Notes de cours d'algèbre - Visio

M1 MIASHS

Paul Minchella

11 septembre 2025

1 Les types de morphisme

Soit V, W des \mathbb{R} -ev et f une application linéaire qui va de V dans W, càd $f \in \mathcal{L}(V, W)$. En particulier, on considérera : $f : \mathbb{R}^n \to \mathbb{R}^n$ ou même plus simplement $f : \mathbb{R}^3 \to \mathbb{R}^3$.

Rappel. Une application $f: V \to W$ est lin'eaire si et seulement si, pour tout vecteur $u, v \in V$ et tout scalaire $\lambda \in \mathbb{R}$,

$$f(u + \lambda v) = f(u) + \lambda f(v).$$

Examen. Il vous sera demandé de montrer qu'une application donnée $f: \mathbb{R}^3 \to \mathbb{R}^3$ est linéaire. Voici la démarche attendue :

1. Poser deux vecteurs génériques de \mathbb{R}^3 :

$$u = (u_1, u_2, u_3), v = (v_1, v_2, v_3).$$

2. Considérer leur combinaison $u + \lambda v$:

$$u + \lambda v = (u_1 + \lambda v_1, u_2 + \lambda v_2, u_3 + \lambda v_3).$$

- 3. Appliquer f à ce vecteur : calculer explicitement $f(u + \lambda v)$ en utilisant la définition de f donnée dans l'énoncé.
- 4. Séparer soigneusement les termes en regroupant ceux qui correspondent à f(u) et ceux qui correspondent à $\lambda f(v)$.
- 5. Conclure en écrivant :

$$f(u + \lambda v) = f(u) + \lambda f(v).$$

Les types de morphismes possibles. On distingue plusieurs propriétés importantes d'une application linéaire $f: V \to W$. Il est question d'injectivité, de surjectivité et donc de bijectivité (isomorphisme). On définit aussi les notions d'endomorphisme et d'automorphisme.

— Une application linéaire $f: V \to W$ est dite **injective** si, pour $u, v \in V$

$$f(u) = f(v) \implies v = v.$$

Autrement dit, des vecteurs différents de V ne peuvent pas avoir la même image dans W. (Équivalent : $\ker(f) = \{0_V\}$.)

— Elle est dite **surjective** si tout vecteur de W est atteint par f, c'est-à-dire :

$$\forall w \in W, \exists v \in V \mid f(v) = w.$$

Autrement dit, Im(f) = W.

— Elle est dite **bijective** si elle est à la fois injective et surjective. Alors :

$$\forall w \in W, \exists ! v \in V \mid f(v) = w.$$

Dans ce cas, f admet une application réciproque $f^{-1}:W\to V$ (correspond à A^{-1} quand A désigne la matrice représentative de f (dans la base canonique), et si f est linéaire, on dit que f est un isomorphisme.

— Si V = W, on dit que f est un **endomorphisme**. Si de plus f est un isomorphisme, on l'appelle un **automorphisme**. On note d'ailleurs l'ensemble aut $(V) = \{f \in \mathcal{L}(V) \mid f \text{ est bijective } \}$

2 Noyau (kernel) et image

Définitions. Soit $f: V \to W$ une application linéaire entre deux espaces vectoriels.

— Le **noyau** (ou kernel) de f est l'ensemble

$$\ker(f) = \{ v \in V \mid f(v) = 0_W \}.$$

C'est un sous-espace vectoriel de V.

— L'**image** (ou range) de f est l'ensemble

$$\operatorname{Im}(f) = \{ f(v) \mid v \in V \} \subseteq W.$$

C'est un sous-espace vectoriel de W.

Lien avec injectivité et surjectivité.

- f est **injective** si et seulement si $ker(f) = \{0_V\}.$
- f est surjective si et seulement si Im(f) = W.

