4. Ordinary Differential Equations

initial value problem (IVP)

Definition [system of ordinary differential equations]

explicit, first order form of ODE

$$\frac{du(t)}{dt} = f(t, u(t))$$

• function f(t, u)

$$f:[0,T]\times\mathbb{R}^n\to\mathbb{R}^n$$

- ▶ models how change of u(t) depends on u(t)
- ▶ initial value: $u(0) = u_0$
- ▶ **IVP:** find u(t) with $u(0) = u_0$ and which satisfies ODE

example: growth and decay

- ightharpoonup models change in amount of some quantity u(t) over time
- ode

$$\frac{du}{dt} = \alpha - \beta u$$

- $ightharpoonup \alpha$: growth, β : decay
- stationary solution $u(t) = \alpha/\beta$
- general solution

$$u(t) = e^{-\beta t}u_0 + (1 - e^{-\beta t})\frac{\alpha}{\beta}$$

plot of exact solution

```
T = 1.0
t = np.linspace(0,T,129)
u = lambda t, u0, T=T, alpha=1.0, beta = 4.0 : \
    np.exp(-beta*t)*u0 + (1-np.exp(-beta*t))*alpha/beta
```

```
plt.plot(t,u(t,u0=0),label='growth')
plt.plot(t,u(t,u0=1),label='decay');
plt.legend();
```


solving with scipy

```
f = lambda t, u, alpha=1.0, beta=4.0 : alpha - beta*u
solver = scint.ode(f)
u0 = 1.0
solver.set_initial_value(u0,0.0)
unum = [u0,]
for tk in t[1:]:
    #print(tk)
    unum.append(solver.integrate(tk)[0])
#help(scint.ode)
```

#plt.plot(t,np.array(unum));

plt.plot(t,(np.array(unum)-u(t,u0))/u(t,u0)); plt.ylabel(':
plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter)

example: mechanics

Damped spring oscillator, Newton's 2nd law

$$mx'' = -m\beta x' - \gamma x$$

• first order system $u_1 = x$ and $u_2 = x'$

$$\frac{du}{dt} = f(u)$$

where

$$f = \begin{bmatrix} u_2 \\ -(\beta u_2 + \gamma u_1/m) \end{bmatrix}$$

solving with scipy

```
f = lambda t, u, m=0.5, beta = 4, gamma = 400.0 :\
    np.array((u[1],-(beta*u[1]+gamma*u[0]/m)))

solver = scint.ode(f)
u0 = np.array([1.0,0.0])
solver.set_initial_value(u0,0.0)
unum = [u0,]
for tk in t[1:]:
    unum.append(solver.integrate(tk))
```

```
max_disp = np.max(abs(np.array(unum)[:,0]))
max_vel = np.max(abs(np.array(unum)[:,1]))
plt.plot(t, np.array(unum)[:,0]/max_disp,label='location')
plt.plot(t, (np.array(unum)[:,1])/max_vel, label='velocity
```


example: chemical reaction

- ▶ burning hydrogen $2H + O \rightarrow H_2O$
- \triangleright u_1, u_2, u_3 are concentrations of H, O and H_2O , respectively
- system of ODEs from law of mass action

$$\frac{du}{dt} = f(u)$$

with

$$f(u) = \kappa u_1^2 u_2 \begin{bmatrix} -2\\-1\\1 \end{bmatrix}$$

▶ note that $u_1 + 2u_3$ and $u_2 + u_3$ are constant (total amount of H and O atoms)

solving with scipy

```
f = lambda t, u, kappa=1.0 : \
   kappa*u[0]**2*u[1]*np.array((-2.0,-1.0,1.0))
solver = scint.ode(f)
u0 = np.array([1.0,1.0,0.0])
solver.set_initial_value(u0,0.0)
unum = [u0,]
for tk in t[1:]:
   unum.append(solver.integrate(tk))
```

```
plt.plot(t, np.array(unum)[:,0],label='H')
plt.plot(t, np.array(unum)[:,1],label='O')
plt.plot(t, (np.array(unum)[:,2]), label='H2O');plt.legend
```


example: epidemiology

- SIR model (susceptibles, infectives, removed)
- \triangleright u_1, u_2, u_3 are number of susceptibles, infectives and recovered
- system of ODES

$$\frac{du}{dt} = f(u)$$

with

$$f(u) = \begin{bmatrix} -\beta u_1 u_2 \\ \beta u_1 u_2 - \gamma u_2 \\ \gamma u_2 \end{bmatrix}$$

