- 1.30 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- 3.2 2. Sea $t = \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}) + \epsilon;$ t, un variable aleatoria que toma valores en $\mathbb{R};$ \boldsymbol{x} , un vector de $\mathbb{R}^{in};$ $\boldsymbol{\phi} = (1, \phi_1(\boldsymbol{x}), ..., \phi_{M-1}(\boldsymbol{x}))^T$ con $\phi_i(\cdot)$ (i = 1, ..., M-1) un conjunto de M-1 transformaciones (no necesariamente lineales) escalares sobre $\mathbb{R}^{in};$ $\boldsymbol{w} = (w_0, w_1, ..., w_{M-1})^T,$ un vector de $\mathbb{R}^M;$ y, finalmente, ϵ una variable aleatoria distribuida según una gaussiana $\mathcal{N}(0, \beta^{-1})$. Sea $(\boldsymbol{x}_1, ..., \boldsymbol{x}_N)$ y $(t_1, ..., t_N)$ un conjunto de valores de \boldsymbol{x} y t obtenidos a partir de las distribuciones descritas por todo lo anterior.

Defínase Φ como la matriz de dimensiones $N \times M$ en que la fila j es igual a $(1, \phi_1(\boldsymbol{x}_j), ..., \phi_{M-1}(\boldsymbol{x}_j))$.

Demuestre que la matriz $\Phi(\Phi^T\Phi)^{-1}\Phi^T$ proyecta cualquier vector v en el espacio generado por los vectores columna de ϕ . Utilice este resultado para probar que la solución de mínimos cuadrados dada por $w=(\Phi^T\Phi)^{-1}\Phi^T t$ corresponde a una proyección ortogonal del vector t sobre la variedad (manifold en inglés) lineal S definida por los vectores columna de Φ , $\psi_k=(\phi_k(\boldsymbol{x}_1),...,\phi_k(\boldsymbol{x}_N))$ como se muestra en la Fig. 1.

Figura 1:

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen intersección nula.

2.33 1. Considere la distribución de probabilidad conjunta p(x, y) definida por las distribuciones marginal y condicional siguientes:

$$p(oldsymbol{x}) = \mathcal{N}(oldsymbol{x} | oldsymbol{\mu}, oldsymbol{\Lambda}^{-1}) \ p(oldsymbol{y} | oldsymbol{x}) = \mathcal{N}(oldsymbol{y} | oldsymbol{A} oldsymbol{x} + oldsymbol{b}, oldsymbol{L}^{-1})$$

donde μ y Ax + b son las medias de la distribución gaussiana, y Λ y L son las matrices de precisión. Utilice la técnica de completar el cuadrado para obtener una expresión analítica de la media y covarianza de p(x|y).

3.11 2. Utilice la identidad matricial

$$({m M} + {m v}{m v}^T)^{-1} = {m M}^{-1} - rac{({m M}^{-1}{m v})({m v}^T{m M}^{-1})}{1 + {m v}^T{m M}^{-1}{m v}}$$

y suponga que

$$\mathbf{S}_{N+1}^{-1} = \mathbf{S}_{N}^{-1} + \beta \boldsymbol{\phi}_{N+1} \boldsymbol{\phi}_{N+1}^{T}$$
 (1)

para demostrar que la incertidumbre de un modelo predictivo bayesiano construido a partir de N observaciones, y dada por

$$\sigma_N^2(oldsymbol{x}) = rac{1}{eta} + oldsymbol{\phi}(oldsymbol{x})^T oldsymbol{S}_N oldsymbol{\phi}(oldsymbol{x})$$
 (2)

(con la interpretación habitual de los símbolos utilizados en el texto base) satisface que $\sigma_{N+1}^2(\boldsymbol{x}) \leq \sigma_N^2(\boldsymbol{x})$.

