```
5
     (2) INFORMATION FOR SEQ ID NO:1: MTB32A (Ra35 FL)
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 1872 base pairs
               (B) TYPE: nucleic acid
10
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
15
     GACTACGTTG GTGTAGAAAA ATCCTGCCGC CCGGACCCTT AAGGCTGGGA CAATTTCTGA
                                                                          60
     TAGCTACCCC GACACAGGAG GTTACGGGAT GAGCAATTCG CGCCGCCGCT CACTCAGGTG
                                                                          120
     GTCATGGTTG CTGAGCGTGC TGGCTGCCGT CGGGCTGGGC CTGGCCACGG CGCCGGCCCA
                                                                          180
     GGCGGCCCCG CCGCCTTGT CGCAGGACCG GTTCGCCGAC TTCCCCGCGC TGCCCCTCGA
     CCCGTCCGCG ATGGTCGCCC AAGTGGCGCC ACAGGTGGTC AACATCAACA CCAAACTGGG
20
     CTACAACAAC GCCGTGGGCG CCGGGACCGG CATCGTCATC GATCCCAACG GTGTCGTGCT
                                                                          360
     GACCAACAAC CACGTGATCG CGGGCGCCAC CGACATCAAT GCGTTCAGCG TCGGCTCCGG
                                                                          420
     CCAAACCTAC GGCGTCGATG TGGTCGGGTA TGACCGCACC CAGGATGTCG CGGTGCTGCA
                                                                          480
     GCTGCGCGGT GCCGGTGGCC TGCCGTCGGC GGCGATCGGT GGCGGCGTCG CGGTTGGTGA
                                                                          540
     GCCCGTCGTC GCGATGGGCA ACAGCGGTGG GCAGGGCGGA ACGCCCCGTG CGGTGCCTGG
     CAGGGTGGTC GCGCTCGGCC AAACCGTGCA GGCGTCGGAT TCGCTGACCG GTGCCGAAGA
                                                                          660
     GACATTGAAC GGGTTGATCC AGTTCGATGC CGCAATCCAG CCCGGTGATT CGGGCGGGCC
                                                                          720
     CGTCGTCAAC GGCCTAGGAC AGGTGGTCGG TATGAACACG GCCGCGTCCG ATAACTTCCA
                                                                          780
     GCTGTCCCAG GGTGGGCAGG GATTCGCCAT TCCGATCGGG CAGGCGATGG CGATCGCGG
     CCAAATCCGA TCGGGTGGGG GGTCACCCAC CGTTCATATC GGGCCTACCG CCTTCCTCGG
                                                                          900
30
     CTTGGGTGTT GTCGACAACA ACGGCAACGG CGCACGAGTC CAACGCGTGG TCGGAAGCGC
                                                                         960
     TCCGGCGGCA AGTCTCGGCA TCTCCACCGG CGACGTGATC ACCGCGGTCG ACGGCGCTCC
                                                                         1020
     GATCAACTCG GCCACCGCGA TGGCGGACGC GCTTAACGGG CATCATCCCG GTGACGTCAT
                                                                         1080
     CTCGGTGAAC TGGCAAACCA AGTCGGGCGG CACGCGTACA GGGAACGTGA CATTGGCCGA
     GGGACCCCG GCCTGATTTG TCGCGGATAC CACCCGCCGG CCGGCCAATT GGATTGGCGC
                                                                         1200
35
     CAGCCGTGAT TGCCGCGTGA GCCCCCGAGT TCCGTCTCCC GTGCGCGTGG CATTGTGGAA
                                                                         1260
     GCAATGAACG AGGCAGAACA CAGCGTTGAG CACCCTCCCG TGCAGGGCAG TTACGTCGAA
                                                                         1320
     GGCGGTGTGG TCGAGCATCC GGATGCCAAG GACTTCGGCA GCGCCGCCGC CCTGCCCGCC
     GATCCGACCT GGTTTAAGCA CGCCGTCTTC TACGAGGTGC TGGTCCGGGC GTTCTTCGAC
     GCCAGCGCG ACGGTTCCGN CGATCTGCGT GGACTCATCG ATCGCCTCGA CTACCTGCAG
                                                                         1500
40
     TGGCTTGGCA TCGACTGCAT CTGTTGCCGC CGTTCCTACG ACTCACCGCT GCGCGACGGC
                                                                         1560
     GGTTACGACA TTCGCGACTT CTACAAGGTG CTGCCCGAAT TCGGCACCGT CGACGATTTC
                                                                         1620
     GTCGCCCTGG TCGACACCGC TCACCGGCGA GGTATCCGCA TCATCACCGA CCTGGTGATG
     AATCACACCT CGGAGTCGCA CCCCTGGTTT CAGGAGTCCC GCCGCGACCC AGACGGACCG
                                                                        1740
     TACGGTGACT ATTACGTGTG GAGCGACACC AGCGACGCT ACACCGACGC CCGGATCATC
                                                                         1800
45
     TTCGTCGACA CCGAAGAGTC GAACTGGTCA TTCGATCCTG TCCGCCGACA GTTNCTACTG
                                                                         1860
     GCACCGATTC TT
     (2) INFORMATION FOR SEQ ID NO:2:
50
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 355 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
55
               (D) TOPOLOGY: linear
         (xi) SEQUENCE DESCRIPTION: SEO ID NO:2: MTB32A (Ra35FL)
          Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser
60
                                            10
                        5
          Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala
                   20 25 30
          Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
                                                        45
                35 40
65
          Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val
          50 55
                                                 60
          Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
                             70
                                                 75
```

```
Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val
                                            90
          Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln
                     100
                                        105
 5
          Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
                                    120
                                                    125
                115
          Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
                                135
                                                  140
          Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly
10
                  150
                                     155
          Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu
                                     170
                         165
          Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr
                     180
                                       185
15
          Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser
                                  200 205
               195
          Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr
                               215
                                                   220
          Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe Ala
20
                            230
                                               235
          Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
                       245
                                          250
          Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu
                     260
                                       265
25
          Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val
                 275
                                    280
                                                       285
          Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile
                               295
          Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp
30
                            310 315
          Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln
                        325 330 335
          Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly
                                       345
35
          Pro Pro Ala
                 355
     <212> DNA
40
     <213> Ra35 mature
     <400> SEQ ID NO:3
     catatgcatc accatcacca teacgececg eeggeettgt egeaggaceg gttegeegae 60
     ttccccgcgc tgccctcga cccgtccgcg atggtcgccc aagtggggcc acaggtggtc 120
45
     aacatcaaca ccaaactggg ctacaacaac gccgtgggcg ccgggaccgg catcgtcatc 180
     gateceaacg gtgtegtget gaceaacaac cacgtgateg egggegecae egacateaat 240
     gegtteageg teggeteegg ceaaacetae ggegtegatg tggtegggta tgacegeace 300
     caggatgtcg cggtgctgca gctgcgcggt gccggtggcc tgccgtcggc ggcgatcggt 360
     ggcggcgtcg cggttggtga gcccgtcgtc gcgatgggca acagcggtgg gcagggcgga 420
50
     acgeccegtg eggtgeetgg eagggtggte gegeteggee aaacegtgea ggegteggat 480
     tegetgaceg gtgeegaaga gacattgaae gggttgatee agttegatge egegateeag 540
     cceggtgagg cgggcggcc cgtcgtcaac ggcctaggac aggtggtcgg tatgaacacg 600
     gccgcgtccg ataacttcca gctgtcccag ggtgggcagg gattcgccat tccgatcggg 660
     caggogatgg cgatcgcggg ccagatccga tcgggtgggg ggtcacccac cgttcatatc 720
55
     gggcctaccg ccttcctcgg cttgggtgtt gtcgacaaca acggcaacgg cgcacgagtc 780
     caacgcgtgg tcgggagcgc tccggcggca agtctcggca tctccaccgg cgacgtgatc 840
     accgcggtcg acggcgctcc gatcaactcg gccaccgcga tggcggacgc gcttaacggg 900
     catcateccg gtgacgteat eteggtgace tggcaaacca agtegggegg eacgegtaca 960
     gggaacgtga cattggccga gggacccccg gcctgagaat to
60
     <212> PRT
     <213> Ra35 mature
     <400> SEQ ID NO:4
65
     Met His His His His His Ala Pro Pro Ala Leu Ser Gln Asp Arg
                                        10
```

	Phe	Ala	Asp	Phe 20	Pro	Ala	Leu	Pro	Leu 25	Asp	Pro	Ser	Ala	Met 30	Val	Ala
5	Gln	Val	Gly 35	Pro	Gln	Val	Val	Asn 40	Ile	Asn	Thr	Lys	Leu 45	Gly	Tyr	Asr
	Asn	Ala 50	Val	Gly	Ala	Gly	Thr 55	Gly	Ile	Val	Ile	Asp 60	Pro	Asn	Gly	Va]
10	Val 65	Leu	Thr	Asn	Asn	His 70	Val	Ile	Ala	Gly	Ala 75	Thr	Asp	Ile	Asn	Alá 80
15	Phe	Ser	Val	Gly	Ser 85	Gly	Gln	Thr	Tyr	Gly 90	Val	Asp	Val	Val	Gly 95	Туг
	Asp	Arg	Thr	Gln 100	Asp	Val	Ala	Val	Leu 105	Gln	Leu	Arg	Gly	Ala 110	Gly	GlΣ
20	Leu	Pro	Ser 115	Ala	Ala	Ile	Gly	Gly 120	Gly	Val	Ala	Val	Gly 125	Glu	Pro	Va]
	Val	Ala 130	Met	Gly	Asn	Ser	Gly 135	Gly	Gln	Gly	Gly	Thr 140	Pro	Arg	Ala	Va]
25	Pro 145	Gly	Arg	Val	Val	Ala 150	Leu	Gly	Gln	Thr	Val 155	Gln	Ala	Ser	Asp	Ser 160
30	Leu	Thr	Gly	Ala	Glu 165	Glu	Thr	Leu	Asn	Gly 170	Leu	Ile	Gln	Phe	Asp 175	Ala
	Ala	Ile	Gln	Pro 180	Gly	Asp	Ser	Gly	Gly 185	Pro	Val	Val	Asn	Gly 190	Leu	Glλ
35	Gln	Val	Val 195	Gly	Met	Asn	Thr	Ala 200	Ala	Ser	Asp	Asn	Phe 205	Gln	Leu	Ser
	Gln	Gly 210	Gly	Gln	Gly	Phe	Ala 215	Ile	Pro	Ile	Gly	Gln 220	Ala	Met	Ala	Ile
40	Ala 225	Gly	Gln	Ile	Arg	Ser 230	Gly	Gly	Gly	Ser	Pro 235	Thr	Val	His	Ile	Gly 240
45	Pro	Thr	Ala	Phe	Leu 245	Gly	Leu	Gly	Val	Val 250	Asp	Asn	Asn	Gly	Asn 255	Gly
	Ala	Arg	Val	Gln 260	Arg	Val	Val	Gly	Ser 265	Ala	Pro	Ala	Ala	Ser 270	Leu	Gly
50	Ile	Ser	Thr 275	Gly	Asp	Val	Ile	Thr 280	Ala	Val	Asp	Gly	Ala 285	Pro	Ile	Asr
	Ser	Ala 290	Thr	Ala	Met	Ala	Asp 295	Ala	Leu	Asn	Gly	His 300	His	Pro	Gly	Asp
55	Val 305	Ile	Ser	Val	Thr	Trp 310	Gln	Thr	Lys	Ser	Gly 315	Gly	Thr	Arg	Thr	Gly 320
60	Asn	Val	Thr	Leu	Ala 325	Glu	Gly	Pro	Pro	Ala 330						
		2> D1 3> Ra	IA a35FI	Muts	SA											
55	<400)> SI	EQ II	NO:	5											

catatgcatc accatcacca tcacgccccg ccggccttgt cgcaggaccg gttcgccgac 60 ttccccgcgc tgcccctcga cccgtccgcg atggtcgcc aagtgggcc acaggtggtc 120 aacatcaaca ccaaactggg ctacaacaac gccgtgggcg ccgggaccgg catcgtcatc 180

5 10 15	gatecea gegttea caggatg ggeggeg aegecee tegetga eegeggt caggega gggeeta caaegeg aeegegg cateate gggaaeg	gcg tegg control of the control of t	cggc ggtg ggtt ggtc gggc taac gatc cttc cggg	tccgc ctgc ggtg cctg gaag ttcc gctcg agctca gctca	g a a g a c a g g c c t c a c c a c c c c	aaac tgcg tcgt catt tcgt tagat tcgt tcgat tcgat tcgat ccggt	ctac cggt cggtc ggac caac ccag ccga tgtt ggca	ggc gcc gcg gcg ggc ggt tcg gtc tcg	gtcgggtggatggatggatggatggatggatgatcggatgactcgatcga	atg gcca gccc gaggca aggga acca gcca	tggte tgccg acage agatt aggte gatt ggtc acgg tctc tggc agtc	cggg gtcg cgtg cgat cgatc cacc cacc ggac	ta g g g g c t t c c c c g g g g c t t c c c c	gacci gcga caggi gcga atga ccga gttc gcac gacg ctta	gcacc tcggt gcggat tccag acacg tcggg atatc gagtc tgatc acggg	360 420 480 540 600 660 720 780 840 900
20	<212> P <213> R <400> S	a35FI EQ II	NO:	6	77.i m	TT	77.0	Dwo	Dro	λla	T.Au	Ser	Gln	Asn	Ara	
25	Met His			5					10					15		
	Gln Val	35					40					45				
30	Asn Ala 50 Val Lei)				55					60					
35	65 Phe Sei				70				Gly	75				Gly	80	
40	Asp Arc	J Thr	Gln 100	85 Asp	Val	Ala	Val	Leu 105	90 Gln	Leu	Arg	Gly	Ala 110	95 Gly	Gly	
	Leu Pro	Ser 115	Ala	Ala	Ile	Gly	Gly 120	Gly	Val	Ala	Val	Gly 125	Glu	Pro	Val	
45	Val Ala)				135					140					
50	Pro Gl				150					155					160	
	Leu Th			165					170					175		
55	Gln Va		180					185					190			
60	Gln Gl	195 y Gly				Ala	200 Ile					205				
	21 Ala Gl 225		ıIle	Arg	Ser	215 Gly		Gly	Ser	Pro 235	Thr	Val	His	Ile	Gly 240	
65	Pro Th	r Ala	. Phe	Leu 245		Leu	Gly	· Val	Val 250) Asn	Asn	. Gly	Asn 255	Gly	

65

	Ala	Arg	Val	Gln 260	Arg	Val	Val	Gly	Ser 265	Ala	Pro	Ala	Ala	Ser 270	Leu	Gly	
5	Ile	Ser	Thr 275	Gly	Asp	Val	Ile	Thr 280	Ala	Val	Asp	Gly	Ala 285	Pro	Ile	Asn	
	Ser	Ala 290	Thr	Ala	Met	Ala	Asp 295	Ala	Leu	Asn	Gly	His 300	His	Pro	Gly	Asp	
10	Val 305	Ile	Ser	Val	Thr	Trp 310	Gln	Thr	Lys	Ser	Gly 315	Gly	Thr	Arg	Thr	Gly 320	
15	Asn	Val	Thr	Leu	Ala 325	Glu	Gly	Pro	Pro	Ala 330							
	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:7	: Ra	35 (MTB3	2A N	-ter	m)			
20		(i	() ()	QUENCA) Li B) T C) S' D) To	ENGT: YPE: TRAN	H: 6 nuc DEDN	15 b leic ESS:	ase aci sin	pair d	S							
25		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:7:						
30 35	atg ggc ggc tat atc acg	gteg geeg geea gaee ggtg eeee ggtg	ccca ggac ccga gcac gcgg gtgc ccga	agtge cggc catc ccage cgtc	gggc atcg aatg gatg gcgg cctg acat	caca tcat cgtt tcgc ttgg gcag tgaa	ggtg cgat cagc ggtg tgag ggtg cggg	gtca ccca gtcg ctgc cccg gtcg	acat acgg gctc agct tcgt cgct tcca	caac tgtc cggc gcgc cgcg cggc	acca gtgc caaa ggtg atgg caaa gatg	aact; tgac ccta ccgg gcaa ccgt ccgc	gggc caac cggc tggc cagc gcag gatc	taca aacc gtcg ctgc ggtg gcgt cagc	acaa acgt atgt cgtc ggca cgga ccgg	gtcc gatc gatc ggcg ggcg ttcg tgag	gtg gcg ggg gcg gga ctg
	55-	333-	5-	- J	J	_	33	32									
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:8	: Ra	35 (MTB3	2A N	-ter	m)			
40		(i	· (QUEN A) L B) T C) S D) T	ENGT YPE : TRAN	H: 2 ami DEDN	05 a no a ESS:	mino cid sin	aci	ds							
45		(-	QUEN					g Er∩	TD N							
												e Al	a As	n Ph	ie Pr	o Al	a Leu
50																	l Val
50																	y Thr
																	s Val
55																	y Gln
					_												

