FIZIKA

Predmetni izpitni katalog za splošno maturo

Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka **2014**, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat opravljal maturo, je navedena v Maturitetnem izpitnem katalogu za splošno maturo za tisto leto.

PREDMETNI IZPITNI KATALOG ZA SPLOŠNO MATURO – FIZIKA

Državna predmetna komisija za fiziko za splošno maturo

Katalog so pripravili:

mag. Vitomir Babič Ruben Belina dr. Aleš Mohorič dr. Gorazd Planinšič Ivica Tomič

Recenzenta:

dr. Mojca Čepič Miran Tratnik

Jezikovni pregled:

Helena Škrlep

Katalog je določil Strokovni svet Republike Slovenije za splošno izobraževanje na 150. seji 21. junija 2012 in se uporablja od spomladanskega izpitnega roka 2014, dokler ni določen novi katalog. Veljavnost kataloga za leto, v katerem bo kandidat opravljal maturo, je navedena v Maturitetnem izpitnem katalogu za splošno maturo za tisto leto.

© Državni izpitni center, 2012 Vse pravice pridržane.

Izdal in založil:

Državni izpitni center

Predstavnik:

dr. Darko Zupanc

Uredili:

Aleš Drolc dr. Andrejka Slavec Gornik Joži Trkov

Oblikovanje in prelom:

Milena Jarc

Ljubljana 2012

ISSN 2232-674X

KAZALO

1	UVOD	4
2	IZPITNI CILJI	5
	2.1 Splošni cilji	5
	2.2 Cilji po področjih	5
3	ZGRADBA IN OCENJEVANJE IZPITA	7
	3.1 Shema izpita	7
	3.2 Tipi nalog in ocenjevanje	7
	3.3 Merila ocenjevanja izpita in posameznih delov	8
4	IZPITNE VSEBINE IN CILJI	10
	4.1 Fizikalne količine in enote	10
	4.2 Premo in krivo gibanje	10
	4.3 Sila in navor	11
	4.4 Newtonovi zakoni in gravitacija	12
	4.5 Izrek o gibalni količini	12
	4.6. Delo in energija	12
	4.7 Tekočine	12
	4.8 Temperatura	13
	4.9 Notranja energija in toplota	
	4.10. Električni naboj in električno polje	14
	4.11 Električni tok	
	4.12 Magnetno polje	
	4.13 Indukcija	
	4.14 Nihanje	
	4.15 Valovanje	
	4.16 Svetloba in optika	
	4.17 Atom	
	4.18 Atomsko jedro	
	4.19 Astronomija	
5	PRIMERI NALOG ZA PISNI IZPIT	20
	5.1 Naloge izbirnega tipa	
	5.2 Strukturirana naloga	
6	LABORATORIJSKE VAJE	
	6.1 Namen	
	6.2 Seznam	
	6.3 Priporočila za pisanje poročil	
7	KANDIDATI S POSEBNIMI POTREBAMI	
8	LITERATURA	
9	DODATEK	
	9.1 Periodni sistem elementov	31
	9.2 Konstante in enačbe	32

1 UVOD

Predmetni izpitni katalog za splošno maturo Fizika (v nadaljnjem besedilu katalog) podrobno določa vsebine in cilje splošne mature iz fizike, načine preverjanja znanja teh vsebin in ciljev ter zgradbo posameznih delov izpita, kakor to zahtevajo Zakon o maturi in ustrezni podzakonski predpisi ter sklepi Državne komisije za splošno maturo (v nadaljevanju DK SM) o strukturi izpitov in predmetnih izpitnih katalogov, opredeljenih v veljavnem Maturitetnem izpitnem katalogu za splošno maturo. Izpitne vsebine so povzete po učnem načrtu za pouk fizike v gimnazijah. V katalogu so razdeljene na:

- Splošno znanje. To so vsebine, ki so navedene v 4. poglavju tega kataloga in nimajo posebnih oznak.
- Posebno znanje. To so vsebine, ki so navedene v 4. poglavju tega kataloga in so označene z zvezdico (*).

Eksperimentalno delo kandidati² opravijo pred pisnim izpitom. Ocenjujejo ga učitelji na šolah. Eksperimentalne vsebine določi učitelj na podlagi veljavnega učnega načrta, pri čemer lahko zajamejo splošno in posebno, pa tudi izbirno znanje. Nekaj predlogov za laboratorijske vaje je navedenih tudi v tem katalogu. Pri splošni maturi iz fizike znanje iz eksperimentalnih vsebin preverjamo tudi v zunanjem delu izpita, vendar le splošno in posebno znanje. Preverjamo vso snov iz kataloga in kandidatovo zmožnost širšega povezovanja vsebin iz kataloga.

4 Fizika

_

¹ Učni načrt. Fizika [Elektronski vir]: gimnazija: splošna gimnazija: obvezni predmet (210 ur), izbirni predmet (35, 70, 105 ur), matura (105 + 35 ur) / avtorji Gorazd Planinšič ... [et al.]. - Ljubljana: Ministrstvo za šolstvo in šport: Zavod RS za šolstvo, 2008. Sprejeto na 110. seji Strokovnega sveta RS za splošno izobraževanje 14. 2. 2008. http://portal.mss.edus.si/msswww/programi2012/programi/gimnazija/ucni_nacrti.htm

² V predmetnem izpitnem katalogu uporabljeni samostalniki moškega spola, ki se pomensko in smiselno vežejo na splošna, skupna poimenovanja (npr. kandidat, ocenjevalec), veljajo tako za osebe ženskega kot moškega spola.

2 IZPITNI CILJI

S splošno maturo iz fizike preverjamo, ali se znanje kandidatov sklada s cilji pouka fizike kot izbirnega predmeta splošne mature v srednji šoli.

2.1 Splošni cilji

Razviti pri kandidatih sposobnosti in veščine iz fizike, ki:

- so pomembne za nadaljnji študij in za uporabo v praksi;
- omogočajo vrednotenje naravoslovnih informacij;
- omogočajo učinkovito in varno eksperimentalno delo;
- spodbujajo izmenjavo informacij in so koristne v vsakdanjem življenju.

Razviti vrednote, ki so značilne za naravoslovje, in sicer skrb za:

- jasnost in natančnost;
- objektivnost in doslednost.

Spodbujati zanimanje in razvijati skrb za okolje.

Vzgojiti v kandidatih zavest, da:

- so se znanstvene teorije in metode razvile in se še razvijajo iz sodelovanja skupin in posameznikov;
- za študij naravoslovja in njegovo uporabo veljajo družbeni, gospodarski, tehnološki, etični in kulturni vplivi in omejitve;
- znanstvene aplikacije lahko prinašajo korist, pa tudi škodo posamezniku, skupnosti in okolju;
- znanost sega čez meje med državami in da je znanstveni jezik splošno razumljiv, če ga uporabljamo dosledno in pravilno.

2.2 Cilji po področjih

Preverjanje znanja fizike obsega tri področja:

- znanje in razumevanje;
- zajemanje in obdelava podatkov ter reševanje problemov;
- eksperimentalne sposobnosti in veščine.

Znanje in razumevanje

Kandidat naj pozna in razume:

- fizikalne pojave, dejstva, količine, zakone, definicije, pojme in teorije;
- izraze, pojme, dogovore ter količine skupaj s simboli in enotami;
- fizikalno merilno opremo in naprave ter načine uporabe in varnostne ukrepe;
- fizikalne tehnološke rabe in njihove posledice za družbo, gospodarstvo in okolje.

Zajemanje in obdelava podatkov ter reševanje problemov

Kandidat naj bo sposoben z besedami ali v drugi ustrezni obliki (npr. s simboli, grafično, numerično):

- poiskati, izbrati, urediti in predstaviti informacije iz različnih virov;
- prevesti informacije iz ene oblike v drugo;
- uporabiti numerične in druge podatke;
- uporabiti informacije tako, da najde v njih zakonitosti in pride do sklepa;
- smiselno razložiti pojave, zakonitosti in medsebojne odnose;
- postavljati napovedi in hipoteze;
- reševati probleme;
- uporabiti znanje v novih okoliščinah.

Pri reševanju problemov ni potrebno znanje diferencialnega in integralnega računa.

