Relatório do Trabalho 1

Cabeçalho

Curso: Otimização ICP-365 Professora: Maria Helena

Alunos:

• Henrique Lima Cardoso (122078397)

• Lucas de Castro Carelli (122067516)

• Rafael Gomes Campos (122035111)

Índice

- 1. Introdução
- 2. Modelagem
 - 1. Modelagem de Calorias
 - 2. Modelagem de Cálcio
 - 3. Modelagem de Vitamina A
 - 4. Modelagem de Riboflavina
 - 5. Modelagem de Ácido Ascórbico
- 3. Implementação
 - 1. 1º Passo da Implementação
 - 2. 2º Passo da Implementação
 - 3. 3° Passo da Implementação
- 4. Resultados Numéricos
 - 1. Custo Total por Pessoa
 - 2. Custo por Nutrientes da Letra b
- 5. Conclusões
- 6. Bibliografia

Introdução

O Objetivo do Trabalho é encontrar os custos mínimos para o cumprimento da dieta especificada pelo médico, de forma com que a quantidade de nutrientes necessários seja indicado pelas primeiras 5 letras do nome de cada aluno seguindo a tabela abaixo:

Letra	Dieta	ProdutoX		
Α	7	63		
В	60	52		
С	83	59		
D	10	85		
Е	39	82		
F	59	58		

G	38	50		
Н	30	69		
1	65	44		
J	27	26		
K	91	30		
L	68	43		
М	49	90		
N	6	91		
0	10	45		
Р	32	82		
Q	51	98		
R	47	67		
S	20	97		
Т	66	28		
U	78	54		
V	81	33		
W	81	59		
Χ	61	61		
Υ	0	39		
Z	86	83		

Os nutrientes desejados, em ordem respectiva às letras do nome, são: Caloria, Cálcio, Vitamina A, Riboflavina e Ácido Ascórbico.

O Produto X é uma das Mercadorias que pode ser comprada para suprir a dieta, e cujas informações nutricionais e custo estão explicitados na tabela acima, também dependendo das 5 primeiras letras do nome.

As outras Mercadorias que podem ser utilizadas para compor a dieta e alcançar os objetivos nutricionais desejados estão disponibilizados na tabela abaixo, dando-se ênfase para alguns produtos, que são os únicos disponíveis na loja em que serão comprados, estes sendo: Farinha de Trigo (Enriquecida), Leite Evaporado, Queijo Cheddar, Fígado Bovino, Repolho, Espinafre, Batata Doce e Feijão Verde (Seco).

Numero	Mercadoria	Caloria	Proteina	Cálcio	Ferro	Vitamina A	Tiamina	Riboflavina	Niacina
1	Farinha de trigo (enriquecida)	44.7	1411	2	365	0	55.4	33.3	441
5	Farinha de milho	36	897	1.7	99	30.9	17.4	7.9	106
15	Leite evaporado (lata)	8.4	422	15.1	9	26	3	23.5	11

17	Margarina	20.6	17	0.6	6	55.8	0.2	0	0
19	Queijo (cheddar)	7.4	448	16.4	19	28.1	0.8	10.3	4
21	Pasta de amendoim	15.7	661	1	48	0	9.6	8.1	471
24	Bacon	41.7	0	0	0	0.2	0	5	5
30	Fígado (boi)	2.2	333	0.2	139	169.2	6.4	50.8	316
34	Lombo de porco assado	4.4	249	0.3	37	0	18.2	3.6	79
40	Salmão. rosa (lata)	5.8	705	6.8	45	3.5	1	4.9	209
45	Feijão verde	2.4	138	3.7	80	69	4.3	5.8	37
46	Repolho	2.6	125	4	36	7.2	9	4.5	26
50	Cebola	5.8	166	3.8	59	16.6	4.7	5.9	21
51	Batatas	14.3	336	1.8	118	6.7	29.4	7.1	198
52	Espinafre	1.1	106	0	138	918.4	5.7	13.8	33
53	Batata-doce	9.6	138	2.7	54	290.7	8.4	5.4	83
64	Pêssegos. secos	8.5	87	1.7	173	86.8	1.2	4.3	65
65	Ameixas secas	12.8	99	2.5	154	85.7	3.9	4.3	65
68	Feijão verde. seco	17.4	1055	3.7	459	5.1	26.9	38.2	93
69	Feijão branco. seco	26.9	1691	11.4	792	0	38.4	24.6	217

Modelagem

Encontrando a Dieta de Custo Mínimo: (Letra A)

Primeiramente, é importante realizar a organização dos dados sendo trabalhados. Portanto, é possível reduzir a segunda tabela para manter somente as informações consideradas relevantes (mantendo somente os nutrientes desejados e os alimentos disponíveis).

