11.1. Найдите все пары взаимно простых натуральных чисел a и b, такие, что $2a^2 + 3b^2$ делится на 2a + 3b.

Ответ (1,1), (6,1), (3,8) и (9,4)

20 баллов за все ответы с полным обоснованием (см. решение ниже), из которого следует, что других решений нет.

15: ответы с полным обоснованием, но с арифметическими ошибками, не изменяющими ход решения (например, из-за вычислительной ошибки изменился один из ответов).

10: все ответы с обоснованием, в котором имеются изолированные пробелы (например, некоторое несложное по сравнению с задачей утверждение явно сформулировано, но оставлено без доказательства).

5: существенный пробел в обосновании или потеря одного из ответов.

2: приведенные в изложении обоснования утверждения не позволяют полностью восстановить ход рассуждений или потеряно более одного ответа.

Заметим, что $4a^2-9b^2=(2a+3b)(2a-3b)$ делится на 2a+3b, поэтому $15b^2=2(2a^2+3b^2)-(4a^2-9b^2)$ и $10a^2=3(2a^2+3b^2)+(4a^2-9b^2)$ делится на 2a+3b. Значит, если бы 2a+3b делилось на простое число p, отличное от 2, 3 и 5, то $15b^2$ и $10a^2$ делились бы на p, взаимно простое с 10 и 15, поэтому a и b также делились бы p, что противоречило бы их взаимной простоте. Если бы 2a+3b делилось на 5^2 , то $15b^2$ и $10a^2$ делились бы на 5^2 , поэтому $3b^2$ и $2a^2$ делились бы на 5, это число взаимно просто с каждым из чисел 2 и 3, поэтому a и b также делились бы 5, что противоречило бы взаимной простоте a и b. Аналогично, если бы 2a+3b делилось на 2^2 или 3^2 , то a и b делились бы на a или a соответственно, что также противоречило бы их взаимной простоте. Значит a0 не делится ни накакое простое число, кроме a0 и a1, а также не делится на a2, a3 и a5, а также не делится на a3, поэтому оно равно a4, или произведению некоторых из этих трех простых чисел, то есть a6, a7, или a8.

При 2a+3b=30, как доказано выше, $15b^2 \vdots 30$ и $10a^2 \vdots 30$, поэтому $b^2 \vdots 2$ и $a^2 \vdots 3$, значит $b \vdots 2$ и $a \vdots 3$. Поэтому a=3k и b=2m, где k не делится на 2, а m – на 3 (иначе a и b не взаимно просты), и 2a+3b=6(k+m)=30, то есть k+m=5. Отсюда k=1, m=4 или k=3, m=2, то есть a=3, b=8 или a=9, b=4. Оба варианта дают решение задачи, так как в обоих случаях $2a^2+3b^2=210 \vdots 30$.

Аналогично, при 2a + 3b = 15 получаем a : 3. Поэтому a = 3k, где k не делится на 2, а b – на 3 (иначе a и b не взаимно просты), и 2a + 3b = 3(2k + b) = 15, то есть 2k + b = 5. Отсюда k = 2, b = 1, a = 6, и это решение задачи, так как в этом случае $2a^2 + 3b^2 = 75 : 15$.

Никакое из уравнений 2a + 3b = 10, 2a + 3b = 6, 2a + 3b = 3, 2a + 3b = 2 не имеет взаимно простых натуральных решений, а уравнение 2a + 3b = 5 дает решение a = b = 1.

Другой вариант решения. Заметим, что $2a^2 + 5ab + 3b^2 = (2a + 3b)(a + b)$ делится на 2a + 3b, поэтому $2a^2 + 3b^2$ делится на 2a + 3b тогда и только тогда, когда 5ab делится на 2a + 3b. Наибольший общий делитель a и 2a + 3b равен наибольшему общему делителю a и 3b; поскольку a и b взаимно просты, этот наибольший общий делитель может быть равен либо 1, либо 3. Аналогично, наибольший общий делитель b и 2a + 3b равен 1 или 2.