4.8 3. Sabiendo que en un problema de clasificación con dos clases

$$p(\mathcal{C}_1|\boldsymbol{x}) = \frac{1}{1 + \exp(-\ln\frac{p(\boldsymbol{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\boldsymbol{x}|\mathcal{C}_2)p(\mathcal{C}_2)})} = \frac{1}{1 + \exp(-a)} = \sigma(a)$$
(3)

y suponiendo un modelo generativo en el que las verosimilitudes (likelihoods) de las dos clases vienen dadas por dos gaussianas de medias μ_1 y μ_2 , pero la misma varianza Σ , demuestre que

$$p(\mathcal{C}_1|\boldsymbol{x}) = \sigma(\boldsymbol{w}^T\boldsymbol{x} + w_0)$$
 (4)

 $\mathrm{con}\ \boldsymbol{w} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\ \mathrm{y}$

$$w_0 = -rac{1}{2}m{\mu}_1^Tm{\Sigma}^{-1}m{\mu}_1 + rac{1}{2}m{\mu}_2^Tm{\Sigma}^{-1}m{\mu}_2 + \lnrac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}.$$
 (5)

- **2.8** 1. Considere dos variables x e y con distribución de probabilidad conjunta p(x,y). Demuestre que:
 - $\blacksquare \mathbb{E}[x] = \mathbb{E}_y[\mathbb{E}_x[x|y]]$
 - $var[x] = \mathbb{E}_{y}[var_{x}[x|y]] + var_{y}[\mathbb{E}_{x}[x|y]]$

donde $\mathbb{E}_x[x|y]$ representa el valor esperado de x asumiendo la distribución de probabilidad condicionada p(x|y), y una notación equivalente se utiliza para la varianza condicional.

3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{L}^{-1} + \boldsymbol{A}\boldsymbol{\Lambda}^{-1}\boldsymbol{A}^T)$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen interesección nula.

18SR

EXAMEN DE RESERVA NO DISPONIBLE

El contenido de este examen de reserva no está disponible, conforme al acuerdo del Consejo de Gobierno de la UNED de 11 de noviembre de 2015, en el que se acordó:

- No publicar los exámenes de reserva no utilizados en la valija virtual de centros nacionales.

- 1.30 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- 3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{T})$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.10 3. Considere un modelo generativo de clasificación de K clases definido por K probabilidades a priori $p(\mathcal{C}_k) = \pi_k$ y densidades de probabilidad del vector de características de entrada ϕ condicionadas a la clase $p(\phi|\mathcal{C}_k)$ dadas por distribuciones normales multi-variantes con la misma covarianza:

$$p(\boldsymbol{\phi}|\mathcal{C}_k) = \mathcal{N}(\boldsymbol{\phi}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

Suponga que se nos proporciona un conjunto de entrenamiento ϕ_n , t_n donde el subíndice n toma valores n=1,...,N y t_n es un vector binario de longitud K que utiliza la codificación uno-de-K (es decir, que sus componentes son $t_{nj} = I_{jk}$ si el patrón t_n pertenece a la clase C_k). Si asumimos que el conjunto de entrenamiento constituye una muestra independiente de datos de este modelo, entonces el estimador máximo-verosímil de las probabilidades a priori viene dado por

donde N_k es el número de patrones asignados a la clase C_k .

Demuestre que el estimador máximo-verosimil de la media de la distribución de la clase C_k viene dado por

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{n=1}^N t_{nk} oldsymbol{\phi}_n$$

y el de la matriz de covarianza, viene dado por

$$oldsymbol{\Sigma} = \sum_{k=1}^K rac{N_k}{N} oldsymbol{S}_k$$

con

$$oldsymbol{S}_k = rac{1}{N_k} \sum\limits_{n=1}^N t_{nk} (oldsymbol{\phi}_n - oldsymbol{\mu}_k) (oldsymbol{\phi}_n - oldsymbol{\mu}_k)^T$$

- 2.8 1. Considere dos variables x e y con distribución de probabilidad conjunta p(x,y). Demuestre que:
 - $\blacksquare \mathbb{E}[x] = \mathbb{E}_y[\mathbb{E}_x[x|y]]$
 - $var[x] = \mathbb{E}_{y}[var_{x}[x|y]] + var_{y}[\mathbb{E}_{x}[x|y]]$

donde $\mathbb{E}_x[x|y]$ representa el valor esperado de x asumiendo la distribución de probabilidad condicionada p(x|y), y una notación equivalente se utiliza para la varianza condicional.

3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{L}^{-1} + \boldsymbol{A}\boldsymbol{\Lambda}^{-1}\boldsymbol{A}^T)$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen interesección nula.

2.33 1. Considere la distribución de probabilidad conjunta p(x, y) definida por las distribuciones marginal y condicional siguientes:

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\boldsymbol{y}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}, \boldsymbol{L}^{-1})$$

donde μ y Ax + b son las medias de la distribución gaussiana, y Λ y L son las matrices de precisión. Utilice la técnica de completar el cuadrado para obtener una expresión analítica de la media y covarianza de p(x|y).

