REFERENCE

- The program will check the availability of the manufactured bar lengths.
 Example: The available manufactured bar lengths are 6, 7.5, 9, and 12 meters.
- 2. The program will determine the quantity of the total top bars of each beam section.

$$\begin{aligned} Qty_{Ext} &= Qty_{RED} + Qty_{BLUE} \\ Qty_{Mid} &= Qty_{RED} + Qty_{BLUE} \\ Qty_{Int} &= Qty_{RED} + Qty_{BLUE} \end{aligned}$$

For Ref (1): B-2

$$Qty_{Ext(1)} = Qty_{RED} + Qty_{BLUE} = 5 + 5 = 10$$

$$Qty_{Mid(1)} = Qty_{RED} + Qty_{BLUE} = 5 + 0 = 5$$

$$Qty_{Int(1)} = Qty_{RED} + Qty_{BLUE} = 5 + 5 = 10$$

For Ref (2): B-3

$$Qty_{Ext(2)} = Qty_{RED} + Qty_{BLUE} = 4 + 2 = 6$$

$$Qty_{Mid(2)} = Qty_{RED} + Qty_{BLUE} = 4 + 0 = 4$$

$$Qty_{Int(2)} = Qty_{RED} + Qty_{BLUE} = 4 + 2 = 6$$

For Ref (2): B-3

$$Qty_{Ext(3)} = Qty_{RED} + Qty_{BLUE} = 4 + 2 = 6$$

$$Qty_{Mid(3)} = Qty_{RED} + Qty_{BLUE} = 4 + 0 = 4$$

$$Qty_{Int(3)} = Qty_{RED} + Qty_{BLUE} = 4 + 2 = 6$$

3. The program will determine the quantity of continuous reinforcement of each beam

$$Qty_{CR} = \frac{Allow(\%)}{100} \left[Smallest \ Qty_{Mid} \ between \ Ref_{(n-Z)}, \ to \ Ref_{(n+Z-1)} \right]$$

Where Smallest $Qty_{_{Mid}}$ must not be equal or less than zero.

$$Z = \frac{100}{Allow(\%)}$$

If Z is Odd and the $Smallest Qty_{Mid}$ is Even

If n is Odd, Qty_{CR} must be round down to whole number

If n is Even, Qty_{CR} must be round up to whole number

Else,

If n is Odd, Qty_{CR} must be round up to whole number If n is Even, Qty_{CR} must be round down to whole number

Example:

$$Z = \frac{100}{Allow(\%)} = \frac{100}{50} = 2$$

• For Ref (1)

Finding the smallest $\mathit{Qty}_{\mathit{Mid}}$ between $\mathit{Ref}_{(-1)}$, to $\mathit{Ref}_{(2)}$

$$Ref_{(-1)}$$
: $Qty_{Mid} = 0$

$$Ref_{(0)}$$
: $Qty_{Mid} = 0$

$$Ref_{(1)}$$
: $Qty_{Mid} = 5$

$$Ref_{(2)}$$
: $Qty_{Mid} = 4$

The smallest $Qty_{Mid} = 4$

$$Qty_{\mathit{CR}(1)} = \frac{\mathit{Allow}(\%)}{100} \Big[\mathit{Smallest} \; Qty_{\mathit{Mid}} \; \mathit{between} \; \mathit{Ref}_{(n-Z)}, \; \mathit{to} \; \mathit{Ref}_{(n+Z-1)} \Big]$$

$$Qty_{CR(1)} = \frac{50}{100}[4]$$

$$Qty_{CR(1)} = 2$$

• For Ref (2)

Finding the smallest $\mathit{Qty}_{\mathit{Mid}}$ between $\mathit{Ref}_{(0)}$, to $\mathit{Ref}_{(3)}$

$$Ref_{(0)}$$
: $Qty_{Mid} = 0$

$$Ref_{(1)}$$
: $Qty_{Mid} = 5$

$$Ref_{(2)}$$
: $Qty_{Mid} = 4$

$$Ref_{(3)}$$
: $Qty_{Mid} = 4$

The smallest $Qty_{Mid} = 4$

$$Qty_{CR(2)} = \frac{Allow(\%)}{100} \Big[Smallest \ Qty_{Mid} \ between \ Ref_{(n-Z)}, \ to \ Ref_{(n+Z-1)} \Big]$$

$$Qty_{CR(2)} = \frac{50}{100}[4]$$

$$Qty_{CR(2)} = 2$$

• For Ref (3)

Finding the smallest $\mathit{Qty}_{\mathit{Mid}}$ between $\mathit{Ref}_{(0)}$, to $\mathit{Ref}_{(3)}$

$$Ref_{(1)}$$
: $Qty_{Mid} = 5$

$$Ref_{(2)}$$
: $Qty_{Mid} = 4$

$$Ref_{(3)}$$
: $Qty_{Mid} = 4$

$$Ref_{(4)}$$
: $Qty_{Mid} = 0$

The smallest $Qty_{Mid} = 4$

$$Qty_{CR(3)} = \frac{Allow(\%)}{100} \Big[Smallest \ Qty_{Mid} \ between \ Ref_{(n-Z)}, \ to \ Ref_{(n+Z-1)} \Big]$$

$$Qty_{CR(3)} = \frac{50}{100}[4]$$

$$Qty_{CR(3)} = 2$$

4. The program will compute the non-continuous bars

If
$$n < (n_{last} + 1 - Z)$$

$$Qty_{NCR} = Qty_{Mid} - \sum_{n}^{n+Z-1} Qty_{CR}$$

If
$$n \ge (n_{last} + 1 - Z)$$

$$Qty_{NCR} = Qty_{Mid} - \sum_{n_{last}+1-Z}^{n_{last}} Qty_{CR}$$

$$(n_{last} + 1 - Z) = (3 + 1 - 2) = 2$$

• For Ref (1):
$$1 < 2 :: n < (n_{last} + 1 - Z)$$

$$\begin{split} Qty_{NCR(1)} &= Qty_{Mid(1)} - \sum_{n}^{n+Z-1} Qty_{CR} \\ \\ Qty_{NCR(1)} &= Qty_{Mid(1)} - \sum_{1}^{1+2-1} Qty_{CR} \\ \\ Qty_{NCR(1)} &= Qty_{Mid(1)} - \left(Qty_{CR(1)} + Qty_{CR(2)}\right) \end{split}$$

$$Qty_{NCR(1)} = 5 - (2 + 2) = 1$$

• For Ref (2):
$$2 = 2 : n = (n_{last} + 1 - Z)$$

$$\begin{split} Qty_{NCR(2)} &= Qty_{Mid(2)} - \sum_{n_{last}+1-Z}^{n_{last}} Qty_{CR} \\ Qty_{NCR(2)} &= Qty_{Mid(2)} - \sum_{3+1-Z}^{3} Qty_{CR} \\ Qty_{NCR(2)} &= Qty_{Mid(2)} - \left(Qty_{CR(2)} + Qty_{CR(3)}\right) \\ Qty_{NCR(2)} &= 4 - (2 + 2) = 0 \end{split}$$

