

Rensselaer Rocket Society (RRS)
Project Red Gemini

System Level Design

Tasks: Aerodynamic Analysis, Atmospheric Measurements

Three Subsystems:

- Recovery
- Structural
- Aerodynamics and Flight Stability

Significant Features:

Drag flap control system

Vehicle Dimensions, Materials, and Justifications

- No base model (previously Liberty 4 from Giant Leap Rocketry)
- Final Height: 104 inches
- Final Diameter: 4.02 inches
- Mass: 14.903 lbm
- Body tube material: phenolic resin tubing
- Fin material: G-10 fiberglass (Public Missiles Ltd.)

Mass Statement

Lower Airframe:

- Total: 8.3 lbm
- Motor: 54.42 ounces
- Body Tubing: 18.7 ounces

Main Airframe:

- Total: 6.603 lbm
- Tubing: 13.18 ounces
- Plexiglass Tubing (camera sub.): 16.01 ounces
- Drag Flap System: 16.79

Total: 14.903 lbm

Material Justifications

Phenolic Body Tubing:

- Originally MagnaFrame (layers of vulcanized fiber and phenolic, moisture sealed)
- Now phenolic fiber tubing
- Both equally strong
- Phenolic has lower price point, more customizability, and compatibility with motor mount

G-10 Fiberglass Fins:

- Firm
- Machineable

Static Stability Margin

- Margin: 6.1 cal with motor, 9.14 cal without motor
- Simulation: OpenRocket, drag flap models included
- CP and CG on diagram; 72 and 48 inches from nose tip respectively

Plan for Vehicle Safety Verification and Testing

Safety verification summary:

- Risk analysis conducted, checklists created, testing plans drafted
- Launch failure modes and hazards identified and ranked for severity

Testing plans:

- Ground testing of flight avionics. Static load testing of drag flap system.
- Body separation testing for separation charges (parachute deployment failure, loss of vehicle)

Safety Officer: Chris Andre

Plan for Launch Vehicle Verification and Testing

Vehicle verification summary:

- Several calculations performed to reinforce critical design points
- Simulations conducted during design phase to make informed decisions and models
- Designs and safety practices closely followed during the construction phase
- Modular construction and assembly of vehicle that allows for several verification checkpoints

Testing plans:

- Static load testing of major structural components
- Several scale and full test launches to verify all systems perform as expected

Launch Vehicle Verification - Simulated Launch

Simulated Launch with Aerotech K1103X

Kinetic Energies and Drift

Kinetic Energies (all fall at ~20 ft/s):

Nose cone: 3.78 ft-lb

Upper body: 41.70 ft-lb

Lower body: 25.58 ft-lb

Drift:

Wind Speed	Drift Value
5 mph	856 ft
10 mph	1712 ft
15 mph	2567 ft
20 mph	3423 ft

Plan for Payload Verification and Testing

Payload verification summary:

- Tasks: Aerodynamic Analysis, Atmospheric Measurements
- Radio relay of both pictures and data

Test plan:

- Static load testing on drag flaps
- CFD analysis of drag flaps
- Software testing of avionics relay
- Range testing of radio link
- Orientation testing of camera

Verification Plan: Requirements Summary

In accordance with the Statement of Work; 2016 SL Handbook:

- Projected apogee: minimum 5280 feet, maximum 5600 feet unaltered
- Approved barometric altimeters with designated power supplies and arming switches, electronically separate from payload
- Launch vehicle separates into three independent sections, reusable after launch
- Single stage with commercially available motor (Aerotech K1103X, K-class)
- Recovery: electronic dual-deploy with drogue and main parachutes
- Independent sections fall with kinetic energy less than 75 ft-lbf

Verification Plan

Requirement	Design Feature	Verification		
Requirement	Design Feature	Design Phase	Construction Phase	Testing Phase
Apogee between 5,280 ft and 5,600 ft if left unaltered	Rocket Mass, Rocket Motor, Design	OpenRocket Simulations, Payload Mass, Rocket material selection, Motor Selection	Stay as close as possible to original Mass Estimates	Read apogee at several launches in different weather conditions
Reusable	Body Strength (fins, airframe, parachutes, etc.)	Stress Analysis of Vulnerable Components, Use of Large Factors of Safety in Critical Components	Use High-Strength Epoxies, Store all components Safely, Design Followed, Components inspected upon order arrival show no signs of damage	Launch in appropriate weather multiple times

Requirement Design Feature		Verification		
		Design Phase	Construction Phase	Testing Phase

Four or fewer Independent Sections	General Design	Design fewer than four independent Sections (Nosecone section, Payload/Avionics Section, Lower Body Section)	Design Followed	Rocket is launched and recovered in less than four independent sections
Single Stage	General Design, Motor Design	Design only a single stage rocket	Design Followed	Rocket is launched with only a single stage motor

