

Lógica Computacional

Circuito CFXs

PROJETO

2017/2018

Lógica Computacional 2017/2018

Circuito CFXs

Introdução

Na figura 1 é descrito o circuito CFXs, destinado a realizar diversas funções sobre números, <u>em</u> <u>complemento para dois</u>, e que terá que ser desenvolvido no âmbito deste projeto.

Figura 1

Função	Output	
nx	Retorna 1 se x for negativo	
ny	Retorna 1 se y for negativo	
рх	Retorna 1 se x for par	
ру	Retorna 1 se y for par	
zx	Retorna 1 se x for zero	
zy	Retorna 1 se y for zero	
eq	Retorna 1 se x e y são iguais	
si	Retorna 1 se x e y são simétricos	
overflow	Resultado excede a capacidade de representação (os operandos são de 5 bits e o resultado necessita de 6 bits para poder ser representado)	
outsum	Soma de x e y	
outsub	Subtração entre x e y	
outsix	Simétrico de x	

Lógica Computacional 2017/2018

Circuito CFXs

Implementação

Como sugestão de implementação do somador de 5 bits (Full Hadder) é proposto a realização de um conjunto de circuitos de suporte, nomeadamente:

- 1. Half adder: destinado a somar 2 bits;
- Full adder: destinado a somar 3 bits e realizado através da composição de um conjunto de circuitos
 Half adder e portas auxiliares;
- 3. Acoplagem de vários Full Adder de modo a somar números com 5 bits.

Circuito Half-adder

O circuito half-adder (em português semi-somador) soma 2 bits de entrada (sem transporte anterior) e produz 1 bit da soma e 1 bit de transporte.

Circuito Full-adder

O circuito full-adder (em português somador completo) soma 3 bits de entrada (sem transporte anterior) e produz 1 bit da soma e 1 bit de transporte.

Circuito Ripple carry adder

O circuito ripple carry adder (em português somador em cascata) O "Ripple Carry Adder" é o somador mais simples possível (que requer menos portas lógicas).

Ripple carry Adder

Lógica Computacional 2017/2018

Circuito CFXs

Função Extra

Pretende-se a implementação de uma função com 7 bits de entrada e que tome à saída o valor lógico 1 quando o número de bits de entrada ativos é múltiplo de 3.

Sugestão de implementação: módulos full-adder (somadores completos de 3 bits).

Considerações Gerais

Deve ser entregue numa pasta com os chips implementados (todos os ficheiros) e o relatório. A submissão deve ser feita via Moodle.

Constituição dos grupos

Os trabalhos devem ser realizados por grupos de 2 ou 3 alunos.

Submissão do trabalho

Os trabalhos podem ser submetidos:

• Até dia **24/11/2017** às 23h00m via Moodle.

Critérios de Avaliação

O projeto será avaliado segundo os critérios apresentados na tabela que se segue.

#	Funcionalidades	20 Valores
1	Implementação da soma (com módulos Half Adder, Full Adder)	2 Valores
2	Implementação da subtração	2 Valores
3	Implementação do simétrico	2 Valores
4	Implementação da função nx	1 Valor
5	Implementação da função ny	1 Valor
6	Implementação da função px	1 Valor
7	Implementação da função py	1 Valor
8	Implementação da função zx	1 Valor
9	Implementação da função zy	1 Valor
10	Implementação da função overflow	1,5 Valores
11	Implementação da função extra	1 Valores
12	Qualidade do código (estrutura modular, isto é cada função é implementada em chips separados)	1,5 Valores
13	Qualidade dos testes	2 Valores
14	Qualidade do relatório	2 Valores