ETOPO 地形高程数据绘图

360 百科及 MATHWORK 官网均表示,ETOPO 地形数据有五种规格, ETOPO1 的效果最好,NGDC 将 ETOPO2 和 ETOPO5 模型列为已弃用但仍可用。那么我们这期先讲如何使用 MATLAB 进行 ETOPO 数据绘图:

首先读取 ETOPO 数据 MATLAB 有两种函数都可以做到,一种是老版本函数 etopo,另一种则是 readgeoraster,一方面因为本人粉丝中用老版本的不在少数。另一方面 readgeoraster 推出较晚并不完善,理 论上 flt、hdr、bin 等多种,格式数据都能读取。但实际试用时发现并不识别这几种类型数据,可以使用的只有 tif、dt1、grd 等几种数据,且允许过程中占用内存较大,因此在这只讲解 etopo 函数读取数据并绘图。etopo 函数对于不同规格 ETOPO 地形数据数据支持情况如下:

ETOPO1c (cell)

- etopo1_ice_c.flt
- etopo1_bed_c.flt
- etopo1_ice_c_f4.flt
- etopo1_bed_c_f4.flt
- etopo1_ice_c_i2.bin
- etopo1 bed c i2.bin

ETOPO2V2c (cell)

- ETOPO2V2c_i2_MSB.bin
- ETOPO2V2c_i2_LSB.bin
- ETOPO2V2c f4 MSB.flt
- ETOPO2V2c f4 LSB.flt
- ETOPO2V2c.hdf

ETOPO2 (2001)

- ETOPO2.dos.bin
- ETOPO2.raw.bin

ETOPO5 (binary)

- ETOPO5.DOS
- ETOPO5.DAT

ETOPO5 (ASCII)

- etopo5.northern.bat
- etopo5.southern.bat

我们要用的的是 ETOPO1c 数据. 因此我实际去官网下载了如下数据:

- etopo1_ice_c_f4.flt 889MB
- etopo1_bed_c_f4.flt 889MB
- etopo1_ice_c_i2.bin 444MB
- etopo1_bed_c_i2.bin 444MB

数据集都不小哈, 总体都两个多 G 了, 要是想下载更多格式数据可以去这里(第一个连接是数据下载位置, 第二个是官网位置):

https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/

https://www.ngdc.noaa.gov/mgg/global/global.html

ETOPO1 基岩基础绘制

```
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);
worldmap('World')
geoshow(Z,refvec,'DisplayType','texturemap');
demcmap(Z,256)
```


某地区 ETOPO1 基岩绘制

中国附近

```
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);

worldmap('China')
geoshow(Z,refvec,'DisplayType','texturemap');

demcmap(Z,256)
```


南极洲附近

```
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);

worldmap('Antarctica')
geoshow(Z,refvec,'DisplayType','texturemap');

demcmap(Z,256)
```


太平洋附近

```
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);
worldmap('Pacific')
geoshow(Z,refvec,'DisplayType','texturemap');
demcmap(Z,256)
```


ETOPO1 绘图精度

samplefactor 的数值代表绘图精度,数值越小越精确,等于 1 或者不填时精确度最高包含 10800 x 21600 个数据点。精度越高运行越慢,反之数值越大精度越低运行越快:

```
subplot(1,2,1)
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);

worldmap('China')
geoshow(Z,refvec,'DisplayType','texturemap');

demcmap(Z,256)

subplot(1,2,2)
samplefactor=100;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);

worldmap('China')
geoshow(Z,refvec,'DisplayType','texturemap');

demcmap(Z,256)
```


ETOPO1 范围读取:针对 etopo 函数

要是想绘制很高精度、光读取数据再绘制出图就得读取很久、我们可以只读取一定范围的数据:

```
samplefactor=1;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor,[0,30],[70,100]);
worldmap([0,30],[70,100])
geoshow(Z,refvec,'DisplayType','texturemap');
demcmap(Z,256)
```


ETOPO1 绘图配色

就和上一期一样,这里举几个例子:

配色 1

```
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);

worldmap('China')
geoshow(Z,refvec,'DisplayType','texturemap');

%配色
cmapsea=[20,49,127;30,69,128;33,118,155;144,213,220]./255;
cmapland=[10,133,102;197,226,102]./255;
demcmap(Z,64,cmapsea,cmapland)
% 加颜色栏
colorbar
```


配色 2

```
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);

worldmap('China')
geoshow(Z,refvec,'DisplayType','texturemap');

cmapcopper=copper(10);
demcmap(Z,32,bone(10),cmapcopper(4:end,:))
% 加颜色栏
colorbar
```


ETOPO1 冰盖基础绘制

就和陆地绘制一样。这里做个对比绘制个南极洲

```
% 绘制基岩
subplot(1,2,1)
samplefactor=8;
[Z,refvec]=etopo('etopo1_bed_c_f4.flt', samplefactor);
worldmap('Antarctica')
geoshow(Z,refvec,'DisplayType','texturemap');
cmapsea=[20,49,127;30,69,128;33,118,155;144,213,220]./255;
cmapland=[10,133,102;197,226,102]./255;
demcmap(Z,64,cmapsea,cmapland)
% 绘制冰盖
subplot(1,2,2)
samplefactor=8;
[Z,refvec]=etopo('etopo1_ice_c_f4.flt', samplefactor);
worldmap('Antarctica')
geoshow(Z,refvec,'DisplayType','texturemap');
cmapsea=[20,49,127;30,69,128;33,118,155;144,213,220]./255;
cmapland=[10,133,102;197,226,102]./255;
```

