#### **Topological Data Analysis**

2022-2023

Lecture 9

**Stability Theorem** 

1 December 2022

### Sublevel sets

For a continuous function  $f: [a,b] \to \mathbb{R}$  denote, for each  $t \in \mathbb{R}$ ,  $L_t(f) = \{x \in [a,b] \mid f(x) \le t \}$ , called a sublevel set.

Note that if  $S \le t$  then  $L_S(f) \subseteq L_t(f)$ .



$$L_t(f) = \phi$$
 if  $t < \inf(f)$   
 $L_t(f) = [a,b]$  if  $t \ge \sup(f)$ 

We call  $x_0 \in [a,b]$  a critical point if it is a local maximum or a local minimum, including  $x_0 = a$  and  $x_0 = b$ .

If xo is a critical point, then f(xo) is a critical value.

If f is differentiable and  $x_0 \in (a,b)$  is a critical point, then  $f'(x_0) = 0$ .

From now on we assume that f has finitely many critical points (hence each critical point is isolated).

Under this assumption, we associate to f a persistence module:

 $V_{t}(f) = Ho(L_{t}(f))$ , where  $H_{0}$  denotes zero-homology, and we let  $\Pi_{s,t}: V_{s}(f) \longrightarrow V_{t}(f)$  be induced by the inclusion  $V_{s}(f) \longrightarrow V_{t}(f)$  if  $s \le t$ .

The spectrum of  $(V, \pi)$  is contained in the set of critical values of f.



Here as is a critical value of f but the spectrum of V(f) is {20, 21, 224









## Stability Theorem:

$$d_{int}(V(f), V(g)) \leq \|f - g\|_{\infty}$$

Here  $||f-g||_{\infty} = \sup \{|f(x)-g(x)|: a \le x \le b \}$ .



#### Hausdorff distance

Let M be a metric space. The diameter of a subset X = M is defined as diam  $(X) = \sup \{d(p,q) \mid p,q \in X \}$ .

We say that X is bounded if diam (X) is finite.

Suppose given two subsets X, Y of M. Define

 $d(p, y) = \inf \{ d(p, y) \mid y \in y$ 

 $d(X,Y) = \sup \{d(P,Y) \mid P \in X \}$ 

Note that  $d(X,Y) \neq d(Y,X)$  in general.

Note also that

$$Y \subseteq X \implies d(Y,X) = 0.$$



d(y, x)



If X is compact, then  $d(Y,X)=0 \iff Y \subseteq X$ .

Proof: Since every metric space is Hausdorff, X is a closed subset of M. If d(Y,X)=0 then d(p,X)=0 for all  $p\in Y$ . Since X is closed, this implies that  $p\in X$ . Hence  $Y\subseteq X$ .

From now on we assume that X and Y are compact.

The Hausdorff distance between X and Y is defined as  $d_H(X,Y) = \max d(X,Y), d(Y,X)$ .

It follows that  $d_H(X,Y)=0$  if and only if X=Y.

This is false if X, Y are not compact: if  $M = \mathbb{R}$ ,  $X = \mathbb{Q}$ ,  $Y = \mathbb{R} \setminus \mathbb{Q}$ then  $d_H(X, Y) = 0$ .

Moreover,  $d_H$  satisfies the triangle inequality  $d_H(X,Z) \leq d_H(X,Y) + d_H(Y,Z)$ .

Hence it is indeed a distance on the set of compact subsets of M.

## Gromov-Hansdorff distance

Let X and Y be compact metric spaces. The <u>Gromov-Hansdorff distance</u> between X and Y is defined as

 $d_{GH}(X,Y) = \inf\{d_{H}^{M}(f(X),g(Y))| f: X \rightarrow M, g: Y \rightarrow M \text{ isometrically by}$ where the infimum is taken over all isometric embeddings of X and Y into metric spaces, and  $d_{H}^{M}$  denotes Hausdorff distance in M. Hence  $d_{GH}(X,Y) = 0$  if and only if X and Y are isometric.