Рассмотрим следующие варианты. Если a не делится на 3 и b не делится на 2, то 5 делится на 2a+3b, откуда a=b=1. Если a=3m и b не делится на 2, то 5*3=15 делится на 2a+3b=6m+3b, то есть 5 делится на 2m+b (где m и b натуральные), откуда b=1,

m=2 и a=6 (b=3, m=1 и a=3 противоречит требованию взаимной простоты a и b). Если b=2n и a не делится на 3, то 5*2=10 делится на 2a+3b=2a+6n, то есть 5 делится на a+3n, откуда a=2, n=1 и b=2, что противоречит требованию взаимной простоты a и b, так что этот вариант отпадает.

Наконец, если a = 3m и b = 2n, то 5*3*2 = 30 делится на 2a + 3b = 6m + 6n, то есть 5 делится на m + n. Этому условию удовлетворяют пары натуральных чисел (m, n) = (1, 4), (2, 3), (3, 2) и (4, 1), которым соответствуют пары (a, b) = (3, 8), (6, 6), (9, 4), и (12, 2). Ввиду требования взаимной простоты a и b, условиям задачи удовлетворяют только первая и третья из этих четырех пар (плюс еще две пары, найденные выше).

11.2. Найдите максимальное число частей, на которые могут разбить плоскость графики 10 квадратичных функций $y = ax^2 + bx + c$, $a \neq 0$.

Ответ: 101

20 баллов за полное доказательство того, что больше 101 части не бывает и пример со 101 частью с полным обоснованием.

18: то же, что 20, но с арифметической ошибкой, не влияющей на ход рассуждений.

14: то же, что **20**, с другими несущественными недочетами (без неверных утверждений и пробелах в рассуждении)

10: полное доказательство того, что больше 101 части не бывает, или пример со 101 частью с полным обоснованием.

5: то же, что **10**, с несущественными недочетами (без неверных утверждений и пробелах в рассуждении)

2: верный ответ с обоснованием, недостаточным для установления ни максимальности, ни достижимости.

Пронумеруем параболы, и для каждого числа k от 2 до 10 обозначим через b_k число точек пересечения параболы номер k с параболами меньших номеров. Эти точки разбивают параболу номер k на b_k+1 кусок. Заметим, что, если параболы с номерами меньше k разбивали плоскость на N частей, то каждый из b_k+1 кусков параболы номер k разбивает одну из этих частей на две, поэтому параболы с номерами до k включительно разбивают плоскость на $N+b_k+1$ частей. Применяя это рассуждение при всех k от 2 до 10, получаем, что все десять парабол разбивают плоскость на $11+b_2+\ldots+b_{10}$ частей.

Так как квадратичное уравнение имеет не более двух решений, две параболы пересекаются не более, чем в двух точках, поэтому $b_2 \leqslant 2$, $b_3 \leqslant 4$, $b_4 \leqslant 6, \ldots, b_{10} \leqslant 18$, поэтому $11 + b_2 + \ldots + b_{10} \leqslant 101$. Это оценка достигается, если каждые две из десяти парабол пересекаются в двух точках, и ни в какой точке не пересекаются три.

Покажем, что такое возможно: выберем 10 негоризонтальных прямых, таких что никакие три не проходят через одну точку, и любые две пересекаются в точке с положительной абсциссой. Пусть $y = a_1x + c_1, \ldots, y = a_{10}x + c_{10}$ — уравнения этих прямых, тогда никакие три из этих уравнений не имеют общего решения, и любые два имеют одно общее решение, в котором x положительно. Значит, никакие три из уравнений $y = a_1x^2 + c_1, \ldots, y = a_{10}x^2 + c_{10}$ также не имеют общего решения, и любые два из них имеют два общих решения (а именно, если уравнения $y = a_kx + c_k$ и $y = a_mx + c_m$ имели общее решение x = u > 0, y = v, то уравнения $y = a_kx^2 + c_k$ и $y = a_mx^2 + c_m$ имеют два общих решения $x = \pm \sqrt{u}, y = v$). Поэтому среди парабол, заданных уравнениями

 $y = a_1 x^2 + c_1, \ldots, y = a_{10} x^2 + c_{10}$, никакие три не пересекаются в одной точке, и любые две пересекаются в двух точках, поэтому они разбивают плоскость на 101 часть.

