LAPORAN AKHIR PRAKTIKUM BIOLOGI PERIKANAN ANALISIS ASPEK BIOLOGI (PERTUMBUHAN, REPRODUKSI, DAN KEBIASAAN MAKAN)

IKAN MAS (Cyprinus carpio)

Disusun sebagai salah satu syarat untuk memenuhi tugas laporan akhir praktikum mata kuliah Biologi Perikanan semester genap

Disusun oleh:

Ayu Mardhiana 230110130177

Wildan Shobara 230110130187

Choki Setyo Darmawan 230110130192

Kelas:

Perikanan C/Kelompok 11

UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN PROGRAM STUDI PERIKANAN JATINANGOR

2015

KATA PENGANTAR

Kami ucapkan puji dan syukur kepada Allah SWT, yang telah memberikan rahmat, hikmah, serta hidayahnya sehingga kami dapat menyelesaikan laporan akhir praktikum Biologi Perikanan ini dengan baik. Tak lupa kami ucapkan pula terima kasih kepada semua pihak yang telah membantu dalam penyelesaian makalah ini.

Makalah ini berisikan laporan akhir dari praktikum yang telah kami lakukan, mengenai analisis aspek biologi dari ikan, meliputi pengukuran pertumbuhan, pengamatan reproduksi, dan pengamatan kebiasaan makan. Ikan yang diamati adalah ikan yang sudah sangat umum dikenal oleh Masyarakat Indonesia, yaitu ikan Mas (*Cyprinus carpio*). Untuk mengamati alat reproduksi dan kebiasaan makan, ikan dibedah kemudian gonad, hati, dan ususnya diamati. Dalam makalah ini akan dibahas mengenai cara mengerjakannya dan hasil yang kami peroleh.

Akhir kata, semoga Allah SWT senantiasa melimpahkan karunia-Nya dan membalas segala amal budi serta kebaikan pihak-pihak yang membantu penulis dalam penyelesaian laporan ini. Kami memohon maaf apabila Masih ada kekurangan yang tak kami sadari dalam makalah ini, karena waktu penyelesaian yang diberikan sangat pendek. Terakhir, kami mohon doa dari para pembaca agar di Masa yang akan datang kami mampu membuat karya yang lebih baik.

Jatinangor, Maret 2015

Penyusun

DAFTAR ISI

Bal	b	Halaman
	DAFTAR TABEL	iii
	DAFTAR GAMBAR	iv
	DAFTAR LAMPIRAN	v
I	PENDAHULUAN	
	1.1 Latar Belakang	1
	1.2 Tujuan	1
II	TINJAUAN PUSTAKA	
	2.1 Deskripsi Ikan Mas	3
	2.2 Hubungan Panjang dan Berat	5
	2.3 Tingkat Kematangan Gonad (TKG)	7
	2.4 Indeks Kematangan Gonad (IKG)	
	2.5 Indeks Hepatosomatik	
	2.6 Food and Feeding Habit	10
III	METODOLOGI PRAKTIKUM	
	3.1 Waktu dan Tempat	12
	3.2 Alat dan Bahan	12
	3.3 Prosedur Kerja	13
IV	HASIL DAN PEMBAHASAN	
	4.1 Hasil	14
	4.2 Pembahasan	33
V	PENUTUP	
	5.1 Kesimpulan	37
	5.2 Saran	37
	DAFTAR PUSTAKA	38
	I AMDIDAN	30

DAFTAR TABEL

Nomor	Judul	Halaman
1	Perbedaan antara Ikan Mas Jantan dan Betina	5
2	Karakteristik Kuantitatif Ikan Mas	5
3	Data Pertumbuhan dan Rasio Kelamin Kelompok	14
4	Data Reproduksi Kelompok	14
5	Data Food and Feeding Habits Kelompok	15
6	Data Angkatan untuk Menentukan Pertumbuhan dan Rasio Ke	elamin. 15
7	Interval Rasio Kelamin Ikan Mas	21
8	Data Regresi Pertumbuhan Angkatan	23
9	Data Angkatan Reproduksi (1)	26
10	Data Angkatan Reproduksi (2)	28
11	Rasio Tingkat Kematangan Gonad	30
12	Rasio IKG	31
13	Food and Feeding Habits Angkatan	31

DAFTAR GAMBAR

Nomor	Judul	Halaman
1	Grafik Hubungan Panjang dan Berat pada Ikan	6
2	Jumlah Ikan tiap kelas SL	22
3	Rasio Kelamin Ikan Mas	22
3	Korelasi Panjang dan Berat	25
5	Persentase TKG	30
6	Persentase Food and Feeding Habits	33

DAFTAR LAMPIRAN

Nomo	Judul	Halaman
1	Beberapa Alat dan Bahan	39
2	Dokumentasi Selama Praktikum	40

BABI

PENDAHULUAN

1.1 Latar Belakang

Biologi perikanan adalah dasar ilmu dari semua aspek-aspek yang berhubungan dengan studi biologi ikan. Setiap makhluk hidup mengalami pertumbuhan selama hidupnya dan melakukan reproduksi untuk menjaga kelangsungan hidupnya. Begitu juga yang terjadi pada ikan, pertumbuhan tersebut dapat diamati secara fisik atau melalui pengamatan perkembangan jaringan. Pertumbuhan pada ikan dapat berlangsung lambat ataupun cepat.

Pertumbuhan adalah perubahan ukuran bagian-bagian tubuh dan fungsi fisiologis tubuh. Pertumbuhan ikan dipengaruhi oleh faktor internal maupun eksternal. Faktor internal itu meliputi keturunan, pertumbuhan kelamin. Pertumbuhan ikan memiliki hubungan yang erat antara pertumbuhan panjang dan berat. Berdasarkan teori hubungan panjang berat dapat dinyatakan dengan rumus W= aLb, dalam hal ini "W" = berat, "a dan b"= konstanta, dan "L"= panjang ikan Dalam menduga pertumbuhan ikan di daerah tropis sulit dilakukan karena proses pertumbuhan ikan terus menerus sehingga tidak bisa ditentukan hanya dengan melihat bentuk sirkulus pada sisik saja. Pertumbuhan ikan juga dapat menduga sebaran tingkat kematangan gonad ikan berdasarkan ukuran.

Praktikum mengenai pertumbuhan ikan, aspek reproduksi dan kebiasaan makanan ikan sangat berkaitan dengan program studi biologi perikanan di Departemen Manajemen Sumberdaya Perairan. Pentingnya pemahaman tentang biologi perikanan merupakan salah satu upaya untuk memberikan kemampuan dalam menganalisis dan menduga pertumbuhan dan perkembangbiakan ikan. Sehingga dengan demikian dapat melihat jumlah stok yang ada di alam berdasarkan ukuran ikan.

1.2 Tujuan Praktikum

Tujuan dari dilakukannya praktikum ini adalah untuk:

Mengetahui pertumbuhan ikan baik panjang dan berat

- Mengetahui hubungan panjang berat
- Mengetahui tingkat kematangan gonad
- Mengetahui ciri-ciri ikan yang akan memijah dan setelah memijah
- Mengetahui indeks kematangan gonad (IKG) dari suatu spesies ikan
- Mengetahui kebiasaan makan ikan (food and feeding habits)

BAB II

TINJAUAN PUSTAKA

2.1 Deskripsi Ikan Mas (*Cyprinus carpio* L.)

Spesies ikan Mas (*Cyprinus carpio* L.) Masuk dalam genus cyprinus dari famili cyprinidae. Ikan Mas mempunyai ciri-ciri badan memanjang, sedikit pipih kesamping. Mulut terletak diujung tengah (terminal), mempunyai sungut dua pasang, sirip punggung dengan jari-jari keras berjumlah 17-22 serta sirip dada dengan jumlah 15 jari-jari keras. Letak permulaan sirip punggung ini berseberangan dengan permulaan sirip perut yang hanya ada satu dengan jumlah jari-jari keras antara 7-9. Ikan Mas mempunyai sisik yang relatif besar dengan tipe *cycloid*, mempunyai garis rusuk yang lengkap pada pertengahan sirip ekor dengan jumlah antara 35-39 (Saanin 1984).

