521.1006

UNITED STATES PATENT & TRADEMARK OFFICE

Re:

Application of:

Stefan-Horea CULCA

Serial No.:

To Be Assigned

Filed:

Herewith

For:

DATA TRANSMISSION SYSTEM

LETTER RE: PRIORITY

BOX PCT

Assistant Commissioner for Patents P.O. BOX 2327, Arlington, VA 22202

December 6, 2001

Sir:

Applicant hereby claims priority of the German Patent Application No. 199 26 006.0 filed June 8, 1999 through International Patent Application Serial No. PCT/EP00/01748, filed March 1, 2000.

Respectfully submitted,

DAVIDSON, DAVIDSON & KAPPEL, LLC

Bv

William C. Gehris Reg. No. 38,156

Davidson, Davidson & Kappel, LLC 485 Seventh Avenue, 14th Floor New York, New York 10018 (212) 736-1940

This Page Blank (uspto)

PUILEY 00/01748 BLESSE

BUNDEST PUBLIK DEUTS HLA

PRIORITY

DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

TU/009051 REC'D 29 MAR 2000 WIPO PCT

> EPO-Munich 51

0 9. März 2000

EP00/01748

Bescheinigung

Die Moeller GmbH in Bonn/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Datenübertragungseinrichtung"

am 8. Juni 1999 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig das Symbol H 04 L 25/30 der Internationalen Patentklassifikation erhalten.

München, den 1. März 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Aktenzeichen: <u>199 26 006.0</u>

Wallnes

Beschreibung

Datenübertragungseinrichtung

5

Die Erfindung betrifft eine Datenübertragungseinrichtung nach dem Oberbegriff des Anspruchs 1.

10

15

Eine derartige serielle Datenübertragungseinrichtung ist zum Beispiel durch das Bussystem ASI (Aktor-Sensor-Interface) bekannt. Die Teilnehmer dieses Bussystems sind Aktoren und Sensoren unterschiedlichster Art. Alle Geräte die an ein solches System angeschlossen werden, müssen eine entsprechende Intelligenz in Form eines Mikrokontrollers oder eines ASIC und eine kompatible Geräteschnittstelle aufweisen. Die Kommunikation zwischen den Busteilnehmern und ihre Spannungsversorgung wird über ein zweiadriges nicht abgeschirmtes Kabel realisiert. Hierfür werden die Daten moduliert über die Versorgungsspannung gesendet. Für die sichere Datenübertragung werden bei den Teilnehmern des ASI-Bussystems speziell entwickelte ASIC-Bausteine verwendet. Eine solche Lösung hat sich in der Vergangenheit bereits bewährt, ist aber für kleinere Systeme technisch zu aufwendig und zu

20

teuer.

25

Der Erfindung liegt daher die Aufgabe zugrunde, eine Datenübertragungseinrichtung zu schaffen, die bei geringerem technischen Aufwand eine serielle asynchrone Datenübertragung gewährleistet.

Ausgehend von einer Datenübertragungseinrichtung der eingangs genannten Art wird die Aufgabe erfindungsgemäß durch die kennzeichnenden Merkmale des unabhängigen Anspruches gelöst, während den abhängigen Ansprüchen vorteilhafte Weiterbildungen der Erfindung zu entnehmen sind.

30

Durch die erfindungsgemäße Einspeisung eines Stroms, insbesondere eines Konstantstroms, in die einzige, bidirektionale Datenübertragungsleitung der

Einrichtung wird die busseitige Stromversorgung des vorzugsweise galvanisch getrennten Schaltungsteils des ersten Gerätes (vorzugsweise Mastergerät) gewährleistet.

Bei der Kommunikation zwischen einem Master- und einem Slavegerät zum Beispiel, wird die Stromversorgung beider Geräte in der Regel über das Netzteil des Mastergerätes gewährleistet.

Mit Vorteil wird gemäß der Erfindung durch die Einspeisung eines, vorzugsweise als Konstantstrom gebildeten, Stroms und die dadurch realisierte Versorgung des busseitigen Schaltungsteils, das Netzteil des Mastergerätes entlastet. Hierdurch kann auf ein Netzteil mit galvanisch getrennten Versorgungsanschlüssen für busseitige und geräteseitige Schaltungsteile des Mastergerätes verzichtet werden. In der bevorzugten

Ausführungsform der Erfindung sind die Sender- und Empfängerschaltungsteile des Slavegerätes mit herkömmlichen Transistoren (hier NPN-Transistoren) und die Sender- und Empfängerschaltungsteile des Mastergerätes mit für die galvanische Trennung geeigneten Optokopplern ausgeführt.

