

Agenda

From theory to practice of teaching

- Computational and mathematical thinking
 - What is the relation and how can CT and programming support MT?
- A "CT aware" course on programming for math teacher students
- Reflections

CT an overview

- Shute et al. (2017) summarizes Wing:
 - 1. Problem reformulation
 - 2. Recursion Construct a system incrementally
 - 3. Problem decomposition Break the problem down into manageable units.
 - 4. Abstraction Model the core aspects of complex problems or systems.
 - 5. Systematic **testing** Take purposeful actions to derive solutions."
- There are obvious connections e.g. to modelling (Wing, Blum/Leiss, Wolfram)

- Selby & Woollard (2013) define CT as cognitive though process:
 - 1. the ability to think in abstractions,
 - 2. the ability to think in terms of decomposition,
 - 3. the ability to think algorithmically,
 - 4. the ability to think in terms of evaluations, and
 - 5. the ability to think in generalizations.

The relation

• Sneider et al. (2014) summarize the relation regarding content as follows:

The relation

• Knuth (1985!) looks at processes

	Formula manipulation	Representation of reality	Behavior of function values	Reduction to simpler problems	Dealing with infinity	Generalization	Abstract reasoning	Information structures	Algorithms
1 (Thomas)	xx	xx	xx						
2 (Lavrent'ev)	xx		x		xx				
3 (Kelley)	x					xx	xx		
4 (Euler)	xx		xx	x		xx			x
5 (Zariski)	x			x	xx	x	xx	xx	
6 (Kleene)	x					xx	xx		x
7 (Knuth)	xx	x		x					
8 (Pólya)	xx		xx	xx	xx				
9 (Bishop)	xx		xx	xx		x	xx	xx	x

The relation

Weintorp et al. (2016) structure CT in math and science as follows:

Data Practices

Collecting Data

Creating Data

Manipulating Data

Analyzing Data

Visualizing Data

Modeling & Simulation Practices

Using Computational Models to Understand a Concept

Using Computational Models to Find and Test Solutions

Assessing Computational Models

Designing Computational Models

Constructing Computational Models

Computational Problem Solving Practices

Preparing Problems for Computational Solutions

Programming

Choosing Effective Computational Tools

Assessing Different Approaches/Solutions to a Problem

Developing Modular Computational Solutions

Creating Computational Abstractions

Troubleshooting and Debugging

Systems Thinking Practices

Investigating a Complex System as a Whole

Understanding the Relationships within a System

Thinking in Levels

Communicating Information about a System

Defining Systems and Managing Complexity

This widely underestimates the mutual relation of CS and Math!

- Programming helps students understand algebra
 - Evaluating expressions: Tall & Thomas (1991)
 - Bootstrap Algebra: Lee (2013), Schanzer et al. (2018)
 - Although: Bridge needs attention (e.g. Sutherland, 1989)
- Mathematical expressions are (small, functional) programs!
- Computers model math (e.g. Bundy 1986)
- Programming language notation can enhance precision formal presentation of math! (Sussman & Wisdom, 2000) cite Spivak (1965)

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}.$$

Note that f means something different on the two sides of the equation!

This widely undere

- Mathematical expre
- Programming helps
 - Evaluating expression
 - Bootstrap Algebra: I
 - Although: Bridge ne
- Computers model n
- Programming langumath! (Sussman & \

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial u}{\partial z}$$

Note that f means so

The free particle

Consider again the case of a free particle. The Lagrangian is implemented by the procedure L-free-particle. Rather than numerically integrating and minimizing the action, as we did in section 1.4, we can check Lagrange's equations for an arbitrary straight-line path $t \mapsto (at + a_0, bt + b_0, ct + c_0)$

That the residuals are zero indicates that the test-path satisfies the Lagrange equations.⁵⁹

Instead of checking the equations for an individual path in three-dimensional space, we can also apply the Lagrange-equations procedure to an arbitrary function:⁶⁰

```
(show-expression
  (((Lagrange-equations (L-free-particle 'm))
      (literal-function 'x))
   't))
(* (((expt D 2) x) t) m)
```

Recipes, programs, typed expressions, and proofs

- Consider the following four situations:
 - A recipe defines a sequence of activities. If the ingredients are good, the end result is a certain product (e.g. a cake) of a certain quality.
 - A program is a sequence of commands. If the inputs make sense, it determines a meaningful output.
 - A term is a composition of sub-terms, and if the parts have certain types, then so does the result. For example, if x is a real number, then $\sqrt{1+x^2}$ is of type "nonnegative real number".
 - A proof is a sequence of deductions. If the hypotheses are true, then the proven statement is also true.
- In fact: Recipes ⊂ programs = typed expressions = proofs
- Example: Reasoning about programs and proving: If a: A and $f: A \to B$, then conclude that f(a): BFrom A and $A \to B$, derive B
- Establishing $A \wedge B$ can be done by doing A and then doing B (sequence of operations)
- Curry-Howard correspondence: Programs in typed functional languages and proofs are the same in different syntax (Curry & Feys, 1958; Mimram, 2020)

