$12a_{1286} \ (K12a_{1286})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ -u^{12}+u^{11}+8u^{10}-7u^9-23u^8+15u^7+26u^6-6u^5-8u^4-4u^3+2u^2+4a-11u, \\ u^{13}-u^{12}-9u^{11}+8u^{10}+31u^9-22u^8-49u^7+21u^6+34u^5-2u^4-10u^3+3u^2+2u+1 \rangle \\ I_2^u &= \langle 5u^{13}+u^{12}-28u^{11}-14u^{10}+50u^9+49u^8-41u^7-68u^6+68u^5+70u^4-87u^3-79u^2+6b+18u+30, \\ 17u^{13}+7u^{12}+\cdots+24a+105, \\ u^{14}-u^{13}-6u^{12}+4u^{11}+14u^{10}-2u^9-21u^8-5u^7+31u^6-u^5-35u^4+3u^3+23u^2+5u-8 \rangle \\ I_3^u &= \langle b-1, \ a^2+3, \ u+1 \rangle \\ I_4^u &= \langle b+1, \ a^2+1, \ u-1 \rangle \\ I_5^u &= \langle b-1, \ a, \ u+1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b - u, -u^{12} + u^{11} + \dots + 4a - 11u, u^{13} - u^{12} + \dots + 2u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{4}u^{12} - \frac{1}{4}u^{11} + \dots - \frac{1}{2}u^{2} + \frac{11}{4}u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{12} - \frac{3}{4}u^{11} + \dots - \frac{1}{2}u^{2} + \frac{3}{4}u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{12} - \frac{3}{4}u^{11} + \dots - \frac{1}{2}u^{2} + \frac{3}{4}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{12} - \frac{1}{2}u^{11} + \dots + 2u + \frac{1}{2} \\ \frac{1}{4}u^{12} - \frac{1}{2}u^{11} + \dots + \frac{3}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}u^{12} + \frac{3}{4}u^{11} + \dots - 2u^{2} - \frac{7}{4}u \\ \frac{1}{4}u^{12} - \frac{9}{4}u^{10} + \dots + \frac{1}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{4}u^{12} - \frac{1}{4}u^{11} + \dots - \frac{1}{2}u^{2} + \frac{7}{4}u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{11} - \frac{1}{4}u^{10} + \dots - \frac{1}{2}u + \frac{3}{4} \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{4}u^{11} - \frac{1}{4}u^{10} + \dots - \frac{1}{2}u + \frac{3}{4} \\ -\frac{1}{4}u^{11} + \frac{1}{4}u^{10} + \dots + \frac{1}{2}u + \frac{1}{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{5}{2}u^{12} - \frac{9}{2}u^{11} - 21u^{10} + \frac{75}{2}u^9 + \frac{131}{2}u^8 - \frac{225}{2}u^7 - 91u^6 + 136u^5 + 59u^4 - 55u^3 - 26u^2 + \frac{45}{2}u + 7u^4 - \frac{131}{2}u^8 - \frac{225}{2}u^7 - 91u^6 + \frac{136}{2}u^8 - \frac{131}{2}u^8 - \frac{225}{2}u^7 - \frac{131}{2}u^8 - \frac{131}{2}$$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$u^{13} + 3u^{12} + \dots + 12u + 2$
c_2, c_3, c_4 c_8, c_9, c_{10}	$u^{13} + u^{12} + \dots + 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$y^{13} + 19y^{12} + \dots - 36y - 4$
c_2, c_3, c_4 c_8, c_9, c_{10}	$y^{13} - 19y^{12} + \dots - 2y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.640373 + 0.415565I		
a = -1.25824 + 1.93661I	15.1852 - 1.4688I	6.47409 + 4.73042I
b = -0.640373 + 0.415565I		
u = -0.640373 - 0.415565I		
a = -1.25824 - 1.93661I	15.1852 + 1.4688I	6.47409 - 4.73042I
b = -0.640373 - 0.415565I		
u = 0.481196 + 0.382474I		
a = 1.09706 + 1.46655I	4.66648 + 1.38672I	6.13236 - 5.06598I
b = 0.481196 + 0.382474I		
u = 0.481196 - 0.382474I		
a = 1.09706 - 1.46655I	4.66648 - 1.38672I	6.13236 + 5.06598I
b = 0.481196 - 0.382474I		
u = -1.60418		
a = 0.434953	10.2165	6.80950
b = -1.60418		
u = 1.61970 + 0.12491I		
a = -0.311845 + 0.455641I	12.32310 + 4.09027I	9.54540 - 4.06441I
b = 1.61970 + 0.12491I		
u = 1.61970 - 0.12491I		
a = -0.311845 - 0.455641I	12.32310 - 4.09027I	9.54540 + 4.06441I
b = 1.61970 - 0.12491I		
u = -0.187914 + 0.306655I		
a = -0.476417 + 0.917350I	0.020555 - 0.726577I	0.71558 + 9.62371I
b = -0.187914 + 0.306655I		
u = -0.187914 - 0.306655I		
a = -0.476417 - 0.917350I	0.020555 + 0.726577I	0.71558 - 9.62371I
b = -0.187914 - 0.306655I		
u = -1.65131 + 0.26273I		
a = 0.042681 + 0.832421I	19.0260 - 7.1684I	11.29845 + 3.79891I
b = -1.65131 + 0.26273I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.65131 - 0.26273I		
a = 0.042681 - 0.832421I	19.0260 + 7.1684I	11.29845 - 3.79891I
b = -1.65131 - 0.26273I		
u = 1.68079 + 0.37590I		
a = 0.189278 + 1.048750I	-8.62649 + 8.95936I	11.42936 - 3.31793I
b = 1.68079 + 0.37590I		
u = 1.68079 - 0.37590I		
a = 0.189278 - 1.048750I	-8.62649 - 8.95936I	11.42936 + 3.31793I
b = 1.68079 - 0.37590I		

