Solution for Equation $X^2+1=0$

Shaimaa said soltan¹

¹ Computer Engineer, Toronto, Canada

Affiliation:

Correspondence: Shaimaa Soltan, 3050 Constitution Blvd, Mississauga, ON., L4Y 3X1, Canada. Tel: 1-647-801-6063

E-mail: shaimaasultan@hotmail.com Suggested Reviewers (Optional) Please suggest 3-5 reviewers for this article. We may select reviewers from the list below in case we have no appropriate reviewers for this topic. Name: E-mail: Affiliation: Name: E-mail: Affiliation: Name: E-mail: Affiliation: Name: E-mail: Affiliation: E-mail: Name:

Solution for Equation $X^2 + 1 = 0$

Abstract

In this paper we used an equality relation from complex plane to find the solution for the know quadratic equation $X^2 + 1 = 0$

Keywords: zeta function, Riemann hypothesis, complex plane, none-trivial zeros, critical strip

1. Introduction

1- For any Natural numebr [A]

$$\frac{1}{i+A} = \frac{A}{A^2+1} - \frac{i}{A^2+1} \to (1)$$

$$\frac{1}{i-A} = \frac{A}{A^2+1} + \frac{i}{A^2+1} \to (2)$$

$$\frac{A^2+1}{i+A} = A - i$$

2- Rearrange equation (1) and (2)

$$A^2 + 1 = (A - i)(A + i)$$
 \rightarrow (3)

$$A^2 - i^2 = (A - i)(A + i) \rightarrow (4)$$

We will use Rf(A) = (A - i)(A + i) = 0 to get the Zeros and solution for $X^2 + 1 = 0$ based on the Equality equation (4).

$$Lf(A) = A^2 + 1 = 0$$

$$Rf(A) = (A - i)(A + i) = 0$$

3- Another form for the equality relation

For positive Zeros

$$A^{2} + 1 = A^{2} - i^{2} = (1 - Ai)(1 + Ai) \rightarrow (5)$$

For negative Zeros

$$-1*(A^2+1) = (-1+Ai)(1+Ai) \rightarrow (6)$$

$$-1 * A^2 + 1 = -1 * ((A - i)(A + i) - 2)$$
 \rightarrow (7)

Table 1. Positive Zeros for the equality relation

Α	A^2+1	(A-i)(A+i)	(1-Ai)(1+Ai)
1	2	2	2
2	5	5	5
3	10	10	10
4	17	17	17
5	26	26	26
6	37	37	37
7	50	50	50
8	65	65	65
9	82	82	82
10	101	101	101
11	122	122	122
12	145	145	145
13	170	170	170

Table 2. Negative Zeros for the equality relation

Α	$(-A^2+1)$	(A-i)(A+i)	-1*((A-i)(A+i)-2)
1	0	2	0
2	-3	5	-3
3	-8	10	-8
4	-15	17	-15
5	-24	26	-24
6	-35	37	-35

7	-48	50	-48
8	-63	65	-63
9	-80	82	-80
10	-99	101	-99
11	-120	122	-120
12	-143	145	-143
13	-168	170	-168

4- First visualize these two functions in a complex plane

5- Positive Zeros for (A-i)(A+i) all points that are zeros for A^2+1 are the points that equation (A-i)(A+i) contour lines intersects with x axis in complex plane

$$A^2 + 1 = (A - i)(A + i)$$
 (3)

For examples for positive Zeros Table 1. have examples for some zeros for some values of A for positive Zeros.

Figure 2. Positive Zeros for function (A - i)(A + i) at x axis in complex plane.

6- Negative Zeros for (A - i)(A + i) all points that are zeros for $A^2 + 1$ are the points that equation (A - i)(A + i) contour lines intersect with x axis in complex plane.

$$-1 * A^2 + 1 = -1 * ((A - i)(A + i) - 2)$$

For examples for positive Zeros Table 2. have examples for some zeros for some values of A for Negative Zeros.

Figure 3. Negative Zeros for function (A - i)(A + i) at x axis in complex plane.

Conclusion

In this paper we used an equality relation from complex plane to find the solution for the know quadratic equation $X^2 + 1 = 0$

$$\frac{1}{i+A} = \frac{A}{A^2+1} - \frac{i}{A^2+1} \to (1)$$

$$A^2 - i^2 = (A - i)(A + i)$$
 \rightarrow (4)

By finding the Zeros for function (A-i)(A+i) we can find the Zeros for $X^2+1=0$

References

- "Series expansion Encyclopedia of Mathematics". encyclopedia of math.org. 7 February 2011. Retrieved 12 August 2021.
- ^ "Series and Expansions". Mathematics LibreTexts. 2013-11-07. Retrieved 2021-12-24.
- ^ Gil, Amparo; Segura, Javier; Temme, Nico M. (2007-01-01). Numerical Methods for Special Functions. SIAM. ISBN 978-0-89871-782-2.
- ^ Jump up to:a b "Taylor series Encyclopedia of Mathematics". encyclopedia ofmath.org. 27 December 2013. Retrieved 22 March 2022.