CHAPTER 3 数学特征与特征函数

ZEYU XIE¹

[1]

1. 数学期望

1.1. 定义.

Definition 1 (离散型随机变量的数学期望). 设离散型随机变量 ξ 的概率分布为 $p_i = P\{\xi = x_i\}, i = 1, 2, ..., 若 <math>\sum_i |x_i| p_i < +\infty$, 则称

(1)
$$E(\xi) = \sum_{i} x_i p_i$$

为随机变量 ξ 的数学期望。

Definition 2 (连续型随机变量的数学期望). 设连续型随机变量 ξ 的概率密度为 p(x),若 $\int_{-\infty}^{+\infty} |x| p(x) dx < +\infty$,则称

(2)
$$E(\xi) = \int_{-\infty}^{+\infty} x p(x) dx$$

为随机变量 ξ 的数学期望。

Definition 3 (数学期望的统一写法). 设 ξ 为随机变量,则定义

(3)
$$E(\xi) = \int_{-\infty}^{+\infty} x dF(x)$$

为随机变量 ξ 的数学期望。

1.2. 基本性质.

Proposition 1 (数学期望的性质). 设 ξ, η 为随机变量,且都有有限的数学期望,则有

- (a) E(c) = c
- (b) $E(c\xi) = cE(\xi)$
- (c) $E(\xi + \eta) = E(\xi) + E(\eta)$
- (d) 若 $\xi \geq 0$,则 $E(\xi) \geq 0$
- (e) 若 $\xi \geq \eta$,则 $E(\xi) \geq E(\eta)$

E-mail address: xie.zeyu20@gmail.com.

Date: 2024 年 4 月 16 日.

¹ Department of Mathematics, Tsinghua University, Beijing, China.

Proposition 2 (Borel 函数下的数学期望). 设 ξ 为随机变量, f(x) 为 Borel 函数,则有

(4)
$$E[f(\xi)] = \int_{-\infty}^{+\infty} f(x)dF(x)$$

此性质在多元随机变量的情况下也成立:设随机变量 $(\xi_1, \xi_2, \dots, \xi_n)$ 有联合分布 函数 $F(x_1, x_2, \dots, x_n)$, f 为 n 元 Borel 函数,则有

(5)
$$E[f(\xi_1, \xi_2, \dots, \xi_n)] = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_1, x_2, \dots, x_n) dF(x_1, x_2, \dots, x_n)$$

注:以上性质说明,可直接用 $(\xi_1, \xi_2, \dots, \xi_n)$ 的联合分布计算 $\eta = f(\xi_1, \xi_2, \dots, \xi_n)$ 的数学期望,而不必先求出 η 的分布。

1.3. 独立随机变量的性质.

Proposition 3 (独立随机变量数学期望的性质). 设 ξ , η 为独立随机变量, 且 ξ 与 η 均可积,则乘积 $\xi\eta$ 也可积,且有

(6)
$$E(\xi \eta) = E(\xi)E(\eta)$$

Proposition 4 (独立随机变量数学期望的等价条件). 概率空间 (Ω, \mathcal{F}, P) 中的随机变量 ξ, η 独立的充要条件是: 对任意使得 $f(\xi)$ 和 $g(\eta)$ 可积的 Borel 函数 f, g, η

(7)
$$E[f(\xi)g(\eta)] = E[f(\xi)]E[g(\eta)]$$

1.4. 极限性质. 我们考虑

(8)
$$\lim_{n \to \infty} E(\xi_n) = E(\lim_{n \to \infty} \xi_n)$$

成立的条件。

Proposition 5 (单调收敛定理). 设随机变量序列 $\{\xi_n\}$ 满足条件

(9)
$$0 \le \xi_1(\omega) \le \xi_2(\omega) \le \dots \le \xi_n(\omega) \uparrow \xi(\omega), \quad \forall \omega \in \Omega$$

则 8 成立。

Proposition 6 (Fatou 引理). 设 $\{\xi_n\}$ 是一随机变量序列

(a) 若存在可积随机变量 σ , 使得 $\xi_n \geq \sigma$, 则有

(10)
$$E(\lim_{n \to \infty} \inf \xi_n) \le \lim_{n \to \infty} \inf E(\xi_n)$$

(b) 若存在可积随机变量 τ , 使得 $\xi_n < \tau$, 则有

(11)
$$E(\lim_{n \to \infty} \sup \xi_n) \ge \lim_{n \to \infty} \sup E(\xi_n)$$

Proposition 7 (Lebesgue 控制收敛定理). 设 $\{\xi_n\}$ 是一随机变量序列,若存在可积随机变量 η 使得 $|\xi_n| \leq \eta$,且 $\lim_{n \to \infty} \xi_n = \xi$,则 θ 成立,即

(12)
$$\lim_{n \to \infty} E(\xi_n) = E(\xi)$$

1.5. 常见分布的期望.

Proposition 8 (Bernoulli 分布的数学期望). 设随机变量 ξ 服从参数为 p 的 Bernoulli 分布,则有

$$(13) E(\xi) = p$$

Proposition 9 (二项分布的数学期望). 设随机变量 ξ 服从参数为 (n,p) 的二项分布,则有

(14)
$$E(\xi) = np$$

Proposition 10 (Possion 分布的数学期望). 设随机变量 ξ 服从参数为 λ 的 *Possion* 分布,则有

(15)
$$E(\xi) = \lambda$$

证明:直接计算

Proposition 11 (几何分布的数学期望). 设随机变量 ξ 服从参数为 p 的几何分布,则有

(16)
$$E(\xi) = \frac{1}{p}$$

Proposition 12 (均匀分布的数学期望). 设随机变量 ξ 服从参数为 (a,b) 的均匀分布,则有

(17)
$$E(\xi) = \frac{a+b}{2}$$

Proposition 13 (正态分布的数学期望). 设随机变量 ξ 服从参数为 (μ, σ^2) 的正态分布,则有

$$(18) E(\xi) = \mu$$

Proposition 14 (χ^2 分布的数学期望). 设随机变量 ξ 服从参数为 n 的 χ^2 分布,则有

$$(19) E(\xi) = n$$

Proposition 15 (Cauchy 分布的数学期望). 设随机变量 ξ 有密度函数

(20)
$$p(x) = \frac{1}{\pi(1+x^2)}$$

注意到

(21)
$$\int_{-\infty}^{+\infty} |x| p(x) dx = \int_{-\infty}^{+\infty} \frac{|x|}{\pi (1+x^2)} dx = +\infty$$

故 Cauchy 分布的数学期望不存在。

注: 常见的分布中, 数学期望不存在的仅有 Cauchy 分布。

2. 方差

References

[1] 杨振明. 概率论(第二版). 北京: 科学出版社, 2007.