## **EE2000 Logic Circuit Design**

Chapter 4 – Combinational Functional Blocks

## Outline

- 4.1 Equality Comparator
- 4.2 Arithmetic functional blocks
  - Half adder, Full adder, Ripple carry adder
  - Half subtractor, Full substractor, Ripple carry substractor
  - Carry-look-ahead adder
- 4.3 Logical functional blocks
  - Decoder
  - Encoder
  - Multiplexer
  - Demultiplexer

## 4.1 Equality Comparator

- A circuit to compare two binary numbers to determine whether they are equal or not
- The inputs consist of two variables: A and B
- The output of the circuit is a variable E
- E is equal to 1 if A and B are equal
- E is equal to 0 if A and B are unequal

#### Formulation:

| Inp   | Output      |   |
|-------|-------------|---|
| $A_0$ | $A_0$ $B_0$ |   |
| 0     | 0           | 1 |
| 0     | 1           | 0 |
| 1     | 0           | 0 |
| 1     | 1           | 1 |

#### Optimization:

$$\blacksquare E(A_0, B_0) = \sum m(0, 3)$$

$$\blacksquare = A_0'B_0' + A_0B_0$$

$$\blacksquare = A_0 \otimes B_0$$

#### ■ Final logic diagram:





or

|                       | Inp   | uts            |                       | Output |
|-----------------------|-------|----------------|-----------------------|--------|
| <b>A</b> <sub>1</sub> | $A_0$ | B <sub>1</sub> | <b>B</b> <sub>0</sub> | E      |
| 0                     | 0     | 0              | 0                     | 1      |
| 0                     | 0     | 0              | 1                     | 0      |
| 0                     | 0     | 1              | 0                     | 0      |
| 0                     | 0     | 1              | 1                     | 0      |
| 0                     | 1     | 0              | 0                     | 0      |
| 0                     | 1     | 0              | 1                     | 1      |
| 0                     | 1     | 1              | 0                     | 0      |
| 0                     | 1     | 1              | 1                     | 0      |
| 1                     | 0     | 0              | 0                     | 0      |
| 1                     | 0     | 0              | 1                     | 0      |
| 1                     | 0     | 1              | 0                     | 1      |
| 1                     | 0     | 1              | 1                     | 0      |
| 1                     | 1     | 0              | 0                     | 0      |
| 1                     | 1     | 0              | 1                     | 0      |
| 1                     | 1     | 1              | 0                     | 0      |
| 1                     | 1     | 1              | 1                     | 1      |

#### Optimization:

- $\blacksquare E(A_1, A_0, B_1, B_0)$
- $\blacksquare$  =  $\Sigma m(0, 5, 10, 15)$
- $\blacksquare = A_1'A_0'B_1'B_0' +$
- $\blacksquare A_1'A_0B_1'B_0 + A_1A_0'B_1B_0'$
- $\blacksquare + A_1 A_0 B_1 B_0$

#### ■ Formulation:

- ■How many inputs?
- ■How many outputs?
- ■How many rows?

#### Problem:

Not easy to design
Difficult in simplification
K-map? QM?

