Proyecto Final de Sistemas de Recuperación de Información

Rocio Ortiz Gancedo and Carlos Toledo Silva

Universidad de La Habana, Cuba

Abstract.

1 Introducción

2 Diseño del sistema

2.1 Recordatorio de las características del modelo vectorial

En el modelo vectorial, el peso $w_{i,j}$ asociado al par (t_i, d_j) (siendo t_i el término i y d_j el documento j) es positivo y no binario. A su vez, los términos en la consulta están ponderados. Sea $w_{i,q}$ el peso asociado al par (t_i, q) (siendo q una consulta), donde $w_{i,q} \geq 0$. Entonces, el vector consulta q se define como $\overrightarrow{q} = (w_{1q}, w_{2q}, ..., w_{nq})$ donde n es la cantidad total de términos indexados en el sistema. El vector de un documento d_j se representa por $\overrightarrow{d_j} = (w_{1j}, w_{2j}, ..., w_{nj})$.

La correlación se calcula utilizando el coseno del ángulo comprendido entre los vectores documentos dj y la consulta q.

$$sim(d_j, q) = \frac{\overrightarrow{d_j} \cdot \overrightarrow{q}}{|\overrightarrow{d_j}| \cdot |\overrightarrow{q}|}$$
 (1)

$$sim(d_j, q) = \frac{\sum_{i=1}^{n} w_{i,j} \cdot w_{i,q}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^2} \cdot \sqrt{\sum_{i=1}^{n} w_{i,q}^2}}$$
(2)

Sea $freq_{i,j}$ la frecuencia del término t_i en el documento d_j . Entonces, la frecuencia normalizada $tf_{i,j}$ del término t_i en el documento d_j está dada por:

$$tf_{i,j} = \frac{freq_{i,j}}{max_l freq_{l,j}} \tag{3}$$

donde el máximo se calcula sobre todos los términos del documento d_j . Si el término t_i no aparece en el documento d_j entonces $tf_{i,j} = 0$.

Sea N la cantidad total de documentos en el sistema y n_i la cantidad de documentos en los que aparece el término t_i . La frecuencia de ocurrencia de un término t_i dentro de todos los documentos de la colección idf_i está dada por:

$$idf_i = \log \frac{N}{n_i} \tag{4}$$

El peso del término t_i en el documento d_j está dado por:

$$w_{i,j} = t f_{i,j} \cdot i d f_i \tag{5}$$

El cálculo de los pesos en la consulta q se hace de la siguiente forma:

$$w_{i,q} = \begin{cases} 0, & si \ freq_{i,q} = 0\\ \left(a + (1-a) \frac{freq_{i,q}}{max_l freq_{l,q}}\right) \cdot \log \frac{N}{n_i}, \ en \ otro \ caso \end{cases}$$
 (6)

donde $freq_{i,q}$ es la frecuencia del término t_i en el texto de la consulta q. El término a es de suavizado y permite amortiguar la contribución de la frecuencia del término, toma un valor en 0 y 1. Los valores más usados son 0.4 y 0.5.

2.2 ¿Por qué seleccionamos el modelo vectorial?

Se seleccionó el modelo vectorial primeramente por la amplia cantidad de elementos impartidos durante el curso sobre este modelo. Además este presenta las siguientes ventajas:

- El esquema de ponderación tf-idf para los documentos mejora el rendimiento de la recuperación.
- La estrategia de coincidencia parcial permite la recuperación de documentos que se aproximen a los requerimientos de la consulta.
- La fórmula del coseno ordena los documentos de acuerdo al grado de similitud.

Además de estas ventajas también cabe destacar la muy buena posibilidad de retroalimentación que admite este modelo.

2.3 Ideas interesantes

Una idea interesante que utilizamos para representar lo que son los vectores en la teoría como los vectores de los términos y de pesos tanto de los documentos como de las consultas, en lugar de como vectores los implementamos como diccionarios, tal que la clave es el término i (preprocesado) y la clave según cual sea el diccionario, sería la frecuencia o el peso del término en un documento o consulta en específico.

Esto lo hacemos debido a la gran cantidad de términos que pudieran haber una colección grande de términos y representar cada documento mediante un vector de longitud igual a la cantidad total de términos distintos sería altamente costoso en memoria y en tiempo de ejecución. Además de la gran probabilidad de que la matriz conformada por los vectores de frecuencia de los términos y en consecuencia la matriz formada por los vectores de pesos de los términos en los documentos sean muy esparcidas, pues lo más probable, si se tiene una colección grande de documentos, es que un término t_i , si es relevante, aparezca en una cantidad muy inferior de documentos con respecto al total de los mismos.

