Calcolare la tavola di verità delle proposizioni

 P_1 : $(C \rightarrow A) \land \neg B \rightarrow A \lor B$

 P_2 : $\neg(A \leftrightarrow B) \lor A$

 P_3 : $B \rightarrow (\neg A \lor \neg B)$

 P_4 : $(A \lor \neg (B \to C)) \land (\neg C \lor B)$

 P_5 : $A \wedge \neg (A \rightarrow \neg (\neg A \vee A))$

 P_6 : $((A \land B) \land (A \lor B)) \land (A \to B)$

Esercizio 1, svolgimento

Α	В	C	$C \rightarrow A$	$\neg B$	$(C \rightarrow A) \land \neg B$	$A \vee B$	P_1
0	0	0	1	1	1	0	0
0	0	1	0	1	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	1	1
1	0	0	1	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	1	0	0	1	1
1	1	1	1	0	0	1	1

Α	В	$A \leftrightarrow B$	$\neg (A \leftrightarrow B)$	P_2
0	0	1	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	0	1

Α	В	$\neg A$	$\neg B$	$\neg A \lor \neg B$	P_3
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

Α	В	C	$B \rightarrow C$	$ \neg(B \to C) $	$A \lor \neg (B \to C)$	$\neg C$	$\neg C \lor B$	P_4
0	0	0	1	0	0	1	1	0
0	0	1	1	0	0	0	0	0
0	1	0	0	1	1	1	1	1
0	1	1	1	0	0	0	1	0
1	0	0	1	0	1	1	1	1
1	0	1	1	0	1	0	0	0
1	1	0	0	1	1	1	1	1
1	1	1	1	0	1	0	1	1

				$A \rightarrow \neg (\neg A \lor A)$	$\neg (A ightarrow \neg (\neg A \lor A))$	P_5
0	1	1	0	1	0	0
1	0	1	0	0	1	1

Α	В	$A \wedge B$	$A \vee B$	$(A \wedge B) \wedge (A \vee B)$	$A \rightarrow B$	P_6
0	0	0	0	0	1	0
0	1	0	1	0	1	0
1	0	0	1	0	0	0
1	1	1	1	1	1	1

Verificare mediante le tavole di verità quali delle seguenti conseguenze logiche valgono.

$$A \rightarrow B \models A \lor B$$

$$\bullet$$
 $A \lor B \models A$

Esercizio 2, svolgimento

1.

Α	В	$\neg A$	$\neg B$	$\neg A \lor \neg B$	$\neg A \rightarrow \neg B$
0	0	1	1	1	1
0	1	1	0	1	0
1	0	0	1	1	1
1	1	0	0	0	1

Poiché nella seconda riga della tavola di verità $\neg A \lor \neg B$ è vera, ma $\neg A \to \neg B$ è falsa, si conclude

$$\neg A \lor \neg B \not\models \neg A \to \neg B$$

2.

Α	В	$A \rightarrow B$	$A \vee B$
0	0	1	0
0	1	1	1
1	0	0	1
1	1	1	1

Poiché nella prima riga della tavola di verità $A \to B$ è vera, ma $A \lor B$ è falsa, si conclude

$$A \rightarrow B \not\models A \lor B$$

3.

Α	В	$\neg B$	$ \neg A$	$ \neg B \rightarrow \neg A$	$\neg A \lor B$
0	0	1	1	1	1
0	1	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	1

Poiché in ogni riga in cui $\neg B \to \neg A$ è vera (la prima, la seconda e la quarta riga della tavola di verità) anche $\neg A \lor B$ è vera, si conclude

$$\neg B \rightarrow \neg A \models \neg A \lor B$$

4.

Α	В	$\neg A$	$\neg B$	$\neg A \land \neg B$	$\neg A \rightarrow \neg B$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	1	0	0	0	1

Poiché in ogni riga della tavola di verità in cui $\neg A \land \neg B$ è vera (solo la prima riga) anche $\neg A \to \neg B$ è vera, si conclude

$$\neg A \land \neg B \models \neg A \rightarrow \neg B$$

5,6.

