

Ministerul Educației Universitatea "OVIDIUS" Constanța Facultatea de Matematică și Informatică Specializarea Informatică

Şiruri

Coordonator ştiinţific:

Student: Tănase Ramona Elena

Cuprins

Cuprins		1	
1	Şiru	ri	2
	1.1	Şiruri convergente de numere reale	2
	1.2	Exerciții	5
	1.3	Şiruri mărginite	5
Re	eferin	te bibliografice	7

Capitolul 1

Şiruri

Definiție

Fie X o multime. O functie $f: \mathbb{N} \to X$ se numeste sir de elemente din multimea X, sau sub o altă formulare: se numește șir de elemente din mulțimea X o funcție $f: \mathbb{N} \to X$. În mod uzual, se notează $f_1=x_1\in X, f_2=x_2\in X,....., f_n=x_n\in X,....$

Siruri convergente de numere reale 1.1

Definiție

Un șir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, se numește convergent dacă există $x\in\mathbb{R}$ astfel încât: $\forall_{\varepsilon}>0,\in$ $n_{\varepsilon} \in \mathbb{N}$ astfel încât este satisfacută inegalitatea: $|x_n - x| \leq \varepsilon$.

Propoziție

Unicitatea limitei unui șir de numere reale Fie $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Dacă

$$\begin{cases} x_n \to x \\ x_n \to y \end{cases}$$

atunci x = y.

Demonstrație

Să presupunem, prin absurd, că $x \neq y$. Cum suntem pe \mathbb{R} înseamnă că avem una din situațiile x < y sau y < x. Pentru a face o alegere, fie x < y atunci y - x > 0 și din definiție pentru $\varepsilon = \frac{y-x}{2} > 0$ rezultă că,

$$\triangleright \exists n_1 \in \mathbb{N} \text{ astfel încât } |x_n - x| < \frac{y - x}{2}, \forall n \ge n_1$$

$$\begin{array}{l} \rhd \ \exists n_1 \in \mathbb{N} \ \text{astfel încât} \ |x_n - x| < \frac{y - x}{2}, \forall n \geq n_1 \\ \rhd \ \exists n_2 \in \mathbb{N} \ \text{astfel încât} \ |x_n - y| < \frac{y - x}{2}, \forall n \geq n_2 \end{array}$$

Fie $n = max(n_1, n_2) \ge n_1, n_2$. Atunci:

$$|x_n - x| < \frac{y - x}{2} \operatorname{si} |x_n - y| < \frac{y - x}{2}$$

de unde

$$|y - x| = |y - x| = |(y - x_n) + (x_n - x)| \le |y - x_n| + |x_n - x| < \frac{y - x}{2} + \frac{y - x}{2} = y - x$$

Aşadar, y - x < y - x, contradicție!

Un rezultat foarte frecvent folosit este ceea ce se numește "teorema cleștelui". Teorema cleștelui. Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}, (z_n)_{n\in\mathbb{N}}$ trei șiruri de numere reale. Dacă:

$$\begin{cases} x_n \le y_n \le z_n, \forall n \in \mathbb{N} \\ x_n \to x, z_n \to x \end{cases}$$

Atunci $y_n \to x$.

Demonstrație

Vom arăta pentru început următoarea inegalitate. Dacă $a \le x \le b$ atunci $|x| \le max(|a|,|b|)$. Vom folosi proprietățile de la modul. Avem:

$$|x| = \begin{cases} x, dacax \ge 0 \\ -x, dacax < 0 \end{cases}$$

$$\leq \begin{cases} b \leq \max(b, -b) = |b| \leq \max(|a|, |b|) dacax \geq 0 \\ -a \leq \max(a, -a) = |a| \leq \max(|a|, |b|) dacax < 0 \end{cases}$$

$$\leq max(|a|,|b|).$$

Din $x_n \leq y_n \leq z_n$, $\forall n \in \mathbb{N}$ rezultă că $x_n - x \leq y_n - x \leq z_n - x$, $\forall n \in \mathbb{N}$. De aici folosind inegalitatea demonstrată deducem că:

$$|y_n - x| \le \max(|x_n - x|, |z_n - x|), \forall n \in \mathbb{N} (1)$$

Deoarece $x_n \to x, \forall \varepsilon > 0, \exists n_{\varepsilon}' \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_{\varepsilon}'$ este satisfacută inegalitatea $|x_n - x| < \varepsilon$. (2)

