PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN APUNTE IIC2223

Teoría de Autómatas y Lenguajes Formales

Autor Cristóbal Rojas En base a apuntes de Prof. Cristian RIVEROS

21 de noviembre de 2022

Índice

1.	Lenguajes regulares			2
	1.1. Palabras y autómatas			2
	1.2. Construcciones de autómatas			2
	1.3. No-determinismo			2
	1.4. Expresiones regulares			2
	1.5. Autómatas con transiciones sin lectura			2
	1.6. Teorema de Kleene			2
2.	Propiedades de lenguajes regulares			3
	2.1. Lema de bombeo			٠
	2.2. Minimización de autómatas			3
	2.3. Teorema de Myhill-Nerode			
	2.4. Autómatas en dos direcciones		•	3
3	Algoritmos para lenguajes regulares			_
υ.	3.1. Evaluación de expresiones regulares			4
	3.2. Transductores			4
	3.3. Análisis léxico			
	3.4. Algoritmo de Knuth-Morris-Prat			4
	5.4. Algoritino de Kilutii-Morris-Frat	•	•	4
4.	Lenguajes libres de contexto			Ę
	4.1. Gramáticas libres de contexto			Ę
	4.2. Simplificación de gramáticas			Ę
	4.3. Forma normal de Chomsky			Ę
	4.4. Lema de bombeo para lenguajes libres de contexto			Ę
	4.5. Algoritmo CKY			Ę
5	Algoritmos para lenguajes libres de contexto			í
υ.	5.1. Autómatas apiladores			(
	5.1.1. Versión normal			(
	5.1.2. Versión alternativa			8
	5.2. Autómatas apiladores vs gramáticas libres de contexto			10
	5.2.1. Desde CFG a PDA			11
	5.2.2. Desde PDA a CFG			12
	5.3. Parsing: cómputo de First y Follow			14
	5.3.1. Prefijos			
	5.3.2. First y Follow			
	5.3.3. Calcular First			
	5.3.4. Calcular Follow			19
	5.4. Gramáticas LL			21
	5.4.1. Definición Gramáticas LL			21
	5.4.2. Caracterización LL			23
	5.5. Parsing con gramáticas LL(k)			25
	5.5.1. Algunas consideraciones			25
	5.5.2. Parsing de LL(k)			28
6.	Extracción de información			32
٠.	3.1. Extracción			32
	6.2 Enumeración de resultados: Autómatas con anotaciones	•	•	32

1. Lenguajes regulares

- 1.1. Palabras y autómatas
- 1.2. Construcciones de autómatas
- 1.3. No-determinismo
- 1.4. Expresiones regulares
- 1.5. Autómatas con transiciones sin lectura
- 1.6. Teorema de Kleene

2. Propiedades de lenguajes regulares

- 2.1. Lema de bombeo
- 2.2. Minimización de autómatas
- 2.3. Teorema de Myhill-Nerode
- 2.4. Autómatas en dos direcciones

- 3. Algoritmos para lenguajes regulares
- 3.1. Evaluación de expresiones regulares
- 3.2. Transductores
- 3.3. Análisis léxico
- 3.4. Algoritmo de Knuth-Morris-Prat

- 4. Lenguajes libres de contexto
- 4.1. Gramáticas libres de contexto
- 4.2. Simplificación de gramáticas
- 4.3. Forma normal de Chomsky
- 4.4. Lema de bombeo para lenguajes libres de contexto
- 4.5. Algoritmo CKY

5. Algoritmos para lenguajes libres de contexto

5.1. Autómatas apiladores

5.1.1. Versión normal

Figura 1: Idea de un autómata apilador

Definición. Un autómata apilador (*PushDown Automata*, PDA) es una estructura:

$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$

- Q es un conjunto finito de **estados**.
- Σ es el alfabeto del **input**.
- $q_0 \in Q$ es el estado inicial.
- \bullet F es el conjunto de estados **finales**.
- Γ es el alfabeto de **stack**.
- $\bot \in \Gamma$ es el símbolo **inicial del stack** (fondo).
- $\Delta \subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ es una relación finita de transición.

Intuitivamente, la transición:

$$((p, a, A), (q, B_1 B_2 \cdots B_k)) \in \Delta$$

si el autómata apilador está:

- ullet en el estado p, leyendo a, y en el tope del stack hay una A, entonces:
- cambia al estado q, y modifico el tope A por $B_1B_2\cdots B_k$.

Intuitivamente, la transición en vacío:

$$((p,\epsilon,A),(q,B_1B_2\cdots B_k))\in\Delta$$

si el autómata apilador está:

- \bullet en el estado p, sin lectura de una letra, y en el tope del stack hay una A, entonces:
- cambia al estado q, y modifico el tope A por $B_1B_2\cdots B_k$.

Ejemplo 5.1

$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, \{q_f\})$$

• $Q = \{q_0, q_1, q_f\}, \ \Sigma = \{a, b\}, \ \Gamma = \{A, \bot\} \ \text{y } \Delta$:

$$(q_0, a, \bot, q_0, A \bot) \quad q_0 \bot \xrightarrow{a} q_0 A \bot$$

$$(q_0, a, A, q_0, AA) \quad q_0 A \xrightarrow{a} q_0 AA$$

$$(q_0, b, A, q_1, \epsilon) \quad q_0 A \xrightarrow{b} q_1$$

$$(q_1, b, A, q_1, \epsilon) \quad q_1 A \xrightarrow{b} q_1$$

$$(q_1, \epsilon, \bot, q_f, \epsilon) \quad q_1 \bot \xrightarrow{\epsilon} q_f$$

Notación. Dada una palabra $A_1A_2...A_k \in \Gamma^+$ decimos que:

- $A_1 A_2 \dots A_k$ es un stack (contenido),
- A_1 es el **tope** del stack y
- $A_2 \dots A_k$ es la **cola** del stack.

Definición. Una configuración de \mathcal{P} es una tupla $(q \cdot \gamma, w) \in (Q \cdot \Gamma^*, \Sigma^*)$ tal que:

- \bullet q es el estado actual.
- γ es el contenido del stack.
- \bullet w es el contenido del input.

Decimos que una configuración:

$$(q \cdot \gamma, w) \in (Q \cdot \Gamma^*, \Sigma^*)$$

- es inicial si $q \cdot \gamma = q_0 \cdot \bot$.
- es final si $q \cdot \gamma = q_f \cdot \epsilon$ con $q_f \in F$ y $w = \epsilon$.

Definición. Se define la relación $\vdash_{\mathcal{P}}$ de **siguiente-paso** entre configuraciones de \mathcal{P} :

si, y sólo si, existe una transición $(q_1, a, A, q_2, \alpha) \in \Delta$ y $\gamma \in \Gamma^*$ tal que:

- $\bullet \ w_1 = a \cdot w_2$
- $\gamma_1 = A \cdot \gamma$

Se define $\vdash_{\mathcal{P}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{P}}$. En otras palabras:

 $(q_1\gamma_1,w_1)\vdash_{\mathcal{P}}^* (q_2\gamma_2,w_2)$ si uno puede ir de $(q_1\gamma_1,w_1)$ a $(q_2\gamma_2,w_2)$ en 0 o más pasos.

Ejemplo 5.2

Para la palabra w = aaabbb, tenemos la ejecución:

$$egin{array}{c|c} q_0\,A\,\bot & \mathsf{a} \ q_0\,A\,A\,\bot & \mathsf{a} \ q_0\,A\,A\,A\,\bot & \mathsf{b} \ q_1\,A\,\bot & \mathsf{b} \ q_1\,\bot & \mathsf{b} \ q_f & \epsilon \ \end{array}$$

 $q_0 \perp$

Definiciones. \mathcal{P} acepta w si, y sólo si, $(q_0 \perp, w) \vdash_{\mathcal{P}}^* (q_f, \epsilon)$ para algún $q_f \in F$. El **lenguaje aceptado** por \mathcal{P} se define como:

$$\mathcal{L}(\mathcal{P}) = \{ w \in \Sigma^* | \mathcal{P} \text{ acepta } w \}$$

Ejemplo 5.3

El lenguaje aceptado por el PDA utilizado en los ejemplos anteriores es $\mathcal{L}(\mathcal{P}) = \{a^n b^n \mid n \geq 0\}.$

5.1.2. Versión alternativa

Esta definición de autómata apilador es poco común pero trae algunas ventajas:

- Es un modelo que ayuda a entender mejor los algoritmos de evaluación para gramáticas.
- Es un modelo menos estándar pero mucho más sencillo.
- Al profe Cristian le gustó y lo encontró interesante.

