Основы кодирования

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (15 июня 2016 г.)

Содержание

- 📵 Оптимальное кодирование
 - Энтропия
 - Алгоритм Хаффмана для m = 2
 - Алгоритм Фано для m = 2
- Кодирование с целью сжатия информации
 - Сжатие
 - Алгоритм Лемпела-Зива
- Кодирование с целью защиты свойств информации
 - Защита целостности
 - Защита конфиденциальности
 - Защита принадлежности

Определение информации

Definition (Юридическое)

Информация — это сведения (сообщения, данные) независимо от формы их представления a .

^а№149-ФЗ от 27 июля 2006 г «Об информации, информационных технологиях и о защите информации»

Definition

Информация — это упорядоченная последовательность (цепочка) кодовых символов, принадлежащих конечному алфавиту. При этом каждый символ последовательности несёт определённую смысловую нагрузку.

Уровни доступа к информации

Носителя			
Средств взаимодействия		S O F T WARE	
Представления (код, формат)	слово word کلمة 字	NTFS FAT32 EXFAT *.txt *.xls *.png *.htm *.doc *.svg	-200
Семантики (понимания)	- Эврика! -	- Зарика! -	- Зврика! -

Трудности оценки количества информации

- Просто оценить количество явно заданной информации: достаточно посчитать количество кодовых символов последовательности.
- Сложно оценить необходимое количество информации для адекватного «отражения» исходного объекта.

Семантический подход к количественной оценке Зависимость I_c в сообщении от тезауруса S_p получателя

$$I=I_s+I_c+I_n.$$

где I_s — известна, I_c — неизвестна и понятна, I_n — шум. $C = \frac{I_c}{I}$ называется коэффициентом содержательности информации.

Прагматический подход к количественной оценке Оценка Александра Александровича Харкевича

$$I = \log_m \frac{p_2}{p_1} = \log_m p_2 - \log_m p_1, \tag{1}$$

где m — основание логарифма, определяющее единицы измерения (m>1), p_1 — вероятность достижения потребителем цели до получения информации, p_2 — вероятность достижения потребителем цели после получения информации. Ценность информации в случае $p_1>p_2>0$ положительна, в случае $0< p_1< p_2$ отрицательна, а в случае $p_1=p_2$ равна нулю.

Синтаксический подход Задача о картах (постановка)

Example

Имеется колода из восьми карт. По две карты (туз и двойка) каждой масти. Некто вытягивает наугад карту и готов честно отвечать только да или нет на любые задаваемые вопросы. Требуется минимальным количеством вопросов угадать вытащенную карту.

Задача о картах (решение)

Количественная оценка Ральфа Хартли $m^H \geq N$

$$H = \log_m N$$
,

где m — количество кодовых символов; N — количество состояний отражаемого объекта.

Example

В случае примера с картами: количество состояний N=8, количество символов m=2. Количество информации по Хартли: $H=\log_2 8=3$ бита.

Количественная оценка по Клоду Шеннону

Отражаемый объект — источник событий.

- Количество информации есть непрерывная функция от вероятности события.
- $oldsymbol{Q}$ Количество информации I_i одиночного i-го события $s_i \in S$, $1 \leq i \leq N$ происходящего с вероятностью p_i , имеет положительное значение.

$$I_i \geq 0; I_i = I(p_i); \sum_{i=1}^{N} p_i = 1.$$

③ Количество информации I_{ij} двух независимых событий $s_i, s_j \in S$ с вероятностью $p_{ij} = p_i \cdot p_j$, равно сумме количеств информаций событий в отдельности: $I_{ij} = I_i + I_j$; $I(p_i \cdot p_j) = I(p_i) + I(p_j)$.

Количественная оценка по Клоду Шеннону

Зависимость информации от вероятности

$$I(p) = -\log_m(p),$$

где I(p) — информация события, происходящего с вероятностью p; m — количество кодовых символов.

Example (m определяет единицы измерения информации)

- m = 2 бит
- *m* = *e*. нат.
- m = 3 трит.
- m = 10. дит.

Зависимость количества информации от вероятности

Задача о биллиардных шарах (постановка)

Example

Имеется восемь биллиардных шаров с номерами 1-8 соответственно. Все шары одинаковой массы, кроме одного, который тяжелее остальных. Имеются весы Фемиды (чашечные). Какое количество взвешиваний потребуется, чтобы определить номер тяжелого шара?

