Chapter Test

Complete.

- 1. If $\triangle BAD \cong \triangle TOP$, then $\overline{DB} \cong \underline{}$ and $\triangle PTO \cong \underline{}$?
- 2. $\triangle EFG$ is isosceles, with $m \angle G = 94$. The legs are sides $\frac{?}{}$ and $\frac{?}{}$. $m \angle E = \frac{?}{}$ (numerical answer).
- 3. You want to prove $\triangle ABC \cong \triangle XYZ$. You have shown $\overline{AB} \cong \overline{XY}$ and $\overline{AC} \cong \overline{XZ}$. To prove the triangles congruent by SAS you must show that _. To prove the triangles congruent by SSS you must show that
- 4. A method that can be used to prove right triangles congruent, but cannot be used with other types of triangles, is the ____? method.
- 5. $\triangle CAP$ and $\triangle TAP$ are equilateral and coplanar. \overline{AP} is a common side of the two triangles. $m \angle CAT = \frac{?}{}$ (numerical answer).
- 6. A segment from a vertex of a triangle to the midpoint of the opposite side is called a(n) _? of the triangle.
- 7. A point lies on the bisector of an angle if and only if it is equidistant from
- 8. If in $\triangle ABC \ m \angle A = 50$, $m \angle C = 80$, AC = 7x + 8, and BC = 38 3x, then $x = \frac{?}{}$.

Can two triangles be proved congruent? If so, by which method, SSS, SAS, ASA, AAS, or HL?

9.

10.

11.

12.

13.

\overline{WX} and \overline{YZ} are perpendicular bisectors of each other.

- 15. W is equidistant from $\frac{?}{}$ and $\frac{?}{}$.
- 16. Z is equidistant from ? and ?
- 17. Name four isosceles triangles.
- 18. How many pairs of congruent triangles are shown in the diagram?

