Examen d'architecture des ordinateurs

Apprentissage Info & réseau 27/11/2014

1. Algèbre de Boole (2 pts)

On considère l'expression:

$$s = a \overline{c} \overline{d} + \overline{a} b c + a b \overline{c} \overline{d} + b c d + a b$$

- a. La simplifier algébriquement
- b. La simplifier à l'aide d'une table de Karnaugh

2. Arithmétique binaire (2 pts)

- a. Sur 9 bits, effectuer la somme des deux nombres suivants (codés en binaire) 110001110 + 011010111
- b. Interpréter ce calcul en arithmétique non signée (binaire pur) en donnant les valeurs décimales correspondantes
- c. Interpréter ce calcul en arithmétique signée (complément à 2) sur 9 bits en donnant les valeurs décimales correspondantes

3. Circuits combinatoires (3 pts)

Concevoir, par la méthode de votre choix, un circuit qui calcule la valeur absolue d'un nombre codé en complément à 2 sur 4 bits. Donnez un schéma ou des équations logiques.

4. Circuit séquentiel (5 pts)

On veut réaliser une serrure à code simplifiée. Le clavier est composé de 3 touches : '#', 'A', 'B' et une led s'allume lorsque la bonne séquence a été tapée au clavier. La séquence d'ouverture est : '#', 'B', 'A'. Le circuit à réaliser aura l'interface :

```
module serrure(rst, clk, dieze, a, b : ouvert)
```

On fait les hypothèse suivantes :

- l'horloge clk est suffisamment rapide pour ne manquer aucun événement sur les touches
- le clavier est conçu pour qu'à chaque instant, il y ait zéro ou une touche appuyée, jamais plusieurs
- entre 2 appuis successifs, les trois touches sont relâchées

La séquence précise d'événements sur les touches qui déclenche l'ouverture est : appui sur #, aucun appui, appui sur B, aucun appui, appui sur A. Tout appui ensuite arrête l'ouverture et commence une nouvelle séquence.

- expliciter les vecteurs des entrées et des sorties et dessiner un graphe de Moore de ce système
- simplifier éventuellement ; quelle est la taille du vecteur d'états ?
- NE PAS synthétiser ce circuit

5. Compteur avec remise à zéro synchrone (2 pts)

Concevoir un compteur 3 bits synchrone d'interface cpt3sclr(rst, clk, sclr: s[2..0]) qui compte normalement lorsque sclr = 0, et qui repasse à 0 au front d'horloge lorsque sclr = 1. Fournir un schéma ou des équations SHDL.

6. Microcommandes associées à une instruction (2 pts)

Fournir la suite des microcommandes qui sont produites lors de l'exécution du morceau de programme suivant :

```
add %r0, 1, %r1
loop: addcc %r1, -1, %r1
bne loop
```

7. Programmation de CRAPS (4 pts)

Réaliser par programme la serrure codée décrite au 4-:

- #, A et B seront placés sur les switches sw[2], sw[1], sw[0] respectivement
- le signal d'ouverture sera affiché sur la led ld [0]

Le programme bouclera tant que la bonne séquence n'aura pas été produite ; quand la bonne séquence sera produite, il s'arrêtera (instruction ba bouclée sur elle-même)