Tutorial Bioinformatica

Marcel Ferreira - Bolsista/CAPES

2024-10-04

Table of contents

Sobre esse curso
Realização
Apoio
Autores
Colaboradores
Introdução
Primeiros passos
Configurações de sistema
Softwares necessários
Usuários Windows
No Ubuntu
Instalando via CONDA
Instalando o CONDA via Miniconda
Crie e ative o ambiente
Instalação via linha de comando
Dados utilizados
Dia 1 - Sequenciamento de DNA
Arquivos
Atividades da manhã
Atividades da tarde
Dia 2 - Alinhamento de sequências de DNA 1
Arquivos
Atividades da manhã
Atividades da tarde
Dia 3 - Genotipagem 1
Dia 3 - Genotipagem 1 Arquivos
Arquivos
Atividades da tarde
Dia 4 - Análise de sequenciamento Oxford Nanopore Atividades da manhã

Atividades da tarde	25
Dia 5 - Marcadores STRs	26
PRIMER PASO - DESCARGAS	26
HIPSTR	27
INSTALAÇÃO	27
CÓMO CRIAR OS ÍNDICES DAS AMOSTRAS?	28
COMANDOS	28
INTERPRETAÇÃO DO ARQUIVO DE SAÍDA	29
Referências	30
ANEXO: Dicas para uso do Ubuntu/WSL	31
Navegação e Diretórios	31
Listar Conteúdo do Diretório	31
Mudar de Diretório	31
Diretório Atual	31
Criar Diretório	31
Manipulação de Arquivos	31
Copiar Arquivo	31
Mover/Renomear Arquivo	32
Remover Arquivo	32
Visualização de Conteúdo	32
Visualizar Conteúdo do Arquivo	32
Visualizar Conteúdo do Arquivo (página por página)	32
Pacotes e Atualizações	32
Atualizar Lista de Pacotes	32
Atualizar Pacotes Instalados	32
Instalar Novo Pacote	33
Gerenciamento de Usuários	33
Adicionar Usuário ao Grupo	33
Mudar Senha do Usuário	33
Processos	33
Listar Processos	33
Matar um Processo por ID	33
Monitorar Recursos do Sistema (htop)	33
Medir Tempo de Execução de um Comando (time)	34
Rede	34
Verificar Configurações de Rede	34
Testar Conexão com um Endereço IP	34
Entrada e Saída Padrão (stdin/stdout)	34
Outros Comandos Úteis	34
Ajuda sobre um Comando	34

Sair	do	Terminal	 																											35	,
			 	•	 •	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-		

Sobre esse curso

Realização

Figure 1: Realização UnB, UNESP e USP.

Apoio

Figure 2: CAPES-PROCAD Edital n° 16/2020. Processos 88887.516236/2020-00 e 88881.516238/2020-01.

Autores

Celso Teixeira Mendes Junior Erick da Cruz Castelli Marcel Rodrigues Ferreira Tamara Soledad Frontanilla Recalde

Colaboradores

Introdução

Bem-vindos ao II Workshop de Bioinformática Aplicada à Genética Forense: Análise de Dados de Sequenciamento de Segunda e Terceira Geração. Este curso abrangente foi projetado para fornecer a vocês uma imersão prática nas técnicas de análise de dados genômicos, com foco especial na aplicação forense.

A genética forense tornou-se uma ferramenta essencial na resolução de casos criminais, identificação de indivíduos e estabelecimento de relações familiares. Neste workshop de cinco dias, exploraremos os fundamentos e as aplicações práticas do sequenciamento de DNA, abordando desde os conceitos básicos até as técnicas avançadas de genotipagem de STRs (Short Tandem Repeats) a partir de dados de Next-Generation Sequencing (NGS).

