Что еще есть в нашей FPGA?

- Блоки памяти
- Аппаратные блоки умножителей
- PLL (Phased Locked Loop)

Table 1-1. Resources for the Cyclone IV E Device Family

Resources	EP4CE6	EP4CE10	EP4CE15	EP4CE22	EP4CE30	EP4CE40	EP4CE55	EP4CE75	EP4CE115
Logic elements (LEs)	6,272	10,320	15,408	22,320	28,848	39,600	55,856	75,408	114,480
Embedded memory (Kbits)	270	414	504	594	594	1,134	2,340	2,745	3,888
Embedded 18 × 18 multipliers	15	23	56	66	66	116	154	200	266
General-purpose PLLs	2	2	4	4	4	4	4	4	4
Global Clock Networks	10	10	20	20	20	20	20	20	20
User I/O Banks	8	8	8	8	8	8	8	8	8
Maximum user I/O (1)	179	179	343	153	532	532	374	426	528

Память

- RAM Random Access Memory
- ROM Read Only Memory
- Triggers
- Dynamic RAM (DRAM)
- Static RAM (SRAM)
- Inputs
 - Read/Write address
 - Input data
 - Read/Write enable
- Outputs
 - Output data

Триггеры

- ~20 транзисторов на ячейку
- Маленькая задержка
- Используются для хранения данных которые учавствуют в вычислениях конкретно в данный момент.
- Плохо подходят для создания большой памяти.

Dynamic RAM (DRAM)

- Битовым значениям соответствует наличие или отсутствие заряда конденсатора, управляемого полевым транзистором.
- Из-за разряда при чтении (или просто со временем) ячейки нужно регенерировать
- Очень маленькая площадь 1 транзистор + 1 конденсатор.
- Большая задержка.

Static RAM (SRAM)

- Данные хранятся в бистабильной схеме
- 6 транзисторов
- Средняя задержка

Distributed RAM

- В некоторых FPGA LUT реализован с помощью памяти.
 - 4-input LUT 16 bits memory
 - 6-input LUT 64 bits memory
- В таком случае мы можем использовать данную память по прямому назначению.
- Такую память называют Distributed RAM так как она распределена по всему чипу.

Block SRAM (M9K memory blocks)

- B FPGA зачастую встраиваются специализированные блоки памяти.
- В нашем чипе есть 270 kBit такой памяти (которая называется М9К).
- 30 блоков памяти М9К.
- Каждый блок памяти по 9216 бит.
 - 1024 * (8 + 1)
 - дополнительный pairity бит
- Возможности
 - Single Port, Simple Dual Port, True Dual Port
 - RAM, ROM
 - Инициализация из файла
 - Встроенная логика для бита четности
 - ...

Table 1-1. Resources for the Cyclone IV E Device Family

Resources	EP4CE6	EP4CE10	EP4CE15	EP4CE22	EP4CE30	EP4CE40	EP4CE55	EP4CE75	EP4CE115
Logic elements (LEs)	6,272	10,320	15,408	22,320	28,848	39,600	55,856	75,408	114,480
Embedded memory (Kbits)	270	414	504	594	594	1,134	2,340	2,745	3,888
Embedded 18 × 18 multipliers	15	23	56	66	66	116	154	200	266
General-purpose PLLs	2	2	4	4	4	4	4	4	4
Global Clock Networks	10	10	20	20	20	20	20	20	20
User I/O Banks	8	8	8	8	8	8	8	8	8
Maximum user I/O (1)	179	179	343	153	532	532	374	426	528

Single Port RAM

В один момент времени либо запись либо чтение.

- data данные для записи
- address адрес для чтения или записи
- wren флаг что запись активна
- rden флаг что чтение активно
- q выход для прочитанных данных

Есть два режима: Read-During-Write – New Data/Old Data

Simple Dual Port RAM

Одновременные запись и чтение по разным адресам.

- data данные для записи
- wraddress адрес для записи
- rdaddress адрес для чтения
- wren флаг что запись активна
- rden флаг что чтение активно
- q выход для прочитанных данных

Есть два режима: Read-During-Write – Don't Care/Old Data

True Dual Port Mode RAM

Одновременно выполняет **две операции**, каждая из которых может быть **либо запись либо чтение**. Фактически это два независимых порта. Поэтому такую память можно превратить в две независимые Single Port памяти.

- data данные для записи
- wraddress адрес для записи
- rdaddress адрес для чтения
- wren флаг что запись активна
- rden флаг что чтение активно
- q выход для прочитанных данных

Есть два режима: Read-During-Write – New Data/Old Data

Нельзя одновременно писать в один адрес из обоих портов!!!

Другие режимы

ROM

Фактически однопортовая RAM только для чтения, которая инициализируется при запуске

FIFO

Структура очереди построенная на памяти. Бывает удобна при передаче данных между двумя доменами с разными тактовыми сигналами.

Shift Register

Специфическая структура наподобии сдвигового регистра. Находит применение в многоканальной обработке сигналов.

Использование М9К блоков (метод 1)

Написать модуль похожий на блок памяти.

```
/* synthesis romstyle = "M9K" */
module ram
    parameter DEPTH=256,
    parameter WIDTH=32
)(
    input clk,
    input wr en,
    input [31:0] wr addr,
    input [WIDTH-1: 0] wr data,
    input rd en,
    input [31:0] rd_addr,
    output [WIDTH - 1:0] q
);
    reg [WIDTH - 1: 0] mem [DEPTH - 1: 0];
    reg [WIDTH - 1: 0] rd_data;
    assign q = rd data;
    always @(posedge clk) begin
        // write
        if (wr en) begin
            mem[wr addr] <= wr data;</pre>
        end
        // read
        if (rd en) begin
            rd data <= mem[rd addr];</pre>
        end
    end
```

Synthesis attribute.

