]>

IPUS

Reference Manual

Table of Contents

- 1 Core: IPUS
 - 1.1 Registers
 - 1.2 Register Files
 - o 1.3 Instruction Fields
 - 1.4 Instructions
 - 1.5 Instructions by Attribute
 - 1.6 Helper Functions

1 Core: IPUS

1.1 Registers

1.1.1 *ARGMAX*

ARGMAX 0

Reset value: 0xFFFF

Description:

Core register: position of maximum value of sorting tree, applyind MASK according to CONFSORT. IGNRMASK

1.1.2 *ARGMIN*

ARGMIN
15

Reset value: 0xFFFF

Description:

Core register: Position of minimum value of sorting tree, applying MASK according to CONFSORT. IGNRMASK

1.1.3 *CC_ZNCO*

Z	N	C	0
3	2	1	0

Description:

Internal Register: The condition coder register:

Fields:

Field	Range	Description
О	[0]	Overflow flag: signed arithmetic's produced an value overflow
С	[1]	Carry flag: unsigned arithmetic's produced an value overflow
N	[2]	Negative flag: result is negative (bit[15] is set)
Z	[3]	Zero flag: result is 0

1.1.4 *CLIPPED*

	CLIPPED	
15		0

Description:

Core Register (read only): Adder Tree SUM clipped according to signed or unsigned mode

1.1.5 CONFADDT

SCALE	SHR	THR	SGN	IGNRMASK	SEL	
15 9	8 5	4	3	2	1	0

Description:

Core register: Configuration selecting input to Adder Tree

Fields:

Field	Range	Description
SEL	[1,0]	Input selection: • 0: W • 1: INA • 2: WW • 3: INB
IGNRMASK	[2]	Ignore Mask: • 0: apply mask • 1: ignore mask
SGN	[3]	Signed/unsigned mode selection: • 0: unsigned • 1: signed
THR	[4]	Select threshold mode: • 0: keep lower • 1: keep higher
SHR	[8,5]	Shift right bits [8:5] after scaling: • right shift result by (SHR+6) positions
SCALE	[15,9]	Scale (multiply) Adder Tree result with SCALE: • res = SUM(20:0) * CONFADDT.SCALE) >> CONFADDT.SHR • CONFADDT.SHR = 0 and CONFADDT.SCALE = 0x40 is no scaling

1.1.6 *CONFALU*

OPIX0AUTOINC	OPIX1AUTOINC		SHR		SAT	SGN
13	12	11 9	8 4	3 2	1	0

Reset value: 0x2

Description:

Core Register: Configuration register for arithmentic's in ALU

Fields:

Field	Range	Description
SGN	[0]	ALU uses signed or unsigned logic
		0: unsigned1: signed
SAT	[1]	ALU results are saturated according to signed/unsigned or overflow
		• 0: overflow
		• 1: saturate
SHR	[8,4]	MULH 32 bit result is shifted right by CONFALU.SHR bits to implement fixed point arithmetic's. The result after shift is 16 bit wide. The valid value range is from 0 to 16.
ACCSHR	[11,9]	ACC 24 bit result is shifted right by CONFALU.ACCSHR bits to implement fixed point arithmetic's. The result after shift is 16 bit wide. The valid value range is from 0 to 7.
OPIX1AUTOINC	[12]	Perform no automatic increment of OPIXA1 when OPIX1 is accessed for reading or writing (0=autoinc 1=no autoinc)
OPIX0AUTOINC	[13]	Perform no automatic increment of OPIXA0 when OPIX0 is accessed for reading or writing (0=autoinc 1=no autoinc)

1.1.7 *CONFBEST*

SGN	MIN
1	0

Reset value: 0

Description:

Core register: Configuration Register for best 5 of N accelerator. The configuration should be set only at the beginning of the line before any value was added into the best 5 of N $\,$

Fields:

Field	Range	Description
MIN	[0]	Min or max is best: • 0: max • 1: min
SGN	[1]	Signed/unsigned mode selection: • 0: unsigned • 1: signed

1.1.8 *CONFHIST*

SHR	OFFSET
11 8	7 0

Description:

Core Register: Configuration for HBININCH function

• HBININCL = (HBININCH>>SHR) + OFFSET

Fields:

Field	Range	Description
OFFSET	[7,0]	Offset being added to bin value
SHR	[11,8]	Shift right written value by by SHR bits before applying OFFSET and selecting bin to be incremented

1.1.9 *CONFSORT*

ſ	SGN	IGNRMASK	SEL	
	3	2	1 0	

Description:

Core register: Configuration selecting input to Sorting Tree

Fields:

Field	Range	Description
SEL	[1,0]	Input selection:
		• 0: W
		• 1: INA
		• 2: WW
		• 3: INB
IGNRMASK	[2]	Ignore Mask:
		• 0: apply mask
		• 1: ignore mask
SGN	[3]	Signed/unsigned mode selection:
		• 0: unsigned
		• 1: signed

1.1.10 *CONFSTAT*

	MODE_FIELD3	MODE_FIELD2	MODE_FIELD1	MODE_FIELD0
7	6	5 4	3 2	1 0

Description:

Core Register: Configuration for STATISTIC'S engine

Fields:

Field	Range	Description
MODE_FIELD0	[1,0]	Field 0 accumulation mode model: • 0 : maximum • 1 : minimum • 2 : unsigned accumulate • 3 : signed accumulate

Field	Range	Description
MODE_FIELD1	[3,2]	Field 1 accumulation mode model:
		 0 : maximum 1 : minimum 2 : unsigned accumulate 3 : signed accumulate
MODE_FIELD2	[5,4]	Field 2 accumulation mode model:
		0 : maximum 1 : minimum 2 : unsigned accumulate 3 : signed accumulate
MODE_FIELD3	[7,6]	Field 3 accumulation mode model:
		0 : maximum 1 : minimum 2 : unsigned accumulate 3 : signed accumulate

1.1.11 *CONFTHRES*

	CONFTHRES	
15		0

Description:

Core register: Configuration selecting threshold value for Adder Tree threshold output. The threshold will be done according to CONFADDT.THR

1.1.12 CSE_SET_LOCK

Reset value: 0

Description:

Input Signal: Indicate if the core runs in locked mode (no debug, register read out)

• 1 = Locked / Secure Mode

1.1.13 HBINA

Description:

Core register: Histogram bin being processed

1.1.14 *HBINADD*

Description:

Core Register: Write: value that is added to the Histogram bin HISTA is pointing to

1.1.15 *HBININCH*

Description:

Core Register:

Shift and offset the written value (by CONFHIST) and increment histogram bin that has the resulting value

1.1.16 *HBININCL*

Description:

Core Register: Increment histogram bin that has the written value

1.1.17 HD_BREAKENABLE

Reset value: 0

Description:

Host Debug Register: Enable Break Conditions.

1.1.18 *H_CURRPOS*

XPOS	YPOS
31 16	15 0

Description:

Host Register: Position of current line processed (read only)

Fields:

Field	Range	Description
YPOS	[15,0]	YPOS (same value as current core register)
XPOS	[31,16]	XPOS (same value as current core register)

1.1.19 *H_CURRXCFG*

XSIZE		SHIFT
31 16	15 2	1 0

Reset value: 0x04000001

Description:

Host Register: X counter configuration for current line

Fields:

Field	Range	Description
SHIFT (read-only)	[1,0]	Progress XPOS by SHIFT pixels (constant value of 1)
XSIZE	[31,16]	XSIZE (to be compared with XPOS to detect end of line)

1.1.20 *H_DREGA*

Description:

Host Register: Data register address register

1.1.21 *H_DREGD*

Description:

Host Register: Data register value at address H_DREGA . Any access to H_DREGD will progress H_DREGA to the next register address

1.1.22 *H_HISTA*

Description:

Host Register: Data register address register

1.1.23 *H_HISTAMAX*

Description:

Core Register: Binb of the Histogram peak value

1.1.24 *H_HISTCL*

H_HISTCL	
0	

Description:

Host Register: Clear all Histogram bins

1.1.25 *H_HISTD*

H_HISTD 0

Description:

Host Register: Data register data register

1.1.26 *H_HISTPEAK*

Description:

Core Register: Binb of the Histogram peak value

1.1.27 *H_IMEMA*

Description:

Host Register: IMEM address register

1.1.28 *H_IMEMD*

Description:

Host Register: IMEM data value at address H_IMEMA Any access to H_IMEMD will progress H_IMEMA to the next instruction address

1.1.29 *H_INACFG*

	CURRCFG								NEXTCFG
[31,27] CURRLINE2[26]	CURRLINE1[25]	CURRLINE0[24]	[23,19]	CURRNHOOD[18]	CURRSHIFT[17,16]	[15,11]	LINE2[10]	LINE1[9]	LINE0[
31					16	15			

Reset value: 0x00010001

Description:

Host Register: Input Matrix A configuration

Fields:

Field	Range	Description
NEXTCFG	[15,0]	Setup for next line to be processed (becomes valid with next write to H_START)
SHIFT (read-only)	[1,0]	constant value of 1 pixel

Field	Range	Description
NHOOD	[2]	next line neighborhood type
		• 0: 2D (3x3) • 1: horizontal (9x1)
LINE0	[8]	Indicates if line 0 is enabled for next line (for IN[0] to IN[7])
		• 1: enabled
LINE1	[9]	Indicates if line 1 is enabled for next line (for IN[8] to IN[15])
		• 1: enabled
LINE2	[10]	Indicates if line 2 is enabled for next line (for IN[16] to IN[23])
		• 1: enabled
CURRCFG (read-only)	[31,16]	Status of current line to be processed (read only)
CURRSHIFT	[17,16]	constant value of 1 pixel
CURRNHOOD	[18]	Current line neighborhood type
		• 0: 2D (3x3) • 1: horizontal (9x1)
CURRLINE0	[24]	Indicates if currently line 0 is enabled (for IN[0] to IN[7])
		• 1: enabled
CURRLINE1	[25]	Indicates if currently line 1 is enabled (for IN[8] to IN[15])
		• 1: enabled
CURRLINE2	[26]	Indicates if currently line 2 is enabled (for IN[16] to IN[23])
		• 1: enabled

1.1.30 *H_INALCFG*

	CURRCFG								NEXTCFG
[31,27] CURRLINE2[2	6] CURRLINE1[25]	CURRLINEO[24]	[23,19]	CURRNHOOD[18]	CURRSHIFT[17,16]	[15,11]	LINE2[10]	LINE1[9]	LINEO[
31					16	15			

Reset value: 0x00010001

Description:

Host Register: Input Matrix Alpha configuration

Fields:

Field	Range	Description
NEXTCFG	[15,0]	Setup for next line to be processed (becomes valid with next write to H_START)
SHIFT (read-only)	[1,0]	constant value of 1 pixel
NHOOD	[2]	next line neighborhood type
		• 0: horizontal (9x1) • 1: 2D (3x3)

Field	Range	Description
LINE0	[8]	Indicates if line 0 is enabled for next line (for IN[0] to IN[2])
		• 1: enabled
LINE1	[9]	Indicates if line 1 is enabled for next line (for IN[3] to IN[5])
		• 1: enabled
LINE2	[10]	Indicates if line 2 is enabled for next line (for IN[6] to IN[8])
		• 1: enabled
CURRCFG (read-only)	[31,16]	Status of current line to be processed (read only)
CURRSHIFT	[17,16]	constant value of 1 pixel
CURRNHOOD	[18]	Current line neighborhood type
		 0: horizontal (9x1) 1: 2D (3x3)
CURRLINE0	[24]	Indicates if currently line 0 is enabled
		• 1: enabled
CURRLINE1	[25]	Indicates if currently line 1 is enabled
		• 1: enabled
CURRLINE2	[26]	Indicates if currently line 2 is enabled
		• 1: enabled

1.1.31 *H_INBCFG*

	CURRCFG							NEXTCFG		
[31,27]	CURRLINE2[26]	CURRLINE1[25]	CURRLINE0[24]	[23,19]	CURRNHOOD[18]	CURRSHIFT[17,16]	[15,11] LINE2[10]	LINE1[9]	LINE0[
31							16	15		

Reset value: 0x00010001

Description:

Host Register: Input Matrix B configuration

Fields:

	Fiel	ld	Range		Description		
	NEXT	CFG	[15,0]	Setup for nex	t line to be processed (becomes valid with next write to H_START)		
	SHIFT (re	ead-only)	[1,0]	constant value of 1 pixel			
	NHOOD		[2]	next line neighborhood type			
					• 0: 2D (3x3) • 1: horizontal (9x1)		
	LIN	E0	[8]	Indicates	if line 0 is enabled for next line (for IN[0] to IN[2])		
					• 1: enabled		
	LIN	E1	[9]	Indicates	if line 1 is enabled for next line (for IN[3] to IN[5])		
					• 1: enabled		
	LIN	E2	[10]	Indicates	if line 2 is enabled for next line (for IN[6] to IN[8])		
1.1.32	.1.32 <i>H_LUTA</i>				• 1: enabled		
	CURRCFG	(read-only)	[31,16] H_LUTA				
11		(H_LUTA	Sta	tus of current line to be processed (read only)		
Descriptio	CURRS n:	SHIFT	[17,16]		constant value of 1 pixel		
Hos	t Register. Roo	HPOP Table	e address legister.	Two 16 bit LUT wo	ords are in one 32 bit word of H_LUTD		
					0: 2D (3x3)1: horizontal (9x1)		
1.1.33	CURRL		[24]		Indicates if currently line 0 is enabled		
31	Li	UT1	16 15		• 1: enabled 0		
Descriptio	Description: CURRLINE1		[25]		Indicates if currently line 1 is enabled		
Host Register: Look Up Table		data register. Any	access to H_LUTD will progress H_enabled by two LUT entries.				
Fields:	CURRL		[26]		_ Indicates if currently line 2 is enabled		
	Field	Range	Descr	iption			
	LUT0	[15,0]	First LUT entr	y (little endian)	• 1: enabled		
	LUT1	[31,16]	Second LUT ent	try (little endian)			

1.1.34 *H_OUTCFG*

CURRCFG	NEXTCF

[31,28] CURRLINE3[27] CURRLINE2[26] CURRLINE1[25] CURRLINE0[24] [23,18] CURRSHIFT[17,16] [15,12] LINE3[11] LINE2[10] LINE1 31

Reset value: 0x00010001

Description:

Host Register: Output configuration

Fields:

Field	Range	Description
NEXTCFG	[15,0]	Setup for next line to be processed (becomes valid with next write to H_START)
SHIFT (read-only)	[1,0]	constant value of 1 pixel
LINE0	[8]	Indicates if line 0 is enabled for next line, connected to OUT(0) • 1: enabled
LINE1	[9]	Indicates if line 1 is enabled for next line, connected to OUT(1) • 1: enabled
LINE2	[10]	Indicates if line 2 is enabled for next line, connected to OUT(2) • 1: enabled
LINE3	[11]	Indicates if line 3 is enabled for next line, connected to OUT(3) • 1: enabled
CURRCFG (read-only)	[31,16]	Status of current line to be processed (read only)
CURRSHIFT	[17,16]	constant value of 1 pixel
CURRLINE0	[24]	Indicates if currently line 0 is enabled, connected to OUT(0) • 1: enabled
CURRLINE1	[25]	Indicates if currently line 1 is enabled, connected to OUT(1) • 1: enabled
CURRLINE2	[26]	Indicates if currently line 2 is enabled, connected to OUT(2) • 1: enabled
CURRLINE3	[27]	Indicates if currently line 3 is enabled, connected to OUT(3) • 1: enabled

1.1.35 *H_POS*

Description:

Host Register: Start Position for next line to be processed

Fields:

Field	Range	Description
YPOS	[15,0]	
		YPOS
XPOS	[31,16]	XPOS

1.1.36 *H_START*

		CURR		NEXT
31	24 23	16 1	15 8	7 0

Description:

Host Register: Trigger new line

Fields:

Field	Range	Description
NEXT	[7,0]	start address for next line to be processed (read/write)
CURR (read-only)	[23,16]	Instruction start address for current line being processed (read only)

1.1.37 *H_STATA*

Description:

Host Register: Statistics fields address register (record x 4 + field)

1.1.38 *H_STATCL*

Description:

Host Register: Clear all Statistics records

1.1.39 *H_STATD*

Description:

Host Register: Statistics register data register

1.1.40 *H_STATUS*

REMAINING		DEBUG	STATUS BUFFERED[9]RUN[8]		EVENTS
31	16 15	11 10	9 8	7 2	1 0

Description:

Host Register: Reads the operation status, clear events

Fields:

Field	Range	Description
EVENTS	[1,0]	Number of events, write to decrement
STATUS	[9,8]	Status
		• 0: idle
		• 1: running
		• 3: running and buffered
RUN	[8]	Engine is currently running
		• 1: running
BUFFERED	[9]	Engine has a buffered setup. Do not add/modify line setup anymore until buffered became active (running).
		until buffered became active (rumming).
		• 1: buffered
DEBUG	[10]	Debug Mode
		• 0: normal
		• 1: debug mode
REMAINING	[31,16]	Number of remaining pixels

1.1.41 *H_XCFG*

XSIZE		SHIF'	Т
31 16	15 2	1	0

Reset value: 0x04000001

Description:

Host Register: X counter configuration for next line

Fields:

Field	Range	Description
SHIFT	[1,0]	Progress XPOS by SHIFT pixels (constant value of 1)
XSIZE	[31,16]	XSIZE (to be compared with XPOS to detect end of line)

1.1.42 *IADDR*

Description:

Core Register: Current instruction byte address. The two LSBs are alway zero.

1.1.43 *I_ADDT*

Description:

Internal Signal: Adder Tree SUM full resolution

1.1.44 *I_BUFFERED*

Reset value: 0

Description:

Internal Register: Core has buffered setup for next line. Is identical to H_STATUS.BUFFERED

1.1.45 *I_DEBUGMODE*

Reset value: 0

Description:

Internal Register: Debug Mode. Is identical to H_STATUS.DEBUG

1.1.46 *I_EVENTS*

Reset value: 0

Description:

Internal Register: Number of processed lines. Is identical to H_STATUS.EVENTS

- counts up per done line
- counts down per cleared event

1.1.47 *I_INACFG*

CURRCFG	NEXTCFG
[31,27] CURRLINE2[26] CURRLINE1[25] CURRLINE0[24] [23,19] CURRNHOOD[18] CURRSHIFT[17,16]	[15,11]LINE2[10]LINE1[9]LINE0[
31	15

Reset value: 0x00010001

Description:

Internal Register: Identical to H_INACFG (Input Matrix A configuration)

Fields:

Field	Range	Description
NEXTCFG	[15,0]	Setup for next line to be processed (becomes valid with next write to H_START)
SHIFT	[1,0]	constant value of 1 pixel
NHOOD	[2]	next line neighborhood type
		• 0: 2D (3x3) • 1: horizontal (9x1)
LINE0	[8]	Indicates if line 0 is enabled for next line (for IN[0] to IN[2])
		• 1: enabled
LINE1	[9]	Indicates if line 1 is enabled for next line (for IN[3] to IN[5])
		• 1: enabled
LINE2	[10]	Indicates if line 2 is enabled for next line (for IN[6] to IN[8])
		• 1: enabled
CURRCFG	[31,16]	Status of current line to be processed (read only)
CURRSHIFT	[17,16]	constant value of 1 pixel
CURRNHOOD	[18]	Current line neighborhood type
		• 0: 2D (3x3) • 1: horizontal (9x1)
CURRLINE0	[24]	Indicates if currently line 0 is enabled (for IN[0] to IN[2])
		• 1: enabled
CURRLINE1	[25]	Indicates if currently line 1 is enabled (for IN[3] to IN[5])
		• 1: enabled
CURRLINE2	[26]	Indicates if currently line 2 is enabled (for IN[6] to IN[8])
		• 1: enabled

1.1.48 *I_INALCFG*

ſ	CURRCFG								NEXTCFG		
	[31,27]	CURRLINE2[26]	CURRLINE1[25]	CURRLINE0[24]	[23,19]	CURRNHOOD[18]	CURRSHIFT[17,16]	[15,11]	LINE2[10]	LINE1[9]	LINEO[
Ì	31						16	15			

Reset value: 0x00010001

Description:

Internal Register: Identical to H_INALCFG (Input Matrix A configuration)

Fields:

	Field	Range	Description	Description
--	-------	-------	-------------	-------------

Field	Range	Description
NEXTCFG	[15,0]	Setup for next line to be processed (becomes valid with next write to H_START)
SHIFT	[1,0]	constant value of 1 pixel
NHOOD	[2]	next line neighborhood type • 0: 2D (3x3) • 1: horizontal (9x1)
LINE0	[8]	Indicates if line 0 is enabled for next line • 1: enabled
LINE1	[9]	Indicates if line 1 is enabled for next line • 1: enabled
LINE2	[10]	Indicates if line 2 is enabled for next line • 1: enabled
CURRCFG	[31,16]	Status of current line to be processed (read only)
CURRSHIFT	[17,16]	constant value of 1 pixel
CURRNHOOD	[18]	Current line neighborhood type • 0: horizontal (9x1) • 1: 2D (3x3)
CURRLINE0	[24]	Indicates if currently line 0 is enabled • 1: enabled
CURRLINE1	[25]	Indicates if currently line 1 is enabled • 1: enabled
CURRLINE2	[26]	Indicates if currently line 2 is enabled • 1: enabled

1.1.49 *I_INBCFG*

ſ				CURRCFG					NEXTCFG
	[31,27]	CURRLINE2[26]	CURRLINE1[25]	CURRLINE0[24]	[23,19]	CURRNHOOD[18]	CURRSHIFT[17,16]	[15,11]LINE2[10]	LINE1[9]LINE0[
ĺ	31						16	15	

Reset value: 0x00010001

Description:

Internal Register: Identical to H_INBCFG (Input Matrix A configuration)

Fields:

Field	Range	Description
NEXTCFG	[15,0]	Setup for next line to be processed (becomes valid with next write to H_START)
SHIFT	[1,0]	constant value of 1 pixel

Field	Range	Description
NHOOD	[2]	next line neighborhood type • 0: 2D (3x3)
LINE0	[8]	• 1: horizontal (9x1)
	[0]	Indicates if line 0 is enabled for next line • 1: enabled
LINE1	[9]	Indicates if line 1 is enabled for next line
		• 1: enabled
LINE2	[10]	Indicates if line 2 is enabled for next line
		• 1: enabled
CURRCFG	[31,16]	Status of current line to be processed (read only)
CURRSHIFT	[17,16]	constant value of 1 pixel
CURRNHOOD	[18]	Current line neighborhood type
		 0: horizontal (9x1) 1: 2D (3x3)
CURRLINE0	[24]	Indicates if currently line 0 is enabled
		• 1: enabled
CURRLINE1	[25]	Indicates if currently line 1 is enabled
		• 1: enabled
CURRLINE2	[26]	Indicates if currently line 2 is enabled
		• 1: enabled

