Московский физико-технический институт (национальный исследовательский университет) Физтех-школа физики и исследований им.Ландау

Лабораторная работа №1.3.3 (Лабораторный практикум по общей физике)

Определение вязкости воздуха по скорости течения через тонкие трубки

Работу выполнил: Климанов Даниил, группа Б02-115

г. Долгопрудный, 2022

Цель работы: экспериментально выявить участок сформированного течения; определить режим ламинарного и турбулентного течения; определить число Рейнольдса

Оборудование: металлические трубки, укреплённые на горизонтальной подставке; газовый счётчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер

1 Теоретическое введение:

Характер движения газа или жидкости в трубке определяется безразмерным числом Рейнольдса: $Re=\frac{v\cdot r\cdot \rho}{\eta}$, где v - скорость потока; r - радиус трубки; ρ - плотность движущейся среды; η - её вязкость.

При ламинарном течении объём газа V, протекающий за время t по трубке длиной l, определяется формулок Пуазёйля: $Q = \frac{\pi r^4}{8\eta l} \cdot (P_1 - P_2)$.

При выводе формулы Пуазёйля использовалось, что удельный объём газа оставался постоянным. Это означает, что перепад давления в трубке мал по сравнению с давлением газа при выходе из трубы, которое равно атмосферному. Следовательно, $(P_1-P_2)\sim \frac{1}{100}$ атм. "Пуазёйлевский" профиль скоростей формируется в трубке не сразу, а спустя некоторое расстояние, которое можно оценить по следующему соотношению:

$$a \approx 0, 2 \cdot r \cdot Re \tag{1}$$

2 Экспериментальная установка:

Поток воздуха поступает в Газовый счётчик (ГС на схеме), после чего попадает в металлические трубки разных диаметров. На *U*-образной трубке можно видеть перепад давлений в системе в целом. Также она служит для контроля работы ГС: при превышении максимального допустимого давления на ГС вода из трубки выплёскивается в предохранительный поддон. Металлические трубки имеют следующие диаметры:

d_1 , mm	d_2 , mm	d_3 , mm
$3,9 \pm 0,1$	$5,25 \pm 0,05$	$3,00 \pm 0,05$

3 Выполнение измерений

В работе исследовались 2 трубки с диаметрами 3,9 и 5,25 мм. Каждый раз фиксировался объём $\Delta V=2,5$ дм 3 и измерялось время его протекания через ГС. Погрешность измерения времени положим равной 1с.

3.1 Трубка диаметром 3,9 мм:

Ламинарный режим продолжался до давления $\triangle P \approx 157$ Па. После этой отметки были заметны значительные колебания вершины спиртового столба:

Рис. 2. Схема установки для определения вязкости воздуха

Figure 1: Установка для измерения зависимости давления насыщенных паров от температуры

$\triangle P$, Πa	19,6	39,2	58,9	78,5	98,1	117,7	137,3
$\triangle t$, c	214	110	70	55,5	43	36,6	31,9
Q_l , дм $^3/c$	0.012	0.023	0.036	0.045	0.058	0.068	0.078

Дальше представлены данные для турбулентного режима:

$\triangle P$, Πa	157	235.4	314	392.4	470.9	549.4	627.8	706.3
$\triangle t$, c	28.6	24.3	21.8	19.5	17.8	16.3	15.5	14.4
Q_t , дм $^3/c$	0.087	0.103	0.115	0.128	0.14	0.153	0.161	0.174

3.2 Трубка диаметром 5,25 мм:

Для трубки с диаметром $d_2=5,25$ мм максимальным давлением, при котором течение всё ещё было ламинарным, было $\triangle P \approx 68$ Па:

$\triangle P$, Πa	9.8	19.6	29.4	39.2	49	58.9	62.8
$\triangle t$, c	163.3	65.8	44.8	33.8	26.8	22.5	21.5
Q_l , дм $^3/c$	0.015	0.038	0.056	0.074	0.093	0.111	0.116

$\triangle P$, Πa	68.7	98.1	127.5	157	186.4	215.8	274.7	294.3
$\triangle t$, c	20.4	17.9	16.2	14.8	13.7	12.3	11	9.25
Q_t , дм $^3/c$	0.123	0.14	0.154	0.169	0.182	0.203	0.227	0.27

