

Approval

TFT LCD Approval Specification

Model NO.: A260J2-001

Customer :	-
Approved by :	
Note:	

Liquid Crystal Display Division					
QRA Division	OA Head Division				
Approval	Approval				

- CONTENTS -

REVISION HISTORY	
1. GENERAL DESCRIPTION	4
2. ABSOLUTE MAXIMUM RATINGS	5
3. ELECTRICAL CHARACTERISTICS	8
4. BLOCK DIAGRAM4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	11
5. INPUT TERMINAL PIN ASSIGNMENT	
6. INTERFACE TIMING	16
7. Driver DC CHARACTERISTICS	18
8. Driver AC CHARACTERISTICS	19
9. VERTICAL TIMING	20
10. OPTICAL CHARACTERISTICS	21
11. PACKAGING 11.1 PACKING SPECIFICATIONS 11.2 PACKING METHOD	25
12. DEFINITION OF LABELS	27
13. PRECAUTIONS	28
14. MECHANICAL CHARACTERISTICS	29

Approval

REVISION HISTORY

Version	Date	Section	Description
Ver 3.0	Jan.17. 08'		A260J2 -001 S-ISM Approval specifications was first issued.

3 / 29

Issued Date: Jan.17.2008

Model No.: A260J2-001 Approval

1. GENERAL DESCRIPTION

Global LCD Panel Exchange Center

1.1 OVERVIEW

A260J2-001 is a 25.54" TFT Liquid Crystal Display module with 16 CCFL Backlight unit and RSDS interface. This module supports 1920 x 1200 WUXGA mode and can display up to 16.7M colors. The inverter module for backlight is not built in.

1.2 FEATURES

- Extra-wide viewing angle.
- High contrast ratio.
- Fast response time.
- High color saturation.
- WUXGA (1920 x 1200 pixels) resolution.
- DE (Data Enable) only mode.
- RoHS compliance.
- TCO'03 compliance.

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	550.08 (H) x 343.8 (V) (25.54" diagonal)	mm	(1)
Bezel Opening Area	554.1 (H) x 347.8 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1200	pixel	-
Pixel Pitch	0.2865 (H) x 0.2865 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	581.5	582.0	582.5	mm	
Module Size	Vertical(V)	375.1	375.6	376.1	mm	(1)
	Depth(D)	35.61	35.91	36.21	mm	
Weight		-	-	3350	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Issued Date: Jan.17.2008 Model No.: A260J2-001 pprova

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Val	Unit	Note	
item	Cyrribor	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	40	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max.

Relative Humidity (%RH)

- Note (3) 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issued Date: Jan.17.2008 Model No.: A260J2-001 Approval

The fixing condition is shown as below:

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Value Unit		Note	
item	Syllibol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
Item	Syllibol	Min.	Max.	Offic	Note
Lamp Voltage	V_L	932	1140	V_{RMS}	(1), (2)
Lamp Current	ΙL	4.5	5.5	mA_{RMS}	(1) (2)
Lamp Frequency	F_L	48	70	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Approval

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter	SYMBOL	Value			UNIT	Note
r arameter	3 TIVIDOL	MIN	TYP	MAX	OIVII	Note
Power Supply Voltage for LCD	Vin	2.97	3.3	3.63	V	-
Power Supply Current for LCD	lin	-	1000	-	mA	-
Differential Impendence	Zm	-	100	-	Ω	-
LCD Inrush Current	Irush	-	3	-	Α	-
VCOM Voltage	VCM	4.3		6.3	V	(1)
VSA Voltage	VAA	12.4	12.7	13	V	
VGL Voltage	VGL	-5.3	-5.5	-5.7	V	
VGH Voltage	VGH	22.6	23.2	23.8	V	
Gamma 1	GMA1	11.41	11.56	11.71	V	
Gamma 2	GMA2	10.705	10.855	11.005	V	
Gamma 3	GMA3	8.994	9.005	9.105	V	
Gamma 4	GMA4	8.468	8.568	8.668	V	
Gamma 5	GMA5	8.183	8.283	8.383	V	
Gamma 6	GMA6	6.75	6.85	6.95	V	
Gamma 7	GMA7	6.35	6.45	6.55	V	
Gamma 8	GMA8	6.07	6.17	6.27	V	
Gamma 9	GMA9	5.7	5.8	5.9	V	
Gamma 10	GMA10	4.097	4.197	4.297	V	
Gamma 11	GMA11	3.672	3.772	3.872	V	
Gamma 12	GMA12	3.115	3.215	3.315	V	
Gamma 13	GMA13	1.145	1.245	1.345	V	
Gamma 14	GMA14	0.096	0.116	0.136	V	

