

REAL CONVEX SETS

Definition

A set $C \subset \mathbb{R}^n$ is *convex* if it contains the closed line segment between every pair of distinct points. In other words,

$$\lambda x + (1 - \lambda)y \in C$$
 for all $x, y \in C$ and $\lambda \in [0, 1]$.

Roughly speaking, C is convex if and only if its intersection with every line in \mathbb{R}^n is either empty or a closed line segment.

Examples

The empty set, any singleton, any subspace, any affine set and any half-space.

Properties

Proposition 1 (closure under intersections). Suppose $\mathcal{K} \subset \mathcal{P}(\mathbf{R}^n)$ is a set of convex sets. Then $\cap \mathcal{K}$ is convex.

Proposition 2 (sums, differences, scales are convex). Suppose A, B are convex sets. Then A + B, A - B and λA for any real λ is convex.

