

DM556D (93.034.030)

típusú léptetőmotor meghajtó

FELHASZNÁLÓI KÉZIKÖNYV

Jellemzők

- Alacsony motorzaj
- Alacsony meghajtó és motormelegedés
- Nagy teljesítmény
- Tápfeszültség akár +50 VDC, legmagasabb áram akár 5,6 A (RMS 4 A)
- Optikailag szigetelt, különbözeti bemeneti jelek, 200 KHz impulzus frekvencia
- Automatikus üresjárati áram csökkentés
- 15 kiválasztható felbontás decimális és bináris üzemmódban
- 4, 6, 8 vezetékes motorhoz használható
- Árambeállítás DIP kapcsolóval, 8 különböző értékre
- Túlfeszültség és rövidzárlat védelem
- Méret (118x75x32mm)

Lehetséges alkalmazások

NEMA 23, 24 és 34 léptetőmotorok széles skálájával, valamint számos géppel használható együtt, mint például az X-Y táblák, címkéző gépek, lézervágók és marógépek. Különösen hasznos olyan alkalmazásoknál, melyeknél alacsony zajra, vibrációra, nagy sebességre és pontosságra van szükség.

Elektromos adatok (Tj = 25°C)

Paraméterek	DM556D				
	Min.	Max.	Egység		
Kimeneti áram	2.1	5.6 (4 RMS)	Α		
Tápfeszültség (DC)	24	50	VDC		
Logikai jeláram	7	16	mA		
Bemeneti impulzusfrekvencia	0	200	KHz		
Izolációs ellenállás	500	-	Mohm		

Üzemi környezet és paraméterek

- Üzemi hőmérséklet Max. +70°C
- Környezeti hőmérséklet -10°C +45°C
- Páratartalom 40% 90% relatív
- Vibráció Max. 5,9 m/s²
- Tárolási hőmérséklet -20°C +125°C
- Tömeg Kb. 0,2 kg
- A meghajtó és motor melegedésének csökkentéséhez ajánlott az automatikus üresjárati üzemmód választása, azaz az áram automatikus csökkentése 50%-kal a motor megállásakor.
- A meghajtót függőlegesen szerelje fel, hogy maximalizálja a hűtési felületet!

Méretek (mm)

"Signal" csatlakozó kiosztása:

Érintkező funkció	Leírás	
PUL+ (+5 V)	Impulzus jel: egyszerű impulzus (impulzus/irány) üzemmódban ez a bemenet jelenti az impulzust, mely hatásos minden felmenő élre; 4-5 V PUL-HIGH, 0-0,5 V PUL-LOW esetén. Kettős impulzus üzemmódban (impulzus/impulzus) ez a	
PUL- (+5 V)	bemenet jelenti az óramutató járásával megegyező (CW) impulzust. A megbízható válasz érdekében az impulzus szélességnek hosszabbnak kell lenni 2,9µs-nál. Soros csatlakozási ellenállás szükséges az áramkorlátozáshoz, ha +12 V vagy +24 V feszültséget használ.	
DIR+ (+5 V)	DIR jel: egyszerű impulzus üzemmódban ez a jel alacsony/magas feszültség szintekkel jelzi a motor forgásának irányát; a jel óramutató járásával ellentétes (CCW) impulzus, mely hatásos minden felmenő élre. A megbízható	
DIR- (DIR)	mozgásválaszhoz a DIR jelnek legalább 5 µs-mal meg kell előznie a PUL jelet. 4-5 V DIR-HIGH esetén, 0-0,5V DIR-LOW esetén.	
ENA+ (+5 V)	Engedélyező jel: ezzel a jellel tiltható/engedélyezhető a	
ENA- (ENA)	meghajtó. A magas szint tiltja, az alacsony szint engedélyezi a meghajtót. Rendszerint nincs csatlakoztatva (engedélyezett).	

"Power" csatlakozó kiosztása:

Érintkező funkció	Leírás
GND	DC föld.
VDC	DC tápfeszültség, +24 VDC – +50 VDC, feszültségingadozással és EMF feszültséggel együtt.
A+ / A-	A (fázis) motortekercs (A+ és A- vezetékek)
B+ / B-	B (fázis) motortekercs (B+ és B- vezetékek)

^{*}A mozgás iránya a motormeghajtás vezetékek bekötésével egyezik meg. A két vezetéket felcserélve a tekercsen, a meghajtó ellentétes irányba fogja hajtani a motort.