Numero	Mercadoria	Caloria	Cálcio	Vitamina A	Riboflavina	Ácido Ascórbico
1	Farinha de trigo (enriquecida)	44.7	2	0	33.3	0
2	Leite evaporado (lata)	8.4	15.1	26	23.5	60
3	Queijo	7.4	16.4	28.1	10.3	0

	(cheddar)					
4	Fígado (boi)	2.2	0.2	169.2	50.8	525
5	Repolho	2.6	4	7.2	4.5	5369
6	Espinafre	1.1	0	918.4	13.8	2755
7	Batata-doce	9.6	2.7	290.7	5.4	1912
8	Feijão verde. seco	17.4	3.7	5.1	38.2	0

Para referenciar os Produtos durante a Modelagem, o modelo utilizado será M_{indice}

Os nutrientes do Produto X serão referenciados como sendo $X_{nutriente}$ e sua quantidade será de M_{X}

Os nutrientes necessários na Dieta serão referenciados como sendo D_{nutriente}

As modelagens serão feitas de forma a encontrar as quantidades de alimentos (custos) necessários para se obter pelo menos o mínimo de nutrição indicado pela dieta.

Modelagem da Quantidade de Calorias Necessárias:

$$44.7*M_1 + 8.4*M_2 + 7.4*M_3 + 2.2*M_4 + 2.6*M_5 + 1.1*M_6 + 9.6*M_7 + 17.4*M_8 + X_{\text{Calorias}}*M_X \geqslant D_{\text{Calorias}}$$

Modelagem da Quantidade de Cálcio Necessário:

$$2*M_{1}+15.1*M_{2}+16.4*M_{3}+0.2*M_{4}+4*M_{5}+0*M_{6}+2.7*M_{7}+3.7*M_{8}+X_{C\'alcio}*M_{X}\geqslant D_{C\'alcio}$$

Modelagem da Quantidade de Vitamina A Necessária:

$$0*M_{1} + 26*M_{2} + 28.1*M_{3} + 169.2*M_{4} + 7.2*M_{5} + 918.4*M_{6} + 290.7*M_{7} + 5.1*M_{8} + X_{\text{Vitamina A}}*M_{X} \geqslant D_{\text{Vitamina A}}$$

Modelagem da Quantidade de Riboflavina Necessária:

$$33.3*M_1 + 23.5*M_2 + 10.3*M_3 + 50.8*M_4 + 4.5*M_5 + 13.8*M_6 + 5.4*M_7 + 38.2*M_8 \\ + X_{Riboflavina}*M_X \geqslant D_{Riboflavina}$$

Modelagem da Quantidade de Ácido Ascórbico Necessário:

$$0*M_{1}+60*M_{2}+0*M_{3}+525*M_{4}+5369*M_{5}+2755*M_{6}+1912*M_{7}+0*M_{8}+X_{Acido}$$
 Ascórbico * $M_{X} \geqslant D_{Acido}$ Ascórbico

Objetivo: Minimizar Custo = $M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_X$

Para encontrar as informações da Letra b, basta executar somente as linhas dos nutrientes desejados

Implementação

1º Passo da Implementação:

- Henrique
 - H -> D_{Calorias} = 30 x 10² Calorias ; X_{Calorias} = 690 x 10² Calorias
 - E → D_{Cálcio} = 39 x 10⁻² gramas de Cálcio ; X_{Cálcio} = 820 x 10⁻² gramas de Cálcio

- \circ N -> D_{Vitamina A} = 6 x 10² UI de Vitamina A; X_{Vitamina A} = 910 x 10² UI de Vitamina A
- R -> $D_{Riboflavina} = 47 \times 10^{-1}$ miligramas de Riboflavina ; $X_{Riboflavina} = 67 \times 10^{-1}$ miligramas de Riboflavina
- I -> Dácido Ascórbico = 65 miligramas de Ácido Ascórbico ; Xácido Ascórbico = 44 miligramas de Ácido Ascórbico

• Lucas

- L -> D_{Calorias} = 68 x 10² Calorias ; X_{Calorias} = 430 x 10² Calorias
- \circ U -> D_{Cálcio} = 78 x 10⁻² gramas de Cálcio ; X_{Cálcio} = 540 x 10⁻² gramas de Cálcio
- \circ C -> D_{Vitamina A} = 83 x 10² UI de Vitamina A; X_{Vitamina A} = 590 x 10² UI de Vitamina A
- A -> D_{Riboflavina} = 7 x 10⁻¹ miligramas de Riboflavina ; X_{Riboflavina} = 63 x 10⁻¹ miligramas de Riboflavina
- S -> D_{Ácido Ascórbico} = 20 miligramas de Ácido Ascórbico ; X_{Ácido Ascórbico} = 97 miligramas de Ácido Ascórbico