#### Solution:

Modular design
Functional circuit blocks

|                       | Inputs |                       |       |                       |       |                       |                |   |  |
|-----------------------|--------|-----------------------|-------|-----------------------|-------|-----------------------|----------------|---|--|
| <b>A</b> <sub>3</sub> | $A_2$  | <b>A</b> <sub>1</sub> | $A_0$ | <b>B</b> <sub>3</sub> | $B_2$ | <b>B</b> <sub>1</sub> | B <sub>0</sub> | E |  |
| 0                     | 0      | 0                     | 0     | 0                     | 0     | 0                     | 0              | 1 |  |
| 0                     | 0      | 0                     | 0     | 0                     | 0     | 0                     | 1              | 0 |  |
| 0                     | 0      | 0                     | 0     | 0                     | 0     | 1                     | 0              | 0 |  |
| 0                     | 0      | 0                     | 0     | 0                     | 0     | 1                     | 1              | 0 |  |
| 0                     | 0      | 0                     | 0     | 0                     | 1     | 0                     | 0              | 0 |  |
| 0                     | 0      | 0                     | 0     | 0                     | 1     | 0                     | 1              | 0 |  |
| 0                     | 0      | 0                     | 0     | 0                     | 1     | 1                     | 0              | 0 |  |
| 0                     | 0      | 0                     | 0     | 0                     | 1     | 1                     | 1              | 0 |  |
| 0                     | 0      | 0                     | 0     | 1                     | 0     | 0                     | 0              | 0 |  |
| 0                     | 0      | 0                     | 0     | 1                     | 0     | 0                     | 1              | 0 |  |
| 0                     | 0      | 0                     | 0     | 1                     | 0     | 1                     | 0              | 0 |  |
| 0                     | 0      | 0                     | 0     | 1                     | 0     | 1                     | 1              | 0 |  |
| 0                     | 0      | 0                     | 0     | 1                     | 1     | 0                     | 0              | 0 |  |
|                       | \_     |                       | - 7   |                       | ٠ – ٦ |                       | 1              |   |  |
|                       | - 7_   |                       | - 1_  | . – –                 | - 7_  | . – –                 | - 7            | 1 |  |
| 1                     | 1      | 1                     | 1     | 1                     | 1     | 1                     | 1              | 1 |  |

- Modular design
  - Decompose the problem into four 1-bit comparison circuits
  - Compare bit by bit, then combine all results
- Logic diagram



- 1-bit Comparator Block
  - The output is 1 if the inputs are the same
  - The output is 0 if the inputs are different
  - i.e. 1-bit equality comparator  $N_i = A_i \otimes B_i$



- Equality Block
  - The output *E* is 1 if all *N*<sub>i</sub> values are 1
  - The output *E* is 0 if not all *N<sub>i</sub>* values are 1

$$\blacksquare E = N_3 \cdot N_2 \cdot N_1 \cdot N_0$$



Final logic diagram





#### Functional Blocks:







## Summary of 4.1

- Instead of designing a complex n-bit equality comparator circuit
- Design only a 1-bit comparator block and a simple equality block
- Re-use the 1-bit comparator block for n times
- Reusable small circuits are called combinational functional blocks

## 4.2 Arithmetic functional blocks

- Special class of functional blocks that perform arithmetic operations
- Operate on binary numbers (input) and produce binary numbers (output)
- Each bit position has the same sub-function
- Design a functional block for the sub-function and use repeatedly for each bit position
- Example arithmetic functional blocks
  - Adders, subtractors

## 1-bit Adder

#### Formulation:

| Inp | uts | Outputs |   |  |
|-----|-----|---------|---|--|
| X   | Υ   | С       | S |  |
| 0   | 0   | 0       | 0 |  |
| 0   | 1   | 0       | 1 |  |
| 1   | 0   | 0       | 1 |  |
| 1   | 1   | 1       | 0 |  |

#### Optimization:

$$\square$$
  $C(X, Y) = m_3$ 

$$\blacksquare = X \cdot Y$$

$$\blacksquare = X \oplus Y \text{ (i.e. } X'Y + XY')$$

#### Final logic diagram:



As known as half adder (HA)

## Full Adder

#### Formulation:

|   | Inputs | Outputs |   |   |
|---|--------|---------|---|---|
| X | Υ      | Z       | С | s |
| 0 | 0      | 0       | 0 | 0 |
| 0 | 0      | 1       | 0 | 1 |
| 0 | 1      | 0       | 0 | 1 |
| 0 | 1      | 1       | 1 | 0 |
| 1 | 0      | 0       | 0 | 1 |
| 1 | 0      | 1       | 1 | 0 |
| 1 | 1      | 0       | 1 | 0 |
| 1 | 1      | 1       | 1 | 1 |

#### Optimization:

Use K-map



## Full Adder

Final Logic Diagram:





- Do you notice anything?
  - Actually build up by two half adders

## Half Adder and Full Adder

Logic circuit diagram



Logic circuit diagram



Symbol



Symbol











#### HA vs. FA vs. RCA



HA: performs simple two single-bit addition



FA: performs simple three single-bit addition



RCA: performs real two *n*-bit addition

## **Subtractors**

Minuend (X) 1
Subtrahend (Y) -) 0
Difference (D) 1

HS: performs simple two single-bit subtraction



FS: performs simple three single-bit subtraction



RCS: performs real two *n*-bit subtraction

## Half Subtractor

#### Formulation:

| Inp | uts | Outputs |   |  |
|-----|-----|---------|---|--|
| X   | X Y |         | D |  |
| 0   | 0   | 0       | 0 |  |
| 0   | 1   | 1       | 1 |  |
| 1   | 0   | 0       | 1 |  |
| 1   | 1   | 0       | 0 |  |

