Private Dropbox Final Report COSC480

Calum O'Hare Supervisor: David Eyers

Abstract

I have written a program in Python which reads user settings from a file, and synchronises the appropriate files to the appropriate machines when they have been modified. It does this using an efficient two way file synchronising tool called Unison. I will discuss in this dissertation what I have done and how I have tested my program.

Contents

1	Intr	oduction	4	
	1.1	Project goals	4	
	1.2	Background	4	
	1.3	Example use case	5	
2	Supporting architecture and program development			
	2.1	Virtual Machines, Node networks	8	
	2.2	Reading network statistics	9	
	2.3	Getting my IP, networking	10	
	2.4	settings and stored data	10	
	2.5	Python	10	
	2.6	User control	10	
3	Program mechanics 10			
	3.1	Monitoring Directories	10	
	3.2	Unison and temporary files	12	
4	Program evaluation 1			
	4.1	Point-to-Point synchronisation	12	
	4.2	Full graph replication	14	
	4.3	When to stop copying	17	
	4.4	Dealing with Sub-nodes	19	
	4.5	How often to sync	20	
	4.6	Wi-Fi vs 3G	22	
5	Conclusion 2			
	5.1	Future Work	22	
		5.1.1 Mobile Nodes	22	
		5.1.2 Feedback	22	
	5.2	Results	22	
\mathbf{A}	Wat	chAndSync.py	22	
В	Rea	${ m dNet.py}$	35	
\mathbf{C}	onTheFlv.sh		38	

1 Introduction

1.1 Project goals

The aim of this project was to develop a file synchronisation tool. Similar to Dropbox (and others) its main function should be to keep data synchronised between multiple devices. What makes it different however is it should:

- Support decentralised operation. It will not necessarily need to communicate with 'the cloud'. The program should not require a centralised server. However it should be possible to configure the system to behave like a centralised system if the user wants to. The system should be flexible in this regard.
- Allow file synchronisation between multiple clients not just point-to-point between two clients. Synchronisation between two clients however is the basis for multiple client synchronisation. Clients may be running different operating systems. Clients may be connected to different networks, with different costs of access, including being disconnected from the Internet at times.
- The user should be able to choose what to replicate and how often to do it within different sets of files. Choosing what to replicate could be done based on file name, file types, file size *etc*. They system should allow for fine-grained user control for the majority of the program's functionality.
- Show statistics about which files are being replicated, efficiency (time taken for the files to become fully up to date), cost (bandwidth, disk space used). These statistics could also possibly lead to a heuristic for when to synchronise a given file. For example if a file is updated and a node has many neighbours to potentially send the file too. Perhaps choosing the neighbour whose links has the lowest cost would be a good choice to send the data to first.
- Operate automatically, without the user having to initiate a file synchronisation themselves. The system's autonomous operation should be influenced by the users choices on how often to sync and what files should be synced, this relates to the fine-grained controls mentioned above.

1.2 Background

There are already many services available that can synchronize your files between different devices. Dropbox, Google Drive, Microsoft SkyDrive, Apple iCloud are all examples of cloud based solutions for distributing your files across your devices. The problems with these services is privacy and availability. Storing your data with a third party gives them access to your documents. If you are a commercial organisation with sensitive information this might be concerning. You could of course choose to encrypt your files. Encrypting your files adds two slow extra steps, encrypting them before you upload

and decrypting files before you can use them, this is less than ideal. You also cannot guarantee that you will always be able to access your data, if the company that hosts your data goes bankrupt or decides to shutdown their service you could lose all of your data with little or no warning.

For example Megaupload, a file hosting service, has recently been shut down by the United States Department of Justice for alleged copyright infringement. According to its founder, 100 million users lost access to 12 billion unique files¹.

There are other possible approaches to replicating files across multiple computers. For example you could use version control systems like Subversion, Mercurial, and CVS. One problem with these is that they are centralised (they rely on a central server), should that server fail the replication will break. Not only that, they create a bottleneck at the server which can slow replication down. Cloud based solutions are often centralised. Another problem is that even if they are decentralised like git, they will not automatically push updates to other working sets. This could be accomplished with some cron scripts or a post-commit hook to get git to propagate data onwards. Git might have made a promising base to build my application on top of, the only real problem was the version control overhead that comes with it. Old revisions would take up space on the hard disk and require more data to be transmitted across network links. I decided that as a file synchronisation program, revision history was out off scope and that my program would deal with just keeping files in sync. Using git would be an interesting extension to my program and could easily be integrated into my current system.

1.3 Example use case

Here is an example use case demonstrating why I find my program useful.

I like to keep all of the data on my laptop backed up to an external hard drive. The data on my computer that I wish to back up falls into three main categories: documents, music, and movies. Documents are mostly scripts and programs that I am writing for University or work projects. Documents also include reports for assessment. These documents change very frequently and are very important to me. Often these are small files (but not always). My music collection changes relatively infrequently, files are around ≈5MB and I like to have a relatively current backup of this collection. My movie collection contains fairly large files but I do not need it to be backed up very often as it does not change very much and I do not care if I loose some of these movies. Files that I work on at University would be very useful to have on my laptop at home. Files that I work on at work mostly stay at work but occasionally I might want to bring something home to work on. The other device I always have with me and may be on one of any given (Wi-Fi or 3G) network at a certain time is my smart phone. I would like to have photos taken on this backed up to either (or both) my laptop and external hard drive.

¹http://computerworld.co.nz/news.nsf/news/kim-dotcom-wants-his-money-back

Some of the files that I move around are of a sensitive or personal nature and I would prefer not to store them with a third party vendor. I also have different synchronisation requirements for different types of data. For example my collection of large video files does not change that often and will chew up valuable network bandwidth whenever it has to transfer a new file. I like this to be replicated only occasionally as I do not use it that much. On the other hand my document collection which I use for work and coursework changes very often, is very important, and is fairly small. I would like this to be as up to date as possible.

Existing file synchronisation tools do not do enough for me. I do not have enough control over my data. I want to know which machines my files are going to and when. I want to feel confident that I will always be able to access my data even if the service closes down or my internet connection fails. My program is aimed at addressing these issues.

I have already described the personal network shown in Figure 1a. Figure 1b shows a graph of a corporate network, this is another example use case. It will have many of the same basic needs as the personal graph. The coloured rings represent the need for different policies for different machines in a network. Something which Dropbox will not provide but my system does.

(b) Corporate Network

Figure 1: Example use cases

2 Supporting architecture and program development

2.1 Virtual Machines, Node networks

For testing my program I needed to have a network of computers that can be linked together in different arrangements easily. I decided to use virtual machines for this job since it means I do not need to have a large number of physical machines. I can create new machines very easily, and manipulate the links between them.

I have used Oracle's VirtualBox software. I chose VirtualBox because of its easy to use command line interface. My program should be able to run across any network of nodes. So I wanted to test as many different arrangements as possible. I decided that I needed to be able change network topologies easily without having to re-write my scripts. I built some bash scripts to run on top of a program called Graphviz².

Graphviz is open source software for generating graphs. I used Graphviz to generate graphs of all the topologies I worked with. This made it easy to keep track of what a topology looked like which was useful for debugging. It was also useful to display results alongside an image of what the topology looks like. Building my program on top of Graphviz meant that I could couple the production of the topology graph and the configuration of the virtual machines together. I never wanted one without the other so this was very useful.

