

(1) Veröffentlichungsnummer:

0 034 265 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 81100438.1

22 Anmeldetag: 22.01.81

(5) Int. Cl.³: **C** 08 **L** 69/00 **C** 08 **K** 5/00

30 Priorität: 05.02.80 DE 3004017

(43) Veröffentlichungstag der Anmeldung: 26.08.81 Patentblatt 81/34

Benannte Vertragsstaaten: DE FR GB IT

71) Anmelder: BAYER AG
Zentralbereich Patente, Marken und Lizenzen
D-5090 Leverkusen 1, Bayerwerk(DE)

(2) Erfinder: Schmidt, Manfred, Dr. 1020 North-Third-Street New Martinsville West Virginia(US) (2) Erfinder: Wank, Joachim, Ing.-grad. Zuelpicher Strasse 7 D-4047 Dormagen(DE)

(72) Erfinder: Reese, Eckart, Dr. Aggerstrasse 22 D-4047 Dormagen(DE)

72) Erfinder: Fraitag, Dieter, Dr. Hasenheide 10 D-4150 Krefeld 1(DE)

(72) Erfinder: Wangermann, Klaus, Dr. Bethelstrasse 50 D-4150 Krefeld(DE)

- Synergistisch wirksame Stoffgemische und ihre Verwendung zur antistatischen Ausrüstung von Polycarbonatformmassen.
- (5) Gegenstand der vorliegenden Erfindung sind synergistisch wirksame Stoffgemische, ihre Verwendung zur antistatischen Ausrüstung von Polycarbonatformmassen, insbesondere von Polycarbonatfolien, sowie entsprechend antistatisch ausgerüstete Polycarbonatfolien.

EP 0 034 265 A2

BAYER AKTIENGESLLLSCHAFT

5090 Leverkusen, Bayerwerk

Zentralbereich
Patente, Marken und Lizenzen PS-by-c

Synergistisch wirksame Stoffgemische und ihre Verwendung zur antistatischen Ausrüstung von Polycarbonatformmassen

Gegenstand der vorliegenden Erfindung sind synergistisch wirksame Stoffgemische bestehend aus

- A) 0,1 bis 1 Gew.-Teilen, vorzugsweise 0,3 bis 0,8 Gew.-Teilen an Alkali- oder Erdalkalisalzen von
- 5 A1) einer monomeren aromatischen Sulfonsäure der allgemeinen Formel (1)

$$(R)_{1} = A \left[So_{3} \right]_{n} \mathbb{I}_{m}$$

$$(1)$$

mit

- A Arylrest mit 1-4 aromatischen Ringen,
- 10 R C_4 - C_{20} -Alkyl, C_4 - C_{20} -Alkenyl, C_6 - C_{20} -Cycloalkenyl, alkyl, C_6 - C_{20} -Cycloalkenyl,

- M Alkalimetall und m = n = 1,
- M Erdalkalimetall und m = 1, n = 2,
- y eine ganze Zahl von 1 bis 4, oder
- A2) einer polymeren aromatischen (Poly)-sulfonsäure der allgemeinen Formel (2)

$$\frac{\Gamma}{\Gamma}(R_1) = \frac{\Gamma}{2} \frac{\Gamma}{\Gamma} \frac{\Gamma}{$$

mit

5

10

- R₁ C₂-C₆-Alkylen,
- R₂ R₁ oder ein von R₁ unterschiedlicher C₂-C₆-Alkylenrest,

B -CH-CH₂-

- M,n,m entsprechend der Bedeutung der Formel (1),
- a,b,c ganze Zahlen ≥ 1 mit der Maßgabe, daß b = 3 bis 30 und a + b + c = 100,

- x eine Zahl der Größe, daß das polymere Salz ein mittleres Molekulargewicht (Gewichtsmittelmolekulargewicht) \overline{M}_{W} von 800 bis 10⁶ besitzt, oder
- 5 A3) einer monomeren aromatischen Phosphonsäure der allgemeinen Formel (3)

$$(2)_{1-4} - 4 \left((2)_{3} \right) =$$

$$(3)$$

mit

- A,R entsprechend der Bedeutung der Formel (1)
- 10 M Alkalimetall und p = 2
 - M Erdalkalimetall und p = 1,
 - z 1 oder 2, oder
 - A4) eines monomeren sauren aromatischen Phosphorsäureesters der allgemeinen Formel (4)

15
$$(R)_{1-4} - A = \begin{bmatrix} 0 & D & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (4)

mit

A,R,z entsprechend der Bedeutung der Formel (3)

M Alkalimetall und q = 2,

M Erdalkalimetall und q = 1 oder

A5) eines monomeren sauren aromatischen Phosphorsäure-5 esters der allgemeinen Formel (5)

$$\left[(R)_{1-4} - A - O \frac{1}{-2} \stackrel{0}{P} - C \right]_{e}^{\mathcal{H}} d$$
 (5)

mit

A,R entsprechend der Bedeutung der Formel (1),

M Alkalimetall und d = e = 1,

10 M Erdalkalimetall mit d = 1 und e = 2,

und

- B) 0,05 bis 0,5 Gew.-Teilen, vorzugsweise 0,2 bis 0,4 Gew.-Teilen an Verbindungen von
- B1) N-Alkyl-, N-Aryl-phthalimiden oder Bisphthalimiden,
 oder

