Metaheuristics for the team orienteering problem

Claudia Archetti · Alain Hertz · Maria Grazia Speranza

Received: 3 October 2005 / Revised: 3 February 2006 / Accepted: 22 March 2006 / Published online: 21 December 2006 © Springer Science + Business Media, LLC 2006

Abstract The Team Orienteering Problem (TOP) is the generalization to the case of multiple tours of the Orienteering Problem, known also as Selective Traveling Salesman Problem. A set of potential customers is available and a profit is collected from the visit to each customer. A fleet of vehicles is available to visit the customers, within a given time limit. The profit of a customer can be collected by one vehicle at most. The objective is to identify the customers which maximize the total collected profit while satisfying the given time limit for each vehicle. We propose two variants of a generalized tabu search algorithm and a variable neighborhood search algorithm for the solution of the TOP and show that each of these algorithms beats the already known heuristics. Computational experiments are made on standard instances.

Keywords Team orienteering problem \cdot Selective traveling salesman problem \cdot Tabu search heuristic \cdot Variable neighborhood search heuristic

1 Introduction

A huge number of papers appear in the literature which study the well known Traveling Salesman Problem (TSP) and its generalizations to the case of multiple vehicles known as Vehicle Routing Problems (VRPs). While there exists one and only one TSP, many problems belong to the class of VRPs (see Toth and Vigo, 2002). In the TSP and in the

C. Archetti () · M. G. Speranza

University of Brescia, Department of Quantitative Methods, Brescia, Italy

e-mail: archetti@eco.unibs.it

M. G. Speranza

e-mail: speranza@eco.unibs.it

A. Hertz

École Polytechnique and GERAD, Montréal, Canada

e-mail: alain.hertz@gerad.ca

VRPs all customers need to be visited. This means that in the situations modeled all customers are known at the time the optimization model is run. Moreover, the solution found by the model will not need to be modified later. While this is generally the case, there are many practical problems where are many other practical problems where some of these assumptions are not valid. For example, not all customers may need to be visited or the problem has a dynamic structure and the solution found may need to be modified while it is being implemented. This implies that the problems have a different structure and that this structure needs to be explicitly modeled.

Let us consider some situations where not all customers need to be visited when the optimization model is run. Consider the situation where all customers need to be visited but not necessarily in the same tour or set of tours, for instance in the cases where a customer has to be visited within a given time period, say three days. Then, when a tour or a set of tours has to be organized for a given day, there are customers that need to be visited but also customers that may be visited or whose visit may be postponed. In this case the lack of need to serve all customers in the same day comes from the dynamic nature of the problem. The customers to be served can be selected each day on the basis of their total value, assigning to each customer a value that measures the profit or the priority and taking into account restrictions on the vehicles available for the service. Another situation arises when customers have to be selected within a given set. Nowadays it is more and more frequent that demands for transportation service are posted on the web, usually in specific databases, and the carriers can pick up those demands and offer their service to some of these customers. Thus, the carrier has to select within the set of potential customers those who are most convenient for him. The carrier may need to take into account the sets of customers which, as traditionally, need to be served. Such customers will be assigned a very large value.

When a set of customers needs to be selected and a single tour organized, the optimization problems become variants of the TSP. A profit is associated with each customer. On the other hand the traveling cost or time needs to be taken into account. A recent survey by Feillet et al. (2004) defines those problems as the TSPs with profits. The objective function may be the maximization of the collected total profit (Orienteering Problem), the minimization of the total traveling cost (Prize-Collecting TSP) or the optimization of a combination of both (Profitable Tour Problem). While some of the TSPs with profit have been investigated by a number of researchers, such as the Orienteering Problem (OP), and for some others little can be found in the literature, very few papers are available for any of the extensions of the TSPs with profits to the case of multiple tours. We call this class of problems the VRPs with profits. The short list of papers in which multi-vehicle routing problems with profits are addressed is mentioned in the survey by Feillet et al. (2004) dedicated to the single vehicle case.

In this paper we investigate the VRP with profits which is the extension to the case of multiple tours of the most studied TSP with profits, namely the OP. In the OP, given a set of potential customers with associated profit and given the distances between pairs of customers, the objective is to find the subset of customers for which the collected profit is maximum, given a constraint on the total length of the tour. The OP is also called the Selective Traveling Salesman Problem (STSP). The name orienteering comes from an outdoor sport usually played on mountains or forest areas. Given a specified set of points, each competitor, with the help of a map and a compass, has to visit as many points as possible within a specified time limit. The competitor starts at a given

point and has to return to the same point. Golden et al. (1984) proposed to apply the modeling as an OP of a vehicle routing problem with an inventory component. The extension of the Orienteering Problem to the case of multiple tours is known as the Team Orienteering Problem (TOP).

The TOP appeared in the literature in a paper by Butt and Cavalier (1994) under the name Multiple Tour Maximum Collection Problem, while the definition of TOP was introduced by Chao et al. (1996). In this paper a heuristic algorithm is presented together with an interesting variant of an algorithm proposed in Tsiligirides (1984). A tabu search heuristic has been recently proposed and compared with Chao, Golden and Wasil heuristic by Tang and Miller-Hooks (2005).

Among the metaheuristics proposed for the solution of combinatorial optimization problems, tabu search (see, for example, Gendreau et al., 1994) has been shown to be very effective for a variety of vehicle routing problems. Another interesting metaheuristic is the variable neighborhood search (see Mladenovic and Hansen, 1997). In this paper the effectiveness of these metaheuristics is confirmed. We propose two variants of a generalized tabu search algorithm and a variable neighborhood search algorithm for the solution of the TOP and show that such heuristics obtain very good results, in terms of solution quality, within a reasonable amount of time. The results have been compared with the results obtained by the heuristics proposed by Chao et al. (1996) and by Tang and Miller-Hooks (2005).

The paper is organized as follows. In Section 2 the TOP is defined, while in Section 3 the proposed heuristics are presented. The computational results on a large set of standard instances are presented and discussed in Section 4. Finally, some conclusions are drawn.

2 The team orienteering problem

We consider a complete undirected graph G = (V, E), where V = 1, ..., n is the set of vertices and E is the set of edges. Vertex 1 is the starting and ending point of each tour and each vertex i = 2, ..., n represents a potential customer. An edge $(i, j) \in E$ represents the possibility to travel from customer i to customer j. A nonnegative profit s_i is associated with each vertex $(s_1 = 0)$ and a symmetric travel time c_{ij} is associated with each edge $(i, j) \in E$. A set of m vehicles is available to visit the customers. Each vehicle can visit any subset of the customers V within a given time limit T_{max} . The profit of each customer i can be collected by one vehicle at most.

The objective of the Team Orienteering Problem (TOP) is to maximize the total collected profit satisfying the time limit T_{max} for each vehicle.

As already mentioned in the introduction, the TOP has as special case the Orienteering Problem (OP), known also as Selective Traveling Salesman Problem. The OP has been shown to be NP-hard by Golden et al. (1987). Therefore, the TOP is NP-hard.

3 Solution algorithms

Let S be the set of solutions to a combinatorial optimisation problem. For a solution $s \in S$, let N(s) denote a *neighborhood* of s which is defined as a set of *neighbor*

Choose an initial solution s; set $TL = \emptyset$ (tabu list); set $s^* = s$ (best solution) Repeat the following until a stopping criterion is met

- Determine a best solution $s' \in N(s)$ such that either $s' \notin TL$ or s' is better than s^*
- If s' is better than s^* then set $s^* := s'$
- Set s := s' and update TL

Fig. 1 Basic tabu search

Choose an initial solution s; set k = 1

Repeat the following until a stopping criterion is met

- shaking: Generate s' at random in $N^{(k)}(s)$
- local search: Apply a local search on s' using $N^{(0)}$. Let s'' be the resulting solution
- update: If s'' is better than s then set s = s'' and k = 1, else set $k = (k \mod k_{max}) + 1$

Fig. 2 Basic VNS

solutions in S obtained from s by performing a local change on it. Local search techniques visit a sequence s_0, \ldots, s_t of solutions, where s_0 is an initial solution and $s_{i+1} \in N(s_i)$ $(i = 1, \ldots, t-1)$. Tabu search is one of the most famous local search techniques. It was introduced by Glover (1986). A description of the method and its concepts can be found in Glover and Laguna (1997). A basic tabu search is described in Fig. 1.

A few years ago, Hansen and Mladenović proposed a new solution technique called *Variable Neighborhood Search* (VNS for short). The main idea of this new method is to use various neighborhoods during the search. Given an incumbent s, a neighbor solution s' is generated according to one of these neighborhoods, and a local search is then applied to s' in order to obtain a possibly better solution s''. If s'' is better than s, then s'' becomes the new incumbent; otherwise, a different neighborhood is considered in order to try to improve upon solution s. Let $N^{(k)}$ ($k = 0, \ldots, k_{\text{max}}$) denote a finite set of neighborhoods, where $N^{(k)}(s)$ is the set of solutions in the k-th neighborhood of s. A basic VNS (Hansen, Mladenović, 1999) is described in Fig. 2.

