## Relation: Part 7 - Partial Orderings

#### Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia

Reference: Rosen, Discrete Mathematics and Its Applications, 8ed, Sec. 9.6



# (Non-strict) partial order and posets

#### Definition

Let A be a set and  $R \subseteq A \times A$  a binary relation on a set A.

- If R is a partial order on A, the pair (A, R) or (A, ≼) is called a partially ordered set or poset. Elements of A are also elements of the poset.
- Let (A, R) be a poset and  $a, b \in A$ .
  - We write  $a \leq_R b$  whenever  $(a, b) \in R$ .
  - We write  $a \prec_R b$  if  $a \preccurlyeq_R b$  and  $a \neq b$ .
  - Subscript R is omitted if it's clear from the context.
  - We sometimes use (A, ≼) to denote a poset with ≼ as the corresponding partial order.



Is (A,R) a poset where  $A=\{1,2,3,4,5\}$  and  $R=\{(1,1),(1,3),(1,5),(2,2),(3,3),(4,2),(4,4),(5,3),(5,5)\}$ ?



Is  $(\mathbb{Z},\leqslant)$  a poset?



Is  $(\mathbb{N},<)$  a poset?



Is  $(\mathbb{Z},R)$  a poset where  $R=\{(a,b)\in\mathbb{Z}^2\mid |a|\leqslant |b|\}$ ?



### **Exercises**

- Is  $(\mathbb{R}, \geqslant)$  a poset?
- Let  $R = \{(x,y) \in \mathbb{Z}^2 \mid x \leqslant y \text{ and } |x-y| \leqslant 5\}$ . Is  $(\mathbb{Z},R)$  a poset?
- R is a binary relation on  $\mathbb{N} \times \mathbb{N}$  such that for any two pairs (a,b) and (c,d) of natural numbers,  $((a,b),(c,d)) \in R$  iff a < c or  $(a=c \text{ and } b \leqslant d)$ . Is  $(\mathbb{N} \times \mathbb{N},R)$  a poset?

Is  $(\mathbb{R},\geqslant)$  a poset?

Is  $(\mathbb{Z},R)$  a poset where  $R=\{(x,y)\in\mathbb{Z}^2\mid x\leqslant y \text{ and } |x-y|\leqslant 5\}$ ?

R is a binary relation on  $\mathbb{N} \times \mathbb{N}$  such that for any two pairs (a,b) and (c,d) of natural numbers,  $((a,b),(c,d)) \in R$  iff a < c or  $(a=c \text{ and } b \leqslant d)$ . Is  $(\mathbb{N} \times \mathbb{N},R)$  a poset?



# Strict partial order

#### Definition

Let A be a set and  $R \subseteq A \times A$  a binary relation on a set A. R is a **strict partial order** iff R is irreflexive, asymmetric, and transitive.

- R is antisymmetric and irreflexive iff R is asymmetric [Show this!].
- So, non-strict and strict partial order only differ in the fact that the former is reflexive, while the latter is irreflexive.
- In a strict partial order  $R \subseteq A \times A$ , we use the notation  $a \prec_R b$  for each  $(a,b) \in R$ .



We've seen in previous examples that the following are not posets. Which of those correspond to strict partial order?

- $lackbox{1}{\bullet}$   $(\mathbb{N},<)$
- **2**  $(\mathbb{Z}, R)$  where  $R = \{(a, b) \in \mathbb{Z}^2 \mid |a| \le |b|\}$



### **Exercises**

Which of the following are strict partial order?

- $oldsymbol{0}$   $R_1=\{(x,y)\in S^2\mid x \text{ is the father of }y\}$  where S is the set of all people.
- **2**  $R_2 = \{(a,b) \in \mathbb{Z}^2 \mid b = a + 2k \text{ for some } k \in \mathbb{Z}^+\}$



# Hasse diagram

It is sometimes helpful to visualize a poset using Hasse diagram.

