

# [C2-001] 기초수학

Lecture 03: Linear Transformation II

Hak Gu Kim

hakgukim@cau.ac.kr

Immersive Reality & Intelligent Systems Lab (IRIS LAB)

Graduate School of Advanced Imaging Science, Multimedia & Film (GSAIM)

Chung-Ang University (CAU)



### **Recap:** Linear System

Solving Linear Systems using Reduced Row Echelon Form (RREF)

$$\bullet \begin{bmatrix} \mathbf{1} & 2 & 1 & 1 & | & 7 \\ 0 & 0 & \mathbf{1} & -2 & | & 5 \\ 0 & 0 & -2 & 4 & | -10 \end{bmatrix} \to \begin{bmatrix} \mathbf{1} & 2 & 1 & 1 & | & 7 \\ 0 & 0 & \mathbf{1} & -2 & | & 5 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \to \begin{bmatrix} \mathbf{1} & 2 & 0 & 3 & | & 2 \\ 0 & 0 & \mathbf{1} & -2 & | & 5 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} : rref(\mathbf{A})$$

• 
$$x_1 = 2 - 2x_2 - 3x_4$$
  $\rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 1 \end{bmatrix}$ 

- Null Space
- The null space is the set all vectors in V that map to 0
- $-N = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0}\}$ : Null space of  $\mathbf{A}$ ,  $N(\mathbf{A})$

- Ax = 0: Homogeneous eq.,  $N = \{x \in \mathbb{R}^n \mid Ax = 0\}$  is the subspace of A?
  - A0 = 0
  - $\mathbf{v}_1$ ,  $\mathbf{v}_2 \in N$ ,  $A\mathbf{v}_1 = \mathbf{0}$ ,  $A\mathbf{v}_2 = \mathbf{0} \rightarrow A(\mathbf{v}_1 + \mathbf{v}_2) = A\mathbf{v}_1 + A\mathbf{v}_2 = \mathbf{0}$
  - $\mathbf{v}_1 \in N$ ,  $c \in \mathbb{R}$ ,  $\mathbf{A}(c\mathbf{v}_1) = c\mathbf{A}\mathbf{v}_1 = \mathbf{0}$

**Example of Null Space** 

• 
$$\mathbf{A}\mathbf{x} = \mathbf{0} \to \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} : N(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^4 \mid \mathbf{A}\mathbf{x} = \mathbf{0}\}$$

$$x_1 + x_2 + x_3 + x_4 = 0 + x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 \\ 4x_1 + 3x_2 + 2x_3 + x_4 = 0 & 4 & 3 & 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 & 0 \end{bmatrix}$$

Example of Null Space

• 
$$\begin{bmatrix} 1 & 0 & -1 & -2 & | & 0 \\ 0 & 1 & 2 & 3 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
:  $rref(A)$ 

• 
$$x_1 - x_3 - 2x_4 = 0$$
  $\rightarrow x_1 = x_3 + 2x_4$   $\rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$ 

• 
$$N(\mathbf{A}) = Span \begin{pmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = N(rref(\mathbf{A}))$$

Relation between Null Space and Column Vector of Matrix A

$$\bullet \mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

• 
$$\mathbf{A}\mathbf{x} = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n = \mathbf{0}$$

•  $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  is linearly independent  $\Leftrightarrow x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n = \mathbf{0}$  for  $x_i$ , only solution is  $x_i = 0$  for  $1 \le i \le n$  $\Leftrightarrow N(\mathbf{A}) = \{\mathbf{0}\} \leftarrow x_1, x_2, \cdots, x_n = 0$ 

• The column space is the vector space spanned by the matrix's column vectors

$$-\mathbf{A} = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n], \ \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbb{R}^m \rightarrow C(\mathbf{A}) = Span(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$$

$$- \{ \mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n \} = \{ x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n \mid x_1, x_2, \dots, x_n \in \mathbb{R} \} = Span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = C(\mathbf{A})$$

