WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(514-International Patent Classification 7:

C07K 14/195, C12N 15/31, 1/21, 5/10, A01H 5/00, 5/10, C12N 15/82

(11) International Publication Number: **A3**

WO 00/20452

(43) International Publication Date:

13 April 2000 (13.04.00)

(21) International Application Number:

PCT/US99/23181

(22) International Filing Date:

5 October 1999 (05.10.99)

(30) Priority Data:

60/103,050

5 October 1998 (05.10.98)

(71) Applicant: EDEN BIOSCIENCE CORPORATION [US/US]; 11816 North Creek Parkway N., Bothell, WA 98011-8205 (US).

(72) Inventors: WEI, Zhong-Min; 8230 125th Court, Kirkland, WA 98034 (US). FAN, Hao; 19712 6th Drive S.E., Bothell, WA 98012 (US). NIGGEMEYER, Jennifer, L.: 21315 2nd Avenue S.E., Bothell, WA 98021 (US).

(74) Agents: GOLDMAN, Michael, L. et al.; Nixon Peabody LLP, Clinton Square, P.O. Box 1051, Rochester, NY 14603 (US). (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report:

.6.July.2000 (06.07.00)

(54) Title: HYPERSENSITIVE RESPONSE ELICITOR FRAGMENTS WHICH ARE ACTIVE BUT DO NOT ELICIT A HYPERSEN-SITIVE RESPONSE

(57) Abstract

The present invention is directed to isolated active fragments of a hypersensitive response elicitor protein or polypeptide which fragment does not elicit a hypersensitive response in plants. Also disclosed are isolated DNA molecules which encode such fragments. Isolated fragments of hypersensitive response elicitor proteins or polypeptides in accordance with the present invention and the isolated DNA molecules that encode them have the following activities: imparting disease resistance to plants, enhancing plant growth, and/or controlling insects on plants. This can be achieved by applying the fragments of a hypersensitive response elicitor in a non-infectious form to plants or plant seeds under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds. Alternatively, transgenic plants or plant seeds transformed with a DNA molecule encoding the fragment can be provided and the transgenic plants or plants resulting from the transgenic plant seeds are grown under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD.	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	ТT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK:	Denmark	LK	Sri Lanka	SE	Sweden		
	Estonia V	LR	Liberia	SG	Singapore		

SEP 2 8 2000

20

25

30

HYPERSENSITIVE RESPONSE ELICITOR FRAGMENTS WHICH ARE ACTIVE BUT DO NOT ELICIT A HYPERSENSITIVE RESPONSE

This application claims benefit of U.S. Provisional Patent Application

Serial No. 60/103,050, filed October 5, 1998.

FIELD OF THE INVENTION

The present invention relates to active fragments of a hypersensitive response elicitor which fragments do not elicit a hypersensitive response.

BACKGROUND OF THE INVENTION

Interactions between bacterial pathogens and their plant hosts generally fall into two categories: (1) compatible (pathogen-host), leading to intercellular bacterial growth, symptom development, and disease development in the host plant; and (2) incompatible (pathogen-nonhost), resulting in the hypersensitive response, a particular type of incompatible interaction occurring, without progressive disease symptoms. During compatible interactions on host plants, bacterial populations increase dramatically and progressive symptoms occur. During incompatible interactions, bacterial populations do not increase, and progressive symptoms do not occur.

The hypersensitive response is a rapid, localized necrosis that is associated with the active defense of plants against many pathogens (Kiraly, Z., "Defenses Triggered by the Invader: Hypersensitivity," pages 201-224 in: Plant Disease: An Advanced Treatise, Vol. 5, J.G. Horsfall and E.B. Cowling, ed. Academic Press New York (1980); Klement, Z., "Hypersensitivity," pages 149-177 in: Phytopathogenic Prokaryotes, Vol. 2, M.S. Mount and G.H. Lacy, ed. Academic Press, New York (1982)). The hypersensitive response elicited by bacteria is readily observed as a tissue collapse if high concentrations (≥ 10⁷ cells/ml) of a limited host-range pathogen like Pseudomonas syringae or Erwinia amylovora are infiltrated into the leaves of nonhost plants (necrosis occurs only in isolated plant cells at lower levels of inoculum) (Klement, Z., "Rapid Detection of Pathogenicity of Phytopathogenic Pseudomonads," Nature 199:299-300; Klement, et al.,

25

30

"Hypersensitive Reaction Induced by Phytopathogenic Bacteria in the Tobacco Leaf," Phytopathology 54:474-477 (1963); Turner, et al., "The Quantitative Relation Between Plant and Bacterial Cells Involved in the Hypersensitive Reaction," Phytopathology 64:885-890 (1974); Klement, Z., "Hypersensitivity," pages 149-177 in Phytopathogenic Prokaryotes, Vol. 2., M.S. Mount and G.H. Lacy, ed. Academic 5 Press, New York (1982)). The capacities to elicit the hypersensitive response in a nonhost and be pathogenic in a host appear linked. As noted by Klement, Z., "Hypersensitivity," pages 149-177 in Phytopathogenic Prokaryotes, Vol. 2., M.S. Mount and G.H. Lacy, ed. Academic Press, New York, these pathogens also cause physiologically similar, albeit delayed, necroses in their interactions with compatible 10 hosts. Furthermore, the ability to produce the hypersensitive response or pathogenesis is dependent on a common set of genes, denoted hrp (Lindgren, P.B., et al., "Gene Cluster of Pseudomonas syringae pv. 'phaseolicola' Controls Pathogenicity of Bean Plants and Hypersensitivity on Nonhost Plants," J. Bacteriol. 168:512-22 (1986); Willis, D.K., et al., "hrp Genes of Phytopathogenic Bacteria," Mol. Plant-Microbe 15 Interact. 4:132-138 (1991)). Consequently, the hypersensitive response may hold clues to both the nature of plant defense and the basis for bacterial pathogenicity.

The hrp genes are widespread in Gram-negative plant pathogens, where they are clustered, conserved, and in some cases interchangeable (Willis, D.K., et al., "hrp Genes of Phytopathogenic Bacteria," Mol. Plant-Microbe Interact. 4:132-138 (1991); Bonas, U., "hrp Genes of Phytopathogenic Bacteria," pages 79-98 in:

Current Topics in Microbiology and Immunology: Bacterial Pathogenesis of Plants and Animals - Molecular and Cellular Mechanisms, J.L. Dangl, ed. Springer-Verlag, Berlin (1994)). Several hrp genes encode components of a protein secretion pathway similar to one used by Yersinia, Shigella, and Salmonella spp. to secrete proteins essential in animal diseases (Van Gijsegem, et al., "Evolutionary Conservation of Pathogenicity Determinants Among Plant and Animal Pathogenic Bacteria," Trends Microbiol. 1:175-180 (1993)). In E. amylovora, P. syringae, and P. solanacearum, hrp genes have been shown to control the production and secretion of glycine-rich, protein elicitors of the hypersensitive response (He, S.Y., et al. "Pseudomonas Syringae pv. Syringae HarpinPss: a Protein that is Secreted via the Hrp Pathway and Elicits the Hypersensitive Response in Plants," Cell 73:1255-1266 (1993), Wei, Z.-H.,

10

15

20

25

30

et al., "HrpI of Erwinia amylovora Functions in Secretion of Harpin and is a Member of a New Protein Family," J. Bacteriol. 175:7958-7967 (1993); Arlat, M. et al. "PopA1, a Protein Which Induces a Hypersensitive-like Response on Specific Petunia Genotypes, is Secreted via the Hrp Pathway of Pseudomonas solanacearum," EMBO J. 13:543-553 (1994)).

The first of these proteins was discovered in *E. amylovora* Ea321, a bacterium that causes fire blight of rosaceous plants, and was designated harpin (Wei, Z.-M., et al, "Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen *Erwinia amylovora*," Science 257:85-88 (1992)). Mutations in the encoding *hrpN* gene revealed that harpin is required for *E. amylovora* to elicit a hypersensitive response in nonhost tobacco leaves and incite disease symptoms in highly susceptible pear fruit. The *P. solanacearum* GMI1000 PopA1 protein has similar physical properties and also elicits the hypersensitive response in leaves of tobacco, which is not a host of that strain (Arlat, et al. "PopA1, a Protein Which Induces a Hypersensitive-like Response on Specific Petunia Genotypes, is Secreted via the Hrp Pathway of *Pseudomonas solanacearum*," EMBO J. 13:543-53 (1994)). However, *P. solanacearum popA* mutants still elicit the hypersensitive response in tobacco and incite disease in tomato. Thus, the role of these glycine-rich hypersensitive response elicitors can vary widely among Gram-negative plant pathogens.

Other plant pathogenic hypersensitive response elicitors have been isolated, cloned, and sequenced. These include: Erwinia chrysanthemi (Bauer, et. al., "Erwinia chrysanthemi Harpin_{Ech}: Soft-Rot Pathogenesis," MPMI 8(4): 484-91 (1995)); Erwinia carotovora (Cui, et. al., "The RsmA Mutants of Erwinia carotovora subsp. carotovora Strain Ecc71 Overexpress hrpN_{Ecc} and Elicit a Hypersensitive Reaction-like Response in Tobacco Leaves," MPMI 9(7): 565-73 (1996)); Erwinia stewartii (Ahmad, et. al., "Harpin is not Necessary for the Pathogenicity of Erwinia stewartii on Maize," 8th Int'l. Cong. Molec. Plant-Microb. Inter. July 14-19, 1996 and Ahmad, et. al., "Harpin is not Necessary for the Pathogenicity of Erwinia stewartii on Maize," Ann. Mtg. Am. Phytopath. Soc. July 27-31, 1996); and Pseudomonas syringae pv. syringae (WO 94/26782 to Cornell Research Foundation, Inc.).

10

15

20

The present invention seeks to identify fragments of hypersensitive response elicitor proteins or polypeptides, which fragments do not elicit a hypersensitive response but are active when utilized in conjunction with plants.

SUMMARY OF THE INVENTION

The present invention is directed to isolated fragments of an *Erwinia* hypersensitive response elicitor protein or polypeptide which fragments do not elicit a hypersensitive response in plants but are otherwise active when utilized in conjunction with plants. Also disclosed are isolated DNA molecules which encode such fragments.

The fragments of hypersensitive response elicitors according to the present invention have the following activity when utilized in conjunction with plants: imparting disease resistance to plants, enhancing plant growth and/or controlling insects. This involves applying the fragments in a non-infectious form to plants or plant seeds under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds.

As an alternative to applying the fragments to plants or plant seeds in order to impart disease resistance, to enhance plant growth, and/or to control insects on plants, transgenic plants or plant seeds can be utilized. When utilizing transgenic plants, this involves providing a transgenic plant transformed with a DNA molecule encoding a fragment of a hypersensitive response elicitor protein or polypeptide in accordance with the present invention and growing the plant under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects in the plants or plants grown from the plant seeds. Alternatively, a transgenic plant seed transformed with the DNA molecule encoding such a fragment can be provided and planted in soil. A plant is then propagated under conditions effective to impart disease resistance, to enhance plant growth, and/or to control insects on plants or plants grown from the plant seeds.

25

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows truncated proteins of the hypersensitive response elicitor protein or polypeptide.

Figure 2 shows a list of synthesized oligonucleotide primers for construction of truncated harpin proteins. N represents the N-terminus (5' region), and C represents the C-terminus (3' region). The primers correspond to the indicated sequence identification numbers for the present application: N1 (SEQ. ID. No. 1), N76 (SEQ. ID. No. 2), N99 (SEQ. ID. No. 3), N105 (SEQ. ID. No. 4), N110 (SEQ. ID. No. 5), N137 (SEQ. ID. No. 6), N150 (SEQ. ID. No. 7), N169 (SEQ. ID. No. 8), N210 (SEQ. ID. No. 9), N267 (SEQ. ID. No. 10), N343 (SEQ. ID. No. 11), C75 (SEQ. ID. No. 12), C104 (SEQ. ID. No. 13), C168 (SEQ. ID. No. 14), C180 (SEQ. ID. No. 15), C204 (SEQ. ID. No. 16), C209 (SEQ. ID. No. 17), C266 (SEQ. ID. No. 18), C342 (SEQ. ID. No. 19), and C403 (SEQ. ID. No. 20).

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to isolated fragments of a hypersensitive response elicitor protein or polypeptide where the fragments do not elicit a hypersensitive response but have other activity in plants. Also disclosed are DNA molecules encoding such fragments as well as expression systems, host cells, and plants containing such molecules. Uses of the fragments themselves and the DNA molecules encoding them are disclosed.

The fragments of hypersensitive response elicitor polypeptides or proteins according to the present invention are derived from hypersensitive response elicitor polypeptides or proteins of a wide variety of fungal and bacterial pathogens. Such polypeptides or proteins are able to elicit local necrosis in plant tissue contacted by the elicitor. Examples of suitable bacterial sources of polypeptide or protein elicitors include Erwinia, Pseudomonas, and Xanthomonas species (e.g., the following bacteria: Erwinia amylovora, Erwinia chrysanthemi, Erwinia stewartii, Erwinia carotovora, Pseudomonas syringae, Pseudomonas solancearum, Xanthomonas campestris, and mixtures thereof).

An example of a fungal source of a hypersensitive response elicitor protein or polypeptide is *Phytophthora*. Suitable species of *Phytophthora* include *Phytophthora parasitica*, *Phytophthora cryptogea*, *Phytophthora cinnamomi*, *Phytophthora capsici*, *Phytophthora megasperma*, and *Phytophthora citrophthora*.

The hypersensitive response elicitor polypeptide or protein from *Erwinia chrysanthemi* has an amino acid sequence corresponding to SEQ. ID. No. 21 as follows:

Met Gln Ile Thr Ile Lys Ala His Ile Gly Gly Asp Leu Gly Val Ser 10 Gly Leu Gly Ala Gln Gly Leu Lys Gly Leu Asn Ser Ala Ala Ser Ser Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr Ser Ala Leu Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu 15 Gly Ala Ser Ser Lys Gly Leu Gly Met Ser Asn Gln Leu Gly Gln Ser Phe Gly Asn Gly Ala Gln Gly Ala Ser Asn Leu Leu Ser Val Pro Lys 20 Ser Gly Gly Asp Ala Leu Ser Lys Met Phe Asp Lys Ala Leu Asp Asp Leu Leu Gly His Asp Thr Val Thr Lys Leu Thr Asn Gln Ser Asn Gln 115 Leu Ala Asn Ser Met Leu Asn Ala Ser Gln Met Thr Gln Gly Asn Met 25 135 Asn Ala Phe Gly Ser Gly Val Asn Asn Ala Leu Ser Ser Ile Leu Gly 160 145 Asn Gly Leu Gly Gln Ser Met Ser Gly Phe Ser Gln Pro Ser Leu Gly 30 Ala Gly Gly Leu Gln Gly Leu Ser Gly Ala Gly Ala Phe Asn Gln Leu Gly Asn Ala Ile Gly Met Gly Val Gly Gln Asn Ala Ala Leu Ser Ala Leu Ser Asn Val Ser Thr His Val Asp Gly Asn Asn Arg His Phe Val 35 Asp Lys Glu Asp Arg Gly Met Ala Lys Glu Ile Gly Gln Phe Met Asp 235 225 230

30

35

	Gln	Tyr	Pro	Glu	Ile 245	Phe	Gly	Lys	Pro	Glu 250	Tyr	Gln	Lys	Asp	Gly 255	Trp
	Ser	Ser	Pro	Lys 260	Thr	Asp	Asp	Lys	Ser 265	Trp	Ala	Lys	Ala	Leu 270	Ser	Lys
5	Pro	Asp	Asp 275	Asp	Gly	Met	Thr	Gly 280	Ala	Ser	Met	Asp	Lys 285	Phe	Arg	Gln
	Ala	Met 290	Gly	Met	Ile	Lys	Ser 295	Ala	Val	Ala	Gly	Asp 300	Thr	Gly	Asn	Thr
10	Asn 305	Leu	Asn	Leu	Arg	Gly 310	Ala	Gly	Gly	Ala	Ser 315	Leu	Gly	Ile	Asp	Ala 320
	Ala	Val	Val	Gly	Asp 325	Lys	Ile	Ala	Asn	Met 330	Ser	Leu	Gly	Lys	Leu 335	Ala
	Asn	Ala														

This hypersensitive response elicitor polypeptide or protein has a molecular weight of 34 kDa, is heat stable, has a glycine content of greater than 16%, and contains substantially no cysteine. The *Erwinia chrysanthemi* hypersensitive response elicitor polypeptide or protein is encoded by a DNA molecule having a nucleotide sequence

20 corresponding to SEQ. ID. No. 22 as follows:

CGATTTTACC	CGGGTGAACG	TGCTATGACC	GACAGCATCA	CGGTATTCGA	CACCGTTACG	60
GCGTTTATGG	CCGCGATGAA	CCGGCATCAG	GCGGCGCGCT	GGTCGCCGCA	ATCCGGCGTC	120
GATCTGGTAT	TTCAGTTTGG	GGACACCGGG	CGTGAACTCA	TGATGCAGAT	TCAGCCGGGG	180
CAGCAATATC	CCGGCATGTT	GCGCACGCTG	CTCGCTCGTC	GTTATCAGCA	GGCGGCAGAG	240
TGCGATGGCT	GCCATCTGTG	CCTGAACGGC	AGCGATGTAT	TGATCCTCTG	GTGGCCGCTG	300
CCGTCGGATC	CCGGCAGTTA	TCCGCAGGTG	ATCGAACGTT	TGTTTGAACT	GGCGGGAATG	360
ACGTTGCCGT	CGCTATCCAT	AGCACCGACG	GCGCGTCCGC	AGACAGGGAA	CGGACGCGCC	420
CGATCATTAA	GATAAAGGCG	GCTTTTTTTA	TTGCAAAACG	GTAACGGTGA	GGAACCGTTT	480
CACCGTCGGC	GTCACTCAGT	AACAAGTATC	CATCATGATG	CCTACATCGG	GATCGGCGTG	540
GGCATCCGTT	GCAGATACTT	TTGCGAACAC	CTGACATGAA	TGAGGAAACG	AAATTATGCA	600
AATTACGATC	AAAGCGCACA	TCGGCGGTGA	TTTGGGCGTC	TCCGGTCTGG	GGCTGGGTGC	660
TCAGGGACTG	AAAGGACTGA	ATTCCGCGGC	TTCATCGCTG	GGTTCCAGCG	TGGATAAACT	720
GAGCAGCACC	ATCGATAAGT	TGACCTCCGC	GCTGACTTCG	ATGATGTTTG	GCGGCGCGCT	780
GGCGCAGGGG	CTGGGCGCCA	GCTCGAAGGG	GCTGGGGATG	AGCAATCAAC	TGGGCCAGTC	840

•	TTTCGGCAAT	GGCGCGCAGG	GTGCGAGCAA	CCTGCTATCC	GTACCGAAAT	CCGGCGGCGA	900
	TGCGTTGTCA	AAAATGTTTG	ATAAAGCGCT	GGACGATCTG	CTGGGTCATG	ACACCGTGAC	960
	CAAGCTGACT	AACCAGAGCA	ACCAACTGGC	TAATTCAATG	CTGAACGCCA	GCCAGATGAC	1020
	CCAGGGTAAT	ATGAATGCGT	TCGGCAGCGG	TGTGAACAAC	GCACTGTCGT	CCATTCTCGG	1080
5	CAACGGTCTC	GGCCAGTCGA	TGAGTGGCTT	CTCTCAGCCT	TCTCTGGGGG	CAGGCGGCTT	1140
	GCAGGGCCTG	AGCGGCGCGG	GTGCATTCAA	CCAGTTGGGT	AATGCCATCG	GCATGGGCGT	1200
	GGGGCAGAAT	GCTGCGCTGA	GTGCGTTGAG	TAACGTCAGC	ACCCACGTAG	ACGGTAACAA	1260
	CCGCCACTTT	GTAGATAAAG	AAGATCGCGG	CATGGCGAAA	GAGATCGGCC	AGTTTATGGA	1320
	TCAGTATCCG	GAAATATTCG	GTAAACCGGA	ATACCAGAAA	GATGGCTGGA	GTTCGCCGAA	1380
10	GACGGACGAC	AAATCCTGGG	CTAAAGCGCT	GAGTAAACCG	GATGATGACG	GTATGACCGG	1440
	CGCCAGCATG	GACAAATTCC	GTCAGGCGAT	GGGTATGATC	AAAAGCGCGG	TGGCGGGTGA	1500
	TACCGGCAAT	ACCAACCTGA	ACCTGCGTGG	CGCGGGCGGT	GCATCGCTGG	GTATCGATGC	1560
	GGCTGTCGTC	GGCGATAAAA	TAGCCAACAT	GTCGCTGGGT	AAGCTGGCCA	ACGCCTGATA	1620
	ATCTGTGCTG	GCCTGATAAA	GCGGAAACGA	AAAAAGAGAC	GGGGAAGCCT	GTCTCTTTTC	1680
15	TTATTATGCG	GTTTATGCGG	TTACCTGGA	CGGTTAATCA	TCGTCATCG	A TCTGGTACAA	1740
	ACGCACATTI	TCCCGTTCAT	TCGCGTCGT	r ACGCGCCACA	ATCGCGATG	G CATCTTCCTC	1800
	GTCGCTCAGA	TTGCGCGGCT	GATGGGGAA	C GCCGGGTGG#	ATATAGAGA	A ACTCGCCGGC	1860
	CAGATGGAG	A CACGTCTGCC	ATAAATCTG	T GCCGTAACG	GTTTCTATC	C GCCCCTTTAG	1920
	CAGATAGAT	r GCGGTTTCG7	TADAACTAA 1	G GTAATGCGG	TCCGCCTGT	G CGCCGGCCGG	1980
20	GATCACCAC	A ATATTCATAC	AAAGCTGTC	T TGCACCTAC	C GTATCGCGG	G AGATACCGAC	2040
	AAAATAGGG	C AGTTTTTGC	G TGGTATCCG	T GGGGTGTTC	C GGCCTGACA	A TCTTGAGTTG	2100
	GTTCGTCAT	C ATCTTTCTC	C ATCTGGGCG	A CCTGATCGG	тт		2143

The hypersensitive response elicitor polypeptide or protein derived from *Erwinia amylovora* has an amino acid sequence corresponding to SEQ. ID. No. 23 as follows:

	Asn	Ala	Gly 35	Leu	Gly	Gly	Asn	Ser 40	Ala	Leu	Gly	Leu	Gly 45	Gly	Gly	Asn
	Gln	Asn 50	Asp	Thr	Val	Asn	Gln 55	Leu	Ala	Gly	Leu	Leu 60	Thr	Gly	Met	Met
5	Met 65	Met	Met	Ser	Met	Met 70	Gly	Gly	Gly	Gly	Leu 75	Met	Gly	Gly	Gly	Leu 80
	Gly	Gly	Gly	Leu	Gly 85	Asn	Gly	Leu	Gly	Gly 90	Ser	Gly	Gly	Leu	Gly 95	Glu
10	Gly	Leu	Ser	Asn 100	Ala	Leu	Asn	Asp	Met 105	Leu	Gly	Gly	Ser	Leu 110	Asn	Thr
	Leu	Gly	Ser 115	Lys	Gly	Gly	Asn	Asn 120	Thr	Thr	Ser	Thr	Thr 125	Asn	Ser	Pro
	Leu	Asp 130	Gln	Ala	Leu	Gly	Ile 135	Asn	Ser	Thr	Ser	Gln 140	Asn	Asp	Asp	Ser
15	Thr 145	Ser	Gly	Thr	Asp	Ser 150	Thr	Ser	Asp	Ser	Ser 155	Asp	Pro	Met	Gln	Gln 160
	Leu	Leu	Lys	Met	Phe 165	Ser	Glu	Ile	Met	Gln 170	Ser	Leu	Phe	Gly	Asp 175	Gly
20		Asp	_	180					185					190		
	Gly	Glu	Gln 195	Asn	Ala	Tyr	Lys	Lys 200		Val	Thr	Asp	Ala 205	Leu	Ser	Gly
	Leu	Met 210	Gly	Asn	Gly	Leu	Ser 215	Gln	Leu	Leu	Gly	Asn 220		Gly	Leu	Gly
25	Gly 225		Gln	Gly	Gly	Asn 230	Ala	Gly	Thr	Gly	Leu 235		Gly	Ser	Ser	Leu 240
	Gly	Gly	Lys	Gly	Leu 245		Asn	Leu	Ser	Gly 250		Val	Asp	Tyr	Gln 255	Gln
30	Leu	Gly	Asn	Ala 260		Gly	Thr	Gly	265		Met	Lys	: Ala	. Gly 270		Gln
	Ala	Leu	Asn 275		Ile	Gly	Thr	His 280		, His	Ser	Ser	Thr 285		Ser	Phe
	Val	Asn 290	_	Gly	Asp	Arg	Ala 295		. Ala	Lys	Glu	300		glr Glr) Phe	Met
35	Asp 305		Tyr	Pro	Glu	Val		: Gly	/ Lys	Pro	315		c Glr	ı Lys	Gly	7 Pro 320
	Gly	/ Gln	Glu	Val	Lys 325		Asp	Asp	Lys	330		Ala	a Lys	s Ala	33!	ı Ser
	Lys	Pro	Asp	Asp	Asp	Gly	, Met	Th	e Pro	Ala	a Sei	Me	t Gl	ı Gl	n Phe	e Asn

WO 00/20452 PCT/US99/23181

- 10 -

Lys Ala Lys Gly Met Ile Lys Arg Pro Met Ala Gly Asp Thr Gly Asn 355

Gly Asn Leu Gln Ala Arg Gly Ala Gly Gly Ser Ser Leu Gly Ile Asp 375

Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu 385

Gly Ala Ala

This hypersensitive response elicitor polypeptide or protein has a molecular weight of about 39 kDa, has a pI of approximately 4.3, and is heat stable at 100°C for at least 10 minutes. This hypersensitive response elicitor polypeptide or protein has substantially no cysteine. The hypersensitive response elicitor polypeptide or protein derived from *Erwinia amylovora* is more fully described in Wei, Z.-M., R. J. Laby, C. H. Zumoff, D. W. Bauer, S.-Y. He, A. Collmer, and S. V. Beer, "Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen *Erwinia amylovora*," Science 257:85-88 (1992), which is hereby incorporated by reference. The DNA molecule encoding this polypeptide or protein has a nucleotide sequence corresponding to SEQ. ID. No. 24 as follows:

20 AAGCTTCGGC ATGGCACGTT TGACCGTTGG GTCGGCAGGG TACGTTTGAA TTATTCATAA 60 GAGGAATACG TTATGAGTCT GAATACAAGT GGGCTGGGAG CGTCAACGAT GCAAATTTCT 120 ATCGGCGGTG CGGGCGGAAA TAACGGGTTG CTGGGTACCA GTCGCCAGAA TGCTGGGTTG 180 GGTGGCAATT CTGCACTGGG GCTGGGCGGC GGTAATCAAA ATGATACCGT CAATCAGCTG 240 GCTGGCTTAC TCACCGGCAT GATGATGATG ATGAGCATGA TGGGCGGTGG TGGGCTGATG 300 25 GGCGGTGGCT TAGGCGGTGG CTTAGGTAAT GGCTTGGGTG GCTCAGGTGG CCTGGGCGAA 360 GGACTGTCGA ACGCGCTGAA CGATATGTTA GGCGGTTCGC TGAACACGCT GGGCTCGAAA 420 GGCGGCAACA ATACCACTTC AACAACAAAT TCCCCGCTGG ACCAGGCGCT GGGTATTAAC 480 TCAACGTCCC AAAACGACGA TTCCACCTCC GGCACAGATT CCACCTCAGA CTCCAGCGAC 540 CCGATGCAGC AGCTGCTGAA GATGTTCAGC GAGATAATGC AAAGCCTGTT TGGTGATGGG 600 30 CAAGATGCA CCCAGGCAG TTCCTCTGG GGCAAGCAGC CGACCGAAGG CGAGCAGAAC 660 GCCTATAAAA AAGGAGTCAC TGATGCGCTG TCGGGCCTGA TGGGTAATGG TCTGAGCCAG 720 CTCCTTGGCA ACGGGGGACT GGGAGGTGGT CAGGGCGGTA ATGCTGGCAC GGGTCTTGAC 780 GGTTCGTCGC TGGGCGGCAA AGGGCTGCAA AACCTGAGCG GGCCGGTGGA CTACCAGCAG 840 WO 00/20452 PCT/US99/23181