Graphviz takes input from scripts written in DOT language³. DOT language is a simple graph description language. I have written a script to read in these DOT files and interpret the graph to set up my virtual machines⁴. My script also calls a program called neato (part of Graphviz) to generate graphs. This means I only have to write one DOT file to get a graph of my network topology and set up my virtual machines.

My Bash script enables the appropriate network adaptors on each virtual machine⁵. It does this by calling the VboxManage command which provides a command line interface to virtual box's functionality and allows me to configure the virtual machines to my liking. Then it sets an internal network and attach's these adaptors to use that network. I chose to use an internal network as the link between any given machines because this way I could guarantee my program and programs that I called (like Unison) were the only programs using the interface. This helped me monitor the network traffic generated by my program (see Section 2.2). I sniffed network traffic using Wireshark⁶ when nothing was running and also when my program was running to verify nothing unexpected was using the interface.

I started by writing some simple network topology DOT scripts. The reason I only choose to use simple topologies when testing my programs. I did this because it is easier to visualise how my program runs from the data if the topologies are simple. The other

²www.graphviz.org

³http://www.graphviz.org/doc/info/lang.html

⁴Appendix C line 125 onwards

⁵Appendix C line 60

⁶http://www.wireshark.org/

reason I chose to do this is because it is easy to extrapolate from a few simple topologies and generate a model of how more complicated topologies might behave.

Figure 2: Simple network topologies

2.2 Reading network statistics

In order to gather network traffic statistics I chose to monitor the upload and download data collected by the interfaces over time. Given that my program was to only program using these interfaces I did not have to differentiate between different processes using the network. I looked at the possibility of extending this to run on a network where other processes are using the network connection as you would expect in a real world application of my program. I found a tool called NetHogs⁷. NetHogs runs on Linux and monitors the amount of data sent over the network by any given process. I also looked at using Iotop⁸. Iotop provides data on files being written to disk which was useful information and relates closely to the amount of data sent over the network. However I decided that monitoring network traffic was a more useful statistic as I could also see the ssh overhead associated with a transfer. An interesting challenge I faced when I was trying to log network usage was what interface to log data for. Initially I logged the traffic of all of the interfaces on the machine⁹. The flaws in this approach became apparent very quickly, machines with an internet connection sometimes used large amounts of data which skewed the data. It also did not work with machines that were on more than one internal network as they might be sending/receiving data on

⁷http://nethogs.sourceforge.net/

⁸http://guichaz.free.fr/iotop/

⁹Appendix B line 92

both of the networks at the same time. I overcame this problem by using a built in Linux command ip. I always had an IP address to send data too, so all I needed to do was run ip route get {IP address} and examine the route information to see which interface was being used for communication to that IP address¹⁰. Once I had the interface name I would then record that data before and after a sync occurred for that given interface. I would also do this on the machine I was sending data too. This would give me timestamps of when data was

2.3 Getting my IP, networking

route etc.

2.4 settings and stored data

stores files sync time, how up to date all graph data could be utilised

2.5 Python

I have chosen to use Python to implement my program. Python appealed to me because it supports many different platforms (Windows, Linux, Mac OS X). This is useful because it means I will (hopefully) encounter fewer compatibility problems when running my program across different operating systems in the future.

2.6 User control

One of the main goals of my project is to allow the user to have a large amount of control over how the program behaves. I currently have the program reading from configuration files that allow the user to specify which directories they want to watch and where those directories should be synchronised to.

I chose to use directories as my granularity for replication as opposed to files because keeping track of a large list of files may become unwieldy, and because I replicate directories recursively, I can replicate large amounts of data without a cluttered configuration file.

Another reason I chose directories as my granularity was because it may be handy to have a directory full of symlinks pointing to other directories.

3 Program mechanics

3.1 Monitoring Directories

The application needs to monitor directories for changes (see section 4.4) so that it knows when to perform a sync. The reason I have chosen to do this is because syn-

¹⁰Appendix B line 38

chronising a directory that has not been changed is a waste of time. I do not however want to be continually polling the watched directories to see if there have been any changes made. This would be a significant waste of CPU time and the input/output time associated with checking the disk. Instead I have looked into ways of being notified of a change in the file system below the watched directory.

• Inotify

Inotify is a kernel feature that has been included in the Linux kernel since version 2.6. It is used to watch directories for changes and notify listeners when a change occurs. Inotify is inode based and replaced dnotify, an older system that provided the same functionality. Dnotify however was inefficient, it opened up the file descriptors for each directory it was watching which meant the backing device could not be unmounted. It also had a poor user-space interface which used SIGIO. Inotify only uses one file descriptor and returns events to the listener as they occur ¹¹ There is a Python module called pyinotify¹² that provides a Python interface to inotify, which I have used in my program. Another reason I chose inotify was because different kinds of changes triggered different inotify events. So I can differentiate between a file being deleted, created or modified, etc.

• FSEvents

- FSEvents is an API in MacOS X ¹³ It is similar to inotify in that it provides a notification to other applications when a directory is changed however it does not inform you which file in the directory was changed. This does not matter for my application since Unison is smart enough not to copy unchanged files in a directory. There is a Python module for FSEvents called MacFSEvents ¹⁴.

I also looked at using the kqueue ¹⁵ system call that is supported by OS X and FreeBSD. It notifies the user when a kernel event occurs. I decided against using kqueue as the high level approach of FSEvents suits my application's needs.

• ReadDirectoryChangesW

- Windows, like the other operating systems I have examined, provides a way of doing this too. There is a function called ReadDirectoryChangesW. There is a FileSystemWatcher Class in .NET version 4 and above. IronPython might prove to be a good choice for a Windows implementation as it is a

¹¹www.kernel.org/pub/linux/kernel/people/rml/inotify/README

¹²http://pyinotify.sourceforge.net/

 $^{^{13}} https://developer.apple.com/library/mac/\#documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/ProgGuide/Introduction/ProgGuide/Introduction/ProgGuide/Introduction/ProgGuide/Introduction/ProgGuide/Introduction/ProgGuide/Introduction/ProgGuide/Introduction/ProgGuide/Introduction$

¹⁴http://pypi.python.org/pypi/MacFSEvents/0.2.1

¹⁵http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/kqueue.2.html

version of Python integrated with the .NET framework. I have chosen only to implement my program on Linux because portability was not in the main scope of the project. I would have liked to look at it further but became too time consuming and not interesting from a research perspective.

3.2 Unison and temporary files

I noticed that when Unison ran it created temporary files in the directory and once these files had been fully copied it renamed them to their intended name. The problem with this was that my program was picking up these temporary files as they were created and trying to copy them to the next node, only to find that these files no longer existed. To get around this problem I decided to implement a filter on the files to be copied. The program filters out files that contain ".tmp" in the filename. Unison is not the only program that uses temporary files. I decided that this should be a user set preference given that users may want to filter out different files.

My program simply reads from a file with each file pattern to exclude listed on a new line. It is easy to add to/remove from. As I said above I added .tmp to the file as a default. This could easily be extended to allow a user to omit certain files from the replication by adding all files in my programs ignore file to Unisons ignore list. Or conversely by maintaining a white list of files to sync. This would allow for greater granularity when syncing nodes.

4 Program evaluation

4.1 Point-to-Point synchronisation

After looking for cross-platform, open source, file synchronisation tools, I have found a tool called Unison¹⁶ to be a promising starting base for this project. Unison is an open source file synchronisation tool. It supports efficient (*i.e.*, it attempts to only send changes between file versions) file synchronisation between two directories (including sub-folders) between two "roots" that may or may not be on the same machine. Unison calls the directories it is synchronising, roots.