- Dia 1 Sequenciamento de DNA: Iniciaremos nossa jornada explorando os princípios fundamentais do sequenciamento de DNA de segunda geração. Compreenderemos as tecnologias por trás desses métodos e sua importância na geração de dados genômicos de alta qualidade. Também serão analisados dados brutos de sequenciamento e seu controle qualidade.
- Dia 2 Alinhamento de Sequências de DNA: No segundo dia, mergulharemos na etapa crucial de alinhamento de sequências de DNA. A precisão dessa fase é vital para extrair informações significativas dos dados brutos e identificar variações genéticas.
- **Dia 3 Identificação de Variantes:** Aprofundando-nos ainda mais, dedicaremos o terceiro dia à identificação de variantes genéticas. Exploraremos ferramentas e estratégias para detectar mutações, SNPs (*Single Nucleotide Polymorphisms*), InDels, e outras variantes que desempenham um papel crucial na individualidade genômica.
- Dia 4 Análise de Sequenciamento Oxford Nanopore: No quarto dia, abordaremos uma tecnologia revolucionária: o sequenciamento Oxford Nanopore. Compreenderemos suas vantagens, desafios e exploraremos casos de uso específicos na genética forense.
- Dia 5 Genotipagem de STRs a partir de dados de NGS: Encerraremos o workshop com uma exploração prática da genotipagem de STRs, uma ferramenta valiosa para estabelecer perfis genéticos únicos. Aprenderemos a interpretar e analisar esses dados, fornecendo *insights* fundamentais para investigações forenses.

Ao longo desta semana, vocês serão desafiados a aplicar os conhecimentos adquiridos em exercícios práticos e estudos de caso, preparando-os para enfrentar os desafios reais da genética forense na era da bioinformática. Esteja preparado para uma jornada intensiva de aprendizado e descoberta!

Primeiros passos

Configurações de sistema

Antes de iniciarmos o tutorial, é imperativo garantir que o sistema atenda às configurações mínimas para uma experiência estável. Utilizaremos sistema Linux. Recomenda-se que a máquina disponha de, no mínimo, 40 GB de armazenamento, 8 GB de memória RAM e um processador i5/i7 ou compatível. No entanto, para uma performance ideal e considerando o potencial de expansão das aplicações, encorajamos a utilização de um sistema com mais de 60 GB de armazenamento e, no mínimo, 16 GB de memória RAM. Essas configurações mais robustas assegurarão não apenas a instalação suave do software, mas também a capacidade de executar múltiplas aplicações de forma eficiente, proporcionando uma experiência mais fluida e responsiva ao usuário.

Softwares necessários

Usuários Windows

- WSL (Windows Subsystem for Linux)
- IGV (Robinson et al. 2011)
- FASTQC
- notepad++

Siga o tutorial da microsoft para instalar o WSL. https://learn.microsoft.com/pt-br/windows/wsl/install

Usuários windows

Usuários windows precisam instalar o Subsistema Windows para Linux (WSL). Os softwares FASTQC e IGV precisam ser instalados no windows e não no WSL. Anote a senha que você configurou. Ela será fundamental durante o uso do WSL!!!!

No Ubuntu

- IGV (Robinson et al. 2011)
- FASTQC
- Trimmomatic (Bolger, Lohse, and Usadel 2014)
- bwa (Li 2013)
- minimap2 (Li 2018, 2021)
- samtools (Danecek et al. 2021)
- freebayes (Garrison and Marth 2012)
- vcftools (Danecek et al. 2011)
- bcftools (Danecek et al. 2021)
- NanoPlot (De Coster and Rademakers 2023)
- chopper (De Coster and Rademakers 2023)
- HipSTR (Willems et al. 2017)
- gzip

Instalando via CONDA

Usar o CONDA para criar um ambiente garante que todos os participantes estejam utilizando exatamente os mesmos programas e versões, evitando problemas que podem surgir por diferenças entre os computadores. Assim, você terá todas as ferramentas necessárias instaladas de forma organizada e padronizada, facilitando o acompanhamento durante o workshop, mesmo se você não tiver muita experiência com a instalação de programas. Isso ajuda a garantir que todos possam focar no conteúdo sem se preocupar com configurações complicadas.

Instalando o CONDA via Miniconda

~/miniconda3/bin/conda init bash

Utilize os comandos a baixo

```
cd ~
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -0 ~/miniconda3/m
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
```

~/miniconda3/bin/conda init zsh

Reinicie o sistema. No WSL é só fechar a abrir novamente.

Baixe o arquivo de configuração do CONDA para o Workshop clicando aqui.

Crie e ative o ambiente

```
conda env create -f workshopbioinfo.yml
conda activate workshopbioinfo
```

Instalação via linha de comando

Ao terminar a instalação do WSL e de configurar seu usuário no linux utilize os seguintes comandos:

```
sudo apt-get update sudo apt-get upgrade
```

Estes comandos irão garantir que o seu sistema esteja atualizado.

