한국의 COVID-19 추이

최근 코로나 백신 보급이 이루어지고 있습니다. 이런 상황에서 코로나가 어느정도로 확산됐는지, 또 백신 보급 상황이 궁긍했습니다.

코로나 관련 데이터 셋을 모아 시각화 하고 분석해보았습니다.

Overview

- 1. 서울 자치구별 확진자 분석
- 2. 백신 보급 추이와 전망
- 3. 2학기 대면수업 안전할까?

```
In [2]:
# 필요한 라이브러리 한번에 임포트
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# plot 스타일을 미리 정의해놓은 패키지
import seaborn as sns
import squarify
# 한글 폰트
plt.rcParams['font.family'] = 'AppleGothic'
```

1. 서울 자치구별 확진자 분석

공통으로 사용할 데이터 읽어오고 처리(코로나 지역별 확진자 수)

```
In [5]:
# 필요한 데이터 임포트
covid_seoul_region_df = pd.read_csv('covid_seoul_region.csv', index_col=0, end
# 필터링
mask = covid_seoul_region_df.index != '20'
covid_seoul_region_df = covid_seoul_region_df.loc[mask, :]

# 불필요한 '수집일' 열 제거
covid_seoul_region_df = covid_seoul_region_df.drop('수집일', axis=1)

covid_seoul_region_total_df = covid_seoul_region_df.T[covid_seoul_region_df.T
covid_seoul_region_today_df = covid_seoul_region_df.T[covid_seoul_region_df.T
```

1-1 자치구 일자별 누적 확진자

자 치 구 기 준 일	2021.06.13.00	2021.06.12.00	2021.06.11.00	2021.06.10.00	2021.06.09.00	2021.06.08.00
종 로 구 전 체	781.0	780.0	778.0	774.0	769.0	768.0
중 구 전 체	704.0	703.0	700.0	692.0	687.0	688.0
용 산 구 전 체	1251.0	1245.0	1238.0	1224.0	1213.0	1203.0
성 동 구 전 체	1270.0	1266.0	1257.0	1254.0	1248.0	1243.0
광 진 구 전 체	1522.0	1516.0	1506.0	1501.0	1495.0	1491.0
동 대 문 구 전 체	1717.0	1703.0	1693.0	1683.0	1677.0	1674.0
중 랑 구 전 체	2063.0	2060.0	2056.0	2054.0	2048.0	2044.0
성 북 구 전 체	1929.0	1925.0	1920.0	1909.0	1904.0	1902.0
강 북 구 전 체	1347.0	1343.0	1332.0	1319.0	1313.0	1314.0
도 봉 구 전 체	1441.0	1437.0	1436.0	1434.0	1430.0	1426.0

자 치 구 기 준 일	2021.06.13.00	2021.06.12.00	2021.06.11.00	2021.06.10.00	2021.06.09.00	2021.06.08.00
노 원 구 전 체	2145.0	2139.0	2128.0	2119.0	2112.0	2107.0
은 평 구 전 체	2005.0	2000.0	1993.0	1985.0	1979.0	1968.0
서 대 문 구 천 체	1175.0	1165.0	1157.0	1151.0	1143.0	1140.0
마 포 구 전 체	1475.0	1468.0	1461.0	1454.0	1451.0	1441.0
양 천 구 전 체	1616.0	1611.0	1602.0	1591.0	1588.0	1583.0
강 서 구 전 체	2250.0	2249.0	2244.0	2243.0	2234.0	2229.0
구 로 구 전 체	1543.0	1540.0	1536.0	1528.0	1522.0	1518.0
금 천 구 전 체	774.0	769.0	765.0	763.0	761.0	758.0
영 등 포 구 전 체	1721.0	1715.0	1711.0	1705.0	1693.0	1677.0
동 작 구 전 체	1937.0	1932.0	1926.0	1924.0	1913.0	1905.0

