Hausdorff Measure

BY AMEER QAQISH

Abstract

We introduce Hausdorff's r-dimensional outer measures, defined on a metric space (X,d). We show that Hausdorff's n-dimensional measure coincides with Lebesgue measure on \mathbb{R}^n . We define Hausdorff dimension and compute the dimension and Hausdorff measure of the middle-thirds Cantor set.

Table of contents

1	Hau	\mathbf{s} dorff's r -Dimensional Outer Measures
	1.1	Introduction
	1.2	$\mathcal{H}^n = \mathcal{L}^n$
	1.3	Hausdorff Dimension
\mathbf{B}	ibliog	graphy

1 Hausdorff's r-Dimensional Outer Measures

Most of the arguments appearing here are adapted from chapter 12 of [1].

1.1 Introduction

Huasdorff measure is a way to assign meaningful measures to "lower dimensional" subsets of \mathbb{R}^n such as curves and surfaces which have Lebesgue measure 0. It is worthy of note that for "smooth surfaces", there is a way of doing this simply as follows. Suppose $m \leq n$ and $O \subset \mathbb{R}^m$ is open. Suppose $\phi: O \to \mathbb{R}^n$ is a C^1 map which is a homeomorphism onto it's image and has injective derivative $D\phi(x)$ at each $x \in O$. Then for Borel $E \subset \phi(O)$ we define

$$V_m(E) = \int_{\phi^{-1}(E)} J_{\phi}(x) dx, \quad J_{\phi}(x) = \sqrt{\det(D\phi(x)^T D\phi(x))}$$

 V_m is a Borel measure on $\phi(O)$ that gives the "m-dimensional" surface area of subsets of $\phi(O)$.

Let (X, d) be a metric space. We proceed to define Hausdorff's r-dimensional outer measure \mathcal{H}^r on X for real $r \geq 0$. For $S \subset X$, $\delta > 0$, set

$$h_{r,\delta}^*(S) = \inf \left\{ \sum_{j=1}^{\infty} \operatorname{diam}(B_j)^r : S \subset \bigcup_{j=1}^{\infty} B_j, \operatorname{diam}(B_j) \leq \delta \right\}.$$

Here the sets B_j appearing in the infimum can be any subsets of X. However, we get the same result if we require them to be closed since $\operatorname{diam}(\overline{B_j}) = \operatorname{diam}(B_j)$. If $X = \mathbb{R}$, we can require the B_j to be closed intervals since any $B_j \subset \mathbb{R}$ is contained in the interval $I_j = [\inf(B_j), \sup(B_j)]$ and $\operatorname{diam}(I_j) = \operatorname{diam}(B_j)$.

Note that diam(\emptyset) = 0. Thus $h_{r,\delta}^*$ is an outer measure (recall the construction of outer measures from a set function $\rho: \mathcal{E} \to [0,\infty]$ that satisfies $\rho(\emptyset) = 0$). Note that as δ decreases, $h_{r,\delta}^*$ increases. Thus we can set

$$h_r^*(S) = \lim_{\delta \searrow 0} h_{r,\delta}^*(S).$$

That h_r^* is an outer measure is a consequence of the following result:

Proposition 1. Suppose μ_j^* is an increasing sequence of outer measures on a set X. For $S \subset X$, define $\mu^*(S) = \lim_{j \to \infty} \mu_j^*(S)$. μ^* is an outer measure.

Proof. We have

$$\mu^*(\emptyset) = \lim_{j \to \infty} \mu_j^*(\emptyset) = \lim_{j \to \infty} 0 = 0.$$

If $A \subset B$, then

$$\mu^*(A) = \lim_{j \to \infty} \mu_j^*(A) \le \lim_{j \to \infty} \mu_j^*(B) = \mu^*(B).$$

If $A_1, A_2, \ldots \subset X$, then we have

$$\mu_j^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \mu_j^* (A_n) \le \sum_{n=1}^{\infty} \mu^* (A_n).$$

Taking $j \to \infty$ yields $\mu^*(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu^*(A_n)$.

