

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 1

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
	Soluție / Schița de rezolvare
II.1.a.	$\vec{G} + \vec{N} + \vec{F}_f = m\vec{a}$
	$G\sin\alpha - F_f = ma$
	$F_f = \mu N$, $N = G\cos \alpha$
	$a = g(\sin\alpha - \mu\cos\alpha)$
	Răspuns: $a = -2.5 \text{ m/s}^2$
b.	$v = v_0 + at$
	$t_{op} = 2 \text{ s}$
	$v = 0$ pentru $t \in (2,3]$ s
	graficul $v = v(t)$
c.	$\Delta E_{p} = mg \Delta h$
	$\Delta h = -x \sin \alpha$
	$x = -v_0^2/2a$
	Răspuns: $\Delta E_p = -25 J$
II.2.a.	$E_i = k x^2 / 2$
	$E_f = mgh$
	$k x^2 / 2 = mgh$
	Răspuns: $h = 0,1 m$
b.	$N = G\cos\alpha$
	$\cos\alpha = (R - h)/R$
	Răspuns: $N = 10 N$
C.	$L = \Delta E_c$
	$\frac{kx^2}{2} - \mu m_1 g x = \frac{m_1 v_1^2}{2} - 0$
	$v_1 = 1.4 \ m/s$
	$v_2' = 2 m_1 v_1 / (m_1 + m_2)$
	Răspuns: $v_2' = 0.93 \ m/s$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 2

Fizică

Subiectul A. MECANICĂ

Nr item	
	Soluție / schiță de rezolvare
II.1. a.	principiul al doilea al dinamicii
	$a_1 = \frac{F_1}{m}$
	$R \tilde{a} spuns: a_1 = 5 m/s^2$
b.	$S_1 = \frac{a_1 t_1^2}{2}$
	$a_2 = \frac{F_2}{m}$
	$v_1 = a_1 t_1$
	$S_2 = v_1 t_2 + \frac{a_2 t_2^2}{2}$
	$S = S_1 + S_2$
	Răspuns: $S = 35m$
C.	Verificare a teoremei de variație a energiei cinetice
II.2. a.	condiția de a nu cădea în B $\overrightarrow{F_c}+\overrightarrow{G}=0$
	conservarea energiei totale $E_{\scriptscriptstyle A}=E_{\scriptscriptstyle B}$
	$E_A = mgh_A$
	$E_A = mgh_A$ $E_B = \frac{mv_B^2}{2} + 2mgr$
b.	$E_{\scriptscriptstyle B} = \frac{mv_{\scriptscriptstyle B}^2}{2} + 2mgr$ Răspuns: $h_{\scriptscriptstyle A} = 2,5m$ conservarea energiei
b.	$\begin{split} E_B &= \frac{m v_B^2}{2} + 2 m g r \\ \text{R\"{a}spuns: } h_A &= 2,5 m \\ \text{conservarea energiei} \\ mgh_A &= \frac{k \Delta y_{\max}^2}{2} + m g (y - \Delta y_{\max}) \end{split}$
	$E_{\scriptscriptstyle B} = \frac{mv_{\scriptscriptstyle B}^2}{2} + 2mgr$ Răspuns: $h_{\scriptscriptstyle A} = 2,5m$ conservarea energiei
b.	$\begin{split} E_B &= \frac{m v_B^2}{2} + 2 m g r \\ \text{R\"{a}spuns: } h_A &= 2,5 m \\ \text{conservarea energiei} \\ mgh_A &= \frac{k \Delta y_{\max}^2}{2} + m g (y - \Delta y_{\max}) \end{split}$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 3

Varianta 3

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$m \cdot g = k \cdot v_0$; $k = m \cdot g/v_0$
	$R aspuns: k = 120 N \cdot s/m$
b.	$m \cdot g - k \cdot v = m \cdot a$
	$a = g \cdot (1 - (v/v_0))$
	R ăspuns: $a = -2 m \cdot s^{-2}$
C.	$mgh = mv_0^2/2$; $h = v_0^2/(2 \cdot g)$
	Răspuns : $h = 1,25 m$
II.2.a.	$\int m_1 g - T = m_1 a$
	$ \begin{cases} m_1 g - T = m_1 a \\ -m_2 g + T = m_2 a \end{cases} $
	$a = g \frac{m_1 - m_2}{m_1 - m_2}$
	$m_1 + m_2$
	Răspuns:
	$a=2m\cdot s^{-2}$
	Maimuța coboară
b.	$T = \frac{2g}{(1/m_1) + (1/m_2)}$
	$(1/m_1) + (1/m_2)$
	Răspuns: $T = 48 N$
C.	$v = a \cdot t$
	Răspuns: $v = 2m/s$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 4

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	graficului $a = a(t)$
b.	distanța parcursă de mobil în primele 9s are valoarea egală cu aria trapezului:
	$d = \frac{(3+9)\cdot 3}{2}$
	Răspuns: $d = 18 m$
c.	teorema variației energiei cinetice: $L=\Delta E_c$
	$L = \left(mv_2^2 / 2\right) - \left(mv_1^2 / 2\right)$
	$v_2 = -3m/s$ şi $v_1 = +3m/s$
	Răspuns: $L = 0 J$
II.2.a.	bilanțul energetic porțiunea BC - teorema variației energiei mecanice
	$\mu = v_B^2 / 2 \cdot g \cdot BC$
	Răspuns: $\mu = 0.26(6) \approx 0.27$
b.	bilanțul energetic porțiunea AB - teorema variației energiei mecanice
	$L = \left(m \cdot v_B^2 / 2\right) - m \cdot g \cdot R$
	Răspuns: $L = -4J$
C.	legea conservării energiei mecanice
	$m \cdot g \cdot R = m \cdot g \cdot h + m \cdot v^2 / 2$
	$2 \cdot m \cdot g = \frac{m \cdot v^2}{R} + m \cdot g \cdot \frac{R - h}{h}$
	Răspuns: $h = 0.33(3)m$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 5

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$mg(H-h) = \frac{mv_A^2}{2}$
	$V_A = \sqrt{2g(H - h)}$
	Răspuns: $v_A \cong 10,95 \mathrm{m/s}$
b.	$mgH = \frac{mv_c^2}{2}$
	$v_C = \sqrt{2gH}$
	Răspuns: $v_C \cong 12,65 \mathrm{m/s}$
C.	$p_C = mv_C$
	$p_C = m\sqrt{2gH}$
	Răspuns : $p \cong 25,29N \cdot s$
II.2.a.	$a = \mu g$ şi $0 = v_0 - at_c$
	$t_c = \sqrt{\frac{2H}{g}}$ şi $v_0 = \mu \sqrt{2gH}$
	Răspuns: $v_0 \cong 1.41 \text{m/s}$
b.	
	$0 = v_0^2 - 2ad$
	$d = \frac{{v_0}^2}{2a} = \mu H$
	Răspuns: $d = 1m$
C.	$\Delta E = 0 - \left(\frac{mv^2}{2} + MgH\right)$
	$\Delta E = -gH(M + m\mu^2)$
	R ăspuns: $\Delta E = -21J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 6

Fizică

Subjectul A. MECANICĂ

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	mg - T = ma
	$T - F_t = Ma$
	$F_{t} = \mu Mg$
	Răspuns: $a = 0 m/s^2$.
b.	$t = \frac{h}{v}$
	Răspuns : $t = 0.5 \text{ s}$
C.	$d = h + x_{oprire}$
	$x_{oprire} = \frac{v^2}{2 a' }$
	$ a' = \mu g$
	Răspuns: $d = 0.7 m$
II.2.a.	$F_{cp} = \frac{mv^2}{\ell}$
	Răspuns: $F_{cp} = 72 N$
b.	$E_{initial} = E_{final}$
	$h = \frac{v^2}{2g} = 7.2 \text{ m}$
	$h>2\ell$, imposibil. Înălțimea maximă la care ajunge corpul este $h_{\scriptscriptstyle\!\sf max}^{}=2\ell$
	$E_{Cfinal} = \frac{mv^2}{2} - 2mgl$
	Răspuns: $E_{Cfinal} = 32 J$
c.	$T = F_{cp} - mg$
	$T = \frac{2E_{Cmax}}{\ell} - mg$
	Răspuns: $T = 22 N$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 7

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	legea conservării energiei mecanice $T = m_1 (g + a_{cp}) = 3 mg$ Răspuns: $T = 120 N$
b.	expresia vitezei finale a corpului 2 după ciocnire calculul literal al vitezei corpului 2 în punctul calculul literal al distanței parcurse pe planul înclinat $h_{max} = d \sin \alpha$ Răspuns: $h_{max} \cong 1 m$
C.	expresia căldurii într-o ciocnire plastică $Q = \frac{m_1 m_2 \ \ V_1^2}{2 \left(m_1 + m_2\right)}$ Răspuns: Q = 6,4 J
II.2.a.	T sin α = mg; T cosα = ma _{cp} $a_{cp} = ω^2 R = 4π^2 v^2 I sinα$ $V = (1/2π) \cdot \sqrt{g/I \cdot cosα}$ Răspuns: $v = 2/π \cong 0.64 s^{-1}$
b.	$v = \omega R$ p = mv Răspuns: $p = 1,25 \cdot \sqrt{3}$ kg m/s
C.	Ec = $mv^2/2$ Răspuns: Ec $\cong 4,7$ J

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 8

Fizică

Subjectul A. MECANICĂ

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$F(t_1)$
	$a(t_1) = \frac{F(t_1)}{m}$
	Răspuns: $a(t_1)=2m/s^2$
b.	$a(t_2) = \frac{F(t_2) - F_f}{m}$
	III
	Răspuns: $a(t_2) = 0$
C.	$\Delta \vec{p} = \vec{R}_m \Delta t$
	$mv = (F_m - \mu mg)(t_3 - t_0)$
	$F_m = 20 N$
11.0 -	Răspuns: $v = 0$
II.2.a.	$0 = v_1^2 - 2gh$
	Răspuns : $v_1 = 2\sqrt{10} m/s = 6.32 m/s$
b.	$\frac{mv_2^2}{2} = \frac{mv_3^2}{2} + mgI$
	$T = \frac{mv_3^2}{I}$
	Răspuns: $T = 6N$
C.	\vec{r} \vec{q} \vec{G}
	$\frac{mv_2^2}{2} = \frac{mv_4^2}{2} + mgI(1+\cos\alpha)$
	$T + mg\cos\alpha = \frac{mv_4^2}{I}$
	T > 0
	Răspuns : corpul descrie un cerc complet deci $h_{max} = 2I = 4m$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 9

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$mg = (k_1 + k_2)\Delta l_1$
	$\Delta I_2 = \frac{mg}{k_1 + k_2}$
	Răspuns : $\Delta l_2 = \Delta l_1 = 4cm$
b.	$(k_1 + k_2)\Delta l_1 = m\omega^2(l_0 + \Delta l_1)$
	$\omega = \sqrt{\frac{(k_1 + k_2)\Delta I_1}{m(I_0 + \Delta I_1)}} = \sqrt{\frac{mg}{\Delta I_1} \cdot \frac{\Delta I_1}{m(I_0 + \Delta I_1)}} = \sqrt{\frac{g}{I_0 + \Delta I_1}}$
	Răspuns : $\omega \cong 8,45 \text{rad/s}$
C.	$W = W_{resort1} + W_{resort2} + E_c$
	$W = \frac{k_1 \Delta l_1^2}{2} + \frac{k_2 \Delta l_2^2}{2} + \frac{mv^2}{2} = \frac{(k_1 + k_2) \Delta l_1^2}{2} + \frac{m}{2} \cdot [\omega(l_0 + \Delta l_1)]^2$
	$W = \frac{mg}{2} \left(I_0 + 2\Delta I_1 \right)$
	R "aspuns": W = 0,045 J
II.2.a.	$a_1 = \mu g$
	$x_{op} = \frac{v_{01}^2}{2\mu g}$
	Răspuns : $x_{op} = 50m = d$
b.	$t_{op1} = \frac{v_{o1}}{\mu g} = 10s$
	Corpul M ajunge la A în timpul $t_M = \frac{d}{v_{02}} = 10s$, deci chiar când m se oprește
	Răspuns: ti = 10s
C.	$Q = \frac{mv_{01}^2}{2} + \frac{Mv_{02}^2}{2}$
	Răspuns: $Q = 125J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 10

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	aplicarea legilor de mişcare la mişcările primului şi celui de-al doilea mobil: $d + x = v_0 \cdot t + a \cdot t^2/2$
	$X = V \cdot t';$
	alegerea soluției corecte a ecuației: $a \cdot t^2 - 2 \cdot (v - v_0) \cdot t - 2 \cdot d = 0$
b.	Răspuns: $t = 10$ s D = d+x =d + v·t
D.	R ăspuns: <i>D</i> = 230 m
C.	aplicarea legilor de mişcare la mişcările primului şi celui de-al doilea mobil: $d + x_1 = v_0 \cdot t_1 + a \cdot (t_1^2)/2$
	$x_1 = v_1 \cdot (t_1 - \tau)$ Răspuns : $v_1 = v = 20 \text{ m/s}$
II.2.a.	legea conservării energiei mecanice:
	$E_i = E_p = (M+m) \cdot g \cdot h; E_i = E_c + E_p = \frac{(M+m) \cdot v_A^2}{2} + (M+m) \cdot g \cdot h_A$
	$h_A: h_A = R \cdot (1 - \cos 60^\circ) = 10 \text{ m}$
	Răspuns : $V_A = \sqrt{2 \cdot g \cdot (h - h_A)} = 20m/s$
b.	Reprezentarea forțelor și exprimarea forței de apăsare normală exercitate în punctul B:
	$N = G \cdot \cos 60^{0} + (M+m) \cdot a_{cp} = (M+m) \cdot (g \cdot \cos 60^{0} + \frac{v_{A}^{2}}{R})$
	$V_B = V_A$
	Răspuns : <i>N</i> = 1875 <i>N</i> = 1,875 kN
C.	aplicarea teoremei variației energiei cinetice la mişcarea între punctele A și C: $\Delta E_C = L$
	$\Delta E_{\rm C} = -\frac{(M+m) \cdot v_A^2}{2}$
	$L = L_{F_f} + L_G = L_{F_f} + (M + m) \cdot g \cdot (h_A - \frac{4}{5} \cdot h)$
	Răspuns: $L_{F_f} = -4500J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 11

Fizică

Subjectul A. MECANICĂ

Nr. Item	Solutio / sobită de rezelvere
	Soluție / schiță de rezolvare
II.1.a.	p = m v
	$v(4s) = 4 \ m/s$
	Răspuns : $p = 8 kg \cdot m/s$
b.	$t \in [0,2s] \ a=0$
	$t \in [2s, 4s]$ $a = (v(4s) - v(2s))/2s = 1 m/s^2$
	$t \in [4s, 8s] (v(4s) - v(8s))/4s = 0.75 \text{ m/s}^2$
	Răspuns : $a_{\text{max}} = 1 m/s^2$
C.	spațiul parcurs în primele două secunde de mişcare $d_1 = 4 m$
	spațiul parcurs în următoarele două secunde de mişcare $d_2 = 6 m$
	spațiul parcurs în următoarele patru secunde de mişcare $d_3 = 10 m$
	$V_m = (d_1 + d_2 + d_3)/\Delta t$
	Răspuns : $v_m = 2.5 \ m/s$
II.2.a.	$\Delta p = F_m \tau$
	$Răspuns: F_m = mv_o / \tau = 6 N$
b.	legea conservării energiei mecanice
	$v = \sqrt{v_o^2 - 2g / \sin \alpha}$
	Răspuns : $v = 1,16 m/s$
C.	teorema varieției energiei cinetice
	$h = \frac{v_o^2}{2g(1 + \mu ctg\alpha)}$
	$2g(1+\mu ctg\alpha)$
	Răspuns : $h = 1,61 m$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 12

Fizică

Subjectul A. MECANICĂ

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	
II. I .a.	$\frac{m_1 v_1^2}{2} = \frac{m_1 v_0^2}{2} + m_1 g \ell \cos \alpha$
	$T = \frac{m_1 v_1^2}{\ell} + m_1 g \cos \alpha$
	$T = \frac{m_1 v_0^2}{2} + 3m_1 g \cos \alpha$
	Răspuns: $T = 14 N$
b.	legea conservării energiei
	$V_2 = \sqrt{V_0^2 + 2g\ell}$
	Răspuns : $v_2 = 6 m/s$
C.	$V_3 = \frac{m_1 V_2}{m_1 + m_2}$
	$h_{\text{max}} = \frac{v_3^2}{2g}$
	$\cos\alpha = \frac{\ell - h}{\ell} = \frac{1}{2}$
	Răspuns: $\alpha = 60^{\circ}$
II.2.a.	$t_u = v_0 / g$
	$Răspuns: t_u = 4 s$
b.	legea mişcării uniform variate
	distanța parcursă în primele două secunde de mișcare $h_1 = 60 m$
	distanța parcursă în primele trei secunde de mişcare $h_2 = 75 m$
	Răspuns : $\Delta h = 15 m$
C.	$\frac{mv_0^2}{3} = 4\frac{mv_1^2}{3}$
	2 2
	$p = mv_1$
	Răspuns : $p_1 = 10 \text{ kg} \cdot \text{m/s}$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 13

