

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 19 ณ มหาวิทยาลัยนเรศวร ข้อสอบข้อที่ 1 จากทั้งหมด 3 ข้อ วันอังคารที่ 23 พฤษภาคม 2566 เวลา 08.30 - 12.30 น.

ผสาน (Merge)

จังหวัดพิษณุโลกหรือเมืองพิษณุโลกแต่เดิมมีชื่อเรียกว่า "เมืองสองแคว" เนื่องจากเมืองนี้ตั้งอยู่ ระหว่างแม่น้ำน่านและแม่น้ำแควน้อย ทั้งนี้จังหวัดพิษณุโลกเป็นจังหวัดใหญ่สามารถเดินทางไปสถานที่ ท่องเที่ยวที่ขึ้นชื่อได้ง่ายดาย เช่น อุทยานแห่งชาติภูหินร่องกล้า อุทยานแห่งชาติทุ่งแสลงหลวง น้ำตกหมันแดง น้ำตกแก่งชอง จากที่มีการเปิดประเทศหลังผ่านพ้นวิกฤตโควิดทำให้ทาง*ศาสตราจารย์ต๋อย* (Prof. TOI) แห่ง สอวน.มน. ได้รับภารกิจในการวางแผนโปรโมทการท่องเที่ยวของจังหวัด เพื่อให้การดำเนินการวิจัยเป็นไปตาม หลักวิชาการ *ศาสตราจารย์ต๋อย*ได้มอบหมายให้ผู้ช่วยวิจัย*นายเอกซ์*และ*นายวาย*ผู้เชี่ยวชาญด้านระบบดิจิทัล จัดทำรายงานสำรวจจำนวนตำแหน่งสถานีชาร์จสำหรับรถไฟฟ้าและจำนวนแท่นชาร์จประจำแต่ละสถานี สำหรับการไปสถานที่ท่องเที่ยว เพื่อให้นักท่องเที่ยวที่ใช้รถไฟฟ้าสามารถวางแผนการจัดสรรพลังงานให้กับรถ ของตนเองได้อย่างง่ายดาย *ศาสตราจารย์ต๋อย*ได้มอบหมายให้ทั้ง*นายเอกซ์*ทำการสำรวจแท่นชาร์จชนิด AC (alternating current) และ *นายวาย*ทำการสำรวจแท่นชาร์จชนิด DC (direct current) แล้วจะได้นำผลงาน ของทั้งสองมาใช้ในการทำภารกิจต่อ ทั้งนี้เมื่อมอบหมายให้*นายเอกซ์*ทำการวัดระยะทางไปยังสถานที่ท่องเที่ยว ต่าง ๆ *นายเอกซ์*ต้องเริ่มนับระยะจากขอบซ้ายมือสุดของจังหวัดพิษณุโลกไปทางตะวันออก (หากระยะทางติด ลบแสดงว่าอยู่พิกัดที่วัดเป็นทางตะวันตกของเมืองพิษณุโลก)

ในรายงานของนายเอกซ์ประกอบด้วยจำนวนจุดชาร์จชนิด AC จำนวน N สถานี โดยมีระยะทางไปยัง แต่ละสถานี $x_1,x_2,...,x_N$ หน่วย รวมถึงจำนวนแท่นชาร์จประจำแต่ละสถานี $s_1,s_2,...,s_N$ แท่น และ สำหรับนายวายก็ใช้วิธีวัดระยะทางแบบเดียวกัน โดยในรายงานของนายวายจะต้องประกอบด้วยจำนวนจุด ชาร์จชนิด DC จำนวน M สถานี โดยมีระยะทางไปยังแต่ละสถานี $y_1,y_2,...,y_M$ หน่วย จำนวนแท่นชาร์จ ประจำแต่ละสถานี $t_1,t_2,...,t_M$ แท่น จากนั้นศาสตราจารย์ต๋อยจะได้นำข้อมูลของทั้งสองคนมาคำนวณเพื่อ ดำเนินการออกแบบแผนโปรโมทการท่องเที่ยวต่อไป แต่!!! เกิดปัญหาขึ้นอย่างกระทันหันศาสตราจารย์ต๋อย ได้รับแจ้งว่านายวายเข้าใจผิดในเรื่องการจัดทำรายงานสำรวจ โดยได้ทำการเก็บข้อมูลและบันทึกข้อมูล ระยะทางผิดพลาด ศาสตราจารย์ต๋อยจำเป็นต้องรีบแก้ไขงานและส่งโดยด่วน เพราะไม่อย่างนั้นจะไปพิธีเปิด งานการแข่งขันคอมพิวเตอร์โอลิมปิกไม่ทัน ศาสตราจารย์ต๋อยพบว่าความผิดพลาดมีลักษณะเป็นแบบเชิงเส้น (linear) ดังนั้นการแก้ไขสามารถดำเนินการโดยนำค่าระยะทาง $y_1,y_2,...,y_M$ มาคำนวณใหม่เป็น

