

# 미세먼지 요인 분석 및 개선안 도출 POSCO Al BIGDATA 아카데미 종합실습 1

A반 이무동

과제 정의





한국, 화석연료 미세먼지로 연간 8만명 사망 – 사망률 세계 4위이에 맞추어 미세먼지 요인 분석 및 개선안 도출이 시급함 'AIR-POLLUTION'과 같은 데이터를 통해 미세먼지와 관련된 데이터 분석 진행



데이터 현황

▼ 데이터 구성 및 전처리

```
☑ # 데이터 구설하기

df_raw = pd.read_csv('<u>/content/sample_data/AIR_POLLUTION.csv</u>', encoding='euc-kr')

df_raw
```

### 'AIR-POLLUTION.CSV'를 READ 하여 데이터 구성하기

[7] # 데이터 구성하기 - 결측치 처리 df\_raw.isnull().sum()

| MeasDate     | 0  |  |
|--------------|----|--|
| PM10         | 1  |  |
| 03           | 1  |  |
| N02          | 1  |  |
| CO           | 55 |  |
| S02          | 1  |  |
| TEMP         | 0  |  |
| RAIN         | 0  |  |
| WIND         | 0  |  |
| ₩IND_DIR     | 0  |  |
| HUMIDITY     | 0  |  |
| ATM_PRESS    | 0  |  |
| SNOW         | 0  |  |
| CLOUD        | 0  |  |
| dtype: int64 |    |  |

PM10, O3, NO2, CO, SO2 결측치 처리 필요



[10] #PM!0, 03 , NO2, SO2 결측치는 같은 인덱스에 있어 제거함. df\_raw[df\_raw['PM10'].isnull()]

 MeasDate
 PM10
 03
 No2
 CO
 SO2
 TEMP
 RAIN
 WIND
 WIND\_DIR
 HUNIDITY
 ATM\_PRESS
 CLOUD

 328
 2020-05-24
 NaN
 NaN
 NaN
 NaN
 17.48
 1.45
 2.85
 257
 83.3
 999.4
 8.21

PM10, O3, NO2, SO2 결측치는 같은 인덱스에 있어 1개씩 있어 제거

# CO의 결측치 값이 55개이므로, 결측치 값을 평균값으로 대체 means= df\_raw["CO"].mean().round(1) df\_raw["CO"] = df\_raw["CO"].fillna(means)

CO의 결측치 값이 55개이므로, 결측치 값을 평균값으로 대체

### 히스토그램을 통하여 'SNOW' 변수 삭제

# 전체적인 데이터의 히스토그램으로 제거해야할 변수 선택 df\_raw.hist(figsize = (20,20))



# 히스토그램의 관찰 결과, 측정 기간 동안 'SNOW'는 거의 없었다고 볼 수 있으므로 변수 삭제

df\_raw = df\_raw.loc[:, ['MeasDate','PM10','03','N02','C0','S02','TEMP','RAIN','WIND','WIND\_DIR','HUMIDITY','ATM\_PRESS','CLOUD']]

