Name - Vijay Tadikamalla Roll no - CSI7BTECH11040

Q1 9t ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 are satisfiable then $\phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 = T \quad \text{for some values of}$ χ_1, χ_2, χ_4 $\Rightarrow (\chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\neg \chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\chi_2 \vee \chi_4) \wedge (\neg \chi_2)$ $\equiv (\chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\neg \chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\chi_2 \wedge \neg \chi_2) \vee (\chi_4 \wedge \neg \chi_2)$ $\equiv (\chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\neg \chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\chi_4 \wedge \neg \chi_2) \vee (\chi_4 \wedge \neg \chi_2)$ $\Rightarrow (\chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\neg \chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\chi_4 \wedge \neg \chi_2) \wedge (\chi_4 \wedge \neg \chi_2)$ $\Rightarrow (\chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\neg \chi_1 \vee \chi_2 \vee \neg \chi_4) \wedge (\chi_4 \wedge \neg \chi_2) \wedge (\chi_4 \wedge \neg \chi_2) \wedge (\chi_4 \wedge \neg \chi_2) \wedge (\chi_4 \wedge \neg \chi_2)$

 $=) \left(\begin{array}{c} X_{1} & \Lambda^{-1}X_{1} \end{array} \right) V\left(\begin{array}{c} X_{2} & V^{-1} & X_{4} \end{array} \right) \Lambda\left(\begin{array}{c} X_{4} & \Lambda^{-1} & X_{2} \end{array} \right)$

 $=) (X_2 \vee \neg X_4) \wedge (X_4 \wedge \neg X_2) = (X_2 \vee \neg X_4) \wedge (\neg (X_2 \vee \neg X_4))$ = F

.. φ, η φ₂ η φ₃ η φ₄ ≡ F ≢ T

Hence proved by contraduction The set of clauses are not satisfiable Q2 i) Let $\times V\phi_1$, $-\times V\phi_2$ be satisfiable i.e $(\times V\phi_1) \wedge (-\times V\phi_2) \equiv True$

We know that either X on - X is true.

So, without loss of generality

Let X be true

:. Eq (1) reduces to \$2

:. \$2 must be true

Similarly let X be false Now we cano see that ϕ_1 must be true

. It can be clearly be seen that in both the case $\phi_1 \vee \phi_2$ is satisfiable

Now let $\phi_1 \vee \phi_2$ be satisfiable i.e $\phi_1 \vee \phi_2 \equiv T - 2$ So to show that xvp,, -xvp2 are satisfiable given Eq 2, we will show that there always exists a value of X such that (X VOI) N (-X VO2) = T givene explos

: when \$1 vg2 is satisfiable

Let
$$X = X_1$$

$$\phi_1 = \neg X_2 \lor X_3 \lor X_4$$

$$\phi_2 = \neg X_2 \lor \neg X_3$$

$$d_2 = \forall X_2 \vee \forall X_3$$

$$(\forall_1 \vee \forall_2 \vee \forall_3 \vee \forall_4) \wedge (\forall_1 \vee \forall_1 \vee \forall_2 \vee \forall_3)$$

$$(\forall_1 \vee \forall_2 \vee \forall_3 \vee \forall_4) \wedge (\forall_1 \vee \forall_2 \vee \forall_3)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

$$= (X \vee 0_1) \wedge (\neg X \vee 0_2)$$

For
$$0$$
 to be satisfied into the satisfied $(\neg X_2 \lor X_3 \lor X_4) \lor (\neg X_2 \lor \neg X_3) \equiv T$

i.e $(\neg X_2 \lor X_3 \lor X_4) \lor (\neg X_2 \lor \neg X_3) \equiv T$
 $\neg X_2 \lor X_4 \equiv T$

X, X3	X2	Xy
T, F	T	T
T, F	F	T
T,F	F	F

03 let pMin, pMax be min and max probabilities of C

70000	A	B	C	@(AVB) →C	Probability
	· , , ,	1	1		21
	1	1	0	0	22
	J	0	1	1	23
	1	6	0	0	Zy
	6	1	1	1	α5
	0	1	6	0	76 27
	0	6		J	
	O	6			Zg

Solutions

(1) For Min:
$$[0.7, 0, 0, 0.1, 0, 0, 0.2]$$

$$\Rightarrow p \text{ Min} = 0.7 \text{ to to } = 0.7$$

Qy

given any probabilistic reasoning problem which can be constructed into following LP problem

min $f^T x$ such that $Ax \le b$, readon we can show that $x_i \ge 0$ and $x_i \le 1$ $\forall i$

where xi is probability

Proof: In any LP formulation of probabilistic reasoning, use can represent it as

$$\begin{bmatrix} A \\ -A \end{bmatrix} P \leq \begin{bmatrix} b \\ -b \end{bmatrix}$$

For solving this LP problem, we constraint matrix by adding the following

1) & FP; < 1 and FP; > 1 > FP; = 1 +i

2) - ₹ pi ≤0 +i => ₹ pi ≥0

:. From @ 60 we have

$$\sum_{i=1}^{2} P_{i}=1$$
 \Rightarrow $P_{i}=1-\sum_{j\neq i}^{2} P_{j}$ -3

Max
$$P_i = Max \left(1 - \frac{2}{3} P_i\right)$$

Now since and
$$P_j \ge 0$$
 and $\forall j$

min $P_j \ge 0 \Rightarrow$ min $\stackrel{?}{\underset{i \neq j}{\in}} P_j \ge 0$

- :. Max Pi = 1
 - :. Max $P_i \leq 1$ and Min $P_i \geq 0 \quad \forall i$ $P_i \in [0, 1], i.e \quad 0 \leq P_i \leq 1$
- .. Hence LP formulation of probabilistic reasoning never leads to absurd conclusions. related to probability.