Definición. Un PDA alternativo es una estructura:

$$\mathcal{D} = (Q, \Sigma, \Delta, q_0, F)$$

- Q es un conjunto finito de **estados**.
- Σ es el alfabeto del **input**.
- $q_0 \in Q$ es el estado inicial.
- F es el conjunto de estados **finales**.
- $\Delta \subseteq Q^+ \times (\Sigma \cup \{\epsilon\}) \times Q^*$ es una relación finita de transición.

Intuitivamente, la transición:

$$\left(A_1 \dots A_i, a, B_1 \dots B_j\right) \in \Delta$$

si el autómata apilador tiene:

• $A_1 \dots A_i$ en el tope del stack y leyendo a,

entonces:

• cambia el tope $A_1 \dots A_i$ por $B_1 \dots B_j$.

En este tipo de autómata apilador, no hay diferencia entre estados y alfabeto del stack.

Definición. Una configuración de \mathcal{D} es una tupla

$$(q_1 \dots q_k, w) \in (Q^+, \Sigma^*)$$

tal que:

- $q_1 \dots q_k$ es el contenido del stack con q_1 el tope del stack.
- \bullet w es el contenido del input.

Decimos que una configuración:

- (q_0, w) es inicial.
- (Q_f, ϵ) es final si $q_f \in F$.

Definición. Se define la relación $\vdash_{\mathcal{D}}$ de **siguiente-paso** entre configuraciones de \mathcal{D} :

si, y sólo si, existe una transición $(\alpha, a, \beta) \in \Delta$ y $\gamma \in \Gamma^*$ tal que:

- $\bullet \ w_1 = a \cdot w_2$

Se define $\vdash_{\mathcal{D}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{D}}$.

Definiciones. \mathcal{D} acepta w si, y sólo si, $(q_0, w) \vdash_{\mathcal{D}}^* (q_f, \epsilon)$ para algún $q_f \in F$. Además, el **lenguaje** aceptado por \mathcal{D} se define como:

$$\mathcal{L}(\mathcal{D}) = \{ w \in \Sigma^* || \mathcal{D} \text{ acepta } w \}$$

Ejemplo 5.4

$$\mathcal{D} = (Q, \{a, b\}, \Delta, q_0, F)$$

• $Q = \{ \bot, q_0, q_1, q_f \}$ y Δ :

$$\mathcal{L}(\mathcal{D}) = \{ a^n b^n \mid n \ge 1 \}$$

Teorema 1

Para todo autómata apilador \mathcal{P} existe un autómata apilador alternativo \mathcal{D} , y viceversa, tal que:

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{D})$$

El teorema anterior nos dice que podemos usar ambos modelos de manera equivalente.

5.2. Autómatas apiladores vs gramáticas libres de contexto

¿En qué se parecen CFG a PDA?

Figura 2: Gramáticas vs Autómatas apiladores

Teorema 2

Todo lenguaje libre de contexto puede ser descrito equivalentemente por:

- ◆ Una gramática libre de contexto (CFG).
- Un autómata apilador (PDA).

5.2.1. Desde CFG a PDA

Partimos enunciado un teorema:

Teorema 3

Para toda gramática libre de contexto \mathcal{G} , existe un **autómata apilador alternativo** \mathcal{D} , tal que:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{D})$$

Construcción \mathcal{D} desde \mathcal{G} . Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG. Construimos un PDA alternativo \mathcal{D} que acepta $\mathcal{L}(\mathcal{G})$:

$$\mathcal{D} = \left(V \cup \Sigma \cup \{q_0, q_f\}, \Sigma, \Delta, q_0, \{q_f\}\right)$$

La relación de transición Δ se define como:

$$\begin{array}{lll} \Delta & = & \{(q_0,\epsilon,S\cdot q_f)\} & & \cup \\ & & \{(X,\epsilon,\gamma)\mid X\to\gamma\in P\} & \cup & \textbf{(Expandir)} \\ & & \{(a,a,\epsilon)\mid a\in\Sigma\} & \textbf{(Reducir)} \end{array}$$

Demostración $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{D})$. Debemos demostrar dos direcciones: $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{D})$ y $\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$.

Demostración $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{D})$. Para cada $w \in \mathcal{L}(\mathcal{G})$ debemos encontrar una ejecución de aceptación de \mathcal{D} sobre w. ¿Cómo encontramos esta ejecución? La idea es que para cada árbol de derivación \mathcal{T} de \mathcal{G} sobre w, construimos una ejecución de \mathcal{D} sobre w que recorre el árbol \mathcal{T} en **profundidad** (DFS). Por tanto, debemos usar **inducción** sobre la altura del árbol \mathcal{T} .

Hipótesis de inducción. Para todo árbol de derivación \mathcal{T} de \mathcal{G} con altura h tal que:

- la raíz de \mathcal{T} es X, y
- \bullet \mathcal{T} produce la palabra w

entonces $(X \cdot \gamma, w) \vdash_{\mathcal{D}}^* (\gamma, \epsilon)$ para todo $\gamma \in Q^+$.

Caso base: h = 1. Si \mathcal{T} tiene altura 1, entonces:

- \mathcal{T} produce la palabra w = a para algún $a \in \Sigma$ y
- \mathcal{T} consiste de un nodo X y un hijo a con $X \to a$.

Entonces para todo $\gamma \in Q^+$:

$$(X \cdot \gamma, a) \vdash_{\mathcal{D}} (a \cdot \gamma, a) \vdash_{\mathcal{D}} (\gamma, \epsilon)$$

es una ejecución de \mathcal{D} sobre a.

Caso inductivo: h = n. Suponemos que el árbol de derivación \mathcal{T} de \mathcal{G} tiene altura n tal que:

- la raíz de \mathcal{T} es X, y
- \mathcal{T} produce la palabra w.

Sin pérdida de generalidad, suponga que \mathcal{T} es de la forma:

donde $w = u \cdot v$ y $X \to YZ$. Por HI, se tiene que para todo $\gamma_1, \gamma_2 \in Q^+$:

$$(Y \cdot \gamma_1, u) \vdash_{\mathcal{D}}^* (\gamma_1, \epsilon)$$
$$(Z \cdot \gamma_2, v) \vdash_{\mathcal{D}}^* (\gamma_2, \epsilon)$$

Para $\gamma \in Q^+$ construimos la siguiente ejecución de \mathcal{D} sobre w = uv:

$$(X \cdot \gamma, uv) \vdash_{\mathcal{D}} (YZ \cdot \gamma, uv) \vdash_{\mathcal{D}}^{*} (Z \cdot \gamma, v) \vdash_{\mathcal{D}}^{*} (\gamma, \epsilon)$$

La demostración de $\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$ se deja como ejercicio propuesto al lector.

5.2.2. Desde PDA a CFG

Partimos enunciando el siguiente teorema:

Teorema 4

Para todo autómata apilador \mathcal{P} , existe una gramática libre de contexto \mathcal{G} tal que:

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{G})$$

Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{G})$. Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA (normal). Los pasos a seguir son:

- 1. Convertir \mathcal{P} a un PDA \mathcal{P}' con **UN solo estado**.
- 2. Convertir \mathcal{P}' a una gramática libre de contexto \mathcal{G} .

Paso 1. Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA. Podemos analizar:

- ¿Por qué NO necesitamos la información de los estados?
- ¿Cómo guardamos la información de los estados en el stack?

Esto conlleva a la siguiente pregunta: Si el PDA está en el estado p y en el tope del stack hay una A, ¿a cuál estado llegaré al remover A del stack?

La solución a esta pregunta es que podemos **adivinar** (no-determinismo) el estado que vamos a llegar cuando removamos A del stack.

Sin pérdida de generalidad, podemos asumir que

1. Todas las transiciones son de la forma:

$$qA \xrightarrow{c} pB_1B_2$$
 o $qA \xrightarrow{c} p\epsilon$

con $c \in (\Sigma \cup \{\epsilon\})$.

2. Existe $q_f \in Q$ tal que si $w \in \mathcal{L}(\mathcal{P})$ entonces:

$$(q_0\perp, w) \vdash_{\mathcal{D}}^* (q_f, \epsilon)$$

Estos dos puntos nos aseguran que siempre llegamos al **mismo estado** q_f . Luego, construimos el autómata apilador \mathcal{P}' con **un solo estado**:

$$\mathcal{P}' = (\{q\}, \Sigma, \Gamma', \Delta', \{q\}, \bot', \{q\})$$

 $\bullet \ \Gamma' = Q \times \Gamma \times Q.$

" $(p, A, q) \in \Gamma'$ si desde p leyendo A en el tope del stack llegamos a q al hacer pop de A".

