Lecture 3: Integral

Zhongjian Wang*

Abstract

Ito Integral, Ito Formula, Stratonovich Integral

1 Motivation and Definition

1.1 SDE of OU

Recall in last lecture, for OU process with coefficient γ , $\forall \tau \geq 0$, $X(t+\tau) - e^{-\gamma t}X(\tau)$ is independent of $(\omega : X(s), s \leq \tau)$,

Calculate drift:

$$E(X(t) - X(s)|X(s) = x) = (e^{-\gamma|t-s|} - 1)x,$$
(1.1)

$$a(s,x) = -\gamma x \tag{1.2}$$

Calculate diffusion:

$$E((X(t) - X(s))^{2} | X(s) = x) = 1 - e^{-2\gamma(t-s)} + (e^{-\gamma(t-s)} - 1)^{2} x^{2}$$
(1.3)

$$b^2(s,x) = 2\gamma \tag{1.4}$$

BTW, jump definition

$$\lim_{t \to s^+} \frac{1}{t - s} \int_{|y - x| > \epsilon} p(s, x; t, y) dy = \lim_{t \to s^+} \frac{1}{t - s} P(|X(t) - X(s)| > \epsilon |X(s) = x)$$
 (1.5)

$$\leq \lim_{t \to s^+} \frac{1}{t-s} \frac{E((X(t) - X(s))^2 | X(s) = x)}{\epsilon^2} = 0$$
 (1.6)

Over small time interval [s, t], using drift-diffusion information, we see that O-U is related to BM as (to leading order):

$$X(t) - X(s) = -\gamma X(s)(t - s) + \sqrt{2\gamma}(W(t) - W(s)),$$

where W(t) denotes BM; or in differential form:

$$dX = -\gamma X dt + \sqrt{2\gamma} dW.$$

^{*}Department of Statistics, University of Chicago

1.2 Integral Form of SDE

For general SDE of the form:

$$dX_t = a(t, X_t) dt + b(t, X_t) dW_t,$$

the integral equation is:

$$X_{t}(\omega) = X(t, \omega) = X_{t_{0}}(\omega) + \int_{t_{0}}^{t} a(s, X_{s}(\omega)) ds$$

$$+ \int_{t_{0}}^{t} b(s, X_{s}(\omega)) dW_{s}(\omega). \tag{1.7}$$

 dW_s is not a regular function, if we define $dW_t = \xi_t dt$, ξ_t white noise, it need some definition either on the integrability. So we consider in general:

$$I(f)(\omega) = \int_0^1 f(s, \omega) dW_s(\omega),$$

f is a random function of t (stochastic process). Naturally, one approximates:

$$I(f)(\omega) \approx \sum_{j=1}^{n} f_j [W_{t_{j+1}} - W_{t_j}],$$

for a partition $0 = t_1 < t_2 < \dots < t_{n+1} = 1$.

The issue is how to choose f_j . As both f_j and increment of BM are random, the product is difficult to handle in general ("coupled" or "correlated") unless there is some way to introduce decoupling!

Adapted (a.k.a. nonasnticipating) f: let A_t be a sequence of increasing σ -algebra such that W_t is measurable for each t > 0, or A_t contains all the events where we observe BM up to time t.

Suppose f is a step function:

$$f(t,\omega) = f_i(\omega), \ t \in [t_i, t_{i+1}].$$

We call f adapted if f_j 's are all A_{t_j} measurable or observable by events at or before time t_j . If f is not step function, define f as a limit (in the mean square sense) of such adapted step functions.

With such additional information on f_j , we can take $E[\cdot]$:

$$E(f_{j}[W_{t_{j+1}} - W_{t_{j}}]) = E(E(f_{j}[W_{t_{j+1}} - W_{t_{j}}]|A_{t_{j}}))$$

$$= E(f_{j}E([W_{t_{j+1}} - W_{t_{j}}]|A_{t_{j}})) = 0.$$
(1.8)

Also:

$$E(I(f)^{2}) = \sum_{j=1}^{n} E(f_{j}^{2} E([W_{t_{j+1}} - W_{t_{j}}]^{2} | A_{t_{j}}))$$

$$= \sum_{j=1}^{n} E(f_{j}^{2}) (t_{j+1} - t_{j}), \qquad (1.9)$$

which is a Riemann sum.