Die beiden Schaltungsteile können als separate Kopplungsmodule zum Anschluß an intelligente Schalt- oder Steuerungsgeräte oder aber als separate Koppelmodule zur Kopplung von Steuerungsgeräten mit an diese anschließbaren Erweiterungsbaugruppen oder dergleichen ausgebildet sein.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus dem folgenden, anhand von Figuren erläuterten Ausführungsbeispiel. Es zeigen

Figur 1: eine Datenübertragungseinrichtung gemäß der Erfindung in schematischer Darstellung;

Figur 2: eine Datenübertragungseinrichtung gemäß Fig. 1 in einer möglichen Ausführungsform, und

10

30

10

15

20

25

Figur 3: eine Datenübertragungseinrichtung in einer weiteren möglichen Ausführungsform.

Nach Fig. 1 umfaßt die erfindungsgemäße Datenübertragungseinrichtung zwei über eine zweipolige Leitung 8 miteinander verbindbare Schaltungsteile.

Ein erster Schaltungsteil 2 dient der Ankopplung an ein Grundgerät 1 (Master), insbesondere eine programmierbare Kleinsteuerung wie Logikrelais oder dergleichen. Eine derartige Kleinsteuerung umfaßt insbesondere einen Mikrocontroller, eine Anzeigeeinheit, eine Bedieneinheit, Signaleingänge und Signalausgänge, wobei die Recheneinheit, der Bildschirm, die Bedieneinheit, die Signaleingänge und die Signalausgänge in einem gemeinsamen Gehäuse untergebracht sind.

Ein zweiter Schaltungsteil 4 dient der Ankopplung an ein Erweiterungsgerät 3 (Slave), welches an das Grundgerät 1 anschließbar ist. Die Schaltungsteile 2 und 4 können in die jeweiligen Geräte 1 und 3 integriert sein oder als separate Schaltungsmodule ausgebildet sein.

Der dem Grundgerät 1 zugeordnete Schaltungsteil 2 besteht aus einem Senderschaltungsteil 2a und einem Empfängerschaltungsteil 2b, wobei beide Teile vorzugsweise derart ausgebildet sind, daß eine galvanische Trennung zwischen Eingängen und Ausgängen der Schaltungsteile gewährleistet ist. Der dem Erweiterungsgerät 3 zugeordnete Schaltungsteil 4 besteht ebenfalls aus einem Senderschaltungsteil 4a und einem Empfängerschaltungsteil 4b. Desweiteren ist in dem dargestellten Ausführungsbeispiel vorzugsweise in den, dem Erweiterungsgerät 3 zugeordneten Schaltungsteil 4 eine Stromversorgung 6 integriert. Die Stromversorgung 6 kann alternativ auch extern oder in dem Schaltungsteil 2 des Grundgerätes 1 ausgebildet sein.

Die Schaltungsteile 2, 4 sind über die zweipolige Verbindungsleitung 8 miteinander verbindbar, wobei eine der Leitungen 8a ein Bezugspotential, hier Masse (GND), führt und die andere Leitung 8b als Datenübertragungsleitung dient. Die Daten werden über die einzige und daher für den bidirektionalen

_ 4 _

Datenverkehr vorgesehene Datenleitung 8b von beiden Geräten 1, 3
gesendet. Ein entsprechendes Kommunikationsprotokoll stellt sicher, daß eine
Datenkollision vermieden wird. Erfindungsgemäß wird über die
Stromversorgung 6 ein Strom Iq (vorzugsweise ein Konstantstrom) in die
Datenleitung 8b eingeprägt. Dieser Strom Iq dient neben der
Datenübertragung der Stromversorgung der galvanisch getrennten
Teilbereiche der angeschlossenen Schaltungsteile 2a, 2b.
Desweiteren sind durch den Strom (Iq) in Abhängigkeit von Eingangssignalen
der Senderschaltungsteile des einen Gerätes 1,3, Empfangssignalzustände

10

15

20

25

30

5

Aufbau der Schaltungsanordnung gemäß Fig. 2:

des anderen Gerätes 3.1 veränderbar.