Note (1) VCOM Adjustable Range 4.3~6.3V

Approval

3.2 BACKLIGHT UNIT

3.2.1CCFL CHARACTERISTICS

Ta = 25 ± 2 °C

Parameter	Symbol	Value			Unit	Note
i arameter	Symbol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_L	932	1036	1140	V_{RMS}	$I_{L} = 5.0 \text{ mA}$
Lamp Current	ΙL	4.5	5.0	5.5	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs			1920 (0℃)	V_{RMS}	(2)
Lamp Turn On Voltage	v _S			1620 (25°C)	V_{RMS}	(2)
Operating Frequency	F_L	48	55	70	KHz	(3)
Lamp Life Time	L_BL	50,000			Hrs	(5) , $I_L = 5.0 \text{mA}$
Power Consumption	P_L		83		W	(4) , $I_L = 5.0 \text{ mA}$

Note (1) Lamp current is measured by current amplify & oscilloscope as shown below:

Measure equipment:

Current Amplify: Tektronix TCPA300 Current probe: Tektronix TCP312

Oscilloscope: TDS3054B

- Note (2) The voltage that must be larger than Vs should be applied to the lamp for more than 1 second after startup. Otherwise, the lamp may not be turned on normally.
- Note (3) The lamp frequency may produce interference with horizontal synchronization frequency from the display, which might cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronization frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L \times 16$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 5.0 mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for

Issued Date: Jan.17.2008 Model No.: A260J2-001 Approval

the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Note. On the same side, the same-polarity lamp voltage design for lamps is recommended.

11 / 29

Issued Date: Jan.17.2008

Model No.: A260J2-001 Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CN1:

CN1:		
Pin	Name	Description
1	B_B2P	Positive RSDS differential data input. Channel B2(Back)
2	B_B2N	Negative RSDS differential data input. Channel B2(Back)
3	B_B1P	Positive RSDS differential data input. Channel B1(Back)
4	B_B1N	Negative RSDS differential data input. Channel B1(Back)
5	B_B0P	Positive RSDS differential data input. Channel B0(Back)
6	B_B0N	Negative RSDS differential data input. Channel B0(Back)
7	GND	Ground
8	B_G2P	Positive RSDS differential data input. Channel G2(Back)
9	B_G2N	Negative RSDS differential data input. Channel G2(Back)
10	B_G1P	Positive RSDS differential data input. Channel G1(Back)
11	B_G1N	Negative RSDS differential data input. Channel G1(Back)
12	B_G0P	Positive RSDS differential data input. Channel G0(Back)
13	B_G0N	Negative RSDS differential data input. Channel R0(Back)
14	GND	Ground
15	B_CKP	Positive RSDS differential clock input. (Back)
16	B_CKN	Negative RSDS differential clock input. (Back)
17	GND	Ground
18	B_R2P	Positive RSDS differential data input. Channel R2(Back)
19	B_R2N	Negative RSDS differential data input. Channel R2(Back)
20	B_R1P	Positive RSDS differential data input. Channel R1(Back)
21	B_R1N	Negative RSDS differential data input. Channel R1(Back)
22	B_R0P	Positive RSDS differential data input. Channel R0(Back)
23	B_R0N	Negative RSDS differential data input. Channel R0(Back)
24	B_STH	Data driver start pulse input(Back)
25	NC	No define
26	VSA	
27	VSA	VAA Power input
28	VSA	
29	GMA14	Gamma 14 Voltage input
30	GMA13	Gamma 13 Voltage input
31	GMA12	Gamma 12 Voltage input
32	GMA11	Gamma 11 Voltage input
33	GMA10	Gamma 10 Voltage input
34	GMA9	Gamma 9 Voltage input
35	GMA8	Gamma 8 Voltage input
36	VCC	
37	VCC	Power Supply Voltage input
38	VCC	
39	GMA7	Gamma 7 Voltage input
40	GMA6	Gamma 6 Voltage input
41	GMA5	Gamma 5 Voltage input
42	GMA4	Gamma 4 Voltage input
43	GMA3	Gamma 3 Voltage input
44	GMA2	Gamma 2 Voltage input
45	GMA1	Gamma 1 Voltage input

