Artificial Intelligence (CS571)

Department of CSE, IIT Patna

Assignment-2

(Read all the instructions carefully and adhere to them.)

Date: 21-Sept-2020

Instructions:

- 1. Markings will be based on the correctness and soundness of the outputs.
- 2. Marks will be deducted in case of plagiarism.
- 3. Proper indentation and appropriate comments (if necessary) are mandatory.
- 4. You should zip all the required files and name the zip file as:

roll_no_of_all_group_members.zip, eg. 1501cs11_1201cs03_1621cs05.zip.

5. Upload your assignment (the zip file) in the following link:

https://www.dropbox.com/request/VFHZ6mqNl8MD5Zrv0cfC

For any queries regarding this assignment contact:

Questions	
kshitij mishra (kmishra.kings@gmail.com)	

1. Genetic Algorithm:

a. Implement the 8 puzzle problem using a genetic algorithm.Start state (Can take any random order of numbers with B denoting a blank)An Example:

5	В	8
4	2	1
7	3	6

Goal state (fixed):

1	2	3
4	5	6
7	8	В

- **b.** At each step show the following
 - i. Initial population (assume to be 10)
 - ii. Selection (use Roulette Wheel Selection)
 - iii. Crossover (high probability value to be chosen, usually above 0.6)
 - iv. Mutation (low probability value to be chosen, usually below 0.2)
 - v. Fitness function: No. of misplaced tiles; Manhattan distance
- **c.** Execute for a sufficient number of generations (or, iterations)

2. Simulated Annealing

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space.

- a. Implement Simulated Annealing Search Algorithm for solving the 8-puzzle problem. Your start and Goal state should follow similar guidelines as given in Q.1.a.
- **b. Input**: Input should be taken from an input file and processed as a matrix. Other inputs are Temperature variable T, heuristic function, neighbourhood generating function, a probability function to decide state change, and a cooling function.
- **c. Output**: All the following results should be stored in an output file:
 - i. The success or failure message
 - **ii.** Heuristics chosen, Temperature chosen, cooling function chosen, Start state, and Goal state.
 - iii. (Sub) Optimal Path (on success),
 - iv. Total number of states explored.
 - v. Total amount of time taken.

d. Objective functions to be checked:

- i. h1 (n)= Number of displaced titles.
- ii. h2 (n)= Total Manhattan distance.

e. Constraints to be checked:

- i. Check whether the heuristics are admissible.
- ii. What happens if we make a new heuristics h3 (n) = h1 (n) * h2 (n).
- iii. What happens if you consider the blank tile as another tile.
- **iv.** What if the search algorithm got stuck into Local optimum? Is there any way to get out of this?