Research Methods

Hypothesis Testing

Dr. Sven Magg, Prof. Dr. Stefan Wermter

http://www.informatik.uni-hamburg.de/WTM/

Plan for today!

- 1. What is a good hypothesis?
- 2. The steps of a statistical test
- 3. What is a one- or two-tailed test?
- 4. Where to find a sampling distribution
- 5. Z-Scores and hypotheses about means

Statistical Inference

- If we have a sample drawn from a population, we can ask two kind of questions:
 - 1. How "good" is an estimate for a parameter of the population, drawn from this sample? How confident are we that the estimate is close to the real parameter value?
 - Example: Guessing the average number of blonde students from a snapshot count in the Mensa
 - When answering a yes/no question about the population using the sample, how likely is it that we are wrong? Example: My software A is more accurate in guessing the weather than software B

Hypotheses

- **1.** a suggested explanation for a group of facts or phenomena, either accepted as a basis for further verification (working hypothesis) or accepted as likely to be true [...]
- **3.** (Philosophy / Logic) an unproved theory; a conjecture [Collins English Dictionary]
- has to be testable and falsifiable
- follows from observation, exploratory study, or just idea
- Big question: Is my hypothesis correct?
 - What does correct mean? How well can I prove it?
 - When do I consider it verified?

Hypotheses

- Falsifiability
 - "All students are female"
 - Falsifiable by a single male student
 - "When green aliens land in Hamburg, they always step of their spaceship with their middle foot first"
 - Falsifiable in principle, but not in practice
 - "A spiritual being exists"
 - Not scientifically falsifiable/testable
- It has to be possible to think of a hypothesis stating the opposite and you can both test them in practice

Let's gamble first...

- You watch a gambler throwing a die three times and always scoring a 6
- You want to accuse him of using a manipulated die!
- What are the chances of you being right?
- You assumption is that the die is fair and under this assumption you think it's unlikely to score three 6s
- Null Hypothesis: The die is fair (H₀)
- Alternative hypothesis: The die is manipulated (H₁)

Rejecting is better

- Why is my hypothesis the "alternative" hypothesis H₁?
- You can't prove a hypothesis with statistics on a sample
- But we can estimate the likelihood that a sample was drawn from a given population!
- H₀: Sample from this population
- H₁: Sample from a different population
- I can statistically evaluate the probability that my sample N_h came from a given population and, if low, reject H_0
- Rejecting H₀ → Evidence for H₁

Back to gambling

- Null Hypothesis: The die is fair (H_0)
- Alternative hypothesis: The die is manipulated (H₁)
- If the die is fair, we know what the probabilities are:
 - 1/6 to get a specific number in one go
 - 1/(6*6*6) = 1/216 = 0.0046 to get three 6s
- You are therefore 99.54% certain that the die was not fair
- You reject H_0 with a chance of p = 0.0046 to be wrong
- P-Value: Measure of strength of evidence against H₀

What did we do?

- We have...
- 1. ...stated a null hypothesis (Die is fair)
- 2. ... observed a result (gathered a sample N_h =(6,6,6))
- 3. ...thought about a formula to calculate chances, if H_0 is true (binomial distribution)
- 4. ...calculated the probability p of N_h to happen, if H_0 is true
- 5. ...decided to reject H_0 because p was too low
- Science is easy! ©
- Is 0.46% low enough to accuse the 2m professional boxer of cheating?

Another example

- Hypothesis: There are more male than female students in computer science!
- Step 1: State a Null-Hypothesis
 - H_0 : P(male) = 0.5

Group Task!

What is the difference between these two hypothesis:

- 1. There are more male than female students in computer science
- 2. The ratio of male and female students is not equal in CS
 When do you reject the hypothesis?

Another example

- Hypothesis: There are more male than female students in computer science!
- Step 1: State a Null-Hypothesis
 - H_0 : P(male) = 0.5
- Step 2: Gather a sample statistic (run an experiment)
 - 30 students in the Mensa: $N_h = 20$ (male students)
- Step 3: Find a sampling distribution N_h , if H_0 is true
 - From H_0 : P(male) = P(female) = 0.5
 - Binomial Distribution
- Step 4: Calculate p value using N_h
- Step 5: Decide: Reject with p = 0.028

When to reject?

• We rejected H_0 because having 20 males in a sample of

30 is very unlikely

How about 21? Or 10?

We would reject if we see 20 or more!

- If H₀ would be rejected for several results, the p-Value of the combined result is the sum of individual p-Values:
- $P_{oneTailed} = P(20) + \cdots + P(30) = 0.049!$
- One-Tailed Test: We reject for all values greater (smaller) than a given cut-off point (left/right tail)
- Used for directional hypotheses (e.g. "greater than")

When to reject

2-Tailed Test

Reject H₀ if observed value is greater or lower than one of

two cut-off points

• $P_{twoTailed} = 0.099$

Typical use:
 Reject H₀ when the observed value differs more than a given maximum from the mean

- Typical values to determine cut-off points:
 p ≤ 0.05 or p ≤ 0.01
 - Level of significance

