Álgebra lineal

Trabajo práctico N°5 - 2022

Formas canónicas elementales I

Autovalores, autovectores y autoespacios

- 1. Sea $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$. Probar que 2, $2 + \sqrt{2}$ y $2 \sqrt{2}$ son autovalores de A y hallar los autovectores correspondientes.
- 2. Sea $A \in \mathbb{K}^{n \times n}$ una matriz inversible ¿Puede ser $\lambda = 0$ un autovalor de A? Probar que si λ es un autovalor de A, entonces λ^{-1} es autovalor de A^{-1} y además los autoespacios asociados a λ y λ^{-1} pertenecientes a A y A^{-1} respectivamente, coinciden.
- 3. Probar que si $A \in \mathbb{K}^{n \times n}$ es una matriz triangular, entonces los autovalores de A son los elementos de la diagonal.
- 4. Sea $A \in \mathbb{K}^{n \times n}$ ¿Puede tener A más de n autovectores linealmente independientes?
- 5. a) Construir una matriz $A \in \mathbb{R}^{2\times 2}$ que tenga un sólo autovalor.
 - b) Construir una matriz $A \in \mathbb{R}^{2 \times 2}$ que tenga un sólo autovalor con un autoespacio asociado de dimensión 1.
 - c) Construir una matriz $A \in \mathbb{R}^{2\times 2}$ que no tenga autovalores. ¿Puede hacer lo mismo para una matriz de $\mathbb{C}^{2\times 2}$?
- 6. Considerar las transformaciones lineales $R_{\frac{\pi}{2}}$, S_Y , H_2 y P_X del ejercicio 11 de la práctica 2. Hallar los autovalores, autovectores y autoespacios asociados. ¿Es alguna de ellas diagonalizable?
- 7. Sea V un \mathbb{K} -EV de dimensión finita y sea $T \in L(V)$. Probar que, si λ y μ son dos autovalores de T diferentes, entonces $N(T \lambda I) \cap N(T \mu I) = \{\vec{0}\}$.
- 8. Sea V un \mathbb{K} -EV de dimensión finita y sea $T \in L(V)$. Supongamos que λ es un autovalor de T y que $v \in V$ es un autovector asociado a λ . Probar que si $p \in \mathbb{K}[x]$, entonces $p(T) v = p(\lambda) v$.
- 9. Sea $A = \begin{pmatrix} 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - a) Hallar el polinomio minimal de A considerando los coeficientes en \mathbb{C} , en \mathbb{R} y en \mathbb{Z}_3 .

Álgebra lineal 2022 Página 1 de 3

- b) Decir en cada caso si A es diagonalizable.
- 10. Para cada una de las siguientes matrices hallar sus autovalores y autoespacios asociados. Decir si son diagonalizables y en caso de serlo hallar la matriz diagonal y el cambio de base correspondiente.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & 6 & -2 \end{pmatrix}.$$

11. Considerar las matrices

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} , \quad B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix} .$$

Probar que A y B tienen polinomios característicos diferentes, pero sus polinomios minimales coinciden.

- 12. Sea $T \in L(\mathbb{R}_2[x])$ dado por $T(a_0 + a_1x + a_2x^2) = (a_0 + a_1) (2a_1 + 3a_2)x$.
 - a) Hallar la representación matricial de T con respecto a la base usual de $\mathbb{R}_2[x]$.
 - b) Hallar el polinomio característico y los autovalores de T.
 - c) Es T diagonalizable?
- 13. Sea $T \in L(\mathbb{R}^3)$ dado por T(x, y, z) = (x, x + y, z).
 - a) Hallar el polinomio característico y el minimal de T.
 - b) Calcular los autovalores y una base para cada autoespacio asociado.
 - c) Decir si T es diagonalizable, justificando de dos maneras diferentes.
- 14. a) Sea $T \in L(\mathbb{R}^3)$ tal que:
 - Sus autovalores son 1 y -1.
 - $\{(0,1,-1)\}$ es una base de N(T+I) y $\{(0,1,1); (1,0,0)\}$ es una base de N(T-I).

¿Se puede decir si T es diagonalizable? Hallar el polinomio característico de T.

- b) Sea $T \in L(\mathbb{R}^4)$ tal que:
 - Sus autovalores son 1 y -1.
 - $\{(0, -1, 0, 0)\}$ es una base de N(T + I) y $\{(0, 0, 1, 1); (1, 0, 0, 0)\}$ es una base de N(T I).

 λ Se puede decir si T es diagonalizable?

15. ¿Cuáles son los posibles autovalores de una matriz A si se sabe que $A=A^2$?

16. Decir para qué valores de a y b la siguiente matriz es diagonalizable.

$$A = \begin{pmatrix} a & b & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} .$$

- 17. Sea A una matriz cuadrada tal que $A \neq I$ y $A^3 A^2 + A = I$. ¿Es A diagonalizable sobre \mathbb{C} ? ¿Y sobre \mathbb{R} ?
- 18. Probar que si $A \in \mathbb{R}^{2 \times 2}$ es simétrica, entonces es semejante a una matriz diagonal.