• For Ref (3):
$$3 > 2 :: n > (n_{last} + 1 - Z)$$

$$\begin{split} Qty_{NCR(2)} &= Qty_{Mid(3)} - \sum_{n_{last}+1-Z}^{n_{last}} Qty_{CR} \\ Qty_{NCR(3)} &= Qty_{Mid(3)} - \sum_{3+1-Z}^{3} Qty_{CR} \\ Qty_{NCR(3)} &= Qty_{Mid(3)} - \left(Qty_{CR(2)} + Qty_{CR(3)}\right) \end{split}$$

$$Qty_{NCR(3)} = 4 - (2 + 2) = 0$$

5. The program will compute the quantity of extra bars A and B.

Case 1:
$$n = 1$$

$$Qty_{ER-A} = Qty_{Ext(n)} - Qty_{Mid(n)}$$

$$Qty_{ER-B} = Qty_{Int(n)} - Qty_{Mid(n)}$$

Case 2:
$$1 < n < n_{last}$$

$$Qty_{ER-A} = Qty_{Int(n)} - Qty_{Mid(n)}$$

Case 3:
$$n = n_{last}$$

$$Qty_{ER-A} = Qty_{Ext(n)} - Qty_{Mid(n)}$$

Example:

• Ref (1): n = 1

$$Qty_{ER-A(1)} = Qty_{Ext(1)} - Qty_{Mid(1)}$$

$$Qty_{ER-A(1)} = 10 - 5$$

$$Qty_{ER-A(1)} = 5$$

$$Qty_{ER-B(1)} = Qty_{Int(1)} - Qty_{Mid(1)}$$

$$Qty_{ER-B(1)} = 10 - 5$$

$$Qty_{ER-B(1)} = 5$$

• Ref (2): n > 1 and $n < n_{last}$

$$Qty_{ER-A(2)} = Qty_{Int(2)} - Qty_{Mid(2)}$$

$$Qty_{ER-A(2)} = 6 - 4$$

$$Qty_{ER-A(2)} = 2$$

• Ref (3):
$$n = n_{last}$$

$$Qty_{ER-A(3)} = Qty_{Ext(3)} - Qty_{Mid(3)}$$

$$Qty_{ER-A(3)} = 6 - 4$$

$$Qty_{ER-A(3)} = 2$$

6. The program then will check the supports that are connected to each beam.

Example:

Beam Name Length Quantity End Support (Left/Top) End Support (Right/Bottom A B-2 W 3000 1 C-1 (B) W C-1 (B) W			M RO														•
B-3 ▼ 7000 1 C-1 (B) ▼ C-1 (B) ▼ B-3 ▼ 7000 1 C-1 (B) ▼ B-1 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼		Bear	n Nar	ne	Leng	th C	Quant	ity	End Suppo	ort (Le	ft/Top)	Er	nd Suppor	t (Righ	nt/B	ottom	
B-3		B-	-2	▼	300	0	1		C-:	1 (B)		7	-	C-1 (B))		7
ROOF BEAM SCHEDULE Section Properties Ext. Support Midspan Int. Support Stirrups Web B		В-	-3	₹	700	0	1	\neg	C-:	1 (B)	1	7	(C-1 (B))	1	7
ROOF BEAM SCHEDULE Name B D Properties Ext. Support Midspan Int. Support Stirrups Web B		В-	-3	V	700	0	1	\neg	C-1	1 (B)	1	7		B-1			78
ROOF BEAM SCHEDULE Name B D Properties Ext. Support Midspan Int. Support Stirrups Web B				▼		丅		┑			1	7				1	7
ROOF BEAM SCHEDULE Name B D Properties Ext. Support Midspan Int. Support Stirrups Web B				▼		Т		П			1	7				1	7
ROOF BEAM SCHEDULE Name B D Properties Ext. Support Midspan Int. Support Stirrups Web B				Ť		\neg		\neg			1	7				1	
Name B D Properties Ext. Support Midspan Int. Support Stirrups Web B																	
B-2 450 700 Dia. 25 Cty 5 Cty 5 Dia. 12 Dia. 25 Cty 5 Cty 5 Dia. 12 Dia. 25 Cty 5 Cty 5 Dia. 12 Dia. 25 Cty 5 Cty 5 Cty 6 Cty 75 Cty 6 Cty 75				7		_		_				,					, ,
B-2 450 700 Dia. 25 Oxy 5 Oxy 5 Oxy 5 Oxy 9 Oxy	ROOF	BEAN	/ SCH	EDL	JLE	_		_									*1*1
B-2 450 700 Dia. 25 Gry Gry Gty Gty G Gry G G G G				EDL		ertie	S	Ext	. Support	M			. Support		Stin	rups	Web
Dia. 25 Cry. 4 Cry. 4 Cry. 4 Cry. 4 Dia. 12 Dia. 25 Cry. 2				EDU		_		Qty	. 5	Qty.	idspan	Int.					
Dia 25 Oty 5 Oty 5 Oty 5 Rest 0 75 2 2 2 2 2 2 2 2 2	Name	В	D	EDU		_		Qty Qty	5	Qty. Qty.	idspan 5	Int. Qty. Qty.	5	Dia.	@	12	Dia 16
200 F00 Dia. 25 Qty. 2 Qty. Qty. 2 1 @ 50 16	Name	В	D	EDL		Dia	a. 25	Qty Qty Qty	5	Qty. Qty. Qty.	idspan 5	Int. Qty. Qty. Qty.	5	Dia.	@	12 50	Dia 16 Qty
200 500	Name	В	D	EDU		Dia	a. 25	Qty Qty Qty	5	Qty. Qty. Qty.	idspan 5	Int. Qty. Qty. Qty.	5	Dia.	@	12 50	Dia 16 Qty
	Name	В	D	EDU		Dia Dia	a. 25 a. 25	Qty Qty Qty Qty Qty	5 5 7 7 8 9	Qty. Qty. Qty. Qty. Qty.	idspan 5 5	Int. Qty. Qty. Qty. Qty.	5 5	Dia. 1 Rest	0 0	12 50 75	Dia 16 Qty 2
Dia. 23 Qtv. 3 Qtv. 3 Rest @ 200 2	Name	В	D	EDU		Dia Dia	a. 25 a. 25	Qty Qty Qty Qty Qty	5 5 4 5 4 2	Qty. Qty. Qty. Qty. Qty.	idspan 5 5	Int. Qty. Qty. Qty. Qty. Qty.	5 5 5 4	Dia. 1 Rest Dia.	9999	12 50 75 12	Dia 16 Qty 2 Dia

- Ref (1)
 - a) End Support (Left/Top): C-1(B)
 - b) End Support (Right/Bottom): C-1(B)
- Ref (2)
 - a) End Support (Left/Top): C-1(B)
 - b) End Support (Right/Bottom): C-1(B)
- Ref (3)
 - a) End Support (Left/Top): C-1(B)
 - b) End Support (Right/Bottom): **B-1**
- 7. The program will determine the dimension of the support