If f is a step function, $E(I(f)^2)$ is independent of time partition $\gamma = t_1, \dots, t_n$, given f is constant in each interval of γ

If f is not a step function, suppose $E(|f_n - f|^2) \to 0$, Ito **showed** that $I(f_n)$ has a unique limit, i.e. independent of time partition, defined as I(f), the Ito stochastic integral. Properties:

- I(f) is A_1 measurable, (1 is end time of integral), so it is a **r.v.** in $L^2(\Omega, \mathcal{A}_1, P)$;
- E(I(f)) = 0, $E(I(f)^2) = \int_0^1 E(f(s,\omega))^2 ds$.
- I(f) is linear in f.

Stochastic process: Now we de-freeze t consider an Ito integral defined on [0, t]:

$$X_t(\omega) = \int_0^t f(s, \omega) dW_s(\omega),$$

is A_t measurable, adapted, mean zero, and:

$$E(X_t^2) = \int_0^t E(f(s,\omega)^2) ds.$$

So $\int_0^t f(s,\omega) dW_s(\omega)$ is a stochastic process.

1.3 Sketch of Proof by Ito

Define the space of stochastic process (\mathcal{L}_T^2) by norm,

$$||f||_{2,T} = \sqrt{\int_0^T E(f(t,\cdot)^2) dt}.$$
 (1.10)

We denote by \mathcal{S}_T^2 the subset of all step functions in \mathcal{L}_T^2 . Then we can approximate any function in \mathcal{L}_T^2 by step functions in \mathcal{S}_T^2 to any desired degree of accuracy in the norm. To be specific we have

 \mathcal{S}_T^2 is dense in $(\mathcal{L}_T^2, \|\cdot\|_{2,T})$, I(f) in \mathcal{S}_T^2 is well-defined and satisfies the properties. Next, for an arbitrary function $f \in \mathcal{L}_T^2$, let $f^{(n)} \in \mathcal{S}_T^2$ a sequence of step functions that,

$$\int_0^T E\left(\left|f^{(n)}(t,\cdot) - f(t,\cdot)\right|^2\right) dt \to 0 \quad \text{as} \quad n \to \infty$$

The last step, we will prove $I(f^{(n)})$ is a Cauchy sequence in the Banach space $L^2(\Omega, \mathcal{A}_T, P)$.

2 Properties of Ito Integrals

2.1 Martingale

We know the Ito integral I(f) is well-defined by passing to limit an approximation:

$$I(f) = \sum_{j=1}^{n} f(t_j, \omega) [W_{t_{j+1}}(\omega) - W_{t_j}(\omega)],$$

the left-hand rule. Such I(f) has nice properties:

- I(f) is A_T measurable, E(I(f)) = 0;
- $E(I(f)^2) = ||f||_{2,T}$, I is linear in f.

It follows:

$$E(I(f)I(g)) = \int_0^T E(f(t,\cdot)g(t,\omega)) dt.$$

Define Z_t to be the Ito integral when T is set to t, then:

$$E(Z_t - Z_s | A_s) = 0, (2.11)$$

for $s \leq t$. Such a process Z_t is called **martingale**. If = is replaced by $\leq (\geq)$, supermartingale (submartingale).

Example: $\xi_n = 1$ if a tossed fair coin is head, otherwise -1. Let $A_n = \sigma(\xi_1, \xi_2, \dots, \xi_n)$, $n \ge 1$, $X_0 = 0$, $A_0 = \{\varphi, \Omega\}$, $X_n = \xi_1 + \dots + \xi_n$ is a martingale with respect to A_n .

• Let g be any convex function, then $g(X_t)$ is a submartingale:

$$E(g(X_t))|A_s) \ge g(E(X_t|A_s)) = g(X_s), \ k \le n.$$

by Jensen's inequality.

2.2 Inequalities

Given Z_t is a mean-square martingale, the maximal martingale inequality holds,

$$P\left(\sup_{t_0 \le s \le t} |Z_s| \ge a\right) \le \frac{1}{a^2} \int_{t_0}^t E\left(f(s,\cdot)^2\right) ds,$$

for any a > 0, and the Doob inequality holds

$$E\left(\sup_{t_0 \le s \le t} |Z_s|^2\right) \le 4 \int_{t_0}^t E\left(f(s,\cdot)^2\right) ds.$$

2.3 Paths continuous (*see page 87-88 KL's book)

Note $I(f) - I(f^{(n)})$ is also martingale, and $I(f^{(n)})$ are obviously continuous. Now by carefully select $f^{(n)}$, we can prove,

There is a separable, jointly measurable version of Z_t defined by

$$Z_t(\omega) = \int_{t_0}^t f(s, \omega) dW_s(\omega)$$

for $t \in [t_0, T]$ has, almost surely, continuous sample paths.

