(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年7月29日(29.07.2004)

PCT

(10) 国際公開番号 WO 2004/063160 A1

(51) 国際特許分類7:

C07D 213/30, 213/68,

A61K 31/444, A61P 31/04

(21) 国際出願番号:

PCT/JP2004/000284

(22) 国際出願日:

2004年1月16日(16.01.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2003年1月16日(16.01.2003) 特願2003-008531

(71) 出願人 および

(72) 発明者: 高麗 寬紀 (KOURAI, Hiroki) [JP/JP]; 〒 7710112 徳島県徳島市川内町富吉230-2 Tokushima

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 薮原 忠男 (YABUHARA, Tadao) [JP/JP]; 〒7793132 徳島県徳島 市一宮町西丁166番地 Tokushima (JP).

(74) 代理人: 吉田 勝広, 外(YOSHIDA, Katsuhiro et al.); 〒1010025 東京都千代田区神田佐久間町三丁目30番 地アコスビル Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が 可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NOVEL QUATERNARY AMMONIUM SALT COMPOUND HAVING ANTIBACTERIAL ACTIVITY AND PROCESS FOR PRODUCING THE SAME

(54) 発明の名称: 抗菌活性を有する新規な第四級アンモニウム塩化合物およびその製造方法

$$\begin{bmatrix} R_1 - Py^+ & O & (CH_2)_m & O & (CH_2)_m & Py^+ - R_1 \\ (CH_2)_m & (CH_2)_m & (CH_2)_m & (CH_2)_m & O \end{bmatrix} 2X_2^-$$
 (1)

(57) Abstract: A novel quaternary ammonium salt compound having antibacterial activity, characterized by being represented by the following general formula (1): General formula (1) wherein Py represents an optionally substituted pyridine or fused pyridine ring; R_1 represents optionally substituted C_{6-18} alkyl bonded to the nitrogen atom of Py; z is 0 or 1; m is 1, 2, or 3; n is 0, 1, or 2; and X₂ represents an anion.

/続葉有/

(57) 要約:

下記一般式(1)で表されることを特徴とする抗菌活性を有する 新規な第四級アンモニウム塩化合物。

一般式 (1)

$$\begin{bmatrix} R_1 - Py^+ & O & (O)_z & O \\ (CH_2)_m & (CH_2)_m & O & (CH_2)_m & O \end{bmatrix} 2X_2$$

(上記式中、 $Pyはピリジン環あるいは縮合ピリジン環を、<math>R_1$ はPyの窒素原子に結合した炭素数 $6\sim1$ 8のアルキル基を示し、いずれも置換基を含んでもよい。Zは0または1を、mは1、2または3を、nは0、1または2を示し、 X_2 は7ニオンを示す。)

明 細 書

抗菌活性を有する新規な第四級アンモニウム塩化合物およびそ の製造方法

5

15

20

技術分野

本発明は抗菌活性を有する新規なビス第四級アンモニウム塩化合物およびその製造方法に関する。

10 背景技術

細菌や真菌などに抗菌活性を発揮するビス第四級アンモニウム 塩化合物は古くから知られており、現在も抗菌剤として広く実用化さ れている。しかしながら、現在用いられている抗菌性のビス第四級ア ンモニウム塩化合物は、通常、抗菌活性は優れているが、同時に生分 解生成物の残留毒性も高いため、実際の使用に関しては、環境に対す る安全性と水に対する溶解性および安定性に問題があり、その適用範 囲には制限があった。また、従来のビス第四級アンモニウム塩化合物 は、抗菌力が糖質、蛋白質および脂質などに拮抗され、抗菌力がpH の低い(酸性)領域では低下し、かつ細胞芽胞に効果がないなどの欠 点があった。

そこで、下記一般式(A)および(B)で表されるビス第四級アンモニウム塩化合物(特開平8-301703号公報参照)や、

—般式(A)

$$R^2-Y^+$$
 O R^1 O $Y^{\pm}-R^2$ $2X^-$

一般式(B)

$$R^2 - Y^{\ddagger} \stackrel{O}{\longrightarrow} \stackrel{R^1}{\longrightarrow} \stackrel{O}{\longrightarrow} Y^{\ddagger} - R^2 \qquad 2X^{-1}$$

(上記式中、Yはピリジン環、キノリン環、イソキノリン環またはチアゾリン環を、R¹は炭素数2~10のアルキレン基あるいはアルケニレン基を、R²はYの窒素原子に結合した炭素数6~18のアルキル基を示し、いずれも置換基を含んでもよい。Xはアニオンを示す。)下記一般式(C)で表されるビス第四級アンモニウム塩化合物(特別平10-095773号公報参照)、

一般式(C)

$$R_4-Z_{-}^+C_{-}^0R_3-N_{-}C_{-}^0Z_{-}^+R_4$$
 $2X_{-}^-$

(上記式中、Zはピリジン環を示し、 R_1 および R_2 は同一または異な 10 り、各々水素原子または炭素数 $1\sim 6$ のアルキル基を示し、 R_3 は炭素数 $3\sim 1$ 8 のアルケニレン基を示し、 R_4 は Z の環窒素原子に結合した炭素数 $6\sim 1$ 8 のアルキル基またはアルケニル基を示し、X はアニオンを示す。)