Задача о биллиардных шарах (решение)

Решение. $H = \log_3 9 = I(p) = -\log_3 \frac{1}{9} = 2$ трита

Энтропия

Мера информативности источника событий (сколько выдаёт / в среднем за раз)

$$E = -\sum_{i=1}^{N} p_i \cdot \log_m p_i.$$

Рис.: Энтропия для источника с двумя состояниями

Война префиксов закончилась 19 марта 2005 года Принят стандарт IEEE 1541. 1000 байт — 1 kB (килобайт), 1024 байт — 1 KiB (кибибайт)

Множитель	CИ/SI	Множитель	IEEE 1541
$10^3 = 1000^1$	<i>kilo</i> (k) кило	$2^{10} = 1024^1$	<i>kibi</i> (Ki) киби
$10^6 = 1000^2$	<i>mega</i> (М) мега	$2^{20} = 1024^2$	<i>mebi</i> (Mi) меби
$10^9 = 1000^3$	giga (G) гига	$2^{30} = 1024^3$	gibi (Gi) гиби
$10^{12} = 1000^4$	tera (Т) тера	$2^{40} = 1024^4$	<i>tebi</i> (Ті) теби
$10^{15} = 1000^5$	<i>peta</i> (Р) пета	$2^{50} = 1024^5$	<i>pebi</i> (Рі) пеби
$10^{18} = 1000^6$	<i>exa</i> (E) экса	$2^{60} = 1024^6$	<i>exbi</i> (Ei) эксби
$10^{21} = 1000^7$	zetta (Z) зетта	$2^{70} = 1024^7$	zebi (Zi) зеби
$10^{24} = 1000^8$	<i>yotta</i> (Y) йотта	$2^{80} = 1024^8$	yobi (Yi) йоби

Кодирование

Definition

Кодирование — процесс перехода от источника событий к источнику информации. Т.е. сопоставление событиям цепочек из кодовых символов.

Некоторые назначения кодирования:

- принципиальная возможность описания мира с помощью символов конечного алфавита;
- устранение избыточности, сжатие информации, экономия памяти и снижение нагрузки на каналы передачи информации;
- 🗿 обеспечение устойчивости к помехам;
- защита важных свойств информации (конфиденциальность, целостность, принадлежность и т.д.).

Формальное определение кодирования

Definition

Дано:

- Алфавит событий: $S = \{s_1, \dots, s_N\};$
- ullet Алфавит кодовых символов: $T = \{t_1, \dots, t_m\}$;

Требуется задать отображение $\delta: S \to T^+$ (таблицу кодов, схему кодирования):

$$\delta = \langle s_1 \mapsto \omega_1, \dots, s_N \mapsto \omega_N \rangle,$$

где $\omega_i = t_{i_1} \cdots t_{i_{k_i}}$, причем слово $\varsigma_j = s_{j_1} \cdots s_{j_t}$ будет кодироваться символами кодового алфавита как $\varsigma_j = \omega_{j_1} \cdots \omega_{j_t}$. Множество кодовых слов ω_i , соответствующих s_i называется множеством элементарных кодов:

$$\Omega = \{\omega_1, \ldots, \omega_N\}.$$

Примеры кодирования

Example (Неоднозначное декодирование. δ — не биекция)

$$S = \{A, B, C, D, E, F, G, H\}; T = \{0, 1\}; \delta = \langle A \rightarrow 0, B \rightarrow 1, C \rightarrow 10, D \rightarrow 11, E \rightarrow 100, F \rightarrow 101, G \rightarrow 110, H \rightarrow 111 \rangle.$$

- Кодирование однозначно: $ABAB \mapsto 0101$.
- Декодирование нет: 0101 разделяется на слова ABAB, AF и ACB.

Example (Однозначное декодирование. δ — биекция)

$$S = \{A, B, C, D, E, F, G, H\}; T = \{0, 1\}; \delta = \langle A \mapsto 000, B \mapsto 001, C \mapsto 010, D \mapsto 011, E \mapsto 100, F \mapsto 101, G \mapsto 110, H \mapsto 111 \rangle.$$

- Кодирование: $ABBA \mapsto 000111000111$.
- ullet Декодирование: $000111000111 \mapsto ABBA$.

Схемы кодирования

Definition

Схема кодирования δ является разделимой, если любое слово ς , составленное из элементарных кодов ω_i единственным образом разлагается на элементарные коды.

