# Math 1800 Handout 7: Applications and Extensions of Green's Theorem

## Subhadip Chowdhury

# Careful Statement of Green's Theorem

Green's Theorem is a statement about only the 2D plane, not 3D space. Here's the setup: Let C be a piecewise smooth simple closed curve that is the boundary of a simply-connected region D in the plane. Let  $\vec{\mathbf{F}} = P \vec{\mathbf{i}} + Q \vec{\mathbf{j}}$  be a smooth vector field defined on all of D and C.

**Notes on terminology:** To say a curve is *simple* means that it doesn't intersect itself, and to say a curve is *closed* means that it is a closed loop, that it starts and ends at the same point. A region is called *simply-connected* if it is just one piece (connected) and doesn't have any holes in it. A vector field is said to be *smooth* if it has continuous first partials.

Since C is the boundary of D, we write  $C = \partial D$  and stop referring to C explicitly. When we consider the boundary curve of a simply-connected region, we always orient the curve so that the region is on the left as we follow the curve. (Note: this is harder to specify when one considers 3D surfaces with boundaries.)

*Green's Theorem* says

$$\oint_{\partial D} \vec{F} \cdot d\vec{r} = \iint_{D} \operatorname{curl}(F) dA = \iint_{D} (Q_{x} - P_{y}) dA.$$

You may also see this written the Leibniz notation for partial derivatives.

$$\oint_{\partial D} P \, dx + Q \, dy = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA.$$

# Using Green's Theorem to Evaluate Difficult Line Integrals

■ If you're asked to find the line integral of an ugly vector field over a closed curve, you should look to see if  $Q_x$  and  $P_y$  are drastically more simple. If so, use Green's Theorem!

#### **Exercise 1**

Evaulate

$$\int_C (2y + \sqrt{9 + x^3}) \, dx + (5x + e^{\tan^{-1} y}) \, dy,$$

where C is the circle  $x^2 + y^2 = 4$  in the plane oriented counterclockwise.

■ If you're asked to find the line integral over a closed curve that is clearly the boundary of a nice region, it's often a good idea to use Green's Theorem to switch to the double integral over the interior.

#### **Exercise 2**

Integrate  $\vec{\mathbf{F}} = xy\vec{\mathbf{i}} + e^x\vec{\mathbf{j}}$  over the boundary of the rectangle determined by  $0 \le x \le 2$ ,  $0 \le y \le 3$ , oriented clockwise around the boundary.

# Exercise 3

Find the line integral of  $\vec{F} = 3xy\vec{i} + 2x^2\vec{j}$  over the curve C defined as follows: follow the curve  $y = x^2 - 2x$  from (0,0) to (3,3), then follow the line y = x from (3,3) back to (0,0).

#### **Exercise 4**

Evaluate

$$\oint_C (3y - e^{\sin x}) dx + \left(7x + \sqrt{y^4 + 1}\right) dy$$

where C is the circle  $x^2 + y^2 = 9$ , oriented clockwise.

Consider the following problem.

Find the line integral of

$$\vec{G}(x,y) = (x+y)\vec{i} + (2x+y\ln(\csc\sqrt{1-y^5}))\vec{j}$$

over  $C_1$ , the upper half of the unit circle from (1,0) to (-1,0).

The problem is that the vector field is ugly, so parametrizing  $C_1$  is just going to lead to an impossible integral. So we would like to use Green's Theorem, but this isn't a closed curve!

Here's how to fix that issue. Let  $C_2$  be the straight line segment from (-1,0) to (1,0). Now  $C_1 + C_2$  is a closed loop.

- (a) Let R be the region enclosed by  $C_1 + C_2$ . Use Green's Theorem to compute  $\oint_{C_1 + C_2} \vec{G} \cdot d\vec{r}$ .
- (b) Parametrize  $C_2$  and directly calculate  $\int_{C_2} \vec{\mathbf{G}} \cdot d\vec{\mathbf{r}}$ . (Note that y = 0 everywhere on  $C_2$ , which is helpful.)
- (c) Write  $\oint_{C_1+C_2} \vec{\mathbf{G}} \cdot d\vec{\mathbf{r}} = \int_{C_1} \vec{\mathbf{G}} \cdot d\vec{\mathbf{r}} + \int_{C_2} \vec{\mathbf{G}} \cdot d\vec{\mathbf{r}}$  and use your answers to part (a) and (b) to finish off the problem and find the line integral of  $\vec{\mathbf{G}}$  along  $C_1$ .