We want to show that every Borel set is h_r^* -measurable. To do so, we use the following result, due to Caratheodory:

Definition 2. An outer measure μ^* on a metric space (X,d) is called a metric outer measure if

$$d(A, B) = \inf \{ d(x, y) : x \in A, y \in B \} > 0 \implies \mu^*(A \cup B) = \mu^*(A) + \mu^*(B).$$

Proposition 3. If μ^* is a metric outer measure on a metric space (X, d), then every Borel subset of X is μ^* -measurable.

Proof. It suffices to show that every closed subset of X is μ^* -measurable. Let $F \subset X$ be an arbitrary closed subset of X. We need to show that if $Y \subset X$ and $\mu^*(Y) < \infty$, then

$$\mu^*(Y) \geq \mu^*(Y \cap F) + \mu^*(Y \setminus F).$$

For $n \in \mathbb{N}$, set

$$B_n = \left\{ x \in Y \setminus F : d(x, F) \ge \frac{1}{n} \right\}.$$

Note that $d(B_n, Y \cap F) \ge \frac{1}{n}$. Since F is closed, $x \in F \iff d(x, F) = 0$. Thus

$$B_n \nearrow \{x \in Y \setminus F : d(x, F) > 0\} = Y \setminus F.$$

We have

$$\mu^*(Y) \ge \mu^*((Y \cap F) \cup B_n) = \mu^*(Y \cap F) + \mu^*(B_n).$$

Thus we will be done if we can show that $\lim_{n\to\infty} \mu^*(B_n) = \mu^*(Y \setminus F)$. We have $B_n \subset Y \setminus F$, so $\limsup_{n\to\infty} \mu^*(B_n) \leq \mu^*(Y \setminus F)$. It remains to show that $\liminf_{n\to\infty} \mu^*(B_n) \geq \mu^*(Y \setminus F)$.

Set

$$C_n = B_{n+1} \setminus B_n = \left\{ x \in Y \setminus F : \frac{1}{n+1} \le d(x,F) < \frac{1}{n} \right\}.$$

By countable subadditivity, we have for all n that

$$\mu^*(Y \setminus F) \le \mu^*(B_n) + \sum_{j=n}^{\infty} \mu^*(C_j).$$

Thus to get $\lim \inf_{n\to\infty} \mu^*(B_n) \ge \mu^*(Y \setminus F)$, it suffices to show that the sum $\sum_{i=1}^{\infty} \mu^*(C_k)$ is finite. Note that for $j \in \mathbb{N}$,

$$x \in C_n, y \in C_{n+j} \implies d(x,y) \ge d(x,F) - d(y,F) \ge \frac{1}{n+1} - \frac{1}{n+j}.$$

Thus for $j \geq 2$, $d(C_n, C_{n+j}) > 0$. Applying the metric outer measure hypothesis inductively gives for all N that

$$\mu^* \left(\bigcup_{j=1}^N C_{2j} \right) = \sum_{j=1}^N \mu^* (C_{2j}),$$

$$\mu^* \left(\bigcup_{j=1}^N C_{2j-1} \right) = \sum_{j=1}^N \mu^* (C_{2j-1}).$$

Both of these quantities are $\leq \mu^*(Y)$ by monotonicity. Thus by taking $N \to \infty$ and then adding we get

$$\sum_{j=1}^{\infty} \mu^*(C_j) \le 2 \,\mu^*(Y) < \infty.$$

Remark. The converse of proposition (3) is true and is easy to prove.

In order to apply proposition (3), we show that h_r^* is a metric outer measure.

Lemma 4. h_r^* is a metric outer measure.