Notice that neighborhood $N^{(0)}$ is used in the local search phase, but not in the shaking phase. Solutions in $N^{(0)}(s)$ are typically much closer to s than those in $N^{(k)}(s)$ with k > 0. For this reason, a move from s to a solution $s' \in N^{(k)}(s)$ (k > 0) is often called a *jump*.

We describe in this section two generalized tabu search algorithms and one VNS for the solution of the TOP. The three proposed algorithms follow the general scheme illustrated in Fig. 3. Given an incumbent solution s, we make a jump to a solution s'. We then apply a tabu search on s' in order to try to improve it. The resulting solution s'' is then compared to s. If we follow a VNS strategy, then s'' becomes the new incumbent only if s'' is better than s. In the generalized tabu search strategy, we set s = s'' even if s'' is worse than s. This process is repeated until some stopping criterion is met. More details on this general scheme will be given in Section 3.5.

For comparison, Tang and Miller-Hooks (2005) have embedded their tabu search in an adaptive memory procedure (Rochat and Taillard, 1995). More precisely, their algorithm is an iterative process that uses a central memory containing vehicle routes. At each iteration, the information contained in the central memory is used for producing

Fig. 3 General scheme of our solution methods

an offspring solution (i.e., a solution of the TOP) which is then possibly improved using tabu search. The so obtained solution is finally used to update the central memory.

3.1 Notations and basic concepts

The profit P(C) of a set $C \subseteq V$ of customers is the total profit $\sum_{i \in C} s_i$ of the customers in C. The profit P(r) of a route r is defined as the total profit of the customers on it, and its duration T(r) is its total travel time. A route r is *feasible* if $T(r) \leq T_{\text{max}}$. To measure the possible infeasibility of a route r, we define $I(r) = \max\{T(r) - T_{\text{max}}, 0\}^2$. Hence, I(r) = 0 if and only if r is feasible. We define I(r) as the square of the exceeding time, and not simply as the exceeding time, since we prefer to have a solution containing different routes with a small infeasibility (and thus easy to correct) rather than a solution having few routes with a great infeasibility.

For a set R of routes, $P(R) = \sum_{r \in R} P(r)$ denotes the total profit in R, $I(R) = \sum_{r \in R} I(r)$ is the total infeasibility in R, and C(R) is the set of customers visited on the routes in R.

A *solution* is defined as a set of routes such that each route starts and ends at the depot, and each customer is visited exactly once by exactly one vehicle. We denote $R_{TOP}(s)$ the set of m most profitable routes in s, and $R_{NTOP}(s)$ the set of all remaining routes. A solution s is *feasible* if each route in s is feasible (i.e. I(s) = 0). A solution s is *admissible* if the routes in $R_{NTOP}(s)$ are feasible (i.e. $I(R_{NTOP}(s)) = 0$). Hence an admissible solution can have infeasible routes, but these are necessarily among the m most profitable ones. The aim of the TOP is to determine a feasible solution s that maximizes $P(R_{TOP}(s))$.

The customers in $C(R_{NTOP}(s))$ do not belong to the most profitable routes in s, but are already organized into routes. It is therefore much easier to get a new route with a high profit by inserting new customers in one of the routes in $R_{NTOP}(s)$ instead of creating a new route from scratch. Moreover, since our algorithms are based on moving customers between different routes, we can have routes which are on the border between $R_{TOP}(s)$ and $R_{NTOP}(s)$ and these moves can cause exchanges of routes between the two sets. Also, since there is no limit on the number of routes in $R_{NTOP}(s)$, while the profit of these routes is not taken into account in the objective value $P(R_{TOP}(s))$, there is no reason to accept infeasibility in $R_{NTOP}(s)$. Indeed, an infeasible route in $R_{NTOP}(s)$ can easily be split into a set of feasible routes R_1, \ldots, R_r so that $C(R) = \bigcup_{i=1}^r C(R_i)$.

In a solution s, we denote $r_c(s)$ the route visiting customer c. For a customer c and a route $r \neq r_c(s)$, we denote r + c the route obtained by adding c to r using the cheapest insertion technique. Similarly, given a route r and a customer c on r, we denote r - c

the route obtained from r by removing c and by linking its predecessor to its successor.

The tabu search algorithms we have implemented use two kinds of moves:

• 1-move: In a 1-move, customer c is moved from its route to a route $r \neq r_c(s)$. Route r can be an empty route. Hence, $r_c(s)$ and r are replaced by $r_c(s) - c$ and r + c, respectively. A 1-move can be characterized by the pair (c, r). We denote $s \oplus (c, r)$ the resulting solution.

• *swap-move*: Let c and c' be two customers on two different routes. A swap-move consists in replacing $r_c(s)$ and $r_{c'}(s)$ by $(r_c(s) - c) + c'$ and $(r_{c'}(s) - c') + c$, respectively. A swap-move can be characterized by the ordered pair (c, c'). We denote $s \oplus (c, c')$ the resulting solution.

In the 1-moves, in general route r can be an empty route. In the cases where empty routes are not allowed this will be explicitly specified. Notice that if s is an admissible solution and (x, y) a move (i.e., a 1-move or a swap-move), then $s \oplus (x, y)$ is not necessarily admissible. We have therefore designed procedures that either reduce or totally remove the infeasibility in a subset of routes. These procedures are described in the next section.

3.2 Reducing and removing infeasibility

Let R be a set of routes such that I(R) > 0. The MAKE_FEASIBLE procedure described in Fig. 4 creates a new set of routes R' with C(R') = C(R) and I(R') = 0. This is done by performing 1-moves that strictly reduce the infeasibility. Notice that such 1-moves always exist since it is always possible to remove a customer from a route r with I(r) > 0 and to insert it into a new route.

Notice that if s is an infeasible solution, then the output of MAKE_FEASIBLE(s) is a feasible solution. However, if s is a non-admissible solution, then the solution obtained by replacing $R_{NTOP}(s)$ by MAKE_FEASIBLE($R_{NTOP}(s)$) is not necessarily admissible. Indeed, some routes in MAKE_FEASIBLE($R_{NTOP}(s)$) are possibly obtained by adding customers from other routes in $R_{NTOP}(s)$, and these routes can therefore become more profitable than some infeasible routes in $R_{TOP}(s)$. Hence, several calls to MAKE_FEASIBLE can be necessary to transform a non-admissible solution into an admissible one. Procedure MAKE_ADMISSIBLE of Fig. 5 makes this transformation.

```
Procedure MAKE_FEASIBLE
```

```
Input: A set R of routes with I(R) > 0
Output: A set R' of routes with C(R') = C(R) and I(R') = 0
```

Set R' = R

While I(R') > 0 do

- Choose a route $r \in R'$ with I(r) > 0 and a customer c in r (all choices are random)
- Choose a 1-move (c, r^*) such that $I(r^* + c) = 0$ and $T(r^* + c) T(r^*)$ is minimum
- Replace r and r^* by r-c and r^*+c in R'

Fig. 4 Procedure that removes the infeasibility in a set of routes

Procedure MAKE_ADMISSIBLE

Input: a non-admissible solution s Output: an admissible solution s'

Set s' = s:

While s' is not admissible do Replace the routes in $R_{NTOP}(s')$ by those in MAKE_FEASIBLE($R_{NTOP}(s')$) Update $R_{TOP}(s')$ and $R_{NTOP}(s')$

Fig. 5 Procedure that transforms a solution into an admissible one

Fig. 6 Illustration of the MAKE_ADMISSIBLE procedure

The procedure is finite since the number of infeasible routes in s' strictly decreases at each call to MAKE_FEASIBLE. It allows to recover admissibility as soon as all infeasible routes of s' (if any) are in $R_{TOP}(s')$. This is illustrated on Fig. 6. The graph in Fig. 6(a) is the original network with the starting and ending point of each tour in the center (black vertex). All travel times on the edges are supposed equal to 1. When there is no edge between two vertices i and j, the travel time c_{ij} between these two vertices is equal to 2 since one can link i to j by going through the black vertex. The time limit T_{max} is equal to 3 and the numbers on the vertices are their profits. We suppose that m=3. A solution s is represented in Fig. 6(b). There are 5 routes, 3 in $R_{TOP}(s)$ and 2 in $R_{NTOP}(s)$. The routes in $R_{TOP}(s)$ are represented with solid lines while those in $R_{NTOP}(s)$ are represented with dashed lines. The solution is not admissible since one route in $R_{NTOP}(s)$ has a duration of $4 > 3 = T_{max}$. The solution obtained by replacing $R_{NTOP}(s)$ by MAKE_FEASIBLE($R_{NTOP}(s)$) is represented in Fig. 6(c). It is not admissible since the route with a profit of 5 is not feasible and it now belongs to $R_{NTOP}(s)$. A second call to MAKE_FEASIBLE is necessary to obtain the admissible (but non feasible) solution of Fig. 6(d).

Given a set R of routes with I(R) > 0, the next procedure, called REDUCE_INF, creates a new set of routes R' with C(R') = C(R), $|R'| \le |R|$ and $I(R') \le I(R)$. The REDUCE_INF procedure is a local search that follows the general scheme of Fig. 7. Neighbors are obtained by making 1-moves and swap-moves, but without creating any new route.