- 11 -

TTAGGTAACG	CCGTGGGTAC	CGGTATCGGT	ATGAAAGCGG	GCATTCAGGC	GCTGAATGAT	900
ATCGGTACGC	ACAGGCACAG	TTCAACCCGT	TCTTTCGTCA	ATAAAGGCGA	TCGGGCGATG	960
GCGAAGGAAA	TCGGTCAGTT	CATGGACCAG	TATCCTGAGG	TGTTTGGCAA	GCCGCAGTAC	102
CAGAAAGGCC	CGGGTCAGGA	GGTGAAAACC	GATGACAAAT	CATGGGCAAA	AGCACTGAGC	108
AAGCCAGATG	ACGACGGAAT	GACACCAGCC	AGTATGGAGC	AGTTCAACAA	AGCCAAGGGC	114
ATGATCAAAA	GGCCCATGGC	GGGTGATACC	GGCAACGGCA	ACCTGCAGGC	ACGCGGTGCC	120
GGTGGTTCTT	CGCTGGGTAT	TGATGCCATG	ATGGCCGGTG	ATGCCATTAA	CAATATGGCA	126
CTTGGCAAGC	TGGGCGCGGC	TTAAGCTT				128

10

15

5

Another potentially suitable hypersensitive response elicitor from Erwinia amylovora is disclosed in U.S. Patent Application Serial No. 09/120,927, which is hereby incorporated by reference. The protein is encoded by a DNA molecule having a nucleic acid sequence of SEQ. ID. No. 25 as follows:

ATGTCAATTC TTACGCTTAA CAACAATACC TCGTCCTCGC CGGGTCTGTT CCAGTCCGGG 60 GGGGACAACG GGCTTGGTGG TCATAATGCA AATTCTGCGT TGGGGCAACA ACCCATCGAT 120 CGGCAAACCA TTGAGCAAAT GGCTCAATTA TTGGCGGAAC TGTTAAAGTC ACTGCTATCG 180 20 CCACAATCAG GTAATGCGGC AACCGGAGCC GGTGGCAATG ACCAGACTAC AGGAGTTGGT 240 AACGCTGGCG GCCTGAACGG ACGAAAAGGC ACAGCAGGAA CCACTCCGCA GTCTGACAGT 300 25 CAGAACATGC TGAGTGAGAT GGGCAACAAC GGGCTGGATC AGGCCATCAC GCCCGATGGC 360 CAGGGCGGCG GGCAGATCGG CGATAATCCT TTACTGAAAG CCATGCTGAA GCTTATTGCA 420 CGCATGATGG ACGGCCAAAG CGATCAGTTT GGCCAACCTG GTACGGGCAA CAACAGTGCC 30 480 TCTTCCGGTA CTTCTTCATC TGGCGGTTCC CCTTTTAACG ATCTATCAGG GGGGAAGGCC 540 CCTTCCGGCA ACTCCCCTTC CGGCAACTAC TCTCCCGTCA GTACCTTCTC ACCCCCATCC 35 ACGCCAACGT CCCCTACCTC ACCGCTTGAT TTCCCTTCTT CTCCCACCAA AGCAGCCGGG 660 GGCAGCACGC CGGTAACCGA TCATCCTGAC CCTGTTGGTA GCGCGGGCAT CGGGGCCGGA 720 ANTTCGGTGG CCTTCACCAG CGCCGGCGCT AATCAGACGG TGCTGCATGA CACCATTACC 40 780 GTGAAAGCGG GTCAGGTGTT TGATGGCAAA GGACAAACCT TCACCGCCGG TTCAGAATTA GGCGATGGCG GCCAGTCTGA AAACCAGAAA CCGCTGTTTA TACTGGAAGA CGGTGCCAGC 900 45 CTGAAAACG TCACCATGGG CGACGACGGG GCGGATGGTA TTCATCTTTA CGGTGATGCC 960 AAAATAGACA ATCTGCACGT CACCAACGTG GGTGAGGACG CGATTACCGT TAAGCCAAAC 1020 50 AGCGCGGGCA AAAAATCCCA CGTTGAAATC ACTAACAGTT CCTTCGAGCA CGCCTCTGAC 1080 AAGATCCTGC AGCTGAATGC CGATACTAAC CTGAGCGTTG ACAACGTGAA GGCCAAAGAC 1140

	TTTGGTACTT	TTGTACGCAC	TAACGGCGGT	CAACAGGGTA	ACTGGGATCT	GAATCTGAGC	1200
5	CATATCAGCG	CAGAAGACGG	TAAGTTCTCG	TTCGTTAAAA	GCGATAGCGA	GGGGCTAAAC	1260
J	GTCAATACCA	GTGATATCTC	ACTGGGTGAT	GTTGAAAACC	ACTACAAAGT	GCCGATGTCC	1320
	GCCAACCTGA	AGGTGGCTGA	ATGA				1344

See GenBank Accession No. U94513. The isolated DNA molecule of the present invention encodes a hypersensitive response elicitor protein or polypeptide having an amino acid sequence of SEQ. ID. No. 26 as follows:

15	Met 1	Ser	Ile	Leu	Thr 5	Leu	Asn	Asn	Asn	Thr 10	Ser	Ser	Ser	Pro	Gly 15	Leu
20	Phe	Gln	Ser	Gly 20	Gly	Asp	Asn	Gly	Leu 25	Gly	Gly	His	Asn	Ala 30	Asn	Ser
20	Ala	Leu	Gly 35	Gln	Gln	Pro	Ile	Asp 40	Arg	Gln	Thr	Ile	Glu 45	Gln	Met	Ala
25	Gln	Leu 50	Leu	Ala	Glu	Leu	Leu 55	Lys	Ser	Leu	Leu	Ser 60	Pro	Gln	Ser	Gly
	Asn 65	Ala	Ala	Thr	Gly	Ala 70	Gly	Gly	Asn	Asp	Gln 75	Thr	Thr	Gly	Val	Gly 80
30	Asn	Ala	Gly	Gly	Leu 85	Asn	Gly	Arg	Lys	Gly 90	Thr	Ala	Gly	Thr	Thr 95	Pro
35	Gln	Ser	Asp	Ser 100	Gln	Asn	Met	Leu	Ser 105	Glu	Met	Gly	Asn	Asn 110	Gly	Leu
	Asp	Gln	Ala 115	Ile	Thr	Pro	Asp	Gly 120	Gln	Gly	Gly	Gly	Gln 125	Ile	Gly	Asp
40	Asn	Pro 130	Leu	Leu	Lys	Ala	Met 135	Leu	Lys	Leu	Ile	Ala 140	Arg	Met	Met	Asp
	Gly 145	Gln	Ser	Asp	Gln	Phe 150	Gly	Gln	Pro	Gly	Thr 155	Gly	Asn	Asn	Ser	Ala 160
45	Ser	Ser	Gly	Thr	Ser 165	Ser	Ser	Gly	Gly	Ser 170	Pro	Phe	Asn	Asp	Leu 175	Ser
50	Gly	Gly	Lys	Ala 180	Pro	Ser	Gly	Asn	Ser 185	Pro	Ser	Gly	Asn	Tyr 190	Ser	Pro
30	Val	Ser	Thr 195	Phe	Ser	Pro	Pro	Ser 200	Thr	Pro	Thr	Ser	Pro 205	Thr	Ser	Pro
55	Leu	Asp 210	Phe	Pro	Ser	Ser	Pro 215	Thr	Lys	Ala	Ala	Gly 220	_	Ser	Thr	Pro

50

	Val 225	Thr	Asp	His	Pro	Asp 230	Pro	Val	Gly	Ser	Ala 235	Gly	Ile	Gly	Ala	Gly 240
5	Asn	Ser	Val	Ala	Phe 245	Thr	Ser	Ala	Gly	Ala 250	Asn	Gln	Thr	Val	Leu 255	His
	Asp	Thr	Ile	Thr 260	Val	Lys	Ala	Gly	Gln 265	Val	Phe	Asp	Gly	Lys 270	Gly	Gln
10	Thr	Phe	Thr 275	Ala	Gly	Ser	Glu	Leu 280	Gly	Asp	Gly	Gly	Gln 285	Ser	Glu	Asn
15	Gln	Lys 290	Pro	Leu	Phe	Ile	Leu 295	Glu	Asp	Ġly	Ala	Ser 300	Leu	Lys	Asn	Val
15	Thr 305	Met	Gly	Asp	Asp	Gly 310	Ala	Asp	Gly	Ile	His 315	Leu	Tyr	Gly	Asp	Ala 320
20	Lys	Ile	Asp	Asn	Leu 325	His	Val	Thr	Asn	Val 330	Gly	Glu	Asp	Ala	Ile 335	Thr
	Val	Lys	Pro	Asn 340	Ser	Ala	Gly	Lys	Lys 345	Ser	His	Val	Glu	Ile 350	Thr	Asn
25	Ser	Ser	Phe 355	Glu	His	Ala	Ser	Asp 360	Lys	Ile	Leu	Gln	Leu 365	Asn	Ala	Asp
20	Thr	Asn 370	Leu	Ser	Val	Asp	Asn 375	Val	Lys	Ala	Lys	Asp 380	Phe	Gly	Thr	Phe
30	Val 385	Arg	Thr	Asn	Gly	Gly 390	Gln	Gln	Gly	Asn	Trp 395	Asp	Leu	Asn	Leu	Ser 400
35	His	Ile	Ser	Ala	Glu 405	Asp	Gly	Lys	Phe	Ser 410		Val	Lys	Ser	Asp 415	Ser
	Glu	Gly	Leu	Asn 420		Asn	Thr	Ser	Asp 425		Ser	Leu	Gly	Asp 430	Val	Glu
40	Asn	His	Tyr 435	Lys	Val	Pro	Met	Ser 440		Asn	Leu	Lys	Val 445		Glu	L

This protein or polypeptide is acidic, rich in glycine and serine, and lacks cysteine. It is also heat stable, protease sensitive, and suppressed by inhibitors of plant metabolism. The protein or polypeptide of the present invention has a predicted molecular size of ca. 4.5 kDa.

Another potentially suitable hypersensitive response elicitor from *Erwinia amylovora* is disclosed in U.S. Patent Application Serial No. 09/120,663 which is hereby incorporated by reference. The protein is encoded by a DNA molecule having a nucleic acid sequence of SEQ. ID. No. 27 as follows:

	ATGGAATTAA AATCACTGGG AACTGAACAC AAGGCGGCAG TACACACAGC GGCGCACAAC	60
	CCTGTGGGGC ATGGTGTTGC CTTACAGCAG GGCAGCAGCA GCAGCAGCCC GCAAAATGCC	120
5	GCTGCATCAT TGGCGGCAGA AGGCAAAAAT CGTGGGAAAA TGCCGAGAAT TCACCAGCCA	180
	TCTACTGCGG CTGATGGTAT CAGCGCTGCT CACCAGCAAA AGAAATCCTT CAGTCTCAGG	240
	GGCTGTTTGG GGACGAAAAA ATTTTCCAGA TCGGCACCGC AGGGCCAGCC AGGTACCACC	300
10	CACAGCAAAG GGGCAACATT GCGCGATCTG CTGGCGCGGG ACGACGGCGA AACGCAGCAT	360
	GAGGCGGCCG CGCCAGATGC GGCGCGTTTG ACCCGTTCGG GCGGCGTCAA ACGCCGCAAT	420
15	ATGGACGACA TGGCCGGGCG GCCAATGGTG AAAGGTGGCA GCGGCGAAGA TAAGGTACCA	480
	ACGCAGCAAA AACGGCATCA GCTGAACAAT TTTGGCCAGA TGCGCCAAAC GATGTTGAGC	540
	AAAATGGCTC ACCCGGCTTC AGCCAACGCC GGCGATCGCC TGCAGCATTC ACCGCCGCAC	600
20	ATCCCGGGTA GCCACCACGA AATCAAGGAA GAACCGGTTG GCTCCACCAG CAAGGCAACA	660
	ACGGCCCACG CAGACAGAGT GGAAATCGCT CAGGAAGATG ACGACAGCGA ATTCCAGCAA	720
25	CTGCATCAAC AGCGGCTGGC GCGCGAACGG GAAAATCCAC CGCAGCCGCC CAAACTCGGC	780
	GTTGCCACAC CGATTAGCGC CAGGTTTCAG CCCAAACTGA CTGCGGTTGC GGAAAGCGTC	840
	CTTGAGGGGA CAGATACCAC GCAGTCACCC CTTAAGCCGC AATCAATGCT GAAAGGAAGT	900
30	GGAGCCGGGG TAACGCCGCT GGCGGTAACG CTGGATAAAG GCAAGTTGCA GCTGGCACCG	960
	GATAATCCAC CCGCGCTCAA TACGTTGTTG AAGCAGACAT TGGGTAAAGA CACCCAGCAC	1020
35	TATCTGGCGC ACCATGCCAG CAGCGACGGT AGCCAGCATC TGCTGCTGGA CAACAAAGGC	1080
	CACCTGTTTG ATATCAAAAG CACCGCCACC AGCTATAGCG TGCTGCACAA CAGCCACCCC	1140
	GGTGAGATAA AGGGCAAGCT GGCGCAGGCG GGTACTGGCT CCGTCAGCGT AGACGGTAAA	1200
40	AGCGGCAAGA TCTCGCTGGG GAGCGGTACG CAAAGTCACA ACAAAACAAT GCTAAGCCAA	1260
	CCGGGGGAAG CGCACCGTTC CTTATTAACC GGCATTTGGC AGCATCCTGC TGGCGCAGCG	1320
45	CGGCCGCAGG GCGAGTCAAT CCGCCTGCAT GACGACAAAA TTCATATCCT GCATCCGGAG	1380
	CTGGGCGTAT GGCAATCTGC GGATAAAGAT ACCCACAGCC AGCTGTCTCG CCAGGCAGAC	1440
	GGTAAGCTCT ATGCGCTGAA AGACAACCGT ACCCTGCAAA ACCTCTCCGA TAATAAATCC	1500
50	TCAGAAAAGC TGGTCGATAA AATCAAATCG TATTCCGTTG ATCAGCGGGG GCAGGTGGCG	1560
	ATCCTGACGG ATACTCCCGG CCGCCATAAG ATGAGTATTA TGCCCTCGCT GGATGCTTCC	1620
55	CCGGAGAGCC ATATTTCCCT CAGCCTGCAT TTTGCCGATG CCCACCAGGG GTTATTGCAC	1680
	GGGAAGTCGG AGCTTGAGGC ACAATCTGTC GCGATCAGCC ATGGGCGACT GGTTGTGGCC	1740
	GATAGCGAAG GCAAGCTGTT TAGCGCCGCC ATTCCGAAGC AAGGGGATGG AAACGAACTG	1800
60	AAAATGAAAG CCATGCCTCA GCATGCGCTC GATGAACATT TTGGTCATGA CCACCAGATT	186
	TCTGGATTTT TCCATGACGA CCACGGCCAG CTTAATGCGC TGGTGAAAAA TAACTTCAGG	192
65	CAGCAGCATG CCTGCCCGTT GGGTAACGAT CATCAGTTTC ACCCCGGCTG GAACCTGACT	198

WO 00/20452 PCT/US99/23181

- 15 -

	GATGCGCTGG	TTATCGACAA	TCAGCTGGGG	CTGCATCATA	CCAATCCTGA	ACCGCATGAG	2040
5	ATTCTTGATA	TGGGGCATTT	AGGCAGCCTG	GCGTTACAGG	AGGGCAAGCT	TCACTATTTT	2100
3	GACCAGCTGA	CCAAAGGGTG	GACTGGCGCG	GAGTCAGATT	GTAAGCAGCT	GAAAAAAGGC	2160
	CTGGATGGAG	CAGCTTATCT	ACTGAAAGAC	GGTGAAGTGA	AACGCCTGAA	TATTAATCAG	2220
10	AGCACCTCCT	CTATCAAGCA	CGGAACGGAA	AACGTTTTTT	CGCTGCCGCA	TGTGCGCAAT	2280
	AAACCGGAGC	CGGGAGATGC	CCTGCAAGGG	CTGAATAAAG	ACGATAAGGC	CCAGGCCATG	2340
15	GCGGTGATTG	GGGTAAATAA	ATACCTGGCG	CTGACGGAAA	AAGGGGACAT	TCGCTCCTTC	2400
13	CAGATAAAAC	CCGGCACCCA	GCAGTTGGAG	CGGCCGGCAC	AAACTCTCAG	CCGCGAAGGT	2460
	ATCAGCGGCG	AACTGAAAGA	CATTCATGTC	GACCACAAGC	AGAACCTGTA	TGCCTTGACC	2520
20	CACGAGGGAG	AGGTGTTTCA	TCAGCCGCGT	GAAGCCTGGC	AGAATGGTGC	CGAAAGCAGC	2580
	AGCTGGCACA	AACTGGCGTT	GCCACAGAGT	GAAAGTAAGC	TAAAAAGTCT	GGACATGAGC	2640
25	CATGAGCACA	AACCGATTGC	CACCTTTGAA	GACGGTAGCC	AGCATCAGCT	GAAGGCTGGC	2700
23	GGCTGGCACG	CCTATGCGGC	ACCTGAACGC	GGGCCGCTGG	CGGTGGGTAC	CAGCGGTTCA	2760
	CAAACCGTCT	TTAACCGACT	AATGCAGGGG	GTGAAAGGCA	AGGTGATCCC	AGGCAGCGGG	2820
30	TTGACGGTTA	AGCTCTCGGC	TCAGACGGGG	GGAATGACCG	GCGCCGAAGG	GCGCAAGGTC	2880
:	AGCAGTAAAT	TTTCCGAAAG	GATCCGCGCC	TATGCGTTCA	ACCCAACAAT	GTCCACGCCG	2940
35	CGACCGATTA	AAAATGCTGC	TTATGCCACA	CAGCACGGCT	GGCAGGGGCG	TGAGGGGTTG	3000
J J	AAGCCGTTGT	ACGAGATGCA	GGGAGCGCTG	ATTAAACAAC	TGGATGCGCA	TAACGTTCGT	3060
	CATAACGCGC	CACAGCCAGA	TTTGCAGAGC	AAACTGGAAA	CTCTGGATTT	AGGCGAACAT	3120
40	GGCGCAGAAT	TGCTTAACGA	CATGAAGCGC	TTCCGCGACG	AACTGGAGCA	GAGTGCAACC	3180
	CGTTCGGTGA	CCGTTTTAGG	TCAACATCAG	GGAGTGCTAA	AAAGCAACGG	TGAAATCAAT	3240
45	AGCGAATTTA	AGCCATCGCC	CGGCAAGGCG	TTGGTCCAGA	GCTTTAACGT	CAATCGCTCT	3300
73	GGTCAGGATC	TAAGCAAGTC	ACTGCAACAG	GCAGTACATG	CCACGCCGCC	ATCCGCAGAG	3360
	AGTAAACTGC	AATCCATGCT	GGGGCACTTT	GTCAGTGCCG	GGGTGGATAT	GAGTCATCAG	3420
50	AAGGGCGAGA	TCCCGCTGGG	CCGCCAGCGC	GATCCGAATG	ATAAAACCGC	ACTGACCAAA	3480
	TCGCGTTTAA	TTTTAGATAC	CGTGACCATC	GGTGAACTGC	ATGAACTGGC	CGATAAGGCG	3540
55	AAACTGGTAT	CTGACCATAA	ACCCGATGCC	GATCAGATAA	AACAGCTGCG	CCAGCAGTTC	3600
23	GATACGCTGC	GTGAAAAGCG	GTATGAGAGC	AATCCGGTGA	AGCATTACAC	CGATATGGGC	3660
	TTCACCCATA	ATAAGGCGCT	GGAAGCAAAC	TATGATGCGG	TCAAAGCCTT	TATCAATGCC	3720
60	TTTAAGAAAG	AGCACCACGG	CGTCAATCTG	ACCACGCGTA	CCGTACTGGA	ATCACAGGGC	3780
	AGTGCGGAGC	TGGCGAAGAA	GCTCAAGAAT	ACGCTGTTGT	CCCTGGACAG	TGGTGAAAGT	3840
65	ATGAGCTTCA	GCCGGTCATA	TGGCGGGGGC	GTCAGCACTG	TCTTTGTGCC	TACCCTTAGC	3900

	AAGAAGGTGC	CAGTTCCGGT	GATCCCCGGA	GCCGGCATCA	CGCTGGATCG	CGCCTATAAC	3960
	CTGAGCTTCA	GTCGTACCAG	CGGCGGATTG	AACGTCAGTT	TTGGCCGCGA	CGGCGGGGTG	4020
5	AGTGGTAACA	TCATGGTCGC	TACCGGCCAT	GATGTGATGC	CCTATATGAC	CGGTAAGAAA	4080
	ACCAGTGCAG	GTAACGCCAG	TGACTGGTTG	AGCGCAAAAC	ATAAAATCAG	CCCGGACTTG	4140
	CGTATCGGCG	CTGCTGTGAG	TGGCACCCTG	CAAGGAACGC	TACAAAACAG	CCTGAAGTTT	4200
10	AAGCTGACAG	AGGATGAGCT	GCCTGGCTTT	ATCCATGGCT	TGACGCATGG	CACGTTGACC	4260
	CCGGCAGAAC	TGTTGCAAAA	GGGGATCGAA	CATCAGATGA	AGCAGGGCAG	CAAACTGACG	4320
15	TTTAGCGTCG	ATACCTCGGC	AAATCTGGAT	CTGCGTGCCG	GTATCAATCT	GAACGAAGAC	4380
	GGCAGTAAAC	CAAATGGTGT	CACTGCCCGT	GTTTCTGCCG	GGCTAAGTGC	ATCGGCAAAC	4440
20	CTGGCCGCCG	GCTCGCGTGA	ACGCAGCACC	ACCTCTGGCC	AGTTTGGCAG	CACGACTTCG	4500
20	GCCAGCAATA	ACCGCCCAAC	CTTCCTCAAC	GGGGTCGGCG	CGGGTGCTAA	CCTGACGGCT	4560
	GCTTTAGGGG	TTGCCCATTC	ATCTACGCAT	GAAGGGAAAC	CGGTCGGGAT	CTTCCCGGCA	4620
25	TTTACCTCGA	CCAATGTTTC	GGCAGCGCTG	GCGCTGGATA	ACCGTACCTC	ACAGAGTATC	4680
	AGCCTGGAAT	TGAAGCGCGC	GGAGCCGGTG	ACCAGCAACG	ATATCAGCGA	GTTGACCTCC	4740
30	ACGCTGGGAA	AACACTTTAA	GGATAGCGCC	ACAACGAAGA	TGCTTGCCGC	TCTCAAAGAG	4800
50	TTAGATGACG	CTAAGCCCGC	TGAACAACTG	CATATTTTAC	AGCAGCATTT	CAGTGCAAAA	4860
	GATGTCGTCG	GTGATGAACG	CTACGAGGCG	GTGCGCAACC	TGAAAAAACT	GGTGATACGT	4920
35	CAACAGGCTG	CGGACAGCCA	CAGCATGGAA	TTAGGATCTG	CCAGTCACAG	CACGACCTAC	4980
	AATAATCTGT	CGAGAATAAA	TAATGACGGC	ATTGTCGAGC	TGCTACACAA	ACATTTCGAT	5040
40	GCGGCATTAC	CAGCAAGCAG	TGCCAAACGT	CTTGGTGAAA	TGATGAATAA	CGATCCGGCA	5100
70	CTGAAAGATA	TTATTAAGCA	GCTGCAAAGT	ACGCCGTTCA	GCAGCGCCAG	CGTGTCGATG	5160
	GAGCTGAAAG	ATGGTCTGCG	TGAGCAGACG	GAAAAAGCAA	TACTGGACGG	TAAGGTCGGT	5220
45	CGTGAAGAAG	TGGGAGTACT	TTTCCAGGAT	CGTAACAACT	TGCGTGTTAA	ATCGGTCAGC	5280
	GTCAGTCAGT	CCGTCAGCAA	AAGCGAAGGC	TTCAATACCC	: CAGCGCTGTT	ACTGGGGACG	5340
50	AGCAACAGCG	CTGCTATGAG	CATGGAGCGC	: AACATCGGAA	CCATTAATTI	TAAATACGGC	5400
50	CAGGATCAGA	ACACCCCACG	GCGATTTACC	CTGGAGGGTG	GAATAGCTCA	GGCTAATCCG	546
	a. aamaaa.		·	י אאממאאמממנ	י ייככאאאיים א	ע מברדש ב	551

This DNA molecule is known as the dspE gene for *Erwinia amylovora*. This isolated DNA molecule of the present invention encodes a protein or polypeptide which elicits a plant pathogen's hypersensitive response having an amino acid sequence of SEQ. ID. No. 28 as follows:

55

	Met 1	Glu	Leu	Lys	Ser 5	Leu	GIÀ	Thr	GIU	10	rys	Ala	Ala	vai	H18	Tnr
5	Ala	Ala	His	Asn 20	Pro	Val	Gly	His	Gly 25	Val	Ala	Leu	Gln	Gln 30	Gly	Ser
	Ser	Ser	Ser 35	Ser	Pro	Gln	Asn	Ala 40	Ala	Ala	Ser	Leu	Ala 45	Ala	Glu	Gly
10	Lys	Asn 50	Arg	Gly	Lys	Met	Pro 55	Arg	Ile	His	Gln	Pro 60	Ser	Thr	Ala	Ala
15	Asp 65	Gly	Ile	Ser	Ala	Ala 70	His	Gln	Gln	Lys	Lys 75	Ser	Phe	Ser	Leu	Arg 80
15	Gly	Cys	Leu	Gly	Thr 85	Lys	Lys	Phe	Ser	Arg 90	Ser	Ala	Pro	Gln	Gly 95	Gln
20	Pro	Gly	Thr	Thr 100	His	Ser	Lys	Gly	Ala 105	Thr	Leu	Arg	Asp	Leu 110	Leu	Ala
	Arg	Asp	<u>Asp</u> 115	GľA	Glu	Thr	Gln	His 120	Glu	Ala	Ala	Ala	Pro 125	Asp	Ala	Ala
25	Arg	Leu 130	Thr	Arg	Ser	Gly	Gly 135	Val	Lys	Arg	Arg	Asn 140	Met	Asp	Asp	Met
30	Ala 145	Gly	Arg	Pro	Met	Val 150	Lys	Gly	Gly	Ser	Gly 155	Glu	Asp	Lys	Val	Pro 160
30	Thr	Gln	Gln	Lys	Arg 165	His	Gln	Leu	Asn	Asn 170	Phe	Gly	Gln	Met	Arg 175	Gln
35	Thr	Met	Leu	Ser 180	Lys	Met	Ala	His	Pro 185	Ala	Ser	Ala	Asn	Ala 190	Gly	Asp
	Arg	Leu	Gln 195	His	Ser	Pro	Pro	His 200	Ile	Pro	Gly	Ser	His 205	His	Glu	Ile
40	Lys	Glu 210	Glu	Pro	Val	Gly	Ser 215	Thr	Ser	Lys	Ala	Thr 220	Thr	Ala	His	Ala
45	Asp 225	_	Val	Glu	Ile	Ala 230	Gln	Glu	Asp	Asp	Asp 235	Ser	Glu	Phe	Gln	Gln 240
45	Leu	His	Gln	Gln	Arg 245		Ala	Arg	Glu	Arg 250	Glu	Asn	Pro	Pro	Gln 255	Pro
50	Pro	Lys	Leu	Gly 260		Ala	Thr	Pro	11e 265		Ala	Arg	Phe	Gln 270		Lys
	Leu	Thr	Ala 275	Val	Ala	Glu	Ser	Val 280		Glu	Gly	Thr	Asp 285		Thr	Glr
55	Ser	Pro 290		Lys	Pro	Gln	Ser 295		Leu	Lys	Gly	Ser 300	Gly	Ala	Gly	Val
60	Thr 305		Leu	Ala	Val	Thr 310		Asp	Lys	Gly	Lys 315		Gln	Leu	Ala	Pro 320
J U	Asp	Asn	Pro	Pro	Ala 325		Asn	Thr	Leu	Leu 330		Glr	Thr	Leu	Gly 335	
65	Asp	Thr	Gln	His 340		Leu	Ala	His	His 345		Ser	Ser	: Asp	Gly 350		Glr

