HOMEWORK #1 REMINDER

- Out 8/28 on Piazza, Due 9/12 @ 11:59 PM ET on Gradescope
- 4 questions
 - Q1-Q2: Get familiar with Python
 - Numerical programming (Numpy)
 - Dataset loading and visualization (Pandas and other libraries)
 - Q3-Q4: kNN
 - Implement kNN (use Numpy)
 - Evaluate kNN (use sklearn)

HOMEWORK #1: FAQ (FROM PIAZZA)

- Submit ancillary code for partial credit (e.g., those associated with the non-coding answers) [Q14]
- Q3: knn implementation
 - Should generalize to any number of features [Q10]
 - Does not need to be the most efficient optimization but should avoid nested for-loops [Q11]

COURSE LOGISTICS

- Vote on Piazza for Midterm Date (11/8 vs 11/15)
- Python workshop material posted

DECISION TREES (PART II)

CS 334: Machine Learning

REVIEW: DECISION TREE

A tree structure

- Each internal (decision) node represents a test on a feature, each branch represents a value
- Each leaf node represents a class label
- Each path represents a classification/decision rule following successive choices

https://towardsdatascience.com/decision-tree-in-machine-learning-e380942a4c96

https://sefiks.com/2017/11/20/a-step-by-step-id3-decision-tree-example/

REVIEW: DECISION TREE

 Training: Build a decision tree from training data

 Prediction: Given a new data point, find the path using its features and predict the label at the leaf node

(Sunny, Mild, High, Weak)

REVIEW: HOW TO LEARN THE TREE?

- Recursively create a tree node that splits the current data region into two subregions
 - How to choose the node (splits)?
 - When to stop the tree (how big to grow)?

DECISION TREE: TRAINING (C4.5 ALGORITHM)

REVIEW: CHOOSING A GOOD SPLIT

- Idea: Use label counts at the node to define probability distributions to measure uncertainty
 - Deterministic good (all positive or all negative)
 - Uniform bad (all classes have equal probability)
 - What about in-between?
- Common metrics
 - Information entropy and information gain (ID3/C4.5)
 - Gini index (CART)

A LITTLE BIT OF INFORMATION THEORY

Flip three different coins (4 sides):

• Sequence 1: A A A A A A A A A A A A ... (deterministic)

- 0 bit/letter
- Sequence 2: A B C D B A D C B C D A ... (uniform: $P_A = \frac{1}{4} P_B = \frac{1}{4} P_C = \frac{1}{4} P_D = \frac{1}{4}$)
 0001101101001110011011 A:00 B:01 C:10 D:11 2 bits/letter
- Sequence 3: A A B C B C A A B A C A ... (biased: $P_A = \frac{1}{2} P_B = \frac{1}{4} P_C = \frac{1}{4} P_D = 0$)

Can we use less than 2 bits for sequence 3?

A LITTLE BIT OF INFORMATION THEORY

Flip three different coins (4 sides):

```
• Sequence 1: A A A A A A A A A A A A ... (deterministic)
```

0 bit/letter

```
• Sequence 2: A B C D B A D C B C D A ... (uniform: P_A = \frac{1}{4} P_B = \frac{1}{4} P_C = \frac{1}{4} P_D = \frac{1}{4})

0001101101001110011011 A:00 B:01 C:10 D:11 2 bits/letter
```

• Sequence 3: A A B C B C A A B A C A ... (biased: $P_A = \frac{1}{2} P_B = \frac{1}{4} P_C = \frac{1}{4} P_D = 0$)

0 0 101110110 0 10 0 11 0

A:0 B:10 C: 11 1.5bits/letter

ENTROPY

 Measure of the information content (uncertainty) of a random variable, i.e. expected number of bits needed to encode the variable

$$H(\mathbf{X}) = -\sum_{k=1}^{K} p(X = k) \log_2 p(X = k)$$

- Low entropy —> biased (peaks and valleys) with one predictable values

 $Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$

ATTRIBUTE SELECTION: INFORMATION GAIN

Difference of entropy before and after the split

Which attribute offers a better split?

INFORMATION GAIN

Choose split with larger information gain
Or choose split with lower entropy after split

CHOOSING A GOOD SPLIT

- Idea: Use counts at the node to define probability distributions to measure uncertainty
 - Deterministic good (all positive or all negative)
 - Uniform bad (all classes have equal probability)
 - What about in-between?
- Common metrics
 - Information entropy and information gain (ID3/C4.5)
 - Gini index (CART)

GINI INDEX

 Measure of how often a randomly chosen element from set would be incorrectly labeled if it was randomly labeled based on the labels in subset

$$\sum_{k=1}^{K} p(X=k)(1-p(X=k))$$

- Also known as measure of node impurity
- Used by the CART (classification and regression tree) algorithm

CAN WE USE CLASSIFICATION ERROR?