The value of a set of routes is measured using two functions F_1 and F_2 .

- $F_1(R)$ is the total infeasibility I(R) in R;
- $F_2(R)$ is the total duration $\sum_{r \in R} T(r)$ of the routes in R.

Procedure REDUCE_INF

```
Input: A set R of routes with I(R)>0 Output: A set R' of routes with C(R')=C(R), \mid R'\mid \leq \mid R\mid, and I(R')\leq I(R)
```

Set R' = R

While no stopping criterion is met do

- Determine the F-best 1-move m_1 (which does not create new routes)
- If $R \oplus m_1 <_F R$ then set R equal to $R \oplus m_1$
- Else determine the F-best swap-move m_2 and set R equal to the F-best solution among $R \oplus m_1$ and $R \oplus m_2$
- If $R <_F R'$ then set R' = R

Fig. 7 Procedure that reduces the infeasibility in a set R of routes

A set R of routes is said F-better than a set R' of routes if $F_1(R) < F_1(R')$ or $F_1(R) = F_1(R')$ and $F_2(R) < F_2(R')$. We denote $R <_F R'$. Given a solution s, the set R of routes in a solution of $N^{(k)}(s)$ is F-best in $N^{(k)}(s)$ if $R <_F R'$ for any $R' \neq R$ in a solution of $N^{(k)}(s)$.

In practice, procedure REDUCE_INF tries to reduce the infeasibility of a set of routes without changing the set of customers visited in these routes (so that the profit collected remains the same) and without creating new routes. To speed-up the search, procedure REDUCE_INF first tries to detect a 1-move m_1 so that $R \oplus m_1$ is F-better than R. If no such move exists, then R is replaced by the best solution obtained by performing a 1-move or a swap-move on R. The stopping criterion is fixed at 100 iterations without improvements. The procedure is a simple local search without any tabu list. This choice is motivated by the need to make the REDUCE_INF procedure very fast since it can be called a large number of times during the entire algorithm.

3.3 Jumps

We have designed two procedures for generating jumps from a given admissible solution s. In the first procedure, a jump from s is obtained by performing a series of 1-moves from $R_{NTOP}(s)$ to $R_{TOP}(s)$. The *amplitude* of such a jump is defined as the number of customers that are moved. We denote $J_k^1(s)$ the set of neighbors which can be obtained from s with such jumps of amplitude k. When moving a customer to $R_{TOP}(s)$, we try to avoid creating infeasibility. Details are given in Fig. 8.

```
Procedure JUMP_1
```

```
Input: An admissible solution s and an amplitude k \leq |C(R_{NTOP}(s))|
Output: An admissible solution s' \in J_k^1(s)
```

Set s' = s

For i=1 to k do

- Choose a customer c at random in $C(R_{NTOP}(s'))$
- Determine a 1-move (c, r) with $r \in R_{TOP}(s')$ that minimizes I(r+c) I(r)Ties are broken by choosing a 1-move with minimum insertion cost T(r+c) - T(r)
- Replace r by r + c in $R_{TOP}(s')$

Fig. 8 First kind of jump

Procedure JUMP_2

Input: An admissible solution s and an amplitude $k \leq |C(R_{TOP}(s))|$ Output: An admissible solution $s' \in J_k^2(s)$

- Set $R = R_{TOP}(s)$ and $R' = R_{NTOP}(s)$
- For i=1 to k do

Choose a customer c at random in C(R), add it to U and replace r_c by $r_c - c$ in R

- If P(R') < P(U) then set W = C(R') and set $R' = \emptyset$ Else set $W = \emptyset$ and repeat the following until $P(W) \ge P(U)$ Choose $c \in C(R')$ at random, add c to W and replace r_c by $r_c - c$ in R'
- For all $c \in U$ do (sequentially)

Let Q be the set of 1-moves (c,r) such that $r\in R'$ or is a new route, and I(r+c)=0 Choose a 1-move $(c,r)\in Q$ with minimum insertion cost T(r+c)-T(r) Replace r with r+c in R'

- For all $c \in W$ do (sequentially)

 Let Q be the set of 1-moves (c,r) such that $r \in R$ and I(r+c) I(r) is minimum Choose a 1-move $(c,r) \in Q$ with minimum insertion cost T(r+c) T(r)Replace r with r+c in R
- Set $s' = R \cup R'$ (i.e., s' is the solution made by the union of the routes in R and R') If s' is not admissible then replace s' with MAKE_ADMISSIBLE(s')

Fig. 9 Second kind of jump

The second kind of jump is obtained by moving a set U of customers from $R_{TOP}(s)$ to $R_{NTOP}(s)$, and a set W of customers from $R_{NTOP}(s)$ to $R_{TOP}(s)$. In order to have a chance to increase the profit in $R_{TOP}(s)$, we try to determine sets U and W such that P(U) < P(W). This is done as follows. We first choose U at random in $C(R_{TOP}(s))$. Then, if $P(U) > P(R_{NTOP}(s))$ we set $W = C(R_{NTOP}(s))$; otherwise, we build W by sequentially adding customers from $C(R_{NTOP}(s))$ as long as P(W) < P(U). The customers in $U \cup W$ are moved as follows: they are first removed from their routes; the customers in U are then sequentially inserted into $R_{NTOP}(s)$ without creating infeasibility (new routes are created if necessary); finally, the customers in W are sequentially inserted into the existing routes in $R_{TOP}(s)$, with the smallest possible increase in infeasibility. The solution s' resulting from such an exchange is not necessarily admissible since infeasible routes can move from $R_{TOP}(s)$ to $R_{NTOP}(s')$. If needed, we therefore repair the resulting solution by using the MAKE_ADMISSIBLE procedure. The amplitude of this second kind of jump is defined as the number of customers in U. We denote $J_k^2(s)$ the set containing all solutions obtained from s with such jumps of amplitude k. Details are given in Fig. 9.

Procedure JUMP-2 is illustrated in Fig. 10. The example is constructed as in Fig. 6 with travel times equal to 1 on the edges and 2 on the non-edges. The time limit T_{max} is equal to 3 while the number m of available vehicles is here equal to 2. The solution s in Fig. 10(b) is admissible but not feasible since one route in $R_{TOP}(s)$ has a duration of $5 > 3 = T_{\text{max}}$. A jump to a solution $s' \in J_1^2(s)$ is performed by moving v to $R_{NTOP}(s)$ and w to $R_{TOP}(s)$. These moves do not create any new infeasibility. The solution s' resulting from this exchange is represented in Fig. 10(c). It is not admissible since the infeasible route of $R_{TOP}(s)$ remains infeasible after the removal of v, while it is no longer one of the two most profitable routes. The MAKE_ADMISSIBLE procedure creates the admissible (and feasible) solution of Fig. 10(d).

Fig. 10 Illustration of the second kind of jump

3.4 Tabu search

We have developed a tabu search algorithm with two possible different strategies. One explores the set of feasible solutions while the other one visits admissible but not necessarily feasible solutions. The algorithm uses 1-moves and swap-moves, and the tabu list contains pairs (c, r) with the meaning that it is forbidden to move customer c to route r. When performing a 1-move (c, r), the pair $(c, r_c(s))$ is introduced in the tabu list TL, while when performing a swap-move (c, c'), both pairs $(c, r_c(s))$ and $(c', r_{c'}(s))$ enter TL. A 1-move (c, r) is considered as tabu if $(c, r) \in TL$ while a swap-move (c, c') is considered as tabu if $(c, r) \in TL$ or (not exclusive) $(c', r_c(s)) \in TL$. Each time s^* is improved, we apply the classical 2-opt procedure (Lin, 1965) on each route in s^* .

We use five functions for measuring the quality of the solutions visited during the search.

- $f_1(s)$ is the total profit $P(R_{TOP}(s))$ of the routes in $R_{TOP}(s)$.
- $f_2(s)$ is the total duration $\sum_{r \in R_{TOP}(s)} T(r)$ of the routes in $R_{TOP}(s)$.
- $f_3(s)$ is defined as $P(R_{TOP}(s)) \alpha I(R_{TOP}(s))$, where α is a parameter that gives more or less importance to the second component of this function. Notice that $f_3(s) = f_1(s)$ if s is feasible. Parameter α is initially set equal to 1 and is then adjusted every 10 iterations, as in Gendreau et al. (1994): if the ten previous solutions were feasible then α is divided by 2; if they were all infeasible, then α is multiplied by 2; otherwise α remains unchanged.
- $f_4(s)$ is the number of non empty routes in s.
- $f_5(s)$ is the total duration $\sum_{r \in R_{NTOP}(s)} T(r)$ of the routes in $R_{NTOP}(s)$.

The tabu search with the *feasible strategy* visits only feasible solutions that are compared with functions f_1 , f_2 , f_4 and f_5 . We say that a solution s is (1,2,4,5)-better than a solutions s' if $f_1(s) > f_1(s')$, or $f_1(s) = f_1(s')$ and $f_2(s) < f_2(s')$, or $f_1(s) = f_1(s')$, $f_2(s) = f_2(s')$ and $f_4(s) < f_4(s')$, or $f_1(s) = f_1(s')$, $f_2(s) = f_2(s')$, $f_4(s) = f_4(s')$ and $f_5(s) < f_5(s')$.

