Линейная регрессия. L1 и L2 регуляризации.

Вспомним термины

- R что обозначает?
- Мат ожидание
- Дисперсия
- Скалярное произведение
- Линейная комбинация
- Линейная функция
- 1 и 2 норма вектора
- Градиент
- Линейная зависимость

Задача регрессии

Если просто:

Из мн-ва объектов (X), мы хотим найти верное отображение во мн-во вещественных чисел (R)

Если сложно:

Для качественного решения задачи регрессии мы хотим подобрать такую функцию, которая минимизирует функцию потерь (Loss), но при этом остаётся достаточно простой, чтобы следовать "общей тенденции" данных

Как мы это делаем?

Формула линейной регрессии: $f = \sum w_i f_i$.

$$f = \sum_{i} w_i f_i.$$

w - коэффициент, который мы хотим подобрать

f - базисная функция, которая может быть нелинейной

ВАЖНО: линейная регрессия - это линейная комбинация базисных функций => линейная регрессия - это единая функция (модель)

Метод наименьших квадратов

Принцип обучения линейной регрессии:

Подбираем такие коэффициенты перед X и свободный член, которые максимально минимизируют MSE

Ошибка

$$arepsilon_i = y_i - \hat{y_i}$$

MSE

$$S(eta_0,eta_1,\dots,eta_n) = \sum_{i=1}^m (y_i - \hat{y_i})^2 = \sum_{i=1}^m arepsilon_i^2$$

Как алгоритм понимает насколько ему менять свои предсказания?

Градиентный спуск

Stochastic Gradient Descent

Gradient Descent

Почему это работает?

Теорема Гаусса-Маркова описывает почему МНК оптимален при следующих условиях:

Gauss-Markov assumptions:

- $\mathbb{E}(\varepsilon_i) = 0 \quad \forall i$
- $Var(\varepsilon_i) = \sigma^2 < \inf \forall i$
- · $Cov(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j$

Основные положения теоремы Гаусса-Маркова

При выполнении вышеперечисленных условий:

 Оценки коэффициентов β0,β1,...,βп полученные с помощью метода наименьших квадратов, являются несмещёнными. Это означает, что в среднем оценки будут равны истинным значениям коэффициентов.

2. Оценки имеют наименьшую дисперсию среди всех возможных линейных и несмещённых оценок. То есть оценки коэффициентов, полученные методом наименьших квадратов, являются самыми точными линейными оценками в смысле минимальной дисперсии.

Таким образом, при выполнении условий теоремы Гаусса-Маркова, OLS даёт наиболее точные и надёжные оценки среди всех линейных оценок, что делает этот метод основным инструментом для регрессионного анализа.

MSE (L2)

- delivers BLUE according to Gauss-Markov theorem
- differentiable
- · sensitive to noise

MAE (L1)

- non-differentiable (not a problem)
- · much more prone to noise

Итак, принцип работы линейной регрессии

- 1. Инициализируем веса
- 2. Считаем Loss
- 3. Находим градиент
- 4. Поправляем веса
- 5. Повторяем пункты 2 и 4 пока не будет достигнуто одно из условий условий остановки

Какие есть условия?

- Достигнут порог изменения функции ошибки
- достигнут минимум функции
- максимальное кол -во итераций

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

$$MSE = rac{1}{m}\sum_{i=1}^m (y_i - \hat{y}_i)^2$$

Loss функции

$$MAPE(y, \widehat{y}) = rac{1}{N} \sum_{i=1}^{N} \left| rac{\widehat{y}_i - y_i}{y_i}
ight|$$

$$MSE = \frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i)^2$$

$$MAE = \frac{\sum_{i=1}^{n} |y_i - y_i^p|}{n}$$

Как мы можем улучшить показатели нашей модели?

1. Изменить масштаб данных. Для этого используются scaler-ы:

Min-Max scaler

$$X_{
m scaled} = rac{X - X_{
m min}}{X_{
m max} - X_{
m min}}$$

Standard scaler

$$X_{ ext{scaled}} = rac{X - \mu}{\sigma}$$

2. Применить регуляризацию

L1 vs L2 регуляризации

L1

$$ext{Loss} = ext{MSE} + \lambda \sum |w_i|$$

Может занулять веса => мы выкидываем некоторые признаки, которые мешают учить модель

L2

$$ext{Loss} = ext{MSE} + \lambda \sum w_i^2$$

Оставляет веса близкими к нулю,

что способствует более стабильному обучению

 L_1 -регуляризация

ElasticNet

$$ext{Loss} = rac{1}{2n} \sum_{i=1}^n (y_i - X_i w)^2 + \lambda_1 \sum_{j=1}^p |w_j| + \lambda_2 \sum_{j=1}^p w_j^2$$

То есть это комбинация из I1 и I2 регуляризаций

L1-регуляризация в Elastic Net способствует разреженности модели (обнуляет коэффициенты малозначимых признаков), как и Lasso (L1)

L2-регуляризация снижает влияние коррелированных признаков и стабилизирует решение, как Ridge (L2)

Elastic Net эффективен в случае, когда признаки сильно коррелированы между собой, так как Lasso может "выбросить" важные коррелированные признаки, а L2 помогает этому избежать.

Плюсы линейной регрессии

- 1. Интерпретируемость
- 2. Быстро работает
- 3. Легко обучать
- 4. Есть много вариантов регуляризаций, метри и Loss функций
- 5. Хорошо работает на простых задачах и небольших датасетах
- 6. Может в экстраполяцию

Минусы линейной регрессии

- 1. Теряет свою эффективность на больших выборках
- 2. Теряется при большом кол-ве коррелирующих признаков
- 3. Может быть неверное предположение о линейной зависимости между таргетом и фичами
- 4. Чувствительность к выбросам (при МНК)

Метрики регрессии

$$MSE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$R^2 = 1 - rac{\sum_{i=1}^{N} (y_i - f(x_i))^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}.$$

$$MAE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|$$

$MAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{|y_i - f(x_i)|}{|y_i|}.$

$$SMAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{2\left|y_i - f(x_i)
ight|}{y_i + f(x_i)}$$