자 치 기 준 일	2021.06.13.00	2021.06.12.00	2021.06.11.00	2021.06.10.00	2021.06.09.00	2021.06.08.00
관 악 구 전 체	2128.0	2126.0	2107.0	2097.0	2092.0	2084.0
서 초 구 전 체	1994.0	1985.0	1973.0	1965.0	1950.0	1939.0
강 남 구 전 체	2728.0	2701.0	2684.0	2660.0	2628.0	2602.0
송 파 구 전 체	2804.0	2783.0	2769.0	2758.0	2744.0	2730.0
강 동 구 전 체	1868.0	1863.0	1858.0	1848.0	1841.0	1835.0
기 타 전 체	4290.0	4278.0	4266.0	4257.0	4244.0	4228.0

26 rows × 473 columns

1-2 자치구 일자별 일일 확진자

In [11]:	cc	covid_seoul_region_today_df						
Out[11]:	자 치 구 기 준 일	2021.06.13.00	2021.06.12.00	2021.06.11.00	2021.06.10.00	2021.06.09.00	2021.06.08.00	
	종 로 구 추 가	1.0	2.0	4.0	5.0	1.0	1.0	
	중 구 추 가	1.0	2.0	8.0	5.0	2.0	2.0	

자 치 구 기 준 일 용산 구 추 가	2021.06.13.00	2021.06.12.00	2021.06.11.00	2021.06.10.00	2021.06.09.00	2021.06.08.00
용 산 구 추 가	6.0	8.0	14.0	11.0	10.0	9.0
성 동 구 추 가	4.0	9.0	3.0	6.0	5.0	4.0
광 진 구 추 가	6.0	10.0	5.0	6.0	4.0	5.0
동 대 문 구 추 가	14.0	10.0	10.0	6.0	3.0	2.0
중 랑 구 추 가	3.0	4.0	2.0	6.0	3.0	4.0
성 북 구 추 가	4.0	5.0	11.0	5.0	2.0	8.0
강 북 구 추 가	4.0	11.0	13.0	6.0	0.0	3.0
도 봉 구 추 가	4.0	1.0	2.0	4.0	3.0	2.0
노 원 구 추 가	6.0	11.0	9.0	7.0	5.0	5.0
은 평 구 추 가	5.0	7.0	8.0	6.0	11.0	4.0

자 치 기 준 일	2021.06.13.00	2021.06.12.00	2021.06.11.00	2021.06.10.00	2021.06.09.00	2021.06.08.00
서 대문구추가	10.0	8.0	6.0	8.0	3.0	1.0
마 포 구 추 가	7.0	7.0	7.0	3.0	10.0	5.0
양 천 구 추 가	5.0	9.0	11.0	3.0	5.0	5.0
강 서 구 추 가	1.0	5.0	1.0	9.0	5.0	7.0
구 로 구 추 가	3.0	3.0	8.0	6.0	4.0	6.0
금 천 구 차 가	5.0	4.0	2.0	2.0	3.0	4.0
영 등 포 구 추 가	6.0	4.0	6.0	12.0	16.0	8.0
동 작 구 추 가	5.0	6.0	2.0	11.0	8.0	4.0
관 악 구 추 가	3.0	19.0	10.0	5.0	8.0	3.0
서 추 구 추 가	9.0	12.0	8.0	15.0	11.0	9.0

자 치 구 기 준 일	2021.06.13.00	2021.06.12.00	2021.06.11.00	2021.06.10.00	2021.06.09.00	2021.06.08.00
강 남 구 추 가	27.0	18.0	24.0	32.0	26.0	14.0
송 파 구 추 가	19.0	14.0	11.0	15.0	14.0	9.0
강 동 구 추 가	5.0	5.0	10.0	7.0	6.0	10.0
기 타 추 가	13.0	14.0	9.0	12.0	15.0	5.0

26 rows × 473 columns

1-3 Treemap 을 이용해 확진자 시각화

서울 모든 구 확진자 수를 한눈에 볼 수 있도록 트리맵을 사용해서 살펴봤습니다.

트리맵은 한정된 공간에서 많은 수의 항목을 동시에 표시할 때 주로 사용하는데, 덕분에 서울의 모든 구를 한눈에 볼 수 있었습니다.

