Semantic Web and Machine Learning

Time to re-sync

Bottom Line of the Talk

"Ask not what machine learning can do for you, ask what you can do for machine learning."

I will show how people try to make the semantic web understandable to machine learning algorithms.

Machine Learning

Data: ground observations, facts

Knowledge: patterns allowing *inference*

How data is (usually) encoded in Machine Learning

Flat or Phillips head?	Number in stock	Available at factory outlet?	Price for 50 screws	Head shape	Nominal diameter (mm)	Minor diameter tolerance	Thread pitch (mm)	Name
Flat	276	Yes	\$10.08	Pan	4	4g	0.7	M4
Both	183	Yes	\$13.89	Round	5	4g	8.0	M5
Flat	1043	Yes	\$10.42	Button	6	5g	1	M6
Phillips	298	No	\$11.98	Pan	8	5g	1.25	M8
Phillips	488	Yes	\$16.74	Round	10	6g	1.5	M10
Flat	998	No	\$18.26	Pan	12	7g	1.75	M12
Phillips	235	No	\$21.19	Round	14	7g	2	M14
Both	292	Yes	\$23.57	Button	16	8g	2	M16
Both	664	No	\$25.87	Button	18	8g	2.1	M18
Both	486	Yes	\$29.09	Pan	20	8g	2.4	M20
Phillips	982	Yes	\$33.01	Round	24	9g	2.55	M24
Phillips	1067	No	\$35.66	Button	28	10g	2.7	M28
Both	434	No	\$41.32	Pan	36	12g	3.2	M36
Flat	740	No	\$44.72	Pan	50	15g	4.5	M50

Attributes (features)

Independent samples

How knowledge is encoded in Machine Learning

Semantic Web and Machine Learning (1)

- Learning concept taxonomies through hierarchical clustering
- Learning **deep annotation** rules, concept/relation population
- Ontology alignment
- **Duplicate** detection
- Etc.
- Not the scope of this talk

Semantic Web and Machine Learning (2)

- Lots of motivation: FreeBase, DBpedia, Google Knowledge Graph, ...
- Calls for learning algorithms which, apart from data, understand formal knowledge
- Taxonomies, rules, etc.

Inductive Logic Programming

Inductive Logic Programming

ILP: example

Inductive Logic Programming

ILP: example

```
atom(drug1, c1, carbon).
dbond(drug1, c1, c2).
anthracene(Drug, [Ring1,Ring2])
benzene(Drug,Ring1),
benzene(Drug,Ring2).
   mutagenic(drug1).
   mutagenic(drug2).
   not mutagenic(drug3)
   not mutagenic(drug4)
```

Inductive Logic Programming

Srinivasan et al., Artif. Intell. 1996

IF

ILP: basic principle

Search through a subsumption lattice

ILP: discussion

- Energetic research since the 90's
- Mainly in Europe
- Annual ILP conferences (cca 50 people)
 - o ILP'08: Semantic Web Keynote by Frank Harmelen
- Current focus: combining with probabilistic inference
 - o Probabilistic ILP, Statistical Relational Learning
- Main issues of ILP:
 - Scalability, handling uncertainty, numerical reasoning
 - o **First-order** logic (mainly Datalog) not a semantic web standard

ILP with Description Logics

DL-Learner: learns concept descriptions from examples (concept instances) and counterexamples, and an OWL-DL ontology

Principle: search through a subsumption lattice as in ILP

Hellman et al. ISWC 2008 Lehman et al, Jr. Mach. Learn. Res., 2009

Taxonomies as Guidance in ILP

Rule search co-guided by the Gene Ontology

M. Zakova et al, ECML 2007

• General mechanism implemented in ILP system Aleph

A. Vavpetic, PhD thesis, IJS Ljubljana 2016

A Full Hybrid Approach

Learning views (rules) from a Datalog base AND an ontology

```
famous(Mary)
famous(Paul)
famous(Joe)
scientist(Joe)
```

```
RICH(X) \leftarrow famous(X), not scientist(X)
```

```
RICH□UNMARRIED □ ∃ WANTS-TO-MARRY . T
WANTS-TO-MARRY□LOVES
UNMARRIED(Mary)
UNMARRIED(Joe)
```