• $\bot' = (q_0, \bot, q_f).$

"El autómata parte en q_0 y al hacer pop de \perp llegará a q_f ".

• Si $pA \xrightarrow{c} p'B_1B_2 \in \Delta$ con $c \in (\Sigma \cup \{\epsilon\})$, entonces **para todo** $p_1, p_2 \in Q$:

$$q(p, A, p_2) \xrightarrow{c} q(p', B_1, p_1)(p_1, B_2, p_2) \in \Delta'$$

• Si $pA \xrightarrow{c} p' \in \Delta$ con $c \in (\Sigma \cup \{\epsilon\})$, entonces:

$$q(p, A, p') \stackrel{c}{\rightarrow} q \in \Delta'$$

Hipótesis de inducción (en el número de pasos n). Para todo $p, p' \in Q, A \in \Gamma$ y $w \in \Sigma^*$ se cumple que:

$$(pA, w) \vdash_{\mathcal{D}}^{n} (p', \epsilon)$$
 si, y solo si, $(q(p, A, p'), w) \vdash_{\mathcal{D}'}^{n} (q, \epsilon)$

donde $\vdash_{\mathcal{P}}^{n}$ es la relación de **siguiente-paso** de \mathcal{P} *n*-veces.

Si demostramos esta hipótesis, habremos demostrado que $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$. ¡Por qué?

Caso base: n=1. Para todo $p,p'\in Q,$ y $A\in \Gamma$ se cumple que:

$$(pA, c) \vdash_{\mathcal{P}} (p', \epsilon)$$
 si, y solo si, $(q(p, A, p'), c) \vdash_{\mathcal{P}'} (q, \epsilon)$

para todo $c \in (\Sigma \cup \{\epsilon\})$.

Caso inductivo. Sin pérdida de generalidad, suponga que $pA \stackrel{a}{\to} p_1 A_1 A_2$ y w = auv, entonces

$$(pA, \underbrace{auv}_{w}) \vdash_{\mathcal{P}}^{n} (p', \epsilon) \text{ ssi } (pA, auv) \vdash_{\mathcal{P}} (p_{1}A_{1}A_{2}, uv) \vdash_{\mathcal{P}}^{i} (p_{2}A_{2}, v) \vdash_{\mathcal{P}}^{j} (p', \epsilon)$$

ssi
$$(p_1A_1, u) \vdash_{\mathcal{P}}^i (p_2, \epsilon)$$
 y $(p_2A_2, v) \vdash_{\mathcal{P}}^j (p', \epsilon)$

ssi
$$(q(p_1, A_1, p_2), u) \vdash_{\mathcal{P}'}^{i} (q, \epsilon) y \quad (q(p_2, A_2, p'), v) \vdash_{\mathcal{P}'}^{j} (q, \epsilon)$$

ssi
$$(q(p, A, p'), auv) \vdash_{\mathcal{P}} (q(p_1, A_1, p_2)(p_2, A_2, q)), uv) \vdash_{\mathcal{P}}^{i+j} (q, \epsilon)$$

Paso 2. Sea $\mathcal{P} = (\{q\}, \Sigma, \Gamma, \Delta, q, \bot, \{q\})$ un PDA con **UN solo estado**. Construimos la gramática:

$$\mathcal{G} = (V, \Sigma, P, \bot)$$

- $V = \Gamma$.
- \bullet Si $qA \overset{\epsilon}{\to} q\alpha \in \Delta$ entonces $A \to \alpha \in P$
- Si $qA \stackrel{a}{\to} q\alpha \in \Delta$ entonces $A \to a\alpha \in P$

La demostración de este paso queda como ejercicio propuesto al lector.

5.3. Parsing: cómputo de First y Follow

Recordatorio. La **sintaxis** de un lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado. Por otro lado, la **semántica** de un lenguaje define el significado de un programa correcto según la sintaxis.

Figura 3: La estructura de un compilador

Lo que se busca es un proceso de **verificación de sintaxis** de un programa, y que entregue la estructura del mismo (árbol de parsing). Consta de tres etapas:

- 1. Análisis léxico (Lexer).
- 2. Análisis sintático (Parser).
- 3. Análisis semántico.

En una sección anterior vimos el Lexer. Ahora, veremos como hacer el Parser.

Informalmente: "dado una secuencia de tokens w' y una gramática \mathcal{G} , construir un árbol de derivación (parsing) de \mathcal{G} para w".

Con el **árbol de derivación** habremos verificado la sintaxis y obtenido la estructura.

Ejemplo 5.5: Parsing de gramática

$$E \rightarrow (E+E) \mid (E*E) \mid \text{num}$$

Para un input w = ((43 + 56) * 27):

lacktriangle Convertimos w en una secuencia de **tokens**:

$$w' = ((\text{num} + \text{num}) * \text{num})$$

 \bullet Construimos un árbol de **parsing** para w':

Problema de parsing. Dado una palabra w y dado una gramática \mathcal{G} , generar un árbol de parsing \mathcal{T} de \mathcal{G} para w. ¿Ya sabemos resolver este problema? El algoritmo CKY nos permite hacer esto, pero:

- es impracticable para grandes inputs.
- múltiples pasadas sobre el input.

Deseamos hacer parsing en **tiempo lineal** en el tamaño del input. ¿Quién nos puede rescatar ante tal problema? Efectivamente, los autómatas apiladores.

Recordemos que, para una gramática $\mathcal{G} = (V, \Sigma, P, S)$ podemos construir un PDA alternativo \mathcal{D} que acepta $\mathcal{L}(\mathcal{G})$:

$$\mathcal{D} = \left(V \cup \Sigma \cup \{q_0, q_f\}, \Sigma, \Delta, q_0, \{q_f\}\right)$$

La relación de transición Δ se define como:

$$\begin{array}{lll} \Delta & = & \{(q_0, \epsilon, S \cdot q_f)\} & & \cup \\ & & \{(X, \epsilon, \gamma) \mid X \to \gamma \in P\} & \cup & \textbf{(Expandir)} \\ & & \{(a, a, \epsilon) \mid a \in \Sigma\} & \textbf{(Reducir)} \end{array}$$

Con esto, nos encontramos con otro **problema**: hay muchas alternativas para **expandir**. ¿Cómo elegir entonces la siguiente producción para expandir? Por ejemplo, si tenemos la regla $X \to \alpha \mid \beta$, ¿cómo elegir entre α o β ?

Queremos elegir la **próxima producción** $X \to \gamma$ de tal manera que, si existe una derivación para el input, entonces $X \to \gamma$ es parte de esa derivación:

si
$$S \stackrel{\star}{\Rightarrow} uX\gamma' \stackrel{\star}{\Rightarrow} uv$$
, entonces $\gamma\gamma' \stackrel{\star}{\Rightarrow} v$

Necesitamos mirar las siguientes letras en v y ver si pueden ser producidas por α o β . Para esto, ocuparemos los conceptos de first y follow.

5.3.1. Prefijos

Definición. Sea Σ un alfabeto finito. Para un $k \geq 0$, se define

$$\Sigma^{\leq k} = \bigcup_{i=0}^{k} \Sigma^{i}$$

$$\Sigma^{\leq k}_{\#} = \Sigma^{\leq k} \cup (\Sigma^{\leq k-1} \cdot \{\#\})$$

Ejemplo 5.6

Para $\Sigma = \{a, b\}$:

- $\bullet \ \Sigma^{\leq 2} = \{\epsilon, a, b, aa, ab, ba, bb\}$
- $\bullet \ \Sigma_{\#}^{\leq 2} = \{\epsilon, a, b, aa, ab, ba, bb\} \cup \{\#, a\#, b\#\}$

El símbolo # representará un EOF (End Of File), marcando el fin de una palabra.

Definición. Para una palabra $w = a_1 a_2 \dots a_n \in \Sigma^*$ se define el k-prefijo de w como:

$$w|_k = \begin{cases} a_1 \dots a_n & \text{si } n \leq k \\ a_1 \dots a_k & \text{si } k < n \end{cases}$$

Definimos la k-concatenación \odot_k entre strings $u, v \in \Sigma$ como:

$$u \odot_k v = (u \cdot v)|_k$$

Ejemplo 5.7

Sea $\Sigma = \{a, b\}$, entonces:

- $(abaa)|_2 = ab$ $(ab)|_2 = ab$ $(a)|_2 = a$ $(\epsilon)|_2 = \epsilon$ $a \odot_2 baa = (abaa)|_2 = ab$
- $bba \odot_2 a = (bbaa)|_2 = bb$
- $b \odot_2 \epsilon = (b)|_2 = b$

Extendemos estas operaciones para lenguajes $L, L_1, L_2 \subseteq \Sigma^*$ como:

$$L_k = \{ w|_k \mid w \in L \}$$

$$L_1 \odot_k L_2 = \{ w_1 \odot_k w_2 \mid w_1 \in L_1 \text{ y } w_2 \in L_2 \}$$

Ejemplo 5.8

- $((ab)^*)|_3 = {\epsilon, ab, aba}$
- $\bullet (a)^* \odot_3 (ab)^* = \{\epsilon, a, aa, aaa, ab, aba, aab\}$

Podemos decir que los operadores $|_k$ y \odot_k "miran" hasta un prefijo k.