#### Optimization:

$$\blacksquare B(X, Y) = m_1$$

$$\blacksquare = X' \cdot Y$$

$$\square D(X, Y) = \sum m(1, 2)$$

#### Final logic diagram:



The outputs are D (difference bit) and B

(borrow out bit)

## **Full Subtractor**

#### Formulation:

|   | Inputs | Out | puts |   |
|---|--------|-----|------|---|
| X | Υ      | Z   | В    | D |
| 0 | 0      | 0   | 0    | 0 |
| 0 | 0      | 1   | 1    | 1 |
| 0 | 1      | 0   | 1    | 1 |
| 0 | 1      | 1   | 1    | 0 |
| 1 | 0      | 0   | 0    | 1 |
| 1 | 0      | 1   | 0    | 0 |
| 1 | 1      | 0   | 0    | 0 |
| 1 | 1      | 1   | 1    | 1 |

- Optimization:
  - Use K-map





#### **Full Subtractor**

Final Logic Diagram:

$$\blacksquare D = X \oplus Y \oplus Z, B = X'Y + Z(X \oplus Y)'$$



Like FA, FS is built up by two HSs

# Ripple Carry Subtractor

- In addition to ripple carry adder, there is ripple carry subtractor
- Connect n FSs in cascade



May we reuse FA to implement it? Yes.

# Ripple Carry Subtractor (Another version)

- $\blacksquare X Y = X + (-Y)$
- Invert input Y and set carry input to 1 (why?)



Can we combine adder and subtractor?

## *n*-bit RC Adder/Subtractor

M is the mode selection cable (0 means addition, 1 means subtraction)



- For addition (M = 0),  $C_0 = 0$ ,  $Y_i = Y_i \oplus 0 = Y_i$
- For subtraction (M = 1),  $C_0 = 1$ ,  $Y_i = Y_i \oplus 1 = Y_i'$

# Delay Problem of RCA

- The carry output of each full-adder stage is connected to the carry input of the next higher stage
- A time delay thus occurs because the sum and the carry output of each stage cannot be produced until the input carry appears
- Assuming that the delay for generating the carry output is m nsec
- For a N-bit adder, the total delay will be up to Nm nsec
- Serious delay problem if N is a large number
- Solution: Calculate the carry bits beforehand, then construct carry-look-ahead adder

## Calculate Carry Bits Beforehand

- Define
  - $\blacksquare$   $G_i$  as **generate bit**:  $X_iY_i$
  - $\blacksquare P_i$  as **propagate bit**:  $X_i + Y_i$  or  $X_i \oplus Y_i$
- This produce a recursive definition

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1$$

$$= G_1 + P_1(G_0 + P_0C_0)$$

$$= G_1 + P_1G_0 + P_1P_0C_0$$
 (distributivity)

$$C_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

## General Form of the Carry Bits

- - $C_{i+1}$  is now independent of  $C_i$ !
  - Only dependents of  $G_i$ ,  $P_i$  and  $C_0$
  - ■i.e. depends on  $X_i$  and  $Y_i$  only
- The carry bits can now be computed independently
  - ■Based on  $G_i$ ,  $P_i$  and  $C_0$

# 4-bit Carry-look-ahead Adder

Carry-look-ahead Generator FA Z

# Summary of 4.2



## 4.3 Logical functional blocks (Decoder)

#### Decoder

- A decoder is a combinational circuit with ninput and m-output ( $0 < n \le m \le 2n$ , but usually  $m = 2^n$ )
- A very important functional blocks as it can be incorporated into many of the other functions





## 1-to-2-Line decoder

#### Specification:

■ Input: 1-bit  $(A_0)$ 

Outputs: 2-bit  $(D_0, D_1)$ 



| Input | Outputs     |   |  |  |
|-------|-------------|---|--|--|
| Α     | $D_0$ $D_1$ |   |  |  |
| 0     | 1           | 0 |  |  |
| 1     | 0           | 1 |  |  |