- $-\mathbf{A}\mathbf{x} = \mathbf{b}_1$ , if  $\mathbf{b}_1 \notin C(\mathbf{A}) \implies \mathbf{A}\mathbf{x} = \mathbf{b}_1$  has no solution
- $-\mathbf{A}\mathbf{x} = \mathbf{b}_2$ , if  $\mathbf{b}_2 \in C(\mathbf{A}) \implies \mathbf{A}\mathbf{x} = \mathbf{b}_2$  has at least one solution

Basis for Column Space & Null Space

• 
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \end{bmatrix} \rightarrow C(\mathbf{A}) = Span \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \end{pmatrix}$$

- These vectors are basis of  $C(\mathbf{A})$ ?
- If these vectors are *linearly independent*, they would be the basis of  $C(\mathbf{A})$
- Linearly independent  $\Leftrightarrow N(\mathbf{A}) = \{\mathbf{0}\} \Leftrightarrow N(rref(\mathbf{A})) = \{\mathbf{0}\}\$

Basis for Column Space & Null Space

$$\bullet \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 2 & 1 & 4 & 3 & | & 0 \\ 3 & 4 & 1 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{1} & 1 & 1 & 1 & 1 & | & 0 \\ 0 & 1 & -2 & -1 & | & 0 \\ 0 & 1 & -2 & -1 & | & 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} \mathbf{1} & 1 & 1 & 1 & | & 0 \\ 0 & 1 & -2 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{1} & 0 & 3 & 2 & | & 0 \\ 0 & \mathbf{1} & -2 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} : rref(\mathbf{A})$$

• 
$$x_1 = -3x_3 - 2x_4$$
  
•  $x_2 = +2x_3 + x_4$   $\rightarrow N(\mathbf{A}) = N(rref(\mathbf{A})) = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -3 \\ 2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ 

Find the Basis for Column Space

• 
$$\mathbf{A}\mathbf{x} = x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \mathbf{0}$$

• 
$$N(\mathbf{A}) = \begin{cases} x_1 = -3x_3 - 2x_4 \\ x_2 = +2x_3 + x_4 \end{cases}$$

• If 
$$x_3 = 0$$
,  $x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} = -x_4 \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \rightarrow x_4 = -1$ : 
$$\begin{cases} x_1 = -3 \cdot 0 - 2 \cdot (-1) = 2 \\ x_2 = +2 \cdot 0 + 1 \cdot (-1) = -1 \end{cases}$$

• 
$$2\begin{bmatrix}1\\2\\3\end{bmatrix} + (-1)\begin{bmatrix}1\\1\\4\end{bmatrix} = \begin{bmatrix}1\\3\\2\end{bmatrix}$$
: Linearly dependent

Find the Basis for Column Space

• If 
$$x_4 = 0$$
,  $x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} = -x_3 \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} \rightarrow x_3 = -1: \begin{cases} x_1 = -3 \cdot (-1) - 2 \cdot 0 = 3 \\ x_2 = +2 \cdot (-1) + 1 \cdot 0 = -2 \end{cases}$ 

• 
$$3\begin{bmatrix}1\\2\\3\end{bmatrix} + (-2)\begin{bmatrix}1\\1\\4\end{bmatrix} = \begin{bmatrix}1\\4\\1\end{bmatrix}$$
: Linearly dependent

• 
$$C(\mathbf{A}) = Span\left(\begin{bmatrix}1\\2\\3\end{bmatrix}, \begin{bmatrix}1\\1\\4\end{bmatrix}\right)$$
: Linearly independent  $\Rightarrow \left\{\begin{bmatrix}1\\2\\3\end{bmatrix}, \begin{bmatrix}1\\1\\4\end{bmatrix}\right\}$ : a basis for  $C(\mathbf{A})$ 

### Dimension of **Null Space**

- Nullity
- The dimension of null space (= The number of free variables in ref(A))

