PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C07K 3/00, 13/00, C07H 21/00 C12P 21/06, 21/02, 21/04 C12N 15/00	A1	11) International Publication Number: WO 9 43) International Publication Date: 3 September 1992	2/14748 (03.09.92
(21) International Application Number: PCT/U (22) International Filing Date: 20 February 1992	S92/013 2 (20.02.9	(75) Inventors/Applicants (for US only): TERMAN,	VY 10950
(30) Priority data: 657,236 22 February 1991 (22.02	.91) I	, ,	nid Com Stamford
(60) Parent Application or Grant (63) Related by Continuation		C1 3555 (C5).	
	,236 (CI (22.02.9	patent), CA, CH (European patent), DE (Eurotent), DK (European patent), ES (European patent)	pean pa- tent), FR
(71) Applicant (for all designated States except US): CAN CYANAMID COMPANY [US/US]; Main Street, P.O. Box 60, Stamford, CT 0690-	1937 We	(European patent), GB (European patent), G pean patent), IT (European patent), JP, KR, L pean patent), MC (European patent), NL (Euro tent), SE (European patent), US.	.U (Ецго-
		Published With international search report.	

(54) Title: IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

(57) Abstract

A DNA sequence encoding a novel human growth factor receptor referred to as a type III receptor tyrosine kinase is described. The amino acid sequence of the receptor is also described. The receptor has a sequence which is similar to that of the kinase domains of known type III receptor tyrosine kinases, but which is unique in its kinase insert domain sequence. The receptor binds specifically to the vascular endothelial cell growth factor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FI	Finland	MI	Mali
		FR	France	MN	Mongolia
AU	Australia			MR	Mauritania
BB	Bartados	GA	Ciabon		
BE	Belgrum	CB	United Kingdom	MW	Malawi
BF	Burkina Paso	GN	Guinea	Nt.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	Œ	Ircland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CC	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korca	SN	Senegal
ct	Côte d'Ivoire	KR	Republic of Korea	su	Soviet Union
CM	Cameroon	Li	l icchtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Citermany	LU	Luxembourg	us	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

5

IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

10

15

FIELD OF THE INVENTION

This invention relates to the DNA sequence encoding a novel human growth factor receptor which is a type III receptor tyrosine kinase. The receptor is referred to as Kinase insert Domain containing Receptor (KDR) and binds specifically to the growth factor vascular endothelial cell growth factor (VEGF). This invention also relates to the amino acid sequence of the receptor.

20

BACKGROUND OF THE INVENTION

25

Growth factors are small molecules which regulate normal cell growth and development through interaction with cell surface receptors. The receptors for a number of growth factors are referred to as tyrosine kinases; that is, binding of growth factor to the receptor stimulates an increased phosphorylation of tyrosine amino acids within the receptor; this is turn leads to cellular activation (Bibliography 1).

30

There is increasing evidence that genetic alterations affecting the expression of receptor tyrosine kinases (RTK) can contribute to the altered cell growth associated with cancer. This conclusion is

- 2 -

supported by the frequent identification of RTK as products of the oncogenes for many of the acutely transforming retroviruses (e.g., 2,3,4) and the overexpression of RTK in certain cancers (5). The identification of a novel RTK may lead to a better understanding of cell growth under both normal and transforming circumstances.

5

10

15

20

25

30

35

The amino acid sequence in the catalytic domain of all tyrosine kinases has been conserved (6). Detailed analysis of the amino acid sequences within the catalytic and noncatalytic domains of RTK indicates the existence of distinct structural subtypes. One group of RTK (designated type III) includes the ckit proto-oncogene and the receptors for platelet derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1).

The most unusual feature of this subtype is that its catalytic (kinase) domain is interrupted by a long insertion sequence of 12-102 amino acids (the kinase insert domain) The two peptides constituting the kinase domain are conserved between the receptors, while the sequence of the kinase insert domain is unique for each receptor.

Several approaches have been tried in order to identify novel RTK, including low-stringency screening of cDNA libraries with previously characterized DNA probes (7). More recently, a technique has been developed that is capable of greatly facilitating the identification of novel genes for which some sequence data are known. The polymerase chain reaction (PCR) has been used to identify novel members of several gene families including those of quanine nucleotide regulatory proteins (8) and protein phosphatases (9). PCR has been used to identify novel tyrosine kinase genes (10), though the primers used in

10

15

20

25

30

35

that study were designed from DNA segments contained in all tyrosine kinases, rather than being specifically directed against RTK. It is a continuing goal to identify receptors for growth factors.

The elucidation of the growth factors, as well as their receptors, involved in regulating endothelial cell function is critical for the understanding of how new blood vessels are formed (angiogenesis). Angiogenesis plays a significant role in both normal and pathological events such as embryogenesis, progression of ocular diseases, and wound healing (11). In particular, angiogenesis is an important process for the growth of tumors (11). Angiogenesis is a complex process involving endothelial cell proliferation, migration, and tissue infiltration. These events are stimulated by growth factors which either (i) act directly on endothelial cells (12,13), or (ii) act indirectly by inducing host cells to release specific endothelial cell growth factors (11). One member of the first group is vascular endothelial cell growth factor (VEGF), also known as vascular permeability factor (14-16). Besides its angiogenic activity, VEGF displays the physiological function of increasing the permeability of capillary vessels to different macromolecules (14).

SUMMARY OF THE INVENTION

The present invention relates to novel DNA segments which together comrpise a gene which encodes type III RTK. The type III RTK encoded by the gene is designated the <u>KDR</u> protein (which stands for Kinase insert Domain containing Receptor). The <u>KDR</u> protein binds specifically to the growth factor VEGF (vascular endothelial cell growth factor).

- 4 -

The DNA segments are identified and isolated through the use of PCR technology. The overall strategy is summarized as follows:

PCR is used to amplify the DNA segments corresponding to the kinase insert domains of type III receptor tyrosine kinase genes in an endothelial cell library designated HL10246 (Clontech Laboratories, Inc., Palo Alto, CA). Degenerate oligonucleotide primers are designed which are complementary to conserved tyrosine kinase domains flanking the kinase insert domains of known type III receptor tyrosine kinases. These primers are used in the PCR procedure. DNA probes, designed from the DNA sequence of the PCR product, are then used to identify cDNA clones of the receptor gene from the original cDNA library.

In particular, the present invention relates to specific oligonucleotides which, when used as primers for PCR, allow for the amplification of DNA segments corresponding to the kinase insert domains of type III RTK genes.

In a principal embodiment, the present invention is directed to three overlapping DNA segments (designated BTIII081.8, BTIII129.5 and BTIV169) which comprise the entire coding region of this novel gene, namely, 4,068 nucleotides extending to the 3' end.

These DNA segments are isolated from a human endothelial cell cDNA library and together comprise the gene coding for a novel type III receptor tyrosine kinase. The human gene containing these DNA segments is referred to hereinafter as KDR (which stands for Kinase insert Domain containing Receptor) or, alternatively, as kdp (which stands for Kinase insert Domain containing Protein). The use of the term KDR is intended to include any DNA segments which form the

5

10

15

20

25

10

15

20

25

30

35

human gene which encodes the novel type III RTK of this application.

The DNA segments embodied in this invention are isolated from human sources. The present invention comprises DNA segments, and methods for using these DNA segments, which allow for the identification of a closely related gene in mouse DNA. The methods developed in this invention can be readily used by those skilled in the art for the identification and isolation of closely-related homologues in other species. Therefore, the present invention also embodies all DNA segments from species other than human which encode proteins having substantially the same amino acid sequence as that encoded by the kdp gene.

The present invention further relates to methods developed for the detection of mRNA's produced as a result of transcription of the sense strands of the DNA segments of this invention. Messenger RNA prepared from bovine endothelial cells are used in developing these methods. The ability to detect mRNA for a novel RTK may ultimately have medical benefit, especially in light of recent observations that the mRNA for certain RTKs are overexpressed in some cancers (5).

The methods developed in the present invention for detecting mRNA expressed by the kdp gene can be readily used by those of ordinary skill in the art for the detection of mRNA species related to the kdp gene in any cell type and from any species. For this reason, the present invention embodies all mRNA segments which are the result of transcription of the kdp gene.

The present invention relates to methods for expression of the receptor protein, for example, in CMT-3 cells of monkey kidney origin. The receptor

- 6 -

protein, portions thereof, and mutated forms of the receptor protein may be expressed in many other cells by those skilled in the art using methods similar to those described in this application. For this reason, the present invention embodies all proteins encoded by the human <u>KDR</u> gene and proteins encoded by related genes found in other species.

The present invention further relates to methods for studying the interaction of VEGF to the expressed KDR protein. Recent work in the literature (17) indicates that VEGF is one member of a family of related proteins, and the interaction of growth factors similar to VEGF with the KDR protein can readily be studied by those skilled in the art using methods similar to those described in this application. These methods can readily be modified to study the interaction of candidate pharmaceuticals with the KDR protein towards the goal of developing an antagonist or agonist of VEGF action. For this reason, the present invention embodies methods for studying the interaction of VEGF and VEGF-related growth factors with the KDR protein.

BRIEF DESCRIPTION OF THE DRAWINGS

25

5

10

15

20

Figure 1 depicts a schematic representation of three receptor tyrosine kinase subclasses (6). KI is kinase insert domain; PTK is kinase domain; cys is cysteine rich region.

30

35

Figure 2 depicts the two sets of primers used for PCR (SEQ ID No: 1 and 2). The nucleotide sequences in appropriate regions of the four known type III receptor tyrosine kinase cDNAs are aligned and degenerate oligonucleotide primers are designed based upon the consensus sequences.

10

15

20

25

30

35

Figure 3 depicts the amplification of the kinase insert domains using PCR. DNA segments encoding the kinase insert domains of type III receptor tyrosine kinases are amplified by PCR. A sample (5 μ l) is run on a 1.0% agarose gel which is stained with ethidium bromide. DNA size standards (123 bp ladder; Bethesda Research Laboratories, Bethesda, MD) are run as well.

Figure 4 depicts the DNA sequence of the two PCR products (Panel A: 363 bp segment derived from the 420 bp product (SEQ ID NO: 3); Panel B: 251 bp product (SEQ ID NO: 4)). The two products are purified by agarose gel electrophoresis, digested with <u>Sall</u> and <u>Eco</u>RI, and cloned into the plasmid vector pBlueScribe(+) (Strategene; San Diego, CA). The 420 bp PCR product is digested to 363 bp during this procedure. The DNA sequences for the primers used in the amplification are underlined.

Figure 5A depicts a computer assisted comparison of the DNA sequence for the 363 bp DNA segment derived from the 420 bp PCR product with the sequence of a DNA segment of the PDGF receptor (SEQ ID NO: 5) (18). A region of strong homology between the 363 bp segment derived from the 420 bp PCR product and the PDGF receptor is contained in a box. Figure 5B depicts a computer assisted comparison of the DNA sequence for the 251 bp PCR product with the sequence of a DNA segment of the FGF receptor (SEQ ID NO: 6) (7).

Figure 6 depicts the strategy used for sequencing the insert portions of clones BTIII081.8 and BTIII129.5 and BTIV169. The sequencing reaction uses either synthetic oligonucleotides (represented by boxes at the start of an arrow), or the M13 universal primer (no box) to initiate the reaction. In some cases, portions of these DNA segments are isolated using the

WO 92/14748

5

10

15

20

25

30

35

restriction enzymes indicated in the figure, and subcloned back into the plasmid vector pUC118, so that the M13 universal primer can be used. The position of the stop codon in BTIII129.5 is indicated. The coding portions of these DNA segments are shown at the bottom of the figure. The relative positions of the 1) membrane spanning portion, 2) kinase domains, and 3) kinase insert domain are indicated. The position of these structural features within the KDR derived DNA segments is compared in relation to their position in the PDGF-receptor ("PDGF-R").

Figure 7 depicts the DNA and predicted amino acid sequence of KDR, plus the stop codon (nucleotides 1-4071 of SEQ ID NO. 7). The sequence of the DNA segment amplified by PCR is underlined (nucleotides 2749-3105 of SEQ ID NO. 7). Cysteine residues in the putative extracellular domain are circled. Potential N-linked glycosylation sites are indicated by an asterisk. The putative membrane spanning region is enclosed in a box (nucleotides 2293-2367 of SEQ ID NO. 7).

Figure 8 depicts a hydropathy plot of the predicted amino acid sequence for the <u>KDR</u> protein.

Figure 9 depicts a comparison of the predicted amino acid sequence in the putative intracellular portion of the <u>KDR</u> protein to the <u>ckit</u> proto-oncogene (SEQ ID No: 8) (3), the CSF-1 receptor (SEQ ID No: 9) (4), and the PDGF receptor (SEQ ID No: 10) (18). Exact matches are indicated by an asterisk. Gaps are introduced to achieve maximum alignment. The putative ATP recognition site is indicated by three asterisks.

Figure 10 depicts the identification of kdp receptor mRNA by Northern blot analysis. Five micrograms of bovine aortic endothelial cell polyA+ RNA

are used. A nick-translated [³²P] CTP-labelled <u>ECORI/Bam</u>HI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe. Autoradiography is for 36 hours.

5

Figure 11 depicts the kdp gene in human and mouse DNA by Southern blot analysis. A nick translated [\$^{32}P]CTP-labelled EcoRI/BamHI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as the probe. The probe is hybridized to Southern blots containing EcoRI digested DNA from human (lane 1), mouse (lane 2), and human-mouse hybrid cells (19) (lanes 3 and 4). The DNA used in lane 3 lacks the kdp locus, while DNA used in lane 4 contains the kdp locus.

15

10

Figure 12 depicts a Western blot analysis of CMT-3 cells which express the KDR protein. Cells are transfected with either the pcDNAltkpASP vector alone (lane 1) or with that vector modified to contain the KDR gene (lane 2). 2 x 10⁵ cells and 1 microgram of DNA are used for each transfection. Forty-eight hours later, Western blot analysis is performed on the samples using the anti-KDR.PS23 polyclonal antibody at a dilution of 1:1000. Detection of reacting proteins is performed using an ECL system (Amersham, Chicago, IL).

25

30

20

Figure 13 depicts the results of [125] VEGF binding to CMT-3 cells which express the KDR protein. Cells are transfected with either the vector alone (bars 1 and 2) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the samples are washed with phosphate buffered saline (PBS), and incubated with serum-free media containing 50 pM [125] VEGF (specific activity equal to 4,000 cpm per fmol), for 90 minutes. Nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define

WO 92/14748

specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using 0.1% lubrol.

Figure 14 depicts the results of affinity cross-linking of [125] VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the vector alone (lane 1) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free media containing 200 pM [125] VEGF is added. After 90 minutes at room termperature, an affinity cross-linker disuccinimidyl suberate, 0.5 mM, is added for 15 minutes. The samples are then prepared for SDS-PAGE autoradiography.

15

20

25

30

35

10

5

DETAILED DESCRIPTION OF THE INVENTION

The strategy used to discover the DNA segments for the novel type III RTK gene begins with the design of two degenerate oligonucleotide primers based upon their homology to specific regions of the kinase domains of known RTK genes (Fig. 2) (3,4,7,18). In one embodiment, the polymerase chain reaction is then used to amplify DNA segments from a human endothelial cell cDNA library (designated HL 10246). The cDNA products from this step are each cloned into a plasmid vector designated pBlueScribe+ (Strategene, San Diego, CA) and sequenced. Oligonucleotide probes are designed from potentially interesting sequences in order to screen the cDNA library for more full length clones of the novel cDNA.

The strategy just described provides several novel elements: 1) the DNA sequences of the oligonucleotide primers used during PCR; 2) the DNA sequence of the products generated by the polymerase chain

reaction; and 3) the DNA sequence of the final cloned DNA segments. Each of these elements of the invention described in this application will now be discussed in detail.

5

Figure 2 shows the rationale for choosing the oligonucleotide primers used in the PCR. The primers are designed to allow for the PCR amplification of the kinase insert domain of type III RTK genes. In order to design the primers, the DNA sequences of known type III RTK genes are aligned in specific regions of their catalytic domains, and a consensus sequence is chosen. The regions of the catalytic domains chosen in designing the primers flank the kinase insert domains of the receptor genes.

15

10

Primer 1 (SEQ ID No: 1) is designed from a region of the kinase domain 5' to the kinase insert domain, and consists of a mixture of four different 21mers. Primer 2 (SEQ ID NO: 2) is designed from a region of the kinase domain 3' to the kinase insert domain, and consists of a mixture of sixteen different 29mers with one inosine, indicated in SEQ ID NO: 2 by "N".

20

25

<u>Sal</u>I and <u>Eco</u>RI restriction sites are included at the 5' end of primers 1 and 2, respectively, to facilitate the subcloning of the amplified PCR products into plasmid vectors. Those skilled in the art may use other restriction sites; other minor modifications in the protocol above permits the design of primers without the inclusion of restriction sites.

30

35

The selection of these specific primers constitutes a novel approach towards identifying novel type III RTK genes. It had previously been shown (10) that primers designed from DNA sequences common to all tyrosine kinases allows for the identification of novel proteins. The present invention is the first to

5

10

15

20

25

30

35

- 12 -

contemplate the use of PCR to specifically target type III RTK.

The protocol used for PCR is as follows: Human endothelial cell cDNA (designated HL10246) is denatured by boiling and submitted to 30 cycles of PCR using 1 nmol of both primers in a final volume of 100 μ l. The timing is 1.5 minutes at 92°C, 2 minutes at 50°C, and 2 minutes at 74°C. DNA from 5μ l of sample is separated on a 1% agarose gel and stained with ethidium bromide.

