Quiz 2 - MAT345

Problem 1 (20 points; 4 points each). Decide if each of the following are true or false and provide a small proof or counterexample in each case. All vector spaces are assumed to be finite-dimensional here.

- (a) False Given a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for a vector space V and U a subspace of V, then there is $\mathcal{C} \subseteq \mathcal{B}$ that is a basis for U.
 - FALSE: $\mathcal{B} = \{e_1, e_2\}$ is a basis for \mathbb{R}^2 and $U = \text{span}\{(1, 1)\}$ is a subspace, namely, the line with slope 1 through the origin. You cannot throw away one of e_1 or e_2 to get a basis for U.
- (b) True Given a basis C for a subspace U of a vector space V, C can be extended to a basis B for V. This is one of the theorems that you have, any linearly independent set can be expanded to a basis.
- (c) False If $\{v_1, \ldots, v_n\}$ is linearly independent and $v \in \text{span}(\{v_1, \ldots, v_n\})$, then it is possible that there are distinct $c, b \in \mathbb{R}^n$ such that $v = \sum_{i=1}^n c_i v_i = \sum_{i=1}^n b_i v_i$.
 - If such c and b exists, then c = c
- (d) True If $\{v_1, \ldots, v_n\}$ is linearly independent and $V = \text{span}(\{v_1, \ldots, v_n\}) = \text{span}(\{u_1, \ldots, u_n\})$, then $\{u_1, \ldots, u_n\}$ is linearly independent.
 - This too, is a theorem. Since $V = \operatorname{span}\{v_1, \ldots, v_n\}$ and v_i are independent, you know $\{v_1, \ldots, v_n\}$ is a basis for V and so $\dim(V) = n$. since $\operatorname{span}\{u_1, \ldots, u_n\}$ span V you know this set can be reduced to a basis, but any basis must have n elements, so $\{u_1, \ldots, u_n\}$ must already be a basis, and hence is linearly independent.
- (e) <u>False</u> Suppose V is a vector space and $U \subseteq V$ is a subspace. For any $v \in V$, there is a **unique** $u \in U$ so that v = u + (v u), that is, there is a unique "projection" of V into U.

Again take $U = \text{span}\{(1,1)\} \subset \mathbb{R}^2 = V$ and let $\mathbf{v} = (2,3)$, then $\mathbf{v} = (1,1) + (1,2) = (2,2) + (0,1)$.

Note: If we fixed W so that $V = U \oplus W$, then there would be for every $\mathbf{v} \in V$ a unique $\mathbf{u} \in U$, $\mathbf{w} \in W$ so that $\mathbf{v} = \mathbf{u} + \mathbf{w}$. For example, take U as above and $W = \text{span}\{(0,1)\}$, then (2,3) = (2,2) + (0,1) is the unique decomposition of (2,3) into something from U and something from W.

Problem 2 (10 pts). Show that the collection, U, of upper triangular 3×3 matrices is a subspace of $\mathbb{R}^{3\times3}$ (the space of all 3×3 matrices). Give a basis \mathcal{B} for U and for $\boldsymbol{v}=\begin{bmatrix}1&2&3\\0&4&6\\0&0&6\end{bmatrix}$, give $[\boldsymbol{v}]_{\mathcal{B}}$.

To show that U is a subspace we need only show that $\alpha \boldsymbol{v} + \boldsymbol{u} \in U$ for $\boldsymbol{v}, \boldsymbol{u} \in U$. So let $\boldsymbol{u} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$ and let $\boldsymbol{v} = \begin{bmatrix} v_{11} & v_{12} & v_{13} \\ 0 & v_{22} & v_{23} \\ 0 & 0 & v_{33} \end{bmatrix}$, then $\alpha \boldsymbol{u} + \boldsymbol{v} = \begin{bmatrix} \alpha u_{11} + v_{11} & \alpha u_{12} + v_{12} & \alpha u_{13} + v_{13} \\ 0 & \alpha u_{22} + v_{22} & \alpha u_{23} + v_{23} \\ 0 & \alpha u_{33} + v_{33} \end{bmatrix} \in U$.

A basis is clearly given by $E_{lk}^{ij} = 1$ if i = j and l = k and $j \le i$ and 0 otherwise. So $E^{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $E^{12} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, etc. This basis has six elements, so $\dim(U) = 6$.

With this basis, clearly $\mathbf{v} = E^{11} + 2E^{12} + 3E^{13} + 4E^{22} + 5E^{23} + 6E^{33}$.