Fizică

Subjectul A. MECANICĂ

Nr item	Soluție / schiță de rezolvare
II.1. a.	$h = h_1 + h_2$
	$h_1 = \frac{gt_1^2}{2}$
	2
	$h_2 = h - v_1 \tau - \frac{g\tau^2}{2}$
	$v_1 = gt_1$
	$gt_1^2 + gt_1\tau - 2h = 0$
	$\text{Răspuns: } t_1 = \left(\sqrt{\tau^2 + 8h/g} - \tau\right)/2$
b.	$\Delta v = 0 - v_1 = -v_1$
	Răspuns: $\Delta V = g\left(\tau - \sqrt{\tau^2 + 8h/g}\right)/2$
c.	$\Delta E_c = L = L_g + L_f$
	$\Delta E_c = 0$
	$L_f = -L_g$
	$\begin{split} L_{_{g}} &= mgh \\ \text{Răspuns:} L_{_{f}} &= -mgh \end{split}$
II.2. a.	precizarea celor două mărimi fizice care se conservă în ciocnirile perfect
	elastice expresiile celor două legi de conservare
b.	$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m_1 \frac{\Delta \vec{V}_1}{\Delta t}$
	$\Delta t \qquad \Delta t \rightarrow$
	$\overrightarrow{F_{21}} = m_1 \frac{\Delta v_1}{\Delta t}$
	$\overrightarrow{F_{12}} = -\overrightarrow{F_{21}}$
	$v_1 = 2v_2 - v_1$
	Răspuns: $F = 8KN$
C.	$v_1' = 2v_2 - v_1 = 0$
	$R \ddot{a} spuns: V_1/V_2 = 2$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 14

Fizică

Subjectul A. MECANICĂ

Nr. item	0-1-(-/-/
	Soluție / schiță de rezolvare
II.1.a.	$V = \frac{mV_0}{M+m}$
	Răspuns : $v = 2m/s$
b.	$h = \frac{v^2}{2g}$
	" 2g
	Răspuns: $h = 0.2m$
C.	$t = \frac{V}{}$
	r - g
	Răspuns: $t = 0.2s$
II.2.a.	$X_1 = X_2$
	Răspuns: $t = 12s$, $x = 40m$
b.	$\omega = \frac{2v}{d}$
	d d
	$ v_1 = 6m/s$, $v_2 = 3m/s$
	Răspuns : $\omega_1 = 20 rad / s$, $\omega_2 = 10 rad / s$
c.	$n = \frac{F_{cf}}{G}$ $n = \frac{v^2}{Rg}$
	G
	v^2
	$'' - \overline{Rg}$
	Răspuns: $n = 0.36$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 15

Varianta 15

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II. 1. a.	ecuațiile parametrice ale mișcării: $x = \frac{t^2}{2}$ si y = t
	Răspuns : ecuația traiectoriei: $x = \frac{y^2}{2}$
	reprezentare grafică
b.	reprezentare grafică legea vitezei: $\vec{v}(t) = t\vec{i} + \vec{j}$
	$\vec{v}(t_1) = 2\vec{i} + \vec{j}$
	$\vec{v}(t_2) = 4\vec{i} + \vec{j}$
	$\Delta \vec{p} = m(\vec{v}_2 - \vec{v}_1) = 2\vec{i} ;$
	$\mathbf{R} \mathbf{\tilde{a}spuns} : \Delta p = 2kg \cdot m / s$
C.	teorema variației energiei cinetice $L_{1-2}^{total}=\Delta E c_{1-2}=\frac{m{v_2}^2}{2}-\frac{m{v_1}^2}{2}$ Răspuns: $L_{1-2}^{total}=6J$
II. 2. a.	figurarea corectă a forțelor
	principiului II al dinamicii
	$a = \frac{g(1-\mu)}{4} ;$
	4
b.	Răspuns : $a = 2m/s^2$ T1 = m(a+g)
D.	T = III(a+g) T2 = 2m(g-a)
	Răspuns : T1= 12N ; T2= 16N
C.	$4mv^2$
	$E_c = \frac{4mv^2}{2}$
	v = a t
	$E_c = 2ma^2t^2$
	Răspuns: $E_c = 32J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 16

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	Legea conservării energiei mecanice $E_{\scriptscriptstyle A} = E_{\scriptscriptstyle B}$
	$\frac{mV_0^2}{2} = \frac{mV^2}{2} + mgh,$
	$t = \frac{V_0}{g} \left(\frac{2 - \sqrt{2}}{2} \right)$
	Răspuns: t = 0.59s
b.	$E_p = m g h_{\text{max}} = \frac{m V_0^2}{2}$
	Răspuns: $E_p = 100J$
C.	$\Delta t = t_u + t_c = 2t_u$
	$t_u = \frac{V_0}{g}$
	$R\check{aspuns} \colon \ \Delta t = 4s$
II.2.a.	Legea conservării impulsului $m_1 \overset{\rightarrow}{v_1} + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}$
	$\mathbf{v} - \frac{m_1 \mathbf{V}_1 + m_2 \mathbf{V}_2}{2}$
	$V = \frac{m_1 V_1 + m_2 V_2}{m_1 + m_2}$
	R spuns: V = 2m/s
b.	$Q = -\Delta E_c$
	$Q = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (\mathbf{V}_1 - \mathbf{V}_2)^2$
	Răspuns: $Q = 24J$
C.	$0 = \mathbf{v} - \mathbf{\mu} g t$
	$t = v/\mu g$
	Răspuns: $t = 2s$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 17

Fizică

Subjectul A. MECANICĂ

Nr. Iten	
	Soluție / schiță de rezolvare
II.1.a.	$mg + F = F_e$
	Răspuns: $F_e = 40N$
b.	$mq + F = kx_1$
۵.	$I_1 = I_0 - X_1$
	R ăspuns: $I_1 = 0.6 m$
c.	7.1.2.p. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	$mgl_1 + \frac{kx_1^2}{2} = mgh_{\text{max}}$
	2
	$h_{\text{max}} = I_o + \frac{F^2 - m^2 g^2}{2 k m a}$
	Răspuns: $h_{\text{max}} = 1.4 \text{ m}$
II.2.a.	diagrama corectă a forțelor
	$F - T = m_2 a \text{si} T = m_1 a$
	$a = \frac{F}{m_1 + m_2}$
	$m_1 + m_2$
	Răspuns : $a = 2 \frac{m}{s^2}$
	diagrama corectă a forțelor
b.	$F - T' - F_{f2} = m_2 a'$ şi $T' - F_{f1} = m_1 a'$
	$F_{f1} = \mu m_1 g$ $F_{f2} = \mu m_2 g$
	$a' = \frac{F}{m_1 + m_2} - \mu g$
	Răspuns: a'= 0
C.	$T'-F_{f1}=0$
	R ăspuns: <i>T</i> '= 2 <i>N</i>

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 18

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	legea conservării impulsului sistemului: $(m_1 + m_2)v_1 = m_1v_1 - m_2v_2$
	$Răspuns: v'_1 = 4 m/s$
b.	$a = -\mu g$
	$t_{op} = -\frac{v_1}{a}$
	Răspuns : $t_{op} = 20 \text{ s}$
C.	$d_{op} = -\frac{V_1^{'2}}{2a}$
	$\frac{3}{4}d_{op} = v_1't + \frac{at^2}{2}$
	soluțiile ecuației $t_1 = 30 \text{ s}; t_2 = 10 \text{ s}$
	$t_1 > t_{op}$
	R aspuns: t = t2 = 10 s
II.2.a.	teorema variației energiei cinetice
	$\frac{mv_1^2}{2} - \frac{mv_0^2}{2} = -mgh + L_f$
	$L_{f} = -\mu mgh \cdot ctg\alpha$
	$v_1 = \sqrt{v_0^2 - 2gh(1 + \mu \cdot ctg\alpha)}$
	Răspuns : $v_1 = 2\sqrt{3} \ m/s \cong 3,46 \ m/s$
b.	legea conservării energiei: $\frac{mv_2^2}{2} = \frac{mv_1^2}{2} + mgh$
	Răspuns : $v_2 = 6m/s$
C.	$p = mv_2$
	Răspuns : $p = 12 kg \cdot m/s$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 19

Varianta 19

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$v = v_0 + a \cdot \Delta t$
	m = F/a
	$\frac{m \cdot v^2}{2} - \frac{m \cdot v_0^2}{2} = \Delta E$
	$v = \frac{2 \cdot \Delta E}{F \cdot \Delta t} - v_0$
	Răspuns: $v = 3 m/s$
b.	$m = \frac{2 \cdot \Delta E}{v^2 - v_0^2}$
	Răspuns: $m = 1 kg$
C.	$\Delta p = m \cdot \Delta v = m \cdot (v - v_0)$
	$\mathbf{R\check{a}spuns} : \Delta p = 2 kg \cdot m / s$
II.2.a.	T = mg
	Răspuns: $T = 1N$
b.	$T = \frac{Mv^2}{r}$ $r = \frac{Mv^2}{T}$
	Răspuns: $r = 0.8 m$
C.	Răspuns: $L_T = 0$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 20

Fizică

Subjectul A. MECANICĂ

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$F_f = \mu N$
	N = mg
	$F - F_f = ma$
	Răspuns : $a = 6 m/s^2$
b.	Împărțirea cablului în două porțiuni și calcularea masei $m_2 = m(I-x) / \ell$
	$T - \mu m_2 a = m_2 a$
	Răspuns: $T = 2N$
C.	Teorema variației energiei cinetice
	Calcularea unei forțe medii de frecare $v_1 = \sqrt{(2Fd/m) - 2\mu gd - \mu g\ell}$
	$v_1 = \sqrt{5} \ m/s = 2{,}23 m/s$
II.2.a.	$E_{\rm C0} = m v_0^2 / 2$
	$E_{P0} = mgh$
	$E_{p \max} = E_{c0} + E_{p0}$
	Răspuns : $E_{p \max} = 200 J$
b.	$E = E_C + E_P = 4E_P = 4mgh_1$
	$E = E_{P \text{max}}$
	Răspuns : $h_1 = 12.5 m$
C.	$E_{P\text{max}} = \frac{mv^2}{2}$
	$-p_{\text{max}} - \frac{1}{2}$
	Răspuns : $v = 10\sqrt{10} \ m/s = 31.6 \ m/s$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 21

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$x_1 = x_2$
	$\frac{at^2}{2} = v_0 t$
	$t = \frac{2v_0}{c}$
	a Răspuns : $t = 8s$; $d = x_1 = x_2 = 64m$
b.	v = at
	Răspuns : $v = 16m/s$
C.	$d = d_1 + d_2$
	$d_1 = \frac{v_1^2}{2a_1}$
	$t_{op} = \frac{v_1}{ a_2 }$
	$d_2 = s_{op} = \frac{v_1^2}{2 a_2 }$
	Răspuns: $d = 96m$
II.2.a.	$a_1 = g(\sin \alpha - \mu \cos \alpha)$
	Răspuns : $a_1 = 4.13m / s^2$
	$a_2 = -\mu g$
	$R \text{ `aspuns: } a_2 = -1m/s^2$
b.	$v = \sqrt{2gh(1 - \mu ctg\alpha)}$
	Răspuns : $v = 12,86m / s$
C.	$\Delta E_t = L_{F_f} \Leftrightarrow E_f - E_i = L_{F_f}$
	$E_i = mgh$
	$E_f = 0$
	$L_{F_f} = -\mu mg \cos \alpha \frac{h}{\cos \alpha} - \mu mg s_{op}$
	Răspuns : $s_{op} = h(1 - \mu ctg \alpha) = 82,7m$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 22

Varianta 22

Fizică

Subjectul A. MECANICĂ

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$T - m_1 \cdot g \cdot \sin \alpha = 0$
	$m_2 g - T = 0$
	R ăspuns: $m_2 / m_1 = \sin \alpha = 0.5$
b.	$T - m_i \cdot g \cdot \sin \alpha = m_i \cdot a$
	$m_2 \cdot g - T = m_2 \cdot a$
	$T = 2 \cdot m_1 \cdot g \cdot (1 + \sin \alpha) / 3 = m_1 \cdot g$
	Răspuns: $T = 5N$
C.	$d = a \cdot t^2 / 2$
	$a = g \cdot (2 - \sin \alpha) / 3$
	$h = d \cdot \sin \alpha + d$
	$t = \sqrt{2 \cdot h / a \cdot (1 + \sin \alpha)}$
	Răspuns : $t = \sqrt{0.4} \text{ s} \approx 0.63 \text{ s}$
II.2.a.	$E_A = \left(m \cdot v_A^2 / 2\right) + m \cdot g \cdot h_A$
	$E_B = E_A$
	R aspuns: $E_B = 594 \cdot 10^4 J$
b.	$\Delta E = E_B' - E_A$
	$E_B' = (m \cdot v_B^2 / 2) + m \cdot g \cdot h_B$
	$\Delta E = \frac{m \cdot \left(v_B^2 - v_A^2\right)}{2} + m \cdot g \cdot \left(h_B - h_A\right)$
	$\Delta E = L_r$
	$R "aspuns": L_r = -96 \cdot 10^4 J$
C.	$E_B = E_A$ dacă
	$L_m = -L_r$
	$Răspuns: L_m = 96 \cdot 10^4 J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 23

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	2
II. I .a.	$h = \frac{v^2}{2 \cdot q} = 20m$
	$t_C = \sqrt{\frac{2 \cdot h}{a}}$
	1 9
b.	Răspuns: t _c = 2 s
D.	$E_c = \frac{m \cdot v_1^2}{2}$
	legea vitezei în cădere liberă
	$E_c = \frac{m \cdot g^2 \cdot t^2}{2}$
	Răspuns: $E_c = 100 \text{ J}$
C.	legea mişcării rectilinii uniform variate: $d = g \cdot (t_C - t_1) \cdot t_1 + \frac{g \cdot t_1^2}{2}$
	Răspuns: <i>d</i> = 7,2 <i>m</i>
II.2.a.	legea conservării energiei mecanice:
	$V_A = \sqrt{2 \cdot g \cdot h}$
	$h = R - \frac{R}{\sqrt{2}}$
	,2
	forța de apăsare normală : $N = G + m \cdot a_{cp} = m \cdot (g + \frac{V_A^2}{R})$
	R ăspuns: <i>N</i> ≅ 0,318 N
b.	legii conservării impulsului $m \cdot v_A = 2 \cdot m \cdot v$
	$h_1 = \frac{v^2}{2 \cdot g}$
	Răspuns: $h_1 \cong 0,1$ m
C.	$Q = \frac{1}{2} \cdot \frac{m^2}{2 \cdot m} \cdot v_A^2$
	2 2 · m A Răspuns : Q ≅ 0,041 J = 41 mJ
	1145pans. Q = 0,0710 - 71 mo

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 24

Varianta 24

Fizică

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	definiția coeficientului de frecare
b.	simbolurile şi denumirile celor patru forțe (greutatea \vec{G} , forța care tensionează/întinde sârma \vec{T} , forța de frecare \vec{F}_t şi forța normală de reacțiune
	a planului \vec{N})
c.	$T\cos\beta - mg\sin\alpha - \mu N = 0$, $T\sin\beta + N - mg\cos\alpha = 0$
	$T = mg \frac{\sin\alpha + \mu \cos\alpha}{\cos\beta + \mu \sin\beta} \text{sau } T \ \ell \ 268 \ \text{N}$
	$L = Td\cos\beta$
	Răspuns : <i>L</i> = 2,32 ·10 ³ J sau 2,32 kJ
II.2.a.	$h_1 = \frac{v_1^2}{2g} $ sau $h_1 = 0.8$ m sau 80 cm
	$v_2 = \sqrt{2g(2h_1 - h_1)} = \sqrt{2gh_1}$
	Răspuns : $v_2 = 4 \frac{m}{s}$
b.	legea conservării impulsului în ciocnirea plastică $v_0 = \frac{mv_2}{m+m} = \frac{v_2}{2} = 2 \frac{m}{s}$,
	expresia energiei cinetice pierdute într-o ciocnire plastică
	$-\Delta E_{\text{cin}} = Q = \frac{m \cdot m v_2^2}{2(m+m)}$
	$sau - \Delta E_{cin} = Q = \frac{m \cdot v_2^2}{2} - \frac{2m \cdot v_0^2}{2}$
	$sau -\Delta E_{cin} = Q = \frac{mv_1^2}{4} = \frac{mgh_1}{2}$
	Răspuns : $-\Delta E_{cin} = Q = 8 \text{ J}$
C.	$E_{cin} = \frac{(2m)v_0^2}{2} + (2m)gh_1 = \frac{mv_1^2}{4} + mv_1^2 = \frac{5}{4}mv_1^2, \text{ sau}$
	$E_{cin} = \frac{mv_1^2}{2} + mg \cdot 2h_1 - Q = \frac{5}{4}mv_1^2$
	Răspuns: Ecin = 40 J

