Inferência Estatística II

Lista 1

AUTOR

Paulo Cerqueira Jr ⊠ **(b**)

AFILIAÇÕES

Faculdade de Estatística - FAEST Universidade Federal do Pará - UFPA

Exercício 1 Seja X uma variável aleatória com função de densidade

$$f(x|\theta) = \theta^2 x e^{-\theta x}, \ \ x > 0, \theta > 0.$$

Queremos testar $H_0: \theta=1$ versus $H_1: \theta=2$.

- i. Qual é a região crítica se n=5 e $\alpha=0,05$?
- ii. Se n=1, qual é o teste que minimiza $\alpha+\beta$? E qual o valor de $\alpha+\beta$?

Exercício 2 Sejam X_1,\ldots,X_n uma amostra aleatória da variável aleatória $X\sim N(\mu,1)$. Queremos testar $H_0:\mu=0$ versus $H_1:\mu=1$. Encontre n que produz o teste mais poderoso com $\alpha=\beta=0,05$.

Exercício 3 Sejam X_1, \ldots, X_n uma amostra aleatória da variável aleatória X com função de densidade dada por

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

- i. Mostre que o teste mais poderoso para testar $H_0: \theta=1$ versus $H_1: \theta=2$, rejeita H_0 , se e somente se, $\sum_{i=1}^n -\log x_i \leq a$, onde a é uma constante.
- ii. Sendo n=2 e $lpha=(1-\log 2)/2$, qual a região crítica?

Exercício 4 Seja X uma única observação da função de densidade

$$f(x|\theta) = (2\theta x + 1 - \theta)I_{(0,1)}(x)$$

Queremos testar $H_0: \theta = 0$ versus $H_1: \theta = 1$.

- i. Obtenha o teste mais poderoso com nível de significância α .
- ii. Se $\alpha = 0,05$ e x = 0,8, qual a sua conclusão?

Exercício 5 Sejam X_1,\ldots,X_n uma amostra aleatória da variável aleatória $X\sim Poisson(\theta)$.

- i. Encontre o teste UMP para testar $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$.
- ii. Seja lpha=0,05, faça o gráfico da função poder para $heta_0=1$ e n=25 (use o Teorema do limite central).

Exercício 6 Sejam X_1,\ldots,X_n uma amostra aleatória da variável aleatória $X\sim N(\mu_X,1)$ e sejam Y_1,\ldots,Y_m uma amostra aleatória da variável aleatória $Y\sim N(\mu_Y,4)$ sendo as amostras independentes.

i. Determine o teste mais poderoso para testar

$$H_0: \mu_X = \mu_Y = 0$$
 versus $H_1: \mu_X = \mu_Y = 1$

ii. Sendo n=9, $\sum x_i=3,95$; m=4; $\sum y_i=2,03$. Qual a sua conclusão ao nível de significância de 5%? E qual o poder do teste?

Exercício 7 Sejam X_1,\dots,X_n uma amostra aleatória da variável aleatória X com função de densidade

$$f(x| heta) = rac{1}{ heta} x^{(1- heta)/ heta}, \quad 0 < x < 1, \quad heta > 0.$$

Queremos testar $H_0: heta \leq heta_0$ versus $H_1: heta > heta_0.$

i. Encontre o teste UMP de nível α (se existir).

ii. Se n=2, $heta_0=1$ e lpha=0,05, encontre a região crítica.

Exercício 8 Sejam X_1,\ldots,X_n uma amostra aleatória da variável aleatória $X\sim N(0,\sigma^2)$.

- i. Encontre o teste UMP para testar $H_0:\sigma^2=\sigma_0^2$ versus $H_1:\sigma^2>\sigma_0^2$.
- ii. Seja lpha=0,05, n=9 e $\sigma_0^2=9$, faça o gráfico da função poder.

Exercício 9 Sejam X_1,\ldots,X_n uma amostra aleatória da variável aleatória $X\sim \exp(heta)$.

i. Encontre o teste da razão de verossimilhanças generalizada para testar

$$H_0: \theta = 1$$
 versus $H_1: \theta \neq 1$.

ii. Se você observar n=5; $x_1=0,8$; $x_2=1,3$; $x_3=1,8$; $x_4=0,9$ e $x_5=1,0$, qual a sua decisão ao nível de 5%?