Proof. Suppose $A, B \subset X$ with d(A, B) > 0. Let $\delta < d(A, B)$ be arbitrary. Let B_1, B_2, \ldots be sets with $\operatorname{diam}(B_j) \leq \delta$ that cover $A \cup B$. Since $\operatorname{diam}(B_j) \leq \delta < d(A, B)$, it follows that each B_j intersects at most one of A or B. Thus

$$\sum_{j=1}^{\infty} \mu^*(B_j) = \sum_{j: B_j \cap A \neq \emptyset} \mu^*(B_j) + \sum_{j: B_j \cap B \neq \emptyset} \mu^*(B_j) \ge h_{r,\delta}^*(A) + h_{r,\delta}^*(B).$$

Taking the infimum over all such covers $\{B_i\}$ gives

$$h_{r,\delta}^*(A \cup B) \ge h_{r,\delta}^*(A) + h_{r,\delta}^*(B).$$

Subadditivity gives $h_{r,\delta}^*(A \cup B) = h_{r,\delta}^*(A) + h_{r,\delta}^*(B)$, and then taking $\delta \to 0$ gives $h_r^*(A \cup B) = h_r^*(A) + h_r^*(B)$.

By proposition (3), all Borel subsets of X are h_r^* -measurable. For any $A \subset X$, we set

$$\mathcal{H}^r(A) = \gamma_r h_r^*(A), \quad \gamma_r = \frac{2^{-r} \pi^{\frac{r}{2}}}{\Gamma(\frac{r}{2} + 1)}.$$

For $n \in \mathbb{N}$, it can be shown via the Gaussian integral and polar coordinates that γ_n is the Lebesgue measure of the ball of diameter 1 in \mathbb{R}^n , i.e. $\gamma_n = \mathcal{L}^n(B(0, \frac{1}{2}))$, where \mathcal{L}^n denotes Lebesgue measure on \mathbb{R}^n .

$1.2 \quad \mathcal{H}^n = \mathcal{L}^n$

The reason for γ_r in the definition of \mathcal{H}^r is so that $\mathcal{H}^n(S) = \mathcal{L}^n(S)$ for all Lebesgue measurable $S \subset \mathbb{R}^n$, a nontrivial fact which we proceed to prove. We now focus on \mathcal{H}^n with $X = \mathbb{R}^n$. To start, we show that Lebesgue-measurable S are \mathcal{H}^n -measurable. Since we already know Borel sets are \mathcal{H}^n -measurable, it suffices to show that

$$\mathcal{L}^n(S) = 0 \implies \mathcal{H}^n(S) = 0.$$

So suppose $\mathcal{L}^n(S) = 0$. We have

$$\mathcal{L}^n(S) = \inf \left\{ \sum_{j=1}^{\infty} \mathcal{L}^n(Q_j) : Q_j \text{ are cubes, } S \subset \bigcup_{j=1}^{\infty} Q_j \right\}.$$

Let $\varepsilon > 0$. There are cubes Q_j such that $S \subset \bigcup_{j=1}^{\infty} Q_j$ and $\sum_{j=1}^{\infty} \mathcal{L}^n(Q_j) < \varepsilon$. By subadditivity,

$$\mathcal{H}^n(S) \le \sum_{j=1}^{\infty} \mathcal{H}^n(Q_j).$$

Note that if a cube Q has side length s, then $\operatorname{diam}(Q) = \sqrt{n} \, s$, so Q is contained in a ball B of diameter $\sqrt{n} \, s$ and hence

$$\mathcal{H}^n(Q) \le \gamma_n (\sqrt{n} s)^n = \gamma_n n^{n/2} \mathcal{L}^n(Q).$$

Thus

$$\mathcal{H}^n(S) \le \sum_{j=1}^{\infty} \mathcal{H}^n(Q_j) \le \gamma_n \, n^{n/2} \sum_{j=1}^{\infty} \mathcal{L}^n(Q_j) \le \gamma_n \, n^{n/2} \, \varepsilon.$$

Letting $\varepsilon \to 0$ gives $\mathcal{H}^n(S) = 0$.

