Project Development Phase Model Performance Test

Date	20 June 2025	
Team ID	LTVIP2025TMID42953	
Project Name	Revolutionizing Liver Care: Predicting Liver Cirrhosis using Advanced Machine Learning Techniques	
Maximum Marks		

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Logistic regression with 10-fold cross-validation, using features such as age, sex, albumin levels, bilirubin levels and prothrombin time	from sklears.linear_model import togisticRepression model = togisticRepression(solver=liblinear*, c-0.5, random_state=0) model.fit(X_[roin_y_train) prist(model) prist(model) prist("configures", model.coef_) prist("intercept:", model.intercept_)
2.	Accuracy	Training Accuracy - 86.2% Validation Accuracy - 83.7%	Accuracy Scores of Different Classification Models 83.25 83.25 83.25 83.20
3.	Fine Tunning Result(if Done)	Validation Accuracy - 85.4%	from kilourn.model_selection import Gridsmarch(v perma_grid = { "in_estimators': [50, 100, 150], "ma_estimators': [50, 100, 150], "ma_estimators': [50, 100, 150], "ma_estimators': [50, 100, 150], grid - Gridsmarch(v(Kundom/orestclassifier(), param_grid, cv-5) grid - Gridsmarch(v(Kundom/orestclassifier(), param_grid, cv-5