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 25

Varianta 25

Fizică

Subjectul A. MECANICĂ

Nr. Item	Ochsile / cobii/ do week house
	Soluție / schiță de rezolvare
II.1.a.	$t = \frac{h}{}$
	v_0
	$m_1 v_1 + m_2 v_2 = 0$
	$v_1 = -gt$; $v_2 = v_0 - gt$
	$v_0 = \sqrt{gh\left(1 + \frac{m_1}{m_2}\right)}$
b.	Răspuns : <i>v</i> ₀ = 46,2 m/s
D.	$\frac{E_{C1}}{E_{C2}} = \frac{m_1 v_1^2}{m_2 v_2^2}$
	$E_{C2} = m_2 v_2^2$
	$m_1 v_1 = -m_2 v_2; \frac{E_{C1}}{E_{C2}} = \frac{m_2}{m_1}$
C.	Răspuns : $E_{C1}/E_{C2} = 3/5 = 0,6$
0.	$y = h - \frac{gt^2}{2}$
	Răspuns : <i>y</i> = 65 m
II.2.a.	$G_t = G\sin\varphi$; $G_n = G\cos\varphi$
	$F_f = \mu N$
	$\mu = tg \varphi$
	Răspuns : $\mu = 0.58$
b.	$N = G - F_{y}$
	$N=0$; $G=F\sin\alpha$
	Răspuns : $\sin \alpha = 2/3$
C.	$L = Fd \cos 30^{\circ}$ $F \cos \beta = \mu(C - F \sin \beta)$
	$a = \frac{F\cos\beta - \mu(G - F\sin\beta)}{m}$
	at^2
	$d = \frac{at^2}{2}$
	Răspuns : <i>L</i> = 7500 J

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 26

Subiectul A. MECANICĂ

Nr. Item	Soluție/ rezolvare
II.1.a.	reprezentarea corectă a forțelor
b.	Condiția de echilibru
	$F_e = G \cdot \sin \alpha / \cos \beta$
	Răspuns: $F_e = 3/(2 \cdot \cos \beta)$
C.	$F_e = k \cdot \Delta I$
	$\Delta I = (F_e / k) = 3/(2 \cdot k \cdot \cos 60^\circ)$
	Răspuns: $\Delta I = 6 \text{cm}$
II.2.a.	
	$E_0 = m \cdot g \cdot h_0$
	$E_1 = (1-f)E_0$; $f = 20\%$
	Răspuns: $E_1 = 3.2 J$
b.	$E_2 = (1-f)^2 E_0$
	$E_2 = m \cdot g \cdot h_2$
	$h_2 = (1-f)^2 h_0$
	Răspuns: $h_2 = 0.64 \text{m}$
C.	$E_2 = \frac{m \cdot v_2^2}{2}$
	$v_2 = (1 - f)\sqrt{2 \cdot g \cdot h_0}$
	Răspuns: $v_2 \cong 3,57 m/s$

Fizică Varianta 26

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 27

Varianta 27

Subiectul A. MECANICĂ

Nr. Item	Soluție/rezolvare
II.1.a.	L = -mgh
	Răspuns: $L = -20 J$
b.	$h = v_o t - \frac{g t^2}{2}$
	$t_1 = 0.4 s$, $t_2 = 1 s$
	Răspuns: $t = 0.4 s$
C.	
	$L = \Delta E_c$
	$x_1 = -2,378 m, x_2 = 0,378 m$
	Răspuns: <i>x</i> = 0,378 <i>m</i>
II.2.a.	
	$p_o = m v_o$
	$E_c = \frac{mv^2}{2}$
	F-fG=ma
	Răspuns: $F = 4 N$
b.	a'=fg
	$0 = v^2 - 2a^{\dagger}x_{op}$
	Răspuns: $x_{op} = 50 m$
C.	$t_1 = \frac{v - v_o}{a}$
	$T = t_1 + t_2$
	Răspuns: $T = 16 s$

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 28

Subiectul A. MECANICĂ

Nr. Item	
	Soluție/ rezolvare
II.1.a.	Aplicarea legii fundamentale a dinamicii
	Răspuns: $m_1 = 5,25 \text{ kg}$
b.	$\frac{T_1}{T_2} = \frac{(g-a) \cdot m_1}{(g+a) \cdot m_2}$
	Răspuns: $\frac{T_1}{T_2} = 1,75$
	T ₂
C.	
	$a = \frac{2 \cdot d}{\Delta t^2}$
	$\mu = \frac{g \cdot (m_1 - m_2) - a \cdot (m + m_1 + m_2)}{m \cdot g}$
	, m·g
11.0	Răspuns: $\mu = 0.2$
II.2.a.	$E_A = E_{cin} = \frac{p^2}{2 \cdot m}; \ E_B = E_{pot} = \frac{k \cdot x^2}{2};$
	Răspuns: $\chi = \frac{p}{\sqrt{m \cdot k}} = 0.05m = 5cm$
b.	
	$\Delta E_C = L; \ \Delta E_C = -\frac{p^2}{2 \cdot m}$
	$\Delta E_C = L; \ \Delta E_C = -\frac{p^2}{2 \cdot m}$ $L = -\frac{k \cdot x_1^2}{2} - \mu \cdot m \cdot g \cdot x_1$
	Răspuns: $\mu = 0.45$
C.	$\frac{E_{B_1}}{E_B} = \frac{x_1^2}{x^2}$
	$\frac{\overline{E_B} - \overline{\chi^2}}{\overline{\chi^2}}$
	Răspuns: $\frac{E_{B_1}}{E_B} = 0.64$
	5

-izică Varianta 28

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 29

Subiectul A. MECANICĂ

Nr. item	Soluție/rezolvare
a.	enun' corect
b.	$a = F/(m_1 + m_2)$
	$\Delta x = a \Delta t^2 / 2$
	Răspuns: $\Delta x = 0.5m$
C.	$ \begin{cases} F - T = m_2 a \\ T = m_1 a \end{cases} $
	$T = \frac{m_1}{m_1 + m_2} F$
	Răspuns: $T = 40N$
II.2.a.	$m_1 v_0 = m_1 v_1 + m_2 v_2$
	$m_1 v_0 - m_1 v_1 + m_2 v_2$ $m_1 v_0^2 = m_1 v_1^2 + m_2 v_2^2$
	$\begin{aligned} v_1 &= \frac{2m_1v_1}{m_1 + m_2} - v_0, \ v_2 &= \frac{2m_1v_1}{m_1 + m_2} \\ \text{Răspuns: } v_1 &= 0, \ v_2 &= 5m/s \end{aligned}$
b.	1 Tabbans. $v_1 = 0$, $v_2 = 0$ 1170
	$\Delta E_c = Q$
	$-\frac{mv_0^2}{2} = Q$
	Răspuns: $ Q = 6,25J$
C.	$a = -\mu g$
	$a = -\mu g$ $\Delta x_1 = 0, \ \Delta x_2 = \frac{v_2^2}{2\mu g}$
	Răspuns: $\Delta x_2 = 12,5m$

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 30

Subjectul A. MECANICĂ

Nr. Item	
	Soluție / rezolvare
II.1.a.	$a_1 = -m_1 g / (m_1 + m_2)$
	Răspuns: $a_1 = -0.8 \text{ m} \cdot \text{s}^{-2}$
b.	$x = v_0 t + a t^2 / 2$, $x_0 = 0$, $t_0 = 0$
	$v = v_0 + at$
	Răspuns: $x_1 = 10 \text{ m}, v_1 = 0 \text{ m} \cdot \text{s}^{-1}$
C.	$a_2 = m_1 g / \left(m_1 + m_2 \right)$
	$v_2 = a_2(t_2 - t_1)$
	$E_{\rm c} = 0.5 (m_1 + m_2)v_2^2$
	Răspuns: $E_c = 28.8 \text{ J}$
II.2.a.	$\begin{cases} \vec{R} = m\vec{a} \\ \vec{R} = \vec{G}_1 + \vec{T}_1 \end{cases}$ $\cos \alpha = G_1/T_1$ $m_1 v_1^2/\ell = T_1 - m_1 g \cos \alpha$
	$m_1 v_1^2 / 2 = m_1 g \ell \cos \alpha$
	Răspuns: $\cos \alpha = 1/\sqrt{3}$
b.	$(m_1 + m_2)a_c = 2T - (m_1 + m_2)g$ $a_c = v^2 / \ell$ $m_1v'_1 = (m_1 + m_2)v$ $m_1g\ell = 0.5 m_1v'_1^2$
	Răspuns: T=1,7 N
c.	$n = Q/E_{\text{p1i}}$ Răspuns: $Q = 0.5 \ m_1 m_2 \ v_1'^2 \ / (m_1 + m_2)$ $E_{\text{p1i}} = m_1 g \ell, m_1 g \ell = 0.5 \ m_1 v_1'^2$ Răspuns: $n = \frac{Q}{E_{pi}} = 0.25$

Fizică Varianta 30

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 31

Subiectul A. MECANICĂ

Nr. Item	
	Soluție / rezolvare
II.1.a.	$m_1\vec{v}_1 + m_2\vec{v}_2 = (m_1 + m_2)\vec{v}_f$
b.	se ciocnesc mai întâi vagoanele W_1 şi W_2 justificarea afirmației $Q = -\Delta E_{cin} = \frac{m_1 m_2}{m_1 + m_2} \cdot \frac{(v_2 - v_1)^2}{2} > 0$
C.	Răspuns: $v_i = 3 \text{ m} \cdot \text{s}^{-1}$
II.2.a.	figura corectă (cu reprezentarea celor opt forțe)
b.	$G = k(\ell_0 - d_1)$, $2G = k(\ell_0 - d_2)$ sau echivalent $k = \frac{G}{d_2 - d_1}$ Răspuns: $k = 500 \frac{N}{m}$
C.	$\ell_0 = 2d_2 - d_1$ Răspuns: 24 cm

Fizică Varianta 31

-izică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 32

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	
	accelerația vagonului $a = f \cdot g$
	$V = V_0 - a \cdot \Delta t$
	Răspuns: $v = 9m/s$
b.	m v
	$V' = \frac{m_1 V}{m_1 + m_2}$
	Răspuns: $v' = 3m/s$
C.	ign to a state of
	$a = f \cdot g$
	$d = \frac{v'^2}{2a}$
	Răspuns: $d = 45m$
II.2.a.	$ma = G_t - F_t$
	$G_t = mg \sin \alpha$, $F_t = \mu mg \cos \alpha$
	$a = g(\sin\alpha - \mu\cos\alpha)$
	Răspuns: $a = 2,5m/s^2$
b.	
	$\Delta E_c = L_{rez}$
	$\Delta E_c = m \cdot a \cdot d$
	Răspuns: $\Delta E_c = 15J$
C.	
	$G_t = F_t$
	$\mu = tg\alpha$
	Răspuns: $\mu = \frac{\sqrt{3}}{3} = 0.57$
	S

Fizică Varianta 32

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 33

Varianta 33

Subiectul A. MECANICĂ

Nr. item	Soluție	e, rezolvare
II. 1.a.	$m_B g - T = m_B a \; ; \; T - \mu m_A g = m_A a$	
	Răspuns: $a = 5 \frac{m}{s^2}$	
b.	calculul tensiunii in fir T	
	Răspuns: T=1,5 N	
C.	compunerea fortelor la scripete	
	Răspuns: $F=T\sqrt{2}\cong 2,1 \text{ N}$	
II.2.a.	$d = \frac{gt^2}{2}$	
	Răspuns: d=5m	
b.	$t_c = \sqrt{\frac{2H}{g}}$; t' = $\sqrt{\frac{2(H - \Delta h)}{g}}$; t=t _c -t'	
	Răspuns: t=2s	
c.	$L = \Delta E_c = \frac{m}{2} (v_2^2 - v_1^2) = \frac{m}{2} g^2 (t_2^2 - t_1^2)$	
	Răspuns: $\Delta E_c = 1800J$	

Fizică
Proba E: Specializarea : matematică –informatică, ştiințe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 34

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	a' = -a sau $ a' = a $ cu indicarea sensului
	$T_1 = m(g+a) , T_2 = mg , T_3 = m(g-a)$
	Răspuns: $T_1 = 24KN, T_2 = 20KN, T_3 = 16KN$
b.	Viteza maximă se atinge la sfârşitul porțiunii h ₁
	$V_{max} = \sqrt{2ah_1}$
	Răspuns: $v_{max} = 4,47 \text{m/s}$
C.	$t = t_1 + t_2 + t_3$ $t_1 = \sqrt{\frac{2h_1}{a}}$
	$t_3 = \sqrt{\frac{2h_3}{a}}$
	Răspuns: $t = 13,38s$
II.2.a.	$E_c = mgH$
	Răspuns: $E_c = 42 \cdot 10^3 J$
b.	$G_a = F_{cfA} + G$
	$G_a = F_{cfA} + G$ $\frac{v^2}{R} + g = 8g \; ; R = \frac{v^2}{7g} = \frac{2H}{7}$
	Răspuns: $R = 6m$
C.	$E_{ti} = E_{tB}$
	$m = mv^2$
	$mgH = mg \cdot 2R + \frac{mv'^2}{2}$
	$N = \frac{mv'^2}{R} - mg \; ; \; N = mg\left(2\frac{H}{R} - 5\right)$
	Răspuns: $N = 4 \cdot 10^3 N$

EXAMENUL DE BACALAUREAT - 2007 Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 35

Subiectul A. MECANICĂ

Nr. Item	Soluție/ rezolvare
II.1.a.	$\frac{m_1 v_1^2}{2} = \frac{m_1 v_0^2}{2} - \mu mg\ell$
	$V_1 = \sqrt{V_0^2 - 2\mu g\ell}$
	Răspuns: $v_1 = 5 m/s$
b.	$V_2 = \frac{m_1 V_1}{m_1 + m_2}$
	$v_2 = 4m/s$
	legea conservării energiei mecanice:
	$\frac{(m_1 + m_2)v_3^2}{2} = \frac{(m_1 + m_2)v_2^2}{2} + (m_1 + m_2)gh$
	_
	$v_3 = \sqrt{v_2^2 + 2gh}$
	Răspuns: $v_3 = 8 m/s$
C.	$p = (m_1 + m_2) \cdot v_3$
	Răspuns: $p = 10 \text{ kg} \cdot \text{m/s}$
II.2.a. b.	desen realizat corect
D.	$F\cos\alpha - mg - F_c = ma$
	$F_c = \mu F \sin \alpha$
	$\mu = ctg\alpha - \frac{m(g+a)}{F\sin\alpha}$
	Răspuns: $\mu = 1/2\sqrt{3} \cong 0.29$
C.	$L = -F_c \cdot d$
	$L = -\mu F d \sin \alpha$
	Răspuns: $L = 18 J$

Fizică Varianta 35

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 36

Varianta 36

Subiectul A. MECANICĂ

Nu bous	
Nr. Item	Soluție / rezolvare
	0014 ji 0 / 13 2 3 1 4 1 5
1.1.	d.
2.	C.
3.	C.
3. 4. 5.	b.
5.	C.
II.1.a.	t = v / a
	Răspuns: $t = 60 \text{ s}$
b.	naspuils. <i>t</i> = 00.5
D.	E - Erin a
	$F_y = F \sin \alpha$
	$G = F_y + N$
	Răspuns: $F = 2 N$
C.	
	$F_x = F \cos \alpha$
	$F_x - F_f = ma$
	$F_f = \mu N$
	Răspuns: $\mu = 0.394$
II.2.a.	
	$0 = mv_1 - Mv_2$
	Răspuns: $v_2 = 2m/s$
b.	
	$V_{relativ} = V_1 + V_2$
	$t = \ell / v_{relativ}$
	Răspuns: $t = \frac{\ell M}{(M+m)v_1} = 2 \text{ s}$
C.	
	$x = v_2 t$
	Răspuns: $x_2 = 4 m$

Fizică

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 37

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	$a = -2 \text{ m/s}^2$, $v_0 = 6 \text{ m/s}$
	legea vitezei
	$t = \frac{v - v_0}{a}$
	Răspuns: t = 2 s
b.	$x_1^{}$ spațiul parcurs în primele două secunde de mișcare
	$x_2^{}$ spațiul parcurs în primele trei secunde de mișcare
	Răspuns: $\Delta X = X_2 - X_1 = 1 \text{ m}$
C.	graficul corect al vitezei în funcție de timp
	$v_{\rm m} = \frac{v_1 + v_3}{2}$
	Răspuns: $v_m = 2m/s$
II.2.a.	$F\cos\alpha - \mu N_1 - T = m_1 a$
	$N_1 + F \sin \alpha - m_1 g = 0$
	$T - \mu m_2 g = m_2 a$
	$N_2 - m_2 g = 0$
	$a = \frac{F(\cos\alpha + \mu\sin\alpha) - \mu g(m_1 + m_2)}{m_1 + m_2}$
	$m_1 + m_2$
	Răspuns: a = 6,8 m/s ²
b.	$L_{\text{Ff2}} = \vec{F}_{\text{f2}} \cdot \vec{d} = F_{\text{f2}} \cdot d \cdot \cos 180^{\circ} = -F_{\text{f2}} \cdot d = -\mu \cdot m_2 \cdot g \cdot d$
	Răspuns: $L_{f2} = -80N$
C.	$L_f = \vec{F} \cdot \vec{d} = F \cdot d \cdot \cos \alpha$
	Răspuns: L = 848,5 J