3 Peculiarities of Ito Integrals

Ito integral is different from Riemann integral in your calculus textbook:

$$\int_0^t W_s(\omega) dW_s(\omega) \neq W_t^2(t,\omega)/2,$$

instead:

$$\int_{0}^{t} W_{s}(\omega) dW_{s}(\omega) = W_{t}^{2}(t,\omega)/2 - t/2.$$
(3.12)

$$\sum_{j=1}^{n} W_{t_j}(W_{t_{j+1}} - W_{t_j}) = W_t^2/2 - \frac{1}{2} \sum_{j=1}^{n} ((W_{t_{j+1}} - W_{t_j})^2.$$

The last sum is over i.i.d random variable, hence converging to its mean w.p. 1, that is t. Next consider chain rule for a composite function $Y_t = U(t, X_t)$, where $dX_t = bdW_t$. The difference is Taylor expanded:

$$\Delta Y_{t} = U(t + \Delta t, X_{t} + \Delta X_{t}) - U(t, X_{t})$$

$$= U_{t} \Delta t + U_{X} \Delta X_{t} + \frac{1}{2} [U_{tt} (\Delta t)^{2} + 2U_{tX} \Delta t \Delta X_{t} + U_{XX} (\Delta X_{t})^{2}].$$
(3.13)

The second order terms go to zero if X is a smooth function, however now $E[(\Delta X_t)^2] \approx E[b^2]\Delta t$, behaving like first order term $U_t\Delta t$. It is this correction that makes the difference. Ito formula:

$$dY_t = (U_t + \frac{1}{2}b^2U_{XX})dt + U_X dX_t.$$
(3.14)

4 General Ito's Formula

The price to pay for having the nice properties of last section is a different rule for calculus. Let:

$$dX_t = a(t, \omega) dt + b(t, \omega) dW_t,$$

both e and f adapted; let U = U(t, x) be C^1 in t, C^2 in x. Then:

$$U(t, X_t) = U(s, X_s) + \int_0^t [U_t + aU_x + b^2 U_{xx}/2](s, X_s) ds + \int_0^t bU_x(s, X_s) dW_s,$$
(4.15)

The operator appearing in the first integral:

$$LU \equiv aU_x + b^2 U_{xx}/2,$$

is dual of the right hand side of Kolmogorov forward equation for transitional probability density, recalling that

$$p_t = -(a(t,x)p)_x \frac{1}{2} (b^2(t,x)p)_{xx},$$

5 Stratonovich Integral

Instead of left hand rule, one could also consider the integral being approximated by:

$$S_{\lambda}(f) = \sum_{j} [(1 - \lambda)f_j + \lambda f_{j+1}][W_{j+1} - W_j],$$

where $\lambda \in [0,1]$, $W_j = W(t_j, \omega)$. The resulting integrals, converge and are so called (λ) -integrals.

Example:

$$(\lambda) \int_0^T W_t dW_t = W_T^2/2 + (\lambda - \frac{1}{2})T.$$

Write $S_{\lambda}(W_t)$ into two parts:

$$\sum_{j} W_{j}[W_{j+1} - W_{j}] \to W_{T}^{2}/2 - T/2,$$

$$\sum_{j} W_{j+1}[W_{j+1} - W_{j}] = \sum_{j} (W_{j+1} - W_{j})^{2} + W_{j}[W_{j+1} - W_{j}]$$

$$\to T + W_{T}^{2}/2 - T/2. \tag{5.16}$$

The mid point rule $\lambda = 1/2$ is called Stratonovich, where BM correction vanishes, and standard calculus applies.

Relationship between Ito and Stratonovich $(f = f(W_t))$:

$$S_{1/2}(f) = \sum_{j} f(W_{j})[W_{j+1} - W_{j}]$$

$$+ \frac{1}{2} \sum_{j} f'(W_{j})[W_{j+1} - W_{j}]^{2} + \cdots$$

$$\to \int_{0}^{T} f(W_{t}) dW_{t} + \frac{1}{2} \int_{0}^{T} f'(W_{t}) dt,$$
(5.17)

in the mean square sense.

