Lecture 12: Nonlinear PDEs in 2d and sparsity

COMP5930M Scientific Computation

Today

Model problem

Numerical solution
Approximation in space
Nonlinear system

Sparse matrix storage

Summary

Next

2d nonlinear diffusion

Find u(x, y, t) satisfying

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(c(u) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(c(u) \frac{\partial u}{\partial y} \right) + g(u, x, y)$$

- ▶ The PDE is defined on spatial region $(x, y) \in \Omega \subset \mathbb{R}^2$
- ▶ Initial condition u(x, y, 0) needs to be given
- ▶ The solution u(x, y, t) is known on the boundary $\partial\Omega$
- ▶ g(u, x, y) is the source function that can depend on u but not its derivatives

Application in image processing

Let $u_0(x, y)$ denote the intensity of a noisy grayscale image at pixel (x, y)

Perona-Malik equation: find u(x, y, t) s.t.

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(c(u) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(c(u) \frac{\partial u}{\partial y} \right), \qquad t > 0$$
$$u(x, y, 0) = u_0(x, y), \qquad t = 0.$$

where $c(u) = \frac{1}{1 + \left(\frac{\|\nabla u\|}{K}\right)^2}$ is an anisotropic diffusion term

Removes noise from images without smearing boundaries: https://www.youtube.com/watch?v=J5mZD40V_VU

Numerical approximation

We consider only spatial discretisation here

- Approximate in space
 - Fully discrete nonlinear system
- Solution algorithm
 - ▶ Numerical solution with Newton's Method

Spatial approximation

- ightharpoonup Assume our domain Ω is rectangular
- ▶ Define an $n \times m$ uniform grid with spacing

$$\Delta x = \frac{X_2 - X_1}{n - 1}, \quad \Delta y = \frac{Y_2 - Y_1}{m - 1}$$

▶ A point (node) p_{ij} has coordinates (x_i, y_j) where

$$x_i = X_1 + (i-1)\Delta x, \quad y_i = Y_1 + (j-1)\Delta y$$

Solution data mapping

- ▶ Our discrete problem has (n-2)(m-2) = N unknowns (assuming boundary data is known)
- ▶ ie. our nonlinear system has **N** equations
- Our solution algorithm stores a vector U
 but our discrete data is a matrix uii
- We require a unique mapping between these two representations

Numbering convention

We can define a row-based numbering system as

$$U_k \equiv u_{ij}, \quad k = (j-2)(n-2) + (i-1)$$

 $i = 2, ..., n-1, \quad j = 2, ..., m-1$

Could alternatively use column-based numbering

A compact FDM approximation

$$\frac{\partial}{\partial x} \left(c(u) \frac{\partial u}{\partial x} \right) \approx \frac{\left(c(u) \frac{\partial u}{\partial x} \right)_{i+\frac{1}{2}} - \left(c(u) \frac{\partial u}{\partial x} \right)_{i-\frac{1}{2}}}{\Delta x}$$

$$\approx \frac{c(u_{i+\frac{1}{2}}) \left(\frac{u_{i+1} - u_i}{\Delta x} \right) - c(u_{i-\frac{1}{2}}) \left(\frac{u_{i} - u_{i-1}}{\Delta x} \right)}{\Delta x}$$

$$= \frac{c(u_{i+\frac{1}{2}}) \left(u_{i+1} - u_i \right) - c(u_{i-\frac{1}{2}}) \left(u_{i} - u_{i-1} \right)}{\Delta x^2}$$

- ▶ Requires only u_{i-1}, u_i, u_{i+1}
- ▶ Reduces to the second order derivative for constant c(u)

Computing $c(u_{i+\frac{1}{2}})$

Nonlinear c(u) leads to two obvious alternatives

$$c(u_{i+\frac{1}{2}}) = \frac{c(u_i) + c(u_{i+1})}{2}$$
$$c(u_{i+\frac{1}{2}}) = c(\frac{u_i + u_{i+1}}{2})$$

- Formally of the same accuracy
- Will produce different nonlinear equations and Jacobian matrix

Semi-discrete 2d system

$$\dot{u}_{i} = \frac{c(u_{i+\frac{1}{2}j})(u_{i+1j} - u_{ij}) - c(u_{i-\frac{1}{2}j})(u_{ij} - u_{i-1j})}{\Delta x^{2}} + \frac{c(u_{ij+\frac{1}{2}})(u_{ij+1} - u_{ij}) - c(u_{ij-\frac{1}{2}})(u_{ij} - u_{ij-1})}{\Delta y^{2}} + g(u_{ij}, x_{i}, y_{j})$$

- ► Sparse
- Only 5 values required for each equation
- But not pentadiagonal

Sparse storage schemes

- We require compact storage schemes for large sparse matrices
 - Only store non-zero values
- Our algorithms will have to work with data stored in this format
- Common alternatives:
 - Coordinate format
 - ▶ Row-major or column-major format

Coordinate format

- ► For every non-zero item store indices i, j and value aij
- Requires 3 vectors for storage of size nz
- No ordering implied

Row-major format

- For every row *i* of the matrix store:
 - ► The column index j and value a_{ij}
 - ▶ The location *l_i* in that list of the start of each row
- Requires 2 vectors of size nz and 1 of size N
- Ordering is implied (at the row level)

Example of sparse row-major format

A sparse matrix and its corresponding CSR row pointer, column indices and values arrays

Column-major format (MATLAB)

- For every column j of the matrix store:
 - ► The row index i and value a_{ij}
 - ▶ The location l_i in that list of the start of each column
- Requires 2 vectors of size nz and 1 of size N
- Ordering is implied (at the column level)

Unrolling matrices into vectors in MATLAB

2 5 8 3 6 9

Summary

- Discretisation of 2d problems leads to sparse Jacobian...
- ...but bandwidth in general larger than tridiagonal
- ► Sparse matrices can be stored efficiently using 2 × nnz vectors (row- or column-major format)
- Problem is how to find out the sparsity pattern of the Jacobian (more details in tutorial)