Fizică Varianta 37

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 38

Subiectul A. MECANICĂ

Nr. item	Soluție / rezolvare
II.1.a.	teorema de variație a energiei cinetice
	Răspuns: $V = \sqrt{2gl_0}$
b.	$-\frac{1}{2}k(\Delta l)^{2}_{\text{max}} + mg(l_{0} + \Delta l_{\text{max}}) = 0$
	Răspuns: $\frac{\Delta l_{\text{max}}}{l_0} = \frac{mg}{kl_0} \left(1 + \sqrt{1 + \frac{2kl_0}{mg}} \right)$
C.	$v = \sqrt{2g(h - l_{\text{max}})}$
	$ \Delta \vec{p} = \vec{F}_m \Delta t $ $ \vec{F}_m = -\frac{m\vec{V}}{\Delta t} $
	$\overrightarrow{F_m} = -\frac{m\mathbf{v}}{\Delta t}$
	$F_m = \frac{m\mathbf{v}}{\Delta t}$
	$\text{Răspuns: } F_m = \frac{m}{\Delta t} \sqrt{2g \left[h - l_0 \left(1 + \frac{mg}{kl_0} \left(1 + \sqrt{1 + \frac{2kl_0}{mg}} \right) \right) \right]}$
II.2.a.	$x_1(t) = v_1 t$, $x_2(t) = d + v_2(t - \Delta t)$
	$x_1(t) = x_2(t) = D$
	$\mathbf{v}_2 = \frac{\mathbf{v}_1(D-d)}{D - \mathbf{v}_1 \Delta t}$
	Răspuns: $v_2 = 79, 2 \frac{km}{h} = 22 \frac{m}{s}$
b.	reprezentarea grafică corectă
C.	$P_m = \frac{L}{\Delta t}$ iar $L = \Delta E_c$
	$\left \Delta E_c\right = \frac{1}{2} m \mathbf{v}^2$
	$\Delta t_f = \frac{m v^2}{2 P_c}$
	Răspuns: $\Delta t_f = 6,25s$

Varianta 38 Fizică

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 39

Subiectul A. MECANICĂ

Nr. Item	
W. Kem	Soluție / rezolvare
II.1.a.	
	$\vec{T} + \vec{G} + \vec{N} + \vec{F}_f = m\vec{a}$
	$T - F_f = ma$, $T = F$
	$F_f = \mu N$, $N = G$
	$a = F/m - \mu g$
	Răspuns: $a = 1 m/s^2$
b.	
	$\vec{G} + \vec{N} + \vec{F}_i = m\vec{a}'$
	$-F_f = ma'$
	$a' = -\mu g$
	Răspuns: $a' = -1 m/s^2$
C.	
	$x = t^2/2; t \in [0, 2 s]$
	$t_{op} = -v/a' = -(at)/a' = 2s$
	Răspuns: $x = 2 + 2(t-2) - (t-2)^2/2$; $t \in [2s, 4s]$
	Desen corect
II.2.a.	2 (6)
	$h_{\text{max}} = v_{01}^2 / (2g)$
I.	Răspuns: $h_{\text{max}} = 20 \text{ m}$
b.	$y_1 = v_{01}t - gt^2/2$
	$y_2 = h - gt^2/2$
	$y_1 = y_2, t = h/v_{o1}$
C.	Răspuns: $t = 2 s$
6.	$v_1 = v_{01} - gt$
	$v_2 = -gt$
	$v = (m_1 v_1 + m_2 v_2)/(m_1 + m_2)$
	Răspuns: $V = -15 m/s$

Fizică Varianta 39

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 40

Subiectul A. MECANICĂ

Nr. Item	
	Soluție / rezolvare
II.1.a.	$mgR = \frac{mv^2}{2}$
	$v = \sqrt{2gR}$
	Răspuns: $V \cong 4,47 \text{ m/s}$
b.	mv = 2mu
	$u = \frac{v}{2} = \sqrt{\frac{gR}{2}}$
	Răspuns: $u \cong 2,23 \text{ m/s}$
C.	
	$2\frac{mu^2}{2} = 2mgh$
	$h = \frac{u^2}{2g} = \frac{gR}{2 \cdot 2g} = \frac{R}{2}$
	Răspuns: $h = 0,25m$
II.2.a.	
	$y = v_1 t$
	$x = x_0 - v_2 t$
	Răspuns: $y = 2t$, $x = 20 - 4t$
b.	$d = \sqrt{x^2 + y^2}$
	Răspuns: $d = \sqrt{20t^2 - 160t + 400}$
C.	4/42)
	$\frac{d(d^2)}{dt} = 0$
	$40t_m - 160 = 0$
	Răspuns: $d_m = \sqrt{80} m \cong 8.94 m$, $t_m = 4 s$

Fizică Varianta 40

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 41

Subjectul A. MECANICĂ

Nr. Item	Calistia / warahyawa
	Soluție / rezolvare
a.	Enunțuri corecte
b.	$\Delta E_c + \Delta E_p = 0$
	$mgh - \frac{mv^2}{2} = 0$
	Răspuns: $v = \sqrt{2gh} = 2\sqrt{5} m/s$
C.	$mgh = \mu mg d$
	$\mu = \frac{h}{d}$
	Răspuns: $\mu = 0.25$
II.2.a.	$\Delta E_p = E_p^B - E_p^A = mg \cdot 2\ell$
	Răspuns: $\Delta E_p = 2J$
b.	
	$T_A = F_{cf} + G = m(4\pi^2 v^2 \ell + g)$
	$T_B = F_{cf} - G = m\left(4\pi^2 v^2 \ell - g\right)$
	Răspuns: $T_A = 17N$, $T_B = 15N$
C.	$v = \omega l$
	Răspuns: v = 12,56 m/s

Fizică Varianta 41

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 42

Subiectul A. MECANICĂ

	Soluție, rezolvare
II.1.a.	enunț corect al principiului al II-lea precizarea: referențiale inerțiale
b.	$L_{\rm fr} = -\Delta E_{\rm cin}$ Răspuns: $L_{\rm fr} = -16 {\rm J}$
c.	$rac{a_{urcare}}{a_{coborâre}} = rac{ ext{tg} lpha + \mu}{ ext{tg} lpha - \mu}$ Răspuns: $\mu = 0.33$
II.2.a.	$\omega = 2\pi v = \frac{2\pi}{T}$ Răspuns: $\omega = 0,010 \text{ rad } \cdot \text{s}^{-1} \text{ sau } \omega = 0,010 \text{ s}^{-1}$
b.	indicarea poziției (punctul superior) pentru forța de apăsare maximă-indicarea poziției (punctul inferior)
c.	$a = \frac{\omega^2 D}{2}$ Răspuns: $a = 10^{-3} \frac{\text{m}}{\text{s}^2}$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 43

Subiectul A. MECANICĂ

Soluție / rezolvare
Grafic corect
$d = \sqrt{x^2 + y^2} \Rightarrow d = \sqrt{(-2t + 10)^2 + (4t - 20)^2}$
Obținerea unei ecuații de gradul al II – lea în necunoscuta t Răspuns: $t_1 = 3s$
$\overrightarrow{v_r} = \overrightarrow{v_1} - \overrightarrow{v_2}, \ v_1 = -2 \frac{m}{s}, v_2 = 4 \frac{m}{s}$
$V_r = \sqrt{V_1^2 + V_2^2}$
Răspuns: $v_r = 2\sqrt{5} \text{m/s}$
Scrierea legii a doua a dinamicii
$ \text{ în proiecții pe axe } \Rightarrow \begin{cases} $
$\Rightarrow Fcos\alpha = \mu(G - Fsin\alpha)$
Răspuns: $\mu = 0,1$
$F = \frac{ma + \mu G}{\cdot}$
$\cos \alpha + \mu \sin \alpha$
Răspuns: F = 30N
$E_c = \frac{mv^2}{2}$
v = at
Răspuns: $E_c \cong 1170J$

Varianta 43 Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 44

Subiectul A. MECANICĂ

Nr. Item	Soluție, rezolvare
II.1.a.	
	$m \cdot a = F - G$
	$V = a \cdot \Delta t$
b.	Răspuns: $V = 10m/s$
,	$L = F \cdot h_1$
	$h_1 = a \cdot (\Delta t)^2 / 2$
	Răspuns: $L = 600J$
C.	$h_{\text{max}} = h_1 + h_2$
	$h_2 = V^2 / 2g$
	Răspuns: $h_{\text{max}} = 30m$
II.2.a.	$mv_0 = (m+M)V$
	Răspuns: $V = 2m/s$
b.	$Q = \frac{1}{2} \frac{mM}{m+m} v_0^2$
	Răspuns: $Q = 198J$
C.	$\Delta E_c = L_f$
	$\Delta E_c = -\frac{1}{2}(m+M)V^2$
	$L_f = -\mu(m+M)gd$
	Răspuns: $d=2m$

Fizică Varianta 44

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 45

Subjectul A. MECANICĂ

Nr. item	Soluție / rezolvare
II. 1.a.	accelerația sistemului $a = \frac{F \cos \alpha - \mu(mg - F \sin \alpha)}{m}$ $F_f = 0$
	Răspuns: $a \approx 17.3 \frac{m}{s^2}$ $v = at ; Ec = \frac{mv^2}{2}$
b.	$v = at$; $Ec = \frac{mv^2}{2}$
	Răspuns: $E_c \cong 7.5 \text{KJ}$
C.	$x = \frac{a \cdot t^2}{2}$
	$L = F\Delta x \cos \alpha$
II o	Răspuns: $L \cong 7,5KJ$
II.2.a.	$E_A = E_B$
	$m_1gh = \frac{m_1v_1^2}{2}$
	Răspuns: $v1 \cong 7.7 m / s$
b.	legea conservării impulsului în ciocnirea plastică
	$v = \frac{m_1 v_1}{m_1 + m_2}$
	$Q = \frac{m_1 m_2 v_1^2}{2(m_1 + m_2)}$
	Răspuns: Q = 36 J
C.	$\frac{(m_1 + m_2)v^2}{2} = (m_1 + m_2)gh'$
	$\cos lpha = rac{\ell - h^{'}}{\ell}$, $h^{'}$ - înălțimea la care se ridică sistemul după ciocnire
	Răspuns: $\alpha = arc \cos 0.52$

izică

Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 46

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
	·
II.1.a.	
	$N = G - F_2 \sin \theta$
	Răspuns: $N = 51,3N$
b.	$F_1 + F_2 \cos \theta = \mu_m N$
	$\mu_m = \frac{F_1 + F_2 \cos \theta}{mg - F_2 \sin \theta}$
	$\frac{\mu_m}{mg} - \frac{1}{mg} - F_2 \sin \theta$
	Răspuns: $\mu_m = 0.68$
C.	
	$\vec{F}_1 + \vec{F}_{2x} + \vec{F}'_f = m\vec{a}$
	$F_1 + F_2 \cos \theta - \mu' N = ma$
	$a = \frac{F_1 + F_2 \cos \theta - \mu'(-F_2 \sin \theta + mg)}{1 + \frac{1}{2} \sin \theta + \frac{1}{2} \sin \theta}$
	$a = \frac{1}{m}$
	Răspuns: $a = 2.92 m/s^2$
II.2.a.	$y_1 = y_2$
	$y_1 = V_0 t - \frac{gt^2}{2}$; $y_2 = h_m - \frac{gt^2}{2} = \frac{V_0^2}{2g} - \frac{gt^2}{2}$
	$t = \frac{V_0}{2g}$
	Răspuns: $t = 2s$; $y_1 = 60m$
b.	DY.
	Răspuns: $y_1 = 60m$
C.	y = y of $t = x$
	$v_1 = v_{01} - gt ; v_2 = gt$
	$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v} \Rightarrow v = \frac{m_1 v_1 - m_2 v_2}{m_1 + m_2}$
	Răspuns: $v = 5m / s$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 47

Subiectul A. MECANICĂ

Nr. Item	
	Soluție / rezolvare
II.1.a.	$a = g \frac{m_1 - m_2 \sin\alpha}{m_1 + m_2}$
	$u = g \qquad m_1 + m_2$
	Răspuns: $a = 7 \mathrm{m \cdot s^{-2}}$
b.	$L_2 = -m_2 g \Delta h$
	$\Delta h = \Delta x \cdot \sin \alpha$
	$\Delta x = x_3 - x_1$
	$x_3 = 0.5at_3^2$, cu $t_3 = 3s$ respectiv $x_2 = 0.5at_2^2$, cu $t_2 = 2s$
	Răspuns: $L = -8,75$ J
C.	$\begin{cases} \vec{R} = 0 \\ \vec{R} = \vec{G}_{12} + \vec{T} + \vec{T}' + \vec{G}'_{1} \end{cases}$
	$\int \vec{R} = \vec{G}_{12} + \vec{T} + \vec{T}' + \vec{G}_1'$
	$\vec{T} = -\vec{T}'$
	$m_2 g \sin \alpha = m_1' g$
	Răspuns: $m'_1 = 50 \text{ g}$
II.2.a.	$mv_0 = mv_1 + 2mv_2$
	$mv_0^2/2 = mv_1^2/2 + 2mv_2^2/2$
	Răspuns: $v_0 = 18 \text{ m} \cdot \text{s}^{-1}$
b.	$\vec{p}_{\rm i} = \vec{p}_{\rm f} \Rightarrow \Delta \vec{p}_{\rm corp 1} = -\Delta \vec{p}_{\rm corp 2}$
	$\left \Delta \vec{p}_2\right = 2mv_2$
	Răspuns: $\left \Delta \vec{p}_1 \right = 12 \text{ N} \cdot \text{s}$
C.	$a_1 = a_2 = -\mu g$
	$x_{m1} = -v_1^2/2a_1$, $x_{m2} = -v_2^2/2a_2$
	$d = x_{m1} + x_{m2}$
	Răspuns: $d = 90 \text{ m}$

Fizică Varianta 47

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 48

Subiectul A. MECANICĂ

Nr. Item	Soluție, rezolvare
II.1.a.	$F = F_f$
	$F = \mu Mg$
	Răspuns: $F = 2N$
b.	$Ma = 2F - F_f$
	$a = \frac{F}{M}$
	Răspuns: $a = 2 m/s^2$
C.	$d = \frac{1}{2}at^2$
	L = 2 Fd
	Răspuns: $L = 100 J$
II.2.a.	Legea conservării impulsului
	$u = \frac{m_1 v_1}{m_1 + m_2}$
	Răspuns: $u = 6 \text{m/s}$
b.	$E_{ci} = E_{cf} + Q$
	$Q = \frac{1}{2} \cdot \frac{m_1 m_2}{m_1 + m_2} v_1^2$
	Răspuns: $Q = 72 J$
C.	$\frac{1}{2}(m_1 + m_2)u^2 = (m_1 + m_2)gh$
	$\cos \alpha = \frac{\ell - h}{\ell}$
	Răspuns: $\alpha = 60^{\circ}$

Fizică Varianta 48

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 49

Subiectul A. MECANICĂ

Nr. Item	
	Soluție, rezolvare
II.1.a.	$a = \frac{F - mg(\sin\alpha + \mu\cos\alpha)}{a}$
	$u = \frac{1}{m}$
	Răspuns: $a = 5m/s^2$
b.	$a_1 = -g(\sin\alpha + \mu\cos\alpha)$
	$R "aspuns: a_1 = -15m/s^2$
C.	d . 210- add-
	$d_1 = v^2 / 2a_1 = ad/a_1$
	distanța totală $D = d + d_1$
	$L = -\mu mg D \cos \alpha$
II.2.a.	Răspuns: $L = -4000J$
II.Z.ā.	$v = \sqrt{2gh}$
	$h = I(1 - \cos \alpha)$
	conservarea impulsului conservarea energiei cinetice
	$V_1 = -V/3$
	$h_1 = I(1-\cos\alpha)/9$
	Răspuns: $h_1 = 5cm$
b.	$V_2 = 2v/3$
	$a = -\mu g$
	$t = -v_2/a$
	Răspuns: $t=\sqrt{2}s$
C.	$T = G + F_{cf}$
	$F_{cf} = mV^2/l$
	$T = mg(3 - 2\cos\alpha)$
	rezultat final $T=4N$

Varianta 49 Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 50

Subiectul A. MECANICĂ

Nr. Item	Soluție/ rezolvare
II.1.a.	Reprezentarea forțelor
	$m_{\alpha}(\sin 45^{\circ} - u\cos 45^{\circ}) = m_{\alpha}(\sin 20^{\circ} + u\cos 20^{\circ})$
	$a = \frac{m_2 g(\sin 45^\circ - \mu \cos 45^\circ) - m_1 g(\sin 30^\circ + \mu \cos 30^\circ)}{m_1 g(\sin 30^\circ + \mu \cos 30^\circ)}$
	$m_1 + m_2$
	Răspuns: a= 2,67 m/s ²
b.	
	Legea a II-a a dinamicii T=m₁a+ m₁·g(sin30°+ μ·cos30°)
	Răspuns: T=9,4 N
C.	
	at^2
	$d = \frac{at^2}{2}$
	Răspuns: <i>d=1,335m</i>
II.2.a.	
	Condiția de întâlnire: x ₁ =x ₂
	4,5t²=18 t=2s
b.	1=25
	v ₁ =2-8t
	v ₂ =2+t
	$v_1(2s) = -14m/s$
	V ₂ (2s)= 4m/s
C.	Răspuns: E ₁ = 98J ; E ₂ = 8 J
0.	$v_1 = v_2 => 2-8t = 2+t$
	Răspuns: t=0 la momentul inițial