1.1.50 *I_MFLAG_C*

Description:

Internal Signal: 3x3 Matrix ALU Carry Flags

1.1.51 *I_MFLAG_N*

Description:

Internal Signal: 3x3 Matrix ALU Negative Flags

1.1.52 *I_MFLAG_O*

Г	I_MFLAG_O
8	0

Description:

Internal Signal: 3x3 Matrix ALU Overflow Flags

1.1.53 *I_MFLAG_Z*

Description:

Internal Signal: 3x3 Matrix ALU Zero Flags

1.1.54 *I_OUTCFG*

CURRCFG	NEXTCF
[31,28] CURRLINE3[27] CURRLINE2[26] CURRLINE1[25] CURRLINE0[24] [23,18] CURRSHIFT[17,16]	[15,12] LINE3[11] LINE2[10] LINE1
31	15

Reset value: 0x00010001

Description:

Internal Register: Identical to H_OUTCFG (Output configuration)

Fields:

Field	Range	Description
NEXTCFG	[15,0]	Setup for next line to be processed (becomes valid with next write to H_START)
SHIFT	[1,0]	constant value of 1 pixel
LINE0	[8]	Indicates if line 0 is enabled for next line, connected to OUT(0) • 1: enabled
LINE1	[9]	Indicates if line 1 is enabled for next line, connected to OUT(1) • 1: enabled
LINE2	[10]	Indicates if line 2 is enabled for next line, connected to OUT(2) • 1: enabled
LINE3	[11]	Indicates if line 3 is enabled for next line, connected to OUT(3) • 1: enabled
CURRCFG	[31,16]	Status of current line to be processed (read only)
CURRSHIFT	[17,16]	constant value of 1 pixel
CURRLINE0	[24]	Indicates if currently line 0 is enabled, connected to OUT(0) • 1: enabled
CURRLINE1	[25]	Indicates if currently line 1 is enabled, connected to OUT(1) • 1: enabled
CURRLINE2	[26]	Indicates if currently line 2 is enabled, connected to OUT(2) • 1: enabled

Field	Range	Description
CURRLINE3	[27]	Indicates if currently line 3 is enabled, connected to OUT(3)
		• 1: enabled

1.1.55 *I_RUN*

I_RUN	
0	

Reset value: 0

Description:

Internal Register: Core is running Is identical to H_STATUS.RUN

1.1.56 *I_SHIFT_X*

Reset value: 1

Description:

Internal Register: Identical to H_CURRXCFG.SHIFT. Increment XPOS counter by positions per "done , *x"

1.1.57 *I_START*

		CURR		NEXT
31	24 2	23 16	15 8	7 0

Description:

Internal Register: Identical to H_START

Fields:

Field	Range	Description
NEXT	[7,0]	start address for next line to be processed (read/write)
CURR	[23,16]	Instruction start address for current line being processed (read only)

1.1.58 *I_STAT_DIRTY*

I_STAT_DIRTY	
0	

Reset value: 0

Description:

Internal Register: Statistics fields have been modified since read and need write back

1.1.59 *I_STAT_NEW_LINE*

I_STAT_NEW_LINE
0

Reset value: 1

Description:

Internal Signal: STAT value has not been read in that line, so do a read even if the STATA is the same

1.1.60 *I_XSIZE*

Reset value: 1024

Description:

Internal Register: Identical to H_CURRXCFG.XSIZE. Stop processing when XPOS reaches H_CURRXCFG.XSIZE (line length)

1.1.61 *LOCK*

ſ	LUT	BEST50FN	STAT	HIST	OUT	GPR12T015	GPR8TO11	GPR4TO7	GPR0TO3
ſ	12	11	10	9	8	7	5 5 4	3 2	1 (

Reset value: 0x1fff

Description:

Core Register: Lock Data Registers for read out via Host register interface (and debug). This is a security feature. The idea is that the kernel itself controls which registers contain result global data to be read by the application SW. All bits of this registers are asserted when a new line is started for processing.

Fields:

Field	Range	Description
GPR0TO3	[1,0]	Lock status for GPR0-GPR3
		 0: allow read access to GPR0-GPR3
		 1: allow read access to GPR2-GPR3
		 2: allow read access to GPR0
		 3: allow read access to none of the registers GPR0-GPR3
		(default)
GPR4TO7	[3,2]	Lock status for GPR4-GPR7
		• 0: allow read access to GPR4-GPR7
		 1: allow read access to GPR6-GPR7
		 2: allow read access to GPR4
		• 3: allow read access to none of the registers
		GPR4-GPR7 (default)
GPR8TO11	[5,4]	Lock status for GPR8-GPR11
		• 0: allow read access to GPR8 -GPR11
		• 1: allow read access to GPR10-GPR11
		 2: allow read access to GPR8
		• 3: allow read access to none of the registers GPR8-GPR11
		(default)
GPR12TO15	[7,6]	Lock status for GPR12-GPR15
		• 0: allow read access to GPR12-GPR15
		 1: allow read access to GPR14-GPR15
		• 2: allow read access to GPR12
		• 3: allow read access to none of the registers GPR4-GPR7
		(default)

Field	Range	Description
OUT	[8]	Lock status for OUT0-OUT3 • 0: allow read access to Out • 1: deny
HIST	[9]	Lock status for H_HISTA and H_HISTD • 0: allow read access to Histogram host registers • 1: deny
STAT	[10]	Lock status for H_STATA and H_STATD • 0: allow read access to Statistic's host registers • 1: deny
BEST5OFN	[11]	Lock status for SOF0-4 and SOFA0-5 via the H_DREGD register • 0: allow read access • 1: deny
LUT	[12]	Lock status for H_LUTA and H_LUTD • 0: allow read access to Look Up Table host registers • 1: deny

1.1.62 *LOOPCNT*

Description:

Core Register: Loop counter

1.1.63 *LOOPCNT1*

Description:

Core Register: 2nd Loop counter

1.1.64 *LUT*

Description:

Core register: LUT (Look Up Table) entry being accessed at entry LUTA

read: LUT = LookUpTable[LUTA]write: LookUpTable[LUTA] = LUT

1.1.65 *LUTA*

Reset value: 0

Description:

Core register: Address into Look Up Table

1.1.66 MASKOP2

Description:

Internal Signal: Bit vector operand 2, input to Mask ALU

On a write

```
func ( bits < 16 > val ) {
   MASKOP2 = val ;
}
```

1.1.67 *MASKV*

Reset value: 0x1FF

Description:

Core Register: Mask 3x3 matrix register vector (MASK(i) is equal to MASKV[i])

1.1.68 *MFLAG_C*

Description:

Core Register: 3x3 Matrix ALU Carry Flags

1.1.69 *MFLAG_N*

Description:

Core Register: 3x3 Matrix ALU Negative Flags

1.1.70 *MFLAG_O*

Description:

Core Register: 3x3 Matrix ALU Overflow Flags

1.1.71 *MFLAG_Z*

MFLAG_Z

0

8

Description:

Core Register: 3x3 Matrix ALU Zero Flags

1.1.72 NHOOD

Reset value: 0x1FF

Description:

Core Register: 9 bit vector to mask out Mask ALU results for special neighborhood, e.g.:

- $CON_4 = 0b \ 010101010$
- CON_8 = 0b 1111111111
- CON H2 = 0b 000111000
- CON V2 = 0b 010010010

1.1.73 NIA

Description:

Internal Signal: Next instruction byte address. The two LSBs are alway zero.

1.1.74 *ONE*

Reset value: 0xffff

Description:

Core Register: -1 constant, read only

1.1.75 *OP1*

Description:

Internal Signal: ALU Operand 1

1.1.76 *OP2*

Description:

Internal Signal: ALU Operand 2

1.1.77 PRNG

Description:

Core Register: Pseudo Random Noise Value (16 LSB's of the internal PRNG)

1.1.78 *RES*

Description:

Internal Signal: ALU Result value before saturating

1.1.79 RES32

Description:

Internal Signal: Result from multiplier

1.1.80 *SAT*

Description:

Internal Signal: ALU Result value after saturating

1.1.81 *SCALED*

Description:

Core Register (read only): Adder Tree SUM scaled according to configured scale and scale-shift

1.1.82 *SCNT*

Description:

Internal register: Count inputs to the Sort engine (best 5 of N). This counter value is stored with the value in the SOA registers

1.1.83 SIG_LINE_DONE

Description:

Output Signal: Line Done. Asserts for one cycle when a line is done

1.1.84 *SOCLEAR*

Description:

Core register: Initialize/Reset the Sort engine (best 5 of N).

1.1.85 *SOIN*

Description:

Core register: Sorter Input (best 5 of N) Maximum value of sorting tree

1.1.86 *SORTMAX*

Description:

Core register: Maximum value of sorting tree applying MASK according to CONFSORT.IGNRMASK

1.1.87 SORTMEDIAN

Description:

Core register: Median value of sorting tree applying MASK according to CONFSORT.IGNRMASK

1.1.88 *SORTMIN*

Description:

Core register: Minimum value of adder tree applying MASK according to CONFSORT.IGNRMASK

1.1.89 SREC

Description:

Core register: Statistics record being processed

1.1.90 *SUM*

Description:

Core Register (read only): Adder Tree SUM

1.1.91 *THRESHOLD*

Description:

Core Register (read only): Adder Tree SUM thresholded according to CONFTHRES, CONFADDT.SGN and CONFADDT.THR

1.1.92 XPOS

Description:

Core Register: X position counter This is updated by a Done type of instruction

1.1.93 *YPOS*

Description:

Core and Host Register: Y position register This is set by the host CPU

1.1.94 *ZERO*

Description:

Core Register: 0 constant, read only

1.2 Register Files

1.2.1 ACC

Number of registers in file: 4

Description:

Core Register: Accumulator registers. Writing accumulates to the registers according to CONFALU.SGN.

Reading returns the unsigned value according to CONFALU.SAT and CONFALU.ACCSHR.

1.2.2 GPR

Number of registers in file: 16

Description:

Core Register: General purpose registers

1.2.3 *H_IPS*

Number of registers in file: 192

Description:

IPS peripheral register (Host registers) address mapping

Constituent Registers

Index	Register Usage
0	H_START
1	H_STATUS
2	H_POS
3	H_CURRPOS
4	H_XCFG
5	H_CURRXCFG
6	H_INACFG
7	H_INBCFG
8	H_INALCFG
9	H_OUTCFG
16	H_IMEMA
17	H_IMEMD
18	H_DREGA
19	H_DREGD
20	H_HISTA
21	H_HISTD
22	H_HISTPEAK
23	H_HISTAMAX
24	H_HISTCL
25	H_STATA
26	H_STATD
27	H_STATCL
30	H_LUTA
31	H_LUTD
57	IADDR
58	CC_ZNCO
65	S_LINELEN_INAO
66	S_CHCFG_INA0
67	S_LINE_PTR_INA0
68	S_LINELEN_INA1
69	S_CHCFG_INA1
70	S_LINE_PTR_INA1
71	S_LINELEN_INA2
72	S_CHCFG_INA2
73	S_LINE_PTR_INA2
81	S_LINELEN_INBO
82	S_CHCFG_INB0

Index	Register Usage
83	S_LINE_PTR_INB0
84	S_LINELEN_INB1
85	S_CHCFG_INB1
86	S_LINE_PTR_INB1
87	S_LINELEN_INB2
88	S_CHCFG_INB2
89	S_LINE_PTR_INB2
97	S_LINELEN_INALO
98	S CHCFG INALO
99	S LINE PTR INALO
100	S LINELEN INAL1
101	S_CHCFG_INAL1
102	S_LINE_PTR_INAL1
103	S_LINELEN_INAL2
104	S_CHCFG_INAL2
105	S_LINE_PTR_INAL2
113	S_LINELEN_OUTO
114	S CHCFG OUTO
115	S LINE PTR OUTO
116	S LINELEN OUT1
117	S CHCFG OUT1
118	S LINE PTR OUT1
119	S LINELEN OUT2
120	S CHCFG OUT2
121	S LINE PTR OUT2
122	S LINELEN OUT3
123	
123	
129	
130	S_CURRLINELEN_INAO
	S_CURRCHCFG_INAO
131	S_CURRLINE_PTR_INA0
132	S_CURRLINELEN_INA1
133	S_CURRCHCFG_INA1
134	S_CURRLINE_PTR_INA1
135	S_CURRLINELEN_INA2
136	S_CURRCHCFG_INA2
	S_CURRLINE_PTR_INA2
145	S_CURRLINELEN_INBO
	S_CURRCHCFG_INB0
147	S_CURRLINE_PTR_INB0
	S_CURRLINELEN_INB1 S_CURRCHCFG_INB1
149	
150	
151	S_CURRLINELEN_INB2 S_CURRCHCFG_INB2
153	S_CURRCHCFG_INB2 S_CURRLINE_PTR_INB2
161	
162	S_CURRLINELEN_INALO S_CURRCHCFG_INALO
163	S_CURRLINE_PTR_INALO
164	S_CURRLINELEN_INAL1
165	S_CURRCHCFG_INAL1
166	S_CURRLINE_PTR_INAL1
167	S CURRLINELEN INAL2
168	S_CURRCHCFG_INAL2
169	S CURRLINE PTR INAL2
177	S CURRLINELEN OUTO
178	S_CURRCHCFG_OUTO
179	S CURRLINE PTR OUTO
180	S_CURRLINELEN_OUT1
181	S_CURRCHCFG_OUT1
182	S_CURRLINE_PTR_OUT1
183	
184	S_CURRLINELEN_OUT2
184	S_CURRCHCFG_OUT2
103	S_CURRLINE_PTR_OUT2

Index	Register Usage
186	S_CURRLINELEN_OUT3
187	S_CURRCHCFG_OUT3
188	S_CURRLINE_PTR_OUT3

1.2.4 INA

Number of registers in file: 9

Description:

Core Register: Input A matrix register for pixels

- INA[2] INA[1] INA[0]
- INA[5] INA[4] INA[3]
- INA[8] INA[7] INA[6]
- (numbering for scan from left to right)

1.2.5 *INALPHA*

Number of registers in file: 9

Description:

Core Register: Input A 3x3 matrix register for pixels

- INALPHA[2] INALPHA[1] INALPHA[0]
- INALPHA[5] INALPHA[4] INALPHA[3]
- INALPHA[8] INALPHA[7] INALPHA[6]
- (numbering for scan from left to right)

1.2.6 INB

Number of registers in file: 9

Description:

Core Register: Input A 3x3 matrix register for pixels

- INB[2] INB[1] INB[0]
- INB[5] INB[4] INB[3]
- INB[8] INB[7] INB[6]
- (numbering for scan from left to right)

1.2.7 *I_POS_INA*

I_POS_INA 17

Number of registers in file: 3

Description:

Internal Register: Current pixel position in the line

1.2.8 *I_POS_INAL*

Number of registers in file: 3

Description:

Internal Register: Current pixel position in the line

1.2.9 *I_POS_INB*

Number of registers in file: 3

Description:

Internal Register: Current pixel position in the line

1.2.10 *I_POS_OUT*

Number of registers in file: 4

Description:

Internal Register: Current byte position in the line

1.2.11 *I_RPTCNT_INA*

```
I_RPTCNT_INA

1
```

Number of registers in file: 3

Reset value: 1

Description:

Internal Register: counting the repeat status

On a read

```
func ( unsigned line_no ) {
  if ( I_RPTCNT_INA ( line_no ) == 0 ) return 4 ;
  return I_RPTCNT_INA ( line_no ) ;
```

}

1.2.12 I_RPTCNT_INAL

I_RPTCNT_INAL
0

Number of registers in file: 3

Reset value: 1

Description:

Internal Register: counting the repeat status

On a read

```
func ( unsigned line_no ) {
  if ( I_RPTCNT_INAL ( line_no ) == 0 ) return 4 ;
  return I_RPTCNT_INAL ( line_no ) ;
}
```

1.2.13 *I_RPTCNT_INB*

Number of registers in file: 3

Reset value: 1

Description:

Internal Register: counting the repeat status

On a read

```
func ( unsigned line_no ) {
  if ( I_RPTCNT_INB ( line_no ) == 0 ) return 4 ;
  return I_RPTCNT_INB ( line_no ) ;
}
```

1.2.14 *I_SF*

Number of registers in file: 4

Description:

Internal Core Register: Statitics field: 32 bit value of concatenating SFH(i) and SFL(i)

I_SKIPCNT_OUT

Number of registers in file: 5

Reset value: 0

Description:

Internal Register: counting the skip status

1.2.16 *MASK*

MASK 0

Number of registers in file: 9

Reset value: 1

Description:

Core Register: Mask 3x3 matrix register for pixels

1.2.17 MASKOP1

MASKOP1 15

Number of registers in file: 9

Description:

Internal Signal: Matrix operand 1, input to Mask ALU

On a write

```
func ( unsigned index , bits < 16 > val ) {
   int i ;
   switch ( index ) {
      case 0 : for ( i = 0 ; i < 9 ; i ++ ) {
            MASKOP1 ( i ) = W ( i ) ;
      }
      break ;
      case 1 : for ( i = 0 ; i < 9 ; i ++ ) {
            MASKOP1 ( i ) = INALPHA ( i ) ;
      }
      break ;
      case 2 : for ( i = 0 ; i < 9 ; i ++ ) {
            MASKOP1 ( i ) = WW ( i ) ;
      }
      break ;
      case 5 : for ( i = 0 ; i < 9 ; i ++ ) {
            MASKOP1 ( i ) = MASK ( i ) ;
      }
      break ;
    }
}</pre>
```

1.2.18 *MASKRES*

MASKRES 0

Number of registers in file: 9

Description:

Internal Signal: Matrix result of Mask ALU before saturation

1.2.19 MOP1

Number of registers in file: 9

Description:

Internal Signal: 3x3 Matrix Operand 1 Input to Matrix ALU

1.2.20 *MOP2*

Number of registers in file: 9

Description:

Internal Signal: 3x3 Matrix Operand 2 Input to Matrix ALU

1.2.21 *MRES*

Number of registers in file: 9

Description:

Internal Signal: 3x3 Matrix result of Matrix ALU before saturation

1.2.22 *MSAT*

Number of registers in file: 9

Description:

Internal Signal: 3x3 Matrix result of Matrix ALU after saturation

1.2.23 *O*

Number of registers in file: 4

Description:

Internal Register: StreamDMA output interface. Once data is moved from OUT, the StreamDMA engine will autonomously write the register back to the memory (buffering 64 bits).

1.2.24 OPIX

Number of registers in file: 2

Description:

Core Register: Indirect operand register.

1.2.25 OPIXA

Number of registers in file: 2

Description:

Core Register: Indirect operand address register.

1.2.26 OUT

Number of registers in file: 4

Description:

Core Register: Output pixel registers.

1.2.27 *P_INA*

Number of registers in file: 3

Description:

Internal Register: Prefetch Register for INA StreamDMA input. Once data is moved to INA, the StreamDMA engine will autonomously fill the register with the next value from the line.

1.2.28 *P_INAL*

Number of registers in file: 3

Description:

Internal Register: Prefetch Register for INAL StreamDMA input. Once data is moved to INAL, the StreamDMA engine will autonomously fill the register with the next value from the line.

1.2.29 *P_INB*

Number of registers in file: 3

Description:

Internal Register: Prefetch Register for INB StreamDMA input. Once data is moved to INB, the StreamDMA engine will autonomously fill the register with the next value from the line.

1.2.30 R

Number of registers in file: 256

Description:

Core Register: All registers

Register Usage
LOOPCNT1
LOOPCNT
XPOS
YPOS
CONFALU
CONFADDT
CONFTHRES
CONFSORT
CONFBEST
CONFHIST
CONFSTAT
INAO
INA1
INA2
INA3
INA4
INA5
INA6
INA7
INA8
INB0
INB1
INB2
INB3
INB4
INB5
INB6
INB7
INB8
INALPHAO
INALPHA1
INALPHA2
INALPHA3
INALPHA4
INALPHA5
INALPHA6
INALPHA7
INALPHA8
WO
W1
W2
W3
W4
W5

Index	Register Usage
71	W7
72	W8
80	WWO
81	WW1
82	WW2
83	WW3
84	WW4
85	WW5
86	WW6
87	WW7
88 96	WW8 MASKO
97	MASK1
98	MASK2
99	MASK3
100	MASK4
101	MASK5
102	MASK6
103	MASK7
104	MASK8
105	MASKV
106	NHOOD
108	MFLAG_O
109	MFLAG_C
110	MFLAG_N
111	MFLAG_Z
112	GPR0
113	GPR1
114	GPR2
115	GPR3
116	GPR4
117	GPR5
118	GPR6
119	GPR7
120 121	GPR8
121	GPR9
123	GPR10 GPR11
124	GPR11
125	GPR13
126	GPR14
127	GPR15
128	OUTO
129	OUT1
130	OUT2
131	OUT3
144	OPIXA0
145	OPIX0
146	OPIXA1
147	OPIX1
152	ACC0
153	ACC1
154	ACC2
155	ACC3
156	SACC0
157	SACC1
158	SACC2
159	SACC3
160	SUM
161	CLIPPED
162 163	THRESHOLD SCALED
164	SORTMAX
165	SORTMIN
103	SURTIVITY

Index	Register Usage
166	SORTMEDIAN
167	ARGMIN
168	ARGMAX
208	LUTA
209	LUT
212	HBINA
213	HBINADD
214	HBININCL
215	HBININCH
216	SFL0
217	SFH0
218	SFL1
219	SFH1
220	SFL2
221	SFH2
222	SFL3
223	SFH3
224	SREC
240	SOIN
241	SOCLEAR
242	S00
243	SO1
244	SO2
245	SO3
246	SO4
247	SOA0
248	SOA1
249	SOA2
250	SOA3
251	SOA4
252	LOCK
253	PRNG
254	ONE
255	ZERO

1.2.31 SACC

Number of registers in file: 4

Description:

Core Register: Set accumulator registers Writing sets the corresponding ACC registers (according to CONFALU.SGN. Reading returns the unsigned value according to CONFALU.SAT and CONFALU.ACCSHR.

