Solutions to Sample Problems for Midterm

Problem 1. The *dual* of a proposition is defined for which contains only \vee , \wedge , \neg . It is For a compound proposition that only uses \vee , \wedge , \neg as operators, we obtained the *dual* replacing every \wedge with an \vee , every \vee with an \wedge , every \top with a \vdash and every \vdash with a \top .

Let us extend the idea of the dual by also exchanging every literal $\neg x$ by x and every literal x by $\neg x$. For a proposition p we denote it's extended dual by p^* .

So for the proposition $(p \land q) \lor (r \to \neg p)$ the dual $((p \land \neg q) \lor (r \to \neg p))^* = (\neg p \lor q) \land (\neg r \to p)$.

(a) Show that $((p \to q) \to r) \iff ((p \land \neg q) \lor r)$ using a truth table.

_	Answer										
											_
	p	q	r	$((p \to q)$	\rightarrow	r)	\longleftrightarrow	$((p \land$	$\neg q)$	$\vee r$)
	Т	Т	Т	Т	Т	Т	Т	F	F	Т	
	Т	Τ	F	Т	F	F	Т	F	F	F	
	Т	F	Τ	F	Т	Т	Т	Т	Τ	Τ	
	Т	F	F	F	Т	F	Т	Т	Τ	Τ	
	F	Т	Т	Т	Т	Т	Т	F	F	Τ	
	F	Τ	F	T	F	F	Т	F	F	F	
	F	F	Т	Т	Т	Т	Т	F	T	T	
	F	F	F	Т	F	F	Т	F	Т	F	

(b) Compute $((p \land \neg q) \lor r)^*$.

 $_$ $oldsymbol{Answer}$ $_$

Just exchange the \land with \lor , the \lor with \land , the p with $\neg p$, the $\neg q$ with q and the r with $\neg r$.

$$((p \wedge \neg q) \vee r)^* = (\neg p \vee q) \wedge \neg r$$

(c) Show that $((p \land \neg q) \lor r)^* \iff \neg ((p \to q) \to r)$ using logical equivalences.

_____ Answer ___

 $Since \ ((p \land \neg q) \lor r)^* = (\neg p \lor q) \land \neg r \ \text{we have to show} \ (\neg p \lor q) \land \neg r \iff \neg ((p \to q) \to r).$

$$\neg((p \to q) \to r) \iff \neg(\neg(p \to q) \lor r) \qquad \qquad \text{(rewriting implication)}$$

$$\iff (\neg\neg(p \to q) \land \neg r) \qquad \qquad \text{(DeMorgan's law)}$$

$$\iff ((p \to q) \land \neg r) \qquad \qquad \text{(double negation)}$$

$$\iff ((\neg p \lor q) \land \neg r) \qquad \qquad \text{(rewriting implication)}$$

Continue on next page \rightarrow

(d) Let q be a proposition in DNF. Argue that q^* is in CNF and that $q^* \iff \neg q$.

$oldsymbol{Answer}_{oldsymbol{\bot}}$

We know that q is a proposition in DNF. In other words q is an AND of ORs of literals. By exchanging every \land with an \lor and every \lor with and \land , we convert q into and OR of ANDs of literals. Now finally we exchange every negated variable $\neg x$ with x and every positive variable x with $\neg x$, i.e. we exchange literals with other literals. Therefore the structure of q^* is still an OR of ANDs of literals and thus it is in CNF.

Now let us think about the truth values of q and q^* . Let us assume q is true, which means that at least one clause is true and thus all the literals in that clause must be true. In q^* we have almost the same clause, the only difference is that the literals are negated (x became $\neg x$ and $\neg x$ became x) and that the literals are now combined with and \lor . Since all the literals in that clause in q are true, all the literals in q^* are false. Hence the entire clause in q^* is false. So if a truth assignment makes a clause in q true, it will make the corresponding clause in q^* false. Since all the clauses in q^* are connected with an \land , one false clause will make all of q^* false. Therefore, whenever q is true, q^* will be false.

We can use the same argument to show that whenever q^* is false, q must be true, as q^* can only be false, if at least one clause is false. This clause would make the corresponding clause in q true and thus q would be true.

So we showed that q is true if and only if q^* is false and therefore

$$q \iff \neg q^*$$
.

Problem 2. Let A, B and C be sets. Prove the following:

(a) If $C \subseteq B$ then $A - B \subseteq A - C$.

Δ	nswer	
4	IISWELL	

Let us assume $C \subseteq B$. Now we have to show $x \in A - B$ implies $x \in A - C$. So consider an element $x \in A - B$, that is $x \in A$ but $x \notin B$. Since $C \subseteq B$ this means x cannot be in C either and therefore $x \in A - C$.

