MA 544: Homework 3

Carlos Salinas

February 1, 2016

PROBLEM 3.1 (WHEEDEN & ZYGMUND §3, Ex. 5)

Construct a subset of [0,1] in the same manner as the Cantor set, except that at the kth stage each interval removed has length $\delta 3^{-k}$, $0 < \delta < 1$. Show that the resulting set is perfect, has measure $1 - \delta$, and contains no interval.

Proof. Put $C_0 := [0,1]$. We begin constructing our desired set by removing the open set $\left(\frac{\delta}{3}, 1 - \frac{\delta}{3}\right)$ from the closed interval [0,1]. This separates [0,1] into the union of two disjoint closed (and bounded therefore, compact) intervals $\left[0,\frac{\delta}{3}\right]$ and $\left[1-\frac{\delta}{3},1\right]$ which we shall call C_1 . Next, we remove the open interval $\left(\frac{\delta}{9},\frac{\delta}{3} - \frac{\delta}{9}\right)$ from $\left[0,\frac{\delta}{3}\right]$ and the open interval $\left(1-\frac{\delta}{3}+\frac{\delta}{9},1-\frac{\delta}{9}\right)$ and end up with the union C_2 of four disjoint closed intervals. Continue in this fashion ad infinitum. Note that each $C_{k+1} \subset C_k$ and each C_k is a finite union of closed subsets thus, by theorem 1.7 and the Cantor's intersection theorem, the set $C_\delta := \bigcap_{i=1}^\infty C_i$ is closed, compact, and nonempty.

Now we show that the set we have constructed, C_{δ} , is perfect. Since C_{δ} is closed, it remains to show that C_{δ} contains no isolated points. Note that, in the construction of C_{δ} , we never removed the endpoints the intervals which union to C_k . Thus, the endpoints of the intervals which union to C_k are in C_{δ} . Before continuing, we need to figure out what the length of each interval at the kth stage in the construction is and in the process, we shall prove that $|C_{\delta}| = 1 - \delta$.

At each stage in the construction (except for k = 0) we removed 2^{k-1} open intervals of length $\delta 3^{-k}$. Thus, at the kth stage of the construction, the measure of C_k will be

$$|C_k| = 1 - \sum_{i=1}^k \frac{2^{i-1}\delta}{3^i} = 1 - \frac{\delta}{3} \sum_{i=1}^k \left(\frac{2}{3}\right)^{i-1}.$$

We immediately recognize the right-hand side as a geometric sum so letting $k \to \infty$, by theorem 3.26(ii), we have

$$|C_{\delta}| = \lim_{k \to \infty} 1 - \frac{\delta}{3} \sum_{i=1}^{k} \left(\frac{2}{3}\right)^{i-1} = 1 - \lim_{k \to \infty} \frac{\delta}{3} \sum_{i=1}^{k} \left(\frac{2}{3}\right)^{i-1} = 1 - \frac{\delta}{3} \left(\frac{1}{1 - \frac{2}{3}}\right) = 1 - \delta.$$

Now, let $\varepsilon > 0$ be given. By the Archimedean principle, we may choose a sufficiently large natural number N so that $|C_N|2^{-N} < \varepsilon^{-N} < \varepsilon$. Let x be a point in C_δ , then $x \in C_N$ since $x \in C_k$ for all k. In particular, x is in one of he 2^N disjoint closed intervals that union to C_k , call it I. Let x' be the closest endpoint of I to x (if x is itself an endpoint, choose x' to be the opposite endpoint). Then, by the triangle inequality, we have $|x - x'| \leq |C_N|2^{-N} < \varepsilon$. Hence, the open neighborhood $B(x,\varepsilon) \setminus \{x\} \neq \emptyset$ for any ε . Thus, C_δ is perfect.

Last but not least, we show that C_{δ} contains no interval. Suppose that (a,b) is an interval contained in C_{δ} . Hence, $(a,b) \subset C_k$ for all k. (I don't know how to finish the proof without using a fact about connected 1-manifolds). Then, since (a,b) is connected, it must be contained in an connected component C of C_{δ} . However, the connected components of C_k , i.e., the closed intervals, have measure less than 2^{-k} so $b-a \leq 2^{-k}$. Letting $k \to \infty$, we have $b-a \leq 0$ which leads to a contradiction since the measure of an interval is strictly greater than 0.