下記一般式(D)で表されるビス第四級アンモニウム塩化合物(特開 15 平6-321902号公報参照)が報告されている。

一般式(D)

$$R_{2}$$
— Z_{+}^{+} S— R_{3} — S — Z_{+}^{+} R $_{2}$ 2X $^{-}$

(上記式中、Zはピリジン環またはキノリン環を、 R_3 は炭素数 $2\sim 18$ のアルキレン基あるいはアルケニレン基を、 R_4 はZの窒素原子に結合した炭素数 $6\sim 18$ のアルキル基を示し、いずれも置換基を含

んでもよい。 R_1 および R_2 は同一または異なって、Zの窒素原子以外の原子に結合した炭素数 $1\sim3$ のアルキル基、水酸基、アミノ基、炭素数 $1\sim3$ のアルコキシ基あるいは水素原子を、Xはアニオンをそれぞれ示す。)

上記の従来公知のビス第四級アンモニウム塩化合物よりも抗菌活性に極めて優れ、かつ生分解後の化合物は、残留毒性が少なく、地球環境に優しいビス第四級アンモニウム塩化合物の開発が強く望まれている。従って、本発明の目的は、蛋白質などの阻害を受け難く、広範囲のpH領域で強力な殺菌力を有し、広い抗菌スペクトルを示し、安全性が高く、かつ使用後に分解して発生する化合物の残留毒性が極めて低い、優れた抗菌活性を有し、極めて安全性の高い、新規なビス第四級アンモニウム塩化合物およびその製造方法を提供することにある。

15 発明の開示

上記目的は以下の本発明によって達成される。すなわち、本発明 は、下記一般式(1)

一般式(1)

$$\begin{bmatrix} R_1 - Py^+ & O & (O)_z & O \\ (CH_2)_m & (CH_2)_m & (CH_2)_m & O \end{bmatrix} 2X_2^-$$

(上記式中、P y はピリジン環あるいは縮合ピリジン環を、 R_1 はP 20 yの窒素原子に結合した炭素数 $6\sim1$ 8のアルキル基を示し、いずれも置換基を含んでもよい。Z は0 または1 を、m は1、2 または3 を、n は0、1 または2 を示し、 X_2 はP ニオンを示す。)で表される抗菌活性を有する新規な第四級アンモニウム塩化合物を提供する。

また、本発明は、下記一般式(2)で表される4-置換ピリジン系 25 化合物のアルコラートと、下記一般式(3)で表されるジハロゲノア ルキレンを反応させ、ついで一般式 R_1X_2 (R_1 は炭素数 $6\sim180$ アルキル基を示し、置換基を含んでもよい。 X_2 はアニオンを示す。)で表される化合物を反応させることを特徴とする下記一般式(1)で表される抗菌活性を有する新規な第四級アンモニウム塩化合物の製造方法を提供する。

一般式(2)

5

 $Py-(CH_2)_nOM$

(上記式中、Pyはピリジン環あるいは縮合ピリジン環を示し、nは 0、1または2を、Mはアルカリ金属原子を示す。)

一般式 (3)

 $X_1 (CH_2)_m (O)_z (CH_2)_m X_1$

10 (上記式中、 X_1 はハロゲン原子を示し、mは1、2または3を、Zは0または1を示す。)

(A) +
$$2R_1X_2 \longrightarrow$$

一般式 (1)
$$\begin{bmatrix} R_1 - Py^+ & O & (CH_2)_m & (CH_2)_m & O & (CH_2)_m & Py^+ - R_1 \end{bmatrix} 2X_2$$

(上記式中、Py、 R_1 、Z、m、n および X_2 は前記と同じ意味である。)

15 また、本発明は、上記本発明の前記一般式(1)で表される新規な

第四級アンモニウム塩化合物を有効成分として含有することを特徴 とする抗菌剤を提供する。

発明を実施するための最良の形態

次に好ましい実施の形態を挙げて本発明をより詳細に説明する。上記一般式(1)の化合物において、 R_1 のアルキル基は、炭素数が6~18の範囲のものが用いられるが、抗菌力の観点から、炭素数8~14の範囲のアルキル基であることがより好ましい。なお、 X_2 で示されるアニオンについては、特に限定されず、 $C1^-$ 、 Br^- 、I10 -、 NO_3^- 、 CH_3COO^- 、および SO_4^{2-} などを含む。なお、アニオンについては、製造工程中、原料として使用する R_1X_2 の X_2 を適当に選択するか、あるいは最終化合物を公知の方法でアニオン交換することによって所望のアニオンを選択できる。

次に本発明のビス第四級アンモニウム塩化合物の製造方法の一例 15 を反応式で示すが、本発明はこれらの反応式に限定されるものではない。

例えば、下記式(2)で示される4ーヒドロキシピリジンにアルカリ金属を反応させて得られるアルコラート化合物と、下記式(3)で示されるジハロゲノエタンを反応させて下記式(4)で示される本発明のビス第四級アンモニウム塩化合物の中間体を得る。さらに、例えば、下記式(4)で示される中間体に下記式(5)で示される炭素数6~18のアルキルハライドを反応させると、下記式(1)で示される本発明の1例のビス第四級アンモニウム塩化合物が得られる。

$$N$$
 OH + Na (K、その他) → N ONa (K、その他) ONa (K、その他) N ONa (K、その他) + N OCH₂CH₂O N (4) N OCH₂CH₂O N N OCH₂CH₂O N N OCH₂CH₂O N N OCH₂CH₂O N N OCH₂CH₂O N OCH

以上の例示は、前記一般式(1)において、m=1、n=0、Z=0の場合の例であり、m、nおよびZが他の数値の本発明の化合物も上記と同様な製造方法で得ることができる。

