



# **Model Optimization and Tuning Phase Template**

| Date          | 15 July 2024                                         |
|---------------|------------------------------------------------------|
| Team ID       | SWTID1720086535                                      |
| Project Title | Ecommerce Shipping Prediction Using Machine Learning |
| Maximum Marks | 10 Marks                                             |

### **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

#### **Hyperparameter Tuning Documentation (6 Marks):**

| Model                      | Tuned Hyperparameters                                                                                                                                                                                                                                                                                                                                                                                                            | Optimal Values                                                                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RandomFore<br>stClassifier | <pre>#HyperParameter Optimisation for Random Forest  rf = RandomForestClassifier() rf.param.grid = {     'n_estimators': [200,300,500],     'criterion': ['entropy', 'gini'],     'max_depth': [7,8,60,80,100],     'max_features': ['sqrt', 'log2'] }  rf_cv= GridSearchcV(rf,rf_param_grid, cv=7, scoring="accuracy", n_jobs==1, verbose=3) rf_cv.fit(xnorm_train_y_train) print("Best Score:" + str(rf_cv.best_score[))</pre> |                                                                                                                                                             |
| SVM                        | #HyperParameter Optimisation for SNM  Svc = svm.SVC(random_state=1234)  params = {                                                                                                                                                                                                                                                                                                                                               | Fitting 5 folds for each of 24 candidates, totalling 120 fits SNC(G=6, gamma=2, random_state=1234) {'c': 6, 'gamma': 2, 'kernel': 'rbf'} 0.6659045470650132 |





```
tting 5 folds for each of 54 candidates, totalling 200 fits
                                                                                                                                                                                            XBClassifier(base_score=None, booster=None, callbacks=None,
                                                                                                                                                                                                   colsample bylevel=None, colsample bynode=None,
                                                                                                                                                                                                   oilsample bytree=0.6, device=None, early_stopping_rounds=None,
                                                                                                                                                                                                   enable categorical-false, enal metric-lione, feature types-lione,
                                                                                                                                                                                                   gama=2.0, grow_policy=Nore, importance_type=Nore,
                                                                                                                                                                                                   interaction_constraints=None, learning_rate=0.5, nax_bin=None,
                                                                                                                                                                                                   nax cat threshold=lone, max cat to onehot=lone,
                                                xgb = XGBClassifier(learning_rate=0.5, n_estimators=100, objective='binary:logistic', nthread=3)
                                                                                                                                                                                                   nax delta step=line, nax depth=5, nax leaves=line,
XGBoost
                                                fitmodel = GridSearchCV(xgb, param_grid=params, cv=5, refit=True, scoring="accuracy", n_jobs=-1, verbose=3)
                                                                                                                                                                                                   min child weight=20, missing=nan, monotone constraints=Hone,
                                                                                                                                                                                                   nulti_strategy=lone, n_estinators=100, n_jobs=lone, nthread=3,
                                                fitmodel.fit(xnorm_train, y_train)
                                                                                                                                                                                                   nun parallel tree-None, ...) ('colsample bytree': 0.6, 'gamma': 2.0, 'max_depth': 5, 'min_child_weight': 20} 0.6751957653044054
                                                print(fitmodel.best_estimator_, fitmodel.best_params_, fitmodel.best_score_)
                                                                                                                                                                                            Fitting 5 folds for each of 15 candidates, totalling 75 fits
                                                 lg_param_grid = {
                                                                                                                                                                                                                         GridSearchCV
                                                       'Cs': [6,8,10,15,20],
                                                                                                                                                                                                            estimator: LogisticRegressionCV
                                                                                                                                                                                                                  LogisticRegressionCV
                                                                                                                                                                                            LogisticRegressionCV(n_jobs=-1, random_state=1234)
 Logistic
                                                 lg_cv= GridSearchCV(lg,lg_param_grid,cv=5, scoring="accuracy", n_jobs=-1, verbose=3)
Regression
                                                 lg cv.fit(xnorm train,y train)
 CV
                                                                                                                                                                                            Optimal parameters:{'cs': 8, 'max_iter': 60}
Accuracy on test set:0.6359090909090909
```





# **Performance Metrics Comparison Report (2 Marks):**

|   | Name                   | Accuracy | F1_score | Recall | Precision |
|---|------------------------|----------|----------|--------|-----------|
| 0 | logistic regression    | 64.05    | 69.64    | 69.56  | 69.72     |
| 1 | logistic regression CV | 63.77    | 70.27    | 72.24  | 68.41     |
| 2 | XGBoost                | 64.64    | 70.42    | 71.01  | 69.83     |
| 3 | ridge classifier       | 65.23    | 68.76    | 64.57  | 73.54     |
| 4 | knn                    | 63.41    | 68.71    | 67.79  | 69.66     |
| 5 | random forest          | 65.23    | 68.76    | 64.57  | 73.54     |

# **Final Model Selection Justification (2 Marks):**

| Final Model            | Reasoning                                                                                                                                                                                                                                                                                                             |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RandomForestClassifier | The RandomForestClassifier was chosen as the final model due to its superior accuracy after hyperparameter tuning, achieving an optimized accuracy of 0.66 compared to the baseline accuracy of 0.64. The model also demonstrates robustness and generalization capabilities suitable for the project's requirements. |  |  |