UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

${\bf Luka\ Horjak}$ ${\bf HOLOMORFNI\ AVTOMORFIZMI}$

Delo diplomskega seminarja

Mentor: prof. dr. Miran Černe

Kazalo

1	\mathbf{Hol}	omorfni avtomorfizmi v kompleksni ravnini	4
	1.1	Enostavno povezana območja	4
	1.2	Punktirani diski in kolobarji	5
	1.3	Avtomorfizmi p-povezanih območij	6
2	Riemannove ploskve		
	2.1	Gladke in kompleksne mnogoterosti	7
	2.2	Riemann-Rochov izrek	10
	2.3		
	2.4	Hipereliptične ploskve	16
3	Avtomorfizmi Riemannovih poloskev		18
	3.1	Sfere in torusi	18
	3.2	Ploskve večjih rodov	18
Li	Literatura		20

Holomorfni avtomorfizmi

Povzetek

• • •

${\bf Holomorphic\ automorphisms}$

Abstract

...

Math. Subj. Class. (2020): 30F10, 30C20

Ključne besede: ..., ...

 $\mathbf{Keywords:}\ ...,\ ...$

1 Holomorfni avtomorfizmi v kompleksni ravnini

1.1 Enostavno povezana območja

Da lahko govorimo o holomorfnih funkcijah, se bomo omejili na odprte podmnožice kompleksne ravnine.

Definicija 1.1. Holomorfen avtomorfizem odprte množice $\Omega \subseteq \mathbb{C}$ je bijektivna holomorfna preslikava $f: \Omega \to \Omega$ s holomorfnim inverzom.

Opazimo, da je zadosten pogoj že to, da je f bijektivna in holomorfna. Opazimo še, da množica avtomorfizmov nekega območja tvori grupo z operacijo kompozitum. To grupo označimo z $\operatorname{Aut}(\Omega)$.

Prepričamo se lahko, da lahko avtomorfizme nepovezanih množic opišemo z avtomorfizmi, ki komponente med seboj permutirajo. V nadaljevanju se bomo tako omejili na povezane množice.

Definicija 1.2. *Območje* v kompleksni ravnini \mathbb{C} je vsaka odprta povezana množica.

Primer 1.3. Kompleksna ravnina je območje v \mathbb{C} . Njena grupa avtomorfizmov je enaka

$$Aut(\mathbb{C}) = \{ z \mapsto az + b \mid a \neq 0 \}.$$

Primer 1.4. Naj bo Δ odprt enotski disk v \mathbb{C} . Tedaj je

$$\operatorname{Aut}(\mathbb{\Delta}) = \left\{ z \mapsto e^{i\theta} \cdot \frac{z - a}{1 - \overline{a}z} \mid a \in \mathbb{\Delta} \land \theta \in [0, 2\pi) \right\}.$$

Slika 1: Primer avtomorfizma diska. Označeni sta točki $f^{-1}(0)$ in f(0).

Izkaže se, da smo s tem do izomorfizma natančno opisali grupe avtomorfizmov vseh povezanih in enostavno povezanih množic v \mathbb{C} . Velja namreč naslednja lema:

Lema 1.5. Naj bosta Ω_1 in Ω_2 biholomorfno ekvivalentni območji v \mathbb{C} . Tedaj je $\operatorname{Aut}(\Omega_1) \cong \operatorname{Aut}(\Omega_2)$.

Dokaz. Naj bo $f: \Omega_1 \to \Omega_2$ biholomorfna preslikava. Sedaj definiramo preslikavo $\Phi: \operatorname{Aut}(\Omega_1) \to \operatorname{Aut}(\Omega_2)$ s predpisom

$$\Phi(\phi) = f^{-1} \circ \phi \circ f.$$

Ker je s predpisom

$$\Phi^{-1}(\psi) = f \circ \psi \circ f^{-1}$$

očitno podan predpis inverza preslikave Φ , je ta bijektivna. Velja pa

$$\Phi(\phi \circ \psi) = f^{-1} \circ \phi \circ \psi \circ f = \left(f^{-1} \circ \phi \circ f \right) \circ \left(f^{-1} \circ \psi \circ f \right) = \Phi(\phi) \circ \Phi(\psi),$$
 zato je Φ homomorfizem.

Spomnimo se na Riemannov upodobitveni izrek, ki pravi, da je vsako povezano in enostavno povezano območje v kompleksni ravnini ali biholomorfno ekvivalentno Δ ali pa kar enako \mathbb{C} . Grupe avtomorfizmov povezanih in enostavno povezanih območij so do izomorfizma natančno tako le $\operatorname{Aut}(\Delta)$ in $\operatorname{Aut}(\mathbb{C})$.

Omenimo še, da lahko kompleksno ravnino dopolnimo do Riemannove sfere $\widehat{\mathbb{C}}$. Njeni avtomorfizmi so Möbiusove transformacije, torej

Aut
$$(\widehat{\mathbb{C}}) = \left\{ z \mapsto \frac{az+b}{cz+d} \mid ad-bc = 1 \right\}.$$

1.2 Punktirani diski in kolobarji

Po obravnavi enostavno povezanih območij so naslednji korak območja z »luknjami«. Eden izmed osnovnejših primerov takih območij je punktiran disk $\Delta_{\alpha} = \Delta \setminus \{\alpha\}$.

Disk $\mathbb{A}^*=\mathbb{A}\setminus\{0\}$ je biholomorf
no ekvivalenten vsakemu punktiranemu disku, saj je preslikava
 $f\colon\mathbb{A}_\alpha\to\mathbb{A}^*$ s predpisom

$$f(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$$

biholomorfna. Sledi, da je $\operatorname{Aut}(\Delta_{\alpha}) \cong \operatorname{Aut}(\Delta^*)$.

Trditev 1.6. Za punktiran disk velja

Dokaz. Naj bo $f: \mathbb{A}^* \to \mathbb{A}^*$ poljuben avtomorfizem. Tedaj je točka 0 izolirana singularnost funkcije f. Ker je f omejena, je to odpravljiva singularnost.