Now we focus on proving $\mathcal{L}^n(S) \leq \mathcal{H}^n(S)$ for Lebesgue-measurable $S \subset \mathbb{R}^n$. Let $S \subset \mathbb{R}^n$ be an arbitrary Lebesgue-measurable set. Let $\delta > 0$ be arbitrary. Suppose C_1, C_2, \ldots are closed sets with $S \subset \bigcup_{j=1}^{\infty} C_j$. We have

$$\mathcal{L}^n(S) \leq \sum_{j=1}^{\infty} \mathcal{L}^n(C_j).$$

If we can show that $\mathcal{L}^n(C_i) \leq \gamma_n \operatorname{diam}(C_i)^n$, then we will have

$$\mathcal{L}^n(S) \le \sum_{j=1}^{\infty} \gamma_n \operatorname{diam}(C_j)^n,$$

and taking the infimum over all covers $\{C_j\}$ will give $\mathcal{L}^n(S) \leq \gamma_n h_{n,\delta}(S)$, and then letting $\delta \to 0$ will give $\mathcal{L}^n(S) \leq \mathcal{H}^n(S)$. The inequality $\mathcal{L}^n(C_j) \leq \gamma_n \operatorname{diam}(C_j)^n$ is the isodiametric inequality, which we now prove.

Definition 5. Let $\omega \in \mathbb{R}^n$ with $|\omega| = 1$. Set

$$P_{\omega} = \{ x \in \mathbb{R}^n : (x, \omega) = 0 \}.$$

 P_{ω} is the hyperplane with normal vector ω . For $y \in \mathbb{R}^n$, set

$$L_{y}^{\omega} = \{ y + t \omega : t \in \mathbb{R} \}.$$

Define

$$\Sigma_{\omega}(S) = \left\{ y + t \, \omega : y \in P_{\omega}, L_y^{\omega} \cap S \neq \emptyset, |t| \leq \frac{1}{2} \int_{-\infty}^{\infty} \chi_S(y + t \, \omega) \, dt \right\}.$$

 $\Sigma_{\omega}(S)$ is called the Steiner symmetrization of S about the hyperplane P_{ω} .

Proposition 6. Suppose $S \subset \mathbb{R}^n$ is Lebesgue-measurable and $\omega \in \mathbb{R}^n$ with $|\omega| = 1$. Then

- (i) $\Sigma_{\omega}(S)$ is measurable,
- (ii) $\mathcal{L}^n(\Sigma_{\omega}(S)) = \mathcal{L}^n(S)$,
- (iii) $\operatorname{diam}(\Sigma_{\omega}(S)) \leq \operatorname{diam}(S)$.

Proof. If $R: \mathbb{R}^n \to \mathbb{R}^n$ is a unitary linear map, then

$$R\Sigma_{\omega}(S) = \left\{ Ry + t R\omega : y \in P_{\omega}, L_{y}^{\omega} \cap S \neq \emptyset, |t| \leq \frac{1}{2} \int_{-\infty}^{\infty} \chi_{S}(y + t \omega) dt \right\}$$
$$= \left\{ z + t R\omega : z \in RP_{\omega}, RL_{y}^{\omega} \cap RS \neq \emptyset, |t| \leq \frac{1}{2} \int_{-\infty}^{\infty} \chi_{RS}(z + t R\omega) dt \right\}.$$

We have $RP_{\omega} = P_{R\omega}$ and $RL_{y}^{\omega} = L_{Ry}^{R\omega}$. Thus

$$R\Sigma_{\omega}(S) = \Sigma_{R\omega}(RS). \tag{1}$$

By picking R such that $R\omega = e_n$ and by invariance of diam and \mathcal{L}^n under unitary maps, we may assume $\omega = e_n$. Define $f: \mathbb{R}^{n-1} \to [0, \infty]$ by

$$f(y) = \int_{-\infty}^{\infty} \chi_S(y, t) dt.$$

By Tonelli's theorem, f is measurable. We have

$$\Sigma_{e_n}(S) = \left\{ (y, t) : y \in \mathbb{R}^{n-1}, |t| \le \frac{1}{2} f(y) \right\} \setminus \{ (y, 0) : L_y^{e_n} \cap S = \emptyset \}.$$

The first set on the right hand side is measurable since $t \mapsto |t|$ and f are both measurable, and the second set is measurable since it is a subset of a null set. Thus $\Sigma_{e_n}(S)$ is measurable. By Tonelli's theorem,

$$\mathcal{L}^{n}(\Sigma_{e_{n}}(S)) = \int_{\mathbb{R}^{n-1}} \int_{-\frac{1}{2}f(y)}^{\frac{1}{2}f(y)} 1 \, dt \, dy = \int_{\mathbb{R}^{n-1}} f(y) \, dy = \mathcal{L}^{n}(S).$$