Similar din $z_n \to x, \forall \varepsilon > 0, \exists n_{\varepsilon}'' \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_{\varepsilon}''$ este satisfacută inegalitatea $|z_n - x| < \varepsilon.(3)$

Fie acum $\varepsilon > 0$. Notăm $n_{\varepsilon} = max(n_{\varepsilon}', n_{\varepsilon}'')$. Fie acum $n \geq n_{\varepsilon}$. Deoarece $n_{\varepsilon \geq} n_{\varepsilon}'$ iar $n \geq n_{\varepsilon}$ rezultă că $n \geq n_{\varepsilon}'$ și din (2) rezultă că $|x_n - x| < \varepsilon$. (4)

Deoarece $n_{\varepsilon} \geq n_{\varepsilon}''$ iar $n \geq n_{\varepsilon}$ și din (3) rezultă că $|z_n - x| < \varepsilon$. (5)

Din (4) și (5) rezultă că

$$max(|x_n - x|, |z_n - x|) = \begin{cases} |x_n - xdaca| \\ |z_n - xdaca| \end{cases} < \varepsilon.$$
 (6)

Folosind inegalitatea (6) din inegalitatea (1) deducem că $|y_n - x| < \varepsilon$.

Așadar am demonstrat : $\forall \varepsilon > 0, \exists n_{\varepsilon \in \mathbb{N}}$ astfel încât pentru $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $|y_n - x| < \varepsilon$.

Conform definiției această inegalitate înseamnă că $y_n \to y$.

Exemplu

Fie $c \in \mathbb{R}$, Considerăm șirul $x_n = c$. Atunci $\lim_{n \to \infty} x_n = c$ sau $\lim_{n \to \infty} c = c$, limita unei constante este acea constantă.

Demonstrație

 $\forall n \in \mathbb{N} \text{ avem } x_n - c = c - c = 0, |x_n - c| = 0.$ De aici deducem că $\forall \varepsilon > 0, \exists n_\varepsilon = 1 \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_\varepsilon = 1$ este satisfacută inegalitatea $|x_n - c| = 0 < \varepsilon$. Conform definiției $\lim_{n \to \infty} x_n = c$.

Propoziție

Dacă un șir de numere naturale este convergent atunci el este staționar. Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere naturale. Dacă există $x\in\mathbb{R}$ astfel încât $\lim_{n\to\infty}x_n=x$, atunci există $k\in\mathbb{N}$ astfel încât $x_n=x_k, \forall n\geq k$.

Astfel spus scris desfăsurat sirul arată astfel:

$$\triangleright x_1, x_2, x_3, x_4, \dots, x_{k-1}, x_k, x_k, x_k, x_k \dots$$

Demonstratie

Deoarece $\lim_{n \to \infty} x_n = x$ pentru $\varepsilon = \frac{1}{2} > 0, \exists n_{\frac{1}{2}} \in \mathbb{N}$ astfel încât $\forall n \geq n_{\frac{1}{2}}$ este satisfacută inegalitatea $|x_n - x| < \frac{1}{2}$.

Să notăm $k=n_{\frac{1}{2}}\in\mathbb{N}$ și să reținem că știm că $\forall n\geq k$ este satisfacută inegalitatea $|x_n-x|<\frac{1}{2}.$ (1)

Fie $n \geq k$. Relația (1) fiind adevărată pentru orice număr $\geq k$ ea va fi adevărată în particular pentru k adică avem $|x_k - x| < \frac{1}{2}$. (2)

Dar la noi $n \ge k$ deci din (1) avem și $|x_n - x| < \frac{1}{2}$.(3)

Avem
$$|x_n - x_k| = |(x_n - x) + (x - x_k)| \le |x_n - x| + |x - x_k| = |x_n - x| + |-(x - x_k)| = |x_n - x| + |x_k - x|$$
. (4)

Am folosit inegalitatea tringhiului și |-a| = |a|. Folosind (2) și (3) din (4) deducem că $|x_n - x_k| < \frac{1}{2} + \frac{1}{2} = 1$. (5)

