С. В. Востоков, С. М. Власьев РЕГУЛЯРНЫЕ ФОРМАЛЬНЫЕ МОДУЛИ В ПОЛНЫХ МНОГОМЕРНЫХ ПОЛЯХ

1 Введение

При исследовании нормальных расширений без высшего ветвления возникла задача описания всех неразветвленных расширений локального поля, которые вместе с основным полем являются регулярными, то есть не содержащими нетривиальных р-х корней из 1 (где р — характеристика поля вычетов локального поля). Основное локальное поле при этом называется вполне регулярным. Эта задача была решена З. И. Боревичем в работе [1]. Основной результат этой работы, доказательство которого было упрощено Д. К. Фаддеевым, является следующим.

Теорема 1.1. Пусть K — регулярное локальное поле. Расширение $K(\zeta)/K$, где $\zeta^p=1,\ \zeta\neq 1$, будет неразветвленным тогда итолько тогда, когда индекс ветвления $e=e(K/\mathbb{Q}_p)$ делится на p-1.

Встает естественный вопрос — является ли ограничение на индекс ветвления исходного поля, которое не является регулярным, то есть содержит нетривиальный корень степени p из 1, достаточным для того, чтобы круговое расширение $K(\zeta_{p^n}),\ n\geqslant 2$, было бы неразветвлено. Этот вопрос решается в первой части работы.

Задача о регулярных и вполне регулярных полях возникает в арифметике формальных модулей и она решается во второй части настоящей работы.

2 Вполне разветвленное $K(\zeta_{p^2})/K$ при нерегулярном K с индексом ветвления p(p-1)

K — локальное поле (конечное расширение \mathbb{Q}_p),

 ζ_{p^m} — первообразный корень степени p^m из 1,

e — абсолютный индекс ветвления поля K,

 \mathfrak{R} — мультипликативная система Тейхмюллера в поле K,

 $\mathfrak O$ — кольцо целых подполя инерции T в $K/\mathbb Q_p,$

 $E(f(X)) = exp(1 + \frac{\Delta}{p} + \frac{\Delta^2}{p^2} + \ldots)(f(X))$, где $\Delta f(X) = f(X^p)$, для $f(X) \in \mathbb{Z}_p[[X]]X$. Считаем, что $\zeta_p \in K$ и индекс ветвления e делится на p.

Докажем, что существуют поля, для которых расширение $K(\zeta_{p^2})$ будет вполне разветвленным над K.

Пусть $K_0 = \mathbb{Q}_p(\zeta_p)$ и $K = K_0(\sqrt[p]{\pi})$, где $\pi = 1 - \zeta_p$. Пусть $\Pi = \sqrt[p]{\pi}$.

Теорема 2.1. Расширение $K(\zeta_{p^2})/K$ вполне разветвлено.

Доказательство. В нашем случае $e = e(K/\mathbb{Q}_p) = p(p-1)$. Рассмотрим разложение корня ζ_p по образующим мультипликативной группы K^* . Пусть $a \in \mathbb{Z}_p$ и $\omega(a) = E(a(\zeta^p - 1))|_{X=\Pi}$, где $\zeta(X) = (1 - X^p)^p$.

В работе [2, §4, предложение 6] было доказано, что $\omega(a)-p$ -примарный элемент поля K (то есть расширение $K(\sqrt[p]{\omega(a)})/K$ неразветвлено), и при этом значение символа Гильберта в поле K, $(,)_p:K^*\times K^*\to \langle\zeta_p\rangle$ на паре $\Pi,\omega(a)$ равно $(\Pi,\omega(a))=\zeta_p^a$.

Образующими K^* будут элементы $\{\Pi, \omega(a), 1 - \theta \pi^b \mid \theta \in \Re, 1 \leqslant b < p^2, p \nmid b\}$, и корень ζ_p , тем самым, раскладывается в виде

$$\zeta_p = \omega(a)^{\beta} \prod_{\substack{p \nmid b \\ 1 \le b < p^2}} (1 - \theta \Pi^b)^{\alpha_{\theta,b}}, \tag{1}$$

где $\beta, \alpha_{\theta,b} \in \mathbb{Z}$.

