University of Toronto Faculty of Arts and Sciences Sample Final Exam, April-May 2014 MAT 337 H1 Intro Real Analysis

Instructor: Regina Rotman

Duration - 3 hours

No aids allowed

Total marks for this paper is 400

Please write your name in the space provided as well as on the Blue Book

Student Number:			
Last Name:	 		
Given Name:			

FOR MARKER ONLY			
Question	Mark		
1			
2			
3			
4			
5			
6			
TOTAL			

[90] **Problem 1.**

Is there

- [10] (a) a function that is uniformly continuous on the interval [0, 1], but is not Lipschitz there,
- [10] (b) a function that is Lipschitz on the interval $[0,\infty)$, but is not uniformly continuous there,
- [10] (c) a differentiable function whose derivative is bounded on the interval [0,1], but the function is not Lipschitz on [0,1],
- [10] (d) a function that is continuous on [0, 1], but does not attain its minimum value on [0, 1],
- [10] (e) a function that is continuous on \mathbb{R} , but is nowhere differentiable.
- [10] (f) a function f that is defined on [0,1], not continuous at any point of [0,1], but f^2 is continuous at every point of [0,1],
- [10] (g) a function that is defined on [0,1] and is continuous only at the irrational numbers of [0,1],
- [10] (h) a nonconstant continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$, that has only irrational numbers in its range,
- [10] (i) a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}^n$ such that $\lim_{n \to \infty} f(\frac{1}{n}) \neq f(0)$,

You may explain your answers either by stating the relevant theorem or by giving an example, when it exists, but you do not have to do it to get a full credit for a correct answer.

[70] **Problem 2.**

- [35] (a) A normed vector space V is strictly convex if $||u|| = ||v|| = ||\frac{(u+v)}{2}|| = 1$ for vectors u, v implies that u = v. Show that an inner product space is always strictly convex.
- [35] (b) Let K be a compact subset of \mathbb{R}^n . Let C(K) denote the vector space of all continuous functions on K. For $f \in C(K)$, denote $||f||_{\infty} = \sup_{x \in K} |f(x)|$. Show that this is a norm on C(K).
 - [70] **Problem 3.** Prove that a compact subset of a normed vector space is closed and bounded.
 - [70] **Problem 4.** Prove that an inner product space V satisfies the triangle inequality $||x+y|| \le ||x|| + ||y||$ for all $x, y \in V$.

[50] **Problem 5.**

Prove that the series $f(x) = \sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ converges uniformly on ${\rm I\!R}$.

[50] **Problem 6.**

Find the Fourier series for $\sin^3 \theta$ on $[-\pi, \pi]$.