# IDTraffickers: An Authorship Attribution Dataset to link and connect Potential Human-Trafficking Operations on Text Escort Advertisements

Vageesh Saxena <a href="mailto:v.saxena@maastrichtuniversity.nl">v.saxena@maastrichtuniversity.nl</a>

Benjamin Bashpole bashpole@idtraffickers.com

Gijs Van Dijck gijs.vandijck@maastrichtuniversity.nl

Jerry Spanakis jerry.spanakis@maastrichtuniversity.nl



# Problem Statement: Can Authorship Attribution approaches be used to link and connect potential Human Trafficking (HT) advertisements?

- HT indicators studied in ads linked to individuals/organizations.
- Law Enforcement (LEA) connect ads using phone numbers, images, and emails.
- Studies show HT involvement in escort market.
- Only 37% of Backpage escort ads had these features.

## **Our Contributions:**

- Novel authorship attribution dataset with potential HT instances to analyze unique writing styles.
- Establishing authorship identification benchmark as a closed-set classification task.
- Utilizing trained representations for identifying potential aliases in open-set ranking task.

# (i) IDTraffickers: An Authorship Attribution dataset with advertisements from Backpage Escort Market

- Input: Text Advertisement
- Labels: phone numbers
- Output: Phone number extraction (Classification) + Network Analysis (NetworkX) = Vendor Labels
- Dataset: 100k human annotated advertisements from DARPA dataset
- Evaluation: Lev Accuracy, Perfect Accuracy, Digit Accuracy, and Consistency



#### (ii) Authorship Identification Task: Identifying HT vendors through a closed-set classification task

- Input: Text Sequence (Title + Description)
- Labels: Vendor IDs
- Dataset: IDTraffickers
- Evaluation: Balance Accuracy, Micro-F1, Weighted-F1, and Macro-F1

| 37.11                                               | 1      | 1.6° E.4 | **** * 1 . 1 . 1 . 1 | 34 54    |  |
|-----------------------------------------------------|--------|----------|----------------------|----------|--|
| Models                                              | Acc.   | Micro-F1 | Weighted-F1          | Macro-F1 |  |
| Distilled Models                                    |        |          |                      |          |  |
| BERT                                                | 0.9110 | 0.9147   | 0.9143               | 0.8467   |  |
| RoBERTa                                             | 0.9199 | 0.9230   | 0.9229               | 0.8603   |  |
| GPT2                                                | 0.9132 | 0.9172   | 0.9166               | 0.8500   |  |
| Smaller Models                                      |        |          |                      |          |  |
| ALBERT                                              | 0.7832 | 0.7891   | 0.7925               | 0.6596   |  |
| DeBERTa-v3                                          | 0.8703 | 0.8757   | 0.8756               | 0.7825   |  |
| T5                                                  | 0.9157 | 0.9192   | 0.9190               | 0.8535   |  |
| Contrastive Learning Models                         |        |          |                      |          |  |
| miniLM                                              | 0.8888 | 0.8934   | 0.8935               | 0.8101   |  |
| DeCLUTR                                             | 0.9230 | 0.8934   | 0.9259               | 0.8656   |  |
| Style-Emb                                           | 0.8887 | 0.8936   | 0.8932               | 0.8112   |  |
| Style-Ellio                                         |        |          |                      | 0.0112   |  |
| HT Language Model                                   |        |          |                      |          |  |
| LM-Classifier                                       | 0.9294 | 0.9317   | 0.9316               | 0.8726   |  |
|                                                     |        |          |                      |          |  |
| Table 3: Balanced Accuracy, Micro-F1, Weighted-F1,  |        |          |                      |          |  |
| and Macro-F1 performances of the transformers-based |        |          |                      |          |  |
| classifiers on the author identification task.      |        |          |                      |          |  |
| classifiers on the author identification task.      |        |          |                      |          |  |