1.2.32 *SFH*

Number of registers in file: 4

Description:

Core Register: Statitics field: upper 16 bits (read only)

1.2.33 SFL

	SFL
15	0

Number of registers in file: 4

Description:

Core Register: Statitics field: lower 16 bit, Writing to the the register will execute the action as specified in CONFSTAT on the high and low word of the field (sfhX,sflX with X = field number)

1.2.34 *SO*

Number of registers in file: 5

Reset value: 0x10000

Description:

Core register: Best values accoriung to CONFBEST. These values are read only

1.2.35 SOA

Number of registers in file: 5

Reset value: 0xFFFF

Description:

Core register: Corrsponding arguments (SCNT) of the best values (SO). These values are read only

1.2.36 *S_CHCFG_INA*

		BU	FFERTYPE	TRANSFORM	REPLACEWIDTH	REVERSE	REPLACEMODE	RPT	STEP	REPLACEVALUE
3	1 3	0 29	28	27	26 24	23	22 20	19 18	17 16	15

Number of registers in file: 3

Reset value: 0x50000

Description:

StreamIF Host Register: Configuration for input streams at INA of next line to be processed.

Fields:

Field	Range	Description
REPLACEVALUE	[15,0]	Value to use for pixels outside the valid image area
STEP	[17,16]	Offset between two pixels being presented to the IPU engine
		• 0: 4 pixels offset
		 1: 1 pixel offset (no pixel is skipped, all pixels are exercised)
		• 2: 2 pixels offset
		• 3: 3 pixels offset
RPT	[19,18]	How often a pixel is presented to the IPU engine
		• 0: 4 times
		• 1: 1 time (increment each pixel)
		• 2: 2 times
		• 3: 3 times

Field	Range	Description
REPLACEMODE	[22,20]	Scheme for which pixels are getting the REPLAVEVALUE • 0: outside pixel = REPLACEVALUE, inside pixel = pixel value • 1: outside pixel = copy pixel from boundary, inside pixels = pixel value • 2: reserved • 3: outside pixel = REPLACEVALUE, inside pixels = REPLACEVALUE • 4: outside pixel = 0, inside pixels = REPLACEVALUE
REVERSE	[23]	Do reverse scan of the line • 0: normal scan (left to right) • 1: reverse scan (right to left)
REPLACEWIDTH	[26,24]	How many pixels are assumed at the beginning of the line outside the image. This might be used for filters with horizontal neighborhood. Example: O: the image is not extended at the beginning of the line (first pixels is valid) n: will present n more pixels at the beginning of the line. The (n+1)th pixel is the first valid pixel. The n first pixels are treated according to the REPLACEMODE
TRANSFORM	[27]	Apply coordiante transformation mode • 0: linear scan • 1: transformation
BUFFERTYPE	[29,28]	Data type of memory buffer. The IPU will always get 16 bit values. • 0: 16-bit • 1: 8-bit, data is put to MSBs • 2: 8-bit, data is put to LSBs

1.2.37 S_CHCFG_INAL

		BUFFERT	YPE		REPLACEWIDTH	REVERSE	REPLACEMODE	RPT	STEP	REPLACEVALUE
31	30	29		27	26 24	23	22 20	19 18	17 16	15 0

Number of registers in file: 3

Reset value: 0x50000

Description:

StreamIF Host Register: Configuration for input streams at INAL of next line to be processed.

Fields:

Field	Range	Description
REPLACEVALUE	[15,0]	Value to use for pixels outside the valid image area
STEP	[17,16]	Offset between two pixels being presented to the IPU engine
		• 0: 4 pixels offset
		• 1: 1 pixel offset (no pixel is skipped, all pixels are exercised)
		• 2: 2 pixels offset
		• 3: 3 pixels offset
RPT	[19,18]	
		How often a pixel is presented to the IPU engine
		• 0: 4 times
		• 1: 1 time (increment each pixel)
		• 2: 2 times
		• 3: 3 times

Field	Range	Description					
REPLACEMODE	[22,20]	Scheme for which pixels are getting the REPLAVEVALUE					
		• 0: outside pixel = REPLACEVALUE, inside pixel = pixel value					
		• 1: outside pixel = copy pixel from boundary, inside pixels =					
		pixel value					
		• 2: reserved					
		• 3: outside pixel = REPLACEVALUE, inside pixels =					
		REPLACEVALUE					
		• 4: outside pixel = 0, inside pixels = REPLACEVALUE					
REVERSE	[23]	D 64.12					
		Do reverse scan of the line					
		• 0: normal scan (left to right)					
		• 1: reverse scan (right to left)					
REPLACEWIDTH	[26,24]	How many pixels are assumed at the beginning of the line outside the image. This might be used for filters with horizontal neighborhood. Example:					
		 0: the image is not extended at the beginning of the line (first pixels is valid) n: will present n more pixels at the beginning of the line. The (n+1)th pixel is the first valid pixel. The n first pixels are treated according to the REPLACEMODE 					
BUFFERTYPE	[29,28]	Data type of memory buffer. The IPU will always get 16 bit values.					
		• 0: 16-bit					
		• 1: 8-bit, data is put to MSBs					
		• 2: 8-bit, data is put to LSBs					

1.2.38 *S_CHCFG_INB*

		BUFFERTYPE		REPLACEWIDTH	REVERSE	REPLACEMODE	RPT	STEP	REPLACEVALUE
31	30	29 28	27	26 24	23	22 20	19 18	17 16	15 0

Number of registers in file: 3

Reset value: 0x50000

Description:

StreamIF Host Register: Configuration for input streams at INB of next line to be processed.

Fields:

Field	Range	Description
REPLACEVALUE	[15,0]	Value to use for pixels outside the valid image area
STEP	[17,16]	Offset between two pixels being presented to the IPU engine • 0: 4 pixels offset • 1: 1 pixel offset (no pixel is skipped, all pixels are exercised) • 2: 2 pixels offset • 3: 3 pixels offset
RPT	[19,18]	How often a pixel is presented to the IPU engine • 0: 4 times • 1: 1 time (increment each pixel) • 2: 2 times • 3: 3 times
REPLACEMODE	[22,20]	Scheme for which pixels are getting the REPLAVEVALUE • 0: outside pixel = REPLACEVALUE, inside pixel = pixel value • 1: outside pixel = copy pixel from boundary, inside pixels = pixel value • 2: reserved

Field	Range	Description
		• 3: outside pixel = REPLACEVALUE, inside pixels = REPLACEVALUE
		• 4: outside pixel = 0, inside pixels = REPLACEVALUE
REVERSE	[23]	Do reverse scan of the line
		• 0: normal scan (left to right)
		• 1: reverse scan (right to left)
REPLACEWIDTH	[26,24]	How many pixels are assumed at the beginning of the line outside the image. This might be used for filters with horizontal neighborhood. Example:
		0: the image is not extended at the beginning of the line
		 n: will present n more pixels at the beginning of the line. The (n+1)th pixel is the first valid pixel. The n first pixels are treated according to the REPLACEMODE
BUFFERTYPE	[29,28]	Data type of memory buffer. The IPU will always get 16 bit values.
		• 0: 16-bit
		• 1: 8-bit, data is put to MSBs
		• 2: 8-bit, data is put to LSBs

1.2.39 *S_CHCFG_OUT*

		BUFFER	RTYPE		SKI	P		
3	1 3	30 29	28	10 1	/	16	15	0

Number of registers in file: 4

Reset value: 0x00000

Description:

StreamIF Host Register: Configuration for output streams

Fields:

Field	Range	Description
SKIP	[17,16]	Skip pixel when writing this channel SKIP times
		 0: 0 pixels (store evrey pixel) 1: 1 pixel (store every second pixel) 2: 2 pixels (store every 3rd pixel) 3: 3 pixels (store every 4th pixel)
BUFFERTYPE	[29,28]	Data type of memory buffer. • 0: 16-bit • 1: 8-bit, data from MSBs • 2: 8-bit, data from LSBs

1.2.40 S_CURRCHCFG_INA

		BUFFERTYPE	TRANSFORM	REPLACEWIDTH	REVERSE	REPLACEMODE	RPT	STEP	REPLAVEVALUE
31	30	29 28	27	26 24	23	22 20	19 18	17 16	15 0

Number of registers in file: 3

Description:

StreamIF Host Register: Active configuration status for input streams at INA (read onyl)

Fields:

Field	Range	Description
REPLAVEVALUE	[15,0]	Value to use for pixels outside the valid image area
ampa	515.1.0	
STEP	[17,16]	Offset between two pixels being presented to the IPU engine
		• 0: 4 pixels offset
		• 1: 1 pixel offset (no pixel is skipped, all pixels are exercised)
		• 2: 2 pixels offset
		• 3: 3 pixels offset
RPT	[19,18]	How often a pixel is presented to the IPU engine
		• 0: 4 times
		• 1: 1 time (increment each pixel)
		• 2: 2 times
		• 3: 3 times
REPLACEMODE	[22,20]	Scheme for which pixels are getting the REPLAVEVALUE
		• 0: outside pixel = REPLACEVALUE, inside pixel = pixel value
		• 1: outside pixel = copy pixel from boundary, inside pixels =
		pixel value
		• 2: reserved
		• 3: outside pixel = REPLACEVALUE, inside pixels =
		REPLACEVALUE • 4: outside pixel = 0, inside pixels = REPLACEVALUE
		4. outside pixei – 0, iliside pixeis – RLi LACL VALUE
REVERSE	[23]	Do reverse scan of the line
		• 0: normal scan (left to right)
		• 1: reverse scan (right to left)
REPLACEWIDTH	[26,24]	
		How many pixels are assumed at the beginning of the line outside the
		image. This might be used for filters with horizontal neighborhood. Example:
		• 0: the image is not extended at the beginning of the line
		(first pixels is valid)
		• n: will present n more pixels at the beginning of the line.
		The (n+1)th pixel is the first valid pixel. The n first pixels are treated according to the REPLACEMODE
		pixels are dealed according to the KEI LACLINODE
TRANSFORM	[27]	Apply coordiante transformation mode
		• 0: linear scan
		• 1: transformation
BUFFERTYPE	[29,28]	Data type of memory buffer. The IDLI will always get 16 bit values
		Data type of memory buffer. The IPU will always get 16 bit values.
		• 0: 16-bit
		1: 8-bit, data is put to MSBs2: 8-bit, data is put to LSBs
		2. o-ort, data is put to Lons

1.2.41 S_CURRCHCFG_INAL

			BUFFERTYPE		REPLACEWIDTH	REVERSE	REPLACEMODE	RPT	STEP	REPLAVEVALUE
3	1 3	30	29 28	27	26 24	23	22 20	19 18	17 16	15 0

Number of registers in file: 3

Description:

StreamIF Host Register: Active configuration status for input streams at INAL (read onyl)

Fields:

Field	Range	Description
REPLAVEVALUE	[15,0]	Value to use for pixels outside the valid image area

Field	Range	Description
STEP	[17,16]	Offset between two pixels being presented to the IPU engine
		 0: 4 pixels offset 1: 1 pixel offset (no pixel is skipped, all pixels are exercised) 2: 2 pixels offset 3: 3 pixels offset
RPT	[19,18]	How often a pixel is presented to the IPU engine
		 0: 4 times 1: 1 time (increment each pixel) 2: 2 times 3: 3 times
REPLACEMODE	[22,20]	Scheme for which pixels are getting the REPLAVEVALUE
		 0: outside pixel = REPLACEVALUE, inside pixel = pixel value 1: outside pixel = copy pixel from boundary, inside pixels = pixel value 2: reserved 3: outside pixel = REPLACEVALUE, inside pixels = REPLACEVALUE
		• 4: outside pixel = 0 , inside pixels = REPLACEVALUE
REVERSE	[23]	Do reverse scan of the line
		0: normal scan (left to right)1: reverse scan (right to left)
REPLACEWIDTH	[26,24]	How many pixels are assumed at the beginning of the line outside the image. This might be used for filters with horizontal neighborhood. Example: O: the image is not extended at the beginning of the line (first pixels is valid) n: will present n more pixels at the beginning of the line. The (n+1)th pixel is the first valid pixel. The n first
DIVERSIONALE	[20, 20]	pixels are treated according to the REPLACEMODE
BUFFERTYPE	[29,28]	Data type of memory buffer. The IPU will always get 16 bit values. • 0: 16-bit • 1: 8-bit, data is put to MSBs • 2: 8-bit, data is put to LSBs

1.2.42 S_CURRCHCFG_INB

Ī			BUFFERT	YPE		REPLACEWIDT	REVERSE	REPLACEMODE	RPT	STEP	REPLAVEVALUE
3	1	30		28	27	26 2	23	22 20	19 18	17 16	15 0

Number of registers in file: 3

Description:

StreamIF Host Register: Active configuration status for input streams at INB (read onyl)

Fields:

Field	Range	Description
REPLAVEVALUE	[15,0]	Value to use for pixels outside the valid image area
STEP	[17,16]	Offset between two pixels being presented to the IPU engine • 0: 4 pixels offset • 1: 1 pixel offset (no pixel is skipped, all pixels are exercised) • 2: 2 pixels offset • 3: 3 pixels offset

Field	Range	Description
RPT	[19,18]	How often a pixel is presented to the IPU engine
		 0: 4 times 1: 1 time (increment each pixel) 2: 2 times 3: 3 times
REPLACEMODE	[22,20]	Scheme for which pixels are getting the REPLAVEVALUE • 0: outside pixel = REPLACEVALUE, inside pixel = pixel value • 1: outside pixel = copy pixel from boundary, inside pixels = pixel value • 2: reserved • 3: outside pixel = REPLACEVALUE, inside pixels = REPLACEVALUE • 4: outside pixel = 0, inside pixels = REPLACEVALUE
REVERSE	[23]	Do reverse scan of the line
		0: normal scan (left to right)1: reverse scan (right to left)
REPLACEWIDTH	[26,24]	How many pixels are assumed at the beginning of the line outside the image. This might be used for filters with horizontal neighborhood. Example: O: the image is not extended at the beginning of the line (first pixels is valid) n: will present n more pixels at the beginning of the line.
		The (n+1)th pixel is the first valid pixel. The n first pixels are treated according to the REPLACEMODE
BUFFERTYPE	[29,28]	Data type of memory buffer. The IPU will always get 16 bit values.
		 0: 16-bit 1: 8-bit, data is put to MSBs 2: 8-bit, data is put to LSBs

1.2.43 S_CURRCHCFG_OUT

	BUFFERTY	PE	SKI	IIP	
31 3	0 29	28 27	18 17	16 15 0	

Number of registers in file: 4

Description:

StreamIF Host Register: Active configuration for output streams

Fields:

Field	Range	Description
SKIP	[17,16]	Skip pixel when writing this channel SKIP times • 0: 0 pixels (store evrey pixel) • 1: 1 pixel (store every second pixel) • 2: 2 pixels (store every 3rd pixel) • 3: 3 pixels (store every 4th pixel)
BUFFERTYPE	[29,28]	Data type of memory buffer. • 0: 16-bit • 1: 8-bit, data from MSBs • 2: 8-bit, data from LSBs

1.2.44 S_CURRLINELEN_INA

S_CURRLINELEN_INA	
15	

Number of registers in file: 3

Reset value: 0xFFFF

Description:

StreamIF Host Register: Active line length in pixels (read only)

1.2.45 S_CURRLINELEN_INAL

Number of registers in file: 3

Reset value: 0xFFFF

Description:

StreamIF Host Register: Active line length in pixels (read only)

1.2.46 S_CURRLINELEN_INB

Number of registers in file: 3

Reset value: 0xFFFF

Description:

StreamIF Host Register: Active line length in pixels (read only)

1.2.47 S_CURRLINELEN_OUT

Number of registers in file: 4

Reset value: 0xFFFF

Description:

StreamIF Host Register: Active line length in pixels (read only)

1.2.48 S_CURRLINE_PTR_INA

Number of registers in file: 3

Description:

StreamIF Host Register: Active Line Start Addresses (read only)

1.2.49 S_CURRLINE_PTR_INAL

Number of registers in file: 3

Description:

StreamIF Host Register: Active Line Start Addresses (read only)

1.2.50 *S_CURRLINE_PTR_INB*

Number of registers in file: 3

Description:

StreamIF Host Register: Active Line Start Addresses (read only)

1.2.51 *S_CURRLINE_PTR_OUT*

```
S_CURRLINE_PTR_OUT

31
```

Number of registers in file: 4

Description:

StreamIF Host Register: Active Line Start Addresses

On a write

```
func ( unsigned line_no , bits < 32 > val ) {
   S_CURRLINE_PTR_OUT ( line_no ) = val . uint32 (   ) & Oxfffffff8 ;
   if ( val ( 2 , 0 ) != 0 ) {
       error ( 1 , "\n**********************" , "ERROR: unaligned address PTR_OUT(" , dec , line_no , "
   }
}
```

1.2.52 *S_LINELEN_INA*

Number of registers in file: 3

Reset value: 0xFFFF

Description:

StreamIF Host Register: Line length in pixels

1.2.53 S_LINELEN_INAL

Number of registers in file: 3

Reset value: 0xFFFF

Description:

StreamIF Host Register: Line length in pixels

1.2.54 *S_LINELEN_INB*

Number of registers in file: 3

Reset value: 0xFFFF

Description:

StreamIF Host Register: Line length in pixels

1.2.55 *S_LINELEN_OUT*

Number of registers in file: 4

Reset value: 0xFFFF

Description:

StreamIF Host Register: Line length in pixels

1.2.56 *S_LINE_PTR_INA*

Number of registers in file: 3

Description:

StreamIF Host Register: Line Start Addresses

1.2.57 S_LINE_PTR_INAL

Number of registers in file: 3

Description:

StreamIF Host Register: Line Start Addresses

1.2.58 *S_LINE_PTR_INB*

S_LINE_PTR_INB
31 0

Number of registers in file: 3

Description:

StreamIF Host Register: Line Start Addresses

1.2.59 *S_LINE_PTR_OUT*

Number of registers in file: 4

Description:

StreamIF Host Register: Line Start Addresses

1.2.60 W

Number of registers in file: 9

Description:

Core Register: Working 3x3 matrix register for pixels

1.2.61 WW

Number of registers in file: 9

Description:

Core Register: Working 3x3 matrix 2 register for pixels

1.3 Instruction Fields

CDILMORT

1.3.1 *CLZBIT*

Description:

CLZ vs. LSL bit

1.3.2 *COND*

Description:

Branch Condition

Enumeration Value

AL	0
NV	1
EQ	2
NE	3
CC	4
CS	5
MI	6
PL	7
OS	8
OC	9
GE	10
LT	11
HI	12
LS	13
GT	14

1.3.3 *DEST*

Size	8
Bits	[23,16]

Description:

Scalar destination register

Enumeration	Value
loopentb	0
loopent	1
xpos	2
ypos	3
confalu	4
reserved	5
reserved	6
confmxalu	7
confaddt	8
confthres	9
confsort	10
confbest	11
confhist	12
confstat	13
reserved	14
reserved	15
ina0	16
ina1	17
ina2	18
ina3	19
ina4	20
ina5	21
ina6	22
ina7	23
ina8	24
reserved	25
reserved	26
reserved	27
reserved	28
reserved	29
reserved	30
reserved	31
inb0	32
inb1	33
inb2	34
inb3	35
inb4	36
inb5	37
inb6	38
inb7	39
inb8	40
moo	40

reserved	41
reserved	42
reserved	43
reserved	44
reserved	45
reserved	46
reserved	47
inalpha0	48
inalpha1	49
inalpha2	50
inalpha3	51
inalpha4	52
inalpha5	53
inalpha6	54
inalpha7	55
inalpha8	56
reserved	57
reserved	58
reserved	59
reserved	60
reserved	61
reserved	62
reserved	63
w0	64
w1	65
w2	66
w3	67
w4	68
w5	69
w6	70
w7	71
w8	72
reserved	73
reserved	74
reserved	75
reserved	76
reserved	77
reserved	78
reserved	79
ww0	80
ww1	81
ww2	82
ww3	83
ww4	84
ww5	85
ww6	86
ww7	87
ww8	88
reserved	89
reserved	90
reserved	91
reserved	92
reserved	93
reserved	94
reserved	95
m0	96
m1	97
m2	98
m3	99
m4	100
m5	101
m6	102
m7	103
m8	104
maskv	105
nhood	106
reserved	107
mflag_o	108

mflag_c	109
mflag_n	110
mflag_z	111
gpr0	112
gpr1	113
gpr2	114
gpr3	115
gpr4	116 117
gpr5	117
gpr6 gpr7	119
gpr8	120
gpr9	121
gpr10	122
gpr11	123
gpr12	124
gpr13	125
gpr14	126
gpr15	127
out0	128
out1	129
out2	130
out3	131
reserved	132
reserved	133
reserved	134
reserved	135
reserved	136
reserved	137
reserved	138
reserved	139
reserved	140
reserved	141
reserved	142
1	1.40
reserved	143
opixa0	144
opixa0 opix0	144 145
opixa0 opix0 opixa1	144 145 146
opixa0 opix0 opixa1 opix1	144 145 146 147
opixa0 opix0 opixa1 opix1 reserved	144 145 146 147 148
opixa0 opix0 opixa1 opix1 reserved reserved	144 145 146 147 148 149
opixa0 opix0 opixa1 opix1 reserved reserved reserved	144 145 146 147 148 149 150
opixa0 opix0 opixa1 opix1 reserved reserved	144 145 146 147 148 149 150
opixa0 opix0 opixa1 opix1 reserved reserved reserved acc0	144 145 146 147 148 149 150
opixa0 opix0 opixa1 opix1 reserved reserved reserved reserved	144 145 146 147 148 149 150 151
opixa0 opix0 opixa1 opix1 reserved reserved reserved acc0 acc1	144 145 146 147 148 149 150 151 152
opixa0 opix0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2	144 145 146 147 148 149 150 151 152 153
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3	144 145 146 147 148 149 150 151 152 153 154
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0	144 145 146 147 148 149 150 151 152 153 154 155
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1	144 145 146 147 148 149 150 151 152 153 154 155 156
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2	144 145 146 147 148 149 150 151 152 153 154 155 156 157
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc2 sacc3	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped	144 145 146 147 148 150 151 152 153 154 155 156 157 158 159 160
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled	144 145 146 147 148 150 151 152 153 154 155 156 157 158 160 161 162 163 164 164
opixa0 opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 164
opixa0 opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 160 161 162 163 164 164 165 165
opixa0 opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median	144 145 146 147 148 150 151 152 153 154 155 156 157 158 160 161 162 163 164 164 165 165
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian	144 145 146 147 148 150 151 152 153 154 155 156 161 162 163 164 164 165 165 166
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin	144 145 146 147 148 149 150 151 152 153 154 155 156 161 162 163 164 164 165 166 166 167
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin argmax	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 164 165 166 166 167 168
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median argmin argmax reserved	144 145 146 147 148 150 151 152 153 154 155 156 157 158 160 161 162 163 164 165 166 166 167 168
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median argmin argmax reserved	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 165 165 166 166 166 167 168 169 170
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin argmax reserved reserved reserved reserved reserved reserved	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 165 165 166 166 166 167 168 170 171
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin argmax reserved reserved reserved reserved reserved reserved reserved	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 165 165 166 166 166 167 168 169 170 171
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin argmax reserved reserved reserved reserved reserved reserved	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 165 165 166 166 166 167 168 170 171

reserved	174
reserved	175
reserved	176
reserved	177
reserved	178
reserved	179
reserved	180
reserved	181
reserved	182
reserved	183
reserved	184
reserved	185
reserved	186
reserved	187
reserved	188
reserved	189
reserved	190
reserved	191
reserved	192
reserved	193
reserved	194
reserved	195
reserved	196
reserved	197
reserved	198
reserved	199
reserved	200
reserved	201
reserved	202
reserved	203
reserved	204
reserved	205
reserved	206
reserved	207
	• • • •
luta	208
luta lut	209
luta lut reserved	209 210
luta lut reserved reserved	209 210 211
luta lut reserved reserved hbina	209 210 211 212
luta lut reserved reserved hbina hbinadd	209 210 211 212 213
luta lut reserved reserved hbina hbinadd hbinincl	209 210 211 212 213 214
luta lut reserved reserved hbina hbinadd hbinincl	209 210 211 212 213 214 215
luta lut reserved reserved hbina hbinadd hbinincl hbininch	209 210 211 212 213 214 215 216
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0	209 210 211 212 213 214 215 216 217
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1	209 210 211 212 213 214 215 216 217 218
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0	209 210 211 212 213 214 215 216 217
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1	209 210 211 212 213 214 215 216 217 218 219
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2	209 210 211 212 213 214 215 216 217 218 219 220
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2	209 210 211 212 213 214 215 216 217 218 219 220
luta lut reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3	209 210 211 212 213 214 215 216 217 218 219 220 221
luta lut reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfh3 sfh3	209 210 211 212 213 214 215 216 217 218 219 220 221 222
luta lut reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfh3 srec reserved reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved reserved reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved reserved reserved reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
luta lut reserved reserved hbina hbinadd hbinincl sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved reserved reserved reserved reserved reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved reserved reserved reserved reserved reserved reserved reserved reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfh2 sfh2 sfl3 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 234 235 236 237
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 234 235 236 237 238
luta lut reserved reserved hbina hbinadd hbinincl hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfl3 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
luta lut reserved reserved hbina hbinadd hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
luta lut reserved reserved hbina hbinadd hbininch sfl0 sfh0 sfl1 sfh1 sfl2 sfh2 sfh3 srec reserved	209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

so0	242
so1	243
so2	244
so3	245
so4	246
soa0	247
soa1	248
soa2	249
soa3	250
soa4	251
lock	252
prng	253
one	254
zero	255