Vezérlőjel csatlakozó "Signal" felület

Ez a meghajtó differenciál bemeneteket használ a zaj ellenálló képesség és a csatolófelület rugalmasság fokozásához. A bemeneti áramkör nagy sebességű optocsatolót tartalmaz, és képes vonalmeghajtás, nyitott kollektor vagy PNP kimenet fogadására. A következő ábrán nyitott kollektorú és PNP jelek csatlakoztatása látható.

R=0 ha VCC=5V R=1K (teljesítmény>0,125W) ha VCC = 12V R=2K (teljesítmény>0,125W) ha VCC = 24V Az R-nek a vezérlőjel aljzathoz kell csatlakoznia.

Csatlakozás nyitott kollektorú jelhez (közös anód)

Meghajtó csatlakozás léptetőmotorokhoz "Power"

A DM556D (cikkszám: 93.034.030) bármely 4, 6, 8 vezetékű hibrid léptetőmotort képes meghajtani.

4 vezetékű motor csatlakoztatása:

A sebesség és nyomaték a csévélési induktivitástól függ. A meghajtó kimeneti áramának beállításában szorozza meg a megadott fázist 1,4-gyel, hogy meghatározza a csúcs kimeneti áramot.

6 vezetékű motor csatlakoztatása:

A 8-vezetékű léptetőmotorokhoz hasonlóan, a 6-vezetékű motorok két különböző konfigurációval rendelkeznek a nagysebességű vagy nagy nyomatékú működéshez. A nagysebességű konfigurációt féltekercsnek is nevezik, mert a motor tekercsének csak felét használja. A nagy nyomatékú konfiguráció, vagyis a teljes tekercs, a motor a teljes tekercsét használja.

1, Féltekercs konfiguráció

Ahogy korábban már állítottuk, a féltekercs konfiguráció a motor tekercsének felét használja. Ez kisebb induktivitást, ezáltal alacsonyabb nyomatékot jelent. A 8 motorvezeték párhuzamos csatlakoztatásához hasonlóan, a nyomatékkimenet stabilabb lesz nagy sebességnél. Erre a konfigurációra kiegyensúlyozott rézként is szokták hivatkozni. A meghajtó kimeneti áramának beállításához szorozza meg a megadott fázisonkénti (vagy pólusonkénti) áramot 1,4-gyel, hogy megkapja a csúcs kimeneti áramot.

2, Teljes tekercs konfiguráció

A teljes tekercs konfigurációt hatvezetékes motoroknál abban az esetben kell használni, ha nagyobb nyomatékra van szükség kis sebességen. Erre a konfigurációra hivatkoznak teljes rézként is. Használja a fázisonkénti (vagy egypólusú) áramértéket csúcs kimeneti áramként.

8 vezetékes motor csatlakoztatása:

A 8-vezetékes motorok nagyobb fokú rugalmasságot kínálnak a rendszertervező számára, mert csatlakoztathatók sorosan és párhuzamosan is, számos alkalmazásnak felelve meg ezzel. Ne felejtse el, hogy két tekercs párhuzamos csatlakoztatásakor a tekercs induktivitása feleződik, és a motor sebessége jelentősen megnövekedhet. A soros csatlakoztatás megnövekedett induktivitást eredményez, és a motor csak kis sebességen működik.

1, Soros csatlakozás

A soros motor csatlakoztatást rendszerint olyan esetben kell alkalmazni, ahol nagyobb nyomatékra van szükség alacsonyabb sebességen. Mivel ez konfiguráció rendelkezik a legnagyobb induktivitással, a teljesítmény csökken nagyobb sebességeknél. A csúcs kimeneti áram meghatározásához használja a fázisonkénti (vagy egypólusú) áramot, vagy szorozza meg a kétpólusú áramot 1,4-gyel. Ne felejtse el, hogy két tekercs párhuzamos csatlakoztatásakor a tekercsek induktivitása felére csökken, és a motor sebessége jelentősen megnőhet. A soros csatlakozás megnövekedett

induktivitást eredményez, így a motor csak alacsonyabb sebességeken használható.

2, Párhuzamos csatlakoztatás

Egy 8-vezetékes motor párhuzamos konfigurációban stabilabb, de kisebb nyomatékot kínál alacsonyabb sebességen. Az alacsonyabb induktivitás miatt magasabb lesz a nyomaték a nagyobb sebességeknél. Szorozza meg a fázisonkénti (vagy egypólus) áramot 1,96-tal, vagy a bipoláris áramot 1,4-gyel a csúcs kimeneti áram meghatározásához.

