Lesson 22. An Economic Interpretation of LP Duality

1 Overview

- An economic interpretation of duality
- Complementary slackness

2 Warm up

Example 1. The Fulkerson Furniture Company produces desks, tables, and chairs. Each type of furniture requires a certain amount of lumber, finishing, and carpentry:

Resource	Desk	Table	Chair	Available
Lumber (sq ft)	8	6	2	48
Finishing (hrs)	3	2	1	20
Carpentry (hrs)	2	2	1	8
Profit (\$)	60	30	20	

Assume that all furniture produced is sold, and that fractional solutions are acceptable. Write a linear program to

ermine how much furniture Fulkerson should produce in order to maximize its profits.					

3 Economic interpretation of the dual LP

- Suppose an entrepreneur wants to purchase all of Fulkerson's resources (lumber, finishing, carpentry)
- What prices should she offer for the resources that will entice Fulkerson to sell?

	:				
	y_1 = price of 1 sq. ft. lumber				
	y_2 = price of 1 hour of finishing				
	y_3 = price of 1 hour of carpentry				
To buy all of Fulkerson's resources, entrepreneur pays:					
Entrepreneur wants to mi	inimize this cost				
Entrepreneur also needs t	to offer resource prices that will entice Fulkerson to sell				
One desk uses					
。 8 sq. ft. of lumber					
3 hours of finishing					
 2 hours of carpentry 	y				
One desk has profit of \$60	0				
Entrepreneur should pay	at least \$60 for this combination of resources:				
One table uses					
o 6 sq. ft. of lumber					
\circ 2 hours of finishing					
o 2 hours of carpentry	y				
One table has profit of \$3	0				
Entrepreneur should pay	at least \$30 for this combination of resources:				
One chair uses					
• 2 sq. ft. of lumber					
• 1 hours of finishing					
 1 hours of carpentry 	7				
One chair has profit of \$2	20				

⇒ Entrepreneur should pay nonnegative amounts for each resource:

• Putting this all together, we get:

- This is the dual of Fulkerson's LP!
- In summary:
 - ∘ Optimal dual solution ⇔ "fair" prices for associated resources
 - Known as marginal prices or shadow prices
- Strong duality ⇒

$$\begin{pmatrix}
\text{Company's maximum revenue} \\
\text{from selling furniture}
\end{pmatrix} = \begin{pmatrix}
\text{Entrepreneur's minimum cost} \\
\text{of purchasing resources}
\end{pmatrix}$$

- o Equilibrium under perfect competition: company makes no excess profits
- This kind of economic interpretation is trickier for LPs with different types of constraints and variable bounds

4 Complementary slackness

- Optimal solution to Fulkerson's LP: $x_1 = 4$, $x_2 = 0$, $x_3 = 0$
- Resources used:

- How much would you pay for an extra sq. ft. of lumber?
- How much would you pay for an extra hour of finishing?
- Resource not fully utilized in optimal solution
 - \Rightarrow marginal price = 0
- Primal complementary slackness: either
 - o a primal constraint is active at a primal optimal solution, or
 - \circ the corresponding dual variable at optimality = 0

- Same logic applies to the dual
- Dual constraints ⇔ Primal decision variables
- Dual complementary slackness: either
 - o a primal decision variable at optimality = 0, or
 - o the corresponding dual constraint is active in a dual optimal solution

5 More duality practice

Example 2. Consider the following LP:

minimize
$$3x_1 - x_2 + 8x_3$$

subject to $-x_1 + 8x_3 \le 6$
 $5x_1 - 3x_2 + 9x_3 \ge -2$
 $x_1 \ge 0, x_2 \le 0, x_3 \ge 0$

- a. Write the dual.
- b. Find a feasible solution to the primal and the dual.
- c. Give a lower and an upper bound on the optimal value of the above LP.