df\_raw

# 최종 DATA -> 목표변수 : PM10(미세먼지 지수)

df\_raw = df\_raw.dropna()
df\_raw

|     | MeasDate   | PM10 | 03    | N02   | CO  | S02   | TEMP  | RAIN | ₩IND | ₩IND_DIR | HUMIDITY | ATM_PRESS | CLOUD |
|-----|------------|------|-------|-------|-----|-------|-------|------|------|----------|----------|-----------|-------|
| 0   | 2019-07-01 | 29.0 | 0.054 | 0.021 | 0.5 | 0.003 | 24.03 | 0.00 | 2.30 | 249      | 63.2     | 995.1     | 5.70  |
| 1   | 2019-07-02 | 26.0 | 0.053 | 0.020 | 0.5 | 0.003 | 24.29 | 0.00 | 2.26 | 265      | 63.2     | 998.6     | 3.83  |
| 2   | 2019-07-03 | 30.0 | 0.042 | 0.023 | 0.4 | 0.003 | 24.18 | 0.00 | 1.79 | 280      | 65.3     | 998.3     | 6.29  |
| 3   | 2019-07-04 | 28.0 | 0.034 | 0.026 | 0.4 | 0.003 | 25.35 | 0.00 | 2.04 | 263      | 58.6     | 996.6     | 2.54  |
| 4   | 2019-07-05 | 29.0 | 0.045 | 0.035 | 0.5 | 0.003 | 27.30 | 0.00 | 1.45 | 175      | 45.5     | 993.5     | 3.92  |
|     |            |      |       |       |     |       |       |      |      |          |          |           |       |
| 361 | 2020-06-26 | 19.0 | 0.039 | 0.016 | 0.4 | 0.003 | 21.66 | 0.41 | 3.12 | 228      | 84.0     | 996.0     | 8.73  |
| 362 | 2020-06-27 | 22.0 | 0.044 | 0.017 | 0.4 | 0.004 | 23.94 | 0.00 | 1.93 | 217      | 69.8     | 995.8     | 6.21  |
| 363 | 2020-06-28 | 27.0 | 0.044 | 0.009 | 0.4 | 0.003 | 25.03 | 0.00 | 2.35 | 283      | 71.3     | 994.7     | 2.63  |
| 364 | 2020-06-29 | 36.0 | 0.026 | 0.028 | 0.6 | 0.003 | 24.06 | 1.26 | 2.48 | 103      | 75.5     | 992.9     | 7.58  |
| 365 | 2020-06-30 | 6.0  | 0.039 | 0.009 | 0.3 | 0.002 | 20.60 | 5.60 | 4.00 | 50       | 92.0     | 983.8     | 10.00 |

탐색적 분석

# Normalizer 적용을 통한 Heatmap 출력

# Normalizer 적용 from sklearn.preprocessing import Normalizer

# Scale 변환 : Normalizer scaler (평균, 표준편차 적용)
df\_scale\_normal = Normalizer()
df\_scale\_normal = df\_scale\_normal.fit\_transform(df\_raw\_dummy)
df\_scale\_normal

# Scale 변환 결과값의 전체 상관관계 분석 df\_scale\_normal.corr().round(3)

|           | PM10   | 03     | N02    | CO     | S02    | TEMP   | RAIN   | WIND   | ₩IND_DIR | HUMIDITY | ATM_PRESS | CLOUD  |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|----------|----------|-----------|--------|
| PM10      | 1.000  | -0.054 | 0.400  | 0.557  | 0.423  | -0.299 | -0.118 | -0.116 | -0.005   | -0.149   | 0.006     | -0.165 |
| 03        | -0.054 | 1.000  | -0.578 | -0.503 | -0.228 | 0.528  | -0.096 | 0.159  | 0.258    | -0.023   | -0.228    | -0.104 |
| NO2       | 0.400  | -0.578 | 1.000  | 0.796  | 0.573  | -0.222 | 0.040  | -0.532 | -0.444   | -0.048   | 0.447     | 0.032  |
| CO        | 0.557  | -0.503 | 0.796  | 1.000  | 0.570  | -0.336 | 0.043  | -0.406 | -0.369   | 0.060    | 0.351     | 0.047  |
| SO2       | 0.423  | -0.228 | 0.573  | 0.570  | 1.000  | -0.240 | -0.110 | -0.267 | -0.157   | -0.278   | 0.183     | -0.160 |
| TEMP      | -0.299 | 0.528  | -0.222 | -0.336 | -0.240 | 1.000  | 0.083  | -0.198 | -0.048   | 0.423    | 0.052     | 0.351  |
| RAIN      | -0.118 | -0.096 | 0.040  | 0.043  | -0.110 | 0.083  | 1.000  | 0.139  | -0.188   | 0.405    | 0.139     | 0.362  |
| WIND      | -0.116 | 0.159  | -0.532 | -0.406 | -0.267 | -0.198 | 0.139  | 1.000  | 0.189    | -0.074   | -0.229    | 0.037  |
| WIND_DIR  | -0.005 | 0.258  | -0.444 | -0.369 | -0.157 | -0.048 | -0.188 | 0.189  | 1.000    | -0.139   | -0.981    | -0.312 |
| HUMIDITY  | -0.149 | -0.023 | -0.048 | 0.060  | -0.278 | 0.423  | 0.405  | -0.074 | -0.139   | 1.000    | 0.082     | 0.643  |
| ATM_PRESS | 0.006  | -0.228 | 0.447  | 0.351  | 0.183  | 0.052  | 0.139  | -0.229 | -0.981   | 0.082    | 1.000     | 0.251  |
| CLOUD     | -0.165 | -0.104 | 0.032  | 0.047  | -0.160 | 0.351  | 0.362  | 0.037  | -0.312   | 0.643    | 0.251     | 1.000  |