Proof:  $d_{GH}(X,Y)=0$  if and only if there are isometric embeddings  $f: X \hookrightarrow M$ ,  $g: Y \hookrightarrow M$  such that f(X)=g(Y), since X and Y are compact and hence  $d_H^M(f(X),g(Y))=0$  implies that f(X)=g(Y). Then

$$X \cong f(x) = g(y) \cong y.$$
isometry
isometry

#### Example:



$$X = \{(1,1), (1,2), (2,1), (2,3)\}$$
  
 $Y = \{(3,1), (3,2), (4,1), (4,4)\}$ 

$$\int d(x, y) = 2$$

$$\int d(y, x) = \sqrt{5}$$

$$d_H(X,Y) = \sqrt{5}$$



$$f: X \longrightarrow \mathbb{R}^2$$
,  $f(x,y) = (x,y)$   
 $g: Y \longrightarrow \mathbb{R}^2$ ,  $g(x,y) = (x-2, y-\frac{1}{2})$ 

$$d_{GH}(x,y) = d_{H}(f(x),g(y)) = \frac{1}{2}$$

A correspondence between X and Y is a surjective multivalued function from X to Y. That is, a subset C = Xx Y such that for all  $x_0 \in X$  there is some  $(x_0, y) \in C$  and for all  $y_0 \in X$ there is some  $(x, y_0) \in C$ .

If Cis 2 correspondence, then

$$C' = \{(y, x) \in Y \times X \mid (x, y) \in C\}$$

is 2/80 2 correspondence.

The distortion of a correspondence C = X x y is defined as  $dis(C) = max \left\{ |d^{X}(x,x') - d^{Y}(y,y')| : (x,y), (x',y') \in C \right\}.$ 

Example: Suppose that  $C = \{(x, f(x)) \mid x \in X \text{ for some surjective}\}$ function  $f: X \rightarrow Y$ . Then dis(C) = 0 if and only if f preserves distance.

 $dis(c) = 0 \iff d^{\times}(x,x') = d^{\vee}(f(x),f(x')) \quad \forall x \forall x'$ 

## Example:



The smallest distortion is achieved with  $C = \frac{1}{2}(X_1, Y_1), (X_2, Y_2), (X_3, Y_3), (X_4, Y_4) \frac{1}{2}$   $|d^X(X_2, X_3) - d^Y(Y_2, Y_3)| = |2 - 3| = 1$   $|d^X(X_4, X_3) - d^Y(Y_4, Y_3)| = |\sqrt{2} - \sqrt{5}| = 0.82$   $|d^X(X_4, X_3) - d^Y(Y_1, Y_3)| = |\sqrt{5} - \sqrt{10}| = 0.93$ and the rest are zero.

Hence dis(C) = 1.

## Theorem (Kalton-Ostrovskii, 1999)

$$d_{GH}(X,Y) = \frac{1}{z} \inf \{ dis(C) \mid C \subseteq X \times Y \text{ correspondence } \gamma.$$

• >

## Example:

X equilateral X of side 1

the only correspondence is  $C = \left\{ (x_1, y), (x_2, y), (x_3, y), (x_3, y), (x_4, y), (x_5, y), (x_6, y),$ 



 $d_{H}(X,Y) = \frac{1}{3}\sqrt{3} = 0.58$ in the Euclidean plane



 $d_{H}(X,Y) = 0.56$ in the hyperbolic disk of curvature -1



 $d_{H}(X,Y)=0.5$ graph distance

The proof of the Kalton-Ostrovskii Theorem is based on the fact that the infimum of the Hansdorff distances dH(X, X) for all isometric embeddings X -> M and Y -> M is attained with a metric on the disjont union XILY extending d' and d'.

# Stability Theorem:

Stability | Meorem: Vieton's-Rips complex Let X and Y be point clouds. If  $V_t(X) = H_*(R_t(X))$  then

 $d_{int}(V(X), V(Y)) \leq 2d_{GH}(X,Y).$ 

equal to  $W_{\infty}(D(X), D(Y))$  by the Isometry Theorem