- If the support is a Column connected to its width "Support Name(D)" then
 - a) Case 1: The Beam Type is "Footing Tie Beam" & "Grade Beam"

$$Dim_{S:Left/Top} = \frac{B_{column} + \left(CC_{EE} - CC_{EW}\right)}{2} \quad or \quad Dim_{S:Right/Bott} = \frac{B_{column} + \left(CC_{EE} - CC_{EW}\right)}{2}$$

b) Case 2: The Beam Type is "Suspended Beam" & "Roof Beam"

$$Dim_{S:Left/Top} = \frac{B_{column}}{2}$$
 or $Dim_{S:Right/Bott} = \frac{B_{column}}{2}$

- If the support is a Column connected to its length "Support Name(B)" then
 - a) Case 1: The Beam Type is "Footing Tie Beam" & "Grade Beam"

$$Dim_{S:Left/Top} = \frac{D_{column} + \left(CC_{EE} - CC_{EW}\right)}{2} \quad or \quad Dim_{S:Right/Bott} = \frac{D_{column} + \left(CC_{EE} - CC_{EW}\right)}{2}$$

b) Case 2: The Beam Type is "Suspended Beam" & "Roof Beam"

$$Dim_{S:Left/Top} = \frac{D_{column}}{2}$$
 or $Dim_{S:Right/Bott} = \frac{D_{column}}{2}$

• If the support is a Beam, then

$$Dim_{S:Left/Top} = \frac{B_{beam}}{2}$$
 or $Dim_{S:Right/Bott} = \frac{B_{beam}}{2}$

• If there is No support, then

$$Dim_{S:Left/Top} = 0$$
 or $Dim_{S:Right/Bott} = 0$

Example:

- Ref (1)
 - a) End Support (Left/Top): C-1(B)

$$Dim_{S:Left/Top(1)} = \frac{D_{column}}{2} = \frac{600}{2} = 300$$

b) End Support (Right/Bottom): C-1(B)

$$Dim_{S:Right/Bott(1)} = \frac{D_{column}}{2} = \frac{600}{2} = 300$$

- Ref (2)
 - a) End Support (Left/Top): C-1(B)

$$Dim_{S:Left/Ton(2)} = \frac{D_{column}}{2} = \frac{600}{2} = 300$$

b) End Support (Right/Bottom): C-1(B)

$$Dim_{S:Right/Bott(2)} = \frac{D_{column}}{2} = \frac{600}{2} = 300$$

- Ref (3)
 - a) End Support (Left/Top): C-1(B)

$$Dim_{S:Left/Top(2)} = \frac{D_{column}}{2} = \frac{600}{2} = 300$$

b) End Support (Right/Bottom): B-1

$$Dim_{S:Right/Bott(2)} = \frac{B_{beam}}{2} = \frac{450}{2} = 225$$

8. The program will then compute the Clear Length of the respective beams

$$L_{\mathit{Cn}} = L_{n} - \mathit{Dim}_{\mathit{S:Left/Top}} - \mathit{Dim}_{\mathit{S:Right/Bott}}$$

• Ref (1)

$$L_{\mathit{C}(1)} = L_{1} - \mathit{Dim}_{\mathit{S:Left/Top}(1)} - \mathit{Dim}_{\mathit{S:Right/Bott}(1)}$$

$$L_{C(1)} = 3000 - 300 - 300$$

$$L_{C(1)} = 2400$$

• Ref (2)

$$L_{C(2)} = L_2 - Dim_{S:Left/Top(2)} - Dim_{S:Right/Bott(2)}$$

$$L_{C(2)} = 7000 - 300 - 300$$

$$L_{C(2)} = 6400$$

• Ref (3)

$$L_{C(3)} = L_3 - Dim_{S:Left/Top(3)} - Dim_{S:Right/Bott(3)}$$

$$L_{C(3)} = 7000 - 300 - 225$$

$$L_{C(3)} = 6475$$

- 9. The program will determine the splice length of each beam, based on splice type.
 - a) Case 1: Splice Type is Lapped Splice or Welded Splice (Lapped)

 $S_{_{\rm I}}={\it Based}$ on the table of splice length @ Tension

b) Case 2: Splice Type is Mechanical Splice or Welded Splice (Butt)

$$S_{I} = 0$$

Example:

Since the Splice Type is Lapped Splice, Then

 $S_{_{\rm I}}={\it Based}$ on the table of splice length @ Tension

TENSION BARS COMPRESSION BARS							
					+		
BAR SIZES	f'c	20.7	f'c	27.6	4		
(DEFORMED MM)		Lapped Splice		Lapped Splice			
10		300		300			
12		300		300			
16		400		400			
20		550		500			
25		800		750			
28		1000		850			
32		1300		1100	7		

The concrete strength is $4000 \ psi = 27.6$

• Ref (1): The diameter of the top reinforcement = 25 mm

$$S_{L(1)} = 750$$

• Ref (2) The diameter of the top reinforcement = 25 mm

$$S_{L(2)} = 750$$

• Ref (3) The diameter of the top reinforcement = 25 mm

$$S_{L(1)} = 750$$

- 10. The program will compute the effective distance of each beam
 - If the Splice Alternating is **Enable**

$$E_{Dn} = (1 - S_{LOC})L_{Cn} + \frac{S_{Ln}}{2}$$

• If the Splice Alternating is **Disabled**

$$E_{Dn} = \left(1 - S_{LOC}\right)L_{Cn} - \frac{D_{Min}}{2}$$

Since the Splice Alternating is Enable

For Ref (1)
$$E_{D(1)} = \left(1 - S_{LOC}\right)L_{C(1)} + \frac{S_{L(1)}}{2} = (1 - 0.5)(2400) + \frac{750}{2} = 1575$$

For Ref (2)

$$E_{D(2)} = \left(1 - S_{LOC}\right)L_{C(2)} + \frac{S_{L(2)}}{2} = (1 - 0.5)(6400) + \frac{750}{2} = 3575$$

For Ref (3)

$$E_{D(3)} = \left(1 - S_{LOC}\right)L_{C(2)} + \frac{S_{L(2)}}{2} = (1 - 0.5)(6475) + \frac{750}{2} = 3612.5$$

11. The program will compute the concrete cover of the support of the first and last beam in the beam row.

For Ref (n), where n = 1

- If the beam type is Grade Beam or Footing Tie Beam
 - a) Case 1: If the End Support (Left/Top) is Column

$$CC_{S:L/T(n)} = Columns Exposed to Earth$$

b) Case 2: If the End Support (Left/Top) is Beam

$$CC_{S:Left/Top(n)} = Beams Exposed to Earth$$

- If the beam type is Suspended Beam or Roof Beam
 - a) Case 1: If the End Support (Left/Top) is Column

$$CC_{S:L/T(n)} = Columns Exposed to Weather$$

b) Case 2: If the End Support (Left/Top) is Beam

$$CC_{S:L/T(n)} = Beams Exposed to Weather$$

For Ref (n), where $n=n_{last}$

- If the beam type is Grade Beam or Footing Tie Beam
 - c) Case 1: If the End Support (Right/Bottom) is Column

$$CC_{S:R/B(n)} = Columns Exposed to Earth$$

d) Case 2: If the End Support (Right/Bottom) is Beam

$$CC_{S:R/B(n)} = Beams Exposed to Earth$$

- If the beam type is Suspended Beam or Roof Beam
 - c) Case 1: If the End Support (Right/Bottom) is Column

$$CC_{S:R/B(n)} = Columns Exposed to Weather$$

d) Case 2: If the End Support (Right/Bottom) is Beam

$$CC_{S:R/B(n)} = Beams Exposed to Weather$$

Example:

$$n_{last} = 3$$

For Ref (1)

