ŘADA B – PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XLIII/1994 ● ● ČÍSLO 1

V TOMTO SEŠITĚ

RACAL se představuje	. 1
RACAL se představuje ANTÉNY, SOUOSÉ KABELY	
A KONEKTORY	
O anténách úvodem	. 3
Vertikální všesměrové antény .	. 4
Čtvrtvinné antény	. 4
Půlvinné antény	. 5
"Pětiosmina"	11
Maximální dipól	14
"2 x 5λ /8"	15
Koaxiální (souosé) kabely	18
Úplný sortiment vf napáječů .	21
Elektrické vlastnosti	22
Mechanické vlastnosti	27
Vf konektory	27
Druhy vf konektorů	28
Elektrické vlastnosti	31
Montáž	
- Materiál, mechanické vlastnosti .	33
Příjem rozhlasu FM na VKV	
Seznam rozhlasových	04
vysílačů VKV v ČR	35
Seznam televizních	00
vysílačů v ČR	37
•	
Anténní věže a stožáry pražskýci	n
vysílačů FM rozhlasu	~~
(ke 4. straně obálky)	39
Oprava článku Jednohlasé	
el. varhany z B6/93	40
Inzerce	40

AMATÉRSKÉ RADIO ŘADA B

Vydavateľ: Vydavateľství MAGNET-PRESS. s. p., 135 66 Praha 1, Vladislavova 26, tel. 24 22 73 84. Redakce: 113 66 Praha 1, Jungmannova 24 tel. 24 22 77 23. Séfredaktor L. Kalousek, OK1FAC, linka 354, sekretariát linka 355. Tiskne: Naše vojsko, tiskáma, závod 02, 160 05 Praha 6, Vlastina ulice č. 889/23.

Nastina ulice č. 889/23.
Rozšíhuje Magnet Press a PNS, informace o předplatném podá a objednávky přijímá každá administrace PNS, pošta, doručovatel a předplatitelské středisko. Objednávky předplatného přijímá i redakce. Velkoodběratelé a prodejci si mohou objednat tento titul za výhodných podminek přímo na oddělení velkoobchodu Vydavatelství MAGNET-PRESS (tel. 24 22 77 23, linka 386).
Podávání novinových zásilek povoleno Ředitelstvím pošt přepravy Praha č.j. 348/93 ze dne 2. 2. 1993.
Podávanie novinových zásilelk povolené RPP Bratislava - Pošta Bratislava 12 dňa 23. 8. 1993, č. J. 82/93.

Politikava Vojski Drilatava 12 ulia 23. 8. 1593, č. 1. 82/93. Pololetní předplatné 29,40 Kč. Objednávky do zahraničí vyfizuje ARTIA, a. s., Ve smečkách 30, 11 27 Praha 1. Veškeré informace o inzerci poskytuje inzertní oddělení Vydavatelství MAGNET-PRESS, Jungmannova 24, 113 66 Praha 1, telefon 02/24 22 73 84, 02/24 22 77 23, tel./lax 02/236 24 39. Objednávky a podklady inzerátů posílejte na výše uvedenou adresu. Za původnost a správnost příspěvku odpovídá autor. Nevyžádané rukopisy nevracíme. ISSN 0139-7097, číslo indexu 46 044. Toto číslo vyšlo 26. 1, 1994.

RACAL je společnost, zabývající se vývojem a výrobou telekomunikačních a jiných elektronických zařízení pro profesionální využití. Již déle než 40 let si buduje pověst úspěšného výrobce a v současné době patří ke světové špičce výrobců profesionální elektroniky. Ve svých zhruba asi 110 výrobních zařízeních zaměstnává asi 12 000 zaměstnanců ve všech světadílech.

Tradiční výrobou společnosti je elektronika pro vojenské obranné účely. V současné době má společnost čtyři hlavní výrobní celky: Commercial Voice and Data Communications (komerční "hlasová" a datová komunikace, Defence Electronics (elektronika pro vojenské obranné ùčely), Maritime Services (elektronika pro námořní služby) a Industrial Services (průmyslová elektronika).

V uvedených oblastech výroby sdružuje společnost RACAL tyto podniky: Data Communications, Network Services, Radio Communications (výroba taktických vojenských přijímačů, vysílačů a transceiverů), Defence radar (radary pro obranu, využívané především anglickým královským námořnictvem - Roval Navy), Avionics (výrobce avangardních "vzdušných" telefonů pro letecké potřeby na bázi satelitní techniky) a konečně Marine and Energy (jméno Decca zůstává v této oblasti stále světově proslulou značkou - v navigačních přístrojích a přesných přístrojích k určení polohy).

Další aktivity firmy se realizují i v oblasti výpočetní techniky: jsou to firmy Electronic Design Automation (dodavatel softwarových nástrojů), Instrumentation, and Data and Communications Recording (v této oblasti jsou brány výrobky Racal jako standardy pro profesionální aplikace na celém světě. Racal jako výrobce je úspěšný i v oblastech, které přímo nesouvisí s elektronikou, jako např. v oblasti Health and Safety (zdraví a bezpečnost) a v "celulární" (buňkové) mobilní komunikaci, v níž jsou aktivní firmy Vodafone Group Plc a Chubb Security Plc (o jejich úspěšnosti svědčí i to, že je roční obrat v této oblasti výroby kolem jedné miliardy liber.

Na titulní straně tohoto čísla je zajímavá anténa Rototiller soukromé rozhlasové stanice Radio Bonton. Jde o systém čtyř sériově napájených zářičů, umístěných nad sebou ve vzdálenosti 1 λ. Na obrázku je detail jednoho z těchto zářičů, vytvořený dvojící bočníkově buzených dipólů λ/2, vzájemně pootočených o 90°. Systém vyzařuje smíšenou polarizací, takže pro příjem nejsou nezbytné horizontálně polarizované antény.

SE PŘEDSTAVUJE

Výroba společnosti Racal je organizována tak, že v rámci společnosti spolupracuje zcela samostatně množství výrobních jednotek - tak je tomu i v případě pro nás asi nejznáměiší Racal Electronics Group. Tyto výrobní jednotky mají plnou autono-

Sir Ernest Harrison, OBE, předseda RACAL Electronics Pic

David C. Elsbury, OBE, výkonný ředitel RACAL Electronics Pic

Barton J. Clarke, CBE. divize Radar, Avionics and Marine

mii - avšak všechny se mohou spoléhat na pomoc společnosti jako celku. Pracují s mezinárodním kapitálem a vyrábějí pro místní i národní vlády a např. i pro ministerstva obrany výrobky použitelné v dopravě lodní, letecké, železniční i silniční včetně havarijních služeb. Pro leteckou dopravu vyrábějí např. radary, přístroje pro kontrolní věže, testovací systémy, zařízení pro letištní havarijní služby a pro komunikační "infra-strukturu" – pro policii, hasiče, ambulance (záchrannou službu) a pro věznice vyrábějí např. řídicí a kontrolní střediska, mobilní radiokomunikační zařízení, přístroje pro "hlasové" a datové sítě atd.

Racal je vedoucím světovým nezávislým dodavatelem datových komunikačních zařízení, které se distribuují do více než 80 zemí světa. Výrobky v této oblasti jsou především modemy, multiplexery, místní datové sítě a sítě pro manažerské systémy. Zákazníky v této oblasti výroby jsou např. velké olejářské společnosti, letecké společnosti atd. včetně ministerstev obrany. O úspěšnosti firmy v této oblasti svědčí i to, že Racal byl vybrán britskou vládou, aby realizoval a provozoval British Government Data Network (GDN), "vládní" datovou síť, která má ve Velké Británii kolem 125 tisíc uživatelů ve 39 britských "krajích". Do stejné oblasti patří i Healthlink, paketově spínané komunikační zařízení britské vlády, obhospodařované úřadem Family Health Service (služby pro zdraví rodiny) v Anglii a ve Walesu, které zabezpečuje spojení obyvatel s lékaři, zubaři a dalšími zdravotnickými profesionaly. Pro Department of Social Security (úřad sociálních jistot či lépe zabezpečení) vytvořil Racal digitální telefonní síť, která má v současné době asi kolem 5000 účast-

"Vlajkovou lodí" obchodních aktivit společnosti Racal však zůstává radiová komunikace. K výrobkům v této oblasti patří zejména nejrůznější radiová zařízení pro pásma vf, vhf a uhf, družicové pozemní terminály, vf bezpečnostní zařízení, elektronická vojenská zařízení včetně strategických radiových zařízení. (Vybraná zařízení z této skupiny výrobků Racal jsou na druhé straně obálky.) K nim patří i speciální elektroakustická zařízení a nejrůznější antény.

Samozřejmostí je u většiny zařízení digitální zpracování signálu a všechny ostatní moderní poznatky, zabezpečující spolehlivý a nerušený příjem či vysílání.

Velmi úspěšný byl u společnosti Racal i vývoj moderních radarových zařízení jak pro vojenské, tak civilní

účely. V roce 1992 získala společnost např. cenu královny (The Queen's Award for Technological Achievement) za SADIE, procesor pro použití v radarech, který pomáhá chránit letadla, lodě, ponorky i pozemní zařízení proti napadení moderními raketami. Zařízení Racal jsou i součástí výzbroje systému AWACS, které vlastní NATO. Stejně dobře slouží přístroje Racal jako vzdušná navigační zařízení pro vrtulníky a jejich dokonalost potvrdilo i použití ve válce proti Iráku. Již 40 let perfektně slouží i radary, vyráběné pro použití na lodích, neustále zdokonalované podle posledních poznatků. Společnost vyrábí i přístroje, využívající družicové komunikační techniky a to např. pro komerční letecké společnosti první generace těchto přístrojů nesla jméno SATFONE, v současné době je v používání druhá generace těchto přístrojů, vyvinutá společně se společností Honeywell. K tomuto druhu přístrojů patří částečně i přístroje pro určování polohy družic, zdrojů radiových a akustických signálů a v neposlední řadě i pro systémy geofyzikálního průzkumu.

Do výrobního programu společnosti náležejí i zdravotnické přístroje a přístroje ke zlepšení bezpečnosti při práci. Sem patří např. nejrůznější výrobky pro respirátory vzduchu, pro ochranu zraku i sluchu – v oblasti respirátorů dosáhl světové proslulosti např. typ Airstream – u nichž se sleduje samozřejmě především jakost, ale v neposlední řadě i hmotnost a rozměry, aby byly použitelné co nejuniverzálněji.

Racal nabízí i velmi široký sortiment testovacích a měřicích přístrojů jak pro vojenské, tak i pro komerční potřeby. Mezi ně patří i výrobky, které se během let staly standardy ve svém oboru jak v laboratořích, tak v servisu. V posledních letech se velmi rozšířil např. sortiment přístrojů pro operátory telefonů GSM a osobních komunikačních sítí.

Bývá zvykem (v lepších rodinách), že úspěšné společnosti a firmy neopomenou ve svých materiálech uvádět i údaje, charakterizující jejich současná stav nebo perspektivy - výjimkou není ani Racal. Z těchto údajů je nejzajímavější počet procent z obratu, které věnuie společnost (firma) na vývoj a výzkum: Racal k tomuto účelu věnuje 10 % ročního obratu, což je číslo řádu stovek miliónů liber. A že to jsou dobře investované "finance", o tom svědčí nejen věhlas společnosti, ale i celkem 17 již zmíněných "Queen's Awards, královniných ocenění technické úrovně výrobků Racal.

Firma Racal má trvalé zastoupení v ČR, její kancelář je v ulici U laboratoře 19, Praha 6, 162 00, tel./fax 354 239. Zástupcem firmy je pan Jerry Hermansky (hovoří česky).

Dear readers,

The Magnet-Press Publishing House and the Editorial Board of the magazine AR - pro konstruktéry are happy and thankful for your interest about our magazine, as a foreign subscriber.

We are very glad to inform you, that subscription for the year 1994 is very attractive and lower than before.

The prices are:

- by surface 30,- DM or 20,- US \$,
- by airmail 46,- DM or 28,- US \$.

Subscription fee must be paid with the bankcheque and send by post to our address:

Magnet-Press Publishing House att. to OZO-312 Vladislavova 26 113 66 Prague 1

Please enclose your complete address. Delivery of the magazine will start after the payment.

We hope that our magazine will fully satisfy your ideas .

The management of the Magnet-Press Publishing House and the Editorial Board of the ARpro konstruktery magazine wish you all the best in the year 1994.

Vážení čtenáři,

vydavatelství **Magnet-Press** a redakce časopisu AR děkuje za zájem, který o náš časopis projevujete jako zahraniční předplatitel.

Pokud si na r. 1994 objednáte předplatné přímo u nás, zaplatíte pouze tyto ceny:

- pozemní poštou 30,- DM, popř. 20,-US \$,
- letecky 46,- DM, popř. 28,- US \$.

Uvedené ceny lze uhradit šekem na adresu: Vydavatelství Magnet-Press, OZO-312,

Vladislavova 26, 113 66 Praha 1 Česká republika

Nezapomeňte uvést svoji přesnou adresu. Zasílání časopisu bude zahájeno ihned po obdržení předplatného.

Vydavatelství i redakce Vám přejí vše dobré v roce 1994.

ANTÉNY, SOUOSÉ KABELY A KONEKTORY

Jindra Macoun

O anténách úvodem ...

Anténa jako ničím nenahraditelný článek v řetězci všech přístrojů a zařízení, umožňujících rádiové spojení, nedávno vstoupila do druhého století své existence. Bylo to v roce 1887, kdy Heinrich Hertz uveřejnil zprávu o prvním rádiovém spojení, při němž bylo také cílevědomě a záměrně použito antén. Není podstatné, že při tehdejších pokusech nešlo o rádiové spojení v pravém smyslu slova. Podstatné le, že při nich byly v činnosti všechny základní části rádiového komunikačního systému, a že jimi byla potvrzena platnost teoretických předpokladů, vyslovených asi o 20 let dříve J. C. Maxwellem - o stejné podstatě světla a elektromagnetických vln

a s tím souvisejících shodných vlastnostech jejich šíření.

Tehdy již dobře známé vlastnosti, typické pro světlo, jakými jsou odraz, lom a polarizace, se Hertzovi také skutečně podařilo prakticky prokázat i u elektromagnetických vln hned v následujících letech. Je opravdu podivuhodné, co všechno s velmi primitivními prostředky uskutečnil. Pomineme-li jeho vlastní invenci, nalézáme vysvětlení v tom, že pracoval s velmi krátkými vlnami, u nichž se rozměrově malá anténa mohla stát současně zářičem i laděným oscilátorem. Tak se stalo, že díky rozměrům vysílacího dipólu uskutečnil Hertz svoje první pokusy s vlnovou délkou asi 4 m a další pak dokonce na vinách decimetrových. Byly to tedy vlnové délky, jež začaly být prakticky a soustavně využívány až o 40 let později, zatímco první pokusy se skutečným rádiovým spojením probíhaly na vlnách dlouhých.

Hertz použil hned na samotném začátku pokusů dva základní anténní typy tenký symetrický elektrický dipól s koncovými zátěžemi a magnetický dipól ve formě pravoúhlé smyčky. Později pak použil i velice účinnou směrovou anténu – dipól s reflektorem ve tvaru parabolického válce, kterou i dnes považujeme za anténu moderní, využívanou na decimetrových spojích. Na obr. 1 a 2 jsou náčrty antény tak, jak je sám autor nakreslil do své zprávy. Je pozoruhodné, že zatímco všechny ostatní části rádiového přenosového systému doznaly během stoletého vývoje podstatných změn, tak antény zůstaly ve své podstatě beze změny. Přesto se jejich

síly, publikované v roce 1889

sehr schnelle elektrische Schwingungen" - O velmi rychlých elektrických oscilacích

3

význam vůbec nezměnil. Právě naopak, nesmímě vzrostl, protože kromě oblasti rádiové komunikace nalezly další rozsáhlé použití v rádionavlgaci, rádiolokaci, rádio-astronomii, telemetrii a v řadě dalších oborů. Postupně sice vznikly další typy, které dnes řadíme mezi typy základní (jako např. kruhové nebo elipticky polarizované zářiče, antény s postupnou vlnou a další), avšak dipóly a smyčky si udržují nadále svůj význam nejen jako samostatné antény, ale i jako základní stavební prvky složených anténních systémů.

Samostatné antény však i v té nejjednodušší formě ovlivňují podstatným způsobem parametry každé rádiokomunikační trasy, v níž jsou použity. V porovnání s ostatním zařízením, jakým jsou dnes např. miniaturní avšak výkonné a neuvěřitelně "chytré" přenosné přijímače/vysílače, se jednoduché dipólové antény jeví jako prosté až primitivní pomůcky, nestojící za větší pozornost - a tak se zpravidla ocitají zcela na okraji zájmu. A zůstávají tam potud, pokud se neobjeví první potíže. Všeobecně se má za to, že anténní problémy vyřešil výrobce komunikačního zařízení, když každý transcelver (abychom zůstali u našeho příkladu) opatřil krátkou "gumovou" anténkou, která zpravidla plně vyhovuje, pokud se zařízení používá zamýšleným způsobem - ke komunikaci v relativně malé oblasti.

K nezájmu o antény patrně přispívají i zdánlivě nepochopitelné jevy, související s šířením elektromagnetických vln, povyšující všechny okolnosti s tím spojené, včetně antén, do oblasti nadpřirozených jevů, "odborně" nazývaných "duchařinou". Je pravdou, že teoretické základy i těch nejjednodušších antén jsou matematicky náročné. Konečná realizace antény, včetně jejího využití, je však do značné míry záležitostí praxe a zkušeností. V tomto smyslu jsme se snažili koncipovat příspěvky k anténní problematice, publikované posledních dvou letech na stránkách Amatérského Radia – řady A, které nyní souhrnně a s doplňky (na žádost čtenářů) uveřejňujeme v první části tohoto "béčka".

A protože se antény zpravidla napájejí souosými kabely s konektory, věnujeme v dalším textu přiměřenou pozornost i těmto nezbytným dílům každé rádiokomunikační trasy.

Vertikální všesměrové antény

(nejen) pro pásmo CB

V CB reportu dubnového čísla AR řady A v roce 1992 nalezli jeho čtenáři první z pravidelných příspěvků o anténách – Čtvrtvinné antény (nejen) pro pásmo CB. Byl určen zejména novým zájemcům o provoz na tomto pásmu. Ale nejen jim. Z diskusí odposlouchaných na rádioamatérském pásmu 145 MHz bylo zřejmé, že ani technicky vzdělanější amatéři–vysílači nemají v mnohém z oboru antén jasno. (Příčinou mohou být i nižší požadavky u zkoušek žadatelů o koncesi v současné době.) Naším cílem je tedy objasnit všem čtenářům srozumitelným a přístupným způsobem, bez matematických formulací, základ-

ní principy činnosti nejuživanějších antén a popsat velmi jednoduché antény tak, aby každý nový zájemce byl schopen se v této problematice orientovat a s vlastnoručně zhotovenými anténami experimentovat. Pro příznivý ohlas a na všeobecnou žádost i z řad nepravidelných čtenářů AR jsme celý seriál v ucelené formě zařadlii do tohoto čísla AR řady B. Byli bychom rádi, kdyby splnil záměr, s nímž byl sestavován a podnítil další zájem o tento opomíjený obor či umožnil lepší příjem požadovaných signálů.

Čtvrtvinné antény

Svislý – vertikální, půlvlnný ($\lambda/2$ – čti lamda půl) dipól je základní anténou, ze které jsou v podstatě odvozeny téměř všechny typy antén základnových (stacionárních) a vozidlových (mobilních), ale i přenosných.

Připomeňme základní vlastnosti svislého dipólu $\lambda/2$ ve volném prostoru:

 všesměrový diagram ve vodorovné rovině;

 "osmičkový" diagram ve svislé rovině s maximy v rovině horizontu a minimy ve směru podélné osy dipólu (obr. 3);

Obr. 3. Dipól √2 umístěný ve volném prostoru má ve svislé rovině "osmičkový" vyzařovací diagram s maximy v rovině horizontu

– vstupní impedance – či vstupní "odpor" na svorkách uprostřed antény – zhruba 70 Ω .

Tyto ideální vlastnosti ve volném prostoru jsou pak v praxi nepříznivě ovlivňovány výškou antény nad zemí, popř. blízkostí jiných kovových svislých vodičů, stožárů apod. Naše představy o anténách např. pro pásmo CB budou pragmatičtější, uvědomíme-li si, že vlnová délka (λ) odpovídající kmitočtům CB pro 1. až 40. kanál, tj. kmitočtům 26 995 kHz až 27 405 kHz, je 11,11 až 10,95 m. Počítá se ze vzorce

$$\lambda = \frac{c}{f} \qquad \qquad \text{[m; km/s, kHz]},$$

kde c je rychlost šíření elektromagnetických vln, λ je vlnová délka.

Střednímu kmitočtu CB pásma, f_s = 27 200 kHz, odpovídá vlnová délka

$$\lambda \ = \ \frac{300\ 000}{27\ 200} \ = \ 11.3\ m\ .$$

U půlvinných antén pro CB se tak dostáváme k dělkám kolem 5,5 m. Použití tak dlouhých samonosných dipčiů bývá spojeno s obtížemi a jako antény vozidlové je prakticky nelze realizovat. Za těchto okolností je nejvhodnějším řešením anténa čtvrtvlnná (λ/4), nad paprskovitou "protiváhou" nebo nad kovovou střechou vozidla.

V tomto uspořádání se z původního dipólu stává tzv. unipól či monopól.

Obr. 4. Unipól 1/4 umístěný nad nekonečnou vodivou plochou vyzařuje maximálně rovněž v rovině horizontu. V praxi však takové ideální vyzařování neexistuje vlivem ztrát ve skutečné zemi

Proložíme-li výše zmíněný dipól λ/2 uprostřed nekonečnou vodivou plochou, můžeme spodní polovinu dipólu o délce 1/4 odstranit, aniž to ovlivní původní vyzařovací vlastnosti (obr. 4). Nahradí ji "zrcadlový obraz" zbývající horní části. Vstupní impedance čtvrtvlnné antény - unipólu se nad touto nekonečnou vodivou plochou zmenší přibližně na polovinu původní velikosti, tj. asi na 35 Ω . Nahradime-li tuto teoreticky nekonečnou vodivou plochu skutečnou zemí, dostáváme tzv. Marconiho čtvrtvinnou anténu, používanou v pásmech středních a krátkých vln. Její vlastnosti budou tím lepší, čím vodivější bude země. Proto se vodivost země ovlivňuje množstvím dlouhých paprskovitě se rozbíhajících vodičů. Této soustavě se říká protiváha. Žádané a předpokládané účinky antény 1/4 tedy závisí jak na správné délce zářiče – unipólu, tak na kvalitě protiváhy. Je třeba zdůraznit, že pro správnou činnost čtvrtvlnné vertikální antény je protiváha naprosto nezbytná, i když může být realizována jednodušeji než je výše uvedeno - což platí zejména na všech radiokomunikačních pásmech VKV včetně pásma CR

U vozidlových antén můžeme za protiváhu považovat vnější povrch kovové karosérie. U stacionárních antén má být protiváha tvořena minimálně třemi, raději však čtyřmi paprskovitě uspořádanými vodiči (tzv. radiály) o délce minimálně ¼4. Anténě v tomto provedení se

Obr. 5. Anténa GP s vodorovnou protivéhou tvořenou čtyřmi prvky vyzařuje maximálně asi 25° nad rovinu horizontu

říká GP – ground plane (obr. 5). Můžeme ji snadno vysunout nad zem, tzn. umístit na budovy či samostatné stožáry, kdy se pak navíc může uplatnit i tzv. výškový zisk. (Zjednodušeně řečeno – každým zdvojnásobením výšky antény nad zemí se může až o 6 dB zvětšit intenzita přijmaných popř. vysílaných signálů). U antény GP se též zjednodušuje napájení souosým kabelem, neboť odpadá symetrizační člen a vnitřní vodič souosého kabelu se spoji

přímo s unipólem, zatímco stínění souosého kabelu se spojí s protiváhou. U antény GP by nás mělo ještě zajímat, že:

– Skutečné délky čtvrtvlnných zářičů jsou vždy menší než vypočtené délky elektrické vlivem koncových kapacit zářičů, popř. kapacit anténních svorek. Zkrácení je závislé na štíhlosti prvků. Čím jsou tlustší, tím je zkrácení větší. Zkracovací koeficient, kterým je nutno násobit vypočtené délky, se např. v pásmu CB pohybuje v mezích 0,95 až 0,97.

Nejdůležitějším rozměrem antény GP je délka unipólu - zářiče λ/4. Délka vodorovných radiálních prvků protiváhy není kritická – měla by však být minimálně λ/4. Nekritičnost rozměrů vodorovných prvků protiváhy je vykoupena méně příznivým vyzařováním (příjmem) ve svislé ro-vině, kdy je maximum vychýleno asi o 25 stupňů nad horizont. Rovněž menší impedance (asi 35 Ω) poněkud zhoršuje přizpůsobení k běžnému souosému kabelu o impedanci 50, popř. 75 Ω . (Tento nedostatek však ize odstranit použitím paraleiního kondenzátoru v místě napájení a současným prodloužením zářiče. Tak lze např. zabezpečit dobré přizpůsobení i na 75 Ω.) Příznivější vyzařování (příjem) s maximem v rovině horizontu má GP s šikmými radiálami. Touto úpravou se současně zvětší impedance, což je výhodou při napájení souosým kabelem s impedancí 50 Ω

Obr. 6. Šikmé radiály zlepšují u antény GP vyzařování v rovině horizontu a zvětšuil impedanci antény

Délka šikmých radiál je na rozdíl od vodorovných již kritická, protože svojí délkou současně přispívají k vf oddělení svislého stožáru od vlastní antény tak, aby se stožár popř. napájecí kabel nepodílel na vyzařování či příjmu, tzn. aby nepříznivě neovlivňoval vyzařovací vlastnosti vlastní antény GP. Čím svislejší jsou radiály, tím snadněji mohou svoji nevhodnou délkou anténní proudy na stožáru vybudit. Extrémním případem velmi svislých radiál je tzv. rukávový dipól, což je vlastně svislá půlvinná souose napájená a značně úzkopásmová anténa, ke které se ještě vrátíme.

– U antén GP je vnitřní vodič souosého kabelu zpravidla přímo spojen se zářičem. Z hlediska ochrany vstupních obvodů radiostanice před účinkem atmosférické elektřiny to však není výhodné. Tzv. bleskojistky zařazované do souosého kabelu jsou účinné jen při silných výbojích. Galvanické spojení zářiče se zemí paralelním čtvrtvlnným úsekem zkratovaného souosého kabelu u anténních svorek nebo na vstupním konektoru radiostanice (popř. tzv. bočníkové napájení uzemněného zářiče) chrání lépe i při slabších atmosférických výbojích.

Obr. 7. Galvanické spojení záříče se zemí paraleiním čtvrtvinným zkratovaným úsekem souosého kabelu chrání vstupní obvody radiostanice proti atmosférickému přepětí a výbojům. Čtvrtvinný úsek je možné zasunout do jednoho prvku protiváhy

Obr. 8. Při tzv. bočníkovém napájení je zářič rovněž galvanicky spojen se zemí. Poloha napájecího bodu i kapacita kompenzačního kondenzátoru jsou však kritické

- Pro mobilní antény CB prakticky nelze z provozních i konstrukčních důvodů použít zářič plné čtvrtvlnné délky, tj. 2,75 m. Prakticky používaná délka 1 až 1,5 m se proto prodlužuje indukčnosti (cívkou) tak, aby i takto krátká anténa působila jako "elektrická" čtvrtvlna. Tyto zkrácené mobilní antény jsou již úzkopásmové a většinou se dolaďují (např. výsuvným kon-cem) na požadované kmitočty až po montáži na karosérii. Extrémním případem zkrácených antén jsou antény (tzv. "pendreky" nebo "gumové antény") pro přenosné radiostanice. Účinnost zkrácených antén je menší vlivem jednak ztrát ve šroubovici (cívce) a jednak menší efektivní výšky. Principiálně jsou to však také antény čtvrtvlnné.

Obr. 9. Profesionální anténa GP na pásmo CB se zkráceným záříčem (130 cm), prodlužovací cívkou a redukovanými radiálami

Půlvinné antény

Nejužívanějšími anténami jsou v CB pásmu antény čtvrtvlnné, resp. jejich zkrácené až miniaturizované modifikace. Hlavním důvodem je příliš "nízký" kmitočet, čili značná délka vlny, která omezuje tovární i amatérskou výrobu rozměrnějších typů samonosných stožárových vertikálně polarizovaných antén. Ty jsou pochopitelně materiálově náročnější, tedy dražší – nehledě na obtížnější instalací s většími nároky na prostor. Ovšem pro místní provoz, tzn. provoz na relativně malé vzdálenosti, který by měl na pásmu CB převažovat, čtvrtvinné antény plně vyhovují. To ovšem neznamená, že jen tyto převládající antény λ/4 a jejich zkrácené modifikace mají na pásmu CB své oprávnění - i kdvž se to z nabízeného sortimentu výrobců může zdát. Naopak – jsou to právě jednodu-ché půlvinné i celovinné antény – dipóly, které i ve svém nejjednodušším závěsném provedení mohou zlepšit dosah stacionárních radiostanic. A isou to navíc antény amatérsky snadno zhotovitelné. Při jejich návrhu a provedení můžeme využít vyzkoušené technologie závěsných drátových antén krátkovinných, kde odpadají hlavní potíže při jejich amatérské realizaci - totiž nosné stožárové konstrukce. Ostatně – pásmo CB leží právě na rozhraní mezi pásmy KV a VKV.

Jako od každé svisle polárizované antény pro provoz CB požadujeme i od antény půlvlnné, aby splňovala tyto požadavky:

 aby měla všesměrový diagram ve vodorovné rovině;

- aby ve svislé rovině vyzařovala (přijímala) optimálně v rovině horizontu, tj. pod malým elevačním úhlem, což také znamená, aby skutečnou anténou byl jen vlastní anténní systém a nikoliv napáječ – souosý kabel, přesněji jeho vnější stínicí plášť, popř. nosný systém, tj. stožár, kotevní lana apod;

- aby byla dobře přizpůsobena impedančně, tzn. aby z vysílače prostřednictvím napáječe "odebírala" a pokud možno beze ztrát vyzařovala veškerý vysílačem dodaný ví výkon. Zde je třeba konstatovat, že příznivé hodnoty ČSV nebo PSV (činitel stojatých vln nebo méně správně poměr stojatých vln) naměřené reflektoměrem ("PSV-metrem") nemusí být ještě dostatečnou zárukou správné funkce antény, není-li současně zaručeno, že se na vyzařování nepodíli povrch napáječe či nosný systém, nebo že se výkon neztrácí ve ztrátovém odporu nevhodného izolantu, popř. v útlumu příliš dlouhého napáječe. Uvedené okolnosti mohou podstatně zmenšovat naměřené údaje ČSV a budit tak zdání bezchybné činnosti antény. K této problematice se však ještě vrátíme.

- Aby původní příznivé elektrické vlastnosti antén byly trvale zachovány a nezhoršovaly se dlouhodobým působením vnějších klimatických vlivů. Extrémní, ale nikoliv neobvyklou poruchou bývá např. přerušení vnitřního vodiče souosého napáječe v místě připojení k anténě při nedbalé mechanické stabilizaci tohoto místa. Uvedené požadavky mohou splnit i jednoduché, dále popsané závěsné antény – dipóly ½2. Za závěsné antény považujeme nesamonosné, většinou drátové popř. "dvoulinkové" antény, zavěšené v dostatečné vzdálenosti podél stěn budov, na závěsná lana mezi pevnými objekty, popř. na půdách mezi krovy pod nevodivou krytinou.

Rozdělíme je podle způsobu napájení

do dvou skupin (obr. 10):

dipóly λ/2 napájené uprostřed;
 záříče λ/2 napájené na konci.

Obr. 10. Svislý dipól 1/2 napájený uprostřed, tzn. v místě malé impedance – a) symetricky, b) souose, c) svislý zářič 1/2 napájený na konci, tzn. v místě velké impedance. Uspořádání a) by mělo být doplněno symetrizačním členem. Uspořádání b) vyžaduje obvod pro potlačení povrchových (zářivých) proudů na napáječi. Uspořádání c) lze realizovat pouze s laděným transformačním obvodem

Dipóly 1/2 napájené uprostřed

Věnujme se nejprve skupině první. Víme, že symetrický, tj. uprostřed napájený dipól $\lambda/2$ je anténou rezonanční, která se na svých svorkách jeví jako zátěž (zdroj) s reálnou impedancí ("vnitřním odporem") asi 70 Ω . To umožňuje velmi jednoduše napájet tyto antény běžnými souosými kabely bez jakýchkoli dalších přizpůsobovacích obvodů. Za jistých, později zmíněných okolností, se obejdeme I bez tzv. symetrizace souosého (koaxiálního), tedy nesymetrického napáječe, kterým symetrický dipól $\lambda/2$ chceme napájet.

Svislý drátový symetrický dipól 1/2, napájený souosým kabelem bez symetrizace, je skutečně nejjednodušší, plně funkční anténou, kterou si můžeme snadno zhotovit sami. Oba čtvrtvlnné úseky jsou uprostřed v místě připojení souosého kabelu odděleny vhodným izolátorem v délce 2 až 3 cm. K jednomu úseku je připojeno stínění, ke druhému vnitřní vodič. Důležitá je mechanická stabilita tohoto spojení tak, aby vlivem kmitání (větrem) nebyly přerušeny přívody - zejména u vnitřního vodiče. Problém lze vyřešit společnou izolační destičkou, ke které jsou všechny přívody dobře upevněny (obr. 11). Vnější konce antény jsou oky spojeny se závěsným a kotevním lankem, nejlépe tlustší silonovou strunou, takže odpadnou i koncové izolátory. Skutečná délka drátového dipólu λ/2 (při průměru vodiče 1 až 2 mm), což je celková vzdálenost mezi oběma konci antény včetně přerušení drátu v místě napájení, je 527 cm. Je skoro o 5 %

Obr. 11. Přípojení souosého napáječe k jednoduchému dipólu $\lambda/2$ bez symetrizace

kratší než půlvlna odpovídající střednímu kmitočtu pásma CB. I když přímé spojení symetrické antény s nesymetrickým napáječem odporuje základním anténářským zásadám, bude uvedené (řekněme experimentální) jednoduché uspořádání závěsné antény plně funkční, zaručíme-li vzájemně kolmou orientaci dipólu a napáječe na vzdálenost min. λ/4, asi 2,5 m a povedeme-li napáječ v této vzdálenosti volně. tzn. ne v kovové trubce či podél nějakého vodiče. 2,5 až 3 m je též minimální doporučená vzdálenosť antény CB od svislých vodičů, stožárů nebo vodivých ploch. která neovlivní prakticky přizpůsobení antény. Původní všesměrový diagram svislého dipólu λ/2 však může být blízkými svislými vodiči deformován.

