PAT-NO:

JP02002176907A

DOCUMENT-IDENTIFIER:

JP 2002176907 A

TITLE:

SPINAL CORD-REMOVING APPARATUS AND

METHOD FOR REMOVING

SPINAL CORD

PUBN-DATE:

June 25, 2002

INVENTOR-INFORMATION:

NAME

COUNTRY

KAWABATA, TOSHIO SHINBASHI, KOICHI

N/A N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HOKUYO KIKAI KK

N/A

APPL-NO: JP2001378642

APPL-DATE:

December 12, 2001

INT-CL (IPC): A22C018/00, A22B005/20

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a spinal cord-removing apparatus for safely removing the spinal cord and the spinal fluid in the interior of the vertebra, and further to provide a method for removing the spinal cord by using the apparatus.

SOLUTION: The spinal cord-removing apparatus 1 has a connecting part 2, an air-introducing member 5, a vacuum hose 7, and a vacuum pump 4. The connecting part 2 is connected to the cervical vertebra of the

09/15/2004, EAST Version: 1.4.1

vertebra S, and the spinal cord and the spinal fluid in the interior of the vertebra S are sucked. The air-introducing member 5 can move in the interior of the vertebra S, and has a tip nozzle 22 for introducing air to the interior of the vertebra S. The vacuum hose 1 is connected to the connecting part 2, and the spinal cord and the spinal fluid are transported in the vacuum hose 1. The vacuum pump 4 reduces the interior of the vacuum hose 7.

COPYRIGHT: (C) 2002, JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出版公開番号 特開2002-176907 (P2002-176907A)

(43)公開日 平成14年6月25日(2002.6.25)

(51) Int CL'

識別記号

ΡI

テーマコート*(参考)

A 2 2 C 18/00 A 2 2 B 5/20

A 2 2 C 18/00 A 2 2 B 5/20

審査請求 有 請求項の数8 OL 公開請求 (全 7 頁)

(21)出願番号	特觀2001-378642(P2001-378642)	(71)出窟人	593199666
			北陽機械株式会社
(22)出顧日	平成13年12月12日(2001.12.12)		大阪府抵津市島闽中2丁目4番34号
		(72)発明者	川増一俊雄
			大阪府牧方市宗谷2丁目19番5号
		(72)発明者	新植 光一
			大阪府校方市南中级2丁目59番7-406号
		(74)代理人	100094145
			弁理士 小野 由己男 (外1名)
		1	

(54) 【発明の名称】 脊髄除去装置及び脊髄除去方法

(57)【要約】

【課題】 安全に脊椎内部の脊髄及び髄液を除去する脊 髄除去装置、及びこの装置を用いた脊髄除去方法を提供 する。

【解決手段】 脊髄吸引除去装置1は、接続部2、空気 導入部材5、バキュームホース7、及び真空ボンア4を 備える。接続部2は、脊椎Sの頸椎に接続され、脊椎S の内部の脊髄及び髄液を吸引する。空気導入部材5は、 脊椎Sの内部を移動可能であり、脊椎Sの内部に空気を 導入する先端ノズル22を有する。バキュームホース7 は、接続部2に接続され、脊髄及び髄液を輸送する。真 空ボンア4は、バキュームホース7の内部を減圧する。

【特許請求の範囲】

【請求項1】脊椎から脊髄及び髄液を除去する脊髄除去 装置であって、

前記脊椎の末端に接続され、脊髄及び髄液を吸引する脊 椎接続部と、

前記脊椎の内部を移動可能であり、前記脊椎の内部に気 体を導入する導入部を有する気体導入部材と、

前記脊椎接続部に接続され、脊髄及び髄液を輸送する輸 送部材と、前記輸送部材の内部を減圧する減圧発生部 と、を備える脊髄除去装置。

【請求項2】前記導入部は、先端形状が湾曲しており、 先場部及び/又は側面部に噴出口を有する、請求項1に 記載の脊髄除去装置。

【請求項3】前記脊髄接続部において吸引された脊髄及 び髄液を貯留し、貯留量を計測可能な貯留センサと、排 出部と、を有する脊髄貯留部をさらに備える、請求項1 または2に記載の脊髄除去装置。

