

WRF ACCELERATION

AND COUPLING WITH FLEXPART

Author

Supervisor

Valentin Marcu – SCPD

Associate Prof. Dr. Eng. Emil Slusanschi

ctvalentin.marcu@gmail.com

Topics

- WRF Overview
- Radiation Transfers
- CUDA Overview
- FLEXPART Overview
- Related Work
- CUDA Acceleration
- Results
- Future Work
- Conclusions

RESEARCH

FORECASTING MODEL

WRF Overview

Weather Research and Forecasting Model

- Regional numeric model
- Scalability and efficiency
- MPI/OpenMP support
- NETCDF output

Nest-based computational effort

WRF Overview

WRF Radiation Transfers

Rapid Radiative Transfer Model (RRTM)

- inirad(): computes the ozone mixing ratio distribution
- setcoef(): input for the radiative transfer algorithm
- mm5atm(): prepares atmospheric profiles
- gasabs(): calculates gaseous optical depths
- rtrn(): calculates the radiative transfer

taugb1()

taugb2 ()

. .

taugb16 ()

RRTM Call Graph

```
209.630 (25%)
               _module_ra_rrtm_MOD_rrtmlwrad
                  module ra rrtm MOD rrtm
  209.630 (25%)
                     module ra rrtm MOD rtrn
     87.066 (10%)
                     module ra rrtm MOD gasabs
     82.301
            (10%)
        9.934 (1%)
                    module ra rrtm MOD taugb5
        7.713 (1%)
                    module ra rrtm MOD taugb4
        7.711 (1%)
                    module ra rrtm MOD taugb9
        6.534 (1%)
                    module ra rrtm MOD taugb3
                    module_ra_rrtm_MOD_taugb7
        5.271 (1%)
        3.319 (0%)
                    module ra rrtm MOD taugb12
        3.166
              (0\%)
                    module ra rrtm MOD taugb2
              (0%)
        3.047
                    module ra rrtm MOD taugb8
        2.107
              (0\%)
                    __module_ra_rrtm_MOD_taugb13
        1.944
                    module ra rrtm MOD taugbl1
              (0%)
        1.728
              (0%)
                    module ra rrtm MOD taugb6
        1.469
              (0%)
                    module ra rrtm MOD taugb15
        1.440
              (0%)
                    module_ra_rrtm_MOD_taugb16
        1.130 (0%)
                    module ra rrtm MOD taugb10
        1.016
              (0%)
                    module ra rrtm MOD taugbl
        0.682
                    module_ra_rrtm_MOD_taugb14
              (0%)
        0.027
              (0%)
                    int free
        0.002 (0%)
                    free
     14.483 (2%)
                  module ra rrtm MOD setcoef
            (1\%)
                   module_ra_rrtm_MOD_mm5atm
     11.937
     7.653 (1%)
                  module ra rrtm MOD o3data
     3.074 (0%)
                  malloc
     2.222 (0%)
                 int free
```


CUDA Overview

The GPU devotes more transistors to data processing

(derived/inspired from graphics rendering)

CUDA Memory Types

FLEXPART Overview

- Lagrangian particle dispersion model
- Originally designed for coupling with global weather models
- Forward/backward dispersion
- Radioactive decay, wet/dry deposition etc.
- Numerical parallelization for computation efficiency
- Netcdf format for output files

Related Work

GPU ACCELERATION OF RRTM USING CUDA FORTRAN

	X5540 (-O3)	X5540 (-fast)	C1060
Overall time (ms)	831	703	83

- G.Reutsch, NVIDIA Corporation, GPU acceleration of the Longwave Rapid Radiative Transfer Model in WRF using CUDA Fortran, 2011
- WRF speedup: 1.25

CUDA Acceleration

- 14 thread blocks
- 16 * NLAYERS threads / block
- 1 gasabs_gpu call for each 2D point in domain
- 14 SMs / device
- 2 devices / node

CUDA Acceleration

- 1 CUDA stream for each CPU thread (OpenMP)
- CUDA streams uniformly spread across GPUs

Copy data

Execute

Copy data

Execute

- 1 MPI process per node
- Asynchronous cudaMemcpy
- Overlap data transfers and kernel execution

CUDA Acceleration

- Transposed some input arrays before sending them to GPU
 - => coalesced accesses
 - => minimized global memory transactions
- Allocated memory on GPU only at first kernel call
- Data transfers to/from GPU only when needed and in a minimum of transactions

Results (gfortran + nvcc)

- Europe Benchmark
- 1h of simulation
- 1 domain

Grid Points	Horiz Res
196x167x40 = 1.3M	21.6 km
274x217x40 = 2.4M	7.2 km
592x355x40 = 8.4M	2.4 km
1003x505x40 = 20.3M	800m

Results (gfortran + nvcc)

Percentage of Application

Total execution time

======= Profiling result:

	rrorrring	ICDUIC.				
Time(%)	Time	Calls	Ava	Min	Max	Name
53.26	1.03s	64740	15.96us	15.28us	17.88us	taugb_gpu(<u>int</u> , <u>int</u> ,
40.44	784.77ms	64740	12.12us	12.06us	13.92us	[CUDA memcpy DtoH]
6.29	122.12ms	64752	1.89us	1.22us	92.80us	[CUDA memcpy HtoD]

FLEXPART – WRF Coupling

Domain Generation – WRF Domain Wizard

FLEXPART – WRF Coupling

FLEXPART – WRF Coupling

0.1 0.5

Particle concentrations – coupled run

Concentration at 66m (normalized by source conc) % 2007-7-13--2:00hr 20°E 30°E 40°E 25°E 35°E 50°N 48°N 4B°N 46°N 46°N 44°N 44°N 42°N 42°N 40°N 40°N 38°N 38°N 36°N 36°N 20°E 25°E 30°E 35°E 40°E

200

100

Future GPU Acceleration

- Directive-based
- Multiple platforms supported (NVIDIA, AMD, Intel Xeon Phi, CRAY etc)
- v.2.0 (2014) procedure calls

CPU-GPU transfers managed by the API

Conclusions

 Porting Fortran to CUDA C tends to result in better performance than using accelerator directives, but is very time consuming and prone to various implementation errors and vulnerabilities

- Overall WRF speedup of up to 1.1x
 - Gasabs() is only 10%-20% of WRF
- Upcoming accelerators and programming tools
- Scalability of last version of FLEXPART-WRF

Keywords

• WRF

FLEXPART

• CUDA

Gfortran

• GPU

Domain

• RRTM

OpenACC

Kernel

GASABS

Async

Speedup