- B2) neutralen C₃-C₁₈-Alkylestern aliphatischer C₄-C₁₈-Mono-, Di-, Tri- oder Tetracarbonsäuren, oder
- B3) neutralen C₃-C₁₈-Alkylestern aromatischer C₆-C₁₂-Mono-, Di-, Tri- oder Tetracarbonsäuren.
- Ein weiterer Gegenstand der Erfindung ist die Verwendung dieser erfindungsgemäßen Gemische zur antistatischen Ausrüstung von Polycarbonatformmassen, insbesondere von Polycarbonatfolien und ganz besonders von Polycarbonateextrusionsfolien.
- Ein weiterer Gegenstand der Erfindung sind Polycarbonatformmassen, insbesondere Polycarbonatfolien und ganz besonders Polycarbonatextrusionsfolien mit einem Gehalt von 0,1 Gew.-% bis 1 Gew.-%, vorzugsweise von 0,3 Gew.-% bis 0,8 Gew.-%, an Alkalisalzen oder Erdalkalisalzen gemäß
- Komponente A) und von 0,05 Gew.-% bis 0,5 Gew.-%, vorzugsweise von 0,2 Gew.-% bis 0,4 Gew.-%, an Verbindungen gemäß Komponente B), wobei die Gewichtsprozente sich jeweils auf Gesamtgewicht aus Polycarbonat plus Komponente A) plus Komponente B) beziehen und wobei die Komponenten
- A) und B) die eingangs definierte Bedeutung des synergistisch wirksamen Stoffgemischs haben. Gemäß deutscher Patentanmeldung P 29 31 172.6 (Le A 19 826) werden die unter A) subsummierten Alkali- und Erdalkalisalze als interne Antistatika für Polycarbonatfolien verwendet.
- Uberraschenderweise wurde nun gefunden, daß durch den kombinierten Einsatz der Salze gemäß A) mit den Verbindungen gemäß B) die Wirksamkeit der Alkalisalze und Erdalkalisalze gemäß A) so erhöht wird, daß beispielsweise bereits durch verminderte Mengen der anti-

statisch wirksamen Alkali- und Erdalkalisalze permanent antistatisch ausgerüstete Polycarbonatextrusionsfolien erhalten werden. Gleichzeitig wird dadurch eine Minderung des mechanischen Eigenschaftsneveaus, wie etwa der Zugfestigkeit, der Polycarbonatextrusionsfolie vermieden.

Eine Folie besitzt definitionsgemäß dann permanent antistatisches Verhalten, wenn die beispielsweise gemäß der DIN-Vorschrift 53486 erfolgte elektrostatische Aufladung der Folienoberfläche einen Wert von < 100 V/cm ergibt und eine Halbwertzeit t_H der Entladung nicht mehr meßbar wird (untere Meßgrenze: ca. 4 sec.).

Bei Polycarbonatslösungsfolien wird durch die Alkali- und Erdalkalisalze gemäß deutscher Patentanmeldung P 29 31 172.6 (Le A 19 826) bereits ab einer Additivmenge von > 0,07 Gew.-% (bezogen auf Gesamtmenge des Polycarbonatgemischs) permanent antistatisches Verhalten erreicht (vergleiche Beispiele 3 und 4 der deutschen Patentanmeldung P 29 31 172.6 (Le A 19 826). Bei Polycarbonatextrusionsfolien ist jedoch eine Menge von > 2,0 Gew.-% dieser Alkali- oder Erdalkalisalze notwendig, um permanent antistatisches Polycarbonatfolienmaterial zu erhalten.

Derartig hohe Additivmengen können jedoch bereits das mechanische Eigenschaftniveau wie beispielsweise die Zugfestigkeit und die Reißdehnung von Polycarbonat- extrusionsfolien insbesondere bei dünnen Foliendicken verschlechtern; sie verschlechtern außerdem Transparenz oder Transluzenz des Folienmaterials. Für viele Anwendungszwecke wie beispielsweise für die Herstellung antistatischer mit Glasfasern oder Glaskugeln gefüllter

Polycarbonatstreulichtfolien ist es jedoch notwendig, eine Verminderung der Transluzenz oder eine Verminderung der Zugfestigkeit zu vermeiden.

Demgegenüber zeigen die erfindungsgemäßen Polycarbonatfolien keine wesentlichen Veränderungen ihrer elektrischen
Eigenschaftswerte, insbesondere ihrer antistatischen
Eigenschaften, unter Witterungs- oder mechanischer Beeinflussung.

Polycarbonatformmassen sind solche auf Basis aromatischer thermoplastischer Polycarbonate.