Докажем сперва, что

$$\beta \equiv 0 \mod p. \tag{2}$$

Для этого подсчитаем значение символа Гильберта на паре Π, ζ_p . Нетрудно видеть, что из соотношения Стейнберга $(\alpha, 1 - \alpha) = 1, \ \alpha \neq 0$ для символа Гильберта следует равенство

$$(\Pi, 1 - \theta \Pi^b) = 1, p \nmid b. \tag{3}$$

Действительно, $1 = (\theta \Pi^b, 1 - \theta \Pi^b) = (\theta, 1 - \theta \Pi^b) \cdot (\Pi, 1 - \theta \Pi^b)^b$. При этом $\theta = \theta_1^p$ при некотором $\theta_1 \in \mathfrak{R}$, так как группа \mathfrak{R} p-делима. Значит, $(\Pi, 1 - \theta \Pi^b)^b = 1$, откуда $(\Pi, 1 - \theta \Pi^b) = 1$, так как, если $(\Pi, 1 - \theta \Pi^b) = \zeta^k$ при некотором $1 \leqslant k \leqslant p - 1$, то $\zeta^{bk} = 1$, что противоречит $p \nmid bk$.

Из равенства (3) следует

$$(\Pi, \zeta_p) = (\Pi, \omega(a))^{\beta} \cdot \prod_{\substack{p \nmid b \\ 1 \leqslant b < p^2}} (1 - \theta \Pi^b)^{\alpha_{\theta, b}} =$$

$$= (\Pi, \omega(a))^{\beta} = \zeta_p^{a\beta}, \text{ то есть}$$

$$(\Pi, \zeta_p) = \zeta_p^{a\beta}. \tag{4}$$

Подсчитаем теперь значение (Π, ζ_p) по явной формуле для символа Гильберта (см. [2, (12)]). Обозначим через l(1+f(X))) обратную функцию к функции Артина-Хассе E(f(X)). Она была определена в $[2, \S 1, \Pi. 1]$:

$$l(1 + f(X)) = (1 - \frac{\Delta}{p})\log(1 + f(X))$$

для $f(X) \in X\mathbb{Z}_p[[X]]$ и $\Delta f(X) = f(X^p)$.

Тогда имеет место формула

$$(\Pi, \zeta_p) = \zeta_p^{\operatorname{res}_X X^{-1} l(\underline{\zeta})/((1-\underline{\zeta}^p)^p - 1)}.$$

Вычислим значение $\operatorname{res}_X X^{-1} l(\underline{\zeta})/((1-\underline{\zeta}^p)^p-1) \mod p$ для $\underline{\zeta}=\zeta(X)=1-X^p.$ Ясно, что

$$(1 - \zeta^p)^p - 1 \equiv -\zeta^{p^2} \mod p. \tag{5}$$

Кроме того,

$$l(\underline{\zeta}) = (1 - \frac{\Delta}{p})\log(1 - X^p) =$$

$$= \sum_{p \nmid m} \frac{X^{pm}}{m} + \sum_{m \geqslant 1} \frac{X^{p^{m+1}} - X^{p^{m+1}}}{p^m} = \sum_{p \nmid m} \frac{X^{pm}}{m}.$$

Среди степеней $X^{pm}, p \nmid m$ нет степени p^2 , поэтому

$$\operatorname{res}_X X^{-1} l(\underline{\zeta}) / - \underline{\zeta}^{p^2} \equiv 0 \mod p,$$

значит

 $(\Pi, \zeta_p) = 1$. Отсюда и из (4) следует (2).