1.3.4 *DONE_IN*

Size	8
Bits	[23,16]

Description:

Internal Signal: Done operator register

internal S	ıgııaı.
Enumeration	Value
loopentb	0
loopent	1
xpos	2
ypos	3
confalu	4
reserved	5
reserved	6
confmxalu	7
confaddt	8
confthres	9
confsort	10
confbest	11
confhist	12
confstat	13
reserved	14
reserved	15
ina0	16
ina1	17
ina2	18
ina3	19
ina4	20
ina5	21
ina6	22
ina7	23
ina8	24
reserved	25
reserved	26
reserved	27
reserved	28
reserved	29
reserved	30
reserved	31
inb0	32
inb1	33
inb2	34
inb3	35
inb4	36
inb5	37
inb6	38
inb7	39
inb8	40
reserved	41

reserved	42
reserved	43
reserved	44
reserved	45
reserved	46
reserved	47
inalpha0	48
inalpha1	49
inalpha2	50
inalpha3	51
inalpha4	52
inalpha5	53
inalpha6	54
inalpha7	55
inalpha8	56
reserved	57
reserved	58
reserved	59
reserved	60
reserved	61
reserved	62
reserved	63
w0	64
w1	65
w2	66
w3	67
w4	68
w5	69
w6	70
w7	71
w8	72
reserved	73
reserved	74
reserved	75
reserved	76
reserved	77 78
reserved reserved	79
ww0	80
ww1	81
ww2	82
ww3	83
ww4	84
ww5	85
ww6	86
ww7	87
ww8	88
reserved	89
reserved	90
reserved	91
reserved	92
reserved	93
reserved	94
reserved	95
m0	96
m1	97
m2	98
m3	99
m4	100
m5	101
m6	102
m7	103
m8	104
maskv	105
nhood	106
1	107
reserved	
mflag_o	108

,	
mflag_n	110
mflag_z	111
gpr0	112
gpr1	113
gpr2	114
gpr3	115
gpr4	116
gpr5	117 118
gpr6 gpr7	119
gpr8	120
gpr9	121
gpr10	122
gpr11	123
gpr12	124
gpr13	125
gpr14	126
gpr15	127
out0	128
out1	129
out2	130
out3	131
reserved	132
reserved	133
reserved	134 135
reserved	
reserved	136 137
reserved	
reserved reserved	138
reserved	140
reserved	141
reserved	142
reserved	143
1 CSCI V Cu	
opixa0	144
opixa0	144 145 146
opixa0 opix0	144 145
opixa0 opix0 opixa1	144 145 146
opixa0 opix0 opixa1 opix1 reserved reserved	144 145 146 147 148 149
opixa0 opix0 opixa1 opix1 reserved reserved	144 145 146 147 148 149 150
opixa0 opix0 opixa1 opix1 reserved reserved reserved reserved	144 145 146 147 148 149 150
opixa0 opix0 opixa1 opix1 reserved reserved reserved reserved acc0	144 145 146 147 148 149 150 151
opixa0 opix0 opixa1 opix1 reserved reserved reserved reserved acc0 acc1	144 145 146 147 148 149 150 151 152
opixa0 opix0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2	144 145 146 147 148 149 150 151 152 153
opixa0 opix0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3	144 145 146 147 148 149 150 151 152 153 154
opixa0 opix0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0	144 145 146 147 148 149 150 151 152 153 154 155 156
opixa0 opix0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3	144 145 146 147 148 149 150 151 152 153 154
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1	144 145 146 147 148 149 150 151 152 153 154 155 156
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2	144 145 146 147 148 149 150 151 152 153 154 155 156 157
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 160 161 162 163
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold	144 145 146 147 148 150 151 152 153 154 155 156 157 158 160 161 162 163 164
opixa0 opixa0 opix0 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax	144 145 146 147 148 150 151 152 153 154 155 156 157 158 160 161 162 163 164 164
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min	144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 164
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 160 161 162 163 164 164 165 165
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median	144 145 146 147 148 149 150 151 152 153 154 155 156 157 160 161 162 163 164 164 165 165 166
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian	144 145 146 147 148 149 150 151 152 153 154 155 156 161 162 163 164 164 165 166 166
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmedian argmin	144 145 146 147 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 164 165 166 166 166
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median argmin argmax	144 145 146 147 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 164 165 166 166 167 168
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median argmin argmax reserved	144 145 146 147 150 151 152 153 154 155 156 157 158 160 161 162 163 164 164 165 166 166 167 168
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin argmax reserved reserved	144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 164 165 165 166 166 167 168 169 170
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median argmin argmax reserved reserved reserved reserved reserved reserved	144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 164 165 165 166 166 167 168 169 170
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin argmax reserved reserved	144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 164 165 165 166 166 167 168 169 170
opixa0 opixa1 opix1 reserved reserved reserved acc0 acc1 acc2 acc3 sacc0 sacc1 sacc2 sacc3 sum clipped threshold scaled max sortmax min sortmin median sortmedian argmin argmax reserved reserved reserved reserved reserved reserved reserved	144 145 146 147 148 150 151 152 153 154 155 156 157 158 160 161 162 163 164 164 165 165 166 167 168 169 170 171

reserved	175
reserved	176
reserved	177
reserved	178
reserved	179
reserved	180
reserved	181
reserved reserved	183
reserved	184
reserved	185
reserved	186
reserved	187
reserved	188
reserved	189
reserved	190
reserved	191
reserved	192
reserved	193
reserved	194 195
reserved	195
reserved reserved	196
reserved	197
reserved	199
reserved	200
reserved	201
reserved	202
reserved	203
reserved	204
reserved	205
reserved	206
reserved	207
luta	208 209
lut reserved	210
reserved	211
hbina	212
hbinadd	213
hbinincl	214
hbininch	215
sfl0	216
sfh0	217
sfl1 sfh1	218 219
sfl2	220
sfh2	221
sfl3	222
sfh3	223
srec	224
reserved	225
reserved	226
reserved	227
reserved	228
reserved	229
reserved	230 231
reserved reserved	231
reserved	232
reserved	234
reserved	235
reserved	236
reserved	237
reserved	238
reserved	239
soin	240
soclear	241
so0	242
800	272

so1	243
so2	244
so3	245
so4	246
soa0	247
soa1	248
soa2	249
soa3	250
soa4	251
lock	252
prng	253
one	254
zero	255

1.3.5 *IM16*

Size	16
Bits	[15,0]

Description:

Operator 2 immediate 16 bits

1.3.6 *IM4*

Size	4
Bits	[3,0]

Description:

Operator 2 immediate 4 bits

1.3.7 *IN1*

Size	8
Bits	[15,8]

Description:

Operator 1 register

Enumeration	Value
loopentb	0
loopent	1
xpos	2
ypos	3
confalu	4
reserved	5
reserved	6
confmxalu	7
confaddt	8
confthres	9
confsort	10
confbest	11
confhist	12
confstat	13
reserved	14
reserved	15
ina0	16
ina1	17
ina2	18
ina3	19
ina4	20

ina5	21
ina6	22
ina7	23
ina8 reserved	25
reserved	26
reserved	27
reserved	28
reserved	29
reserved	30
reserved	31
inb0	32
inb1	33
inb2	34
inb3	35
inb4	36
inb5	37
inb6	38
inb7	39
inb8 reserved	40
reserved	41
reserved	43
reserved	44
reserved	45
reserved	46
reserved	47
inalpha0	48
inalpha1	49
inalpha2	50
inalpha3	51
inalpha4	52
inalpha5	53
inalpha6	54
inalpha7	55
inalpha8	56
reserved reserved	57 58
reserved	59
reserved	60
reserved	61
reserved	62
reserved	63
w0	64
w1	65
w2	66
w3	67
w4	68
w5	69
w6	70
w7	71
w8	72
reserved	73 74
reserved reserved	75
reserved	76
reserved	77
reserved	78
reserved	79
ww0	80
ww1	81
ww2	82
ww3	83
ww4	84
ww5	85
ww6	86
ww7	87
ww8	88

reserved 89 reserved 90 reserved 91 reserved 93 reserved 94 reserved 95 m0 96 m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr1 123 gpr1 123 gpr2 144 gpr3 15 gpr4 16 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr10 122 gpr11 123 reserved 133 reserved 136 reserved 137 reserved 138 reserved 137 reserved 138 reserved 137 reserved 140 reserved 141 reserved 141 reserved 142 reserved 143 opixal 146 opixal 146 opixal 147 reserved 149 reserved 141 reserved 141 reserved 141 reserved 142 reserved 136 reserved 137 reserved 137 reserved 140 reserved 141 reserved 142 reserved 143 opixal 146 opixal 146 reserved 147 reserved 149 reserved 150 reserved 151 reserved 149 reserved 149 reserved 149 reserved 149 reserved 149 reserved 149		
reserved 91 reserved 93 reserved 95 m0 96 m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_c 110 mflag_t 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr1 123 gpr1 122 gpr1 122 gpr1 122	reserved	89
reserved 93 reserved 93 reserved 94 reserved 95 m0 96 m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr1 123 gpr1 123 gpr1 122 gpr1 123 gpr1 123 gpr1 125 gpr1 122 gpr1 123 gpr1 123 gpr1 123 gpr1 123 gpr1 124 gpr1 125 gpr1 127 out 128 gpr1 129 gpr1 120 gpr1 121 gpr1 123 gpr1 121 gpr1 123 gpr2 144 reserved 133 reserved 133 reserved 133 reserved 133 reserved 133 reserved 133 reserved 134 reserved 140 reserved 141 reserved 144 reserved 147 reserved 149 reserved 140 reserved 141 reserved 141 reserved 141 reserved 144 reserved 145 opixal 146 opixal 146 opixal 146 reserved 155 reserved 151 acc0 152 acc1 153	reserved	90
reserved 93 reserved 94 reserved 95 m0 96 m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr1 123 gpr1 123 gpr1 124 gpr3 15 gpr4 16 gpr5 117 gpr6 18 gpr7 19 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 133 reserved 133 reserved 133 reserved 133 reserved 133 reserved 134 reserved 140 reserved 141 reserved 140 reserved 150 reserved 151 acc0 152 acc1 153	reserved	
reserved 94 reserved 95 m0 96 m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr1 123 gpr1 123 gpr2 144 gpr3 15 gpr4 16 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 133 reserved 133 reserved 134 reserved 144 reserved 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	reserved	-
reserved 95 m0 96 m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr1 123 gpr1 123 gpr2 144 gpr3 15 gpr4 16 gpr5 17 gpr6 18 gpr7 19 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 135 reserved 137 reserved 136 reserved 137 reserved 140 reserved 141 reserved 141 reserved 142 reserved 143 opixal 146 opixal 146 opixal 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
m0 96 m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr10 122 gpr11 123 gpr10 122 gpr10 122 gpr11 123 gpr2 144 reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 140 reserved 141 reserved 142 reserved 143 opixal 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		_
m1 97 m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr9 121 gpr1 123 gpr1 123 gpr1 123 gpr2 144 gpr3 15 gpr4 16 gpr5 17 gpr6 18 gpr7 19 gpr8 120 gpr9 121 gpr1 123 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 133 reserved 133 reserved 133 reserved 134 reserved 137 reserved 140 reserved 141 reserved 141 reserved 142 reserved 144 reserved 145 opixal 146 opixal 146 opixal 147 reserved 150 reserved 151 acc0 152 acc1 153		
m2 98 m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_c 110 mflag_c 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130		
m3 99 m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_c 110 mflag_c 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 <td></td> <td></td>		
m4 100 m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_c 110 mflag_c 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved <td< td=""><td></td><td></td></td<>		
m5 101 m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_c 110 mflag_c 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved		
m6 102 m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 reserved 133 reserved 134 reserved 134 reserved<		
m7 103 m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr1 123 gpr1 123 gpr9 121 gpr10 122 gpr11 123 reserved 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 133 reserved 133 reserved 134 reserved 135 reserved 137 reserved 137 reserved 137 reserved 137 reserved 140 reserved 141 reserved 142 reserved 144 reserved 144 reserved 144 reserved 145 opixal 146 opixal 146 opixal 147 reserved 150 reserved 151 acc0 152 acc1 153		
m8 104 maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 135 r		
maskv 105 nhood 106 reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 135 reserved 136 reserved 140		
reserved 107 mflag_o 108 mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr1 123 gpr1 124 gpr3 125 gpr1 123 gpr1 124 gpr3 13 reserved 134 reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 140 reserved 141 reserved 141 reserved 142 reserved 144 reserved 144 reserved 145 opix1 147 reserved 148 reserved 150 reserved 151 acc0 152 acc1 153	maskv	105
mflag_o 108 mflag_c 109 mflag_c 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 135 reserved 136 reserved 140 reserved 141 reserved 142 reserved 144	nhood	106
mflag_c 109 mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 139 reserved 140 reserved 141 reserved 142	reserved	107
mflag_n 110 mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 139 reserved 140 reserved 141 reserved 142 reserved 144	mflag_o	108
mflag_z 111 gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 137 reserved 139 reserved 140 reserved 141 reserved 142 <tr< td=""><td></td><td>109</td></tr<>		109
gpr0 112 gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 135 reserved 140 reserved 141 reserved 142 reserved 144 opixal 146 opix1 147 reserved 149 reserved 149		110
gpr1 113 gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 139 reserved 140 reserved 141 reserved 142 reserved 144 opix0 145 opix1 146	mflag_z	
gpr2 114 gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 136 reserved 137 reserved 137 reserved 140 reserved 141 reserved 142 reserved 144 opix0 144 opix1 147 reserved 149 reserved 149		
gpr3 115 gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 135 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 150 reserved 150		
gpr4 116 gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 134 reserved 135 reserved 140 reserved 141 reserved 142 reserved 143 opix0 144 opix1 147 reserved 148 reserved 149 reserved 150 reserved 150 reserved 150 reserved 151 </td <td></td> <td></td>		
gpr5 117 gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 133 reserved 135 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 144 reserved 143 opix0 144 opix1 144 reserved 148 reserved 149 reserved 150 reserved 151		
gpr6 118 gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 138 reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 148 reserved 150 reserved 150 reserved 151	gpr4	
gpr7 119 gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 135 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 142 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
gpr8 120 gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 136 reserved 137 reserved 138 reserved 139 reserved 140 reserved 141 reserved 142 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 148 reserved 150 reserved 150 reserved 151 acc0 152 acc1 153		
gpr9 121 gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
gpr10 122 gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
gpr11 123 gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 133 reserved 134 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
gpr12 124 gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 134 reserved 135 reserved 136 reserved 137 reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
gpr13 125 gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 134 reserved 135 reserved 136 reserved 137 reserved 143 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	gpr12	
gpr14 126 gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 134 reserved 135 reserved 136 reserved 137 reserved 143 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opix1 147 reserved 149 reserved 150 reserved 150 reserved 151 acc0 152 acc1 153	gpr13	125
gpr15 127 out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 134 reserved 135 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		126
out0 128 out1 129 out2 130 out3 131 reserved 132 reserved 134 reserved 135 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 143 opix0 144 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		127
out2 130 out3 131 reserved 132 reserved 134 reserved 135 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
out3 131 reserved 132 reserved 133 reserved 135 reserved 136 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	out1	
reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 137 reserved 138 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 149 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	out2	130
reserved 133 reserved 134 reserved 135 reserved 136 reserved 137 reserved 138 reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 149 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	out3	
reserved 134 reserved 135 reserved 136 reserved 137 reserved 138 reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	reserved	
reserved 135 reserved 136 reserved 137 reserved 138 reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 136 reserved 137 reserved 138 reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 138 reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 138 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 139 reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 140 reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 141 reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 142 reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
reserved 143 opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		
opixa0 144 opix0 145 opixa1 146 opix1 147 reserved 148 reserved 150 reserved 151 acc0 152 acc1 153		
opix0 145 opixal 146 opix1 147 reserved 148 reserved 150 reserved 151 acc0 152 acc1 153		
opixal 146 opix1 147 reserved 148 reserved 149 reserved 150 reserved 151 acc0 152 acc1 153		145
reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	-	146
reserved 149 reserved 150 reserved 151 acc0 152 acc1 153	opix1	147
reserved 150 reserved 151 acc0 152 acc1 153		148
reserved 151 acc0 152 acc1 153		149
acc0 152 acc1 153		
acc1 153	reserved	
0 1 1 7 4		
	acc2	154
acc3 155		
sacc0 156	sacc0	156

	•
sacc1	157
sacc2	158
sacc3	159
sum	160
clipped	161 162
threshold scaled	163
max	164
sortmax	164
min	165
sortmin	165
median	166
sortmedian	166
argmin	167
argmax	168
reserved	169
reserved	170
reserved	171 172
reserved	
reserved	173 174
reserved	174
reserved	175
reserved	176
reserved	178
reserved	179
reserved	180
reserved	181
reserved	182
reserved	183
reserved	184
reserved	185
reserved	186
reserved	187
reserved	188
reserved	189
reserved	190
reserved	191 192
reserved	192
reserved reserved	193
reserved	195
reserved	196
reserved	197
reserved	198
reserved	199
reserved	200
reserved	201
reserved	202
reserved	203
reserved	204
reserved	205
reserved	206
reserved	207
luta	208
lut reserved	210
reserved	211
hbina	212
hbinadd	213
hbinincl	214
hbininch	215
sfl0	216
sfh0	217
sfl1	218
sfh1	219
sfl2	220
sfh2	221

sfl3	222
sfh3	223
srec	224
reserved	225
reserved	226
reserved	227
reserved	228
reserved	229
reserved	230
reserved	231
reserved	232
reserved	233
reserved	234
reserved	235
reserved	236
reserved	237
reserved	238
reserved	239
soin	240
soclear	241
so0	242
so1	243
so2	244
so3	245
so4	246
soa0	247
soa1	248
soa2	249
soa3	250
soa4	251
lock	252
prng	253
one	254
zero	255

1.3.8 *IN2*

Size	8
Bits	[7,0]

Description:

Operator 2 register

E 41	T 7 1
Enumeration	Value
loopentb	0
loopent	1
xpos	2
ypos	3
confalu	4
reserved	5
reserved	6
confmxalu	7
confaddt	8
confthres	9
confsort	10
confbest	11
confhist	12
confstat	13
reserved	14
reserved	15
ina0	16
ina1	17
ina2	18
ina3	19
ina4	20
ina5	21

