Conservación de la Energía Mecánica

En este experimento determinará la constante de elasticidad de un par de resortes de aro.

Con esta información verificará la transferencia y conservación de la energía potencial elástica a energía cinética y potencial gravitacional.

1. LabQuest Stream

2. Carro con sensor de movimiento

3. Juego de masas para carro

4. Riel de baja fricción

5. Resorte de aro

6. Flexómetro

7. Nivel y escuadra digital

Accesorio riel de baja fricción

9. Motion Encoder

10. Abrazadera de varilla para riel

11. Sensor de fuerza

12. Soporte universal con varilla

Toma de Datos I

En esta primera parte se medirá la constante de elasticidad del resorte de aro.

Para este fin, tome medidas de fuerza vs tiempo y posición vs tiempo.

Usando la ley de Hooke podrá obtener la constante k.

No olvide guardar los datos con Ctrl+L

Force 0,042 N

Position -0,001 m

Toma de Datos II

Con el encoder del riel registre: la compresión del resorte x y la velocidad a la que sale el carro.

Realice esto para al menos 4 compresiones diferentes.

Ajuste el cero del encoder del riel cuando sea necesario.

En esta parte no debe guardar los datos de cada serie.

	Datos 2 Parte				
	Xmax	V			
	(m)	(m/s)			
2	0,051),2625			
3	0,055),2881			
4	0,038),2008			
5					

-0,001 m

Masa_Carro_Datos2 A

Toma de Datos III

Incline el plano aproximadamente 2° y registre la compresión máxima y la distancia máxima que recorre el carro antes de devolverse.

Por cada set de datos tome al menos 4 mediciones con la herramienta *Analizar /Estadísticas* y un rango adecuado

No olvide ajustar el cero del encoder del riel justo cuando el carro toca al resorte (sin compresión).

Anote el ángulo medido en el parámetro dispuesto para tal fin.

Repita estas mediciones para 2 compresiones iniciales diferentes.

	Datos 3 Parte				
	Xmax	Xmax dmax			
	(m)	(m)			
1	0,037	0,173			
2	0,047	0,303			
3					
4					
5					

Masa_Carro_Datos3	•	
0,818	▼	

Position -0,001 m

Análisis Cualitativo -Si el resorte comprimido una distancia x requiere de una fuerza F y almacena una energía E. ¿Cuál es la fuerza requerida y la energía almacenada si de duplica la compresión? -Diga cuáles son las energías presentes en la parte 3 de toma de datos y discuta cómo se transfiere esta energía. -¿Qué papel juega la fricción en todo el experimento? ¿Que formas de disipación de energía adicionales tendría en cuenta? -En la parte de toma de datos 2, ¿qué pasa con la velocidad si la masa del carro aumenta y la compresión del resorte se mantiene constante?

Análisis Cuantitativo I

De los datos de la primera parte, realice una gráfica de Fuerza vs compresión y determine de allí un valor para

Anote este valor en el parámetro mostrado en esta

página. Discuta el valor de su incertidumbre.

a incertidumbre es de +- 0,2615 N/m

a correlacion nos dio 0,9947 lo cualnos indica que stuve muy cerca de evidenciar la relacion lineal entre retancia y fuerza

k 32,270 N/m

Análisis Cuantitativo II

Calcule una nueva columna que sea la energía potencial elástica. Con la masa del carro y la velocidad calcule la energía cinética del carro justo cuando deja el resorte.

Calcule una nueva columna que sea la diferencia entre energía potencial elástica y energía cinética. Discuta sus resultados. ¿Se cumple la conservación de la energía mecánica?

Segun los resultados, no pude evidencirar la conservacion de la energia mecanica ya que la diferencia en ningun punto me dio 0. Sin embargo, los valores de la diferencia de energias son muy pequenos y es probable que esten dentro del rango de medicion del sensor de fuerza.

Realice una gráfica de energía potencial elástica vs energía potencial gravitacional. Ajuste una recta y compare el valor de la pendiente e intercepto con respecto a los esperados de acuerdo a

Is dutilistation un aircurgio.

La pendiante ma de 0.738. Esta valor se acorca mucho al valor real de 1,1 o cual nos indica que estuve muy cerca del valor teorico de conservación de energia. El intercepto con el eje dio 0,000 el cual se may que a for a fore de one que o que estuve que estuve de consequiente de conseq

	Datos 2 Parte					
	Xmax	V	Ue	Ec	Ue - Ec	
	(m)	(m/s)				
1	0,054	0,2962	0,047	0,036	0,011	
2	0,051	0,2625	0,042	0,028	0,013	
3	0,055	0,2881	0,048	0,034	0,014	
4	0,038	0,2008	0,023	0,016	0,007	
5						
6						
7						
8						
9						
-40-						

Ajuste lineal: Datos 2 Parte | Energia Cinetica Ec = mx+b
m (Pendiente:): 0,7379
b (Corte eje Y): -0,0008479
Correlación:0,9800
RMSE: 0,002127

Análisis Cuantitativo III

Con los datos de distancia máxima recorrida dmax y el ángulo de inclinación del plano, calcule la distancia que subió el carro h. Haga esto insertando una columna calculada. Recuerde que el programa calcula el seno del ángulo introducido en radianes.

Calcule la energía elástica almacenada en el resorte y la energía potencial gravitacional con h.

Inserte una columna calculada que sea la diferencia entre energía potencial elástica y energía potencial gravitacional ¿Se conserva la energía mecánica en este caso? Discuta sus resultados

No se conserva la energi ya que la resta no nos da 0, sin embargo, la diferencia es muy pequena lo cual nos indica que el hecho que no dio 0 fue causado por las fuentes de error.

Realice una gráfica de energía potencial elástica vs energía potencial gravitacional. Ajuste una recta y compare el valor de la pendiente e intercepto con respecto a los esperados de acuerdo a la conservación de la energía.

Ángulo_Inclinación_Plano 2,000 °

	Datos 3 Parte						
	Xmax	dmax	Distancia	Ue	Ug	Ue - Ug	
	(m)	(m)					
1	0,037	0,173	0,006	0,022	0,048	-0,026	Т
2	0,047	0,303	0,011	0,035	0,085	-0,049	
3							

Conclusiones

