

Universidade do Minho Mestrado em Engenharia Informática Engenharia de Linguagens Engenharia Gramatical - Grupo 1 Resolução das Fichas 3 e 5 Ano Lectivo de 2012/2013

pg22820 - António Silva pg22781 - Rui Brito

16 de Novembro de 2012

CC	ONTEÚDO	2
\mathbf{C}	Conteúdo	
1	Introdução	3
2	Ficha 3	3
	2.1 Composição do Corpo	3
	2.2 Código Java	3
	2.3 Exemplo de Input	3

4

3 Conclusão

1 INTRODUÇÃO 3

1 Introdução

Este primeiro trabalho de *Engenharia Gramatical* de avaliação, da Unidade Curricular de Especialização *Engenharia de Linguagens*, consiste na realização da ficha 3 e 5 disponiblizadas no Blackboard.

2 Ficha 3

2.1 Composição do Corpo

Para escrever uma gramática tradutora, foi necessário completar a informação sobre o corpo. Assim incialmente o corpo da factura era um conjunto de linhas, em que cada linhas era '(' codartigo ',' designação ',' pvu ',' quantidade ')'. Depois para suportar o pedido da alínea c, cada linhas passou a ser somente '(' codartigo ',' quantidade ')'.

2.2 Código Java

Para conseguirmos saber os totais dos produtos, com várias facturas (sendo que cada factura possuia um id alfanumérico), foi criado um *hashmap* para associar a cada id de factura uma lista de valores, que era o total de cada linha da factura. No final, é possível apresentar o o total de cada linha em cada factura e ainda o tal de cada factura (que mais não é que a soma dos totais das linhas). Para se obter o Preço Unitário, que a pedido da alínea c) deveria já ter sido indicado no ínicio, foi também criada um *hashmap* com a correspondência entre o código do produto e os seus atributos (guardados numa classe). Assim, por cada linha só era necessário obter o PVU através do código do artigo, e multiplicá-lo pela quantidade.

2.3 Exemplo de Input

```
a1 "xpto" 3.6 50
a2 "outro" 1 60.5
a3 "mais um" 4.99 4
---

f1

"Nome 1" "NIF 1" "Morada 1" "NIB 1"
"Nome 2" "NIF 2" "Morada 2"
(a1,5) (a3,2)
;

f2

"Nome 3" "NIF 3" "Morada 3" "NIB 3"
"Nome 4" "NIF 4" "Morada 4"
(a2,9.5) (a1,5) (a3,2)
;

f3
"Nome 5" "NIF 5" "Morada 5" "NIB 5"
```

3 CONCLUSÃO 4

```
"Nome 6" "NIF 6" "Morada 5" (a2,2.25)
```

•

3 Conclusão

...