LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Éducation nationale, de l'Enfance et de la Jeunesse

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

CORRIGÉ - BARÈME

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE		
Mathématiques	E, F, G	Durée de l'épreuve :	2h20	
Mathematiques	E, F, G	Date de l'épreuve :	10 juin 2020	

PARTIE OBLIGATOIRE

Question 1 (8 points)

$$\begin{cases} x - 2y + 3z = -2\\ \frac{4x - 9y}{3} = -4 - 3z & | \cdot 3\\ 8(x - y) - 5(x + z) = -4y - 20z + 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = -2\\ 4x - 9y = -12 - 9z\\ 8x - 8y - 5x - 5z = -4y - 20z + 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = -2\\ 4x - 9y + 9z = -12\\ 3x - 4y + 15z = 2 \end{cases}$$

$$L_2 \leftarrow L_2 - 4L_1$$
 et $L_3 \leftarrow L_3 - 3L_1$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = -2 \\ -y - 3z = -4 \\ 2y + 6z = 8 \end{cases}$$

$$L_3 \leftarrow L_3 + 2L_2$$

$$\Leftrightarrow \begin{cases} x - 2y + 3z = -2 & (1) \\ -y - 3z = -4 & (2) \\ 0y + 0z = 0 & (3) \end{cases}$$

Le système est simplement indéterminé.

Posons $z = \alpha \ (\alpha \in \mathbb{R})$

(2)
$$y = 4 - 3\alpha$$

$$(1) x = 2(4-3\alpha) - 3\alpha - 2 = 8 - 6\alpha - 3\alpha - 2 = 6 - 9\alpha$$

Finalement: $S = \{(6 - 9\alpha; 4 - 3\alpha; \alpha) \mid \alpha \in \mathbb{R}\}\$

ou
$$S = \left\{ \left(-6 + 3\alpha; \alpha; -\frac{1}{3}\alpha + \frac{4}{3} \right) \mid \alpha \in \mathbb{R} \right\}$$
 ou $S = \left\{ \left(\alpha; 2 + \frac{1}{3}\alpha; \frac{2}{3} - \frac{1}{9}\alpha \right) \mid \alpha \in \mathbb{R} \right\}$

Question 2 (12 points)

Soit x le nombre de camionnettes de modèle A et soit y le nombre de camionnettes de modèle B. Il faut résoudre graphiquement le système d'inéquations suivant :

$$\begin{cases} 0 \le x \le 10 \\ 0 \le y \le 10 \\ 4x + 2y \ge 16 \iff \\ 2x + 2y \ge 12 \\ 4x + 8y \ge 32 \end{cases} \begin{cases} 0 \le x \le 10 \\ 0 \le y \le 10 \\ y \ge -2x + 8 \\ y \ge -x + 6 \\ y \ge -\frac{1}{2}x + 4 \end{cases}$$

Soit
$$d_1 \equiv x = 0$$
.

Soit
$$d_2 \equiv y = 0$$
.

On considère l'ensemble des points du plan dont les coordonnées sont positives.

Soit
$$d_3 \equiv x = 10$$
.

Soit
$$d_4 \equiv y = 10$$
.

On considère l'ensemble des points du plan dont les coordonnées sont inférieures ou égales à 10.

Soit
$$d_5 \equiv y = -2x + 8$$
.

Point-test: O(0;0)

 $0 < -2 \cdot 0 + 8$, donc 0 n'appartient pas au demi-plan d'inéquation $y \ge -2x + 8$.

Soit
$$d_6 \equiv y = -x + 6$$
.

Point-test: O(0;0)

0 < -0 + 6, donc 0 n'appartient pas au demi-plan d'inéquation $y \ge -x + 6$.

Soit
$$d_7 \equiv y = -\frac{1}{2}x + 4$$

Point-test: O(0;0)

 $0 < -\frac{1}{2} \cdot 0 + 4$, donc O n'appartient pas au demi-plan d'inéquation $y \ge -\frac{1}{2}x + 4$.

La fonction « coûts de location » est donnée par C(x; y) = 40x + 50y.

Posons $\Delta_0 \equiv 40x + 50y = 0$.

La droite Δ_{min} parallèle à Δ_0 qui a au moins un point commun avec le polygone des contraintes et qui est la plus proche de l'origine passe par le sommet I.

 Δ_{min} passe par le point I, point d'intersection des droites d_6 et d_7 . Par lecture graphique, on trouve I(4;2).

Le magasin de meubles doit louer 4 camionnettes du modèle A et 2 camionnettes du modèle B afin de minimiser les coûts de location.

Le coût minimal est alors égal à $C(4; 2) = 40 \cdot 4 + 50 \cdot 2 = 260$ €.

