Approximating a Multi-Grid Solver

Valentin Le Fèvre Leonardo Bautista-Gomez Marc Casas valentin.le-fevre@ens-lyon.fr

ENS de Lyon, Barcelona Supercomputing Center

April 17, 2018

Approximate computing: trade-off between **accuracy of result** and **execution time**.

Approximate computing: trade-off between **accuracy of result** and **execution time**.

- Precision of a floating-point value
- No exact result exists (search query...)
- ...

Approximate computing: trade-off between **accuracy of result** and **execution time**.

- Precision of a floating-point value
- No exact result exists (search query...)
- ...
- Skip steps in loops
- Branching to avoid useless computations
- Faulty hardware (fast adders...)
- ...

 Multi-Grid (MG) solvers [3]: iterative solvers with different level of coarseness: number of evaluation points.
Faster than classical method and scales well.

Figure: Example of cycle: each blue point represents one iteration of an iterative method, while the height corresponds to the coarseness of the grid. Red is "exact" solve.

 Multi-Grid (MG) solvers [3]: iterative solvers with different level of coarseness: number of evaluation points.
Faster than classical method and scales well.

Figure: Example of cycle: each blue point represents one iteration of an iterative method, while the height corresponds to the coarseness of the grid. Red is "exact" solve.

- Accuracy of result (relative residual norm) is limited by the hardware.
- We do not aim the same accuracy when using it as a conditioner or a solver.

Outline

 $lue{1}$ The UP-cycle

2 Bitwidth, performance and accuracy

3 Conclusion

Outline

 $lue{1}$ The UP-cycle

Bitwidth, performance and accuracy

3 Conclusion

Analysis

First idea: add more iterations at each level or more complex cycles.

Figure: Relative residual norm and execution time as function of number of cycles.

Analysis

First idea: add more iterations at each level or more complex cycles.

Figure: Relative residual norm as function of execution time.

Analysis

Level	Matrix	Non-zero	Relax	Relax	Restriction	Interpolation
	size	elements	(down)	(up)		
1	512,000	4,042,520	20 ms	20 ms	15 ms	-
2	256,000	6,475,239	20 ms	25 ms	12 ms	4 ms
3	58,893	2,000,513	8 ms	8 ms	3 ms	2 ms
4	14,285	788,509	2 ms	2 ms	1 ms	0.7 ms
5	4,238	386,333	1 ms	1 ms	0.5 ms	0.2 ms
6	609	53,493	$< 0.1 \; \mathrm{ms}$	< 0.1 ms	< 0.1 ms	< 0.1 ms
7	69	2,873	< 0.1 ms	< 0.1 ms	< 0.1 ms	< 0.1 ms
8	2	4	$< 0.1 \; \mathrm{ms}$	-	-	< 0.1 ms

Table: Time breakdown of a V-cycle with $\alpha = 1$.

 \Rightarrow Relaxations represent $\approx 66\%$ of the total cost of a V-cycle.

The UP-cycle

After several tries: the UP-cycle.

We do relaxations only when going up in the V-cycle.

Figure: Blue: relaxation. Red: exact solve. Black: nothing.

Overall, between 7% and 28% of improvement for reaching max accuracy on our tests.

Outline

The UP-cycle

2 Bitwidth, performance and accuracy

3 Conclusion

- The bitwidth is a hardware limitation: we can't have results accurate to 2^{-1000} using double floating-point representation.
- However, using a small bitwidth makes computations faster and more energy-efficient [2].

- The bitwidth is a hardware limitation: we can't have results accurate to 2^{-1000} using double floating-point representation.
- However, using a small bitwidth makes computations faster and more energy-efficient [2].
- We rewrite the MG algorithm: one version using only single-precision floating-points and one version with the relaxation algorithm using MPFR variables (arbitrary precision) [1].

Figure: Accuracy for different number of **mantissa** bits.