78

Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly

Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu

Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser

	Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr	
5	Ala Ala Ser	
	(2) INFORMATION FOR SEQ ID NO:9: Ral2	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 447 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
20	CACCGTTCAT ATCGGGCCTA CCGCCTTCCT CGGCTTGGGT GTTGTCGACA ACAACGGCAA CGGCGCACGA GTCCAACGCG TGGTCGGGAG CGCTCCGGCG GCAAGTCTCG GCATCTCCAC CGGCGACGTG ATCACCGCGG TCGACGGCGC TCCGATCAAC TCGGCCACCG CGATGGCGGA CGCGCTTAAC GGGCATCATC CCGGTGACGT CATCTCGGTG AACTGGCAAA CCAAGTCGGG CGGCACGCGT ACAGGGAACG TGACATTGGC CGAGGGACCC CCGGCCTGAT TTCGTCGYGG	60 120 180 240 300 360 420 447
25		
30	(2) INFORMATION FOR SEQ ID NO:10: Ra12 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe 1 5 10 15	
40	Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 20 25 30 Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly 40 45	
	Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 50 55 60	
45	Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val 65 70 75 80	
	Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 85 90 95	
50	Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp 100 105 110	
	Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 115 120 125	
55	Gly Pro Pro Ala 130	
	(2) INFORMATION FOR SEQ ID NO:11: TbH9	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
65	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	CTGCAGGGTG GCGTGGATGA GCGTCACCGC GGGGCAGGCC GAGCTGACCG CCGCCCAGGT CCGGGTTGCT GCGGCGGCCT ACGAGACGGC GTATGGGCTG ACGGTGCCCC CGCCGGTGAT	60 120

```
CGCCGAGAAC CGTGCTGAAC TGATGATTCT GATAGCGACC AACCTCTTGG GGCAAAACAC
    CCCGGCGATC GCGGTCAACG AGGCCGAATA CGGCGAGATG TGGGCCCAAG ACGCCGCCGC
    GATGTTTGGC TACGCCGCGG CGACGGCGAC GGCGACGGCG ACGTTGCTGC CGTTCGAGGA
    GGCGCCGGAG ATGACCAGCG CGGGTGGGCT CCTCGAGCAG GCCGCCGCGG TCGAGGAGGC
    CTCCGACACC GCCGCGGCGA ACCAGTTGAT GAACAATGTG CCCCAGGCGC TGAAACAGTT
    GGCCCAGCCC ACGCAGGGCA CCACGCCTTC TTCCAAGCTG GGTGGCCTGT GGAAGACGGT
    CTCGCCGCAT CGGTCGCCGA TCAGCAACAT GGTGTCGATG GCCAACAACC ACATGTCGAT
    GACCAACTCG GGTGTGTCGA TGACCAACAC CTTGAGCTCG ATGTTGAAGG GCTTTGCTCC
    GGCGGCGCC GCCCAGGCCG TGCAAACCGC GGCGCAAAAC GGGGTCCGGG CGATGAGCTC
10
    GCTGGGCAGC TCGCTGGGTT CTTCGGGTCT GGGCGGTGGG GTGGCCGCCA ACTTGGGTCG
    GGCGGCCTCG GTACGGTATG GTCACCGGGA TGGCGGAAAA TATGCANAGT CTGGTCGGCG
     GAACGGTGGT CCGGCGTAAG GTTTACCCCC GTTTTCTGGA TGCGGTGAAC TTCGTCAACG
    GAAACAGTTA C
15
     (2) INFORMATION FOR SEO ID NO:12:
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 263 amino acids
20
             (B) TYPE: amino acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: TbH9
25
         Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala
                                     10
         Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr
          20
                      25
30
         Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu
          35
                          40
                                              4.5
         Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn
          50 55
         Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Met Phe
                          70
                                 75
         Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe
                85 90 95
         Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln Ala
                 100 105 110
40
         Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met
          115 120 125
         Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly
          130 135
         Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro 145 150 155 160
45
         His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met
                     165 170 175
         Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met
                180 185 190
50
         Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala
          195 200 205
         Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly
          210 215 220
         Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala
55
                         230 235
         Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly
                    245
         Arg Arg Asn Gly Gly Pro Ala
                  260
60
```

240

300

360

420

600

720

840

851

(2) INFORMATION FOR SEQ ID NO:13: TBH9FL

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3058 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

5	GATCGTACCC	GTGCGAGTGC	TCGGGCCGTT	TGAGGATGGA	GTGCACGTGT	CTTTCGTGAT	60
5	GGCATACCCA	GAGATGTTGG	CGGCGGCGGC	TGACACCCTG	CAGAGCATCG	GTGCTACCAC	120
	TGTGGCTAGC	AATGCCGCTG	CGGCGGCCCC	GACGACTGGG	GTGGTGCCCC	CCGCTGCCGA	180
10	TGAGGTGTCG	GCGCTGACTG	CGGCGCACTT	CGCCGCACAT	GCGGCGATGT	ATCAGTCCGT	240
	GAGCGCTCGG	GCTGCTGCGA	TTCATGACCA	GTTCGTGGCC	ACCCTTGCCA	GCAGCGCCAG	300
15	CTCGTATGCG	GCCACTGAAG	TCGCCAATGC	GGCGGCGGCC	AGCTAAGCCA	GGAACAGTCG	360
13	GCACGAGAAA	CCACGAGAAA	TAGGGACACG	TAATGGTGGA	TTTCGGGGCG	TTACCACCGG	420
	AGATCAACTC	CGCGAGGATG	TACGCCGGCC	CGGGTTCGGC	CTCGCTGGTG	GCCGCGGCTC	480
20	AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	GTCGGCGTTT	CAGTCGGTGG	540
	TCTGGGGTCT	GACGGTGGGG	TCGTGGATAG	GTTCGTCGGC	GGGTCTGATG	GTGGCGGCGG	600
25	CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	GGCCGAGCTG	ACCGCCGCCC	660
23	AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	GCTGACGGTG	CCCCCGCCGG	720
	TGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	GACCAACCTC	TTGGGGCAAA	780
30	ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGCGA	GATGTGGGCC	CAAGACGCCG	840
	CCGCGATGTT	TGGCTACGCC	GCGGCGACGG	CGACGGCGAC	GGCGACGTTG	CTGCCGTTCG	900
35	AGGAGGCGCC	GGAGATGACC	AGCGCGGGTG	GGCTCCTCGA	GCAGGCCGCC	GCGGTCGAGG	960
55	AGGCCTCCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	TGTGCCCCAG	GCGCTGCAAC	1020
	AGCTGGCCCA	GCCCACGCAG	GGCACCACGC	CTTCTTCCAA	GCTGGGTGGC	CTGTGGAAGA	1080
40	CGGTCTCGCC	GCATCGGTCG	CCGATCAGCA	ACATGGTGTC	GATGGCCAAC	AACCACATGT	1140
	CGATGACCAA	CTCGGGTGTG	TCGATGACCA	ACACCTTGAG	CTCGATGTTG	AAGGGCTTTG	1200
45	CTCCGGCGGC	GGCCGCCCAG	GCCGTGCAAA	CCGCGGCGCA	AAACGGGGTC	CGGGCGATGA	1260
13	GCTCGCTGGG	CAGCTCGCTG	GGTTCTTCGG	GTCTGGGCGG	TGGGGTGGCC	GCCAACTTGG	1320
	GTCGGGCGGC	CTCGGTCGGT	TCGTTGTCGG	TGCCGCAGGC	CTGGGCCGCG	GCCAACCAGG	1380
50	CAGTCACCCC	GGCGGCGCGG	GCGCTGCCGC	TGACCAGCCT	GACCAGCGCC	GCGGAAAGAG	1440
	GGCCCGGGCA	GATGCTGGGC	GGGCTGCCGG	TGGGGCAGAT	GGGCGCCAGG	GCCGGTGGTG	1500
55	GGCTCAGTGG	TGTGCTGCGT	GTTCCGCCGC	GACCCTATGT	GATGCCGCAT	TCTCCGGCGG	1560
	CCGGCTAGGA	GAGGGGGCGC	AGACTGTCGT	TATTTGACCA	GTGATCGGCG	GTCTCGGTGT	1620
	TTCCGCGGCC	GGCTATGACA	ACAGTCAATG	TGCATGACAA	GTTACAGGTA	TTAGGTCCAG	1680
60	GTTCAACAAG	GAGACAGGCA	ACATGGCCTC	ACGTTTTATG	ACGGATCCGC	ACGCGATGCG	1740
	GGACATGGCG	GGCCGTTTTG	AGGTGCACGC	CCAGACGGTG	GAGGACGAGG	CTCGCCGGAT	1800
65	GTGGGCGTCC	GCGCAAAACA	TTTCCGGTGC	GGGCTGGAGT	GGCATGGCCG	AGGCGACCTC	1860
	GCTAGACACC	ATGGCCCAGA	TGAATCAGGC	GTTTCGCAAC	ATCGTGAACA	TGCTGCACGG	1920
	GGTGCGTGAC	GGGCTGGTTC	GCGACGCCAA	CAACTACGAG	CAGCAAGAGC	AGGCCTCCCA	1980

45

	GCAGATCCTC	AGCAGCTAAC	GTCAGCCGCT	GCAGCACAAT	ACTTTTACAA	GCGAAGGAGA	2040
_	ACAGGTTCGA	TGACCATCAA	CTATCAATTC	GGGGATGTCG	ACGCTCACGG	CGCCATGATC	2100
5	CGCGCTCAGG	CCGGGTTGCT	GGAGGCCGAG	CATCAGGCCA	TCATTCGTGA	TGTGTTGACC	2160
	GCGAGTGACT	TTTGGGGCGG	CGCCGGTTCG	GCGGCCTGCC	AGGGGTTCAT	TACCCAGTTG	2220
10	GGCCGTAACT	TCCAGGTGAT	CTACGAGCAG	GCCAACGCCC	ACGGGCAGAA	GGTGCAGGCT	2280
	GCCGGCAACA	ACATGGCGCA	AACCGACAGC	GCCGTCGGCT	CCAGCTGGGC	CTGACACCAG	2340
	GCCAAGGCCA	GGGACGTGGT	GTACGAGTGA	AGTTCCTCGC	GTGATCCTTC	GGGTGGCAGT	2400
15	CTAAGTGGTC	AGTGCTGGGG	TGTTGGTGGT	TTGCTGCTTG	GCGGGTTCTT	CGGTGCTGGT	2460
	CAGTGCTGCT	CGGGCTCGGG	TGAGGACCTC	GAGGCCCAGG	TAGCGCCGTC	CTTCGATCCA	2520
20	TTCGTCGTGT	TGTTCGGCGA	GGACGGCTCC	GACGAGGCGG	ATGATCGAGG	CGCGGTCGGG	2580
	GAAGATGCCC	ACGACGTCGG	TTCGGCGTCG	TACCTCTCGG	TTGAGGCGTT	CCTGGGGGTT	2640
	GTTGGACCAG	ATTTGGCGCC	AGATCTGCTT	GGGGAAGGCG	GTGAACGCCA	GCAGGTCGGT	2700
25	GCGGGCGGTG	TCGAGGTGCT	CGGCCACCGC	GGGGAGTTTG	TCGGTCAGAG	CGTCGAGTAC	2760
	CCGATCATAT	TGGGCAACAA	CTGATTCGGC	GTCGGGCTGG	TCGTAGATGG	AGTGCAGCAG	2820
30	GGTGCGCACC	CACGGCCAGG	AGGGCTTCGG	GGTGGCTGCC	ATCAGATTGG	CTGCGTAGTG	2880
	GGTTCTGCAG	CGCTGCCAGG	CCGCTGCGGG	CAGGGTGGCG	CCGATCGCGG	CCACCAGGCC	2940
	GGCGTGGGCG	TCGCTGGTGA	CCAGCGCGAC	CCCGGACAGG	CCGCGGGCGA	CCAGGTCGCG	3000
35	GAAGAACGCC	AGCCAGCCGG	CCCCGTCCTC	GGCGGAGGTG	ACCTGGATGC	CCAGGATC	3058
	(a) TMB653	ATION FOR S	EO ID NO-14	Thugh.			
	- / / 1 NIE()P(V)	ALICIN FOR S	PLATED NOTES				

- - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 391 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met 50
 - Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp 25
- Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 55
 - Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 55
 - Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr
- Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 65
 - Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 110 105

		Glu	Asn	Arg 115	Ala	Glu	Leu	Met	Ile 120	Leu	Ile	Ala	Thr	Asn 125	Leu	Leu	Gly
	5	Gln	Asn 130	Thr	Pro	Ala	Ile	Ala 135	Val	Asn	Glu	Ala	Glu 140	Tyr	Gly	Glu	Met
	1.0	Trp 145	Ala	Gln	Asp	Ala	Ala 150	Ala	Met	Phe	Gly	Tyr 155	Ala	Ala	Ala	Thr	Ala 160
	10	Thr	Ala	Thr	Ala	Thr 165	Leu	Leu	Pro	Phe	Glu 170	Glu	Ala	Pro	Glu	Met 175	Thr
	15	Ser	Ala	Gly	Gly 180	Leu	Leu	Glu	Gln	Ala 185	Ala	Ala	Val	Glu	Glu 190	Ala	Ser
		Asp	Thr	Ala 195	Ala	Ala	Asn	Gln	Leu 200	Met	Asn	Asn	Val	Pro 205	Gln	Ala	Leu
	20	Gln	Gln 210	Leu	Ala	Gln	Pro	Thr 215	Gln	Gly	Thr	Thr	Pro 220	Ser	Ser	Lys	Leu
STATISTICAL STATIS	25	Gly 225	Gly	Leu	Trp	Lys	Thr 230	Val	Ser	Pro	His	Arg 235	Ser	Pro	Ile	Ser	Asn 240
	25	Met	Val	Ser	Met	Ala 245	Asn	Asn	His	Met	Ser 250	Met	Thr	Asn	Ser	Gly 255	Val
are the second	30	Ser	Met	Thr	Asn 260	Thr	Leu	Ser	Ser	Met 265	Leu	Lys	Gly	Phe	Ala 270	Pro	Ala
COMMENTS COM		Ala	Ala	Ala 275	Gln	Ala	Val	Gln	Thr 280	Ala	Ala	Gln	Asn	Gly 285	Val	Arg	Ala
And	35	Met	Ser 290	Ser	Leu	Gly	Ser	Ser 295	Leu	Gly	Ser	Ser	Gly 300	Leu	Gly	Gly	Gly
Manufacture of the control of the co	40	Val 305	Ala	Ala	Asn	Leu	Gly 310	Arg	Ala	Ala	Ser	Val 315		Ser	Leu	Ser	Val 320
many, bus or work of the control of	40	Pro	Gln	Ala	Trp	Ala 325		Ala	Asn	Gln	Ala 330		Thr	Pro	Ala	Ala 335	Arg
	45	Ala	Leu	Pro	Leu 340	Thr	Ser	Leu	Thr	Ser 345		Ala	Glu	Arg	Gly 350	Pro	Gly
		Gln	Met	Leu 355		Gly	Leu	Pro	Val 360		Gln	. Met	Gly	Ala 365		Ala	Gly
	50	Gly	Gly 370		Ser	Gly	Val	Leu 375		Val	Pro	Pro	Arg 380		Tyr	Val	Met
	55	Pro 385		Ser	Pro	Ala	Ala 390		•								
		<210> SE <211> 22 <212> DN	87	NO:	15												
	60	<213> Ar <223> De pr	tifi scri	ptio n Mt	n of	Art	ific	ial H9-F	Sequ la35	ence or N	e:tri Mtb32	fus ?-Mtb	sion 539				
	65	tctagaaa	ıta a	itttt	gttt	a ct	ttaa	ıgaar	ı gar	natat	aca	t at Me	g ca et Hi 1	at ca is Hi	c ca s Hi	at ca .s Hi	nc 56 .s 5

	cat His	cac His	acg Thr	gcc Ala	gcg Ala 10	tcc Ser	gat Asp	aac Asn	ttc Phe	cag Gln 15	ctg Leu	tcc Ser	cag Gln	ggt Gly	999 Gly 20	cag Gln	104
5	gga Gly	ttc Phe	gcc Ala	att Ile 25	ccg Pro	atc Ile	gly ggg	cag Gln	gcg Ala 30	atg Met	gcg Ala	atc Ile	gcg Ala	ggc Gly 35	cag Gln	atc Ile	152
10	cga Arg	tcg Ser	ggt Gly 40	gly ggg	999 999	tca Ser	ccc Pro	acc Thr 45	gtt Val	cat His	atc Ile	gly ggg	cct Pro 50	acc Thr	gcc Ala	ttc Phe	200
15	ctc Leu	ggc Gly 55	ttg Leu	ggt Gly	gtt Val	gtc Val	gac Asp 60	aac Asn	aac Asn	ggc Gly	aac Asn	ggc Gly 65	gca Ala	cga Arg	gtc Val	caa Gln	248
20	cgc Arg 70	gtg Val	gtc Val	ggg Gly	agc Ser	gct Ala 75	ccg Pro	gcg Ala	gca Ala	agt Ser	ctc Leu 80	ggc Gly	atc Ile	tcc Ser	acc Thr	ggc Gly 85	296
20	gac Asp	gtg Val	atc Ile	acc Thr	gcg Ala 90	gtc Val	gac Asp	ggc Gly	gct Ala	ccg Pro 95	atc Ile	aac Asn	tcg Ser	gcc Ala	acc Thr 100	gcg Ala	344
25	atg Met	gcg Ala	gac Asp	gcg Ala 105	ctt Leu	aac Asn	ggg Gly	cat His	cat His 110	ccc Pro	ggt Gly	gac Asp	gtc Val	atc Ile 115	tcg Ser	gtg Val	392
30	acc Thr	tgg Trp	caa Gln 120	acc Thr	aag Lys	tcg Ser	ggc Gly	ggc Gly 125	acg Thr	cgt Arg	aca Thr	Gly aaa	aac Asn 130	gtg Val	aca Thr	ttg Leu	440
35	gcc Ala	gag Glu 135	gga Gly	ccc Pro	ccg Pro	gcc Ala	gaa Glu 140	ttc Phe	atg Met	gtg Val	gat Asp	ttc Phe 145	ggg Gly	gcg Ala	tta Leu	cca Pro	488
40	ccg Pro 150	gag Glu	atc Ile	aac Asn	tcc Ser	gcg Ala 155	agg Arg	atg Met	tac Tyr	gcc Ala	ggc Gly 160	ccg Pro	ggt Gly	tcg Ser	gcc Ala	tcg Ser 165	536
40	ctg Leu	gtg Val	gcc Ala	gcg Ala	gct Ala 170	cag Gln	atg Met	tgg Trp	gac Asp	agc Ser 175	Val	gcg Ala	agt Ser	gac Asp	ctg Leu 180	ttt Phe	584
45	tcg Ser	gcc Ala	gcg Ala	tcg Ser 185	Ala	ttt Phe	cag Gln	tcg Ser	gtg Val 190	Val	tgg Trp	ggt Gly	ctg Leu	acg Thr 195	Val	Gly 999	632
50	tcg Ser	tgg Trp	ata Ile 200	Gly	tcg Ser	tcg Ser	gcg Ala	ggt Gly 205	Leu	atg Met	gtg Val	gcg Ala	gcg Ala 210	Ala	tcg Ser	ccg Pro	680
55	tat Tyr	gtg Val 215	. Ala	tgg Trp	atg Met	agc Ser	gto Val 220	Thr	gcg Ala	ggg Gly	cac Glr	gcc Ala 225	Glu	ctg Leu	acc Thr	gcc Ala	728
60	gcc Ala 230	Glr	g gto Val	cgg Arg	gtt Val	gct Ala 235	. Ala	gcg Ala	gcc Ala	tac Tyr	gag Glu 240	Thr	gcg Ala	tat Tyr	ggg Gly	ctg Leu 245	776
60	acg Thr	gtg Val	g ccc Pro	ccg Pro	p ccc Pro 250	val	ato Ile	gcc Ala	gag Glu	aac Asr 259	ı Arg	gct g Ala	gaa Glu	ctg Lev	atg Met 260	att : Ile	824
65	ctg Lev	g ata i Ile	a gcg e Ala	aco Thr 265	Asr	cto Lev	ttg Lei	g 999 ı Gly	g caa Glr 270	ı Asr	aco n Thi	c ccg r Pro	g gcg	g ato 11e 275	ALa	ggtc Val	872

