TALENTO TECH 2024-MINTIC FORMATO DE PRESENTACIÓN "PLAN DE PROYECTO TI"

Contexto específico de aplicación del proyecto (Marque con una X)

AGRO	EDUCACIÓN	TURISMO	GOBIERNO	FINANZAS	MARKETING	SALUD	OTRO
							Х

Cohorte #: 5 Año: 2024 Tutor: Andrés Escallón

Nombre del Proyecto (y del producto/servicio):

Análisis Predictivo de Demanda	
De Transporte Público	

Departamento de residencia del estudiante:

Municipio de residencia del estudiante:

Bogotá D.C.	

Rural: (Marque con una X)

SI		NO	Χ				
Vere	Vereda o Corregimiento:						

Autor (es):

No.	Nombres y Apellidos	Tipo de identificación	No. identificación	Curso: Programación, Inteligencia Artificial, Análisis Datos, Block Chain, Arquitectura Nube	Nivel: Explorador, Integrador, Innovador	Modalidad: Virtual, Semipresencial o Presencial
1	Ángela Daniela Córdoba Álvarez	Cédula de ciudadanía	*****	Inteligencia Artificial	Intermedio (integrador)	Virtual

Palabras clave:

Palabra clave 1	Movilidad
Palabra clave 2	Transporte público
Palabra clave 3	Inteligencia artificial
Palabra clave 4	Optimización

Planteamiento del problema que solucionará el producto/servicio:

¿Qué sucede?

R/ La demanda de transporte público en ciudades suele variar significativamente a lo largo del día y de la semana, lo que puede llevar a una asignación ineficiente de recursos, como vehículos y personal.

¿Por qué sucede?

R/ La variabilidad en la demanda puede ser causada por factores como el horario laboral, eventos especiales, condiciones meteorológicas y cambios en la densidad de población.

¿A quiénes afecta?

R/ Afecta principalmente a los usuarios del transporte público que enfrentan tiempos de espera largos, vehículos sobrecargados y congestión vial. Sin embargo, también afecta a las compañías de transporte que puede incurrir en costos adicionales por una inadecuada planificación de recursos.

¿De qué manera?

R/ Como se mencionó anteriormente, la falta de planificación puede resultar en una mala experiencia para los usuarios debidos a diversos factores. En cuanto a las compañías, puede haber una eficiencia operativa reducida, mayores costos operativos y, posiblemente, mayor llegada de quejas por parte de los usuarios.

Pertinencia del proyecto TI:

Pertinencia:

¿Cómo funciona el producto/servicio a desarrollar?

R/ El sistema predictivo analizará datos históricos y en tiempo real sobre la demanda de transporte público para prever las necesidades futuras. Utilizará modelos de machine learning para generar predicciones sobre la demanda en diferentes horarios y rutas, permitiendo ajustar la frecuencia y capacidad de los vehículos en función de las predicciones.

¿En qué beneficia a los usuarios?

R/ Beneficia a los usuarios al reducir los tiempos de espera y mejorar la disponibilidad de vehículos, proporcionando una experiencia de transporte más cómoda y eficiente. También ayuda a evitar la saturación en horas pico y mejora la puntualidad.

Mercado:

¿Qué tamaño tiene el mercado y la oportunidad?

R/ El mercado incluye operadores de transporte público y usuarios. La oportunidad está en mejorar la eficiencia operativa y la satisfacción del usuario. En el caso de Transmilenio, que es el transporte que se está analizando, se estima que, en promedio, 2 millones de personas usan diariamente el servicio.

¿Es un mercado en crecimiento?

R/Sí, el mercado de transporte público está en crecimiento a medida que las ciudades, en este caso Bogotá, expande sus redes de transporte y busca soluciones para mejorar la movilidad urbana. La adopción de tecnologías avanzadas como el análisis predictivo está en aumento porque permite.

¿Cuáles son las tendencias?