Eksperimentalne sposobnosti in veščine

Kandidat naj bo sposoben:

- uporabljati merilno tehniko, naprave in material (in pri tem slediti navodilom, kjer je to potrebno);
- izvajati in zapisovati opazovanja in merjenja;
- predstaviti izmerjene podatke na različne načine;
- razložiti in ovrednotiti eksperimentalno opazovanje in podatke;
- samostojno načrtovati poskuse, s katerimi preveri postavljene hipoteze.

Eksperimentalne sposobnosti in veščine pridobi pri laboratorijskem delu ali samostojnem eksperimentalnem raziskovalnem delu. Laboratorijske vaje naj, kolikor je le mogoče, enakomerno pokrivajo vsa področja fizike.

3 ZGRADBA IN OCENJEVANJE IZPITA

3.1 Shema izpita

Izpit splošne mature iz fizike je sestavljen iz zunanjega dela (pisni izpit z dvema izpitnima polama) in notranjega dela (laboratorijske vaje).

▶ Pisni izpit – zunanji del izpita

Izpitna pola	Trajanje izpita	Delež pri oceni	Ocenjevanje	Pripomočki	Priloge
1	90 minut	35 %	zunanje	nalivno pero ali kemični svinčnik, svinčnik HB ali B, radirka, šilček, računalo brez	Periodni sistem elementov ter
2	90 minut	45 %	,	grafičnega zaslona in možnosti računanja s simboli, geometrijsko orodje	konstante in enačbe so del izpitne pole.
Skupaj	180 minut	80 %			

Po zaključku pisanja Izpitne pole 1, tj. pred začetkom pisanja Izpitne pole 2, je 30-minutni odmor.

▶ Laboratorijske vaje – notranji del izpita

	Delež pri oceni	Ocenjevanje
Laboratorijske vaje	20 %	notranje
Skupaj	20 %	

3.2 Tipi nalog in ocenjevanje

▶ Pisni izpit

Izpitna pola	Tip naloge	Število nalog	Ocenjevanje
1	Naloge izbirnega tipa	35	vsaka naloga 1 točka 35 točk
2	Strukturirane naloge	6 (ocenijo se 3 naloge)	vsaka naloga 15 točk 45 točk
Skupaj		38	80 točk

V šestih strukturiranih nalogah Izpitne pole 2 se v celoti preverjajo sposobnosti in veščine, pridobljene pri laboratorijskem delu, znanje in razumevanje iz vseh poglavij kataloga ter sposobnost povezovanja snovi. Kandidat izbere in rešuje tri naloge, ki se tudi ocenijo.

► Laboratorijske vaje

Tip naloge	Ocenjevanje
Laboratorijske vaje s poročili	20 točk

3.3 Merila ocenjevanja izpita in posameznih delov

3.3.1 Deleži taksonomskih stopenj

Taksonomske stopnje	Izpitna pola 1	Izpitna pola 2	Laboratorijske vaje
I. znanje in razumevanje	največ 35 %	največ 45 %	največ 20 %
II. zajemanje in obdelava podatkov ter reševanje problemov	največ 35 %	največ 45 %	največ 20 %
III. eksperimentalne sposobnosti in veščine	največ 35 %	največ 45 %	največ 20 %

3.3.2 Merila ocenjevanja posameznih delov izpita

▶ Pisni izpit

Izpitna pola 1

Naloge izbirnega tipa preverjajo znanje, razumevanje in uporabo splošnega znanja – torej le iz vsebin, ki v katalogu niso posebej označene. Ne glede na raven zahtevnosti so posamezne naloge ocenjene vsaka z 1 točko. Oceni se le pravilnost odgovora.

Izpitna pola 2

Vprašanja v strukturiranih nalogah preverjajo znanje, razumevanje in uporabo splošnega, pa tudi posebnega znanja, ki je v izpitnem katalogu posebej označeno z zvezdico (*).

V Izpitni poli 2 je šest strukturiranih nalog s poudarki na naslednjih področjih, navedenih v 4. poglavju tega kataloga:

- 1 merjenje (sklop 1),
- 2 mehanika (sklopi 2-7),
- 3 termodinamika (sklopi 7-9),
- 4 elektrika in magnetizem (sklopi 10-13),
- 5 nihanje, valovanje in optika (sklopi 13-16) ter
- 6 moderna fizika in astronomija (sklop 4 in sklopi 17–19).

Vsaka strukturirana naloga je tematsko osredotočena na eno od zgoraj naštetih področij. Pri vsaki se lahko preverja tudi znanje s preostalih področij, a le v okviru vsebin, ki so v učnem načrtu za pouk fizike označene kot splošno znanje, v tem katalogu pa navedene kot izpitne vsebine brez posebne oznake. Potek reševanja mora biti pri strukturiranih nalogah razviden iz zapisanega. Vprašanja v njih so ocenjena različno. Kadar so ocenjena z 1 točko, mora biti odgovor v celoti pravilen. Pri vprašanjih z več možnimi točkami se lahko oceni tudi postopek ali delni rezultat.

Dodrošio		Sklopi v 4. poglavju kataloga																	
Področje	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Merjenje	₩																		
Mehanika		₩	₩	₩	₩	₩	₩												
Termodinamika							₩	₩	₩										
Elektrika in magnetizem										₩	₩	\Diamond	\Diamond						
Nihanje, valovanje													\	₩	₩	₩			
Moderna fizika				₩													₩	₩	₩

▶ Laboratorijske vaje

Laboratorijske vaje se ocenijo z največ 20 točkami. Kandidat ne more pridobiti ocene notranjega dela izpita, če nima ocenjenih vsaj 8 laboratorijskih vaj z vsaj treh različnih področij. Vaje se ocenijo takole:

Točke	Merila
0–5	kako zna kandidat uporabljati eksperimentalno opremo,
0–5	kako podrobna navodila potrebuje za vaje,
0–5	kako zna zapisati in obdelati rezultate meritev ter
0–5	kako zna razložiti in zagovarjati rezultate.

Laboratorijsko delo kandidata se po vsakem od meril oceni z največ 5 in najmanj 0 točkami. Po 1. in 2. merilu učitelj navadno ocenjuje kandidata med eksperimentalnim delom, ocena po 3. in 4. merilu pa se daje pretežno na podlagi pisnega poročila. Če kandidat opravi samostojno raziskovalno delo, ki vsebuje eksperiment, se lahko takšno delo oceni po enakih merilih, kakor so navedena zgoraj. Kolikšen delež laboratorijskih vaj je nadomestil s samostojnim eksperimentalnim delom, presodi učitelj, ki določi notranji del ocene.

Raziskovalne naloge, opravljene v skladu s pravili o priznavanju raziskovalnih nalog, ki jih je sprejela DK SM, lahko nadomestijo največ polovico ocenjenih laboratorijskih vaj.

3.3.3 Končna ocena

Končna ocena izpita se določi na podlagi seštevka odstotnih točk vseh delov izpita (pisnega izpita in laboratorijskih vaj). Državna komisija za splošno maturo na predlog Državne predmetne komisije za fiziko za splošno maturo določi merila za pretvorbo odstotnih točk v ocene (1–5). Ta merila so v spomladanskem in jesenskem izpitnem roku enaka.

4 IZPITNE VSEBINE IN CILJI

Z izpitom splošne mature iz fizike preverjamo kandidatovo znanje fizike in obvladovanje izpitnih vsebin, ki jih navaja ta katalog. Vsebine so navedene v 19 sklopih. Nekatere od njih so posvečene bolj kvalitativnemu razumevanju fizikalnih pojmov, pojavov in konceptov, pri večini pa od kandidatov pričakujemo kvantitativno obvladovanje izpitnih vsebin. Vsakega od navedenih pojmov in konceptov je mogoče preverjati v kateremkoli smislu, kakor je to navedeno v razdelku 2.2.

Nekatere vsebine so označene z zvezdico (*). Te vsebine so v učnem načrtu za pouk fizike označene kot posebno znanje. V katalogu predstavljajo pojme in koncepte, ki jih pri splošni maturi iz fizike preverjamo, kakor je navedeno v 3. poglavju.