5 上記反応は通常有機溶媒中、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類や、N,N'ージメチルホルムアミド、Nーメチルホルムアミド、ニトロメタン、ニトロエタン、アセトニトリル、メチルセロソルブ、エチルセロソルブ、クロロベンゼン、塩化エチレンなどの中で、約50~120℃の温度で行うことができる。反応時間は通常2~48時間程度とすることができる。

あるいは上記反応は、上記の如き溶媒の存在下に、オートクレーブ中で加圧下、好ましくは約 $10\sim100$ MPa(メガパスカル)において約 $50\sim100$ Cの温度で行うこともできる。

本発明において使用される前記一般式(2)で表されるアルコラー 15 トと前記一般式(3)で示される化合物との反応割合は厳密に制限されるものではない。上記反応により生成する一般式(1)の化合物は、

10

15

20

25

通常の分離精製手段、例えば、再結晶操作などにより容易に精製する ことができる。

以上に述べた方法によって製造される前記一般式 (1) で示される 化合物におけるアニオン (X2) は必要に応じて一般的な処理方法に よって所望の他のアニオンと交換することができる。アニオン (X2) は、特に限定されるものでなく、ョウ素、臭素、フッ素、塩素、ョウ素酸、臭素酸、塩素酸、過ョウ素酸、硫酸、硝酸、リン酸など の無機酸などのアニオン、有機酸、ヒドロキシ酸類、オキソ酸類、安息香酸類、有機スルフォン酸類などのアニオンを挙げることもできる。

前記一般式(1)で表される本発明の新規なビス第四級アンモニウム塩化合物は、後記の試験例に示すように、種々の細菌や真菌に対して広い抗菌スペクトルを有しており、しかも、従来の市販の第四級アンモニウム塩などに比べて、1/10~1/100の最少殺菌濃度という優れた抗菌活性を示す。特に、現在一般に広く使用されている塩化ベンザルコニウムと比較して約30倍という高い抗菌活性を有しており、しかも急性経口毒性値が極めて低く、強力かつ安全な抗菌剤として極めて有用である。

しかも前記一般式(1)で表される本発明の化合物は、最少殺菌濃度が塩化ベンザルコニウムの1,000分の1以下に低下するため、本発明の化合物の分解生成物も極めて少量となるため、環境に対して優しい抗菌剤ということができる。

前記一般式(1)で表される本発明の化合物は、特に腐敗菌および変敗菌に対する抗菌力が強く、従って、例えば、スライムコントロール剤や防菌防臭加工繊維製品、皮革製品、建材、木材、塗料、接着剤、プラスチック、フィルム、紙、パルプ、金属加工油、食品、医薬品、化粧品、文房具、畜産分野などにおける抗菌剤として幅広くその応用が期待できる。

本発明の抗菌剤は、前記一般式(1)で表される化合物を有効成分

とする。通常は、水溶液の状態で使用され、その一般的濃度は0.0 1~20質量%であるが、アルコールなど有機溶剤の溶液でもよいし、 固体、顆粒、その他の形状でもよい。また、他の公知の抗菌剤と併用 してもよい。該抗菌剤の使用方法は、従来公知の抗菌剤の使用方法と 同様であり、特に限定されない。

実施例

次に実施例および試験例により本発明をさらに具体的に説明する。

10 実施例1 < 4, 4'-(1, 2-ジオキシエチレン) -ジピリジンの 合成>

コンデンサー、攪拌機および窒素導入管付き 1 リットル四つロフラスコに無水ジメチルホルムアルデヒド 3 0 0 m 1 と 4 ーヒドロキシピリジンの白色結晶 9 5.0g (1.00モル)を加え、溶解後金属15 ナトリウム 2 4.15g (1.05モル)を加え、40℃で、窒素ガス雰囲気および撹拌下、10時間反応を行い、白色スラリー状アルコラートを得た。次いで、該白色スラリー状アルコラートに1,2ージクロロエタン 4 9.48g (0.50モル)溶液を1時間かけて滴下した後、同条件下でさらに10時間反応を継続した。反応終了後、過20 剰の1,2ージクロロエタンをエーテル洗浄で除去、次いで水洗浄して副生した食塩を除去した。続いてシリカゲル(Wakogel、Cー200)カラムを用いてメタノールで展開し、目的物を分離、濃縮後、1.32KPa、25℃で24時間真空乾燥し、白色粉末物質99.36gを得た。

25 該白色粉末物質は本発明の化合物の中間体である4,4'-(1,2-ジオキシエチレン)-ジピリジン(以下、4DOBP-2と略す)と考えられ、1H-NMRの測定結果からピリジン環のプロトンが7.89~7.81ppm(d)と6.49~6.45ppm(d)に、

酸素に結合するメチレンプロトンは4.05~4.00ppm(t)に現れ、それぞれの積分値も一致した。上記4DOBP-2の元素分析結果は次の通りであった。測定値(理論値)C:66.73%(66.67%)、H:5.68%(5.56%)、N:13.01%(12.96%)で、いずれも0.2%以内の誤差範囲であった。なお、4DOBP-2の収率は4-ヒドロキシピリジンに対し91.36%であった。

