

WatDiv: How to Tune-Up Your RDF Data Management System

Güneş Aluç Olaf Hartig M. Tamer Özsu Khuzaima Daudjee

This presentation is sponsored in part by the *Linked Data Benchmark Council* (LDBC).

Questions

 Which of the existing SPARQL benchmarks, if any, should I use to diagnose (and fix) potential problems with the physical design of my system?

 How can I use the Waterloo SPARQL Diversity Test Suite (WatDiv) where existing benchmarks fall short?

Measures to Evaluate Diversity in SPARQL Workloads

Structural Data-driven

Analysis of WatDiv and Popular SPARQL Benchmarks

Waterloo SPARQL Diversity Test Suite (WatDiv) http://db.uwaterloo.ca/watdiv/

Measures to Evaluate Diversity in SPARQL Workloads

Structural Data-driven

Analysis of WatDiv and Popular SPARQL Benchmarks

Debugging with WatDiv

Structural Features[Triple Pattern Count]

[Join Vertex Count]

[Join Vertex Degree]

[Join Vertex Degree]

[Join Vertex Degree]

Join Vertex Count	Mean Join Vertex Degree
8	2.0

Join Vertex Count	Mean Join Vertex Degree	
8	2.0	
5	2.6	

Join Vertex Count	Mean Join Vertex Degree	
8	2.0	
5	2.6	
3	~3.7	

Join Vertex Count	Mean Join Vertex Degree
8	2.0
5	2.6
3	~3.7
2	5.0

Join Vertex Count	ex Mean Join Vertex Degree	
8	2.0	
5	2.6	
3	~3.7	
2	5.0	
1	9.0	

[Join Vertex Type]

SS⁺Type

[Join Vertex Type]

OO⁺ Type

[Join Vertex Type]

SO⁺ Type

How Diverse are SPARQL Benchmarks? [Triple Pattern Count]

WatDiv DBSB BSBM SP2Bench LUBM

How Diverse are SPARQL Benchmarks? [Triple Pattern Count]

WatDiv DBSB BSBM SP2Bench LUBM

[Join Vertex Count]

WatDiv

DBSB

BSBM

SP2Bench

LUBM

[Join Vertex Count]

[Join Vertex Degree – mean]

[Join Vertex Degree – mean]

[Join Vertex Type – % Queries w/in Workload]

	SS ⁺	00 ⁺	SO ⁺
LUBM	78.6 %	0.0 %	42.9 %
SP ² Bench	81.0 %	33.3 %	57.1 %
BSBM	84.8 %	5.6 %	52.8 %
DBSB	41.1 %	4.4 %	5.4 %
WatDiv	61.3 %	18.0 %	61.3 %

[Join Vertex Type – % Queries w/in Workload]

	SS⁺	00 ⁺	SO ⁺
LUBM	78.6 %	0.0 %	42.9 %
SP ² Bench	81.0 %	33.3 %	57.1 %
BSBM	84.8 %	5.6 %	52.8 %
DBSB	41.1 %	4.4 %	5.4 %
WatDiv	61.3 %	18.0 %	61.3 %

- Why are data-driven query features important?
 - Why are structural features not sufficient?
 - Why is analysis based purely on the data not sufficient?

[Result Cardinality]

[Filtered Triple Pattern (f-TP) Selectivity]

[Filtered Triple Pattern (f-TP) Selectivity]

f-TP Selectivity = k / n

[f-TP Selectivity, BGP-Restricted]

[f-TP Selectivity, BGP-Restricted]

BGP-Restricted f-TP Selectivity = |blue| / |orange|

Data-Driven Features

[f-TP Selectivity, Join-Restricted]

Data-Driven Features

[f-TP Selectivity, Join-Restricted]

Join-Restricted f-TP Selectivity = |blue| / |orange|

How Diverse are SPARQL Benchmarks? [Result Cardinality]

How Diverse are SPARQL Benchmarks? [Result Cardinality]

[f-TP Selectivity – mean]

[f-TP Selectivity – mean]

[f-TP Selectivity - stdev]

[f-TP Selectivity - stdev]

[BGP-Restricted f-TP Selectivity – mean]

[BGP-Restricted f-TP Selectivity – mean]

[BGP-Restricted f-TP Selectivity - stdev]

[BGP-Restricted f-TP Selectivity - stdev]

[Join-Restricted f-TP Selectivity – mean]

[Join-Restricted f-TP Selectivity – mean]

- WatDiv
- DBSB
- BSBM
- SP²Bench
- LUBM
- Other SPARQL benchmarks
- Production workload
- ...

WatDiv Tools

- Data Generator
 - Customizable data description model

Query Template Generator

Query Instantiator

WatDiv Dataset

Entities generated according to the *default* data description model

Entity	No. of Instances (per scale factor)
wsdbm:Purchase	1500
wsdbm:User	1000
wsdbm:Offer	900
wsdbm:Product	250
wsdbm:Website	50
wsdbm:Retailer	12

Entity	No. of Instances
wsdbm:Topic	250
wsdbm:City	240
wsdbm:SubGenre	145
wsdbm:Language	25
wsdbm:Country	25
wsdbm:Genre	21
wsdbm:ProductCategory	15
wsdbm:AgeGroup	9
wsdbm:Role	3
wsdbm:Gender	2

The entities above do not scale.

WatDiv Dataset

Characteristics of the dataset at scale-factor=1 (default model)

Triples	105257
Distinct subjects	5597
Distinct predicates	85
Distinct objects	13258
URIs	5947
Literals	14286
Distinct literals	8018

Numbers are approximate and may vary slightly in each dataset generation

(1) Heavily Relies on Optional Attributes

(2) Parts of the database are well-structured

(2) Parts of the database are well-structured while remaining parts are less well-structured

```
. . .
              @wsdbm:ProductCategory4
        0.8
<pgroup>
  #predicate sorg:publisher string
</pgroup>
              @wsdbm:ProductCategory4
<pgroup> 0.7
  #predicate sorg:datePublished date
</pgroup>
              @wsdbm:ProductCategory4
<pgroup> 0.2
  #predicate sorg:printPage integer 1 999
  #predicate sorg:printSection integer 1 9
</pgroup>
```

- #association

```
wsdbm:Product sorg:actor wsdbm:User 2 25[normal] 0.8 UNIFORM @wsdbm:ProductCategory2@wsdbm:Role2
```

#association

```
wsdbm:Product sorg:director wsdbm:User 2 1 0.8 ZIPFIAN @wsdbm:ProductCategory2@wsdbm:Role2
```

#association

```
wsdbm:Product sorg:trailer wsdbm:Website 2 3[uniform] 0.1 UNIFORM @wsdbm:ProductCategory2 @null
```

GOOD NEWS

How Robust are Systems across WatDiv Workloads?

WatDiv 100M triples, queries w/ single join vertex, result cardinality ≤ 2000

GOOD NEWS

How Robust are Systems across WatDiv Workloads?

linear

WatDiv 10M triples

= { mean join vertex degree \leq 3.0, join vertex count \geq 3} linear = $\{ mean join vertex degree \ge 5.0, join vertex count \le 2 \}$ star/snowflake

Conclusions

- Which of the existing SPARQL benchmarks, if any, should I use to diagnose (and fix) potential problems with the physical design of my system?
 - Analyze your production workload and find the bestmatching benchmarks
- How can I use the Waterloo SPARQL Diversity Test Suite (WatDiv) where existing benchmarks fall short?
 - Drill down into different classes of queries until you hit problematic spots

Questions