【請求項4】前記気体導入部材の前記脊椎の外部の部分 が大気開放される、請求項1から3のいずれかに記載の 脊髄除去装置。

【請求項5】前記気体導入部材に気体を供給する気体供 給部をさらに備える、請求項1から3のいずれかに記載 の脊髄除去装置。

【請求項6】前記気体供給部は、前記導入部から連続的 または間欠的に気体を噴出させる、請求項5に記載の脊 解除去装置。

【請求項7】前記脊椎の内部を洗浄するための洗浄液を 前記気体導入部材に供給する洗浄液供給部をさらに備え る、請求項5または6に記載の脊髄除去装置。

【請求項8】請求項1に記載の脊髄除去装置により脊髄 30 及び髄液を除去する脊髄除去方法であって、

前記脊椎接続部を前記脊椎の末端に接続する第1ステッ **プと、**

前記気体導入部材を前記脊椎の内部に挿入する第2ステ ップと

前記減圧発生部により前記輸送部材の内圧を減圧させる 第3ステップと、

前記気体導入部材を前記存権の内部の奥に進行させる第 4ステップと、を備える脊髄除去方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、脊髄除去装置、特 に脊髄及び髄液を飛散させることなく除去できる脊髄除 去装置に関する。

[0002]

【従来の技術】近年、食肉牛に関する牛海綿状脳症、い わゆる狂牛病に関する危険性について多方面で報道され ている。特に、日本国内で2001年8月に狂牛病に罹 患した牛が発見されたことから、食肉に関する安全性が 問われ始めている。狂牛病は、異常プリオンと呼ばれる 50 とにより、輸送部材と接続している脊椎接続部が脊椎内

タンパク質の一種により引き起こされると言われてい る。人間がこの異常アリオンを含む臓器などを摂取する ことにより、クロイツフェルト・ヤコブ病 (CJD) と いう脳障害に似た変異型CJDとよばれる症状が生じる と言われている。

【0003】 狂牛病の感染性は臓器によって異なってお り、脳、脊髄、眼、回腸、末梢神経、骨髄の感染性が他 の部位に比べて高いとされている。これらの臓器のうち でも特に脳、眼、及び脊髄は特定危険部位として排除す 10 る必要があるとされている。このような状況をふまえ、 食肉処理場では、処理される牛の枝肉から特定危険部位 を除去する処理が行われるように進んでいる。なお、枝 肉とは、牛を食肉処理場で処理され、頭部と内臓と肘を 切り離した状態をさしている。

[0004]

【発明が解決しようとする課題】牛の枝肉をさらに脊椎 で半分に解体して狭義の枝肉(半身)とする際に、枝肉 を脊椎から縦に二分する背割りと呼ばれる作業が行われ る。背割りが行われた後に、二分された脊椎から脊髄等 を除去して水洗するという行程により、背割りの際に脊 椎から漏れる脊髄のほとんどが除去される。しかし、背 割りを行う際に、脊椎から脊髄及び髄液が飛散し、可食 部である非特定危険部位に付着するおそれがある。

【0005】このため、背割りを行う前に脊椎からその 内部の脊髄及び髄液を除去する事が望ましい。脊椎から 脊髄等を除去する手法として、圧搾空気を脊椎内部に送 り込むことにより脊髄等を押し出すものがすでに発表さ れている。しかし、脊椎は多数の椎骨と軟骨(椎間板) とから形成されているため、圧搾空気により椎骨と軟骨 との隙間から脊髄等が押し出されて可食部に付着するお それが残る。

【0006】本発明の課題は、安全に脊椎内部の脊髄及 び髄液を除去する脊髄除去装置、及びこの装置を用いた 脊髄除去方法を提供することにある。

[0007]

【課題を解決するための手段】請求項1に記載の脊髄除 去装置は、脊椎から脊髄及び髄液を除去する脊髄除去装 置であって、脊椎接続部、気体導入部材、輸送部材、及 び減圧発生部を備える。脊椎接続部は、脊椎の末端に接 40 続され、脊髄及び髄液を吸引する。気体導入部材は、脊 椎の内部を移動可能であり、脊椎の内部に気体を導入す る導入部を有する。輸送部材は、脊椎接続部に接続さ れ、脊髄及び髄液を輸送する。減圧発生部は、輸送部材 の内部を減圧する。

【0008】脊髄除去装置は、食肉処理を行う対象家畜 の脊椎内部の脊髄及び髄液(以下、脊髄等と略す。)を 除去する。脊髄等を除去するためには、脊椎接続部を脊 椎の末端に接続し、併せて気体導入部材を脊椎内部に導 入する.減圧発生部により輸送部材内部が減圧されるこ

