BÀI 9

BÀI TOÁN ĐƯỜNG ĐI NGẮN NHẤT TRÊN ĐỒ THỊ

Giáo viên: TS. Nguyễn Văn Hiệu

Email: nvhieuqt@dut.udn.vn

Nội dung

- ☐ Giới thiệu
- ☐ Bài toán
- ☐ Thuật toán Dijkstra
- ☐ Thuật toán Bellman-Ford
- ☐ Thuật toán Floyd Warshall
- ☐ Úng dụng

Giới thiệu

- □Đổ thị trọng số (weighted graph) là đồ thị
 có gắn một số (số nguyên hay số thực) cho
 mỗi cạnh hoặc mỗi cung
- □Số nguyên hay số thực cho mỗi cạnh:
 - ✓ cự ly,
 - ✓ thời gian
 - ✓ chi phí,
 - ✓ tốc độ.

- ☐ Cho đồ thị trọng số G =(V,E,W). Ký hiệu w(u,v) là trọng số của cạnh (u,v)
- ☐ Độ dài đường đi

$$d = v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_{n-1} \rightarrow v_n$$

là tổng trọng số

$$L(d) = \sum_{i=1}^{n-1} w(v_i, v_{i+1})$$

Bài toán 1:Tìm đường đi ngắn nhất từ đỉnh a và đỉnh z

Bài toán 2: Tìm đường đi ngắn nhất từ đỉnh a đến tất cả các đỉnh còn lại

Bài toán 3: Tìm đường đi ngắn nhất giữa mọi cặp đỉnh

- Để chắc chắn tìm được đường đi ngắn nhất thì điều kiện
 - ☐ Phải tồn tại đường đi
 - ☐ Đồ thị vô hướng liên thông, đồ thị có hướng liên thông mạnh
 - ☐ Không tồn tại chu trình âm:
 - Dồ thị vô hướng không tồn tại cạnh âm

- Dường đi ngắn nhất từ Etna đến Oldtown là:
 - Etna Bangor Orono OldTown
- Dường đi ngắn nhất từ Hermae đến Etna là:

Hermae – Hampdea – Bangor - Etna


```
If ( d[v] > d[u] + c[u,v]) {
    d[v] = d[u] + c[u,v];
    T[v] = u;
}
```

- ☐ Mục tiêu: Tìm đường đi ngắn nhất từ đỉnh a đến đỉnh z
- ☐ Điều kiện: Trọng số của cạnh w(u,v)>0 với mọi cạnh (u,v)
- ☐ L(u) chiều dài ngắn nhất từ a đến u.
- ☐ Thuật toán kết thúc thì L(z) chiều dài ngắn nhất từ a đến z.

```
☐ Input:
      G = (V,E,W),
      w(i,j)>0, \forall (i,j) \in E,
      a, z \in V
□Output:
      L(z),
      đường đi từ a đến z (nếu có)
```

Step 1

L(a)=0, L(x)=
$$\infty$$
, $\forall x \neq a$,
T=V, P(x)= \emptyset .

Step 2

$$m = min \{L(u), u \in T\}$$

- Nếu m= $+\infty \to KT$, \nexists đường đi từ a đên z
- Nếu m<+∞ →
 - chọn $v \in T: L(v) = m$,
 - $T = T \{v\}$
 - step 3

Step 3

- Nếu $v = z \rightarrow KT$ và L(z), P(z) $(z_1 = P(z), z_2 = P(z_1), ..., z_n = P(z_{n-1}), a = P(z_n))$
- Nếu $v \neq z \rightarrow Step 4$

Step 4:

$$\forall u \in T, k \in (k \in sau) v$$
 $N \in L(u) > L(v) + w(v, u), thi$
 $L(u) = L(v) + w(v, u)$
 $P(u) = v$
 $\rightarrow Step 2.$

G – đồ thị liên thông có trọng số với n đỉnh f(n) – số lần thuật toán Dijkstra khảo sát một cạnh của G:

$$f(n) = 0(n*n)$$

Thuật toán Dijkstra là tối ưu

 K_n - có số cạnh là n(n-1)/2

Tìm đường đi ngắn nhất từ a đến z phải khảo sát qua mỗi cạnh một lần.

