Final Review

Chen-Yu Wei

Logistics

- Time: 2PM-4PM, December 17
- Location: Olsson Hall 009 (usual classroom)
- Open notes
 - Just paper-based notes/notebooks, no electronic devices
 - No textbook
- Let me know earlier if you need any accommodation

Topics

- Bayesian Network (focusing on the content after Page 28 in the BN slides, though it's unavoidable that it will be related to some previous content)
- (Hidden) Markov Model
- Machine Learning
- Deep Learning and Applications
- Reinforcement Learning

Like midterm, the final exam is not going to be "easy". But we'll try to include more basic questions.

Bayesian Network

• Formulate a problem as a Bayesian network

- Two teams A and B are competing in a baseball match.
- If the weather is warm, then
 - A is in a good condition with probability 0.6
 - B is in a good condition with probability 0.8
- If the weather is cold, then
 - A is in a good condition with probability 0.5
 - B is in a good condition with probability 0.3
- If both team are in the same condition, B wins with probability 0.6
- Otherwise, the good-conditioned team wins with probability 0.8
- The weather is warm with probability 0.4 and cold with probability 0.6

Т	P(T)
Warm	0.4
Cold	0.6

Т	Α	P(A T)
Warm	Good	0.6
Warm	Bad	0.4
Cold	Good	0.5
Cold	Bad	0.5

Т	В	P(B T)
Warm	Good	0.8
Warm	Bad	0.2
Cold	Good	0.3
Cold	Bad	0.7

Α	В	W	P(W A,B)
Good	Good	Α	0.4
Good	Good	В	0.6
Good	Bad	Α	0.8
Good	Bad	В	0.2
Bad	Good	Α	0.2
Bad	Good	В	0.8
Bad	Bad	Α	0.4
Bad	Bad	В	0.6

- Inference: Given a Bayesian network, a query variable Q, and evidences $\{E_1=e_1,\ldots,E_k=e_k\}$, calculate $P(Q|E_1=e_1,\ldots,E_k=e_k)$
- Exact Inference in Bayesian networks
- Variable elimination
 - Only keep entries consistent with the evidence variable
 - Interleave Join and Marginalize (Eliminate) operations

In the previous example, how to calculate the conditional probability P(A=bad | w=A)?

Т	P(T)
Warm	0.4
Cold	0.6

Т	Α	P(A T)
Warm	Good	0.6
Warm	Bad	0.4
Cold	Good	0.5
Cold	Bad	0.5

Т	Α	В	P(T,A,B)
Warm	Good	Good	0.4 * 0.6 * 0.8
Warm	Good	Bad	0.4 * 0.6 * 0.2
Warm	Bad	Good	0.4 * 0.4 * 0.8
Warm	Bad	Bad	0.4 * 0.4 * 0.2
Cold	Good	Good	0.6 * 0.5 * 0.3
Cold	Good	Bad	0.6 * 0.5 * 0.7
Cold	Bad	Good	0.6 * 0.5 * 0.3
Cold	Bad	Bad	0.6 * 0.5 * 0.7

Т	Α	В	P(T,A,B)
Warm	Good	Good	0.4 * 0.6 * 0.8
Warm	Good	Bad	0.4 * 0.6 * 0.2
Warm	Bad	Good	0.4 * 0.4 * 0.8
Warm	Bad	Bad	0.4 * 0.4 * 0.2
Cold	Good	Good	0.6 * 0.5 * 0.3
Cold	Good	Bad	0.6 * 0.5 * 0.7
Cold	Bad	Good	0.6 * 0.5 * 0.3
Cold	Bad	Bad	0.6 * 0.5 * 0.7

Eliminate (Marginalize) T

Α	В	P(A,B)
Good	Good	0.282
Good	Bad	0.258
Bad	Good	0.218
Bad	Bad	0.242

Α	В	P(A,B)
Good	Good	0.282
Good	Bad	0.258
Bad	Good	0.218
Bad	Bad	0.242

Join on A,B

Α	В	W	P(W A,B)
Good	Good	А	0.4
Good	Good	B	0.0
Good	Bad	А	0.8
		6	
171111		1	
Good	Dau	D	U.Z
Bad	Good	В А	0.2
Bad	Good		0.2
Bad	Good	A	0.2
Bad Bad	Good	A	0.2

Α	В	P(A,B)
Good	Good	0.282
Good	Bad	0.258
Bad	Good	0.218
Bad	Bad	0.242

Join on A,B

Α	В	W	P(W A,B)
Good	Good	А	0.4
Good	Bad	Α	0.8
Bad	Good	А	0.2
Bad	Bad	Α	0.4

Α	В	W	P(A,B,W)	
Good	Good	Α	0.1128	
Good	Bad	Α	0.2064	
Bad	Good	Α	0.0436	
Bad	Bad	Α	0.0968	