実施例2<4DOBP-2の四級化>

実施例1で得られた4DOBP-2の99.36g(0.46モル) 10 を無水エタノール300m1に溶解後、コンデンサー、攪拌機および 窒素導入管付き四つロフラスコに入れ、窒素ガス雰囲気および撹拌、 還流下、オクチルブロマイド231.60g(1.20モル)を1. 5時間かけて滴下した。滴下終了後、同条件で70時間を継続した。 反応終了後、反応混合物を酢酸エチル/エタノール(1:1)の混合 15 溶液で再結晶を3回繰り返した。次いで1.32KPa、25℃で2 4時間真空乾燥し、淡黄色粉末状物質241.30gを得た。

該淡黄色粉末状物質は4,4'-(1,2-ジオキシエチレン)ビス(1-オクチルーピリジウムブロマイド)(以下、4DOBP-2,8(Br)と略す)と考えられ、1H-NMRの測定結果からピリジン環のプロトンが8.00~7.97ppm(q)と6.53~6.51ppm(q)に、酸素に結合するメチレンプロトンは3.51~3.47ppm(t)に、窒素に直結するメチレンプロトンは4.43~4.35ppm(t)に、窒素に結合するアルキル基の末端プロトンは0.92~0.89ppm(t)に、その他の窒素直結アルキレンプロトンは1.40~1.31ppm(m)に現れ、それぞれの積分値も一致した。4DOBP-2,8(Br)の元素分析結果は次の通りであった。測定値(理論値)C:55.90%(55.81%)、H:7.77%(7.64%)、N:4.60%(4.65%)で、

いずれも0.2%以内の誤差範囲であった。なお、4DOBP-2、8(Br)のmpは123.0~124.2 $^{\circ}$ 、収率は4-ヒドロキシピリジンに対し80.17%であった。以上の分析結果から4DOBP-2、8(Br)の構造は下記の通りであることが確認された。

$$\begin{bmatrix} C_8H_{17} - N & O \\ N - C_8H_{17} \end{bmatrix} 2Br^{-1}$$

実施例1において、1,2-ジクロロエタン49.48g(0.50年ル)の代わりに1,4-ジブロモブタン107.96g(0.50年ル)を使用した他は実施例1と同様に処理して白色粉末物質109.98gを得た。

該白色粉末物質は4,4'-(1,4-ジオキシブチレン)-ジピリジン(以下、4DOBP-4と略す)と考えられ、1H-NMRの測定結果からピリジン環のプロトンが7.78~7.71ppm(d)15と6.53~6.26ppm(d)に、酸素に結合するメチレンプロトンは4.21~4.00ppm(t)と1.85~1.78ppm(m)に現れ、それぞれの積分値も一致した。上記4DOBP-4の元素分析結果は次の通りであった。測定値(理論値)C:68.80%(68.89%)、H:6.68%(6.56%)、N:11.80%1.84%)で、いずれも0.2%以内の誤差範囲であった。なお、4DOBP-4の収率は4-ヒドロキシピリジンに対して90.15%であった。

実施例4<4DOBP-4の四級化>

実施例1において、4DOBP-2の99.36g(0.46モル) 25 の代わりに4DOBP-4の109.98g(0.45モル)を用い た他は実施例1と同様に処理して淡黄色粉末状物質が得られた。

該淡黄色粉末状物質は4,4'-(1,4-ジオキシブチレン)ビ ス(1-オクチルーピリジウムブロマイド)(以下、4DOBP-4, 8 (Br)と略す)と考えられ、1 H-NMRの測定結果からピリジ ン環のプロトンが8.00~7.97ppm (q) と6.53~6. 51ppm (q)に、酸素に結合するメチレンプロトンは3.88~ 5 3. 57ppm (t) と2. 05~1. 98ppm (m) に、窒素に 直結するメチレンプロトンは5.58~5.35ppm(t)に、ア ルキル基の末端プロトンは1.00~0.97ppm(t)に、その 他の窒素直結アルキレンプロトンは1. 41~1. 20ppm (m) に現れ、それぞれの積分値も一致した。上記4DOBP-4,8(B 10 r)の元素分析結果は次の通りであった。測定値(理論値)C:57. 20% (57. 14%) 、H: 8. 01% (7. 94%) 、N: 4. 50%(4.44%)で、いずれも0.2%以内の誤差範囲であった。 なお、4 D O B P - 4,8 (Br)のmpは124.0~125.5℃、 収率は4ーヒドロキシピリジンに対して79.05%であった。以上 15 の分析結果から4DOBP-4,8 (Br)の構造は下記の通りであ ることが確認された。

$$\begin{bmatrix} c_8 H_{17} - N & C_8 H_{17} \end{bmatrix} 2B_1^-$$

実施例5<4-ヒドロキシエチルピリジンの合成>

20 コンデンサー、攪拌機および窒素導入管付き1リットル四つロフラスコに4ーメチルピリジン150g(1.61モル)を入れ、20%ホルマリン溶液180g(1.20モル)を窒素ガス雰囲気および撹拌下、130℃で1時間かけて滴下した。滴下終了後、同条件で4時間反応を継続した。反応終了後、未反応の4ーメチルピリジンおよびホルマリンを水蒸気蒸留で留去した。次いで該反応混合物を減圧蒸留し、1.97KPa、125~126℃で無色透明の粘稠液体の4-

ヒドロキシエチルピリジン124.89gを得た。4-ヒドロキシエチルピリジンの収率はホルマリンに対し95.00%であった。 実施例6<4,4'-(3,6-ジオキシオクタメチレン)-ジピリジンの合成>

実施例1において、4ーヒドロキシピリジン95.00g(1.00+ル)に代えて、4ーヒドロキシエチルピリジン124.89g(1.02+ル)を用いた他は実施例1と同様に処理して白色粉末物質13.4.00gを得た。