	His	Leu	Leu 355	Leu	Asp	Asn	Ly	rs G	360	His	Leu	Phe	As	р I 3	1e :	Lys	Se	r Tl	nr
5	Ala	Thr 370	Ser	туг	Ser	Val	Le 37	eu F 75	lis	Asn	Ser	His	9r 38	o G	ly	Glu	Il	e L	ys
	Gly 385	Lys	Leu	Ala	Gln	Ala 390	G1	ly :	Thr	Gly	Ser	Val 395	. Se	r V	/al	Asp	G1	у L 4	00 ys
10	Ser	Gly	Lys	Ile	Ser 405		G]	ly :	Ser	Gly	Thr 410	Glr	ı Se	er l	lis	Asn	Ly 41	s T 5	hr
15	Met	Leu	Ser	Gln 420		Gly	/ G:	lu i	Ala	His 425	Arg	Se	c Le	eu I	Leu	Thr 430	Gl	уІ	le
	Trp	Gln	His 435	Pro	Ala	Gly	/ A.	la .	Ala 440	Arg	Pro	Gl	n G	ly (Glu 445	Ser	IJ	e A	rg
20		450		Asp			4	55					4	60					
25	Gln 465		Ala	Asp	Lys	47	т q 0	hr	His	Ser	Glr	1 Le 47	u S 5	er	Arg	Glr	A]	la I	Asp 480
25	_			туг	485	5				•	490)					- 4	,,	
30				500)	_				505	•					21,	,		
			51						520						525	,			
35		53	0	t Se:			5	535					-	940					
40	5,4	5		u Se		55	0			-		5	55						500
40		_		r Gl	56	5					57	O					-	,,,	
45		•		1 Al 58	0					58	5					55	, 0	•	
			59						60	0				•	60	5			
50		61	LO	sp Gl				615	5					620	,				
55	62	25		sp Hi		6	30					•	35						040
33				is A	6	45					6	50						055	
60					60					6	65					ь	70		
	H:	is T		sn P 75	ro G	lu I	Pro	Hi	s G] 68	u I: 30	le L	eu .	Asp	Me	t G:	ly H 85	is	Lev	ı Gly

	Ser	Leu 690	Ala	Leu	Gln	Glu	Gly 695	Lys	Leu	His	Tyr	700	Asp	Gln	Leu	Thr
5	Lys 705	Gly	Trp	Thr	Gly	Ala 710	Glu	Ser	Asp	Cys	Lys 715	Gln	Leu	Lys	Lys	Gly 720
	Leu	Asp	Gly	Ala	Ala 725	Tyr	Leu	Leu	Lys	Asp 730	Gly	Glu	Val	Lys ·	Arg 735	Leu
10	Asn	Ile	Asn	Gln 740	Ser	Thr	Ser	Ser	Ile 745	Lys	His	Gly	Thr	Glu 750	Asn	Val
1.6	Phe	Ser	Leu 755	Pro	His	Val	Arg	Asn 760	Lys	Pro	Glu	Pro	Gly 765	Asp	Ala	Leu
15	Gln	Gly 770	Leu	Asn	Lys	Asp	Asp 775	Lys	Ala	Gln	Ala	Met 780	Ala	Val	Ile	Gly
20	Val 785	Asn	Lys	Tyr	Leu	Ala 790	Leu	Thr	Glu	Lys	Gly 795	Asp	Ile	Arg	Ser	Phe 800
	Gln	Ile	Lys	Pro	<u>Gly</u> 805	Thr	Gln	Gln	Leu	Glu 810	Arg	Pro	Ala	Gln	Thr 815	Leu
25	Ser	Arg	Glu	Gly 820	Ile	Ser	Gly	Glu	Leu 825	Lys	Asp	Ile	His	Val 830	Asp	His
30	Lys	Gln	Asn 835	Leu	Tyr	Ala	Leu	Thr 840	His	Glu	Gly	Glu	Val 845	Phe	His	Gln
30	Pro	Arg 850	Glu	Ala	Trp	Gln	Asn 855	Gly	Ala	Glu	Ser	Ser 860	Ser	Trp	His	Lys
35	Leu 865	Ala	Leu	Pro	Gln	Ser 870	Glu	Ser	Lys	Leu	Lys 875	Ser	Leu	Asp	Met	Ser 880
	His	Glu	His	Lys	Pro 885	Ile	Ala	Thr	Phe	Glu 890	Asp	Gly	Ser	Gln	His 895	Gln
40	Leu	Lys	Ala	Gly 900	Gly	Trp	His	Ala	Tyr 905	Ala	Ala	Pro	Glu	Arg 910	Gly	Pro
45	Leu	Ala	Val 915	Gly	Thr	Ser	Gly	Ser 920	Gln	Thr	Val	Phe	Asn 925	Arg	Leu	Met
73	Gln	Gly 930	Val	Lys	Gly	Lys	Val 935	Ile	Pro	Gly	Ser	Gly 940	Leu	Thr	Val	Lys
50	Leu 945	Ser	Ala	Gln	Thr	Gly 950	Gly	Met	Thr	Gly	Ala 955		Gly	Arg	Lys	Val 960
	Ser	Ser	Lys	Phe	Ser 965	Glu	Arg	Ile	Arg	Ala 970	Tyr	Ala	Phe	Asn	Pro 975	Thr
55	Met	Ser	Thr	Pro 980	Arg	Pro	Ile	Lys	Asn 985		Ala	Tyr	Ala	Thr 990		His
60	Gly	Trp	Gln 995	Gly	Arg	Glu	Gly	Leu 100		Pro	Leu	Tyr	Glu 100		Gln	Gly
00	Ala	Leu 1010		Lys	Gln	Leu	Asp 101		His	Asn	Val	Arg 102		Asn	Ala	Pro
65	Gln 102	Pro 5	Asp	Leu	Gln	Ser 103	_	Leu	Glu	Thr	Leu 103	_	Leu	Gly	Glu	His

	Gly	Ala	Ģlu	Leu	Leu 1045		Asp	Met		Arg 1050		Arg	Asp	Glu	Leu 1055	GIU
5	Gln	Ser	Ala	Thr 1060		Ser	Val	Thr	Val 1065	Leu	Gly	Gln	His	Gln 1070	Gly	Val
	Leu	Lys	Ser 1075		Gly	Glu	Ile	Asn 1080		Glu	Phe	Lys	Pro 1085	Ser	Pro	Gly
10	Lys	Ala 1090		Val	Gln	Ser	Phe 1095		Val	Asn	Arg	Ser 1100	Gly	Gln	Asp	Leu
15	Ser 1105		Ser	Leu	Gln	Gln 1110		Val	His	Ala	Thr 1115	Pro	Pro	Ser	Ala	Glu 1120
	Ser	Lys	Leu	Gln	Ser 1125		Leu	.Gly	His	Phe 1130		Ser	Ala	Gly	Val 1135	Asp
20	Met	Ser	His	Gln 1140		Gly	Glu	Ile	Pro 1145	Leu	Gly	Arg	Gln	Arg 1150	Asp)	Pro
25	Asn	Asp	Lys 115		Ala	Leu	Thr	Lys 116		Arg	Leu	Ile	Leu 1169	Asp 5	Thr	Val
23	Thr	Ile 117		Glu	Leu	His	Glu 117		Ala	Asp	Lys	Ala 118	Lys 0	Leu	Val	Ser
30	Asp 118		Lys	Pro	Asp	Ala 1190		Gln	Ile	Lys	Gln 119	Leu	Arg	Gln	Gln	Phe 1200
	Asp	Thr	Leu	Arg	Glu 120		Arg	Tyr	Glu	Ser 1210		Pro	Val	Lys	His 121	Tyr 5
35	Thr	Asp	Met	Gly 122		Thr	His	Asn	Lys 122	Ala 5	Leu	Glu	Ala	Asn 123	Tyr 0	Asp
40	Ala	Val	Lys 123		Phe	Ile	Asn	Ala 124		Lys	Lys	Glu	His 124	His 5	Gly	Val
	Asn	Leu 125		Thr	Arg	Thr	Val 125		Glu	Ser	Gln	Gly 126	Ser 0	Ala	Glu	Leu
45	Ala 126		Lys	Leu	Lys	Asn 127		Leu	Leu	Ser	Leu 127	Asp 5	Ser	Gly	Glu	Ser 1280
	Met	Ser	Phe	Ser	Arg 128		Тут	Gly	Gly	Gly 129	Val	Ser	Thr	Val	Phe 129	Val
50	Pro	Thr	Leu	Ser 130		Lys	Val	Pro	Val 130		Val	Ile	Pro	Gly 131		Gly
55	Ile	Thr	Leu 131		Arg	Ala	Туг	132		ser	Phe	Ser	132	Thr 5	Ser	Gly
55	Gly	/ Let 133		ı Val	. Ser	Phe	Gly 133		J Asp	Gly	Gly	Val 134		Gly	/ Asr	lle
60	Met 134		Ala	a Thi	Gly	/ His		Val	L Met	. Pro	135		Th	c Gly	/ Lys	136
	Thi	Sei	Ala	a Gly	/ Asr		Sea	c Ası	Tr	Leu 137		Ala	a Ly	s His	3 Ly:	s Ile 75

	Ser	Pro	Asp	Leu 1380		Ile	Gly	Ala	Ala 1385		Ser	Gly	Thr	Leu 1390		Gly
5	Thr	Leu	Gln 1399		Ser	Leu	Lys	Phe 1400	_	Leu	Thr	Glu	Asp 1405		Leu	Pro
	Gly	Phe 1410		His	Gly	Leu	Thr 1415		Gly	Thr	Leu	Thr 1420		Ala	Glu	Leu
10 .	Leu 1425		Lys	Gly	Ile	Glu 1430		Gln	Met	Lys	Gln 1435		Ser	Lys	Leu	Thr 1440
15	Phe	Ser	Val	Asp	Thr 1445		Ala	Asn	Leu	Asp 1450		Arg	Ala	Gly	Ile 1455	
13	Leu	Asn	Glu	Asp 1460	-	Ser	Lys	Pro	Asn 1465	_	Val	Thr	Ala	Arg 1470		Ser
20	Ala	Gly	Leu 1479		Ala	Ser	Ala	Asn 1480		Ala	Ala	Gly	Ser 1485		Glu	Arg
	Ser	Thr 1490		Ser	Gly	Gln	Phe 1495	_	Ser	Thr	Thr	Ser 1500		Ser	Asn	Asn
25	Arg 1509		Thr	Phe		Asn 1510		Val	Gly	Ala	Gly 1519		Asn	Leu	Thr	Ala 1520
30	Ala	Leu	Gly	Val	Ala 1525		Ser	Ser	Thr	His 1530		Gly	Lys	Pro	Val 1535	_
30	Ile	Phe	Pro	Ala 1540		Thr	Ser	Thr	Asn 1549		Ser	Ala	Ala	Leu 1550		Leu
35	Asp	Asn	Arg 1555		Ser	Gln	Ser	Ile 1560		Leu	Glu	Leu	Lys 156		Ala	Glu
	Pro	Val 1570		Ser	Asn	Asp	Ile 1575		Glu	Leu	Thr	Ser 1580		Leu	Gly	Lys
40	His 1589		Lys	Asp	Ser	Ala 1590		Thr	Lys	Met	Leu 159		Ala	Leu	Lys	Glu 1600
45	Leu	Asp	Asp	Ala	Lys 1609		Ala	Glu	Gln	Leu 161		Ile	Leu	Gln	Gln 161	
	Phe	Ser	Ala	Lys 1620		Val	Val	Gly	Asp 162		Arg	Tyr	Glu	Ala 163	Val	Arg
50	Asn	Leu	Lys 163	-	Leu	Val	Ile	Arg 164		Gln	Ala		Asp 164		His	Ser
	Met	Glu 1650		Gly	Ser	Ala	Ser 1659		Ser	Thr	Thr	Tyr 166		Asn	Leu	Ser
55	Arg 166		Asn	Asn	Asp	Gly 167		Val	Glu	Leu	Leu 167		Lys	His	Phe	Asp 1680
60	Ala	Ala	Leu	Pro	Ala 168		Ser	Ala	Lys	Arg 169		Gly	Glu	Met	Met 169	Asn 5
	Asn	Asp	Pro	Ala 170		Lys	Asp	Ile	Ile 170	-	Gln	Leu	Gln	Ser 171		Pro
65	Phe	Ser	Ser 171		Ser	Val	Ser	Met 172		Leu	Lys	Asp	Gly 172		Arg	Glu

	Gln Thr Glu Lys Ala Ile Leu Asp Gly Lys Val Gly Arg Glu Glu Val 1730 1735 1740
5	Gly Val Leu Phe Gln Asp Arg Asn Asn Leu Arg Val Lys Ser Val Ser 1745 1750 1755 1760
	Val Ser Gln Ser Val Ser Lys Ser Glu Gly Phe Asn Thr Pro Ala Leu 1775 1765 1770 1775
10	Leu Leu Gly Thr Ser Asn Ser Ala Ala Met Ser Met Glu Arg Asn Ile 1780 1785 1790
15	Gly Thr Ile Asn Phe Lys Tyr Gly Gln Asp Gln Asn Thr Pro Arg Arg 1795 1800 1805
	Phe Thr Leu Glu Gly Gly Ile Ala Gln Ala Asn Pro Gln Val Ala Ser 1810 1815 1820
20	Ala Leu Thr Asp Leu Lys Lys Glu Gly Leu Glu Met Lys Ser 1825 1830 1835
	This protein or polypeptide is about 198 kDa and has a pI of 8.98.
25	The present invention relates to an isolated DNA molecule having a nucleotide
	sequence of SEQ. ID. No. 29 as follows:
	ATGACATCGT CACAGCAGCG GGTTGAAAGG TTTTTACAGT ATTTCTCCGC CGGGTGTAAA 60
••	ATGACATCGT CACAGCAGGG GCCCTGTATA ACGAACAAGA TGAGGAGGCG 120 ACGCCCATAC ATCTGAAAGA CGGGGTGTGC GCCCTGTATA ACGAACAAGA TGAGGAGGCG 120
30	ACGCCCATAC ATCIGAAAGA COOSSISSISSISSISSISSISSISSISSISSISSISSISS
	GCGGTGCTGG AAGTACCGCA ACACTCOAT TCGATGCTAT TACAGCTGAA TTTTGAAATG 240
35	GCTGACCCAC AAACTTCAAT AACCTOTT 300 GCGGCCATGC GCGGCTGTTG GCTGGCGCTG GATGAACTGC ACAACGTGCG TTTATGTTTT 300
	GCGGCCATGC GCGGCTGTTG GCTGGGGCT AGTTTTAGCG ATATCGTTAG CGGCTTCATC 360 CAGCAGTCGC TGGAGCATCT GGATGAAGCA AGTTTTAGCG ATATCGTTAG CGGCTTCATC 360
	CAGCAGTEGE TEGRACATET GEATERTE TO THE CAGCAGTAGE CAGCAGTAGAGTAGE CAGCAGTAGAGTAGAGTAGAGTAGAGTAGAGTAGAGTAG
40	GAACATGCGG CAGAAGTGCG TGAGTAMATT
	This is known as the dspF gene. This isolated DNA molecule of the present invention
	encodes a hypersensitive response elicitor protein or polypeptide having an amino
45	acid sequence of SEQ. ID. No. 30 as follows:
	Met Thr Ser Ser Gln Gln Arg Val Glu Arg Phe Leu Gln Tyr Phe Ser 1 10 15
50	Ala Gly Cys Lys Thr Pro Ile His Leu Lys Asp Gly Val Cys Ala Leu 20 25 30
	Tyr Asn Glu Gln Asp Glu Glu Ala Ala Val Leu Glu Val Pro Gln His 35 40 45
55	Ser Asp Ser Leu Leu His Cys Arg Ile Ile Glu Ala Asp Pro Gln 50 55 60

PCT/US99/23181

Thr Ser Ile Thr Leu Tyr Ser Met Leu Leu Gln Leu Asn Phe Glu Met 75 Ala Ala Met Arg Gly Cys Trp Leu Ala Leu Asp Glu Leu His Asn Val 5 Arg Leu Cys Phe Gln Gln Ser Leu Glu His Leu Asp Glu Ala Ser Phe Ser Asp Ile Val Ser Gly Phe Ile Glu His Ala Ala Glu Val Arg Glu 10 120 Tyr Ile Ala Gln Leu Asp Glu Ser Ser Ala Ala 135 15 This protein or polypeptide is about 16 kDa and has a pI of 4.45. The hypersensitive response elicitor polypeptide or protein derived from Pseudomonas syringae has an amino acid sequence corresponding to SEQ. ID. 20 No. 31 as follows: Met Gln Ser Leu Ser Leu Asn Ser Ser Ser Leu Gln Thr Pro Ala Met Ala Leu Val Leu Val Arg Pro Glu Ala Glu Thr Thr Gly Ser Thr Ser Ser Lys Ala Leu Gln Glu Val Val Val Lys Leu Ala Glu Glu Leu Met 25 Arg Asn Gly Gln Leu Asp Asp Ser Pro Leu Gly Lys Leu Leu Ala Lys Ser Met Ala Ala Asp Gly Lys Ala Gly Gly Ile Glu Asp Val 30 Ile Ala Ala Leu Asp Lys Leu Ile His Glu Lys Leu Gly Asp Asn Phe 85 Gly Ala Ser Ala Asp Ser Ala Ser Gly Thr Gly Gln Gln Asp Leu Met 105 35 Thr Gln Val Leu Asn Gly Leu Ala Lys Ser Met Leu Asp Asp Leu Leu Thr Lys Gln Asp Gly Gly Thr Ser Phe Ser Glu Asp Asp Met Pro Met 130 Leu Asn Lys Ile Ala Gln Phe Met Asp Asp Asn Pro Ala Gln Phe Pro 40 155 Lys Pro Asp Ser Gly Ser Trp Val Asn Glu Leu Lys Glu Asp Asn Phe 165 Leu Asp Gly Asp Glu Thr Ala Ala Phe Arg Ser Ala Leu Asp Ile Ile 185 180

	Gly		Gln 195	Leu	Gly	Asn	Gln	Gln 200	Ser	Asp	Ala	Gly	Ser 205	Leu	Ala	Gly
	Thr	Gly 210	Gly	Gly	Leu	Gly	Thr 215	Pro	Ser	Ser	Phe	Ser 220	Asn	Asn	Ser	Ser
5	Val 225	Met	Gly	Asp	Pro	Leu 230	Ile	Asp	Ala	Asn	Thr 235	Gly	Pro	Gly	Asp	Ser 240
	Gly	Asn	Thr	Arg	Gly 245	Glu	Ala	Gly	Gln	Leu 250	Ile	Gly	Glu	Leu	Ile 255	Asp
10	Arg	Gly	Leu	Gln 260	Ser	Val	Leu	Ala	Gly 265	Gly	Gly	Leu	Gly	Thr 270	Pro	Val
	Asn	Thr	Pro 275	Gln	Thr	Gly	Thr	Ser 280	Ala	Asn	Gly	Gly	Gln 285	Ser	Ala	Gln
	Asp	Leu 290		Gln	Leu	Leu	Gly 295	Gly	Leu	Leu	Leu	300	Gly	Leu	Glu	Ala
15	Thr 305		Lys	Asp	Ala	Gly 310	Gln	Thr	Gly	Thr	Asp 315	val	Glr	ı Ser	ser Ser	Ala 320
	Ala	Glr	ıle	a Ala	325	Lev	ı Lev	ı Val	l Sei	330	Lei	ı Lev	ı Glı	n Gly	7 Th:	Arg
20	Asn	Glr	n Ala	340		a										
	en ' 1	-	-i+i	*****	onse	elici	tor no	olvne	ntide	or p	roteir	ı has	a mo	lecul	ar we	eight o

This hypersensitive response elicitor polypeptide or protein has a molecular weight of 34-35 kDa. It is rich in glycine (about 13.5%) and lacks cysteine and tyrosine.

Further information about the hypersensitive response elicitor derived from Pseudomonas syringae is found in He, S. Y., H. C. Huang, and A. Collmer, "Pseudomonas syringae pv. syringae Harpin_{Pss}: a Protein that is Secreted via the Hrp Pathway and Elicits the Hypersensitive Response in Plants," Cell 73:1255-1266 (1993), which is hereby incorporated by reference. The DNA molecule encoding the hypersensitive response elicitor from Pseudomonas syringae has a nucleotide sequence corresponding to SEQ. ID. No. 32 as follows:

ATGCAGAGTC TCAG	TCTTAA CAGCAGCTCG	CTGCAAACCC	CGGCAATGGC	CCTTGTCCTG	60
	CGAGAC GACTGGCAGT				120
	GGAACT GATGCGCAAT				180
	GTCGAT GGCCGCAGAT				240
i contract of the contract of	CAAGCT GATCCATGAA				300

WO 00/20452 PCT/US99/23181

- 25 -

GACAGCGCCT	CGGGTACCGG	ACAGCAGGAC	CTGATGACTC	AGGTGCTCAA	TGGCCTGGCC	360
AAGTCGATGC	TCGATGATCT	TCTGACCAAG	CAGGATGGCG	GGACAAGCTT	CTCCGAAGAC	420
GATATGCCGA	TGCTGAACAA	GATCGCGCAG	TTCATGGATG	ACAATCCCGC	ACAGTTTCCC	480
AAGCCGGACT	CGGGCTCCTG	GGTGAACGAA	CTCAAGGAAG	ACAACTTCCT	TGATGGCGAC	540
GAAACGGCTG	CGTTCCGTTC	GGCACTCGAC	ATCATTGGCC	AGCAACTGGG	TAATCAGCAG	600
AGTGACGCTG	GCAGTCTGGC	AGGGACGGGT	GGAGGTCTGG	GCACTCCGAG	CAGTTTTTCC	660
AACAACTCGT	CCGTGATGGG	TGATCCGCTG	ATCGACGCCA	ATACCGGTCC	CGGTGACAGC	720
GGCAATACCC	GTGGTGAAGC	GGGGCAACTG	ATCGGCGAGC	TTATCGACCG	TGGCCTGCAA	780
TCGGTATTGG	CCGGTGGTGG	ACTGGGCACA	CCCGTAAACA	CCCCGCAGAC	CGGTACGTCG	840
GCGAATGGCG	GACAGTCCGC	TCAGGATCTT	GATCAGTTGC	TGGGCGGCTT	GCTGCTCAAG	900
GGGGTGGAGG	CAACGCTCAA	GGATGCCGGG	CAAACAGGCA	-CCGACGTGCA	-GTCGAGCGCT	-960
GCGCAAATCG	CCACCTTGCT	GGTCAGTACG	CTGCTGCAAG	GCACCCGCAA	TCAGGCTGCA	1020
GCCTGA						1026

5

10

Another potentially suitable hypersensitive response elicitor from Pseudomonas syringae is disclosed in U.S. Patent Application Serial No. 09/120,817, which is hereby incorporated by reference. The protein has a nucleotide sequence of SEQ. ID. No. 33 as follows:

2	0	TCCACTTCGC	TGATTTTGAA	ATTGGCAGAT	TCATAGAAAC	GTTCAGGTGT	GGAAATCAGG	60
		CTGAGTGCGC	AGATTTCGTT	GATAAGGGTG	TGGTACTGGT	CATTGTTGGT	CATTTCAAGG	120
2	5	CCTCTGAGTG	CGGTGCGGAG	CAATACCAGT	CTTCCTGCTG	GCGTGTGCAC	ACTGAGTCGC	180
		AGGCATAGGC	ATTTCAGTTC	CTTGCGTTGG	TTGGGCATAT	AAAAAAAGGA	ACTTTTAAAA	240
		ACAGTGCAAT	GAGATGCCGG	CAAAACGGGA	ACCGGTCGCT	GCGCTTTGCC	ACTCACTTCG	300
3	0	AGCAAGCTCA	ACCCCAAACA	TCCACATCCC	TATCGAACGG	ACAGCGATAC	GGCCACTTGC	360
		TCTGGTAAAC	CCTGGAGCTG	GCGTCGGTCC	AATTGCCCAC	TTAGCGAGGT	AACGCAGCAT	420
2	_	GAGCATCGGC	ATCACACCCC	GGCCGCAACA	GACCACCACG	CCACTCGATT	TTTCGGCGCT	480
د	5	AAGCGGCAAG	AGTCCTCAAC	CAAACACGTT	CGGCGAGCAG	AACACTCAGC	AAGCGATCGA	540
		CCCGAGTGCA	CTGTTGTTCG	GCAGCGACAC	ACAGAAAGAC	GTCAACTTCG	GCACGCCCGA	600
4	0	CAGCACCGTC	CAGAATCCGC	AGGACGCCAG	CAAGCCCAAC	GACAGCCAGT	CCAACATCGC	660
		TAAATTGATC	AGTGCATTGA	TCATGTCGTT	GCTGCAGATG	CTCACCAACT	ССААТАААА	720
		GCAGGACACC	AATCAGGAAC	AGCCTGATAG	CCAGGCTCCT	TTCCAGAACA	ACGGCGGGCT	780

55

	CGGTACA	CCG	TCGG	CCGATA	A GC	GGGG	CGG	CGGT	ACACC	G GA'	rgcga	CAG (STGGC	:GGCG(3	840	
_	CGGTGAT	ACG	CCAA	GCGCA	A CA	GGCGG	TGG	CGGC	GTGA	T AC	TCCGA	CCG (CAACA	GGCG(G	900	
5	TGGCGGC	AGC	GGTG	GCGGC	G GC	ACACC	CAC	TGCA	ACAGG	T GG	CGGCA	GCG (GTGGC	ACAC	С	960	
	CACTGCA	ACA	GGCG	GTGGC	g ag	GGTGG	CGT	AACA	CCGCA	A AT	CACTC	CGC 2	AGTTO	GCCA	A	1020	
10	CCCTAAC	CGT	ACCT	CAGGT	A CT	GGCTC	GGT	GTCG	GACAC	C GC	AGGTT	CTA	CCGAC	CAAG	С	1080	
	CGGCAAG	ATC	AATG	TGGTG.	A AA	GACAC	CAT	CAAG	GTCGG	C GC	TGGCG	AAG	TCTT	rgacg	G	1140	
	CCACGGC	:GCA	ACCT	TCACT	G CC	GACA?	ATC	TATG	GGTAA	.c gg	AGACO	AGG	GCGA	AAATC	Α	1200	
15	GAAGCCC	ATG	TTCG	AGCTG	G CI	GAAGO	GCGC	TACG	TTGAA	G AA	TGTGA	ACC	TGGG:	rgaga	A	1260	+
	CGAGGTC	GAT	GGCA	TCCAC	G TC	AAAG	CCAA	AAAC	GCTCA	G GA	AGTCA	CCA	TTGA	CAACG	T	1320	
20	GCATGCC	CAG	AACG	TCGGT	G AA	GACC	rgat	TACG	GTCAA	A GG	CGAGO	GAG	GCGC	AGCGG	T	1380)
	CACTAAT	CTG	AACA	TCAAG	A A	CAGCAG	GTGC	CAAA	GGTGC	A GA	CGAC	AAGG	TTGT	CCAGC	T	1440)
0.5	CAACGCC	CAAC	ACTO	ACTTG	A A	ATCG	ACAA	CTTC	AAGG	CC GA	CGAT	TCG	GCAC	GATGG	T	1500)
25	TCGCAC	CAAC	GGTG	GCAAG	C A	TTTG	ATGA	CATG	AGCAT	C G	AGCTG	ACG	GCAT	CGAAC	3C	1560)
	TAACCAG	CGGC	AAGT	TCGCC	C TO	GTGA	AAAG	CGAC	AGTGA	AC G	ATCTG/	AAGC	TGGC	AACGG	3G	1620)
30	CAACATO	CGCC	ATGA	ACCGAC	G T	CAAAC	ACGC	CTAC	GATA/	AA AA	CCCAG	ECAT	CGAC	CCAA	CA	1680)
	CACCGA	CTT	TGA	TCCAC	A C	AAGTA	GCTT	GAAA	AAAG	GG GG	GTGGA	CTC				172	9
35	This D	NA 1	mole	cule is	s kno	own a	s the	dspI	E gen	e for	Pseu	dome	onas .	syrin	gae.	This	
	isolated	I DN	IA m	olecu	le of	the p	orese	nt inv	entic	n en	codes	a pr	otein	or po	olype	ptide	
	which	elici	ts a p	lant p	atho	gen's	s hyp	ersen	sitive	resp	onse	havi	ng ar	ami:	no ac	id	
	sequen	ce o	f SE	ą. ID.	No.	34 as	s foll	lows:									
								_	_	_			mile	mla sa	mb as	Dwo	T 011
40		Met 1	Ser	Ile	Gly	Ile 5	Thr	Pro	Arg	Pro	Gin 10	GIN	Tnr	Tnr	Thr	15	ьеи
		as A	Phe	Ser :	Ala	Leu	Ser	Gly	Lys	Ser	Pro	Gln	Pro	Asn	Thr	Phe	Gly
45	· •				20			-	-	25					30		
43	. •	Glu	Gln	Asn	Thr	Gln	Gln	Ala	Ile 40	Asp	Pro	Ser	Ala	Leu 45	Leu	Phe	Gly
				35						_,	, az	m\	D		C.~~	Mb~	77-7
		Ser	Asp	Thr	Gln	Lys	Asp	Val	Asn	Phe	GLY	Tnr	Pro	Asp	ser	rnr	val