Naj bo $\tilde{f} \colon \Delta \to \mathbb{C}$ funkcija, ki jo dobimo tako, da f razširimo na celoten disk. Predpostavimo, da velja $\tilde{f}(0) \neq 0$. Ker je \tilde{f} holomorfna, je odprta, zato sledi $\left| \tilde{f}(0) \right| < 1$. Oglejmo si točko $\alpha \neq 0$, za katero je $f(\alpha) = \tilde{f}(0)$. Izberemo si lahko disjunktni okolici U in V točk 0 in α . Ker je \tilde{f} odprta, je odprta tudi množica $W = \tilde{f}(U) \cap \tilde{f}(V)$. Hitro opazimo, da velja $\tilde{f}(0) \in W$, zato je ta množica neprazna. Sledi, da je W neskončna, kar je protislovje, saj velja $f(U \setminus \{0\}) \cap f(V) = \emptyset$.

Sledi, da je $\tilde{f}(0) = 0$, zato je \tilde{f} avtomorfizem diska. Tako dobimo inkluzijo

$$\operatorname{Aut}({\mathbin{\vartriangle}}^*)\subseteq\left\{f\in\operatorname{Aut}({\mathbin{\vartriangle}})\mid f(0)=0\right\}.$$

Ni težko preveriti, da velja tudi obratna inkluzija, oziroma

$$\operatorname{Aut}(\Delta^*) = \left\{ z \mapsto e^{i\pi\theta} z \mid \theta \in [0, 2\pi) \right\}.$$

Kaj pa se zgodi, če število lukenj povečamo? Naj bo $\Delta_2 = \Delta \setminus \{0, \alpha\}$. Po enakem razmisleku kot prej ugotovimo, da za vsak avtomorfizem $f \in \operatorname{Aut}(\Delta_2)$ velja $f(0) \in \Delta$ in hkrati $f(0) \notin \Delta_2$. Enako velja za točko α . Sedaj ni težko videti, da velja

$$\operatorname{Aut}(\Delta_2) = \left\langle z \mapsto \frac{\alpha - z}{1 - \overline{\alpha}z} \right\rangle \cong \mathbb{Z}_2,$$

saj je avtomorfizem diska natančno določen z dvema točkama.

Sedaj si oglejmo še kolobar $R = \mathbb{\Delta} \setminus \mathbb{\Delta}(r)$. Naj bo $f \colon R \to R$ avtomorfizem. Izkaže se, da se f zvezno razširi na ∂R . Ker lahko f komponiramo s preslikavo $\varphi \colon z \mapsto \frac{\rho}{z}$, lahko predpostavimo, da je $f(\partial \mathbb{\Delta}) = \partial \mathbb{\Delta}$. Naj bo

$$u(z) = \log|f(z)| - \log|z|.$$

Ker je logaritem harmonična funkcija, je $\Delta u = 0$. Ker je $u|_{\partial R} = 0$, je po principu maksima u = 0. Tako sledi |f(z)| = |z|. Sledi, da je

$$\left| \frac{f(z)}{z} \right| = 1.$$

Ker je $\frac{f(z)}{z}$ holomorfna in so nekonstantne holomorfne preslikave odprte, sledi, da je $\frac{f(z)}{z}$ konstantna. Tako so vsi avtomorfizmi kolobarja kar $z\mapsto e^{i\theta}z$ in $z\mapsto e^{i\theta}\frac{r}{z}$.

Slika 2: Primer avtomorfizma kolobarja.

1.3 Avtomorfizmi p-povezanih območij

Oglejmo si avtomorfizme območja $\Omega = \mathbb{C} \setminus \{x_i \mid 1 \leq i \leq p\}$. Za p=1 dobimo kompleksno ravnino. Pri p=2 lahko brez škode za splošnost vzamemo $x_1=0$ in $x_2=\infty$. Ni težko videti, da so vsi avtomorfizmi oblike $z\mapsto e^{i\theta}\cdot z^{\pm 1}$.

Sedaj si oglejmo še primer p > 2. Preverimo lahko, da se vsak avtomorfizem Ω razširi do avtomorfizma Riemannove ploskve, ki permutira točke x_i . Ker je vsaka

¹Podobno kot prej lahko privzamemo, da je ena izmed lukenj enaka 0.

Möbiusova transformacija enolično določena s tremi točkami, je moč grupe $\operatorname{Aut}(\Omega)$ tako omejena s p(p-1)(p-2).

Izkaže se, da lahko to mejo še bistveno izboljšamo. Znano je namreč, da je vsaka končna podgrupa $\operatorname{Aut}(\widehat{\mathbb{C}})$ konjugirana podgrupi grupe rotacij SO_3 [4]. Vse končne podgrupe SO_3 so natanko rotacijske, diedrske, tetraedrska, oktaedrska in ikozaedrska [1]. Preverimo lahko, da je za p=4 največja možna moč grupe avtomorfizmov enaka 12, za p=6 in p=8 dobimo 24, za p=12 in p=20 pa 60. Za vse ostale p je največja grupa simetrij kar dierska, zato je $|\operatorname{Aut}(\Omega)| \leq 2p$.

Slika 3: Kompozitum stereografske projekcije z rotacijo sfere

2 Riemannove ploskve

2.1 Gladke in kompleksne mnogoterosti

Slika 4: Ploskev roda g = 3

Definicija 2.1. Meromorfen q-diferencial ω Riemannove ploskve je dodelitev meromorfne funkcije f vsaki lokalni koordinati, pri čemer je f(z) dz^q neodvisna od lokalne koordinate. Meromorfnim 1-diferencialom pravimo kar meromorfni diferenciali.

Naj bosta (U, φ) in (V, ψ) lokalni karti, za kateri velja $U \cap V \neq \emptyset$. Če jima meromorfen q-diferencial ω priredi funkciji f_U in f_V , mora tako veljati

$$f_U = f_V \cdot \left(\left(\psi \circ \varphi^{-1} \right)' \right)^q$$
.