The tabu search with the *penalty strategy* can visit infeasible solutions but infeasibility is penalized. More precisely, we use in this case functions f_3 , f_4 and f_5 , and we say that s is (3,4,5)-better than s' if $f_3(s) > f_3(s')$, or $f_3(s) = f_3(s')$ and $f_4(s) < f_4(s')$, or $f_3(s) = f_3(s')$, $f_4(s) = f_4(s')$ and $f_5(s) < f_5(s')$.

To unify the description of the algorithms, we define $\nu = (1, 2, 4, 5)$ in the feasible strategy and $\nu = (3, 4, 5)$ in the penalty strategy, and we write about ν -better solutions.

Many 1-moves and swap-moves have no influence on the f_1 -value of a solution. Indeed, for a 1-move (c,r) with $\{r_c(s),r\}\subseteq R_{NTOP}(s)$ we have $f_1(s)=f_1(s\oplus(c,r))$, unless $r+c\in R_{TOP}(s\oplus(c,r))$. Similarly, for a swap-move (c,c') with $\{r_c(s),r_{c'}(s)\}\subseteq R_{NTOP}(s)$ we have $f_1(s)=f_1(s\oplus(c,c'))$, unless $(r_c(s)-c)+c'$ or $(r_{c'}(s)-c')+c$ belongs to $R_{TOP}(s\oplus(c,c'))$. To better guide the search towards an optimal solution, we only use moves which can have an influence on the f_1 -value of the current solution. More precisely, we only consider moves (x,y) such that $R_{TOP}(s)\neq R_{TOP}(s\oplus(x,y))$. Such moves are said *interesting*. This definition of *interesting* moves also includes 1-moves and swap-moves made only on routes in $R_{TOP}(s)$, even if the total profit on these routes is not changed. The reason is that a modified route in $R_{TOP}(s)$ can become less profitable than a non-modified route in $R_{NTOP}(s)$, and the f_1 -value is therefore possibly modified.

The proposed tabu search is described in Fig. 11. It uses a subroutine called UPDATE that updates the current best neighbor each time a better neighbor is found. More precisely, let s' denote the current best neighbor of a solution s. For a move (x, y) and a vector v = (1, 2, 4, 5) or (3, 4, 5), the UPDATE subroutine replaces s' by $s \oplus (x, y)$ if $s \oplus (x, y)$ is interesting and v-better than s', and if $(x, y) \notin TL$ or $s \oplus (x, y)$ is v-better than the best solution s^* encountered so far.

Tabu search for the TOP

```
Choose an initial solution s; set TL = \emptyset (tabu list); set s^* = s (best solution)
```

Repeat the following until N_{max} iterations have been performed without improving s^*

• Set s'=s and $\nu=(1,2,4,5)$ for the feasible strategy or $\nu=(3,4,5)$ for the penalty strategy

```
\begin{aligned} &\textit{Feasible strategy} \\ &\textit{For each 1-move } (c,r) \; \text{do} \\ &\textit{If } I(r+c) = 0 \; \text{then UPDATE}(\nu,(c,r)) \\ &\textit{Else, for all customers } c' \neq c \; \text{in } r+c, \; \text{do} \\ &\textit{If both } (r_c(s)-c)+c' \; \text{and } (r-c')+c \; \text{are feasible routes then UPDATE}(\nu,(c,c')) \\ &\textit{Penalty strategy} \\ &\textit{For each 1-move } (c,r) \; \text{do} \\ &\textit{If } I(r+c) = 0 \; \text{or } r+c \in R_{TOP}(s \oplus (c,r)) \; \text{then UPDATE}(\nu,(c,r)) \\ &\textit{Else, for all customers } c' \neq c \; \text{in } r+c \; \text{do} \\ &\textit{If } I((r-c')+c) = 0 \; \text{then UPDATE}(\nu,(c,c')) \\ &\textit{If s' is not admissible then replace } s' \; \text{with MAKE\_ADMISSIBLE(s')} \end{aligned}
```

- If s' is better than s^* then improve each route of s' by means of the 2-opt procedure and set $s^* := s'$
- Set s:=s' and update TL

Subroutine UPDATE

```
Input A vector \nu=(1,2,4,5) or (3,4,5) and a move (x,y)
Output A possible update of s'
If (x,y) is an interesting move and if s \oplus (x,y) is \nu-better than s' then if (x,y) \notin TL or s \oplus (x,y) is \nu-better than s^* then set s' = s \oplus (x,y)
```

Fig. 11 A tabu search algorithm for the TOP

General Scheme

Generate an initial feasible solution s as in Chao et al. (1996)

Repeat the following as long as a stopping criterion is met

- • Choose an amplitude k and generate a solution $s' \in J^1_k(s) \cup J^2_k(s)$
 - In case of a feasible strategy do
 - if I(s') > 0 then replace the routes in $R_{TOP}(s')$ by those in REDUCE_INF $(R_{TOP}(s'))$
 - if I(s') > 0 then replace s' by MAKE_FEASIBLE(s')
- Apply the tabu search of Figure 11 on s', and let s'' denote the resulting solution
- Decide whether s is set equal to s'' or unchanged

Fig. 12 General scheme of our solution methods for the TOP

For moving to a neighbor solution, the feasible strategy considers all 1-moves (c, r); if I(r+c) > 0 then all swap moves (c, c') which induce a feasible solution $s \oplus (c, c')$ are also considered.

The penalty strategy also considers all 1-moves (c,r): if r+c is an infeasible route in $R_{NTOP}(s\oplus(c,r))$ then all swap moves (c,c') which induce a feasible route (r-c')+c are also considered. Notice that if s is admissible and I(r+c)=0 for a 1-move (c,r), then $s\oplus(c,r)$ is possibly non-admissible. Indeed, if $r_c(s)$ is an infeasible route in $R_{TOP}(s)$, then $r_c(s)-c$ is possibly infeasible in $R_{NTOP}(s\oplus(c,r))$. Similarly, if s is admissible and $I((r_{c'}(s)-c')+c)=0$ for a swap-move (c,c'), then $s\oplus(c,c')$ is possibly non-admissible since $(r_c(s)-c)+c'$ is possibly infeasible in $R_{NTOP}(s\oplus(c,c'))$. We therefore use the MAKE_ADMISSIBLE procedure to repair the best neighbor.

The tabu search is stopped when N_{max} iterations have been performed without improving s^* . We call LONG_TABU the version of the above algorithm where N_{max} is fixed equal to 400n, while SHORT_TABU denotes the version with $N_{\text{max}} = 25$.

3.5 Three algorithms for the TOP

The three algorithms that are tested and compared in the next section all follow the general scheme of Fig. 3 which we now detail in Fig. 12.

We start with an initial feasible solution generated using the initial solution proposed by Chao et al. (1996). We then perform a jump to a solution $s' \in J_k^1(s) \cup J_k^2(s)$. If we follow the feasible strategy, we first reduce the infeasibility in $R_{TOP}(s')$ by means of REDUCE_INF, and we then make s' feasible (if needed) by means of MAKE_FEASIBLE. We then apply the tabu search algorithm of Fig. 11 and finally decide whether the resulting solution s'' replaces s or not. This process is repeated until a stopping criterion is met.

Two of the proposed algorithms use LONG_TABU. We have observed in preliminary experiments that, when $s' \in J_k^1(s)$, LONG_TABU often turns back to s after a relatively short time. For this reason, we only consider the second kind of jump when using LONG_TABU. The amplitude of a jump k is a parameter of the algorithm. We call GENERALIZED_TABU_FEASIBLE the algorithm that uses the feasible strategy while GENERALIZED_TABU_PENALTY uses the penalty strategy. Both algorithms stop when a number maxjumps of jumps has been performed. The algorithms are summarized in Figs. 13 and 14.

Algorithm GENERALIZED_TABU_FEASIBLE

Generate an initial feasible solution s as in Chao et al. (1996)

Repeat the following maxjump times

- Take a value k and determine $s' \in J_k^2(s)$ by means of JUMP_2
- if I(s') > 0 then replace the routes in $R_{TOP}(s')$ by those in REDUCE_INF $(R_{TOP}(s'))$
- if I(s') > 0 then replace s' by MAKE_FEASIBLE(s')
- Apply LONG_TABU with the feasible strategy on s'; let s'' be the resulting solution
- Set s = s''

Fig. 13 The GENERALIZED_TABU_FEASIBLE algorithm

Algorithm GENERALIZED_TABU_PENALTY

Generate an initial feasible solution s as in Chao et al. (1996)

Repeat the following maxjump times

- Take a value k and determine $s' \in J_k^2(s)$ by means of JUMP_2
- Apply LONG_TABU with the penalty strategy on s'; let s'' be the resulting solution
- Set s = s''

Fig. 14 The GENERALIZED_TABU_PENALTY algorithm

The third algorithm is a Variable Neighborhood Search that uses SHORT_TABU as local search. In preliminary experiments, we have observed that SHORT_TABU is often not able to recover feasibility when it is lost. For this reason, we only use the feasible strategy with SHORT_TABU. Following the VNS scheme, we set s = s'' only if s'' is (1,2,4,5)-better than s. For each amplitude k of the jumps, a number \overline{k} of jumps is made before changing k. We have implemented two rules for varying the amplitude k of the jumps. The ascending rule starts with k=1 and augments k until the value k_{\max} is reached. If s'' is (1,2,4,5)-better than s, k is reset equal to 1, otherwise k is augmented by one if the number of jumps with amplitude k is \overline{k} and remains unchanged if this is not the case. When \overline{k} jumps of amplitude k_{\max} are made, the procedure is repeated making a new loop. The algorithm stops when a number of loops equal to $\max loops$ has been performed. We have also tested a descending rule which decreases k from k_{\max} to 1. The results obtained are very similar to those with the ascending strategy. We therefore only report on results obtained with the descending rule. The algorithm, called VNS_FEASIBLE, is summarized in Fig. 15.

