Лабораторная работа №5

Саргсян Арам Грачьяевич

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	8
4	Выводы	13
Список литературы		14

Список иллюстраций

3.1	Создание файла
3.2	Редакция файла
3.3	Создание файла
3.4	Редакция файла
3.5	Редакция файла
3.6	Файл readfile
3.7	Изменение прав доступа
3.8	Изменение прав доступа
3.9	Пользователь guest
3.10	Пользователь guest2
3 11	Пользователь гоот

Список таблиц

1 Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID- и Sticky-битов. Получение практических навыков работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

2 Теоретическое введение

Есть 3 вида разрешений. Они определяют права пользователя на 3 действия: чтение, запись и выполнение. В Linux эти действия обозначаются вот так:

- ${\bf r}$ read (чтение) право просматривать содержимое файла;
- w write (запись) право изменять содержимое файла;
- **x** execute (выполнение) право запускать файл, если это программа или скрипт.

У каждого файла есть 3 группы пользователей, для которых можно устанавливать права доступа.

- **owner** (владелец) отдельный человек, который владеет файлом. Обычно это тот, кто создал файл, но владельцем можно сделать и кого-то другого.
- group (группа) пользователи с общими заданными правами.
- **others** (другие) все остальные пользователи, не относящиеся к группе и не являющиеся владельцами[1].

Чтобы увидеть текущие назначения владельца, нужно использовать команду ls -1. Эта команда показывает пользователя и группу-владельца.

Чтобы применить соответствующие разрешения, первое, что нужно учитывать, это владение. Для этого есть команда chown[2].

Для того, чтобы позволить обычным пользователям выполнять программы от имени суперпользователя без знания его пароля была придумана такая вещь, как SUID и SGID биты. Рассмотрим эти полномочия подробнее.

- SUID если этот бит установлен, то при выполнении программы, іd пользователя, от которого она запущена заменяется на іd владельца файла. Фактически, это позволяет обычным пользователям запускать программы от имени суперпользователя;
- SGID этот флаг работает аналогичным образом, только разница в том, что пользователь считается членом группы, с которой связан файл, а не групп, к которым он действительно принадлежит. Если SGID флаг установлен на каталог, все файлы, созданные в нем, будут связаны с группой каталога, а не пользователя. Такое поведение используется для организации общих папок;
- Sticky-bit этот бит тоже используется для создания общих папок. Если он установлен, то пользователи могут только создавать, читать и выполнять файлы, но не могут удалять файлы, принадлежащие другим пользователям[3].

3 Выполнение лабораторной работы

1. От имени пользователя guest создал файл simpleid (рис. 3.1, 3.2).

```
[guest@ahsargsyan dir1]$
[guest@ahsargsyan ~]$ mkdir lab5 && cd lab5
[guest@ahsargsyan lab5]$ touch simpleid.c
[guest@ahsargsyan lab5]$ gcc simpleid.c -o simpleid
[guest@ahsargsyan lab5]$ ./simpleid
uid=1001, gid=1001
[guest@ahsargsyan lab5]$
```

Рис. 3.1: Создание файла

```
mc[guest@ahsargsyan.localadmin]:~/lab5 x

simpleid.c    [----] 1 L:[ 1+11 12/ 12] *(192 / 192b) <EOF>
#include *sys/types.hb
#include *unistd.ha
#include *stdia.ha

int
main ()
{
    uid_t uid = geteuid ();
    gid_t gid = getegid ();
    printf ("uid=%d, gid=%d\n", uid, gid);
    return 0;
}
```

Рис. 3.2: Редакция файла

2. Создал файл simpleid2 (рис. 3.3, 3.4).

```
[guest@ahsargsyan lab5]$ gcc simpleid2.c -o simpleid2 && ./simpleid2
e.id=1001.egid=1001
[guest@ahsargsyan lab5]$ ls -l simpleid2
-rwsr-xr-x. 1 root guest 26064 Sep 24 12:50 Simpleid2
e.id=0.egid=1001
real.uid=1001.real.gid=1001
[guest@ahsargsyan lab5]$ ./simpleid2
e.id=0.egid=1001
[guest@ahsargsyan lab5]$ id
uid=1001(guest) gid=1001(guest) gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(gid=1001(
```

Рис. 3.3: Создание файла

Рис. 3.4: Редакция файла

3. От имени суперпользователя выполнил нужные команды (рис. 3.5).

```
[root@ahsargsyan guest]# chown root:guest /home/guest/lab5/simpleid2
[root@ahsargsyan guest]# chmod u+s /home/guest/lab5/simpleid2
[root@ahsargsyan guest]# chmod u+s /home/guest/lab5/simpleid2
```