Issued Date: Jan.17.2008 Model No.: A260J2-001 Approval

CN2:

CN2:		
Pin	Name	Description
1	GND	Ground
2	A_B2P	Positive RSDS differential data input. Channel B2(Front)
3	A_B2N	Negative RSDS differential data input. Channel B2(Front)
4	A_B1P	Positive RSDS differential data input. Channel B1(Front)
5	A_B1N	Negative RSDS differential data input. Channel B1(Front)
6	A_B0P	Positive RSDS differential data input. Channel B0(Front)
7	A_B0N	Negative RSDS differential data input. Channel B0(Front)
8	GND	Ground
9	A_G2P	Positive RSDS differential data input. Channel G2(Front)
10	A_G2N	Negative RSDS differential data input. Channel G2(Front)
11	A_G1P	Positive RSDS differential data input. Channel G1(Front)
12	A_G1N	Negative RSDS differential data input. Channel G1(Front)
13	A_G0P	Positive RSDS differential data input. Channel G0(Front)
14	A_G0N	Negative RSDS differential data input. Channel G0(Front)
15	GND	Ground
16	A_CKP	Positive RSDS differential clock input. (Front)
17	A_CKN	Negative RSDS differential clock input. (Front)
18	GND	Ground
19	TP1	The contents of the data driver register are transferred to the latch circuit at the rising edge of TP1. Then the gray scale voltage is output from the device at the falling edge of TP1
20	POL	Data driver polarity inverting input
21	GND	Ground
22	A_R2P	Positive RSDS differential data input. Channel R2(Front)
23	A_R2N	Negative RSDS differential data input. Channel R2(Front)
24	A_R1P	Positive RSDS differential data input. Channel R1(Front)
25	A_R1N	Negative RSDS differential data input. Channel R1(Front)
26	A_R0P	Positive RSDS differential data input. Channel R0(Front)
27	A_R0N	Negative RSDS differential data input. Channel R0(Front)
28	GND	Ground
29	A_STH	Data driver start pulse input(Front)
30	VREF	
31	VREF	Gamma Reference Voltage input
32	VREF	
33	GND	Ground
34	VGH	
35	VGH	Power supply for Gate on output
36	VGH	
37	VCM	This pin is used to generate common voltage input for panel
38	VCM	The part of general comment on ago in part of parts.
39	VGL	Power supply for Gate on output
40	VGL	1111
41	GND	Ground
42	STV	Gate driver start pulse is read at the rising edge of CKV and a scan signal is output from the gate driver output pin.
43	CPV	Gate driver shift clock
44	OE	This pin is used to control the Gate driver output. When OE input is "H", gate driver output is fixed to VGL level regardless CPV.
45	XAO	Output all-on control

Note (1) Connector Part No.: 089H45-000000-G2-C

Issued Date: Jan.17.2008

Model No.: A260J2-001 Approval

5.2 BACKLIGHT UNIT:

Pin	Symbol	Description	Remark
1-1	HV	High Voltage	Pink
1-2	HV	High Voltage	White
2-3	HV	High Voltage	Pink
2-4	HV	High Voltage	White
3-5	HV	High Voltage	Pink
3-6	HV	High Voltage	White
4-7	HV	High Voltage	Pink
4-8	HV	High Voltage	White
5-9	HV	High Voltage	Pink
5-10	HV	High Voltage	White
6-11	HV	High Voltage	Pink
6-12	HV	High Voltage	White
7-13	HV	High Voltage	Pink
7-14	HV	High Voltage	White
8-15	HV	High Voltage	Pink
8-16	HV	High Voltage	White

Note (1) Connector Part No.: JST BHR_04VS_1 or equivalent

Issued Date: Jan.17.2008 Model No.: A260J2-001

Approval

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata	Sigr	nal										
	Color				Re								G	reer	1						Blu	ле			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	ВЗ	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	, 1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:		: _	:		:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	1		;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
0.00	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	.; Di (6-6)	\ :	:		:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	: .	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. INTERFACE TIMING

