TPC#3

Data de entrega: 31 de Maio de 2022

Autores: Andre Couto (100%); Maria Lopes (100%); Renatha Vieira (100%)

1. Consideremos o problema de condições de fronteira (P), para encontrar $u \in C^2[0,1]$, tal que:

$$\begin{cases}
-Tu''(x) + ku(x) = w(x), & se \ x \in (0,1), \\
u(0) = u(1) = 0
\end{cases}$$

Para obtermos a formulação variacional do problema (P), vamos enfraquecer as condições de regularidade:

 1° Multiplicamos a EDO -Tu"(x) + ku(x) = w(x)presente em (P), por uma função teste v definida em [0,1] e integramos ambos os membros:

$$\int_0^1 -Tu''(x)v(x) + \int_0^1 ku(x)v(x)dx = \int_0^1 w(x)v(x)dx$$

 $2^{\underline{0}}$ Integramos por partes o membro do lado esquerdo da equação:

$$\int_0^1 -Tu''(x)v(x) + \int_0^1 ku(x)v(x)dx = T\left[\int_0^1 u'(x)v'(x)dx + \left[-u'(x)v(x)\right]_0^1\right] + k \int_0^1 u(x)v(x)dx$$
$$= T\int_0^1 u'(x)v'(x)dx + k \int_0^1 u(x)v(x)dx$$

 3° Consideramos v(0)=v(1)=0 e obtemos que:

$$T \int_0^1 u'(x)v'(x)dx + k \int_0^1 u(x)v(x)dx = \int_0^1 w(x)v(x)dx,$$

com
$$a(u,v) = T \int_0^1 u'(x)v'(x)dx + k \int_0^1 u(x)v(x)dx \in \langle w, v \rangle = \int_0^1 w(x)v(x)dx.$$

Encontramos assim o problema variacional (V) associado ao problema de fronteiras (P): encontrar $u \in V$ tal que $a(u, v) = \langle u', v' \rangle = \langle w, v \rangle, \forall v \in V$,

com V= $\{v: v \in C[0,1], v(0)=v(1)=0, v' \text{ continua por trocos e limitada em } [0,1] \text{ um espaço vetorial com produto interno } \langle v_1, v_2 \rangle = \int_0^1 v_1 v_2(x) dx.$

2. O problema de energia mínima associado a (P) consiste em determinar $u \in V$ tal que:

$$J(u) \le J(v), \forall v \in V$$

Para
$$a(u, v) = \int_0^1 Tu'(x)v'(x) + ku(x)v(x)dx \in \langle w, v \rangle = \int_0^1 w(x)v(x)dx,$$

$$J(v) = \frac{1}{2}a(v, v) - \langle w, v \rangle$$

$$= \frac{1}{2}\int_0^1 Tv'(x)v'(x) + kv(x)v(x)dx - \int_0^1 w(x)v(x)dx$$

$$= \frac{1}{2}\int_0^1 T[v'(x)]^2 + k[v(x)]^2dx - \int_0^1 w(x)v(x)dx$$

Os problemas são equivalentes pois a é uma forma bilinear, simétrica e definida positiva:

Bilinear:

$$a(\alpha u_1 + \beta u_2, v) = \int_0^1 T(\alpha u_1 + \beta u_2)'(x)v'(x) + k(\alpha u_1 + \beta u_2)(x)v(x)dx$$

$$= \int_0^1 T\alpha u_1'(x)v'(x) + k\alpha u_1(x)v(x)dx + \int_0^1 T\beta u_2'(x)v'(x) + k\beta u_2(x)v(x)dx$$

$$= \alpha a(u_1, v) + \beta a(u_2, v)$$

е

$$a(u, \alpha v_1 + \beta v_2) = \int_0^1 T'(x)u'(x)(\alpha v_1 + \beta v_2)'(x) + k(x)u(x)(\alpha u_1 + \beta u_2)(x)dx$$

$$= \int_0^1 Tu'(x)\alpha v_1'(x) + ku(x)\alpha v_1(x)dx + \int_0^1 Tu'(x)\beta v_2'(x) + ku(x)\beta v_2(x)dx$$

$$= \alpha a(u, v_1) + \beta a(u, v_2)$$

Simétrica:

$$a(u,v) = \int_0^1 Tu'(x)v'(x) + ku(x)v(x)dx$$
$$= \int_0^1 Tv'(x)u'(x) + kv(x)u(x)dx$$
$$= a(v,u)$$

Definida Positiva:

$$a(v,v) = \int_0^1 T[v'(x)]^2 + k[v(x)]^2 dx \ge 0$$
, pois a função é não negativa.