Разделимая схема допускает декодирование. Важным частным случаем разделимых схем являются префиксные схемы.

Definition

Схема называется префиксной, если ни один элементарный код ω_i из множества Ω не является префиксом другого кода из того же множества.

 $[^]a$ Префиксом слова ω называется слово ω_1 , если $\omega=\omega_1\omega_2$

«Равномерное» кодирование

Наиболее простым вариантом кодирования является равномерное кодирование, когда все элементарные коды равной длины. Для кодирования N событий требуется использовать цепочки длины

$$I(n) = \lceil \log_m(n) \rceil,$$

где m — количество кодовых символов; $\lceil X \rceil$ — наименьшее целое, большее или равное X.

Эта же оценка на основе постулатов Шеннона:

$$I(n) = \left[-\log_m\left(\frac{1}{n}\right)\right] = \lceil\log_m(n)\rceil.$$

Равномерное кодирование

Example

В соревновании учавствуют 33 спортсмена. Для регистрации пересечения финишной черты каждому спортсмену выдается радио-брелок. В момент пересечения финишной черты спортсменом, брелок передает двоичный код для идентификации спортсмена. Все брелки передают код одинаковой длины. Какое минимально необходиоме количество бит в общем случае должен передать брелок?

Равномерное кодирование

Example

В соревновании учавствуют 33 спортсмена. Для регистрации пересечения финишной черты каждому спортсмену выдается радио-брелок. В момент пересечения финишной черты спортсменом, брелок передает двоичный код для идентификации спортсмена. Все брелки передают код одинаковой длины. Какое минимально необходиоме количество бит в общем случае должен передать брелок?

Решение.

$$\lceil \log_2(33) \rceil = 6.$$

Сигнал

Definition

Сигнал — это изменение (во времени или пространстве) физической величины, несущее информацию, т.е. способ, позволяющий фиксировать символ в материально-энергетическом носителе

Выделяют два вида сигналов:

- аналоговые;
- цифровые.

Аналоговый сигнал

Цифровой сигнал

Цифровой сигнал (цифры 0 и 1 задаются "*высоким*" и "*низким*" значениями некоторой физической величины)

Информативность источника событий

Источнику событий после кодирования соответствует источник информации, выдающий коды событий. Оценку информативности источника событий дает величина, называемая энтропией источника событий:

$$E = -\sum_{i=1}^{N} p_i \cdot \log_m p_i, \tag{2}$$

где p_i — вероятность i-го события $s_i \in S$ на выходе источника событий, m — количество кодовых символов, N — количество событий N = |S|.

Информативность источника информации

Так как вероятности появления кодов событий останутся прежними, то энтропия источника информации E' будет равна

$$E' = \sum_{i=1}^{n} p_i \cdot I_i, \tag{3}$$

где I_i — длина кода ω_i для i-го события.

Задача оптимального кодирования

Аксиома

Энтропия источника информации всегда больше энтропии отражаемого источника событий.

Задача оптимального кодирования: максимально приблизить энтропию источника информации к энтропии источника событий.

Пусть имеется источник событий s_i , о вероятности появления которых на его выходе известно следующее:

Событие <i>s</i> ;	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1

Энтропия источника событий, формула (2), составляет:

$$E = -(0.5 \cdot \log_2 0.5 + 0.3 \cdot \log_2 0.3 + 0.1 \cdot log_2 0.1 + 0.1 \cdot log_2 0.1) \approx$$
 $pprox (0.5 + 0.521089678 + 0.332192809 + 0.332192809) pprox 1.685475297 бит.$

Для равномерного кодирования битами может быть получен такой вариант:

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i	00	01	10	11

Энтропия данного источника информации составит, по формуле (3):

$$E' = (0.5 \cdot 2 + 0.3 \cdot 2 + 0.1 \cdot 2 + 0.1 \cdot 2) = 2$$
 бита.

Событие <i>s</i> ;	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i	0	10	110	111

Так же как и предыдущая, эта схема префиксная и разделимая, но неравномерная. Энтропия источника информации теперь составляет

$$E' = (0.5 \cdot 1 + 0.3 \cdot 2 + 0.1 \cdot 3 + 0.1 \cdot 3) = 1.7$$
 бита.

Представленные источники эквивалентны. Если запустить источник информации на выдачу, например, 100 кодов событий, то первый вариант кодирования выдаст цепочку длины ≈ 200 , а второй — ≈ 170 бит.

