$\tau_{1}^{#2} + \alpha$	$t_{1-}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} + \alpha$	$\sigma_{1^{-}}^{*1} \dagger^{lpha}$	$ au_{1}^{#1} + ^{lphaeta}$	$\sigma_{1+}^{\#2} \dagger^{lphaeta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$		$\sigma_{1^{+}\alpha\beta}^{\#1}$
0	0	0	0	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2} \frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\sigma_{1^+lphaeta}^{\#2}$
0	0	0	0	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$ au_{1}^{\#1}{}_{lphaeta}$
0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0	$\sigma_{1^- lpha}^{\# 1}$
0	0	0	0	0	0	0	$\sigma_{1^-\alpha}^{\#2}$
0	0	0	0	0	0	0	$t_{1^-}^{\#1}{}_{lpha}$
0	0	0	0	0	0	0	$t_{1^-\alpha}^{\#2}$

Lagrangian density $\frac{2}{3}t_2 \omega_{\kappa}^{\kappa\lambda} \omega_{\kappa\lambda}^{'} + \frac{1}{3}t_2 \omega_{\kappa\lambda}^{'} \omega_{\kappa\lambda}^{\kappa\lambda} - \frac{1}{2}r_3 \partial_i \omega_{\kappa}^{\kappa\lambda} \partial^i \omega_{\lambda}^{\alpha} - r_5 \partial_i \omega_{\kappa}^{\kappa\lambda} \partial^i \omega_{\lambda}^{\alpha} + \frac{1}{2}r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa\lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa\lambda} - \frac{1}{2}r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa\lambda} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa\lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa\lambda\theta} + r_5 \partial_{\alpha} \omega^{\kappa\lambda\theta} \partial_{\kappa}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\sharp_1}\! +^lpha$	0	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0	0	0
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	0	0	0	0

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\sigma_{2}^{\#1}{}^{\alpha\beta\chi}==0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{#2\alpha} == 0$	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	SO(3) irreps	Source constraints
25	5	5	ω	ω	ω	ω	1	1	1	#	

	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$\tau_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	0	0	0	0
$ au_{0}^{\#1} \dagger$	0	0	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{t_2}$
'				

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)