4.10 2. Considere un modelo generativo de clasificación de K clases definido por K probabilidades a priori $p(\mathcal{C}_k) = \pi_k$ y densidades de probabilidad del vector de características de entrada ϕ condicionadas a la clase $p(\phi|\mathcal{C}_k)$ dadas por distribuciones normales multi-variantes con la misma covarianza:

$$p(\boldsymbol{\phi}|\mathcal{C}_k) = \mathcal{N}(\boldsymbol{\phi}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

Suponga que se nos proporciona un conjunto de entrenamiento ϕ_n , t_n donde el subíndice n toma valores n=1,...,N y t_n es un vector binario de longitud K que utiliza la codificación uno-de-K (es decir, que sus componentes son $t_{nj}=I_{jk}$ si el patrón t_n pertenece a la clase \mathcal{C}_k). Si asumimos que el conjunto de entrenamiento constituye una muestra independiente de datos de este modelo, entonces el estimador máximo-verosímil de las probabilidades a priori viene dado por

$$\pi_k = \frac{N_k}{N}$$

donde N_k es el número de patrones asignados a la clase C_k .

Demuestre que el estimador máximo-verosimil de la media de la distribución de la clase C_k viene dado por

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum\limits_{n=1}^N t_{nk} oldsymbol{\phi}_n$$

y el de la matriz de covarianza, viene dado por

$$oldsymbol{\Sigma} = \sum\limits_{k=1}^K rac{N_k}{N} oldsymbol{S}_k$$

con

$$oldsymbol{S}_k = rac{1}{N_k} \sum_{n=1}^N t_{nk} (oldsymbol{\phi}_n - oldsymbol{\mu}_k) (oldsymbol{\phi}_n - oldsymbol{\mu}_k)^T$$

- 1.30 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- 3.2 2. Sea $t = \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}) + \epsilon;$ t, un variable aleatoria que toma valores en $\mathbb{R};$ \boldsymbol{x} , un vector de $\mathbb{R}^{in};$ $\boldsymbol{\phi} = (1, \phi_1(\boldsymbol{x}), ..., \phi_{M-1}(\boldsymbol{x}))^T$ con $\phi_i(\cdot)$ (i = 1, ..., M-1) un conjunto de M-1 transformaciones (no necesariamente lineales) escalares sobre $\mathbb{R}^{in};$ $\boldsymbol{w} = (w_0, w_1, ..., w_{M-1})^T,$ un vector de $\mathbb{R}^M;$ y, finalmente, ϵ una variable aleatoria distribuida según una gaussiana $\mathcal{N}(0, \beta^{-1})$. Sea $(\boldsymbol{x}_1, ..., \boldsymbol{x}_N)$ y $(t_1, ..., t_N)$ un conjunto de valores de \boldsymbol{x} y t obtenidos a partir de las distribuciones descritas por todo lo anterior.

Defínase Φ como la matriz de dimensiones $N \times M$ en que la fila j es igual a $(1, \phi_1(\boldsymbol{x}_j), ..., \phi_{M-1}(\boldsymbol{x}_j))$.

Demuestre que la matriz $\Phi(\Phi^T\Phi)^{-1}\Phi^T$ proyecta cualquier vector v en el espacio generado por los vectores columna de ϕ . Utilice este resultado para probar que la solución de mínimos cuadrados dada por $w=(\Phi^T\Phi)^{-1}\Phi^T t$ corresponde a una proyección ortogonal del vector t sobre la variedad (manifold en inglés) lineal S definida por los vectores columna de Φ , $\psi_k=(\phi_k(\boldsymbol{x}_1),...,\phi_k(\boldsymbol{x}_N))$ como se muestra en la Fig. 1.

Figura 1:

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen interesección nula.

- 2.8 1. Considere dos variables x e y con distribución de probabilidad conjunta p(x,y). Demuestre que:
 - $\bullet \ \mathbb{E}[x] = \mathbb{E}_y[\mathbb{E}_x[x|y]]$
 - $var[x] = \mathbb{E}_{y}[var_{x}[x|y]] + var_{y}[\mathbb{E}_{x}[x|y]]$

donde $\mathbb{E}_x[x|y]$ representa el valor esperado de x asumiendo la distribución de probabilidad condicionada p(x|y), y una notación equivalente se utiliza para la varianza condicional.