Α	В	W	P(A,B,W)
Good	Good	Α	0.1128
Good	Bad	Α	0.2064
Bad	Good	Α	0.0436
Bad	Bad	Α	0.0968

Α	W	P(A,W)
Good	Α	0.1128 + 0.2064
Bad	Α	0.0436 + 0.0968

Α	W P(A,W)	
Good	Α	0.3192
Bad	Α	0.1404

Α	P(A w=A)
Good	0.6945
Bad	0.3055

- Approximate inference in Bayesian network
 - Prior sampling
 - Rejection sampling
 - Likelihood weighting
 - Gibbs sampling

- In the previous example, suppose that we know A wins, and we have the following samples drawn from the Bayesian network:
 - (T=Warm, A=Bad, B=Good), (T=Warm, A=Good, B=Good), (T=Cold, A=Bad, B=Bad)
- Use Likelihood weighting to estimate P(A=bad | w=A)

Т	А	B Weight = $P(w=A \mid A, E)$	
Warm	Bad	Good	0.2
Warm	Good	Good	0.4
Cold	Bad	Bad	0.4

Recall:

If both team are in the same condition, B wins with probability 0.6 Otherwise, the good-conditioned team wins with probability 0.8

Gibbs sampling algorithm

• Repeat many times: Sample a non-evidence variable X_i from

$$P(X_i | x_1,...,x_{i-1},x_{i+1},...,x_n)$$

- = P(X_i | Markov_blanket(X_i))
- = $\alpha P(X_i | Parents(X_i)) \prod_i P(y_i | Parents(Y_i))$

Page 74 in BN slides has an example illustrating why we only need to consider Markov blanket of X_i

- Markov_blanket(X_i) includes
 - X_i's parents
 - Xi's children
 - X_i's children's parent

Markov_blanket(B) = ?

(Hidden) Markov Model

- Exact inference for Markov models
 - Forward algorithm (= repeatedly Join and Eliminate)

- Exact inference for Hidden Markov models
 - Filtering
 - Prediction
 - Smoothing (forward-backward algorithm)
 - Most-likely Sequence (Viterbi algorithm)

Smoothing

T_1	$P(T_1)$	
Warm	0.5	
Cold	0.5	

T_i	T_{i+1}	$P(T_{i+1} T_i)$
Warm	Warm	0.8
Warm	Cold 0.2	
Cold	Warm	0.3
Cold	Cold	0.7

T_i	W_i	$P(W_i T_i)$
Warm	Α	0.4
Warm	В 0.6	
Cold	Α	0.7
Cold	В	0.3

$$P(T_2 \mid w_1 = A, w_2 = A, w_3 = A) = ?$$

$$P(T_2 \mid w_1 = A, w_2 = A, w_3 = A) \propto P(T_2, w_3 = A \mid w_1 = A, w_2 = A)$$

$$= P(T_2 \mid w_1 = A, w_2 = A) P(w_3 = A \mid T_2)$$

$$= \sum_{k=1}^{n} P(T_3 = t \mid T_2) P(w_3 = A \mid T_3 = t)$$
filtering
$$= \sum_{k=1}^{n} P(T_3 = t \mid T_2) P(w_3 = A \mid T_3 = t)$$

See Page 33-34 in HMM slides for the more general case (i.e., longer sequence)

- Approximate inference for Hidden Markov models
 - Particle filtering (likelihood weighting + resampling)

Machine Learning

- Naïve Bayes
 - The modeling assumption: features are mutually independent
 - Maximum likelihood estimation simply counting the feature occurrence
 - Regularization: Laplace smoothing

- Suppose that we use Naïve Bayes to conduct spam filtering. We use Laplace smoothing with k=1 for regularization (i.e., give every word a fake count of 1).
- Training data:
 - Spam, "Winner!! As a valued customer you have been selected to receive a \$900 prize reward!!!"
 - **Spam**, "We are trying to contact you. Last weekend's draw shows that you won a £1000 prize guaranteed!!!"
 - Ham, "Hey! Did you want to grab coffee before the team meeting on Friday?"
 - **Ham**, "Thank you for attending the talk this morning. I've attached the presentation for you to share with your team."
- In the learned model, what are P(Spam), P("prize" | Spam), P("prize" | Ham)?

- Now we get a new email and want to classify it into spam or ham.
- Suppose for simplicity it only contains "hey customer".
- How should we classify it?

