MATHEMATICAL INDUCTION

OBJECTIVE PROBLEMS

- For all $n \in N, 3.5^{2n+1} + 2^{3n+1}$ is divisible by 1.
 - 1) 19
- 2) 17
- 3) 23
- 4) Any odd integer
- For all +ve integral values of $n,49^n + 16n 1$ is divisible y 2.
 - 1) 64
- 2) 8
- 3) 16
- 4) 43
- For all $n \in N, 10^n + 3, 4^{n+2} + 5$ is divisible by **3.**
 - 1) 23
- 2) 3
- 3) 9
- 4) 207
- The number $a^n b^n$ (a, b are distinct rational numbers and $(n \in N)$ is always divisible 4. by
 - 1) a-b
 - 2) a + b 3) 2a b
- 4) a-2b
- The number $a^n + b^n$ is divisible by when n is an odd +ve integer but not when n is an 5. even +ve integer.
 - 1) 1) a-b 2) a+b
- 3) 2a-b 4) 2a+b
- $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + ---$ to n terms =
 - 1) 1/5n-1
- 2) 1/n+4 3) n/3n+1
- 4) n/5n-1
- $49^n + 16n + k$ is divisible by 64 for $n \in N$. Then the numerically least -ve integral value of 7. k is
 - 1 -2
- 2)-1
- 3) -3
- 4) -4
- 1.2.3+2.3.4+3.4.5+---- to n terms = 8.

1)
$$\frac{(n+1)(n+2)(n+3)}{4}$$

2)
$$\frac{(n+2)(n-2)(n-3)(n+3)}{4}$$

3)
$$\frac{n(n+1)(n+2)(n+3)}{4}$$

4) None

For $n \in N, (1/5)n^5 + (1/3)n^3 + (7/15)n$ is 9.

- 1) An integer
- 2) A natural number
- 3) a +ve fraction
- 4) None

10. The nth term of the series 4+14+30+52+80+114+---- is

- 1) 5n-1
- 2) $2n^2 + 2n$
- 3) $3n^2 + n$
- 4) $2n^2 + 2$

11. Sum of n terms of the series $1^3 + 3^3 + 5^3 + ---$ is

- 1) $n^2(n^2-1)$ 2) $n^2(2n^2-1)$
- 3) $n^2(2n^2+1)$ 4) $n^2(2n^2+1)$

12. If $1+5+12+22+35+\cdots$ to n terms = $\frac{n^2(n+1)}{2}$, n^{th} term of L.H.S. is

- 1) $\frac{n(4n-1)}{3}$ 2) $\frac{n(3n-1)}{2}$
- 3) $\frac{n(3n+1)}{2}$ 4) $\frac{n(4n+1)}{2}$

13. 1/3.5+1/5.7+1/7.9+... to n terms =

- 1) $\frac{n}{3(2n+3)}$ 2) $\frac{n}{2n+3}$
- 3) $\frac{1}{(n+2)(n+4)}$ 4) none

14. $1^3 + 2^3 + 3^3 + \dots + 100^3 = k^2$ then k =

- 1) 10100 2) 5000 3) 5050 4) 1010

15. $10^{2n-1} + 1$ for all $n \in N$ is divisible by

- 1) 2
- 2)3
- 3) 7
- 4) 11

16. Then n^{th} term of the series 3+7+13+21+... is

- 1) 4n-1
- 2) $n^2 + 2n$
- 3) $n^2 + n + 1$ 4) $n^2 + 2$

17. 2.3+3.4+4.5+... to n terms =

- 1) $\frac{n(n^2+6n+14)}{9}$ 2) $\frac{n(n^2-6n+11)}{6}$ 3) $\frac{n(n^2+6n+11)}{3}$ 4) None