Значит
$$\zeta_p \equiv \prod_{\substack{p\nmid b \ 1\leqslant b < p^2}} (1-\theta\Pi^b)^{\alpha_{\theta,b}} \mod K^{*p}$$
. Пусть степень

b — наименьшая, для которой $\alpha_{\theta,b}\not\equiv 0\mod p$. Если такой нет, то это означает, что $\zeta_p\in K^{*p}$, что невозможно. Тогда $K(\zeta_{p^2})=K(\sqrt[p]{\zeta_p})=K(\sqrt[p]{\varepsilon})$, где $\varepsilon=1-c\Pi^b$, а c — некоторая единица поля K, то есть $c=c_0+c_1\Pi+c_2\Pi^2+\ldots,\,c_i\in\mathbb{Z}_p$ и $p\nmid c_0,\,1\leqslant b<\frac{pe}{p-1},\,p\nmid b$.

Таким образом $K(\zeta_{p^2})$ получается присоединением корня уравнения $X^p = \varepsilon$. Заменим переменную X = Y + 1, тогда $Y^p + C_p^{p-1}Y^{p-1} + \cdots + pY = -c\Pi^b$. Пусть χ — корень последнего уравнения. Предположим, что $K(\zeta_{p^2})/K$ неразветвлено, тогда возможны три случая для нормирования $\mathfrak{v}(\chi) = \mathfrak{v}_{K(\zeta_{p^2})}(\chi)$.

- 1. $\mathfrak{v}(\chi) = 0$, тогда $\mathfrak{v}(\chi^p + \dots + p\chi) = 0$, но это невозможно, так как $\mathfrak{v}(-c\Pi^b) = b > 0$.
- 2. $1 \leqslant \mathfrak{v}(\chi) \leqslant \frac{e}{p-1}$, тогда $\mathfrak{v}(\chi^p + \dots + p\chi) = \mathfrak{v}(\chi^p) = p\mathfrak{v}(\chi)$ делится на p, но это невозможно, так как $\mathfrak{v}(-c\Pi^b) = b$ не делится на p.
- 3. $\mathfrak{v}(\chi)>\frac{e}{p-1}$, тогда $\mathfrak{v}(\chi^p+\cdots+p\chi)\geqslant\frac{pe}{p-1}$, так как $\mathfrak{v}(\chi^p)=p\mathfrak{v}(\chi)>\frac{pe}{p-1}$ и $\mathfrak{v}(p\chi)=e+\mathfrak{v}(\chi)=\frac{pe}{p-1}$. Но это невозможно, так как $\mathfrak{v}(-c\Pi^b)=b<\frac{pe}{p-1}$.

Мы предположили неразветвленность расширения $K(\zeta_{n^2})/K$ и получили противоречие.

Отсюда вытекает, что $K(\zeta_{p^2})/K$ вполне разветвлено.

3 Формальные модули в многомерных локальных полях

В этом разделе формальный модуль будет строиться только для формальной группы Хонды высоты h.

Пусть поле K — полное многомерное (n-мерное) поле нулевой характеристики, то есть поле, для которого имеется последовательность полей,

$$K_0, K_1, \dots, K_{n-1}, K_n = K$$

таких, что K_0 — совершенное поле характеристики p, а K_{i-1} — поле вычетов для $K_i, 1 \leqslant i \leqslant n$.

В дальнейшем мы предполагаем, что последнее поле вычетов конечно. Также, следуя изложению работы [?], мы будем рассматривать только *стандартные* многомерные поля для интересующего нас разнохарактеристического случая n-мерного локального поля (то есть charK=0, $charK_{n-1}=p>0$). Последовательность полей тогда выглядит следующим образом:

$$\mathbb{F}_q - \mathbb{F}_q((t_1)) - \ldots - \mathbb{F}_q((t_1)) \ldots ((t_{n-1})) - -k\{\{t_1\}\} \ldots \{\{t_{n-1}\}\} := K,$$

где k — конечное расширение поля \mathbb{Q}_p , а $q = \# \overline{k}$.