11.3. При каком значении параметра a график многочлена $x^4-6x^3+12x^2+ax$ симметричен относительно прямой x=c для какого-нибудь значения константы c?

Other: a = -9

- **20** баллов за доказательство, что x = 3/2 ось симметрии при a = -9, и что при других значениях осей нет.
- **15** доказано, что если ось симметрии x = c существует, то c = 3/2 и a = -9. Не проверено, что при a = -9 прямая x = 3/2 в самом деле будет осью симметрии.
- 10 то же, что 15, но невнимание к проверке ответов привело к получению лишнего решения (например, a=0).

 ${f 5}$ правильно найдено c, но a не найдено, или найдено выражение a через c, но c не найдено.

Сделав замену переменной t = x - c, получим

$$x^4 - 6x^3 + 12x^2 + ax = t^4 + (4c - 6)t^3 + (6c^2 - 18c + 12)t^2 + (4c^3 - 18c^2 + 24c + a)t + (c^4 - 6c^3 + 12c^2 + ac).$$

График функции $t^4 + (4c-6)t^3 + (6c^2 - 18c + 12)t^2 + (4c^3 - 18c^2 + 24c + a)t + (c^4 - 6c^3 + 12c^2 + ac)$ симметричен относительно вертикальной координатной прямой если и только если функция четная. Многочлен четный, если и только если его коэффициенты при x в нечетных степенях равны нулю: $4c-6=4c^3-18c^2+24c+a=0$. Решая эту систему уравнений, находим c=3/2 и a=-9.

11.4. В пространстве выбраны четыре точки, все координаты каждой из которых делятся на 3, причем эти точки не лежат в одной плоскости. Какое минимальное число точек, все координаты которых четны, может содержаться в тетраэдре, вершинами которого являются выбранные четыре точки? (Содержаться – значит лежать внутри, на грани, на ребре или в вершине.)

Ответ: 1

- **20 баллов** за полное доказательство того, что в каждом тетраэдре есть хотя бы одна искомая точка, и пример тетраэдра, в котором такая точка ровно одна, с его полным обоснованием.
- **19:** изолированные пробелы в доказательстве того, что в каждом тетраэдре есть хотя бы одна искомая точка, и пример тетраэдра, в котором такая точка ровно одна, с его полным обоснованием.
- **14:** полное доказательство того, что в каждом тетраэдре есть хотя бы одна искомая точка, или пример тетраэдра, в котором такая точка ровно одна, с его полным обоснованием.
 - 10: пример тетраэдра, в котором искомая точка ровно одна, с неполным обоснованием.
- **5:** правильный пример тетраэдра с неверным подсчетом количества точек с четными координатами в нем.

Докажем, что ровно одна точка с четными координатами может содержаться в требуемом тетраэдре: например, что (4,4,4) – единственная точка с четными координатами в тетраэдре с координатами вершин (3,3,3), (6,3,3), (3,6,3) и (3,3,6). Так как

каждому из уравнений $x=3,\ y=3,\ z=3,\ x+y+z=12$ удовлетворяют три из четырех вершин тетраэдра, то эти уравнения описывают плоскости граней тетраэдра. Поэтому точка с координатами (x,y,z) содержится в этом тетраэдре, если и только если выполняются неравенства $x\geqslant 3,\ y\geqslant 3,\ z\geqslant 3$ и $x+y+z\leqslant 12$. Если при этом x,y или z равно 3, то не все координаты (x,y,z) четны. Если же x,y и z не равны 3, но целочисленны, то выполняются неравенства $x\geqslant 4,\ y\geqslant 4,\ z\geqslant 4$, которые вместе с неравенством $x+y+z\leqslant 12$ имеют единственное общее решение x=y=z=4.

