```
In [ ]: import pandas as pd
   import numpy as np
   import glob
   import matplotlib.pyplot as plt
   import random
```

Os arquivos devem ser baixados da Justiça Eleitoral:

https://dadosabertos.tse.jus.br/dataset/resultados-2022-arquivos-transmitidos-para-totalizacao

Executando o script logjez_process.py arquivos CSV serão gerados para cada estado dois arquivos, um com votos e outro com dados das urnas.

Vamos carregar a tabela de cidades. Só será utilizada para informar o nome da cidade de acordo com o código

```
In [ ]: municipios = pd.read_csv("./municipios.csv")
    municipios.sample(10)
```

Out[]:		municipio_cod	municipio	estado
	4695	83712	URUBICI	SC
	5055	64955	IBIÃ NA	SP
	4668	83194	SÃ O FRANCISCO DO SUL	SC
	595	39675	WAGNER	ВА
	3205	74110	ALTO PIQUIRI	PR
	2855	24074	FEIRA NOVA	PE
	497	37958	PIRIPÃ	ВА
	4920	62340	NANTES	SP
	2019	50890	RIACHO DOS MACHADOS	MG
	4645	82732	PRESIDENTE CASTELLO BRANCO	SC

Vamos carregar os dados das urnas

```
In []: path = "./csv_gerados/??.urnas.csv"
    filenames = glob.glob(path)
    dfs = []
    for filename in filenames:
        dfs.append(pd.read_csv(filename, encoding = "ISO-8859-1"))
    urnas = pd.concat(dfs, ignore_index=True).dropna()
In []: urnas.sample(10)
```

Out[]: UF municipio zona secao qtdEleitoresAptos qtdComparecimento dataHoraAbertura dat SP 20221030T080001 SP 20221030T080001 20221030T080001 MG 20221030T080001 MG DF 20221030T080001 SE 20221030T080001 RJ 20221030T080001 SC 20221030T080001 RN 20221030T080001 MA 20221030T080001

```
In [ ]: urnas.shape[0]
```

Out[]: 471984

Aqui carregamos os arquivo com os votos.

```
In [ ]: path = "./csv_gerados/??.votos.csv"
    filenames = glob.glob(path)
    dfs = []
    for filename in filenames:
        dfs.append(pd.read_csv(filename, encoding = "ISO-8859-1"))

votos = pd.concat(dfs, ignore_index=True).dropna()
```

In []: votos.sample(10)

Out[]:

	UF	municipio	zona	secao	cargo	quantidadeVotos	partido	candidato
953408	PR	75639	147	197	presidente	161	22	22
1043045	PR	76678	146	233	presidente	184	22	22
1102239	RJ	60011	14	331	presidente	143	22	22
634861	MG	40673	15	3	presidente	5	nulo	nulo
1757189	SP	66010	304	169	presidente	3	branco	branco
524677	MG	41238	334	280	presidente	5	branco	branco
1445965	SP	62910	379	222	presidente	171	22	22
1222989	RO	663	25	60	presidente	5	nulo	nulo
929781	PI	10839	28	67	presidente	5	nulo	nulo
1570375	SP	71072	1	384	presidente	87	22	22

```
In [ ]: votos.shape[0]
```

Out[]: 1851420

Precisamos uma tabela com 2 colunas com totais de votos para os candidatos Bolsonaro e Lula

```
In [ ]: votosBolsonaro = votos.query("candidato == '22'")
    votosLula = votos.query("candidato == '13'")

In [ ]: votosBolsonaro = votosBolsonaro.rename(columns={"quantidadeVotos":"Bolsonaro"})
    votosLula = votosLula.rename(columns={"quantidadeVotos":"Lula"})
```

Aqui juntamos os dados com votos dos 2 candidatos e o modelo de urna

In []: votosPresidente.head(10)

Out[]:		UF	municipio	zona	secao	Bolsonaro	Lula	modelo
	1	AC	1015	2	88	84.0	53.0	UE2009
	5	AC	1015	2	75	129.0	47.0	UE2009
	7	AC	1015	2	69	125.0	53.0	UE2009
	11	AC	1015	2	95	133.0	34.0	UE2009
	14	AC	1015	2	90	144.0	47.0	UE2009
	18	AC	1015	2	73	138.0	45.0	UE2009
	22	AC	1015	2	74	129.0	48.0	UE2009
	24	AC	1015	2	67	164.0	53.0	UE2009
	28	AC	1015	2	80	124.0	98.0	UE2009
	32	AC	1015	2	66	162.0	56.0	UE2009

```
In [ ]: votosPresidente.shape
```

