#### Week 02

# **Aggregating & Summarization**

INFO 3402: Information Exposition

Brian Keegan, Ph.D. Assistant Professor, Information Science brian.keegan@colorado.edu



### Agenda

- $\bigcirc$  00:00 − 00:15  $\rightarrow$  Slides
- O 00:15 01:00 → Notebook
- $\bigcirc$  01:00 01:15  $\rightarrow$  Exercises

### **Course Overview**

| Module       | Week | Dates          | Computational skill | Communication skill |
|--------------|------|----------------|---------------------|---------------------|
|              | 1    | Jan 11, Jan 13 | Loading             | Documentation       |
| Shaping      | 2    | Jan 18, Jan 20 | Aggregation         | Summarization       |
|              | 3    | Jan 25, Jan 27 | Joining             | Validation          |
|              | 4    | Feb 1, Feb 3   | Tidying             | Tables              |
| Distribution | 5    | Feb 8, Feb 10  | Histograms          | Perception          |
|              | 6    | Feb 15, Feb 17 | Box plots           | Audience            |
| Comparison   | 7    | Feb 22, Feb 24 | Cat plots           | Objectives          |
|              | 8    | Mar 1, Mar 3   | Faceted plots       | Simplicity          |
| Trend        | 9    | Mar 8, Mar 10  | Line plots          | Trust               |
|              | 10   | Mar 15, Mar 17 | Stacked plots       | Annotation          |
|              | 11   | Mar 22, Mar 24 | Spring Break        |                     |
| Relationship | 12   | Mar 29, Mar 31 | Scatter plots       | Fallacies           |
|              | 13   | Apr 5, Apr 7   | Heatmaps            | Persuasion          |
| Spatial      | 14   | Apr 12, Apr 14 | Choropleths         | Conventions         |
|              | 15   | Apr 19, Apr 21 | Point plots         | Design              |
| Projects     | 16   | Apr 26, Apr 28 | Projects            |                     |

### Weekly overview

- Notebook exercises (ungraded) Assigned Tuesdays and reviewed Thursdays
- Add a Visualization Critique (ungraded) Discussed in class on Thursdays
- Weekly Assignment (graded, 2%) Assigned Tuesdays and due Fridays
- Weekly Quiz (graded, 1%) End of class on Thursdays (12pm)

## Types of data

### Types of variables - Categorical

- Dichotomous variables have only two values
  - Examples: Booleans (True/False), Sex (Male/Female), Possession (Yes/No)
  - Finite → exactly two possible values
  - O Unordered → no meaningful greater or less than relationship.
- Nominal variables are finite and unordered
  - Examples: Race (White/Black/Asian), Marital Status (Married/Single/Divorced/Widowed)
  - Finite → all the different values are defined and countable (ideally, but not necessarily, small)
  - O Unordered → the values have no meaningful greater or less than relationships
- Ordinal variables are finite and ordered
  - Examples: Likert (Support/Oppose), education (HS/College/Grad School), income (Low/Medium/High)
  - Finite → values capture distinct ranges
  - Ordered → some values are greater or less than others
- Categorical variables are repeated in data → good to use as a group, rarely used to aggregate

### **Types of variables - Continuous**

- Continuous variables are infinite and ordered
  - Examples: Age, weight, height
  - Uncountable → Infinite number of values possible between two numbers
  - Ordered → values are greater or less than other values, can be sorted
  - Precision is important (16.00007g is technically but not meaningfully greater than 16g)
  - Parametric statistics are good aggregation functions (mean, standard deviation)
- Discrete variables are finite and ordered
  - Examples: GPA, counts, points, IDs
  - Countable → values are defined and cannot take on intermediate values (cannot own 1.5 apples)
  - Ordered → values are greater or less than other values, can be sorted
  - O Better to use non-parametric statistics to aggregate (median, mode, counts)
- $\bigcirc$  Repeated values possible but rare  $\rightarrow$  they should *not* be used to group, but are *great* to aggregate

### Combining data types

- Groupby-aggregation requires a combination of categorical and continuous data
- You'll often-to-always use categorical data to create a groupby object
  - Continuous data rarely has identically repeated values
- O You'll generally-to-often use *continuous* data to aggregate
  - Many aggregation functions do not apply to categorical data (mean, sum, etc.)
- O General rule: Groupby categorical variables and aggregate on continuous variables

# Summarizng

### Classic summarizing functions

- We need to apply a function to summarize the values present in each groupby baby DataFrame
- O Central tendency: mean, median, mode
- Extent: len, size, min, max
- Total: sum, product
- O **Position**: first, last, idxmin, idxmax
- O Distribution: value\_counts
- O More advanced summaries can be applied with lambda functions, custom functions, etc.

### **Split-Apply-Combine**



### **Groupby-Aggregation**

- Many forms of data have repeated values that we want to summarize
  - States over time, schools in a district, events on a date, actions by an account
- O Think about this as combining **rows** together

```
df.groupby('a').agg({'d':['mean','sum']})
```





#### **Notebook Time!**

- O Download the "Week 02 Lecture.ipynb" and "CDC\_deaths\_2014\_2022.csv" files
  - O Please create a dedicated folder for class instead of keeping everything in Downloads, Desktop, etc.
  - Put both these files in the same folder.
- Open the "Week 02 Lecture.ipynb" notebook file
  - From Anaconda Prompt (Windows) or Terminal (Mac), navigate to class folder
  - Launch Jupyter Notebook: jupyter notebook
- Work on Exercises 1-5, practice consulting documentation and other resources
- No grading on exercises, we'll cover solutions on Thursday

### Weekly Assignment & Next Class

### Weekly Assignment 02

- O Skills: Groupby-aggregation and pivoting data with continuous and categorical variables
- Data: Longitudinal time use survey data
- Due Friday before midnight on Canvas
  - Save an HTML version of your notebook with all output present
    - File > Download as > HTML (.html)
  - Upload the HTML file to Canvas

#### **Next Class**

- Review concepts and exercises from last class
- Critique a data narrative or visualization
  - Post a link and a few sentences about a data visualization on Canvas discussion (ungraded/optional)
- Time to work on Weekly Assignment
  - Weekly Assignment due on Friday by submitting HTML notebook to Canvas before midnight
- Weekly quiz at the end of class