

Maschinelles Lernen

Datenvorverarbeitung

Prof. Dr. Rainer Stollhoff

Univariate Vorverarbeitung - Datentypkonvertierung

Nominelle Variablen

- Character <-> Factor
 - Für viele Verfahren nicht notwendig, da automatisch angewandt
- Dummy-Kodierung (One-Off-Kodierung)
 - Übersetzt nominalen Faktor mit n Werten in n separate 0/1-Variablen (Variante n-1 Variablen)
 - Bei manchen Verfahren notwendige Vorverarbeitung, bei anderen Verfahren integriert
- Numerische Variablen
 - Zahlenwert als Faktor

Q. X 2 2 4 - Taktor - Duny

- Notwendig: falls Klassifikationsaufgabe und Klassenkodierung als Zahlenwert sonst automatisch Regressionsverfahren
- Ermöglicht Einsatz von Klassifikationsverfahren in Regressionsproblemen
- Diskretisierung z.B. zur Visualisierung als Histogramm
- Faktor als Zahlenwert

• Ermöglicht Einsatz von Regressionsverfahren für Klassifikationsaufgaben – aber Vorsicht: nur sinnvoll für ordinale Merkmale!

Univariate Vorverarbeitung – Imputation fehlender Werte

Mittelwert / Median

- Ersetzt für eine Beobachtung fehlende Werte in einer Variable durch den Mittelwert bzw. Median dieser Variable in anderen Beobachtungen
- Vorteile
 - Einfach und Robust
 - Alle Beobachtungen können verwendet werden
- Nachteile
 - Ignoriert Zusammenhänge zwischen Variablen

(lokal)-lineare Modell

- Schätzt fehlende Werte in einer Variablen anhand eines Regressionsmodells, das auf allen anderen Variablen geschätzt wird $\times_1 = f(\cdot)_2$
- Vorteile
 - Berücksichtigt Zusammenhänge zwischen Variablen
- Nachteile
- Zusätzlicher Rechenaufwand

Univariate Vorverarbeitung - Transformation

Standardisierung der Variablen

 Abziehen des Mittelwerts und teilen durch die Standardabweichung

$$|z| = \frac{x - \overline{x}}{\sigma(x)} |z|$$

Normalisierung des Wertebereichs auf [0,1]

$$/\breve{x} = \frac{(x) - x_{min}}{x_{max} - x_{min}}$$

- Eingangsvariablen in Modelle haben vergleichbare Skala / Auflösung
- Parameter in einem Regressionsmodell können direkt verglichen werden

Nachteile

- Einheiten gehen verloren
- Zusätzlicher Rechenaufwand

Nicht-lineare Zusammenhänge aufnehmen

- Beispiele:
 - Quadratischer Zusammenhang $x_1^2 = x_2$
 - Polynomieller Zusammenhang x_i^n
 - Betragsmäßiger Zusammenhang |x|
 - Logarithmische Skalierung ln(x)

Vorteile

- Abbildung von Vorkenntnissen z.B. physikalischer Gesetzmäßigkeiten $E = \frac{1}{2}mv^2$
- Erweiterung linearer Verfahren z.B. lineare Regression

Nachteile

- Zusätzlicher Rechenaufwand
- Kein Vorteil bei Verfahren mit eingebauter Transformation bzw. Unabhängigkeit ggb. Transformationen z.B. Bäume ekursive Partitionierung

Multivariate Vorverarbeitung

Anzall Variable

Dimensions reduktion

(vgl. Unsupervised Learning)

- Korrelationen herausnehmen
- Hauptkomponentenanalyse durchführen
- Statt Variablen Hauptkomponenten verwenden
- Embeddings
 - Vielzahl von Dummy-Variablen in metrischen Raum einbetten (z.B. Worträume)
- Vorteile
 - Geringere Speicherbelegung
 - Notwendig in linearer Regression, falls of Ausgangsvariablen linear abhängig
- Nachteile
 - U.U. Verlust von Informationen
- Verfahren sind datengetrieben

Beispiele:

Zweifaches Produkt $x_1 \cdot x_2$

mehrfaches Produkt $x_1 \cdot x_2 \cdot x_3 \cdots$

Exponent $x_1^{x_2}$

- Quadratischer Abstand $(x_1 x_2)^2$
- Vorteile
 - Abbildung von Vorkenntnissen z.B. physikalischer Gesetzmäßigkeiten $E = \frac{1}{2}mv^2$
 - Erweiterung/linearer Verfahren z.B. lineare Regression
- Nachteile
- Zusätzlicher Rechenaufwand
- Kein Vorteil bei Verfahren mit eingebauter
 Interaktionsmöglichkeit z.B. Bäume/rekursive
 Partitionierung

