Intelligent Systems Programming

Lecture 12: Linear Programming III

Duality

Today's Program

- [10:00-11:05]
 - The dual problem
 - The duality theorem
- [11:15-12:00]
 - Relationship between primal and dual problems
 - Economic interpretation of dual variables

Today's Program

- [10:00-11:05]
 - The dual problem
 - The duality theorem
- [11:15-12:00]
 - Relationship between primal and dual problems
 - Economic interpretation of dual variables

Lower Bounds from Primal Problem

Maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 Subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad (i=1,...,m)$$

$$x_{j} \geq 0 \quad (j=1,...,n)$$

 Every feasible solution to x₁,x₂,...,x_n defines a lower bound of z*

Lower Bound Example

Maximize Subject to

$$4x_1 + x_2 + 5x_3 + 3x_4$$

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$ is a feasible solution Thus: $z^* \ge 4 \times 1 + 5 \times 1 = 9$
- Is there a smart way to define upper bounds also?

Upper Bound Example I

Maximize Subject to

$$4x_1 + x_2 + 5x_3 + 3x_4$$

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Multiply 2. constraint by 5/3:

$$\frac{5}{3}(5x_1 + x_2 + 3x_3 + 8x_4 \le 55) = \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}$$

Upper Bound Example I

Maximize Subject to

$$4x_1 + x_2 + 5x_3 + 3x_4$$

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Multiply 2. constraint by 5/3:

$$\frac{5}{3}(5x_1 + x_2 + 3x_3 + 8x_4 \le 55) = \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}$$

We have:
$$4 \quad x_1 + x_2 + 5x_3 + 3 \quad x_4 \le 100$$
IN IN IN IN
$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}$$

$$z^* \le \frac{275}{3} = 91.6$$

Thus:

$$z^* \le \frac{275}{3} = 91.6$$

Upper Bound Example II

Maximize Subject to

$$4x_{1} + x_{2} + 5x_{3} + 3x_{4}$$

$$x_{1} - x_{2} - x_{3} + 3x_{4} \le 1$$

$$5x_{1} + x_{2} + 3x_{3} + 8x_{4} \le 55$$

$$-x_{1} + 2x_{2} + 3x_{3} - 5x_{4} \le 3$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

Sum 2. and 3. constraint:

$$(5-1)x_1 + (1+2)x_2 + (3+3)x_3 + (8-5)x_4 \le (55+3) = 4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$$

Thus:

$$z^* < 58$$

The Dual Problem of Example

- Conclusion: any linear combination of the constraints with larger coefficients will do.
- Dual = LP to find minimum upper bound!!

Primal of Example

Maximize

$$4x_1 + x_2 + 5x_3 + 3x_4$$

Subject to

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

$$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$$

$$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Dual of Example

Minimize

$$y_1 + 55y_2 + 3y_3$$

Subject to

$$y_1 + 5y_2 - y_3 \ge 4$$

$$-y_1 + y_2 + 2y_3 \ge 1$$

$$-y_1 + 3y_2 + 3y_3 \ge 5$$

$$3y_1 + 8y_2 - 5y_3 \ge 3$$

$$y_1, y_2, y_3 \ge 0$$

The General Dual Problem

Primal Problem

Maximize

$$\sum_{j=1}^{n} c_j x_j$$

Subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad (i = 1, ..., m)$$

$$\sum_{i=1}^{m} a_{ij} y_{i} \geq c_{j} \quad (j = 1, ..., n)$$

$$x_{j} \geq 0 \quad (j = 1, ..., m)$$

$$y_{i} \geq 0 \quad (i = 1, ..., m)$$

$$x_i \ge 0 \quad (j = 1, \dots, n)$$

Dual Problem

Minimize

$$\sum_{i=1}^{m} b_i y_i$$

Subject to

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad (j=1,\dots,n)$$

$$y_i \ge 0 \quad (i = 1, \dots, m)$$

Duals are Upper Bounds (succinct proof)

If $x_1,...,x_n$ is primal feasible and $y_1,...,y_m$ is dual feasible then: $\frac{n}{m} = \frac{m}{m}$

$$\sum_{j=1}^{n} c_j x_j \le \sum_{i=1}^{m} b_i y_i$$

Proof

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}$$

math

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j$$

(from dual feasibility)