Unter aromatischen thermoplastischen Polycarbonaten im Sinne dieser Erfindung werden Homopolycarbonate und Copolycarbonate verstanden, denen z.B. ein oder mehrere der folgenden Bisphenole zugrundeliegen:

15 Hydrochinon,

13

Resorcin,

Dihydroxydiphenyle,

Bis-(hydroxyphenyl)-alkane,

Bis-(hydroxyphenyl)-cycloalkane,

20 Bis-(hydroxyphenyl)-sulfide,

Bis-(hydroxyphenyl)-ether,

Bis-(hydroxyphenyl)-ketone,

Bis-(hydroxyphenyl)-sulfoxide,

Bis-(hydroxyphenyl)-sulfone,

25 d.d'-Bis-(hydroxyphenyl)-diisopropyl-benzole,

sowie deren kernalkylierte und kernhalogenierte Verbindungen. Diese und weitere geeignete aromatische Dihydroxyverbindungen sind z.B. in den US-Patentschriften 3 028 365, 2 999 835, 3 148 172, 3 275 601, 2 991 273, 3 271 367, 3 062 781, 2 970 131 und 2 999 846, in den deutschen Offenlegungsschriften 1 570 703, 2 063 050, 2 063 052, 2 211 956, 2 211 977, der französischen Patentschrift 1 156 518 und in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York, 1964" beschrieben.

Bevorzugte Bisphenole sind die der Formel (6)

$$IIO - X - X - X - OH$$

$$R = 1V$$

$$R = 1V$$

$$R = 1V$$

in der

5

10

R' bis R^{IV} gleich oder verschieden sind und H, C_1-C_4 -Alkyl, Cl oder Br bedeuten und in der

eine Bindung, C₁-C₈-Alkylen, C₂-C₈-Alkýliden, C₅-C₁₅-Cycloalkylen, C₅-C₁₅-Cycloalkylen, C₅-C₁₅-Cycloalkyliden, -SO₂- oder

20 ist.

```
Beispiele für diese Bisphenole sind:
     4,4'-Dihydroxydiphenyl
     2,2-Bis-(4-hydroxyphenyl)-propan
     2,4-Bis-(4-hydroxypheny1)-2-methylbutan
     1,1-Bis-(4-hydroxyphenyl)-cyclohexan
5
      \mathscr{A}, \overset{\sim}{\sim} '-Bis-(4-hydroxyphenyl)-p-diisopropylbenzol
     2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan
     2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan
     Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan
     2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan
10
     Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon
     2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan
     1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexan
      \alpha, \alpha'-Bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diiso-
     propylbenzol ·
15
     2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan
     2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan.
     Besonders bevorzugte Bisphenole sind z.B.:
     2,2-Bis-(4-hydroxyphenyl)-propan
     2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan
20
      2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan
      2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan
      1,1-Bis-(4-hydroxyphenyl)-cyclohexan
     Bevorzugte aromatische Polycarbonate sind solche,
      denen ein oder mehrere der als bevorzugt genannten
25
      Bisphenole zugrundeliegen. Besonders bevorzugt werden
```

Copolycarbonate, denen 2,2-Bis-(4-hydroxyphenyl)-propan und eines der anderen als besonders bevorzugt genannten

...

Bisphenole zugrundeliegen. Besonders bevorzugt sind weiterhin Polycarbonate allein auf Basis von 2,2-Bis-(4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)propan.

Die aromatischen Polycarbonate können nach bekannten Verfahren hergestellt werden, so z.B. nach dem Schmelzumesterungsverfahren aus Bisphenolen und Diphenylcarbonat
und dem Zweiphasengrenzflächenverfahren aus Bisphenolen
und Phosgen, wie es in der oben genannten Literatur beschrieben ist.

Die aromatischen Polycarbonate können auch durch den Einbau geringer Mengen an Polyhydroxyverbindungen, z.B. 0,05-2,0 Mol-% (bezogen auf die eingesetzten Bisphenole), verzweigt sein. Polycarbonate dieser Art sind z.B. in den deutschen Offenlegungsschriften 1 570 533, 1 595 762, 2 116 974, 2 113 347, der britischen Patentschrift 1 079 821 und in der US-Patentschrift 3 544 514 beschrieben. Einige der verwendbaren Polyhydroxyverbindungen sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4, 6-tri-(4-hydroxyphenyl)hepten-2, 4,6-Dimethyl-2,4, 6-tri-(4-hydroxyphenyl)heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis 4,4-Bis (4-hydroxyphenyl)-cyclohexyl7 propan, 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol, 2,6-Bis-(2'-hydroxy-5'-methyl-benzyl)-4-methyl-phenol, 2,4-Dihydroxybenzoesäure, 2-(4-Hydroxyphenyl)-2-(2,4dihydroxyphenyl)-propan und 1,4-Bis-(4',4"-dihydroxytriphenyl-methyl)-benzol.

....

15

20

Die aromatischen-thermoplastischen Polycarbonate sollen in der Regel Molekulargewichte $\overline{M}_{\rm w}$ von 10 000 bis über 200 000, vorzugsweise von 20 000 bis 80 000 haben.