It remains to prove (iii). We may assume that diam $(S) < \infty$. By replacing S with \overline{S} , we may assume that S is closed. Let $x, y \in \Sigma_{e_n}(S)$ be arbitrary. Write $x = (x', x_n)$, $y = (y', y_n)$. Set

$$a_x = \inf\{t \in \mathbb{R} : (x', t) \in S\}$$

 $b_x = \sup\{t \in \mathbb{R} : (x', t) \in S\}$
 $a_y = \inf\{t \in \mathbb{R} : (y', t) \in S\}$
 $b_y = \sup\{t \in \mathbb{R} : (y', t) \in S\}$

Since S is closed, $(x', a_x), (x', b_x), (y', a_y), (y', b_y) \in S$. Without loss of generality, assume $b_x - a_y \ge b_y - a_x$. We claim that $|x - y| \le |(x', b_x) - (y', a_y)|$. We have

$$|x_n - y_n| \leq |x_n| + |y_n|$$

$$\leq \frac{1}{2} f(x') + \frac{1}{2} f(y')$$

$$\leq \frac{1}{2} (b_x - a_x) + \frac{1}{2} (b_y - a_y)$$

$$= \frac{1}{2} (b_x - a_y) + \frac{1}{2} (b_y - a_x)$$

$$\leq b_x - a_y$$

Thus $|x - y| \le |(x', b_x) - (y', a_y)| \le \operatorname{diam}(S)$. Taking the supremum over all $x, y \in \Sigma_{e_n}(S)$ gives $\operatorname{diam}(\Sigma_{e_n}(S)) \le \operatorname{diam}(S)$.

Proposition 7. Let $u \in \mathbb{R}^n$ with |u| = 1. Let R_u be the reflection across P_u , i.e.

$$R_u x = x - 2(x, u) u.$$

Suppose $S \subset \mathbb{R}^n$ is measurable with $R_u S = S$. If $\omega \in \mathbb{R}^n$ with $|\omega| = 1$ and $(\omega, u) = 0$, then $R_u \Sigma_{\omega}(S) = \Sigma_{\omega}(S)$.

Proof. By equation (1),

$$R_{u} \Sigma_{\omega}(S) = \Sigma_{R,\omega}(R_{u}S) = \Sigma_{\omega}(S). \qquad \Box$$

Proposition 8. Let $\omega \in \mathbb{R}^n$ with $|\omega| = 1$. Then $R_{\omega} \Sigma_{\omega}(S) = \Sigma_{\omega}(S)$.

Proof. This follows immediately from the definition of $\Sigma_{\omega}(S)$.

Proposition 9. For Lebesgue-measurable $S \subset \mathbb{R}^n$, $\mathcal{L}^n(S) \leq \gamma_n \operatorname{diam}(S)^n$. In other words, $\mathcal{L}^n(S) \leq \mathcal{L}^n(B)$, where B is a ball with the same diameter as S.

Proof. Let $S_1 = \Sigma_{e_1}(S)$, $S_2 = \Sigma_{e_2}(S_1)$, ..., $S_n = \Sigma_{e_n}(S_{n-1})$. We have $R_{e_j}S_j = S_j$ for each $j \in \{1, ..., n\}$ by proposition (8). Thus by proposition (7), $R_{e_j}S_n = S_n$ for each $j \in \{1, ..., n\}$. Since $-x = R_{e_1} ... R_{e_n} x$, we have $-S_n = S_n$. Thus

$$x \in S_n \Longrightarrow \operatorname{diam}(S_n) \ge |x - (-x)| = 2|x| \Longrightarrow |x| \le \frac{\operatorname{diam}(S_n)}{2}.$$

Thus $S_n \subset B\left(0, \frac{\operatorname{diam}(S_n)}{2}\right)$, so

$$\mathcal{L}^{n}(S) = \mathcal{L}^{n}(S_{n}) \leq \mathcal{L}^{n}\left(B\left(0, \frac{\operatorname{diam}(S_{n})}{2}\right)\right) \leq \mathcal{L}^{n}\left(B\left(0, \frac{\operatorname{diam}(S)}{2}\right)\right). \quad \Box$$

Now we focus on establishing the reverse inequality $\mathcal{H}^n(S) \leq \mathcal{L}^n(S)$. By outer regularity of \mathcal{L}^n , we only need to establish this when S = U is open.

