

- Project Title

In Classification

The classification goal is to predict if the client will subscribe a term deposit

In Classification

File bank-additional-full.csv

Size
21 Columns,
41147 Rows

Dataset Link

https://www.kaggle.com/henriqueyamahata/bank-marketing?select=bank-additional-full.csv

In Classification

Numeric

Age

- emp.var.rate
- Duration
- cons.price.idx
- Campaign
- cons.conf.idx

Pdays

euribor3m

- Previous
- nr.employed

Categorical

Job

Loan

- Marital
- Contact
- Education
- month
- Default
- day_of_week:
- Housing
- Poutcome
- Y (target)

"There is no null value in the data"

In Classification

Age (numeric)

→ We think the perception of deposits will vary depending on age.

Job : type of job (categorical)

 \rightarrow It will have an impact because profits depend on jobs.

Default: has credit in default? (categorical)

→ Those who are credit in default will not hold deposits.

Housing: has housing loan? (categorical)

→ The loan of the house will affect deposit registration.

Loan: has personal loan? (categorical)

→ Individuals' loan status will affect deposit registration.

In Classification

Emp.var.rate: employment variation rate - quarterly indicator (numeric)

Cons.price.idx: consumer price index - monthly indicator (numeric)

Cons.conf.idx: consumer confidence index - monthly indicator (numeric)

Euribor3m: euribor 3 month rate - daily indicator (numeric)

Nr.employed: number of employees - quarterly indicator (numeric)

Economic conditions can affect people's enrollment in deposits.

- Data Preprocessing

In Classification

1. Outlier Data detection

- 2. Feature Scaling
- → min-max normalization

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

- 3. Splitting the Training and Test set
- → Cross validation

- Brief Description

In Classification

Algorithm

- KNN
- SVM
- Decision Tree
- Random Forest
- GradientBoostingClassifier
- XGBClassifier
- GaussianNB

- Project Title

In Clustering

The clustering goal is to show how each country's population changes over time.

- Project Idea

In Clustering

- By clustering the indicator dataset, we analyze how the population has changed by year.
- It also visualizes these results by displaying them on a map.

In Clustering

- Country
- CountryNotes
- database.sqlite
- Footnotes
- hashes
- Indicators
- Series
- SeriesNotes

Has 6 csv Files

Explore country development indicators from around the world

Dataset Link

https://www.kaggle.com/worldbank/world-development-indicators

- Brief Description

In Clustering

- Use 3 Machine Learning Algorithms K Means, DBSCAN, EM
 - We will use the best of the three algorithms

- Brief Description

In Clustering

The world's population growth is expressed in colors on the map by year

- Team member

Hwang ByungHoon

Student ID 201631513

Email byunghoonhwang97 @gmail.com

Oh SeongWon

Student ID 201635825

Email tjddnjs970325@gmail.com

Lee ChaeHyeon

Student ID 201635841

Email Ich50484084@gmail.com

Kim JinKyung

Student ID: 201835437

Email Ixsz987@gmail.com

- Schedule

Sun	Mon	Tue	Wed	Tur	Fri	Sat
11/1	11/2	11/3	11/4	11/5	11/6	11/7
	Data Curatio	n / Data Inspectio	n	Data Preprocessing		
11/8	11/9	11/10	11/11	11/12	11/13	11/14
			Data Analysis (Classification)			
11/15	11/16	11/17	11/18	11/19	11/20	11/21
		Data Analysis (Clus	stering)			
11/22	11/23	11/24	11/25	11/26	11/27	11/29
		Evaluation / Deplo	yment		Prepare Final Presentation	
11/29	11/30	12/1	12/2	12/3	12/4	12/5
Pr	epare Final Prese	ntation	Final Presentation			