I decided to run some tests using Unison and two machines running on the same network to determine whether this would make a good base for my program or not.

I looked at three methods of file synchronisation across these two machines. Naïve copying; using Rsync, an application designed for efficiently copying files in one direction by looking at the differences in the files; and Unison described above.

Rsync and Unison performed significantly better than the naïve copy method (as expected). After the initial file transfer new files added to the directory resulted in much less data being transmitted over the network, which meant the node graph became up to date much more quickly.

¹⁶http://www.cis.upenn.edu/ bcpierce/unison/

Figure 3: Comparison of SCP, Rsync, Unison. Three identical 50MB files with different names are being transfered between two nodes. Each point on the graph represents the start or end of a sync.

The reason naïve copy sent over 300MB of data to copy three 50MB files was because my implementation is deliberately naïve; it will copy the entire directory each time it is changed. Rsync and Unison were able to send less data because they work based on the differences between the files. However copy doesn't look at the files it just copies everything in the directory tree. Hence it will copy 50MB after file one is created, 100MB after the second file is added and finally 150MB when all three files are present for a total of 300MB.

Rsync copies the expected 150MB for three 50MB files. Figure 3 illustrates another advantage of Unison over Rsync. The graph shows three zero filled binary files being copied from one node to another one after the other. Unison recognised that even though the files were named differently they were the same file. Another advantage of Unison is that it handles replication in two directions without overwriting the files on the other side.

Each of the three methods I trialled had some overhead associated with them. This overhead was due to the secure shell (SSH) tunnel between the machines that all three methods used. Unison and Rsync also incur some overhead when comparing the differences between the files in the directories. This is why the graph shows the three lines slightly above where you might expect them to be for the amount of data that was copied.

4.2 Full graph replication

As you can see Unison and Rsync outperformed SCP advantage of Unison is two-way sync

For next graphs I dropped SCP as not only is it inferior it is also completely wrong the programs behaviour is undefined for changes coming from two directions.

Figure 4: Comparison of methods over line topology

(a) Circle - generated graph of topology

(c) Mesh - generated graph of topology

(b) Unison running over circle topology

(d) Unison running over mesh topology

Figure 5: Comparison of different topologies

4.3 When to stop copying

They way my program works it that Each node notices when changes have occurred to a folder it is watching and when a change occurs, copy these changes to other nodes that it is connected to. After testing my program on some simple topologies one problem became clear. The problem was that if the changes came from one of its neighbour nodes this would cause an infinite loop of two nodes trying to copy changes to each other. This was particularly a problem when using SCP to copy. When using Unison this was not as much of a problem because it could detect that no changes had occurred between the nodes and would stop synchronising after one check (which had minimal overhead).

Figure 6: Line topology, using SCP, nodes copying data back and forth

Figure 6 shows three 10MB files being copied to nodeA in a line topology. The problem is that nodeB and nodeC continue to send data to each other even after every node has all of the files. NodeA receives a lot of data even though it was the source of the file changes.

The data points in Figure 7 show that when using Unison, although no extra data was sent, Unison still had to make checks to see whether there were any changes or not.

I used a control file to get around this problem. Each time a node synchronised with another node it would write out a control file telling the other node what files had

Figure 7: Line topology, using Unison, program continues to check for differences in files even after all nodes are the same. Each point represents an attempted sync.

been copied, who sent them and what the modification time of the files were. In this way a node could check if it was about to synchronise a file back to the node it had just received the file from or if local changes really had occurred to that file that were newer than a received file it should continue with its sync.

4.4 Dealing with Sub-nodes

I chose to classify directories as 'sub nodes' of a graph. The reason I choose directories is because they are easy to manage a configuration file of directories to keep in sync (from the users point of view). If we wanted to only synchronize certain files in a directory we could write a Unison configuration file with exclusions/inclusions in it. The other reason directories are a good choice is because I can have different directories in different places on different file systems by using symbolic links. I wanted to see how the freshness of different sub-nodes varied between nodes when the program was running.

Figure 8: Line topology, using Unison, two different directories being synced

4.5 How often to sync

So how often should I sync once I noticed a change. If lots of small changes are occurring frequently it might be more efficient to perform a synchronisation after several changes have occurred. Given that there is overhead with each synchronisation, fewer copies means less data sent over the network.

Figure 9: Comparison how frequently to sync

As you can see in Figure when using Unison it is best to just sync as often as possible. This is because Unison only sends the difference between files and the network overhead associated with synchronising is negligible when dealing with large files.

SCP showed a noticeable difference however...?

Figure 10: 2 seconds sleep text file

Figure 11: 5 seconds sleep text file

4.6 Wi-Fi vs 3G

Circle topology start at node A, node B is on Wi-Fi and node C is on 3G. Results and discussion to come.

5 Conclusion

5.1 Future Work

5.1.1 Mobile Nodes

5.1.2 Feedback

5.2 Results

My program does better than naïve copying, works in a variety of situations allows for fine grained user control.