Fizică Varianta 50

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 51

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție/ schiță de rezolvare
II.1.a.	$a = g(\sin\alpha + \mu\cos\alpha)$
	$S = 2d_{urcare} = \frac{v_0^2}{g \cdot (\sin \alpha + \mu \cos \alpha)}$
	Răspuns S = 11.28 m
b.	$\frac{mv_0^2}{2} = \frac{mv^2}{2} + \mu mgS\cos\alpha$
	$v = \sqrt{v_0^2 - 2\mu g S \cos \alpha}$
	Răspuns $v=7,78 \text{m/s}$
C.	$L = F_f \cdot S$
	$L = \mu mgS \cos \alpha$
	$R\check{aspuns} L = 39,48J$
II.2.a.	$v_c = g \cdot t_c$
	$t_c = \frac{v_c}{g}$
	Răspuns $t_c = 2s$
b.	$v_1 = g \cdot t_1$
	$E_{c1} = \frac{m \cdot v_1^2}{2}$
	$E_{total} = \frac{m \cdot v_c^2}{2}$
	$E_{p1} = E_t - E_{c1}$
	$\textbf{R\"{a}spuns} E_{c1} = 100J \qquad E_{p1} = 300J$
C.	$y = \frac{g \cdot t^2}{2}$
	$\Delta y = y(2) - y(1,6)$
	Răspuns $\Delta y = 7.2 m$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 52

FIZICĂ

Subiectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$G_t = F_c$
	$mg\sin\alpha = \mu mg\cos\alpha$
	$\alpha = \operatorname{arctg}\mu$
	Răspuns $\alpha = 30^{\circ}$
b.	desen care să evidențieze toate forțele care acționează asupra corpului
C.	$F - G_t - F_c = ma$
	$F = m(a + 2g\sin\alpha)$
	R aspuns $F = 26 N$
II.2.a.	legea conservării energiei
	$h_{\text{max}} = \frac{v_0^2}{2g} = 7.2 m$
	$Răspuns v_0 = 12 m/s$
b.	$mgh_{max} = 36 J$
	R aspuns $m = 0.5 kg$
c.	legea mişcării uniform variate
	$h' = v_0 t - g \frac{t^2}{2}$
	soluțiile ecuației:
	$t_1 = 2 s; t_2 = 0.4 s$
	$t_u = \frac{v_0}{g} < t_1$
	Răspuns $t = 0.4 \text{ s}$

Varianta 52

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 53

Varianta 53

FIZICĂ

Subiectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	legea conservării energiei $mgl = \frac{mv_1^2}{2}$
	$v_1 = \sqrt{2gI}$
	$R "aspuns" v_1 = 4m/s$
b.	$v_1' = 2 \frac{m_1 v_1}{m_1 + m_2} - v_1 = \frac{m_1 - m_2}{m_1 + m_2} v_1$
	$v_2' = 2 \frac{m_1 v_1}{m_1 + m_2}$
	Răspuns $v_1' = -2m/s$, $v_2' = 2m/s$
C.	$a = -\mu g$
	$V_2'^2 = 2\mu gd \Rightarrow \mu = \frac{V_2'^2}{2gd}$
	Răspuns $\mu = 0,1$
II.2.a.	reprezentarea grafică a forțelor
	· ·
	$a = \frac{F}{m} - g(\sin \alpha - \mu \cos \alpha)$
	Răspuns $a = 3m/s^2$
b.	$d = \frac{1}{2}at_1^2 \Rightarrow t_1 = \sqrt{\frac{2d}{a}}$
	$Răspuns t_1 = 2\sqrt{5} \cong 4,46s$
C.	$p_{max} = m \cdot v_{max}$
	$V_{max} = a \cdot t_1 \Rightarrow p_{max} = m \cdot a \cdot t_1$
	Răspuns $p_{max} = 1338 N \cdot s$

Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 54

FIZICĂ

Subiectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$F_{cf} = m V^2 / R$
	Răspuns $F_{cf} = 450N$
b.	diagrama forțelor $\overrightarrow{F_{cf}}$, $\overset{ ightarrow}{G}$
	$tg \alpha = \frac{F_{cf}}{G}$
	Răspuns $\alpha = arctg(0.45)$
C.	$L = Fd\cos\alpha$
	$\alpha = 90^{\circ}$
	Răspuns $L=0J$
II.2.a.	$d = \frac{a\Delta t^2}{2}$ $V = \frac{2d}{\Delta t}$ Răspuns $V = 20m/s$
b.	$L_s = mV^2/2 + F_r d$
	$P = rac{L_s}{\Delta t}$ Răspuns $P = 3kW$
C.	$0 = V_0 + a'\Delta t'$
	$a' = -\frac{2d}{\Delta t \Delta t'}$
	Răspuns $a' = -2m/s^2$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 54

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 55

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	accelerația sistemului $a = (m_1 - m_2) \cdot g/(m_1 + m_2)$
	$t = \sqrt{\frac{2h}{a}}$
	Răspuns $t = 0.6s$
b.	$E_C = \frac{(m_1 + m_2)v^2}{2}$
	v = at
	Răspuns $E_C = 3J$
C.	$v^2 = 2gh$
	$h' = \frac{a^2 t^2}{2g}$
	$h_{max} = h + h'$
	R ăspuns $h_{max} = 0.8m$
II.2.a.	$F = m \frac{4\pi^2}{T^2} \ell$
	$T = 2\pi \sqrt{\frac{m\ell}{F}}$
	$\mathbf{R ispuns} T = 2\mathbf{s}$
b.	$F = m\omega_r^2 \ell$
	$\omega_r = \sqrt{\frac{F}{m\ell}}$
	Răspuns $\omega_r = 6.28 rad / s$
C.	$u_1 = 2\frac{mv}{m+M} - v$
	$\frac{1}{5} = \frac{m - M}{m + M}$
	R aspuns M = 133,33g

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 56

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$\frac{m \cdot v_1^2}{2} = \frac{m \cdot v_2^2}{2} + m \cdot g \cdot y_2$
	$V_1 = \sqrt{2 \cdot g \cdot y_2 + v_2^2}$
	R aspuns $v = 377 m/s$
b.	$m \cdot g \cdot y_{\text{max}} = \frac{m \cdot v_2^2}{2} + m \cdot g \cdot y_2$
	$y_{\text{max}} = \frac{v_2^2}{2g} + y_2$
	$\mathbf{R}\mathbf{\check{a}spuns} \qquad \mathbf{y}_{\max} = 7125\mathbf{m}$
c.	$F = (\Delta p)/\tau$
	$\Delta p = m \cdot \Delta v = m \cdot (v_2 - 0)$
	Răspuns F = 50 kN
II.2.a.	$V_{jos} = \omega \cdot h$
	$Răspuns v_{jos} = 8 m/s$
b.	
	$F_{\text{sus}} = m \cdot g$
	$F_{jos} = m \cdot g + m \cdot \omega^2 \cdot h$
	$F_{jos}/F_{sus} = 1 + \omega^2 \cdot h/g$
	Răspuns $F_{jos}/F_{sus} = 4.2$
c.	$v_{final} = \sqrt{v_{jos}^2 + 2g(H - h)}$
	$E_{cin} = \frac{m}{2} \left(v_{jos}^2 + 2g(H - h) \right)$
	$\mathbf{R\check{a}spuns} \qquad E_{cin} = 3.5 J$

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 57

FIZICĂ

A. Mecanică

Nr. Item	Soluție / schiță de rezolvare
II. 1. a.	$\vec{G}_1 + \vec{T} = m_1 \vec{a} \; ; \; \vec{G}_2 + \vec{T} = m_2 \vec{a}$
	$m_2g - T = m_2a \text{ și } T - m_1g = m_1a$
	$a = \frac{(m_2 - m_1)g}{m_1 + m_2}$
	$m_1 + m_2$
	Răspuns $a_1 = a_2 = a = \frac{10}{9} \frac{m}{s^2} \cong 1,11 \frac{m}{s^2}$
b.	$T = m_1(g+a) = m_2(g-a)$
	$R\"{a}spuns T \cong 22,22N$
C.	F = 2T
	$R\check{aspuns}\ F\cong 44,44N$
II. 2. a.	$a = -\mu g = -0.2ms^{-2}$
	expresiile vitezelor înainte de ciocnire $v_1 = v_{01} + a\Delta t$ și $v_2 = v_{02} + a \cdot \Delta t$
	Răspuns $v_1 = 7ms^{-1}$, respectiv $v_2 = 0ms^{-1}$
b.	legea conservării impulsului $m_1v_1 + m_2v_2 = (m_1 + m_2)v$
	$v = m_1 v_1 / (m_1 + m_2)$
	$S_{op} = \frac{v^2}{2\mu g}$
	Răspuns $v = 2.8ms^{-1}$ $S = 19.6m$
C.	$L_1 = -F_{f1} \cdot d_1 = -\mu m_1 g \cdot d_1$
	$L_2 = -F_{f_2} \cdot d_2 = -\mu m_2 g \cdot d_2$
	$d_1 = v_{01}\Delta t + a\frac{(\Delta t)^2}{2}$; $d_2 = v_{02} \cdot \Delta t + a\frac{(\Delta t)^2}{2}$
	$L_{ansamblu} = -F_f \cdot S_{opr} = -\mu (m_1 + m_2) g \cdot S_{opr}$
	lucrul mecanic total al forțelor de frecare $L=L_{_{\! 1}}+L_{_{\! 2}}+L_{_{\! ansamblu}}$
	Rǎspuns L = -84,1J

Fizică Varianta 57 Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 58

FIZICĂ

Subiectul A. MECANICĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	teorema de variație a impulsului:
	$p_2 - p_0 = \frac{F \cdot t}{2}$
	Răspuns $p_2 = 2kgm/s$
b.	$L = \Delta E_c$
	$L = \frac{mv_2^2}{2} = \frac{p_2^2}{2m}$
	Răspuns $L=2J$
C.	$F_f = \mu mg$
	$L = -\mu mgd$
	$\frac{mv_1^2}{2} - \frac{mv_3^2}{2} = -\mu mgd$
	Răspuns $d = 1,33m$
II.2.a.	$F_f = 0 \rightarrow E_A = E_B$
	$m_1 g R = \frac{m_1 v_1^2}{2}$
	$v_1 = \sqrt{2gR}$
	$v_1 = v_1 \frac{m_1 - m_2}{m_1 + m_2}$; $v_2 = \frac{2m_1 v_1}{m_1 + m_2}$
	R ăspuns $v_1 = -2.1 \frac{m}{s}; v_2 = 4.21 \frac{m}{s}$
b.	$\frac{m_1 v_1^{'2}}{2} = m_1 g h_1$
	$h_1 = \frac{{v_1'}^2}{2g}$
	Răspuns $h_1 = 0,22 \text{ m}$ $L = \Delta E_c$
C.	
	$0 - \frac{m_2 v_2^{'2}}{2} = -\mu m_2 g d$
	$d = \frac{v_2^{'2}}{2uq}$
	Răspuns $d = 4,43 m$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 59

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	Răspuns
	- mişcare rectilinie uniform accelerată (\vec{a} , \vec{V} același sens)
	mişcare rectilinie uniformă ($\vec{a}=0$) mişcare rectilinie uniform încetinită și apoi uniform accelerată
b.	legea vitezei $V = at_1$
	$V_1 = V$
	$v_2 = v_1 + a'(t_3 - t_2)$
	$R aspuns v_2 = -2m/s$
C.	legea mişcării rectilinii uniform variate aplicată pe intervale de timp
	coordonata după primele două secunde $x_1 = 2m$
	coordonata după următoarele două secunde $x_2 = 6m$
	$R \ddot{a} spuns x_3 = 6m$
II.2.a.	aplicarea princ.fundamental
	$a = (F - \mu mg) / m$
	legea vitezei $v = at$
	Răspuns $V = 4m/s$
b.	legea conservării impulsului în ciocnirea plastică $u = \frac{m_1 \text{ v}}{m_1 + m_2} = \frac{v}{2}$
	$h = u^2 / 2g$
	Răspuns $h = 0.2m$
C.	$T = G \cos \alpha$
	$\cos \alpha = 1 - (h/l)$
	Răspuns $T = 8N$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 60

FIZICĂ

Subiectul A. MECANICĂ

Nr item	Soluție / Schiță de rezolvare
II.1. a.	$D_1 = v_1 \cdot \Delta t_1$
	Intervalul de timp în care se mişcă doar primul mobil $\Delta t_1 = t_1 - 0 = 20s$
	spațiul parcurs de primul mobil în acest interval de timp $D_1=80m$
	Răspuns $v_1 = 4m/s$
b.	$\Delta t_2 = t_2 - t_1$
	$t_1 = 20s$
	$t_2 = 95s$
	$\mathbf{R\check{a}spuns} \Delta t_2 = 75s$
C.	$E_{c2}' = \frac{m_2 v_2'^2}{2}$
	$\overrightarrow{v_2} = \overrightarrow{v_2} + \overrightarrow{v_1}$
	$v_2 = \Delta D / \Delta t$
	$\Delta D = 120m - 80m$
	$\Delta t = 50s - 20s$
	Răspuns $E_{c2}^{'}\cong 0.89J$
II.2. a.	reprezentare forțelor
b. C.	explicație
0.	$F_{ex} + F_f = 0$
	$\overrightarrow{F}_{ey} + \overrightarrow{G} + \overrightarrow{N} = 0$
	$N = G - k\Delta \ell \sin \alpha$
	$k\Delta\ell\cos\alpha = \mu(mg - k\Delta\ell\sin\alpha)$
	$E_p = \frac{k\Delta\ell^2}{2}$
	$\mu = \frac{\sqrt{2E_p k} \cos \alpha}{mg - \sqrt{2E_p k} \sin \alpha}$
	Răspuns $\mu = 0.25$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 61

FIZICĂ

Subiectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$h_{\text{max}} = v^2 / (2g)$
	$\mathbf{R}\mathbf{\check{a}spuns} \mid h_{max} = 5m$
b.	$v = v_0 t - gt$
	R ăspuns $v = 5 m/s$
C.	$h = v_0 t_2 - \frac{g t_2^2}{2}$
	$E_P = mgh$
	R aspuns $E_P = 7.5 J$
II.2.a.	$V = (m_1 V_1 - m_2 V_2)/(m_1 + m_2)$
	Răspuns $v = 2 m/s$
b.	$v_1 = 2[(m_1v_1 - m_2v_2)/(m_1 + m_2)] - v_1$
	$R"aspuns v'_1 = -16 m/s$
C.	$m_1 v_1 - m_2 v_2 = -m_1 u_1 + m_2 u_2$
	$u_2 = (v_1 - 3v_2 + u_1)/3$
	$E_{Ci} = (m_1 v_1^2 + m_2 v_2^2)/2$ $E_{Cf} = (m_1 u_1^2 + m_2 u_2^2)/2$
	$x = (-\Delta E_C)/E_{Ci} = (E_{Ci} - E_{Cf})/E_{Ci}$
	Răspuns $x \cong 0,53 \cong 53\%$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 62

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$\mathbf{R\check{a}spuns} \frac{E_{p2}}{E_{p1}} = 4$
b.	$k = \frac{mg}{d}$
	Răspuns $k = 100 \text{ N} \cdot \text{m}^{-1}$
C.	h = 2 d Răspuns $h = 4 cm$
II.2.a.	$t_{\rm i} = \frac{v_{\rm o}}{g}$
	Răspuns $t_1 = 2 \text{ s}$
b.	$t_{\text{intálnire}} = \frac{v_0}{g} + \frac{\tau}{2} sau \ t_{\text{intálnire}} = 3 \text{ s}$
	$h_{ ext{intlinire}} = rac{v_0^2}{2g} - rac{g}{2} \left(rac{ au}{2} ight)^2$
	Răspuns <i>h</i> intâlnire = 15 m
C.	$v_1 = 10 \text{ m} \cdot \text{s}^{-1}$ (orientată în jos) și $v_2 = 10 \text{ m} \cdot \text{s}^{-1}$ (orientată în sus)
	conservarea impulsului (cu sensul de referință în sus): $-m \cdot v_1 + m \cdot v_2 = 2 \cdot m \cdot V_{\text{finală}}$ Răspuns $v_{\text{finală}} = 0$.

