Flujo de fluidos compresibles

- Generalidades
- Flujo estacionario a través de conducción horizontal de sección constante
- Flujo estacionario entre dos reservorios a través de conducción horizontal de sección constante

Comparación entre flujo real y los modelos lsotérmico y Adiabático

Comparación entre flujo másico Isotérmico y Adiabático

• Del balance de energía mecánica

$$(w/A)^2 ln (v_2/v_1) + \int_1^2 dP/v + 2 f L/D (w/A)^2 = 0$$

• Despejando: $(w/A) = \begin{bmatrix} -\int_{1}^{2} dP/v \\ \ln(v_{2}/v_{1}) + 2 \text{ f L/D} \end{bmatrix}$ • Vamos a comparar cada término

Comparación entre flujos Isotérmico y Adiabático

$$\left(-\int_{1}^{2} dP/v\right)_{i}$$
 vs $\left(-\int_{1}^{2} dP/v\right)_{a}$

Asumiendo Gas ideal:

Pv/T= cte =
$$P_1v_1/T_1 = (P_2v_2/T_2)i = (P_2v_2/T_2)a$$

Para isotérmico $T_2=T_1$
Para adiabático $T_2
Para adiabático $T_2$$

$$\left(-\int_{1}^{2} dP/v\right)_{i} < \left(-\int_{1}^{2} dP/v\right)_{a}$$

Comparación entre flujos Isotérmico y Adiabático

$$(w/A) = \left[\frac{-\int_{1}^{2} dP/v}{\ln(v_{2}/v_{1}) + 2 \text{ f L/D}} \right]^{1/2}$$

$$\left[\ln(v_{2}/v_{1}) \right]_{i} \text{ vs } \left[\ln(v_{2}/v_{1}) \right]_{a}$$

$$v_{2}i > v_{2}a \quad y \quad v_{1}i = v_{1}a$$

$$\left[\ln(v_{2}/v_{1}) \right]_{i} > \left[\ln(v_{2}/v_{1}) \right]_{a}$$

$$\left[2\text{fL/D} \right]_{i} \sim \left[2\text{fL/D} \right]_{a}$$

 $(w/A)_{isotérmico} < (w/A)_{adiabático}$

Efecto del Calor en el flujo másico respecto al caso Adiabático

Del balance de energía mecánica

$$(w/A)^2 ln (v_2/v_1) + \int_1^2 dP/v + 2 f L/D (w/A)^2 = 0$$

• Despejando: $(w/A) = \int_{1}^{2} dP/v$

Efecto del Calor en el flujo másico respecto al caso Adiabático

Comparación de $\left[-\int_{1}^{2} dP/v\right]$

1/v₁
1/v_{2Q<0}
1/v_{2Q>0}
1/v_{2Q>0}
P₁
P₁
P

Asumiendo Gas ideal:

Pv/T= cte \Rightarrow para P_x = cte′ v_x/T_x = cte′ independientemente de Q Si Q>0 a lo largo de toda la tubería, para cada P_x : $T_x>T_{xa} \Rightarrow v_x>v_{xa}$ Si Q<0 a lo largo de toda la tubería, para cada P_x : $T_x<T_{xa} \Rightarrow v_x< v_{xa}$

$$\left(-\int_{1}^{2} dP/v\right)_{Q>0} < \left(-\int_{1}^{2} dP/v\right)_{a} < \left(-\int_{1}^{2} dP/v\right)_{Q<0}$$

Efecto del Calor en el flujo másico respecto al caso Adiabático

$$(w/A) = \left[\frac{-\int_{1}^{2} dP/v}{\ln(v_{2}/v_{1}) + 2 \text{ f L/D}}\right]^{1/2}$$

$$\left[\ln \left(\mathbf{v}_{2}/\mathbf{v}_{1} \right) \right]_{\mathbf{Q} > 0} > \left[\ln \left(\mathbf{v}_{2}/\mathbf{v}_{1} \right) \right]_{\mathbf{a}} > \left[\ln \left(\mathbf{v}_{2}/\mathbf{v}_{1} \right) \right]_{\mathbf{Q} < 0}$$

$$\left[2 \text{fL/D} \right]_{\mathbf{Q} > 0} \sim \left[2 \text{fL/D} \right]_{\mathbf{a}} \sim \left[2 \text{fL/D} \right]_{\mathbf{Q} > 0}$$

$$(w/A)_{Q>0} < (w/A)_{adiabático} < (w/A)_{Q<0}$$

Efecto del perfil de Temperatura en el flujo másico respecto al caso Isotérmico a T₁

Del balance de energía mecánica

$$(w/A)^2 ln (v_2/v_1) + \int_1^2 dP/v + 2 f L/D (w/A)^2 = 0$$

• Despejando: $(w/A) = \int_{1}^{2} dP/v$ $\ln (v_2/v_1) + 2 \text{ f L/D}$ • Vamos a comparar cada término

Efecto del perfil de Temperatura en el flujo másico respecto al caso Isotérmico a T₁

Comparación de $\left[-\int_{1}^{2} dP/v\right]$

Asumiendo Gas ideal: Pv/T= cte

Si en toda la tubería T>T₁, para cualquier $P_x \implies v_x > v_{xi}$

Si en toda la tubería T<T₁, para cualquier $P_x \implies v_x < v_{xi}$

$$\left(-\int_{1}^{2} dP/v\right)_{T>T_{1}} < \left(-\int_{1}^{2} dP/v\right)_{i} < \left(-\int_{1}^{2} dP/v\right)_{T$$

Efecto del perfil de Temperatura en el flujo másico respecto al caso Isotérmico a T₁

$$(w/A) = \left[\frac{-\int_{1}^{2} dP/v}{\ln(v_{2}/v_{1}) + 2 \text{ f L/D}}\right]^{1/2}$$

$$\left[\ln \left(\mathbf{v}_{2}/\mathbf{v}_{1} \right) \right]_{T > T_{1}} > \left[\ln \left(\mathbf{v}_{2}/\mathbf{v}_{1} \right) \right]_{\mathbf{i}} > \left[\ln \left(\mathbf{v}_{2}/\mathbf{v}_{1} \right) \right]_{T < T_{1}}$$

$$\left[2 \text{fL/D} \right]_{T > T_{1}} \sim \left[2 \text{fL/D} \right]_{\mathbf{i}} \sim \left[2 \text{fL/D} \right]_{T < T_{1}}$$

$$(w/A)_{T>T1} < (w/A)_{isotérmico a T1} < (w/A)_{T$$

$$(w/A)_{isotérmico} < (w/A)_{adiabático}$$

$$(w/A)_{Q>0} < (w/A)_{adiabático} < (w/A)_{Q<0}$$

$$(w/A)_{T>T1} < (w/A)_{isotérmico a T1} < (w/A)_{T$$

$$(w/A)_{isotérmico} < (w/A)_{adiabático}$$

$$(w/A)_{Q>0} < (w/A)_{adiabático} < (w/A)_{Q<0}$$

$$(w/A)_{T>T1} < (w/A)_{isotérmico a T1} < (w/A)_{T$$

$$W < W_i < W < W_a < W$$
 $T_1 << T_{amb}$
 $T_1 \le T_{amb}$
 $T_1 >> T_{amb}$
 $T > T_1$
 $Q > 0$
 $Q < 0$
 $T < T_1$