Chapter 4, Section 1

James Lee

April 25, 2025

1. Let X be a curve, and let $P \in X$ be a point. Then there exists a nonconstant rational function $f \in K(X)$, which is regular everywhere except at P.

Proof. Pick another point $Q \in X$ different from P. By the Riemann-Roch Theorem, there exists n > 0 such that $\dim |-P + nQ| > 0$. This means there exists an effective divisor D that has a pole at P and regular everywhere else. Thus, there exists $f \in K(X)$ such that $v_P(f) = -1$ and $v_Q(f) \geq 0$ for all $Q \neq P$.

- **2.** Again let X be a curve, and let $P_1, \ldots, P_r \in X$ be points. Then there is a rational function $f \in K(X)$ having poles (of some order) at each of the P_i , and regular elsewhere.
- **3.** Let X be an integral, separated, regular, one-dimensional scheme of finite type over k, which is *not* proper over k. Then X is affine.
- **4.** Show that a separated, one-dimensional scheme of finite type over k, none of whose irreducible components is proper over k, is affine.
- **5.** For an effective divisor D on a curve X of genus g, show that $\dim |D| \leq \deg D$. Furthermore, equality holds if and only if D = 0 or g = 0.

Proof. By Riemann-Roch, we have

$$\dim |D| = \ell(D) - 1 = \ell(K - D) + \deg D - q,$$

so we want to show $\ell(K-D) \leq g$. But $g = \ell(K)$ by definition, and D is effective, so the result follows from the proof...

- **6.** Let X be a curve of genus g. Show that there is a finite morphism $f: X \to \mathbb{P}^1$ of degree $\leq g+1$.
- **7.** A curve X is called hyperelliptic if $g \geq 2$ and there exists a finite morphism $f: X \to \mathbb{P}^1$ of degree 2.
 - (a) If X is a curve of genus g = 2, show that the canonical divisor defines a complete linear system |K| of degree 2 and dimension 1, without base points. Use (II, 7.8.1) to conclude that X is hyperelliptic.
 - (b) Show taht the curves constructed in (1.1.1) all admit a morphism of degree 2 to \mathbb{P}^1 . Thus there exist hyperelliptic curves of any genus $g \geq 2$.