3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{L}^{-1} + \boldsymbol{A}\boldsymbol{\Lambda}^{-1}\boldsymbol{A}^T)$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen interesección nula.

- 1.32 1. Considere un vector x de variables aleatorias contínuas, que sigue una distribución de probabilidad dada p(x) y entropía asociada H[x]. Suponga que sobre el vector x se aplica una transformación lineal no singular que transforma x en y = Ax. Demuestre que la entropía correspondiente al vector y viene dada por H[y] = H[x] + ln|A|, donde |A| denota el determinante de A.
- 3.2 2. Sea $t = \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}) + \epsilon;$ t, un variable aleatoria que toma valores en $\mathbb{R};$ \boldsymbol{x} , un vector de $\mathbb{R}^{in};$ $\boldsymbol{\phi} = (1, \phi_1(\boldsymbol{x}), ..., \phi_{M-1}(\boldsymbol{x}))^T$ con $\phi_i(\cdot)$ (i = 1, ..., M-1) un conjunto de M-1 transformaciones (no necesariamente lineales) escalares sobre $\mathbb{R}^{in};$ $\boldsymbol{w} = (w_0, w_1, ..., w_{M-1})^T$, un vector de $\mathbb{R}^M;$ y, finalmente, ϵ una variable aleatoria distribuida según una gaussiana $\mathcal{N}(0, \beta^{-1})$. Sea $(\boldsymbol{x}_1, ..., \boldsymbol{x}_N)$ y $(t_1, ..., t_N)$ un conjunto de valores de \boldsymbol{x} y t obtenidos a partir de las distribuciones descritas por todo lo anterior.

Defínase Φ como la matriz de dimensiones $N \times M$ en que la fila j es igual a $(1, \phi_1(\boldsymbol{x}_i), ..., \phi_{M-1}(\boldsymbol{x}_i))$.

Demuestre que la matriz $\Phi(\Phi^T\Phi)^{-1}\Phi^T$ proyecta cualquier vector v en el espacio generado por los vectores columna de ϕ . Utilice este resultado para probar que la solución de mínimos cuadrados dada por $w=(\Phi^T\Phi)^{-1}\Phi^T t$ corresponde a una proyección ortogonal del vector t sobre la variedad (manifold en inglés) lineal S definida por los vectores columna de Φ , $\psi_k=(\phi_k(\boldsymbol{x}_1),...,\phi_k(\boldsymbol{x}_N))$ como se muestra en la Fig. 1.

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$.

Figura 1:

Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen interesección nula.

2.33 1. Considere la distribución de probabilidad conjunta p(x, y) definida por las distribuciones marginal y condicional siguientes:

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$

 $p(\boldsymbol{y}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}, \boldsymbol{L}^{-1})$

donde μ y Ax + b son las medias de la distribución gaussiana, y Λ y L son las matrices de precisión. Utilice la técnica de completar el cuadrado para obtener una expresión analítica de la media y covarianza de p(x|y).

3.11 2. Utilice la identidad matricial

$$({m M} + {m v}{m v}^T)^{-1} = {m M}^{-1} - rac{({m M}^{-1}{m v})({m v}^T{m M}^{-1})}{1 + {m v}^T{m M}^{-1}{m v}}$$

y suponga que

$$\boldsymbol{S}_{N+1}^{-1} = \boldsymbol{S}_{N}^{-1} + \beta \boldsymbol{\phi}_{N+1} \boldsymbol{\phi}_{N+1}^{T}$$
 (1)

para demostrar que la incertidumbre de un modelo predictivo bayesiano construido a partir de N observaciones, y dada por

$$\sigma_N^2(oldsymbol{x}) = rac{1}{eta} + oldsymbol{\phi}(oldsymbol{x})^T oldsymbol{S}_N oldsymbol{\phi}(oldsymbol{x})$$
 (2)

(con la interpretación habitual de los símbolos utilizados en el texto base) satisface que $\sigma_{N+1}^2(\boldsymbol{x}) \leq \sigma_N^2(\boldsymbol{x})$.