Figure 3 shows the results of the PCR amplification. Two DNA products, with sizes 251 bp (SEQ ID NO: 4) and 420 bp, are visible when a sample of the reaction is electrophoresed on a 1.0% agarose gel and stained with ethidium bromide. The sizes of the two products are within the range expected for type III RTK genes (products derived from the FGF and PDGF receptor genes, which have the smallest and largest known kinase insert domains, would be 230 and 510 bp, respectively (20, 21).

The DNA from four continguous lanes with sizes ranging from 200 to 600 bp is electrophoresed onto DEAE filter paper, eluted from the paper with salt, and ethanol precipitated. The samples are incubated with 5 units of EcoRI and SalI. The restriction enzymes digest the 420 bp DNA segment to a 363 bp DNA segment (SEQ ID NO: 3), due to the presence of an EcoRI site within the 420 bp DNA segment (nucleotide 2749, SEQ ID NO. 7). The restriction enzyme digested PCR products are then subcloned into the plasmid vector pBlueScribe(+). The recombinant clones are analyzed by sequencing using the dideoxy-method (22) using a United States Biochemical (Cleveland, Ohio) Sequenase Version 2.0 sequencing kit. Figure 4 shows the DNA sequences for the 251 bp PCR

10

15

20

25

30

35

product and the 363 bp DNA segment derived from the 420 bp PCR product.

Computer assisted comparison of the DNA sequence for the 363 bp segment of the 420 bp PCR product to databases of known DNA sequences reveals that the sequence is novel, because it shares strong sequence identity with the flanking catalytic domain of known type III RTK genes, but not their kinase insert domains. Figure 5A compares the DNA sequence for the 363 DNA segment with that for the PDGF receptor gene (SEQ ID No: 5). Similar results are obtained using other type III RTK genes.

DNA sequencing of the 251 bp PCR product reveals a novel sequence containing both primers used for the amplification, but the sequence shows little homology to known tyrosine kinases. This is depicted in Figure 5B, which compares the DNA sequence for the 251 bp DNA segment with that for the FGF receptor (SEQ ID NO: 6). For this reason, further analysis of Product 1 is not pursued.

The protocols used during the PCR do not allow for amplification of the kinase insert domains of known receptor tyrosine kinases in the endothelial cell library used because of the low copy number of the message present in the library. There have been many studies on the effect of FGF on endothelial cell function (23,24) although there is evidence that the expression of the FGF receptor is developmentally regulated (7) and it is likely that the library used contains little or no cDNA for the FGF receptor.

An oligonucleotide probe, designed from the DNA sequence of the 363 bp segment, is synthesized (using an ABI 380 DNA Synthesizer) in order to screen the human endothelial cell cDNA library (HL10246) for the isolation of more full length clones containing the

5

10

15

20

25

30

35

- 14 -

363 bp DNA segment. The probe sequence is chosen from the region of the 363 bp DNA segment which shares little sequence homology with known RTK.

The screening of the endothelial cell cDNA library is conducted as follows: Lambda gtll phage, 106, are adsorbed to E. coli LE392 for 15 minutes at 37°C prior to plating onto agar plates at a density of 5×10^5 phage per plate. After allowing the phage plagues to develop at 37°C, plague lifts are made using nitrocellulose filters, denatured in 0.4 N NaCl for 1 minute, and neutralized in 0.5 M Tris.HCl, pH 7.3, plus 1.5 M NaCl. The filters are washed with 2 x standard saline citrate (SSC) and then baked for 1.5 hour in a vacuum oven at 80°C. The filters are probed with an $[^{32}P]$ ATP end labeled synthetic oligonucleotide, 5' -TTTCCCTTGACGGAATCGTGCCCCTTTGGT-3', which is the reverse complement of a DNA sequence contained in the PCR amplified product (Fig. 3). Hybridization is performed at 50°C in 5 x SSPE (167 mM NaCl, 10 mM sodium phosphate, pH 7.4, 1 mM EDTA), 2.5 x Denhardts, 0.5% sodium dodecyl sulfate (SDS), 100 μ g/ml salmon sperm DNA. The filters are washed twice, 20 minutes per wash, with 2 x SSC plus 0.1% SDS at room temperature, followed by washing twice at 50°C with 0.1 X SSC plus 0.1% SDS; 20 minutes per wash. Positive clones are identified, picked and plaque purified.

Forty-five positive clones are obtained. Three of these positive clones are plaque purified and their phage DNA isolated. Digestion of the DNA with <u>EcoRI</u> and electrophoresis in agarose indicates that one clone, designated BTIII081.8, contains the largest insert, and subsequent analysis indicates that the DNA insert of this clone overlaps that of the inserts contained in other two purified clones (designated BTIII079.11 and BTIII079.47A).

10

15

20

25

30

35

Digestion of the purified phage DNA of the clone designated BTIII081.8 with EcoRI results in DNA segments of 250 bp, 600 bp, and 1000 bp. Each of these three products is subcloned into the plasmid vector pUCl18 and sequenced (Figure 6 shows the strategy used for sequencing). The orientation of the three fragments is determined by subcloning from the insert a BGIII/BGIII fragment into pUCl18 and sequencing across the EcoRI junctions using a synthetic oligonucleotide to prime the sequencing reaction.

A restriction map is determined for each fragment (Figure 6). Various restriction site pieces are removed from the plasmids and recloned into pUC118 so that sequencing the resulting plasmids with the universal primer allows for sequencing most of the entire original fragments in both directions. Three oligonucleotide primers are required to sequence the entire cDNA in both directions. For the purposes of this application, this insert contains nucleotides numbered 1510-3406 (SEQ ID NO. 7).

A [³²P]CTP-labelled, nick-translated

ECORI-BamHI DNA segment derived from clone BTIII081.8

(nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe to rescreen the original endothelial cell cDNA library for more 5' full length DNA segments of the gene from which the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate

BTIII081.8.

A synthetic oligonucleotide probe is designed with 29 nucleotides corresponding to part of the DNA sequence of the insert portion of the clone BTIII081.8 (nucleotides 3297-3325 of SEQ ID NO. 7) in order to rescreen the original endothelial cell cDNA library for more full 3' length DNA segments of the gene from which

5

10

15

20

25

30

35

- 16 -

the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8. Several positive clones for each of the 5' and 3' ends are identified and plaque purified.

One of the clones is designated BTIII200.2. The DNA from BTIII200.2 contains a 3.4 kb insert as determined by EcoRI digestion of the isolated phage DNA. EcoRI digestion of BTIII200.2 results in three DNA fragments. One of thse fragments (2.5 kb) is cloned into pUCl19 and is designated BTIV006. The clone BTIV006 contains nucleotides numbered 7-2482. As described below, BTIV006 plus nucleotides 1-6 is designated BTIV169. DNA sequencing of the 2.5 kb DNA insert (BTIV169) indicates that it overlaps over one thousand nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6) at the 5' end.

A second clone isolated from the cDNA library is designated BTIII129.5. The DNA from BTIII129.5 contains a 2.2 kb insert as determined by EcoRI digestion of the isolated phage DNA. DNA sequencing of the 2.2 kb DNA insert indicates that it overlaps over five hundred nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6). clone BTIII129.5 contains nucleotides numbered 2848-4236 (SEQ ID NO. 7). The DNA sequence for BTIII129.5 contains the stop codon TAA, defining the position of the 3' end of an open reading frame for the novel gene. Except for the first six nucleotides of the gene which are discussed below, these three clones define a gene encoding a growth factor receptor. These three clones define a 4,062 nucleotide sequence of the open reading frame of the gene extending to the 3' end, followed by a 168 nucleotide non-coding region (SEQ ID

10

15

20

25

30

35

NO. 7). A sample of a lambda gtll phage harboring the clone BTIII081.8 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A., and has been assigned ATCC accession number 40,931. A sample of a lambda gtll phage harboring the clone BTIII129.5 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 40,975. For reasons discussed below, a sample of the clone BTIV006 was not deposited.

The aforementioned DNA segments (BTIII081.8, BTIII129.5, and BTIII200.2 (or BTIV006) encode 4062 nucleotides of the coding portion of a novel gene. The cDNA clones are incomplete in that a transcription initiation coding for methionine is missing. After the isolation of these clones, Matthews et al. (25) reported the cloning of a gene homologue of KDR in mouse, which was referred to as Flk-1. Analysis of the nucleic acid and amino acid sequence of Flk-1 indicated that the addition of six nucleotides to the 5' end of the isolated KDR clones would provide for a complete coding region.

To achieve this, an EcoRI-BamHI restriction fragment of BTIV200.2 is cloned into the plasmid pBlueScript KS (Strategene, La Jolla, CA). The 5' end of the inserted DNA is blunt ended with Klenow polymerase and Mung Bean nuclease. Next, the synthetic oligonucleotide TCGACGCGCG ATG GAG (SEQ ID NO. 11) is cloned into this vector. The oligonucleotide contains the sequence ATG GAG in frame with the downstream DNA insert. These nucleotides (ATG GAG) encode the amino acids methionine and glutamic acid, the first two amino acids encoded by the KDR gene. The resulting plasmid vector is designated BTIV140. This plasmid is purified on a CsCl gradient.

5

10

15

20

25

30

35

- 18 -

The purified plasmid is designated BTIV169. The insert of BTIV169 contains nucleotides 1-2400 (SEQ ID NO. 7) of the KDR gene. A sample of the plasmid pBlueScript KS which contains the clone BTIV169 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 75200.

Thus, together the clones BTIII081.8, BTIII129.5 and BTIV169 comprise the entire open reading frame of 4,068 nucleotides for the novel <u>KDR</u> gene. As will be discussed below, the <u>KDR</u> gene expresses the novel <u>KDR</u> receptor which binds specifically to the growth factor VEGF.

DNA sequencing of BTIII081.8, BTIII129.5 and BTIV169 (SEQ ID NO. 7) shows that the newly isolated gene is similar to, but distinct from, previously identified type III RTK. The predicted amino acid sequence (SEQ ID NO. 7) contains several structural features which demonstrate that the novel gene is a type III RTK. These structural features are summarized as follows:

- 1) A hydropathy plot of the predicted amino acid sequence indicates a single membrane spanning region (see Figure 8). This is characteristic of a type III RTK (Figure 7).
- 2) The putative amino-terminal 762 amino acid portion of the receptor has structural features of extracellular receptor ligand binding domains (1), including regularly spaced cysteines and 18 potential N-linked glycosylation sites (Figure 7).
- 3) The predicted amino acid sequence of the carboxy-terminal 530 amino acid portion contains an ATP-binding site at lysine 868, 22 amino acids downstream from the consensus ATP recognition sequence Gly-X-Gly-X-X-Gly (26) (Figure 8).

- 4) Within the kinase domain there is a 55-60% identical match in amino acid sequence to three other type III receptor tyrosine kinases: Ckit proto-oncogene (SEQ ID NO: 8), CSF-1 (SEQ ID NO: 9) and PDGF (SEQ ID NO: 10) (Figure 9).
- 5) The predicted kinase domain contains a kinase insert domain of approximately 71 amino acids. As indicated in Figure 9, this portion of the amino acid sequence shares little sequence homology with other type III RTK.

The endothelial cell library can be further screened to isolate the 5' untranslated region and genomic clones can be generated so as to isolate the promoter region for the <u>KDR</u> gene.

In addition to the DNA sequence described for the KDR gene (SEQ ID NO. 7), the present invention further comprises DNA sequences which, by virtue of the redundancy of the genetic code, are biologically equivalent to the sequences which encode for the receptor, that is, these other DNA sequences are characterized by nucleotide sequences which differ from those set forth herein, but which encode a receptor having the same amino acid sequences as those encoded by the DNA sequences set forth herein.

In particular, the invention contemplates those DNA sequences which are sufficiently duplicative of the sequence of SEQ ID NO. 7 so as to permit hybridization therewith under standard high stringency southern hybridization conditions, such as those described in Sambrook et al. (27), as well as the biologically active proteins produced thereby.

This invention also comprises DNA sequences which encode amino acid sequences which differ from those of the novel receptor, but which are the biological equivalent to those described for the

10

5

15

20

25

30

5

10

15

20

25

30

35

- 20 -

receptor. Such amino acid sequences may be said to be biologically equivalent to those of the receptor if their sequences differ only by minor deletions from or conservative substitutions to the receptor sequence, such that the tertiary configurations of the sequences are essentially unchanged from those of the receptor.

For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, as well as changes based on similarities of residues in their hydropathic index, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal or C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. It may also be desirable to eliminate one or more of the cysteines present in the sequence, as the presence of cysteines may result in the undesirable formation of multimers when the protein is produced recombinantly, thereby complicating the purification and crystallization processes. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Therefore, where the terms "KDR gene" or "KDR protein" are used in either the specification or the claims, each will be understood to encompass all such modifications and variations which result in the production of a biologically equivalent protein.

10

15

20

25

30

35

In addition to the full length gene and protein, the invention encompasses biologically active fragments of each. By "biologically active" is meant a protein fragment which qualitatively retains the receptor activity of the larger KDR protein, or, in the case of a nucleotide sequence, which encodes such a protein fragment. It also refers, for purposes of antibody production, to fragments which are capable of eliciting production of antibodies capable of binding to the receptor protein.

To determine the size of the mRNA transcribed from the kdp gene, Northern blot hybridization experiments are carried out using an EcoRI/BamHI DNA segment (nucleotides 1510-2417, SEQ ID NO. 7) as a hybridization probe. The DNA used for the probe does not contain any portion of the putative kinase domain, and shares little sequence homology to other tyrosine kinases. The Northern blot analysis (Figure 10) shows that a 7 kb band is visualized in cytoplasmic poly(A)+RNA of ABAE bovine aortic endothelial cells. This transcript differs in size from previously reported transcripts for known type III RTK (7,18).

The isolated cDNA is significant for several reasons. The cDNA encodes a novel type III receptor tyrosine kinase. The homology between the sequence of this cDNA and that of other receptors, as well as structural properties implied by the predicted amino acid sequence confirm the relationship. Receptors for growth factors should have tremendous utility in drug development as they face the outside of the cell and thus are among the best targets for drugs. In addition, the cellular levels of some receptors, in particular the neu proto-oncogene, increase during some cancers. This has been taken advantage of in designing diagnostic tests for these cancers.

- 22 -

Southern analysis demonstrates that the kdp gene is present in mouse as well as human DNA. Mouse and human (Hela cell) DNA, 15 μg of each, are digested with 10 units of EcoRI and electrophoresed on a 0.7% agarose gel. The DNA is transferred onto nitrocellulose. The filter is hybridized to a [32P]CTP-labelled cDNA probe made by nick translating an EcoRI/BamHI fragment from the 5' end of the kdp cDNA (nucleotides 1510-2417, SEQ ID NO. 7). Hybridization is conducted at 30°C in 5 X SSPE, 50% formamide, 0.1% SDS, plus 150 $\mu g/ml$ salmon sperm DNA. The DNA probe hybridizes to Southern blots containing EcoRI digested After 48 hours, the filter is washed at room temperature in 2 X SSC plus 0.1% SDS for 20 minutes, followed by two 20 minute washes at 40°C with 0.1 X SSC plus 0.1% SDS. Autoradiography is then performed for 48 hours. As shown in Figure 11, radioactively labelled DNA is present in both human and mouse samples. This indicates that the kdp gene is present in both species.

An experiment is conducted to ascertain the genetic locus of kdp on human chromosomes.

Thirty-eight cell hybrids from 18 unrelated human cell lines and four mouse cell lines are examined (19). A DNA probe hybridizes to Southern blots which contain <u>EcoRI</u> digested DNA from the human-mouse hybrids (using the procedure and DNA probe for human and mouse tissue described in relation to Figure 11). Table I sets forth the results of the segregation of kdp with human chromosomes in <u>EcoRI</u> digested human-mouse somatic cell hybrid DNA:

5

10

15

20

25

Table I

			rdant #		cordant Hybrids	#
5	Chromosome		(-/-)			<pre>\$ Discordancy</pre>
	1	4	19	8	4	34
	2	8	18	5	6	30
	3	11	12	3	9	34
10	4	14	24	0	0	0
	5	7	14	7	10	45
	6	7	19	7	5	32
	7	11	14	3	8	31
	8	8	11	6	13	50
15	9	3	20	10	4	38
	10	12	9	2	14	43
	11	9	13	4	11	41
	12	9	10	5	14	50
	13	7	18	7	6	34
20	14	11	8	3	16	50
	15	9	15	5	8	35
	16	7	19	7	5	32
	17	12	7	2	16	49
	18	11	14	3	10	34
25	19	7	18	7	6	34
	20	9	10	5	14	50
	21	11	9	3	15	47
	22	3	16	10	7	47
	x	8	10	3	8	38

The scoring is determined by the presence(+) or absence (-) of human bands in the hybrids on Southern blots prepared in a similar to those shown in Figure 11. The scoring is compared to the presence or absence of human chromosomes in each hybrid. A 0%

- 24 -

discordancy indicates a matched segregation of the DNA probe with a chromosome. Three fragments, approximately 6.5 kb, 3.1 kb, and 0.7 kb in size are detected in digests of human DNA (Figure 11), and in all hybrids which had retained human chromosome 4 (Table I). All other chromosomes are excluded in at least 11 discordant hybrids (Table I). The results of Figure 11 and Table I demonstrate that the genetic locus of kdp is on human chromosome 4.

10

5

It is noteworthy that both the <u>ckit</u> (3) and the type A PDGF (28) receptor genes map to human chromosome 4. The finding that the genetic locus of kdp is on human chromosome 4 provides further evidence that the novel receptor of this invention is a type III receptor tyrosine kinase.

15

The next step after identifying the entire coding portion of the kdp gene is to express the receptor protein encoded by that gene. The receptor protein is then utilized so as to identify the growth factor which binds specifically to the receptor.