- \triangleright β fixed number of contacts per day
- $ightharpoonup \gamma$ fixed number of recovered people per day
- ▶ total population size $u_1 + u_2 + u_3$ constant

solving with scipy

```
plt.plot(t, np.array(unum)[:,0],label='S')
plt.plot(t, np.array(unum)[:,1],label='I')
plt.plot(t, (np.array(unum)[:,2]), label='R');plt.legend(logenset)
```


example: heat

- diffusion, discretised in space
- $\lambda > 0$: diffusion coefficient, heat conductivity
- $u_k(t)$ is temperature at location $x_k = kh$ in 1D medium
- system of ODEs

$$\frac{du}{dt} = -Au$$

where

$$A = \frac{\lambda}{h^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

solving with scipy def f(t,u,lam=0.05):n = u.shape[0]df = -2*lam*udf[:-1] += lam*u[1:]df[1:] += lam*u[:-1]return df*(n-1)**2def heat(): n = 35solver = scint.ode(f) u0 = np.zeros(n);u0[n//2] = 1.0print(n//2)solver.set_initial_value(u0,0.0) plt.plot(u0, label='t={:2.1e}'.format(0.0)) for tk in (0.01, 0.05, 0.1): unum = solver.integrate(tk) plt.plot(unum, label='t={:2.1e}'.format(tk))

heat()

17

autonomous form

$$\frac{du}{dt} = f(u)$$

- ▶ function $f: \mathbb{R}^n \to \mathbb{R}^n$
- ▶ by adding $u_0(t) = t$ with ODE $u'_0 = 1$ and $u_0(0) = 0$ reformulate more general ODE as autonomous

implicit higher order form

(1) $F(u(t), u'(t), \dots, u^{(s)}(t), t) = 0$

• function $F(u_1, \ldots, u_{s+1}, t)$

$$F: \mathbb{R}^n \times \cdots \times \mathbb{R}^n \times [0, T] \to \mathbb{R}^n$$

- transform higher order implicit form to first order explicit form:
 - reduce to first order system by replacing u(t) by vector $(u_1(t), u_2(t), \dots, u_s(t))$ where $u_k(t) = u^{(k-1)}(t)$
 - ▶ add the equations $u'_k(t) u_{k+1}(t) = 0$ to F
 - resulting first order implicit form with extended F and u(t):

$$F(u(t),u'(t),t)=0$$

• solve for u'(t) to get explicit form

remarks

- for most ordinary differential equations the solution is not known
- solution of ordinary differential equations is not unique
 - initial value problem: $u(0) = u_0$
 - ▶ boundary value problem: B(u(0), u(T)) = 0
 - solution of boundary value problem with "shooting method":
 - solve intial value problem for general initial value u_0 to get $u_T = g(u_0)$ for some function g
 - ▶ then solve the boundary equations for u_0

$$B(u_0,g(u_0))=0$$

here we only consider the initial value problem

linear systems of ODEs

▶ important class of ODEs with known solution: linear ODEs where f(t, u) = Au

$$\frac{du}{dt} = Au$$

* solution of the initial value problem

$$u(t) = \exp(At)u_0$$

reformulate IVP as integral equation

integrate the explicit form to get

(2)

$$u(t) = u_0 + \int_0^t f(s, u(s)) ds, \quad t \in [0, T]$$

- this is a Volterra integral equation of the 2nd kind
- why reformulate?
 - allows application of functional analysis to show existence and uniqueness of solution
 - starting point for development and theory of numerical techniques using quadrature methods

theory

- existence, uniqueness, stability and bounds on solutions, properties like positivity, symmetry and conserved quantities
- ▶ these theoretical aspects are important for numerical solution
- theory uses computational concepts

Reference (advanced)

Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, Amer. Math. Soc 2011

see your own lecture notes from ODE course

existence and uniqueness theorem

Theorem Picard-Lindelof theorem

lf

- f(t, u) is continuous in a neighborhood of (t_0, u_0)
- ▶ $f(t, \cdot)$ is Lipschitz continuous with Lipschitz constant L which is independent of t, then there exists a unique continuous u(t) which satisfies the initial value problem for $t \in [t_0, t_0 + 1/L]$

mathematical algorithm: Picard iteration

- ▶ aim: compute solution of ODE in [t, t+h] where $h \le 1/L$ (Lipschitz constant)
- integral operator:

$$F_h(u)(t) = u_0 + \int_{t_0}^t f(s, u(s)) ds, \quad t \in [t_0, t_0 + h]$$

- ▶ initialise: $u^0 = u_0$
- iterate: $u^{k+1} = F_h(u^k)$ for k = 0, 1, 2, ... until convergence

comments

- proof of theorem by Picard iteration and fixed point theorem
- ▶ in practical algorithms, $F_h(u)$ is approximated
- ▶ theorem shows the way how to design numerical algorithms: compute u(t) for $t \in [t, t+h]$ from

$$u(t) = u_0 + \int_{t_0}^t f(s, u(s)) ds, \quad t \in [t_0, t_0 + h]$$

 obtain approximation by approximating the integral using quadrature methods