Opazimo, da je q-ta potenca meromorfnega diferenciala meromorfen q-diferencial.

Trditev 2.2. Naj bosta α in β meromorfna q-diferenciala. Tedaj je $\frac{\alpha}{\beta}$ meromorfna funkcija.

Dokaz. Z zgornjimi oznakami velja

$$\frac{\alpha_U}{\beta_U} = \frac{\alpha_V \cdot \left((\psi \circ \varphi^{-1})' \right)^q}{\beta_V \cdot \left((\psi \circ \varphi^{-1})' \right)^q} = \frac{\alpha_V}{\beta_V}.$$

Kvocient $\frac{\alpha}{\beta}$ tako ni odvisen od lokalnih koordinat.

Očitno velja tudi obratno – če je α meromorfen q-diferencial in f meromorfna funkcija, je tudi $f\alpha$ meromorfen q-diferencial.

Trditev 2.3. Naj bo $f: M \to N$ nekonstantna holomorfna preslikava med kompaktnima Riemannovima ploskvama. Tedaj obstaja naravno število m, za katero f doseže vsako točko $Q \in N$ natanko m-krat.²

Dokaz. Iz kompleksne analize vemo, da za vsako točko $P \in M$ obstajajo take lokalne koordinate \tilde{z} , da je $f(\tilde{z}) = f(P) + \tilde{z}^n$. Število n-1 označimo z b(P) in mu pravimo BRANCHING NUMBER. To je seveda dobro definirano.

Za vsako naravno število m naj bo

$$\Sigma_m = \left\{ X \in N \mid \sum_{f(P)=X} (b(P)+1) \ge m \right\}.$$

Označimo še

$$\varphi(X) = \sum_{f(P)=X} (b(P) + 1).$$

Vse množice Σ_m so odprte – če je b(P) = n - 1, lahko v lokalnih koordinatah zapišemo $f(\tilde{z}) = \tilde{z}^n$. Enačba $f(\tilde{z}) = \varepsilon$ ima tako natanko n rešitev, zato za okolico U točke P velja

$$b(P) + 1 = \sum_{Q \in U \cap f^{-1}(P')} (b(Q) + 1),$$

kjer je $P' \in f(U)$. Če to enakost seštejemo po okolicah vseh točk $P \in f^{-1}(X)$, dobimo

$$m < \varphi(X) < \varphi(P').$$

Pokažimo še, da so te množice zaprte v $\widehat{\mathbb{C}}$. Naj bo Q limita zaporedja točk $Q_k \in \Sigma_m$, pri čemer je brez škode za splošnost b(P) = 0 za vsak $P \in f^{-1}(Q_k)$. Ker imajo vse množice $f^{-1}(Q_k)$ vsaj m elementov, lahko najdemo tako podzaporedje

²Šteto z večkratnostmi.

zaporedja $(Q_k)_{n=1}^{\infty}$, da lahko iz njihovih praslik tvorimo m konvergentnih zaporedij. Tako sledi

$$\sum_{P \in f^{-1}(Q)} (b(P) + 1) \ge m.$$

Sledi, da so vse množice Σ_m odprte in zaprte v $\widehat{\mathbb{C}}$. Čim je ena izmed množic Σ_m neprazna, je tako enaka celotni Riemannovi sferi, saj je ta povezana.

Številu m pravimo stopnja preslikave f.

Posledica 2.4. Naj bo M kompaktna Riemannova ploskev. Če je $f: M \to \mathbb{C}$ holomorfna preslikava, je konstantna.

Dokaz. Preslikavo f lahko opazujemo kot preslikavo med Riemannovo ploskvijo M in Riemannovo sfero $\widehat{\mathbb{C}}$. Če f ni konstantna, ima pozitivno stopnjo, kar pa ni mogoče, saj je $f^{-1}(\infty) = 0$.

To posledico lahko pravzaprav dokažemo z uporabo lastnosti holomorfnih preslikav. Ker je M kompaktna namreč sledi, da je taka tudi f(M). Ker pa so nekonstantne holomorfne preslikave odprte, pa sledi, da je f(M) tudi odprta. To seveda pomeni, da je $f(M) = \mathbb{C}$, kar je v protislovju s kompaktnostjo.

Definicija 2.5. Za kompaktni Riemannovo ploskvi M in N ter nekonstantno preslikavo $f \colon M \to N$ definiramo $TOTAL\ BRANCHING\ NUMBER$ kot

$$B = \sum_{P \in M} b_f(P).$$

Število je dobro definirano, saj je množica $\{P \in M \mid b_f(P)\}$ diskretna in tako zaradi kompaktnosti končna.

Izrek 2.6 (Riemann-Hurwitz). Naj bosta M in N kompaktni Riemannovi ploskvi rodov g in γ , $f: M \to N$ pa nekonstantna preslikava stopnje n. Tedaj za TOTAL BRANCHING NUMBER B velja

$$g = n(\gamma - 1) + 1 + \frac{B}{2}.$$

Dokaz. Ker je množica $\{P \in M \mid b_f(P) > 0\}$ končna, jo lahko uporabimo za triangulacijo ploskve N. Denimo, da ima triangulacija F lic, E povezav in V vozlišč. To triangulacijo lahko z f^{-1} preslikamo na M. Tako dobimo triangulacijo ploskve M z nF lici, nE povezavami in nV - B vozlišči. Sledi, da je

$$F - E + V = 2 - 2\gamma,$$

$$nF - nE + nV - B = 2 - 2g.$$

Iz teh enačb očitno sledi

$$g = n(\gamma - 1) + 1 + \frac{B}{2}.$$

Definicija 2.7. Naj bo $H \subseteq \operatorname{Aut} M$ končna podgrupa grupe avtomorfizmov ploskve M. Na množici M/H uvedemo kompleksno strukturo na naslednji način:

- i) Če je množica $H_P = \{h \in H \mid h(P) = P\}$ trivialna, lokalna karta na dovolj majhni okolici P inducira lokalno karto pri $\pi(P)$.
- ii) Če je v lokalni koordinati H_P generirana s preslikavo $z\mapsto e^{\frac{2\pi i}{k}}z$, za lokalno karto točke P vzamemo z^k .