• 
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & 3 & 2 \\ 1 & 1 & 3 & 1 & 4 \end{bmatrix}$$
,  $N(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^5 \mid \mathbf{A}\mathbf{x} = \mathbf{0} \} = N(rref(\mathbf{A}))$ 

$$\rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 & 2 & | & 0 \\ 1 & 1 & 3 & 1 & 4 & | & 0 \end{bmatrix}$$

### Dimension of Null Space

- Nullity
- The dimension of null space (= The number of free variables in ref(A))
- Dimension of a subspace: The number of vectors in a basis for the subspace.
- $-dim(\mathbf{A}) = nullity(\mathbf{A}) = 3$

• 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 7 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}, N(\mathbf{A}) = N(rref(\mathbf{A})) = Span \begin{pmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$

### Dimension of Column Space

- Rank
- The dimension of the vector space generated (or spanned) by its columns

• 
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 & 0 & 4 \\ 2 & 1 & 0 & 0 & 9 \\ -1 & 2 & 5 & 1 & -5 \\ 1 & -1 & -3 & -2 & 9 \end{bmatrix}$$
  $\rightarrow C(\mathbf{A}) = Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5)$ : Basis for  $C(\mathbf{A})$ ?

## **Topics**

• Linear Transformation II

#### **Function**

- A function f is a relation where every value in the first set X (domain)
  maps to one and only one value in the second set Y (Codomain)
- Range: A subset of codomain that the function actually maps to
- $-f:X\to Y$



#### **Function**

#### Example of Function

- $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^2 \iff f: x \mapsto x^2$
- $g: \mathbb{R}^2 \to \mathbb{R}$ ,  $g(x_1, x_2) = 2 \iff g: x_1, x_2 \mapsto 2$



$$f(x) = x^2$$



$$g(x_1, x_2) = 2$$

#### **Transformation**

A transformation is known as a function whose domain is an n-dimensional space  $(\mathbb{R}^n)$  and whose range is an m -dimensional space  $(\mathbb{R}^m)$  (i.e., function operation of vectors)

$$-\mathbb{R}^{n} = \{n - tuple, \mathbf{x} = (x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R}\}, \mathbf{x} \in \mathbb{R}^{n}$$



#### **Transformation**

Example of Transformation

• 
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
,  $f(x_1, x_2, x_3) = (x_1 + 2x_2, 3x_3) \to f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + x_2 \\ 3x_3 \end{bmatrix}$ 

• 
$$f\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\3\end{bmatrix}$$
,  $f\left(\begin{bmatrix}2\\3\\1\end{bmatrix}\right) = \begin{bmatrix}7\\3\end{bmatrix}$ 



[C2-001] 기초수학

#### **Linear Transformation**

A linear transformation  $\mathcal{T}$  is mapping between two vector spaces  $X\subseteq$  $\mathbb{R}^n$  and  $Y \subseteq \mathbb{R}^m$ , where for all vectors in  $\mathbb{R}^n$  and for all scalars c:

① 
$$\mathcal{T}(\mathbf{a} + \mathbf{b}) = \mathcal{T}(\mathbf{a}) + \mathcal{T}(\mathbf{b})$$

② 
$$T(ca) = cT(a)$$

Hak Gu Kim

**Linear Transformation OR Not?** 

• 
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
,  $f(x_1, x_2, x_3) = (x_1 + 2x_2, 3x_3) \to f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + x_2 \\ 3x_3 \end{bmatrix}$ 