Figure 12: Unison, line, finishing times

A WatchAndSync.py

- 1 **import** pyinotify, os, subprocess, argparse, socket, time, glob, datetime
- 2 import readnet

```
3
4 wm = pyinotify. WatchManager()
  watchedfolders = \{\}
6\ \ homepath = "/home/cal/Documents/Private-Sync/"
   #homepath = "/Users/calum/Documents/Private-Sync/"
8
9
   parser = argparse.ArgumentParser()
   parser.add_argument("-c","--scp",action="store_true",help="
      Copy_using_scp")
   parser.add_argument("-r","--rsync",action="store_true",help="
11
      Copy_using_rsync")
12
   args = parser.parse_args()
13
14
   class Tools():
15
        def updateFolderInfo(self, wfolds):
            f = open('./folders.dat', 'w')
16
            for fold in wfolds:
17
                f.write(fold + """)
18
19
                for i in range (0, len (wfolds [fold]) - 1):
20
                     f. write (wfolds [fold][i] + """)
                f. write (wfolds [fold] [len (wfolds [fold]) -1] + "\n")
21
22
            f.close()
23
24
        def timeElapsed (self, dtstamp, diff):
            if diff = "*":
25
26
                print "Sync_ASAP"
27
                return
28
            diff = int(diff)
            FMT = \%Y - \%m - \%d \%H: \%M: \%S.\% f
29
30
            \#FMT = \%Y - \%m - \%d \%H: \%M: \%S
31
            tdelta = datetime.datetime.now() - datetime.datetime.
               strptime (dtstamp, FMT)
32
                   tdelta.total_seconds()
            print
33
            timeDiff = tdelta.total_seconds()
34
            if (timeDiff >= diff):
                print "Time_period_reached"
35
            else:
36
                print "Time_not_elapsed, _sleeping_for_" + str(diff
37
                    - timeDiff + 1
38
                time.sleep(int(diff - timeDiff + 1))
39
40
   class MyEventHandler (pyinotify. ProcessEvent):
41
        def flipIP (self, ip):
```

```
42
            octets = ip.split(".")
            if (octets [3] == "1"):
43
                 octets[3] = "2"
44
            elif(octets[3] == "2"):
45
                octets[3] = "1"
46
47
            else:
48
                octets[3] = "1"
            return ".".join(octets)
49
50
51
       #Get the last modified time of a file
        def getModTime(self, path):
52
53
            \mathbf{try}:
54
                return time.ctime(os.path.getmtime(path))
55
            except Exception, e:
                return time.ctime(0)
56
57
       #Deprecated - Check for IP not to copy too
58
59
        def getStopInfo(self):
            stopIP = ["",""]
60
61
            try:
                o = open("./stop", 'r')
62
63
                stopIP = o.read().split()
                o.close()
64
65
            except IOError, e:
66
                pass
67
            return stopIP
68
69
        def inStopFile (self, ip, path):
70
            stopIPs = \{\}
71
            stop = False
72
            modTime = self.getModTime(path)
73
            while True:
74
                tmpcount = 0
                print "Files_found:_" + str(glob.glob("Stop-*"))
75
76
                for files in glob.glob("Stop-*"):
                     \#print "File: " + str(files)
77
                     if ".tmp" in files:
78
79
                         tmpcount += 1
80
                         time.sleep(5)
81
                         break
82
                     f = open(files, "r");
83
                     for line in f:
84
                         l = line.split()
```

```
85
                           if self.exclusions(l[1]):
                                print str(l[1]) + "_was_in_ignore_file
86
                                   skipping"
87
                           else:
88
                                print "local_" + str(path) + "_modtime
                                   : \_" \ + \ \mathrm{modTime}
89
                                print "Stop_" + 1[1] + "_modtime:_" +
                                   str (1 [2:])
                                ts1 = time.strptime (modTime, "%a _%b _%d _
90
                                   %H:%M:%S_%Y")
                                ts2 = time.strptime(""".join(1[2:]),"%
91
                                   a _%b _%d _%H:%M:%S _%Y")
92
                                print "local <= stop: " + str(ts1 <=
                                   ts2)
93
                                \#if \ l/0/ == ip \ and \ l/1/ == path \ and
                                   ts1 \ll ts2:
                                #If IP sending to has sent data more
94
                                   recently don't send back
95
                                if l[0] == ip and ts1 \le ts2:
96
                                    print "Stop = True, file: " + 1[0]
97
                                    stop = True
98
                                else:
                                    stopIPs[l[0]] = [l[1]," \_".join(l
99
                                        [2:])]
100
                       if stop:
101
102
                           f.close()
                           \#f = open(files, "w")
103
                           \#for \ k \ in \ stopIPs.keys():
104
                                f.\ write\ (k + " " + stopIPs\ [k]\ [0] + " "
105
                               + stopIPs/k//1/ + "\n")
106
                           #f. close()
107
                           #stopIPs.clear()
108
                           return True
109
110
                       f.close()
111
                      \#stopIPs.clear()
                  if tmpcount == 0:
112
113
                      break
114
115
             return False
116
```

```
#Set flag on other server telling it not to immediately
117
           try and copy data here
        def setStopFileUniq(self, ip, myIP, path, folder):
118
            nodename = self.getNodeName()
119
            \#print "ssh", ip, "echo" + myIP + "" + path + "" +
120
               self.getModTime(path) + ">> " + homepath + "Stop-"
               + nodename + ".tmp;"
            \#subprocess.call(["ssh",ip,"echo"+myIP+""+path])
121
                + " " + self.getModTime(path) + " >> " + homepath +
                "Stop-" + nodename + ".tmp;" )
            subprocess.call(["ssh",ip,"rm_" + homepath + "Stop-" +
122
                nodename + ".tmp;"])
            for cpFile in glob.glob(folder + "/*"):
123
                subprocess.call(["ssh",ip,"echo_" + myIP + "_" +
124
                   cpFile + "" + self.getModTime(cpFile) + "">>="
                   + homepath + "Stop-" + nodename + ".tmp;"])
125
126
        #Sets the config files on the remote node
        def beginCopy(self, ip):
127
128
            nodename = self.getNodeName()
            print "ssh", ip , "touch = " + homepath + "Stop-" +
129
               nodename + ".tmp; _mv_" + homepath + "Stop-" +
               nodename + "" + homepath + "Stop-" + nodename + ".
               tmp;"
130
            subprocess.call(["ssh",ip,"touch_" + homepath + "Stop-
               " + nodename + ".tmp; \( \text{Lmv} \) " + homepath + "Stop-" +
               nodename + "" + homepath + "Stop-" + nodename + ".
               tmp;"])
131
        #Moves the Stop files back into place
132
        def endCopy(self, ip):
133
            nodename = self.getNodeName()
134
135
            print "ssh",ip,"mv_" + homepath + "Stop-" + nodename +
                ".tmp_{-}" + homepath + "Stop_{-}" + nodename
            subprocess.call(["ssh",ip,"mv_" + homepath + "Stop-" +
136
                nodename + ".tmp_" + homepath + "Stop-" + nodename
               ])
137
138
        def setLastSync(self):
            \#print "echo\"" + str(datetime.datetime.now())+ "\" >
139
                " + homepath + "lastSync"
            #subprocess.call(["echo", str(datetime.datetime.now())
140
                + " > " + homepath + "lastSync" )
```

```
141
             f = open(homepath + "lastSync", "w")
             f. write (str (datetime.datetime.now()))
142
143
             f.close()
144
         def getLastSync(self):
145
146
             f = open(homepath + "lastSync", "r")
147
             time = f.read()
148
             f.close()
149
             return time.rstrip()
150
        def newerThanLast(self, fileName):
151
             stop = False
152
153
             print "Last_sync_time:_" + str(self.getLastSync())
             FMT = \%Y - \%M - \%d \%H : \%M : \%S . \% f
154
             \#datetime.datetime.strptime(dtstamp, FMT)
155
             ts2 = time.strptime(self.getLastSync(),FMT)
156
             modTime = self.getModTime(fileName)
157
             print "local_" + str(fileName) + "_modtime:_" +
158
                modTime
159
             ts1 = time.strptime(modTime, "%a_%b_%d_%H:%M:%S_%Y")
             print "local \leq=_stop:_" + str(ts1 <= ts2)
160
161