Scale 변환 결과값의 Heatmap 출력 결과, NO2, CO, SO2 와 PM10이 연관이 있다는걸 알 수 있다

### 다중선형회귀분석

#상관관계 분석 df\_raw.corr().round(3)

|           | PM10   | 03     | N02    | co     | S02    | TEMP   | BAIN   | WIND   | WIND_DIR | HUMIDITY | ATM_PRESS | CLOUD  |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|----------|----------|-----------|--------|
| PM10      | 1.000  | -0.052 | 0.396  | 0.561  | 0.429  | -0.310 | -0.121 | -0.100 | 0.020    | -0.150   | 0.253     | -0.172 |
| О3        | -0.052 | 1.000  | -0.592 | -0.513 | -0.234 | 0.516  | -0.104 | 0.165  | 0.269    | -0.038   | -0.534    | -0.119 |
| NO2       | 0.396  | -0.592 | 1.000  | 0.791  | 0.563  | -0.237 | 0.029  | -0.537 | -0.408   | -0.066   | 0.420     | 0.017  |
| CO        | 0.561  | -0.513 | 0.791  | 1.000  | 0.567  | -0.362 | 0.030  | -0.403 | -0.319   | 0.044    | 0.401     | 0.026  |
| SO2       | 0.429  | -0.234 | 0.563  | 0.567  | 1.000  | -0.274 | -0.129 | -0.253 | -0.093   | -0.302   | 0.334     | -0.191 |
| TEMP      | -0.310 | 0.516  | -0.237 | -0.362 | -0.274 | 1.000  | 0.077  | -0.216 | -0.050   | 0.404    | -0.792    | 0.342  |
| RAIN      | -0.121 | -0.104 | 0.029  | 0.030  | -0.129 | 0.077  | 1.000  | 0.126  | -0.183   | 0.397    | -0.236    | 0.358  |
| WIND      | -0.100 | 0.165  | -0.537 | -0.403 | -0.253 | -0.216 | 0.126  | 1.000  | 0.235    | -0.084   | -0.054    | 0.017  |
| WIND_DIR  | 0.020  | 0.269  | -0.408 | -0.319 | -0.093 | -0.050 | -0.183 | 0.235  | 1.000    | -0.099   | 0.068     | -0.297 |
| HUMIDITY  | -0.150 | -0.038 | -0.066 | 0.044  | -0.302 | 0.404  | 0.397  | -0.084 | -0.099   | 1.000    | -0.510    | 0.628  |
| ATM_PRESS | 0.253  | -0.534 | 0.420  | 0.401  | 0.334  | -0.792 | -0.236 | -0.054 | 0.068    | -0.510   | 1.000     | -0.430 |
| CLOUD     | -0.172 | -0.119 | 0.017  | 0.026  | -0.191 | 0.342  | 0.358  | 0.017  | -0.297   | 0.628    | -0.430    | 1.000  |

다중선형회귀분석을 위하여, 상관관계 분석 DATA SETTING

```
#train/test data 분리 (test_size=0.3)
df_train, df_test = train_test_split(df_raw, test_size=0.3, random_state=1234)
print("train data size : {}".format(df_train.shape))
print("test data size : {}".format(df_test.shape))
```

train data size : (255, 13) test data size : (110, 13)

7:3 비율로 X, Y를 train, test로 분리

모델링 & 요약

### 다중선형회귀분석 모델

#회귀 모델 생성
rfe\_reg\_model = smf.ols(formula = "PM10 ~ 03 + N02 + C0 + S02 + WIND", data = df\_train)
#적합
rfe\_reg\_result = rfe\_reg\_model.fit()
print(rfe\_reg\_result.summary())