Exemple. Considérons $f: \mathbb{R}^2 \to \mathbb{R}^2$ défini par

$$f(x,y) = (2x + y, x + y).$$

— Son novau est

$$\ker f = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = (0, 0)\}.$$

On part du système de contraintes linéaires vérifié par tout vecteur $(x,y) \in \mathbb{R}^2$:

$$\begin{cases} 2x + y = 0 \\ x + y = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \end{cases}$$

Donc

$$\ker f = \{(0,0)\}.$$

Ce novau est réduit au vecteur nul, f est donc bien **injective**.

L'image est

$$\operatorname{Im}(f) = \{ (2x + y, x + y) \mid (x, y) \in \mathbb{R}^2 \}.$$

Pour mieux comprendre, écrivons

$$(2x + y, x + y) = x(2,1) + y(1,1).$$

Ainsi tout vecteur de l'image est une combinaison linéaire des deux vecteurs

$$v_1 = (2,1), \quad v_2 = (1,1).$$

Comme v_1 et v_2 sont clairement linéairement indépendants (aucun n'est multiple de l'autre), ils forment une base de \mathbb{R}^2 . Donc

$$\operatorname{Im}(f) = \operatorname{Span}\{(2,1), (1,1)\} = \mathbb{R}^2.$$

Par conséquent, f est surjective.

Conclusion. f est à la fois injective et surjective, donc f est une bijection linéaire, autrement dit un isomorphisme.

Rang.

— On appelle rang d'une matrice A (ou d'une application linéaire f) la dimension de son image :

$$rg(A) = dim Im(A)$$
 ou encore $rg(f) = dim Im(f)$.

— Le **théorème du rang** affirme que, pour toute application linéaire $f: V \to W$:

$$\dim \ker f + \dim \operatorname{Im} f = \dim V.$$

— Dans le cas présent $(V = \mathbb{R}^2)$:

$$\dim \ker f + \operatorname{rg}(f) = \dim \mathbb{R}^2 = 2.$$

Exercice des slides. On considère l'application linéaire f définie par

$$f:(x,y)\mapsto (x+y,\ 2x+2y).$$

1. La matrice A qui représente f dans la base canonique est donnée par

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}.$$

En effet,

$$f(e_1) = f(1,0) = (1,2) = 1e_1 + 2e_2,$$

et

$$f(e_2) = f(0,1) = (1,2) = 1e_1 + 2e_2.$$

Rappel. Si la matrice d'une application linéaire n'est pas inversible, alors nécessairement l'application f n'est pas bijective.

Premier réflexe : calcul du $\det A$.

 $\det A = 0 \implies A$ non inversible $\implies f$ n'est ni injective, ni surjective, ni bijective.

2. Quid de $\ker f \equiv \ker A$ et $\operatorname{Im} f \equiv \operatorname{Im} A$?

Déterminer le noyau (càd déterminer une base). On rappelle que la définition du noyau de f et donc de A est donnée par :

$$\ker A = \left\{ (x, y) \in \mathbb{R}^2 \;\middle|\; A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

Pour expliciter une base d'un tel ensemble, c'est toujours pareil. On écrit le système de contraintes linéaires sous-jacent à l'ensemble :

$$(x,y) \in \ker A \iff A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{cases} x+y=0, \\ 2x+2y=0 \end{cases} \iff x+y=0.$$

Les coordonnées (x, y) qui sont dans le noyau de A vérifient donc x + y = 0. Sachant y = -x, on obtient :

$$\ker A = \operatorname{Vect}\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$

Calcul de l'image. Pour tout $(x, y) \in \mathbb{R}^2$, on a

$$f(x,y) = (x+y, 2x+2y) = (x,2x) + (y,2y) = x(1,2) + y(1,2) = (x+y)(1,2).$$

Sous forme matricielle:

$$A\begin{pmatrix} x \\ y \end{pmatrix} = (x+y)\begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Par conséquent, l'image de f est donc généré par le vecteur $(1\ 2)^{\top}$, d'où :

$$\boxed{\operatorname{Im}(A) \equiv \operatorname{Im}(f) = \operatorname{Vect}\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}}$$

ce qui implique dim Im $f \equiv rg(f) = 1$

Théorème du rang. Ce dernier est bien vérifié puisque :

$$\dim \ker A + \operatorname{rg}(A) = \dim \mathbb{R}^2 = 2.$$

3 Représentation d'une application linéaire dans une base

Exercice : Représenter $T: \mathbb{R}^3 \to \mathbb{R}^3, (x,y,z) \mapsto (x+z,y,2z)$ via sa matrice M dans la base canonique. Je prends la base associée et je regarde les images par T de ces vecteurs.

