CBЯТОЙ КПК #BlessRNG

Или как не сдохнуть на 4 семе из-за матана

Разработал

Никита Варламов @snitron

Почётный автор

Тимофей Белоусов @іморке

Вы в любой момент можете добавить любую недостающую теорему, затехав её и отправив код (фотографии письменного текста запрещены) в телегу любому из указанных авторов, или создав Pull Request в Git-репозиторий конспекта (click). Ваше авторство также будет указано, с вашего разрешения.

Ah shit Here we go again! And again... Oh, fuck.

Содержание

1 Период Палеозойский				3
	1.1	Важн	ые определения	3
	1.2	Определения		4
		1.2.1	Произведение мер	4
		1.2.2	Сечения множества	4
		1.2.3	Полная мера, сигма-конечная мера	4
		1.2.4	Образ меры при отображении	4
		1.2.5	Взвешенный образ меры	5
	1.3	Важн	ые теоремы	6
		1.3.1	Теорема Лебега о мажорированной сходимости для случая сходимости почти	
			везде	6
		1.3.2	Теорема Лебега о мажорированной сходимости для случая сходимости по мере	6
		1.3.3	Принцип Кавальери	7
		1.3.4	Теорема Фубини	7
	1.4	Teope	мы	8
		1.4.1	Теорема об интегрировании положительных рядов	8
		1.4.2	Абсолютная непрерывность интеграла	10
		1.4.3	Теорема о произведении мер	11
		1.4.4	Теорема Тонелли	
		1.4.5	Формула для бета-функции	
		1.4.6	Объем шара в \mathbb{R}^m	
		1.4.7	•	12

- 1 Период Палеозойский
- 1.1 Важные определения

1.2 Определения

1.2.1 Произведение мер

 $(X,\mathfrak{A},\mu), (Y,\mathfrak{B},\nu)$ — пространства с мерой.

Также, множества из $\mathcal{A} \times \mathcal{B}$ являются измеримыми прямоугольниками.

 $\mu, \nu - \sigma$ -конечные меры. Тогда стандартное продолжение m_0 (в смысле теоремы о продолжении меры (?)) с полукольца $\mathfrak{A} \times \mathfrak{B}$, определённой на некоторой σ -алгебре $\mathfrak{A} \otimes \mathfrak{B}$, и являющееся σ -конечной полной мерой — обзначается просто m.

И тогда m- и есть произведение мер μ и ν ($\mu \times \nu$).

Замечание:

$$(\mu \times \nu) \times \rho = \mu \times (\nu \times \rho)$$

1.2.2 Сечения множества

X, Y — множества. $C \subset X \times Y$

Тогда:

$$C_x := \{ y \in Y : (x, y) \in C \}$$

$$C^y := \{ x \in X : (x, y) \in C \}$$

— сечения множества C (1 и 2 рода)

Замечания:

$$\left(\bigcup_{\alpha \in A} C_{\alpha}\right)_{x} = \bigcup_{\alpha \in A} \left(C_{\alpha}\right)_{x}$$

$$\left(\bigcap_{\alpha \in A} C_{\alpha}\right)_{x} = \bigcap_{\alpha \in A} \left(C_{\alpha}\right)_{x}$$

$$(C \setminus C')_x = C_x \setminus C'_x$$

1.2.3 Полная мера, сигма-конечная мера

См. конспект прошлого семестра

1.2.4 Образ меры при отображении

Пусть у нас есть $(X,\mathfrak{A},\mu), (Y,\mathfrak{B},)$ — пространства с мерой, $\Phi: X \to Y$.

- 1. $\forall \Phi \quad \Phi^{-1}(\mathfrak{B}) = \sigma$ -алгебра (это предлагается доказать как уражнение)
- 2. Пусть Φ "измеримо" $\left(\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}\right)$

Для
$$E\in\mathfrak{B}$$
 зададим $\nu R:=\mu\left(\Phi^{-1}(E)\right)=\int_{\Phi^{-1}(E)}1d\mu$

 ν — образ меры μ при отображении Φ

NB: ДОПИСАТЬ НА СЕССИИ, ТУТ ЕЩЁ ЕСТЬ ДОКАЗАТЕЛЬСТВО, ЧТО ЭТО МЕРА

1.2.5 Взвешенный образ меры

 $\omega:X \to \mathbb{R} \geq 0$, измерима на X

 $B\in \mathfrak{B}, \tilde{\nu}(B):=\int_{\Phi^{-1}(B)}\omega d\mu$ — тоже мера, это и есть взвешенный образ меры μ при отображении Φ