4 Computational experiments

The computational experiments have been made on the set of 320 benchmark instances published in Chao et al. (1996). The results produced by our algorithms have been compared with those produced by the algorithm of Chao et al. (1996), from now on CGW algorithm, and with those produced by the algorithm of Tang and Miller-Hooks (2005), from now on TMH algorithm. We did not compare the algorithms with Tsiligirides algorithm (Tsiligirides, 1984), because it has been shown to be dominated by the CGW or TMH in Tang and Miller-Hooks (2005). The experiments were run on

Algorithm VNS_FEASIBLE

Generate an initial feasible solution s as in Chao et al. (1996)

Set $k = k_{max}$, $counter_jumps = 1$ and $counter_loops = 1$

Repeat the following until counter_loops > maxloops

- Choose i at random in $\{1,2\}$ and determine a solution $s' \in J_k^i(s)$ by means of JUMP \perp
- if I(s') > 0 then replace the routes in $R_{TOP}(s')$ by those in REDUCE_INF $(R_{TOP}(s'))$
- if I(s') > 0 then replace s' by MAKE_FEASIBLE(s')
- Apply SHORT_TABU with the feasible strategy on s'; let s'' be the resulting solution
- If s'' is (1,2,4,5)-better than s then set s=s'', $k=k_{max}$, $counter_jumps=1$ and $counter_loops=1$. Otherwise if $counter_jumps=\overline{k}$ set k=k-1. If k=0 set $k=k_{max}$, $counter_jumps=1$, $counter_loops=counter_loops+1$

Fig. 15 The VNS_FEASIBLE algorithm

a personal computer Intel Pentium 4 with 2.80 GHz and 1.048 GB Ram. The values of the solutions obtained by CGW and TMH algorithms have been taken from Tang and Miller-Hooks (2005).

The stopping criterion we have chosen for GENERALIZED_TABU_FEASIBLE and for GENERALIZED_TABU_PENALTY is a total number of 3 jumps. In other words, the sequence of operations described in Figs. 13 and 14 is repeated three times. We tested two versions of VNS_FEASIBLE, a SLOW VNS_FEASIBLE and a FAST VNS_FEASIBLE. In SLOW VNS_FEASIBLE the parameter k_{max} has been set to $\frac{2}{3}(n-2)$, the parameter \overline{k} has been set to 3 and the maximum number of loops maxloops to 10. In FAST VNS_FEASIBLE we set $k_{\text{max}} = \frac{n-2}{3}$, $\overline{k} = 1$ and maxloops = 3.

In all the test instances, the starting point of each tour is different from the ending point. The total number of vertices n includes the starting and ending points. The 320 instances include seven sets. The number of vertices is n = 32 in set 1, n = 21 in set 2, n = 33 in set 3, n = 100 in set 4, n = 66 in set 5, n = 64 in set 6 and n = 102 in set 7. Customer location and score is identical in all instances of the same set. In each set, an instance is characterized by a number of vehicles m, which varies between 2 and 4, and a different value of the time limit T_{max} . On 121 of the 320 instances all the tested algorithms have obtained the same solution. For some of these instances the solution is the same because all customers with distance from the starting and ending point less than T_{max} can be visited within the time limit. Therefore, the solution is obviously optimal. In the case that not all such customers are visited, we believe that the solution found by all algorithms is the optimal one. We report in the following tables only the results we obtained on the set of 199 remaining instances. The 199 instances are distributed among the sets as follows: 9 in set 1, 3 in set 2, 29 in set 3, 53 in set 4, 48 in set 5, 11 in set 6 and 46 in set 7. A detailed table of results for all the test instances, together with the instances themselves, can be found at the web site www-c.eco.unibs.it/~ archetti/TOP.zip.

We have made some preliminary tests to determine the length of the tabu list *TL*. On the basis of the results of these tests, we have determined

$$TL = \left\lfloor \frac{\sqrt{\beta * random}}{4} + n \lceil \sqrt{m} \rceil \theta \right\rfloor$$

where:

- $\beta = n$ multiplied by the number of routes created in the initial solution;
- random = a random number in (0, 1];
- θ = multiplier which takes value $\frac{1}{8}$ in GENERALIZED_TABU_FEASIBLE and GENERALIZED_TABU_PENALTY, and value $\frac{1}{16}$ in VNS_FEASIBLE.

In Tables 1–4 the value of the solution obtained by the different tested algorithms is shown for sets 1–3, for set 4, for set 5 and for sets 6 and 7, respectively. The best results are indicated with bold numbers. Each instance is identified by the notation $p\alpha.\beta.\gamma$, where α indicates the set to which the instance belongs, β represents the number of vehicles, and γ is a label that differentiates between instances from the same set and with the same number of vehicles. On each instance, three runs have been executed for each of the algorithms that include random choices. With *zmin* and *zmax* we denoted the minimum and the maximum value of the objective function obtained. The value *zmin* can be seen as a sort of guaranteed value, related to the robustness of the algorithm with respect to the random choices. The value *zmax* is a value related to the ability of the algorithm to reach good solutions. It is obtained by running the algorithm more than once (three times in our experiments) and taking advantage of the randomness, at the expense of an increase of the computational time. We will see later than the computational time of a run is rarely larger than 10 minutes and, thus, the increase of the computational time due to multiple runs is acceptable.

A summarized view of the results is provided in Table 5. In the first row the number of best solutions found by each algorithm over all the 199 instances is shown. The average and the maximum error over all the instances are shown in the second and third row. In the fourth and fifth row each algorithm is compared to CGW and TMH algorithms, respectively. Finally, the last row shows the number of times each algorithm has obtained a solution strictly better than both CGW and TMH algorithms. From this table it can be seen that each of the proposed algorithms improves on the average the performance of CGW and TMH algorithms. The best of the proposed algorithms turns out to be SLOW VNS_FEASIBLE.

Finally, Table 6 shows the average and maximum computational time required by each algorithm for a run over the instances of the various sets. The CGW algorithm was run on a SUN 4/730 Workstation 25 MHz, while TMH was run on a DEC Alpha XP1000 computer 667 MHz.

In conclusion, SLOW VNS_FEASIBLE requires in the worst case less than 20 minutes. GENERALIZED_TABU_FEASIBLE and GENERALIZED_TABU_PENALTY require a similar computational time, in most cases less than 10 minutes. The time required by FAST VNS_FEASIBLE is only in one case slightly above 2 minutes. This latter algorithm is an excellent compromise between solution quality and computational effort.

From Tables 1–4 it can be seen that we obtained a strictly better solution than the best known solution for 128 benchmark test instances. Some insight as to why our metaheuristics outperform the algorithm proposed by Tang and Miller-Hooks (2005) can be obtained by comparing the tabu search implementations. Tang and Miller-Hooks use a tabu search based on the penalty strategy (see Section 3.4). They define a solution s as a set of m routes which are possibly infeasible. The customers that are not included in one of these m routes are however not combined for creating routes in

		GEN_TA	TABU_PENALTY	GEN_TA	GEN_TABU_FEASIBLE	FAST V	FAST VNS_FEASIBLE	SLOW V	SLOW VNS_FEASIBLE		
Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p1.2.i	23.0	135	135	135	135	135	135	135	135	135	130
p1.2.1	30.0	190	195	195	195	195	195	195	195	190	190
p1.3.h	13.3	70	70	70	70	70	70	70	70	70	75
p1.3.m	21.7	175	175	175	175	175	175	175	175	170	175
p1.3.0	24.3	205	205	205	205	205	205	205	205	205	215
p1.3.p	25.0	220	220	220	220	220	220	220	220	220	215
p1.4.j	12.5	75	75	75	75	75	75	75	75	75	70
p1.4.0	18.2	165	165	165	165	165	165	165	165	165	160
p1.4.p	18.8	175	175	175	175	175	175	175	175	175	160
p2.2.k	22.5	275	275	275	275	275	275	275	275	270	270
p2.3.g	10.7	145	145	145	145	145	145	145	145	140	140
p2.3.h	11.7	165	170	165	165	165	165	165	165	165	165
p3.2.c	12.5	180	180	180	180	180	180	180	180	180	170
p3.2.e	17.5	260	260	760	260	260	260	790	260	250	260
p3.2.f	20.0	300	300	300	300	300	300	300	300	290	300
p3.2.g	22.5	360	360	360	360	360	360	360	360	350	350
p3.2.h	25.0	400	410	400	410	400	410	410	410	410	390
p3.2.i	27.5	450	460	460	460	460	460	460	460	460	440
p3.2.j	30.0	510	510	510	510	510	510	510	510	490	470
p3.2.k	32.5	220	550	220	550	220	550	220	550	540	540
p3.2.m	37.5	610	620	620	620	620	620	620	620	620	620
p3.2.n	40.0	650	099	059	099	099	099	099	099	099	099
p3.2.o	42.5	089	069	069	069	069	069	069	069	069	089
p3.2.p	45.0	710	720	720	720	720	720	720	720	710	710
p3.2.q	47.5	750	750	160	160	160	092	092	160	160	750
2332		1	770	000	100	700	200	900	900	i i	t

Table 1 (Continued).

