



# Proseminar: Mathematik in Computerspielen Delaunay-Triangulierung

16.1.2017



### Einleitung

Primzahltests untersuchen: welche Eigenschaften werden genutzt?

Übertragbarkeit auf Polynome über  $\mathbb{Z}_q$  bei festem  $q \in \mathbb{P}$ ?



#### **Fermat**

#### Satz von Fermat

Ist p eine Primzahl, so gilt  $\forall a \in \mathbb{N}$ :

$$a^{p-1} = 1 \mod p$$

Algebra: 
$$p-1=|(\mathbb{Z}_p)^*|$$

Polynome:  $|(\mathbb{Z}_q[x]/f)^*| = q^{deg(f)} - 1$  für irreduzible Polynome



#### **Fermat**

### Fermat für Polynome

Ist f irreduzibel über  $\mathbb{Z}_q$ , so gilt  $\forall a \in \mathbb{Z}_q[x]$ :

 $a^{q^{\deg(f)}-1} = 1 \bmod f$ 



### Miller-Rabin

- finde  $s, u \in \mathbb{N}, u$  ungerade mit  $p 1 = 2^s u$
- wähle *a*
- teste ob  $a^u = 1 \mod p$
- für  $1 \le t \le s$ , teste ob  $a^{2^s u} = -1 \mod p$



### Miller-Rabin für Polynome

- finde  $s, u \in \mathbb{N}, u$  ungerade mit  $q^{deg(f)} 1 = 2^s u$
- wähle a
- teste ob  $a^u = 1 \mod f$
- für  $1 \le t \le s$ , teste ob  $a^{2^s u} = -1 \mod f$



### Schwierigkeiten

#### Laufzeit:

- sehr viele allokationen; gelöst durch in-place rechnen
- potenzierung langsam da u oft groß

### Power-Residue Symbol

Legendre Symbol für Polynome

#### **Definition**

Für 
$$d|q-1$$
 fest,  $a,f\in\mathbb{Z}_q[x],f$  irreduzibel,  $f\nmid a$ :  $(a/f)_d=a^{(|f|-1)/d} \mod f$ 

### Reziprozitätsgesetz

Seien f,g irreduzible Polynome. Dann gilt:

$$(g/f)_d = (-1)^{deg(f)deg(g)(q-1)/d} (f/g)_d$$



### Jacobi Symbol

Verallgemeinerung des Power-Residue Symbols: f muss nicht irreduzibel sein

#### Reziprozitätsgesetz

Seien f, g irreduzible Polynome. Dann gilt: noch einfügen!



### Power-Residue Test

- Nutze Reziprozitätsgesetz, um  $(a/f)_d$  zu berechnen
- vergleiche Ergebnis mit der Definition



### Laufzeit

Ein Durchlauf sehr schnell; vergleichbar mit isirreducible Problem: gibt oft fälschlicherweise true aus abhängig von a



# Pocklington

Inhalt...



## Lucas-Folgen

Rekursiv definierte Folgen