01076010 เครือข่ายคอมพิวเตอร์ : 2/2564 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

กิจกรรมที่ 8 : TCP Window

กิจกรรมครั้งนี้จะเป็นการทำความเข้าใจกับโปรโตคอล TCP (Transmission Control Protocol) ให้มากยิ่งขึ้น โดยเน้นเรื่องของ TCP Window โดย TCP Window จะแบ่งออกเป็น send Window และ receive Window

ใน send window จะแบ่งออกเป็น 4 ส่วน คือ

- ข้อมูลที่ส่งแล้วและได้รับ Acknowledge ไปแล้ว
- ข้อมูลที่ส่งไปแล้วแต่ยังไม่ได้รับ Acknowledge (ใน Wireshark จะเรียกว่า byte in flight)
- ข้อมูลที่ยังไม่ได้ส่ง และ ฝั่งรับสามารถรับได้ (ตามขนาดของ receive window)
- ข้อมูลที่ยังไม่ได้ส่ง และ ฝั่งรับไม่พร้อมจะรับเนื่องจากขนาดของ receive window

ใน receive window จะแบ่งเป็น 2 ส่วน

- ข้อมูลที่รับแล้วและ Acknowledge ไปแล้ว
- ข้อมูลพร้อมจะรับ

ในระหว่างการสื่อสารทั้ง 2 ด้านจะมีการแจ้งขนาดของ window size ที่เหลือที่ยังรับข้อมูลได้มาใน header ของ TCP โดยมีขนาด 2 ไบต์ โดยมีค่าสูงสุด คือ 65,535 ไบต์ โดยมี Scaling Factor เป็นตัวคูณ ซึ่งหากผั่งรับไม่ สามารถนำข้อมูลออกจาก receive window ได้เร็วพอจะทำให้ Buffer เต็มและเกิด zero window ตามรูป (หมาย เหตุข้อมูล window full และ zero window นี้เป็นข้อมูลที่ wireshark สร้างขึ้น เพื่อให้สะดวกต่อการใช้งาน)

- 1. ให้เปิดไฟล์ tr-youtubebad.pcapng จากนั้นให้ค้นหาเหตุการณ์ zero window โดยใช้ display filter tcp.analysis.zero_window จะเห็นว่ามี zero window เกิดขึ้นจำนวนมาก ให้เลือกบรรทัดแรก แล้วยกเลิก filter โปรแกรม wireshark จะแสดงบริเวณ packet ที่เกิด zero window ครั้งแรก ให้ขยาย TCP หาฟิลด์ calculated window size แล้วสร้างเป็นคอลัมน์ โดยกำหนดให้ Align Center และตั้งชื่อเป็น WinSize
 - ให้สังเกตที่ packet 2718 ซึ่งเป็น packet ที่ host 24.4.7.217 ส่ง ACK กลับมา โดยมี window size เหลือเพียง 1,460 ไบต์
 - ต่อมาใน packet 2719 host 208.117.232.102 มีการส่งข้อมูลไปอีก 1,460 ไบต์ ซึ่งจะทำให้เต็ม receive window พอดี และทำให้ wireshark สร้างข้อมูลแจ้งเตือนว่า window full
 - เมื่อถึง Packet 2720 host 24.4.7.217 ก็ส่ง Packet ACK กลับมา โดยมีค่า window size เป็น 0 ทำ ให้ wireshark สร้างข้อมูลแจ้งเตือนว่า zero window
 - ให้สังเกตช่วงเวลาระหว่าง packet 2720 และ 2721 จะเห็นว่ามีระยะห่างมากกว่าปกติ หมายความ ว่าฝั่งผู้ส่งเมื่อพบ zero window ก็จะรอฝั่งผู้รับให้เคลียร์ receive window เสียก่อน
 - ใน packet 2721 จะมีการส่ง packet keep alive (คือ packet ACK ที่ไม่มีข้อมูล จากผั่งผู้ส่ง ซึ่งจะ เกิดขึ้นเมื่อ keepalive timer expire)
 - จากนั้นใน packet 2722 ผู้รับจะส่ง ACK กลับมา โดยมี window size เป็น 0 เช่นเดิม และเกิดซ้ำอีก ครั้งใน packet 2723 และ 2724