$$T(e_1) = T(1,0,0) = (1,0,0)?$$
; $T(e_2) = (0,1,0)?$; $T(e_3) = (1,0,2)?$

$$M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Changement de base - Application

On représente à la base notre application linéaire dans la base 1 :

$$\mathcal{B}_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$$

qu'on appelle base canonique et qu'on note souvent \mathcal{B}_c .

Je veux la représentation de cette même application linéaire dans la base 2 :

$$\mathcal{B}_2 = \{(1,1,1), (1,-1,1), (2,1,1)\}$$

Pour obtenir la matrice de passage; on va effectuer un algorithme de pivot de Gauss sur la matrice augmentée :

$$\begin{split} [\mathcal{B}_2 \mid \mathcal{B}_1] &= \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \\ \sim \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & -2 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 1 \end{bmatrix} \quad (L_2 \leftarrow L_2 - L_1, \ L_3 \leftarrow L_3 - L_1) \\ \sim \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & -2 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 \end{bmatrix} \quad (L_3 \leftarrow -L_3) \\ \sim \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & -1 \end{bmatrix} \quad (L_2 \leftarrow L_2 + L_3) \\ \sim \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & -1 \end{bmatrix} \quad (L_2 \leftarrow -\frac{1}{2}L_2) \\ \sim \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 1 & 0 & -1 \end{bmatrix} \quad (L_1 \leftarrow L_1 - L_2 - 2L_3) \\ \sim \begin{bmatrix} 1 & 0 & 0 & -1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 1 & 0 & -1 \end{bmatrix} \quad (L_1 \leftarrow L_1 - L_2 - 2L_3) \end{split}$$

Ainsi la matrice de passage est :

$$P_{1\to 2} = P_{21} = \begin{pmatrix} -1 & \frac{1}{2} & \frac{3}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -1 \end{pmatrix}$$

Le vecteur initialement exprimé dans \mathcal{B}_1 est $\mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$. Ainsi, puisque l'on a disposition la matrice de passage de \mathcal{B}_1 à \mathcal{B}_2 , il suffit simplement de calculer :

$$[\mathbf{b}]_{\mathcal{B}_{2}} = P_{21}[\mathbf{b}]_{\mathcal{B}_{1}} = \begin{pmatrix} -1 & \frac{1}{2} & \frac{3}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \times 2 + \frac{1}{2} \times 1 + \frac{3}{2} \times (-1) \\ 0 \times 2 + \left(-\frac{1}{2}\right) \times 1 + \frac{1}{2} \times (-1) \\ 1 \times 2 + 0 \times 1 + (-1) \times (-1) \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \\ 3 \end{pmatrix}$$

4 Valeurs propres, vecteurs propres, espaces propres

Considérons l'exemple un peu trivial ici :

$$f(x,y) = (x,2y)$$

Alors il existe bien une base (c'est directement, dans cet exemple, la base canonique!) telle que

$$\begin{cases} f(e_1) = 1.e_1 \\ f(e_2) = 2.e_2 \end{cases}$$

De façon générale

On doit trouver des scalaires λ_i et des vecteurs **NON NULS** v_i tels que

$$f(v_i) = \lambda_i v_i \iff Av_i = \lambda_i v_i.$$

On appelle alors λ_i une valeur propre et v_i (non nul!!!) un vecteur propre associé à la valeur propre λ_i de f.

La famille $\{(v_i)_{i=1...n}\}$ forme ce que l'on appelle une base propre ou base de vecteurs propres.

