IML세미나

2022-01-06 김태현

Joint Demosaicing and Denoising with Self Guidance

Lin Liu^{1,2} Xu Jia^{2*} Jianzhuang Liu² Qi Tian²

¹CAS Key Laboratory of GIPAS, University of Science and Technology of China

²Noah's Ark Lab, Huawei Technologies

- Joint Demosaicing and Denoising
- Self Guidance

Novelty

- Joint demosaicing and denoising을 위한 density-map guidance and green-channel guidanc 가 있는 SGNet을 제안한다.
- Density 맵을 이용하여 영역 별로 잡음 제거, Green Channel을 이용하여 Demosaicing 도움.
- 텍스처를 복구하고 노이즈를 동시에 제거하기 위해 adaptive-threshold edge loss 와 edge-aware smoothness loss이라는 두 가지 loss를 제안한다.

센서 -> ADC -> DSP -> JPEG, H.264

- Green-chaneel reconstruction branch
- Main reconstruction branch
- 3. Loss: $L = L_{edge} + L_{smooth} + L_{L1} + L_{G}$ Adaptive-threshold edge loss, Edge-aware smoothness loss

- 1. Input RGGB raw 영상 (2Hx2Wx1) -> I_{G1}^{Bayer} , I_{G2}^{Bayer} , I_{R}^{Bayer} , I_{R}^{Bayer} (HxWx4) 분해
- 2. Density Map (M_D) 사용 -> 영역 별로 difficulty level이 다름을 알려주기 위함.

Dense Texture: High frequency, Less Texture: Low frequency

$$M_D = h(g_2(I_{gray} - g1(I_{gray}; K1); K2))$$

$$h(X) = \frac{X - \min(X)}{\max(X) - \min(X) + \epsilon}$$

$$I_{gray} = \left(\left(I_{G1}^{Bayer} + I_{G1}^{Bayer} \right) / 2 + I_{R}^{Bayer} + I_{B}^{Bayer} \right) / 3$$

Input : I_{G1}^{Bayer} , I_{G2}^{Bayer} , I_{R}^{Bayer} , I_{B}^{Bayer} , M_{D} , I^{noise}

Inoise: noise map (Gausian noise level)

Î_G: 복원된 그린 채널 (2H x 2W x 1)

Residual in Residual Dense Block (RRDB)

Fusion: Pixel-Adaptive Convolution

$$\mathbf{o}_{i} = \sum_{j \in \Omega(i)} G(\mathbf{f}_{i}, \mathbf{f}_{j}) \mathbf{W}_{p_{i,j}} \mathbf{v}_{j} + \mathbf{b}$$

$$G(\mathbf{f}_i, \mathbf{f}_j) = \exp\left(-\frac{1}{2}(\mathbf{f}_i - \mathbf{f}_j)^{\top}(\mathbf{f}_i - \mathbf{f}_j)\right)$$

Fusion: Pixel-Adaptive Convolution

$$\mathbf{o}_{i} = \sum_{j \in \Omega(i)} G(\mathbf{f}_{i}, \mathbf{f}_{j}) \mathbf{W}_{p_{i,j}} \mathbf{v}_{j} + \mathbf{b}$$

$$G(\mathbf{f}_i, \mathbf{f}_j) = \exp\left(-\frac{1}{2} \left(\mathbf{f}_i - \mathbf{f}_j\right)^{\top} \left(\mathbf{f}_i - \mathbf{f}_j\right)\right)$$

G: Gaussian function, 두 위치 간의 거리에 따라 다른 가중치

 $\Omega_{\mathbf{i}}$: sxs convolution window, $\mathbf{v}_j \in \mathbb{R}^{c'}, j=1,2,...,H \times W$ $\mathbf{o}_i \in \mathbb{R}^c, i=1,2,...,2H \times 2W$

W: convolution weights, W $\in \mathbb{R}^{c' \times c \times s \times s}$

$$\theta_i = \theta_0 + k \frac{s_{P_i}}{\max(s_{P_1}, s_{P_2}, ..., s_{P_n})}, \theta_0, k > 0,$$

$$L_{edge} = \sum_{i=1}^{n} -\beta * p(E(P_i^T; \theta_i)) * log(p(E(P_i^O; \theta_i)))$$
$$- (1 - \beta) * (1 - p(E(P_i^T; \theta_i))) *$$
$$log(1 - p(E(P_i^O; \theta_i))),$$

$$eta = |E(I^T)|/|I^T| \quad ext{Loss} = -rac{1}{ ext{output}} \sum_{ ext{size}}^{ ext{output}} \sum_{i=1}^{ ext{size}} y_i \cdot \log \hat{y}_i + (1-y_i) \cdot \log (1-\hat{y}_i)$$

■ Adaptive-threshold edge loss : 고주파 디테일이 많은 지역에 가중치를 두기 위한 loss

 P_i : 영상 패치들, S_{P_i} : 패치 픽셀 값들의 합, T: target, O: 네트워크 output

 θ_i : Adaptive thresholds

 $p(E(P_i ; \theta_i))$: Probability of being edges for a certain patch

 $|E(I^T)|$: the number of edge pixels

 $L = L_{edge} + L_{smooth} + L_{L1} + L_G$

Edge-aware smoothness loss : 텍스처 영역에서 edge를 유지하면서 부드러운 영역에서 노이즈를 동시에 제거하는 방법을 학습함.

$$L_{smooth} = \|\nabla O \circ \exp(-\lambda \nabla O)\| \qquad \nabla O = \|\nabla O_h\| + \|\nabla O_v\|$$

70 : 수평과 수직 그래디언트의 총합

 λ : parameter balancing the strength of edge-awareness.

