Exercise Session 4Image processing

Rolf Ingold, Anna Scius-Bertrand
DIVA Group, University of Fribourg, Switzerland

Reminder: assignment 2 et 3

- Tonight: assignment 2, indexed colors
- Next week: assignment 3, histogram equalization
 - Deadline: October 17th, end of the day
- Submit your solution via ILIAS:
 - Number of results images asked (no more, no less)
 - A text file with your name, surname, GitHub link and a brief description of your algorithm.

Assignment 1

- Open an image in RGB mode
- Create an empty image to store the resulting pixel values
- Iterate through the image:

```
for y in range(height):

for x in range(width):

image_result.putpixel((x, y), image.getpixel((width - x - 1, y)))
```

numpy:

```
h: image[:,::-1]
v: image[::-1]
h&v: image[::-1, ::-1]
```


Take away – python image basis

- Pillow
 - Size: width, height = image.size
 - Getpixel: image.getpixel((x, y))
 - Putpixel: result.putpixel((x, y), (r, g, b))
 - Image_result: Image.new('RGB', (image_width, image_height))
 - Image to array: array = np.array(img)
 - Array to image: image = Image.fromarray(numpydata)
- Opency and numpy (as np)
 - Size: width, height, channels = image.shape
 - Getpixel in cv2: (b, g, r) = image[x, y], in np: (r, g, b) = image[x, y]
 - Putpixel: image[x, y] = (b, g, r)
 - Image_result: np.zeros((width, height, channels), dtype=np.uint8)

Assignment 4: Local operators

- Goal: implement and apply different local filters with different sizes:
 - Observe the impact of the filter size
 - Compare two edge detection filters.
 - Implement statistical filters.
- Input and output images should have the same size.

Convolution in practice

h is the output, m the kernel size, x the input and w the convolution kernel: $\begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$

$$h_{i,j} = \sum_{k=1}^{m} \sum_{l=1}^{m} w_{k,l} x_{i+k-1,j+l-1}$$

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

Which output?

3	1	1	0
4	1	0	2
5	0	1	2
1	0	2	1

Input image

Kernel

Output image

Result

3	1	1	0
4	1	0	2
5	0	1	2
1	0	2	1

0	0	2
1	1	0
0	0	0

Input image

Kernel

Output image

$$7 = 0*3 + 0*1 + 2*1 + 1*4 + 1*1 + 0*0 + 0*5 + 0*0 + 0*2$$

 $1 = 2*0 + 1*1 + 1*0$
 $5 = 2*0 + 1*5 + 1*0$
 $5 = 2*2 + 1*0 + 1*1$

Part 1 and 2

1. Blurring by convolutions

- (a) Implement your own convolutional mean filter with the following sizes: 3*3, 5*5, 9*9 pixels (example kernels provided in the lecture).
- (b) Apply each filter on the greyscale images provided on ILIAS.
- (c) Comment on the results obtained with the different filter sizes.

2. Edge detection

- (a) Implement your own Laplacian of Gaussian filter (example provided in the lecture).
- (b) Implement your own gradient filters for edge detection (examples for vertical and horizontal filters provided in the lecture).
- (c) Apply both edge detection methods to the greyscale images provided on ILIAS.
- (d) Comment on the results obtained with the two methods.

Part 3 and Hand-in

3. Statistical filters

- (a) Implement your own minimum and maximum filters (formulas provided in the lecture), with size 3*3 and 5*5 pixels.
- (b) Apply both filters to the greyscale images provided on ILIAS, as well as their combination (max min).
- (c) Comment on the results obtained with the individual filters and their combination.

Hand-in

- Submit on ILIAS nine and only nine files:
 - 3 images after using a 3*3, 5*5 and 9*9 pixels mean filter,
 - 2 images after using a gradient filter and a Laplacian of Gaussian filter.
 - 3 images after using a min, max and a (max min) filter.
 - A text file with your name, surname, the link to your GitHub, explain how you get the same input and output size, the link to your GitHub, a short description of you gradient filter and the Laplacian of Gaussian filter, and the responses to the questions 1. c), 2. d) et 3. c).

Questions?