Pour déterminer une telle base, on part de la matrice représentative de f dans la base canonique \mathcal{B}_c , notée A. Pour $v \neq 0$, on écrit :

$$Av = \lambda v \iff Av - \lambda v = 0_{\mathbb{R}^n} \iff (A - \lambda I_d)v = 0.$$

Puisque v est non nul, cela signifie que l'application linéaire représentée par $A - \lambda I_d$ n'est pas injective. Donc le noyau associé n'est pas réduit uniquement à l'espace vectoriel trivial $\{0_{\mathbb{R}^n}\}$.

On définit alors l'espace propre associé à la valeur propre λ comme étant l'ensemble des vecteurs v dont l'image par $A - \lambda I_d$ est nulle, c'est-à-dire littéralement le noyau de cette matrice :

$$E_{\lambda} = \ker(A - \lambda I_d).$$

Comme E_{λ} n'est pas réduit à $\{0_{\mathbb{R}^n}\}$, cela implique que la matrice $A - \lambda I_d$ n'est pas inversible.

On introduit alors le **polynôme caractéristique** de A:

$$\chi_A(\lambda) = \det(\lambda I_d - A).$$

Les racines de ce polynôme, c'est-à-dire les valeurs de λ qui satisfont $\det(\lambda I_d - A) = 0$, sont précisément les valeurs propres de A. En effet, si $\lambda I_d - A$ n'est pas inversible, alors il existe un vecteur non nul v (et tous ses multiples) tel que

$$(\lambda I_d - A)v = 0 \iff Av = \lambda v.$$

Enfin, l'ensemble des valeurs propres est appelé le **spectre de** A, et se note Sp(A).

Définition. On appelle multiplicité algébrique d'une valeur propre l'ordre de la racine correspondante dans le polynôme caractéristique. Par exemple, pour le polynôme $(X-1)(X-7)^2$, les racines sont $\{1,7\}$: la valeur propre 1 est de multiplicité algébrique 1, tandis que la valeur propre 7 est de multiplicité algébrique 2.

On définit également la multiplicité géométrique d'une valeur propre λ comme la dimension de son espace propre $E_{\lambda} = \ker(A - \lambda I_d)$. Ainsi, si l'on a $\ker E_7 = \operatorname{Vect}\{u,v\}$ où la famille $\{u,v\}$ qui génère $\ker E_7$ est linéairement indépendante, alors dim $E_7 = 2$ et la multiplicité géométrique de 7 vaut 2.

Caractérisation. Enfin, quand la multiplicité géométrique coïncide avec celle algébrique, la matrice est diagonalisable. C'est une caractérisation essentielle!

Exemple de diagonalisation d'une matrice carrée de taille 2

$$A = \begin{pmatrix} 7 & 2 \\ 3 & 8 \end{pmatrix}$$

Pour λ , la matrice

$$\lambda I_d - A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} - A = \begin{pmatrix} \lambda - 7 & -2 \\ -3 & \lambda - 8 \end{pmatrix}$$

1. Son polynôme caractéristique et les valeurs propres de A:

$$\chi_A(\lambda) = \det(\lambda I_d - A) = \begin{vmatrix} \lambda - 7 & -2 \\ -3 & \lambda - 8 \end{vmatrix} = (\lambda - 7)(\lambda - 8) - 6 = \boxed{\lambda^2 - 15\lambda + 50}.$$

On calcule le discriminant $\Delta = (-15)^2 - 4 \times 50 = 25.$ Donc les racines de χ_A sont :

$$\begin{cases} \lambda_{-} = \frac{15 - \sqrt{25}}{2} = \frac{15 - 5}{2} = 5, \\ \lambda_{+} = \frac{15 + \sqrt{25}}{2} = \frac{15 + 5}{2} = 10. \end{cases}$$

Donc le spectre de A (c'est-à-dire l'ensemble de ses valeurs propres) est :

$$Sp(A) = \{5, 10\}$$

Comme il y a deux valeurs propres distinctes, alors la matrice $A \in \mathbb{R}^{2\times 2}$ est diagonalisable.