Докажем теперь, что меньше одной точки с четными координатами не бывает. Вычислим координаты середины отрезка с концами (x_1, y_1, z_1) и (x_2, y_2, z_2) :

$$\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2},$$
 (*)

а также координаты точки, делящей этот отрезок в отношении 2:1:

$$\frac{x_1 + 2x_2}{3}, \frac{y_1 + 2y_2}{3}, \frac{z_1 + 2z_2}{3}.$$
 (**)

Вычислим координаты точки пересечения медиан треугольника с вершинами (x_1, y_1, z_1) , (x_2, y_2, z_2) и (x_3, y_3, z_3) : она делит в отношении 2:1 медиану, поэтому можем вычислить координаты основания медианы по формуле (*) и затем координаты точки пересечения медиан по формуле (**):

$$\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}.$$
 (***)

Нам также понадобятся два следующих наблюдения.

- 1. Точка, симметричная точке с целочисленными (четными) координатами относительно точки с целочисленными координатами, также имеет целочисленные (четные) координаты. Действительно, если координаты центра симметрии, исходной и симметричной точек равны (x_0, y_0, z_0) , (x_1, y_1, z_1) и (x_2, y_2, z_2) соответственно, то по формуле (*) получим $x_2 = 2x_0 x_1$, $y_2 = 2y_0 y_1$, $z_2 = 2z_0 z_1$.
- 2. Если у параллелепипеда центры граней имеют целочисленные координаты, то такой параллелепипед содержит точку с четными координатами. Действительно, предположим, что это не так, и для каждой грани параллелепипеда рассмотрим параллельные ей плоскости, отстоящие от нее на расстояния, кратные расстоянию до противоположной грани. Эти плоскости разбивают пространство на параллелепипеды, равные исходному. Докажем, что в каждом из этих параллелепипедов центры граней имеют целочисленные координаты, и не содержится точек с четными координатами:
 - шаг 1 для исходного параллелепипеда это верно по предположению;
- шаг 2 для параллелепипедов, имеющих общую грань с исходным, это верно согласно наблюдению 1, так как их центры граней и целочисленные точки симметричны центрам граней и целочисленным точкам исходного параллелепипеда относительно его центров граней;
- шаг 3 для параллелепипедов, имеющих общую грань с одним из рассмотренных на шаге 2, это верно согласно наблюдению 1 аналогичным образом; и т.д.

Таким образом, получили противоречие: ни в одном из параллелепипедов, покрывающих все пространство, нет точки с четными координатами.

Теперь докажем, что в тетраэдре ABCD, координаты вершин которого делятся на 3, содержится не менее одной точки с четными координатами. Заметим, что точки A', B', C', D' пересечения медиан граней BCD, ACD, ABD, ABC имеют целые координаты по формуле (***). Рассмотрим параллелепипед, образованный плоскостями ACD, ABD, ABC, а также симметричными им относительно точки D'. Заметим, что точки A', B', C' являются центрами симметрии его граней: действительно, точка A' делит медиану из точки B в том же отношении 2:1, что и точка B' — медиану из точки A, поэтому отрезки AB и A'B' параллельны, поэтому точка B' лежит на пересечении грани параллелепипеда и прямой, проходячей через его центр параллельно его ребру, поэтому B' — цент его грани; рассуждения для C' и D' аналогичны.

Таким образом, согласно замечанию 2, построенный параллелепипед содержит точку E с четными координатами. Если E содержится в ABCD, то все доказано, иначе точка, симметричная E относительно A', содержится в ABCD и также имеет четные координаты согласно наблюдению 1.