1.3 Важные теоремы

1.3.1 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде

Формулировка:

- ullet (X, \mathfrak{A}, μ) пространство с мерой
- $f_n, f: X \to \overline{\mathbb{R}}$ измеримые
- $f_n \to f$ почти всюду
- $\exists g: X \to \overline{\mathbb{R}}$ суммируемая, и $\forall n$ и при почти всех $x \mid f_n(x) \mid \leq g(x)$

Тогда:

$$\int_X |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0$$

И, как очевидное ("уж тем более"):

$$\int_X f_n d\mu \underset{n \to \infty}{\longrightarrow} \int_X f d\mu$$

Доказательство:

1.3.2 Теорема Лебега о мажорированной сходимости для случая сходимости по мере

Формулировка (то же самое, что и выше, только сходится по мере теперь):

- (X,\mathfrak{A},μ) пространство с мерой
- $f_n, f: X \to \overline{\mathbb{R}}$ измеримые
- $f_n \Longrightarrow f$
- $\exists g: X \to \overline{\mathbb{R}}$ суммируемая, и $\forall n$ и при почти всех $x \mid f_n(x) \mid \leq g(x)$

Тогда:

$$\int_X |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0$$

1.3.3 Принцип Кавальери

 Φ ормулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- \bullet $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu, \mathfrak{C} = \mathfrak{A} \otimes \mathfrak{B}$

Тогда:

- 1. при почти всех $x \quad C_x \in \mathfrak{B}$
- 2. $x \mapsto \nu C_X$ измеримо на C_x
- 3. $mC = \int_X \nu(C_x) d\mu(x)$

Аналогично для сечений C^y

Доказательство:

1.3.4 Теорема Фубини

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}}$, суммируема на $X \times Y$ по мере m

Тогда:

- 1. при почти всех x функция f_x суммируема на Y
- 2. $x\mapsto \varphi(x)=\int_Y f_x d\nu$ это суммируемая функция на X

3.

$$\int_{X\times Y}fdm=\int_X\varphi(x)d\mu(x)=\int_X\left(\int_Yf(x,y)d\nu(y)\right)d\mu(x)$$

1.4 Теоремы

1.4.1 Теорема об интегрировании положительных рядов

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $u_n: X \to \overline{\mathbb{R}}, u_n \geq 0$ (при почти всех x?)
- u_n измеримы на $E \in \mathfrak{A}$

Тогда:

$$\int_{E} \left(\sum_{n=1}^{\infty} u_n(x) \right) d\mu(x) = \sum_{n=1}^{\infty} \left(\int_{E} u_n(x) d\mu(x) \right)$$

Доказательство:

Подгоним под теорему Леви 3 (3 семестр). Пусть $S_N(x) = \sum_{n=1}^N u_n(x)$ — последовательность частичных сумм. Очевидно, что эта последовательность — монотонно неубывающая (так как функции у нас неотрицательные):

$$0 \le S_N \le S_{N+1} \le S_{N+2} \le \dots$$

Тогда, делаем предельный переход (вот тут есть вопрос, почему должен существовать предел, но если подумать: если его не существует, вообще вся эта теорема не имеет смысла (ну бесконечности, чел, смысл их интегрировать)). А так же, измеримость сохраняется, так как у нас исходные функции все были измеримы (ну и по теореме о пределе измеирмых функций):

$$S_N(x) \xrightarrow[N \to \infty]{} S(x)$$

Ну и всё, значи, по теореме Леви можем перейти к предельному преходу интегралов:

$$\int_{E} S_{N}(x) d\mu(x) \xrightarrow[N \to \infty]{} \int_{E} S(x) d\mu(x)$$

Левую часть можно расписать по линейности интеграла (там у нас конечное число членов):

$$\int_{E} S_N(x)d\mu(x) = \sum_{n=1}^{N} \int_{E} u_n(x)d\mu(x)$$

Ну, а раз интграл суммы стремится к интегралу предельной функции, то и сумма интегралов обязана туда стремиться.

$$\sum_{n=1}^{N} \int_{E} u_{n}(x) d\mu(x) \xrightarrow[N \to \infty]{} \sum_{n=1}^{\infty} \int_{E} u_{n}(x) d\mu(x)$$

ч. т. д.

