10-8-2017

Ejercicios de Recursividad

UniMinuto

Segundo Fidel Puerto Garavito Msc. PROGRAMA INGENIERÍA DE]SISTEMAS

Ejercicios de Recursividad

Estructura de datos Segundo Semestre 2017- Bogotá Secciones 01 y 02

Ejercicio 1:

Escriba una definición recursiva de una función que tiene un parámetro n de tipo entero y que devuelve el n-ésimo número de Fibonacci. Los números de Fibonacci se definen de la siguiente manera:

$$\begin{split} F_0 &= 1 \\ F_1 &= 1 \\ F_{i+2} &= F_i + F_{i+1} \end{split}$$

Ejercicio 2

La forma para calcular cuantas maneras diferentes tengo para elegir r cosas distintas de un conjunto de n cosas es:

C(n,r) = n! (r!*(n-r)!)

Donde la función factorial se define como

$$n! = n *(n-1)*(n-2)*...*2*1$$

Descubra una versión recursiva de la fórmula anterior y escriba una función recursiva que calcule el valor de dicha fórmula.

Ejercicio 3

Escriba una función recursiva que ordene de menor a mayor un arreglo de enteros basándose en la siguiente idea: coloque el elemento más pequeño en la primera ubicación, y luego ordene el resto del arreglo con una llamada recursiva.

Ejercicio 4

Escribir una función recursiva que devuelva la suma de los primeros N enteros

Ejercicio 5

Escribir un programa que encuentre la suma de los enteros positivos pares desde N hasta 2. Chequear que si N es impar se imprima un mensaje de error.

Ejercicio 6

Escribir un programa que calcule el máximo común divisor (MCD) de dos enteros positivos. Si M >= N una función recursiva para MCD es

MCD = M si N = 0

 $MCD = MCD (N, M \mod N) \text{ si } N <> 0$

El programa le debe permitir al usuario ingresar los valores para M y N desde la consola. Una función recursiva es entonces llamada para calcular el MCD. El programa entonces imprime el valor para el MCD. Si el usuario ingresa un valor para M que es < que N el programa es responsable de switchear los valores.

Ejercicio 7

Programe un método recursivo que transforme un número entero positivo a notación binaria.

Ejercicio 8

Programe un método recursivo que transforme un número expresado en notación binaria a un número entero.

Ejercicio 9

Programe un método recursivo que calcule la suma de un arreglo de números enteros.

Ejercicio 10

Programe un método recursivo que invierta los números de un arreglo de enteros.

Ejercicio 11

Ejercicio 12

Implemente una función recursiva que nos diga si una cadena es palíndromo.

Ejercicio 13

Diseñe e implemente un algoritmo que imprima todas las posibles descomposiciones de un número natural como suma de números menores que él.

```
1=1
2=1+1
3=2+1
3=1+1+1
4=3+1
4=2+1+1
4=1+1+1+1
4=2+2
4=2+1+1
4=1+1+1+1
N=(n-1)+1
N=(n-2)+2=(n-2)+1+1
```