$$\bar{y}_j = \alpha y_j + \beta$$
 เมื่อ $j = 1, ..., M$

และด้วยเวลาที่กระชั้นชิดจึงต้องนำข้อมูลจาก*นายเอ็กซ*์และ*นายวาย*มาทำการ**ผสาน** (merge) เพื่อสร้าง กราฟต๋อย (TOI graph) ซึ่งจะได้นำมาใช้วางแผนงาน โดยให้*แกนนอน*เป็นค่าของ x_i เมื่อ i=1,...,N, หรือ \bar{y}_j เมื่อ j=1,...,M, เรียงจากน้อยไปมากและ*แกนตั้ง*เป็นจำนวนแท่นชาร์จ s_i เมื่อ i=1,...,N, หรือ t_j เมื่อ j=1,...,M, แต่หากว่า $x_i=\bar{y}_j$ สำหรับบาง i,j แกนตั้งจะเป็นจำนวนแท่นชาร์จ s_i+t_j จากนั้น ศาสตราจารย์ต๋อยต้องนำข้อมูลตำแหน่งและจำนวนแท่นชาร์จที่ผสานได้มาจัดทำเป็นข้อมูลตำแหน่งใหม่ โดยมี ระยะทาง z_k เมื่อ k=1,...,P โดย $z_1 < z_2 < \cdots < z_P$ และจำนวนแท่นชาร์จ $u_1,u_2,...,u_P$ แท่น ตามลำดับ และมาทำการวิเคราะห์โดยการสร้างข้อมูลใหม่ที่เรียกว่า slot ดังนั้นจะมี slot จำนวน $u_1+u_2+\cdots+u_P$ โดย

- slot ที่ 1, ... , u_1 มีค่า z_1
- ullet slot ที่ (u_1+1) , ... , (u_1+u_2) มีค่า z_2
- slot ที่ $(u_1 + \cdots + u_{P-1} + 1)$, ..., $(u_1 + \cdots + u_{P-1} + u_P)$ มีค่า z_P

ตัวอย่าง

รายงานของ*นายเอ็กซ์*มีบันทึกระยะทางไปยังแต่ละสถานีจำนวน N=9 และจำนวนแท่นชาร์จชนิด AC ประจำสถานีดังนี้

สถานีที่ <i>i</i>	1	2	3	4	5	6	7	8	9
x_i	1	2	3	4	5	6	7	8	10
s_i	1	2	1	3	5	7	6	2	1

รายงานของ*นายวาย*มีบันทึกระยะทางไปยังแต่ละสถานีจำนวน M=8 และจำนวนแท่นชาร์จชนิด DC ประจำสถานีดังนี้

สถานีที่ <i>j</i>	1	2	3	4	5	6	7	8
y_j	1	2	4	5	6	7	9	10
t_j	1	2	4	6	3	2	2	1

รูปที่ 1 แสดงกราฟความสัมพันธ์ระหว่างระยะทางและจำนวนแท่นชาร์จประจำสถานีจาก
(a) รายงานของ*นายเอ็กซ์* และ (b) รายงานของ*นายวาย*

ศาสตราจารย์ต๋อยแก้ไขงานโดยทราบว่า lpha=2 และ eta=-5 ทำให้ได้ว่า รายงานของ*นายวาย*ที่มีการแก้ไข $ar{y}_j=2y_j-5$

สถานีที่ <i>j</i>	1	2	3	4	5	6	7	8
$ar{y}_j$	-3	-1	3	5	7	9	13	15
t_{j}	1	2	4	6	3	2	2	1

รูปที่ 2 แสดงกราฟที่ปรับแก้ข้อมูลจากรายงานใหม่

รูปที่ 3 แสดงตัวอย่างการวัดระยะทาง

จากรายงานของ*นายเอ็กซ*์และรายงานที่ได้รับการแก้ไขของ*นายวาย*ทำให้ข้อมูล<u>ผ**สาน**</u>และ**กราฟต๋อย**ได้ดังนี้

สถานีที่ k	1	2	3	4	5	6	7	8	9	10	11	12	13	P = 14
z_k	-3	-1	1	2	3	4	5	6	7	8	9	10	13	15
u_k	1	2	1	2	5	3	11	7	9	2	2	1	2	1

รูปที่ 4 แสดง**กราฟต๋อย**ที่*ศาสตราจารย์ต๋อย*สร้างขึ้น

เมื่อนำข้อมูลจาก**กราฟต๋อย**มาทำ slot ทำให้ได้ข้อมูลดังต่อไปนี้

sl	ot ที่	1	2	3	4	5	6	7	8	9	 46	47	48	49
ข้	, อมูล	-3	-1	-1	1	2	2	3	3	3	 10	13	13	15

จากตัวอย่างข้างต้น ข้อมูลลำดับที่ 1 มีค่าเท่ากับ -3 ข้อมูลลำดับที่ 2 และ 3 มีค่าเท่ากับ -1 ... ข้อมูลลำดับที่ 48 มีค่าเท่ากับ 13 และข้อมูลลำดับที่ 49 มีค่าเท่ากับ 15

งานของคุณ (Your Task)