Sender- und Empfängerschaltungsteil 4a, 4b des dem Erweiterungsgerät 3 zugeordneten Schaltungsteils 4 weisen jeweils einen Halbleiterschalter T1, T3, vorzugsweise einen NPN-Schalttransistor, auf. Dabei wird der Sendeanschluß Tx_Ew über einen ohmschen Widerstand auf die Basis des einen Transistors T3 geführt. Der Emitter des Transistors T3 ist auf Bezugspotential Masse (GND) geführt und über die Bezugspotentialleitung 8a mit dem dem Grundgerät 1 zugeordneten Schaltungsteil 2 verbindbar. Der Kollektor des Sendetransistors T3 ist über eine Zenerdiode D1 und einen hierzu in Serie liegenden Widerstand R1 auf die Basis des Transistors T1 des Empfängerschaltungsteils 4b geführt und weiterhin mit der Stromversorgung 6 zum Zweck der Stromeinprägung verbunden. Ferner ist über den Kollektor des Transistors T3 der dem Erweiterungsgerät 3 zugeordnete Schaltungsteil 4 über die Datenübertragungsleitung 8b mit dem dem Grundgerät 1 zugeordneten Schaltungsteil 2 verbindbar. Der Empfängeranschluß Rx Ew ist durch den über einen Pull-Up-Widerstand auf 5V gelegten Kollektor des Transistors T1 gebildet. Der Emitter des Transistors T1 ist auf Massepotential geführt.

Die Stromversorgung 6 ist vorzugsweise gebildet durch einen PNP-Transistor T2, der emitterseitig über einen ohmschen Widerstand R2 mit einem

15

20

25

30

Versorgungspotential (hier 24 V) verbunden ist, wobei der Transistor T2 basisseitig über eine Zenerdiode D2 ebenfalls auf Versorgungspotential und über einen weiteren ohmschen Widerstand auf Bezugspotential geführt ist, und mit seinem Kollektoranschluß mit der Datenübertragungsleitung 8b verbunden ist.

In einer vereinfachten Ausführung, kann die Stromversorgung auch durch einen ohmschen Widerstand gebildet werden, der einendig auf ein Versorgungspotential geführt und anderendig mit der Datenübertragungsleitung 8b verbunden ist.

Die Stromversorgung ist mit Vorteil in das Slavegerät 3 integriert.

Die Basis des Transistors T2 wird über einen aus einer Zenerdiode D2 und einem Widerstand gebildeten Spannungsteiler versorgt, wobei die Zenerdiode D2 kathodenseitig auf +24V gelegt ist und anodenseitig über den Widerstand mit Massepotential verbunden ist.

Sender- und Empfängerschaltungsteil 2a, 2b des dem Grundgerät 1 zugeordneten Schaltungsteils 2 sind vorzugsweise ebenfalls mit Halbleiterschaltern Opto 1, Opto 2 aufgebaut. Im dargestellten Ausführungsbeispiel sind diese, als eine galvanische Trennung gewährleistende, Schaltungselemente, vorzugsweise als Optokoppler Opto1; Opto2, ausgebildet. Der Empfängerschaltungsteil 2b besteht aus einem Optokoppler (Opto2) der transistorseitig (mit NPN-Transistorstufe) mit seinem Emitter auf Massepotential geführt ist. Der Kollektor ist über einen Pull-Up-Widerstand auf Vcc-Potential (hier ca. 5V) geführt und bildet gleichzeitig den grundgerätseitigen Empfängeranschluß RX_CPU.

Diodenseitig ist der Optokoppler Opto2 mit seiner Kathode mit dem Emitter des Optokopplers (mit NPN-Transistorstufe) Opto1 des Senderschaltungsteils 2a verbunden und über die Bezugspotentialleitung 8a mit dem Schaltungsteil 4 des Erweiterungsgerätes 3 verbindbar.

Mit seiner Anode ist der Optokoppler Opto2 des Empfängerschaltungsteils 2b über eine in Durchlaßrichtung angeordnete Zenerdiode D3 mit dem Kollektor

- ĉ[.] -

des Optokopplers Opto1 des Senderschaltungsteils 2a verbunden und über die Datenübertragungsleitung 8b mit dem Schaltungsteil 4 des Erweiterungsgerätes 3 verbindbar.