4.1 Fizikalne količine in enote

Vseb	ine	Preverja	Preverjani pojmi in koncepti				
1.1	Enote	1.1.1	Osnovne enote SI				
		1.1.2	Sestavljene enote				
		1.1.3	Pretvarjanje enot in eksponentni zapis velikostnih redov				
1.2	Merjenje	1.2.1	Merjenje fizikalnih količin				
		1.2.2	Povprečna vrednost, absolutna in relativna napaka meritev				
		1.2.3	Zapis rezultata z navedbo absolutne in relativne merske napake				
		1.2.4*	Računanje z napakami (seštevanje, odštevanje, množenje, deljenje, potenciranje)				
		1.2.5	Grafične predstavitve meritev				
		1.2.6	Razbiranje vrednosti fizikalnih količin iz grafičnih meritev				

4.2 Premo in krivo gibanje

Vseb	ine	Preverja	ni pojmi in koncepti
2.1	Premo gibanje	2.1.1	Lega, premik in pot
		2.1.2	Trenutna in povprečna hitrost
		2.1.3	Pospešek
		2.1.4	Enakomerno gibanje
		2.1.5	Enakomerno pospešeno gibanje, kadar telo nima začetne hitrosti
		2.1.6*	Enakomerno pospešeno gibanje v splošnih primerih
		2.1.7	Grafični prikaz časovne odvisnosti lege, poti, hitrosti in pospeška, kadar telo nima začetne hitrosti
		2.1.8*	Grafični prikaz časovne odvisnosti lege, poti, hitrosti in pospeška v splošnih primerih
		2.1.9	Kvalitativno določanje hitrosti iz grafov odvisnosti lege od časa
		2.1.10*	Kvantitativno določanje hitrosti iz grafov odvisnosti lege od časa
		2.1.11	Kvalitativno določanje premika in pospeška iz grafov odvisnosti hitrosti od časa

Vsebine		Preverjani pojmi in koncepti					
		2.1.12*	Kvantitativno določanje premika in pospeška iz grafov odvisnosti hitrosti od časa				
2.2	Gibanje v ravnini	2.2.1*	Lega in premik pri gibanju v ravnini				
		2.2.2*	Hitrost pri gibanju v ravnini				
		2.2.3*	Pospešek pri gibanju v ravnini				
		2.2.4*	Razstavljanje gibanja v med seboj pravokotnih smereh: vodoravni met				
2.3	Kroženje	2.3.1	Obhodni čas				
		2.3.2	Frekvenca				
		2.3.3	Lok in obodna hitrost				
		2.3.4*	Radialni pospešek pri enakomernem kroženju				

4.3 Sila in navor

Vsebine		Preverj	Preverjani pojmi in koncepti					
3.1	Sila	3.1.1	Sila kot medsebojni vpliv med telesi in učinki sil					
		3.1.2	Grafično sestavljanje in razstavljanje sil v ravnini					
		3.1.3*	Razstavljanje sil na komponente v pravokotnem koordinatnem sistemu					
3.2	Ravnovesje sil	3.2.1	Izrek o ravnovesju sil					
		3.2.2*	Sile na klancu					
3.3	Sistem in okolica	3.3.1	Zunanje in notranje sile					
3.4	Prožnost	3.4.1	Prožnostne lastnosti vzmeti (Hookov zakon)					
		3.4.2	Vzmet kot merilnik sil					
3.5	Trenje, lepenje in upor	3.5.1	Kvalitativna obravnava trenja, lepenja in sile upora					
	sredstva	3.5.2	Trenje in koeficient trenja					
3.6	Tlak	3.6.1	Površinsko porazdeljene sile in tlak					
3.7	Navor	3.7.1	Navori sil v ravnini					
		3.7.2	Ravnovesje navorov					
		3.7.3	Prijemališče teže					

4.4 Newtonovi zakoni in gravitacija

Vsebine		Preverj	Preverjani pojmi in koncepti	
4.1	Newtonovi zakoni	4.1.1	Vpliv sil na premo gibanje teles (prvi in drugi Newtonov zakon)	
		4.1.2	Zakon o vzajemnem učinku teles (tretji Newtonov zakon)	
		4.1.3*	Newtonovi zakoni in kroženje	
4.2	Masa, teža, gostota	4.2.1	Teža in masa	
		4.2.2	Masa in gostota	
4.3	Gravitacija	4.3.1	Gravitacijski zakon	
		4.3.2*	Odvisnost težnega pospeška od razdalje do središča Zemlje	
		4.3.3*	Gibanje planetov in satelitov	

4.5 Izrek o gibalni količini

Vsebine		Preverj	Preverjani pojmi in koncepti	
5.1	Sunek sile in gibalna količina	5.1.1	Sunek sile v vektorski obliki	
		5.1.2	Gibalna količina v vektorski obliki	
5.2	Izrek o gibalni količini	5.2.1	Izrek o gibalni količini v eni dimenziji	
		5.2.2	Neprožni trki in odrivi dveh teles v eni dimenziji	
		5.2.3*	Prožni trki	
		5.2.4*	Izrek o gibalni količini v dveh dimenzijah	

4.6. Delo in energija

Vsebine		Preverja	Preverjani pojmi in koncepti	
6.1	Delo in mehanska energija	6.1.1	Delo sile, ki je vzporedna s premikom njenega prijemališča	
		6.1.2*	Delo sile, ki ni vzporedna s premikom prijemališča	
		6.1.3	Moč	
		6.1.4	Kinetična energija pri translacijskem gibanju	
		6.1.5	Potencialna energija v homogenem težnem polju	
		6.1.6	Prožnostna energija vzmeti	
6.2	Ohranitev energije	6.2.1	Izrek o mehanski energiji	
6.3	Delo tlaka	6.3.1*	Delo tlaka	

4.7 Tekočine

Vsebine		Preverj	Preverjani pojmi in koncepti	
7.1	Tlak in vzgon	7.1.1	Kvalitativni opis težnega tlaka v mirujočih tekočinah	
		7.1.2*	Kvantitativni opis težnega tlaka v mirujočih tekočinah	
		7.1.3	Vzgon	

4.8 Temperatura

Vseb	Vsebine		Preverjani pojmi in koncepti	
8.1	Temperatura	8.1.1	Kelvinova temperaturna lestvica	
8.2	Temperaturno raztezanje	8.2.1	Kvalitativna obravnava linearne temperaturne razteznosti	
		8.2.2*	Kvantitativna obravnava linearne temperaturne razteznosti	
		8.2.3*	Prostorninska temperaturna razteznost	
8.3	Splošna plinska enačba	8.3.1	Splošna plinska enačba	
		8.3.2	Termodinamične spremembe plinov pri stalni temperaturi	
		8.3.3	Termodinamične spremembe plinov pri stalnem tlaku	
		8.3.4	Termodinamične spremembe plinov pri stalni prostornini	
		8.3.5	Termodinamične spremembe na diagramu p-V	

4.9 Notranja energija in toplota

Vseb	Vsebine		Preverjani pojmi in koncepti	
9.1	Energijski zakon	9.1.1	Toplota kot način izmenjave energije	
		9.1.2	Notranja energija – kvalitativni opisi pojavov	
		9.1.3	Energijski zakon	
		9.1.4	Specifična toplota	
		9.1.5*	Energijski zakon in termodinamične spremembe pri idealnih plinih	
		9.1.6*	Specifična toplota pri stalnem tlaku in stalni prostornini	
		9.1.7	Agregatna stanja in fazni prehodi	
		9.1.8*	Latentna toplota (talilna, izparilna, sežigna)	
9.2	Prevajanje toplote	9.2.1	Toplotni tok	
		9.2.2	Koeficient toplotne prevodnosti	
		9.2.3	Toplotni tok v stacionarnih razmerah	
9.3	Sevanje črnega telesa	9.3.1*	Moč in gostota svetlobnega toka točkastega svetila	
		9.3.2*	Stefanov zakon	
9.4	Mikroskopska slika plinov	9.4.1*	Povprečna kinetična energija molekul	
		9.4.2*	Notranja energija idealnega plina kot posledica gibanja molekul	
9.5	Toplotni stroji	9.5.1	Krožna sprememba	
		9.5.2	Toplotni stroji	
		9.5.3	Izkoristek	