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

0.5< t1 \leq 10 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \text{ msec}$

 $t5 \ge 500 \text{ msec}$

 $t6 \ge 90 \text{ msec}$

Issued Date: Jan.17.2008 Model No.: A260J2-001

Approval

7. Driver DC CHARACTERISTICS

7.1 RSDS CHARACTERISTICS

(VDD = 2.3 to 3.6 V, VDDA = 8.0 to 13.5 V, VSSD = VSSA = 0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
RSDS high input voltage	V_{DIFFRSDS}	$V_{CMRSDS} = + 1.2 V^{(1)}$	100	200	-	mV
RSDS low input voltage	$V_{DIFFRSDS}$	$V_{CMRSDS} = + 1.2 V^{(1)}$	-	-200	- 100	111 V
RSDS common mode input voltage range	V _{CMRSDS}	V_{DIFFRSDS} = + 200 mV $^{(2)}$	VSSD + 0.1	-	VDDD - 1.2	V
RSDS input leakage current	IDL	DxxP, DxxN, CLKP, CLKN	-10	-	10	μΑ

Note: (1) VCMRSDS = (VCLKP + VCLKN) / 2 or VCMRSDS = (VDxxP + VDxxN) / 2

(2) VDIFFRSDS = VCLKP - VCLKN or VDIFFRSDS = VDxxP - VDxxN

7.2 ELECTRICAL CHARACTERISTICS (VSSD=VSSA=0V)

7.2 ELECTRICAL CHARACTERISTICS (V33D-V33A-0V)									
Parameter	Symbol	Condition		Unit					
Farameter	Symbol	Condition	Min.	Тур.	Max.	Offic			
RSDS input "Low" Voltage	V _{DIFFRSDS}		-	-200	-	mV			
RSDS input "High" Voltage	V _{DIFFRSDS}	DX[2:0]P,DX[2:0]N, CLKP,CLKN	-	200	-	mV			
RSDS reference voltage	V _{CMRSDS}		VSSD+0.1	1.2	VDDD-1.2	V			
Input "Low" voltage	V_{IL}	EIO1,EIO2,DIR,TP1,	0	-	0.2VDDD	μΑ			
Input "High" voltage	V_{IH}	POL	0.8VDDD	ı	VDDD	μΑ			
Input leak current	IL	102	-1	-	1	μΑ			
Supply current (In operation mode)	I _{CCD1}	VDDD=3.6V	-	1	Note(1)	mA			
Supply current (In stand-by mode)	I _{CCD2}	VDDD=3.6V	-	ı	Note(2)	mA			
Pull high resistance	Rpu	/POLINV,RS, ENREOP,VC	0.9Тур	800	1.1Typ	kΩ			
Pull low resistance	Rpd	POL20,/LP	0.9Тур	190	1.1Typ	kΩ			

Note: (1) Test condition: TP1= 20μs, CLK =54MHz, data pattern =1010....checkerboard pattern, Ta=25°C

(2) No load condition

Approval

8. Driver AC CHARACTERISTICS

		0 1:::	Spec			1.1	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Clock pulse width	t _{CLK}	-	11	-	ı	ns	
Clock pulse low period	t _{CLK(L)}	-	5	-	ı	ns	
Clock pulse high period	t _{CLK(H)}	-	5	-	-	ns	
Data setup time	t _{SETUP1}	-	2	-	-	ns	
Data hold time	t _{HOLD1}	-	0	-	-	ns	
Start pulse setup time	t _{SETUP2}	-	1	-	-	ns	
Start pulse hold time	t _{HOLD2}	-	2	-	-	ns	
TP1 high period	t _{TP1(H)}	-	15	-	-	CLKP	
Last data CLK to TP1 high	t _{LAST}	-	0	-	-	CLKP	
TP1 high to EIOn high	t _{NEXT}	-	6	-	-	CLKP	
POL to TP1 setup time	t _{POL-TP1}	POL toggle to TP1 rising	3	-	-	ns	
TP1 to POL hold time	t _{TP1-POL}	TP1 falling to POL toggle	2	-	-	ns	