			_	-		~-		atg Met 285		_		-	_	_		_	920
5								gcg Ala									968
10					_		_	acc Thr	-							_	1016
15								tcc Ser									1064
20				-		_		ctg Leu			_	_	_		_	_	1112
			_				_	ctg Leu 365			_		_	_	_	_	1160
25					_			aac Asn									1208
30	_	_	-			_		gtg Val	_	_				_	_	_	1256
35								gcg Ala									1304
40	_					-		gcg Ala	_	_	_	_		_	_	_	1352
								999 Gly 445									1400
45								gtg Val									1448
50					_			cgg Arg			_						1496
55								Gly 999									1544
60								ggt Gly									1592
				_				atg Met 525	_			_	-	_		_	1640
65								cag Gln				-					1688

					ccg Pro		_	_	_	_		-					1736
5					acc Thr 570												1784
10				-	atc Ile	_				_		_					1832
15					gcc Ala												1880
20					gtc Val	_	-										1928
			-	_	ctg Leu	_		_			_	_	_				1976
25					gcg Ala 650												2024
30			-		gga Gly	_		_							_		2072
35					gtg Val	_		_	_	_	-			_	_		2120
40		_			ttg Leu		_		_	_						_	2168
.0					gtc Val												2216
45	Thr	Āla	Ala	Ser	tagg		cc a	itcac	acto	ia ca	gees	geteg	g ago	cagat	ccg		2268
50	gneg	caac	iaa a	igeec	egaaa	ŧ.											2287
	<211 <212	.> 72 !> PF	29 RT	NO:	16 Sec	quenc	:e										
55		> De	escri	ptic n Mt	on of b72F	Art	ific										
60	Met 1	His	His	His	His 5	His	His	Thr	Ala	Ala 10	Ser	Asp	Asn	Phe	Gln 15	Leu	
	Ser	Gln	Gly	Gly 20	Gln	Gly	Phe	Ala	Ile 25	Pro	Ile	Gly	Gln	Ala 30	Met	Ala	
65	Ile	Ala	Gly 35	Gln	Ile	Arg	Ser	Gly 40	Gly	Gly	Ser	Pro	Thr 45	Val	His	Ile	
	Gly	Pro	Thr	Ala	Phe	Leu	Gly	Leu	Gly	Val	Val	Asp	Asn	Asn	Gly	Asn	

		50					55					60				
5	Gly 65	Ala	Arg	Val	Gln	Arg 70	Val	Val	Gly	Ser	Ala 75	Pro	Ala	Ala	Ser	Leu 80
J	Gly	Ile	Ser	Thr	Gly 85	Asp	Val	Ile	Thr	Ala 90	Val	Asp	Gly	Ala	Pro 95	Ile
10	Asn	Ser	Ala	Thr 100	Ala	Met	Ala	Asp	Ala 105	Leu	Asn	Gly	His	His 110	Pro	Gly
	Asp	Val	Ile 115	Ser	Val	Thr	Trp	Gln 120	Thr	Lys	Ser	Gly	Gly 125	Thr	Arg	Thr
15	Gly	Asn 130	Val	Thr	Leu	Ala	Glu 135	Gly	Pro	Pro	Ala	Glu 140	Phe	Met	Val	Ąsp
20	Phe 145	Gly	Ala	Leu	Pro	Pro 150	Glu	Ile	Asn	Ser	Ala 155	Arg	Met	Tyr	Ala	Gly 160
	Pro	Gly	Ser	Ala	Ser 165	Leu	Val	Ala	Ala	Ala 170	Gln	Met	Trp	Asp	Ser 175	Val
25	Ala	Ser	Asp	Leu 180	Phe	Ser	Ala	Ala	Ser 185	Ala	Phe	Gln	Ser	Val 190	Val	Trp
	Gly	Leu	Thr 195	Val	Gly	Ser	Trp	Ile 200	Gly	Ser	Ser	Ala	Gly 205	Leu	Met	Val
30	Ala	Ala 210	Ala	Ser	Pro	Tyr	Val 215	Ala	Trp	Met	Ser	Val 220	Thr	Ala	Gly	Gln
	Ala 225	Glu	Leu	Thr	Ala	Ala 230	Gln	Val	Arg	Val	Ala 235	Ala	Ala	Ala	Tyr	Glu 240
35	Thr	Ala	Tyr	Gly	Leu 245	Thr	Val	Pro	Pro	Pro 250	Val	Ile	Ala	Glu	Asn 255	Arg
40	Ala	Glu	Leu	Met 260	Ile	Leu	Ile	Ala	Thr 265	Asn	Leu	Leu	Gly	Gln 270	Asn	Thr
	Pro	Ala	Ile 275	Ala	Val	Asn	Glu	Ala 280	Glu	Tyr	Gly	Glu	Met 285	Trp	Ala	Gln
45	Asp	Ala 290	Ala	Ala	Met	Phe	Gly 295	Tyr	Ala	Ala	Ala	Thr 300	Ala	Thr	Ala	Thr
	Ala 305	Thr	Leu	Leu	Pro		Glu		Ala	Pro	Glu 315		Thr	Ser	Ala	Gly 320
50	Gly	Leu	Leu	Glu	Gln 325	Ala	Ala	Ala	Val	Glu 330	Glu	Ala	Ser	Asp	Thr 335	Ala
55	Ala	Ala	Asn	Gln 340	Leu	Met	Asn	Asn	Val 345	Pro	Gln	Ala	Leu	Gln 350	Gln	Leu
	Ala	Gln	Pro 355	Thr	Gln	Gly	Thr	Thr 360	Pro	Ser	Ser	Lys	Leu 365	Gly	Gly	Leu
	Trp	Lys	Thr	Val	Ser	Pro	His	Arg	Ser	Pro	Ile	Ser	Asn	Met	Val	Ser

Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val Ser Met Thr

Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala Ala Ala Arg

Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala Met Ser Ser

				420					425					430		
5	Leu	Gly	Ser 435	Ser	Leu	Gly	Ser	Ser 440	Gly	Leu	Gly	Gly	Gly 445	Val	Ala	Ala
3	Asn	Leu 450	Gly	Arg	Ala	Ala	Ser 455	Val	Gly	Ser	Leu	Ser 460	Val	Pro	Gln	Ala
10	Trp 465	Ala	Ala	Ala	Asn	Gln 470	Ala	Val	Thr	Pro	Ala 475	Ala	Arg	Ala	Leu	Pro 480
	Leu	Thr	Ser	Leu	Thr 485	Ser	Ala	Ala	Glu	Arg 490	Gly	Pro	Gly	Gln	Met 495	Leu
15	Gly	Gly	Leu	Pro 500	Val	Gly	Gln	Met	Gly 505	Ala	Arg	Ala	Gly	Gly 510	Gly	Leu
20	Ser	Gly	Val 515	Leu	Arg	Val	Pro	Pro 520	Arg	Pro	Tyr	Val	Met 525	Pro	His	Ser
20	Pro	Ala 530	Ala	Gly	Asp	Ile	Ala 535	Pro	Pro	Ala	Leu	Ser 540	Gln	Asp	Arg	Phe
25	Ala 545	Asp	Phe	Pro	Ala	Leu 550	Pro	Leu	Asp	Pro	Ser 555	Ala	Met	Val	Ala	Gln 560
	Val	Gly	Pro	Gln	Val 565	Val	Asn	Ile	Asn	Thr 570	Lys	Leu	Gly	Tyr	Asn 575	Asn
30	Ala	Val	Gly	Ala 580	Gly	Thr	Gly	Ile	Val 585	Ile	Asp	Pro	Asn	Gly 590	Val	Val
35	Leu	Thr	Asn 595	Asn	His	Val	Ile	Ala 600	Gly	Ala	Thr	Asp	Ile 605	Asn	Ala	Phe
	Ser	Val 610	Gly	Ser	Gly	Gln	Thr 615	Tyr	Gly	Val	Asp	Val 620	Val	Gly	Tyr	Asp
40	Arg 625	Thr	Gln	Asp	Val	Ala 630	Val	Leu	Gln	Leu	Arg 635	Gly	Ala	Gly	Gly	Leu 640
	Pro	Ser	Ala	Ala	Ile 645	Gly	Gly	Gly	Val	Ala 650	Val	Gly	Glu	Pro	Val 655	Val
45	Ala	Met	Gly	Asn 660	Ser	Gly	Gly	Gln	Gly 665	Gly	Thr	Pro	Arg	Ala 670	Val	Pro
50	Gly	Arg	Val 675	Val	Ala	Leu	Gly	Gln 680	Thr	Val	Gln	Ala	Ser 685	Asp	Ser	Leu
	Thr	Gly 690	Ala	Glu	Glu	Thr	Leu 695	Asn	Gly	Leu	Ile	Gln 700	Phe	Asp	Ala	Ala
55	Ile 705	Gln	Pro	Gly	Asp	Ser 710	Gly	Gly	Pro	Val	Val 715	Asn	Gly	Leu	Gly	Gln 720
	Val	Val	Gly	Met	Asn 725	Thr	Ala	Ala	Ser							
60	<211	0> SE L> 21 2> DN	190	ONO:	:17											

atgcatcacc atcaccatca cacggccgcg tecgataact tecagetgte ceagggtggg 60 cagggatteg ceatteegat egggcaggcg atggcgateg eggecagat eegategggt 120 ggggggteac ceaeegttea tategggeet acegeettee teggettggg tgttgtegae 180

<213> Mtb72FMutSA

```
ggcatctcca coggegacgt gatcacogog gtogacggcg ctccgatcaa ctcggccacc 300
     gegatggegg acgcgcttaa cgggcatcat cccggtgacg tcatctcggt gacctggcaa 360
     accaaqtcqq qcqccacqcq tacaqqqaac gtgacattgg ccgaqggacc cccggccgaa 420
     ttcatggtgg atttcggggc gttaccaccg gagatcaact ccgcgaggat gtacgccggc 480
     ccgggttcgg cctcgctggt ggccgcggct cagatgtggg acagcgtggc gagtgacctg 540
     ttttteggeeg egteggegtt teagteggtg gtetggggte tgaeggtggg gtegtggata 600
     ggttcgtcgg cgggtctgat ggtggcggcg gcctcgccgt atgtggcgtg gatgagcgtc 660
     accgeggge aggeegaget gaeegeegee eaggteeggg ttgetgegge ggeetaegag 720
10
     acggcgtatg ggctgacggt gccccgccg gtgatcgccg agaaccgtgc tgaactgatg 780
     attetgatag egaceaacet ettggggeaa aacaceeegg egategeggt caaegaggee 840
     gaatacggcg agatgtgggc ccaagacgcc gccgcgatgt ttggctacgc cgcggcgacg 900
     gcgacggcga cggcgacgtt gctgccgttc gaggaggcgc cggagatgac cagcgcgggt 960
     gggctcctcg ageaggccgc cgcggtcgag gaggcctccg acaccgccgc ggcgaaccag 1020
15
     ttqatqaaca atqtqccca gqcqctqcaa cagctggccc agcccacgca gggcaccacg 1080
     cettetteca agetgggtgg cetgtggaag aeggtetege egeateggte geegateage 1140
     aacatggtgt cgatggccaa caaccacatg tcgatgacca actcgggtgt gtcgatgacc 1200
     aacacettga getegatgtt gaagggettt geteeggegg eggeegeeca ggeegtgeaa 1260
     accgcggcgc aaaacggggt ccgggcgatg agctcgctgg gcagctcgct gggttcttcg 1320
20
     ggtctgggcg gtggggtggc cgccaacttg ggtcgggcgg cctcggtcgg ttcgttgtcg 1380
     gtgccgcagg cctgggccgc ggccaaccag gcagtcaccc cggcggcgcg ggcgctgccg 1440
     etgaccagee tgaccagege egeggaaaga gggeeeggge agatgetggg egggetgeeg 1500
     gtggggcaga tgggcgccag ggccggtggt gggctcagtg gtgtgctgcg tgttccgccg 1560
     cgaccctatg tgatgccgca ttctccggca gccggcgata tcgccccgcc ggccttgtcg 1620
25
     caqqaccqqt tcqccqactt ccccqcqctg cccctcgacc cgtccgcgat ggtcgcccaa 1680
     gtggggccac aggtggtcaa catcaacacc aaactgggct acaacaacgc cgtgggcgcc 1740
     gggaccggca tegteatega teccaaeggt gtegtgetga ceaacaaeca egtgategeg 1800
     ggcgccaccg acatcaatgc gttcagcgtc ggctccggcc aaacctacgg cgtcgatgtg 1860
     gtcgggtatg accgcaccca ggatgtcgcg gtgctgcagc tgcgcggtgc cggtggcctg 1920
30
     ccgtcggcgg cgatcggtgg cggcgtcgcg gttggtgagc ccgtcgtcgc gatgggcaac 1980
     ageggtggge agggeggaac geceegtgeg gtgeetggea gggtggtege geteggeeaa 2040
     accytycagy cytcygattc yctyaccygt yccyaagaga cattyaacyg yttyatccay 2100
     ttegatgeeg egateeagee eggtgatgeg ggegggeeeg tegteaaegg cetaggaeag 2160
     gtggtcggta tgaacacggc cgcgtcctag
35
     <210> SEQ ID NO:18
     <211> 729
     <212> PRT
40
     <213> Mtb72FMutSA
     Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
45
     Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
     Ile Ala Gly Gln Ile Arg Ser Gly Gly Gly Ser Pro Thr Val His Ile
50
     Gly Pro Thr Ala Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn
     Gly Ala Arg Val Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu
55
     Gly Ile Ser Thr Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile
60
     Asn Ser Ala Thr Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly
     Asp Val Ile Ser Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr
                                 120
65
     Gly Asn Val Thr Leu Ala Glu Gly Pro Pro Ala Glu Phe Met Val Asp
                             135
```

aacaacggca acggcgcacg agtccaacgc gtggtcggga gcgctccggc ggcaagtctc 240

	Phe 145	Gly	Ala	Leu	Pro	Pro 150	Glu	Ile	Asn	Ser	Ala 155	Arg	Met	Tyr	Ala	Gly 160
5	Pro	Gly	Ser	Ala	Ser 165	Leu	Val	Ala	Ala	Ala 170	Gln	Met	Trp	Asp	Ser 175	Val
	Ala	Ser	Asp	Leu 180	Phe	Ser	Ala	Ala	Ser 185	Ala	Phe	Gln	Ser	Val 190	Val	Trp
10	Gly	Leu	Thr 195	Val	Gly	Ser	Trp	Ile 200	Gly	Ser	Ser	Ala	Gly 205	Leu	Met	Val
15	Ala	Ala 210	Ala	Ser	Pro	Tyr	Val 215	Ala	Trp	Met	Ser	Val 220	Thr	Ala	Gly	Gln
15	Ala 225	Glu	Leu	Thr	Ala	Ala 230	Gln	Val	Arg	Val	Ala 235	Ala	Ala	Ala	Tyr	Glu 240
20	Thr	Ala	Tyr	Gly	Leu 245	Thr	Val	Pro	Pro	Pro 250	Val	Ile	Ala	Glu	Asn 255	Arg
	Ala	Glu	Leu	Met 260	Ile	Leu	Ile	Ala	Thr 265	Asn	Leu	Leu	Gly	Gln 270	Asn	Thr
25	Pro	Ala	Ile 275	Ala	Val	Asn	Glu	Ala 280	Glu	Tyr	Gly	Glu	Met 285	Trp	Ala	Gln
30	Asp	Ala 290	Ala	Ala	Met	Phe	Gly 295	Tyr	Ala	Ala	Ala	Thr 300	Ala	Thr	Ala	Thr
50	Ala 305	Thr	Leu	Leu	Pro	Phe 310	Glu	Glu	Ala	Pro	Glu 315	Met	Thr	Ser	Ala	Gly 320
35	Gly	Leu	Leu	Glu	Gln 325	Ala	Ala	Ala	Val	Glu 330	Glu	Ala	Ser	Asp	Thr 335	Ala
	Ala	Ala	Asn	Gln 340	Leu	Met	Asn	Asn	Val 345	Pro	Gln	Ala	Leu	Gln 350	Gln	Leu
40	Ala	Gln	Pro 355	Thr	Gln	Gly	Thr	Thr 360	Pro	Ser	Ser	Lys	Leu 365	Gly	Gly	Leu
45	Trp	Lys 370	Thr	Val	Ser	Pro	His 375	Arg	Ser	Pro	Ile	Ser 380	Asn	Met	Val	Ser
13	Met 385	Ala	Asn	Asn	His			Met			Ser 395	-		Ser	Met	Thr 400
50	Asn	Thr	Leu	Ser	Ser 405	Met	Leu	Lys	Gly	Phe 410	Ala	Pro	Ala	Ala	Ala 415	Ala
	Gln	Ala	Val	Gln 420	Thr	Ala	Ala	Gln	Asn 425	Gly	Val	Arg	Ala	Met 430	Ser	Ser
55	Leu	Gly	Ser 435	Ser	Leu	Gly	Ser	Ser 440	Gly	Leu	Gly	Gly	Gly 445	Val	Ala	Ala
60	Asn	Leu 450	Gly	Arg	Ala	Ala	Ser 455	Val	Gly	Ser	Leu	Ser 460	Val	Pro	Gln	Ala
	Trp 465	Ala	Ala	Ala	Asn	Gln 470	Ala	Val	Thr	Pro	Ala 475	Ala	Arg	Ala	Leu	Pro 480
65	Leu	Thr	Ser	Leu	Thr 485	Ser	Ala	Ala	Glu	Arg 490	Gly	Pro	Gly	Gln	Met 495	Leu
	Gly	Gly	Leu	Pro 500	Val	Gly	Gln	Met	Gly 505	Ala	Arg	Ala	Gly	Gly 510	Gly	Leu