	_
ina6	22
ina7	23
ina8	24
reserved	25
reserved	26
reserved	27
reserved	28
reserved	29
reserved	30
reserved	31
inb0	32
inb1	33
inb2	34
inb3	35
inb4	36
inb5	37
inb6	38
inb7	39
inb8	40
reserved	41
reserved	42
reserved	43
reserved	44
reserved	45
reserved	46
reserved	47
inalpha0	48
inalpha1	49
inalpha2	50
inalpha3	51
inalpha4	52
inalpha5	53
inalpha6	54
inalpha7	55
	56
inalpha8	57
reserved	
reserved	58
reserved	59
reserved	60
reserved	61
reserved	62
reserved	63
w0	64
w1	65
w2	66
w3	67
w4	68
w5	69
w6	70
w7	71
w8	72
reserved	73
reserved	74
reserved	75
reserved	76
reserved	77
reserved	78
reserved	79
ww0	80
ww1	81
ww2	82
ww3	83
ww4	84
ww5	85
ww6	86
ww7	87
ww8	88
ww8 reserved	88

reserved	90
reserved	91
reserved	92
reserved	93
reserved	94
reserved	95
m0	96
m1	97
m2 m3	98 99
m4	100
m5	101
m6	102
m7	103
m8	104
maskv	105
nhood	106
reserved	107
mflag_o	108
mflag_c	109
mflag_n	110
mflag_z	111
gpr0	112
gpr1	113
gpr2	114
gpr3	115
gpr4	116
gpr5	117
gpr6	118
gpr7	119
gpr8	120
gpr9	121 122
gpr10 gpr11	123
gpr12	123
gpr13	125
gpr14	126
gpr15	127
out0	128
out1	129
out2	130
out3	131
reserved	132
reserved	133
reserved	134
reserved	135
reserved	136
reserved	137
reserved	138
reserved	139
reserved	140
reserved	141
reserved	142
reserved	143
opixa0	144
opix0	145
opixa1	146
opix1	147 148
reserved	148
reserved reserved	150
reserved	151
acc0	151
acc1	153
acc2	154
acc3	155
sacc0	156
sacc1	157

sacc2	158
sacc3	159
sum	160
clipped	161
threshold scaled	162 163
max	164
sortmax	164
min	165
sortmin	165
median	166
sortmedian	166
argmin	167
argmax	168
reserved	169 170
reserved reserved	171
reserved	172
reserved	173
reserved	174
reserved	175
reserved	176
reserved	177
reserved	178
reserved	179 180
reserved	181
reserved	182
reserved	183
reserved	184
reserved	185
reserved	186
reserved	187
reserved	188
reserved	189 190
reserved	190
reserved	192
reserved	193
reserved	194
reserved	195
reserved	196
reserved	197
reserved	198
reserved	199 200
reserved reserved	200
reserved	202
reserved	203
reserved	204
reserved	205
reserved	206
reserved	207
luta	208
lut	209
reserved	210
hbina	212
hbinadd	213
hbinincl	214
hbininch	215
sfl0	216
sfh0	217
sfl1	218
sfh1 sfl2	219 220
sfl2 sfh2	220
sfl3	222
3113	

sfh3	223
srec	224
reserved	225
reserved	226
reserved	227
reserved	228
reserved	229
reserved	230
reserved	231
reserved	232
reserved	233
reserved	234
reserved	235
reserved	236
reserved	237
reserved	238
reserved	239
soin	240
soclear	241
so0	242
so1	243
so2	244
so3	245
so4	246
soa0	247
soa1	248
soa2	249
soa3	250
soa4	251
lock	252
prng	253
one	254
zero	255

1.3.9 *IXO*

Size	3
Bits	[2,0]

Description:

Increment input, xposition, output

Enumeration	Value
-	0
0	1
х	2
xo	3
i	4
io	5
ix	6
ixo	7

1.3.10 *LCNT*

Size	1
Bits	[3,3]

Description:

Loop counter selection

Enumeration	Value
loopent1	0
loopent	1

1.3.11 *MASKIN1*

Size	2
Bits	[17,16]

Description:

Matrix Operator 1 register

- 0: W
- 1: INALPHA
- 2: WW
- 3: Reserved

Enumeration	Value
w	0
inalpha	1
ww	2
reserved	3

1.3.12 *MIN1*

Size	3
Bits	[18,16]

Description:

Matrix Operator 1 register

Enumeration	Value
w	0
ina	1
ww	2
inb	3
mzero	4

1.3.13 *MIN2*

Size	2
Bits	[1,0]

Description:

Matrix Operator 2 register

Enumeration	Value
w	0
ina	1
ww	2
inb	3

1.3.14 OPCD

Size	4
Bits	[27,24]

Description:

Extended opcode

1.3.15 *RELADDR*

Size	8
Shift	2
Bits	[15,8]
Addressing	PC-
	Relative
Signed	True

Description:

Relative branch target address

Semantics: IADDR + (SignExtend(RELADDR << 2))

1.3.16 *TYPE*

Size	4	
Bits	[31,28]	

Description:

Primary instruction type

Enumeration	Value
Reserved8	0
Reserved7	1
Reserved6	2
Reserved5	3
Reserved4	4
Reserved3	5
Reserved2	6
Reserved1	7
Flow	8
S=SxI	9
S=SxS	10
MASKI	11
MASK	12
M=MxI	13
M=MxS	14
M=MxM	15

1.4 Instructions

A B C D H L M N O P S T X

1.4.1 abd DEST, IM16

Description:

Absolute difference of value and a registers

R[DEST] = abs(R[DEST] - IM16)

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_ABSDIFF , R ( DEST ) , IM16 ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	3 OPCD	DEST	IM16
- [31 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.2 abd DEST, IN1, IN2

Description:

Absolute difference between two registers

$$R[DEST] = abs (R[IN1] - R[IN2])$$

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_ABSDIFF , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

2 TYPE	3 OPCD	DEST	IN1	IN2
31 28		23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.3 absdiff w,MIN1,IM16

Description:

Absolute difference between a matrix register and a constant value and store the result in the working matrix register (W)

Matrix condition code flags modified: negative, zero

```
W[i] = absdiff(MIN1[i] - IM16)
```

Action:

```
{
   int i;
malu ( MALU_OP_ABSDIFF , MIN1 , 0 , 5 , IM16 ) ;
for ( i = 0 ; i < 9 ; i ++ ) {
     if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
}
MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

r	5 TYPE	3 ODGD	0000 / 0	MTN1	TM16
L	5 TYPE	3 OPCD	0000 / 0	MINI	IM16
1	31 28	27 24	23 19	18 16	15 0

Attributes:

isp1, isp2

1.4.4 absdiff w,MIN1,IN2

Description:

Absolute difference between a matrix register and a register value and store the result in the working matrix register (W)

```
W[i] = absdiff(MIN1[i] - R[IN2])
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_ABSDIFF , MIN1 , 0 , 5 , R ( IN2 ) );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	6 TYPE	3 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
3	1 28			18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.5 absdiff w,MIN1,MIN2

Description:

Absolute difference between two matrix registers and store the result in the working matrix register (W)

```
W[i] = absdiff(MIN1[i] - MIN2[i])
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_ABSDIFF , MIN1 , 0 , MIN2 , 0 ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {</pre>
```

```
if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
}
MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	7 TYPE	3 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00		MIN2
- [31 28	27 24	23 19	18 16	15	2 1	

Attributes:

isp1, isp2

1.4.6 add DEST, IM16

Description:

Adds the two source operands using binary addition and stores the result in in the destination register.

```
R[DEST] = Saturate(R[DEST] + IM16)
```

Condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  salu ( SALU_OP_ADD , R ( DEST ) , IM16 ) ;
  R ( DEST ) = SAT ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZCO

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial

Register	Fields	Details
OP1	Mask: 0x10000	
OP2	Mask: 0x10000	
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1 Entire Register		
OP2	Entire Register	
R (DEST) Entire Register		
RES	Entire Register	
SAT	Entire Register	

Encoding:

1 TYPE	1 OPCD	DEST	IM16
31 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.7 *add DEST,IN1,IN2*

Description:

Add two register values

R[DEST] = Saturate(R[IN1] + R[IN2])

Condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
    salu ( SALU_OP_ADD , R ( IN1 ) , R ( IN2 ) ) ;
    R ( DEST ) = SAT ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZCO

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
OP1	Mask: 0x10000	
OP2	Mask: 0x10000	
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	2 TYPE	1 OPCD	DEST	IN1	IN2
Ī	31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.8 add w, MIN1, IM16

Description:

Add a constant value to a matrix register and store the result in the working matrix register (W)

```
W[i] = Saturate(MIN1[i] + IM16)
```

Matrix condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
   int i ;
   malu ( MALU_OP_ADD , MIN1 , 0 , 5 , IM16 ) ;
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i ) ;
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
   MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
   MFLAG_O = flag_ways ( MFLAG_O , I_MFLAG_O , MASKV ) ;
   MFLAG_C = flag_ways ( MFLAG_C , I_MFLAG_C , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_C , cc_get_N , cc_get_O , cc_get_Z , $flag_ways$, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

ſ	5 TYPE	1 OPCD	0000 / 0	MIN1	IM16
- [31 28	27 24	23 19	18 16	15

Attributes:

isp1, isp2

1.4.9 add w, MIN1, IN2

Description:

Add a register value to a matrix register and store the result in the working matrix register (W)

```
W[i] = Saturate(MIN1[i] + R[IN2])
```

Matrix condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
   int i;
   malu ( MALU_OP_ADD , MIN1 , 0 , 5 , R ( IN2 ) );
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i );
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
   MFLAG_C = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
   MFLAG_O = flag_ways ( MFLAG_O , I_MFLAG_O , MASKV );
   MFLAG_C = flag_ways ( MFLAG_C , I_MFLAG_C , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_C, cc_get_N, cc_get_O, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	6 TYPE	1 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
3	1 28	27 24	23 19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.10 *add w,MIN1,MIN2*

Description:

Add two matrix registers to and store the result in the working matrix (W)

```
W[i] = Saturate(MIN1[i] + MIN2[i])
```

Matrix condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  int i;
  malu ( MALU_OP_ADD , MIN1 , 0 , MIN2 , 0 );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
  MFLAG_O = flag_ways ( MFLAG_O , I_MFLAG_O , MASKV ) ;
  MFLAG_C = flag_ways ( MFLAG_C , I_MFLAG_C , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_C, cc_get_N, cc_get_O, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	7 TYPE	1 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00	MIN2]
- [31 28		23 19	18 16	15 2	2 1	0

Attributes:

isp1, isp2

1.4.11 and DEST, IM16

Description:

Logic AND of a value to a registers

```
R[DEST] = R[DEST] \& IM16
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_AND , R ( DEST ) , IM16 ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	7 OPCD	DEST	IM16
31	28		23 16	15 0

Attributes:

isp1, isp2

1.4.12 and DEST, IN1, IN2

Description:

Logic AND of two register values

```
R[DEST] = R[IN1] & R[IN2]
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_AND , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	

Register	Fields	Details
RES	Entire Register	
SAT	Entire Register	

2 TYPE	7 OPCD	DEST	IN1	IN2
31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.13 asl DEST, IN1, IM4

Description:

Shift a register bit wise up by a value positions. Depending on CONFSAT and CONFSGN the result is saturated

$$R[DEST] = Saturate(R[IN1] << IM4)$$

Condition code flags modified: negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  salu ( SALU_OP_ASL , R ( IN1 ) , concat ( ( bits < 12 > ) 0 , IM4 ) ) ;
  R ( DEST ) = SAT ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	14 OPCD	DEST	IN1	0000	IM4
3	31 28	27 24	23 16	15 8	7 4	3 0

Attributes:

isp1, isp2

1.4.14 asl DEST, IN1, IN2

Description:

Shift a register bit wise up by another register value positions. Depending on CONFSAT and CONFSGN the result is saturated

R[DEST] = Saturate(R[IN1] << (R[IN2] & 0xF))

Condition code flags modified: negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  salu ( SALU_OP_ASL , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = SAT ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

	2 TYPE	14 OPCD	DEST	IN1	IN2
3	1 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.15 asl w,MIN1,IM4

Description:

Shift left of a matrix registers by a constant value and store the result in the working matrix (W). Depending on CONFALU.SGN and CONFALU.SAT the result is saturated

```
W[i] = Saturate(MIN1[i] << IM4)
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i ;
  malu ( MALU_OP_ASL , MIN1 , 0 , 5 , IM4 ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	

Register	Fields	Details
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

[5 TYPE	14 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000	IM4]
-	31 28		23 19	18 16	15 4	3	0

Attributes:

isp1, isp2

1.4.16 asl w, MIN1, IN2

Description:

Shift left of a matrix registers by a register value and store the result in the working matrix (W). Depending on CONFALU.SGN and CONFALU.SAT the result is saturated

```
W[i] = Saturate(MIN1[i] << (R[IN2] \% \ 0xF))
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_ASL , MIN1 , 0 , 5 , R ( IN2 ) );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i );
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details	
----------	--------	---------	--

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

	6 TYPE	14 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
Ī	31 28	3 27 24	23 19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.17 asl w, MIN1, MIN2

Description:

Shift left of a matrix registers by a matrix register and store the result in the working matrix (W). Depending on CONFALU.SGN and CONFALU.SAT the result is saturated

```
W[i] = Saturate(MIN1[i] << (MIN2[i]) & 0xF)
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_ASL , MIN1 , 0 , MIN2 , 0 );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i );
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	

Affected by instruction:

Fields	Details
Entire Register	
	Entire Register Entire Register Entire Register Entire Register Entire Register

Register	Fields	Details
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

7 TYPE	14 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00	MIN	12
31 28	27 24	23 19	18 16	15 2	1	0

Attributes:

isp1, isp2

1.4.18 asr DEST, IN1, IM4

Description:

Shift a register value down by a value positions

$$R[DEST] = ((signed)R[IN1]) >> IM4$$

Action:

```
{
  salu ( SALU_OP_ASR , R ( IN1 ) , concat ( ( bits < 12 > ) 0 , IM4 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	12 OPCD	DEST	IN1	0000	IM4
31	28	27 24	23 16	15 8	7 4	3 0

Attributes:

isp1, isp2

1.4.19 asr DEST, IN1, IN2

Description:

Shift a register value down by another register value positions

R[DEST] = ((signed)R[IN1]) >> (R[IN2] & 0xF)

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_ASR , R ( IN1 ) , R ( IN2 ) );
  R ( DEST ) = RES ( 15 , 0 );
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details	
CONFALU	SAT, SGN	Partial	
R (IN1)	Entire Register		
R (IN2)	Entire Register		

Affected by instruction:

Register	Fields	Details	
OP1	Entire Register		
OP2	Entire Register		
R (DEST)	Entire Register		
RES	Entire Register		
SAT	Entire Register		

Encoding:

2	TYPE	12	OPCD	DEST	IN1	IN2
31	28	27	24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.20 asr w, MIN1, IM4

Description:

Arithmetic shift right of a matrix registers by a constant value and store the result in the working matrix (W)

```
W[i] = ((signed)MIN1[i]) >> IM4
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_ASR , MIN1 , 0 , 5 , IM4 );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Fields	Details
SAT, SGN	Partial
Entire Register	
	SAT, SGN Entire Register

Affected by instruction:

Register	Fields	Details	
----------	--------	---------	--

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

5 TYPE	12 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000	IM4	
31 28	27 24	23 19		15 4	3	0

Attributes:

isp1, isp2

1.4.21 asr w,MIN1,IN2

Description:

Arithmetic shift right of a matrix registers by a register value and store the result in the working matrix (W)

```
W[i] = ((signed)MIN1[i]) >> (R[IN2] \% 0xF)
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_ASR , MIN1 , 0 , 5 , R ( IN2 ) ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	

Register	Fields	Details
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

	6 TYPE	12 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
3	1 28	27 24	23 19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.22 asr w, MIN1, MIN2

Description:

Arithmetic shift right of a matrix registers by a matrix register and store the result in the working matrix (W)

```
W[i] = ((signed)MIN1[i]) >> (MIN2[i] & 0xF)
```

Matrix condition code flags modified: negative, zero

Action:

```
{
   int i;
   malu ( MALU_OP_ASR , MIN1 , 0 , MIN2 , 0 );
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
   MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	7 TYPE	12 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00		IIN2
31	28	27 24	23 19	18 16	15	2 1	0

Attributes:

isp1, isp2

1.4.23 bal RELADDR

Description:

Unconditional branch instruction.

Action:

```
{
  NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	

Encoding:

0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	0 COND
31 28	27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.24 bcc RELADDR

Description:

Branch if carry flag is cleared.

Action:

```
{
  if ( CC_ZNCO . C == 0 ) ) NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	C	Partial
IADDR	Entire Register	·

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

Encoding:

0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	4 COND
31 28	27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.25 bcs RELADDR

Description:

Branch if if carry flag is set.

Action:

```
{
  if ( ( CC_ZNCO . C == 1 ) ) NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	С	Partial
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

Encoding:

ſ	0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	5 COND
3	31 28	27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.26 beq RELADDR

Description:

Branch if equal instruction.

Action:

```
{
  if ( CC_ZNCO . Z == 1 ) ) NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	Z	Partial
IADDR	Entire Register	

Affected by instruction:

	Register	Fields	Details
ĺ	NIA	Entire Register	Conditional

Encoding:

0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	2 COND
31 28	27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.27 bge RELADDR

Description:

Branch if greater or equal (signed).

Action:

```
{
    if ( ( CC_ZNCO . N == 1 ) && ( CC_ZNCO . O == 1 ) ) || ( ( CC_ZNCO . N == 0 ) && ( CC_ZNCO . O == }
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	N, O	Partial
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

Encoding:

	0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	10 COND
3	1 28		23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.28 bgt RELADDR

Description:

Branch if greater than (signed).

Action:

```
{
    if ( ( CC_ZNCO . N == 1 ) && ( CC_ZNCO . O == 1 ) && ( CC_ZNCO . Z == 0 ) ) || ( ( CC_ZNCO . N == }
```

Affect instruction:

Register	Fields	Details		
CC_ZNCO	N, O, Z	Partial		
IADDR	Entire Register			

Affected by instruction:

Register	Fields	Details	
NIA	Entire Register	Conditional	

Encoding:

	0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	14 COND
3	1 28	27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.29 bhi RELADDR

Description:

Branch if higher (unsigned).

Action:

```
{    if ( CC_ZNCO . C == 0 ) && ( CC_ZNCO . Z == 0 ) ) NIA = RELADDR ; }
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	C, Z	Partial
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

	0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	12 COND
ſ	31 28	27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.30 bls RELADDR

Description:

Branch if lower or same (unsigned).

Action:

```
{
    if ( CC_ZNCO . C == 1 ) || ( CC_ZNCO . Z == 1 ) ) NIA = RELADDR;
}
```

Affect instruction:

Register	Fields	Details		
CC_ZNCO	C, Z	Partial		
IADDR	Entire Register			

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

Encoding:

0 T	YPE	7	OPCD	0	000 / 0000		RELADDR		000		13 COND	٦
31	28	27		23		16	15	8 7	5	4		0

Attributes:

isp1, isp2

1.4.31 blt RELADDR

Description:

Branch if lower than (signed).

Action:

```
{
    if ( ( CC_ZNCO . N & ~ CC_ZNCO . O ) | ( ~ CC_ZNCO . N & CC_ZNCO . O ) ) == 1 ) NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details		
CC_ZNC	N, O	Partial		
IADDR	Entire Register			

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

Encoding:

ſ	0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	11 COND
	31 28		23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.32 bmi RELADDR

Description:

Branch if negative flag is set.

Action:

```
{
  if ( ( CC_ZNCO . N == 1 ) ) NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	N	Partial
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

Encoding:

0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	6 COND
31 28		23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.33 bne RELADDR

Description:

Branch if not equal instruction.

Action:

```
{
    if ( ( CC_ZNCO . Z == 0 ) ) NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	Z	Partial
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details	
NIA	Entire Register	Conditional	

Encoding:

0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	3 COND
	8 27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.34 bnv RELADDR

Description:

Branch never instruction. This is equivalent to a NOP.

Action:

{

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	

Encoding:

0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	1 COND
31 28	5 2 / 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.35 boc RELADDR

Description:

Branch if overflow flag is cleared.

Action:

```
{
    if ( CC_ZNCO . O == 0 ) ) NIA = RELADDR ;
}
```

Affect instruction:

	Register	Fields	Details
(CC_ZNCO	О	Partial
	IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details	
NIA	Entire Register	Conditional	

Encoding:

Γ	0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	9 COND
3	1 28		23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.36 bos RELADDR

Description:

Branch if overflow flag is set.

Action:

```
{
   if ( ( CC_ZNCO . O == 1 ) ) NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	О	Partial
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details	
NIA	Entire Register	Conditional	

Encoding:

	0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	8 COND
3	31 28	27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.37 *bpl RELADDR*

Description:

Branch if negative flag is cleared.

