Quantization of neural networks

How to make inference of the neural network?

GPU NPU

How to make inference of the neural network?

GPU NPU

float32 int8

How numbers are stored in memory? int8

float32

The problem: the quality falls significantly

How to fix it?

Let's consider a vector

How to transfer it?

Let's consider a vector Asymmetric quantization

We need: scale-parameter (Λ) and a zero-point (z)

Quantization operation

$$x_{int} = round(\frac{x}{\Delta}) + z$$
$$x_Q = clamp(0, N_{levels} - 1, x_{int})$$

Dequantization operation

$$x_{float} = (x_Q - z)\Delta$$

Let's consider a vector

Symmetric quantization

We need: scale-parameter (Δ)

Quantization operation

$$\begin{split} x_{int} &= round \left(\frac{x}{\Delta}\right) \\ x_Q &= clamp (-N_{levels}/2, N_{levels}/2 - 1, x_{int}) \\ x_Q &= clamp (0, N_{levels} - 1, x_{int}) \end{split} \qquad \text{if signed}$$
 if un-signed

Dequantization operation

$$x_{out} = x_Q \Delta$$

How to choose the parameters?

It's easy: based on the distribution

How do we quantize?

Weights

Based on the minimum and maximum weight

We can do

- 1) Per-layer quantization
- 2) Per-channel (per-neuron) quantization

Activations

Requires data.

Based on the minimum and maximum (or some quantiles) of activations.

Quantized convolution

Naive:

$$y(k, l, n) = \Delta_w \Delta_x conv(w_Q(k, l, m; n) - z_w, x_Q(k, l, m) - z_x)$$

Advanced:

$$y(k, l, n) = conv(w_Q(k, l, m; n), x_Q(k, l, m)) - z_w \sum_{k=0}^{K-1} \sum_{l=0}^{K-1} \sum_{m=0}^{K-1} x_Q(k, l, m)$$
$$- z_x \sum_{k=0}^{K-1} \sum_{l=0}^{K-1} \sum_{m=0}^{K-1} w_Q(k, l, m; n) + z_x z_w$$

Post-training quantization pipeline

Quantized inference: theory and practice

Quantized inference: theory and practice

Quantized inference: theory and practice

Results

Network	Asymmetric,	Symmetric ,	Asymmetric,	Floating Point
	per-layer	per-channel	per-channel	
Mobilenetv1_1_224	0.001	0.591	0.704	0.709
Mobilenetv2_1_224	0.001	0.698	0.698	0.719
NasnetMobile	0.722	0.721	0.74	0.74
Mobilenetv2_1.4_224	0.004	0.74	0.74	0.749
Inceptionv3	0.78	0.78	0.78	0.78
Resnet_v1_50	0.75	0.751	0.752	0.752
Resnet_v2_50	0.75	0.75	0.75	0.756
Resnet_v1_152	0.766	0.763	0.762	0.768
Resnet_v2_152	0.761	0.76	0.77	0.778

Weights distribution

Bias correction

$$\widetilde{\mathbf{y}} = \widetilde{\mathbf{W}}_{\mathbf{X}}$$
 - noised output

$$\widetilde{\mathbf{y}} = \mathbf{y} + oldsymbol{\epsilon} \mathbf{x}$$
 , where $oldsymbol{\epsilon} = \widetilde{\mathbf{W}} - \mathbf{W}$

$$\mathbb{E}[\epsilon \mathbf{x}]_i \neq 0$$
 ———— The expectation of the output will be different

Solution: Compute $\mathbb{E}[\epsilon \mathbf{x}]$ empirically using data and subtract it from bias

Results

Model	MobileNetV2 SSD-lite	DeeplabV3+ (MobileNetV2 backend)
Original model	10.63	41.40
DFQ (ours)	67.91	72.33
Per-channel quantization	67.52	71.44
Original model (FP32)	68.47	72.94

Can we do better?

 Can we make the gap between the quantized model and full-sized model even smaller?

Some models do not perform properly after the quantization

Can we train quantized model on our computer?

"Quantization-Aware Training"

How the model is stored?

How do we do forward pass?

How do we do backpropagation?

How we choose the parameters of the quantization?

How the model is stored

How do we do forward pass (with Pytorch)

	Works on GPU	8-bit computations	8-bit weights and activations
nn.quantized.modules.linear.Linear (nn.quantized.modules.conv.Conv2d)			
nn.qat.modules.linear.Linear (nn.qat.modules.conv.Conv2d)			

How do we do backpropagation

Quantization function (forward)

Derivative = 0

Quantization function (backward)

Derivative = const

How we choose the parameters of the quantization

Comparison of the inference time

Network Inference Platform	Floating point(CPU)	Fixed point (CPU)	Fixed point (HVX, NN-API)
Mobilenet_v1_1_224	155	68	16
Mobilenet_v2_1_224	105	63	15.5
Mobilenet_v1_1_224_SSD	312	152	
Inception_v3	1391	536	
Resnet_v1_50	874	440	
Resnet_v2_50	1667	1145	
Resnet_v1_152	2581	1274	ra
Resnet_v2_152	4885	3240	

References

- Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, Jun 2018.
- Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization through weight equalization and bias correction. arXiv preprint arXiv:1906.04721, 2019
- B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference," Dec. 2017.
- https://pytorch.org/docs/stable/quantization.html