4.10. Električni naboj in električno polje

Vsebine		Preverjani pojmi in koncepti		
10.1	Električni naboj	10.1.1	Naelektritev teles	
		10.1.2	Prevodniki in izolatorji	
		10.1.3	Delovanje elektroskopa	
		10.1.4	Smer sil med naelektrenimi točkastimi telesi	
		10.1.5	Povezava med električnim tokom in nabojem	
		10.1.6	Osnovni naboj in ohranitev naboja	
10.2	Električno polje	10.2.1	Sila na naboj v električnem polju	
		10.2.2	Jakost električnega polja	
		10.2.3	Grafična ponazoritev električnega polja točkastega naboja in ploščnega kondenzatorja	
		10.2.4*	Napetost med točkama homogenega električnega polja	
		10.2.5*	Kvalitativna in grafična obravnava ekvipotencialnih ploskev za homogeno električno polje in polje točkastega naboja	
10.3	Coulombov zakon	10.3.1	Velikost sile med točkastimi naboji (Coulombov zakon)	
		10.3.2	Električno polje točkastega naboja – kvantitativno	
		10.3.3*	Električno polje dveh nabojev	
		10.3.4*	Električno polje enakomerno nabite razsežne plošče	
10.4	Kondenzator	10.4.1	Kapaciteta kondenzatorja	
		10.4.2*	Povezave med nabojem, jakostjo električnega polja in napetostjo na ploščnem kondenzatorju	
10.5	Influenca	10.5.1	Mikroskopska razlaga influence v kovinah	
10.6	Energija električnega polja	10.6.1*	Energija kondenzatorja	

4.11 Električni tok

Vsebine		Preverja	Preverjani pojmi in koncepti	
11.1	Električna vezja	11.1.1	Naboj in jakost električnega toka	
		11.1.2	Napetost vira in napetost na porabniku	
		11.1.3*	Kirchhoffov zakon za električne tokove	
		11.1.4*	Kirchhoffov zakon za električne napetosti	
11.2	Ohmov zakon	11.2.1	Povezava med napetostjo in tokom pri idealnih upornikih	
		11.2.2	Upor upornika	
		11.2.3	Specifični upor snovi	
		11.2.4	Nadomestni upor pri zaporedni in vzporedni vezavi	
		11.2.5	Merjenje električnega toka	
		11.2.6	Merjenje električne napetosti	
11.3	Električno delo in moč	11.3.1	Električno delo in moč pri enosmernem toku	

Vsebine		Preverja	Preverjani pojmi in koncepti	
11.4	Izmenična napetost	11.4.1*	Sinusno nihajoča napetost	
		11.4.2*	Električno delo in moč pri izmeničnem toku za posamezen porabnik	
		11.4.3*	Efektivna napetost in tok	

4.12 Magnetno polje

Vsebine		Preverja	Preverjani pojmi in koncepti	
12.1	Trajni magneti	12.1.1	Sile med magneti	
		12.1.2	Grafična predstavitev magnetnega polja paličastega in podkvastega magneta ter magnetnega polja Zemlje	
12.2	Električni tok kot vir	12.2.1	Kvalitativni opis magnetnega polja ravnega vodnika	
	magnetnega polja	12.2.2	Kvalitativni opis magnetnega polja tuljave	
		12.2.3*	Delovanje in uporaba elektromagneta	
12.3	Sila na vodnik v magnetnem polju	12.3.1	Lastnosti sile na tokovni vodnik v magnetnem polju	
12.4	Gostota magnetnega polja	12.4.1	Gostota magnetnega polja	
		12.4.2*	Gostota magnetnega polja v okolici ravnega vodnika	
		12.4.3*	Gostota magnetnega polja znotraj dolge tuljave	
12.5	Gibanje nabitih delcev v homogenem električnem	12.5.1	Opis lastnosti sile na gibajoči se nabiti delec v homogenem magnetnem polju	
	in magnetnem polju	12.5.2*	Velikost sile na gibajoči se nabiti delec v homogenem magnetnem polju	
		12.5.3*	Tir gibanja nabitih delcev v homogenem električnem in magnetnem polju, masni spektrograf	
12.6	Magnetni navor	12.6.1*	Navor na tokovno zanko v homogenem magnetnem polju	
12.7	Magnetni pretok	12.7.1*	Magnetni pretok skozi dano ploskev v homogenem magnetnem polju	

4.13 Indukcija

Vsebine Prever		Preverja	ani pojmi in koncepti	
13.1	Indukcijski zakon	13.1.1	Kvalitativni opis indukcije pri premikanju vodnika v magnetnem polju	
		13.1.2	Kvalitativni opis indukcije pri spreminjanju magnetnega polja v tuljavi	
		13.1.3*	Splošni indukcijski zakon	
		13.1.4*	Lenzevo pravilo za določanje smeri induciranega toka	
		13.1.5*	Kvantitativni opis indukcije pri vrtenju tuljave v magnetnem polju	
13.2	Transformator	13.2.1	Transformiranje napetosti	

Vsebine		Preverja	Preverjani pojmi in koncepti	
13.3	Induktivnost	13.3.1*	Induktivnost tuljave	
13.4	Energija magnetnega polja	13.4.1*	Energija tuljave, po kateri teče tok	
13.5	Električni nihajni krog	13.5.1	Električni nihajni krog – kvalitativni opis zgradbe in delovanja	
		13.5.2*	Energijske pretvorbe pri nihanju električnega nihajnega kroga	
		13.5.3*	Lastni nihajni čas električnega nihajnega kroga	
		13.5.4	Kvalitativno pojasnilo nastanka EMV	

4.14 Nihanje

Vsebine		Preverjani pojmi in koncepti		
14.1	Opisovanje nihanja	14.1.1	Odmik, amplituda in ravnovesna lega	
		14.1.2	Nihajni čas in frekvenca	
		14.1.3	Grafični prikaz časovnega spreminjanja odmika pri sinusnem nihanju	
		14.1.4*	Grafični prikaz časovnega spreminjanja odmika, hitrosti in pospeška pri periodičnem gibanju	
		14.1.5*	Časovna odvisnost odmika, hitrosti in pospeška pri sinusnem nihanju	
14.2	Dinamika nihanja	14.2.1	Nihalo na vijačno vzmet	
		14.2.2	Nitno nihalo	
		14.2.3*	Uporaba Newtonovega zakona pri določanju nihajnega časa nihala na vijačno vzmet	
14.3	Energija nihanja	14.3.1	Energijske pretvorbe pri nihalu na vijačno vzmet	
		14.3.2	Energijske pretvorbe pri nitnem nihalu	
14.4	Dušeno nihanje	14.4.1	Kvalitativni opis dušenega nihanja in razlogov za dušenje	
		14.4.2*	Grafični prikaz časovnega poteka dušenega nihanja in eksponentno pojemanje amplitude	
		14.4.3*	Energija pri dušenem nihanju	
14.5	Vsiljeno nihanje	14.5.1	Vsiljeno nihanje in lastna frekvenca	
		14.5.2	Resonančna krivulja	

4.15 Valovanje

Vsebine Pre		Preverja	reverjani pojmi in koncepti	
15.1	Sinusno valovanje	15.1.1	Trenutna slika sinusnega valovanja	
		15.1.2	Povezava med hitrostjo širjenja valovanja, valovno dolžino in frekvenco	
15.2	Vrste valovanj	15.2.1	Longitudinalno in transverzalno valovanje	

Vsebine		Preverja	ani pojmi in koncepti
15.3	Interferenca in odboj	15.3.1	Grafično sestavljanje valovanj
	valovanj	15.3.2	Odboj valovanja na krajišču vrvi
15.4	Potujoče in stoječe valovanje	15.4.1*	Grafični prikaz gibanja delov snovi pri potujočem valovanju z zaporednimi slikami
		15.4.2*	Grafični prikaz gibanja delov snovi pri stoječem valovanju z zaporednimi slikami
		15.4.3	Nastanek in lastnosti stoječega valovanja na struni
		15.4.4*	Stoječe valovanje na struni, pogoj za lastna nihanja
		15.4.5*	Hitrost valovanja in napetost strune
15.5	Lom valovanja	15.5.1	Prehod valovanja med območjema z različnima hitrostma valovanja
		15.5.2	Lomni zakon
15.6	Uklon in interferenca	15.6.1	Uklon valovanja
		15.6.2	Interferenca valovanj, nastanek ojačitev in oslabitev
		15.6.3*	Smeri ojačitev in oslabitev pri interferenci valovanj iz dveh sočasno nihajočih izvirov
15.7	Dopplerjev pojav	15.7.1	Kvalitativna pojasnitev Dopplerjevega pojava kot vzroka za spremembo frekvence valovanja
		15.7.2*	Dopplerjev pojav in sprememba frekvence valovanja
		15.7.3*	Gibanje s hitrostjo, ki je večja od hitrosti valov, nastanek in kot Machovega stožca
15.8	Zvok	15.8.1	Zvok kot longitudinalno valovanje

