\Box \nu_{\text{output}}$ waveform \rightarrow same shape $\rightarrow \nu_{\text{input}}$ waveform $+ \pi$ phase shift.
- ☐ The collector current is **nonzero** 100% of the time.
 - → **inefficient**, since even with zero input signal, Icq is nonzero (i.e. transistor dissipates power in the rest, or quiescent, condition)

Class A Amplifier Classification

RC Coupled Class A Power Amplifier Analysis

Common-emitter (voltage-divider) configuration (RC-coupled amplifier)

Typical Characteristic Curves for Class A Operation

- (a) Common-emitter amplifier,
- (b) dc load line (the Q point is at centre of the load line)
- (c)instantaneous power dissipation versus time in the transistor

DC Input Power

The total dc power, $P_i(dc)$, that an amplifier draws from the power supply:

$$P_{i}(dc) = V_{cc}I_{cc}$$

$$I_{cc} = I_{cQ} + I_{1}$$

$$I_{cc} \approx I_{cQ} \quad (I_{cQ} >> I_{1})$$

$$P_{i}(dc) = V_{cc}I_{cQ}$$

Note: That this equation is valid for most amplifier power analyses. We can rewrite for the above equation for the <u>ideal</u> amplifier as

$$P_i(dc) = V_{CC}I_{CQ}$$

AC Output Power

$$P_o(ac) = i_{c(rms)} v_{o(rms)}$$

$$V_{o(rms)} = \frac{Vm}{\sqrt{2}}$$
 $I_{o(rms)} = \frac{Im}{\sqrt{2}}$

$$P_o(ac) = \frac{Vm}{\sqrt{2}} * \frac{Im}{\sqrt{2}} = \frac{Vm * Im}{2}$$

$$V_{m} = \frac{Vpp}{2} \qquad I_{m} = \frac{Ipp}{2}$$

$$P_{o}(ac) = \frac{\frac{Vpp}{2} * \frac{Ipp}{2}}{2} = \frac{Vpp * Ipp}{8}$$

$$V_{pp} = \frac{V \max - V \min}{2} \qquad I_{pp} = \frac{\operatorname{Im} ax - \operatorname{Im} in}{2}$$

$$P_o(ac) = \frac{(V \max - V \min) * (Im \ ax - Imin)}{8}$$

Efficiency:

$$\%\eta = \frac{P_{ac}}{P_{dc}} * 100$$

$$P_o(ac) = \frac{(V \max - V \min)^* (\operatorname{Im} ax - \operatorname{Im} in)}{8}$$

$$P_i(dc) = V_{CC}I_{CQ}$$

$$\%\eta = \frac{(V \max - V \min)(\operatorname{Im} ax - \operatorname{Im} in)}{8*Vcc*Icq}*100$$

$$\%\eta = \frac{2*Vcc*Icq}{8*Vcc*Icq}*100$$

$$\%\eta = 25\%$$

■ Advantages:

- 1) Circuit is Simple to Design
- 2) Less no. of Components

Dis-Advantages:

- 1) Load Resistor is directly connected to collector. This causes considerable wastage of Power
- 2) Power Dissipation is More
- 3) Efficiency is very poor, due to large power Dissipation

Transformer Coupled Amplifier

- The theoretical maximum efficiency of a basic RC-coupled class-A amplifier is limited to 25%.
- In practical circuit, the efficiency is less than 25%.
- Used for output power of about 1 W only.
- Transformer coupling can increase the maximum efficiency to 50%
- Disadvantage of transformer coupling expensive & bulky.

Neglecting transformer resistance and assuming R_E is small;

$$V_{CEQ} \cong V_{CC}$$

$$rac{V_1}{V_2} = rac{n_1}{n_2} \ and \ rac{I_1}{I_2} = rac{n_1}{n_2}$$

Or

$$V_1 = rac{n_1}{n_2} V_2 \ and \ I_1 = rac{n_1}{n_2} I_2$$

Hence

$$rac{V_1}{I_1}=\left(rac{n_1}{n_2}
ight)^2rac{V_2}{I_2}$$

But $V_1/I_1 = R_L' = effective input resistance$

And $V_2/I_2 = R_L =$ effective output resistance

Therefore,

$$R_L' = \left(rac{n_1}{n_2}
ight)^2 R_L = n^2 R_L$$

Where

$$n = rac{number\ of\ turns\ in\ primary}{number\ of\ turns\ in\ secondary} = rac{n_1}{n_2}$$

A power amplifier may be matched by taking proper turn ratio in step down transformer.

