What Is Claimed Is:

1	1. A method for using a computer system to solve a system of		
2	nonlinear equations specified by a vector function, f , wherein $f(x) = 0$ represents		
3	$f_l(\mathbf{x}) = 0, f_2(\mathbf{x}) = 0, f_3(\mathbf{x}) = 0,, f_n(\mathbf{x}) = 0$, wherein \mathbf{x} is a vector $(x_1, x_2, x_3,, x_n)$,		
4	the method comprising:		
5	receiving a representation of an interval vector $\mathbf{X} = (X_1, X_2,, X_n)$,		
6	wherein for each dimension, i , the representation of X_i includes a first floating-		
7	point number, a_i , representing the left endpoint of X_i , and a second floating-point		
8	number, b_i , representing the right endpoint of X_i ;		
9	for each nonlinear equation $f_i(\mathbf{x}) = g(x'_j) - h(\mathbf{x}) = 0$ in the system of		
10	equations $\mathbf{f}(\mathbf{x}) = 0$, symbolically manipulating $f_i(\mathbf{x}) = 0$ within the computer system		
11	to solve for any invertible term, $g(x'_j)$, thereby producing a modified equation		
12	$g(x'_j) = h(\mathbf{x})$, wherein $g(x'_j)$ can be analytically inverted to produce an inverse		
13	function $g^{-1}(\mathbf{y})$;		
14	substituting the interval vector \mathbf{X} into the modified equation to produce the		
15	equation $g(X'_j) = h(\mathbf{X});$		
16	solving for $X'_j = g^{-1}(h(\mathbf{X}))$; and		
17	intersecting X'_j with the vector element X_j to produce a new interval vector		
18	\mathbf{X}^{+} ;		
19	wherein the new interval vector \mathbf{X}^+ contains all solutions of the system of		
20	equations $f(x) = 0$ within the interval vector X , and wherein the width of the new		
21	interval vector \mathbf{X}^+ is less than or equal to the width of the interval vector \mathbf{X} .		

- 1 2. The method of claim 1, further comprised of performing an
- 2 interval Newton step on X to produce a resulting interval vector, Y, wherein the
- 3 point of expansion of the interval Newton step is a point, \mathbf{x} , within the interval

3

step on the interval vector Y.

vector X, and wherein performing the interval Newton step involves evaluating 4 5 $\mathbf{f}(\mathbf{x})$ using interval arithmetic to produce an interval result $\mathbf{f}'(\mathbf{x})$. 1 3. The method of claim 2, further comprising: 2 evaluating a first termination condition, wherein the first termination 3 condition is TRUE if. zero is contained within f'(x), 4 J(x,X) is regular, wherein J(x,X) is the Jacobian of the 5 6 function f evaluated as a function of x over the interval vector X, 7 and 8 Y contained within X; and 9 if the first termination condition is TRUE, terminating and recording 10 $X = X \cap Y$ as a final bound. 1 4. The method of claim 3, further comprising determining if J(x,X) is regular by computing a pre-conditioned Jacobian, M(x,X) = BJ(x,X), wherein B 2 is an approximate inverse of the center of J(x,X), and then solving for the interval 3 4 vector Y that contains the value of y that satisfies M(x,X)(y-x) = r(x), where r(x)5 $= -\mathbf{B}\mathbf{f}(\mathbf{x}).$ 1 5. The method of claim 4, further comprising applying term 2 consistency to $\mathbf{Bf}(\mathbf{x}) = 0$. 1 6. The method of claim 1, wherein if no termination condition is 2 satisfied, the method further comprises returning to perform an interval Newton

1	7.	The method of claim 6, wherein returning to perform the interval
2	Newton step	on the interval vector Y can involve splitting the interval vector
3	$X=Y \cap X$.	

- 1 8. The method of claim 2, further comprising:
- 2 evaluating a second termination condition;
- 3 wherein the second termination condition is TRUE if a function of the
- 4 width of the interval vector **X** is less than a pre-specified value, ε_X , and the
- absolute value of the function, f, over the interval vector X is less than a pre-
- 6 specified value, ε_F ; and
- if the second termination condition is TRUE, terminating and recording **X** as a final bound.
- 1 9. The method of claim 1, wherein for each term, $g(x_j)$, that can be 2 analytically inverted within the equation $f_i(x) = 0$, the method further comprises:
- 3 setting $X_j = X_j^+$ in **X**; and
- repeating the process of symbolically manipulating, substituting, solving and intersecting to produce the new interval vector X_i^+ .
- 1 10. The method of claim 1, wherein symbolically manipulating $f_i(x) = 0$
- 2 involves selecting the invertible term $g(x_i)$ as the dominating term of the function
- 3 $f_i(x) = 0$ within the interval vector **X**.
- 1 11. A computer-readable storage medium storing instructions that
- when executed by a computer cause the computer to perform a method for using a
- 3 computer system to solve a system of nonlinear equations specified by a vector