Als geeignete Alkali- oder Erdalkalisalze gemäß Komponente

A) im Sinne der Erfindung sind die in der deutschen
Patentanmeldung P 29 311 72.6 (Le A 19 826) als interne
Antistatika genannten Alkali- oder Erdalkalisalze der
allgemeinen Formel (1)

$$(R)_{1-4} A = \begin{bmatrix} (SO_3)_{m} & M_m \\ N & M_m \end{bmatrix}_{Y}$$
 (1)

10 mit

A = Arylrest mit 1-4 aromatischen Ringen,

 $R = C_4 - C_{20} - Alkyl$, Alkenyl, $C_6 - C_{20} - Cycloalkyl$, Cycloalkenyl,

M = Kalium, Natrium oder Lithium bei m = 1 und n = 1,

15 M = Magnesium, Calcium oder Barium bei m = 1 und n = 2,

y = eine ganze Zahl von 1-4,

oder Alkali- oder Erdalkalisalze polymerer aromatischer (Poly)-sulfonsäuren der allgemeinen Formel (2)

$$\frac{\left\{ \left(\mathbf{R}_{1} \right)_{\overline{a}} - \left(\mathbf{S} \right)_{5} - \left(\mathbf{R}_{2} \right)_{\overline{c}} \right\}_{x}}{\left(\mathbf{S} \mathbf{C}_{3} \right)_{p} \mathbf{M}_{m}} \tag{2}$$

mit

5

R₁ C₂-C₆-Alkylen,

R₂ R₁ oder ein von R₁ unterschiedlicher C₂-C₆-Alkylenrest,

M,n,m entsprechend der Bedeutung der Formel (1)

a,b,c ganze Zahlen > 1 mit der Maßgabe, daß b = 3 bis 30 und a + b + c = 100 sind

10 x eine Zahl der Größe, daß das polymere Salz ein mittleres Molekulargewicht (Gewichtsmittelmole-kulargewicht) \bar{M}_w von 800-10 6 besitzt,

oder Alkali- oder Erdalkalisalze monomerer aromatischer Phosphonsäuren der allgemeinen Formel (3)

Le A 20 158

$$(R)_{1-4} - A = \frac{\Gamma}{\ell} (PO_3) M_{P} \Big|_{z}$$
 (3)

mit

.

A,R entsprechend der Bedeutung der Formel (1)

M Kalium, Natrium oder Lithium bei p = 2,

5 M Magnesium, Calcium, Barium bei p = 1,

z 1 oder 2,

oder Alkali- oder Erdalkalisalze monomerer sauren aromatischer Phosphorsäureester der allgemeinen Formel (4)

$$(R)_{1-4} - A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} M_{Q}$$
 (4)

10 mit

A,R,z entsprechend der Bedeutung der Formel (3)

M Kalium, Natrium, Lithium mit q = 2,

Magnesium, Calcium, Barium mit q = 1,

oder Alkali- oder Erdalkalisalze monomerer saurer aromatischer Phosphorsäureester der allgemeinen Formel (5)

$$\left[(R)_{1-4} - A - O - P - O \right]_{ij}^{p} = O d d \qquad (5)$$

5 mit

A,R entsprechend der Bedeutung der Formel (5),

M Kalium, Natrium oder Lithium mit d = e = 1,

M Magnesium, Calcium oder Barium mit d = 1 und e = 2.

Bevorzugt werden die Lithium- und Calciumsalze der allgemeinen Formeln (1) bis (5), deren wäßrige Lösungen oder deren Suspensionen in Wasser einen pH-Wert von 4,5 bis 8,5, insbesondere jedoch die, die einen pH-Wert von 5,5 bis 7,5, aufweisen.

Besonders bevorzugt werden monomere aromatische Sulfonsäuresalze der allgemeinen Formel (1.1)

mit

Le A 20 158

- D C_4 - C_{20} -Alkyl, Alkenyl,
- M Li und m = n = 1,
- M Ca und m = 1, n = 2,

weiterhin Lithium- oder Calciumsalze von sulfonierten

Copolymeren des Styrols mit C₂-C₆-Alkenen mit einem

Styrolanteil von 3 bis 30 Gew.-%, sowie monomere aromatische Phosphonsäuresalze der allgemeinen Formel (3.1)

mit

10 D
$$C_4$$
- C_{20} -Alkyl, Alkenyl,

M Li und
$$p = 2$$
 und $n = 1$,

M Ca und
$$p = 1$$
 und $n = 1$.

Insbesondere bevorzugt werden

$$\begin{bmatrix} c_{13}H_{27} & - & & \\ & & & \end{bmatrix}_h u_1$$

mit

M Li und h = i = 1,

M Ca und i = 1,

h = 2

mit

M Li und s = 2 r = 1

M Ca und r = s = 1,

10 sowie

mit einem Molgewicht von \bar{M}_{W} = 10 000 - 800 000 (mittleres Gewichtsmittelmolekulargewicht).

Die erfindungsgemäß einsetzbaren Salze der Formeln (1)
bis (5) sind, soweit nicht literaturbekannt, durch
Neutralisation der entsprechenden freien Säuren mit den
entsprechenden Alkali- bzw. Erdalkalihydroxiden in

L A 20 158

bekannter Weise, etwa in H₂O oder H₂O/Alkoholgemischen herstellbar.