Sobre o comando sudo

O comando sudo permite ao usuário executar comandos com permissão superior. Para isso você precisará da sua senha (ou do administrador)!

Para instalar softwares no linux (diretamente ou no WSL) utilize o comando apt instal1 da seguinte forma:

```
sudo apt install [SOFTWARE]
```

Dados utilizados

Baixe os dados que serão utilizados neste workshop via OneDrive;

Utilize o email correto

Para ter acesso aos dados utilize o email que foi fornecido durante a inscrição no evento. Em caso de erro, entre em contato com a organização.

Os dados totalizam ~20 GB. Atente-se para isso!!!

As amostras utilizadas neste curso foram sequenciadas pelo projeto 1000 genomas.

Regiões com reads

Os arquivos fastq fornecidos para este curso foram preparados contendo apenas as regiões que estão nos arquivos bed fornecidos na pasta Genome/.

Exemplo:

Abrindo o arquivo BED podemos notar que ele contém a informção da posição baseda no cromossomo (**coluna 1**) e seu inicio (**coluna 2**) e fim (**coluna 3**). De fato, estas são as únicas colunas obrigatórias de um BED. A coluna 4 neste arquivo contém anotação da região que iremos trabalhar.

Figure 3: Estrutura de um arquivo BED.

Quando abrimos o arquivo BED no IGV ele marca em azul as posições das coordenadas genomicas:

Figure 4: Abrindo o arquivo regions.bed no IGV

Para visualizar a região no IGV devemos utilizar a seguinte notação: {cromossomo}:{start}-{end}. Para o D1S1656 fica chr1:230769616-230769683.

Amostra	Sexo	População
HG00097	F	British
HG00142	M	British
HG00143	M	British
HG00145	M	British
HG00263	\mathbf{F}	British
HG00277	M	Finnish
HG00372	M	Finnish
HG00463	M	Han Chinese
HG01063	M	Puerto Rican

Os dados estão contidos nesta estrutura de pastas descritas a baixo:

${\bf Workshop Bioinfo 2024}/$

Genome/

R10/

fastq/

bam/

```
Exome_ShortReads/
fastq/
bam/
WGS_ShortReads/
fastq/
bam/
SimulatedReads/
```

Dia 1 - Sequenciamento de DNA

Importante

Verifique se o FASTQC esta instalado.

Arquivos

Serão utilizados os arquivos contidos na pastas:

- WorkshopBioinfo2024/WGS_ShortReads/fastq/
- WorkshopBioinfo2024/Exome_ShortReads/fastq/

Estão dados vieram do projeto 1000 genomas.

Atividades da manhã

O controle de qualidade (QC) dos dados é uma etapa crítica na análise de sequenciamento de nova geração (NGS) para garantir a confiabilidade dos resultados. Abaixo estão as etapas típicas do controle de qualidade:

1. Análise Inicial com FASTQC:

• Execute o FASTQC nas suas leituras brutas para avaliar a qualidade geral. Isso inclui gráficos e estatísticas que indicam a distribuição da qualidade das bases ao longo das reads, a presença de adaptadores, a presença de sequências overrepresented, entre outros.

2. Identificação de Adaptadores e Trimagem:

• Com base nos resultados do FASTQC, identifique a presença de adaptadores e sequências indesejadas nas extremidades das reads. Utilize o Trimmomatic para remover essas sequências, garantindo que apenas dados de alta qualidade sejam mantidos.

 Adapte o comando abaixo para a amostra que esta analisando, substituindo HG00097 pelo código dela:

```
trimmomatic PE -phred33 \
WGS_ShortReads/fastq/HG00097_r1.fastq WGS_ShortReads/fastq/HG00097_r2.fastq \
trimmed_r1.fastq trimmed_r1_unpaired.fastq trimmed_r2_trimmed_r2_unpaired.fast
ILLUMINACLIP:~/miniconda3/pkgs/trimmomatic-0.39-hdfd78af_2/share/trimmomatic-0.39-2,
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36
```

3. Remoção de Leituras de Baixa Qualidade:

• Algumas leituras podem conter regiões de baixa qualidade. Considere a remoção dessas leituras ou a trimagem de regiões específicas usando ferramentas adequadas, dependendo da natureza do problema. Utilize o comando a baixo para manter leituras com qualidade acima de 27 e tamanho mínimo de 100.