該白色粉末物質は本発明の目的化合物の中間体である4,4'-(3,10 6-ジオキシオクタメチレン)-ジピリジン(以下、4DOBP-A2-2と略す)と考えられ、1H-NMRの測定結果からピリジン環のプロトンが8.42~8.40ppm(q)と7.33~7.32ppm(q)に、ピリジン環と酸素間のメチレンプロトンは3.84~3.81ppm(t)に、酸素間のメチレンプロトンは4.15~4.10ppm(t)に現れ、それぞれの積分値も一致した。4DOBP-A2-2の元素分析結果は次の通りであった。測定値(理論値)はC:70.43%(70.59%)、H:7.48%(7.35%)、N:10.10%(10.29%)でいずれも0.2%以内の誤差範囲であった。なお、4DOBP-A2-2の収率はホルマリンに対して82.11%であった。

実施例7<4DOBP-A2-2の四級化>

実施例1において、4DOBP-2の99.36g(0.46モル)の代わりに、実施例6で合成した4DOBP-A2-2の134.00g(0.49モル)を用いた他は実施例1と同様に処理して淡黄色粉末状物質288.40gを得た。

該淡黄色粉末状物質は本発明の目的物質である4,4'-(3,6 ージヒドロキシオクタメチレン)ビス(1ーオクチルーピリジウムブロマイド)(以下、4DOBP-A2-2,8(Br)と略す)と考

- •

えられ、1 H-NMRの測定結果からピリジン環のプロトンが 7.9 5~7.90ppm (q) と6.67~6.50ppm (q) に、酸 素に結合するメチレンプロトンは3.98~3.67ppm(t)と 2. 15~2. 08ppm (m) に、窒素に直結するメチレンプロト ンは 5 . 6 8 ~ 5 . 4 5 p p m (t) に、アルキル基の末端プロトン 5 は、1.02~0.96ppm(t)に、その他の窒素に直結するア ルキレンプロトンは、1. 43~1. 30ppm (m) に現れ、それ ぞれの積分値も一致した。4DOBP-2A-2,8 (Bェ)の元素 分析結果は次の通りであった。測定値(理論値)はC:58.30% (58.36%), H:8.11% (8.21%), N:4.20% 10 (4. 26%) でいずれも0. 2%以内の誤差範囲であった。なお、 4 DOBP-A2-2,8(Br)のmpは126.5~127.0℃、 収率はホルマリンに対して74.60%である。以上の分析結果から 4 D O B P - A 2 - 2, 8 (Br) の構造は下記の通りであることが 確認された。 15

$$\begin{bmatrix} C_8H_{17} - N & C_8H_{17} \end{bmatrix} 2Br^{-1}$$

実施例8<4,4'-(1,8-ジヒドロキシオクタメチレン)ビス (1-オクチルーピリジウムブロマイド)(以下4DOBP-6,8 (Br)と略す)の合成>

20 ・4DOBP-6,8(Br)の中間体である4,4'-(1,8-ジヒドロキシオクタメチレン)ジピリジンの合成

実施例1において、1,2-ジクロロエタンの49.48g(0.50モル)の代わりに1,6-ジブロモエタンの121.99g(0.50モル)を使用した他は実施例1と同様に処理して白色粉末物質110.50gを得た。

該白色粉末物質は4DOBP-6,8 (Bェ)の中間体である4,

4'-(1,8-ジヒドロキシオクタメチレン)ジピリジン(以下4DOBP-6と略す)と考えられ、1H-NMRの測定結果からピリジン環のプロトンが7.81~7.80ppm(d)と6.45~6.43ppm(d)に、酸素に結合するメチレンプロトンは3.99~3.96ppm(t)に、酸素原子間のその他のアルキレンプロトンは1.80ppm(m)と1.36ppm(m)に現れ、それぞれの積分値も一致した。4DOBP-6の元素分析結果は次の通りであった。測定値(理論値)はC:70.48%(70.59%)、H:7.28%(7.35%)、N:10.30%(10.29%)であり、いずれも0.2%以内の誤差範囲であった。なお、4DOBP-6の収率は4-ヒドロキシピリジンに対し81.25%であった。実施例9<4DOBP-6の四級化>

実施例1において、4DOBP-2の99.36g(0.46モル)の代わりに4DOBP-6の110.50g(0.41モル)を用いた他は実施例1と同様に処理して淡黄色粉末状物質240.21gが得られた。

該淡黄色粉末状物質は4DOBP-6,8(Br)と考えられ、1H-NMRの測定結果からピリジン環のプロトンが8.80~8.78ppm(m)と7.53~7.51ppm(m)に、酸素に結合するメチレンプロトンは4.51~4.47ppm(t)に、その他のアルキレンプロトンは2.00~1.85ppm(m)に、窒素に直結するメチレンプロトンは5.58~5.35ppm(t)に、アルキル基の末端プロトンは0.92~0.89ppm(t)に、その他の窒素直結アルキレンプロトンは1.52~1.31ppm(m)に3.70年のでであった。別定値(理論値)はC:50.86%(51.06%)、H:6.98%(7.18%)、N:3.67%(3.72%)であり、いずれも0.2%以内の誤差範囲であった。7%(3.72%)であり、いずれも0.2%以内の誤差範囲であった。7%(3.72%)であり、いずれも0.2%以内の誤差範囲であった。7%(3.72%)であり、いずれも0.2%以内の誤差範囲であった。

$$\begin{bmatrix} C_8H_{17} - N \\ \end{bmatrix} C_8H_{17} - N \end{bmatrix} 2Br$$