Gln Asn Pro Gln Asp Ala Ser Lys Pro Asn Asp Ser Gln Ser Asn Ile

Ala Lys Leu Ile Ser Ala Leu Ile Met Ser Leu Leu Gln Met Leu Thr

90

•	Asn	Ser	Asn	Lys 100	Lys	Gln	Asp	Thr	Asn 105	Gln	Glu	Gln	Pro	Asp 110	Ser	Gln
5	Ala	Pro	Phe 115	Gln	Asn	Asn	Gly	Gly 120	Leu	Gly	Thr	Pro	Ser 125	Ala	Asp	Ser
	Gly	Gly 130	Gly	Gly	Thr	Pro	Asp 135	Ala	Thr	Gly	Gly	Gly 140	Gly	Gly	Asp	Thr
10	Pro 145	Ser	Ala	Thr	Gly	Gly 150	Gly	Gly	Gly	Asp	Thr 155	Pro	Thr	Ala	Thr	Gly 160
15	Gly	Gly	Gly	Ser	Gly 165	Gly	Gly	Gly	Thr	Pro 170	Thr	Ala	Thr	Gly	Gly 175	Gly
15	Ser	Gly	Gly	Thr 180	Pro	Thr	Ala	Thr	Gly 185	Gly	Gly	Glu	Gly	Gly 190	Val	Thr
20	Pro	Gln	Ile 1 <u>9</u> 5	Thr	Pro	Gln	Leu	Ala 200	Asn	Pro	Asn	Arg	Thr 205		Gly	Thr
	Gly	Ser 210	Val	Ser	Asp	Thr	Ala 215	Gly	Ser	Thr	Glu	Gln 220	Ala	Gly	Lys	Ile
25	Asn 225	Val	Val	Lys	Asp	Thr 230	Ile	Lys	Val	Gly	Ala 235	Gly [´]	Glu	Val	Phe	Asp 240
30	Gly	His	Gly	Ala	Thr 245	Phe	Thr	Ala	Asp	Lys 250	Ser	Met	Gly	Asn	Gly 255	Asp
30	Gln	Gly	Glu	Asn 260	Gln	Lys	Pro	Met	Phe 265	Glu	Leu	Ala	Glu	Gly 270	Ala	Thr
35	Leu	Lys	Asn 275	Val	Asn	Leu	Gly	Glu 280	Asn	Glu	Val	Asp	Gly 285	Ile	His	Val
	Lys	Ala 290	Lys	Asn	Ala	Gln	Glu 295	.Val	Thr	Ile	Asp	Asn 300	Val	His	Ala	Gln
40	Asn 305	Val	Gly	Glu	Asp	Leu 310	Ile	Thr	Val	Lys	Gly 315	Glu	Gly	Gly	Ala	Ala 320
45	Val	Thr	Asn	Leu	Asn 325	Ile	Lys	Asn	Ser	Ser 330		Lys	Gly	Ala	Asp 335	Asp
	Lys	Val	Val	Gln 340	Leu	Asn	Ala	Asn	Thr 345		Leu	Lys	Ile	Asp 350		Phe
50	Lys	Ala	Asp 355	Asp	Phe	Gly	Thr	Met 360	Val	Arg	Thr	Asn	Gly 365		Lys	Gln
	Phe	Asp 370	Asp	Met	Ser	Ile	Glu 375	Leu	Asn	Gly	Ile	Glu 380	Ala	Asn	His	Gly
55	Lys 385	Phe	Ala	Leu	Val	Lys 390		Asp	Ser	Asp	Asp 395		Lys	Leu	Ala	Thr 400
	Gly	Asn	Ile	Ala	Met		Asp	Val	Lys	His		тут	Asp	Lys	Thr 415	

Ala Ser Thr Gln His Thr Glu Leu 420

5

This protein or polypeptide is about 42.9 kDa.

The hypersensitive response elicitor polypeptide or protein derived from *Pseudomonas solanacearum* has an amino acid sequence corresponding to SEQ.

10 ID. No. 35 as follows:

Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser 15 Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly 20 Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met 25 Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala 120 Ala Leu His Met Gln Gln Pro Gly Gly Asn Asp Lys Gly Asn Gly Val 30 Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala 145 Glu Ala Leu Gln Glu Ile Glu Gln Ile Leu Ala Gln Leu Gly Gly 170 Gly Ala Gly Ala Gly Gly Gly Gly Val Gly Gly Ala Gly Gly 35 Ala Asp Gly Gly Ser Gly Ala Gly Gly Ala Gly Gly Ala Asn Gly Ala Asp Gly Gly Asn Gly Val Asn Gly Asn Gln Ala Asn Gly Pro Gln Asn

WO 00/20452 PCT/US99/23181

- 29 -

	Ala 225	Gly	Asp	Val	Asn	Gly 230	Ala	Asn	Gly	Ala	Asp 235	Asp	Gly	Ser	Glu	Asp 240
	Gln	Gly	Gly	Leu	Thr 245	Gly	Val	Leu	Gln	Lys 250	Leu	Met	Lys	Ile	Leu 255	Asn
5	Ala	Leu	Val	Gln 260	Met	Met	Gln	Gln	Gly 265	Gly	Leu	Gly	Gľy	Gly 270	Asn	Gln
	Ala	Gln	Gly 275	Gly	Ser	Lys	Gly	Ala 280	Gly	Asn	Ala	Ser	Pro 285	Ala	Ser	Gly
10	Ala	Asn 290	Pro	Gly	Ala	Asn	Gln 295	Pro	Gly	Ser	Ala	Asp 300	Asp	Gln	Ser	Ser
	Gly 305	Gln	Asn	Asn	Leu	Gln 310	Ser	Gln	Ile	Met	Asp 315	Val	Val	Lys	Glu	Val 320
	Val	Gln	Ile	Leu	Gln 325	Gln	Met	Leu	Ala	Ala 330		Asn	Gly	Gly	Ser 335	Gln
15	Gln	Ser	Thr	Ser 340	Thr	Gln	Pro	Met								

It is encoded by a DNA molecule having a nucleotide sequence corresponding SEQ. ID. No. 36 as follows:

ATGTCAGTCG GAAACATCCA GAGCCCGTCG AACCTCCCGG GTCTGCAGAA CCTGAACCTC 60 20 AACACCAACA CCAACAGCCA GCAATCGGGC CAGTCCGTGC AAGACCTGAT CAAGCAGGTC 120 GAGAAGGACA TCCTCAACAT CATCGCAGCC CTCGTGCAGA AGGCCGCACA GTCGGCGGGC 180 GGCAACACCG GTAACACCGG CAACGCGCCG GCGAAGGACG GCAATGCCAA CGCGGGCGCC 240 AACGACCCGA GCAAGAACGA CCCGAGCAAG AGCCAGGCTC CGCAGTCGGC CAACAAGACC GGCAACGTCG ACGACGCCAA CAACCAGGAT CCGATGCAAG CGCTGATGCA GCTGCTGGAA GACCTGGTGA AGCTGCTGAA GGCGGCCCTG CACATGCAGC AGCCCGGCGG CAATGACAAG 25 420 GGCAACGGCG TGGGCGGTGC CAACGGCGCC AAGGGTGCCG GCGGCCAGGG CGGCCTGGCC 480 GAAGCGCTGC AGGAGATCGA GCAGATCCTC GCCCAGCTCG GCGGCGGCGG TGCTGGCGCC 540 GGCGGCGCG GTGGCGGTGT CGGCGGTGCT GGTGGCGCGG ATGGCGGCTC CGGTGCGGGT 600 GGCGCAGGCG GTGCGAACGG CGCCGACGGC GGCAATGGCG TGAACGGCAA CCAGGCGAAC 660 30 GGCCCGCAGA ACGCAGGCGA TGTCAACGGT GCCAACGGCG CGGATGACGG CAGCGAAGAC 720 CAGGGCGCC TCACCGGCGT GCTGCAAAAG CTGATGAAGA TCCTGAACGC GCTGGTGCAG 780 ATGATGCAGC AAGGCGGCCT CGGCGGCGGC AACCAGGCGC AGGGCGGCTC GAAGGGTGCC 840 GGCAACGCCT CGCCGGCTTC CGGCGCGAAC CCGGGCGCGA ACCAGCCCGG TTCGGCGGAT 900

GATCAATCGT	CCGGCCAGAA	CAATCTGCAA	TCCCAGATCA	TGGATGTGGT	GAAGGAGGTC	960
GTCCAGATCC	TGCAGCAGAT	GCTGGCGGCG	CAGAACGGCG	GCAGCCAGCA	GTCCACCTCG	1020
ACGCAGCCGA	TGTAA					1035

Further information regarding the hypersensitive response elicitor polypeptide or protein derived from *Pseudomonas solanacearum* is set forth in Arlat, M., F. Van Gijsegem, J. C. Huet, J. C. Pemollet, and C. A. Boucher, "PopA1, a Protein which Induces a Hypersensitive-like Response in Specific Petunia Genotypes, is Secreted via the Hrp Pathway of *Pseudomonas solanacearum*," <u>EMBO J.</u> 13:543-533 (1994), which is hereby incorporated by reference.

The hypersensitive response elicitor polypeptide or protein from Xanthomonas campestris pv. glycines has an amino acid sequence corresponding to SEO. ID. No. 37 as follows:

15

10

```
Thr Leu Ile Glu Leu Met Ile Val Val Ala Ile Ile Ala Ile Leu Ala 1 15

Ala Ile Ala Leu Pro Ala Tyr Gln Asp Tyr 25
```

20

25

This sequence is an amino terminal sequence having only 26 residues from the hypersensitive response elicitor polypeptide or protein of *Xanthomonas campestris* pv. glycines. It matches with fimbrial subunit proteins determined in other *Xanthomonas campestris* pathovars.

The hypersensitive response elicitor polypeptide or protein from *Xanthomonas campestris pv. pelargonii* is heat stable, protease sensitive, and has a molecular weight of 20 kDa. It includes an amino acid sequence corresponding to SEO. ID. No. 38 as follows:

30

```
Ser Ser Gln Gln Ser Pro Ser Ala Gly Ser Glu Gln Gln Leu Asp Gln

1 10 15

Leu Leu Ala Met
20
```

35

Isolation of *Erwinia carotovora* hypersensitive response elictor protein or polypeptide is described in Cui et al., "The RsmA Mutants of *Erwinia carotovora*

25

30

subsp. carotovora Strain Ecc71 Overexpress hrp N_{Ecc} and Elicit a Hypersensitive Reaction-like Response in Tobacco Leaves," MPMI, 9(7):565-73 (1996), which is hereby incorporated by reference. The hypersensitive response elicitor protein or polypeptide of Erwinia stewartii is set forth in Ahmad et al., "Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize," 8th Int'l. Cong. Molec. Plant-Microbe Interact., July 14-19, 1996 and Ahmad, et al., "Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize," Ann. Mtg. Am. Phytopath. Soc., July 27-31, 1996, which are hereby incorporated by reference.

Hypersensitive response elicitor proteins or polypeptides from Phytophthora parasitica, Phytophthora cryptogea, Phytophthora cinnamoni, 10 Phytophthora capsici, Phytophthora megasperma, and Phytophora citrophthora are described in Kaman, et al., "Extracellular Protein Elicitors from Phytophthora: Most Specificity and Induction of Resistance to Bacterial and Fungal Phytopathogens," Molec. Plant-Microbe Interact., 6(1):15-25 (1993), Ricci et al., "Structure and Activity of Proteins from Pathogenic Fungi Phytophthora Eliciting Necrosis and 15 Acquired Resistance in Tobacco," Eur. J. Biochem., 183:555-63 (1989), Ricci et al., "Differential Production of Parasiticein, and Elicitor of Necrosis and Resistance in Tobacco, by Isolates of Phytophthora parasitica," Plant Path. 41:298-307 (1992), Baillreul et al, "A New Elicitor of the Hypersensitive Response in Tobacco: A Fungal Glycoprotein Elicits Cell Death, Expression of Defence Genes, Production of 20 Salicylic Acid, and Induction of Systemic Acquired Resistance," Plant J., 8(4):551-60 (1995), and Bonnet et al., "Acquired Resistance Triggered by Elicitors in Tobacco and Other Plants," Eur. J. Plant Path., 102:181-92 (1996), which are hereby incorporated by reference.

Another hypersensitive response elicitor in accordance with the present invention is from *Clavibacter michiganensis* subsp. sepedonicus which is fully described in U.S. Patent Application Serial No. 09/136,625, which is hereby incorporated by reference.

The above elicitors are exemplary. Other elicitors can be identified by growing fungi or bacteria that elicit a hypersensitive response under conditions which genes encoding an elicitor are expressed. Cell-free preparations from culture

10

15

20

25

30

supernatants can be tested for elicitor activity (i.e. local necrosis) by using them to infiltrate appropriate plant tissues.

Fragments of the above hypersensitive response elicitor polypeptides or proteins as well as fragments of full length elicitors from other pathogens are encompassed by the present invention.

Suitable fragments can be produced by several means. In the first, subclones of the gene encoding a known elicitor protein are produced by conventional molecular genetic manipulation by subcloning gene fragments. The subclones then are expressed *in vitro* or *in vivo* in bacterial cells to yield a smaller protein or peptide that can be tested for elicitor activity according to the procedure described below.

As an alternative, fragments of an elicitor protein can be produced by digestion of a full-length elicitor protein with proteolytic enzymes like chymotrypsin or *Staphylococcus* proteinase A, or trypsin. Different proteolytic enzymes are likely to cleave elicitor proteins at different sites based on the amino acid sequence of the elicitor protein. Some of the fragments that result from proteolysis may be active elicitors of resistance.

In another approach, based on knowledge of the primary structure of the protein, fragments of the elicitor protein gene may be synthesized by using the PCR technique together with specific sets of primers chosen to represent particular portions of the protein. These then would be cloned into an appropriate vector for expression of a truncated peptide or protein.

Chemical synthesis can also be used to make suitable fragments. Such a synthesis is carried out using known amino acid sequences for the elicitor being produced. Alternatively, subjecting a full length elicitor to high temperatures and pressures will produce fragments. These fragments can then be separated by conventional procedures (e.g., chromatography, SDS-PAGE).

An example of suitable fragments of a hypersensitive response elicitor which do not elicit a hypersensitive response include fragments of the *Erwinia* amylovora hypersensitive response elicitor. Suitable fragments include a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 23, an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 23, or an internal fragment of the amino acid sequence of SEQ. ID. No. 23. The C-terminal fragment of the amino acid

10

15

20

25

30

sequence of SEQ. ID. No. 23 can span the following amino acids of SEQ. ID. No. 23: 169 and 403, 210 and 403, 267 and 403, or 343 and 403. The internal fragment of the amino acid sequence of SEQ. ID. No. 23 can span the following amino acids of SEQ. ID. No. 23: 105 and 179, 137 and 166, 121 and 150, or 137 and 156. Other suitable fragments can be identified in accordance with the present invention.

Another example of a useful fragment of a hypersensitive response elicitor which fragment does not itself elicit a hypersensitive response is the protein fragment containing amino acids 190 to 294 of the amino acid sequence (SEQ. ID. No. 31) for the *Pseudomonas syringae* pv. *syringae* hypersensitive response elicitor. This fragment is useful in imparting disease resistance and enhancing plant growth.

Yet another example of a useful fragment of a hypersensitive response elicitor is the peptide having an amino acid sequence corresponding to SEQ. ID. No. 39. This peptide is derived from the hypersensitive response eliciting glycoprotein of *Phytophthora megasperma* and enhances plant growth.

Variants may be made by, for example, the deletion or addition of amino acids that have minimal influence on the properties, secondary structure, and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which cotranslationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification, or identification of the polypeptide.

(i.e. separated from its host organism) and more preferably produced in purified form (preferably at least about 60%, more preferably 80%, pure) by conventional techniques. Typically, the fragment of the present invention is produced but not secreted into the growth medium of recombinant host cells. Alternatively, the protein or polypeptide of the present invention is secreted into growth medium. In the case of unsecreted protein, to isolate the protein fragment, the host cell (e.g., *E. coli*) carrying a recombinant plasmid is propagated, lysed by sonication, heat, or chemical treatment, and the homogenate is centrifuged to remove bacterial debris. The supernatant is then subjected to heat treatment and the fragment is separated by centrifugation. The supernatant fraction containing the fragment is subjected to gel filtration in an

10

15

20

25

30

appropriately sized dextran or polyacrylamide column to separate the fragment. If necessary, the protein fraction may be further purified by ion exchange or HPLC.

The DNA molecule encoding the fragment of the hypersensitive response elicitor polypeptide or protein can be incorporated in cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e. not normally present). The heterologous DNA molecule is inserted into the expression system or vector in proper sense orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted protein-coding sequences.

U.S. Patent No. 4,237,224 to Cohen and Boyer, which is hereby incorporated by reference, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture.

Recombinant genes may also be introduced into viruses, such as vaccina virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC1084, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK +/- or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif, which is hereby incorporated by reference), pQE, pIH821, pGEX, pET series (see F.W. Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology vol. 185 (1990), which is hereby incorporated by reference), and any derivatives thereof. Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A

15

20

25

30

Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, New York (1989), which is hereby incorporated by reference.

A variety of host-vector systems may be utilized to express the proteinencoding sequence(s). Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria. The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA (mRNA) translation).

Transcription of DNA is dependent upon the presence of a promotor which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eucaryotic promotors differ from those of procaryotic promotors. Furthermore, eucaryotic promotors and accompanying genetic signals may not be recognized in or may not function in a procaryotic system, and, further, procaryotic promotors are not recognized and do not function in eucaryotic cells.

Similarly, translation of mRNA in procaryotes depends upon the presence of the proper procaryotic signals which differ from those of eucaryotes. Efficient translation of mRNA in procaryotes requires a ribosome binding site called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, Methods in Enzymology, 68:473 (1979), which is hereby incorporated by reference.

Promotors vary in their "strength" (i.e. their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promotors in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promotors may be used. For instance, when cloning in E. coli, its bacteriophages, or plasmids, promotors such as the T7 phage promotor, lac promotor, trp promotor, recA promotor, ribosomal RNA promotor, the P_R and P_L promotors of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promotor or other E. coli promotors produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.

5

10

15

20

25

Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promotor unless specifically induced. In certain operations, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the lac operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as trp, pro, etc., are under different controls.

Specific initiation signals are also required for efficient gene transcription and translation in procaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector, which contains a promotor, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in E. coli requires an SD sequence about 7-9 bases 5' to the initiation codon ("ATG") to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the cro gene or the N gene of coliphage lambda, or from the E. coli tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving 30 incorporation of synthetic nucleotides may be used.

- 37 -

Once the isolated DNA molecule encoding the fragment of a hypersensitive response elicitor polypeptide or protein has been cloned into an expression system, it is ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like.

5

10

15

20

25

30

The present invention further relates to methods of imparting disease resistance to plants, enhancing plant growth, and/or effecting insect control for plants. These methods involve applying the fragment of a hypersensitive response elicitor polypeptide or protein which does not elicit a hypersensitive response in a non-infectious form to all or part of a plant or a plant seed under conditions effective for the fragment to impart disease resistance, enhance growth, and/or control insects. Alternatively, these fragments of a hypersensitive response elicitor protein or polypeptide can be applied to plants such that seeds recovered from such plants themselves are able to impart disease resistance in plants, to enhance plant growth, and/or to effect insect control.

As an alternative to applying a fragment of a hypersensitive response elicitor polypeptide or protein to plants or plant seeds in order to impart disease resistance in plants, to effect plant growth, and/or to control insects on the plants or plants grown from the seeds, transgenic plants or plant seeds can be utilized. When utilizing transgenic plants, this involves providing a transgenic plant transformed with a DNA molecule encoding a fragment of a hypersensitive response elicitor polypeptide or protein, which fragment does not elicit a hypersensitive response, and growing the plant under conditions effective to permit that DNA molecule to impart disease resistance to plants, to enhance plant growth, and/or to control insects.

Alternatively, a transgenic plant seed transformed with a DNA molecule encoding a fragment of a hypersensitive response elicitor polypeptide or protein which fragment does not elicit a hypersensitive response can be provided and planted in soil. A plant is then propagated from the planted seed under conditions effective to permit that DNA molecule to impart disease resistance to plants, to enhance plant growth, and/or to control insects.

10

15

20

25

30

The embodiment of the present invention where the hypersensitive response elicitor polypeptide or protein is applied to the plant or plant seed can be carried out in a number of ways, including: 1) application of an isolated fragment or 2) application of bacteria which do not cause disease and are transformed with a gene encoding the fragment. In the latter embodiment, the fragment can be applied to plants or plant seeds by applying bacteria containing the DNA molecule encoding the fragment of the hypersensitive response elicitor polypeptide or protein which fragment does not elicit a hypersensitive response. Such bacteria must be capable of secreting or exporting the fragment so that the fragment can contact plant or plant seed cells. In these embodiments, the fragment is produced by the bacteria *in planta* or on seeds or just prior to introduction of the bacteria to the plants or plant seeds.

The methods of the present invention can be utilized to treat a wide variety of plants or their seeds to impart disease resistance, enhance growth, and/or control insects. Suitable plants include dicots and monocots. More particularly, useful crop plants can include: alfalfa, rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea, chicory, lettuce, endive, cabbage, brussel sprout, beet, parsnip, turnip, cauliflower, broccoli, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, citrus, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane. Examples of suitable ornamental plants are: *Arabidopsis thaliana*, *Saintpaulia*, petunia, pelargonium, poinsettia, chrysanthemum, carnation, and zinnia.

With regard to the use of the fragments of the hypersensitive response elicitor protein or polypeptide of the present invention in imparting disease resistance, absolute immunity against infection may not be conferred, but the severity of the disease is reduced and symptom development is delayed. Lesion number, lesion size, and extent of sporulation of fungal pathogens are all decreased. This method of imparting disease resistance has the potential for treating previously untreatable diseases, treating diseases systemically which might not be treated separately due to cost, and avoiding the use of infectious agents or environmentally harmful materials.

The method of imparting pathogen resistance to plants in accordance with the present invention is useful in imparting resistance to a wide variety of

pathogens including viruses, bacteria, and fungi. Resistance, *inter alia*, to the following viruses can be achieved by the method of the present invention: *Tobacco mosaic virus* and *Tomato mosaic virus*. Resistance, *inter alia*, to the following bacteria can also be imparted to plants in accordance with present invention:

Pseudomonas solanacearum, Pseudomonas syringae pv. tabaci, and Xanthamonas campestris pv. pelargonii. Plants can be made resistant, inter alia, to the following fungi by use of the method of the present invention: Fusarium oxysporum and Phytophthora infestans.

5

10

15

20

25

30

With regard to the use of the fragments of the hypersensitive response elicitor protein or polypeptide of the present invention to enhance plant growth, various forms of plant growth enhancement or promotion can be achieved. This can occur as early as when plant growth begins from seeds or later in the life of a plant. For example, plant growth according to the present invention encompasses greater yield, increased quantity of seeds produced, increased percentage of seeds germinated, increased plant size, greater biomass, more and bigger fruit, earlier fruit coloration, and earlier fruit and plant maturation. As a result, the present invention provides significant economic benefit to growers. For example, early germination and early maturation permit crops to be grown in areas where short growing seasons would otherwise preclude their growth in that locale. Increased percentage of seed germination results in improved crop stands and more efficient seed use. Greater yield, increased size, and enhanced biomass production allow greater revenue generation from a given plot of land.

Another aspect of the present invention is directed to effecting any form of insect control for plants. For example, insect control according to the present invention encompasses preventing insects from contacting plants to which the hypersensitive response elicitor has been applied, preventing direct insect damage to plants by feeding injury, causing insects to depart from such plants, killing insects proximate to such plants, interfering with insect larval feeding on such plants, preventing insects from colonizing host plants, preventing colonizing insects from releasing phytotoxins, etc. The present invention also prevents subsequent disease damage to plants resulting from insect infection.

10

15

20

25

30

The present invention is effective against a wide variety of insects. European corn borer is a major pest of corn (dent and sweet corn) but also feeds on over 200 plant species including green, wax, and lima beans and edible soybeans, peppers, potato, and tomato plus many weed species. Additional insect larval feeding pests which damage a wide variety of vegetable crops include the following: beet armyworm, cabbage looper, corn ear worm, fall armyworm, diamondback moth, cabbage root maggot, onion maggot, seed corn maggot, pickleworm (melonworm), pepper maggot, tomato pinworm, and maggots. Collectively, this group of insect pests represents the most economically important group of pests for vegetable production worldwide.

The method of the present invention involving application of the fragment of a hypersensitive response elicitor polypeptide or protein, which fragment does not elicit a hypersensitive response, can be carried out through a variety of procedures when all or part of the plant is treated, including leaves, stems, roots, propagules (e.g., cuttings), etc. This may (but need not) involve infiltration of the fragment of the hypersensitive response elicitor polypeptide or protein into the plant. Suitable application methods include high or low pressure spraying, injection, and leaf abrasion proximate to when elicitor application takes place. When treating plant seeds or propagules (e.g., cuttings), in accordance with the application embodiment of the present invention, the fragment of the hypersensitive response elicitor protein or polypeptide, in accordance with present invention, can be applied by low or high pressure spraying, coating, immersion, or injection. Other suitable application procedures can be envisioned by those skilled in the art provided they are able to effect contact of the fragment with cells of the plant or plant seed. Once treated with the fragment of the hypersensitive response elicitor of the present invention, the seeds can be planted in natural or artificial soil and cultivated using conventional procedures to produce plants. After plants have been propagated from seeds treated in accordance with the present invention, the plants may be treated with one or more applications of the fragment of the hypersensitive response elicitor protein or polypeptide or whole elicitors to impart disease resistance to plants, to enhance plant growth, and/or to control insects on the plants.

The fragment of the hypersensitive response elicitor polypeptide or protein, in accordance with the present invention, can be applied to plants or plant seeds alone or in a mixture with other materials. Alternatively, the fragment can be applied separately to plants with other materials being applied at different times.

5

A composition suitable for treating plants or plant seeds in accordance with the application embodiment of the present invention contains a fragment of a hypersensitive response elicitor polypeptide or protein which fragment does not elicit a hypersensitive response in a carrier. Suitable carriers include water, aqueous solutions, slurries, or dry powders. In this embodiment, the composition contains greater than 500 nM of the fragment.

10

Although not required, this composition may contain additional additives including fertilizer, insecticide, fungicide, nematacide, and mixtures thereof. Suitable fertilizers include (NH₄)₂NO₃. An example of a suitable insecticide is Malathion. Useful fungicides include Captan.

15

Other suitable additives include buffering agents, wetting agents, coating agents, and abrading agents. These materials can be used to facilitate the process of the present invention. In addition, the hypersensitive response eliciting fragment can be applied to plant seeds with other conventional seed formulation and treatment materials, including clays and polysaccharides.

20

In the alternative embodiment of the present invention involving the use of transgenic plants and transgenic seeds, a fragment of a hypersensitive response elicitor need not be applied topically to the plants or seeds. Instead, transgenic plants transformed with a DNA molecule encoding such a fragment are produced according to procedures well known in the art.

25

The vector described above can be microinjected directly into plant cells by use of micropipettes to transfer mechanically the recombinant DNA. Crossway, Mol. Gen. Genetics, 202:179-85 (1985), which is hereby incorporated by reference. The genetic material may also be transferred into the plant cell using polyethylene glycol. Krens, et al., Nature, 296:72-74 (1982), which is hereby incorporated by reference.