Propiedades. Para todo $k \ge 1$ y $L_1, L_2, L_3 \subseteq \Sigma^*$:

- 1. $L_1 \odot_k (L_2 \odot_k L_3) = (L_1 \odot_k L_2) \odot_k L_3$
- 2. $L_1 \odot_k \{\epsilon\} = \{\epsilon\} \odot_k L_1 = L_1|_k$
- 3. $(L_1L_2)|_k = L_1|_k \odot_k L_2|_k$
- 4. $L_1 \odot_k (L_2 \cup L_3) = (L_1 \odot_k L_2) \cup (L_1 \odot_k L_3)$

La demostración de estas propiedades queda como ejercicio propuesto al lector.

5.3.2. First y Follow

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \geq 1$.

Definición. Se define la función $first_k : (V \cup \Sigma)^* \to 2^{\sum \le k}$ tal que, para $\gamma \in (V \cup \Sigma)^*$:

$$\mathsf{first}_k(\gamma) = \{u|_k \mid \gamma \stackrel{*}{\Rightarrow} u\}$$

Ejemplo 5.9

$$E \rightarrow (E+E) \mid (E*E) \mid n$$

- $first_1(E) = \{(, n\}$
- $first_2(E) = \{n, (n, (()\}$
- $first_3(E) = \{n, (n+, (n*, ((n, ((())))))\}$

Definición. Se define la función $follow_k: V \to 2^{\Sigma_\#^{\le k}}$ como:

$$\mathtt{follow}_k(X) = \{ w \mid S \stackrel{*}{\Rightarrow} \alpha X \beta \neq w \in \mathtt{first}_k(\beta \#) \}$$

Ejemplo 5.10

$$E \rightarrow (E+E) \mid (E*E) \mid n$$

- follow₁ $(E) = \{\#, +, *, \}$
- follow₂ $(E) = {\#, \#, }), +, *, +(,*(,+n,*n)$

Figura 4: Representación de first y follow

5.3.3. Calcular First

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \geq 1$.

Proposición. Para $X_1, \ldots, X_n \in (V \cup \Sigma)$:

$$extstyle extstyle ext$$

Demostración. Defina $\mathcal{L}(X) = \{w \mid X \stackrel{*}{\Rightarrow} w\}$ y $\mathcal{L}(\gamma) = \{w \mid \gamma \stackrel{*}{\Rightarrow} w\}$. Notar que $\text{first}_k(\gamma) = \mathcal{L}(\gamma)|_k$, por lo tanto, tenemos que

$$\begin{split} \operatorname{first}_k\left(X_1 \dots X_n\right) &= \left. \mathcal{L}\left(X_1 \dots X_n\right)\right|_k \\ &= \left. \left(\mathcal{L}\left(X_1\right) \cdot \mathcal{L}\left(X_2\right) \cdot \dots \cdot \mathcal{L}\left(X_n\right)\right)\right|_k \\ &= \left. \mathcal{L}\left(X_1\right)_k \odot_k \mathcal{L}\left(X_2\right)_k \odot_k \dots \odot_k \mathcal{L}\left(X_n\right)\right|_k \\ &= \operatorname{first}_k\left(X_1\right) \odot_k \dots \odot_k \operatorname{first}_k\left(X_n\right) \end{split}$$

En particular, tenemos que:

$$\operatorname{first}_k(X) = \bigcup_{X o X_1 \dots X_n \in P} \operatorname{first}_k(X_1) \odot_k \dots \odot_k \operatorname{first}_k(X_n)$$

Definimos el siguiente **programa recursivo** para todo $X \in (V \cup \Sigma)$:

$$\begin{split} & \mathtt{first}_k^0(X) := \bigcup_{X \to w \in P} w|_k \\ & \mathtt{first}_k^i(X) := \bigcup_{X \to X_1 \dots X_n \in P} \mathtt{first}_k^{i-1}\left(X_1\right) \odot_k \cdots \odot_k \mathtt{first}_k^{i-1}\left(X_n\right) \end{split}$$

Es fácil ver que:

- first $_k^{i-1}(X) \subseteq \text{first}_k^i(X)$ para todo i > 1.
- Como first_k(X) $\subseteq \Sigma^{\leq k}$, entonces para algún $i \leq k \cdot |\Sigma|^k \cdot |V|$ tendremos:

$$\operatorname{first}_k^j(X) = \operatorname{first}_k^{j+1}(X)$$
 para todo $j \geq i$

Página: 18 de 32

Teorema 5

Sea i^* el menor número tal que $\operatorname{first}_k^{i^*}(X) = \operatorname{first}_k^{i^*+1}(X)$ para todo $X \in V$. Entonces, para todo $X \in V$:

$$\mathtt{first}_k^{i^*}(X) = \mathtt{first}_k(X)$$

La demostración del teorema anterior queda como ejercicio propuesto para el lector. Una idea para la dirección \subseteq , es demostrar por inducción que $\mathtt{first}_k^i(X) \subseteq \mathtt{first}_k(X)$. Para la dirección \supseteq , una idea es demostrar por inducción que si $X \stackrel{*}{\Rightarrow} w$, entonces $w|_k \in \mathtt{first}_k^i(X)$ para algún i.

Algoritmo. A continuación se presenta un algoritmo para calcular $first_k$:

- Input: Gramática $\mathcal{G} = (V, \Sigma, P, S)$ y $k \ge 1$.
- Output: Todos los conjuntos first_k(X) para todo $X \in (V \cup \Sigma)$.

Function CalcularFirst(G, k):

```
\begin{array}{l} \mathbf{foreach} \ a \in \Sigma \ \mathbf{do} \\ \mid \ \mathbf{first}_k^0(a) := \{a\} \\ \mathbf{foreach} \ X \in V \ \mathbf{do} \\ \mid \ \mathbf{first}_k^0(X) := \cup_{X \to w \in P} \ w|_k \\ i := 0 \\ \mathbf{repeat} \\ \mid \ i := i+1 \\ \quad \mathbf{foreach} \ a \in \Sigma \ \mathbf{do} \\ \mid \ \mathbf{first}_k^i(a) := \{a\} \\ \quad \mathbf{foreach} \ X \in V \ \mathbf{do} \\ \mid \ \mathbf{first}_k^i(X) := \bigcup_{X \to X_1 \dots X_n \in P} \mathbf{first}_k^{i-1}(X_1) \odot_k \dots \odot_k \mathbf{first}_k^{i-1}(X_n) \\ \mathbf{until} \ \mathbf{first}_k^i(X) = \mathbf{first}_k^{i-1}(X) \ \mathrm{para} \ \mathrm{todo} \ X \in (V \cup \Sigma) \\ \mathbf{return} \ \{\mathbf{first}_k(X)\}_{X \in (V \cup \Sigma)} \end{array}
```

5.3.4. Calcular Follow

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \geq 1$. Si consideramos $X \neq S$:

$$\begin{split} \mathsf{follow}_k(X) &= \bigcup_{S \stackrel{\star}{\Rightarrow} \alpha X \beta} \mathsf{first}_k(\beta \#) \\ &= \bigcup_{S \stackrel{\star}{\Rightarrow} \alpha Y \beta \Rightarrow \alpha \alpha' X \beta' \beta} \mathsf{first}_k\left(\beta' \beta \#\right) \\ &= \bigcup_{Y \rightarrow \alpha' X \beta'} \bigcup_{S \stackrel{\star}{\Rightarrow} \alpha Y \beta} \mathsf{first}_k\left(\beta' \beta \#\right) \\ &= \bigcup_{Y \rightarrow \alpha' X \beta'} \bigcup_{S \stackrel{\star}{\Rightarrow} \alpha Y \beta} \mathsf{first}_k\left(\beta'\right) \odot_k \mathsf{first}_k(\beta \#) \\ &= \bigcup_{Y \rightarrow \alpha' X \beta'} \mathsf{first}_k\left(\beta'\right) \odot_k \bigcup_{S \stackrel{\star}{\Rightarrow} \alpha Y \beta} \mathsf{first}_k(\beta \#) \\ &= \bigcup_{Y \rightarrow \alpha' X \beta'} \mathsf{first}_k\left(\beta'\right) \odot_k \mathsf{follow}_k(Y) \end{split}$$

Si consideramos X = S:

$$\begin{split} \operatorname{follow}_k(S) &= \{\#\} \cup \bigcup_{S \stackrel{\bot}{\Rightarrow} \alpha S \beta} \operatorname{first}_k(\beta \#) \\ &= \{\#\} \cup \bigcup_{S \stackrel{\bot}{\Rightarrow} \alpha Y \beta \Rightarrow \alpha \alpha' S \beta' \beta} \operatorname{first}_k(\beta' \beta \#) \\ &= \{\#\} \cup \bigcup_{Y \rightarrow \alpha' S \beta'} \operatorname{first}_k(\beta') \odot_k \operatorname{follow}_k(Y) \end{split}$$

Dado lo anterior, podemos definir el siguiente teorema.