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาว่า ${f slot}$ ลำดับที่ ${f k}$ มีค่าเท่ากับเท่าใด

ข้อมูลนำเข้า (Input) มีจำนวน Q+5 บรรทัด

บรรทัดที่ 1	ประกอบด้วยจำนวนเต็ม 3 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ได้แก่ จำนวนแรก คือ N แทนจำนวนจุดชาร์จชนิด AC สถานีที่ <i>นายเอ็กซ์</i> บันทึกไว้ จำนวนที่สอง คือ M แทนจำนวนจุดชาร์จชนิด DC สถานีที่ <i>นายวาย</i> บันทึกไว้ จำนวนที่สาม คือ Q แทนจำนวนคำถามเพื่อหาว่า slot ลำดับที่ k มีค่าเท่ากับเท่าใด กำหนดให้ $1 \leq N, M \leq 100,000$ และ $0 \leq Q \leq 50,000$
บรรทัดที่ 2	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง แทนระยะทางไปยังแต่ ละสถานี โดยมีระยะ $x_{_1},x_{_2},\dots,x_{_N}$ หน่วย ตามที่นายเอ็กซ์บันทึกไว้ และ $1\leq x_1< x_2<\dots< x_N\leq 1,000,000$
บรรทัดที่ 3	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง แทนจำนวนแท่นชาร์จ ประเภท AC ประจำแต่ละสถานีเป็นจำนวน $s_1,s_2,,s_N$ แท่น ตามที่นายเอ็กซ์ บันทึกไว้ และ $1 \leq s_i \leq 100$ เมื่อ $i=1,,N$
บรรทัดที่ 4	จำนวนเต็ม M จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง แทนระยะทางไปยังแต่ ละสถานี โดยมีระยะ $y_{_1},y_{_2},,y_{_M}$ หน่วย ตามที่ <i>นายวาย</i> บันทึกไว้ และ $1\leq y_1< y_2< < y_m\leq 1,000,000$
บรรทัดที่ 5	จำนวนเต็ม M จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง แทนจำนวนแท่นชาร์จ ประเภท DC ประจำแต่ละสถานีเป็นจำนวน $t_1,t_2,,t_M$ แท่น ตามที่นายวาย บันทึกไว้ และ $1 \leq t_j \leq 100$ เมื่อ $j=1,,M$
บรรทัดที่ $l+5$ ถึง บรรทัดที่ $Q+5$ โดยที่ $l=1,,Q$	ประกอบด้วยจำนวนเต็ม 3 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ได้แก่ จำนวนแรก คือ α_l โดย $1 \leq \alpha_l \leq 100$ จำนวนที่สอง คือ β_l โดย $-10^6 \leq \beta_l \leq 10^6$ สำหรับการหา $\bar{y}_j = \alpha_l y_j + \beta_l$ และ จำนวนที่สาม คือ k_l เป็นตำแหน่งของ slot ลำดับที่ k_l โดย $1 \leq k_l \leq \sum_i s_i + \sum_j t_j$

ข้อมูลส่งออก (Output)

มี Q บรรทัด

บรรทัดที่ <i>โ</i>	แต่ละบรรทัดมีจำนวนเต็ม 1 จำนวนแสดงข้อมูลลำดับที่ k_l ของ slot เมื่อ
	$l=1,\ldots,Q$

ตัวอย่าง

ตัวอย่างที่	ข้อมูลนำเข้า	ข้อมูลส่งออก
1	9 8 8 1 2 3 4 5 6 7 8 10 1 2 1 3 5 7 6 2 1 1 2 4 5 6 7 9 10 1 2 4 6 3 2 2 1 1 0 1 1 0 2 1 0 3 1 0 8 2 -5 1 2 -5 2 2 -5 3 2 -5 8	1 1 2 4 -3 -1 -1 3
2	5 2 6 1 2 3 4 5 1 1 1 1 1 1 5 1 1 1 0 1 1 0 3 1 1 1 1 1 3 1 -2 1 1 -2 3	1 2 1 2 -1 2
3	5 2 6 1 2 3 4 5 1 1 1 1 1 1 5 1 1 1 -5 1 1 -5 2 1 -5 3 3 -10 3 3 10 3 3 20 3	-4 0 1 2 3 3

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	32 MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

กลุ่ม	คะแนนสูงสุด	เงื่อนไข
ชุดทดสอบที่	ของกลุ่มชุดทดสอบนี้	
1	8	$1 \le N, M, Q \le 100$
2	13	$x_i=i$, $orall i$ และ $y_j=j$, $orall j$ และ N , $M<5000$ และ $Q<10000$
3	17	lpha=1 และ $eta=0$
4	22	$\mathit{N}=1$ และ $\mathit{s}_1=1$
5	40	ไม่มีเงื่อนไข

คำแนะนำในการเขียนโปรแกรม

หากผู้เข้าแข่งขันใช้คำสั่ง cin/cout แนะนำให้เพิ่มคำสั่ง 2 บรรทัด ดังนี้

std::ios_base::sync_with_stdio(false);

std::cin.tie(NULL);