- 1. (a) Show that the k-th order linear differential operator $L := \sum_{i=0}^k a_i(x) \frac{d^i}{dx^i}$ is a linear transformation from $C^k(\bar{I})$ to $C(\bar{I})$.
 - (b) Show that the solution to the homogeneous ODE Ly = 0 is a subspace of $C(\bar{I})$.
 - (c) Recall that we have stated a theorem (without proof) that the dimesion of N(L) is k. Use this information to give an expression for the general solution of Ly = 0.
 - (d) Classify the set of all solutions of the inhomogeneous ODE Ly = f, for any given non-zero $f \in C(\bar{I})$, in terms of the N(L).
- 2. Check that both $y = x^2 \sin x$ and y = 0 are solutions of the in $\frac{1}{|x|}$ value problem

$$\begin{cases} x^2y'' - 4xy' + (x^2 + 6)y = 0\\ y(0) = y'(0) = 0. \end{cases}$$

Does the IVP violate the uniqueness result?

- 3. Solve the following second order ODE by reducing them to a first order ODE:
 - (a) $xy'' + y' = (y')^2$.
 - (b) $yy'' + (y')^2 + 1 = 0$. (c) $y'' 2y' \coth x = 0$.
- 4. Find the curve y = y(x) such that y'' = y' and the line y = x is tangent at the origin.
- 5. Check the linear dependence and independence of the following functions on the given intervals:
 - (a) $\sin 4x$ and $\cos 4x$ in \mathbb{R} .
 - (b) $\ln x$ and $\ln x^3$ in $(0, \infty)$.
 - (c) $\cos 2x$ and $\sin^2 x$ in $(0, \infty)$.
 - (d) x^3 and $x^2|x|$ in [-1,1].
- 6. Show that the following functions are linearly independent both using the definition of linear independence and using the Wronskian property:
 - (a) e^x and e^{3x} in any $[a, b] \subset \mathbb{R}$.
 - (b) x^2 and x^{-2} in any $[a, b] \subset \mathbb{R}$ not containing zero.
- 7. Let $L:=\frac{d^2}{dx^2}+P(x)\frac{d}{dx}+Q(x)$ be the second order linear differential operator where Pand Q are continuous functions on \mathbb{R} .
 - (a) Show that a solution to Ly = 0 with x-axis as tangent at any point in I must be identically zero in I.
 - (b) Show that if y_1 and y_2 are two solutions of Ly = 0 with a common zero at any point in I then y_1 and y_2 are linearly dependent on I.
 - (c) Show that $y_1 = x$ and $y_2 = \sin x$ are not solutions of Ly = 0.

- (d) Let y_1 and y_2 be two linearly independent solutions of Ly = 0. Show that
 - i. between two consecutive zero of y_1 , there exists a unique zero of y_2 ;
 - ii. Two different linear combinations $ay_1 + by_2$ and $cy_1 + dy_2$ are linearly independent solutions of Ly = 0 iff $ad bc \neq 0$.
- 8. (a) Let $y_1, y_2 \in C^2(\bar{I})$. Show that if the Wronskian $W(y_1, y_2) \not\equiv 0$ in I then there exists a unique pair of continuous functions (P, Q) on I such that y_1 and y_2 span the solution space of y'' + P(x)y' + Q(x) = 0.
 - (b) Construct the second order linear ODE from the following pairs of solutions:
 - i. e^{-x} and xe^{-x} .
 - ii. $e^{-x} \sin 2x$ and $e^{-x} \cos 2x$.
 - iii. x and $x^2 + 1$.