4.16 Svetloba in optika

Vsebine		Preverja	Preverjani pojmi in koncepti		
16.1	Elektromagnetno valovanje	16.1.1	Spekter elektromagnetnih valovanj		
16.2	Interferenčni pojavi	16.2.1	Uklon svetlobe		
		16.2.2	Kvalitativen opis interference svetlobe na dveh tankih režah in na uklonski mrežici		
		16.2.3*	Uklonska mrežica in merjenje valovne dolžine svetlobe		
16.3	Odboj in lom svetlobe	16.3.1	Odbojni zakon za svetlobo		
		16.3.2	Lomni zakon in lomni kvocient		
		16.3.3	Popolni odboj		
16.4	Preslikave z zrcali in lečami	16.4.1 16.4.2	Grafično določanje preslikav z ravnim in ukrivljenim zrcalom Grafično določanje preslikav z lečami		
		16.4.3*	Enačbe preslikav z idealnimi lečami in zrcali		
		16.4.4	Kvalitativen opis delovanja modela fotoaparata in človeškega očesa		
16.5	Svetlobni tok	16.5.1*	Moč in gostota svetlobnega toka točkastega svetila		
		16.5.2*	Stefanov zakon		

4.17 Atom

Vsebine		Preverja	nni pojmi in koncepti
17.1	Atom	17.1.1	Velikost atoma
		17.1.2	Število molekul ali atomov v dani masi čiste snovi
		17.1.3	Sestava atoma z uporabo periodnega sistema elementov
		17.1.4	Naboj in masa elektrona
17.2	Foton	17.2.1	Energija fotona
		17.2.2	Fotoefekt in delovanje fotocelice
		17.2.3*	Izstopno delo, mejna frekvenca in kinetična energija izbitih elektronov pri fotocelici
17.3	Energijska stanja atoma	17.3.1	Energijska stanja atomov
		17.3.2	Prehodi atomov med energijskimi stanji
		17.3.3	Črtasti emisijski in absorpcijski spekter plinov
		17.3.4	Valovna dolžina izsevane ali absorbirane svetlobe pri prehodu med energijskima stanjema

4.18 Atomsko jedro

Vsebine		Preverja	ni pojmi in koncepti
18.1 Atomsko jedro		18.1.1	Naboj in masa nukleonov
		18.1.2	Sestava in velikost jedra
		18.1.3	Masno in vrstno število jedra
		18.1.4	Izotopi
		18.1.5	Zveza med maso in energijo
18.2	Vezavna energija jedra	18.2.1*	Vezavna energija jedra
		18.2.2*	Specifična vezavna energija in stabilnost jedra
18.3	Radioaktivni razpadi	18.3.1	Razpad alfa, beta in gama ter njihove osnovne lastnosti
		18.3.2*	Reakcijska energija pri razpadu jedra
		18.3.3*	Aktivnost, razpolovni čas in razpadna konstanta radioaktivnega razpada
18.4	Jedrske reakcije	18.4.1*	Jedrske reakcije z uporabo periodnega sistema elementov
		18.4.2	Jedrska cepitev in zlivanje jeder
		18.4.3*	Ohranitveni zakoni pri jedrskih reakcijah
		18.4.4*	Masni defekt in energija jedrskih reakcij
		18.4.5	Verižna reakcija
		18.4.6*	Zgradba in delovanje jedrskega reaktorja

4.19 Astronomija

Vsebine		Preverja	ni pojmi in koncepti
19.1	Osončje	19.1.1	Glavni tipi objektov v osončju (planet, satelit, asteroid, komet, meteoroid)
19.2	Objekti v vesolju	19.2.1	Glavni tipi objektov v vesolju (zvezda, zvezdna kopica, galaksija, jata galaksij)
		19.2.2	Velikosti in tipične razdalje med objekti v osončju in vesolju, svetlobno leto
19.3	Gibanje planetov in	19.3.1*	Gravitacijski zakon pri kroženju planetov in satelitov
	satelitov	19.3.2*	Radialni pospešek pri enakomernem kroženju
19.4	Stefanov zakon	19.4.1*	Temperatura površine Sonca in gostota svetlobnega toka
19.5	Fuzija	19.5.1	Zlivanje atomskih jeder kot energijski vir v zvezdah

5 PRIMERI NALOG ZA PISNI IZPIT

5.1 Naloge izbirnega tipa

- 1. Kaj vedno velja za smer pospeška?
 - A Pospešek kaže vedno v smeri premika.
 - B Pospešek kaže vedno v smeri hitrosti.
 - C Pospešek kaže vedno v smeri rezultante zunanjih sil.
 - D Pospešek kaže vedno v nasprotno smer kakor sila trenja.
- 2. Avto vozi s hitrostjo 72 kmh⁻¹. Kolikšno pot opravi v času 10 s?
 - A 20 m
 - B 72 m
 - C 200 m
 - D 720 m
- 3. Slika kaže tri različne posode. V vsaki je drugačna tekočina. Katera izjava o tlaku tekočine na dnu posode je pravilna?
 - A $p_1 = p_2 = p_3$
 - B $p_2 > p_1 > p_3$
 - C $p_1 = p_2 > p_3$
 - D Za odgovor ni dovolj podatkov.

- 4. Zakaj ampermeter vežemo zaporedno k porabniku?
 - A Ker tako dosežemo, da je na ampermetru enaka napetost kakor na porabniku.
 - B Ker tako dosežemo, da skozi ampermeter teče enak tok kakor skozi porabnik.
 - C Ker tako dosežemo, da ampermeter troši enako moč kakor porabnik.
 - D Ker tako dosežemo, da ima ampermeter enak upor kakor porabnik.
- 5. Po vrvi potuje transverzalno valovanje, ki ga kaže slika. V kateri smeri se v trenutku, za katerega je narisana slika, giblje delec vrvi v točki A?
 - A Gor.
 - B Levo.
 - C Dol.
 - D Desno.

smer potovanja valovanja

6. Predmet postavimo pred razpršilno zrcalo. Gorišče zrcala je označeno s črko F, središče zrcala je označeno s črko S. Na kateri od spodnjih slik je odboj žarka, ki izhaja iz vrha predmeta, narisan napačno?

Naloga	Rešitev
1	• C
2	• C
3	• D
4	◆ B
5	• C
6	◆ C

5.2 Strukturirana naloga

1.1. Z enačbo zapišite izrek o gibalni količini. Poimenujte količine, ki nastopajo v enačbi, in zapišite njihove enote.

Slika kaže model rakete v posameznih fazah leta (I – vzlet, II – med pospeševanjem navzgor, III – dviganje brez potisne sile, IV – najvišja točka, V – padanje s padalom proti tlom). Spodnji graf kaže, kako se je med poletom spreminjala hitrost rakete.

1.2. Na zgornjem grafu v(t) s križcem jasno označite trenutek, v katerem raketa doseže najvišjo točko, s krogcem pa trenutek, ko se odpre padalo.

(2 točki)

1.3. Izračunajte pospešek, s katerim se raketa giblje navzgor v prvi sekundi po vžigu.

(1 točka)

1.4. Na spodnji graf vrišite, kako se je med poletom spreminjal pospešek rakete.

(1 točka)

1.5. Izračunajte, na kateri višini je bila raketa, ko je prenehala pospeševati navzgor, in do katere največje višine je poletela.

(2 točki)

Spodnje tri slike kažejo raketo takoj po vzletu, v najvišji točki leta in med padanjem pri odprtem padalu nazaj proti tlom. Privzemite, da je zračni upor zanemarljiv, dokler se ne odpre padalo rakete.

1.6. V slike vrišite vse zunanje sile, ki delujejo na raketo v vsaki posamezni fazi leta. Sile ustrezno označite in jih poimenujte. Rišite jih v približno pravem merilu, kar pomeni, da večje sile ponazorite z daljšimi puščicami.