P(T| "hey customer")
$$\propto$$
 P(T) \times P("hey customer" | T)
= P(T) \times P("hey" | T) \times P("customer" | T)

Let
$$\alpha = P(Spam) \times P("hey" | Spam) \times P("customer" | Spam)$$

 $\beta = P(Ham) \times P("hey" | Ham) \times P("customer" | Ham)$

Then P(Spam | "hey customer") =
$$\frac{\alpha}{\alpha + \beta}$$

- Logistic regression
 - The modeling assumption
 - Stochastic gradient descent
 - Regularization

- Suppose that we use logistic regression for a classification problem
- Feature dimension = 2 and #Classes = 3
 - What's the number of parameters in the model?
- Suppose that the final model we get after training is
 - $w^{(1)} = [0.7, -0.1]$
 - $w^{(2)} = [0.3, -0.4]$
 - $w^{(3)} = [-0.9, 0.6]$
 - Then for an input feature x = [0,1], what's the $P(Y \mid x)$ given by this model?

- General considerations in Machine Learning
 - Overfitting and regularization
 - Hyperparameter: quantities chosen in the training procedure
 - Hyperparameter tuning
- Hyperparameter tuning
 - Split the original dataset into training / held-out / test datasets
 - Run machine learning algorithm (e.g., SGD) on the training dataset with multiple hyperparameters, which gives multiple models
 - Choose the model that has the best performance on the held-out dataset
 - Report the performance of the model on the test dataset

Deep Learning and Applications

- Components of neural networks
 - Hidden layers
 - Activation functions
 - Softmax layer (for classification problems)

$$H_i^{(0)} := X_i$$

$$H_i^{(\ell)} = g\left(\sum_j W_{ij}^{(\ell,\ell-1)} H_j^{(\ell-1)}\right) \quad \forall \ell = 1, \dots, L$$

$$Z_i = \sum_j W_{ij}^{(\text{out})} H_j^{(L)}$$

- High-level understandings about the techniques mentioned in the guest lectures
- Computer vision applications
 - Object detection
 - R-CNN, Fast R-CNN, and Faster R-CNN
- Natural language processing applications
 - Word vector
 - Recurrent neural network
 - Transformer

Reinforcement Learning

- Value iteration under known MDP model
- Q-Learning under unknown MDP model

Value Iteration

```
V_0(s) \leftarrow 0 \quad \forall s
For k = 1, 2, ...
       Q_k(s,a) \leftarrow \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{k-1}(s')] \quad \forall s,a
                                                                        =0 if s is terminal state
        V_k(s) \leftarrow \max_{a} Q_k(s, a) \ \forall s
        If |V_k(s) - V_{k-1}(s)| \le \epsilon for all s:
               Let \hat{Q}(s,a) = Q_k(s,a) \ \forall s,a
                break
Return policy \hat{\pi}(s) = \operatorname{argmax} \hat{Q}(s, a)
```

Value Iteration – Example

S	а	s'	T(s,a,s')	R(s,a,s')
	Slow		1.0	+1
	Fast		0.5	+2
	Fast		0.5	+2
	Slow		0.5	+1
	Slow		0.5	+1
	Fast		1.0	-10
	(end)		1.0	0

Assume no discount $(\gamma = 1)$

Q-Learning

$$V_0(s) \leftarrow 0, \ Q_0(s,a) \leftarrow 0 \quad \forall s,a$$

Let s_1 be the initial state.

For k = 1, 2, ... Epsilon-Greedy strategy or Boltzmann exploration strategy

Take action a_k . Observe next state s_{k+1} and reward $R_k = R(s_k, a_k, s_{k+1})$.

// Slightly modify the values on the visited state-action pair (s_k, a_k) :

$$Q_k(s_k, a_k) \leftarrow (1 - \eta_k) \ Q_{k-1}(s_k, a_k) + \eta_k \left[R_k + \gamma V_{k-1}(s_{k+1}) \right] \quad \eta_k \in (0,1): \text{ learning rate}$$

$$V_k(s_k) \leftarrow \max_a Q_k(s_k, a)$$

$$= 0 \text{ if } s_k \text{ is terminal}$$

// Keep other values unchanged:

$$Q_k(s,a) \leftarrow Q_{k-1}(s,a)$$
 and $V_k(s) \leftarrow V_{k-1}(s)$ for $(s,a) \neq (s_k,a_k)$

If s_k is a terminal state:

Reset s_{k+1} to be the initial state.

Continue

Q-Learning Example

• Page 59-61 in the RL lecture slides

Course Evaluation

- Ending on December 9 (4 days from now!)
- To encourage you to respond, we give 1.5 extra points to students finishing it
- The way to calculate the final score:
 - Calculate the raw scores
 - Set score thresholds (e.g., adjusting the percentage of students getting A, B, etc.)
 - Add the 1.5 extra points

Thank you

• Good luck for your finals!