Assignment 2

Name: Yashraj Nimbalkar

Roll No: 281039

Batch: A2

Statement

This assignment involves the following tasks:

- a) Compute summary statistics for all numerical attributes (e.g., min, max, mean, range, standard deviation, variance, percentiles).
- b) Visualize data using histograms to understand distribution patterns.
- c) Perform data cleaning, merging, transformation, and build a classification model for prediction.

Objective

- 1. Learn to derive descriptive statistics using Python.
- 2. Understand how to interpret data distribution using visual tools like histograms.
- 3. Practice essential data preparation steps to improve data quality.
- 4. Build and evaluate a classification model using the cleaned dataset.

Resources Utilized

• Software: Visual Studio Code

• Libraries: Pandas, Matplotlib, Seaborn, Scikit-learn

Understanding Pandas and Data Handling

Pandas is a highly capable Python package that simplifies data analysis and manipulation. It offers two core data structures:

- Series One-dimensional, like a column in a table.
- DataFrame A two-dimensional structure, similar to an Excel spreadsheet.

Main Features of Pandas

- Load data from formats like CSV, Excel, etc.
- Clean and format data by dealing with nulls, duplicates, or inconsistencies.
- Produce statistical summaries and generate visualizations.
- Integrate basic machine learning methods such as classification or regression.

Functions and Tools Used

- 1. pd.read_csv() Imports CSV data into a DataFrame.
- 2. describe() Provides detailed statistical summary of numerical columns.
- 3. hist() Draws histograms for understanding distribution.
- 4. fillna() Fills missing entries with a chosen value (e.g., mean or median).
- 5. LabelEncoder() Transforms categorical data into numeric labels.
- 6. train_test_split() Splits dataset into training and testing sets.
- 7. LogisticRegression() Builds a classification model for prediction.

Approach and Methodology

1. Loading and Exploring Data

- Dataset Used: For example, student performance or healthcare prediction dataset.
- Inspect structure, identify datatypes, and locate missing or inconsistent values.

2. Data Preprocessing

- Fill missing data using central values (mean or median).
- Remove duplicates, standardize column formats, and handle outliers.

3. Generating Summary Statistics

• Use .describe(), .min(), .max(), .std(), etc., to extract key insights.

4. Data Visualization with Histograms

• Plot histograms using .hist() or sns.histplot() to view feature distributions.

5. Transformations and Feature Engineering

- Encode categorical fields to numeric.
- Run correlation checks to select impactful features.

6. Combining Data

• Merge or concatenate multiple datasets using functions like merge() or concat() where required.

7. Building the Classification Model

- Split dataset using train_test_split().
- Train a logistic regression model.
- Evaluate model using metrics such as accuracy, confusion matrix, and classification report.

Benefits of Pandas and Machine Learning

- 1. Simplifies data exploration and preparation.
- 2. Easy to generate charts and graphs for better understanding.
- 3. Enables predictive modeling using machine learning algorithms.

Limitations

- 1. May consume significant memory with large datasets.
- 2. Complex or unstructured data may require extra preprocessing effort.

Conclusion

This assignment helped solidify core skills in data analysis using Pandas. We worked through the full pipeline — from data inspection and cleaning to building a machine learning model. These techniques form the base of modern data science, equipping learners to tackle real-world analytics problems effectively using Python.