¬ DC Input Power

The total dc power, $P_i(dc)$, that an amplifier draws from the power supply :

$$P_{i}(dc) = V_{cc}I_{cc}$$

$$I_{cc} \approx I_{cQ} \quad (I_{cQ} >> I_{1})$$

$$P_{i}(dc) = V_{cc}I_{cQ}$$

Note: That this equation is valid for most amplifier power analyses. We can rewrite for the above equation for the <u>ideal</u> amplifier as

 i_C

$$P_i(dc) = V_{CC}I_{CQ}$$

¬ AC Output Power

$$P_o(ac) = i_{1(rms)}v_{1(rms)}$$
 $P_o(ac) = i_{2(rms)}v_{2(rms)}$

At Primary side A.C power generated:

$$P_o(ac) = i_{1(rms)} v_{1(rms)} = I^2 \frac{V_{1rms}^2}{1rms} R_L = \frac{V_{1rms}^2}{R_L^2}$$

$$P_o(ac) = \frac{V_1 m}{\sqrt{2}} * \frac{I_1 m}{\sqrt{2}} = \frac{V_1 m * I_1 m}{2}$$

$$V_m = \frac{Vpp}{2} \qquad I_m = \frac{Ipp}{2}$$

$$V_{pp} = \frac{V \max - V \min}{2}$$

$$I_{pp} = \frac{\operatorname{Im} ax - \operatorname{Im} in}{2}$$

 i_C

we consider an idea Transformer, means Power delivered on primary side is equal to the secondary side load, and the values of currents and voltages are similar.

$$P_o(ac) = \frac{\frac{Vpp}{\Box 2} * \frac{Ipp}{2}}{2} = \frac{Vpp * Ipp}{8}$$

$$P_o(ac) = \frac{(V \max - V \min)^* (\operatorname{Im} ax - \operatorname{Im} in)}{8}$$

$$P_i(dc) = V_{CC} I_{CQ}$$

Efficiency:

$$\%\eta = \frac{P_{ac}}{P_{dc}} * 100$$

$$P_o(ac) = \frac{(V \max - V \min)^* (\operatorname{Im} ax - \operatorname{Im} in)}{8}$$

$$P_i(dc) = V_{CC} I_{CQ}$$

$$\%\eta = \frac{(V \max - V \min)(\operatorname{Im} ax - \operatorname{Im} in)}{8*Vcc*Icq}*100$$

$$\% \eta = \frac{4*Vcc*Icq}{8*Vcc*Icq}*100$$

$$\%\eta = 50\%$$

Power Dissipation:

$$p_d = p_D C^{-p} A C$$

¬ In case of Class A amplifiers, Power Dissipation is maximum when no input signal is applied.

™ Advantages:

- 1) Efficiency be somewhat high compared to series fed Class A
- 2)Impedance matching is required for maximum power transfer is possible

™ Dis-Advantages:

- 1) Due to Transformer, the circuit becomes bulkier, heavier and costlier compared to series fed type
- 2) Frequency response of the circuit is poor
- 3) Circuit is complicated to design and implementation compared to series fed type

Class A advantages:

- •No cross over distortion
- •No switching distortion
- •Lower harmonic distortion in the voltage amplifier
- •Lower harmonic distortion in the current amplifier
- •No signal dependent distortion from the power supply
- Constant and low output impedance
- •Simpler design

Class A dis-advantages:

- Low Efficiency
- Power Dissipation more
- Wastage of Power

Example

Calculate the input power $[P_i(dc)]$, output power $[P_o(ac)]$, and efficiency $[\eta]$ of the amplifier circuit for an input voltage that results in a base current of 10mA peak.

$$I_{BQ} = \frac{V_{cc} - V_{BE}}{R_B} = \frac{20V - 0.7V}{1k\Omega} = 19.3mA$$

$$I_{CQ} = \beta I_B = 25(19.3mA) = 482.5mA \approx 0.48A$$

$$V_{CEQ} = V_{CC} - I_{CRC} = 20V - (0.48A)(20\Omega) = 10.4V$$

$$I_{c(sat)} = \frac{V_{CC}}{R_C} = \frac{20V}{20\Omega} = 1000mA = 1A$$

$$V_{CE(cutoff)} = V_{CC} = 20V$$

$$I_{C(peak)} = \beta I_{b(peak)} = 25(10mA \ peak) = 250mA \ peak$$

$$P_{o(ac)} = \frac{I_{C(peak)}^2}{2} R_C = \frac{\left(250 \times 10^{-3} A\right)^2}{2} (20\Omega) = 0.625W$$

$$P_{i(dc)} = V_{CC}I_{CQ} = (20V)(0.48A) = 9.6W$$

$$\eta = \frac{P_{o(ac)}}{P_{i(dc)}} \times 100\% = 6.5\%$$

Class B Power Amplifier

- □ Consists of **Push-Pull** & **complementary pair** electronic devices
- One conducts for one half cycle of the input signal and the other conducts for another half of the input signal
- □ When the input is zero, both devices are off, the bias currents are zero and the output is zero.
- ☐ Ideal voltage gain is unity

□ For input larger than zero, A turn ON and supplies current to the load.