30

Another approach to transforming plant cells with a gene which imparts resistance to pathogens is particle bombardment (also known as biolistic

transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Patent Nos. 4,945,050, 5,036,006, and 5,100,792, all to Sanford et al., which are hereby incorporated by reference. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells.

5

10

15

20

25

30

Yet another method of introduction is fusion of protoplasts with other entities, either minicells, cells, lysosomes, or other fusible lipid-surfaced bodies. Fraley, et al., <u>Proc. Natl. Acad. Sci. USA</u>, 79:1859-63 (1982), which is hereby incorporated by reference.

The DNA molecule may also be introduced into the plant cells by electroporation. Fromm et al., <u>Proc. Natl. Acad. Sci. USA</u>, 82:5824 (1985), which is hereby incorporated by reference. In this technique, plant protoplasts are electroporated in the presence of plasmids containing the expression cassette. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.

Another method of introducing the DNA molecule into plant cells is to infect a plant cell with Agrobacterium tumefaciens or A. rhizogenes previously transformed with the gene. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25-28°C.

Agrobacterium is a representative genus of the Gram-negative family Rhizobiaceae. Its species are responsible for crown gall (A. tumefaciens) and hairy

10

15

20

25

30

reference.

root disease (A. rhizogenes). The plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria. The bacterial genes responsible for expression of opines are a convenient source of control elements for chimeric expression cassettes. In addition, assaying for the presence of opines can be used to identify transformed tissue.

Heterologous genetic sequences can be introduced into appropriate plant cells, by means of the Ti plasmid of A. tumefaciens or the Ri plasmid of A. rhizogenes. The Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and is stably integrated into the plant genome. J. Schell, Science, 237:1176-83 (1987), which is hereby incorporated by reference.

After-transformation, the transformed plant cells must be regenerated.

Plant regeneration from cultured protoplasts is described in Evans et al., Handbook of Plant Cell Cultures, Vol. 1: (MacMillan Publishing Co., New York, 1983); and Vasil I.R. (ed.), Cell Culture and Somatic Cell Genetics of Plants, Acad.

Press, Orlando, Vol. I, 1984, and Vol. III (1986), which are hereby incorporated by

It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, all major species of sugarcane, sugar beets, cotton, fruit trees, and legumes.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.

- 44 -

After the expression cassette is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.

Once transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedure with the presence of the gene encoding the fragment of the hypersensitive response elicitor resulting in disease resistance, enhanced plant growth, and/or control of insects on the plant.

Alternatively, transgenic seeds or propagules (e.g., cuttings) are recovered from the transgenic plants. The seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants. The transgenic plants are propagated from the planted transgenic seeds under conditions effective to impart disease resistance to plants, to enhance plant growth, and/or to control insects. While not wishing to be bound by theory, such disease resistance, growth enhancement, and/or insect control may be RNA mediated or may result from expression of the polypeptide or protein fragment.

When transgenic plants and plant seeds are used in accordance with the present invention, they additionally can be treated with the same materials as are used to treat the plants and seeds to which a fragment of a hypersensitive response elicitor in accordance with the present invention is applied. These other materials, including a fragment of a hypersensitive response elicitor in accordance with the present invention, can be applied to the transgenic plants and plant seeds by the above-noted procedures, including high or low pressure spraying, injection, coating, and immersion. Similarly, after plants have been propagated from the transgenic plant seeds, the plants may be treated with one or more applications of the fragment of a hypersensitive response elicitor in accordance with the present invention to impart disease resistance, enhance growth, and/or control insects. Such plants may also be treated with conventional plant treatment agents (e.g., insecticides, fertilizers, etc.).

EXAMPLES

30

25

5

10

15

20

Example 1 - Bacterial Strains and Plasmids

Escherichia coli strains used in the following examples include DH5α and BL21(DE3) purchased from Gibco BRL (Grand Island, N.Y.) and Stratagene

(La Jolla, CA), respectively. The pET28(b) vector was purchased from Novagen (Madison, WI). Eco DH5α/2139 contained the complete hrpN gene. The 2139 construct was produced by D. Bauer at Cornell University. The hrpN gene was cleaved from the 2139 plasmid by restriction enzyme digestion with HindIII, then purified from an agarose gel to serve as the DNA template for PCR synthesis of truncated hrpN clones. These clones were subsequently inserted into the (His)₆ vector pET28(b) which contained a Kan^r gene for selection of transformants.

Example 2 - DNA Manipulation

10

15

5

Restriction enzymes were obtained from Boehringer Mannheim (Indianapolis, IN) or Gibco BRL. T4 DNA ligase, Calf Intestinal Alkaline Phosphatase (CIAP), and PCR Supermix Mere obtained from Gibco BRL. The QIAprep Spin Miniprep Kit, the Qiagen Plasmid Mini Kit, and the QIAquick PCR Purification Kit were purchased from Qiagen (Hilden, Germany). The PCR primers were synthesized by Lofstrand Labs Limited (Gaithersburg, MD). The oligopeptides were synthesized by Bio-Synthesis, Inc. (Lewisville, TX). All DNA manipulations such as plasmid isolation, restriction enzyme digestion, DNA ligation, and PCR were performed according to standard techniques (Sambrook, et al., Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)) or protocols provided by the manufacturer.

Example 3 - Fragmentation of hrpN Gene

25

30

20

A series of N-terminal and C-terminal truncated *hrpN* genes and internal fragments were generated via PCR (Fig. 1). The full length hrpN gene was used as the DNA template and 3' and 5' primers were designed for each truncated clone (Fig. 2). The 3' primers contained an NdeI enzyme cutting site which contained the start codon ATG (methionine) and the 5' primers contained the stop codon TAA and a HindIII enzyme cutting site for ligation into the pET28(b) vector. PCR was carried out in 0.5 ml tubes in a GeneAmpTM 9700 (Perkin-Elmer, Foster City, CA). 45 μl of SupermixTM (Life Technology, Gaithersburg, MD) were mixed with 20 pmoles of each pair of DNA primers, 10 ng of full length harpin DNA, and deionized

H₂O to a final volume of 50 µl. After heating the mixture at 95°C for 2 min, the PCR was performed for 30 cycles at 94°C for 1 min, 58°C for 1 min and 72°C for 1.5 min. The PCR products were verified on a 6% TBE gel (Novex, San Diego, CA). Amplified DNA was purified with the QIAquick PCR purification kit, digested with 5 Nde I and Hind III at 37°C for 5 hours, extracted once with phenol:chloroform:isoamylalcohol (25:25:1) and precipitated with ethanol. 5 µg of pET28(b) vector DNA were digested with 15 units of Nde I and 20 units of Hind III at 37°C for 3 hours followed with CIAP treatment to reduce the background resulting from incomplete single enzyme digestion. Digested vector DNA was purified with the OIAquick PCR purification kit and directly used for ligation. Ligation was carried 10 out at 14-16°C for 5-12 hours in a 15 µl mixture containing ca. 200 ng of digested pET28(b), 30 ng of targeted PCR fragment, and 1 unit T4 DNA ligase. 5 - 7.5 µl of ligation solution were added to 100 µl of DH5\alpha competent cells in a 15 ml Falcon tube and incubated on ice for 30 min. After a heat shock at 42°C for 45 seconds, 0.9 ml SOC solution or 0.45 ml LB media were added to each tube and incubated at 37°C 15 for 1 hour. 20, 100, and 200 µl of transformed cells were placed onto LB agar with 30 µg/ml of kanamycin and incubated at 37°C overnight. Single colonies were transferred to 3 ml LB-media and incubated overnight at 37°C. Plasmid DNA was prepared from 2 ml of culture with the QIAprep Miniprep kit (QIAGEN, Hilden, Germany). The DNA from the transformed cells was analyzed by restriction enzyme 20 digestion or partial sequencing to verify the success of the transformations. Plasmids with the desired DNA sequence were transferred into the BL21 strain using the standard chemical transformation method as indicated above. A clone containing the full length harpin protein in the pET28(b) vector was generated as a positive control, 25 and a clone with only the pET28(b) vector was generated as a negative control.

Example 4 - Expression of Hypersensitive Response Elicitor Truncated Proteins

Escherichia coli BL21(DE3) strains containing the hrpN clones were grown in Luria broth medium (5g/L Difco Yeast extract, 10 g/L Difco Tryptone, 5 g/L NaCl, and 1 mM NaOH) containing 30 μg/ml of kanamycin at 37°C overnight. The bacteria were then inoculated into 100 volumes of the same medium and grown at

37°C to an OD₆₂₀ of 0.6-0.8. The bacteria were then inoculated into 250 volumes of the same medium and grown at 37°C to an OD₆₂₀ of ca. 0.3 or 0.6-0.8. One milli molar IPTG was then added and the cultures grown at 19°C overnight (ca. 18 hours). Not all of the clones were successfully expressed using this strategy. Several of the clones had to be grown in Terrific broth (12 g/L Bacto Tryptone, 24 g/L Bacto yeast, 0.4% glycerol, 0.17 M KH₂PO₄, and 0.72 K₂HPO₄), and/or grown at 37°C after IPTG induction, and/or harvested earlier than overnight (Table 1).

Table 1: Expression of hypersensitive response elicitor truncated proteins

4	_^

15

Fragment	_amino_acids	Growth medium	Induction O.D.	Expression temp.	Harvest time			
	. (SEQ. ID.			-				
!	No. 23)							
1	1-403	LB	ca. 0.3 or 0.6-	19℃ or 25℃	16-18 hr			
(+ control)			0.8					
2	-	LB and TB	ca. 0.3 or 0.6-	19 C and 37 C	16-18 hr			
(+ control)			0.8					
3	105-403	LB	0.6-0.8	19℃	16-18 hr			
4	169-403	TB	ca. 0.3	19℃	16-18 hr			
5	210-403	LB or M9ZB	0.6-0.8	19°C	16-18 hr			
6	257-403	LB or M9ZB	0.6-0.8	19℃	16-18 hr			
7	343-403	LB	ca. 0.3	19℃	5 hr			
8	1-75	TB	ca. 0.3	37°C	16-18 hr			
9	1-104	TB	ca. 0.3	37°C	16-18 hr			
10	1-168	TB	ca. 0.3	37℃	16-18 hr			
11	1-266	LB	ca. 0.3	37°C	4 hr			
12	1-342	LB	0.6-0.8	19°C	16-18 hr			
13	76-209	LB	ca. 0.3	37°C	5 hr			
14	76-168	TB or LB	ca. 0.3	37°C	3 hr or 16-18			
		1			hr			
15	105-209	M9ZB	ca. 0.3	37°C	3 hr			
16	169-209			ression				
17	105-168	LB	ca. 0.3	37°C	3-5 hr			
18	99-209	LB	ca. 0.3	37°C	3 hr			
19	137-204	LB	ca. 0.3	37°C	3 hr			
20	137-180	LB	ca. 0.3	37℃	16-18 hr.			
21	105-180	LB	ca. 0.3	37°C	3 hr			
22	150-209		no expression					
23	150-180		no expression					

<u>Example 5</u> - Small Scale Purification of Hypersensitive Response Elicitor Truncated Proteins (Verification of Expression)

A 50 ml culture of a hrpN clone was grown as above to induce expression of the truncated protein. Upon harvesting of the culture, 1.5 ml of the cell

suspension were centrifuged at 14,000 rpm for 5 minutes, re-suspended in urea lysis buffer (8 M urea, 0.1 M Na₂HPO₄, and 0.01 M Tris -- pH 8.0), incubated at room temperature for 10 minutes, then centrifuged again at 14,000 rpm for 10 minutes, and the supernatant saved. A 50 μl aliquot of a 50% slurry of an equilibrated (His)₆-binding nickel agarose resin was added to the supernatant and mixed at 4°C for one hour. The nickel agarose was then washed three times with urea washing buffer (8 M urea, 0.1 M Na₂HPO₄, and 0.01 M Tris -- pH 6.3), centrifuging at 5,000 rpm for five minutes between washings. The protein was eluted from the resin with 50 μl of urea elution buffer (8 M urea, 0.1 M Na₂HPO₄, 0.01 M Tris, and 0.1 M EDTA -- pH 6.3).

The eluate was run on a 4-20%, a 16%, or a 10-20% Tris-Glycine pre-cast gel depending upon the size of the truncated protein to verify the expression.

Example 6 - Induction of HR in Tobacco

15

20

25

30

A 1.5 ml aliquot from the 50 ml cultures grown for small scale purification of the truncated proteins was centrifuged at 14,000 rpm for four minutes and re-suspended in an equal volume of 5 mM potassium phosphate buffer, pH 6.8. The cell suspension was sonicated for ca. 30 seconds then diluted 1:2 and 1:10 with phosphate buffer. Both dilutions plus the neat cell lysate were infiltrated into the fourth to ninth leaves of 10-15 leaf tobacco plants by making a hole in single leaf panes and infiltrating the bacterial lysate into the intercellular leaf space using a syringe without a needle. The HR response was recorded 24-48 hr post infiltration. Tobacco (*Nicotiana tabacum* v. Xanthi) seedlings were grown in an environmental chamber at 20-25°C with a photoperiod of 12-h light /12-h dark and ca. 40% RH. Cell lysate was used for the initial HR assays (in order to screen the truncated proteins for HR activity) as the small scale urea purification yielded very little protein which was denatured due to the purification process.

<u>Example 7</u> - Large Scale Native Purification of Hypersensitive Response Elicitor Truncated Proteins for Comprehensive Biological Activity Assays

Six 500 ml cultures of a hrpN clone were grown as described earlier to induce expression of the truncated protein. Upon harvesting of the culture, the cells were centrifuged at 7,000 rpm for 5 minutes, re-suspended in imidazole lysis buffer (5

10

15

20

25

30

mM imidazole, 0.5 M NaCl, 20 mM Tris) plus Triton X-100 at 0.05% and lysozyme at 0.1 mg/ml, incubated at 30°C for 15 minutes, sonicated for two minutes, centrifuged again at 15,000 rpm for 20 minutes, and the supernatant was saved. A 4 ml aliquot of a 50% slurry of an equilibrated (His)6-binding nickel agarose resin was added to the supernatant and mixed at 4°C for ca. four hours. The nickel agarose was then washed three times with imidazole washing buffer (20 mM imidazole, 0.5 M NaCl, and 20 mM Tris), centrifuging at 5,000 rpm for five minutes between washings, then placed in a disposable chromatography column. The column was centrifuged at 1100 rpm for one minute to remove any residual wash buffer and then the protein was eluted from the resin with 4 ml of imidazole elution buffer (1 M imidazole, 0.5 M NaCl, and 20 mM Tris) by incubating the column with the elution buffer for ten minutes at room temperature and then centrifuging the column at 1100 rpm for one minute. The eluate was run on a 4-20%, a 16%, or a 10-20% Tris-Glycine pre-cast gel depending upon the size of the truncated protein to verify the expression. The concentration of the proteins was determined by comparison of the protein bands with a standard protein in the Mark 12 molecular weight marker.

Example 8 - Large Scale Urea Purification of Hypersensitive Response Elicitor Truncated Proteins For Comprehensive Biological Activity Assay

The procedure was the same as the large scale native purification except that urea lysis buffer, washing buffer, and elution buffer were used, and the cells were not sonicated as in the native purification. After purification, the protein was renatured by dialyzing against lower and lower concentrations of urea over an eight hour period, then dialyzing overnight against 10 mM Tris/20 mM NaCl. The renaturing process caused the N-terminal proteins to precipitate. The precipitated 1-168 protein was solubilized by the addition of 100 mM Tris-HCl at pH 10.4 then heating the protein at 30°C for ca. one hour. The concentration of the protein was determined by comparison of the protein bands with a standard protein in the Mark 12 molecular weight marker. The 1-75 and 1-104 protein fragments were not successfully solubilized using this strategy so they were sonicated in 100 mM Tris-HCl at pH 10.4 to solubilize as much of the protein as possible and expose the active sites of the protein for the biological activity assays.

Example 9 - Induction of Growth Enhancement (GE)

Sixty tomato (*Lycopersicon spp.* cv. Marglobe) seeds were soaked overnight in 10 and 20 μ g/ml of the truncated protein diluted with 5mM potassium phosphate buffer, pH 6.8. The next morning, the sixty seeds were sewn in three pots and 12-15 days later and again 18-20 days later the heights of the 10 tallest tomato plants per pot were measured and compared with the heights of the control plants treated only with phosphate buffer. Analyses were done on the heights to determine if there was a significant difference in the height of the plants treated with the truncated proteins compared with the buffer control, and thereby determine whether the proteins induced growth enhancement.

Example 10 - Induction of Systemic Acquired Resistance (SAR)

15

20

25

30

10

5

Three tobacco (*Nicotiana tabacum* cv. Xanthi) plants with 8-12 leaves (ca. 75 day old plants) were used in the assay. One leaf of the tobacco plants was covered up and the rest of the leaves were sprayed with ca. 50 ml of a 20 μ g/ml solution of the truncated proteins diluted with 5mM potassium phosphate buffer. Five to seven days later two leaves (the unsprayed leaf and the sprayed leaf opposite and just above the unsprayed leaf) were inoculated with 20 μ l of a 1.8 μ g/ml solution of TMV along with a pinch of diatomaceous earth by rubbing the mixture along the top surface of the leaves. The TMV entered the plants through tiny lesions made by the diatomaceous earth. Ca. 3-4 days post TMV inolucation, the number of TMV lesions was counted on both leaves compared with the number of lesions on the negative control buffer treated leaves. Analyses were done to determine the efficacy of reducing the number of TMV lesions by the protein fragments compared to the buffer control. Percentage of efficacy was calculated as: Reduction in TMV lesions (% efficacy) = 100 x (1 - mean # of lesions on treated leaves/mean # of lesions on buffer control leaves).

Example 11 - Expression of Hypersensitive Response Elicitor Truncated Proteins

The small scale expression and purification of the fragment proteins was done to screen for expression and HR activity (Table 2).

Table 2

Expression and HR activity of hypersensitive response elicitor truncated proteins (small scale screening)

Fragment #	Amino Acids (SEQ. ID. No. 23)	Expression	HR activity
1(+control)	1-403	+	+
2(- control)	-	background protein only	•
3	105-403	+	+
4_	169-403_		·
5	210-403	+	-
6	267-403	+	-
7	343-403	+/-	•
8	1-75	+	
9	1-104	+	+/-
10	1-168	+	+
11	1-266	+	+
12	1-342	+	+
13	76-209	+	+
14	76-168	+	•
15	105-209	+	+
16	169-209	-	•
17	105-168	+	-
18	99-209	+	+
19	137-204	+	+
20	137-180	+	+
21	105-180	+	+
22	150-209	-	•
23	150-180		-

10

15

5

All of the cloned fragment proteins were expressed at varying levels except for three small fragments (amino acids 169-209, 150-209, and 150-180). Fragments 210-403 and 267-403 were expressed very well, yielding a high concentration of protein from a small scale purification, resulting in a substantial protein band on SDS gel electrophoresis. Other fragments (such as a.a. 1-168 and 1-104) produced much less protein, resulting in faint protein bands upon electrophoresis. It was difficult to determine whether fragment 343-403, the smallest C-terminal protein, was expressed, as there were several background proteins apparent on the gel, in addition to the suspected 343-403 protein. The positive and negative control proteins, consisting of

- 52 -

the full length hypersensitive response elicitor protein and only background proteins, respectively, were tested for expression and HR activity as well.

The large scale expression and purification of the fragment proteins was done to determine the level of expression and titer of the HR activity (Table 3).

Table 3

Expression level and HR titer of hypersensitive response elicitor truncated proteins (large sale purification)

5

10

15

20

Fragment #	Amino acids (SEQ. ID. No. 23)	Expression	HR titer
1(+ control)	1-403	3.7 mg/ml	5-7 μg/ml
2 (- control)	-	-	1:2 dilution
4	169-403	2 mg/ml	-
5	210-403	5 mg/ml	-
6	267-403	4 mg/ml	
7	343-402	200μg/ml	-
8	1-75	50μg/ml	
9	1-104	50μg/ml	3 μg/ml (1:16 dilution
10	1-168	1 mg/ml	l μg/ml
13	76-209	2.5 mg/ml	5 μg/ml
14	76-168	2 mg/ml	-
15	105-209	5 mg/ml	5-10μg/ml
17	105-168	250μg/ml	-
19	137-204	3.6 mg/ml	3.5 μg/ml
20	137-180	250 μg/ml	16 μg/ml

The truncated proteins deemed to be the most important in characterizing the hypersensitive response elicitor were chosen for large scale expression. The positive control (full length hypersensitive response elicitor) was expressed at a relatively high level at 3.7 mg/ml. All of the C-terminal proteins were expressed at relatively high levels from 2-5 mg/ml, except for fragment 343-403 as discussed earlier. The N-terminal fragments were expressed very well also; however, during the purification process, the protein precipitated and very little was resolubilized. The concentrations in Table 3 reflect only the solubilized protein. The internal fragments were expressed in the range of 2-3.6 mg/ml. It was extremely difficult to determine the concentration of fragment 105-168 (it was suspected that the concentration was much higher than indicated), as the protein bands on the SDS gel were large, but poorly stained. The

negative control contained several background proteins as expected, but no obviously induced dominant protein.

Example 12 - Induction of HR in Tobacco

5

10

15

20

25

30

The full length positive control protein elicited HR down to only 5-7µg/ml. The negative control (pET 28) imidazole purified "protein" - which contained only background proteins - elicited an HR response down to the 1:2 dilution, which lowered the sensitivity of the assay as the 1:1 and 1:2 dilutions could not be used. This false HR was likely due to an affinity of the imidazole used in the purification process to bind to one or several of the background proteins, thereby not completely dialyzing out. Imidazole at a concentration of ca. 60-mM-did-elicit-a-false HR response.

One definitive domain encompassing a small internal region of the protein from a.a. 137-180 (SEQ. ID. No. 23), a mere 44 a.a, is identified as the smallest HR domain. The other potential HR domain is thought to be located in the N-terminus of the protein from a.a. 1-104 (possibly a.a. 1-75) (SEQ. ID. No. 23). It was difficult to confirm or narrow down the N-terminus HR domain due to the difficulties encountered in purifying these fragment proteins. The N-terminus fragment proteins had to be purified with urea as no protein was recovered when the native purification process was used. Consequently, these proteins precipitated during the renaturing process and were difficult or nearly impossible to get back into solution, thereby making it hard to run the proteins through the HR assay, as only soluble protein is able to elicit HR. Difficulty narrowing the N-terminus HR domain was only compounded by the fact that the negative control elicited false HR at the low dilution levels thereby reducing the sensitivity of the assay.

Surprisingly, when the internal HR domain was cleaved between a.a. 168 and 169 (fragments 76-168 and 105-168) (SEQ. ID. No. 23) the fragment lost its HR activity. This suggests that the HR activity of fragment 1-168 (SEQ. ID. No. 23) should not be attributed to the internal HR domain, but rather to some other domain, leading to the assumption that there was likely a second HR domain to be found in the N-terminal region of the protein. However, as discussed earlier it was difficult to confirm this assumption.

The hypersensitive response elicitor C-terminus (a.a. 210-403 (SEQ. ID. No. 23)) did not contain an HR domain. It did not elicit HR at a detectable level using the current HR assay. Even the large C-terminal fragment from a.a. 169-403 (SEQ. ID. No. 23) did not elicit HR even though it contained part of the internal HR domain. As stated above, cleaving the protein between amino acids 168 and 169 (SEO. ID. No. 23) causes a loss of HR activity.

Because some of the small cloned proteins with 61 a.a. or less were not expressed, several oligopeptides were synthesized with 30 a.a. to narrow down the functional region of the internal HR domain. The oligopeptides were synthesized within the range of a.a. 121-179 (SEQ. ID. No. 23). However, these oligos did not elicit HR. It was not expected that there would be an HR from oligos 137-166, 121-150, and 137-156 (SEQ. ID. No. 23) as these fragments did not contain the imperative amino acids 168 and 169 (SEQ. ID. No. 23). It was expected that the oligo 150-179 (SEQ. ID. No. 23) would elicit an HR. It is possible that 30 a.a. is too small for the protein to elicit any activity due to a lack of folding and, therefore, a lack of binding or that during the synthesis of the peptides important amino acids were missed (either in the process, or simply by the choice of which 30 amino acids to synthesize) and, therefore, the fragments would not be able to elicit HR.

20 Example 13 - Induction of Plant Growth Enhancement (PGE)

5

10

15

25

The C-terminal fragments enhanced the growth of tomato by 9% to 21%. The N-terminal fragments enhanced the growth of tomato by 4% to 13%. The internal fragments enhanced growth by 9% to 20%. The 76-209 fragment enhanced growth by 18% at a concentration of 60 μ g/ml, but not at the typical 20 μ g/ml. This was attributed to the inaccuracy of the quantification process (Table 4).

Table 4

Fragment #	Amino acids	PGE ht>buffer	PGE ht>buffer
	_	@ 10 μg/ml	@ 20 μg/ml
1 (+ control)	1-403	12%	11%
2 (- control)	•	-3%	-2%
4	169-403	9%	12%
5	210-403	13%	14%
			16% @ 40μg/ml
6	267-403	21%	21%
	·	·	23% @ 40μg/ml
7	343-403	7%	7%
9	1-104	4%	8%
10	1-168	13%	5%
13	76-209	7%	4%
			18% @ 60μg/ml
-14-	76-168	-1.8%-	-20%-
15	105-209	14%	19%
17	105-168	19%	16%
19	137-204	11%	13%
20	137-180		9%

^{*}A height greater than 10% above the buffer control was necessary to pass the PGE assay.

The oligopeptides enhanced growth from 7.4% to 17.3% (Table 5).

Table 5

10

15

5

Fragment	Amino acids	Expression	HR titer	TMV efficacy	PGE ht>buffer
oligo	150-179	NA	-	72.9%	10.1%
oligo	137-166	NA	-	61.2%	12.0%
oligo	121-150	NA	-	60.0%	17.3%
oligo	137-156	NA	-	-87.7%	7.4%

The data suggests that there is more than one PGE domain, although the C-terminal and internal domains appear to be dominant over the N-terminal domain, as the N-terminal fragments enhanced growth the least amount.

Example 14 - Induction of Systemic Acquired Resistance (SAR)

All of the hypersensitive response elicitor fragments tested to date appear to have 60% efficacy or greater, except for the oligopeptide 137-156 (Tables 5 and 6).

- 56 -

Table 6

Fragment #	Amino acids	Efficacy of TMV control
1 (+ control)	1-403	84% & 72%
2 (- control)		40% & 31%
4	169-403	64% & 79%
5	210-403	77% and 78%
6	267-403	70% and 72%
9	1-104	82%
10	1-168	69%
13	76-209	44% and 84%
14	76-168	83% & 87%
15	105-209	57% and 67%
17	105-168	89%
19	137-204	89% & 77%
20	137-180	64% & 58%

5

These data suggest that there are multiple SAR domains within the protein.

Example 15 - Relationship Between HR, PGE, and SAR

10

15

It is clear that the hypersensitive response activity is separable from the plant growth enhancement activity. The C-terminal fragments clearly enhance the growth of tomato by ca. 20% at a concentration of only 20 μ g/ml, but these same fragments were not able to elicit HR in tobacco, even at higher concentrations than 200 μ g/ml. The SAR activity also appears to be separable from the HR activity. This finding is highly significant for future work on transgenic applications of the hypersensitive response elicitor technology. The fragments that induce PGE and/or SAR but do not elicit HR will be imperative for this technology, as constitutive expression of even low levels of an HR elicitor might kill a plant.

20

Example 16 - Non-HR Eliciting Fragments Derived from the Hypersensitive Response Elicitor from *Pseudomonas syringae* pv. *syringae* Induce Resistance in Tobacco to TMV and Promote the Growth of Tomato

25

To test whether non-HR eliciting fragments derived from HrpZ, the hypersensitive response elicitor from *Pseudomonas syringae* pv. *syringae*, is able to induce disease resistance, several fragment constructs were made and the expressed

10

15

20

25

fragment proteins were tested for HR elicitation and disease resistance induction in tobacco and growth promotion in tomato.