Rafael

- R -> D_{Calorias} = 47 x 10² Calorias ; X_{Calorias} = 670 x 10² Calorias
- A -> D_{Cálcio} = 7 x 10² gramas de Cálcio ; X_{Cálcio} = 630 x 10² gramas de Cálcio
- F -> D_{Vitamina A} = 59 x 10² UI de Vitamina A; X_{Vitamina A} = 580 x 10² UI de Vitamina A
- A -> D_{Riboflavina} = 7 x 10⁻¹ miligramas de Riboflavina ; X_{Riboflavina} = 63 x 10⁻¹ miligramas de Riboflavina
- E -> D_{Ácido Ascórbico} = 39 miligramas de Ácido Ascórbico ; X_{Ácido Ascórbico} = 82 miligramas de Ácido Ascórbico

2° Passo da Implementação

Transformar a Modelagem para a Forma Padrão (≥ -> ≤)

-44.7 *
$$M_1$$
 - 8.4 * M_2 - 7.4 * M_3 - 2.2 * M_4 - 2.6 * M_5 - 1.1 * M_6 - 9.6 * M_7 - 17.4 * M_8 - $X_{Calorias}$ * M_X \leqslant - $D_{Calorias}$

$$-2*M_1 - 15.1*M_2 - 16.4*M_3 - 0.2*M_4 - 4*M_5 - 0*M_6 - 2.7*M_7 - 3.7*M_8 - X_{C\'alcio}*M_X \leqslant D_{C\'alcio}$$

-0 *
$$M_1$$
 - 26 * M_2 - 28.1 * M_3 - 169.2 * M_4 - 7.2 * M_5 - 918.4 * M_6 - 290.7 * M_7 - 5.1 * M_8 - $X_{Vitamina\ A}$ * M_X \lesssim $D_{Vitamina\ A}$

$$-33.3*M_1 - 23.5*M_2 - 10.3*M_3 - 50.8*M_4 - 4.5*M_5 - 13.8*M_6 - 5.4*M_7 - 38.2*M_8 - \\ X_{Riboflavina}*M_X \leqslant D_{Riboflavina}$$

$$-0*M_1-60*M_2-0*M_3-525*M_4-5369*M_5-2755*M_6-1912*M_7-0*M_8-X_{Acido}\\ Ascórbico*M_X\leqslant D_{Acido}Ascórbico$$

3° Passo da Implementação

Aplicação do Método Simplex (em Python)

- Necessário transformar os dados para a forma Ax ≤ b, onde estamos trabalhando nas mesmas unidades.
- A é a Matriz dos Coeficientes
 - o x é o Vetor com as Variáveis (Neste caso, Mi)
 - b é o Vetor das Restrições

```
def matriz_loja(nome:str):
nome = nome.upper()
m = deepcopy(tabela_loja)
for i in range(5): #são cinco nutrientes
     if i < len(nome) and nome[i] in dieta_prodx_por_letra:
         letra = nome[i]
         val = float(dieta_prodx_por_letra[letra][1]) * conversao_prod_x[i] #cc
         m[i].append(val)
     else:
         m[i].append(0.)
return np.matrix(m)</pre>
```

Encontrando o Vetor de Restrições

```
def restricoes(nome:str):
nome = nome.upper()
r = []
for i in range(5):
    if i < len(nome) and nome[i] in dieta_prodx_por_letra:
         letra = nome[i]
         val = float(dieta_prodx_por_letra[letra][0]) * conversao_dieta[i] #cor
         r.append(val)
    else:
         r.append(0.)
return np.array(r)</pre>
```

Encontrando o Vetor de Variáveis (Objetivo)

```
def dieta(nome:str, method:str):
 # Invertendo os sinais para transformar para a forma padrão
 m = -matriz(nome)
 r = -restricoes(nome)
 c = np.ones(len(alimentos) + 1) # esse é o funcional linear que será minimizad
 return scipy.optimize.linprog(c=c, A_ub=m, b_ub=r, method=method)
```

Resultados Numéricos

Resultado da Matriz de Coeficientes

Henrique

$$\mathsf{M} = \begin{bmatrix} -44.7 & -8.4 & -7.4 & -2.2 & -2.6 & -1.1 & -9.6 & -17.4 & -69.7 \\ -2 & -15.1 & -16.4 & -0.2 & -4 & -0 & -2.7 & -3.7 & -8.2 \\ -0 & -26 & -28.1 & -169.2 & -7.2 & -918.4 & -290.7 & -5.1 & -91 \\ -33.3 & -23.5 & -10.3 & -50.8 & -4.5 & -13.8 & -5.4 & -38.2 & -6.7 \\ -0 & -60 & -0 & -525 & -5369 & -2755 & -1912 & -0 & -44 \end{bmatrix}$$