ENTROPY VS GINI VS CLASSIFICATION ERROR

Entropy (a way to measure impurity):

$$Entropy = -\sum_{j} p_{j} \log_{2} p_{j}$$

Gini index (a criterion to minimize the probability of misclassification):

$$Gini = 1 - \sum_{j} p_{j}^{2}$$

Classification Error:

 $ClassificationError = 1 - \max p_j$

where p_j is the probability of class j.

WHY DOES IT MATTER?

Classification Error

Information Gain

DECISION TREE: TRAINING (C4.5 ALGORITHM)

POSSIBLE SPLIT POINTS

- Real-valued features
- Categorical features

Income	Term	Credit	Υ
105K	3	Excellent	Safe
112K	5	Good	Risky
73K	3	Fair	Safe
69K	5	Excellent	Safe
217K	3	Excellent	Risky
120K	5	Good	Safe
64K	3	Fair	Risky
340K	5	Excellent	Safe
60K	3	Good	Risky

REAL-VALUED FEATURES

Aren't there infinite possible values of t?

REAL-VALUED FEATURES

sort the training data points, use each value t as the threshold

CATEGORICAL FEATURES

- Multiway split:
 - not a good general strategy
- Binary split:
 - Order the attribute values based on proportion falling in an outcome class
 - Find the best split point
- Convert to numerical attributes

Overcast Sunny Rain

split point

CATEGORICAL FEATURES: ENCODING

- Option 1: Assign an integer value
 - Example: Cold, mild, hot temperature => 1, 2, 3
- Option 2: One-hot encoding where each value becomes a binary variable
 - Example: Temp_cold, Temp_mild, Temp_hot

EXAMPLE: ONE-HOT ENCODING

	Outlook	Temp	Humidity	Wind	Tennis
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes

	x0_Overcast	x0_Rain	x0_Sunny	x1_Cool	x1_Hot	x1_Mild	x2_High	x2_Normal	x3_Strong	x3_Weak
0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0
1	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
2	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0
3	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0
4	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0

HOW TO GROW (BUILD) TREES?

- How to learn the best tree?
 - How to choose the node (splits)?
 - When to stop the tree (how big to grow)?

STOPPING CRITERION

- No more features
- 100% node purity or minimum impurity
- Minimum samples
- Minimum leaf samples
- Maximum tree depth
- Others: impurity decrease

MINIMUM LEAF SAMPLES: IMPLEMENTATION

Day	Outlook	Temperature	Humidity	Humidity Wind	
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

WHAT MAKES A GOOD TREE?

WHAT MAKES A GOOD TREE?

- Overfitting (too big): too many branches that "memorize" training data, may reflect anomalies and noises; poor accuracy for unseen sample
- Underfitting (too small): too simple, both training and test errors are large
- Bias-variance tradeoff (later)

WHAT MAKES A GOOD TREE?

- Big enough to handle important and possibly subtle distinctions in the data (avoid underfitting)
- Not too big for better interpretation and better performance on unseen data (avoid overfitting)

Early stopping vs. post-pruning

PREDICTED CLASS PROBABILITIES

- Each region R_j contains some subset of training data point
- Predicted probability is proportion of points in the region belong to class k

$$\hat{p}_g(R_j) = \frac{1}{n_j} \sum_{\mathbf{x}_i \in R_j} \mathbb{1}_{\{y_i = g\}}$$

 Predicted class is the most common class occurring amongst these points

$$g_j = \operatorname{argmax} \hat{p}_g(R_j)$$

PRUNING A TREE

- Grow a very large tree T_0 and prune it to get a subtree
- Cost complexity pruning (weakest link pruning) find a subtree T in T_0 that minimizes both classification error and tree size:

$$C_{\alpha}(T) = \sum_{j=1}^{|T|} [1 - \hat{p}_{g_j}(R_j)] + \alpha |T|$$

- Prune the weakest leaf one at a time
- Use cross validation to choose alpha (later)
- Grow a tree using Info gain or Gini, prune a tree using classification error

PRUNING A TREE: EXAMPLE

7.289

6.459

7.007

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree that results from top-down greedy splitting on the training data is shown.

Training

10

Test

HOW TO GROW (BUILD) TREES?

- How to learn the best tree?
 - How to choose the node (splits)?
 - When to stop the tree (how big to grow)?

- Regression vs. classification
- Handling missing attribute values

