Syntax (new2)

$$e = x \mid \lambda x.e \mid e e \qquad \qquad \text{(Expressions)}$$

$$v = \lambda x.e \qquad \qquad \text{(Values)}$$

$$a = A[v] \qquad \qquad \text{(Answers)}$$

$$A = [] \mid A[\lambda x.A]e \qquad \qquad \text{(Answer Contexts)}$$

$$\mathring{A} = [] \mid A[\mathring{A}]e \qquad \qquad \text{(Partial Answer Contexts - outer)}$$

$$\mathring{A} = [] \mid A[\lambda x. \mathring{A}] \qquad \qquad \text{(Partial Answer Contexts - inner)}$$

$$E = [] \mid E \mid A[E] \mid \mathring{A}[A[\lambda x. \mathring{A}[E[x]]]E] \qquad \qquad \text{(Evaluation Contexts)}$$

$$\mathring{A}[\mathring{A}] \in A$$

Notions of Reduction (new2)

$$\hat{A}[A_1[\lambda x. \check{A}[E[x]]] \ A_2[v]] \ \boldsymbol{\beta_{\mathbf{need}}} \ \hat{A}[A_1[A_2[\check{A}[E[x]]\{x:=v\}]]]$$

$$\hat{A}[\check{A}] \in A$$

 \rightarrow : compatible closure of β_{need}

 \rightarrow : reflexive, transitive closure of \rightarrow

 \Rightarrow : parallel reduction of $\boldsymbol{\beta}_{\mathbf{need}}$ redexes

Definition 1 (\Rightarrow) . Parallel reduction

Definition 2 (\Rightarrow for contexts). Parallel reduction of contexts.

If all subterms in a context E parallel reduce, then $E \Rightarrow E'$, where each e in E is replaced with e' in E', and $e \Rightarrow e'$.

0.1 Context Composition Lemmas

Lemma 1. If $C_1 \Rightarrow C_1'$ and $C_2 \Rightarrow C_2'$, then $C_1[C_2] \Rightarrow C_1'[C_2']$.

Proof. By structural induction on C_1 .

Lemma 2. If $C \Rightarrow C'$ and $e \Rightarrow e'$, $C[e] \Rightarrow C'[e']$

Proof. By structural induction on C.

0.2Diamond Lemma

Lemma 3 (Diamond Property of \Rightarrow). If $e \Rightarrow e_1$ and $e \Rightarrow e_2$, there exists e' s.t. $e_1 \Rightarrow e'$ and $e_2 \Rightarrow e'$.

Proof. By structural induction on proof of $e \Rightarrow e_1$.

Case $e \Rightarrow e_1$ by $\Rightarrow def(1)$, so $e = e_1$. (base)

Then $e' = e_2$ because $e_1 = e \Rightarrow e_2$ and $e_2 \Rightarrow e_2$.

Case $e \Rightarrow e_1$ by $\Rightarrow de f(2)$.

Subcase $e \Rightarrow e_2$ by $\Rightarrow de f(2)$.

$$e = \hat{A}[A_1[\lambda x. \check{A}[E[x]]] A_2[v]],$$

$$e_1 = \hat{A}'[A_1[A_2]\check{A}'[E'[x]][A_2[v]],$$

$$e_1 = \hat{A}'[A_1'[A_2'[\check{A}'[E'[x]]\{x := v'\}]]], \qquad \hat{A} \Rightarrow \hat{A}', A_1 \Rightarrow A_1', A_2 \Rightarrow A_2', \check{A} \Rightarrow \check{A}', E \Rightarrow E', v \Rightarrow v'$$

$$e_2 = \hat{A}''[A_1''[A_2''[\check{A}''[E''[x]]\{x:=v''\}]]], \quad \hat{A} \Rightarrow \hat{A}'', A_1 \Rightarrow A_1'', A_2 \Rightarrow A_2'', \check{A} \Rightarrow \check{A}'', E \Rightarrow E'', v \Rightarrow v'$$

 $e_2 = \hat{A}''[A_1''[A_2''[A'''[E''[x]]]\{x := v''\}]]], \hat{A} \Rightarrow \hat{A}'', A_1 \Rightarrow A_1'', A_2 \Rightarrow A_2'', \hat{A} \Rightarrow \hat{A}'', E \Rightarrow E'', v \Rightarrow v''$ By IH, subterms satisfy diamond property. By lemma 4, subcontexts satisfy diamond property. So $\exists e' = \hat{A}'''[A_1'''[A_2'''[\hat{A}'''[E'''[x]]] \{x := v'''\}]]$ s.t.