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 63

FIZICĂ

Subjectul A. MECANICĂ

Nr.item	Soluție / schită de rezolvare
II.1.a.	enunțul celor două legi
b.	$\Delta E_p = L_i$ $mgh = \mu mgd + \mu mg\ell \cos \alpha$ $\cos \alpha = \sqrt{1 - (h/\ell)^2}$ Răspuns $\mu = 0,174$
C.	L _i = $-\mu$ mgd Răspuns L _i = $-3.5J$
II.2.a.	$\Delta E_c^{relativa} = Q$ Răspuns $Q = 100J$
b.	$Q = \frac{m_{redusa} v_{relativa}^2}{2} = mv^2$ $v = \sqrt{\frac{Q}{m}}$ Răspuns $v = 5 m/s$
C.	$\mathbf{R\check{a}spuns} mv - mv = 0$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 64

FIZICĂ

Subjectul A. MECANICĂ

Nr.item	Soluție / schiță de rezolvare
II.1.a.	reprezentarea forțelor
	$a = g(\sin \alpha - \mu \cos \alpha)$
	Răspuns $a \cong 2,8m/s^2$
b.	$L_{f} = -\mu mg \frac{h}{\sin \alpha} \cos \alpha$
	$R\check{aspuns} \qquad L_{f} \cong -8.5J$
C.	$mgh = \frac{p^2}{2m} + L_f$
	$p = \sqrt{2m^2gh + L_f}$
	Răspuns $p \cong 5,6 N \cdot s$
II.2.a.	$F\cos\alpha - \mu(mg - F\sin\alpha) = ma$
	$F = \frac{m(a + \mu g)}{\cos \alpha + \mu \sin \alpha}$
	$\Gamma = \frac{1}{\cos \alpha + \mu \sin \alpha}$
	Răspuns $F \cong 6,6N$
b.	$N = mg - F \sin \alpha$
	$N=0 \Rightarrow F\sin\alpha \ge mg$
	$F_{\min} = mg/\sin\alpha$
	$R \text{ `aspuns } F_{\min} = 40N$
C.	$\Delta E_c = L$
	$L = F_{\min} d \cos \alpha$
	Răspuns $E_c \cong 68 J$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 65

FIZICĂ

Subjectul A. MECANICĂ

Nr.item	Soluție / schiță de rezolvare
II.1.a.	$\frac{mv^2}{2} = mgh$
	$v = \sqrt{2gh}$
	Răspuns $v = 2\sqrt{5} \frac{m}{s}$
b.	$mgh = \mu mgd$
	$\mu = \frac{h}{d}$
	Răspuns $\mu = 0.25$
C.	$v_A^2 = 2gh - 2\mu g \frac{d}{2}$
	$v_A = \sqrt{gh}$
	$v_B = v_A$
	$\mathbf{R\check{a}spuns} \mathbf{v}_B = \sqrt{10} \ m$
II.2.a.	precizarea corectă a poziției de lansare (firul orizontal și viteza corpului orientată vertical în sus)
b.	$v = 2\pi v \ell$
	$h_{\text{max}} = \frac{v^2}{2g}$
	Răspuns $h_{\text{max}} \cong 8 m$
C.	$\Delta y_1 = v \tau - \frac{g \tau^2}{2}, (\tau = 1s)$
	Răspuns $\Delta y_1 \cong 7.6 m$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 66

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	Reprezentarea forțelor care acționează asupra sistemului
	mg - T = ma
	$\left\{T - \mu N_2 = Ma\right\}$
	$\begin{cases} T - \mu N_2 = Ma \\ N_2 = Mg \end{cases}$
	$M = \frac{m(g-a)}{\mu g + a}$
	$\mathbf{R ispuns} M = 3kg$
b.	$T = \frac{mMg(1+\mu)}{m+M}$
	$\vec{F} = \vec{T} + \vec{T}'; T = T'$
	$F = \sqrt{2T^2} = T\sqrt{2}$
	$\mathbf{R\check{a}spuns} F = 18\sqrt{2}N$
C.	$E_c = \frac{(m+M)v^2}{2}$
	$E_c = \frac{(m+M)a^2t^2}{2}$
	$\mathbf{R ispuns} E_c = 192J$
II.2.a.	$p = mv = m \cdot at$
	$a = \frac{p}{m \cdot t}$
	Răspuns $a = 5m/s^2$
b.	Răspuns $a = 5m/s^2$ $E_c = \frac{mv^2}{2} = \frac{p^2}{2m}$
	$\textbf{Rǎspuns} E_c = 400J$
C.	$\Delta x = \frac{at^2}{2}$
	Răspuns $\Delta x = 40m$

Varianta 66 Proba scrisă la Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 67

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	Conditia de intâlnire: x ₁ = x ₂
	$x_1 = v_0 T - \frac{gT^2}{2}$
	$x_2 = H - \frac{g(T-t)^2}{2}$
	$T = \frac{\left(2H - gt^2\right)}{2\left(v_0 - gt\right)}$
	(0 3)
	R ăspuns $x_1 = x_2 = 400 \text{m}$
b.	$v_1 = v_0 - gT$
	$v_2 = -g(T - t)$
	$Q = \left[\frac{m_1 m_2}{2(m_1 + m_2)} \right] (v_1 - v_2)$
	Răspuns Q = 2KJ
C.	Răspuns $Q = 2KJ$ $m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}$
	$v_p = \sqrt{v'^2 + 2gx_1}$
	Răspuns $v_p = 107,7 \text{m/s}$
II.2.a.	Legea Galilei Accelerațiile pe plan inclinat:
	$a_{cob} = g (sin\alpha - \mu cos\alpha);$
	$a_{urc} = -g (\sin\alpha + \mu \cos\alpha)$
	$v_0 = \sqrt{4 \cdot \mu \cdot g \cdot h \cdot ctg\alpha}$
b	Răspuns $v_0 = 4\sqrt{3} \cong 6,93$
b.	$L_{BC} = L_{AB} = \vec{F}_f \cdot \vec{d} = F_f \cdot d \cdot \cos 180 = -F_f \cdot d$ $F_f = \mu N$
	$\begin{split} L_{tot} &= -2\mu \cdot m \cdot g \cdot h \cdot ctg\alpha \\ \textbf{Răspuns} L_{tot} &= -48J \end{split}$
C.	$Ec = \frac{mv_D^2}{2}$
	$v_D = \sqrt{gh(1 - \mu ctg\alpha)}$
	Răspuns Ec = 28 J

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 68

FIZICĂ

Subjectul A. MECANICA

Nr. item	Soluție / schiță de rezolvare
II. 1. a	$v = v_0 + a t$ Răspuns $v = 8 \text{ m/s}$
b.	$t_3 = 3 \text{ s}$ $\Delta x = x_3 - x_2$
	$x_3 = v_0 t_3 + \frac{a t_3^2}{2}$ $x_2 = v_0 t_2 + \frac{a t_2^2}{2}$
	$t_2 = 2 \text{ s}$
	Răspuns Δ x = 4,5 m Legea conservării energiei
C.	$\Delta l = v \sqrt{\frac{m}{k}}$ Răspuns Δ I = 0,2 m
II. 2. a.	$m_1 g \sin \alpha - T - \mu_1 m_1 g \cos \alpha = m_1 a$ $m_2 g \sin \alpha + T - \mu_2 m_2 g \cos \alpha = m_2 a$
	$a = \frac{g \sin \alpha (m_1 + m_2) - g \cos \alpha (\mu_1 m_1 + \mu_2 m_2)}{m_1 + m_2}$ Răspuns
b.	$T = m_2 (a + \mu_2 g \cos \alpha - g \sin \alpha)$ Răspuns $T = 6 \text{ m N}$
C.	$x' = \frac{a't^2}{2}$ $a' = g\sin\alpha$
	Răspuns x = 17,3 m

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 69

FIZICĂ

Subiectul A. MECANICĂ

Nr.item	Soluție / schiță de rezolvare
II. 1.a.	legea conservării energiei sau teorema de variație a energiei cinetice
	$E_{c0} = mgl(\frac{1}{2}\sin\alpha tg\alpha + 1 - \cos\alpha)$
	Răspuns $E_{c0} = 125 \text{ J}$
b.	$\frac{1}{2}mv'^2 = E_{c0} + mg(h - l)$
	Răspuns v' ≈ 9,2 m/s
C.	viteza inițială $v = \sqrt{\lg \sin \alpha t g \alpha}$
	d = vt;
	$h - l\cos\alpha = \frac{1}{2}gt^2$
	$d = \sqrt{2l(h - l\cos\alpha)\sin\alpha tg\alpha}$
	Răspuns $d \approx 3,24 \text{ m}$
II.2.a.	legea conservării impulsului $m_1\overrightarrow{v_1}+m_2\overrightarrow{v_2}=(m_1+m_2)\overrightarrow{v'}$
	$Q = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \left(\overrightarrow{v_1} - \overrightarrow{v_2} \right)^2$
	$\mathbf{v}_1 + \mathbf{v}_2 = \sqrt{\frac{4\mathbf{Q}}{\mathbf{m}}}$
	$ \mathbf{v}_1 - \mathbf{v}_2 = 2\mathbf{v'}$
	$ \mathbf{v}_1 - \mathbf{v}_2 = 2\mathbf{v'}$ $\mathbf{v'} = \sqrt{2\mu g d}$
	$\mathbf{v}_{1,2} = \frac{1}{2} \left(\sqrt{\frac{4Q}{m}} \pm \sqrt{8\mu gd} \right)$
	Răspuns $v_1 = 40 \frac{m}{s}, v_2 = 20 \frac{m}{s}$
b.	Q'=mv ² _{max}
	Răspuns $Q' = 625kJ$
C.	$d = \frac{v_{\text{max}}^2}{2\mu g}$
	Răspuns $d = 125 m$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 70

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	legea vitezei $v_2 = v_1 + a_1 t_1$
	$\Delta x = \left(v_2^2 - v_1^2\right) / 2a_1$
	Răspuns $\Delta x = 75 \text{m}$
b.	$L = \Delta E_{c}$
	$\Delta E_{\rm c} = E_{\rm cf} - E_{\rm ci} = m v_2^2 / 2 - m v_1^2 / 2$
	R ăspuns $L=3$ kJ
C.	$t_{\rm m} = -v_2/a_2$
	$\begin{cases} \vec{F}_1 = m\vec{a}_1 \\ \vec{F}_1 + \vec{F}_2 = m\vec{a}_2 \end{cases}$
	Răspuns $F_2 = 65 \text{N}$, direcția vitezei v_2 și sens invers aceasteia
II.2.a.	$E_{\rm i} = E_{\rm f}$
	$E_{i} = \frac{(m+M)v^2}{2}$
	$E_{\rm f} = k\Delta \ell_{\rm max}^2 / 2$
	R ăspuns $v = 2 \text{ m} \cdot \text{s}^{-1}$
b.	$mv_0 = (m+M)v$
	$E_{\rm c0} = m v_0^2 / 2$
	R ăspuns $E_{c0} = 200 \text{ J}$
C.	$E_{i} = E_{f}$
	$E_{\rm i} = \frac{(m+M)v^2}{2}$
	$E_{\rm f} = E_{\rm p\ elastica} + (m+M)v'^2/2$
	Răspuns $E_{\text{p elastica}} = 1,5 \text{ J}$

Varianta 70

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 71

Varianta 71

FIZICĂ

Subiectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$t \in [0,2]s: v_1 = v_0 + a \cdot t = 5 \frac{m}{s}$
	$t \in [2,4]s: v_2 = v_1 = 5 \frac{m}{s}$
	$t > 4s$: $v_2 + a \cdot t_{oprire} = 0 \Rightarrow t_{oprire} = 2.5s$
	t > 6.5s, corpul se întoarce
	$v_4 = -3 \frac{m}{s}$
	Reprezentare grafică
b.	$X_{\text{max}} = X_1 + X_2 + X_{\text{oprire}}$
	$x_{\text{max}} = \frac{v_1^2 - v_0^2}{2a_1} + v_2 \cdot (t_2 - t_1) - \frac{v_2^2}{2a_2} \text{(sau aria)}$
	Răspuns $x_{max} = 22,25 \text{ m}$
C.	6,5 s < t< 8s corpul se întoarce către origine în mişcare accelerată
	$V_4 = a_2 \cdot \Delta t$
	$\Delta t = 1.5s; a_2 = -2 \frac{m}{s}$
	Răspuns $v_4 = -3 \text{ m/s}$
II.2.a.	$L = \Delta Ec$
	$v_1^2 = 2g\ell(\sin\alpha - \mu \cdot \cos\alpha)$
	Răspuns $v_1 = \frac{3}{\sqrt{2}} \cong 2,12 \text{ m/s}.$
b.	$ec{ ho}_{ ext{initial}} = ec{ ho}_{ ext{final}}$
	$m_1 v_1 = (m_1 + m_2) \cdot v$
	Răspuns $v = \frac{9}{5\sqrt{2}} \cong 1,27 \text{ m/s}$
C.	Energia este constantă
	$\frac{(m_1 + m_2) \cdot v^2}{2} + (m_1 + m_2)gh = E$
	Răspuns E = 104,05 J

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 72

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	reprezentarea corectă a forțelor
b.	$m_2 g - \mu m_1 g = (m_1 + m_2) a$
	$a = \frac{m_2 g - \mu m_1 g}{m_2 + m_1}$
	$Raspuns a = 2,66 m/s^2$
c.	$F_e = k\Delta l$
	$-F_e + m_2 g = m_2 a$
	$\Delta l = \frac{m_2(g-a)}{l}$
	K.
	Răspuns $\Delta l = 3,67 cm$
II.2.a.	$d = \frac{a\Delta t^2}{2}$ $a = \frac{2d}{\Delta t^2}$
	2
	$a = \frac{2a}{1+a^2}$
	$\begin{array}{cccc} \Delta t^2 \\ \text{Răspuns} & a = 0.2(2)m/s^2 \\ \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \end{array}$
	Răspuns $a = 0.2(2)m/s^2$
b.	$\overrightarrow{F} + \overrightarrow{N} + \overrightarrow{G} + \overrightarrow{F}_f = (M+m)\overrightarrow{a}$
	$F = \frac{(M+m)(a+\mu g)}{\cos \alpha + \mu \sin \alpha}$
	$\cos \alpha + \mu \sin \alpha$
	Răspuns $F = 19,17N$
c.	$N = (M+m)g - F\sin\alpha$
	Răspuns $N = 390,42 N$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 73

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$a = v^2/2d$
	t = 2d / v
	Răspuns a = 0,25 m/s ² t = 20 s
b.	F – F _f = m a
	F = n m a/(n-1)
	Răspuns F = 30 N
C.	T = I / (v'- v)
	Răspuns T=5s
II.2.a.	reprezentare forțelor
	$F_{t} = \mu N$
	Fcosβ $-\mu$ N $-$ mgsinα $=$ 0
	$F\sin\beta + N - mg\cos\alpha = 0$
	$F = mg (sin\alpha + \mu cos\alpha) / (cos\beta + \mu sin\beta)$
	Răspuns F = 60 $\sqrt{3}$ / 7 ≈ 14,8 N
b.	$L_{Ff} = \vec{F}_f \cdot \vec{d} = F_f \cdot d \cdot \cos 180^\circ = -F_f \cdot d$
	Răspuns $L_{FI} = -0.66J$
C.	$F = mg \cos \alpha / \sin \beta$
	Răspuns F = 20 $\sqrt{3}$ ≈ 34,6 N

Varianta 73

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 74

FIZICĂ

Subjectul A. MECANICĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$v_1^2 = v_0^2 + 2ax_1$
	$a = \frac{v_1^2 - v_0^2}{2x_1}$
	Răspuns $a = -6,25 \text{ m/s}^2$
b.	$v_1 = v_0 + at$ Răspuns $t = 4$ s
C.	$t_{op} = -\frac{v_0}{a}$
	$x_{op} = v_0 t_{op} + \frac{a t_{op}^2}{2}$
	$s = 2x_{op} - x_1$
	Răspuns <i>s</i> = 26 m
II.2.a.	$N = mg - \frac{mv^2}{R}$
	Răspuns $N=0$
b.	$E_A = mgh$
	$E_B = \frac{mv_B^2}{2} + 2mgR$
	$h = \frac{v_B^2}{2g} + 2R$
	Răspuns <i>h</i> =1,25 m
C.	$L = \frac{mv^2}{2} + mg2R - mgH$
	Răspuns $L = -17,5 \text{ J}$

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 75

FIZICĂ

Subiectul A. MECANICĂ

Nr. item	Soluție / schită de rezolvare
II. 1.a.	forțe de tensiune T ₁ =m ₁ g și T ₂ =m ₂ g
	condițiile de echilibru $mg \sin \alpha - F_f - mg = 0$
	$m_2g - F_f - mg \sin \alpha = 0$
	Răspuns m=25 kg
b.	$F_f = \mu N$
	Răspuns μ =0,25
C.	forța exercitată în ax $F_{1,2} = T_{1,2} = \sqrt{2(1+\frac{h}{l})}$
	Răspuns $F_1 \cong 178N$ şi $F_2 \cong 357N$
II.2.a.	spațiul parcurs în prima secundă
	spațiul parcurs în primele 2s
	Răspuns $\Delta x = 7m$
b.	V = -2t + 10
	valoarea vitezei după 3s
	$\vec{p} = m_1 \vec{v}$
	Răspuns p=8 kg m/s
C.	$v_2' = \frac{2m_1v_1}{m_1 + m_2}$
	expresia energiei cinetice
	R ăspuns $E_{c2}^{'}$ =14,2 J

Fizică Varianta 75 Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 76

Subiectul A. MECANICĂ

Nr item	Soluție, rezolvare
II.1. a.	F = ma
	a = F/m
	Răspuns: $a = 5 m/s^2$
b.	$F_{\rm m} = (F_0 + F_8)/2$
	justificarea expresiei forței rezultat final $F_{m} = 5 N$
C.	teorema de variație a impulsului punctului material interpretarea ariei cuprinse intre graficul forței și proiecția lui pe axa timpului teorema de variație a energiei cinetice Răspuns: $L = 1225 J$
II. 2.a.	
	v = 1/T
	n = 60/T
b.	Răspuns: $v = rot/s$
U.	$E_{c} = \frac{mv^2}{2}$
	$v = 2\pi n\ell/60$
	Răspuns: $E_{C} = 3,2J$
C.	$ \vec{T} = m (2\pi n \ell/60)^2/2$
	$r = \ell$
	Răspuns: $\left \vec{T}\right = 3,2N$