Erfindungsgemäß geeignete Verbindungen gemäß Komponente B sind vorzugsweise N-substituierte Phthalimide der allgemeinen Formel (7) oder Bisphthalimide der allgemeinen

$$E \longrightarrow C \longrightarrow C \longrightarrow E$$

$$E \longrightarrow C \longrightarrow C \longrightarrow E$$

$$E \longrightarrow C \longrightarrow C \longrightarrow E$$

$$E \longrightarrow C \longrightarrow C \longrightarrow C$$

$$E \longrightarrow C \longrightarrow C$$

$$E \longrightarrow C \longrightarrow C$$

$$E \longrightarrow C$$

$$E \longrightarrow C$$

$$C \longrightarrow$$

mit

5

3

E H, Cl oder Brom

C1-C18 Alkyl, C2-C18 Alkenyl, C6-C12 Cycloalkyl, C6-C10 Aryl; wobei der Arylrest gegebenenfalls
1-5 Halogenatome (F, Cl oder Br) enthalten kann, oder C7-C13 Arylalkyl,

L eine Einfachbindung, C₂-C₈ Alkylen, Cyclohexylen,
p-Phenylen oder p-Diphenylen, wobei der Phenylenoder Diphenylenrest gegebenenfalls 1-4 Halogenatome
(F, Cl oder Br) enthalten kann.

Erfindungsgemäß geeignete Verbindungen gemäß Komponente B) sind neutrale C_3 - C_{18} Alkylester aliphatischer C_4 - C_{18} Mono-, Di-, Tri- oder Tetracarbonsäuren, oder neutrale C_3 - C_{18} Alkylester aromatischer C_6 - C_{12} Mono-, Di-, Tri- oder Tetracarbonsäuren.

Beispielsweise seien genannt:

.:

Pentaerythrittetrastearat, Stearinsäureisobutylat, Glycerintristearat, Phthalsäuredioctoat, Terephthal-distearat oder Naphthalin-1,5-dicarbonsäuredioctoat.

5 Erfindungsgemäß bevorzugte Verbindungen gemäß Komponente B) sind:

N-Methyltetrachlorphthalimid,
N-Phenylphthalimid,
N-Stearyl-tetrachlorphthalimid,
1,2-Bis(tetrabromphthalimido)-ethan,
Distearylcarbonat,
Pentaerythrittetrastearat und
Phthalsäure-dioctoat.

Erfindungsgemäß besonders bevorzugte Verbindungen gemäß Komponente B) sind:

N-Methyl- und N-Stearyl-tetrachlorphthalimid sowie Phthalsäuredioctoat.

So wird beispielsweise die maximale Endaufladung einer aromatischen Polycarbonatextrusionsfolie von 0,1 mm
Dicke (gemessen nach DIN 53486), die 0,5 Gew.-% eines
Lithiumsalzes der allgemeinen Formel (1) und 0,3 Gew.-%
N-Methyltetrachlorphthalimid enthält, von etwa 30 KV/cm
auf <100 V/cm reduziert, wobei die Zugfestigkeit dieser

Folie der einer additivfreien aromatischen Polycarbonatextrusionsfolie gleicher Dicke entspricht.

Die Einarbeitung der erfindungsgemäß verwendbaren Komponenten A) und B) der synergistisch wirksamen Stoffgemische in die Polycarbonatformmassen kann gemeinsam als Vorabgemisch oder einzeln in beliebiger Reihenfolge nacheinander oder einzeln aber gemeinsam nach bekannten Methoden erfolgen.

Die Einarbeitung der Komponenten A) und B) kann in

10 Substanz oder als Lösungen wie beispielsweise als

Methylenchlorid- oder MethylenchloridChloroform-Lösungen
erfolgen.

Die Einarbeitung in die Polycarbonatformmassen kann auch mit der Folienherstellung gekoppelt sein.

Die Herstellung der erfindungsgemäßen antistatisch ausgerüsteten Polycarbonatextrusionsfolien kann beispielsweise durch gemeinsames Einmischen der antistatisch wirksamen Alkali- oder Erdalkalisalze der allgemeinen Formeln (1) bis (5) und der Verbindungen gemäß Komponente B) in den benötigten Mengen in die Polycarbonatschmelze auf einem handelsüblichen Extruder mit Entgasungszone erfolgen, der über einen Adapter mit einer Breitschlitzdüse verbunden ist.

Nach Austritt der noch plastischen Folien aus der
Düse werden diese auf einem Kühlrost, einer chillroll-Anlage oder einem Dreiwalzenstuhl auflaufen las-

. 47

sen, wobei die Temperatur des jeweiligen Polymeren abgesenkt wird. Dabei erstarren die Folien und können aufgewickelt werden. (Siehe beispielsweise DT-OS 2 437 508).

Nach einem ebenfalls gebräuchlichen Herstellungsverfahren kann man die antistatisch wirksamen Alkali- oder Erd-5 alkalisalze der allgemeinen Formeln (1) bis (5) und die Verbindungen gemäß Komponente B) mit einer Teilmenge des aromatischen Polycarbonats zu einem Konzentrat vermischen, um dieses Konzentrat anschließend mit der Restmenge an aromatischem Polycarbonat in einem Extrusionsgang 10 zu vereinigen, wobei man die antistatischen Polycarbonatfolien mit dem berechneten Gehalt des Antistatikadditivs der allgemeinen Formel (1) bis (5) und dem berechnetem Gehalt an Verbindungen gemäß Komponente B) erhält. Für die Herstellung der erfindungsgemäßen 15 Extrusionsfolien lassen sich die üblichen Breitschlitzdüsen verwenden. Für blasverformtes Polycarbonat werden die üblichen Blasköpfe verwendet.

