Esercizio 1.

Nella seguente reazione redox:

$$H_2O_2 + Cl_2 \rightarrow O_2 + 2Cl^- + 2H^+$$

- 1. l'ossigeno passa da n.o. -1 a 0, quindi si riduce
- 2. l'ossigeno passa da n.o. -1 a 0, quindi si ossida
- 3. il cloro passa da n.o. 0 a -1, quindi si riduce
- 4. il cloro passa da n.o. 0 a -1, quindi si ossida
- (a) 1, 3
- (b) 1, 4
- (c) 2, 4
- (d) 1
- (e) 2, 3

Esercizio 2.

Quale delle affermazioni riguardo alla seguente cella elettrochimica è vera?

Mn (s) | Mn²⁺ (aq) || Cu²⁺ (aq) | Cu (s)
Mn²⁺ (aq) + 2 e⁻
$$\rightarrow$$
 Mn (s); E° = -1.19 V
Cu²⁺ (aq) + 2 e⁻ \rightarrow Cu (s); E° = +0.34 V

- (a) la reazione di cella è spontanea, $\Delta E^{\circ} = 1.53 \text{ V}$
- (b) la reazione di cella è spontanea, $\Delta E^{\circ} = -0.85 \text{ V}$
- (c) la reazione di cella non è spontanea, $\Delta E^{\circ} = 1.53 \text{ V}$
- (d) la reazione di cella non è spontanea, $\Delta E^{\circ} = -0.85 \text{ V}$
- (e) la reazione di cella è spontanea, $\Delta E^{\circ} = -1.53 \text{ V}$

Esercizio 3.

È corretto affermare che in una reazione di ossidoriduzione, una specie

- 1. si ossida cedendo elettroni
- 2. si ossida acquistando elettroni
- 3. si riduce cedendo elettroni
- 4. si riduce acquistando elettroni
- (a) 1, 3
- (b) 1, 4
- (c) 2, 3
- (d) 2, 4
- (e) nessuna delle risposte precedenti

Esercizio 4.

Relativamente a un *sistema termodinamico chiuso* ed uno *aperto*, è corretto affermare che:

- 1. il primo può scambiare solo energia ma non materia con l'ambiente
- 2. il primo può scambiare solo materia ma non energia con l'ambiente
- 3. il secondo può scambiare sia materia che energia con l'ambiente
- 4. il secondo può scambiare solo materia ma non energia con l'ambiente
- (a) 1, 3
- (b) 1, 2
- (c) 1, 4
- (d) 2, 3
- (e) 2, 4

Esercizio 5.

Calcolare il ΔS° della seguente reazione. Gli S° delle varie specie sono indicati sotto la reazione.

$$P_4(g) + 10 Cl_2(g) \rightleftarrows 4 PCl_5(g)$$

 S° (J/mol·K):

$$P_4(g) = 280.0$$
; $Cl_2(g) = 223.1$; $PCl_5(g) = 364.6$

(a) -138.5 J/K

(b) -1052.6 J/K

(c) +2334.6 J/K

(d) +171.3 J/K

(e) - 583.6 J/K

Esercizio 6.

Utilizzare i valori standard di entalpia per le reazioni riportate sotto per determinare il valore di ΔH_r° della seguente reazione:

$$P_4(g) + 10 Cl_2(g) \rightarrow 4 PCl_5(s)$$

Dati forniti:

 $\begin{array}{l} PCl_{5}\left(s\right) \rightarrow PCl_{3}\left(g\right) + Cl_{2}\left(g\right); \Delta H_{r}^{\circ} = \\ +157 \text{ kJ} \end{array}$

 $P_4(g) + 6 Cl_2(g) \rightarrow 4 PCl_3(g); \Delta H_r^{\circ} = -1207 \text{ kJ}$

(a) -2100 KJ

(b) -1835 KJ

(c) -1364 KJ

(d) -1050 KJ

(e) -1786 KJ

Esercizio 7.

Per una reazione chimica che si trovi in *condizioni di equilibrio* risulta necessariamente:

(a) K = 1

(b) $\Delta G^0 = 0$

(c) $\Delta G = 0$

(d) $\Delta S = 0$

(e) $\Delta G = \Delta S$

Esercizio 8.

Calcolare la K_c a 448°C per la reazione:

$$H_2 + I_2 \leftrightarrow HI$$

sapendo che le concentrazioni iniziali dei reagenti sono $[H_2] = 1.00 \times 10^{-3}$ e $[I_2] = 2.00 \times 10^{-3}$ e che la concentrazione all'equilibrio del prodotto $[HI] = 1.87 \times 10^{-3}$

(a) 50.6

(b) 30.2

(c) 60.4

(d) 70.3

(e) 12.2

Esercizio 9.