# (iii) Authorship Verification Task: Verifying potential aliases using open-set ranking task

- Input: Pre-trained representations of text advertisements from the trained classifier
- Model: DeCLUTR-small and Style-Embedding classifiers
- Similarity-Search: FAISS (clustering of dense vectors)
- Red color: performance before training
- Green color: performance after training
- Evaluation: Precision@K, Recall@K, MAP@K, and R-Precision

| K             | @1                | @3                | @5                | @10               | @20               | @25               | @50               | @100              | @X                |  |  |  |  |  |  |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|--|--|--|
|               | Precision@K       |                   |                   |                   |                   |                   |                   |                   |                   |  |  |  |  |  |  |
| Style         | $0.0442 \pm 0.20$ | $0.0410 \pm 0.16$ | $0.0391 \pm 0.15$ | $0.0366 \pm 0.13$ | $0.0329 \pm 0.11$ | $0.0319 \pm 0.10$ | $0.0270 \pm 0.08$ | $0.0227 \pm 0.07$ | 2                 |  |  |  |  |  |  |
| DeCLUTR       | $0.3198 \pm 0.46$ | $0.2883 \pm 0.39$ | $0.2671 \pm 0.36$ | $0.2278 \pm 0.32$ | $0.1837 \pm 0.27$ | $0.1693 \pm 0.26$ | $0.1277 \pm 0.21$ | $0.0893 \pm 0.15$ | -                 |  |  |  |  |  |  |
| Style         | $0.9616 \pm 0.19$ | $0.9437 \pm 0.19$ | $0.9124 \pm 0.21$ | $0.8175 \pm 0.27$ | $0.6818 \pm 0.33$ | $0.6328 \pm 0.35$ | $0.4815 \pm 0.36$ | $0.3551 \pm 0.36$ | -                 |  |  |  |  |  |  |
| DeCLUTR       | $0.9672 \pm 0.17$ | $0.9532 \pm 0.17$ | $0.9221 \pm 0.19$ | $0.8253 \pm 0.26$ | $0.6868 \pm 0.33$ | $0.6367 \pm 0.34$ | $0.4835 \pm 0.36$ | $0.3561 \pm 0.36$ | -                 |  |  |  |  |  |  |
| Recall@K      |                   |                   |                   |                   |                   |                   |                   |                   |                   |  |  |  |  |  |  |
| Style         | $0.0023 \pm 0.01$ | $0.0063 \pm 0.04$ | $0.0091 \pm 0.05$ | $0.0146 \pm 0.07$ | $0.0233 \pm 0.09$ | $0.0269 \pm 0.10$ | $0.0394 \pm 0.12$ | $0.0580 \pm 0.15$ | -                 |  |  |  |  |  |  |
| DeCLUTR       | $0.0242 \pm 0.06$ | $0.0567 \pm 0.12$ | $0.0792 \pm 0.16$ | $0.1136 \pm 0.20$ | $0.1539 \pm 0.24$ | $0.1676 \pm 0.25$ | $0.2122 \pm 0.29$ | $0.2590 \pm 0.31$ | -                 |  |  |  |  |  |  |
| Style         | $0.0828 \pm 0.09$ | $0.2348 \pm 0.24$ | $0.3485 \pm 0.32$ | $0.5092 \pm 0.37$ | $0.6552 \pm 0.37$ | $0.6945 \pm 0.36$ | $0.7909 \pm 0.32$ | $0.8600 \pm 0.27$ | -                 |  |  |  |  |  |  |
| DeCLUTR       | $0.0836 \pm 0.09$ | $0.2397 \pm 0.25$ | $0.3563 \pm 0.32$ | $0.5192 \pm 0.37$ | $0.6653 \pm 0.37$ | $0.7041 \pm 0.36$ | $0.7988 \pm 0.32$ | $0.8664 \pm 0.27$ | -                 |  |  |  |  |  |  |
|               | MAP@K             |                   |                   |                   |                   |                   |                   |                   |                   |  |  |  |  |  |  |
| Style         | $0.0442 \pm 0.20$ | $0.0562 \pm 0.21$ | $0.0598 \pm 0.21$ | $0.0640 \pm 0.21$ | $0.0673 \pm 0.21$ | $0.0681 \pm 0.21$ | $0.0700 \pm 0.21$ | $0.0712 \pm 0.21$ | -                 |  |  |  |  |  |  |
| DeCLUTR       | $0.3198 \pm 0.46$ | $0.3587 \pm 0.45$ | $0.3681 \pm 0.45$ | $0.3750 \pm 0.44$ | $0.3794 \pm 0.44$ | $0.3803 \pm 0.44$ | $0.3823 \pm 0.44$ | $0.3833 \pm 0.44$ | -                 |  |  |  |  |  |  |
| Style         | $0.9616 \pm 0.19$ | $0.9687 \pm 0.16$ | $0.9698 \pm 0.15$ | $0.9706 \pm 0.15$ | $0.9709 \pm 0.14$ | $0.9710 \pm 0.14$ | $0.9710 \pm 0.14$ | $0.9710 \pm 0.14$ | -                 |  |  |  |  |  |  |
| DeCLUTR       | $0.9672 \pm 0.17$ | $0.9735 \pm 0.14$ | $0.9746 \pm 0.14$ | $0.9752 \pm 0.13$ | $0.9755 \pm 0.13$ | $0.9755 \pm 0.13$ | $0.9756 \pm 0.13$ | $0.9756 \pm 0.13$ | -                 |  |  |  |  |  |  |
| R-Precision@X |                   |                   |                   |                   |                   |                   |                   |                   |                   |  |  |  |  |  |  |
| Style         | -                 |                   | -                 | -                 | -                 | -                 |                   | -                 | $0.0199 \pm 0.07$ |  |  |  |  |  |  |
| DeCLUTR       | -                 | -                 |                   | -                 | -                 | -                 | -                 | -                 | $0.1641 \pm 0.23$ |  |  |  |  |  |  |
| Style         | -                 | -                 | -                 |                   | -                 | -                 |                   | -                 | $0.8601 \pm 0.22$ |  |  |  |  |  |  |
| DeCLUTR       | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | $0.8850 \pm 0.20$ |  |  |  |  |  |  |

