

hysics Wallah

Topics to be covered

- Medics Test, Revision of Last Class
- 2 Salt Hydrolysis numericals
- 3 Solubility Product, Ionic Product
- 4 Magarmach Practice questions, Home work from modules

Rule to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- 2. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work along with DPP.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rule to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- 7. Don't watch the videos in high speed if you want to understand better.

Next test -> Ionic eq. + Electrochemistary

Twisday Revise -> Lec: 1+ Lec-2 -> Ionic eq -> MEDICS test
Tomorrow

Revision of Last Class

®

Soult tyelrolysis

141

Which of the following salts is the most basic in aqueous solution?

Anion tydralysis

Pb(CH₃COO)₂

QUESTION - (NEET 2014)

Which of the following salts will give highest pH in water?

most Basic

Lasic

Anionic thydroleysis

The pH of a 0.02 M NH₄Cl solution will be [Given K_b(NH₄OH) = 10⁻⁵ and PKb = - Lon 10 = 5 log2 = 0.301

- C=0-021 Balt. S.A. + W.B. HU + NHYOM

$$pH = 7 - \frac{1}{2}(pK_b + log C)$$

$$= 7 - \frac{1}{2}(5 + log 2 \times 10)$$

$$= 7 - \frac{1}{2}(5 + log 2 \times 10)$$

$$= 7 - \frac{1}{2}(5 - 2 + 0.3)$$

$$= 7 - \frac{1}{2}(3.3) = 7 - 1.65 = 5.35$$

THT] = a x 10

PH = - log [HT]

PH = x - log a

Jog 2×10

-2+ Jog 2

QUESTION - (NEET 2021)

The pK_b of dimethylamine and pK_a of acetic acid are 3.27 and 4.77 respectively at T(K). The correct option for the pH of dimethylammonium acetate solution is:

$$pH = 7 + \frac{1}{2}(pKa - pKb)$$

$$= 7 + \frac{1}{2}(u.77 - 3.27)$$

$$= 7 + \frac{1}{2}(x1.5) = 7.75$$

$$= 7 + \frac{1}{2}(x1.5) = 7.75$$

- 10-2 M

pH of 0.005 M calcium acetate (pK_a of CH₃COOH = 4.74) is

M calcium acetate (pK_a of CH₃COOH = 4.74) is
$$\rho H = 7 + \frac{1}{3} \left(\rho Ka + \log C \right) = C = Conc. of ion which is trigotrolyzed$$

$$= 7 + \frac{1}{3} \left(4.74 + \log 10^{2} \right) \left[\left(CH_{3}(00) \right) \left(a \rightarrow 10^{2} + 2 CH_{3}(00) \right) \right]$$

$$= 7 + \frac{1}{3} \left(4.74 + \log 10^{2} \right) \left[\left(CH_{3}(00) \right) \left(a \rightarrow 10^{2} + 2 CH_{3}(00) \right) \right]$$

$$= 0.005 \text{ M}$$

$$= 0.005 \text{ M}$$

$$=7+1.37=8.37$$

=7+1 (4.74-2)

QUESTION - (AIIMS 2007)

The pH of the solution obtained on neutralization of 40 mL 0.1 M NaOH with 40 mL 0.1 M CH₃COOH is:

- A 7
- B 8
- **C** 6
- **D** 3

CH3COON + NaOH -> CH3COO Nat + M20

40X0-1X1 40X0-1X1 H

4 4

QUESTION - (NCERT Exemplar)

 $\rm K_a$ for CH $_3$ COOH is 1.8 × 10⁻⁵ and $\rm K_b$ for NH $_4$ OH is 1.8 × 10⁻⁵. The pH of ammonium acetate will be

D Between 6 and 7

HX is a weak acid ($K_a = 10^{-5}$). If forms a salt NaX (0.1 M) on reacting with caustic soda. The degree of hydrolysis of NaX is:

- B 0.0001%
- c 0.1%
- 0.5%

of hydrolysis of Nax is:

$$h = \sqrt{\frac{K_{to}}{C}} = \sqrt{\frac{K_{to}}{K_{a} \times C}} = \sqrt{\frac{10^{14}}{10^{5}}} = \sqrt{10^{5}8} = 10^{4}$$

$$1 \cdot 9e \ h = h \times 100 = 10^{-4} \times 100 = 10^{2} \text{ f.}$$

QUESTION - (AIPMT 2009)

The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K. Hydrolysis constant of ammonium chloride is:

$$K_{h} = \frac{K_{w}}{K_{b}} = \frac{10^{-14}}{1.77 \times 10^{-5}} = \frac{1000 \times 10^{-9} \times 10^{-5.65 \times 10^{-10}}}{1177 \times 10.00}$$

