Gramáticas regulares

Gramáticas

Como sabemos, las gramáticas especifican lenguajes (similar a AF y ER)

Ejemplo:	$\langle oraci\'on \rangle \rightarrow \langle sujeto \rangle \ \langle predicado \rangle$	$\langle artículo \rangle \rightarrow un$
		$\langle artículo \rangle \rightarrow el$
	$\langle sujeto \rangle \rightarrow \langle artículo \rangle \langle nombre \rangle$	$\langle nombre \rangle \rightarrow gato$
	$\langle predicado \rangle \rightarrow \langle verbo \rangle$	$\langle nombre \rangle \rightarrow perro$
		$\langle verbo \rangle \! o corre$
		$\langle verbo \rangle \rightarrow salta$

Una posible derivación de la gramática: "el perro corre"

Una posible derivación de la gramática: "un gato salta"

$$\langle sujeto \rangle \rightarrow \langle artículo \rangle \langle nombre \rangle$$

 $\langle oraci\'on \rangle \rightarrow \langle sujeto \rangle \langle predicado \rangle$

$$\langle predicado \rangle \rightarrow \langle verbo \rangle$$

¿Cuál es su lenguaje?

$$\langle nombre \rangle \rightarrow gato$$

 $\langle nombre \rangle \rightarrow perro$

$$\langle articulo \rangle \rightarrow el$$
 $\langle nombre \rangle \rightarrow ga$

 $\langle artículo \rangle \rightarrow un$

 $\langle verbo \rangle \rightarrow corre$

 $\langle verbo \rangle \rightarrow salta$

Cada posible derivación de la gramática

```
L = {
     "un gato salta", "un gato corre", "el gato salta",
     "el gato corre", "un perro salta", "un perro corre",
     "el perro salta", "el perro corre"
}
```

Notación

Este conjunto de definiciones se llaman reglas de producción/reducción

Ejemplo

Gramática

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Lenguaje

$$L = \{a^n b^n : n \ge 0\}$$

Derivación de la cadena "ab"

$$S\Rightarrow aSb\Rightarrow ab$$
 (S reduce en dos pasos a ab)
$$S\rightarrow aSb \qquad S\rightarrow \lambda$$

Derivación de la cadena "aabb"

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Definición formal de una gramática

$$G = (V, \Sigma, S, P)$$

V: Conjunto de no terminales

Σ: Conjunto de terminales

S: No terminal/variable inicial

P: Conjunto de reglas de producción/reescritura

Qué gramática acepta el lenguaje L?

$$L = \{a^n b^n : n \ge 0\}$$

Piensenlo 5 minutos :)

Qué gramática acepta el lenguaje L?

$$L = \{a^n b^n : n \ge 0\}$$

Damos un G =
$$\langle V, \Sigma, S, P \rangle$$

$$V: \{S\}$$
 $\Sigma: \{a, b\}$ $S: S$ $P: \{S \rightarrow aSb, S \rightarrow \lambda\}$

Detalles...

Un string que contiene No terminales/variables y terminales lo llamamos Forma sentencial

Un string que contiene sólo terminales lo llamamos Sentencia

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Escribimos $S \Rightarrow aaabbb$

Para denotar $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

Una gramática:

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

Algunas derivaciones:

$$S \Rightarrow Ab \Rightarrow b$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow abb$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbb \Rightarrow aabbb$$

Más derivaciones:

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbbb \Rightarrow aaaAbbbbb$$

 $\Rightarrow aaaaAbbbbbb \Rightarrow aaaabbbbbb$

$$S \stackrel{*}{\Rightarrow} aaaabbbbb$$

$$S \stackrel{*}{\Rightarrow} aaaaaabbbbbbb$$

$$S \stackrel{*}{\Rightarrow} a^n b^n b$$

Lenguaje generado

Dada una gramática G con símbolo inicial S

$$L(G) = \{ w \in \Sigma^* : S \stackrel{*}{\Rightarrow} w \}$$

Donde w es una cadena/string de terminales

Ejemplo

Sea
$$G = S \rightarrow Ab$$

 $A \rightarrow aAb$

 $A \rightarrow \lambda$

 $S \rightarrow Ab$

 $A \rightarrow aAb \mid \lambda$

$$L(G) = \{a^n b^n b: n \ge 0\}$$

Ya que
$$S \stackrel{*}{\Rightarrow} a^n b^n b, \forall n \ge 0$$

Gramáticas lineales

Una gramática es lineal si tiene **a lo sumo** una variable en el lado derecho o izquierdo de **CADA** producción

Vemos dos ejemplos:

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

Una gramática **NO** lineal

$$S \to SS$$

$$S \to \lambda$$

$$S \to aSb$$

$$S \to bSa$$

$$L(G) = \{w: |w|_a = |w|_b\}$$

Otra gramática lineal

$$S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Gramática lineal a derecha