20

The receptor protein is expressed using established recombinant DNA methods. Suitable host organisms include bacteria, viruses, yeast, insect or mammalian cell lines, as well as other conventional organisms. For example, CMT-3 monkey kidney cells are transfected with a vector containing the complete coding region of the <u>KDR</u> gene.

30

35

25

The complete coding portion of the <u>KDR</u> gene is assembled by sequentially cloning into pUC119 three DNA fragments derived from BTIII081.8, BTIII129.5, and BTIV169. First, a <u>SmaI-Eco</u>RI fragment of clone BTIII129.5 (nucleotides 3152-4236, SEQ ID NO. 7) is blunt ended with Klenow polymerase and introduced into a <u>SmaI</u> site in pUC119. Next, a <u>BamHI-SmaI</u> fragment of clone BTIII081.8 (nucleotides 2418-3151, SEQ ID NO. 7)

is introduced at a <u>BamHI-SmaI</u> site. Finally, a <u>SalI-BamHI</u> fragment of clone BTIV169 (nucleotides 1-2417, SEQ ID NO. 7) is introduced at a <u>SalI-BamHI</u> site. Part of the cloning site of pUCl19 is contained in the <u>SalI-BamHI</u> fragment, 5' to the <u>KDR</u> gene. In order to clone the complete coding portion into an expression vector, the assembled DNA (in pUCl19) is digested with <u>SalI</u> and <u>Aspl18</u> and recloned into the eukaryotic expression vector pcDNAltkpASP.

10

5

This vector is a modification of the vector pcDNAl (Invitrogen; San Diego, CA). Specifically, the ampicillin resistance gene is cloned from pBR322 into pcDNAl. A small SV40 T splice and the SV40 polyadenylation signal are then removed and are replaced with a Herpes Simplex Virus-1 polyadenylation signal. Finally, a cytomegalovirus intermediate early splice is inserted 5' to the cloning site to yield pcDNAltkpASP.

15

Transfection of CMT-3 cells is done using DEAE-dextran. Forty-eight hours after transfection, expression of the novel receptor is monitored using Western blot analysis as follows.

20

An antibody is used to assay the expressed receptor protein. The predicted amino acid sequence of the receptor is used to generate peptide-derived antibodies to the receptor by conventional techniques. The presence of the novel receptor protein is confirmed by Western blot hybridization.

25

Specifically, a synthetic peptide with 13 residues is synthesized based on the 12 residues corresponding to amino acids 986-997 of the putative amino acid sequence of the KDR protein (SEQ ID NO. 7), with a cysteine residue linked to the lysine (amino acid 997). The cysteine facilitates coupling of the peptide to a macromolecule which functions as a carrier for the peptide. For example, the peptide is coupled

30

- 26 -

to keyhole limpet haemocyanin (KLH) using m-maleimidobenzoyl-N-hydroxysuccinimide ester. Other conventional carriers may be used such as human and bovine serum albumins, myoglobins, β -galactosidase, penicillinase and bacterial toxoids, as well as synthetic molecules such as multi-poly-DL-alanyl-poly-L-lysine and poly-Llvsine.

Rabbits are immunized with the peptide-KLH conjugate to raise polyclonal antibodies. After different periods of time, serum is collected from the rabbits. The IgG fraction of the serum is then purified using a protein A Sepharose column (Pharmacia LKB, Uppsala, Sweden) to obtain the antibody which is designated anti-KDR.PS23.

15

5

10

20

25

30

35

A sample of the expressed KDR protein is subjected to SDS-PAGE using a 7% acrylamide gel under standard conditions. The protein band is then transferred on to nitrocellulose paper for Western blot analysis and the anti-KDR.PS23 antibody is added at a dilution of 1:1,000 to allow the antibody to react with the protein present. A second antibody, goat anti-rabbit antibody to rabbit IgG, which binds to anti-KDR.PS23, is then added. The detection of proteins which react with the antibodies is performed by autoradiography of bands using an ECL system (Amersham, Chicago, IL). The results are depicted in Figure 12.

Figure 12 shows that a 190 kD protein is present in the cells transfected with the vector containing the \underline{KDR} gene, but is absent in cells The size of this transfected with vector alone. protein is consistent with it being encoded by the KDR gene, in that the predicted amino acid sequence for the unglycosylated \underline{KDR} protein is 156 kD, and that sequence contains 18 putative extracellular glycosylation sites

10

15

20

25

30

35

which would account for the balance of the size seen in the 190 kD band.

The expressed receptor is then used to identify the growth factor which interacts with the receptor. In order to test the hypothesis that the KDR protein is a receptor for VEGF, radioligand binding studies are performed. VEGF (provided by D. Gospodarowicz) is radiolabelled with 125I. Cells are transfected with either the vector pcDNAltkpASP alone (bars 1 and 2 of Figure 13) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the transfected cell samples are washed with PBS and then incubated for 90 minutes with serum-free media containing 50 pM [125]VEGF (specific activity equal to 4,000 cpm per fmol). Excess nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using a detergent, 0.1% lubrol.

The results of the radioligand binding studies are depicted in Figure 13. Figure 13 shows that CMT-3 cells transfected with vector containing the KDR gene contain specific binding sites for [\$^{125}I]VEGF (compare bars 3 and 4), while cells transfected with vector alone do not (compare bars 1 and 2).

Further evidence that the <u>KDR</u> gene encodes a receptor for VEGF is demonstrated by affinity cross-linking studies (Figure 14). Figure 14 depicts the results of affinity cross-linking of [125]VEGF to CMT-3 cells which express the <u>KDR</u> protein. CMT-3 cells are transfected with either the pcDNAltkpASP vector alone (lane 1 of Figure 14) or with the vector containing the <u>KDR</u> gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free

5

10

15

20

25

30

35

- 28 -

media containing 200 pM [125]VEGF is added. After 90 minutes at room temperature, an affinity cross-linker disuccinimidyl suberate (Pierce Biochemicals, Rockford, IL), 0.5mM, is added for 15 minutes. The samples are then subjected to SDS-PAGE autoradiography.

Three protein bands are seen in SDS-PAGE autoradiograms from samples of CMT-3 cells transfected with the KDR gene and cross-linked to [\$^{125}I\$]VEGF (lane 1). The size of band 1 (235 kD) is consistent with it being the 190 kD protein seen by Western blot analysis (Figure 12), because a 45 kD [\$^{125}I\$] VEGF dimer plus 190 kD would migrate in a manner identical to band 1. The origin of band 2 is not clear, but may represent an altered glycosylation form of band 1. Band 3 (22.5 kD) is most likely VEGF itself, and can be seen faintly in cells transfected with vector alone (lane 2).

The novel KDR gene of this invention is significant for several reasons. Studies of the cellular mechanisms by which receptors function in signal transduction have led in the past to a better understanding of how cells grow in both normal and diseased states. Receptor tyrosine kinases, in particular, have received a great deal of attention because of the observation that a number of RTK are the cellular counterparts for viral oncogenes, implying a direct correlation between changes in the expression of RTK and cancer. In view of this, it is likely that pharmaceuticals targeted at RTK will inhibit the changes in cell growth associated with cancer. In additon, it is likely that monitoring the levels of expression of RTK will prove valuable in diagnosing the onset of cancer.

The described cDNA is isolated from a human endothelial cell library. Endothelial cells participate in angiogenesis, the formation of new blood

capillaries. Previous work directed towards identifying the growth factors which regulate angiogenesis have primarily focused upon FGF (13), although recent evidence has indicated that other growth factors may be involved as well (12,15,29). This evidence consists of the observations that: 1) FGF does not contain a signal sequence (24) and thus may not be secreted from cells in a manner consistent with the tight regulation of angiogenesis, and 2) endothelial cells synthesize FGF and yet are normally resting (15). Our discovery, then, of a novel growth factor receptor may ultimately clarify these inconsistencies and lead to a better understanding of endothelial cell function.

15

10

5

The teachings of this invention can be readily used by those skilled the art for the purpose of testing pharmaceuticals targeted at the <u>KDR</u> protein. Two examples of approaches which can be used for this purpose are now given.

20

25

First, the methods described in this invention for studying the interaction of VEGF with KDR protein can be used to test for pharmaceuticals which will antagonize that interaction. For these studies, cells expressing the KDR protein are incubated with [1251]VEGF, together with a candidate pharmaceutical. Inhibition of radioligand binding is tested for; significant inhibition indicates the candidate is an antagonist. Permanent expression of the KDR protein in a cell type such as NIH3T3 cells would make these studies less laborious. This can be easily achieved by those skilled in the art using the described methods.

30

Second, using the teachings of this invention, those skilled in the art can study structural properties of the <u>KDR</u> protein involved in receptor function. This structural information can

- 30 -

then be used to more rationally design pharmaceuticals which inhibit that function. Mutagenesis of the <u>KDR</u> gene by well established protocols is one approach, crystallization of the receptor binding site is another.

Bibliography

- 1. Yarden Y., and A. Ullrich, <u>Ann. Rev.</u> <u>Biochem.</u>, <u>57</u>, 433-478 (1988).
- 5 2. Bargmann, C., et al., <u>Nature</u>, <u>319</u>, 226-230 (1986).
 - 3. Yarden, Y., et al., <u>EMBO J.</u>, <u>6</u>, 3341-3351 (1987).
 - 4. Coussens, L., et al., Nature, 320,
- 10 277-280 (1986).
 - 5. Slamon, D., et al., Science, 244, 707-712 (1989).
 - Ullrich, A. and Schlessinger, J., <u>Cell</u>,
 203-212 (1990).
- 7. Ruta, M., et al., <u>Oncogene</u>, <u>3</u>, 9-15 (1988).
 - 8. Strathmann, M., et al., <u>Proc. Natl. Acad.</u>
 <u>Sci., 86</u>, 8698-8702 (1989).
 - 9. Streuli, M., et al., Proc. Natl. Acad.
- 20 <u>Sci., 86</u>, 8698-8702 (1989).
 - 10. Wilkes, A.F., <u>Proc. Natl. Acad. Sci.,</u> 86, 1603-1607 (1989).
 - 11. Folkman, J., and Klagsbrun, M., Science,
 235, 442-445 (1987).
- 25 12. Ishikawa, F., et al., <u>Nature</u>, <u>338</u>, 557-562 (1989).
 - 13. Baird, A., and Bohlen, P., in <u>Peptide</u>
 <u>Growth Factors and Their Receptors</u>, pages 369-418
 (Spron, M.B., and Roberts, A.B., eds. 1990).
- 30 14. Senger, D.R., et al., <u>Science</u>, <u>219</u>, 983-985 (1983).
 - 15. Gospodarowicz, D., et al., <u>Proc. Natl,</u> <u>Acad. Sci., 86,</u> 7311-7315 (1989).
- 16. Leung, D.W., et al., <u>Science</u>, <u>246</u>, 35 1306-1309 (1989).

- 32 -

17. Maglione, D., et al., Proc. Natl. Acad. Sci., 88, 9267-9271 (1991). 18. Gronwald, R., et al., Proc. Natl. Acad. Sci., 85, 3435-3439 (1988). 19. Shows, T., et al., Somat. Del. Mol. Gen., 10, 315-318 (1984). 20. Rainer, G., et al., Proc. Natl. Acad. Sci., 85, 3435-3439 (1988). 21. Lee, P. L., et al., Science, 245, 57-60 (1989). 22. Sanger, F., et al., Proc. Natl. Acad. Sci., 74, 5463-5467 (1977). 23. Folkman, J., Cancer Res., 46, 467-473 (1986).24. Burgess, W. and Maciag, T., Ann. Rev. Biochem., 58, 575-606 (1989). 25. Matthews, W., et al., Proc. Natl. Acad. <u>sci., 88, 9026-9030 (1991).</u> 26. Hannink, M. and Donoghue, D., Proc. Natl. Acad. Sci., 82, 7894-7898 (1985). 27. Sambrook, J., et al., Molecule Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). 28. Matsui, T., et al., Science, 243, 800-804 (1989).

29. Conn, G., et al., Proc. Natl. Acad. Sci.,

5

10

15

20

25

87, 2628-2632 (1990).

SEQUENCE LISTING

(1)	GENERAL	INFORMATION:
-----	---------	--------------

5 (i) APPLICANT: Terman, Bruce I
Carrion, Miguel E

(ii) TITLE OF INVENTION: Identification of a

Novel Human Growth Factor Receptor

10 (iii) NUMBER OF SEQUENCES: 14

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Alan M. Gordon
American Cyanamid Company

(B) STREET: 1937 West Main Street, P.O. Box 60

20 (C) CITY: Stamford

(D) STATE: Connecticut

(E) COUNTRY: USA

(F) ZIP: 06904

(V) COMPUTER READABLE FORM:

30 (A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC AT

(C) OPERATING SYSTEM: MS-DOS

35

15

- 34 -

(D) SOFTWARE: ASCII from IBM DW 4 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: 5 (B) FILING DATE: (C) CLASSIFICATION: 10 (vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 07/657,236 (B) FILING DATE: February 22, 1991 15 (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Gordon, Alan M. 20 (B) REGISTRATION NUMBER: 30,637 (C) REFERENCE/DOCKET NUMBER: 31,298-01 (ix) TELECOMMUNICATION INFORMATION: 25 (A) TELEPHONE: 203 321 2719 (B) TELEFAX: 203 321 2971 30 (C) TELEX: (2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 27 base pairs
5	(B) TYPE: nucleic acid
	(C) STRANDEDNESSS: single
	(D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: DNA (genomic)
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
15	GTCGAC AAY CTG TTG GGR GCC TGC AAC 27
	(2) INFORMATION FOR SEQ ID NO: 2:
20	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 35 base pairs
	(B) TYPE: nucleic acid
25	(C) STRANDEDNESSS: single
	(D) TOPOLOGY: linear
30	(ii) MOLECULE TYPE: DNA (genomic)
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GAATTC AG CAC KTT NCT RGC YGC CAG GTC TGY GTC 35

- 36 -

(2) INFORMATION	FOR	SEQ	ID	NO:	3	:
-----------------	-----	-----	----	-----	---	---

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 363 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

10

20

25

30

35

5

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

 GAA
 TTC
 GGA
 AAC
 CTG
 TCC
 ACT
 TAC
 CTG
 36

 AGG
 ACG
 AAG
 AAG
 AAT
 GAA
 TTT
 GTC
 CCC
 TAC
 AAG
 ACC
 72

 AAA
 GGG
 GCA
 CGA
 TTC
 CGT
 CAA
 GGG
 AAA
 GAC
 TTC
 GTT
 108

 GGA
 GCA
 ATC
 CTC
 GTG
 CAA
 CGG
 AAA
 GAC
 TTG
 GAC
 144

 ACG
 CAT
 CAG
 TAG
 CCA
 GAG
 CTC
 AAA
 CGG
 CGC
 TTG
 AGA
 144

 ACG
 CAT
 CAG
 TAG
 CCA
 GAG
 CTC
 AGA
 CTC
 CAG
 CAG
 CTG
 TTG
 AGA
 CTC
 CAG
 AGA
 CTT
 <t

251

- 37 -

TTC 363

(2) INFORMATION FOR SEQ ID NO: 4: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 251 base pairs (B) TYPE: nucleic acid 10 (C) STRANDEDNESSS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: 20 GTC GAC AAT CTG TTG GGG GCC TGC ACC ATC CCA ACA 36 TCC TGC TGC TCT ACA ACT ATT TTT ATG ACC GGA GGA 72 GGA TCT ACT TGA TTC TAG AGT ATG CCC CCC GCG GAG 108 25 CTC TAC AAG GAG CTG CAG AAG AGC TGC ACA TTT GAC 144 GAG CAG CGA ACA GCC ACG ATC ATG GAG GAG TTG GCA 180 GAT GCT CTA ATG TAC TGC CGT GGG AAG AAG GTG ATT 216 30

(2) INFORMATION FOR SEQ ID NO: 5:

CAC AGA GAC CTG GCA GCC AGC AAC GTG CTG AAT TC

- 38 -

	(i) SEQUENCE CHARACTERISTICS:
_	(A) LENGTH: 510 base pairs
5	(B) TYPE: nucleic acid
	(C) STRANDEDNESSS: single
10	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
	(ix) FEATURE:
15	(A) NAME/KEY: PDGF Receptor DNA
	(B) LOCATION: Internal sequence
20	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Gronwald, R., et al.
25	(B) JOURNAL: Proc. Natl. Acad. Sci.
25	(C) VOLUME: 85
	(D) PAGES: 3435-3439
30	(E) DATE: 1988
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
25	AAC CTG TGG GGG CCT GCA CCA AAG GAG GAC CAT CTA 36
35	

		TAT	CAT	CTA	TAT	CAT	CAC	TGA	GTA	CTG	CCG	CTA	CGG	72
		AGA	CCT	GGT	GGA	CTA	CCT	GCA	CCG	CAA	CAA	ACA	CAC	108
5		CTT	CCT	GCA	GCA	CCA	CTC	CGA	CAA	GCG	CCG	ccc	GCC	144
		CAG	CGC	GGA	GCT	CTA	CAG	CAA	TGC	TCT	GCC	CGT	TGG	180
10		GCT	ccc	CCT	GCC	CAG	CCA	TGT	GTC	CTT	GAC	CGG	GGG	216
10		AGA	GCG	ACG	GTG	GCT	ACA	TGG	ACA	TGA	GCA	AGG	ACG	252
		AGT	CGG	TGG	ACT	ATG	TGC	CCA	TGC	TGG	ACA	TGA	AAG	288
15		GAG	ACG	TCA	AAT	AGC	AGA	CAT	CGA	GTC	CTC	CAA	CTA	324
		CAT	GGC	ccc	TTA	CGA	TAA	CTA	CGT	TCC	CTC	TGC	ccc	360
20		TGA	GAG	GAC	CTG	CCG	AGC	AAC	TTT	GAT	CAA	CGA	GTC	396
20	•	TCC	AGT	GCT	AAG	CTA	CAT	GGA	CCT	CGT	GGG	CTT	CAG	432
	(CTA	CCA	GGT	GGC	CAA	TGG	CAT	GGA	GTT	CTG	GCC	TCC	468
25	i	AAG	AAC	TGC	GTC	CAC	AGA	GAC	CTG	GCG	GCT	AGG	AAC	504
	(GTC	CTT											510