11.5. Описанный четырёхугольник ABCD делится диагональю AC на два подобных, но не равных треугольника. Чему может быть равна длина диагонали AC, если длины сторон AB и CD равны 5 и 10, соответственно?

Ответ: $5\sqrt{2}$ или 6

Эта задача имеет очень несложное **геометрическое решение** (см. ниже) однако очень многие школьники предпочитали формально выписывать все возможные получающиеся системы уравнений и затем их решать (см. **аналитическое решение**). При этом получалось намного больше посторонних решений, которые соответствуют четырехугольнику, вырождающемуся в отрезок. Эти решение необходимо было потом отбрасывать, чего многие школьники не заметили.

16 баллов за полное решение

12: ставится в случае, когда потерян (или неверно разобран) ТОЛЬКО ОДИН случай (см. приведенное ниже полное решение), независимо от того, привела ошибка к изменению списка ответов, или нет. Т.е. в аналитическом решении при этом могут получиться два верных ответа и один лишний при правильном отсечении всех остальных случаев, или ошибочно будет приведен только один ответ, а второй правильный ответ потерян, но при этом все остальные случаи разобраны верно, или же, список ответов окажется верным, а какой-то из случаев, кроме первого, тем не менее, не рассмотрен. В геометрическом решении это значит, что либо найдены два верных ответа, но не разобрана конфигурация, соответствующая случаям 1 и 2, либо эта конфигурация наоборот, разобрана, а один из верных ответов при этом потерян.

8: ставится в случае, когда потеряны (или неверно разобраны) НЕ БОЛЕЕ ДВУХ случаев аналитического решения, или в геометрическом решении разобрано БОЛЕЕ одного случая (из трех), но на +/- решение не тянет (есть заметные недочеты).

6: ставится, если в аналитическом решении неверно разобрано БОЛЕЕ ДВУХ случаев, или если в геометрическом решении разобран ТОЛЬКО ОДИН случай, приводящий к правильному ответу и не разобраны случаи 1 и 2

4: ставится, если приведен без исследования какой-нибудь один угаданный ответ (такие случаи были) Сюда же, конечно, относятся все трудноперечислимые случаи, когда что-то

положительное явно сделано, но ни на один более высокий знак решение не тянет.

4: школьник неправильно понял условия задачи, но при этом в измененнюй формулировке решение правильное.

Аналитическое решение. Обозначим искомую диагональ через d, она разбивает четырехугольник на два треугольника: один со сторонами 5 и x, другой со сторонами 10 и 15-x. Всего пропорцию для двух подобных треугольников можно написать 6 способами: x/a = 5/b = d/c, где вместо чисел a, b и c надо брать все возможные перестановки чисел d, 10 и 15-x.

- 1) Случай x/(15-x)=5/10=d/d сразу отметается, потому что там возникает равенство 1/2=1.
- 2) Случай x/10 = 5/(15-x) = d/d приводит к x = 10, что дает равные треугольники и произвольную диагональ от 5 до 15, и если решать совсем бездумно, еще и посторонний корень x = 5.
- 3) Случай x/(15-x)=5/d=d/10. Самый частый в ответах, потому что для нахождения ответа $d=5\sqrt{2}$ не надо даже пользоваться тем, что в четырехугольник вписана окружность. На самом деле здесь, конечно, еще требуется доказательство того, что такие треугольники существуют, т.е. что выполнено неравенство треугольника это небольшая возня с корнями. В этом случае $x=15\sqrt{2}-15$, стороны упорядочены d>x>5 и неравенство треугольника, действительно, выполнено.
 - 4) Случай x/d = 5/10 = d/(15-x). Тогда d = 6, x = 3. Существование очевидно.
- 5) Случай x/d=5/(15-x)=d/10. Для d получается кубическое уравнение $d^3-150d+500=0$, а для x кубическое уравнение $x^3-30x^2+225x-250=0$. Эти уравнения имеют по одному целому корню d=10, x=10, эти корни соответствуют равным треугольникам. После деления получаются квадратные уравнения $d^2+10d-50=0$ и $x^2-20x+25=0$. Решая, получаем одно значение для диагонали $d=-5+5\sqrt{3}$ (второе отрицательное) и ДВА значения для стороны $x=10-5\sqrt{3}$ и $x=10+5\sqrt{3}$. В первом случае треугольник вырождается в отрезок, а второе значение x>15, поэтому оно соответствует отрицательному значению d.
- 6) Случай x/10 = 5/d = d/(15-x). Для d получается кубическое уравнение $d^3 75d + 250 = 0$, а для x кубическое уравнение $x^3 150x^2 + 500 = 0$. Эти уравнения имеют по одному целому корню d = 5, x = 10, эти корни соответствуют равным вырожденным в отрезок треугольникам. После деления получаются квадратные уравнения $d^2 + 5d 50 = 0$ и $x^2 5x 50$, которые снова дают посторонние корни d = 5 и x = 10.