2.1.1 Klasifikasi Ikan Mas (*Cyprinus carpio* L.)

Klasifikasi ikan Mas (Saanin 1984) adalah sebagai berikut :

Kingdom : Animalia

Phyllum : Chordata

Subphyllum : Vertebrata

Classis : Pisces

Subclassis : Teleostei

Ordo : Ostariophysi

Subordo : Cyprinoidea

Famili : Cyprinidae

Subfamili : Cyprininae

Genus : Cyprinus

Species : (*Cyprinus carpio* L.)

2.1.2 Habitat dan Distribusi Ikan Mas

Ikan Mas hidup pada kolam-kolam air tawar dan danau-danau serta perairan umum lainnya. Dalam perkembangannya ikan ini sangat peka terhadap

perubahan kualitas lingkungan. Ikan Mas merupakan salah satu ikan yang hidup di perairan tawar yang tidak terlalu dalam dan aliran air tidak terlalu deras. Ikan Mas dapat hidup baik di daerah dengan ketinggian 150- 600 meter di atas permukaan air laut dan pada suhu 25-30°C. Meskipun tergolong ikan air tawar, ikan Mas kadang-kadang ditemukan di perairan payau atau muara sungai yang bersalinitas 25-30 ppt (Huet 1971).

Ikan Mas di Indonesia berasal dari daratan Eropa dan Tiongkok yang kemudian berkembang menjadi ikan budidaya yang sangat penting (Suseno 2000). Ikan Mas awalnya berasal dari Tiongkok Selatan. Disebutkan, budidaya ikan Mas diketahui sudah berkembang di daerah Galuh (Ciamis) Jawa Barat pada pertengahan abad ke-19. Masyarakat setempat sudah menggunakan kakaban untuk pelekatan telur ikan Mas yang terbuat dari ijuk pada tahun 1860, sehingga budi daya ikan Mas kolam di daerah Galuh disimpulkan sudah berkembang berpuluh-puluh tahun sebelumnya (Ardiwinata 1981).

Penyebaran ikan Mas di daerah Jawa lainnya, terjadi pada permulaan abad ke-20, terutama sesudah terbentuk Jawatan Perikanan Darat dari "Kementrian Pertanian" (Kemakmuran) saat itu. Dari Jawa, ikan Mas kemudian dikembangkan ke Bukittinggi (Sumatera Barat) tahun 1892. Berikutnya dikembangkan di Tondano (Minahasa, Sulawesi Utara) tahun 1895, daerah Bali Selatan (Tabanan) tahun 1903, Ende (Flores, NTT) tahun 1932 dan Sulawesi Selatan tahun 1935. Pada tahun 1927 atas permintaan Jawatan Perikanan Darat saat itu juga mendatangkan jenis-jenis ikan Mas dari Negeri Belanda, yakni jenis Galisia (Mas Gajah) dan kemudian tahun 1930 didatangkan lagi Mas jenis Frankisia (Mas Kaca). Menurut Suseno (2000), kedua jenis karper tersebut sangat digemari oleh petani karena rasa dagingnya lebih sedap, padat, durinya sedikit dan pertumbuhannya lebih cepat dibandingkan ras-ras lokal yang sudah berkembang di Indonesia sebelumnya.

2.1.3 Perbedaan Ikan Mas Jantan dan Betina

Tabel 1. Perbedaan antara Ikan Mas Jantan dan Betina (Budi 1993):

	Tabel 1. I cibedaan antara ikan was santan dan betina (badi 1999).							
No	Jantan	Betina						
1	Sirip dada relatif panjang, jari-jari	Sirip dada relatif pendek, lunak, lemah,						
	luar tebal	jari-jari luar tipis						
2	Lapisan sirip dada besar	Lapisan dalam sirip dada licin						
3	Kepala tidak melebar	Kepala relatif kecil, bentuk agak meruncing						
4	Tubuh lebih tipis/ramping dibandingkan betina pada umur yang sama	Tubuh lebih tebal/gemuk dibandingkan betina pada umur yang sama						
5	Gerakannya gesit	Gerakannya lamban dan jinak						
6	Sisik teratur dan warna cerah	Sisik teratur dan warna cerah						

2.1.4 Data Standar Nasional Ikan Mas

Tabel 2. Karakteristik Kuantitatif Ikan Mas (BSNI 1999):

Kriteria —	Jenis Kelamin					
Kriteria	Jantan	Betina				
Umur pertama matang kelamin (bulan)	8	18				
Panjang Standar (mm)	24	36				
Berat tubuh, pertama matang gonad (gram/ekor)	500	2.000				
Fekunditas (butir/kg)	-	85.000-125.000				
Diameter Telur (µm)		0,9-1,1				

2.2 Hubungan Panjang dan Berat

Hubungan panjang dan berat ikan memberikan suatu petunjuk keadaan ikan baik itu dari kondisi ikan itu sendiri dan kondisi luar yang berhubungan dengan ikan tersebut. Di antaranya adalah keturunan, sex, umur, parasit, dan penyakit. Pada keturunan yang berasal dari alam sangat sulit dikontrol, untuk mendapatkan pertumbuhan yang baik, ikan mempunyai kecepatan pertumbuhan yang bebeda pada tingkatan umur di mana waktu muda pertumbuhannya cepat, dan ketika tua menjadi lamban, dan parasit dan penyakit sangat berpengaruh bila yang di serang adalah organ-organ pencernaan. Faktor luar yang utama ialah makanan dan suhu perairan. Makanan dengan kandungan nutrisi yang baik akan mendukung

pertumbuhan dari ikan tersebut sendangkan suhu akan mempengaruhi proses kimiawi tubuh (Effendie 2002).

Berat dapat dianggap sebagai suatu fungsi dari panjang. Hubungan panjang dengan berat hampir mengikuti hukum kubik yaitu bahwa berat ikan sebagai pangkat tiga dari panjangnya. Hubungan yang terdapat pada ikan tidak demikian karena bentuk dan panjang ikan berbeda-beda.

Analisis panjang dan berat bertujuan untuk mengetahui pola pertumbuhan ikan di alam. Rumus hubungan antara panjang total ikan dengan beratnya adalah persamaan eksponensial sebagai berikut (Effendie 1979):

$$W = a L^b$$

Keterangan : W adalah berat total ikan (g), L adalah panjang total ikan (mm), a dan b adalah konstanta hasil regresi (diperoleh dengan uji statistik regresi).

Hasil plot data panjang dan berat ikan dalam suatu gambar, maka akan didapatkan grafik hubungan sebagai berikut :

Gambar 1. Grafik Hubungan Panjang dan Berat pada Ikan (Sumber : Effendi 1997)

Rumus umum hubungan panjang-berat, apabila di transformasikan ke dalam logaritma, akan menjadi persamaan: $\log W = \log a + b \log L$, yaitu persamaan linier atau persamaan garis lurus sebagai berikut :

Hubungan panjang dan berat dapat dilihat dari nilai konstanta b (Effendi 1997):

- Bila b = 3, hubungan yang terbentuk adalah isometrik (pertambahan panjang seimbang dengan pertambahan berat).
- Bila b ≠ 3 maka hubungan yang terbentuk adalah allometrik;
 - Bila b > 3 maka hubungan yang terbentuk adalah allometrik positif yaitu pertambahan berat lebih cepat daripada pertambahan panjang, menunjukkan keadaan ikan tersebut montok.

Bila b < 3, hubungan yang terbentuk adalah allometrik negatif yaitu pertambahan panjang lebih cepat daripada pertambahan berat, menunjukkan keadaan ikan yang kurus.

Pengukuran berat dari berbagai penimbangan ikan yang paling tepat adalah dengan menggunakan timbangan duduk dan timbangan gantung, adapun keuntungan yang dimiliki dari kedua timbangan ini adalah bekerjanya lebih teliti, pengaruh dari luar seperti angin dapat dikurangi, serta pendugaan pertama terhadap berat ikan yang ditimbang tidak perlu dilakukan, karena secara langsung dapat menunjukkan beratnya (Abdul 1985).