T e k constantes positivas. v só é constante para v=0 logo a(v,v) nunca é zero.

Assim $a(v, v) > 0 \quad \forall v \neq 0$.

$$(V) \Rightarrow (M)$$
?

Seja u uma solução de (V) e v = u + f, $f \in V$

Então,

$$\begin{split} J(v) &= J(u+f) \\ &= \frac{1}{2}a(u+f,u+f) - \langle w,u+f \rangle \\ &= \frac{1}{2}a(u,u) + \frac{1}{2}a(u,f) + \frac{1}{2}a(f,u) + \frac{1}{2}a(f,f) - \langle w,u \rangle - \langle w,f \rangle, \quad a(\cdot,\cdot) \text{ bilinear} \\ &= \frac{1}{2}a(u,u) + a(u,f) + \frac{1}{2}a(f,f) - \langle w,u \rangle - \langle w,f \rangle \\ &= \frac{1}{2}a(u,u) - \langle w,u \rangle + \langle w,f \rangle - \langle w,f \rangle + \frac{1}{2}a(f,f) \\ &= J(u) + \frac{1}{2}a(f,f) \geq J(u), \quad pois \quad a(f,f) \geq 0. \end{split}$$

Assim u minimiza $J(v) \in (V) \Rightarrow (M)$.

$$(M) \Rightarrow (V)$$
?

Seja u uma solução de (M)

Então,
$$J(u) \leq J(u+tv) = g(t)$$

Logo, g tem um mínimo em t = 0, ou seja g'(0) = 0

$$\begin{split} g(t) &= \frac{1}{2}a(u,u) + \frac{1}{2}a(u,tv) + \frac{1}{2}a(tv,u) + \frac{1}{2}a(tv,tv) - \langle w, u + tv \rangle \\ &= \frac{1}{2}a(u,u) + ta(u,v) + \frac{1}{2}t^2a(v,v) - \langle w, u \rangle - t\langle w, v \rangle \\ &= J(u) + ta(u,v) + \frac{1}{2}t^2a(v,v) - t\langle w, v \rangle \end{split}$$

g(t) contínua em t pois quadrática em t e $g'(t) = a(u, v) + ta(v, v) - \langle w, v \rangle$.

Como g'(0) = 0 então $g'(0) = a(u, v) - \langle w, v \rangle = 0 \Rightarrow a(u, v) = \langle w, v \rangle$.

Logo u é solução de V e os problemas são equivalentes.

3. (a) **Método de Galerkin:** encontrar uma aproximação $u_h \in V_h$ para a solução u do problema variacional (V) tal que

$$a(u_h, v) = \langle w, v \rangle,$$

para todo o $v \in V_h$ e com $V_h \subset V$ um espaço vetorial de dimensão reduzida. Vamos usar o Método dos Elementos Finitos para encontrar $u_h(x) = \sum_{i=1}^n \xi_i \psi_i(x)$, com $\psi_i(x)$, i=1,...,n, as funções chapéu, tal que:

$$a(u_h, \psi_j) = \langle w, \psi_j \rangle, j = 1, ..., n.$$

Usa-se assim o Método dos Elementos Finitos para calcular ξ_i , i=1,...,n, com

$$A\xi = b \Leftrightarrow \begin{bmatrix} a(\psi_1, \psi_1) & \dots & a(\psi_n, \psi_1) \\ \vdots & \ddots & \vdots \\ a(\psi_1, \psi_n) & \dots & a(\psi_n, \psi_n) \end{bmatrix} \times \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} = \begin{bmatrix} \langle w, \psi_1 \rangle \\ \vdots \\ \langle w, \psi_n \rangle \end{bmatrix}$$

Assim, descobrimos $u_h(x_i)$, porque como $\psi_i(x_j) = \delta_{ij}$, tem-se que $\xi_i = u_h(x_i)$.

