

TRAFFIC SIGN RECOGNITION

taxi

GVHD: Nguyễn Khánh Lợi

Sinh Viên: Phạm Đức Thể

POLICE

Giới Thiệu

Bài Toán: Nhận dạng biển báo giao thông

Giới Thiệu

Mục Tiêu

- ✓ Áp dụng những kiến thức đã học để giải quyết các vấn đề thực tiễn trong cuộc sống.
- ✓ Tìm hiều về kiến trúc, mô hình CNN (Convolutional Neural Network).
- ✓ Thực nghiệm mô hình CNN.

Giới Thiệu

Bộ dữ liệu

Thông Tin	Nội Dung
Tên bộ dữ liệu	German Traffic Sign Recognition Benchmark Nguồn: Kaggle
Chức năng	Nhận dạng biển báo giao thông giúp hỗ trợ phát triển các hệ thống xe tự lái.
Kích thước bộ dữ liệu	Tập Train: 39,209 hình ảnh. Tập Test: 12,630 hình ảnh.
Số class	43
Tác giả	Johannes Stallkamp, Marc Schlipsing, Jan Salmen, Christian Igel

Xem bộ dữ liệu

Hình ảnh 43 classes ở dạng minh họa rõ nét

Xem bộ dữ liệu

Hình ảnh 43 classes thực tế của bộ dữ liệu

Xây dựng mô hình

Layer (type)	Output Shape	Param #
21 (6 20)	(N 20 20 22)	
conv2d (Conv2D)	(None, 28, 28, 32)	896
max_pooling2d (MaxPooling2D)	(None, 14, 14, 32)	0
dropout (Dropout)	(None, 14, 14, 32)	0
conv2d_1 (Conv2D)	(None, 12, 12, 64)	18496
max_pooling2d_1 (MaxPooling2	(None, 6, 6, 64)	0
dropout_1 (Dropout)	(None, 6, 6, 64)	0
conv2d_2 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 64)	65600
dense_1 (Dense)	(None, 43)	2795

Total params: 124,715 Trainable params: 124,715 Non-trainable params: 0

```
model = Sequential()
# First Convolutional Layer
model.add(Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=(30,30,3)))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
# Second Convolutional Layer
model.add(Conv2D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
# Third Convolutional Layer
model.add(Conv2D(filters=64, kernel size=3, activation='relu'))
# Flattening the layer and adding Dense Layer
model.add(Flatten())
model.add(Dense(units=64, activation='relu'))
model.add(Dense(Classes, activation='softmax'))
model.summary()
```

Có tổng cộng 124,715 parameters cần phải học.

Accuracy vs Loss

Kết quả trên tập Test

Top 3 class bị dự đoán nhầm nhiều nhất:

Label	Số lượng
7	54/450
12	49/690
3	47/450

- 600

- 500

- 300

- 200

Kết quả trên tập Test

Accuracy > 94%

Actual=10 || Pred=10

Actual=35 || Pred=35

Actual=3 || Pred=3

Actual=13 || Pred=13

Kết luận

Kết luận

- ✓ Mô hình đạt được Accuracy_Train > 99%, Accuracy_Test > 94%.
- ✓ Dự đoán tốt kể cả những hình ảnh bị thiếu sáng, bị mờ và bị che khuất.

Hướng phát triển

- ✓ Tìm hiểu về các mô hình CNN khác như R-CNN, ResNet,
- ✓ Thu thấp phát triển bộ dữ liệu để nhận diện các biển báo ở Việt Nam.