Jiným řešením závěsné antény je svislý skládaný dipól z běžné ploché TV dvoulinky, který má prakticky stejné vyzařovací vlastnosti jako jednoduchý dipól drátový. Jeho impedance je sice 300 Ω , ale s jednoduchou symetrizační smyčkou, jak ji běžně používáme u antén TV či VKV, můžeme pro jeho napájení opět použít běžný souosý kabel. Anténa tak bude napájena ve shodě s požadavkem na souměrné napájení a napáječ bude možné vést již od antény podél závěsného vodiče či v trubce, aniž to nepříznivě ovlivní vyzařování vlastní antény. Požadavek na vzá-jemně kolmou orientaci napáječe a antény však zůstává. Zapojení smyčky a její připojení k dipólu je zřejmé z obr. 12. Skutečná délka půlvinného úseku (smyčky), přes který je napájena druhá svorka antény, závisí na typu dielektrika kabelu tvořícího smyčku. Běžný kabel s plným di-elektrikem PE má činitel zkrácení 0,66 (kabel s bílým pěnovým dielektrikem 0,81),

takže délka smyčky – měřená od konců stínění – je pro střed pásma CB 364 cm. Smyčku přitiskneme k napájecímu kabelu a stabilizujeme ovinutím nebo bužírkou. Opět respektujeme požadavek na spolehlivé spojení napáječe se symetrizační smyčkou a antény.

Při užití malých výkonů – asi do 5 W – můžeme symetrizační smyčku nahradit širokopásmovým symetrizačním členem feritovým, tzv. elevátorem tak, jak se používá na l. až III. TV pásmu, a to bez jakýchkoliv úprav (obr. 13). Vyskytuje se ve dvojím provedení. Na feritovém dvouděrovém jádru z hmoty N1 o délce 12 nebo 8 mm. Pro naše účely vyhoví i na 27 MHz oba typy. Při trvalé Instalaci antény ve venkovním prostředí je vhodné chránit místo napájení včetně elevátoru jednoduchým plastikovým krytem.

Obr. 13. Připojení souosého napáječe ke skládanému dipólu z ploché televizní dvoulinky pomocí širokopásmového symetrizačního obvodu – feritového TV ele-

Použití skládaného dipólu z dvoulinky oceníme zvláště při napájení na delší vzdálenost, kdy můžeme větší část poměrně drahého souosého kabelu nahradit dvoulinkou, kterou jednoduše připojíme k anténě, a přechod na souosý kabel, opatřený jedním z výše uvedených symetrizačních členů, umístíme až poblíž vlastní rádiostanice. Impedanční přizpůsobení zustane podél celé trasy zachováno. Jistou nevýhodou "dvoulinkového" napájení je požadavek na dostatečnou vzdálenost dvoulinky od dalších vodičů, mokrých či vodivých střech a zdi. Stejně tak je třeba zachovat vzájemně kolmou orientaci svislého dipólu a dvoulinky do vzdálenosti asi

dvoulinky

Tab. 1. Parametry dipólů λ/2 podle obr. 11 až 13

Provedení	Drátový bez sym. členu		dení Drátový bez sym. členu D			sym. členem
	drát Cu Ø 1 mm	lanko Cu s izol.*)	se smyčkou**)	s elevátorem		
délka la [cm]	527,5	507,5	505	505		
délka / _a /λ	0,478	0,46	0,458	0,458		

Přizpůsobení

ČSV _{75 Ω}	1,1	1,1	1,25	1,25
ČSV ₅₀ Ω	1,5	1,5	1,25	1,25

Lanko Cu s izolací PVC typ LaU 0,35, složené ze 16 vodičů, vnější Ø 2,1 mm. Skutečná (rezonanční) délka vodičů povlečených (dielektrickou) izolací je vždy kratší než délka stejně tlustých vodičů bez izolace.

Symetrizační smyčka 2/2 ze souosého kabelu s plným dielektrikem PE má pro pásmo

CB délku 364 cm. Zároveň transformuje impedanci v poměru 1:4.

V souvislosti s použitím dvoulinky jako napáječe připomínáme, že tzv. plochá dvoulinka je více ovlivňována vnějšími klimatickými vlivy. Jednak snadno kmitá ve větru, což časem může vést i k úplnému přerušení vodičů, a to i bez zjevného vnějšího poškození, a dále se při dešti a vlivem nečistot její útlum poněkud zvětšuje. Náchvinost ke kmitání se zmenší, jestliže ji několikrát po délce překroutíme a dobře upevníme. Z těchto hledisek je výhodnější tzv. oválná dvoulinka, známá spíše pod označenim "dvoulinka na II. program".

Uvedené příklady napájení symetrických dipólů λ/2, kdy je žádoucí orientovat napáječ kolmo k ose antény, jsou využívány zejména u antén horizontálně polarizovaných, tzn. hlavně na pásmech radioamatérských. Svisle polarizované antény pro pásmo CB jsou v popsaném uspořádání užitečné spíše v podmínkách, kdy je radiostanice umístěna ve shodné výšce -s anténou, např. ve vícepatrových budovách, kdy lze anténu zavěsit podél stěny a napáječ odvádět kolmo do okna. Pro případy, kdy je svislá anténa zavěšena "nad" vysílacím pracovištěm, vyhovují lépe antény napájené souose nebo na konci. Parametry dipólů podle obr. 11 až 13 jsou přehledně v tab. 1.

Jednoduchý dipól λ/2 je anténou rezonanční, tzn. že se na jednom kmitočtu nebo v úzkém kmitočtovém pásmu v místě napájení projevuje jako činný odpor. Při napájení uprostřed je odpor kolem 60 až 75 Ω , při napájení na konci se zvětšuje nad 1 kΩ. Výhodou rezonančních, uprostřed napájených antén je praktická shoda tohoto odporu s charakteristickou impedancí běžných souosých napáječů - koaxiálních kabelů - 50 nebo 75 Ω, takže odpadají veškeré transformační obvody. Pro úplnost dodejme, že to platí pouze o anténách rezonujících na lichých kmitočtových násobcích, tzn. anténách 3/2, 3λ/2 atd. Toto středové "nízkoimpedanční" napájení je zároveň širokopásmové - neomezuje impedanční šířku pásma vlastní antény. Klasický způsob středového napájení dipólových antén, kdy je napáječ veden kolmo k ose antény, takže neovlivňuje prakticky její vyzařovací vlastnosti, byl již popsán.

U antén svisle polarizovaných je zpravidla účelnější napájení souosé, kdy je napáječ veden do středu dipólové antény souose. Horní polovina antény je napájena přímo vnitřním vodičem souosého kabelu. Dolní část antény tvoří vnější povrch nosné trubky, spojené se stíněním kabelu, popř. samotný stínicí plášť kabelu u antény zavěšené. Ve vzdálenosti λ/4 od místa

Obr. 14. Dipól λ/2 napájený souose. Vf izolaci anténních (zářívých) proudů lze na souosém napálecím kabelu zabezpečit: a) obvodem LC, b) rukávem λ/4, c) rukávem λ/4, jehož vnější povrch je zároveň dolní polovinou dipólu

napájení (od středu antény) je však třeba zařadit anténním proudům tekoucím po povrchu stínění do cesty účinný "izolátor" který jim zavře další cestu, takže vlastní anténou zůstane spolu s horní čtvrtvlnnou částí jen čtvrtvlnný úsek stínění nebo nosné trubky. A jen za těchto podmínek bude mít tato anténa optimální směrové účinky ve směru (popř. rovině) běžné komunikace, tzn. v rovině horizontu.

Zmíněný "izolátor" je v podstatě paralelním rezonančním obvodem LC, který má, jak známo, na svém rezonančním kmitočtu, shodném se středním pracovním kmitočtem antény, velkou impedanci - velký odpor. Prakticky můžeme tento obvod LC vytvořit dvěma způsoby. Klasickým obvodem LC nebo tzv. rukávem λ/4 (obr. 4). Principiálně jsou oba způsoby rovnocenné. Klasický obvod LC je rozměrově výhodnější na nižších pásmech VKV - tedy i na pásmu CB, zatímco rukáv λ/4 se snáze a účinněji realizuje na pásmech vyšších.

U jednoduchých antén zavěšených tvoří oddělovací či "izolační" obvod určitý počet závitů souosého napájecího kabelu. přičemž kapacitou C je obvykle jen vlastní kapacita takto vytvořené cívky L. Je to obvod poměrně selektivní, s velmi kritickým nastavením rozměrů (počet závitů N, průměr vinutí) a celkovým uspořádáním

(průměr a izolace kabelu, těsnost vinutí, uspořádání vývodů atd.). V amatérských podmínkách je pro jeho nastavení do rezonance neocenitelnou pomuckou dobře ocejchovaný GDO. V první fázi je nutno naladit do rezonance zkusmo navinutou samostatnou cívku z téhož kabelu, kterým ie anténa napájena. Konečné doladění na maximum příjmu (nebo vysílání) se dělá až v sestavené anténě, kdy se vlivem přívodů poněkud změní původní "laboratorní" nastavení cívky. Ladění cívky L s použitím GDO až v sestavené anténě nevede k jednoznačnému výsledku, protože GDO je zároveň ovlivňován rezonancí vlastní antény. Totéž lze říci i o měření reflektometrem - minimální ČSV sice signalizuje optimální naladění antény do rezonance (délkami L_z a L), příp. vlastní přizpůsobení, ale nikoliv správné naladění oddělovacího obvodu LC. Účinnost vf oddělení spodní části napáječe nebo nosné trubky lze nicméně posoudit i reflektometrem tak, že při měření měníme poměry na napáječi za oddělovacím obvodem LC nebo rukávem. Kolísá-li např. při pohybu ruky, svírající napáječ, periodicky výchylka indikátoru reflektometru (perioda kolísání odpovídá λ/2), vyzařuje i tato část napáječe. Oddělovací obvod není správně naladěn, nebo "na to nestačí". Pak obvykle postačí omezit vyzařování dalším oddělovacím obvodem zařazeným do napáječe ve vzdálenosti λ/4.

Při praktické realizaci obvodu LC je třeba brát v úvahu maximální poloměr trvalého ohybu použitého souosého napáječe, který doporučuje výrobce. Jinak nelze vyloučit zkrat vnitřního vodiče se stíněním při dlouhodobém používání za

vyšších teplot.

Celková délka vodiče, v našem případě souosého kabelu, svinutého v rezonanční cívku, je přibližně λ/4. Na pásmu CB by taková cívka měla již značný počet závitů. Zvětšením vlastní kapacity se počet závitů přijatelně zmenší. Nejjednodušeji to můžeme realizovat např. pásem hliníkové fólie, přiléhající k závitům vně nebo uvnitř. Rozměrem fólie, která působí jako paralelní kondenzátor, můžeme v poměrně širokém rozsahu měnit rezonanční kmitočet cívky. Fólie však nesmí vytvořit závit nakrátko - její konce se tedy nemají překrývat. Délka kabelu, tvořícího cívku, by však neměla být kratší než asi 0,152.

Pokusně zhotovená anténa měla v optimálním uspořádání rozměry (obr. 15) po-

dle tab. 2.

Cívka z kabelu VLEOM 50-1.5 měla 13 závitů na izolační trubce o Ø 32 mm, podložených hliníkovou fólií o rozměru . 35 x 90 mm (v rozvinutém tvaru). Cívka z kabelu VCEOY 50-2,95 byla navinuta uvnitř plastikového krytu s vnitřním průměrem 64 mm, tzn., že vnitřní průměr cívky byl 59 mm. Měla 11 závitů a rozměr fólie "nad" vinutím byl 50 x 185 mm. U tenkostěnných trubek (např. kelímek od jogurtu) lze umístit fólii vně, což usnadňuje "ladění" cívky do rezonance. Vliv paralelní kapacity fólie je výrazný. Uvedený ČSV platí při umístění antény ve vzdálenosti min. 2 až 2,5 m od nejbližšího objektu (stěny domu). Popsané závěsné dipóly λ/2, zhotovené včetně vlastního napáječe z jediného kusu souosého kabelu, ize rea-

Obr, 15. Závěsná anténa (dipól 1/2) zhotovená ze souosého kabelu, který zároveň vytváří oddělovací rezonanční cívku (a). Snímek rezonanční cívky (b)

lizovat také pro pásma KV – např. 21 či 28 MHz, ale též pro pásmo 145 MHz.

Souosé zkratované vedení ¼4, čili tzv. rukáv je v podstatě opět paralelní rezonanční obvod s velkou impedancí na ote-

Obr. 16. Velmi jednoduchý závěsný rukávový dipól 1/2. "Rukáv" tvoří 4 svislé vodiče (kresleny jsou jen dva), stabilizované rozpěrkami z bužírky

vřeném konci. Jeho rezonanční kmitočet je možno nastavit délkou, takže "ladění" je jednodušší než ladění rezonanční cívky. Skutečná délka "elektrické čtvrtvlny" uvnitř rukávu je kratší vlivem koncové kapacity okraje rukávu a dielektrických vložek (kroužků, rozpěřek), středících vnitřní vodič rukávu. Rezonanční kmitočet samotného rukávu se kontroluje, popř. nastavuje opět nejsnadněji podle GDO, který vážeme velmi volně s dutinou rukávu poblíž zkratovaného konce (obr. 17). Šířka kmi-

Obr. 17. Rezonanční kmitočet, resp. "naladění" oddělovacího rukávu můžeme upravit pomocí GDO, volně vázaného ke zkratovanému konci

točtového pásma, ve kterém jsou dostatečně izolovány anténní proudy, je přímo úměrná charakteristické impedanci souosého vedení tvořícího rukáv. Větší impedance (tzn. tlustší rukáv a tenčí vnitřní vodič) pásmo rozšiřují.

Vlastní rezonance antény, tzn. i minimální ČSV (PSV) je dána její celkovou délkou, kterou po definitivním naladění rukávu L_r pak jen "dostavujeme" délkou L_z . Proto také nemusí mít horní a dolní zářič $\lambda/4$ stejnou délku.

Samotný rukávový dipól je však pro pásmo CB již konstrukčně náročnou anténou – jde o celkovou délku asi 5,5 m. Případné zájemce o jeho stavbu může inspirovat konstrukční popis samonosného rukávového dipólu pro pásmo 145 MHz na str. 297 AR A, č. 6/92.

Závěsné řešení jednoduché souose napájené antény ½2, ověřené v pásmu 145 MHz, je patrné z obr. 18 a 19. Oddělovacím otvorem je zde "řídký" rukáv vytvořený ze čtyř vodičů, upevněných distančními rozpěřkami z bužírky podél napáječe. Jinak můžeme toto uspořádání také považovat za anténu GP se svislými radiálami. Rezonanční délka tohoto "rukávu" je dána především délkou vodičů a ovlivněna i počtem rozpěřek, jejich rozměry i materiálem. Rukáv lze ladit do rezonance opět volně vázaným GDO jako v předchozích případech.

Impedance souose napájených antén $\lambda/2$ se přibližuje spíše 75 Ω než 50 Ω , ovšem ani při impedanci 75 Ω nepřesahuje ČSV velikost 1,5.

Měřením i praxí ověřená anténa pro pásmo 145 MHz zhotovená podle obr. 18 a 19 má rozměry podle tab. 3.

Obr. 18. Snímky závěsného rukávového dipólu λ/2 podle obr. 16

Svislé vodiče rukávu z izolovaného lanka jsou připájeny přímo ke spleteným vývodum stínění. Tvar rukávu udržuje 43 dvoudílných rozpěrek z bužírky o Ø 18 a

Tab. 2. (Rozměry dipólu podle obr. 15 v mm)

Typ kabelu	lz	l _r	Ø	N	ČSV ₅₀	ČSV75
VLEOM 50-1,5	2600	2530	32	13	≤1,4	≤1,3
VCEOY 50-2,95	2580	2500	59	.11	≤1,4	≤1,3

Tab. 3. (Rozměry antény podle obr. 16 a 18 v mm)

Typ kabelu	lz	l _r	s ·	ČSV ₅₀	ČSV75
VLEOY 75-3,7	468	445	36	≤1,4	≤1,2

Ø 8 mm, což je samozřejmě možné řešit i jinak. Horní částí antény je vnitřní vodič souosého kabelu s původní dielektrickou izolací. Ochranou proti případnému zatékání vody podél stínění je těsně navlečený plastikový kryt. Závěrem je možné konstatovat, že jde o velmi jednoduchou anténu pro přechodnou instalaci, která má stejné vlastnosti jako každá jiná půlvlnná anténa. Snadno ji však zhotovujeme jen "na koleně". Proto se právem řadí do kategorie antén typu ACHA – Antény Chudého Amatéra.

Na závěr této části jedno upozornění: vždy bychom měli při instalaci a provozu antén respektovat nutná bezpečnostní hlediska. I závěsné, tj. spíše přechodně instalované antény jsou vystaveny účinkům atmosférické elektřiny. Při bouřce v místě raději anténů zcela odpojíme. Ovšem i vzdálenější výboje mohou indukovat v delších anténách značné proudy, které mohou poškodit vstupní obvody transcelveru, není-li jiné cesty k zemi. Čtvrtvlnný zkratový úsek souosého napáječe, připojený k paralelně k anténnímu konektoru nebo přímo k anténě tuto cestu vytvoří, aniž zhorší vlastnosti antény.

Jinou možností je spojit galvanicky se zemí, příp. se stíněním napáječe horní část dipólu tak, jak je to schematicky naznačeno na obr. 19.

U svisle zavěšených dipólů napájených souosým kabelem bez symetrizace (obr. 11) je z hlediska minimální ochrany účelné připojit stínění k horní části antény.

Obr. 19. Schematicky znázoměné galvanické spojení horní části dipólu 1√2 se zemí

Antény λ 2, napájené na konci

Dipóly $\lambda/2$ napájené uprostřed, souose nebo kolmo k ose, jsou antény jednoduché s velmi dobrou účinností. Napáječ je spojen přímo se svorkami dipólu. Impedance napáječe i antény se prakticky shodují. Přizpůsobení antény není ovlivňováno dalšími obvody. Jde o tzv. "nízkoimpedanční" či proudové napájení. Maximální použitelný výkon vysílače je omezen zpravidla jen typem použitého napáječe. Elektrické výhody středového, tzn. souměrného či symetrického napájení jsou nesporné. Z provozních hledisek bychom však v některých případech dali přednost napájení antény na konci, což se týká především antén svisle polarizovaných.

Tento způsob se běžně užívá na pásmech KV jako tzv. anténa Zeppelin, popř. jako napájení Zeppelin, tj. napájení "vysokoimpedanční" či napěťové. Napáječ je připojen na konci antény, dipól je buzen velkým napětím v místě, kde má anténa největší impedanci.

S tímto druhem napájení můžeme úspěšně experimentovat nejen v pásmu CB, ale i v amatérském pásmu 145 MHz. Prakticky jde o to, jak připojit a přizpůsobit souosý napáječ s impedancí 50 Ω nebo 75 Ω k poměrně velké impedanci 1 až 10 k Ω .

Obr. 20. Transformace impedance při napájení antény ½2 na konci, tj. v místě s velkou impedancí: a) paralelním rezonančním obvodem LC, b) čtvrtvlnným impedančním transformátorem, c) reaktančním článkem L, d) souměrným (symetrickým) zkratovaným vedením ¼4 při napájení souměrném (symetrickém), např. dvoulinkou, e) souosým zkratovaným vedením ¼4 při napájení souosém – měně vhodné. Napájecí kabel je nutno vést kolmo, g) souměrným zkratovaným vedením ¼4 při napájení souosém – výhodnější

Klasicky se tento problém řeší několika způsoby – paralelním rezonančním obvodem *LC*, nebo čtvrtvlnným transformátorem, nebo reaktančním transformátorem, nebo reaktančním článkem L (obr. 20a, b, c).

Nás bude zajímat především takové řešení, které je snadné, jednoznačné a dobře reprodukovatelné při amatérské realizaci. K transformaci impedance v poměru 1: 10 a větším se obvykle užívá jednoduchý paralelní rezonanční obvod *LC* s odbočkami na cívce, popř. s kapacitním děličem. Transformační poměr je dán polohou odbočky na cívce nebo poměrem kapacit. Tak jsou např. přizpůsobeny prodávané samonosné "biče" – antény 1/2 pro CB.

S prakticky stejnou, či spíše větší účinností pracují půlvinné antény drátové, buzené na konci čtvrtvinným zkratovaným úsekem vedení (obr. 20d). Víme, že se takové vedení chová jako parajelní rezonanční obvod s velkou impedancí na otevřeném konci a nulovou na konci zkratovaném. Nedaleko zkratovaného konce se pak impedance přibližuje impedanci souosého napáječe. Při správné délce čtvrtvlnného vedení bude přizpůsobení závislé právě na místě připojení napáječe. U napáječe souosého je pak třeba volit takové uspořádání, při kterém nebude vybuzen vnější souosého kabelu a tedy nebude vyzařovat. Optimálním by bylo uspořádání podle obr. 20e. Souosým napáječem je buzeno souosé zkratované čtvrtvlnné vedení, jehož vnitřní vodič přechází ve vlastní zářič – dipól λ/2. Impedance zkratovaného vedení není podstatná - větší impedance jsou výhodnější. Uspořádání podle obr. 20e odpovídá známým zásadám - souosý, tj. nesouměrný napáječ budí souosý, nesouměrný rezonátor a ten pak nesouměrně vlastní anténu. V uspořádání podle obr. 20f jsou tyto zásady porušeny. Souměrné – symetrické vedení λ/4 (opět je můžeme nazvat rezonátorem) je na obou koncích zatíženo nesouměrně. U antény je zatížen jen jeden konec vedení a souosý napáječ je připojen bez symetrizačního členu. Nicméně se v praxi tot uspořádaní s úspěchem používá jako anténa SLIM JIM, čili štíhlý Jim (slim angl. štíhlý; anténa se čtvrtvlnným úsekem má skutečně podobu J, ostatně jako tzv. J-anténa bylo toto napájení patentováno již r. 1924 v Anglii). Souosý napáječ se však k souměrnému vedení musí připojit "rozumně" tak, aby se pro vznik povrchových proudů na napáječi a tím i k jeho vyzařování vytvářely méně příznivé podmínky. Schematicky je to znázorněno na obr. 20g.

Konstrukční výhody antěn Slim Jim jsou zřejmé. Celý systém může být z jediné trubky dlouhé přibližně 1 λ a zcela bez izolátoru. V nejnižším místě můžeme "jéčko" uzemnít, tj. vodivě spojit s nosným stožárem. Pokud je stožár dobře uzemněn, máme s anténou zároveň bleskosvod. Na pásmu CB je to vzhledem k celkové délce 7,5 m již poměrně náročná konstrukce.

Pro experimentování si však můžeme velmi snadno zhotovit jednoduchou závěsnou, plně funkční variantu antény SLIM JIM z ploché TV dvoulinky o impedanci 300 Ω podle obr. 21. Ta jednoduše vytváří čtvrtvlnné zkratované vedení pro transformaci impedance – zbývající část je vlastním zářičem.

Nejdůležitějším rozměrem je délka zkratovaného vedení I_{r.} které zároveň působí jako selektivní pásmová propust, omezující však impedanční širokopásmovost antény. Tato větší selektivita antény ovšem přispívá k omezení případné intermodulace v blízkosti silných vysílačů, se kterou se setkáváme u levnějších zařízení. Volbou vzdálenosti t napájecího bodu B volíme vstupní impedanci 50 nebo 75 Ω. Délka vlastního zářiče I_a není příliš kritická.

Obr. 21 Anténa Slim Jim. Anténa J zhotovená z ploché televizní dvoulinky – celkové uspořádání a rozměry

Z praktických hledisek je výhodné zhotovit z jediného kusu dvoulinky celý systém, i když úsek C-D může být l z jiného vodiče. Souosý napájecí kabel přiléhá v délce t z vnější strany těsně k dvoulince. Stíněním je s ní vodivě spojen v bodě A a B, popř. I uprostřed. Užitečným se ukázalo seříznout vnější izolace dvoulinky i kabelu v místě styku. Usnadní se tím vzájemný kontakt a spojka S se zkrátí na minimum. Vše je možné zpevnit ovinutím izolepou. Anténa CB by měla být zavěšena alespoň 2,5 m od nejbližšího objektu. Pak budou platit údaje o ČSV uvedené v tab. 4.

Tab. 4. Rozměrové údaje k anténě Slim Jim z dvoulinky pro pásmo CB a 145 MHz (mm) podle obr. 21

Pásmo	СВ	145 MHz
/a	5250	970
/r	2335	430
<i>t</i> ₅₀	160	28
<i>t</i> 75	190	35

Na obr. 22 a 23 jsou průběhy ČSV v závislosti na kmitočtu u výše popsané antény Slim Jim a obyčejného drátového dipólu podle obr. 11 v pásmu CB a zjednodušené rukávové antény (ACHA) na 145 MHz podle obr. 19.

Choulostivější nastavení antény Slim Jim je zřejmé. Jednoduché zhotovení, větší selektivita a napájení na konci jsou však v některých provozních podmínkách výhodou. Poměrně velké vf napětí, které se "nakmitá" na otevřeném konci čtvrtvinného zkratovaného vedení s velkou impedanci, omezuje použitelný výkon do antény Slim Jim z dvoulinky na 10 až 20 W.

Obr. 22. Průběh ČSV antény – jednoduchého dipólu 1√2 napájeného uprostřed (a) a antény Slim Jim pro pásmo CB (b)

Obr. 23. Průběh ČSV antény – rukávového dipólu ½2 podle obr. 16a a antény Slim Jim pro pásmo 145 MHz podle obr. 21b

Půlvínné antény, napájené (buzené) na konci, přizpůsobíme k impedanci souosého napáječe nejsnadněji paralelním rezonančním obvodem LC, který se v amatérských podmínkách pro úzké pásmo vyšších kmitočtů, jakým je pásmo CB nebo pásmo 145 MHz, poměrně snadno realizuje ve formě čtvrtvlnného symetricky zkratovaného vedení. Jednoduchou konstrukční variantou tohoto uspořádání je popsaná populární anténa Slim Jim. Náhrada klasického paralelního obvodu LC, tzn. cívky a kondenzátoru čtvrtvinným úsekem TV dvoulinky je snadná a jednoduchá. Zásadně správné však toto uspořádání není - symetrický transformační obvod je zde zatížen nesymetricky. Určitou nevýhodou antény Slim Jim z dvoulinky le též její snadné rozladění vnějšími vlivy (víhkost, znečištění, blízkost předmětů apod.) a na pásmu CB snad i značná délka čtvrtvlnného úseku - 230 cm.

Jinou možností, jak napájet anténu na konci bez výše uvedených nevýhod, je využít reaktanční články L podle obr. 24. Pro úzká pásma CB i 145 MHz mohou být tyto reaktanční články složeny jednoduše ze dvou úseků souosého kabelu, integrovaných do napáječe i zářiče, takže celou anténu zdánlivě tvoří jen napájecí kabel.

Obr. 24. Přízpůsobovací reaktanční články L

Laditelné reaktanční články (obvody) ve tvaru L, T, nebo II, známé spíše pod pojmem TRANSMATCH, se běžně používají na výstupech širokopásmových vysílačů. Čím větší je ladicí rozsah kondenzátorů a proměnných nebo přepínaných cívek, tím rozdílnější délky antén ize na daný kmitočet přizpůsobit, resp. anténa jedné délky může být přizpůsobena na značně rozdílných kmitočtech. To však není náš případ. Pásmo CB je úzké, naladění prvků, tzn. délka úseků souosého kabelu tvořících přizpůsobovací obvod, je konstantní a anténa je v rezonanci, tzn., že se chová jako reáľný (činný) zatěžovací odpor $R_a > 2 k\Omega$. Obecně ji proto můžeme přizpůsobit kterýmkoliv z obvodů uvedených na obr. 24a až d.

Použijeme obvod podle obr. 24a, který zároveň zabezpečí galvanické spojení antény se zemí.

Paralelně k anténě je zapojena cívka L. Indukční, tj. jalová složka impedance této dvojice je kompenzována sériovým kondenzátorem C (obr. 25a).

Indukčnost L můžeme zvláště na vyšších kmitočtech snadno realizovat zkratovaným vedením kratším než ¼4 nebo otevřeným vedením delším než ¼4. Zkratované vedení dlouhé přesně ¼4 pak působí jako nekonečný odpor. Připojíme-li tedy paralelně k odporu Ra, tzn. k anténě, zkratované vedení ¼4, tak se "nic nestane", protože jsme tam připojili nekonečný odpor. Připojíme-li paralelně k odporu Ra, tzn. k anténě, zkratované vedení velmí, tak anténě, zkratované vedení velmí.

Obr. 25. a) Reaktanční článek L tvořený sériovou kapacitou C – kondenzátorem a paralelní indukčností L – clvkou; b) tentýž obvod sestavený ze dvou úseků souosého kabelu

krátké, I_L « $\lambda/4$, zmenší se odpor R_a prakticky na nulu, protože anténa bude vlastně zkratována. K danému R_a , tzn. k dané anténě však lze vyhledat (vypočítat) takovou indukčnost L, resp. délku I_L , která zmenší R_a právě na 50, popř. 75 Ω . Pak stačí vykompenzovat indukční složku nebo indukční charakter této impedance vhodným sériovým kondenzátorem C, který můžeme realizovat jako otevřené vedení (tj. nezkratovaný souosý kabel o délce $I_c < \lambda/4$, (obr. 25b); C je kapacita mezi vnitřním vodičem a stíněním. Praktické zapojení je na obr. 26a.

U souosého napájecího kabelu potřebné délky odstraníme ve vzdálenosti I_c od konce stínění v délce 10 mm. Tím získáme sériovou kapacitu C. Indukčnost L vytvoří zkratovaný kabel o délce I_L , přiléhající k napájecímu kabelu. Obě stínění tvořící společnou zem jsou v místě A ovinuta a spájena. Vnitřní vodič zkratovaného úseku I_L je spojen se stíněním úseku I_c . K témuž stínění je připojen vlastní zářič $\lambda/2$ o délce I_a . Anténa je tedy galvanicky spojena se zemí, vnitřní vodič napájecího kabelu je zakončen kapacitou C.

Využijeme-li známých vlastností vf vedení, můžeme zapojení upravit také podle obr. 26b. Otevřené kapacitní vedení I_c (< $\lambda/4$) můžeme nahradit zkratovaným vedením I_c (> $\lambda/4$), které si zachová kapacitní charakter, takže přizpůsobení se nezmění. Tato úprava však usnadňuje nastavení

Obr. 26. Připojení reaktančního článku podle obr. 25b k závěsné anténě: a) sériovou kapacitní reaktanci tvoří otevřené souosé vedení lc, b) sériovou kapacitní reaktanci tvoří zkratované souosé vedení lc

optimálních délek použitím vpichovaných zkratů – špendlíků, kterými snadno obě délky měníme. Teprve po vyhledání optimálních délek, signalizovaných minimálním ČSV na napájecím kabelu, ukončíme oba úseky v místě přechodných zkratů a zapájíme. Kapacitní úsek I_c pak v místě zkratu prodloužíme vhodným vodičem na potřebnou délku zářiče I_a . Anténu je možno přizpusobit na 50 Ω , resp. 75 Ω , popř. i pro jinou impedanci. Polohy zkratů, tj. dél-

Obr. 27. Přízpůsobení antén, napájených na konci reaktančním článkem L, tvořeným dvěma úseky souosého kabelu, v pásmu CB a 145 MHz

ky / jsou poměrně kritické, takže přizpůsobení má úzkopásmový charakter, jak je zřejmé z obr. 27.

V tab. 5 jsou shromážděny potřebné rozměrové údaje pro obě varianty, ověřené na pásmech CB a 145 MHz se dvěma typy souosých kabelů, použitých k realizaci přízpůsobovacího obvodu – reaktančního článku. Je evidentní, že kapacitní úsek lo či lo z kabelu o menší impedanci, který má větší kapacitu mezi vnitřním a vnějším vodičem (stíněním), bude kratší než tentýž úsek z kabelu o impedanci větší. U indukčnosti tomu bude opačně. Impedance kabelů tvořících reaktanční článek jsou zcela nezávislé na charakteristické impedanci napáječe a nemusí být ani na-

Tab. 5. Rozměrové údaje antény $\lambda/2$, napájené na konci reaktančním článkem, sestaveným ze dvou úseků souosého vedení podle obr. 26a, b

Typ kabelu	VLEOY	VLEOY 75-3,7	
Pásmo	СВ	145 MHz	145 MHz
la	5300	1000	1000
<i>I</i> L	1540	290	290
ľc	200	37	37
l'c	2088	388	388

Číselné údaje (v mm) platí pro reaktanční články sestavené z kabelů VLEOY 50–2,95 (ekv. RG58), popř. VCEOY 50–2,95, nebo VLEOY 75–3,7 (ekv. RG69), popř. VCEOY 75–3,7. U kabelů VL... je vnitřním vodičem lanko, u kabelů VC... je vnitřním vodičem drát. Elektricky jsou však rovnocenné. Pro "laborování" – optimalizování délek vpichovanými zkraty – jsou výhodnější kabely s lankem.

