2.2. Измерение длин волн спектральных линий водорода $Xypcu\kappa\ E\kappa amepuha$

1 Цель работы

Исследовать спектральные закономерности в оптическом спектре водорода. По результатам измерений вычислить постоянные Ридберга.

2 Ход работы

Калибровка спектрометра

n	барабан, х\дел λ, Å								
Неон									
1	2601	7032							
2	2577	6929							
3	2509	6717							
4	2498	6678							
5	2470	6599							
6	2447	6533							
7	2442	6507							
8	2400	6402							
9	2395	6383							
10	2395	6334							
11	2360	6305							
12	2349	6267							
13	2328	6217							
14	2306	6164							
15	2297	6143							
16	2277	6096							
17	2266	6074							
18	2248	6030							
19	2219	5976							
20	2207	5945							
21	2177	5882							
22	2160	5852							
23	1898	5401							
24	1862	5341							
25	1852	5331							
Ртуть									
1	2125	5791							
2	2115	5770							
3	1934	5460							
4	1516	4916							
5	856	4358							

Определение длин волн спектра водорода

Измерим положение линий H_{α} , H_{β} , H_{γ} (линия H_{δ} не видна) и с помощью калибровочного графика определим их длины волн. Результаты сведём в таблицу

Линия спектра	θ , °	λ, \mathring{A}	m	$\frac{1}{\lambda}$, $10^{-4} \mathring{A}^{-1} (\text{рассч.})$	ε , %	$\sigma(\frac{1}{\lambda}), 10^{-4} \mathring{A}^{-1}$	$\frac{1}{\lambda}$, $10^{-4} \mathring{A}^{-1}$
H_{α}	2452	6578	3	1.524	0.8	0.012	1.520 ± 0.012
H_{β}	1464	4901	4	2.058	1	0.021	2.040 ± 0.021
H_{γ}	838	4333	5	2.304	1.2	0.028	2.308 ± 0.028

Таблица 1: Определение линий спектра водорода

Исходя из определённых нами длин волн (с учётом погрешностей) по калибровочному графику убеждаемся, что отношение длин волн водородных линий соответствует отношениям длин волн, вычисленных по формуле (1).

Для каждой из наблюдаемых линий водорода вычислим значение постоянной Ридберга

$$R_H = \frac{1}{\lambda(\frac{1}{n^2} - \frac{1}{m^2})} \rightarrow R_{H_{\alpha}} = 109455, 8\,\mathrm{cm}^{-1}, \, R_{H_{\beta}} = 108821, 3\,\mathrm{cm}^{-1}, \, R_{H_{\gamma}} = 109898, 6\,\mathrm{cm}^{-1}$$

Определим среднее значение постоянной Ридберга по всем измерениям:

$$\langle R_H \rangle = \frac{R_{H_{\alpha}} + R_{H_{\beta}} + R_{H_{\gamma}}}{3} = 109391, 8 \,\mathrm{cm}^{-1}$$

Определим погрешность измерения постоянной Ридберга $\sigma(R_H)$:

$$\sigma(R_H) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (R_{H_i} - \langle R_H \rangle)^2} = \sqrt{\frac{1}{3 \cdot 2} \sum_{i=1}^{n} (R_{H_i} - \langle R_H \rangle)^2} = 312,6 \,\mathrm{cm}^{-1}, \varepsilon_{\sigma} = 0,3\%$$

$$\varepsilon_{R_H} = \sqrt{\varepsilon_{\sigma}^2 + \varepsilon_{R_{H_{\alpha}}}^2 + \varepsilon_{R_{H_{\beta}}}^2 + \varepsilon_{R_{H_{\gamma}}}^2} = 2,1\%$$

Получаем постоянную Ридберга равную

$$R_H = 109391, 8 \pm 2297, 3 \,\mathrm{cm}^{-1}, \, \varepsilon = 2, 1\%$$

Сравнивая полученное значение постоянной Ридберга с рассчётным $R_H = 109677, 6 \,\mathrm{cm}^{-1},$ заключаем, что получили совпадающее в пределах погрешности значение.

3 Вывод

- 1) Измерили положения линий H_{α} , H_{β} , H_{γ} (линия H_{δ} не видна). Построили градуировочный график, подобрав для градуировочной кривой кубический сплайн. Кривая при этом легла достаточно точно на измеренные точки.
- 2) Убедились в том, что полученные отношения длин волн водородных линий соответствуют обобщённой формуле Бальмера.
- 3) Нашли постоянную Ридберга, которая в пределах погрешности совпадает с табличной.