Example e.g. happy(Mary), counter-example happy(Paul)

 $happy(X) \leftarrow famous(X), WANTS-TO-MARRY(Y, X)$

F. Lisi: TPLP, 2010

Semantic Web and Machine Learning: Workaround

Produce a data table which also *accounts for* background knowledge. Then use your favorite, fantastic machine learning algorithm.

Propositionalization

- An ILP-inspired technique to automate the workaround
- First-order features constructed via combinatorial search
- Each is true or false for a particular sample

	Feature 1	Feature 2	Feature 3	class
Sample 1	+	-	-	+
Sample 2	-	+	-	-

Propositionalization

- A technique to automate the workaround
- First-order features constructed via *combinatorial search*
- Each is true or false for a particular sample

		benze	ene(Drug, Ri	ng1), benzer	ne(Drug, Rin	g2), not Ring1=Ring2
		\downarrow				
		Feature 1	Feature 2	Feature 3	<mark>mutageni</mark>	<mark>c?</mark>
drug 1	: 1	+	-	-	+	
drug 2	2	-	+	-	-	

Propositionalization: state of the art

- **Treeliker** : a fast algorithm for propositionalization
- Open SW, comes with documentation and example data, google it
- Produces (up to) very complex features efficiently, from very complex data/knowledge
- Prolog/Datalog representation, no support for SW standards (yet)

Kuzelka et al., Machine Learning 2011; ECML 2011 Szaboova et al., Proteome Sci. 2012

res(res_seq1_1_A, lys),
res(res_seq1_2_A, trp),
dist(res_seq1_1_A, res_seq1_2_A,
4.0), res(res_seq1_3_A, lys),
dist(res_seq1_1_A, res_seq1_3_A,
6.0), res(res_seq1_4_A, leu),
dist(res_seq1_1_A, res_seq1_4_A,
6.0), res(res_seq1_5_A, trp), ...

Ontopropositionalization (?)

```
SELECT ?e ?r
WHERE { (m ?r ?e) UNION (?e ?r m) }
```

	4			.1.			0	European Movie, subClass
	<u>/1</u> \	·		(1)			-/	
	0	1		0	.		11	American Movie, subClass
	1			1			0	Action Movie, hasGenre
	0			0			1	Thriller Movie, hasGenre
	1			1			0	French Movie, type
	0			0			1	Hollywood Movie, type
Ø(Nikita) =	1	;	Ø(Léon) =	1	;	Ø(Black Swan) =	0	Jean Reno, actedIn
	1			0	1		0	Anne Parillaud, actedIn
	1	1		1			0	Patrice Ledoux, produced
	1			1			0	Luc Besson, directed
	0			0			1	Scott Franklin, produced
57993 1500 005 0037 1500 005 19037 1500	0		2021 1896/2015 12021 1896/2015 12021 1206-2016	0			1	Mark Heyman, directed
	1/	1		(0)			\1/	Natalie Portman, actedIn

W. Cheng, CKMI 2011

Kernels for RDF Data: another Workaround

Kernels for RDF Data

Knowledge Graph as a Tensor

subject	predicate	object		
(LeonardNimoy,	profession,	Actor)		
(LeonardNimoy,	starredIn,	StarTrek)		
(LeonardNimoy,	played,	Spock)		
(Spock,	characterIn,	StarTrek)		
(StarTrek,	genre,	ScienceFiction)		

Probabilistic Model

• The RESCAL bilinear model

$$f_{ijk}^{\mathrm{RESCAL}} := \mathbf{e}_i^{\top} \mathbf{W}_k \mathbf{e}_j = \sum_{a=1}^{H_e} \sum_{b=1}^{H_e} w_{abk} e_{ia} e_{jb}$$

