CLAIMS

We Claim:

- 1. A molecule of the structure A X B, wherein
- B is a peptide portion of about 5 to about 20 basic amino acid
- 3 residues, which is suitable for cellular uptake,
- A is a peptide portion of about 2 to about 20 acidic amino acid
- 5 residues, which when linked with portion **B** is effective to inhibit or prevent
- 6 cellular uptake of portion **B**, and
- 7 X is a linker of about 2 to about 100 atoms joining A with B, which
- 8 can be cleaved under physiological conditions.
- 1 2. The molecule of claim 1, wherein said peptide portion A comprises
- 2 about 5 to about 9 glutamates or aspartates.
- 1 3. The molecule of claim 2, wherein said peptide portion A comprises
- 2 about 5 to about 9 consecutive glutamates or aspartates.
- 1 4. The molecule of claim 1, wherein said peptide portion **B** comprises
- 2 about 9 to about 16 arginines.
- The molecule of claim 4, wherein said peptide portion **B** comprises
- 2 about 9 to about 16 consecutive arginines.
- 1 6. The molecule of claim 1, wherein said peptide portion A comprises
- 2 D-amino acids.
- 7. The molecule of claim 1, wherein said peptide portion **B** comprises
- 2 D-amino acids.

1 8. The molecule of claim 1, wherein said peptide portion A consists of 2 D-amino acids.

- 1 9. The molecule of claim 1, wherein said peptide portion **B** consists of 2 D-amino acids.
- 1 10. The molecule of claim 1, wherein said peptide portions **A** and **B** 2 consists of D-amino acids.
- 1 11. A molecule for transporting a cargo moiety across a cell membrane 2 of the structure $\mathbf{A} - \mathbf{X} - \mathbf{B} - \mathbf{C}$, wherein
- C is a portion comprising a cargo moiety,
- B is a peptide portion of about 5 to about 20 basic amino acid residues, which is suitable for cellular uptake, is covalently linked to portion C, and is effective to enhance transport of cargo portion C across a cell membrane,
- A is a peptide portion of about 2 to about 20 acidic amino acid residues, which when linked with portion **B** is effective to inhibit or prevent cellular uptake of **B** - **C**, and
- 10 X is a cleavable linker of about 2 to about 100 atoms joining A with 11 B-C, which can be cleaved under physiological conditions.
- 1 12. The molecule of claim 11, wherein said peptide portion A comprises 2 amino acids selected from the group of acidic amino acids consisting of glutamate 3 and aspartate.
- 1 13. The molecule of claim 11, wherein said peptide portion **B** comprises 2 amino acids selected from the group of basic amino acids consisting of arginine 3 and histidine.

1 14. The molecule of claim 11, wherein said cargo portion C is selected

- 2 from the group of cargo moieties consisting of a fluorescent moiety, a
- 3 fluorescence-quenching moiety, a radioactive moiety, a radiopaque moiety, a
- 4 paramagnetic moiety, a nanoparticle, a vesicle, a molecular beacon, a marker, a
- 5 marker enzyme, a contrast agent, a chemotherapeutic agent, and a radiation-
- 6 sensitizer.
- 1 15. The molecule of claim 14, wherein the cargo portion C comprises a
- 2 contrast agent for diagnostic imaging.
- 1 16. The molecule of claim 14, wherein the cargo portion C comprises a
- 2 radiation sensitizer for radiation therapy.
- 1 17. The molecule of claim 11, wherein said peptide portion A comprises
- 2 about 5 to about 9 glutamates or aspartates.
- 1 18. The molecule of claim 17, wherein said peptide portion A comprises
- 2 about 5 to about 9 consecutive glutamates or aspartates.
- 1 19. The molecule of claim 11, wherein said portion peptide **B** comprises
- 2 between about 9 to about 16 arginines.
- 1 20. The molecule of claim 19, wherein said peptide portion **B** comprises
- 2 between about 9 to about 16 consecutive arginines.
- 1 21. The molecule of claim 11, wherein said peptide portion A comprises
- 2 D-amino acids.
- 1 22. The molecule of claim 11, wherein said peptide portion **B** comprises
- 2 D-amino acids.
- 1 23. The molecule of claim 11, wherein said peptide portion A consists of
- 2 D-amino acids.