Out[]: (471525, 7)

O foco aqui é validar a suspeita de 1 modelo das urnas ter comportamento na totalização de votos, portanto devemos começar analizando como foram distribuidas as urnas, pelo menos por estado, para diminuir a probabiliade de o fator demografico determinar a diferença.

```
In [ ]: urnasPorUF = pd.pivot_table(data=votosPresidente[['UF','modelo']], index=['UF'], column
```

```
ax = urnasPorUF.plot.bar(stacked=True, figsize=(8,6))
ax.set_title('Tipo de Urna Por Estado', fontsize=20)
```

Out[]: Text(0.5, 1.0, 'Tipo de Urna Por Estado')

Tipo de Urna Por Estado

Acima vemos a distribuição. Notem que haviam urnas que não encontramos o arquivo de log (SemLog).

O gráfico mostra que as urnas foram distribuidas em todos os estados. Em especial o modelo mais novo que representa uma boa quantidade das urnas para cada estado (em rosa)

Os graficos abaixo mostram a distribuição de votos apurados nas urnas UE2020 e o contraste para as não UE2020 (anteriores a 2020 que não foram auditadas no pleito de 2022)

```
In [ ]: data = votosPresidente.query("modelo == 'UE2020'")
    plt.scatter(data['Bolsonaro'],data['Lula'], s=1)
    plt.title("Urnas UE2020 - Brasil")
    plt.xlabel("Bolsonaro")
    plt.ylabel("Lula")
    plt.show()

data = votosPresidente.query("modelo != 'UE2020'")
    plt.scatter(data['Bolsonaro'],data['Lula'], s=1)
    plt.title("Urnas Não UE2020 - Brasil")
    plt.xlabel("Bolsonaro")
```

plt.ylabel("Lula")
plt.show()

Os gráficos já mostram acima que o comportamento é muito distinto. As urnas mais antigas deram mais vantagem ao cadidato Lula, aparentemente retirando votos do Bolsonaro.

No gráfico das 2020 aparece um grande numero de votos mais ao centro, enquanto as antigas parecem ter algum tipo de trava, o que gera uma linha geometrica, quase igual um triângulo escaleno.

Vamos ver os mesmos gráficos para cada tipo de urna.

* note que existem 3 populações maiores de urnas, as UE2010, UE2015 e UE2020. Os demais modelos são minoria, o que pode dificultar essa análise de um ponto de vista geometrico

```
In [ ]: for index, row in votosPresidente.filter(['modelo'], axis=1).drop_duplicates().sort_va
    data = votosPresidente.query("modelo == '"+row['modelo']+"'")
    plt.scatter(data['Bolsonaro'],data['Lula'], s=1)
    plt.title("Votos Brasil com urna modelo "+row["modelo"])
    plt.xlabel("Bolsonaro")
    plt.ylabel("Lula")
    plt.show()
```

Votos Brasil com urna modelo SemLog

Votos Brasil com urna modelo UE2009

Votos Brasil com urna modelo UE2010

Votos Brasil com urna modelo UE2011

Votos Brasil com urna modelo UE2013

Votos Brasil com urna modelo UE2020 Lula Bolsonaro

Revise os gráficos acima e note como é possível notar o tal triângulo escaleno em todos modelos, menos no modelo UE2020 onde, apesar de visualizarmos o triângulo, há um escape

(massa da votos) mais distribuida ao centro.

Isso pode indicar algumas possiveis causas

- Algum algorítmo foi criado para travar os votos, migrando de outro candidato para o candidato 13
- Seria improvável os mesmos eleitores, nos mesmos locais, terem comportamento tão diferenciado
- As urnas tem diferença no software, e o software foi adulterado