Thuật giải khảo sát ít nhất 0(n*n)

Ví dụ thuật toán Dijkstra (1)

Ví dụ thuật toán Dijkstra(2)

Ví dụ thuật toán Dijkstra (3)

Ví dụ thuật toán Dijkstra (4)

Ví dụ thuật toán Dijkstra(5)

Ví dụ thuật toán Dijkstra (6)

Phương pháp lập bảng ghi nhãn

- ☐ Bản chất là thuật toán Dijkstra
- ☐ Các cột tương ứng với các đỉnh
- ☐ Các hàng tương ứng với số lần tính nhãn (bước 4)
- ☐ Các nhãn "gạch dưới" tương ứng với nhãn nhỏ nhất ở (bước 2)
- ☐ Số đỉnh được cố định chính là số đỉnh loại ra (bước 2)

Ví dụ lập bảng tính nhãn (1)

а	b	С	d	е	Z	
0 , Ø	∞, Ø	∞, Ø	∞, Ø	∞, Ø	∞, Ø	а
	4 , <i>a</i>	∞, Ø	2, a	∞, Ø	∞, Ø	d
-	<i>3,d</i>	10,d	-	12,d	∞, Ø	b
-	-	<i>8,b</i>	-	12,d	∞, Ø	С
-	-	-	-	10.c	14,c	e
-	-	-	-	-	13,e	Z
-	-	-	-	-	-	

Ví dụ lập bảng tính nhãn (2)

k	1	2	3	4	5	6
	0,0	00,0	00,0	00,0	00,0	00,0
1	-	1,1	00,0	2,1	00,0	00,0
2		-	6,2	2,1	00,0	8,2
3			3,4	-	6,4	8,2
4			-		6,4	4,3
					6,4	-

Ví dụ lập bảng tính nhãn (3)

☐ Dijkstra cho kết quả sai nếu đồ thị có trọng số âm

- ☐ Bellman-Ford khắc phục kết quả trên
- ☐ Belman-Ford giúp xác định đồ thị có chu trình âm hay không

```
☐ Input:
     G = (V,E,W),
     s \in V
□Output:
     L(v),
     P(v) – đỉnh kề trước v (s---v)
     Đồ thị có chu trình âm qua đỉnh khả
     nối với s
```

Step 1

```
L(s)=0, L(v)=+\infty, \forall v \neq s,

P(v)=\text{nil}, \forall v \in V,
```

Step 2

```
For i:=1 to n do //|V| = n

For (u,v) \in E do

if L(v)>L(u)+w(u,v) then {

L(v)=L(u)+w(u,v);

P(v)=u;

}
```

```
Step 3
 If \exists (u,v) \in E: L(v) > L(u) + w(u,v) then
                        \rightarrow KL (1)
  Else
      L(v); P(v);
```

Độ phức tạp của thuật toán Bellman – Ford **0(n*m)**

Bước	5	b	Z		
1	0	+∞,nil	+∞ ,nil		
2	0	3 ,s	2 ,s		
	0	3 ,s	1,b		
3	$\nexists (u,v) \in E: L(v) > L(u) + w(u,v)$				

Ví dụ thuật toán Bellman-Ford

Ví dụ thuật toán Bellman-Ford

- Mục tiêu: Tìm đường đi ngắn nhất giữa mọi cặp đỉnh của đồ thị (có hướng) có trọng số
- ☐ Giải pháp
 - Dijkstra nhiều lần
 - Floyd- Warshall

☐ Input: $G = (V, E, W), V = \{1, 2, ..., n\}$ **□**Output: $D = \{d[i,j]\}_{nxn},$ d[i,j] độ dài đường đi ngắn nhất từ i đến j $P = \{p[i,j]\}_{nxn.},$ p[i,j] - đỉnh đi trước j trên đường đi ngắn nhất từ i đến j

Step 1

$$D_0 = \{d_0[i,j]\}, d_0[i,j] = \begin{cases} w(i,j), \exists (i,j) \in E \\ +\infty, (i,j) \notin E \end{cases}$$

$$P_0 = \{p_0[i,j]\}, p_0[i,j] = \begin{cases} j, \exists (i,j) \in E \\ \nexists, (i,j) \notin E \end{cases}$$

Step 2 For k:=1 to n do //|V| = n// Tính D_k và P_k theo D_{k-1} , P_{k-1} For n:=1 to n do $//\forall (i,j) \in E$ For m:=1 to n do if $d_{k-1}[i,j] > d_{k-1}[i,k] + d_{k-1}[k,j]$ then { $d_{k}[i,j]=d_{k-1}[i,k]+d_{k-1}[k,j];$ $p_{k}[i,j] = p_{k-1}[i,k];$ else { $d_k[i,j]=d_{k-1}[i,j]; p_k[i,j]=p_{k-1}[i,j];$

```
Step 3
\mathbf{D} = \mathbf{D}_{n}
\mathbf{P} = \mathbf{P}_{n}
// Phương pháp xác định đường đi ngắn nhất từ i đến j
// Đường đi ngắn nhất từ i đến j là các đỉnh:
\mathbf{i} \rightarrow i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{k} \rightarrow i_{k+1} \rightarrow i_{n} \rightarrow j:
i_{1} = p(i,j), i_{2} = p(i_{1},j), \dots, i_{k+1} = p(i_{k},j),
j = p(i_{k+1},j),
```