Геометрическое решение.

Если диагональ в каждом из двух подобных треугольников оказывается соответственной парой сторон, то коэффициент подобия равен 1 и треугольники равны — этим отметаются случаи 1 и 2 аналитического решения.

Если стороны, соответствующие в подобных треугольниках диагонали оказываются смежными (и, тем самым, смежными с этой диагональю), то эта диагональ оказывается биссектрисой, что в описанном четырехугольнике означает, что центр вписанной окружности лежит на диагонали. Тогда эти два треугольника очевидно оказываются равными. Это случаи 5 и 6 аналитического решения — здесь геометрия дает наибольший выигрыш.

Если стороны, соответствующие в подобных треугольниках диагонали оказываются, наоборот, противоположными, то они должны образовывать с диагональю равные углы, и, следовательно, быть параллельными, так что эти две стороны являются основаниями трапеции. Далее, эта пара сторон может оказаться либо парой сторон 5 и 10, либо 5 и 10 это остальные две стороны, что и дает 3 в первом случае и $5\sqrt{2}$ во втором. (Это случаи 3 и 4 аналитического решения.) Конечно, и в геометрическом решении необходимо проверять выполнение неравенство треугольника.

11.6. В одной из вершин правильного 2n-угольника, $n \geq 2$, поставлено число 1. Для данной расстановки чисел $2, 3, \ldots, 2n$ в остальные вершины 2n-угольника поставим на каждой его стороне знак +, если число на конце стороны (при движении по часовой стрелке) больше числа на ее начале и знак -, если оно меньше. Докажите, что модуль разности между числом расстановок чисел $2, 3, \ldots, 2n$ с четным количеством плюсов на сторонах и числом расстановок с нечетным количеством плюсов равен числу расстановок, в которых плюсы и минусы чередуются при (a) n = 3, (б) n = 4, (в) произвольном n.

5 баллов за полное решение пункта (a).

4: решение пункта (а) с недочетами.

3: правильно подсчитаны два из трех количеств в пункте (а).

2: правильно подсчитано одно из трех количеств в пункте (а).

1: То же, что 3, но с арифметическими ошибками.

7 баллов за полное решение пункта (б).

12 баллов за полное решение пункта (в).

Выберем произвольные целые числа $q\geqslant 0$ и $m\geqslant 2$. Для каждого способа g расставить числа $1,\ldots,m$ на окружности, обозначим через |g| разность числа плюсов и числа минусов, соответствующих g как описано в условии задачи. Пусть k_q^m – число расстановок на окружности чисел $1,\ldots,m$, в которых ровно q чисел соседствуют как с плюсом, так и с минусом. Заметим, что числа k_q^m удовлетворяют следующему соотношению (назовем его равенством $(*_q^m)$):

$$k_q^m = qk_{q+1}^{m-1} + (m-q+1)k_{q-1}^{m-1}.$$

Действительно, каждая расстановка на окружности чисел $1, \ldots, m$, в которой ровно q чисел соседствуют как с плюсом, так и с минусом, при удалении числа m превращается в расстановку чисел $1, \ldots, m-1$, в которой ровно q+1 или q-1 число соседствует как с плюсом, так и с минусом, причем каждая из таких расстановок чисел $1, \ldots, m-1$ при добавлении к ней числа m всевозможными способами дает ровно q или m-q+1 требуемых расстановок чисел $1, \ldots, m$ соответственно.