Lucas

$$\mathsf{M} = \begin{bmatrix} -44.7 & -8.4 & -7.4 & -2.2 & -2.6 & -1.1 & -9.6 & -17.4 & -43 \\ -2 & -15.1 & -16.4 & -0.2 & -4 & -0 & -2.7 & -3.7 & -5.4 \\ -0 & -26 & -28.1 & -169.2 & -7.2 & -918.4 & -290.7 & -5.1 & -59 \\ -33.3 & -23.5 & -10.3 & -50.8 & -4.5 & -13.8 & -5.4 & -38.2 & -6.3 \\ -0 & -60 & -0 & -525 & -5369 & -2755 & -1912 & -0 & -97 \end{bmatrix}$$

Rafael

$$\mathsf{M} = \begin{bmatrix} -44.7 & -8.4 & -7.4 & -2.2 & -2.6 & -1.1 & -9.6 & -17.4 & -67 \\ -2 & -15.1 & -16.4 & -0.2 & -4 & -0 & -2.7 & -3.7 & -6.3 \\ -0 & -26 & -28.1 & -169.2 & -7.2 & -918.4 & -290.7 & -5.1 & -58 \\ -33.3 & -23.5 & -10.3 & -50.8 & -4.5 & -13.8 & -5.4 & -38.2 & -6.3 \\ -0 & -60 & -0 & -525 & -5369 & -2755 & -1912 & -0 & -82 \end{bmatrix}$$

Usamos (para testar) dois métodos diferentes do scipy.optimize.lingprog , o simplex e o highs . Ambos dão o mesmo resultado. Vi, posteriormente na implementação do código deles do simplex -

https://github.com/scipy/scipy/blob/c0065b69a98be549b46e44573bbf3c13e98681da/scipy/optimize/_linprog_simplex.py - que eles usam o método de duas fases para determinar uma solução inicial.

• Henrique

$$b = \begin{bmatrix} -3 \\ -0.39 \\ -0.6 \\ -4.7 \\ -65 \end{bmatrix}$$

• Lucas

$$b = \begin{bmatrix} -6.8 \\ -0.78 \\ -8.3 \\ -0.7 \\ -20 \end{bmatrix}$$

Rafael

$$\mathbf{b} = \begin{bmatrix} -4.7 \\ -0.07 \\ -5.9 \\ -0.7 \\ -39 \end{bmatrix}$$

Resultado do Vetor de Variáveis (Objetivo)

• Henrique

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0.00280396 \\ 0 \\ 0.08403366 \\ 0.00687433 \\ 0 \\ 0 \\ 0.04034798 \end{bmatrix}$$

• Lucas

$$\mathbf{x} = \begin{bmatrix} 0.0203727 \\ 0 \\ 0 \\ 0 \\ 0.00243949 \\ 0 \\ 0 \\ 0.136899 \end{bmatrix}$$

Rafael

$$\mathbf{x} = \begin{bmatrix} 0.00315594 \\ 0 \\ 0 \\ 0 \\ 0.01213675 \\ 0 \\ 0 \\ 0.06784447 \end{bmatrix}$$

Quantidade de nutrientes por pessoa

• Henrique

$$-Mx = \begin{bmatrix} 3 \\ 0.39 \\ 24.27644967 \\ 4.7 \\ 65 \end{bmatrix}$$

Lucas

$$-Mx = \begin{bmatrix} 6.8 \\ 0.78 \\ 10.31746934 \\ 1.57453944 \\ 20 \end{bmatrix}$$

Rafael

$$-\mathsf{Mx} = \begin{bmatrix} 4.7 \\ 0.43373201 \\ 15.08137274 \\ 0.7 \\ 39. \end{bmatrix}$$

Custo total por pessoa

- Henrique = *U\$ 0.1340599306242723*
- Lucas = *U\$ 0.15971118784604565*
- Rafael = *U\$ 0.08313715497274843*

Custo considerando somente a Vitamina A e a Riboflavina (Letra b)

Nós concordamos que o custo que estaríamos dispostos a pagar seria considerando todos os alimentos (e seus preços) - mesmo aqueles que não estão disponíveis na loja.

- Henrique
 - Vitamina A = *U*\$ 0.0006533101045296169
 - Riboflavina = *U\$ 0.09251968503937008*
- Lucas
 - Vitamina A = *U\$ 0.009037456445993032*
 - Riboflavina = *U\$ 0.01377952755905512*
- Rafael
 - Vitamina A = U\$ 0.006424216027874565

Conclusões

É possível concluir que os valores necessários para alcançar a nutrição da dieta são todos baixos, com o Rafael sendo a pessoa que requer menos dinheiro para alcançar o objetivo nutricional.

Bibliografia

https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html

 $https://github.com/scipy/scipy/blob/c0065b69a98be549b46e44573bbf3c13e98681da/scipy/optimize/_linprog_simplex.py$

https://docs.python.org/3/library/csv.html