Question 3 (2+6+6=14 points)

1)
$$\log \frac{a^4}{\sqrt{b}} = \log a^4 - \log \sqrt{b} = 4 \log a - \frac{1}{2} \log b = 4 \cdot 5, 2 - \frac{1}{2} \cdot (-3, 2) = 22, 4.$$

2)

a)
$$\log_2(5x + 1) - 4 = 0$$

 $\Leftrightarrow \log_2(5x + 1) = 4$
 $\Leftrightarrow 5x + 1 = 2^4$ |-1
 $\Leftrightarrow 5x = 15$ |: 5

$$\Leftrightarrow \qquad x = 3$$
$$\mathcal{S} = \{3\}$$

b)
$$3 \cdot 6^{2x} - 9 = 16 - 2 \cdot 6^{2x}$$
 | $+2 \cdot 6^{2x} + 9$
 $\Leftrightarrow 5 \cdot 6^{2x} = 25$ |: 5

$$\Leftrightarrow$$
 $6^{2x} = 5$

$$\Leftrightarrow \log 6^{2x} = \log 5$$

$$\Leftrightarrow 2x \cdot \log 6 = \log 5 \qquad |: 2 \log 6$$

$$\Leftrightarrow \qquad x = \frac{\log 5}{2\log 6} = \frac{1}{2}\log_6 5$$

$$S = \left\{\frac{1}{2}\log_6 5\right\}$$

3) C_f et C_g admettent des asymptotes horizontales, ce sont donc des graphes de fonctions exponentielles.

Comme f(1) = 3, on trouve $f(x) = 3^x$.

Comme g(1) = 0.5, on trouve $g(x) = 0.5^x$.

 \mathcal{C}_h admet une asymptote verticale, donc il s'agit du graphe d'une fonction logarithme.

Comme h(2,5) = 1, on trouve $h(x) = \log_{2,5} x$.

Question 4 (5+2=7 points)

$$f(x) = -\frac{1}{2}x^3 + \frac{3}{2}x^2 + \frac{9}{2}x + 1$$

1)
$$f'(x) = -\frac{3}{2}x^2 + 3x + \frac{9}{2}$$

 $f'(x) = 0 \Leftrightarrow -\frac{3}{2}x^2 + 3x + \frac{9}{2} = 0$
 $\Delta = 36$ $x_1 = -1$

x	-∞		-1		3		+∞
f'(x)		-	0	+	0	-	
f(x)	_				→ 29 →		
		1	$-\frac{3}{2}$		2		-

 $x_2 = 3$

f admet un minimum en x = -1 de valeur $-\frac{3}{2}$ et un maximum en x = 3 de valeur $\frac{29}{2}$.

2) L'équation réduite de la tangente t au point d'abscisse 1 est donnée par :

$$t \equiv y = f'(1)(x - 1) + f(1)$$
$$t \equiv y = 6(x - 1) + \frac{13}{2}$$
$$t \equiv y = 6x + \frac{1}{2}$$

PARTIE AU CHOIX

(19 points)

Groupe n°1

Question 5a) (2+3+2+2=9 points)

1)
$$f(x) = \frac{450}{x} - 8 + 2x$$

 $f(30) = \frac{C(30)}{30} = \frac{450 - 8 \cdot 30 + 2 \cdot 30^2}{30} = \frac{450 - 240 + 2 \cdot 900}{30} = 67$

Le coût unitaire moyen pour une production de 30 appareils est de 67 €.

2)
$$f'(x) = -\frac{450}{x^2} + 2 = \frac{-450 + 2x^2}{x^2}$$

 $f'(x) = 0 \Leftrightarrow -450 + 2x^2 = 0 \Leftrightarrow x^2 = 225 \Leftrightarrow x = 15 \text{ ou } x = -15 \text{ (à écarter)}$

Le coût unitaire moyen est minimal pour une production de 15 appareils. Le coût unitaire moyen vaut alors $f(15) = \frac{450}{15} - 8 + 2 \cdot 15 = 52 \in$.

3)
$$R(x) = 80x$$

 $B(x) = R(x) - C(x) = 80x - (450 - 8x + 2x^2) = -2x^2 + 88x - 450$

4)
$$B'(x) = -4x + 88$$

 $B'(x) = 0 \Leftrightarrow -4x + 88 = 0 \Leftrightarrow x = 22$

x	0	WE RESIDE	22	7 20 20 20 20 20 20	40
B'(x)		+	0		Y BOTTON
B(x)			→ 518		-

Le bénéfice est maximal pour la production et la vente de 22 unités. Remarque : L'élève n'a pas besoin de calculer la valeur du bénéfice maximal.

