

Learning with Biased Complementary Labels

Xiyu Yu^{*} Tongliang Liu^{*} Mingming Gong^{†‡} Dacheng Tao^{*}

Yuxuan Wu

2021.10.28

Complementary-Label Learning

- Ordinary supervised learning: training samples labeled with true labels.
- Complementary-label learning: weakly supervised learning, training samples labeled with complementary labels which indicate the categories that the samples do not belong to.

A comparison between true labels (top) and complementary labels (bottom).^[1]

- First modeling the annotation of complementary labels via transition probabilities $P(\bar{Y}=i|Y=j), i \neq j \in \{1,...,c\}$, where c is the number of classes.
- Previous methods implicitly assume that transition probabilities are identical, $P(\bar{Y}=i|Y=j) = \frac{1}{c-1}, i \neq j \in \{1,...,c\}$
- Labels are often annotated by humans, and humans are biased toward their own experience. Therefore the transition probabilities will be different.

Contributions of the proposed framework

- It estimates transition probabilities with no bias.
- 2. It provides a general method to modify traditional loss functions and extends standard deep neural network classifiers to learn with biased complementary labels.
- 3. It theoretically ensures that the classifier learned with complementary labels converges to the optimal one learned with true labels.
- 4. Comprehensive experiments on several benchmark datasets validate the superiority of our method to current state-of-the-art methods.

In multi-class classification, let $\mathcal{X} \in \mathbb{R}^d$ be the feature space and $\mathcal{Y} = [c]$ be the label space, where d is the feature space dimension.

For each example $(\boldsymbol{x},y) \in \mathcal{X} \times \mathcal{Y}$, a complementary label \bar{y} is selected from the complement set $\mathcal{Y} \setminus \{y\}$. We assign a probability for each $\bar{y} \in \mathcal{Y} \setminus \{y\}$ to indicate how likely it can be selected, i.e., $P(\bar{Y} = \bar{y} | Y = y, X = \boldsymbol{x})$

Assuming that complementray label is independent of feature *X* conditioned on true label *Y*.

$$P\left(\bar{Y}=\bar{y}\,|\,Y=y,X=oldsymbol{x}
ight)=P\left(\bar{Y}=\bar{y}\,|\,Y=y
ight)$$

Summarizing all the probabilities into a transition matrix $\mathbf{Q} \in \mathbb{R}^{c \times c}$

$$Q_{ij} = Pig(ar{Y} = j|Y = iig) ext{ and } Q_{ii} = 0\,,\,orall\,i,j \in [c]$$

If complementary labels are uniformly selected from the complement set

$$orall i,j \in [c] ext{ and } i
eq j, \; Q_{ij} = rac{1}{c-1}$$

Learning with True Labels:

$$f(X) = rgmax g_i(X)$$

where $g: \mathcal{X} \to \mathbb{R}^c$ and $g_i(X)$ is the estimate of P(Y = i|X)

The expected risk is defined as: $R(f) = \mathbb{E}_{(X,Y) \sim P_{XY}}[\ell(f(X),Y)]$

The optimal classifier is the one that minimizes the expected risk; that is,

$$f^* = rg \min_{f \in \mathcal{F}} R(f)$$

We then approximate R(f) by using its empirical counterpart:

$$R_n(f) = rac{1}{n} \sum_{i=1}^n \ell(f(oldsymbol{x}_i), y_i)$$

$$f_{n} = rg \min_{f \in \mathcal{F}} R_{n}\left(f
ight)$$

Learning with Complementary Labels:

we can only learn a mapping $q: \mathcal{X} \to \mathbb{R}^c$ that tries to predict conditional probabilities $P(\bar{Y}|X)$

Therefore, we need to modify these loss functions such that the classifier learned with biased complementary labels can converge to the optimal one learned with true labels.

$$ar{R}(f) = \mathbb{E}_{(X,Y) \sim P_{XY}} igg[\overline{\ell} igg(f(X), \overline{Y} igg) igg] ext{ and } ar{R}_n(f) = rac{1}{n} \sum_{i=1}^n \overline{\ell} igg(f(oldsymbol{x}_i), \overline{y}_i igg)$$