部の脊髄等を吸引し始める。さらに、気体導入部材によ り脊椎内部に気体が導入され、導入された気体と共に脊 髄等が吸引される。

【0009】ここでは、気体導入部材の導入部により脊 椎内部に気体を導入して脊椎内部の気圧を維持し、他方 で減圧発生部により吸引されることにより脊椎接続部か ら減圧を行う。これらの圧力差により、気体の流れが生 じる。よって、気体と共に脊椎内部に付着している脊髄 等を効率よく吸引することが可能となる。また、導入部 周辺の脊椎内部に付着している脊髄等は、気体の流れに 10 よる影響を強く受けるため、除去されやすくなる。気体 導入部材が脊椎の内部を移動可能であるため、導入部を 脊椎の内部で移動させることにより、脊椎内部全体に存 在する脊髄等を除去することが可能となる。さらに、脊 椎の末端に導入部を移動させることにより、脊椎接続部 が接続されている脊椎の末端から離れた脊椎内部の脊髄 等も脊椎接続部から吸引することが可能となる。

【0010】これにより、脊椎内部の脊髄等を安全に除 去することが可能となり、対象家畜の食肉処理時におけ る脊髄等の飛散のおそれを抑えることができる。請求項 20 2に記載の脊髄除去装置は、請求項1に記載の脊髄除去 装置であって、導入部は、先端形状が湾曲しており、先 端部及び/又は側面部に噴出口を有する。

【0011】ここでは、気体導入部材の導入部の先端形 状が湾曲しているため、脊椎の屈曲に対してあまり影響 を受けずに脊椎の内部を移動することができる。また、 脊椎内部での椎骨等への引っ掛かりを抑えることができ る。また、先端部及び/又は側面部に噴出口を有してい ることにより、気体の導入による脊髄等の吸引をさらに 効率よく行うことが可能となる。

【0012】請求項3に記載の脊髄除去装置は、請求項 1または2に記載の脊髄除去装置であって、脊髄貯留部 をさらに備える。脊髄貯留部は、脊髄接続部において吸 引された脊髄及び髄液を貯留する。また、脊髄貯留部 は、貯留量を計測可能な貯留センサと排出部とを有す る。ここでは、脊椎から除去した脊髄等を貯留する脊髄 貯留部をさらに備えているため、脊髄等を散乱させるこ となく安全に貯留することが可能となる。

【0013】また、脊髄貯留部には貯留センサが設けら れている。貯留センサの信号を参照することにより、脊 40 随等の貯留量が確認できるため、脊髄貯留部から脊髄等 が溢れるおそれを抑えることができる。また、さらに排 出部を有していることにより、脊髄貯留部に一定以上の 存髄等が貯留した場合に手動または自動的に脊髄等を排 出することが可能となる。

【0014】請求項4に記載の脊髄除去装置は、請求項 1から3のいずれかに記載の脊髄除去装置であって、気 体導入部材の脊椎の外部の部分が大気開放される。ここ では、気体導入部材の脊椎外部に設けられている部分が 大気に開放されてるため、気体導入部材から導入部を経 50 す。)を吸引することにより除去する装置である。

て脊椎内部に大気が導入される。これにより、大気圧と 減圧発生部との圧力差により脊椎の内部の脊髄等が除去 される。気体を供給する必要がないため、安価な脊髄除 去装置を提供することができる。

【0015】請求項5に記載の脊髄除去装置は、請求項 1から3のいずれかに記載の脊髄除去装置であって、気 体導入部材に気体を供給する気体供給部をさらに備え る。ここでは、気体供給部により導入部から脊椎内部に 気体が供給される。これにより、気体供給部により供給 される気体の圧力と減圧発生部の減圧との圧力差により 脊椎の内部の脊髄を掘削し、脊髄等を吸引することがで きる。気体供給部による気体の圧力を大気圧以上にする ことが可能であるため、より効率的に脊椎内部の脊髄等 を吸引除去できる。