(3 točke)

Masa rakete s padalom in brez goriva je 500 g. Masa goriva je 60 g. Gorivo izgori do konca prve sekunde in tako potisne raketo navzgor. Hitrost rakete po koncu prve sekunde odčitajte na grafu.

1.7. Kolikšna je velikost sile zračnega upora na padalo rakete med enakomernim padanjem le-te proti tlom?

(1 točka)

1.8. Izračunajte gibalno količino, ki jo ima raketa eno sekundo po vzletu.

(1 točka)

1.9. Izračunajte, za koliko se je raketi pri vzletu (v prvi sekundi) spremenila vsota kinetične in potencialne energije.

(1 točka)

1.10. Izračunajte, kolikšno hitrost bi imeli izpušni plini, če bi vse gorivo izgorelo v zanemarljivo kratkem času po prižigu goriva, raketa pa bi pospešila do enake največje hitrosti kakor v zgornjih primerih. Odgovor utemeljite z izračunom, grafom ali pisnim sklepom, v katerem boste zapisali smiseln fizikalni razmislek.

(1 točka)

Naloga	Točke	Rešitev	Dodatna navodila
1.1	2	• $\bar{F}\Delta t = \Delta \bar{G}$, pri čemer $\bar{F}\Delta t$ označuje sunek sile, $\Delta \bar{G}$ pa spremembo gibalne količine. Enota sunka sile je Ns, enota gibalne količine je kg m s ⁻¹ . Ker sta enoti enaki, je dovolj, če je zapisana le ena od njiju.	Upoštevamo vse pravilne in fizikalno smiselne odgovore. Če je kandidat izrek zapisal pravilno, ni pa pojasnil pomena zapisanih količin ali je pozabil na ustrezno enoto, dobi 1 točko.
1.2	2	Raketa je v najvišji točki, ko je hitrost rakete enaka nič. Padalo se odpre eno sekundo kasneje. Križec mora biti vrisan v presečišču grafa hitrosti s časovno osjo, krogec pa na mestu, kjer se graf hitrosti usmeri vodoravno (ni več pospeška).	Kandidat dobi točko za vsako pravilno vrisano in jasno označeno oznako na grafu.
1.3	1	Pospešek: 50 ms ⁻² $a = \frac{\Delta v}{\Delta t} = \frac{50 \text{ ms}^{-1} - 0}{1,0 \text{ s}} = 50 \text{ ms}^{-2}$	
1.4	1	• Graf a [ms-2] 10 10 10 11 10 11 11 11 12 13 14 15 15 15 16 17 18 18 19 19 19 19 19 19 19 19	
1.5	2	♦ Višina: 25 m • 1,5 · 10² m $h_1 = \overline{v} t_1 = \frac{1}{2} \cdot 50 \text{ ms}^{-1} \cdot 1,0 \text{ s} = 25 \text{ m}$ $H = h_1 + \frac{v_0^2}{2g} = 25 \text{ m} + \frac{\left(50 \text{ ms}^{-1}\right)^2}{19,8 \text{ ms}^{-2}} = 151,3 \text{ m}$	1 točka za višino, na kateri porabi gorivo, 1 točka za največjo višino leta.
1.6	3	\vec{F}_c \vec{F}_g \vec{F}_g	Kandidat dobi točko za pravilno narisane in poimenovane sile v vsaki fazi leta rakete ALI 1 točko za pravilno ugotovljene sile, 1 točko za pravilne oznake in poimenovanja sil in 1 točko za pravilna razmerja velikosti sil.
1.7	1	* Zračni upor enak F_g $F_u = F_g = 4,9 \text{ N}$ Med enakomernim padanjem proti tlom deluje na raketo poleg teže še zračni upor, ki je po velikosti enak teži rakete.	
1.8	1	• Gibalna količina: 25 kg ms ⁻¹ $G = mv = 0,50 \text{ kg} \cdot 50 \text{ ms}^{-1} = 25 \text{ kg ms}^{-1}$	
1.9	1	• Sprememba energije: 188 J $\Delta W = \frac{1}{2}mv^2 + mgh =$ = 0,25 kg· $\left(50 \text{ ms}^{-1}\right)^2$ + 0,50 kg·9,8 ms²·25 m = = 625 J + 123 J = 188 J	

Naloga	Točke	Rešitev	Dodatna navodila
1.10	1	◆ Hitrost: 420 ms ⁻¹ Ob eksploziji sistema raketa-gorivo velja ohranitev skupne gibalne količine:	Upoštevamo vse pravilne in fizikalno smiselne odgovore.
		$m_r v_r = m_p v_p \rightarrow v_p = \frac{m_r v_r}{m_p} = \text{417 ms}^{\text{-1}}$	

6 LABORATORIJSKE VAJE

Ocena laboratorijskih vaj je notranja, kandidat pa jo pridobi pri kvalificiranem izvajalcu (organizatorju) laboratorijskega dela, ki mora biti organizirano skladno s predpisi. Predpisi za izvajanje laboratorijskega dela so navedeni v učnem načrtu za pouk fizike v splošnih gimnazijah.

Učni načrt za pouk fizike nalaga izvajalcem priprav na splošno maturo iz tega predmeta sprotno in premišljeno laboratorijsko delo v vseh štirih letih. Tako je mogoče od kandidatov pričakovati, da bodo opravili večje število vaj z različnih področij fizike, pri čemer bo večina vaj izvedena na ravni zahtevnosti splošnega znanja. Med pripravami na splošno maturo iz fizike naj kandidati opravijo 8 do 10 zahtevnejših laboratorijskih vaj na ravni splošnega in posebnega znanja, lahko pa tudi na ravni izbirnega znanja. Pri tem je mogoče upoštevati samostojno eksperimentalno raziskovalno delo, ki ga je opravil kandidat.

Kandidati morajo za pridobitev notranje ocene opraviti vaje v predvidenem številu in na ustrezni ravni z najmanj treh področij (področja so: merjenje, mehanika, termodinamika, elektrika in magnetizem, nihanje in valovanje ter moderna fizika). Smiselno je, da izbirajo med vajami, ki jih priporočamo spodaj, ter da pri njihovi pripravi in izvedbi upoštevajo zapisana priporočila.

Raziskovalne naloge, opravljene v skladu s pravili o priznavanju raziskovalnih nalog, ki jih je sprejela DK SM, lahko nadomestijo največ polovico ocenjenih laboratorijskih vaj.

6.1 Namen

Kandidati se pri eksperimentalnem delu naučijo uporabljati osnovne merske naprave, načrtovati in izvesti preproste poskuse, urejeno zapisovati merske podatke, risati skice poskusov in pri tem uporabljati dogovorjene shematske simbole, grafično pokazati zveze med fizikalnimi količinami ter na podlagi grafov ugotoviti in zapisati zveze med njimi, analizirati in interpretirati opazovanja in dobljene podatke ter predstaviti izide poskusov.

6.2 Seznam

Kandidati naj opravijo čim več vaj s področij, navedenih na seznamu – za vsako je predlaganih nekaj vaj. Za tiste, ki so označene s Δ , je priporočljivo, da se izvedejo z računalnikom in vmesnikom. Učitelji lahko pripravijo za kandidate vaje po lastni presoji in glede na razpoložljivo opremo.