(b) If $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then B = C.

____ Answer ____

Let us assume $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Now we have to show that $x \in B$ if and only if $x \in C$.

Let us first consider the implication $x \in B$ implies $x \in C$ and assume $x \in B$. We can consider two cases.

- (i) $x \notin A$. Here we can observe that $x \in A \cup B$ and thus $x \in A \cup C$. However, since $x \notin A$ this implies $x \in C$.
- (ii) $x \in A$. Here we can argue that $x \in A \cap B$. Since $A \cap B \subseteq B$ and $A \cap C = A \cap B$ we know $x \in A \cap C$ and thus $x \in C$.

In order to show the other implication $x \in C$ implies $x \in B$, we just reverse the roles of B and C and repeat the argument from above.

3

Problem 3. Let the universe of discourse consist of all possible sets. Consider the following predicates.

$$F(A) =$$
"A is finite set"
 $S(A, B) =$ "A is a subset of B"

For each of the following statements, first translate it into predicate logical using the given predicates. Then give a proof that it is true.

(a) Not all sets are finite.

Immediately translating the statement we get

$$\neg \forall A F(A)$$
.

Pulling the negation to the inside we get the equivalent, but easier to prove statement

$$\exists A \neg F(A)$$
.

In order to give a construtive existance proof, we need to find a set that is not finite. We can consider the set of all nonnegative integers $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ which is infinite by definition and thus not finite.

(b) Every subsets of a finite set is finite.

$$\forall A \forall B \ (S(A,B) \land F(B)) \rightarrow F(A)$$

Proof. Let two sets A and B be given. We need to prove that for those two sets

$$(S(A,B) \wedge F(B)) \to F(A)$$
.

Let us give a proof by contradiction we assume that B is finite, that $A \subseteq B$, but that A is not finite, i.e. infinite.

Since $A \subseteq B$ every element from A also belongs to B. However A contains inifinitely many elements and all these elements must also belong to B. Therefore B must be infinite as well. This is a contradiction to our assumption that B is finite. \Box

(c) For every set A there is a set B such that every set C is a subset of A	c)	For every set A	1 there is a set I	3 such that ever	$v \operatorname{set} C \operatorname{is} \operatorname{a} \operatorname{su}$	bset of $A \cup B$
---	------------	-----------------	----------------------	------------------	---	--------------------

_____ Answer _____

 $\forall A \exists B \forall C \ S(C, A \cup B).$

Proof. Let some set A be given. Show that

$$\exists B \forall C \ S(C, A \cup B)$$
.

We are trying to prove that there is some set B such that every C will be a subset of $A \cup B$. In particular the universal set U must be a subset of $A \cup B$. So $A \cup B$ must contain all possible elements.

We can build such a B by just including all the elements that A is missing, i.e. pick $B = \overline{A}$. Now we need to verify that

$$\forall C \ S(C, A \cup \overline{A})$$
.

In other words, show that for every set $C \subseteq A \cup \overline{A}$.

Since $A \cup \overline{A} = U$ and $C \subseteq U$ for every set C, we can see that $C \subseteq A \cup \overline{A}$. Thus $B = \overline{A}$ is a suitable choice for B.

Problem 4. Let $f: A \mapsto B$ be a function from the set A to the set B, and let S and T be subsets of A. Recall that for a set $S \subseteq A$ the *image* f(S) of S was defined as

$$f(S) = \{ f(s) \mid s \in S \} .$$

(a) Show that $f(S \cap T) \subseteq f(S) \cap f(T)$.

Δ	nswer	
$\overline{}$	IISWEI	

Proof. We have to show that $y \in f(S \cap T)$ implies $y \in f(S) \cap f(T)$. So let us assume $y \in f(S \cap T)$. This means that y = f(x) for some $x \in S \cap T$. Since $x \in S$ we have $y = f(x) \in f(S)$. At the same time we also have $x \in T$ and thus $y = f(x) \in f(T)$. Therefore we can conclude $y \in f(S) \cap f(T)$.

(b) Give an example where $f(S \cap T) \neq f(S) \cap f(T)$.

$$__$$
 Answer $_$

Pick $S = \{1\}$, $T = \{2\}$ and define f(1) = 1 and f(2) = 1. Then $f(S \cap T) = f(\emptyset) = \emptyset$ but $f(S) \cap f(T) = \{f(1)\} \cap \{f(2)\} = \{1\} \cap \{1\} = \{1\}$.