Consideremos a partição do intervalo [0,1]: $0=x_0 < x_1 < ... < x_n < x_{n+1}=1$, com subintervalos de amplitude $x_{i+1}-x_i=h$, i=1,...,n, espaçamento $h=\frac{1}{n+1}$, e as funções chapéu, i=1,...,n:

$$\psi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h}, x \in [x_{i-1}, x_i] \\ \frac{x_{i+1} - x}{h}, x \in [x_i, x_{i+1}] \\ 0, x \in [0, x_{i-1}] \cup [x_{i+1}, 1] \end{cases}$$

Temos que $A=[(\psi_i,\psi_j)]_{i,j=1}^n$, com $a(\psi_i,\psi_j)=\int_0^1 \psi_i'(x)\psi_j'(x)$. Para além disto, também sabemos que $a(u_h,\psi_j)=\langle w,\psi_j\rangle$, j=1,...,n. Então,

$$a(u_h, \psi_j) = a(\sum_{i=1}^n \xi_i \psi_i(x), \psi_j)$$

$$= \sum_{i=1}^n \xi_i a(\psi_i(x), \psi_j(x))$$

$$= \sum_{i=1}^n \xi_i (T \int_0^1 \psi_i'(x) \psi_j'(x) dx + K \int_0^1 \psi_i(x) \psi_j(x) dx)$$

$$= \sum_{i=1}^n \xi_i T \int_0^1 \psi_i'(x) \psi_j'(x) dx + \sum_{i=1}^n \xi_i K \int_0^1 \psi_i(x) \psi_j(x) dx$$

Logo, $a(u_h, \psi_j) = \langle w, \psi_j \rangle \Leftrightarrow \sum_{i=1}^n \xi_i \int_0^1 \psi_i'(\underline{x}) \psi_j'(x) dx + \frac{K}{T} \sum_{i=1}^n \xi_i \int_0^1 \psi_i(x) \psi_j(x) dx = \frac{1}{T} \langle w, \psi_j \rangle$

Consideremos então que $K = \left\langle \psi_i', \psi_j' \right\rangle = \int_0^1 \psi_i'(x) \psi_j'(x) dx$ e que $M = \left\langle \psi_i, \psi_j \right\rangle = \int_0^1 \psi_i(x) \psi_j(x) dx$.

Consideremos os casos em que i=j e j=i+1 na matriz K.

No caso j=i:
$$\langle \psi_i', \psi_i' \rangle = \int_0^1 \psi_i' \psi_i' = \int_{x_{i-1}}^{x_i} \psi_i'(x)^2 dx = \int_{x_{i-1}}^{x_i} \frac{1}{h^2} dx = \frac{2}{h}$$

No caso j=i+1: $\langle \psi_i', \psi_{i+1}' \rangle = \int_0^1 \psi_i' \psi_{i+1}' = \int_{x_i}^{x_{i+1}} \psi_i'(x) \psi_{i+1}'(x) dx = \int_{x_i}^{x_{i+1}} -\frac{1}{h^2} dx = -\frac{1}{h}$ A matriz K é então dada por:

$$K = \frac{1}{h} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 2 & -1 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 2 \end{bmatrix}$$

Consideremos agora os dois casos na matriz M.

No caso j=i:

$$\langle \psi_i, \psi_i \rangle = \int_0^1 \psi_i \psi_i = \int_{x_{i-1}}^{x_i} \psi_i^2(x) dx + \int_{x_i}^{x_{i+1}} \psi_i^2(x) dx$$

$$= \int_{x_{i-1}}^{x_i} (\frac{x - x_{i-1}}{h})^2 dx + \int_{x_i}^{x_{i+1}} (\frac{x_{i+1-x}}{h})^2 dx$$

$$= \frac{1}{h^2} (\left[\frac{(x - x_{i-1})^3}{3} \right]_{x_{i-1}}^{x_i} + \left[\frac{(x_{i+1} - x)^3}{3} \right]_{x_i}^{x_{i+1}}$$

$$= \frac{1}{h^2} (\frac{(x_i - x_{i-1})^3}{3} - \frac{(x_{i-1-x_{i-1}})^3}{3} + \frac{(x_{i+1} - x_{i+1})^3}{3} - \frac{(x_{i+1} - x_i)^3}{3})$$

$$= \frac{1}{h^2} (\frac{h^3}{3} + \frac{h^3}{3}) = \frac{2}{3}h$$

No caso j=i+1:

$$\begin{split} \int_0^1 \psi_i \psi_{i+1} &= \int_{x_i}^{x_{i+1}} \psi_i(x) \psi_{i+1}(x) dx \\ &= \int_{x_i}^{x_{i+1}} \frac{x_{i+1} - x}{h} \cdot \frac{x - x_i}{h} dx = \frac{1}{h^2} \int_{x_i}^{x_{i+1}} (x_{i+1} - x)(x - x_i) dx \\ &= \frac{1}{h^2} \int_{x_i}^{x_{i+1}} (x_{i+1} + x_i - x_i - x)(x - x_i) dx \\ &= \frac{1}{h^2} \int_{x_i}^{x_{i+1}} (h + x_i - x)(x - x_i) dx \\ &= \frac{1}{h^2} \int_{x_i}^{x_{i+1}} hx - hx_i + (x_i - x)(x - x_i) dx \\ &= \frac{1}{h^2} \int_{x_i}^{x_{i+1}} h(x_i - x) - \int_{x_i}^{x_{i+1}} (x - x_i)^2 dx \\ &= \frac{1}{h^2} ([\frac{h(x - x_i)^2}{2}]_{x_i}^{x_{i+1}} - [\frac{(x - x_i)^3}{3}]_{x_i}^{x_{i+1}}) \\ &= \frac{1}{h^2} (\frac{h(x_{i+1} - x_i)^2}{2} - \frac{h(x_i - x_i)^2}{2} - \frac{(x_{i+1} - x_i)^3}{3} + \frac{(x_i - x_i)^3}{3}) \\ &= \frac{1}{h^2} (\frac{h^3}{2} - \frac{h^3}{3}) = \frac{1}{h^3} \frac{h^3}{6} = \frac{h}{6} \end{split}$$

A matriz M é então dada por:

$$M = \frac{h}{6} \begin{bmatrix} 4 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 4 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 4 & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 4 \end{bmatrix}$$

Assim, a matriz A pode ser escrita na forma:

$$A = \frac{1}{h} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 2 \end{bmatrix} + \frac{hk}{6T} \begin{bmatrix} 4 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 4 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 4 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 4 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 4 \end{bmatrix} = K + \alpha M$$

(b) **Método de Ritz:** encontrar $u \in V_h$ tal que

$$J(u) \le J(v) \ \forall v \in V_h$$

com $V_h \subset V$ um espaço vetorial de dimensão finita e

$$J(v) = \frac{1}{2}a(v,v) - \langle w, v \rangle.$$

Tomemos $u_h \in V_h$, com $u_h(x) = \sum_{i=1}^n \xi_i \psi_i(x)$ e $\psi_i(x)$, $i = 1, \ldots, n$ as funções chapéu tal que $a(u_h, \psi_j) = \langle w, \psi_j \rangle$, $j = 1, \ldots, n$. Assim queremos encontrar u_h tal que $J(u_h) \leq J(\psi_h)$

Assim queremos encontrar u_h tal que $J(u_h) \leq J(\psi_h)$ Ora

$$J(u_h) = J(\sum_{i=1}^{n} \xi_i \psi_i(x))$$

= $\frac{1}{2} a(\sum_{i=1}^{n} \xi_i \psi_i(x), \sum_{i=1}^{n} \xi_i \psi_i(x)) - \langle w, \sum_{i=1}^{n} \xi_i \psi_i(x) \rangle$

Seja

$$A = [a(\psi_i, \psi_j)] = \begin{bmatrix} a(\psi_1, \psi_1) & \dots & a(\psi_1, \psi_n) \\ \vdots & \dots & \vdots \\ a(\psi_1, \psi_n) & \dots & a(\psi_1, \psi_n) \end{bmatrix},$$

$$\xi = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix},$$

$$b = [\langle w, \psi_j \rangle] = \begin{bmatrix} \langle w, \psi_1 \rangle \\ \vdots \\ \langle w, \psi_n \rangle \end{bmatrix}$$

Assim
$$J(u_h) = \frac{1}{2}\xi^T A \xi - b^T \xi$$

Logo o método consiste em encontrar $u_h \in V_h$ tal que o vetor $[u_h(x_1) \dots u_h(x_n)]$ é solução do problema de otimização

$$\min_{\xi \in \mathbb{R}^n} \frac{1}{2} \xi^T A \xi - b^T \xi$$

(c) Pelo método de Galerkin buscamos encontrar um $u_h \in V_h$ tal que $a(u_h, v) = \langle f, v \rangle$ para todo o $v \in V_h$, com $u_h(x) = \sum_{i=1}^n \xi_i \psi_i(x)$, $\psi_i(x)$ para $i = 1, \ldots, n$ as funções chapéu tal que $a(u_h, \psi_j) = \langle w, \psi_j \rangle$, $j = 1, \ldots, n$. O que, como vimos na alinha (a), equivale a determinar $\xi = [u_h(x_1) \ldots u_h(x_n)]^T$ tal que $A\xi = b$, para $A = [a(\psi_i, \psi_j)]$ e $b = [\langle f, \psi_j \rangle]$.