From separate solutions of four sodium salts NaW, NaX, NaY and NaZ had pH 7.0, 9.0, 10.0 and 11.0 respectively, when each solution was 0.1 M, the weakest acid is:

- (A) HW
- В НХ
- C HY
- HZ

A+HOO > M-A +OHT PHT

H7-9 weakest acid

H7-9 weakest acid

What, will be the pH and % α (degree of hydrolysis) respectively for the salt BA of 0.1 M concentration? Given K_a for HA 10⁻⁶ and K_b for BOH = 10⁻⁶.

- A 5, 19%
- 7, 10%
- © 9, 0.01%
- 7, 0.01%

QUESTION - (AIIMS 2006)

40 mL of 0.1 M ammonia solution is mixed with 40 mL of 0.1 M HCl. What is the pH of the mixture? (pK_b of ammonia solution is 4.74).

- A 4.74
- B 2.26
- C × 9.26
- 5.00

ture? (pK_b of ammonia solution is 4.74).

$$\rho H = 7 - \frac{1}{2} (\rho K_b + \log \zeta) \qquad C = [NK_u + 2] = \frac{Marxor |x|}{80}$$

$$= 7 - \frac{1}{2} (H - 7u + 2u + 5x + 10^{2})$$

$$= 7 - \frac{1}{2} (U - 7u - 2u + 0 - 7)$$

$$= 7 - \frac{1}{2} (U - 7u - 1 - 3u)$$

$$= 7 - \frac{1}{2} (U - 7u - 1 - 3u)$$

$$= 7 - \frac{1}{2} (3 - 2u) = 7 - 1 - 7a = 5.28$$

A 100 mL 0.1 M solution of ammonium acetate is diluted by adding 100 mL of water. The pH of he resulting solution will be (pK_a of acetic acid is nearly equal to pK_b of NH₄OH):

- A 4.9
- B 5.0
- 7.0
- 10.0

POH=5=> TOH]=105=Cd. PGH5NH2 Tan 232025 9 If ImM soil of ethylamine peroduces: pH=9 then Kb=10 Catherna + the -> Catherna + OH Value of sc = ? Kb = Ca2 if <<<1 10 -

Solubility Product (K_{sp})

Spaningly soluble salt (SSS)

foresc + Agch, Bason, Zong (Pon) (a Fa

[Agains) + House = Agas + Ki (ag.) S=Solubility in melists

Ke = [Agt][u]
[Agu][Ho]

KCEAGUTEHOJ-KEP=EAGTICUT=(S)(S)

KJP=S=1S=1/3P

Yakeen batch >

SOLUBILITY PRODUCT

 $AgCI(s) \Leftrightarrow Ag^{+}(aq)^{+}CI^{-}(aq)$

$$KSP = \sum A3+3 \sum Bx-3$$

$$= (3CS)^{2} (3S)^{3}$$

$$KSP = \sum xyy (3x+3)^{3}$$

$$\begin{array}{lll}
+xy -xy = 0 \\
+xy -xy = 0 \\
-xy -xy = 0
\end{array}$$

$$\begin{array}{lll}
+xy -xy = 0 \\
-xy -xy = 0
\end{array}$$

$$\begin{array}{lll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

$$\begin{array}{llll}
+xy -xy = 0
\end{array}$$

$$\begin{array}{llll}
+xy -xy = 0$$

Ag
$$U_{3} = 1 + 5p = 5^{2} = 1 + 5p = 5^{2}$$
 $S = (k_{5}p) \times 2$
 $S = (k_{5}p) \times 3$
 $S = (k_{5}p) \times 3$

机工

O Kop = Solubility peroduct:

Ax By + 130 = x Ay + + y B

X = x y (s) x + y

X = no. of Cations in I modelle

3= anion =

x + y = total no-of ions

S = S | 1111 | in model | 1 cm |

S=Solubility in moles/Lon M

3) If Kop Same.

Sa Ctotal no. of ions)

The total ions same

Kop d S

Kop d S

(2) In Gase of metallic bond don't dissociate in water.