	Ser	Gly	Val 515	Leu	Arg	Val	Pro	Pro 520	Arg	Pro	Tyr	Val	Met 525	Pro	His	Ser	
5	Pro	Ala 530	Ala	Gly	Asp	Ile	Ala 535	Pro	Pro	Ala	Leu	Ser 540	Gln	Asp	Arg	Phe	
10	Ala 545	Asp	Phe	Pro	Ala	Leu 550	Pro	Leu	Asp	Pro	Ser 555	Ala	Met	Val	Ala	Gln 560	
10	Val	Gly	Pro	Gln	Val 565	Val	Asn	Ile	Asn	Thr 570	Lys	Leu	Gly	Tyr	Asn 575	Asn	
15	Ala	Val	Gly	Ala 580	Gly	Thr	Gly	Ile	Val 585	Ile	Asp	Pro	Asn	Gly 590	Val	Val	
	Leu	Thr	Asn 595	Asn	His	Val	Ile	Ala 600	Gly	Ala	Thr	Asp	Ile 605	Asn	Ala	Phe	
20	Ser	Val 610	Gly	Ser	Gly	Gln	Thr 615	Tyr	Gly	Val	Asp	Val 620	Val	Gly	Tyr	Asp	
25	Arg 625	Thr	Gln	Asp	Val	Ala 630	Val	Leu	Gln	Leu	Arg 635	Gly	Ala	Gly	Gly	Leu 640	
25	Pro	Ser	Ala	Ala	Ile 645	Gly	Gly	Gly	Val	Ala 650	Val	Gly	Glu	Pro	Val 655	Val	
30	Ala	Met	Gly	Asn 660	Ser	Gly	Gly	Gln	Gly 665	Gly	Thr	Pro	Arg	Ala 670	Val	Pro	
	Gly	Arg	Val 675	Val	Ala	Leu	Gly	Gln 680	Thr	Val	Gln	Ala	Ser 685	Asp	Ser	Leu	
35	Thr	Gly 690	Ala	Glu	Glu	Thr	Leu 695	Asn	Gly	Leu	Ile	Gln 700	Phe	Asp	Ala	Ala	
40	Ile 705	Gln	Pro	Gly	Asp	Ala 710	Gly	Gly	Pro	Val	Val 715	Asn	Gly	Leu	Gly	Gln 720	
40	Val	Val	Gly	Met	Asn 725	Thr	Ala	Ala	Ser								
45	<21: <21: <21:	1 > 1° 2 > DI 3 > A°	797 NA rtif	D NO	l Se	quen	ce										
50		p:	rote	iptio in Tl (179)	bH9-:	f Ar Ra35	tifi (de	cıal sign	Seq ated	uenc Mtb	e:b1 59f)	-Ius	10N				
55	cat His 1	Met	cat His	cac His	cat His 5	cac His	cat His	cac His	atg Met	gtg Val 10	gat Asp	ttc Phe	ggg Gly	gcg Ala	tta Leu 15	cca Pro	48
<i>(</i> 0	ccg Pro	gag Glu	atc Ile	aac Asn 20	tcc Ser	gcg Ala	agg Arg	atg Met	tac Tyr 25	gcc Ala	ggc Gly	ccg Pro	ggt Gly	tcg Ser 30	Ala	tcg Ser	96
60	ctg Leu	gtg Val	gcc Ala 35	gcg Ala	gct Ala	cag Gln	atg Met	tgg Trp 40	Asp	agc Ser	gtg Val	gcg Ala	agt Ser 45	gac Asp	ctg Leu	ttt Phe	144
65	tcg Ser	gcc Ala 50	Ala	tcg Ser	gcg Ala	ttt Phe	cag Gln 55	Ser	gtg Val	gtc Val	tgg Trp	ggt Gly 60	Leu	acg Thr	gtg Val	Gly 999	192

	tcg Ser 65	tgg Trp	ata Ile	ggt Gly	tcg Ser	tcg Ser 70	gcg Ala	ggt Gly	ctg Leu	atg Met	gtg Val 75	gcg Ala	gcg Ala	gcc Ala	tcg Ser	ccg Pro 80	240
5	tat Tyr	gtg Val	gcg Ala	tgg Trp	atg Met 85	agc Ser	gtc Val	acc Thr	gcg Ala	999 Gly 90	cag Gln	gcc Ala	gag Glu	ctg Leu	acc Thr 95	gcc Ala	288
10	gcc Ala	cag Gln	gtc Val	cgg Arg 100	gtt Val	gct Ala	gcg Ala	gcg Ala	gcc Ala 105	tac Tyr	gag Glu	acg Thr	gcg Ala	tat Tyr 110	gly ggg	ctg Leu	336
15	acg Thr	gtg Val	ccc Pro 115	ccg Pro	ccg Pro	gtg Val	atc Ile	gcc Ala 120	gag Glu	aac Asn	cgt Arg	gct Ala	gaa Glu 125	ctg Leu	atg Met	att Ile	384
20	ctg Leu	ata Ile 130	gcg Ala	acc Thr	aac Asn	ctc Leu	ttg Leu 135	ggg Gly	caa Gln	aac Asn	acc Thr	ccg Pro 140	gcg Ala	atc Ile	gcg Ala	gtc Val	432
20	aac Asn 145	gag Glu	gcc Ala	gaa Glu	tac Tyr	ggc Gly 150	gag Glu	atg Met	tgg Trp	gcc Ala	caa Gln 155	gac Asp	gcc Ala	gcc Ala	gcg Ala	atg Met 160	480
25	ttt Phe	ggc Gly	tac Tyr	gcc Ala	gcg Ala 165	gcg Ala	acg Thr	gcg Ala	acg Thr	gcg Ala 170	acg Thr	gcg Ala	acg Thr	ttg Leu	ctg Leu 175	ccg Pro	528
30	ttc Phe	gag Glu	gag Glu	gcg Ala 180	ccg Pro	gag Glu	atg Met	acc Thr	agc Ser 185	gcg Ala	ggt Gly	ggg Gly	ctc Leu	ctc Leu 190	gag Glu	cag Gln	576
35	gcc Ala	gcc Ala	gcg Ala 195	gtc Val	gag Glu	gag Glu	gcc Ala	tcc Ser 200	gac Asp	acc Thr	gcc Ala	gcg Ala	gcg Ala 205	aac Asn	cag Gln	ttg Leu	624
40	atg Met	aac Asn 210	aat Asn	gtg Val	ccc Pro	cag Gln	gcg Ala 215	ctg Leu	caa Gln	cag Gln	ctg Leu	gcc Ala 220	cag Gln	ccc Pro	acg Thr	cag Gln	672
10	ggc Gly 225	acc Thr	acg Thr	cct Pro	tct Ser	tcc Ser 230	aag Lys	ctg Leu	ggt Gly	ggc Gly	ctg Leu 235	tgg Trp	aag Lys	acg Thr	gtc Val	tcg Ser 240	720
45	ccg Pro	cat His	cgg Arg	tcg Ser	ccg Pro 245	atc Ile	agc Ser	aac Asn	atg Met	gtg Val 250	tcg Ser	atg Met	gcc Ala	aac Asn	aac Asn 255	cac His	768
50	atg Met	tcg Ser	atg Met	acc Thr 260	aac Asn	tcg Ser	ggt Gly	gtg Val	tcg Ser 265	atg Met	acc Thr	aac Asn	acc Thr	ttg Leu 270	agc Ser	tcg Ser	816
55	atg Met	ttg Leu	aag Lys 275	ggc Gly	ttt Phe	gct Ala	ccg Pro	gcg Ala 280	gcg Ala	gcc Ala	gcc Ala	cag Gln	gcc Ala 285	gtg Val	caa Gln	acc Thr	864
60	gcg Ala	gcg Ala 290	caa Gln	aac Asn	Gly 999	gtc Val	cgg Arg 295	Ala	atg Met	agc Ser	tcg Ser	ctg Leu 300	ggc	agc Ser	tcg Ser	ctg Leu	912
00	ggt Gly 305	tct Ser	tcg Ser	ggt Gly	ctg Leu	ggc Gly 310	ggt Gly	Gly 999	gtg Val	gcc Ala	gcc Ala 315	aac Asn	ttg Leu	ggt Gly	cgg Arg	gcg Ala 320	960
65	gcc Ala	tcg Ser	gtc Val	ggt Gly	tcg Ser 325	Leu	tcg Ser	gtg Val	ccg Pro	cag Gln 330	Ala	tgg Trp	gcc Ala	gcg Ala	gcc Ala 335	Asn	1008

	cag Gln	gca Ala	gtc Val	acc Thr 340	ccg Pro	gcg Ala	gcg Ala	cgg Arg	gcg Ala 345	ctg Leu	ccg Pro	ctg Leu	acc Thr	agc Ser 350	ctg Leu	acc Thr	1056
5	agc Ser	gcc Ala	gcg Ala 355	gaa Glu	aga Arg	ggg Gly	ccc Pro	999 360	cag Gln	atg Met	ctg Leu	ggc Gly	999 Gly 365	ctg Leu	ccg Pro	gtg Val	1104
10	999 Gly	cag Gln 370	atg Met	ggc Gly	gcc Ala	agg Arg	gcc Ala 375	ggt Gly	ggt Gly	gly ggg	ctc Leu	agt Ser 380	ggt Gly	gtg Val	ctg Leu	cgt Arg	1152
15	gtt Val 385	ccg Pro	ccg Pro	cga Arg	ccc Pro	tat Tyr 390	gtg Val	atg Met	ccg Pro	cat His	tct Ser 395	ccg Pro	gca Ala	gcc Ala	ggc Gly	gat Asp 400	1200
20	atc Ile	gcc Ala	ccg Pro	ccg Pro	gcc Ala 405	ttg Leu	tcg Ser	cag Gln	gac Asp	cgg Arg 410	ttc Phe	gcc Ala	gac Asp	ttc Phe	ccc Pro 415	gcg Ala	1248
20	ctg Leu	ccc Pro	ctc Leu	gac Asp 420	ccg Pro	tcc Ser	gcg Ala	atg Met	gtc Val 425	gcc Ala	caa Gln	gtg Val	Gly 333	cca Pro 430	cag Gln	gtg Val	1296
25	gtc Val	aac Asn	atc Ile 435	aac Asn	acc Thr	aaa Lys	ctg Leu	ggc Gly 440	tac Tyr	aac Asn	aac Asn	gcc Ala	gtg Val 445	ggc Gly	gcc Ala	ggg Gly	1344
30	acc Thr	ggc Gly 450	atc Ile	gtc Val	atc Ile	gat Asp	ccc Pro 455	aac Asn	ggt Gly	gtc Val	gtg Val	ctg Leu 460	acc Thr	aac Asn	aac Asn	cac His	1392
35	gtg Val 465	atc Ile	gcg Ala	ggc Gly	gcc Ala	acc Thr 470	gac Asp	atc Ile	aat Asn	gcg Ala	ttc Phe 475	agc Ser	gtc Val	ggc Gly	tcc Ser	ggc Gly 480	1440
40	caa Gln	acc Thr	tac Tyr	ggc Gly	gtc Val 485	gat Asp	gtg Val	gtc Val	ggg Gly	tat Tyr 490	gac Asp	cgc Arg	acc Thr	cag Gln	gat Asp 495	gtc Val	1488
40	gcg Ala	gtg Val	ctg Leu	cag Gln 500	ctg Leu	cgc Arg	ggt Gly	gcc Ala	ggt Gly 505	ggc Gly	ctg Leu	ccg Pro	tcg Ser	gcg Ala 510	gcg Ala	atc Ile	1536
45	ggt Gly	ggc Gly	ggc Gly 515	gtc Val	gcg Ala	gtt Val	ggt Gly	gag Glu 520	ccc Pro	gtc Val	gtc Val	gcg Ala	atg Met 525	ggc Gly	aac Asn	agc Ser	1584
50	ggt Gly	ggg Gly 530	cag Gln	ggc	gga Gly	acg Thr	ccc Pro 535	cgt Arg	gcg Ala	gtg Val	cct Pro	ggc Gly 540	agg Arg	gtg Val	gtc Val	gcg Ala	1632
55	ctc Leu 545	ggc Gly	caa Gln	acc Thr	gtg Val	cag Gln 550	gcg Ala	tcg Ser	gat Asp	tcg Ser	ctg Leu 555	acc Thr	ggt Gly	gcc Ala	gaa Glu	gag Glu 560	1680
60	aca Thr	ttg Leu	aac Asn	G1 y 999	ttg Leu 565	atc Ile	cag Gln	ttc Phe	gat Asp	gcc Ala 570	gcg Ala	atc Ile	cag Gln	ccc Pro	ggt Gly 575	gat Asp	1728
00	tcg Ser	ggc	999 Gly	ccc Pro 580	gtc Val	gtc Val	aac Asn	ggc Gly	cta Leu 585	Gly	cag Gln	gtg Val	gtc Val	ggt Gly 590	atg Met	aac Asn	1776
65	_	_		tcc Ser		gata	tc										1797

	5	<211 <212 <213	3> De	96 RT ctifi escri	cial	:20 L Secon of oH9-R	Art	ific	cial signa	Sequ ited	ience Mtb5	e:bi- 59f)	fusi	.on			
1	0	His 1	Met	His	His	His 5	His	His	His	Met	Val 10	Asp	Phe	Gly	Ala	Leu 15	Pro
		Pro	Glu	Ile	Asn 20	Ser	Ala	Arg	Met	Tyr 25	Ala	Gly	Pro	Gly	Ser 30	Ala	Ser
1	5	Leu	Val	Ala 35	Ala	Ala	Gln	Met	Trp 40	Asp	Ser	Val	Ala	Ser 45	Asp	Leu	Phe
2	20	Ser	Ala 50	Ala	Ser	Ala	Phe	Gln 55	Ser	Val	Val	Trp	Gly 60	Leu	Thr	Val	Gly
_	.0	Ser 65	Trp	Ile	Gly	Ser	Ser 70	Ala	Gly	Leu	Met	Val 75	Ala	Ala	Ala	Ser	Pro 80
2	25	Tyr	Val	Ala	Trp	Met 85	Ser	Val	Thr	Ala	Gly 90	Gln	Ala	Glu	Leu	Thr 95	Ala
		Ala	Gln	Val	Arg 100	Val	Ala	Ala	Ala	Ala 105	Tyr	Glu	Thr	Ala	Tyr 110	Gly	Leu
3	80	Thr	Val	Pro 115	Pro	Pro	Val	Ile	Ala 120	Glu	Asn	Arg	Ala	Glu 125	Leu	Met	Ile
3	35	Leu	Ile 130	Ala	Thr	Asn	Leu	Leu 135	Gly	Gln	Asn	Thr	Pro 140	Ala	Ile	Ala	Val
_	, 5	Asn 145	Glu	Ala	Glu	Tyr	Gly 150	Glu	Met	Trp	Ala	Gln 155	Asp	Ala	Ala	Ala	Met 160
4	10	Phe	Gly	Tyr	Ala	Ala 165	Ala	Thr	Ala	Thr	Ala 170	Thr	Ala	Thr	Leu	Leu 175	Pro
		Phe	Glu	Glu	Ala 180	Pro	Glu	Met	Thr	Ser 185	Ala	Gly	Gly	Leu	Leu 190	Glu	Gln
4	15	Ala	Ala	Ala 195	Val	Glu	Glu	Ala	Ser 200	Asp	Thr	Ala	Ala	Ala 205	Asn	Gln	Leu
5	50	Met	Asn 210	Asn	Val	Pro	Gln	Ala 215	Leu	Gln	Gln	Leu	Ala 220	Gln	Pro	Thr	Gln
•		225					230					235				Val Asn	240
4	55					245					250					255 Ser	
					260					265					270		
(60			275					280					285		Gln	
			290					295					300			Ser	
(55	305					310					315				Arg	320
		Ala	Ser	Val	Gly	Ser	Leu	Ser	Val	Pro	Gln	Ala	Trp	Ala	Ala	Ala	Asr

