

10th International Satisfiability Modulo Theories Competition

SMT-COMP 2015

Sylvain Conchon

David Déharbe

Tjark Weber

The Numbers

- 11 teams participated
- Solvers:

Logics:

► Benchmarks:

Record numbers of solvers, logics, and benchmarks!

Job Pairs

- ▶ 1,028,615 job pairs executed (+ some repeats)
- $ightharpoonup \sim 5 ext{ days} imes 150 ext{ nodes} imes 2 ext{ processors/node of compute time}$

More than 3 times as many job pairs as in 2014!

StarExec

- All job pairs executed on StarExec
- Over 9,000 job pairs/hour completed

StarExec worked great

- Thanks to Aaron Stump for prompt help when problems or questions arose
- $ightharpoonup \sim 20$ feature requests and (minor) bug reports submitted to the StarExec developers

Machine Specifications

Hardware:

- ▶ Intel Xeon CPU E5-2609 @ 2.4 GHz, 10 MB cache
- 2 processors per node, 4 cores per processor
- Main memory capped at 60 GB per job pair

Software:

- Red Hat Enterprise Linux Workstation release 6.3
- ► Kernel 2.6.32-431, gcc 4.4.6, glibc 2.12 (~ 2009-2011)
- Virtual machine image available before the competition

Problems with missing libraries (due to dynamic linking) in several solvers resolved during pre-competition testing in early June.

Benchmarks and Logics

Almost 60,000 new benchmarks added to SMT-LIB, thanks to several contributors:

- ► Six new logics, including two new floating-point logics
- Thanks to Clark Barrett for curation and uploading

Benchmark Curation

- Sanity checks
 - One satisfiability check per benchmark in main track
 - Status information set before satisfiability check
- Verify benchmark signature against logic set
- Remove unused symbols
- Improve logic settings

Eligible Benchmarks

All eligible benchmarks were used for the competition. There was no further selection.

Competition Tools Improved

- ► Fixed an issue where the trace executor would sometimes not count correct solver responses on partially solved incremental benchmarks. (Thanks to Kshitij Bansal for reporting this.)
- ► Fixed several issues in the benchmark scrambler that caused invalid output in the presence of variable shadowing.

Evolution of Benchmarks: Breakdown

Tier 1 (> 1000 Benchmarks)

Evolution of Benchmarks: Breakdown

Tier 2 (< 1000 Benchmarks)

Evolution of Tool Participation: Breakdown

Quantifier-Free Logics

Evolution of Tool Participation: Breakdown

Logics with Quantifiers

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- ► STP-CryptoMiniSat
- ▶ openSMT2
- ► AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- ► SMTInterpol
- veriT
- STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- STP-MiniSat
- STP-CryptoMiniSat
- openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

- ► CVC4
- ► Yices2
- SMTInterpol
- veriT
- ► STP-MiniSat
- STP-CryptoMiniSat
- ▶ openSMT2
- AProVE
- Boolector
- raSAT
- ► SMT-RAT

Scoring

Raw Scores

A solver's raw score for each benchmark is $\langle e, n, wall, cpu \rangle$, with

- $e \in \{0,1\}$, the number of erroneous results
- ▶ $0 \le n \le N$, the number of correct results (N is the number of check-sat commands in the benchmark)
- wall is the wall-clock (or real) time
- cpu is the CPU time
 - \rightarrow For programs running in parallel, *cpu* is the sum of CPU times devoted to each task

Track Scoring

Main track

- ▶ Timeouts, aborts (no answer), unknown: (0, 0, wall, cpu)
- ▶ *Incorrect* answers: $\langle 1, 0, wall, cpu \rangle$
- Correct answers: $\langle 0, 1, wall, cpu \rangle$

Application track (multiple checksat per benchmark)

- Any incorrect result : $\langle 1, 0, wall, cpu \rangle$
- ▶ Otherwise : $\langle 0, n, wall, cpu \rangle$

Sequential Performances

Given a wall-clock time limit T and a raw score $\langle e, n, wall, cpu \rangle$, we derive a sequential score to evaluate sequential performances:

- If cpu > T then $\langle 0, 0, T \rangle$
- ▶ Otherwise $\langle e, n, cpu \rangle$

Division Scoring

For each division, scores are summed component-wise:

- Sequential performances = sum all sequential scores
- ► Parallel performances = sum all raw scores

We compute:

- Sequential and parallel performances for main track divisions
- Only parallel performances for application track divisions

Division scores are compared lexicographically:

Fewer errors takes precedence over more correct solutions, which takes precedence over less wall-clock time taken, which takes precedence over less CPU time taken

Competition Wide Scoring

We define the competition wide score of each solver for the main track, separately for sequential and parallel performances

For each *competitive* division i, let N_i be the total number of benchmarks in that division and $\langle e_i, n_i, ... \rangle$ the raw (resp. sequential) score of the solver for i

The competition-wide score of a solver is :

$$\sum_{i} (\text{if } e_i = 0 \text{ then } (n_i/N_i)^2 \text{ else } -e_i) \times logN_i$$

Results

Results: Main Track

40 divisions but only 28 declared as competitive

Sequential performances (parallel perfs. are identical)

Solver	# Divisions won	Divisions
CVC4 (2 versions)	12	ALIA, AUFLIA, AUFLIRA, LIA, LRA QF_AUFBV, QF_LIA, QF_LRA, QF_NIRA UF, UFIDL, UFLIA
Yices (2 versions)	11	QF_ALIA, QF_AUFLIA, QF_AX, QF_IDL QF_LIRA, QF_NRA, QF_RDL, QF_UF QF_UFIDL, QF_UFLIA, QF_UFLRA
Boolector (2 versions)	3	QF_ABV, QF_BV, QF_UFBV
AProVE	1	QF_NIA
CVC3	1	UFLRA

Results: Application Track

14 divisions but only 7 declared as competitive

Solver	# Divisions won	Divisions
Yices	6	QF_ALIA, QF_AUFLIA, QF_BF, QF_LIA QF_LRA, QF_UFLRA
CVC4	1	QF_UFLIA

Results: Competition-Wide Scoring

Main Track:

Rank	Solver	Seq. Score	Paral. Score
-	[Z3]	159.36	159.36
1	CVC4	144.67	144.74
2	CVC4 (exp)	140.47	140.51
3	Yices	101.91	101.91
-	[MathSat]	79.77	79.77
4	veriT	70.68	70.68

Other recognitions

Open Source Solvers:

- ▶ In all divisions, except QF_NIA, winners are all open source
- ▶ In QF_NIA, the first open source solvers is raSAT 0.2

Industrial performances:

- ▶ Makes no difference, except for QF_LIA and UFLRA
- ➤ Yices2 is best performing on industrial benchs for QF_LIA
- veriT is best performing on industrial benchmarks for UFLRA

New Entrant:

- ► Two new entrants in 2015
- ▶ SMT-RAT 2.0 obtained the best scores

Breadth of logics:

CVC4 covers the most theories and logics

Further Thoughts

Benchmarks:

- Still more benchmarks needed, especially for small divisions
- ▶ Resolve semantics of partial operations, e.g., bvdiv, fp.min

Solvers:

Parallelism

Competition:

- Relative weight of benchmarks and benchmark families
- Separate measure of performance on quick jobs
- Additional tracks, e.g., unsat-core, proofs

Teams:

- Congratulations on your accomplishments!
- ► Thanks for your participation!