Chapitre 20

Espace Vectoriels

20	Espace Vectoriels	1
	20.2 Propriétés du 0, régularité	2
	20.10Espace vectoriel de référence	2
	20.11Transfert de structure	2
	20.16 Caractérisation des sous-espaces vectoriels	3
	20.22Propostion 20.22	3

20.2 Propriétés du 0, régularité

Propostion 20.2

Soit E un $\mathbb{K} - ev$. Pour tout $x \in E$:

- 1. $0_{\mathbb{K}}.x = 0_E$
- 2. pour tout $\lambda \in \mathbb{K}$, $\lambda . 0_E = 0_E$
- 3. (-1).x = -x
- 4. si $x \neq 0_E$,

$$\lambda.x = 0_E \Rightarrow \lambda = 0_{\mathbb{K}}$$

5. si $x \neq 0_{\mathbb{K}}$,

$$\lambda.x = 0_E \Rightarrow x = 0_E$$

- 1. $0_{\mathbb{K}}.x = (0_{\mathbb{K}} + 0_{\mathbb{K}}).x = 0_{\mathbb{K}}.x + 0_{\mathbb{K}}.x$. Donc $0_E = 0_{\mathbb{K}}.x$.
- 2. RAS.
- 3. $x + (-1).x = (1-1).x = 0_{\mathbb{K}}.x = 0_E$.
- 4. Par l'absurde, si $\lambda \neq 0_{\mathbb{K}}$, de $\lambda x = 0_E$ on tire $\lambda^{-1}\lambda x = \lambda^{-1}x0_E$, soit $x = 0_E$. Absurde.
- 5. Idem.

20.10 Espace vectoriel de référence

Propostion 20.10

- 1. \mathbb{K} est un espace vectoriel sur lui-même.
- 2. Plus généralement, soit E un espace vectoriel sur \mathbb{K} et F un ensemble quelconque. Alors l'ensemble des fonctions E^F est un espace vectoriel sur \mathbb{K} .
- 1. RAF.
- 2. Soit E un $\mathbb{K} ev$ et F un ensemble quelconque. E^F est un groupe abélien (cf. chap 10). Le produit externe est défini par :

$$\mathbb{K} \times E^F \longrightarrow E^F$$
$$(\lambda, f) \longmapsto (\lambda. f, x \mapsto \lambda. f(x))$$

Vérification facile.

20.11 Transfert de structure

Lemme 20.11

Soit E un espace vectoriel sur \mathbb{K} , G un ensemble quelconque et $\varphi: E \to G$ une bijection. Alors en définissant sur G une loi interne et un loi externe par

$$\forall (x, y, \lambda) \in G \times G \times \mathbb{K}, x + y = \varphi(\varphi^{-1}(x) + \varphi^{-1}(y)) \text{ et } \lambda.x = \varphi(\lambda \varphi^{-1}(x)),$$

on munit G d'une structure d'espace vectoriel.

Vérifions les axiomes.

— LCI :

$$(x+y)+=\varphi(\varphi^{-1}(x+y)+\varphi(z))$$

$$=\varphi(\underbrace{\varphi^{-1}(x)+\varphi^{-1}(y)+\varphi^{-1}(z)}_{\text{associativit\'e dans }E})$$

$$=x+(y+z)$$

$$x+\varphi(0)=\varphi(\varphi^{-1}(x)+0)=x\;(\varphi\;\text{neutre})$$

$$x+\varphi(-\varphi^{-1}(x))=\varphi(\varphi^{-1}(x)-\varphi^{-1}(x))=\varphi(0)$$

$$x+y=y+x$$

$$\lambda.(\mu.x) = \varphi(\lambda\varphi^{-1}(\mu x))$$

$$= \varphi(\lambda\mu\varphi^{-1}(x))$$

$$= (\lambda\mu).x$$

$$1.x = \varphi(1.\varphi^{-1}(x))$$

$$= \varphi \circ \varphi^{-1}(x)$$

$$= x$$

$$(\mu + \lambda).x = \varphi((\mu + \lambda).\varphi^{-1}(x))$$

$$= \varphi(\mu\varphi^{-1}(x) + \lambda\varphi^{-1}(x))$$

$$= \varphi(\mu\varphi^{-1}(x)) + \varphi(\lambda\varphi^{-1}(x))$$

$$= \mu.x + \lambda.x$$

De même pour la dernière.

20.16 Caractérisation des sous-espaces vectoriels

Théorème 20.16

Soit E un \mathbb{K} -espace vectoriel. Un ensemble F est un sous-espace vectoriel de E si et seulement si

- 1. $F \subset E$;
- 2. $0 \in F$;
- 3. F est stable par combinaisons linéaire, ce qui équivaut à

$$\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, \lambda x + y \in F.$$

 \Rightarrow

- 1. Oui.
- 2. F est un sous-groupe de E donc $0_E \in F$.
- 3. Pour tout $(x,y) \in F^2$, $\lambda \in \mathbb{K}$, $\lambda . x \in F$ et $y \in F$. Donc $\lambda x + y \in F$.

 \Leftarrow

D'après (3) avec :

- $y = 0 : \times \text{ est LCE}$.
- $\lambda = 1 : + \text{ est LCI}.$

 $0 \in F$ et $\lambda = -1$, F est un sous-groupe, donc un groupe abélien. RAF pour les 4 dernières propriétés.

20.22 Propostion 20.22

Propostion 20.22

Soit E un K-espace vectoriel, D_1 et D_2 deux droites vectorielles. Alors soit $D_1 \cap D_2 = \{0_E\}$, soit $D_1 = D_2$.

Par définition, $0_E \in D_1 \cap D_2$.

Supposons $D_1 \cap D_2 \neq \{0_E\}$ et fixons $x \in D_1 \cap D_2$ avec $x \neq 0_E$.

Soit $v \in D_1$. Par définition, on écrit $D_1 = \mathbb{K} x_1$ et $D_2 = \mathbb{K} x_2$. On a donc $v = \alpha x_1$, $x = \lambda_1 x_1 = \lambda_2 x_2$ avec $\lambda_1 \neq 0, \lambda_2 \neq 0$. Ainsi:

$$v = \alpha \lambda_1^{-1} \lambda_1 x_1 = \alpha \lambda_1^{-1} x = \alpha \lambda_1^{-1} \lambda_2 x_2 \in D_2$$

Donc $D_1 \subset D_2$ et par symétrie, $D_1 = D_2$.