【0016】請求項6に記載の脊髄除去装置は、請求項 5に記載の脊髄除去装置であって、気体供給部は、導入 部から連続的または間欠的に気体を噴出させる。ここで は、気体供給部からの気体の供給を連続的または間欠的 に供給することにより、導入部から連続的または間欠的 に気体を供給している。 請求項7に記載の脊髄除去装置 は、請求項5または6に記載の脊髄除去装置であって、 脊椎の内部を洗浄するための洗浄液を気体導入部材に供 給する洗浄液供給部をさらに備える。

【0017】ここでは、脊椎内部の脊髄等を除去した後 に、洗浄液供給部から洗浄液を供給することにより、気 体導入部材の導入部から洗浄液を噴出することが可能と なる。これにより、脊椎内部に残存している脊髄等を洗 浄液により洗浄することができる。また、この際に気体 供給部から気体を併せて供給した場合には、導入部から 30 洗浄液を気液混合状態で噴出することが可能であり、脊 椎内部をさらに効果的に洗浄することが可能となる。

【0018】請求項8に記載の脊髄除去方法は、請求項 1に記載の脊髄除去装置により脊髄及び髄液を除去する 脊髄除去方法であって、脊椎接続部を脊椎の末端に接続 する第1ステップと、気体導入部材を脊椎の内部に挿入 する第2ステップと、減圧発生部により輸送部材の内圧 を減圧させる第3ステップと、気体導入部材を脊椎の内 部の奥に進行させる第4ステップと、を備える。

【0019】ここでは、脊髄除去装置を用いて上記の各 ステップを行うことで、脊椎内部の脊髄等を除去するこ とが可能となる。特に、第4ステップにより脊椎の内部 をくまなく気体導入部材を移動させることができるの で、脊椎の内部の奥側に付着する脊髄等を除去すること が可能となる。なお、各ステップは自動的に行っても良 く、また手動で各ステップを行っても良い。

[0020]

【発明の実施の形態】本発明に係る脊髄吸引除去装置1 を図1に示す。 脊髄吸引除去装置1は、 牛枝肉Cの脊椎 Sの内部に存在する脊髄及び髄液(以下、脊髄等と略

<全体の構成>脊髄吸引除去装置1は、接続部2、エア ーコンプレッサー3、真空ポンプ4、空気導入部材5、 ストレージタンク6、パキュームホース7、洗浄部8、 及び操作盤9を備える。

【0021】接続部2は、牛枝肉Cの脊椎Sの頸椎側と 脊髄吸引除去装置1とを接合する。接続部2は、Y字形 状になっており、空気導入部材5が導通可能であると共 に空気が漏れないように為されているパイロット導入口 11、バキュームホース7と接続するためのバキューム ホース接続口12、頸椎と接続する頸椎接続口13を有 10 する。頸椎接続口13は、頸椎との接合部分にテーパー が設けられている。これにより、接合の際に空気漏れが 生じないようになされている。 バキュームホース接続口 12には、吸引バルブ15が設けられている。この吸引 バルブ15を開くことにより、脊髄等の吸引除去を行う ことができる。

【0022】エアーコンプレッサー3は、空気導入部材 5に接続されており、空気導入部材5により脊椎8の内 部に圧搾空気を導入する。エアーコンプレッサー3と空 気導入部材5との接続部分には供給バルブ20が設けら 20 れている真空ボンプ4は、バキュームホース7に接続さ れており、バキュームホース7の内部を減圧することに より、脊椎Sから接続部2を経てバキュームホース7へ の空気の流れを作り出す。

【0023】空気導入部材5は、エアーコンプレッサー 3からの圧搾空気を脊椎Sの内部に導入する。空気導入 部材5は、圧搾空気を通すパイロットチューブ21、脊 椎Sの内部に圧搾空気を導入するための先端ノズル22 からなる。パイロットチューブ21は、直径6~10m m前後のウレタン又はナイロン製のチューブであり、接 30 続部2のパイロット導入口11及び頸椎接続口13を経 て脊椎Sの内部に導入される。先端ノズル22は、図2 (a1) に示すように、先端形状がパイロットチューブ 21と同径で球状になっており、その先端部に噴出口2 2aを有している。先端ノズル22は、脊椎Sの内部に 挿入される。 先端ノズル22の側面図を図2 (a1) に、上面図を図2(a2)に示す。

