API de Detección de Personas

Documentación Técnica

Arquitectura basada en AWS API Gateway + AWS Lambda + YOLOv8

Versión 1.0

24 de mayo de 2025

${\bf \acute{I}ndice}$

1.	Intr	oducci	ón																			3
2.			Detección																			3
	2.1. YOLOv8 (You Only Look Once v8)											9										
			uración del Mo																			
9	Von	ionos	y Dependenc	oio a																		3
ა.			dencias Princij																			٠
			uencias i inici _l 10 de Ejecución																			و <u>ح</u>
	ა.∠.	EHIOH	io de Ejecucioi	1		•		•	•	•		•	•	•	•	•	•	•	 •	•	•	4
4.		1													4							
	4.1. Diagrama de Arquitectura											4										
	4.2.	Compo	onentes																			4
		4.2.1.	Amazon API	Gateway	(REST	` A]	ΡΙ)) .														4
		4.2.2.	Configuración	de Rate	Limitin	ıg																4
		4.2.3.	AWS Lambda	a															 •			ţ
5.	Uso	de la .	API																			ţ
·	5.1.		int																			ļ
	5.2.	_	cicación																			ļ
	_		tura del Reque																			Į
	0.0.	5.3.1.	Método HTT																			Į
			Estructura de																			Ę
	5 /		tura del Respo																			(
	J. T .	5.4.1.	Respuesta Ex																			(
		5.4.2.	Respuesta de	`	,																	(
		5.4.3.	Errores de Ra																			(
					O																	
6.			de Uso																			7
			lo con cURL																			,
	6.2.	Ejemp	lo con Python			•		•	•			•			•	•		•	 •	•		,
7.	Pru	ebas co	on Postman																			8
	7.1.	Config	uración de Hea	aders y R	espuest	a																8
			uración del Bo																			8
8	Consideraciones de Rendimiento										ç											
0.			ciones																			(
			izaciones																			(
_	a																					_
9.	Seguridad 9.1. Medidas Implementadas												9									
																						(
	9.2.	Recom	endaciones .			•		•	٠			•	٠			•		•	 •	٠	•	Ć
10	.Moı	nitoreo	y Logs																			10
	10.1.	Cloud	Watch Metrics																			10
	10.2.	Logs D	Disponibles .																			10

ΔΡΙ	Detección	de i	Personas
$A \Gamma I$	Tereccion	i de	reisonas

2

11.Conclusiones 10

1. Introducción

Esta documentación describe la implementación y uso de una API REST para la detección de personas en imágenes utilizando el modelo YOLOv8. La solución está desplegada en AWS utilizando una arquitectura serverless que combina API Gateway y AWS Lambda.

2. Modelo de Detección

2.1. YOLOv8 (You Only Look Once v8)

El modelo utilizado es YOLOv8, la última versión de la familia YOLO desarrollada por Ultralytics. Este modelo ofrece:

- Detección en tiempo real: Optimizado para inferencia rápida
- Alta precisión: Mejoras significativas sobre versiones anteriores
- Flexibilidad: Soporta múltiples tareas de visión artificial
- Eficiencia: Menor uso de recursos computacionales

2.2. Configuración del Modelo

Especificaciones Técnicas

- Modelo: YOLOv8n (nano)
- Clases detectadas: Persona (class_id = 0)
- Umbral de confianza: 0.5 (configurable)
- Formato de entrada: Imágenes en base64
- Resolución: Adaptable (reescalado automático)

3. Versiones y Dependencias

3.1. Dependencias Principales

```
1 ultralytics==8.0.196
2 Pillow==10.0.1
3 numpy==1.24.3
4 torch==2.0.1
5 torchvision==0.15.2
6 opencv-python-headless==4.8.1.78
```

Listing 1: Dependencias del proyecto

3.2. Entorno de Ejecución

■ **Runtime**: Python 3.9

■ Plataforma: AWS Lambda

■ **Memoria**: 2048 MB

■ **Timeout**: 30 segundos

■ Arquitectura: x86_64

4. Arquitectura en AWS

4.1. Diagrama de Arquitectura

 $Cliente \rightarrow API Gateway \rightarrow AWS Lambda \rightarrow YOLOv8 Model$

Figura 1: Arquitectura Serverless en AWS

4.2. Componentes

4.2.1. Amazon API Gateway (REST API)

■ Endpoint: https://npdvcvx4o8.execute-api.us-east-1.amazonaws.com/prodfaces

■ Método: POST

Autenticación: API Key

■ CORS: Habilitado

• Usage Plan: temp-predict-usage-plan (ID: v904mp)

4.2.2. Configuración de Rate Limiting

Usage Plan - temp-predict-usage-plan

■ Request Rate: 10 requests por segundo

■ Burst Limit: 10 requests

• Quota: 1,000 requests por mes

■ ID del Plan: v904mp

4.2.3. AWS Lambda

■ Función: Procesamiento de imágenes con YOLOv8

• Trigger: API Gateway

■ Empaquetado: Container Image o Layer personalizado

• Escalado: Automático según demanda

5. Uso de la API

5.1. Endpoint

URL Base

https://npdvcvx4o8.execute-api.us-east-1.amazonaws.com/prodfaces

5.2. Autenticación

La API requiere autenticación mediante API Key:

```
Content-Type: application/json x-api-key: CAx2D1DM4121CsaoCVvVjcL88Tm7Tj62LXtjQm39
```

Listing 2: Headers requeridos

5.3. Estructura del Request

5.3.1. Método HTTP

POST /prodfaces

5.3.2. Estructura del Body

```
1 {
2    "body": {
3        "image": "<IMAGEN_EN_BASE64>"
4        }
5 }
```

Listing 3: Estructura del cuerpo de la petición

Nota Importante

La imagen debe estar codificada en base64. El formato puede ser JPG, PNG, o cualquier formato soportado por Pillow.

