Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» – Системное и прикладное программное обеспечение

Отчёт По лабортарной работе №6 "Работа с системой компьютерной вёрстки ТеХ"

Работу выполнил: Казарин Андрей Макисмович P3108

Проверил: *Балакшин Павел Валерьевич*

Рис. 5.

ток, а именно n_0 , закрашено в нулевой строчке; можно считать, что это первые n_0 клеток строчки. Рассмотрим теперь квадрат Q_{I} , получающийся из Q_0 вычеркиванием первых n_0 строчек и первых n_0 столбцов (рис. 6). Покажем, что все клетки Q_1 должны быть закрашены. Для этого возьмем ящики с номером xy, где $x \ge n_0$, $y \ge n_0$. В него обязательно попадает билет 0xy: его нельзя положить в ящики 0x и 0y, так как соответствующие клетки не закрашены. Значит, клетка с номером ху должна быть закрашена для всех $x \ge n_0$, $y \ge n_0$. Посчитаем, сколько же всего клеток закрашено в нашем квадрате Q_0 . В каждой строчке прямоугольника Π_0 (см. рис. 6) закрашено по крайней мере n_0 клеток. В Q_1 закрашены все $(10 - n_{\rm n})^2$ клеток. Таким образом, в Q_0 закрашено по крайней мере $n_0^2 + (10 - n_0)^2$ клеток. Наименышая из этих сумм равна F(2, 10)50. Так что, во всяком случае, в Q_0 закрашено не менее 50 клеток. С другой стороны, пятидесяти ящиков с номерами, выписанными на рисунке 7, достаточно: вычеркнув в номере каждого билета цифру так, чтобы оставались две цифры одинаковой четности, мы поместим этот билет в соответствующий ящик. Эти два соображения завершают решение пунктов а) и в) задачи. 3. Решение задачи д) Пусть теперь былеты k-значные. Будем считать,

Пусть теперь былеты k-значные. Будем считать, что у нас не 10 цифр, а N, где N - некоторое произвольное натуральное число (так, как если бы у

Рис. 6.

нас была принята *N*-ичная система счисления). Строчки квадрата Q_0 занумеруем теперь числами от 0 до N-1; таким образом, в Q_0 всего N^2 клеток. По-прежнему будем считать, что в нулевой строчке - n_0 закрашенных клеток, а в любой другой строчке не меньше, чем n_0 . Аналогично построим квадрат Q_1 . Поступим с Q_1 так же, как мы поступали с Q_0 , выберем в нем строчку, в которой меньше всего закрашенных клеток (пусть это его первая строчка, т. е. строчка с номером n_0 в исходном квадрате), обозначим количество закрашенных клеток в ней через n_1 и, выкинув из Q_1 первые n_1 строчек и столбцов, получим квадрат Q_2 . С ним поступим так же, и т. д., до квадрата Q_{k-2} (рис. 8). Прямоугольники, аналогичные Π_0 , обозначим через

00	02	04	06	08
11	13	15	17	19
20	22	24	26	28
31	33	35	37	39
40	42	44	46	48
51	53	55	57	59
60	62	64	66	68
71	73	75	77	79
80	82	84	86	88
91	93	95	97	99

Рис. 7.