試験例1 < 本発明の化合物 (1) の各種細菌に対する静菌活性>

本発明の化合物(1)として実施例2で得られた4DOBP-2,8(Br)、実施例4で得られた4DOBP-4,8(Br)および実施例7で得られた4DOBP-2A-2,8(Br)を用いた。対10 照化合物には塩化ベンザルコニウムを用いて最小発育阻止濃度(MIC)を測定した。

最小発育阻止濃度 (MIC)の測定は一般的なブロス希釈法に従い、ニュトリエントブロスを用いて、菌懸濁濃度が10⁶cell/mlになるように調整した定常期状態の菌液を段階希釈した薬剤溶液と混合し、37℃、24時間静置培養後、増殖の有無によりMIC値を決定した。

供試菌としてグラム陰性菌10種およびグラム陽性菌6種を用いた。その結果を表1に示す。

表1:静菌スペクトル

	MIC (μ M)			
供試菌:細菌類	実施例2の 本発明の化合物 4DOBP – 2,8 (Br)	実施例4の 本発明の化合物 4DOBP – 4,8 (Br)	実施例7の 本発明の化合物 4DOBP – 2A – 2,8 (Br)	対照化合物 ベンザルコ ニウム
Pseudomonas aeruginosa ATCC 27583	12.8	6.4	12.8	51.2
Pseudomonas aeruginosa ATCC 10145	6.4	3.2	6.4	51.2
Pseudomonas aeruginosa IFO 3080	1.6	1.6	1.6	102.4
Klebsiella pneumoniae ATCC 4352	0.8	0.8	0.8	12.8
Klebsiella pneumoniae ATCC 13883	0.8	1.6	0.8	102,4
Proteus rettgeri NIH 96	3.2	1.6	3.2	51.2
Proteus vulgaris ATCC 13315	0.2	0.8	0.2	16.4
Proteus mirabilis IFO 3849	25.6	6.4	6.4	204.8
Escherichia coli K12 OUT 8401	0.8	1.6	0.8	12.8
Escherichia coli K12 W3110	8,0	0.8	0.8	25.6
Bacillus subtilis IFO 3134	0.2	0.2	0.2	6.4
Bacillus subtilis ATCC 6633	0.4	0.8	0.4	6.4
Bacillus cereus IFO 3001	0.8	0.4	0.4	6.4
Micrococcus Iuteus IFO 12708	0.8	1.6	0.8	6.4
Staphylococcus aureus IFO 12732	0.2	0.4	0.2	6.4
Staphylococcus aureus JCI (MRSA)	0.4	1.6	0.4	12.8

試験例2<本発明の化合物(1)の各種細菌に対する殺菌活性(MBC)>

本発明の化合物の例として、4DOBP-2, 8(Br)、4DOBP-4, 8(Br) および4DOBP-2A-2, 8(Br) を用いた。対照化合物にはヨウ化ベンザルコニウムを用いた。

供試菌としてグラム陰性菌 5 種およびグラム陽性菌 4 種を用い、前 記と同様にして最小殺菌濃度(MBC)を測定した。その結果を表 2 に示す。

表2:殺菌スペクトル

	MBC (μM) a)			
供試菌:細菌類	実施例2の 本発明の化合物 4DOBP – 2,8 (Br)	実施例4の 本発明の化合物 4DOBP – 4,8 (Br)	実施例7の 本発明の化合物 4DOBP – 2A – 2,8(Br)	対照化合物 ベンザルコ ニウム ^{D)}
Pseudomonas aeruginosa ATCC 27583	12.5	6.4	6.4	204.8
Klebsiella pneumoniae ATCC 13883	1.6	1.6	1.6	. 102.4
Proteus rettgeri NIH 96	0.8	0.4	0.8	51.2
Escherichia coli K12 OUT 8401	1.6	0.8	1.6	51.2
Escherichia coli K12 W3110	1.6	1.6	8.0	204.8
Bacillus subtilis IFO 3134	0.2	0.2	0.2	1.6
Bacillus subtilis ATCC 6633	0.4	0.2	0.2	0.8
Bacillus cereus IFO 3001	3.2	1.6	1.6	25.6
Staphylococcus aureus IFO 12732	0.8	0.4	0.4	6.4

- a) MBC は希釈法で行った。30℃、30分。
- b) ベンザルコニウム: ヨウ化ベンザルコニウム

試験例3<真菌に対する最小発育阻止濃度(MIC)の測定>

本発明の化合物(1)の例として、4DOBP-2,8(Br)、10 4DOBP-4,8(Br)および4DOBP-2A-2,8(Br)を用いた。対照化合物にはTBZ(2-(4'-チアゾリル)ベンズ

イミダゾール)を用いた。

最小発育阻止濃度(MIC)の測定は、一般的なブロス希釈法に従い、サブロー培地を用い、前培養した供試菌を湿潤剤添加殺菌水で胞子液を調製した。希釈薬剤溶液1mlと胞子液1mlを混合し、インキュベーダー中で30℃、1週間培養後、増殖の有無を濁度で判定し、濁度を生じていないところをMICとした。その結果を表3に示す。