4. Filtragem de Leituras Curtas ou Longas:

 Dependendo do seu experimento, você pode querer filtrar leituras muito curtas ou muito longas que possam representar artefatos ou problemas experimentais.

5. Avaliação de Qualidade Pós-Trimagem:

 Após a trimagem e filtragem, execute novamente o FASTQC para avaliar como essas etapas afetaram a qualidade dos dados. Isso ajudará a garantir que você atingiu os padrões de qualidade desejados.

Atividades da tarde

- 1. Qual é a pontuação geral de qualidade em todas as bases de sua amostra?
- 2. Há alguma contaminação de adaptador nas leituras de sequenciamento?
- 3. As sequências têm algum conteúdo incomum de GC?
- 4. Qual é a distribuição de comprimento das leituras de sequenciamento?
- 5. Há alguma sequência super-representada presente nos dados?

Dia 2 - Alinhamento de sequências de DNA

Arquivos

Os arquivos utilizados para estas analises serão os .fastq analisados no primeiro dia.

Arquivos .fastq

Preste atenção para o caminho da pasta aonde estão os .fastq. Eles estão nas pastas ${\tt Exome_ShortReads/fastq} \ {\tt e} \ {\tt WGS_ShortReads/fastq}.$

Atividades da manhã

1. Indexação do Genoma de Referência:

- Para o alinhamento de sequências utilizaremos o programa bwa. Há outros, como bowtie2, minimap2, que podem ser utilizados caso seja conveniente. Os comandos abaixo preparam o genoma de referência para o bwa.
- Antes de realizar o alinhamento, é necessário indexar o genoma de referência usando o comando bwa index. Isso cria arquivos que aceleram o processo de alinhamento. bwa index hg38.fa

🛕 Indexação do genoma

O processo para criar o indice do genoma via bwa index demora bastante tempo para ser realizado. Mesmo em máquimas com grandes capacidades de memória. Devido a isso colocamos na pasta WorkshopDados/genome/ os arquivo resultantes desta etapa, que são os arquivos com extensão .amb, .ann, .bwt, .fai, .pac e .sa. O genoma de referência humano esta no arquivo hg38.fa. Esse é a última versão do genoma de referência e a mais utilizada no mundo.

2. Alinhamento de Sequências:

• Use o bwa mem para alinhar suas sequências de DNA ao genoma de referência.

```
\label{lem:bwa_mem_R_gamma} \begin{tabular}{ll} $$ mem_R "QRG\tID:{SAMPLE}\tSM:{SAMPLE}" hg38.fa {SAMPLE}_r1.fastq {SAMPLE}_r2.fastq {SA
```

Substitua {SAMPLE} pelos nomes dos arquivos correspondentes.

• Automatizando o processo (Opicional)

Caso tenha experiência em programação, você pode utilizar um loop, como for ou while, para rodar todas as amostras ao mesmo tempo. Você pode utilizar o própio bash (ubuntu) ou sua linguagem de programação favorita, como python, perl, R, etc.

Você poderá incluir as etapas seguintes no mesmo loop.

3. Converter Formato SAM para BAM e ordenar os reads:

• O arquivo de saída do **bwa mem** é no formato SAM. Converta-o para o formato BAM, mais compacto e eficiente.

samtools sort {SAMPLE}.sam > {SAMPLE}.bam

4. Indexar o Arquivo BAM:

• Ordene o arquivo BAM para facilitar a busca e indexe-o para melhorar o desempenho de ferramentas subsequentes.

samtools index {SAMPLE}.bam

5. Visualização do Alinhamento:

• Use o IGV (Integrative Genomics Viewer) para visualizar o alinhamento ({SAMPLE}.bam) e verificar sua qualidade.

Regiões com reads

Os arquivos fastq fornecidos para este curso foram preparados contendo apenas as regiões que estão nos arquivos bed fornecidos na pasta Genome/.

6. Use o IGV para observar várias amostras ao mesmo tempo

Atividades da tarde

- 1. Qual porcentagem de leituras foi alinhada com sucesso ao genoma de referência?
- 2. Existem regiões do genoma com cobertura ruim?

