Responsable : Emeric Bouin

Année universitaire 2022-2023

Date: 29 juin 2023 Durée: 3 heures

EXAMEN D'APPEL

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Le barême est donné à titre indicatif et pourra être modifié. Aucun document n'est autorisé, aucune calculatrice.

Exercice 1. Dire si chacune des assertions suivantes sont vraies ou fausses, en le justifiant.

- Soit f: [0,+∞[→ R une fonction continue telle que ∫₀^{+∞} f(t) dt converge. Alors la limite de f en l'infini est nulle.
- 2. Le terme général d'une intégrale positive convergente à l'infini est équivalent à $|t|^{\alpha}$ pour un certain $\alpha < -1$.
- Si une fonction continue est impaire sur ℝ, alors elle est intégrable sur ℝ.
- 4. Si une suite de fonctions continues converge vers une fonction continue, alors la convergence est uniforme.
- 5. La limite uniforme d'une suite de fonctions strictement convexes est strictement convexe.
- 6. Soit $\sum a_n z^n$ une série entière de rayon de convergence ∞ . Alors a_n tend vers 0.

Exercice 2. Etudier l'absolue convergence, la semi-convergence des séries de terme général

$$u_n = \frac{1}{\ln(n+2)} - \frac{1}{\ln(n+1)}, \qquad v_n = \frac{1}{n+1} + \alpha \sin\left(\frac{1}{n}\right) + \beta \ln\left(1 + \frac{1}{n}\right),$$
$$w_n = \frac{1}{1+n^{\alpha}} - \frac{1}{1+n^{\beta}}, \qquad x_n = \frac{1}{1+n^{\alpha}} - \frac{(-1)^n}{1+n^{\beta}}.$$

avec $\alpha > 0$ et $\beta > 0$.

Exercice 3. Donner la nature des intégrales généralisées suivantes.

$$\int_{1}^{+\infty} \left[\exp\left(-\frac{1}{t^{2}}\right) - 1 \right] dt, \qquad \int_{0}^{+\infty} \left(\ln(|1 - t^{2}|) - 2\ln(t) \right) dt, \qquad \int_{2}^{+\infty} \frac{\cos(t)}{t \ln(t)} dt.$$

Exercice 4. Donner les solutions développables en série entière des l'équations différentielles su vantes

$$S'(x) = S(x) + x \text{ et } S(0) = 1,$$

$$S'(x) = \frac{S(x) - 1 - x}{x^2} \text{ et } S(0) = S'(0) = 1.$$

en précisant l'intervalle de résolution.

Exercice 5. Déterminer le rayon de convergence des séries entières suivantes :

$$\sum_{n=1}^{\infty} \cos \left(\frac{1}{\sqrt{n}}\right)^{n^2} X^n, \qquad \sum_{n=1}^{\infty} \frac{1}{n! \sin(2^{-n})} X^n, \qquad \sum_{n=1}^{\infty} \binom{n+k}{n} X^n \text{ où } k \in \mathbb{N}^* \text{ est fixé }.$$

Exercice 6. On se donne $f:[0,1]\mapsto \mathbb{R}$ une fonction continue telle que

$$\forall k \in \mathbb{N}, \qquad \int_0^1 t^k f(t) \, dt = 0.$$

- 1. Montrer que pour tout $P \in \mathbb{R}[X]$, $\int_0^1 P(t)f(t) dt = 0$.
- 2. Rappeler le théorème d'approximation de Weierstrass.
- 3. Montrer que f est nulle.

Exercice 7. On définit pour tout entier $n \geq 2$ la fonction u_n sur [0,1] de la manière suivante :

$$\forall x \in \mathbb{R}^+, \quad u_n(x) = \frac{1}{x+n} + \frac{1}{x-n}.$$

- 1. Montrer que la série de terme général u_n (pour $n \geq 2$) converge uniformément sur [0,1]. On appellera S la somme.
- 2. Montrer que la fonction S est de classe C^1 sur [0,1].
- 3. Calculer $\int_0^1 S(x) dx$.

Exercice 8. Pour $x \ge 0$, on pose $u_n(x) = \frac{x^3}{n^3 + x^4}$.

- 1. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge simplement sur \mathbb{R} .
- 2. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge uniformément sur tout intervalle [-A, A], avec $A \geq 0$.
- 3. La série $\sum_{n\geq 1} u_n$ converge t'elle uniformément sur $\mathbb R$?

FIN DU SUJET