- 30 (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 255 base pairs

- 40 -

(B) TYPE: nucleic acid (C) STRANDEDNESSS: single (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: 10 (A) NAME/KEY: FGF Receptor DNA (B) LOCATION: Internal sequence 15 (x) PUBLICATION INFORMATION: (A) AUTHORS: Ruta, M., et al. (B) JOURNAL: Oncogene 20 (C) VOLUME: 3 (D) PAGES: 9-15 (E) DATE: 25 1988 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: AAC CTG CTG GGG GCC TGC ACG CAG GAT GGT CCC TTG 36 30 TAT GTC ATC GTG GAG TAT GCC TCC AAG GGC AAC CTG 72 CGG GAG TAC CTG CAG ACC CGG AGG CCC CCA GGG CTG 108

GAA TAC TGC TAT AAC CCC AGC CAC AAC CCA GAG GAG

35

•

	CAG CTC TCC TCC AAG GAC CTG GTG TCC TGC GCC TAC	180
	CAG GAG GCC CGA GGC ATG GAG TAT CTG GCC TCC AAG	216
5	AAG TGC ATA CAC CGA GAC CTG GCA GCC AGG AAT GTC	252
	CTG	255
	(2) INFORMATION FOR SEQ ID NO: 7:	
LO	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 4236 base pairs	
L5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
25	ATG GAG AGC AAG GTG CTG CTG GCC GTC GCC CTG	33
	Met Glu Ser Lys Val Leu Leu Ala Val Ala Leu 1 5 10	
	TGG CTC TGC GTG GAG ACC CGG GCC GCC TCT GTG GGT	69
30	Trp Leu Cys Val Glu Thr Arg Ala Ala Ser Val Gly 15 20	
	TTG CCT AGT GTT TCT CTT GAT CTG CCC AGG CTC AGC	105
	Leu Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser	
35	25 30 35	

- 42 -

	ATA	CAA	AAA	GAC	ATA	CTT	ACA	ATT	AAG	GCT	AAT	ACA	141
	Ile	Gln	Lys	Asp	Ile	Leu	Thr	Ile	Lys	Ala	Asn	Thr	
					40					45			
5												TTG	177
	Thr	Leu	Gln	Ile	Thr	Cys	Arg	Gly	Gln	Arg	Asp	Leu	
			50					55					
				TGG									213
10	Asp	Trp	Leu	Trp	Pro		Asn	Gln	Ser	Gly		Glu	
	60					65					70		
										6 1		oma.	249
												CTC	249
	Gln	Arg	Val	Glu	Val	Thr	GIU	Cys		Asp	GTĀ	neu	
15				75					80				
		mam		ACA	OTTO	202	አጠጥ	CCA	222	GTG	АТС	GGA	285
				Thr									
	Pne	85	пур	1111	Dea	****	90		-1-			95	
20		65											
20	<u>አ</u> አጥ	GAC	ACT	GGA	GCC	TAC	AAG	TGC	TTC	TAC	CGG	GAA	321
				Gly									
				1	100	•	-	7		105			
25	ACT	GAC	TTG	GCC	TCG	GTC	ATT	TAT	GTC	TAT	GTT	CAA	357
	Thr	Asp	Leu	Ala	Ser	Val	Ile	Tyr	Val	Tyr	Val	Gln	
			110					115					
	GAT	TAC	AGA	TCT	CCA	TTT	ATT	GCT	TCT	GTT	AGT	GAC	393
30	Asp	Tyr	Arg	Ser	Pro	Phe	Ile	Ala	Ser	Val	Ser	Asp	
	120					125					130		
				GTC									429
	Gln	His	Gly	Val	Val	Tyr	Ile	Thr	Glu	Asn	Lys	Asn	
35				135					140				

	AAA	ACT	GTG	GTG	ATT	CCA	TGT	CTC	GGG	TCC	ATT	TCA	465
	Lys	Thr	Val	Val	Ile	Pro	Cys	Leu	Gly	Ser	Ile	Ser	
		145					150					155	
5	AAT	CTC	AAC	GTG	TCA	CTT	TGT	GCA	AGA	TAC	CCA	GAA	501
	Asn	Leu	Asn	Val	Ser	Leu	Cys	Ala	Arg	Tyr	Pro	Glu	
					160					165			
	AAG	AGA	TTT	GTT	CCT	GAT	GGT	AAC	AGA	ATT	TCC	TGG	537
10	Lys	Arg	Phe	Val	Pro	Asp	Gly	Asn	Arg	Ile	Ser	Trp	
			170					175					
	GAC	AGC	AAG	AAG	GGC	TTT	ACT	ATT	ccc	AGC	TAC	ATG	573
	Asp	Ser	Lys	Lys	Gly	Phe	Thr	Ile	Pro	Ser	Tyr	Met	
15	180					185					190		
	ATC	AGC	TAT	GCT	GGC	ATG	GTC	TTC	TGT	GAA	GCA	AAA	609
	Ile	Ser	Tyr	Ala	Gly	Met	Val	Phe	Cys	Glu	Ala	Lys	
				195					200				
20													
	ATT	TAA	GAT	GAA	AGT	TAC	CAG	TCT	ATT	ATG	TAC	ATA	645
	Ile	Asn	Asp	Glu	Ser	Tyr	Gln	Ser	Ile	Met	Tyr	Ile	
		205					210					215	
25	GTT	GTC	GTT	GTA	GGG	TAT	AGG	ATT	TAT	GAT	GTG	GTT	681
	Val	Val	Val	Val	Gly	Tyr	Arg	Ile	Tyr	Asp	Val	Val	
					220					225			
	CTG	AGT	CCG	TCT	CAT	GGA	ATT	GAA	CTA	TCT	GTT	GGA	717
30	Leu	Ser	Pro	Ser	His	Gly	Ile	Glu	Leu	Ser	Val	Gly	
			230					235					
	GAA	AAG	CTT	GTC	TTA	AAT	TGT	ACA	GCA	AGA	ACT	GAA	753
	Glu	Lys	Leu	Val	Leu	Asn	Cys	Thr	Ala	Arg	Thr	Glu	
35	240					245					250		

- 44 -

789		TAC											
	Pro	Tyr	Glu	Trp	Asn	Phe	Asp	Ile	Gly	Val	Asn	Leu	
				260					255				
825		AAC											5
	Arg	Asn	Val	Leu	Lys	Lys	His	Gln	His	Lys	Ser	Ser	
	275					270					265		
861	222	AAG	ልሞር	GAG	አረሞ	ccc	mem	03.C	3.00		OTT 1	63.6	
001		Lys											
	пур	цуъ	285	GIU	ser	GTĀ	Ser		THE	гув	Leu	Asp	10
			203					280					
897	CGG	ACC	GTA	GGT	GAT	ATA	ACT	TTA	ACC	AGC	TTG	TTT	
		Thr											
				-	295					290		•	15
933	AGT	TCC	GCA	GCA	TGT	ACC	TAC	TTG	GGA	CAA	GAC	AGT	
	Ser	Ser	Ala	Ala	Cys	Thr	Tyr	Leu	Gly	Gln	Asp	Ser	
		310					305					300	
													20
969	AGG	GTC	TTT	ACA	AGC	AAC	AAG	AAG	ACC	ATG	CTG	GGG	
	Arg	Val	Phe	Thr	Ser	Asn	Lys	Lys	Thr	Met	Leu	Gly	
				320					315				
1005		AGT											25
		Ser	Gly	Phe	Ala		Phe	Pro	Lys	Glu	His	Val	
	335					330					325		
1041	CGT	GAG	GGG	CTG.	ACG	GCC	GAA	CTC.	CTIC	mem	C 3 3	ATG	
												Met	30
	9	<u> </u>	345		TILL	A.L.a	GIU	340	Leu	Set	GTU	met	30
								J4U					
1077	ccc	CCA	TAC	GGT	CTT	TAC	AAG	GCG	CCT	ATC	AGA	GTC	
												Val	
			_	_	355		•		- - -	350			35
													-

												CTT	1113
	360	GIU	TTE	гÃе	Trp	365	тÃв	ASII	GIY	TTG	Pro 370	Den	
5	GAG	TCC	AAT	CAC	ACA	ATT	AAA	GCG	GGG	CAT	GTA	CTG	1149
	Glu	Ser	Asn	His 375	Thr	Ile	Lys	Ala	Gly 380	His	Val	Leu	
												AAT	1185
10	Thr	Ile 385	Met	Glu	Val	Ser	Glu 390	Arg	Asp	Thr	Gly	Asn 395	
												GAG	1221
15	Tyr	Thr	Val	Ile	Leu 400	Thr	Asn	Pro	IIE	405	Lys	Glu	
											TAT Tyr	GTC Val	1257
	тув	GTII	410	urs	AGT	Val	261	415	V CL T	Val	-1-	74	
20													
				_							TCT Ser	CCT	1293
	420	PIO	GIII	116	GIĀ	425	пла	per	Беи	116	430	110	
25	GTG	GAT	TCC	TAC	CAG	TAC	GGC	ACC	ACT	CAA	ACG	CTG	1329
	Val	Asp	Ser	Tyr 435	Gln	Tyr	Gly	Thr	Thr 440	Gln	Thr	Leu	
	ACA	TGT	ACG	GTC	TAT	GCC	ATT	CCT	ccc	CCG	CAT	CAC	1365
30	Thr	Cys 445	Thr	Val	Tyr	Ala	Ile 450	Pro	Pro	Pro	His	His 455	
												GCC	1401
35	Ile	His	Trp	Tyr	Trp 460	Gln	Leu	Glu	Glu	Glu 465	Cys	Ala	

- 46 -

												CCA	1437
	Asn	Glu	Pro	Ser	Gln	Ala	Val	Ser	Val	Thr	Asn	Pro	
			470					475					
5	TAC	CCT	TGT	GAA	GAA	TGG	AGA	AGT	GTG	GAG	GAC	TTC	1473
	Tyr	Pro	Cys	Glu	Glu	Trp	Arg	Ser	Val	Glu	qaA	Phe	
	480					485					490		
												CAA	1509
10	Gln	Gly	Gly	Asn	Lys	Ile	Glu	Val	Asn	Lys	Asn	Gln	
				495					500				
													1545
	Phe	Ala	Leu	Ile	Glu	Gly	Lys	Asn	Lys	Thr	Val		
15		505					510					515	
												TTG	1581
	Thr	Leu	Val	Ile	Gln	Ala	Ala	Asn	Val	Ser	Ala	Leu	
					520					525			
20													
												GGA	1617
	Tyr	Lys	Cys	Glu	Ala	Val	Asn	Lys	Val	Gly	Arg	Gly	
			530					535					
25												CCT	1653
	Glu	Arg	Val	Ile	Ser	Phe	His	Val	Thr	Arg	Gly	Pro	
	540					545					550		
												GAG	1689
30	Glu	Ile	Thr	Leu	Gln	Pro	Asp	Met	Gln	Pro	Thr	Glu	
				555					560				
												AGA	1725
	Gln	Glu	Ser	Val	Ser	Leu	Trp	Cys	Thr	Ala	Asp		
35		565					570					575	

		, ,	-	*										
	WO 92/14748													
												PC:	Γ/US92	2/01300
2														
								- 4	7 -					
													GGC	1761
•		Ser	Thr	Phe	Glu	Asn	Leu	Thr	Trp	Tyr	Lys	Leu	Gly	
						.580					585			
* •	_													
	5												CCC	1797
		Pro	Gln		Leu	Pro	Ile	His		Gly	Glu	Leu	Pro	
				590					595					
		303	COM	cmm	mco	330	220	mmc	CAM	3 OM	omm	mcc	AAA	1833
	10									Thr				1033
		600		•	O, D	_,_	605					610	272	
		000					000					010		
		TTG	AAT	GCC	ACC	ATG	TTC	TCT	AAT	AGC	ACA	AAT	GAC	1869
		Leu	Asn	Ala	Thr	Met	Phe	Ser	Asn	Ser	Thr	Asn	Asp	
	15				615					620			_	
		ATT	TTG	ATC	ATG	GAG	CTT	AAG	AAT	GCA	TCC	TTG	CAG	1905
		Ile	Leu	Ile	Met	Glu	Leu	Lys	Asn	Ala	Ser	Leu	Gln	
o*			625					630					635	
	20													
		GAC	CAA	GGA	GAC	TAT	GTC	TGC	CTT	GCT	CAA	GAC	AGG	1941
		Asp	Gln	Gly	Asp	_	Val	Cys	Leu	Ala	Gln	Asp	Arg	
						640					645			
	25													
	25									GTC				1977
		ьys	Thr	_	ьys	Arg	HIS	cys		Val	Arg	GIN	Leu	
				650					655					
		202	CTC	CTTA	GAG	CCT	cmc	CCA	CCC	ACG	አጥሮ	A C A	CCA	2013
	30									Thr				2013
		660	7 44			y	665					670	1	
		AAC	CTG	GAG	AAT	CAG	ACG	ACA	AGT	ATT	GGG	GAA	AGC	2049
										Ile				
	35				675					680	-			

- 48 -

	ATC	GAA	GTC	TCA	TGC	ACG	GCA	TCT	GGG	AAT	ccc	CCT	2085
												Pro	
		685			-		690					695	
5	CCA	CAG	ATC	ATG	TGG	TTT	AAA	GAT	AAT	GAG	ACC	CTT	2121
												Leu	
					700					705			
	GTA	GAA	GAC	TCA	GGC	ATT	GTA	TTG	AAG	GAT	GGG	AAC	2157
10	Val	Glu	Asp	Ser	Gly	Ile	Val	Leu	Lys	Asp	Gly	Asn	
			710					715					
	CGG	AAC	CTC	ACT	ATC	CGC	AGA	GTG	AGG	AAG	GAG	GAC	2193
	Arg	Asn	Leu	Thr	Ile	Arg	Arg	Val	Arg	Lys	Glu	Asp	
15	720					725					730		
	GAA	GGC	CTC	TAC	ACC	TGC	CAG	GCA	TGC	AGT	GTT	CTT	2229
	Glu	Gly	Leu	Tyr	Thr	Cys	Gln	Ala	Cys	Ser	Val	Leu	
				735					740				
20													
	GGC	TGT	GCA	AAA	GTG	GAG	GCA	TTT	TTC	ATA	ATA	GAA	2265
	Gly	Cys	Ala	Lys	Val	Glu	Ala	Phe	Phe	Ile	Ile	Glu	
		745					750					755	
25	GGT	GCC	CAG	GAA	AAG	ACG	AAC	TTG	GAA	ATC	ATT	TTA	2301
	Gly	Ala	Gln	Glu	Lys	Thr	Asn	Leu	Glu	Ile	Ile	Ile	
					760					765			
	CTA	GTA	GGC	ACG	ACG	GTG	ATT	GCC	ATG	TTC	TTC	TGG	2337
30	Leu	Val	Gly	Thr	Thr	Val	Ile	Ala	Met	Phe	Phe	Trp	
			770					775					
	CTA	CTT	CTT	GTC	ATC	ATC	CTA	GGG	ACC	GTT	AAG	CGG	2373
	Leu	Leu	Leu	Val	Ile	Ile	Leu	Gly	Thr	Val	Lys	Arg	
35	780					785					790		

	GCC	AAT	GGA	GGG	GAA	CTG	AAG	ACA	GGC	TAC	TTG	TCC	2409
	Ala	Asn	Gly	Gly	Glu	Leu	Lys	Thr	Gly	Tyr	Leu	Ser	
				795					800				
5	ATC	GTC	ATG	GAT	CCA	GAT	GAA	CTC	CCA	TTG	GAT	GAA	2445
	Ile	Val	Met	Asp	Pro	Asp	Glu	Leu	Pro	Leu	Asp	Glu	
		805					810					815	
	CAT	TGT	GAA	CGA	CTG	CCT	TAT	GAT	GCC	AGC	AAA	TGG	2481
10	His	Cys	Glu	Arg	Leu	Pro	Tyr	Asp	Ala	Ser	Lys	Trp	
					820					825			
								AAC					2517
	Glu	Phe		Arg	Asp	Arg	Leu	Asn	Leu	Gly	Lys	Pro	
15			830					835					
						112							
								CAA					2553
	240	GIY	Arg	GTĀ	ALG	Pne 845	GIY	Gln	GIU	TIE	850	ALG	
20	840					645					850		
	СΣΤ	GCC	mm	GGA	አ ጥጥ	GAC	AAG	ACA	GCA	λСТ	TGC	AGG	2589
								Thr					2505
	ABP	ALG		855		p	_,_	****	860		-72	••••	
25	ACA	GTA	GCA	GTC	AAA	ATG	TTG	AAA	GAA	GGA	GCA	ACA	2625
	Thr	Val	Ala	Val	Lys	Met	Leu	Lys	Glu	Gly	Ala	Thr	
		865			_		870	_		_		875	
	CAC	AGT	GAG	CAT	CGA	GCT	CTC	ATG	TCT	GAA	CTC	AAG	2661
30	His	Ser	Glu	His	Arg	Ala	Leu	Met	Ser	Glu	Leu	Lys	
					880					885			
	ATC	CTC	ATT	CAT	ATT	GGT	CAC	CAT	CTC	AAT	GTG	GTC	2697
	Ile	Leu	Ile	His	Ile	Gly	His	His	Leu	Asn	Val	Val	
35			890					895					