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.708333u^{13} - 0.291667u^{12} + \dots - 0.125000u - 4.37500 \\ -\frac{5}{6}u^{13} - \frac{1}{6}u^{12} + \dots - 3u - 5 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.208333u^{13} - 0.125000u^{12} + \dots - 0.458333u - 1.37500 \\ \frac{1}{2}u^{13} + \frac{1}{6}u^{12} + \dots + \frac{2}{3}u + 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{5}{12}u^{13} - \frac{1}{4}u^{12} + \dots + \frac{1}{12}u - \frac{11}{4} \\ -\frac{5}{3}u^{13} - \frac{1}{3}u^{12} + \dots - 3u - 10 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.458333u^{13} - 0.208333u^{12} + \dots - 0.541667u - 2.12500 \\ \frac{1}{3}u^{13} + \frac{1}{6}u^{12} + \dots + \frac{1}{2}u + \frac{7}{3} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{8}u^{13} - \frac{1}{8}u^{12} + \dots + \frac{23}{8}u + \frac{5}{8} \\ -\frac{5}{6}u^{13} - \frac{1}{6}u^{12} + \dots - 3u - 5 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.625000u^{13} - 0.208333u^{12} + \dots - 1.20833u - 5.12500 \\ u^{13} + \frac{1}{3}u^{12} + \dots + \frac{5}{6}u + \frac{23}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{24}u^{13} + \frac{1}{8}u^{12} + \dots - \frac{17}{24}u - \frac{1}{8} \\ \frac{3}{2}u^{13} + \frac{1}{3}u^{12} + \dots + \frac{1}{16}u + \frac{31}{3} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{26}{3}u^{13} - \frac{8}{3}u^{12} + 50u^{11} + 28u^{10} - 90u^9 - 92u^8 + \frac{208}{3}u^7 + \frac{392}{3}u^6 - \frac{344}{3}u^5 - 136u^4 + \frac{446}{3}u^3 + 146u^2 - \frac{46}{3}u - \frac{158}{3}$$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$(u^7 - u^6 + 6u^5 - 5u^4 + 10u^3 - 6u^2 + 4u - 1)^2$
c_2, c_3, c_4 c_8, c_9, c_{10}	$u^{14} + u^{13} + \dots - 5u - 8$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$(y^7 + 11y^6 + 46y^5 + 91y^4 + 86y^3 + 34y^2 + 4y - 1)^2$
c_2, c_3, c_4 c_8, c_9, c_{10}	$y^{14} - 13y^{13} + \dots - 393y + 64$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.648339 + 0.868507I		
a = -0.946848 - 0.814097I	11.28970 + 2.92126I	9.79653 - 2.94858I
b = -1.49879 - 0.07472I		
u = 0.648339 - 0.868507I		
a = -0.946848 + 0.814097I	11.28970 - 2.92126I	9.79653 + 2.94858I
b = -1.49879 + 0.07472I		
u = -1.15470		
a = -0.288944	2.54463	-1.98880
b = 0.577082		
u = -0.613438 + 0.507408I		
a = 0.322269 - 0.816953I	4.55769 - 1.83261I	8.22558 + 5.43914I
b = 1.290190 - 0.016333I		
u = -0.613438 - 0.507408I		
a = 0.322269 + 0.816953I	4.55769 + 1.83261I	8.22558 - 5.43914I
b = 1.290190 + 0.016333I		
u = -0.674237 + 1.068950I		
a = 1.21462 - 0.78780I	-16.2972 - 3.4867I	9.97231 + 2.18600I
b = 1.63675 - 0.11855I		
u = -0.674237 - 1.068950I		
a = 1.21462 + 0.78780I	-16.2972 + 3.4867I	9.97231 - 2.18600I
b = 1.63675 + 0.11855I		
u = 1.290190 + 0.016333I		
a = 0.161518 - 0.517219I	4.55769 + 1.83261I	8.22558 - 5.43914I
b = -0.613438 - 0.507408I		
u = 1.290190 - 0.016333I		
a = 0.161518 + 0.517219I	4.55769 - 1.83261I	8.22558 + 5.43914I
b = -0.613438 + 0.507408I		
u = 0.577082		
a = 0.578156	2.54463	-1.98880
b = -1.15470		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.49879 + 0.07472I		
a = -0.017211 - 0.901687I	11.28970 - 2.92126I	9.79653 + 2.94858I
b = 0.648339 - 0.868507I		
u = -1.49879 - 0.07472I		
a = -0.017211 + 0.901687I	11.28970 + 2.92126I	9.79653 - 2.94858I
b = 0.648339 + 0.868507I		
u = 1.63675 + 0.11855I		
a = -0.066458 - 1.112970I	-16.2972 + 3.4867I	9.97231 - 2.18600I
b = -0.674237 - 1.068950I		
u = 1.63675 - 0.11855I		
a = -0.066458 + 1.112970I	-16.2972 - 3.4867I	9.97231 + 2.18600I
b = -0.674237 + 1.068950I		