5.4. Estructura del Response

5.4.1. Respuesta Exitosa (200)

```
"statusCode": 200,
2
    "headers": {
3
      "Content-Type": "application/json",
      "Access-Control-Allow-Origin": "*"
5
    },
6
    "body": {
7
      "detections": [
        {
9
           "class": "person",
10
           "confidence": 0.85,
11
           "bbox": [x1, y1, x2, y2]
12
        }
13
      ],
14
      "total_persons": 1,
      "image_size": [width, height],
      "processing_time": 1.23
17
18
19 }
```

Listing 4: Respuesta exitosa

5.4.2. Respuesta de Error (400/500)

```
"statusCode": 400,
"headers": {
    "Content-Type": "application/json",
    "Access-Control-Allow-Origin": "*"
},
"body": {
    "error": "Descripci n del error"
}
```

Listing 5: Respuesta de error

5.4.3. Errores de Rate Limiting

```
1 {
    "statusCode": 429,
    "headers": {
3
      "Content-Type": "application/json",
      "Access-Control-Allow-Origin": "*",
5
      "X-RateLimit-Limit": "10",
6
      "X-RateLimit-Remaining": "0",
      "Retry-After": "1"
    },
9
    "body": {
10
      "error": "Too Many Requests"
11
    }
12
13 }
```

Listing 6: Error por exceso de requests (429)

Listing 7: Error por cuota agotada (403)

6. Ejemplos de Uso

6.1. Ejemplo con cURL

```
curl -X POST \
  https://npdvcvx4o8.execute-api.us-east-1.amazonaws.com/prodfaces \
  -H 'Content-Type: application/json' \
  -H 'x-api-key: CAx2D1DM4121CsaoCVvVjcL88Tm7Tj62LXtjQm39' \
  -d '{
    "body": {
        "image": "/9j/4AAQSkZJRgABAQAAAQABAAD..."
     }
}'
```

Listing 8: Ejemplo de petición con cURL

6.2. Ejemplo con Python

```
1 import requests
2 import base64
4 # Leer y codificar imagen
5 with open('imagen.jpg', 'rb') as f:
      image_base64 = base64.b64encode(f.read()).decode('utf-8')
8 # Configurar petici n
9 url = 'https://npdvcvx408.execute-api.us-east-1.amazonaws.com/prodfaces'
10 headers = {
      'Content-Type': 'application/json',
      'x-api-key': 'CAx2D1DM4121CsaoCVvVjcL88Tm7Tj62LXtjQm39'
12
13 }
14 payload = {
    "body": {
          "image": image_base64
16
17
18 }
_{20} # Enviar petici n
21 response = requests.post(url, json=payload, headers=headers)
22 result = response.json()
```

```
print(f"Personas detectadas: {result['body']['total_persons']}")
```

Listing 9: Ejemplo de uso con Python

7. Pruebas con Postman

A continuación se muestran las capturas de pantalla de las pruebas realizadas con Postman:

7.1. Configuración de Headers y Respuesta

Figura 2: Configuración de headers y respuesta obtenida

7.2. Configuración del Body y Respuesta

Figura 3: Configuración del body y respuesta detallada

8. Consideraciones de Rendimiento

8.1. Limitaciones

■ Tamaño máximo: 6 MB (límite de API Gateway)

■ Timeout: 30 segundos máximo

• Cold Start: Primera invocación puede tardar más tiempo

■ Memoria: 2048 MB asignados

■ Rate Limiting: 10 requests/segundo (según usage plan)

■ Cuota mensual: 1,000 requests por API Key

■ Burst limit: 10 requests simultáneos

8.2. Optimizaciones

Modelo YOLOv8n para balance precisión/velocidad

• Redimensionado automático de imágenes

Reutilización de modelo en memoria (warm start)

Respuestas comprimidas cuando es posible

9. Seguridad

9.1. Medidas Implementadas

API Key: Autenticación requerida

• HTTPS: Encriptación en tránsito

• Rate Limiting: Prevención de abuso

• Validación: Verificación de formato de entrada

9.2. Recomendaciones

- Rotar API Keys periódicamente
- Implementar logging detallado
- Monitorear uso y costos en AWS CloudWatch
- Configurar alertas de CloudWatch para cuotas y rate limits
- Implementar retry logic con exponential backoff en clientes
- Revisar usage plans según patrones de uso reales
- Configurar múltiples API Keys para diferentes servicios/usuarios
- Monitorear métricas de throttling y ajustar límites según necesidad

10. Monitoreo y Logs

10.1. CloudWatch Metrics

- Número de invocaciones
- Duración de ejecución
- Errores y timeouts
- Uso de memoria

10.2. Logs Disponibles

- Logs de API Gateway
- Logs de AWS Lambda
- Métricas de rendimiento
- Errores de procesamiento

11. Conclusiones

La API de detección de personas implementada ofrece una solución escalable y eficiente utilizando tecnologías serverless de AWS. La combinación de YOLOv8 con AWS Lambda proporciona:

- Escalabilidad automática
- Costos optimizados (pago por uso)
- Alta disponibilidad
- Fácil mantenimiento