#### Optimization:

$$\square D_0 = m_0 = A'$$

$$\square D_1 = m_1 = A$$





## 2-to-4-Line Decoder

## Specification:

■Inputs: 2-bit  $(A_1, A_0)$ 

Outputs: 4-bit  $(D_0, D_1, D_2, D_3)$ 



#### ■ Formulation:

| Inp                   | uts   |       | Outputs               |       |       |  |
|-----------------------|-------|-------|-----------------------|-------|-------|--|
| <b>A</b> <sub>1</sub> | $A_0$ | $D_0$ | <b>D</b> <sub>1</sub> | $D_2$ | $D_3$ |  |
| 0                     | 0     | 1     | 0                     | 0     | 0     |  |
| 0                     | 1     | 0     | 1                     | 0     | 0     |  |
| 1                     | 0     | 0     | 0                     | 1     | 0     |  |
| 1                     | 1     | 0     | 0                     | 0     | 1     |  |

#### ■ Final logic diagram:



## 3-to-8-Line Decoder

| I     | Inputs                |       |       | Outputs               |       |       |       |       |       |                       |
|-------|-----------------------|-------|-------|-----------------------|-------|-------|-------|-------|-------|-----------------------|
| $A_2$ | <b>A</b> <sub>1</sub> | $A_0$ | $D_0$ | <b>D</b> <sub>1</sub> | $D_2$ | $D_3$ | $D_4$ | $D_5$ | $D_6$ | <b>D</b> <sub>7</sub> |
| 0     | 0                     | 0     | 1     | 0                     | 0     | 0     | 0     | 0     | 0     | 0                     |
| 0     | 0                     | 1     | 0     | 1                     | 0     | 0     | 0     | 0     | 0     | 0                     |
| 0     | 1                     | 0     | 0     | 0                     | 1     | 0     | 0     | 0     | 0     | 0                     |
| 0     | 1                     | 1     | 0     | 0                     | 0     | 1     | 0     | 0     | 0     | 0                     |
| 1     | 0                     | 0     | 0     | 0                     | 0     | 0     | 1     | 0     | 0     | 0                     |
| 1     | 0                     | 1     | 0     | 0                     | 0     | 0     | 0     | 1     | 0     | 0                     |
| 1     | 1                     | 0     | 0     | 0                     | 0     | 0     | 0     | 0     | 1     | 0                     |
| 1     | 1                     | 1     | 0     | 0                     | 0     | 0     | 0     | 0     | 0     | 1                     |



- Build the simplest block:
  - (i) 1-to-2-line decoder
  - (ii) 2-to-4-line decoder
  - (iii) 3-to-8-line decoder
  - (iv) n-to- $2^n$ -line decoder

# Decoder with Enabling

### Specification:

A 2-to-4-line decoder with enable input

|    | Inputs                |       | Outputs |                       |       |       |  |  |  |
|----|-----------------------|-------|---------|-----------------------|-------|-------|--|--|--|
| EN | <b>A</b> <sub>1</sub> | $A_0$ | $D_0$   | <b>D</b> <sub>1</sub> | $D_2$ | $D_3$ |  |  |  |
| 0  | X                     | X     | 0       | 0                     | 0     | 0     |  |  |  |
| 1  | 0                     | 0     | 1       | 0                     | 0     | 0     |  |  |  |
| 1  | 0                     | 1     | 0       | 1                     | 0     | 0     |  |  |  |
| 1  | 1                     | 0     | 0       | 0                     | 1     | 0     |  |  |  |
| 1  | 1                     | 1     | 0       | 0                     | 0     | 1     |  |  |  |

- If EN to 0 (disabled), all outputs are 0
- If EN to 1 (enabled), the outputs are same as normal decoder (i.e. only the corresponding  $D_i = 1$ , and all others are 0)
- Note: the Xs in the above truth table are don't care inputs

# Decoder with Enabling



The corresponding symbol of 2-to-4-line decoder with enabling



## 4.3 Logical functional blocks (Encoder)

- An encoder is a functional block that performs the inverse operation of a decoder
- *m* inputs and *n* outputs
- $0 < n \le m \le 2n$ , but usually  $m = 2^n$