Na 145 MHz byla ověřena shodnost stejně označovaných úseků, zhotovených z kabelů o impedanci 50, popř. 75 Ω . Průběhy ČSV na obr. 27 mají prakticky shodný tvar i na impedanci 75 Ω . Větší selektivitu mají články L s kapacitou I_c , tj. s kapacitním úsekem zkratovaným (λ /4).

vzájem shodné. Rozměrové údaje v tabulce však platí pro kabely tam uvedené, popř. i pro jiné typy se stejnou impedancí.

Protože mezi kapacitou, resp. indukčností a délkou souosého vedení je lineární vztah, je možné rozměry v tabulce s dostatečnou přesností přepočítat na jiné kmitočty či pásma.

Popsaný reaktanční článek ze souosých kabelů není pochopitelně konstruován na velké vf napětí, tzn. pro velký výkon. S maximálním výkonem povoleným na pásmu CB však popsané uspořádání představuje jednoduchou, dobře přizpůsobenou závěsnou anténu s velmi dobrým potlačením povrchových vf proudů na napáječi, která se uplatní spíše pro přechodnou instalaci.

"Pětiosmina"

Tak je v amatérském slangu označována prutová anténa dlouhá pět osmin vlnové délky, používaná na pásmech VKV radioamatérských i profesionálních, včetně pásma CB. Po anténách čtvrtvlnných a půlvlnných se tak dostáváme k anténě, která je radioamatéry považována za jakousi "špičku" mezi všesměrovými, svisle polarizovanými anténami. Jsou však i tací, kteří ji nechválí, nemají s ní dobré zkušenosti a dávají přednost "lambdě čtvrce", tj. proutku i "gépéčku", nebo "půlvlně" tzn. "jěčku" či rukávu – vyjádřeno v užívané terminologii.

Jaké tedy jsou charakteristické vlastnosti pětiosminy, tj. antény o délce 0,625λ? Čím se liší od antény čtvrtvlnné a půlvlnné? Proč právě pětiosmina (0,625λ) a ne šestiosmina (0,75λ)? Pokusme se na tyto otázky odpovědět – názorně a srozumitelně.

V úvodní kapitole první části tohoto čísla jsme charakterizovali svislý "půlvlnný dipól jako základní anténu, ze které jsou v podstatě odvozeny téměř všechny typy základových, vozidlových ale i přenosných antén, používaných v pásmu CB". Tato definice bude přesnější, vynecháme-li přídavné jméno půlvlnný. Základní anténou nechť je v našich praktických úvahách a představách prostě dipól – což je "přímý, elektricky souměrný zářič určité délky vzhledem k délce vlny" (podle názvosloví v ČSN 36 72 10). Určitou délkou je pak v praxi délka, při které jsou splněny zadané požadavky na daných kmitočtech. Pro naše účely jsou těmito požadavky:

 maximální vyzařování (příjem) v rovině horizontu při svislé polarizaci;

jednoduché a účinné přizpůsobení k impedanci souosého kabelu 50, popř. 75 Ω;
 pokud možno maximální účinnost.

Prioritním požadavkem jsou tedy vlastnosti směrové. Jejich praktické využití či zhodnocení je ovšem závislé na vlastnostech impedančních a na účinnosti – což platí o anténách všeobecně a nikoliv jen u antén pro pásmo CB.

Názornou představu o směrových vlastnostech jednoduchých dipólů různé délky
přehledně nabízejí obr. 28 a až g. Znázorňují směrové diagramy svislých dipólů
ve svislé rovině, v tzv. rovině E, čili v rovině elektrické složky vyzařované (přijímané) elektrické energie. Jsou znázorněny
v polárních souřadnicích s lineární stupnicí napětí, vztaženého k maximu směrového diagramu antény ½2, které je rovno
jedné. U každé antény tak maximum přímo určuje její směrovost vzhledem k dipólu ½2, popř. její zisk při stoprocentní
účinnosti, tzn. při dokonalém a bezeztrá-

tovém přizpůsobení. Měřítkem směrovosti jsou i úhly záření (příjmu) ⊖3E nebo také úhly hlavního laloku, vymezující úhlovou oblast, na jejímž okraji se vysílaný (přijímaný) signál zmenšuje o 3 dB. Dodatečnou informací je i úroveň postranních laloků v dB vztažená k maximu. Úrovně kolem - 10 dB prakticky signalizují oblast maximální směrovosti, s větší úrovní postranních laloků se směrovost antény obvykle velmi rychle zhoršuje, jak je ostatně zřejmé i z obr. 28e. U jednoduchého, uprostřed napájeného dipólu je z těchto hledisek optimální délkou I_d = 1,25 λ , kdy lze počítať se ziskem Gd = 3 dB proti dipólu λ/2. Předpokladem však je dobré přizpůsobení (ČSV < 1.5) a dostatečná homogenita elektromagnetického pole v prostoru instalované antény (k problematice homogenity elektromagnetického pole, které můžeme velmi výrazně ovlivnit provozní podmínky, se vrátíme v samostatném článku).

Z obr. 28a až e je vidět, že ještě vy-hovující "osmičkový" tvar směrového diagramu mají všechny jednoduché dipóly až do délky $I_d = 1,25\lambda$ – tedy vlastně splňují náš požadavek na maximální vyzařovací (příjem) v rovině horizontu - i když s různou úrovní. Čtenáři, kteří zaregistrovali jen nepatrný rozdíl mezi tvarem a směrovými údaji u dipólů 0,5λ a 0,125λ, by z praktických důvodů možná dali přednost podstatně kratší anténě (i za cenu menšího zisku - jen o pouhých -0,37 dB proti anténě půlvinné). Tento údaj by však byl reálný pouze za předpokladu, že by obě antény byly napájeny stejným výkonem. Činná složka impedance, tzn. vyzařovací odpor velmi krátkých antén - v našem případě dipólu 0,125λ (λ/8) je pouze několik málo ohmů. Tak krátké antěny proto mohou být k souosému napáječi o impedanci 50, popř. 75 Ω připojeny pouze přes přizpůsobovací obvody, jejichž vlastní ztrátový odpor je zpravidla větší než malý vyzařovací odpor antény, takže část výkonu se v nich mění v teplo a do antény, i když přizpůsobené, se dostává výkon podstatně menší. Čili, provozní zisk antény 0,125 λ není - 0,36 dB, ale je mnohem menší.

Snaha minimalizovat ztráty v přizpůsobovacích obvodech použitím co nejjakostnějších součástek vede k větší selektivitě a tím úzkopásmovému, prakticky až nepoužitelnému přizpůsobení. Z celkové nabídky různých délek ld, umožňujících dobré nebo přijatelné směrové vlastnosti, jsou proto prakticky použitelné jen ty délky, které nepůsobí velké komplikace při napájení a v podstatě tak zaručují maximální, prakticky 100% účinnost. Jsou to především délky rezonanční, při nichž se anténa jeví jen jako činný odpor, blízký impedanci napáječe, popř. odpor snadno transformovatelný.

Z provozních důvodů záměrně zkrácené antény, např. tzv. "pendreky" přenosných stanic, nebo i velmi krátké antény mobilní mají proto zcela logicky menší až velmi malou účinnost.

Vraťme se však k naší "pětiosmině". Pokud bychom prodloužili symetrický dipól $\lambda/2$ (tj. dipól $4/8~\lambda$ dlouhý) o $1/8~\lambda$ na délku $5/8~\lambda$, příliš bychom si tím nepomohli, jak je vidět z obr. 29. Jeho zisk by se zvětšil

o pouhé 0,2 dB. Dipól 5/8 λ tedy nepřináší prakticky žádné výhody.

Nyní se v naší úvaze můžeme znovu vrátit k první části, v níž jsme vysvětlovali princip čtvrtvlnných antén. Položíme-li totiž výše zmiňovaný symetrický dipól 1,25\(\)(říká se mu též maxi-dipól či superdipól) uprostřed nekonečnou, dokonale vodivou

plochou, můžeme jeho spodní část odstranit. Nahradí ji "zrcadlový obraz" části horní. "Pětiosminou" je tedy polovina dipólu 1,25λ, tzn. unipól délky 5λ/8, umístění nad zemí, popř. nad účinnou protiváhou. Jeho zisk může být až o 3 dB větší proti unipólu čtvrtvlnnému. Protiváha je proto nezbytnou částí každé "pětiosminy", právě

Obr. 29. Směrovost jednoduchého symetrického dipólu v závislosti na jeho délce. Křívka platí pro velmi tenké (štíhlé) dipóly

tak jako každé "čtvrtviny". Na vyšších kmitočtech může být účinnou protiváhou i střecha – karosérie vozidla – např. na pásmu 145 MHz. V pásmu CB je to sice také možné, praktické použití mobilní CB antény 5½8 je však pro její značnou délku (6,9 m) sotva možné.

Výrobci přesto inzerují a nabízejí jako "CB-mobilantény 5/8 lambda" desítky antén atraktivního vzhledu v délkách již od 80 cm (!!), jejichž účinky jsou od účinků antén plné délky velmi vzdálené. Je to ostatně pochopitelné při délkách antén kolem 0,1λ (tzn. že jsou ještě kratší než antény ¼4). Výrobci zde kalkulují s malými odbornými vlastnostmi zájemců o provoz CB, pro které jsou pak jedinou "odbornou" informací údaje z katalogu. Konečné rozhodnutí o koupi toho či onoho typu nakonec ovlivní spíše vzhled antény. Ostatně i naše předpisy o občanských radiostanicích č. 3188/1982, vydané FMS dne 3. 3. 1982, připouštějí jen "jednoprvkové antény s délkou maximálně 1,5 m". (Nerespektování tohoto ustanovení však rozhodně není takovým prohřeškem, jako zcela běžné mnohonásobné překročování povo-leného výkonu.) Domyšleno do důsledků výrobci tedy mohou tyto krátké antény nazvat jakkoliv, neboť teoreticky je nelze v praxi porovnat s anténami delšími.

Vraťme se však k technické problematice. Účinné využití nezkrácených antén 5/8 λ v pásmu CB je možné jen u antén stacionárních. Jejich protiváhu by měly tvořít minimálně 3 šikmé, neredukované radiály λ/4. Radiály kratší, kterými jsou opatřeny mnohé profesionální antény, nezabezpečují dostatečnou vf izolaci anténního systému od nosného stožáru, který se tak v závislosti na své délce podílí více či méně na směru (úhlu) optimálního vyzařování.

Mechanické i materiálové nároky na poměrně rozměrné samonosné stacionární pětiosminy" pro pásmo CB jsou značné, a proto se tyto antény neprodávají; pokud ano, jsou to většinou dovážené antény. Ani jejich amatérská realizace není jednoduchá. Experimentovat však lze i s jednoduššími závěsnými, a to i v délkách 1,25λ, které výrobci antén vůbec nenabízejí.

Obr. 28. Směrové diagramy symetrických dipólů a o délce $0,125\lambda$ – $(1/8\lambda)$, $0,5\lambda$ – $(4/8\lambda)$, 1λ – $(8/8\lambda)$, $1,25\lambda$ – $(10/8\lambda)$ a $1,4\lambda$ $(11/8\lambda)$ v rovině E, tzn. v rovině procházející podélnou osou dipólu. Jsou znázorněny v polárních souřadnicích s lineární stupnicí napětí, vztaženého k maximu směrového diagramu dipólu $\lambda/2$, které je rovno jedné. Vlastnosti dipólů dále charakterizují úhel příjmu/záření $\Theta_{3\Xi}$ a úroveň postranních laloků.

Směrovost v dB, uvedená u každého maxima, se při dokonalém a bezeztrátovém přizpůsobení shoduje s provozním ziskem antény v dBd (proti dipólu 1/2)

Podstatné závěry o anténách typu "pětiosmina"

Anténa označovaná jako pětiosmina je unipól, obvykle ve formě samonosné prutové antény, umístěný kolmo nad zemí, popř. nad několikaramennou protiváhou, např. karosérii vozidla. Je odvozena ze symetrického dipólu o délce 1,25λ. Dipól této délky má v porovnání s běžněji užtvaným dipólem půlvlnným (0,5λ) až o 3 dB větší směrovost v rovině kolmé k podélné ose dipólu (obr. 30). Při svislé polarizaci

Obr. 30. Směrovost svislého dipólu v závislosti na úhlu příjmu/záření ⊖₃E. Z křívky je patrné,že úhel ⊖₃E je poměrně malý i při nevelké směrovosti

se tato směrovost projeví větším dosahem v rovině probíhající komunikace. Stejné směrové účinky může mít i unipól 5\(\text{\chik}\)/8 nad vhodnou protiváhou. Vliv a účinky protiváhy jsou proto významné. Pětiosmina bez protiváhy je anténou neúplnou, stejně jako je tomu i u antény čtvrtvlnné.

V pásmu CB je však rozměr 5λ/8 tak značný, že prakticky neumožňuje provozovat anténu této délky jako anténu mobilní. Jsou-li ve firemních prospektech a z reklamních důvodů inzerovány zkrácené prutové antény (často kratší než 1 m) jako "mobilní antény 5λ/8", pak nejde o pětiosminy v pravém smyslu, ale o tzv. krátké antény - což jsou antény kratší než λ/4, s menší až malou účinností. Protože tvoří poměrně významnou kategorii, se kterou se setkáváme nejen na pásmu CB (např. až ve formě tzv. pendreků), vrátíme se k jejich problematice v samostatném článku v AR. Považujeme-li 150 cm za maximální přijatelnou délku u mobilní (vozidlové) antěny, pak je prakticky možné realizovat mobilní pětiosminu v plné délce (asi 130 cm) až v amatérském pásmu 145 MHz. Příznivé směrové vlastnosti unipólu 5λ/8 jsou tedy dány optimální délkou zářiče a rozměry i uspořádáním protiváhy. Skutečný zisk pak ovšem závisí ještě na vlastnostech impedančních - na přizpůsobení antény k vf napáječi. Tomuto problému věnujeme další odstavce.

Směrové a impedanční vlastnosti spolu souvisí prostřednictvím tzv. proudového obložení antény. Viz obr. 31, kde je schematicky znázorněno okamžité rozložení proudu a napětí podél zářičů – unipólů různé délky. Vzájemné vztahy lze vyjádřit a parametry antény spočítat matematicky. Výpočty však nejsou jednoduché a pro naši potřebu se bez nich obejdeme.

S bezproblémovým napájením se setkáváme u antén – dipólu a unipólů rezonančních, jejichž délka I_a je lichým násobkem půlviny (I_a = 0,5 λ , 1,5 λ , atd.) a lichým násobkem čtvrtviny (I_a = 0,25 λ , 0,75 λ atd.).

Obr. 31 Okamžitý průběh proudu a napětí podél unipólu o délce 0,25λ, 0,5λ, 0,625λ, 0,75λ

V obou případech se jejich impedance přibližně shoduje s impedancí souosých kabelů.

Poněkud obtížnější je přizpůsobení dipólů a unipólů, jejichž délka I_a je sudým násobkem půlvlny ($I_a=1\lambda$, 2λ atd.), resp. sudým násobkem čtvrtvlny ($I_a=0.5\lambda$, 1λ atd.). Jedná se sice opět o antény v rezonanci – přesněji v antirezonanci, které se v místě napájení opět jeví jen jako činný (ohmický) odpor – avšak poměrně velký. S metodami přizpůsobování rezonančních antén s velkou vstupní impedancí jsme se seznámili (obr. 20).

Naše pětiosmina – unipól 0,625λ, resp. dipól 1,25λ však rezonančními anténami nejsou. Jejich impedance má kromě činné - odporové složky i složku jalovou - reaktanční, a to kapacitní. Prodloužením antény na délku 0,75λ, resp. 1,5λ bychom sice dosáhli rezonance s příznivou vstupní impedancí antény, ale směrové vlastnosti by již byly značně nevýhodné, jak je zřeimé z obr. 32, kde jsou nakresleny idealizované směrové diagramy unipólů 0,25λ, 0,5λ, 0,65λ a 0,75λ dlouhých. Skutečný tvar diagramů sice závisí na kvalitě a uspořádání protiváhy, avšak pro názorné porovnání vlivu unipólu je obr. 32 dostatečně ilustratívní. Přizpůsobit unipól 5λ/8 prakticky znamená nejen "doladit" jej do rezonance tak, aby se jevil jako činná ohmická zátěž 50 nebo 75 Ω , ale aby zároveň zůstaly zachovány jeho optimální směrové vlastnosti, dané proudovým obložením podél zářiče délky 5\/8 (obr. 31). Jinými slovy řečeno – musí zářit (přijímat) jako pětiosmina (0,625λ), přizpůsoben bude však jako anténa v rezonanci, tzn. šestiosmina (0,75λ). Přizpůsobovací obvod je tedy nutné realizovat tak, aby minimálně ovlivňoval rozložení proudu podél antény.

Vzhledem k tomu, že impedance vlastní pětiosminy činí (podle štíhlosti unipólu) přibližně 50 Ω "reálných" a 180 Ω "kapa-

citních" ($Z_a = 50 - j180$), je přizpůsobení principlálně jednoduché. Sériovou indukčností - tj. cívkou nebo indukčním vedením zapojeným mezi anténu a vnitřní vodič napájecího kabelu - se nežádoucí kapacitní složka vykompenzuje, takže celý útvar anténa - indukčnost se dostane do rezonance a výstup napáječe bude zatěžován přizpůsobenou impedancí antény. Přizpůsobení kontrolované reflektometrem optimalizujeme počtem závitů, resp. průměrem cívky a v malých mezích i délkou záříče, přičemž celková délka la nad protiváhou, popř. karosérií vozidla by neměla přesáhnout 5λ/8. Užitečnou pomůckou pro naladění kombinace zářič-cívka do rezonance je i GDO, volně vázané s kompenzační (lze říci i prodlužovací) cívkou.

Nepřizpůsobená, tzn. přímo připojená pětiosmina vyvolá na napáječi ČSV = 20!!, přestože se odporová složka impedance (50 Ω) prakticky shoduje s impedancí souosého kabelu.

Mechanicky lze kompenzační indukčnost realizovat několika způsoby:

U profesionálně vyráběných antén 5\(\alpha\)8 je kompenzační indukčností zpravidla šroubovicová pružina nesoucí zářič, vetknutá do patního izolátoru. Vše je chromované, což přispívá k atraktivnímu vzhledu antény. Amatérské řešení této úpravy není tak snadné pro potíže konstrukčně-mechanické (obr. 33a a 34).

Obr. 33. Přízpůsobení unipólů – mobilní antény 51/8 sériovou indukční reaktancí: a) cívkou – šroubovicovou pružinou,

- b) cívkou uvnitř vozu,
- c) zkratovaným úsekem souosého kabelu uvnitř záňče,
- d) trubkovým rukávem o délce asi 0,21\(\lambda\)
- U mobilní antény je možné umístit prodlužovací indukčnost přímo do patního izolátoru nebo až pod povrch karosérie, kde na ni nejsou kladeny žádné zvláštní mechanické nároky, takže ji lze snadno upravovat i s připojenou anténou. V tomto

Obr. 32. Směrové diagramy unipólů nad ideální zemí ve svislé rovině

Obr. 34. Rozměry pružiny – cívky pro mobilní anténu 5\(\chi\)8 na pásmo 145 MHz

uspořádání se však stává kritickou kapacita patniho izolátoru proti zemi. Musí být minimální, jinak nelze anténu přizpůsobit pouze sériovou indukčností (obr. 33b). Poměrně jednoduchá je i kompenzace sériovým zkratovým vedením ze souosého kabelu, zasunutým do vlastního zářiče (obr. 33c). Při impedanci antény $Z_a = 50$ – j 180 vychází jeho délka přibližně na $I_{\rm k}$ = 0.21 λ (je kratší než $\lambda/4$, proto se chová jako indukčnost). Pro kabel s PE dielektrickou izolací (RG58 apod.) je na CB pásmu skutečná délka /k = 153 cm a na pásmu 145 MHz je Ik přibližně 29 cm. l v tomto uspořádání je však kritickou kapacita patního izolátoru.

 Tento způsob kompenzace se zdá být optimálním i pro závěsné pětiosminy na pásmo CB – viz obr. 35. Zářič o celkové délce l_a = 690 cm je ve spodní části tvořen

konec kabelu komp. úsek stínění přerušeno

Obr. 35. Závěsná anténa 5\(\lambda\)/8 s kotvenými radiálami pro pásmo CB

vnějším povrchem zkratovaného kompenzačního kabelu o délce $I_{\rm k}=153~{\rm cm}$. Zbývající horní část až do celkové délky $I_{\rm a}$ je z běžného lanka, provlečeného na konci závěsným izolátorem. Délka radiál $I_{\rm f}$ činí 278 cm. Váha napájecího kabelu spolu s tahem zakotvených radiál zvětšuje nároky na průměr i upevnění závěsného zářiče s kompenzačním kabelem. Také prostorové nároky na závěsnou anténu $5\lambda/8$ s kotvenými radiálami jsou značné. Z těch-

to hledisek je "úspornější" závěsný dipól 1,25λ, u kterého jsou maximální směrové účinky v rovině horizontu zaručeny.

· Elektrickým ekvivalentem sériové kompenzace zkratovaným úsekem souosého kabelu podle předchozího odstavce je kompenzace trubkovým rukávem, jednoduše navlečeným na vlastní zářič (obr. 33d). Tento způsob umožňuje jednoduchou náhradu antény čtvrtvlnné za pětiosminu bez zásahů do patního izolátoru a napájení. Pro poměrně značnou délku rukávu se vzdušným dielektrikem (0,21λ, tj. 435 mm na 145 MHz) je použitelný spíše na vyšších kmitočtech. Délku rukávu lze ovšem zkrátit vhodnou dielektrickou izolací mezi vnitřním vodičem a rukávem. Pro tento účel vyhovuje např. laminátová trubka, navlečená na spodní část zářiče. Dielektrická konstanta laminátu (epoxy) je přibližně 3,24 (k = 0,55), takže původní délka vzdušného rukávu sé zmenší asi na 45 %. Rukáv je pak možno zhotovit i ze stínění tlustšího souosého kabelu, navlečeného na dielektrickou trubku. Vyhovující elektrická délka rukávu (~0,21λ) platí pro impedanci rukávu 50 Ὼ.

Kompenzace antény 5½/8 jediným prvkem (cívkou – indukčností) je možná jen za určitých předpokladů (např. malá kapacita spodního konce zářiče proti zemi – místa x na obr. 33). Jinak se používá kompenzace reaktančními články, které však mohou být na pásmech VKV sestaveny i z úseků souosých kabelů.

 Na závěr tedy uvádíme méně obvyklé, ale jednoduché přizpůsobení pětiosminy pro pásmo 145 MHz. Je založeno na známých vlastnostech vf vedení. Zapojení kompenzačního obvodu s kabelovými úseky je na obr. 36.

Obr. 36. Přízpůsobení mobilní antény 5λ/8 pro pásmo 145 MHz reaktančním článkem ze tří úseků souosého kabelu 50 Ω. Stínění je uzemněno na karosérii jen u otvoru pro upevnění antény

Paralelně ke vstupu antény je připojen zkratovaný úsek kabelu (tzv. pahýi) o délce $a = \lambda/4$, který se chová jako nekonečný odpor, także impedanci antény neovlivní, ale zabezpečí její žádoucí galvanické spojení se zemí. Původní kompenzaci sériovou indukčnosti nahradime kompenzaci paralelní kapacitou ve vzdálenosti $b = \lambda/4$ od vstupu antény použitím nezkratovaného kabelovaného úseku o délce $c < \lambda/4$. Volbou délky c naladíme anténu do rezonance, resp. na minimální ČSV. Případnou parazitní kapacitu spojů a patního izolátoru můžeme vykompenzovat mírným krácením délky a (nejprve zkusmo vpichováním špendlíku) a "dotáhnout" tak ČSV prakticky až na jedničku.

Dále uvádíme délky všech tří kabelových úseků (platí pro souosý kabel 50 Ω s pevným PE dielektrikem, tzn. se zkracovacím koeficientem 0,66), připojených k mobilní pětiosmině, pro 145 MHz, upevněné na střeše vozu konektorem PL, respjeho ruským ekvivalentem s hrubším závitem, opatřeným "izolátorem" (obr. 37a):

a = 238 mm, b = 340 mm,

c = 253 mm.

Obr. 37. izolátor (teflon, silon apod.) do tělesa kabelového konektoru PL, popř. jeho ruského ekvivalentu (viz též obr. 62) pro upevnění mobilní antény na střechu vozidla podle obr. 63. Celková délka antény 5)/8 pro 145 MHz je 1345 mm včetně konektoru

Vlastním záříčem je prut sestavený z ocelových dílů o Ø 3 mm (2,5 mm) a 1,5 mm, zapájený přímo do kolíku konektoru. Použití konektoru pro upevnění a připojení mobilní antény není sice běžné, ale je účelné, protože jej využijeme při stacionárním provozu k běžnému připojení samostatné vnější antény.

Maximální dipól – anténa o délce 1,25λ

Po "čtvrtvině", "půlvině" a "pětiosmině" se dostáváme k dipólové anténě o délce 1,25λ, kterou bychom mohli ve shodě s těmito běžně užívanými - i když netechnickými - slangovými výrazy nazvat např. "desetiosminou" či spíše "pětičtvrtkou". Z předchozích úvah víme, že jde o jednoduchou anténu - dipól - se ziskem 3 dB (proti dipólu λ/2), resp. s větší směrovostí v rovině kolmé k podélné ose antény, tzn. s větším "dosahem" ve vodorovné (horizontální) rovině při svislé (vertikální) polarizaci antény, tedy i na pásmu CB. Tam se sice tyto antény neužívají pro jejich značnou délku (~ 13,7 m), což vylučuje jejich realizaci v samonosném prutovém uspořádání, které u běžně užívaných antén krátkých a zkrácených převládá. Kdo však má (zároveň s chutí experimentovat) vhodné prostorové podmínky pro zavěšení tak dlouhé antény, může ji s ostatními běžně užívanými CB anténami porovnat. V amatérském pásmu 145 MHz jsou již poměry podstatně příznivější, anténu o délce asi 260 cm můžeme snadněji zhotovit jako samonosnou. Proto je na tomto pásmu, zejména v poslední době, ve větší míře používána. Jistým paradoxem však je, že většina uživatelů antén "Ringo Ranger" nebo tzv. "švédky" neví, že jde o antény 1,25 λ, resp. o dipóly s maximálním ziskem. Z toho pramení některé chyby při jejich konstrukci, popř. i profesionální výrobě. Abychom jim předešli, měli bychom vždy vědět, jak anténa pracuje (na jakém principu) a tím se vyvarovali konstrukčních chyb i nesprávných rozměrů. Mnohé, co bylo řečeno o anténách půlvinných, platí i pro dipól maximální.

Nicméně jde o anténu "choulostivější", proto se u antén pro CB zatím omezíme jen na ta nejsnadnější uspořádání. Zásadně můžeme antény tohoto typu opět rozdělit do dvou skupin podle způsobu napálení:

napájení uprostřed záříče

- symetricky kolmo k podélné ose,
- souose spodní polovinou zářiče;

napájení na konci záříče

 přes oddělovací obvod (λ/4 rukáv nebo článek LC) s velkou impedancí.

Napájení na konci zářiče se používá zejména u samonosných antén pro pásmo 145 MHz. Jde např. o typ Ringo Ranger, nebo SM7DVH (tzv. "švédka").

Pro pásmo CB se jeví jako nejjednodušší dipól se symetrickým napájením uprostřed, kdy je napáječ vyveden kolmo k podélné ose dipólu: Na rozdíl od dipólu půlvlnného, kdy je možné připojit napáječ - souosý kabel - přímo na svorky dipólu (viz obr. 11), protože se jeho impedance příliš neliší od impedance napáječe, je v případě dipólu maximálního nutno zařadit mezi vlastní svorky dipólu a napáječ poměrně jednoduchý přizpůsobovací obvod. Dipól 1,25\(\lambda\) totiž není anténou rezonanční, anténa se tedy nejeví jako "čistý ohmický" odpor, ale má poměrně velkou kapacitní složku, kterou musíme vykompenzovat vhodnou sériovou indukčností (obr. 38a). Principiálně jde tedy o stejný problém jako u "pětiosminy", podobné jsou i metody, jak kompenzaci realizovat. Nejjednodušší uspořádání, snadno rea-

Nejjednodušší uspořádání, snadno realizovatelné v amatérských podmínkách, je znázorněno na obr. 38 a 39. Symetrický kompenzační obvod tvořený dvěma shodnými zkratovanými kabelovými úseky /k je organickou částí dipólu, přičemž vysokofrekvenčně aktivní částí záříče je jen vnější povrch kabelových úseků, prodloužených (v místech zkratu s vnitřním vodičem) izolovaným lankem (CYA 0,7) na celkovou dělku /a. Napáječ je připojen přímo k volným koncům vnitřních vodičů obou kompenzačních úseků.

K jednomu úseku je připojeno stínění, ke druhému vnitřní vodič. Obě poloviny zářiče, včetně kompenzačních úseku a napáječe jsou upevněny objímkami na společné izolační destičce (viz obr. 39), která zabezpečí mechanickou stabilitu spoju.

I když přímé spojení symetrické antény s nesymetrickým napáječem (souosým kabelem) odporuje anténářským zásadám, bude popisované experimentální uspořádání závěsné antény plně funkční, zaručíme-li přibližně kolmou vzájemnou orientací dipólu a napáječe na vzdálenost minimálně λ/4, tj. asi 250 cm a povedeme-li napáječ v této vzdálenosti volně.

Závěsné, uprostřed napájené antény se pochopitelně nejsnáze montují jako antény horizontálně polarizované (vodorovně zavěšené). Všesměrová komunikace s ostatními CB stanicemi pracujícími s vertikální polarizací by tím však byla prakticky znemožněna. Při opačně polarizaci antén CB a VKV se zvětšuje útlum podél komunikační trasy minimálně o 20 dB. Po vzájemné dohodě mezi stanicemi je však možné experimentovat i s anténami vodorovnými, které však musí být optimálně orientovány, tzn. spojnice mezi stanicemi musí být kolmá na podélné osy antén.

Použije-li se kabelových kompenzačních úseků o impedanci 50 Ω (kabely typu RG 58, VCEOY 50–2,95 apod.), dosáhne se optimálního přízpůsobení na impedanci 75 Ω, ČSV ≤ 1,2, zatímco při impedanci 50 Ω bude ČSV větší. Zmenšením cha-

Obr. 38. Dipól 1,25\(\lambda\) (2x 5\(\lambda\)8):

- a) přízpůsobený sériovou indukčností clvkou v každé polovině dipólu, b) přízpůsobený zkratovanými úseky souosého kabelu na impedanci 75 Ω,
- c) přízpůsobený paralelně spojenými dvojicemi zkratovaných úseků souosého kabelu na impedanci 50 Ω

rakteristické impedance (Z₀) kompenzačních kabelových úseků na polovinu se zmenší vstupní impedance antény až na žádoucích 50 Ω. Potřebnou poloviční impedanci získáme dvojicí paralelně zapojených úseků o délce I'k na každé straně viz obr. 38c. Prakticky se to provede tak, že se druhé úseky upevní další objímkou a společným šroubem s maticí na druhé straně izolační desky. Z druhé strany budou k napáječi pomocí pájecích oček zároveň připojeny vnitřní vodiče druhých úseků. Vnější dvojice zkratovaných konců kompenzačních úseků se spolu s konci lanka CYA ovinou a zapájejí. Základní rozměry tohoto uspořádání v mm, ověřené jak v pásmu CB, tak v amatérském pásmu 145 MHz, jsou uvedeny v následující tabulce.

Rozměr [mm]	Pásmo CB	Pásmo 145 MHz
/a	13 760	2580
/k (75 Ω)	1 430	268
/"k (50 Ω)	1 482	278
s	45	45

Jinak ize též zmenšit impedanci maximálního dipólu jeho mírným prodloužením ($I_a < 1,35 \lambda$) a zkrácením úseků I_k .

Vzhledem k tomu, že impedanci antény ovlivňují blízké objekty – obvykle ji zmenšují – většinou vyhovuje použít přizpůsobení na 75 Ω s jednoduchými kompenzačními úseky podle obr. 38b i při napájení 50 Ω . Jde zejména o ty případy, kdy je anténa zavěšena podél budovy.

U svisle zavěšených dipólů bez symetrizace je z hlediska ochrany vstupních obvodů před účinky atmosférické elektřiny účelné připojit stínění napáječe k horní části antény. Při trvalé instalaci antény ve venkovním prostředí je vhodné chránit místo napájení jednoduchým plastikovým krytem.

"2 x 5 λ/8"

Anténa, kterou jsme v předcházející kapitole pojmenovali maximálním dipólem, je vlastně dvojicí půlvinných zářičů, jejichž středy jsou od sebe vzdáleny 0,75λ – obr. 40a. Tato dvojice soufázově napájených zářičů je nejjednodušší anténní řadou napájenou jediným, společným napáječem. Dipólem jsme ji nazvali proto, že jde o anténu konstrukčně shodnou se symetricky (uprostřed) napájeným půlvinným dipólem

Obr. 40. Proudové rozložení podél symetricky napájeného dipólu o celkové délce 1,25λ (2x 5λ/8)(a), má prakticky stejné účinky, jako má dvojice soufázově napájených dipólů λ/2 (b). Shodná fáze je značena shodným směrem šipek

- maximálním pak proto, že v této dipólové úpravě má maximální směrovost, danou optimální vzdáleností obou zářičů. Střední část antény, dlouhá 3/4, resp. její dva úseky λ/8, jsou sice také aktivní části vlastní antény, anténní proudy tam však mají opačnou fázi, proto je můžeme považovat spíše za část napájecího obvodu, která zároveň transformuje velkou impedanci konců zářičů na menší.

Lze dokázat, že prakticky stejné směrové vlastnosti má dvojice samostatných, symetricky napájených dipólů λ/2, připojených ke společnému napáječi dvojící napáječů dílčích - viz obr. 40b. Na první pohled je zřejmé, že zhotovení této soustavy je konstrukčně obtížnější. Nenarazíme zde však na žádné problémy "elektrické". Maximální směrovost v rovině kolmé na podélnou osu obou dipólů závisí pouze na shodnosti obou dílčích napáječů, což znamená, že je bez obtíží zaručena.

