Domande Rappresentazioni Interno - 2015/16

Colloqui

- Rappresentazioni irriducibili di SU (2)
- Quali rappresentazioni irriducibili di S^1 si possono estendere a rappresentazione irriducibili di SU (2) ?
- ullet è vero che tutte le rappresentazioni irriducibili di un sottogruppo H di G si possono estendere a rappresentazioni di G?
- Se in $\rho \otimes \sigma$ (con ρ e σ irriducibili) ho una sottorappresentazione di grado 1, cosa posso dire?
- Omomorfismo tra SU (2) e SO (3) (mostrare che è surgettivo e che ha Ker $=\pm id$)
- Dimostra Schur 2 per rappresentazioni complesse e dai un controesempio a Schur 2 sui reali.
- Quali sono le rappresentazioni reali irriducibili di S^1 ?
- Quali delle rappresentazioni di U (2) troviamo con la stessa costruzione con cui abbiamo trovato quelle di SU (2)? (Facendole agire sulle potenze simmetriche di \mathbb{C}^2) [Non sono tutte, ma quali tra queste si trovano]
- (Gruppo di Eisenstein) Matrici invertibili 2×2 a coefficienti in \mathbb{F}_p triangolari superiori tali che $a_{22} = 1$ (ovvero le affinità di \mathbb{F}_p)
 - Trovarne le classi di coniugio (e cardinalità) e le rappresentazioni irriducibili su $\mathbb C$
- G finito con ρ irriducibile e fedele. Allora Z(G) è ciclico
- Sia V_m una rappresentazione irriducibile di SU (2). Come si scompone in irriducibili V_m^* ?
- Cosa può accadere ad una rappresentazione complessa irriducibile dopo che la realifico?
- Quali delle V_m (sempre per SU (2)) sono reali? Ovvero trova una forma bilineare su queste e dì se è simmetrica o alternante. (Viene diviso in base ai casi m pari / dispari)
- Prendi un'azione di G su X e la corrispondente rappresentazione per permutazione V. Dimostra che se l'azione di G su $X \times X$ è doppiamente transitiva allora la rappresentazione ortogonale al sottospazio generato da $e_1 + e_2 + \ldots + e_n$ è irriducibile
- Dando per buono che le uniche algebre di divisione finito dimensionali su \mathbb{R} sono $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (quaternioni) dimostra che se ρ è quaternionica (ovvero ammette una forma quadratica alternante) allora gli endomorfismi di rappresentazioni della sua realificata sono isomorfi a \mathbb{H}
- Discussione libera su realificazione, complessificazione
- Quali rappresentazioni irriducibili di SU(2) sono complessificate di rappresentazione reali irriducibili?
- È sempre vero che dim Hom $(\sigma, \rho) = \dim \operatorname{Hom}(\rho, \sigma)$? (Si intende per ogni gruppo qualunque, per ogni due rappresentazioni) (Hint: No, bisogna considerare delle rappresentazioni di \mathbb{Z}^2)
- Le matrici diagonali dentro U (2) sono un sottogruppo isomorfo a $S^1 \times S^1$. Quali caratteri di rappresentazioni di $S^1 \times S^1$ si possono ottenere restringendo una rappresentazione di U (2)? (In particolare si possono ottenere $\lambda + \mu$, $\lambda \mu$, $\lambda^2 + \mu^2$ dove λ , μ sono i due autovalori che compaiono nella diagonalizzata di una matrice di U (2)
- Parla dell'ortogonalità dei caratteri.
- Integrazione invariante su SU (2) con formula esplicita in generale ed in particolare su S^1

- $\bullet\,$ Dimostrare che le rappresentazioni di U(2)ottenute come nel secondo esercizio del compitino sono tutte le irriducibili
- (In realtà poi ha cambiato domanda) Perché $\frac{1}{2}$ non può comparire nella tavola dei caratteri di gruppi finiti?
- $\bullet\,$ Come sono le potenze esterne delle irriducibili di SU (2)?