- 4 function, **f**, wherein $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ represents $f_1(\mathbf{x}) = 0$, $f_2(\mathbf{x}) = 0$, $f_3(\mathbf{x}) = 0$, ..., $f_n(\mathbf{x}) = 0$,
- 5 wherein **x** is a vector $(x_1, x_2, x_3, ... x_n)$, the method comprising:
- receiving a representation of an interval vector $\mathbf{X} = (X_1, X_2, ..., X_n)$,
- 7 wherein for each dimension, i, the representation of X_i includes a first floating-
- 8 point number, a_i , representing the left endpoint of X_i , and a second floating-point
- 9 number, b_i , representing the right endpoint of X_i ;
- for each nonlinear equation $f_i(\mathbf{x}) = g(\mathbf{x}'_i) h(\mathbf{x}) = 0$ in the system of
- equations f(x) = 0, symbolically manipulating $f_i(x) = 0$ within the computer system
- 12 to solve for any invertible term, $g(x'_i)$, thereby producing a modified equation
- 13 $g(x'_j) = h(\mathbf{x})$, wherein $g(x'_j)$ can be analytically inverted to produce an inverse
- 14 function $g^{-l}(y)$;
- substituting the interval vector \mathbf{X} into the modified equation to produce the
- 16 equation $g(X'_j) = h(X)$;
- solving for $X'_i = g^{-1}(h(\mathbf{X}))$; and
- intersecting X'_{j} with the vector element X_{j} to produce a new interval vector
- 19 **X**⁺;
- wherein the new interval vector \mathbf{X}^+ contains all solutions of the system of
- equations f(x) = 0 within the interval vector X, and wherein the width of the new
- interval vector \mathbf{X}^+ is less than or equal to the width of the interval vector \mathbf{X} .
 - 1 12. The computer-readable storage medium of claim 11, wherein the
- 2 method further comprises performing an interval Newton step on X to produce a
- 3 resulting interval vector, Y, wherein the point of expansion of the interval Newton
- 4 step is a point, \mathbf{x} , within the interval vector \mathbf{X} , and wherein performing the interval
- Newton step involves evaluating f(x) using interval arithmetic to produce an
- 6 interval result $f^{1}(x)$.

1	13. The computer-readable storage medium of claim 12, wherein the		
2	method further comprises:		
3	evaluating a first termination condition, wherein the first termination		
4	condition is TRUE if,		
5	zero is contained within $f^{1}(x)$,		
6	J(x,X) is regular, wherein $J(x,X)$ is the Jacobian of the		
7	function f evaluated as a function of x over the interval vector X ,		
8	and		
9	Y is contained within X; and		
10	if the first termination condition is TRUE, terminating and recording		
11	$X=X \cap Y$ as a final bound.		
1	14. The computer-readable storage medium of claim 13, wherein the		
2	method further comprises determining if $J(x,X)$ is regular by computing a pre-		
3	conditioned Jacobian, $M(x,X) = BJ(x,X)$, wherein B is an approximate inverse of		
4	the center of $J(x,X)$, and then solving for the interval vector Y that contains the		
5	value of y that satisfies $M(x,X)(y-x) = r(x)$, where $r(x) = -Bf(x)$.		
1	15. The computer-readable storage medium of claim 14, wherein the		
2	method further comprises applying term consistency to $\mathbf{Bf}(\mathbf{x}) = 0$.		
1	16. The computer-readable storage medium of claim 11, wherein if no		
2	termination condition is satisfied, the method further comprises returning to		
3	perform an interval Newton step on the interval vector Y .		
	perform an interval frewion step on the interval vector 1.		

1	17.	The computer-readable storage medium of claim 16, wherein
2	returning to p	erform the interval Newton step on the interval vector ${f Y}$ can involve
3	splitting the in	nterval vector $\mathbf{X} = \mathbf{Y} \cap \mathbf{X}$.