Prepričamo se lahko, da so te lokalne karte med seboj kompatibilne. Na kvocientu M/H smo torej dobili kompleksno strukturo, zato je to Riemannova ploskev.

2.2 Riemann-Rochov izrek

Definicija 2.8. Divizor na Riemannovi ploskvi M je formalni simbol

$$\mathfrak{A} = \prod_{P \in M} P^{\alpha(P)},$$

kjer za vsak P velja $\alpha(P) \in \mathbb{Z}$ in je $\alpha(P) \neq 0$ za kvečjemu končno mnogo točk $P \in M$. Stopnja divizorja \mathfrak{A} je definirana kot

$$\deg \mathfrak{A} = \sum_{P \in M} \alpha(P).$$

Divizorji na M tvorijo grupo za naravno definirano množenje – to grupo označimo z Div(M). Tako je deg: Div $(M) \to \mathbb{Z}$ homomorfizem grup.

Za vsako neničelno meromorf
no funkcijo $f \in \mathscr{K}(M)$ definiramo njen $\operatorname{glavni} \operatorname{divizor} \operatorname{kot}^3$

$$(f) = \prod_{P \in M} P^{\operatorname{ord}_P f}.$$

Definiramo lahko še divizor polov

$$f^{-1}(\infty) = \prod_{P \in M} P^{\max(-\operatorname{ord}_P f, 0)}$$

in divizor ničel

$$f^{-1}(0) = \prod_{P \in M} P^{\max(\text{ord}_P f, 0)}.$$

Opazimo, da velja

$$(f) = \frac{f^{-1}(0)}{f^{-1}(\infty)}.$$

Na divizorjih uvedemo ekvivalenčno relacijo \sim na naslednji način:

$$\mathfrak{A} \sim \mathfrak{B} \iff \mathfrak{A}\mathfrak{B}^{-1} = (f).$$

Lema 2.9. Naj bo M kompaktna Riemannova ploskev. Za vsako neničelno funkcijo $f \in \mathcal{K}(M)$ velja deg $f^{-1}(0) = \deg f^{-1}(\infty)$. Ekvivalentno je $\deg(f) = 0$.

Dokaz. Stopnja divizorja polov funkcije f je natanko število njenih polov, štetih z večkratnostmi, stopnja divizorja ničel pa število njenih ničel. Ti števili sta enaki po trditvi 2.3.

³Glavne divizorje na enak način definiramo še za meromorfne diferenciale.

Posebej velja opomniti, da to pomeni, da imajo funkcije na kompaktnih Riemannovih ploskvah enako število ničel in polov (štetih z večkratnostmi).

Na divizorjih lahko uvedemo relacijo delne urejenosti kot

$$\prod_{P \in M} P^{\alpha(P)} \ge \prod_{P \in M} P^{\beta(P)} \iff \forall P \in M \colon \alpha(P) \ge \beta(P).$$

Pravimo, da je divizor $\mathfrak A$ efektiven, če velja $\mathfrak A \geq 1$. Ni težko videti, da je za vsak divizor $\mathfrak A$ na M množica

$$L(\mathfrak{A}) = \{ f \in \mathscr{K}(M) \mid (f) \ge \mathfrak{A} \}$$

vektorski prostor – njegovo dimenzijo označimo z $r(\mathfrak{A})$.

Zgled 2.10. Velja r(1) = 1. Pogoj $(f) \ge 1$ je namreč ekvivalenten temu, da je f holomorfna. Ker so vse holomorfne funkcije na kompaktnih Riemannovih ploskvah konstantne, je zato $L(1) \cong \mathbb{C}$, kar je enodimenzionalen prostor. \diamondsuit

Zgled 2.11. Če je $\deg \mathfrak{A} > 0$, je $r(\mathfrak{A}) = 0$. Iz neenakosti $(f) \geq \mathfrak{A}$ za neničenlno funkcijo f namreč sledi $0 = \deg(f) \geq \deg \mathfrak{A} > 0$, kar je protislovje. \diamondsuit

Podobno je tudi

$$\Omega(\mathfrak{A}) = \{ \omega \mid \omega \text{ je meromorfen differencial } \wedge (\omega) \geq \mathfrak{A} \}$$

vektorski prostor. Označimo $i(\mathfrak{A}) = \dim \Omega(\mathfrak{A})$.

Trditev 2.12. Naj bo \mathfrak{A} poljuben divizor in ω meromorfen diferencial. Tedaj je

$$i(\mathfrak{A}) = r\left(\mathfrak{A}(\omega)^{-1}\right).$$

Dokaz. Naj bo $\varphi \colon \Omega(\mathfrak{A}) \to L(\mathfrak{A}(\omega)^{-1})$ preslikava s predpisom $\varphi \colon \zeta \mapsto \frac{\zeta}{\omega}$. Seveda je predpis dobro definiran, ni pa težko videti, da je to izomorfizem vektorskih prostorov. Sledi, da imata enako dimenzijo.

Izrek 2.13 (Riemann-Roch). Naj bo M kompaktna Riemannova ploskev roda g in A divizor na M. Tedaj velja

$$r\left(\mathfrak{A}^{-1}\right) = \deg \mathfrak{A} - g + 1 + i(\mathfrak{A}).$$

Dokaz izreka najdemo v [2, theorem III.4.11].

Zgled 2.14. Z uporabo zgornjega izreka lahko izračunamo i(1). Velja namreč

$$i(1) = r(1) - \deg 1 + g - 1 = g.$$

Trditev 2.15. Naj bo deg $\mathfrak{A} > 2g - 2$. Tedaj je $i(\mathfrak{A}) = 0$.