					325					330					335	
_	Gln	Ala	Val	Thr 340	Pro	Ala	Ala	Arg	Ala 345	Leu	Pro	Leu	Thr	Ser 350	Leu	Thr
5	Ser	Ala	Ala 355	Glu	Arg	Gly	Pro	Gly 360	Gln	Met	Leu	Gly	Gly 365	Leu	Pro	Val
10	Gly	Gln 370	Met	Gly	Ala	Arg	Ala 375	Gly	Gly	Gly	Leu	Ser 380	Gly	Val	Leu	Arg
	Val 385	Pro	Pro	Arg	Pro	Tyr 390	Val	Met	Pro	His	Ser 395	Pro	Ala	Ala	Gly	Asp 400
15	Ile	Ala	Pro	Pro	Ala 405	Leu	Ser	Gln	Asp	Arg 410	Phe	Ala	Asp	Phe	Pro 415	Ala
20	Leu	Pro	Leu	Asp 420	Pro	Ser	Ala	Met	Val 425	Ala	Gln	Val	Gly	Pro 430	Gln	Val
20	Val	Asn	Ile 435	Asn	Thr	Lys	Leu	Gly 440	Tyr	Asn	Asn	Ala	Val 445	Gly	Ala	Gly
25	Thr	Gly 450	Ile	Val	Ile	Asp	Pro 455	Asn	Gly	Val	Val	Leu 460	Thr	Asn	Asn	His
	Val 465	Ile	Ala	Gly	Ala	Thr 470	Asp	Ile	Asn	Ala	Phe 475	Ser	Val	Gly	Ser	Gly 480
30	Gln	Thr	Tyr	Gly	Val 485	Asp	Val	Val	Gly	Tyr 490	Asp	Arg	Thr	Gln	Asp 495	Va]
35	Ala	Val	Leu	Gln 500	Leu	Arg	Gly	Ala	Gly 505		Leu	Pro	Ser	Ala 510	Ala	Ile
33	Gly	Gly	Gly 515	Val	Ala	Val	Gly	Glu 520	Pro	Val	Val	Ala	Met 525	Gly	Asn	Sei
40	Gly	Gly 530		Gly	Gly	Thr	Pro 535		Ala	Val	Pro	Gly 540		Val	Val	Ala
	Leu 545	Gly	Gln	Thr	Val	Gln 550		Ser	Asp	Ser	Leu 555		Gly	Ala	Glu	Gl: 560
45	Thr	Leu	Asn	Gly	Leu 565		Gln	Phe	Asp	Ala 570		Ile	Gln	Pro	Gly 575	Ası
50	Ser	Gly	Gly	Pro 580		Val	Asn	Gly	Leu 585		Gln	Val	Val	Gly 590	Met	Ası
30	Thr	Ala	Ala 595													
55	(2)) Vq	MTB8	.4)				
		(i) SE	OUEN	CE C	HARA	CTER	ISTI	CS:							

- (A) LENGTH: 500 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

65	CGTGGCAATG	TCGTTGACCG	TCGGGGCCGG	GGTCGCCTCC	GCAGATCCCG	TGGACGCGGT	60
	CATTAACACC	ACCTGCAATT	ACGGGCAGGT	AGTAGCTGCG	CTCAACGCGA	CGGATCCGGG	120
						ATTTCCTCGC	180
						CGGGGGCGGC	

5	ACAGTACATC GGCCTTGTCG AGTCGGTTGC CGGCTCCTGC AACAACTATT AAGCCCATGC GGGCCCCATC CCGCGACCCG GCATCGTCGC CGGGGCTAGG CCAGATTGCC CCGCTCCTCA ACGGGCCGCA TCCCGCGACC CGGCATCGTC GCCGGGGCTA GGCCAGATTG CCCCGCTCCT CAACGGGCCG CATCTCGTGC CGAATTCCTG CAGCCCGGGG GATCCACTAG TTCTAGAGCG GCCGCCACCG CGGTGGAGCT	300 360 420 480 500
	(2) INFORMATION FOR SEQ ID NO:22: DPV (MTB8.4)	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 96 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala Asp Pro	
20	Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala 20 25 30	
	Ala Leu Asn Ala Thr Asp Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser	
25	Pro Val Ala Gln Ser Tyr Leu Arg Asn Phe Leu Ala Ala Pro Pro 50 55 60	
	Gln Arg Ala Ala Met Ala Ala Gln Leu Gln Ala Val Pro Gly Ala Ala 65 70 75 80 Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr	
30	85 90 95	
	(2) INFORMATION FOR SEQ ID NO:23: MSL (MTB9.8)	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 585 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Mycobacterium tuberculosis	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
50	TGGATTCCGA TAGCGGTTTC GGCCCCTCGA CGGCGCACCA CGGCGCGCAG GCCTCCGAAC GGGGGCCCGG GACGCTGGGA TTCGCCGGGA CCGCAACCAA AGAACGCCGG GTCCGGGCGG TCGGGCTGAC CGCACTGGCC GGTGATGAGT TCGGCAACGG CCCCCGGATG CCGATGGTGC CGGGGACCTG GGAGCAGGGC AGCAACGAGC CCGAGGGCGC CGACGGATCG GGGAGAGGGG GAGCCGACGG CTTACCGCAC GACAGCAAGT AACCGAATTC CGAATCACGT GGACCCGTAC GGGTCGAAAG GAGAGATGTT ATGAGCCTTT TGGATGCTCA TATCCCACAG TTGGTGGCCT	60 120 180 240 300 360
55	CCCAGTCGGC GTTTGCCGCC AAGGCGGGGC TGATGCGGCA CACGATCGGT CAGGCCGAGC AGGCGGCGAT GTCGGCTCAG GCGTTTCACC AGGGGGAGTC GTCGGCGGCG TTTCAGGCCG CCCATGCCCG GTTTGTGGCG GCGGCCGCCA AAGTCAACAC CTTGTTGGAT GTCGCGCAGG CGAATCTGGG TGAGGCCGCC GGTACCTATG TGGCCGCCGA TGCTG	420 480 540 585
60	(2) INFORMATION FOR SEQ ID NO:24: MSL (MTB9.8)	
OU	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 97 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single	
65	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Ser Leu Leu Asp Ala His Ile Pro Gln Leu Val Ala Ser Gln Ser 10 Ala Phe Ala Ala Lys Ala Gly Leu Met Arg His Thr Ile Gly Gln Ala 5 25 20 Glu Gln Ala Ala Met Ser Ala Gln Ala Phe His Gln Gly Glu Ser Ser 40 4.5 Ala Ala Phe Gln Ala Ala His Ala Arg Phe Val Ala Ala Ala Lys 10 55 Val Asn Thr Leu Leu Asp Val Ala Gln Ala Asn Leu Gly Glu Ala Ala 75 70 Gly Thr Tyr Val Ala Ala Asp Ala Ala Ala Ala Ser Thr Tyr Thr Gly 90 15 Phe

- (2) INFORMATION FOR SEQ ID NO:25: MTI (MTB9.9A)
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1742 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

		TCAACGTCAT					60
		GTCCCATGGA				AGCGCAGCCG	120
35	GTGCCGAACA	CTACCGCGTC	CACGCTCAGC	CCTGCCGCGT	TGCGGAAGAT	CGAGCCCAGG	180
	TTCTCATGGT	CGTTAACGCC	TTCCAACACT	GCGACGGTGC	GCGCCCCGGC	GACCACCTGA	240
	GCAACGCTCG	GCTCCGGCAC	CCGGCGCGCG	GCTGCCAACA	CCCCACGATT	GAGATGGAAG	300
	CCGATCACCC	GTGCCATGAC	ATCAGCCGAC	GCTCGATAGT	ACGGCGCGCC	GACACCGGCC	360
	AGATCATCCT				ACAGCGCCAG		420
40	CGTGAGGCCA	GCATGCGCTG	CACCACCAGC	ACACCCTCGG	CGATCACCAA	CGCCTTGCCG	480
	GTCGGCAGAT	CGGGACNACN	GTCGATGCTG	TTCAGGTCAC	GGAAATCGTC	GAGCCGTGGG	540
	TCGTCGGGAT	CGCAGACGTC	CTGAACATCG	AGGCCGTCGG	GGTGCTGGGC	ACAACGGCCT	600
	TCGGTCACGG	GCTTTCGTCG	ACCAGAGCCA	GCATCAGATC	GGCGGCGCTG	CGCAGGATGT	660
	CACGCTCGCT				CCACTCTTGC		720
45	TGCTGGGATT	AATTGGGAGA	GGAAGACAGC	ATGTCGTTCG	TGACCACACA	GCCGGAAGCC	780
		CGGCGGCGAA					840
		CTCCAACCAC					900
		AGTTTGCTGC					960
		AAATGTTCGT					1020
50	GAGGCGGCCA	ACGCAGCCGC	TGCCGGCTGA	ACGGGCTCGC	ACGAACCTGC	TGAAGGAGAG	1080
	GGGGAACATC	CGGAGTTCTC	GGGTCAGGGG	TTGCGCCAGC	GCCCAGCCGA	TTCAGNTATC	1140
	GGCGTCCATA	ACAGCAGACG	ATCTAGGCAT	TCAGTACTAA	GGAGACAGGC	AACATGGCCT	1200
	CACGTTTTAT	GACGGATCCG	CATGCGATGC	GGGACATGGC	GGGCCGTTTT	GAGGTGCACG	1260
	CCCAGACGGT				CGCGCAAAAC		1320
55	CGGGCTGGAG	TGGCATGGCC	GAGGCGACCT	CGCTAGACAC	CATGACCTAG	ATGAATCAGG	1380
	CGTTTCGCAA	CATCGTGAAC	ATGCTGCACG	GGGTGCGTGA	CGGGCTGGTT	CGCGACGCCA	1440
	ACAANTACGA	ACAGCAAGAG	CAGGCCTCCC	AGCAGATCCT	GAGCAGNTAG	CGCCGAAAGC	1500
	CACAGCTGNG	TACGNTTTCT	CACATTAGGA	GAACACCAAT	ATGACGATTA	ATTACCAGTT	1560
		GACGCTCATG			00000	TTGAGGCGGA	1620
60		ATCGTTCGTG					1680
	GGTGGCTTGC	CAGGAGTTCA	TTACCCAGTT	GGGCCGTAAC	TTCCAGGTGA	TCTACGAGCA	1740
	GG						1742

- 65 (2) INFORMATION FOR SEQ ID NO:26: MTI (MTB9.9A)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2836 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 5 (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

	CTTC A TTCCC	TTCGCGGCGC	CCCCCAAGAC	CACCAACTCC	GCTGGGGTGG	TCGCACAGGC	60
	COMPACTOR	GTCAGCTGGC	CGAATCCCAA	TGATTGGTGG	CTCNGTGCGG	TTGCTGGGCT	120
	CCATTACCCC	CACGGAAAGG	ACGACGATCG	TTCGTTTGCT	CGGTCAGTCG	TACTTGGCGA	180
15	CGATTACCCC	GCGGTTTCTT	ACCTCGATCG	CACAGCAGCT	GACCTTCGGC	CCAGGGGGCA	240
13	CGGGCAIGGC	CTCCGGCGGA	CCCTCCTACC	CAACGCCACA	ATTCGCCGGC	CTGGGTGCAG	300
	CAACGGCIGG	GTCGGCGAGT	TTGGCGCGGG	CGGAGCCGGT	CGGGAGGTTG	TCGGTGCCGC	360
	GCCCGGCGG1	CGTCGCGGCT	CCGCCCTTCG	CGCAGAAGCC	TGAGGCGGGC	ACGCCGATGT	420
	CAAGIIGGGC	CGAAGCGTCC	ACCTCCCCTC	AGGGAGGCCT	GCTTCGAGGC	ATACCGCTGG	480
20	CCGTCATCGG	GCGGCGTACA	CCCCCCTTCC	CTCACCGATA	CGGGTTCCGC	CACAGCGTGA	540
20	TER COCCOTT	TCCGTCGGCG	CGATACCTTT	CGATCCGGTC	TGCGCGGCCG	CCGGAAATGC	600
	TCCACATACC	GATCGACCGC	CCCCCTCCCT	AAACGCCGCA	CACGGCACTA	TCAATGCGCA	660
	CCCCCCCCCC	TGATGCCAAA	TTGACCGTCC	CGACGGGGCT	TTATCTGCGG	CAAGATTTCA	720
	TCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGTCGGTGGG	CCCATABATA	CGCTGGTCAG	CGCGACTCTT	CCGGCTGAAT	780
25	TCCCCAGCCC	GGGCGCCGC	TCCACCCCCA	CTATCTCGAG	TGGGCCGCAA	ACCCGGTCAA	840
23	TCGATGCTCT	TGTGGCGTTA	CCACACCTCA	ATTTCCCCCTC	CCAACTGGTG	AACACTTGCG	900
	ACGCTGTTAC	ATCGAAATCA	A CUTUCUTUCCC	TTCCACTCAT	CTACTCTCTT	GCAGAGAGCC	960
	AACGGGTGGC	TTAATTGGGA	CACCAACACA	CCATCTCCTT	CCTCACCACA	CAGCCGGAAG	1020
	GTTGCTGGGA	TGCGGCGGCG	A A COMA CA CO	CENTERCON	CACAATGAAC	CCCCAGAACG	1080
20	CCCTGGCAGC	TGCTCCAACC	AACCTACAGG	MAGAGGGGAC	CCCCCATCAA	CTATCACCCC	1140
30	CGGCCGCGGC	TCAGTTTGCT	ACCGGAGTAG	1GCCCGCAGC	AACCCTCAGC	GCCCAGGCGG	1200
	TGACCGCGGC	TCAGTTTGCT	GCGCACGCGC	MGATGTACCA	TTCTCCCCTCA	TACCCCCCCA	1260
	CGGCCATTCA	CGAAATGTTC CAACGCAGCC	GTGAACACGC	TGGTGGCCAG	CCACCAACCT	CCTCAACCAC	1320
	CCGAGGCGGC	TCCGGAGTTC	GCTGCCGGCT	GAACGGGCIC	GCGCCCAGCCI	CATTCACCTA	1380
25	AGGGGGAACA	TAACAGCAGA	CCATCTACC	ATTCACTACT	AAGGAGACAG	GCAACATGGC	1440
35	TCGGCGTCCA	ATGACGGATC	CGAICIAGGC	CCCCCACATC	CCCCCCCCCTT	TTGAGGTGCA	1500
	CTCACGTTTT	GTGGAGGACG	AGGGTGGGGG	CATCTCCCCC	TCCCCCCAAA	ACATTTCCGG	1560
	CGCCCAGACG	AGTGGCATGG	AGGCTCGCCG	CTCCCTACAC	ACCATGACCT	ACATTICCOO	1620
	TGCGGGCTGG	AGTGGCATGG	A CAMPOCECCA	CICGCIAGAC	CACCCCCTCC	TTCCCCACCC	1680
40	GGCGTTTCGC	GAACAGCAAG	ACAIGCIGCA	CGGGGIGCGI	CTCACCACCT	ACCCCCGAAA	1740
40	CAACAACTAC	CGTACGCTTT	AGCAGGCC1C	CAGCAGAIC	ATATCACCAT	TAATTACCAG	1800
	GCCACAGCTG	TCGACGCTCA	CTCACATTAG	A TO CO CO COTO	ACCCCCCCCCCC	CCTTCACCCC	1860
	TTCGGGGACG	CCATCGTTCG	TGGCGCCATG	ATCCGCGCTC	AGGCGGCGIC	CCCCCCCCCC	1920
	GAGCATCAGG	GCCAGGAGTT	TGATGIGIIG	TTTCCCCCCTA	ACTITIOGGG	CATCTACCAC	1980
15	TCGGTGGCTT	CCCACGGGCA	CATTACCCAG	COTTOCCCCCA	ACTICCAGGI	GCAAACCGAC	2040
45	CAGGCCAACG	GCTCCAGCTG	GAAGGIGCAG	TO A CTTCAC	TCCCCCCCACC	ACACCAACCA	2100
	AGCGCCGTCG	TGCTGTGTCC	GGCCIAAAAC	TGAACTICAG	CCCCTCACCT	ACACCATCCAT	2160
	GCCGGTGTGC	CCCGCACCGA	TGCAGTTAAC	AACCTCCACC	CCGCIGAGGI	GCTTCAGGCG	2220
	CAACAGAGTA	TCCGCCACGA	TATCACCGIC	TTA CCTTCCC	GCCCGTACGT	CTCCACCGAT	2280
50	CTACTGGATA	GGCTAAACGA	TGCGCCTGAG	ATCCCCCTCA	TCCCCCACCA	GGGCATTGTC	2340
50	TCCAATGACT	CGGTCAACGA	A CACCCGGGG	CCCCCCATCA	ACCTCCTTCC	CGCACCTGAT	2400
	GTCAACGACG	TCGCCCTGCT	ACAGGICGCI	A A CTTCCTCT	ACCCCCTCAT	AGACGACGAG	2460
	CTTGAAGTCG	CGGGTTCGCG	GTCACGCGGC	CACAATCACT	TCCCCCTCCT	GTTCGCCCCG	2520
	AACCAGCCGC	ACTGGGTGTC	TGACATCCCT	GACAAIGAGI	ACATCACCCT	CGATGACGTG	2580
55	CGAGGCCAGC	ACTGGGTGTC	CATTCCCCCA	GIIGGCAAIG	ACATCACCGI	CTCGATTCAC	2640
33	ACGGTCTCGG	ATAGCGCCTC	GATCGCCGCA	AACCTCCCAA	TCCACCACAT	CTCGTGCCGA	2700
	CACGCCGACC	AGGCCGCGAT	CAACGCGGTC	CACCACCCA	TOGAGGAGAI	TCATCGACCG	2760
	ATTCGGCACG	TTGGCGATCT	CGGIGICGGI	CACCACCCCC	CCCCCCCA	TCTCCCACAT	2820
			CGITGAGCAC	GACCCGGGCC	JUANUUU	1010CGACAI	2836
60	CCATGGGTTC	TTCCCG					2000
UU							