PROBLEM 3.2 (WHEEDEN & ZYGMUND §3, Ex. 7)

Prove (3.15).

Proof. Recall the statement of 3.15:

Lemma (Wheeden & Zygmund (3.15)). If $\{I_k\}_k^N$ is a finite collection of nonoverlapping intervals, then $\bigcup I_k$ is measurable and $|\bigcup I_k| = \sum |I_k|$.

Note that the proof follows exactly as corollary 3.24. By theorem 3.14, since $\bigcup I_k$ is a finite union of closed sets, $\bigcup I_k$ is measurable. To see that $|\bigcup I_k| = \sum |I_k|$. By subadditivity, we have

$$\left|\bigcup I_k\right| \le \sum |I_k|.$$

On the other hand, since $|I_k^{\circ}| = |I_k^{\circ}| + |\partial I_k| = |I_k^{\circ} \cup \partial I| = |I_k|$, we have

$$\sum |I_k| = \sum |I_k^{\circ}| \le \left| \bigcup I_k \right|.$$

Hence, $|\bigcup I_k| = \sum |I_k|$.

PROBLEM 3.3 (WHEEDEN & ZYGMUND §3, Ex. 8)

Show that the Borel algebra \mathcal{B} in \mathbb{R}^n is the smallest σ -algebra containing the closed sets in \mathbb{R}^n .

Proof. We defined the Borel algebra \mathcal{B} in \mathbf{R}^n to be the smallest σ -algebra containing the open sets in \mathbf{R}^n . Since \mathcal{B} contains all the closed subsets of \mathbf{R}^n , theorem 3.17, it suffices to show that \mathcal{B} is the smallest such σ -algebra. Suppose \mathcal{B}' is another σ -algebra containing all of the closed sets in \mathbf{R}^n . Then, by theorem 3.17, \mathcal{B}' contains all of the open sets of \mathbf{R}^n and, since \mathcal{B} is the smallest σ -algebra containing the open subsets of \mathbf{R}^n , we have $\mathcal{B} \subset \mathcal{B}'$, as desired.

PROBLEM 3.4 (WHEEDEN & ZYGMUND §3, Ex. 9)

If $\{E_k\}_{k=1}^{\infty}$ is a sequence of sets with $\sum |E_k|_e < +\infty$, show that $\limsup E_k$ (and also $\liminf E_k$) has measure zero.

Proof. Define $E := \limsup E_k$ and $E'_{\ell} := \bigcup_{k=\ell}^{\infty} E_k$. Then E'_{ℓ} is a decreasing (with respect to inclusion) sequence of sets with $\lim_{\ell} E'_{\ell} = E$. Then E is contained in the intersection $\bigcap_{\ell=n}^{\infty} E'_{\ell}$ for all n, so by the monotonicity of the outer measure we have

$$|E|_e \le |E'_\ell|_e$$
.

On the other hand, we also have

$$|E_n'|_e \le \sum_{k=n}^{\infty} |E_k|_e$$

for all n. Since, by assumption, the sum $\sum |E_k|_e$ converges, we have, for every $\varepsilon > 0$, there exists N sufficiently large such that the sum $\sum_{k=n}^{\infty} |E_k|_e < \varepsilon$ for every $n \ge N$. Thus, $|E|_e \le \varepsilon$ for every $\varepsilon > 0$. Let $\varepsilon \to 0$ and we have $|E|_e = 0$ as desired. Lastly, we note that for any sequence $\{a_k\} \subset \mathbf{R}$ we have $\lim\inf a_n \le \limsup a_n$ so, naturally, $\liminf E_k = 0$.

PROBLEM 3.5 (WHEEDEN & ZYGMUND §3, Ex. 10)

If E_1 and E_2 are measurable, show that $|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|$.

Proof. Without loss of generality, we may assume that $|E_1|, |E_2| < \infty$, for otherwise the result holds trivially.

By Carathéodory, we have that

$$|E_1| = |E_1 \cap E_2| + |E_1 \setminus E_2|$$
 and $|E_2| = |E_1 \cap E_2| + |E_2 \setminus E_1|$. (1)

Moreover, by elementary set theory, we have $(E_1 \cup E_2) \setminus E_2 = E_1 \setminus (E_1 \cap E_2)$ and $E_1 \subset E_1 \cup E_2$, and $E_1 \cap E_2 \subset E_1$ so by rearranging (1) we have

$$|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|,$$

as desired.