Pengukuran panjang ikan dalam penelitian biologi perikanan hendaknya mengikuti suatu ketentuan yang sudah lazim digunakan. Dalam hal ini panjang ikan dapat diukur dengan menggunakan sistem metrik ataupun sistem lainnya (Effendie 1979). Lebih lanjut dikatakan bahwa dalam pengukuran tersebut nantinya akan diperoleh nilai b, yang ikut menentukan seimbang tidaknya antara berat dan panjang ikan. Dimana nilai b yang mungkin muncul adalah b<3, b=3, atau b>3.

2.3 Tingkat Kematangan Gonad

Tingkat kematangan gonad dapat dipergunakan sebagai penduga status reproduksi ikan, ukuran dan umur pada saat pertama kali matang gonad, proporsi jumlah stok yang secara produktif matang dengan pemahaman tentang siklus reproduksi bagi suatu populasi atau spesies. Sejalan dengan pertumbuhan gonad, maka gonad akan semakin bertambah besar dan berat sampai batas maksimum ketika terjadi pemijahan. Indeks kematangan gonad semakin meningkat dengan meningkatnya pematangan gonad (Wahyuningsih dan Barus 2006).

Pengelompokan tingkat kematangan gonad (TKG) dapat dilakukan secara visual, tanpa mematikan hewannya, yaitu dengan melihat perbandingan volume visual gonad bulk ripe (>50 %). Namun, bila hanya dilihat dari ukuran gonad atau VGB (tanpa pembedahan), sangat susah untuk membedakan antara recovery dengan partly spawned atau spent pada TKG yang terakhir, gonad bersifat lembek dan berwarna pucat (Kjorsvik *et al.* 1990 dalam Utiah 2006)

Menurut Kesteven dalam (Effendi 1997) membagi tingkat kematangan gonad dalam beberapa tahap yaitu:

1. *Dara*. Organ seksual sangat kecil berdekatan di bawah tulang punggung, testes dan ovarium transparan, dari tidak berwarna sampai abu-abu. Telur tidak terlihat dengan mata biasa.

- 2. *Dara Berkembang*. Testis dan ovarium jernih, abu-abu merah. Panjangnya setengah atau lebih sedikit dari panjang rongga bawah. Telur satu persatu dapat terlihat dengan kaca pembesar.
- 3. *Perkembangan I*. Testis dan ovarium bentuknya bulat telur, berwarna kemerahmerahan dengan pembuluh kapiler. Gonad mengisi kira-kira setengah ruang ke bagian bawah. Telur dapat terlihat seperti serbuk putih.
- 4. *Perkembangan II*. Testis berwarna putih kemerah-merahan, tidak ada sperma kalau bagian perut ditekan. Ovarium berwarna oranye kemerah-merahan. Telur dapat dibedakan dengan jelas, bentuknya bulat telur. Ovarium mengisis kira-kira dua pertiga ruang bawah.
- 5. *Bunting*. Organ seksual mengisi ruang bawah. Testis berwarna putih, keluar tetesan sperma kalau ditekan perutnya. Telur bentuknya bulat, beberapa dari telur ini jernih dan masak.
- 6. *Mijah*. Telur dan sperma keluar dengan sedikit tekanan di perut. Kebanyakan telur berwarna jernih dengan beberapa yang berbentuk bulat telur tinggal dalam ovarium.
- 7. *Mijah/Salin*. Gonad belum kosong sama sekali, tidak ada telur yang bulat telur.
- 8. *Salin*. Testis dan ovarium kosong dan berwarna merah. Beberapa telur sedang ada dalam keadaan dihisap kembali.
- 9. *Pulih Salin*. Testis dan ovarium berwarna jernih, abu-abu merah

2.4 Indeks Kematangan Gonad

Indeks Kematangan Gonad yaitu suatu nilai dalam persen sebagai hasil perbandingan berat gonad dengan berat tubuh ikan termasuk gonad dikalikan 100%, atau dapat dirumuskan sebagai berikut :

$$IKG = \frac{Bg}{Bw - Bq} \times 100$$

Di mana:

IKG = Indeks Kematangan Gonad (%)

Bg = Berat Gonad (gram)

Bw = Berat Tubuh (gram)

Indeks kematangan gonad dapat menggunakan tanda utama untuk membedakan kematangan gonad berdasarkan berat gonad. Secara ilmiah hal ini berhubungan dengan ukuran dan berat tubuh ikan keseluruhannya atau tanpa berat gonad. Perbandingan antara berat gonad dengan berat tubuh (Nikolsky 1969 dalam Effendie 2002).

Perbedaan nilai IKG dapat disebabkan perubahan tingkat metabolisme pada suhu yang berbeda. Dimana perbedaan suhu akan mempengaruhi tingkat metabolisme suatu organisme budidaya. Hal ini sesuai dengan pernyataan bahwa tingkat metabolisme berhubungan dengan suhu air, sehingga tingkat metabolisme akan mengalami perubahan jika dipelihara pada suhu yang berbeda (Masonjones 2001).

Ikan yang mempunyai berat tubuh lebih berat maka secara otomatis ia akan memiliki berat gonad yang jauh lebih berat, hal ini berkaitan langsung dengan ukuran telur yang dihasilkan. Menurut Effendie (2002), umumnya sudah dapat diduga bahwa semakin meningkat tingkat kematangan, garis tengah telur yang ada dalam ovarium semakin besar pula. Berat tubuh pertama matang gonad pada ikan mas adalah 500 gram/ekor, sedangkan pada ikan betina adalah 2.500 gram/ekor (Badan Standar Nasional Indonesia 1999).

2.5 Indeks Hepatosomatik

Indeks Hepatosomatik/*Hepatosomatic Index (HSI)* adalah suatu metode yang dilakukan untuk mengetahui perubahan yang terjadi dalam hati secara kuantitatif. Hati merupakan tempat terjadinya proses vitelogenesis. Rumus yang digunakan dalam perhitungan HSI adalah sebagai berikut:

$$HSI = \frac{Bh}{Bw - Bh} \times 100$$

Dimana:

IKG = Indeks Kematangan Gonad (%)

Bh = Berat Hati (gram)

Bw = Berat Tubuh (gram)

2.6 Food and Feeding Habits

Food habits adalah pengelompokan ikan berdasarkan makanan, ada ikan pemakan plankton, pemakan tanaman, pemakan dasar, pemakan detritus, ikan buas dan ikan pemakan campuran (Effendie 2002).

Berdasarkan kepada jumlah variasi dari macam-macam makanan tadi, ikan dapat dibagi menjadi 2 bagian euryphagic yaitu ikan pemakan bermacam-macam makanan, stenophagic yaitu ikan pemakan makan yang macamnya sedikit dan monophagic yaitu ikan yang makanannya terdiri dari satu macam makanan saja. Berdasarkan tempat atau lokasi makan ikan dapat dibagi menjadi : pemakan di dasar perairan, pemakan di lapisan tengah, pemakan di permukaan, pemakan penempel. Berdasarkan waktu makan: siang hari (diurnal), malam hari (noktural). Feeding habits berhubungan dengan fungsional morfologi tubuh ikan, seperti tengkorak, rahang dan alat pencernaan.

Adaptasi akibat kebiasaan makan dibagi menjadi 4 yaitu :

- Gigi cardifornis
- Gigi canine
- Gigi molariformis
- Gigi pharynk

Adaptasi terhadap tipe mulut dibagi menjadi 4 yaitu :

- inferior (di bawah kepala)
- Terminal (di ujung depan kepala)
- Superior (di bagian atas)

BAB III

METODOLOGI PRAKTIKUM

3.1 Waktu dan Tempat

Praktikum Biologi Perikanan mengenai analisis aspek biologi ikan Mas (pertumbuhan, reproduksi, dan kebiasaan makan) dilaksanakan pada hari Senin, 2 Maret 2015 pukul 12.30-14.10 WIB bertempat di Laboratorium Akuakultur Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran.