	AAC	CTT	CTA	GGT	GCC	TGT	ACC	AAG	CCA	GGA	GGG	CCA	2733
	Asn	Leu	Leu	Gly	Ala	Cys	Thr	Lys	Pro	Gly	Gly	Pro	
	900			_		905					910		
5	CTC	ATG	GTG	ATT	GTG	GAA	TTC	TGC	AAA	TTT	GGA	AAC	2769
	Leu	Met	Val	Ile	Val	Glu	Phe	Cys	Lys	Phe	Gly	Asn	
				915					920				
	CTG	TCC	ACT	TAC	CTG	AGG	AGC	AAG	AGA	AAT	GAA	TTT	2805
10	Leu	ser	Thr	Tyr	Leu	Arg	Ser	Lys	Arg	Asn	Glu	Phe	
		925					930					935	
	GTC	CCC	TAC	AAG	ACC	AAA	GGG	GCA	CGA	TTC	CGT	CAA	2841
	Val	Pro	Tyr	Lys	Thr	Lys	Gly	Ala	Arg	Phe	Arg	Gln	
15					940					945			
	GGG	AAA	GAC	TAC	GTT	GGA	GCA	ATC	CCT	GTG	GAT	CTG	2877
	Gly	Lys	Asp	Tyr	Val	Gly	Ala	Ile	Pro	Val	Asp	Leu	
			950					955					
20													
					GAC								2913
	Lys	Arg	Arg	Leu	Asp	Ser	Ile	Thr	Ser	Ser	Gln	ser	
	960					965					970		
25					GGA								2949
	Ser	Ala	Ser	Ser	Gly	Phe	Val	Glu		Lys	Ser	Leu	
				975					980				
					GAA								2985
30	Ser	Asp	Val	Glu	Glu	Glu	Glu	Ala	Pro	Glu	Asp	Leu	
		985					990					995	
					CTG								3021
	Tyr	Lys	Asp	Phe	Leu	Thr	Leu	Glu	His	Leu	Ile	Cys	
35					1000)				1005	i		

	TAC	AGC	TTC	CAA	GTG	GCI	AAG	GGC	ATC	GAG	TTC	TTG	3057
	Tyr	Ser	Phe	Gln	Val	Ala	Lys	Gly	Met	Glu	. Phe	Leu	
			101	0				101	.5				
5	GCA	TCG	CGA	AAG	TGT	ATC	CAC	AGG	GAC	CTG	GCG	GCA	3093
	Ala	Ser	Arg	Lys	Cys	Ile	His	Arg	Asp	Leu	ı Ala	Ala	
	102	0				102	5				103	0	
	CGA	AAT	ATC	CTC	TTA	TCG	GAG	AAG	AAC	GTG	GTT	AAA	3129
10	Arg	Asn	Ile	Leu	Leu	Ser	Glu	Lys	Asn	Val	Val	Lys	
				103	5				104	0			
													3165
	Ile	_	_	Phe	Gly	Leu	Ala	Arg	Asp	Ile	Tyr	Lys	
15		104	5				105	0				1055	
												CTC	3201
	Asp	Pro	Asp	Tyr			Lys	Gly	Asp		Arg	Leu	
20					1060)				106	5		
20	a a m	mma		maa									
												GAC	3237
	PIO	reu			Met	ATS	Pro			TTE	Phe	Asp	
			1070	,				107	•				
25	AGA	стс	ሞልሮ	ACA	ልጥሮ	CAG	ልርጥ	GAC	GTC.	TICC	ምርጥ	TTT	3273
											Ser		32/3
	1080		-1-			1089		nop	V41	115	1090		
		•					•				103	•	
	GGT	CTT	ጥጥር	стс	ጥርር	GAA	ልጥል	արդու	TCC	στητη	CCT	GCT	3309
30											Gly		3309
	1			1095	_				1100		42 3		
	TCT	CCA	TAT	CCT	GGG	GTA	AAG	ATT	GAT	GAA	GAA	TTT	3345
											Glu		
35		1105	_	_ = ~	2		1110		F			1115	

- 52 -

	TGT	AGG	CGA	TTG	AAA	GAA	GGA	ACT	AGA	ATG	AGG	GCC	3381
		Arg											
	_	_			1120					112			
5												ATG	3417
	Pro	Asp	Tyr	Thr	Thr	Pro	Glu	Met	Tyr	Gln	Thr	Met	
			1130)				1135	5				
												CCC	3453
10	Leu	Asp	Cys	Trp	His			Pro	Ser	Gln			
	1140)				1145	5				1150	,	
							411	C1.TT	mmc	CCA	3300	OTT C	3489
													3402
	Thr	Phe	Ser			Val	GIU	итв	1160		Non	Lou	
15				1155	•				1100	,			
	mmc	03 3	COM	አአጥ	GCTP	CAG	CAG	GAT	GGC	AAA	GAC	TAC	3525
		Gln											
	Ten	1165		Abii	nau		1170			•	•	1175	
20		110.											
	ماست	GTT	CTT	CCG	ATA	TCA	GAG	ACT	TTG	AGC	ATG	GAA	356]
		Val											
					1180					1185			
25	GAG	GAT	TCT	GGA	CTC	TCT	CTG	CCT	ACC	TCA	CCT	GTT	3597
	Glu	Asp	Ser	Gly	Leu	Ser	Leu	Pro	Thr	Ser	Pro	Val	
			1190)				119	5				
												AAA	3633
30	Ser	Сув	Met	Glu	Glu	Glu	Glu	Val	Cys	Asp			
	1200)				1205	5				1210)	
												TAT	3669
	Phe	His	Tyr	Asp	Asn	Thr	Ala	Gly			Gln	Tyr	
35				1215	5				1220)			

		CTG	CAG	AAC	AGT	AAG	CGA	AAG	AGC	CGG	CCT	GTG	AGT	3705
. •		Leu	Gln	Asn	Ser	Lys	Arg	Lys	Ser	Arg	Pro	Val	Ser	
			122	5				123	0				1235	
	5	GTA	AAA	ACA	TTT	GAA	GAT	ATC	CCG	TTA	GAA	GAA	CCA	3741
		Val	Lys	Thr	Phe	Glu	Asp	Ile	Pro	Leu	Glu	Glu	Pro	
						124	0				124	5		
		GAA	GTA	AAA	GTA	ATC	CCA	GAT	GAC	AAC	CAG	ACG	GAC	3777
	10	Glu	Val	Lys	Val	Ile	Pro	Asp	Asp	Asn	Gln	Thr	qaA	
				125)				125	5				
		AGT	GGT	ATG	GTT	CTT	GCC	TCA	GAA	GAG	CTG	AAA	ACT	3813
		Ser	Gly	Met	Val	Leu	Ala	Ser	Glu	Glu	Leu	Lys	Thr	
	15	1260	כ				126	5				1270)	
		TTG	GAA	GAC	AGA	ACC	AAA	TTA	TCT	CCA	TCT	TTT	GGT	3849
		Leu	Glu	Asp	Arg	Thr	Lys	Leu	Ser	Pro	Ser	Phe	Gly	
					1275	5				1280)			
	20													
		GGA	ATG	GTG	CCC	AGC	AAA	AGC	AGG	GAG	TCT	GTG	GCA	3885
		Gly	Met	Val	Pro	Ser	Lys	Ser	Arg	Glu	Ser	Val	Ala	
			1285	5				1290					1295	
	25	TCT	GAA	GGC	TCA	AAC	CAG	ACA	AGC	GGC	TAC	CAG	TCC	3921
		Ser	Glu	Gly	Ser	Asn	Gln	Thr	Ser	Gly	Tyr	Gln	Ser	
						1300)				1305	5		
		GGA	TAT	CAC	TCC	GAT	GAC	ACA	GAC	ACC	ACC	GTG	TAC	3957
	30	Gly	Tyr	His	Ser	Asp	Asp	Thr	Asp	Thr	Thr	Val	Tyr	
•				1310)				1315	i				
No. 1														
•		TCC	AGT	GAG	GAA	GCA	GAA	CTT	TTA	AAG	CTG	ATA	GAG	3993
		Ser	Ser	Glu	Glu	Ala	Glu	Leu	Leu	Lys	Leu	Ile	Glu	
	35	1320)				1325	i				1330	l .	

	ATT GGA GTG CAA ACC GGT AGC ACA GCC CAG ATT CTC 40	129
	Ile Gly Val Gln Thr Gly Ser Thr Ala Gln Ile Leu 1335 1340	
5	CAG CCT GAC ACG GGG ACC ACA CTG AGC TCT CCT 40)65
	Gln Pro Asp Thr Gly Thr Thr Leu Ser Ser Pro Pro	
	1345 1350 1353	
	GTT TAAAAGGAAG CATCCACACC CCAACTCCCG GACATCACAT 41	L08
10	Val	
	1356	
	GAGAGGTCTG CTCAGATTTT GAAGTGTTGT TCTTTCCACC 41	L48
	GAGAGGICIG CIGNATILLE	
15	AGCAGGAAGT AGCCGCATTT GATTTTCATT TCGACAACAG 41	188
	7 TOTAL TOTA	22
	AAAAAGGACC TCGGACTGCA GGGAGCCAGC TCTTCTAGGC 42	.20
	TTGTGACC 4236	
20		
	(2) INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 433 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESSS:	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
35	(ix) FEATURE:	

•		(A)	NAM	E/KE	Y:	<u>cki</u>	<u>t</u> pr	oto-	onco	gene	rec	epto	r	
•	5	(B)	LOC	ATIO	N:	Ami	no a	cids	543	- 975				
		x) Pī	JBLI(CATI	ON I	NFOR	MATI	ON:						
		(A)	AUT	HORS	:	Yard	en,	Υ.,	et a	1.				
1	0	(B)	JOU	RNAL	:	EMBO	J.							
		(C)	VOL	JME:		6								
1	5	(D)	PAGI	ES:		3341	-335	1						
		(E)	DATI	€:	198	7						,		
	(x:	i) SE	EQUE	NCE 1	DESC	RIPT	ION:	SEQ	ID :	NO:	8:			
2		Thr		Lys	Tyr	Leu	Gln		Pro	Met	Tyr	Glu		Gln
	543		545					550					555	
	Trp	Lys	Val		Glu	Glu	Ile	Asn	_	Asn	Asn	Tyr	Val	-
2	5			560					565					570
	Ile	Asp	Pro	Thr	Gln	Leu	Pro	Tyr	Asp	His	Lys	Trp	Glu	Phe
					575					580				
	Pro	Arg	Asn	Arg	Leu	Ser	Phe	Gly	Lys	Thr	Leu	Gly	Ala	Gly
3	0 585					590					595			
	Ala	Phe	Gly	Lys	Val	Val	Ala	Glu	Thr	Ala	Tyr	Gly	Leu	Ile
*		600					605					610		
3!	5 Lys	Ser .	Asp	Ala	Ala	Met	Thr	Val	Ala	Val	Lys	Met	Leu	Lys

- 56 -

			615					620					625	
	Pro l	Ser	Ala	His 630	Leu	Thr	Glu	Àrg	Gl u 635	Ala	Leu	Met	Ser	Glu 640
5	Leu :	Lys	Val	Leu	Ser 645	Tyr	Leu	Gly	Asn	His 650	Met	Asn	Ile	Val
10	Asn :	Leu	Leu	Gly	Ala	Cys 660	Thr	Ile	Gly	Gly	Pro 665	Thr	Leu	Val
	Ile '	Thr 670	Glu	Tyr	Cys	Cys	Tyr 675	Gly	Asp	Leu	Leu	Asn 680	Phe	Leu
15	Arg :	Arg	Lys 685	Arg	Asp	Ser	Phe	Ile 690	Cys	ser	Lys	Gln	Glu 695	Asp
20	His :	Ala	Glu	Ala 700	Ala	Leu	Tyr	Lys	Asn 705	Leu	Leu	His	Ser	Lys 710
20	Glu	ser	Ser	Cys	Ser 715	Asp	Ser	Thr	Asn	Glu 720	Tyr	Met	Asp	Met
25	Lys 725	Pro	Gly	Val	Ser	Tyr 730	Val	Val	Pro	Thr	Lys 735	Ala	Asp	Lys
	Arg	Arg 740	Ser	Val	Arg	Ile	Gly 745	Ser	Tyr	Ile	Glu	Arg 750	Asp	Val
30	Thr	Pro	Ala 755	Ile	Met	Glu	Asp	Asp 760	Glu	Leu	Ala	Leu	Asp 765	Let
	Glu	Asp	Leu	Leu 770	Ser	Phe	Ser	Tyr	Gln 775	Val	Lys	Gly	Met	Ala 780

	Phe	Leu	Ala	Ser	Lys 785	Asn	Cys	Ile	His	Arg 790	Asp	Leu	Ala	Ala
5	Arg 795	Asn	Ile	Leu	Leu	Thr 800	His	Gly	Arg	Ile	Thr 805	Lys	Ile	Cys
	Asp	Phe 810	Gly	Leu	Ala	Arg	Asp 815	Ile	Lys	Asn	Asp	Ser 820	Asn	Tyr
10	Val	Val	Lys 825	Gly	Asn	Ala	Arg	Leu 830	Pro	Val	Lys	Val	Met 835	Ala
15	Pro	Glu	Ser	Ile 840	Phe	Asn	Сув	Val	Tyr 845	Thr	Glu	Glu	Ser	Asp 850
	Val	Trp	Ser	Tyr	Gly 855	Ile	Phe	Leu	Trp	Glu 860	Leu	Phe	Ser	Leu
20	Gly 865	Ser	Ser	Pro	Tyr	Pro 870	Gly	Met	Pro	Val	Lys 875	Ser	Lys	Phe
	Tyr	Lys 880	Met	Ile	Lys	Glu	Gly 885	Phe	Arg	Met	Leu	Ser 890	Pro	Glu
25	His	Ala	Pro 895	Ala	Glu	Met	Tyr	As p 900	Ile	Met	Lys	Thr	Cys 905	Trp
30	Asp	Ala	Asp	Pro 910	Leu	Lys	Arg	Pro	Thr 915	Phe	Lys	Gln	Ile	Val 920
	Gln	Leu	Ile	Glu 92	-	Gln	Ile	ser	Glu 93		Thr	Asn	His	Ile
35	Tyr 935	Ser	Asn	Leu		Asn 940	Cys	Ser	Pro		Arg 945	Gln	Lys	Pro

PCT/US92/01300 WO 92/14748

- 58 -

	Val Val Asp His Ser Val Arg Ile Asn Ser Val Gly Ser Thr 950 955 960
5	Ala Ser Ser Ser Gln Pro Leu Leu Val His Asp Asp Val 965 970 975
	(2) INFORMATION FOR SEQ ID NO: 9:
	(i) SEQUENCE CHARACTERISTICS:
10	(A) LENGTH: 437 amino acids
	(B) TYPE: amino acid
15	(C) STRANDEDNESSS:
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
20	(ix) FEATURE:
	(A) NAME/KEY: CSF-1 receptor
25	(B) LOCATION: Amino acids 536-972
	(x) PUBLICATION INFORMATION:
30	(A) AUTHORS: Coussens, L., et al.
30	(B) JOURNAL: Nature
	(C) VOLUME: 320
35	(D) PAGES: 277-280

/=\	DAME.

