Limits and Convergence

Nikash & Sabrina & Joseph

Oct. 10, 2025

1 Basic Definitions

Definition 1.1. Let S be a set and P(x) be a proposition depending on x for $x \in S$

- 1. We say $\exists x \in S \mid P(x)$ if there exists some x in S such that P(x) is true.
- 2. We say $\forall x \in S, P(x)$ if P(x) is true for all x in S.

 \exists is called the **existential quantifier** and \forall is called the **universal quantifier**.

Definition 1.2. A sequence in \mathbb{R} is a function $a : \mathbb{N} \to \mathbb{R}$. However, we more often think of sequences in \mathbb{R} as a family of numbers in \mathbb{R} indexed by \mathbb{N} . In particular, we denote a by $\{a_n\}_{n=1}^{\infty}$, where $a_n = a(n)$ for each $n \in \mathbb{N}$

Definition 1.3. We say that L is the **limit** of the sequence $\{a_n\}_{n=1}^{\infty}$ as n tends to ∞ , or equivalently,

$$\lim_{n \to \infty} a_n = L,$$

if for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n - L| < \varepsilon$ whenever $n \ge N$.

Definition 1.4 (Limit of a Function). Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function, and $c \in \mathbb{R}$. We say that L is the **limit** of f(x) as x tends to c, or equivalently,

$$\lim_{x \to c} f(x) = L,$$

if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - c| < \delta$ implies $|f(x) - L| < \varepsilon$.

Definition 1.5 (Convergence, \mathbb{R}). A sequence $\{a_n\}$ converges to $L \in \mathbb{R}$ if for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ for which n > N implies $|a_n - L| < \varepsilon$.

2 Exercises

- 1. Which of the following statements are true
 - a) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \mid xy = 1$
 - b) $\exists x \in \mathbb{Z} \mid \forall y \in \mathbb{Z}, xy = 1$
 - c) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \mid xy = 0$
 - d) $\exists x \in \mathbb{Z} \mid \forall y \in \mathbb{Z}, xy = 0$
- 2. Prove that $\lim_{n\to 2} \frac{n-1}{n+1} = \frac{1}{3}$.
- 3. Prove that $\lim_{x\to 5} 3x^2 1 = 74$
- 4. What is $\lim_{x\to 1} \frac{x^2 1}{x 1}$?
- 5. Is it possible for sequences a_n and b_n to diverge while the sequence $c_n = a_n + b_n$ converges? Prove your answer!
- 6. Given sequences a_n and b_n of \mathbb{R} converge to a and b respectively, prove that the sequence $c_n = a_n + b_n$ converges. What does it converge to?

1

- 7. Given sequences a_n and b_n of \mathbb{R} converge to a and b respectively, prove that the sequence $c_n = \max(a_n, b_n)$ converges. What does it converge to?
- 8. Given an arbitrary $x \in \mathbb{R}$, let $a_1 = x$ and $\forall n > 1$, $a_n = \frac{1}{2}a_{n-1}$ What is $\lim_{n \to \infty} a_n$?
- 9. $a_n = \frac{\sin(n)}{n}$ What is $\lim_{n \to \infty} a_n$?
- 10. Given f(x) is a polynomial of finite degree, prove that either f is constant or $\lim_{n\to\infty} f(x)$ is ∞ or $-\infty$.