- $e_1 \Rightarrow e'$ by composition lemmas and subst lemma
- $e_2 \Rightarrow e'$ by composition lemmas and subst lemma

Subcase $e \Rightarrow e_2$ by $\Rightarrow def(3)$.

$$e = \hat{A}[A_1[\lambda x. \check{A}[E[x]]] A_2[v]],$$

$$e_1 = \hat{A}'[A_1'[A_2'[\check{A}'[E'[x]]]\{x := v'\}]]], \quad \hat{A} \Rightarrow \hat{A}', A_1 \Rightarrow A_1', A_2 \Rightarrow A_2', \check{A} \Rightarrow \check{A}', E \Rightarrow E', v \Rightarrow v'$$

$$e_2 = \hat{A}''[A_1''[\lambda x. \check{A}''[E''[x]]] \ A_2''[v'']], \quad \hat{A} \Rightarrow \hat{A}'', A_1 \Rightarrow A_1'', A_2 \Rightarrow A_2'', \check{A} \Rightarrow \check{A}'', E \Rightarrow E'', v \Rightarrow v'', \text{ by lemma 5}$$

By IH, subterms satisfy diamond property. By lemma 4, subcontexts satisfy diamond property.

So
$$\exists e' = \hat{A}'''[A_1'''[A_2'''[\check{A}'''[E'''[x]]]\{x := v'''\}]]]$$
 s.t.

- $e_1 \Rightarrow e'$ by composition lemmas and subst lemma
- $e_2 \Rightarrow e'$ by $\Rightarrow def(2)$

Case $e \Rightarrow e_1$ by $\Rightarrow def(3)$.

 $e \Rightarrow e_2$ subcases by $\Rightarrow def(2), (3)$, analogous to above case.

Case $e \Rightarrow e_1$ by $\Rightarrow def(4)$.

Claim holds by IH.

Lemma 4 (Diamond Property for Contexts). If $C \Rightarrow C_1$ and $C \Rightarrow C_2$, then $\exists C'$ s.t. $C_1 \Rightarrow C'$ and $C_2 \Rightarrow C'$.

Proof. By structural induction on C.

Lemma 5. If $e = \hat{A}[A_1[\lambda x.\check{A}[E[x]]]A_2[v]], \ \hat{A}[\check{A}] \in A$, and $e \Rightarrow e'$ by $\Rightarrow def(3)$, then e' has shape $\hat{A}'[A_1'[\lambda x. \check{A}'[E'[x]]] A_2'[v']], \text{ and } \hat{A} \Rightarrow \hat{A}', A_1 \Rightarrow A_1', A_2 \Rightarrow A_2', \check{A} \Rightarrow \check{A}', E \Rightarrow E', v \Rightarrow v'$

Proof. By structural induction on \hat{A} .

Case $\hat{A} = []$.

Since $\hat{A}[\check{A}] \in A$, $\check{A} = []$, so $e = A_1[\lambda x.E[x]] A_2[v]$ Since $e \Rightarrow e'$ by $\Rightarrow de f(3)$:

- $A_1[\lambda x.E[x]] \Rightarrow A'_1[\lambda x.E'[x]]$, with $A_1 \Rightarrow A'_1, E \Rightarrow E'$, by A[v] and E[x] shape lemmas (9 and 10).
- $A_2[v] \Rightarrow A'_2[v']$, with $A_2 \Rightarrow A'_2, v \Rightarrow v'$ by A[v] lemma (9)

Thus,
$$e' = \hat{A}'[A_1'[\lambda x.\check{A}'[E'[x]]]A_2'[v']]$$
, where $\hat{A}' = \check{A}' = []$

Case $\hat{A} = A[\hat{A}_1]e_1$.

$$e = A[\hat{A}_1[A_1[\lambda x. \check{A}[E[x]]] A_2[v]]] e_1$$

by $\Rightarrow def(3), e \Rightarrow e' = A'[\hat{A}'_1[A'_1[\lambda x. \check{A}'[E'[x]]] A'_2[v']]] e'_1$, where:

- $A[\hat{A}_1[A_1[\lambda x.\check{A}[E[x]]] A_2[v]]] \Rightarrow A'[\hat{A}'_1[A'_1[\lambda x.\check{A}'[E'[x]]] A'_2[v']]]$ bc by IH, $\hat{A}_1[A_1[\lambda x. \check{A}[E[x]]] A_2[v]] \Rightarrow \hat{A}'_1[A'_1[\lambda x. \check{A}'[E'[x]]] A'_2[v']],$ with $\hat{A}_1 \Rightarrow \hat{A}'_1$, $A_1 \Rightarrow A'_1$, $\check{A} \Rightarrow \check{A}'$, $E \Rightarrow E'$, $A_2 \Rightarrow A'_2$, $v \Rightarrow v'$
 - Since, we lost an argument, $A[\hat{A}_1[A_1[\lambda x. \hat{A}[E[x]]] A_2[v]]]$ is an answer, so it's also true that $A \Rightarrow A'$, by A[v] lemma (9)

П

• $e_1 \Rightarrow e_1'$

Substitution Lemmas

Lemma 6 (Substitution). If $e_1 \Rightarrow e_1'$ and $e_2 \Rightarrow e_2'$, then $e_1\{x := e_2\} \Rightarrow e_1'\{x := e_2'\}$.

Proof. By structural induction on $e_1 \Rightarrow e'_1$.

Case
$$e_1 = e'_1$$
. (base)

Case
$$e_1 \Rightarrow e_1'$$
 by $\Rightarrow def(2)$.

$$\begin{split} e_1 &= \hat{A}[A_1[\lambda y. \check{A}[E[y]]] \, A_2[v]], \\ e_1' &= \hat{A}'[A_1'[A_2'[\check{A}'[E'[y]]]\{y := v'\}]]] \end{split}$$

$$\hat{A}\{x := e_2\} \Rightarrow \hat{A'}\{x := e'_2\}$$

$$A_1\{x := e_2\} \Rightarrow A'_1\{x := e'_2\}$$

$$A_2\{x := e_2\} \Rightarrow A'_2\{x := e'_2\}$$

$$v\{x := e_2\} \Rightarrow v'\{x := e'_2\}$$

$$e_1\{x := e_2\}$$

$$= \hat{A}\{x := e_2\}[A_1\{x := e_2\}[\lambda y. \check{A}[E[y]]\{x := e_2\}] A_2[v]\{x := e_2\}]$$
 (distribute subst)

$$\Rightarrow \! \hat{A}'\{x := e_2'\}[A_1'\{x := e_2'\}[A_2'\{x := e_2'\}] \\ \check{A}'[E'[y]]\{x := e_2'\}\{y := v'\{x := e_2'\}\}]]] \qquad (\Rightarrow def(2) + \mathrm{IH})$$

$$= \hat{A}'\{x := e_2'\}[A_1'\{x := e_2'\}[A_2'\{x := e_2'\}][A_2'\{x := e_2'\}][A_2$$

$$= \hat{A}'[A_1'[A_2'[\check{A}'[E'[y]]\{y:=v'\}]]]\{x:=e_2'\}$$
 (undist subst)
$$= e_1'\{x:=e_2'\}$$

Case $e_1 \Rightarrow e'_1$ by $\Rightarrow def(3)$.

by IH and distributing and undistributing subst

Case
$$e_1 \Rightarrow e_1'$$
 by $\Rightarrow def(4)$.

by IH

Corollary 1 (Substitution). If $\hat{A} \Rightarrow \hat{A}'$, $e_1 \Rightarrow e_1'$, and $e_2 \Rightarrow e_2'$, then $\hat{A}[e_1\{x := e_2\}] \Rightarrow \hat{A}'[e_1'\{x := e_2'\}]$, etc. Proof. By lemmas 2 and 6. \Box

0.4 Not β_{need} Redex Lemmas

Note: $\beta_{\mathbf{need}}$ redex = $\hat{A}[A_1[\lambda x.\check{A}[E[x]]] A_2[v]], \hat{A}[\check{A}] \in A$

Lemma 7. A[v] is not a β_{need} redex.

Lemma 8. E[x], where E does not bind x, is not a β_{need} redex.