- 3. Qual é a profundidade média de cobertura das leituras alinhadas?
- 4. Há alguma região com uma alta porcentagem de mismatches ou
- 5. Quão uniformemente as leituras estão distribuídas no genoma de referência?

Dia 3 - Genotipagem

Arquivos

Serão utilizados os arquivos BAM que foram gerados no dia 2.

Atividades da manhã

1. Preparação do Ambiente:

 Certifique-se de que o freebayes está instalado no seu ambiente. Você pode instalar com:

```
sudo apt install freebayes
```

2. Indexação do Genoma de Referência (se ainda não estiver indexado):

- Assim como na etapa de alinhamento, o genoma de referência deve ser indexado. samtools faidx hg38.fa
- Caso utilize um genoma menor, atualize o nome.

3. Crie um arquivo com os nomes da amostras BAM:

• Entre na pasta onde estão os arquivos BAM gerados e utilize o comando 1s como abaixo

```
ls *.bam > bam_list.txt
```

4. Chamada de Variantes com freebayes:

 Execute o freebayes para chamar variantes a partir do arquivo BAM gerado após o alinhamento.

```
freebayes -f reference_genome.fa -L bam_list.txt -t bed_file.bed > variantes.vcf
```

Otimizando o uso do freebayes

Caso o computador que esteja utilizando aborte o processo por falta de memória, você pode optar por reduzir o número de amostras em bam_list.txt. È importante destacar que a analise correta de genotipagem via freebayes requer que todas as amostras sejam analisadas simultaneamente, mas para fim de aprendizado esta é uma estratégia.

5. Filtragem de Variantes (opcional):

• Dependendo dos seus critérios e do tipo de análise, pode ser necessário filtrar as variantes chamadas pelo freebayes para reduzir o número de falsos positivos. Abaixo estão alguns exemplos:

```
bcftools view --exclude 'QUAL<1' variantes.vcf > variantes filtradas.vcf
bcftools view --trim-alt-alleles variantes_filtradas.vcf > variantes_filtradas_trim
bcftools view --min-ac 1 variantes_filtradas_trim.vcf > variantes_filtradas_trim_min
bcftools norm -f hg38.fa variantes_filtradas_trim_minac.vcf > variantes_filtradas_t:
```

• Adapte os critérios de filtragem conforme necessário.

6. Análise e Interpretação de Variantes:

• Utilize ferramentas como VCFtools para realizar análises adicionais no arquivo VCF, como filtragem específica e anotações.

7. Visualização de Variantes:

- Use o IGV para visualizar as variantes em relação ao genoma de referência e avaliar sua qualidade.
- Você pode abrir ao mesmo tempo o VCF e o alinhamento (BAM) de uma mesma amostra. Caso deseje.

Atividades da tarde

- 1. Quantos SNPs e indels foram identificados em sua amostras?
- 2. Qual é a qualidade das variantes identificadas?
- 3. As variantes identificadas estão localizadas em regiões codificadoras ou não codificadoras do genomas?
- 4. Como é a relação heterozigosidade/homozigosidade em todas as amostras?

	21	

 $5.\,$ Há algum gene ou região genômica específica com uma densidade excepcionalmente alta

de variantes?

Dia 4 - Análise de sequenciamento Oxford Nanopore

Importante!

O software guppy só esta disponível para download via comunidade da Oxford Nanopore. Para este tutorial fornecemos um arquivo .tar para instalação em sua máquina. O arquivo esta na pasta WorkshopDados/guppy_installer/

Para instalar siga os seguintes passos:

Acesse a pasta que contem o arquivo .tar e descompacte;

```
tar -xf ont-guppy-cpu_6.5.7_linux64.tar.gz
```

Verifique o caminho completo para a pasta

pwd

Executando guppy via caminho completo (Exemplo pedindo ajuda)

```
./guppy_basecaller --help
```

Este tutorial foi inspirado no tutorial do Tim Kahlke¹ e em nossas experiências durante os trabalhos com ONT.

