X

Per il doppio bipolo di figura determinare la matrice dei parametri ABCD:

 $R=2 \Omega$ L=10mH $C=200\mu F$ $\alpha=3$ $\omega=500 \ rad/s$

Nel il circuito trifase simmetrico ed equilibrato mostrato in figura determinare le potenze perse nel ferro dei due trasformatori e la potenza erogata dal generatore trifase collegato al trasformatore n.1 assumendo che le impedenze \overline{Z}_2 siano le impedenze interne del generatore stesso.

$$\dot{E}_{\rm l} = 380e^{j\frac{\pi}{4}}V_{\rm eff}; \quad \dot{V}_{\rm l} = 420e^{j\frac{\pi}{3}}V_{\rm eff};$$

$$\tilde{Z}_c = 15 + j10\Omega;$$

$$\overline{Z}_2 = 2 + j2 \Omega$$
; $\overline{Z}_1 = 1 + j3 \Omega$; $f = 50 Hz$;

TRASFORMATORI 1 & 2	
Prova a vuoto	
$V_{10} = 380 \ V; I_{10}$	$= 2.0 A; P_{10} = 180 W;$
	~
Prova in corto	
	25 A; $P_{1cc} = 600 W$;
n = 0.5;	