The following segments of hrpZ, the gene encoding the hypersensitive response elicitor from Pseudomonas syringae pv. syringae, were amplified by PCR using Pfu Turbo (Stratagene): Regions coding for amino acids 152-190, aa 152-294, aa 190-294, aa 301-341, and full length HrpZ (aa 1-341). The DNA fragments were cloned into pCAL-n (Stratagene) to create C-terminal fusion proteins to the calmodulin-binding peptide. pCAL-n was chosen, because the fusion protein could be easily and gently purified on calmodulin resin. The DNA was transformed into E. coli DH5 α , and the correct clones were identified. The clones were then transferred to E. coli BLR DE3 for protein expression. The bacteria were grown in Terrific Broth to an OD₆₂₀ of 0.8-1.0. Protein expression was then induced with IPTG and the bacteria were incubated for an additional 3 h. All of the HrpZ fragments were able to be expressed this way.

Amino acid fragments 152-294 and 190-294 were chosen for further analysis and characterization. It was expected that the fragment 152-294 contained a domain that elicited the HR, while fragment 190-294 contained no domain that elicited the HR. The cultures were spun down, and the bacteria resuspended in 40 ml of 10 mM Tris pH 8.0. Twenty µl of antifoam and 40 µl of 200 mM PMSF were added, and the bacteria was sonicated to break open the cells. The bacterial debris was removed by centrifugation, and the supernatant was placed in a boiling water bath for 10 min. The precipitate was removed by centrifugation and the supernatant, a crude protein preparation, was retained for tests.

Fifteen µl of each supernatant was run on a gel and stained to determine if the protein was present. It was estimated that about five times as much of the 152-294 fragment was present as the 190-294 fragment. Several dilutions of each preparation were infiltrated into tobacco leaves on two plants for HR tests (Table 7). As shown in Table 7, the 152-294 fragment elicited an HR, but the 190-294 fragment did not.

WO 00/20452

PCT/US99/23181

Table 7
HR test results of HrpZ fragments

- 58 -

HrpZ Fragment	<u>Dilutio</u>	Dilution of Fragment Preparation ^a					
_	1:2	1:5	1:25	1:125			
152-294	+,+ ^b	+,+	+,+	-, -			
190-294			<u> </u>				

^a The preparations were diluted with MilliQ water.

10

15

20

35

5

The fragment preparations were then tested for inducing resistance to TMV and for growth enhancement. Due to the difference in concentration of the HrpZ fragments, the 152-294 preparation was diluted 40-fold and the 190-294 preparation was diluted 8-fold. The results showed that the 190-294 aa fragment reduced the number of TMV lesions by 85% in comparison to buffer controls (Table 8). In contrast, the 152-294 aa fragment reduced the number of TMV lesions by only 55%. As also shown in Table 8, plants treated with the 152-294 aa fragment grew 4.64% more than buffer treated plants, while plants treated with the 190-294 aa fragment grew 2.62% more than the buffer treated plants.

Table 8
HR test, TMV, and PGE test results

25	HrpZ Fragment	HR elicitation ^a	TMV (% efficacy) ^b	PGE(% > buffer ht) ^c
	152-294	+	54.64	4.64
	190-294	-	85.25	2.62

a+, elicits HR in tobacco leaves; -, no HR in tobacco leaves.

The results of these tests show that amino acids 152-190 appear to be involved in HR elicitation, because their removal eliminated the ability to elicit the HR. Both fragment preparations achieved disease control and growth enhancement. Thus, the ability to elicit the HR is not the determining factor for reduction in TMV infection and growth enhancement.

^b The results are indicated for each of two plants. +, HR; -, no HR.

^b% reduction in TMV lesions in unsprayed leaf of tobacco.

^{30 °%} greater height than buffer sprayed plants.

Exampl 17 - Use of 13 Amino Acid Peptide Derived from Phytophthora megasperma Stimulates Tomato Seedling Growth

Parsley leaves develop a typical resistance reaction against the soybean pathogen Phytophthora megasperma comprising hypersensitive cell death, defense 5 related gene activation, and phytoalexin formulation. Several years ago, a 42 kDa glycoprotein elicitor was purified from the fungal culture filtrate of Phytophthora megasperma (Parker et al., "An Extracellular Glycoprotein from Phytophthora megasperma f.sp. glycinea Elicits Phytoalexin Synthesis in Cultured Parsley Cells and Protoplasts," Mol. Plant Microbe Interact. 4:19-27 (1991), which is hereby 10 incorporated by reference). Then, an oligopeptide of 13 amino acid was identified within the 42 kDa glycoprotein. The 13 amino acids peptide appeared to have similar biological activity as that of the full length glycoprotein (42 kDa). It is sufficient to elicit a complex defense response in parsley cells including H+/Ca2+ influxes, K+/Cleffluxes, active oxygen production, SAR gene induction, and phytoalexin compound 15 accumulation (Nurnberger et al., "High Affinity Binding of a Fungal Oligopeptide Elicitor to Parsley Plasma Membranes Triggers Multiple Defense Response," Cell 78:449-460 (1994), which is hereby incorporated by reference).

To test if the 13 amino acid peptide derived from the 42 kDa protein also enhanced plant growth, 20 mg of the oligopeptide was synthesized from Biosynthesis Corp. The synthesized sequence of the peptide is NH2-Val-Trp-Asn-Gln-Pro-Val-Arg-Gly-Phe-Lys-Val-Tyr-Glu-COOH (SEQ. ID. No. 39). The synthesized peptide was resuspended in 10 ml of 5 mM potassium phosphate buffer and, then, diluted to 1 and 100 ng/ml with the same buffer. About 100 tomato seeds (variety, Marglobe) were submerged in 20 ml of peptide solution overnight. The soaked seeds were planted in an 8 inch pot with artificial soil. Seeds soaked in the buffer without the peptide were used as a control. After seedlings emerged and the first two true leaves fully expanded, the height of the tomato seedlings was recorded. The peptide was not able to elicit the HR in tobacco and other tested plants. However, it had a profound effect on plant growth promotion. Table 9 shows that tomato seedlings treated with the peptide increased 12.6 % in height, indicating that the fungal peptide derived from the 42 kDa glycroprotein can promote tomato seedling growth. Extended studies showed that the peptide also had similar growth

20

25

30

- 60 -

effect in other crops including tobacco. Similar growth promotion effects were achieved by plants sprayed with the peptide solution.

Table 9

5

_	Treatment			Height of seedlings (cm)			Average (cm) % Change	
_	Buffer	6.0 5.5	6.0 5.5	6.0 5.0	5.5 5.0	5.5 5.5	5.55	•
10	Peptide Solution (100ng/ml)	6.5 6.0	6.0 6.0	6.5 6.0	6.5	6.5 6.5	6.25	12.6

Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

PCT/US99/23181

5

10

20

25

WHAT IS CLAIMED:

- 1. An isolated fragment of a hypersensitive response elicitor protein or polypeptide, wherein said fragment does not elicit a hypersensitive response but has other activity in plants.
- 2. An isolated fragment according to claim 1, wherein the hypersensitive response elicitor protein or polypeptide is derived from an *Erwinia Pseudomonas, Xanthomonas*, or *Phytophthora*.

3. An isolated fragment according to claim 2, wherein the hypersensitive response elicitor protein or polypeptide is derived from *Erwinia* amylovora.

- 15 4. An isolated fragment according to claim 3, wherein the fragment is selected from the group consisting of a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 23, an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 23, and an internal fragment of the amino acid sequence of SEQ. ID. No. 23.
 - 5. An isolated fragment according to claim 4, wherein the fragment is a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 23 spanning the following amino acids of SEQ. ID. No. 23: 169 and 403, 210 and 403, 267 and 403, or 343 and 403.
 - 6. An isolated fragment according to claim 4, wherein the fragment is an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 23.
- 7. An isolated fragment according to claim 4, wherein the
 30 fragment is an internal fragment of the amino acid sequence of SEQ. ID. No. 23
 spanning the following amino acids of SEQ. ID. No. 23: 105 and 179, 137 and 166,
 121 and 150, or 137 and 156.

PCT/US99/23181

20

- 8. An isolated fragment according to claim 2, wherein the hypersensitive response elicitor is derived from *Pseudomonas syringae*.
- 9. An isolated fragment according to claim 8, wherein the fragment contains amino acids 190 to 294 of SEQ. ID. No. 31.
 - 10. An isolated DNA molecule encoding a fragment according to claim 1.
- 10 11. An isolated DNA molecule according to claim 10, wherein the hypersensitive response elicitor protein or polypeptide is derived from an *Erwinia Pseudomonas*, *Xanthomonas*, or *Phythophthora*.
- 12. An isolated DNA molecule according to claim 11, wherein the hypersensitive response elicitor protein or polypeptide is derived from *Erwinia amylovora*.
 - 13. An isolated DNA molecule according to claim 12, wherein the fragment is selected from the group consisting of a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 23, an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 23, and an internal fragment of the amino acid sequence of SEQ. ID. No. 23.
- 14. An isolated DNA molecule according to claim 12, wherein the fragment is a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 23 spanning the following amino acids of SEQ. ID. No. 23: 169 and 403, 210 and 403, 267 and 403, or 343 and 403.
- 15. An isolated DNA molecule according to claim 12, wherein the fragment is an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 23.

16. An isolated DNA molecule according to claim 12, wherein the fragment is an internal fragment of the amino acid sequence of SEQ. ID. No. 23 spanning the following amino acids of SEQ. ID. No. 23: 105 and 179, 137 and 166, 121 and 150, or 137 and 156.

5

- 17. An isolated DNA molecule according to claim 11, wherein the hypersensitive response elicitor is derived from *Pseudomonas syringae*.
- 18. An isolated DNA molecule according to claim 18, wherein the fragment contains amino acids 190 to 294 of SEQ. ID. No. 31.
 - 19. An expression system transformed with a DNA molecule according to claim 10.
- DNA molecule is in proper sense orientation and correct reading frame.
 - 21. A host cell transformed with a DNA molecule according to claim 10.

20

- 22. A host cell according to claim 21, wherein the host cell is selected from the group consisting of a plant cell and a bacterial cell.
- A host cell according to claim 21, wherein the DNA molecule
 is transformed with an expression system.
 - 24. A transgenic plant transformed with the DNA molecule of claim 10.
- 30 25. A transgenic plant according to claim 24, wherein the plant is selected from the group consisting of alfalfa, rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea, chicory, lettuce, endive,

cabbage, brussel sprout, beet, parsnip, turnip, cauliflower, broccoli, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, citrus, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane.

5

26. A transgenic plant according to claim 24, wherein the plant is selected from the group consisting of *Arabidopsis thaliana*, *Saintpaulia*, petunia, pelargonium, poinsettia, chrysanthemum, carnation, and zinnia.

10

claim 10.

27. A transgenic plant seed transformed with the DNA molecule of

15

28. A transgenic plant seed according to claim 27, wherein the plant seed is selected from the group consisting of alfalfa, rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea, chicory, lettuce, endive, cabbage, brussel sprout, beet, parsnip, turnip, cauliflower, broccoli, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, citrus, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane.

20

29. A transgenic plant seed according to claim 27, wherein the plant seed is selected from the group consisting of *Arabidopsis thaliana*, *Saintpaulia*, petunia, pelargonium, poinsettia, chrysanthemum, carnation, and zinnia.

25

30. A method of imparting disease resistance to plants comprising:
applying a fragment of a hypersensitive response elicitor
protein or polypeptide, which fragment does not elicit a hypersensitive response, in a
non-infectious form to a plant or plant seed under conditions effective to impart
disease resistance.

30

31. A method according to claim 30, wherein plants are treated during said applying.

32. A method according to claim 30 wherein plant seeds are treated during said applying, said method further comprising:

propagating plants from the seeds planted in the soil.

- planting the seeds treated with the fragment of the

 hypersensitive response elicitor in natural or artificial soil and
- 33. A method of enhancing plant growth comprising: applying a fragment of a hypersensitive response elicitor protein or polypeptide, which fragment does not elicit a hypersensitive response, in a non-infectious form to a plant or plant seed under conditions effective to enhance plant growth.
- 34. A method according to claim 33, wherein plants are treated during said applying.
- 35. A method according to claim 33, wherein plant seeds are treated during said applying, said method further comprising:

 planting the seeds treated with the fragment of the

 hypersensitive response elicitor in natural or artificial soil and propagating plants from the seeds planted in the soil.
- 36. A method of insect control for plants comprising:
 applying a fragment of a hypersensitive response elicitor protein or
 polypeptide, which fragment does not elicit a hypersensitive response, in a non-infectious form to a plant or plant seed under conditions effective to control insects.
 - 37. A method according to claim 36, wherein plants are treated during said applying.
 - 38. A method according to claim 36, wherein plant seeds are treated during said applying, said method further comprising:

30

planting the seeds treated with the fragment of the hypersensitive response elicitor in natural or artificial soil and propagating plants from the seeds planted in the soil.

- 5 39. A method of imparting disease resistance to plants comprising:

 providing a transgenic plant or plant seed transformed with a

 DNA molecule which encodes a fragment of a hypersensitive response elicitor protein
 or polypeptide, which fragment does not elicit a hypersensitive response, and
 growing the transgenic plant or transgenic plants produced

 10 from the transgenic plant seeds under conditions effective to impart disease resistance.
 - 40. A method according to claim 39, wherein a transgenic plant is provided.
- 15 41. A method according to claim 39, wherein a transgenic plant seed is provided.
- 42. A method of enhancing plant growth comprising:

 providing a transgenic plant or a plant seed transformed with a

 20 DNA molecule which encodes a fragment of a hypersensitive response elicitor protein or polypeptide, which fragment does not elicit a hypersensitive response, and growing the transgenic plant or transgenic plants produced from the transgenic plant seeds under conditions effective to enhance plant growth.
- 25 43. A method according to claim 42, wherein a transgenic plant is provided.
 - 44. A method according to claim 42, wherein a transgenic plant seed is provided.

30

45. A method of insect control for plants comprising:

- 67 -

providing a transgenic plant or plant seed transformed with a

DNA molecule which encodes a fragment of a hypersensitive response elicitor protein
or polypeptide, which fragment does not elicit a hypersensitive response, and
growing the transgenic plant or transgenic plants produced

- 5 from the transgenic plant seeds under conditions effective to control insects.
 - 46. A method according to claim 45, wherein a transgenic plant is provided.
- 10 47. A method according to claim 45, wherein a transgenic plant seed is provided.

		•	,	
		1		

HARPIN FRAGMENTS DERIVED FROM HrpN OF ERWINIA AMYLOVORA

FIG. 1

SUBSTITUTE SHEET (RULE 26)

. .

N1;	5'-GGGAATTCATATGAGTCTGAATACAAGTGGG-3'
N76;	5'-GGGAATTCATATGGGCGGTGGCTTAGGCGGT-3'
N99;	5'-GGCATATGTCGAACGCGCTGAACGATATG-3'
N105;	5'-GGGAATTCATATGTTAGGCGGTTCGCTGAAC-3'
N110;	5'-GGCATATGCTGAACACGCTGGGCTCGAAA-3'
N137;	5'-GGCATATGTCAACGTCCCAAAACGACGAT-3'
N150;	5'-GGCATATGTCCACCTCAGACTCCAGCG-3'
N169;	5'-GGGAATTCATATGCAAAGCCTGTTTGGTGATGGG-3'
N210;	5'-GGGAATTCATATGGGTAATGGTCTGAGCAAG-3'
N267;	5'-GGGAATTCATATGAAAGCGGGCATTCAGGCG-3
N343;	5'-GGGAATTCATATGACACCAGCCAGTATGGAGCAG-3'
C75;	5'-GCAAGCTTAACAGCCCACCACCGCCCATCAT-3'
C104;	5'-GCAAGCTTAAATCGTTCAGCGCGTTCGACAG-3'
C168;	5'-GCAAGCTTAATATCTCGCTGAACATCTTCAGCAG-3'
C180;	5'-GCAAGCTTAAGGTGCCATCTTGCCCATCAC-3'
C204;	5'-GCAAGCTTAAATCAGTGACTCCTTTTTTATAGGC-3
C209;	5'-GCAAGCTTAACAGGCCCGACAGCGCATCAGT-3'
C266;	5'-GCAAGCTTAAACCGATACCGGTACCCACGGC-3'
C342;	5'-GCAAGCTTAATCCGTCGTCATCTGGCTTGCTCAG-3'
C103.	5 / _CC

OLIGONUCLEOTIDE PRIMERS USED FOR THE CONSTRUCTION OF THE SUBCLONES OF ERWINIA AMYLOVORA Hrpn

FIG. 2

				•
-				
		•		
				•
				·
3				
	•			
-			·	L
-				٤
				_
				-
-				-
·				
·				
·				
·				

SEQUENCE LISTING

<110>	Eden Bioscience C rporation	
<120>	HYPERSENSITIVE RESPONSE ELICITOR FRAGMENTS WHICH ARE ACTIVE BUT DO NOT ELICIT A HYPERSENSITIVE RESPONSE	
<130>	21829/32	
<140>		
<141>		
	60/103,050	
<151>	1998-10-05	
<160>	39	
<170>	PatentIn Ver. 2.0	
<210>	1	
<211>		
<212>	·	
<213>	Erwinia amylovora	
<400>		31
gggaa	ttcat atgagtctga atacaagtgg g	-
<210>	2	
<211>	31	
<212>	DNA	
<213>	Erwinia amylovora	
<400>	. 2	
	ttcat atgggcggtg gcttaggcgg t	31
	·	
<210>		
<211>		
<212>		
<213>	Erwinia amylovora	
<400>	• 3	
ggcat	atgtc gaacgcgctg aacgatatg	29
<210>		
<2112	> 31 > DNA	
	> Erwinia amylovora	

·			
	•		
		•	

<400> 4	
gggaattcat atgttaggcg gttcgctgaa c	31
<210> 5	
<211> 29	
<212> DNA	
<213> Erwinia amylovora	
<400> 5	
ggcatatgct gaacacgctg ggctcgaaa	29
<210> 6	
<211> 29	
<212> DNA	
<213> Erwinia amylovora	
Cally marked unitarional	
<400> 6	
ggcatatgtc aacgtcccaa aacgacgat	29
ggcacacgcc aacgcoccac anognogno	
-210- 7	
<210> 7	•
<211> 27 <212> DNA	
<213> Erwinia amylovora	
<400> 7	
ggcatatgte caceteagae tecageg	27
ggcatatgte tatotoagae teeligeg	
<210> 8	
<211> 34	
<212> DNA	
<213> Erwinia amylovora	
<213> BIWINIA amylovola	
.400. 0	• •
<400> 8	34
gggaatteat atgeaaagee tgtttggtga tggg	
<210> 9	
·	
<211> 31 <212> DNA	
<213> Erwinia amylovora	
CTIS DIMINIC CONTRACTOR	
<400> 9	
gggaattcat atgggtaatg gtctgagcaa g	31
Address asadaras assedas a	
<210> 10	
<210> 10 <211> 31	
<212> DNA	
<213> Erwinia amylovora	

•					
			·		
·					
	·				

<400> 10	
gggaattcat atgaaagcgg gcattcaggc g	31
<210> 11	
<211> 34	
<212> DNA	
<213> Erwinia amylovora	
<400> 11	
gggaattcat atgacaccag ccagtatgga gcag	34
<210> 12	
<211> 31	
<212> DNA	
<213> Erwinia amylovora	
<400> 12	
gcaagettaa cageccaeca cegeccatca t	31
guadyoutur ougovoutur guarante e	
<210> 13	
<211> 31	
<212> DNA	
<213> Erwinia amylovora	
(213) Elwanza am, 101014	
<400> 13	
gcaagettaa ategtteage gegttegaca g	31
<210> 14	
<211> 34	
<212> DNA	
<213> Erwinia amylovora	
<400> 14	
gcaagcttaa tatctcgctg aacatcttca gcag	34
goungoodh geeg	
<210> 15	. •
<211> 30	
<212> DNA	
<213> Erwinia amylovora	
44.00	
<400> 15	
gcaagettaa ggtgccatet tgeecateae	30
<210> 16	
<211> 34	
<212> DNA	
<213> Erwinia amylovora	
· — — ·	

			•		
,					
		•			
					•
	·				
	•				
	•				
				·	
				·	

<400> 16	
gcaagcttaa atcagtgact ccttttttat aggc	34
<210> 17	
<211> 31	
<212> DNA	·
<213> Erwinia amylovora	
<400> 17	
gcaagcttaa caggcccgac agcgcatcag t	31
<210> 18	
<211> 31	
<212> DNA	
<213> Erwinia amylovora	
<400> 18	
gcaagcttaa accgataccg gtacccacgg c	31
<u> </u>	
<210> 19	
<211> 34	
<212> DNA	
<213> Erwinia amylovora	
<400> 19	
gcaagettaa teegtegtea tetggettge teag	34
<210> 20	
<211> 25	
<212> DNA	
<213> Erwinia amylovora	
<400> 20	
gcaagettaa geegegeeea gettg	25
<210> 21	
<211> 338	
<212> PRT	
<213> Erwinia chrysanthemi	
<400> 21	
Met Gln Ile Thr Ile Lys Ala His Ile Gly Gly Asp Leu Gly Val Ser	
1 5 10 15	
•	
Gly Leu Gly Ala Gln Gly Leu Lys Gly Leu Asn Ser Ala Ala Ser Ser	
20 25 30	
Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr	

			 		
	,				
	•				
	•	•			
,					
					-

35 40 45
Ser Ala L u Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu

50

Gly Ala Ser Ser Lys Gly Leu Gly Met Ser Asn Gln Leu Gly Gln Ser
65 70 75 80

Phe Gly Asn Gly Ala Gln Gly Ala Ser Asn Leu Leu Ser Val Pro Lys 85 90 95

Ser Gly Gly Asp Ala Leu Ser Lys Met Phe Asp Lys Ala Leu Asp Asp 100 105 110

Leu Leu Gly His Asp Thr Val Thr Lys Leu Thr Asn Gln Ser Asn Gln
115 120 125

Leu Ala Asn Ser Met Leu Asn Ala Ser Cln Met Thr Gln Gly Asn Met 130 135 140

Asn Ala Phe Gly Ser Gly Val Asn Asn Ala Leu Ser Ser Ile Leu Gly 145 150 155 160

Asn Gly Leu Gly Gln Ser Met Ser Gly Phe Ser Gln Pro Ser Leu Gly 165 170 175

Ala Gly Gly Leu Gln Gly Leu Ser Gly Ala Gly Ala Phe Asn Gln Leu 180 185 190

Gly Asn Ala Ile Gly Met Gly Val Gly Gln Asn Ala Ala Leu Ser Ala 195 200 205

Leu Ser Asn Val Ser Thr His Val Asp Gly Asn Asn Arg His Phe Val 210 215 220

Asp Lys Glu Asp Arg Gly Met Ala Lys Glu Ile Gly Gln Phe Met Asp 225 230 235 240

Gln Tyr Pro Glu Ile Phe Gly Lys Pro Glu Tyr Gln Lys Asp Gly Trp 245 250 255

Ser Ser Pro Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser Lys 260 265 270

Pro Asp Asp Gly Met Thr Gly Ala Ser Met Asp Lys Phe Arg Gln 275 280 285

Ala Met Gly Met Ile Lys Ser Ala Val Ala Gly Asp Thr Gly Asn Thr

			•	
				•

290 295 300

Asn Leu Asn L u Arg Gly Ala Gly Gly Ala Ser Leu Gly Ile Asp Ala 305 310 315 320

Ala Val Val Gly Asp Lys Ile Ala Asn Met Ser Leu Gly Lys Leu Ala 325 330 335

Asn Ala

<210> 22

<211> 2141

<212> DNA

<213> Erwinia chrysanthemi

<400> 22

cgattttacc cgggtgaacg tgctatgacc gacagcatca cggtattcga caccgttacg 60 gegtttatgg cegegatgaa ceggcatcag geggegeget ggtegeegea ateeggegte 120 gatctggtat ttcagtttgg ggacaccggg cgtgaactca tgatgcagat tcagccgggg 180 cagcaatate ceggeatgtt gegeacgetg etegetegte gttateagea ggeggeagag 240 tgcgatggct gccatctgtg cctgaacggc agcgatgtat tgatcctctg gtggccgctg 300 cegteggate ceggeagtta teegeaggtg ategaaegtt tgtttgaaet ggegggaatg 360 acgttgccgt cgctatccat agcaccgacg gcgcgtccgc agacagggaa cggacgcgcc 420 cgatcattaa gataaaggcg gcttttttta ttgcaaaacg gtaacggtga ggaaccgttt 480 caccgtegge gtcactcagt aacaagtate catcatgatg cetacategg gateggegtg 540 ggcatccgtt gcagatactt ttgcgaacac ctgacatgaa tgaggaaacg aaattatgca 600 aattacgatc aaagcgcaca tcggcggtga tttgggcgtc tccggtctgg ggctgggtgc 660 teagggactg aaaggactga atteegegge tteategetg ggtteeageg tggataaact 720 gagcagcacc atcgataagt tgacctccgc gctgacttcg atgatgtttg gcggcgcgct 780 ggcgcagggg ctgggcgcca gctcgaaggg gctggggatg agcaatcaac tgggccagtc 840 tttcggcaat ggcgcgcagg gtgcgagcaa cctgctatcc gtaccgaaat ccggcggcga 900 tgcgttgtca aaaatgtttg ataaagcgct ggacgatctg ctgggtcatg acaccgtgac 960 caagetgact aaccagagea accaactgge taatteaatg etgaacgeea geeagatgae 1020 ccagggtaat atgaatgcgt tcggcagcgg tgtgaacaac gcactgtcgt ccattctcgg 1080 caacggtete ggecagtega tgagtggett eteteageet tetetggggg caggeggett 1140 geagggeetg ageggegeg gtgcattcaa ceagttgggt aatgceateg geatgggegt 1200 ggggcagaat getgegetga gtgegttgag taacgtcage acceaegtag acggtaacaa 1260 ccgccacttt gtagataaag aagatcgcgg catggcgaaa gagatcggcc agtttatgga 1320 tcagtatccg gaaatattcg gtaaaccgga ataccagaaa gatggctgga gttcgccgaa 1380 gacggacgac aaatcctggg ctaaagcgct gagtaaaccg gatgatgacg gtatgaccgg 1440 cgccagcatg gacaaattcc gtcaggcgat gggtatgatc aaaagcgcgg tggcgggtga 1500 taccggcaat accaacctga acctgcgtgg cgcgggcggt gcatcgctgg gtatcgatgc 1560 ggetgtegte ggegataaaa tagecaacat gtegetgggt aagetggeea acgeetgata 1620 atctgtgctg gcctgataaa gcggaaacga aaaaagagac ggggaagcct gtctcttttc 1680 ttattatgcg gtttatgcgg ttacctggac cggttaatca tcgtcatcga tctggtacaa 1740 acgcacattt tecegtteat tegegtegtt acgcgccaca ategegatgg catetteete 1800

		1			
•					
				,	
			ı		
			ı		
			ı		
			ı		

gtegeteaga ttgegeget gatggggaac geeggtgga atatagagaa actegeegge 1860 cagatggaga caegtetgeg ataaatetgt geegtaacgt gtttetatee geecetttag 1920 cagatagatt geggtttegt aateaacatg gtaatgeggt teegeetgtg egeeggeegg 1980 gateaceaca atatteatag aaagetgtet tgeacetaee gtategegg agatacegae 2040 gttegteate atettetee atetgggega eetgateggt teegeetgge teetgagat teetgagttg 2100