Lecture 03 -Linear Transformation II

#### **Linear Transformation**

Example of Linear Transformation

• 
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
,  $\mathcal{T}(x_1, x_2) = (x_1 + x_2, 2x_1) \to \mathcal{T}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \end{bmatrix}$ ,  $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ ,  $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ 

$$\mathfrak{I}(\mathbf{a} + \mathbf{b}) = \mathcal{I}\left(\begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \end{bmatrix}\right) = \begin{bmatrix} a_1 + a_2 + b_1 + b_2 \\ 2a_1 + 2b_1 \end{bmatrix} 
\mathcal{I}(\mathbf{a}) = \mathcal{I}\left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}\right) = \begin{bmatrix} a_1 + a_2 \\ 2a_1 \end{bmatrix}, \quad \mathcal{I}(\mathbf{b}) = \mathcal{I}\left(\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}\right) = \begin{bmatrix} b_1 + b_2 \\ 2b_1 \end{bmatrix} 
\rightarrow \mathcal{I}(\mathbf{a}) + \mathcal{I}(\mathbf{b}) = \begin{bmatrix} a_1 + a_2 + b_1 + b_2 \\ 2a_1 + 2b_1 \end{bmatrix}$$

② 
$$c\mathbf{a} = \begin{bmatrix} ca_1 \\ ca_2 \end{bmatrix} \longrightarrow \mathcal{T}(c\mathbf{a}) = \mathcal{T}(\begin{bmatrix} ca_1 \\ ca_2 \end{bmatrix}) = \begin{bmatrix} ca_1 + ca_2 \\ 2ca_1 \end{bmatrix} = c\begin{bmatrix} a_1 + a_2 \\ 2a_1 \end{bmatrix} = c\mathcal{T}(\mathbf{a})$$

#### **Linear Transformation and Basis Vectors**

Matrix-Vector Products As Linear Transformation

$$-\mathbf{A}_{m\times n}=[\mathbf{v}_1\ \mathbf{v}_2\ \cdots\ \mathbf{v}_n],\ \mathcal{T}:\mathbb{R}^n\to\mathbb{R}^m,\ \mathcal{T}(\mathbf{x})=\mathbf{A}\mathbf{x}$$

$$-\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n \in \mathbb{R}^m$$

Example of Matrix-Vector Products As Linear Transformation

• 
$$\mathbf{B} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
,  $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$ ,  $\mathcal{T}(\mathbf{x}) = \mathbf{B}\mathbf{x}$ 

• 
$$\mathcal{T}(\mathbf{x}) = \mathbf{B}\mathbf{x} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 - x_2 \\ 3x_1 + 4x_2 \end{bmatrix}$$

• 
$$T(x_1, x_2) = (2x_1 - x_2, 3x_1 + 4x_2,)$$



#### **Linear Transformation and Basis Vectors**

- Linear Transformation As Matrix-Vector Products
- Standard basis for  $\mathbb{R}^n$ : ①  $Span(\cdot) = \mathbb{R}^n$ , ② Linearly independent

$$\mathbf{I}_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = [\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_n] \longrightarrow \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \cdots + x_n \mathbf{e}_n$$

Representation of Linear Transformation with standard basis

• 
$$\mathcal{T}(\mathbf{x}) = \mathcal{T}(x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n) = \mathcal{T}(x_1 \mathbf{e}_1) + \mathcal{T}(x_2 \mathbf{e}_2) + \dots + \mathcal{T}(x_n \mathbf{e}_n)$$
  
=  $x_1 \mathcal{T}(\mathbf{e}_1) + x_2 \mathcal{T}(x_2 \mathbf{e}_2) + \dots + x_n \mathcal{T}(\mathbf{e}_n)$ 

• 
$$\mathcal{T}(\mathbf{x}) = [\mathcal{T}(\mathbf{e}_1) \, \mathcal{T}(\mathbf{e}_2) \, \cdots \, \mathcal{T}(\mathbf{e}_n)] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

#### **Linear Transformation and Basis Vectors**

Example of Linear Transformation As Matrix-Vector Products

• 
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^3$$
,  $\mathcal{T}(x_1, x_2) = (x_1 + 3x_2, 5x_2 - 4x_1, 4x_1 + x_2) \to \mathcal{T}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_2 \\ 5x_2 - 4x_1 \\ 4x_1 + x_2 \end{bmatrix}$ 