Α	В	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

Poiché ci sono righe della tavola di verità in cui $A \lor B$ è vera, ma A è falsa (la seconda riga), si conclude

$$A \lor B \not\models A$$

Poiché ci sono righe della tavola di verità in cui $A \lor B$ è vera, ma B è falsa (la terza riga), si conclude

$$A \lor B \not\models B$$

Verificare utilizzando le tavole di verità la validità delle seguenti leggi logiche.

- $P \land \neg P \models Q$
- $P, Q \models P \land Q$
- $P \land Q \models P$
- $P \models P \lor Q$
- $Q \models P \lor Q$

Esercizio 3, svolgimento

1.

Ρ	Q	$\neg Q$	$Q \lor \neg Q$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	0	1

Poiché in ogni riga in cui P è vera (la terza e la quarta) anche $Q \vee \neg Q$ è vera, si conclude

$$P \models Q \lor \neg Q$$

2.

Ρ	Q	$\neg P$	$P \wedge \neg P$
0	0	1	0
0	1	1	0
1	0	0	0
1	1	0	0

Poiché in ogni riga in cui $P \land \neg P$ è vera (nessuna), anche Q è vera, si conclude

$$P \land \neg Q \models Q$$

3,4,5.

Ρ	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

Poiché in ogni riga in cui P e Q sono vere (la quarta) anche $P \wedge Q$ è vera, si conclude

$$P, Q \models P \land Q$$

Poiché in ogni riga in cui $P \wedge Q$ è vera (la quarta) anche P è vera, si conclude

$$P \wedge Q \models P$$

Poiché in ogni riga in cui $P \wedge Q$ è vera (la quarta) anche Q è vera, si conclude

$$P \wedge Q \models Q$$

6,7.

$$\begin{array}{c|cccc} P & Q & P \lor G \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

Poiché in ogni riga in cui P è vera (la terza e la quarta) anche $P \lor Q$ è vera, si conclude

$$P \models P \lor Q$$

Poiché in ogni riga in cui Q è vera (la seconda e la quarta) anche $P \lor Q$ è vera, si conclude

$$Q \models P \lor Q$$

Verificare mediante le tavole di verità quali delle seguenti equivalenze logiche valgono.

$$A \to B \equiv \neg A \lor B$$

$$A \rightarrow B \equiv B \rightarrow A$$

Esercizio 4, svolgimento

1.

Α	В	$\neg A$	$\neg B$	$\neg A \land \neg B$	$\neg A \rightarrow \neg B$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	1	0	0	0	1

Poiché ci sono delle righe (la terza e la quarta) in cui i valori di verità di $\neg A \land \neg B$ e $\neg A \to \neg B$ sono differenti, si conclude

$$\neg A \land \neg B \not\equiv \neg A \rightarrow \neg B$$

2.

Α	В	$A \rightarrow B$	$\neg A$	$\neg A \lor B$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	0	1

Poiché in tutte le righe i valori di verità di $A \to B$ e $\neg A \lor B$ sono uguali, si conclude

$$A \rightarrow B \equiv \neg A \lor B$$

3.

Α	В	$\neg B$	$\neg A$	$ \neg B \rightarrow \neg A$	$\neg A \lor B$
0	0	1	1	1	1
0	1	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	1

Poiché in tutte le righe i valori di verità di $\neg B \to \neg A$ e $\neg A \lor B$ sono uguali, si conclude

$$\neg B \rightarrow \neg A \equiv \neg A \lor B$$

4

Α	В	$A \rightarrow B$	$\neg (A \rightarrow B)$	$\neg B$	$A \wedge \neg B$
0	0	1	0	1	0
0	1	1	0	0	0
1	0	0	1	1	1
1	1	1	0	0	0

Poiché in tutte le righe $\neg(A \to B)$ e $A \land \neg B$ hanno gli stessi valori di verità, si conclude

$$\neg(A \to B) \equiv A \land \neg B$$

5.