3.1 Случай двумерного локального поля для формальной группы Хонды

Чтобы не усложнять процедуру доказательства общей теоремы техническими выкладками, докажем её для двумерного поля

$$\mathbb{F}_p - \mathbb{F}_p((t_0)) - k\{\{t_0\}\} := K,$$

где k — конечное расширение \mathbb{Q}_p .

Пусть T — подполе инерции в k, T' := $T\{\{t_0\}\}$, $\mathcal{O}_{T'}$ — его кольцо целых относительно двумерного нормирования. Тогда имеем такую схему двумерных полей:

$$\mathbb{Q}_{p}\{\{t_{0}\}\} \longrightarrow T\{\{t_{0}\}\} = T' \longrightarrow k\{\{t_{0}\}\} = K$$

$$\mathbb{Z}_{p}\{\{t_{0}\}\} \longrightarrow \mathcal{O}_{T'} \longrightarrow \mathcal{O}_{K}$$

$$\{t_{0}, p\} \longrightarrow \{t_{0}, p\} \longrightarrow \{t_{0}, \pi\}$$

Определим формальнцую группу Хонды над $\mathcal{O}_{T'}$. Для этого фиксируем эндоморфизм $\sigma: \mathcal{O}_{T'} \to \mathcal{O}_{T'}$, определенный следующим образом:

$$\sigma(\sum a_i t_0^i) = \sum a_i^{F_T} t_0^{p \cdot i}, \ a_i \in \mathcal{O}_T,$$

и обладающий свойством:

$$\forall x \in \mathcal{O}_{T'} \quad \sigma(x) \equiv x^p \pmod{\mathcal{M}_{T'}},$$

где Fr — продолжение автоморфизма Фробениуса на T/\mathbb{Q}_p . Определим действие оператора Фробениуса на рядах из $\mathcal{O}'_T[|X|]$ следующим образом:

$$\triangle(\sum b_i x^i) = \sum \sigma(b_i) x^{p \cdot i}, \ b_i \in \mathcal{O}_{T'}.$$

Множество операторов $\sum_{i\geqslant 0}b_i\Delta^i$, где $b_i\in\mathcal{O}_{T'}$, образуют некоммутативное кольцо $\mathcal{O}_{T'}[|\Delta|]$ формальных степенных рядов от Δ , для которого $\Delta b=\sigma(b)\Delta$ для $b\in\mathcal{O}_{T'}$. Формальная группа Хонды над $\mathcal{O}_{T'}$ с логарифмом $\log_F(X)\in T'[|X|]$ задается также, как и в параграфе ??. Пусть теперь F(X,Y) — формальная группа Хонды над $\mathcal{O}_{T'}$ высоты h, $\operatorname{End}_{\mathcal{O}_K}F\cong \mathbb{Z}_p\{\{t_0\}\}$. Пусть поле L — расширение поля K такое, что $\operatorname{Ker}_F[p]$ (без нуля) не содержится в L, $e=e(L/T')=(e_1,e_2)$ — 2-мерный индекс ветвления, $\{T_0,\Pi\}$ — система локальных параметров поля L.

Тогда T_0 и Π являются делителями t_0 и π соответственно. Диаграмма полей в этом случае выглядит так:

$$\mathbb{Q}_{p}\{\{t_{0}\}\} \longrightarrow T' \longrightarrow K \longrightarrow L$$

$$\mathbb{Z}_{p}\{\{t_{0}\}\} \longrightarrow \mathcal{O}_{T'} \longrightarrow \mathcal{O}_{K} \longrightarrow \mathcal{O}_{L}$$

$$\{t_{0}, p\} \longrightarrow \{t_{0}, p\} \longrightarrow \{t_{0}, \pi\} \longrightarrow \{T_{0}, \Pi\}$$

Теорема 3.1. Поле L (а значит и $F(\mathcal{M}_L)$) являются вполне регулярными относительно формальной группы F тогда и только тогда, когда первый индекс e_1 в 2-мерном индексе ветвления $e=(e_1,e_2)$ расширения L/T' не делится на p^h-1 .