• 
$$\mathbf{I}_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{cases} \mathcal{T}(\mathbf{e}_{1}) = \mathcal{T}(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} \\ \mathcal{T}(\mathbf{e}_{2}) = \mathcal{T}(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ -1 & 5 \\ 4 & 1 \end{bmatrix}$$

• 
$$:: \mathcal{T}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 \\ -1 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

### **Image of Transformation**

- Image of a Subset Under Transformation
  - $S = \{L_0, L_1, L_2\}$

• 
$$\mathbf{x}_0 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
,  $\mathbf{x}_1 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ 

• 
$$L_0 = \{\mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0) \mid 0 \le t \le 1\}$$

• 
$$L_1 = \{ \mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1) \mid 0 \le t \le 1 \}$$

• 
$$L_2 = \{\mathbf{x}_2 + t(\mathbf{x}_0 - \mathbf{x}_2) \mid 0 \le t \le 1\}$$





• 
$$\mathcal{T}(\mathbf{x}) = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• 
$$\mathcal{T}(L_0) = \{\mathcal{T}(\mathbf{x}_0) + t(\mathcal{T}(\mathbf{x}_1) - \mathcal{T}(\mathbf{x}_0)) | 0 \le t \le 1\}$$

• 
$$T(L_1) = \{T(\mathbf{x}_1) + t(T(\mathbf{x}_2) - T(\mathbf{x}_1)) | 0 \le t \le 1\}$$

• 
$$T(L_2) = \{T(\mathbf{x}_2) + t(T(\mathbf{x}_0) - T(\mathbf{x}_2)) | 0 \le t \le 1\}$$

### **Image of Transformation**

- Image of a Subset Under Transformation
  - $S = \{L_0, L_1, L_2\}$

• 
$$\mathbf{x}_0 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
,  $\mathbf{x}_1 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ 

• 
$$L_0 = \{\mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0) \mid 0 \le t \le 1\}$$

• 
$$L_1 = \{\mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1) \mid 0 \le t \le 1\}$$

• 
$$L_2 = \{ \mathbf{x}_2 + t(\mathbf{x}_0 - \mathbf{x}_2) \mid 0 \le t \le 1 \}$$





• 
$$\mathcal{T}(\mathbf{x}) = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• 
$$\mathcal{T}(\mathbf{x}_0) = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$
,  $\mathcal{T}(\mathbf{x}_1) = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$ ,  $\mathcal{T}(\mathbf{x}_2) = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ 

• 
$$\mathcal{T}(L_0) = \{\mathcal{T}(\mathbf{x}_0) + t(\mathcal{T}(\mathbf{x}_1) - \mathcal{T}(\mathbf{x}_0)) | 0 \le t \le 1\}$$

• 
$$T(L_1) = \{T(\mathbf{x}_1) + t(T(\mathbf{x}_2) - T(\mathbf{x}_1)) | 0 \le t \le 1\}$$

• 
$$\mathcal{T}(L_2) = \{\mathcal{T}(\mathbf{x}_2) + t(\mathcal{T}(\mathbf{x}_0) - \mathcal{T}(\mathbf{x}_2)) | 0 \le t \le 1\}$$

### **Image of Transformation**

- Image of a Subset Under Transformation
  - V: Subspace in :  $\mathbb{R}^n$
  - $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^m$ ,  $\mathcal{T}(V)$ : Image of V under  $\mathcal{T}$  & Subspace

• 
$$\mathcal{T}(\mathbf{a}), \mathcal{T}(\mathbf{b}) \in \mathcal{T}(V), \begin{cases} \mathcal{T}(\mathbf{a}) + \mathcal{T}(\mathbf{b}) = \mathcal{T}(\mathbf{a} + \mathbf{b}) \in \mathcal{T}(V) \\ c\mathcal{T}(\mathbf{a}) \in \mathcal{T}(V) \\ \mathbf{0} \in \mathcal{T}(V) \end{cases}$$