Data la seguente razione all'equilibrio:

$$2 C_4H_9OH \leftrightarrow C_8H_{16}O_2 + 2 H_2$$

1. aumentando la temperatura è favorita la reazione diretta

2. aumentando la pressione è favorita la reazione inversa

3.aumentando la concentrazione del reagente è favorita la reazione inversa

(a) 1

(b) 2

(c) 3

(d) 1, 2 (e) 2, 3

Esercizio 10.

Qual è l'espressione del prodotto di solubilità per Fe(OH)₃?

(a) $K_{ps} = [Fe^{3+}] [3 OH^{-}]$

(b) $K_{ps} = [Fe^{3+}] [OH^{-}] [Fe(OH)3]^{-1}$

(c) $K_{ps} = [Fe(OH)_3] [Fe^{3+}]^{-1} [OH^{-1}]^{-1}$

(d) $K_{ps} = [Fe^{3+}] [3 OH^{-}]^{3}$

(e) $K_{ps} = [Fe^{3+}] [OH^{-}]^{3}$

Esercizio 11.

Nella seguente reazione acido-base secondo Bronsted-Lowry:

$$NH_4{}^+ + H_2O \longleftrightarrow NH_3 + H_3O^+$$

le basi sono:

- (a) $NH_4^+ e H_3O^+$
- (b) H_3O^+ e H_2O
- (c) H₂O e NH₃
- (d) NH₃ e H₃O⁺
- (e) NH₄⁺ e NH₃

Esercizio 12.

Calcolare il pH e la concentrazione delle specie ioniche in una soluzione di NaOH $4.44 \times 10^{-2} \,\mathrm{M}$

- (a) pH = 4.5, $[Na] = [OH^-] = 4.44 \times 10^{-2} M$
- (b) pH = 12.6, [Na] = $[OH^{-}] = 4.44 \times 10^{-2}$ M
- (c) pH = 8.4, [Na] = $2.2 \times 10^{-4} M$, [OH⁻] = $4.44 \times 10^{-2} M$
- (d) pH = 8.4, [Na]= $4.44 \times 10^{-2} \text{ M}$, [OH⁻] = $2.2 \times 10^{-4} \text{ M}$
- (e) non si hanno elementi a sufficienza per poter determinare il pH

Esercizio 13.

Calcolare il pH di una soluzione 1.00 M di acido acetico sapendo che la sua costante di dissociazione acida $K_a \approx 1.76 \times 10^{-5}$

 $CH_3COOH \leftrightarrow H^+ + CH_3COO^-$

- (a) 2.37
- (b) 4.55
- (c) 10.68
- (d) 5.02
- (e) 7.00

Esercizio 14.

Qual è la notazione di cella corretta per la cella voltaica in cui l'elettrodo a idrogeno è l'anodo e al catodo si ha la semireazione

$$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$$

- (a) $H_2(g) \mid H^+(g) \parallel Ce^{3+}(aq), Ce^{4+}(aq)$
- (b) Pt (s) $| H_2(g) | H^+(aq) | Ce^{4+}(aq), Ce^{3+}(aq)$
- (c) Ce^{3+} (aq), Ce^{4+} (aq) || H^+ (aq) | H_2 (g) | Pt (s)
- (d) Pt (s) | Ce³⁺ (aq), Ce⁴⁺ (aq) || H⁺ (aq) | H₂ (g) | Pt (s)
- (e) Pt (s) $| H_2(g) | H^+(aq) || Ce^{4+}(aq), Ce^{3+}(aq) || Pt(s)$

Esercizio 15.

Quando una pila è in funzione, gli *elettroni* migrano:

- (a) dal catodo all'anodo attraverso il circuito esterno
- (b) dall'anodo al catodo attraverso il circuito esterno
- (c) dal catodo all'anodo attraverso la soluzione elettrolitica
- (d) dall'anodo al catodo attraverso la soluzione elettrolitica
- (e) attraverso il ponte salino

Esercizio 16.

La *f.e.m.* di una pila è data dalla relazione: (Ec = potenziale catodo; Ea = potenziale anodo)

- (a) E = Ec + Ea
- (b) E = Ea Ec
- (c) E = Ec Ea
- (d) $E = Ec \times Ea$
- (e) E = (Ec Ea)