Amplificadores Operacionais

José Humberto de Araújo¹

¹DFTE-UFRN

28 de junho de 2022

Sumário

- 🚺 Introdução
 - Operação dos Aplificadores Operacionais
- Aplicações não-lineares
- Aplicações Lineares
 - Amplificador Inversor
 - Amplificador Não inversor
 - Somador

Introdução

 Por simplicidade os AO serão tratados como um dispositivo tipo "caixa preta"onde necessitamos somente entender e aplicar algumas regras simples. Descreveremos o funcionamento dos AO e finalmente discutiremos as limitações reais do dispositivo.

Introdução

- Por simplicidade os AO serão tratados como um dispositivo tipo "caixa preta"onde necessitamos somente entender e aplicar algumas regras simples. Descreveremos o funcionamento dos AO e finalmente discutiremos as limitações reais do dispositivo.
- A simbologia para o Amplificador Operacional (AO) é mostrada na figura 1. Há duas entradas para alimentação (V_{cc}^+ e V_{cc}^- , duas entradas de sinais, uma inversora (V_{in}^-) e outra não-inversora (V_{in}^+) e somente uma saida (V_{out}).

Figura 1: Simbologia do amplificador operacional

Figura 2: Amplificador operacional 741

Operação dos Aplificadores Operacionais

 A operação básica do AO pode ser resumida da seguinte forma: a voltágem de saida (V_{out} é proporcional a diferença entre as entradas inversora e não inversora,

$$V_{out} = A_{OL}(V_{in}^+ - V_{in}^-).$$
 (1)

Onde A_{OL} é o ganho de voltagem em loop aberto.

Operação dos Aplificadores Operacionais

 A operação básica do AO pode ser resumida da seguinte forma: a voltágem de saida (V_{out} é proporcional a diferença entre as entradas inversora e não inversora,

$$V_{out} = A_{OL}(V_{in}^+ - V_{in}^-).$$
 (1)

Onde A_{OL} é o ganho de voltagem em loop aberto.

• Este ganho é geralmente alto. Por exemplo para o AO μ A741 é 200000.

Operação dos Aplificadores Operacionais

 A operação básica do AO pode ser resumida da seguinte forma: a voltágem de saida (V_{out} é proporcional a diferença entre as entradas inversora e não inversora,

$$V_{out} = A_{OL}(V_{in}^+ - V_{in}^-).$$
 (1)

Onde A_{OL} é o ganho de voltagem em loop aberto.

- Este ganho é geralmente alto. Por exemplo para o AO μ A741 é 200000.
- A corrente é restrita. Para o OP 741 é menor que 25 mA.
- A voltagem de saida V_{out} somente pode ficar entre um intervalo dado por duas voltagens de saturação:

$$V_{sat}^- \leq V_{out} \leq V_{sat}^+$$
 (2)

onde $V_{sat}^+ \simeq V_{cc}^+ - 1 V$ e $V_{sat}^- \simeq V_{cc}^- - 1 V$

Aplicações não-lineares

 As aplicações não lineares de AO usam um dispositivo chamado Comparador.

Aplicações não-lineares

- As aplicações não lineares de AO usam um dispositivo chamado Comparador.
- Ele compara a voltagem das duas entradas e fornece uma saída positiva ou negativa dependendo se o sinal de entrada inversora é maior ou menor que da entrada não inversora.

Aplicações não-lineares

- As aplicações não lineares de AO usam um dispositivo chamado Comparador.
- Ele compara a voltagem das duas entradas e fornece uma saída positiva ou negativa dependendo se o sinal de entrada inversora é maior ou menor que da entrada não inversora.
- A figura 2 mostra o circuito de um comparador.

Figura 3: Circuito comparador

Aplicações Lineares

 As aplicações lineares são caracterizadas por uma retroalimentação, da saida para entrada inversora.
 Regras de Ouro

Aplicações Lineares

 As aplicações lineares são caracterizadas por uma retroalimentação, da saida para entrada inversora.
 Regras de Ouro

 1) A saida será de tal forma que a diferença de voltagem entre as entradas seja zero. O valor de tensão na saída (fornecido pelo AmpOp), será o necessário para que as a diferença de voltagem entre as entradas seja igual a zero.