Diodenseitig ist die Anode des Optokopplers Opto1 über einen Widerstand auf den Sendereingang Tx_CPU geführt. Kathodenseitig ist der Optokoppler Opto1 auf Massepotential gelegt.

Funktionsweise der Schaltungsanordnung gemäß Fig. 2:

- Im Ruhezustand der Datenübertragungseinrichtung sind die Ausgangstransistoren T3 bzw. T_Opto1 (Transistor des Optokopplers Opto1) der beiden Senderschaltungsteile 2a, 4a gesperrt (Kollektor-Emitter-Strecke nicht leitend). Der eingeprägte Strom Iq teilt sich zwischen den zwei Empfängerschaltungsteilen 2b, 4b auf. Dabei ist die
- Datenübertragungseinrichtung vorzugsweise derart dimensioniert, daß der größte Stromanteil durch die Datenübertragungsleitung 8b und den dem Grundgerät 1 zugeordneten Empfängerschaltungsteil 2b (D3, D_Opto2 (Diode des zweiten Optokopplers Opto2)) fließt. Hierdurch wird die Störanfälligkeit der Schaltung minimiert.

20

5

In der beispielhaft dargestellten Stromversorgung 6 mit Zenerdiode D2 und Transistor T2 ist der Strom:

$$Iq = V_{R2}/R2 = (V_{D2} - V_{EB T2})/R2$$

25

Die Zenerdiode D3 bestimmt den Spannungspegel der Datenübertragungsleitung 8b im Ruhezustand (Signal inaktiv, logisch "0"):

$$V_{L_RUHE} = V_{D3} + V_{D_Opto2}$$

30

Der Strom durch den dem Erweiterungsgerät 3 zugeordneten Empfängerschaltungsteil 4b wird durch die Zenerdiode D1 und den Widerstand R1 bestimmt:

25

30

 $11 = V_{R1}/R1 = (V_{L RUHE} - V_{D1} - V_{BE T1})/R1$

5 Der Datenfluß erfolgt dann folgendermaßen:

Senderschaltungsteil 2a/Grundgerät 1 sendet - Empfängerschaltungsteil 4b/Erweiterungsgerät 3 empfängt:

Solange das gesendete Bit logisch "0" ist (Tx_CPU = 0), bleibt die Datenübertragungsleitung 8b inaktiv, also im Ruhezustand wie oben beschrieben.

Soll ein "1"-Signal gesendet werden, so öffnet der Ausgangstransistor T_Opto1 des Senderschaltungsteils 2a und der gesamte Strom Iq fließt von der Stromversorgung 6 durch die Datenübertragungsleitung 8b, den Transistor T Opto1 und die Masseleitung (Bezugspotentialleitung 8a) zurück zu Massepotential. Der Spannungspegel der Datenübertragungsleitung 8b ist nahezu 0V (Kollektor-Emitterspannung des Optokopplers Opto1 im

20 durchgeschalteten Zustand V_{CE} SAT T Opto1 $\approx 0.2V$).

> Da kein Strom mehr durch die Zenerdiode D1 über R1 und die Basis von T1 fließen kann (D1 ist gesperrt), kippt der Empfängertransistor T1 um (sperrt, Rx_Ew = 1), so daß der Empfängeranschluß Rx_Ew des Erweiterungsgerätes 3 von logisch 0 auf logisch 1 schaltet.

Gleichzeitig fließt auch durch die Zenerdiode D3 und die Diode D_Opto2 des Optokopplers Opto2 kein Strom mehr und der Transistor des Empfänger-Optokopplers, T Opto2 kippt ebenso um (sperrt, Rx_CPU = 1). Auf diese Weise bekommt das Grundgerät 1 eine Rückmeldung, die zu Prüfzwecken benutzt werden kann.

<u>Senderschaltungsteil 4a/Erweiterungsgerät 3 sendet -</u> <u>Empfängerschaltungsteil 2b/Grundgerät 1 empfängt:</u>

Solange das gesendete Bit logisch "0" ist (Tx_CPU = 0), bleibt die

Datenübertragungsleitung 8b inaktiv, also im Ruhezustand wie oben beschrieben.