Teorema 6

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \geq 1$. Entonces:

$$\begin{aligned} \operatorname{Para} X \neq S: & & \operatorname{follow}_k(X) = \bigcup_{Y \to \alpha X \beta} \operatorname{first}_k(\beta) \odot_k \operatorname{follow}_k(Y) \\ \operatorname{Para} X = S: & & \operatorname{follow}_k(S) = \{\#\} \cup \bigcup_{Y \to \alpha S \beta} \operatorname{first}_k(\beta) \odot_k \operatorname{follow}_k(Y) \end{aligned}$$

Definimos el siguiente **programa recursivo** para todo $X \in V$:

$$\begin{array}{lll} \operatorname{Para} X \neq S \colon & \operatorname{follow}_k^0(X) & := & \varnothing \\ & \operatorname{Para} X = S \colon & \operatorname{follow}_k^0(S) & := & \{\#\} \\ & \operatorname{Para} X \neq S \colon & \operatorname{follow}_k^i(X) & := & \bigcup_{Y \to \alpha X\beta} \operatorname{first}_k(\beta) \odot_k \operatorname{follow}_k^{i-1}(Y) \\ & \operatorname{Para} X = S \colon & \operatorname{follow}_k^i(S) & := & \{\#\} \cup \bigcup_{Y \to \alpha S\beta} \operatorname{first}_k(\beta) \odot_k \operatorname{follow}_k^{i-1}(Y) \end{array}$$

Similar al caso de $first_k$, es fácil ver que:

- $\operatorname{follow}_k^{i-1}(X) \subseteq \operatorname{follow}_k^i(X)$ para todo i > 1.
- Como follow $_k(X) \subseteq \Sigma^{\leq k}$, entonces para algún $i \leq k \cdot |\Sigma|^k \cdot |V|$:

$${\tt follow}_k^j(X) = {\tt follow}_k^{j+1}(X) \ \ {\tt para} \ {\tt todo} \ j \geq i$$

Teorema 7

Sea i^* el menor número tal que $\mathrm{follow}_k^{i^*}(X) = \mathrm{follow}_k^{i^*+1}(X)$ para todo $X \in V$. Entonces, para todo $X \in V$:

$$\mathtt{follow}_k^{i^*}(X) = \mathtt{follow}_k(X)$$

La demostración de este teorema se deja como ejercicio propuesto al lector.

Con todo lo anterior, podemos calcular $follow_k(X)$ con un algoritmo similar que $first_k(X)$. Respecto a la eficiencia de este tipo de algoritmos:

- Toman $\mathcal{O}(k \cdot |\Sigma|^k \cdot |V|)$ en el peor caso.
- Si k=1, el número de repeticiones será $\mathcal{O}(|\Sigma|\cdot|V|)$ y el tiempo del algoritmo será polinomial en $|\mathcal{G}|$ en el peor caso. Incluso, se puede hacer en tiempo $\mathcal{O}(|V|\cdot|P|)$ en total.

5.4. Gramáticas LL

Volvamos a la idea de buscar un algoritmo que haga parsing en **tiempo lineal**. Para esto, contruíamos un autómata apilador alternativo \mathcal{D} al cual le expandíamos sus producciones. ¿El problema? No sabemos como elegir que producciones expandir. Debido a lo anterior, introducimos los conceptos de **first** y **follow**. Así que, si tenemos una producción de la forma $X \to \alpha \mid \beta$, ¿cómo elegir entre α o β ?

Estrategia (intuición). La idea es la siguiente:

- 1. Mirar k símbolos del resto del input v (k-lookahead).
- 2. Usar $v|_k$ y decidir cuál regla $X \to \gamma$ elegimos para expandir.

La caracterización de las gramáticas que cumplen las propiedades anteriores se denominan **Gramáticas** LL(k), donde

- Primera L: leer el input de izquierda a derecha (Left-right).
- Segunda L: producir una derivación por la izquierda (Leftmost).
- ◆ Parámetro k: el número de letras en adelante que utiliza (lookahead).

5.4.1. Definición Gramáticas LL

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \geq 1$.

Definición. Decimos que \mathcal{G} es una gramática LL(k) si para todas las derivaciones:

- $\bullet \ S \ \stackrel{*}{\underset{\mathrm{lm}}{\Rightarrow}} \ uY\beta \ \underset{\mathrm{lm}}{\Rightarrow} \ u\gamma_1\beta \ \stackrel{*}{\underset{\mathrm{lm}}{\Rightarrow}} \ uv_1$
- $S \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uY\beta \Rightarrow u\gamma_2\beta \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uv_2 \text{ y}$
- $v_1|_k = v_2|_k$

entonces se cumple que $\gamma_1 = \gamma_2$.

Notar que la elección de $Y \to \gamma$ depende de $Y, v|_k$ y u.

Ejemplo 5.11: Gramática LL(1)

$$S \stackrel{\star}{\underset{\text{lm}}{\Rightarrow}} (\cdots(S)\cdots) \stackrel{\star}{\underset{\text{lm}}{\Rightarrow}} (\cdots(\gamma_{1})\cdots) \stackrel{\star}{\underset{\text{lm}}{\Rightarrow}} (\cdots(v'_{1})\cdots)$$

$$\stackrel{\star}{\underset{\text{lm}}{\Rightarrow}} (\cdots(\gamma_{2})\cdots) \stackrel{\star}{\underset{\text{lm}}{\Rightarrow}} (\cdots(v'_{2})\cdots)$$

- Si $v_1|_1 = v_2|_1 = n$, entonces $\gamma_1 = \gamma_2 = n$.
- Si $v_1|_1 = v_2|_1 = ($, entonces $\gamma_1 = \gamma_2 = (S)$.

En ambos casos, tenemos que $\gamma_1 = \gamma_2$ y \mathcal{G}_1 es una gramática LL(1).

Ejemplo 5.12: Gramática LL(1)

- Si $v_1|_1 = v_2|_1 = ($ o 'n', entonces $\gamma_1 = \gamma_2 = SX$.
- Si $v_1|_1 = v_2|_1 =$), entonces $\gamma_1 = \gamma_2 = \epsilon$.

Por lo tanto, tenemos que $\gamma_1 = \gamma_2$ y \mathcal{G}_2 es **también** una gramática LL(1).

Ejemplo 5.13: Gramática NO LL(1) pero si LL(2)

Como $v_1|_1 = v_2|_1 = n$ pero $\gamma_1 \neq \gamma_2$, entonces \mathcal{G}_3 NO es una gramática LL(1).

- Si $v_1|_2 = v_2|_2 = n+$, entonces $\gamma_1 = \gamma_2 = n+S$.
- Si $v_1|_1 = v_2|_1 = na$, con $a \neq +$, entonces $\gamma_1 = \gamma_2 = n$.

Por lo tanto, tenemos que $\gamma_1 = \gamma_2$ y entonces \mathcal{G}_3 es LL(2).

Ejemplo 5.14: Gramática NO LL(k)

$$\mathcal{G}_{4}: S \to (X) \mid (X)^{\circ}e \mid n+S \mid n$$

$$X \to SX \mid \epsilon$$

$$S \stackrel{\star}{\Rightarrow} (SX) \stackrel{\downarrow}{\Rightarrow} ((S)^{\circ}eX) \stackrel{\star}{\Rightarrow} ((\overset{\downarrow}{(\cdot}^{k}(n)^{\cdot k})^{\circ}e)$$

$$\stackrel{\downarrow}{\Rightarrow} ((S)X) \stackrel{\star}{\Rightarrow} \underset{lm}{\overset{\downarrow}{\Rightarrow}} ((\overset{\downarrow}{(\cdot}^{k}(n)^{\cdot k}))$$

Como $v_1|_k = v_2|_k = (\stackrel{k}{\cdots} (\text{ pero } \gamma_1 \neq \gamma_2, \text{ entonces } \mathcal{G}_4 \text{ NO es una gramática } LL(k) \text{ para todo } k.$

Ejemplo 5.15: Gramática NO LL(k) transformada en LL(2)

La gramática \mathcal{G}_4 del ejemplo anterior se puede transformar para que sea LL(2) de la siguiente manera:

Queda como ejecicio para el lector demostrar que \mathcal{G}'_4 es LL(2).