4.8 3. Sabiendo que en un problema de clasificación con dos clases

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp(-\ln\frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)})} = \frac{1}{1 + \exp(-a)} = \sigma(a)$$
(3)

y suponiendo un modelo generativo en el que las verosimilitudes (likelihoods) de las dos clases vienen dadas por dos gaussianas de medias μ_1 y μ_2 , pero la misma varianza Σ , demuestre que

$$p(\mathcal{C}_1|\boldsymbol{x}) = \sigma(\boldsymbol{w}^T\boldsymbol{x} + w_0)$$
 (4)

 $\mathrm{con}\ \boldsymbol{w} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\ \mathrm{y}$

$$w_0 = -rac{1}{2}m{\mu}_1^Tm{\Sigma}^{-1}m{\mu}_1 + rac{1}{2}m{\mu}_2^Tm{\Sigma}^{-1}m{\mu}_2 + \lnrac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}.$$
 (5)

- 1.30 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- 3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{T})$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.10 3. Considere un modelo generativo de clasificación de K clases definido por K probabilidades a priori $p(\mathcal{C}_k) = \pi_k$ y densidades de probabilidad del vector de características de entrada ϕ condicionadas a la clase $p(\phi|\mathcal{C}_k)$ dadas por distribuciones normales multi-variantes con la misma covarianza:

$$p(\boldsymbol{\phi}|\mathcal{C}_k) = \mathcal{N}(\boldsymbol{\phi}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

Suponga que se nos proporciona un conjunto de entrenamiento ϕ_n , t_n donde el subíndice n toma valores n=1,...,N y t_n es un vector binario de longitud K que utiliza la codificación uno-de-K (es decir, que sus componentes son $t_{nj} = I_{jk}$ si el patrón t_n pertenece a la clase C_k). Si asumimos que el conjunto de entrenamiento constituye una muestra independiente de datos de este modelo, entonces el estimador máximo-verosímil de las probabilidades a priori viene dado por

donde N_k es el número de patrones asignados a la clase C_k .

Demuestre que el estimador máximo-verosimil de la media de la distribución de la clase C_k viene dado por

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{n=1}^N t_{nk} oldsymbol{\phi}_n$$

y el de la matriz de covarianza, viene dado por

$$oldsymbol{\Sigma} = \sum_{k=1}^K rac{N_k}{N} oldsymbol{S}_k$$

con

$$oldsymbol{S}_k = rac{1}{N_k} \sum\limits_{n=1}^N t_{nk} (oldsymbol{\phi}_n - oldsymbol{\mu}_k) (oldsymbol{\phi}_n - oldsymbol{\mu}_k)^T$$

- **2.8** 1. Considere dos variables x e y con distribución de probabilidad conjunta p(x,y). Demuestre que:
 - $\blacksquare \mathbb{E}[x] = \mathbb{E}_y[\mathbb{E}_x[x|y]]$
 - $var[x] = \mathbb{E}_{y}[var_{x}[x|y]] + var_{y}[\mathbb{E}_{x}[x|y]]$

donde $\mathbb{E}_x[x|y]$ representa el valor esperado de x asumiendo la distribución de probabilidad condicionada p(x|y), y una notación equivalente se utiliza para la varianza condicional.

3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{L}^{-1} + \boldsymbol{A}\boldsymbol{\Lambda}^{-1}\boldsymbol{A}^T)$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (*convex hull*) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum\limits_{n} lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen intersección nula.

- 1.30 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- **3.2** 2. Sea $t = w^T \phi(x) + \epsilon$;

t, un variable aleatoria que toma valores en \mathbb{R} ;

x, un vector de \mathbb{R}^{in} ;

 $\phi = (1, \phi_1(\boldsymbol{x}), ..., \phi_{M-1}(\boldsymbol{x}))^T$ con $\phi_i(\cdot)$ (i=1,...,M-1) un conjunto de M-1 transformaciones (no necesariamente lineales) escalares sobre \mathbb{R}^{in} ; $\boldsymbol{w} = (w_0, w_1, ..., w_{M-1})^T$, un vector de \mathbb{R}^M ; y, finalmente, ϵ una variable aleatoria distribuida según una gaussiana $\mathcal{N}(0, \beta^{-1})$. Sea $(\boldsymbol{x}_1, ..., \boldsymbol{x}_N)$ y $(t_1, ..., t_N)$ un conjunto de valores de \boldsymbol{x} y t obtenidos a partir de las distribuciones descritas por todo lo anterior.

Defínase Φ como la matriz de dimensiones $N \times M$ en que la fila j es igual a $(1, \phi_1(\boldsymbol{x}_j), ..., \phi_{M-1}(\boldsymbol{x}_j))$.