R/ Las tendencias incluyen el uso de inteligencia artificial y machine learning para optimizar operaciones, la integración de datos en tiempo real y la mejora de la experiencia del usuario a través de la tecnología.

Estado del Arte de productos/servicios existentes y ventajas comparativas:

Nombre producto	Fabricante/País	Qué ventajas tiene frente a mi producto (detallar)	Qué ventaja tiene mi producto frente a este (detallar)	¿Es un competidor Directo o Indirecto?
Moovit	Israel	Ofrece planificación de rutas y horarios en tiempo real.	Mi sistema se centra en la predicción y demanda en cuanto a optimización de recursos.	Indirect o.
TransMi App	Colombia	Permite planear el viaje, encontrar rutas, y buscar paraderos del Sistema Integrado de Transporte.	predictivos para	Directo.

Marco Legal y Ético

- Código de integridad de la Secretaría Distrital de Movilidad.
- Programa de Transparencia y Ética Pública adoptado por la Superintendencia de Transporte
- Normas y marco legal y ético que rige a Transmilenio

ANÁLISIS DE RIESGOS:

¿Qué podría suceder?	¿Cuál sería el efecto/impacto en los objetivos del proyecto?	¿Cuándo, dónde, por qué y cuál es la probabilidad de que ocurran estos riesgos?	¿Quién puede estar involucrado o impactado?	¿Cuál puede ser la fuente del riesgo?
Desafíos en la Integración Tecnológica	Retrasos en la implementación y posibles fallos en el sistema.	Durante la fase de integración del sistema con las	Equipo de desarrollo y operadores de transporte.	Complejidad técnica de la integración.

		plataformas existentes.		
Resistencia al Cambio	Dificultad para adoptar el nuevo sistema y resistencia por parte de los operadores.	Durante el periodo de implementación y capacitación.	Operadores de transporte.	Cambio en los procesos operativos.
Falta de Datos de Calidad	Predicciones inexactas y mala planificación de recursos.	Durante la fase de recopilación y análisis de datos.	Equipo de datos y usuarios.	Datos incompletos o incorrectos.
Subestimación del Tiempo de Desarrollo	Retrasos en el cronograma y de costos.	Durante la planificación y desarrollo del proyecto.	Equipo de desarrollo y gestión del proyecto.	Evaluación inadecuada del tiempo requerido.

Objetivos:

General

Desarrollar un sistema predictivo para optimizar la asignación de recursos en el transporte público, mejorando la eficiencia operativa y la experiencia del usuario.

Específicos

- Recopilar y analizar datos históricos y en tiempo real sobre el uso del transporte público.
- Implementar modelos de machine learning para predecir la demanda futura.
- Desarrollar una plataforma para integrar las predicciones y ajustar los recursos de transporte.
- Evaluar el impacto del sistema en la satisfacción del usuario y en la eficiencia operativa.

Metodología:

- Recopilación de Datos: Obtención de datos históricos y en tiempo real sobre el uso del transporte público y otros factores relevantes.
- Análisis de Datos: Limpieza y preparación de datos, análisis exploratorio, y desarrollo de modelos predictivos.
- Implementación: Desarrollo de la plataforma, integración de modelos predictivos, y ajuste de recursos.
- Evaluación: Pruebas piloto, recopilación de feedback, y ajuste continuo del sistema.

Plazo: Duración del proyecto.

SEMANAS	DIAS
24	168

CRONOGRAMA DE ACTIVIDADES (Diagrama de Gantt):

No.	Actividad	S1	S2	S3	S4	S5	S6	Responsable
1	Recopilación de Datos	х	х					Equipo de Datos
2	Análisis Exploratorio de Datos		х	х				Data Scientists
3	Desarrollo de Modelos Predictivos			х	х			Machine Learning
4	Implementación del Sistema				Х	Х		Desarrollo de SW (software)
5	Pruebas Piloto y Evaluación					Х	Х	Equipo de Pruebas
6	Ajustes y Mejora Continua						Х	Desarrollo de SW