- (2) INFORMATION FOR SEQ ID NO:27: MTI (MTB9.9A)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide (vi) ORIGINAL SOURCE: 5 (A) ORGANISM: Mycobacterium tuberculosis (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: Met Thr Ile Asn Tyr Gln Phe Gly Asp Val Asp Ala His Gly Ala Met 10 Ile Arg Ala Leu Ala Gly Leu Leu Glu Ala Glu His Gln Ala Ile Ile 20 25 30 Ser Asp Val Leu Thr Ala Ser Asp Phe Trp Gly Gly Ala Gly Ser Ala 35 40 45 15 Ala Cys Gln Gly Phe Ile Thr Gln Leu Gly Arg Asn Phe Gln Val Ile 50 55 Tyr Glu Gln Ala Asn Ala His Gly Gln Lys Val Gln Ala Ala Gly Asn 65 70 75 Asn Met Ala Gln Thr Asp Ser Ala Val Gly Ser Ser Trp Ala 20 85 90 (2) INFORMATION FOR SEQ ID NO:28: HTCC#1 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1200 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 30 (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: 35 CAGGCATGAG CAGAGCGTTC ATCATCGATC CAACGATCAG TGCCATTGAC GGCTTGTACG ACCTTCTGGG GATTGGAATA CCCAACCAAG GGGGTATCCT TTACTCCTCA CTAGAGTACT 120 TCGAAAAAGC CCTGGAGGAG CTGGCAGCAG CGTTTCCGGG TGATGGCTGG TTAGGTTCGG CCGCGGACAA ATACGCCGGC AAAAACCGCA ACCACGTGAA TTTTTTCCAG GAACTGGCAG ACCTCGATCG TCAGCTCATC AGCCTGATCC ACGACCAGGC CAACGCGGTC CAGACGACCC 40 GCGACATCCT GGAGGGCGCC AAGAAAGGTC TCGAGTTCGT GCGCCCGGTG GCTGTGGACC TGACCTACAT CCCGGTCGTC GGGCACGCCC TATCGGCCGC CTTCCAGGCG CCGTTTTGCG CGGGCGCGAT GGCCGTAGTG GGCGGCGCC TTGCCTACTT GGTCGTGAAA ACGCTGATCA ACGCGACTCA ACTCCTCAAA TTGCTTGCCA AATTGGCGGA GTTGGTCGCG GCCGCCATTG CGGACATCAT TTCGGATGTG GCGGACATCA TCAAGGGCAC CCTCGGAGAA GTGTGGGAGT 45 TCATCACAAA CGCGCTCAAC GGCCTGAAAG AGCTTTGGGA CAAGCTCACG GGGTGGGTGA CCGGACTGTT CTCTCGAGGG TGGTCGAACC TGGAGTCCTT CTTTGCGGGC GTCCCCGGCT 720 TGACCGGCGC GACCAGCGGC TTGTCGCAAG TGACTGGCTT GTTCGGTGCG GCCGGTCTGT CCGCATCGTC GGGCTTGGCT CACGCGGATA GCCTGGCGAG CTCAGCCAGC TTGCCCGCCC TGGCCGGCAT TGGGGGCGGG TCCGGTTTTG GGGGCTTGCC GAGCCTGGCT CAGGTCCATG 50 CCGCCTCAAC TCGGCAGGCG CTACGGCCCC GAGCTGATGG CCCGGTCGGC GCCGCTGCCG AGCAGGTCGG CGGGCAGTCG CAGCTGGTCT CCGCGCAGGG TTCCCAAGGT ATGGGCGGAC 1020 CCGTAGGCAT GGGCGGCATG CACCCCTCTT CGGGGGCGTC GAAAGGGACG ACGACGAAGA AGTACTCGGA AGGCGCGCG GCGGGCACTG AAGACGCCGA GCGCGCCCA GTCGAAGCTG 1140 ACGCGGGCGG TGGGCAAAAG GTGCTGGTAC GAAACGTCGT CTAACGGCAT GGCGAGCCAA 55 (2) INFORMATION FOR SEQ ID NO:29: HTCC#1 (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 392 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 65 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

		Ser	Arg	Ala		Ile	Ile	Asp	Pro		Ile	Ser	Ala	Ile	_	Gly
	1 Leu	Tyr	Asp	Leu 20	5 Leu	Gly	Ile	Gly	Ile 25	10 Pro	Asn	Gln	Gly	Gly 30	15 Ile	Leu
5	Tyr	Ser	Ser 35	Leu	Glu	Tyr	Phe	Glu 40		Ala	Leu	Glu	Glu 45	Leu	Ala	Ala
	Ala	Phe 50		Gly	Asp	Gly	Trp 55	Leu	Gly	Ser	Ala	Ala 60	Asp	Lys	Tyr	Ala
10	Gly 65	Lys	Asn	Arg	Asn	His 70	Val	Asn	Phe	Phe	Gln 75	Glu	Leu	Ala	Asp	Leu 80
	Asp	Arg	Gln	Leu	Ile 85	Ser	Leu	Ile	His	Asp 90	Gln	Ala	Asn	Ala	Val 95	Gln
	Thr	Thr	Arg	Asp 100	Ile	Leu	Glu	Gly	Ala 105	Lys	Lys	Gly	Leu	Glu 110	Phe	Val
15	Arg	Pro	Val 115	Ala	Val	Asp	Leu	Thr 120	Tyr	Ile	Pro	Val	Val 125	Gly	His	Ala
	Leu	Ser 130	Ala	Ala	Phe	Gln	Ala 135	Pro	Phe	Cys	Ala	Gly 140	Ala	Met	Ala	Val
20	Val 145	Gly	Gly	Ala	Leu	Ala 150	Tyr	Leu	Val	Val	Lys 155	Thr	Leu	Ile	Asn	Ala 160
	Thr	Gln	Leu	Leu	Lys 165	Leu	Leu	Ala	Lys	Leu 170	Ala	Glu	Leu	Val	Ala 175	Ala
~ -		Ile		180				_	185		_			190	_	
25		Gly	195		-			200					205	_		_
		Leu 210					215					220				
30	225	Trp				230					235					240
		Ala			245					250					255	
25		Leu		260					265					270		
35		Ala	275					280	_		_	_	285		_	
	-	Gly 290					295					300			_	
40	305	Leu				310					315					320
		Gly	-		325					330		-			335	
45	_	Gly		340	_		_	_	345					350		
73	_	Gly	355			_	_	360			_		365		_	
		Asp 370 Val					375		Giu	AIA	Asp	380	GIY	GIY	GIŸ	GIII
50	385	vai	пец	vai	Arg	390	vai	vai								
	(2)	INFOF	TAMS	ON E	FOR S	SEQ I	D NO):30:	MTC	CC#2						
55		i)) SE	EQUEN	ICE (CHAR	ACTEF	RISTI	CS:							
						1441 iclei		-	airs							
						ONESS 7: 1:		_	9							
60		i)	i) M	OLEC	CULE	TYPE	E: cI	ONA								
		(3	ri\ c	SEOUE	NCE	DESC	ים דקי	TON.	SEC	מד נ	NO · 3	: n ·				

100

GAGGTTGCTG GCAATGGATT TCGGGCTTTT ACCTCCGGAA GTGAATTCAA GCCGAATGTA TTCCGGTCCG GGGCCGGAGT CGATGCTAGC CGCCGCGGCC GCCTGGGACG GTGTGGCCGC

 $\verb|GGAGTTGACT| TCCGCCGCGG| TCTCGTATGG| ATCGGTGGTG| TCGACGCTGA| TCGTTGAGCC|$

GTGGATGGG CCGCCGCG CCGCGATGGC GGCCGCGCA ACGCCGTATG TGGGGTGGCT

120

180

30

65

```
GGCCGCCACG GCGGCGCTGG CGAAGGAGAC GGCCACACAG GCGAGGGCAG CGGCGGAAGC
      GTTTGGGACG GCGTTCGCGA TGACGGTGCC ACCATCCCTC GTCGCGGCCA ACCGCAGCCG
      GTTGATGTCG CTGGTCGCGG CGAACATTCT GGGGCAAAAC AGTGCGGCGA TCGCGGCTAC
      CCAGGCCGAG TATGCCGAAA TGTGGGCCCA AGACGCTGCC GTGATGTACA GCTATGAGGG
5
      GGCATCTGCG GCCGCGTCGG CGTTGCCGCC GTTCACTCCA CCCGTGCAAG GCACCGGCCC
                                                                           540
                                                                           600
      GGCCGGGCCC GCGGCCGCAG CCGCGGCGAC CCAAGCCGCC GGTGCGGGCG CCGTTGCGGA
      TGCACAGGCG ACACTGGCCC AGCTGCCCCC GGGGATCCTG AGCGACATTC TGTCCGCATT
                                                                           660
      GGCCGCCAAC GCTGATCCGC TGACATCGGG ACTGTTGGGG ATCGCGTCGA CCCTCAACCC
      GCAAGTCGGA TCCGCTCAGC CGATAGTGAT CCCCACCCCG ATAGGGGAAT TGGACGTGAT
10
      CGCGCTCTAC ATTGCATCCA TCGCGACCGG CAGCATTGCG CTCGCGATCA CGAACACGGC
                                                                          900
      CAGACCCTGG CACATCGGCC TATACGGGAA CGCCGGCGGG CTGGGACCGA CGCAGGGCCA
      TCCACTGAGT TCGGCGACCG ACGAGCCGGA GCCGCACTGG GGCCCCTTCG GGGGCGCGGC
      GCCGGTGTCC GCGGGCGTCG GCCACGCAGC ATTAGTCGGA GCGTTGTCGG TGCCGCACAG
                                                                          1020
      CTGGACCACG GCCGCCCGG AGATCCAGCT CGCCGTTCAG GCAACACCCA CCTTCAGCTC
      CAGCGCCGGC GCCGACCCGA CGGCCCTAAA CGGGATGCCG GCAGGCCTGC TCAGCGGGAT
15
      GGCTTTGGCG AGCCTGGCCG CACGCGGCAC GACGGGCGGT GGCGGCACCC GTAGCGGCAC
      CAGCACTGAC GGCCAAGAGG ACGCCCGCAA ACCCCCGGTA GTTGTGATTA GAGAGCAGCC
                                                                          1260
      GCCGCCCGGA AACCCCCCGC GGTAAAAGTC CGGCAACCGT TCGTCGCCGC GCGGAAAAATG
      CCTGGTGAGC GTGGCTATCC GACGGGCCGT TCACACCGCT TGTAGTAGCG TACGGCTATG
20
      GACGACGGTG TCTGGATTCT CGGCGGCTAT CAGAGCGATT TTGCTCGCAA CCTCAGCAAA 1440
```

(2) INFORMATION FOR SEQ ID NO:31: MTCC#2

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 423 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

210 215

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

35 Met Asp Phe Gly Leu Leu Pro Pro Glu Val Asn Ser Ser Arg Met Tyr 5 10 Ser Gly Pro Gly Pro Glu Ser Met Leu Ala Ala Ala Ala Trp Asp 20 25 40 Gly Val Ala Ala Glu Leu Thr Ser Ala Ala Val Ser Tyr Gly Ser Val 35 40 Val Ser Thr Leu Ile Val Glu Pro Trp Met Gly Pro Ala Ala Ala Ala 50 55 60 Met Ala Ala Ala Ala Thr Pro Tyr Val Gly Trp Leu Ala Ala Thr Ala 70 75 80 45 Ala Leu Ala Lys Glu Thr Ala Thr Gln Ala Arg Ala Ala Ala Glu Ala 90 85 Phe Gly Thr Ala Phe Ala Met Thr Val Pro Pro Ser Leu Val Ala Ala 100 105 110 50 Asn Arg Ser Arg Leu Met Ser Leu Val Ala Ala Asn Ile Leu Gly Gln 120 125 Asn Ser Ala Ala Ile Ala Ala Thr Gln Ala Glu Tyr Ala Glu Met Trp 135 140 Ala Gln Asp Ala Ala Val Met Tyr Ser Tyr Glu Gly Ala Ser Ala Ala 55 150 155 160 Ala Ser Ala Leu Pro Pro Phe Thr Pro Pro Val Gln Gly Thr Gly Pro 165 170 Ala Gly Pro Ala Ala Ala Ala Ala Thr Gln Ala Ala Gly Ala Gly 180 185 190 Ala Val Ala Asp Ala Gln Ala Thr Leu Ala Gln Leu Pro Pro Gly Ile 60

195 200 205 Leu Ser Asp Ile Leu Ser Ala Leu Ala Ala Asn Ala Asp Pro Leu Thr

Ser Gly Leu Leu Gly Ile Ala Ser Thr Leu Asn Pro Gln Val Gly Ser

225 230 235 240 Ala Gln Pro Ile Val Ile Pro Thr Pro Ile Gly Glu Leu Asp Val Ile 245 250 255 Ala Leu Tyr Ile Ala Ser Ile Ala Thr Gly Ser Ile Ala Leu Ala Ile

				260					265					270				
			275	Ala	Arg			280					285					
5	Gly	Leu 290	Gly	Pro	Thr	Gln	Gly 295	His	Pro	Leu	Ser	Ser 300	Ala	Thr	Asp	Glu		
	Pro		Pro	His	Trp	Gly	Pro	Phe	Gly	Gly	Ala	Ala	Pro	Val	Ser	Ala		
	305					310		_			315	_	7	_	***	320		
	_		_		Ala 325					330					335			
10	Trp	Thr	Thr	Ala 340	Ala	Pro	Glu	Ile	Gln 345	Leu	Ala	Val	Gln	Ala 350	Thr	Pro		
	Thr	Phe	Ser	Ser	Ser	Ala	Gly	Ala 360	Asp	Pro	Thr	Ala	Leu 365	Asn	Gly	Met		
15	Pro	Ala 370		Leu	Leu	Ser	Gly 375	Met	Ala	Leu	Ala	Ser 380	Leu	Ala	Ala	Arg		
10	Gly 385		Thr	Gly	Gly	Gly 390	Gly	Thr	Arg	Ser	Gly 395	Thr	Ser	Thr	Asp	Gly 400		
	Gln	Glu	Asp	Gly	Arg 405		Pro	Pro	Val	Val 410	Val	Ile	Arg	Glu	Gln 415	Pro		
20	Pro	Pro	Gly	Asn 420	Pro	Pro	Arg											
25	(2)	INFO	RMAT	ION	FOR :	SEQ	ID N	0:32	: ES	AT-6								
		(i)			E CH													
					NGTH													
					PE: :													
30					POLO				10									
50			•	-														
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:32:							
	ATGA	רא רא	מכי או	CCNC.	ጥርርል	Δ ጥጥ	ጥሮርር	СССТ	ΔΤС	GAGG	CCG	CGGC	AAGC	GC A	ATCC	AGGG <i>I</i>	4	60
35	AATG	TCAC	GT C	CATT	CATT	C CC	TCCT	TGAC	GAG	GGGA	AGC .	AGTC	CCTG	AC C	AAGC	TCGC	Ā	120
-	GCGG																	154
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:33	: ES	AT-6								
40									_									
		(i)			E CH NGTH													
			•		NGIH PE:				CIUS									
					RAND				1e									
45			(D) TO	POLO	GY:	line	ar										
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:33:							
50			Thr	Glu	Gln		Trp	Asn	Phe	Ala		Ile	Glu	Ala	Ala	Ala 15	Ser	
50		1 212	Tle	Gln	Glv	5 Asn	Val	Thr	Ser	Ile	10 His	Ser	Leu	Leu	Asp	Glu	Gly	
					20					25					30			
		Lys	Gln	Ser 35	Leu	Thr	Lys	Leu	Ala 40	Ala	Ala	Trp	Gly	Gly 45	Ser	Gly	Ser	
55		Glu		Tyr														
			50															
	(2)	INFO	RMAT	ION	FOR	SEO	ID N	iO:34	: Th	38-1								
60	_/					- =												
		(i)	_		E CH													
					NGTH					ļ.								
					PE: RAND													
· =			, –	,														
65			(D) TO	POLC	GY:	line	ar										
65		(POLC E DE					יזא אזר								

5	CGGCACGAGA GACCGATGCC GCTACCCTCG CGCAGGAGGC AGGTAATTTC GAGCGGATCT CCGGCGACCT GAAAACCCAG ATCGACCAGG TGGAGTCGAC GGCAGGTTCG TTGCAGGGCC AGTGGCGCGG CGCGGGGGG ACGCCGCCC AGGCCGCGT GGTGCGCTTC CAAGAAGCAG CCAATAAGCA GAAGCAGGAA CTCGACGAGA TCTCGACGAA TATTCGTCAG GCCGGCGTCC AATACTCGAG GGCCGACGAG GAGCAGCAGC AGGCGCTGTC CTCGCAAATG GGCTTCTGAC CCGCTAATAC GAAAAGAAAC GGAGCAA	60 120 180 240 300 327
10	(2) INFORMATION FOR SEQ ID NO:35: Tb38-1 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid	
15	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile	
20	1 5 10 15 Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly	
	20 25 30 Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala 35 40 45	
25	Ala Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu 50 60	
	Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg 65 70 75 80	
30	Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 85 90 95	
	(2) INFORMATION FOR SEQ ID NO:36: TbRa3	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
45	GAATTCGGCA CGAGAGGTGA TCGACATCAT CGGGACCAGC CCCACATCCT GGGAACAGGC GGCGGCGGAG GCGGTCCAGC GGGCGCGGGA TAGCGTCGAT GACATCCGCG TCGCTCGGGT CATTGAGCAG GACATGGCCG TGGACAGCGC CGGCAAGATC ACCTACCGCA TCAAGCTCGA AGTGTCGTTC AAGATGAGGC CGGCGCAACC GCGCTAGCAC GGGCCGGCGA GCAAGACGCA	60 120 180 240
	AAATCGCACG GTTTGCGGTT GATTCGTGCG ATTTTGTGTC TGCTCGCCGA GGCCTACCAG GCGCGGCCCA GGTCCGCGTG CTGCCGTATC CAGGCGTGCA TCGCGATTCC GGCGGCCACG CCGGAGTTAA TGCTTCGCGT CGACCCGAAC TGGGCGATCC GCCGGNGAGC TGATCGATGA	300 360 420
50	CCGTGGCCAG CCCGTCGATG CCCGAGTTGC CCGAGGAAAC GTGCTGCCAG GCCGGTAGGA AGCGTCCGTA GGCGGCGGTG CTGACCGGCT CTGCCTGCGC CCTCAGTGCG GCCAGCGAGC GG	480 540 542
55	(2) INFORMATION FOR SEQ ID NO:37: TbRa3	
60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 66 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
65	Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala 1 5 10 15 Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Val	
	20 25 30	

Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile
35 40 45

Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln
50 55 60

Pro Arg
65

(2) INFORMATION FOR SEQ ID NO:38: 38 kD

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 15 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