Atividades da manhã

- 1. Realize uma chamada de base utilizando guppy (Opicional):
 - Verifique os workflows disponíveis para esta versão de guppy;

```
./Downloads/ont-guppy-cpu/bin/guppy_basecaller --print_workflows
```

• Sabendo que este sequenciamento foi realizado utilizando o kit SQK-LSK108 e a flowcell MIN106, qual a configuração a ser utilizada?

¹ https://timkahlke.github.io/LongRead_tutorials/

• Realize a chamada de base para todos os arquivos fast5 contidos na pasta WorkshopDados/fast5/;

```
./Downloads/ont-guppy-cpu/bin/guppy_basecaller -i [PASTAFAST5] -s /
./guppy out -c [CONFIG].cfg --num callers 2 --cpu threads per caller 1
```

Aviso

O tempo de execução da chama de base (para este conjunto de dados) é superior a 12 horas em máquinas de uso pessoal, e pode acabar inutilizando seu uso. Caso deseje praticar, recomendamos que seja feito em um momento onde não precise da máquina para outras atividades. Para este tutorial utilize o resultado da chamada de base contido na pasta WorkshopDados/LongReadsFastq/

2. Avaliação da qualidade do arquivo resultado .fastq:

• Utilize o NanoPlot para gerar gráficos de qualidade da amostra;

Instalação do NanoPlot

A instalação do NanoPlot deve ser feita via pip ou conda.

pip install NanoPlot

NanoPlot --fastq [AMOSTRA].fastq -o [OUTDIR] --N50 --verbose

3. Filtre as leituras baseado no tamanho e qualidade:

• Utilize chopper para isso.

💡 Instalação do chopper

Para instalar o chopper pode ser necessário ter o conda em seu sistema. Para isso utilize os seguintes comandos:

```
mkdir -p ~/miniconda3

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -0 ~/mi
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3

rm -rf ~/miniconda3/miniconda.sh

~/miniconda3/bin/conda init bash

~/miniconda3/bin/conda init zsh

Será necessário reinciar seu sistema (Ubuntu ou WSL) após isso.

conda config --add channels conda-forge

conda config --set channel_priority strict

conda install -c bioconda chopper

chopper < [AMOSTRA].fastq -q [QUALIDADE] -1 [TAMANHO_MIN] > [AMOSTRA]_filtrada.faste
```

Por que usar < no comando chopper?

O comando < garante que o arquivo fastq da amostra seja direcionado para entrada (stdin) do comando no chopper. Em nossas experiências já tivemos a necessidade de utilizar algumas vezes e outras não.

4. Alinhamento das Sequências:

• Use o minimap2 para alinhar suas sequências de DNA ao genoma de referência.

```
minimap2 -ax map-ont [REFERENCE_GENOME].fa [AMOSTRA].fastq /
-R "@RG\tID:{SAMPLE}\tSM:{SAMPLE}" -t [THREADS] > [AMOSTRA].sam
```

Consumo de memória durante a etapa

O alinhamento via minimap2 tem pico de consumo de memória de ~ 13 GB. Caso seu computador disponha desta capacidade utilize o arquivo resultante na pasta $WorkshopDados/pre_run/Dia4/$

• Realize novamento utilizando bwa mem desta vez (Opicional);

🛕 Tempo de execução do bwa

Atenção, o bwa demora quase 10x mais que o minimap2

• bwa mem -x ont2d [REFERENCE_GENOME].fa [AMOSTRA].fastq / -R "@RG\tID:{SAMPLE}\tSM:{SAMPLE}" -t [THREADS] > [AMOSTRA].sam

Opcional

Realize uma montagem de novo utilizando o pipeline minimap2-miniasm. Este processo pode levar várias horas/dias. Tome cuidado!

5. Gerar o arquivo BAM indexado:

• Repita os passos 3 e 4 do dia 2 utilizando samtools;

6. Visualização do Alinhamento:

- Importe o BAM para o IGV e avalie sua qualidade;
- Compare as amostras com suas respectivas amostras de short reads;

7. Realize a Genotipagem das Amostras de long reads:

• Utilize o freebayes para realizar a genotipagem e modo similar ao passo 3 do dia 3;

🛕 Tempo de execução da genotipagem em Long Reads

O tempo de execução do freebayes para arquivos de ONT pode ser bem demorado! Você pode optar por modificar o arquivo bed fornecido para trabalhar com menos regiões.

