Spatial resolution study

Summary

5 FEB 2020

The basic geometry is composed of

- 50 layers (1mx1m) of voxel detectors 1 cm separation
- ideal calorimeter (very fine voxelization)
- passive material on top of each tkr layer 0.1 cm separation

Tested parameters:

- Voxel size:
- * 10 mm
- * 5 mm
- * 3 mm
- * 1 mm
- * 0.5 mm
- 0.5 IIIII
- * 0.3 mm
- * 0.1 mm
- * 0.05 mm
- * 0.03 mm
- * 0.01 mm
- Si thickness:
- * 500 um
- passive material:
 - * 0%
 - * 1%
 - * 2%
 - * 5%
 - * 10%

We want to test the different configurations for different energies:

- * 100 keV
- * 200 keV
- * 300 keV
- * 1000 keV

Passive materia and pixels size

Effective Area and passive material

Loss in the effective area for small pixels:

Too small energy loss to trigger a signal in a pixel

ARMs as a function of energy @ 5% passive

DSiPix.EnergyResolution Gauss 662 662 4.25 // (->8.5) DSiPix.EnergyResolution Gauss 122 122 2.2 // (->4.4)

ARMs as a function of energy @ 5% passive

Some numbers

100 um² < Pix_{size} < 3 mm²
Passive material (Si) < 10%
Minimum simulated energy
of AMEGO-like instrument
> 200 keV

To do

- Dynamic range of each pixel
- Passive material study at 200 keV
- Try different thicknesses (ATT: the passive is defined with respect to that parameter, ok?)
 - a. 300 um, 700 um (500 done)
- Good pixel yield: add a percentage of dead pixels in the simulations (select one case for the other parameters)

I can work on this after Feb 19, but if you need something urgently let me know.

Spatial resolution study

SIMULATIONS TO DETERMINE THE PIXEL SIZE

Astropix Meeting 12/4/19

Working space: github repository

https://github.com/reginacaputo/AstroPix

Branch: master

Folder: ResolutionStudy

README.txt

This study aims to define the ideal pixel size for the AstroPix project.

The basic geometry is composed of

- 50 layers (1mx1m) of voxel detectors 0.1 cm separation
- ideal calorimeter
- (passive material on top of each tkr layer)

We want to build a routine to build and test different geometries changing some parameters:

- Voxel size:
 - * 10 mm
 - * 5 mm
 - * 3 mm
 - * 1 mm
 - * 0.5 mm
 - * ... (enough to see the plateau)
- Si thickness:
 - * 300 um
 - * 500 um
 - * 700 um
- passive material:
 - * 1%
 - * 2%
 - * 5%
 - * 10%

We want to test the different configurations for different energies:

- * 100 keV
- * 662 keV
- * 1000 keV

README.txt

Description of the files:

- * config.py -> where we declare the parameters we want to study
- * mkGeometries.py -> builds all the geometry configurations starting from base files located in the geometry/geo base/ folder.
- * mkSimulations.py -> Creates .source files from a base file located in the source/ folder and produce a sh file with the list of the commands to run the simulations (for now the simulations have to be run manually).
- * mkRecon.py -> Runs the reconstruction of the events with revan (according to the configuration file declared in the config file).
- * mkARM.py -> Takes the revan output and produces .root files with the ARM histograms.
- * mkARManalysis.py -> Runs analysis routine.

How to run the routines:

- >>> python mkGeometries.py -c config.py
- >>> python mkSimulations.py -c config.py -sim True
- >>> python mkRecon.py -c config.py
- >>> python mkARM.py -c config.py --show True
- >>> python mkARManalysis.py -c config.py

Config.py

```
Passive material (Si)

THICKNESS = [300, 500, 700] #um

VOXELSIZE = [10, 5, 3, 1, 0.5, 0.3, 0.1, 0.05, 0.01] #mm

ENERGY = [100, 662, 1000] #keV

GEO_BASE = 'geometry/geo_base/AstroPix_base.geo.setup'

DET_BASE = 'geometry/geo_base/AstroPix_base_prop.det'

SRC_BASE = 'source/FarFieldPointSource_base.source'

REVAN_CFG = 'source/FFPS.revan.cfg'

MIMREC CFG = 'source/FFPS.mimrec.cfg'
```