3.2 Alat dan Bahan

3.2.1 Alat

- 1. Penggaris, untuk mengukur panjang tubuh ikan, meliputi TL, SL, dan FL
- 2. Penusuk, untuk mematikan ikan
- 3. Pinset, untuk mengeluarkan organ-organ tubuh
- 4. Pisau bedah, untuk membedah ikan
- 5. Cawan petri, sebagai wadah organ saat diamati di bawah mikroskop
- 6. Baki, sebagai wadah peralatan dan tempat ikan saat dibedah
- 7. Timbangan, untuk menimbang bobot ikan, gonad, dan hati
- 8. Mikroskop, untuk mengamati isi usus dan tingkat kematangan telur
- 9. Cover glass, untuk menutupi objek saat diamati di bawah mikroskop
- 10. Kamera, untuk mendokumentasikan kegiatan praktikum

3.2.2 Bahan

- 1. Ikan Mas, sebagai bahan yang akan dianalisis
- 2. Larutan akuades, untuk menngencerkan isi dari usus
- 3 Larutan Serra, untuk mempermudah pengamatan letak inti telur

3.3 Prosedur Kerja

BAB IV

HASIL DAN PEMBAHASAN

4.1 Hasil

Kelompok: 11 C

Hari/Tanggal: Selasa, 3 Maret 2015

Spesies Ikan : Cyprinus carpio

Asal Ikan : Waduk Cirata

4.1.1 Hasil Pengamatan Pertumbuhan dan Rasio Kelamin Kelompok

Tabel 3. Data Pertumbuhan dan Rasio Kelamin Kelompok

	Pertur	Kela	min		
	Panjang (mm	1)	Berat	Jantan	Betina
TL	SL	FL	_ (gram)		
180	150	165	98	V	-

4.1.2 Hasil Pengamatan Reproduksi Kelompok

Tabel 4. Data Reproduksi Kelompok

TKG	BG	PG	IKG (%)	BH	PH	HSI
	(gram)	(mm)		(gram)	(mm)	(%)
Mijah	10,3	65 & 70	11,745	0,5	25	0,513

Perhitungan:

a. Tingkat Kematangan Gonad (TKG) = Mijah

b. Berat Gonad (BG) = 10,3 gram

c. Panjang Gonad (PG) = 65 & 70 mm

d. Indeks Kematangan Gonad (IKG)

$$IKG = \frac{BG}{BT - BG} \times 100$$

$$IKG = \frac{10.3}{98 - 10.3} \times 100$$

e. Berat Hati = 0,5 gram

- f. Panjang Hati = 25 mm
- g. HSI

$$HSI = \frac{BH}{BT - BH} \times 100$$

$$HSI = \frac{0.5}{98 - 0.5} \times 100$$

$$HSI = 0,513$$

4.1.3 Hasil Pengamatan Food and Feeding Habits Kelompok

Tabel 5. Data Food and Feeding Habits Kelompok

		Jer	nis Pakan	3			Valamnalı
Fitoplankton	Zooplankton	Benthos	Bagian Hewan	Bagian Tumbuhan	Detritus	Ikan	Kelompok Pemakan
	-	-	-	-	-	-	Herbivora

4.1.4 Hasil Pengamatan Pertumbuhan dan Ratio Kelamin Angkatan

Tabel 6. Data Angkatan untuk Menentukan Pertumbuhan dan Rasio Kelamin

T. 1	Nama		Pertun	nbuhan	Kelamin		Rasio	
Kelompo k	Praktikan	Panjang (mm)			Berat	Tamban	D - 42	Kelamin
K	•	FL	SL	TL	(gr)	Jantan	Betina	
1	Ichfar JS Silfi Nur A. Jason Tri	145	120	185	109		√	-
	Annisa Nur							
2	Desi Triyani M. Bizky	154	130	195	131	\checkmark		
	M. Rizky Nurma W							
3	M. Yogi A.	145	120	180	98	\checkmark		
	Rian R. Sheila A.							
4	Riani A.	180	140	200	165	\checkmark		
	Rambo Safira A							
5	Ira S.	160	135	190	137	\checkmark		
	Susetyo					,		
6	Rizka Dwi	150	125	180	127	\checkmark		
	Raka							

	Nama		Pertun	nbuhan		Kelamin		Rasio
Kelompo k	Praktikan	Pa	njang (m	ım)	Berat	- Jantan	Betina	Kelamin
		FL	SL	TL	(gr)	Jantan	Detilia	
7	Gilang N Jihan Refli Debora H Andi M	158	125	197	116	\checkmark		
8	Yulida Endah Ilham	175	160	195	135	\checkmark		
9	Syafarudin Elisah F Jamaludin Rionaldhie	160	125	180	106	\checkmark		
10	Desinta Rian Nur. Suci F	172	155	193	119	V		
11	Cyntia K Guntur H Indri Roury A	146	135	170	120	\checkmark		
12	Ai Siti Aida Asep S	185	175	205	143		\checkmark	
13	Alan A. Setyo W Adinda	165	155	195	160	\checkmark		
14	Bella M Rifki Jamil	180	155	190	129	\checkmark		
15	Dony Dwiki Tanti K	185	160	200	157	$\sqrt{}$		
16	Mia Siti S Rahmat D	180	164	203	158		\checkmark	
17	Fikri K T Alwie Elsa	178	162	197	125	\checkmark		
	Eifa							
18	Eka	140	120	170	94	\checkmark		
19	Hana Ade	168	155	187	127	\checkmark		

	Nama		Pertumbuhan				ımin	Rasio
Kelompo k	Praktikan	Pa	njang (m	ım)	Berat	- Jantan	Betina	Kelamin
		FL	SL	TL	(gr)	Jantan	Detilia	
	Tia							
	Yuyun Y							
20	Rahmat	100	175	210	1.45	,		
20	Annisa	193	175	210	145	\checkmark		
	Firhan Leni M							
21	Jian	187	170	200	142	\checkmark		
21	Angga	107	170	200	142	v		
	Iqbal							
22	Nielam	183	165	210	134	\checkmark		
	Abduyana							
	Ganisa							
23	Dea F	169	146	184	124	\checkmark		
	Refky							
	Fauziah							
24	Erik	156	138	177	111	\checkmark		
	Luthfan							
	Taufiq							
25	Puty	165	138	200	143	\checkmark		
	Fevi							
	Zais							
26	Zelikha	188	170	200	162	\checkmark		
	Rifki GP							
	Teguh	464	4.50	4.50	440	,		
27	Dyah	164	150	170	118	\checkmark		
	Wahyu							
28	Rika	100	175	210	150		$\sqrt{}$	
20	Esti Mutia Muammar	190	175	210	153		V	
	Rahman							
29	R. Nadya	180	170	210	165	\checkmark		
23	Angga	100	170	210	105	•		
20	Ridwan	167	120	107	125	$\sqrt{}$		
30	Sofie	167	128	187	125	V		
	Fadhil							
24	Ina	4=0	4.00	400			,	
31	Raka	176	160	196	151		$\sqrt{}$	
32	Indah	160	155	1 Q E	1 <i>1</i> E	$\sqrt{}$		
34	Anggi Nawang	169	155	185	145	V		
	Nawang							

	Nama		Pertun	nbuhan		Kelamin		R
Kelompo k	Praktikan	Pa	njang (m		Berat	Jantan	Betina	K
	- -	FL	SL	TL	(gr)	Jantan	Беина	
33	Rocela Sarimanah Reka Novitasari Bastian	165	150	190	128	V		
34	Sheillawati	180	175	200	150	\checkmark		
	Satria Adhar							
35	Nuraya Demas Detrik	184	170	210	128		\checkmark	
36	Cleovanya Gulam	173	160	185	128	\checkmark		
37	Aliyah Aldwin Arisca	159	140	175	104	\checkmark		
38	Yuliana Candra Nurul	193	180	200	134	V		
39	Ayu T Elisa Agung Rio	165	145	180	114	\checkmark		
40	Widi Eki Mediana Nabila	164	155	185	121		\checkmark	
41	Hasbi Dehan Santi	178	165	200	115		\checkmark	
42	Riza Fauzi	195	190	200	155	\checkmark		
	Dea Hari							
43	Satrio	168	150	185	96,45	$\sqrt{}$		
	Gun Gun							
44	Sintia Thesar M. Aditya Ayu Nfs	175	160	198	147,9	\checkmark		