表3:抗黴スペクトル

	F			
		MIC (μ M) ^{a)}		
供試菌:細菌類	実施例2の 本発明の化合物 4DOBP – 2,8 (Br)	実施例4の 本発明の化合物 4DOBP – 4,8 (Br)	実施例7の 本発明の化合物 4DOBP – 2A – 2,8(Br)	対照化合物 TBZ ^{b)}
Aspergillus niger TSY 0013	25.6	12.8	12.8	102.4
Aspergillus niger IFO 6341	6.4	3.2	6.4	25.6
Aspergillus terreus IFO 6346	3.2	6.4	3.2	25.6
Aureobasidium pullulans IFO 6353	1.6	1.6	1.6	0.8
Chaetomium globosum IFO 6347	0.8	0.4	0.8	3.2
Cladosporium cladosporioides IFO 6348	3.2	3.2	1.6	3.2
Gliocladium virides IFO 6355	0.8	0.4	0.8	3.2
Penicillium funiculosum IFO 6345	0.8	0.8	0.8	1.6
Rhizopus nigricans SN 32	12.8	6.4	12.8	102.4 <
Trichoderma virides IFO 30498	6.4	6.4	6.4	51.2

a) MICはサブロー培地を用い、ブロス希釈法で測定した。30℃、7日間。

産業上の利用可能性

本発明の抗菌活性を有する新規なビス第四級アンモニウム塩化

b) TBZ:2- (4' ーチアゾリル) ベンズイミダゾール

合物は、上記試験例からも明らかなように、既知の第四級アンモニウム塩化合物に比べて、極めて優れた殺菌効果と広い抗菌スペクトルを示し、かつ安全性も高い。

請 求 の 範 囲

1. 下記一般式(1)で表されることを特徴とする抗菌活性を有する新規な第四級アンモニウム塩化合物。

一般式 (1)

(上記式中、P yはピリジン環あるいは縮合ピリジン環を、 R_1 はP yの窒素原子に結合した炭素数 $6\sim1$ 8のアルキル基を示し、いずれも置換基を含んでもよい。Z は 0 または 1 を、m は 1 、2 または 3 を、n は 0 、 1 または 2 を示し、 X_2 はアニオンを示す。)

10 2. 下記一般式(2)で表される 4 一置換ピリジン系化合物のアルコラートと、下記一般式(3)で表されるジハロゲノアルキレンを反応させ、ついで一般式 R_1X_2 (R_1 は炭素数 $6\sim 1$ 8のアルキル基を示し、置換基を含んでもよい。 X_2 はアニオンを示す。)で表される化合物を反応させることを特徴とする下記一般式(1)で表される抗 菌活性を有する新規な第四級アンモニウム塩化合物の製造方法。

一般式 (2)

Py-(CH₂)_nOM

(上記式中、Pyはピリジン環あるいは縮合ピリジン環を示し、nは0、1または2を、Mはアルカリ金属原子を示す。)

一般式 (3)

 $X_1 (CH_2)_m (O)_z (CH_2)_m X_1$

20 (上記式中、 X_1 はハロゲン原子を示し、mは1、2または3を、Zは0または1を示す。)

$$(A) + 2R_1X_2 \longrightarrow$$

(上記式中、P y はピリジン環あるいは縮合ピリジン環を、 R_1 はP y の窒素原子に結合した炭素数 $6\sim1$ 8 のアルキル基を示し、いずれも置換基を含んでもよい。Z は 0 または 1 を、m は 1、2 または 3 を、n は 0、1 または 2 を示し、 X_2 は 7 ニオンを示す。)

3. 請求項1に記載した一般式(1)で表される新規な第四級アンモニウム塩化合物を有効成分として含有することを特徴とする抗菌剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/000284

A. CLASS	SIFICATION OF SUBJECT MATTER			
Int.	Int.Cl ⁷ C07D213/30, 213/68, A61K31/444, A61P31/04			
According t	o International Patent Classification (IPC) or to both n	otional alegaification and IDC		
		ational classification and IFC		
	S SEARCHED			
Minimum d	ocumentation searched (classification system followed	by classification symbols)		
int.	C17 C07D213/30, 213/68, A61K3	1/444, A61P31/04	•	
Documentat	tion searched other than minimum documentation to th	e extent that such documents are include	led in the fields searched	
		·	ned hi die neids scarened	
Electronic d	lete have computed during the interest of the lete			
REGI	ata base consulted during the international search (nan STRY (STN), CAPLUS (STN)	ne of data base and, where practicable,	search terms used)	
REGI	SIRI(BIR), CALIOS(SIR)			
•				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT	•	_	
Category*	Citation of dominant with indication where			
	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.	
X	EP 0998851 A1 (INUI CORP.),		1,3	
Υ.	10 May, 2000 (10.05.00),		1-3	
	Full text; in particular, Par	r. No. [0024]; Claims		
	& JP 2000-198879 A			
Y	JP 6-321902 A (Otsuka Chemic	and Co. Itd \	1 0	
-	22 November, 1994 (22.11.94)	car co., mca.),	1,2	
	Full text; in particular, Cla			
	(Family: none)	aims i co s		
	,			
Y	JP 8-301703 A (Otsuka Chemic	cal Co., Ltd.),	1	
	19 November, 1996 (19.11.96)	•	_	
	Full text; in particular, Cla	aims 1, 2	-	
	(Family: none)			
			1	
	•		•	
× Furthe	er documents are listed in the continuation of Box C.	See patent family annex.		
* Special "A" docume	categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the	international filing date or	
conside	red to be of particular relevance	priority date and not in conflict wit understand the principle or theory t	h the application but cited to inderlying the invention	
	document but published on or after the international filing	"X" document of particular relevance; the	he claimed invention cannot be	
date "L" docume	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be cons step when the document is taken al		
cited to	establish the publication date of another citation or other	"Y" document of particular relevance; the	he claimed invention cannot be	
	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive:	step when the document is	
means		combined with one or more other so combination being obvious to a per	son skilled in the art	
"P" docume	ent published prior to the international filing date but later	"&" document member of the same pate	ant family	
	e priority date claimed actual completion of the international search	D. C. 12: 01		
	arch, 2004 (03.03.04)	Date of mailing of the international se 23 March, 2004 (2		
00 11	22011/ 2001 (03:03:04)	23 March, 2004 (2	3.03.04)	
	ailing address of the ISA/	Authorized officer		
Japa	nese Patent Office			
Facsimile No		Tolophono No		
acomme No	u.	Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/000284

