

TIME SERIES ANALYSIS ELECTRIC POWER CONSUMPTION PREDICTION

Table of Contents

ABSTRACT:	2
INTRODUCTION	3
MAIN OBJECTIVE:	3
DATA ACQUISITION AND WRANGLING	3
DATA SOURCE	3
DATA DESCRIPTION	3
DATA CLEANING & Preparation	4
Resampling data to 1 hour time frame and taking mean of the feature for that 1 hour	4
making a dataset for power consumption and resampling them to 1 hour based on sum	5
Making a sequence for the model to learn and make predictions	6
Scaling and transformation the dataset sequence	7
Making train test datasets	7
Deep Learning Models for predictions	8
Making model for LSTM	8
Model of RNN	8
Applying LSTM model	9
Applying RNN model	10
RESULTS:	11
DISCUSSION:	11
CONCLUSION	11
SUGGESTIONS	11

ABSTRACT:

Electricity is now a necessity of life, knowing how much power will be consumed in future is beneficial for a city. This project will consider previous observations of power and other features to predict power consumption in future. We will use RNN and LSTM deep learning time series to make predictions.

INTRODUCTION

The demand of electrical power keeps on increasing in a city and predicting future power required can help the city plan ahead to meet the power requirements. RNN-LSTM will be used to make predictions

MAIN OBJECTIVE:

The main objective of this project is to predict the power consumption of a city using RNN-LSTM of the time series data.

DATA ACQUISITION AND WRANGLING

DATA SOURCE

For this project we will use online data the from UCL machine learning repository

CSV files are from url:

https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city

The Dataset consists of 8 columns and 52416 rows.

DATA DESCRIPTION

The description of columns is:

- Date Time: Each ten minutes.
- Temperature: Weather Temperature of Tetouan city.
- Humidity: Weather Humidity of Tetouan city.
- Wind Speed of Tetouan city.
- general diffuse flows
- diffuse flows
- power consumption of zone 1 of Tetouan city.
- power consumption of zone 2 of Tetouan city.
- power consumption of zone 3 of Tetouan city.

DATA CLEANING & Preparation

Resampling data to 1 hour time frame and taking mean of the feature for that 1 hour

```
hourly = df.resample('H').mean()
   4 v hourly=hourly.drop(columns=['Zone 1 Power Consumption',
              'Zone 2 Power Consumption', 'Zone 3 Power Consumption'])
      print(hourly.shape)
      hourly.head()
(8736, 5)
                                   Humidity
                                             Wind Speed general diffuse flows diffuse flows
                     Temperature
         DateTime
 2017-01-01 00:00:00
                        6.196833 75.066667
                                                 0.081833
                                                                                     0.098833
                                                                      0.063500
 2017-01-01 01:00:00
                        5.548833
                                  77.583333
                                                 0.082000
                                                                      0.056833
                                                                                     0.112500
 2017-01-01 02:00:00
                        5.054333 78.933333
                                                 0.082333
                                                                      0.063000
                                                                                     0.129167
 2017-01-01 03:00:00
                        5.004333 77.083333
                                                 0.082833
                                                                      0.059833
                                                                                    0.141000
                                                                                     0.122833
 2017-01-01 04:00:00
                        5.097667 74.050000
                                                 0.082333
                                                                      0.058000
```

making a dataset for power consumption and resampling them to 1 hour based on sum

```
1 hourly_pc=df[['Zone 1 Power Consumption',
              'Zone 2 Power Consumption', 'Zone 3 Power Consumption']].resample('H').sum()
   4 print(hourly pc.shape)
   5 hourly pc.head()
(8736, 3)
                    Zone 1 Power Consumption Zone 2 Power Consumption Zone 3 Power Consumption
         DateTime
2017-01-01 00:00:00
                                 175187.84810
                                                            108160.48632
                                                                                        115512.28916
2017-01-01 01:00:00
                                 147943.29114
                                                             96470.51672
                                                                                        102257.34940
2017-01-01 02:00:00
                                 132498.22784
                                                             85984.19453
                                                                                         94056.86747
2017-01-01 03:00:00
                                 124866.83544
                                                                                         89303.13253
                                                              79316.71732
2017-01-01 04:00:00
                                 122855.69620
                                                              77529.48328
                                                                                         85902.65060
```