Soll ein "1"-Signal gesendet werden, so öffnet der Sendetransistor T3 im Erweiterungsmodul und der gesamte Strom Iq fließt von der Stromversorgung 6 durch den Transistor T3 zu Massepotential. Der Spannungspegel der Datenübertragungsleitung 8b ist nahezu 0V (Kollektor-Emitter-Spannung des durchgeschalteten Transistors T3 V_{CE} SAT T3 \approx 0,2V).

Da kein Strom mehr durch die Zenerdiode D3 und die Diode D_Opto2 des

Optokopplers Opto2 fließen kann (D3 ist gesperrt), kippt der Transistor

T_Opto2 des Optokopplers Opto2, um und sperrt, so daß am

Empfängeranschluß Rx_CPU des Grundgerätes das Signal von logisch 0 auf logisch 1 wechselt.

Gleichzeitig fließt auch durch die Zenerdiode D1 über R1 und die Basis von T1 kein Strom mehr und der Empfängertransistor T1 sperrt ebenfalls, so daß am Empfangsanschluß Rx_Ew des Erweiterungsgerätes 3 das Signal von logisch 0 auf logisch 1 wechselt. Auf diese Weise bekommt das Erweiterungsgerät 3 eine Rückmeldung, die zu Prüfzwecken benutzt werden kann.

25

30

20

10

Erfindungsgemäß ist die Datenübertragungseinrichtung derart ausgebildet, daß die normalen Arbeitsströme auch als "Versorgung" für die verbindungsleitungsseitigen (busseitigen) galvanisch getrennten Schaltungsteile des Grundgerätes dienen. Diese Anordnung eignet sich insbesondere für asynchrone Übertragungsarten.

In der Praxis sind zusätzliche Bauelemente in Form von Filtern und Verstärkerstufen erforderlich. Eine derartig optimierte Schaltung ist in Fig. 3 veranschaulicht.

In einer bevorzugten Ausführungsform der Erfindung sind die Sender- und Empfängerschaltungsteile (2a, 2b) als eine galvanische Trennung gewährleistende Elemente, insbesondere als Optokoppler (Opto1, Opto2), ausgebildet. Die Sender- und Empfängerschaltungsteile (4a, 4b) sind vorzugsweise in Form von Transistorstufen ausgeführt.

10

5

Die vorliegende Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsformen beschränkt, sondern umfaßt auch alle im Sinne der Erfindung gleichwirkenden Ausführungsformen. So läßt sich die Erfindung beispielsweise auch mit anderen Halbleiterschaltelementen

15 Operationsverstärkern oder dergleichen realisieren.

Patentansprüche

- 1. Datenübertragungseinrichtung zur seriellen asynchronen Datenübertragung zwischen einem ersten Gerät (1) und einem zweiten Gerät (3),
 - wobei jedem der Geräte (1; 3) ein Schaltungsteil (2; 4) zugeordnet ist,
 - und jeder der Schaltungsteile (2; 4) einen Empfängerschaltungsteil (2b; 4b) und einen Senderschaltungsteil (2a; 4a) mit einem Sendeanschluß (Tx_Ew; Tx_CPU) und einem Empfangsanschluß (Rx_Ew; Rx_CPU) sowie einem Anschluß für eine Datenübertragungsleitung (8b) und einem Anschluß für eine Bezugspotentialleitung (8a) aufweist
 - und die Schaltungsteile (2; 4) über die Datenübertragungsleitung (8b) zur bidirektionalen Datenübertragung sowie die Bezugspotentialleitung (8a) miteinander verbindbar sind, **dadurch gekennzeichnet**, daß eine Stromquelle (6) vorhanden ist, über die ein Strom (Iq) in die Datenübertragungsleitung (8a) einspeisbar ist derart, daß in Abhängigkeit von dem Signalzustand eines Sendeanschlusses (Tx_Ew; Tx_CPU) des jeweiligen Schaltungsteils (4; 2) der Signalzustand des jeweils zugeordneten Empfangsanschlusses (Rx_CPU; Rx_EW) des anderen Schaltungsteils (2; 4) veränderbar ist.
- 2. Datenübertragungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zumindest das erste Gerät (1) eine programmierbare Kleinsteuerung mit einer Recheneinheit, insbesondere einem Mikrocontroller, einer Anzeigeeinheit, einer Bedieneinheit, mit Signaleingängen und mit Signalausgängen ist, wobei die Recheneinheit, der Bildschirm, die Bedieneinheit, die Signaleingänge und die Signalausgänge in einem gemeinsamen Gehäuse untergebracht sind.
- 3. Datenübertragungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das erste Gerät (1) als separates Modul zum Anschluß an eine programmierbare Kleinsteuerung mit einer Recheneinheit, insbesondere einem Mikrocontroller, einer Anzeigeeinheit, einer Bedieneinheit, mit Signaleingängen und mit Signalausgängen ausgebildet ist, wobei die

