

- চ্চ BSD-3-Clause license
- Public repository

LICENSE README	add resource fro	4 years ago	
hubconf.py	fix noise of unvoi	5 years ago	
inference	add pretrained	5 years ago	
preproces	zero-pad short a	5 years ago	
requireme	torch doesn't ne	5 years ago	
🗋 trainer.py	now training / va	5 years ago	

MelGAN

Unofficial PyTorch implementation of MelGAN vocoder

Key Features

- MelGAN is lighter, faster, and better at generalizing to unseen sp than WaveGlow.
- This repository use identical mel-spectrogram function from
- README SSD-3-Clause license
 - Pretrained model on LJSpeech-1.1 via PyTorch Hub.

Prerequisites

Tested on Python 3.6

pip install -r requirements.txt

Prepare Dataset

- Download dataset for training. This can be any wav files with sam 22050Hz. (e.g. LJSpeech was used in paper)
- preprocess: python preprocess.py -c config/default.yaml -d [d root path]
- Edit configuration yaml file

Train & Tensorboard

• python trainer.py -c [config yaml file] -n [name of the run]

- cp config/default.yaml config/config.yaml and then edit config.yaml
- Write down the root path of train/validation files to 2nd/3rd
- Each path should contain pairs of *.wav with corresponding (preprocessed) *.mel file.
- The data loader parses list of files within the path recursively
- tensorboard --logdir logs/

Pretrained model

Try with Google Colab: TODO

```
import torch
vocoder = torch.hub.load('seungwonpark/melgan', 'melgan')
vocoder.eval()
mel = torch.randn(1, 80, 234) # use your own mel-spectrogram her

if torch.cuda.is_available():
    vocoder = vocoder.cuda()
    mel = mel.cuda()

with torch.no_grad():
    audio = vocoder.inference(mel)
```

Inference

• python inference.py -p [checkpoint path] -i [input mel path]

Results

See audio samples at: http://swpark.me/melgan/. Model was trained a GPU for 14 days using LJSpeech-1.1.

Implementation Authors

- Seungwon Park @ MINDsLab Inc. (yyyyy@snu.ac.kr, swpark@min
- Myunchul Joe @ MINDsLab Inc.
- Rishikesh @ DeepSync Technologies Pvt Ltd.

License

BSD 3-Clause License.

- utils/stft.py by Prem Seetharaman (BSD 3-Clause License)
- <u>datasets/mel2samp.py</u> from <u>https://github.com/NVIDIA/waveglov</u>
 Clause License)
- <u>utils/hparams.py</u> from <u>https://github.com/HarryVolek/PyTorch_Speaker_Verification</u> (No specified)

Useful resources

- How to Train a GAN? Tips and tricks to make GANs work by Soun Chintala
- Official MelGAN implementation by original authors
- <u>Reproduction of MelGAN NeurIPS 2019 Reproducibility Challeng</u>
 (Ablation Track) by Yifei Zhao, Yichao Yang, and Yang Gao
 - "replacing the average pooling layer with max pooling layer replacing reflection padding with replication padding improve performance significantly, while combining them produces we

Releases 3

fixed noise of unvoiced segment (fix #30, #17) Latest on Dec 2, 2019

+ 2 releases

Packages

No packages published

Contributors 2

seungwonpark Seung-won Park

Deployments 16

github-pages 5 years ago

+ 15 deployments

Languages

• Python 100.0%