 \Box For input less than zero, B turn ON and sinks current from the load

Class-B transformer coupled push pull amplifier

DC Input Power

- •DC biasing point is on the X-axis so the Vceq=VCC. And Iceq becomes 0. hence Q-point (Vcc,0).
- Each Transformer output is an Half-rectified
 Waveform. Then peak value of the output current is the average d.c current

$$I_1(dc) = \frac{I_m}{\pi}$$
 $I_2(dc) = \frac{I_m}{\pi}$

$$I(dc) = \frac{I_m}{\pi} + \frac{I_m}{\pi} = \frac{2I_m}{\pi}$$

$$P(dc) = V_{CC}I_{dc} = \frac{2}{\pi}V_{CC}I_{m}$$

¬ AC Output Power

$$P_o(ac) = i_{1(rms)} v_{1(rms)}$$
 $P_o(ac) = i_{2(rms)} v_{2(rms)}$

At Primary side A.C power generated:

$$P_o(ac) = i_{1(rms)}v_{1(rms)} = I^2 \frac{V_{1}^2}{1rms}R_L' = \frac{V_{2}^2}{R_L'}$$

$$P_o(ac) = \frac{Vm}{\sqrt{2}} * \frac{Im}{\sqrt{2}} = \frac{Vm*Im}{2} = \frac{I_m R_L}{2} = \frac{V_m^2}{2R_L}$$

Efficiency:

$$\%\eta = \frac{P_{ac} * 100}{P_{dc}}$$

$$P_o(ac) = \frac{Vm * Im}{2}$$

$$P(dc) = \frac{2}{\pi} V_{CC} I_m$$

$$\%\eta = \frac{\pi * Vm}{4} *100$$

$$\% \eta = \frac{\pi_* V_{CC}}{4} 100$$

$$\%\eta = 78.5\%$$

Power Dissipation:

$$p_d = p_D C^- p_A C$$

$$p_d = \frac{2}{\pi} V_{cc} I_m - \frac{V_m * I_m}{2}$$

¬ In case of Class A amplifiers, Power Dissipation is maximum when no input signal is applied. But in Case of Class B, when input is 0 then Vm=0. Hence Power dissipation is very less compared to Class A.

Advantages:

- 1) Efficiency is much higher than Class A operation.
- 2) When there is no input signal, the power dissipation is zero.
- 3) Harmonics get cancelled. This reduces the harmonic distortion.
- 4) Ripples present in supply voltage also get eliminated.
- 5) Due to the Transformer impedence Matching is possible.

Dis-Advantages:

- 1) Frequency response of the circuit is poor
- 2) Center Tap transformers are necessary.
- 3) Transformers make the circuit bulky and hence costlier

Complimentary Symmetry Class B Circuit

■ Advantages:

- 1) As the circuit is transformer less, its weight, size and cost are less.
- 2)Due to the common collector configuration, impedance matching is possible.
- 3)Frequency response of the circuit is improves due to transformer less Class B amplifier circuit

Dis-Advantages:

- 1) Circuit needs two separate voltage supplies
- 2) Output suffers cross-over distortion

→ Cross-over distortion free circuits

• Push-Pull Distortion Less circuit:

• Complementary Push-Pull Distortion Less circuit:

Class AB Power Amplifier

Class AB Voltage Transfer Curve

Class C Power Amplifier

Load line Operation:

Collector Currents & Output Current

Comparison of Amplifiers

Class	A	В	C	AB
Operating Cycle	360°	180°	Less that 180°	180° to 360°
Position of Q- Point	Center of Load Line	On X-axis	Below X-axis	In between X- axis to center of Load line
Efficiency	Poor, 25% to 50%	Better, 78.5%	High	In between 78.5% to 50%
Distortion	No	Present	Highest	Present

Distortion in Amplifiers

Amplifier Distortion:

Amplifier Distortion can take on many forms such as Amplitude, Frequency and Phase Distortion due to Clipping

Amplitude Distortion:

Frequency Distortion:

Phase Distortion:

GATE Questions with Solutions

Example:

5.02. Calculate the effective resistance seen looking into the primary of a 15 : 1 transformer connected to an 8Ω load

(A)
$$2kΩ$$
 (B) $1.8kΩ$

(C)
$$3k\Omega$$
 (D) $4k\Omega$

Sol.
$$R_L^1 = \left(\frac{N_1}{N_2}\right) R_L = (15)^2 8$$

$$R_L^1 = 1.8k\Omega$$
 Choice (B)

Examples:

Sol. D2 =
$$\frac{|A_2|}{|A_1|} = \frac{0.25}{1.5} = \frac{1}{6}$$

D3 = $\frac{|A_3|}{|A_1|} = \frac{0.05}{1.5} = \frac{1}{30}$
THD = $\sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{1}{30}\right)^2} = 0.17\%$

Scanned with CamScanner

sol.
$$\eta = 78.54 \frac{V_L(p)}{V_{cc}} \% = 78.54 \times \frac{8}{24}$$

= 26.18 volts Choice (A)

3. The ac power output of a class A amplifier is 4w. If the collector efficiency is 45%, what is the power rating of transistor?

Sol. $P_{o(ac)} = 4w$ $\eta = 45\% = 0.45$

$$\Rightarrow \eta = \frac{P_{o(ac)}}{P_{in(dc)}}$$

$$P_{in(dc)} = \frac{P_{o(ac)}}{\eta} = \frac{4}{0.45} = 8.9W$$

4 P_{Dmax} ≥ P_{in(dc)} for class A.

Choice (A)

- A class B push-pull amplifier uses 15V dc supply, with sinusoidal input, a max peak to peak of 24V is desired across a load of 100Ω . What is the power dissipated by each transistor?
 - (A) 426mW
- (B) 213mW
- (C) 1.146W (D) 0.72W
- Sol. Peak to peak value of $o/p V_{PP} = 24v$

Peak value of o/p
$$V_P = \frac{24}{2} = 12 \text{ V}$$

$$R_L = 100\Omega$$

Peak value of o/p current IP = VP/RL

$$\Rightarrow I_P = \frac{12}{100} = 0.12A$$

Dc current drawn from Vcc supply is

$$I_{dc} = \frac{2I_P}{\pi}$$
 (from FWR)

$$=\frac{2\times0.12}{\pi}=\frac{0.14}{\pi}A$$

DC power drawn from battery is

$$=15\times\frac{0.14}{\pi}=1.146w$$

AC power delivered to load is

$$P_{o(ac)} = \frac{1}{2} \frac{V_p^2}{R_1} = \frac{1}{2} \frac{(12)}{100}$$

4 Power dissipated in both transistors is

$$1.146 - 0.72w = 0.426w$$

and power dissipated by each transistor

is
$$\frac{0.426}{2}$$
 w = 0.213w = 213mw

Choice (B)

The cascade amplifier is a multistage configuration of

A)CC-CB

B)CE-CB

C)CB-CC

D)CE-CC

SOLUTION: B

cascade amplifier is a multistage configuration of CE-CB

6. A cascade connection of two voltage amplifiers A1 and A2 is shown in the figure. The open-loop gain A_{v0}, input resistance R_{in}, and output resistance R_o for A1 and A2 are as follows:

A1: $A_{v0} = 10$, $R_{in} = 10 \text{ k}\Omega$, $R_o = 1\text{k}\Omega$ A2: $A_{v0} = 5$, $R_{in} = 5 \text{ k}\Omega$, $R_o = 200 \Omega$ The approximate overall voltage gain V_{out}/V_{in} is

(GATE 2014, Set-2)

6.
$$A_{VL_1} = A_V \frac{Z_{i_2}}{Z_o + Z_{i_2}}$$

= $10 \left[\frac{5 \times 10^3}{10^3 + 5 \times 10^3} \right] = \frac{50}{6}$

$$A_{V} = 10$$

$$R_{in} = 10^{4}\Omega$$

$$R_{o} = 10^{3} \Omega$$

$$A_{V} = 5$$

$$R_{in} = 5 \times 10^{3}\Omega$$

$$R_{o} = 200 \Omega$$

$$A_{VL_2} = 5 \left[\frac{1 \times 10^3}{200 + 10^3} \right] = \frac{5}{1.2}$$

$$A_{V_T} = A_{V_L} A_{V_L} = \frac{50}{6} \times \frac{5}{1.2} = 34.7$$
Ans: 34 to 35.3

Thank you