Combining the two 1 hour sampled datasets

Trend

In this dataste we will use the data of all 5 features ['Temperature', 'Humidity', 'Wind Speed', 'general diffuse flows', 'diffuse flows'] for last 6 hours (t-6) and predict the power consumption current at (t=0)

Making a sequence for the model to learn and make predictions

```
def making_sequence(data,input_timesteps,output_at_time=1,predicting_coulmm_names='Zone 1 Power Consumption'):

data_list=[]
    df_s=data

# for input sequence (t-3,t-2,t-1)

for i in range(input_timesteps, 0, -1):
    # for i in range(last_hours):
    print(i)
    data_list.append(df_s.shift(i))

# for output sequence (t,t+1)
# for predicting single output
for i in range(output_at_time):
    print(i)
    data_list.append(df_s[predicting_coulmn_names].shift(-i))

df_s=pd.concat(data_list,axis=1)

print(df_s.shape)
# df_s.head()
# df_s-df_s.dropna()
print(df_s.shape)
# df_s.head()
print(df_s.shape)
# df_s.head()
print(df_s.shape)
# df_s.head()
# df_s.head()
# df_s.head()
# df_s.head()
```

Scaling and transformation the dataset sequence

Making train test datasets

```
def train test(data,n features,n hours,train percent,output at time):
         train_percent =train_percent/100
         split_percent= round(train_percent * len(data))
         train = data[:split_percent, :]
         print('train',train.shape)
         test = data[split_percent:, :]
         print(test.shape)
         n obs = n hours * n features
         trainX, trainy = train[:, :n_obs], train[:, -output_at_time]
         testX, testy = test[:, :n_obs], test[:, -output_at_time]
         print(trainX.shape, len(trainX), trainy.shape)
         trainX = trainX.reshape((trainX.shape[0], n_hours, n_features))
         testX = testX.reshape((testX.shape[0], n hours, n features))
         print(trainX.shape, trainy.shape, testX.shape, testy.shape)
         return(trainX, trainy, testX, testy)
✓ 0.1s
```

Deep Learning Models for predictions

Making model for LSTM

```
def model_LSTM(batch_size,epoch, optimizer='adam',train_X=train_X, train_y=train_y, test_X=test_X, test_y=test_y):

# design network
model = Sequential()
model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer=optimizer)

model.summary()
# fit network
history = model.fit(train_X, train_y, epochs=epoch, batch_size=batch_size, validation_data=(test_X, test_y), verbose=2, shuffle=False)
# plot history
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')

plt.legend()
plt.show()
return(history,model)
```

Model of RNN

```
def model_RNM(batch_size,epoch, optimizer='adam',train_X=train_X, train_y=train_y, test_X=test_X, test_y=test_y):

# design network
model = Sequential()
model.add(SimpleRNM(50, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer=optimizer)

model.summary()
# fit network
history = model.fit(train_X, train_y, epochs=epoch, batch_size=batch_size, validation_data=(test_X, test_y), verbose=2, shuffle=False)
# plot history
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')

plt.legend()
plt.show()
return(history,model)
```

Applying LSTM model

The trend of model loss of training and test are

Applying RNN model

The trend of model loss of training and test are

```
Epoch 6/25
194/194 - 1s - loss: 0.0025 - val_loss: 0.0022 - 1s/epoch - 7ms/step
Epoch 24/25
194/194 - 1s - loss: 0.0021 - val_loss: 0.0017 - 1s/epoch - 6ms/step
Epoch 25/25
.
194/194 - 1s - loss: 0.0020 - val_loss: 0.0017 - 1s/epoch - 6ms/step
                                                                    train
 0.010
                                                                    test
 0.008
 0.006
 0.004
 0.002
                       5
                                               15
          ò
                                   10
                                                            20
                                                                        25
```

RESULTS:

This shows that LSTM result is better than RNN

There prediction on test data can be plotted as shown in figure

LSTM prediction curve is close and better to actual.

DISCUSSION:

In this project we used RNN, LSTM for time series prediction of power consumption, the results are satisfactory

CONCLUSION

Using the LSTM RNN we were able to predict future power consumption, both models performed good but LSTM performed better compared to RNN

SUGGESTIONS

In future we can also use bidirectional LSTM to make predictions.