Kalampa	Nama		Pertun	nbuhan		Kela	ımin	Rasio
Kelompo k	Praktikan	Pa	njang (m	ım)	Berat	- Jantan	Betina	Kelami
N.		FL	SL	TL	(gr)	Jantan	Deulla	
45	Dzaki Zulfikar Melinda	184	175	190	139,1	\checkmark		
46	Dini Rayana Adli Rury	131	120	185	141	\checkmark		
47	Fahri . F Risa Musa	190	165	215	153	\checkmark		
48	Dita Tania Windy Rizal	219	198	165	145	\checkmark		
49	Aisyah . D Syarifudin Fathin	205	165	215	188	\checkmark		
50	Dhita . H Syifa .Z Dicky	185	140	150	133	\checkmark		
51	Riana . F Hilman Ardi	165	150	185	126		\checkmark	
52	Zahra Dyah Bagus	177	155	195	168	V		
53	Rahma Aulia . R Galdio	175	158	195	159	\checkmark		
54	Ali Aji Rahman R. Maria	176	163	190	122		\checkmark	
	Hanna					,		
55	Bayu . R Ryan	175	170	200	130	V		
56	Ayu . M Wildan . S Choki	165	150	180	98	\checkmark		
57	Aisyah . A Sabil Fachri . A	170	160	190	130	\checkmark		

77.1	Nama		Pertur	nbuhan		Kela	ımin	Rasio
Kelompo k	Praktikan	Pa	njang (m	ım)	Berat	Jantan	Betina	Kelamin
K	_	\mathbf{FL}	SL	TL	(gr)	Jaiitaii	Detilia	
	Resna							
58	Rahmadi	145	135	165	80	\checkmark		
	Christoper							
	Kalysta							
59	Jumaidi	153	139	164	98	\checkmark		
	Yuki							
	Dwi . M							
60	Fadhillah	183	175	195	139.96		\checkmark	
	Agung . F							
	Kartika							
61	Rossa	177	155	193	135.26	\checkmark		
	Taufik . I							
	M . Fahmi							
62	Logica	175	143	185	144.28	\checkmark		
	R. Mawar							
	Gilang							
63	Geugeuh	170	160	190	156.32	\checkmark		
	Dina							
	Kelana							
64	Takbir	190	182	205	170		\checkmark	
	Silmi							
	Sona							
65	Reyhan	178	155	190	140.16		\checkmark	
	Eva							
	Deny							
66	Shafwan	185	160	200	160	\checkmark		
00	Fahira	100	100	200	100	•		
	Chervin							

Persentase:

Jantan =
$$\frac{54}{66} \times 100 = 81,82 \%$$

Betina =
$$\frac{12}{66} \times 100 = 18,18$$

4.1.5 Pengelompokan Data Panjang (Standard Length) Hasil Pecobaan

Pengelompokan data dilakukan dengan metode statistika menggunakan distribusi frekuensi. Rumus yang dapat digunakan untuk mengelompokan data

menggunakan tabel distribusi frekuensi adalah rumus Sturge. Jumlah kelas interval dapat dihitung dengan rumus berikut :

$$K = 1 + 3,3 \text{ Log } n$$

Dimana:

K = Jumlah Kelas Interval

n =Jumlah Data observasi

log = Logaritma

Dari data tersebut maka dapat dihitung jumlah kelas dari 66 data tersebut:

K = 1 + 3.3 Log n

K = 1 + 3.3 Log 66

K = 7,05 atau 7

Jumlah kelas dapat dibulatkan menjadi 7. Kemudian, untuk menghitung panjang kelas dari 66 data tersebut, digunakan rumus :

Panjang Kelas =

$$\frac{198-120}{7} = 11$$

Jadi, panjang kelas yang didapatkan adalah 11

4.1.6 Hasil Pengamatan Pertumbuhan dan Ratio Kelamin Angkatan

Tabel 7. Interval Rasio Kelamin Ikan Mas

No	Kelas SL	Jumlah	Jantan	Betina	% Jantan	% Betina
1	120 - 131	2	2	0	3%	0%
2	132 - 143	8	8	0	12%	0%
3	144 - 155	19	16	3	24%	5%
4	156 - 167	24	20	4	30%	6%
5	168 - 179	9	6	3	9%	5%
6	180 - 191	4	2	2	3%	3%
7	192 - 203	0	0	0	0%	0%
	Jumlah	66	54	12	82%	18%

Jumlah Ikan tiap Kelas SL

Grafik 1. Jumlah Ikan tiap kelas SL

Rasio Kelamin Ikan

Grafik 2. Rasio Kelamin Ikan Mas

4.1.7 Hasil Pengamatan Regresi Pertumbuhan Angkatan

Tabel 8. Data Regresi Pertumbuhan Angkatan

Kelompo k	SL	Bobot	Log L (X)	Log W(Y)	(Log L) ²	Log L.Log W
1	120	109	2,07918125	2,0374265	4,32299465	4,23617896
2	130	131	2,11394335	2,1172713	4,4687565	4,47579158
3	120	98	2,07918125	1,99122608	4,32299465	4,14011991

00446 92798 48709 98263 51123 38415 1363
92798 48709 98263 51123 38415 1363
48709 98263 51123 38415 1363
98263 51123 88415 1363
51123 88415 1363
38415 1363
1363
35002
50074
75386
39154
0263
58212
15416
49043
02798
03067
56922
32074
9032
74387
15851
21038
50433
0346
98467
52968
72663
11285
4812
05549
0242
5436
8118
20097
72833
99082
56437
22624

Kelompo k	SL	Bobot	Log L (X)	Log W(Y)	(Log L) ²	Log L.Log W
43	150	96,45	2,17609126	1,98430223	4,73537317	4,31802274
44	160	147,93	2,20411998	2,17005626	4,8581449	4,78306436
45	175	139,14	2,24303805	2,143452	5,03121969	4,80784439
46	120	141	2,07918125	2,14921911	4,32299465	4,46861607
47	165	193	2,21748394	2,28555731	4,91723504	5,06818664
48	198	145	2,29666519	2,161368	5,274671	4,96393865
49	165	188	2,21748394	2,27415785	4,91723504	5,04290852
50	140	133	2,14612804	2,12385164	4,60586555	4,55805755
51	150	126	2,17609126	2,10037055	4,73537317	4,57059798
52	155	168	2,1903317	2,22530928	4,79755295	4,87416546
53	158	159	2,19865709	2,20139712	4,83409299	4,84011739
54	163	122	2,2121876	2,08635983	4,893774	4,61541936
55	170	110	2,23044892	2,04139269	4,97490239	4,55322211
56	150	98	2,17609126	1,99122608	4,73537317	4,33308966
57	160	130	2,20411998	2,11394335	4,8581449	4,65938479
58	135	80	2,13033377	1,90308999	4,53832197	4,05421686
59	139	98	2,1430148	1,99122608	4,59251243	4,26722695
60	175	140	2,24303805	2,14612804	5,03121969	4,81384684
61	155	135	2,1903317	2,13033377	4,79755295	4,66613758
62	143	144	2,15533604	2,15836249	4,64547343	4,65199646
63	160	156	2,20411998	2,1931246	4,8581449	4,83390975
64	182	170	2,26007139	2,23044892	5,10792268	5,04097379
65	155	140	2,1903317	2,14612804	4,79755295	4,70073226
66	160	161	2,20411998	2,20682588	4,8581449	4,86410901
	Jumlah		144,1946	140,063081	315,204506	306,139154

Nilai a = 0,4294; b = 0,7748; R^2 = 0,0154; R = 0,1241

2.3 2.25 2.2 f(x) = 0.77x + 0.432.15 $R^2 = 0.28$ **Berat** Linear () 2.1 2.05 2 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 **Panjang**

Grafik Regresi Hubungan Panjang Berat

Grafik 3. Korelasi Panjang dan Berat

Menentukan Nilai b sebagai Tipe Pertumbuhan

Dengan menggunakan aplikasi microsoft excel, nilai b dapat dihitung dengan cara menggunakan rumus : SLOPE (log w;logL), maka didapatkan,

$$b = 0,7748$$

atau dengan menggunakan rumus manual:

$$\log a = \frac{(140,06 \times 315,20) - 144,19(144,19 \times 306,13)}{(66 \times 315,20) - 20790,75}$$

 $\log a = 0,4294$

Sehingga nilai b dapat dicari dengan cara:

$$\begin{array}{c}
 a \\
 N \times \log i \\
 \vdots \\
 \sum \log W - i \\
 \vdots \\
 b i \\
 b i \\
 \end{array}$$

$$b i \frac{140,06 - (66 \times 0,4294)}{144,19} \\
 b i 0,7748$$

4.1.8 Hasil Pengamatan Reproduksi Angkatan

Tabel 9. Data Angkatan Reproduksi (1)

