

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра цифровой трансформации (ЦТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ

по дисциплине «Проектирование баз данных»

Практическое занятие №1

Студенты группы	ИКБО-20-23 Кузнецов Лев Андреевич		
		(подпись)	
Ассистент	Брайловский А.В.		
		(подпись)	
Отчет представлен	«»2025 г.		

СОДЕРЖАНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ХОД РАБОТЫ	
ОТВЕТЫ НА ВОПРОСЫ	12
ВЫВОД	13

ПОСТАНОВКА ЗАДАЧИ

Цель: сформировать и закрепить навыки работы с реляционными базами данных на примере СУБД PostgreSQL.

Постановка задачи: на основе логической модели данных, созданной в предыдущем семестре, выполнить необходимые шаги.

ХОД РАБОТЫ

1. Анализ и описание ограничений целостности

Для данного пункта были составлены две таблицы на примере двух других таблиц: request и арр_user, - из логической модели из предыдущего семестра (таблицы 1-2).

Таблица 1. Onucaние ограничений для таблицы request

Название	Тип	Ограничение	Обоснование (Бизнес-
столбца	данных		правило)
id_request	SERIAL	PRIMARY KEY	Уникальный
			идентификатор заявки,
			генерируется
			автоматически.
id_app_user	INT	FOREIGN KEY	Ссылка на пользователя.
		(app_user)	Заявка не может
			существовать без
			пользователя.
id_transaction	INT	FOREIGN KEY	Ссылка на транзакцию.
		(transaction)	Заявка не может
			существовать без
			транзакции
description	TEXT	NOT NULL	Описание заявки,
			включающее в себя всю
			необходимую информацию
			о приобретаемом курсе. В
			каждой заявке обязательное
			присутствует непустое
			поле описания.

Таблица 2. Описание ограничений для таблицы app_user

Название	Тип	Ограничение	Обоснование (Бизнес-
столбца	данных		правило)
id_app_user	SERIAL	PRIMARY KEY	Уникальный
			идентификатор заявки,
			генерируется
			автоматически.
personal_data	TEXT	NOT NULL	Личная информация
			пользователя. Для
			использования приложения
			пользователь обязан ввести

	требуемые личные данные,
	по этой причине данный
	столбец не может не иметь
	значения.

2. Создание структуры данных

Рисунок 1 – Кодовый вид запроса и итоговый вывод

3. Заполнение таблиц данными (DML – Data Manipulation Language)

Рисунок 2 – Заполнение данных в итоговых таблицах

4. Составление запросов на выборку

Рисунок 3 – Выборка при помощи %

Рисунок 4 – Пользовательское именование столбцов

Рисунок 5 – Выборка по столбцу

Рисунок 6 – Выборка по неповторяющемуся столбцу

Рисунок 7 – Выборка с использованием or, and и between

На рисунке 7 представлена выборка с использованием between, что наглядно даёт понять принцип работы таких ключевых слов как min и max.

Рисунок 8 – Выборка с использованием іп

Рисунок 9 – Выборка при помощи where c is not null

5. Составление запросов на выборку

Рисунок 10 - Сортировка по возрастанию (ключевое слово - asc)

Рисунок 11 - Сортировка по убыванию (ключевое слово - desc)

Рисунок 12 - Комбинация сортировок desc и asc

Рисунок 13 - Комбинация сортировок desc и desc

Как видно из рисунков 12-13 сначала производится сортировка по sum и при обнаружении дубликатов в sum далее будет проведена сортировка по id_app_user (обратите внимание на 2-ую и 3-ю строки в id_app_user в окне вывода на обоих рисунках).

Рисунок 14 – Группировка таблиц по app_user_id

Рисунок 15 - Группировка таблиц по app_user_id с дополнительным условием

ОТВЕТЫ НА ВОПРОСЫ

- 1. Отличие в том, что primary key это комбинация unique и not null. primary key не допускает значения null, unique допускает;
- 2. Дочерняя таблица по данному foreign key удалит все свои связанные дочерние таблицы;
- 3. from \rightarrow where \rightarrow group by \rightarrow having \rightarrow select \rightarrow order by;
- 4. Потому что нельзя обратить к Nil псевдониму;
- 5. Золотое правило group by любой столбец указанный в select должен находиться либо в group by, либо в агрегатной функции. Потому что так СУБД сможет сгруппировать столбцы по контролируемому правилу.
- 6. Отсортировать transaction по count(*) app_user_id Найти все transaction с sum в пределах от 100 до 1000 и при этом итоговое колво id_app_user должно быть меньше 2.

вывод

В ходе работы были получены и закреплены практическим путём знания и навыки по работе с СУБД.