18.
$$(1^2+1)+(2^2+2)+(3^2+3)+...+(n^2+n)=$$

1)
$$\frac{(n+1)(n+2)}{3}$$

2)
$$\frac{n(n+1)(n+2)}{3}$$

$$3) \frac{n(n+1)(n+2)}{2}$$

4) None

19. 1+3+7+15+... to n terms =

1)
$$2^{n+1} + n - 2$$
 2) $n^2 + n - 2$

2)
$$n^2 + n - 2$$

3)
$$2^n - 1$$

20. 2+8+14+... to n terms =

3)
$$3n^2 - n$$

4)
$$\frac{2(4n^2-1)}{3}$$

21. For all odd positive integers n, number $n(n^2-1)$ is divisible by

- 1)3
- 2) 4
- 3)6

22.
$$1.3+3.5+5.7+...$$
 to n term =

1)
$$\frac{n(4n^2+6n-1)}{3}$$
 2) $\frac{4n^2+6n-1}{3}$

2)
$$\frac{4n^2+6n-1}{3}$$

3)
$$n^2 + n + 1$$

4) None

If the sum to n terms of an A.P is $\frac{4n^2-3n}{4}$, then the nth term of the A.P. is

1)
$$\frac{5n-1}{4}$$

1)
$$\frac{5n-1}{4}$$
 2) $\frac{8n-7}{4}$ 3) $\frac{3n^2-2}{4}$ 4) None

3)
$$\frac{3n^2 - 1}{4}$$

If 3+5+9+17+33+... to n terms = $2^{n+1}+n-2$, then nth term of L.H.S. is

1)
$$3^n - 1$$

$$2) 2n+1$$

1)
$$3^n - 1$$
 2) $2n + 1$ 3) $2^n + 1$ 4) $3n - 1$

25. If
$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+\dots+n} = \frac{Kn}{n+1}$$
 for all $n \in \mathbb{N}$, then $K =$

26. For
$$n \in N$$
, $\cos \alpha, \cos 2\alpha, \cos 4\alpha$ $\cos 2^{n-1}\alpha =$

1)
$$\frac{\sin 2^{n} \alpha}{2 \sin \alpha}$$

2)
$$\frac{\sin 2^{n} \alpha}{2\cos \alpha}$$

3)
$$\frac{\sin 2^{n} \alpha}{2 \sin \alpha}$$

1)
$$\frac{\sin 2^{n} \alpha}{2 \sin \alpha}$$
 2) $\frac{\sin 2^{n} \alpha}{2 \cos \alpha}$ 3) $\frac{\sin 2^{n} \alpha}{2 \sin \alpha}$ 4) $\frac{\cos 2^{n} \alpha}{2^{n} \cos \alpha}$

27	7 2n	2n-1 23n-3	<u>.</u> ~	di-dalbla	h
27.	1/2 +	3" .2"	IS	divisible	bv

- 1) 24
- 2) 25
- 3)9
- 4) 13

28. If
$$n \in N$$
 and 1.3+3.5+5.7+....+(2n-1)(2n+1) = $\frac{4n^3 + 6n^2 - n}{K}$, then $K =$

- 1)1
- 2) 2
- 3)3
- 4) 5

29.
$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{n}\right) \ (n \ge 3) =$$

- 1) $\frac{1}{n^2}$ 2) $\frac{1}{n^3}$ 3) $\frac{2}{n}$ 4) $\frac{1}{n}$

If $n \in N$. Then $n(n^2-1)$ is divisible by

- 1)6
- 2) 16
- 3) 36

The product of v consecutive integers is divisible by

- 1) n
- $2) n^n$
- 3) n!
- 4) (n-1)

32. If
$$P(n)$$
 is a statement such that truth of $P(n)$ \Rightarrow the truth of $P(n+1)$ for $n \in N$, then $P(n)$ is true

- 1) ∀n
- 2) For all n>1
- 3) For all n > m, m is some fixed positive integer
- 4) Nothing can be said

33. If P(n) : 2n < n!, $n \in N$, then P(n) is true for

- 1) All n
- 2) all n > 2
- 3) all n > 3
- 4) None

34. A student was asked to prove a statement by induction. He proved (i)
$$P(5)$$
 is true and (iii) truth of $P(n) \Rightarrow$ truth of $P(n+1)$, $n \in N$. On the basis of this, he could conclude that $P(n)$ is true.