             if ts1 > ts2:
                  print "Newer_file_than_last_sync!"
162
163
                  stop = True
164
             return stop
165
166
167
        #Get node name from whoami file
168
         def getNodeName(self):
             w = open(homepath + "whoami", "r")
169
             nodename = w.read()
170
             nodename = nodename [0].upper()
171
172
             w. close()
173
             return nodename
174
175
        #Deprecated stop file
         def setStopFile(self,ip,myIP,path):
176
             subprocess.\ call\ (\hbox{\tt ["ssh",ip,"echo\_"}\ +\ myIP\ +\ "\_"\ +\ path
177
                + ">\" + homepath + "stop"])
178
             print "ssh", ip, "echo_" + myIP + ">_" + homepath + "
                stop"
179
180
         def rmTree (self, path):
```

```
subprocess.call(["ssh",ip,"rm_-r_"," + path + ","])
181
             print "ssh", ip , "rm_-r_ '" + path + "'"
182
183
184
        #Exclude files matching patterns in the ignore file
185
        def exclusions (self, path):
186
             try:
187
                 f = open("./ignore", 'r')
                 for line in f:
188
                     if line.rstrip() in path:
189
                         \#print "Ignoring:" + path
190
                          return True
191
                 f.close()
192
193
             except error, e:
194
                 print e
             return False
195
196
197
        def initFileSync(self, event):
             if self.exclusions(event.pathname):
198
                 #print "Excluded returning"
199
200
                 return
201
             pathparts = event.pathname.split("/")
             foldName = "/".join(pathparts[0:len(pathparts)-1])
202
203
             print "Removing_watch_on:_" + foldName
204
            wm.rm_watch(wm.get_wd(foldName), rec=True)
205
206
207
             self.setLastSync()
             self.fileSync(event.pathname)
208
209
             print "Putting_watch_back_on:_" + foldName
210
211
            wm. add_watch (foldName.rstrip(), pyinotify.ALL_EVENTS,
                rec=True, auto_add=True)
212
            for i in range (0, len (watchedfolders [foldName]),4):
213
214
                  ip = watchedfolders[foldName]/i]
             #
                  myIP = readnet.qetMyIP(ip)
215
            #
                 for f in glob.glob(foldName + "/*"):
216
                     if self.newerThanLast(f):
217
                          print "init: CONTINUE"
218
219
                          self.setLastSync()
220
                          self.fileSync(f)
221
                     else:
222
                          print "init: LSTOP"
```

```
223
224
        #Sync the files
225
        def fileSync(self, pathname):
226
             t = Tools()
227
             if os.path.isdir(pathname):
                 print "Watching: " , pathname
228
229
             for folder in watchedfolders.keys():
                 print "For_each_folder:_" + str(folder) + "_in_
230
                    watchedfolder_keys"
231
                 if folder in pathname:
                     for i in range (0, len (watchedfolders [folder])
232
                         ,4):
233
                          ip = watchedfolders [folder][i]
                          path = watchedfolders [folder][i+1]
234
                          waitTime = watchedfolders [folder][i+2]
235
                          lastTime = watchedfolders [folder][i+3]
236
                          print "Wait: " + str(waitTime) + "Last: "
237
                              + str(lastTime)
                          print "Current_ip_and_path:_" + ip + "_" +
238
                              path
239
                          readnet.logIPtraffic(ip, pathname)
240
                          myIP = readnet.getMyIP(ip)
                          subprocess.call(["ssh",ip,"/usr/bin/python
241
                             _" + homepath + "readnet.py_-i_" + myIP
                             + "\neg -f \neg" + pathname])
                          print "ssh", ip ," '/ usr/bin/python " +
242
                             homepath + "readnet.py_-i_" + myIP + "_-
                             f_{"} + pathname + "'"
                          fparts = folder.split("/")
243
                          fname = fparts[len(fparts)-1]
244
                         \#stopIP = self.getStopInfo()
245
                         \#print "STOP: " + stopIP[0] + " " + stopIP
246
                             [1]
247
                         \#if \ stopIP [0] == ip \ and \ stopIP [1] ==
                             pathname:
                          if self.inStopFile(ip,pathname):
248
249
                              print "STOPPED_to_" + ip + "_" + path
250
                              #os.remove("./stop");
251
                          else:
252
                              print "CONTINUE"
253
                              t.timeElapsed(lastTime, waitTime)
                              watchedfolders [folder] [i+3] = str(
254
                                 datetime.datetime.now())
```

```
255
                              t.updateFolderInfo(watchedfolders)
256
                              self.beginCopy(ip)
257
                              self.beginCopy(myIP)
258
                              if args.scp:
                                  #print "SCP: For cpFile in " +
259
                                     folder
260
                                  for cpFile in glob.glob(folder + "
                                     /*"):
                                      #print "SCP GLOB:" + cpFile
261
                                      print "scp","-rp",cpFile,ip +
262
                                         ":" + cpFile + ".tmp"
                                      subprocess.call(["scp","-rp",
263
                                         cpFile, ip + ":" + cpFile + "
                                         . tmp"])
                                      \#subprocess.call(["ssh",ip,"
264
                                         yes y \mid find /tmp/" + fname
                                         + " -type f -exec cp -p \{\} "
                                          + path + fname + "/ \; rm /
                                         tmp/" + fname)
                                      print "ssh",ip,"mv_" + cpFile
265
                                         +\ ".tmp\_" \ +\ cpFile
                                      subprocess.call(["ssh",ip,"mv_
266
                                         " + cpFile + ".tmp_" +
                                         cpFile])
267
                                      print "END_SCP_GLOB"
                              elif args.rsync:
268
                                  print "rsvnc","-rt", folder, ip + ":
269
                                     " + path
                                  subprocess.call(["rsync","-rt",
270
                                     folder, ip + ":" + path])
271
                              else:
272
                                  time.sleep(5)
273
                                  print "unison","-batch","-
                                     confirmbigdel=false","-times",
                                     folder, "ssh://" + ip + "/" +
                                     path + fname
274
                                  subprocess.call(["unison","-batch"
                                     ,"-confirmbigdel=false","-times"
                                     , folder, "ssh://" + ip + "/" +
                                     path + fname])
275
                              print "Set_stop_files_uniq:_" +
                                 pathname
276
                              #Set stop file on foreign host
```

```
self.setStopFileUniq(ip,myIP,pathname,
277
                                 folder)
278
                              #Set stop file for myself to look at
279
                              self.setStopFileUniq(myIP, myIP,
                                 pathname, folder)
280
                              self.endCopy(ip)
281
                              self.endCopy(myIP)
                         subprocess.call(["ssh",ip,"/usr/bin/python
282
                            _" + homepath + "readnet.pv_-i_" + myIP
                            + "\neg -f \neg" + pathname])
283
                         readnet.logIPtraffic(ip, pathname)
284
        \#Sync \ files - DEPRECATED
285
        def oldfileSync(self, event):
286
287
            t = Tools()
             if os.path.isdir(event.pathname):
288
                 print "Watching: " , event . pathname
289
            for folder in watchedfolders.keys():
290
291
                 print "For_each_folder:_" + str(folder) + "_in_
                    watchedfolder _keys"
292
