ADVANCED MEMORY CONTROLLERS

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview: DRAM Control Tasks

- Refresh management
 - Periodically replenish the DRAM cells (burst vs. distributed)
- Address mapping
 - Distribute the requests to destination banks (load balancing)
- Request scheduling
 - Generate a sequence of commands for memory requests
 - Reduce overheads by eliminating unnecessary commands
- Power management
 - Keep the power consumption under a cap
- □ Error detection/correction
 - Detect and recover corrupted data

Address Mapping

□ A memory request

- Address is used to find the location in memory
 - □ Channel, rank, bank, row, and column IDs
- Example physical address format

A 4GB channel, 2 ranks, 4 banks/rank, 8KB page

Example Problem

- Start with empty row buffers, find the total number of commands if all the request are served in order
 - Address= row(12):channel(0):rank(1):bank(3):column(16)

Example Problem

- Find the total number of commands using the following address mapping scheme
 - Address= bank(3):rank(1):channel(0):row(12):column(16)

Row Buffer Management Policies

- Open-page policy
 - After access, keep page in DRAM row buffer
 - □ If access to different page, must close old one first
 - Good if lots of locality
- Close-page policy
 - After access, immediately close page in DRAM row buffer
 - □ If access to different page, old one already closed
 - Good if no locality (random access)

Command Scheduling

- Write buffering
 - Writes can wait until reads are done
- □ Controller queues DRAM commands
 - Usually into per-bank queues
 - Allows easily reordering ops. meant for same bank
- □ Two common policies
 - First-Come-First-Served (FCFS)
 - In order request scheduling
 - First-Ready First-Come-First-Served (FR-FCFS)
 - Out of order request scheduling

Command Scheduling

- □ First-Come-First-Served
 - Oldest request first
- □ First-Ready First-Come-First-Served
 - Prioritize column accesses over row changes
 - Skip over older conflicting requests
 - Find row hits (on queued requests)
 - Find oldest
 - If no conflicts with in-progress request → good
 - Otherwise (if conflicts), try next oldest

FCFS vs. FR-FCFS

- □ Single bank memory
 - □ READ(BO,RO,CO) READ(BO,R1,CO) READ(BO,RO,C1)
- FCFS

Error Detection/Correction

- Data in memory may be corrupted
 - Many reasons: leakage, alpha particles, hard errors.
- Can errors be detected?
 - Error detection codes: additional parity bits
- Can errors be corrected?
 - Error correction codes: ECC bits are added to data
- □ Single-Error Correction, Double-Error Detection
 - Commonly used in memory systems

ECC DIMM

An additional DRAM chip is used for storing
SECDED ECC bits for error correction

Limitations to Existing Memory Controllers

Modern memory controllers are performance-critical and complex

Programmable Memory Controllers

 Programmability can make a memory controller higher-performance and more flexible

Design Overview

- Key idea: Judicious division of labor between specialized hardware and firmware
 - Request and transaction processing in firmware
 - Configurable timing validation in hardware

Request Processing

□ A RISC ISA for operating on memory requests

Request Processing

- Queue management with instruction flags
 - R flag enqueues a request
 - T flag dequeues a transaction
- An instruction can be annotated with both R and T flags if needed

Implementation

 Two five-stage pipelines and one configurable timing validation circuit

