1 Atividade 6

1.1 Introdução ao Modelo com Controlador PID

Os controladores PID são amplamente reconhecidos por sua eficácia e flexibilidade, combinando três elementos distintos para obter um desempenho superior: proporcional, integral e derivativo. Ao contrário dos controladores proporcionais, que ajustam a resposta do sistema de maneira direta ao erro atual, os controladores PID aproveitam três abordagens diferentes, cada uma desempenhando uma função específica.

O componente proporcional funciona de modo semelhante ao controlador proporcional simples, ajustando a saída do sistema em relação direta ao erro, com o objetivo de reduzir a diferença entre o valor medido e o valor desejado. No entanto, quando o componente proporcional sozinho não consegue corrigir totalmente o erro acumulado, entra em ação o componente integral, que soma e integra o erro ao longo do tempo para eliminá-lo.

Além disso, o componente derivativo desempenha um papel crucial ao prever mudanças no erro, ajudando a evitar que essas variações causem impactos negativos na saída do sistema. Com a integração desses três elementos, os controladores PID conseguem oferecer um controle mais preciso e estável, ajustando continuamente a saída para manter o sistema no estado desejado. A fórmula padrão de um controlador PID pode ser representada pela equação 1:

$$u(t) = K_p e(t) + K_i \int_0^t e(T)dT + K_d \frac{de(t)}{dt}$$
(1)

O método de Ziegler-Nichols, desenvolvido por John G. Ziegler e Nathaniel B. Nichols, é uma técnica consolidada para a sintonia de controladores PID. Este método é particularmente útil porque simplifica a configuração dos controladores ao fornecer fórmulas práticas para calcular os ganhos K_p , K_i , e K_d com base na resposta do sistema a uma entrada de teste. Esses parâmetros são ajustados para otimizar a resposta do sistema em termos de tempo de subida, sobreposição e tempo de assentamento.

Os valores dos ganhos são estabelecidos de acordo com a estabilidade observada do sistema e são tipicamente calculados a partir do ganho crítico K_c e do período crítico P_c , que são obtidos através de testes de malha aberta. A Tabela 1 resume os valores recomendados para cada tipo de ganho:

$$\begin{array}{c|ccc}
K_p & K_i & K_d \\
\hline
0.6 \times K_c & \frac{2}{P_c} & 0.125 \times P_c
\end{array}$$

Table 1: Valores dos ganhos segundo o método de Ziegler-Nichols

1.2 Controlador PID

Baseando-se nas análises realizadas na Atividade 4, foi possível determinar um valor limite para o ganho crítico K_c de 14.93. Esta descoberta é essencial para o ajuste dos parâmetros do controlador PID segundo o método de Ziegler-Nichols.

Figure 1: Diagrama mostrando o sistema no ponto crítico com $K_c = 14.93$

A simulação realizada com $K_c = 14.93$ demonstrou que o sistema alcança um estado crítico, como evidenciado no gráfico abaixo:

Figure 2: Resposta do sistema com o controlador PID ajustado para $K_c = 14.93$

A resposta simulada revela claramente o comportamento do sistema na condição de ganho crítico, possibilitando a utilização desses dados para calibrar os parâmetros do controlador PID, garantindo eficiência e estabilidade no controle do sistema.

1.2.1 Determinação do Período Crítico

O período crítico P_c foi determinado a partir da análise do gráfico de resposta em regime oscilatório no ganho crítico. Identificamos os picos consecutivos e medimos o tempo entre eles para calcular o P_c . A partir dos pontos identificados no gráfico, com os tempos $t_1 = 9.98$ s e $t_2 = 16.894$ s, o período crítico foi calculado como:

$$P_c = t_2 - t_1 = 16.894 - 10.452 = 6,442 \,\mathrm{s}$$

Este valor é crucial para o ajuste subsequente dos parâmetros do controlador PID utilizando o método de Ziegler-Nichols.

1.2.2 Determinação dos Parâmetros do Controlador PID

Após identificarmos o ganho crítico $K_c = 14.93$ através de análises detalhadas, empregamos o método de Ziegler-Nichols para ajustar os parâmetros do controlador PID. Este método é eficaz para sintonizar controladores em sistemas onde a resposta precisa ser otimizada em termos de estabilidade e rapidez.

1.2.3 Cálculo dos Parâmetros do Controlador PID

O método de Ziegler-Nichols, conhecido por sua eficiência na configuração inicial de controladores PID, utiliza o ganho crítico K_c e o período crítico P_c para estabelecer os parâmetros de controle, ajustando assim a resposta do sistema.

• Ganho Proporcional K_p :

$$K_p = 0.6 \times K_c = 0.6 \times 14.93 \approx 8.958$$

• Ganho Integral K_i:

$$K_i = \frac{2 \times K_p}{P_c} = \frac{2}{6,442} \approx 0.310462589$$

• Ganho Derivativo K_d :

$$K_d = 0.125 \times P_c = 0.125 \times 6,442 = 0.80525$$

1.2.4 Implementação e Validação dos Parâmetros

Os parâmetros $K_p = 8.958$, $K_i = 0.310462589$, e $K_d = 0.80525$ são implementados no controlador PID no ambiente de simulação, como Scilab. Esses valores são projetados para ajustar o sistema para responder de forma ideal em várias condições operacionais, melhorando a estabilidade e precisão do sistema.

A eficácia desses parâmetros será validada por meio de simulações subsequentes, as quais confirmarão se eles mantêm o desempenho desejado do sistema, garantindo que o controle PID seja tanto eficiente quanto efetivo.

Figure 3: Resposta do sistema com os parâmetros do PID ajustados.

Após a validação inicial, um refinamento manual dos parâmetros pode ser necessário para otimizar ainda mais a resposta do sistema. Este processo de ajuste fino baseia-se na análise das respostas obtidas e na experiência prática, permitindo uma sintonia mais precisa que responde de maneira adequada às especificidades do sistema e às variações nas condições operacionais. Este ajuste fino é crucial para alcançar a melhor performance, equilibrando a estabilidade e a rapidez da resposta do controlador PID.

Subsequentemente, novas simulações serão realizadas para validar a eficácia dos parâmetros ajustados. Essa etapa é crucial para verificar se os ajustes refinados mantêm a saída do sistema próxima ao valor desejado sob uma gama mais ampla de condições operacionais, garantindo a eficácia e a eficiência do controlador.