Simple Calculation Problems

- 1. X = -1 w.p. 0.5; X = 0 w.p. 0.2; X = 3 w.p. 0.3. Calculate $\sigma(X)$. Use Chebyshev's inequality to find an upper bound on $P(X \ge 3)$. E[X] = -.5 + .9 = 0.4; $E[X^2] = .5 + 2.7 = 3.2$; $\sigma(X) = \sqrt{3.2 .4^2} = \sqrt{3.04}$. $|3 E[X]| = 2.6 = \frac{\sigma}{sigma} 2.6 = \frac{2.6}{\sqrt{3.04}} \sigma \approx 1.49 \sigma$ Answer $1/(1.49)^2 \approx 0.45$ which sure enough is ≥ 0.3 . $\sqrt{3.04}$; 0.45.
- 2. Continuous random variable Y has uniform distribution on the interval [0,3]. Calculate $\sigma(Y)$. Use Chebyshev's inequality to find an upper bound on the probability that |Y-1.5|>1.25 E[Y]=1.5 obviously; $E[Y^2]=\int_0^3 y^2/3dy=\frac{1}{9}27=3;\ \sigma(Y)=\sqrt{3-1.5^2}=\sqrt{3/4}.\ 1.25=\frac{1.25}{\sqrt{3/4}}\sigma(Y)=(2.5/sqrt3)\sigma(Y).$ Hence $P(|Y-E[Y])>1.25)\leq P(|Y-E[Y])\geq 1.25)\leq 12/25.\ \sqrt{3}/2;0.48.$
- 3. Continuous random variable Y has uniform distribution on the interval [-11,11]. Use your answer to the previous question and properties of expectation and variance to find $\sigma(Y)$. The interval is 22/3 times bigger so $\sigma^2(Y) = (22/3)^2 \frac{3}{4}$ and $\sigma(Y) = 11/\sqrt{3}$. $11/\sqrt{3}$.
- 4. $X_i : i = 1, 2, 3$ are independent Bernoulli variables equal to 1 with probabilities 1/3, 1/2, 2/3 respectively, and equal to 0 otherwise. Calculate $\sigma(Y)$ if

$$Y = \min_{1 \le i \le 3} X_i$$

- . Y has distribution $P(Y=1) = \frac{1}{3} \frac{1}{2} \frac{2}{3} = 1/9$ and P(Y=0) = 8/9. E[Y] = 1/9; $E[Y^2] = 1/9$; $\sigma^2(Y) = 8/81 \cdot 2\sqrt{2}/9$.
- 5. Discrete random variables $X_i: i=1,2,\ldots,10$ are Bernoulli variables with parameter $p=P(X_i=1)=0.25$. Discrete random variables $Y_i: i=1,2,\ldots,10$ are Bernoulli variables with parameter $p=P(X_i=1)=0.75$. All 20 variables are jointly independent. Let $Z=\sum_{i=1}^{10}X_i+Y_i$. Calculate $\sigma(Z)$. For all $i,\sigma^2(X_i)=p(1-p)=3/16$. Similarly $\sigma^2(Y_i)=3/16 \forall i$. By independence, $\sigma^2(Z)=30/16+30/16=15/4$. $\sqrt{15}/2$
- 6. Continuous random variable Y has density 1/6 on the interval [2,4] and density 1/3 on the interval [6,8]. Calculate $\sigma(Y)$.

$$E[Y] = \int_2^4 t/6dt + \int_6^8 t/3dt = 1 + 14/3 = 17/3 \ E[Y^2] = \int_2^4 t^2/6dt + \int_6^8 t^2/3dt = 28/9 + (512 - 216)/9 = 36$$

$$\sigma^2(Y) = 3 + 8/9 = 35/9 \sqrt{35}/3$$

7. Continuous random variable Y has density αy in the range $0 \le y \le 2$. Find α . Find $\sigma(Y)$.

Qualitative Problems

- 1. Let X and Y be independent random variables. Then $\sigma(X) + \sigma(Y) \sigma(X + Y)$ is:
 - (a) < 0
 - (b) ≤ 0 and can be ≤ 0
 - (c) = 0
 - (d) ≥ 0 and can be > 0
 - (e) > 0
 - (f) sometimes 0, sometimes < 0 and sometimes > 0

Hint: try this on a couple of very simple random variables, or remember that by independence $\sigma^2(X) + \sigma^2(Y) = \sigma^2(X+Y)$ and think about what the square root function does.

- 2. Let X and Y be dependent random variables. Then $\sigma(X) + \sigma(Y) \sigma(X + Y)$ is:
 - (a) < 0

- (b) ≤ 0 and can be < 0
- (c) = 0
- (d) > 0 and can be > 0
- (e) > 0
- (f) sometimes 0, sometimes < 0 and sometimes > 0

Hint: The two extreme cases ought to be when X = Y (positive correlation) and when X = -Y (negative correlation). Figure out both extreme cases.

3. In Problem ?? above, suppose all 20 variables changed to be Bernoulli with parameter $p = \frac{1}{2}.25 + \frac{1}{2}.75 = .5$. Would $\sigma^2(Z)$ (the variance of Z, not the standard deviation of Z) change to a smaller, equal, or larger value? Hint: Consider the extreme case where p = 0 for the X_i variables and (you fill in the rest).

Problems

- 1. A Georgia Tech degree is worth \$100K today. Each day the value of the Tech degree increases by 1% with probability .5 and decreases by $\frac{100}{101}$ with probability .5. Let X be the number of days until the degree is again worth exactly \$100K. Prove that you can't calculate $\sigma^2(X)$. Hint: Try to calculate E[X], or to find lower bounds on E[X]. This is logically identical to setting X to the number of steps a drunkard takes until returning to her starting position if she moves east w.p. .5 and west w.p. .5 at each step, independent of other steps. Then $E[X] \geq M$ for all numbers M. Why? By symmetry assume the first step is east. Then X = 1+Y where Y = the number of steps until reaching the spot one west of her present location. Since the east-west probabilities never change, E[Y] is the same for all locations. So E[X] = 1 + E[Y] = .5(2) + .5(2 + 2E[Y]). Then E[Y] = 1 + E[Y] and so it can't equal any finite number.
- 2. Random variables X and Y are independent with E[X] = 5, $E[X^2] = 49$, E[Y] = 30, $E[Y^2] = 1000$. Use Chebyshev's inequality to find a number β (the smallest value you can get) such that $P(|X+Y-35| \ge \beta) \le 0.04$. Hint: use the independence of X and Y, and observe that E[X+Y] = 35.