EXERCICE N°1 Suite arithmétique ou pas (Le corrigé)

- 1) Soit w la suite définie par : $\forall n \in \mathbb{N}$, $w_n = 4n+5$
- **1.a)** Calculer les trois premiers termes de la suite w.
- $w_0 = 4 \times 0 + 5$, ainsi $w_0 = 5$
- $w_1 = 4 \times 1 + 5$, ainsi $w_1 = 9$
- $w_2 = 4 \times 2 + 5$, ainsi $w_2 = 13$.
- **1.b)** Représenter graphiquement les 3 premiers termes de w.

- 1.c) D'après la représentation graphique, la suite w semble-t-elle arithmétique? Justifier. Les points du nuage semblent alignés, la suite w semble arithmétique .
- **1.d)** Démontrer que la suite w est arithmétique et préciser sa raison r.

Soit *n* un entier naturel.

$$w_{n+1} - w_n = 4(n+1) + 5 - [4n+5] = 4n + 4 + 5 - 4n - 5 = 4$$

Ainsi la différence de deux termes consécutifs est constante égale à 4.

On en déduit que la suite |w| est arithmétique |de| de raison |r| = 4 et de 1^{er} terme $|w|_0 = 5$

On a $w_{n+1} - w_n = r \Leftrightarrow w_{n+1} = w_n + r$ ce qui est la définition du cours.

- 2) Soit v la suite définie par : $\forall n \in \mathbb{N}$, $v(n)=n^2+3$
- **2.a)** Calculer les trois premiers termes de la suite v.
- $v_0 = 0^2 + 3$, ainsi $v_0 = 3$
- $v_1 = 1^2 + 3$, ainsi $v_1 = 4$
- $v_2 = 2^2 + 3$, ainsi $v_2 = 7$
- **2.b)** Représenter graphiquement les 3 premiers termes de v.

2.c) D'après la représentation graphique, la suite <u>v</u> semble-t-elle arithmétique ? Justifier.

Les points du nuage n'étant pas alignés, la suite v ne semble pas arithmétique

2.d) Démontrer que la suite v n'est pas arithmétique.

Si v était arithmétique alors elle admettrait une raison r

Or:
$$v_2 - v_1 = 7 - 4 = 3$$

Donc r vaudrait 3

Mais:
$$v_1 - v_0 = 4 - 3 = 1$$

Donc r vaudrait aussi 1, c'est absurde.

Ainsi, v n'est pas arithmétique .

EXERCICE N°2 Suite arithmétique et formule explicite : départ à 0

- (u_n) est la suite arithmétique de premier terme $u_0 = 4$ et de raison r = 2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}$, $u_{n+1} = u_n + r$, d'où $u_{n+1} = u_n + 2$

 u_{n+1} en fonction de u_n « signifie que » u_{n+1} est à gauche du « = » et que dans le membre de droite, il n'y a pas « autre chose » que u_n , des nombres et des symboles opératoires.

Contre-exemple: dans $u_{n+1} = u_n + r$, on exprime u_{n+1} en fonction de u_n et de r.

- 2) Calculer les termes u_1 , u_2 et u_3 .
- $u_1 = u_0 + r = 4 + 2$, ainsi $u_1 = 6$
- $u_2 = u_1 + r = 6 + 2$, ainsi $u_2 = 8$
- $u_3 = u_2 + r = 8 + 2$, ainsi $u_3 = 10$
- 3) Pour tout entier n, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}$, $u_n = u_0 + nr$, d'où $u_n = 4 + 2n$

- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .
- $u_{10} = 4 + 2 \times 10$, ainsi $u_{10} = 24$
- $u_{17} = 4 + 2 \times 17$, ainsi $u_{17} = 38$
- $u_{23} = 4 + 2 \times 23$, ainsi $u_{23} = 50$

EXERCICE N°3 Suite arithmétique et formule explicite : départ à 1

- (u_n) est la suite arithmétique de premier terme $u_1 = -80$ et de raison r = 10.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}^*$, $u_{n+1} = u_n + 10$

