Technologie sieciowe - lista 1

Wojciech Typer

Pingowanie serwerów (rozmiar pakietów: 64 bajty)

- Serwer w Polsce Politechnika Wrocławska
 - ttl = 52
 - time $\approx 6.05 \text{ ms}$
 - hops = 64 52 = 12
- Serwer google.com
 - ttl = 58
 - time ≈ 11.75 ms
 - hops = 64 58 = 6
- Serwer w Australii sydney.edu.au
 - ttl = 105
 - time $\approx 319 \text{ ms}$
 - hops = 128 105 = 23
- Serwer w Czechach cuni.cz
 - ttl = 53
 - time $\approx 19.1 \text{ ms}$
 - hops = 64 53 = 11
- Serwer w Chinach fudan.edu.cn
 - ttl = 221
 - time ≈ 416.75 ms
 - hops = 256 221 = 35
- Serwer w Japonii www.kyoto-u.ac.jp
 - ttl = 52
 - time $\approx 34.7 \text{ ms}$

$$- \text{ hops} = 64 - 52 = 12$$

- Serwer w Niemczech www.hu-berlin.de
 - ttl = 48
 - time ≈ 43.7 ms
 - hops = 64 48 = 16

Obserwacje:

- Liczba przeskoków (hops)
 - Najmniejsza liczba przeskoków (hop
s=6)wystąpiła w przypadku serwera Google w usa, co może wynikać z wielu serwerów cache'ujących Google w Europie
 - Największa liczba przeskoków (hops = 35) wystąpiła w serwerach w Chinach, co sugeruje, że pakiet przeszedł przez wiele pośrednich routerów i prawdopodobnie przez chińską sieć zaporową ("Great Firewall")
 - Serwery w sąsiednich krajach (Czechy, Niemcy) mają stosunkowo małą liczbę przeskoków, co jest zgodne z ich bliską geograficzną lokalizacją
- Opóźnienia (time) a odegłości geograficzne
 - Najkrótsze czas odpowiedzi miał serwer w Polsce (Politechniki Wrocławskiej), co jest zgodne z bliską lokalizacją geograficzną
 - Najdłuższy czas odpowiedzi miał serwer chiński, co może być skutkiem restrykcji sieciowych w Chinach
 - Serwer w Australii miał stosunkowo długi czas odpowiedzi, co jest zgodne z dużą odległością geograficzną

Pingowanie serwerów (rozmiar pakietów: 1472 bajtów)

- Serwer google.com
 - ttl = 58
 - time ≈ 12.35 ms
 - hops = 64 58 = 6
- Serwer w Czechach cuni.cz
 - ttl = 53

- time $\approx 21.5 \text{ ms}$
- hops = 64 53 = 11
- Serwer w Chinach fudan.edu.cn
 - ttl = 221
 - time ≈ 416.5 ms
 - hops = 256 221 = 35
- Serwer w Japonii www.kyoto-u.ac.jp
 - ttl = 52
 - time $\approx 36.5 \text{ ms}$
 - hops = 64 52 = 12
- Serwer w Niemczech www.hu-berlin.de
 - ttl = 48
 - time ≈ 53.6 ms
 - hops = 64 48 = 16

1427 bajty to maksymalny rozmiar pakietu, który można przesłać bez fragmentacji w sieci.

Obserwacje:

- Problemy z dostarczeniem pakietów do niektórych serwerów: Na serwery
 Politechniki Wrocławskiej i Uniwerystety w Sydney nie udało się przesłać tak dużych pakietów, prawdopodobnie z powodu ograniczeń MTU
 (Maximum Transmission Unit) lub obecności firewalli
- Czas odpowiedzi od serwerów, które otrzymały pakiet wzrósł, co może sugerować, że większe pakiety wymagają dłuższego czasu przetworzenia przez routery
- Liczba przeskoków (hops) pozostała taka sama, co sugeruje, że jest niezależna od rozmiaru pakietów

Traceroute:

Traceroute to program służący do badania trasy pakietów w sieci IP. Internet nie zawsze jest symetryczny - pakiety "wychodzące"z komputera mogą podązać inną drogą niz pakiety "przychodzące". W tym celu możemy wykorzsytać program Traceroute i mtr.