                 if folder in event.pathname:
293
                     for i in range (0, len (watchedfolders [folder])
                         ,4):
294
                         ip = watchedfolders [folder][i]
295
                         path = watchedfolders [folder][i+1]
                         waitTime = watchedfolders [folder][i+2]
296
297
                         lastTime = watchedfolders [folder][i+3]
298
                         print "Wait: _" + str(waitTime) + "_Last: _"
                             + str(lastTime)
299
                         print "Current_ip_and_path:_" + ip + "_" +
                             path
300
                         readnet.logIPtraffic(ip, event.pathname)
                         mvIP = readnet.getMyIP(ip)
301
                         subprocess.call(["ssh",ip,"/usr/bin/python
302
                            _" + homepath + "readnet.py_-i_" + myIP
                            + "-f" + event.pathname])
                         print "ssh",ip,"'/usr/bin/python_" +
303
                            homepath + "readnet.py\_-i\_" + myIP + "\_-
                             f" + event.pathname + ","
304
                          fparts = folder.split("/")
                         fname = fparts [len(fparts)-1]
305
                         \#stopIP = self.qetStopInfo()
306
```

```
307
                         \#print "STOP: " + stopIP[0] + " " + stopIP
                             [1]
                         \#if \ stopIP / 0 = ip \ and \ stopIP / 1 = event
308
                             . pathname:
309
                          if self.inStopFile(ip, event.pathname):
                              print "STOPPED_to_" + ip + "_" + path
310
311
                              #os.remove("./stop");
312
                          else:
                              print "CONTINUE"
313
                              t.timeElapsed(lastTime, waitTime)
314
                              watchedfolders [folder] [i+3] = str(
315
                                 datetime.datetime.now())
316
                              t.updateFolderInfo(watchedfolders)
317
                              self.beginCopy(ip)
                              if args.scp:
318
                                  #print "SCP: For cpFile in " +
319
                                     folder
                                  for cpFile in glob.glob(folder + "
320
                                     /*"):
321
                                       #print "SCP GLOB:" + cpFile
                                       print "scp","-rp",cpFile,ip +
322
                                          ":" + cpFile + ".tmp"
                                       subprocess.call(["scp","-rp",
323
                                          cpFile, ip + ":" + cpFile + "
                                          . tmp"])
                                      \#subprocess.call(["ssh",ip"])
324
                                          yes y \mid find /tmp/" + fname
                                          + " -type f -exec cp -p {} "
                                           + path + fname + "/ \; rm /
                                          tmp/" + fname)
                                       print "ssh", ip , "mv_" + cpFile
325
                                          + ".tmp_" + cpFile
326
                                       subprocess.call(["ssh",ip,"mv_
                                          " + cpFile + ".tmp_" +
                                          cpFile])
                                       print "END_SCP_GLOB"
327
328
                              elif args.rsync:
                                  print "rsync","-rt",folder,ip + ":
329
                                     " + path
330
                                  subprocess.call(["rsync","-rt",
                                     folder, ip + ":" + path])
331
                              else:
332
                                  time.sleep(5)
```

```
print "unison","-batch","-
333
                                     confirmbigdel=false","-times",
                                     folder, "ssh://" + ip + "/" +
                                     path + fname
                                  subprocess.call(["unison","-batch"
334
                                     ,"-confirmbigdel=false","-times"
                                     , folder, "ssh://" + ip + "/" +
                                     path + fname])
                             print "Set_stop_files_uniq:_" + event.
335
                                pathname
336
                             #Set stop file on foreign host
                              self.setStopFileUniq(ip,myIP,event.
337
                                pathname, folder)
                             #Set stop file for myself to look at
338
339
                              self.setStopFileUniq(myIP, myIP, event.
                                pathname, folder)
                              self.endCopy(ip)
340
                         subprocess.call(["ssh",ip,"/usr/bin/python
341
                            _" + homepath + "readnet.py_-i_" + myIP
                            + "-f" + event.pathname])
                         readnet.logIPtraffic(ip, event.pathname)
342
343
344
        #def process_IN_CREATE(self, event):
             print "Create:", event.pathname
345
        def process_IN_DELETE(self, event):
346
            print "Delete: ", event.pathname
347
348
            \#self.initFileSync(event)
349
        def process_IN_CREATE(self, event):
            print "CREATE: _", event.pathname
350
             self.initFileSync(event)
351
        def process_IN_MOVED_FROM(self, event):
352
            print "Move_from:_", event.pathname
353
354
              self.initFileSync(event)
        def process_IN_MODIFY(self, event):
355
356
            #print "Modify: ", event. pathname
             self.initFileSync(event)
357
        def process_IN_MOVED_TO(self, event):
358
            print "Move_to:_", event.pathname
359
             self.initFileSync(event)
360
361
362
363
    def main():
        t = Tools()
364
```

```
f = open('./folderstowatch','r')
365
366
367
        for folder in f:
             if(folder[0] = '#'):
368
369
                 pass
370
             else:
371
                 info = folder.split()
372
                 wm. add_watch(info[0].rstrip(), pyinotify.ALL_EVENTS
                     , rec=True, auto_add=True)
                 print "Watching: ", info[0].rstrip()
373
                 if info[0] not in watchedfolders.keys():
374
                      watchedfolders [info [0]. rstrip ()] = []
375
376
                 watchedfolders [info [0].rstrip()].append(info [1])
                  watchedfolders [info [0].rstrip()].append(info [2])
377
                 watchedfolders [info [0].rstrip()].append(info [3])
378
                 watchedfolders [info [0].rstrip()].append(str(
379
                     datetime.datetime.now()))
        f.close()
380
381
382
        \mathbf{try}:
             f = open('./folders.dat','r')
383
             for folder in f:
384
                  if(folder[0] = '#'):
385
386
                      pass
387
                 else:
388
                      info = folder.split()
389
                      if info[0] in watchedfolders.keys():
390
                          del watchedfolders [info [0].rstrip()]
391
                          \#wm. \ add\_watch (info [0]. \ rstrip (), pyinotify.
                              ALL\_EVENTS, rec=True, auto\_add=True)
                          \#print "Watching: ", info [0]. rstrip ()
392
                          if info[0] not in watchedfolders.keys():
393
394
                               watchedfolders [info [0]. rstrip () = []
395
                           watchedfolders [info [0].rstrip()].append(
                              info[1])
396
                           watchedfolders [info [0].rstrip()].append(
                              info [2])
397
                           watchedfolders [info [0].rstrip()].append(
                              info [3])
398
                           watchedfolders [info [0].rstrip()].append(
                              str (datetime.datetime.now()))
399
                      else:
400
                          print "Removing: " + info [0]
```

```
401
             f.close()
402
        except IOError, e:
403
             print "Folders.dat_does_not_exist,_skipping"
404
405
        t.updateFolderInfo(watchedfolders)
406
407
        #print watchedfolders
408
        eh = MyEventHandler()
409
410
        notifier = pyinotify. Notifier (wm, eh)
411
        notifier.loop()
412
413
    if __name__ = '__main__':
414
        main()
```