Obratme však pozornost zpět k anténě, která se především v radioamatérských kruzích těší pozornosti, i když je co do optimalizace elektrických parametrů problematičtější či choulostivější, než právě zmíněná dvojice dipólů.

Jde o "maximální dipól" napájený na konci, pro jehož různé konstrukční modifikace se spíše ujala katalogová jména profesionálních výrobců. Principiálně jsou to však vždy dvě sfázované "pětiosminy". Stručné označení "2x 51/8", použité i v nadpisu, charakterizuje typ a uspořádání antény asi nejvýstižněji.

Pozorní čtenáři si jistě pamatují, že jsme o dvojí možnosti napájení již referovali: Na str. 6 to bylo napájení s malou impedanci, proudové napájení uprostřed dipólu $\lambda/2$, na str. 9 to bylo napájení s velkou impedancí, napěťové buzení téhož dipólu na konci, a to hned několika způsoby paralelním rezonančním obvodem LC, různými typy čtvrtvlnných vedení, reaktančními články aj. V zásadě stejnými způsoby je možné na konci napěťově budit i dipól maximální, resp. dvě sfázované "pětiosminad sebou. Navíc však musíme do antény zařadit obvod, který ono sfázování způsobí. Jinými slovy - podél celé antény je nutné vyvolat stejné proudové rozložení jako při napájení symetrickém, protože jen za těchto okolností dojde k soufázovému napájení obou půlvinných úseků, tzn. ke zvětšení směrovosti v rovině kolmé k ose antény. Pokud bychom tento obvod vynechali, bude směrový diagram naprosto nevyhovující - viz obr. 41.

Na obr. 42 jsou schematicky znázorněny tři z používaných způsobů fázování a) zkratované symetrické vedení λ/8, b) dvoudílné zkratované vedení souosé c) cívka. Všechny působí shodně. Jejich rozměry nejsou až tak kritické, aby byly příčinou nefunkční antény. Rovněž přizpůsobení antény významně neovlivňují.

Fázovací obvod vytvořený zkratovaným symetrickým vedením se používá u antény Ringo Ranger, cívka u antény SM7DVH. V obou případech je nutno mechanicky rozdělit anténu vhodným izolátorem, což činí konstrukci složitější. U profesionálních několikaprvkových kolineárních řad se využívá téměř výhradně souosých zkratovaných úseků podle obr. 42b. Odpadají izolátory, anténu, tzn. i nosný systém není nutné

mechanicky dělit. Takové řešení je samozřejmě velmi výhodné především na kmitočtově vyšších pásmech, kde jsou fázovací "rukávy" relativně krátké. V pásmu 145 MHz stejně jako v pásmu CB můžeme vybavit fázovacími obvody, zhotovenými ze souosých kabelů, antény závěsné. Symetrické proudové rozložení, podmiňující maximální směrové účinky v rovině horizontu, však ovlivňuje nesymetrické napájení i upevnění antény na konci. (Transformační obvody pro napájení antén s velkou impedancí byly popsány na str. 9.)

Dobré impedanční přizpůsobení, signalizované např. reflektometrem, ještě neznamená, že anténa je "v pořádku". Toto nesymetrické buzení, ale i vyzařování transformačních (přizpůsobovacích) obvodů, resp. záření vnějšího povrchú napájecího kabelu může směrový diagram zdeformovat tak výrazně, že i dobře přizpůsobená anténa se jeví jako horší, než stejně dobře přizpůsobená anténa "nezisková", např. J-anténa nebo anténa GP (v tomtéž místě). Proto by se u tohoto typu antény mělo kontrolovat nejen přizpůsobení, ale i elevace maximálního příjmu (záření). Není to obtížné. Je-li maximum směrového diagramu antény orientováno směrem k horizontu (nulová elevace), pak při odklonění i přiklonění anténního stožáru směrem k přijímané stanici se úroveň přijímaných signálů zmenšuje (viz obr. 43). Nežádoucí vychýlení maxima směrového diagramu, způsobené nesprávným fázováním, resp. nevhodným proudovým obložením podél antény, se projeví tím, že se úroveň přijímaného signálu při vychýlení anténního stožáru naopak zvětšuje. Výsledek pokusu však může být zkreslen nehomogenitou elektromagnetického pole v místě příjmu. Proto by se mělo vždy udělat několík pokusů s protistanicemi v různých směrech. Závěry by měly být přibližně shodné. Jsou-li měření z různých směrů nesouhlasná až chaotická, je v místě instalované antény elektromagnetické pole tak nehomogenní, že neumožňuje efektivně využít směrových vlastností měřené, resp. tak rozměrné an-

Obr. 41. Směrový diagram antény o délce 1,25λ, napájené na konci – bez fázovacího obvodu (a) a s fázovacím obvodem uprostřed (b). Nakreslena je jen polovina diagramu. Celý prostorový diagram vznikne rotací kolem svislé osy O

Obr. 42. Tři způsoby fázování antény 1,25λ (dvoiice kolineárních antén 5λ/8): a) symetrickým vedením (linkou), b) dvojicí zkratovaných souosých úseků c) cívkou

tény. Obecně totiž platí - čím je anténa rozměrnější, tím náročnější jsou požadavky na její umístění, resp. na "elektromagnetickou kvalitu" prostoru, který anténa zaujímá.

Optimalizace maximálního vyzařování do horizontální roviny je u napěťově a nesymetricky buzených svislých antén do značné míry pracnou experimentální záležitostí, která může přinést uspokojivé výsledky jen v úzkém kmitočtovém pásmu. Proto se v profesionálních komunikačních službách antény tohoto typu prakticky neužívají. Popularitu si získaly zejména na amatérském pásmu 145 MHz, kde se s nimi nejčastěji setkáváme v trojím uspořádání, které se liší právě způsobem napájení -

Na obr. 44a je u antény Ringo Ranger původem z ÚSA - budicím obvodem bočníkově napájený (tzv. gama-match) čtvrtvinný unipól, stočený do smyčky a přecházející v krátký svislý zářič, ke kterému je v místě N připojena vlastní anténa 2x 5λ/8 s fázovacím vedením /_f. Délku, resp. naladění budicího obvodu však kriticky ovlivňuje paralelní kapacita C izolátoru v místě, kde je vlastní anténa izolovaně vetknuta do stožárové trubky. Krátký přímý úsek až k bodu N, vyzařující v protifázi, kompenzuje nepříznivý vliv nesymetrického napájení celé antény na tvar směrového diagramu. Vodorovná část smyčky však na druhé straně přijímá (a vyzařuje) i horizontální složku elektromagnetického pole. Je to elektricky komplikované a konstrukčně nepříliš zdařilé řešení, přežívající až do dnešní doby. Na jeho původu se patrně podílela i hlediska patentová.

Napěťové buzení reaktančním článkem L (sestaveným ze dvou úseků souosého kabelu - viz též obr. 25b - umístěným v tlustší nosné trubce), realizované pod patronaci OK1ZN v klubu OK1KHL, je velmi zdařilou modifikací původní antény Ringo (obr. 44c). Je zde důsledně oddělena činnost přizpůsobovacího obvodu od vlastního anténního systému, takže impedanční vlastnosti lze optimalizovat nezávisle. Optimální poloha křížové protiváhy na nosné trubce omezuje vybuzení povrchových proudů, tzn. vliv nesymetrického buzení na deformaci směrového diagramu.

Neobvyklý způsob napěťového buzení je na obr. 44b. Jde o tzv. "švédku" podle SM7DVH. Nulová elevace maximálního vyzařování je příznivě ovlivňována protifázo-

Obr. 43. Vychýlením antény ze svislé osy směrem k vysílači a od vysílače lze poměrně snadno snadno kontrolovat maximum směrového diagramu ve svislé rovině. Předpokladem pro objektivní posouzení směru maxima je dostatečná homogenita elektromagnetického pole v prostoru, který anténa zaujímá

vým zářením zkrácené čtvrtvinné antény GP s protiváhou, jejíž horní konec napěťově budí dvojici 2x 5\(\mathcal{N}\) až v bodě N. Na rozdíl od antén předchozích není u antény SM7DVM zářič uzemněn.

Na správnou činnost antény má rozhodující vliv indukčnost $L_{\rm k}$ spolu s délkou svislé přímé části budicí antény GP.

Jak již bylo řečeno, používá se tento typ antény převážně v pásmu 145 MHz, i když někdy uspokojení nepřináší. Proto jsme mu také věnovali větší pozornost. Pro pásmo CB je zhotovení samonosné antény tohoto typu nepravděpodobné. S konstrukčně nenáročnou závěsnou modifikací však experimentovat lze, ovšem v dostatečných prostorových podmínkách.

Posuzování antén v amatérské praxi

Spolehlivost rádiového spojení ovlivňují vlastnosti radiostanic a vlastnosti antén, včetně jejich umístění a napájení – pomineme-li vliv podmínek šíření, který je při běžném místním CB málo zřetelný. Přirozená snaha o spolehlivé spojení nebo o větší dosah, ať již v pásmu CB nebo na amatérských pásmech VKV proto logicky vede k experimentování s anténami, stejně jako je tomu při potížích s příjmem televizním. A tak se zkoušejí, resp. porovnávají různé typy antén – někdy úspěšně, někdy neúspěšně.

Jak je to vlastně s posuzováním, či přesněji s porovnáváním antén v praxi? Proč se někomu jeví jako lepší anténa, která se jinde neosvědčila a naopak? Je ta "pravá" objektivně lepší než jiné? Co bychom měli vědět, aby naše anténářské úsilí o dobré spojení nebo dobrý obraz vedlo k úspěšnému závěru?

Předně si musíme uvědomit, že laické porovnávání antén při praktickém radiokomunikačním provozu nebo při příjmu TV není měřením. Antény se měří proto, aby se určily jejich elektrické parametry – především přizpůsobení, zisk a další směrové vlastnosti. Tato měření nejsou jednoduchou záležitostí. Parametry antén pro pásma VKV a UKV, resp. metrové a de-

cimetrové vlny se musí měřit v podmínkách "volného prostoru". Takto zjištěné parametry se pak v praxi uplatní jen potud, pokud se antény v podmínkách "volného prostoru" také používají. Volný prostor předpokládá dostatečné vzdálenosti od okolních objektů a země a dostatečnou homogenitu (rovnoměrnost) rozložení elektromagnetického pole, vybuzeného přijímanou protistanicí nebo přijímaným TV vysílačem v prostoru zabíraném posuzovanou anténou.

Na měřicím anténním pracovišti se proto musí prostorová oblast, ve které bude umístěna měřená anténa, prověřit zkušebním dipólem, $\lambda/2$, jehož polarizace musí odpovídat polarizaci antény při měření. Výstupní napětí u tohoto dipólu pak nesmí kolísat o více než 1 dB na kmitočtech do 300 MHz a 0,5 dB nad 300 MHz. Tak je definována dostatečná homogenita elektromagnetického pole při měření antén podle ČSN 36 72 10, resp. mezinárodního doporučení IEC.

Rozměrové nároky na volný prostor pochopitelně vzrůstají na nejnižších kmitočtech. Na delších vlnách se při praktické instalaci antén podmínky volného prostoru proto dodržují stále obtížněji - anténa je relativně stále blíže k zeml, která nakonec její chování a vlastnosti významně ovlivňuje. Proto jsou také vydána doporučení a normy pro měření antén až od 30 MHz výše. Rozhraní mezi vlnami dekametrovými a metrovými, kde se nalézá i pásmo CB, se totiž považuje za oblast, kde se vliv země na činnost a vlastnosti antény již obtížnějí omezuje. Čilí hodnocení antén při jejich laickém porovnání bude v pásmu CB ovlivněno spíše jejich umístěním, než předpokládanými vlastnostmi antény. Navíc v pásmu CB jde o antény všesměrové, takže působení okolních objektů nelze vyloučit. Avšak i na nejvyšších televizních pásmech, na nichž není obtížné vliv země vyloučit, je homogenita elektromagnetického pole v místě příjmu významným činitelem, který ovlivňuje volbu nejvhodnějšího typu antény. Na rozdíl od antén TV neposkytuje typově omezený sortiment poměrně rozměrných antén pro pásmo CB velké možnosti k experimentování. Všechny porovnávané antény musí být přizpůsobené, aby jejich hodnocení bylo závislé jen na jejich účin-

Obr. 45. Výškový zisk měřený v pásmu 100 MHz ve venkovském prostředí s vertikálně polarizovanými anténami. Každým zdvojnásobením výšky se zisk zvětší o 6 dB

nosti a směrovosti. Kontrola přizpůsobení – ČSV – reflektometrem je proto při porovnávání antén nezbytná. Vyloučí se tak vliv případného nepřizpůsobení, popř. závady v napájení nebo připojení antény na objektivní porovnání zkoušených antén.

Na základě zkušeností je možno doporučit

V omezených prostorových podmínkách, v blízkosti země nebo na rozměrných plochých střechách volíme antény s protiváhou – GP λ/4. Ve volném prostoru, výše nad zemí, spíše antény λ/2 až 2x 5λ/8. Jednoduché závěsné antény $\lambda/2$, upevněné na vysokých půdách do krovů střech pokrytých nevodivou krytinou, dávají často lepší výsledky než samonosné antény GP s redukovanými radiálami umístěné vně na tomtéž objektu. Pro mobilní "magnetku" se čtvrtvlnným zkráceným zářičem je na pásmu CB kovový parapet okna příliš malou protiváhou pro účinné vyzařování, a tak je v takovém případě lepší použít klasickou anténu – např. půlvlnný dipól z dvoulinky zavěšený před oknem podél vnější stěny. Ve stísněných prostorových podmínkách je naopak optimální anténou zkrácený unipól – "pendrek".

Požadavky na větší dosah nelze v pásmu CB prakticky řešit použitím antén s větším ziskem, protože nejsou běžně k dis-

Obr. 44. Tři varianty antén typu "2x 5λ/8", napájených na konci, tj. v místě velké impedance: a) Ringo Ranger, b) SM7DVH, c) OK1ZN/KHL, prodávaná pod označením LVa

pozici. Na pásmech VKV a UKV však můžeme ke zvětšení dosahu využít tzv. výškového zisku. Z teoretických předpokladů totiž vyplývá zvětšení intenzity elektromagnetického pole o 6 dB při zdvojnásobení nadzemní výšky jedné antény při konstantní výšce druhé antény, ovšem za předpokladu rovné, hladké a dokonale vodivé plochy. V praktických podmínkách různé kvality půdy, terénních nerovností i překážek v cestě šíření však velikost výškového zisku kolísá. Rozsáhlá měření, realizovaná v kmitočtové oblasti kolem 100 MHz s vertikálně polarizovanými anténami ve výškovém rozmezí 4 až 60 m a na různých trasách však obecnou platnost uvedené velikosti výškového zisku potvrdila (obr. 45). Zároveň bylo zjištěno, že výškový zisk je menší ve venkovském prostředí než v městském, v němž se vyskytují četné výškové nepravidelnosti v okolí i výše umístěných antén, takže každým zvýšením antény se omezuje působení "ne-pravidelností". V místech se slabým signálem byl výškový zisk větší než v místech se silným signálem a pro výšky antén větší než činily místní nerovnoměrnosti se výškový zisk měnil jen málo se změnou místa. Uvedené závěry byly potvrzeny i na kmitočtech kolem 200 MHz a 50 MHz a nebudou řádově odlišné ani v pásmu CB. Takže - větší dosah zabezpečíme v pásmu CB snadněji vyšší polohou běžné antény, než rozměrnou konstrukcí antény víceprvkové.

Při porovnání antén mobilních obvykle nedává pouhá výměna antény na stojícím vozidle jednoznačnou informaci o její kvalitě. Rozdíly v účinnosti značně zkrácených mobilních antén na pásmu CB nejsou totiž až tak velké, a tak v tomto případě má někdy větší vliv přizpůsobení

antény.

Profesionální přístup k tomuto problému je založen na trvalé registraci úrovně přijímaných signálů při pohybu vozidla, vybaveného měřenou mobilní anténou, po určité trase s různými charakteristickými úseky a na následném porovnání tohoto záznamu se stejným měřením pořízeným s anténou referenční. Obě měření se několikrát opakují, aby se vyloučily chyby a neovlivnitelné změny po projížděné trase. Teprve pak je možno kvality či posuzované vlastnosti srovnávaných antén objektivně zhodnotit. Tímto způsobem bylo např. v počátcích mobilního příjmu rozhlasových stanic FM zjištěno, že je výhodnější montovat autoanténu na levou stranu vozu v zemích, kde se jezdí vpravo. Přijímané signály byly v tomto uspořádání v průměru o 1 až 1,5 dB silnější než z antény montované na straně pravé, která je více stíněna uliční zástavbou, parkujícími automobily, stožáry pouličního osvětlení a stromy. Snad má toto zjištění vliv na nový trend v konstrukci autoantén, zasouvaných do levého předního střešního sloupku.

V této souvislosti stojí za zmínku velmi zajímavý poznatek, který při posuzování mobilních antén pro pásmo 145 MHz odhalil OK1ZN. Vyhodnocení registračních záznamu, pořízených výše zmíněným způsobem s anténami i/4 a 5i/8, ukázalo, že jen na volných prostranstvích, mimo města, popř. v řídké zástavbě je pětiosmina

jednoznačně lepší než malý proutek čtvrtvinný. V lesních úsecích a ve městech nebyl mezi oběma typy antén v průměru prakticky rozdíl. Příčinou je nepochybně jednak výrazně větší nehomogenita elektromagnetického pole v zastavěném a členitém terénu, která vytváří obecně nepříznivější podmínky pro efektivní využití rozměrnělších (delších) antén. A dále je to méně příznivé rozložení elektromagnetického pole ve svislé rovině, kdy horní část o 80 cm delší pětiosminy nezasahuje v zastíněných ulicích a v lese ještě do míst s větší intenzitou elektromagnetického pole, zatímco na volném prostranství je rozložení intenzity z tohoto hlediska příznivější a pro delší (vyšší) antény přínosné.

Pochopení neobvyklých jevů napomáhá představivost. Homogenitu elektromagnetického pole si představujeme obtížně. Názornější představě o vlivu tohoto fenoménu na účinnost přenosu vf energie snad pomůže příklad z jiné oblasti:

Lopatkové vodní kolo je primitivní zařízení na "příjem" kinetické energie vodního toku. Generátor elektrického proudu připojený hřídelí ke kolu ji mění na energii elektrickou. Získaný elektrický výkon je závislý na parametrech technického zařízení a na mohutnosti vodního toku. Je jasné, že za daných podmínek jsou vlastnosti lopatkového kola, v našem případě antény, rozhodující pro množství získané energie. Čím větší je účinná plocha každé lopatky, popř. čím více lopatek současně zasahuje do vodního toku, tím více energie lze "přijímat". Teoreticky by měla nčlenná soustava lopatkových kol upevněných na společném hřídeli (nprvková anténa, popř. nčlenná anténní soustava) zvětšit elektrický výkon nkrát. Ovšem jen za předpokladu, že rychlost vodního toku je v celém profilu zasahovaném lopatkami steiná. Za určitých podmínek vznikají v každém řečišti zpětné proudy. V tom případě se na energetickém přínosu nepodílejí všechna kola stejně. Některá dokonce pracují proti sobě, jak je patrné z obr. 46a. Výsledný efekt pak neodpovídá teoretickým předpokladům, pokud s tímto jevem nepočítají, a neodpovídá ani nákladům na takovou soustavu vynaloženým. Jistá analogie s homogenitou elektromagnetické energie v místě zaujímaném nprvkovou anténou nebo nčlennou anténní soustavou je tedy zjevná, i když si toto přirovnání nečiní nárok

Obr. 46. Účinnost transformace kinetické energie vodního toku na energii elektrickou ovlivňuje kromě parametrů technického zařízení i charakter – homogenita – vodního toku. Podobně je tomu i při transformaci vf energie anténami

na přesnost a je spíše obrazné. Aby se investice do soustavy lopatkových kol vyplatila, je třeba prověřit charakter vodního toku v "místě příjmu" a pak případně zvolit místo jiné, nebo soustavu přizpůsobit daným podmínkám. Avšak i u jediné antény je třeba brát v úvahu vlastnosti prostředí. Zasahují-li lopatky jediného kola částečně do oblasti zpětných proudů (obr. 46b), získává se menší výkon než při užití lopatek o stejné ploše, ale s jinými rozměry. Analogicky - dvě antény se stejným získem, avšak tvarově odlišné mohou v daném místě vykazovat rozličné účinky zejména při příjmu TV např. plošná anténa soufázová ("matrace" nebo "síto") a díouhá anténa Yagi.

Kvantitativní rozdíly mezi porovnávanými anténami jsou v amatérské praxi obvykle zjišťovány z údajú S-metrů, popř. diodových indikátorů. Údajům, které skutečně poskytují, byly věnovány články v AR 8, 9/93.

Koaxiální (souosé) kabely

Souosé kabely jsou stále významnou částí přenosové trasy mezi anténou a přijímačem, popř. vysílačem na všech KV, VKV a UKV pásmech, pokud ovšem není anténa připojena bezprostředně, jak je to tomu zpravidla u ručních přenosných radiostanic typu H. H. nebo H. T., popř. u přenosných rozhlasových nebo TV přijímačů, což vyvolává u mnoha uživatelů přezíravý postoj k vf napáječům, které jsou často degradovány na pouhé přívody, či svody. Tento zjednodušený přístup vede k celkovému podcenění vf napáječů se všemi důsledky, které z toho vyplývají.

Následující odstavce by měly význam vf napáječů zdůraznit. Svými vlastnostmi totiž souosé kabely přispívají ke kvalitě spojení nebo příjmu stejným dílem jako vlastnosti antény, výkon vysílače nebo citlivost přijímače. Utlum napáječe 3 dB promění v teplo minimálně polovinu vysí-

laného výkonu (a to i v případě, že anténa je u vysílače dobře přizpůsobena), popř. o stejnou velikost zmenší sumové vlastnosti (citlivost) přijímače. K dosažení tohoto útlumu např. při užití populárního a žádaného zahraničního kabelu RG58 na pásmu CB postačí délka 37 m, na 145 MHz již jen 15 m a na 435 MHz pouhých 8 m. Při každém nepřizpůsobení se tyto ztráty dále zvyšují, a to tím více, čím je základní útlum kabelu vyšší.

Finanční prostředky investované do kvalitnějšího napáječe jsou většinou podstatně nižší, než prostředky věnované na stejné ziepšení ostatních článků přenosové trasy. Problematiku volby vhodných souosých kabelů však dnes již nemůžeme zužovat jen na jejich útlumové vlastnosti, i když jsou při radioamatérské činnosti stále významné.

Bouřlivý rozvoj elektroniky, zejména pak

v oblasti sdělovací a výpočetní techniky, si vyžádal výrazné změny i v konstrukci sdělovacích - zpravidla souosých kabelů. Inovační snahy byly zaměřeny zejména na dosažení maximální účinnosti stínicích plášťů tak, aby vyhověly náročným požadavkům na kvalitní rozvod signálů v prostředí zamořeném elektronickým smogem, produkovaným stovkami stále silnějších vysílačů a jinými zdroji vf rušení - to na straně jedné, a aby se vyzařováním přenášených signálů takovými zdroji nestávaly samy kabely ani ve svém nejtěsnějším okolí – to na straně druhé. Zároveň se požaduje velmi dobrá ohebnost, dlouhá doba života, menší hmotnost a s ní spojená úspora materiálů a jednoduché výrobní postupy umožňující vyšší produkci.

Souosé kabely s dielektrickou izolací PE, opletené klasickým stíněním z měděných vodičů jsou beze změn užívány již desítky let, prakticky od konce války. Parametry známé řady souosých kabelů RG8 až RG59 byly publikovány US Army-Navy R.F. Cable Coordinating Committee již v říjnu 1944. Za dnešních podmínek však i ta nejdokonalejší stínění pletená z vodičů Cu nevyhovují v celé řadě aplikací především elektrickým požadavkům, které jsou na tento tzv. vnější vodič (nebo vnější jádro) souosého kabelu kladeny. Kvalita stínění je dnes pro četná použití dominujícím parametrem, nadřazeným parametrům útlumovým, které jsou již do značné míry kompenzovány výkonnějšími vysílači, citlivějšími přijímači, popř. bezproblémovým použitím kvalitních průběžných zesilovačů v TV kabelových rozvodech.

Dřívější snahy o minimalizaci útlumu vedly ke kabelům s různými typy vzdušných a polovzdušných dielektrik např. s balonkovou, kalíškovou a šroubovicovitou izolací vnitřního vodiče. To však výtvářelo příznivé podmínky pro vznik axiální nehomogenity elektrických vlastností – především impedance. Systematická kumulace malých nehomogenit pak výrazně zhoršovala přenosové vlastnosti kabelových tras na vyšších kmitočtech. Návrat ke kompaktní dielektrické izolaci (i když s větším útlumem) přispěl k dosažení potřebné homogenity impedance, vyhovující náročným požadavkům na přenos dat i barevné TV.

Úsilí o minimalizaci útlumu bylo orientováno především na speciální kabely vysílací, u nichž se podařilo dosáhnout velmi dobrých výsledků. Příkladem zde mohou být např. americké "vzdušné kabely" HELIAX (obr. 47).

Zaznamejme zde tedy stručně vývojové snahy v inovacích stínicího pláště u běžně používaných souosých kabelů – od klasických opletení, až po dnešní plastové pokovené fólie, a to i proto, že se na nich

významným způsobem podílejí po dlouhou dobu i pracovníci Výzkumného ústavu káblov a izolantov (VŮKI) v Bratislavě.

Vývoj vnějšího vodiče se v podstatě shoduje se značením vf napáječů čs. výroby (viz str. 20 až 22) dle ČSN 347730, jehož 4. člen 5místného písmenového kódu charakterizuje druh stínění:

- O jednoduché opletení z drátů Cu. Klasický kabel, stále běžně používaný, s omezenou účinností stínění, která je závislá na geometrických rozměrech opletení a kvalitě výroby. Jednoduché opletení z vodičů Cu poměrně rychle "stárne" tzn. že se korozí zvyšuje přechodový odpor křižujících se vodičů, což se projevuje zvětšováním útlumu a zmenšováním účinnosti stínění, zvláště u kabelů pokrytých vnější izolací PVC. Působením klimatických vlivů se stárnutí urychluje. Kabely s vnější izolací PE popř. s mezivrstvou PE, oddělující vnější plášť PVC od přímého styku se stíněním, jsou trvalejší. Vlastní účinnost však neovlivňují.
- D dvojité opletení z drátů účinnost stínění zvětšuje. Náklady na výrobu jsou však podstatně vyšší stejně jako hmotnost. Doba života je poněkud delší, ale opět časově omezená.
- A jednoduché, a B dvojité opletení z postříbřených drátů Cu prodlužuje dobu života minimálně dvojnásobně, praktické poznatky to potvrzují. Cena kabelu stoupá. Velmi kvalitní miniaturní kabely s teflonovou izolací, opletené postříbřenými vodíči typu VBPAM 50 1,5; u nás vyrábí Kablo-Vrchlabí.
- S jednoduché opletení z pocínovaných drátů Cu je rovněž odolnější proti korozl, usnadňuje pájení vnějšího vodiče, ale jinak se podstatně neliší od klasického opletení.
- Z vnějším vodičem je podélně svařova-ná zvlněná trubka Cu. Souosý kabel s tímto typem vnějšího vodiče, který má příznivé útlumové vlastnosti, dokonalé stínění a téměř neomezenou dobu života byl ve VÚKl a následně i v KABLO-Bratislava vyvinut a realizován již koncem 60. let s určením pro TV kabelové rozvody jako úložný zemní kabel. Pro omezenou ohebnost sice není příliš vhodný pro jiná použití, nicméně je to kabel vynikající a při stabilním upevnění může být používán i pro napájení antén. Pěnové dielektrikum zmenšuje jeho hmotnost, takže je lehčí než stejně tlustý kabel opletený běžným způsobem vodiči Cu. Speciální výrobní technologie, založená na zahraniční licenci zvyšuje jeho cenu. Ta je však bohatě kompezována výbornými elektrickými vlastnostmi a zvláště pak velmi dlouhou dobu života.

Vývoj předběhl zdlouhavé procedury při revizích norem, takže nová označení, charakterizující stínicí pláště z podélně uložených kovo-plastových fólií – V, L, K a J – ještě v normách nenajdeme. Jak jsme již uvedli, vývojovou iniciativu převzali počátkem 80. let pracovníci VÚKI-Bratislava a v nových podmínkách posledních let pak i nové typy kabelů, určené především pro rozvod televizních signálů i družicový příjem, produkují (viz str. 21).

V - jedním z postupných kroků k současným kabelům byl vývoj i výroba kabelu s podélně uloženou fólil Cu obloženou 12 sinusově zvlněnými dráty Cu, které měly především zabezpečit kontinuitu vnějšího vodiče při přetržení fólie Cu nadměrným ohybem kabelu; zkratem překrývaných okrajů fólie pak zlepšit její stínicí účinky a v neposlední řadě usnadnit připojení stínicího pláště ke konektorům. Souosý kabel s tímto typem stínění byl poměrně krátkou dobu produkován pod označením VCEVY 75-4.8. Avšak ani tento druh stínění ještě neměl žádané mechanické vlastnosti, potřebné pro instalaci do TV rozvodů. Byl však cennou náhradou za zcela nevyhovující německý výrobek RFT, 75-5-A, který se tehdy u nás prodával.

Rozhodujícím krokem k dosažení žádoucích mechanických vlastností bylo zvládnutí technologie výroby fólie Al-PET (PET zkratka pro polyetylentereftalát) a její následné použití jako vnějšího vodiče při výrobě souosých kabelů.

- tedy označuje stinici plášť, sestávající ze dvou podélně uložených fólií Al-PÉT, mezi nimiž je podélně uloženo několik rovných pocínovaných vodičů Cu, usnadňujících připojení konektorů. Okraje obou pruhů fólie jsou překryty, takže vlastně tvoří dvě samostatné "trubky", jejichž "švy", tzn. překryté okraje (avšak galvanicky nespojené vlivem plastové vrstvy) jsou navzájem posunuty o 180° (viz obr. 48a) pro dosažení lepších stínicích účinků. Obě fólie jsou na dielektrické izolaci z plného nebo pěnového PE uloženy vodivou vrstvou Al k sobě, aby byl zabezpečen galvanický kontakt s vodiči Cu. Povrch vnější fólie Al-PET, uložené pod vnější izolací kabelu, je tedy nevodivý, což je třeba vzít v úvahu např. při kontrole celistvosti stinění ohmmetrem, Přestože obě fólie Al-PET jsou velmi tenké, 0,03 a 0,01 mm, předčí jejich stínicí účinek všechny druhy opletení z vodičů Cu a svou ohebností se jim prakticky vyrovnávají.
- K zlepšená varianta předchozího typu L. Podélně uložené vodiče Cu jsou nyní sinusově zvlněny, takže tvoří nesčetné zkraty nad překrytými okraji vnitřní fólie, kde plastový povlak oba překrytě okraje od sebe izoluje. Maximálních stínicích účinků vnější fólie se dosahuje přehnutím vnitřního okraje (viz obr. 48b), takže oba okraje vnější fólie k sobě vodivě přiléhají a tvoří tak vlastně soustředně uložený, druhý trubkový vnější vodič souosého kabelu. Stínicí účinky jsou maximální a dostatečná ohebnost zůstává zachována. Jde o originální řešení VÚKI, se kterým jsme se u jiných výrobců nesetkali (obr. 49).

ANDREW® HJ5-75 HELIAX® Intultiple III

Obr. 47. "Air Dielectric" Cable HELIAX typ HJ5–75 a HJ4–50 americké firmy ANDREW mají na 200 MHz útlum 1,82 a 3,9 dB/100 m. Patří ke špičkovým výrobkům tohoto druhu. V ČR zastupuje fy Andrew MIKROKOM s.r.o., Praha 4, Novodvorská 994

Obr. 48a. Stínicí plášť souosého kabelu za dvou podélně uložených fólií Al-PET, posunutých vzájemně o 180°, má velmi dobré stínicí účinky. Mezi oběma pásy fólie leží pocínované vodiče Cu. Obě fólie příléhají vodivou vrstvou Al k sobě, takže mají galvanický kontakt s pocínovanými vodiči Cu.

Obr. 48b. Překrytím vnitřního okraje vnější fólie se oba okraje galvanicky spojí a stinicí účinky se ještě zvětší

Obr. 49. VCEKY .. souosý kabel s plnou PEdielektrickou izolací, stíněný dvěma podélně uloženými fóliemi Al-PET. Podélně uložené vodíče jsou mezi fóliemi sinusově zvlněny, takže tvoří nesčetné zkraty nad překrytými okraji vnitřní fólie. Okraje vnější fólie jsou zkratovány přehnutím podle obr.

J - vnější vodič je podélně uložená fólie Al-PET s překrytými okraji, povlečená opletením z měděných vodičů s 50% krytím, tzn., že toto opletení je řidší než u kabelů s klasickým opletením (označovaným písmenem O). Nicméně je více než dostatečné pro použití v TV rozvodech a pro satelitní příjem. Tento typ stínicího pláště dnes převládá u většiny zahraničních (západních) výrobků, určených pro TV rozvody, protože nejlépe vyhovuje pro snadnou a spolehlivou instalaci konektorů F, kterými jsou dnes již i u nás vybavovány kabelové rozvody TV a SAT kabelové spoje (obr. 50). Všechny vodiče Cu, které přicházejí do styku s vodivým povrchem fólií AI-PET musí být a také jsou pocínovány, aby se vyloučila elektrochemická koroze, pro jejíž vznik nabízí kombinace Al-Cu nejpříznivější podmínky. Jednoduché opletení z pocínovaných vodičů Cu, označené S, se prakticky vyskytuje převážně jen v kombinaci s fólií Al-PET pod označením J.

Tolik tedy úvodem o současných vývojových tendencích kolem souosých kabelů.

Abychom se lépe a rychlejí orientovali v přehledech vlastností souosých kabelů, připomeňme si zásady ve značení vf napáječů české a slovenské výroby podle stále platné ČSN 347730 – Vysokofrekvenčné káble koaxiálné a symetrické – do kterých jsme zařadili již zmíněná značení nových druhů stínění.