Алгоритм Хаффмана для m=2

- 💶 События сортируются по убыванию вероятности.
- Два события с минимальными вероятностями объединяются в одно составное событие с суммарной вероятностью исходных. При этом одно из исходных событий помечается кодовым символом 0, а второе — символом 1. Исходные события исключаются из множества событий, вместо них остается одно составное.
- ① Шаги 1 и 2 последовательно повторяются до тех пор, пока все события не склеятся в единственное составное событие, вероятность которого равна 1. После этого кодовое слово ω_i для исходного события s_i есть цепочка из кодовых символов, которыми помечены все составные события от корня до s_i .

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

0.5 0.3 0.1 0.1

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i	0	10	110	111

Оптимальное кодирование по Хаффману (задача)

Событие <i>s_i</i>	Α	Б	В	Γ	Д
Вероятность p_i события s_i	0.5	0.125	0.125	0.125	0.125
Код события ω_i					

Оптимальное кодирование по Хаффману (задача)

Событие <i>s_i</i>	Α	Б	В	Γ	Д
Вероятность p_i события s_i	0.5	0.125	0.125	0.125	0.125
Код события ω_i	0	100	101	110	111

 $10001101110111 \rightarrow$

Оптимальное кодирование по Хаффману (задача)

Событие <i>s_i</i>	Α	Б	В	Γ	Д
Вероятность p_i события s_i	0.5	0.125	0.125	0.125	0.125
Код события ω_i	0	100	101	110	111

10001101110111 o БАГДАД

Алгоритм Фано для m=2

- 💶 Исходный массив событий, сортируется в порядке убывания вероятностей.
- Массив разбивается на две части, так, чтобы разница сумм вероятностей событий каждой части была минимальна. Первый кодовый символ элементарного кода ω_i находится так: для всех событий левой части разбитого массива кодовый символ будет 0, а для всех событий правой части -1.
- Второй и последующие кодовые символы определяется так: каждая часть разбитого исходного массива, в которой более одного события, становится исходным массивом, и её разбиение выполняется так же, как исходного массива (шаг 2).

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Si	pi
Α	0.5
Б	0.3
В	0.1
Г	0.1

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Si	pi	ω_i
Α	0.5	0
Б	0.3	1
В	0.1	1
Γ	0.1	1

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Si	pi	ω_i		
Α	0.5	0		
Б	0.3	1	0	
В	0.1	1	1	
Г	0.1	1	1	

Событие <i>s_i</i>	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i				

Si	pi	ω_i			
Α	0.5	0			
Б	0.3	1	0		
В	0.1	1	1	0	
Γ	0.1	1	1	1	

Событие <i>s</i> ;	Α	Б	В	Γ
Вероятность p_i события s_i	0.5	0.3	0.1	0.1
Код события ω_i	0	10	110	111

Si	pi	ω_i			
Α	0.5	0			
Б	0.3	1	0		
В	0.1	1	1	0	
Γ	0.1	1	1	1	

Энтропия Алгоритм Хаффмана для *m* = 2 **Алгоритм Фано для** *m* = 2

Si	Α	Б	В	Γ	Д	Е	Ж
pi	0.135	0.24	0.25	0.125	0.0635	0.124	0.0625
ω_i							

Si	А	Б	В	Γ	Д	Е	Ж
pi	0.135	0.24	0.25	0.125	0.0635	0.124	0.0625
ω_i							

Si	pi	ω_i				
В	0.25	0	0			
Б	0.24	0	1			
Α	0.135	1	0	0		
Γ	0.125	1	0	1		
E	0.124	1	1	0		
Д	0.0635	1	1	1	0	
Ж	0.0625	1	1	1	1	

Si	А	Б	В	Γ	Д	Е	Ж
pi	0.135	0.24	0.25	0.125	0.0635	0.124	0.0625
ω_i	100	01	00	101	1110	110	1111

Si	pi	ω_i				
В	0.25	0	0			
Б	0.24	0	1			
Α	0.135	1	0	0		
Γ	0.125	1	0	1		
E	0.124	1	1	0		
Д	0.0635	1	1	1	0	
Ж	0.0625	1	1	1	1	

Сжатие

Кодирование с целью сжатия (или просто сжатие) ставит себе в задачу уменьшить количество информации, не теряя (или оставаясь в допустимых рамках) при этом свойство адекватности отражаемому объекту. В случае сжатия, события s_i уже представляют собой слова в алфавите T (коды). При сжатии информация перекодируется в том же алфавите T.

