EE230-02 RFIC II Fall 2018

Lecture 16: Phase-Locked Loops

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

How Are PLL's used?

 Frequency Synthesis (e.g. generating a 1 GHz clock from a 100 MHz reference in a CPU)

 Skew Cancellation (e.g. phase-aligning an internal clock to the I/O clock) (May use a DLL instead)

How Are PLL's used?

Serdes

 Reference Clean-Up (e.g. low-pass filter source-synchronous clock in high-speed I/O)

What is a PLL?

- ullet Negative feedback control system where f_{out} tracks f_{in} and rising edges of input clock align to rising edges of output clock
- Mathematical model of frequency synthesizer

Phase = ∫ frequency

$$\phi(t) = 2\pi \int f(t) dt \iff f(t) = \frac{1}{2\pi} \frac{d\phi(t)}{dt}$$

• When phase-locked, $\phi_{out} = N\phi_{in} \rightarrow f_{out} = Nf_{in}$

What does PLL Bandwidth means?

- PLL acts as a low-pass filter with respect to the reference modulation. High-frequency reference jitter is rejected
- Low-frequency reference modulation (e.g., spread-spectrum clocking) is passed to the VCO clock
- PLL acts as a high-pass filter with respect to VCO jitter
- "Bandwidth" is the modulation frequency at which the PLL begins to lose lock with the changing reference (-3dB)

Simple Type-I PLL and Loop Filter

- > Negative feedback loop: if the "loop gain" is sufficiently high, the circuit minimizes the input error. Phose the loop but the pulled for the produces repetitive pulses at its output, modulating
- The PD produces repetitive pulses at its output, modulating the VCO frequency and generating large sidebands.
- Insert a low-pass filter between the PD and the VCO to suppress these pulses. —> Smoth The signal.

Simple PLL: Phase Locking

$$\phi_{out}(t) - \phi_{in}(t) = \text{constant}$$

$$\frac{d\phi_{out}}{dt} = \frac{d\phi_{in}}{dt}$$

- \triangleright Loop is "locked" if $\phi_{out}(t)-\phi_{in}(t)$ is constant with time.
- Phase locking makes the input and output frequencies of the PLL exactly equal.

Example of Phase Error

If the input frequency changes by $\Delta\omega$, how much is the change in the phase error? Assume the loop remains locked.

- Phase error varies with the frequency.
- To minimize this variation, $K_{PD}K_{VCO}$ must be maximized.
- $K_{PD}K_{VCO}$ is called the "loop gain".

Response of PLL to Input Frequency Step

Loop Dynamics: Phase Domain Model

Open-loop transfer function

$$[K_{PD}/(R_1C_1s+1)](K_{VCO}/s)$$

Closed-loop transfer function

$$H(s) = \frac{\phi_{out}}{\phi_{in}}(s) = \frac{K_{PD}K_{VCO}}{R_1C_1s^2 + s + K_{PD}K_{VCO}}.$$

Damping Factor and Natural Frequency

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\zeta = \frac{1}{2}\sqrt{\frac{\omega_{LPF}}{K_{PD}K_{VCO}}}$$

$$\omega_n = \sqrt{K_{PD}K_{VCO}\omega_{LPF}}$$

 ζ is inversely proportional to K_{VCO} .

Behavior of the open-loop transfer function, H_{open} , for two different values of K_{VCO}

As K_{VCO} increases, the unity-gain frequency rises, thus reducing the phase margin (PM).

- The damping factor is typically chosen to be $\sqrt{2}/2$ or larger so as to provide a well-behaved (critical damped or overdamped) response.
- $\triangleright \omega_{LPF} = 1/(R_1C_1)$

Drawbacks of Type-I PLL

 \triangleright Tight relation between the loop stability and the corner frequency of the low-pass filter. Ripple on the control line modulates the VCO frequency and must be suppressed by choosing a low value for ω_{IPF} , leading to a less stable loop

$$\zeta = \frac{1}{2} \sqrt{\frac{\omega_{LPF}}{K_{PD} K_{VCO}}}$$

Suffers from a limited "acquisition range"
If the VCO frequency and the input frequency are very different at the start-up, the loop may never "acquire" lock.

Type-II PLLs: Phase/Frequency Detectors

- A rising edge on A yields a rising edge on Q_A (if Q_A is low)
- A rising edge on B resets Q_A (if Q_A is high)
- \triangleright The circuit is symmetric with respect to A and B (and Q_A and Q_B)

PFD: Logical Implementation

 \triangleright Q_A and Q_B are simultaneously high for a duration given by the total delay through the AND gate and the reset path of the flipflops.