Značení vf napáječů

Značení má stručně charakterizovat druh a konstrukci napáječe. Je sestaveno z pětimístného kódu a dvou skupin číslic, udávajících impedanci napáječe a průměr dielektrické izolace (vnitřní průměr stínicího pláště), popř. rozteč vodičů u napáječů symetrických – dvoulinek (obr. 51).

Obr. 51. Značení souosých kabelů a dvoulinek podle ČSN 347730 zároveň velmi dobře charakterizuje jejich vlastnosti

Obr. 50. Viz 3. str. obálky

1. písmeno rozlišuje druh:

V - ví souosý kabel,

P – ví souměrný, symetrický kabel (dvoulinka).

 písmeno označuje materiál a konstrukci vnitřního vodiče popř. obou vodičů symetrického kabelu:

C - drát Cu (měděný),

L - lanko Cu,

R - trubka Cu,

A – postříbřený drát Cu,

B - lanko z postříbřených drátů Cu,

D - poměděný drát ocelový,

K – poměděný a postříbřený drát ocelový

S - lanko z pocínovaných drátů Cu.

p/smeno charakterizuje dielektrickou izolaci:

E - plný PE (polyetylén),

P - plný PTFE (TEFLÓN - polytetraflouretylén),

F - plný fluorovaný etylénpropylen,

C - pěnový PE,

B – balonkový PE – polovzdušné izolace

K – kalíškový PE – polovzdušné izolace,

R - trubka PE,

V - vzduch.

4. písmeno označuje druh stínění:

O - jednoduché opletení z drátů Cu,

D - dvojité opletení z drátů Cu,

Z – zvlněná svařená trubka Cu,

C - trubka Cu.

A – jednoduché opletení z postříbřených drátů Cu.

B – dvojité opletení z postříbřených drátů Cu,

S – jednoduché opletení z drátů Cu pocinovaných,

F – ovinutí fólií nebo páskem Cu,

H - ovinutí fólií nebo páskem Al,

U – ovinutí fólií nebo páskem Cu a opletení z drátu Cu,

V – ovinutí podélně uloženou fólil Cu a obložení zvlněnými dráty Cu,

L – ovinutí dvěma podélně uloženými fóliemi Al-PET se svazkem rovnoběžných pocínovaných vodičů Cu mezi nimi, K – ovinutí dvěma podélně uloženými fóliemi Al-PET se svazkem sinusově zvlněných pocínovaných vodičů mezi oběma fóliemi,

J – ovinutí podélně uloženou fólií a opletení z pocínovaných vodičů Cu.

písmeno označuje vnější izolační plášť:
 Y – měkčený PVC (polyvinylchlorid),

M – měkčený PVC (polyvinylchloric
 M – měkčený PVC mrazuvzdorný,

E – plášť PE,

D – dvojitý plášť, vnitřní PE, vnější PVC, P – plášť PTFE – TEFLON – pro teploty do 200 °C,

F – fluorovaný etylénpropylen – pro teploty do 200 °C.

Další písmeno, oddělené od pětimístného písmenového kódu pomíčkou, označuje doplňující údaje: např.

 N, závěsný souosý kabel, s ocelovým nosným lanem, zalisovaným v přídavné části pláště PVC,

- R, s pláštěm z bezhalogénového materiálu, tzn. se zvětšenou odolností proti šíření ohně. Při působení ohně se nevytvářejí škodlivé zplodiny a vznikající dým má malou optickou hustotu. Takto označené kabely vyhovují zkoušce odolnosti proti šíření ohně podle dokumentu IEC 332-1. Uvedená doplňující označení charakterizují některé typy kabelů z produkce VÚKI.

Pětimístný písmenový kód, popř. rozšířený o další písmeno, doplňuje dvojice číselných údajů, informující o impedanci a průměru dielektrické izolace.

Původně byla impedance čs. kabelů charakterizována ještě barvou izolačního pláště: zelený 75 Ω , šedý 50 Ω , khaki mra-

zuvzdorný, obě impedance.

Značení kabelů naší (rozuměj české a slovenské) výroby podle ČSN 347730 usnadňuje orientaci v nabízeném sortimentu, protože zároveň charakterizuje jejich elektrické a mechanické vlastnosti. Spolu s číselným údajem o impedanci a průměru dielektrické izolace tak prakticky umožňuje reálný odhad základních elektrických parametrů. Značení je v souladu a doporučením IEC, které vyžaduje pouze údaj o impedanci a průměru. Citelně však postrádáme typové značení přímo na plášti kabelu tak, jak je vidíme na kabelech zahraničních, které se v našich prodejnách objevují stále častěji. Jejich značení většinou vychází z původních i revidovaných amerických norem a předpisů pro vojenská zařízení MIL-C-17. A tak se zejména u kabelů pro radiokomunikaci stále ještě setkáváme s tradičním značením RG ..., které samo o sobě vlastnosti kabelů nijak necharakterizuje. Navíc se pak pod stejným označením pro-

dávají rozměrově shodné typy, lišící se druhem dielektrické izolace a stínění od

původního provedení.

Snadnější orientaci v sortimentu zahraničních kabelů, značených RG .., by měl usnadnit přehled současného stavu v tab. 6. Typové značení nových zahraničních kabelů s impedancí 75 Ω, určených převážně pro TV kabelové rozvody a příjem družicový, však žádný systém nerespektují, každý výrobce má vlastní systém. Pak nezbývá, než se spolehnouť na "odborné" informace prodávajícího. Při tom by stačilo nabízet kabely podle vzorků s postupně obnaženými prvky, jak je vidíme na našich snímcích. Z pouhého řezu se toho mnoho nedozvíme.

Úplný sortiment vf napáječů

ré jsme požádali tyto slovenské a české výrobce:

tov, 815 71 Bratislava Továrenská 14; KABLO - Bratislava, spol. s r. o.,

812 61 Bratislava, Továrenská 11; KABLO Děčín a.s., 405 33 Děčín V, Ústecká 33

KABLO Vrchlabí, a.s.,

543 14 Vrchlabí.

Představujeme naším čtenářům, radioamatérům i podnikatelům úplný sortiment vf napáječů pro radiokomunikaci, pro individuální a společné TV rozvody, pro příjem satelitní a pro další speciální účely.

než u kabelu z dovozu, a to při srovnajsme vybrali z nabídkových listů, o ktetelných vlastnostech elektrických. VÚKI zaměřuje svůj výrobní program velmi perspektivně na moderní souosé ka-VÚKI - Výskumný ústav kablov a izolan-

bely pro rozvod televizních signálů a družicový příjem. K dispozici jsou tyto typy: VCEKY 75 - 3,7 - 4,8 - 7,25 VCCKY 75 - 3,7 - 4,8 - 7,25 - 3,7 - 4,8 - 7,25 - 3,7 - 4,8 - 7,25 - 3,7 - 4,8 - 7,25 - 3,7 - 4,8 - 7,25 VCEJY 75

VCCJY 75

Rozsah nabízených výrobků není malý, ve

srovnání s dováženými výrobky západní

provenience. Rovněž cenové relace byly

počátkem roku 1993 podstatně příznivější

Prvních 6 základních typů se vyrábí pod označením VCEKE-R a VCCLE-R také s pláštěm z bezhalogenového materiálu, kterým se zvětšuje odolnost proti šíření ohně, nevytvářejí se škodlivé zplodiny a dým má malou hustotu.

Další konstrukční variantou jsou kabely v samonosné (závěsné) úpravě, VCEKY-N a VCCKY-N se souběžným ocelovým lankem, zalisovaným v přídavné části vnější izolace PVC.

Typy VCEJY a VCCJY, určené především pro zatahování do trubek, jsou též k dispozici s ocelovým poměděným vnitřním vodičem pod označením VDEJY a VDCJY.

Ve výrobním programu jsou ještě subminiaturní souosé kabely:

VAFAY 75 - 1,4 s teflonovou izolací a pláštěm PVC,

VAFAF 75 - 1,4 s teflonovou izolací I pláštěm pro teploty do 200° C, VLEKE a VLEKY 50-2,95 souosý kabel

pro počítačové sítě ETHERNET,

VCJKY a VCJKY-N 93-3,7 pro počítačové sítě ARCNET,

XTEFY a XTEFE, symetrické stíněné kabely s izolaci PE a impedanci 105 $\Omega_{\rm c}$ pro počítačové sítě typu IBM, ekvivalentní se zahraničními kabely TWINAX.

KABLO - Bratislava spol. s r.o. produkuje již dlouhá léta nejširší sortiment souosých kabelů s impedancemi 50, 75, 95, popř. 110 Ω s klasickým opletením Cu, jednoduchým, dvojitým i postříbřeným, dále velmi kvalitní úložné kabely se svařovaným měděným pláštěm a kabely pro napájení rozhlasových autoantén (obr. 52) s velkou impedancí (malou kapacitou):

VCEOY 50 VLEOY 50 VLEOM 50 VLEDY 50 VLEDM 50	-1,5 -1,5 -1,5	2,95 -	7.25	
VBEBM 50 VCCZE 50	- - -	2,95 - 2,95	7,25 7,25 7,25 7,25 -	
VCEOM 50 VCEOY 75 VLEOY 75 VLEOM 75 VLEDY 75 VCCOY 75	-3,7 -3,7 -3,7 -3,7 -3,7	- - - - - 4,8	17,3 5,6 - - 5,6	7,25 7,25 7,25 - 7,25
VCELY 75 VCCLY 75 VCCLD 75 VCCLY N 75 VCEOM 75	-3,7 -3,7 - - -	4,8 4,8 4,8 -	7,25	7,25 7,25 - - 7,25

Tab. 6a. Kabely s impedancí 50 ±3 ohmy

1	2	3	4	5	6	7	8
RG 178B/U		7x 0,1	1,85	PTFE	27	62	102
RG 196A/U		7x 0,1	1,9	PTFE	27	62	102
RG 174A/U	VLEOY 50-1,5	7x 0,16	2,5	PE	16	45	70
RG 316/U		7x 0,17	2,5	PTFE	17	40	68
RG 188A/U	-	7x 0,17	2,7	PTFE	17	40	68
RG 142B/U		1x 0,95	4,95	PTFE	9	20	35
RG 58C/U	VLEOY 50-2,95	19x 0,19	4,95	PE	9	24	39
RG 223/U	VCEOY 50-2,95	1x 0,9	5,3	PE	7	20	34
RG 213/U	VLEOY 50-7,25	7x 0,76	10,3	PE	3,7	10,2	17
RG 214/U	VLEDY 50-7,25	7x 0,76	10,3	PE	3,7	10,2	17
RG 215/U		7x 0,76	12,5	PE	3,7	10,2	17
RG 217/U		1x 2,7	13,8	PE	2,4	7,1	12,3
RG 218/U		1x 5	22,1	PE	1,5	4,5	8,1
RG 219/U		1x 5	24,3	PE	1,5	4,5	8,1
RG 220/U		1x 6,6	28,4	PE	1,1	3,8	7

Tab. 6b. Kabely s impedancí 75 ±3 ohmy

RG 179B/U		7x 0,1	2,55	PTFE	18	41	70
RG 187A/U		7x 0,1	2,7	PTFE	18	41	70
RG 59B/U	VCEOY 75-3,7	1x 0,6	6,15	PE	6	17	27
RG 6A/U		1x 0,73	8,4	PE	4,9	14,8	23
RG 11A/U	VLEOY 75-7,25	7x 0,4	10,3	PE	4	11	19
RG 216/U	VLEDY 75-7,25	7x 0,4	10,8	PE	4	11	19
RG 12A/U		7x 0,4	12,5	PE	4	11	19
RG 34B/U		7x 0,64	16	PE	2,7	7,8	13,5
RG 164/U		1x 2,7	22	PE	1,5	4,6	8,2

Tab. 6c. Kabely s impedancí 95 ±5 ohmů

RG 180B/U	7x 0,1	3,7	PTFE	14	33	58
RG 195A/U	7x 0,1	3,8	PTFE	14	33	58
RG 62B/U	1x 0,65	6,15	pěna	5	13	22
RG 71B/U	1x 0,65	6,2	pěna	5	13	22
RG 22B/U	7x 0,4	10,7	PE	6	16,5	27

Tab. 6d. Kabely s impedancí 125 ±6 ohmů

100,0011100	ij o iiiipo aaiioi iaa							
DC 62P/II		1x 0,67	10.3	năna	26	0.2	142	ĺ
RG 63B/U		1X 0,07	10,3	pena	3,0	9,2	14,2	ı

VLEDM 75	_	_	-	7,25
VCEOM 75	-17,3			
VCCZE 75	-4,8	6,4	12,2	
VCEZE 75	_	6,2	12,2	22,0
VCEDZ 75	-6,4	_		_
VRCZE 75	-22			
VCCLE 93	-3,7	s male	ou kap	acitou
VCCLC 93	-3,7	s male	ou kap	acitou
VCCOM 110	-3,7	s male	ou kap	acitou
PLE 300	-8,0	ď	voulink	(a
PLCNE 300	-5,6	ď	voulink	(a

KABLO Děčín orientuje svoji produkci na kabely s impedací 75 Ω pro rozvod TV: VCEHY 75 – 4,8 pro vnitřní montáž, VCEHE 75 – 4,8 úložný,

VCEHE-S 75 – 4,8 samonosný (závěsný), VCBFE 75 – 4,4 – 9,5 úložný s balonkovou izolací,

VCBFE-S 75 - 4,4 - 9,5 samonosný (závěsný).

KABLO Vrchlabí a. s. vyrábí velmi kvalitní subminiaturní a miniaturní souosé kabely s postříbřenými vodiči a teflonovou izolací pro speciální použití ve vyšších teplotách, popř. náročných klimatických podmínkách. Jsou ideální pro vnitřní montáž i na nejvyšších kmitočtech. Vnější i vnitřní teflonová izolace (PTFE) usnadňuje pájení postříbřených vodičů bez nepříjemných zkratů, ke kterým dochází při pájení kabelů s dielektrickou izolací PÉ: VBPAM 50-1,5 mrazuvzdorný s teflonovou izolací,

VBPAK 50-2,95 pro vyšší provozní teplo-ty do 125°, vnější obal – lakovaný oplet

skleněnou přízí, VBPAE 75–2,5 miniaturní 75 Ω , vnitřní i vnější vodiče postříbřeny, vnější izo-

lační plášť PE, VBSBT 75-5,5 speciální kabel s dielektrickou izolací z elastomeru, dvojité opletení postříbřenými dráty Cu, izolační obal tvoří lakovaný oplet s hedvábím PET.

V katalogu "Sdělovací kabely" nacházíme ještě několik zajímavých nízkofrekvenčních kabelů, které lze velmi dobře použít na VF i VHF, např. pro vnitřní montáž, transformační a symetrizační obvody apod. I tyto nízkofrekvenční kabely mají postříbřené vodiče a dielektrickou izolaci z teflonové pásky, teplem slinuté. Najdeme je pod označením LTF, LTFT, LTXF, LTXK a LTXKF. Impedance se neuvádí, avšak z rozměrů, popř. z kapacity vychází 35 až 50 Ω. Zajímavý je zvláště subminiaturní kablík LTFT s vnějším Ø 2 mm, impedancí 37 Ω , útlumem 2,5 dB/10 m/30 MHz a 4,5 dB/10 m/145 MHz.

Sortiment vyráběných typů doplňují uvedené tabulkové přehledy a útlumové grafy.

Orientace mezi desitkami typů je na první pohled jen zdánlivě nesnadná. První dvě až tři písmena kódu nemají mnoho variant, a tak se při hledání vhodného druhu soustředujeme spíše jen na určité písmeno:

VC ... vnitřní vodič drát. VL ... vnitřní vodič lanko,

VCE ..., VLE ... drát nebo lanko s dielektrikem PE,

VCC ..., VLC ... drát nebo lanko s pěnovým dielektrikem PE.

Čtvrté písmeno – druh dielektrické izolace: ...Y vnější izolace PVC,

...M vnější izolace mrazuvzdorné PVC,

... E vnější izolace PE, atd.

Budeme-li hledat kabely s minimálním útlumem (s přihlédnutím k informacím v kapitole Elektrické vlastnosti), budou to ka-bely s označením VCCO, VCCZ, VCCK apod.

Zahraniční souosé kabely odpovídající americkým standardům RG ...

Kabely jsou rozděleny (tab. 6) do skupin podle impedancí (50, 75, 95 a 125 Ω) a v každé skupině podle vnějšího průměru. Základní rozměrové a elektrické parametry jsou seřazeny v osmi sloupcích:

- 1. Základní typové označení.
- 2. Odpovídající čs. ekvivalent.
- 3. Průměry vnitřního vodiče.
- 4. Vnější průměr kabelu (nezaměňovat s průměrem dielektrické izolace u čs. ekvivalentů).
- 5. Druh dielektrické izolace (PE plný polyetylén, pěna – pěnový polyetylén, PTFE - teflon).
- 6. Útlum v dB/100 m/30 MHz.
- 7. Útlum v dB/100 m/200 MHz.
- 8. Útlum v dB/100 m/500 MHz.

Neuvádí se druh stínění, kterým se od sebe liší případné varianty základních typů s jednoduchým nebo dvojitým opletením, stříbřenými, cínovanými nebo holými vodiči Cu.

Mnohé z uvedených kabelů prošly inovací a mají již jiné označení než původní kabely z 50. let. Vzhledem k jejich občasnému výskytu uvádíme ještě stručný přehled všech původních typů:

Impedance 50 Ω - jednoduché stlnění: RG 58, RG 8, RG 10, RG 17, RG 18, RG 19, RG 20, - dvojité stínění: RG 55, RG 5, RG 9, RG

14, RG 74.

Impedance 75 Ω

- jednoduché stínění: RG 59, RG 11, RG 12, - dvojité stínění: RG 6, RG 13.

Kabely s malou kapacitou – jednoduché stínění: RG 62 – 93 Ω , RG 63 – 125 Ω ; dvojité stínění RG 71 - 93 Ω.

Kabely se speciálními vlastnostmi: RG 21 - 53 Ω, útlumový s vnitřním vodičem odporovým drátem; RG 65 - 95 Ω.

Stíněné symetrické dvoulinky: RG 22 - 95 Ω, Ø 10,2 mm, RG 57 – 95 Ω, Ø 15,9 mm.

Kabely pro pulsní provoz: Jednoduché stínění RG 26 – 48 Ω , RG 27 – 48 Ω . Dvojité stínění RG 64 – 48 Ω , RG 25 - 48 Ω , RG 28 - 48 Ω .

U všech označení bylo vynecháno "/U".

Československé normy pro vysokofrekvenční kabely

ČSN 347730 - Vysokofrekvenčné káble koaxiálne a symetrické. Základné ustanovenie.

ČSN 347731 - Vf káble. Koaxiálne káble s plnou polyetylénovou izoláciou.

ČSN 347734 - Vf káble. Koaxiálne káble s polovzduchovou izoláciou z penového polyetylénu.

ČSN 347735 - Vf káble. Symetrický kábel netienený s plnou polyetylénovou izolá-

Mezinárodní standardy (normy) a doporučení podle IEC-International Elektrotechnical Commission

(Uvádíme číslo dokumentu a český překlad anglického názvu)

78 - (1967) Charakteristické impedance a rozměry vf souosých kabelů.

96 - Vysokofrekvenční kabely.

96-0 (1970) Část 0: Podklad pro návrh podrobných specifikací.

96-1 (1986) Část 1: Všeobecné požadavky a měřicí metody.

96-1 (1986) Doplněk č. 1: Účinnost stínění.

96-2 (1961) Část 2: Specifikace kabelů. 96–2A (1965) První doplněk k publikaci 96–2 (1961).

96-2B (1966) Druhý doplněk k publikaci 96-2 (1961).

96-2C (1976) Třetí doplněk k publikaci 96-2 (1961)

96-2D (1986) Čtvrtý doplněk k publikaci 96-2 (1961).

96-3 (1982) Všeobecné požadavky a zkoušky souosých kabelů pro použití v kabelových distribučních systémech.

Veškeré normy, zvláště však základní - ČSN 347730, ÍÉC 78, IEC 96-0 a IEC 96-1 nabízejí neocenitelné informace o konstrukci, parametrech a měření souosých kabelů. Vážným zájemcům jejich studium vřele doporučejeme.

Elektrické vlastnosti vf napáječů **Impedance**

je základním parametrem všech vf napáječů - vedení, ať souosých (koaxiálních), tak symetrických či souměrných (dvoulinek). Představujeme si jej jako vf odpor nekonečně dlouhého vedení; jinak řečeno je to činný ("ohmický") odpor, kterým musíme zakončit vedení konečné dálky, aby se jevilo jako nekonečně dlouhé, to znamená bez stojatých vln, resp. přizpůsobené.

Impedance je kmitočtově nezávislá a pro souosé vedení se počítá ze známého

$$Z_0 = \frac{138}{\sqrt{\varepsilon}} \log \frac{D}{d}$$
,

kde D je vnitřní průměr stínění, popř. vnější průměr dielektrické izolace,

d je průměr vnitřního vodiče,

je permitivita (dielektrická konstanta) prostředí mezi vnitřním vodičem a stíněním.

Neznámou impedanci kabelu snadno a s dostatečnou přesností odhadneme z poměru D/d (průměry změříme posuvným měřítkem) a známého ε nejčastěji používaných dielektrických materiálů podle údajů v tab. 7 a 8.

Známe-li druh dielektrické izolace mezi vnitřním vodičem a stínicím pláštěm, můžeme určit neznámou impedanci souosého kabelu z kapacity mezi stíněním a vnitřním vodičem, kterou lze snadno změřit běžným kapacitním můstkem (tab.9).

Konečný vzorec pro výpočet impedance Z_0 v Ω tímto způsobem je

$$Z_0 = \frac{3326\sqrt{\varepsilon}}{C}$$
 nebo $Z_0 = \frac{3326}{kC}$

Tab. 7. K určení impedance souosého kabelu

Impedance	D/d							
kabelu	vzduch	pěnový PE	teflon PTFE	plný PE				
[Ω]	ε = 1	ε = 1,52	ε = 2,1	ε = 2,3				
50	2,3	2,8	3,35	3,54				
60	2,72	3,42	4,26	4,56				
75	3,49	4,68	6,13	6,57				
95								
100	5,31	7,81	11,22	12,6				
125								
150	12,22	21,8	37,6	44,6				

kde k je činitel zkrácení a C je výše zmíněná kapacita 1 m kabelu.

Vzájemný vztah mezi činitelem zkrácení k a permitivitou ε (viz tab. 8) ("dielektrickou konstantou") je

$$k = \frac{1}{\sqrt{\varepsilon}}$$
, $\varepsilon = \left(\frac{1}{k}\right)^2$

Uvedené velikosti činitéle k vyhovují u většiny souosých kabelů. U dielektrik polovzdušných až vzdušných (balónková izolace, polystyrénové kalíšky) se ϵ přibližuje jedné a k > 0,9.

Pro výpočet impedance můžeme využít i obecně platného vzorce

$$Z = \sqrt{\frac{L}{C}}$$
,

který platí i pro impedanci vedení; L a C změříme na vf můstku. Indukčnost se měří se zkratovaným vnitřním vodičem na stínění. Kapacita se měří bez zkratu avšak u stejně dlouhého kabelu. Stejně můžeme určit impedanci napáječů symetrických – dvoulinek.

Velikost charakteristické impedance souosého vedení nepřímo ovlivňuje některé jeho další elektrické vlastnosti. Minimální útlum má souosý kabel s impedancí 75 až 80 Ω (77,64 Ω z hlediska přeskokového napětí, 36,38 Ω z hlediska ohřevu), maximální výkon přenáší impedance 30 Ω (29,94 Ω) a maximálnímu průraznému napětí odolává přizpůsobený souosý kabel s impedancí 60 Ω (59,93 Ω). Určitým kompromisem mezi všemi hledisky je impedance 60 Ω , používaná jako univerzální ještě v poválečných letech u kabelů německých, pro účely vysílací i pro příjem TV.

Hledisko minimálního útlumu se pak logicky prosadilo u přijímacích systémů, a impedance 75 Ω byla normalizována u antén a napáječů pro rozvody TV, včetně satelitních. Pro vysílání na radiokomunikačních pásmech (amatérských i profesionálních) byla zavedena kompromisní velikost impedance 50 Ω ; což ovšem neznamená, že by pro vysílání byl souosý kabel 50 Ω nezbytný, jak se mnozí domnívají podle impedancí profesionálních radiokomunikačních zařízení. Je-li k dispozici levnější a kvalitnější kabel s impedancí 75 Ω , je možné jej za určitých podmínek účelně použít.

Jde skutečně o shodu okolností, daných fyzikálními zákony, že se impedance půlvinných dipólů a čtvrtvlnných unipólů pohybují také kolem 30 až 75 Ω. Díky této skutečností není jejich napájení problematické.

Tab. 8. Permitivita a činitel zkrácení nejužívanějších dielektrických materiálů

Materiál	ε	k
PE - polyetylén plný	2,3	0,66
PL - polyetylén pěnový	1,4 až 2,1	asi 0,81
PTFE - polytetrafluoretylen (teflon)	2 až 3	asi 0,69
EP - etylén-propylén	2,24	0,66
PVC - polyvinylchlorid	3 až 8	asi 0,55
silikonová pryž	2,1 až 3,5	asi 0,6

Tab. 9. Údaje k určení impedance souosého kabelu z jeho kapacity C a druhu elektrické izolace

Impedance	Kapacita [pF/1 m]							
1								
[Ω]	vzduch	penovy PL	tetion PIFE	piny PE				
50	66,5	82,1	96,4	101				
60	55,4	68,4	80,4	84				
75	44,3	54,7	64,3	67,2				
95	35	43,22	50,7	53				
100	33,3	41,1	48,2	50,4				
125	26,6	32,8	38,6	40,3				
150	22	27,4	32,1	33,6				

Útlum souosého kabelu

Útlumem v dB jsou vyjádřeny energetické ztráty, které vznikají na přizpůsobeném kabelu v závislosti na jeho délce a na přenášeném kmitočtu. Ovlivňuje proto významným způsobem koncepci přenosových tras, přijímacích i vysílacích. U přizpůsobených napáječů jsou ztráty útlumem součtem ztrát odporových a dielektrických. Nejvýznamnější jsou ztráty způsobené vf odporem obou vodičů, tzn. vnitřního a vnějšího (stínění). Je známo, že se ví odpor každého vodiče zvětšuje vlivem tzv. skinefektu. Vf proudy se totiž s vyšším kmitočtem šíří ve stále tenčí vrstvě při povrchu vodiče a vnitřní části jeho profilu se na přenosu vf energie téměř nepodílejí. V praxi počítáme tzv. hloubku vniku, což je teoretická vrstva s rovnoměrně rozloženým proudem, omezená povrchem vodiče a vrstvou s nulovým vf proudem i elektrickým polem.

Přibližný vzorec pro hloubku vniku t je pro měď

$$t = \frac{0.067}{\sqrt{z}}$$
 [mm; MHz]

takže na 1 MHz je t = 0,067 mm a na 1000 MHz je to již jen 0,002 mm. Účinný průřez vodiče se s kmitočtem stále zmenšuje, vf odpor se tak zvětšuje, takže současně se zvětšuje poměr odporů vf a ss. Z poměru obou odporů a známých vlastností vodičů ize odvodit vzorec pro výpočet vf odporu přímého měděného vodiče

$$R_{\rm vf} = 8.5 \cdot 10^{-2} \frac{I}{d} \sqrt{f}$$

kde / je délka vodiče v m, d průměr vodiče v mm, f kmitočet v MHz.

Takže např. pro I=1 m a d=1 mm je při f=1 MHz $R_{\rm M}=0.85~\Omega$, ale při 900 MHz již 25,5 Ω . Je tedy 900, tj. 30x větší. Aby

se vf odpor s kmitočtem nezměnil, bylo by nutné nahradit vodič s průměrem 1 mm vodičem o průměru 30 mm. K určení útlumu souosého kabelu výše uvedený vztah znát nemusíme. Chtěli jsme tak pouze jednoduše znázornit vliv průměru vodiče na ztráty a tím i na rostoucí útlum na vysokých kmitočtem.

U souosého vedení se vf odpor v Ω/1 m počítá z výrazu

$$R_{\text{vf}} = 25.4 \left(\frac{1}{\text{d}} + \frac{1}{\text{D}} \right) \sqrt{f}$$

kde platí dříve uvedené symboly pro rozměry kabelů. Celkový útlum souosého kabelu se počítá ze vzorce

$$A = \frac{1,43 \ R_{\text{M}}}{Z_{\text{O}}} + 9,15\sqrt{\epsilon f} \ \text{tg} \, \upsilon \ .$$

Útlumy vypočítané podle tohoto vztahu jsou zpravidla menší než naměřené u běžných opletení, které ideálním vnější vodičem není. U kabelů s trubkovým stíněním (nebo ovinutou fólií) je shoda lepší.

Z uvedených vzťahů vyplývá všeobecně známá skutečnost, že u souosých kabelů s menšími průměry (do 10 až 12 mm) nejsou rozdíly v kvalitě dielektrik hlavní příčinou různých útlumů, protože dielektrické ztráty tvoří necelých 7 % ztrát celkových. Např. kabel VCCOY 75-5,6 s pěnovým dielektrikem PE nemá menší útlum než stejně rozměrný kabel VCEOY 75-5,6 s plným PE, protože pěnové dielektrikum je kvalitnější, ale především proto, že má tlustší vnitřní vodič (Ø = 1,23 mm) než kabel s PE dielektrikem plným (Ø = 0,89 mm). Tlustši vodič však musi mít, aby při stejném vnějším průměru Ø 5,6 mm zůstala zachována impedance, s menší dielektrickou konstantou pěnového PE.

Podíl dielektrických ztrát se zvětšuje s průměrem obou vodičů, takže až u tlustých (vysílacích) kabelů je užitečné zmenšovat dielektrické ztráty použitím polovzdušných a vzdušných dielektrických izolací (obr. 53).

Používání pěnových dielektrik i u tenkých kabelů je zdůvodněno úsporou di-

Obr. 53. Na celkovém útlumu souosého kabelu se nejvíce podílí vlastnosti vnitřního vodiče. Vliv dielektrika stoupá s kmitočtem

elektrického materiálu, která vede i při větší hmotnosti středního vodiče k celkové menší hmotnosti kabelu, zejména u kabelů s lehkou fólií AL-PET. Vlastní úspora dielektrického materiálu ja značná a činí až 60 %.

Ztráty, ovlivňující útlum kabel, jsou však i ve stínicím plášti. U kabelů s trubkovým stíněním a u nových kabelů s kvalitním opletením činí asi 15 %. Korozí vodičů, tvořících opletení, se však jejich podíl rychle zvětšuje, a u starších kabelů, opletených klasickým způsobem - vodiči Cu - jsou hlavní příčinou zvětšeného útlumu. Nové druhy účinnějšího stínění proto zároveň příznivě ovlivňují útlumovou stabilitu. Informace o útlumu jsou uváděny v prospektech každého výrobce kabelů. Útlum se zpravidla udává v dB/100 m, resp. v dB/100 ft (30,48m) bud na jednom nebo několika kmitočtech, charakteristických pro předpokládané spoužití kabelu (např. TV pásma), nebo graficky v širokém kmitočtovém rozsahu. V pravoúhlých souřadnicích s logaritmickými stupnicemi je kmitočtová závislost útlumů vyjádřena v širokém rozsahu prakticky přímkou, resp. skupinou přibližně rovnoběžných přímek. Je tedy snadné rozšířit stručné tabulkové údaje zákresem přímky do soustavy log-log stupnic.

Na obr. 56 až 59 jsou graficky znázorněny útlumové vlastnosti některých typů//druhů souosých kabelů, o nichž byla zmínka na předchozích stránkách. Jejich vzájemné porovnání z různých hledisek pomůže názornější představě o souvislostech různých parametrů a jejich vlivu na útlumové vlastnosti. Na první pohled je zřejmý zmíněný vliv průměrů vnitřního i vnějšího vodiče, vliv konstrukce vnitřního vo-

Obr. 54. Viz 3. str. obálky

Obr. 55. Útlum souosých kabelů s impedanci 50 O

Obr. 56. Útlum souosých kabelů s impedancí 75 Ω

diče (plný vodič – lanko) a vliv dielektrické izolace. Rozměrově a konstrukčně shodné kabely mají prakticky stejné elektrické parametry, bez ohledu na svůj původ. Je užitečné si to uvědomit dnes, kdy se na trhu objevují kabely nejrůznější provenience, o nichž nám (snad kromě impedance) nedokáží prodávající podat bližší informace.

Výše zmíněný závěr potvrzují i útlumové křivky (přímky) na obr. 59, sestavené na základě katalogových údajů různých výrobců. Znázorňují vztah mezi kabely různého průměru, vyjádřeného průměrem dielektrické izolace, a jejich útlumem na pásmech CB, 145 a 435 MHz. Platí pro kabely s impedanci 50 Ω.

Měření útlumu

Ke stanovení útlumu je možné použít několik metod, popsaných v normě ČSN 347730. Běžné je měření z poměru vf napětí na začátku a konci kabelu, zakončeného odpovídajícím odporem. Pokud nemáme k dispozici potřebné přístroje, můžeme určit útlum kabelu pouze reflektometrem, a to buď přímo z velikosti ČSV nebo z poměru odraženého a postupného (vysílaného) výkonu. Tato jednoduchá metoda byla popsána v RA-A č.9/93 na str. 43.

Činitel zkrácení

Rychlost šíření elmag vln v prostředí dielektrické izolace souosého kabelu – v,

Obr. 57. Útlum moderních souosých kabelů s impedancí 75 Ω pro rozvod a satelitní příjem TV

Obr. 58. Útlum souosých kabelů 50 Ω v závislosti na průměru dielektrické izolace pro pásma CB, 145 MHz a 435 MHz

Obr. 59. Pravoúhlý souřadnicový systém se stupnicemi log – log pro grafické znázornění útlumu vf napáječů

tzv. fázová rychlost – je menší než rychlost šíření ve vzduchu – c. Činitel zkrácení k, vyjadřující poměr obou rychlostí, definuje i zkrácení délky vlny, šířící se v prostředí tohoto dielektrika. Je dán pouze jeho permitivitou ϵ (dielektrickou konstantou) – viz tab. 8.