Maximális feszültségbemenet:

A meghajtóban lévő teljesítmény MOSFET elemek a +24 V – +50 VDC tartományban üzemelnek, mely tartalmazza a bemeneti ingadozást és a motortekercsek által generált EMF feszültséget is a motortengely lassulása közben. A magasabb feszültség kárt okoz a meghajtóban, ezért ajánlott +24 - +42 VDC elméleti kimeneti feszültséggel rendelkező tápegységet használni, helyet hagyva az ingadozásnak és az EMF feszültségnek. Soha ne csatlakoztassa rossz irányban a bemeneti feszültséget és a földet, mert kárt okoz a meghajtóban!

Tápfeszültség / kimeneti áram kiválasztása

A magasabb tápfeszültség növelheti a motor nyomatékát nagyobb sebességen, így segíthet elkerülni a kihagyott lépéseket. Mindezek mellett a magasabb feszültség motor remegést okozhat alacsonyabb sebességen, bekapcsolhatja a túlfeszültség védelmet, és kárt okozhat a meghajtóban. Éppen ezért ajánlott pont akkor tápfeszültséget választani, amekkorát az alkalmazás igényel.

- Egy adott motor esetében a magasabb meghajtó áram hatására a motor nyomatéka nagyobb lesz, de ugyanakkor jobban fog melegedni a motor és a meghajtó. Éppen ezért a kimeneti áramot úgy érdemes beállítani, hogy a motor ne melegedjen túl hosszútávon.
- Mivel a motortekercsek párhuzamos és soros csatlakoztatása jelentősen megváltoztatja a végső induktivitást és ellenállást, ezért fontos a meghajtó kimeneti áramát a motor fázis áramától, a motorvezetékektől és a csatlakoztatási módtól függően beállítani.
- A gyártó által megadott fázisáram fontos a meghajtó áramának kiválasztásakor. A kiválasztás függ a vezetékek számától, valamint a csatlakoztatás módjától is.

A meghajtón található 8-bites DIP kapcsoló beállítása mikrolépés felbontás, valamint a motor működtető áram beállításához:

Di	namikus ára	am	Állóhelyzeti áram (fél/teljes)	i Mikrolépés felbontás		Mikrolépés felbontás	
SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8

DIP beállítás állóhelyzeti áramhoz:

Az SW4 használható erre a célra. Az OFF azt jelenti, hogy az állóáram a fele a dinamikus áramnak, az ON pedig azt jelenti, hogy az állóáram megegyezik a dinamikus árammal. Az áram automatikusan a dinamikus árambeállítás 50%-ára csökken 0,4 másodperccel az utolsó impulzus után. Ez csökkenti a motor melegedését!

Mikrolépés:

Pulse/Rev	SW5	SW6	SW7	SW8
Default	ON	ON	ON	ON
800	OFF	ON	ON	ON
1600	ON	OFF	ON	ON
3200	OFF	OFF	ON	ON
6400	ON	ON	OFF	ON
12800	OFF	ON	OFF	ON
25600	ON	OFF	OFF	ON
51200	OFF	OFF	OFF	ON
1000	ON	ON	ON	OFF
2000	OFF	ON	ON	OFF
4000	ON	OFF	ON	OFF
5000	OFF	OFF	ON	OFF
8000	ON	ON	OFF	OFF
10000	OF	ON	OFF	OFF
20000	ON	OFF	OFF	OFF
40000	OFF	OFF	OFF	OFF

Árambeállítás:

Peak	RMS	SW1	SW2	SW3
Default		OFF	OFF	OFF
2.1A	1.5A	ON	OFF	OFF
2.7A	1.9A	OFF	ON	OFF
3.2A	2.3A	ON	ON	OFF
3.8A	2.7A	OFF	OFF	ON
4.3A	31.A	ON	OFF	ON
4.9A 3.5A		OFF	ON	ON
5.6A	4.0A	ON	ON	ON

Vezérlőjel hullámformája és időzítése:

Túlfeszültség és rövidzárlat védelem

Ha a tápegység feszültsége meghaladja az 50 VDC értéket, a védelmi áramkör bekapcsol, és az üzemi jelző LED pirosra vált. Ha a tápfeszültség értéke 18 VDC alá csökken, a meghajtó nem működik megfelelően.

Tekercsföld rövidzárlat védelem

A védelem akkor kapcsol be, ha rövidzárlat következik be a motortekercs és a föld között.

Rövidzárlat védelem

A védelem rövidzárlati áram esetén kapcsol be, mely máskülönben kárt okozna a meghajtóban.

Mivel nincs védelem a tápvezetékek felcserélése ellen (VDC/GND), ezért kulcsfontosságú, hogy SOHA ne csatlakoztassa rossz irányban a bemeneti feszültséget és a földet, mert kárt okoz a meghajtóban!