- The bitwidth is a hardware limitation: we can't have results accurate to 2^{-1000} using double floating-point representation.
- However, using a small bitwidth makes computations faster and more energy-efficient [2].
- We rewrite the MG algorithm: one version using only single-precision floating-points and one version with the relaxation algorithm using MPFR variables (arbitrary precision) [1].
- Conclusion: using small bitwidths does not change the convergence rate (until late).

Algorithm

t a threshold, UPDATE(b) a function which returns an integer greater than b.

- \bullet $b \leftarrow 64$.
- **While** *nb_iters* < *max_iter* **and** *rel_res_norm* > *tolerance*
 - Do a cycle at precision b.
 - 2 Compute new_rel_res_norm.
 - rel_res_norm ← new_rel_res_norm.
 - \bullet nb_iters \leftarrow nb_iters+1.

Algorithm

t a threshold, UPDATE(b) a function which returns an integer greater than b.

- \bullet $b \leftarrow 16$.
- While nb_iters < max_iter and rel_res_norm > tolerance
 - Do a cycle at precision b.
 - 2 Compute new_rel_res_norm.
 - **1** If $new_rel_res_norm > t \times rel_res_norm$ Then $b \leftarrow UPDATE(b)$.
 - o rel_res_norm ← new_rel_res_norm.
 - **⑤** $nb_iters ← <math>nb_iters+1$.

Algorithm

Figure: Accuracy of adaptive algorithms compared to the original double-precision with a precision threshold of 0.8.

Model

How to estimate the benefits in term of execution time?

Model

How to estimate the benefits in term of execution time?

$$Time(n, b) = a \cdot n^3 \cdot b^{\alpha} + c$$

- n: size of the problem (we worked on 3D grids so n^3 for the size of the matrix).
- b: number of mantissa bits.
- a, α, c : constants to determine.

We found $\alpha \approx 0.3$ (sublinear...) using single-precision and double-precision codes.

Figure: Cost of the MG solver considering several different dynamic precision scenarios to reach accuracy 10^{-3} .

GPU compared to double-precision: 34% improvement.

Figure: Cost of the MG solver considering several different dynamic precision scenarios to reach accuracy 10^{-7} .

GPU compared to double-precision: 23% improvement.

Figure: Cost of the MG solver considering several different dynamic precision scenarios to reach accuracy 10^{-15} .

GPU compared to double-precision: 9% improvement.

Outline

The UP-cycle

Bitwidth, performance and accuracy

3 Conclusion

Conclusion (1)

Final results:

- ullet A new cycle shape that tends to converge faster: the U_P -cycle.
- A new algorithm for any MG cycle shape that reduces execution time and energy consumption.
- Up to 30% expected improvement on a GPU with half-precision/single-precision/double-precision available by mixing UP-cycle and changing bitwidths.
- At least 15% expected improvement for reaching maximum accuracy compared to previously.

Conclusion (2)

Future ideas:

- Model (or measure) the gains in energy consumption instead of execution time.
- Change precision inside a cycle?
- Link to silent data corruption: what if the environment forces us to work at 10^{-x} as max accuracy because of bitflips?

Conclusion (2)

Future ideas:

- Model (or measure) the gains in energy consumption instead of execution time.
- Change precision inside a cycle?
- Link to silent data corruption: what if the environment forces us to work at 10^{-x} as max accuracy because of bitflips?

Thank you for your attention. Any question?

References

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann.

Mpfr: A multiple-precision binary floating-point library with correct rounding.

ACM Trans. Math. Softw., 33(2), June 2007.

Gokul Govindu, Ling Zhuo, Seonil Choi, Padma Gundala, and Viktor K Prasanna.

Area and power performance analysis of a floating-point based application on FPGAs.

In Seventh Annual Workshop on High Performance Embedded Computing.

W. Hackbusch.

Multi-Grid Algorithms, pages 133-160.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.

Grids

Grids

Grids