#### **Example of Octal-to-Binary Encoder**

 $\blacksquare m = 8, n = 3$ 

■i.e. inputs: 8, outputs: 3

■ Formulation:



|                       |                | Outputs               |                |                       |                |                       |                |                |                       |                |
|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|-----------------------|----------------|
| <b>D</b> <sub>7</sub> | D <sub>6</sub> | <b>D</b> <sub>5</sub> | D <sub>4</sub> | <b>D</b> <sub>3</sub> | D <sub>2</sub> | <b>D</b> <sub>1</sub> | D <sub>0</sub> | A <sub>2</sub> | <b>A</b> <sub>1</sub> | A <sub>0</sub> |
| 0                     | 0              | 0                     | 0              | 0                     | 0              | 0                     | 1              | 0              | 0                     | 0              |
| 0                     | 0              | 0                     | 0              | 0                     | 0              | 1                     | 0              | 0              | 0                     | 1              |
| 0                     | 0              | 0                     | 0              | 0                     | 1              | 0                     | 0              | 0              | 1                     | 0              |
| 0                     | 0              | 0                     | 0              | 1                     | 0              | 0                     | 0              | 0              | 1                     | 1              |
| 0                     | 0              | 0                     | 1              | 0                     | 0              | 0                     | 0              | 1              | 0                     | 0              |
| 0                     | 0              | 1                     | 0              | 0                     | 0              | 0                     | 0              | 1              | 0                     | 1              |
| 0                     | 1              | 0                     | 0              | 0                     | 0              | 0                     | 0              | 1              | 1                     | 0              |
| 1                     | 0              | 0                     | 0              | 0                     | 0              | 0                     | 0              | 1              | 1                     | 1              |
|                       |                | X                     | Х              | X                     |                |                       |                |                |                       |                |

# Octal-to-binary Encoder

### Optimization:

- $\blacksquare A_0(D_0, D_1, D_2, D_3, D_4, D_5, D_6, D_7) = D_1 + D_3 + D_5 + D_7$
- $\blacksquare A_1(D_0, D_1, D_2, D_3, D_4, D_5, D_6, D_7) = D_2 + D_3 + D_6 + D_7$
- $\blacksquare A_2(D_0, D_1, D_2, D_3, D_4, D_5, D_6, D_7) = D_4 + D_5 + D_6 + D_7$
- Final logic diagram:



## Decimal-to-BCD encoder

|   | Inputs |   |   |   |   |   |   |   |   |       | Out   | puts  |       |
|---|--------|---|---|---|---|---|---|---|---|-------|-------|-------|-------|
| 0 | 1      | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $A_3$ | $A_2$ | $A_1$ | $A_0$ |
| 1 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0     | 0     | 0     | 0     |
| 0 | 1      | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0     | 0     | 0     | 1     |
| 0 | 0      | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0     | 0     | 1     | 0     |
| 0 | 0      | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0     | 0     | 1     | 1     |
| 0 | 0      | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0     | 1     | 0     | 0     |
| 0 | 0      | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0     | 1     | 0     | 1     |
| 0 | 0      | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0     | 1     | 1     | 0     |
| 0 | 0      | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0     | 1     | 1     | 1     |
| 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1     | 0     | 0     | 0     |
| 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1     | 0     | 0     | 1     |





## Limitation of Encoders

- Only one input can be active (i.e. 1)
- If two or more inputs active simultaneously, the output produces an incorrect combination

#### Solution:

- To resolve this ambiguity, introduce an input priority
- Each input pin has different priority
- If two or more inputs are 1 at the same time, only consider input that has higher priority
- This kind of encoder is called priority encoder

## **Priority Encoders**

### Specification:

- ■Design a 4-input priority encoder
- Inputs with higher subscript numbers has higher priority