Dokaz. Naj bo $\omega \in i(1)$ neničelna holomorfen diferencial. Tedaj je

$$r((\omega)^{-1}) = \deg(\omega) - g + 1 + i((\omega)).$$

Po trditvi 2.12 je $r((\omega)^{-1}) = i(1) = g$ in $i((\omega)) = r(1) = 1$. Od tod sledi, da je $\deg(\omega) = 2g - 2$.

Sedaj dobimo

$$i(\mathfrak{A}) = r\left(\mathfrak{A}(\omega)^{-1}\right) = 0,$$

saj je deg $(\mathfrak{A}(\omega)^{-1}) > 0$.

2.3 Weierstrassove točke

Izrek 2.16 (Weierstrass). Naj bo M ploskev roda g > 0 in $P \in M$. Tedaj obstaja natanko g števil

$$1 = n_1 < n_2 < \dots < n_q < 2g$$

za katera ne obstaja funkcija $f \in \mathcal{K}(M)$, ki je holomorfna na $M \setminus \{P\}$ in ima pol reda n_i v P. Tem številom pravimo GAP.

Dokaz. Najprej opazimo, da je število n GAP natanko tedaj, ko je $r(P^{-n}) = r(P^{1-n})$. Ker je $r(P^{-n}) \leq r(P^{1-n}) + 1$, število n ni GAP natanko tedaj, ko velja

$$r\left(P^{-n}\right) - r\left(P^{1-n}\right) = 1.$$

Po Riemann-Rochovem izreku velja

$$r\left(P^{-k}\right) = k - g + 1 + i\left(P^{k}\right),\,$$

zato sledi

$$r\left(P^{-n}\right) - r(1) = \sum_{k=1}^{n} \left(r\left(P^{-k}\right) - r\left(P^{1-k}\right)\right)$$
$$= \sum_{k=1}^{n} \left(1 + i\left(P^{k}\right) - i\left(P^{k-1}\right)\right)$$
$$= n + i\left(P^{n}\right) - i(1).$$

Ker je i(1)=gin za vsen>2g-2 velja $i(P^n)=0,$ sledi

$$r\left(P^{-n}\right) - 1 = n - g.$$

Opazimo, da leva stran šteje ravno število NEGAPOV $\leq n$. Sledi, da je GAPOV natanko g in so vsi strogo manjši od 2g.

Izkaže se, da je lažje analizirati komplement tega zaporedja, torej števila

$$1 < \alpha_1 < \dots < \alpha_g = 2g$$

za katera obstaja funkcija s polom reda α_j v P. Če sta števili α_i in α_j NEGAPA, je tako tudi število $\alpha_i + \alpha_j$, saj lahko vzamemo kar produkt pripadajočih funkcij. Posebej je vsak večkratnik NEGAPA spet NEGAP. Če je $\alpha_1 = 2$, so tako vsa soda števila NEGAPI in GAPI natanko liha števila, manjša od 2g.

Lema 2.17. Za vsako naravno število j < g velja

$$\alpha_j + \alpha_{g-j} \ge 2g$$
.

Dokaz. Denimo, da je $\alpha_j + \alpha_{g-j} < 2g$. Tedaj so vsa števila $\alpha_k + \alpha_{g-j}$ za $k \leq j$ NEGAPI, manjši od 2g. Tako imamo skupaj vsaj g-j+j+1=g+1 NEGAPOV, manjših od 2g. To je seveda protislovje.

Lema 2.18. Velja neenakost

$$\sum_{j=1}^{g} \alpha_j \ge g \cdot (g+1)$$

z enakostjo natanko tedaj, ko je $\alpha_1 = 2$.

Dokaz. Za dokaz neenakosti je dovolj uporabiti prejšnjo lemo. Zgornja izraza sta enaka natanko tedaj, ko za vsak j < g velja

$$\alpha_j + \alpha_{g-j} = 2g.$$

Če je število α NEGAP, je tako torej tudi $2g - \alpha$. Opazimo, da je za NEGAPA $\alpha_i < \alpha_j$ tudi $\alpha_i + (2g - \alpha_j)$ NEGAP, zato je tak tudi

$$2g - (\alpha_i + (2g - \alpha_i)) = \alpha_i - \alpha_i.$$

Sledi, da je tudi vsaka razlika NEGAPOV NEGAP. Sledi, da so vsi NEGAPI več-kratnik najmanjšega NEGAPA (osnovni izrek o deljenju), kar pa takoj implicira $\alpha_1 = 2$.

Število n je GAP natanko tedaj, ko je $r(P^{-n}) = r(P^{1-n})$. To je po Riemann-Rochovem izreku ekvivalentno $i(P^{n-1}) - i(P^n) = 1$. Sledi, da imajo holomorfni diferenciali na M v točki P lahko red enak le enemu iz števil

$$n_1 - 1, n_2 - 1, \dots, n_q - 1.$$

Posebej, obstaja baza $\{\omega_i \mid 1 \leq i \leq g\}$ holomorfnih diferencialov, pri čemer velja ord $_P \omega_i = n_i - 1$.

Definicija 2.19. TEŽA točke $P \in M$ je vsota

$$\tau(P) = \sum_{j=1}^{g} (n_j - j),$$

kjer so n_i GAPI za P.