- $\mathcal{T}(\mathbb{R}^n)$ : Image of  $\mathbb{R}^n$  under  $\mathcal{T} = \{\mathcal{T}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n\}$ ,  $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^m$ 
  - Range of  $\mathcal{T} = \text{Image of } \mathbb{R}^n$  under  $\mathcal{T}$
- $\mathcal{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ : Image of  $\mathbb{R}^n$  under  $\mathcal{T}$ :  $\mathcal{T}(\mathbb{R}^n)$ = Image of  $\mathcal{T} = \operatorname{Im}(\mathcal{T}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \mathcal{C}(\mathbf{A}) = \operatorname{Span}(\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$

### **Preimage and Kernel**

- Preimage of a Set Under Transformation
  - Image of subset A of domain under  $\mathcal{T}$  is the set of all output values
  - Preimage (inverse image) of subset B of codomain under  $\mathcal{T}$  is the set of all elements of the domain that map to the members of B
  - $A \subseteq X$ : Subset of X

Hak Gu Kim

•  $\mathcal{T}(A) \subseteq Y$ : Image of A under  $\mathcal{T}$ 

$$= \{ \mathcal{T}(\mathbf{x}) \in Y \mid \mathbf{x} \in A \}$$



- $S \subseteq Y$ : Subset of Y
- $\mathcal{T}^{-1}(S)$ : Preimage of S under  $\mathcal{T}$

$$= \{ \mathbf{x} \in X \mid \mathcal{T}(\mathbf{x}) \in S \}$$



### **Preimage and Kernel**

- Kernel of Transformation
  - Kernel is the preimage (inverse image) of 0
  - Kernel of a matrix is the null space of the matrix

• 
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
,  $\mathcal{T}(\mathbf{x}) = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{A}\mathbf{x}$ 



• 
$$S = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} \to \mathcal{T}^{-1}(S) = \left\{ \mathbf{x} \in \mathbb{R}^2 \mid \mathbf{A}\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ OR } \mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$

$$\bullet \begin{bmatrix} 1 & 3 & | & 0 \\ 2 & 0 & | & 0 \end{bmatrix} \to \begin{bmatrix} \mathbf{1} & 3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \to x_1 + 3x_2 = 0 \to \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = t \begin{bmatrix} -3 \\ 1 \end{bmatrix}, t \in \mathbb{R} \cdots \mathbf{C}$$

$$\bullet \begin{bmatrix} 1 & 3 & | & 1 \\ 2 & 0 & | & 2 \end{bmatrix} \to \begin{bmatrix} \mathbf{1} & 3 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix} \to x_1 + 3x_2 = 1 \to \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 1 \end{bmatrix}, t \in \mathbb{R} \cdots D$$

• 
$$\mathcal{T}(D) = \{\mathbf{0}\}$$
: Kernel of  $\mathcal{T}$ ,  $Ker(\mathcal{T}) = \{\mathbf{x} \in \mathbb{R}^2 \mid \mathcal{T}(\mathbf{x}) = \{\mathbf{0}\}\} = N(\mathbf{A})$ 

### **Preimage and Kernel**

- **Kernel of Transformation** 
  - Kernel is the preimage (inverse image) of 0
  - Kernel of a matrix is the null space of the matrix

• 
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
,  $\mathcal{T}(\mathbf{x}) = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{A}\mathbf{x}$ 





$$\bullet \begin{bmatrix} 1 & 3 & | & 1 \\ 2 & 0 & | & 2 \end{bmatrix} \to \begin{bmatrix} \mathbf{1} & 3 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix} \to x_1 + 3x_2 = 1 \to \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 1 \end{bmatrix}, t \in \mathbb{R} \cdots D$$

•  $\mathcal{T}(D) = \{\mathbf{0}\}$ : Kernel of  $\mathcal{T}$ ,  $Ker(\mathcal{T}) = \{\mathbf{x} \in \mathbb{R}^2 \mid \mathcal{T}(\mathbf{x}) = \{\mathbf{0}\}\} = N(\mathbf{A})$ 