Config.py

```
PASSIVE = [0.01, 0.02, 0.05, 0.1]

THICKNESS = [300, 500, 700] #um

VOXELSIZE = [10, 5, 3, 1, 0.5, 0.3, 0.1, 0.05, 0.01] #mm

Si pixel

ENERGY = [100, 500, 1000] #keV

Defines the pixel size
(assumed squares)

Defines the pixel size
(assumed squares)

REVAN_CFG = 'source/FFPS.revan.cfg'

MIMREC_CFG = 'source/FFPS.mimrec.cfg'
```

Angular Resolution Measure (ARM)

WE WANT TO ESTIMATE THE ARM AS A FUNCTION OF THE PIXEL SIZE (FOR THE DIFFERENT GEOMETRY CONFIGURATIONS VARYING THE PIXEL THICKNESS, % OF PASSIVE MATERIAL, AND FOR ENERGIES TESTABLE IN LAB)

Image reconstruction (source = FarFieldPointSource)

After reviewing the *mimrec* config file

Astropix Meeting 12/18/19

ARMs analysis

ARM (Compton cone)

Statistics of ARM histogram and fit

Analyzed Compton and pair events: 15713

Compton and pair events in histogram: 10115 (64.3734%)

RMS: 2.53623 deg

Total FWHM of fit (not of data!):

Maximum of fit (x position):

-0.124236 deg

(1-sigma uncertainty: -0.170549 deg ... -0.0763816 deg)

with maximum 523.247 cts

ARM as a function of passive % @ En=500keV

ARMs as a function of energy @ 5% passive

ARMs - worst energy res (X2) - 5% passive - 500keV

DSiPix.EnergyResolution Gauss 662 662 4.25 // (->8.5) DSiPix.EnergyResolution Gauss 122 122 2.2 // (->4.4)

The strange case of the simulations @ 100 keV

Total FWHM of fit (not of data!): 42.6714 deg Maximum of fit (x position): -85.5513 deg

ARM (Compton cone)

Compton scatter angle (phi) distribution

102

Energy [keV]

The strange case of the simulations @ 100 keV

```
Event statistics for all triggered (!) events:
 Number of events .....
                                  22488 (100.000%)
 Number of events, which passed event selections ......
                                  2920 (
12.985%)
 Reconstructable events .....
                                  22488 (100.000%)
                                    0 ( 0.000%)
    Single-site ......
    Compton
                                  2915 (12.962%)
      Decay .....
                                    0 ( 0.000%)
    Pair .....
                                       0.000%)
    Muon
                                      0.022%)
                                      0.000%)
    PET . ......
    Multi .....
                                    0 ( 0.000%)
Rejection reasons for not reconstructable events:
 Event consists of nothing but one track .....
                                  16503
 Track is not valid .....
 Electron direction is not valid .....
                                   96
 Comptel type with incompatible kinematics .....
                                  2859
  Total .....
```

After meeting on 12/18/19

Astropix Meeting Jan. 2020

ARMs as a function of energy @ 5% passive

For ideal energy resolution!

DSiPix.EnergyResolution Gauss 662 662 4.25 DSiPix.EnergyResolution Gauss 122 122 2.2

(see slide 13 for worse energy resolution case)

ARMs FWHM

Loss in the spatial resolution when pixels are too large (Apix > 3 mm2)

Effective Area and passive material

Loss in the effective area for small pixels:

- bad reconstruction due to non-optimized algorithm?
- Too small energy loss to trigger a signal in a pixel?

Effective Area and passive material

Loss in the effective area for small pixels:

- bad reconstruction due to non-optimized algorithm?
- Too small energy loss to trigger a signal in a pixel?

DSiPix.TriggerThreshold 20

Effective Area relative to the "No passive material" case

Compared to the case w/o passive material:

- up to 10% (Si) passive material the loss in effective area stays below 15%

Conclusions - parameters optimization

100 um² < Pix_{size} < 3 mm²
Passive material (Si) < 10%
Minimum energy > 300 keV

After meeting on 02/18/20

Astropix Meeting Jan. 2020

Thicknesses tests

Comparison between 500um and 700 thick pixels (both 0.5x0.5 mm and 10% passive material, with simulated FFPS @ 500keV/ 1000keV)

Passive material study @ 200keV