전처리

시각화

```
In [18]:
# Draw Plot
plt.figure(figsize=(12,8), dpi= 80)
squarify.plot(sizes=sizes, label=labels, color=colors, alpha=.8)
# Decorate
plt.title('코로나 발생자 수 지역 별 분석')
```

Out[18]: Text(0.5, 1.0, '코로나 발생자 수 지역 별 분석')

코로나 발생자 수 지역 별 분석

분석 결과

- 송파구, 강남구, 관악구, 서초구, 강서구에 확진자가 많이 발생했다.
- 종로구, 중구, 용산구, 성동구, 금천구 관진구에 확진자가 적게 발생했다.

1-4 누적 확진자가 많은 자치구, 적은 자치구 확인

전처리

```
In [17]:

totalCounts = covid_seoul_region_total_df.iloc[:,0]
totalCounts = totalCounts.sort_values(axis=0, ascending=False)
totalCounts = totalCounts.drop("기타 전체")

# 확진자 많은 지역 5개
highIncidence = totalCounts.iloc[0: 5]

# 확진자 적은 지역 5개
lowIncidence = totalCounts.iloc[-5: ]
highIncidence
```

```
Out[17]: 송파구 전체 2804.0
강남구 전체 2728.0
강서구 전체 2250.0
노원구 전체 2145.0
관악구 전체 2128.0
Name: 2021.06.13.00, dtype: float64
```

시각화

```
In [16]:
f,ax=plt.subplots(1,2,figsize=(18,8))
ax[0].set_title('서울에서 코로나 누적 확진자가 많은 5 구역')
```

```
ax[0].vlines(x=highIncidence.index, ymin=0, ymax=highIncidence.values, color=ax[0].set_ylim([0, highIncidence.values.max()+ highIncidence.values.max() / 9 for i, value in enumerate(highIncidence.values):
    ax[0].text(i, value+0.5, str(round(value, 1)) + "명", horizontalalignment=
ax[1].set_title('서울에서 코로나 누적 확진자가 적은 5 구역')
ax[1].vlines(x=lowIncidence.index, ymin=0, ymax=lowIncidence.values, color='fax[1].set_ylim([0, highIncidence.values.max() + highIncidence.values.max() / for i, value in enumerate(lowIncidence.values):
    ax[1].text(i, value+0.5, str(round(value, 1)) + "명", horizontalalignment=
plt.show()
```


분석 결과

- 1. 용산구, 서대문구, 종로구, 금천구, 중구는 자치구에서 거주자 수가 적은편에 속함.
- 2. 송파구, 강남구, 강서구, 노원구, 관악구는 자치구에서 거주자 수가 많은편에 속함.
- 3. 주거 인구가 많은 지역일수록 상위권에 있고, 그 반대이면 하위권에 위치함을 알 수 있음.

참고 - 출처 - 위키피디아 서울 구역별 인구수

(https://ko.wikipedia.org/wiki/%EC%84%9C%EC%9A%B8%ED%8A%B9%EB%B3%84%EC%8B%S

1-5 최근 확진자가 많이 발생한 자치구, 적게 발생한 자치구 확인

```
In [7]:
dayCounts = covid_seoul_region_today_df.iloc[:,0]
dayCounts = dayCounts.sort_values(axis=0, ascending=False)

# 확진자 많은 지역 5개
highIncidence = dayCounts.iloc[0: 5]

# 확진자 적은 지역 5개
lowIncidence = dayCounts.iloc[-5: ]

f,ax=plt.subplots(1,2,figsize=(18,8))
ax[0].set_title('서울에서 2021.06.13.00 코로나 확진자가 많은 5 구역')
ax[0].vlines(x=highIncidence.index, ymin=0, ymax=highIncidence.values, color=ax[0].set_ylim([0, highIncidence.values.max()+ highIncidence.values.max() / 9
for i, value in enumerate(highIncidence.values):
    ax[0].text(i, value+0.5, str(round(value, 1)) + "명", horizontalalignment=ax[1].set_title('서울에서 2021.06.13.00 코로나 확진자가 적은 5 구역')
```

ax[1].vlines(x=lowIncidence.index, ymin=0, ymax=lowIncidence.values, color='f
ax[1].set_ylim([0, highIncidence.values.max() + highIncidence.values.max() /
for i, value in enumerate(lowIncidence.values):
 ax[1].text(i, value+0.5, str(round(value, 1)) + "B", horizontalalignment=
plt.show()

다이 아닌저조기, 아닌저조 ㄴ

분석 결과

최근 유동인구가 많은 강남구, 송파구, 동대문구와 같은 서울 동쪽 지역의 확진자가 많았음.

