Basic Statistics and ML

조재관

1. IRIS Dataset

- a. Load dataset and check structure
 - Iris 데이터셋을 불러오고 head(), info(), describe(), species 분포를 확인함.

- b. Calculating descriptive statics
 - Species 별로 Petal Length 에 대해 평균, 표준편차, 사분위수 등을 요약하고 각 클래스별 개수를 확인함.

	count	mean	std	min	25%	50%	75%	max
species								
setosa	50.0	1.462	0.173664	1.0	1.4	1.50	1.575	1.9
versicolor	50.0	4.260	0.469911	3.0	4.0	4.35	4.600	5.1
virginica	50.0	5.552	0.551895	4.5	5.1	5.55	5.875	6.9

c. Visualization

- Boxplot 을 통해 세 종의 Petal Length 분포 차이를 시각적으로 비교함.

- **Virginica** 는 전체적으로 가장 긴 Petal Length 를 보이고 중앙값도 가장 높음
- **Versicolor** 는 중간 길이의 Petal Length 를 가지고 이상치가 적음
- **Setosa** 는 가장 짧은 Petal Length 를 가지고 몇몇의 이상치들이 보이며, 분포의 범위도 작음.

d. Normality test

- Shapiro-Wilk 검정을 통해 세 종 모두 정규성을 검증

```
setosa | W-statistic: 0.9550 | p-value: 0.0548 | Normality satisfied versicolor | W-statistic: 0.9660 | p-value: 0.1585 | Normality satisfied virginica | W-statistic: 0.9622 | p-value: 0.1098 | Normality satisfied
```

-세 종률 모두 p-value 가 0.05 이상으로 정규성을 만족함

e. Levene's test

- Levene 검정을 통해 그룹간의 등분산성 검정

귀무가설(H₀): 세 종의 Petal Length 의 분산은 동일하다

대립가설(H1): 적어도 하나의 종은 분산이 다르다

Levene's Test: W-statistic = 19.4803, p-value = 0.0000

P-value < 0.05 로 등분산성 가정이 틀림을 확인

f. Hypothesis setting

- ANOVA 를 수행하기 위한 가설 수립

귀무가설(H₀): 세 종의 평균 Petal Length 는 동일하다

대립가설(H1): 적어도 하나의 종은 평균이 다르다

g. ANOVA Implement

- One-way ANOVA 수행

```
ANOVA: F-statistic = 1180.1612, p-value = 0.0000
```

p-value < 0.05 로 귀무가설을 기각함

h. Tukey's HSD

- Tukey HSD 를 통해 사후 검정을 하여 그룹 쌍 간의 유의미성 확인

```
Multiple Comparison of Means - Tukey HSD, FWER=0.05
                     meandiff p-adj lower
 group1
            group2
                                           upper
                                                   reject
    setosa versicolor
                        2.798
                                0.0 2.5942 3.0018
                                                    True
    setosa virginica
                         4.09
                                0.0 3.8862 4.2938
                                                    True
versicolor virginica
                        1.292
                                0.0 1.0882 1.4958
                                                    True
```

세 그룹들 간의 검정 결과 모든 그룹 쌍에서 p < 0.05 로 모두 유의미하다는 것을 확이함

i. Summarizing result

- 이번 분석을 통해 IRIS 의 세가지 종류에서의 Petal Length 평균이 유의미하게 다른지 통계적 방법을 통해서 검증을 하였다. 분석 결과 IRIS 의 Petal Length 의 종에 따라 유의미한 차이를 보이는 것으로 나타났다. Setosa < Versicolor < Virginica 순으로 평균 Petal Length 가 유의미하게 증가한다.

2. Fraud Detection

- a. Data load and overview
 - 데이터셋을 불러오고, head(), info(), describe()를 통해 구조를 확인한 후 Class 분포를 분석함

```
[Class distribution]
Class
0 284315
1 492
Name: count, dtype: int64

[Class distribution percentage]
Class
0 99.827251
1 0.172749
Name: count, dtype: float64
```

b. Sampling

-사기 거래는 유지하고, 정상 거래는 10,00 건만 무작위로 샘플링하여 새로운 dataset 만듦

```
[Sampled Class distribution]
Class
0 10000
1 492
```

c. Data Preprocessing

-Amount 변수를 StandardScaler 로 정규화하여 Amount_Scaled 로 대체하고, 원래 Amount 변수는 제거

d. Train-Test split

-Stratified split 을 통해 8:2 비율로 데이터를 나누고 클래스 분포를 유지함

```
Train set distribution
Class
    7999
0
     394
1
Name: count, dtype: int64
Train set percentage
Class
    95.305612
1 4.694388
Name: count, dtype: float64
 Test set distribution
Class
0
     2001
       98
Name: count, dtype: int64
Test set percentage
Class
0
    95.33111
     4.66889
Name: count, dtype: float64
```

e. SMOTE

-학습 데이터에서 소수 클래스(사기 거래)를 oversampling 하기 위해 SMOTE를 적용.

SMOTE 적용 이유: 현재의 데이터 셋은 너무 불균형(사기 거래 샘플의비율이 너무 적음(5% 이하)). 이는 정상 거래의 경우에 대한 Bias 를 생기게할 수 있고, 사기 거래에서의 패턴을 찾기 어렵게 함. SMOTE는 인접한소수 클래스 데이터를 기반으로 synthetic sample을 생성하여 불균형을 완화함.

```
Prev distribution of training set
Class
0 7999
1 394
Name: count, dtype: int64

After SMOTE distribution of training set
Class
0 7999
1 7999
Name: count, dtype: int64
```

f. Model training

- RandomForestClassifier 를 SMOTE 학습 데이터에 학습시키고, 테스트 데이터에 대해 예측을 수행하고 Precision, Recall, F1-score 확인, PR-AUC 계산.

	precision	recall	f1-score	support
0	0.9916	0.9990	0.9953	2001
1	0.9759	0.8265	0.8950	98
accuracy			0.9909	2099
macro avg	0.9837	0.9128	0.9451	2099
weighted avg	0.9908	0.9909	0.9906	2099
PR-AUC: 0.915	8			

g. Final evaluation

-두 클래스(정상 거래, 사기 거래) 모두에서 Recall ≥ 0.80, F1 ≥ 0.88, PR-AUC ≥ 0.90 를 달성하여 유의미한 모델 성능을 냄. SMOTE 를 적용한 사기 거래의 수치들이 약간 더 낮게 나옴.