1.

a. Define half adder.

The half adder is a type of combinational logic circuit that adds two of the 1-bit binary digits. It generates carry and sum of both the inputs. The full adder is also a type of combinational logic that adds three of the 1-bit binary digits for performing an addition operation.

b. Draw a truth table for the sum and carry of half adder.

Truth table

-Input A	-input B	-S(Sum)	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- c. Write the sop expression from the truth table.
- -SOP expresssion sum=A'B+AB'
- -SOP expressioin carry=A.B
 - d. Draw the circuit using logsim.

2.

a. Draw the truth table for the outputs of the full adder

A	В	С	Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

Write the corresponding sop expression for sum and carry of full adder and simplify the expression

Carry+BC+AC+AB

3. Using the three stages of design, construct the circuits for the following input /output values. Here A, B and C are the inputs whereas D, E, F, G, H and I are outputs. Note: Draw circuit diagram using logsim corresponding to the simplified expression of outputs D, E, F, G, H and I.

A	В	С	D	Е	F	G	Н	I
0	0	0	1	0	1	0	1	1
0	0	1	1	0	1	1	0	1
0	1	0	1	0	1	1	1	1
1	0	0	1	0	0	1	0	1
1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	0	1
1	0	1	1	1	1	1	1	0
0	1	1	0	0	0	1	1	1

1) POS Of D=A+B'+C'

Prepared by: Aman Kumar Sah

2)
$$E = ABC+ABC'+AB'C$$
$$=AB(C+C')+AB'C$$
$$=AB+AB'C$$
$$=A(B+B'C)$$

Prepared By:Aman Kumar Sah

For F result:

$$=A'C'(B'+B)+B'C(A'+A)+ABC$$

$$=A'C'+C'(B+AB)$$

$$=A'C'+C(B'+A)(B'+B)$$

$$=A'C'+(B'+A)$$

4)POS of G=A+B+C

Prepared By:Aman Kumar Sah

6)POS of I=A'+B+C'

Prepared By:Aman Kumar Sah