Question 5b) (5+4=9 points)

1) Recopier et compléter le tableau suivant :

lenn man der sohet, ens es	Hommes	Femmes	Enfants	Total
Nationalité luxembourgeoise	27%	25,5%	8,5%	61%
Autre nationalité	18%	4,5%	16,5%	39%
Total	45%	30%	25%	100%

2)

a) p(enfant luxembourgeois) =
$$\frac{8.5}{100} = \frac{17}{200} = 0.085$$
 (8.5%)

b) p(luxembourgeois sachant enfant) =
$$\frac{8.5}{2.5} = \frac{17}{50} = 0.34$$
 (34%)

c) p(femme sachant autre nationalité) =
$$\frac{4.5}{39} = \frac{9}{78} = \frac{3}{26} \approx 0.1154$$
 ($\approx 11.54\%$)

d) p(homme sachant luxembourgeois) =
$$\frac{27}{61} \approx 0,4426$$
 ($\approx 44,26\%$)

Groupe n°2

Question 6a) (4+4+2=10 points)

1)

- Équation de la droite (AB) :
 - Calcul de la pente : $a = \frac{5-7}{9-1} = \frac{-2}{8} = -\frac{1}{4}$
 - o Calcul de l'ordonnée à l'origine b :

$$A(1;7) \in (AB) \Leftrightarrow y_A = -\frac{1}{4} \cdot x_A + b \Leftrightarrow 7 = -\frac{1}{4} \cdot 1 + b \Leftrightarrow b = \frac{29}{4}$$

Donc:
$$(AB) \equiv y = -\frac{1}{4}x + \frac{29}{4}$$

- Équation de la droite (BC) :
 - Calcul de la pente : $a = \frac{-1-5}{1-9} = \frac{-6}{-8} = \frac{3}{4}$
 - \circ Calcul de l'ordonnée à l'origine b:

$$C(1;-1) \in (BC) \Leftrightarrow y_C = \frac{3}{4} \cdot x_C + b \Leftrightarrow -1 = \frac{3}{4} \cdot 1 + b \Leftrightarrow b = -\frac{7}{4}$$

$$Donc: (BC) \equiv y = \frac{3}{4}x - \frac{7}{4}$$

2)

• $(AC) \equiv x = 1$

Le point de coordonnées (2;3) appartient au demi-plan des solutions et 2 > 1. L'inéquation $x \ge 1$ fait partie du système.

1 20

•
$$(AB) \equiv y = -\frac{1}{4}x + \frac{29}{4}$$

Le point de coordonnées (2; 3) appartient au demi-plan des solutions et $3 < -\frac{1}{4} \cdot 2 + \frac{29}{4}$.

L'inéquation $y \le -\frac{1}{4}x + \frac{29}{4}$ fait partie du système.

• $(BC) \equiv y = \frac{3}{4}x - \frac{7}{4}$

Le point de coordonnées (2; 3) appartient au demi-plan des solutions et

$$3 > \frac{3}{4} \cdot 2 - \frac{7}{4}.$$

L'inéquation $y \ge \frac{3}{4}x - \frac{7}{4}$ fait partie du système.

Le système d'inéquations correspondant au triangle ABC est donc :

$$\begin{cases} x \ge 1 \\ y \le -\frac{1}{4}x + \frac{29}{4} \\ y \ge \frac{3}{4}x - \frac{7}{4} \end{cases} \text{ ou } \begin{cases} x \ge 1 \\ x + 4y \le 29 \\ -3x + 4y \ge -7 \end{cases}$$

La droite Δ_{max} parallèle à Δ_0 qui a au moins un point commun avec le triangle et qui est la plus éloignée de l'origine passe par le sommet B.

Le maximum de la fonction est $f(9; 5) = 3 \cdot 9 + 2 \cdot$

Question 6b) (4+2+1+3=10 points)

1)

- a) On peut former 5! = 120 mots différents.
- b) Il y a deux A dans le mot CHAPEAU. On peut former $\frac{7!}{2!}$ = 2520 mots différents.
- c) Si les voyelles doivent rester ensemble, on peut former $3! \cdot 3! \cdot 4 = 144$ mots différents.
- 2) On peut former $C_{12}^3 \cdot C_8^2 = 220 \cdot 28 = 6160$ groupes différents.
- 3) L'élève peut répondre de $5^{10} = 9765625$ manières différentes.
- 4) Il y a $C_4^2 \cdot C_{28}^6 = 6 \cdot 376740 = 2260440$ mains de 8 cartes choisies dans un jeu de 32 cartes qui contiennent exactement deux dames.

La probabilité d'obtenir une telle main vaut $\frac{C_4^2 \cdot C_{28}^6}{C_{22}^8} = \frac{966}{4495} \approx 0,2149 \ (\approx 21,5\%).$