Α	В	$A \rightarrow B$	$B \rightarrow A$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

Poiché ci sono delle righe (la seconda e la terza) in cui $A \to B$ e $B \to A$ hanno valori di verità differenti, si conclude

$$A \rightarrow B \not\equiv B \rightarrow A$$

6.

Α	В	C	$A \rightarrow B$	$(A \rightarrow B) \rightarrow C$	$B \rightarrow C$	$A \rightarrow (B \rightarrow C)$
0	0	0	1	0	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Poiché ci sono delle righe in sui $(A \rightarrow B) \rightarrow C$ e $A \rightarrow (B \rightarrow C)$ hanno valori di verità differenti, si conclude

$$(A \rightarrow B) \rightarrow C \not\equiv A \rightarrow (B \rightarrow C)$$

Utilizzando le tavole di verità, dimostrare la proprietà distributiva di \land rispetto a \lor :

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

Svolgimento.

Ρ	Q	R	$Q \vee R$	$P \wedge (Q \vee R)$	$P \wedge Q$	$P \wedge R$	$(P \wedge Q) \vee (P \wedge R)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
.1	1	1	1	1	1	1	1

Poiché in tutte le righe della tavola di verità i valori di verità di $P \wedge (Q \vee R)$ e $(P \wedge Q) \vee (P \wedge R)$ sono i medesimi, si conclude

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

Utilizzando le tavole di verità, dimostrare le due leggi di De Morgan:

$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg(P \lor Q) \equiv \neg P \land \neg Q$$

Esercizio 6, svolgimento

Ρ	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Poiché in tutte le righe della tavola di verità i valori di verità di $\neg(P \land Q)$ e $\neg P \lor \neg Q$ sono i medesimi, si conclude

$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$

Ρ	Q	$P \lor Q$	$ \neg(P\lor Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Poiché in tutte le righe della tavola di verità i valori di verità di $\neg(P \lor Q)$ e $\neg P \land \neg Q$ sono i medesimi, si conclude

$$\neg(P \lor Q) \equiv \neg P \land \neg Q$$

Utilizzando le tavole di verità, dimostrare le seguenti leggi logiche:

$$P \equiv \neg \neg P$$

$$P \land Q \equiv \neg (\neg P \lor \neg Q)$$

$$P \lor Q \equiv \neg (\neg P \land \neg Q)$$

$$P \to Q \equiv \neg (P \land \neg Q)$$

Esercizio 7, svolgimento

1.

$$\begin{array}{c|c|c}
P & \neg P & \neg \neg P \\
\hline
0 & 1 & 0 \\
1 & 0 & 1
\end{array}$$

Poiché in tutte le righe della tavola di verità le formule $P \in \neg \neg P$ hanno gli stessi valori di verità, si conclude $P \equiv \neg \neg P$.

2.

Ρ	Q	$P \wedge Q$	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$	$\neg (\neg P \vee \neg Q)$
0	0	0	1	1	1	0
0	1	0	1	0	1	0
1	0	0	0	1	1	0
1	1	1	0	0	0	1

Poiché in tutte le righe della tavola di verità le formule $P \wedge Q$ e $\neg(\neg P \vee \neg Q)$ hanno i medesimi valori di verità, si conclude

$$P \land Q \equiv \neg (\neg P \lor \neg Q)$$

3.

Ρ	Q	$P \lor Q$	$\neg P$	$\neg Q$	$\neg P \land \neg Q$	$\neg (\neg P \wedge \neg Q)$
0	0	0	1	1	1	0
0	1	1	1	0	0	1
1	0	1	0	1	0	1
1	1	1	0	0	0	1

Poiché in tutte le righe della tavola di verità le formule $P \lor Q$ e $\neg(\neg P \land \neg Q)$ assumono gli stessi valori di verità, si conclude

$$P \lor Q \equiv \neg(\neg P \land \neg Q)$$

4.