The (1(2) + Ho(1) -> 1 Hg. + 2(1)

Saa a (2) + Ho(2) -> 1 Hg. + 2(1)

Kep = (5)'(25) = H5³

Solubility(s) of CaF₂ in terms of its solubility product is given as:

$$y=2$$
 $y=2$
 $K_{5p}=(1)^{1}(2)^{2}(5)^{1+2}$
 $K_{5p}=(1)^{1}(2)^{2}(5)^{1+2}$
 $K_{5p}=(1)^{1}(2)^{2}(5)^{1+2}$
 $K_{5p}=(1)^{1}(2)^{2}(5)^{1+2}$
 $K_{5p}=(1)^{1}(2)^{2}(5)^{1+2}$
 $K_{5p}=(1)^{1}(2)^{2}(5)^{1+2}$

(A)
$$s = (K_{sp})^{1/3}$$

B
$$s = (K_{sp}/2)^{1/3}$$

$$s = (K_{sp}/4)^{1/3}$$

$$s = (K_{sp}/2)^{1/2}$$

QUESTION JEE Advance PYQ

For a sparingly soluble salt ApBq, the relationship of its solubility product KSPZLS = x3(77 (S))C+7

LS = P99 (S)P+9

(L_s) with its solubility(S) is:

$$L_s = S^{p+q} \cdot P^q \cdot q^p$$

$$L_s = S^{pq} \cdot P^p \cdot q^q$$

$$L_s = S^{pq} \cdot (P \cdot q)^{p+q}$$

If solubility product of $Zr_3(PO_4)_4$ is denoted by K_{sp} and its molar solubility is denoted by S, them which of the following relations between S and K_{sp} is correct?

$$S = \left(\frac{K_{sp}}{144}\right)^{1/6}$$

$$\mathbf{S} = \left(\frac{\mathbf{K_{sp}}}{216}\right)^{1/7}$$

$$\mathbf{C} \quad \mathbf{S} = \left(\frac{\mathbf{K_{sp}}}{929}\right)^{1/9}$$

$$S = \left(\frac{K_{sp}}{6912}\right)^{1/7}$$

QUESTION - (Covid-2020)

The solubility product for a salt of the type AB is 4×10^{-8} . What is the molarity of its standard solution?

- A 16 × 10⁻¹⁶ mol/L
- B 2 × 10⁻¹⁶ mol/L
- C 4 × 10⁻⁴ mol/L
- 2 × 10⁻⁴ mol/L

$$9=17\%=1$$
 $K_{SP}=U_{X10}^{8}=(1)(1)(1)(5)$
 $H_{X10}^{8}=5$
 $S=2_{X10}^{4}M$

Two salts A_2X and MX have the same value of solubility product of 4.0 × 10⁻¹². The ratio of their molar solubilities i.e. (Round off to the nearest

integer) (50)

$$A_{2}^{\times}$$
 = $1 \times SP^{-} 4 \times 10^{-12} = 45^{3} = 15^{-12} \times 3 = 10^{4} \text{ M}$
 $2 = 2 \cdot 3^{-1}$

$$72^{-2}3^{-1}$$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1}$
 $72^{-2}3^{-1$

QUESTION - (AIIMS 2016)

The solubility product (K_{sp}) of the following compounds are given at 25°C.

Compound K_{sp} S_{sp} S_{sp} S

The most soluble and least soluble compounds are respectively.

- A AgCl and PbCrO₄
- C AgCl and Ag₂CO₃

- B AgI and Ag₂CO₃
- Ag₂CO₃ and AgI

Solubility product constant (K_{sp}) of salts of types MX, MX₂ and M₃X at temperature 'T' are 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} , respectively. Solubilities (mol dm⁻³) of the salts at temperature 'T' are in the order:

- $MX > MX_2 > M_3X$
- $M_3X > MX_2 > MX$
- $MX_2 > M_3X > MX$
- $MX > M_3X > MX_2$

$$4 \times 10^{8} = 5^{2} = 5 = 2 \times 10^{14} \text{ M}$$
 $3 \times 10^{15} = 1 \times 10^{15} = 10^{14} \text{ M}$
 $3 \times 10^{15} = 10^{14} =$

QUESTION - (Delhi 2017)

Concentration of the Ag⁺ ions in a saturated solution of Ag₂C₂O₄ is 2.2×10^{-4} mol L-1. Solubility product of Ag₂C₂O₄ is: [Ag+] = 2.2 × 10-4 m.

- 4.5×10^{-11}

$$u(1.1\times10^{-4})^3 z \times sp$$

$$\kappa sp = 8^2 1 (s)^{3} x + 3$$

$$= 4 (s)^3 + 3$$

QUESTION - (AIIMS 2014)

K_{sp} of M(OH)₂ is 3.2×10^{-11} . The pH of saturated solution in water is:

$$pH = 1U - 3.4 = 10.6$$
 $1M(0H)_{2} + 10.6 \Rightarrow 1M^{1} + 20H^{1}$
 S

What is the molar solubility of Fe(OH)₂ ($K_{sp} = 8.0 \times 10^{-16}$) at pH 13.0?

