Jezični model temeljen na neuronskoj mreži

Florijan Stamenković Mentor: Marko Čupić

Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu

July 13, 2015

Smislene rečenice Petar ide u dućan. Danas je lijep dan.

Smislene rečenice

Petar ide u dućan. Danas je lijep dan.

Besmislene rečenice

Gavran tanges jučer zelen dva.

Smislene rečenice

Petar ide u dućan. Danas je lijep dan.

Besmislene rečenice

Gavran tanges jučer zelen dva.

Matematička (probabilistička) definicija

$$P(polje|Petar, ide, u) > P(vilica|Petar, ide, u)$$

 $P(w_i|w_0, w_1, ..., w_{i-1})$

Smislene rečenice

Petar ide u dućan. Danas je lijep dan.

Besmislene rečenice

Gavran tanges jučer zelen dva.

Matematička (probabilistička) definicija

$$P(polje|Petar, ide, u) > P(vilica|Petar, ide, u)$$

 $P(w_i|w_0, w_1, ..., w_{i-1})$

Aproksimacija korištenjem (n-1) prethodnih riječi

$$P(w_i|w_{i-n+1},...,w_{i-1})\approx P(w_i|w_0,w_1,...,w_{i-1})$$

Primjene

Automatsko prevođenje

- Automatsko prevođenje
- Prepoznavanje govora

- Automatsko prevođenje
- Prepoznavanje govora
- Ispravka pogreški u pisanju

- Automatsko prevođenje
- Prepoznavanje govora
- Ispravka pogreški u pisanju
- Klasifikacija teksta

- Automatsko prevođenje
- Prepoznavanje govora
- Ispravka pogreški u pisanju
- Klasifikacija teksta
- **...**

Prebrojavanje *n*-grama

Primjerice trigrama

- Primjer: Škola je uskoro gotova.
- Trigrami: (škola je), (je uskoro), (uskoro gotova)
- $P(w_i|w_{i-2},w_{i-1}) \propto C(w_{i-2},w_{i-1},w_i)$

- Jednostavan pristup
- Brz za implementaciju, treniranje i primjenu
- Rijetkost pojavljivanja onemogućava korištenje velikih n
- Potrebno dobro (Kneser-Ney) zaglađivanje da bi radilo

Neuronska mreža

Definicija

- Unaprijedna mreža bez skrivenih slojeva
- Po jedan izlazni neuron za svaku riječ vokabulara
- Običan klasifikator, riječ je klasa
- ▶ Riječi predočavane *d*-dimenzionalnim vektorima

- Veliki parametarski prostor (veličina vokabulara)
- Sporo treniranje, osrednji rezultati

Log-bilinearni model

Definicija

- Riječi predočene d-dimenzionalnim vektorima
- ▶ Prethodnih (n-1) riječ daju (n-1)d vektor
- Dobiveni vektor se množi matricom W, izlaz je d-dimenzionalni vektor
- Sličnost izlaznog vektora definira vjerojatnost riječi

- Najbolji rezultati, riječ-vektori su nusprodukt
- Jednostavna formulacija
- Rezultati samo malo bolji od Kneser-Ney, puno sporije treniranje

Ograničeni Boltzmannov stroj

Definicija

- ▶ Riječi predočene *d*-dimenzionalnim vektorima
- Jedan skriveni sloj stohastičkih binarnih neurona
- Energija mreže definira uvjetnu vjerojatnost

- Kompleksno i sporo treniranje stohastičkih neurona
- Osrednji rezultati

Rezultati

Evaluacija mjerom perplexity

- $ightharpoonup \exp\left(\frac{1}{N}\ln P(w|...)\right)$
- Manje je bolje
- Jako ovisi o vokabularu, korpusu; samo za relativnu usporedbu

	Parametar <i>n</i>			
Model	3	4	5	
Additivno	305	1182	2680	
Kneser-Ney	72	121	204	
Neuronska mreža	117	114	113	
Log-biliner	102	98	98	

Rezultati

Trajanje treniranja

► CPU: Intel i7, 3.5GHz, 4-core, 8-thread

► GPU: Nvidia GTX 960M, 4GB, 640-cores

Table: Trajanje treniranja modela, izraženo u SAT:MINUTE obliku.

	Parametar <i>n</i>		
Model	3	4	5
Prebrojavanje <i>n</i> -grama CPU	0:01	0:01	0.01
Neuronska mreža, GPU	1:47	2:15	2:17
Neuronska mreža, CPU	13:38	13:52	14.20
Log-bilinear GPU	0:49	0:48	0:46
Log-bilinear CPU	8:07	8:01	6:56

Demo