We hope that the modified loss function $\overline{\ell}$ can ensure that $\overline{f}_n \to f^*$

Learning with Complementary Labels:

Recall that in transition matrix Q:

$$egin{aligned} Q_{ij} &= Pig(ar{Y} = j|Y = iig) ext{ and } Q_{ii} = 0 ext{, } orall i, j \in [c] \ Pig(ar{Y} = j|Xig) &= \sum_{i \neq j} Pig(ar{Y} = j, Y = i|Xig) \ &= \sum_{i \neq j} Pig(ar{Y} = j|Y = i, Xig) P(Y = i|X) \ &= \sum_{i \neq j} Pig(ar{Y} = j|Y = iig) P(Y = i|X) \end{aligned}$$

Intuitively, if $q_i(X)$ tries to predict the probability $P(\bar{Y}=i|X), \forall i \in [c]$, then $Q^{-T}q$ can predict the probability P(Y|X)

Learning with Complementary Labels:

To enable end-to-end learning rather than transferring after training

$$\boldsymbol{q}(X) = \boldsymbol{Q}^{\mathrm{T}} \boldsymbol{g}(X)$$

Then, the modified loss function $\bar{\ell}$ is

$$\overline{\ell}(f(X),\overline{Y}) = \ell(\boldsymbol{q}(X),\overline{Y})$$

Forward loss correction

Assumption 2 (Anchor Set Condition). For each class y, there exists an anchor set $S_{\mathbf{x}|y} \subset \mathcal{X}$ such that $P(Y = y | X = \mathbf{x}) = 1$ and $P(Y = y' | X = \mathbf{x}) = 0$, $\forall y' \in \mathcal{Y} \setminus \{y\}$, $\mathbf{x} \in S_{\mathbf{x}|y}$.

Here, $S_{\mathbf{x}|y}$ is a subset of features in class y. Given several observations in $S_{\mathbf{x}|y}$, $y \in [c]$, we are ready to estimate the transition matrix \mathbf{Q} .

$$P(\bar{Y} = \bar{y}|X) = \sum_{y' \neq \bar{y}} P(\bar{Y} = \bar{y}|Y = y')P(Y = y'|X). \tag{14}$$

Suppose $\mathbf{x} \in \mathcal{S}_{\mathbf{x}|y}$, then $P(Y=y|X=\mathbf{x})=1$ and $P(Y=y'|X=\mathbf{x})=0, \forall y' \in \mathcal{Y} \setminus \{y\}$. We have

$$P(\bar{Y} = \bar{y}|X = \mathbf{x}) = P(\bar{Y} = \bar{y}|Y = y). \tag{15}$$

Experiments Classification accuracy on USPS and UCI datasets:

Dataset	c	d	#train	#test	PC/S	PL	ML	LM (ours)
WAVEFORM1	$1 \sim 3$	21	1226	398	85.8 (0.5)	85.7 (0.9)	79.3 (4.8)	85.1 (0.6)
WAVEFORM2	$1 \sim 3$	40	1227	408	84.7 (1.3)	84.6 (0.8)	74.9 (5.2)	85.5 (1.1)
SATIMAGE	$1 \sim 7$	36	415	211	68.7 (5.4)	60.7 (3.7)	33.6 (6.2)	69.3 (3.6)
	$1 \sim 5$		719	336	87.0 (2.9)	76.2 (3.3)	44.7 (9.6)	92.7 (3.7)
	$6 \sim 10$		719	335	78.4 (4.6)	71.1 (3.3)	38.4 (9.6)	85.8 (1.3)
PENDIGITS	even #	16	719	336	90.8 (2.4)	76.8 (1.6)	43.8 (5.1)	90.0 (1.0)
	odd#		719	335	76.0 (5.4)	67.4 (2.6)	40.2 (8.0)	86.5 (0.5)
	$1 \sim 10$		719	335	38.0 (4.3)	33.2 (3.8)	16.1 (4.6)	62.8 (5.6)
	$1 \sim 5$		3955	1326	89.1 (4.0)	77.7 (1.5)	31.1 (3.5)	93.3 (4.6)
	$6 \sim 10$		3923	1313	88.8 (1.8)	78.5 (2.6)	30.4 (7.2)	92.8 (0.9)
DRIVE	even #	48	3925	1283	81.8 (3.4)	63.9 (1.8)	29.7 (6.3)	84.3 (0.7)
	odd#		3939	1278	85.4 (4.2)	74.9 (3.2)	27.6 (5.8)	85.9 (2.1)
	$1 \sim 10$		3925	1269	40.8 (4.3)	32.0 (4.1)	12.7 (3.1)	75.1 (3.2)
	$1 \sim 5$		565	171	79.7 (5.4)	75.1 (4.4)	28.3 (10.4)	84.3 (1.5)
	$6 \sim 10$		550	178	76.2 (6.2)	66.8 (2.5)	34.0 (6.9)	84.4 (1.0)
LETTER	$11 \sim 15$	16	556	177	78.3 (4.1)	67.4 (3.4)	28.6 (5.0)	88.3 (1.9)
LETTER	$16 \sim 20$	10	550	184	77.2 (3.2)	68.4 (2.1)	32.7 (6.4)	85.2 (0.7)
	$21 \sim 25$		585	167	80.4 (4.2)	75.1 (1.9)	32.0 (5.7)	82.5 (1.0)
	$1 \sim 25$		550	167	5.1 (2.1)	5.0 (1.0)	5.2 (1.1)	7.0 (3.6)
	$1 \sim 5$		652	166	79.1 (3.1)	70.3 (3.2)	44.4 (8.9)	86.4 (4.5)
	$6 \sim 10$		542	147	69.5 (6.5)	66.1 (2.4)	37.3 (8.8)	88.1 (2.7)
USPS	even #	256	556	147	67.4 (5.4)	66.2 (2.3)	35.7 (6.6)	79.5 (5.4)
	odd#		542	147	77.5 (4.5)	69.3 (3.1)	36.6 (7.5)	86.3 (3.1)
	$1 \sim 10$		542	127	30.7 (4.4)	26.0 (3.5)	13.3 (5.4)	37.2 (5.4)

PL: a partial label method ML: a multi-label method PC/S: the pairwise-comparison formulation with sigmoid loss

Experiments Classification accuracy on MNIST datasets:

Method	Uniform	Without0	With0
TL	99.12	99.12	99.12
PC/S	86.59 ± 3.99	76.03 ± 3.34	29.12 ± 1.94
LM/T	97.18 ± 0.45	97.65 ± 0.15	98.63 ± 0.05
LM/E	96.33 ± 0.31	97.04 ± 0.31	98.61 ± 0.05

- (1) for each image in class y, the complementary label is uniformly selected from $\mathcal{Y} \setminus \{y\}$ ("uniform");
- (2) the complementary label is non-uniformly selected, but each label in $\mathcal{Y} \setminus \{y\}$ has non-zero probability to be selected ("without0");
- (3) The complementary label is non-uniformly selected from a small subset of $\mathcal{Y} \setminus \{y\}$ ("with0").

[&]quot;TL" denotes the result of learning with true labels.

[&]quot;LM/T" and "LM/E" refer to our method with the true Q and the estimated one, respectively.

		0.5				0.0		0.0		
0	0.0	0.5	0.0	0.0	0.0	0.3	0.0	0.2	0.0	0.0
1	0.2	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.3	0.0
2	0.0	0.5	0.0	0.0	0.3	0.0	0.0	0.0	0.2	0.0
3	0.3	0.5	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
4	0.2	0.0	0.0	0.3	0.0	0.5	0.0	0.0	0.0	0.0
5	0.3	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
6	0.0	0.2	0.0	0.0	0.3	0.0	0.0	0.0	0.5	0.0
7	0.3	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.5	0.0
8	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3
9	0.0	0.0	0.5	0.3	0.0	0.2	0.0	0.0	0.0	0.0
	0	1	2	3	4	5	6	7	8	9