Pela alinha (b), compreendemos que o método de Ritz consiste em encontrar $u_h \in V_h$ tal que o vetor $[u_h(x_1) \dots u_h(x_n)]$ seja a menor solução do problema $\frac{1}{2}\xi^T A\xi - b^T \xi$. Sendo assim, para resolver a minimização buscamos fazer $\nabla f(\xi) = 0$ com $f(\xi) = \frac{1}{2}\xi^T A\xi - b^T \xi$.

Ora, pelo exercício 1 da aula 7 temos que se $f(x) = \frac{1}{2}x^T H x + g^T x$ com H simétrica e invertível então $\nabla f(x) = H x - g$. A matriz $A = [a(\psi_i, \psi_j)]$ é tridiagonal, sendo assim invertível e, além disso, como $a(\psi_i, \psi_j) = a(\psi_j, \psi_i), \forall j, i = 1, \dots, n$, dessa forma, para $f(\xi) = \frac{1}{2}\xi^T A\xi - b^T \xi$ temos $\nabla f(\xi) = A\psi - b$.

Para encontrar o ξ que minimize o problema resolvemos $\nabla f(\xi) = 0$ o que equivale a resolvermos $A\xi = b$. Provando assim que os métodos são equivamentes no sentido de terem as mesmas soluções).

(d) Buscamos encontrar soluções aproximadas para (P) tendo $w(x) = 1 + sin(4\pi x)$, T = 1 e k = 0.1, primeiro para $h = \frac{1}{10}$, depois $h = \frac{1}{20}$ e, por fim, $h = \frac{1}{40}$.

Para isso modificamos o código de MATLAB estudado em aula que aplica o método dos elementos finitos para a função $f(x)=\frac{w(x)}{T}$ e para cada partição dada, isto é, para n=9,19e39. Construímos as matrizes esparsas $K\in M$ de modo que A=K+kM.

E os resultados obtidos foram:

X	soluções aproximadas
0	0
0.1	0.0515
0.2	0.0835
0.3	0.0997
0.4	0.1119
0.5	0.1237
0.6	0.1257
0.7	0.1082
0.8	0.0750
0.9	0.0377
1	0

Tabela 1: Soluções aproximadas para (P) com $h=1/10\,$

X	soluções aproximadas	X	soluções aproximadas
0	0	0.5	0.1237
0.05	0.0274	0.55	0.1263
0.1	0.0508	0.6	0.1250
0.15	0.0694	0.65	0.1188
0.2	0.0831	0.7	0.1078
0.25	0.0928	0.75	0.0928
0.3	0.1001	0.8	0.0754
0.35	0.1064	0.85	0.0569
0.4	0.1126	0.9	0.0384
0.45	0.1186	0.95	0.0197
		1	0

Tabela 2: Soluções aproximadas para (P) com $h=1/20\,$

X	soluções apr.						
0	0	0.275	0.0967	0.55	0.1262	0.825	0.0663
0.025	0.0141	0.3	0.1002	0.575	0.1261	0.85	0.0571
0.05	0.0273	0.325	0.1034	0.6	0.1248	0.875	0.0478
0.075	0.0395	0.35	0.1065	0.625	0.1224	0.9	0.0385
0.1	0.0507	0.375	0.1096	0.65	0.1187	0.925	0.0292
0.125	0.0606	0.4	0.1127	0.675	0.1137	0.95	0.0198
0.15	0.0692	0.425	0.1158	0.7	0.1077	0.975	0.0101
0.175	0.0767	0.45	0.1187	0.725	0.1007	1	0
0.2	0.0830	0.475	0.1214	0.75	0.0928		
0.225	0.0883	0.5	0.1237	0.775	0.0844		
0.25	0.0928	0.525	0.1254	0.8	0.0755		

Tabela 3: Soluções aproximadas para (P) com $h=1/40\,$

O gráfico a seguir compara as soluções encontradas para cada partição:

Figura 1: Gráfico das soluções aproximadas para diferentes valores de h