Рис. 3.5: Редакция файла

4. Создал readfile.c, изменил права доступа (рис. 3.6, 3.7).

```
[guest@ahsargsyan lab5]$ gcc readfile.c -o readfile
[guest@ahsargsyan lab5]$ cat readfile.c
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
int
main (int argc, char* argv[])
   unsigned char buffer[16];
   size_t bytes_read;
   int fd = open (argv[1], 0_RDONLY);
     bytes_read = read (fd, buffer, sizeof (buffer));
     for (i=0; i<bytes_read; ++i) printf("%c", buffer[i]);</pre>
   while (bytes_read == sizeof (buffer));
   close (fd);
   return 0;
}[guest@ahsargsyan lab5]$
```

Рис. 3.6: Файл readfile

```
[root@ahsargsyan lab5]# ls
readfile readfile.c simpleid simpleid2 simpleid2.c simpleid.c
[root@ahsargsyan lab5]# chmod g-rw readfile.c
[root@ahsargsyan lab5]# chmod g-rw readfile
```

Рис. 3.7: Изменение прав доступа

5. Прочитал с помощью readfile etc/shadow (рис. 3.8).

```
] [guest(eahsargsyan lab5]$ ./readfile /etc/shadow

* ** **Delta ** **Delta ** **Delta **Delta
```

Рис. 3.8: Изменение прав доступа

6. Исследовал sticky bit (рис. 3.9, 3.10, 3.11).

```
[guest@ahsargsyan ~]$ ls -l / | grep tmp
drwxrwxrwt. 15 root root 4096 Oct 1 12:33 tmp
[guest@ahsargsyan ~]$ echo "test" > /tmp/file01.txt
[guest@ahsargsyan ~]$ ls -l /tmp/file01.txt
-rw-r--r-. 1 guest guest 5 Oct 1 12:36 /tmp/file01.txt
[guest@ahsargsyan ~]$ chmod o+rw /tmp/file01.txt
[guest@ahsargsyan ~]$ ls -l /tmp/file01.txt
-rw-r--rw-. 1 guest guest 5 Oct 1 12:36 /tmp/file01.txt
[guest@ahsargsyan ~]$
```

Рис. 3.9: Пользователь guest

```
[ahsargsyan@ahsargsyan ~]$ su guest2

Password:
[guest2@ahsargsyan ahsargsyan]$ cat /tmp/file01.txt

test
[guest2@ahsargsyan ahsargsyan]$ echo "test2" > /tmp/file01.txt

bash: /tmp/file01.txt: Permission denied
[guest2@ahsargsyan ahsargsyan]$ cat /tmp/file01.txt

test
[guest2@ahsargsyan ahsargsyan]$
```

Рис. 3.10: Пользователь guest2

```
[ahsargsyan@ahsargsyan ~]$ su guest2
Password:
[guest2@ahsargsyan ahsargsyan]$ cat /tmp/file01.txt
test
[guest2@ahsargsyan ahsargsyan]$ echo "test2" > /tmp/file01.txt
bash: /tmp/file01.txt: Permission denied
[guest2@ahsargsyan ahsargsyan]$ cat /tmp/file01.txt
test
[guest2@ahsargsyan ahsargsyan]$ cat /tmp/file01.txt
bash: /tmp/file01.txt: Permission denied
[guest2@ahsargsyan ahsargsyan]$ cat /tmp/file01.txt

[guest2@ahsargsyan ahsargsyan]$ ls /tmp
file01.txt

[guest2@ahsargsyan]$ cat /tmp/file01.txt

[guest2@ah
```

Рис. 3.11: Пользователь root

4 Выводы

Я изучил механизмы изменения идентификаторов, применения SetUID- и Sticky-битов, получил практические навыки работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

Список литературы

- 1. Права доступа в Linux [Электронный ресурс]. 2023. URL: https://codechick.io/tutorials/unix-linux/unix-linux-permissions.
- 2. Права в Linux (chown, chmod, SUID, GUID, sticky bit, ACL, umask) [Электронный ресурс]. 2023. URL: https://habr.com/ru/articles/469667/.
- 3. Права доступа к файлам в Linux [Электронный ресурс]. 2023. URL: https://losst.pro/prava-dostupa-k-fajlam-v-linux.