Since the End Support (Left/Top) is Column. Thus,

$$CC_{S:L/T(1)} = Columns Exposed to Weather = 40$$

For Ref (3)

Since the End Support (Right/Bottom) is Beam. Thus,

$$CC_{S:R/B(3)} = Beams Exposed to Weather = 40$$

- 12. The program will compute the length of the continuous reinforcement (must be converted into meter)
 - a) If the Splice Alternating is **Enabled**:
 - Case 1: $n \le Z$ and $n < (n_{last} Z + 1)$

$$L_{B} of \ Qty_{CR} = \sum_{1}^{n} L_{n} + H_{L(^{\circ})} + Dim_{S:Left/Top(1)} - CC_{S:L/T(n)} - Dim_{S:Right/Bott(n)} - E_{Dn}$$

• Case 2: $n \le Z$ and $n \ge (n_{last} - Z + 1)$

$$L_{B(a)} \text{ of } Qty_{CR} = \sum_{1}^{n} L_n + H_{L(1)} + Dim_{S:Left/Top(1)} - CC_{S:L/T(1)} - Dim_{S:Right/Bott(n)} - E_{Dn}$$

$$L_{B(b)} of \ Qty_{CR} = \sum_{n}^{n_{last}} L_n + H_{L\left(n_{last}\right)} + E_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Left/Top(n)} - L_{Cn} - CC_{S:R/B\left(n_{last}\right)}$$

$$\text{And if } \left(L_{B(a)} \text{ of } Qty_{\mathit{CR}} + L_{B(b)} \text{ of } Qty_{\mathit{CR}} - S_{L(n)}\right) < Largest \ L_{m}, \text{ Thus } L_{B(c)} \text{ of } Qty_{\mathit{CR}} \text{ will replace } L_{B(a)} \text{ of } Qty_{\mathit{CR}} \text{ and } L_{B(b)} \text{ of } Qty_{\mathit{CR}}$$

Where:

$$L_{B(c)} \, of \, Qty_{CR} = L_{B(a)} \, of \, Qty_{CR} + L_{B(b)} \, of \, Qty_{CR} - S_{L(n)}$$

• Case 3: n > Z and $n < (n_{last} - Z + 1)$

$$L_{B} of Qty_{CR} = \sum_{n-Z}^{n} L_{n} + E_{D(n-Z)} - E_{Dn} - Dim_{S:Left/Top(n-Z)} - L_{C(n-Z)} - Dim_{S:Right/Bott(n)}$$

 $\bullet \quad \text{Case 4: } n > \textit{Z} \text{ and } n \geq \left(n_{last} - \textit{Z} \, + \, 1 \right)$

$$L_{B(a)} \text{ of } Qty_{CR} = \sum_{n=Z}^{n} L_n + E_{D(n-Z)} - E_{Dn} - Dim_{S:Left/Top(n-Z)} - L_{Cn} - Dim_{S:Right/Bott(n)}$$

$$L_{B(b)} of \ Qty_{CR} = \sum_{n}^{n_{last}} L_n + H_{L\left(n_{last}\right)} + E_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Left/Top(n)} - L_{Cn} - CC_{S:R/B\left(n_{last}\right)} + C_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} + Dim_{S:Left/Top(n)} - Dim_{S:Left/Top(n)} + Dim_{S:Right/Bott\left(n_{last}\right)} + Dim_{S:Right/Bott(n_{last}\right)} + Dim_{S:Right/Bott($$

$$\text{And if } \left(L_{B(a)} \ of \ Qty_{CR} + L_{B(b)} \ of \ Qty_{CR} - S_{L(n)}\right) < Largest \ L_m, \ \text{Thus } L_{B(c)} \ of \ Qty_{CR} \ \text{will replace}$$

$$L_{B(a)} \ of \ Qty_{CR} \ \text{and} \ L_{B(b)} \ of \ Qty_{CR}$$

Where:

$$L_{B(c)} \, of \, Qty_{CR} = L_{B(a)} \, of \, Qty_{CR} + L_{B(b)} \, of \, Qty_{CR} - S_{L(n)}$$

- b) If the Splice Alternating is **Disable**:
 - Case 1: $n \le Z$ and $n < (n_{last} Z + 1)$

$$L_{B(a)} of \ Qty_{CR} = \sum_{1}^{n} L_n + H_{L(^{\circ})} + Dim_{S:Left/Top(1)} - CC_{S:L/T(n)} - Dim_{S:Right/Bott(n)} - E_{Dn}$$

$$L_{B(b)} \ of \ Qty_{CR} = \sum_{1}^{n} L_n H_{L(^{\circ})} + Dim_{S:Left/Top(1)} \\ - CC_{S:L/T(n)} - Dim_{S:Right/Bott(n)} \\ - E_{Dn} + D_{Min} + S_{Ln} + D_{Min} + D_{Min$$

• Case 2: $n \le Z$ and $n \ge \left(n_{last} - Z + 1\right)$

$$L_{B(a)} of \ Qty_{CR} = \sum_{1}^{n} L_n + H_{L(^{\circ})} + Dim_{S:Left/Top(1)} - CC_{S:L/T(1)} - Dim_{S:Right/Bott(n)} - E_{Dn}$$

$$L_{B(b)} \ of \ Qty_{CR} = \sum_{1}^{n} L_n H_{L(^{\circ})} + Dim_{S:Left/Top(1)} - CC_{S:L/T(1)} - Dim_{S:Right/Bott(n)} - E_{Dn} + D_{Min} + S_{Ln}$$

$$L_{B(c)} \ of \ Qty_{CR} = \sum_{n}^{n_{last}} L_n + H_{L\left(n_{last}\right)} + E_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Left/Top(n)} - L_{Cn} - CC_{S:R/B\left(n_{last}\right)} + C_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} + Dim_{S:Left/Top(n)} + C_{Dn} + CC_{S:R/B\left(n_{last}\right)} + C_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} + Dim_{S:Left/Top(n)} + C_{Dn} + CC_{S:R/B\left(n_{last}\right)} + C_{Dn} + C_{Dn}$$

$$L_{B(d)} \ of \ Qty_{CR} = \sum_{n}^{n_{last}} L_n + H_{L\left(n_{last}\right)} + E_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Left/Top(n)} - L_{Cn} - D_{Min} - S_{Ln} - CC_{S:R/B\left(n_{last}\right)} - Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Left/Top(n)} - Dim_{S:Left/Top(n)} - Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Right/Bott\left(n_{last}\right)}$$

 $\text{And if} \left(L_{B(a)} \ of \ Qty_{CR} + L_{B(c)} \ of \ Qty_{CR} - S_{L(n)} \right) < Largest \ L_m, \ \text{Thus} \ L_{B(e)} \ of \ Qty_{CR} \ \text{will replace}$ $L_{B(a)} \ of \ Qty_{CR} \ \text{and} \ L_{B(c)} \ of \ Qty_{CR}$