- จนกระทั่ง packet 2725 ผั่งผู้รับจึงส่ง packet ACK ซึ่งมีขนาดของ window size = 243820 ซึ่งไม่ เท่ากับ 0 ซึ่งหมายความว่า receive window ของผั่งผู้รับว่างแล้ว พร้อมรับข้อมูลใหม่ ณ จุดนี้ ถือว่า เหตุการณ์ zero window สิ้นสุดลง โดย wireshark จะสร้างข้อมูลแจ้งเตือน window update
- 2. ให้นักศึกษาตรวจสอบ zero window ระยะที่ 2 แล้วตอบคำถาม ต่อไปนี้
 - เกิด window full, zero window (เฉพาะครั้งแรก) และ window update ที่ packet ใด

 window full = packet ที่ 4022 ______ zero window = packet ที่ 4023 ______

 window update = packet ที่ 4036
 - หลังจากมีการทำ keep alive กี่ครั้ง มีช่วงระยะเวลาเท่าไรบ้าง นับจาก zero window ครั้งก่อน ให้ แสดงรูป capture จาก wireshark ที่แสดงเวลาของ keep alive แต่ละครั้ง มาด้วยใน 1 รูป

6 ครั้ง ระยะเวลาอังนี้ 0.477 , 0.995 , 1.878 , 3.705 , 7.399 ,เอ. อร วินาที

No.	Time	Source	Destination	Protocol	Length WinSiz	e Time since previous	Time since first frame	Info
	4022 12.679273	208.117.232.102	24.4.7.217	HTTP	382 838	4 0.362283000	12.679273000	[TCP Window Full] Conti
	4023 12.889025	24.4.7.217	208.117.232.102	TCP	54 0	0.209752000	12.889025000	[TCP ZeroWindow] 56770
	4024 13.366647	208.117.232.102	24.4.7.217	TCP	60 838	4 0.477622000	13.366647000	[TCP Keep-Alive] 80 → 5
	4025 13.366693	24.4.7.217	208.117.232.102	TCP	54 0	0.000046000	13.366693000	[TCP ZeroWindow] 56770
	4026 14.362070	208.117.232.102	24.4.7.217	TCP	60 838	4 0.995377000	14.362070000	[TCP Keep-Alive] 80 → 5
	4027 14.362127	24.4.7.217	208.117.232.102	TCP	54 0	0.000057000	14.362127000	[TCP ZeroWindow] 56770
	4028 16.240228	208.117.232.102	24.4.7.217	TCP	60 838	4 1.878101000	16.240228000	[TCP Keep-Alive] 80 → 5
	4029 16.240291	24.4.7.217	208.117.232.102	TCP	54 0	0.000063000	16.240291000	[TCP ZeroWindow] 56770
	4030 19.945115	208.117.232.102	24.4.7.217	TCP	60 838	4 3.704824000	19.945115000	[TCP Keep-Alive] 80 → 5
	4031 19.945256	24.4.7.217	208.117.232.102	TCP	54 0	0.000141000	19.945256000	[TCP ZeroWindow] 56770
	4032 27.344112	208.117.232.102	24.4.7.217	TCP	60 838	4 7.398856000	27.344112000	[TCP Keep-Alive] 80 → 5
	4033 27.344212	24.4.7.217	208.117.232.102	TCP	54 0	0.000100000	27.344212000	[TCP ZeroWindow] 56770
	4034 37.364265	208.117.232.102	24.4.7.217	TCP	60 838	4 10.020053000	37.364265000	[TCP Keep-Alive] 80 → 5
	4035 37.364317	24.4.7.217	208.117.232.102	TCP	54 0	0.000052000	37.364317000	[TCP ZeroWindow] 56770
	4036 38.319249	24.4.7.217	208.117.232.102	TCP	54 1664	40 0.954932000	38.319249000	[TCP Window Update] 567

