

PPMPMPPMPPMPPPMPPPMP05 Comment se déplace un signal?

Par: Pascal-Emmanuel Lachance & Maxime Grenier-Castillo

- Où l'impédance est la plus faible?
- Retour de courant
- Vitesse de déplacement d'un signal
- Tout est une ligne de transmission

Level 1: Surface Ripple

- Level 1: Surface Ripple
 - EM Fields I
 - Radiation I
 - Superposition I
 - Charge Movement
 - Harmonics I
- Level 2: Current Paths
 - Propagation Speed
 - Ground planes
 - Current loops
 - Induction
 - Fil d'une année lumière de long

Level 2: Current Paths

- Level 1: Surface Ripple
 - EM Fields I
 - Radiation I
 - Superposition I
 - Charge Movement
 - Harmonics I
- Level 2: Current Paths
 - Propagation Speed
 - Ground planes
 - Current loops
 - Induction
 - Fil d'une année lumière de long
- Level 3: Impedance & Reflection
 - Impédances
 - Transmission Line
 - Impedance Mismatch

Level 3: Impedance & Reflection

- Level 2: Current Paths
 - Propagation Speed
 - Ground planes
 - Current loops
 - Induction
 - Fil d'une année lumière de long
- Level 3: Impedance & Reflection
 - Impédances
 - Transmission Line
 - Impedance Mismatch
 - Réflection
- Level 4: Noise
 - Decibel Review
 - Noise Spectrum
 - Harmonics II
 - Signal to Noise Ratio (SNR)

Level 4: Noise

- Level 3: Impedance & Reflection
 - Impédances
 - Transmission Line
 - Impedance Misma
 - Réflection
- Level 4: Noise
 - Decibel Review
 - Noise Spectrum
 - Harmonics II
 - Signal to Noise Ratio (SNR)
 - Jitter
 - Eve diagram
- Level 5: Crosstalk & Coupling
 - Radiation II
 - Differential Pairs
 - Far crosstalk

Level 5: Crosstalk & Coupling

- Level 4: Noise
 - Decibel Review
 - Noise Spectrum
 - Harmonics II
 - Signal to Noise Ratio (SNR)
 - Jitter
 - Eye diagram
- Level 5: Crosstalk & Coupling
 - Radiation II
 - Differential Pairs
 - Far crosstalk
 - Near crosstalk
- Level 6: Building Blocks
 - Stubs
 - Waveguide
 - Antennes

Level 6: Building Blocks

- Level 5: Crosstalk & Coupling
 - Radiation II
 - Differential Pairs
 - Far crosstalk
 - Near crosstalk
- Level 6: Building Blocks
 - Stubs
 - Waveguide
 - Antennes
- Level 7: Field lines and Fringes
 - E-field
 - B-field
 - Skew, loss
 - Skin effect
 - EMI

Level 7: Field lines and Fringes

- Level 6: Building Blocks
 - Stubs
 - Waveguide
 - Antennes
- Level 7: Field lines and Fringes
 - E-field
 - B-field
 - Skew, loss
 - Skin effect
 - EMI
- Level 8: Dielectric Depths
 - Conduction
 - Loss tangent
 - Frequency-dependant resistances
 - Current Bunching
 - Stackup

Level 8: Dielectric Depths

- Level 7: Field lines and Fringes
 - E-field
 - B-field
 - Skew, loss
 - Skin effect
 - FMI
- Level 8: Dielectric Depths
 - Conduction
 - Loss tangent
 - Frequency-dependant resistances
 - Current Bunching
 - Stackup
- Level 9: Waveform Abyss
 - Superposition II
 - Dispersion
 - Modulation

Level 9: Waveform Abyss

- Level 8: Dielectric Depths
 - Conduction
 - Loss tangent
 - Frequency-dependant resistances
 - Current Bunching
 - Stackup
- Level 9: Waveform Abyss
 - Superposition II
 - Dispersion
 - Modulation
- Level 10: S-Parameters and Smith Charts
 - S parameters
 - Smith Charts
 - Impedance Matching Network
 - Standing Waves

Level 10: S-Parameters and Smith Charts

- Level 9: Waveform Abyss
 - Superposition II
 - Dispersion
 - Modulation
- Level 10: S-Parameters and Smith Charts
 - S parameters
 - Smith Charts
 - Impedance Matching Network
 - Standing Waves
- Level 11: Non-linearity
 - Superposition III
 - Distortion harmonique
 - Intermodulation
 - Crossmodulation

Level 11: Non-linearity

- Level 10: S-Parameters and Smith Charts
 - S parameters
 - Smith Charts
 - Impedance Matching Network
 - Standing Waves
- Level 11: Non-linearity
 - Superposition III
 - Distortion harmonique
 - Intermodulation
 - Crossmodulation

Prochain PPPPP

Bonnes pratiques de design

- Comment choisir ses composantes et optimiser son BOM?
- Comment bien conçevoir un symbole et un footprint?
- Bonnes pratiques de schémas
- Bonnes pratiques de layout
- Communication avec fabricants, assembleurs et programmeurs

Références