Классы алгоритмов сжатия:

- сжатие с потерями (адекватности);
- сжатие без потерь.

Алгоритм Лемпела-Зива (LZ) Кодирование

- В словарь нулевым элементом помещается пустая цепочка ε . Пустое слово ε не содержит букв, и для любого слова ω справедливо $\omega = \varepsilon \omega = \omega \varepsilon$.
- ② От исходной цепочки t отделяется слово ωa , где ω максимально длинное слово из словаря, a расширяющая буква. Т.е. $t=\omega at'$.
- **③** В конец словаря добавляется новое слово ωa . К коду c добавляется пара $\langle i_{\omega}, a \rangle$, где i_{ω} индекс слова ω в словаре. От исходного текста отделяется слово ωa : t=t'.
- **1** Пункты 2-3 последовательно повторяются до тех пор, пока в тексте t остается хоть одна буква.

В результате получается код $c=\langle i_1,a_1\rangle\cdots\langle i_n,a_n\rangle.$

Алгоритм Лемпела-Зива Пример сжатия текста: «АБАКАНКАНКАНКИАНКИН»

i	t	ωa	$c=\langle i_\omega,a angle$
		0 ightarrow arepsilon	
1	ε А БАКАНКАНКАНКИАНКИН	1 o A	$\langle 0, A \rangle$
2	arepsilonБАКАНКАНКАНКИАНКИН	2 → Б	⟨0,Б⟩
3	АК АНКАНКИАНКИН	$3 \rightarrow AK$	$\langle 1, K \rangle$
4	АН КАНКИАНКИН	$4 \rightarrow AH$	$\langle 1, H \rangle$
5	arepsilonКАНКАНКИАНКИН	5 o K	⟨0,K⟩
6	АНК АНКИАНКИН	6 o AHK	⟨4,K⟩
7	АНКИ АНКИН	7 → AHKИ	⟨6,И⟩
8	АНКИН	8 → АНКИН	⟨7,H⟩

Дать оценку длин кода и текста

Алгоритм Лемпела-Зива _{Задание}

Сжать текст:

«тартарарамитамтамывтартарарах»

Алгоритм Лемпела-Зива _{Задание}

Сжать текст:

«тартарарамитамтамывтартарарах»

Код:

$$\begin{array}{c} \langle 0, \mathsf{T} \rangle, \langle 0, \mathsf{a} \rangle, \langle 0, \mathsf{p} \rangle, \langle 1, \mathsf{a} \rangle, \langle 3, \mathsf{a} \rangle, \langle 5, \mathsf{m} \rangle, \langle 0, \mathsf{u} \rangle, \\ \langle 4, \mathsf{m} \rangle, \langle 8, \mathsf{bi} \rangle, \langle 0, \mathsf{b} \rangle, \langle 4, \mathsf{p} \rangle, \langle 11, \mathsf{a} \rangle, \langle 5, \mathsf{x} \rangle \end{array}$$

Алгоритм Лемпела-Зива (LZ) Декодирование

- $oldsymbol{0}$ В словарь нулевым элементом помещается пустая цепочка arepsilon. Текст t не содержит букв: t=arepsilon.
- ② От исходного кода c отделяется пара $\langle i,a \rangle$, в словарь добавляется слово $\omega_i a$, где $\omega_i i$ -е слово из словаря. Восстанавливается текст $t = t \omega_i a$.
- **1** Пункт 2 последовательно повторяется до тех пор, пока в коде c остается хоть одна пара.

Алгоритм Лемпела-Зива Пример декодирования «0А,0Б,1К,1Н,0К,4К,6И,7Н»

i	$c=\langle i_\omega,a\rangle$	ω a	t
		0 ightarrow arepsilon	
1	⟨0,A⟩	1 o A	arepsilonA
2	⟨0,Б⟩	2 → Б	Aε Б
3	⟨1,K⟩	$3 \rightarrow AK$	АБ АК
4	$\langle 1, H \rangle$	$4 \rightarrow AH$	АБАК АН
5	⟨0,K⟩	5 o K	Α Б ΑΚΑΗ <i>ε</i> Κ
6	⟨4,K⟩	$6 \rightarrow AHK$	АБАКАНК АНК
7	⟨6,И⟩	7 → AHKИ	АБАКАНКАНК АНКИ
8	⟨7,H⟩	8 → АНКИН	АБАКАНКАНКАНКИ АНКИН

