1

Assignment 6

CS20BTECH11028

Download all python codes from

https://github.com/Harsha24112002/AI1103/tree/main/Assignment-6/codes

Download latex-tikz codes from

https://github.com/Harsha24112002/AI1103/ tree/main/Assignment-6

1 Problem UGC/MATH Dec 2018 104

Let X_1, X_2, \cdots be i.i.d. N(0, 1) random variables.Let $S_n = X_1^2 + X_2^2 + \cdots + X_n^2$. $\forall n \ge 1$. Which of the following statements are correct?

(A)
$$\frac{S_n-n}{\sqrt{2}} \sim N(0,1)$$
 for all $n \ge 1$

(B) For all
$$\epsilon > 0$$
, $\Pr\left(\left|\frac{S_n}{n} - 2\right| > \epsilon\right) \to 0$ as $n \to \infty$

- (C) $\frac{S_n}{n} \to 1$ with probability 1
- (D) $\Pr(S_n \le n + \sqrt{n}x) \to \Pr(Y \le x) \forall x \in R$, where $Y \sim N(0, 2)$

2 Solution

Definition 2.1 (Almost sure convergence). A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge almost surely or with probability 1 (denoted by a.s or w.p 1) to X if

$$\Pr(\omega|X_n(\omega) \to X(\omega)) = 1$$
 (2.0.1)

Definition 2.2 (Convergence in probability). A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge in probability (denoted by i.p) to X if

$$\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0, \forall \epsilon > 0$$
 (2.0.2)

Theorem 2.1 (Weak law of large numbers). Let X_1, X_2, \cdots be i.i.d random variables with same expectation(μ) and finite variance(σ^2).Let $S_n = X_1 + X_2 + \cdots + X_n$, Then as $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{i.p} \mu, \tag{2.0.3}$$

in probability

Theorem 2.2 (Strong law of large numbers). Let X_1, X_2, \cdots be i.i.d random variables with same expectation(μ) and finite variance(σ^2).Let $S_n = X_1 + X_2 + \cdots + X_n$. Then as $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{a.s} \mu, \tag{2.0.4}$$

almost surely.

Theorem 2.3 (Central limit theorem). The Central limit theorem states that the distribution of the sample approximates a normal distribution as the sample size becomes larger, given that all the samples are equal in size, regardless of the distribution of the individual samples.

Given X_1, X_2, \cdots follow normal distribution with mean 0 and variance 1.

$$f_{X_i}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, i \in \{1, 2, \dots\}$$
 (2.0.5)

As X_1, X_2, \cdots are i.i.d random variables therefore X_1^2, X_2^2, \cdots are also identical and independent. We can write

$$E(X^2) = Var(X) \tag{2.0.6}$$

(A)

$$E\left(\frac{S_n - n}{\sqrt{2}}\right) = E\left(\frac{\sum_i (X_i^2 - 1)}{\sqrt{2}}\right) \tag{2.0.7}$$

$$=\frac{\sum_{i} E(X_{i}^{2}-1)}{\sqrt{2}}$$
 (2.0.8)

From (2.0.6) we can write

$$E\left(\frac{S_n - n}{\sqrt{2}}\right) = 0\tag{2.0.9}$$

$$Var\left(\frac{S_n - n}{\sqrt{2}}\right) = Var\left(\frac{\sum_i (X_i^2 - 1)}{\sqrt{2}}\right) \quad (2.0.10)$$

$$=\frac{\sum_{i} Var(X_{i}^{2}-1)}{\sqrt{2}}$$
 (2.0.11)

$$Var(X_i^2 - 1) = \int_{-\infty}^{\infty} (X_i^2 - 1)^2 f_{X_i}(x) dx \quad (2.0.12)$$
$$= \int_{-\infty}^{\infty} (X_i^4 + 1 - 2X_i^2) f_{X_i}(x) dx \quad (2.0.13)$$

$$Var\left(\frac{S_n - n}{\sqrt{2}}\right) = n\sqrt{2} \tag{2.0.15}$$

(2.0.14)

Hence from theorem 2.2 as $n \to \infty$

=2

$$\left(\frac{S_n - n}{\sqrt{2}}\right) \sim N(0, n\sqrt{2}) \tag{2.0.16}$$

Hence Option A is false.

(B) Given

$$S_n = X_1^2 + X_2^2 + \dots + X_n^2 . \forall n \ge 1$$
 (2.0.17)

Hence from theorem 2.1 we can write

$$\frac{S_n}{n} \xrightarrow{i.p} Var(X) \tag{2.0.18}$$

$$\implies \frac{S_n}{n} \xrightarrow{i.p} 1 \tag{2.0.19}$$

in probability. From definition 2.2 we can write,

$$\implies \Pr\left(\left|\frac{S_n}{n} - 1\right| > \epsilon\right) \to 0, \forall \epsilon > 0 \quad (2.0.20)$$

Hence Option B is false.

(C) Given

$$S_n = X_1^2 + X_2^2 + \dots + X_n^2 . \forall n \ge 1$$
 (2.0.21)

Hence from theorem ?? we can write

$$\frac{S_n}{n} \xrightarrow{i.p} Var(X) \tag{2.0.22}$$

$$\implies \frac{S_n}{n} \stackrel{a.s}{\longrightarrow} 1 \tag{2.0.23}$$

almost surely. From definition 2.1 we can write,

$$\frac{S_n}{n} \xrightarrow{w.p.1} 1 \tag{2.0.24}$$

with probability 1. Hence **Option C** is true.

(D) Consider,

$$E\left(\frac{S_n - n}{\sqrt{n}}\right) = 0\tag{2.0.25}$$

using (2.0.6) and (2.0.8).

$$Var\left(\frac{S_n - n}{\sqrt{n}}\right) = \frac{2n}{\sqrt{n}}$$

$$= 2\sqrt{n}.$$
(2.0.26)

using (2.0.14). From theorem 2.3 we can write,

$$\left(\frac{S_n - n}{\sqrt{n}}\right) \sim N(0, 2\sqrt{n}) \tag{2.0.28}$$

$$\Pr\left(\frac{S_n - n}{\sqrt{n}} \le x\right) = \Pr\left(S_n \le n + \sqrt{n}x\right)$$
(2.0.29)

Hence using (2.0.28), Option D is false.