	Citation of decument with indication where commended of the value	Delevent to eleie 31-
Y Y	Citation of document, with indication, where appropriate, of the relevant passages Jerry, MARCH., ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE., 3rd EDITION, Wiley-Interscience Publication,	Relevant to claim No
	1985, pages 342 to 343	

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/000284

<With respect to search through prior art documents>

In the general formula (1) shown in claims 1-3, the positions in which the groups R1 and the chain connecting group are bonded as substituents to the pyridine rings are not specified. However, the only case which is disclosed in the description in the meaning of Article 5 of the PCT and is supported by the description in the meaning of Article 6 of the PCT is one in which the groups R1 are bonded to the nitrogen atoms of the respective pyridine rings and the chain group is bonded to a carbon atom of each pyridine ring.

Therefore, in this international search report, a search was made, by reference to the statements in the description, through prior art documents with respect to the part which is disclosed in the description in the meaning of Article 5 of the PCT and is supported by the description in the meaning of Article 6 of the PCT, i.e., the only case where the groups R1 are bonded to the nitrogen atoms of the respective pyridine rings and the chain group is bonded to a carbon atom of each pyridine ring.

				
A. 発明の属する分野の分類(国際特許分類(IPC))				
Int. Cl' C07D213/30, 213/68, A61K31/444, A61P31/04				
B. 調査を行	テった分野			
調査を行った最	b小限資料(国際特許分類(IPC))			
Int. Cl	CO7D213/30, 213/68, A6	1K31/444, A61P31/04	1	
最小限資料以外	トの資料で調査を行った分野に含まれるもの			
	用した電子データベース (データベースの名称、)	調査に使用した用語)		
国際調査で使用 REGISTRY (ST	H した電子/ ータ・ベース () ータ・・ ハのねが、 (N), CAPLUS (STN)	関連に		
C. 関連する				
引用文献の			関連する	
カテゴリー*			請求の範囲の番号	
Х.	EP 0998851 A1 (INUI CORPORATION) 20		1, 3 1-3	
Y	全文献、特に、段落番号【0024】 & JP 2000-198879 A	、間外の動団はことを続。		
Y	JP 6-321902 A(大塚化学株式会社)19	994. 11. 22	1, 2	
	全文献、特に請求の範囲1~3などを参照。			
	(ファミリーなし)			
Y	│ │ JP 8-301703 A(大塚化学株式会社)1	996. 11. 19	1	
1	全文献、特に請求の範囲1、2などを			
区 C欄の続	きにも文献が列挙されている。	□ パテントファミリーに関する別 □ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	J紙を参照。 	
* 引用文献	のカテゴリー	の日の後に公表された文献 「T」国際出願日又は優先日後に公表	さわた立跡であって	
「A」特に関 もの	連のある文献ではなく、一般的技術水準を示す	出頭と矛盾するものではなく、	発明の原理又は理論	
「E」国際出	願日前の出願または特許であるが、国際出願日	の理解のために引用するもの		
以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの				
日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1			当該文献と他の1以	
文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの				
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献				
国際調査を完	プレた日 03.03.2004	国際調査報告の発送日 23.3	. 2004	
			4 P 3 3 3 7	
	:国特許庁(ISA/JP)	齊藤 恵	L	
東京	郵便番号100-8915 :都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3492	

0 (4)	Billyte, L. w. J. Book, A. J. and J. A. J. a	
<u>C(続き).</u> 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	(ファミリーなし。)	カロントへからたロックは、ク
Y	Towns MADCU	
I	Jerry, MARCH.	2
	ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND	
	STRUCTURE. 3rd EDITION, Wiley-Interscience Publication,	
	1985, p. 342-343	
		1
		1
_		1
•		
		1
•		
	·	
·		
-		
		(
		1
	·	
	L	

<先行技術文献調査について>

請求の範囲1~3に記載された一般式(1)では、基R1や鎖状連結基のピリジン環上で の置換位置が特定されていないが、PCT第5条の意味において明細書に開示され、また、 PCT第6条の意味において明細書により裏付けられているのは、基R1がピリジン環の窒 素原子に結合し、かつ鎖状基はピリジン環の炭素原子に結合したもののみである。

したがって、本国際調査報告においては、明細書の記載も参考にし、PCT第5条の意味 において明細書に開示され、また、PCT第6条の意味において明細書により裏付けられた 部分、すなわち、基R1がピリジン環の窒素原子に結合し、かつ鎖状基はピリジン環の炭素 原子に結合している場合に限定して先行技術調査を行った。

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
| OTHER: ______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)