MATH 426 HW2

Shane Cincotta

September 13, 2019

1 1.2.2(a)

1.2.6:
$$k_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$$
, 1.2.9: $k_h(x) = k_f(g(x)) * k_g(x)$

$$f(x) = \sqrt{x+5} = g(h(x)) \text{ where } g(x) = \sqrt{x} \text{ and } h(x) = x+5, \ g'(x) = \frac{1}{2\sqrt{x}} \text{ and } h'(x) = 1$$

$$k_f(x) = k_g(h(x)) * k_h(x) \text{ (from 1.2.9)}$$

$$= \left| \frac{h(x) * g'(x)}{g(h(x))} \right| * \left| \frac{x * h'(x)}{h(x)} \right|$$

$$= \left| \frac{(x+5) * \frac{1}{2\sqrt{x+5}}}{\sqrt{x+5}} \right| * \left| \frac{x}{x+5} \right|$$

$$= \frac{1}{2} * \left| \frac{x}{x+5} \right|$$

$$k_f(x) = \left| \frac{xf'(x)}{f(x)} \right| \text{ (from 1.2.6) and } f(x) = \sqrt{x+5} \text{ and } h(x) = x+5 \text{ and } g'(x) = \frac{1}{2\sqrt{x}}$$

$$\left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{xg'(h(x))}{g(h(x))} \right| = \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{xg'(x)}{x+5} \right| = \frac{1}{2} * \left| \frac{x}{x+5} \right|$$

2 1.2.2(b)

 $\left|\frac{xf'(x)}{f(x)}\right| = 2\pi |\tan(2\pi x)|$

1.2.6:
$$k_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$$
, 1.2.9: $k_h(x) = k_f(g(x)) * k_g(x)$
 $f(x) = \cos(2\pi x) = g(h(x))$ where $g(x) = \cos(x)$ and $h(x) = 2\pi * x$, $g'(x) = -\sin(x)$ and $h'(x) = 2\pi$
 $k_f(x) = k_g(h(x)) * k_h(x)$ (from 1.2.9)
 $= \left| \frac{h(x) * g'(x)}{g(h(x))} \right| * \left| \frac{x * h'(x)}{h(x)} \right|$
 $= \left| \frac{-2\pi x \sin(2\pi x)}{\cos(2\pi x)} \right| * 1$
 $= 2\pi |x \tan(2\pi x)|$
 $k_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$ (from 1.2.6)
 $f(x) = \cos(2\pi x)$ and $f'(x) = -2\pi \sin(2\pi x)$

3 1.2.2(c)

1.2.6:
$$k_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$$
, 1.2.9: $k_h(x) = k_f(g(x)) * k_g(x)$
 $f(x) = e^{-x^2} = g(h(x))$ where $g(x) = e^x$ and $h(x) = -x^2$, $g'(x) = -e^x$ and $h'(x) = -2x$
 $k_f(x) = k_g(h(x)) * k_h(x)$ (from 1.2.9)

$$= \left| \frac{h(x) * g'(h(x))}{g(h(x))} \right| * \left| \frac{xh'(x)}{h(x)} \right|$$

$$= \left| \frac{-x^2 * e^{-x^2}}{e^{-x^2}} \right| * \left| \frac{x(-2x)}{-x^2} \right|$$

$$= 2|x^2|$$

$$k_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$$
 (from 1.2.6)

$$= \left| \frac{-2x^2 e^{-x^2}}{e^{-x^2}} \right|$$

$$= 2|x^2|$$

4 1.2.3(a)

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

As x gets large(∞), tanh (x) converges to 1 As x gets small($-\infty$), tanh (x) converges to -1

5 1.2.3(b)

$$f(x) = \frac{e^x - 1}{x}$$

$$\lim_{x\to\infty} \frac{e^x-1}{x}$$

$$=\lim_{x\to\infty}e^x$$

 $=\infty$

$$\lim_{x\to-\infty}\frac{e^x-1}{x}$$

$$=\lim_{x\to-\infty}e^x$$

= 0

As x gets large (∞) , $\frac{e^x-1}{x}$ converges to ∞ . As x gets small $(-\infty)$, $\frac{e^x-1}{x}$ converges to 0

6 1.2.3(c)

$$f(x) = \frac{1 - \cos(x)}{x}$$

$$\lim_{x \to \infty} \frac{1 - \cos(x)}{x}$$

$$=\lim_{x\to 0}\sin\left(x\right)$$

= 0

As x gets small(0), $\frac{1-\cos(x)}{x}$ converges to 0

As x gets $\operatorname{large}(\infty)$, $\frac{1-\cos(x)}{x}$ converges to ∞ .

7 1.3.5(a)

$$k_f(x) = \left| \frac{xf'(x)}{f(x)} \right| \text{ (from 1.2.6)}$$

$$f(x) = \frac{e^x - 1}{x}$$

$$k_f(x) = \left| \frac{xe^x + 1 - e^x}{e^x - 1} \right|$$

The maximum value for the condition number over the range (-1, 1) occurs at x = 1. The value at this point is $k_f(x) = 0.58$

8 1.3.5(b)

Done in Matlab

9 1.3.5(c)

Done in Matlab

10 1.3.5(d)

Done in Matlab