Recipes, programs, typed expressions, and proofs

- Curry-Howard correspondence: Programs in typed functional languages and proofs are the same in different syntax
 - Programs/Expressions = Proofs
 - Types of Expressions = Propositions they prove
- Deep theory : Different logics
- Relevant for teaching? Yes: 0.2024
- A metaphor
 - Program = collection of instruction steps that manipulate the computer's working memory to produce a result
 - Proof = collection of derivation steps that manipulate the reader's brain (working memory) such that the final state is belief in the correctness of the proposition

Recipes, programs, typed expressions, and proofs

- Still: Is this important down to earth? Now: Joint Work with Michael Fischer
- Weber & Tanswell (2022): Proofs as recipes. An example:

Theorem 3.57 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

- [1] Proof. Suppose that (x_n) is a bounded sequence of real numbers.
- [2] Let $M = \sup_{n \in \mathbb{N}} x_n$, $m = \inf_{n \in \mathbb{N}} x_n$,
- [3] and define the closed interval $I_0 = [m, M]$.
- [4] Divide $I_0 = L_0 \cup R_0$ in half into two closed intervals, where $L_0 = [m, (m+M)/2]$, $R_0 = [(m+M)/2, M]$.
- [5] At least one of the intervals L_0 , R_0 contains infinitely many terms of the sequence, meaning that $x_n \in L_0$ or $x_n \in R_0$ for infinitely many $n \in N$ (even if the terms themselves are repeated).
 - [6] Choose I_1 to be one of the intervals L_0 , R_0 that contains infinitely many terms. and choose $n_1 \in \mathbb{N}$ such that $x_{n_1} \in I_1$.
 - [7] Divide $I_1 = L_1 \cup R_1$ in half into two closed intervals.
 - [8] One or both of the intervals L_1 , R_1 contains infinitely many terms ϵ
 - [9] Choose I_2 to be one of these intervals and choose $n_2 > n_1$ such that

. . .

There is computational content in proofs!

Note: The proof is not in executing, but in writing the recipe for execution!

Programs=Proofs in different syntax – This raises questions:

- Is MT=CT? I think: No. Difference in informal aspects, mental models
- Can CT help to improve especially proving skills?
 - Maybe: Nurlaelah et al. (2025): Improving mathematical proof based on computational thinking components for prospective teachers in abstract algebra courses

СТ	Proof			
Formalization / Specification	Axiomatization / Statement formulation			
Decomposition / Disassembly	Splitting proof into lemmas			
Abstraction / Parameterization	Generalization / Introducing variables /			
	Transition from example to general			
Precondition / Postcondition	Prerequisite / Conclusion			
Evaluation	Proof validation			
- Debugging	- Closing Gaps in Evidence			
Pattern recognition	Concept of Evidence			
- Design patterns	- Area-specific proof strategies			
Algorithmization	Proof steps (proof construction)			
a) Sequence A; B	a) Proof of $A \wedge B$			
b) Case split: if a then A else B	b) Proof of with indicator what has			
c) Transformation through functional	been provenA ∨ B			
application	c) Proof with modus ponens (implication)			
d) Recursion / Iteration	d) Proof by induction / succession			

The challenge

How can all this become effective in introductory programming courses?

- ... especially for teacher students!
- Honest answer:
- But here are the principles in my course on programming for teacher students
 - Reducing complexity for teaching: Subset of programming language
 - Using few but clearly defined concepts
 - Using variable roles (Ben-Ari & Sajaniemi, 2003) as low-level "design patterns"
 - Showing typical use cases; emphasize similarities math and programming
 - Emphasizing computability over performance (slow but transparent)
 - Genetic introduction of concepts
 - Emphasizing types (→ type theory) and using functions as first-class objs. (→ lambda)
 - Relevant applications: CT as part of empowerment
 - Intellectual challenges, e.g. limits of computability
 - Outlook: Showing the power of professional tools
- Practical considerations
 - Python (although Julia or Haskell are tempting) because its popular and friendly
 - JupyterLab-Notebooks: eases interactive experimentation, allows graphing

1 Computers compute

Using Jupyter notebook as advanced pocket calculator. E.g. 4*17, 12/5, 12//5, 3**2, math.sqrt(8)...

