ARTIFICAL INTELLIGENCE

PHASE-3 SUBMISSION

EARTHQUAKE PREDICTION USING PYTHON

Raw data must be transformed into a clean data set, which necessitates numeric data conversion in order for machine learning algorithms to function. We accomplish this by assigning binary values to each column vector that represents a categorical label. Values missing, or An annoyance is the presence of NaNs (not a number) in the data set. Either you must abandon the leave blank rows or use interpolated or mean values to fill them in.

Step-by-step Python pre processing of data:

- 1. Fill Pandas with data.
- 2. Remove useless columns from the table.
- 3. Remove any rows that have null values.
- 4. Construct fake variables.
- 5. Address any missing information.
- 6. Use NumPy to convert the data frame.
- 7. Separate the data set into test and training subsets.

1.Fill data in Pandas:

To work on the data, you can either load the CSV in Excel or in Pandas. For the purposes of

this tutorial, we'll load the CSV data in Pandas.

```
[ ] import pandas as pd
    df = pd.read_csv("database.csv")
```

Let's take a look at the data format below:

```
[ ] df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 23412 entries, 0 to 23411
     Data columns (total 21 columns):
      # Column
                                            Non-Null Count Dtype
      0 Date
                                             23412 non-null object
          Time
                                            23412 non-null object
                                            23412 non-null float64
          Latitude
          Longitude
                                            23412 non-null float64
                                            23412 non-null object
          Type
          Depth 23412 non-null float64
Depth Error 4461 non-null float64
Depth Seismic Stations 7097 non-null float64
Magnitude 23412 non-null float64
Magnitude Times
          Magnitude Type
                                            23409 non-null object
      10 Magnitude Error
                                            327 non-null
      11 Magnitude Seismic Stations 2564 non-null 12 Azimuthal Gap 7299 non-null 13 Horizontal Distance 1604 non-null
      14 Horizontal Error
                                           17352 non-null float64
23412 non-null object
      15 Root Mean Square
      17 Source
                                            23412 non-null object
      18 Location Source
                                            23412 non-null object
      19 Magnitude Source
                                             23412 non-null object
      20 Status
                                            23412 non-null object
     dtypes: float64(12), object(9)
     memory usage: 3.8+ MB
```

2.Remove useless columns from the table: Let's try to drop some of the columns which won't contribute much to our machine learning model. We'll start with Date and Time.

3.Remove any rows that have null values: Next we can drop all rows in the data that have missing values (NaNs). Here's how:

```
[ ] df=df.dropna()
df.info()
<class 'pandas.core.frame.DataFrame'>
     Int64Index: 14 entries, 565 to 22238
Data columns (total 19 columns):
                                              Non-Null Count Dtype
           Longitude
                                              14 non-null
                                                                   float64
          Type
Depth
Depth Error
                                                                   object
float64
                                              14 non-null
          Depth Seismic Stations
Magnitude
                                              14 non-null
14 non-null
                                                                   float64
          Magnitude Type
Magnitude Error
                                              14 non-null
      9 Magnitude Seismic Stations 14 non-null
10 Azimuthal Gap 14 non-null
                                                                   float64
      10 Azimuthal Gap
11 Horizontal Distance
                                             14 non-null
                                                                   float64
      13 Root Mean Square
                                              14 non-null
                                               14 non-null
      15 Source
16 Location Source
                                              14 non-null
      17 Magnitude Source
                                              14 non-null
     dtypes: float64(12), object(7)
memory usage: 2.2+ KB
```

4. Construct fake variables:

Instead of wasting our data, let's convert the Latitude and Longitude to columns in Pandas and drop them after conversion.

```
[ ] dummies=[]
  cols=['Latitude', 'Longitude']
  for col in cols:
    dummies.append(pd.get_dummies(df[col]))
```

Then..

```
database_dummies=pd.concat(dummies, axis=1)
```

Finally we **concatenate** to the original data frame, column-wise:

```
df=pd.concat((df,database_dummies), axis=1)
```

Now that we converted Latitude and Longitude values into columns, we drop the redundant columns

from the data frame.

```
df=df.drop(['Latitude', 'Longitude'], axis=1)
```

Let's take a look at the new data frame:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 14 entries, 565 to 22238
Data columns (total 45 columns):
    Column
                              Non-Null Count Dtype
                              14 non-null
    Type
    Depth
                              14 non-null
                                             float64
    Depth Error
                              14 non-null
                                             float64
    Depth Seismic Stations
                              14 non-null
    Magnitude
                              14 non-null
                                             float64
   Magnitude Type
                                             object
   Magnitude Error
                              14 non-null
                                             float64
   Magnitude Seismic Stations 14 non-null
                                             float64
   Azimuthal Gap
                                             float64
9 Horizontal Distance
                              14 non-null
                                             float64
10 Horizontal Error
                              14 non-null
                                             float64
11 Root Mean Square
                             14 non-null
                                             float64
                              14 non-null
                                             object
13 Source
                              14 non-null
                                             object
14 Location Source
                              14 non-null
                                             object
15 Magnitude Source
                              14 non-null
                                             object
16 Status
17 18.045
                              14 non-null
                                             object
                              14 non-null
                                             uint8
18 30.25
19 37.2315
                              14 non-null
                                             uint8
                              14 non-null
                                             uint8
20 37.24521 37.2788333
                              14 non-null
                                             uint8
                              14 non-null
                                             uint8
 22 37.2901667
                              14 non-null
                                             uint8
                              14 non-null
                                             uint8
24 37.296525 37.3005
                              14 non-null
                                             uint8
                              14 non-null
                                             uint8
                              14 non-null
                                             uint8
                              14 non-null
                                             uint8
                              14 non-null
                                             uint8
    46.2073333
    -122.188
                                             14 non-null
                                                                    uint8
     -118.3913333
                                             14 non-null
                                                                    uint8
32
33
     -116.5341667
                                             14 non-null
                                                                    uint8
    -116.4736667
                                             14 non-null
                                                                    uint8
35
    -116.4606667
                                             14 non-null
                                                                    uint8
     -116.4556667
                                             14 non-null
                                                                    uint8
36
    -116.4115
37
                                             14 non-null
                                                                    uint8
    -116.4083333
                                                                    uint8
38
                                             14 non-null
```