- 1 18. The computer-readable storage medium of claim 12, wherein the 2 method further comprises:
- 3 evaluating a second termination condition;
- 4 wherein the second termination condition is TRUE if a function of the
- width of the interval vector **X** is less than a pre-specified value, ε_X , and the
- 6 absolute value of the function, \mathbf{f} , over the interval vector \mathbf{X} is less than a pre-
- 7 specified value, ε_F ; and
- 8 if the second termination condition is TRUE, terminating and recording **X** 9 as a final bound.
- 1 19. The computer-readable storage medium of claim 11, wherein for each term, $g(x_j)$, that can be analytically inverted within the equation $f_i(x) = 0$, the method further comprises:
- 4 setting $X_i = X_i^+$ in **X**; and
- repeating the process of symbolically manipulating, substituting, solving and intersecting to produce the new interval vector X_i^+ .
- 1 20. The computer-readable storage medium of claim 11, wherein 2 symbolically manipulating $f_i(x) = 0$ involves selecting the invertible term $g(x_j)$ as 3 the dominating term of the function $f_i(x) = 0$ within the interval vector **X**.
- 1 21. An apparatus that uses a computer system to solve a system of 2 nonlinear equations specified by a vector function, \mathbf{f} , wherein $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ represents

```
f_1(\mathbf{x}) = 0, f_2(\mathbf{x}) = 0, f_3(\mathbf{x}) = 0, \dots, f_n(\mathbf{x}) = 0, wherein x is a vector (x_1, x_2, x_3, \dots x_n),
 3
 4
       the apparatus comprising:
 5
                a receiving mechanism that is configured to receive a representation of an
 6
       interval vector \mathbf{X} = (X_1, X_2, ..., X_n), wherein for each dimension, i, the
 7
       representation of X_i includes a first floating-point number, a_i, representing the left
 8
       endpoint of X_i, and a second floating-point number, b_i, representing the right
 9
       endpoint of X_i;
                a symbolic manipulation mechanism, wherein for each nonlinear equation
10
11
       f_i(\mathbf{x}) = g(x'_i) - h(\mathbf{x}) = 0 in the system of equations \mathbf{f}(\mathbf{x}) = \mathbf{0}, the symbolic
12
       manipulation mechanism is configured to manipulate f_i(\mathbf{x}) = 0 to solve for any
       invertible term, g(x'_i), thereby producing a modified equation g(x'_i) = h(\mathbf{x}),
13
       wherein g(x'_j) can be analytically inverted to produce an inverse function g^{-1}(y);
14
                a solving mechanism that is configured to,
15
16
                                  substitute the interval vector X into the modified equation
                         to produce the equation g(X'_i) = h(X), and to
17
                                 solve for X'_i = g^{-1}(h(\mathbf{X})); and
18
                an intersecting mechanism that is configured to intersect X'_{i} with the
19
       vector element X_i to produce a new interval vector \mathbf{X}^+, wherein the new interval
20
       vector \mathbf{X}^+ contains all solutions of the system of equations \mathbf{f}(\mathbf{x}) = \mathbf{0} within the
21
       interval vector \mathbf{X}, and wherein the width of the new interval vector \mathbf{X}^+ is less than
22
23
       or equal to the width of the interval vector X.
```

The apparatus of claim 21, further comprising an interval Newton mechanism that is configured to perform an interval Newton step on X to produce a resulting interval vector, Y, wherein the point of expansion of the interval Newton step is a point, x, within the interval vector X, and wherein performing 11

5	the interval Newton step i	nvolves eval	luating f(x)) using interval	al arithmetic to
6	produce an interval result	$\mathbf{f}^{\mathrm{I}}(\mathbf{x})$.			

- 1 23. The apparatus of claim 22, further comprising a termination 2 mechanism that is configured to: evaluate a first termination condition, wherein the first termination 3 4 condition is TRUE if, zero is contained within $f^{I}(x)$, 5 J(x,X) is regular, wherein J(x,X) is the Jacobian of the 6 function f evaluated as a function of x over the interval vector X, 7 8 and 9 Y is contained within X; and to wherein if the first termination condition is TRUE, the termination 10
- The apparatus of claim 23, wherein the termination mechanism is configured to determine if J(x,X) is regular by computing a pre-conditioned Jacobian, M(x,X) = BJ(x,X), wherein B is an approximate inverse of the center of J(x,X), and then to solve for the interval vector Y that contains the value of y that satisfies M(x,X)(y-x) = r(x), where r(x) = -Bf(x).

mechanism is configured to terminate and recording $X = X \cap Y$ as a final bound.

- 1 25. The apparatus of claim 24, wherein the symbolic manipulation 2 mechanism is additionally configured to apply term consistency to **Bf**(**x**) = 0.
- 1 26. The apparatus of claim 21, wherein if no termination condition is 2 satisfied, the apparatus is configured to return to perform an interval Newton step 3 on the interval vector Y.

8

9

4

5

1	27.	The apparatus of claim 26, wherein returning to perform the
2	interval Newt	on step on the interval vector \mathbf{Y} can involve splitting the interva
3	vector X=V (X

- 1 28. The apparatus of claim 22, wherein the termination mechanism 2 that is configured to:
- 3 evaluate a second termination condition;
- wherein the second termination condition is TRUE if a function of the width of the interval vector \mathbf{X} is less than a pre-specified value, ε_X , and the absolute value of the function, \mathbf{f} , over the interval vector \mathbf{X} is less than a prespecified value, ε_F ; and
 - wherein if the second termination condition is TRUE, the termination mechanism is configured to terminate and record X as a final bound.
- 1 29. The apparatus of claim 21, wherein for each term, $g(x_j)$, that can be 2 analytically inverted within the equation $f_i(x) = 0$, the apparatus is configured to:
- 3 set $X_j = X_j^+$ in **X**; and to
 - repeat the process of symbolically manipulating, substituting, solving and intersecting to produce the new interval vector X_i^+ .
- 1 30. The apparatus of claim 21, wherein symbolically manipulating 2 $f_i(x)=0$ involves selecting the invertible term $g(x_j)$ as the dominating term of the 3 function $f_i(x) = 0$ within the interval vector **X**.