Работа 5.5.1

Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Работу выполнил Матренин Василий Б01-008

Цель работы: С помощью сцинтилляционного счётчика измерить линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; по их величине определить энергию γ -квантов.

Работа 5.5.1

1 Теория

Проходя через вещество, пучок γ -квантов постепенно ослабляется, ослабление происходит по экспоненциальному закону, который может быть записан в двух эквивалентных формах:

$$I = I_0 e^{-\mu l} \tag{1}$$

$$I = I_0 e^{-\mu' m_l} \tag{2}$$

Где I, I_0 – интенсивности прошедшего и падающего излучений, l – длина пути, пройденного пучком γ -лучей, m_l – масса пройденного вещества на единицу площади, μ, μ' – константы, зависящие от вещества. Ослабление потока γ -лучей возникает из-за фотоэлектрического поглощения, комптоновского рассеяния и генерации электрон-позитронных пар (при достаточных энергиях).

Считая, что опыт поставлен в хорошей геометрии, то есть сквозь вещество всегда идёт узкий параллельный пучок, можно считать, что комптоновское рассеяние выводит γ -кванты из пучка и в итоге меняется количество, но не энергия γ -квантов. Это означает, что μ не зависит от l. Число выбывших на пути dl из пучка γ -квантов:

$$-dN = \mu N dl \tag{3}$$

Откуда:

$$N = N_0 e^{\mu l} \tag{4}$$

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{5}$$

2 Описание установки

Рис 1. Схема установки

На рис. 1 изображена схема установки. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтилляционным счётчиком. Сигналы от счётчика усиливаются и регистрируются пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного

счётчика. Чтобы уменьшить влияние плохой геометрии, счётчик расположен на большим расстоянии от источника, поглотители имеют небольшие размеры, а так же устанавливаются на расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние кванты с меньшей вероятностью могли в него вернуться.

Работа 5.5.1

3 Ход работы

3.1 Настройка установки

Убедились в том, что установка работает исправно - при полностью открытом коллиматоре и при коллиматоре, закрытом свинцовой пробкой.

3.2 Данные

Сняли данные для различных толщин и материалов образцов. Данные представлены в таблицах $1\ \mathrm{u}\ 2.$

Таблица 1: Толщины образцов

Материал	11, мм	12, мм	13, мм	14, мм	15, мм
Алюминий	19.80	19.95	19.80	19.95	20.00
Сталь	10.00	9.95	10.00	9.95	10.00
Свинец	4.80	4.90	4.70	4.60	4.4

Таблица 2: Число частиц в зависимости от образцов

Образец	Al 1	Al 2	Al 3	Al 4	Al 5
N	219904	139859	89422	58460	38075
Образец	Fe 1	Fe 2	Fe 3	Fe 4	Fe 5
N	183792	99011	53681	30113	16662
Образец	Pb 1	Pb 2	Pb 3	Pb 4	Pb 5
N	185379	98657	55228	30396	17977

Графики в логарифмическом масштабе представлены на рисунках 2-4.

Puc 2. График для Al

Рис 3. График для Fe

Рис 4. График для Рь

По МНК определил коэффициенты наклона:

$$\mu_{Al} = (0.22 \pm 0.01) \, \frac{1}{cm}$$

$$\mu_{Fe} = (0.60 \pm 0.03) \, \frac{1}{cm}$$

$$\mu_{Pb} = (1.26 \pm 0.08) \, \frac{1}{cm}$$

Тогда определил значения энергии квантов излучения по таблице:

$$E_{\gamma Al} = 0.6 MeV$$

$$E_{\gamma Fe} = 0.6 MeV$$

$$E_{\gamma Pb} = 0.6 MeV$$

4 Вывод

В ходе данной работы было исследовано явление ослабления потока γ -лучей в веществе. Также были расчитаны значения постоянной затухания и энергия γ -квантов.

Работа 5.5.1