		GEN_TA	BU_PENALTY	GEN_TA	GEN_TABU_FEASIBLE	FAST VI	FAST VNS_FEASIBLE	SLOW V	SLOW VNS_FEASIBLE		
Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p3.3.k	21.7	440	440	440	440	440	440	440	440	430	430
p3.3.1	23.3	480	480	480	480	480	480	480	480	470	470
p3.3.m	25.0	520	520	520	520	520	520	520	520	510	520
p3.3.n	26.7	570	570	570	570	570	570	570	570	550	550
p3.3.0	28.3	290	290	590	590	290	290	290	290	290	580
p3.3.p	30.0	640	640	640	640	640	640	640	640	640	620
p3.3.q	31.7	089	089	089	089	089	089	089	089	089	630
p3.3.s	35.0	720	720	700	720	720	720	720	720	710	710
p3.3.t	36.7	160	092	160	160	160	160	160	092	750	720
p3.4.f	10.0	190	190	190	190	190	190	190	190	190	180
p3.4.i	13.8	270	270	270	270	270	270	270	270	260	260
p3.4.j	15.0	310	310	310	310	310	310	310	310	310	300
p3.4.m	18.8	390	390	390	390	390	390	390	390	380	380
p3.4.0	21.2	490	200	500	500	490	200	200	200	490	490
р3.4.р	22.5	260	260	260	260	260	260	260	260	260	530

		GEN_TA	TABU_PENALTY	GEN_TAI	GEN_TABU_FEASIBLE	FAST VI	FAST VNS_FEASIBLE	SLOW V	SLOW VNS_FEASIBLE		
Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p4.2.a	25.0	206	206	206	206	206	206	206	206	202	194
p4.2.c	35.0	452	452	452	452	452	452	452	452	438	4
p4.2.d	40.0	528	530	531	531	527	531	531	531	517	531
p4.2.e	45.0	599	618	613	613	612	618	618	819	593	580
p4.2.f	50.0	9/9	289	672	929	672	684	<i>LL</i> 19	289	999	599
p4.2.g	55.0	747	751	751	756	745	750	750	753	749	737
p4.2.h	0.09	793	795	804	820	818	827	827	835	827	807
p4.2.i	65.0	882	882	988	668	857	916	918	918	915	828
p4.2.j	70.0	933	946	937	962	954	962	962	962	914	668
p4.2.k	75.0	1008	1013	986	1013	1001	1019	1019	1022	963	932
p4.2.1	80.0	1058	1061	1054	1058	1052	1073	1074	1074	1022	1003
p4.2.m	85.0	1095	1106	1048	1098	1098	1132	1132	1132	1089	1039
p4.2.n	0.06	1053	1169	1155	1171	1134	1159	1167	1171	1150	1112
p4.2.o	95.0	1149	1180	1162	1192	1194	1216	1207	1218	1175	1147
p4.2.p	100.0	1194	1226	1225	1239	1227	1239	1236	1241	1208	1199
p4.2.q	105.0	1252	1252	1250	1255	1258	1265	1263	1263	1255	1242
p4.2.r	110.0	1280	1281	1281	1283	1275	1283	1286	1286	1277	1199
p4.2.s	115.0	1296	1296	1299	1299	1298	1300	1300	1301	1294	1286
p4.2.t	120.0	1306	1306	1306	1306	1306	1306	1306	1306	1306	1299
p4.3.c	23.3	193	193	193	193	193	193	193	193	192	191
p4.3.d	26.7	334	335	335	335	333	335	335	335	333	333
p4.3.e	30.0	468	468	468	468	461	468	468	468	465	432
p4.3.f	33.3	279	579	579	579	579	579	579	579	579	552
p4.3.g	36.7	649	651	652	652	647	653	653	653	949	623
p4.3.h	40.0	722	722	727	727	715	724	728	729	400	717
: 6 / =	,	000	200	700	200	000	200	200	I o	į	1

Table 2 (Continued).

		GEN_TA	TABU PENALTY	GEN_TA	3EN_TABU_FEASIBLE	FAST VI	FAST VNS_FEASIBLE	SLOW V	SLOW VNS_FEASIBLE		
Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p4.3.j	46.7	855	858	844	858	855	861	658	861	098	829
p4.3.k	50.0	806	919	904	918	912	919	919	919	906	688
p4.3.1	53.3	972	926	970	973	955	975	975	826	951	946
p4.3.m	56.7	1020	1034	1037	1049	1033	1056	1034	1063	1005	926
p4.3.n	0.09	1080	1108	1093	1115	1092	11111	1121	1121	11119	1018
p4.3.0	63.3	1134	1156	1142	1157	1168	1172	1149	1170	1151	1078
p4.3.p	66.7	1164	1207	1200	1221	1184	1208	1199	1222	1218	1115
p4.3.q	70.0	1183	1237	1237	1241	1227	1250	1240	1251	1249	1222
p4.3.r	73.3	1222	1224	1261	1269	1262	1272	1262	1272	1265	1225
p4.3.s	76.7	1250	1250	1285	1294	1266	1289	1280	1293	1282	1239
p4.3.t	80.0	1297	1303	1297	1304	1298	1298	1298	1304	1288	1285
p4.4.e	22.5	183	183	183	183	183	183	183	183	182	182
p4.4.f	25.0	324	324	324	324	324	324	324	324	315	304
p4.4.g	27.5	461	461	461	461	461	461	461	461	453	460
p4.4.h	30.0	571	571	571	571	571	571	571	571	554	545
p4.4.i	32.5	654	655	959	657	653	657	657	657	627	641
p4.4.j	35.0	729	731	728	731	723	732	732	732	732	269
p4.4.k	37.5	815	821	816	816	819	821	821	821	819	770
p4.4.1	40.0	877	878	876	878	928	879	879	880	875	847
p4.4.m	42.5	913	916	914	918	914	916	916	919	910	895
p4.4.n	45.0	996	972	962	926	961	896	896	896	716	932
p4.4.o	47.5	1049	1057	1029	1057	1050	1051	1051	1061	1014	995
p4.4.p	50.0	1095	1120	1087	1120	1118	1120	1120	1120	1056	966
p4.4.q	52.5	1140	1148	1144	1157	1156	1160	1160	1161	1124	1084
³ p4.4.r	55.0	1188	1203	1202	1211	1198	1207	1203	1203	1165	1155
p4.4.s	57.5	1243	1245	1239	1256	1249	1259	1246	1255	1243	1230
p4.4.t	0.09	1275	1279	1279	1285	1251	1282	1275	1279	1255	1253

		GEN_TA	GEN_TABU_PENALTY	GEN_TA	GEN_TABU_FEASIBLE	FAST V.	FAST VNS_FEASIBLE	SLOW V	SLOW VNS_FEASIBLE		
Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p5.2.e	12.5	180	180	180	180	180	180	180	180	180	175
p5.2.g	17.5	320	320	320	320	315	320	320	320	320	31
p5.2.h	20.0	410	410	410	410	410	410	410	410	410	395
p5.2.j	25.0	280	580	280	580	280	280	580	580	260	28
p5.2.1	30.0	800	800	800	800	800	800	800	800	770	790
p5.2.m	32.5	855	098	980	098	860	098	860	098	860	85
p5.2.n	35.0	920	925	925	925	925	925	925	925	920	920
p5.2.o	37.5	1020	1020	1020	1020	1020	1020	1020	1020	975	1010
p5.2.p	40.0	1100	1130	1150	1150	1150	1150	1150	1150	1090	1150
p5.2.q	42.5	1165	1195	1195	1195	1190	1195	1195	1195	1185	1195
p5.2.r	45.0	1255	1260	1260	1260	1260	1260	1260	1260	1260	1250
p5.2.s	47.5	1300	1330	1320	1340	1340	1340	1340	1340	1310	1310
p5.2.t	50.0	1360	1380	1400	1400	1400	1400	1400	1400	1380	1380
p5.2.u	52.5	1405	1440	1450	1460	1460	1460	1460	1460	1445	1450
p5.2.v	55.0	1465	1490	1505	1505	1500	1500	1505	1505	1500	1490
p5.2.w	57.5	1525	1555	1560	1565	1560	1560	1560	1560	1560	1545
p5.2.x	0.09	1590	1595	1600	1610	1590	1590	1595	1610	1610	1600
p5.2.y	62.5	1600	1635	1635	1635	1635	1635	1635	1635	1630	1635
p5.2.z	65.0	1655	1670	1670	1680	1670	1670	1670	1670	1665	1680
p5.3.e	8.3	95	95	95	95	95	95	95	95	95	110
p5.3.h	13.3	760	260	260	260	760	260	260	260	260	255
p5.3.k	18.3	495	495	495	495	495	495	495	495	495	480
p5.3.1	20.0	595	595	595	595	585	595	595	595	575	595
p5.3.n	23.3	750	755	755	755	745	755	755	755	755	755
p5.3.0	25.0	820	870	870	870	870	870	870	870	835	870
n5 3 a	28.3	1065	1070	1070	1070	1070	1070	1070	1070	1005	1000

Table 3 (Continued).