Доказательство. Из определения высоты формальной группы следует, что

$$[p]_F(X) \equiv cX^{p^h} \mod (\pi_0, deg(p^h + 1)), \quad c \in \mathcal{O}_{T'}^*,$$

при этом c является рядом

$$c = c_0 + c_1 \pi + \dots, \quad c_i \in \mathbb{Z}_p\{\{t_0\}\}, \ c_0 \in \mathbb{Z}_p\{\{t_0\}\}^* \cap \mathcal{O}_{T'}^*,$$

то есть его коэффициенты сами являются рядами с коэффициентами из \mathbb{Z}_p . Однако обратимость c_0 в $\mathcal{O}_{T'}$ выполнена только в том случае, когда c_0 начинается со свободного коэффициента. Действительно, пусть

$$c_0 = a_m t^m + a_{m+1} t^{m+1} + \dots, \ m \in \mathbb{Z}, a_i \in \mathbb{Z}_p, a_m \in \mathbb{Z}_p^*$$

Пусть
$$a_{m+k}^{'}=rac{a_{m+k}}{a_m}.$$
 Тогда

$$c_0 = a_m t^m (1 + a'_{m+1} t^{m+1} + \ldots),$$

откуда

$$c_0^{-1} = a_m^{-1} t^{-m} (1 + a'_{m+1} t^{m+1} + \ldots)^{-1}.$$

Этот ряд лежит в $\mathbb{Z}_p\{\{t_0\}\}^*$, но не лежит в $\mathcal{O}_{T'}^*$ и даже $\mathcal{O}_{T'}$, поскольку

$$\mathcal{O}_K = \{ \alpha \mid \mathfrak{v}_K(\alpha) \geqslant (0,0) \},\$$

а $\mathfrak{v}_K(t^{-m})=(-m,0)<(0,0).$ Таким образом, m=0 и тогда

$$c = (\theta_{0,0} + \theta_{0,1}t + \ldots) + (\theta_{1,0}t^{-m_1} + \ldots)\pi + (\theta_{2,0}t^{-m_2} + \ldots)\pi^2 + \ldots,$$

где $\theta_{0,0} \in \mathbb{Z}_p^*, \theta_{i,j} \in \mathbb{Z}_p.$

Далее действуем аналогично случаю одномерного поля. Переобозначим для удобства $K_0 := \mathbb{Q}_p\{\{t_0\}\}$.

По подготовительной лемме Вейерштрасса существует $\varepsilon(X) \in 1 + X\mathcal{O}_{K_0}[|X|]$ такой, что

$$f(x) := \frac{[p](X)}{X} \varepsilon(X) =$$

$$=p+pd_1X^1+\ldots+pd_{p^h-2}X^{p^h-2}+d_{p^h-1}X^{p^h-1},$$
где $d_{p^h-1}:=d_{p^h-1}(X)\in\mathcal{O}_{T'}^*.$ Ясно, что

$$\operatorname{Ker}[p]_F(X) = \operatorname{Ker} f(X).$$

Далее, сводим присоединение корня π многочлена f(X) к присоединению корня π' уравнения $X^{p^h-1} + p' = 0$, то есть имеем

$$L(\operatorname{Ker}[p]_F) = L(\pi'),$$

где $p' = p \cdot d_{n^h-1}^{-1}$ — простой в K_0 .

1. Пусть первый индекс e_1 в двумерном индексе ветвления $(e_1, e_2) = e = e(L/T') = e(L/K_0)$ делится на $p^h - 1$, то есть $e_1 = (p^h - 1)e'$, и пусть Π — простой элемент в L. Тогда

$$-p' = \Pi^e \theta \eta,$$

где θ — представитель Тейхмюллера, а η — главная единица поля L. Тогда

$$\pi' = \sqrt[p^h - 1]{-p'} = \prod^{e'} \sqrt[p^h - 1]{\theta} \eta_1,$$

где $\eta_1^{p^h-1} = \eta$ в L.