Proposition 10. Let $U \subset \mathbb{R}^n$ be open with $\mathcal{L}^n(U) < \infty$. For any $\delta > 0$, there exist disjoint balls $B_j \subset U$ with $\operatorname{diam}(B_j) \leq \delta$ such that $\mathcal{L}^n(U \setminus \bigcup_{j=1}^{\infty} B_j) = 0$.

Proof. For each $x \in U$, pick a ball B_x with $B_x \subset U$ and $\operatorname{diam}(B_x) \leq \delta$. Since $\frac{3^n}{4^n} \mathcal{L}^n(U) < \mathcal{L}^n(U)$, by Weiner's covering lemma, there exist disjoint balls $B_{1,j} = B_{x_j}$, $1 \leq j \leq N_1$ such that $\sum_{j=1}^{N_1} \mathcal{L}^n(B_{1,j}) > 4^{-n} \mathcal{L}^n(U)$. We have

$$\mathcal{L}^n(U) - \sum_{j=1}^{N_1} \mathcal{L}^n(B_{1,j}) \le (1 - 4^{-n}) \mathcal{L}^n(U).$$

Repeating the same argument for $U_1 = U \setminus \bigcup_{j=1}^{N_1} \overline{B_{1,j}}$, we get disjoint balls $B_{2,j} \subset U_1$, $1 \le j \le N_2$ of diameter $\le \delta$ such that

$$\mathcal{L}^{n}(U) - \sum_{j=1}^{N_{1}} \mathcal{L}^{n}(B_{1,j}) - \sum_{j=1}^{N_{2}} \mathcal{L}^{n}(B_{2,j}) \leq (1 - 4^{-n}) \left(\mathcal{L}^{n}(U) - \sum_{j=1}^{N_{1}} \mathcal{L}^{n}(B_{1,j}) \right) \\ \leq (1 - 4^{-n})^{2} \mathcal{L}^{n}(U).$$

Continue inductively for each $k \in \mathbb{N}$ to produce $B_{k,j}$, $1 \le j \le N_k$ with

$$\mathcal{L}^n(U) - \sum_{j=1}^{N_1} \mathcal{L}^n(B_{1,j}) - \dots - \sum_{j=1}^{N_k} \mathcal{L}^n(B_{k,j}) \le (1 - 4^{-n})^k \mathcal{L}^n(U).$$

Set $V = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{N_k} B_{k,j}$. V is a disjoint union of balls of diameter $\leq \delta$, and for each $k \in \mathbb{N}$,

$$\mathcal{L}^n(U) - \mathcal{L}^n(V) \le (1 - 4^{-n})^k \mathcal{L}^n(U).$$

Letting $k \to \infty$ gives $\mathcal{L}^n(V) = \mathcal{L}^n(U)$.

Proposition 11. If $U \subset \mathbb{R}^n$ is open, then $\mathcal{H}^n(U) \leq \mathcal{L}^n(U)$.

Proof. We may assume that $\mathcal{L}^n(U) < \infty$. By proposition (10), for each $k \in \mathbb{N}$, there exist disjoint balls $B_{k,j} \subset U$, $j \in \mathbb{N}$ of diameter $\leq \delta_k = 2^{-k}$ such that

$$\mathcal{L}^n(U \setminus V_k) = 0, \quad V_k = \bigcup_{j=1}^{\infty} B_{k,j}.$$

Let $V = \bigcap_{k=1}^{\infty} V_k$. For each $k \in \mathbb{N}$,

$$\gamma_n h_{n,\delta_k}^*(V) \le \gamma_n h_{n,\delta_k}^*(V_k) \le \sum_{j=1}^{\infty} \gamma_n h_{n,\delta_k}^*(B_{k,j}) \le \sum_{j=1}^{\infty} \mathcal{L}^n(B_{k,j}) = \mathcal{L}^n(V_k) = \mathcal{L}^n(U).$$

Taking $k \to \infty$ gives

$$\mathcal{H}^n(V) \leq \mathcal{L}^n(U)$$
.