Adjust procedure

- Step 1-3 as before
- Step 4a: Set α
 - Decide on a maximum acceptable probability α of incorrectly rejecting H_0
- Step 4b: Find cut-off points
 - Use sampling distribution N_h to find critical values c^+ and c^-
 - Set c^+ and c^- such that $P(N_h \ge c^+) + P(N_h \le c^-) \le \alpha$
- Step 5: Decide
 - If $(N_h \ge c^+)$ or $(N_h \le c^-)$, reject H_0
- In the example: Set $\alpha = 0.05 \Rightarrow c^+ = 21$ and $c^- = 9$
 - $P(N_h \le 9) + P(N_h \ge 21) = 0.043 \le \alpha$

Sampling Distributions

- One problem still remains: Where do I find sampling distributions for H_0 ?
- Exact distributions
 - We already have used the binomial distribution
 - For sample size N and r the probability for each single event: $P(N_h = k) = \frac{N!}{k!(N-k)!} r^k (1-r)^{N-i}$
 - Many other probability distributions: e.g. Normal, Log, t (student), Geometric, Exponential, Poisson, χ^2 ,...
 - All statistics packages include functions to calculate probabilities given a distribution (probability density "pdf" or cumulative density "cdf")

Estimating Distributions

- Use (large) sample collected for H₀ as estimate
- Computer intensive methods
- Simulate the sampling process to derive distribution
 - Monte-Carlo Sampling
 - Bootstrap Methods
 - Randomisation Tests
- Sampling distribution of the mean
 - Central limit theorem!
 - If my individuals are means of samples of size N \Rightarrow Normal distribution with $\bar{x}=\mu$ and standard error $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}}$

Hypotheses about means

Example:

- Individuals are means of 25 test scores
- Old system: $\mu = 1.0$, $\sigma = 0.948$
- New system test run: \bar{x} = 2.8
- Is this performance evidence for an improvement?
- H_0 : Old and new system are performing equally
- Due to CLT: $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{N}} = \frac{0.948}{\sqrt{25}} = 0.19$
- Mean of sampling distribution is 1.0, so \overline{x} is 1.8 units above μ
- Is 1.8 within the usual variability of the population?

Z-Scores

We can express this 1.8 value in terms of standard deviations:

$$Z = \frac{(\bar{x} - \mu)}{\sigma_{\bar{x}}} = \frac{1.8}{0.19} = 9.47$$

The sample result is 9.47 standard deviations above the

expectation!

Standard score or Z-Score

So what does Z=9.47 mean?

- $\bar{x} > \mu$: 50%
- $\bar{x} > \mu + \sigma$: 16%
- $\bar{x} > \mu + 2\sigma$: 2.3%
- $\bar{x} > \mu + 1.645\sigma$: 5%

Z-Scores

 We have transformed our sample distribution into another distribution centered around 0.0 and standard deviation 1.0: Z-distribution

- Standard normal distribution
- With this distribution, we can define cut-off points for different levels of significance:
- One-Tailed:
 - $p \le 0.05$: $Z \ge 1.645$ and $p \le 0.01$: $Z \ge 2.33$
- Two-Tailed
 - $p \le 0.05$: $Z \ge 1.96$ or $Z \le -1.96$
 - $p \le 0.01: Z \ge 2.58 \text{ or } Z \le -2.58$

Z-Test

- The Z-Test does 3 things:
 - Estimates the sampling distribution of the mean
 - Transform this distribution into a standard normal distribution
 - Express sample mean \bar{x} as Z standard deviations from μ
- Finding critical values
 - $\bar{x}_{crit} = \mu \pm 1.96\sigma_{\bar{x}}$
 - For a two-tailed test, $\mu = 2.5$, $\sigma = 1.2$, N = 27: $\bar{x}_{crit} = 2.5 \pm 1.96 \left(\frac{1.2}{\sqrt{27}}\right) = \pm 2.9$
 - So for values larger or smaller than 2.9 we reject H_0 with $p \le 0.05$ (5% significance level)

What have we learned?

- 1. Good hypotheses have to be falsifiable in practice
- 2. We define H_0 and H_1 and try to reject H_0
- 3. When we reject, there is a chance that we are wrong
- 4. P-Values are a measure of the probability to falsely reject H_0
- 5. We can either use a calculated P-Value directly as the strength of evidence against H_0 or set bounds and reject H_0 if the p-value is within the rejection regions
- 6. We have to find sampling distributions to make decisions!
- 7. For means we can use a Z-Test

The perfect Apple Experiment

1. Round

- Review the measures for the dependent variables (in turns)
 - Discuss especially validity and reliability
 - Result: A rated list of measures
- Do the same for the independent variables

The perfect Apple Experiment

2. Round

- Discuss the procedures to reduce the effects of the following factors:
 - The knife used for cutting
 - Pre-contamination of the apple(s)
- Combine the procedures into one (or two) detailed procedure addressing this problem.
 What concepts are you using and why?

Procedure

- Cutting the apple
 - Take a clean kitchen knife
 - Cut apple in half, label the halves A and B
 - Rotate plate by 90 degrees
 - Cut both halves into 3 equal slices without changing the position
 - Label the top half from left to right C, L, H
 - Label the lower half from right to left C, L, H
 - Rotate back by 90 degrees and cut both slices vertically into 6 pieces.
 - Add label U to the outside slices, L to the inside
 - Results are lables like ACU, etc for each apple