Action:

```
{
  if ( CC_ZNCO . N == 0 ) ) NIA = RELADDR;
}
```

Affect instruction:

Register	Fields	Details
CC_ZNCO	N	Partial
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	Conditional

Encoding:

0 TYPE	7 OPCD	0000 / 0000	RELADDR	000	7 COND
31 28	3 27 24	23 16	15 8	7 5	4 0

Attributes:

isp1, isp2

1.4.38 *clz DEST,IN1*

Description:

Count leading of a register value

R[DEST] = clz (R[IN1])

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_CLZ , R ( IN1 ) , R ( IN1 ) );
  R ( DEST ) = RES ( 15 , 0 );
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

1 TYPE	15 OPCD	DEST	IN1	000	1 CLZBIT	0000
31 28	27 24	23 16	15 8	7 5	4	3 0

Attributes:

isp1, isp2

1.4.39 *clz w,MIN1*

Description:

Shift left of a matrix registers by a constant value and store the result in the working matrix (W). Depending on CONFALU.SGN and CONFALU.SAT the result is saturated

```
W[i] = clz MIN1[i]
```

Matrix condition code flags modified: none

Action:

```
{
   int i;
   malu ( MALU_OP_CLZ , MIN1 , 0 , 5 , 0 );
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
   MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	5 TYPE	15 OPCD	0000 / 0	MIN1	0000 / 0000 / 000	1 CLZBIT	0000
31	28	27 24	23 19	18 16	15 5	4	3 0

Attributes:

isp1, isp2

1.4.40 dbg

Description:

dbg: enter debug mode

Action:

```
{
  halt ( )
}
```

Encoding:

ſ	0 TYPE	0 OPCD	0000 / 0000	2 IM16
3	1 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.41 done RELADDR, IXO

Description:

Close a pixel cycle and go to the next

- If I is set then the input data in IN* is shifted by H_SHIFT_IN positions
- If X is set then the x-position counter XPOS is incremented by H_SHIFT_X
- If O is set then the output data in OUT is shifted out by H_SHIFT_OUT positions

The program execution will continue at the jump target address

Action:

```
{
  NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	

Encoding:

0 TYPE	2 OPCD	0000 / 0000	RELADDR	0000 / 0	IXO
31 28	27 24	23 16	15 8	7 3	2 0

Attributes:

isp1, isp2

1.4.42 dout DONE_IN,RELADDR,IXO

Description:

Close a pixel cycle and go to the next

 $OUT[0] = R[DONE_IN]$

- If I is set then the input data in IN* is shifted by H_SHIFT_IN positions
- If X is set then the x-position counter XPOS is incremented by H_SHIFT_X
- If O is set then the output data in OUT is shifted out by H_SHIFT_OUT positions

The program execution will continue at the jump target address

Action:

```
OP1 = R ( DONE_IN ) ;
OUT ( 0 ) = OP1 ;
```

```
NIA = RELADDR ;
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	
R (DONE_IN)	Entire Register	

Affected by instruction:

Register	Fields	Details
NIA	Entire Register	
OP1	Entire Register	
OUT (0)	Entire Register	

Encoding:

	0 TYPE	3 OPCD	DONE_IN	RELADDR	0000 / 0	IXO
ſ	31 28		23 16	15 8	7 3	2 0

Attributes:

isp1, isp2

1.4.43 halt

Description:

halt: terminate line immediatly

Action:

```
{
   End_Of_Line ( );
}
```

The code above uses the following routines (directly or indirectly): End_Of_Line, StartLine, StreamDMAStartLine

Affect instruction:

Register	Fields	Details
H_POS	Entire Register	Conditional
H_XCFG	Entire Register	Conditional
I_BUFFERED	Entire Register	
I_INACFG	NEXTCFG	Partial, Conditional
I_INALCFG	NEXTCFG	Partial, Conditional
I_INBCFG	NEXTCFG	Partial, Conditional
I_OUTCFG	NEXTCFG	Partial, Conditional
I_RUN	Entire Register	Conditional
I_START	NEXT	Partial, Conditional
S_CHCFG_INA (0, 2)	Entire Register	Conditional
S_CHCFG_INAL (0, 2)	Entire Register	Conditional
S_CHCFG_INB (0, 2)	Entire Register	Conditional
S_CHCFG_OUT (0, 3)	Entire Register	Conditional
S_LINELEN_INA (0, 2)	Entire Register	Conditional
S_LINELEN_INAL (0, 2)	Entire Register	Conditional
S_LINELEN_INB (0, 2)	Entire Register	Conditional
S_LINELEN_OUT (0, 3)	Entire Register	Conditional
S_LINE_PTR_INA (0, 2)	Entire Register	Conditional
S_LINE_PTR_INAL (0, 2)	Entire Register	Conditional
S_LINE_PTR_INB (0, 2)	Entire Register	Conditional
S_LINE_PTR_OUT (0, 3)	Entire Register	Conditional

Affected by instruction:

Register	Fields	Details
H_CURRXCFG	Entire Register	Conditional
I_BUFFERED	Entire Register	Conditional
I_EVENTS	Entire Register	

Register	Fields	Details
I_INACFG	CURRCFG	Partial, Conditional
I_INALCFG	CURRCFG	Partial, Conditional
I_INBCFG	CURRCFG	Partial, Conditional
I_OUTCFG	CURRCFG	Partial, Conditional
I_POS_INA (0, 2)	Entire Register	Conditional
I_POS_INAL (0, 2)	Entire Register	Conditional
I_POS_INB (0, 2)	Entire Register	Conditional
I_POS_OUT (0, 3)	Entire Register	Conditional
I_RPTCNT_INA (0, 2)	Entire Register	Conditional
I_RPTCNT_INAL (0, 2)	Entire Register	Conditional
I_RPTCNT_INB (0, 2)	Entire Register	Conditional
I_RUN	Entire Register	
I_SKIPCNT_OUT (0, 3)	Entire Register	Conditional
I_START	CURR	Partial, Conditional
LOCK	Entire Register	Conditional
MASKV	Entire Register	Conditional
NIA	Entire Register	Conditional
SIG_LINE_DONE	Entire Register	
S_CURRCHCFG_INA (0, 2)	Entire Register	Conditional
S_CURRCHCFG_INAL (0, 2)	Entire Register	Conditional
S_CURRCHCFG_INB (0, 2)	Entire Register	Conditional
S_CURRCHCFG_OUT (0, 3)	Entire Register	Conditional
S_CURRLINELEN_INA (0, 2)	Entire Register	Conditional
S_CURRLINELEN_INAL (0, 2)	Entire Register	Conditional
S_CURRLINELEN_INB (0, 2)	Entire Register	Conditional
S_CURRLINELEN_OUT (0, 3)	Entire Register	Conditional
S_CURRLINE_PTR_INA (0, 2)	Entire Register	Conditional
S_CURRLINE_PTR_INAL (0, 2)	Entire Register	Conditional
S_CURRLINE_PTR_INB (0, 2)	Entire Register	Conditional
S_CURRLINE_PTR_OUT (0, 3)	Entire Register	Conditional
XPOS	Entire Register	Conditional
YPOS	Entire Register	Conditional

Γ	0 TYPE	0 OPCD	0000 / 0000	1 IM16
3	1 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.44 Idon RELADDR, IXO

Description:

Close a pixel cycle and go to the next

- If I is set then the input data in IN* is shifted by H_SHIFT_IN positions
- $\bullet\,$ If X is set then the x-position counter XPOS is incremented by H_SHIFT_X
- If O is set then the output data in OUT is shifted out by H_SHIFT_OUT positions

If the LOOPCNT is >1 the program execution will continue at the jump target address, and the LOOPCNT is decremented. Otherwise the execution will continue with the next address

Action:

```
{
  if ( LOOPCNT > 1 ) {
    NIA = RELADDR;
}
  if ( LOOPCNT != 0 ) {
    LOOPCNT = LOOPCNT - 1;
}
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	
LOOPCNT	Entire Register	

Affected by instruction:

Register	Fields	Details
LOOPCNT	Entire Register	Conditional
NIA	Entire Register	Conditional

Encoding:

ſ	0 TYPE	10 OPCD	0000 / 0000	RELADDR	0000	0 LCNT	IXO
	31 28	27 24	23 16	15 8	7 4	3	2 0

Attributes:

isp1, isp2

1.4.45 Idon1 RELADDR, IXO

Description:

Close a pixel cycle and go to the next

- If I is set then the input data in IN* is shifted by H_SHIFT_IN positions
- If X is set then the x-position counter XPOS is incremented by H_SHIFT_X
- If O is set then the output data in OUT is shifted out by H_SHIFT_OUT positions

If the LOOPCNT1 is >1 the program execution will continue at the jump target address, and the LOOPCNT1 is decremented. Otherwise the execution will continue with the next address

Action:

```
{
  if ( LOOPCNT1 > 1 ) {
     NIA = RELADDR ;
}
  if ( LOOPCNT1 != 0 ) {
     LOOPCNT1 = LOOPCNT1 - 1 ;
}
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	
LOOPCNT1	Entire Register	

Affected by instruction:

Register	Fields	Details	
LOOPCNT1	Entire Register	Conditional	
NIA	Entire Register	Conditional	

Encoding:

	0 TYPE	10 OPCD	0000 / 0000	RELADDR	0000	1 LCNT	IXO
- 3	31 28		23 16	15 8	7 4	3	2 0

Attributes:

isp2

1.4.46 Idot DONE_IN,RELADDR,IXO

Description:

Close a pixel cycle and go to the next

 $OUT[0] = R[DONE_IN]$

- If I is set then the input data in IN* is shifted by H_SHIFT_IN positions
- If X is set then the x-position counter XPOS is incremented by H_SHIFT_X
- If O is set then the output data in OUT is shifted out by H_SHIFT_OUT positions

If the LOOPCNT is >1 the program execution will continue at the jump target address, and the LOOPCNT is decremented. Otherwise the execution will continue with the next address

Action:

```
{
  OP1 = R ( DONE_IN ) ;
  OUT ( 0 ) = OP1 ;
  if ( LOOPCNT > 1 ) {
     NIA = RELADDR ;
  }
  if ( LOOPCNT != 0 ) {
     LOOPCNT = LOOPCNT - 1 ;
  }
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	
LOOPCNT	Entire Register	
R (DONE_IN)	Entire Register	

Affected by instruction:

Register	Fields	Details
LOOPCNT	Entire Register	Conditional
NIA	Entire Register	Conditional
OP1	Entire Register	
OUT (0)	Entire Register	

Encoding:

0 TYPE	11 OPCD	DONE_IN	RELADDR	0000	0 LCNT	IXO
31 28		23 16	15 8	7 4	3	2 0

Attributes:

isp1, isp2

1.4.47 Idot1 DONE_IN,RELADDR,IXO

Description:

Close a pixel cycle and go to the next

```
OUT[0] = R[DONE_IN]
```

- If I is set then the input data in IN* is shifted by H_SHIFT_IN positions
- If X is set then the x-position counter XPOS is incremented by H_SHIFT_X
- If O is set then the output data in OUT is shifted out by H_SHIFT_OUT positions

If the LOOPCNT1 is >1 the program execution will continue at the jump target address, and the LOOPCNT1 is decremented. Otherwise the execution will continue with the next address

Action:

```
{
  OP1 = R ( DONE_IN );
  OUT ( 0 ) = OP1;
  if ( LOOPCNT1 > 1 ) {
     NIA = RELADDR;
  }
  if ( LOOPCNT1 != 0 ) {
     LOOPCNT1 = LOOPCNT1 - 1;
  }
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	
LOOPCNT1	Entire Register	
R (DONE_IN)	Entire Register	

Affected by instruction:

Register	Fields	Details
LOOPCNT1	Entire Register	Conditional
NIA	Entire Register	Conditional
OP1	Entire Register	
OUT (0)	Entire Register	

Encoding:

ſ	0 TYPE	11 OPCD	DONE_IN	RELADDR	0000	1 LCNT	IXO
	31 28		23 16	15 8	7 4	3	2 0

Attributes:

isp2

1.4.48 loop RELADDR

Description:

loop, check LOOPCNT > 1 and if yes then jump back to loop start. The loop counter LOOPCNT gives how often we will go through the loop, thus, LOOPCNT == 2 will jump back once to iterate twice

Action:

```
{
  if ( LOOPCNT > 1 ) {
    NIA = RELADDR;
}
  if ( LOOPCNT != 0 ) {
    LOOPCNT = LOOPCNT - 1;
}
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	
LOOPCNT	Entire Register	

Affected by instruction:

Register	Fields	Details
LOOPCNT	Entire Register	Conditional
NIA	Entire Register	Conditional

Encoding:

				1			
	0 TYPE	6 OPCD	0000 / 0000	RELADDR	0000	0 LCNT	000
Ī	31 28		23 16	15 8	7 4	3	2 0

Attributes:

isp1, isp2

1.4.49 *loop1 RELADDR*

Description:

loop1, check LOOPCNT1 > 1 and if yes then jump back to loop start. The loop counter LOOPCNT1 gives how often we will go through the loop, thus, LOOPCNT1 == 2 will jump back once to iterate twice

Action:

```
{
  if ( LOOPCNT1 > 1 ) {
     NIA = RELADDR ;
}
  if ( LOOPCNT1 != 0 ) {
     LOOPCNT1 = LOOPCNT1 - 1 ;
}
}
```

Affect instruction:

Register	Fields	Details
IADDR	Entire Register	
LOOPCNT1	Entire Register	

Affected by instruction:

Register	Fields	Details
LOOPCNT1	Entire Register	Conditional
NIA	Entire Register	Conditional

Encoding:

0 TYPE	6 OPCD	0000 / 0000	RELADDR	0000	1 LCNT	000
31 28		23 16	15 8	7 4	3	2 0

Attributes:

isp2

1.4.50 *Isl DEST,IN1,IM4*

Description:

Bit shift left by a value. The result is masked to the lower 16 bits and no saturation is applied

```
R[DEST] = (R[IN1] \ll IM4) \& 0xFFFF
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_ASL , R ( IN1 ) , concat ( ( bits < 12 >  ) 0 , IM4 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

				ı				—
	TYPE :	L5 OPCD	DEST	IN1	000	0 CLZBIT		
31	28 27	24	23 16	15 8	7 5	4	3	0

Attributes:

isp1, isp2

1.4.51 *Isl DEST,IN1,IN2*

Description:

Bit shift left by a register value. The result is masked to the lower 16 bits and no saturation is applied

```
R[DEST] = (R[IN1] << (R[IN2] & 0xF)) & 0xFFFF
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_ASL , R ( IN1 ) , R ( IN2 ) );
  R ( DEST ) = RES ( 15 , 0 );
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST) Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

	2 TYPE	15 OPCD	DEST	IN1	IN2
[31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.52 *Isl w,MIN1,IM4*

Description:

Bit shift left of a matrix registers by a constant value and store the result in the working matrix (W).

```
W[i] = (MIN1[i]) << IM4) & 0xFFFF
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_ASL , MIN1 , 0 , 5 , IM4 );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

ſ	5 TYPE	15 OPCD	0000 / 0	MIN1	0000 / 0000 / 000	0 CLZBIT	IM4
	31 28	27 24	23 19	18 16	15 5	4	3 0

Attributes:

isp1, isp2

1.4.53 *Isl w,MIN1,IN2*

Description:

Bit shift left of a matrix registers by a register value and store the result in the working matrix (W). Do not do any saturation

```
W[i] = (MIN1[i]) << (R[IN2] \& 0xF)) \& 0xFFFF
```

Matrix condition code flags modified: negative, zero

Action:

```
{
   int i ;
   malu ( MALU_OP_ASL , MIN1 , 0 , 5 , R ( IN2 ) ) ;
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
   MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Fields	Details
SAT, SGN	Partial
Entire Register	
	SAT, SGN Entire Register Entire Register Entire Register Entire Register

Register	Fields	Details	
MFLAG_Z	Entire Register		
MOP1 (0, 8)	Entire Register		
MOP2 (0, 8)	Entire Register		
R (IN2)	Entire Register		

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	6 TYPE	15 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
31	1 28	27 24	23 19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.54 *Isl w,MIN1,MIN2*

Description:

Bit shift left of a matrix registers by a matrix register and store the result in the working matrix (W). Do not do any saturation

```
W[i] = (MIN1[i]) << (MIN2[i] & 0xF)) & 0xFFFF
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i ;
  malu ( MALU_OP_ASL , MIN1 , 0 , MIN2 , 0 ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	

Affected by instruction:

Register Fields		Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

ſ	7 TYPE	15 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00	- 11:	MIN2
	31 28		23 19	18 16	15	2 1	. 0

Attributes:

isp1, isp2

1.4.55 *Isr DEST,IN1,IM4*

Description:

Shift a register bit wise down by a value positions

R[DEST] = ((unsigned)R[IN1]) >> IM4

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_LSR , R ( IN1 ) , concat ( ( bits < 12 > ) 0 , IM4 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details	
CONFALU	SAT, SGN	Partial	
R (IN1)	Entire Register		

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	13 OPCD	DEST	IN1	0000	IM4
3	31 28	27 24	23 16	15 8	7 4	3 0

Attributes:

isp1, isp2

1.4.56 *Isr DEST,IN1,IN2*

Description:

Shift a register bit wise down by another register value positions

```
R[DEST] = ((unsigned)R[IN1]) >> (R[IN2] \& 0xF)
```

Action:

```
{
  salu ( SALU_OP_LSR , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

2 TYPE	13 OPCD	DEST	IN1	IN2
31 28	27 24		15 8	7 0

Attributes:

isp1, isp2

1.4.57 *Isr w,MIN1,IM4*

Description:

Logic shift right of a matrix registers by a constant value and store the result in the working matrix (W)

```
W[i] = ((unsigned)MIN1[i]) >> IM4
```

Matrix condition code flags modified: negative, zero

Action:

```
{
   int i ;
   malu ( MALU_OP_LSR , MIN1 , 0 , 5 , IM4 ) ;
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
   MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	

Register	Fields	Details
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	5 TYPE	13 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000	IM4]
- [31 28		23 19	18 16	15 4	3	0

Attributes:

isp1, isp2

1.4.58 *Isr w,MIN1,IN2*

Description:

Logic shift right of a matrix registers by a register value and store the result in the working matrix (W)

```
W[i] = ((unsigned)MIN1[i]) >> (R[IN2] \& 0xF)
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i ;
  malu ( MALU_OP_LSR , MIN1 , 0 , 5 , R ( IN2 ) ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
----------	--------	---------

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

6 TYPE	13 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
31 28	3 27 24	23 19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.59 *Isr w,MIN1,MIN2*

Description:

Logic shift right of a matrix registers by a matrix register and store the result in the working matrix (W)

```
W[i] = ((unsigned)MIN1[i]) >> (MIN2[i] \& 0xF)
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i ;
  malu ( MALU_OP_LSR , MIN1 , 0 , MIN2 , 0 ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	

Register	Fields	Details
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

ſ	7 TYPE	13 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00	MIN	2
	31 28		23 19	18 16	15	2 1	0

Attributes:

isp1, isp2

1.4.60 mand IM16

Description:

Select MASK if Matrix value is less than constant

```
MASK[i] = (MASKIN[i] == IM16)? NHOOD[i] : 0;
```

Action:

```
{
  int i ;
  maskalu ( MASKALU_OP_AND , 1 , IM16 ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
      MASK ( i ) = MASKRES ( i ) ;
  }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	ASKOP1 (0, 8) Entire Register	
MASKOP2	Entire Register	Partial

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

	3 TYPE	7 OPCD	0000 / 0000	IM16
31	78		23 16	15 0

Attributes:

isp1, isp2

1.4.61 mand IN2

Description:

Select MASK if Matrix value is less than register value

```
MASK[i] = (MASKIN[i] == IM16)? NHOOD[i] : 0;
```

Action:

```
{
    int i ;
    maskalu ( MASKALU_OP_AND , 1 , R ( IN2 ) ) ;
```

```
for ( i = 0 ; i < 9 ; i ++ ) {
      MASK ( i ) = MASKRES ( i ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
MASKOP2	Entire Register	Partial
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

4 TYPE	7 OPCD	0000 / 0000 / 0000 / 0000	IN2
31 28		23 8	7 0

Attributes:

isp1, isp2

1.4.62 max DEST,IM16

Description:

Maximum of a value to a registers

```
R[DEST] = max (R[DEST], IM16)
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_MAX , R ( DEST ) , IM16 ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	11 OPCD	DEST	IM16
- [31 28	27 24	23 16	15

Attributes:

isp1, isp2

1.4.63 max DEST, IN1, IN2

Description:

Maximum of two register values

R[DEST] = max (R[IN1], R[IN2])

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_MAX , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Register Fields	
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	2 TYPE	11 OPCD	DEST	IN1	IN2
3	78	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.64 min DEST, IM16

Description:

Minimum of a value to a registers

```
R[DEST] = min(R[DEST], IM16)
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_MIN , R ( DEST ) , IM16 ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

1 TYPE	10 OPCD	DEST	IM16
31 28		23 16	15 0

Attributes:

isp1, isp2

1.4.65 *min DEST,IN1,IN2*

Description:

Minimum of two register values

R[DEST] = min (R[IN1], R[IN2])

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_MIN , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

Ì	2 TYPE	10 OPCD	DEST	IN1	IN2
	31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.66 *minv*

Description:

Invert MASK bits and mask out using NHOOD

MASK[i] = (!MASK[i]) && NHOOD[i]

Action:

```
{
  int i;
maskalu ( MASKALU_OP_INV , 1 , 0 );
for ( i = 0 ; i < 9 ; i ++ ) {
    MASK ( i ) = MASKRES ( i );
}
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
NHOOD	Entire Register	Partial

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

3 TYPE	2 OPCD	0000 / 0000 / 0000 / 0000 / 0000 / 0000
31 28	27 24	23 0

Attributes:

isp1, isp2

1.4.67 mith MASKIN1,IM16

Description:

Select MASK if Matrix value is less or equal than constant

```
MASK[i] = (MASKIN[i] \le IM16)? NHOOD[i] : 0;
```

Action:

```
{
  int i ;
  maskalu ( MASKALU_OP_ITH , MASKIN1 , IM16 ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
     MASK ( i ) = MASKRES ( i ) ;
  }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
MASKOP2	Entire Register	
NHOOD	Entire Register	Partial

Affected by instruction:

Register	Fields	Details
MASK (0, 8) Entire Register		
MASKOP1 (MASKIN1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

3 TYPE	5 OPCD	0000 / 00	MASKIN1	IM16
31 28	27 24	23 18	17 16	15 0

Attributes:

isp1, isp2

1.4.68 *mith MASKIN1,IN2*

Description:

Select MASK if Matrix value is less or equal than register value

```
MASK[i] = (MASKIN[i] == IN2)? NHOOD[i] : 0;
```

Action:

```
{
  int i;
  maskalu ( MASKALU_OP_ITH , MASKIN1 , R ( IN2 ) );
  for ( i = 0 ; i < 9 ; i ++ ) {
     MASK ( i ) = MASKRES ( i );
  }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
MASKOP2	Entire Register	
NHOOD	Entire Register	Partial
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (MASKIN1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

	4 TYPE	5 OPCD	0000 / 00	MASKIN1	0000 / 0000	IN2
- [31 28		23 18	17 16	15 8	7 0

Attributes:

isp1, isp2

1.4.69 mov DEST, IM16

Description:

Move constant to registers

R[DEST] = IM16

Condition code flags modified: none

Action:

```
{
  salu ( SALU_OP_MOV , IM16 , IM16 ) ;
  R ( DEST ) = RES ;
}
```

The code above uses the following routines (directly or indirectly): salu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	0 OPCD	DEST	IM16
3	31 28		23 16	15 0

Attributes:

isp1, isp2

1.4.70 mov DEST,IN2

Description:

Copy register to register

R[DEST] = R[IN2]

Condition code flags modified: none

Action:

```
{
  salu ( SALU_OP_MOV , R ( IN2 ) , R ( IN2 ) );
  R ( DEST ) = RES ;
}
```

The code above uses the following routines (directly or indirectly): Salu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

2 TYPE	0 OPCD	DEST	0000 / 0000	IN2
31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.71 mov w,IM16

Description:

Copy a constant value to all register of the working register matrix (W)

W[i] = IM16

Matrix condition code flags modified: none

Action:

```
{
  int i;
malu ( MALU_OP_MOV , 5 , IM16 , 5 , IM16 );
for ( i = 0 ; i < 9 ; i ++ ) {
   if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
}
}</pre>
```

The code above uses the following routines (directly or indirectly): malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MFLAG_C	Entire Register	
MFLAG_O	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

5 TYPE	0 OPCD	0000 / 0000	IM16
31 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.72 mov w,IN2

Description:

Copy a register value to all register of the working register matrix (W)

```
W[i] = R[IN2]
```

Matrix condition code flags modified: none

Action:

```
{
  int i;
  malu ( MALU_OP_MOV , 5 , IN2 , 5 , R ( IN2 ) );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
  }
}</pre>
```

The code above uses the following routines (directly or indirectly): malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	

Register	Fields	Details
MFLAG_C	Entire Register	
MFLAG_O	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

ſ	6 TYPE	0 OPCD	0000 / 0000 / 0000 / 0000	IN2
3	31 28		23 8	7 0

Attributes:

isp1, isp2

1.4.73 *mov w,MIN2*

Description:

Copy a matrix register to the woring register matrix (W)

```
W[i] = MIN2[i]
```

Matrix condition code flags modified: none

Action:

```
{
   int i;
   malu ( MALU_OP_MOV , MIN2 , 0 , MIN2 , 0 );
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
   }
}</pre>
```

The code above uses the following routines (directly or indirectly): malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MFLAG_C	Entire Register	
MFLAG_O	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	

