

SMO - Selektion 2017

4. Prüfung - 21. Mai 2017

Zeit: 4.5 Stunden

Schwierigkeit: Die Aufgaben sind der Schwierigkeit nach geordnet.

Punkte: Jede Aufgabe ist 7 Punkte wert.

- 10. Finde alle Polynome P mit ganzzahligen Koeffizienten, sodass P(2017n) für alle natürlichen Zahlen n prim ist.
- 11. Seien B = (-1,0) und C = (1,0) fixe Punkte in der Ebene. Eine nichtleere, beschränkte Teilmenge S der Ebene heisst *nett*, falls die folgenden Bedingungen gelten:
 - (i) Es gibt einen Punkt T in S, sodass für jeden anderen Punkt Q in S die Strecke TQ vollständig in S liegt.
 - (ii) Für jedes Dreieck $P_1P_2P_3$ existiert ein eindeutiger Punkt A in S und eine Permutation σ von $\{1,2,3\}$, sodass die Dreiecke ABC und $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ ähnlich sind.

Zeige, dass es zwei verschiedene nette Teilmengen S und S' der Menge $\{(x,y): x \geq 0, y \geq 0\}$ mit folgender Eigenschaft gibt: Das Produkt $BA \cdot BA'$ ist unabhängig von der Wahl des Dreiecks $P_1P_2P_3$, wobei $A \in S$ und $A' \in S'$ jeweils die eindeutigen Punkte aus (ii) für ein beliebiges Dreieck $P_1P_2P_3$ sind.

12. Seien $a, c \in \mathbb{N}$ und sei $b \in \mathbb{Z}$. Zeige, dass es ein $x \in \mathbb{N}$ gibt, sodass

$$a^x + x \equiv b \mod c$$
.