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$

(from primal feasibility)

Useful Consequences

$$\sum_{i=1}^{m} b_{i} y_{i}^{1} \qquad \sum_{i=1}^{m} b_{i} y_{i}^{1} \qquad \sum_{i=1}^{m} b_{i} y_{i}^{3} \qquad \sum_{i=1}^{m} b_{i} y_{i}^{4} \qquad \sum_{i=1}^{m} b_{i} y_{i}^{2}$$

$$\sum_{j=1}^{n} c_{j} x_{j}^{1} \qquad \sum_{j=1}^{n} c_{j} x_{j}^{3} \qquad \sum_{j=1}^{n} c_{j} x_{j}^{3} \qquad \sum_{j=1}^{n} c_{j} x_{j}^{3}$$

- If you stumble over a primal and a dual feasible solution with same objective value, then
- No primal solution with higher objective value and no dual solution with lower objective value can be found, thus
- The primal and dual solutions are optimal!

Today's Program

- [10:00-11:05]
 - The dual problem
 - The duality theorem
- [11:15-12:00]
 - Relationship between primal and dual problems
 - Economic interpretation of dual variables

The Duality Theorem

The Duality Theorem

If the primal problem has an optimal solution $(x_1^*, x_2^*, ..., x_n^*)$ then the dual problem has an optimal solution $(y_1^*, y_2^*, ..., y_m^*)$ such that

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*$$

Proof 1/5

Proof

Claim

For the optimal dictionary, $(y_1^*, y_2^*, ..., y_m^*)$ is the negative z-coefficients of slack variables.

Thus, if we write

$$z = z^* + \sum_{k=1}^{n+m} \bar{c}_k x_k$$

The claim is

$$y_i^* = -\bar{c}_{n+i} \quad (i = 1, ..., m)$$

Proof 2/5

• Example: Optimal dictionary from lecture 10:

$$x_3 = 1 + x_2 - 3x_4 - 2x_6$$

$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$z = 13 - 3x_2 - x_4 - x_6$$

- Slack variables x_4 , x_5 , and x_6
- We have $\bar{c}_4 = -1$, $\bar{c}_5 = 0$, and $\bar{c}_6 = -1$
- Thus $y_1^* = 1$, $y_2^* = 0$, and $y_3^* = 1$

Proof 3/5

- 1) Set $y_i^* = -\bar{c}_{n+i}$ (i = 1, ..., m)
- 2) Show that $(y_1^*, y_2^*, ..., y_m^*)$ is optimal and

$$\sum_{i=1}^{n} c_{i} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Proof 3/5

- 1) Set $y_i^* = -\bar{c}_{n+i}$ (i = 1, ..., m)
- 2) Show that $(y_1^*, y_2^*, ..., y_m^*)$ is optimal and

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*$$

We only need to show that $(y_1^*, y_2^*, ..., y_m^*)$ is

feasible (A) and

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$
 (B)

Why?

Proof 4/5

• By substituting $y_i^* = -\bar{c}_{n+i}$ (i = 1, ..., m) we get:

$$z = \sum_{j=1}^{n} c_j x_j = z^* + \sum_{k=1}^{n+m} \bar{c}_k x_k = z^* + \sum_{j=1}^{n} \bar{c}_j x_j - \sum_{i=1}^{m} y_i^* \left(b_i - \sum_{j=1}^{n} a_{ij} x_j \right)$$

Def. of slack vars.

which may be rewritten to

$$\sum_{j=1}^{n} c_j x_j = \left(z^* - \sum_{i=1}^{m} b_i y_i^* \right) + \sum_{j=1}^{n} \left(\bar{c}_j + \sum_{i=1}^{m} a_{ij} y_i^* \right) x_j$$

Proof 5/5

Since

$$\sum_{j=1}^{n} c_j x_j = \left(z^* - \sum_{i=1}^{m} b_i y_i^* \right) + \sum_{j=1}^{n} \left(\bar{c}_j + \sum_{i=1}^{m} a_{ij} y_i^* \right) x_j$$

holds for all values of x_i , we have:

A:

$$c_j = \bar{c}_j + \sum_{i=1}^m a_{ij} y_i^*$$
 $(j = 1, ..., n)$

Thus, since $\bar{c}_k \leq 0 \ (k = 1, ..., n + m)$

$$\sum_{i=1}^{m} a_{ij} y_i^* \ge c_j$$

$$(j = 1, ..., n)$$
and
$$y_i^* \ge 0$$

$$(i = 1, ..., m)$$

$$y_i^* \ge 0$$
$$(i = 1, ..., m)$$

Proof 5/5

Since

$$\sum_{j=1}^{n} c_j x_j = \left(z^* - \sum_{i=1}^{m} b_i y_i^* \right) + \sum_{j=1}^{n} \left(\bar{c}_j + \sum_{i=1}^{m} a_{ij} y_i^* \right) x_j$$

holds for all values of x_i , we have:

A:

$$c_{j} = \bar{c}_{j} + \sum_{i=1}^{m} a_{ij} y_{i}^{*} \qquad (j = 1, ..., n)$$

$$z^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$
since $\bar{c}_{i} < 0$, $(k = 1, ..., m)$

Thus, since $\bar{c}_k \leq 0 \ (k = 1, ..., n + m)$

$$\sum_{i=1}^{m} a_{ij} y_i^* \ge c_j$$
 and
$$y_i^* \ge 0$$

$$(j = 1, ..., n)$$

$$(i = 1, ..., m)$$

$$y_i^* \ge 0$$
$$(i = 1, \dots, m)$$

$$z^* = \sum_{i=1}^m b_i y_i^*$$

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Today's Program

- [10:00-11:05]
 - The dual problem
 - The duality theorem
- [11:15-12:00]
 - Relationship between primal and dual problems
 - Economic interpretation of dual variables

Dual of Dual = Primal

Dual

Rewritten Dual

Minimize

$$\sum_{i=1}^{m} b_i y_i$$

Maximize
$$\sum_{i=1}^{m} (-b_i) y_i$$

Subject to

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad j = (1, \dots, n)$$
$$y_i \ge 0 \quad i = (1, \dots, m)$$

Subject to

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad j = (1, ..., n)$$

$$y_i \ge 0 \quad i = (1, ..., m)$$

$$\sum_{i=1}^{m} (-a_{ij}) y_i \le (-c_j) \quad j = (1, ..., n)$$

$$y_i \ge 0 \quad i = (1, ..., m)$$

Dual of Dual = Primal

Rewritten Dual

Dual of Dual

Maximize

$$\sum_{i=1}^{m} (-b_i) y_i$$

$$\sum_{i=1}^{m} (-a_{ij}) y_i \le (-c_j) \ j = (1, \dots, n)$$

$$y_i \ge 0 \qquad i = (1, \dots, m)$$

Minimize

$$\sum_{j=1}^{n} (-c_j) x_j$$

Maximize
$$\sum_{i=1}^{m} (-b_i) y_i$$

$$\sum_{j=1}^{n} (-c_j) x_j$$
 Subject to
$$\sum_{i=1}^{m} (-a_{ij}) y_i \le (-c_j) \ j = (1, \dots, n)$$

$$\sum_{j=1}^{n} (-a_{ij}) x_j \ge (-b_i) \ i = (1, \dots, m)$$

$$y_i \ge 0 \qquad i = (1, \dots, m)$$

$$x_j \ge 0 \qquad j = (1, \dots, n)$$

$$x_j \ge 0 \qquad \qquad j = (1, \dots, n)$$

Dual of Dual = Primal

Dual of Dual

Primal

Minimize

$$\sum_{j=1}^{n} (-c_j) x_j$$

Maximize

$$\sum_{j=1}^{n} c_j x_j$$

Subject to

$$\sum_{j=1}^{n} (-a_{ij}) x_j \ge (-b_i) \ i = (1, ..., m)$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad i = (1, ..., m)$$

$$x_j \ge 0 \qquad j = (1, ..., n)$$

$$x_j \ge 0 \qquad j = (1, ..., n)$$

$$x_j \ge 0 \qquad \qquad j = (1,$$

Subject to

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad i = (1, \dots, m)$$

$$x_j \ge 0 \qquad j = (1, \dots, n)$$

Corollary to Duality Theorem

Primal has optimal sol. ⇔ Dual has optimal sol.