Rovněž činitel zkrácení lze určit poměrně jednoduše amatérskými prostředky. Nejsnadněji ze střední hodnoty $\Delta f_{\rm S}$ rozdílu $\Delta \, f$ rezonančních kmitočtů měřeného kabelu.

$$\Delta f_s = \frac{\Delta f}{n}$$

kde Δf_s je rozdíl krajních rezonačních kmitočtů měřeného intervalu v Hz a n počet intervalů mezi krajními kmitočty.

Měřit se má na kmitočtech kolem 200 MHz. Ke generátoru s indikátorem vý-

stupního napětí (v amatérských podmínkách postačí GDO – griddipmetr) se smyčkou velmi volně naváže nazatížený měřený kabel, tzn. na konci otevřený nebo zkratovaný a plynulou změnou kmitočtu se najdou rezonanční kmitočty kabelu, tzn, násobky $\lambda/2$ a z nich se pak určí střední hodnota rozdílů Δf_s . Čím je kabel delší, tím častěji dojde k rezonanci v tomtéž měreném kmitočtovém pásmu – intervaly mezi rezonančními kmitočty jsou kratší. Činitel zkrácení se pak vypočte ze vzorce

$$k = \frac{2 \Delta f_{\rm S} I}{300 000}$$
 [-; Hz, m],

kde za I dosadíme délku měřeného kabelu v metrech a interval Δf_s v Hz.

Ze středního rozdílu rezonančních kmitočtů Δf_s a kapacity C měřeného kabelu můžeme poměrně přesně určit i jeho impedanci podle vzorce

$$Z_0 = \frac{1}{2 \Delta f_s C} \qquad [\Omega; Hz, F]$$

Je to ostatně i metoda, doporučená pro měření impedance vf souosých kabelů čs. normou ČSN 347730 a publikací IEC 96-1.

Přesnost měření závisí na přesnosti zjištění rezonančních kmitočtů, resp. na přesném ocejchování GDO. Naměřené a vypočtené hodnoty činitele zkrácení se zpravidla velmi dobře shodují se známými údaji – 0,66 pro PE, 0,81 pro pěnový PE, a 0,7 pro PTFE (tefion). Pokud jsme si jisti druhem dielektrika, nemá smysl k měřit; snad jen jako experiment, jsme-li zvědaví, zda naměříme očekávané činitele zkrácení

Velikost k je zajímavá vlastně jen pro určení délky laděných úseků vedení symetrizačních smyček, transformátorů 3/4 apod. Zhotovíme-li potřebnou délku ze souosého kabelu známého nebo změřeného k, nedopustíme se téměř žádné chyby. Méně přesné je naopak určovat potřebnou rezonanční délku pomocí GDO, jak se často v literatuře doporučuje. Součástí nastavované délky se totiž stává i vazební smyčka na konci kabelu, pokud její působení předem vhodným uspořádáním nevyloučíme. U souměrných vedení (dvoulinek) je to poměrně jednoduché. GDO vážeme volně přímo ke zkratu obou vodičů souměrného vedení, takže vazební smyčka je součástí vedení a přídavnou sériovou indukčnost tvoří jen zanedbatelný zkrat obou vodičů.

Činitel odrazu – A (homogenita kabelu)

V kapitole o impedanci jsme uvedli několik způsobů, jak jednoduše, spíše orientačně, ověřit impedanci souosého kabelu amatérskými prostředky. Impedanci urče-nou ze středního rozdílu rezonančních kmitočtů a kapacity měřené délky kabelu (podle norem ČSN a IEC), jak jsme se o ní zmínili v předchozí kapitole, nazýváme střední charakteristickou impedancí Z_s. Ta je uváděna jako parametr. Kdybychom však měřili impedanci v různých místech kabelové délky, kolísaly by na-měřené impedance více či méně od této střední impedance Z_s. Žádný kabel není totiž zcela homogenní. U každého rozměru musíme počítat s jistými tolerancemi, ani permitivita dielektrické izolace není stálá. Obvyklou příčinou impedančních odchylek je nesoustředěné ukládání vnitřního vodiče při výrobě opotřebením součástí

výrobního zařízení, nedodržením technologických postupů apod. Impedanční odchylky (čili nehomogenita souosého kabelu) se mohou projevit velmi rušivě zejména na dlouhých úsecích kabelových rozvodů TV, při přenosu dat apod. Homogenita se stala kritickým a proto důležitým parametrem souosého kabelu. Vyjadřuje se tzv. útlumem odrazu A v dB, což je z praktického hlediska výhodnější, než kdyby se počítalo s činitelem stojatých vln ČSV, kterým se naopak výstižněji vyjadřuje přizpůsobení zatěžovacích impedancí vť vedení. Odrazy na nehomogenitách souosého kabelu, vyjádřené ČSV, by byla čísla malá, nepřehledná. Vyjádření v dB usnadňuje kvantifikaci poměrů na přenosových trasách. Převod ČSV na útlum odrazu A:

čsv	A [dB]	_čsv	A [dB]
1,01	46	1,5	14
1,05	32	1,6	12,7
1,1	26,5	1,7	11,7
1,2	20,8	1,8	10,9
1,3	17,7	1,9	10,2
1,4	15,5	2,0	9,5

Počítá se ze vzorce

$$A [dB] = 20 \log \frac{1}{\rho}$$

a činitel odrazu ρ

$$\rho = \frac{\check{C}SV - 1}{\check{C}SV + 1}$$

U kvalitních kabelů by útlum odrazu neměl být menší než 20 dB. Na trasách kabelových rozvodů se však vyžadují útlumy co největší.

Co se týče základních elektrických parametrů, tak se stejné typy kabelů různé výroby prakticky neliší. Nikoliv však pokud jde o "skrytou" a obtížněji měřitelnou homogenitu. Její zaručení klade větší nároky na kvalitu výrobních zařízení i technologickou kázeň. Kabely s velkými útlumy odrazu jsou velmi drahé.

V běžné radiokomunikaci ani při příjmu TV se homogenitou zabývat nemusíme, i když nesoustředné uložení středního vodiče na řezu kabelu občas registrujeme. (Excentrickým posuvem vnitřního vodiče o čtvrtinu průměru dielektrické izolace se impedance kabelu 75 Ω zmenší až na 55 Ω.)

Zmiňujeme útlum odrazu pro jeho zvýšený význam a vliv na kvalitu přenášených informací. Spolu s požadavky na co největší účinnost stínění ovlivňuje nyní vývoj a výrobu souosých kabelu.

Další parametry kabelů

Kritický kmitočet souosého kabelu (cutoff frequency) je maximální použitelný kmitočet signálu, přenášejícího elektromagnetickou energii videm (módem) TEM, jenž má všechny složky elektrického i magnetického pole v rovinách kolmých ke směru šíření – obr. 60. Za určitých podmínek se mohou i v souosém vedení vybudit vidy TE a TM. Ty se však v souosém vedení pod kritickým kmitočtem rychle utlumí a energie se přenáší jen prostřednictvím elektromagnetické viny TEM.

Kritický kmitočet odpovídá vlnové délce, shodující se prakticky s obvodem kruhu o středním průměru vzduchového nebo dielektrického mezikruží mezi vnitřním a vnějším vodičem (stíněním) souosého kabelu (obr. 60).

Obr. 60. Kritický kmitočet (popř. kritická vlnová délka) souosého kabelu je přibližně stejná jako střední délka osy dielektrického mezikruží mezi vnitřním a vnějším vodičem

Kritická vlnová délka λc

$$\lambda_{c} = \pi \; \frac{D+d}{2} \, ,$$

kde D je vnitřní průměr vnějšího vodiče, d je průměr vnitřního vodiče.

Čím je kabel tlustší, tím je kritický kmitočet nižší, což omezuje snahy o minimalizaci útlumu velkými průměry na vysokých kmitočtech. Takže např. na 10 GHz již nelze použít souosý kabel 75 Ω , resp. vzdušné souosé vedení s průměry D=14 mm a d=4,25 mm. Permitivita dielektrické izolace posouvá $f_{\rm c}$ k nižším kmitočtům.

V praxi tedy nemusíme z tohoto hlediska souosé kabely posuzovat.

Výkonové zatížení, resp. maximální dovolený přenášený výkon je důležitým parametrem jen u kabelů vysílacích, s nímž však v radioamatérské praxi zpravidla počítat nemusíme. Podle IEC to je maximální výkon, kterým je možno na daném kmitočtu napájet vodorovně uložený přizpůsobený souosý kabel, umístěný v prostředí, kde teplota vzduchu (neproudícího) nepřesahuje 40 °C. Katalogové údaje výrobců však většinou předpokládají teploty nižší – do 25 °C.

Maximální přenášený výkon je dán mezní teplotou vnitřního vodiče, ta je omezena maximální přípustnou teplotou okolní dielektrické izolace, při které si izolace ještě zachovává své původní vlastnosti. Po překročení této teploty měkne, dochází k excentrickému posuvu vnitřního vodiče, tzn. ke změně impedance, případně k úplnému zkratu a destrukci kabelu.

Jak víme, vnitřní vodič je hlavním nositelem činných ztrát na přizpůsobeném kabelu, vyjádřených útlumem v dB, Tyto ztráty mění přenášený výkon v teplo, které zahřívá především vnitřní vodič a jeho dielektrickou izolaci. Protože se útlum kabelů zvětšuje s kmitočtem a zmenšuje s průměrem vnitřního vodiče, bude i maximální přenášený výkon závislý nejen na druhu dielektrika, ale i na rozměrech kabelu a na kmitočtu.

Maximální přípustná teplota vnitřního vodiče je

200 °C v dielektrické izolaci z PTFE (teflón), 85 °C v dielektrické izolaci z PE, 75 °C v dielektrické izolace z pěnového

Tab. 10. Výkonové zatížení souosých kabelů

Impedance	Vnější	Kmitočet [MHz]						
kabelu/diel. izolace	průměr [mm]	10	30	100	500	1000		
120,000	įj		Přenášen	ý výkon [W] při 25 °C			
60 O/DE	5,0	800	450	250	120	78		
50 Ω/PE	10,3	3200	1800	960	420	290		
50.00	5,0	530	290	160	64	49		
50 Ω/P	10,3	1600	890	480	210	140		
75 O/DE	6,0	950	<i>-</i> 560	300	130	92		
75 Ω/PE	10,3	2600	1500	800	350	230		
75.0/0	6,0	600	360	185	82	59		
75 Ω/P	10,3	1100	650	350	150	110		
SO COUNTER	5,0	6500	3800	2000	880	600 .		
50 Ω/PTFE	10,0	>20 000	15 000	6200	2500	1700		
75 O DTEE	6,0	7100	4100	2200	950	680		
75 Ω/PTFE	10,0	15 000	8500	4500	2000	1400		

Tab. 11. Korekce v závislosti na teplotě okolí

Kabel	-40°	-20°	0.	25°	40°	50°	60°	70°	80*	100°
PE	2,8	2,25	1,7	1,0	0,65	0,4	0,2	0,05	•	-
PTFE	1,38	1,24	1,12	1,0	0,92	0,87	0,82	0,77	0,72	0,63

Tab. 12.

100.16.								
Vf napětí [V] na impedanci								
50 Ω	75 Ω							
2,2	2,7							
7,1	8,7							
22,3	27,4							
71	87							
223	274							
710	870							
	impe 50 Ω 2,2 7,1 22,3 71 223							

Orientační informaci o maximálním výkonovém zatížení běžných souosých kabelů nabízí tab. 10. (Platí pro kabely s vnitřním vodičem – lankem. U kabelů s plným vodičem se údaje zvětšují asi o 10 %.)

Výkonové zatížení kabelů s jinými průměry lze určit graficky zákresem tabulkových hodnot do pravoúhlých souřadnic se stupnicemi log – log (např. podle obr. 59). Svislá stupnice bude udávat výkon ve W. Na vodorovné zůstane kmitočet v MHz. Následující tab. 11 pak udává korekce pro maximální výkon v závislosti na teplotě okolí. S výjimkou kabelů s teflonovým dielektrikem by neměly být kabely s PE nebo pěnovým PE při teplotách nad 40 °C provozovány s maximálními výkony.

Dalším elektrickým parametrem je maximální přeskokové (průrazné) napětí. V katalogových údajích se uvádí jako efektivní zkušební napětí 50 Hz, které musí kabel vydržet po dobu 1 minuty. Závisí na vzdálenosti mezi vnitřním vodičem a stiněním a na druhu dielektrické izolace. Pevné dielektrikum napětí zvětšuje. Polovzdušné a vzdušné má odolnost menší. Na přizpůsobeném kabelu, zatěžovaném vf výkony podle tab. 10, se však této

hodnoty nikdy nedosáhne, jak je vidět z údajů v tab. 12.

Z mechanických parametrů souosých kabelů, jakými jsou hmotnost [kg/m], maximální povolený tah N a minimální poloměr ohybu, bychom chtěli upozornit na posledně jmenovaný. Obvykle se rozlišuje mezi jednorázovým popř. trvalým poloměrem ohybu (ke kterému dochází při

trvalé instalaci kabelu poté, co kabel zaujme svoji trvalou polohu a tvar) a vícenásobným poloměrem ohybu při protahování kabelu do trubek nebo při pohyblivých
kabelových spojeních. Nedodržení doporučených hodnot může např. časem vyústit v protlačení vnitřního vodiče na stínění
(zvláště u tmavých kabelů vystavených
slunečnímu záření), nebo k přerušení vnějšího vodiče při opakovaném ohýbání kabelu, což se vztahuje zejména na souosé
kabely stíněné zvlněnou trubkou Cu (např.
typ VCEZE) nebo fólií Cu či Al (VCEFY, VCEHY).

Obvyklé údaje pro jednorázový ohyb jsou 3 až 5D, pro vícenásobný 10 až 15D, kde D je vnější průměr kabelu.

Ohebnost kabelů se vyjadřuje pěti stupni:

ohebnost	počet ohybů	použití
0 – tuhý	0	jen pevné uložení
1 – ohybatelný	3	pevné ulože- ní s ohyby
2 – lehce ohybatelný	200	s možností opětného navinutí
3 – ohebný	10 ³	velmi časté navíjení a odvíjení
4 – velmi ohebný	10 ⁴	pro pohyblivé spoje

Kabely jsou podrobovány velmi náročným zkouškám. Kromě zkoušek dosud uvedených elektrických a mechanickým parametrů se dále zkouší účinnost stínění, stejnosměrný odpor vnitřního vodiče, elektrická pevnost vnitřní dielektrické izolace, elektrická pevnost vnějšího izolačního pláště, izolační odpory, klimatické zkoušky odolnosti proti vnějším vlivům, mechanická odolnost za vysokých a nízkých teplot, teplotní závislost útlumu,teplotní závislost kapacity a další.

Vf konektory

Vf konektory - převážně souosé - umožňují snadné a spolehlivé spojování/rozpojování samostatných celků (transceivrů, anténních přepínačů, antén, vf napáječů) na nejrůznějších vf přenosových trasách, tzn. na vnějších spojích. Uvnitř přístrojů a komunikačních zařízení pak slouží k propojování jednotlivých celků a modulů. Usnadňují k nim snadný přístup při měření, dolaďování, opravách a výměnách. Zde jde o tzv. vnitřní spoje. Výběr vhodných konektorů závisí na jejich použití, ceně, dostupnosti, době života, prostředí. Použití pak určí i vlastnosti elektrické - kmitočtové provozní pásmo, resp. maximální kmitočet, výkonové zatižení, resp. maxi-mální napětí, impedance, vf "těsnost".

Použití konektorů usnadňují různé konstrukční varianty – závitové konektory, bajonetové, západkové, zásuvné, popř. jiné, zcela specifické. Mohou být přímé nebo úhlové (90°) snižující nároky na prostor za i před propojovanými přístroji. Další varianty umožňují připojení různých druhů stínění – jednoduchého opletení, dvojitého opletení, dvojitého opletení sizolační mezivrstvou, trubkového apod. Jednotlivé typy konektorů, popř. konstrukční varianty téhož konektorů se navzájem liší i způsobem připojení vnějšího popř. vnitřního vo-

diče souosého kabelu. Takže jsou konektory pájené (angl. solder type) a nepájené (angl. crimp type). Při kombinaci obou způsobů je zpravidla pájen jen střední vodič. Zásadně je však možno konektory rozdělit do tří hlavních skupin:

standardní – pro kabely o průměru větším než 6 mm,

miniaturní – pro kabely o průměru 2,5 až 6 mm.

subminiaturní - pro kabely tenčí než 2,5 mm,

což však neznamená, že standardní konektor nelze připojit k miniaturnímu kabelu. Samostatné závitové vložky, popř. různé konstrukční úpravy standardního konektoru spolehlivé připojení tenčích i tlustších kabelů zabezpečí.

Úplný konektor je vlastně vždy dvojicí. Zpravidla ji tvoří konektor kabelový a panelový; při spojování kabelů pak ale i dva konektory kabelové. Neshody v pojmenování obou částí úplného konektoru vyřešili naši normalizátoři zavedením pojmů zásuvka a vidlice i do kategorie souosých vf konektorů. U vidlice (nesprávně zástrčky), popř. pohyblivé vidlice, jak je označován konektor kabelový, je střední vodič zakončen kolíkem (tzv. "sameček", angl. male - mužský). U zásuvky, ať pevné (panelové) nebo pohyblivé (kabelové) je střední vodič zakončen dutinkou (tzv. "samička", angl. female - ženský). Při spojování dvou kabelů je proto jedna část úplného konektoru pohyblivou zásuvkou a druhá pohyblivou vidlicí. Jsou-li oba kabely zakončeny shodně, spojí se pomocí vidlicové nebo zásuvkové spojky pro příslušný typ konektoru.

V americké (německé) literatuře se setkáváme s pojmy jack body pro konektor s dutinou, zdířkou (femal contact), tzn., že jde o zásuvku (německy Buchse). Plug body je konektor s kolíkem (male contact), tzn., že jde o vidlici (německy Stecker). Všechny konektory se zásuvnými kontakty středního vodiče jsou konektory polari-

zovanými.

Existují však speciální konektory, jejichž části se do sebe nezasouvají, ale pouze na sebe naprosto spolehlivě dosedají. Dokonalý kontakt vnějších a vnitřních vodičů na přesně opracovaných dosedacích plochách přípojných částí zajišťují zvláštní matice. Jsou to konektory velmi drahé, používané většinou jen v měřící technice.

Do bohatého sortimentu konektorů a spojek patří ještě desítky přechodů, umožňujících spolehlivé propojení mezi konektory různých typů. I tyto nezbytné pomůcky musí splňovat stejné elektrické a mechanické požadavky jako vlastní konektory.

Od doby, kdy ve 30. letech v USA spatřil světlo světa první "UHF konektor", je-hož kolík i zdířka měly a dosud mají "banánkové" rozměry – (je to prakticky dnešní "péelko") – byly vyvinuty stovky dalších konektorů. Snaha o unifikaci a kompatibilitu nebyla vždy v souladu s úsilím firem, které si vývojem vlastních typů zajišťovaly odbyt kompletních souborů měřících a radiokomunikačních zařízení. K tomuto trendu se po válce spontánně připojily téměř všechny n. p. TESLA, včetně výzkumných ústavů oborových. Každý měl "svoje" konektory. Jistou měrou se na této situaci podílely i patentové zájmy některých konstruktérů. S dědictvím této doby se stále setkáváme, když řešíme nesčetné konektorové kombinace z nashromážděných zásob, obsahující navíc ještě konektory sovětské.

Absence žádaných konektorů BNC a N ve výrobních programech TESLA byla tehdy způsobena "delimitací" jejich výroby do NDR, odkud k nám sice docházely, v běžném prodeji se však nevyskytovaly. A tak to byla a snad ještě je jen TESLA Jihlava, která po nákupu zahraničního technologického zařízení přišla koncem 80. let s kompletní sadou subminiaturních konektorů SMA, odpovídajících doporučení IEC č. 169-15, jejichž vlastnosti jsou srovnatelné s výrobky špičkových firem zahraničních. Podrobné informace uvádí 3. katalog elektronických součástek, konstrukčních dílů, bloků a přístrojů z roku 1988. Jinak se nejedna TESLA zabývala vývojem a výrobou konektorů pro "speciálního" zá-

kaznika.

Orientace na několik všeobecně a dlouhodobě užívaných a osvědčených typů, které pro běžnou radioamatérskou činnost plně vyhoví, je nezbytná a účelná. Dnes jsou tyto konektory běžně dostupné, i když nejsou levné, protože jsou většinou importované. Desítky výrobců je dodávají v nesčetných variantách (viz. např. katalog fy GM-elektronic), ovšem rozměry vlastních spojovacích částí jsou shodné a odpovídají doporučení mezinárodních norem.

PL-konektor (PL259, -258, -239 a jeho další varianty, obr. 61), dnes používaný zejména v pásmu CB, byl vyvinut jako "UHF connector" známou americkou firmou AMPHENOL již počátkem 30. let. Tehdy ještě byly všechny kmitočty nad 30 MHz považovány za pásmo UHF. Je tedy vlastně předchůdcem dnešních vř konektorů. Robusní šroubovaný standardní konektor se díky svým konstrukčně-mechanickým vlastnostem udržel v původní podobě až do dnešní doby přesto, že nemá přesně

Obr. 61. Konektor "UHF" - PL 259

definovanou impedanci. Vnější průměr zdířky (dutinky) - 6 mm, a vnitřní průměr vlastní zásuvky - 12 mm, ji přibližují 50 Ω . Skutečná impedance je však menší (podle druhu dielektrické izolace mezi vnitřním a vnějším vodičem - pláštěm). Jako izolaci používají výrobci různé materiály; od nekvalitního bakelitu až po teflon. Z těchto důvodů většina konektorů PL na UHF pásmech (>300 MHz) nevyhovuje. Nejsou to konektory vodotěsné, proto musí být u venkovních montáží chráněny proti vnikání vody – nejlépe převislými kryty. Kontakt vnějších vodičů zabezpečují především převlečné šroubované matice. Vroubkované čelní plochy obou spojovaných částí pouze stabilizují jejich vzájemnou polohu, zabraňují protáčení tak, aby bylo možno matici dobře dotáhnout. Po dotažení nesmí být mezi zásuvkou a vidlicí vůle, která by umožňovala axiální pohyb kabelu a tím i nedokonalý kontakt.

Ruské ekvivalenty mají prakticky stejné vlastnosti, nejsou však bez úprav s konektory PL kompatibilní pro odlišné stoupání hlavního závitu – M16 x 1,5 mm, konektor PL má závit jemnější – M16 x 1 mm. Pro upevnění panelového konektoru se vrtá díra o Ø 15 mm. Středy čtveřice upevňovacích děr Ø 3,5 mm leží na kruž-

nici o průměru 26 mm.

Do stejné kategorie můžeme zařadit standardní zásuvný konektor "pardubický", vyráběný snad ještě v 60. letech. Pravděpodobně jde o ekvivalent konektoru GR americké firmy General Radio pro měřicí přístroje, s vnitřními rozměry Ø 6 mm/ Ø 12 mm, tzn. s impedancí asi 50 Ω. Izolační vložky pro upevnění vnitřního vodiče (pertinaxové) jsou však jen 2 mm tlusté, což spolu s minimální délkou přívodů zapájených souosých kabelů a spolehlivými kontakty přispívá k vyhovujícím vlastnostem i na pásmech UHF. Na dnešní pomě-

ry je to ovšem konektor poněkud rozměrný, i když krásně chromovaný.

Obou výše uvedených konektorů můžeme využít netradičně, jak ukazují obr. 62 a 63. Mechanické a elektrické připojení snímací prutové mobilní antény pomocí vf

Obr. 62. Pro upevnění i napájení snímací prutové mobilní antény lze využít i souosých konektorů – ruský ekvivalent PL 259

konektoru není sice obvyklé, naše zkušenosti však ukazují, že je velmi účelné. Anténu lze snadno demontovat a střechu vozu nehyzdí žádný rozměrný izolátor. Při sacionárním (soutěžním) provozu pak poslouží panelový konektor, vestavěný trvale v karosérii, k bezpečnému připojení samostatné vnější antény.

Vývoj dalších vf konektorů výrazně ovlivnila a urychlila nejen válečná radio-komunikace na VKV pásmech, ale zejmé-

na radarová technika:

Konektor N navrhl za války Paul Neill z Bellových laboratoří (USA) tak, aby splňoval všechny požadavky pro použití na dm a cm vlnách. Tyto požadavky splňuje po malých úpravách i v dnešní době, kdy je použitelný až do 10 až 18 GHz!! (samozřejmě za předpokladu správné montáže souosého kabelu – k této problematice se v dalším ještě vrátíme). Má konstantní impedanci podél celé délky, tzn. že poměr průměrů vnitřního a vnějšího vodiče respektuje vliv permitivity dielektrických teflonových vložek, a že jsou reaktančně

Obr. 63. Mobilní prutová anténa upevněná zásuvným konektorem GR ("pardubickým"). Zakrytovaný panelový konektor po sejmutí antény vystupuje nad povrch karosérie jen nepatrně

kompenzovány ostatní diskontinuity – hrany a přechody. Dvojí kontakt vnějšího vodlče – zasunutím a převlečnou maticí – zabezpečuje maximální stínicí účinky, vyhovující i v dnešních náročných podmínkách.

Vyrábějí se s impedancí nejen 50, ale $175~\Omega$. Obě provedení se liší jen průměry vnitřních kontaktů. Proto je třeba se vyvarovat spojení zdánlivě shodných konektorů, neboť se mohou poškodit vnitřní kontakty, a to při zasunutí vidlice 50 Ω do zásuvky $75~\Omega$. V opačném případě se tenký kolík vidlice $75~\Omega$ galvanicky nespojí se zdířkou zásuvky $50~\Omega$. Je to jeden z nejkvalitnějších konektorů, který se vyrábí v nesčetných variantách, umožňujících vodotěsnou montáž, k nejrůznějším typům souosých kabelů s průměry 6 až 30 mm, viz. obr. 64.

Konektor C – pojmenovaný podle svého tvůrce Carl Concelmana, je velmi podobný konektoru N, má však bajonetový uzávěr. Vyhovuje do 10 GHz. Není však příliš rozšířen.

Konektor BNC, Bayonet Neill Concelman konektor připomíná označením BNC své tvůrce, inženýry Bellových laboratoří. Dnes patrně nejpopulárnější miniaturní konektor použitelný ve verzi 50 Ω do 4 GHz a ve verzi 75 Ω do 1 GHz. Od některých výrobců mají obě varianty oproti konektoru N shodné vnitřní kontakty. Liší se pak jen tvarem a rozměry dielektrických teflono-

Obr. 64. Konektor N – úhlový, s přechodem na kabel o Ø 16 mm

vých vložek, které u úplného konektoru s impedancí 50 Ω vyplňují celý prostor mezi vnějšími a vnitřními vodičí. Před připojením kabelových konektorů BNC se proto vyplatí překontrolovat vnitřní kontakty (obr. 65). Normalizované rozměry spojovaných částí podle doporučení IEC č. 169 jsou na obr. 66.

Obr. 65. Konektor BNC

Konektor TNC, Threated (závitový) Neill Concelman konektor je jinak zcela shodný s konektorem BNC. Šroubovaná převlečná matice místó uzávěru bajonetového zabezpečuje spolehlivější kontakt spojovaných částí při vibracích. Proto je používán v mobilních zařízeních a na vyšších kmltočtových pásmech až do 10 GHz; speciálně upravené typy vyhovují až do 12,5 GHz. Maticový závit má rozměr 7/16" – 28 (obr. 67).

Do kategorie miniaturních konektorů můžeme zařadit i robusní, spolehlivý, dobře montovatelný a bohatě chromovaný anténní konektor "pardubický" (typové označení WK-46104-75 a WK-41102-75) používaný u všech radiostanic typu VXW...

a VR.. Jeho nízká výprodejní cena neznamená nízkou kvalitu. Navíc jemný vnitřní závit M8 x 0,5 na zadní straně tělesa panelové vidlice (oproti zvyklostem je u tohoto konektoru kabelová – pohyblivá část opatřena zdířkou, zatímco pevná panelová část kolíkem) umožňuje bez dalších úprav snadnou sestavu přechody na konektory BNC, použijeme-li konektoru z NDR s plastikovou převlečnou maticí bajonetového uzávěru, které mají na kabelové straně stejný závit. Po předchozím spájení středních kontaktů je navzájem pouze sešroubujeme. Neshodná impedance obou částí (50 a 75 Ω) se u tak krátkého přechodu při běžném použití prakticky neprojeví ani na nejvyšším amatérském dm pásmu.

Konektor SMA byl původně jako konektor JCM vyvinut americkou firmou E. F. Johnson Company počátkem 70. let protehdy zaváděné miniaturní poloohebné souosé kabely s plášťovou izolací o průměru 5,58 mm – tzv. semi-rigid metal jacket cable 0,141-inch. V současné dobějsou tyto přesné miniaturní zásuvky a vidlice se závitovým spojením známé pod mezinárodním označením konektory SMA a používají se zejména pro mikrovlnné aplikace. Umožňují tvorbu elektricky, mechanicky a klimaticky náročných dělitel-

Obr. 66. Důležité rozměry spojovacích částí konektoru BNC odpovídají standardům IEC – ukázka z výrobních konstrukčních podkladů

ných vf spojů. Jejich izolační části jsou vyrobeny z teflonu, vnitřní pružné kontakty, vnější pouzdra aretační pružiny a spojovací matice z beryliové bronzi. Ostatní kovové díly z nemagnetických materiálů. Funkční díly jsou povrchově zlaceny, ostatní niklovány. Trvanlivost a reprodukovatelnost spojů je zaručena do 18 GHz. Rozměry spojovacích částí vycházejí z doporučení IEC č. 169–15. Impedance konektorů je pouze 50 Ω .

TESLA Jihlava dodává 5 druhů panelových zásuvek, 3 pohyblivé vidlice a 1 zásuvkovou spojku. Informace, rozměry a podrobné montážní postupy pro připojení kabelů najdou zájemci v katalogu.

Zahraniční konektory SMB a SMC se používají nejen na vnitřní spoje z miniaturních kabelů ve videokamerách, ale i vojenských přístrojích, videopřehrávačích apod. Typ SMB má závitové spojení, SMC je zásuvný.

Konektory SMS jsou rozměrově nejmenší, určené pro vnější nebo vnitřní vf dělitelné spoje na vedeních o impedanci 50 Ω nebo 75 Ω . Vlastní impedance konektoru, daná rozměry spojovacích částí je 50 Ω . Použitelnost do 5 GHz.

Bohatý sortiment vidlic a zásuvek, slučitelný s miniaturními kabely Ø 3 mm, typu VLEOY 50–1,5, VBPAM 50–1,5 nebo RG 174/U, RG 188/U apod., má u nás ve výrobním programu jako jediná TESLA Jihlava

Konektory IEC TV tvoří zcela zvláštní kategorii. Jsou určeny pro vnitřní dělitelné spoje zařízení spotřební elektroniky, nejčastěji jako anténní konektory přijímačů TV a VKV FM. Jejich impedance neni normou IEC přesně definována, pohybuje se však kolem 75 Ω ve shodě s normalizovanou charakteristickou impedancí TV a VKV FM rozvodů včetně antén. Záměna rozvodu TV a VKV FM je u jinak zcela shodných konektorů vylučována zásadou, že u TV rozvodů je zdrojem signálu vždy vidlice (tzn. kolík) a u rozvodů VKV FM je to zásuvka, tzn. dutinka. Řadíme-li tyto konektory mezi tzv. anténní bižuterii, neznamená to, že jsou nepoužitelné např. pro amatérské vysílání nebo jiné účely v oblasti techniky VKV. Kvalita výrobků je však značně rozdílná, a tak se vyplatí věnovat jejich výběru jistou pozornost. Pečlivou montáží, popř. drobnou další úpravou spojovacích částí (předpružením) je možné zhodnotit i jednoduché a levné vý-

Konektor F, který se na trhu objevil současně se satelitními soupravami, řadíme do stejné kategorie jako konektory televizní. Využitím konce středního vodiče souosého kabelu jako kompaktního kolíku vidlice se konstrukce a tím i výroba konektoru zjednodušila a zároveň se zabezpečila použitelnost na vysokých výstupních kmitočtech z anténních satelitních konvertorů. Impedance je 75 Ω shodně s charakteristickou impedancí souosých kabelů pro TV rozvody – a to i satelitní.

Obr. 68. Viz 3. str. obálky

Mezinárodní standardy (normy) vf konektorů podle IEC

IEC – International Elektrotechnical Commision se sídlem v Ženevě je světová autorita v oboru elektrotechnických a elektronických norem. Tvoří ji národní komitéty 43 členských zemí, reprezentující národní zájmy v těchto oborech. Na standardech IEC pracuje až 200 technických komisí a subkomisí. Hlavním cílem IEC je podpora mezinárodního obchodu eliminací rozdílů v národních normách.

Rozvoj elektroniky si typovou a rozměrovou unifikaci vf konektorů v mezinárodním měřítku vynutil. Nejdříve byla přijata doporučení z oblastí spotřební elektroniky. Normalizované rozměry spojovacích částí vf konektorů pro TV přijímače byly přijaty a vydány v roce 1965. Užitečnost tohoto počinu se zanedlouho prokázala. Následovaly standardy dalších typů. Až v roce 1979 byl normalizován již letitý konektor UHF (PL...), o rok dříve konektor BNC a v 80. letech již normalizace miniaturních a subminiaturních konektorů probíhala v návaznosti na jejich vývoj.

Dosud vydané publikace IEC, sjednocující rozměry vf konektorů:

169 - Vf konektory.

169–1 (1965) Čásť 1: Základní požadavky a měřicí metody.

169-2 (1965) Čásť 2: Souosý nepřizpůsobený konektor + Dopiněk č. 1 - (TV konektory).

169-3 (1965) Část 3: Dvoukolíkové konektory pro symetrické anténní napáječe – (TV konektory pro dvoulinky)

če – (TV konektory pro dvoulinky). 169–4 (1975) Část 4: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 16 mm; šroubované; Z_o = 50 Ω.

