WHAT IS CLAIMED IS:

1	1. A process for rendering a manufactured article identifiable		
2	comprising adding to said article during its manufacture or coating upon said article		
3	a quantity of at least one taggant selected from the group consisting of up		
4	converting, down-converting, and up- and down-converting metal oxid		
5	nanoparticles having an average size of less than 500 nm, said quantity sufficien		
6	upon illumination by an exciting energy source to generate an emission detectable		
7	against a background, said emission having a wavelength different from the		
8	wavelength absorbed by the taggant.		
1	2. The process of claim 1, wherein said metal oxid		
2	nanoparticles are mixed metal oxide nanoparticles.		
1	3. The process of claim 1, wherein said nanoparticles have a		
2	average size of less than 200 nm.		
1	4. The process of claim 1, wherein said nanoparticles have a		
2	average size of less than 100 nm.		
1	5. The process of claim 2, wherein said mixed metal oxid		
2	nanoparticles comprise a plurality of phases of metal oxide of differing composition		
1	6. The process of claim 1, wherein said nanoparticles contain		
2	luminescent centers comprising at least one transition metal or rare earth metal		
3	dopant in a metal oxide matrix.		
1	7. The process of claim 2, wherein said nanoparticles contain		
2	luminescent centers comprising at least one transition metal or rare earth metal		
3	dopant in a metal oxide matrix.		

l	8.	The process of claim 6, wherein at least one of said dopants		
2	is one selected fro	m the group consisting of Yb, Eu, Er, Tm, Gd, U, Pr, Ce, Mn,		
3	Zn, Ru, Fe, Co, a	nd Cr.		
l	9.	The process of claim 1, wherein at least a portion of said		
2	nanoparticles comp	prise yttria doped with one or more transition or rare earth dopant		
3	metals.			
	10			
l •	10.	The process of claim 1, wherein at least two different		
2	populations of nanoparticles are employed, each population containing nanoparticles			
3	exhibiting a differ	ent emission than at least one other population of nanoparticles.		
l	11.	An article prepared by the process of claim 1.		
	10			
L	12.	An article prepared by the process of claim 2.		
ı	. 12	An entire mannered by the manner of alaims A		
L	13.	An article prepared by the process of claim 4.		
1	14.	An article prepared by the process of claim 6.		
L	17.	An article prepared by the process of claim o.		
I	15.	An article prepared by the process of claim 10.		
	10.	im action propaged by the process of claim 10.		
l	16.	The article of claim 10 which is a metal or metal alloy.		
		· · · · · · · · · · · · · · · · · · ·		
l ·	17.	The article of claim 10 which comprises a glass or ceramic		
2	material.			
		•		
	18.	The article of claim 10 which comprises a polymer.		
	•			
l	19.	A process for identifying a taggant-laden article, comprising		
2	exp	osing an article prepared by the process of claim 1 with an energy		
3	-	by said nanoparticles and causing said nanoparticles to emit light		
1	energy as a result of said exposing.			

5	detecting one or more wavelengths of emission of said nanoparticles,			
6	and comparing detected emission to emission expected of an article containing said			
7	nanoparticles.			
1	20. The process of claim 19, wherein said nanoparticles have an			
2	average particle size of less than 100 nm, and comprise at least one metal oxide			
3	containing transition or rare earth metal doped luminescent centers.			
1	21. The process of claim 20, wherein said nanoparticles are			
2	multiphase nanoparticles containing at least two phases of metal oxides of different			
3	compositions.			
1	22. The process of claim 19, wherein said nanoparticles comprise			
2	at least two different populations of nanoparticles are employed, each population			
3	containing nanoparticles exhibiting a different emission than at least one other			
4	population of nanoparticles.			
1	23. The process of claim 19, wherein said energy source			
2	comprises infrared light, ultraviolet light, or both infrared and ultraviolet light, and			
3	said nanoparticles emit visible light.			
1	24. The process of claim 23, wherein said energy source			
2	comprises one or more lasers.			