Linear Algebra 1

Exercise Number 15

- 1) If $u = (x_1, x_2)$ and $v = (y_1, y_2)$, prove that $(u, v) = x_1y_1 x_1y_2 x_2y_1 + 3x_2y_2$ defines an inner product on \mathbb{R}^2 .
- 2) Consider \mathbb{R}^3 with the standard inner product. For the vector u = (2, 1, -1), find a vector in the direction of u which have norm 1.
 - 3) Let V be an inner product space. Prove:
- a) $||v|| \ge 0$, and ||v|| = 0 if and only if v = 0.
- b) $||u+v|| \le ||u|| + ||v||$. (this is the triangular inequality)
- c) $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2).$
- 4) Consider \mathbb{R}^5 with the standard inner product. Let W denote the subspace of \mathbb{R}^5 which is spanned by the vectors (1, 2, 3, -1, 2) and (2, 4, 7, 2, -1). Find a basis for W^{\perp} .
- **5)** Let $u = (z_1, z_2)$ and $v = (w_1, w_2)$ be two vector in the vector space \mathbb{C}^2 over the field \mathbb{C} . Prove that

$$(u,v) = z_1 \bar{w}_1 + (1+i)z_1 \bar{w}_2 + (1-i)z_2 \bar{w}_1 + 3z_2 \bar{w}_2$$

defines an inner product. Compute the norm of the vector (1 - 2i, 2 + 3i) with respect to this inner product.

- **6)** Find an orthonormal basis for the following vector spaces with respect to the indicated inner product:
- a) $V = M_{2\times 2}(\mathbf{R})$ with respect to $(A, B) = tr(B^t A)$.
- b) $V = \{(a, b, c, d) : a + b + c + d = 0\}$ with respect to the standard inner product in \mathbf{R}^4 .
- c) $W = \operatorname{Sp}\{(1, i, 1), (1 + i, 0, 2)\} \subset \mathbf{C}^3$ with respect to the standard inner product in \mathbf{C}^3 .
- 7) (Bessel inequality) Let $\{w_1, \ldots, w_n\}$ be an orthonormal set of vectors in V. Prove that for all $v \in V$

$$\sum_{i=1}^{n} |(w_i, v)|^2 \le ||v||^2$$

Hint: Write $v = w + \widetilde{w}$ where $w = \operatorname{Sp}\{w_1, \dots, w_n\}$ and $\widetilde{w} = \operatorname{Sp}\{w_1, \dots, w_n\}^{\perp}$.

8) Prove that if $\{w_1, \ldots, w_n\}$ is an orthonormal set of vectors in V, such that $\sum_{i=1}^n |(w_i, v)|^2 = ||v||^2$ for all $v \in V$, then $\{w_1, \ldots, w_n\}$ is a basis for V.

- **9)** Let $W \subset V$ be a subspace of V. Let $v \in V$ be a vector which satisfy $(v, w) + (w, v) \leq (w, w)$ for all $w \in W$. Prove that (v, w) = 0 for all $w \in W$.
- 10) Let V be an inner product vector space. Define on V the distance function d(u, v) between the two vectors $u, v \in V$ by d(u, v) = ||u v||.
- a) Let $V = \mathbb{R}^2$ with the standard inner product. If $u = (x_1, y_1)$ and $v = (x_2, y_2)$, write the distance d(u, v) in terms of the coordinates x_i, y_i .
- b) Prove that $d(u, v) \ge 0$, and d(u, v) = 0 if and only if u = v.
- c) For any two vectors d(u, v) = d(v, u).
- d) $d(u, v) \le d(u, w) + d(w, v)$ this is the triangular inequality.
- 11) Let V be an inner product vector space over the field F. Let $T:V\to F$ be a linear transformation. Prove that there is a vector $u_0\in V$ such that $Tv=(v,u_0)$ for all $v\in V$.