Demuestre que la matriz $\Phi(\Phi^T\Phi)^{-1}\Phi^T$ proyecta cualquier vector v en el espacio generado por los vectores columna de ϕ . Utilice este resultado para probar que la solución de mínimos cuadrados dada por $w=(\Phi^T\Phi)^{-1}\Phi^T t$ corresponde a una proyección ortogonal del vector t sobre la variedad (manifold en inglés) lineal S definida por los vectores columna de Φ , $\psi_k=(\phi_k(\boldsymbol{x}_1),...,\phi_k(\boldsymbol{x}_N))$ como se muestra en la Fig. 1.

Figura 1:

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen intersección nula.

2.33 1. Considere la distribución de probabilidad conjunta p(x, y) definida por las distribuciones marginal y condicional siguientes:

$$p(oldsymbol{x}) = \mathcal{N}(oldsymbol{x} | oldsymbol{\mu}, oldsymbol{\Lambda}^{-1}) \ p(oldsymbol{y} | oldsymbol{x}) = \mathcal{N}(oldsymbol{y} | oldsymbol{A} oldsymbol{x} + oldsymbol{b}, oldsymbol{L}^{-1})$$

donde μ y Ax + b son las medias de la distribución gaussiana, y Λ y L son las matrices de precisión. Utilice la técnica de completar el cuadrado para obtener una expresión analítica de la media y covarianza de p(x|y).

3.11 2. Utilice la identidad matricial

$$(\boldsymbol{M} + \boldsymbol{v} \boldsymbol{v}^T)^{-1} = \boldsymbol{M}^{-1} - \frac{(\boldsymbol{M}^{-1} \boldsymbol{v})(\boldsymbol{v}^T \boldsymbol{M}^{-1})}{1 + \boldsymbol{v}^T \boldsymbol{M}^{-1} \boldsymbol{v}}$$

para demostrar que la incertidumbre de un modelo predictivo bayesiano construido a partir de N observaciones, y dada por

$$\sigma_N^2(\boldsymbol{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{S}_N \boldsymbol{\phi}(\boldsymbol{x})$$
 (1)

(con la interpretación habitual de los símbolos utilizados en el texto base) satisface que $\sigma_{N+1}^2(\boldsymbol{x}) \leq \sigma_N^2(\boldsymbol{x})$.

4.8 3. Sabiendo que en un problema de clasificación con dos clases

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp(-\ln\frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)})} = \frac{1}{1 + \exp(-a)} = \sigma(a)$$
 (2)

y suponiendo un modelo generativo en el que las verosimilitudes (likelihoods) de las dos clases vienen dadas por dos gaussianas de medias μ_1 y μ_2 , pero la misma varianza Σ , demuestre que

$$p(\mathcal{C}_1|\boldsymbol{x}) = \sigma(\boldsymbol{w}^T \boldsymbol{x} + w_0) \tag{3}$$

con
$$w = \Sigma^{-1}(\mu_1 - \mu_2)$$
 y
$$w_0 = -\frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_2^T \Sigma^{-1}\mu_2 + \ln \frac{p(C_1)}{p(C_2)}.$$
 (4)

- 1.30 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- 3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{T})$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.10 3. Considere un modelo generativo de clasificación de K clases definido por K probabilidades a priori $p(\mathcal{C}_k) = \pi_k$ y densidades de probabilidad del vector de características de entrada ϕ condicionadas a la clase $p(\phi|\mathcal{C}_k)$ dadas por distribuciones normales multi-variantes con la misma covarianza:

$$p(oldsymbol{\phi}|\mathcal{C}_k) = \mathcal{N}(oldsymbol{\phi}|oldsymbol{\mu}_k,oldsymbol{\Sigma})$$

Suponga que se nos proporciona un conjunto de entrenamiento ϕ_n , t_n donde el subíndice n toma valores n=1,...,N y t_n es un vector binario de longitud K que utiliza la codificación uno-de-K (es decir, que sus componentes son $t_{nj} = I_{jk}$ si el patrón t_n pertenece a la clase C_k). Si asumimos que el conjunto de entrenamiento constituye una muestra independiente de datos de este modelo, entonces el estimador máximo-verosímil de las probabilidades a priori viene dado por

donde N_k es el número de patrones asignados a la clase C_k .