169-5 (1970) Část 5: Vf souosé konektory pro kabely typu 96 IEC 50 - 17 a větší.
169-6 (1971) Část 6: Vf souosé konektory pro kabely typu 96 IEC 75 - 17 a větší.
169-7 (1975) Část 7: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 9,5 mm; bajonetové; Z₀ = 50 Ω (konektor C).

169-8 (1978) Část 8: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 6,5 mm; bajonetové; Z_o = 50 Ω (BNC).
169-9 (1978) Část 9: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 3 mm; šroubované; Z_o = 50 Ω (SMC).
169-10 (1983) Část 10: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 3 mm; západkové; Z_o = 50 Ω (SMB).
169-11 (1977) Část 11: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 3 mm; západkové; Z_o = 50 Ω (SMB).

diče 9,5 mm; šroubované; $Z_0 = 50 \Omega$ (typ 4,1/9,5).

169–12 (1979) Část 12: Vf souosé konektory šroubované, nepřizpůsobené (konektor UHF).

169–13 (1976) Část 13: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 5,6 mm; $Z_0 = 75~\Omega$ (typ 1,6/5,6) a $Z_0 = 50~\Omega$ (typ 1,8/5,6). 169–14 (1977) Část 14: Vf souosé konek-

169–14 (1977) Část 14: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 12 mm; šroubované; $Z_0 = 75 \Omega$ (typ 3,5/12).

169–15 (1979) Část 15: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 4,13 mm; šroubované; $Z_0 = 50 \Omega$ (typ SMA).

169–16 (1982) Část 16: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 7 mm; šroubované; Z_0 = 50 a 75 Ω (tvp N).

169–17 (1980) Část 17: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 6,5 mm; šroubované; Z_0 = 50 Ω (typ TNC).

169–18 (1985) Část 18: Vf konektory s vnitřním průměrem vodiče 2,79 mm; šroubované: Zo = 50 Q (tvp. SSMA)

bované; Z_0 = 50 Ω (typ SSMA). 169–19 (1985) Část 19: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 2,08 mm; západkové; Z_0 = 50 Ω (typ SSMC).

169–20 (1985) Část 20: Vf souosé konektory s vnitřním průměrem vnějšího vodiče 2,08 mm; šroubované; $Z_0 = 50 \Omega$ (typ SSMC).

169-21 (1985) Část 21: Dva typy vf konektorů s vnitřním průměrem vnějšího vodiče 9,5 mm s odlišným šroubovým spojením; Z₀ = 50 Ω (typ SC-A a SC-B).

169-22 (1985) Část 22: Vf dvoukolíkové bajonetové konektory pro stíněné dvouvodičové kabely (typ BNO).

Názvy uvedených publikací jsou doslovným překladem originálu. "Vnitřní průměr vnějšího vodiče" je vlastně průměrem dielektrické izolace souosého kabelu, pro který je stanard určen. V mezinárodním značení kabelů podle dokumentu 96 IEC definuje tento průměr poslední číselný člen např. 96-IEC-17. Je-li typ kabelu uveden lomeným dvojčíslím, značí první číslo průměr vnitřního vodiče a druhé číslo vnitřní průměr vnějšího vodiče, resp. průměr dielektrické izolace – např. typ 1,6/5,6. U "nepřizpůsobených" konektorů (unmatched connectors) IEC – TV a UHF, nejsou stanoveny rozměry a materiál dielektrické vložky pro upevnění středního vodiče, které pochopitelně mají vliv na charakteris-

Tab. 13. Elektrické parametry některých vf konektorů

Тур	Špičkové vf napětí na 100 MHz	Špičkový výkon	Z	Max. kmi- točet	Konstanty ČSV		Konst. max. ú- tlumu K	Stínění
	[V]	[W]	[Ω]	[GHz]	K1	K2		[dB]
BNC	1000	500	50	4	1,12+0	0,007f	0,1	-60+f
TNC	1000	1000	50	11	1,07+0),007f	0,05	-90+f
N	1000	1000	50	11	1,06+0),007f	0,05	-85+f
SMA	1000	500	50	18	1,02+0),005f	0,03	-100+f
UHF	500	500	50 až 70	0,3	nejsou definovány			

f - kmitočet v GHz, viz vysvětlení v textu

tickou impedanci konektoru. Jsou to však konektory pro "spotřební elektroniku", kde nemohu odchylnou impedancí ovlivnit funkci zařízení.

Ve většině dokumentů se každý konektor ještě definuje ve 3 kvalitativních třídách.

Pokud se v dokumentech uvádí nejvyšší použitelný kmitočet (viz tab. 13), pak je to kmitočet, kdy činitel odrazu $\rho \leq 0,1$ u konektoru přímého, a $\rho \leq 0,13$ u konektoru úhlového, ovšem s kabelem, pro který je konektor určen.

Elektrické vlastnosti konektorů

Hlavní elektrické parametry nejužívanějších konektorů jsou v tab. 13.

Jsou to: Maximální kmitočet v GHz, impedance v Ω, špičkové napětí na 100 MHz, špičkový výkon ve W, ČSV vyjádřený kmitočtovými konstantami, úroveň vyzařování v dB, konstanta průchozího útlumu.

Všechny uvedené parametry platí za stavu přizpůsobení a s konektory, které jsou připojeny k doporučeným typům koaxiálních kabelů způsobem, předepsaným v montážních manuálech výrobců, popř. ve shodě s doporučením příslůsných dokumentů IEC. Tyto podmínky nabývají na významu v oblasti maximálních kmitočtů. Překročením maximálních kmitočtů dochází na připojených napáječích k rezonančním jevům. Destrukce konektoru může nastat překročením špičkového napětí i při menších výkonech na nepřizpůsobeném kabelovém spoji.

Obr. 69. Kmitočtová závislost průchozího útlumu konektorů BNC, TNC, N a SMA

ČSV každého konektoru se zvětšuje s kmitočtem – viz obr. 69. Obecně ize tento jev vyjádřit vztahem

ČSV = $K_1 + K_2 f$, kde K_1 a K_2 jsou konstanty, závislé na konstrukci konektoru (viz tab. 13), které se mohou měnit i v jednotlivých výrobních sériích: f je pracovní kmitočet v GHz. Tak např. konektor BNC má na 1 GHz ČSV = 1,12 a 1,15 na 4 GHz.

Rovněž průchozí útlum se zvětšuje s kmitočtem (obr. 70), přibližně podle vztahu $A_p = K \sqrt{f}$, kde A_p je průchozí útlum v dB a K je konstanta průchozího útlumu podle tab. 13. Např. maximální průchozí

Obr. 70. Průchozí útlum ČSV některých konektorů v závislosti na kmitočtu

útlum konektoru N je 0,1 dB na 4 GHz a 0,158 dB na 10 GHz.

Uvedené průchozí útlumy konektorů na kmitočtech řádu gigahertzů se mohou zdát nepravděpodobně malé. Vždyť při laických odhadech ztrát na kabelových napáječích se konektorům přisuzují ztráty ~ 0,5 dB, a to i na podstatně nižších kmitočtech. Za normálních okolností a při dobré montáži však tak velký průchozí útlum ani konektor s teflonovou izolací mít nemůže a nesmí. Povoluje-li se např. přenášet konektorem N až 1000 W, pak by útlum 0,5 dB způsobil přeměnu 11 % vf výkonu, tj. 110 W, v teplo, což by pro konektor ani pro připojený souosý kabel právě zdravé nebylo. S desetinami dB proto můžeme počítat i u "obyčejných" konektoru, nemají-li mimořádně nekvalitní dielektrickou izolaci (obr. 71).

Obr. 71. Výkonové zatížení konektorů se zmenšuje s rostoucím kmitočtem

Zdánlivě malé je maximální špičkové napětí 500 až 1000 V. Je to ovšem napětí vf. Pokud někteří výrobci uvádějí údaje podstatně větší, pak se obvykle předpokládá napětí stejnosměrné.

Účinnost stínění, popř. úroveň vf signálů pronikajících vnějším vodičem (ven nebo dovnitř) v dB - anglicky RF leakage in dB – je důležitým parametrem při použití konektorových spojů v silných elektromagnetických polích, popř. v náročných přístrojových sestavách. Je to významný kvalitativní parametr, charakterizující názorně rozdíly v technologickém a konstrukčním řešení jednotlivých typů konektorů. Zatímco ostatní parametry konektorů, uvedených v tab. 13, se výrazně neliší, je nepropustnost konektoru SMA o 40 dB větší než u konektoru BNC. Tento, běžnými amatérskými metodami sotva měřitelný i když značný rozdíl, je však zřetelným vyjádřením rozdílného technologického zpracování - které se ovšem velmi názorně promítá do ceny konektoru SMA. Rozdíl 30 dB ve "vyzařování" bajo-netového konektoru BNC a jeho závitového ekvivalentu TNC je zase názornou demonstrací stínicích kvalit závitového spoje.

Montáž vf konektorů

Spolehlivost všech dělitelných spojů realizovaných vf konektory však nezávisí jen na výběru vhodných typů, ale především na jejich montáži, zejména u konektorů kabelových – čili na montáži pohyblivých vidlic. Zkušenosti ukazují, že minimálně 90 % všech potíží přisuzovaných anténám způsobí chybná popř. nedbalá montáž konektorů a kabelů. Jde o chyby všeho druhu – od zkratů s vodiči stínicího pláště až po nedokonalé – studené spoje.

Patří mezi ně i nestálé ("wackelovy") kontakty spojovacích částí středního vodiče při změnách teplot, pokud nejsou navzájem dostatečně zasunuty, a to vlivem rozdílné tepelné roztažnosti pláště a vnitřního vodiče.

Obtížnou závadou bývá i přerušený vnitřní vodič, byl-li při odstraňování dielektrické izolace porušen - byť neznatelně. Tato mechanická porucha, způsobená stálým pohybem kabelu, se obvykle projevuje jen občas a krátkodobě, takže se těžko odhaluje. Jinou závadou bývá i koroze zásuvných popř. jiných nepájených spojů. Kontrola průchodnosti souosého vf spoje stejnosměrným proudem v takovém případě nemusí signalizovat průchodnost vysokofrekvenční. Nulový odpor zjištěný bateriovým ohmmetrem - zkratoměrem neznamená, že je nulový i pro mikrovoltová ví napětí přijímaných signálů. Takže ještě jednou - nedbalá montáž může zcela znehodnotit i ten nejkvalitnější konektor.

Někteří výrobci vf konektorů proto doplňují firemní katalogy velmi názornými pokyny k montáži každého typu, popř. vydávají samostatné manuály k montážní problematice. Dokládáme to ukázkami ze staršího manuálu C3 – Assembly Procedures (montážní postupy), známé americké firmy AMPHENOL, s českým překladem montážních postupů (obr. 72, 73).

Uvedené ilustrace se samozřejmě vztahují jen na výrobky firmy AMPHENOL, které se v konstrukčních detailech mohou lišit od jiných. Rozměry spojovacích částí jsou však vždy shodné podle standardů IEC. K montážní problematice konektorů ještě několik zkušeností z praxe:

Pistolové páječky zpravídia nevyvinou dostatečnou teplotu pro spolehlivé připájení stínění k robustnímu tělesu konektoru UHF. Klasické sto-a vícewattové "kulmy" často roztaví dielektrikum PE kabelu, zvláště u řídkého opletení a kontakt je problematický. Případná demontáž konektoru se zapájeným stíněním je pak obtížná a jeho nové použití rovněž.

V amatérských podmínkách je výhodnější využít pro tento spoj vnitřních závitů v tělese konektoru tak, že se rozpletené stínění přehrne zpět přes vnější izolaci, na níž se pak konektor našroubuje. Některé typy konektorů UHF s tím již počítají a jsou bez původních pájecích otvorů; velmi je tím usnadněna demontáž konektoru.

Není-li k dispozici kovový adapter pro montáž tenčího kabelu, ovine se konec vnějšího izolačního pláště několika závity textilní lepicí pásky (leukoplasti) tak, aby přes něj bylo možné našroubovat s přiměřeným úsilím těleso původního konektoru. Stínění se opět přehrne přes takto "zesílený" konec kabelu.

Pro spolehlivou montáž konektoru BNC je rozhodující délka X (obr. 73) od přední dosedací plochy (hrany) svěracího kroužku (s dobře rozpleteným, krátce zastříženým a přiléhajícím stíněním) k vohemu vnějšímu konci připájeného vnějšího kontaktu (kolíku nebo dutinky). Při úplném dotažení zadní matice musí být jeho konec v optimální poloze, jinak je spoj mezi oběma částmi nedokonalý.

Poměrně dobře se montují konektory IEC TV. U výrobků RFT se vnitřní vodič kabelu nepájí, ale s přiměřeným úsilím se zasunuje zezadu do kolíku nebo dutinky. Tam je "zaskřípnut" pružností materiálu. Proto je výhodné konce tlustších vnitřních vodičů (~ 1 mm) zaoblit, aby je bylo možno snadněji zasunout a konce tenčích "zesilit" cínováním. Bezpodmínečně se však musí pocínovat vnitřní vodiče – lanka, a to celý svazek, jinak se při zasouvání "zmuchlají" a dobrý kontakt nevytvoří. Jedná se ovšem jen o TV konektory RTF.

K montáži nových typů souosých kabelů s dvojitou pokovenou plastovou fólií připomínáme, že galvanický kontakt umožňují pouze vnitřní povrchy fólie, resp. řídké "kontaktní" opletení z pocínovaných vodičů mezi nimi. Vnější strany fólie Al jsou pokryty plastovou fólií tloušťky 0,01 mm, znemožňující galvanický kontakt a tím i připadné ss napájení anténních zesilovačů popř. satelitních konvertorů (obr. 48).

Závěrem zdůrazňujeme hlavní zásadu dlouhodobé spolehlivosti konektorového spojení: Elektrický spoj nejen vnějších, ale zejména vnitřních vodičů kabelu a konektoru nesmí být mechanicky namáhán při manipulaci s kabelem (pohyby, hmotnosti, tahem apod.). Proto je nutné věnovat značnou pozornost i mechanickému upevnění kabelu v konektoru. Nejužívanější typy konektorů (UHF, BNC, N. SMA) spolehlivé mechanické upevnění umožňují. Mechanickou stabilitu konektorového spoje u antény pak navíc zabezpečí uchycení souosého kabelu ke stožáru, ráhnu nedaleko anténního konektoru. Při montáží konektorů nesmíme zapominat ani na vysokofrekvenčně bezchybné připojení panelového konektoru z vnitřní strany přístroje – pokud to ovšem již nevyřešil již výrobce radiokomunikačního zařízení nebo přístroie. U amatérských konstrukcí se koaxiální kabel ukončuje na vnitřní přírubě panelového konektoru obvykle tak, že střední vodič zůstává v určité délce obnažený, bez stínění. Vnější vodič se spojuje se zemí, kterou tvoří kostra (panel přístroje) jedním či několika kroucenými spoji, vytvořenými z rozpleteného stínění, které se pájí k okům pod maticemi panelové příruby konektoru.

Zakončení vnitřního koaxiálního kabelu tímto způsobem je u amatérských konstrukcí dosti běžné, a vzhledem k malým rozměrům se považuje za dostatečně kvalitní bez podstatných vlivů na vyzařování a s tím související nežádoucí vazby. Nicméně je nutné si uvědomit, že v současnosti pracuje většina vf přístrojů s velmi malými výkony, popř. s velkou citlivostí. A i když jsou tyto kroucené spoje jen malým zlomkem vlnové délky, takže jejich vlastní vyzařování je malé, přesto zavádějí do vnějšího vodiče jistou nespojitost. která umožňuje zejména na vyšších kmitočtech vybuzení proudů na jeho vnějším povrchu a následně i nežádoucí vazby na jiné obvody. Proto je i u amatérských konstrukcí žádoucí omezit nespojitosti na zadní straně panelových konektorů co nejkratšími délkami obnažených vnitřních vodičů a dostatečným počtem krátkých kroucených spojů vytvořených z rozpleteného stínění, zejména u rozměrnějších konektorů (UHF) a na vyšších kmitočtech. Nejlepším řešením je použít kuželové přechody, pájené na konec stínicího pláště a upevněné pod matice panelové příruby. Tato užitečná součástka

Obr. 75. Kuželový přechod pro připojení souosého kabelu na zadní straně konektoru panelového

konektorových spojú dosud v prodávaném sortimentu chybí (obr. 75).

Před konečnou instalací každé kabelové trasy s konektory překontrolujeme celou sestavu alespoň běžným ohmmetrem, abychom vyloučili případné zkraty stínění na vnitřní vodič, popř. nedokonalé kontakty v konektorech. U anténních napáječu

kontrolujeme třikrát!! Před připojením antény, tzn. s otevřeným koncem napáječe vyloučíme zkraty; zkratováním vnitřního vodiče na stínění v místě připojení antény ověříme stejnosměrnou průchodnost celého napájení. Máme-li zakončovací odpor a reflektometr ověříme celou trasu ještě vysokofrekvenčně před definitivním připojením antény, kterou nahradíme zakončovacím odporem. Zkušenosti ukazují, že se to vyplácí. A pokud to není z provozních důvodů nutné, připojíme souosý kabel k anténě bez konektoru, pod spolehlivé anténní svorky uvnitř ochranného krytu. Zkušenosti ukazují, že i to se vyplácí.

Materiál, mechanické vlastnosti

Výrobou standardních i nestandardních konektorů se zabývají desítky výrobců a používají při tom nejrůznější materiály. Tělesa konektorů jsou obvykle zhotovena nejen z mosazí či nerezové oceli, ale i z hliníku nebo beryliové mědi. Nejtrvanlivější je poměrně drahá ocel, nejlevnější, avšak nejméně trvanlivý je hliník. Plastové převlečné stahovací matice mají pouze konektory BNC RFT. Galvanickým pokovením

popř. plátováním základního materiálu (obvykle oceli) se zlepšují kontaktní vlastnosti v souvislosti s větší odolností proti korozi. Ušlechtilou vrstvou bývá stříbro, zlato, nebo levnější nikl či chrom. Materiál pro střední vodič musí umožňovat nejen pájení, ale zároveň reprodukovatelný kontakt s malým otěrem – proto se obvykle používá mosaz, beryliová měď nebo fosforbronz

Důležitá je kvalita mechanické práce, zabezpečující bezproblémovou sestavu a montáž konektorů. Spojové převlečné matice musí mít bezchybný závit, aby šroubování a úplné dotažení bylo možné pouze prsty. Klíčem (ne kombinačkami) se dotahují pouze stahovací matice pro upevnění kabelu v tělese konektoru a nikoliv převlečné spojové matice. Příliš volné závity převlečných matic někdy ztěžují jejich uvolnění, které je pak zpravidla snadné po předchozím pootočení v opačném směru. Touto vlastností se vyznačují zejména některé konektory PL. Závity levných hliníkových konektorů mají snahu se zadírat

Před definitivním sestavením a montáží konektoru bychom se proto měli přesvěd-

čit o bezchybném "chodu" závitů. Někdy je účelné prohodit navzájem šroubované díly několika konektorů tak, až se vybere nejlepší sestava.

Co se dielektrických materiálů týče převládá dnes již výhradně teflon. Jedná se vlastně jen o djelektrickou izolaci středního vodiče. U starších typů konektorů, popř. konektorů UHF, resp. PL, IEC TV a některých speciálních je to však i pertinax, bakelit, ale ještě i trolitul, který se teplem rychle deformuje. Neopatrné pájení pak vede k excentrickému vychýlení vnitřních kontaktů a jejich následným poškozením. Avšak ani u tepeině odolného teflonu se při pájení nemá teplem zbytečně hýřit. Excentrickému vychýlení středních kontaktů konektorů zabráníme tím. že je přes pájením spojíme s příslušným "protikusem". U většiny moderních konektorů se však vnitřní vodič souosého kabelu pájí ke střednímu kontaktu mimo těleso konektoru a do dielektrické středící a upevňovací vložky se zasouvá již zapájený. Jen tak je totiž možné přesně dodržet předepsaný postup montáže a splnit elektrické parametry na nejvyšších kmitočtech.

Při vnějším umístění konektorů nás zajímá jejich odolnost proti vnějším klimatickým vlivům, zejména jejich vodotěsnost. Kromě konektorů UHF (PL..) a IEC TV by měly být ostatní dnes užívané konektory vodotěsné. Vnikání vody podél kabelu by měly zabránit těsnicí kroužky ze syntetické nebo silikonové pryže nebo z neoprénu. Vnikání vody do dutin spojovacích částí zabraňují těsnicí kroužky vnějších kontaktů. U konektoru BNC 50 Ω je po spojení obou částí celá dutina mezi vnějším a vnitřním vodičem vyplněna dielektrickou izolací, takže voda se tam ani "usadit" nemůže. Konektor BNC je však určen spíše pro vnitřní spoje.

Dodatečné amatérské úpravy by se měly omezit jen na ochranu proti stékající vodě jednoduchými převislými, dole otevřenými kryty, popř. fóliemi PE, těsně obtočenými kolem kabelu horní části svislého konektorového spoje. Jednoduchou ochranou jsou i odkapávací kroužky na obou stranách vodorovného konektorového spoje.

Nedoporučuje se chránit konektorový spoj nejen izolepou (rozlepí se) či lepicí textilní páskou, ale ani dobře těsnící páskou samovulkanizační, která sice může vnikání vody nejlépe zabránit, avšak zároveň obvykle zcela znemožní odtok vody kondenzované.

Hromadění vody v nekontrolovatelných konektorových dutinách zabráníme, vyplníme-li je hmotou s dobrými dielektrickými vlastnostmi – parafínem, včelím voskem, silikonovou vazelínou apod. Tyto zalévací hmoty používáme jen tehdy, nelze-li hromadění vody zabránit jinak, popř. v nepřístupných místech, která nelze kontrolovat a kde se již nepočítá s jejich demontáží. Což platí nejen pro konektorové spoje, ale i pro dutiny dalších prvků souosého rozvodu – transformátory, symetrizační členy, filtry apod. Obecně však platí, že nejúčinnější ochranou proti hromadění vody je její snadný odtok – nejlepším těsněním je díra – poznatek praxí tisickrát potvrzený.

Demontáž, či prosté rozpojení konektorového spoje vystaveného vnějším vlivům často ztíží, popř. zcela znemožní zarezivění převlečných matic při jejich nedostatečné povrchové ochraně (většinou jde opět o konektory UHF). Těmto obtížím zabráníme preventivním nátěrem závitových spoju vhodným protikorozním prostředkem – nejlépe se osvědčil RESISTIN.

Příjem rozhlasu FM v pásmu VKV-CCIR

Z extrému do extrému - asi tak můžeme charakterizovat změny ve vysílání a příjmu rozhlasu FM v pásmu VKV-CCIR, popř. "VKV II", které u nás nastaly v poslední době. Příjem rozhlasu FM tak, jak jsme jej praktikovali do konce 80. let. byl ovlivněn zprvu úplnou nepřítomností a později jen velmi malou "hustotou" čs. rozhlasových stanic v pásmu 87,5 až 108 MHz. V rámci mezinárodní organizace OIRT se pro rozhlas FM vymyslelo "trucpásmo" 66 až 73 MHz, kam bylo soustředěno vysílání ve většině "východoevrop-ských" zemí. Tato situace vytvářela ideální podmínky pro dálkový příjem ostatních zahraničních stanic v pásmu CCIR. který se postupně stal téměř masovou, i když státem oficiálně nepodporovanou záležitostí. Přijímače vyráběné n.p. TES-LA zprvu vůbec nebyly pásmem VKV-CCIR vybavovány a tak byl domácí trh zásobován především n.p. TUZEX, který hbitě rozšířil sortiment audiotechniky o kvalitní tunery FM renomovaných firem SONY, TECHNICS, AIWA a dalších. Nemalou část přijímačů si posluchači-radioamatéři zhotovili sami. Navody na jejich stavbu, publikované v AR, byly velmi populární a žádané. Zájem o příjem atraktivních hudebních programů z rakouských a bavorských rozhlasových stanic byl tak značný, že iniciativní a jediný výrobce směrových přijímacích antén VKV, KOVOPLAST Chlumec, nestačil zásobovat prodejny po celé republice. Vyrobily se jich tisíce. Drobní podnikatelé již tehdy produkovali různé druhy anténních předzesilovačů, jejichž použití nebylo limitováno potížemi s intermodulací a křížovou modulací, když se na pásmu nevyskytovaly žádné silné místní rozhlasové vysílače. A tak "chtiví" posluchači investovali do přijímacích souprav FM desetitisíce. Dnes už je to však historie.

Změny po roce 1989 přinesly i normalizaci poměrů v rozhlasovém vysílání na VKV, které se, podobně jako v ostatních evropských zemích, nyní také u nás stává hlavním regionálním sdělovacím médiem, umožňujícím relativně kvalitní příjem rozhlasu běžnými přijímači s vestavěnými, popř. náhražkovými anténami. - A kde je ten extrém? Zatímco ve většině ostatních evropských zemí šíří regionální vysílače max. 3 až 4 celopiošné programy produkované státními resp. veřejněprávními rozhlasovými institucemi, tak u nás již nyní zaplavují celé pásmo navíc desítky místních soukromých rozhlasových vysílačů. Jejich technická úroveň je většinou velmi dobrá, programová nabídka zdánlivě různorodá, avšak až na několik výjimek, značně stereotypní. Každý si snad vybere a zdánlivě tedy není co řešit. Opakované dotazy čtenářů tomu však nenasvědčují.

Problémem je jednak orientace na zdánlivě přeplněném pásmu a pak potíže s příjmem slabších vysílačů v nepříznivých terénních podmínkách, popř. ve větších vzdálenostech od vysílačů. Většinou jde o vysílače, které se svou programovou skladbou liší od převládajícího stereotypu. Pravidelné průzkumy sice ukazují, že drtivá většina posluchačů dává přednost Radiožurnálu, Praze, Regině, ale i to malé procento zájemců o soukromé místní stanice představuje tisíce posluchačů. Co pro ně můžeme udělat? K lepší orientaci v pásmu by měl napomoci následující částečně upravený "Seznam vysílačů VKV na území ČR", vydaný Českým telekomunikačním úřadem v Praze. Podle kmitočtů jsou v něm seřazeny všechny rozhlasové vysílače FM, působící na území republiky.

Příjem slabších rozhlasových stanic na pásmu, "přeplněném" silnými místními vysílači, již dnes nelze řešit širokopásmovými anténními předzesilovači. Jisté možnosti jsou ve volbě vhodných antén. Yagiho antény jsou sice nejvhodnějším typem, ale v tak širokém kmitočtovém pásmu, jakým je celé pásmo CCIR-VKV, se již nepříznivě uplatní výrazné zmenšení zisku antén na začátku pásma. Jak je snad všeobecně známo, zvětšuje se u optimálně nastavené Yagiho antény zisk s kmitočtem a maxima dosahuje na nejvyšších kmitočtech pracovního pásma a pak prudce klesá. Např. u známé chlumecké antény pro pásmo "VKV II" s maximálním ziskem 9 dB na konci pásma se zisk na 90 MHz zmenší o téměř 4 dB. U sdělovacích systémů s kmitočtovou modulací se takový pokles projeví u slabších signálů neúměrným zhoršením poměru signál/šum; opačně však i malé zvětšení zisku (1 až 2 dB) může u nejslabších signálů zlepšit poměr signál/šum o více než 10 dB.

Úvedený jev se prakticky projevuje u vysílačů FM na začátku pásma - konkrétní dotazy se opakovaně týkají např. Country Radia na kmitočtu 89,5 MHz. Jde o pražskou soukromou stanici, jejíž anténní systém, umístěný na strahovské radioreléové věži, vyzařuje necelý 1 kW. Praktický dosah je relativně dobrý, zájem o příjem je však i v místech vzdálenějších. Jak tuto situaci řešit!? Jediným schůdným řešením skromnými prostředky je "přeladit" původní anténu tak, aby se oblast maximálního zisku přesunula na začátek pásma. Prakticky to znamená prodloužit všechny prvky a jejich vzájemné rozteče asi tak v poměru 106 : 90, tj. 1,18krát, tj. téměř o 20 %. Ve stejném poměru by se měly zvětšit i průměry prvků. Ovšem u prvků tak štíhlých, jakými jsou prvky o průměru 6 mm, 1325 až 1750 mm dlouhé, to z elektrických důvodů není nutné. Vlastní štíhlost se prodloužením prvků změní jen nepatrně. Z mechanických důvodů by však tlustší prvky byly výhodnější; a to i u původní antény

Přeladěním antény na 90 MHz, popřípadě na jiný kmitočet ve spodní polovině pásma, se ovšem zhorší její elektrické vlastnosti ve zbývající části pásma. S tím je nutno počítat. Na žádaném kmitočtu je výrazné zlepšení patrné. Původní, v šumu se utápějící signál, se zřetelně zesílí.

Rekonstrukce antény bude v praxi závislá na "výrobních" možnostech. Prodloužení prvků tlustšími trubkami (Ø 8x1) je zdánlivě nejjednodušší, většinou se však neobejdeme bez vystružování trubkových nástavců, popř. ztenčování původních prvků. Proto je výhodnější navrtat do původních prvků souosé díry pro naražení prodlužovacích hliníkových tyček o Ø 3 až 4 mm. Větší rozteče prvků prodlužují délku přeladované antény na 90 MHz asi o 450 mm, tzn. že na prodlouženém ráhnu bude upevněn pouze jeden prvek poslední direktor. K nastavení ráhna lze proto použít pouze trubky Al o Ø 12x1 mm, která se dá těsně zasunout do nosného ráhna 15 x 15 mm.

Skládaný dipól prodloužíme nejjednoduššeji uprostřed jeho nenapájené a uzemněné části trubkou o Ø 8 x 1 mm, do které z obou stran narazíme vnitřní konce rozpůleného dipólu. Jeho napájené konce znovu zavedeme do ochranného krytu anténních svorek prodlužovacími hliníkovými pásky širokými 6 až 8 mm, které připevníme šrouby na zploštělá zakončení původního dipólu.

Další informace o vlastnostech, rozměrech i úpravách směrových antén pro rozhlas VKV v pásmu 87,5 až 108 MHz byly uvedeny v AR-B č. 1/84 na str. 7 až 10 a v AR-B č. 2/86 na str. 73 až 75. Jsou platné i dnes, i když v době jejich zveřejnění byla v pásmu VKV-CCIR situace zcela jiná. Tolik tedy k případné úpravě 9prvkové (090G-BL), popř. 8prvkové (080G-BL) anténv.

Zde bychom rádi upozornili na jednu podstatnou okolnost. Původní 9prvkové antény (090G–BL) se 4prvkovým reflektorem byly určeny pro celé pásmo 87,5 až 108 MHz, přesto že se v té době vysílalo pouze do 100 MHz. Maximální zisk měla anténa asi na 107,5 MHz, což je třeba vzít v úvahu při její eventuální optimalizaci na nižší kmitočty. V původní verzi ji v celém pásmu využíváme vlastně až v současné době.

Podle návrhu v AR-B č. 1/84 upravil později výrobce rozměry pouze pro pásmo 87,5 až 100 MHz. Nová 8prvková anténa

Tab. 14. Rozměry 4prvkových úzkopásmových Yagiho antén na 5 částí pásma VKV II

Rozměr	90 MHz	94 MHz	98 MHz	102 MHz	108 MHz	Rozměry [\lambda]					
L_{R}	1650	1580	1516	1546	1376	0,495					
p _r	520	500	478	460	434	0,156					
Lz	1650	1580	1516	1546	1376	0,495					
p 1	100	96	· 92	88	84	0,03					
L _{D1}	1520	1455	1396	1342	1266	0,456					
p 2	520	500	478	460	436	0,156					
L _{D2}	1446	1384	1328	1276	1205	0,434					
	t = 6 až 10 mm										
	T = 15 až 25 mm										
		m =	80 až 100	mm							

Obr. 76.

(080G-BL) měla reflektor dvouprvkový. Zúžením pásma se zvětšil zisk na nejnižších kmitočtech o 1,5 dB.

V roce 1992, kdy se začaly objevovat nové rozhlasové stanice i nad 104 MHz, upravil výrobce rozměry znovu. Typ Supersonic (7 prvků) ovšem celé pásmo nepřekrývá. Max. zisk má na 105 MHz opět s citelným zmenšením zisku "dole".

Je s podivem, že na zvýšený zájem o příjem v pásmu VKV II výrobci antén pohotově nereagují. Na trhu chybí jednoduché 2 až 3prvkové antény, které by citelně zlepšily příjem VKV tam, kde se poslouchá na antény náhražkové prutové nebo vestavěné (vnitřní). Ty se opravdu hodí jen na poslech místních stanic.

Pro zájemce o "specializovaný" příjem určitých stanic přinášíme rozměry pěti úzkopásmových 4prvkových antén s optimalizovaným ziskem na 90, 94, 98, 102 a

108 MHz. Se ziskem 6 dB překrývají pásmo asi 2 MHz směrem k nižším kmitočtům. Označení rozměrů je zřejmé z obr. 76 (viz tab. 14).

Impedance antény je 300 Ω . Při napájení souosým kabelem 75 Ω se použije symetrizační člen – feritový TV elevátor na dvouděrovém jádru nebo symetrizační smyčka. Délka smyčky, zhotovené z kabelu s pevným dielektrikem PE (k = 0,66) je na výše uvedených kmitočtech: 1100 mm, 1053 mm, 1010 mm, 970 mm a 918 mm.

Z rozdílů optimálních délek stejných prvků na obou krajních kmitočtech je nejlépe vidět, jak se pásmo značně široké. U rozměrů pro LD2 je rozdíl 24 cm (!!). To názorně dokládá, proč je u antény pro celé pásmo na začátku získ podstatně menší. Tam už totiž krátké direktory příliš "nezabírají. A ony musí být tak krátké, aby i na konci pásma působily jako direktory (<0,5λ). Naopak reflektory musí být zase tak dlouhé, aby zůstaly reflektory i na nejnižších kmitočtech (>0,5λ). Vzájemné "rozladění" reflektoru a direktorů je tím větší, čím je širší pracovní pásmo antény. V pásmu 87,5 až 108 MHz je to 20 %, což je na Yagiho anténu poměrně dost.

