Exam 2 Review 18.05 Spring 2018

- Cannot cover everything.
- You may bring a cheat sheet 5×7 inch index card (both sides) to the exam.
- You can also bring your cheat sheet from the first exam.
- Calculators are not allowed on the exam—they won't be needed.
- Get familiar with the probability tables for Z, t and χ^2 . There are copies with the practice exam.

Summary

- Data: x_1, \ldots, x_n
- Basic statistics: sample mean, sample variance, sample median
- Likelihood, maximum likelihood estimate (MLE)
- Bayesian updating: prior, likelihood, posterior, predictive probability, probability intervals; prior and likelihood can be discrete or continuous
- NHST: H_0 , H_A , significance level, rejection region, power, type 1 and type 2 errors, p-values, confidence intervals.

Basic statistics

Data: x_1, \ldots, x_n .

sample mean
$$= \bar{x} = \frac{1}{n}(x_1 + \ldots + x_n)$$

sample variance =
$$s^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} (x_i - \bar{x})^2 \right)$$

sample median = middle value (or average of two middle values)

Example. Data: 6, 3, 8, 1, 2

$$\bar{x} = (6+3+8+1+2)/4 = 4$$

$$s^2 = ((6-4)^2 + (3-4)^2 + (8-4)^2 + (1-4)^2 + (2-4)^2)/4$$

$$= (4+1+16+9+4)/4 = 8.5$$

median = 3.

Likelihood

```
x= data 	heta= parameter of interest or hypotheses of interest Likelihood = probability of data given hypothesis: p(x\,|\,	heta) \quad \text{(discrete distribution)} \\ f(x\,|\,	heta) \quad \text{(continuous distribution)}
```

Log likelihood:

$$\ln(p(x \mid \theta)).$$

 $\ln(f(x \mid \theta)).$

Likelihood examples

Examples. Find the likelihood function of each of the following.

- Coin with probability of heads θ . Toss 10 times, get 3 heads.
- Wait time $\sim \exp(\lambda)$. In 5 independent trials wait 3, 5, 4, 5, 2.
- Usual 5 dice. Two independent rolls, 9, 5. (Make a likelihood table.)
- Independent $x_1, \ldots, x_n \sim N(\mu, \sigma^2)$
- \bullet x drawn from uniform $(0, \theta)$

In each case likelihood depends on data and unknown hypotheses.

MLE

Methods for finding the maximum likelihood estimate (MLE).

- Discrete hypotheses: compute each likelihood
- Discrete hypotheses: maximum is obvious
- Continuous parameter: compute derivative (often use log likelihood)
- Continuous parameter: maximum is obvious

Examples. Find the MLE for each example in the previous slide.

Bayesian updating: discrete prior-discrete likelihood

Jon has 1 four-sided, 2 six-sided, 2 eight-sided, 2 twelve sided, and 1 twenty-sided dice. He picks one at random and rolls a 7.

- For each type, find the posterior probability Jon chose that type.
- What are the posterior odds Jon chose the 20-sided die?
- **3** Compute the prior predictive probability of rolling 7 on roll 1.
- Compute the posterior predictive probability of rolling 8 on roll 2.

Bayesian updating: conjugate priors

1. Beta prior, binomial likelihood

Data: $x \sim \text{binomial}(n, \theta)$. θ is unknown.

Prior: $f(\theta) \sim \text{beta}(a, b)$

Posterior: $f(\theta \mid x) \sim \text{beta}(a + x, b + n - x)$

Example. Suppose $x \sim \text{binomial}(30, \theta)$, x = 12.

If we have a prior $f(\theta) \sim \text{beta}(1,1)$ find the posterior.

2. Beta prior, geometric likelihood

Data: x

Prior: $f(\theta) \sim \text{beta}(a, b)$

Posterior: $f(\theta \mid x) \sim \text{beta}(a + x, b + 1)$.

Example. Suppose $x \sim \text{geometric}(\theta)$, x = 6.

If we have a prior $f(\theta) \sim \text{beta}(4,2)$ find the posterior.

Normal-normal

3. Normal prior, normal likelihood:

$$a=rac{1}{\sigma_{
m prior}^2} \qquad \qquad b=rac{n}{\sigma^2} \ \mu_{
m post}=rac{a\mu_{
m prior}+bar{x}}{a+b}, \qquad \qquad \sigma_{
m post}^2=rac{1}{a+b}.$$

Notice: μ_{post} between μ_{prior} and \bar{x} ; σ_{post}^2 smaller than σ_{prior}^2 .

Example. In the population IQ is normally distributed: $\theta \sim N(100, 15^2)$.

An IQ test finds a person's 'true' IQ + random error $\sim \textit{N}(0,10^2)$.

Someone takes the test and scores 120.

Find the posterior pdf for this person's IQ.

April 26, 2018 9 / 19

Bayesian updating: continuous prior-continuous likelihood

Examples. Update from prior to posterior for each of the following with the given data. Graph the prior and posterior in each case.

