

Introduction to Embedded Systems - WS 2022/23

Exercise 4: Scheduling Periodic and Mixed Task Sets

Task 1: Earliest Deadline First (EDF) and Total Bandwidth Server (TBS)

Consider the following set of periodic tasks:

	τ_1	$ au_2$	$ au_3$
C_i	1	1	2
T_i	3	5	13

A Total Bandwidth Server (TBS) executes along with the periodic tasks above.

- 1. What can be the maximum value of U_s such that the whole set (i.e., periodic tasks and the TBS) is schedulable with EDF?
- 2. Now assume $U_s=0.25$. Construct the EDF schedule (in Figure 1) in the case in which three aperiodic requests $J_4(r_4=0,C_4=2)$, $J_5(r_5=15,C_5=1)$ and $J_6(r_6=10,C_6=1)$ are served by TBS. Assume that the arrival time of the first instance/job of each periodic task is 0.

Figure 1: EDF schedule for Task 1

Task 2: Schedulability Test for Fixed Priorities – Rate Monotonic (RM)

	$ au_1$	$ au_2$	$ au_3$
C_i	1	3	2
T_i	3	8	9

- 1. Test if the given task-set is schedulable under RM, using the sufficient test.
- 2. Test if the given task-set is schedulable under RM, using the necessary test.
- 3. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and illustrate it graphically. In case they exist, identify deadline misses.

Task 3: Scheduling with Polling Server

	$ au_1$	$ au_2$	$ au_3$
C_i	2	2	2
D_i	6	8	16
T_i	6	8	16

In addition to the above periodic tasks, we have an aperiodic job J_a with computation time $C_a=1$, and relative deadline D_a . The scheduling policy is RM. The aperiodic job is scheduled through a Polling Server (PS).

- 1. Let the period and computing time of the polling server be $T_s=25$ and $C_s=1$, respectively. Compute the aperiodic guarantee available to J_a , i.e., compute the minimum relative deadline of J_a which is guaranteed not to be missed.
- 2. Using the sufficient test of RM, test if the polling server of (a) is schedulable along with the periodic task-set?
- 3. [optional] Determine integer parameters (C_s, T_s) of the polling server such that (1) the relative deadline guaranteed to J_a is minimised, and (2) the RM schedule satisfies the sufficient schedulability test.
- 4. [optional] For the optimal setting of (c) devise a necessary schedulability test with the relative deadline of the aperiodic task $D_a=32$.

The two optional subquestions of Task 3 and the remaining tasks below are meant for additional practice and will not be discussed in the exercise session. Solutions will be provided online, as usual.

Task 4: Periodic Scheduling with Fixed Priorities - DM

Given the following set of periodic tasks:

	$ au_1$	$ au_2$	$ au_3$
C_i	1	2	3
D_i	5	4	8
T_i	5	6	10

- 1. Check the schedulability of the task set using the Deadline Monotonic (DM) policy.
- 2. Construct the schedule graphically. Let the phase $\Phi_i = 0 \ \forall i$. In case they exist, identify deadline misses.

Task 5: Mixed Tasks - Polling Server

Two periodic tasks are given, with execution times and periods given in the following table (deadlines equal periods). The phase of the periodic tasks is assumed to be $\Phi_i = 0 \ \forall i$. The given set of tasks should be scheduled with the Rate Monotonic scheduling scheme.

	$ au_1$	$ au_2$
C_i	1	2
T_i	5	8

Construct a schedule graphically for following aperiodic requests (a Polling Server with integer parameters should be introduced). The CPU utilization has to be maximized.

	J_1	J_2	J_3
a_i	2	7	9
C_i	3	2	1

Task 6: Mixed Tasks - Total Bandwidth Server

We have to design a system that schedules periodic tasks with EDF and employs a total bandwidth server to serve aperiodic requests. We know of one sporadic aperiodic request with computation time $C_a=2$ and a relative deadline $D_a=7$. What is the maximum processor utilization available for periodic tasks if we want to guarantee that this aperiodic task completes within its deadline?

Task 7: Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines D and periods T.

	$ au_1$	$ au_2$	$ au_3$
C_i	2	2	4
D_i	5	4	8
T_i	6	8	12

- 1. Execute the sufficient schedulability test under DM and calculate the result. What statement regarding schedulability can be made based on your result?
- 2. Execute the sufficient and necessary schedulability test under DM and calculate the result. What statement regarding schedulability can be made based on your result?
- 3. If there is a feasible schedule for the given task set, construct it graphically. Let the phase $\Phi_i = 0 \ \forall i$.