Agui vamos explorar as urnas UE2020 e não UE2020 por cada estado

```
In [ ]: for index, row in votosPresidente.filter(['UF'], axis=1).drop_duplicates().iterrows():
    print(row['UF'])
    data = votosPresidente.query("modelo == 'UE2020' and UF == '"+row['UF']+"'")
    plt.scatter(data['Bolsonaro'],data['Lula'], s=1)
    plt.title("Urnas UE2020 - UF: "+row['UF'])
    plt.xlabel("Bolsonaro")
    plt.ylabel("Lula")
    plt.show()

data = votosPresidente.query("modelo != 'UE2020' and UF == '"+row['UF']+"'")
    plt.scatter(data['Bolsonaro'],data['Lula'], s=1)
    plt.title("Urnas Não UE2020 - UF: "+row['UF'])
    plt.xlabel("Bolsonaro")
    plt.ylabel("Lula")
    plt.show()
```

AC

Urnas UE2020 - UF: AC

Urnas Não UE2020 - UF: AC

ΑL

Urnas UE2020 - UF: AL

Urnas Não UE2020 - UF: AL

ΑМ

Urnas UE2020 - UF: AM

Urnas Não UE2020 - UF: AM

ΑP

Urnas UE2020 - UF: AP

Urnas Não UE2020 - UF: AP

ВА

Urnas UE2020 - UF: BA

Urnas Não UE2020 - UF: BA

Urnas UE2020 - UF: CE

Urnas Não UE2020 - UF: CE

Urnas UE2020 - UF: DF

Urnas Não UE2020 - UF: DF

Urnas UE2020 - UF: ES

Urnas Não UE2020 - UF: ES

Urnas UE2020 - UF: MA

Urnas Não UE2020 - UF: MA

MG

Urnas UE2020 - UF: MG

Urnas Não UE2020 - UF: MG

Urnas UE2020 - UF: MS

Urnas Não UE2020 - UF: MS

 MT

Urnas UE2020 - UF: MT

Urnas Não UE2020 - UF: MT

PΑ

Urnas UE2020 - UF: PA

Urnas Não UE2020 - UF: PA

Urnas UE2020 - UF: PB

Urnas Não UE2020 - UF: PB

Urnas UE2020 - UF: PE

Urnas Não UE2020 - UF: PE

Urnas UE2020 - UF: PI

Urnas Não UE2020 - UF: PI

 PR

Urnas UE2020 - UF: PR

Urnas Não UE2020 - UF: PR

Urnas UE2020 - UF: RN

Urnas Não UE2020 - UF: RN

Urnas UE2020 - UF: RO

Urnas Não UE2020 - UF: RO

 RR

Urnas UE2020 - UF: RR

Urnas Não UE2020 - UF: RR

Urnas UE2020 - UF: RS

Urnas Não UE2020 - UF: RS

Urnas UE2020 - UF: SC

Urnas Não UE2020 - UF: SC

Urnas UE2020 - UF: SE

Urnas Não UE2020 - UF: SE

Urnas UE2020 - UF: SP

Urnas Não UE2020 - UF: SP

Urnas UE2020 - UF: TO

Urnas Não UE2020 - UF: TO

Urnas Não UE2020 - UF: ZZ

Você pode notar nos gráficos acima o achatamento, que fica sempre mais evidente nos estados onde o PT e Lula são mais populares. Nesses estados o achatamento do triângulo fica muito

mais evidente.

Isso demonstra que o algorítimo deve ter alguma lógica, não só aleatória, mas também inteligênte para realizar a migração de votos (fraude) levando em consideração a quantidade de votos de cada candidato adversário do número 13 (número do PT)

É muito provável que esse algoritmo esteja presente desde quando as urnas começaram a operar, o que pode ter favorecido o candidato a presidente do PT desde então.

A fraude só pode ser detectada porque as UE2020 não apresentaram o mesmo comportamento, ou o algoritmo falhou nessas urnas, criando a oportunidade de comparar os dados.

Como será que isso pode refletir nos resultados? Vamos analisar isso visualizando os resultados por UF e por tipo de urna

```
In [ ]: votosPresidente[['UF','Lula','Bolsonaro']].groupby(['UF']).sum(numeric_only=True).plot
    votosPresidente.query("modelo == 'UE2020'")[['UF','Lula','Bolsonaro']].groupby(['UF'])
    votosPresidente.query("modelo != 'UE2020'")[['UF','Lula','Bolsonaro']].groupby(['UF'])
```

Out[]: Text(0.5, 1.0, 'Votos Não UE2020')

In []: votosPresidente[['UF','modelo','Lula','Bolsonaro']].groupby(['modelo']).sum(numeric_on

Out[]: Text(0.5, 1.0, 'Votos por Tipo de Urna')

