Étude extrémale de paramètres de graphes

Antoine Dailly

April 11, 2016

c kio un graph

Définition

c kio un graph

Définition

Un graphe G est la donnée d'un ensemble de sommets V

• • •

. . . .

c kio un graph

Définition

Un graphe G est la donnée d'un ensemble de sommets V reliés par des arêtes (ensemble $E \subset V$).

▶ On colore chaque arête avec un ensemble de couleurs

▶ On colore chaque arête avec un ensemble de couleurs

- On colore chaque arête avec un ensemble de couleurs
- ► Chaque sommet a un *code*: l'union des couleurs de ses arêtes incidentes
- ▶ Le but est d'identifier chaque sommet par son code

- On colore chaque arête avec un ensemble de couleurs
- Chaque sommet a un code: l'union des couleurs de ses arêtes incidentes
- ▶ Le but est d'identifier chaque sommet par son code

- On colore chaque arête avec un ensemble de couleurs
- ► Chaque sommet a un *code*: l'union des couleurs de ses arêtes incidentes
- ▶ Le but est d'identifier chaque sommet par son code
- On veut minimiser le nombre de couleurs utilisées

Résultats

Théorème

Pour tout graphe G(V,E) (sans composante connexe d'un ou deux sommets), on a besoin d'au moins $\lceil \log_2(|V|+1) \rceil$ et d'au plus $\lceil \log_2(|V|+1) \rceil + 2$ couleurs.

Résultats

Théorème

Pour tout graphe G(V,E) (sans composante connexe d'un ou deux sommets), on a besoin d'au moins $\lceil \log_2(|V|+1) \rceil$ et d'au plus $\lceil \log_2(|V|+1) \rceil + 2$ couleurs.

Théorème

Pour les chemins, les cycles et les arbres binaires complets, on a besoin d'exactement $\lceil \log_2(|V|+1) \rceil$ couleurs.

Partitionnement de grands graphes

Partitionnement de grands graphes

Partitionnement de grands graphes

 \Rightarrow Simplifie certains algorithmes sur de grands graphes (Dijkstra...)

Règles du jeu
$$CSG(I_1, \ldots, I_n)$$

Deux joueurs. À son tour, un joueur retire l_i sommets connexes et leurs arêtes incidentes sans déconnecter le graphe. Le premier qui ne peut pas enlever de sommets a perdu.

Règles du jeu
$$CSG(I_1, \ldots, I_n)$$

Deux joueurs. À son tour, un joueur retire l_i sommets connexes et leurs arêtes incidentes sans déconnecter le graphe. Le premier qui ne peut pas enlever de sommets a perdu.

Exemple: CSG(2,3)

Règles du jeu
$$CSG(I_1, \ldots, I_n)$$

Deux joueurs. À son tour, un joueur retire l_i sommets connexes et leurs arêtes incidentes sans déconnecter le graphe. Le premier qui ne peut pas enlever de sommets a perdu.

Exemple: CSG(2,3)

Règles du jeu $CSG(I_1, \ldots, I_n)$

Deux joueurs. À son tour, un joueur retire l_i sommets connexes et leurs arêtes incidentes sans déconnecter le graphe. Le premier qui ne peut pas enlever de sommets a perdu.

Règles du jeu $CSG(I_1, \ldots, I_n)$

Deux joueurs. À son tour, un joueur retire l_i sommets connexes et leurs arêtes incidentes sans déconnecter le graphe. Le premier qui ne peut pas enlever de sommets a perdu.

Règles du jeu $CSG(I_1, \ldots, I_n)$

Deux joueurs. À son tour, un joueur retire l_i sommets connexes et leurs arêtes incidentes sans déconnecter le graphe. Le premier qui ne peut pas enlever de sommets a perdu.

Exemple: CSG(2,3)

⇒ Victoire du deuxième joueur

Règles du jeu $CSG(I_1, \ldots, I_n)$

Deux joueurs. À son tour, un joueur retire l_i sommets connexes et leurs arêtes incidentes sans déconnecter le graphe. Le premier qui ne peut pas enlever de sommets a perdu.

Exemple: CSG(2,3)

⇒ Victoire du deuxième joueur

Objectifs : trouver qui remporte une partie quelconque, et sa stratégie.

Résultats

Théorème

Pour le jeu CSG(1,2) sur les étoiles subdivisées et les bi-étoiles subdivisées, on peut réduire toutes les chaines modulo 3 sans changer le gagnant.

Résultats

Théorème

Pour le jeu CSG(1,2) sur les étoiles subdivisées et les bi-étoiles subdivisées, on peut réduire toutes les chaines modulo 3 sans changer le gagnant.

... Et d'autres résultats théoriques !

Pour résumer...

- ► Théorie des graphes
- ► Algorithmique de graphes
- Jeux combinatoires

Pour résumer...

- ► Théorie des graphes
- Algorithmique de graphes
- Jeux combinatoires

Des questions ?