III.
$$I_3^u=\langle b-1,\ a^2+3,\ u+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3 \\ -a - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2a \\ a - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3 \\ a + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

(ii) Obstruction class = 1

 $a_1 = \begin{pmatrix} a \\ -a+1 \end{pmatrix}$

(iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_{11}, c_{12}$	$u^2 + 3$
c_2, c_8	$(u-1)^2$
c_3, c_4, c_9 c_{10}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_{11}, c_{12}$	$(y+3)^2$
c_2, c_3, c_4 c_8, c_9, c_{10}	$(y-1)^2$

Solutions to I_3^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000			
a =	1.73205I	16.4493	12.0000
b = 1.00000			
u = -1.00000			
a =	-1.73205I	16.4493	12.0000
b = 1.00000			

IV.
$$I_4^u = \langle b+1, \ a^2+1, \ u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ -a+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a+1\\-1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -a \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -a \\ a+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$u^2 + 1$
c_2, c_8	$(u+1)^2$
c_3, c_4, c_9 c_{10}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$(y+1)^2$
c_2, c_3, c_4 c_8, c_9, c_{10}	$(y-1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000 $a = 1.00000I$	6.57974	12.0000
b = -1.0000001	0.97974	12.0000
u = 1.00000 $a = -1.00000I$	6.57974	12.0000
b = -1.0000001 $b = -1.0000001$	0.97974	12.0000

V.
$$I_5^u = \langle b-1, \ a, \ u+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_{11}, c_{12}$	u
c_{2}, c_{8}	u-1
c_3, c_4, c_9 c_{10}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	y
c_2, c_3, c_4 c_8, c_9, c_{10}	y-1

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	3.28987	12.0000
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$u(u^{2}+1)(u^{2}+3)(u^{7}-u^{6}+6u^{5}-5u^{4}+10u^{3}-6u^{2}+4u-1)^{2}$ $\cdot (u^{13}+3u^{12}+\cdots+12u+2)$
c_2, c_8	$((u-1)^3)(u+1)^2(u^{13}+u^{12}+\cdots+2u-1)(u^{14}+u^{13}+\cdots-5u-8)$
c_3, c_4, c_9 c_{10}	$((u-1)^2)(u+1)^3(u^{13}+u^{12}+\cdots+2u-1)(u^{14}+u^{13}+\cdots-5u-8)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_{11}, c_{12}$	$y(y+1)^{2}(y+3)^{2}$ $\cdot (y^{7}+11y^{6}+46y^{5}+91y^{4}+86y^{3}+34y^{2}+4y-1)^{2}$ $\cdot (y^{13}+19y^{12}+\cdots-36y-4)$
c_2, c_3, c_4 c_8, c_9, c_{10}	$((y-1)^5)(y^{13}-19y^{12}+\cdots-2y-1)(y^{14}-13y^{13}+\cdots-393y+64)$