1) For no n

2) For all $n \ge 5$

3) For all n

4) None of these

MATHEMATICAL INDUCTION

HINTS AND SOLUTIONS

1. (2)

When
$$n = 1, 3 \cdot 5^{2n+1} + 2^{3n+1} = 3 \times 125 + 16 = 391$$

$$n = 2, 3.5^{2n+1} + 2^{3n+1} = 9375 + 128 = 9503$$

H.C.F. of 391, 9503, ... is 17.

2. (1)

When
$$n = 1,49^n + 16n - 1 = 49 + 16 - 1 = 64$$

$$n = 2, 49^n + 16n - 1 = 49^2 + 16 \times 2 - 1$$

$$= 2401 + 32 - 1 = 2432, \ldots$$

3. (3)

When
$$n = 1$$
, $10^n + 3.4^{n+2} + 5 = 207$,

$$n = 2,10^2 + 3(4)^4 + 5$$

$$= 100 + 768 + 5 = 873 \dots$$

HCF of 207, 873 is 9.

4. (1)

$$f(a) = a^{n} - b^{n}, n \in N \Rightarrow f(b) = (b)^{n} - b^{n} = 0$$

 \Rightarrow $a^n - b^n$ is divisible by a - b.

5. (1)

$$f(a) = a^n + b^n, n \in N$$

 \Rightarrow f(-b) = (-b)ⁿ + bⁿ = 0 When n is an odd +ve integer and not equal to zero when n is an even +ve integer.

 \Rightarrow divisible by a + b

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots$$
 to n terms

$$= \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)}$$

$$= \sum \left[\frac{1/3}{3n-2} - \frac{1/3}{3n+1} \right]$$

$$= \frac{1}{3} \left[\left(\frac{1}{1} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \left(\frac{1}{7} - \frac{1}{10} \right) + \dots + \left(\frac{1}{3n-2} - \frac{1}{3n+1} \right) \right]$$

$$= \frac{1}{3} \left[1 - \frac{1}{3n+1} \right] = \frac{n}{3n+1}.$$

7. (3)

 $49^{n} + 16n + k$ is divisible by 64 and k is the least –ve integer.

$$\Rightarrow$$
 49 + 16 + k is divisible by 64

$$\Rightarrow$$
 65 + k is divisible by 64

$$\Rightarrow$$
 k = -1.

8. (2)

$$\boldsymbol{S}_n = 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + ...$$
 to n terms

Put
$$n = 1$$
, $S_1 = 1 \cdot 2 \cdot 3 = 6$

Put
$$n = 2$$
, $S_2 = 6 + 24 = 30$

When n = 1,

$$\frac{n(n+1)(n+2)(n+3)}{4} = \frac{1 \cdot 2 \cdot 3 \cdot 4}{4} = 6 = S_1 \text{ and}$$

When
$$n = 2$$
, $\frac{n(n+1)(n+2)(n+3)}{4} = \frac{2 \cdot 3 \cdot 4 \cdot 5}{4} = 30 = S_2$.

For
$$n \in N$$
, $P(n) = \frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$

$$\Rightarrow$$
 P(1) = 1/5+1/3+7/15=1,

$$P(2) = 32/5 + 8/3 + 14/15$$

$$=\frac{96+40+14}{15}=10,...$$

10. (3)

$$t_n = n^{th} term = 3n^2 + n$$

When
$$n = 1 \Rightarrow t_n = 4$$
,

When
$$n = 2$$
, $\Rightarrow t_n = 14$,

$$n = 3$$
, $\Rightarrow t_n = 30$ etc.

