Course: B. Tech COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Subject: Optimization Techniques Subject Code: ETCS-305

Semester: V

Time: 03 Hours Max Marks: 70

Instructions to the Students:

- 1. This Question paper consists of two Sections. All sections are compulsory.
- 2. Section A comprises 10 questions of short answer type. All questions are compulsory. Each question carries 2 marks.
- Section B comprises 8 long answer type questions out of which students must attempt any
 Each question carries 10 marks.
- 4. Do not write anything on the question paper.

	이 많은 그런 과다입니다. 사용하다는 말맞다면서 그리다 말한 목 문화를 내용하셨다면서 그렇게 그렇게 들어가는 그런 하게 이 경기에 가지했다면서 되었다.	
Q. No.	SECTION -A (SHORT ANSWER TYPE QUESTIONS)	Marks
1. a	How do you solve a maximization problem as a minimization problem?	(2)
, b	_State the Kuhn-Tucker conditions.	(2)
c	Discuss the matrix form of Linear Programming Problem.	(2)
1 d/	Discuss the characteristics of Canonical Form of LPP.	(2)
9	List down the steps for solving Assignment problem using Hungarian	(2)
f	Method. Discuss the operating characteristics of queuing system.	(2)
g	Discuss in detail the principal of Optimality.	(2)
h	Discuss Integer Programming Problems (IPP) also describe the methods for	(2)
j	solving the IPP. What is the role of simulation in optimization? Discuss the types of	(2)
	simulation. Discuss the application, advantage and limitation of the simulation.	(2)
	SECTION -B (LONG ANSWER TYPE QUESTIONS)	
2, a)	State the various methods available for solving a multivariable optimization problem	(5)
by	with equality constraints. State five engineering applications of optimization.	(5)

(10)

Solve the following optimization problem using Dual Simplex Method:

Min $Z = 5x_2 + 6x_3$

Subject to, $x_1 + x_2 \ge 2$,

$$4x_1+x_2\geq 4,$$

 $x_1, x_2 \geq 0$

Find the optimum solution of following transportation problem using North West Corner (10)Rule

	D_1	D_2	D_3	Supply
S_1	- 4	8	8	76
S_2	16	24	16	82
S_3	8	16	24	77
Demand	72	102	41	

Find the Optimum Integer Solution to the following IPP.

$$\begin{aligned} Max & Z = x_1 + x_2 \\ Subject & to & 3x_1 + 2x_2 \le 5 \end{aligned}$$

$$x_2 \leq 2$$

 $x_2 \le 2$ $x_1, x_2 \ge 0$ and x_1, x_2 are integers

A sample of 100 arrivals of a customer at a retail sales depot is according to the following distribution.

Time between arrival (Minutes)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Frequency	2	6	10	25	20	14	10	7	4	2

A study of the time required to service customers by adding up the bills, receiving payments and placing packages, yields the following distribution.

Time between Service (Minutes)	0.5	1.0	1.5	2.0	2.5	3.0
Frequency	12	21	36	19	7	5

Estimate the average percentage of customer waiting time and average percentage of idle time of the server by simulation for the next 10 arrivals.

7. Use two-phase simplex method to solve the following LPP

(10)

$$Max Z = 5x_1 + 3x_2$$

 $Subject \ to \ 2x_1 + x_2 \le 1$
 $x_1 + 4x_2 \ge 6$
 $x_1, x_2 \ge 0$

- Arrivals at a telephone booth are considered to be Poisson, with an average time of 10 minutes between one arrival and the next. The length of a phone call is assumed to be distributed exponentially with average time per call equal to 3 minutes.
 - (a) What is the average length of the queue that forms from time to time?
 - (b) The telephone department will install a second booth when convinced that an arrival would have to wait at least 3 minutes for the phone. By how much time must the flow of arrivals be increased in order to justify a second booth?
 - (c) Estimate the fraction of a day that the phone will be in use.
 - (d) Find the average number of units in the system.
 - a) Describe in details the steps of Monte-Carlo Technique or Monte-Carlo Simulation.
 - b) Solve the following optimization problem using Dynamic programming:

? Max $Z = u_1.u_2.u_3$

Subject to,
$$u_1 + u_2 + u_3 = 10$$
, $u_1, u_2, u_3 \ge 0$

END OF PAPER