Ρ	Q	P o Q	$\neg Q$	$P \wedge \neg Q$	$\neg (P \land \neg Q)$
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	1	0	0	0	1

Poiché in tutte le righe della tavola di verità le formule $P \to Q$ e $\neg(P \land \neg Q)$ assumono gli stessi valori di verità, si conclude

$$P \rightarrow Q \equiv \neg (P \land \neg Q)$$

5.

Ρ	Q	$P \leftrightarrow Q$	P o Q	$Q \rightarrow P$	$(P o Q) \wedge (Q o P)$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1	1	1	1

Poiché in tutte le righe della tavola di verità le formule $P\leftrightarrow Q$ e $(P\to Q)\land (Q\to P)$ assumono gli stessi valori di verità, si conclude

$$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$$

Dimostrare che

$$\models (A \leftrightarrow B) \lor (\neg A \leftrightarrow B)$$

Svolgimento.

Α	В	$A \leftrightarrow B$	$\neg A$	$\neg A \leftrightarrow B$	$(A \leftrightarrow B) \lor (\neg A \leftrightarrow B)$
0	0	1	0	0	1
0	1	0	1	1	1
1	0	0	0	1	1
1	1	1	0	0	1

Poiché in ogni riga della tavola di verità la formula $(A \leftrightarrow B) \lor (\neg A \leftrightarrow B)$ assume valore di verità 1, si conclude che tale formula è una tautologia.

Mostrare che la formula

$$(A \lor B \lor C) \land (A \to \neg B \land C) \land \neg B \land (C \to A \land \neg A)$$

è una contraddizione.

Esercizio 9, svolgimento

Siano:

 $Q_1: A \lor B \lor C$

 $Q_2: A \rightarrow \neg B \wedge C$

 $Q_3: \qquad C \to A \land \neg A$

 $P: \qquad Q_1 \wedge Q_2 \wedge \neg B \wedge Q_3$

Sia P la formula considerata. Si osservi P è una congiunzione di quattro sottoformule; una di queste sottoformule è la disgiunzione di tre sottoformule. Sebbene la disgiunzione e la congiunzione siano connettivi binari, per l'associatività è possibile trattare disgiunzioni e congiunzioni generalizzate, cioè più lunghe, osservando che:

- una disgiunzione è vera se e solo se è vero almeno un disgiungendo
- una congiunzione è vera se e solo se sono veri tutti i congiungendi

Si deve mostrare che in nessuna riga della sua tavola di verità la formula P assume valore di verità 1.

Se esistesse una tale riga, in tale sarebbero veri i quattro congiungendi:

$$Q_1$$
, Q_2 , $\neg B$, Q_3

In particolare, B dev'essere falsa. Inoltre, dalla verità di Q_3 e il fatto che $A \wedge \neg A$ è una contraddizione, segue che C dev'essere falsa. Di conseguenza, anche $\neg B \wedge C$ è falsa. Allora, affinché Q_2 sia vera, anche A dev'essere falsa. Tuttavia questi valori di verità per A, B, C rendono falsa Q_1 , e dunque falsa P.

Si conclude che non c'è alcuna riga della tavola di verità in cui P ha valore di verità 1, dunque P è una contraddizione.

Mostrare che la formula

$$(A \land B \rightarrow C) \land (C \rightarrow \neg A)$$

è soddisfacibile.

Esercizio 10, svolgimento

Sia

$$P: (A \land B \to C) \land (C \to \neg A)$$

Si vuole mostrare che c'è una riga della tavola di verità di P in cui P assume valore di verità 1.

In una tale riga, entrambe le sottoformule

$$A \wedge B \rightarrow C$$
, $C \rightarrow \neg A$

devono essere vere.