5	(x	i) S	EQUE	NCE :	DESC	RIPT	ION:	SEQ	ID:	NO:	9:			
	Leu 536	Leu	Tyr	Lys	Tyr 540	Lys	Gln	Lys	Pro	Lys 545	Tyr	Gln	Val	Arg
10	Trp 550	Lys	Ile	Ile	Glu	Ser 555	Tyr	Glu	Gly	Asn	Ser 560	Tyr	Thr	Phe
15	Ile	Asp 565	Pro	Thr	Gln	Leu	Pro 570	Tyr	Asn	Glu	Lys	Trp 575	Glu	Phe
	Pro	Arg	Asn 580	Asn	Leu	Gln	Phe	Gly 585	Lys	Thr	Leu	Gly	Ala 590	Gly
20	Ala	Phe	Gly	Lys 595	Val	Val	Glu	Ala	Thr 600	Ala	Phe	Gly	Leu	Gly 605
	Lys	Glu	Asp	Ala	Val 610	Leu	Lys	Val	Ala	Val 615	Lys	Met	Leu	Lys
25	Ser 620	Thr	Ala	His	Ala	Asp 625	Glu	Lys	Glu	Ala	Leu 630	Met	Ser	Glu
30	Leu	Lys 635	Ile	Met	Ser	His	Leu 640	Gly	Gln	His	Glu	Asn 645	Ile	Val
	Asn	Leu	Leu 650	Gly	Ala	Cys	Thr	His 655	Gly	Gly	Pro	Val	Leu 660	Val
35	Ile	Thr	Glu	Tyr 665	Cys	Cys	Tyr	Gly	Asp 670	Leu	Leu	Asn	Phe	Leu 675

- 60 -

	Arg	Arg	Lys	Ala	Glu 680		Met	Leu	Gly	Pro 685	Ser	Leu	Ser	Pro
5	Gly 690		Asp	Pro	Glu	Gly 695		Val	Asp	Tyr	Lys 700	Asn	Ile	His
	Leu	Glu 705	_	Lys	Tyr	Val	Arg 710	Arg	Asp	Ser	Gly	Phe 715	Ser	Ser
10	Gln	Gly	Val 720	Asp	Thr	Tyr	Val	Glu 725	Met	Arg	Pro	Val	Ser 730	Thr
15	Ser	Ser	Asn	Asp 735	Ser	Phe	Ser	Glu	Gln 740	Asp	Leu	Asp	Lys	Gl u 745
15	Asp	Gly	Arg	Pro	Leu 750	Glu	Leu	Arg	Asp	Leu 755	Leu	His	Phe	Ser
20	Ser 760	Gln	Val	Ala	Gln	Gly 765	Met	Ala	Phe	Leu	Ala 770	Ser	Lys	Asn
	Cys	Ile 775	His	Arg	Asp	Val	Ala 780	Ala	Arg	Asn	Val	Leu 785	Leu	Thr
25	Asn	Gly	His 790	Val	Ala	Lys	Ile	Gly 795	Asp	Phe	Gly	Leu	Ala 800	Arg
	Asp	Ile	Met	Asn 805	Asp	Ser	Asn	Tyr	Ile 810	Val	Lys	Gly	Asn	Ala 815
30	Arg	Leu	Pro	Val	Lys 820	Trp	Met	Ala		Glu 825	Ser	Ile	Phe	Asp
35	Cys 830	Val	Tyr	Thr	Val	Gln 835	Ser	Asp	Val		Ser 840	Tyr	Gly	Ile

	Leu	Leu 845	Trp	Glu	Ile	Phe	Ser 850	Leu	Gly	Leu	Asn	Pro 855	Tyr	Pro
5	Gly	Ile	Leu 860	Val	Asn	Ser	Lys	Phe 865	Tyr	Lys	Leu	Val	Lys 870	Asp
	Gly	Tyr	Gln	Met 875	Ala	Gln	Pro	Ala	Phe 880	Ala	Pro	Lys	Asn	Ile 885
10	Tyr	Ser	Ile	Met	Gl n 890	Ala	Cys	Trp	Ala	Leu 895	Glu	Pro	Thr	His
15	Arg 900	Pro	Thr	Phe	Gln	Gln 905	Ile	Cys	Ser	Phe	Leu 910	Gln	Glu	Glr
	Ala	Gln 915	Glu	Asp	Arg	Arg	Glu 920	Arg	Asp	Tyr	Thr	Asn 925	Leu	Pro
20	Ser	Ser	Ser 930	Arg	Ser	Gly	Gly	Ser 935	Gly	ser	Ser	ser	Ser 940	Glu
	Leu	Glu	Glu	Glu 945	Ser	Ser	Ser	G1u	His 950	Leu	Thr	Cys	Cys	Glu 955
25	Gln	Gly	Asp	Ile	Ala 960	Gln	Pro	Leu	Leu	Gln 965	Pro	Asn	Asn	Tyr
30	Gln 970	Phe	Cys											
30	(2)			ATION JENCE										
35				ENGTE				no ac						
			,											

- 62 -

(B) TYPE: amino acid (C) STRANDEDNESSS: 5 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 10 (ix) FEATURE: (A) NAME/KEY: PDGF receptor (B) LOCATION: Amino acids 522-1087 15 (x) PUBLICATION INFORMATION: (A) AUTHORS: Gronwald, R., et al. (B) JOURNAL: Proc. Natl. Acad. Sci. 20 (C) VOLUME: 85 (D) PAGES: 3435-3439 25 1988 (E) DATE: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: Met Leu Trp Gln Lys Lys Pro Arg Tyr Glu Ile Arg Trp Lys 30 535 530 522 525

Val Ile Glu Ser Val Ser Ser Asp Gly His Glu Tyr Ile Tyr

540

	WO 92/14	1748											PCT/	US92/	0120 0
													1 (17	03721	01300
								- 6	53 -						
				_	0.43		_								
				Pro	Val	Glr			Туг	Asp	Ser		-	Glu	Leu
•		550)				555	i				560)		
		Pro			Gln	Leu	Val			Arg	Thr	Let	Gly	Ser	Gly
	5		565					570)				575		
		Ala	Phe	Gly	Gln	Val	Val	Glu	Ala	Thr	Ala	His	Gly	Leu	Ser
				580					585					590	
	10	His	Ser	Gln	Ala	Thr	Met	Lys	Val	Ala	Val	Lys	Met	Leu	Lys
					595					600					605
		Ser	·Thr	Ala	Arg	Ser	Ser	Glu	Lys	Gln	Ser	Leu	Met	Ser	Glu
						610					615				
	15														
		Leu	Lys	Ile	Met	Ser	His	Leu	Gly	Pro	His	Leu	Asn	Val	Val
		620					625					630			
		Asn		Leu	Gly	Ala	Cys	Thr	Lys	Gly	Gly	Pro	Ile	Tyr	Ile
	20		635					640					645		
		Ile	Thr		Tyr	Сув	Arg	Tyr	Gly	Asp	Leu	Val	Asp	Tyr	Leu
				650					655					660	
	25	His	Arg	Asn		His	Thr	Phe	Leu		Arg	His	Ser	Asn	Lys
					665					670					675
		His	Cys	Pro	Pro	Ser	Ala	Glu	Leu	Tyr	Ser	Asn	Ala	Leu	Pro
						680					685				
S.	30														
		Val	Gly	Phe	Ser	Leu	Pro	Ser	His	Leu	Asn	Leu	Thr	Gly	Glu
		690					695					700			
		Ser	Asp	Gly	Gly	Tyr	Met	Asp	Met	Ser	Lys	Asp	Glu	Ser	Ile
	35		705					710					715		

	Ası	туг	720		Met	: Le	ı Asj	725	_	Gly	/ As <u>r</u>	Ile	730	Tyr
5	Ala	a Asp	Ile	735		Pro	Sei	ту1	740		Pro	Tyr	Asp	Asn 745
	Туг	· Val	Pro	Ser	750		Glu	a Arg	J Thr	Tyr 755	_	r Ala	Thr	Leu
10	Ile 760		Asp	Ser	Pro	Val 765		. Ser	Tyr	Thr	Asp 770		. Val	Gly
3.5	Phe	Ser 775	Tyr	Gln	Val	Ala	Asn 780	_	Met	Asp	Phe	Leu 785	Ala	Ser
15	Lys	Asn	Cys 790	Val	His	Arg	Asp	Leu 795		Ala	Arg	Asn	Val 800	Leu
20	Ile	Cys	Glu	Gly 805	Lys	Leu	Val	Lys	Ile 810	Cys	Asp	Phe	Gly	Phe 815
	Ala	Arg	Asp	Ile	Met 820	Arg	Asp	Ser	Asn	Tyr 825	Ile	Ser	Lys	Gly
25	Ser 830	Thr	Tyr	Leu	Pro	Leu 835	Lys	Trp	Met	Ala	Pro 840	Glu	Ser	Ile
30	Phe	Asn 845	Ser	Leu	Tyr	Thr	Thr 850	Leu	Ser	Asp	Val	Trp 855	Ser	Phe
	Gly		Leu 860	Leu	Trp	Glu	Ile	Phe 865	Thr	Leu	Gly	_	Thr 870	Pro
35	Tyr	Pro	Glu	Leu 875	Pro	Met	Asn	Asp	Gln 880	Phe	Tyr	Asn		Ile 885

	Lys Ar	g Gly Tyr	Arg Met 2 890	Ala Gln Pro	Ala His 895	Ala Ser Asp
5	Glu II 900	e Tyr Glu	Ile Met (Gln Lys Cys	Trp Glu 910	Glu Lys Phe
	Glu Th	•		Ser Gln Leu 920	Val Leu	Leu Leu Glu 925
10	Arg Le	u Leu Gly 930	Glu Gly	Tyr Lys Lys 935	Lys Tyr	Gln Gln Val 940
16	Asp Gl	u Glu Phe 945	Leu Arg S	Ser Asp His 950		Ile Leu Arg 955
15	Ser Gli	n Ala Arg	Phe Pro 0	Gly Ile His	Ser Leu 965	Arg Ser Pro
20	Leu Ası	Thr Ser	Ser Val I	Leu Tyr Thr	Ala Val 980	Gln Pro Asn
	Glu Ser	_		Ile Ile Pro 990	Leu Pro	Asp Pro Lys 995
25	Pro Asp	Val Ala	Asp Glu G	Gly Leu Pro 1005	Glu Gly	Ser Pro Ser 1010
30	Leu Ala	Ser Ser		Asn Glu Val		Ser Ser Thr 1025
J 0	Ile Ser	Cys Asp	Ser Pro I 1030	Leu Glu Leu	Gln Glu 1035	Glu Pro Gln
35	Gln Ala 1040	Glu Pro	Glu Ala G 1045	iln Leu Glu	Gln Pro 1050	Gln Asp Ser

	Gly Cys Pro Gly Pro Leu Ala Glu Ala Glu Asp Ser Phe Leu 1055 1060 1065
5	Glu Gln Pro Gln Asp Ser Gly Cys Pro Gly Pro Leu Ala Glu 1070 1075 1080
	Ala Glu Asp Ser Phe Leu 1085
10	(2) INFORMATION FOR SEQ ID NO: 11:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 16 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
20	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
	TCGACGCGCG ATG GAG 16

We claim:

- 1. An isolated DNA sequence encoding the Kinase insert Domain containing Receptor.
- 2. The DNA sequence of Claim 1 wherein said sequence is a human gene.
- 3. An isolated DNA sequence comprising a DNA sequence capable of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.
- 4. A method for the production of a growth factor receptor which comprises transforming a host cell with the DNA sequence of Claim 3 and culturing the host cell under conditions which result in expression of the gene by an expression vector.
- 5. The method of Claim 4 wherein the host cell is a bacteria, virus, yeast, insect or mammalian cell line.
- 6. The method of Claim 5 wherein the host cell is a COS-1 cell, NIH3T3 fibroblast or CMT-3 monkey kidney cell.
- 7. The method of Claim 5 where the expression vector is pcDNAltkpASP expression vector.
- 8. A lambda gtll phage harboring the clone BTIII081.8 (ATCC accession number 40,931) or the clone BTIII129.5 (ATCC Accession number 40,975).
- 9. A plasmid pBlueScript KS which contains the clone BTIV169 (ATCC accession number 75200).
- 10. An isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
- 11. The receptor of Claim 10 comprising the amino acid sequence of Figure 7.
- 12. The receptor of Claim 10 encoded by an isolated DNA sequence comprising a DNA sequence capable

10

5

15

20

25

35

- 68 -

of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.

- 13. A biologically active protein fragment which retains the receptor activity of the receptor of Claim 10.
- 14. An isolated DNA sequence encoding a biologically active protein fragment which retains the receptor activity of an isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
- 15. An oligonuclectide primer consisting of an oligonuclectide primer having 21 bases and having a sequence depicted for Primer 1 in Figure 2.
- 16. An oligonucleotide primer consisting of an oligonucleotide primer having 29 bases and having a sequence depicted for Primer 2 in Figure 2.
- 17. The 363 base pair product having the sequence depicted in Figure 4, or a biological equivalent of said sequence.

20

5

10

15

25

FIG. 1

SUBSTITUTE SHEET

⁻16.2

AAC CTG TTG GGG GCC TGC ACC T A T A T A C A C G	GTCGAC AAC CTG TTG GGG GCC TGC AAC T A		CAC AGA GAC CTG GCG GCT AGG AAC GTG CT T GA C A T A C G G A GC C T C C C T C	CAC AGA GAC CTG GCC GCT AGI AAC GTG CT C T C T	GAATIC AG CAC GTT ICT AGC CGC CAG GTC TCT GTG T G T
RECEPTOR PDGF CK1† CSF FGF	PRIMER 1	PRIMER 2 RECEPTOR	PDGF CSF FGF	CONSENSUS	PRIMER 2

FIG. 3

SUBSTITUTE SHEET

OOOPOPOFOFFCCAGATAGTTA A H H A G A C C C C C \Box DHHUUUDHHE & 044400---- $A + O O O O O D + O A A \vdash$ ACCHCHCACAA ACOCOHODOA 04000044-0-0 L 4 5 L L C J L C \vdash \forall \forall \forall \forall \forall \forall \vdash \vdash \vdash AACOCOCOCOOPGGO+OGPPGP $O \times O O O O \times C + F + F \times C$ PUPPPCUPPPC **♥∪♥∪∪♥♥∪∪⊢♥∪** ACHCACHCACA

FIG.4A

 $O \vdash \vdash O \cup \vdash O \vdash A$ D A C C A C F A \vdash $A \vdash D \cup D \vdash A \vdash$ U - - < U U - U 0|4 ⊢ 5 0 0 5 5 U C C C - - - D - | C U C + > C C + C C A - G G C A C A **∪**⊢७∪**∢**∪७७ A A D C C A P

FIG. 4B

10v 20v 30v 40v 50v 60v 70v 80v 90v 100v AACCTGTGGGGGCCTGCACCAAAGGAGGACCATCTATATCATCATCACTGAGTACTGCGCTACGGAGACCTGGTGGACTACCTGCACCAACA TGC T GGA ACCTG TACCTG GCAA A		GGA CTAC GGAAAGACTACGTTGG 90^ 100	190v 200v 210v 220v 230v 240v 250v 260v 260v 250v 260v 250v 250v 260v 250v 260v 250v 260v 260v 260v 260v 260v 260v 260v 26	TCTGAAACGGCGCTTGGACAGCATCACCAGTAGCCAGAGCTC	300v 310v 320v 330v 340v 350v 360v 370v ICAAATAGCAGACTCCCTCTGCCCTTAGGAGGACCT CCAACTGGCCCTTACGATAACTACGTTCCCTCTGGCCCTTGAGAGGACCT CCTTCCCTCTGGCCCTTGAGAGGACCT CCTTCCCTCTGAGAGGACCTCCTTACGATAACTACGTTCCTTGCCTTGAGAGGACCTCCTTACGATAACTACGTTCCTTGCCTTGAGAGGACCTCCTTAAATAACTACGTTCCTTGCCTTGAGAGGACCTCCTTAAAATAACTAAC	:1uAAGAT	390v 400v 410v 420V 430V 440v 450v 460v TGATCAACGAGTCTCCAGTGCTAAGCTACATGGAC——CTGGTGGGTTCAGCTACAGGTGGCCATGGAGTTCTGGC TGGA CTC G T CAGCT CLA GTGG A GCCATGGAGTTCT G	TCCTGACCTTGGAGCAT	49UV 500V 510V CACAGAGACCTGGCGGCTAGGAACGTGCTT ACAGAGACTTGGC GC AGGAACTTGGT	GIGIATCCACAGAGCCAGCCAGCAACGTGCT 320° 330° 340° FIG. 5A
10v Aacctgtgggg	A	GAAATGAATTT(50^	, 191 TGGCTCCCCC TGG	TGGATCTGAAA(120^	v 29(GGACATGAAAG(GGA G	1220°	v 39(CAACTTTGATCA ACTT	8	48UV TGCG-TCCACAC TCCACAC	GTGTATCCACAC 320^
PDGF	PDGF	360 bp	St.	360 bp	ë Tite s	360 kp	PDGF	360 kp	PDGF	360 bp
					O					

FIG. 5E

SUBSTITUTE SHEET

		and the second second		
	WO 92/14748			PCT/US92/01300
			8/28	
	CGG Arg>	ATA Ile>	AGG Arg> CAA Gln>	270 * ATT Ile> ACT Thr>
* •	50 * ; ACC	AGC A	TGC CYS CYS GAG GIU	CTC ACA I Leu Thr 320 * CGG GAA I
**	GAG G1u	100 * G CTC g Leu	ACT Thr [210 * AGT Ser	CTC Leu 3 3 CGG
, 10	GTG Val	1(AGG Arg	ATT Ile GGC Gly	60 * ACA Thr TAC
	40 TGC Cys		150 * CAA Gln AGT	vAG
	CTC	CTG	140 *	250 CTC TTC TGT A Leu Phe Cys 1 31C TAC AAG TGC 7 TYE LYS CYS E
	TGG Trp	90 * GAT ASP	ACT Thr 2 * AAT ASD	250 c TTC u Phe C AAG r Lys
	CTG	CTT	* * * * * * * * * * * * * * * * * * *	25 CTC Leu Leu TAC
	30 * GCC Ala	TCT Ser	* GCT AAT Ala Asn 190 * TGG CCC	666 61y 300 * 6600 Ala
	GTC Val	80 * GTT Val	GCT Ala 19 TGG Trp	GAT ASP GGA G1y
	GCC	AGT	130 * T AAG E Lys G CTT P Leu	GAG TGC AGC Glu Cys Ser 290 * * * AAT GAC ACT ASN ASP Thr
	20 * CTG Leu	22 7	AI II TG	TGC Cys 290 * GAC Asp
	CTG	70 * GGT TTG Gly Leu	ACA Thr 180 * GAC Asp	
	GTG Val		120 * ATA CTT Ile Leu GAC TTG	230 GTG ACT Val Thr 10 * ATC GGA Ile Gly
	10 * AGC AAG Ser Lys		120 * ATA Ile Ile GAC Asp	26 GTG 280 ** ** ** ** ** ** ** ** ** ** ** ** **
	1 AGC Ser	60 * GCC GCC TCT Ala Ala Ser	GAC Asp 170 * AGG Arg	GAG Glu 2a GTG Val
	ATG GAG	60 * GCC Ala	(10 CAA AAA GIN Lys 7 17 16 GGA CAG 7 GIY GIN 7	20 * GTG Val AAA Lys
	ATG Met	GCC Ala	CAA AAA GAC AGIN LYS ASP 170 4 4 GGA CAG AGG GG CG C	220 AGG GTG GAG GATG Val Glu V CCA AAA GTG A Pro Lys Val I
		·	1-1	220 2 AGG GTG GAG GTG ALG VAI GLU VAI 280 CCA AAA GTG ATC CCA AAA GTG ATC CCA AAA GTG ATC
				.1 G.
				يا.

SUBSTITUTE SHEET

	_ ^	- ☆	٢	540 ** ** ** ** ** ** ** ** ** ** ** ** **	., △	
	ATT Ile>	430 * * AAC AAA ASN LYS>	rgr Cys>		GTC Val>	GTT Val>
	TTT Phe	430 * * AAC AAA ASN LYS>	CTT Leu [TGG Trp	590 * GGC ATG Gly Met	ATA Ile
370	CCA Pro	aaa Lys	480 * TCA Ser	TCC	5 660 61y	10 * TAC Tyr
m	TCT CCA	AAC	GTG Val	530 * ATT Ile	GCT Ala	640 * ATG TAC / Met Tyr]
	AGA Arg	420 * GAG Glu	* AAC Asn	5 Aga Arg	0 * TAT Tyr	ATT Ile
	TAC Tyr	ACT Thr	470 * CTC Leu	AAC Asn	580 * AGC TAT GCT Ser Tyr Ala	TCT ATT ?
360	GAT Asp	ATT [1e	470 * TCA AAT CTC Ser Asn Leu	:0 * GGT G1y	ATC Ile	630 * CAG Gln
	CAA G1n	410 * TAC TYE	TCA	520 GAT GGT AAC AGA ATT ASP Gly ASN ARG Ile	ATG ATC A	TAC
	GTT	GTG Val	460 * TCC ATT : Ser ile 9	CCT	570 * TAC Tyr	620 * GAT GAA AGT Asp Glu Ser
350	TAT	;TC	46 TCC Ser	GTT	AGC	620 * GAA Glu
•	GTC Val	400 * T GGA S Gly	3GG 31 y	510 * TTT Phe	CCC	6 GAT ASP
	TAT	S H	CTC	AAG AGA T	560 * ATT Ile	610 * AAA ATT AAT Lys Ile Asn
340	ATT 11e	CAA	450 * TGT Cys	AAG Lys	ACT	.0 * ATT Ile
- Č	GTC ATT Val 11e	GAC Asp	450 * CCA TGT CTC (Pro Cys Leu (500 * CCA GAA Pro Glu	TTT	610 * AAA AT Lys IT
	TCG Ser	390 * AGT Ser	440 * GTG ATT Val Ile		550 * AAG GGC 7 Lys Gly 1	GCA
	GCC Ala	GTT Val	440 * GTG Val	TAC	55 AAG Lys	GAA
330	rrg Leu	TCT Ser	GTG Val	490 * GCA AGA Ala Arg	AAG Lys	600 TGT Cys
	GAC Asp	380 * GCT Ala	ACT	4 <u>5</u> GCA Ala	AGC	TTC Phe
						78

F16. 7B

		_		10/28		
700	GGA ATT Gly Ile>	CTA Leu>	810 * AAG Lys>	860 * ¢ G ATG AAG AAA TTT A U Met Lys Lys Phe>	ACC Thr>	970 * AGG GTC Arg Val>
7(GAA G1u	CAT H1s	860 * AAA Lys	TAC	9. AGG Arg
	CAT	750 * ACT Thr	CAG G1n	AAG Lys	910 * GGA TTG Gly Leu	GTC
	TCT	AGA Arg	800 * AAG CAT Lys His	850 * AGT GAG ATG Ser Glu Met	91 GGA G1y	rrr Phe
¢ 069	CCG	GCA	AAG Lys	850 * AGT GAG Ser Glu	CAA Gln	960 * ACA Thr
	AGT	740 * ACA] Thr	TCG		GAC	AGC
	CTG	* AAT TGT A ASD CYS T	790 * CCT TCT Pro Ser	GGG G1.y	900 * AGT Ser	* AAC Asn
089 *	GTT Val	* AAT Asn		TCT Ser	CGG	950 * AAG AAG I
_	GTG	730 * C TTA 1 Leu	TAC	840 * CAG Gln	ACC	AAG Lys
	GAT Asp	GT	GAA Glu	ACC Thr	890 * GGT GTA ?	ACC Thr
670	ATT TAT Ile Tyr	CTT	780 * TGG Trp	AAA Lys	s GGT Gly	10 * ATG Met
9	ATT 11e	720 * GAA AAG Glu Lys	AAC Asn	830 * GAC CTA Asp Leu	880 * ACT ATA GAT Thr Ile Asp	940 * CTG ATG / Leu Met 1
	AGG		TTC	GAC Asp	00 * ATA Ile	666 61y
	TAT Tyr	GGA G1y	770 * ATT GAC Ile ASP	CGA		AGT Ser
, 099	666 G1y	GTT Val	7 ATT Ile	820 * GTA AAC Val Asn	TTA	930 * TCC Ser
	GTA Val	710 * TCT Ser	666 61y		ACC	GCA
	GTT Val	CTA	760 * AAT GTG ASn Val	CTT Leu	870 * AGC Ser	GCA
650	GTC Val	GAA	760 * AAT GTG Asn Val	AAA Lys	TTG	920 * TGT Cys
						20

SUBSTITUTE SHEET

^	. ^	. ^	11/28 . 1	. ^	^
GCC	1080 * CCA	AAA Lys	TAC	10 * TCT Ser	GTG Val
GAA Glu	1080 * CCC CCA Pro Pro>	1130 * A ATT AAA K Ile Lys>	* AAT Asn	1240 * GTC TCT Val Ser>	CCT GTG Pro Val>
1020 * GTG GAA GCC Val Glu Ala>	1080 * CCA CCC CCA Pro Pro Pro	11 ACA Thr	0 * GGA G1y	GTG Val	1290 * : TCT
TCTG		1130 * CAC ACA ATT AAA His Thr Ile Lys	1180 * ACA GG Thr GJ	CAT	ATC I
TCT	1070 * GGT TAC Gly Ty1		GAC	1230 * AGC Ser	CTA
1010 * G GAA tt Glu	CTT	1120 * TCC AAT Ser Asn	AGA	CAG Gln	1280 * A TCT 'S Ser
1010 * * * * * * * * * * * * * * * * * * *	GGG GAG CGT GTC AGA ATC CCT GCG AAG TAC CTT GGT TAC GIY Glu Arg Val Arg Ile Pro Ala Lys Tyr Leu Gly Tyr	1100 TAT AAA AAT GGA ATA CCC CTT GAG TYr Lys Asn Gly Ile Pro Leu Glu	1150 1160 1170 1180 * * * * * CTG ACG ATT ATG GAA GTG AGT GAA AGA GAC ACA GGA AAT TAC Leu Thr Ile Met Glu Val Ser Glu Arg Asp Thr Gly Asn Tyr>	1200 1210 1220 1230 1240 * * * * * * * * * * * * * * * * * * *	1250 1260 1270 1280 1290
66C 61y	1060 * AAG TA Lys Ty	CTT	1 AGT Ser	1220 * G GAG	GAG
0 * AGT Ser	GCG Ala	1110 * CCC Pro	GTG Va1	12 AAG Lys	0 * GGT Gly
1000 * GGA AGT Gly Ser	CCT	1 ATA Ile	1160 * :G GAA	TCA	1270 * ATT GC Ile GJ
990 * GTT GCT TTT Val Ala Phe	1050 * GTC AGA ATC Val Arg Ile	GGA G1y	11 ATG Met	0 * ATT Ile	CAG Gln
GCT	AGA Arg	1100 * IA AAT 'S ASD	ATT Ile	1210 * CCC AT Pro I1	CCC
990 * GTT Val	GTC	1100 * TAT AAA AAT TYE LYS ASD	0 * ACG Thr	AAT Asn	1260 * CCA Pro
980 * CAT GAA AAA CCT TTT His Glu Lys Pro Phe	1040 * GGG GAG CGT Gly Glu Arg		1150 * CTG A(Leu T	ACC	1 GTC Val
CCT	10 GAG Glu	1090 * AAA TGG Lys Trp	GTA	1200 * CTT Leu	TAT Tyr
980 * GAA AAA Glu Lys		1090 * AAA TC Lys Tr	CAT H1s	ATC Ile	1250 * T GTG
GAA Glu	1030 * ACG GTG Thr Val	1090 * GAA ATA AAA TGG Glu Ile Lys Trp	1140 * GGG Gly	GTC Val	12 GTT Val
CAT	1030 * ACG GJ Thr V?	GAA Glu	GCG Ala	1190 * ACT Thr	CTG
				11	70
					F16.7D
		_			LL_

SUBSTITUTE SHEET

5 ° 2 ′	1300 * GAT TCC		1310 * CAG TP	1310 * CAG TAC (38C	ACC	1320 * GGC ACC ACT	CAA	CAA ACG	1330 CTG ACA	O ACA	TGT	13 ACG	1340 TGT ACG GTC TAT	TAT	ا ودد	1350 * GCC ATT
ASP	ser	1yr G 1360 *	60 *	1 y r	; 1. €1.	y Thr 1370	Thr	u 15	Thr 1380	Leu	Thr	Cysl Th 1390	Thr 30 *	Val	Tyr 1,	r Ala 1400 *	Ile>
CCT Pro	CCC		CCG CAT Pro His	CAC	ATC 11e	CAC	TGG Trp	TAT Tyr	TGG Trp	CAG Gln	TTG Leu	GAG Glu	GAA G1u	GAG Glu	TGC	GCC Ala	CAC ATC CAC TGG TAT TGG CAG TTG GAG GAA GAG TGC GCC AAC His Ile His Trp Tyr Trp Gln Leu Glu Glu Glu <mark>Cys</mark> Ala Asn>
_	1410			1420	20 *		1,	1430			1440			1450	¥ 20		
GAG Glu	GAG CCC AGC Glu Pro Ser	AGC Ser	CAA Gln	CAA GCT GTC Gln Ala Val	GCT GTC Ala Val	TCA	TCA GTG ACA AAC CCA TAC CCT TGT GAA GAA Ser Val Thr Asn Pro Tyr Pro Cys Glu Glu	ACA Thr	AAC	CCA Pro	TAC Tyr	CCT Pro	TGT	GAA	GAA		TGG AGA Trp Arg>
1460		, ,	1470 *			1480	80		1,	1490		1-1	1500			15.	1510
AGT Ser	GTG Val		GAG GAC Glu Asp		TTC CAG Phe Gln		GGA GGA AAT AAA ATT Gly Gly Asn Lys Ile	AAT Asn	AAA Lys	ATT Ile	GAA	GAA GIT AAI AAA AAI Glu Val Asn Lys Asn	AAT Asn	GTT AAT AAA AAT Val Asn Lys Asn	AAT	CAA Gln	CAA TTT & Gln Phe>
	7	1520		-	1530	k		1540	40		11	1550		• •	1560		
j–, ro	GCT CTA ATT Ala Leu Ile	ATT 11e	GAA Glu	GGA G1y	AAA Lys	AAC Asn	GGA AAA AAC AAA ACT GTA AGT ACC CTT GTT ATC CAA GCG GCA Gly Lys Asn Lys Thr Val Ser Thr Leu Val Ile Gln Ala Ala	ACT Thr	GTA Val	AGT Ser	ACC Thr	CTT	GTT Val	ATC Ile	CAA Gln	GCG	GCA Ala>
1570	0,4		ij	1580		• •	1590			1600	00 *		1	1610			1620
AAT Asn	GTG Val	TCA	GCT Ala	TTG	TAC Tyr	AAA Lys	GCT TTG TAC AAA TGT GAA Ala Leu Tyr Lys Cys Glu	GAA Glu	GCG	GTC Val	GTC AAC AAA GTC GGG AGA GGA GAG Val Asn Lys Val Gly Arg Gly Glu	GTC AAC AAA GTC GGG AGA Val Asn Lys Val Gly Arg	GTC Val	666 G1y	AGA	GGA Glv	GGA GAG

F16. 7E

W	O 92/1	4748								PCT/U	JS92/01	300
							.41.	٠.				
		GAC Asp>		TCT Ser>	30	CAT His>	13/2	TTG Leu>	1890	AAG Lys>		AAG Lys>
	1670	TTG CAA CCT GAC Leu Gln Pro Asp		GCA GAC AGA Ala Asp Arg	1780	CAG CCT CTG CCA ATC CAT Gln Pro Leu Pro Ile His		AAA Lys		GAG CTT AAG Glu Leu Lys	1940	CAA GAC AGG AAG Gln Asp Arg Lys:
* * *	H	CAA Gln	1720	GCA GAC Ala Asp		CCT CTG CCA Pro Leu Pro	1.830	TGG		GAG G1u	÷	GAC
			17	GCA Ala		CTG		CTT	1880	TTG ATC ATG Leu Ile Met		CAA Gln
	1660	ATT ACT Ile Thr		ACT Thr	1770	CCT		ACT	 i	ATC Ile	1930	CTT GCT Leu Ala
	16	ACC AGG GGT CCT GAA ATT ACT Thr Arg Gly Pro Glu Ile Thr		TCT TTG TGG TGC Ser Leu Trp Cys		AAG CTT GGC CCA CAG Lys Leu Gly Pro Gln	1820	CCT GTT TGC AAG AAC TTG GAT Pro Val Cys Lys Asn Leu Asp		TTG	19	CTT
		ACC AGG GGT CCT GAA Thr Arg Gly Pro Glu	1710	reg rrb		CTT GGC CCA Leu Gly Pro	-	TTG	1870	ACA AAT GAC ATT Thr Asn Asp Ile		: TGC Cys
	~ +	r CCI		TTG	1760	. GGC		AAC Asn	18	GAC Asp		TAT GTC Tyr Val
	1650	3 GGT 9 G13				CTT Leu	1810	AAG Juys		AAAT : Asr	1920	GAC TAT GTC Asp Tyr Val
		C AG	1700	AGC GTG Ser Val		AAG	16		~ +	ACA		
				G AGG	1750	TGG TAC Trp Tyr		r Grr 5 Val	1860 *	AAT AGC Asn Ser		A GGA n Gly
	1640 *	CAC GTG His Val		GAG CAG GAG AGC GTG Glu Gln Glu Ser Val	7		O *	CCC ACA CCT GTT Pro Thr Pro Val	*	r Aar	1910	GAC CAA GGA Asp Gln Gly
		C CA e Hi	1690	GAG CAG Glu Gln		c ACA u Thr	1800	C ACA		c TCT		G GA(
		C TTC			0	c crc		G CCC u Pro	1850	ACC ATG TTC Thr Met Phe		G CAG u Gln
	1630	ATC TCC 11e Ser		AIG CAG CCC ACT Met Gln Pro Thr	1740 *	GAG AAC Glu Asn		G TTG u Leu		c ATG r Met	1900	c TTG r Leu
	₹~-(0*	CAG CCC Gln Pro			1790	GGA GAG Gly Glu				A TCC
		G GTG g Val	1680	G CA		3 TTT r Phe	•	3 GG 1 G1	1840	AAT GCC Asn Ala		r GCA n Ala
		AGG A		ATG	1730	ACG		GTG Val	* 15	AAT Asn	*	AAT Asn
												7F

SUBSTITUTE SHEET

			ui .		
GTG GCA Val Ala>	50 * ATC Ile>	TTT AAA Phe Lys>	2160 & \$\frac{\psi}{\psi}\$. CGG	CAG Gln>	GGT G1y>
	205 AGC Ser	TTT Phe	2150 2160 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2180 2190 2200 2210 *	GAA Glu
1990 * GAG CGT	GGG GAA	2090 2100 * * CCA CAG ATC ATG TGG Pro Gln Ile Met Trp	GGG G1y	22 ACC Thr	Κo
1990 * GAG CC Glu Al	GGG G1 y	ATG	2150 * (G GAT 'S ASP	TAC	2260 * ATA ATI
CTA	2040 * ATT Ile	ATC Ile	21 AAG Lys	y * CTC Leu	TTC
AGA CAT TGC GTG GTC AGG CTC ACA GTC CTA AFG HIS CYS Val Val Arg Gln Leu Thr Val Leu	2040 * ACA AGT ATT Thr Ser Ile	2090 * :A CAG	TTG	2200 * GGC CT Gly Le	TTT Phe
1980 * ACA Thr	ACA Thr	21 CCA Pro	2140 * ATT GTA 1 Ile Val 1	GAA Glu	2250 * GCA Ala
CTC	2030 4 1G ACG n Thr	CCT	2140 * ATT GT Ile Va	GAC	GAG Glu
CAG	2 CAG Gln	2080 * AT CCC sn Pro	66C 61y	2190 * GAG Glu	GTG Val
1970 * C AGG	2010 2020 2030 * * * * ACG ATC ACA GGA AAC CTG GAG AAT CAG ACG Thr Ile Thr Gly Asn Leu Glu Asn Gln Thr	2060 2070 2080 * * * * * * * * * * * * * * * * * * *	120 2130 * * * CTT GTA GAA GAC TCA GGC Leu Val Glu Asp Ser Gly	AAG	2230 2240 * CTT GGC TGT GCA AAA GTG Leu Gly Cys Ala Lys Val
1 GTC Val	2020 * :TG GAG	666 61y	2130 * GAC ASP	AGG Arg	2% GCA Ala
GTG Val	20 CTG Leu	TCT Ser	GAA Glu	2180 * A GTG	TGT
60 + Cys	AAC Asn	2070 * GCA Ala	GTA Val	2. AGA Arg	30 * GGC G1y
1960 * CAT TO HIS C	GGA G1y	ACG	2120 * C CTT r Leu	CGC	2230 * CTT GG Leu G1
AAA AGA Lys Arg	2010 * ACA Thr	TGC	Th AC	2170 * ACT ATC Thr Ile	2220 * GCA TGC AGT GTT Ala Cys Ser Val
	ATC Ile	2060 * C TCA 1 Ser	GAG		AGT Ser
1950 * AAG Lys		2 GTC Val	2110 ** GAT AAT ASP ASN	CTC	2220 * TGC Cys
ACC Thr	2000 , CCC Pro	GAA G1u	211 GAT ASP	* AAC Asn	GCA Ala
	2				92
					(6)

F16. 76

2600 2610 2610 2610 2610 2620 2620 2630 2640 2610 2610 2620 2630 2640 2610 2620 2630 2640 2650 2650 2660 2670 2680 2680 2680 2690 2700 2700 2700 2700 2710
--

FIG 7J

			15/28		
ATA Ile>	TGT Cys>	3400 * CCA GAA Pro Glu>	ACG Thr>	3510 * CAG Gln>	GAG Glu>
3290 * CTG TGG GAA ATA Leu Trp Glu Ile	3340 * GAA GAA TTT Glu Glu Phe		CCC	CAG CAG Gln	3560 * 'G GAA it Glu
3% TGG Trp	10 * GAA Glu	ACA Thr	3450 * AGA Arg	GCT Ala	35 ATG Met
CTG	3340 * GAA G	ACT Thr	cAG Gln	3500 * :T AAT a Asn	AGC
10 * TTG Leu	GAT	3390 * TAT Tyr	λGT Ser	35 GCT Ala	0 * TTG Leu
3280 * GTT TT	ATT 11e	3 GAT Asp	3440 * G CCC u Pro	CAA Gln	3550 * ACT TT
3280 * TTT GGT GTT TTG Phe Gly Val Leu	3330 * AAG Lys	CCT	3440 3450 4 * * * * * * * * * * * * * * * * * * *	0 * TTG	sAG s
TTT Phe	3 GTA Val	3380 * 3G GCC	666 61y	3490 t CTC TT Leu Le	rca (
3270 * TCT Ser	666 61y	33 AGG Arg	0 * CAC H1s	AAT Asn	3540 * ATA Ile
3 TGG Trp	3320 * IT CCT IT Pro	ATG	3430 * TGG CAC (Trp H1s (GGA G1v	3 CCG
GTC Val	3320 * TAT CCT GGG GTA AAG ATT GAT Tyr Pro Gly Val Lys Ile Asp	0 * AGA Arg	TGC Cys	3480 * TTG Leu	CTT (Leu]
3260 3270 * * AGT GAC GTC TGG TCT Ser Asp Val Trp Ser	CCA	3360 3370 3380 3390 CGA TTG AAA GGA ACT AGA ATG AGG GCC CCT GAT TAT ACT ACA ATG Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr Thr Thr	3420 * ATG CTG GAC TGC Met Leu Asp Cys	CAT	3520 3530 3540 3550 3560 * * * * * AAA GAC TAC ATT GTT CTT CCG ATA TCA GAG ACT TTG AGC ATG GAA GAG Lys Asp Tyr lle Val Leu Pro Ile Ser Glu Thr Leu Ser Met Glu Glu
32 AGT Ser	0 * TCT Ser	GGA G1y	3420 * CTG Leu	GAA Glu	35 ATT 11e
CAG G1n	3310 * TTA GGT GCT TCT Leu Gly Ala Ser	GAA Glu	3 ATG Met	70 * GTG Val	TAC
	GGT Gly	3360 * AAA Lys	3410 * TAC CAG ACC Tyr Gln Thr	3470 * TTG GTG Leu Val	0 * GAC ASP
3250 * ACA ATC Thr Ile	TTA	TTG Leu	3410 * C CAG r Gln	GAG G1u	3520 * AAA GA Lys AG
TAC	300 * TCC Ser	CGA	34 TAC Tyr		66C 61y
GTG Val	3 TTT Phe	3350 * AGG Arg	ATG Met	3460 * TTT TCA Phe Ser	GAT GAT
		3,			×

	WO 92/14	748								PCT/U	S92/013	300
		GAG GAA Glu Glu>	3670	TAT CTG Tyr Leu>		TTT GAA GAT ATC Phe Glu Asp Ile>	3780	GAC AGT &	3830	AAA TTA Lys Leu>		GCA TCT Ala Ser>
	3610	GAG GAG Glu Glu		AGT CAG Ser Gln	3720	TTT GAA Phe Glu	0 *	ACG Thr	38	AGA ACC AAA Arg Thr Lys	3880	TCT GTG GCA TCT Ser Val Ala Ser
			3660	ATC Ile	•	ACA Thr	3770	GAC AAC CAG Asp Asn Gln	3820	GAA GAC AGA ACC AAA TTA Glu Asp Arg Thr Lys Leu		GAG Glu
	3600	TCC		GCA Ala	3710	AGT GTA AAA Ser Val Lys	3760	CCA GAT GA Pro Asp As	(C)	r TTG GA	3870	GGT GGA ATG GTG CCC AGC AAA AGC AGG Gly Gly Met Val Pro Ser Lys Ser Arg
		CCT GTT Pro Val	3650	GAC AAC ACA Asp Asn Thr	3700		,E	ATC CCA Ile Pro	3810	AAA ACI Lys Thi		CCC AGC AAA Pro Ser Lys
	3590	TCT CTG CCT ACC TCA Ser Leu Pro Thr Ser	0*	TAT GAC Tyr Asp	37	AAG CGA AAG AGC CGG CCT GTG Lys Arg Lys Ser Arg Pro Val	3750	GAA GTA AAA GTA ATC Glu Val Lys Val Ile		TCA GAA GAG CTG AAA ACT TTG Ser Glu Glu Leu Lys Thr Leu	3860	GTG CCC Val Pro
		TG CCT eu Pro	3640	TTC CAT TAT	3690 *	CGA AAG AGC CGG Arg Lys Ser Arg	m	GAA GTA Glu Val	3800	cA GAA er Glu		GGT GGA ATG GTG Gly Gly Met Val
	3580	c rcr c	O *	AAA Lys	36	GCGA AS Arg L	3740	CCA		GCC	3850	
		GGA CTC Gly Leu	3630	GAC	3680		· · /	GAA GAA Glu Glu	3790	GTT CTT Val Leu		TCT TTT Ser Phe
•	3570	GAT TCT ASP Ser	20 *	GTA TGT Val Cys	Ä	CAG AAC AGT Gln Asn Ser	3730	CCG TTA Pro Leu		GGT ATG Gly Met	3840	TCT CCA TCT Ser Pro Ser
-			3620) H		<u>.</u>		- v

							24	20						
10	*	GAC ACA	Tury		¥	Glu Leu Leu Lys Leu Ile Glu Ile>		4050 %	* £	Pro Asp Thr Gly Thr Thr>				
3940		GAC	ASp		ر د د	Glu Glu			7)	Thr				
		GAT	Asp	3990	* £	Ile			ניני	Gly				
		TCC GAT	ser	(-)	J.L.	Leu		4040	ΑČG	Thr				
3930	*	CAC	113		200	Lys		4	CAC	Asp				
m		CAG TCC GGA TAT	Iλγ	3980	*	Leu			CCT	Pro				
		GGA	GI y	39	رىلىل	Leu	ç	⊋ +	CAG	Leu Gln				
3920	*	TCC	361		GAA	Glu		4030	CTC	Leu				
33		CAG	175	<u>.</u>	۲ ۲	Ala			ATT	Ile				
		TAC	, y !	3970	GAA	Glu			CAG	Gln Ile				
0	*	56C	7.7		GAG	Glu	Ċ	4020	၁၁၅	Ala				
3910		AGC	5		AGT	Ser Ser Glu		•	ACA	Ser Thr Ala	4070	*	TAA	* * *
		ACA		3960	r CC	Ser			AGC	Ser	4(GTT TAA	Val
		CAG	,	(*)	TAC	Tyr	4010) *	GGT	Gln Thr Gly			CCT	Pro
3900	K	Ser Asn				Val	~	Ŧ	ACC	Thr	90	*	TCT CCT	Pro
(,,		TCA) }	3950	ACC	Thr			CAA	Gln	4060		\mathbf{ICI}	Ser
		66C		33	ACC	Thr	2	> *	GTG	Gly Val			CTG AGC 1	Ser
3890	ĸ	GAA Glu			GAC	Asp	4000	ř	GGA	Gly			CIG	Len

20/28

SUBSTITUTE SHEET

21/28

22/28

787 GTVKRANGGELKTGYLSIVMDPDELPLDEHCERLPYDASKWEFPRDRLNLGK 543 L***YLQKPMYEVQWKVVEEINGNNYVYIDPTQ****H-*****N**SF** 536 LLY*YKQKPKYQVRWKIIESYEGNSYTFIDPTQ***NE-*****NN*QF** 522 MLWQKKPRYEIRWKVIESVSSDGHEYIYVDPVQ****-ST*****QLV**R	* * * * 5839 PLGRGAFGQEIEADAFGIDKTATCRTVAVKMLKEGATHSEHRALMSELKILI 594 T**A****KVVAET*Y*LI*SDAAM*******PS*HLT*RE*****V*S 587 T**A***KVV**T***LG*EDAVLK******ST*HAD*KE******MS 573 T**S****VV**T*H*LSHSQATMK******ST*RSS*KQS*****MS	891 HIGHHLNVVNLLGACTKPGGPLMVIVEFCKFGNLSTYLRSKRNEFVPYKTKG 646 YL*N*M*I*******I-***TL**T*Y*CY*D*LNF**R**DS*ICS*QED 639 *L*Q*E*I******H-***VL**T*Y*CY*D*LNF**R*AEAMLGPSLSP 625 *L*p**********************************	943 ARFRQGKDYVGAIPVDLKRRLDSIT-SSQSSASSGFVEEKSLSDV 697 HAEA-A-L*KNLLHSKESSCS-DS*N-EYMDMKPGVSYVVPTKA 690 GQDPE*GVDYKN*HLEK*YVRRDSGF**GVDTYVEMRPVSTSS-NDSF*EQ 676 HCPPSAEL*SN*LP*GFSLPSHLNLTGESDGGYMDMSKDESIDYVPMLDMKG	987 EEEEAPEDLYKDFERDVTPAIMEDDELA*D**D*LSF?V* 737 D-KRRSVRIGSYIERDVTPAIMEDDELA*D**D*LSF*Y** 741 DLDKEDGRPL
KDR ckit CSF1 PDGF	KDR ckit CSF1 PDGF	KDR ckit CSF1 PDGF	KDR ckit CSF1 PDGF	KDR ckit CSF1 PDGF

777 -***A*******************************	65 ARLPLKWMAPETIFDRVYTIQSDVWSFGVLLWEIFSLGASPYPGVKIDEEFC 28 ****V******S**NC***EE****Y*IF*******S*****MPVKSK*Y 14 ****V*****S***C***VQ*****Y*I******LN****ILVNSK*Y 31 **********S**NS***TL******I*****GT***ELPMNDQ*Y	17 RRLKEGTRMRAPDYTTPEMYQTMLDCWHGEPSQRPTFSELVEHLGNLLQANA 30 KMI***F**LS*EHAPA***DI*KT**DAD*LK****KQIVQLIEKQISEST 52 KLV*D*YQ*AQ*AFAPKNI*SI*QA**AL**TH****QQICSF*QEQAQEDR 33 NAI*R*Y**AQ*AHASD*I*EI*QK**EEKFET**P**Q**LL*ER**GEGY	59 QQDGKDYIVLPISETLSMEEDSGLSLPTSPVSCMEEEEVCDPKFHYDNTAGI 32 NHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQPLLVHDDV 14 RERDYTNLPSSSRSGG*GSSS*E*EEESSSEHLTCC*QGDIAQPLLQPNNYQ 34 KKKYQQVDEEFLRSDHPAILR*QARF*GIHSLRSPLDTSSVLYTAVQPNESD	l3 SQYLQNSKRKSRPVSVKTFEDIPLEEPEVKVIPDDNQTDSGMVLASEELKTL 56 FC 37 ND*IIPLPDPKPD*ADEGLPEGSPSLASSTLNEVNTSSTISCDSPL*LQEEP	13 EDRTKLSPSFGGMVPSKSRESVASEGSNQTSGYQSGYHSDDTDTTVYSSEEA 39 QQAEPEAQLEQPQDSGCPGPLAEA*DSFLEQPQD**CPGPLAEAEDSF1,
ckit 777 CSF1 762 PDGF 779	KDR 1065 ckit 828 CSF1 814 PDGF 831	KDR 1117 ckit 880 CSF1 862 PDGF 883	KDR 1169 ckit 932 CSF1 914 PDGF 934	<u>KDR</u> 1213 CSF1 966 PDGF 987	<u>KDR</u> 1273 PDGF1039

ELLKLIEIGVQTGSTAQILQPDTGTT1,SSPPV

IDENTIFICATION OF kdp mRNA

FIG. 10

IDENTIFICATION OF kdp GENE BY SOUTHERN ANALYSIS

1 2 3 4

FIG. 11

FIG. 12

SUBSTITUTE SHEET

FIG. 14

INTERNATIONAL SEARCH REPORT

		International Application No.	PCT/US92/01300				
	ION OF SUBJECT MATTER (If severe		licate all) ³				
	national Patent Classification (IPC) or to b 3/00, 13/00; C07H 21/00; C12		1 15/00				
US CL : 530/	387; 536/27; 435/69.1, 70.1,	71.1, 320.1					
11. FIELD G.		mentation Searched ⁴					
Classification System	Classification System Classification Symbols						
U.S.	U.S. 530/387; 536/27; 435/69.1, 70.1, 71.1, 320.1						
Documentation Searched other than Minimum Documentation to the extent that such Documents are included in the Fields Searched ⁵							
APS, DIALOG search terms							
III. DOCUMENTS	CONSIDERED TO BE RELEVANT 14						
Category* Citati	on of Document, ¹⁸ with indication, where a	propriets, of the relevant passages ¹⁷	Relevant to Claim No. 18				
Matherisola isola hemate	Natl. Acad. Sci., Volum wes et al., "A receptor ted from a population oppoietic cells and exhi ge to c-kit", pages 9 ent.	tyrosine kinase cDNA of enriched primitive bitting close genetic	1-17				
A.F. ident	Proc. Natl. Acad. Sci., Volume 86, Issued March 1989, A.F. Wilks, "Two putative protein-tyrosine kinases identified by applicatin of the polymerase chain reaction", pages 1603-1607, see entire document.						
"Ident	Oncogene, Volume 6, issued 1991, B.I. Terman et al., "Identification of a new endothelial cell growth factor receptor tyrosine kinase", pages 1677-1683, see entire document.						
Oncogene, volume 3, issued 1988, M. Ruta et al., "A novel protein tyrosine kinase gene whose expression is modulated during endothelial cell differentiation", pages 9-15, see entire document.							
	of cited documents: 18	"T" later document published after or priority data and no	r the international filing				
not considered	ning the general state of the art which is to be of perticular relevance	date or priority date and no application but cited to unde theory underlying the invention	retand the principle or				
"E" earlier docum international fill	ent but published on or after the ing date	"X" document of perticular rel invention cannot be consider	evance; the claimed				
"L" document which may throw doubte on priority claim(s) considered to involve an inventive step							
or which is creed to establish an order specified; another edition or other specified reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means to combine the combined with							
or other means "P" document published prior to the internetional filing date but leter than the priority date claimed inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family							
IV. CERTIFICATIO	ON						
	Completion of the International Search ²	Date of Mailing of this International	Search Report ²				
13 MAY 1		1 9 MAY 1992	1				
International Search	ing Authority ¹	Signature of Authorized Office	sie []				
ISA/US	ISA/US Lorraine M. Spector, Ph.D. 704						

FURTHE	R INFORMATION CONTINUED FROM THE SECOND SHEET	
A Y	Oncogene, volume 5, issued 1990, M. Shibuya et al., "Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family", pages 519-524, see entire document.	1-17 17
Y	Proc. Natl. Acad. Sci., Volume 85, Issued May 1988, R.G.K. Gronwald et al., "Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Bvidence for more than one receptor class", pages 3435-3439, see entire document.	15
v. □	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹	
This intern	ational search report has not been established in respect of certain claims under Article 17(2) (a) for im numbers _, because they relate to subject matter (1) not required to be searched by this Auth	the following reasons: nority, namely:
2. Clai	m numbers _, because they relate to parts of the international application that do not comply with ti ecribed requirements to such an extent that no meaningful international search can be carried out (ha }, apacifically:
3. 🔲 Clai	m numbers , because they are dependent claims not drafted in accordance with the second and the PCT Rule 6.4(a).	ird sentences
VI.X O	BSERVATIONS WHERE UNITY OF INVENTION IS LACKING ²	
This bear	sectional Reposition Australian found multiple inventions in this international application as follows	e:
I. Cla subcla II. Cl. 387.	ims 1-9 and 14-17, drawn to nucleic acids and expression therecess 27 and Class 435, subclass 69.1. sims 10-13, drawn to an isolated growth factor receptor. Class	530, subclass
1. X As	oil required additional search fees were timely paid by the applicant, this international search report- ims of the international application. (Telephone Practice)	covers all searchable
2. 🔲 🚓	only some of the required additional search fees were timely paid by the applicant, this international by those claims of the international application for which fees were paid, specifically claims:	
3. No 1986	required additional search fees were timely paid by the applicant. Consequently, this international s proceed to the invention first mentioned in the claims; it is covered by claim numbers:	warch report is
Remark or		Search Authority did
☐ TM	additional search fees were accompanied by applicant's protest.	ļ
☐ No	protest accompanied the payment of additional search feed.	

M. DOC	III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)						
Category*	Citation of Document, 16 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No. 18					
Y	Proc. Natl. Acad. Sci., Volume 86, Issued November 1989, M. Streuli et al., "A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila", pages 8698-8702, see entire document.	1-14					
A	M.A. Innes et al., PCR Protocols, a guide to methods and applications, published 1990 by Academic Press (N.Y.), see page 10.	15, 16					