<210> 23

<211> 403

<212> PRT

<213> Erwinia amylovora

<400> 23

Met Ser Leu Asn Thr Ser Gly Leu Gly Ala Ser Thr Met Gln Ile Ser 1 5 10 15

Ile Gly Gly Ala Gly Gly Asn Asn Gly Leu Leu Gly Thr Ser Arg Gln 20 25 30

Asn Ala Gly Leu Gly Gly Asn Ser Ala Leu Gly Leu Gly Gly Gly Asn 35 40 45

Gln Asn Asp Thr Val Asn Gln Leu Ala Gly Leu Leu Thr Gly Met Met
50 55 60

Met Met Met Ser Met Met Gly Gly Gly Gly Leu Met Gly Gly Leu
65 70 75 80

Gly Gly Gly Leu Gly Asn Gly Leu Gly Gly Ser Gly Gly Leu Gly Glu 85 90 95

Gly Leu Ser Asn Ala Leu Asn Asp Met Leu Gly Gly Ser Leu Asn Thr 100 105 110

Leu Gly Ser Lys Gly Gly Asn Asn Thr Thr Ser Thr Thr Asn Ser Pro 115 120 125

Leu Asp Gln Ala Leu Gly Ile Asn Ser Thr Ser Gln Asn Asp Asp Ser 130 135 140

Thr Ser Gly Thr Asp Ser Thr Ser Asp Ser Ser Asp Pro Met Gln Gln 145 150 155 160

Leu Leu Lys Met Phe Ser Glu Ile Met Gln Ser Leu Phe Gly Asp Gly 165 170 175

Gln Asp Gly Thr Gln Gly Ser Ser Ser Gly Gly Lys Gln Pro Thr Glu 180 185 190

	•			
•				
		ı		
v				
•				
			•	
	•			

Gly Glu Gln Asn Ala Tyr Lys Lys Gly Val Thr Asp Ala Leu Ser Gly
195 200 205

Leu Met Gly Asn Gly Leu Ser Gln Leu Leu Gly Asn Gly Gly Leu Gly 210 225 220

Gly Gly Gln Gly Gly Asn Ala Gly Thr Gly Leu Asp Gly Ser Ser Leu 225 230 235 240

Gly Gly Lys Gly Leu Gln Asn Leu Ser Gly Pro Val Asp Tyr Gln Gln 245 250 255

Leu Gly Asn Ala Val Gly Thr Gly Ile Gly Met Lys Ala Gly Ile Gln 260 265 270

Ala Leu Asn Asp Ile Gly Thr His Arg His Ser Ser Thr Arg Ser Phe
280 285

Val Asn Lys Gly Asp Arg Ala Met Ala Lys Glu Ile Gly Gln Phe Met 290 295 300

Asp Gln Tyr Pro Glu Val Phe Gly Lys Pro Gln Tyr Gln Lys Gly Pro 305 310 315

Gly Gln Glu Val Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser 325 330 335

Lys Pro Asp Asp Gly Met Thr Pro Ala Ser Met Glu Gln Phe Asn 340 345 350

Lys Ala Lys Gly Met Ile Lys Arg Pro Met Ala Gly Asp Thr Gly Asn 355 360 365

Gly Asn Leu Gln Ala Arg Gly Ala Gly Gly Ser Ser Leu Gly Ile Asp 370 375 380

Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu 385 390 395 400

Gly Ala Ala

<210> 24

<211> 1288

<212> DNA

<213> Erwinia amylovora

•				
				·
			•	
	,			
		·		
		•		,

```
<400> 24
aagettegge atggeaegtt tgaeegttgg gteggeaggg taegtttgaa ttatteataa 60
gaggaatacg ttatgagtct gaatacaagt gggctgggag cgtcaacgat gcaaatttct 120
ateggeggtg egggeggaaa taaegggttg etgggtacea gtegeeagaa tgetgggttg 180
ggtggcaatt ctgcactggg gctgggcggc ggtaatcaaa atgataccgt caatcagctg 240
getggettae teaceggeat gatgatgatg atgageatga tgggeggtgg tgggetgatg 300
ggcggtggct taggcggtgg cttaggtaat ggcttgggtg gctcaggtgg cctgggcgaa 360
ggactgtcga acgcgctgaa cgatatgtta ggcggttcgc tgaacacgct gggctcgaaa 420
ggcggcaaca ataccacttc aacaacaaat tccccgctgg accaggcgct gggtattaac 480
tcaacgtccc aaaacgacga ttccacctcc ggcacagatt ccacctcaga ctccagcgac 540
ccgatgcagc agctgctgaa gatgttcagc gagataatgc aaagcctgtt tggtgatggg 600
caagatggca cccagggcag ttcctctggg ggcaagcagc cgaccgaagg cgagcagaac 660
gcctataaaa aaggagtcac tgatgcgctg tcgggcctga tgggtaatgg tctgagccag 720
ctccttggca acgggggact gggaggtggt cagggcggta atgctggcac gggtcttgac 780
ggttcgtcgc tgggcggcaa agggctgcaa aacctgagcg ggccggtgga ctaccagcag 840
ttaggtaacg ccgtgggtac cggtatcggt atgaaagcgg gcattcaggc gctgaatgat 900
ateggtacge acaggeacag tteaaccegt tetttegtea ataaaggega tegggegatg 960
gcgaaggaaa tcggtcagtt catggaccag tatcctgagg tgtttggcaa gccgcagtac 1020
cagaaaggcc cgggtcagga ggtgaaaacc gatgacaaat catgggcaaa agcactgagc 1080
aagccagatg acgacggaat gacaccagcc agtatggagc agttcaacaa agccaagggc 1140
atgatcaaaa ggcccatggc gggtgatacc ggcaacggca acctgcaggc acgcggtgcc 1200
ggtggttctt cgctgggtat tgatgccatg atggccggtg atgccattaa caatatggca 1260
                                                                  1288
cttggcaagc tgggcgcggc ttaagctt
```

<210> 25 <211> 1344 <212> DNA <213> Erwinia amylovora

<400> 25 atgtcaattc ttacgcttaa caacaatacc tcgtcctcgc cgggtctgtt ccagtccggg 60 ggggacaacg ggcttggtgg tcataatgca aattctgcgt tggggcaaca acccatcgat 120 cggcaaacca ttgagcaaat ggctcaatta ttggcggaac tgttaaagtc actgctatcg 180 ccacaatcag gtaatgcggc aaccggagcc ggtggcaatg accagactac aggagttggt 240 aacgetggeg geetgaacgg acgaaaagge acageaggaa ecaeteegea gtetgacagt 300 cagaacatge tgagtgagat gggcaacaae gggctggate aggccatcae gecegatgge 360 cagggeggeg ggeagategg egataateet ttaetgaaag ceatgetgaa gettattgea 420 cgcatgatgg acggccaaag cgatcagttt ggccaacctg gtacgggcaa caacagtgcc 480 tetteeggta ettetteate tggeggttee cettttaaeg atetateagg ggggaaggee 540 cetteeggea acteceette eggeaactae tetecegtea gtacettete acceecatee 600 acgccaacgt cccctacctc accgcttgat ttcccttctt ctcccaccaa agcagccggg 660 ggcagcacgc cggtaaccga tcatcctgac cctgttggta gcgcgggcat cggggccgga 720 aatteggtgg cetteaceag egeeggeget aateagaegg tgetgeatga caccattace 780 gtgaaagcgg gtcaggtgtt tgatggcaaa ggacaaacct tcaccgccgg ttcagaatta 840 ggcgatggcg gccagtctga aaaccagaaa ccgctgttta tactggaaga cggtgccagc 900 ctgaaaaacg tcaccatggg cgacgacggg gcggatggta ttcatcttta cggtgatgcc 960 aaaatagaca atctgcacgt caccaacgtg ggtgaggacg cgattaccgt taagccaaac 1020

				•		
					•	
	•					
			,			
		•				

agegeggca aaaaateeca egttgaaate actaacagtt cettegagca egeetetgac 1080 aagateetge agetgaatge egatactaac etgagegttg acaacgtgaa ggecaaagae 1140 tttggtactt ttgtacgcae taacggeggt caacagggta actgggatet gaatetgage 1200 catateageg cagaagaegg taagtteteg ttegttaaaa gegatagega ggggetaaac 1260 gteaatacea gtgatatete actgggtgat gttgaaaace actacaaagt geegatgtee 1320 gecaacetga aggtggetga atga

<210> 26

<211> 447

<212> PRT

<213> Erwinia amylovora

<400> 26

Met Ser Ile Leu Thr Leu Asn Asn Asn Thr Ser Ser Ser Pro Gly Leu

1 5 10 15

Phe Gln Ser Gly Gly Asp Asn Gly Leu Gly Gly His Asn Ala Asn Ser 20 25 30

Ala Leu Gly Gln Gln Pro Ile Asp Arg Gln Thr Ile Glu Gln Met Ala 35 40 45

Gln Leu Leu Ala Glu Leu Leu Lys Ser Leu Leu Ser Pro Gln Ser Gly 50 55 60

Asn Ala Ala Thr Gly Ala Gly Gly Asn Asp Gln Thr Thr Gly Val Gly 65 70 75 80

Asn Ala Gly Gly Leu Asn Gly Arg Lys Gly Thr Ala Gly Thr Thr Pro 85 90 95

Gln Ser Asp Ser Gln Asn Met Leu Ser Glu Met Gly Asn Asn Gly Leu 100 105 110

Asp Gln Ala Ile Thr Pro Asp Gly Gln Gly Gly Gln Ile Gly Asp 115 120 125

Asn Pro Leu Lys Ala Met Leu Lys Leu Ile Ala Arg Met Met Asp 130 135 140

Gly Gln Ser Asp Gln Phe Gly Gln Pro Gly Thr Gly Asn Asn Ser Ala 145 150 155 160

Ser Ser Gly Thr Ser Ser Ser Gly Gly Ser Pro Phe Asn Asp Leu Ser 165 170 175

Gly Gly Lys Ala Pro Ser Gly Asn Ser Pro Ser Gly Asn Tyr Ser Pro 180 185 190

	·.	
	•	
•		
	· .	
•		

Val S r Thr Phe Ser Pro Pro Ser Thr Pr Thr Ser Pro Thr Ser Pr 195 200 205

- Leu Asp Phe Pro Ser Ser Pro Thr Lys Ala Ala Gly Gly Ser Thr Pro 210 215 220
- Val Thr Asp His Pro Asp Pro Val Gly Ser Ala Gly Ile Gly Ala Gly 225 230 235 240
- Asn Ser Val Ala Phe Thr Ser Ala Gly Ala Asn Gln Thr Val Leu His 245 250 255
- Asp Thr Ile Thr Val Lys Ala Gly Gln Val Phe Asp Gly Lys Gly Gln 260 265 270
- Thr Phe Thr Ala Gly Ser Glu Leu Gly Asp Gly Gly Gln Ser Glu Asn 275 280 285
- Gln Lys Pro Leu Phe Ile Leu Glu Asp Gly Ala Ser Leu Lys Asn Val 290 295 300
- Thr Met Gly Asp Asp Gly Ala Asp Gly Ile His Leu Tyr Gly Asp Ala 305 310 315
- Lys Ile Asp Asn Leu His Val Thr Asn Val Gly Glu Asp Ala Ile Thr 325 330 335
- Val Lys Pro Asn Ser Ala Gly Lys Lys Ser His Val Glu Ile Thr Asn 340 345 350
- Ser Ser Phe Glu His Ala Ser Asp Lys Ile Leu Gln Leu Asn Ala Asp 355 360 365
- Thr Asn Leu Ser Val Asp Asn Val Lys Ala Lys Asp Phe Gly Thr Phe 370 375 380
- Val Arg Thr Asn Gly Gly Gln Gln Gly Asn Trp Asp Leu Asn Leu Ser 385 390 395 400
- His Ile Ser Ala Glu Asp Gly Lys Phe Ser Phe Val Lys Ser Asp Ser 405 410 415
- Glu Gly Leu Asn Val Asn Thr Ser Asp Ile Ser Leu Gly Asp Val Glu
 420 425 430
- Asn His Tyr Lys Val Pro Met Ser Ala Asn Leu Lys Val Ala Glu 435 440 445

			•	
				•
	,			
•				
	•			
			•	
•				
				•
		•		
		•		
		,		
		,		
		,		
		,		·
		,		
		,		

,

<210> 27 <211> 5517 <212> DNA <213> Erwinia amylovora

<400> 27 atggaattaa aatcactggg aactgaacac aaggcggcag tacacacagc ggcgcacaac 60 cctgtggggc atggtgttgc cttacagcag ggcagcagca gcagcagccc gcaaaatgcc 120 gctgcatcat tggcggcaga aggcaaaaat cgtgggaaaa tgccgagaat tcaccagcca 180 tctactgcgg ctgatggtat cagcgctgct caccagcaaa agaaatcctt cagtctcagg 240 ggctgtttgg ggacgaaaa attttccaga tcggcaccgc agggccagcc aggtaccacc 300 cacagcaaag gggcaacatt gcgcgatctg ctggcgcggg acgacggcga aacgcagcat 360 gaggeggeeg egecagatge ggegegtttg accepttegg geggegteaa acgeegeaat 420 atggacgaca tggccgggcg gccaatggtg aaaggtggca gcggcgaaga taaggtacca 480 acgcagcaaa aacggcatca gctgaacaat tttggccaga tgcgccaaac gatgttgagc 540 aaaatggete acceggette agecaacgee ggegategee tgeageatte accgeegeac 6.00 atcccgggta gccaccacga aatcaaggaa gaaccggttg gctccaccag caaggcaaca 660 acggcccacg cagacagagt ggaaatcgct caggaagatg acgacagcga attccagcaa 720 ctgcatcaac agcggctggc gcgcgaacgg gaaaatccac cgcagccgcc caaactcggc 780 gttgccacac cgattagcgc caggtttcag cccaaactga ctgcggttgc ggaaagcgtc 840 cttgagggga cagataccac gcagtcaccc cttaagccgc aatcaatgct gaaaggaagt 900 ggagccgggg taacgccgct ggcggtaacg ctggataaag gcaagttgca gctggcaccg 960 gataatccac ccgcgctcaa tacgttgttg aagcagacat tgggtaaaga cacccagcac 1020 tatctggcgc accatgccag cagcgacggt agccagcatc tgctgctgga caacaaaggc 1080 cacctgtttg atatcaaaag caccgccacc agctatagcg tgctgcacaa cagccacccc 1140 ggtgagataa agggcaagct ggcgcaggcg ggtactggct ccgtcagcgt agacggtaaa 1200 ageggeaaga tetegetggg gageggtaeg caaagteaca acaaaacaat getaagecaa 1260 ccgggggaag cgcaccgttc cttattaacc ggcatttggc agcatcctgc tggcgcagcg 1320 cggccgcagg gcgagtcaat ccgcctgcat gacgacaaaa ttcatatect gcatccggag 1380 ctgggcgtat ggcaatctgc ggataaagat acccacagcc agctgtctcg ccaggcagac 1440 ggtaagetet atgegetgaa agacaacegt accetgeaaa aceteteega taataaatee 1500 tcagaaaagc tggtcgataa aatcaaatcg tattccgttg atcagcgggg gcaggtggcg 1560 atcctgacgg atactcccgg ccgccataag atgagtatta tgccctcgct ggatgcttcc 1620 ccggagagcc atatttccct cagcctgcat tttgccgatg cccaccaggg gttattgcac 1680 gggaagtcgg agcttgaggc acaatctgtc gcgatcagcc atgggcgact ggttgtggcc 1740 gatagcgaag gcaagctgtt tagcgccgcc attccgaagc aaggggatgg aaacgaactg 1800 aaaatgaaag ccatgcctca gcatgcgctc gatgaacatt ttggtcatga ccaccagatt 1860 totggatttt tocatgacga ccacggccag cttaatgcgc tggtgaaaaa taacttcagg 1920 cagcagcatg cctgcccgtt gggtaacgat catcagtttc accccggctg gaacctgact 1980 gatgcgctgg ttatcgacaa tcagctgggg ctgcatcata ccaatcctga accgcatgag 2040 attcttgata tggggcattt aggcagcctg gcgttacagg agggcaagct tcactatttt 2100 gaccagetga ccaaagggtg gactggegeg gagteagatt gtaageaget gaaaaaagge 2160 ctggatggag cagcttatct actgaaagac ggtgaagtga aacgcctgaa tattaatcag 2220 agcacctcct ctatcaagca cggaacggaa aacgtttttt cgctgccgca tgtgcgcaat 2280 aaaccggagc cgggagatgc cctgcaaggg ctgaataaag acgataaggc ccaggccatg 2340 geggtgattg gggtaaataa atacetggeg etgaeggaaa aaggggaeat tegeteette 2400

. .

					caaaaaaaa	2460
				aaactctcag		
atcagcggcg	aactgaaaga	Cattcatgtc	gaccacaagc	agaacctgta	egeettgaet	2520 2500
cacgagggag	aggtgtttca	tcagccgcgt	gaagcctggc	agaatggtgc	egaaageage	2500
agctggcaca	aactggcgtt	gccacagagt	gaaagtaagc	taaaaagtct	ggacatgage	2040
				agcatcagct		
ggctggcacg	cctatgcggc	acctgaacgc	gggccgctgg	cggtgggtac	cagcggttca	2760
				aggtgatccc		
ttgacggtta	agctctcggc	tcagacgggg	ggaatgaccg	gcgccgaagg	gcgcaaggtc	2880
agcagtaaat	tttccgaaag	gateegegee	tatgcgttca	acccaacaat	gtccacgccg	2940
cgaccgatta	aaaatgctgc	ttatgccaca	cagcacggct	ggcaggggcg	tgaggggttg	3000
				tggatgcgca		
cataacgcgc	cacagccaga	tttgcagagc	aaactggaaa	ctctggattt	aggcgaacat	3120
ggcgcagaat	tgcttaacga	catgaagcgc	ttccgcgacg	aactggagca	gagtgcaacc	3180
cgttcggtga	ccgttttagg	tcaacatcag	ggagtgctaa	aaagcaacgg	tgaaatcaat	3240
				gctttaacgt		
ggtcaggatc	taagcaagtc	actgcaacag	gcagtacatg	ccacgccgcc	atccgcagag	3360
agtaaactgc	aatccatgct	ggggcacttt	gtcagtgccg	gggtggatat	gagtcatcag	3420
aaggggaga	tecegetaga	ccgccagcgc	gatccgaatg	ataaaaccgc	actgaccasa	-3480
				atgaactggc		
asactggtat	ctgaccataa	acccgatgcc	gatcagataa	aacagctgcg	ccagcagttc	3600
gatacgctgc	gtgaaaagcg	gtatgagage	aatccggtga	agcattacac	cgatatgggc	3660
ttcacccata	ataaggggct	ggaagcaaac	tatgatgcgg	tcaaagcctt	tatcaatgcc	3720
				ccgtactgga		
				ccctggacag		
				tetttgtgcc		
				cgctggatcg		
				ttggccgcga		
				cctatatgac		
agtggtaaca	gtaacgccag	tgactggttg	agcgcaaaac	ataaaatcag	cccggacttg	4140
				tacaaaacag		
egtateggeg	ecgetgegeg	acctaactt	atccatooct	tgacgcatgg	cacqttqacc	4260
				agcagggcag		
ceggeagaac	cyccycaaaa	asstataast	ctacatacca	gtatcaatct	GAACGAAGAC	4380
				ggctaagtgc		
ggcagtaaac	caaatggtgt	eactgcccgt	. gcccccgccg	ggtttagtg	cacgaetteg	4500
ctggccgccg	getegegtga	attactana	accetegge	: agtttggcag	cctgacgget	4560
gccagcaata	accycccaac	ettecteaat	ggggccggcg	cgggtgctaa	cttcccaca	4620
gctttagggg	ttgeecatte	acctacgcat	, gaagggaaac	: cggtcgggat	. ccccccggca	4680
tttacctcga	ccaatgtttc	ggeagegetg	gegetggate	accgtaccto	attagageace	4740
agcctggaat	: tgaagcgcgc	ggagccggtg	accagcaacg	atatcagcga	tetessee	4800
acgctgggaa	aacactttaa	ggatagege	acaacgaaga	tgettgeege	. coccaagag	4860
ttagatgacg	r ctaagcccgc	tgaacaactg	catattta	agcagcattt	. caytycaaaa	4000
gatgtcgtcg	gtgatgaacg	ctacgaggcg	grgcgcaaco	tgaaaaaact	. ggtgataegt	4000
caacaggctg	, cggacagcca	cagcatggaa	ttaggatct	ccagtcacag	g cacgacctac	
aataatctgt	: cgagaataaa	taatgacgg	attgtcgago	tgctacacae	acatttegat	5100
gcggcattac	cagcaagcag	tgccaaacgt	cttggtgaa	a tgatgaataa	. cgatccggca	2100
ctgaaagata	a ttattaagca	gctgcaaagt	acgccgttca	a gcagcgccag	g cgtgtcgatg	5160
gagctgaaag	g atggtctgcg	tgagcagac	g gaaaaagca	a tactggacgg	, taaggteggt	5220
cgtgaagaag	g tgggagtact	tttccagga	t cgtaacaac	t tgcgtgtta:	a atcggtcago	5280

	,	
·		·

gtcagtcagt ccgtcagcaa aagcgaaggc ttcaatacc cagcgctgtt actggggacg 5340 agcaacagcg ctgctatgag catggagcgc aacatcggaa ccattaattt taaatacggc 5400 caggatcgaa acaccccacg gcgatttacc ctggagggtg gaatagctca ggctaatccg 5460 caggtcgcat ctgcgcttac tgatttgaag aaggaagggc tggaaatgaa gagctaa 5517

<210> 28

<211> 1838

<212> PRT

<213> Erwinia amylovora

<400> 28

Met Glu Leu Lys Ser Leu Gly Thr Glu His Lys Ala Ala Val His Thr 1 5 10 15

Ala Ala His Asn Pro Val Gly His Gly Val Ala Leu Gln Gln Gly Ser
20 25 30

Ser Ser Ser Pro Gln Asn Ala Ala Ser Leu Ala Ala Glu Gly
35 40 45

Lys Asn Arg Gly Lys Met Pro Arg Ile His Gln Pro Ser Thr Ala Ala 50 55 60

Asp Gly Ile Ser Ala Ala His Gln Gln Lys Lys Ser Phe Ser Leu Arg
65 70 75 80

Gly Cys Leu Gly Thr Lys Lys Phe Ser Arg Ser Ala Pro Gln Gly Gln 85 90 95

Pro Gly Thr Thr His Ser Lys Gly Ala Thr Leu Arg Asp Leu Leu Ala 100 105 110

Arg Asp Asp Gly Glu Thr Gln His Glu Ala Ala Ala Pro Asp Ala Ala 115 120 125

Arg Leu Thr Arg Ser Gly Gly Val Lys Arg Arg Asn Met Asp Asp Met 130 135 140

Ala Gly Arg Pro Met Val Lys Gly Gly Ser Gly Glu Asp Lys Val Pro 145 150 155 160

Thr Gln Gln Lys Arg His Gln Leu Asn Asn Phe Gly Gln Met Arg Gln 165 170 175

Thr Met Leu Ser Lys Met Ala His Pro Ala Ser Ala Asn Ala Gly Asp 180 185 190

Arg Leu Gln His Ser Pro Pro His Ile Pro Gly Ser His His Glu Ile

•				
				•
		•		
				•,
				,
	•			
	•			
	,			
	•			
			•	
•				
,	<u> </u>			

	٠	195					200					205			
Lys	Glu 210	Glu	Pro	Val	Gly	Ser 215	Thr	Ser	Lys	Ala	Thr 220	Thr	Ala	His	Ala
Авр 225	Arg	Val	Glu	Ile	Ala 230	Gln	Glu	Asp	Asp	Авр 235	Ser	Glu	Phe	Gl'n	Gln 240
Leu	His	Gln	Gln	Arg 245	Leu	Ala	Arg	Glu	Arg 250	Glu	Asn	Pro	Pro	Gln 255	Pro
Pro	Lys	Leu	Gly 260	Val	Ala	Thr	Pro	11e 265	Ser	Ala	Arg	Phe	Gln 270	Pro	Lys
Leu	Thr										Thr		Thr	Thr	Gln
Ser	Pro 290	Leu	Lys	Pro	Gln	Ser 295	Met	Leu	Lys	Ğlу	Ser 300	Gly	Āla	Gly	-Val
Thr 305		Leu	Ala	Val	Thr 310	Leu	Asp	Lys	Gly	Lys 315		Gln	Leu	Ala	9ro 320
Asp	Asn	Pro	Pro	Ala 325		Asn	Thr	Leu	Leu		Gln	Thr	Leu	Gly 335	
Asp	Thr	Gln	His 340		Leu	Ala	His	His 345		Ser	Ser	Авр	Gly 350	Ser	Gln
His	Leu	355		Asp	Asn	Lys	Gly 360		Lev	. Phe	Авр	365		Ser	Thr
Ala	370		Tyr	Ser	Val	Leu 375		Asn	Ser	Hi:	380		Glu	ılle	Lys
Gly 385		Lev	Ala	Gln	390		Thr	: Gly	ser Ser	795 395		· Val	. Ası	Gl _y	400
Ser	: Gly	/ Lys	: Ile	Ser 405		Gly	Ser	: Gly	410		ı Ser	Hi:	s Ası	415	
Met	. Let	ı Ser	420		Gly	Glu	ı Ala	425		g Sei	r Lei	ı Leı	1 Th: 430	r Gly	y Ile
Tr	Gl:	435		Ala	a Gly	Ala	440		g Pro	o Gl	n Gly	44		r Il	e Ar
Let	ı Hi	B ASI	aa c	Lys	; Ile	His	ı Ile	e Le	u Hi	s Pr	o Gl	ı L	u Gl	y Va	l Tr

			,	
		•		
•				
•				
	·			

	450					455					460				
Gln 465	Ser	Ala	Asp	Lys	Asp 470	Thr	His	Sr	Gln	Leu 475	Ser	Arg	Gln	Ala	Asp 480
Gly	ГÀв	Гей	Tyr	Ala 485	Leu	Lys	Asp		Arg 490		Leu	Gln	Asn	Leu 495	Ser
Asp	Asn	Lys	Ser 500	Ser	Glu	Lys	Leu	Val 505	Asp	Lys	Ile	Lys	Ser 510	Tyr	Ser
Val	Asp	Gln 515	Arg	Gly	Gln	Val	Ala 520	Ile	Leu	Thr	Asp	Thr 525	Pro	Gly	Arg
His	Lys 530	Met	Ser	Ile	Met	Pro 535	Ser	Leu	qaA	Ala	Ser 540	Pro	Glu	Ser	His
Ile 545	Ser	Leu	Ser	Leu	H18 550	Phe	Ala	Asp	Ala	His 555	-Gln	Gly	Leu	Leu	His 560
Gly	Lys	Ser		Leu 565		Ala	Gln	Ser	Val 570	Ala	Ile	Ser	His	Gly 575	Arg
Leu	Val	Val	Ala 580	Asp	Ser	Glu	Gly	Lys 585	Leu	Phe	Ser	Ala	Ala 590	Ile	Pro
Lys	Gln	Gly 595		Gly	Asn	Glu	Leu 600		Met	Lys	Ala	Met 605	Pro	Gln	His
Ala	Leu 610	Asp	Glu	His	Phe	Gly 615		Авр	His	Gln	11e 620		Gly	Phe	Phe
H1s 625	_	Asp	His	Gly	Gln 630		Asn	Ala	Leu	Val 635		Asn	Asn	Phe	Arg 640
Gln	Gln	His	Ala	Cys 645		Leu	Gly	Asn	Авр 650		Gln	Phe	His	Pro 655	
Trp	Asn	Leu	Thr 660		Ala	Leu	Val	. Ile 665		Asn	Glr	Leu	Gly 670		Hi
His	Thr	675		Glu	Pro	His	680		Leu	a Asp	Met	: Gly 685		Lev	Gl
_	_	- •					. T		. 174 -		. Dh	. 200	. G1-	. Les	Th

690

695

16

700

,				٥
			,	
	·			
			•	
•				

Leu Asp Gly Ala Ala Tyr Leu Leu Lys Asp Gly Glu Val Lys Arg Leu Asn Ile Asn Gln Ser Thr Ser Ser Ile Lys His Gly Thr Glu Asn Val Phe Ser Leu Pro His Val Arg Asn Lys Pro Glu Pro Gly Asp Ala Leu Gln Gly Leu Asn Lys Asp Asp Lys Ala Gln Ala Met Ala Val Ile Gly Val Asn Lys Tyr Leu Ala Leu Thr Glu Lys Gly Asp Ile Arg Ser Phe Gln Ile Lys Pro Gly Thr Gln Gln Leu Glu Arg Pro Ala Gln Thr Leu Ser Arg Glu Gly Ile Ser Gly Glu Leu Lys Asp Ile His Val Asp His Lys Gln Asn Leu Tyr Ala Leu Thr His Glu Gly Glu Val Phe His Gln Pro Arg Glu Ala Trp Gln Asn Gly Ala Glu Ser Ser Trp His Lys Leu Ala Leu Pro Gln Ser Glu Ser Lys Leu Lys Ser Leu Asp Met Ser His Glu His Lys Pro Ile Ala Thr Phe Glu Asp Gly Ser Gln His Gln Leu Lys Ala Gly Gly Trp His Ala Tyr Ala Ala Pro Glu Arg Gly Pro Leu Ala Val Gly Thr Ser Gly Ser Gln Thr Val Phe Asn Arg Leu Met Gln Gly Val Lys Gly Lys Val Ile Pro Gly Ser Gly Leu Thr Val Lys Leu Ser Ala Gln Thr Gly Gly Met Thr Gly Ala Glu Gly Arg Lys Val Ser S r Lys Phe Ser Glu Arg Ile Arg Ala Tyr Ala Phe Asn Pro Thr