Поэтому расширение $L(\pi') = L({}^{p^h-\sqrt[1]{\theta}})$, а с ним и $L(\mathrm{Ker}[p]_F)$ неразветвлено над L. Это значит, что $F(\mathcal{M}_L)$ не является вполне регулярным модулем.

2. Если же e_1 не делится на p^h-1 , то расширение $L(\pi')=L(\sqrt[p^h-1]{\pi^e\theta})$ будет разветвлено над L, откуда $F(\mathcal{M}_L)$ — вполне регулярный модуль.

3.2 Случай многомерного локального поля для формальной группы Хонды

В этом параграфе мы сформулируем общий результат для многомерных локальных полей без доказательства, чтобы не загружать работу техническими выкладками. Идейно оно ничем не отличается от двумерного случая.

Пусть k — конечное расширение \mathbb{Q}_p , T — подполе инерции в k. Рассмотрим стандартное n-мерное локальное поле K:

$$\mathbb{F}_q - \mathbb{F}_q((t_1)) - \ldots - \mathbb{F}_q((t_1)) \ldots ((t_{n-1})) - -k\{\{t_1\}\} \ldots \{\{t_{n-1}\}\} := K.$$

Переобозначим для удобства $\mathbb{Q}'_p := \mathbb{Q}_p\{\{t_1\}\}\dots\{\{t_{n-1}\}\},$ $T' := T\{\{t_1\}\}\dots\{\{t_{n-1}\}\}, \mathbb{Z}'_p := \mathbb{Z}_p\{\{t_1\}\}\dots\{\{t_{n-1}\}\}.$ Фиксируем эндоморфизм $\sigma : \mathcal{O}_{T'} \to \mathcal{O}_{T'}$, определенный следующим образом:

$$\sigma(\sum a_i t_1^{i_1} \dots t_{n-1}^{i_{n-1}}) = \sum a_i^{F_T} t_1^{p \cdot i_1} \dots t_{n-1}^{p \cdot i_{n-1}}, \ a_i \in \mathcal{O}_T,$$

и обладающий свойством:

$$\forall x \in \mathcal{O}_{T'} \quad \sigma(x) \equiv x^p \pmod{\mathcal{M}_{T'}},$$

где Fr — продолжение автоморфизма Фробениуса на T/\mathbb{Q}_p . Оператор Фробениуса и формальную группу Хонды определим также, как и в двумерном случае. Рассмотрим формальную группу Хонды F(X,Y) над $\mathcal{O}_{T'}$ высоты h, $\mathrm{End}_{\mathcal{O}_K} F \cong \mathbb{Z}'_p$. Пусть L — расширение поля K такое, что $\mathrm{Ker}_F[p]$ (без нуля) не содержится в L, $e = e(L/T') = e(e_1,e_2,\ldots,e_n)$ — n-мерный индекс ветвления, \mathcal{M}_L — максимальный идеал кольца целых поля L, $F(\mathcal{M}_L)$ — формальный \mathcal{O}_L -модуль на идеале \mathcal{M}_L .

Пусть $\{T_1, \ldots, T_{n-1}, T_n = \Pi\}$ — система локальных параметров поля L.

Диаграмма полей будет иметь следующий вид:

$$\mathbb{Q}'_p \longrightarrow T' \longrightarrow K \longrightarrow L$$

$$\mathbb{Z}'_p \longrightarrow \mathcal{O}_{T'} \longrightarrow \mathcal{O}_K \longrightarrow \mathcal{O}_L$$

Теорема 3.2. Поле L (а значит и $F(\mathcal{M}_L)$) являются вполне регулярными относительно формальной группы F тогда и только тогда, когда первый индекс e_1 в n-мерном индексе ветвления $e=(e_1,\ldots,e_n)$ расширения L/T' не делится на p^h-1 .