Where:

$$L_{B(e)}$$
 of $Qty_{CR} = L_{B(a)}$ of $Qty_{CR} + L_{B(c)}$ of $Qty_{CR} - S_{L(n)}$

 $\text{And if } \left(L_{B(b)} \text{ of } Qty_{CR} + L_{B(d)} \text{ of } Qty_{CR} - S_{L(n)}\right) < Largest \ L_m, \text{ Thus } L_{B(f)} \text{ of } Qty_{CR} \text{ will replace } \\ L_{B(b)} \text{ of } Qty_{CR} \text{ and } L_{B(d)} \text{ of } Qty_{CR}$

Where:

$$L_{B(e)} \ of \ Qty_{CR} = L_{B(a)} \ of \ Qty_{CR} + L_{B(c)} \ of \ Qty_{CR} - S_{L(n)}$$

 $\bullet \quad \text{Case 3: } n > Z \text{ and } n < \left(n_{last} - Z \, + \, 1 \right)$

$$L_{B(a)} of Qty_{CR} = \sum_{n-Z}^{n} L_n + E_{D(n-Z)} - E_{Dn} - Dim_{S:Left/Top(n)} - L_{C(n-Z)} - Dim_{S:Right/Bott(n_{last})}$$

$$L_{B(b)} \ of \ Qty_{CR} = \sum_{n=Z}^{n} L_n + S_{L(n-Z)} + E_{D(n-Z)} - E_{Dn} - Dim_{S:Left/Top(n)} - L_{C(n-Z)} - Dim_{S:Right/Bott(n_{last})} - S_{L(n)} + C_{L(n-Z)} - C_{L(n)} + C_{L(n-Z)} + C_{L(n)} + C_{L(n-Z)} + C_{L(n)} + C_{L(n-Z)} + C_{L(n)} + C_{L(n-Z)} + C_{L(n)} + C_{L(n)$$

• Case 4: n > Z and $n \ge (n_{last} - Z + 1)$

$$L_{B(a)} of \ Qty_{CR} = \sum_{n-Z}^{\infty} L_n + E_{D(n-Z)} - E_{Dn} - Dim_{S:Left/Top(n)} - L_{C(n-Z)} - Dim_{S:Right/Bott(n_{last})}$$

$$L_{B(b)} of \ Qty_{CR} = \sum_{n-Z}^{n} L_n + S_{L(n-Z)} + E_{D(n-Z)} - E_{Dn} - Dim_{S:Left/Top(n)} - L_{C(n-Z)} - Dim_{S:Right/Bott(n_{last})} - S_{L(n)} + C_{L(n-Z)} - Dim_{S:Right/Bott(n_{last})} - C_{L(n)} + C_{L(n-Z)} - Dim_{S:Right/Bott(n_{last})} - C_{L(n)} + C_{L(n-Z)} - Dim_{S:Right/Bott(n_{last})} - C_{L(n)} + C_{L(n-Z)} + C_{L(n-Z)} - C_{L(n)} + C_{L(n-Z)} + C_{L(n-Z)}$$

$$L_{B(c)} of \ Qty_{CR} = \sum_{n}^{n_{last}} L_n + H_{L\left(n_{last}\right)} + E_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Left/Top(n)} - L_{Cn} - CC_{S:R/B\left(n_{last}\right)}$$

$$L_{B(d)} \ of \ Qty_{CR} = \sum_{n}^{n_{last}} L_n + H_{L\left(n_{last}\right)} + E_{Dn} + Dim_{S:Right/Bott\left(n_{last}\right)} - Dim_{S:Left/Top(n)} \\ - L_{Cn} - D_{Min} - S_{Ln} - CC_{S:R/B\left(n_{last}\right)} + C_{Cn} - D_{Min} - D_{Cn} - D_{Cn}$$

$$\text{And if} \left(L_{B(a)} \ of \ Qty_{\mathit{CR}} + L_{B(c)} \ of \ Qty_{\mathit{CR}} - S_{L(n)} \right) < Largest \ L_{\mathit{m}}, \ \text{Thus} \ L_{B(e)} \ of \ Qty_{\mathit{CR}} \ \text{will replace}$$

$$L_{B(a)} \ of \ Qty_{\mathit{CR}} \ \text{and} \ L_{B(c)} \ of \ Qty_{\mathit{CR}}$$

Where:

$$L_{B(e)} \, of \, Qty_{CR} = L_{B(a)} \, of \, Qty_{CR} + L_{B(c)} \, of \, Qty_{CR} - S_{L(n)}$$

 $\begin{aligned} &\text{And if } \left(L_{B(b)} \ of \ Qty_{\mathit{CR}} + L_{B(d)} \ of \ Qty_{\mathit{CR}} - S_{L(n)} \right) < Largest \ L_{\mathit{m}}, \ \text{Thus } L_{B(f)} \ of \ Qty_{\mathit{CR}} \ \text{will replace} \\ &L_{B(b)} \ of \ Qty_{\mathit{CR}} \ \text{and} \ L_{B(d)} \ of \ Qty_{\mathit{CR}} \end{aligned}$

Where:

$$L_{B(e)} \, of \, Qty_{CR} = L_{B(a)} \, of \, Qty_{CR} + L_{B(c)} \, of \, Qty_{CR} - S_{L(n)}$$

Example:

The Splice Alternating is **Enable**, Z=2, and $n_{last}-Z+1=3-2+1=2$

• Ref (1):
$$n < Z \& n < \left(n_{last} - Z + 1\right)$$
, Thus Case 1

$$\begin{split} L_{B} \, of \, Qty_{CR(1)} &= \sum_{1}^{1} L_{n} + H_{L(90)} + Dim_{S:Left/Top(1)} - CC_{S:Left/Top(1)} - Dim_{S:Right/Bott(1)} - E_{D(1)} \\ L_{B} \, of \, Qty_{CR(1)} &= (3000) + 450 + 300 - 40 - 300 - 1575 \end{split}$$

$$L_{B} of Qty_{CR(1)} = 1835 mm \rightarrow 1.835 m$$

• Ref (2):
$$n = Z \& n = (n_{last} - Z + 1)$$
, Thus Case 2

$$L_{B(a)} of \ Qty_{CR(2)} = \sum_{1}^{2} L_n + H_{L(90)} + Dim_{S:Left/Top(1)} - CC_{S:Left/Top(1)} - Dim_{S:Right/Bott(2)} - E_{D(2)}$$

$$L_{B(a)} of \ Qty_{CR(2)} = (3000 + 7000) + 450 + 300 - 40 - 300 - 3575$$

$$L_{B(a)} of Qty_{CR(2)} = 6835 mm \rightarrow 6.835 m$$

$$L_{B(b)} of \ Qty_{CR(2)} = \sum_{2}^{3} L_n + H_{L(3)} + E_{D(2)} + Dim_{S:Right/Bott(3)} - Dim_{S:Left/Top(2)} - L_{C(2)} - CC_{S:R/B(3)}$$

$$L_{B(b)}$$
 of $Qty_{CR(2)} = (7000 + 7000) + 450 + 3575 + 225 - 300 - 6400 - 40$

$$L_{B(b)} \ of \ Qty_{CR(2)} = \ 11510 \ mm {\rightarrow} 11.51 \ m$$

$$: Check \left(L_{B(a)} \ of \ Qty_{CR} + L_{B(b)} \ of \ Qty_{CR} - \ 2S_{L(n)} \right) < Largest \ L_m$$

$$L_{B(a)}$$
 of $Qty_{CR(2)} + L_{B(b)}$ of $Qty_{CR(2)} - S_{L(2)} = 6.835 + 11.51 - (0.750) = 17.595 m$