Table 2: Precision@K, Recall@K, MAP@K, and R-Precision@X scores for the DeCLUTR and Style-Embedding models before and after being trained on the IDTraffickers dataset

### **Data Insights**

- % of Punctuations, emojis, white spaces, and random characters:
  - 47% in IDTraffickers.
  - 10.6% in PAN2023
  - 12.4% in Reddit dataset
- Wikifiability refers to the presence of entities with corresponding wikipedia mentions.
- IDTraffickers has higher wikifibility than PAN2023 and Reddit-Conv datasets.
- Majority of recognized entities are primarily related to locations, names, and organizations.
- This finding aligns with the nature of ads, as they often include posting locations, escort names, and nearby landmarks.







Figure 4: **Wikifiability:** No. of entities per advertisement with Wikipedia mentions in the IDtraffickers, PAN2023, and Reddit-Conversations datasets.



Figure 5: **Wiki-entities-distribution:** Extracted entities from the wikification of IDtraffickers, PAN2023, and Reddit-Conversations datasets.

# Summary

# **Key Findings:**

- Trained CNN-LSTM-CRF classifier effectively generates ground truth.
- The DeCLUTR classifier identifies unique writing styles with high accuracy.
- Trained classifiers can be used to identify potential aliases through ranking task.

# **Results:**

- CNN-CRF-CRF classifier
  - Lev Accuracy: 0.9986
  - Perfect Accuracy: 0.9892
  - Digit Accuracy: 0.9950
  - o Consistency: 0.9899
- Author Verification / Classification task
- DeCLUTR-small model with Macro-F1 of 0.8656
- Author Identification / Ranking Task
  - Supervised pre-training helps
  - o R-Precision of 0.8850 with a std. of 0.20
  - Outperforms the existing SOTA

# Limitations:

- Vendors may not indicate all operable phone numbers.
- Lack of ground truth (Human Trafficking instances)
- Larger Architectures may yield better performance
- Lack of similar datasets to evaluate zero-shot performance
- Some advertisements don't have text description
- LLMs can be used to automatically generate advertisements
- Explainability is required amongst LEA to establish trust
- Misuse of such approaches can harm individuals