Kel	TK	BW	BG	PG	IKG	Berat	Panjang	HSI
	G	(gr)	(gr)	(mm)	(%)	Hati	Hati	(%)
1	4	109	14,33	140	15,14%	0,26	20	0,24%
2	5	131	18	120	15,93%	1	30	0,77%
3	4	98	3,47	140	3,67%	0,67	40	0,69%
4	5	165	17	135	11,49%	0,35	35	0,21%
5	5	137	1,71	170	1,26%	0,25	65	0,18%
6	6	127	1,4	130	1,11%	0,74	25	0,59%
7	6	116	8	150	7,41%	1	45	0,87%
8	6	135	18	135	15,38%	0,51	30	0,38%
9	6	106	8,43	140	8,64%	0,58	25	0,55%
10	5	119	9,29	120	8,47%	0,54	20	0,46%
11	6	120	9,2	170	8,30%	0,54	30	0,45%
12	1	143	3,62	60	2,60%	0,79	40	0,56%
13	5	160	10,76	65	7,21%	0,42	24	0,26%
14	6	129	8,43	140	6,99%	0,58	25	0,45%
15	1	157	1,26	135	0,81%	0,75	40	0,48%
16	1	158	1,5	290	0,96%	0,47	60	0,30%

17.1	TK	\mathbf{BW}	BG	PG	IKG	Berat	Panjang	HSI
Kel 17	G	(gr)	(gr) 13,28	(mm) 130	11,89%	Hati 0,16	Hati (ໝີສົກ)	0,13%
18	6	94	10,63	120	12,75%	0,10	25	0,36%
19	6	127	11,55	130	10,00%	0,35	35	0,28%
20	6	145	8,23	70	6,02%	0,35	20	0,24%
21	4	142	9,45	110	7,13%	0,46	30	0,32%
22	5	134	16	60	13,56%	0,40	50	0,32%
23	2	124	2	6	1,64%	0,35	5	0,13%
24	5	111	11	140	11,00%	0,35	7	0,23%
25	2	143	4	60	2,88%	2,7	, 1,5	1,92%
26	2	162	25	00	18,25%	1	1,5	0,62%
27	2	118	12	6	11,32%	0,8	5	0,68%
28	2	153	4	62	2,68%	0,32	15	0,33%
29	2	165	8,2	6	5,23%	0,32	5	0,21%
30	2	125	8	12,5	6,84%	0,66	7	0,53%
31	4	151	4,4	40	3,00%	0,93	25	0,62%
32	5	145	19	70	15,08%	0,65	29	0,45%
33	1	128	2	40	1,59%	0,5	20	0,39%
34	5	150	10	10	7,14%	1	20	0,67%
35	2	128	4	90	3,23%	0,41	20	0,32%
36	6	128	11	65	9,40%	0,38	15	0,30%
37	6	104	11	110	11,83%	0,15	10	0,14%
38	5	134	12,04	70	9,87%	1,01	25	0,76%
39	6	114	16,18	60	16,54%	0,53	30	0,47%
40	6	121	15,29	14	14,46%	0,53	2,7	0,44%
41	1	115	4,03	110	3,63%	0,82	15	0,72%
42	6	155	14,55	85	10,36%	0,88	20	0,57%
43	5	96,45	15,35	70	18,93%	0,3	15	0,31%
		147,9						
44	5	3	21,4	15,5	16,91%	0,72	2	0,49%
45	_	139,1	10.07	6.5	0.450/	0.61	4 =	0.440/
45	5	4	10,87	6,5	8,47%	0,61	1,5	0,44%
46	6	141	6,8	165	5,07%	0,63	25	0,45%
47	5	193	13	150	7,22%	0,65	23	0,34%
48	5	145	23	95	18,85%	1	32	0,69%
49	5	188	16	120	9,30%	0,6	20	0,32%
50	4	133	6	90	4,72%	0,5	35	0,38%
51	1	126	2,43	50	1,97%	0,34	20	0,27%
52 52	5	168	15	10,5	9,80%	1,24	5	0,74%
53	6	159	13,28	70	9,11%	8,0	35	0,51%

Kel 54	тк Ģ	BW (gr)	BG (gr.) 4,17	PG (mm)	IKG 3,54%	Berat Hati 0,14	Panjang Hati (m͡t͡m)	HSI 0,11%
55	6	110	11	150	11,11%	0,32	25	0,29%
56	6	98	10,3	135	11,74%	0,5	25	0,51%
57	2	130	2,56	40	2,01%	0,2	8	0,15%
58	6	80	5,66	110	7,61%	0,41	20	0,52%
59	5	98	7,87	116	8,73%	0,28	14	0,29%
60	5	140	8,38	57	6,37%	0,34	22	0,24%
61	6	135	10,28	82	8,24%	0,67	18	0,50%
62	5	144	9,76	117	7,27%	0,26	12	0,18%
63	5	156	25,22	100	19,28%	0,46	15	0,30%
64	5	170	23,36	92	15,93%	0,18	19	0,11%
65	5	140	9,24	63	7,07%	0,32	25	0,23%
66	6	161	10,63	84	7,07%	0,45	35	0,28%

Keterangan:

- 1. Dara
- 2. Dara Berkembang
- 3. Perkembangan I
- 4. Perkembangan II
- 5. Bunting
- 6. Mijah
- 7. Mijah/Salin
- 8. Salin
- 9. Pulih Salin

Tabel 10. Data Angkatan Reproduksi (2)

			Letak Inti				
Kel	Fekunditas	Diameter	Tengah (butir)	Menuju Kutub (butir)	Melebur (butir)		
1	3200	44	0	0	0		
2							
3							
4							

			Letak Inti				
Kel	Fekunditas	Diameter	Tengah (butir)	Menuju Kutub (butir)	Melebur (butir)		
5							
6							
7							
8							
9							
10							
11							
12	0	0	0	0	0		
13							
14							
15							
16	0	0	0	0	0		
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28	0	0	0	0	0		
29							
30							
31	2832	40	0	0	0		
32							
33							
34					_		
35	0	0	0	0	0		
36							
37							
38							
39							
40	1400	66	5	15	0		

		_		Letak Inti	
Kel	Fekunditas	Diameter	Tengah (butir)	Menuju Kutub (butir)	Melebur (butir)
41	0	0	0	0	0
42					
43					
44					
45					
46					
47					
48					
49					
50					
51	0	0	0	0	0
52					
53					
54					
55					
56					
57					
58					
59					
60	1356	67	3	17	10
61					
62					
63					
64	1111	60	6	15	9
65	1912	52	9	17	4
66					

Tabel 11. Rasio Tingkat Kematangan Gonad

Tingkat Kematangan Gonad	Jumlah (ekor)	Jantan	Betina	%Jantan	%Betina
Dara	7	3	4	5 %	7 %
Dara berkembang	9	8	1	12 %	2 %
Perkembangan I	0	0	0	0 %	0 %
Perkembangan II	5	3	2	5 %	4 %
Bunting	24	20	4	30 %	7 %
Mijah	21	20	1	30 %	2 %

Pulih salin	0	0	0	0 %	0 %
Jumlah	66	54	12	82%	12%

Persentase Tingkat Kematangan Gonad

Grafik 4. Persentase TKG

Rasio Indeks Kematangan Gonad Angkatan

Tabel 12. Rasio IKG

No	Kelas IKG	Jumlah	n Jantan Betina		% Jantan	% Betina
1	0,1-2,8	14	10	4	15%	7%
2	2,9 - 5,6	6	6 4		6%	4%
3	5,7 - 8,4	16	14	2	21%	4%
4	8,5 - 11,2	14	13	1	20%	2%
5	11,3 - 14,0	8	6	2	9%	4%
6	14,1 - 16,8	6	5	1	8%	2%
7	16,9 - 19,6	2	2	0	3%	0%
	Jumlah	66	54	12	82%	18%