- A 8.0 × 10⁻¹⁸
- B 8.0 × 10⁻¹⁵
- 8.0 × 10⁻¹⁷
- 8.0 × 10⁻¹⁴

At 25°C, K_{sp} for PbBr₂ is equal to 8 x 10⁻⁵. If the salt is 80% dissociated, what is the solubility of PbBr₂ in mol/litre?

$$\left[\frac{10^{-4}}{1.6 \times 1.6} \right]^{1/3}$$

$$\left[\frac{10^{-5}}{1.6 \times 1.6} \right]^{1/3}$$

Difference Between K_{ip} & K_{sp}

Page

A solution which is 10^{-3} M each in Mn²⁺, Fe²⁺, Zn²⁺ and Hg²⁺ is treated with 10^{-16} M sulphide ion. If K_{SP} of MnS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first.

- (A) FeS
- B MgS
- C HgS
- D ZnS

When equal volume of $AgNO_3$ and NaCl solution are mixed, the precipitation of AgCl ($K_{sp} = 1.81 \times 10^{-10}$) will occur with:

- A 10⁻³ M (Ag⁺) and 10⁻¹⁰ M (Cl⁻)
- B 10⁻⁵ M (Ag⁺) and 10⁻⁵ M (Cl⁻)
- C 10⁻⁶ M (Ag⁺) and 10⁻⁵ M (Cl⁻)
- D 10⁻⁴ M (Ag⁺) and 10⁻⁴ M (Cl⁻)

At 25° C, the solubility product of Hg_2Cl_2 in water is 3.2×10^{-17} mol³ dm⁻⁹. What is the solubility of Hg_2Cl_2 in water at 25° C?

- (A) $1.2 \times 10^{-12} \,\text{M}$
- B 3.0 × 10⁻⁶ M
- C 2 × 10⁻⁶ M
- 1.2 × 10⁻¹⁶ M

Common ion Effect

*When a strong electrolyte is added to a solution of weak electrolyte having a common ion

Weak electrolyte:

QUESTION - (NEET 2020)

Find out the solubility of Ni(OH)₂ in 0.1 M NaOH. Given that the ionic product of Ni(OH)₂ is 2×10^{-15} .

- A 2 × 10⁻⁸ M
- B 1 × 10⁻¹³ M
- C 1 × 10⁸ M
- 2 × 10⁻¹³ M

QUESTION - (AIIMS 2009)

The solubility of PbF₂ in water at 25 °C is $\approx 10^{-3}$ M. What is its solubility in 0.05 M NaF solution? Assume the later to be fully ionized.

- A 1.6 × 10⁻⁶ M
- B 1.2 × 10⁻⁶ M
- C 1.2 × 10⁻⁵ M
- 1.6 × 10⁻⁴ M

QUESTION - (AIIMS 2017)

At 25°C, the solubility product of $Mg(OH)_2$ is 1.0×10^{-11} . At which pH will Mg^{2+} ions start precipitating in the form of $Mg(OH)_2$ from a solution of 0.001 M Mg^{2+} ions?

- A 9
- B 10
- **C** 11
- **D** 8

Home work from modules

Solve all questions of salt hydrolysis & Solubility product.

Magarmach Practice Questions (MPQ)

 pK_a of a weak acid (HA) and pK_b of a weak base (BOH) are 3.2 and 3.4 respectively. The pH of their salt (AB) solution is:

- A 7.0
- B 1.0
- **C** 7.2
- 6.9

QUESTION – (NCERT Exemplar)

Assertion (A): Aqueous solution of ammonium carbonate is basic.

Reason (R): Acidic/basic nature of a salt solution of a salt of weak acid and

weak base depends on K_a and K_b value of the acid and the base

forming it.

- A Both A and R are true and R is correct explanation of A.
- Both A and R are true but R is not correct explanation of A.
- A is true but R is false.
- D Both A and R are false.

QUESTION - (Covid-2020)

Which among the following salt solutions is basic in nature?

- Ammonium sulphate
- B Ammonium nitrate
- C Sodium acetate
- Ammonium chloride

Consider the following salts. Which one(s) when dissolved in water will produce a basic solution?

- 1. RbClO₄
- 2. NaNO₂

3. NH₄Cl

4. NaCl

- (A) 1 and 3
- B only 2
- (c) 1 and 2
- ① 3 and 4

