Kod crtanja Bodeovog dijagrama prijenosna funkcija se, uz pretpostavku da su svi polovi i nule sustava realni brojevi, svodi na oblik

$$G(s) = K_o \frac{\left(1 - \frac{s}{s_{N1}}\right) \left(1 - \frac{s}{s_{N2}}\right) \cdots \left(1 - \frac{s}{s_{Nm}}\right)}{s^k \left(1 - \frac{s}{s_{p1}}\right) \left(1 - \frac{s}{s_{p2}}\right) \cdots \left(1 - \frac{s}{s_{pn}}\right)}.$$

Frekvencijska karakteristika je onda:

$$G(j\omega) = K_o \frac{\left(1 - \frac{j\omega}{s_{N1}}\right) \left(1 - \frac{j\omega}{s_{N2}}\right) \cdots \left(1 - \frac{j\omega}{s_{Nm}}\right)}{\left(j\omega\right)^k \left(1 - \frac{j\omega}{s_{p1}}\right) \left(1 - \frac{j\omega}{s_{p2}}\right) \cdots \left(1 - \frac{j\omega}{s_{pn}}\right)},$$

te amplitudno-frekvencijska i fazno-frekvencijska karakteristika imaju oblik:

$$A(\omega)_{dB} = 20\log|K_o| - k \cdot 20\log\omega + \sum_{i=1}^{m} 20\log\sqrt{1 + \left(\frac{\omega}{s_{Ni}}\right)^2} - \sum_{i=1}^{n} 20\log\sqrt{1 + \left(\frac{\omega}{s_{pi}}\right)^2}$$

$$\varphi(\omega) = \arg(K_o) - k \cdot 90^\circ + \sum_{i=1}^{m} \arctan\left(\frac{\omega}{-s_{Ni}}\right) - \sum_{i=1}^{n} \arctan\left(\frac{\omega}{-s_{pi}}\right)$$

Dakle, nagib A_{dBb} na niskim frekvencijama kazuje koliki je k, lom A_{dB} u + na lomnoj frekvenciji w kazuje da imamo nulu s apsolutnom vrijednošću w, lom A_{dB} u – na frekvenciji w kazuje da imamo pol s apsolutnom vrijednošću w. Iznos $|K_o|$ dobije se tako da se $A(w)_{dB}$ očita za neki w_0 koji je manji ili jednak od svih lomnih frekvencija, obično w_0 bude najniža lomna frekvencija, neka $A(w)_{dB}$ tamo ima iznos $A(w_0)_{dB}$. Onda se $|K_o|$ dobije iz jednadžbe: $A(\omega_0)_{dB} = 20 \log |K_o| - k \cdot 20 \log \omega_0$

Fazna karakteristika nam daje informaciju je li K_o pozitivan ili negativan: on je pozitivan ako faza počinje na niskim frekvencijama na –k90°, a negativan je ako faza počinje na –k90°-180°

Utjecaj lomne frekvencije u amplitudnoj karakteristici na fazu počinje na frekvenciji 10 puta manjoj, a prestaje na frekvenciji 10 puta većoj od lomne frekvencije. Ako se faza lomi u-, radi se o stabilnom polu (s_{pi} <0) ili neminimalno-faznoj nuli (s_{Ni} >0). Ako se faza lomi u+, radi se o nestabilnom polu (s_{pi} >0) ili minimalnofaznoj nuli (s_{Ni} <0).

Rješenja pod a) za grupe A i B sada zapisujem bez daljih obrazloženja.

Grupa A

a) Na temelju amplitudno-frekvencijske i fazno-frekvencijske karakteristike otvorenog kruga odrediti $G_{\text{o}}(s)$

$$G_0(s) = 1 \cdot \frac{1 - \frac{s}{-100}}{s^1 \left(1 - \frac{s}{-1}\right)} = \frac{1}{100} \frac{s + 100}{s(s + 1)}$$

Grupa B

a) Na temelju amplitudnofrekvencijske i faznofrekvencijske karakteristike otvorenog kruga odrediti $G_0(s)$

$$G_o(s) = 1 \cdot \frac{1 - \frac{s}{100}}{s^1 \left(1 - \frac{s}{-1}\right)} = \frac{1}{100} \frac{-s + 100}{s(s+1)}$$

Daljnji dio rješenja jednak je za grupu A i B.

b) Na temelju amplitudno-frekvencijske i fazno-frekvencijske karakteristike otvorenog kruga procijeniti maksimalno nadvišenje i vrijeme prvog maksimuma prijelazne funkcije zatvorenog kruga.

Približne relacije kojima vežemo fazno osiguranje i nadvišenje, te presječnu frekvenciju i vrijeme prvog maksimuma vrijede za sustave čija $A_0(w)$ siječe 0dB pod nagibom -1. Nula je i za A i za B daleko od presječne frekvencije koja otprilike odgovara frekvenciji wn polova zatvorenog kruga, te ona stoga ima zanemariv utjecaj na odziv. Iz dijagrama se direktno očitava:

$$\gamma = 45^{\circ}$$

$$\omega_c = 1 \frac{\text{rad}}{\text{s}}$$

pa vrijedi:

$$\sigma_m = 25\%$$
$$t_m = 3 \text{ s}$$

c) Odrediti maksimalni iznos kašnjenja T_t koje se može dodatno unijeti u otovreni krug a da pritom zatvoreni krug ostane stabilan.

Komponenta kašnjenja ostavlja nepromijenjen $A_o(w)$, a mijenja $\phi_o(w)$ otvorenog kruga na način

$$\varphi_{Tto}(\omega) = \varphi_o(\omega) - \omega T_t$$

gdje s $\varphi_{Tto}(\omega)$ označavamo fazu otvorenog kruga s unijetim mrtvim vremenom.

Budući da se $A_o(w)$ ne mijenja dodavanjem mrtvog vremena u otvoreni krug, frekvencija w_c ostaje nepromijenjna nakon dodavanja kašnjenja, te nas zanima za koji iznos kašnjenja je $w_c=w_\pi$, tj. za koje mrtvo vrijeme T_t faza na frekvenciji w_c poprima vrijednost -180° . Moramo paziti da je produkt kružne frekvencije i vremena kut u radijanima!!

$$\varphi_{T_{to}}(\omega_{c}) = \varphi_{o}(\omega_{c}) - \omega T_{t} = -\pi$$

$$\to \omega_{c} T_{t} = \pi + \varphi_{o}(\omega_{c}) = \gamma [rad]$$

$$\to T_{t} = \frac{\gamma [rad]}{\omega_{c}} = \frac{\pi}{4}$$