2. Trouver les valeurs propres, les vecteurs associés, et une base des sous-espaces propres. Les valeurs propres sont les λ de Sp(A).

Cas $\lambda_{+} = 10$. On définit le sous-espace propre $E_{10} = \ker(A - 10I_d)$.

$$(x,y) \in E_{10} \iff (A-10I_d) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{cases} -3x + 2y = 0, \\ 3x - 2y = 0. \end{cases} \iff y = \frac{3}{2}x,$$

car

$$(A-10I_d) = \begin{pmatrix} -3 & 2\\ 3 & -2 \end{pmatrix}.$$

Ainsi $(x, y) \in E_{10} \iff (x, \frac{3}{2}x) = x(1, \frac{3}{2}).$

$$E_{10} = \operatorname{Vect}\left\{ \begin{pmatrix} 1\\ \frac{3}{2} \end{pmatrix} \right\} = \operatorname{Vect}\left\{ \begin{pmatrix} 2\\ 3 \end{pmatrix} \right\}.$$

Donc un vecteur propre associé à la valeur propre 10 est le vecteur $(2\ 3)^{\top}$, qui forme une base de E_{10} .

Cas $\lambda_{-} = 5$. On définit le sous-espace propre $E_5 = \ker(A - 5I_d)$.

$$(x,y) \in E_5 \iff (A-5I_d) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{cases} 2x+2y=0, \\ 3x+3y=0, \end{cases} \iff y=-x,$$

car

$$(A - 5I_d) = \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}.$$

Ainsi $(x, y) \in E_5 \iff (x, -x) = x(1, -1).$

$$E_5 = \operatorname{Vect}\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}.$$

Donc un vecteur propre associé à la valeur propre 5 est le vecteur $(1 - 1)^{\top}$, qui, à lui seul, forme bien une base de E_5 .

Remarque. Les racines de $-(X-2)(X-7)^2$ sont bien les mêmes que celles de $(X-2)(X-7)^2$. De façon générale, on préfère étudier $\det(\lambda I_d - A)$ plutôt que $\det(A - \lambda I_d)$, car ce dernier donne un coefficient -1 devant le monôme de plus haut degré, λ^n , ce qui est moins naturel à manipuler!

5 Diagonalisation

On sait désormais définir une base dans laquelle, si c'est possible, l'application linéaire f a pour matrice une matrice diagonale, notée :

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3).$$

La matrice initiale (définie dans la base canonique \mathcal{B}_c) de f est notée A. Si l'on écrit la matrice de passage P (qui est nécessairement **inversible**) de la base canonique à la base propre, on obtient alors la formule de diagonalisation :

$$A = PDP^{-1}$$
.

Propriétés importantes. La diagonalisation permet de simplifier considérablement les calculs. En particulier :

— Pour tout entier $m \in \mathbb{N}$,

$$D^m = \operatorname{diag}(\lambda_1^m, \lambda_2^m, \lambda_3^m).$$

— Par conjugaison, on obtient alors:

$$A^m = PD^m P^{-1}.$$

— La trace d'une matrice A se définit comme la somme de ses éléments diagonaux :

$$\operatorname{Tr}(A) = \sum_{i=1}^{3} a_{ii}.$$

Une des propriétés remarquables d'une telle opération simple (qui d'ailleurs, est linéaire) est qu'elle est invariante par changement de base, vérifiant donc :

$$Tr(A) = Tr(D).$$

Or, comme D est diagonale constituée des valeurs propres, on obtient :

$$Tr(A) = \sum_{i=1}^{3} \lambda_i,$$

c'est-à-dire que la trace est la somme des valeurs propres (avec multiplicité algébrique).

— Enfin, pour le déterminant :

$$\det(A) = \det(D) = \prod_{i=1}^{3} \lambda_i,$$

donc le déterminant est le produit des valeurs propres.

Remarque. Ces propriétés sont fondamentales : elles permettent d'obtenir directement des informations globales sur une matrice A à partir de son spectre, sans calculs lourds.

Les matrices suivantes sont-elles diagonalisables?