Concept of variable-value table: Valuation in mathematical logic!

Variables introduced as "memory": references to numbers/object	cts
--	-----

Variable	Value
a	5
Х	0,7
b2	13

- First awareness of types: $4/2 \rightarrow 2.0$, but $4//2 \rightarrow 2$, cf. type (2) vs. type (2.0)
- Wing (2006): "type checking as generalization of dimensional analysis"
- Types determine what operations can be done
 - In Scratch and Snap the form of blocks indicates their types!

2 Turtle graphics

- Drawing squares, regular polygons, stars, houses,
- Code like

```
import turtle
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
```

Procedural abstraction: It is natural (genetic!) to define e.g. rectangles ones for later use:

```
def rectangle(a,b): ...
```

- This is the second role of variables: parameters to represent not yet known numbers – cf. generalization in algebra education: Abstraction
- Case split with if needs Boolean logic: and, or, not

2b Turtle graphics and recursion

- Interlude: Define functions for typical tasks, e.g. volume of a cylinder, ...
- Interlude: First recursive function: factorial: Recursive and iterative

```
f: Variable as
def fakR(n):
    if n<=1: return 1</pre>
                                                                    accummulator
    return n*fakR(n-1)
def fakI(n):
                                                                i: Variable as counter
    f=1
    for i in range(1,n+1):
        f=f*i
    return f
for i in range(1,7):
    print(["Fakultät von",i," ist ",fakR(i),fakI(i)])
['Fakultät von', 1, ' ist ', 1, 1]
['Fakultät von', 2, ' ist ', 2, 2]
['Fakultät von', 3, ' ist ', 6, 6]
['Fakultät von', 4, ' ist ', 24, 24]
['Fakultät von', 5, ' ist ', 120, 120]
['Fakultät von', 6, ' ist ', 720, 720]
```

• Intellectual challenge: Drawing a fractal Koch curve

3 A closer look at functions and types

- Can you explain...
 - The same variable x is used globally and locally, which value will be used?
 - How does recursion work?
- Concept: Stack of variable-value tables: A new table is created when a function is called, and removed upon return. Code in def is executed there

Variahla Valua				
а	Variab	le	Value	
x	х		1	
b2	у		2	
-	Z		0	

- More tricks with functions:
 - Default values def(x, y=0): ...
 - Type declarations, e.g.
 Mainly as documentation

def fact(n:int) ->int:
 if n<=1: return 1
 return n*fact(n-1)</pre>

- Using %whos
- Function names are just variables (of type function) referring to an address in computer memory where the definition code is stored

4 The many uses of lists

■ List literals like L=[5,2,-9] suggest what can be done with them (O., 2011)

```
-L[2], L[-1], L[i:j], len(L), sum(L), min(L), max(L), L+M
```

- List comprehension [f(x) for x in M if p(x)] similar to set comprehension $\{f(x) | x \in M \land p(x)\}$
- Mini project using lists to implement rational numbers
 - And hint to from fractions import Fraction
- Statistics: Define function for mean, sd, cov, cor, binomial distribution
- Number theory, e.g.

```
def divisors(n): return [d for d in range(1,n+1) if n%d==0]
def prime(n): return len(divisors(n)) == 2
```

- gcd, lcm, φ -function, explore numbers with 3,4,5 divisors, perfect numbers, challenge: RSA
- Exception handling, e.g. in vector addition: raise
- Mini project to implement vector operations
 - Application: 3d graphics and stereoscopic projections
 - Outlook: hint to numpy

5 All the math down to the integers

- Rationals as lists of integers are easy
- But how are sqrt, exp,sin etc calculated by computers? (w.o. Taylor)

```
def heron(a, x=1, n=7):
    if n<0: return x
    return heron(a, (x+a/x)/2, n-1)
def Power(a,b,eps=1e-8):
    if a<0: raise Exception("a^b requires a>=0")
    if b<0: return 1/Power(a,-b)
    if abs(b)<eps: return 1
    if abs(b-1)<eps: return a
    if b>1: return a*Power(a,b-1)
    if b<1: return Power(heron(a),2*b)</pre>
def Log(a, b, eps=1e-8, lo=0, hi=None): # Log by bisection
    if a<=0 or b<=0 or b==1:
        raise Exception("log_b(a) requires a>0, b>0, b\neq 1")
    if hi==None: hi=max(1.0, a)
    mid=(lo+hi)/2
    p= Power(b, mid, eps)
    if abs(p-a)<eps: return mid
    elif p<a: return Log(a, b, eps, mid, hi)
    else: return Log(a, b, eps, lo, mid)
```

```
def deriv(f,x,dx=1e-7):
    return (f(x+dx)-f(x))/dx

def integral(f,a,b,n=1000):
    dx=(b-a)/n
    s=0
    for i in range(n):
        s+=f(a+i*dx)*dx
    return s

def integralR(f,a,b,n=1000):
    if n==0: return 0
    dx=(b-a)/n
    return f(a)*dx+ integralR(f,a+dx,b,n-1)

def LN(x):
    return integral(lambda t: 1/t, 1,x,1000)
```