Es ist gleichfalls möglich, nach dem Reaktions- und Waschprozeß der Polycarbonatherstellung die synergistisch wirkenden Komponenten A) und B) in den benötigten Gewichtsmengen in die Polycarbonatlösung einzutragen und nach dem Aufkonzentrieren dieser Lösung über einen Eindampfextruder zu Granulat oder direkt über eine Breitschlitzdüse zu den erfindungsgemäßen Polycarbonat-25 extrusionsfolien aufzuarbeiten.

Die Herstellung erfindungsgemäßer Polycarbonatgießfolien

läßt sich nach dem Gießverfahren aus einer gemeinsamen Lösung der Polycarbonate und erfindungsgemäßen
synergistischen Mischung in Methylenchlorid oder
in einem Methylenchloridchloroformgemisch durchführen. Dieses Verfahren der Folienherstellung wird
beispielsweise in der DAS 1 274 274 oder der DOS
2 517 032 beschrieben.

Die erfindungsgemäßen Polycarbonatformmassen, auch die Polycarbonatfolien, können außerdem andere Materialien 10 wie Pigmente, thermische Stabilisatoren, Ultraviolettlichtstabilisatoren, Formtrennmittel, Glasfasern und Glaskugeln enthalten (vgl. dazu auch DE-OS 2 721 887 (Le A 18 035). Die erfindungsgemäß antistatisch ausgerüsteten Polycarbonatfolien lassen sich auf den besannten Polycarbonatfolieneinsatzgebieten verwenden wie beispielsweise auf den Elektrosektor, insbesondere jedoch zur Herstellung von Streulichtfolien. Die erfindungsgemäß antistatisch ausgerüsteten Polycarbonatfolien sind vor allem auch in Betrieben verwendbar (als Türvorhang), in denen eine elektrostatische Entladung als Zündfunke für brennbare Materialien vermieden werden muß.

Die erfindungsgemäßen Polycarbonatformmassen können außerdem für die Herstellung von Polycarbonatfolien für 25Sonnenschutzschirme für Fensterscheiben verwendet werden, weil es sehr wichtig ist, daß Polycarbonatfolien für derartige Anwendungszwecke antistatisch ausgerüstet sind, um während der Herstellung Schrumpfung zu vermeiden und während des Gebrauchs Staubbefall zu verhindern.

Die Herstellung der in den nachfolgenden Beispielen genannten erfindungsgemäßen Polycarbonatextrusionsfolien
sowie die Herstellung der in den Vergleichsbeispielen
2 bis 4 genannten Polycarbonatfolien erfolgte durch

5 Zugabe der antistatisch wirksamen Alkali- oder Erdalkalisalze der allgemeinen Formeln (1) bis (5) und gegebenenfalls der Verbindungen gemäß Komponente B) zu der Polycarbonatlösung nach dem Waschprozeß der Polycarbonatherstellung, Aufkonzentration der Lösung nach einer Voreindampfung über einen Eindampfextruder und Extrusion über
eine Breitschlitzdüse zu Folien von 0,1 mm Schichtdicke.

Das zur Herstellung der Folien verwendete Polycarbonat war ein aromatisches Polycarbonat auf Basis von Bis-2,2-(4-hydroxyphenyl)-propan (Bisphenol A), das nach dem

Zweiphasengrenzflächenverfahren hergestellt wurde und eine relative Lösungsviskosität von v. rel. = 1,32 besaß.

Die Messung der relativen Lösungsviskosität erfolgte bei 25°C in 0,5 Gew.-%iger Lösung in Methylenchlorid.

Die in Beispiel 1 genannte Folie ist eine additiv
freie 0,1 mm dicke Extrusionsfolie aus Bisphenol-APolycarbonat mit v. rel 1,32 und dient zum Vergleich.

Die in den nachfolgenden Beispielen beschriebene Prüfung des Oberflächenwiderstandes R_{OA} erfolgte nach DIN 53482, die Prüfung der Endaufladung E_e der Folien erfolgte nach DIN 53486 bei 23°C und einer relativen Luftfeuchte von 50 %. Die Prüfung des spezifischen Durchgangswiderstandes P_D erfolgte gemäß der Vorschrift VDE 0303 Teil 4.

.