# Exercise 5

Evaluate the integral.

# Calculating Area with Green's Theorem

Consider the following vector fields:

$$\vec{F}_1 = x \vec{j}$$
,  $\vec{F}_2 = -y \vec{i}$ ,  $\vec{F}_3 = -\frac{1}{2}y \vec{i} + \frac{1}{2}x \vec{j}$ .

What is  $Q_x - P_y$  for each of these fields? Applying Green's Theorem to a region D, we get that

$$\oint_{\partial R} \vec{\mathbf{F}}_1 \cdot d\vec{\mathbf{r}} = \oint_{\partial R} \vec{\mathbf{F}}_2 \cdot d\vec{\mathbf{r}} = \oint_{\partial R} \vec{\mathbf{F}}_3 \cdot d\vec{\mathbf{r}} = \iint_D \mathbf{1} \, dA = \text{Area of } D. \ (!)$$

### **Exercise 6**

An ellipse with semi-major axis a and semi-minor axis b is parametrized by  $x = a \cos t$ ,  $y = b \sin t$  for  $0 \le t \le 2\pi$ . Use  $\vec{\mathbf{F}}_3$  to find the area inside this ellipse.

## Exercise 7

Let C be the curve parametrized by  $\vec{\mathbf{r}}(t) = (t^2 - 3)\vec{\mathbf{i}} + (t^3 - 4t + 1)\vec{\mathbf{j}}$ ,  $-2 \le t \le 2$ . This is a closed loop. Use Green's Theorem and  $\vec{\mathbf{F}}_1$  to find the area inside this loop.



Figure 1: Exercise 7

# **Extended Versions of Green's Theorem**

Although we have proved Green's Theorem only for the case where D is simple, we can now extend it to the case where D is a *finite union of simple regions*. For example, if D is the region shown in Figure 2, then we can write  $D = D_1 \cup D_2$ , where  $D_1$  and  $D_2$  are both simple. The boundary of  $D_1$  is  $C_1 + C_3$  and the boundary of  $D_2$  is  $C_2 + (-C_3)$ . so, applying Green's Theorem to  $D_1$  and  $D_2$  separately, we get



Figure 2

$$\oint_{C_1+C_3} P dx + Q dy = \iint_{D_1} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

$$\oint_{C_2+(-C_3)} P dx + Q dy = \iint_{D_2} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Adding the two integrals above, we get,

$$\oint_{C_1 + C_2} P dx + Q dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Note that we can similarly extend the theorem to regions that are finite *intersections* of simple regions.

#### **Exercise 8**

Evaluate

$$\oint_C y^2 dx + 3xy dy$$

where C is the boundary of the semiannular region D in the upper half plane between  $x^2 + y^2 = 1$  and  $x^2 + y^2 = 4$ .

Green's Theorem can be also extended to apply to regions with holes, that is, regions that are not simply-connected. Observe that the boundary C of the region D in Figure 3 consists of two simple closed curves  $C_1$  and  $C_2$ . We assume that these boundary curves are oriented so that the region D is always on the left as the curve C is traversed. Thus the positive direction is counterclockwise for the outer curve  $C_1$  but clockwise for the inner curve  $C_2$ . If we divide D into two regions D' and D'' by means of the lines shown in Figure 3 and then apply Green's Theorem to each of D' and D'', we get



Figure 3

$$\iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \iint_{D'} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA + \iint_{D''} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$
$$= \oint_{\partial D'} (Pdx + Qdy) + \oint_{\partial D''} (Pdx + Qdy)$$

Since the line integrals along the common boundary lines are in opposite directions, they cancel each other out and we get

$$\iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C_{1}} (Pdx + Qdy) + \oint_{C_{2}} (Pdx + Qdy) = \oint_{C_{1} + C_{2}} Pdx + Qdy$$

### **Exercise 9**

If  $\vec{\mathbf{F}}(x,y) = \frac{-y\vec{\mathbf{i}} + x\vec{\mathbf{j}}}{x^2 + y^2}$ , show that  $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = 2\pi$  for every positively oriented closed path C that encloses the origin.

# **Exercise 10**

Evaluate  $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$  where

$$\vec{F}(x, y) = \frac{2xy\vec{i} + (y^2 - x^2)\vec{j}}{(x^2 + y^2)^2}$$

and C is a positively oriented closed path that encloses the origin.