【0024】ストレージタンク6は、脊椎Sから吸引さ れた脊髄等を貯留する。 ストレージタンク 6は、 バキュ ームホース7により接続部2及び真空ポンプ4に接続さ れている。また、ストレージタンク6は、レベルセンサ -31及び排出ダンパー32を有している。レベルセン サー31は、ストレージタンク6内の脊髄等の貯留量を 検知する。排出ダンパー32は、手動で開閉可能であ り、ストレージタンク6に貯留されている脊髄等を排出

【0025】バキュームホース7は、脊椎8の内部から 吸引除去された脊髄等をストレージタンク6に輸送し、 また真空ボンプ4により空気を輸送する。バキュームホ 送部7aと、ストレージタンク6と真空ポンプ4とを結 ぶ空気輸送部7bとからなる。洗浄部8は、脊椎Sの内 部を洗浄するための洗浄水を供給する。洗浄部8は、洗 浄水タンク41、エジェクター42、洗浄水供給管4 3、洗浄水供給バルブ44、逆止弁45を有する。洗浄 水タンク41は、洗浄水を溜めている。エジェクター4 2は、パイロットチューブ21に接続されており、エア ーコンプレッサー3からの圧搾空気により洗浄水を空気 導入部材5に導く。 洗浄水供給管43は、 洗浄水タンク 41とエジェクター42とを接続する。洗浄水供給バル ブ44及び逆止弁45は、エジェクター42の近傍に設 けられている。洗浄水供給バルブ44を開くことによ り、洗浄水の供給を行うことができる。逆止弁45は、 洗浄水の逆流を抑止する。

【0026】操作盤9は、脊髄吸引除去装置1の操作を 受け付けると共に、ストレージタンク6のレベルセンサ ー31からの出力表示を行う。なお、エアーコンプレッ サー3、真空ポンプ4、ストレージタンク6、及び操作 盤9は、移動式コモンベッド51に載置されているた め、移動可能である。 <作業手順>以下に脊髄吸引除去 装置1により牛枝肉Cの脊椎から脊髄等を吸引除去する 手順を記載する。

【0027】(準備作業)まず、接続部2の頸椎接続口 13を牛枝肉Cの頸椎に接合する。このとき、頸椎接続 口13のテーパー部が頸椎と接触するように接合を行 う。次に、接続部2のパイロット導入口11から空気導 入部材5を導入し、脊椎Sの内部に挿入する。 これによ り、基本的な準備が整う。

【0028】 (脊髄等の吸引除去)操作盤9を操作して エアーコンプレッサー3と真空ボンプ4とを作動させる と共に吸引バルブ15及び供給バルブ20を開放する。 このとき、エアーコンプレッサー3からの圧搾空気は、 約200kPa(約2kgf/cm²)で供給される。 これにより、エアーコンプレッサー3と真空ポンプ4と の間に圧力差が生じて、次のような空気の流れが生じ る。 すなわち、 エアーコンプレッサー 3からの圧降空気 が空気導入部材5のパイロットチューブ21から先端ノ ズル22の噴出口22aを経て脊椎8の内部から噴出す る。 その後、 脊椎Sの内部の空気は、 接続部2のバキュ ームホース接続口12から脊髄輸送部7aを通過してス トレージタンク6に入り、さらに空気輸送部76を通過 して真空ポンプ4に導かれて排気される。

【0029】上記の空気の流れにより、脊椎 Sの内部に 付着している脊髄等が掘削されて除去される。脊髄は、 豆腐状の軟質物であるので、空気の流れにより脊椎Sか ら剝離させることができる。脊髄等は、上記の空気の流 れと自重とにより脊椎Sの内部から接続部2を経て脊髄 輸送部7aを通過してストレージタンク6に貯留され る。以上により、脊髄等は、脊髄吸引除去装置1の外部 ース7は、脊髄をストレージタンク6に輸送する脊髄輸 50 に出されないため、安全に脊椎Sの内部から除去するこ

とができる.