Lema 2.20. Naj bodo $\varphi_1, \varphi_2, \ldots, \varphi_n$ meromorfne preslikave s paroma različnim redom v točki $P \in X$. Tedaj za determinanto

$$\Phi(z) = \det \begin{bmatrix} \varphi_1(z) & \varphi_2(z) & \dots & \varphi_n(z) \\ \varphi'_1(z) & \varphi'_2(z) & \dots & \varphi'_n(z) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)}(z) & \varphi_2^{(n-1)} & \dots & \varphi_n^{(n-1)}(z) \end{bmatrix}$$

velja

$$\operatorname{ord}_z \Phi = \sum_{i=1}^n \left(\operatorname{ord}_z \varphi_i - i + 1 \right).$$

Dokaz. Za lažji zapis pišimo

$$\Phi(z) = \det \left[\varphi_1(z) \quad \dots \quad \varphi_n(z) \right].$$

Trditev dokažemo z indukcijo – trditev očitno velja za n = 1. Za indukcijski korak si bomo pomagali z dejstvom, da za vsako meromorfno funkcijo f velja

$$\Phi_f = \det \left[f \cdot \varphi_1(z) \quad \dots \quad f \cdot \varphi_n(z) \right] = f^n \cdot \det \left[\varphi_1(z) \quad \dots \quad \varphi_n(z) \right].$$

Razpišemo lahko namreč

$$\Phi_f = \det \begin{bmatrix} f\varphi_1 & \dots & f\varphi_n \\ f\varphi'_1 + f'\varphi_1 & \dots & f\varphi'_n + f'\varphi_n \\ \vdots & & \vdots \\ f\varphi_1^{(n-1)} + \dots + f^{(n-1)}\varphi_1 & \dots & f\varphi_n^{(n-1)} + \dots + f^{(n-1)}\varphi_n \end{bmatrix}.$$

S preprostimi linearnimi kombinacijami lahko sedaj dobimo

$$\Phi_f = \det \begin{bmatrix} f\varphi_1 & \dots & f\varphi_n \\ f\varphi'_1 & \dots & f\varphi'_n \\ \vdots & & \vdots \\ f\varphi_1^{(n-1)} & \dots & f\varphi_n^{(n-1)} \end{bmatrix} = f^n \Phi.$$

Tako dobimo

$$\det \begin{bmatrix} \varphi_1 & \dots & \varphi_n \end{bmatrix} = \varphi_1^n \cdot \det \begin{bmatrix} 1 & \frac{\varphi_2}{\varphi_1} & \dots & \frac{\varphi_n}{\varphi_1} \end{bmatrix} = \varphi_1^n \cdot \det \begin{bmatrix} \left(\frac{\varphi_2}{\varphi_1}\right)' & \dots & \left(\frac{\varphi_n}{\varphi_1}\right)' \end{bmatrix}.$$

Ker za vsak *i* velja ord $_z \varphi_1 \neq \operatorname{ord}_z \varphi_i$, sledi

$$\operatorname{ord}_z \left(\frac{\varphi_i}{\varphi_1} \right)' = \operatorname{ord}_z \varphi_i - \operatorname{ord}_z \varphi_1 - 1.$$

To so paroma različna števila, zato lahko uporabimo indukcijsko predpostavko. Dobimo

$$\operatorname{ord}_{z} \Phi = n \cdot \operatorname{ord}_{z} \varphi_{1} + \sum_{i=2}^{n} \left(\operatorname{ord}_{z} \varphi_{i} - \operatorname{ord}_{z} \varphi_{1} - 1 - (i - 2) \right)$$

$$= \operatorname{ord}_{z} \varphi_{1} + \sum_{i=2}^{n} \left(\operatorname{ord}_{z} \varphi_{i} - i + 1 \right)$$

$$= \sum_{i=1}^{n} \left(\operatorname{ord}_{z} \varphi_{i} - i + 1 \right).$$

Posledično lahko zapišemo $\tau(P)=\operatorname{ord}_P\Phi,$ pri čemer za φ_i vzamemo kar $\omega_i.$

Trditev 2.21. Naj bo M kompaktna Riemannova ploskev z rodom $g \ge 2$. Tedaj je

$$\sum_{P \in M} \tau(P) = g^3 - g.$$

Dokaz. Pokažimo, da je zgoraj definiran Φ holomorfen m-diferencial za $m = \frac{g \cdot (g+1)}{2}$. Denimo, da ω_i priredi okolici U karto φ , okolici V pa karto ψ , f pa naj bo prehodna preslikava. Tako velja

$$\psi(f(z))f'(z) = \varphi(z),$$

dokazujemo pa

$$f'(z)^m \cdot \det \left[\psi_1 \quad \dots \quad \psi_g \right] = \det \left[\varphi_1 \quad \dots \quad \varphi_g \right].$$

Velja pa

$$\det \left[\varphi_1 \dots \varphi_g \right] = \det \left[(\psi_1 \circ f) \cdot (f') \dots (\psi_g \circ f) \cdot (f') \right]$$
$$= (f')^g \cdot \det \left[\psi_1 \circ f \dots \psi_g \circ f \right].$$

Po pravilu odvoda kompozituma lahko iz vrstice i izpostavimo še $(f')^{i-1}$. Tako dobimo

$$\det \begin{bmatrix} \varphi_1 & \dots & \varphi_g \end{bmatrix} = (f')^m \cdot \left(\det \begin{bmatrix} \psi_1 & \dots & \psi_g \end{bmatrix} \circ f \right).$$

Spomnimo se, da za meromorfen diferencial ω velja $\deg(\omega)=2g-2$. Ker je $\frac{\omega^m}{\Phi}$ meromorfna funkcija, sledi

$$\deg(\Phi) = m \cdot \deg(\omega) = m \cdot (2g - 2).$$

Tako je

$$\sum_{P \in M} \tau(P) = \sum_{P \in M} \operatorname{ord}_P \Phi = (g-1) \cdot g \cdot (g+1).$$

Definicija 2.22. Točka $P \in M$ je Weierstrassova točka, če na M obstaja neničelna holomorfen diferencial z ničlo reda vsaj $g \vee P$.

Trditev 2.23. Ekvivalentno, vsaj eno izmed števil $2, \ldots, g$ ni GAP.

