Лекция 15 от 11.01.2016

Скаляры. Поля

Для начала вспомним, что такое *векторное пространство* — это множество, на котором введены операции сложения, умножения на скаляр и в котором будут выполнятся восемь аксиом (см. 1 семестр). Но что такое скаляр?

Определение. Скаляры — это элементы некоторого фиксированного поля.

Определение. Полем называется множество F, на котором заданы две операции — «сложение» (+) и «умножение» (\cdot) ,

$$F \times F \to F \Rightarrow \begin{array}{c} +: (a,b) \mapsto a+b \\ \cdot: (a,b) \mapsto a \cdot b \end{array}$$

удовлетворяющие следующим свойствам («аксиомам поля»): $\forall a, b, c \in F$

- 1. a + b = b + a (коммутативность по сложению);
- 2. (a + b) + c = a + (b + c) (ассоциативность по сложению);
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (существование нулевого элемента);
- 4. $\exists -a \in F: a + (-a) = (-a) + a = 0$ (существование противоположного элемента);
- 5. a(b+c) = ab + ac (дистрибутивность; связь между сложением и умножением);
- $6. \ ab = ba \ (коммутативность по умножению);$
- 7. (ab)c = a(bc) (ассоциативность по умножению);
- 8. $\exists 1 \in F \setminus \{0\} : 1 \cdot a = a \cdot 1 = a$ (существование единицы);
- 9. $a \neq 0 \Rightarrow \exists a^{-1} \in F : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (существование обратного элемента).

Пример.

- \mathbb{Q} рациональные числа;
- \mathbb{R} вещественные числа;
- $\mathbb{C} \kappa$ омплексные числа;
- $F_2 = \{0,1\}$, при сложении и умножении по модулю 2.

Поле комплексных чисел

Поле действительных чисел \mathbb{R} плохо тем, что в нем уравнение $x^2+1=0$ не имеет решения. Отсюда возникает идея определить поле, удовлетворяющее следующим требованиям:

- (T1) новое поле содержит \mathbb{R} ;
- (T2) уравнение $x^2 + 1 = 0$ имеет решение.

Давайте формально построим такое поле.

Определение. Полем \mathbb{C} комплексных чисел называется множество $\{(a,b) \mid a,b \in \mathbb{R}\}$, на котором заданы операции сложения: $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$ и умножения: $(a_1,b_1)\cdot(a_2,b_2)=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)$.

Предложение. \mathbb{C} *и впрямь является полем.*

Доказательство. Операции сложения и умножения введены, осталось только проверить выполнение всех аксиом.

- 1. очевидно, так как сложение идет поэлементно;
- 2. также очевидно;
- 3. 0 = (0,0);
- 4. -(a,b) = (-a,-b);
- 5. почти очевидно (т.е. прямая проверка);
- 6. ясно (тоже прямая проверка);
- 7. проверим:

$$((a_1, b_1)(a_2, b_2))(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2)(a_3, b_3) =$$

$$= (a_1a_2a_3 - b_1b_2b_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3) =$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3) = (a_1, b_1)((a_2, b_2)(a_3, b_3));$$

8. 1 = (1,0);

9. $(a,b) \neq 0 \Leftrightarrow a^2 + b^2 \neq 0 \to (a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$.

Осталось только проверить, правда ли введенное поле С удовлетворяет нашим требованиям:

(T1) Заметим, что в подмножестве \mathbb{C} , состоящим из элементов вида (a,0) операции сложения и умножения будут работать как в поле вещественных чисел.

$$(a,0) + (b,0) = (a+b,0)$$

 $(a,0) \cdot (b,0) = (ab,0)$

Следовательно, отображение $a \mapsto (a,0)$ отождествляет \mathbb{R} с этим подмножеством, то есть $\mathbb{R} \to \mathbb{C}$. Что нам и требуется.

(Т2) Примем i=(0,1). Тогда $i^2=(0,1)\cdot(0,1)=(-1,0)=-1$. Итого, требование выполнено.

Однако запись комплексных чисел в виде упорядоченной пары (a,b) не очень удобна и громоздка. Поэтому преобразуем запись следующим образом:

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + bi.$$

Тем самым мы получили реализацию поля $\mathbb C$ комплексных чисел как множества $\{a+bi\mid a,b\in\mathbb R,\ i^2=-1\},$ с обычным сложением и умножением.