```
39
    -116.3686667
                                 14 non-null
                                                  uint8
    -116.346
                                 14 non-null
                                                  uint8
 40
     -116.3331667
                                 14 non-null
                                                  uint8
41
     -114.8721
                                 14 non-null
                                                  uint8
 42
                                 14 non-null
                                                  uint8
 43
    -114.8
    -68.3509
                                 14 non-null
                                                  uint8
44
dtypes: float64(10), object(7), uint8(28)
memory usage: 2.4+ KB
```

Let's compute a median or interpolate() all the ages and fill those missing age values.

Pandas has an interpolate() function that will replace all the missing NaNs to interpolated values.

5. Address any missing information:

```
df['Type']=df['Type'].interpolate()
```

Now let's observe the data columns. Notice 'Close' is now interpolated with imputed new values.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 14 entries, 565 to 22238
Data columns (total 45 columns):
# Column
                                     Non-Null Count Dtype
                                      14 non-null
    Туре
                                                        object
     Depth
                                      14 non-null
                                                         float64
     Depth Error
                                     14 non-null
                                                        float64
    Depth Error 14 non-null
Depth Seismic Stations 14 non-null
Magnitude 14 non-null
Magnitude Type 14 non-null
Magnitude Error 14 non-null
                                                        float64
                                                        float64
                                                        object
                                                        float64
    Magnitude Seismic Stations 14 non-null
                                                         float64
     Azimuthal Gap 14 non-null
Horizontal Distance 14 non-null
Horizontal Error 14 non-null
Root Mean Square 14 non-null
    Azimuthal Gap
 8
                                                        float64
                                                         float64
 10 Horizontal Error
                                                         float64
 11 Root Mean Square
                                                        float64
                                    14 non-null
                                                        object
                                    14 non-null
14 non-null
     Source
                                                        object
 14 Location Source 14 non-null 15 Magnitude Source 14 non-null
                                                        object
                                                         object
 16 Status
                                     14 non-null
                                                         object
                                     14 non-null
14 non-null
     18.045
                                                         uint8
 18 30.25
                                                         uint8
 19 37.2315
                                    14 non-null
                                                         uint8
 20 37.245
                                    14 non-null
                                                         uint8
                                     14 non-null
 21 37.2788333
                                                        uint8
     37.2901667
                                     14 non-null
                                                         uint8
 23 37.2953333
                                    14 non-null
                                                        uint8
 24 37.2965
                                     14 non-null
                                                        uint8
                                     14 non-null
 25 37.3005
26 37.30216
                                                         uint8
     37.3021667
                                      14 non-null
                                                         uint8
 27 37.3141667
                                     14 non-null
                                                         uint8
 28 38.1383333
                                     14 non-null
                                                         uint8
 29 41.1444
                                      14 non-null
                                                         uint8
 30 46.2073333
                                      14 non-null
                                                         uint8
```

```
31 -122.188
                              14 non-null
                                            uint8
32 -118.3913333
                              14 non-null
                                            uint8
33 -116.5341667
                              14 non-null
                                            uint8
                                            uint8
34 -116.4736667
                             14 non-null
35 -116.4606667
                             14 non-null
                                            uint8
                              14 non-null
36 -116.4556667
                                            uint8
37 -116.4115
                             14 non-null
                                            uint8
38 -116.4083333
                             14 non-null
                                            uint8
39 -116.3686667
                              14 non-null
                                            uint8
40 -116.346
                                            uint8
                             14 non-null
                                            uint8
41 -116.3331667
                             14 non-null
42 -114.8721
                             14 non-null
                                            uint8
43 -114.8
                             14 non-null
                                            uint8
44 -68.3509
                             14 non-null
                                            uint8
dtypes: float64(10), object(7), uint8(28)
memory usage: 2.4+ KB
```

6. Use NumPy to convert the data frame: Now that we've converted all the data to integers, it's time to prepare the data for machine learning models. This is where scikit-learnand

NumPy come into play: X= Input set with 14 attributes y = Small y output, in this case Survived

Now we convert our data frame from Pandas toNumPyand we assign input and output:

```
X=df.values
y=df['Root Mean Square'].values
```

still has Root Mean values in it, which should not be there. So we drop in the NumPy

column, which is the first column.

```
import numpy as np
X=np.delete(x, 1, axis=1)
```

7. Separate the data set into test and training subsets:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
```