11. (2)

$$In(2): S_1 = 1^2 (2.1^2 - 1) = 1 = 1^3$$

$$S_2 = 2^2 (2.2^2 - 1) = 28 = 1^3 + 3^3.$$

12. (2)

$$S_n = \frac{n^2(n+1)}{2}$$

$$S_{n-1} = \frac{(n-1)^2(n-1+1)}{2} = \frac{(n-1)^2n}{2}$$

$$\Rightarrow$$
 nth term = $S_n - S_{n-1}$

$$=\frac{(n-1)^2n}{2}-\frac{(n-1)^2(n)}{2}$$

$$=\frac{n[n^2+n-n^2+2n-1]}{2}$$

$$=\frac{n(3n+1)}{2}.$$

13. (1)

In(i):
$$S_1 = \frac{1}{3(2\cdot 1+3)} = \frac{1}{3.5}$$

$$S_2 = \frac{2}{3(2 \cdot 2 + 3)} = \frac{2}{3 \cdot 7}$$

$$= \frac{7+3}{3\cdot 5\cdot 5} = \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7}.$$

14. (3)

$$1^3 + 2^3 + 3^3 + ... + 100^3 = \sum_{n=1}^{100} n^2 = \left(\frac{n(n+1)}{2}\right)^2$$
 where $n = 100$.

$$= \left(\frac{100 \times 101}{2}\right)^2 = (5050)^2 = K^2$$

$$\Rightarrow$$
 K = 5050

15. (4)

$$10^{2n-1} + 1, n = 1 \Longrightarrow 11$$

$$n = 2 \Rightarrow 1001...$$

 $\therefore 10^{2n-1} + 1$ is divisible by 11.

∴ HCF of 11, 1001 is 11.

16. (3)

In(3)
$$n^2 + n + 1$$
, put $n = 1 \Rightarrow 3$

Put
$$n = 2 \Rightarrow 7....$$

17. (3)

Take
$$\frac{n(n^2 + 6n + 11)}{3}$$
, $n=1 \Rightarrow \frac{18}{3} = 6 = 2.3$

$$n = 2 \Rightarrow \frac{2(27)}{3} = 2.3 + 3.4$$

$$n = 3 \Rightarrow 38 = 2.3 + 3.4 + 4.5$$
 etc.

$$nth term = n^2 + n$$

$$\therefore S_n = \sum (n^2 + n) = \sum n^2 + \sum n$$

$$=\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} \left\lceil \frac{2n+1}{3} + 1 \right\rceil = \frac{n(n+1)(n+2)}{3}.$$

19. (4)

$$S_n = 1 + 3 + 7 + 15 + ...$$
 to n terms

$$\Rightarrow$$
 S₁ = 1, S₂ = 1 + 3 = 4, S₃ = 1 + 3 + 7 = 11,...

$$n = 1 \Rightarrow (1)$$
 is not true.

$$n = 2 \Rightarrow (2)$$
 is true, (3) is not true.

$$n = 3 \Rightarrow n^2 + n - 2 = 9 + 3 - 2 = 10 \neq S_2$$

 \Rightarrow (2) is not true.

20. (3)

$$3n^2 - n$$

$$n = 1 \Rightarrow 2$$

$$n = 2 \Rightarrow 10, \dots$$

21. (4)

$$n(n^2 - 1), n = 3 \Rightarrow 3(8) = 24$$

$$n = 5 \Rightarrow 5(24), n = 7 \Rightarrow 7(48)...$$

$$\Rightarrow$$
 Divisible by 24

22. (1)