1 24. The molecule of claim 11, wherein said peptide portion **B** consists of 2 D-amino acids.

- The molecule of claim 11, wherein said peptide portions **A** and **B** consist of D-amino acids.
- 1 26. The molecule of claim 25, wherein said peptide portion **B** consists of 2 D-arginine amino acids.
- The molecule of claim 11, wherein said peptide portion A is located at a terminus of a polypeptide chain comprising B C.
- The molecule of claim 11, wherein said peptide portion A is located at the amino terminus of a polypeptide chain comprising B C.
- 1 29. The molecule of claim 11, wherein said peptide portion A is linked near to or at the amino terminus of a polypeptide chain comprising B C.
- 1 30. The molecule of claim 11, wherein said peptide portion A is linked 2 near to or at the carboxy terminus of a polypeptide chain comprising B C.
- 1 31. The molecule of claim 11, wherein **B C** comprises a polypeptide 2 chain having ends consisting of a **B-side** terminus and a **C-side** terminus, and 3 wherein cleavable linker **X** is disposed near or at said **B-side** terminus.
- 1 32. The molecule of claim 11, wherein **B C** comprises a polypeptide 2 chain having ends consisting of a **B-side** terminus and a **C-side** terminus, and 3 wherein cleavable linker **X** is disposed near or at said **C-side** terminus.
- 1 33. The molecule of claim 11, wherein cleavable linker X is a flexible linker.

- 1 34. The molecule of claim 11, wherein cleavable linker X is a flexible
- 2 linker about 6 to about 30 atoms in length.
- 1 35. The molecule of claim 11, wherein cleavable linker X is cleavable in
- 2 an acidic environment.
- 1 36. The molecule of claim 11, wherein cleavable linker X is comprises a
- 2 peptide linkage.
- 1 37. The molecule of claim 11, wherein cleavable linker X comprises
- 2 aminocaproic acid.
- 1 38. The molecule of claim 11, wherein cleavable linker X is configured
- 2 for cleavage exterior to a cell.
- 1 39. The molecule of claim 11, wherein cleavable linker X is configured
- 2 for cleavage by an enzyme.
- 1 40. The molecule of claim 38, wherein said enzyme is a matrix
- 2 metalloprotease.
- 1 41. The molecule of claim 35 wherein cleavable linker X comprises the
- 2 amino acid sequence PLGLAG (SEQ ID NO:1).
- 1 42. The molecule of claim 35 wherein cleavable linker X comprises the
- 2 amino acid sequence EDDDDKA (SEQ ID NO:2).
- 1 43. The molecule of claim 34 wherein cleavable linker X comprises a S
- 2 S linkage.
- 1 44. The molecule of claim 34, wherein cleavable linker X comprises a
- 2 transition metal complex, wherein said transition metal complex linker is cleaved
- 3 when the metal is reduced.

The molecule of claim 11, comprising a plurality of cleavable linkers 45. 1 2 X linking a portion A to a structure B - C. 46. A pharmaceutical composition comprising: 1 2 A molecule of the structure A - X - B, wherein **B** is a peptide portion of about 5 to about 20 basic amino acid 3 4 residues, which is suitable for cellular uptake, 5 A is a peptide portion of about 2 to about 20 acidic amino acid 6 residues, which when linked with portion **B** is effective to inhibit or prevent 7 cellular uptake of portion B, and 8 X is a cleavable linker of about 3 to about 30 atoms joining A with **B**, which can be cleaved under physiological conditions; and 9 10 a pharmaceutically acceptable carrier. 47. The pharmaceutical composition of claim 46, wherein 1 2 said cleavable linker X is of between about 6 to about 30 atoms in length, 3 said portion A has between about 5 to about 9 acidic amino acid residues, and said portion **B** has between about 9 to about 16 basic amino acid residues. 4 48. 1 The pharmaceutical composition of claim 46 or 47, further 2 comprising a portion C covalently attached to said portion B and comprising a cargo moiety. 3 1 49. A method of modulating cellular uptake of a peptide **B** of about 5 to 2 about 20 basic amino acid residues, which is suitable for cellular uptake, 3 comprising:

4 linking said peptide B to a peptide A of about 2 to about 20 acidic amino 5 acid residues with a cleavable linker X of about 3 to about 30 atoms, which can be 6 cleaved under physiological conditions and 7 cleaving said cleavable linker X effective to separate peptide B from 8 molecule A. 1 50. A method of modulating cellular uptake of a cargo moiety C, 2 comprising: 3 covalently attaching a cargo moiety C to a peptide B of about 5 to about 20 4 basic amino acid residues to form a molecule B - C; 5 linking said molecule **B** - C to a peptide A of about 2 to about 20 acidic 6 amino acid residues with a cleavable linker X of about 3 to about 30 atoms, and 7 cleaving said cleavable linker X effective to separate B - C from said 8 peptide A. 1 51. A nucleic acid encoding a molecule of the structure A - X - B. wherein 2 3 **B** is a peptide of about 5 to about 20 basic amino acid residues,

4

5

6

7

8

9

of peptide B, and

which is suitable for cellular uptake,

residues joining A with B, which can be cleaved under physiological conditions.

A is a peptide of about 2 to about 20 acidic amino acid residues.

X is a cleavable linker portion of between 1 and 10 amino acid

which when linked with peptide B is effective to inhibit or prevent cellular uptake

1	52.	A nucleic acid encoding a molecule of the structure $A - X - B - C$,
2	wherein	
3		C is a peptide cargo moiety,
4		B is a peptide of about 5 to about 20 basic amino acid residues,
5	which is suitable for cellular uptake,	
6		A is a peptide of about 2 to about 20 acidic amino acid residues,
7	which when	linked with peptide ${f B}$ is effective to inhibit or prevent cellular uptake
8	of peptide B - C, and	
9		X is a cleavable linker portion of between 1 and 10 amino acid
10	residues joining A with $B - C$ which can be cleaved under physiological	
l 1	conditions.	
12	53.	A molecule for transporting a fluorescent cargo moiety across a cell
13	membrane of the structure $\mathbf{Q} - \mathbf{A} - \mathbf{X} - \mathbf{B} - \mathbf{C}$, wherein	
14		C is a portion comprising a fluorescent cargo moiety,
15		B is a peptide portion of about 5 to about 20 basic amino acid
16	residues, whi	ch is suitable for cellular uptake, is covalently linked to portion C,
17	and is effecti	ve to enhance transport of cargo portion C across a cell membrane,
18		Q is a quencher moiety attached to A and effective to quench
19	fluorescence	from fluorescent cargo C;
20		A is a peptide portion of about 2 to about 20 acidic amino acid
21	residues, whi	ch when linked with portion B is effective to inhibit or prevent
2	cellular untol	ve of R - C and

- X is a cleavable linker of about 2 to about 100 atoms joining A with
 B-C, which can be cleaved under physiological conditions.
- 25 54. The molecule of claim 39, wherein said enzyme is a protease.
- 55. The molecule of claim 54, wherein, upon cleavage of said linker X, said linker X has a C-terminus and said portion B has an N terminus, whereby upon cleavage of linker X said N terminus of portion B may provide an additional positive charge to portion B under physiological conditions.
- The molecule of claim 11, comprising a single cargo portion C linked to a plurality of portions **B**, each of portions **B** being linked to a cleavable linker portion **X** linked to an acidic portion **A**.