Objective:

To design the circuit for a BCD Adder.

Theory:

In computing and electronic systems, **binary-coded decimal (BCD)** is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits. A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit which is also in BCD. This circuit includes correction logic. For sums > 9 the circuit need to add 2's complement of 10_{10} (0110)₂ to the uncorrected result (S₃' S₂' S₁' S₀'). Correction is also needed when a Carry out (C₀) is generated (for numbers 16-19).

BCD was used in many early decimal computers.

Component Required:

SI No.	Item	Specification	Qty.		
1	IC4008	4-bit binary full adder	2		
2	IC4071	OR Gate	1		
3	IC4081	AND Gate	1		
4	Digital Trainer Kit	-	1		
5	Breadboard	-	1		
6	Wires	-	-		

Decimal to BCD Table:

Decimal		В	inary Sur	n		BCD Sum					
	C _{out} '	S ₃ '	S ₂ '	S ₁ '	S ₀ '	Cout	S ₃	S ₂	S ₁	S ₀	
0		0	0	0	0		0	0	0	0	
1		0	0	0	1		0	0	0	1	
2		0	0	1	0		0	0	1	0	
3		0	0	1	1		0	0	1	1	
4		0	1	0	0		0	1	0	0	
5		0	1	0	1		0	1	0	1	
6		0	1	1	0		0	1	1	0	
7		0	1	1	1		0	1	1	1	
8		1	0	0	0		1	0	0	0	
9		1	0	0	1		1	0	0	1	
10		1	0	1	0	1	0	0	0	0	
11		1	0	1	1	1	0	0	0	1	
12		1	1	0	0	1	0	0	1	0	
13		1	1	0	1	1	0	0	1	1	
14		1	1	1	0	1	0	1	0	0	
15		1	1	1	1	1	0	1	0	1	
16	1	0	0	0	0	1	0	1	1	0	
17	1	0	0	0	1	1	0	1	1	1	
18	1	0	0	1	0	1	1	0	0	0	
19	1	0	0	1	1	1	1	0	0	1	

K-map for BCD Adder:

$$C_{out} = C_o + S_3' \cdot S_2' + S_3' \cdot S_1'$$

$$C_{out} = C_o + S_3' \cdot (S_2' + S_1')$$

Circuit Diagram:

Circuit Diagram of BCD Adder

Truth Table:

Input					Output							
A ₃	A ₂	A ₁	A ₀	B ₃	B ₂	B ₁	B ₀	Cout	S ₃	S ₂	S ₁	S ₀
0	0	1	1	0	0	1	0	0	0	1	0	1
0	0	1	0	0	1	0	0	0	0	1	1	0
1	0	1	0	0	1	0	1	1	0	1	0	1
0	1	1	0	1	1	0	0	1	1	0	0	0

Conclusion:

BCD adder circuit was made and truth table was verified.