$$\frac{n(4n^2+6n-1)}{3}$$
, $n=1 \Rightarrow 1.3 = s_1$

$$n = 2 \Rightarrow 18 = 1.3 + 3.5 = s_2$$

$$S_n = \frac{4n^2 - 3n}{4},$$

$$t_n = n^{th} term = S_n - S_{n-1}$$

$$=\frac{4n^2-3n}{4}-\frac{4(n-1)^2-3(n-1)}{4}$$

$$=\frac{1}{4}^{[4\{n^2-(n-1)^2\}-3\{n-(n-1)\}]}=\frac{1}{4}^{(8n-7)}$$

$$S_n = 2n + 1 + n - 2$$

$$S_n - 1 = 2n + n - 1 - 2$$

$$\Rightarrow$$
 nth term = $S_n - S_{n-1}$

$$= 2 \cdot 2^{n} + n - 2 - 2^{n} - n + 1 + 2 = 2^{n} + 1.$$

Put
$$n = 2$$
.

Then
$$1 + \frac{1}{1+2} = \frac{2K}{3} \Rightarrow K = 2$$

$$\cos\alpha \cdot \cos 2^{1}\alpha \cdot \cos 2^{2}\alpha \dots \cos 2^{n-1}\alpha = \frac{1}{2\sin\alpha} \cdot \sin 2^{1}\alpha \cdot \cos 2^{1}\alpha \cdot \cos 2^{2}\alpha \dots \cos 2^{n-1}\alpha$$

$$=\frac{1}{2^2\sin\alpha}(2\sin 2^2\alpha\cdot\cos 2^2\alpha...\cos 2^{n-1}\alpha$$

$$=\frac{1}{2^n\sin\alpha}\cdot\sin 2^n\alpha.$$

(Or) Put
$$n = 1$$
.

L.H.S.
$$\cos 2^{0} \alpha = \cos \alpha$$

R.H.S. =
$$\frac{\sin 2^{1} \alpha}{2 \sin \alpha} = \cos \alpha$$

Put
$$n = 2$$
.

L.H.S.
$$\cos \alpha \cdot \cos 2^{1} \alpha$$

R.H.S.
$$=\frac{\sin 2^2 \alpha}{2^2 \sin \alpha} = \frac{2 \sin 2\alpha \cdot \cos 2\alpha}{4 \sin \alpha}$$

$$=4\frac{\sin\alpha\cdot\cos\alpha\cdot\cos2\alpha}{4\sin\alpha}=\cos\alpha\cdot\cos^2\alpha$$

$$n = 1$$
 G.E. $7^2 + 3^0$. $2^0 = 50$

$$n = 2$$
 G.E. $= 7^4 + 3.2^3 = 2425$

G.C.D of 50, 2425 is 25.

28. (2)

$$n = 2:1.3+3.5 = \frac{32+24-2}{K}$$

$$\Rightarrow 18 = \frac{54}{K} \Rightarrow K = 3$$

29. (4)

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) ... \left(1 - \frac{1}{n}\right)$$
$$= \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} ... \frac{n-1}{n} = \frac{1}{n}$$

30. (1)

$$n(n^2 - 1) = (n - 1)n(n + 1)$$

= products of 3 consecutive integers divisible by |3 = 6.

31. (3)

The product of three consecutive integers are (n-1) n (n+1), it is divisible by $\angle 3$.

The product of four consecutive integers are (n-1) n (n+1)(n+2), it is divisible by $\angle 4$.

 \Rightarrow the product of n consecutive integers is divisible by \angle n.

32. (4)

We cannot set anything above the truth of P(n), $\forall n \in \mathbb{N}$ since truth of P(1) is not given.

33. (3)

P(1), P(2), P(3) are not true.

P(4) is true. Also,
$$2^m < \angle m$$

$$\Rightarrow 2 \cdot 2^{m} < 2 \cdot |m|$$

$$\Rightarrow 2^{m+1} \le (m+1) \cdot |\underline{m}|$$
 for $m \ge 1$

$$\Rightarrow 2^{m+1} \ge (m+1)$$
, for $m \le 1$.

34. (2)

By the principle of mathematical induction P (n) is true for all $n \ge 5$.

www.sakshieducation.com