

Grundlagen der Bioinformatik

Exercises – Assignment 3

Oğuz Şerbetci

Competition

Competition	Assignment 1			Assignment 2			
		sequence (58M)	chr1 (240M)			pair_long (38K)	chr1 (240M)
Group 1	rust	0m0.226s	0m0.613s				
Group 2				срр	CORRECT	0m24.483s	-
Group 4	срр	0m0.105s	0m0.250s	срр	CORRECT	0m0.073s	0m30.925s
Group 11				rust	CORRECT	0m1.922s	-
Group 12	rust	0m0.516s	0m2.025s	rust	CORRECT	0m0.438s	0m19.041s
Group 14	java	0m2.764s	0m10.850s	С	CORRECT	0m5.281s	-
Group 16	python	2m6.656s	8m39.437s				

Overview

- Compute optimal global alignments between protein sequences using a BLOSUM scoring matrix
- Implement hierarchical clustering to compute phylogenetic trees
- Perform some BLAST searches

Task 1.1

- In moodle, you find two files
 - blosum62.txt (BLOSUM62 scoring matrix)
 - sequence_pair.fasta (two protein sequences)
- Write a program with two parameters
 - Path of a FASTA file with two protein sequences
 - Path of a file containing a scoring matrix (same format as blosum62 from above)
- Output the global alignment score between the two sequences using the scoring matrix
 - No need to output alignments
 - Scoring matrix must be loaded and must not be hardcoded
 - For the provided files, result should be 2216.
- Submission: program called "alignwithmatrix"

Task 1.2

- In moodle, you find another file: sequences.fasta
- Write a program that takes two parameters
 - Path of a FASTA file with many protein sequences
 - Path of a file containing a scoring matrix
- Program should output
 - The similarity matrix M of all pairs of sequences using global alignment with the given scoring matrix
 - Use metadata in FASTA file as row / column header
 - The guide tree as computed by hierarchical clustering of M
 - Number sequences in rising order (1, 2, 3 ...) as in file
 - If node i is merged with node j output (i, j) and name new node "i+j"
 - Output every merge in a new line, labels in alphabetical order (not (3,2))
 - Inner nodes closer to the root get longer sum terms, ala "i+j+k+l"
- Submission: program called "guidetree"

Example

Input

```
> HS
AGGTAGAC
> MM
AGGTGACT
> RN
```

TGGAGACT

Scoring matrix M (numbers are arbitrary)

HS	MM	RN
HS	32	27
MM		36
RN		

Example continued

Scoring matrix M (numbers are arbitrary)

	HS	MM	RN
HS		32	27
MM			36
RN			

Guide Tree (HS=1, MM=2, RN=3)

Example

Competition

- Compute the guide tree as fast as possible
 - Use whatever tricks you find
 - Implementation may be different from solution to Task 1.2
 - Output: Only the guide tree (no scoring matrix etc.)
 - Submission (voluntarily): program called"guidetree_competition" with two parameters
- We will measure wall clock time (unix time) for a few new file of protein sequences

Things you may consider for speeding-up alignment

- Recall: Complexity is O(k²*n²+k²*log(k))
- Compute global alignments efficiently (O(k²*n²)
- Compute guide tree in O(k²*log(k))
 - Efficient management of matrix you need to delete rows / columns and to add rows / columns
 - Finding the currently largest value in the matrix in O(log(k))
- We will measure with many rather short sequences

Task 2.1: Run BLAST

- OMIM is a database of hereditary diseases in humans
- Search the disease PHENYLKETONURIA
 - Give a 10 line description of the disease: diagnosis, symptoms, therapy, prognosis
- Extract the sequence of the disease-causing protein from UniProt (use links on page)
 - Give the sequence in FASTA format
- Run BLAST (at ncbi) in default settings to find best matching other proteins
 - Extract and give most similar sequences in chimpanzee, gorilla, tufted capuchin (Kapuziner Affe), arabian camel, alpaca, horse, Canada lynx (Luchs), and domestic cat
 - Copy into FASTA file in this order; put human sequence first

Task 2.2. Compute Guide Tree

- Compute the guide tree using your program from task 1.2
 - Output the tree in pre-defined format
- Provide all outputs in one PDF
 - The 10-line description of the disease
 - The FASTA sequences of all species in correct order
 - The guide tree

General requirements

- Remember to name all programs as requested
- All programs must run without further installations on GRUENAU2
 - ssh username@gruenau2.informatik.hu-berlin.de
- For all programs, source code must be submitted as well
 - Document your code
 - For Java/C etc.: Submit the source code and the compiled binary
- All responses must be submitted as PDF, where the task /assignment of every answer is clearly recognizable
- Zip everything into one file per task and upload via Moodle
 - AssignmentX_groupY_taskZ.zip
- Deadline for submissions: Tuesday 24.06.2025, 23:59

Questions?