Una gramática donde todas producciones tienen la forma $A \to xB$ o bien $A \to y$

Ejemplo: S → abS | a

Notar que se puede leerse como $w \in A$ si w = xu y $u \in B$ o bien w = y (*Definición inductiva*)

Otra posible lectura puede ser $L(A) = \{x\}L(B) \cup \{y\}$ (*Definición algebraica*)

Gramática lineal a izquierda

Una gramática donde todas producciones tienen la forma $A \to Bx$ o bien $A \to y$

Ejemplo:

 $S \rightarrow Aab$

 $A \rightarrow Aab \mid B$

 $B \rightarrow a$

Preguntiña

Que lenguajes generan las siguientes gramáticas?

Preguntiña

Que lenguajes generan las siguientes gramáticas?

Definición

Una gramática es regular si es lineal a derecha o lineal a izquierda

Teorema: El conjunto de Lenguajes Generados por Gramáticas Regulares es exactamente el conjunto de Lenguajes Regulares

Demo? Yep!

Ida = Toda gramática regular genera un lenguaje regular

Vuelta = Todo lenguaje regular es generado por una gramática regular

lda

"Toda gramática regular genera un lenguaje regular"

Sea G una gramática regular lineal a derecha, probamos que L(G) es regular (Construimos un AFND)

Dado una gramática G, cómo construimos una máquina M que acepte L(G)?

"Dado que w se genera a partir de S, para reconocer w tengo que poder $S \to aA \mid B$ reconocer un string que comienza con a y sigue con un string que se genera $A \to aaB$ $L(G) = \{w \in \Sigma^* : S \Longrightarrow w\}$ a partir de A; o bien se genera a partir de B ..." $B \to bB \mid a$

Para reconocer **w** tengo que estar en el estado S y, si el símbolo observado es una a, hay que pasar al estado A; o bien, hay que pasar al estado B ..."

Construimos M

Cada estado es una variable de la gramática

Agregamos una arista por cada producción

$$L(M) = L(G) = aaab^*a + b^*a = (aaa + \lambda)b^*a$$

En general

Sea **G** una gramática lineal a derecha con variables V_0 , V_1 , ... y producciones $V_i \rightarrow a_1 a_2 ... a_m V_i$ o bien $V_i \rightarrow a_1 a_2 ... a_m$

Construimos un AFND

- 1) Cada variable V_i corresponde a un nodo y agregamos un estado final V_f
- 2) Agregamos transiciones y nodos intermedios:

a)
$$V_i \rightarrow a_1 a_2 \dots a_m V_j$$
 $V_i \xrightarrow{a_1} C_j \xrightarrow{a_2} C_j \xrightarrow{a_m} V_j$

b)
$$V_i \rightarrow a_1 a_2 \dots a_m$$
 $v_i \rightarrow a_2 \rightarrow a_2 \rightarrow a_m \rightarrow v_F$

Se cumple que L(G) = L(M)

Gramáticas lineales a izquierda

"Toda gramática regular genera un lenguaje regular"

Sea G una gramática regular lineal a izquierda, probamos que L(G) es regular (Construimos una GLD)

Dado una gramática G, cómo construimos una gramática lineal a derecha G' tal que L(G) = L(G')

Sabemos que G tiene la forma

$$A \rightarrow Ba_1a_2 \cdots a_k$$

$$A \rightarrow a_1 a_2 \cdots a_k$$

G (Lineal a izquierda)

$$A \to Ba_1a_2 \cdots a_k$$

$$A \to v$$

$$A \to v^R$$

$$A \to v^R$$

G' (Lineal a derecha)

$$L(G')$$
 \longrightarrow $L(G')^R$ \longrightarrow $L(G)$
Lenguaje Lenguaje Regular Regular

Vuelta

"Todo lenguaje L es generado por alguna gramática regular G"

Sea M el AFND con L = L(M), construimos una gramática regular G tal que L(M) = L(G)

Construimos G

Convertimos cada transición en una producción (Donde cada Variable es un estado de M)

$$L(G) = L(M) = L$$

$$G$$

$$q_0 \rightarrow aq_1$$

$$q_1 \rightarrow bq_1$$

$$q_1 \rightarrow aq_2$$

$$q_2 \rightarrow bq_3$$

$$q_3 \rightarrow q_1$$

$$q_3 \rightarrow \lambda$$

En general

Sea M un AFND

Construimos una gramática G

- 1) Cada transición $q \xrightarrow{a} p$ agregamos la producción $q \xrightarrow{a} ap$
- 2) Cada transición $q \xrightarrow{\lambda} p$ agregamos la producción $q \xrightarrow{} p$
- 3) Para cada estado final q_f agregamos la producción $q_f o \lambda$

Se cumple que G es una gramática regular con L(G) = L(M) = L