Problem 3. Find a basis for span $\{v_1, v_2, v_3, v_4, v_5\}$ where

$$oldsymbol{v}_1 = egin{bmatrix} 1 \ 3 \ -3 \ 2 \end{bmatrix}, oldsymbol{v}_2 = egin{bmatrix} 1 \ 4 \ 0 \ 4 \end{bmatrix}, oldsymbol{v}_3 = egin{bmatrix} 2 \ 4 \ -12 \ 0 \end{bmatrix}, oldsymbol{v}_4 = egin{bmatrix} 0 \ 0 \ 1 \ 2 \end{bmatrix}, oldsymbol{v}_5 = egin{bmatrix} -1 \ -2 \ 8 \ 4 \end{bmatrix}$$

Method 1: Let

$$A = \begin{bmatrix} 1 & 1 & 2 & 0 & -1 \\ 3 & 4 & 4 & 0 & -2 \\ -3 & 0 & -12 & 1 & 8 \\ 2 & 4 & 0 & 2 & 4 \end{bmatrix}$$

$$A \underset{\substack{R_2 - 3R_1 \rightarrow R_2 \\ R_3 + 3R_1 \rightarrow R_3 \\ R_4 - 2R_1 \rightarrow R_4}}{\Longrightarrow} \begin{bmatrix} 1 & 1 & 2 & 0 & -1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 3 & -6 & 1 & 5 \\ 0 & 2 & -4 & 2 & 6 \end{bmatrix} \underset{\substack{R_3 - 3R_2 \rightarrow R_3 \\ R_4 - 2R_2 \rightarrow R_4}}{\Longrightarrow} \begin{bmatrix} 1 & 1 & 2 & 0 & -1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 & 4 \end{bmatrix} \underset{R_4 - 2R_3 \rightarrow R_4}{\Longrightarrow} R_4 \xrightarrow{} \begin{bmatrix} \boxed{1} & 1 & 2 & 0 & -1 \\ 0 & \boxed{1} & -2 & 0 & 1 \\ 0 & 0 & 0 & \boxed{1} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So $\mathcal{B} = \{v_1, v_2, v_4\}$ is a basis. (This is all you need.)

In fact, from our CR decomposition, we know

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 4 & 0 \\ -3 & 0 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} \boxed{1} & 1 & 2 & 0 & -1 \\ 0 & \boxed{1} & -2 & 0 & 1 \\ 0 & 0 & 0 & \boxed{1} & 2 \end{bmatrix}$$

So we know $v_3 = 2v_2 - 2v_2$ and $v_5 = -v_1 + v_2 + 2v_3$.

Method 2: Let

$$B = \begin{bmatrix} 1 & 3 & -3 & 2 \\ -1 & -2 & 8 & 4 \\ 0 & 0 & 1 & 2 \\ 1 & 4 & 0 & 4 \\ 2 & 4 & -12 & 0 \end{bmatrix}$$

Then eliminate:

$$B \underset{\substack{R_2 + R_1 \to R_2 \\ R_4 - R_1 \to R_4 \\ R_5 - 2R_1 \to R_5}}{\Longrightarrow} \begin{bmatrix} 1 & 3 & -3 & 2 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 3 & 2 \\ 0 & -2 & -6 & -4 \end{bmatrix} \underset{\substack{R_4 + R_2 \to R_4 \\ R_5 + R_2 \to R_5}}{\Longrightarrow} \begin{bmatrix} 1 & 3 & -3 & 2 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & 4 & 8 \end{bmatrix} \underset{\substack{R_4 + 2R_3 \to R_4 \\ R_5 - 4R_3 \to R_5}}{\Longrightarrow} \begin{bmatrix} 1 & 3 & -3 & 2 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = B'$$

So $\text{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3,\boldsymbol{v}_4,\boldsymbol{v}_5\} = \text{RS}(B) = \text{RS}(B') = \text{span}\{(1,3,-3,2),(0,1,5,6),(0,0,1,2)\}.$ So a basis for $\text{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3,\boldsymbol{v}_4,\boldsymbol{v}_5\}$ is $\mathcal{B}' = \{\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3\}$ where

$$oldsymbol{u}_1 = egin{bmatrix} 1 \ 3 \ -3 \ 2 \end{bmatrix}, oldsymbol{u}_2 = egin{bmatrix} 0 \ 1 \ 5 \ 6 \end{bmatrix}, oldsymbol{u}_3 = egin{bmatrix} 0 \ 0 \ 1 \ 2 \end{bmatrix}$$