Lecture 9: Curves

Review

- 1. Basics of graphics
- 2. Transformations(put objects in place)

but what objects to we draw?

Polygons! (everything is straight lines)

This week (and next): Curves

What about things that aren't straight?

Today: Curves (1) Curves (2)

- Basics of shape representation
- Basics of curves
- Continuity conditions
- Polynomial pieces
- Cubics

- Interpolation
- Hermite, Catmull-Rom
- Bezier basics

Curves (3)

- Arc-length parameterization
- Practical Issues
- Other curve types (TCB, B-Splines)

Warning: This is a big topic!

One **double** workbook

- you can't do the whole workbook until you hear next week's topics!

You will want to see it multiple ways:

- 1. Lecture / Workbook key concepts and intuitions
 - use interaction to convey ideas
- 2. YouTube video (see workbook) intuitions
 - use animation to convey ideas
- 3. Textbook chapters math details
 - look up equations (most are in workbook)
- 4. Workbook "project" check that you understand

Shapes (informally)

- a set of points (infinite)
- lives in a "space" dimension of the points
 - o a line segment can be in:
 - the plane (2D)
 - space (3D)
 - hyper-space (4D)
 - etc

Curves

- Intuition: set of points drawn with a "pen"
- "Most" points have 2 "neighbors" (next, previous)
 - endpoints
 - crossing
- mapping from time to place

Curves vs. Areas/Regions/Surfaces

Types of Curve Representations

Parametric

arametric
$$y = f(x)$$
 $x, y = \{t, f(t)\}$ $x, y = \{t, f(t)\}$ $x, y = \{t, f(t)\}$

- Implicit (test function)
 - $\circ f(x,y) = 0$
- Procedural / Subdivision

Note: by definition all curves have a parameteric representation Some curves can be represented other ways

Implicit Representations

A function that tests if a point is in the set

•
$$f(x,y) = 0$$

- Easy for geometric tests
- Harder for drawing

(example in a minute - when we can contrast)

Subdivision Representations

- Start with a set of points
- Have a rule that adds new points (possibly moving others)
- Repeat the rule to add more points

- repeat infinitely many times to get the curve
- design rules so it converges
- limit curve is what you get after infinite subdivisions

Toy Example

- Rule: insert a new point 1/2 way between
- Limit Curve: line segments

Parametric Representations

Index the set with a free parameter

•
$$(x,y) = f(t)$$

- easy to generate points - free parameter controls mapping

Parametric Forms

Assuming points \vec{x} or \mathbf{x}

$$\mathbf{x} = \mathbf{f}(t)$$

For a curve:

- $\bullet(t)$ is a scalar in some range
- x is a point (in 2D or 3D)
- ullet is a function $\mathbb{R} o \underline{\mathbb{R}}^2$ (or \mathbb{R}^3 or even higher)

One "vector" function or functions per dimension

Same Points, Different Functions

$$t \in [0,1]$$

$$egin{aligned} f(t) &= (t,0) \ f(t) &= (1-t,0) \ f(t) &= (t^2,0) \end{aligned}$$

- different curves?
- different parameterizations of the same curve?

Mathematics defines curves 2 ways

- the image of a 1D interval
 it's the points!
- the mapping from a 1D interval to a space it's the function (mapping)

we'll try to be specific with what we mean if it matters usually: *curve* is a set of points, *parameterization* is the mapping

The range of the free parameter

```
t goes from start to end
can always scale to 0,1
convention: use u for parameter in [0,1]
(unit parameterization)
use t for more general case (which includes unit)
This is convention - we can use any variable names we like
```

This will keep coming up

Free Parameters vs. Shape Parameters

Free Parameter (t,u) - where on the curve

Shape Parameter - details of the curve

A Circle

Implicit - tost function

$$x^2 + y^2 - 1 = 0$$

Parametric & free parameter

Inside the Disc (area - not a curve)

Implicit

Parametric

$$x=r\cos(2\pi t)$$
 $y=r\sin(2\pi t)$ $t\in[0,1], r\in[0,1]$

Approximation

How many points before it looks "right""?
(smooth)

- Good enough for manufacturing? is this round enough to roll?
- What if we zoom in?

Keep "real" curve (infinite...)
Approximate to draw, ...

Aside: Drawing Curves

Ultimately approximate with pixels

Good algorithms for basic shapes

- lines, circles
- bezier curves
- later in class

Raster Algorithms

- in the library/API
- (often) in hardware

Defining Smoothness

We will actually define

continuity

Does it have abrupt changes?

- breaks / gaps
- corners (
- changes in higher derivatives

Continuity vs. Other Smoothness

Continuity defined

Are the points next to each other?

Can we draw without lifting the pen?

At a parameter value u

$$f(u^-)=f(u^+)$$

This is continuity in value

Continuity in Direction

Does the curve change direction suddenly?

Tangent Vectors

Line that touches the curve at the point Velocity (vector) of the pen's travel

Derivative of position with respect to free parameter

$$\mathbf{x} = \mathbf{f}(\underline{t})$$

$$\mathbf{\dot{x}} = \mathbf{f}'(t)$$
, where $\mathbf{f}' = rac{\partial \mathbf{f}}{\partial t}$

Tangent/velocity is a vector

It is a function of the free parameter

Discontinuity Example

Piecewise line segments:

```
f(u) = if u<.5 then (u,0) else (u,1) or f(u) = (u<.5) ? (u,0) : (u,1)
```

Position discontinuity at u=.5

Discontinuity Example

Piecewise line segments:

```
f(u) = if u<.5 then (u,u) else (u,.5)
```

Tangent (first derivative) discontinuity at u=.5

Note: discontinuities happen when we switch

Continuity Conditions

We say a curve is C(n) continuous

If all its derivatives up to (and including) n are continuous

- C(0) positions
- C(1) positions and tangents (1st derivatives)
- C(2) positions and tangents and 2nd derivatives

C1 implies C0

How much continuity do we need?