【0030】先端ノズル22の付近の脊椎Sの内部に付 着している脊髄等が吸引除去されると、先端ノズル22 を脊椎 Sの奥側 (深部) へと手動で前進させていく。こ れにより、脊椎Sのさらに深部から接続部2に向かう空 気の流れを生じさせることができるので、脊椎Sの内部 に残存する脊髄等を吸引することが可能となる。なお、 エアーコンプレッサー3からの圧搾空気は、連続的に供 給しても間欠的に供給してもよい。

【0031】(脊椎内部の洗浄)先端ノズル22が脊椎 10 Sの最奥部(尾椎)近傍に到達すると、脊椎Sの内部に 付着している脊髄等のほぼ全てを吸引除去できたとみな せる。このとき、さらに脊髄等を除去するために、先端 ノズル22から洗浄水を噴出させる。 すなわち、操作盤 9を操作して洗浄水供給バルブ44を開放する。これに 伴い、エジェクター42において洗浄水タンク41から の洗浄水が混和され、先端ノズル22から気液混合状態 で脊椎Sの内部に噴出される。よって、脊椎Sの内部が 洗浄水により洗浄され、残存していた脊髄等を洗い流す ことができる。また、先端ノズル22を後退させて頸椎 20 個に近づけることにより、 脊椎Sの内部全体をくまなく 洗浄することができる。なお、脊椎Sの内部を洗浄して 脊髄等を含んだ洗浄水は、ストレージタンク6に貯留さ

【0032】なお、ストレージタンク6に貯留される存 **髄等がレベルセンサー31により一定量以上であると検** 知されると、安全装置が働き、エアーコンプレッサー3 及び真空ポンプ4が停止すると共に吸引バルブ15及び 供給バルブ20が閉鎖される。これにより、脊髄等がス トレージタンク6から溢れるおそれを無くすことができ 30 ればよい。 る.この後、排出ダンパー32を開放して、図に記載さ れていない排出パイプへ脊髄等を排出して、ストレージ タンク6に貯留される脊髄等の貯留量を減少させる。 【0033】<特徵>

(1)脊髄吸引除去装置1では、空気導入部材5により 脊椎Sの内部に空気が導入されると共に真空ポンプ4で 接続部から空気を吸引する。これらによって生じる圧力 差により空気の流れが生じ、脊椎Sの内部に付着してい る脊髄等を効率よく吸引することができる。特に、空気 導入部材5により脊椎Sの内部に空気を送り込むことが 40 -できるので、圧力差を大きくすることが可能である。こ れにより、効率よく脊髄等を除去できる。

【0034】また、空気導入部材5の先端ノズル22の 付近では、空気の流れの影響を強く受けるために、脊髄 が掘削されやすく脊髄等を除去しやすくなる。この先端 ノズル22は、脊椎Sの内部を移動可能であるので、脊 椎Sの内部全体に付着している脊髄等を除去することが 可能である。また、空気導入部材5の先端ノズル22の 形状が球状であることから、脊椎内部での引っ掛かり等 が生じることを抑えられるので、脊椎Sの内部を容易に 50 の圧力差により空気の流れが生じるため、脊椎Sの内部

移動することができる。

【0035】なお、脊椎Sの内部が高圧になりすぎる と、椎骨と軟骨との間から脊髄等が押し出されて可食部 に付着するおそれがあるが、この脊髄吸引除去装置1で は、真空ポンプ4により脊椎Sの内部の圧力が下げられ るため、脊椎Sの内部が高圧になるおそれを抑えること ができる.

(2) 脊髄吸引除去装置1では、ストレージタンク6が 設けられているため、脊髄等を安全に貯留することが可 能である。また、ストレージタンク6は、レベルセンサ ー31を有しており、一定以上の脊髄等が溜められてい る場合に報知すると共にエアーコンプレッサー3及び真 空ポンプ4を停止することが可能となっている。これに、 より、ストレージタンク6に貯留される脊髄等が溢れる おそれを抑えられる。

【0036】(3)脊髄吸引除去装置1では、洗浄部8 が設けられているため、気圧差による空気の流れにより 存髄等を除去した脊椎Sの内部を洗浄水で洗浄すること が可能である。これにより、脊椎Sの内部に残存してい る脊髄等を除去することが可能となる。また、洗浄水は エジェクター42によりエアーコンプレッサー3からの 圧搾空気と混合されるため、先端ノズル22の噴出口2 2aから気液混合状態で勢いよく噴出されるので、脊椎 Sの内部を効果的に洗浄することができる。

【0037】<他の実施例>

(A)上記の実施形態に係る脊髄吸引除去装置1では、 先端ノズル22の形状が球状になっているが、形状はこ れに限られず、例えば球形やラグビーボール状など、先 端が湾曲しており脊椎 S内部で引っ掛からない形状であ