Demuestre que el estimador máximo-verosimil de la media de la distribución de la clase C_k viene dado por

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{n=1}^N t_{nk} oldsymbol{\phi}_n$$

y el de la matriz de covarianza, viene dado por

$$oldsymbol{\Sigma} = \sum_{k=1}^K rac{N_k}{N} oldsymbol{S}_k$$

con

$$oldsymbol{S}_k = rac{1}{N_k} \sum\limits_{n=1}^N t_{nk} (oldsymbol{\phi}_n - oldsymbol{\mu}_k) (oldsymbol{\phi}_n - oldsymbol{\mu}_k)^T$$

- 1.32 1. Considere un vector x de variables aleatorias contínuas, que sigue una distribución de probabilidad dada p(x) y entropía asociada H[x]. Suponga que sobre el vector x se aplica una transformación lineal no singular que transforma x en y = Ax. Demuestre que la entropía correspondiente al vector y viene dada por $H[y] = H[x] + \ln |A|$, donde |A| denota el determinante de A.
- 3.2 2. Sea $t = \boldsymbol{w}^T \phi(\boldsymbol{x}) + \epsilon;$ t, un variable aleatoria que toma valores en $\mathbb{R};$ $\boldsymbol{x},$ un vector de $\mathbb{R}^{in};$

 $\phi = (1, \phi_1(\boldsymbol{x}), ..., \phi_{M-1}(\boldsymbol{x}))^T$ con $\phi_i(\cdot)$ (i = 1, ..., M-1) un conjunto de M-1 transformaciones (no necesariamente lineales) escalares sobre \mathbb{R}^{in} ; $\boldsymbol{w} = (w_0, w_1, ..., w_{M-1})^T$, un vector de \mathbb{R}^M ; y, finalmente, ϵ una variable aleatoria distribuida según una gaussiana $\mathcal{N}(0, \beta^{-1})$. Sea $(\boldsymbol{x}_1, ..., \boldsymbol{x}_N)$ y $(t_1, ..., t_N)$ un conjunto de valores de \boldsymbol{x} y t obtenidos a partir de las distribuciones descritas por todo lo anterior.

Defínase Φ como la matriz de dimensiones $N \times M$ en que la fila j es igual a $(1, \phi_1(\boldsymbol{x}_j), ..., \phi_{M-1}(\boldsymbol{x}_j))$.

Demuestre que la matriz $\Phi(\Phi^T\Phi)^{-1}\Phi^T$ proyecta cualquier vector v en el espacio generado por los vectores columna de ϕ . Utilice este resultado para probar que la solución de mínimos cuadrados dada por $w=(\Phi^T\Phi)^{-1}\Phi^T t$ corresponde a una proyección ortogonal del vector t sobre la variedad (manifold en inglés) lineal S definida por los vectores columna de Φ , $\psi_k=(\phi_k(\boldsymbol{x}_1),...,\phi_k(\boldsymbol{x}_N))$ como se muestra en la Fig. 1.

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen intersección nula.

Figura 1:

2.33 1. Considere la distribución de probabilidad conjunta p(x, y) definida por las distribuciones marginal y condicional siguientes:

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\boldsymbol{y}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}, \boldsymbol{L}^{-1})$$

donde μ y Ax + b son las medias de la distribución gaussiana, y Λ y L son las matrices de precisión. Utilice la técnica de completar el cuadrado para obtener una expresión analítica de la media y covarianza de p(x|y).

3.11 2. Utilice la identidad matricial

$$({m M} + {m v}{m v}^T)^{-1} = {m M}^{-1} - rac{({m M}^{-1}{m v})({m v}^T{m M}^{-1})}{1 + {m v}^T{m M}^{-1}{m v}}$$

para demostrar que la incertidumbre de un modelo predictivo bayesiano construido a partir de N observaciones, y dada por

$$\sigma_N^2(\boldsymbol{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{S}_N \boldsymbol{\phi}(\boldsymbol{x})$$
 (1)

(con la interpretación habitual de los símbolos utilizados en el texto base) satisface que $\sigma_{N+1}^2(x) \leq \sigma_N^2(x)$.