Learned vector embeddings (latent variables)

Result: Similar vectors - similar semantics

Nickel et al., ICML 2011

Probabilistic Model

• The ER-MLP model (Google's "Knowledge Vault")

$$egin{array}{lll} f_{ijk}^{ ext{ER-MLP}} &\coloneqq & \mathbf{w}^{ op} \mathbf{g}(\mathbf{h}_{ijk}^c) \ & \mathbf{h}_{ijk}^c &\coloneqq & \mathbf{C}^{ op} oldsymbol{\phi}_{ijk}^{ ext{ER-MLP}} \ oldsymbol{\phi}_{ijk}^{ ext{ER-MLP}} &\coloneqq & \left[\mathbf{e}_i; \mathbf{e}_j; \mathbf{r}_k\right]. \end{array}$$

Prediction

Interactions

Embeddings

Learned vectors (latent variables)

Dong et al., KDD 2014

Probabilistic Model

$$egin{aligned} f_{ijk}^{ ext{ER-MLP}} &\coloneqq & \mathbf{w}^{ op} \mathbf{g}(\mathbf{h}_{ijk}^c) \ \mathbf{h}_{ijk}^c &\coloneqq & \mathbf{C}^{ op} oldsymbol{\phi}_{ijk}^{ ext{ER-MLP}} \ oldsymbol{\phi}_{ijk}^{ ext{ER-MLP}} &\coloneqq & \left[\mathbf{e}_i; \mathbf{e}_j; \mathbf{r}_k\right]. \end{aligned}$$

Dong et al., KDD 2014

Embeddings Capture Semantics

$$f_{ijk}^{ ext{ER-MLP}} \coloneqq \mathbf{w}^{ op} \mathbf{g}(\mathbf{h}_{ijk}^c)$$
 $\mathbf{h}_{ijk}^c \coloneqq \mathbf{C}^{ op} \phi_{ijk}^{ ext{ER-MLP}}$
 $\phi_{ijk}^{ ext{ER-MLP}} \coloneqq [\mathbf{e}_i; \mathbf{e}_j; \mathbf{r}_k].$

Relation			Nearest N	Neighbor	rs	
children birth-date	parents children	(0.4) (1.24)	spouse gender	(0.5) (1.25)	birth-place parents	(0.8) (1.29)
edu-end ¹⁰	job-start	(1.41)	edu-start	(1.61)	job-end	(1.74)

Dong et al., KDD 2014

Other Recent Interesting Approaches

- Gaussian embeddings
 - o Dos Santos et al, ECML 2016
 - Embed entities as normal random vars
 - Conflicting "gradient forces" result in greater variance
- "Injecting" logical knowledge into conventional learning paradigms
 - O Diligenti et al, MLJ 2012: Horn rules to regularize SVM's
 - Rocktaeschel et al. NAACL 2015: Tensor factorization guided by logical rules
- General, encompassing SRL frameworks
 - Such as Markov Logic Networks [Richardson, Domingos MLJ 2006]
 - Scalability issues

Other Recent Interesting Approaches (2)

- Lifted Relational Neural Networks
 - Hybrid FOL-Neural paradigm
 - A weighted FOL theory is a template to derive ground neural networks.
 - o Sourek et al., NIPS Neural Symb Integr. Workshop 2015, ILP 2016
- Differentiable databases
 - Compiles a deductive database s.t. inference is a differentiable function
 - o Cohen, NIPS 2016
- Machine Learning ontologies
 - Used to plan learning processes
 - Zakova et al., IEEE T-ASE, 2007; Vavpetic, PhD thesis 2016

Conclusions

- Exciting recent research in ML triggered by the growing SW
- Some great novel concepts include
 - Vector and other embeddings of knowledge graphs
 - Tensor and neural learning approaches
 - Hybrid symbolic-neural (or, vector space) approaches
- Some standing challenges
 - E.g. embedding non-ground knowledge