Ví dụ thuật toán Floyd- Warshall (1)

Ma trận D₀

Ma trận P₀

Ví dụ thuật toán Floyd- Warshall (2)

Cập nhật qua đỉnh 1

Ma trận D₁

Ma trận P₁

Ví dụ thuật toán Floyd- Warshall(3)

Cập nhật qua đỉnh 2

Ma trận D₂

Ma trận P₂

Ví dụ thuật toán Floyd- Warshall (4)

	1	2	3	4
1	$\int \infty$	7	5	13
2	∞	∞	7	6
3	∞	∞	∞	11
4	4	1	8	7 _

Ma trận D₃

	1	2	3	4
1		2	3	$2\rceil$
2	∞	∞	3	4
3	∞	∞	∞	4
4		2	2	2

Ma trận P₃

Ví dụ thuật toán Floyd- Warshall (5)

Ma trận D₄

Ma trận P₄

Ví dụ thuật toán Floyd- Warshall (6)

Kết quả:
$$4 \rightarrow 3$$

+ 8
+ 4 -2 --3
p(4,3) = 2
p(2,3) = 3

	1	2	3	4
1	[2	2	3	$2\rceil$
2	2 4 4 1	2 4 4 2	3	4
3	4	4	4	4
4	1	2	2	2

Ví dụ thuật toán Floyd-Warshall (2.1)

	1	2	3	4
1	$\int \infty$	10	6	2
2	10	∞	5	3
3	6	5	∞	1
4	2	3	1	∞

Ma trận D₀

Ma trận P₀

Ví dụ thuật toán Floyd-Warshall (2.2)

	1	2	3	4	
1	$\int \infty$	10	6	2	
2	10	∞	5	3	
3	6	5	∞	1	
4	2	3	1	∞	

Ma trận D₁

Ma trận P₁

Ví dụ thuật toán Floyd- Warshall(2.3)

	1	2	3	4	
1	$\int \infty$	10	6	$2\rceil$	
2	10	∞	5	3	
3	6	5	∞	1	
4	2	3	1	∞	

Ma trận D₂

Ma trận P₂

Ví dụ thuật toán Floyd- Warshall(2.4)

	1	2	3	4
1	$\int \infty$	10	6	2
2	10	∞	5	3
3	6	5	∞	1
4	2	3	1	∞

Ma trận D₃

Ma trận P₃

Ví dụ thuật toán Floyd- Warshall(2.5)

Ma trận D₄

Ma trận P₄

Ví dụ thuật toán Floyd- Warshall(2.6)

	1	2	3	4
1	$\int \infty$	5	3	2
2	5	∞	4	3
3	3	4	∞	1
4	2	3	1	∞

Ma trận D₄

Ma trận P₄

- ☐ Bài toán chọn địa điểm đặt cơ sở dịch vụ, sao cho hiệu quả nhất về mặt kinh tế
 - ☐Bài toán cực tiểu tổng
 - Tìm vị trí để đặt cơ sở sao cho khoảng cách giữa các vùng đến cơ sở là nhỏ nhất
 - Vị trí đặt trường học, bưu điện, bệnh viện.
 - ☐Bài toán cực tiểu trị lớn nhất
 - Tìm vị trí đặt cơ sở sao cho khoảng cách từ cơ sở đến điểm xa nhất của cộng đồng là nhỏ nhất
 - Vị trí đặt cơ quan phòng cháy chữa cháy.

☐ Bài toán cực tiểu tổng

G=(V, E, W), V= $\{1,2,...,n\}$, w(i,j)>0, \forall (i,j) \in E

D={d[i,j]} là ma trận khoảng cách ngắn nhất của G (Floyd-Warshall)

 $\forall i \in V, s(i) - tổng các phần tử trên hàng i của ma trận D$ Đỉnh j gọi là**cực tiểu tổng** $nếu <math>s(j) \leq s(i), \forall i \in V$.

☐ Tập tất cả các đỉnh tâm gọi là tâm đồ thị

☐ Bài toán cực tiểu trị lớn nhất

G=(V, E, W), V= $\{1,2,...,n\}$, w(i,j)>0, \forall (i,j) \in E

D={d[i,j]} là ma trận khoảng cách nhỏ nhất của G (Floyd-Warshall)

 $\forall i \in V, e(i) - phần tử lớn nhất (độ lệch tâm) trên hàng i của ma trận D$

Đỉnh j gọi là **đỉnh tâm** tổng nếu $e(j) \le e(i)$, $\forall i \in V$

Bài tập

- Lập trình thực hiện các thuật toán mô tả:
 - ☐ Thuật toán Dijkstra
 - Thuật toán Floyd-Warshall
 - ☐ Thuật toán Bellman-Ford
- ☐ Xác định độ phức tạp của 3 thuật toán trên

What NEXT?