0	0.001	0.512	0.001	0.001	0.001	0.310	0.000	0.171	0.002	0.001
1	0.191	0.001	0.000	0.003	0.001	0.001	0.519	0.000	0.284	0.000
2	0.002	0.489	0.000	0.000	0.305	0.000	0.001	0.000	0.202	0.000
3	0.307	0.476	0.001	0.001	0.211	0.000	0.000	0.000	0.002	0.002
4	0.201	0.001	0.003	0.261	0.000	0.533	0.000	0.000	0.001	0.000
5	0.296	0.500	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.201
6	0.000	0.162	0.000	0.000	0.319	0.000	0.000	0.000	0.518	0.000
7	0.277	0.000	0.000	0.164	0.000	0.000	0.000	0.000	0.558	0.000
8	0.005	0.462	0.226	0.000	0.001	0.000	0.000	0.000	0.001	0.303
9	0.013	0.003	0.505	0.280	0.000	0.195	0.000	0.000	0.003	0.001
	0	1	2	3	4	5	6	7	8	9

6 0.081 0.204 0.025 0.102 0.253 0.031 0.006 0.166 0.042 0.089

7 **0.224 0.043 0.030 0.103 0.256 0.073 0.092 0.005 0.146 0.029**

8 0.021 0.194 0.095 0.021 0.077 0.242 0.030 0.207 0.005 0.108

9 0.045 0.102 0.088 0.096 0.019 0.205 0.217 0.036 0.183 0.009

西安交通大學

XI'AN JIAOTONG UNIVERSITY

0	0.000	0.200	0.100	0.100	0.200	0.100	0.033	0.200	0.033	0.033
1	0.200	0.000	0.100	0.100	0.100	0.033	0.200	0.033	0.200	0.033
2	0.100	0.200	0.000	0.100	0.200	0.033	0.033	0.033	0.200	0.100
3	0.200	0.200	0.033	0.000	0.200	0.033	0.100	0.100	0.033	0.100
4	0.100	0.100	0.033	0.200	0.000	0.200	0.100	0.033	0.200	0.033
5	0.200	0.200	0.033	0.033	0.200	0.000	0.033	0.100	0.100	0.100
6	0.100	0.200	0.033	0.100	0.200	0.033	0.000	0.200	0.033	0.100
7	0.200	0.033	0.033	0.100	0.200	0.100	0.100	0.000	0.200	0.033
8	0.033	0.200	0.100	0.033	0.100	0.200	0.033	0.200	0.000	0.100
9	0.033	0.100	0.100	0.100	0.033	0.200	0.200	0.033	0.200	0.000
	0	1	2	3	4	5	6	7	8	9

Classification accuracy on CIFAR10 datasets:

Method	Uniform	Without0	With0
TL	90.78	90.78	90.78
PC/S	41.19 ± 0.04	42.97 ± 3.00	18.12 ± 1.45
LM/T	73.38 ± 1.06	78.80 ± 0.45	85.32 ± 1.11
LM/E	42.96 ± 0.76	70.56 ± 0.34	84.60 ± 0.14

Classification accuracy on CIFAR100 and Tiny ImageNet under the setting "with0":

Method	CIFAR100	Tiny ImageNet
TL	69.55	63.26
PC/S	8.95 ± 1.47	N/A
LM/T	62.84 ± 0.30	52.71 ± 0.71
LM/E	60.27 ± 0.28	49.70 ± 0.78

- Addressing the problem of learning with biased complementary labels.
- Specifically, considering the setting that the transition probabilities vary and most of them are zeros.
- Devising an effective method to estimate the transition matrix given a small amount of data in the **anchor set**.
- Based on the transition matrix, **modifying traditional loss functions** such that learning with complementary labels can theoretically converge to the optimal classifier learned from examples with true labels.
- Comprehensive experiments on a wide range of datasets verify that the proposed method is superior to the current state-of-the-art methods.