4.1.9 Hasil Pengamatan Food and Feeding Habits Angkatan

Tabel 13. Tabel Food and Feeding Habits Angkatan

	Jenis Pakan					laslas 1		
Ke -	fit	ZO	benth	bag.	bag.tm	detrit	ika	kelompok
1	$\sqrt{}$	\checkmark	-	-	-	-	-	OMNIVORA
2	$\sqrt{}$	\checkmark	-	-	-	-	-	OMNIVORA
3	$\sqrt{}$	$\sqrt{}$	-	-	-	-	-	OMNIVORA
4	$\sqrt{}$	$\sqrt{}$	-	-	-	-	-	OMNIVORA
5	$\sqrt{}$	$\sqrt{}$	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
7	-	$\sqrt{}$	-	-	-	-	-	KARNIVORA
8	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-
11	-	-	-	=	=	=	-	-
12	$\sqrt{}$	$\sqrt{}$	-	-	-		-	OMNIVORA
13	$\sqrt{}$	$\sqrt{}$	-	=	=	=	-	OMNIVORA
14	-	-	-	=	=	=	-	-
15	-	-	-	-	=	-	-	-
16	-	-	-	-	-		-	-
17	$\sqrt{}$	$\sqrt{}$	-	_	-	_	-	OMNIVORA
18	_	-	-	_	-	_	-	-
19	_	-	-	_	-	_	-	-
20	-	_	_	-	-	_	-	-
21	_	$\sqrt{}$	-	_	-	_	-	KARNIVORA
22	$\sqrt{}$	-	_	_	-	_	-	HERBIVORA
23	$\sqrt{}$	-	_	_	-	_	-	HERBIVORA
24	$\sqrt{}$	_	-	_	-	_	_	HERBIVORA
25	$\sqrt{}$	_	-	_	-	_	_	HERBIVORA
26	$\sqrt{}$	$\sqrt{}$	-	_	-	_	_	OMNIVORA
27	$\sqrt{}$	$\sqrt{}$	_	_	=	-	$\sqrt{}$	OMNIVORA
28	$\sqrt{}$	$\sqrt{}$	_	_	=	-	_	OMNIVORA
29	$\sqrt{}$	$\sqrt{}$	_	_	_	-	_	OMNIVORA
30	$\sqrt{}$	_	_	_	_	-	_	HERBIVORA
31	$\sqrt{}$	_	_	_	_	-	_	HERBIVORA
32	$\sqrt{}$	_	_	_	_	_	_	HERBIVORA
33	$\sqrt{}$		_	_	_	_	_	OMNIVORA
34		$\sqrt{}$	_	_	_	_	_	OMNIVORA
35		_	_	_	_	_	_	HERBIVORA
36		_	_	_	_	_	_	HERBIVORA
37		_	_	_	_	_	_	HERBIVORA
٠,	-							TIDAK
38	-	-	-	=	-	-	-	TERIIDENTIFIKASI
39	$\sqrt{}$	\checkmark	-	\checkmark	-	-	-	OMNIVORA
40	-	-	-	\checkmark	-	-	-	KARNIVORA TIDAK
41	-	-	-	-	-	-	-	TERIIDENTIFIKASI TIDAK

Persentase Food and Feeding Habits Ikan Mas

Persentase Food and Feeding Habits Ikan Mas

Grafik 5. Persentase Food and Feeding Habits

4.2 Pembahasan

4.2.1 Pembahasan Pertumbuhan dan Ratio Kelamin

Setelah didapatkan data dari praktikum di atas, ukuran panjang tubuh ikan Mas dari yang kelompok kami dapatkan adalah :

- o Total Length (TL) dengan panjang 180 mm
- o Standard Length (SL) dengan panjang 150 mm
- o Fork Length (FL) dengan panjang 165 mm

Pada data pertumbuhan angkatan di atas, maka dapat dianalisis bahwa ada 66 data perhitungan panjang ikan, yang kemudian dikelompokkan berdasarkan metoda statistik yaitu kaidah Sturge. Dari hasil perhitungan, didapatkan sejumlah 7 kelas dengan interval 11.

Kemudian, setelah data dikelompokan berdasarkan rentang panjang ikan standar (*Standard Length*/SL), didapatkan 7 kelas dengan rincian, kelas SL = 120-131 mm dengan jumlah 8 ikan jantan dan 1 ikan betina, lalu kelas 132-143 mm dengan jumlah 10 ikan jantan, kelas 144-155 dengan jumlah 14 ikan jantan dan 2 ikan betina, kelas 156-167 mm dengan jumlah 12 ikan jantan dan 4 ikan betina, kelas 168-179 mm dengan jumlah 7 ikan jantan dan 4 ikan betina, kelas 180-191 mm dengan jumlah 2 ikan jantan dan 1 ikan betina, dan pada kelas 192-203 mm sebanyak 1 ikan jantan. Apabila merujuk pada data tersebut, dapat disimpulkan bahwa ukuran ikan rata-rata di Waduk Cirata adalah sedang, dengan ukuran terbanyak berada pada kelas 144-155 mm.

Kemudian pada perhitungan rasio kelamin dari 66 ikan Mas, didapatkan 54 ikan Mas berjenis kelamin jantan atau sekitar 82 % dari jumlah populasi dan 12 ikan Mas berjenis kelamin betina atau sekitar 18% dari jumlah populasi ikan Mas. Dapat disimpulkan bahwa ikan jantan mendominasi populasi ikan Mas di Waduk Cirata. Selanjutnya, berdasarkan data perhitungan hasil regresi pertumbuhan angkatan diatas, maka didapatkan nilai b sebesar 0,7748. Dari hasil tersebut menunjukkan bahwa nilai b < 3 yang artinya pertumbuhan ikan bersifat alometrik negatif, dimana pertambahan berat < panjang. Artinya, rata-rata ikan di Waduk Cirata memiliki tubuh yang panjang dan kurus.

4.2.2 Pembahasan Reproduksi

Sebelum ikan dibedah, sudah dapat ditentukan bahwa gonad ikan tersebut adalah jantan. Hal ini terbukti pada saat dielus bagian perutnya, keluar cairan sperma dari lubang urogenitalnya. Setelah dilakukan pembedahan pada ikan, ditemukan bahwa ikan tersebut merupakan ikan jantan. Hal ini ditandai dengan gonad yang berwarna putih dan ada sperma yang keluar. Gonad tesebut memiliki warnanya putih dan agak sedikit kemerah-merahan. Disimpulkan bahwa ikan tersebut tingkat kematangan gonadnya berada pada tahap mijah.

Dalam perhitungan rasio tingkat kematangan gonad angkatan, ke-66 data di atas dikelompokan menjadi 9 kelas berdasarkan fase perkembangan gonad. Didapatkan hasil, jumlah ikan pada fase dara adalah 3 ikan jantan dan 4 ikan betina, pada fase dara berkembang ada 8 ikan jantan dan 1 ikan betina, pada fase perkembangan I baik ikan jantan maupun ikan betina tidak ada, pada fase perkembangan II ada 3 ikan jantan dan 2 ikan betina, pada fase bunting ada 20 ikan jantan dan 4 ikan betina, dan pada fase mijah ada 20 ikan jantan dan 1 ikan betina. Sementara itu, pada fase mijah/salin, fase salin dan fase pulih salin tidak ada. Setelah melihat perhitungan data tersebut, maka dapat disimpulkan bahwa baik ikan jantan maupun ikan betina sebagian besar berada fase bunting dan mijah, yang artinya siap untuk memijah.

Dalam perhitungan indeks kematangan gonad (IKG), data nilai IKG dapat dibagi menjadi 7 kelas, dengan nilai IKG pada kelas 0,1-2,8 ada 10 ikan jantan dan 4 ikan betina, lalu kelas 2,9-5,6 ada 4 ikan jantan dan 2 ikan betina, kelas 5,7-8,4 ada 14 ikan jantan dan 2 ikan betina, kelas 8,5-11,2 ada 13 ikan jantan dan 1 ikan betina, kelas 11,3-14,0 ada 6 ikan jantan dan 2 ikan betina, kelas 14,1-16,8 ada 5 ikan jantan dan 1 ikan betina, dan kelas 16,9-19,6 ada 2 ikan jantan. Dapat disimpulkan bahwa ikan pada umumnya memiliki indeks kematangan gonad pada interval 2%-18%, yang artinya jika dihubungkan dengan tingkat kematangan gonad, berada pada fase dara-mijah.

