Natural Language Processing with Disaster Tweets

MGMT 59000 Machine learning Final Project

Present by Hsueh-Ning Chao, Shih-Yu Wang

Data Overview

Average Text Length: 14.9 vocabularies

Missing Values:

• ID: 0

Keyword: 61 [object]

Location: 2534 [object]

text: 0 [object]

target: 0 [int]

Goal

Predicts which Tweets are about **real disasters** and which one's aren't.

On plus side LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE

12:43 AM · Aug 6, 2015 · Twitter for Android

Text Processing Methods

- BoW: Ignores word meaning, order, and context
- TF-IDF: Still ignores word order and meaning
- Word Embeddings(Word2Vec): Captures semantic meaning, relationships between words
- Tokenization & Embedding: Vocabulary-dependent

Data Engineering

Using Multiple inputs did not significantly improve the performance:

- text + location + keywords: Accuracy 0.699
- text + keywords: Accuracy 0.57
- ONLY TEXT: 0.79!
- >> Text itself is enough for prediction, other informations provide noises

Model Comparison

Model	Features	Advantages	Acc
LSTM	 Help capture long-term dependencies 	Suitable for time series dataReduces vanishing gradient issue.	0.767
BiLSTM	 Process data both forward and backward directions 	 Captures richer contextual information 	0.793
DistilBERT	 Use knowledge distillation Reduce BERT's weights by 40% 	Faster training and inferenceLightweight for limited resources	0.831
RoBERTa	 Use dynamic mask Removes Next Sentence Prediction (NSP) Train with more batch 	 More powerful state-of-the-art performance in many NLP tasks 	0.841

Confusion Matrix

Lesson Learned

Tokenizer + Embedding performs better than other text transformation methods

Transformer Models outperform Traditional RNNs

Thanks