Register	Fields	Details
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

7 TYPE	0 OPCD	0000 / 0000 / 0000 / 0000 / 000	MIN2	╛
31 28	27 24	23 2	1	0

Attributes:

isp1, isp2

1.4.74 mset IM16

Description:

use bit vector from a constant and copy it to the MASK bits

```
MASK[i] = IM9[i]
```

Action:

```
{
   int i;
   maskalu ( MASKALU_OP_SET , 1 , IM16 ) ;
   for ( i = 0 ; i < 9 ; i ++ ) {
        MASK ( i ) = MASKRES ( i ) ;
   }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKRES (0, 8)	Entire Register	

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (1)	Entire Register	
MASKOP2	Entire Register	

Encoding:

Γ	3 TYPE	0 OPCD	0000 / 0000	IM16
3	1 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.75 mset IN2

Description:

use bit vector from a register and copy it to the MASK bits

MASK[i] = R[IN2][i]

Action:

```
{
  int i;
  maskalu ( MASKALU_OP_SET , 1 , R ( IN2 ) );
  for ( i = 0 ; i < 9 ; i ++ ) {
     MASK ( i ) = MASKRES ( i );
}</pre>
```

}

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKRES (0, 8)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (1)	Entire Register	
MASKOP2	Entire Register	

Encoding:

	4 TYPE	0 OPCD	0000 / 0000 / 0000 / 0000	IN2
- [31 28	27 24		7 0

Attributes:

isp1, isp2

1.4.76 *mset MASKIN1,IM16*

Description:

Select MASK if Matrix value is equal to a constant

```
MASK[i] = (MASKIN[i] == IM16)? NHOOD[i] : 0;
```

Action:

```
{
  int i;
  maskalu ( MASKALU_OP_SEL , MASKIN1 , IM16 );
  for ( i = 0 ; i < 9 ; i ++ ) {
     MASK ( i ) = MASKRES ( i );
  }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
MASKOP2	Entire Register	
NHOOD	Entire Register	Partial

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (MASKIN1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

3 TYPE	1 OPCD	0000 / 00	MASKIN1	IM16
31 28	27 24	23 18	17 16	15 0

Attributes:

isp1, isp2

1.4.77 *mset MASKIN1,IN2*

Description:

Select MASK if Matrix value is equal to a register value

```
MASK[i] = (MASKIN[i] == IN2)? NHOOD[i] : 0;
```

Action:

```
{
  int i;
  maskalu ( MASKALU_OP_SEL , MASKIN1 , R ( IN2 ) );
  for ( i = 0 ; i < 9 ; i ++ ) {
     MASK ( i ) = MASKRES ( i );
  }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
MASKOP2	Entire Register	
NHOOD	Entire Register	Partial
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	SK (0, 8) Entire Register	
MASKOP1 (MASKIN1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

4 TYPE	1 OPCD	0000 / 00	MASKIN1	0000 / 0000	IN2
31 28		25	17 16	15 8	7 0

Attributes:

isp1, isp2

1.4.78 mthr MASKIN1,IM16

Description:

Select MASK if Matrix value is bigger or equal than constant

```
MASK[i] = (MASKIN[i] >= IM16)? NHOOD[i] : 0;
```

Action:

```
{
   int i ;
   maskalu ( MASKALU_OP_THR , MASKIN1 , IM16 ) ;
   for ( i = 0 ; i < 9 ; i ++ ) {
        MASK ( i ) = MASKRES ( i ) ;
   }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
MASKOP2	Entire Register	
NHOOD	Entire Register	Partial

Affected by instruction:

Register	Register Fields	
MASK (0, 8)	Entire Register	

Register	Fields	Details
MASKOP1 (MASKIN1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

	3 TYPE	4 OPCD	0000 / 00	MASKIN1	IM16
31	1 28	27 24	23 18	17 16	15 0

Attributes:

isp1, isp2

1.4.79 mthr MASKIN1,IN2

Description:

Select MASK if Matrix value is bigger or equal than register value

```
MASK[i] = (MASKIN[i] >= IN2)? NHOOD[i] : 0;
```

Action:

```
{
  int i ;
  maskalu ( MASKALU_OP_THR , MASKIN1 , R ( IN2 ) ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
      MASK ( i ) = MASKRES ( i ) ;
  }
}</pre>
```

The code above uses the following routines (directly or indirectly): maskalu

Affect instruction:

Register	Fields	Details
MASKOP1 (0, 8)	Entire Register	
MASKOP2	Entire Register	
NHOOD	Entire Register	Partial
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
MASK (0, 8)	Entire Register	
MASKOP1 (MASKIN1)	Entire Register	
MASKOP2	Entire Register	
MASKRES (0, 8)	Entire Register	

Encoding:

	4 TYPE	4 OPCD	0000 / 00	MASKIN1	0000 / 0000	IN2
3	31 28		23 1	17 16	15 8	7 0

Attributes:

isp1, isp2

1.4.80 *mulh DEST,IM16*

Description:

multiply a register by a value according to CONFALU and scale to fixed point

R[DEST] = Saturate((R[DEST] * IM16) >> CONFSHR)

Condition code flags modified: none

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  salu ( SALU_OP_MULH , R ( DEST ) , IM16 ) ;
  R ( DEST ) = SAT ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): Salu

Affect instruction:

Register	Fields	Details
CONFALU	SHR, SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	4 OPCD	DEST	IM16
3	1 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.81 *mulh DEST,IN1,IN2*

Description:

multiply a register by a value according to CONFALU and scale to fixed point and

```
R[DEST] = Saturate(((R[IN1] * R[IN2]) >> CONFSHR)
```

Condition code flags modified: none

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  salu ( SALU_OP_MULH , R ( IN1 ) , R ( IN2 ) );
  R ( DEST ) = SAT ( 15 , 0 );
}
```

The code above uses the following routines (directly or indirectly): Salu

Affect instruction:

Register	Fields	Details
CONFALU	SHR, SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

	2 TYPE	4 OPCD	DEST	IN1	IN2
-	31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.82 *mull DEST,IM16*

Description:

multiply a register by a value and take lower 16 bits

```
R[DEST] = (R[DEST] * IM16) & 0xFFFF
```

Condition code flags modified: none

Action:

```
{
  salu ( SALU_OP_MULL , R ( DEST ) , IM16 ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): Salu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	5 OPCD	DEST	IM16
Ī	31 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.83 *mull DEST,IN1,IN2*

Description:

multiply two registers and take lower 16 bits

```
R[DEST] = (R[IN1] * R[IN2]) & 0xFFFF
```

Condition code flags modified: none

Action:

```
{
  salu ( SALU_OP_MULL , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): Salu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
RES32	Entire Register	
SAT	Entire Register	

Encoding:

2 '	TYPE	5	OPCD	DEST	IN1	IN2
31	28	27	24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.84 *nop*

Description:

No OPeration

Action:

```
{
  return ;
}
```

Encoding:

ſ	0 TYPE	0 OPCD	0000 / 0000	0 IM16
3	1 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.85 *or DEST,IM16*

Description:

Logic OR of a value to a registers

 $R[DEST] = R[DEST] \mid IM16$

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_OR , R ( DEST ) , IM16 ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Г	1 TYPE	8 OPCD	DEST	IM16
3	1 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.86 *or DEST,IN1,IN2*

Description:

Logic OR of two register values

```
R[DEST] = R[IN1] | R[IN2]
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_OR , R ( IN1 ) , R ( IN2 ) );
  R ( DEST ) = RES ( 15 , 0 );
}
```

The code above uses the following routines (directly or indirectly): salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

Ì	2 TYPE	8 OPCD	DEST	IN1	IN2
	31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.87 param DEST,IN2

Description:

Virtual instruction to be transformed during IMEM upload to "mov R[DEST], IM16" with IM16 = PARAM[IN] from parameter memory in host

R[DEST] = PARAM[IN]

Condition code flags modified: none

Action:

```
{
  salu ( SALU_OP_MOV , R ( IN2 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ;
}
```

The code above uses the following routines (directly or indirectly): Salu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

10 TYPE	0 OPCD	DEST	0000 / 0000	IN2
		23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.88 sub DEST, IM16

Description:

Subtract a value from a registers

```
R[DEST] = Saturate(R[DEST] - IM16)
```

Condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  salu ( SALU_OP_SUB , R ( DEST ) , IM16 ) ;
  R ( DEST ) = SAT ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZCO

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
OP1	Mask: 0x10000	
OP2	Mask: 0x10000	
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	1 TYPE	2 OPCD	DEST	IM16
Ī	31 28	27 24	23 16	15 0

Attributes:

isp1, isp2

1.4.89 *sub DEST,IN1,IN2*

Description:

Subtract two register values

```
R[DEST] = Saturate(R[IN1] - R[IN2])
```

Condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
  salu ( SALU_OP_SUB , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = SAT ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZCO

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
OP1	Mask: 0x10000	
OP2	Mask: 0x10000	
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

2 TYPE	2 OPCD	DEST	IN1	IN2
31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.4.90 sub w, MIN1, IM16

Description:

Subtract a constant value from a matrix register and store the result in the working matrix register (W)

W[i] = Saturate(MIN1[i] - IM16)

Matrix condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

{

```
int i ;
malu ( MALU_OP_SUB , MIN1 , 0 , 5 , IM16 ) ;
for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i ) ;
}
MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
MFLAG_O = flag_ways ( MFLAG_O , I_MFLAG_O , MASKV ) ;
MFLAG_C = flag_ways ( MFLAG_C , I_MFLAG_C , MASKV ) ;</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_C, cc_get_N, cc_get_O, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

5 TYPE	2 OPCD	0000 / 0	MIN1	IM16
31 28	27 24	23 19	18 16	15 0

Attributes:

isp1, isp2

1.4.91 sub w, MIN1, IN2

Description:

Subtract a register value from a matrix register and store the result in the working matrix register (W)

```
W[i] = Saturate(MIN1[i] - R[IN2])
```

Matrix condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
    int i ;
    malu ( MALU_OP_SUB , MIN1 , 0 , 5 , R ( IN2 ) ) ;
```

```
for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i ) ;
}

MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;

MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;

MFLAG_O = flag_ways ( MFLAG_O , I_MFLAG_O , MASKV ) ;

MFLAG_C = flag_ways ( MFLAG_C , I_MFLAG_C , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_C, cc_get_N, cc_get_O, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

6 TYPE	2 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
31 28	27 24	23 19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.92 *sub w,MIN1,MIN2*

Description:

Subtract two matrix registers and store the result in the working matrix (W)

```
W[i] = Saturate(MIN1[i] - MIN2[i])
```

Matrix condition code flags modified: carry, overflow, negative, zero

Saturate depends on result, CONFALU.SAT and CONFALU.SGN

Action:

```
{
   int i;
   malu ( MALU_OP_SUB , MIN1 , 0 , MIN2 , 0 ) ;
   for ( i = 0 ; i < 9 ; i ++ ) {</pre>
```

```
if ( MASK ( i ) == 1 ) W ( i ) = MSAT ( i ) ;
}
MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
MFLAG_O = flag_ways ( MFLAG_O , I_MFLAG_O , MASKV ) ;
MFLAG_C = flag_ways ( MFLAG_C , I_MFLAG_C , MASKV ) ;
}
```

The code above uses the following routines (directly or indirectly): cc_get_C, cc_get_N, cc_get_O, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

_							
	7 TYPE	2 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00	MIN	2
	31 28		23 19	18 16	15 2	1	0

Attributes:

isp1, isp2

1.4.93 swp

Description:

```
Swap W and WW
```

tmp[i] = WW[i]

WW[i] = W[i]

W[i] = tmp[i]

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_SWP , 2 , 0 , 2 , 0 );
  for ( i = 0 ; i < 9 ; i ++ ) {</pre>
```

```
WW ( i ) = W ( i );
}
for ( i = 0 ; i < 9 ; i ++ ) {
    W ( i ) = MRES ( i ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MFLAG_C	Entire Register	
MFLAG_O	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
MRES (0, 8)	Entire Register	
W (0, 8)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0, 8)	Entire Register	
WW (0, 8)	Entire Register	

Encoding:

Ī	7 TYPE	6 OPCD	0000 / 0000 / 0000 / 0000 / 0000 / 0000	
	31 28	27 24	23	0

Attributes:

isp1, isp2

1.4.94 thf w,MIN1,IM16

Description:

Threshold Filter: threshold a matrix register with a constant value and keep the remaining values in the working matrix register (W)

```
W[i] = (MIN1[i] < IM16)? 0: MIN1[i]
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
  malu ( MALU_OP_THF , MIN1 , 0 , 5 , IM16 );
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	

Register	Fields	Details
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

5 1	TYPE		4 OPCD		0000 / 0		MIN1	IM16	
31	28	27	2	23	19	1	8 16	15	0

Attributes:

isp1, isp2

1.4.95 thf w,MIN1,IN2

Description:

Threshold Filter: threshold a matrix register with a register value and keep the remaining values in the working matrix register (W)

```
W[i] = (MIN1[i] < R[IN2])? 0: MIN1[i]
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i ;
  malu ( MALU_OP_THF , MIN1 , 0 , 5 , R ( IN2 ) ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	

Register	Fields	Details
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	6 TYPE	4 OPCD	0000 / 0	MIN1	0000 / 0000	IN2
3	31 28	27 24	23 19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.96 thf w, MIN1, MIN2

Description:

Threshold Filter: threshold a matrix register with a matrix register and keep the remaining values in the working matrix register (W)

```
W[i] = (MIN1[i] < MIN2[i])? 0: MIN1[i]
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i ;
  malu ( MALU_OP_THF , MIN1 , 0 , MIN2 , 0 ) ;
  for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i ) ;
  }
  MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV ) ;
  MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV ) ;
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register Fields Detail	s
------------------------	---

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

7 TYPE	4 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00	М	IN2
31 28	27 24	23 19	18 16	15	2 1	0

Attributes:

isp1, isp2

1.4.97 thm w,MIN1,IM16

Description:

Threshold to Max: threshold a matrix register with a constant value and store MAX for the remaining values in the working matrix register (W)

```
W[i] = (MIN1[i] < IM16)? 0: 0xFFFF
```

Matrix condition code flags modified: negative, zero

Action:

```
{
   int i;
   malu ( MALU_OP_THM , MIN1 , 0 , 5 , IM16 );
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
   MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Fields	Details
Entire Register	
	Entire Register Entire Register Entire Register Entire Register Entire Register

Register	Fields	Details
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

5 TYPE	5 OPCD	0000 / 0	MIN1	IM16
31 28	27 24	23 19	18 16	15 0

Attributes:

isp1, isp2

1.4.98 thm w,MIN1,IN2

Description:

Threshold to Max: threshold a matrix register with a register value and store MAX for the remaining values in the working matrix register (W)

```
W[i] = (MIN1[i] < R[IN2])? 0: 0xFFFF
```

Matrix condition code flags modified: negative, zero

Action:

```
{
  int i;
malu ( MALU_OP_THM , MIN1 , 0 , 5 , R ( IN2 ) );
for ( i = 0 ; i < 9 ; i ++ ) {
    if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
}
MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

							_
6	TYPE	5 OPCD	0000	/ 0	MIN1	0000 / 0000	IN2
31	28	27 24	23	19	18 16	15 8	7 0

Attributes:

isp1, isp2

1.4.99 thm w, MIN1, MIN2

Description:

Threshold to Max: threshold a matrix register with a matrix register and store MAX for the remaining values in the working matrix register (W)

```
W[i] = (MIN1[i] < MIN2[i])? 0: 0xFFFF
```

Matrix condition code flags modified: negative, zero

Action:

```
{
   int i;
   malu ( MALU_OP_THM , MIN1 , 0 , MIN2 , 0 );
   for ( i = 0 ; i < 9 ; i ++ ) {
      if ( MASK ( i ) == 1 ) W ( i ) = MRES ( i );
   }
   MFLAG_N = flag_ways ( MFLAG_N , I_MFLAG_N , MASKV );
   MFLAG_Z = flag_ways ( MFLAG_Z , I_MFLAG_Z , MASKV );
}</pre>
```

The code above uses the following routines (directly or indirectly): cc_get_N, cc_get_Z, flag_ways, malu

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
MASK (0, 8)	Entire Register	
MASKV	Entire Register	
MFLAG_C	Entire Register	
MFLAG_N	Entire Register	
MFLAG_O	Entire Register	
MFLAG_Z	Entire Register	
MOP1 (0, 8)	Entire Register	
MOP2 (0, 8)	Entire Register	
MRES (0)	Entire Register	

Affected by instruction:

Register	Fields	Details
I_MFLAG_C	Entire Register	
I_MFLAG_N	Entire Register	
I_MFLAG_O	Entire Register	
I_MFLAG_Z	Entire Register	
MFLAG_N	Entire Register	
MFLAG_Z	Entire Register	
MRES (0, 8)	Entire Register	
MSAT (0)	Entire Register	
MSAT (0, 8)	Entire Register	
W (0)	Entire Register	Conditional
W (0, 8)	Entire Register	Conditional

Encoding:

	7 TYPE	5 OPCD	0000 / 0	MIN1	0000 / 0000 / 0000 / 00	MI	N2
3		27 24	23 19	18 16	15	1	0

Attributes:

isp1, isp2

1.4.100 xor DEST, IM16

Description:

Logic OR of a value to a registers

```
R[DEST] = R[DEST] \land IM16
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_XOR , R ( DEST ) , IM16 ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (DEST)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

1 TYPE	9 OPCD	DEST	IM16
31 28		23 16	15 0

Attributes:

isp1, isp2

1.4.101 xor DEST,IN1,IN2

Description:

Logic OR of two register values

```
R[DEST] = R[IN1] ^ R[IN2]
```

Condition code flags modified: negative, zero

Action:

```
{
  salu ( SALU_OP_XOR , R ( IN1 ) , R ( IN2 ) ) ;
  R ( DEST ) = RES ( 15 , 0 ) ;
}
```

The code above uses the following routines (directly or indirectly): salu, salu_cc_set_NZ

Affect instruction:

Register	Fields	Details
CONFALU	SAT, SGN	Partial
R (IN1)	Entire Register	
R (IN2)	Entire Register	

Affected by instruction:

Register	Fields	Details
OP1	Entire Register	
OP2	Entire Register	
R (DEST)	Entire Register	
RES	Entire Register	
SAT	Entire Register	

Encoding:

	2 TYPE	9 OPCD	DEST	IN1	IN2
3	31 28	27 24	23 16	15 8	7 0

Attributes:

isp1, isp2

1.5 Instructions by Attribute

1.5.1 *isp1*

- abd DEST,IM16
- abd DEST, IN1, IN2
- absdiff w,MIN1,IM16
- absdiff w,MIN1,IN2
- absdiff w,MIN1,MIN2
- add DEST,IM16
- add DEST, IN1, IN2
- add w,MIN1,IM16
- add w,MIN1,IN2
- add w,MIN1,MIN2
- and DEST,IM16
- and DEST, IN1, IN2
- asl DEST, IN1, IM4
- asl DEST,IN1,IN2
- asl w,MIN1,IM4
- asl w,MIN1,IN2
- asl w,MIN1,MIN2
- asr DEST,IN1,IM4
- asr DEST,IN1,IN2
- asr w,MIN1,IM4
- asr w,MIN1,IN2
- asr w,MIN1,MIN2
- bal RELADDR
- bcc RELADDR
- bcs RELADDR
- beq RELADDR
- bge RELADDR
- bgt RELADDR
- bhi RELADDRbls RELADDR
- blt RELADDR
- bmi RELADDR
- bne RELADDR
- bnv RELADDR
- boc RELADDR
- bos RELADDR
- bpl RELADDR
- clz DEST,IN1
- clz w,MIN1
- dbg
- done RELADDR, IXO
- dout DONE_IN,RELADDR,IXO
- halt
- Idon RELADDR, IXO
- Idot DONE_IN,RELADDR,IXO
- loop RELADDR
- IsI DEST, IN1, IM4

- IsI DEST,IN1,IN2
- Isl w,MIN1,IM4
- Isl w,MIN1,IN2
- IsI w,MIN1,MIN2
- Isr DEST,IN1,IM4
- Isr DEST,IN1,IN2
- Isr w,MIN1,IM4
- Isr w,MIN1,IN2
- Isr w,MIN1,MIN2
- mand IM16
- mand IN2
- max DEST,IM16
- max DEST, IN1, IN2
- min DEST, IM16
- min DEST,IN1,IN2
- minv
- mith MASKIN1,IM16
- mith MASKIN1,IN2
- mov DEST, IM16
- mov DEST,IN2
- mov w,IM16
- mov w,IN2
- mov w,MIN2
- mset IM16
- mset IN2
- mset MASKIN1,IM16
- mset MASKIN1,IN2
- mthr MASKIN1,IM16
- mthr MASKIN1,IN2
- mulh DEST, IM16
- mulh DEST, IN1, IN2
- mull DEST,IM16
- mull DEST,IN1,IN2
- nop
- or DEST,IM16
- or DEST, IN1, IN2
- param DEST,IN2
- sub DEST,IM16
- sub DEST,IN1,IN2
- sub w,MIN1,IM16
- sub w,MIN1,IN2
- sub w,MIN1,MIN2
- swp
- thf w,MIN1,IM16
- thf w,MIN1,IN2
- thf w,MIN1,MIN2
- thm w,MIN1,IM16
- thm w,MIN1,IN2
- thm w,MIN1,MIN2
- xor DEST,IM16
- xor DEST,IN1,IN2

1.5.2 *isp2*

- abd DEST,IM16
- abd DEST, IN1, IN2
- absdiff w,MIN1,IM16
- absdiff w,MIN1,IN2

- absdiff w,MIN1,MIN2
- add DEST,IM16
- add DEST,IN1,IN2
- add w,MIN1,IM16
- add w,MIN1,IN2
- add w,MIN1,MIN2
- and DEST, IM16
- and DEST, IN1, IN2
- asl DEST,IN1,IM4
- asl DEST, IN1, IN2
- asl w,MIN1,IM4
- asl w,MIN1,IN2
- asl w,MIN1,MIN2
- asr DEST,IN1,IM4
- asr DEST,IN1,IN2
- asr w,MIN1,IM4
- asr w,MIN1,IN2
- asr w,MIN1,MIN2
- bal RELADDR
- bcc RELADDR
- bcs RELADDR
- beg RELADDR
- bge RELADDR
- bgt RELADDR
- bhi RELADDR
- bls RELADDR
- blt RELADDR
- bmi RELADDR
- bne RELADDR
- bnv RELADDR
- boc RELADDR
- bos RELADDRbpl RELADDR
- clz DEST,IN1
- clz w,MIN1
- dbq
- done RELADDR, IXO
- dout DONE_IN,RELADDR,IXO
- halt
- Idon RELADDR, IXO
- Idon1 RELADDR, IXO
- Idot DONE_IN,RELADDR,IXO
- Idot1 DONE_IN,RELADDR,IXO
- loop RELADDR
- loop1 RELADDR
- IsI DEST, IN1, IM4
- IsI DEST, IN1, IN2
- IsI w,MIN1,IM4
- Isl w,MIN1,IN2
- IsI w,MIN1,MIN2
- Isr DEST,IN1,IM4
- Isr DEST,IN1,IN2
- Isr w,MIN1,IM4
- Isr w,MIN1,IN2
- Isr w,MIN1,MIN2
- mand IM16
- mand IN2
- max DEST, IM16
- max DEST,IN1,IN2
- min DEST,IM16

- min DEST, IN1, IN2
- minv
- mith MASKIN1,IM16
- mith MASKIN1, IN2
- mov DEST, IM16
- mov DEST,IN2
- mov w, IM16
- mov w,IN2
- mov w,MIN2
- mset IM16
- mset IN2
- mset MASKIN1,IM16
- mset MASKIN1,IN2
- mthr MASKIN1,IM16
- mthr MASKIN1,IN2
- mulh DEST, IM16
- mulh DEST, IN1, IN2
- mull DEST, IM16
- mull DEST,IN1,IN2
- nop
- or DEST,IM16
- or DEST,IN1,IN2
- param DEST,IN2
- sub DEST,IM16
- sub DEST,IN1,IN2
- sub w,MIN1,IM16
- sub w,MIN1,IN2
- sub w,MIN1,MIN2
- swp
- thf w,MIN1,IM16
- thf w,MIN1,IN2
- thf w,MIN1,MIN2
- thm w,MIN1,IM16
- thm w,MIN1,IN2
- thm w,MIN1,MIN2
- xor DEST, IM16
- xor DEST,IN1,IN2

1.6 Helper Functions

Built-in helper routines are documented in the ADL user manual.

