Real-time preictal detection through the application of machine learning to Electroencephalogram signals.

William Riddell November 7, 2023

Contents

1	Inti	roducti	ion	3
2	Methodology Comparison			4
	2.1	Prepre	ocessing	4
		2.1.1	Butterworth Filter	4
		2.1.2	Notch Filter	4
		2.1.3	Averaging Filter	4
		2.1.4	Large Laplacian Filter	4
		2.1.5	Common Spatial Pattern	4
		2.1.6	Empirical Mode Decomposition vs Power Spectral Den-	
			sity	4
	2.2	Feature Extraction		4
		2.2.1	Univariate Linear Regression	4
		2.2.2	Spectral Power Features	4
		2.2.3	Wavelet Energy and Wavelet Entropy	4
		2.2.4	Intrinsic Mode Functions	4
		2.2.5	Kurtosis	4
	2.3	Machi	ine Learning (ML) Models	4
		2.3.1	Support Vector Machine	4
		2.3.2	k-Nearest Neighbour	4
		2.3.3	Naïve Bayes	4
		2.3.4	Wavelet Transformation	4
3	Dat	aset C	Comparison	4

1 Introduction

 $Have \ 3 \ channels \ with \ the \ interictal, \ preictal, \ ictal \ and \ post \ ictal \ states \ labeled.$

2 Methodology Comparison

- 2.1 Preprocessing
- 2.1.1 Butterworth Filter
- 2.1.2 Notch Filter
- 2.1.3 Averaging Filter
- 2.1.4 Large Laplacian Filter
- 2.1.5 Common Spatial Pattern
- 2.1.6 Empirical Mode Decomposition vs Power Spectral Density
- 2.2 Feature Extraction
- 2.2.1 Univariate Linear Regression
- 2.2.2 Spectral Power Features
- 2.2.3 Wavelet Energy and Wavelet Entropy
- 2.2.4 Intrinsic Mode Functions
- 2.2.5 Kurtosis
- 2.3 Machine Learning (ML) Models
- 2.3.1 Support Vector Machine
- 2.3.2 k-Nearest Neighbour
- 2.3.3 Naïve Bayes
- 2.3.4 Wavelet Transformation

3 Dataset Comparison

asdf (Riddell 2023)

Acronyms

ML Machine Learning. 2, 4

References

Riddell, W. (2023), Test Book, British London.