目录

第1章 简介	1
第2章 前期准备与相关工作	2
2.1 前期准备	2
2.1.1 LQR (线性二次型调节器)	2
2.1.2 模糊控制	3
2.1.3 神经网络	3
2.1.4 PID控制	3
2.2 题目数据	3
第3章 物理模型的建立和状态空间公式的推导	5
3.1 模型假设与分析	5
3.1.1 受力分析	5
3.1.2 传递函数求解	6
3.2 状态空间求解	7
第4章 用PID算法校正直线一级倒立摆系统	9
4.1 PID控制分析	9
4.1.1 PID介绍	9
4.1.2 PID控制器原理性推导	9
4.2 实验分析	10
第5章 LQR线性二次型调节器	11
5.1 LQR介绍	11
5.2 LQR控制器原理性推导	11
5.3 LQR的系统能控性和能观性分析	12
5.4 小车系统权重的选取以及能控性能观性分析	13
5.5 小车倒立摆仿真	13
5.5.1 修改权重分析比较	14
第6章 模糊控制调节器	20
6.1 模糊控制介绍	20
6.2 模糊控制原理	20
6.2.1 量化因子	20
6.2.2 比例因子	20
6.2.3 模糊化	20
6.2.4 知识库	20
6.2.5 推理机	21
6.2.6 解模糊	21

同济大学 硕士学位论文 目录

6.3 设计	21
6.4 仿真结果分析	24
6.4.1 在无干扰的情况下仅控制角度	24
6.4.2 在有干扰的情况下仅控制角度	24
6.4.3 在无干扰的情况下同时控制角度与位移	24
6.4.4 在有干扰的情况下同时控制角度与位移	24
6.4.5 在有干扰的情况下同时控制角度与位移-修正后的控制方法	24
第7章 设计经验与心得体会	30
7.1 设计经验	30
7.2 心得体会	
致谢	31
参考文献	32
附录 A LQR在matlab中的代码	33