B ReadNet.py

```
import subprocess, datetime, socket, argparse
3
  homepath = "/home/cal/Documents/Private-Sync/"
  \#homepath = "/Users/calum/Documents/Private-Sync/"
 5
 6
  parser = argparse. ArgumentParser()
   parser.add_argument('-i', action="store", dest='ip', help='IP_
      address_to_record_for')
   parser.add_argument('-f', action="store", dest='fold', help='
      Folder_to_record_for')
9
  interfacenames = []
10
11
12 w = open(homepath + "whoami", "r")
13 nodename = w.read()
14 nodename = nodename [0]
15
  w.close()
16
   #Get my ip corresponding to the interface with ipaddr
17
   def getMyIP(ipaddr):
18
19
       route = subprocess.check_output("ip_route_get_" + ipaddr,
          shell=True)
20
       words = route.split()
       interface = ""
21
22
       for word in words:
            if word.startswith("eth"):
23
```

```
24
                interface = word
25
                #print interface
26
                break
27
       ifconf = subprocess.check_output("ifconfig_" + interface,
           shell=True)
28
       words = ifconf.split()
       now = False
29
30
       for word in words:
            if word == "inet":
31
                now = True
32
33
            elif now:
                word = word.split(":")
34
35
                \#print word[1]
36
                return word[1]
37
38
   #Log interface coresponding to ipaddr
   def logIPtraffic (ipaddr, folder):
40
       route = subprocess.check_output("ip_route_get_" + ipaddr,
           shell=True)
41
       words = route.split()
       interface = ""
42
       for word in words:
43
            if word.startswith("eth"):
44
45
                interface = word
46
                #print interface
                break
47
48
       writeIface (interface, folder)
49
   #Write the upload/download data for a given interface and
50
      folder
   def writeIface (iface, folder):
51
       ifs = subprocess.check_output("ifconfig _-s", shell=True)
52
53
       ilines = ifs.split("\n")
54
       for i in range (1, len(ilines)-1):
55
            interfacenames.append(ilines[i].split()[0])
       output = subprocess.check_output("ifconfig", shell=True)
56
57
       splitput = output.split()
       interface = False
58
       interfacename = ""
59
       nex = ""
60
       count = 0
61
62
       upload = 0
       download = 0
63
```

```
64
        for split in splitput:
             if split in interfacenames:
65
66
                 interface = True
67
                 interfacename = split
68
                 #print interfacename
69
             if (nex != ""):
70
                 sp = split.split(":")
                 \mathbf{if}(\operatorname{sp}[0] = "bytes"):
71
72
                      if(nex = "RX"):
                          download = int(sp[1])
73
74
                      else:
75
                          upload = int(sp[1])
76
                      nex = ""
77
                      count += 1
                      if(count == 2):
78
                          interface = False
79
80
                          if interfacename == iface:
                               f = open(homepath + "log/")
81
                              + "node" + nodename.upper() + "-" \
82
83
                              + iface + ".log", 'a')
                               f.write("\#D_{-}" + folder + "\setminus n")
84
                               f.write(str(datetime.datetime.now()) +
85
                                   "_" + interfacename + "_download:_"
                                   + str (download) + "_upload:_" + str
                                  (upload) + "\n"
                               f.close()
86
87
                          count = 0
             elif(interface):
88
                 if(split = "RX" or split = "TX"):
89
90
                      nex = split
91
92
    #Log all interfaces
93
    def main():
94
         ifs = subprocess.check_output("ifconfig -s", shell=True)
95
         ilines = ifs.split("\n")
96
        for i in range (1, len(ilines)-1):
97
             interfacenames.append(ilines[i].split()[0])
        output = subprocess.check_output("ifconfig", shell=True)
98
99
         splitput = output.split()
100
         interface = False
        interfacename = ""
101
        nex = ""
102
        count = 0
103
```

```
104
         upload = 0
105
         download = 0
         for split in splitput:
106
             if split in interfacenames:
107
108
                  interface = True
109
                  interfacename = split
110
                  #print interfacename
             if (nex != ""):
111
                  sp = split.split(":")
112
                  \mathbf{if}(\mathrm{sp}[0] = "\mathrm{bytes"}):
113
                      if(nex = "RX"):
114
                           download = int(sp[1])
115
116
                      else:
                           upload = int(sp[1])
117
                      nex = ""
118
119
                      count += 1
                      if(count == 2):
120
121
                           interface = False
                           f = open(homepath + "log/" \setminus
122
                           + str(socket.gethostname()) + "-" \
123
                           + interfacename + ".log", 'a')
124
                           f.write(str(datetime.datetime.now()) + """
125
                               + interfacename + "_download:_" + str(
                              download) + "_upload: _" + str(upload) +
                              "\n")
                           f.close()
126
127
                           count = 0
128
             elif (interface):
                  if(split = "RX" or split = "TX"):
129
130
                      nex = split
131
    if __name__ == "__main__":
132
133
         args = parser.parse_args()
134
         if args.ip != None:
135
             logIPtraffic (args.ip, args.fold)
136
             \#qetMyIP(arqs.ip)
137
         else:
138
             pass
139
             main()
```

