Практика

Диффузионные модели

Туем Гислен 11-04-2024

Содержание

1	Введение	5
2	Теоретические основы 2.1 Определение	6
3	Пример генерации в PyTorch	8
4	Заключение	9

Список иллюстраций

Список таблиц

1 Введение

Актуальность темы:
Диффузионные модели революционизировали генеративный ИИ, превзойдя GAN в качестве син
Hapяду с GAN, модели диффузии (diffusion models) или диффузионные модели являются одн
Многие из основных идей, лежащих в основе диффузионных моделей, имеют сходство с боле
Основная идея диффузионных моделей основана на наблюдении, что шум трудно преобразова
в зашумленную версию 🗆
, пропуская данные через 🛘
шагов стохастического кодировщика □(□□□□□−1)
. После достаточного количества шагов мы (приближенно) получаем стандартное многомер
или какое-либо другое удобное известное распределение. Затем мы изучаем обратный пр
шагов декодера □□(□□−1□□□)
, пока мы не сгенерируем первоначальные данные 🛛 0.

Цель работы:

Систематизировать математические основы, архитектурные решения и прикладные аспекты диффузионных моделей.

2 Теоретические основы

2.1 Определение

Диффузионные модели — это генеративные модели, обучающиеся через последовательное зашу $\$ q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t\mathbf{I}) \$\$ ## Связь с другими методами | Метод | Отличия |-----| | VAE | Используют энкодер-декодер | Опираются на состязательность | | GAN | Score-Based | Общие теоретические корни # Принцип работы ## Прямой процесс 1. Итеративное добавление гауссова шума 2. Марковская цепь с параметрами \$\beta_t\$ ## Обратный процесс $p_\theta(x_{t-1}|x_t) = \mathcal{N}(\mu_x(x_t,t), \sigma_x(x_t,t))$

Применение

3 Пример генерации в PyTorch

from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("stableDiffusion-2") image = pipe("кошка в шляпе").images[0] "'

4 Заключение

Диффузионные модели демонстрируют: 1. Более стабильное обучение vs GAN 2. Высокое качество генерации 3. Широкие перспективы в мультимодальных приложениях