Thus using $\mathcal{H}^n \ll \mathcal{L}^n$,

$$\mathcal{H}^n(U) = \mathcal{H}^n(V) + \mathcal{H}^n(U \setminus V) = \mathcal{H}^n(V) < \mathcal{L}^n(U).$$

Remark 12. With $\mathcal{H}^n = \mathcal{L}^n$ in hand, it can be shown that on an m-dimensional manifold $M \subset \mathbb{R}^N$, \mathcal{H}^m agrees with the usual surface measure on M obtained by integration of \sqrt{g} .

1.3 Hausdorff Dimension

Now we introduce Hausdorff dimension and give some examples. Let X be a metric space. Let $S \subset X$. We define the Hausdorff dimension of S as

$$\operatorname{Hdim}(S) = \sup \{r \in [0, \infty) : \mathcal{H}^r(S) > 0\} \in [0, \infty].$$

Proposition 13. Let $S \subset X$, $r \in [0, \infty)$. If $r < \operatorname{Hdim}(S)$, then $\mathcal{H}^r(S) = \infty$. If $r > \operatorname{Hdim}(S)$, then $\mathcal{H}^r(S) = 0$.

Proof. Suppose $r < \operatorname{Hdim}(S)$. Then there exists s > r such that $\mathcal{H}^s(S) > 0$. For any $B \subset X$ with $\operatorname{diam}(B) \leq \delta$ we have

$$\operatorname{diam}(B)^{s} = \operatorname{diam}(B)^{r} \operatorname{diam}(B)^{s-r} \leq \delta^{s-r} \operatorname{diam}(B)^{r}.$$

Consequently,

$$h_{s,\delta}^*(S) \le \delta^{s-r} h_{r,\delta}^*(S). \tag{2}$$

Thus $h_{r,\delta}^*(S) \ge \delta^{-(s-r)} h_{s,\delta}^*(S)$. Taking $\delta \to 0$ gives $\mathcal{H}^r(S) = \infty$. If $r > \operatorname{Hdim}(S)$, then $\mathcal{H}^r(S) = 0$ by definition of sup.

Proposition 14. \mathcal{H}^0 is the counting measure on X.

Proof. Since singletons are closed, they are measurable. Thus it suffices to show that $\mathcal{H}^0(\{x\}) = 1$ for all $x \in X$. So let $x \in X$ be arbitrary. Let $\delta > 0$ be arbitrary. Note that $\operatorname{diam}(B)^0 = \begin{cases} 1 & \text{if } B \neq \emptyset \\ 0 & \text{if } B = \emptyset \end{cases}$ (we need $0^0 = 0$ here). Thus

$$h_{0,\delta}^*(\lbrace x \rbrace) = \inf \left\{ N : \lbrace x \rbrace \subset \bigcup_{j=1}^N B_j, \operatorname{diam}(B_j) \leq \delta \right\}$$

Since $\{x\} \subset B\left(x, \frac{\delta}{2}\right)$, $h_{0,\delta}^*(\{x\}) \leq 1$. On the other hand, any cover of $\{x\}$ must have at least 1 set, so $h_{0,\delta}^*(\{x\}) \geq 1$. Taking $\delta \to \infty$ and noting that $\gamma_0 = 1$ gives $\mathcal{H}^0(\{x\}) = 1$.

