第一章 功能简介

本章介绍HDU-EID-V2开发板的功能,使大家对该开发板的功能及特点有个基本了解。

1. 处理器 (MCU)

HDU-EID-V2 开发板的处理器是 STM32F103VCT6, 该处理器基于 ARM V7 架构的 Cortex-M3 内核, 主频 120Mhz, 内部含有 256K(1M)字节的 FLASH 和 128K 字的 SRAM, LQFP100 封装。

HDU-EID-V2 开发板的处理器是 STM32F103VCT6, 该处理器基于 ARM V7 架构的 Cortex-M3 内核, 主频 72Mhz, 内部含有 256K 字节的 FLASH 和 48K 字的 SRAM, LQFP100 封装。

2. 状态指示灯

HDU-EID-V2 开发板提供了 2 个电源指示灯和 4 个程序可控 LED 指示灯。电源指示灯指示 5V、3.3V 电源是否正常。4 个程序可控 LED 指示灯可以用于指示 STM32 开发板的状态。

3. 电机接口电路

MCU 通过 PWM 接口与一片 TB6612 芯片为驱动控制芯片,可外接 2 个直流电机。

4. TF 卡接口(SDIO 模式)

HDU-EID-V2 开发板自带了 SD/TF 卡接口,可以用于 SD 卡实验,方便大家学习 TF 卡。 TF 支持两种接口访问方式 SDIO 和 SPI,通过 SDIO 接口的访问 SD 卡速度是 SPI 的几倍甚至十几倍,本开发板 MCU 使用高速的 SDIO 接口的访问 SD 卡。

注: STM32F103 不支持 SDIO。

5. JTAG/SWD 仿真调试

HDU-EID-V2 开发板提供标准的 20 针 JTAG 接口封装,可以直接和 ULINK 或者 JLINK 等主流仿真器连接,与 MCU 芯片连接固定为 SWD 接口。

6. RS-485 接口

HDU-EID-V2 开发板提供一组 485 接口, 采用 SP3485 接口芯片实现电平转换。

7. CAN 总线接口

HDU-EID-V2 开发板提供 CAN 总线接口,驱动芯片采用 TJA1040 总线驱动器。

8. RS-232C 串口

HDU-EID-V2 开发板提供两个 3 线串口,采用 MAX3232 实现串口电平的转换,接口方式为 DB9 公头。

9. USB 2.0 Slave

开发板含有一个 USB 2.0 SLAVE 接口,通过 D+引脚上的 1500 Ω 上拉电阻可向主机发出 设备已连接的信号,并指示设备的工作速度。电阻上拉至 D+表示全速运行。

10.nRF2401 接口

开发板提供 1 个 2.4G 无线模块接口,可以连接 NRF24L01+模块,两个 2.4G 无线模块之间可以完成无线通信实验。

11.七段数码管显示接口

板子提供 4 个共阳极数码管, 4 个数码管共用数据线, 阳极通过 CPU 引脚控制。

12.蜂鸣器

STM32 开发板板载一个无源蜂鸣器。

13.复位按钮

该按钮是 STM32 开发板整板硬件复位按钮,当按键按下时,STM32 处理器芯片都将复位。

14.I2C EEPROM

HDU-EID-V2 开发板通过 IIC 总线载有一颗 34C02 芯片,可以用来做 IIC 实验及实现其他应用。

15.SPI DATA FLASH

HDU-EID-V2 开发板通过 SPI 总线连接了一个 16Mbit 的 SPI FLASH 芯片 W25Q16,可以用来做 SPI 实验及实现其他应用。

16.通用按键

HDU-EID-V2 开发板提供 4*4 个按键,以行列阵列方式连接至 MCU。

17.TFT LCD 触摸屏接口

HDU-EID-V2 开发板含一个 LCD 液晶屏和一个电阻触摸屏接口, LCD 分辨率为 320 *240,每个像素点为 16 位色。

18.电源

HDU-EID-V2 开发板板上使用 USB 的 5V 或 DC 电源座的 7-24V 电源。24V 转 5V 芯片为 TPS54331,5V 转 3V 芯片为 AMS1117。

第二章 硬件原理图及使用说明

1. 原理图

开发板原理图详见 HDU-EID-V2 EID-V2 IO. pdf 和 EID-V2-core. pdf.

2. 使用说明

1)、关于电路信号的网络连接

原理图通过多个页面分开显示,所有页面构成整个板子的硬件电路。不同页面以及相同页面上相同名字的网络(网络指电气上该信号的名字,并非元器件的属性值)表示构成连接关系。例如图 1 中的两个黑色椭圆圈中的 RX232_TX1,它们名字相同,所以在板子上它们是连在一起的。

图 1 网络连接示意

2)、关于网络连接位置查询

例如原理图 pdf 文件第四页的 TF 卡电路,如图 2 所示:

图 2 网络连接位置查找

图中黑色圆圈中,例如 SD_D1 信号,名称左侧有一个数字序号 1,表示该网络连接至原

理图第一页。通过序号,在分析电路时,可以快速定位原理图相关关系。

3. 数据手册

序号	资料内容	型号	文件名
1	MCU 数据手册	STM32F103	1、stm32f103 数据手册.pdf
2	MCU 用户手册	STM32F103	2、STM32F103 用户手册.pdf
3	Flash 芯片	W25Q80	3、W25Q80.pdf
4	EEPROM 芯片	AT34C02	4、AT34C02.pdf
5	5V 转 3V 芯片	AMS1117	5、AMS1117.pdf
6	2.4G 无线模块	nRF2401	6、nRF2401 模块说明书.pdf
7	232 串口芯片	SP3232	7、SP3232.pdf
8	485 芯片	SP3485	8、SP3485.pdf
9	CAN 芯片	TJA1040	9、TJA1040_cn. pdf
10	5V 输出开关电源芯片	TPS54331	10、TPS54331.pdf
11	液晶屏控制芯片	ILI9341	11、液晶屏资料\ILI9341_DS.pdf

由于文件较大,实验前另行给出。