Worksheet 8 - copied from Martha Lewis

Q1: Gridworld and Value Iteration

Consider the gridworld in Figure 1.

Figure 1: A gridworld!

- (a) Do we need to wait until the algorithm has converged until we know the utility of each state, or are there some states whose utility we already know?
- (b) Suppose we initialise the utility of every state to 0, and then perform one iteration of the value iteration algorithm. What is the utility of each state?

Q2: 3x3 Gridworld Policy

Consider the 3x3 gridworld shown in Table 1.

r	-1	10
-1	-1	-1
-1	-1	-1

Table 1: 3x3 Gridworld

The transition model is as follows: 80% of the time the agent moves in the intended direction; the remaining 20% of the time, it moves perpendicularly (10% left, 10% right). Given different values of r, determine the optimal policy using discounted rewards with $\gamma = 0.99$.

- (a) r = -3
- (b) r = +3

Q3: Bridge Crossing Problem

Figure 2 shows a narrow bridge gridworld where a robot must cross safely.

- (a) Using a discount value of 0.9, calculate the utility of each non-terminal grid square after one and two moves.
- (b) The optimal policy in Figure 2 fails to cross the bridge. What is the effect of decreasing the discount value?
- (c) What is the effect of increasing the utility of the goal? Choose a new value so that the optimal policy is to cross the bridge, and show the utility of each grid square after three iterations.

wall	-100	-100	-100	-100	-100	wall
1	0	0	0	0	0	10
wall	-100	-100	- 100	- 100	-100	wall

wall	- 100	-100	-100	-100	-100	wall
1	-17.28	-30.44	-36.56	-25.78	-10.8	10
	←	←	\rightarrow	\rightarrow	\rightarrow	
¦wall	- 100	-100	-100	-100	-100	wall ¦

Figure 2: Bridge crossing(a) rewards for the bridge-crossing problem in gridworld. (b) utilities after 5 iterations, and the corresponding optimal policy