20	TGTTCTTCGA	CGGCAGGCTG	GTGGAGGAAG	GGCCCACCGA	ACAGCTGTTC	TCCTCGCCGA	60
20	AGCATGCGGA	AACCGCCCGA	TACGTCGCCG	GACTGTCGGG	GGACGTCAAG	GACGCCAAGC	120
	GCGGAAATTG	AAGAGCACAG	AAAGGTATGG	CGTGAAAATT	CGTTTGCATA	CGCTGTTGGC	180
25	CGTGTTGACC	GCTGCGCCGC	TGCTGCTAGC	AGCGGCGGGC	TGTGGCTCGA	AACCACCGAG	240
	CGGTTCGCCT	GAAACGGGCG	CCGGCGCCGG	TACTGTCGCG	ACTACCCCCG	CGTCGTCGCC	300
30	GGTGACGTTG	GCGGAGACCG	GTAGCACGCT	GCTCTACCCG	CTGTTCAACC	TGTGGGGTCC	360
30	GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	GATCACCGCT	CAGGGCACCG	GTTCTGGTGC	420
	CGGGATCGCG	CAGGCCGCCG	CCGGGACGGT	CAACATTGGG	GCCTCCGACG	CCTATCTGTC	480
35	GGAAGGTGAT	ATGGCCGCGC	ACAAGGGGCT	GATGAACATC	GCGCTAGCCA	TCTCCGCTCA	540
	GCAGGTCAAC	TACAACCTGC	CCGGAGTGAG	CGAGCACCTC	AAGCTGAACG	GAAAAGTCCT	600
40	GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	CTGGGACGAC	CCGCAGATCG	CTGCGCTCAA	660
70	CCCCGGCGTG	AACCTGCCCG	GCACCGCGGT	AGTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	720
	TGACACCTTC	TTGTTCACCC	AGTACCTGTC	CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	780
45	GCCCGGCTTC	GGCACCACCG	TCGACTTCCC	GGCGGTGCCG	GGTGCGCTGG	GTGAGAACGG	840
	CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	GACACCGGGC	TGCGTGGCCT	ATATCGGCAT	900
50	CAGCTTCCTC	GACCAGGCCA	GTCAACGGGG	ACTCGGCGAG	GCCCAACTAG	GCAATAGCTC	960
	TGGCAATTTC	TTGTTGCCCG	ACGCGCAAAG	CATTCAGGCC	GCGGCGGCTG	GCTTCGCATC	1020
	GAAAACCCCG	GCGAACCAGG	CGATTTCGAT	GATCGACGGG	CCCGCCCCGG	ACGGCTACCC	1080
55	GATCATCAAC	TACGAGTACG	CCATCGTCAA	CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	1140
	GACCTTGCAG	GCATTTCTGC	ACTGGGCGAT	CACCGACGGC	AACAAGGCCT	CGTTCCTCGA	1200
60	CCAGGTTCAT	TTCCAGCCGC	TGCCGCCCGC	GGTGGTGAAG	TTGTCTGACG	CGTTGATCGC	1260
	GACGATTTCC	AGCTAGCCTC	GTTGACCACC	ACGCGACAGC	AACCTCCGTC	GGGCCATCGG	1320
						CCCGGCCATC	1380
65	CGGTGGTTGG	GTGGGATAGG	TGCGGTGATC	CCGCTGCTTG	CGCTGGTCTT	GGTGCTGGTG	1440
	GTGCTGGTCA	TCGAGGCGAT	GGGTGCGATC	AGGCTCAACG	GGTTGCATTT	CTTCACCGCC	1500

	ACCGAATGGA	ATCCAGGCAA	CACCTACGGC	GAAACCGTTG	TCACCGACGC	GTCGCCCATC	1560
	CGGTCGGCGC	CTACTACGGG	GCGTTGCCGC	TGATCGTCGG	GACGCTGGCG	ACCTCGGCAA	1620
5	TCGCCCTGAT	CATCGCGGTG	CCGGTCTCTG	TAGGAGCGGC	GCTGGTGATC	GTGGAACGGC	1680
	TGCCGAAACG	GTTGGCCGAG	GCTGTGGGAA	TAGTCCTGGA	ATTGCTCGCC	GGAATCCCCA	1740
10	GCGTGGTCGT	CGGTTTGTGG	GGGGCAATGA	CGTTCGGGCC	GTTCATCGCT	CATCACATCG	1800
10	CTCCGGTGAT	CGCTCACAAC	GCTCCCGATG	TGCCGGTGCT	GAACTACTTG	CGCGGCGACC	1860
	CGGGCAACGG	GGAGGGCATG	TTGGTGTCCG	GTCTGGTGTT	GGCGGTGATG	GTCGTTCCCA	1920
15	TTATCGCCAC	CACCACTCAT	GACCTGTTCC	GGCAGGTGCC	GGTGTTGCCC	CGGGAGGGCG	1980
	CGATCGGGAA	TTC					1993

- 20 (2) INFORMATION FOR SEQ ID NO:39: 38 kD
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
- Met Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 5 10 15
 - Leu Leu Ala Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30
 - Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45
- Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 40 50 55 60
 - Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80
- 45 Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95
- Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100 105 110 50
- Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125
- Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys
 130 135 140
 - Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160
- 60 Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175
- Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190
- 65

 Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly
 195
 200
 205

	Lys	210	Pro	GIY	Pne	GIŻ	215	1111	vai	Asp	PHE	220	лта	vai	110	OI,	
5	Ala 225	Leu	Gly	Glu	Asn	Gly 230	Asn	Gly	Gly	Met	Val 235	Thr	Gly	Cys	Ala	Glu 240	
	Thr	Pro	Gly	Cys	Val 245	Ala	Tyr	Ile	Gly	Ile 250	Ser	Phe	Leu	Asp	Gln 255	Ala	
10	Ser	Gln	Arg	Gly 260	Leu	Gly	Glu	Ala	Gln 265	Leu	Gly	Asn	Ser	Ser 270	Gly	Asn	
1.5	Phe	Leu	Leu 275	Pro	Asp	Ala	Gln	Ser 280	Ile	Gln	Ala	Ala	Ala 285	Ala	Gly	Phe	
15	Ala	Ser 290	Lys	Thr	Pro	Ala	Asn 295	Gln	Ala	Ile	Ser	Met 300	Ile	Asp	Gly	Pro	
20	Ala 305	Pro	Asp	Gly	Tyr	Pro 310	Ile	Ile	Asn	Tyr	Glu 315	Tyr	Ala	Ile	Val	Asn 320	
	Asn	Arg	Gln	Lys	Asp 325	Ala	Ala	Thr	Ala	Gln 330	Thr	Leu	Gln	Ala	Phe 335	Leu	
25	His	Trp	Ala	Ile 340	Thr	Asp	Gly	Asn	Lys 345	Ala	Ser	Phe	Leu	Asp 350	Gln	Val	
20	His	Phe	Gln 355	Pro	Leu	Pro	Pro	Ala 360		Val	Lys	Leu	Ser 365	Asp	Ala	Leu	
30	Ile	Ala 370	Thr	Ile	Ser	Ser											
35	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0:40	: DP	EP								
40	(i)	(B) LE) TY	NGTH PE:	: 99 nucl	9 ba eic	se p acid	airs									
40		(D) TO	POLO	GY:	line			D 110								
45	ATGCATCA	SEQ CC A	TCAC	CATO	A CA	TGCA	TCAG	GTG	GACC	CCA	ACTI	GACA	.CG T	'CGCA	AGGG	A	60 120
	CGATTGGC CCCGCGAC CCGCCGTC	CG C	CAAC	GCCG GCAG	A TC	CGGA	.GCCA :CGCA	GCG CCG	CCCC GCGA	CGG	TACC	CACA	AC G	GCCG CCAC	CCTC CACC	G G	180 240 300
50	GCCGCCGC GACCCGAA GACAACCC GCCCACTT	CG C CGG I	ACCG TGGA	CCGC GGAT	C AC T CA C AG	CTGT GCTT CACT	CATT CGCG CCTC	GCC CTC AGC	CCAA CCTC 'AAAA	ACG CTG ACCA	CACC GCTC CCGC	CCAA GGTG GGAC	CC I GA G CC G	GTCC TCTG CCAT	GGAT ACGC TTCC	C C C	360 420 480
55	GGACAGCO CTTTACGO	CGC C CCA G	GCCG GCGCC	GTGG GAAG CCCT	C CACCA	ATGA CCGA CGGG	CACC CTCC CACC	CGT AAG CGG	ATCO GCCO ATCA	STGC SCGG AACC	TCGG CCCG AGGA	CCGG GTTG AACC	GG C	GACC TCGC TCGC	AAAA ACAT TCGA	.G 'G .C	540 600 660
33	GCCAACGC CCGAACGC	GG I GCC A	GTCI GATC	GGAA TGGA TGGT	G CG C GG T TG	CGTC GCG1 TGG1	GTAT AATC ATGG	TAC GGC CTC	GAAC TCGC CGGG <i>P</i>	TCA CCCG ACCG	AGTT CGGC CCAA	'CAGC 'GAAC \CAAC	GA T GC A CC G	CCGA CCGG GTGG	GTAA BACGC BACAA	.G :C :G	720 780 840
60	GGCGCGGG GCACCGGG CCGACGAG	CCA A	AGGCC CTGC	CTGC	C CG	AATC	GATC CGGCC	CCC	CCTT GCGC	TTGG	TCGC	CCCG	CC G	CCGG	CGCC	:G	90 96 99
65		ORMAT							PEP								
	(1)		A) LE		I: 33	32 an	nino		is								

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41: 5 Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr 10 Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 25 2.0 Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 10 45 40 Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 50 55 60 Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro Pro 65 70 75 80 15 Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 85 90 Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Ala Pro 110 100 105 Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 20 115 120 125 Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 130 135 140 Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 145 150 155 160 25 Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg 170 165 Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 180 185 190 Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 30 205 195 200 Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 210 215 220 Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 225 230 235 35 Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 245 250 255 Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260 265 270 Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 40 285 280 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 290 295 300 Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 310 315 45 Pro Thr Thr Pro Thr Pro Gln Arq Thr Leu Pro Ala 325 330 50 (2) INFORMATION FOR SEQ ID NO:42: TbH4 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 702 base pairs (B) TYPE: nucleic acid 55 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42: CGGCACGAGG ATCGGTACCC CGCGGCATCG GCAGCTGCCG ATTCGCCGGG TTTCCCCACC 60 60 CGAGGAAAGC CGCTACCAGA TGGCGCTGCC GAAGTAGGGC GATCCGTTCG CGATGCCGGC 120 ATGAACGGGC GGCATCAAAT TAGTGCAGGA ACCTTTCAGT TTAGCGACGA TAATGGCTAT 180 AGCACTAAGG AGGATGATCC GATATGACGC AGTCGCAGAC CGTGACGGTG GATCAGCAAG 240 AGATTTTGAA CAGGGCCAAC GAGGTGGAGG CCCCGATGGC GGACCCACCG ACTGATGTCC 300 CCATCACACC GTGCGAACTC ACGGNGGNTA AAAACGCCGC CCAACAGNTG GTNTTGTCCG 360 65

(C) STRANDEDNESS: single

420

480 540

CCGACAACAT GCGGGAATAC CTGGCGGCCG GTGCCAAAGA GCGGCAGCGT CTGGCGACCT

CGCTGCGCAA CGCGGCCAAG GNGTATGGCG AGGTTGATGA GGAGGCTGCG ACCGCGCTGG

ACAACGACGG CGAAGGAACT GTGCAGGCAG AATCGGCCGG GGCCGTCGGA GGGGACAGTT

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

ATGAAGTTGA AGTTTGCTCG CCTGAGTACT GCGATACTGG GTTGTGCAGC GGCGCTTGTG

TTTCCTGCCT CGGTTGCCAG CGCAGATCCA CCTGACCCGC ATCAGCCGGA CATGACGAAA

GGCTATTGCC CGGGTGGCCG ATGGGGTTTT GGCGACTTGG CCGTGTGCGA CGGCGAGAAG

(D) TOPOLOGY: linear

CGGCCGAACT AACCGATACG CCGAGGGTGG CCACGGCCGG TGAACCCAAC TTCATGGATC

TCAAAGAAGC GGCAAGGAAG CTCGAAACGG GCGACCAAGG CGCATCGCTC GCGCACTGNG

GGGATGGGTG GAACACTINC ACCCTGACGC TGCAAGGCGA CG

(2) INFORMATION FOR SEQ ID NO:43: TbH4 (i) SEQUENCE CHARACTERISTICS:

5

60

65

600

702

60

120

	TACCCCGACG GCTCGTTTTG GCACCAGTGG ATGCAAACGT GGTTTACCGG CCCACAGTTT TACTTCGATT GTGTCAGCGG CGGTGAGCCC CTCCCCGGCC CGCCGCCACC GGGTGGTTGC GGTGGGGCAA TTCCGTCCGA GCAGCCCAAC GCTCCCTGA 240 330
5	(2) INFORMATION FOR SEQ ID NO:45: DPPD
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 112 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: protein
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:
	Met Lys Leu Lys Phe Ala Arg Leu Ser Thr Ala Ile Leu Gly Cys Ala 1 5 10 15
20	Ala Ala Leu Val Phe Pro Ala Ser Val Ala Ser Ala Asp Pro Pro Asp 20 25 30
	Pro His Gln Pro Asp Met Thr Lys Gly Tyr Cys Pro Gly Gly Arg Trp 35 40 45
25	Gly Phe Gly Asp Leu Ala Val Cys Asp Gly Glu Lys Tyr Pro Asp Gly 50 55
	Ser Phe Trp His Gln Trp Met Gln Thr Trp Phe Thr Gly Pro Gln Phe 70 75 80
	Tyr Phe Asp Cys Val Ser Gly Gly Glu Pro Leu Pro Gly Pro Pro 85 90 95
30	Pro Gly Gly Cys Gly Gly Ala Ile Pro Ser Glu Gln Pro Asn Ala Pro 100 105 110
35 40	<210> SEQ ID NO:46 <211> 921 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence:tri-fusion
4.5	cat atg cat cac cat cac cat cac gat ccc gtg gac gcg gtc att aac His Met His His His His His Asp Pro Val Asp Ala Val Ile Asn 1 5 10 15
45	acc acc tgc aat tac ggg cag gta gta gct gcg ctc aac gcg acg gat Thr Thr Cys Asn Tyr Gly Gln Val Val Ala Ala Leu Asn Ala Thr Asp 20 25 30
50	ccg ggg gct gcc gca cag ttc aac gcc tca ccg gtg gcg cag tcc tat Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser Pro Val Ala Gln Ser Tyr 35 40 45
55	ttg cgc aat ttc ctc gcc gca ccg cca cct cag cgc gct gcc atg gcc Leu Arg Asn Phe Leu Ala Ala Pro Pro Pro Gln Arg Ala Ala Met Ala 50 55 60
60	gcg caa ttg caa gct gtg ccg ggg gcg gca cag tac atc ggc ctt gtc 240 Ala Gln Leu Gln Ala Val Pro Gly Ala Ala Gln Tyr Ile Gly Leu Val 65 70 75 80
65	gag tog gtt goo ggo too tgo aac aac tat gag oto atg acg att aat 288 Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr Glu Leu Met Thr Ile Asn 85 90 95
UJ	tac cag ttc ggg gac gtc gac gct cat ggc gcc atg atc cgc gct cag Tyr Gln Phe Gly Asp Val Asp Ala His Gly Ala Met Ile Arg Ala Gln 100 105 110

-	gcg Ala	gcg Ala	tcg Ser 115	ctt Leu	gag Glu	gcg Ala	gag Glu	cat His 120	cag Gln	gcc Ala	atc Ile	gtt Val	cgt Arg 125	gat Asp	gtg Val	ttg Leu	384
5	gcc Ala	gcg Ala 130	ggt Gly	gac Asp	ttt Phe	tgg Trp	ggc Gly 135	ggc Gly	gcc Ala	ggt Gly	tcg Ser	gtg Val 140	gct Ala	tgc Cys	cag Gln	gag Glu	432
10	ttc Phe 145	att Ile	acc Thr	cag Gln	ttg Leu	ggc Gly 150	cgt Arg	aac Asn	ttc Phe	cag Gln	gtg Val 155	atc Ile	tac Tyr	gag Glu	cag Gln	gcc Ala 160	480
15	aac Asn	gcc Ala	cac His	ggg Gly	cag Gln 165	aag Lys	gtg Val	cag Gln	gct Ala	gcc Ala 170	ggc Gly	aac Asn	aac Asn	atg Met	gcg Ala 175	caa Gln	528
20	acc Thr	gac Asp	agc Ser	gcc Ala 180	gtc Val	ggc Gly	tcc Ser	agc Ser	tgg Trp 185	gcc Ala	act Thr	agt Ser	atg Met	agc Ser 190	ctt Leu	ttg Leu	576
25	gat Asp	gct Ala	cat His 195	atc Ile	cca Pro	cag Gln	ttg Leu	gtg Val 200	gcc Ala	tcc Ser	cag Gln	tcg Ser	gcg Ala 205	ttt Phe	gcc Ala	gcc Ala	624
	aag Lys	gcg Ala 210	999 Gly	ctg Leu	atg Met	cgg Arg	cac His 215	acg Thr	atc Ile	ggt Gly	cag Gln	gcc Ala 220	gag Glu	cag Gln	gcg Ala	gcg Ala	672
30	atg Met 225	tcg Ser	gct Ala	cag Gln	gcg Ala	ttt Phe 230	cac	cag Gln	ggg Gly	gag Glu	tcg Ser 235	tcg Ser	gcg Ala	gcg Ala	ttt Phe	cag Gln 240	720
35	gcc Ala	gcc Ala	cat His	gcc Ala	cgg Arg 245	ttt Phe	gtg Val	gcg Ala	gcg Ala	gcc Ala 250	gcc Ala	aaa Lys	gtc Val	aac Asn	acc Thr 255	ttg Leu	768
40	ttg Leu	gat Asp	gtc Val	gcg Ala 260	cag Gln	gcg Ala	aat Asn	ctg Leu	ggt Gly 265	Glu	gcc Ala	gcc Ala	ggt Gly	acc Thr 270	tat Tyr	gtg Val	816
45	Ala	Ala	Asp 275	Ala	Ala	Ala	Ala	Ser 280	Thr	Tyr	Thr	· Gly	285	Asp	Ile	cat His	864
	cac His	act Thr 290	Gly	ggc Gly	cgc Arg	tcg Ser	ago Ser 295	Arg	tcc Ser	ggc	tgo Cys	taa	caaa	gcc	cgaa	aggaag	917
50	ctg	a															921
55	<21 <21 <21	1> 2 2> P 3> A 3> D	99 RT rtif	ripti	1 Se on c	f Ar	tifi	cial desi	. Sec	uenc	e:tr Itb31	ri-fu .f)	sion	l.			
60	1				5	•				10)				15		
65				20)				25	5				30)	Asp	
	Pro	Gly	Ala 35		a Ala	Glr	n Phe	Asr 40		a Ser	Pro	o Val	. Ala 45	a Glr	ı Ser	Tyr	