	·		
	•	·	
		·	

965 970 975

- Met Ser Thr Pro Arg Pr Ile Lys Asn Ala Ala Tyr Ala Thr Gln His 980 985 990
- Gly Trp Gln Gly Arg Glu Gly Leu Lys Pro Leu Tyr Glu Met Gln Gly 995 1000 1005
- Ala Leu Ile Lys Gln Leu Asp Ala His Asn Val Arg His Asn Ala Pro 1010 1015 1020
- Gln Pro Asp Leu Gln Ser Lys Leu Glu Thr Leu Asp Leu Gly Glu His 1025 1030 1035 1040
- Gly Ala Glu Leu Leu Asn Asp Met Lys Arg Phe Arg Asp Glu Leu Glu 1045 1050 1055
- Gln Ser Ala Thr Arg Ser Val Thr Val Leu Gly Gln His Gln Gly Val 1060 1065 1070
- Leu Lys Ser Asn Gly Glu Ile Asn Ser Glu Phe Lys Pro Ser Pro Gly 1075 1080 1085
- Lys Ala Leu Val Gln Ser Phe Asn Val Asn Arg Ser Gly Gln Asp Leu 1090 1095 1100
- Ser Lys Ser Leu Gln Gln Ala Val His Ala Thr Pro Pro Ser Ala Glu 1105 1110 1115 1120
- Ser Lys Leu Gln Ser Met Leu Gly His Phe Val Ser Ala Gly Val Asp 1125 1130 1135
- Met Ser His Gln Lys Gly Glu Ile Pro Leu Gly Arg Gln Arg Asp Pro 1140 1145 1150
- Asn Asp Lys Thr Ala Leu Thr Lys Ser Arg Leu Ile Leu Asp Thr Val 1155 1160 1165
- Thr Ile Gly Glu Leu His Glu Leu Ala Asp Lys Ala Lys Leu Val Ser 1170 1175 1180
- Asp His Lys Pro Asp Ala Asp Gln Ile Lys Gln Leu Arg Gln Gln Phe 1185 1190 1195 1200
- Asp Thr Leu Arg Glu Lys Arg Tyr Glu Ser Asn Pro Val Lys His Tyr 1205 1210 1215
- Thr Asp Met Gly Phe Thr His Asn Lys Ala L u Glu Ala Asn Tyr Asp

		•					
	-						
•	•						
•							
				•			
			•				
				•	,		

1220 1225 1230

Ala Val Lys Ala Phe Ile Asn Ala Phe Lys Lys Glu His His Gly Val 1235 1240 1245

Asn Leu Thr Thr Arg Thr Val Leu Glu Ser Gln Gly Ser Ala Glu Leu 1250 1255 1260

Ala Lys Lys Leu Lys Asn Thr Leu Leu Ser Leu Asp Ser Gly Glu Ser 1265 1270 1275 1280

Met Ser Phe Ser Arg Ser Tyr Gly Gly Gly Val Ser Thr Val Phe Val 1285 1290 1295

Pro Thr Leu Ser Lys Lys Val Pro Val Pro Val Ile Pro Gly Ala Gly 1300 1305 1310

Ile Thr Leu Asp Arg Ala Tyr Asn Leu Ser Phe Ser Arg Thr Ser Gly
1315 1320 1325

Gly Leu Asn Val Ser Phe Gly Arg Asp Gly Gly Val Ser Gly Asn Ile 1330 1335 1340

Met Val Ala Thr Gly His Asp Val Met Pro Tyr Met Thr Gly Lys Lys 1345 1350 1355 1360

Thr Ser Ala Gly Asn Ala Ser Asp Trp Leu Ser Ala Lys His Lys Ile 1365 1370 1375

Ser Pro Asp Leu Arg Ile Gly Ala Ala Val Ser Gly Thr Leu Gln Gly 1380 1385 1390

Thr Leu Gln Asn Ser Leu Lys Phe Lys Leu Thr Glu Asp Glu Leu Pro 1395 1400 1405

Gly Phe Ile His Gly Leu Thr His Gly Thr Leu Thr Pro Ala Glu Leu 1410 1415 1420

Leu Gln Lys Gly Ile Glu His Gln Met Lys Gln Gly Ser Lys Leu Thr 1425 1430 1435 1440

Phe Ser Val Asp Thr Ser Ala Asn Leu Asp Leu Arg Ala Gly Ile Asn 1445 1450 1455

Leu Asn Glu Asp Gly Ser Lys Pro Asn Gly Val Thr Ala Arg Val Ser 1460 1465 1470

Ala Gly Leu Ser Ala Ser Ala Asn Leu Ala Ala Gly Ser Arg Glu Arg

	·
·	
• • • • • • • • • • • • • • • • • • •	

1475 1480 1485

Ser Thr Thr S r Gly Gln Phe Gly Ser Thr Thr Ser Ala Ser Asn Asn 1490 1495 1500

Arg Pro Thr Phe Leu Asn Gly Val Gly Ala Gly Ala Asn Leu Thr Ala 1505 1510 1515 1520

Ala Leu Gly Val Ala His Ser Ser Thr His Glu Gly Lys Pro Val Gly 1525 1530 1535

Ile Phe Pro Ala Phe Thr Ser Thr Asn Val Ser Ala Ala Leu Ala Leu 1540 1545 1550

Asp Asn Arg Thr Ser Gln Ser Ile Ser Leu Glu Leu Lys Arg Ala Glu 1555 1560 1565

Pro Val Thr Ser Asn Asp The Ser Glu Lou Thr Ser Thr Leu Gly Lys
1570 1575 1580

His Phe Lys Asp Ser Ala Thr Thr Lys Met Leu Ala Ala Leu Lys Glu 1585 1590 1595 1600

Leu Asp Asp Ala Lys Pro Ala Glu Gln Leu His Ile Leu Gln Gln His
1605 1610 1615

Phe Ser Ala Lys Asp Val Val Gly Asp Glu Arg Tyr Glu Ala Val Arg 1620 1625 1630

Asn Leu Lys Lys Leu Val Ile Arg Gln Gln Ala Ala Asp Ser His Ser 1635 1640 1645

Met Glu Leu Gly Ser Ala Ser His Ser Thr Thr Tyr Asn Asn Leu Ser 1650 1655 1660

Arg Ile Asn Asn Asp Gly Ile Val Glu Leu Leu His Lys His Phe Asp 1665 1670 1675 1680

Ala Ala Leu Pro Ala Ser Ser Ala Lys Arg Leu Gly Glu Met Met Asn 1685 1690 1695

Asn Asp Pro Ala Leu Lys Asp Ile Ile Lys Gln Leu Gln Ser Thr Pro 1700 1705 1710

Phe Ser Ser Ala Ser Val Ser Met Glu Leu Lys Asp Gly Leu Arg Glu 1715 1720 1725

Gln Thr Glu Lys Ala Ile Leu Asp Gly Lys Val Gly Arg Glu Glu Val

	0			
	•		•	
		,		
		١		
				·

1730 1735 1740

Gly Val Leu Phe Gln Asp Arg Asn Asn Leu Arg Val Lys Ser Val Ser 1745 1750 1755 1760

Val Ser Gln Ser Val Ser Lys Ser Glu Gly Phe Asn Thr Pro Ala Leu 1765 1770 1775

Leu Leu Gly Thr Ser Asn Ser Ala Ala Met Ser Met Glu Arg Asn Ile 1780 1785 1790

Gly Thr Ile Asn Phe Lys Tyr Gly Gln Asp Gln Asn Thr Pro Arg Arg 1795 1800 1805

Phe Thr Leu Glu Gly Gly Ile Ala Gln Ala Asn Pro Gln Val Ala Ser 1810 1815 1820

Ala Leu Thr Asp Leu Lys Lys Glu Gly Leu Glu Met Lys Ser 1825 1830 1835

<210> 29

<211> 420

<212> DNA

<213> Erwinia amylovora

<400> 29

atgacategt cacageageg ggttgaaagg tttttacagt attteteege egggtgtaaa 60 acgeecatac atetgaaaga egggtgtee geectgtata acgaacaaga tgaggaggeg 120 geggtgetgg aagtacegea acacagegac ageetgttac tacactgeeg aateattgag 180 getgacecac aaacttcaat aaccetgtat tegatgetat tacagetgaa ttttgaaatg 240 geggecatge geggetgttg getggegetg gatgaactge acaacgtgeg tttatgtttt 300 gaacatgegg tggagatet ggatgaagea agttttageg atategttag egggetata 260 gaacatgegg cagaagtgeg tgagtatata gegeaattag acgagagtag egggeataa 420

<210> 30

<211> 139

<212> PRT

<213> Erwinia amylovora

<400> 30

Met Thr Ser Ser Gln Gln Arg Val Glu Arg Phe Leu Gln Tyr Phe Ser 1 5 10 15

Ala Gly Cys Lys Thr Pro Ile His Leu Lys Asp Gly Val Cys Ala Leu 20 25 30

Tyr Asn Glu Gln Asp Glu Glu Ala Ala Val Leu Glu Val Pro Gln His

		•		
·				
			•	
				-
		·	,	

PCT/US99/23181 WO 00/20452

45

35 Ser Asp Ser Leu Leu Leu His Cys Arg Ile Ile Glu Ala Asp Pr Gln

40

55 50

Thr Ser Ile Thr Leu Tyr Ser Met Leu Leu Gln Leu Asn Phe Glu Met 70 75

Ala Ala Met Arg Gly Cys Trp Leu Ala Leu Asp Glu Leu His Asn Val 90

Arg Leu Cys Phe Gln Gln Ser Leu Glu His Leu Asp Glu Ala Ser Phe 105 100

Ser Asp Ile Val Ser Gly Phe Ile Glu His Ala Ala Glu Val Arg Glu . 120 115

Tyr Ile Ala Gin Leu Asp Glu Sor Ser Ala Ala 135 130

<210> 31

<211> 341

<212> PRT

<213> Pseudomonas syringae

Met Gln Ser Leu Ser Leu Asn Ser Ser Ser Leu Gln Thr Pro Ala Met 10 5

Ala Leu Val Leu Val Arg Pro Glu Ala Glu Thr Thr Gly Ser Thr Ser 20

Ser Lys Ala Leu Gln Glu Val Val Lys Leu Ala Glu Glu Leu Met 35 ... 40 ... 45

Arg Asn Gly Gln Leu Asp Asp Ser Ser Pro Leu Gly Lys Leu Leu Ala 55 50

Lys Ser Met Ala Ala Asp Gly Lys Ala Gly Gly Gly Ile Glu Asp Val 70 75 65

Ile Ala Ala Leu Asp Lys Leu Ile His Glu Lys Leu Gly Asp Asn Phe 90

Gly Ala Ser Ala Asp Ser Ala Ser Gly Thr Gly Gln Gln Asp Leu Met 105 100

			/
			_
			,
		•	
•			
•			
	•		

Thr Gln Val Leu Asn Gly Leu Ala Lys Ser Met Leu Asp Asp Leu Leu 115 120 125

Thr Lys Gln Asp Gly Gly Thr Ser Ph Ser Glu Asp Asp Met Pro Met 130 135 140

Leu Asn Lys Ile Ala Gln Phe Met Asp Asp Asn Pro Ala Gln Phe Pro 145 150 155 160

Lys Pro Asp Ser Gly Ser Trp Val Asn Glu Leu Lys Glu Asp Asn Phe 165 170 175

Leu Asp Gly Asp Glu Thr Ala Ala Phe Arg Ser Ala Leu Asp Ile Ile 180 185 190

Gly Gln Gln Leu Gly Asn Gln Gln Ser Asp Ala Gly Ser Leu Ala Gly
195 200 205

Thr Gly Gly Leu Gly Thr Pro Ser Ser Phe Ser Asn Asn Ser Ser 210 215 220

Val Met Gly Asp Pro Leu Ile Asp Ala Asn Thr Gly Pro Gly Asp Ser 225 230 235 240

Gly Asn Thr Arg Gly Glu Ala Gly Gln Leu Ile Gly Glu Leu Ile Asp 245 250 255

Arg Gly Leu Gln Ser Val Leu Ala Gly Gly Gly Leu Gly Thr Pro Val

Asn Thr Pro Gln Thr Gly Thr Ser Ala Asn Gly Gly Gln Ser Ala Gln
275
280
285

Asp Leu Asp Gln Leu Leu Gly Gly Leu Leu Leu Lys Gly Leu Glu Ala 290 295--- 300---

Thr Leu Lys Asp Ala Gly Gln Thr Gly Thr Asp Val Gln Ser Ser Ala 305 310 315 320

Ala Gln Ile Ala Thr Leu Leu Val Ser Thr Leu Leu Gln Gly Thr Arg 325 330 335

Asn Gln Ala Ala Ala 340

<210> 32 <211> 1026

		•	
			,
•			
••	·		
	•		

<212> DNA <213> Pseudomonas syringae

<400> 32 atgcagagtc tcagtcttaa cagcageteg etgcaaacee eggcaatgge cettgteetg 60 gtacgtcctg aagccgagac gactggcagt acgtcgagca aggcgcttca ggaagttgtc 120 gtgaagetgg ccgaggaact gatgcgcaat ggtcaactcg acgacagete gccattggga 180 aaactgttgg ccaagtcgat ggccgcagat ggcaaggcgg gcggcggtat tgaggatgtc 240 ategetgege tggacaaget gatecatgaa aageteggtg acaacttegg egegtetgeg 300 aagtcgatgc tcgatgatct tctgaccaag caggatggcg ggacaagctt ctccgaagac 420 gatatgccga tgctgaacaa gatcgcgcag ttcatggatg acaatcccgc acagtttccc 480 aageeggaet egggeteetg ggtgaaegaa etcaaggaag acaaetteet tgatggegae 540 gaaacggetg egtteegtte ggeactegae ateattggee ageaactggg taateageag 600 agtgacgctg gcagtctggc agggacgggt ggaggtctgg gcactccgag cagtttttcc 660 aacaactcgt ccgtgatggg tgatccgctg atcgacgcca ataccggtcc cggtgacagc 720 ggcaataccc gtggtgaagc ggggcaactg atcggcgagc ttatcgaccg tggcctgcaa 780 teggtattgg ceggtggtgg actgggcaca ceegtaaaca eccegeagae eggtaegteg 840 gegaatggeg gacagteege teaggatett gateagttge tgggeggett getgeteaag 900 ggcctggagg caacgctcaa ggatgccggg caaacaggca ccgacgtgca gtcgagcgct 960 gegcaaateg ceacettget ggteagtacg etgetgeaag geaceegeaa teaggetgea 1020 1026 gcctga

<210> 33

<211> 1729

<212> DNA

<213> Pseudomonas syringae

<400> 33 tecaettege tgattttgaa attggeagat teatagaaac gtteaggtgt ggaaateagg 60 ctgagtgcgc agatttcgtt gataagggtg tggtactggt cattgttggt catttcaagg 120 cetetgagtg eggtgeggag caataceagt etteetgetg gegtgtgeae aetgagtege 180 aggcataggc atttcagttc cttgcgttgg ttgggcatat aaaaaaagga acttttaaaa 240 acagtgcaat gagatgccgg caaaacggga accggtcgct gcgctttgcc actcacttcg 300 agcaagetea accecaaaca tecacatece tategaacgg acagegatae ggecaettge 360 tetggtaaac cetggagetg gegteggtee aattgeecac ttagegaggt aacgeageat 420 gageategge ateacacece ggeegeaaca gaccaceaeg ceaetegatt ttteggeget 480 aageggeaag agteeteaac caaacaegtt eggegageag aacaeteage aagegatega 540 cccgagtgca ctgttgttcg gcagcgacac acagaaagac gtcaacttcg gcacgcccga 600 cagcaccgtc cagaatccgc aggacgccag caagcccaac gacagccagt ccaacatcgc 660 taaattgatc agtgcattga tcatgtcgtt gctgcagatg ctcaccaact ccaataaaaa 720 graggarace aatraggaar agretgatag craggeteet tteragaara arggragget 780 cggtacaccg tcggccgata gcgggggcgg cggtacaccg gatgcgacag gtggcggcgg 840 cggtgatacg ccaagcgcaa caggcggtgg cggcggtgat actccgaccg caacaggcgg 900 tggeggeage ggtggeggeg geacacceae tgcaacaggt ggeggeageg gtggeacace 960 cactgcaaca ggcggtggcg agggtggcgt aacaccgcaa atcactccgc agttggccaa 1020 ccctaaccgt acctcaggta ctggctcggt gtcggacacc gcaggttcta ccgagcaagc 1080 cggcaagatc aatgtggtga aagacaccat caaggtcggc gctggcgaag tctttgacgg 1140

				
	`			
			•	
	,			
•				
,				
			•	

ccacggegca accttcactg ccgacaaatc tatgggtaac ggagaccagg gcgaaaatca 1200 gaagcccatg ttcgagctgg ctgaaggcgc tacgttgaag aatgtgaacc tgggtgagaa 1260 cgaggtcgat ggcatccacg tgaaagccaa aaacgctcag gaagtcacca ttgacaacgt 1320 gcatgccag aacgtcggtg aagacctgat tacggtcaaa ggcgagggag gcgcaagcggt 1380 cactaatctg aacatcaaga acagcagtgc caaaggtgca gacgacaagg ttgtccagct 1440 caacgccaac actcacttga aaatcgacaa cttcaaggcc gacgatttcg gcacgatggt 1500 tcgcaccaac ggtggcaagc agtttgatga catgagcatc gagctgaacg gcatcgaagc 1560 taaccacggc aagttcgccc tggtgaaaag cgacagtgac gatctgaagc tggcaacggg 1620 caacgagctt tgaatccaga caagtagct gaaaaaaggg ggtggactc 1729

<210> 34

<211> 424

<212> PRT

<213> Pseudomonas syringae

<400> 34

Met Ser Ile Gly Ile Thr Pro Arg Pro Gln Gln Thr Thr Thr Pro Leu

1 5 10 15

Asp Phe Ser Ala Leu Ser Gly Lys Ser Pro Gln Pro Asn Thr Phe Gly 20 25 30

Glu Gln Asn Thr Gln Gln Ala Ile Asp Pro Ser Ala Leu Leu Phe Gly
35 40 45

Ser Asp Thr Gln Lys Asp Val Asn Phe Gly Thr Pro Asp Ser Thr Val

Gln Asn Pro Gln Asp Ala Ser Lys Pro Asn Asp Ser Gln Ser Asn Ile 65 70 75 80

Ala Lys Leu Ile Ser Ala Leu Ile Met Ser Leu Leu Gln Met Leu Thr 85 90 95

Asn Ser Asn Lys Lys Gln Asp Thr Asn Gln Glu Gln Pro Asp Ser Gln 100 105 110

Ala Pro Phe Gln Asn Asn Gly Gly Leu Gly Thr Pro Ser Ala Asp Ser 115 120 125

Gly Gly Gly Thr Pro Asp Ala Thr Gly Gly Gly Gly Asp Thr 130 135 140

Pro Ser Ala Thr Gly Gly Gly Gly Asp Thr Pro Thr Ala Thr Gly 145 150 155 160

Gly Gly Ser Gly Gly Gly Gly Thr Pro Thr Ala Thr Gly Gly Gly

•			
•	•		
	•		
	•		
	•		
	•		
	•		
	•		
	•		
	•		
	•		
	•		

Ser Gly Gly Thr Pro Thr Ala Thr Gly Gly Gly Glu Gly Gly Val Thr Pro Gln Ile Thr Pro Gln Leu Ala Asn Pro Asn Arg Thr Ser Gly Thr Gly Ser Val Ser Asp Thr Ala Gly Ser Thr Glu Gln Ala Gly Lys Ile Asn Val Val Lys Asp Thr Ile Lys Val Gly Ala Gly Glu Val Phe Asp Gly His Gly Ala Thr Phe Thr Ala Asp Lys Ser Met Gly Asn Gly Asp Gln Gly Glu Asn Gln Lys Pro Met Phe Glu Leu Ala Glu-Gly Ala Thr Leu Lys Asn Val Asn Leu Gly Glu Asn Glu Val Asp Gly Ile His Val Lys Ala Lys Asn Ala Gln Glu Val Thr Ile Asp Asn Val His Ala Gln Asn Val Gly Glu Asp Leu Ile Thr Val Lys Gly Glu Gly Gly Ala Ala Val Thr Asn Leu Asn Ile Lys Asn Ser Ser Ala Lys Gly Ala Asp Asp Lys Val Val Gln Leu Asn Ala Asn Thr His Leu Lys Ile Asp Asn Phe Lys Ala Asp Asp Phe Gly Thr Met Val Arg Thr Asn Gly Gly Lys Gln Phe Asp Asp Met Ser Ile Glu Leu Asn Gly Ile Glu Ala Asn His Gly Lys Phe Ala Leu Val Lys Ser Asp Ser Asp Asp Leu Lys Leu Ala Thr

Ala Ser Thr Gln His Thr Glu Leu

Gly Asn Ile Ala Met Thr Asp Val Lys His Ala Tyr Asp Lys Thr Gln

				*	
	•				
			•		
					•
•					
					•
					~.

420

<210> 35

<211> 344

<212> PRT

<213> Pseudomonas solanacearum

<220>

<223> Description of Unknown Organism: Pseudomonas solanacearum

<400> 35

Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln
1 5 10 15

Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser
20 25 30

Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile 35 40 45

Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly 50 55 60

Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala 65 70 75 80

Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser 85 90 95

Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met
100 105 110

Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala115 120 125

Ala Leu His Met Gln Gln Pro Gly Gly Asn Asp Lys Gly Asn Gly Val 130 135 140

Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala 145 150 155 160

Glu Ala Leu Gln Glu Ile Glu Gln Ile Leu Ala Gln Leu Gly Gly Gly 165 170 175

Gly Ala Gly Gly Ala Gly Gly Gly Val Gly Gly Ala Gly Gly 180 185 190

	•			
1		•		
			•	
				•
			•	

Ala Asp Gly Gly Ser Gly Ala Gly Gly Ala Gly Gly Ala Asn Gly Ala 200 Asp Gly Gly Asn Gly Val Asn Gly Asn Gln Ala Asn Gly Pro Gln Asn Ala Gly Asp Val Asn Gly Ala Asn Gly Ala Asp Asp Gly Ser Glu Asp 235 230 225 Gln Gly Gly Leu Thr Gly Val Leu Gln Lys Leu Met Lys Ile Leu Asn 250 245 Ala Leu Val Gln Met Met Gln Gln Gly Gly Leu Gly Gly Asn Gln 265 Ala Gln Gly Gly Ser Lys Gly Ala Gly Asn Ala Ser Pro Ala Ser Gly 280 Ala Asn Pro Gly Ala Asn Gln Pro Gly Ser Ala Asp Asp Gln Ser Ser 300 295 Gly Gln Asn Asn Leu Gln Ser Gln Ile Met Asp Val Val Lys Glu Val 320 315 310 305 Val Gln Ile Leu Gln Gln Met Leu Ala Ala Gln Asn Gly Gly Ser Gln 335 330 325 Gln Ser Thr Ser Thr Gln Pro Met 340 <210> 36 <211> 1035 <212> DNA <213> Pseudomonas solanacearum <400> 36 atgtcagtcg gaaacatcca gagcccgtcg aacctcccgg gtctgcagaa cctgaacctc 60

atgreageg gaaacatca gageegteg aaceteegg gtetgeagaa cetgaacete 60 aacaccaaca ceaacagea geaategge cagteegte aagacetgat caageaggte 120 gagaaggaca teeteaacat categeagee etegtgeaga aggeegeaca gteggeggge 180 ggeaacaceg gtaacacegg caacgegeeg gegaaggaeg geaatgeeaa eegegggge 240 aacgaecega geaagaacga ceegageaag ageeaggete egeagtegge caacaagace 300 ggeaacgteg acgaegeaa caaccaggat cegatgeaag egetgatgea getgetggaa 360 gacetggtga agetgetgaa ggeggeeet caacaggee eaacggeeg tgggeggee caacggeee aagggtgee gaggegeeg geggeggee ggeggggeg geggeggeg tgetgggee 540 ggegggeggg gtggeggtgt eggeggtget ggtggeggg atggegggg atggegggt 600

·	 	 				
		,	•			
•						
				•		
		•				
					•	

```
ggcgcaggcg gtgcgaacgg cgccgacggc ggcaatggcg tgaacggcaa ccaggcgaac 660
ggcccgcaga acgcaggcga tgtcaacggt gccaacggcg cggatgacgg cagcgaagac 720
cagggeggee teaceggegt getgeaaaag etgatgaaga teetgaaege getggtgeag 780
atgatgcage aaggeggeet eggeggegge aaccaggege agggeggete gaagggtgee 840
ggcaacgcct cgccggcttc cggcgcgaac ccgggcgcga accagcccgg ttcggcggat 900
gatcaatcgt ccggccagaa caatctgcaa tcccagatca tggatgtggt gaaggaggtc 960
gtccagatcc tgcagcagat gctggcggcg cagaacggcg gcagccagca gtccacctcg 1020
                                                                   1035
acgcagccga tgtaa
<210> 37
<211> 26
<212> PRT
<213> Xanthomonas campestris pv. glycines
Thr Leu Ile Glu Leu Met Ile Val Val Ala Ile Ile Ala Ile Leu Ala
                                      10
                  5
  1
Ala Ile Ala Leu Pro Ala Tyr Gln Asp Tyr
             20
<210> 38
<211> 20
<212> PRT
<213> Xanthomonas campestris pv. pelargonii
 Ser Ser Gln Gln Ser Pro Ser Ala Gly Ser Glu Gln Gln Leu Asp Gln
                                      10
 Leu Leu Ala Met
              20
 <210> 39
 <211> 13
 <212> PRT
 <213> Phytophthora megasperma
 <400> 39
 Val Trp Asn Gln Pro Val Arg Gly Phe Lys Val Tyr Glu
```

			 		
,					
				•	
	•				
	•				
			•		
					*
no.					
		•			
					•
•				-	
_					
-					
					•

INTERNATIONAL SEARCH REPORT

¹ Application No PCT/US 99/23181

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07K14/195 C12N15/31 A01H5/10

C12N15/82

C12N1/21

C12N5/10

A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	NÜRNBERGER T, ET AL.: "High Affinity Binding of a Fungal Oligopeptide Elicitor to arsley Plasma Membranes Triggers Multiple Defense Responses" CELL, vol. 78, no. 3, 12 August 1994 (1994-08-12), pages 449-460, XP000882736 Cambridge, Mass. cited in the application the whole document	1,2,10, 11, 19-23, 30-32, 36-38
A	WO 98 32844 A (CORNELL RES FOUNDATION INC) 30 July 1998 (1998-07-30) the whole document	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international filing date. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international filing date but later than the priority date claimed.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person stilled in the art. "8." document member of the same patent tamily
Date of the actual completion of the international search	Date of mailing of the international search report
6 March 2000	03/04/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rilevilk	Authorized officer
Tel. (+31-70) 340-2040, Tx. 31 661 epo ni, Fax: (+31-70) 340-3016	Bilang, J

INTERNATIONAL SEARCH REPORT

Inte. 'Application No PCT/US 99/23181

	ction) DOCUMENTS CONSIDERED TO BE RELEVANT	Palanantas alabai Na	
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
1	WO 98 24297 A (CORNELL RES FOUNDATION INC) 11 June 1998 (1998-06-11) the whole document		
A	WEI Z-M, ET AL.: "Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops" PHYTOPATHOLOGY, vol. 88, September 1998 (1998-09), page S96 XP000882741		
A	abstract NIGGEMEYER J, ET AL.: "Characterization of the functional domains of harpin"		
	PHYTOPATHOLOGY, vol. 88, September 1998 (1998-09), page S67 XP000882740 abstract		
+ + *			
,		·	
		·	

INTERNATIONAL SEARCH REPORT

PCT/US 99/23181

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9832844	Α	30-07-1998	AU	6043198 A	18-08-1998
WO 9824297	A	11-06-1998	AU EP	5693598 A 0957672 A	29-06-1998 24-11-1999

.