Aplicações Lineares

 As aplicações lineares são caracterizadas por uma retroalimentação, da saida para entrada inversora.
 Regras de Ouro

- 1) A saida será de tal forma que a diferença de voltagem entre as entradas seja zero. O valor de tensão na saída (fornecido pelo AmpOp), será o necessário para que as a diferença de voltagem entre as entradas seja igual a zero.
- 2) N\u00e3o flui corrente nas entradas do AO. As entradas de um AmpOp n\u00e3o "puxam"corrente (imped\u00e1ncia de entrada infinita)

 Um sinal é aplicado na entrada inversora através de um resistor R₁ e uma retroalimentação entre esta entrada e a saída é feita atraves de um resistor R_f.

- Um sinal é aplicado na entrada inversora através de um resistor R₁ e uma retroalimentação entre esta entrada e a saída é feita atraves de um resistor R_f.
- A figura 3 mostra o diagrama do amplificador inversor.

Figura 4: Amplificador inversor

- Um sinal é aplicado na entrada inversora através de um resistor R₁ e uma retroalimentação entre esta entrada e a saída é feita atraves de um resistor R_f.
- A figura 3 mostra o diagrama do amplificador inversor.

Figura 4: Amplificador inversor

• Aplicando a lei Ohm na entrada obtemos,

$$V_{in}-V_A=R_1I_1 \tag{3}$$

- Um sinal é aplicado na entrada inversora através de um resistor R₁ e uma retroalimentação entre esta entrada e a saída é feita atraves de um resistor R_f.
- A figura 3 mostra o diagrama do amplificador inversor.

Figura 4: Amplificador inversor

Aplicando a lei Ohm na entrada obtemos,

$$V_{in}-V_A=R_1I_1 \tag{3}$$

e na saida obtemos

$$V_A - V_{out} = R_f I_f \tag{4}$$

• Pela regra 1, $V_A = 0$, assim,

$$I_1 = \frac{V_{in}}{R_1}$$

$$V_{out} = -R_f I_f$$
(5)

$$V_{out} = -R_f I_f \tag{6}$$

• Pela regra 1, $V_A = 0$, assim,

$$I_1 = \frac{V_{in}}{R_1} \tag{5}$$

$$V_{out} = -R_f I_f \tag{6}$$

• Pela regra 2, $I_1 = I_f$, então

$$V_{out} = -\frac{R_f}{R_1} V_{in} \tag{7}$$

• Pela regra 1, $V_A = 0$, assim,

$$I_1 = \frac{V_{in}}{R_1} \tag{5}$$

$$V_{out} = -R_f I_f \tag{6}$$

• Pela regra 2, $I_1 = I_f$, então

$$V_{out} = -\frac{R_f}{R_1} V_{in} \tag{7}$$

 Assim a saida é proporcional a entrada tendo como constante de proporcionalidade a razão entre as resistência.

Amplificador Não inversor

 No amplificador não inversor o sinal de entrada é aplicado diretamente na entrada não inversora (+) como é mostrado na figura 4.

Figura 5: Amplificador não inversor

Amplificador Não inversor

 No amplificador não inversor o sinal de entrada é aplicado diretamente na entrada não inversora (+) como é mostrado na figura 4.

Figura 5: Amplificador não inversor

 Aplicando a lei de Ohm e as regras de ouro como no caso anterior podemos mostrar que:

$$V_{out} = (1 + \frac{R_2}{R_1})V_{in}$$
 (8)

Somador

• Um circuito somador é mostrado na figura 4.

Figura 6: Circuito somador

Somador

Um circuito somador é mostrado na figura 4.

Figura 6: Circuito somador

 A versão mostrada aqui possiu tres entradas mas qualquer número é possível. As três correntes na entrada somam-se de modo que I_f = I₁ + I₂ + I₃. Assim a lei das malhas fornece:

$$V_{out} = -(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3).$$
 (9)

Um circuito somador é mostrado na figura 4.

Figura 6: Circuito somador

 A versão mostrada aqui possiu tres entradas mas qualquer número é possível. As três correntes na entrada somam-se de modo que I_f = I₁ + I₂ + I₃. Assim a lei das malhas fornece:

$$V_{out} = -(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3).$$
 (9)

 Se quisermos a simples soma sem qualquer peso, basta usar todos os resistores iguais.

Figura 7: Integrador e diferenciador com AmpOp.

$$V_{out} = \frac{1}{RC} \int V_{in}(t)dt$$

$$V_{out} = RC \frac{dV_{in}}{dt}$$
(10)

$$V_{out} = RC \frac{dV_{in}}{dt} \tag{11}$$

Figura 8:

