作业2:决策树构建、模型评估

1. 为什么不能用训练集中的样本来测试训练好的模型?请给出留出法和 K 折交叉验证法的具体步骤。

答:模型测试是为了评估模型的泛化能力。用训练集中的样本进行测试得到的是训练误差,训练误差小可能出现过拟合,因此训练误差不能有效评估模型的泛化能力。

留出法:

一般采用分层采样。从每个类别中按照给定的比例(无放回)随机采样一部分样本作为测试集,每个类别中未被采样到的样本作为训练集。一般用多次留出法的结果取平均。

K 折交叉验证法:

把训练集随机分成 K 个大小一样不相交的子集,每次分别用其中 1 个子集作为测试集,剩下的 K-1 个子集中的所有样本作为训练集,总共训练 K 次,对 K 个结果取平均。

2. 假设有一个测试集,其真实标签和模型预测出来的标签分别如下,请给出混淆矩阵,并计算查准率(precision)、查全率(recall)、和 F1 度量(F1-measure)。

编号	真实标签	预测标签
1	是	否
2	否	否
3	否	否
4	是	是
5	是	否
6	否	否
7	否	是
8	是	是

混淆矩阵:

	预测正例	预测反例	
真实正例	TP= {4,8} =2	$FN= \{1, 5\} =2$	
真实反例	FP= {7} =1	$TN= \{2, 3, 6\} =3$	

$$Precision = \frac{TP}{TP + FP} = \frac{2}{2+1} = 0.67$$

$$Recall = \frac{TP}{TP + FN} = \frac{2}{2+2} = 0.5$$

$$F1 - measure = \frac{2*Presicion*Recall}{resicion+Recall} = \frac{2*0.67*0.5}{0.67+0.5} = 0.57$$

- 3. 基于顾客的"年龄"、"收入"、"学生"这三个属性构造决策树用于预测一个学生是否会买电脑。 其中三个属性的取值范围分别为:"年龄"={青年、中年、老年},"收入"={高、中、低},"学生"={是、否}。具体要求如下:
 - a.用以下训练集基于信息增益构造决策树,给出中间步骤,并画出决策树。
 - b.基于上面构造的决策树,对测试集中样本进行预测,即顾客是否会买电脑, 并计算 accuracy。
 - *方便大家计算,现给出以下对数的具体数值: $\log_2(3) = 1.5850$, $\log_2(5) = 2.3219$

训练集

编号	类别: 是否买电脑	年龄	收入	学生
1	否	青年	恒	否
2	否	青年	高	否
3	是	中年	高	否
4	是	老年	中	否
5	是	老年	中	是
6	否	老年	低	是
7	否	青年	中	否
8	是	老年	中	是

测试集

编号	类别: 是否买电脑	年龄	收入	学生
1	是	中年	低	是
2	是	青年	中	是
3	否	老年	低	否

参考答案

a.以下给出具体的构造过程。注意:该题目中第一列为要预测的类别。

划分前数据集: $D=\{1,2,3,4,5,6,7,8\}$,其信息熵 $Ent(D)=-\sum_{i=1}^n p_i \log_2(p_i)=-\frac{4}{8}\log_2\left(\frac{4}{8}\right)-\frac{4}{8}\log_2\left(\frac{4}{8}\right)=1$ 。

根据 $Ent(D,a) = \sum_{v=1}^{V} \frac{|D_v|}{|D|} Ent(D_v)$,以及当前可用属性集 $A = \{ \text{ 年龄、收入、学生} \}$,计算 A 中每个特征划分后的信息熵如下:

$$Ent(D, \#\#) = \frac{3}{8} \left(-\frac{3}{3} log_2 \left(\frac{3}{3} \right) \right) + \frac{1}{8} \left(-\frac{1}{1} log_2 \left(\frac{1}{1} \right) \right) + \frac{4}{8} \left(-\frac{1}{4} log_2 \left(\frac{1}{4} \right) - \frac{3}{4} log_2 \left(\frac{3}{4} \right) \right) = 0.4056$$

$$Ent(D, \#\lambda) = \frac{1}{8} \left(-\frac{1}{1} log_2 \left(\frac{1}{1} \right) \right) + \frac{4}{8} \left(-\frac{1}{4} log_2 \left(\frac{1}{4} \right) - \frac{3}{4} log_2 \left(\frac{3}{4} \right) \right) + \frac{3}{8} \left(-\frac{2}{3} log_2 \left(\frac{2}{3} \right) - \frac{1}{3} log_2 \left(\frac{1}{3} \right) \right) = 0.75$$

$$Ent(D, \#\#) = \frac{5}{8} \left(-\frac{3}{5} log_2 \left(\frac{3}{5} \right) - \frac{2}{5} log_2 \left(\frac{2}{5} \right) \right) + \frac{3}{8} \left(-\frac{1}{3} log_2 \left(\frac{1}{3} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) \right) = 0.9512$$

根据信息增益: Gain(D,a) = Ent(D)-Ent(D,a),得到每个特征的信息增益为: Gain(D, 年龄) = 1 - 0.4056 = 0.5944,Gain(D, 收入) = 1 - 0.75 = 0.25,Gain(D, 学生) = 1 - 0.9512 = 0.0488 "年龄"属性的信息增益最高,所以作为当前分裂属性,得到

其中,"青年"和"中年"两个节点样本类别已经一致,所以作为叶子节点,得到:

对"老年"节点再划分,此时 D={4,5,6,8}, $\operatorname{Ent}(D) = -\frac{1}{4} \log_2\left(\frac{1}{4}\right) - \frac{3}{4} \log_2\left(\frac{3}{4}\right) = 0.8113$ 。

当前可用属性集更新为 $A = \{ \psi \lambda, \not= \xi \}$, 计算 A 中每个特征划分后的信息熵如下:

$$Ent(D, \cancel{U}\lambda) = \frac{1}{4} \left(-\frac{1}{1} \log_2 \left(\frac{1}{1} \right) \right) + \frac{3}{4} \left(-\frac{3}{3} \log_2 \left(\frac{3}{3} \right) \right) = 0$$

$$Ent(D, \cancel{Z}\underline{\pm}) = \frac{1}{4} \left(-\frac{1}{1} \log_2 \left(\frac{1}{1} \right) \right) + \frac{3}{4} \left(-\frac{1}{3} \log_2 \left(\frac{1}{3} \right) - \frac{2}{3} \log_2 \left(\frac{2}{3} \right) \right) = 0.6887$$

得到每个特征的信息增益为:

Gain(D, 收入) = 0.8113 - 0 = 0.8113,Gain(D, 学生) = 0.8113 - 0.6887 = 0.1226 "收入"属性的信息增益最高,所以作为当前分裂属性,决策树更新为:

其中,"老年->收入=低"和"老年->收入=中"两个节点样本的类别一致,所以作为叶子节点,"老年-收入高"对应的训练样本数目为 0,此时用父亲节点"老年"的样本{4,5,6,8}中数目最多的类别"是"来标记。最后得到的决策树为:

由于当前所有节点均为叶子节点,决策树构造完成。

b.测试:

根据以上所构造决策树,从上至下对各个特征遍历,得到

序号9: 年龄"中年", 预测"是", 实际"是", 正确;

序号 10: 年龄"青年", 预测"否", 实际"是", 错误;

序号 11: 年龄"老年"、收入"低", 预测"否", 实际"否", 正确;

Accuracy= $\frac{2}{3} = 0.67$.