 $Largest L_m = 12 m$

 $17.\,595\,m\,>\,12\,m,\,{\rm Thus}\;L_{B(c)}\,of\;Qty_{\mathit{CR}(2)}\,{\rm will}\;{\rm not\;replace}\;L_{B(a)}\,of\;Qty_{\mathit{CR}(2)}\;\&\;L_{B(b)}\,of\;Qty_{\mathit{CR}(2)}$

• Ref (3): $n > Z \& n > (n_{last} - Z + 1)$, Thus Case 4

$$L_{B(a)} of \ Qty_{CR(3)} = \sum_{3-2}^{3} L_n + E_{D(3-2)} - E_{D(3)} - Dim_{S:Left/Top(3-2)} - L_{C(3-2)} - Dim_{S:Right/Bott(3)}$$

$$L_{B(a)} of \ Qty_{CR(3)} = (3000 + 7000 + 7000) + 1575 - 3612.5 - 300 - 2400 - 225$$

$$L_{B(a)}$$
 of $Qty_{CR(3)} = 12037.5 \ mm \rightarrow 12.0375 \ m$

$$L_{B(b)} of \ Qty_{CR(3)} = \sum_{3}^{3} L_n + H_{L(3)} + E_{D(3)} + Dim_{S:Right/Bott(3)} - Dim_{S:Left/Top(3)} - L_{C(3)} - CC_{S:R/B(3)}$$

$$L_{B(b)}$$
 of $Qty_{CR(3)} = (7000) + 450 + 3612.5 + 225 - 300 - 6475 - 40$

$$L_{B(b)}$$
 of $Qty_{CR(3)} = 4472.5 \ mm \rightarrow 4.4725 \ m$

$$L_{B(a)}$$
 of $Qty_{CR(3)} + L_{B(b)}$ of $Qty_{CR(3)} - 2S_{L(3)} = 12.0375 + 4.4725 - (0.750) = 15.76 m$

 $Largest L_m = 12 m$

$$15.\,76\,m\,>\,12\,m,\,{\rm Thus}\;L_{B(c)}\,of\,\,Qty_{{\it CR}(3)}\,\,{\rm will}\,\,{\rm not}\,\,{\rm replace}\;L_{B(a)}\,of\,\,Qty_{{\it CR}(3)}\,\,\&\,\,L_{B(b)}\,of\,\,Qty_{{\it CR}(3)}$$

13. The program will compute the length of non-continuous reinforcement. (Must be converted into meter) If the $Qty_{NCR(n)} = 0$. Then,

$$L_B of Qty_{NCR(n)} = 0 mm \rightarrow 0 m$$

If the $Qty_{NCR(n)} > 0$

• Case 1: n = 1 and $n = n_{last}$

$$L_{B} of \ Qty_{NCR(n)} = L_{n} + Dim_{S:Right/Bott(n)} + Dim_{S:Left/Top(n)} - CC_{S:L/T(1)} - CC_{S:R/B(n_{left})} + 2H_{L(n)}$$

• Case 2: n = 1 and $n < n_{last}$

$$L_{B} \ of \ Qty_{NCR(n)} = L_{n} + Dim_{S:Right/Bott(n)} + Dim_{S:Left/Top(n)} - CC_{S:L/T(1)} + H_{L(n)}$$

• Case 3: n > 1 and $n = n_{last}$

$$L_{B} \ of \ Qty_{NCR(n)} = L_{n} + Dim_{S:Right/Bott(n)} + Dim_{S:Left/Top(n)} - CC_{S:R/B\left(n_{lost}\right)} + H_{L(n)}$$

• Case 4: n > 1 and $n < n_{last}$

$$L_{B} \ of \ Qty_{NCR(n)} = L_{n} + Dim_{S:Right/Bott(n)} + Dim_{S:Left/Top(n)}$$

Example:

Ref (1):
$$Qty_{NCR(n)} = 1$$
, $n = 1$ and $n < n_{last}$. Thus Case 2

$$L_{B} \ of \ Qty_{NCR(1)} = L_{n} + Dim_{S:Right/Bott(n)} + Dim_{S:Left/Top(n)} - CC_{S:L/T(1)} + H_{L(n)}$$

$$L_B \, of \, Qty_{NCR(1)} = 3000 + 300 + 300 - 40 + 450$$

$$L_{B} of Qty_{NCR(1)} = 4010 \ mm \rightarrow 4.01 \ m$$

Ref (2):
$$Qty_{NCR(2)} = 0$$
. Thus,

$$L_B of Qty_{NCR(2)} = 0 m$$

Ref (3):
$$Qty_{NCR(3)} = 0$$
. Thus,

$$L_B of Qty_{NCR(3)} = 0 m$$

14. The program will compute the length of extra reinforcement. (Must be converted into meter)

If the $Qty_{ER(n)} = 0$. Then,

$$L_{B} of Qty_{ER(n)} = 0 mm \rightarrow 0 m$$

If the $Qty_{ER(n)} > 0$. Then,

• Case 1: $n = 1 = n_{last}$

$$\begin{split} L_{B} \ of \ Qty_{ER-A(n)} &= \ xL_{C(n)} \ + \ 2Dim_{S:Left/Top(n)} \ + \ H_{L(1)} - CC_{S:L/T(1)} \\ L_{B} \ of \ Qty_{ER-B(n)} &= \ xL_{C(n)} \ + \ 2Dim_{S:Right/Bott(n)} \ + \ H_{L\left(n_{last}\right)} - \ CC_{S:R/B\left(n_{last}\right)} \end{split}$$

• Case 2: n = 1 and $n < n_{last}$

$$\begin{split} L_B \ of \ Qty_{ER-A(n)} &= \ xL_{C(n)} + \ 2Dim_{S:Left/Top(n)} \ + \ H_{L(n)} - \ CC_{S:L/T(1)} \\ L_B \ of \ Qty_{ER-B(n)} &= \ x\Big(L_{C(n)} + L_{C(n+1)}\Big) + \ 2Dim_{S:Right/Bott(n)} \end{split}$$

• Case 3: n > 1 and $n = n_{last}$

$$L_{B} of Qty_{ER-A(n)} = xL_{C(n)} + 2Dim_{S:Right/Bott(n)} + H_{L(n_{last})} - CC_{S:R/B(n_{last})}$$

• Case 4: n > 1 and $n < n_{last}$

$$L_B ext{ of } Qty_{ER-A(n)} = x(L_{C(n)} + L_{C(n+1)}) + 2Dim_{S:Right/Bott(n)}$$

