$^{36}{ m Mg}\,{ m \beta^- n\ decay\ (6.9\ ms)}$ 2023Lu07

Parent: 36 Mg: E=0; J^{π} =0+; $T_{1/2}$ =6.9 ms +7-8; $Q(\beta^{-}n)$ =1.253×10⁴ 69; $\%\beta^{-}n$ decay=48 12

 36 Mg-J $^{\pi}$: From the Adopted Levels of 36 Mg (2012Ni01).

³⁶Mg-T_{1/2}: Weighted average of 3.9 ms *I3* (2004Gr20,2003Gr22, implant- β correlation), 7.6 ms +5−8 (2013StZY, implant- β correlation, original T_{1/2}=7.6 ms *I* (stat) +5−8 (syst)), 7.2 ms *I2* (2022Cr03, implant- β correlation, original T_{1/2}=7.2 ms *I* (stat) *I2* (syst)), and 6.8 ms *I0* (2023Lu07, implant- $\beta\gamma$ correlation). Other: ≈5 ms (1999YoZW, implant- β correlation, preliminary). ³⁶Mg-O(β ⁻n): From 2021Wa16.

 36 Mg-% β ⁻n decay: From 1999YoZW (preliminary).

2023Lu07: Exp 1: ³⁶Mg and ³⁶Al were produced via the projectile fragmentation of a 140-MeV/nucleon, 80-pnA ⁴⁸Ca primary beam from the NSCL cyclotrons impinging on a 642-mg/cm²-thick ⁹Be target. The secondary cocktail beam centered around ³³Na was selected by the A1900 separator and implanted into a CeBr₃ scintillator sandwiched between two plastic scintillator veto detectors. Surrounding the implantation array were the SeGA array of 16 segmented Ge detectors and 15 LaBr₃ detectors. Exp 2: ³⁶Mg and ³⁶Al were produced via the projectile fragmentation of a 172.3-MeV/nucleon, 120-pnA ⁴⁸Ca primary beam from the FRIB linac impinging on an 8.89-mm-thick ⁹Be target. The secondary cocktail beam centered around ⁴²Si was selected by the ARIS separator and implanted into a 5-mm-thick YSO segmented scintillator sandwiched between two plastic scintillator veto detectors. Surrounding the implantation array were 11 HPGe clover detectors and 15 fast-timing LaBr₃ detectors, and the VANDLE array of 88 neutron detectors. Measured Eγ, Iγ, βγ-coin, γγ-coin, implant-βγ correlation and deduced T_{1/2} of ³⁶Mg g.s., ³⁶Al g.s. and a ³⁶Al isomer. Comparisons with FSU shell-model calculations.

2013StZY: 36 Mg was produced via the projectile fragmentation of a 345-MeV/nucleon, 70-pnA 48 Ca $^{20+}$ primary beam from the linear accelerator RILAC and the four cyclotrons RRC, fRC, IRC, and SRC at RIKEN impinging on an 15-mm-thick 9 Be target. The secondary cocktail beam was selected by the BigRIPS separator and the zero-degree spectrometer (ZDS) using the B ρ - Δ E-ToF method, and implanted into the Cylindrical Active Implantation Target for Exotic Nuclei (CAITEN) consisting of a segmented movable hollow-cylindrical-shaped plastic scintillator and a stationary ring of 24 position-sensitive photomultiplier tubes (PSPMTs) arranged on a ring inside the scintillator at the height of the beam line. To reduce background buildup, the scintillator barrel was fastly rotated and slowly moved axially in vertical direction, resulting in a helix-shaped motion. β particles were detected by the CAITEN and γ rays were detected using three HPGe clover detectors. Measured E γ , $\beta\gamma$ -coin, and implant- β correlation, and deduced T_{1/2}. Comparisons with QRPA and shell-model calculations.

35Al Levels

E(level) J^{π} Comments $0 \ (5/2)^{+}$ J^{π} : From the Adopted Levels.

803 $\underline{\gamma}^{(35}\text{Al})$ E $_{\gamma}$ E $_{i}$ (level) E $_{f}$ J_{f}^{π} Comments

 $\frac{1}{100}$ 803 $\frac{1}{100}$ $\frac{1}{100}$

2023Lu07 observed the 803γ within the 100-ms window following the arrival of a 36 Mg ion in both NSCL and FRIB experiments.

2013StZY observed a 804-keV γ ray that was not in coincidence with other γ rays. 2013StZY stated that the 804 γ is a prompt line that predominantly appears in the time window 0-10 ms after an implantation of 36 Mg, so it must originate from a deexcitation in one of the daughter nuclei 34,35,36 Al.

36 Mg β⁻n decay (6.9 ms) 2023Lu07

Decay Scheme