### Linear Transformation: Scaling and Reflection

Scaling & Reflection

• 
$$\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^m$$
,  $\mathcal{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} = [\mathcal{T}(\mathbf{e}_1) \, \mathcal{T}(\mathbf{e}_2) \, \cdots \, \mathcal{T}(\mathbf{e}_n)]$ 

Reflect around y-axis & Stretch  $\times$  2 in y direction

• 
$$\mathcal{T}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ 2y \end{bmatrix} \to \mathbf{A} = \begin{bmatrix} \mathcal{T}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) \quad \mathcal{T}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \to \mathcal{T}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• 
$$S = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$





## Linear Transformation: Rotation in $\mathbb{R}^2$

•  $Rot_{\theta}(\mathbf{x})$ : Counter clockwise  $\theta$  degree rotation of  $\mathbf{x}$ 

1 
$$Rot_{\theta}(\mathbf{x} + \mathbf{y}) = Rot_{\theta}(\mathbf{x}) + Rot_{\theta}(\mathbf{y})$$





## Linear Transformation: Rotation in $\mathbb{R}^2$

• 
$$Rot_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$$
,  $Rot_{\theta}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ ,  $\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$ 

• 
$$Rot_{\theta}(\mathbf{x}) = \mathbf{A}\mathbf{x} = [Rot_{\theta}(\mathbf{e}_1) \quad Rot_{\theta}(\mathbf{e}_2)]\mathbf{x} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}$$



## Linear Transformation: Rotation in $\mathbb{R}^3$ (x-axis)

• 
$$Rot_{\theta} : \mathbb{R}^{3} \to \mathbb{R}^{3}$$
,  $Rot_{\theta}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ ,  $\mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \end{bmatrix}$ 

• 
$$Rot_{\theta}(\mathbf{x}) = \mathbf{A}\mathbf{x} = [Rot_{\theta}(\mathbf{e}_1) \quad Rot_{\theta}(\mathbf{e}_2) \quad Rot_{\theta}(\mathbf{e}_3)]\mathbf{x}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}$$





### Remind: Unit Vector

- Unit Vector (Normalized Vector)
- Unit vector,  $\widehat{\mathbf{u}}$ , is the vector has length of "1"

$$-\mathbf{u} \in \mathbb{R}^n \to \mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, \|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = 1$$

$$-\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow \mathbf{u} : \begin{cases} \text{① Same Direction} \\ \text{② } \|\mathbf{u}\| = 1 \end{cases} \rightarrow \mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \widehat{\mathbf{u}}$$

### Linear Transformation: **Projection**

- Introduction To Projection
- $Proj_L(\mathbf{x})$ : Shadow of  $\mathbf{x}$  on L
- $Proj_L(\mathbf{x})$ : Same vector in L where  $(\mathbf{x} Proj_L(\mathbf{x}))$  is orthogonal to  $L = c\mathbf{v}$ 
  - $(\mathbf{x} c\mathbf{v}) \cdot \mathbf{v} = 0 \longrightarrow \mathbf{x} \cdot \mathbf{v} c\mathbf{v} \cdot \mathbf{v} = 0$  $\rightarrow \mathbf{x} \cdot \mathbf{v} = c\mathbf{v} \cdot \mathbf{v} \rightarrow c = \frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$
  - $Proj_L(\mathbf{x}) = c\mathbf{v} = \left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)\mathbf{v}$