0.5 Shape Preserving Lemmas

Lemma 9. If e = A[v] and $e \Rightarrow e'$, then e' = A'[v'] where $A \Rightarrow A'$ and $v \Rightarrow v'$.

Proof. By structural induction on A. Proceed by cases on proof of $e \Rightarrow e'$.

Case $e \Rightarrow e'$ by $\Rightarrow def(1)$.

$$A' = A, v = v'$$

Case $e \Rightarrow e'$ by $\Rightarrow def(2)$.

Impossible, because e is not a β_{need} redex, by lemma 7.

Case $e \Rightarrow e'$ by $\Rightarrow def(3)$.

If A = [], trivial.

If $A = A_1[\lambda x. A_2] e_1$, lemma holds by IH.

Case $e \Rightarrow e'$ by $\Rightarrow def(4)$.

$$A' = A = [].$$

Lemma 10. If e = E[x], where E does not bind x, and $e \Rightarrow e'$, then e' = E'[x], E' does not bind x, and $E \Rightarrow E'$.

Proof. By induction on E. Proceed by cases on proof of $e \Rightarrow e'$.

Case $e \Rightarrow e'$ by $\Rightarrow def(1)$.

$$E' = E$$

Case $e \Rightarrow e'$ by $\Rightarrow def(2)$.

Impossible because e is not a β_{need} redex, by lemma 8

Case $e \Rightarrow e'$ by $\Rightarrow def(3)$.

Subcase E = [].

$$E' = []$$

Subcase $E = E_1 e_1$.

Claim holds by IH.

Subcase $E = A[E_1]$.

If A = [], trivial.

If $A = A_1[\lambda x. A_2] e_1$, then lemma holds for $A_2[E_1[x]]$ by IH, and $A_1 \Rightarrow A_1'$ by lemma 9, so $E' = A_1'[\lambda x. A_2'[E_1']] e_1'$.

Subcase $E = \hat{A}[A[\lambda y. \check{A}[E_1[y]]] E_2], \ \hat{A}[\check{A}] \in A.$

Claim holds for $E_2[x]$ by IH. $\mathring{A} \Rightarrow \mathring{A}'$ by lemma 11. $A \Rightarrow A'$ by lemma 9. $\mathring{A} \Rightarrow \mathring{A}'$ by lemma 12 so $E' = \mathring{A}'[A'[\lambda y. \mathring{A}'[E_1'[y]]] E_2']$

Case $e \Rightarrow e'$ by $\Rightarrow def(4)$.

Impossible because no E has shape $\lambda x \dots$

Lemma 11. If $e = \check{A}[E[x]]$, where $\check{A}[E]$ does not bind x, and $e \Rightarrow e'$, then $e' = \check{A}'[E'[x]]$, $\check{A}'[E']$ does not bind x, and $\check{A} \Rightarrow \check{A}'$ and $E \Rightarrow E'$.

Proof. By induction on \check{A} . $E[x] \Rightarrow E'[x]$ by lemma 10.

Case $\check{A} = []$.

$$\check{A}' = []$$

Case $\check{A} = A[\lambda y. \check{A}_1]$.

Claim holds by IH and lemma 9.

Lemma 12. If $e = \hat{A}[e_1]$, $e \Rightarrow e'$ by $\Rightarrow def(3)$, and $e_1 \Rightarrow e'_1$, then $e' = \hat{A}'[e'_1]$, where $\hat{A} \Rightarrow \hat{A}'$.

Proof. By induction on \hat{A} .

Case $\hat{A} = []$.

$$\hat{A}' = []$$

Case $\hat{A} = A[\hat{A}_1] e_2$.

Subcase A = [].

Claim holds by IH.

Subcase $A = A_1[\lambda x. A_2] e_3$.

Claim holds by IH and lemmas 9 and 13.

Lemma 13. If $e = A[e_1]$, $e \Rightarrow e'$ by $\Rightarrow def(3)$, and $e_1 \Rightarrow e'_1$, then $e' = A'[e'_1]$ where $A \Rightarrow A'$.

Proof. By induction on A.

Case A = [].

$$A' = []$$

Case $A = A_1[\lambda x. A_2] e_2$.

 $A_2 \Rightarrow A_2'$ by IH and $A_1 \Rightarrow A_1'$ by lemma 9, so claim holds with $A' = A_1'[\lambda x.A_2']e_2'$