Področje	Predlogi vaj
1 Merjenje	1.1 Merjenje dolžine, mase, prostornine, gostote
	1.2 Merjenje dolžine žice v svitku (posredna meritev)
	 Upoštevanje napak pri računskih operacijah (računanje ploščine, gostote)
2 Sila	2.1 Razstavljanje in sestavljanje sil
	2.2 Hookov zakon za prožno vzmet
	2.3 Lepenje in trenje
	2.4 Ravnovesje na klancu
	2.5 Vzgon
3 Navor	3.1 Ravnovesje vzvoda
	3.2 Nosilec na dveh oporah
	3.3 Torzijska tehtnica
	3.4 Določanje lege težišča preprostih teles in sistema točkastih teles
4 Mehanične lastnosti snovi	4.1 Določanje prožnostnega modula snovi
5 Gibanje	5.1 ∆ Analiza gibanja

Področje		Predlogi vaj
	5.2	Vodoravni met
	5.3	Δ Vrtenje – merjenje frekvence, kotne hitrosti in obhodnega časa
6 Drugi Newtonov zakon	6.1	Δ Gibanje pod vplivom stalne sile
7 Gibalna količina	7.1	Δ Neprožni in prožni trk (zračna drča ali vozički z majhnim trenjem)
	7.2	Δ Ohranitev gibalne količine
8 Temperatura in toplota	8.1	Merjenje temperaturne razteznosti
	8.2	Joulov poskus
	8.3	Δ Merjenje specifične toplote snovi
	8.4	Merjenje talilne in izparilne toplote vode
	8.5	Δ Plinski zakoni
9 Električno polje	9.1	
		Merjenje kapacitete kondenzatorjev
	9.3	•
	9.4	Merjenje influenčne konstante
	9.5	Δ Polnjenje in praznjenje kondenzatorja
10 Električni tok	10.1	Merjenje napetosti, toka in upora
	10.2	∆ Merjenje notranjega upora galvanskega člena
		Δ Karakteristika žarnice in termistorja
		Wheatstonov most
		Merjenje in opazovanje električnih količin z osciloskopom
11 Magnetno polje	11.1	 Merjenje gostote magnetnega polja: – s tehtanjem sile na vodnik – ∆ z indukcijo – ∆ s Hallovim merilnikom – s primerjanjem
12 Nihanje	12.1	
•	12.2	•
	12.3	Δ Dušeno nihanje težnega nihala
	12.4	Merjenje težnega pospeška z nihalom
	12.5	Resonanca
13 Električni nihajni krog	13.1	Δ Dušeno nihanje električnega kroga
	13.2	Vsiljeno nihanje električnega nihajnega kroga
	13.3	Oscilator
14 Zvok	14.1	Δ Merjenje hitrosti zvoka
	14.2	Δ Analiza zvoka z uporabo računalnika
	14.3	Dopplerjev pojav
15 Svetloba	15.1	Merjenje lomnega količnika
	15.2	Optična prizma
	15.3	Totalni odboj
	15.4	Merjenje goriščne razdalje zbiralne in razpršilne leče
	15.5	Preslikave z lečami in zrcali
16 Elektromagnetno valovanje	16.1	Določanje valovne dolžine z uklonsko mrežico
	16.2	Mikrovalovi: – merjenje valovne dolžine s stoječim valovanjem – Braggov uklon na modelu kristala
	16.3	
	16.4	Δ Merjenje porazdelitve energije v spektru svetlobe

Področje	Predlogi vaj
	16.5 ∆ Osvetljenost oz. gostota svetlobnega toka pada s kvadratom razdalje od točkastega svetila
	16.6 ∆ Absorpcija svetlobe v tekočini
17 Elektron	17.1 Fotoefekt – merjenje Planckove konstante
	17.2 Analiza svetlobe, ki jo seva plin
18 Radioaktivnost	18.1 Merjenje aktivnosti
	18.2 Absorpcija sevanja γ v aluminiju
	18.3 Absorpcija sevanja eta in γ
	18.4 Odklon delcev alfa in beta v magnetnem polju

6.3 Priporočila za pisanje poročil

Poročila o laboratorijskih vajah naj vsebujejo:

- vse pri laboratorijski vaji zbrane merske podatke v pregledni obliki (npr. preglednice);
- obdelavo podatkov z morebitnimi pripadajočimi grafi;
- rezultate, ki so smiselno opremljeni z mersko napako, in ugotovitve, ki temeljijo na opravljenih meritvah.

Pri samostojnem eksperimentalnem delu (npr. naloge odprtega tipa ali raziskovalne naloge) naj uvodni del poročila, ki ga napišejo dijaki, vsebuje še:

- naslov vaje;
- kratek uvod, v katerem je opisan namen oz. cilj vaje;
- osnovni opis postavitve eksperimenta in eksperimentalnih postopkov.

Rok za oddajo pisnega poročila določi učitelj. Poročilo zadnje vaje mora biti oddano do roka, ki je določen v maturitetnem koledarju.

7 KANDIDATI S POSEBNIMI POTREBAMI

Z Zakonom o maturi in na njegovi podlagi sprejetimi podzakonskimi akti je določeno, da kandidati opravljajo maturo pod enakimi pogoji. Kandidatom s posebnimi potrebami, ki so bili usmerjeni v izobraževalne programe z odločbo o usmeritvi, v utemeljenih primerih pa tudi drugim kandidatom (poškodba, bolezen), se lahko glede na vrsto in stopnjo primanjkljaja, ovire oziroma motnje prilagodi način opravljanja mature in način ocenjevanja znanja.³

Možne so te prilagoditve:

- 1. opravljanje mature v dveh delih, v dveh zaporednih izpitnih rokih;
- 2. podaljšanje časa opravljanja (tudi odmorov; mogočih je več krajših odmorov) in prekinitev izpita splošne mature po potrebi;
- 3. prilagojena oblika izpitnega gradiva (npr. Braillova pisava, povečava, zapis besedila na zgoščenki, zvočni zapis besedila na zgoščenki ...);
- 4. poseben prostor;
- 5. prilagojena delovna površina (dodatna osvetlitev, možnost dviga mize ...);
- 6. uporaba posebnih pripomočkov (računalnik, Braillov pisalni stroj, ustrezna pisala, folije za pozitivno risanje ...);
- 7. izpit s pomočnikom (npr. pomočnik bralec, pisar, tolmač v slovenski znakovni jezik, pomočnik za slepe in slabovidne);
- 8. uporaba računalnika za branje in/ali pisanje;
- 9. prirejen ustni izpit in izpit slušnega razumevanja (oprostitev, branje z ustnic, prevajanje v slovenski znakovni jezik);
- 10. prilagojeno ocenjevanje (npr. napake, ki so posledica kandidatove motnje, se ne upoštevajo; pri ocenjevanju zunanji ocenjevalci sodelujejo s strokovnjaki za komunikacijo s kandidati s posebnimi potrebami).

Fizika 29

3

³ Besedilo velja za vse predmete splošne mature in se smiselno uporablja pri posameznem izpitu splošne mature.

8 LITERATURA

Učbeniki in učna sredstva, ki jih je potrdil Strokovni svet Republike Slovenije za splošno izobraževanje, so zbrani v Katalogu učbenikov za srednjo šolo in objavljeni na spletni strani Zavoda Republike Slovenije za šolstvo www.zrss.si.

9.1 Periodni sistem elementov

PERIODNI SISTEM ELEMENTOV

	-	7		નં	•	4		u		4		,	:
-	1,01 vodik	6,94 Li :	23,0 Na	natrij 11	39,1	ka <u>lij</u>	19	85,5 Rb	rubidij 37	S 23	cezij 55	(223) Fr	francij 87
		9,01 Be berilij		_						1		I	
												(227) Ac	
			_		47,9	titan	22	91,2 Zr	cirkonij 40	178 1 78	hafnij 72	(267)	rutherfordij 104
		relativns	VIS		50,9	vanadij	23	92,9 Nb	niobij 7	<u>2</u> 8 ⊑	tantal 73	(268) D	dubnij 105
		relativna atomska masa simbol ime elementa	tno stevi		52,0	krom ک	24	96,0 M	molibden 42	¹⁸ 5	volfram 74	(271) Sq	seaborgij 106
		masa	0		54,9	mangan	25	₍₃₈)	tehnecij 43	186 8	renij 75	(272) Bh	bohrij 107
					55,8 1	železo	26	2 6	rutenij 44	⁵ 0 8 0	osmij 76	(277) Hs	hassij 108
					28,9 0,9	kobalt	27	103 Rh	7 4	192 –	inidij 77	(276) Mt	meitnerij 109
					58,7	nikelj	28	106 Pd	paladij 46	195 7	platina 78	(281) Ds	darmstadtij
					63,5	paker	59	108 Ag	srebro 47	197 A	zlato Ži	(272) Rg	rentgenij 111
			1		65,4	giy	30	Cq	kadmij 48	5 04	ivo srebro		
	≡	10,8 bor	27,0 A ,0	aluminij 13	2,69	gajj	31	115 n	indij 64	5 04	talij		
	≥	0.0 giju	<u>0</u> 2%	silicij 4	72,6	germanij	32	119 Sn	kositer 50	207 Pb	svinec 82	•	
	>	14,0 dušik	31,0	fosfor 15	74,9	arzen	33	122 Sb	antimon 51	209 	bizmut 83		
	5	16,0 Kisik	32,1 0 ,32	žveplo 16	0,60	selen	34	128 Te	telur 52	(209 P (209	polonij 84		
	₹	19,0 fluor	35,5 D ,5	klor 7	79,9	prom m	35	127 	23 jo	(210) A	astat 85		
₹	4,00 Peij 2	20,2 Ne neon	39.9 A .9	argon 18	83,8	kripton	36	X 131	ksenon 54	(222) R	radon 86		