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. (
		GEN_TA	FABU_PENALTY	GEN_TA	GEN_TABU_FEASIBLE	FAST VI	FAST VNS_FEASIBLE	A MOTS	SLOW VNS_FEASIBLE		
Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p5.3.r	30.0	1105	1110	1125	1125	1125	1125	1125	1125	1115	1105
p5.3.s	31.7	1185	1185	1190	1190	1190	1190	1190	1190	1175	1175
p5.3.t	33.3	1245	1250	1260	1260	1255	1260	1260	1260	1240	1250
p5.3.u	35.0	1340	1340	1345	1345	1345	1345	1345	1345	1330	1330
p5.3.v	36.7	1410	1420	1420	1425	1415	1425	1425	1425	1410	1400
p5.3.w	38.3	1475	1485	1485	1485	1475	1485	1485	1485	1465	1450
p5.3.x	40.0	1530	1555	1540	1555	1540	1555	1550	1555	1530	1530
p5.3.y	41.7	1575	1590	1590	1595	1590	1595	1595	1595	1580	1580
p5.3.z	43.3	1615	1625	1635	1635	1635	1635	1635	1635	1635	1635
p5.4.m	16.2	550	555	555	555	550	555	555	555	555	495
p5.4.0	18.8	685	069	069	069	069	069	069	069	089	675
p5.4.p	20.0	292	765	765	765	092	765	292	765	092	750
p5.4.q	21.2	840	860	98	098	860	098	098	098	098	860
p5.4.r	22.5	955	096	096	096	096	096	096	096	096	950
p5.4.s	23.8	1025	1025	1030	1030	1025	1030	1030	1030	1000	1020
p5.4.t	25.0	1160	1160	1160	1160	1160	1160	1160	1160	1100	1160
p5.4.u	26.2	1300	1300	1300	1300	1300	1300	1300	1300	1275	1260
p5.4.v	27.5	1320	1320	1320	1320	1320	1320	1320	1320	1310	1310
p5.4.w	28.8	1370	1375	1385	1390	1380	1390	1385	1390	1380	1380
p5.4.x	30.0	1435	1440	1450	1450	1450	1450	1450	1450	1410	1420
p5.4.y	31.2	1510	1520	1520	1520	1520	1520	1520	1520	1520	1490
p5.4.z	32.5	1595	1620	1620	1620	1620	1620	1620	1620	1575	1545
											ĺ

Table 4 Results for sets 6–7

948 948 1104 1104 1104 1104 1104 1106 11002 11000 1100 1100 1100 1100 11			GEN_TA	GEN_TABU_PENALTY	GEN_TA	GEN_TABU_FEASIBLE	FAST VI	FAST VNS_FEASIBLE	SLOW V	SLOW VNS_FEASIBLE		
30.0 936 948 948 35.0 1092 1098 1104 37.5 1146 1164 1188 40.0 1224 1242 1260 18.3 642 642 642 21.7 894 894 894 23.3 984 1002 1002 25.0 1074 1080 1002 26.7 1152 1170 1170 26.7 1152 1170 1170 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 578 704 110.0 702 702 704 110.0 702 702 704 120.0 578 578 758 130.0 818 827 818 140.0 884 884 888 150.0 902 1000 994 160.0 1040 1041 1042 160.0 1177 1173 1123 110.0 1117 1123 1120 <th>Instance</th> <th>T max</th> <th>z min</th> <th>z max</th> <th>z min</th> <th>z max</th> <th>z min</th> <th>z max</th> <th>z min</th> <th>z max</th> <th>TMH</th> <th>CGW</th>	Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
35.0 1092 1098 1104 37.5 1146 1164 1188 40.0 1224 1242 1260 18.3 642 642 642 21.7 894 894 894 23.3 984 1002 1002 25.0 1074 1080 1080 26.7 1152 1170 1170 16.2 528 528 528 50.0 290 290 290 60.0 387 387 387 80.0 519 520 519 90.0 578 579 578 110.0 702 702 704 120.0 578 758 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 160.0 1177 1173 1133 100.0 1177 1133 1134 110.0 1147 1143 1144	56.2.j	30.0	936	948	948	948	948	948	948	948	936	942
37.5 1146 1164 1188 40.0 1224 1242 1260 18.3 642 642 642 21.7 894 894 894 23.3 984 1002 1002 25.0 1074 1080 1080 26.7 1152 1170 1170 16.2 528 528 528 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 110.0 702 702 704 120.0 578 758 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 1040 1041 1042 160.0 1177 1173 1133 1134 160.0 1177 1133 1134 1134	56.2.1	35.0	1092	1098	1104	1110	1116	1116	1116	1116	1116	1104
40.0 1224 1242 1260 18.3 642 642 642 21.7 894 894 894 23.3 984 1002 1002 25.0 1074 1080 1080 26.7 1152 1170 1170 16.2 528 528 528 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 110.0 702 702 704 120.0 641 643 644 120.0 578 579 578 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 170.0 1041 1042 180.0 1074 1041 1042 190.0 1177 1133 1133	o6.2.m	37.5	1146	1164	1188	1188	1170	1188	1188	1188	1188	1176
18.3 642 642 642 21.7 894 894 894 23.3 984 1002 1002 25.0 1074 1080 1080 26.7 1152 1170 1170 16.2 528 528 528 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 110.0 641 643 644 110.0 702 702 704 120.0 578 758 759 130.0 818 827 818 140.0 884 884 884 160.0 902 1000 994 170.0 1040 1041 1042 180.0 1070 1177 1133 1130 100.0 1177 1133 1133 1130	o6.2.n	40.0	1224	1242	1260	1260	1242	1260	1242	1260	1260	1242
21.7 894 894 894 23.3 984 1002 1002 25.0 1074 1080 1002 26.7 1152 1170 1170 16.2 528 528 528 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 110.0 641 643 644 110.0 702 702 704 120.0 578 578 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 170.0 1041 1042 180.0 1071 1042 180.0 1177 1173 1173 117.0 117.7 117.3 117.3	56.3.i	18.3	642	642	642	642	642	642	642	642	612	642
23.3 984 1002 1002 25.0 1074 1080 1080 26.7 1152 1170 1170 16.2 528 528 528 17.5 684 696 696 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 578 758 759 130.0 818 884 884 140.0 884 884 884 160.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1123 1124 100.0 1177 1123 1124	56.3.k	21.7	894	894	894	894	894	894	894	894	928	894
25.0 1074 1080 1080 26.7 1152 1170 1170 16.2 528 528 528 17.5 684 696 696 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 578 758 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1133 1134	56.3.1	23.3	984	1002	1002	1002	1002	1002	1002	1002	066	972
26.7 1152 1170 1170 16.2 528 528 528 17.5 684 696 696 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1133 1134	o6.3.m	25.0	1074	1080	1080	1080	1080	1080	1080	1080	1080	1080
16.2 528 528 528 17.5 684 696 696 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 107 117 113 110.0 117 113 113	26.3.n	26.7	1152	1170	1170	1170	1170	1170	1170	1170	1152	1158
17.5 684 696 696 50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 107 113 113	o6.4.k	16.2	528	528	528	528	528	528	528	528	522	546
50.0 290 290 290 60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1133 1134	56.4.1	17.5	684	969	969	969	969	969	969	969	969	069
60.0 387 387 387 70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 140.0 884 884 884 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1133 1130	57.2.e	50.0	290	290	290	290	589	289	290	290	290	275
70.0 456 456 457 80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 117 1133 1134	57.2.f	0.09	387	387	387	387	384	387	387	387	382	379
80.0 519 520 519 90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1133	57.2.g	70.0	456	456	457	459	457	459	459	459	459	453
90.0 578 579 578 100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 117 1123 1130	57.2.h	80.0	519	520	519	520	518	521	521	521	521	517
100.0 641 643 644 110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 140.0 884 884 888 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1123 110.0 1177 1173 1124	57.2.i	0.06	578	579	578	579	574	575	579	579	578	576
110.0 702 702 704 120.0 758 758 759 130.0 818 827 818 140.0 884 884 888 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1123	57.2.j	100.0	641	643	644	644	989	643	644	644	989	633
120.0 758 758 759 130.0 818 827 818 140.0 884 884 888 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1124 1170 1177 1173 1174	57.2.k	110.0	702	702	704	705	695	704	702	705	702	693
130.0 818 827 818 140.0 884 884 888 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1174	57.2.1	120.0	758	758	759	191	758	759	<i>1</i> 9 <i>L</i>	192	192	758
140.0 884 884 888 150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1177 1173 1174	57.2.m	130.0	818	827	818	824	821	824	821	827	817	811
150.0 925 933 941 160.0 992 1000 994 170.0 1040 1041 1042 180.0 1081 1091 1080 100.0 1177 1123 1124	57.2.n	140.0	884	884	888	888	863	883	884	888	864	864
160.0 992 1000 994 170.0 1040 1041 1042 180.0 1081 1091 1080 100.0 1177 1123 1124	57.2.0	150.0	925	933	941	945	922	945	945	945	914	934
170.0 1040 1041 1042 180.0 1081 1091 1080 190.0 1117 1123	57.2.p	160.0	992	1000	994	1002	1002	1002	1000	1002	286	284
180.0 1081 1091 1080	57.2.q	170.0	1040	1041	1042	1043	1021	1038	1043	1044	1017	1031
1900	57.2.r	180.0	1081	1091	1080	1088	1080	1094	1094	1094	1067	1082
+211 (2711) 1111 0:061	57.2.s	190.0	1117	1123	1124	1128	1127	1136	1136	1136	1116	1127

Table 4 (Continued).