Dar x_n, x_k sunt numere naturale, și deci diferența lor este un număr întreg adică $x_n - x_k \in \mathbb{Z}$. Cum $|x_n - x_k| \geq 0$ iar din (5) $|x_n - x_k| < 1$ rezultă că $|x_n - x_k| \in [0,1]$ deci $|x_n - x_k| \in \mathbb{Z} \cap [0,1) = \{..., -n, ..., -2, -1, 0, 1, 2, 3, ..., n, ...\} \cap [0,1) = \{0\}$ de unde $|x_n - x_k| = 0$ adică $x_n - x_k = 0, x_n = x_k$. Așasar am demonstrat: $\forall n \geq kavem x_n = x_k$, ceea ce încheie demonstratia.

Şiruri Exercitii

Exerciții 1.2

1. Calculați =
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+2}} + \frac{3}{\sqrt{n^4+3}} + \dots + \frac{n}{\sqrt{n^4+n}} \right)$$

Rezolvare

Notăm
$$x_n = \frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+2}} + \frac{3}{\sqrt{n^4+3}} + \dots + \frac{n}{\sqrt{n^4+n}}$$
. Adică $x_n = \sum_{k=1}^n \frac{k}{n^4+k}$.

În continuare procedăm astfel. De numărător nu ne atingem. Vom lucra cu numitorul, ideea fiind de a se avea acelasi numitor peste tot.

Avem $1 \leq k \leq n$ de unde $n^4+1 \leq n^4+k \leq n^4+n$ de unde $\sqrt{n^4+1} \leq \sqrt{n^4+k} \leq \sqrt{n^4+1}$ de unde $\frac{1}{\sqrt{n^4+1}} \geq \frac{1}{\sqrt{n^4+k}} \geq \frac{1}{\sqrt{n^4+n}}$. Acum înmulțind cu k obținem $\frac{k}{\sqrt{n^4+1}} \geq \frac{1}{\sqrt{n^4+1}} \geq \frac{1}{\sqrt{n^4+1}$ $\frac{k}{\sqrt{n^4+k}} \ge \frac{k}{\sqrt{n^4+n}}$. (1) În continuare în relația (1) dam lui k valorile 1,2,....,n. Pentru k=1 rezultă:

$$ight. rac{2}{\sqrt{n^4+1}} \ge rac{2}{\sqrt{n^4+2}} \ge rac{2}{\sqrt{n^4+n}}$$

Adunând inegalitătile de mai sus obtinem

$$\frac{\frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+1}} + \dots + \frac{n}{\sqrt{n^4+1}} \ge \frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+2}} + \dots + \frac{n}{\sqrt{n^4+n}} \ge \frac{1}{\sqrt{n^4+n}} + \frac{2}{\sqrt{n^4+n}} + \dots + \frac{n}{\sqrt{n^4+n}} \ge \frac{1}{\sqrt{n^4+n}} + \dots + \frac{n}{\sqrt{n^4+n}} = \frac{1}{\sqrt{n^4+n}}$$

Sau

$$\frac{1+2+\dots+n}{\sqrt{n^4+1}} \ge x_n \ge \frac{1+2+\dots+n}{\sqrt{n^4+n}}$$

Dar știm că $1+2+...+n=\frac{n(n+1)}{2}$, deci vom obține $\frac{n(n+1)}{2\sqrt{n^4+1}} \ge x_n \ge \frac{n(n+1)}{2\sqrt{n^4+n}}$. (2)

Acum
$$\lim_{n\to\infty} \frac{n(n+1)}{2\sqrt{n^4+1}} = \frac{1}{2} i \lim_{n\to\infty} \frac{n(n+1)}{2\sqrt{n^4+n}} = \frac{1}{2}$$
. (3)

Vom da la ambele factor comun forțat. Din (2) și (3) și teorema cleștelui rezultă că $\triangleright \lim_{n\to\infty} x_n = \frac{1}{2}$

Şiruri mărginite 1.3

Definitie

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale. Şirul $(x_n)_{n\in\mathbb{N}}$ se numește mărginit dacă și numai dacă $\exists a,b \in \mathbb{R}, a < b$ astfel încât $\forall n \in \mathbb{N}$ este satisfacută inegalitatea $x_n \in [a,b]$, sau echivalent $\exists M > 0$ astefle încât $\forall n \in \mathbb{N}$ este satisfacută inegalitatea $|x_n| \leq M$.

