Frost64 Utility CPU

Andrew Clark
July 1, 2020

1 Table of Contents

Contents

1	Table of Contents											1										
2	Reg	egisters, Main Widths, etc.															2					
3	Instructions												2									
	3.1	Group 0 Instructions																				2
	3.2	Group 1 Instructions																				3
	3.3	Group 2 Instructions																				4
	3.4	Group 3 Instructions																				4
		Group 4 Instructions																				5
		Group 5 Instructions																				5
		Group 6 Instructions																				6
		Group 7 Instructions																				6

2 Registers, Main Widths, etc.

- The main width of the processor is 32-bit, contrary to what the name of the processor suggests. Addresses are 32-bit.
- General Purpose Registers (32-bit) There are sixteen general-purpose registers:

```
- zero: index 0x0, always zero
```

- u0: index 0x1
- u1: index 0x2
- u2: index 0x3
- u3: index 0x4
- u4: index 0x5
- u5: index 0x6
- u6: index 0x7
- u7: index 0x8
- u8: index 0x9
- u9: index 0xa
- u10: index 0xb
- u11: index 0xc
- 1r: index 0xd, link register
- fp: index 0xe, frame pointer
- sp: index 0xf, stack pointer

There are a few special-purpose registers:

- pc: index 0x0, program counter
 - * Note that writes into this register forcibly have the LSB set to 0b0.
- ira: index 0x1, interrupt return address
- ida: index 0x2, interrupt destination address
- inp: index 0x3, interrupt pin (which interrupt pin was asserted)
- ie: index 0x4, interrupt enable

3 Instructions

3.1 Group 0 Instructions

- Encoding: Oooo aaaa iiii iiii
 - − o: opcode
 - a: general-purpose register rA

- i: 8-bit unsigned immediate imm8 or 8-bit signed immediate simm8
- Instruction List:
 - 1. cpyi rA, imm8
 - This instruction sets rA to the immediate value.
 - 2. shiftin rA, imm8
 - This instruction sets rA to (rA << 8) | imm8
 - 3. addsi rA, simm8
 - This instruction writes rA + to s32 (simm8) into rA.
 - 4. sltui rA, simm8
 - 5. sltsi rA, simm8
 - 6. addsi rA, pc, simm8
 - This instruction writes pc + to s32 (imm8) into rA
 - 7. bz rA, simm8
 - Relative branch if rA is zero.
 - Note that the branch offset is treated as simm8 << 1.
 - 8. bnz rA, simm8
 - Relative branch if rA is non-zero.
 - Note that the branch offset is treated as simm8 << 1.

3.2 Group 1 Instructions

- Encoding: 1000 aaaa oooi iiii
 - a: general-purpose register rA or special-purpose register sA
 - − o: opcode
 - i: 5-bit unsigned immediate imm5 or 5-bit signed immediate simm5
- Instruction List:
 - 1. xorsi rA, simm5
 - 2. xorsi sA, simm5
 - 3. lsli rA, imm5
 - 4. lsri rA, imm5
 - 5. asri rA, imm5
 - 6. Reserved for future expansion.
 - 7. Reserved for future expansion.
 - 8. Reserved for future expansion.

3.3 Group 2 Instructions

- Encoding: 1001 aaaa bbbb oooo
 - a: general-purpose register rA
 - − b: general-purpose register rB
 - o: opcode
- Instruction List:
 - 1. add rA, rB
 - 2. sub rA, rB
 - 3. sltu rA, rB
 - 4. slts rA, rB
 - 5. and rA, rB
 - 6. orr rA, rB
 - 7. xor rA, rB
 - 8. lsl rA, rB
 - 9. lsr rA, rB
 - 10. asr rA, rB
 - 11. mul rA, rB
 - 12. udiv rA, rB
 - 13. sdiv rA, rB
 - 14. add rA, rB, fp
 - 15. add rA, rB, sp
 - 16. add rA, rB, pc

3.4 Group 3 Instructions

- Encoding: 1010 aaaa bbbb oooo
 - a: general-purpose register rA or special-purpose register sA
 - b: general-purpose register rB or special-purpose register sB
 - − o: opcode
- Instruction List:
 - 1. ldb rA, [rB]
 - 2. ldsb rA, [rB]
 - 3. stb rA, [rB]
 - 4. ldh rA, [rB]

- 5. ldsh rA, [rB]
- 6. sth rA, [rB]
- 7. *ldr sA*, [*rB*, *sp*]
- 8. str sA, [rB, sp]
- 9. cpy rA, rB
 - Copy rB to rA
- 10. cpy rA, sB
 - Copy sB to rA
- 11. cpy sA, rB
 - Copy rB to sA
- 12. reti
 - Return from an interrupt, enabling interrupts (by setting the low bit of ie to 0b1) and jumping to the program counter value at ira.
- 13. *zeb rA*, *rB*
 - Zero extend the low 8 bits of rB and write the result into rA.
- 14. zeh rA. rB
 - Zero extend the low 16 bits of rB and write the result into rA.
- 15. *seb rA*, *rB*
 - Sign extend the low 8 bits of rB and write the result into rA.
- 16. seh rA, rB
 - Sign extend the low 16 bits of rB and write the result into rA.

3.5 Group 4 Instructions

- Encoding: 1011 iiii iiii iiii
 - i: 12-bit signed immediate, simm12
- Instruction List:
 - 1. bl simm12
 - This instruction sets lr to pc + 2 and jumps to the address pc + (to_s32(simm12) << 1).</p>

3.6 Group 5 Instructions

- Encoding: 1100 aaaa bbbb cccc
 - a: general-purpose register rA
 - b: general-purpose register rB
 - c: general-purpose register rC
- Instruction List:
 - 1. ldr rA, [rB, rC]

3.7 Group 6 Instructions

- Encoding: 1101 aaaa bbbb cccc
 - a: general-purpose register rA
 - b: general-purpose register rB
 - − c: general-purpose register rC
- Instruction List:
 - 1. str rA, [rB, rC]

3.8 Group 7 Instructions

- Encoding: 1110 aaaa bbbb cccc
 - a: general-purpose register rA
 - − b: general-purpose register rB
 - − c: general-purpose register rC
- Instruction List:
 - 1. add rA, rB, rC