Для любого целого числа $p\geqslant 0$ обозначим через a_q^p сумму

$$\frac{(-1)^{\left[\frac{q}{2}\right]}}{2^{q}} \left(C_{q}^{0} q^{p} - C_{q}^{1} (q-2)^{p} + C_{q}^{2} (q-4)^{p} - C_{q}^{3} (q-6)^{p} + \dots (-1)^{q} C_{q}^{q} (-q)^{p} \right).$$

Мы докажем следующее равенство (назовем его равенством $(**_m^p)$): сумма чисел $(-1)^{[\frac{|g|}{2}]}|g|^p$ по всем способам g расставить числа $1,\ldots,m$ на окружности равна $a_0^p k_m^m + a_1^p k_{m-1}^m + a_2^p k_{m-2}^m + \ldots$ Заметим, что при m=2n и p=0 это равенство дает требуемое в задаче утверждение.

Равенство (** $_2^p$) очевидно для любого p, поэтому нам достаточно для произвольных p и m вывести равенство (** $_m^p$) из равенств (** $_{m-1}^0$), (** $_{m-1}^1$), (** $_{m-1}^2$), Для этого рассмотрим произвольный способ h расставить числа $1, \ldots, m-1$ на окружности и обозначим

через h_+ и h_- число плюсов и минусов, соответствующих h как описано в условии задачи. Заметим, что при добавлении m к расстановке h всевозможными способами мы получим ровно h_+ расстановок g, таких что |g|=|h|-1, и ровно h_- расстановок g, таких что |g|=|h|+1. Поэтому сумма чисел $(-1)^{\left[\frac{|g|}{2}\right]}|g|^p$ по всем расстановкам g, полученных из h добавлением m, равна $h_+(-1)^{\left[\frac{|h|-1}{2}\right]}(|h|-1)^p+h_-(-1)^{\left[\frac{|h|+1}{2}\right]}(|h|+1)^p$, или, раскрывая скобки,

$$(-1)^{p-1}(-1)^{\left[\frac{|h|}{2}\right]}(C_p^0|h|^{p+1}-C_p^1(m-1)|h|^{p-1}+C_p^2|h|^{p-1}-C_p^3(m-1)|h|^{p-3}+C_p^4|h|^{p-3}-\ldots).$$

Суммируя эти равенства по всем расстановкам h и заменяя в получившемся равенстве сумму чисел $(-1)^{[\frac{|h|}{2}]}|h|^{p'}$ согласно равенству $(**^{p'}_{m-1})$ для каждого целого числа p', получим выражение левой части равенства $(**^p_m)$ в терминах чисел $k_0^{m-1}, k_1^{m-1}, k_2^{m-1}, \ldots$ Заменяя в правой части равенства $(**^p_m)$ числа $k_0^m, k_1^m, k_2^m, \ldots$ согласно равенствам $(*^m_0), (*^m_1), (*^m_2), \ldots$, получим выражение правой части равенства $(**^p_m)$ в терминах чисел $k_0^{m-1}, k_1^{m-1}, k_2^{m-1}, \ldots$ Приведя подобные в полученных выражениях для левой и правой частей равенства $(**^p_m)$, получим, что каждое из чисел $k_0^{m-1}, k_1^{m-1}, k_2^{m-1}, \ldots$ входит в каждое из двух выражений с одним и тем же коэффициентом.