Instance T max p7.2.t 200.0 p7.3.e 33.3 p7.3.f 40.0 p7.3.g 46.7	x z min									
		z max	z min	z max	z min	z max	z min	z max	TMH	CGW
		1172	1165	1174	1161	1168	1179	1179	1165	1173
		175	175	175	175	175	175	175	175	163
	247	247	247	247	247	247	247	247	247	235
		344	344	344	344	344	344	344	344	338
		425	425	425	425	425	425	425	416	419
		487	487	487	487	487	487	487	481	466
		564	999	564	929	562	562	564	563	539
		633	632	633	619	632	632	633	632	602
		683	673	629	999	681	681	681	681	9/9
		749	741	755	727	745	744	762	756	754
		810	805	811	808	814	813	820	789	813
		873	862	865	829	871	873	874	874	848
		917	916	923	906	926	923	927	922	919
		926	971	284	696	826	284	286	996	943
		1018	1012	1022	1022	1024	1022	1022	1011	1008
		1081	1068	1081	1046	1079	1068	1079	1061	1064
		1114	11112	1116	1110	1112	1110	1115	1098	1095
		164	164	164	164	164	164	164	164	156
		217	217	217	217	217	217	217	217	500
		285	285	285	285	285	285	285	285	283
		366	366	366	396	366	366	366	359	338
		520	518	520	514	518	518	520	503	516
		290	588	588	575	588	290	290	576	562
		644	645	646	639	646	646	646	643	610
		723	712	721	669	715	715	730	726	683

		GEN_TAF	BU_PENALTY	GEN_TA	GEN_TABU_FEASIBLE	FAST VI	FAST VNS_FEASIBLE	SLOW V	SLOW VNS_FEASIBLE		
Instance	T max	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p7.4.o	75.0	765	772	770	778	757	770	092	781	9//	728
p7.4.p	80.0	829	841	833	839	828	846	842	846	832	801
р7.4.9	85.0	891	902	895	868	968	668	905	906	905	88
p7.4.r	0.06	957	920	696	696	959	970	970	026	996	88
p7.4.s	95.0	1012	1021	1014	1020	1010	1021	1014	1022	1019	66
p7.4.t	100.0	1068	1071	1069	1071	1048	1077	1071	1077	1067	1066

Table 5 Summary of results over 199 ins tances

	GEN_T	GEN_TABU_PENALTY	GEN_T	GEN_TABU_FEASIBLE	FAST V	FAST VNS_FEASIBLE	SLOW	SLOW VNS_FEASIBLE		
	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
# best solution found	49	109	106	141	92	138	138	180	52	25
Average error with respect to best	1.27	0.57	0.72	0.33	06.0	0.31	0.36	0.18	1.54	2.80
Maximum error with respect to best	13.64	13.64	13.64	13.64	13.64	13.64	13.64	13.64	13.64	11.07
# better than or equal to CGW	156	177	184	194	172	190	192	194	157	ı
# better than or equal to TMH	131	167	166	184	152	186	184	198	ı	9/
# better than CGW and TMH	71	101	95	115	79	113	109	125	ı	ı

	GEN_TABU_PENALI	PENALTY	GEN_TABU_FEASIBLE	EASIBLE	FAST VNS_FEASIBLE	EASIBLE	SLOW VNS_FEASIBLE	FEASIBLE		
	Average CPU	Max CPU	Average CPU	Max CPU	Average CPU	Max CPU	Average CPU	Max CPU	TMH	CGW
Set 1	4.67	10.00	1.63	5.00	0.13	1.00	7.78	22.00	N.A.	15.41
Set 2	0.00	0.00	0.00	0.00	0.00	0.00	0.03	1.00	N.A.	0.85
Set 3	6.03	10.00	1.59	9.00	0.15	1.00	10.19	19.00	N.A.	15.37
Set 4	105.29	612.00	282.92	324.00	22.52	121.00	457.89	1118.00	796.70	934.80
Set 5	69.45	147.00	26.55	105.00	34.17	30.00	158.93	394.00	71.30	193.70
Set 6	66.29	00.96	20.19	48.00	8.74	20.00	147.88	310.00	45.70	150.10
Set 7	158.97	582.00	256.76	514.00	10.34	00.06	309.87	911.00	432.60	841.40

 $R_{NTOP}(s)$. A neighbor solution is obtained by exchanging customers of the m routes with customers that are not included in a route, exchanging customers between routes, changing the sequence of customers in a route, or adding customers in a route. We think that the use of the set $R_{NTOP}(s)$ of routes in our tabu search algorithm is the main reason that explains its success. More precisely, when a customer is removed from a route r in $R_{TOP}(s)$, the modified route possibly becomes less profitable than a route r' in $R_{NTOP}(s)$, and we can therefore exchange r with r' in s. To make such a change, the tabu search proposed by Tang and Miller-Hooks needs to build r' from scratch.

5 Conclusions

The Team Orienteering Problem (TOP) is the problem where a set of customers may be visited, with a profit guaranteed for each visit. A team of people/vehicles is available and each member of the team can visit any set of customers within a given time limit. The profit of each customer can be collected by one person/vehicle at most. The problem combines the decision of which customers to select with the decision of how to plan the routes. Such decisions might be taken separately, by first selecting the subset of customers to serve and then solving a Vehicle Routing Problem. The sequential solution of the two sub-problems would provide the TOP with a feasible but typically suboptimal solution.

In this paper we presented effective meta-heuristics for the TOP. A variable neighborhood search algorithm turned out to be more efficient and effective for this problem than two tabu search algorithms. With the proposed algorithms we improved the best known solution of 128 benchmark test instances.

Future research will be devoted to extend the proposed meta-heuristics to other VRPs and TSPs with profits.

Acknowledgments We wish to acknowledge the contribution of anonymous referees that helped us to improve a previous version of this paper.

References

- Butt, S.E. and T.M. Cavalier. (1994). "A Heuristic for the Multiple Tour Maximum Collection Problem." Computers and Operations Research 21, 101–111.
- Chao, I-M., B. Golden, and E.A. Wasil. (1996). "The Team Orienteering Problem." European Journal of Operational Research 88, 464–474.
- Feillet, D., P. Dejax, and M. Gendreau. (2005). "Traveling Salesman Problems with Profits." *Transportation Science* 39, 188–205.
- Gendreau, M., A. Hertz, and G. Laporte. (1994). "A Tabu Search Heuristic for the Vehicle Routing Problem." Management Science 40, 1276–1290.
- Golden, B., A. Assad, and R. Dahl. (1984). "Analysis of a Large Scale Vehicle Routing Problem with an Inventory Component." *Large Scale Systems* 7, 181–190.
- Golden, B., L. Levy, and R. Vohra. (1987). "The Orienteering Problem." Naval Research Logistics 34, 307–318.
- Glover F. (1986). "Future Paths for Integer Programming and Links to Artificial Intelligence." Computers and Operations Research 5, 533–549.
- Glover, F. and M. Laguna. (eds.) (1997). Tabu Search. Kluwer Academic Publishers.

Hansen, P. and N. Mladenović. (1999). "An Introduction to Variable Neighborhood Search." In S. Voss et al. (eds.), Metaheuristics, Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Dordrecht, PP. 433–458.

- Lin, S. (1965). "Computer Solutions of the Traveling Salesman Problem." *Bell System Technical Journal* 44, 2245–2269.
- Mladenović, N. and P. Hansen. (1997). "Variable Neighborhood Search." Computers and Operations Research 24, 1097–1100.
- Rochat, Y. and E. Taillard. (1995). "Probabilistic Diversification and Intensification in Local Search for Vehicle routing." *Journal of Heuristics* 1, 147–167.
- Tang, H. and E. Miller-Hooks. (2005). "A Tabu Search Heuristic for the Team Orienteering Problem." Computers and Operations Research 32, 1379–1407.
- Tsiligirides, T. (1984). "Heuristic Methods Applied to Orienteering." *Journal of the Operational Research Society* 35, 797–809.
- Toth, P. and D. Vigo. (eds.) (2002). *The Vehicle Routing Problem*. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia.