Tabelle 1: Beispiele (die Gew. %-Angaben beziehen sich auf 100 Gew. % des Gesamtpolycarbonatmischung)

			•		-
Bsp.	Bsp. Additiv		Gew. 8	Carriersubstanz	Gew. 8
-	1	(zum Vergleich)	1	1	
2	$c_{13}H_{27}$ $-so_3Li$	(zum Vergleich)	2	ı	ı
æ	C ₁₃ H ₂₇ ————————————————————————————————————	(zum Vergleich)	-	i	I
4	$c_{13}^{H_{27}} - \bigcirc -so_{3}^{L_{1}}$	(zum Vergleich)	0,5	i	l
ស	C ₁₃ H ₂₇ - D-sO ₃ L ₄		0,5	N-Methyltetrachlorphthalimid	0,3
9	C ₁₃ H ₂₇ -sO ₃ Li		0,5	Pentaerythrittetrastearat	
7	$c_{13}^{H_{27}} - \bigcirc -so_{3}^{L1}$		0,5	N-Phenylphthalimid	0 0,3
• &	C ₁₃ H ₂₇ -C)-SO ₃ L1		0,3	N-Stearyltetrachlorphthalimid	034 20 20
					•

(bun	
(Fortsetzung	
Tabelle 1	
Le	

Beispi	Beispiel Additiv	Gew8	Carriersubstanz	Gew8
	f	• •		
თ	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	5'0	1,2-Bis(tetrabromphthalimidoj- '0,	0
	27		äthan	~-
	$\left c_{8^{H_1}} - \left c_{8^{H_2}} - c_{1} \right \right $ FO ₂ L4	0,5	Phthalsguredioctoat	, 0,3
	7.			
1	$ c_{13}H_{27}-c_{3}c_{3} $	0,5	N-Methyltetrachlorphthalimid	0,3
12				
!		در <u>ه</u> -	N-Methyltetrachlorphthallmid	1 0,3
	000.000 = MM = 600.000			24
	} -			_
	SO ₂ L1			

A 20 158

Tabelle 2: Vergleich der antistatischen Folieneigenschaften:

	1	1	
Bsp.	Reibungspartner (50 Reibungen)	Endaufladung E _e (V/cm)	Oberflächenwider- stand R _{OA} (.2.)
3	Polyacrylnitrilgewebe (PAN)	+ 24000	10 ¹⁴
1	Polyamid-6-Gewebe (PA-6,	+ 30000	10 14
2	PA-6	< + 100	3·10 ¹⁰
2	PAN	<- 1co	5·10 ¹⁰
3	PAN	- 1300	4-10 ¹⁰
3	PA-6	- 450	4.10 ¹⁰
4	PA-6	- 3730	10 ¹¹
4	PAN	< + 1780	10 ¹¹
5	PAN	c + 100	6·10 ¹⁰
5	PA-6	< - 100	5·10 ¹⁰
6	PA-6	<- 100	5·10 ¹⁰
6	PAN	< - 1∞	6·10 ¹⁰
7	PAN	< − 1∞	4·10 ¹⁰
7	PA-6	<- 100	5•10 ¹⁰

,,,,,

Tabelle 2 (Fortsetzung)

Beispiel	Halbwertszeit der Entaldung t _H (sec)	spez. Durchgangs- widerstand S _D (- 2 ·cm)
1	> 36∞	> 10 ¹⁵
1	> 3600	> 10 15
2	6	> 10 ¹⁵
2	5	> 10 ¹⁵
3	30	>10 ¹⁵
3	180	>10 ¹⁵
4	> 3600	>10 ¹⁵ ·
4	> 36∞	>10 ¹⁵
5		>10 ¹⁵
5	-	>10 ¹⁵
6	-	>10 ¹⁵
6	-	>10 ¹⁵
7	-	>10 ¹⁵
7	-	>10 ¹⁵ ·

Fortsetzung Tab. 2:

Bsp.	Reibungspartner (50 Reibungen)	Endaufladung E_ (V/cm)	Oberflächenwider- stand R _{OA} (ふ)
8	PA-6	c - 100	6°10 ¹⁰
8	PAN	< + 100	5•10 ¹⁰
9	PAN	< + 100	6·10 ¹⁰
9	PA-6	< - 100	5·10 ¹⁰
10	PA-6	< - 100	4.1010
10	PAN	< + 100	5·10 ¹⁰
11	PAN	< + 100	4·10 ¹⁰
11	PA-6	< + 100	6°10 ¹⁰
12	PA-6	< - 1∞	5*10 ¹⁰
12	PAN	< + 1∞	5·10 ¹⁰

Beispiel	Halbwertszeit der Entladung t _H (sec)	Spez. Durchgangs- widerstand S _D (s. cm)
8	_	> 10 ¹⁵
8	-	> 10 ¹⁵
9	-	> 10 ¹⁵
9	_	>10 ¹⁵
10	-	>10 ¹⁵
10	-	> 10 ¹⁵
11		>10 ¹⁵
11	-	>10 ¹⁵
12	-	>10 ¹⁵
12	•	> 10 ¹⁵

Tabelle 3

1

Vergleich der mechanischen Eigenschaften der 0,1 mm dicken Folien der Beispiele 1 bis 12 (die Messung der Zugfestig-keit und der Reißdehnung der Folien erfolgte gemäß DIN 53 455):

Beispiel	Zugfestigkeit	(MPa) Reißdehr	ung (%)
1	100	120	
2	65	50	
3	80	70	
4	100	115	
5	100	115	
6	100	115	
7	100	115	
8	100	115 .	
9	100	115	
10	100	115	
11	100	115	
12	100	115	