Example:

$$x = 1/3$$

Ref (1): n = 1 and $n < n_{last}$, thus Case 2

$$L_{B} of Qty_{ER-A(1)} = xL_{C(1)} + 2Dim_{S:Left/Top(1)} + H_{L(1)} - CC_{S:L/T(1)}$$

$$L_R of Qty_{FR-4(1)} = \frac{1}{3}(2400) + 2(300) + 450 - 40$$

$$L_{B} of Qty_{ER-A(1)} = 1810 mm \rightarrow 1.81m$$

$$L_{B} of Qty_{ER-B(n)} = x(L_{C(1)} + L_{C(1+1)}) + 2Dim_{S:Right/Bott(1)}$$

$$L_B \text{ of } Qty_{ER-B(n)} = \frac{1}{3}(2400 + 6400) + 2(300)$$

$$L_{B} of Qty_{ER-B(n)} = 3533.33 mm \rightarrow 3.5333 m$$

Ref (2):
$$n > 1$$
 and $n < n_{last}$, thus Case 4

$$L_{B} of Qty_{ER-A(2)} = x(L_{C(2)} + L_{C(2+1)}) + 2Dim_{S:Right/Bott(2)}$$

$$L_B \text{ of } Qty_{ER-A(2)} = \frac{1}{3}(6400 + 6425) + 2(300)$$

$$L_{B} of Qty_{ER-A(2)} = 4875 mm \rightarrow 4.875 m$$

Ref (3):
$$n > 1$$
 and $n = n_{last}$, thus Case 3

$$L_{B} of Qty_{ER-A(3)} = xL_{C(n)} + 2Dim_{S:Right/Bott(n)} + H_{L(n_{last})} - CC_{S:R/B(n_{last})}$$

$$L_B \text{ of } Qty_{ER-A(3)} = \frac{1}{3}(6425) + 2(225) + 450 - 40$$

$$L_B \text{ of } Qty_{ER-A(3)} = 3001.67 \text{ } mm \rightarrow 3.00167 \text{ } m$$

15. After determining the quantities of main reinforcement and their respective required bar length, the program will determine their respective manufactured bars and no. of manufactured pcs

LEGEND:			

• For $Qty_{CR(n)}$

If $Qty_{CR(n)}$ or its $L_{_B}$ is equal to ZERO then,

$$Qty_{p_n} = 0 pcs$$

$$L_{CBn} = 0 m$$

If Difference = $L_B - L_M \le \pm 150 \text{ mm or } 0.15 \text{ m then,}$

$$Qty_{Mn} = q Qty_{CR(n)} Qty_{BR}$$

$$L_{CRn} = L_{M}$$

If $L_B > (Largest L_M + 0.15)$

$$Qty_{Mn} = q Qty_{CR(n)} Qty_{BR}$$

$$L_{CBn} = L_{B}$$

Else, compute

$$Qty_{pn} = \frac{L_{M}}{L_{B} of Qty_{CR(n)}}$$

$$Qty_{Mn} = q \frac{Qty_{CR(n)}}{Qty_{p_n}} Qty_{BR}$$

 $L_{_{W}} = \left[\textit{Qty}_{_{\textit{P}n}} - \textit{Qty}_{_{\textit{P}n}} \left(\textit{round down into whole number} \right) \right] \times L_{_{M}}$

$$L_{E}(m) = \left[Qty_{Mn}(round up) - Qty_{Mn}\right] \times L_{Mn}$$

And

 $Total\ Waste\ = L_{_E} + L_{_W} \Big[Qty_{_{Mn}} \ (round\ down\ into\ whole\ number) \Big]$

Then the program will choose the manufactured bar length with the lowest $Total\ Waste$, but the $Average\ L>0$

 $\bullet \quad \text{For } Qty_{NCR(n)} \text{ and } Qty_{ER(n)} \\$

If $Qty_{\mathit{CR}(n)}$ or its L_{B} is equal to ZERO then,

$$Qty_{p_n} = 0 pcs$$

$$L_{CRn} = 0 m$$

Else, compute

$$Qty_{pn} = \frac{L_{M}}{L_{R} of \ Qty_{CR(n)}}$$

$$Qty_{Mn} = \frac{Qty_{CR(n)}}{Qty_{Pn}}Qty_{BR}$$

 $L_{_{W}} = \left[\textit{Qty}_{_{\textit{P}n}} - \textit{Qty}_{_{\textit{P}n}} \left(\textit{round down into whole number} \right) \right] \times L_{_{M}}$

$$L_{E}(m) = \left[Qty_{Mn}(round up) - Qty_{Mn}\right] \times L_{Mn}$$

And

 $Total\ Waste\ = L_{_E} + L_{_W} \Big[Qty_{_{Mn}} \ (round\ down\ into\ whole\ number) \Big]$

Then the program will choose the manufactured bar length with the lowest $Total\ Waste$, but the $Average\ L>0$

Example:

Г	MANUFACTURE) LEN	NGTH	 				
	COLUMN FOOTING	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	WALL FOOTING	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	COLUMN	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	BEAM/GIRDER	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	WALL	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	SLAB ON GRADE	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	SUSPENDED SLAB	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	STAIRS	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	AVAILABLE NOT-AVAILABLE							

a) For Ref (1)

•
$$Qty_{CR(1)} = 2 \& L_B of Qty_{CR(1)} = 1.835 m$$

L [m]	Differenc e
6	4.165
7.5	5.665
9	7.165
12	10.165

Since NO $L_{_{M}}$ has a $Difference \leq 0.15~m.$ Thus,

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[,] [P]	Qty	[M]	L [W]	L [E]	Total Waste
6				3.27	3	2.66 7	3	0.49 5	2	2.990
7.5	2	1.835	4	4.09	4	2	2	0.16 0	0	0.320
9		1.033	4	4.90	4	2	2	1.66 0	0	3.320
12				6.54	6	1.33 3	2	0.99 0	8	8.990

$$Qty_{M(1a)} = 2 \& L_{M(1a)} = 7.5 m$$

•
$$Qty_{NCR(1)} = 1 \& L_B of Qty_{NCR(1)} = 4.01 m$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.50	1	4	4	1.99 0	0	7.960
7.5		4.04	4	1.87	1	4	4	3.49 0	0	13.960
9	1	4.01	4	2.24	2	2	2	0.98 0	0	1.960
12				2.99	2	2	2	3.98 0	0	7.960

$$Qty_{M(1b)} = 2 \& L_{M(1b)} = 9 m$$

•
$$Qty_{ER-A(1)} = 5 \& L_B \text{ of } Qty_{ER-A(1)} = 1.81 \text{ m}$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				3.31	3	6.66 7	7	0.57 0	2	5.420
7.5	5	1.81	4	4.14	4	5	5	0.26 0	0	1.300
9				4.97	4	5	5	1.76 0	0	8.800

12		6.63	6	3.33 3	4	1.14 0	8	11.420

$$Qty_{M(1c)} = 5 \& L_{M(1c)} = 7.5 m$$

•
$$Qty_{ER-B(1)} = 5 \& L_B of Qty_{ER-B(1)} = 3.533 m$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty [M]		L [W]	L [E]	Total Waste
6				1.70	1	20	20	2.46 7	0	49.334
7.5	5	3.5333	4	2.12	2	10	10	0.43 3	0	4.334
9	5	3.5555	4	2.55	2	10	10	1.93 3	0	19.334
12				3.40	3	6.66 7	7	1.40 0	4	12.401

$$Qty_{M(1d)} = 10 \& L_{M(1d)} = 7.5 m$$

b) For Ref (2)