Proof

 \Rightarrow : follows directly from duality theorem.

Unboundedness and Infeasibility

From

$$\sum_{j=1}^{n} c_j x_j \le \sum_{i=1}^{m} b_i y_i$$

It follows:

- 1. Primal unbounded \Rightarrow Dual infeasible
- 2. Dual unbounded \Rightarrow Primal infeasible

But we can have

- Primal unbounded and Dual unbounded? or
- Primal infeasible and Dual infeasible?

Example: Dual and Primal Infeasible

Primal

Maximize

$$2x_1 - x_2$$

Subject to

$$x_1 - x_2 \le 1$$

$$-x_1 + x_2 \le -2$$

$$x_1, x_2 \ge 0$$

Dual

Minimize

$$y_1 - 2y_2$$

Subject to

$$y_1 - y_2 \ge 2$$
 $-y_1 + y_2 \ge -1$
 $y_1, y_2 \ge 0$

Primal-Dual Combinations

		Dual		
		Optimal	Infeasible	Unbounded
Primal	Optimal			
	Infeasible			
	Unbounded			

Practical usage of Dual Problem

- Since the number of simplex iterations < 3m in practice, change to dual if more constraints than variables!
- The optimal primal solution is equal to the dual solution of the optimal dual dictionary

Checking Solutions

- Assume that for an LP problem
 - 1. X* is claimed to be an optimal primal solution
 - 2. **Y*** is claimed to be the corresponding optimal dual solution
- To verify this don't run simplex just:
 - 1. Check that **X*** is feasible

- Proves feasibility
- 2. Check that Y* is dual feasible
- 3. Check that $\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$

Proves optimality why?

Today's Program

- [10:00-11:05]
 - The dual problem
 - The duality theorem
- [11:15-12:00]
 - Relationship between primal and dual problems
 - Economic interpretation of dual variables

Economic Significance of Duals

Consider an LP in standard form:

Maximize
$$\sum_{j=1}^{n} c_j x_j$$
 Subject to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad (i=1,\ldots,m)$$

$$x_i \ge 0 \quad (j=1,\ldots,n)$$

 How much does objective of optimal solution increase per extra b_i unit?

Economic Significance of Duals

Consider an LP in standard form:

Maximize
$$\sum_{j=1}^{n} c_j x_j$$
 Subject to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad (i=1,\ldots,m)$$

$$x_i \ge 0 \quad (j=1,\ldots,n)$$

- How much does objective of optimal solution increase per extra b_i unit?
- Answer: y_i^* since $z^* = \sum_{i=1}^m b_i y_i^*$

Theorem

If an LP problem on standard form has a non-degenerate basic optimal solution, then there is a positive ε with the following property: if $|t_i| \le \varepsilon$ for all $i=1,\ldots,m$, then the problem

Maximize
$$\sum_{j=1}^{n} c_j x_j$$

Subject to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i + t_i \quad (i = 1, ..., m)$$

$$x_j \ge 0 \qquad (j = 1, ..., n)$$

has an optimal solution and its optimal value equals

$$z^* + \sum_{i=1}^m y_i^* t_i$$

Example

Standard Form

Maximize

$$x_2$$

Subject to

$$3x_1 + 2x_2 \le 6$$

$$x_1 \le 1$$

$$x_1, x_2 \ge 0$$

Geometric Interpretation

$$3x_1 + 2x_2 \le 6$$
 $x_1 \ge 0$
 $x_1 \ge 0$
 $x_1 \le 1$
 $x_1 \le 1$

Example

Slack Form

Maximize

Z

Subject to

$$x_3 = 6 - 3x_1 - 2x_2$$

 $x_4 = 1 - x_1$
 $z = x_2$
 $x_1, x_2, x_3, x_4 \ge 0$

Geometric Interpretation

Example

Optimal Dictionary

$$x_{2} = 3 - \frac{3}{2}x_{1} - \frac{1}{2}x_{3}$$

$$x_{4} = 1 - x_{1}$$

$$z = 3 - \frac{3}{2}x_{1} - \frac{1}{2}x_{3}$$

$$y_1 = \frac{1}{2}$$
$$y_2 = 0$$

Geometric Interpretation

Boost this Course with an MBA for \$100