4 Формальные модули в многомерном поле

4.1 Формулировка

Пусть K — полное многомерное поле нулевой характеристики, то есть поле, для которого имеется последовательнось полей, $K_0, K_1, \ldots, K_{n-1}, K_n = K$ таких, что K_0 — совершенное поле характеристики p, и K_{i-1} — поле вычетов для K_i , $i \leq i \leq n$.

 $(t_1,t_2,\dots,t_{n-1},t_n=\pi)$ — система локальных параметров поля K,

 $\mathfrak O$ — кольцо целых поля K относительно n-мерного нормирования,

F(X,Y) — одномерная формальная группа над $\mathfrak{O}.$

Будем предполагать, что K — разнохарактеристическое полное многомерное поле, то есть charK=0, $charK_{n-1}=p>0$.

Пусть k — максимальное локальное поле в K (конечное расширение \mathbb{Q}_p), для которого поле $E = k\{\{t_1\}\}\cdots\{\{t_{n-1}\}\}((\pi))$ содерижится в K.

Предполагаем, что K/E — конечное расширение, и кольцо эндоморфизмов $\operatorname{End}_{\mathfrak{D}} F$ формальной группы F изоморфно кольцу целых \mathfrak{D}_0 подрасширения E_0 в E. Считаем при этом, что K/E_0 — конечное расширение.

Пусть $(t_1^{(0)},t_2^{(0)},\dots t_{n-1}^{(0)},t_n^{(0)}=\pi_0)$ — система локальных

параметров поля E_0 , $\pi \in k_0$. $E_0 = k_0 \{\{t_1^{(0)}\}\} \cdots \{\{t_{n-1}^{(0)}\}\}((\pi_0))$, причем k_0 — подполе k. Пусть, далее L — расширение поля K с системой локальных параметров $(T_1, T_2, \dots, T_{n-1}, T_n = \Pi)$, и

$$-\pi_0 = T_1^{i_1} \cdots T_{n-1}^{i_{n-1}} \Pi^{e_n} \rho u, \tag{*}$$

где ρ — представитель Тейхмюллера в L, u — главная единица поля L.

Предполагаем, что поле L — регулярно относительно формальной группы F, то есть ядро изогении $\operatorname{Ker}[\pi_0]$ не содрежится в L за исключением нуля.

h := htF — высотра формальной группы F,

 $\mathfrak{M}:=\mathfrak{M}_L$ — максимальный идеал кольца целых поля L, $F(\mathfrak{M})$ — формальный \mathfrak{O} -модуль на идеале \mathfrak{M} .

Будем называть поле L вполне регулярным относительно формальной группы F, если $\operatorname{Ker}[\pi_0]$ не содержится в любом неразветвтленном расширении M поля L.

В настоящей работе доказывается следующий результат

Теорема 4.1. Поле L является вполне регулярным относительно формальной группы F тогда и только тогда, когда система индексов $(i_1, \ldots, i_{n-1}, e_n)$ делится на $p^h - 1$, то есть $i_k : p^h - 1, 1 \le k \le n \text{ (cm. (*))}.$

Вспомогательные результаты

Пусть $\xi \in \text{Ker}[\pi_0], \xi \neq 0, \xi \in K^{alg}$ — произвольный элемент ядра изогении $[\pi_0]$. $[\pi_0](X) = \pi_0 X \varepsilon(X) + X^{p^h} \theta r(X)$, где $\varepsilon(X), r(X) \in \mathfrak{O}_0[[X]]$, при этом $\varepsilon(X) \equiv r(X) \equiv 1 \mod X$, а heta — представитель система Тейхмюллера в кольце целых поля k_0 . Ясно, что

$$\frac{[\pi_0](X)}{X} = \pi_0 \varepsilon_1(X)^{p^h - 1} + (Xr_1(X))^{p^h - 1}\theta,$$

где $\varepsilon_1(X)^{p^h-1} = \varepsilon(X), \ r_1(X)^{p^h-1} = r(X).$ Поэтому элемент ξ удовлетворяет уравнению $-\pi_0 = (\xi x(\xi))^{p^h-1}\theta$, где $\mathfrak{E}(X) = \varepsilon_1(X)^{-1} r_1(X)$. Поэтому

$$L(\xi) = L(\sqrt[p^{h} - 1]{-\theta^{-1}\pi_0}). \tag{1}$$

Пусть $e=e(K/\mathbb{Q}_p);\ 1\leqslant b<\frac{pe}{p-1},\ p\nmid b,\ \Pi$ — простой элемент в $K, \, \varepsilon = 1 + c\Pi^b, \, c$ — единица в K.