Dokaz. Obstoj diferencialne 1-forme z ničlo reda vsaj gvPje ekvivalentna pogoju $i(P^g)>0.$ Po Riemann-Rochovem izreku je ta neenakost ekvivalentna

$$r\left(P^{-g}\right) - 1 > 0,$$

oziroma $r\left(P^{-g}\right)\geq 2$. Ker je $r(1)=1, \text{ med } 2,\ldots,g$ obstaja število, ki ni GAP. \qed

Trditev 2.24. Naj bo M kompaktna Riemannova ploskev roda $g \geq 2$. Tedaj za število w Weierstrassovih točk veljata oceni

$$2g + 2 \le w \le g^3 - g.$$

Dokaz. Ker je $\tau(P) \geq 1$ za vsako Weierstrassovo točko in velja

$$\sum_{P \in M} \tau(P) = g^3 - g,$$

 $^{^4}$ V splošnem definiramo q-Weierstrassove točke – obstaja q-diferencial z ničlo reda vsaj dim $\mathcal{H}^q(M)$.

takoj sledi $w \leq g^3 - g$. Velja pa

$$\tau(P) = \sum_{j=1}^{g} (n_j - j)$$

$$= \sum_{j=1}^{2g} j - \sum_{j=1}^{g} \alpha_j - \sum_{j=1}^{g} j$$

$$= g(2g+1) - \frac{g(g+1)}{2} - \sum_{j=1}^{g-1} \alpha_j$$

$$\leq g(2g+1) - \frac{g(g+1)}{2} - g(g+1)$$

$$= \frac{g(g-1)}{2}.$$

Posledično je res $w \ge 2g + 2$.

2.4 Hipereliptične ploskve

Definicija 2.25. Kompaktna Riemannova ploskev M je hipereliptična, če obstaja nekonstantna meromorfna funkcija $f: M \to \widehat{\mathbb{C}}$ z natanko dvema poloma.⁵

Ekvivalentno to pomeni, da obstaja tak efektiven divizor $D\in {\rm Div}\, M,$ da je deg D=2 in $r(D^{-1})\geq 2.$

Trditev 2.26. Vsaka kompaktna Riemannova ploskev roda $g \leq 2$ je hipereliptična.

Trditev 2.27. Weierstrassove ploskve imajo natanko 2g + 2 BRANCH točk.

Dokaz. Po izreku 2.6 velja

$$g = 2 \cdot (0 - 1) + 1 + \frac{B}{2}.$$

Trditev 2.28. BRANCH točke preslikave f so natanko Weierstrassove točke ploskve M.

Dokaz. Naj bo $P \in M$ BRANCH točka. Če je P pol funkcije f, je njegova stopnja tako enaka 2. V nasprotnem primeru ima funkcija

$$g \equiv \frac{1}{f - f(P)}$$

pol stopnje 2 v P. V obeh primerih sledi, da 2 ni GAP za točko P, zato je ta Weierstrassova.

Vsaka BRANCH točka ima tako TEŽO

$$\sum_{k=1}^{g} (2k-1) - \sum_{k=1}^{g} k = \frac{1}{2}g(g-1),$$

zato je njihova skupna teža g^3-g . Sledi, da so to vse Weierstrassove točke. \Box

⁵Pri tem pole štejemo z večkratnostmi.

Lema 2.29. Naj bo P Weierstrassova točka hipereliptične ploskve M in $f \in \mathcal{K}(M)$ funkcija stopnje 2. Tedaj velja $f^{-1}(\infty) \sim P^2$.

Dokaz. Točka P je BRANCH točka funkcije f. Če je P pol te funkcije, je zato reda P in je $P^{-1}(\infty) = P^{2}$. V nasprotnem primeru definiramo funkcijo

$$g = \frac{1}{f - f(P)}.$$

Ni težko videti, da je $(g) = f^{-1}(\infty)P^{-2}$.

Trditev 2.30. Naj bosta f in g dve funkciji $f: M \to \widehat{\mathbb{C}}$ stopnje 2. Tedaj obstaja Möbiusova transformacija A, za katero je

$$q = A \circ f$$
.

Dokaz. Naj bo $f^{-1}(\infty)=P_1Q_1$ in $g^{-1}(\infty)=P_2Q_2.$ Ker na M ne obstajajo funkcije stopnje 1, sledi $r(P_1^{-1}Q_1^{-1})=r(P_2^{-1}Q_2^{-1})=2.$ Prostora $L(P_1^{-1}Q_1^{-1})$ in $L(P_2^{-1}Q_2^{-1})$ imata tako zaporedoma bazi $\{1,f\}$ in $\{1,g\}.$ Ker za Weierstrassovo točko P velja $P_1Q_1\sim P^2\sim P_2Q_2,$ sledi, da obstaja meromorfna preslikava h, za katero je $(h)=P_1Q_1P_2^{-1}Q_2^{-1}.$ Ker je s predpisom $\varphi\mapsto h\cdot\varphi$ očitno podan izomorfizem prostorov $L(P_1^{-1}Q_1^{-1})$ in $L(P_2^{-1}Q_2^{-1}),$ obstajajo konstante α,β,γ in $\delta,$ za katere je

$$1 = \alpha h + \beta h f \quad \text{in} \quad g = \gamma h + \delta h f.$$

Tako lahko izrazimo

$$g = \frac{\gamma + \delta f}{\alpha + \beta f}.$$

Trditev 2.31. Naj bo M kompaktna Riemannova ploskev roda g. Tedaj je M hipereliptična natanko tedaj, ko obstaja involucija $J \in \operatorname{Aut} M$ z natanko 2g + 2 fiksnimi točkami.

Dokaz. Predpostavimo najprej, da je M hipereliptična. Naj bo $f \colon M \to \widehat{\mathbb{C}}$ meromorfna funkcija stopnje 2. Za vsak $P \in M$ tako obstaja še ena točka $Q \in M$, za katero je f(P) = f(Q) (če je ord $_P f = 2$, vzamemo Q = P). Tako lahko enostavno definiramo J(P) = Q. Ni težko videti, da je J res involucija z 2g + 2 fiksnimi točkami.