Note: Bisection also useful for roots and Bolzano-W.

```
def Sin(x,eps=1e-3):
    if abs(x)<eps: return x
    s=Sin(x/3,eps)
    return 3*s-4*s**3</pre>
```


5 All the math down to the integers

- Recall: CT resembles modelling, both....
 - Modelling of real world problems
 - Modelling of mathematical structures (Model theory)
- The computer's model of math
 - In Python, int, Fraction are almost faithful models of N, Q
 - float is very coarse model of \mathbb{R} , in fact float $\subset \mathbb{Q}$, |float| $< \infty$
 - Demonstration

```
x=0.2
for i in range(20):
    x=11*x-2
    print(x)
```


6 More on functions

 Derivations and integral promote functions as first class objects

```
def deriv(f,x,dx=1e-7):
    return (f(x+dx)-f(x))/dx
```

- Input f is a function, not an expression!
- Unfortunately, full type declaration is cumbersome

```
from typing import Callable def deriv(f: Callable[[float], float], x: float, dx: float = 1e-7) -> float: return (f(x+dx)-f(x))/dx
```

- Calling deriv with explicitly defined function or with lambda deriv (lambda x: x**2, 1)
- Defining functions that return functions:

```
def D(f: Callable[[float], float], dx=1e-7) -> Callable[[float], float]:
    def d(x:float)->float:
        return (f(x+dx)-f(x))/dx
    return d
```

```
In [61]: c=D(math.sin)
In [62]: c(0)
Out[62]: 0.999999999999983
```

- Didactical idea: Pave the way of thinking in type theory and lambda calculus
- PS: Of course, all this should be done after showing show to graph a function with matplotlib

Outlin

7 Optimizati

Optimization in one variable

is simple:

```
def min1(f,x0):
    delta=0.1 # step size
    while True: # repeat
        if f(x0+delta)<f(x0):# move to the right
            x0+=delta; continue # next step
        if f(x0-delta)<f(x0): # move to the left
            x0-=delta; continue
        if delta<0.000001: break # limit step size
        delta=delta/2 # neither left nor right improved, hence smaller step
    return x0</pre>
```

min1(lambda x: (x-4)**2,0.1)

• And in \mathbb{R}^n , too

```
minN(lambda x: (x[0]-2)**2+(x[1]-3)**2,[5,5])
```

Many uses:

- (lin/nonlin) Regression (up to ANOVA and SEM)
- Physical system (e.g. bending beams)
- Geometric configurations

```
def minN(f,x0):
    delta=0.1
    while True:
        improved=False # success?
        for i in range(len(x0)):
            x1=x0.copy(); x1[i]=x0[i]+delta
            if f(x1) < f(x0):
                x0=x1; improved=True; continue
            x1=x0.copy(); x1[i]=x0[i]-delta
            if f(x1) < f(x0):
                x0=x1; improved=True; continue
        if improved: continue
        if delta<0.000001: break
        delta=delta/2
    return x0
```

8 Neural networks are just optimization

- (Self-)Supervised learning: Training data $(x_i, y_i) \in \mathbb{R}^n \times \mathbb{R}^m$, learning is $\min_{\theta} \sum_{i=1}^n ||y_i f_{\theta}(x_i)||^2$ where f_{θ} is the net-function
- Deep net = composition of layer functions, e.g. $x \mapsto \sigma(Wx + b)$
- Mini NN to recognize vertical or horizontal structures in 2x2 gray scale; black=1, white=0

- Invent some training data, e.g. ((1,0,1,0), (1,0)), ...
- Use a two layer net $f_{\theta}(x) = \sigma(W_2\sigma(W_1x + b_1) + b_2)$: $\mathbb{R}^4 \to \mathbb{R}^2$, with $\theta = (W_1, W_2, b_1, b_2)$, minimize loss function on training data set
- Larger nets need more advanced optimization (iterative via back-propagation),
 but central concepts can be understood at this level (Schönbrodt & O., 2024).

