Infant Growth Trajectories and Lipid Levels in Adolescence: Evidence from a Chilean Infancy Cohort

Ann Von Holle ¹, Kari E. North ¹, Sheila Gahagan ², Estela Blanco ², Misa Graff ¹, Anne Justice ³, Betsy Lozoff ⁴, Raquel Burrows ⁵, Annie Green Howard ¹, Saroja Voruganti ¹

May 18, 2020

¹University of North Carolina, Chapel Hill, ²University of California, San Diego, ³Geisinger Institute, ⁴University of Michigan, ⁵University of Chile

Disclosures

FINANCIAL DISCLOSURE:

The authors of this research project have no relevant financial relationships to disclose.

Introduction

Developmental Origins of Health and Disease (DOHaD) concept

Early infant growth influences phenotype change for adverse cardiovascular disease risk factors later in life

Hanson et al. (2011)

Evidence for an association between increase in postnatal weight/length change and lipid levels.

	Growth Association				_	
Country	Publica- tion Year	LDL-C	HDL-C	TG	Age at out-come (years)	2+ obs in first year?
Sweden	2007		-	+	17	
Chile	2009	+	-	+	4	
U.K.	2010	-	+	-	15	yes
Finland	2010		+	-	31	yes
Japan	2013	-	-		13-14	
Netherlands	2014		-	+	4-5	
Spain	2014	+	-	+	5	
Canada	2017	-	-	+	10-12	

Majority of observational studies point towards a positive association between postnatal weight/length change and unfavorable lipid profile later in life.

		Growth Association			_	
Country	Publica- tion Year	LDL-C	HDL-C	TG	Age at out-come (years)	2+ obs in first year?
Sweden	2007		-	+	17	
Chile	2009	+	-	+	4	
U.K.	2010	-	+	-	15	yes
Finland	2010		+	-	31	yes
Japan	2013	-	-		13-14	
Netherlands	2014		-	+	4-5	
Spain	2014	+	-	+	5	
Canada	2017	-	-	+	10-12	

Project aim

Aim Examine the association between well-characterized infant growth trajectories and lipid levels at 17 years of age.

Hypothesis Faster growth during infancy is associated with unfavorable lipid levels in adolescence.

Methods

Sample: Santiago Longitudinal Study (SLS)

Design Randomized preventive trial for iron deficiency anemia, 1991-1996 (n=602)

Participants Admixed Latino families from low- to middle-income neighborhoods in Santiago, Chile.

Over 95% were intially breastfed.

Inclusion criteria All infants ≥ 3 kg at birth with no evident health problems.

Method: Latent growth mixture models (LGMM) LGMM is a way to distinguish heterogeneous growth patterns in a group of individuals

Exposure Early infant growth trajectories for

- 1. weight (kg),
- 2. length (cm), and
- 3. weight-for-length (WFL) (g/cm)

Outcome Fasting lipid levels at 17 years, including HDL-C, LDL-C, TG, and TG:HDL ratios, each evaluated separately

Confounders randomization status, sex of child, and socioeconomic status

Example of latent growth curve mixture model (LGMM) analysis, 1

Example of latent growth curve mixture model (LGMM) analysis, 2

Latent Class = Slower growth class = Medium growth class = Faster growth class

Results

Descriptive Statistics Fasting lipid profile (17 years)

Weight-for-length trajectory description Evidence supports growth heterogeneity: three LGMM trajectories after rigorous model fit evaluation

Slowest weight-for-length growth pattern associated with highest mean LDL-C. Stratified by sex of child

Summary

Findings do not support faster infant growth with unfavorable lipid profiles Instead, slower growth groups carry higher risk

- Why are results not consistent with previous findings?
 - · Differences across:
 - Time period (window of time or secular)
 - Population
 - · Age at outcome
 - Methods
- Public health implications
 - The choice of developmental period important when designing interventions.

Many thanks to...

- Participants in Santiago Longitudinal Study (SLS)
- Support from MAA AHA 2016 Predoctoral Fellowship
- My graduate advisor, Dr. Kari E. North
- SLS research team

Questions?

Bibliography

References

Hanson, M., Godfrey, K. M., Lillycrop, K. A., Burdge, G. C., and Gluckman, P. D. (2011). Developmental plasticity and developmental origins of non-communicable disease: Theoretical considerations and epigenetic mechanisms. 106(1):272–280.

Extra slides

Fastest weight-for-length growth pattern not associated with lowest mean HDL-C. Stratified by sex of child

LGMM model

Table 1: Fasting lipid profile (median [IQR], mg/dL) at age 17 years

	Male (n=314)	Female (n=288)	Overall (n=602)
Total cholesterol	143.2 [130.5, 159.9]	154.2 [137.5, 170.1]	147.3 [133.0, 165.7]
Triglycerides	71.4 [55.7, 100.8]	76.5 [58.5, 103.3]	74.0 [57.0, 101.1]
LDL Cholesterol	89.2 [75.7, 104.3]	94.5 [80.8, 109.6]	91.7 [77.6, 107.0]
HDL cholesterol	36.8 [31.3, 42.7]	42.2 [35.5, 49.9]	39.4 [32.9, 46.4]

LGMM: fastest weight (kg) growth pattern associated with highest mean LDL-C Pooled across sex of child, not adjusted

Method 2 SITAR is one method to capture up to three biologically meaningful observed components of nonlinear growth

- Size Shift growth curve up and down from average (units in body size measure)
- Tempo Shift growth curve left and right for individual from average (monthly units)
- Velocity Re-scale time axis for individual so rate of growth is faster or slower

SITAR example

SITAR models: Length trajectory velocity characteristics indicate faster length growth associated with higher HDL-C

All LGMM comparisons