Ejemplo 5.16: Lenguaje NO LL(k)

Para todo $k \geq 1$, se tiene que \mathcal{G}_5 NO es una gramática LL(k).

Es posible demostrar que, para toda gramática \mathcal{G} con $\mathcal{L}(\mathcal{G}_5) = \mathcal{L}(\mathcal{G})$, \mathcal{G} NO es una gramática LL(k) para todo $k \geq 1$.

5.4.2. Caracterización LL

Para esta parte es importante manejar las definiciones de prefijos vistas en la sección 5.3.1.

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto **reducida** y $k \ge 1$. En base a esto definimos el siguiente teorema:

Teorema 8

 \mathcal{G} es una gramática LL(k) si, y sólo si, para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ y para todo $S \stackrel{*}{\Rightarrow} uY\beta$, se tiene que:

$$first_k(\gamma_1\beta) \cap first_k(\gamma_2\beta) = \emptyset$$

Demostración. (\Rightarrow) Por contrapositivo, supongamos que $v \in \text{first}_k(\gamma_1\beta) \cap \text{first}_k(\gamma_2\beta)$. Como \mathcal{G} es reducida (sin variables inútiles), entonces

$$S \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uY\beta \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} u\gamma_1\beta \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uvv_1$$

$$\stackrel{*}{\underset{\text{lm}}{\Rightarrow}} u\gamma_2\beta \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uvv_2$$

para algún $v_1, v_2 \in \Sigma^*$. Como $\gamma_1 \neq \gamma_2$, entonces \mathcal{G} NO es LL(k).

 (\Leftarrow) Por contrapositivo (de nuevo), supongamos que \mathcal{G} no es LL(k). Como \mathcal{G} no es LL(k), entonces tenemos derivaciones de la forma:

$$S \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uY\beta \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} u\gamma_1\beta \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uv_1$$

$$\stackrel{*}{\underset{\text{lm}}{\Rightarrow}} u\gamma_2\beta \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uv_2$$

Vemos que $v_1|_k = v_2|_k = v$, pero $\gamma_1 \neq \gamma_2$. Por lo tanto, $v \in \text{first}_k(\gamma_1\beta) \cap \text{first}_k(\gamma_2\beta)$.

¿Cómo usamos la caracterización del teorema para demostrar que una gramática es LL(k)? Buscaremos condiciones más simples para verificar si una gramática es LL(k).

Definición. \mathcal{G} es una gramática LL(k) fuerte si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ se tiene que:

$$\mathtt{first}_k(\gamma_1)\odot_k\mathtt{follow}_k(Y)$$
 \cap $\mathtt{first}_k(\gamma_2)\odot_k\mathtt{follow}_k(Y)=arnothing$

Ejemplo 5.17: Si \mathcal{G} es LL(k) fuerte, entonces \mathcal{G} es LL(k)

Una gramática \mathcal{G} que sea LL(k) fuerte siempre es LL(k), ya que si definimos dos conjuntos dados por el teorema de LL(k) (F_1) y la definición de LL(k) fuerte (F_2), dados por:

$$F_1 = \mathrm{first}_k(\gamma_1\beta) \ \cap \ \mathrm{first}_k(\gamma_2\beta) = \mathrm{first}_k(\gamma_1) \odot_k \mathrm{first}_k(\beta) \ \cap \ \mathrm{first}_k(\gamma_2) \odot_k \mathrm{first}_k(\beta)$$

$$F_2 = \mathrm{first}_k(\gamma_1) \odot_k \mathrm{first}_k(Y) \ \cap \ \mathrm{first}_k(\gamma_2) \odot_k \mathrm{first}_k(Y) = \emptyset$$

Entonces, tenemos que $F_1 \subseteq F_2$.

Ejemplo 5.18: Si \mathcal{G} es LL(k), Les LL(k) fuerte?

La respuesta directa es que no. Con un contrajemplo, tomemos la gramática $\mathcal G$ definida por

$$\mathcal{G}: \quad S \to aXaa \mid bXba$$
$$X \to b \mid \epsilon$$

Recordatorio: \mathcal{G} es $\mathrm{LL}(k)$ si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ y para todo $S \overset{*}{\underset{\mathrm{lm}}{\Longrightarrow}} uY\beta$, se tiene que

$$\operatorname{first}_k(\gamma_1\beta) \, \cap \, \operatorname{first}_k(\gamma_2\beta) = \varnothing$$

- Si $S \stackrel{*}{\Rightarrow} aXaa$, entonces $\mathtt{first}_2(baa) \cap \mathtt{first}_2(aa) = \varnothing$.
- Si $S \overset{*}{\Rightarrow} bXba$, entonces $\mathtt{first}_2(baa) \cap \mathtt{first}_2(ba) = \varnothing$

Por lo tanto, \mathcal{G} es LL(2).

Recordatorio: \mathcal{G} es una gramática LL(k) fuerte si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ se tiene que:

$$\operatorname{first}_k(\gamma_1) \odot_k \operatorname{follow}_k(Y) \cap \operatorname{first}_k(\gamma_2) \odot_k \operatorname{follow}_k(Y) = \emptyset$$

Si vemos $X \to b$ y $X \to \epsilon$:

$$\begin{split} \operatorname{first}_2(b) \odot_2 \operatorname{follow}_2(X) & \cap \ \operatorname{first}_2(\epsilon) \odot_2 \operatorname{follow}_2(X) \\ &= \{b\} \odot_2 \{aa, ba\} \ \cap \ \{\epsilon\} \odot_2 \{aa, ba\} \\ &= \{ba, bb\} \ \cap \ \{aa, ba\} \\ &= \{ba\} \qquad \text{y por ende } \mathcal{G} \text{ no es LL}(2) \text{ fuerte.} \end{split}$$

¿Qué pasa con el caso LL(1)? Supongamos que \mathcal{G} es LL(1) y $Y \to \gamma_1, Y \to \gamma_2 \in P$ son reglas distintas.

1. Si $\epsilon \notin \text{first}_1(\gamma_1)$ y $\epsilon \notin \text{first}_1(\gamma_2)$, entonces, por la caracterización de LL(1):

$$\begin{split} \varnothing &= \mathtt{first}_1(\gamma_1\beta) \ \cap \ \mathtt{first}_1(\gamma_2\beta) \\ &= \mathtt{first}_1(\gamma_1) \ \cap \ \mathtt{first}_1(\gamma_2) \\ &= \mathtt{first}_1(\gamma_1) \odot_1 \, \mathtt{follow}_1(Y) \ \cap \ \mathtt{first}_1(\gamma_2) \odot_1 \, \mathtt{follow}_1(Y) \end{split}$$

2. Si $\epsilon \in \text{first}_1(\gamma_1)$ y $\epsilon \notin \text{first}_1(\gamma_2)$, entonces, por la caracterización de LL(1):

$$\varnothing = \mathtt{first}_1(\gamma_1\beta) \ \cap \ \mathtt{first}_1(\gamma_2\beta)$$

$$= \mathtt{first}_1(\gamma_1\beta) \ \cap \ \mathtt{first}_1(\gamma_2)$$

$$= \mathtt{first}_1(\gamma_1\beta) \ \cap \ \mathtt{first}_1(\gamma_2\beta')$$

para todo $\beta' \in (V \cup \Sigma)^*$. Por lo tanto:

$$\begin{split} & \operatorname{first}_1(\gamma_1) \odot_1 \operatorname{follow}_1(Y) \ \cap \ \operatorname{first}_1(\gamma_2) \odot_1 \operatorname{follow}_1(Y) \\ &= \bigcup_{\substack{S \overset{*}{\underset{\mathrm{lm}}{\longrightarrow}} uY\beta}} \operatorname{first}_1(\gamma_1\beta) \ \cap \bigcup_{\substack{S \overset{*}{\underset{\mathrm{lm}}{\longrightarrow}} uY\beta'}} \operatorname{first}_1(\gamma_2\beta') = \varnothing \end{split}$$

Por lo tanto, establecemos el siguiente teorema.