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & -1 \\ 0 & 0 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 7 & 2 & 3 \\ 0 & 7 & -1 \\ 0 & 0 & 7 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -4 \\ 1 & 2 & 4 \end{pmatrix}$$

Cas de A. Comme A est triangulaire supérieure, son polynôme caractéristique se lit directement sur la diagonale :

$$\chi_A(\lambda) = \det(\lambda I_3 - A) = \begin{vmatrix} \lambda - 1 & -2 & -3 \\ 0 & \lambda - 7 & 1 \\ 0 & 0 & \lambda - 2 \end{vmatrix} \stackrel{\text{dev. } C_1}{=} (\lambda - 1)(\lambda - 7)(\lambda - 2).$$

Les valeurs propres sont donc 1, 7, 2, toutes distinctes.

 \Rightarrow A est diagonalisable (trois valeurs propres distinctes).

Cas de B. B est triangulaire supérieure, donc

$$\chi_B(\lambda) = (\lambda - 7)^3.$$

La seule valeur propre est $\lambda = 7$ avec multiplicité algébrique 3.

Regardons la multiplicité géométrique (dimension de $E_7 = \ker(B - 7I)$):

$$B - 7I = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \qquad (B - 7I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2y + 3z \\ -z \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$\iff \begin{cases} -z = 0 \\ 2y + 3z = 0 \end{cases} \iff \begin{cases} z = 0 \\ y = 0 \end{cases} \text{ et } x \text{ libre.}$$

Donc

$$E_7 = \text{Span}\{(1,0,0)\}, \quad \dim E_7 = 1.$$

Or la multiplicité algébrique vaut 3 mais la multiplicité géométrique vaut 1 < 3:

 \Rightarrow B n'est pas diagonalisable.

(Remarque astucieuse : si B était diagonalisable avec unique valeur propre 7, on aurait $B = P(7I_d)P^{-1} = 7I$, ce qui est faux ici, puisque B n'est pas $7I_d$...)

Cas de C. On remarque que les lignes de C sont colinéaires : la 2^e est l'opposée de la 1^{re} , la 3^e est égale à la 1^{re} . Ainsi rg(C) = 1. En effet, pour tout $(x, y, z) \in \mathbb{R}^3$:

$$C \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + z \\ -x - 2y - z \\ x + 2y + z \end{pmatrix} = (x + 2y + z) \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Nécéssairement, $\operatorname{Im}(C) = \operatorname{Vect}\left\{\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}\right\}$, donnant donc $\dim \operatorname{Im} C = \operatorname{rg}(C) = 1$.

On en déduit, par théorème du rang :

 $\dim \ker(C) = 3 - \operatorname{rg}(C) = 2 \implies 0$ est valeur propre (au moins) de multiplicité géométrique 2.

N'oublie pas que $\ker(C) = \ker(C - 0I_d)$! Donc si C n'est pas inversible, alors son noyau n'est pas réduit à $\{0_{\mathbb{R}^3}\}$ et donc 0 est valeur propre.

La trace vaut

$$Tr(C) = 1 + (-2) + 4 = 3.$$

Comme la somme des valeurs propres (avec multiplicité) vaut la trace, et que 0 apparaît au moins deux fois, on obtient le spectre

$$\chi_C(\lambda) = \lambda^2(\lambda - 3), \quad \text{Sp}(C) = \{0, 0, 3\}.$$

Conclusion pour C, 0 est valeur propre et la multiplicité algébrique coïncide avec la multiplicité géométrique (on sait cela grâce au théorème du rang). Les espace propres sont supplémentaires, donc on a nécessairement dim $E_3 = 1$, cette multiplicité géométrique pour la valeur propre 3 coïncide avec celle algébrique.

 \Rightarrow C est diagonalisable (bien que non inversible).