Definitie

Şiruri Şiruri mărginite

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale. Spunem că $\lim_{n\to\infty}x_n=\infty$ dacă, $\forall \varepsilon>0, \exists n_\varepsilon\in\mathbb{N}$ astfel încât pentru $\forall n\geq n_\varepsilon$ este satisfacută inegalitatea $x_n>\varepsilon$. Sau $\forall \varepsilon>0, \exists n_\varepsilon\in\mathbb{N}$ astfel încât $x_n>\varepsilon, \forall n\geq n_\varepsilon$.

Propoziție

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale. Dacă $\lim_{n\to\infty}x_n=\infty$ atunci $\lim_{n\to\infty}\frac{1}{x_n}=0$.

Demonstrație

Fie $\varepsilon > 0$. Deoarece $\lim_{n \to \infty} x_n = \infty$ din definiție aplicată pentru $\frac{1}{\varepsilon} > 0$ rezultă că $\exists n_{\varepsilon} \in \mathbb{N}$ astfel încât pentru $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $x_n > \frac{1}{\varepsilon}$.

Din această inegalitate rezultă că $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $x_n > 0$, prin urmare are sens fracția $\frac{1}{x_n}, \forall n \geq n_{\varepsilon}$. Dar inegalitatea de mai sus este echivalentă cu $\exists n_{\varepsilon} \in \mathbb{N}$ astfel încât $\forall n \geq n_{\varepsilon}$ este satisfacută inegalitatea $\frac{1}{x_n} < \varepsilon$. Conform definiției aceasta înseamnă că $\lim_{n \to \infty} \frac{1}{x_n} = 0$.

Lema Stolz-Cesaro (Cazul $\frac{1}{\infty}$)

Fie $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ și $(\alpha_n)_{n\in\mathbb{N}}\subset(0,\infty)$ astfel încât $\alpha_n\uparrow\infty$. Dacă $\lim_{n\to\infty}\frac{x_n-x_{n-1}}{\alpha_n-a_{n-1}}\in\mathbb{R}$ atunci $\lim_{n\to\infty}\frac{x_n}{\alpha_n}\in\mathbb{R}$ și în plus $\lim_{n\to\infty}\frac{x_n}{\alpha_n}=\lim_{n\to\infty}\frac{x_n-x_{n-1}}{\alpha_n-\alpha_{n-1}}$.

Demonstrație Fie $\alpha=\lim_{n\to\infty}\frac{x_n-x_{n-1}}{\alpha_n-\alpha_{n-1}}$. Atunci $\forall \varepsilon>0, \exists n_\varepsilon\in\mathbb{N}$ astefl încât $\left|\frac{x_n-x_{n-1}}{\alpha_n-\alpha_{n-1}}-\alpha\right|<\frac{\varepsilon}{2}\forall n\geq n_\varepsilon$ Sau , $\alpha_n\uparrow, |x_n-x_{n-1}-\alpha\left(\alpha_n-\alpha_{n-1}\right)|<\frac{\varepsilon}{2}\left(\alpha_n-\alpha_{n-1}\right), \forall n\geq n_\varepsilon$. (1)

Notăm cu $k=n_{\varepsilon}+1$. Pentru $n\geq k$ luând în (1), n=k+1,k+2,....,n obținem: $|x_{k+1}-x_k-\alpha\left(a_{k+1}-a_k\right)|<\frac{\varepsilon}{2}\left(\alpha_{k+1}-\alpha_k\right)$.

 $|x_{k+2}-x_{k+1}-\alpha\left(a_{k+2}-a_{k+1}\right)|<\frac{\varepsilon}{2}\left(\alpha_{k+2}-\alpha_{k+1}\right)......|x_n-x_{n-1}-\alpha\left(a_n-a_{n-1}\right)|<\frac{\varepsilon}{2}\left(\alpha_n-\alpha_{n-1}\right)$ De unde obţinem, prin adunare:

Referinţe bibliografice