Requirement	Design Feature	Verification				
4		Design Phase	Construction Phase Testing Ph			
Commercially available solid motor propulsion system under Class L	Motor	Ensure Mass and General Rocket Design allow for a motor well under Class L motor approved by the TRA and NAR	Design Followed, stay as close as possible to original mass estimates	Motor under Class L is used at several launches in different weather conditions		
Capable of Launch by 12 V DC firing system	Motor, motor retainer	Select a motor retainer that allows for access to motor, select a motor able to be launched with 12V DC firing system		Launch rocket on standard 12 V DC firing system multiple times		

Requirement Design Feature		Verification		
		Design Phase	Construction Phase	Testing Phase

Electronic Dual Deploy	General Recovery Design (parachutes, shock cord, ejection charges, etc.)	General Design is Dual- Deploy, Use of a Drogue and Main Parachute, Design for Multiple Separation Points	Design Followed	Rocket launched with appropriate recovery system, Drogue and Main parachutes deploy at different points in flight
Drogue Deploys at Apogee, Main Parachute Deploys at much lower altitude	Parachutes, ejection charges, General Rocket Design, Altimeters	General Design has Drogue Parachute at First Separation Point and Main Parachute at another, Simulations run with required deployment locations	Design Followed, Set Altimeters to required ejection charge deployments (and keep track of which side is deployed when)	Rocket launched multiple times with parachute deployment at required times

Requirement	Design Feature		Verification Design Phase Construction Phase Testing Phase		
1 1 2 4 2 1 2 1 2 1 2 1		Design Phase			
Shear Pins hold rocket sections together until Parachute Deployment	Shear Pins, Ejection Charges	Shear Pin Strength Accurately Calculated and inserted into Recovery Design, Ejection Charge Strength Accurately Calculated	Design Followed, Shear Pins show no signs of damage before install	Rocket launched multiple times with parachute deployment at required times	
Independent Sections have less than 75 ft-lb of KE at Landing	General Rocket Design (Mass), Parachutes	Kinetic Energy of Each Independent Section Analyzed Accurately	Design Followed, stay as close as possible to original mass estimates, Parachutes and Recovery system components show no signs of damage upon order arrival	No damage or hard landing evident in any section after multiple test launches in varied flight conditions	

Requirement		Design Feature		Verification ase Construction Phase Testing Phase			
rtoquiromont		Design Phase	Construction Phase Testing Phase				
	Redundant, Safe Altimeters	Altimeters, Supporting Recovery Electronics	Select at least 2 commercially available altimeters, Design has an independent power supply to each Altimeter	Design Followed, Altimeters stored safely, All components of supporting electronics and altimeters tested before installation	Altimeters report similar		

Baseline Motor Selection and Justification

Selected Motor: Aerotech K1103X Motor

Class: K

Propellant: APCP

Average Thrust: 1,044 N

Maximum Thrust: 1620 N

Total Impulse: 1763 N-s

Thrust Duration: 1.688 s

Rationale:

Apogee: 5431 feet without flaps

Thrust-to-weight Ratio and Rail Exit Velocity

• TWR: **24.42 maximum**

• TWR: **15.74** average

Rail exit velocity: 63.6 ft/s

• Rail length: 39.37 inches

Drag Flap Subsystem

- Dynamically controlled to reduce vertical velocity to reach apogee of 5,280 feet
- Barometric pressure
 measured above and below
 flaps in order to fulfill
 payload requirement 3.1.6,
 "Aerodynamic Analysis of
 Structural Protuberances."

Drag Flap Subsystem

- Four quarter-cylinder elements fan out to create drag force
- Controlled simultaneously via threaded rod attached to single DC motor
- Ten 3D-printed plastic pieces

Recovery System

- Main parachute: SkyAngle Cert-3 Large
- Drogue parachute: SkyAngle Cert-3 Drogue
- Suspension lines for each rated at 2250 lbf, attached to swivel joint rated for 1500 lbf
- Descent velocity:
 - After dogue deployment: 50 ft/s
 - After main deployment: 14.5 ft/s
- Three body sections attached by 250" of Kevlar shock cord each

Recovery System

- Electronic Components
 - StratoLogger CF altimeter
 - Raven3 altimeter
- Two altimeters provide redundancy
- Ignite black powder charges mounted in aluminum blast caps
 - First charge (2.1 g): apogee
 - Second charge (1.7 g): 800 feet AGO

Recovery system electronics

Structural

- 104 inches end to end, three separable sections
- 4 inch diameter
- Plastic nose cone
- Phenolic body
- Fiberglass fins

Structural

- Fin design selected for high apogee while preserving stability
- Four fins to be machined out of G-10 fiberglass for stiffness and strength

Payload - Camera

- Body tube with transparent plexiglass section
- Camera system freely rotates about rocket vertical axis
- Camera system keeps image frame in proper orientation with counterweight

Payload - Avionics and Science

- Two Arduino microprocessors
- XBee radio data relay
- GPS / triple-axis accelerometer

Science package:

- Two barometers located above and below drag flaps to characterize flow
- UV and humidity sensors, solar irradiance measurement
- Camera system