Figure 2: Перепад давления от потока воздуха - $d_1=3,9$ мм

4 Обработка измерений:

4.1 Вычисление вызкости воздуха из графиков:

Как видно из графиков, при ламинарном токе воздуха зависимость $\triangle P(Q)$ линейная, причём прямая проходит через начало отсчёта(при нулевом потоке нет перепада давлений). Коэффициент графиков узнаем по МНК:

$$k_1 = (1769 \pm 669) \cdot 10^3 \text{ Ha· c/m}^3$$

 $k_2 = (526 \pm 199) \cdot 10^3 \text{ Ha· c/m}^3$

Выразим вязкость из формулы Пуазёйля и затем оценим её погрешность:

$$\eta = \frac{\pi d^4}{128l} \cdot (\frac{\Delta P}{Q}) \tag{2}$$

$$\Delta \eta = \frac{\pi d^3}{32l} \cdot \sqrt{(k \cdot \sigma d)^2 + (\frac{d \cdot \sigma k}{4})^2 + (\frac{d \cdot k \sigma l}{4l})^2}$$
 (3)

Следовательно, для первой и второй трубок вязкость может быть оценена как:

Figure 3: Перепад давления от потока воздуха - $d_2=5,25$ мм

$$\begin{split} \eta_1 &= (20 \pm 7, 9) \cdot 10^-6 \ \Pi a \cdot c \\ \eta_2 &= (19, 6 \pm 2.4) \cdot 10^-6 \ \Pi a \cdot c \end{split}$$

Оценка числа Рейнольдса: 4.2

$$Q = v \cdot \frac{\pi d^2}{4} \tag{4}$$

$$Q = v \cdot \frac{\pi d^2}{4}$$

$$\Rightarrow Re = \frac{v \cdot d \cdot \rho}{2\eta} = \frac{2 \cdot \rho \cdot Q}{\pi \cdot \eta \cdot d}$$
(5)

В качестве плотности воздуха ρ примем значение 1,29 кг/м³, указанное в таблице 25 в книге [2]; Вязкость воздуха будем считать равной 1.83 · 10^{-5} кг/м·с на основе таблицы 27 в [2]; За переходное значение Q возьмём $0.087~{\rm дm}^3/{\rm c}$ из таблицы турбулентного режима для $d_1=3,9$ мм и $0.123~{
m дm}^3/{
m c}$ из таблицы турбулентного режима для $d_2=5,25$ мм. Тогда для d_1 и d_2 получим следующие значения числа

Рейнольдса:

$$Re_{1} = \frac{2 \cdot 1,29 \cdot 0,087 \cdot 10^{-3}}{3.14 \cdot 1,8 \cdot 10^{-5} \cdot 3,9 \cdot 10^{-3}} \approx 1018$$

$$Re_{2} = \frac{2 \cdot 1,29 \cdot 0,123 \cdot 10^{-3}}{3.14 \cdot 1,8 \cdot 10^{-5} \cdot 5,25 \cdot 10^{-3}} \approx 1069$$
(7)

$$Re_2 = \frac{2 \cdot 1,29 \cdot 0,123 \cdot 10^{-3}}{3.14 \cdot 1.8 \cdot 10^{-5} \cdot 5.25 \cdot 10^{-3}} \approx 1069 \tag{7}$$

Следовательно, длины участков установления потоков можно оценить как:

$$a_1 \sim 0, 1 \cdot Re_1 \cdot d_1 \approx 0.397 \tag{8}$$

$$a_2 \sim 0, 1 \cdot Re_2 \cdot d_2 \approx 0.561 \tag{9}$$

Figure 4: Зависимость перепада давления на концах от длины трубки = 3,9MM

Figure 5: Зависимость перепада давления на концах от длины трубки =5,25 мм

5 Итоги:

В работе мы получили количественные оценки значения вязкости воздуха, которые оказались близки к табличным. Также было определено число Рейнольдса, которое характеризует переход от ламинарного течения к турбулентному.

References

- [1] Под редакцией проф. А.Д. Гладуна Лабораторный практикум по общей физике. Механика. Том 1
- [2] Под редакцией проф. А.Д. Гладуна Лабораторный практикум по общей физике. Термодинамика. Том 1