### Formulation:

|       | Inp            | uts                   | Outputs |                       |       |   |
|-------|----------------|-----------------------|---------|-----------------------|-------|---|
| $D_3$ | D <sub>2</sub> | <b>D</b> <sub>1</sub> | $D_0$   | <b>A</b> <sub>1</sub> | $A_0$ | V |
| 0     | 0              | 0                     | 0       | Х                     | Х     | 0 |
| 0     | 0              | 0                     | 1       | 0                     | 0     | 1 |
| 0     | 0              | 1                     | Х       | 0                     | 1     | 1 |
| 0     | 1              | Х                     | Χ       | 1                     | 0     | 1 |
| 1     | Х              | Х                     | Х       | 1                     | 1     | 1 |

Introduce one more output *V* 

*V* stands for <u>v</u>alid output

If all inputs are 0 (i.e. invalid input), *V* is 0. Otherwise *V* is 1

If  $D_3$  and  $D_2$  are both 1, ignore  $D_2$  (as if  $D_2$  is 0)

# 4-Input Priority Encoder



# 5.3 Logical functional blocks (Multiplexer -- MUX)

- Combinational circuit performs selection
- To appear I<sub>S</sub> on a single output (Y) from many inputs (I<sub>i</sub>)
- A set of selection input variables  $(S)_{10} = (S_{n-1}...S_1S0)_2$



## 2-to-1-line MUX

### Specification:

$$\blacksquare m = 2$$

$$\blacksquare n = \log_2 m = 1$$

#### Formulation:

| I                     | nput                  | Output |                       |
|-----------------------|-----------------------|--------|-----------------------|
| <b>I</b> <sub>0</sub> | <i>I</i> <sub>1</sub> | Υ      |                       |
| X                     | X                     | 0      | <i>I</i> <sub>0</sub> |
| X                     | X                     | 1      | <i>I</i> <sub>1</sub> |

### Optimization:

$$\blacksquare Y(I_0, I_1, S_0) = S_0'I_0 + S_0I_1$$

### Final logic diagram



## 4-to-1-line MUX

- Specification:
  - $\blacksquare m = 4$
  - $\blacksquare n = \log_2 m = 2$
- Formulation:

|                       | Inputs                |                       |                       |                |                |                       |  |  |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|--|--|
| <b>I</b> <sub>0</sub> | <i>I</i> <sub>1</sub> | <b>I</b> <sub>2</sub> | <b>I</b> <sub>3</sub> | S <sub>1</sub> | S <sub>0</sub> | Υ                     |  |  |
| X                     | X                     | X                     | Χ                     | 0              | 0              | <i>I</i> <sub>0</sub> |  |  |
| Х                     | Х                     | Х                     | Х                     | 0              | 1              | <i>I</i> <sub>1</sub> |  |  |
| Х                     | Х                     | Χ                     | X                     | 1              | 0              | $I_2$                 |  |  |
| Х                     | Х                     | Х                     | Х                     | 1              | 1              | <i>I</i> <sub>3</sub> |  |  |

### Optimization:

$$Y(I_0, I_1, I_2, I_3, S_1, S_0) = S_1'S_0'/0 + S_1'S_0/1 + S_1S_0'/2 + S_1S_0/3$$



# 4-to-1-line MUX (Example)

- Realize the function  $f(w, x, y, z) = \Sigma m(1, 2, 5, 7, 9, 11, 13)$  using 4-to-1-line MUX
- Step 1) Plot the K-map
  - No need to group the 1s!
  - Note the convention of var.
- Step 2) Since n = 2,
  - ■Pick w, x as selection var.
    - $\blacksquare w$  as  $S_1$ , x as  $S_0$
  - ■Remaining vars. are *y*, *z*



# 4-to-1-line MUX (Example)





Exercise: instead of using 4-to-1-line MUX, can you implement this using 8-to-1-line MUX or 2-to-1-line MUX?

# Demultiplexer (DMUX)

Remember the decoder with enabling?



The decoder can perform demultiplexing if we take EN as the input line,  $A_i$  (input lines of decoder) as the selection inputs

# Demultiplexer (DMUX)

A demultiplexer (DMUX) basically reverses the multiplexing function. A DMUX is a circuit that receives information on a single line and transmits this information on one of  $2^n$  possible output lines. The selection of a specific output line is controlled by the bit pattern of n select lines. For this reason, the demultiplexer is also known as a data distributor.



Decoder can function as demultiplexer if the E line is taken as a data input line and input lines taken as the selection lines.