- L1 loss : GT와 네트워크의 출력 사이의 L1
- Green loss : Î_G 와 GT의 그린 채널 사이의 L1

$$L = L_{edge} + L_{smooth} + L_{L1} + L_G$$

$$\mathcal{L}(y-\hat{y}) = \sum_{i=1}^n |y-\hat{y_i}|^2$$

Experimental Results

Mathad		Dense texture		Sparse texture		MIT moire			Urban100		
Method	σ	PSNR	LPIPS	PSNR	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS
FlexISP [11]		36.64	_	38.82	_	29.06	0.8206	_	30.37	0.8832	_
SEM [18]		38.55	_	38.40	_	27.46	0.8292	_	27.19	0.7813	_
ADMM [35]		39.97	_	43.78	_	28.58	0.7923	_	28.57	0.8578	_
Deepjoint [5]	5	45.90	0.01782	47.48	0.02218	31.82	0.9015	0.0692	34.04	0.9510	0.0304
Kokkinos [19]		44.77	0.02308	47.40	0.02158	31.94	0.8882	0.0711	34.07	0.9358	0.0437
CDM* [36]		45.49	0.02050	47.24	0.02281	30.36	0.8807	0.0757	32.09	0.9311	0.0484
SGNet		46.75	0.01433	47.88	0.01917	32.15	0.9043	0.0691	34.54	0.9533	0.0299
FlexISP [11]		32.66	_	33.62	_	26.61	0.7491	_	27.51	0.8196	_
SEM [18]		31.26	_	31.17	_	25.45	0.7531	_	25.36	0.7094	_
ADMM [35]		37.64	_	40.25	_	28.26	0.7720	_	27.48	0.8388	_
Deepjoint [5]	10	43.26	0.04017	45.17	0.04139	29.75	0.8561	0.1066	31.60	0.9152	0.0610
Kokkinos [19]		41.95	0.05499	44.86	0.04328	30.01	0.8123	0.1132	31.73	0.8912	0.0710
CDM* [36]		42.46	0.05393	44.70	0.04535	28.63	0.8286	0.1304	30.03	0.8934	0.0832
SGNet		44.23	0.03280	45.56	0.03764	30.09	0.8619	0.1034	32.14	$\boldsymbol{0.9229}$	0.0546
FlexISP [11]		29.67	_	30.48	_	24.91	0.6851	_	25.55	0.7642	_
SEM [18]		25.98	_	27.01	_	23.23	0.6527	_	23.25	0.6156	_
ADMM [35]		34.87	_	36.78	_	27.58	0.7497	_	28.37	0.8440	_
Deepjoint [5]	15	41.42	0.06447	43.54	0.05783	28.22	0.8088	0.1506	29.73	0.8802	0.0929
Kokkinos [19]		40.16	0.08046	43.11	0.06103	28.28	0.7693	0.1764	29.87	0.8451	0.1054
CDM* [36]		40.51	0.08306	42.98	0.06549	27.23	0.7775	0.1875	28.34	0.8543	0.1262
SGNet		42.32	0.05491	43.94	0.05456	28.60	0.8188	0.1412	30.37	$\boldsymbol{0.8923}$	0.0793

Table 1: Quantitative comparison for joint demosaicing and denoising on real test sets (Dense texture and Sparse texture) and synthetic test sets (MIT moire and Urban100). PSNR, SSIM: higher is better; LPIPS: lower is better.

	Dense texture				Sparse texture			
σ	5	10	15	5	10	15		
Metrics	PSNR/LPIPS	PSNR/LPIPS	PSNR/LPIPS	PSNR/LPIPS	PSNR/LPIPS	PSNR/LPIPS		
w/o green branch	45.43/0.02373	42.90/0.04381	41.21/0.06654	47.15/0.01995	44.30/0.03935	42.44/0.05953		
Concatenation guidance	45.93/0.02240	43.31/0.04182	42.05/0.06006	47.46/0.01885	45.16/0.03846	43.75/0.05782		
Adaptive guidance	46.75/0.01433	44.23/0.03280	42.32/0.05491	47.88/0.01917	45.56/0.03764	43.94/0.05456		

Table 2: Ablation study of the green-channel guidance method on Pixelshift200.

Experimental Results

Figure 5: Visual comparison between state-of-the-arts and our method for joint demosaicing and denoising.

Method	σ	Dense texture PSNR/LPIPS	Sparse texture PSNR/LPIPS
w/o L _{smooth}	10	44.01/0.03574 43.92/0.03752	45.40/0.03933 45.42/0.03905
w/o L_{edge} w/o M_D	10	43.86/0.04073	45.37/0.03982
Full model		44.23/0.03280	45.56/0.03764

Table 3: Ablation study on Pixelshift200.