Now we compute the Hausdorff dimension and measure of the middle thirds Cantor set K. It is defined as follows. Set $K_0 = [0, 1]$. For $\nu \ge 1$, let K_{ν} be the result of removing the open middle third of each interval in $K_{\nu-1}$. Thus K_{ν} is a disjoint union of 2^{ν} closed intervals of length $3^{-\nu}$. Set $K = \bigcap_{\nu=1}^{\infty} K_{\nu}$. For any $r \ge 0$,

$$h_{r,3^{-\nu}}^*(K_{\nu}) \le 2^{\nu} 3^{-\nu r} = \left(\frac{2}{3^r}\right)^{\nu}.$$

The right hand side is independent of ν when $\frac{2}{3r} = 1$, i.e $r = \frac{\log(2)}{\log(3)}$. For this value of r, $h_{r,3^{-\nu}}^*(K) \leq h_{r,3^{-\nu}}^*(K_{\nu}) \leq 1$, so $\mathcal{H}^r(K) \leq \gamma_r$. Establishing the reverse inequality is more difficult:

BIBLIOGRAPHY 9

Proposition 15. Let K be the middle thirds Cantor set. Then for $r = \frac{\log(2)}{\log(3)} \approx 0.6309$,

$$\mathcal{H}^r(K) = \gamma_r \approx 1.0351.$$

Proof. We need to prove that $h_r^*(K) \ge 1$. It suffices to prove that $h_{r,\delta}^*(K) \ge 1$ for all $\delta > 0$. For this it suffices to prove that if $K \subset \bigcup_{k=1}^{\infty} I_k$ with $I_k \subset \mathbb{R}$ bounded closed intervals, then

$$\sum_{k=1}^{\infty} \ell(I_k)^r \ge 1.$$

By enlarging the length of each interval by a factor of $(1+\varepsilon)$, we can assume that each I_k is an open interval. By compactness of K, we can assume that the cover $\{I_k\}$ is finite.

Set $O = \bigcup_k I_k$. We claim that $O \supset K_{\nu}$ for some ν . If not, then for each ν , $K_{\nu} \setminus O \neq \emptyset$, and compactness of $K_{\nu} \setminus O$ implies $\bigcap_{\nu=1}^{\infty} (K_{\nu} \setminus O) = K \setminus O \neq \emptyset$, a contradiction. Thus there exists ν such that $K_{\nu} \subset O$. By increasing ν if necessary, we can assume that each interval in K_{ν} is contained in some I_k (choose ν such that $3^{-\nu} < \delta$, where δ is a Lebesgue number for the cover $\{I_k\}$).

By shrinking each I_k if necessary, we can arrange that each interval in K_{ν} intersects only one I_k . By further shrinking each I_k and then taking closures, we can arrange that the endpoints of each I_k are also endpoints of intervals in K_{ν} .

Now for each I_k we have that either

- (a) I_k is equal to an interval in K_{ν} , or
- (b) $I_k \setminus K_{\nu}$ contains an open interval L_k with $\ell(L_k) \geq \frac{\ell(I_k)}{3}$.

In case (b), we can partition I_k into 3 intervals J_k , L_k , J'_k , where J_k and J'_k are closed intervals. Using $3^r = 2$ and concavity of $\varphi(t) = t^r$ for $r \in (0, 1)$ gives

$$\ell(I_{k})^{r} = (\ell(J_{k}) + \ell(L_{k}) + \ell(J'_{k}))^{r}$$

$$\geq \left(\ell(J_{k}) + \frac{\ell(J_{k}) + \ell(J'_{k})}{2} + \ell(J'_{k})\right)^{r}$$

$$= \left(\frac{3}{2}(\ell(J_{k}) + \ell(J'_{k}))\right)^{r}$$

$$= 2\left(\frac{1}{2}(\ell(J_{k}) + \ell(J'_{k}))\right)^{r}$$

$$\geq 2\frac{1}{2}(\ell(J_{k})^{r} + \ell(J'_{k})^{r})$$

$$= \ell(J_{k})^{r} + \ell(J'_{k})^{r}.$$

Thus replacing I_k with J_k and J'_k does not increase the sum $\sum_k \ell(I_k)^r$. Iterating this finitley many times, we can replace intervals until the I_k are exactly the intervals making up K_{ν} , without increasing the sum. Now we have $\sum_k \ell(I_k) = \left(\frac{2}{3^r}\right)^{\nu} = 1$, so we are done.

Bibliography

[1] Michael E. Taylor. *Measure theory and integration*. Number v. 76 in Graduate studies in mathematics. American Mathematical Society, Providence, R.I, 2006. OCLC: ocm67384265.