1-6 최종 분석

- 1. 주거 인구와 확진자 수는 비례한다.
- 2. 최근 유동인구가 많은 강남구, 송파구, 동대문구에 확진자가 많이 발생했다.

2. 백신 보급 추이와 전망 (최신 2021.06.12 데이터 기준)

2-1 최근 일자(2021.06.12) 백신 접종 추이

다이 4 단저조기 4 단저조 ㄴ

In [22]:

필요한 데이터 임포트

covid_vaccine_dataset_df = pd.read_csv('covid_vaccine_dataset.csv', index_cole

covid_vaccine_dataset_df.head()

Out[22]:

	접종대상자	당일 1자집공사 수	1자십옹 두 계	1자십 옹 뮬 (%)	당일 2자접공사 수	2자십종 두 계	2자십 옹 뮬 (%)	
접종일								
2021.06.12	3364288	82931	2157602	64.1	28724	533379	15.9	
2021.06.11	3353331	165265	2070561	61.7	55544	504526	15.0	
2021.06.10	3338670	148732	1900981	56.9	68440	448684	13.4	
2021.06.09	3102614	104841	1746392	56.2	3076	380200	12.3	
2021.06.08	3034302	131465	1636992	53.9	4672	377030	12.4	

스타지즈크

2-2 국민 중 몇프로나 백신 접종이 이루어 졌는지 확인

전처리

```
todayVaccine = covid_vaccine_dataset_df.iloc[:1].T
todayVaccine

# Prepare Data
primaryTotalLabel = '1차접종 누계'
secondaryTotalLabel = '2차접종 누계'

# 출처 구글: 세계은행 https://www.google.com/search?q=%EB%8C%80%ED%95%9C%EB%AF%BC%
totalPopulationSouthKorea = 51710000

primaryTotal = todayVaccine.loc[primaryTotalLabel].values[0]
secondaryTotal = todayVaccine.loc[secondaryTotalLabel].values[0]

categories = [primaryTotalLabel, '1차 + 2차접종 완료 누계', '미접종자 국민']
data = [primaryTotal - secondaryTotal, secondaryTotal, totalPopulationSouthKortodayVaccine
```

Out[23]:접종일2021.06.12접종대상자3364288.0당일 1차접종자 수82931.01차접종 누계2157602.01차접종률(%)64.1당일 2차접종자 수28724.02차접종 누계533379.0

2차접종률(%)

15.9

시각화

```
In [24]:
          # Draw Plot
          fig, ax = plt.subplots(figsize=(12, 7), subplot kw=dict(aspect="equal"), dpi=
          explode = [0,0,0]
          def func(pct, allvals):
              absolute = int(pct/100.*np.sum(allvals))
              return "{:.1f}% ({:d} )".format(pct, absolute)
          wedges, texts, autotexts = ax.pie(data,
                                            autopct=lambda pct: func(pct, data),
                                            textprops=dict(color="w"),
                                            colors=plt.cm.Dark2.colors,
                                            startangle=140,
                                            explode=explode)
          # Decoration
          ax.legend(wedges, categories, title="항목", loc="center left", bbox_to_anchor=
          plt.setp(autotexts, size=10, weight=700)
          ax.set_title("백신 접종률 추이")
          plt.show()
```

백신 접종률 추이

분석

- 1. 백신을 1번이라도 접종한 인구는 전체 인구의 4.1%(1차 or 1차 + 2차 인구 합) 뿐임.
- 2. 전국민의 95.8% 는 아직 1차 접종조차 맞지 못함.
- 3. 억지스러운 계산이지만 107일 동안 4.1% 접종이 이루어짐.(첫 접종은 2021년 2월 26일 일, 2021년2월26일 부터 2021년6월13일 까지의 일수는 107)