C(0) - no gaps

C(1) - no corners

C(2) - looks smooth

Higher...

Important for airflow (airplane, car, boat design)

Important for reflections

Speed Matters?

```
f(u) = if u<0.5 then (u,0) else (2u-0.5,0)
```

It's a horizontal line
The pen doesn't change direction
It does change "speed" at the point

C and G continuity

C(n) continuity - all derivatives up to n match

G(n) continuity - the directions of the derivatives match

Technically: requires some terms we haven't learned yet

Consider continuity where segments come together

Better pieces than line segments

C and G continuity with arcs

Piecewise Polynomials

Chains of low-degree polynomials

- line segment chains (1st degree)
- chains of 2nd or 3rd degree (or more)

Why not pieces of higher degree?

Given n points, you can make an n-1 degree polynomial

- hard to compute
- hard to control
- unwanted wiggles

Come back to this later

Piecewise Parameterizations

Overall parameterization (t)

General Polynomials

$$f(t) = \overline{a_0} + a_1 t + a_2 t^2 + \cdots + a_n t^n$$

for 2D, we need:

$$f_x(t) = a_{0x} + a_{1x}t + a_{2x}t^2 + \dots + a_{nx}t^n f_y(t) = a_{0y} + a_{1y}t + a_{2y}t^2 + \dots + a_{ny}t^n$$

or use vector notation

$$\mathbf{f}(t) = \mathbf{a_0} + \mathbf{a_1}t + \mathbf{a_2}t^2 + \cdots + \mathbf{a_n}t^n$$

Note: the dimensions are independent

General Polynomials

$$\mathbf{f}(t) = \mathbf{a_0} + \mathbf{a_1}t + \mathbf{a_2}t^2 + \cdots + \mathbf{a_n}t^n$$

$$\mathbf{f}(t) = \sum_{i=0}^{n} \mathbf{a_i}t^i$$

Polynomials

Linear in the coefficients (given u)

$$f(v) = a_0 + a_1 v + a_2 v^2$$

Polynomial Forms: Line Segment

 a_0 and a_1

$$\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1} \underline{u}$$

is this convenient?

Polynomial Forms: Line Segment

$$\mathbf{a_0}$$
 and $\mathbf{a_1}$ $\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1} u$ $\mathbf{p_0}$ and $\mathbf{p_1}$ $\mathbf{f(u)} = (1-u)\mathbf{p_0} + u\mathbf{p_1}$ easy to specify easy to check continuity between segments easy to convert between forms

Polynomial Forms: Line Segment

 $\mathbf{a_0}$ and $\mathbf{a_1}$

$$\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1}u$$

 $\mathbf{p_0}$ and $\mathbf{p_1}$

$$\mathbf{f(u)} = (1 - u)\mathbf{p_0} + u\mathbf{p_1}$$

c and d (center and displacement)

$$\mathbf{f(u)} = \mathbf{c} + 2 * (u - .5) * \mathbf{d}$$

and many others

Change of parameters

 $egin{aligned} \mathbf{a_0} & \mathsf{and} \ \mathbf{a_1} \\ \mathbf{f(u)} &= \mathbf{\underline{a_0}} + \mathbf{\underline{a_1}} u \\ \mathbf{p_0} & \mathsf{and} \ \mathbf{p_1} \\ \mathbf{f(u)} &= (1-u)\mathbf{p_0} + u\mathbf{\underline{p_1}} \end{aligned}$

easy to compute a_i from other parameters

Beyond a line...

We need curved segments to get better continuity

Quadratic (2nd degree) Segments

 a_0 , a_1 , and a_2

$$\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1}u + \mathbf{a_2}u^2$$

what can we do with this?

note:

- f(0)• f'(0) $f' = a_1 + 2a_2$
- $\mathbf{f}(1) = \mathbf{a_0} + \mathbf{a_1} + \mathbf{a_2}$
 - $\stackrel{\frown}{}_{\circ}$ if you want to specify where the curve ends, you can compute ${f a_2}$
 - o are a₁ and a₂ convenient?

Quadratic (2nd degree) Segments

$$\mathbf{a_0}, \mathbf{a_1}, \mathsf{and} \ \mathbf{a_2}$$
 $\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1} u + \mathbf{a_2} u^2$ $\mathbf{p_0}, \mathbf{p_1}, \mathsf{and} \ \ref{eq:p0}$

- interpolate $p_{\frac{1}{2}}$
- stay inside triangle (influence)
- specify derivatives (to help match neighbors)

Cubics

The most popular choice in computer graphics

- specify position and 1st derivative at the ends
- C(1), interpolation, local control
- 4x4 matrices (just like 3D transformations)

Cubics

$$\mathbf{f(u)} = \mathbf{a_0} + \mathbf{a_1}u + \mathbf{a_2}u^2 + \mathbf{a_3}u^3$$

coefficient form is not convenient

Curve Summary

- 1. Curves and Shape Definition
- 2. Ideas of **parametric** form
 - free parameters
- 3. Piecewise curves
- 4. Continuity conditions
- 5. Polynomial pieces
- 6. (begin to look at interpolation)