Лемма 4.2. Пусть $\zeta_p \in K$, тогда $K(\sqrt[p]{\varepsilon})/K$ вполне разветвленно.

Доказательство. Рассмотрим уравнения $X^p =$ X = Y + 1, тогда

$$Y^{p} + C_{p}^{p-1}Y^{p-1} + \dots + pY = c\Pi^{b}.$$
 (*)

Пусть расширение $K(\sqrt[p]{\varepsilon})/K$ неразветвлено. Тогда, если корень уравнения (*) α — единица, то получим противоречие: $\mathfrak{v}_L(\alpha) = 0 \implies \mathfrak{v}(\alpha^p + \ldots + p\alpha) = 0$, но $\mathfrak{v}(c\Pi^b) = b \geqslant 1$. Здесь и далее $\mathfrak{v} = \mathfrak{v}_L$ — нормирование в поле $L = K(\sqrt[p]{\varepsilon})$. Если $\mathfrak{v}(\alpha) \geqslant 1$, то есть два варианта.

- 1. $1 \leqslant \mathfrak{v}(\alpha) \leqslant \frac{e}{p-1}$, тогда $\mathfrak{v}(\alpha^p + C_p^{p-1}\alpha^{p-1} + \cdots + p\alpha) = p\mathfrak{v}(\alpha)$. Но $\mathfrak{v}(c\Pi^b) = b \not\equiv 0 \mod p$ противоречие.
- 2. $\mathfrak{v}(\alpha) > \frac{e}{p-1}$, тогда $\mathfrak{v}(\alpha^p + C_p^{p-1}\alpha^{p-1} + \dots + p\alpha) \geqslant \frac{pe}{p-1}$. С другой стороны, $\mathfrak{v}(c\Pi^b) = b < \frac{pe}{p-1}$.

Итак, предположение, что L/K неразветвлено приводит к противоречию. \square

Следствие 4.3. Расширение $K(\zeta_{p^2})/K$ вполне разветвлено.

4.3 Доказательство теоремы (4.1)

 \mathcal{A} оказательство. Пусть $\overline{e}=(e_1,\ldots,e_n)$ делится на p^h-1 . Тогда

$$-\pi_0 = (T_1^{i_1'} \cdots T_{n-1}^{i_{n-1}'} \rho_1 u_1)^{p^h - 1},$$

где $i_k'=\frac{i_k}{p^h-1},\ 1\leqslant k\leqslant n-1;\ \rho_1^{p^h-1}=\rho,\ \rho\in\mathfrak{R};$ и $u_1^{p^h-1}=u,$ где u_1 — главная единица в L. Отсюда и из (*) получаем $L(\xi)=L(\sqrt[p^h-1]{\theta^{-1}})$ и, значит, расширение L/K неразветвлено.

Если же (i_1,\ldots,i_{n-1},e_n) не делится на p^h-1 , то $L(\xi)=L(\sqrt[p^h-1]{T_1^{i_1}\cdots T_{n-1}^{i_{n-1}}\Pi^{e_n}})$ и $L(\xi)/L$ поэтому разветвлено.

Список литературы

- [1] З. И. Боревич, «О регулярных локальных полях», $Becmhuk \ \mathcal{\Pi}\Gamma Y$, 1962, с. 142—145.
- [2] С. В. Востоков, «Явная формула закона взаимности», Изв. АН СССР. Сер. матем., **42**:6 (1978), 1288—1321.