Lecture 14

Diagnostics and checking assumptions

- 1. Empirical log means / empirical logit / scatterplots. Apply any transformations needed
- 2. Fit the model
- 3. (Quantile) residual plots. Apply any transformations needed
- 4. VIFs and Cook's distance. Consider removing/modifying variables or observations
- 5. GOF tests (if applicable)

What if assumptions are violated?

- Fix any shape violations first
- Then address distributional violations
 - Robust variance estimates
 - Use a different distribution/model for the response

NB regression

Quasi-Paissan models

hurdle models + Zero-inflated models

time permitting: methods for carelated data

Recap: maximum likelihood asymptotics

Suppose
$$1, ..., 1 \ N = M$$
 probability function $f(y; \theta)$

log linelinood: $l(\theta) = \frac{2}{2} \log f(Y_0; \theta)$

MLE: $\hat{\theta}$ meximizes $l(\theta)$

Let scare $l(\theta) = \frac{2l}{3\theta} = l'(\theta)$
 $\hat{\theta}$ solves $l(\theta) = 0$

Properties: lf model is correct: (wiregularity condition)

 $\hat{\theta} = \frac{2l}{3\theta} =$

Maximum likelihood with mis-specified

no 0, b/c we have the ul probability function g Assure (incorrectly!) that in Fo, and we estimate o Still write down R(O) = 2 (cg f(1; 6) Estimate: $\hat{\theta}$ solves $u(\theta) = 0$ $R l'(\theta)$ expectation with the expectation with the distribution of that solves $E_g[u(\theta)] = 0$ Let θ^* be value of θ that solves $E_g[u(\theta)] = 0$ Ox is not the parameter; rather, Ox is the Nau: parameter which best approximates the model (g) in space of models considered (f(:,G)) As non

Let
$$V_{n}(\theta) = Varg(L'(\theta))$$
 f_{n} no larger equal (unbis model is $J_{n}(\theta) = -E_{g}[L''(\theta)]$ Correctly specified)

Asymptotics: $-\frac{1}{n}L''(\theta) \xrightarrow{f} N(0, \sqrt{1}(\theta^{*}))$
 $\int_{\overline{A}_{n}}L''(\theta) \xrightarrow{f} N(0, \sqrt{1}(\theta^{*}))$
 $\int_{\overline{A}_{n}}L''(\theta) \xrightarrow{f} N(0, \sqrt{1}(\theta^{*}))$
 $\int_{\overline{A}_{n}}L''(\theta) \xrightarrow{f} N(0, \sqrt{1}(\theta^{*}))$

Sendwich variance

 $\widehat{\theta} \approx N(\theta^{*}, \widehat{J}_{n}(\widehat{\theta})) \stackrel{\circ}{V}_{n}(\widehat{\theta}) \stackrel{\circ}{J}_{n}(\widehat{\theta}) \stackrel{\circ}{J}_{n}(\widehat{\theta})$

Poiss on regress in: $U(\beta) = \chi^{T}(1-\chi_{0}) = \widehat{Z}(1-\chi_{0})\chi_{0}^{*}$
 $\widehat{J}_{n}(\widehat{\beta}) = \widehat{Z}_{n}(\chi_{n}^{*}\chi_{n}^{*}\chi_{n}^{*}) = \chi^{T} \operatorname{diag}(\chi_{n}^{*}\chi_{n}^{*}\chi_{n}^{*})$
 $\widehat{J}_{n}(\widehat{\beta}) = \widehat{Z}_{n}(\chi_{n}^{*}\chi_{n}^{*}\chi_{n}^{*}) = \chi^{T} \operatorname{diag}(\chi_{n}^{*}\chi_{n}^{*}\chi_{n}^{*}) \times \widehat{I}_{n}^{*}(\chi_{n}^{*}\chi_{n}^{*}\chi_{n}^{*})$

Class activity

https://sta712-

f23.github.io/class_activities/ca_lecture_14.html