Patentansprüche

5

15

- 1. Synergistisch wirksame Stoffgemische bestehend aus
 - A) 0,1 bis 1 Gew.-Teilen an Alkali- oder Erdalkalisalzen von
 - A1) einer monomeren aromatischen Sulfonsäure der allgemeinen Formel (1)

$$(3)_{1-\frac{1}{2}} A \left[(so_3)_{m} M_{\underline{m}} \right]_{y}$$
 (1)

mit

10 A = Arylrest mit 1-4 aromatischen Ringen,

 $R = C_4 - C_{20} - \text{Alkyl}, C_4 - C_{20} - \text{Alkenyl}, C_6 - C_{20} - \text{Cycloalkyl}, C_6 - C_{20} - \text{Cycloalkenyl},$

M = Alkalimetall und m = n = 1,

M = Erdalkalimetall und m = 1, n = 2,

y = eine ganze Zahl von 1 bis 4, oder

A2) einer polymeren aromatischen (Poly)-sulfonsäure der allgemeinen Formel (2)

$$\frac{\left\{ \left(R_{1} \right)_{a} - \left(3 \right)_{b} - \left(R_{2} \right)_{e} \right\}_{x}}{\left(SO_{3} \right)_{n} M_{x}} \tag{2}$$

mit

3

5

10

15

R₂ R₁ oder ein von R₁ unterschiedlicher C₂-C₆-Alkylenrest,

M,n,m entsprechend der Bedeutung der Formel (1),

a,b,c ganze Zahlen ≥ 1 mit der Maßgabe, daß b = 3 bis 30 und a + b + c = 100,

x eine Zahl der Größe, daß das polymere Salz ein mittleres Molekulargewicht (Gewichtsmittelmolekulargewicht) $\bar{M}_{\rm w}$ von 800 bis 10⁶ besitzt, oder

A3) einer monomeren aromatischen Phosphonsäure der allgemeinen Formel (3)

Le A 20 158

 $(2)_{1-\frac{1}{2}} - A \left[(20_3) \text{ Mp} \right]_z$

(3)

mit

A,R entsprechend der Bedeutung der Formel (1)

M Alkalimetall und p = 2

M Erdalkalimetall und p = 1,

z 1 oder 2, oder

A4) eines monomeren sauren aromatischen Phosphorsäureesters der allgemeinen Formel (4)

mit

5

10

A,R,z entsprechend der Bedeutung der Formel (3)

M Alkalimetall und q = 2,

M Erdalkalimetall und q = 1 oder

A5) eines monomeren sauren aromatischen Phosphorsäureesters der allgemeinen Formel (5)

$$\left[(R)_{1-4} - A - O \frac{1}{j_2} \stackrel{O}{P} - O \right]_{e} M_{d}$$
 (5)

mit

A,R entsprechend der Bedeutung der Formel (1),

M Alkalimetall und d = e = 1,

M Erdalkalimetall mit d = 1 und e = 2,

und

- B) 0,05 bis 0,5 Gew.-Teilen an Verbindungen von
- B1) N-Alkyl-, N-Aryl-phthalimiden oder Bisphthalimiden, oder
 - B2) neutralen C_3 - C_{18} -Alkylestern aliphatischer C_4 - C_{18} -Mono-, Di-, Tri- oder Tetracarbonsäuren, oder
 - B3) neutralen C₃-C₁₈-Alkylestern aromatischer C₆-C₁₂-Mono-, Di-, Tri- oder Tetracarbonsäuren.

15

Ġ.

- 2. Synergistisch wirksame Stoffgemische bestehend aus
 - A) 0,3 bis 0,8 Gew.-Teilen an Alkali- oder Erdalkalisalzen gemäß Anspruch 1.
- 3. Synergistisch wirksame Stoffgemische bestehend aus
- B) 0,2 bis 0,4 Gew.-Teilen an Verbindungen von B1), B2) oder
 - B3) gemäß Ansprüche 1 und 2.
- 4. Verwendung der synergistisch wirksamen Stoffgemische gemäß Ansprüche 1 bis 3 zur antistatischen
 Ausrüstung von Polycarbonatformmassen.
 - 5. Verwendung gemäß Anspruch 4 zur antistatischen Ausrüstung von Polycarbonatfolien.
 - 6. Verwendung gemäß Anspruch 5 zur antistatischen Ausrüstung von Polycarbonatextrusionsfolien.
- 7. Polycarbonatformmassen mit einem Gehalt von 0,1
 Gew.-% bis 1 Gew.-% an Alkalisalzen oder Erdalkalisalzen gemäß Komponente A) und von 0,05 Gew.-% bis
 0,5 Gew.-% an Verbindungen gemäß Komponente B), wobei die Gewichtsprozente sich jeweils auf Gesamtgewicht aus Polycarbonat plus Komponente A) plus
 Komponente B) beziehen, und wobei die Komponenten
 A) und B) die Bedeutung aus Anspruch 1 haben.

Le A 20 158

8. Polycarbonatfolien gemäß Anspruch 7.

...

- 9. Polycarbonatextrusionsfolien gemäß Anspruch 8.
- 10. Verwendung der Polycarbonatfolien gemäß
 Ansprüche 8 und 9 zur Herstellung von Sonnenschutzschirmen für Fensterscheiben.