1. Romeo is late:

likelihood:
$$x \sim U(0, \theta)$$
, prior: $U(0, 1)$. data: 0.3, 0.4. 0.4

2. Waiting times:

likelihood:
$$x \sim \exp(\lambda)$$
, prior: $\lambda \sim \exp(2)$. data: 1. 2

3. Waiting times:

likelihood:
$$x \sim \exp(\lambda)$$
, prior: $\lambda \sim \exp(2)$.
data: x_1, x_2, \dots, x_n

NHST: Steps

- Specify H_0 and (perhaps) H_A .
- **2** Choose a significance level α .
- Choose a test statistic and determine the null distribution.
- Determine how to compute a *p*-value and/or the rejection region.
- Ollect data. (At least this deserves its own color.)
- **©** Compute *p*-value or see if test statistic is in rejection region.
- **9** Reject or fail to reject H_0 .

It's very important that # 5 COMES AFTER #1–4!

Make sure you are familiar with the probability tables!

NHST: One-sample *t*-test

 \bullet Data: we assume normal data with both μ and σ unknown:

$$x_1, x_2, \ldots, x_n \sim N(\mu, \sigma^2).$$

- Null hypothesis: $\mu = \mu_0$ for some specific value μ_0 .
- Test statistic:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

where

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2.$$

- Null distribution: t(n-1), Student t with n-1 degs of freedom.
- Student *t* is symmetric around 0, like standard normal.

Example: z and one-sample t-test

For both problems use significance level $\alpha = 0.05$.

Assume the data 2, 4, 4, 10 is drawn from a $N(\mu, \sigma^2)$.

Take
$$H_0$$
: $\mu = 0$; H_A : $\mu \neq 0$.

- **1.** Assume $\sigma^2 = 16$ is known and test H_0 against H_A .
- **2.** Now assume σ^2 is unknown and test H_0 against H_A .

Two-sample *t*-test: equal variances

Data: we assume normal data with μ_x , μ_y and (same) σ unknown:

$$x_1, \ldots, x_n \sim N(\mu_x, \sigma^2), \quad y_1, \ldots, y_m \sim N(\mu_y, \sigma^2)$$

Null hypothesis H_0 : $\mu_x = \mu_y$.

Pooled variance:
$$s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2} \left(\frac{1}{n} + \frac{1}{m}\right).$$

Test statistic: $t = \frac{\bar{x} - \bar{y}}{s_p}$

Null distribution: $f(t | H_0)$ is the pdf of t(n + m - 2)

More generally we can test H_0 : $\mu_x - \mu_y = \mu_0$ using $t = \frac{\overline{x} - \overline{y} - \mu_0}{s_0}$.

April 26, 2018

Example: two-sample *t*-test

We have data from 1408 women admitted to a maternity hospital for (i) medical reasons or through (ii) unbooked emergency admission. The duration of pregnancy is measured in complete weeks from the beginning of the last menstrual period.

- (i) Medical: 775 observations with $\bar{x} = 39.08$ and $s^2 = 7.77$.
- (ii) Emergency: 633 observations with $\bar{x}=39.60$ and $s^2=4.95$
- 1. Set up and run a two-sample t-test to investigate whether the duration differs for the two groups.
- 2. What assumptions did you make?

Chi-square test for goodness of fit

Three treatments for a disease are compared in a clinical trial, yielding the following data:

	Treatment 1	Treatment 2	Treatment 3
Cured	50	30	12
Not cured	100	80	18

Use a chi-square test to compare the cure rates for the three treatments

F-test = one-way ANOVA

Like t-test but for n groups of data with m data points each.

$$y_{i,j} \sim \textit{N}(\mu_i, \sigma^2), \qquad y_{i,j} = j^{\text{th}} \text{ point in } i^{\text{th}} \text{ group}$$

Assumptions: data for each group is an independent normal sample with (possibly) different means but the same variance.

Null hypothesis is that means are all equal: $\mu_1 = \cdots = \mu_n$.

Test statistic is $\frac{MS_B}{MS_W}$ where:

$$MS_B$$
 = between group variance = $\frac{m}{n-1}\sum (\bar{y}_i - \bar{y})^2$

 $\mathsf{MS}_W = \mathsf{within} \ \mathsf{group} \ \mathsf{variance} = \mathsf{sample} \ \mathsf{mean} \ \mathsf{of} \ s_1^2, \dots, s_n^2$

Idea: If μ_i are equal, this ratio should be near 1.

Null distribution is F-statistic with n-1 and n(m-1) d.o.f.:

$$\frac{\mathsf{MS}_B}{\mathsf{MS}_W} \sim F_{n-1,\,n(m-1)}$$

ANOVA example

The table shows recovery time in days for three medical treatments.

- 1. Set up and run an F-test.
- **2.** Based on the test, what might you conclude about the treatments?

T_1	T_2	T_3
6	8	13
8	12	9
4	9	11
5	11	8
3	6	7
4	8	12

For $\alpha = 0.05$, the critical value of $F_{2,15}$ is 3.68.

NHST: right and wrong 1A.

- 1. Significance α is not the probability of being wrong. It's the probability of being wrong if the null hypothesis is true.
- **2.** Likewise, power is not the probability of being right. It's the probability of being right if a particular alternate hypothesis is true.