#### OLS Regression Results

| Dep. Variable:    | PM10             | R-squared:          | 0.426    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.415    |
| Method:           | Least Squares    | F-statistic:        | 37.02    |
| Date:             | Mon, 15 Aug 2022 | Prob (F-statistic): | 2.66e-28 |
| Time:             | 14:46:13         | Log-Likelihood:     | -994.84  |
| No. Observations: | 255              | AIC:                | 2002.    |
| Df Residuals:     | 249              | BIC:                | 2023.    |
| Df Model:         | 5                |                     |          |

nonrobust

| COVAL TAILCE                 | Type.                                                              | 110111 0100                                              |                                                           |                                                    |                                                                   |                                                              |
|------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|
|                              | coef                                                               | std err                                                  | t                                                         | P> t                                               | [0.025                                                            | 0.975]                                                       |
| Intercept 03 N02 C0 S02 WIND | -43.9160<br>529.0278<br>245.8473<br>72.0276<br>3166.2315<br>5.1414 | 6.793<br>80.308<br>153.239<br>9.544<br>1528.441<br>1.289 | -6, 465<br>6, 587<br>1, 604<br>7, 547<br>2, 072<br>3, 990 | 0.000<br>0.000<br>0.110<br>0.000<br>0.039<br>0.000 | -57, 294<br>370, 858<br>-55, 962<br>53, 230<br>155, 911<br>2, 603 | -30.538<br>687.197<br>547.657<br>90.825<br>6176.552<br>7.680 |
| Omnibus:<br>Prob(Omnib       | <br>us):                                                           | 70.2<br>0.0                                              |                                                           | <br>-Watson:<br>-Bera (JB):                        |                                                                   | 1.997<br>241.635                                             |

#### Warnings:

Kurtosis:

Skew:

Covariance Ivne:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

[2] The condition number is large, 5.18e+03. This might indicate that there are strong multicollinearity or other numerical problems.

1.132 Prob(JB):

- 1) No.Observations (분석 자료 수): 255
- 2) Df Residuals (잔차 자유도): 249
- 3) Df Model (모델 자유도): 5
- 4) 분산분석결과 : p값이 '2.66e-28'으로 유의수준 0.05보다 작으므로 회귀모델로서 적합
- 5) 설명력: '0.415' 으로 모델을 통하여 41.5%를 설명할 수 있음



Coef 설명변수 중요도를 통하여 SO2와 PM10이 강한 연관성이 있음을 파악할 수 있음

3.39e-53

### **Decision Tree**



#최종 모델 선정

tree\_final = DecisionTreeRegressor(min\_samples\_leaf = 8, min\_samples\_split = 20, max\_depth = 4, random\_state = 1234)
tree\_final.fit(df\_train\_x, df\_train\_y)

중요도에서는 CO, CLOUD, O3, WIND, NO2, ATM\_PRESS, HUMIDITY 순으로 높았음

### **Random Forest**



```
print('train data의 결절계수:', rf_final.score(df_train_x,df_train_y))
print('test data의 결절계수:', rf_final.score(df_test_x,df_test_y))
```

train data의 결정계수: 0.5967738424550431 test data의 결정계수: 0.39682261146948417

중요도에서는 CO, CLOUD, O3, TEMP, NO2, ATM PRESS, HUMIDITY, WIND 등 순으로 높았음

#### **BEFORE**

#### After

# 미세먼지 줄이기 7대 제안

- 1 경유차는 그만, 대중교통을 타요 1 경유하는 그만, 대중교통을 타요
- 2 석탄발전 절반으로 줄여요
- 3 사업장 미세먼지 관리 강화해요
- 4 에너지 소비 줄이고, 재생에너지 확대해요
- 5 천연 공기청정기 도시 공원을 지켜요
- 6 미세먼지 없는 안전한 통학로 만들어요
- 한중 대기오염 공동감축 협약 체결해요





### 데이터 기반 정책

Normalizer 적용을 통한 Heatmap 출력, 다중선형회귀분석, Decision Tree, Random Forest를 통하여, NO2, CO, SO2 배 출 감축을 통해 미세먼지를 줄일 수 있을 것이다