### Linear Transformation: **Projection**

- Projection As Matrix-Vector Product
  - $Proj_L: \mathbb{R}^n \to \mathbb{R}^n$ ,  $Proj_L(\mathbf{x}) = \left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = (\mathbf{x} \cdot \mathbf{v}) \mathbf{v}$  (v: unit vector,  $\widehat{\mathbf{u}}$ )
  - $Proj_L(\mathbf{x}) = \left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = (\mathbf{x} \cdot \widehat{\mathbf{u}}) \widehat{\mathbf{u}}$
- Linear Transform of Projection

$$(2) \operatorname{Proj}_{L}(c\mathbf{a}) = ((c\mathbf{a}) \cdot \widehat{\mathbf{u}}) \widehat{\mathbf{u}} = c(\mathbf{a} \cdot \widehat{\mathbf{u}}) \widehat{\mathbf{u}} = c \operatorname{Proj}_{L}(\mathbf{a})$$

• 
$$Proj_L(\mathbf{x}) = (\mathbf{x} \cdot \hat{\mathbf{u}})\hat{\mathbf{u}} = \mathbf{A}\mathbf{x} = \left[ \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right] \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \mathbf{x}$$
$$= \begin{bmatrix} u_1 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad u_2 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} \mathbf{x}$$

Hak Gu Kim

 $= Proj_L(\mathbf{a}) + Proj_L(\mathbf{b})$ 

### Linear Transformation: Composition

- Composition of Linear Transformation
  - $S: U \to V$ ,  $S(\mathbf{x}) = \mathbf{A}\mathbf{x}$  and  $T: V \to W$ ,  $T(\mathbf{x}) = \mathbf{B}\mathbf{x}$
  - $U \subseteq \mathbb{R}^n$ ,  $V \subseteq \mathbb{R}^m$ ,  $W \subseteq \mathbb{R}^l$
  - $\mathcal{T} \circ \mathcal{S} : U \longrightarrow W :$  The composition of  $\mathcal{T}$  with  $\mathcal{S}$
  - $\mathcal{T} \circ \mathcal{S}(\mathbf{x}) = \mathcal{T}(\mathcal{S}(\mathbf{x}))$

$$(1) \mathcal{T} \circ \mathcal{S}(\mathbf{x} + \mathbf{y}) = \mathcal{T}(\mathcal{S}(\mathbf{x} + \mathbf{y})) = \mathcal{T}(\mathcal{S}(\mathbf{x}) + \mathcal{S}(\mathbf{y})) = \mathcal{T}(\mathcal{S}(\mathbf{x})) + \mathcal{T}(\mathcal{S}(\mathbf{y})) = \mathcal{T} \circ \mathcal{S}(\mathbf{x}) + \mathcal{T} \circ \mathcal{S}(\mathbf{y})$$

$$(2) \mathcal{T} \circ \mathcal{S}(c\mathbf{x}) = \mathcal{T}(\mathcal{S}(c\mathbf{x})) = \mathcal{T}(c\mathcal{S}(\mathbf{x})) = c\mathcal{T}(\mathcal{S}(\mathbf{x})) = c\mathcal{T} \circ \mathcal{S}(\mathbf{x})$$



### Linear Transformation: Composition

Composition of Linear Transformation

• 
$$\mathcal{T} \circ \mathcal{S}(\mathbf{x}) = \mathcal{T}(\mathcal{S}(\mathbf{x})) = \mathcal{T}(\mathbf{A}\mathbf{x}) = \mathbf{B}(\mathbf{A}\mathbf{x}) = \mathbf{C}\mathbf{x}$$

• 
$$C = [B(Ae_1) B(Ae_2) \cdots B(Ae_n)] = [Ba_1 Ba_2 \cdots Ba_n]$$

• 
$$\mathcal{T} \circ \mathcal{S}(\mathbf{x}) = \mathcal{T}(\mathbf{A}\mathbf{x}) = \mathbf{B}(\mathbf{A}\mathbf{x}) = [\mathbf{B}\mathbf{a}_1 \ \mathbf{B}\mathbf{a}_2 \cdots \ \mathbf{B}\mathbf{a}_n]\mathbf{x} = \mathbf{B}\mathbf{A}\mathbf{x}$$

#### **Next Lecture**

Matrix Inversion