Ještě jednou upozorňuji, že podrobné informace o vlastnostech, rozměrech i úpravách komerčních směrových antén pro VKV rozhlas v pásmu 87,5 až 108 MHz byly uveřejněny v AR-B č.1/84 na str. 7 až 10, a v AR-B č.2/86 na str. 73 až 75. Jsou platné i dnes, i když v době jejich zveřejnění byla v pásmu VKV-CCIR situace zcela iiná.

Seznam rozhlasových vysílačů FM v pásmu VKV-CCIR (87,5 až 108 MHz) na území ČSR (stav ke konci roku 1993)

Nejdůležitější údaje jsou seřazeny v očíslovaných sloupcích:

- 1 kmitočet v MHz
- 4 umístění vysílače (antény)
- 2 program
- polarizace ant. systému
- 3 název vysílače
- 6 výkon vyzářený ERP v kW

Vysílače, označené •, nejsou provozovány SR Praha.

ARI - slouží též pro dopravní rozhlas, PG - zajišťuje službu PAGING,kterou provozuje firma Radiokontakt. Přehled byl sestaven podle podkladů, které ochotně poskytl Telekomunikační úřad

1	2	3	4	5	6
87,8	Radio RIO	Praha 1	Petřín-rozhledna	Н	1
88,2	Evropa 2	Praha	Žižkov, TV věž	Н	5
88,3	Regina	Brno-město	Barvičova	н	0.2
88,6	Radiožurnál	Klatovy	Barák	н	0,6

1	2 3		4	5	6
89,1	Vitava, PG	Plzeň	Krašov	Н	50
89,5	Radio Country	Praha	RS Strahov	Н	0,94
	Regina	Vsetín	Bečevná	Н	0,032
89,6	R.West+Evropa 2	Plzeň	Krkavec	Н	1
89,8	BBC	Č. Budějovice	budova OSR	Н	1
90,3	Vitava, PG	Domažlice	Vraní vrch	Н	6
1	Radio Golem	Praha 6	Strahov-stadion	Н	0,5
90,4	Radiožurnál, ARI	Brno-město	Barvičova [.]	Н	0,2
90,6	Vitava	Sušice	Svatobor	н	0,2
	R.Most+Evropa 2	Chomutov	Jedlová	н	1
90,7	Vitava, PG	Jihlava	Javořice	Н	21
90,9	Vltava, PG	Ústí n/L.	Buková hora	Н	50
91,0	Radio Diana	Karlovy Vary	Tři kříže	Н	1
91,1	Radiožurnál, ARI	Č. Budějovice	Kleť	н	10,2
91,4	Radio Alfa	Pizeň	Krašov	н	50
91,6	Radio Panag	Pardubice	telekom. věž	Н	0,5

1	2	3	4	5	6					
91,6	Radio Děčín	Děčín •	Popovický vrch	н	0,38					
91,9	Radio 1 (T.R.S.)	Praha 1	Petřín-rozhledna	Н	0,98					
92,1	Vitava	Třinec	Javorový vrch	н	0,12					
	Vitava	Vsetín	Bečevná	н	0,03					
92,5	Radio Egrensis	Cheb •	Špitálský vrch	н	0,75					
	Vitava	Val.Meziřičí	Radhošť	н	0,12					
92,6	Vitava, PG	Brno-město	Barvičova	н	0,1					
	Regina	Praha	Žižkov-TV věž	Н	5					
93,1	Radio Hády	Brno ●	RS Hády	н	10					
93,3	Radiožurnál	Plzeň-město	Radeč	н	50					
93,5	Frekvence 1	Ústí n/L.	Buková hora	Н	50					
93,6	Radio 21	Č. Budějovice	budova OSR	Н	0,5					
93,7	Radio City	Praha 4	Motokov	٧	5					
93,9	Vitava, PG	Hr. Králové	Krásné	Н	21					
94,1	Frekvence 1	Č. Budějovice	Kleť	Н	62,1					
94,6	Vltava, PG	Praha	Žižkov-TV věž	Н	5					
95,1	Vltava, PG	Brno	Kojál	Н	60					
95,2	Radioklub	Ústí n/L.	RS Klíše	Н	0,5					
95,4	Radiožurnál, ARI	Jihlava	Javořice	Н	21					
95,6	Radiožurnál, ARI	Pizeň	Krašov	Н	50					
	Radio Haná	Olomouc	Pohořany	Н.	0,5					
95,7	Radio Brno	Brno •	Dusíkova 3	Н	0,88					
96,1	Vltava, PG	Č. Budějovice	Klet*	Н	10,2					
96,2	Radio Labe	Hr. Králové	Hoděšovice	Н	0,03					
96,3 96,4	zatím nevysílá Radio Alfa	Chomutov Ostrava	Jedlová Hošťálkovice	H	0,8					
96,6	Radio Alfa	Praha	Žižkov-TV věž		5					
96,8	Radiožurnál, ARI	Val. Meziřičí			0,12					
96,9	Radio Profil	Pardubice •	!		0,12					
97,0	Vitava	Strakonice			1					
97,1	Radio Rubi	Uničov	TIO KIUW IIOIU	Н	•					
37,1	Radio Euro K	Liberec	RS Vratislavice	Н	0,27					
97,2	Zlatá Praha	Praha 6	RS Strahov	н	0,95					
97,4	Frekvence 1	Hr. Králové	Krásné	Н.	70					
97,6	Vitava, PG	Cheb	Zelená hora	Н	0,15					
98,0	Radiožurnál	Domažlice	Vraní vrch	Н.	6					
98.1	Radio Agara	Chomutov	Jedlová	н	0,8					
30,1	R. KISS 98FM	Praha 1	Petřín-rozhledna	Н	1					
98,2	Vitava	Olomouc	Radíkov	Н						
1			}	"	0,07					
98,3	Radio Sprint	Třinec	Javorový vrch	۱.,	1 0.02					
٠.,	Radiožurnál	Vsetin	Bečevná	H	0,03					
98,4	Radio Alfa	Klatovy	Barák	Н	0,6					
98,6	BBC Badia Cabra	Pizeň	Krkavec	Н	1					
98,7	Radio Cobra	Praha 6	Strahov-stadion	Н	1					
98,9		Chomutov	Jedlová	 						
99,0	Regina	Val. Meziřičí	Radhošť	Н	0,06					
99,1	BBC	Hr. Králové	Hoděšovice	Н	1					
99,2	Vitava, PG	Plzeň-město	Radeč	Н	10,6					
99,3	RFI (franc.)	Praha 3	Žižkov, ÚTB	Н	0,1					
99,5	Vitava, PG	Zlín	Tlustá hora	Н	3					
99,7	Bonton	Praha 4 ●	Mont. stavby	C	1					
	Radio Faktor	Č.Budějovice•	Včelná	Н	1					
	Radio Dragon	Karlovy Vary	Tři kříze	Н	1					
99,8	Vltava, PG	Klatovy	Barák	Н	0,6					
100,1	Regina	Hr. Králové	Krásné	Н	21					
100,3	Radio Alfa	Jihlava	Javořice	Н	21					
100,5	Radio Alfa	Val. Meziřičí	Radhošť	Н	0,62					

1	2	3	4	5	6
100,7	Regina	Praha	Cukrák	Н	16,5
100,8	Regina	Cheb	Zelená hora	н	0,15
100,9	Radio Alfa	Jeseník	Praděd	Н	2
101,1	BBC	Praha	RS Strahov	Н	1
1	Radio Morava	FrMistek •	Metylovický vrch	Н	1
101,3	BBC	Brno	Barvičova	н	0.1
101,4	Radio Contact	Liberec	Ještěd	Н	0,07
	Vitava, PG	Ostrava	Hošťálkovice	н	50
101,5	Radio VOX	Praha 1	Petřín-rozhledna	H	0,98
101,9	Vitava, PG	Trutnov	Černá hora	Н	0,4
	Radiožurnál	Třinec	Javorový vrch	Н	0,12
102,0	Radiožurnál, ARI	Brno Kojál		Н	50
	Radio Alfa	Ústí n/L.	Buková hora	Н	50
102,3		Zlín	Tlustá hora	Н	- 3
102,4	1 -	Klatovy	Barák	Н	2
102,5	Frekvence 1	Praha	Žižkov-TV věž	Н	5
1,00 7	Radiohrad	Karviná ●	Babí hora	С	0,8
102,7 102.8	Radiožurnál, ARI Radio Zlín	Hr. Králové Zlín ●	Krásné Mladcová	Н	21 1
102,8		Č. Budějovice	Klet*	Н	10,2
103,1	zatím nevysílá	Chomutov	Jedlová		10,2
103,2	1	Votice	Mezivrata	Н	0,04
103,4	1 "	Jáchymov	Klínovec	Н	0,2
103,6		Ostrava •	Hošťálkovice	v	0,5
103,7	Radio Collegium	Praha 6	RS Strahov	Н	0,95
103,9	Vitava, PG	Liberec	Ještěd	Н	10
104,1	Frekvence 1	Pizeň	Krašov	Н	65
104,3	Regina	Olomouc	Radíkov	Н	0,07
104,5	1	Brno	Kojál	Н	50
104,6		Třinec	Javorový vrch	Н	0,74
1 .	Radiožurnál, ARI	Praha	Žižkov-TV věž	Н	5
105,3		Trutnov	Černá hora	Н	1.
	Regina	Domalice	Vraní vrch	Н	9,9
1.000	Regina	Třinec	Javorový vrch	H	0,123
105,6		Brno	Barvičova	Н	0,1
105,8	 	Ústí n/L. Hr. Králové	RS Klíše	H	0,5
106,0 106,1	Radio Alfa Radio FM plus	Hr. Kraiove Plzeň	Krásné Krkavec	H	21 1
106,1		Praha	Petřín-rozhledna	Н	1
1,00,2	Radiožurnál	Cheb	Zelená hora	"	0,15
106,4		Č. Budějovice	Klet*	''	10,24
106,5		Brno	Kojál	''	50
	zatím nevysílá	Chomutov	Jedlová	Ι ¨	
106,7	_	Plzeň-město	Radeč	Н	10,6
106,8	1	Jeseník	Praděd	н	4
107,1	Regina	Jihlava	Javořice	Н	21

Vysílače FM v pásmu VKV-OIRT (66 až 73 MHz)

1	2	3	4	5	6
66,32	Radiožurnál, ARI	Ostrava	Hošťálkovice	Н	30
66,83	Radiožurnál, ARI	Praha	Cukrák	н	60
67,10	Regina	Jeseník	Praděd	V	5
67,88	Regina	Ostrava	Hošťálkovice	Н	30
68,66	Radiožurnál, ARI	Jeseník	Praděd	V	5
68,96	Vitava	Praha	Cukrák	н	60
69,26	Regina	Ústí n/L.	Buková hora	V	30
71,18	Radiožurnál	Liberec	Ještěd	V	10
71,96	Regina	Liberec	Ještěd	V	10
72,20	Radiožurnál, ARI	Ústí n/L.	Buková hora	٧	30
72,74	Radiožurnál, ARI	Liberec	Ještěd	٧	10

Přehled televizních vysílačů a vybraných převáděčů provozovaných Správou radiokomunikací Praha

(Stav ke konci roku 1993)

Nejdůležitější údaje o každém vysílači/převáděči jsou v očíslovaných sloupcích:

1 kanál

6 kmitočtový ofset

2 program

7 výkon obrazu/zvuku v kW

3 název vysílače

8 vyzářený výkon, ERP, v kW

4 umístění vysílače (antény)

9 azimuty hlavních směrů vyzařování

5 polarizace anténního systému (AS) . AS (0, popř. 360° - sever, 90° - vý-

. chod , 180° - jih, 270° - západ atd.),

. O označuje kruhový dlagram, N = NOVA

Přehled byl sestaven podle podkladů, které ochotně poskytl Český telekomunikační úřad

1	2	3	4	5	6	7	8	9
1	N	Praha	Cukrák	Н	8M	30/3	150	
	N	Ostrava	Hošťálkovice	н	8P	10/1	100	
2	N	České Budějovice	Klet'	н	6P	10/1	150	
4	N	Jeseník	Praděd	Н	0	2/0,2	10	55, 145, 325
6	N	Hradec Králové	Krásné	H	7M	10/1	100	
	N	Klatovy	Barák	Н	4M	0,3/0,03	1,54	
	N	Val. Mezifičí	Radhošť	٧		0,2/0,02	0,64	
7	N	Jáchymov	Klinovec	Н	1M	0,3/0,03	0,8	
8	N	Liberec	Ještěd	٧	8M	2/0,2		٠
9	N	Sušice	Svatobor	Н	2M	0,1/0,01	0,15	
	N	Brno	Kojál	Н	8P	20/2	150	,
10	N	Plzeň	Krašov	H	4P	10/1	126	19, 90, 260
l .	N	Vsetin	Bečevná RS	Н		0,01/0,001	0,012	70, 250, 340
	ČT2	Špindlerův mlýn	Medvědín	Н		2/0,2	·3	140
11	N	Trutnov	Černá Hora	٧	2P	0,2/0,02	12	180
	N	Jihlava	Javoñce	Н	2M	2,5/0,25	8	
12	N	Ústí n/L.	Buková hora	V/H	7P	10/1	100	
	ČT2	Domažlice	Vraní Vrch	Н	0	0,2/0,02	1,6	110, 290
21	ČT2	Karlovy Vary	Tři Kříže	Н	8P	0,08/0,008	0,184	25, 159, 275
١.	N	Uherský Brod	Velká Javořina	Н		0,8/0,08		
	ČT1	Špindlerův Mlýn	Medvědín	Н	8P	0,01/0,001	0,022	121, 185
22	ČT1	Hradec Králové	Krásné	Н	0	20/2	600	55, 138, 235, 318
	ČT1	Klatovy	Barák	Н	8M	5/0,5	100	`
1	ČT1	Zlín	Tlustá Hora	Н	8M	5/0,5	100	
23	ČT1	Trutnov	Černá Hora	Н		20/2	860	0, 90
24	N	Domažlice	Vraní Vrch	Н	8P	5/0,5	100	63, 153, 243, 333
	ČT1	Mikulášovice	Mikulášovice	н	8P	0,01/0,001	0,039	15, 105
	ČT1	Svitavy	Kamenná Horka	н	8P	10/1	150	20, 110, 210, 290
1	Premiera	Praha	Žižkov	н	0	10/1	57	0
25	ČT1	Jihlava	Javořice	Н	8P	10/1	237	0
	ČT1	Val. Klobouky	Ploštiny	н	0	2/0,2		185, 285
26	N	Cheb	Zelená Hora	H.	9P	5/0,5	100	2, 49, 99
1	ČT1	Praha	Cukrák	н	8M	50/5	912	75, 165, 255, 345
	ČT1	Mikulov	Děvín	Н	0	10/1	300	
	ČT1	Třinec	Javorový vrch	ıН	0	0,01/0,001	0,04	
27	ČT2	Plzeň-město	Krkavec	Н	8P	1,6/0,16	5	61, 151, 241, 331
1	ČT1	Val. Mezifičí	Radhošt*	Н	8M	10/1	30	155, 245, 345
	ČT1	Tábor	Radimovice	Н	8M	1/0,1	7,8	0
•	i	i	i	i	i	l	1	1.

1	2	3	4	5	6	7	8	9
28	ČT1	Rychnov n/Kněžn.	Litický Chlum	Н	0	5/0,5	100	20, 110, 200, 290
1	ČT1	Třebíč	Klučovská hora	Н	8P	10/1	300	
	N	Třinec	Javorový vr c h	Н	8P	0,01/0,001	0,1	
	ČT1	Vsetin	Bečevná RS	н		0,01/0,001		
29	ČT1	Brno	Kojál	н	8M	20/2	600	
30	ČT1	Votice	Mezivrata	н	8P	5/0,5	100	0
31	ČT1	Liberec	Ještěd	ну		5/0,5	100	
į	ČT1	Ostrava	Hošťálkovice	н	8M	20/2	600	45, 135, 225, 315
	ČT1	Pizeň	Krašov	Н	8M	20/2	600	
32	ČT1	Praha-město	Strahov RS	Н		0,1/0,01		
1	l N	Špindlerův Mlýn	Medvědín	Н	8M	0,01/0,001	0,016	
1	ČT1	Vimperk	Mařský vrch	н	8P	5/0,5	100	
	ČT2	Šumperk	Šumperk	н	0	0,01/0,001	0,025	
	ČT1	Žď ár n/Sázavou	Harusův Vrch	Н.	0	5/0,5	70	o
33	ČT1	Hodonín	Babí Lom	Н.	8M	0,1/0,01	0,19	5, 95, 185, 275
	ČT1	Olomouc	Radikov	"	8M	2/0,2	21,5	190, 280
	N	Rychnov n/Kněžn.	Litický Chlum	Н Н	0	0,16/0,016	0,32	270, 334
	ČT1	Ústí n/Labem	Buková Hora	н	Ů	20/2	565	270, 334
34	ČT2	Hradec Králové	Krásné	н	0	0,1/0,01	0,5	26
1	ČT1	Plzeň-město	Krkavec	Н	8P	5/0,5	100	40, 130, 220, 310
	ČT1	Nový Jičín	Veselský kopec	н		5/0,5	100	20, 110, 200, 290
35	ČT1	Brno-město	Barvičova	Н	0	2/0,2	20	45, 135, 225, 315
	ČT2	Chomutov	Jedlová	Н		0,1/0,001	0,125	200
	ČT1	Sušice	Svatobor	Н	8P	5/0,5	100	
36	ČT1	Cheb	Zelená Hora	н	8M	5/0,5	100	
	ČT1	Jeseník	Praděd	н	8P	20/2	600	
	N	Kdyně	Koráb	н	0	0,1/0,01	0,25	30, 120, 210, 300
	ČT1	Pacov	Stražiště	Н	0	5/0,5	100	18, 108, 198, 288
37	ČT1	Frýdek-Místek	Lysá Hora	H,		20/2	300	0
	N X	Praha-město	Žižkov	Н	0	10/1	60	0
38 39	ČT1 ČT1	Jáchymov	Klinovec	Н	8P	5/0,5	316	
39	N N	České Budějovice	Kiet*	Н	8M	20/2	600	
	ČT2	Praha-město Svitavy	Strahov Kamenná Horka	Н	•	0,1/0,01		
40	ČT2	Benešov	Benešov	Н	0	0,1/0,01	0,3	60, 285
	ČT2	Děčin	Cihelná ul.	H	0	0,01/0,001 (0,5/0,05)W	0,02	10, 100, 190, 280
	ČT2	Trutnov	Černá hora	н	8M	0,1/0,01	2,5 W 0,4	300 135, 230
	ČT2	Vsetin	Bečevná	н	· · · ·	0,01/0,001	,,,	100, 200
	N	TVP Starý Plzenec	Radyně	Н	8M	0,1/0,01	0,25	150,320
41	ČT1	Domažlice	Vraní Vrch	н	8M	2/0,2	19	20, 110
	ČT2	Praha-město	Žižkov	н	0	10/1	60	0
	N	Zlín	Tlustá Hora	н	8P	2/0,2	10	272
42	ČT2	Děčín	Popovický vrch	н	0	0,01/0,001	0,025	
	N	- Ostrava	Hošťálkovice	н	0	0,08/0,008	0,804	125, 205
	ČT2	Ústí n/Labem	Klíše RS	н	8M	0,06/0,006	0,2	0, 90, 180
	ČT2	Val. Klobuky	Ploština	н	8M	0,1/0,01	0,62	250, 350
43	ČT2	Liberec	Ještěd	н	8M	0,01/0,001	0,07	50
44	N	Mikulášovice	Mikulášovice	Н	0	0,01/0,001	0,039	15, 105
47	ČT2	Vimperk	Mařský Vrch	н	0	0,08/0,008	0,15	15, 285
49	N	Brno-město	Barvičova	Н	8M	2/0,2	24	45, 135, 225, 315
	ČT2	České Budějovice	Klet	н	8P	2/0,2	28	32, 122, 302
	ČT2	Žďár n/Sázavou	Harusův Vrch	н		0,1/0,01		

1	2	3	4	5	6	7	8	9
50	ČT2	Hradec Králové	Hoděšovice	Н		0,15/0,015		
	ČT2	Třebíč	Klučovská Hora	Н	8P	0,15/0,015	0,3	330
	ČT2	Ústí n/Labem	Buková Hora	Н	0	0,6/0,06	0,6	260, 350
51	ČT2	Cheb	Zelená Hora	Н		0,01/0,001		
	ČT2	Ostrava	Hošťálkovice	Н	8M	2/0,2	27,4	25, 115, 205, 295
	ČT1	Praha-město	Žižkov	Н	0	10/1	60	
	ČT2	Zlín	Tlustá Hora	Н	4M	0,2/0,02	2	5, 85, 295
52	ČT2	Brno-město	Barvičova	Н	8P	2/0,2	24	45, 135, 225, 315
	N	Frýdek-Místek	Lysá Hora	Н	0	0,08/0,008	0,35	170, 350
	ČT1	Chomutov	Jedlová	Н	8M	6/0,6	200	50, 140, 230
	ČT2	Mariánské Lázně	Mariánské Lázně	٠Н	0	0,02/0,002	0,074	25, 160, 245
	ČT2	Sušice	Svatobor	Н	0	0,02/0,002	0,04	100
53	N	Jeseník	Praděd		8H	20/2	305	0
57	ČT1	Starý Plzenec	Radyně	Н	8P	01/0,01	0,25	
58	ČT2	Klatovy	Barák	Н	8M	0,1/0,01	0,6	270

Anténní věže a stožáry pražských vysílačů FM rozhlasu

(ke 4. straně obálky)

Dnes nabízí nejvyšší kvalitu a rozmanitost hudebních pořadů vysílání družicové, a to nezávisle na místních (terénních) podmínkách, které i nadále ovlivňují vysílání VKV z vysílačů pozemských.

Nicméně i za těchto podmínek se rozhlas FM v pásmu 87,5 až 108 MHz konečně stává sdělovacím médiem, které poskytuje nejširšímu okruhu posluchaču nejen kvalitní poslech, ale i pestrý výběr programů na běžné rozhlasové přijímače.

Anténní systémy všech dvaceti (!) pražských vysílačů rozhlasu FM jsou umístěny jen na sedmi věžích a stožárech v různých částech města. Přitom nelze říci, že některé lokality jsou zřetelně výhodnější nebo nevýhodnější než ostatní, a to včetně "mimopražského" Cukráku. Tak jsou např. anténní systémy na nové, 216 m vysoké TV věžl na Žižkově, jen o 6 m výše než antény na strahovské věži radioreléové, a o pouhých 5 m níže než na Cukráku ! Vysvětlení je prosté. Strahov je nejvyšší místo v Praze a Mahlerovy sady na Žižkově jsou o 101 m níže. A na Cukráku - 411 m n.m. jsou antény pro rozhlas FM v pásmu CCIR umístěny jen na malé pomocné věži, 30 m nad zemí.

Protože téměř na všech věžích a stožárech není dostatečný prostor pro umístění několika samostatných antén, využívají mnohé (i "konkurenční") vysílače instalované anténní systémy společně – pomocí diplexerů. Je-li anténní systém vícečlenný, profitují pak ze zisku celé soustavy všechny připojené vysílače.

rozhlasovém pásmu VKV-CCIR se běžně používá horizontální polarizace. U jednoduchých dipólových antén místních vysílačů se proto obtížněji dosahuje všesměrového vyzařování. Vodorovný dipól má, jak známo, ostré nuly ve směru podélné osy. Nejjednodušším řešením požadavku na "všesměrovost" je úprava dipólu do tvaru V, čímž se ostrá postranní minima potlačí. Čím menší je úhel svíraný oběma rameny dipólu, tím méně jsou původní minima vyjádřena. Zároveň se však zmenšuje impedance antény, což komplikuje její přizpůsobení v širším kmitočtovém pásmu. Přijatelným kompromisem je úhel 90°, kdy se úroveň bočního vyzařování zvyšuje z původních -20 až -30 dB na pouhých -7 až -8 dB, takže intenzita elmag pole je ve směru původních minim 45 až 40 % intenzity maximální, což je již přijatelné. Směrový diagram antény má sice opět "osmičkový" tvar, ale bez výrazných minim. Azimut hlavního vyzařování je ve směru osy úhlu svíraného oběma rameny. V opačném směru je vyzařování poněkud potlačeno nosnou konstrukcí. Na mohutných anténních věžích se všesměrové vyzařování řeší několika samostatnými dipólovými jednotkami na obvodu věže.

Požadavky na tvar vyzařovacích diagramů vysílacích antén jsou obvykle ovlivněny umístěním a polohou vysílače vzhledem k pokrývané oblasti, charakterem okolního terénu apod. Většina anténních systémů, zejména televizních, je proto projektována pro každou lokalitu individuálně.

K snímkům vysílacích antén pražských rozhlasových stanic (4. str. obálky) ještě některé údale:

Na věžové budově Montovaných staveb (268 m n.m.) v Praze 4 vidíme ve výši 65 m nad zemí část nekonvenčního anténního systému Radia BONTON. Čtveřice kruhově polarizovaných zářičů násobí výkon vysílače na 1 kW ERP, vyzářený v azimutu 65°. Kruhová smíšená polarizace zlepšuje příjmové podmínky tam, kde se používá převážně svislých nebo šikmých přijímacích antén, tzn. u přenosných a mobilních přijímačů (autopřijímačů). Příjem na antény vodorovné tím není nijak handicapován. Vysílač této soukromé rozhlasové stanice není jako jediný pražský provozován Správou radiokomunikací-Praha (obr. 1).

Nejjednodušší, lze říci klasický anténní systém – sfázovanou dvojici skládaných dipólů V najdeme na věži Ústřední telekomunikační budovy (ÚTB) na Žižkově. Je vysílací anténou soukromé společnosti R.F.I., obracející se na francouzky hovořící posluchače (obr. 2). Efektivně vyzářených 100 W je orientováno spíše východním směrem (azimut 90°). Přípomeňme, že televizní vysílání na K41 mělo z této věže překvapivě dobrý dosah v době, kdy ještě nebyla dostavěna TV věž v Mahlerových sadech, odkud se program ČT3, dříve OK3, šíří nyní.

Tentýž jednoduchý anténní systém je upevněn na osvětlovacím stožáru v jihozápadním rohu Rošického stadiónu na Strahově. Signálem jej zásobují soukromé rozhlasové stanice GOLEM, COBRA a BBC. Je to nepochybně zajímavé i efektivní a trvalé využití zřídka provozované investice, ve velmi příznivé poloze. Anténa jsou 47 m

nad terénem ve výši 392 m n.m. (obr. 3).

O 1 km západněji, prakticky na nejvyšším místě Prahy je strahovská radioreléová věž s parabolickými anténami, odkud dnes pracuje TV vykrývač s programem ČT2 na K39, který měl v okolí zabezpečit příjem TV po ukončení provozu vysilače petřínského. Na přídavném "stožárku" vidíme dvě dvojice skládaných dipólu V pro pásmo VKV–CCIR, napájené soukromými stanicemi Radio COLLEGIUM, COUNTRY, CITY a Zlatá Praha (obr. 4).

Pražská "Eiffelovka" - populární petřínská rozhledna - se trvale zapsala do historie československého televizního vysílání již v roce 1948, u příležitosti XI. všesokolského sletu, kdy byl na ní umístěn TV vysílač s výkonem 1 kW na kmitočtech 62 MHz (obraz) a 45 MHz (zvuk). Pro příjem bylo tehdy k dispozici jen 25 veřejně instalovaných TV přijímačů. Pravidelné vysílání TV na K1 bylo oficiálně zahájeno 1. 5. 1953. Předpokládalo se, že ide o provizorní řešení – po dostavbě Cukráku se měl Petřín odmičet. Ale nestalo se tak. Cukrák celou Prahu nepokryl a tak se z Petřína stal městský vysílač. Dnes jeho úlohu převzal nový vysílač na Žižkově. Petřínská rozhledna, údajně v havarijním stavu, však i jako nosič anténních systémů slouží dál. Na poměrně dlouhém anténním nástavci vidíme čtyři dvojice skládaných dipólů V, napájených z koncových stupňů soukromých vysílačů Radia 1, Radia R.I.O., KISS 98 FM, METROPOLIS a VOX. Jsou ve výši 380 m n.m., 65 m nad zemí (obr. 5.).

Pod laminátovými kryty TV věže na Žižkově, 169 m nad okolním terénem, jsou upevněny všesměrové anténní systémy rozhlasových vysílačů FM programů celoplošných. Se statutem veřejněprávním jsou to vysílače RADIOŽURNÁL, REGINA a VLTAVA. Licenci pro celoplošné vysílání nyní mají i soukromé stanice Radio ALFA a FREKVENCE 1. Navíc pak odtud ještě vysílá EVROPA 2. Efektivní vyzářený výkon je ve všech případech 5 kW. Výkon vysílačů je 1 kW, takže anténní systémy mají zisk 7 dBd (obr. 6).

Zbývá nám legendární Cukrák s úcti-

Zbývá nám legendární Cukrák s úctihodným dosahem na nezastupitelném televizním kanálu K1, jehož vysílání dosud
pokrývá četné lokality, kam signály z jiných, mnohdy i bližších TV vysílačů neproniknou. Ve výšl 131 m nad zemí, tj.
542 m n.m. jsou i anténní systémy vysílačů RADIOŽURNÁL a VLTAVA, vyzařující po 30 kW ERP na dnes již neper-

spektivním pásmu VKV I. Třetí celoplošný veřejněprávní VKV-program – REGINA, se z Cukráku vysílá již v pásmu VKV-CCIR na kmitočtu 100,7 MHz s 16,5 kW EPR. Jeho anténní systém najdeme na malé pomocné věži – jen 30 m nad terénem. V roce 1961, kdy byla TV věž na Cukráku dokončena, se s pásmem VKV II ani perspektivně neuvažovalo, takže tam žádné antény instalovány nebyly.

Na nejvyšším pražském mrakodrapu výškové budově Motokovu - se ve výšce 115 m nad okolním terénem a 385 m nad mořem objevila v prosinci vertikálně polarizovaná anténní soustava soukromé rozhlasové stanice RADIO CITY, která původně vysílala horizontálně z radioreléové věže na Strahově. Šestici kolineárních, soufázově napájených dipólů vyrobila firma Kathrein ze SRN. Značná výška antény nad terénem, malý úhel záření ve svislé rovině (18°) a nerovnoměrné rozdělení výkonů do jednotlivých záříčů minimalizuje postranní laloky ve svislé rovině, takže "hygienická" zátěž obyvatelstva v husté zástavbě nejbližšího okolí vysílače dosahuje jen zlomku povolené velikosti (a to i při vyzářeném výkonu 5 kW).

Vertikální polarizací "oslovuje" Radio City zejména uživatele běžných přijímačů, popř. autorádií s vestavěnými nebo prutovými anténami i mimo pražskou oblast.

Vysílače rozhlasových stanic Bonton a City nejsou jako jedinné pražské provozovány Správou radiokomunikací Praha.

Predplatné pre čitateľov AR zo Slovenska

Časopisy Amatérské radio (rady A aj B) si môžete objednať za najvýhodnejších podmienok u firmy MAGNET-PRESS SLOVAKIA. Cena jedného výtlačku AR (A aj B) je 17,50 Sk. Objednávky môžete posielať na adresu: MAGNET-PRESS SLOVAKIA, P. O. box 14,

814 99 Bratislava, tel./fax: (07)39 41 67.

Objednávky prijímame aj telefonicky alebo faxom.

OPRAVA a doplněk k článku Jednohlasé el. varhany z AR B6/1993

Po přečtení svého článku z AR B6/93 jsem zjistil, že jsou v něm tvto chyby:

na obr. 4 chybí rezistor 100k u rejstříku Flétna 4 (na obr. tučně),

v seznamu součástek je chybně uveden typ T₃, správně má být KC636

na obrazci plošných spojů chybí spoj mezi emitory T_2 a T_3 , výstupním kondenzátorem C_{34} a zpětnovazebním trimrem P_3 .

Dále bych chtěl doplnit schémata rejstříků:

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Magnet-Press, inzertní oddělení (inzerce AR B) Jungmanova 24, 113 66 Praha 1, tel.: (02) 24 22 73 84, 24 22 77 23, tel./fax (02) 24 22 31 73. Uzávěrka tohoto čísla byla 10. 12. 1993, do kdy jsme museli obdržet úhradu za inzerát. Cena za první řádek činí 44,- Kč, za každý další (i započátý) 22,- Kč. Platba je včetně daně z přidané hodnoty. Cena za plošnou inzerci se

řídí velikostí – za 1 cm² plochy je 29,- Kč. K ceně se připočítává 23 % DPH. Nejmenší velikost plošného inzerátu je 54 × 40 mm. Za opakovanou inzerci poskytujeme slevy.

Texty pište čitelně, nejlépe hůlkovým písmem nebo na stroji, aby se předešlo chybám vznikajícím z nečitelnosti předlohy. 1000 Kč i více dám za kompletní něm. leteckou KUKLU sítovanou, plátěnou, koženou. Sháním i samostatné krční mikrofony a sluchadla. Tel. (02) 263803.

Prodej

CONDOR – oživ. desku tuneru VKV 1+2 (180), st. zesil. 2 x 25 W (1100), měř. přístr. pro MGF a r. přijímače se slevou, seznam zašlu. R. Trávnický, Varšavská 215, 530 09 Pardubice, tel. (040) 424 69.

Osciloskop Tektronix, 2 kanály, s multimetrem a tepl. sondou, 15 000 Kč. Disk Seagrate 41 MB s kontrolérem, 2400 Kč. Tel. (02) 7980410.

PLOŠNÉ SPOJE

publikované v AR nebo podle Vaší předlohy vyrobíme fotocestou bez prokovených otvorů jednostranný 15-25 Kč/dm² oboustranný 25-35 Kč/dm² vrtání na obj. 4 hal/1 otvor

=SPOJ =

J. Kohout Nosická 16 100 00 Praha 10 tel. 78 13 823 V. Kohout U zahrádkářské kolonie 244 142 00 Praha 4 tel. 47 28 263