

The First Chapter of Life: Darwinian Chemistry as the Evolutionary Driving Force from Cyanide to Modern Biochemistry

Overview

What started life? Where do we come from?

What forces drive Nature toward ever higher complexity?

► How did we get in 6 billion years "around the world", from unanimated molecules to modern biology and human societies?

NH. Catalyzing substrates 1. Chemical evolution, in which biopolymers were formed from small molecules. Self organization, in which biopolymers developed the capacity for self-replication 3. Biological evolution, in which primitive living cells generated sophisticated metabolic systems and eventually the ability to form multicellular organisms.

Voet & Voet, Biochemistry

Here it all started...

- * Chemical Evolution
- **❖** Self-organization
- * Biological Evolution

How did we get here?

Cyanide and friends: The molecules at the root

1953, U. Chicago: Stanley L. Miller & Harold C. Urey

How "complex" organic molecules "self-organize"

HOW GLYCINE FORMED

AMINO ACID	MURCHISON METEORITE	DISCHARGE EXPERIMENT
GLYCINE	• • • •	• • •
ALANINE	• • • •	• • • •
α-AMINO- <i>N</i> -BUTYRIC ACID	• • •	• • • •
α-AMINOISOBUTYRIC ACID	• • • •	• •
VALINE	• • •	• •
NORVALINE	• • •	• • •
ISOVALINE	• •	• •
PROLINE	• • •	•
PIPECOLIC ACID	•	· ·
ASPARTIC ACID	• • •	• • •
GLUTAMIC ACID	• • •	• •
β-ALANINE	• •	• •
β-AMINO- <i>N</i> -BUTYRIC ACID	•	•
β-AMINOISOBUTYRIC ACID	•	•
γ-AMINOBUTYRIC ACID	•	• •
SARCOSINE	• •	• • •
N-ETHYLGLYCINE	• •	• • •
<i>N</i> -METHYLALANINE	• •	• •

The basic building blocks are all easily made

Amino acids

Voet & Voet, Biochemistry

Nucleo bases

19th century: Ernst Haeckel

Lipids

1-Stearoyl-2-oleoyl-3-phosphatidylcholine

Building larger, "biological" molecules: Condensation and (hydrolytic) decay

But Wait – If There is Decay, Doesn't the Second Law of Thermodynamics ("Entropy Tends to Increase") Drive Everything Back to Square One?

No, not if the system is far from equilibrium and an external energy source drives it to increasing complexity!!!

Pumping more fuel into the system: Thioesters

The resultant increase in entropy of the Universe leads to assembly of (bio)polymers: Example RNA

The RNA World: Living molecules

The Nobel Prize in Chemistry 1989

"for their discovery of catalytic properties of RNA"

Sidney Altman

1/2 of the prize

Canada and USA

Yale University New Haven, CT, USA

Thomas R. Cech

1/2 of the prize

USA

University of Colorado Boulder, CO, USA

