

BASIC CONTROL SYSTEMS

03 BLOCK DIAGRAMS

HANSHU YU

NOVEMBER 2025

WHERE STUDENTS MATTER

Normalisation & definitions -

- Only one input and one output
- Output signal changes as a function of the input signal
 - ✓ Formula: H = Y / X (transfer function)

✓ This means also that: $Y = H \cdot X$

➤ Process → sub processes → several boxes

Example of block diagram with several subprocesses

Block diagram

Why using a block diagram?

- Blocks draw easier than real physical systems
- Systems look alike (analogy)
- Block diagram easier to read
- Easier to manipulate and calculate —

- Block properties
- Rules

Elements involved:

 $\begin{array}{c|c} R(s) & C(s) \\ \hline \text{Input} & G(s) & \text{Output} \end{array}$

Signals

Block (system)

Summing junction

Pickoff point

1. Series

$$Y = H_1 \cdot X$$

and $Z = H_2 \cdot Y$
hence $Z = H_1 \cdot H_2 \cdot X$
 $H_{new} = H_1 \cdot H_2$

2. Parallel

$$Y_1 = H_1 \cdot X$$
,
 $Y_2 = H_2 \cdot X$ and
 $Z = Y_1 + Y_2 =$
 $Z = (H_1 + H_2) \cdot X$
 $X = H_{new} = H_1 + H_2$

3. Positive feedback

$$E = X + Y$$
 and $Y = H_2 \cdot Z$, hence

$$E = X + H_2 \cdot Z$$

$$Z = H_1 \cdot E$$
, hence

$$Z = H_1 \cdot (X + H_2 \cdot Z) \Leftrightarrow$$

$$Z = [H_1 / (1 - H_1 \cdot H_2)] \cdot X$$

$$H_{new} = \frac{Z}{X} = \frac{H_1}{1 - H_1 \cdot H_2} = \frac{H_{forward}}{1 - H_{loop}}$$

4. Negative feedback

$$E = X - Y$$
 and $Y = H_2 \cdot Z$, hence

$$E = X - H_2 \cdot Z$$

$$Z = H_1 \cdot E$$
, hence

$$Z = H_1 \cdot (X - H_2 \cdot Z) \Leftrightarrow$$

$$Z = [H_1 / (1 + H_1 \cdot H_2)] \cdot X$$

$$H_{new} = \frac{Z}{X} = \frac{H_1}{1 + H_1 \cdot H_2} = \frac{H_{forward}}{1 + H_{loop}}$$

5. Unity feedback

Special case of feedback: $H_2 = 1$, so

$$H_{new} = \frac{H_1}{l + H_1}$$

6. Disturbance

now
$$E = X - H_3 \cdot Z$$

and $Z = H_1 \cdot H_2 \cdot E + H_2 \cdot Y$, this gives:

$$Z = \frac{H_1 \cdot H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot X + \frac{H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot Y$$

$$Z = H_{control} \cdot X + H_{disturbance} \cdot Y$$

Block properties summary

Series

$$H_{new} = H_1 \cdot H_2$$

Parallel

$$H_{new} = H_1 + H_2$$

• Positive feedback
$$H_{new} = H_1 / (1 - H_1 \cdot H_2)$$

• Negative feedback
$$H_{new} = H_1 / (1 + H_1 \cdot H_2)$$

 Alternative way to calculate H_{new} for negative feedback

$$H_{new} = \frac{H_{forward}}{1 + H_{loop}}$$

Disturbance

$$Z = \frac{H_1 \cdot H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot X + \frac{H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot Y$$

$$Z = H_{control} \cdot X + H_{disturbance} \cdot Y$$

More rules to modify block diagrams

NR.	Original block diagram	Alternative block diagram	Manipulation
1	a G b H c	$\begin{array}{c c} a & H & G & c \\ \hline \end{array}$	Exchanging elements
2	a G B H C	$\xrightarrow{\mathbf{a}} \mathbf{G} \cdot \mathbf{H} \xrightarrow{\mathbf{c}}$	Combining elements
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Regroup summing junction
1	$\begin{array}{c} \mathbf{a} & \longrightarrow & \mathbf{G} \\ & & & \mathbf{b} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Move pickoff point
5	$\begin{bmatrix} \mathbf{a} & & & \mathbf{G} \\ & & & \mathbf{b} \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Move pickoff point

UNIVERSITY OF APPLIED SCIENCES

THE STANDARD MODEL WHY? AND WHY NOT?

"Feedback"

THE STANDARD MODEL WHY? AND WHY NOT?

Why unit feedback?

- By playing with block diagram, all LTI system can be represented in this form
- Simple & convenient
- The "error" is quite straight forward, just output-input

Why not unit feedback?

 It is mathematically correct, however you are manipulating physical signals. Many times the physical systems and signals are not easily manipulatable.

Practice!

Solve exercises together with your team!

HOMEWORK

Stage ONE exercise:

Problem 9

Test exam 3:

Problem 1

Test exam 4:

• Problem 1