Se C è falsa, ciò garantisca la verità della seconda; in tal caso, la prima risulta vera se e solo se $A \wedge B$ è falsa, cioè se e solo se almeno una tra A e B è falsa.

Quindi una riga della tavola di verità in cui P ha valore di verità 1 è quella per cui:

$$A$$
 è falsa, B è falsa, C è falsa

Esistendo una riga della tavola di verità in cui P è vera, la formula P è soddisfacibile.

Esercizio 11

Si consideri la formula

$$\neg A \lor B \to A \land B$$

È soddisfacibile? È una tautologia? È una contraddizione?

Esercizio 11, svolgimento

Essendo la formula un'implicazione, affinché sia vera basta che $A \wedge B$ sia vera, cioè che A e B siano entrambe vere. In altre parole, l'assegnazione di valori di verità

A: vera, B: vera

rende vera anche la formula $\neg A \lor B \to A \land B$, che dunque è soddisfacibile. Essendo soddisfacibile, non è una contraddizione.

Esercizio 11, svolgimento (cont.)

Per vedere se è una tautologia, si deve vedere se la formula è vera per tutte le possibili assegnazioni di verità alle lettere A e B (nel qual caso è effettivamente una tautologia) o se esiste almeno un'assegnazione di valori di verità alle lettere A e B che rende la formula falsa (nel qual caso la formula non è una tautologia).

La formula è falsa se e solo se l'antecedente $\neg A \lor B$ è vero e il conseguente $A \land B$ è falso. L'antecedente $\neg A \lor B$ è vero se e solo se o A è falsa o B è vera. Quindi se per esempio

A è falsa e B è falsa

allora $\neg A \lor B$ è vera e $A \land B$ è falsa, per cui $\neg A \lor B \to A \land B$ è falsa. Essendoci almeno un'assegnazione di valori di verità alle lettere che rende falsa la formula considerata, questa non è una tautologia.

Sintassi della logica proposizionale

Sia fissato un insieme non vuoto L. Gli elementi di L saranno detti lettere proposizionali, e tipicamente denotati con lettere quali

$$A, B, C, \ldots, A_0, A_1, \ldots, A', A'', \ldots$$

Sia

$$I = L \cup \{\neg, \lor, \land, \rightarrow, \leftrightarrow, (,)\}$$

l'insieme formato dalle lettere proposizionali, i connettivi e le parentesi. Sia

 $I^* = I$ 'insieme di tutte le stringhe finite di elementi di I

Esempio

$$A\neg))AB \leftrightarrow AA\lor \in I^*$$

Formule proposizionali

Si definisce ricorsivamente l'insieme Prop(L) delle proposizioni, o formule proposizionali, di L mediante le seguenti clausole:

- Se $A \in L$, allora $(A) \in Prop(L)$
- Se $P \in Prop(L)$, allora

$$(\neg P) \in Prop(L)$$

• Se $P, Q \in Prop(L)$, allora

$$(P \lor Q), (P \land Q), (P \rightarrow Q), (P \leftrightarrow Q) \in Prop(L)$$

Una stringa di elementi di I è una proposizione (cioè un elemento di Prop(L)) se e solo se può essere costruita usando tali clausole.

Osservazione. Una formula comincia con una parentesi sinistra (e finisce con una parentesi destra).

Formule proposizionali

In altre parole, per ogni $n \in \mathbb{N}$ si può definire ricorsivamente un insieme $Prop_n(L)$:

- $Prop_0(L) = \{(A) \mid A \in L\}$
- $Prop_{n+1} = Prop_n(L) \cup \{(\neg P) \mid P \in Prop_n(L)\} \cup \{(P \square Q) \mid P, Q \in Prop_n(L), \square \in \{\lor, \land, \rightarrow, \leftrightarrow\}\}$

Quindi

$$Prop_0(L) \subseteq Prop_1(L) \subseteq Prop_2(L) \subseteq \dots$$

e

$$Prop(L) = \bigcup_{n \in \mathbb{N}} Prop_n(L)$$

Notazione. Tipicamente le formule proposizionale saranno denotate con lettere quali P, Q, R, \ldots

Gli elementi di *Prop*₀ sono detti *formule atomiche*.