Perhitungan HSI dapat dijelaskan sebagai berikut. *Hepatosomatic Index* (HSI) adalah persentase antara berat hati dengan berat tubuh. Perhitungan HSI berguna untuk mengetahui apakah di dalam hati sudah terjadi proses vitelogenesis (pembentukan kuning telur) pada tubuh ikan Mas betina. Kuning telur nantinya akan berfungsi untuk cadangan makanan embrio selama berada di dalam telur. Nilai HSI dapat mulai dihitung sejak fase tingkat kematangan dara, yaitu saat telur mulai berkembang dalam tubuh induk betina meskipun belum terlihat dengan mata biasa. Setelah dilakukan perhitungan, didapatkan rata-rata ikan betina memiliki nilai HSI sebesar 0,36%. Artinya, pembentukan kuning telur sudah dimulai meskipun jumlahnya masih sangat sedikit.

Fekunditas adalah jumlah telur matang yang akan dikeluarkan oleh induk (Bagenal 1978 dalam Effendie 1997). Bila merujuk pada data dari BSNI tahun 1999, fekunditas untuk ikan Mas betina dengan bobot 100 gram adalah sekitar 8500-12500 butir. Akan tetapi, pada data angkatan terlihat bahwa nilai fekunditas berkisar antara 1111-3200 butir, dengan bobot rata-rata mencapai 137,83 gram. Artinya, jumlah fekunditas jauh lebih sedikit daripada yang seharusnya. Hal ini dapat disebabkan oleh banyak faktor, terutama kesalahan dari praktikan sendiri. Kemungkinan banyak telur yang belum terlihat jelas sehingga menyebabkan nilai fekunditas menjadi kecil. Sementara itu, untuk tingkat kematangan telur, sebagian besar letak intinya menuju kutub dengan jumlah 64 butir.

4.2.3 Pembahasan Food and Feeding Habits

Hasil pengamatan yang didapatkan kelompok kami menunjukan adanya dua jenis fitoplankton yang ditemukan dalam usus ikan Mas yang dianalisis, yaitu *Nitzschia closterium* dan *Synedra acus*, masing-masing sebanyak satu buah.

Sementara itu, dari data *Food and Feeding Habits* ikan Mas angkatan di atas, maka dapat dianalisis kebiasaan makan ikan Mas melalui jenis pakan yang ditemukan pada pencernaannya. Baik ikan Mas jantan maupun betina menunjukan bahwa sebanyak 66% memakan fitoplankton, 31% memakan zooplankton, dan 3% memakan bagian hewan. Dapat disimpulkan bahwa fitoplankton dan zooplankton merupakan pakan utama mereka, sedangkan bagian hewan menjadi pakan tambahan. Nilai indeks preponderan tidak dapat dihitung, karena volume akuades yang digunakan untuk mengencerkan isi usus tidak dihitung sehingga tingkat trofik juga tidak diketahui.

BAB V

PENUTUP

5.1 Kesimpulan

Dari praktikum yang telah kami lakukan, kami dapat mengetahui pertumbuhan dan rasio kelamin, reproduksi, dan *Food and Feeding Habits* ikan Mas (*Cyprinus carpio*) yang berasal dari Waduk Cirata. Dapat disimpulkan bahwa :

- Ikan Mas (*Cyprinus carpio*) memiliki makanan utama berupa fitoplankton dan zooplankton
- Tingkat trofik tidak dapat diketahui karena nilai indeks preponderan tidak dihitung
- Sebagian besar ikan Mas memiliki panjang *Standard Length* (SL) pada kelas 155-167 mm. Artinya, rata-rata ikan memiliki ukuran yang sedang
- Jumlah ikan berkelamin jantan jauh lebih banyak daripada ikan yang berkelamin betina, dengan persentase ikan jantan 82% dan ikan betina 18%
- Gonad ikan Mas jantan yang diamati umumnya berada pada tahap bunting dan mijah, dilihat dari warna gonad yang putih dan mengeluarkan sperma saat ditekan, sedangkan ikan Mas betina pada umumnya berada pada tahap perkembangan II dan bunting, hal ini dilihat dari ovarium yang telah menghasilkan sel telur yang berwarna jernih dan bulat

5.2 Saran

Sebaiknya penelitian mengenai analisis aspek biologi pada ikan Mas (*Cyprinus carpio*) lebih banyak lagi dilakukan dan lebih intensif oleh pihak-pihak terkait, agar data-data yang masih belum ada dapat dilengkapi lagi. Dengan demikian, diharapkan pengetahuan mengenai aspek biologi ikan Mas dapat bertambah lagi di masa depan.

DAFTAR PUSTAKA

- Abdul, R. 1985. Ekologi Ikan. Fakultas Perikanan Malang: Universitas Brawijaya
- Ardiwinata, R.O. 1981. *Pemeliharaan Ikan Jilid 3: Pemeliharaan Gurami*. Bandung: Sumur Bandung
- Effendie, M.I. 1997. Biologi Perikanan. Jakarta: Yayasan Pustaka Nusatama
- Effendie, M.I. 2002. Biologi Perikanan. Jakarta: Yayasan Pustaka Nusatama
- Fujaya, Y. 2002. *Fisiologi Ikan*. Dasar Pengembangan Teknologi Perikanan. DIKTI. Jakarta. 181 hal.
- Herawati, Titin. 2014. Modul Praktikum Biologi Perikanan. Sumedang: Unpad
- Huet, M. 1971. Text Book of Fish Culture. Fishing News (Book) Ltd., London
- Kementerian Kelautan dan Perikanan. 1999. *Induk Ikan Mas (Cyprinus carpio Linneaus) strain Majalaya kelas induk pokok (Parent Stock)*. Jakarta: Badan Standar Nasional
- Masonjones, H.D., 2001. The Effect of Social Context and Reproductive Status on The Metabolic Rates of Dwarf Seahorse (Hippocampus zosierae). Compo Biochem. Physol., Part A.
- Saanin, H. 1984. Taksonomi dan Kunci Identifikasi Ikan. Jakarta: Bina Cipta
- Santoso, Budi. 1993. *Petunjuk Praktis Budidaya Ikan Mas.* Yogyakarta: Kanisius
- Suseno, Djoko. 2000. *Pengelolaan Usaha Pembenihan Ikan Mas*. Jakarta : Penebar Swadaya
- Tang, U. M., H. Alawi, dan R.M. Putra. 1999. Pematangan Gonad Ikan Baung (Mystus Nemurus) dengan Pakan dan Lingkungan yang Berbeda. *Hayati*, 6:10-12p
- Utiah, A. 2006. Penampilan Reproduksi Induk Ikan Baung (Hemibagrus nemurus Blkr) dengan Pemberian Pakan Buatan yang Ditambahkan Asam Lemak n-6 dan n-3 dan dengan Implantasi Estradiol-17 dan Tiroksin. Disertasi. Institut Pertanian Bogor.
- Wahyuningsih, Hesti dan Dr. Ing Ternala Alexander Barus. 2006. *Buku Ajar Ikhtiologi*. Medan : Universitas Sumatera Utara.

Lampiran 1. Beberapa Alat dan Bahan

Gambar 1. Ikan Mas (Sumber: Dokumentasi Pribadi, 2015)

Gambar 2. Penggaris (Sumber: Dokumentasi Pribadi, 2015)

Gambar 3. Penusuk (Sumber: Dokumentasi Pribadi, 2015)

Gambar 4. Pinset (Sumber: Dokumentasi Pribadi, 2015)

Gambar 5. Pisau bedah (Sumber: Dokumentasi Pribadi, 2015)

Gambar 6. Cawan petri (Sumber: Dokumentasi Pribadi, 2015)

Gambar 7. Baki (Sumber: Dokumentasi Pribadi, 2015)

Lampiran 2. Dokumentasi Selama Praktikum

Gambar 8. Ikan yang sudah dibedah (Sumber: Dokumentasi Pribadi, 2015)

Gambar 9. Gonad jantan dan hati (Sumber: Dokumentasi Pribadi, 2015)

Gambar 10. Usus (Sumber: Dokumentasi Pribadi, 2015)