List of Definitions for MATA22-Winter 2021

(c) 2021 C. Karimianpour

1. VECTORS

- 1. **Definition.** A real column vector is a $n \times 1$ matrix $\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$, where $v_i \in \mathbb{R}$, $1 \le i \le n$.
- 2. **Definition.** A real row vector is a $1 \times n$ matrix $[v_1 \ v_2 \ \cdots \ v_n]$, where $v_i \in \mathbb{R}$, $1 \le i \le n$.

1

3. **Definition.** The Euclidean space \mathbb{R}^n is

$$\left\{ \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \mid v_i \in \mathbb{R}, 1 \le i \le n \right\}.$$

4. Definition. Let \vec{v} and \vec{w} be (row or column) vectors with components v_1, v_2, \dots, v_n and w_1, w_2, \dots, w_n respectively. The **dot product** of \vec{v} and \vec{w} is a scalar denoted by $\vec{v} \cdot \vec{w}$ and is defined as

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n.$$

5. Definition. Let $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be in \mathbb{R}^n . Then norm or magnitude or length of \vec{v} is

denoted by $\|\vec{v}\|$ and is defined to be

$$\sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

- 6. **Definition.** We say two vectors \vec{v} and \vec{w} are **parallel** if one is the scalar multiple of the other. That is if $\vec{v} = k\vec{w}$ for some $k \in \mathbb{R}$ or $\vec{w} = k\vec{v}$ for some $k \in \mathbb{R}$.
- 7. **Definition.** We say two vectors \vec{v} and \vec{w} are **perpendicular** or **orthogonal** if $\vec{v} \cdot \vec{w} = 0$.
- 8. **Definition.** Given vectors \vec{v} and \vec{w} , the **angle** between \vec{v} and \vec{w} is define to be

$$\arccos(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}).$$

¹There are other ways of representing row vectors such as $\langle v_1, \cdots, v_n \rangle$ or (v_1, \cdots, v_n) that we saw in webwork questions. Our preference is to reserve the notation (v_1, \cdots, v_n) for a point and $\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for a (row) vector

²this definition makes sense thanks to Cauchy Schwartz inequality

2. System of Linear equations

- 9. **Definition.** Let A be a matrix in REF form. An entry of A is called a **pivot entry** if it is the first non-zero entry of a row. A column of A is called a **pivot column** if it contains a pivot entry. If A is also in RREF, pivot entries are called **leading ones**
- 10. **Definition.** Given a system of linear equations with m variables and n equations, with coefficient matrix A and augmented matrix $[A|\vec{b}]$
 - (1) a variable is called a **free variable** if its corresponding column in rref A does not contain a pivot (or a leading one).
 - (2) a variable is called a **leading variable or a basic variable or a dependent** variable if its corresponding column in rref A contains a pivot (or a leading one).

3. Matrices

- 11. **Definition.** The identity matrix I_n is an $n \times n$ matrix whose diagonal entries are 1 and off diagonal entries are 0.
- 12. **Definition.** The zero matrix $0_{n \times m}$ is an $n \times m$ matrix with all zero entries.

Rank. The rank of a matrix A is the number of leading ones in rref(A)³

13. **Definition.** Given an $n \times m$ matrix with rows $\vec{w}_1, \dots, \vec{w}_n$ and a vector $\vec{x} \in \mathbb{R}^m$ then

$$A\vec{x} = \begin{bmatrix} \vec{w}_1 \cdot \vec{x} \\ \vdots \\ \vec{w}_n \cdot \vec{x} \end{bmatrix}.$$

4. Linear transformations: Chapter 2 and 4

Vector Space. Let V be a set. Suppose an addition operation + is defined on V, so that for every pair of elements v, w of V there is associated another element v + w of V. Suppose also that a scalar multiplication by real numbers is defined on V, so that for every $c \in \mathbb{R}$ and $v \in V$ there is associated an element $c \cdot v$ in V. Then V is called a vector space if all the following are true:

VS-1: for all $u, v, w \in V$, (u + v) + w = u + (v + w);

VS-2: for all $u, v \in V$, u + v = v + u;

VS-3: there is an element $\vec{0} \in V$ such that $\vec{0} + v = v$ for all $v \in V$;

VS-4: for all $v \in V$ there is a unique element $-v \in V$ such that $v + (-v) = \vec{0}$;

VS-5: for all $a \in \mathbb{R}$ and $v, w \in V$, $a \cdot (v + w) = a \cdot v + a \cdot w$;

VS-6: for all $a, b \in \mathbb{R}$ and for all $v \in V$, $(a + b) \cdot v = a \cdot v + b \cdot v$;

VS-7: for all $a, b \in \mathbb{R}$ and for all $v \in V$, $a \cdot (b \cdot v) = (ab) \cdot v$;

VS-8: for all $v \in V$, $1 \cdot v = \vec{v}$.

An element of a vector space is called a *vector*.

Function. A mapping or function or transformation $X \xrightarrow{f} Y$ is a rule which assigns a unique element $f(x) \in Y$ to each element $x \in X$.

Source and Target. We call X the domain or source of f, and call Y the codomain or target of f.

³ this definition makes sense thanks to uniqueness of RREF.

Image. The **image** of $f: X \to Y$ is defined to be the set $\operatorname{im}(f) = \{f(x) : x \in X\} = \{y \in Y \mid f(x) = y \text{ for some } x \in X\}.$

Surjective/injective. The function : $X \to Yf$ is surjective or onto if for all $y \in Y$, there exists some $x \in X$ such that f(x) = y. In this case, we also say "f is a surjection."

The function f is **injective** or **one-to-one** if for all $y \in Y$ there exists at most one $x \in X$ such that f(x) = y. Equivalently: whenever $f(x_1) = f(x_2)$ for $x_1, x_2 \in X$, it follows that $x_1 = x_2$. In this case, we also say "f is an **injection.**"

Invertible. We say the function f is **invertible** or **bijective** if for all $y \in Y$ there exists exactly one $x \in X$ such that f(x) = y.

Linear Transformation. Let V and W be vector spaces. A **linear transformation** from V to W is a mapping $V \xrightarrow{T} W$ that satisfies:

- (1) $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$ for all vectors $\vec{x}, \vec{y} \in V$;
- (2) $T(k\vec{x}) = kT(\vec{x})$ for all vectors $\vec{x} \in V$ and all scalars $k \in \mathbb{R}$.

5. Concepts in vector spaces

Linear combination. A **linear combination** of the finitely many vectors $\vec{v}_1, \ldots, \vec{v}_n$ in V is an expression of the form

$$c_1\vec{v}_1 + \cdots + c_n\vec{v}_n$$

where each c_i is a scalar.

⁴Note that the target space and the image of f are not necessarily the same. In previous courses, this distinction may not have been emphasized and you may have referred to both or either as the "range" of f.