9 Computer algebra: Modelling symbolic part of math

Expressions follow a recursive context-free grammar. Encoding as lists (binary)

```
-x + 5 as ['+', 'x', 5]

-x^2 - \sin(\frac{x}{2}) as ['-', ['^', 'x', 2], ['\sin', ['/', 'x', 2]]]
```

- Conversion functions (parser, pretty-printer) given to students as black-box
- They defined helper functions isSum, add, freeOf etc.
- One task was: Define a function to calculate derivatives. Possible solution.

```
def derivative(term,var):
    if term==var: return 1
    if freeOf(term,var): return 0
    if isSum(term): return add(derivative(term[1],var),derivative(term[2],var))
    if isDifference(term): return subtrahiere(derivative(term[1],var),derivative(term[2],var))
    if isProduct(term):
        u=term[1]; v=term[2]; us=derivative(u,var); vs=derivative(v,var)
        return add(mult(us,v),mult(u,vs))
    if isQuotient(term):
        u=term[1]; v=term[2]; us=derivative(u,var); vs=derivative(v,var)
        return divide(subtrahiere(mult(us,v),mult(u,vs)), power(v,2))
    if istPotenz(term):
        a=term[1]; b=term[2]
        if frei(b,var): return mult(mult(b,power(a,subtrahiere(b,1))),derivative(a,var))
        return derivative(["exp",["*",b,["ln",a]]],var)
    if isFunc(term) and term[0] == "exp": return mult(term, derivative(term[1], var))
    if isFunc(term) and term[0] == "ln": return divide(derivative(term[1], var), term[1])
    if isFunc(term) and term[0] == "sin": return mult(["cos", term[1]], derivative(term[1], var))
    return ["derivative", term, var]
```

10 Intellectual challenges

- It's easy to write a program that analyses the definition of a function and gives a list of all variables used: Nice for debugging
 - Is it also possible to have a function halts that takes the definition of a function and gives out, if the function halts or goes into a loop?
 - Obviously not:

```
def problem():
    if halts(problem):
        while True: pass
    else: return 0
```

- Lambdas can be used to define...
 - natural numbers numbers (church numerals)
 - pairs, lists, sets,.... all of math (Set theory is not the only possible foundation of math)
 - Computable real numbers (challenging the often heard false statement that computers can only deal with rational approximations of irrational numbers such as \sqrt{n})
- But I have to admit that this usually doesn't happen because of the semester's end

Looking back

Does it work and how can math benefit from this? – A personal view

- Empowering can be experienced
- Distinction between program time and runtime explains semantics of algebra
- Referential transparency: Variables refer to exactly one object at each instance of time
- Variable-Value bindings are the same as assignments in mathematical logic (model theory)
- Formalization can be experiences as pathway to precision and clarity
- Debugging provides the bridge to STEM: Identify potential causal relations and experiment by systematic variation and controlling (fixing) other parameters
- Urge to give precise definitions (type declarations, meaning...), distinguish functions and expressions
- Intellectual flexibility (e.g. functions as objects) and challenges
- BUT: No empirical evidence collected: What practically possible empirical study should be more convincing than experience?

Looking back

CT in this course

- Recall: Selby & Woollard (2013) define CT as cognitive though process:
 - 1. the ability to think in abstractions,
 - − 2. the ability to think in terms of decomposition,
 - 3. the ability to think algorithmically,
 - 4. the ability to think in terms of **evaluations**, and
 - 5. the ability to think in generalizations.
- Claim: All of this can be found in this course!
- E.g. its already contained in finding rectangle with maximal area (Lehmann, 2025)
- Note that the course avoided advanced topics
 - data structures (queues, trees, dictionaries,...)
 - large scale problems (hence no OOP, no modules)
- Nevertheless, some content goes beyond the math relevant for PST:
 - Using functions as parameters and results of functions → functional analysis
 - Optimization → Statistics and data mining
 - Lambda and types → Proof theory
- Fully exploiting all the connections to proving needs more time and simplification

Looking forward

AI? Why still programming, CAS etc?

- Al is very useful for coding, spotting errors
 - Encourage students to use it for technical problems e.g., with matplotlib
- Why program at all?
 - Al can generate and execute programs but judging if they are correct and solve the right problem remains essential
 - Requires ability to read code!
 - A program has a clearly defined semantics. Formalization gives reliable results (in contrast to AI)
- Programming contrasts sloppiness of LLMs!
 - E.g. CAS algorithms can be debugged, LLMs can't!
- All in all: Understand basics of Al, understand what is can do and what it can't.
 I.e., math supports humans in staying ahead and mastering Al
 - instead of being a slave of Al
- Only humans can set normative rules, moral values and epistemic values. Only human can decide what an interesting question is and what a convincing argument is.
 - Al urges us to teach more logic, not less!