Подсказка синтезатору что предпочтительный способ исполнения – блок памяти. Синтезатор не обязан следовать этой подсказке. Данные атрибуты различаются в зависимости от используемого синтезатора!

Flow Status	Successful - Wed Oct 16 00:48:52 2024
Quartus Prime Version	23.1std.1 Build 993 05/14/2024 SC Lite Edition
Revision Name	test
Top-level Entity Name	top_ram
Family	Cyclone IV E
Device	EP4CE6F17I7
Timing Models	Final
Total logic elements	0 / 6,272 (0 %)
Total registers	0
Total pins	131 / 180 (73 %)
Total virtual pins	(
Total memory bits	8,192 / 276,480 (3 %)
Embedded Multiplier 9-bit elements	0/30(0%)
Total PLLs	0/2(0%)

endmodule

Использование М9К блоков (метод 2)

Воспользоваться IP блоком. Позволяет создать Black Box модуль который реализует память (или другие модули).

Использование М9К блоков (метод 2)

В конце автоматически стоит галочка создания файла _bb – файл с описанием интерфейса модуля.

Внешняя память

- 256 Mbit SDRAM
- EEPROM 4Kbit (IIC bus)
- SPI FLASH (Configuration)

E:---- 1 1

Flash Boot Image (Active Serial Configuration)

Flash память с последовательной шиной можно использовать для хранения конфигурационного файла. Тогда FPGA будте сразу при подключении питания загружать нужную прошивку.

В идеале мы просто загружаем прошивку напрямую в память, но для этого потребуется отдельный порт. (У вас его нет)

Более сложный способ, не требующий отдельного порта, но требующий большего количества шагов:

- 1. Прошить в FPGA Serial Flash Loader.
- 2. Через JTAG->Serial Flash Loader прошить память.

JTAG Chain — JTAG Interface

FPGA

SFL Image to bridge the JTAG interface and ASMI

AS Interface

Serial Configuration Devices Via the JTAG Interface

Serial Configuration Device

Умножение

Умножитель 16*16 бит занимает 344 ячейки

Flow Status Successful - Wed Oct 16 10 Quartus Prime Version 23.1std.1 Build 993 05/14/

Revision Name embed_mult

Top-level Entity Name mult

Family Cyclone IV E
Device EP4CE6F17I7
Timing Models Final

Total logic elements 344 / 6,272 (5%)

Total registers

Total pins 64 / 180 (36 %)

Total virtual pins 0

Total memory bits 0 / 276,480 (0%)
Embedded Multiplier 9-bit elements 0 / 30 (0%)
Total PLLs 0 / 2 (0%)

Embed Multiplier

FPGA зачастую имеет встроенные блоки умножителей.

Flow Status Successful - Wed Oct 16 10 Quartus Prime Version 23.1std.1 Build 993 05/14/ **Revision Name** embed mult Top-level Entity Name mult Family Cyclone IV E Device EP4CE6F17I7 **Timing Models** Final Total logic elements 344 / 6,272 (5%) Total registers Total pins 64/180(36%) Total virtual pins Total memory bits 0/276,480(0%) Embedded Multiplier 9-bit elements 0/30(0%) Total PLLs 0/2(0%)

Successful - Wed Oct 16 10:38:3 Flow Status Quartus Prime Version 23.1std.1 Build 993 05/14/2024 **Revision Name** embed mult Top-level Entity Name mult Family Cyclone IV E EP4CE6F17I7 Device Timing Models Final Total logic elements 0/6,272(0%) Total registers Total pins 64 / 180 (36 %) Total virtual pins Total memory bits 0/276,480(0%) Embedded Multiplier 9-bit elements 2/30(7%) Total PLLs 0/2(0%)

Embed multipliers

Синтезатор сам по возможности будет использовать Встроенные блоки умножителей. Но можно напрямую задать ему это аттрибутом. (значения аттрибута 'dsp' или 'logic')

PLL(Phased Locked Loop)

PLL (Phased Locked Loop) – Система, содержащая генератор, фаза которого автоматически подстраиваетсся под фазу входного сигнала или отклоняется от нее по требуемому закону.

Применение:

- Модуляция/Демодуляция.
- Преобразование частоты.

PLL

Table 1–1. Resources for the Cyclone IV E Device Family

Resources	EP4CE6	EP4CE10	EP4CE15	EP4CE22
Logic elements (LEs)	6,272	10,320	15,408	22,320
Embedded memory (Kbits)	270	270 414		594
Embedded 18 × 18 multipliers	15	23	56	66
General-purpose PLLs	2	2	4	4
Global Clock Networks	10	10	20	20
User I/O Banks	8	8	8	8
Maximum user I/O (1)	179	179	343	153

ALTPLL IP

ALTPLL IP


```
module pll (
    inclk0,
    c0);

input inclk0;
    output c0;
```

endmodule

Применение

Помимо увеличения частоты тактирования, наша схема может иметь разные клоковые домены. Генерация разных частот тактирования с рациональным соотношением (f_clk_in/f_clk_out = M/N).