Stratonovich integral $S_{1/2}(f)$ has special notation,

$$\int_0^T f(W_t) \circ dW_t = \int_0^T f(W_t) dW_t + \frac{1}{2} \int_0^T f'(W_t) dt.$$
 (5.18)

Consider definite integral F such that F' = f, Ito formula gives:

$$F(W_t) - F(W_0) = \int_0^T f(W_t) dW_t + \frac{1}{2} \int_0^T f'(W_t) dt.$$
 (5.19)

Hence:

$$\int_{0}^{T} f(W_{t}) \circ dW_{t} = F(W_{t}) - F(W_{0}),$$

as in classical calculus.

6 Stratonovich SDE

$$dX_t = a(t, X_t)dt + b(t, X_t) \circ dW_t, \tag{6.20}$$

or:

$$X_t = X_0 + \int_0^t a(s, X_s) \, ds + \int_0^t b(s, X_s) \circ dW_s, \tag{6.21}$$

where the stochastic integral is understood as mean square limit of:

$$S_n(\omega) = \sum_{j=0}^n b(t_j, (X_{t_j} + X_{t_{j+1}})/2)(W_{t_{j+1}} - W_{t_j}), \tag{6.22}$$

as $k = t/n \to 0$, where $t_j = jk$, k = t/n, $j = 0, 1, \dots, n$. Consider Stratonovich integral:

$$\int_0^t h(s, X_s) \circ dW_s, \tag{6.23}$$

• Assume for any finite T:

$$\int_0^T E(|h(t, X_t)|^2) dt < \infty,$$

then

Theorem 6.1 (I-S integral transform)

$$\int_{0}^{T} h(t, X_{t}) \circ dW_{t} = \int_{0}^{T} h(t, X_{t}) dW_{t} + \frac{1}{2} b(t, X_{t}) h_{x}(t, X_{t}) dt.$$
 (6.24)

Sketch of Proof: let $X_j = X_{t_j}$,

$$h(t_j, (X_j + X_{j+1})/2) - h(t_j, X_j)$$

= $\frac{1}{2} h_x(t_j, \frac{1}{2}((2 - \theta_j)X_j + \theta_j X_{j+1}))(X_{j+1} - X_j),$

for random numbers θ_i 's.

$$\Delta X_{j} = X_{j+1} - X_{j}$$

$$= a(t_{j}, X_{j}) \Delta t + b(t_{j}, X_{j}) \Delta W_{j} + h.o.t,$$
(6.25)

Each term in the Stratonovich sum is:

$$h(t_j, X_j) \Delta W_j + \frac{1}{2} h_x(\theta_j) \Delta X_j \Delta W_j$$

$$= h(t_j, X_j) \Delta W_j + \frac{1}{2} h_x(\theta_j) b(t_j, X_j) (\Delta W_j)^2$$

$$+ \frac{1}{2} h_x(\theta_j) a(t_j, X_j) \Delta t \Delta W_j, \qquad (6.26)$$

$$h_x(\theta_j) = h_x(t_j, \frac{1}{2}((2 - \theta_j)X_j + \theta_j X_{j+1})).$$

We derive (6.24) using $E((\Delta W_j)^2) = \Delta t$, $E(k\Delta W_j) = 0$, and ignoring higher order terms. It follows from (6.24):

$$E[\int_0^T h(t, X_t) \circ dW_t] = \frac{1}{2} \int_0^T E[b(t, X_t) h_x(t, X_t)] dt.$$

Theorem 6.2 (I-S SDE transform) Let X_t solve Ito SDE:

$$dX_t = a(t, X_t)dt + b(t, X_t) dW_t,$$

then X_t solves the Stratonovich SDE:

$$dX_{t} = (a(t, X_{t}) - \frac{1}{2}b(t, X_{t})b_{x}(t, X_{t}))dt + b(t, X_{t}) \circ dW_{t}.$$

7 Application

Consider homogeneous linear Ito SDE:

$$dX_t = aX_t dt + bX_t dW_t,$$

a, b constant.

S-T transform gives the Stratonovich SDE:

$$dX_t = (a - b^2/2)X_t dt + bX_t \circ dW_t,$$

solution:

$$X_t = X_s \exp\{(a - b^2/2)(t - s) + b(W_t - W_s)\}.$$