Sétimo Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

2 de setembro de 2022

Sumário

1	Inti	rodução	
2	Filtro Passa Banda		
	2.1	Tabela de dados	
	2.2	Grafico MonoLog de $Ve/V0$ sobre	
		Diferença de fase	
		Figuras de Lissajous	
		2.4.1 Baixa Frequência	
		2.4.2 Frequência de Ressonância	
		2.4.3 Alta frequência	
3	Retificador de meia onda		
	3.1	Gráficos	
	3.2	Papel do resistor	
		Processo de retificação	
4	Ret	ificador de onda completa	
	4.1	Efeitos do sobre a tensão antes de	
		adicionar capacitor	
		4.1.1 Sistema sem capacitor	
	4.2		
		nar o capacitor	
		4.2.1 Capacitor de 1 μF	
		4.2.2 Capacitor de 10 μF	
		4.2.3 Capacitor de 100 μF	
	43	Processo com o capacitor	

1 Introdução

Neste relatório, vamos discutir o funcionamento de um circuito RLC em série, em particular suas funções como filtro passa banda.

Também discutiremos alguns circuitos retificadores com diodos.

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

2 Filtro Passa Banda

2.1 Tabela de dados

F(Hz)	$\frac{V_0}{V_e}$	ϕ (graus)
100	$0.06 \pm 5 * 10^{-2}$	-88 ± 5
200	$0.17 \pm 5 * 10^{-2}$	-84 ± 5
400	$0.22 \pm 5 * 10^{-2}$	-75 ± 5
600	$0.34 \pm 5 * 10^{-2}$	-70 ± 5
700	$0.37 \pm 5 * 10^{-2}$	-65 ± 5
1000	$0.47 \pm 5 * 10^{-2}$	-54 ± 5
1500	$0.62 \pm 5 * 10^{-2}$	-34 ± 5
2000	$0.69 \pm 5 * 10^{-2}$	-17 ± 5
3000	$0.75 \pm 5 * 10^{-2}$	-11 ± 5
4000	$0.81 \pm 5 * 10^{-2}$	-8 ± 5
5000	$0.82 \pm 5 * 10^{-2}$	0 ± 5
6000	$0.79 \pm 5 * 10^{-2}$	6 ± 5
8000	$0.78 \pm 5 * 10^{-2}$	16 ± 5
10000	$0.73 \pm 5 * 10^{-2}$	22 ± 5
15000	$0.63 \pm 5 * 10^{-2}$	35 ± 5
20000	$0.55 \pm 5 * 10^{-2}$	45 ± 5
30000	$0.43 \pm 5 * 10^{-2}$	48 ± 5
90000	$0.15 \pm 5 * 10^{-2}$	77 ± 5
150000	$0.09 \pm 5 * 10^{-2}$	87 ± 5
500000	$0.08 \pm 5 * 10^{-2}$	90 ± 5

2.2 Grafico Mono Log de Ve/V0 so- 2.4.2 Frequência de Ressonância

bre f

Grafico MonoLog de V0/Ve e Frequencia Autor: Henrique Pedro da Silva

2.3 Diferença de fase

A diferença de fase é aproximadamente $\pm \frac{\pi}{4}$ em W_1 e W_2

2.4 Figuras de Lissajous

Nos casos de baixa e alta frequência a tensão V_0 vermelha está amplificada em 10 vezes para melhor visualização.

2.4.1 Baixa Frequência

2.4.3 Alta frequência

3 Retificador de meia onda

3.1 Gráficos

O que vamos observar é que a tensão medida depende da direção do diodo.

O diodo só permite a passagem de corrente em um sentido específico. Quando a tensão da fonte inverter, o diodo bloqueia a passagem de corrente.

Observamos este comportamento nos gráficos abaixo, um gráfico para cada sentido do diodo.

3.2 Papel do resistor

O resistor está atuando como um controlador de corrente no circuito.

3.3 Processo de retificação

Podemos observar que por meio de um circuito deste tipo podemos controlar em qual sentido o fluxo de corrente acontecerá.

Isto nos permite filtrar uma polaridade específica da tensão de entrada.

4 Retificador de onda com- 4.2.1 Capacitor de 1 μF pleta

4.1 Efeitos do sobre a tensão antes de adicionar capacitor

O que podemos observar é que sempre haverá uma tensão positiva no resistor, independente da polarização da fonte de entrada.

Isto ocorre porque independente de por onde a corrente está vindo da fonte. Os diodos D_3 e D_4 a direcionam a passar de C na direção de D.

Isso faz com que a corrente sempre entre no resistor pelo mesmo lado.

4.1.1 Sistema sem capacitor

4.2 Efeitos sobre a tensão após adicionar o capacitor

O que vamos observar agora é que o capacitor é carregado pela fonte, e quando a tensão da entrada baixa, o capacitor entra em resposta natural e supre a tensão do resistor impedindo que a tensão deste baixe.

E quanto mais capacitância tiver o capacitor. Menos a tensão do resistor irá diminuir quando a tensão da fonte passa pelo ponto mais baixo do seu ciclo.

4.2.2 Capacitor de 10 μF

4.2.3 Capacitor de 100 μF

4.3 Processo com o capacitor

O capacitor age como um buffer de tensão. Ele se carrega quando a tensão de entrada está alta. E se descarrega, mantendo a tensão no resistor quando a tensão de entrada passa pelo ponto baixo do seu ciclo.

Quanto maior sua capacitancia, maior será a sua capacidade de manter a tensão do resistor. Tanto que no caso de $100\mu F$, observamos que ele manteve a tensão do resistor completamente.