

Line-Drawing Algorithms

- Simple algorithm
 - Evaluate y = f(x) at each x position
 - Floating multiplication
- DDA algorithm
 - Floating addition only
- Can we do better?
 - Bresenham's algorithm

1

Who Is Bresenham?

Bresenham, J. E. Algorithm for computer control of a digital plotter, *IBM Systems Journal*, 4(1), 1965, pp. 25-30.

Bresenham, J. E. A linear algorithm for incremental digital display of circular arcs. *Communications of the ACM*, 20(2), 1977, pp. 100-106.

Note the dates!

T	

Status Check

- What have we accomplished?
 - One value to test (+/-)
- But ...
 - Still have floating-point calculation
 - "m" and "b" are non-integer

$$d_1 - d_2 = 2m(x_k + 1) - 2y_k + 2b - 1$$

Removing Non-Integral Values

$$d_1 - d_2 = 2m(x_k + 1) - 2y_k + 2b - 1$$

$$m = \frac{\Delta y}{\Delta x}$$

$$d_1 - d_2 = 2\frac{\Delta y}{\Delta x}(x_k + 1) - 2y_k + 2b - 1$$

$$p_k = \Delta x(d_1 - d_2) = 2\Delta y \cdot x_k + 2\Delta y - 2\Delta x \cdot y_k + \Delta x(2b - 1)$$

$$p_k = 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$
Decision $c = 2\Delta y + \Delta x(2b - 1)$
value

Recurrence Relation for pk

$$\begin{aligned} p_k &= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c \\ p_{k+1} &= 2\Delta y \cdot x_{k+1} - 2\Delta x \cdot y_{k+1} + c \\ p_{k+1} - p_k &= 2\Delta y \left(x_{k+1} - x_k \right) - 2\Delta x \left(y_{k+1} - y_k \right) \\ p_{k+1} &= p_k + 2\Delta y - 2\Delta x \left(y_{k+1} - y_k \right) \\ \hline 0 \text{ or } +1 \end{aligned}$$

8

Initializing the Algorithm

Initial value of decision parameter

$$\begin{aligned} p_0 &= 2\Delta y \cdot x_0 - 2\Delta x \cdot y_0 + c \\ p_0 &= 2\Delta y \cdot x_0 - 2\Delta x \cdot y_0 + 2\Delta y + \Delta x \big(2b - 1\big) \\ \text{But normalize: } x_0 &= y_0 = b = 0 \\ p_0 &= 2\Delta y - \Delta x \end{aligned}$$

Bresenham Algorithm Summary Calculate: $\Delta x, \Delta y, 2\Delta y, 2\Delta y - 2\Delta x, p_0$ At each point: If $p_k < 0$: $Plot(x_k + 1, y_k)$ $p_{k+1} = p_k + 2\Delta y$ If $p_k >= 0$: $Plot(x_k + 1, y_k + 1)$ $p_{k+1} = p_k + 2\Delta y - 2\Delta x$

Bresenham Summary

- Only integer arithmetic
- Sign detection
 - Magnitude not tested
- Only multiply is by two
 - Left shift (<<) operator

13

Bresenham Modifications

- So far, 0 < m < 1, $\Delta x > 0$
- How handle other cases?
 - Horizontal
 - Vertical
 - Other octants
 - abs(Slope) ∈ (1, ∞]
 - Transpose x with y, Δx with Δy, etc.
 - Plot(y,x)
 - Slope < 0
 - Revise: $y_{k+1} y_k = 0$ or -1

14

Alternative Viewpoint

- Assume $0 \le \text{slope} \le 1$
- Each step in x moves y up a fraction $(\Delta y/\Delta x)$
- As soon as the fraction exceeds 1/2, move up rather than over (subtract 1 $[\Delta x/\Delta x]$ to get back to fraction between -1/2 and 1/2)
- Clear the floats by multiplying by 2Δx in all terms