Remarque : non-inversibilité et espace propre. Le fait qu'une matrice A ne soit pas inversible n'implique en rien qu'elle ne soit pas diagonalisable. En réalité, le lien est le suivant : si A n'est pas inversible (par exemple si $\det(A) = 0$), alors il existe nécessairement un vecteur $v \in \mathbb{R}^n$, non nul, tel que $Av = 0_{\mathbb{R}^n}$. Autrement dit, 0 est une valeur propre de A et l'espace propre associé est

$$E_0 = \ker(A - 0I_d) = \ker(A),$$

qui contient v. De plus, si 0 est une racine simple du polynôme caractéristique (c'est-à-dire de multiplicité algébrique 1), alors la dimension de E_0 est 1 et l'on a tout simplement

$$\ker(A) = \operatorname{Vect}\{v\}.$$

6 Matrices orthogonales et théorème spectral

Définition Une matrice carrée $Q \in \mathbb{R}^{n \times n}$ est dite orthogonale si

$$Q^{\top}Q = QQ^{\top} = I_n.$$

Autrement dit, $Q^{-1} = Q^{\top}$.

Intuition. Une matrice orthogonale représente une transformation linéaire qui :

- préserve les produits scalaires et les longueurs,
- conserve l'orthogonalité,
- est une composition de rotations et de symétries.

Propriété d'isométrie. Pour tout vecteur $\mathbf{x} \in \mathbb{R}^n$, une matrice orthogonale conserve la norme :

$$||Q\mathbf{x}||^2 = (Q\mathbf{x})^\top (Q\mathbf{x}) = \mathbf{x}^\top Q^\top Q\mathbf{x} = \mathbf{x}^\top \mathbf{x} = ||\mathbf{x}||^2.$$

Ainsi, $||Q\mathbf{x}|| = ||\mathbf{x}||$.

Pourquoi "orthogonale"? Si $Q = [\mathbf{q}_1 \ \mathbf{q}_2 \ \dots \ \mathbf{q}_n]$, alors

$$\mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j, \end{cases}$$

c'est-à-dire que les colonnes forment une base orthonormée de \mathbb{R}^n .

Théorème spectral Théorème spectral Toute matrice symétrique réelle est diagonalisable. Plus précisément, si $A \in \mathbb{R}^{n \times n}$ vérifie $A^{\top} = A$, alors il existe une matrice orthogonale Q telle que

$$Q^{\top}AQ = D,$$

où D est diagonale.

7 Exercice type

On considère la matrice

$$M = \begin{pmatrix} 3 & 1 & 3 \\ 1 & 3 & 3 \\ 3 & 3 & 1 \end{pmatrix}.$$

Polynôme caractéristique, spectre et valeurs propres. On observe directement que

$$M\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}7\\7\\7\end{pmatrix}=\mathbf{7}\begin{pmatrix}1\\1\\1\end{pmatrix}.$$

Donc 7 est une valeur propre de M avec vecteur propre associé $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$. On sait déjà que $7 \in \operatorname{Sp}(M)$.

Calculons la trace et le déterminant de M. Premièrement, la trace est simplement la somme des diagonales et donc donc (M) = 3 + 3 + 1 + 7. Ensuite, le déterminant vaut :

$$\det(M) = \begin{vmatrix} 3 & 1 & 3 \\ 1 & 3 & 3 \\ 3 & 3 & 1 \end{vmatrix} = \begin{bmatrix} 3 \cdot (-1)^{1+1} \begin{vmatrix} 3 & 3 \\ 3 & 1 \end{vmatrix} + 1 \cdot (-1)^{2+1} \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} + 3 \cdot (-1)^{3+1} \begin{vmatrix} 1 & 3 \\ 3 & 3 \end{vmatrix} = -28$$

$$\begin{cases} Tr(M) = 7\\ det(M) = -28 \end{cases}$$

Notons alors $Sp(M) = \{7, \lambda_1, \lambda_2\}$. On obtient le système :

$$\begin{cases} \operatorname{Tr}(M) = 7 + \lambda_1 + \lambda_2, \\ \det(M) = 7 \cdot \lambda_1 \cdot \lambda_2. \end{cases}$$

