

SUBJECT: Linear Algebra - TOPIC: Vector Space

Vector space:

Let V be a non-empty set of vectors and let \mathbb{F} be a scalar field. V is said to be a vector space over the field \mathbb{F} under the operations, vectoe addition $(+: V \times V \longrightarrow V)$, scalar multiplication $(\cdot: \mathbb{F} \times V \longrightarrow V)$, if the following axioms are satisfied.

1. Addition Axioms

for $v_1, v_2, v_3 \in V$.

- (a) $v_1 + v_2 \in V$ (closure property)
- (b) $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$
- (c) $v_1 + 0 = v_1 = 0 + v_1$
- (d) $v_1 + (-v_1) = 0 = (-v_1) + v_1$
- (e) $v_1 + v_2 = v_2 + v_1$
- 2. Multiplicative Axioms

for $v_1, v_2, v_3 \in V$ and $c_1, c_2, c_3 \notin \mathbb{F}$.

- (a) $c_1 v_1 \in V$
- (b) $(c_1 + c_2)v_1 = c_1v_1 + c_2v_1$
- (c) $c_1(v_1 + v_2) = c_1v_1 + c_1v_2$
- (d) $1v_1 = v_1$, where 1 is the multiplicative identity of \mathbb{F} .
- (e) $c_1(c_2v_1) = (c_1c_2)v_1 = c_2(c_1v_1)$.

Vector Space - Examples

- (a) \mathbb{R} over \mathbb{R} , \mathbb{C} over \mathbb{C}
- (b) \mathbb{C} over \mathbb{R}
- (c) \mathbb{R}^n over \mathbb{R} , \mathbb{C}^n over \mathbb{C}
- (d) $M_n(\mathbb{R})$ over \mathbb{R}
- (e) $P_n(x)$ over \mathbb{R}
- (f) P(x) over \mathbb{R}
- (g) $\mathbb{F}(I)$ over \mathbb{R} where $\mathbb{F}(I)$ = set of all real valued function on interval I

Subspace of a vector space: Let V be a vector space over \mathbb{F} , and let W be a subset of V, W is said to be a subspace of V if W itself is a vector space over \mathbb{F} , withrespect to the same operation in V, and having the same additive identity.

Theorem:

- 1. Let V be a vector space over a field \mathbb{F} , let W be a subset of V, W is a subspace of V iff
 - (i) $0 \in W$.
 - (ii) $c\alpha + \beta \in W$, for all $c \in \mathbb{F}$ and $\alpha, \beta \in W$.
- 2. Let V be a vector space over a field \mathbb{F} , and let V_1 and V_2 be two subspace of V, then $V_1 \cap V_2$, and $V_1 + V_2$ are subspaces of V, where $V_1 + V_2 = \{(v_1 + v_2) : v_1 \in V_1, v_2 \in V_2\}$

To prove $V_1 \cap V_2$ is subspace of V. $O \in V_1, \ O \in V_2 \implies O \in V_1 \cap V_2$ Let $\alpha, \beta \in V_1 \cap V_2 \implies \alpha, \beta \in V_1 \text{ and } \alpha, \beta \in V_2$ $\alpha, \beta \in V_1 \implies C\alpha + \beta \in V_1, \ C \in \mathbb{F}$ Similarly $C\alpha + \beta \in V_2 \ C \in \mathbb{F}$ $\therefore C\alpha + \beta \in V_1 \cap V_2$

To prove $V_1 + V_2$ is subspace of V $O \in V_1, \ O \in V_2 \Rightarrow O = O + O \in V_1 + V_2$ Let $\alpha, \beta \in V_1 + V_2 \Rightarrow \alpha_1 \in V_1, \ \alpha_2 \in V_2 \text{ s.t } \alpha_1 + \alpha_2 = \alpha$ $\beta_1 \in V_1, \ \beta_2 \in V_2 \text{ s.t } \beta_1 + \beta_2 = \beta$ $\alpha, \beta \in V_1 \Rightarrow C\alpha_1 + \beta_1 \in V_1$ Similarly $C\alpha_2 + \beta_2 \in V_2$ $\Rightarrow C(\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \in V_1 + V_2$ $\Rightarrow C\alpha + \beta \in V_1 + V_2$

Remark: $V_1 \cup V_2$ need not be a subspace of V.

Eg: $V = \mathbb{R}^2$ $\mathbb{F} = \mathbb{R}$. $V_1 = \{(x,0) : x \in \mathbb{R}\}$ $V_2 = \{(0,y) : y \in \mathbb{R}\}$. $(1,0), (0,1) \in V_1 \cup V_2$ but $(1,1) \notin V_1 \cup V_2$.

Note: $V_1 \cup V_2$ is a subspace of V, if either $V_1 \subseteq V_2$ or $V_2 \subseteq V_1$.

Result: Any subspace of \mathbb{F}^n over \mathbb{F} is in the form $\{(x_1, x_2, \cdots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n a_i x_i = 0\}$