Če je $Q=J(P)\neq P,$ lahko na okolici U_Q točke Q zapišemo

$$J(X) = (f|_{U_Q})^{-1} (f(X)),$$

zato je J holomorfna na $M \setminus W$. Če pa je J(P) = P, pa je $h = \sqrt{f - f(P)}$ lokalna koordinata, za katero velja J(h) = -h, saj je

$$f(P_h) = h^2 + f(P) = (-h)^2 + f(P) = f(P_{-h}).$$

Tako je J holomorfna tudi na W.

Predpostavimo sedaj, da obstaja involucija $J \in \operatorname{Aut} M$ z 2g+2 fiksnimi točkami. Ker se projekcija $f \colon M \to M \big/ \langle J \rangle$ BRANCHA v natanko 2g+2 točkah, po izreku 2.6 sledi, da je rod ploskve $M \big/ \langle J \rangle$ enak 0. Sledi, da je $M \big/ \langle J \rangle \cong \widehat{\mathbb{C}}$, zato je f meromorfna funkcija z dvema poloma.

Opazimo, da so fiksne točke hipereliptične involucije natanko Weierstrassove točke.

Trditev 2.32. Naj bo M hipereliptična Riemannova ploskev roda $g \geq 2$ in $T \in \text{Aut } M$. Če je $T \notin \langle J \rangle$, ima T kvečjemu 4 fiksne točke.

Dokaz. Naj bo $f\colon M\to\widehat{\mathbb C}$ funkcija z natanko dvema poloma. Tedaj je taka tudi $f\circ T,$ zato obstaja Möbiusova transformacija A, za katero je

$$f \circ T = A \circ f$$
.

Naj bo P fiksna točka avtomorfizma T. Sledi, da je

$$A(f(P)) = f(T(P)) = f(P),$$

zato je f(P) fiksna točka preslikave A. Opazimo, da je $A \neq \mathrm{id}$, saj bi v nasprotnem primeru veljalo $f \circ T = f$, kar implicira $T \in \langle J \rangle$. Tako ima A kvečjemu 2 fiksni točki, zato jih ima T največ 4.

3 Avtomorfizmi Riemannovih poloskev

3.1 Sfere in torusi

Za določanje grupe avtomorfizmov Riemannovih ploskev so pomembne njihove topološke lastnosti – vsak avtomorfizem je namreč tudi homeomorfizem. Iz geometrijske topologije vemo, da je vsaka orientabilna kompaktna ploskev homeomorfna vsoti g torusov. Številu g pravimo rod ploskve.

Najprej si oglejmo ploskve z ničelnim rodom – topološko so to kar sfere. V prejšnjih razdelkih smo ugotovili, da je grupa avtomorfizmov Riemannove sfere enaka

Aut
$$(\widehat{\mathbb{C}}) = \left\{ \frac{az+b}{cz+d} \mid ad-bc = 1 \right\}.$$

Vemo pa, da je grupa avtomorfizmov odvisna ne samo od topoloških lastnosti objekta, ampak tudi njegove kompleksne strukture.

Naslednji izziv so ploskve z rodom g = 1 – torusi. Za toruse IZREK ne velja, zato imamo več različnih grup avtomorfizmov. Oglejmo si, kako jih dobimo:

3.2 Ploskve večjih rodov

Trditev 3.1. Naj bo $T \in \text{Aut } M$ netrivialen avtomorfizem. Tedaj ima T največ 2g + 2 fiksnih točk.

Dokaz. Naj bo $P \in M$ točka, za katero je $T(P) \neq P$. Tedaj obstaja meromorfna funkcija $f \in \mathcal{K}(M)$ z divizorjem polov P^r za nek $1 \leq r \leq g+1$. Oglejmo si funkcijo $h = f - f \circ T$. Njen divizor polov je očitno $P^r(T^{-1}P)^r$. Velja torej

$$\deg h^{-1}(0) = \deg h^{-1}(\infty) = 2r \le 2g + 2,$$

zato ima g kvečjemu 2g+2 ničel. Ni težko videti, da so njene ničle natanko fiksne točke avtomorfizma T.

Lema 3.2. Naj bo M kompaktna Riemannova ploskev roda $g \geq 2$, W pa množica njenih Weierstrassovih točk. Tedaj ta vsak avtomorfizem $T \in \operatorname{Aut} M$ velja T(W) = W.

Dokaz. Avtomorfizmi ohranjajo GAPE.

Izrek 3.3 (Schwarz). Grupe avtomorfizmov kompaktnih ploskev roda $g \geq 2$ so končne.

Dokaz. Po zgornji lemi sledi, da obstaja homomorfizem λ : Aut $M \to S_W$, kjer je S_W simetrična grupa. Dovolj je pokazati, da ima λ končno jedro. Ločimo dva primera.

- a) Če M ni hipereliptična, ima več kot 2g+2 Weierstrassovih točk. Vsak avtomorfizem, ki fiksira Weierstrassove točke, je zato kar identiteta, zato je ker λ trivialno.
- b) Če je M hipereliptična, velja kar ker $\lambda = \langle J \rangle$, kjer je J hipereliptična involucija. Ostali avtomorfizmi imajo namreč kvečjemu 4 fiskne točke. Ker velja $|\langle J \rangle| = 2$, je grupa Aut M res končna.

Slovar strokovnih izrazov

Riemann surface Riemannova ploskev

Literatura

- [1] M. Artin, Algebra, Prentice Hall, 1991.
- [2] H. M. Farkas in I. Kra, *Riemann surfaces*, **71**, Springer, 1980, bibliografija: str. 330-332.
- [3] F. Forstnerič, Analiza na mnogoterostih, 2023, [ogled 16. 5. 2023], dostopno na https://users.fmf.uni-lj.si/forstneric/papers/AMbook.pdf, bibliografija: str. 237-239.
- [4] R. C. Lyndon in J. L. Ullman, Groups of elliptic linear fractional transformations, Proceedings of the American Mathematical Society **18**(6) (1967) 1119–1124, [ogled 2023-06-11], dostopno na http://www.jstor.org/stable/2035812.