AVALIAÇÃO DA ACURÁCIA POSICIONAL DE EIXOS VIÁRIOS DA PLATAFORMA DE MAPEAMENTO COLABORATIVO DO OPENSTREETMAP – UM ESTUDO DE CASO NO MUNICÍPIO DO RIO DE JANEIRO - RJ

Auzenan Pereira de Sá
Fernando Dias de Almeida
Guilherme Damasceno Raposo
Jonatas Goulart Marinho
Louise Gil Soares Ferreira
Elias Nasr Naim Elias

Data:

03 de outubro de 2023

Fonte: Infraestrutura de Dados Espaciais - Definindo Termos, 2023.

Visão Geral

- Aquisição de dados geoespaciais;
- Qualidade dos dados adquiridos;
- Mapeamento de referência;
- Instituto Municipal de Urbanismo Pereira Passos (IPP).

Visão Geral

- Normatizações;
- Métodos de aquisição dos dados;
- Informação Geográfica Voluntária;
- OpenStreetMap (OSM).

Fonte: novageo.pt, 2023.

Desafios e Objetivos

Desafios

Heterogeneidade dos dados.

Objetivos

- Determinação da acurácia posicional de feições correspondentes aos eixos viários do OSM;
- Estimação da qualidade;
- Estimação da heterogeneidade.

Metodologia

1ª Fase - Estruturação dos dados

01

Obtenção e extração dos eixos viários do IPP e dos eixos viários do OSM 02

Cruzamento dos eixos viários

03

Seleção de pontos de controle e separação das amostras

Metodologia

2ª Fase - Verificação e espacialização da Distância Euclidiana entre os ponto

01

Utilização do plugin QPEC no software QGis para cálcular a acurácia posicional 02

Obtenção da
Distância Euclidiana
entre os pontos
homólogos

03

Análise da heterogeneidade e qualidade do eixo viário do OSM no Rio

682290 Legenda Ponto Avaliado SIRGAS 2000 Ponto Referência Eixo Viário IPP Eixo Viário OSM 682290

Imagem 1: Eixos viários na cidade do Rio de Janeiro.

Resultados e Discussões

 Comparação de coordenadas obtidas pelo sistema de posicionamento com as coordenadas de referência conhecidas, através de análise de tendência e de precisão.

	ID	E_ref	N_ref	E_aval	N_aval	dif_E	dif_N	Dist. Eucl
1	1	682304,687	7465139,953	682312,783	7465134,935	-8,096	5,018	9,525
2	2	686796,457	7466165,807	686793,287	7466164,244	3,170	1,563	3,534
3	3	687210,023	7459313,144	687214,637	7459314,127	-4,614	-0,983	4,717
4	4	685262,345	7460433,068	685262,606	7460432,823	-0,261	0,245	0,358
5	5	683331,423	7456899,969	683331,477	7456901,139	-0,054	-1,170	1,172
6	6	678346,947	7473461,206	678347,623	7473462,719	-0,676	-1,513	1,657
7	7	668292,648	7476189,961	668292,514	7476191,383	0,134	-1,422	1,428
8	8	670438,962	7469265,751	670437,628	7469267,707	1,334	-1,956	2,368
9	9	662115,504	7469916,230	662116,686	7469915,077	-1,183	1,153	1,651
10	10	666348,260	7463910,292	666350,789	7463912,991	-2,530	-2,699	3,699
11	11	669294,091	7460120,814	669295,632	7460121,031	-1,540	-0,217	1,556
12	12	666578,791	7455028,712	666580,735	7455026,815	-1,944	1,896	2,716
13	13	657073,617	7453859,967	657075,048	7453858,383	-1,431	1,584	2,134
14	14	655658,831	7469970,005	655660,406	7469970,499	-1,575	-0,494	1,651
15	15	652571,798	7464651,480	652572,565	7464652,341	-0,767	-0,861	1,153
16	16	647837,147	7456461,512	647838,172	7456462,931	-1,026	-1,419	1,751
17	17	648156,169	7469279,213	648153,340	7469278,661	2,829	0,552	2,883
18	18	648715,208	7464435,651	648716,015	7464436,532	-0,807	-0,881	1,195
19	19	643332,363	7468631,283	643334,957	7468629,808	-2,594	1,476	2,984
20	20	644045,272	7460924,877	644045,438	7460922,492	-0,167	2,384	2,390

Imagem 2: Coordenadas planimétricas, discrepâncias e Distâncias Euclideanas

Resultados e Discussões

• Testes de hipóteses sobre a média e o desvio padrão amostral dos resíduos.

Imagem 3: Pontos homólogos das amostras.

Resultados e Discussões

- Quanto mais dispersas a amostra, mais heterogêneo são os dados;
- Tendência a erros nas coordenadas E, na amostra A;
- Amostra B não houve tendência a erros;
- Geometrias aceitas na escala 1:25000.

Conclusões

- Dependendo da localidade, a heterogeneidade afeta a qualidade dos dados do mapeamento colaborativo;
- A incompatibilidade do espaço temporal colabora para a heterogeneidade das feições mapeadas, uma vez que, os usuários muitas vezes não detém esta informação;
- Estudar a eficiência das plataformas é importante para compreender os desafios de qualidade de dados, como precisão e confiabilidade;
- À medida que as tecnologias e plataforma do OSM evoluem, compreender como utilizálas de forma eficaz na cartografia e fornecer uma biblioteca de referência é fundamental para a comunidade cartográfica e para a sociedade como um todo.