Следствие:

- $u_n: X \to \mathbb{R}$, измеримы на $E \in \mathfrak{A}$
- $\sum \int_E |u_n(x)| d\mu < +\infty$ (конечна)

Тогда $\sum u_n(x)$ — абсолютно сходящийся при почти всех x

Доказательство:

Пусть:

$$S(x) = \int_{n=1}^{\infty} |u_n(x)|$$

Тогда, по предыдущей теореме:

$$\int_{E} S(x)d\mu = \sum_{n=1}^{\infty} \left(\int_{E} |u_{n}(x)| d\mu \right) < +\infty$$

Раз интеграл конечен, значит S(x) — суммируема, а это значит, что S(x) — почти везде конечна. Ну значит и сходится.

ч. т. д.

Пример:

- (x_n) вещественная последовательность
- $\sum a_n$ абсолютно сходящийся числовой ряд

Тогда функциональный ряд $\sum \frac{a_n}{\sqrt{|x-x_n|}}$ — абсолютно сходится при почти всех x (в $\mathbb R$ по мере Лебега)

Доказательство:

Во-первых, можно доказать, что если для $\forall A$ на [-A,A] абсолютно сходится почти везде, то и везде (на $\mathbb R$) почти везде сходится (лол). Счётное количество п. в. \Rightarrow п. в. (чтобы количество отрезков было счётным, надо чтобы A были хотя бы рациональными. Кажется, что это не сильная проблема, так как отрезки включают в себя и все вещественные числа на отрезке тоже).

Попробуем подогнать под предыдущую теорему:

$$\int_{[-A,A]} \frac{|a_n|}{\sqrt{|x-x_n|}} d\lambda = |a_n| \int_{-A}^A \frac{dx}{\sqrt{|x-x_n|}} \le$$

Так, стоп. А как мы перешли к определённому интегралу? Оказывается, что так можно делать, на доказано это будет позже (в курсе).

$$\leq \underset{x:=x-x_n}{\leq} |a_n| \int_{-A-x_n}^{A-x_n} \frac{dx}{\sqrt{|x|}} \leq |a_n| \int_{-A}^{A} \frac{dx}{\sqrt{|x|}} \leq$$

Почему верен последний переход? Посмотрим на картинке:

Ну, по ней очевидно, что мы откусили кусочек поменьше, а добавили побольше. Тогда оценим модуль:

$$\leq 2 \cdot |a_n| \int_0^A \frac{dx}{\sqrt{|x|}} = 4 \cdot \sqrt{A} \cdot |a_n|$$

Всё, абсолютный интеграл ограничен, значит сходится (при почти всех x).

ч. т. д.

1.4.2 Абсолютная непрерывность интеграла

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$ суммируемая

Тогда:

$$\forall arepsilon > 0 \; \exists \delta > 0, \quad \forall E-$$
 измеримое $\mu E < \delta \qquad \left| \int_E f d\mu \right| < arepsilon$

Доказательство:

Следствие:

- $(e_n) \in \mathfrak{A}$ последовательность (?) множеств
- $\mu e_n \xrightarrow[n \to \infty]{} 0$
- f суммируемая на X

Тогда:

$$\int_{e_n} f d\mu \xrightarrow[n \to \infty]{} 0$$

1.4.3 Теорема о произведении мер

Формулировка:

- $(X,\mathfrak{A},\mu),\,(Y,\mathfrak{B},\nu)$ пространства с мерой
- Зададим $m_0(A \times B) = \mu A \cdot \nu B$

Тогда:

- 1. m_0 мера на $\mathfrak{A} \times \mathfrak{B}$
- $2.~\mu, \nu-\sigma$ -конечные меры $\Longrightarrow m_0-\sigma$ -конечная

Доказательство:

1.4.4 Теорема Тонелли

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}} \geq 0$, измерима относительно $\mathfrak{A} \otimes \mathfrak{B}$

Тогда:

- 1. при почти всех x функция f_x измерима на Y
- 2. $x\mapsto \varphi(x)=\int_Y f_x d\nu$ это измеримая функция на X

3.

$$\int_{X\times Y} f dm = \int_X \varphi(x) d\mu(x) = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$$

Доказательство:

1.4.5 Формула для бета-функции

Формулировка: Бета-функция задаётся следующим образом:

$$B(s,t) = \int_0^1 x^{s-1} (1-x)^{t-1} dx, \quad s, t > 0$$

Тогда:

$$B(s,t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$$

1.4.6 Объем шара в \mathbb{R}^m

 Φ ормулировка:

- $B(0,R) = \{x \in \mathbb{R}^m : x_1^2 + x_2^2 + \ldots + x_m^2 \le R^2\}$
- $\alpha_m \lambda_m(B(0,1))$

Тогда:

$$\mu\left(B(0,R)\right) = \alpha_m R^m$$

Доказательство:

1.4.7 Теорема Фату. Следствия

 Φ ормулировка:

•