Lesson 06

递归

常量降级 快速 review

Hanoi 塔

要把 n 个 板子 从 A 挪到 C 柱子, 你可以有 B 柱子使

两个函数:

S(n, a, b, c)

有3个柱子abc,将n个板子从a挪到c

move(a, b)

将1个板子从a挪到b

倍数降级

套路

假设 你已经拿到了 n/2 的问题的答案 想一下 是否可以通过这个答案 解决 n 的问题的答案

思路案例

问题:

求 n 个数的 最大值

对照表:

标题	对照
大小为 n 的问题	如何求出 n 个数 的 最大值
大小为 n 的答案 $S(n)$	n 个数 的 最大值
大小为 n/2 的问题	如何求出 前一半 数 的 最大值
大小为 n/2 的答案 $S(n/2)$	前一半 数 的 最大值

思路:

假设 我已经知道了 前 n/2 个数 的最大值,想一下 是否可以通过 这个值 求出 n 个数 的最大值呢

训练:

求 2 的 n 次方

递归下的时间复杂度分析

代数法

算法:

```
ArrayMax(A, n) if n = 1 then return A_1 return Max(ArrayMax(A, n-1), A_n) 分段分析: T(n) = O(1) \text{ when } n = 1 T(n-1) + c \text{ when } n > 1 求值: T(n) = c + T(n-1) = c + (c + T(n-2)) = c + (c + (c + T(n-3))) = ... = c + c + c + ... + c + O(1) = c + c + c + ... + c + c_2 = cn + c_2 = O(n)
```

公式:

递归树法

$$T(n) = O(1)$$
 when $n = 1$
$$2 \cdot T(n/2) + c$$
 when $n > 1$ 分叉:

T(n)

计算:

计算每层的总合

```
\begin{split} T(n) &= c + 2c + 4c + \dots + xc + n \cdot c_2 \\ &= 2^0 c + 2^1 c + 2^2 c + \dots + 2^k c + n \cdot c_2 \\ &= 2 \cdot 2^k c - 1 + n \cdot c_2 \\ k &= log_2 n \\ &= 2 \cdot n \cdot c - 1 + n \cdot c_2 \\ &= O(n) \end{split}
```

尝试

1:

```
public int power2(int n) {
    int result = power2(n / 2) * power2(n / 2);
    if (n % 2 == 1) {
        result *= 2;
    }
    return result;
}
```

2:

```
public int power2(int n) {
    int half = power2(n / 2);
    int result = half * half;
    if (n % 2 == 1) {
        result *= 2;
    }
    return result;
}
```

分区

Partition

分区思维

思路

不直接解决问题

转而去想,我能不能把问题拆成 2 个,分别解决,或者,在有可能的情况下,扔掉 1 个

二叉搜索

Binary Search

问题

给定一个升序序列 $A = < A_1, A_2, ..., A_n >$ 找到这个序列里是否存在一个数 q

任务

代码

时间复杂度分析

递归 Basecase 分析

找相对低的值,尝试,看最后问题都落到了多少规模的。

sublist 复杂度解除

传参