- 2) Calculer les termes u_2 , u_3 et u_4 .
- $u_2 = u_1 + r = -80 + 10$, ainsi $u_2 = -70$
- $u_3 = u_2 + r = -70 + 10$, ainsi $u_3 = -60$
- $u_4 = u_3 + r = -60 + 10$, ainsi $u_4 = -50$
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}^*$, $u_n = u_1 + 10(n-1)$

On commence à 1 donc on enlève 1

$$u_n = -80 + 10(n-1)$$

- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- $u_7 = -80 + 10 \times (7 1)$, ainsi $u_7 = -20$
- $u_{10} = -80 + 10 \times (10 1)$, ainsi $u_{10} = 10$
- $u_{14} = -80 + 10 \times (14 1)$, ainsi $u_{14} = 50$
- 5) Quel est le rang du terme égal à 80 ? Justifier.

Notons *n* le rang cherché,

$$u_n = 80 \Leftrightarrow -80 + 10(n-1) = 80 \Leftrightarrow 10(n-1) = 160 \Leftrightarrow n = 17$$

Ainsi $u_{17} = 80$ donc le rang cherché est 17.

EXERCICE N°4 Suite arithmétique : Somme de termes

Soit $(u_n)_{n\in\mathbb{N}}$ la suite arithmétique de premier terme $u_0=2$ et de raison r=3.

1) Calculer u_1 , u_2 et u_3 .

$$u_1 = u_0 + r = 2 + 3$$
, ainsi $u_1 = 5$

$$u_2 = u_1 + r = 5 + 3$$
, ainsi $u_2 = 8$

$$u_3 = u_2 + r = 8 + 3$$
, ainsi $u_3 = 11$

2) Exprimer le terme u_n en fonction de n. En déduire les valeurs de u_{20} et u_{50} .

$$u_n = u_0 + nr \quad , \text{ainsi} \quad \boxed{u_n = 2 + 3n}$$

•
$$u_{20} = 2 + 3 \times 20$$
 , ainsi $u_{20} = 62$

$$u_{50} = 2 + 3 \times 50$$
 , ainsi $u_{50} = 152$

3) Calculer la somme S des 21 premiers termes de la suite et la somme S' des 51 premiers termes.

La formule de la remarque n°7 est souvent plus pratique...

Le 21^e terme de la suite est $u_{20} = 62$, on en déduit que :

$$S = 21 \times \frac{2+62}{2}$$

$$S = 672$$

EXERCICE N°5 Suite arithmétique : Somme de termes

Soit la suite $(v_n)_{n \in \mathbb{N}}$ définie par $v_n = 7 - 3n$.

- 1) Calculer v_0 , v_1 et v_2 .
- $v_0 = 7 3 \times 0$, ainsi
- $v_1 = 7 3 \times 1$, ainsi $v_1 = 4$
- $v_2 = 7 3 \times 2$, ainsi $v_2 = 1$
- 2) Démontrer que $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique et déterminer la raison de la suite.

Montrons que l'écart entre deux termes consécutifs de la suite est toujours le même.

- Soit *n* un entier naturel.
- $v_{n+1} v_n = 7 3(n+1) (7 3n)$ $v_{n+1} - v_n = 7 - 3n - 3 - 7 + 3n$
- $v_{n+1} v_n = -3$

On en déduit que

 $v_{n+1} = v_n - 3$

et on reconnaît une suite arithmétique de raison

raison -3

- 3) Quelle est la valeur du 51^e terme?
- Le 51° terme est ici v_{50} :

$$v_{50} = 7 - 3 \times 50$$

$$v_{50} = -143$$

4) Calculer la somme des 51 premiers termes.

Nous savons que le 51° terme est $v_{50} = -143$

En notant S la somme cherchée, on peut écrire :

$$S = 51 \times \frac{7 + (-143)}{2}$$

$$S = -3468$$