Ainsi:

$$\begin{cases} 7 + \lambda_1 + \lambda_2 = 7 \\ 7 \cdot \lambda_1 \cdot \lambda_2 = -28 \end{cases} \iff \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 \lambda_2 = -4 \end{cases}$$

Rappel sur les polynômes de degré 2. Notez ici que λ_1 , λ_2 sont donc les racines du polynômes $X^2 - \mathbf{S}X + \mathbf{P}$ où \mathbf{S} est la somme et \mathbf{P} le produit. Donc λ_1 , λ_2 sont racines du polynôme $X^2 - 4$ donnant tout de suite les résultats :

$$\begin{cases} \lambda_1 = -2, \\ \lambda_2 = 2. \end{cases}$$

On conclut en établissant le spectre comme étant :

$$Sp(M) = \{-2, 2, 7\}.$$

Comme les valeurs propres sont distinctes au nombre de 3 (dimension de \mathbb{R}^3), alors la matrice est diagonalisable et la dimension de chaque espace propre vaut 1.

Pour chaque valeur propre, déterminons son espace propre. On peut d'ores-et-déjà établir :

$$E_7 = \ker(M - 7I_d) = \operatorname{Vect} \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}.$$

Cas $\lambda = 2$. On considère

$$M - 2I_d = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & -1 \end{pmatrix}.$$

Ainsi:

$$(x,y,z) \in E_2 \iff \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 \cdot x + 1 \cdot y + 3 \cdot z \\ 1 \cdot x + 1 \cdot y + 3 \cdot z \\ 3 \cdot x + 3 \cdot y + (-1) \cdot z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} x + y + 3z = 0 \\ x + y + 3z = 0 \\ 3x + 3y - z = 0 \end{cases}$$

$$\iff \begin{cases} x + y + 3z = 0 \\ 3x + 3y - z = 0 \end{cases}$$

$$\iff \begin{cases} y = 0 \\ x + z = 0 \end{cases}$$

Donc:

$$E_2 = \operatorname{Vect} \left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}.$$

Cas $\lambda = -2$. De même, tout calcul fait, on obtient :

$$E_{-2} = \operatorname{Vect} \left\{ \begin{pmatrix} -1\\2\\-1 \end{pmatrix} \right\}.$$

Matrice de passage et diagonalisation. Une matrice de passage P, constituée des vecteurs propres, est :

$$P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & -1 & -1 \end{pmatrix}.$$

On peut donc établir :

$$M = PDP^{-1}$$
 avec $D = \operatorname{diag}(7, 2, -2)$.

Attention: il faut respecter l'ordre choisi pour les valeurs propres, qui fixe l'ordre des colonnes de P.

Lien avec le théorème spectral. En particulier, pour cette matrice M, comme elle est symétrique $(M^{\top} = M)$ à coefficients réels, on peut invoquer le théorème spectral : M est forcément diagonalisable sous la forme

$$M = QDQ^{\top},$$

où Q est une matrice orthogonale (les vecteurs propres sont rendus *orthonormés* et en particulier, on a $QQ^{\top} = Q^{\top}Q = I_d$).

On normalise les vecteurs propres de P pour obtenir Q:

$$Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{2} \\ \frac{1}{\sqrt{3}} & 0 & 1 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \end{pmatrix}.$$

Conclusion. On peut donc écrire

$$M = \begin{pmatrix} 3 & 1 & 3 \\ 1 & 3 & 3 \\ 3 & 3 & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{2} \\ \frac{1}{\sqrt{3}} & 0 & 1 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \end{pmatrix}}_{O} \underbrace{\begin{pmatrix} 7 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}}_{D} \underbrace{\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}}_{Q^{\top}}$$

Les matrices M et D représentent donc la **même** application linéaire. Simplement, M est sa représentation dans la base canonique tandis que D, sa représentation dans une base propre. Enfin, le passage de la base propre à la base canonique est donné par Q; tandis que la base canonique à la base propre est donnée par Q^{\top} . Ne vous faites pas avoir!

Exercice : Vérifiez par vous-même que $Q^{-1} = Q^{\top}$.