Para WorkshopDaosformulários utilize resultante vcf dos/pre_run/Dia4/

- Repita as métricas de filtragem utilizadas no passo 4 do dia 3;
- Repita os passos 5 e 6 do dia 3, comparando aos resultados de short reads.

Atividades da tarde

Dia 5 - Marcadores STRs

Para esse curso, utilizaremos um computador virtual, devido à incompatibilidades com a nova versão do compilador C++. Portanto, teremos que baixar o computador virtual com os arquivos necessários para o curso, e virtual box que permitirá executar o computador virtual.

PRIMER PASO - DESCARGAS

1. Baixar o computador virtual Ubuntu (baixar e descomprimir o arquivo zip).

 $\label{link-para-baixar-occupation} Link para baixar o computador virtual: \ https://drive.google.com/file/d/1Pnw3KGixyB6ur2h9zDA3zSAeHj8Ozview?usp=drive_link$

1. Baixar virtual box e o pacote de instalação.

Link para baixar virtual box que mostrará o computador virtual Linux: https://www.virtualbox.org/wiki/Downloads

Baixar DUAS coisas deste link virtual box:

- 1. VirtualBox Platform Packages
- 2. VirtualBox Extension Pack

Escolher o sistema operativo do computador (windows, mac ou linux) e baixar.

Logo de instalar, escolher o computador virtual Ubuntu que baixamos no primer link.

Senha do computador virtual instalado: bioinformatica

 $\label{linktutorial} Link \ tutorial \ de \ ajuda: \ https://drive.google.com/file/d/1bPgrcmzdD3b_ELsGPKUMBllZ7G0SJR18/view?usp=drive \ link$

HIPSTR

Haplotype inference and phasing for Short Tandem Repeats ou HipSTR é um programa que foi desenvolvido por Thomas Willems para capturar marcadores STRs a partir de dados de sequenciamento de nova geração.

Link do Github:

https://github.com/tfwillems/HipSTR

INSTALAÇÃO

Infelizmente a última versão do compilador C++ apresenta uma incompatibilidade com HipSTR. Portanto, iremos utilizar um computador virtual que já contem o programa instalado.

O computador virtual tem uma pasta chamada "curso" no desktop, onde se encontra:

- O genoma de referência (arquivo.fa)
- O índice do genoma de referência (arquivo.fai)

- Amostras em formato bam (HG00118.bam, etc)
- O arquivo bed com as regiões que serão analizadas.

Com isso, iremos correr o comando do HipSTR para genotipar essas amostras

CÓMO CRIAR OS ÍNDICES DAS AMOSTRAS?

• Utilizaremos samtools index

```
cd rota_da_pasta samtools index nome_da_amostra.bam
```

Fazer esse comando para todas as amostras.

 $\label{linktutorial} Link \ tutorial \ de \ ajuda: \ https://drive.google.com/file/d/17vv41Hf0ezyEHzAHne1e4iPbzCemDgXN/view?usp=drive_link$

COMANDOS

Arquivos necessários

■ IMPORTANTE

- Antes de correr o comando do HipSTR, verifiquem que todas as amostras que serão incluidas no comando, já tenham o seu índice (Arquivo fai, gerado com samtools index)
- Preparar o comando previamente em algum arquivo de texto, substituindo nome_da_amostra1 pelo nome real da amostra.
- Podem rodar varias amostras no mesmo comando, separando elas por virgulas SEM espaço, como no exemplo embaixo.

```
cd rota_da_pasta
--bams nome_da_amostra1.bam,nome_da_amostra2.bam --fasta GRCh38_full_analysis_set_plus_decoy
```

 $\label{link} Link\ de\ ajuda:\ https://drive.google.com/file/d/1Vzw8K7-Jh-ud7ul_0bNhKpJ4gw0zxqvo/view?usp=drive_link$

INTERPRETAÇÃO DO ARQUIVO DE SAÍDA

HipSTR gera como arquivo de saída um arquivo vcf.gz. Logo de descomprimir o arquivo teremos um vcf.

O vef podemos abrir com Excel e realizar a interpretação dos dados para genotipar as amostras.

Durante a aula aprenderemos a realizar essa interpretação.