$$\overbrace{\varepsilon}^{0} \overbrace{\langle 0, A \rangle}^{1} \overbrace{\langle 0, B \rangle}^{2} \overbrace{\langle 1, K \rangle}^{3} \overbrace{\langle 1, H \rangle}^{4} \overbrace{\langle 0, K \rangle}^{5} \overbrace{\langle 4, K \rangle}^{6} \overbrace{\langle 6, M \rangle}^{7} \overbrace{\langle 7, H \rangle}^{8}$$

Алгоритм Лемпела-Зива _{Задание}

Восстановить текст из кода:

$$\langle 0, \mathsf{b} \rangle, \langle 0, \mathsf{o} \rangle, \langle 0, \mathsf{\tau} \rangle, \langle 1, \mathsf{a} \rangle, \langle 0, \mathsf{m} \rangle, \langle 4, \mathsf{p} \rangle, \langle 6, \mathsf{bi} \rangle, \langle 2, \mathsf{\tau} \rangle, \langle 6, \mathsf{bi} \rangle$$

Алгоритм Лемпела-Зива _{Задание}

Восстановить текст из кода:

$$\langle 0, \mathtt{b} \rangle, \langle 0, \mathtt{o} \rangle, \langle 0, \mathtt{\tau} \rangle, \langle 1, \mathtt{a} \rangle, \langle 0, \mathtt{m} \rangle, \langle 4, \mathtt{p} \rangle, \langle 6, \mathtt{b} \rangle, \langle 2, \mathtt{\tau} \rangle, \langle 6, \mathtt{b} \rangle$$

$$\overbrace{\varepsilon} \ \overbrace{\langle 0, \mathtt{B} \rangle} \ \overbrace{\langle 0, \mathtt{o} \rangle} \ \overbrace{\langle 0, \mathtt{r} \rangle} \ \overbrace{\langle 0, \mathtt{T} \rangle} \ \overbrace{\langle 1, \mathtt{a} \rangle} \ \overbrace{\langle 0, \mathtt{M} \rangle} \ \overbrace{\langle 4, \mathtt{p} \rangle} \ \overbrace{\langle 6, \mathtt{bi} \rangle} \ \overbrace{\langle 2, \mathtt{T} \rangle} \ \overbrace{\langle 6, \mathtt{bi} \rangle}$$

Текст:

«вотвамварварыотвары»

Свойства информации с точки зрения её защиты

- целостность:
- конфиденциальность:
- принадлежность:
- доступность:

Свойства информации с точки зрения её защиты

- целостность: контрольные суммы; корректирующие коды;
- конфиденциальность: шифрование; скрытая передача;
- принадлежность: цифровая подпись;
- доступность: надежность информационных систем.

Классификация ошибок

Ошибки, возникающие в цифровом (двоичном) канале могут быть следующими:

- замещения кодового символа;
- вставка кодового символа;
- выпадение кодового символа.

Далее рассматриваются только ошибки замещения. Существуют две стратегии защиты от ошибок замещения:

- с обнаружением и запросом на повторную передачу (ARQ Automatic Repeat Request);
- с обнаружением и непосредственным исправлением на стороне получателя (FEC Forward Error Correction).

ARQ

Примером стратегии ARQ может считаться контроль по четности (нечетности).

$$p_{ extsf{ iny HEYETH}} = d_{n-1} \oplus \ldots \oplus d_1 \oplus d_0,$$
 $p_{ extsf{ iny HEYETH}} = d_{n-1} \oplus \ldots \oplus d_1 \oplus d_0 \oplus 1.$

FEC

Можно кодировать каждый бит исходной последовательности по схеме

$$\delta = \{0 \mapsto 000, 1 \mapsto 111\},\$$

а декодировать по схеме

$$\delta' = \{000 \mapsto 0,001 \mapsto 0,010 \mapsto 0,100 \mapsto 0, \\ 111 \mapsto 1,110 \mapsto 1,101 \mapsto 1,011 \mapsto 1\},$$

Example

Пусть передается слово 101. Кодируется: 111000111. Поступает в канал. Возникает одиночная ошибка: $11\boxed{0}$ 000111. Декодируется: 101. При этом декодер обнаруживает и исправляет одиночную ошибку.