	Leu	Arg 50	Asn	Phe	Leu	Ala	Ala 55	Pro	Pro	Pro	Gln	Arg 60	Ala	Ala	Met	Ala	
5	Ala 65	Gln	Leu	Gln	Ala	Val 70	Pro	Gly	Ala	Ala	Gln 75	Tyr	Ile	Gly	Leu	Val 80	
	Glu	Ser	Val	Ala	Gly 85	Ser	Cys	Asn	Asn	Tyr 90	Glu	Leu	Met	Thr	Ile 95	Asn	
10	Tyr	Gln	Phe	Gly 100	Asp	Val	Asp	Ala	His 105	Gly	Ala	Met	Ile	Arg 110	Ala	Gln	
15	Ala	Ala	Ser 115	Leu	Glu	Ala	Glu	His 120	Gln	Ala	Ile	Val	Arg 125	Asp	Val	Leu	
13	Ala	Ala 130	Gly	Asp	Phe	Trp	Gly 135	Gly	Ala	Gly	Ser	Val 140	Ala	Cys	Gln	Glu	
20	Phe 145	Ile	Thr	Gln	Leu	Gly 150	Arg	Asn	Phe	Gln	Val 155	Ile	Tyr	Glu	Gln	Ala 160	
	Asn	Ala	His	Gly	Gln 165	Lys	Val	Gln	Ala	Ala 170	Gly	Asn	Asn	Met	Ala 175	Gln	
25	Thr	Asp	Ser	Ala 180	Val	Gly	Ser	Ser	Trp 185	Ala	Thr	Ser	Met	Ser 190	Leu	Leu	
20	Asp	Ala	His 195	Ile	Pro	Gln	Leu	Val 200		Ser	Gln	Ser	Ala 205	Phe	Ala	Ala	
30	Lys	Ala 210		Leu	Met	Arg	His 215	Thr	Ile	Gly	Gln	Ala 220	Glu	Gln	Ala	Ala	
35	Met 225		Ala	Gln	Ala	Phe 230	His	Gln	Gly	Glu	Ser 235	Ser	Ala	Ala	Phe	Gln 240	
	Ala	Ala	His	Ala	Arg 245	Phe	Val	Ala	Ala	Ala 250	Ala	Lys	Val	Asn	Thr 255	Leu	
40	Leu	Asp	Val	Ala 260	Gln	Ala	Asn	Leu	Gly 265		Ala	Ala	Gly	Thr 270	Tyr	Val	
45	Ala	Ala	Asp 275		Ala	Ala	Ala	Ser 280		Tyr	Thr	Gly	Phe 285	Asp	Ile	His	
40	His	Thr 290		Gly	Arg	Ser	Ser 295	Arg	Ser	Gly	Cys	:					
50	<21 <21	.1> 2 .2> I	NA):48 il Se	auen	ce										
55	<22	3> I	escr	ripti ein E	on c	f Ar	tifi	cial ITCC2	Seq (de	uenc sign	e:te	etra- i Mth	fusi 71f)	on.			
60	cat His	Met	g cat	cac His	c cat His	His	cat His	cac His	gat Asp	ccc Pro	Va]	g gad L Asp	gcg Ala	gtc Val	att Ile 15	aac Asn	48
~ ~	acc The	ace Thi	tgo Cys	aat Asr 20	ı Tyr	ggg Gly	cag Glr	gta Val	a gta L Val 25	. Ala	gcg a Ala	g cto a Leu	aac Asr	gcg Ala 30	Thr	gat Asp	96
65	ccg Pro	g gg	g gct 7 Ala 35	a Ala	e gea a Ala	caç Glr	tto Phe	c aac e Ası 40	n Ala	c tca a Sei	a cco	g gtg o Val	g gcg L Ala 45	a Glr	tco Ser	tat Tyr	144

5	_	_		ttc Phe		_	_	_			_	_	_	-	_	_	192
J				caa Gln													240
10		_	_	gcc Ala			_						_	_			288
15		_		999 Gly 100	_	-	_	_			-	_		_	-	-	336
20			_	ctt Leu		_			_			_			_	-	384
25	_	_		gac Asp					_				_	_	_		432
				cag Gln													480
30		-		999 Gly	_	_		_	_	_				_			528
35		_	_	gcc Ala 180	_			_		_		_	_	_			576
40	_	_		atc Ile		_	_				_	_			-	_	624
45				ctg Leu													672
				cag Gln	Ala					Glu							720
50				gcc Ala													768
55	_		-	gcg Ala 260	_							_	-				816
60	_	_	-	gct Ala		_	_	_								-	864
65				ctt Leu													912
	-	_		ccg Pro		_	_		-	_		_	_		-		960

5			gcg Ala														1008
9	-	_	ctg Leu		_		_	-	_	_							1056
10			gcg Ala 355	_	_												1104
15	_		aag Lys		_	-		_			-			_			1152
20	999 Gly 385	acg Thr	gcg Ala	ttc Phe	gcg Ala	atg Met 390	acg Thr	gtg Val	cca Pro	cca Pro	tcc Ser 395	ctc Leu	gtc Val	gcg Ala	gcc Ala	aac Asn 400	1200
25			cgg Arg														1248
	agt Ser	gcg Ala	gcg Ala	atc Ile 420	gcg Ala	gct Ala	acc Thr	cag Gln	gcc Ala 425	gag Glu	tat Tyr	gcc Ala	gaa Glu	atg Met 430	tgg Trp	gcc Ala	1296
30		_	gct Ala 435	_		_		_				_			_		1344
35	-		ttg Leu	_	_										-	_	1392
40			gcg Ala														1440
45			gat Asp														1488
			att Ile					Āla		Asn							1536
50		_	ttg Leu 515				_				-		-				1584
55	_	_	ata Ile					_			~	_	_				1632
60			att Ile														1680
65		_	gcc Ala	-													1728
03			ccg Pro														1776

															gcg Ala		1824
5															agc Ser		1872
10															ccc Pro		1920
15		_			_		_	-	_	-					atg Met 655		1968
20															cgc Arg		2016
25															ggc Gly		2064
		_		-			_	-	_	_		_		_	ccg Pro	_	2112
30					ccg Pro		taag	gattt	ct a	aato	ccato	ca ca	actg	gcgg	c cg	ctcgag	2168
35	<213	L> 71 2> PF	LO T	O NO	:49 L Sec	quenc	ce										
35 40	<213 <213 <213	L> 71 2> PF 3> A1 3> De	lO RT ctif: escr:	icial iptic		Art	ific							on			
	<213 <213 <213 <223	L> 71 2> PF 3> Au 3> De	lO RT ctif: escr: cote:	icial iptic in DI	l Sec on of PV-M7	Art	ific SL-MT	rcc2	(des	igna	ated	Mtb:	71£)		Ile 15	Asn	
	<213 <213 <223 His	L> 71 2> PF 3> Ai 3> De pi	lO RT ctif: cote: His	icial iptic in DI His	l Secon of PV-MT His 5	Art TI-MS His	ific SL-M7 His	rcc2 His	(des	Pro 10	val	Mtb:	71f) Ala	Val			
40	<211 <212 <213 <223 His 1	1> 71 2> PP 3> Ax 3> De pr Met	LO ST stif: escr: cote: His	icial iptic in DI His Asn 20	l Secon of PV-MT His 5	E Art FI-MS His Gly	cific SL-MT His Gln	TCC2 His Val	(des Asp Val 25	Pro 10 Ala	val Ala	Mtb:	Ala Asn	Val Ala 30	15	Asp	
40 45	<211 <212 <213 <223 His 1 Thr	1 > 71 2 > PF 3 > Ax 3 > De pr Met Thr	LO RT ctif: ctif: cote: His Cys	icial iptic in DE His Asn 20	l Secon of PV-MT His 5 Tyr	E Art GI-MS His Gly	His Gln	rcc2 His Val Asn 40	(des Asp Val 25 Ala	Pro 10 Ala Ser	Val Ala Pro	Asp Leu Val	Ala Asn Ala 45	Val Ala 30 Gln	15 Thr	Asp Tyr	
40 45	<211 <212 <213 <223 His 1 Thr	1> 71 2> PF 3> Au 3> De pr Met Thr Gly Arg 50	Cys Ala 35	icial iptic in DI His Asn 20 Ala	l Secon of PV-MT His 5 Tyr Ala	E Art	His Gln Phe Ala	Yal Asn 40 Pro	(des Asp Val 25 Ala Pro	Pro 10 Ala Ser	Val Ala Pro Gln	Asp Leu Val Arg 60	Ala Asn Ala 45 Ala	Val Ala 30 Gln Ala	15 Thr Ser	Asp Tyr Ala	
40 45 50	<211 <212 <213 <223 His 1 Thr Pro Leu Ala 65	1> 71 2> PF 3> Ax 3> De pr Met Thr Gly Arg 50 Gln	total	icia iptic in DI His Asn 20 Ala Phe	l Secon of one of the original	E Art FI-MS His Gly Gln Ala Val 70	His Gln Phe Ala 55	Val Asn 40 Pro Gly	(des Asp Val 25 Ala Pro	Pro 10 Ala Ser Pro	Val Ala Pro Gln Gln 75	Asp Leu Val Arg 60	Ala Asn Ala 45 Ala Ile	Val Ala 30 Gln Ala Gly	15 Thr Ser Met	Asp Tyr Ala Val	
40 45 50	<211 <212 <213 <223 His 1 Thr Pro Leu Ala 65 Glu	1> 71 2> PF 3> Ax 3> De pr Met Thr Gly Arg 50 Gln Ser	Cys Ala 35 Asn Leu Val	icia: iptic in DD His Asn 20 Ala Phe Gln Ala	l Secon of of over the second of the second	E Arti Arti - MS His Gly Gln Ala Val 70 Ser	tific GBL-MT His Gln Phe Ala 55 Pro	TCC2 His Val Asn 40 Pro Gly Asn	(des Asp Val 25 Ala Pro Ala	Pro 10 Ala Ser Pro Ala	Val Ala Pro Gln 75 Glu	Mtb. Asp Leu Val Arg 60 Tyr	Ala Asn Ala 45 Ala Ile Met	Val Ala 30 Gln Ala Gly Thr	15 Thr Ser Met Leu Ile	Asp Tyr Ala Val 80 Asn	
40 45 50 55	<211 <212 <213 <223 His 1 Thr Pro Leu Ala 65 Glu Tyr	1> 71 2> PF 3> Ax 3> De pr Met Thr Gly Arg 50 Gln Ser	Total Cys Ala 35 Asn Leu Val	icial iptic in DD His Asn 20 Ala Phe Gln Ala Gly 100	l Secon of officers of the second of the sec	Arti-MS His Gly Gln Ala Val 70 Ser	His Gln Phe Ala 55 Pro Cys Asp	His Val Asn 40 Pro Gly Asn Ala	(des Asp Val 25 Ala Pro Ala Asn	Pro 10 Ala Ser Pro Ala Tyr 90 Gly	Val Ala Pro Gln 75 Glu Ala	Mtb. Asp Leu Val Arg 60 Tyr Leu Met	Ala Asn Ala 45 Ala Ile Met Ile	Val Ala 30 Gln Ala Gly Thr Arg 110	15 Thr Ser Met Leu Ile 95	Asp Tyr Ala Val 80 Asn Gln	

	Phe 145	Ile	Thr	Gln	Leu	Gly 150	Arg	Asn	Phe	Gln	Val 155	Ile	Tyr	Glu	Gln	Ala 160
5	Asn	Ala	His	Gly	Gln 165	Lys	Val	Gln	Ala	Ala 170	Gly	Asn	Asn	Met	Ala 175	Gln
	Thr	Asp	Ser	Ala 180	Val	Gly	Ser	Ser	Trp 185	Ala	Thr	Ser	Met	Ser 190	Leu	Leu
10	Asp	Ala	His 195	Ile	Pro	Gln	Leu	Val 200	Ala	Ser	Gln	Ser	Ala 205	Phe	Ala	Ala
15	Lys	Ala 210	Gly	Leu	Met	Arg	His 215	Thr	Ile	Gly	Gln	Ala 220	Glu	Gln	Ala	Ala
10	Met 225	Ser	Ala	Gln	Ala	Phe 230	His	Gln	Gly	Glu	Ser 235	Ser	Ala	Ala	Phe	Gln 240
20	Ala	Ala	His	Ala	Arg 245	Phe	Val	Ala	Ala	Ala 250	Ala	Lys	Val	Asn	Thr 255	Leu
	Leu	Asp	Val	Ala 260	Gln	Ala	Asn	Leu	Gly 265	Glu	Ala	Ala	Gly	Thr 270	Tyr	Val
25	Ala	Ala	Asp 275	Ala	Ala	Ala	Ala	Ser 280	Thr	Tyr	Thr	Gly	Phe 285	Asp	Ile	Met
	Asp	Phe 290	Gly	Leu	Leu	Pro	Pro 295		Val	Asn	Ser	Ser 300		Met	Tyr	Ser
30	Gly 305	Pro	Gly	Pro	Glu	Ser 310	Met	Leu	Ala	Ala	Ala 315	Ala	Ala	Trp	Asp	Gly 320
35	Val	Ala	Ala	Glu	Leu 325	Thr	Ser	Ala	Ala	Val 330	Ser	Tyr	Gly	Ser	Val 335	Val
55	Ser	Thr	Leu	Ile 340	Val	Glu	Pro	Trp	Met 345	Gly	Pro	Ala	Ala	Ala 350	Ala	Met
40	Ala	Ala	Ala 355	Ala	Thr	Pro	Tyr	Val 360	Gly	Trp	Leu	Ala	Ala 365	Thr	Ala	Ala
	Leu	Ala 370	Lys	Glu	Thr	Ala	Thr 375	Gln	Ala	Arg	Ala	Ala 380	Ala	Glu	Ala	Phe
45	Gly 385	Thr	Ala	Phe	Ala	Met 390	Thr	Val	Pro	Pro	Ser 395	Leu	Val	Ala	Ala	Asn 400
50	Arg	Ser	Arg	Leu	Met 405	Ser	Leu	Val	Ala	Ala 410	Asn	Ile	Leu	Gly	Gln 415	Asn
	Ser	Ala	Ala	Ile 420	Ala	Ala	Thr	Gln	Ala 425	Glu	Tyr	Ala	Glu	Met 430	Trp	Ala
55	Gln	Asp	Ala 435	Ala	Val	Met	Tyr	Ser 440	Tyr	Glu	Gly	Ala	Ser 445	Ala	Ala	Ala
	Ser	Ala 450	Leu	Pro	Pro	Phe	Thr 455	Pro	Pro	Val	Gln	Gly 460	Thr	Gly	Pro	Ala
60	Gly 465	Pro	Ala	Ala	Ala	Ala 470	Ala	Ala	Thr	Gln	Ala 475	Ala	Gly	Ala	Gly	Ala 480
65	Val	Ala	Asp	Ala	Gln 485	Ala	Thr	Leu	Ala	Gln 490	Leu	Pro	Pro	Gly	Ile 495	Leu
0.5	Ser	Asp	Ile	Leu 500	Ser	Ala	Leu	Ala	Ala 505	Asn	Ala	Asp	Pro	Leu 510	Thr	Ser

	Gly	Leu	Leu 515	Gly	Ile	Ala	Ser	Thr 520	Leu	Asn	Pro	Gln	Val 525	Gly	Ser	Ala
5	Gln	Pro 530	Ile	Val	Ile	Pro	Thr 535	Pro	Ile	Gly	Glu	Leu 540	Asp	Val	Ile	Ala
	Leu 545	Tyr	Ile	Ala	Ser	Ile 550	Ala	Thr	Gly	Ser	Ile 555	Ala	Leu	Ala	Ile	Th:
10	Asn	Thr	Ala	Arg	Pro 565	Trp	His	Ile	Gly	Leu 570	Tyr	Gly	Asn	Ala	Gly 575	Gly
15	Leu	Gly	Pro	Thr 580	Gln	Gly	His	Pro	Leu 585	Ser	Ser	Ala	Thr	Asp 590	Glu	Pro
13	Glu	Pro	His 595	Trp	Gly	Pro	Phe	Gly 600	Gly	Ala	Ala	Pro	Val 605	Ser	Ala	Gly
20	Val	Gly 610	His	Ala	Ala	Leu	Val 615	Gly	Ala	Leu	Ser	Val 620	Pro	His	Ser	Trp
	Thr 625	Thr	Ala	Ala	Pro	Glu 630	Ile	Gln	Leu	Ala	Val 635	Gln	Ala	Thr	Pro	Th:
25	Phe	Ser	Ser	Ser	Ala 645	Gly	Ala	Asp	Pro	Thr 650	Ala	Leu	Asn	Gly	Met 655	Pro
30	Ala	Gly	Leu	Leu 660	Ser	Gly	Met	Ala	Leu 665	Ala	Ser	Leu	Ala	Ala 670	Arg	Gly
50	Thr	Thr	Gly 675	Gly	Gly	Gly	Thr	Arg 680	Ser	Gly	Thr	Ser	Thr 685	Asp	Gly	Glr
35	Glu	Asp 690	Gly	Arg	Lys	Pro	Pro 695	Val	Val	Val	Ile	Arg 700	Glu	Gln	Pro	Pro
	Pro 705	Gly	Asn	Pro	Pro	Arg 710										
40																