T-503-AFLE Derivatives

Forwards

The fair forward price, $F_{0,T}$, for a forward contract on the underlying S(t), struck at time 0 with expiry T, is given by

$$F_{0,T} = S(0)e^{rT} - \underbrace{\sum_{i=1}^n d_i e^{r(T-t_i)}}_{\text{FV}_{0,T}(\text{Div})}$$

in the case the underlying pays discrete deterministic dividends of size d_i at times t_i , with i = 1, ..., n, and $0 \le t_1 < t_2 < \cdots < t_n \le T$. In the case the underlying pays a continuous proportional dividend yield of δ that is fully re-invested, the fair forward price is

$$F_{0,T} = S(0)e^{(r-\delta)T}.$$

Put-call Parity

The prices of a maturity-T European call with strike K and an otherwise identical European put are related by

$$C(K,T) - P(K,T) = F_{0,T}^P - PV_{0,T}(K) = PV_{0,T}(F_{0,T} - K)$$

where

- $F_{0,T}^P$ the price of a maturity-T prepaid forward on the same underlying stock, and
- $PV_{0,T}(x)$ represents the generalized present-value of time-T cash-flow x.

Option Strategies

Option Strategy	Cost
Floor	S + P(K)
Cap	-S + C(K)
Short Covered Call	S-C(K)
Short Covered Put	-S-P(K)
Synthetic Forward	C(K) - P(K)
Call Bull Spread	$C(K_1) - C(K_2)$
Put Bull Spread	$P(K_1) - P(K_2)$
Call Bear Spread	$-C(K_1) + C(K_2)$
Put Bear Spread	$-P(K_1) + P(K_2)$
Call Ratio Spread	$\pm mC(K_1) \pm nC(K_2)$
Put Ratio Spread	$\pm mP(K_1) \pm nP(K_2)$
Collar	$P(K_1) - C(K_2)$
Straddle	P(K) + C(K)
Strangle	$P(K_1) + C(K_2)$
Butterfly Spread	$P(K_1) + C(K_3) - (P(K_2) + C(K_2))$
Box Spread	$C(K_1) - P(K_1) - (C(K_2) - P(K_2))$

Table 1: Fundamental option trading strategies. All options are written on the same underlying, S, for the same maturity, *T*. Furthermore, $K_1 < K_2 < K_3$, and $m \ne n$. Note that the initial cashflow is the negative of the cost.

Binomial Option Pricing Models

Consider a one-period binomial model. The underlying, S, has a continuously reinvested proportional dividend yield of δ . It begins at S_0 and can move to either $S_u = uS_0$ or $S_d = dS_0$, in one time period of length h. The continuously compounded risk-free rate is r.

The replicating portfolio for a derivative, V, written on S, is given by

$$\Delta = e^{-\delta h} \left(\frac{V_u - V_d}{S_u - S_d} \right)$$

shares of the stock and
$$B = e^{-rh} \left(\frac{uV_d - dV_u}{u - d} \right)$$

dollars in the bank account, where V_u is the payoff of the derivative in the event S attains S_u and V_d is the payoff of the derivative in the event S attains S_d . Thus,

$$V_0 = \Delta S_0 + B$$
.