FEC

Пример кодирования «утроением»

Схема канала передачи данных

FEC — Ошибка обнаружена и верно исправлена

FEC — ошибка обнаружена, но исправлена неверно

FEC — необнаружимая ошибка

FEC: Код Хемминга

- Код Хемминга формирует номер ошибочного разряда.
- Признаком отсутствия ошибок является нулевой номер.
- Поэтому вводится «фиктивный» нулевой разряд.
- Если исходное слово имеет длину n бит, тогда к нему нужно добавить m дополнительных бит, исходя из неравенства

$$2^m \ge n + m + 1,\tag{4}$$

где левая часть неравенства — количество m-разрядных двоичных чисел, правая — общая длина кода с учетом «фиктивного» разряда. Выбирается минимальное m из возможных.

Кодирование и декодирование по Хеммингу

Алгоритм кодирования

- В двоичном числе длиной m+n бит (без фиктивного разряда) контрольные m бит размещаются в разрядах с номерами, равными степени двойки $(2^i, 0 \le i < m)$. А n бит исходного слова размещаются в оставшихся разрядах. Контрольный биты при этом инициализируются нулевыми значениями.

При декодировании контрольные разряды пересчитываются в соответствии с пунктом 2 алгоритма кодирования. В результате в контрольных разрядах будет получено двоичное представление номера разряда ошибочного бита.

Построить код Хемминга для слова u=0011

n=4. Исходя из формулы (4) выбирается m=3.

Код Хемминга

Обнаружение и исправление одиночных ошибок

$$V = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & r_1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & r_2 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & r_4 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 &$$

Код Хемминга Задание

Получена последовательность бит r. Перед передачей из исходного 4-х битного слова был получен код Хемминга. Выяснить, были ли ошибки в процессе передачи. Если были, то выполнить коррекцию, предполагая, что ошибка одиночная. Выделить исходное 4-х битное слово.

Код Хемминга _{Задание}

Получена последовательность бит r. Перед передачей из исходного 4-х битного слова был получен код Хемминга. Выяснить, были ли ошибки в процессе передачи. Если были, то выполнить коррекцию, предполагая, что ошибка одиночная. Выделить исходное 4-х битное слово.

Базовая схема передачи информации

Можно выделить следующие виды каналов связи:

- Секретный гарантирует конфиденциальность, целостность и принадлежность М;
- Аутентичный гарантирует только целостность и принадлежность М;
- Открытый не гарантирует ничего в отношении М.

Схемы шифрования Симметричная схема

Схемы шифрования Ассиметричная схема

Цифровая подпись

В заключение

Изложение математических основ кодирования можно найти, например, в [1, 2]. По основам теории информации можно рекомендовать книгу [3]. Основы кодирования подробно изложены в [4]. Заинтересовавшимся алгоритмами сжатия можно рекомендовать книгу [5].

Как введение по вопросам безопасности информации можно рекомендовать [6]. Обзор задач и протоколов информационной безопасности прекрасно описан в [7]. Математические основы шифрования для сильно интересующихся можно найти в [7, 8, 9].

Библиография I

Ф.А.Новиков. Дискретная математика для программистов / Ф.А.Новиков. — СП6 : Питем 2000

СПб.: Питер, 2000. —

304 с.

С.В.Яблонский. Введение в дискретную математику: учебное пособие для вузов / С.В.Яблонский; Под ред.

В.А.Садовничего. —

М.: Высшая школа, 2001. —

384 с.

Библиография II

B.B. Панин. Основы теории информации: учебное пособие для вузов / B.B. Панин. — 3 изд. —

М.: БИНОМ, 2009. — 438 с.

М.Вернер. Основы кодирования: учебник для ВУЗов / М.Вернер. —

М.: Техносфера, 2004. —

288 с.

368 c.

Библиография III

```
Э.Танненбаум. Современные операционные системы / Э.Танненбаум. — 3 изд. —
```

СПб.: Питер, 2010. — 1120 с.

 $\it E.Ш$ найер. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си / $\it E.Ш$ найер. — М.: Триумф, 2002. — 816 с.

H.Смарт. Криптография / Н.Смарт. — М.: Техносфера, 2006. —

M.: Техносфера, 2006.—

528 c.

Библиография IV

В.Мао. Современная криптография: теория и практика /

B.Mao. —

М.: Издательский дом «Вильямс», 2005.— 786 с.