Real-Time Scrap Classifier & Robotic Pick Simulation

1. Problem Understanding

In industries like recycling and waste management, one of the biggest challenges is automating the identification and segregation of scrap materials. Manual sorting is not only time-consuming but also inconsistent and costly. The goal of this project was to build a real-time scrap classification system that can recognize different categories of scrap material and simulate how a robotic arm would pick them up for efficient recycling.

2. Step-by-Step Breakdown

• Dataset Preparation:

I collected and organized a dataset consisting of multiple categories of scrap (plastic, metal, glass, paper, etc.). Initially, the dataset was in a **folder-in-folder structure** with thousands of images spread across subfolders. I preprocessed it by restructuring, labeling, resizing, and augmenting the images to improve model generalization.

Model Training:

I trained a **Convolutional Neural Network (CNN)** for image classification. Transfer learning with pretrained models (like ResNet) was explored to improve accuracy. The model was evaluated on training/validation/test splits and tuned using techniques like learning rate scheduling and dropout.

• Real-Time Integration:

Using **OpenCV**, I integrated the trained model into a **real-time video pipeline** to classify scrap objects live.

To simulate an industrial setup, I designed a **robotic pick mechanism** that responds to the classification results — essentially showing which scrap item would be picked and sorted.

Deployment:

The solution was deployed with **Streamlit**, providing a simple and interactive web interface where users can upload images, view predictions, or test the model on live video streams.

3. Key Decisions

- Opted for **transfer learning** instead of training from scratch to save time and leverage pretrained image representations.
- Chose Streamlit for quick deployment and demo purposes due to its ease of use and clean UI.

• Designed the pipeline to be modular so that it can later be integrated with **robotic** hardware for real-world automation.

4. Challenges and Learnings

- **Dataset structuring:** Initially, the dataset appeared disorganized, which required significant effort in cleaning and labeling.
- Class imbalance: Some scrap categories had fewer images, so I used data augmentation to balance them.
- Real-time performance: Running inference on video streams needed optimization; I
 learned how to manage frame skipping and batch predictions for smoother outputs.
- **Robotic simulation:** Since I didn't have access to an actual robotic arm, I simulated the process, which gave me insights into how vision and robotics interact.

These challenges helped me appreciate the importance of **data quality, optimization techniques, and practical deployment constraints**.

5. Optimizing for Edge Deployment

If deployed on an edge device (like a Raspberry Pi or Jetson Nano), I would:

- Use a **lightweight CNN model** (e.g., MobileNet or EfficientNet-lite) instead of heavy architectures.
- Apply quantization and pruning to reduce model size and improve inference speed.
- Use **TensorRT or ONNX runtime** for faster deployment on embedded GPUs.
- Minimize frame rate processing (e.g., classify every 2nd frame) to balance accuracy and latency.