BASIC RELATIONSHIPS BETWEEN PIXELS

1

NEIGHBORS OF A

PIXEL

A pixel p at coordinates (x, y) has **four** horizontal and vertical neighbors whose coordinates are given by

$$N_4(p)=(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

$$N_D(p)=(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)$$

• The points $N_4(p)$ and $N_D(p)$ together are called 8-neighbors of p represented as $N_8(p)$.

$$N_8(p)=N_4(p) \cup N_D(p)$$

ADJACENCY

- Let V be the set of intensity values
- 4-adjacency-Two pixels p and q with values from V are 4-adjacent if q is in the set $N_4(p)$.
- 8-adjacency- Two pixels p and q with values from V are 8-adjacent if q is in the set $N_8(p)$.
- m-adjacency (mixed adjacency)-Two pixels p and q with values from V are m-adjacent if
 - (i) q is in $N_4(p)$, or
 - (ii) q is in is in $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are from V

• Consider the following binary image. If V={1}

0	1		1	
0	1	/	0	
0	0		1	

0	1	-1	
0	1	0	
0	0	1	

m-adjacent

4-adjacent

8-adjacent

5

$$V = \{1, 2\}$$

- 0 1 1
- 0 2 0
- 0 0 1

0	1	1
0	2	0
0	0	_1

6

• Consider the following image, v={1}, find length of the shortest 4-path, 8-path and m path between p and q.

0	1	1p
0	1	0
0	0	1q

- No 4 –path
- 8-path

 Consider the following image, v={1,2}, find length of the shortest 4-path, 8-path and m path between p and q.

0	1	1p
0	2	0
0	0	1q

- No 4 path
- 8-path

• Let v={3,4,5}. Compute the length of the shortest 4-path, 8 path and m-path between p and q.

10

4-path (len=6),8-path (len=4),m-path(len=5)

DISTANCE MEASURES

• The Euclidean distance between p and q is defined as

• The D_4 distance (also called city-block distance) between p and q is defined as

 The D₈(also called chessboard distance) between p and q is defined as

 D_m distance between two points is defined as shortest m path between the points