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 77

Subiectul A. MECANICĂ

Nr. Item	
	Soluție, rezolvare
II.1.a.	
	accelerația sistemului $a = \frac{mg - Mg(\sin \alpha + \mu \cos \alpha)}{m + M}$
	expresiile: $G_t = Mg \sin \alpha$, $F_f = \mu Mg \cos \alpha$
	Răspuns: $a = 1 \frac{m}{s^2}$
b.	Tr.
	T = mg - ma
	$T = \frac{mMg(1 + \sin \alpha + \mu \cos \alpha)}{m + M}$
	m+M
	Răspuns: $T = 18N$
C.	
	$F = T\sqrt{2[1+\cos(90-\alpha)]} = T\sqrt{2(1+\sin\alpha)}$
	Răspuns: $F = 18\sqrt{3.2} = 32.22N$
II.2.a.	
	$m_1 \cdot v_0$
	$V = \frac{m_1 \cdot v_0}{m_1 + m_2}$
	Răspuns: $V = 2\frac{m}{s}$
b.	expresia căldurii într-o ciocnire plastică
	$Q = \frac{m_1 m_2 V_0^2}{2 \left(m_1 + m_2 \right)}$
	Răspuns: $Q = 2J$
C.	
	Expresia conservării energiei: $(m_1 + m_2)v^2 / 2 = (m_1 + m_2)gh$
	v^2
	$h = \frac{v^2}{2g}$
	Răspuns: $h = 0.2m$

Varianta 77

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 78

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
	$\int F - G \sin \alpha - F_f = ma$
	$\int N - G\cos\alpha = 0$
	$a = \frac{F}{m} - g(\sin\alpha + \mu\cos\alpha),$
	Răspuns: $a = 3.0 \text{ m/s}^2$
b.	$s = \frac{at^2}{2} \Rightarrow t = \sqrt{\frac{2s}{a}}$
	Răspuns: $t = 4,47s$
	$s' = -\frac{v^2}{2a'}$, unde $v' = \sqrt{2as}$
	Răspuns: $s' = -\frac{a \cdot s}{a'}$
	Răspuns: s'=16,4m
2. a	Conservare impulsului punctului material
_	$v'_2 = 0.8 \%$ $a = -\mu g$
	$\mu = \frac{1}{2gd} v_2^2$
	Răspuns: $\mu = 0.16$
b	$-\Delta E_{c} = \frac{1}{2} m_{1} v_{1} - \frac{1}{2} m_{1} v_{1}^{'2}$
	Răspuns: $-\Delta E_c = 15J$
С	$E'_{c2} = \frac{1}{2} m_i v'_2,$
	Răspuns: E' _{c2} = 0,32J

Varianta 78 Fizică

Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Subjectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	aggeleratio misošrii, prin identificaros goaficientilor legii de misogra
	accelerația mişcării prin identificarea coeficienților legii de mişcare
	Răspuns: $a = -2\frac{m}{s^2}$
b.	
	Legea vitezei $V = 20 - 2t$
	Răspuns: $V = 10 \frac{m}{s}$
C.	
	Formula energiei cinetice $E_c = 8 \cdot 10^3 J$
II.2.a.	$E_c = 8.10 \text{ J}$
II.Z.d.	reprezentarea corectă a forțelor pe desen
b.	$a = \frac{mg - Mg(\sin\alpha + \mu\cos\alpha)}{m + M}$
	Răspuns: $a = 1,25 \frac{m}{s^2}$
C.	T = mg - ma
	$T = \frac{mMg(1 + \sin \alpha + \mu \cos \alpha)}{m + M}$
	$F = T\sqrt{2[1+\cos(90-\alpha)]} = T\sqrt{2(1+\sin\alpha)}$
	Răspuns: $F = 30,31N$

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 80

Subjectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	
	$m_1 a = m_1 g - T$
	$m_2 a = T - m_2 g \sin \alpha - \mu m_2 g \cos \alpha$
	$\mu = \frac{m_1 g - m_2 g \sin \alpha - (m_1 + m_2)a}{m_2 g \cos \alpha}$
	$m_2 g \cos u$
	Răspuns: $\mu = \frac{\sqrt{3}}{2} \cong 0.86$
b.	
	$T = m_1(g - a)$ Răspuns: $T = 27 N$
C.	павринь. 1 — 2710
J. 0.	$E_c = \frac{(m_1 + m_2)v^2}{2}$
	$E_c = \frac{\sqrt{1-2}}{2}$
	v = at
W O =	Răspuns: $E_c = 10J$
II.2.a.	$m_2 v = (m_1 + m_2)u$
	$\frac{(m_1 + m_2)u^2}{2} = \frac{(m_1 + m_2)u'^2}{2} + (m_1 + m_2)g^{2\ell}$
	$\frac{\sqrt{1-2^{\prime}}}{2} = \frac{\sqrt{1-2^{\prime}}}{2} + (m_1 + m_2)g^{2\ell}$
	$\frac{(m_1 + m_2)u'^2}{\rho} = (m_1 + m_2)g$
	v
	Răspuns: $v = 15 m/s$
<u>b.</u>	$m_1 m_2 v^2$
	$Q = -\frac{1}{2}$
	$Q = -\frac{m_1 m_2 v^2}{2(m_1 + m_2)}$
	Răspuns: $Q = -7.5J$
C.	T. F. (C
	$T = F_{cf} + G$ $T = 6 \cdot (m_1 + m_2)g$
	$T = 6 \cdot (M_1 + M_2)g$ Răspuns: $T = 18N$
	паорино. 1 — 1014

Varianta 80

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 81

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	$k = \frac{F_1}{\Delta l_1}$
	Δt_1 Răspuns: $k = 200N/m$
b.	$L = \frac{k \cdot \Delta l^2}{2}$
	$L = \frac{F_1 \cdot \Delta l_1}{2}$
	Răspuns: $L = 9J$ $E_i = E_f$
C.	$E_i = E_f$
	$E_i = \frac{F_1 \cdot \Delta l_1}{2} ; E_f = \frac{m{v_0}^2}{2}$
	$\frac{F_1 \Delta l_1}{2} = \frac{m v_0^2}{2} \Longrightarrow v_0 = \sqrt{\frac{F_1 \cdot \Delta l_1}{m}}$
	Răspuns: $V_0 = 30m/s$
II.2.a.	$m_1 g l = \frac{m_1 v_0^2}{2}$
	Răspuns: $V_0 = 4,47 m/s$
b.	$v_2' = \frac{2v_0}{3}$; $v_1' = -\frac{v_0}{3}$
	Răspuns: $h_1 = \frac{{v_1}^2}{2g} = 0.11m$; $h_2 = \frac{{v_2}^2}{2g} = 0.44m$
C.	$h_1 = h_2 \Leftrightarrow v_2' = \left -v_1' \right $
	$\frac{2m_1'}{m_2'-m_1'} = 1 \Rightarrow 3m_1' = m_2'$
	Răspuns: $\frac{m_2'}{m_1'} = 3$

Fizică Varianta 81

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 82

Subjectul A. MECANICĂ

No bear	
Nr. Item	Soluție / rezolvare
II.1.a.	
	$h_{\text{max}} = \frac{v_0^2}{2g} ,$
	Răspuns: h_{max} =500m
b.	
	$y(t) = v_0 t - \frac{gt^2}{2}$
	$y_u = y(10) - y(9) = h_{\text{max}} - y(9)$
	Răspuns: $y_u = 5m$
C.	$y_1(t) = v_0 t - \frac{gt^2}{2}$ si $y_2(t) = v_0 (t - \tau) - \frac{g(t - \tau)^2}{2}$
	$y_1 = y_2$
	Răspuns: $t_i = \frac{v_0}{g} + \frac{\tau}{2}$, $t_i = 11s$,
II.2.a.	
	$N = G - F_{y}$
	$F_x - F_f = 0$
	$F = \frac{\mu mg}{mg}$
	$\cos \alpha + \mu \sin \alpha$
b.	Răspuns: <i>F</i> = 54,64N
D.	$L = F \cdot d \cdot \cos \alpha$, L= 472,29J
	$N = G - F_y F_x - F_f = ma$
	$F' = \frac{m(a + \mu g)}{\cos \alpha + \mu \sin \alpha}, F' = 163,93N$
	$L = F' \cdot d \cdot \cos \alpha ,$
	Răspuns: <i>L'</i> =1418J
C.	$P = F \cdot V \cdot \cos \alpha$
	Răspuns: $P = 37,33W$

Fizică Varianta 82 Proba E: Specializarea : matematică –informatică, științe ale naturii

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Varianta 83

Subiectul A. Mecanică

Nr. Item	
	Soluție / rezolvare
II. 1. a.	$\left[mg \sin \alpha - \mu mg \cos \alpha = 0 \right]$
	$N = mg \cos \alpha$
	$tg\alpha = \mu$
	Răspuns: $\alpha = 30^{\circ}$
b.	
	$\int F - mg \sin \alpha - \mu mg \cos \alpha = 0$
	$N = mg \cos \alpha$
	$F = mg(\sin\alpha + \mu\cos\alpha)$
	Răspuns: $F = 300N$
C.	
	$[F'\cos\alpha - mg\sin\alpha - \mu N = ma]$
	$\begin{cases} F' \cos \alpha - mg \sin \alpha - \mu N = ma \\ N - mg \cos \alpha - F' \sin \alpha = 0 \end{cases}$
	$F' = \frac{m(\alpha + g \sin \alpha + \mu g \cos \alpha)}{\cos \alpha - \mu \sin \alpha}$
	$\cos \alpha - \mu \sin \alpha$
	Răspuns: $F' \cong 572N$
II. 2. a.	$E_{P} = mgh$
	$h = l(1 - \cos \alpha)$
	$E_{P} = mgl(1 - \cos \alpha)$
	Răspuns: $E_p \cong 0,135J$
b.	
	$F_{cp} = \frac{mv^2}{l} \qquad F_{cp} = T - G\cos\alpha$
	·
	$E_m = E_c + E_p \iff mgl(1 - \cos \alpha_0) = mgl(1 - \cos \alpha) + \frac{mv^2}{2}$
	$v = \sqrt{2gl(\cos\alpha - \cos\alpha_0)}$
	Răspuns: $v = 2,7ms^{-1}$
C.	$T = mg(3\cos\alpha - 2\cos\alpha_0)$
	expresia $T_{\text{max}} = mg(3 - 2\cos\alpha_0)$
	Răspuns: $T_{\text{max}} = 2N$

Fizică Varianta 83

Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 84

Subiectul A. MECANICĂ

Nr. Item	Soluție, rezolvare
II.1.a.	desene:
	$\vec{R} = m\vec{a} \Rightarrow \vec{G}_{t} + \vec{F}_{f} = m\vec{a} \Rightarrow \begin{cases} -G_{t} - F_{f} = ma_{u} \\ G_{t} - F_{f} = ma_{c} \end{cases} \Rightarrow \begin{cases} -mg\sin\alpha - \mu mg\cos\alpha = ma_{u} \\ mg\sin\alpha - \mu mg\cos\alpha = ma_{c} \end{cases}$
	din graficul dat: $a = \Delta v/\Delta t$ $a_u = -3 \mathrm{m} \cdot \mathrm{s}^{-2}$ şi $a_c = 1.2 \mathrm{m} \cdot \mathrm{s}^{-2}$
	Răspuns: α =arcsin 0,21
b.	$L = \Delta E_{\rm c}$
	$L = L_{\rm fr}$
	$\Delta E_{c} = m(v_{f}^{2} - v_{i}^{2})/2, \ v_{i} = 9 \text{ m} \cdot \text{s}^{-1} \text{ și } v_{f} = 6 \text{ m} \cdot \text{s}^{-1}$
	Răspuns: $L_{fr} = -2,25 \text{ J}$
C.	$\Delta p = m V_8 - m V_0$
	Răspuns: $\Delta p = -0.3 kgm/s$
II.2.a.	Conservarea energiei mecanice
	La desprindere N = 0 , $F_{cp}=mg\coslpha$
	$a_0 = h_0$
	$\cos \alpha = \frac{h_0}{R}$
	Răspuns: $E_{\rm p} = \frac{5mgR}{3}$
b.	principiul al II-lea: $\begin{cases} \vec{R} = 0 \\ \vec{R} = \vec{G}_{\rm n} + \vec{N} + \vec{F}_{\rm cfi} \end{cases}$
	$R = G_n + N + P_{cfi}$ condiția de desprindere: $N = 0$
	$G = macosa$ $F_{+} = mv^{2}/R$
	$mv_2^2/2 = mgR(1-\cos\alpha)$
	Răspuns: $v_2 = \sqrt{2Rg/3}$
C.	$F_{f} = 0 \Rightarrow E_{j} = E_{f}$
	$E_{\rm i} = mg2R, E_{\rm f} = mv_3^2/2$
	Răspuns: $V_3 = 2\sqrt{gR}$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 85

Subjectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	
III I I G	$v_0 = 20 \text{ m/s}$
	La înălțimea maximă v = 0, t= tu
b.	Răspuns: t _u = 2s
	Viteza după prima ciocnire este v ₁ = 10 m/s
	v_1^2
	$h_{\max 1} = \frac{v_1^2}{2g}$
	Răspuns: $h_{\text{max}1} = 5m$
C.	function de la description de la contraction de
	Înainte de a doua ciocnire viteza este $v_1 = -10$ m/s După a doua ciocnire viteza este $v_2 = 5$ m/s
	$\overrightarrow{\Delta p} = \overrightarrow{mv}_2 - \overrightarrow{mv}_1$
	$\Delta p = m v_2 + m v_1 $
	Răspuns: $\Delta p = 0.75 \text{N} \cdot \text{s}$
II.2.a.	$G = F_e$
	$m_0g = kx_0$ Răspuns: $k = 500 \text{ N/m}$
b.	The state of the s
	Legea conservării impulsului $0 = m_1 v_1 - m_2 v_2$
	Legea conservării energiei $\frac{k(\ell-\ell_1)^2}{2} = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}$
	Legea conservant energies $\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$
	$v_2 = (\ell - \ell_1) \sqrt{\frac{k}{4m_1 + m_2}}$
	$\sqrt{4m_1 + m_2}$
	$V_1 = 2 \cdot V_2$
	Răspuns: $v_1 = 3,26 \frac{m}{s}$; $v_2 = 1,63 \frac{m}{s}$
C.	$E_p = \frac{k(\ell - \ell_1)^2}{2}$
	Răspuns: E _p = 1,6 J

Proba E: Specializarea : matematică –informatică, științe ale naturii

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

A. Mecanică

Solutie / rezolvare
$V_m = \frac{S}{\Delta t}$
S = Aria 0-5s = $2 \cdot 2 + \frac{2 \cdot 1}{2} + \frac{1 \cdot 0.5}{2} + 1 \cdot 0.5 + \frac{1 \cdot 1}{2} = 6.5m$
Răspuns: $V_m = 1.5 m/s$
Reprezentarea corectă a(t), câte un punct pentru fiecare regiune a graficului și un punct pentru etalonarea corecta a axelor.
Teorema de variație a E₀ Răspuns: L = -15 J
Ecuația lui Galilei: $V_1^2 = V_0^2 + 2ad$
Unde $a=-\mu g \Rightarrow$ Răspuns: $V_1=1m/s$
Conservarea impulsului total și a energiei mecanice
$m_1 v_1 = m_1 v_1' + m_2 v_2$ si $m_1 v_1^2 = m_1 v_1'^2 + m_2 v_2^2 \implies v_2 = 2 \frac{m_1 v_1}{m_1 + m_2} = 0,5 m/s$ Răspuns: $v_2 = 0,5 m/s$
Legea conservării energiei pentru bilă
$\frac{m_2 V_2^2}{2} = m_2 g l (1 - \cos \alpha)$ $\Rightarrow \cos \alpha = 1 - \frac{V_2^2}{2gl} \approx 0.98$
$2gl \\ \sin \alpha \approx 0.2$
Răspuns: $\alpha \cong \arcsin 0.2$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 87

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	aplicarea principiului fundamental
	$a = \frac{g(m_1 - m_2 \sin \alpha - \mu m_2 \cos \alpha)}{(m_1 - m_2 \sin \alpha - \mu m_2 \cos \alpha)}$
	$m_1 + m_2$
	$T = m_1(g - a)$
	Răspuns: $T = 1,2N$
b.	$a_1 = -g(\sin\alpha + \mu\cos\alpha)$
	legea vitezei $v = at$ ecuația lui Galilei $d = v^2 / 2a_1$
	Răspuns: $d = 3m$
C.	aplicarea principiului fundamental la echilibru cu masa maximă
	$m_{1\text{max}} = m_2 (\sin \alpha + \mu \cos \alpha)$
	aplicarea principiului fundamental la echilibru cu masa minimă
	$m_{\text{1min}} = m_2 (\sin \alpha - \mu \cos \alpha)$
	Răspuns: $m_1 \in [40,60]g$
II.2.a.	conservarea energiei mecanice
	$v = \sqrt{2gh}$
	Răspuns: $V = 3.16 m/s \cong \sqrt{10} m/s$
b.	$N = m(v_B^2 - Rg)/R$
	$V_B = \sqrt{2g(h-2R)}$
	Răspuns: $N = 5N$
C.	condiția limită de descriere a buclei $G = F_{\scriptscriptstyle cf}$
	$v_{\rm B} = \sqrt{gR}$
	Conservarea energiei mecanice
	$h_1 = \frac{5R}{2}$
	2
	Răspuns: $h_1 = 25cm$