4.8 3. Sabiendo que en un problema de clasificación con dos clases

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp(-\ln\frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)})} = \frac{1}{1 + \exp(-a)} = \sigma(a)$$
 (2)

y suponiendo un modelo generativo en el que las verosimilitudes (likelihoods) de las dos clases vienen dadas por dos gaussianas de medias μ_1 y μ_2 , pero la misma varianza Σ , demuestre que

$$p(C_1|\boldsymbol{x}) = \sigma(\boldsymbol{w}^T \boldsymbol{x} + w_0)$$
(3)

$$\mathbf{con}\ \boldsymbol{w} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\ \mathbf{y}$$

$$w_0 = -\frac{1}{2} \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}. \tag{4}$$

- 2.8 1. Considere dos variables x e y con distribución de probabilidad conjunta p(x,y). Demuestre que:
 - $\blacksquare \mathbb{E}[x] = \mathbb{E}_y[\mathbb{E}_x[x|y]]$
 - $\qquad \quad \mathbf{var}[x] = \mathbb{E}_y[var_x[x|y]] + var_y[\mathbb{E}_x[x|y]]$

donde $\mathbb{E}_x[x|y]$ representa el valor esperado de x asumiendo la distribución de probabilidad condicionada p(x|y), y una notación equivalente se utiliza para la varianza condicional.

3.16 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(\boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{L}^{-1} + \boldsymbol{A}\boldsymbol{\Lambda}^{-1}\boldsymbol{A}^T)$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (*convex hull*) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen interesección nula.

- 1.30 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- 3.2 2. Sea $t = \boldsymbol{w}^T \phi(\boldsymbol{x}) + \epsilon;$ t, un variable aleatoria que toma valores en $\mathbb{R};$ \boldsymbol{x} , un vector de $\mathbb{R}^{in};$ $\phi = (1, \phi_1(\boldsymbol{x}), ..., \phi_{M-1}(\boldsymbol{x}))^T$ con $\phi_i(\cdot)$ (i = 1, ..., M-1) un conjunto de M-1 transformaciones (no necesariamente lineales) escalares sobre $\mathbb{R}^{in};$ $\boldsymbol{w} = (w_0, w_1, ..., w_{M-1})^T,$ un vector de $\mathbb{R}^M;$ y, finalmente, ϵ una variable aleatoria distribuida según una gaussiana $\mathcal{N}(0, \beta^{-1})$. Sea $(\boldsymbol{x}_1, ..., \boldsymbol{x}_N)$ y

tribuciones descritas por todo lo anterior.

Defínase Φ como la matriz de dimensiones $N \times M$ en que la fila j es igual a $(1, \phi_1(\boldsymbol{x}_j), ..., \phi_{M-1}(\boldsymbol{x}_j))$.

 $(t_1,...,t_N)$ un conjunto de valores de x y t obtenidos a partir de las dis-

Demuestre que la matriz $\Phi(\Phi^T\Phi)^{-1}\Phi^T$ proyecta cualquier vector v en el espacio generado por los vectores columna de ϕ . Utilice este resultado para probar que la solución de mínimos cuadrados dada por $w=(\Phi^T\Phi)^{-1}\Phi^T t$ corresponde a una proyección ortogonal del vector t sobre la variedad (manifold en inglés) lineal S definida por los vectores columna de Φ , $\psi_k=(\phi_k(\boldsymbol{x}_1),...,\phi_k(\boldsymbol{x}_N))$ como se muestra en la Fig. 1.

Figura 1:

4.1 3. Dado un conjunto de puntos $\{x_n\}$, podemos definir su envolvente convexa (convex hull) como el conjunto de todos los puntos x tales que

$$oldsymbol{x} = \sum_n lpha_n oldsymbol{x}_n$$

donde $\alpha_n \geq 0$ y $\sum_n \alpha_n = 1$. Considere un segundo conjunto de puntos \boldsymbol{y}_n y su envolvente convexa. Por definición, los dos conjuntos de puntos $\{\boldsymbol{x}_n\}$ y $\{\boldsymbol{y}_n\}$ serán linealmente separables si existe un vector $\hat{\boldsymbol{w}}$ y un escalar w_0 tales que para todo \boldsymbol{x}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{x}_n + w_0 > 0$, y para todo \boldsymbol{y}_n , $\hat{\boldsymbol{w}}^T\boldsymbol{y}_n + w_0 < 0$. Demuestre que si sus envolventes convexas tienen intersección no nula, entonces los dos conjuntos de puntos no pueden ser linealmente separables y vice versa: si son linealmente separables entonces sus envolventes convexas tienen intersección nula.