10

5

15

20

25

30

10

15

20

25

30

Recheneinheit, der Bildschirm, die Bedieneinheit, die Signaleingänge und die Signalausgänge in einem gemeinsamen Gehäuse untergebracht sind, und das zweite Gerät (3) als ein separates Modul zum Anschluß eines, die Funktionen des ersten Gerätes (1) erweiternden, Gerätes ausgebildet ist und beide Module über die Datenübertragungsleitung (8b) und die Bezugspotentialleitung (8a) verbindbar sind.

4. Datenübertragungseinrichtung nach Anspruch 1-3, dadurch gekennzeichnet, daß die Stromquelle (6) in das zweite Gerät (3) integriert ist.

- Datenübertragungseinrichtung nach Anspruch 1-4, dadurch gekennzeichnet, daß jeder Empfänger- und Senderschaltungsteil (2b, 4b; 2a, 4a) mindestens einen Halbleiterschalter umfaßt.
- 6. Datenübertragungseinrichtung nach Anspruch 1-5, dadurch gekennzeichnet, daß Empfänger- und Senderschaltungsteil (2b, 2a) des ersten Gerätes (1) derart ausgebildet sind, daß eine galvanische Trennung zwischen Sende- und Empfangsanschluß (Tx_CPU, Rx_CPU) einerseits und den Anschlüssen für die Datenübertragungs- und Bezugspotentialleitung andererseits gewährleistet ist.
- 7. Datenübertragungseinrichtung nach Anspruch 1-6, dadurch gekennzeichnet, daß die Stromquelle (6) als Konstantstromquelle ausgebildet ist.
- 8. Datenübertragungseinrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Stromquelle (6) gebildet ist, durch einen PNP-Transistor (T2) der emitterseitig über einen ohmschen Widerstand (R2) mit einem Versorgungspotential verbunden ist, wobei der Transistor (T2) basisseitig über eine Zenerdiode D2 ebenfalls auf Versorgungspotential und über einen weiteren ohmschen Widerstand auf Bezugspotential geführt ist, und mit seinem Kollektoranschluß mit der Datenübertragungsleitung (8b)

verbunden ist.

9. Datenübertragungseinrichtung nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß die Stromquelle (6) gebildet ist, durch einen ohmschen Widerstand der mit seinem einen Ende mit einem Versorgungspotential verbunden ist und der mit seinem anderen Ende mit der Datenübertragungsleitung (8b) verbunden ist.

Zusammenfassung

Datenübertragungseinrichtung

5

Die Erfindung betrifft eine Datenübertragungseinrichtung zur seriellen asynchronen Datenübertragung zwischen zwei Geräten (1; 3).

10

Das zu lösende Problem besteht darin, eine sichere Datenübertragungseinrichtung zur Kommunikation zwischen zwei Geräten zu schaffen, die mit möglichst geringem technischen Auswand realisierbar ist.

15

Dazu werden zwei miteinander über eine Zweidrahtleitung (8) verbindbare Schaltungsteile vorgeschlagen, die jeweils einen Empfängerschaltungsteil (2b; 4b) und einen Senderschaltungsteil (2a; 4a) aufweisen. Erfindungsgemäß ist eine Stromquelle (6) vorhanden, über die ein Strom (Iq) in die Datenübertragungsleitung (8a) einspeisbar ist, so daß in Abhängigkeit von Eingangssignalen der Schaltungsteile Signalzustände veränderbar sind und gleichzeitig Teile der Schaltungen stromversorgt werden.

20

Fig. 1

Fig.1

Fig.1

Fig.3

This Page Blank (uspto)