In addition, the following helper routines are defined for IPUS:

```
C E F M S
```

1.6.1 cc_get_C

```
int cc_get_C ( malu_op_t alu_op , sbits < 16 > res , sbits < 16 > op1 , sbits < 16 > op2 ) {
    }
```

1.6.2 cc_get_N

```
int cc_get_N ( bits < 16 > res ) {
    }
```

1.6.3 cc_get_O

```
int cc_get_0 ( malu_op_t alu_op , sbits < 16 > res , sbits < 16 > op1 , sbits < 16 > op2 ) { }
```

1.6.4 *cc_get_Z*

```
int cc_get_Z ( sbits < 16 > res ) {
    }
```

1.6.5 End_Of_Line

```
void End_Of_Line ( void ) {
   I_RUN = 0 ;
   I_EVENTS = 1 ;
   SIG_LINE_DONE = 1 ;
   if ( I_BUFFERED == 0 ) {
      halt ( ) ;
   } else {
      StartLine ( ) ;
   }
}
```

The code above uses the following routines (directly or indirectly): StartLine, StreamDMAStartLine

1.6.6 flag_ways

```
bits < 9 > flag_ways ( bits < 9 > flag_registers , bits < 9 > new_flags , bits < 9 > mask ) {
   return ( flag_registers & ~ mask ) | ( new_flags & mask ) ;
}
```

1.6.7 *malu*

```
void\ malu ( malu_op_t\ malu_op , bits < 3 > idx1 , sbits < 16 > op1 , bits < 3 > idx2 , sbits < 16 > op2
   int32_t sop1 [ 9 ] , sop2 [ 9 ] ;
   int i ;
   bits < 9 > z , n , c , o ;
  if ( CONFALU . SGN == 1 ) {
       for (i = 0; i < 9; i ++) {
          sop1 [ i ] = MOP1 ( i ) . int32 ( );
          sop2 [ i ] = MOP2 ( i ) . int32 ( );
      }
  } else {
      for ( i = 0 ; i < 9 ; i ++ ) {
          sop1 [ i ] = MOP1 ( i ) . uint32 ( );
          sop2 [ i ] = MOP2 ( i ) . uint32 ( );
      }
  }
  c = MFLAG_C ;
  o = MFLAG_O ;
  switch ( malu_op ) {
      case MALU_OP_ADD : for ( i = 0 ; i < 9 ; i ++ ) {
          MRES ( i ) = sop1 [ i ] + sop2 [ i ] ;
          z ( i , i ) = cc_get_Z ( MRES ( i ) ) ;
          n ( i , i ) = cc_get_N ( MRES ( i ) );
          c ( i , i ) = cc_get_C ( malu_op , MRES ( i ) , MOP1 ( i ) , MOP2 ( i ) ) ;
          o ( i , i ) = cc_get_O ( malu_op , MRES ( i ) , MOP1 ( i ) , MOP2 ( i ) ) ;
      break ;
      case MALU_OP_SUB : for ( i = 0 ; i < 9 ; i ++ ) {
          MRES ( i ) = sop1 [ i ] - sop2 [ i ] ;
          z ( i , i ) = cc_get_Z ( MRES ( i ) ) ;
          n ( i , i ) = cc_get_N ( MRES ( i ) );
          c(i,i) = cc_get_C(malu_op, MRES(i), MOP1(i), MOP2(i));
          o ( i , i ) = cc_get_O ( malu_op , MRES ( i ) , MOP1 ( i ) , MOP2 ( i ) );
      case MALU_OP_ABSDIFF : for ( i = 0 ; i < 9 ; i ++ ) {
```

```
\texttt{MRES (i)} = (\ \texttt{sop1 [i]} > \texttt{sop2 [i]}) ? (\ \texttt{sop1 [i]} - \texttt{sop2 [i]}) : (\ \texttt{sop2 [i]} - \texttt{sop1}]
    z ( i , i ) = cc_get_Z ( MRES ( i ) );
    n(i,i) = cc_get_N ( MRES (i) );
break :
case MALU_OP_THF : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = ( sop1 [ i ] < sop2 [ i ] ) ? 0 : MOP1 ( i ) ;
   z ( i , i ) = cc_get_Z ( MRES ( i ) );
   n ( i , i ) = cc_get_N ( MRES ( i ) ) ;
break ;
case MALU_OP_THM : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = ( sop1 [ i ] < sop2 [ i ] ) ? 0 : 0xFFFF;
   z ( i , i ) = cc_get_Z ( MRES ( i ) );
   n ( i , i ) = cc_get_N ( MRES ( i ) );
break ;
case MALU_OP_AND : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = sop1 [ i ] & sop2 [ i ];
   z ( i , i ) = cc_get_Z ( MRES ( i ) ) ;
   n(i,i) = cc_get_N ( MRES (i) );
}
break :
case MALU_OP_OR : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = sop1 [ i ] | sop2 [ i ];
   z ( i , i ) = cc_get_Z ( MRES ( i ) ) ;
   n ( i , i ) = cc_get_N ( MRES ( i ) ) ;
break ;
case MALU_OP_XOR : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = sop1 [ i ] | sop2 [ i ];
    z ( i , i ) = cc_get_Z ( MRES ( i ) ) ;
   n(i,i) = cc_get_N ( MRES (i) );
}
case MALU_OP_MIN : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = ( sop1 [ i ] < sop2 [ i ] ) ? sop1 [ i ] : sop2 [ i ] ;
    z ( i , i ) = cc\_get\_Z ( MRES ( i ) ) ;
    n(i,i) = cc_get_N ( MRES (i));
}
break ;
case MALU_OP_MAX : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = ( sop1 [ i ] > sop2 [ i ] ) ? sop1 [ i ] : sop2 [ i ] ;
    z ( i , i ) = cc_get_Z ( MRES ( i ) );
    n ( i , i ) = cc_get_N ( MRES ( i ) );
break ;
case MALU_OP_ASR : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = MOP1 ( i ) . int32 ( ) >> ( sop2 [ i ] & 0xf ) ;
    z ( i , i ) = cc\_get\_Z ( MRES ( i ) );
   n(i,i) = cc_get_N ( MRES (i) );
break ;
case MALU_OP_LSR : for ( i = 0 ; i < 9 ; i ++ ) {
   MRES ( i ) = ( sop1 [ i ] & 0xffff ) >> ( sop2 [ i ] & 0xf ) ;
    z ( i , i ) = cc\_get\_Z ( MRES ( i ) );
    n ( i , i ) = cc_get_N ( MRES ( i ) );
break ;
case MALU_OP_ASL : for ( i = 0 ; i < 9 ; i ++ ) {
    int32_t sres ;
    sres = sop1 [ i ] << ( sop2 [ i ] & 0xf );</pre>
    if ( sop1 [ i ] < 0 ) {
       MRES ( i ) = 0x20000 | ( ( sres & 0x7fff0000 ) == 0x7fff0000 ) ? 0x10000 : 0 ) | ( sre
    } else {
       MRES ( i ) = ( ( sres & 0x7fff0000 ) == 0 ) ? 0 : 0x10000 ) | ( sres & 0xffff ) ;
    z ( i , i ) = cc_get_Z ( MRES ( i ) ) ;
    n ( i , i ) = cc_get_N ( MRES ( i ) );
break ;
case MALU_OP_CLZ : for ( i = 0 ; i < 9 ; i ++ ) {
    int m ;
    m = 0;
    while ( m < 16 \&\& ( ( sop1 [ i ] & 0x8000 ) == 0 ) ) {
       ++ m ;
        sop1 [ i ] <<= 1 ;
    if ( m == 16 ) m == 0xfff0;
   MRES (i) = m;
    z ( i , i ) = cc\_get\_Z ( MRES ( i ) ) ;
    n ( i , i ) = cc_get_N ( MRES ( i ) );
}
```

```
break ;
     default : for ( i = 0 ; i < 9 ; i ++ ) {
        MRES ( i ) = MOP2 ( i ) ;
    break ;
 I_MFLAG_Z = z;
 I_MFLAG_N = n ;
 I_MFLAG_C = c ;
 I_MFLAG_O = o ;
 for (i = 0; i < 9; i ++) {
    if ( CONFALU . SAT == 1 ) {
        if ( CONFALU . SGN == 1 ) {
            if ( MRES ( i ) . int32 ( ) < ( - 0x8000 ) ) {
                MSAT ( i ) = ( -0x8000 );
            \} else if ( MRES ( i ) . int32 ( ) > ( 0x7FFF ) ) \{
                MSAT ( i ) = ( 0x7FFF );
            } else {
                MSAT (i) = (MRES (i)) (15, 0);
            }
        } else {
            if ( MRES ( i ) . int32 ( ) < ( 0x0000 ) ) {
                MSAT ( i ) = ( 0 \times 0000 );
            } else if ( MRES ( i ) . uint32 ( ) > ( 0xFFFF ) ) {
               MSAT (i) = (0xFFFF);
            } else {
                MSAT ( i ) = ( MRES ( i ) ) ( 15 , 0 ) ;
        }
    } else {
        MSAT (i) = (MRES (i)) (15, 0);
}
}
```

The code above uses the following routines (directly or indirectly): cc_get_C , cc_get_N , cc_get_O , cc_get_Z

1.6.8 maskalu

```
void\ {\tt maskalu\_op\_t\ maskalu\_op} , bits < 2 > idx1 , bits < 16 > op2 ) {
   int i ;
  MASKOP1 ( idx1 ) = 0 ;
  MASKOP2 = op2 ;
   switch ( maskalu_op ) {
      case MASKALU_OP_SEL : for ( i = 0 ; i < 9 ; i ++ ) {
          MASKRES (i) = (MASKOP1 (i) == MASKOP2) ? NHOOD (i) : 0;
       case MASKALU_OP_INV : for ( i = 0 ; i < 9 ; i ++ ) {
          MASKRES ( i ) = ( MASKOP1 ( i ) == 0 ) ? NHOOD ( i ) : 0 ;
       case MASKALU_OP_THR : for ( i = 0 ; i < 9 ; i ++ ) {
          MASKRES ( i ) = ( MASKOP1 ( i ) . uint32 ( ) >= MASKOP2 . uint32 ( ) ) ? NHOOD ( i ) : 0 ;
       case MASKALU_OP_ITH : for ( i = 0 ; i < 9 ; i ++ ) {
          MASKRES ( i ) = ( MASKOP1 ( i ) . uint32 ( ) <= MASKOP2 . uint32 ( ) ) ? NHOOD ( i ) : 0 ;
       case MASKALU_OP_AND : for ( i = 0 ; i < 9 ; i ++ ) {
          MASKRES ( i ) = ( MASKOP1 ( i ) != 0 ) ? MASKOP2 ( i ) : 0 ;
       default : for ( i = 0 ; i < 9 ; i ++ ) {
          MASKRES ( i ) = MASKOP2 ( i ) ;
      break ;
  }
```

1.6.9 salu

```
void salu ( salu_op_t alu_op , sbits < 16 > op1 , sbits < 16 > op2 ) {
   int32_t sop1 , sop2 , sres ;
```

```
if ( CONFALU . SGN == 1 ) {
    sop1 = op1 . int32 ( ) ;
    sop2 = op2 . int32 ( );
} else {
    sop1 = op1 . uint32 ( ) ;
    sop2 = op2 . uint32 ( ) ;
OP1 = op1 ;
OP2 = op2 ;
switch ( alu_op ) {
    case SALU_OP_MOV : RES = sop2 ;
    break :
    case SALU_OP_ADD : RES = sop1 + sop2 ;
    salu_cc_set_NZCO ( alu_op , RES , OP1 , OP2 ) ;
    break ;
    case SALU_OP_SUB : RES = sop1 - sop2 ;
    salu_cc_set_NZCO ( alu_op , RES , OP1 , OP2 ) ;
    break ;
    case SALU_OP_ABSDIFF : RES = ( sop1 > sop2 ) ? ( sop1 - sop2 ) : ( sop2 - sop1 ) ;
    salu_cc_set_NZ ( RES ) ;
    break ;
    case SALU_OP_MULH : {
        int sign = 0 ;
         int shr ;
        shr = CONFALU . SHR . uint32 ( );
        sres = sop1 * sop2 ;
if ( CONFALU . SGN == 1 ) {
           RES32 = sres >> shr ;
        } else {
            RES32 = ( ( unsigned int ) sres ) >> shr ;
        if ( ( sop1 != 0 ) && ( sop2 != 0 ) ) {
            if ( sop1 < 0 ) sign ++ ;
            if ( sop2 < 0 ) sign ++ ;
        if ( sign == 1 ) {
            RES = concat ( ( bits < 1 > ) 1 , ( RES32 ( 30 , 16 ) . uint32 ( ) == 0x7fff ) ? ( bit
        } else {
            if ( CONFALU . SGN == 1 ) {
                RES = concat ( ( bits < 1 > ) 0 , ( RES32 ( 30 , 16 ) . uint32 ( ) == 0 ) ? ( bits
            } else {
                RES = concat ( ( bits < 1 > ) 0 , ( RES32 ( 31 , 16 ) . uint32 ( ) == 0 ) ? ( bits
            }
        }
    case SALU_OP_MULL : RES32 = sop1 * sop2 ;
    RES = RES32 ( 15 , 0 ) ;
    break ;
    case SALU_OP_AND : RES = sop1 & sop2 ;
    salu_cc_set_NZ ( RES ) ;
    break ;
    case SALU_OP_OR : RES = sop1 | sop2 ;
    salu_cc_set_NZ ( RES ) ;
    break ;
    case SALU_OP_XOR : RES = sop1 ^ sop2 ;
    salu_cc_set_NZ ( RES ) ;
    break ;
    case SALU_OP_MIN : RES = ( sop1 < sop2 ) ? sop1 : sop2 ;</pre>
    salu_cc_set_NZ ( RES ) ;
    break ;
    case SALU_OP_MAX : RES = ( sop1 > sop2 ) ? sop1 : sop2 ;
    salu_cc_set_NZ ( RES ) ;
    case SALU_OP_ASR : RES = op1 . int32 ( ) >> ( sop2 \& 0xf ) ;
    salu_cc_set_NZ ( RES ) ;
    case SALU_OP_LSR : RES = ( sopl & Oxffff ) >> ( sop2 & Oxf ) ;
    salu_cc_set_NZ ( RES ) ;
    break ;
    case SALU_OP_ASL : RES32 = sop1 << ( sop2 & 0xf ) ;
    if ( sop1 < 0 ) {
        RES = concat ( ( bits < 1 > ) 1 , ( RES32 ( 30 , 16 ) . uint32 (  ) == 0x7fff ) ? ( bits <
       RES = concat ( ( bits < 1 > ) 0 , ( RES32 ( 30 , 16 ) . uint32 ( ) == 0 ) ? ( bits < 1 >
    salu_cc_set_NZ ( RES ) ;
    case SALU_OP_CLZ : int m = 0 ;
    while ( m < 16 && ( ( sop2 & 0x8000 ) == 0 ) ) \{
        ++ m ;
        sop2 <<= 1 ;
    }
```

```
if ( m == 16 ) m = 0 \times fff0;
    RES = m ;
    salu_cc_set_NZ ( RES ) ;
    break ;
if ( CONFALU . SAT == 1 ) {
    if ( CONFALU . SGN == 1 ) {
        if ( RES . int32 ( ) < ( - 0x8000 ) ) {
            SAT = ( - 0x8000 ) ;
        } else if ( RES . int32 ( ) > ( 0x7FFF ) ) {}
           SAT = (0x7FFF);
        } else {
            SAT = RES (15, 0);
        }
    } else {
       if ( RES . int32 ( ) < ( 0x0000 ) ) {
            SAT = (0x0000);
        } else if ( RES . uint32 ( ) > ( 0xFFFF ) ) {
           SAT = ( 0xFFFF ) ;
        } else {
            SAT = RES ( 15 , 0 ) ;
    }
} else {
    SAT = RES ( 15 , 0 ) ;
```

The code above uses the following routines (directly or indirectly): salu_cc_set_NZ, salu_cc_set_NZCO

1.6.10 salu_cc_set_NZ

```
void salu_cc_set_NZ ( sbits < 16 > res ) {
}
```

1.6.11 salu_cc_set_NZCO

```
void \ salu\_cc\_set\_NZCO \ ( \ salu\_op\_t \ alu\_op \ , \ sbits < 16 > res \ , \ sbits < 16 > op1 \ , \ sbits < 16 > op2 \ ) \ \{
```

1.6.12 StartLine

```
void StartLine ( ) {
   if ( I_BUFFERED == 0 ) return ;
   if ( I_RUN == 1 ) return ;
  I_RUN = 1;
   I_BUFFERED = 0 ;
   {
       int start = I_START . NEXT . uint32 ( );
      NIA = start ;
      I_START . CURR = start ;
  H_CURRXCFG = H_XCFG ;
  i_inacfg . currcfg = i_inacfg . nextcfg ;
   I_INBCFG . CURRCFG = I_INBCFG . NEXTCFG ;
  i_inalcfg . currcfg = i_inalcfg . nextcfg ;
  I_OUTCFG . CURRCFG = I_OUTCFG . NEXTCFG ;
  XPOS = H_POS ( 31 , 16 ) ;
  YPOS = H_POS (15, 0);
  StreamDMAStartLine ( );
  LOCK = -1;
  MASKV = -1;
```

The code above uses the following routines (directly or indirectly): StreamDMAStartLine

1.6.13 StreamDMAStartLine

```
void StreamDMAStartLine ( ) {
   int i ;
```

```
for (i = 0; i < 3; i ++) {
    S_CURRCHCFG_INA ( i ) = S_CHCFG_INA ( i ) ;
 for ( i = 0 ; i < 3 ; i ++ ) {
    S_CURRCHCFG_INB ( i ) = S_CHCFG_INB ( i ) ;
 for (i = 0; i < 3; i ++)
    S_CURRCHCFG_INAL ( i ) = S_CHCFG_INAL ( i ) ;
 for ( i = 0 ; i < 3 ; i ++ ) {
    S_CURRLINE_PTR_INA ( i ) = S_LINE_PTR_INA ( i );
 for (i = 0; i < 3; i ++)
    S_CURRLINE_PTR_INB ( i ) = S_LINE_PTR_INB ( i );
 for ( i = 0 ; i < 3 ; i ++ ) {
    S_CURRLINE_PTR_INAL ( i ) = S_LINE_PTR_INAL ( i ) ;
 for ( i = 0 ; i < 3 ; i ++ ) {
    S_CURRLINELEN_INA ( i ) = S_LINELEN_INA ( i );
 for ( i = 0 ; i < 3 ; i ++ ) {
    S_CURRLINELEN_INB ( i ) = S_LINELEN_INB ( i ) ;
 for (i = 0; i < 3; i ++)
    S_CURRLINELEN_INAL ( i ) = S_LINELEN_INAL ( i ) ;
 for (i = 0; i < 3; i ++) {
    I_RPTCNT_INA ( i ) = S_CURRCHCFG_INA ( i ) ( 19 , 18 ) ;
 for (i = 0; i < 3; i ++) {
    I_RPTCNT_INB ( i ) = S_CURRCHCFG_INB ( i ) ( 19 , 18 ) ;
 for (i = 0; i < 3; i ++) {
    I_RPTCNT_INAL ( i ) = S_CURRCHCFG_INAL ( i ) ( 19 , 18 ) ;
 for ( i = 0 ; i < 3 ; i ++ ) {
    I_POS_INA ( i ) = 0 - S_CURRCHCFG_INA ( i ) ( 26 , 24 ) ;
 for (i = 0; i < 3; i ++) {
    I_POS_INB ( i ) = 0 - S_CURRCHCFG_INB ( i ) ( 26 , 24 ) ;
 for ( i = 0 ; i < 3 ; i ++ ) {
    I_POS_INAL ( i ) = 0 - S_CURRCHCFG_INAL ( i ) ( 26 , 24 ) ;
 for ( i = 0 ; i < 4 ; i ++ ) {
    S_CURRCHCFG_OUT ( i ) = S_CHCFG_OUT ( i );
 for (i = 0; i < 4; i ++) {
    S_CURRLINE_PTR_OUT ( i ) = S_LINE_PTR_OUT ( i );
 for ( i = 0 ; i < 4 ; i ++ ) {
    S_CURRLINELEN_OUT ( i ) = S_LINELEN_OUT ( i ) ;
 for ( i = 0 ; i < 4 ; i ++ ) {
    I_POS_OUT ( i ) = 0 ;
 for ( i = 0 ; i < 4 ; i ++ ) {
    I\_SKIPCNT\_OUT ( i ) = 0 ;
}
```

View document source. Generated on: 2018/02/23 20:29:41 CET. Generated by prest release 0.3.40 from reStructuredText source.