Varianta 87

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 88

Subiectul A. MECANICĂ

II.1. a.
Răspuns: $d = 20m$ $V_{01} = 2 m/s$ şi $V_{02} = 2m/s$
$v_{01} = 2 m/s \text{ si } v_{02} = 2 m/s$
**
b. Condiția de întâlnire $x_1 = x_2 \Rightarrow 10 + 2t = -10 + 2t + 5t^2$
Răspuns: t = 2s
Răspuns: $Q = \frac{1}{2}\mu_r v_r^2$,
Răspuns: $Q = -50 J$
2. a F≤F _f
$F = F_f = \mu mg$
Răspuns: $\Delta t = 2,5s$
$\Delta p = A_{\text{subgrafic}}$
$\Delta p = mv - mv_0 \Rightarrow v = \frac{A_{\text{subgrafic}}}{m}$
Răspuns: $v = 68,75 \%$
După primele 5 s $v_0 = 18,75 \%$
$v^2 = v_0^2 + 2as \Rightarrow s = \frac{v^2 - v_0^2}{2a} \Rightarrow s = 218,75m$
$L = F \cdot s$, unde $F = 10N$
Răspuns: L = 2187,5 J

Varianta 88 Fizică

Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 89

Varianta 89

Subjectul A. MECANICĂ

Nr. item	Soluție / rezolvare
II. 1.a.	ecuațiile principiului doi ambele corpuri
	Răspuns: $a = 2.5 \text{ m/s}^2$
b.	ecuația vitezei în mişcarea uniform variată expresia energiei cinetice Răspuns: $E_{C2} = 150J$
C.	
	$L = Fd \cos \alpha$
	$d = \frac{at^2}{2}$
	$L_{\rm Ff} = -\mu m_1 g d$
	Răspuns: $L_{Ff} = -200J$
II.2.a.	0 - 110
	a = -μg
	$d_1 = v_1 t - \frac{\mu g}{2} t^2 \text{ si } d_2 = v_2 t - \frac{\mu g}{2} t^2$
	Răspuns: $t = 2s$
b.	
	$v_1' = v_1 - \mu gt i v_2' = v_2 - \mu gt$
	Răspuns: $Q = -484J$
C.	distanța până la oprire Răspuns: $d_{op} = 6,25m$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 90

Subjectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	
	$F_t = \mu N$,
	$N = G_n = mg\cos\alpha$
	Răspuns: $F_i \approx 17,2N$
b.	$F = G_t + F_t$
	$F = mg(\sin\alpha + \mu\cos\alpha)$
0	Răspuns: $F \approx 67N$
C.	$\eta = \frac{L_u}{L_c}$
	$\eta = \frac{1}{1 + \mu \operatorname{ctg} \alpha}$
	Răspuns: $\eta = 74,6\%$
II.2.a.	The part of the pa
	$mv_o = (m+M)v'$
	Răspuns: $v' = 1ms^{-1}$
b.	
	$m \perp M$
	$\frac{m+M}{2}v^{12}=(m+M)gh$
	$\cos\alpha = \frac{\ell - h}{\ell} = 1 - \frac{h}{\ell} = 0.95$
	$\cos u - \frac{1}{\ell} - 1 - \frac{1}{\ell} - 0,33$
	Răspuns: $lpha_{ m max} = rc \cos 0,95$
C.	$T_{\min} = (m+M)g\cos\alpha$
	Răspuns: $T_{min} = 0.95 N$

Fizică Varianta 90

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 91

Subiectul A. MECANICĂ

	TA: WILCANICA
Nr.item	Soluție / rezolvare
II. 1.a.	reprezentarea corectă a forțelor implicate:
b.	
	$F \ge F_f$
	$F_f = \mu m_1 g$
	Răspuns: $F_{\min} = 75N$
C.	
	$F_f - T = 0$
	$T = \mu m_1 g$
	T = 75N
	Răspuns: $T < T_{\rm max}$ deci firul nu se rupe.
II.2.a.	$m_0 = k \Lambda l_1 l_2 = mg$
	$mg = k\Delta l; k = \frac{mg}{\Delta l}$
	Răspuns: $k = 500 \frac{N}{m}$
b.	
	$l = l_0 + \Delta l$; $T = k\Delta l$; $T = m(g + a)$;
	$\Delta { m v}$
	$a = \frac{\Delta \mathbf{v}}{\Delta t}$
	determinated diagrafia, $a = -10^{m}$
	determinarea din grafic $a_3 = -10 \frac{m}{s^2}$
	Răspuns: $l_3 = 20cm$
C.	
	Distanța străbătută de ascensor de la parter până la baza ultimului etaj conform reprezentării grafice propusă
	de enunț: $d = 90m$
	Răspuns: $n = 1 + \frac{d}{h_0}$; $n = 19$
	n_0

Fizică Varianta 91

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 92

Subiectul A. MECANICĂ

Nr. Item	
Mi. item	Soluție / rezolvare
II.1.a.	$\vec{T} + \vec{F} + \vec{G} = \vec{0}$
	$T\cos\alpha = mg$ $T\sin\alpha = F$ $\Rightarrow F = mg \frac{\sin\alpha}{\cos\alpha}$
	Răspuns: $F = \frac{\sqrt{3}}{2} N$
b.	$T = \sqrt{F^2 + G^2} = \sqrt{G^2 (tg^2 \alpha + 1)}$
	$T = G\sqrt{tg^2\alpha + 1}$
	Răspuns: $T = 1N$
C.	$\frac{m \cdot v^2}{2} = m \cdot g \cdot l(1 - \cos \alpha)$
	$v = \sqrt{2gl(1 - \cos \alpha)}$
	Răspuns: $V = \sqrt{2}$ m/s
II.2.a.	$E_{c1} = \frac{m_1 v_1^2}{2}$ $E_{c2} = \frac{m_2 v_2^2}{2}$
	Răspuns: $E_{c1} = 160J$; $E_{c2} = \frac{375}{2}J$
b.	$(m_1 + m_2)\vec{v} = m_1\vec{v}_1 + m_2\vec{v}_2$ $V = \sqrt{\frac{p_1^2 + p_2^2}{(m_1 + m_2)^2}} ;$
	$tg\alpha = \frac{m_2 v_2}{m_1 v_1}$
	Răspuns: $v = 3{,}13m/s$; $tg\alpha = \frac{15}{16}$
C.	$Q = \frac{1}{2} \cdot \frac{m_1 m_2}{m_1 + m_2} (\vec{v}_r)^2 \qquad \Leftrightarrow \qquad Q = \frac{1}{2} \cdot \frac{m_1 m_2}{m_1 + m_2} ({v_1}^2 + {v_2}^2)$ Răspuns: $Q = 175,7J$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 93

Subjectul A. MECANICĂ

Nr. Item	Soluție/ rezolvare
II.1.a.	$V_m = V/2$
	$d = V_m \cdot t$
	Răspuns: $t = 10s$
b.	$a = v^2 / 2d$
	$Ma = F_t - F_r$
	Răspuns: $F_t = 50N$
C.	$L = \overrightarrow{F} \cdot \overrightarrow{d}$
	$L_r = -F_r d$
	Răspuns: $L_r = -250J$
II.2.a.	
	$m_1 V_1 = m_2 V_2$
	Răspuns: $V_1 = 0.2m/s$
b.	$\Delta E_{c1} = L_f$
	$\Delta E_{c1} = -m_1 V_1^2 / 2$
	$L_f = -\mu m_1 g d$
	Răspuns: $d = 0.2m$
C.	$L = E_{c1} + E_{c2}$
	$E_{c1} = m_1 V_1^2 / 2$
	$E_{c1} = m_2 V_2^2 / 2$
	Răspuns: $L = 25,2J$

Fizică Varianta 93

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 94

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1. a.	$a_1 = g(\sin \alpha - \mu \cos \alpha)$
	$v = \sqrt{2a_1 \frac{h}{\sin \alpha}}$
	Răspuns: $v = 20 \text{ m/s}$
b.	
	$a_2 = -\mu g$
	Răspuns: $d = \frac{v^2}{2a_2} = 40\sqrt{3}m$
C.	$L_f = -mgh = -32kJ$
2. a	Lansarea bilei se face când sfoara este orizontală și vectorul viteză orientat în sus
b	$v_0 = \omega I = 2\pi v I = 4\pi v_s$
	Răspuns: $h_{max} = h + \frac{v_0^2}{2g} = 9m$
С	
	$t_u = \frac{v_0}{g}$
	$t_{\rm u} = \frac{v_{\rm 0}}{g}$ $t_{\rm c} = \sqrt{\frac{2h_{\rm max}}{g}}$
	$R \text{ `aspuns: } T = t_u + t_c = 3,59s$

Varianta 94

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 95

Subiectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
II.1.a.	accelerația de frânare
	$a = -\frac{V_0^2}{2a}$
	Răspuns: $a = -1 \frac{m}{s^2}$
b.	$F_f = ma$
	Răspuns: $F_f = -5kN$
C.	$t = -\frac{V_0}{}$
	a Răspuns: $t = 10s$
II.2.a.	$a = g(\sin \alpha - \mu \cos \alpha)$
	Răspuns: $a = 2.5 \frac{m}{s^2}$
b.	$\Delta E = mal$
	$\Delta E_c = mal$ rezultat final $\Delta E_c = 15J$
C.	$\mu' = tg \alpha$ Răspuns: $\mu' = 0.58$

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Varianta 96

Subjectul A. MECANICĂ

Nr. Item	Soluție/ rezolvare
I. 1. a.	mv = (m+m')v'
	Răspuns: v'=2 ^m / _s
b.	Pentru a = -µg
	$0 = v^{\prime 2} - 2\mu \cdot g \cdot d_0$
	Răspuns: $d_0 = 5m$
C.	Pentru $L_f = \frac{1}{2}(m+m')v^{1/2}$
	Răspuns: $L_f = -100 J$
2. a	$h_1 = v_r \cdot t_1 = 2000 \mathrm{m}$
	$t_2 = \frac{v_r}{g} = 5s$
	$0 = v_r^2 - 2gh_2 \Rightarrow h_2 = \frac{v_r^2}{2g} = 125m$
	$H_{\text{max}} = h_1 + h_2$ Răspuns: $H_{\text{max}} = 2125 \text{m}$
b	$\hat{l} n \text{ coborâre } h_3 = \frac{g t_3^2}{2} = 45 m$
	$v_3 = gt_3$ și $a_4 = \frac{v_4 - v_3}{t_4}$
	$mg-T = ma_4 \Rightarrow T = m\left(g - \frac{v_4 - v_3}{t_4}\right)$
_	Răspuns: T = 33N
C	$h_4 = v_3 t_4 + \frac{a_4 t_4^2}{2} \Rightarrow h_4 = 68m$
	$h_5 = H_{\text{max}} - (h_3 + h_4) = 2012 \text{m}$
	Răspuns: $T_{tot} = t_1 + t_2 + t_3 + t_4 + t_5 = 555s$

Fizică Varianta 96

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 97

Subjectul A. MECANICĂ

Nr. Item	
Mi. Item	Soluție / rezolvare
II.1.a.	
	$0 = v_0^2 + 2ad$
	Răspuns: $a = -1m/s^2$
b.	
	$F_f = m a $
	$L_f = -F_f d$
	Răspuns: $L_f = -18MJ$
C.	reprezentarea corectă și completă a vitezei trenului în funcție de timp
II.2.a.	
	$m \cdot a_u = -G_t - F_f \qquad F_f = \mu \cdot m \cdot g \cdot \cos \alpha$
	$a_u = -g(\sin\alpha + \mu \cdot \cos\alpha)$
	$0 = v_0^2 + 2 \cdot a_u \cdot d$
	Răspuns: $d \cong 8,52m$
b.	
	$m \cdot a_c = G_t - F_f$
	$a_c = g(\sin\alpha - \mu \cdot \cos\alpha)$
	Răspuns: $a_c \cong 4.13m/s^2$
C.	
	$L_G = 0 $ (G - forță conservativă)
	$L_{Ff} = -2 \cdot d \cdot F_f$
	Răspuns: $L_{\rm Ff}=10{,}16J$

Fizică Varianta 97 Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 98

Varianta 98

Subiectul A. MECANICĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	$E_p = mgh$
	$h \in [H,0]$
<u> </u>	reprezentare corectă
b.	$H = \frac{1}{2}gt^2$
	d = vt
	$d = v\sqrt{\frac{2H}{g}}$
	Răspuns: $d=240m$
C.	legea conservării energiei mecanice sau teorema de variație a energiei cinetice
	$\mathbf{v'} = \sqrt{\mathbf{v}^2 + 2gH}$
	Răspuns: $v' = 85,44 \frac{m}{s}$.
II.2.a.	$T = k \Delta I$
	$k = \frac{1}{\Delta l} \frac{m_1 m_2 g}{m_1 + m_2} \left(1 + \cos \alpha \left(tg \alpha + \mu \right) \right)$
	Răspuns: $k = 980 \frac{N}{m}$
b.	$a = g \frac{m_2 - m_1 \cos \alpha (tg\alpha + \mu)}{m_1 + m_2}$
	$m_1 + m_2$
	Răspuns: $a = 2,65 \frac{m}{s^2}$
C.	AE AE AE
	$\Delta E = \Delta E_c + \Delta E_p$
	$\Delta E_c = L_{cons.} + L_{necons.}$, respectiv $\Delta E_p = -L_{cons.}$, deci $\Delta E = L_{necons.} = L_{F_f}$
	$\Delta E = -\mu m_1 g d \cos \alpha \text{cu } d = \frac{1}{2} a \left(\Delta t \right)^2;$
	Rezultat final: $\Delta E = -13,25J$

Fizică

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 99

Varianta 99

Subjectul A. MECANICA

Nr. item	Soluție / rezolvare
II. 1. a	$E_C = \frac{mv_1^2}{2}$ $v_1 = \sqrt{\frac{2gh}{\sin\alpha}(\sin\alpha - \mu\cos\alpha)}$
	Rezultat: $E_C = 49,56 J$
b	Legea conservării impulsului $v = \frac{m_1 v_1}{m_1 + m_2}$ Rezultat: v = 2,81 m/s
C.	Tensiunea în fir este maximă în poziția verticală
	$T = (m_1 + m_2) \left(g + \frac{v^2}{l} \right)$ Rezultat: T = 69,74 N
II. 2. a.	$T = t_1 + t_2$ $T = \sqrt{\frac{2l_1}{g \sin \alpha_1}} + \frac{\sqrt{2 g l_1 \sin \alpha_1}}{g \sin \alpha_2}$ Rezultat: T = 60 s
b.	$L = l_1 + l_2$ $l_2 = \frac{2gl_1 \sin \alpha_1}{2g \sin \alpha_2}$ Rezultat: : L = 600 m
c.	$E = mgh = mgl_2 \sin\alpha_2$
	Rezultat: E = 14 KJ

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 100

Subjectul A. MECANICĂ

Nr. Item	Soluție / rezolvare
11.4 -	
II.1.a.	$a_1 = g(\sin \alpha - \mu \cos \alpha)$
	$a_1 = -\mu g$
	$\mu_2 - \mu_8$ Răspuns: $a_1 = 2,5 \text{ m/s}^2$; $a_2 = -2,9 \text{ m/s}^2$
b.	
	$V^2 = 2a_1 - \frac{h}{a_1 - a_2}$
	$V^{2} = 2a_{1} \frac{h}{\sin \alpha}$ $V^{2} = -2a_{2}x$
	$V^2 = -2a_2x$
	$x = -\frac{a_1}{a_2} \frac{h}{\sin \alpha}$
C.	Răspuns: <i>x</i> = 1,73 m
	$L = -\mu mg \left(\cos\alpha \frac{h}{\sin\alpha} + d\right)$
	Răspuns: L = -10 J
II.2.a.	$T_{\text{max}} = mg + \frac{mV^2}{l}$
	$v^2 = 2gl(1 - \cos \alpha)$
	Răspuns: $T_{\text{max}} = mg(3 - 2\cos\alpha)$
b.	$T = mg\cos\theta + \frac{mv'^2}{l}$
	$\frac{mv'^2}{2} + mgl(1 - \cos\theta) = mgl(1 - \cos\alpha)$
	Răspuns: $T = mg(3\cos\theta - 2\cos\alpha)$
C.	
	$L = Gh\cos \pi$ $h = l(1 - \cos \alpha)$
	$n = l(1 - \cos \alpha)$ Răspuns: $L = -mgl(1 - \cos \alpha)$
	Traspuns. $L = -mgt(1 - \cos u)$

Fizică Varianta 100