### Definition

For a poset (A, R), a **Hasse diagram** is a (undirected) graph obtained from the graph representation of R as follows:

- remove all loops;
- - $\bullet$  repeatedly remove the edge (a,c) if we already have the edges (a,b) and (b,c)
- 3 draw the remaining edges "upward" and remove all the arrows (i.e., make the edges undirected).
  - the edge (a,b) goes upward from a to b; so place a below b, then connect a to b with an undirected edge.



### Create a Hasse diagram for (A, R) where

- $\begin{array}{l} \textbf{0} \ \ A = \{a,b,c,d,e\} \ \text{and} \\ R = \{(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(c,c),(d,d),(e,b),(e,c),(e,d),(e,e)\} \end{array}$
- $2 \quad A = \{a,b,c,d,e\} \text{ and } \\ R = \{(a,a),(a,c),(a,d),(a,e),(b,b),(b,c),(b,d),(b,e),(c,c),(c,d),(c,e),(d,d),(e,e)\}$

Let (A,R) be a poset with  $A=\{a,b,c,d,e\}$  and  $R=\{(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(c,c),(d,d),(e,b),(e,c),(e,d),(e,e)\}.$  Create its Hasse diagram.

Let (A,R) with  $A=\{a,b,c,d,e\}$  and  $R=\{(a,a),(a,c),(a,d),(a,e),(b,b),(b,c),(b,d),(b,e),(c,c),(c,d),(c,e),(d,d),(e,e)\}.$  Create its Hasse diagram.

Let (A,R) with  $A=\{a,b,c,d,e\}$  and  $R=\{(a,a),(b,a),(b,b),(c,a),(c,b),(c,c),(d,a),(d,b),(d,d),(e,a),(e,e)\}$ . Create its Hasse diagram.

Let (A,R) with  $A = \{a,b,c,d,e\}$  and  $R = \{(a,a),(a,b),(a,d),(b,b),(b,d),(c,c),(c,d),(d,d),(e,e)\}$ . Create its Hasse diagram.



### **Exercises**

Create a Hasse diagram for the poset  $\{S,R\}$  if

- $\bullet \ S = \{1, 2, 3, 4, 6, 8, 12\} \ \text{and} \ R = \{(a, b) \mid a \ \text{divides} \ b\}$
- $\bullet \ S=2^D$  , the power set of  $D=\{1,2,3\}$  , and  $R=\{(A,B) \mid A\subseteq B\}$



# Comparability

#### Definition

Let  $(S, \preccurlyeq)$  be poset.

- Any two elements  $a, b \in S$  are called **comparable** iff  $a \leq b$  or  $b \leq a$ .
- Otherwise, we call a and b incomparable.

In a poset  $(\mathbb{Z}^+, |)$ , are 3 and 9 comparable? How about 5 dan 7?



### Total order

#### Definition

Let  $(S, \preccurlyeq)$  be a poset. The relation  $\preccurlyeq$  is called a **total order** or **linear order** iff every two elements of S are comparable.

If  $\leq$  is a total order, S is called a **totally ordered set** or **linearly ordered set** or **chain**.



For each of the following pair of set and relation, decide if the set is totally ordered by the relation: (i)  $(\mathbb{Z}, \leq)$ ; (ii)  $(\mathbb{Z}, >)$ ; (iii)  $(\mathbb{Z}^+, |)$ 



### **Exercises**

- **1** If  $2^S$  is the power set of a set S, when is  $2^S$  totally ordered by  $\subseteq$  and when is it not?
- 2 Let  $R \subseteq (\mathbb{N} \times \mathbb{N})^2$  be a binary relation such that for any two pairs (a,b) and (c,d) in  $\mathbb{N}^2$ ,  $((a,b),(c,d)) \in R$  iff either a < c; or a = c and  $b \leqslant d$ . Is  $\mathbb{N}^2$  totally ordered by R?
- 3 Give a total order that allows us to list all words in English dictionary in the usual alphabetical order.

If  $2^S$  is the power set of a set S, when is  $2^S$  totally ordered by  $\subseteq$  and when is it not?

Let  $R \subseteq (\mathbb{N} \times \mathbb{N})^2$  be a binary relation such that for any two pairs (a,b) and (c,d) in  $\mathbb{N}^2$ ,  $((a,b),(c,d)) \in R$  iff either a < c; or a = c and  $b \leqslant d$ . Is  $\mathbb{N}^2$  totally ordered by R?

Give a total order that allows us to list all words in English dictionary in the usual alphabetical order.



## Least, greatest, minimal, maximal element(s) of a poset

#### Definition

Let  $(S, \preccurlyeq)$  be a poset and  $c \in S$  an element of the poset.

- If  $c \leq d$  for every  $d \in S$ , then c is the least/smallest element of  $(S, \leq)$ .
- If  $d \leq c$  for every  $d \in S$ , then c is the greatest/largest element of  $(S, \leq)$ .
- If there is no  $d \in S$  with  $d \prec c$ , then c is a **minimal element** of  $(S, \preccurlyeq)$
- If there is no  $d \in S$  with  $c \prec d$ , then c is a maximal element of  $(S, \preccurlyeq)$



Let (A,R) be a poset with  $A=\{a,b,c,d,e\}$  and  $R=\{(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(c,c),(d,d),(e,b),(e,c),(e,d),(e,e)\}$ . Give, if any, its least, greatest, minimal, and maximal elements.



Let (A, R) with  $A = \{a, b, c, d, e\}$  and  $R = \{(a, a), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, d), (e, e)\}$ . Give, if any, its least, greatest, minimal, and maximal elements.



Let (A,R) with  $A=\{a,b,c,d,e\}$  and  $R=\{(a,a),(b,a),(b,b),(c,a),(c,b),(c,c),(d,a),(d,b),(d,d),(e,a),(e,e)\}$ . Give, if any, its least, greatest, minimal, and maximal elements.



Let (A,R) with  $A=\{a,b,c,d,e\}$  and  $R=\{(a,a),(a,b),(a,d),(b,b),(b,d),(c,c),(c,d),(d,d),(e,e)\}$ . Give, if any, its least, greatest, minimal, and maximal elements.



### **Exercises**

- Determine, if they exist, the least, greatest, minimal, and maximal elements of the following posets.
  - $(2^S, \subseteq)$  for any set S.
  - **b** ({2, 4, 5, 10, 12, 20, 25}, |)
  - $(\mathbb{Z}^+, |)$
- Q Give an example of an infinite poset that has a greatest and least element.
- 3 Show that a greatest element of a poset is unique if it exists.

Give, if any, the least, greatest, minimal, and maximal elements of  $(2^S,\subseteq)$  for any set S.

Give, if any, the least, greatest, minimal, and maximal elements of  $(\{2,4,5,10,12,20,25\},|)$ 

Give, if any, the least, greatest, minimal, and maximal elements of  $(\mathbb{Z}^+,|)$ .

Give an example of an infinite poset that has a greatest and least element.

Show that a greatest element of a poset is unique if it exists.



### Well-ordered set

#### Definition

A poset  $(S, \preccurlyeq)$  is called a **well-ordered set** iff  $\preccurlyeq$  is a total order and every nonempty subset of S has a least element according to the ordering given by  $\preccurlyeq$ .



Is  $(\mathbb{Z}^+,\leqslant)$  a well-ordered set?



Is  $(\mathbb{Z}^+ \times \mathbb{Z}^+, \preccurlyeq)$  a well-ordered set where  $(a_1, a_2) \preccurlyeq (b_1, b_2)$  if  $a_1 < b_1$ , or if  $a_1 = b_1$  and  $b_1 \leqslant b_2$ ?



Is  $(\mathbb{Z},\leqslant)$  a well-ordered set?



