

BLM320

BİLGİSAYAR MİMARİSİ

Yrd. Doç. Dr. Salih GÖRGÜNOĞLU

sgorgunoglu@karabuk.edu.tr

KBUZEM

Karabük Üniversitesi Uzaktan Eğitim Uygulama ve AraştırmaMerkezi

2. Kaydedici yapısı

S-R Flip-Flop

İki kararlı çok katlı flip flop isminde de belli olduğu gibi iki kararlı duruma sahiptir. Genelde bir durum set diğeri de reset olarak adlandırılır. Böylece en basit iki kararlı cihaz set-reset veya S-R flipflop olarak bilinir. Bir S-R flipflop oluşturmak için iki NOR geçidini birinin çıkışı diğerinin girişini besleyecek şekilde (ve tersi) bağlanır. Flip floplar Kaydedicilerin ve sayıcı tasarımının temelini oluşturur. Flip flop 1 birtlik veri saklar.

S	R	Q(t+1)	
0	0	Q(t)	Değişim yok
0	1	0	clear
1	0	1	set
1	1	?	Belirsiz

D Flip-Flop

D	Q(t+1)	
0	0	clear
1	1	set

J-K Flip-Flop

J	K	Q(t+1)	
0	0	Q(t)	Değişim yok
0	1	0	clear
1	0	1	set
1	1	Q ' (t)	Complement

T Flip-Flop

Т	Q(t+1)	
0	Q(t)	Değişim yok
1	Q ' (t)	Complement

Dört bit register

4 bit shift register

Seri veri transferi

Serial-Transfer Example

Timing Pulse	Shift Register A	Shift Register B	
Initial value	1 0 1, 1	0, 0, 1, 0	
After T_1	91-1-20-1	1 0 0 1	
After T ₂	1 1 1 0	1 1 0 0	
After T_3	0 1 1 1	0 1 1 0	
After T ₄	1 0 1 1/	1 0 1 1	

Universal shift register

Mode Control

s ₁	s ₀	Register Operation		
0	0	No change		
0	1	Shift right		
1	0	Shift left		
1	1	Parallel load		

4-bit binary counter senkronize

4 bir up down binary counter

4-bit binary counter with parallel load

Function Table for the Counter

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	1	1	X	Load inputs
1	1	0	1	Count next binary state
1	Ť	0	0	No change

Zamanlama Sinyallerinin üretilmesi