Referências

- Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. "Trimmomatic: A Flexible Trimmer for Illumina Sequence Data." *Bioinformatics* 30 (15): 2114–20. https://doi.org/10.1093/bioinformatics/btu170.
- Danecek, Petr, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo, Robert E. Handsaker, et al. 2011. "The Variant Call Format and VCFtools." *Bioinformatics* 27 (15): 2156–58. https://doi.org/10.1093/bioinformatics/btr330.
- Danecek, Petr, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, et al. 2021. "Twelve Years of SAMtools and BCFtools." GigaScience 10 (2). https://doi.org/10.1093/gigascience/giab008.
- De Coster, Wouter, and Rosa Rademakers. 2023. "NanoPack2: Population-Scale Evaluation of Long-Read Sequencing Data." Edited by Can Alkan. *Bioinformatics* 39 (5). https://doi.org/10.1093/bioinformatics/btad311.
- Garrison, Erik, and Gabor Marth. 2012. "Haplotype-Based Variant Detection from Short-Read Sequencing." https://doi.org/10.48550/ARXIV.1207.3907.
- Li, Heng. 2013. "Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM." https://doi.org/10.48550/ARXIV.1303.3997.
- ——. 2018. "Minimap2: Pairwise Alignment for Nucleotide Sequences." Edited by Inanc Birol. *Bioinformatics* 34 (18): 3094–3100. https://doi.org/10.1093/bioinformatics/bty191.
- ——. 2021. "New Strategies to Improve Minimap2 Alignment Accuracy." Edited by Can Alkan. *Bioinformatics* 37 (23): 4572–74. https://doi.org/10.1093/bioinformatics/btab705.
- Robinson, James T, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S Lander, Gad Getz, and Jill P Mesirov. 2011. "Integrative Genomics Viewer." *Nature Biotechnology* 29 (1): 24–26. https://doi.org/10.1038/nbt.1754.
- Willems, Thomas, Dina Zielinski, Jie Yuan, Assaf Gordon, Melissa Gymrek, and Yaniv Erlich. 2017. "Genome-Wide Profiling of Heritable and de Novo STR Variations." *Nature Methods* 14 (6): 590–92. https://doi.org/10.1038/nmeth.4267.

ANEXO: Dicas para uso do Ubuntu/WSL

Navegação e Diretórios

Listar Conteúdo do Diretório

ls

Mudar de Diretório

cd nome_do_diretorio

Diretório Atual

pwd

Criar Diretório

mkdir nome_do_novo_diretorio

Manipulação de Arquivos

Copiar Arquivo

cp arquivo_origem destino

Mover/Renomear Arquivo

mv arquivo_origem novo_nome_ou_destino

Remover Arquivo

rm nome_do_arquivo

Visualização de Conteúdo

Visualizar Conteúdo do Arquivo

cat nome_do_arquivo

Visualizar Conteúdo do Arquivo (página por página)

less nome_do_arquivo

Pacotes e Atualizações

Atualizar Lista de Pacotes

sudo apt update

Atualizar Pacotes Instalados

sudo apt upgrade

Instalar Novo Pacote

sudo apt install nome_do_pacote

Gerenciamento de Usuários

Adicionar Usuário ao Grupo

 $\verb|sudo| usermod -aG| nome_do_grupo nome_do_usuario|$

Mudar Senha do Usuário

passwd nome_do_usuario

Processos

Listar Processos

ps aux

Matar um Processo por ID

kill -9 processo_id

Monitorar Recursos do Sistema (htop)

htop

Medir Tempo de Execução de um Comando (time)

time comando_a_ser_medido

Rede

Verificar Configurações de Rede

ifconfig

Testar Conexão com um Endereço IP

ping endereco_ip

Entrada e Saída Padrão (stdin/stdout)

• stdin (Standard Input): É a entrada padrão de dados. Um programa pode ler dados a partir do stdin. Exemplo:

```
cat < nome_do_arquivo</pre>
```

• stdout (Standard Output): É a saída padrão de dados. Um programa geralmente imprime resultados no stdout. Exemplo:

```
ls > lista_de_arquivos.txt
```

• stderr (Standard Error): É a saída padrão para mensagens de erro. Exemplo:

```
comando_inexistente 2> erro.log
```

Outros Comandos Úteis

Ajuda sobre um Comando

man nome_do_comando

Sair do Terminal

exit