Name: (Print) $\rho + O \sim C \sim O$ Due: June 26, 2019

- 1. (5 points) Given the following input (3412, 3413, 1741, 3269, 2909, 6291, 6373, 5129) and the hash function $h(k) = k \mod 10$, which of the following statement(s) are true? Choose all correct ones.
 - (A) 3269, 2909, 5129 hash to the same value output = 9
 - B. 3412 and 3413 hash to the same value
 - (C)1741, 6291 hash to the same value output = 1
 - D. 3413, 3269, 6291, 6373 each hashes to a different value
- 2. (5 points) The keys 14, 18, 33, 4, 3, 23, 25 and 5 are inserted into an initially empty hash table in this given order. The hash table has 10 slots and uses chaining with hash function h(k) = kmod 10. What is the hash table after inserting all keys? (multiple numbers in the same slot represents a linked list to chain the numbers together in that order)

0	
1	
2	
2 3 4 5 6	3, 23, 33
4	4, 14
5	4, 14 5, 25
6	
7	
8	18
9	
	A

0	
1	
2	
3	23, 3, 33 V
4	4, 14 🗸
2 3 4 5 6	23, 3, 33 \(\sqrt{4, 14 \times } \times \) 5, 25 \(\)
6	
7	
8	18
9	
(E	3)

0	
1	
2	
3	33, 23, 3
4	14, 4 25, 5
4 5 6	25, 5
6	
7	
8	18
9	
	С

0	
1	
2	
3	33, 3, 23
4 5 6	14, 4
5	25, 5
6	
7	
8	18
9	
	D

$$h(14) = h(4) = 4$$

$$h(18) = 8$$

$$h(33) = h(3) = h(23) = 3$$

$$h(25) = h(5) = 5$$

3. (5 points) The keys 14, 18, 33, 4, 3, 23, 25 and 5 are inserted into an initially empty hash table in this given order. The hash table has 10 slots and uses open addressing with hash function h(k) = k mod 10 and linear probing. What is the hash table after inserting all keys?

1 (00 1) (00 1) 11 5		,
h(23,4)=(23+4)mor/10=7	0	
(2= > 6 > 1.5	1	
n(25,0)=(25+0) mon/10=5 (collision)	2	
	3	23
(25,1)=(25+1) mod 10=6	4	4
(collision)	5_	5
(25,2)=(25+2) mod 10=)	6	
(collision)	7	
(252) (252)	8	18
$(25,3) = (25+3) \mod 10 = 8$ (collision)	9	
(collision)		

0	
1	
2	33
3	33
4	14
5	4
6	3 23
2 3 4 5 6 7 8	
8	18
9	25

0	
1	
1 2 3 4 5 6 7	
3	33
4	14
5	25
6	
7	
8	18
9	

0	5
1	
2	
3	33
4	14
5	4
6	3 23
7	23
2 3 4 5 6 7 8	18
9	25

3. (5 points) The														
in this given order. The hash table has 10 slots and uses open addressing with hash function h(k)														
$= k \mod 10$ and \underline{I}	inea	r probing.	What is	the hash	table a	ıfter	inserting	g all k	eys?		(E) (8	1	3 3	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						,		•		5.	; -3:	==	
1 (02 1) (02.1) 15 21					7 -			ı			7 8 =		3, 3,	0
h(23,4)=(23+4)monlo=7	0		0		1 [0			0	5] 	3	0	(1
	1		1			1			1		3	-	11 11	(1
h(25,0)=25+0) mon/10=5	2		2	5	1	2			2		1 0 ((1 5	5 5	7
h(25,0)=(25+0) may 10=5 (collision)	3	23	3	33	1	3	33		3	33	후 9	0 >	10 10 10 10 10 10 10 10 10 10 10 10 10 1	8
	1		4	14	1 }						13 3	00	01 pan	Ś
(25,1)=(25+1) mod10=6	4	4			1 }	4	14		4	14	3 3	3/	7 -	
(collision)	5	5	5	4	1	5	25		5	4	9	, ,	£ 2	5
(25,2)=(25+2) mod 10=)	6		6	3	1 L	6			6	3	1 + +	71	O, It	5
	/		7	23		7			7	23	P 10	26	79	4
WILLIAM	8	18	8	18] [8	18		8	18		0 11	(1)	- 11
$(25,3) = (25+3) \mod 10 = 8$ (collision)	9		9	25	1	9			9	25	0	500	~ \	10
(collision)) [l			16	57	5	5
h(25,4) = (25+4) mod 10=9	, ,		. D			C			(D)		$\frac{1}{2}$	ې کې د		
177=(2317) (2011 10=9	A		В	1.		C			(D)				2>	
n(14,0) = (14+0) mod	10 =	: 4		h (:	3,1):	=(3)	+1) m	nod 1) =	4 (00)	lisim)			
h(18,0) = (18+0) mod	10 =	= 8		h(3,2)-	= (3	+2)m	od 1	0	5 (ca	lision			
1 (22 m) (20				1										
h(33,0) = (33+0) mc	xd 10	0=3			5,3).	= (3	3+3)n	how	0=	6		,		
h (4,0) = (4+0) ma	10	=4(0	ollision) h (23 m							
$h(4,1) = (4+1) \mod$	10	- 5	_ , ,	h (2	23,1)	$=$ $\left(\frac{1}{2}\right)$	23+1)1	mod	10 =	4 (00	llision	()		
N (11) - (11) MON	()			1 .			10					1		

 $h(3,0) = (3+0) \mod 10 = 3$ (collision) $h(23,2) = (23+2) \mod 10 = 5$ (collision) 4. (5 points) (1) What is the load factor in Problem 2 above?

$$\alpha = \frac{m}{n} = \frac{10}{8} = 18$$

(2) What is the load factor in Problem 3 above?

$$\alpha = \frac{n}{m} = \frac{8}{10} = .8$$

- heap sout

4. (20 points) Design and Analysis of an Algorithm

Consider an unsorted array A of n integers; design an efficient algorithm that accepts \underline{A} , \underline{n} and \underline{s} as the inputs and determines if the array contains two integers such that they add up to a specific target number s. That is: if we can find A[i] + A[j] == s ($1 \le i, j \le n, i \ne j$), the algorithm should return TRUE, otherwise return FALSE.

Design requirement:

- the *efficient* algorithm you are going to design should provide an O(nlgn) running time, rather than an $O(n^2)$ running-time solution.
- To keep your answers brief, you may use any algorithms that we have learned from lectures and the textbook as subroutines (this means you do NOT need to re-write those algorithms, just call them with the proper input/output).
- (1) (12 points) Algorithm Pseudocode (please use textbook conventions):

Sum_Secking
$$(A, n, s)$$

(/Sont fint

MERGE_SORT (A_1, n) $\{T(n) = O(n|gn)\}$

Jon $(i = 1 \text{ to } n)$

if $(A[i] + A[j] = s)$

This is $O(n^2)$

not $O(n)$

Sceking $(S - A[i]) \cup S$. Every elemement. If $(==), \rightarrow \text{neturn TRUE}$

If $(==), \rightarrow \text{neturn FALSE}$

(2) (8 points) What is the running time of the algorithm that you designed? Justify your answer.

$$T(n) =$$

$$O(n)$$
 $A+O(n)$