### Exercise

Define a relation R on  $\mathbb Z$  such that  $\mathbb Z$  becomes well-ordered.



## Generalized induction (well-ordered induction)

Principle of induction can be generalized to show that a statement holds for every element of a well-ordered set (not just for elements of  $\mathbb{N}$ ).

Since N is a well-ordered set (via the ordering by ≤), what you learned in Discrete Mathematics I course is just a special case of this generalization.

#### Theorem (Principle of well-ordered induction)

Let S be a well-ordered set (with  $\leq$  as the corresponding total order). Then the statement P(x) is true for all  $x \in S$  if the following statement holds.

"(Inductive step) For every  $y \in S$ , if P(x) is true for all  $x \prec y$ , then P(y) is true."

Note: we don't need to establish the base case of induction because when the inductive step is proved and  $x_0$  is the least element of a well-ordered set, then there is no x in the set for which  $x \prec x_0$ . Hence, the premise of the induction step vacuously true, and consequently  $P(x_0)$  must be true. vacuously true

Prove that every integer  $n\geqslant 2$  can be written as a product of one or more primes using well-ordered induction.



# Lower bounds and upper bounds

#### Definition

Let  $(S, \preccurlyeq)$  be a poset and  $A \subseteq S$  a subset of S.

- A lower bound) of A is any element  $\ell \in S$  such that  $\ell \preccurlyeq a$  for all  $a \in A$
- An **upper bound**) of A is any element  $u \in S$  such that  $a \preccurlyeq u$  for all  $a \in A$
- An element  $\ell \in S$  is called the **greatest lower bound** (glb) of A iff  $\ell$  is a lower bound of A and for every lower bound z of A,  $z \leq \ell$ .
- An element  $u \in S$  is called the **least upper bound** (**lub**) of A iff  $\ell$  is an upper bound of A and for every upper bound z of A,  $u \leq z$ .
- glb dan lub of A are unique, if they exist. [Show this for exercise.]
- A set A can have lower/upper bounds without having a lub/glb.





Rosen, Fig. 7, p.657

Find the lower and upper bounds of  $\{a,b,c\}$ ,  $\{j,h\}$ ,  $\{a,c,d,f\}$ , and  $\{b,d,g\}$  in the poset with this Hasse diagram. Give its lub and glb if they exist.



In the poset  $(\mathbb{Z}^+,|)$ , find the glb and lub of  $\{3,9,12\}$  and  $\{1,2,4,5,10\}$ , if they exist.



### Exercise

Let S be an arbitrary set,  $2^S$  its the power set, and  $A,B,C\subseteq S$  arbitrary subsets of S. Find the glb and lub of  $\{A,B,C\}$  if they exist in the poset  $(2^S,\subseteq)$ .



### Lattice

#### Definitio

A poset  $(S, \preccurlyeq)$  is called a lattice iff for every pair of elements  $a,b \in S$ , the set  $\{a,b\}$  has both a lub and a glb



Which of the posets with the following Hasse diagrams are lattices?





Is  $(\{1,2,3,4,5\},|)$  a lattice?



Is  $(\{1,2,4,6,8\},|)$  a lattice?



### **Exercises**

- Is  $(\mathbb{Z}^+, |)$  a lattice?
- **2** Is  $(2^S, \subseteq)$  a lattice for every set S?
- **3** Which of these two are lattices:  $(\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 1\}, \geqslant)$  and  $(\{x \in \mathbb{R} \mid 0 < x < 1\}, \geqslant)$ ? What are their least and greatest elements, if any?
- 4 Is every totally ordered set a lattice?

Is  $(\mathbb{Z}^+,|)$  a lattice?

Is  $(2^S,\subseteq)$  for every set S a lattice?

Which of these two are lattices:  $(\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 1\}, \geqslant)$  and  $(\{x \in \mathbb{R} \mid 0 < x < 1\}, \geqslant)$ ? What are their least and greatest elements, if any?

Is every totally ordered set a lattice?