Teorema 9

Una gramática \mathcal{G} es LL(1) si, y sólo si, \mathcal{G} es LL(1) fuerte, esto es, para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$:

$$\mathtt{first}_1(\gamma_1)\odot_1\mathtt{follow}_1(Y)$$
 \cap $\mathtt{first}_1(\gamma_2)\odot_1\mathtt{follow}_1(Y)=\varnothing$

La condición del teorema anterior se puede verificar en **tiempo polinomial** en \mathcal{G} .

5.5. Parsing con gramáticas LL(k)

5.5.1. Algunas consideraciones

Considere la siguiente gramática \mathcal{G} :

$$S \to Xa \mid Xb$$
$$X \to c$$

¿Es esta gramática del tipo LL(1)? Podemos ver que $first_1(\gamma_1\beta) = \{c\}$ y $first_1(\gamma_2\beta) = \{c\}$, con $\gamma_1 = Xa$, $\gamma_2 = Xb$ y $\beta = \epsilon$. Por lo tanto su intersección no es vacía y entonces \mathcal{G} no es LL(1). ¿Podemos establecer una solución para este problema?

Factorización. En general, si tenemos una regla:

$$X \to \gamma \alpha_1 \mid \gamma \alpha_2$$

siempre podemos "factorizar" la regla manteniendo la semántica, como:

$$X \to \gamma X'$$
$$X' \to \alpha_1 \mid \alpha_2$$

Considere ahora la siguiente gramática \mathcal{G} :

$$E \to E * E \mid n$$

¿Es esta gramática del tipo LL(1)? ¿LL(k)? Pues no es ninguna. El problema con esta gramática es su recursividad, en específico, por la izquierda.

Definición. Una gramática \mathcal{G} se dice recursiva por la izquirrda si existe $X \in V$ tal que:

$$X \overset{+}{\Rightarrow} X\gamma \quad \text{para algún } \gamma \in (V \cup \Sigma)^*$$

Teorema 10

Si $\mathcal{G} = (V, \Sigma, P, S)$ es una gramática reducida y recursiva por la izquierda, entonces \mathcal{G} NO es LL(k) para todo $k \ge 1$.

Demostración. Por simplicidad, suponga que $X \to X\beta \in P$ y $X \to w \in P$.

Como $\mathcal G$ es reducida, entonces existe una derivación $S \overset{*}{\underset{\operatorname{Im}}{\Rightarrow}} uX\gamma$:

$$S \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} uX\gamma \stackrel{\text{*}}{\Rightarrow} \stackrel{n\text{-veces}}{\cdots} \stackrel{\text{*}}{\underset{\text{lm}}{\Rightarrow}} uX\beta^n\gamma$$

Por contradicción, suponga que \mathcal{G} es LL(k). Por lo tanto:

$$first_k(X\beta^{n+1}\gamma) \cap first_k(w\beta^n\gamma) = \varnothing$$

Suponga que $\beta \stackrel{*}{\Rightarrow} v \in \Sigma^*$ y $\gamma \stackrel{*}{\Rightarrow} v' \in \Sigma^*$. Con n = k, tendremos que

$$(wv^kv')|_k \in \text{first}_k(X\beta^{k+1}\gamma) \cap \text{first}_k(w\beta^k\gamma) \rightarrow \leftarrow \text{(icontradicción! el conjunto no es vacío)}$$

Hablemos de recursión **inmediata** por la izquierda. Suponga que existe $X \in V$ tal que:

$$X \to X\alpha_1 \mid \cdots \mid X\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$$

 ξ Cómo podemos **eliminar** la recursión inmediata por la izquierda? Consideramos la misma gramática pero **cambiando** las reglas de X por:

$$X \to \beta_1 X' \mid \dots \mid \beta_n X'$$

$$X' \to \alpha_1 X' \mid \dots \mid \alpha_m X' \mid \epsilon$$

Ejemplo 5.19: Eliminando recursión inmediata

Página: 26 de 32

Teorema 11

Sea \mathcal{G} una gramática tal que existe $X \in V$:

$$X \to X\alpha_1 \mid \cdots \mid X\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$$

Sea \mathcal{G}' la misma gramática \mathcal{G} pero cambiando las reglas de X por:

$$X \to \beta_1 X' \mid \dots \mid \beta_n X'$$

 $X' \to \alpha_1 X' \mid \dots \mid \alpha_m X' \mid \epsilon$

Entonces $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$

Demostración. Una derivación por la izquierda de X en \mathcal{G} :

$$X \underset{\text{lm}}{\Rightarrow} X\alpha_{i_1} \underset{\text{lm}}{\Rightarrow} X\alpha_{i_2}\alpha_{i_1} \underset{\text{lm}}{\Rightarrow} \cdots \underset{\text{lm}}{\Rightarrow} X\alpha_{i_p}\alpha_{i_{p-1}}\cdots\alpha_{i_1} \underset{\text{lm}}{\Rightarrow} \beta_j\alpha_{i_p}\alpha_{i_{p-1}}\cdots\alpha_{i_1}$$

Una derivación por la derecha de X en \mathcal{G}' equivalente:

$$X \underset{\mathrm{rm}}{\Rightarrow} \beta_{j}X' \underset{\mathrm{rm}}{\Rightarrow} \beta_{j}\alpha_{i_{p}}X' \underset{\mathrm{rm}}{\Rightarrow} \cdots \underset{\mathrm{rm}}{\Rightarrow} \beta_{j}\alpha_{i_{p}}\cdots\alpha_{i_{2}}\alpha_{i_{1}}X' \underset{\mathrm{rm}}{\Rightarrow} \beta_{j}\alpha_{i_{p}}\alpha_{i_{p-1}}\cdots\alpha_{i_{1}}$$

Ahora, ¿qué pasa si la recursión por la izquierda es **no-inmediata**? Considere la siguiente gramática **recursiva por la izquierda**:

$$S \to Xa \mid b$$
$$X \to Yc$$
$$Y \to Xd \mid e$$

¿Cómo eliminamos la recursión por la izquierda no-inmediata?

Estrategia. Dado $V = \{X_1, \dots, X_n\}$, removemos la recursión inductivamente en n, tal que, en cada paso i de la inducción, se cumplira que para todo $i, j \leq n$:

si
$$X_i \to X_i \alpha$$
, entonces $i < j$

input: Gramática $\mathcal{G} = (V, \Sigma, P, S)$ y $V = \{X_1, \dots, X_n\}$

output: Gramática \mathcal{G} sin recursión por la izquierda

Function Eliminar Recursion (G):

$$P' := P$$

$$\mathbf{for} \ i = 1 \ \mathbf{to} \ n \ \mathbf{do}$$

$$\begin{vmatrix} \mathbf{foreach} \ X_i \to X_j \gamma \in P' \ \mathbf{do} \end{vmatrix}$$

$$\begin{vmatrix} \mathbf{foreach} \ X_j \to \alpha \in P' \ \mathbf{do} \end{vmatrix}$$

$$\begin{vmatrix} P' := P' \cup \{X_i \to \alpha \gamma\} \\ P' := P' - \{X_i \to X_j \gamma\} \end{vmatrix}$$
Remover recursión inmediata para X_i en P' (si existe)
$$V' := \{X_1, \dots, X_n\} \cup \{X'_1, \dots, X'_n\}$$

$$\mathbf{return} \ (V', \Sigma, P', S)$$

Queda como ejercicio propuesto al lector demostrar la correctitud del algoritmo.

Ejemplo 5.20: Eliminando recursión

$$E \rightarrow E + T \mid T$$
$$T \rightarrow T * F \mid F$$
$$F \rightarrow (E) \mid n$$

Eliminando la **recursión inmediata** de *E*:

$$\begin{split} E &\to TE' \\ E' &\to +TE' \mid \epsilon \\ T &\to T*F \mid F \\ F &\to (E) \mid n \end{split}$$

Eliminando la recusión inmediata de T:

$$\begin{split} E &\to TE' \\ E' &\to +TE' \mid \epsilon \\ T &\to FT' \\ T' &\to *FT' \mid \epsilon \\ F &\to (E) \mid n \end{split}$$

Conclusión. Es posible eliminar la recursividad por la izquierda, pero esto NO asegura que el resultado sea una gramática LL(k) para algún k.