9. VERTICAL TIMING

Parameter	Symbol	Condition		Unit		
raiametei	Symbol	Condition	Min.	Тур.	Max.	Offic
CPV period	t _{CKV}	-	5	-	-	
CPV pulse width	t _{CKVH} , t _{CKVL}	50% duty cycle	2.5	-	-	116
OE pulse width	t _{OE}	-	1	-	-	μs
/XAO pulse width	t _{WXAO}	-	6	-	-	
Data setup time	t _{su}	-	0.7	-	-	μs
Data hold time	t _{HD}	-	0.7	-	-	μs
OE to CPV time	t _{OE-CKV}	-	-	0.5	-	μs
TP1 to CPV	t _{STB-CKV}	-	0	0	0	μs
TP1 Pulse Width	t _{STB}	-	-	0.5	-	μs

Note 1: OE, STB frequency same as CPV

Issued Date: Jan.17.2008 Model No.: A260J2-001 **Approva**l

10. OPTICAL CHARACTERISTICS

10.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	5V	V			
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"			
Lamp Current	I_{L}	5.0	mA			
Inverter Operating Frequency	FL	58±2	KHz			
Inverter	CMO 4H.V2281.011/D 27D-D016512					

10.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 10.2. The following items should be measured under the test conditions described in 10.1 and stable environment shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			0.644				
	Red	Ry			0.334				
	Green	Gx		Тур -	0.280	Typ +			
Color Chromaticity	Green	Gy		0.03	0.611	0.03		(1) (5)	
(CIE 1931)	Blue	Bx	0 -00 0 -00		0.150		-	(1), (5)	
(6.2 1661)	Blue	Ву	θ_x =0°, θ_Y =0° CS-1000T		0.070				
	White	Wx	00-10001		0.313				
	vviile	Wy			0.329				
	Center Luminance of White (Center of Screen)			450	600	_	cd/m ²	(4), (5)	
Contrast	Ratio	CR		500	800	-	-	(2), (5)	
Doonana	o Timo	T _R	0 -00 0 -00	-	1		ma	(2)	
Respons	e rime	T_F	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	4		ms	(3)	
White Variation		δW	θ_x =0°, θ_Y =0° USB2000	1	1.4	1.5	-	(5), (6)	
	Horizontal	θ_x +		75	85	-			
Viewing Angle	Honzontal	θ_{x} -	CR ≥ 10 75 85 -		-	Deg.	(1), (5)		
viowing / tigle	Vertical	θ_{Y} +	USB2000	70	80	-	Dog.	(1), (0)	
	Vortical	θ_{Y} -		60	80	-			

Issued Date: Jan.17.2008 Model No.: A260J2-001 ${f Approval}$

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Model No.: A260J2-001 Approval

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_C = L(1)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 13 points

$$\delta W = \frac{\text{Maximum [L(1), L(2), L(3), L(4), L(5), L(6), L(7), L(8), L(9), L(10), L(11), L(12), L(13)]}}{\text{Minimum [L(1), L(2), L(3), L(4), L(5), L(6), L(7), L(8), L(9), L(10), L(11), L(12), L(13)]}}$$

Issued Date: Jan.17.2008 Model No.: A260J2-001 Approval

11.1 PACKING SPECIFICATIONS

- (1) 5 LCD modules / 1 Box
- (2) Box dimensions: 680(L) X 400(W) X 480(H) mm
- (3) Weight: approximately 18.3Kg (5 modules per box)

11.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 60cm	Non Operation

Issued Date: Jan.17.2008 Model No.: A260J2-001 Approval

For ocean shipping

Figure. 11-2 Packing method

For air transport

Figure. 11-3 Packing method

26 / 29

12. DEFINITION OF LABELS

Global LCD Panel Exchange Center

12.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) GP label:

(b) S/N label:

- 1. Model Name: A260J2-001
- 2. Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- 3. CMO barcode definition:

Serial ID: XX-XX-X-XX-XXX-X-XXXX

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
Х	CMO internal use	-
XX	CMO internal use	-
	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4
XXX		Month: 1~12=1, 2, 3, ~, 9, A, B, C
		Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
X	Product line #	Line 1=1, Line 2=2, Line 3=3,
XXXX	Serial number	Manufacturing sequence of product

Approval

13. PRECAUTIONS

13.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

13.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

14. MECHANICAL CHARACTERISTICS