175	<u> </u>	Intecij	7	(262)	֓֡֡֡֡֡	lavrencij	103
173	٦ ک	iterbij	2	(528)	Ž	nobelij	102
169	Ę	tulij	69	(258)	βg	mendelevij	101
167	ш	erbij	89	(257)	Ē	fermij	100
165	운	holmij	. 29	(225)	ЕS	einsteinij	99
163	۵	disprozij	99	(251)	ັບ	kalifornij	98
159	Q L	terbij	65	(242)	ձ	berkelij	97
157	ည်	gadolinij	64	(247)	S	curij	96
152	Ш	evropij	63	(243)	Αm	americij	92
150	Sm	samarij	62	(544)	Ρď	plutonij	94
(145)	Pm	prometij	61	(237)	Q Z	neptunij	93
144	Ž	neodim	09	238	-	uran	92
141	ቯ	prazeodim	29	231	Ра	protaktinij	91
요	á	enij	28	232	드	torij	90
7	_						

Lantanoidi Aktinoidi

9.2 Konstante in enačbe

sredni	i	polmer	Zemlje
oi cai ij		politici	

Gibanje

$$s=vt$$

$$s = \overline{v}t$$

$$s = v_0 t + \frac{at^2}{2}$$

$$v = v_0 + at$$

$$v^2 = v_0^2 + 2as$$

$$\nu = \frac{1}{t_0}$$

$$\omega = 2\pi\nu$$

$$v_{\rm o} = \frac{2\pi r}{t_{\rm o}}$$

$$a_{\rm r} = \frac{v_{\rm o}^2}{r}$$

$$s=s_0\sin\omega t$$

$$v = \omega s_0 \cos \omega t$$

$$a = -\omega^2 s_0 \sin \omega t$$

$$r_{z} = 6370 \text{ km}$$

$$a = 9.81 \,\mathrm{m \, s^{-2}}$$

$$c = 3.00 \cdot 10^8 \text{ m s}^{-1}$$

$$e_0 = 1,60 \cdot 10^{-19} \text{ As}$$

$$N_{\Delta} = 6.02 \cdot 10^{26} \text{ kmol}^{-1}$$

$$R = 8.31 \cdot 10^3 \text{ J kmol}^{-1} \text{ K}^{-1}$$

$$G = 6,67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ AsV}^{-1} \text{ m}^{-1}$$

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ VsA}^{-1} \text{ m}^{-1}$$

$$k = 1.38 \cdot 10^{-23} \text{ JK}^{-1}$$

$$h = 6.63 \cdot 10^{-34} \text{ Js} = 4.14 \cdot 10^{-15} \text{ eVs}$$

$$\sigma = 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

$$m_{\rm u} = 1 \, \text{u} = 1,66054 \cdot 10^{-27} \, \text{kg} = 931,494 \, \text{MeV}/c^2$$

$$m_{\rm H}c^2 = 931,494 \; {\rm MeV}$$

$$m_{\rm e} = 9{,}109 \cdot 10^{-31} \text{ kg} = 1 \text{ u/}1823 = 0{,}5110 \text{ MeV/}c^2$$

$$m_{\rm p} = \text{1,67262} \cdot \text{10}^{-27} \text{ kg} = \text{1,00728 u} = 938,272 \text{ MeV/}c^2$$

$$m_{\rm n} = 1,67493 \cdot 10^{-27} \text{ kg} = 1,00866 \text{ u} = 939,566 \text{ MeV}/c^2$$

Sila

$$g(r) = g \frac{r_{\mathsf{z}}^2}{r^2}$$

$$F = G \frac{m_1 m_2}{r^2}$$

$$\frac{r^3}{t_0^2} = \text{konst.}$$

$$F = ks$$

$$F = pS$$

$$F = k_t F_n$$

$$F = \rho q V$$

$$\vec{F} = m\vec{a}$$

$$\vec{G} = m\vec{v}$$

$$\vec{F}\Delta t = \Delta \vec{G}$$

$$M = rF \sin \alpha$$

$$\Delta p = \rho g h$$

Energija

$$A = \overrightarrow{F} \cdot \overrightarrow{s}$$

$$A = Fs\cos\varphi$$

$$W_{\mathsf{k}} = \frac{mv^2}{2}$$

$$W_{\rm p} = mgh$$

$$W_{\rm pr} = \frac{ks^2}{2}$$

$$P = \frac{A}{t}$$

$$A = \Delta W_{\rm k} + \Delta W_{\rm p} + \Delta W_{\rm pr}$$

$$A = -p\Delta V$$

Elektrika

$$I = \frac{e}{t}$$

$$F = \frac{e_1 e_2}{4\pi\varepsilon_0 r^2}$$

$$\vec{F} = e\vec{E}$$

$$U = \vec{E} \cdot \vec{s} = \frac{A_{e}}{e}$$

$$E = \frac{e}{2\varepsilon_0 S}$$

$$e = CU$$

$$C = \frac{\varepsilon_0 S}{l}$$

$$W_{\rm e} = \frac{CU^2}{2} = \frac{e^2}{2C}$$

$$U = RI$$

$$R = \frac{\varsigma l}{S}$$

$$U_{\rm ef} = \frac{U_0}{\sqrt{2}}; I_{\rm ef} = \frac{I_0}{\sqrt{2}}$$

$$P = UI$$

Toplota

$$n = \frac{m}{M} = \frac{N}{N_{\rm A}}$$

$$pV = nRT$$

$$\Delta l = \alpha l \Delta T$$

$$\Delta V = \beta V \Delta T$$

$$A + Q = \Delta W$$

$$Q = cm\Delta T$$

$$Q = qm$$

$$W_0 = \frac{3}{2}kT$$

$$P = \frac{Q}{t}$$

$$P = \lambda S \frac{\Delta T}{\Delta l}$$

$$j = \frac{P}{S}$$

$$j = \sigma T^4$$

Magnetizem

$$\vec{F} = I\vec{l} \times \vec{B}$$

$$F = IlB \sin \alpha$$

$$\vec{F} = e\vec{v} \times \vec{B}$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$B = \frac{\mu_0 NI}{I}$$

$$M=NISB\sin\alpha$$

$$\Phi = BS\cos\alpha$$

$$U_{\rm i} = lvB$$

$$U_{\rm i} = \omega SB \sin \omega t$$

$$U_{\rm i} = -\frac{\Delta \Phi}{\Delta t}$$

$$L = \frac{\Phi}{I}$$

$$W_{\rm m} = \frac{LI^2}{2}$$

$$\frac{U_{\bf 1}}{U_{\bf 2}} = \frac{N_{\bf 1}}{N_{\bf 2}}$$

Nihanje in valovanje

$$t_0 = 2\pi \sqrt{\frac{m}{k}}$$

$$t_0 = 2\pi \sqrt{\frac{l}{q}}$$

$$t_0 = 2\pi\sqrt{LC}$$

$$c = \lambda \nu$$

$$d\sin\alpha=N\lambda$$

$$j = \frac{P}{4\pi r^2}$$

$$\nu = \nu_0 \left(1 \pm \frac{v}{c} \right)$$

$$\nu = \frac{\nu_0}{1 \mp \frac{v}{c}}$$

$$c = \sqrt{\frac{Fl}{m}}$$

$$\sin \varphi = \frac{c}{v}$$

Optika

$$n = \frac{c_0}{c}$$

$$\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2} = \frac{n_2}{n_1}$$

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$$

$$\frac{s}{p} = \frac{b}{a}$$

Moderna fizika

$$W_{\rm f} = h\nu$$

$$W_{\mathsf{f}} = A_{\mathsf{i}} + W_{\mathsf{k}}$$

$$W_{\rm f} = \Delta W_{\rm p}$$

$$\Delta W = \Delta mc^2$$

$$N = N_0 2^{-\frac{t}{t_{1/2}}} = N_0 e^{-\lambda t}$$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$$A=N\lambda$$