

Dr Steven Newhouse, Technical Director London e-Science Centre

Department of Computing, Imperial College London

- Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed.
- The overall motivation for "Grids" is to facilitate the routine interactions of these resources in order to support large-scale science and engineering.

From Bill Johnston 27 July 01

- A biochemist exploits 10,000 computers to screen 100,000 compounds in an hour;
- A biologist combines a range of diverse and distributed resources (databases, tools, instruments) to answer complex questions;
- 1,000 physicists worldwide pool resources for petaop analyses of petabytes of data
- Civil engineers collaborate to design, execute, & analyze shake table experiments

From Steve Tuecke 12 Oct. 01

Convergence between e-Science and e-Business (contd.)

- Climate scientists visualize, annotate, & analyze terabyte simulation datasets
- An emergency response team couples real time data, weather model, population data
- A multidisciplinary analysis in aerospace couples code and data in four companies
- A home user invokes architectural design functions at an application service provider

From Steve Tuecke 12 Oct. 101

- A Single System Imterface
- Transparent wide-area access to large data banks
- Transparent wide-area access to applications on heterogeneous platforms
- Transparent wide-area access to processing resources
- Security, certification, single sign-on authentication
 - Grid Security Infrastructure,
- Data access, Transfer & Replication
 - GridFTP, Giggle
- Computational resource discovery, allocation and process creation
 - GRAM, Unicore, Condor-G

- 1st Generation Grid
 - Computationally intensive, file access/transfer
 - Bag of various heterogeneous protocols & toolkits
 - Recognises internet, Ignores Web
 - Academic teams
- · 2nd Generation Grid

We are here!

- Data intensive -> knowledge intensive
- Services-based architecture
- Recognises Web and Web services
- Global Grid Forum
- Industry participation

- Jini: Look-up Server
- CORBA
- · Web Services
 - Open Grid Services Architecture in the Grid community

The Future... Web Services

- W3C standardization; Microsoft, IBM, Sun, others
- WSDL: Web Services Description Language
 - Interface Definition Language for Web services
- SOAP: Simple Object Access Protocol
 - XML-based RPC protocol; common WSDL target
- WS-Inspection
 - Conventions for locating service descriptions
- UDDI: Universal Description, Discovery, & Integration
 - Directory for Web services

- Dvnamic Services
 - Created & destroyed on user demand
- Stateful Services
 - Expose internal service state
- Flexible Service Discovery Infrastructures
 - Federate local service registries
 - Build Virtual Organisations

Open Grid Services Architecture (OGSA)

- Utilise standard Web services infrastructures
- · Building on current Globus Toolkit:
 - Grid service: semantics for service interactions
 - Management of transient instances (& state)
 - Factory, Registry, Discovery, other services
 - Reliable and secure transport
- Multiple hosting targets: J2EE, .NET, "C", ...
- · Service orientated architecture enables resource virtualisation
- Delivery via open source Globus Toolkit 3.0
 - ⇒ Leverage GT experience, code, mindshare

Open Grid Services Infrastructure (OGSI)

- - Grid Standards Organisation
 - Modelled on the IETF
 - Mixture of Research & Working Groups
 - Further details www.gridforum.org
- · Grid Services Specification (v1.0),
 - Produced by the OGSI Working Group
 - Entered 60 day comment period March 2003

Grid Service Specification

- Define minimal set of ports & behaviours:
 - GridService
 - HandlerResolver
 - Notification Source, Sink & Subscription ports
 - Factory
 - Registration
- · Other issues to be defined elsewhere
 - Exposing an EJB as a Grid Service
 - Security...

Service Data Elements (SDE)

- · Describes the public internal service state
- · All SDE's have attributes to define:
 - goodFrom
 - goodUntil
 - availableUntil
 - User definable extensibility elements
- Examples
 - Current CPU load, available memory, etc

Factory Interface within the GSS

- Creates a new Grid service instance
 - Reliable creation (once-and-only-once)
- Service-specific creation parameters:
 - Request 16 processors for 4 hours
 - Temporary disk space of 500Mb
- Returns a Grid Service Handle (GSH)
 - A globally unique URL
 - Uniquely identifies the instance for all time

- Grid is global distributed computing by controlled sharing of resources within & between organisations.
- · Strong application drivers & industrial support.
- · The supporting technology is emerging
- · Open Grid Services Architecture
 - Build on industrial standards
 - Provide the infrastructure for utility & autonomic computing
- ICENI: Open and extensible framework to explore Grid infrastructures

45

Moving towards Utility Computing

Ultimate vision of the Grid is that computing power is a utility available on demand such as electricity.

- Virtualise & expose resource as services
- · Define interaction through contracts / SLA's
- · Secure wide area authentication scheme
- · Buy and sell services computational markets
- Describe services and capabilities ontologies
- Enables Autonomic Computing & Semantic Grid

4

Acknowledgements

- · Director: Professor John Darlington
- · Technical Director: Dr Steven Newhouse
- · Research Staff:
 - Anthony Mayer, Nathalie Furmento
 - Stephen McGough, James Stanton
 - Yong Xie, William Lee
 - Marko Krznaric, Murtaza Gulamali
 - Asif Saleem, Laurie Young, Gary Kong
- Support Staff:
 - Keith Sephton, Oliver Jevons, Sue Brookes
- · Contact:
 - http://www.lesc.ic.ac.uk/
 - e-mail: lesc@ic.ac.uk

7