Welcome to the DNA Sequencing Revolution

Joel Sharbrough, PhD

Assistant Professor of Biology New Mexico Tech July 18th, 2022

Reading DNA

Editing DNA

Writing DNA

Reading DNA – Sequencing and decoding genomes

Editing DNA

Writing DNA

- Reading DNA Sequencing and decoding genomes
- Editing DNA Making targeted modifications to a genome
- Writing DNA

- Reading DNA Sequencing and decoding genomes
- Editing DNA Making targeted modifications to an existing genome
- Writing DNA Building a new genome from the ground up

Design and synthesis of a minimal bacterial genome

- Reading DNA Sequencing and decoding genomes
- Editing DNA Making targeted modifications to an existing genome
- Writing DNA Building a new genome from the ground up

DNA Sequencing – a biological revolution

Human Genome (2003): 13 years, \$3 Billion

Personal Genomics (2009): 1 month, \$48,000

1 Million bp (2012):2-3 weeks, \$199

Whole Genome (2022): \$350

Sequencing genomes using ancient DNA

2021: 1.2 Million year old DNA sample!

(Beth Shapiro's lab at UCSC)

Ancient Neanderthal DNA sequencing as a tool to understand our past

Cel

A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing

Richard E. Green,^{1,*} Anna-Sapfo Malaspinas,² Johannes Krause,¹ Adrian W. Briggs,¹ Philip L.F. Johnson,³ Caroline Uhler,⁴ Matthias Meyer,¹ Jeffrey M. Good,¹ Tomislav Maricic,¹ Udo Stenzel,¹ Kay Prüfer,¹ Michael Siebauer,¹ Hernán A. Burbano,¹ Michael Ronan,⁵ Jonathan M. Rothberg,⁶ Michael Egholm,⁵ Pavao Rudan,⁷ Dejana Brajković,⁸ Željko Kućan,⁷ Ivan Gušić,⁷ Mårten Wikström,⁹ Liisa Laakkonen,¹⁰ Janet Kelso,¹ Montgomery Slatkin,² and Svante Pääbo¹

ARTICLE

Genetic history of an archaic hominin group from Denisova Cave in Siberia

David Reich^{1,2}*, Richard E. Green^{3,4}*, Martin Kircher³*, Johannes Krause^{3,5}*, Nick Patterson²*, Eric Y. Durand⁶*, Bence Viola^{3,7}*, Adrian W. Briggs^{1,3}, Udo Stenzel³, Philip L. F. Johnson³, Tomis lav Maricic³, Jeffrey M. Good⁹, Tomas Marques-Bonet^{10,11}, Can Alkan¹⁰, Qiaomei Ru^{2,12}, Swapan Mallick^{1,2}, Heng Li², Matthias Meyer³, Evan E. Eichler¹⁰, Mark Stoneking³, Michael Richards^{7,13}, Sahra Talamo⁷, Michael V. Shunkov^{1,4}, Anatoli P. Derevianko^{1,4}, Jean-Jacques Hublin⁷, Janet Kelso³, Montgomery Slatkin⁶ & Svante Pääbo³

DNA Sequencing Methods: Sanger sequencing

Fluorescent dyes (fluorophores) attached to nucleotides made this human genome project possible

DNA Sequencing Methods: Illumina "cluster sequencing"

Voelkerding et al 2009. Clin Chem.

 Microscope images of slide after each round of nucleotide additions

Massively parallel sequencing

DNA Sequencing Methods: PacBio "single-molecule real-time"

Each well has a little video camera placed above it

Fluorophore emits light at nucleotide incorporation

As nucleotides are added, video of the fluorescent nucleotide being added is captured

DNA Sequencing Methods: PacBio "single-molecule real-time"

Circular Consensus Sequencing Reads (CCS Reads) are produced when polymerase goes around the circle ≥3 times

DNA Sequencing Methods: Nanopore sequencing

E. coli channel protein embedded in membrane nanopore

Double-stranded DNA is unwound and fed through a channel

Change in voltage across membrane measured by flow of ions through channel

The extent to which **DNA blocks the flow of ions** is the output signal

Illumina sequencing platforms, costs, and outputs

	Clusters (millions)	Max Read- Length	Max Output (Gb)	Cost	Bacterial Genomes	Eukaryotic Transcriptomes	Human Genomes
MiniSeq	25	150 bp	7.5	\$1,500	15	1.5	0.08
MiSeq	25	300 bp	15	\$1,530	30	3	0.17
NextSeq 500 (mid)	130	150 bp	40	\$1,650	80	8	0.43
NextSeq 500 (high)	400	150 bp	120	\$4,240	240	24	1.33
HiSeq 4000 Lane	300	150 bp	90	\$1,925	180	18	1
NovaSeq S4 Lane	2500	150 bp	750	\$6,000	1500	150	8.33

Oxford Nanopore Sequencing Platforms

SmidgION

-Will fill up your phone in seconds

Flongle

- -Low-throughput (126 channels)
- -Cheap
- -Long queue

MinION

- -Mid-throughput 30 Gb per flow cell 7-12 million reads
- ~\$1000 starter kit
- ~\$900 per flow cell after

GridION

-Mid/high-throughput 5 x Flow Cells

PromethION

-High-throughput 24/48 x Flow Cells

What does DNA sequence data look like?

FASTQ Format

@sequence_name sequence

+

base quality_values

Voelkerding et al 2009. Clin Chem.

FASTQ Format

```
@ERR2000666.1 1 length=60
CCCTTCGCTGGGCAGCGCAGTACTGGCTGCCGATGGTGCAGGTCACGCCGCGCGGGATGT
+ERR2000666.1 1 length=60
I]]]]]]]]]GIBHI]ICI]]]]]HIDHIIICDIIDIIDI]]ICIHIHFIFGEFD?@C>
@ERR2000666.2 2 length=152
+ERR2000666.2 2 length=152
@ERR2000666.3 3 length=152
+ERR2000666.3 3 length=152
@ERR2000666.4 4 length=43
TCGTGGTGCTGGATCATCTTGGTGAGGAAGGCCTGGTCGAACG
+ERR2000666.4 4 length=43
```

The National Center for Bioinformatic Information (NCBI)

GenBank – NCBI database search tool

• ftp – Easy download for smaller items (e.g., assemblies/annotations)

• sra – Bulk download for sequencing read datasets

Other Data repositories

- EBI Ensembl, European Bioinformatics Institute
- DDBJ DNA Data Bank of Japan
- Phytozome JGI Genome Portal for plants
- EnsemblPlants Database containing. plant genomes
- <u>Dryad</u> Digital Object Identifier permanent data storage
- FigShare Digital Object Identifier permanent data storage
- <u>GitHub</u> Limited permanent data storage (mostly for version control)