2-3 언제쯤 전국민이 백신 접종을 받을 수 있을까? 크리스마스 백신 접종률 예측

```
In [27]:
                                vaccineData = covid vaccine dataset df.iloc[:5].T
                                todayIncidenceVaccineData = vaccineData.loc['당일 1차접종자 수']
                                todayIncidenceVaccineData = todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVaccineData.reindex(index=todayIncidenceVacc
                                countTotals = vaccineData.loc['1차접종 누계']
                                countTotals = countTotals.reindex(index=countTotals.index[::-1])
                                avgidenceVaccine = (countTotals.values[countTotals.size-1] - countTotals.value
                                avgidenceVaccine
                                from datetime import datetime, timedelta
                                nowDate = datetime(2021, 6, 13, 0, 0, 0) # datetime.now()
                                christmas = datetime(2021, 12, 25, 0, 0, 0)
                                def getVitualDataByDate(total, avgidenceVaccine, fromDate, days):
                                             return pd.Series(total + (avgidenceVaccine * days),index=[(nowDate + time
                                vitualCountTotals = countTotals.append(getVitualDataByDate(countTotals[countTotals]
                                vitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTotals)
                                vitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTotals)
```

```
vitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTovitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTovitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTovitualCountTovitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTovitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTovitualCountTovitualCountTotals = vitualCountTotals.append(getVitualDataByDate(vitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitualCountTovitu
```

최근 5일 동안 하루 평균 접종 인구: 104122

시각화

```
In [28]:
          # Draw plot
          fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
          ax.vlines(x=vitualCountTotals.index, ymin=0, ymax=vitualCountTotals.values, c
          ax.scatter(x=vitualCountTotals.index, y=vitualCountTotals.values, s=75, color
          # Title, Label, Ticks and Ylim
          ax.set title('크리스마스 백신 접종률 예측', fontdict={'size':22})
          ax.set ylabel('접종자(단위:천만명)')
          # 전국민 숫자를 가로선으로 긋는다.
         plt.axhline(y=totalPopulationSouthKorea, color='r', linewidth=1)
          ax.set xticks(vitualCountTotals.index)
         ax.set xticklabels(vitualCountTotals.index, rotation=60, fontdict={'horizonta
          # 만약 전국민 접종이 1번 이상 이뤄졌으면 최대치를 최대 접종에 맞춤
          if (vitualCountTotals[vitualCountTotals.size-1] > totalPopulationSouthKorea):
              ax.set ylim(0, vitualCountTotals[vitualCountTotals.size-1] + vitualCountTo
          else:
             ax.set ylim(0, 60000000)
         plt.show()
```


분석

1. 11월 정도 되어야 1차 접종이 완료될 것으로 예상됨(최근 5일 접종 속도 기준)

3. 2학기 대면수업 안전할까?

상위 분석들을 토대로 결과를 도출해봤습니다. 재미로 봐주시면 감사하겠습니다!

3-1 현재 긍정적인 요소와 부정적인 요소

긍정적인 요소

- 1. 누적 확진자만 보면 학교 근처 지역은 확진자가 적다. (가치 없음)
- 2. 정말 단순하게 최근 백신 접종 속도만 보면 12월 10일 쯔음에는 국민 대부분 접종 가능 할 것 같음

부정적인 요소

- 1. 2021.06.13.00 확진자만 보면 학교 근처 지역의 확진자가 많다. (동대문, 서대문)
- 2. 12월 전국민 백신 접종이 완료되어도 2차 접종까지는 시간이 좀 걸릴 수 있음.

3-2 결론

- 1. 자치구별 코로나 확진자는 거주자 인구수에 비례하는 경향이 있음
- 2. 주말에는 유동 인구가 많은 지역에 확진자가 많이 발생함
- 3. 현재 백신을 1번이라도 접종한 인구는 4.1%(1차 or 1차 + 2차 인구 합)뿐임
- 4. 지금의 백신 접종 속도를 기준(최근 5일)으로 11월은 되어야 전국민 1차 접종을 마칠 수 있을 것 같음

내 의견

백신 접종률 증가에 따라 확진자 수가 줄어들 것으로 보이나, 2학기 전면 대면은 섯부른 것이 아닌가 싶음. (유동 인구의 증가)

즉 백신을 국내에서 자체 생산하여 접종 속도가 증가하거나, 정치적인 변수가 생기지 않는한 2학기 까지는 위험한 시기라고 생각된다.