•
$$Qty_{CR(2)} = 2 \& L_{B(a)} of Qty_{CR(2)} = 6.835 m$$

L [m]	Differenc
נווון	е
6	0.835
7.5	0.665
9	2.165
12	5.165

Since NO $L_{_{M}}$ has a $Difference \leq 0.15~m.$ Thus,

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				0.88	0	####	####	0.00	#DIV/0 !	#DIV/0!
7.5	2	6.835	4	1.10	1	8	8	0.66 5	0	5.320
9	2	0.033	4	1.32	1	8	8	2.16 5	0	17.320
12				1.76	1	8	8	5.16 5	0	41.320

$$Qty_{M(2a)} = 8 \& L_{M(2a)} = 7.5 m$$

$$\bullet \quad Qty_{CR(2)} = 2 \ \& \ L_{B(b)} \ of \ Qty_{NCR(2)} = 11.51 \ m$$

L [m]	Differenc e
6	5.510
7.5	4.010
9	2.510
12	0.490

Since NO $L_{\underline{M}}$ has a $Difference \leq 0.15~m.$ Thus,

L [M]	Qty [Total]	L [B]	Qty (B eam R ow	Qty	Qty [P]		Qty [M]		L [E]	Total Waste
6				0.52	0	####	####	0.000	#DIV/0!	#DIV/0!
7.5				0.65	0	####	####	0.000	#DIV/0!	#DIV/0!
9	2	11.51	4	0.78	0	####	####	0.000	#DIV/0!	#DIV/0!
10.5				0.91	0	####	####	0.000	#DIV/0!	#DIV/0!
12				1.04	1	8	8	0.490	0	3.920

$$Qty_{M(2b)} = 8 \& L_{M(2b)} = 12 m$$

$$\bullet \quad Qty_{NCR(2)} = 0 \& L_{B} of Qty_{NCR(2)} = 0 m$$

$$Qty_{_{M(2c)}}=\,0\,\&\,L_{_{M(2c)}}=\,0\,m$$

•
$$Qty_{ER-A(2)} = 4 \& L_B \text{ of } Qty_{ER-A(2)} = 4.875 \text{ m}$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	Qty [P]		Qty [M]		L [E]	Total Waste
6				1.23	1	16	16	1.12 5	0	18.000
7.5	4	4.875	4	1.54	1	16	16	2.62 5	0	42.000
9	4	4.675	7	1.85	1	16	16	4.12 5	0	66.000
12				2.46	2	8	8	2.25 0	0	18.000

$$Qty_{M(2d)} = 16 \& L_{M(2d)} = 6 m$$

c) For Ref (3)

•
$$Qty_{CR(3)} = 2 \& L_{B(a)} of Qty_{CR(3)} = 12.0375 m$$

L [m]	Differenc e
6	6.038
7.5	4.538
9	3.038
12	0.037

$$Qty_{M(3a)} = 8 \& L_{M(3a)} = 12 m$$

•
$$Qty_{CR(3)} = 2 \& L_{B(b)} of Qty_{NCR(3)} = 4.4725 m$$

L [m]	Differenc e
6	1.528
7.5	3.028
9	4.528
12	7.528

Since NO $L_{_M}$ has a $Difference \leq 0.15~m.$ Thus,

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		Qty [P]		[M]	L [W]	L [E]	Total Waste
6				1.34	1	8	8	1.52 8	0	12.220																										
7.5		4 4705		1.68	1	8	8	3.02 8	0	24.220																										
9	2	4.4725	4	2.01	2	4	4	0.05 5	0	0.220																										
12				2.68	2	4	4	3.05 5	0	12.220																										

$$Qty_{M(3b)} = 4 \& L_{CM(3b)} = 9 m$$

$$\bullet \quad Qty_{NCR(3)} = 0 \& L_B of Qty_{NCR(3)} = 0 m$$

$$Qty_{_{M(3c)}} = 0 \& L_{_{CM(3c)}} = 0 m$$

•
$$Qty_{ER-A(3)} = 4 \& L_B \text{ of } Qty_{ER-A(3)} = 3.00167 \text{ m}$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	Qty [P]		[P] Qty [M]		L [W]	L [E]	Total Waste
6				2.00	1	16	16	2.99 8	0	47.973	
7.5	4	3.0016	4	2.50	2	8	8	1.49 7	0	11.973	
9]	7	4	3.00	2	8	8	2.99 7	0	23.973	
12				4.00	3	5.33 3	6	2.99 5	8	22.975	

$$Qty_{M(3c)} = 8 \& L_{CM(3c)} = 7.5 m$$

16. The program will compute the weight of the production bars of that particular beam

$$If L_{CM} \leq Largest L_{M}$$

$$W_{n} = W_{Dn} \left(\sum L_{CMn} Qty_{Mn} \right)$$

$$\text{If } L_{\mathit{CM}} > Largest \, L_{\mathit{M}}$$

$$W_n = 1.005 W_{Dn} \left(\sum L_{CMn} Q t y_{Mn} \right)$$

Where:

 $W_{{\it Dn}} = {\it Weight based on the diameter of the main reinforcement in that particular beam}.$

Example:

WEIGHT —	
BAR SIZE (Diameter)	kg/m
6 mm	0.222
8 mm	0.395
10 mm	0.616
12 mm	0.888
16 mm	1.597
20 mm	2.466
25 mm	3.854
28 mm	4.833
32 mm	6.313
36 mm	7.991
40 mm	9.864
44 mm	11.926
50 mm	15.413
56 mm	19.318

Ref (1) Top Reinforcement diameter = 25 mm

$$\begin{split} W_1 &= W_{D(1)} \Biggl(\sum_{x=a}^d Qty_{M(1x)} L_{CM(1x)} \Biggr) \\ W_1 &= 3.854(2(7.5) + 2(9) + + 5(7.5) + 10(7.5)) \\ W_1 &= 560.757 \ kg \\ & \text{Ref (2)} \\ W_2 &= W_{D(2)} \Biggl(\sum_{x=a}^d Qty_{M(2x)} L_{CM(2x)} \Biggr) \\ W_2 &= 3.854(8(7.5) + 8(12) + 0(0) + 16(6)) \\ W_2 &= 971.208 \ kg \\ & \text{Ref (3)} \end{split}$$

$$\begin{split} W_3 &= W_{D(3)} \left(\sum_{x=a}^{d} Qty_{M(3x)} L_{CM(3x)} \right) \\ W_3 &= 3.854(8(12) + 4(9) + + 0(0) + 8(7.5)) \\ W_3 &= 739.968 \, kg \end{split}$$

17. The program will then compute the total weight of the main reinforcement.

$$W_T = \sum W_n$$

$$W_T = \sum_{1}^{3} W_n = 560.757 + 971.208 + 739.968 = 2271.933 kg$$