UBER SUPPLY DEMAND GAP ANALYSIS

This project analyzes Uber ride requests to uncover when and where demand exceeds supply.

We performed:

- Data cleaning in Excel
- SQL-based analysis for aggregations
- Exploratory Data Analysis (EDA) in Python

The focus is to identify peak hours, common cancellation patterns, and gaps in driver availability by location.

PROBLEM STATEMENT

Uber often faces supply shortages during peak hours, resulting in ride cancellations or "No Cars Available" status.

This project aims to identify:

- At what times demand outpaces supply
- Which pickup points face the most issues
- How driver unavailability affects operations

Goal: Recommend actionable steps to reduce cancellations and improve customer experience.

CHART REQUEST BY HOUR

Fig: 1

CHART REQUEST BY PICKUPOINT

Fig:2

CHART TRIP STATUS DISTRIBUTION

Fig:3

CHART BY CANCELLED/NO CARS OVER TIME

Fig:4

CHART BY TRIP STATUS BY PICKUPPOINT(GROUPED BAR CHART)

Fig:5

BUSINESS SOLUTIONS & CONCLUSION

1}Boost Driver Availability During Peak Hours

Deploy more drivers during 7–9 AM and 5–7 PM, when demand peaks, using historical request data for planning.

2}Balance Pickup Point Demand

Assign standby drivers to high-cancellation areas (City or Airport) and rebalance them dynamically based on demand.

3}Enhance Driver Engagement

Send real-time alerts and offer incentives to drivers near high-demand zones.

4}Minimize Unfulfilled Requests

Improve assignment algorithms and monitor frequent no-show zones to reduce "No Cars Available" issues.