C on The Fly.sh

```
1 vm_name_arr=("Ubuntu-Pool" "Ubuntu-Silence" "Ubuntu-Black" "
     Ubuntu-Spheros" "Ubuntu-Wild")
2 vm_addr_arr=("192.168.0.28" "192.168.0.27" "192.168.0.30" "
      192.168.0.14")
3 \# Wild = 19
4 intnetarr=("lion" "tiger" "cat" "dog" "fish" "kiwi" "swish" "
     boom" "roar")
  #These should all be in one big dictionary apart from inet
     names
  letterarr=("a" "b" "c" "d" "e" "f" "g" "h" "i" "j")
incount=1
10 bigncount=2
11 littlencount=1
12 folderpath="/home/cal/Documents/t18"
  folderpath 2="/home/cal/Documents/t02"
  homepath="/home/cal/Documents/Private-Sync/"
15
   waitTime=5
16
17
   function clear_ifaces() {
18
       i = 0
       while [ "$i" -lt "${#vm_name_arr[@]}" ]; do
19
20
           VBoxManage modifyvm $\{vm_name_arr[$i]\} --nic2 none
21
           echo "VBoxManage_modifyvm_${vm_name_arr[$i]}_-nic2_
             none"
22
           VBoxManage modifyvm $\{vm_name_arr[$i]\} --nic3 none
          echo "VBoxManage_modifyvm_$ { vm_name_arr [ $i ] } _— nic 3 _
23
24
           VBoxManage modifyvm $\{vm_name_arr[$i]\} --nic4 none
           echo "VBoxManage_modifyvm_${vm_name_arr[$i]}_-nic4_
25
             none"
26
           let "i++"
27
      done
28
29
30
  function clear_watched_folders() {
31
       i = 0
       while [ "$i" -lt "${#vm_addr_arr[@]}" ]; do
32
           sh\ cal@{\{vm\_addr\_arr[\$i]\}}\ "echo\_\"\#Local\ folder\ path
33
             to watch, host to copy to, remote dir to copy to,
             min\ time\ between\ syncs \ "> /home/cal/Documents/
             Private-Sync/folderstowatch; echo \$\{letterarr/\$i/\} >
```

```
/home/cal/Documents/Private-Sync/whoami"
            let "i++"
34
35
       done
  }
36
37
38
   function git_pull() {
39
       i=0
       while [ "$i" -lt "${#vm_addr_arr[@]}" ]; do
40
           echo "ssh_cal@${vm_addr_arr[$i]}_\"cd /home/cal/
41
               Documents/Private-Sync; git pull origin master\""
           ssh cal@${vm_addr_arr[$i]} "cd_/home/cal/Documents/
42
               Private-Sync; _git_pull_origin_master"
43
            let "i++"
44
       done
45
  }
46
47
   function search_letters() {
48
       index=0
       while [ "$index" -lt "${#letterarr[@]}" ]; do
49
50
            if [ "${letterarr[$index]}" = "$1" ]; then
51
                echo $index
52
                return
53
            fi
54
            let "index++"
55
       done
       echo "None"
56
57
   }
58
59
   function vbmMOD {
60
       #Set the NIC to intnet on the VM and attach it to the
          given network
       echo "VBoxManage_modifyvm_$1_—nic$3_intnet"
61
62
       VBoxManage modifyvm $1 —nic$3 intnet
63
       echo "VBoxManage_modifyvm_$1_—intnet$3_$2"
       VBoxManage modifyvm $1 — intnet$3 $2
64
65
   }
66
67
   function gatherLogs {
68
       index=0
69
       while [ "$index" -lt "${#vm_addr_arr[@]}" ]; do
70
           echo "scp_cal@${vm_addr_arr[$index]}:/home/cal/
               Documents/Private-Sync/log/*.../logs/"
```

```
71
             scp_cal@${vm_addr_arr[$index]}:/home/cal/Documents/
                Private-Sync/log/* ../logs/
             let "index++"
72
73
        done
74
   }
75
76
    function clean {
77
        index=0
        while [ "$index" -lt "${#vm_addr_arr[@]}" ]; do
78
             echo "ssh_cal@${vm_addr_arr[$index]}_\"rm ${homepath}
79
                log/*; rm ${homepath}Stop-*; rm ${homepath}folders.
                dat\""
             ssh\ cal@\{vm_addr_arr[\$index]\}\ "rm_$\{homepath\}log/*; \_
80
                rm_${homepath}Stop-*;_rm_${homepath}folders.dat"
             let "index++"
81
82
        done
83
    }
84
85
    function cleanFold {
86
        index=0
        while [ "$index" -lt "${#vm_addr_arr[@]}" ]; do
87
             echo "ssh\_cal@{vm\_addr\_arr[$index]}\_\"rm -rf ${
88
                folderpath } /*; \""
             ssh cal@${vm_addr_arr[$index]} "rm_-rf_${folderpath
89
                }/*;"
             let "index++"
90
91
        done
92
   }
93
94
   function sendKeys {
95
        index=0
        while [ "\frac{1}{2} index" -lt "\frac{4}{2} wm_addr_arr[@]}" ]; do
96
97
             \#ssh\ cal@\$\{vm\_addr\_arr[\$index]\}\ "rm\ /home/cal/.ssh/
                authorized_-keys"
98
             for file in /Users/calum/.ssh/*.pub; do
                 #echo "$file"
99
                 echo "cat_$file_|_ssh_cal@${vm_addr_arr[$index]}_\
100
                    "cat >> /home/cal/.ssh/authorized_keys\""
                 cat $file | ssh cal@${vm_addr_arr[$index]} "cat >>>
101
                    _/home/cal/.ssh/authorized_keys"
102
             done
103
             let "index++"
104
        done
```

```
#for file in /Users/calum/.ssh/*.pub; do
105
            echo "$file"
106
            cat \$file \mid ssh cal@192.168.0.17 "cat >> /home/cal/.
107
       #
          ssh/testfile"
            echo "cat file | ssh cal@192.168.0.17 \ cat >> /home
108
          /cal/.ssh/testfile \""
       \#done
109
110
   }
111
   function ifconf {
112
       echo "ssh_cal@$1_'sudo_/sbin/ifconfig_eth$2_192.168.$3.$4_
113
          netmask_255.255.255.0 up; _echo_\" $folderpath 192.168.$3.
          Documents/Private-Sync/folderstowatch'
       ssh cal@$1 "sudo_/sbin/ifconfig_eth$2_192.168.$3.$4_
114
          netmask_255.255.255.0 up; _echo_\" $folderpath 192.168.$3.
          Documents/Private-Sync/folderstowatch" < /dev/null
115
116
117
   function if conf2 {
       echo "ssh_cal@1_\" sudo /sbin/ifconfig eth1.10 192.168.1.10
118
           netmask 255.255.255.0 up; echo \"$folderpath_192.168.$3
          .$5_{-}/home/cal/Documents/..* >> /home/cal/Documents/
          Private-Sync/folderstowatch; echo \"$folderpath2_
          192.168.\$3.\$5 \square/\text{home/cal/Documents/} \square * " >> /\text{home/cal/}
          Documents/Private-Sync/folderstowatch\" \= \_/dev/null"
119
       ssh cal@$1 "sudo_/sbin/ifconfig_eth$2_192.168.$3.$4_
          netmask_255.255.255.0 up; _echo_\" $folderpath 192.168.$3.
          $5 /home/cal/Documents/ *\" ->> _/home/cal/Documents/
          Private-Sync/folderstowatch; _echo_\" $folderpath2
          Documents/Private-Sync/folderstowatch" < /dev/null
120
   }
121
        $2 = "vm" ]; then
122
       clear_ifaces
123
124
       #Read in the DOT script
125
126
       while read line
127
       do
           first=$(echo "$line" | awk '{print $1}')
128
```

```
last=$(echo "$line" | awk '{print $(NF)}' | sed 's
129
               /[;]//g')
            #echo "$first and $last"
130
            index=$(search_letters $first)
131
            if [ "$index" = "None" ]; then
132
                #echo "None"
133
134
            else
135
                vbmMOD ${vm_name_arr[$index]} ${intnetarr[$incount]}
136
                   } ${ifcountarr[$index]}
                #echo "in: $index"
137
                ((ifcountarr[\$index]++))
138
                index=$(search_letters $last)
139
                vbmMOD ${vm_name_arr[$index]} ${intnetarr[$incount]}
140
                   } ${ifcountarr[$index]}
                #echo "in: $index"
141
                (( ifcountarr[$index]++ ))
142
                incount=$incount+1
143
144
            fi
145
        done <graphs/$1
    elif [ $2 = "if"]; then
146
        clear_watched_folders
147
148
149
        while read line
150
        do
            first=$(echo "$line" | awk '{print $1}')
151
            last=$(echo "$line" | awk '{print $(NF)}' | sed 's
152
               /[;]//g')
            echo "$first_and_$last"
153
            index=$(search_letters $first)
154
            if [ "$index" = "None" ]; then
155
                #echo "None"
156
157
            else
158
                ifconf $\{vm_addr_arr[\$index]\} $\{\}ethcountarr[\$index]
159
                   ))
                #echo "in: $index"
160
                (( ethcountarr[$index]++ ))
161
                ((littlencount++))
162
                index=$(search_letters $last)
163
                ifconf $\{vm_addr_arr[\$index]\} $\{\}ethcountarr[\$index]
164
                   \} $bigncount $littlencount $(( $littlencount -1))
```

```
))
                 \#echo "in: \$index"
165
                 (( ethcountarr[$index]++ ))
166
167
                 incount=$incount+1
                 ((bigncount++))
168
169
                 (( littlencount — ))
170
             fi
171
        done <graphs/$1
         [\$2 = "if2"]; then
172
        clear_watched_folders
173
174
175
        while read line
176
        do
             first=$(echo "$line" | awk '{print $1}')
177
             last=$(echo "$line" | awk '{print $(NF)}' | sed 's
178
                /[;]//g')
            echo "$first_and_$last"
179
            index=$(search_letters $first)
180
            if [ "$index" = "None" ]; then
181
182
                 #echo "None"
183
                 :
184
             else
                 ifconf2 $\{vm_addr_arr[\$index]\} $\{ethcountarr[\}
185
                    $index]} $bigncount $littlencount $((
                    f(t) = f(t)
                 #echo "in: $index"
186
187
                 (( ethcountarr[$index]++ ))
188
                 ((littlencount++))
189
                 index=$(search_letters $last)
                 ifconf2 ${vm_addr_arr[$index]} ${ethcountarr[}
190
                    $index]} $bigncount $littlencount $((
                    f(t) = f(t)
191
                 #echo "in: $index"
192
                 ((\text{ethcountarr} [\text{sindex}]++))
                 incount=$incount+1
193
194
                 ((bigncount++))
195
                 (( littlencount — ))
             fi
196
197
        done <graphs/$1
198
    elif [ $2 = "key"]; then
199
        sendKeys
    elif [ $2 = "gather"]; then
200
201
        gatherLogs
```

```
elif [ $2 = "clean"]; then
202
203
        clean
    elif [ $2 = "pull"]; then
204
205
        git_pull
    elif [ $2 = "clean - fold"]; then
206
207
        cleanFold
    elif [ $2 = "help"]; then
208
       echo "vm_____setup_vm_networking"
209
        echo "if ______setup_network_addresses_etc_for_each_
210
          vm"
        echo "if2 _____setup_network_addresses_etc_for_each_
211
          vm_for_two_folders"
        echo "gather____gather_the_logs_in"
212
        echo "clean _____clean _out _the _logs/config _ files"
213
214
        echo "clean-fold__-clean_out_the_files_folder"
215
        echo "pull____pull_the_latest_code_from_the_
           repository_to_each_vm"
       echo "help_____display_this_help_message"
216
217
   else
218
       echo "Oops_try_again"
219
    fi
220
221 neato -Teps graphs/$1 > graphs/$1-graph.eps
```