😑 ระยะเวลาตั้งแต่เกิด zero window ครั้งแรกจนถึง window update ใช้เวลาเท่าไร

38.319 - 12.889 = 25.43 3 win

3. การวิเคราะห์ข้อมูลนอกจากจะทำในหน้าต่าง Packet List และ Packet Detail แล้ว ใน wireshark ยังให้ เครื่องมือประเภทกราฟมาด้วย จากไฟล์เดิม ให้นักศึกษาเรียกเมนู Statistics I I/O Graph จะปรากฏหน้าจอ ดังนี้

- ข้อมูลแกน Y คือ packet/sec แกน x คือเวลา ซึ่งจะเห็นวาข้อมูลมีการส่งได้ดี (กราฟพุ่งสูง จำนวน 5 ครั้ง) จากนั้นก็ลดลงอย่างมาก
- ในช่องด้านล่าง เราสามารถสร้างกราฟขึ้นมาใหม่ได้ ให้กด + แล้วกำหนดข้อมูลดังนี้

- Graph Name : Zero_Window

- Display filter : ว่าง

- Color : แดง

- Style : Dot

Y Axis : COUNT FRAMES(Y Field)

- Y Field: tcp.analysis.zero_window

- ให[้] Disable กราฟเดิมทั้ง 2 กราฟ

- กราฟบอกข้อมูลอะไร (แสดงรูป capture ของกราฟด้วย)

ชาพวนการากิก Zero window ในแต่ละวิเภที

- 4. ให้สร้างกราฟเพิ่มอีก 2 กราฟ ดังนี้
 - ชื่อ Window_Full โดยใน Y(AXIS) ใช้ COUNT FRAMES(Y Field) และช่อง Y Field ใช้ tcp.analysis.window_full กำหนดประเภทเป็น Bar สีเขียว
 - ชื่อ Window_Update โดยใน Y(AXIS) ใช้ COUNT FRAMES(*) และช่อง Y Field ใช้ tcp.analysis.window_update กำหนดประเภทเป็น Bar สีน้ำเงิน
 - กราฟแสดงอะไร (แสดงรูป capture ของกราฟด้วย)

(פיזוד) דונו בי בהיחותר ולו שטלחיוש בחודרדישורה

สามาแพรการิกา window update Pullimerania (มีน้ำผิน)

9 ครั้ง

5. ให้สร้าง I/O Graph ใหม่ โดยในช่อง Display Filter ให้ใส่ ip.src==24.4.7.217 ใน Y(AXIS) ใช้ AVG(*) และช่อง Y Field ใช้ tcp.window_size กำหนดประเภทเป็น Line ให้ capture รูป และ อธิบายว่าเราสามารถวิเคราะห์ ข้อมูลอะไรจากกราฟนี้ ให้ Capture รูปประกอบด้วย

เกิงกนม สาย size wobniu บาศ ท่ามระสทหมโลนอับบริที ssiz wobniu เองม กมารั เมิงกนม wobniu orss กกเจลี 0 อลัมเกล ssiz wobnim เกาะกมกลนเป็นบ้านอักมาใน้

פונישות שני בי הלאניצה שוב שבים סירים באוושה

6. ในการควบคุม congestion control ของ TCP จะมีหลักอยู่ 2 ข้อ คือ Slow Start และ Congestion Avoidance ให้เปิดไฟล์ tcp.pcapng แล้วคูที่ Statistics->TCP Stream Graph-> Time-Sequence-Graph(Stevens) โดย แต่ละจุดแสดงถึงการส่งในแต่ละ segment ร่วมกับ Statistics-> Flow Graph นักศึกษาสามารถบอกได้หรือไม่ ว่า Slow Start เริ่มต้นและสิ้นสุดที่ใด และมี Congestion Avoidance เกิดขึ้นหรือไม่ ให้อธิบาย พร้อมรูป ประกอบ

Slow start 13 min packet 4 rum packet 13

in congestion Avoidance

งานครั้งที่ 8

- การส่งงาน เขียนหรือพิมพ์ลงในเอกสารนี้ และส่งโดยเป็นไฟล์ PDF เท่านั้น
- ตั้งชื่อไฟล์โดยใช้รหัสนักศึกษา และ _Lab8 เช่น 63010789_Lab6.pdf
- กำหนดส่ง ภายในวันที่ 23 มีนาคม 2565