Formule proposizionali: terminologia

- L'ultimo connettivo applicato nella costruzione di una formula è detto connettivo principale; le sottoformule immediate, o sottoformule principali sono le formule alle quali il connettivo principale è applicato, cioè:
 - il connettivo principale di (¬P) è ¬; l'unica sottoformula immediata di (¬P) è P
 - il connettivo principale di $(P \square Q)$ è \square , se \square è un connettivo binario; le sottoformule immediate sono P, Q
- una formula (non atomica) è una negazione/disgiunzione/congiunzione/implicazione/biimplicazione se il connettivo principale è ¬/√/∧/→/↔

Lunghezza e altezza di una formula

- La lunghezza lh(P) di una formula P è il numero di simboli di I che usa, cioè la sua lunghezza come stringa di elementi di I
- La altezza ht(P) di una formula P è il numero di passi impiegato per costruirla, cioè

$$ht(P) = \min\{n \in \mathbb{N} \mid P \in Prop_n(L)\}\$$

Esempio.

- Se P è una formula atomica, allora lh(P) = 3, ht(P) = 0
- Se

$$P: ((\neg(A)) \wedge ((B) \rightarrow (\neg(A))))$$

allora
$$lh(P) = 21, ht(P) = 3.$$

Esempi

Siano $A, B \in L$

- $A \wedge B$ non è una formula, perché non comincia con una parentesi (
-)A(non è una formula, perché non comincia con una parentesi (
- $((A) \rightarrow (B))$ è una formula, ottenuta applicando il connettivo \rightarrow alle formule atomiche (A), (B). Dunque

$$(A),(B) \in Prop_0(L)$$

 $((A) \rightarrow (B)) \in Prop_1(L)$

• $(\neg((A) \rightarrow (B)))$ è una formula, ottenuta applicando il connettivo \neg alla formula precedente. Dunque

$$(\neg((A) \rightarrow (B))) \in Prop_2(L)$$

- ((A) non è una formula: per costruzione, tutte le formule hanno ugual numero di parentesi sinistre e destre
- (AB) non è una formula, perché non è atomica, ma non contiene connettivi

Alberi

A ogni formula è associato un *albero di costruzione*, o *albero sintattico*. Si tratta di un albero etichettato, binario, finito.

Un *albero* è un insieme non vuoto T dotato di una relazione d'ordine (parziale) \leq tale che:

- per ogni $x \in T$ l'insieme $\{y \in T \mid y \leq x\}$ è finito e totalmente ordinato da \leq
- esiste un elemento minimo rispetto a ≤, detto *radice*

Terminologia.

- Gli elementi di T sono detti nodi
- ullet Il nodo minimo rispetto a \preceq si dice *radice* dell'albero
- Se x ≺ y si dice che x è un predecessore di y, o che y è un successore (o discendente) di x
- Se $x \prec y$ e non c'è alcun z tale che $x \prec z \prec y$, si dice che x è un predecessore immediato di y, o che y è un successore immediato di x
- Se il nodo x non ha successori, si dice che x è una foglia

Un albero T è binario se ogni nodo ha al più 2 successori immediati.

Alberi

Spesso è più comodo rappresentare graficamente gli alberi a testa in giù, cioè con la radice in alto e l'albero che cresce verso il basso:

- Un ramo è un insieme totalmente ordinato massimale di nodi; negli alberi finiti, i rami partono dalla radice e arrivano a una foglia
- La *lunghezza* di un ramo in un albero finito è il numero dei suoi elementi meno 1
- L'altezza di un albero finito è la massima lunghezza dei suoi rami

Esempio. L'albero nel disegno ha altezza 3.