【0038】また、先端ノズル22の噴出口22aは先 端部に設けられているが、側面部にも噴出口22bとし て複数設けられていても良い。 図2(b1)、(b2) に示すように、先端ノズル23の先端部の噴出口23a に加え、側面部に3ヶ所の噴出口23aがさらに設けら れることにより、先端ノズル23の側面部からも圧搾空 気及び洗浄水が噴出されるため、脊椎Sの内部から脊髄 等を除去する効果がより大きくなる。 図2(b1) は先 端ノズル23の傾面図、図2(b2)は先端ノズル23 の上面図である。

【0039】さらに、脊髄に対する掘削効果を向上させ るために、図2(c1)、(c2)に示されるように、 噴出部24 aに加えて先端ノズル24に3ヶ所の刃部2 4 bをさらに設けても良い。

(B)上記の実施形態に係る脊髄吸引除去装置1では、 エアーコンプレッサー3を備えている。しかし、エアー コンプレッサー3を備えずに、空気導入部材5のパイロ ットチューブ21の外側末端を大気開放状態にしてもよ い。この場合にも、真空ボンア4による減圧と大気圧と

の脊髄等を吸引除去することが可能である。 エアーコン プレッサー3を備えている場合に比べて圧力差が小さく なるため、脊髄等の吸引速度が低下するが、安全に脊髄 灯を除去できる脊髄吸引除去装置を安価に提供すること が可能となる。

【0040】(C)上記の実施形態に係る脊髄吸引除去 装置1では、空気導入部材5を脊椎Sの内部を手動で移 動させている。しかし、接続部2のパイロット導入口1 1にパイロットチューブ21を移動させるパイロットチ ューブ移動機構を設けることにより、自動的に空気導入 10 部材5を脊椎Sの内部で移動させるようにしてもよい。 また、空気導入部材5の移動に合わせてエアーコンプレ ッサー3、真空ボンプ4、洗浄部8を自動的に作動する ようにしてもよい。これらの設定は操作盤9において操 作可能として良い。

【0041】(D)上記の実施形態に係る脊髄吸引除去 装置1では、レベルセンサー31によりストレージタン ク6に貯留される脊髄等が一定量以上であると検知され ると、安全装置によりエアーコンプレッサー3及び真空 ポンプ4が停止する。しかし、これに合わせて排出ダン 20 バー32を自動的に開放して排出パイプへ脊髄等を排出 するようにしても良い。

[0042]

【発明の効果】本発明に係る脊髄除去装置では、気体導 入部材と減圧発生部とにより脊椎の内部に生じる圧力差 により気体の流れが生じる。これにより、気体と共に脊 椎内部に付着している脊髄等を効率よく吸引することが 可能となる。また、気体導入部材の導入部を脊椎の内部 で移動させることにより、脊椎内部全体に存在する脊髄 等を除去することが可能となる。さらに、脊椎の末端に 30 22、23、24 先端ノズル 導入部を移動させることにより、脊椎接続部が接続され ている脊椎の末端から離れた脊椎内部の脊髄等も脊椎接 **続部から吸引することが可能となる。これにより、脊椎** 内部の脊髄等を安全に除去することが可能となり、対象 家畜の食肉処理時における脊髄等の飛散のおそれを抑え

ることができる。

【図面の簡単な説明】

【図1】 脊髄吸引除去装置を牛枝肉に接続した状態の模

【図2】 先端ノズルの拡大図。

- (a1) 噴出口が先端ノズルの先端部に設けられている 場合の側面図。
- (a2) 噴出口が先端ノズルの先端部に設けられている 場合の上面図。
- (b1)噴出口が先端ノズルの先端部と側面部とに設け られている場合の側面図。
 - (b2) 噴出口が先端ノズルの先端部と傾面部とに設け られている場合の上面図。
 - (c1) 噴出口が先端ノズルの先端部と側面部とに設け られており、さらに刃部が設けられている場合の側面
 - (c2) 噴出口が先端ノズルの先端部と側面部とに設け られており、さらに刃部が設けられている場合の上面 团.

【符号の説明】

- 1 脊髓吸引除去装置
- 2 接続部
- 3 エアーコンプレッサー
- 4 真空ポンプ
- 5 空気導入部材
- 6 ストレージタンク
- 7 バキュームホース
- 8 洗浄部
- 21 パイロットチューブ
- 22a、23a、24a 噴出口
 - 31 レベルセンサー
 - 41 洗浄水タンク
 - 42 エジェクター

【図1】

【図2】