Además esto lo podemos hacer debido a que un término que no aparezca en un documento, dado que su frecuencia es cero y por como se calculan los pesos y la similitud entre un documento y una consulta, no afecta para nada el cálculo de estos parámetros. Veamos esto rápidamente:

Por (2) tenemos en el numerador una sumatoria donde el término i de la sumatoria es 0 si $w_{i,j} = 0 \lor w_{i,q} = 0$. Por (5) tenemos que $w_{i,j} = 0$ si $tf_{i,j} = 0 \lor idf_i = 0$. Luego por (3) tenemos que $tf_{i,j} = 0$ si $freq_{i,j} = 0$, o sea si el término t_i no aparece en el documento d_j

Para la consulta, por (6) tenemos que si la $freq_{i,q} = 0$ entonces $w_{i,q} = 0$.

Por tanto si el término t_i no aparece en el documento o no aparece en la consulta, entonces t_i no influye en la sumatoria del numerador.

Pasemos entonces a analizar el denominador. En este tenemos dos sumatorias: una que itera por los cuadrados de los pesos del vector del documento y otra que itera por los cuadrados de los pesos del vector de la consulta. Es evidente que si el peso de t_i en d_j es 0 entonces este no influye en la sumatoria. Lo mismo ocurre si un término no aparece en la consulta q.

Por tanto llegamos a la conclusión que para calcular la similitud entre una consulta y un documento solo necesitamos los términos que aparecen en el documento o en la consulta.

3 Implementación del sistema

3.1 Preprocesamiento de los documentos

Las funciones para el preprocesamiento de los documentos de la colección Cranfield las podemos encontrar en "cran_preprocess.py". Primero tenemos la función cran_preprocessing la cual, a partir de la colección de documentos, devuelve un diccionario cuyas llaves son los términos que aparecen en los documentos y el valor asociado a cada término es el conjunto de los documentos en los que aparece dicho término. Los términos a su vez son sometidos a un preprocesamiento y para esto utilizamos la librería nltk.

El proceso de tokenización se hace mediante la función word_tokenize la cual a partir de un texto(por defecto en inglés) devuelve los diferentes tokens de dicho texto. Luego los tokens son clasificados sintácticamente y etiquetados con dicha clasificación mediante el método pos_tag. Esto se hace pues para el proceso de "lemmatizing" (llevar las palabras a su raíz gramatical) que es el proceso que viene a continuación, tener los tokens clasificados mejora el rendimiento de este proceso. Después de realizado el proceso de lemmatizing, se chequea si los términos obtenidos son "stopwords" (palabras que no proveen información útil). Si un término i no es una stopword, si no está en el diccionario, se añade como llave y se crea un conjunto con el documento actual. Si ya está el término en el diccionario entonces se añade al conjunto correspondiente al término el documento actual. Como es un conjunto si el documento ya está en el conjunto, este no se agregará. Para saber el documento actual y la cantidad que de documentos que se ha visto simplemente se aumenta la variable actual_document.

4 Rocio Ortiz Gancedo and Carlos Toledo Silva

Debido a que se analizan todos los documentos de una colección y de cada uno de estos se analizan todos sus términos, asumiendo que todas las operaciones que se realizan sobre un token se hacen en O(1), llegamos a la conclusión que una llamada a esta función tiene una complejidad temporal $O(n \cdot m)$; siendo n la cantidad total de documentos y m la cantidad de tokens del documento que mayor cantidad de tokens tiene.

La otra función que aparece en este archivo es terms_freq_doc, la cual devuelve de forma perezosa un diccionario para cada documento de la colección y un valor entero. El diccionario tiene como llaves los términos que aparecen en dicho documento y el valor asociado a cada término es la frecuencia del término en el documento. El número entero que se devuelve junto con el diccionario es la frecuencia del término de mayor frecuencia en el documento. Cada vez que se detecte un documento nuevo, se crea un diccionario y un entero inicializado con 0. El procesamiento de los términos se hace de forma similar que en el método anterior. Por cada término i en el documento j se verifica si ya este fue agregado al diccionario. En caso afirmativo se incrementa en 1 su valor asociad y en caso contrario se agregá el término al diccionario, asociándole 1 como valor, pues es la primera vez que se detecta. Después de esto se comprueba si dado este aumento la frecuencia del término aumentó, de tal forma que se hizo mayor que la máxima frecuencia registrada detectada hasta el momento para el documento. De ocurrir lo antes planteado se actualiza entonces la máxima frecuencia detectada (la variable max_freq). Cada vez que se termine de analizar un documento se devuelve el diccionario y el entero antes mencionado.

Como se explicó una ejecución completa de este método analiza cada uno de los documentos y sus tokens. Además realiza una gran cantidad de operaciones similares al anterior y las que tiene diferente con respecto al otro tienen una complejidad temporal despreciable (son O(1)). Por tanto llegamos a la conclusión que una ejecución completa de este método es O(n*m), siendo n y m los mismos valores mencionados anteriormente.

- 3.2 Representación de los documentos
- 4 Análisis de los resultados del sistema
- 5 Conclusiones

References