Определение. Запись z=a+bi называется алгебраической формой комплексного числа $z\in\mathbb{C}$.

 $a = \operatorname{Re} z - \partial e$ йствительная часть числа z.

 $b = \operatorname{Im} z -$ мнимая часть числа z.

Определение. Числа вида $z = bi \ (m.e. \ {\rm Re} \ z = 0)$ называются чисто мнимыми.

Определение. Отображение $\mathbb{C} \to \mathbb{C}$: $a+bi \mapsto a-bi$ называется (комплексным) сопряжением. Само число $\overline{z}=a-bi$ называется (комплексно) сопряженным к числу z=a+bi.

Лемма. Для любых двух комплексных числе $z,w\in\mathbb{C}$ выполняется, что

- 1. $\overline{z+w} = \overline{z} + \overline{w}$;
- 2. $\overline{zw} = \overline{z} \cdot \overline{w}$.

Доказательство. Пусть z = a + bi, а w = c + di.

1.
$$\overline{z} + \overline{w} = a - bi + c - di = (a + c) - (b + d)i = \overline{z + w}$$

2.
$$\overline{z} \cdot \overline{w} = (a - bi)(c - di) = ac - adi - bci + bdi^2 = (ac - bd) - (ad + bc)i = \overline{zw}$$

Замечание. Равенство $z=\overline{z}$ равносильно равенству $\operatorname{Im} z=0$, то есть $z\in\mathbb{R}$.

Геометрическая модель поля $\mathbb C$

Заметим, что поле комплексных числе $\mathbb{C} = \{(a,b) \mid a,b \in \mathbb{R}\}$ равно \mathbb{R}^2 . Следовательно, комплексные числа можно представить как точки на действительной плоскости \mathbb{R}^2 , или сопоставить их векторам.

В таком представлении сложение комплексных чисел сопоставляется со сложением векторов, а сопряжение — с отражением относительно оси $Ox(\operatorname{Re} z)$.

Определение. Модулем комплексного числа z = a + bi называется длина соответствующего вектора. Обозначение: |z|; $|a + bi| = \sqrt{a^2 + b^2}$.

Свойства модуля:

- 1. $|z| \ge 0$, причем |z| = 0 тогда и только тогда, когда z = 0;
- 2. $|z+w| \leqslant |z| + |w|$ неравенство треугольника;
- 3. $z \cdot \overline{z} = |z|^2$;

Доказательство.
$$(a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$$
.

 $4. |zw| = |z| \cdot |w|;$

Доказательство. Возведем в квадрат.

$$|z|^2 \cdot |w|^2 = z\overline{z}w\overline{w} = (zw)\overline{z}\overline{w} = zw\overline{z}\overline{w} = |zw|^2$$

Замечание. Из свойства 3 следует, что при $z \neq 0$ выполняется:

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$(a+bi)^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}.$$

Определение. Аргументом комплексного числа $z \neq 0$ называется всякий угол φ такой что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

Неформально говоря, аргумент z — это угол между осью Ox и соответствующим вектором.

Замечание.

- 1. Аргумент определен с точностью до 2π .
- 2. Аргумент z=0 не определен.

Для $z \neq 0$ введем множество $\operatorname{Arg} z = \{$ множество всех аргументов $z\}$ — большой аргумент. Также введем малый аргумент $\operatorname{arg} z$ — это такой $\varphi \in \operatorname{Arg} z$, который удовлетворяет условию $0 \leqslant \varphi < 2\pi$ и, следовательно, определен однозначно.

Используя аргумент, можно представить комплексное число следующим образом:

$$\begin{vmatrix} a = |z|\cos\varphi \\ b = |z|\sin\varphi \end{vmatrix} \Rightarrow z = a + bi = |z|\cos\varphi + i|z\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Определение. 3anucь $z=|z|(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой комплексного числа z.

Замечание.

$$r_1(\cos\varphi_1 + i\sin\varphi_1) = r_2(\cos\varphi_2 + i\sin\varphi_2) \Leftrightarrow \begin{cases} r_1 = r_2\\ \varphi_1 = \varphi_2 + 2\pi n, & n \in \mathbb{Z} \end{cases}$$

4