5.5.2. Parsing de LL(k)

Figura 5: Máquina de parsing

Definición. Sea Σ un alfabeto finito. Se definen los siguientes conjuntos de palabras:

- $\bullet \ \dot{\Sigma} = \Sigma^* \times \Sigma^*$
- $\bullet \ \dot{\Sigma}^{\leq k} = \{(u, v) \in \dot{\Sigma} \mid |uv| \leq k\}$
- $\bullet \ \dot{\Sigma}_{\#}^{\leq k} = \{(u,v) \in \dot{\Sigma} \mid |uv| \leq k\} \cup \{(u,v\#) \mid (u,v) \in \dot{\Sigma} \mid |uv| < k\}$

Notación. En vez de usar $(u,v) \in \dot{\Sigma}_{\#}^{\leq k}$, escribiremos $u.v \in \dot{\Sigma}_{\#}^{\leq k}$. El par $\epsilon.\epsilon$ lo denotaremos solamente por ϵ .

Definición. Un transductor apilador con k-lookahead (k-PDT) es una tupla:

$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, q_0, F)$$

- \bullet Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- Ω es el alfabeto de output.
- $\Delta\subseteq Q^+ imes\dot{\Sigma}_\#^{\leq k} imes(\Omega\cup\{\epsilon\}) imes Q^*$ es la relación de transición.
- $q_0 \in Q$ es un conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales.

Definición. Una configuración de \mathcal{T} es una tupla:

$$(q_1 \dots q_k, w, o) \in (Q^+, \Sigma^* \cdot \{\#\}, \Omega^*)$$

- $q_1 \dots q_k$ es el contenido del stack con q_1 el tope del stack.
- \bullet w es el contenido del input.
- \bullet o es el contenidod el output.

Decimos que una configuración:

- $(q_0, w\#, \epsilon)$ es inicial y
- $(q_f, \#, o)$ es final si $q_f \in F$.

Definición. Se define la relación $\vdash_{\mathcal{T}}$ de **siguiente-paso** entre configuraciones de \mathcal{T} :

$$\boxed{ (\gamma_1, w_1, o_1) \vdash_{\mathcal{T}} (\gamma_2, w_2, o_2) }$$

si, y sólo si, existe $(\alpha, u.v, a, \beta) \in \Delta, \gamma \in \Gamma^*$ y $w \in \Sigma^* \cdot \{\#\}$ tal que:

- Stack: $\gamma_1 = \alpha \cdot \gamma \ y \ \gamma_2 = \beta \cdot \gamma$
- Look-ahead: $w_1 = u \cdot v \cdot w \ y \ w_2 = v \cdot w$
- Output: $o_2 = o_1 \cdot a$

Se define $\vdash_{\mathcal{T}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{T}}$.

Definición. \mathcal{T} entrega o con input w si existe una configuración inicial $(q_0, w \cdot \#, \epsilon)$ y una configuración final $(q_f, \#, o)$ tal que:

$$(q_0, w \cdot \#, \epsilon) \vdash_{\mathcal{T}}^* (q_f, \#, o)$$

Se define la función $[\![\mathcal{T}]\!]: \Sigma^* \to 2^{\Omega^*}$:

$$\llbracket \mathcal{T} \rrbracket(w) = \{ o \in \Omega^* \mid \mathcal{T} \text{ entrega } o \text{ con input } w \}$$

Definición. \mathcal{T} es **determinista** si para todo $(\alpha_1, u_1.v_1, a_1, \beta_1), (\alpha_2, u_2.v_2, a_2, \beta_2) \in \Delta$ con $(\alpha_1, u_1.v_1, a_1, \beta_1) \neq (\alpha_2, u_2.v_2, a_2, \beta_2)$ se cumple que

$$\alpha_1$$
 NO es prefijo de α_2 o u_1v_1 NO es prefijo de u_2v_2 .

"Para cualquier configuración (γ, w, o) existe **a lo más** una configuración (γ', w', o) tal que $(\gamma, w, o) \vdash_{\mathcal{T}}^* (\gamma', w', o')$ "

La **ventaja** de un k-PDT determinista es que nos aseguramos de que siempre obtenemos un solo output para cada input (el no-determinismo nos podría generar muchos outputs distintos).

Construcción del parser. Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática LL(k) fuerte. Se define el k-PDT para \mathcal{G} :

$$\mathcal{T}[\mathcal{G}] = \left(V \cup \Sigma \cup \{q_0, q_f\}, \Sigma, \underbrace{P}_{\Omega}, \Delta, q_0, \{q_f\}\right)$$

La relación de transición Δ de define como:

Inicio: $(q_0, \epsilon., \epsilon, S \cdot q_f)$

Reducir: $(a, a., \epsilon, \epsilon)$ para cada $a \in \Sigma$

Expandir: $(X, .u, p, \gamma)$

para cada $p := (X \to \gamma) \in P$ tal que $u \in \text{first}_k(\gamma) \odot_k \text{follow}_k(X)$

Propiedades. $\mathcal{T}[\mathcal{G}]$ tiene las siguientes propiedades:

- 1. $\mathcal{T}[\mathcal{G}]$ es un k-PDT **determinista** si, y sólo si, \mathcal{G} es LLk fuerte.
- 2. Si $w \notin \mathcal{L}(\mathcal{G})$ entonces $[T](w) = \emptyset$.
- 3. Si $w \in \mathcal{L}(\mathcal{G})$ entonces $[\![\mathcal{T}]\!](w) = \{r_1 \dots r_m\}$ es una derivación por la izquierda de \mathcal{G} sobre w.

Algoritmo. Para una gramática LL(k) \mathcal{G} y una palabra $w \in \Sigma^*$:

- 1. Construya el k-PDT determinista $\mathcal{T}[\mathcal{G}]$ a partir de \mathcal{G} .
- 2. Ejecute $\mathcal{T}[[G]]$ sobre w.

Como $\mathcal{T}[\mathcal{G}]$ es determinista, entonces el algoritmo toma **tiempo lineal** en w.

Tabla predictiva para LL(k) fuerte. Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática LL(k) fuerte. Para cada $u \in \Sigma^k \cup \Sigma^{< k} \cdot \{\#\}$, se define $M[X, u] \in (V \cup \Sigma)^* \cup \{\mathtt{ERROR}\}$:

$$M[X,u] = \left\{ \begin{array}{ll} \gamma & \text{ si } X \to \gamma \in P \text{ y } u \in \mathtt{first}_k(\gamma) \odot_k \mathtt{follow}_k(X) \\ \mathtt{ERROR} & \text{ en otro caso.} \end{array} \right.$$

El computo de la tabla predictiva puede tomar tiempo exponencial en $|\mathcal{G}|$ y k.

Caso especial: tabla predictiva para LL(1). Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática LL(1) fuerte. Para cada $a \in \Sigma \cup \{\#\}$, se define $M[x, a] \in (V \cup \Sigma)^* \cup \{\mathtt{ERROR}\}$:

$$M[X,a] = \left\{ \begin{array}{ll} \gamma & \text{si } X \to \gamma \in P \text{ y } a \in \mathtt{first}_1(\gamma) \\ \gamma & \text{si } X \to \gamma \in P, \epsilon \in \mathtt{first}_1(\gamma) \text{ y } a \in \mathtt{follow}_1(X) \\ \mathrm{ERROR} & \text{en otro caso.} \end{array} \right.$$

Este cálculo se puede hacer en tiempo $\mathcal{O}(|V|\cdot|P|)$.

Ejemplo 5.21: Tabla predictiva													
$E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$ $F \rightarrow (E) \mid id$			$\begin{aligned} & \text{first}_1(E) = \{(, \mathbf{id}) \\ & \text{first}_1(T) = \{(, \mathbf{id}) \\ & \text{first}_1(F) = \{(, \mathbf{id}) \\ & \text{follow}_1(E) = \{), \#\} \\ & \text{follow}_1(T) = \{+,), \#\} \\ & \text{follow}_1(F) = \{+, *,), \#\} \end{aligned}$			first follo	$ \begin{aligned} & \mathtt{first}_1(T') = \{*, \epsilon\} \\ & \\ & \mathtt{follow}_1(E') = \{), \#\} \\ & \\ & \mathtt{follow}_1(T') = \{+, \}, \#\} \end{aligned} $						
		id	+	*	()	#						
-	Е	TE'	ERROR	ERROR	TE'	ERROR	ERROR						
	E'	ERROR	+ <i>TE</i> ′	ERROR	ERROR	ϵ	ϵ						
	Т	FT'	ERROR	ERROR	FT'	ERROR	ERROR						
	T'	ERROR	ϵ	*FT'	ERROR	ϵ	ϵ						
	F	id	ERROR	ERROR	(<i>E</i>)	ERROR	ERROR						
						-							

- 6. Extracción de información
- 6.1. Extracción
- 6.2. Enumeración de resultados: Autómatas con anotaciones