

# SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

FISIESE WETENSKAPPE: CHEMIE (V2)

2022

**PUNTE: 150** 

TYD: 3 uur

Hierdie vraestel bestaan uit 16 bladsye en 4 gegewensblaaie.

#### **INSTRUKSIES EN INLIGTING**

- Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit NEGE vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en substitusies in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

D

CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>3</sub>

(2)

#### **VRAAG 1: MEERVOUDIGEKEUSE-VRAE**

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Elke vraag het slegs EEN korrekte antwoord. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, bv. 1.11 E.

| 1.1 | Wat | ter EEN van die volgende verbindings het die LAAGSTE smeltpunt?                                                  |     |
|-----|-----|------------------------------------------------------------------------------------------------------------------|-----|
|     | Α   | Heksaan                                                                                                          |     |
|     | В   | Etaan                                                                                                            |     |
|     | С   | Butaan                                                                                                           |     |
|     | D   | Oktaan                                                                                                           | (2) |
| 1.2 | Wa  | nneer CH <sub>2</sub> = CH <sub>2</sub> omgeskakel word na CH <sub>3</sub> CH <sub>3</sub> , is die tipe reaksie |     |
|     | Α   | hidrasie.                                                                                                        |     |
|     | В   | hidrolise.                                                                                                       |     |
|     | С   | halogenering.                                                                                                    |     |
|     | D   | hidrogenering.                                                                                                   | (2) |
| 1.3 |     | tter EEN van die volgende verbindings in oplossing sal die kleur van omtimolblou verander?                       |     |
|     | Α   | CH <sub>3</sub> CH <sub>2</sub> CHO                                                                              |     |
|     | В   | CH <sub>3</sub> CH <sub>2</sub> COOH                                                                             |     |
|     | С   | CH <sub>3</sub> CH <sub>2</sub> COCH <sub>3</sub>                                                                |     |

1.4 Twee VERSKILLENDE monsters van ONSUIWER CaCO<sub>3</sub> met GELYKE massas reageer met 0,1 mol·dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub>. Aanvaar dat die onsuiwerhede nie reageer nie.

Die grafiek hieronder toon die volume CO<sub>2</sub>(g) vir elke reaksie geproduseer.



Wanneer dit met reaksie **2** vergelyk word, watter EEN van die volgende stellings verduidelik die kurwe verkry vir reaksie **1** die BESTE?

- A Die temperatuur is hoër in reaksie 1.
- B Die oppervlakarea is groter in reaksie **2**.
- C Die hoeveelheid onsuiwerhede is groter in reaksie 2.
- D Die hoeveelheid onsuiwerhede is groter in reaksie 1.

1.5 Die vergelyking hieronder verteenwoordig 'n hipotetiese reaksie.

$$A(g) + B(g) \rightleftharpoons C(g)$$
  $\Delta H = -50 \text{ kJ} \cdot \text{mol}^{-1}$ 

Die aktiveringsenergie vir die TERUGWAARTSE reaksie is 110 kJ·mol<sup>-1</sup>.

Watter EEN van die volgende is die aktiveringsenergie (in kJ·mol<sup>-1</sup>) vir die VOORWAARTSE reaksie?

A 50

B 60

C 110

D 160 (2)

(2)

1.6 'n Reaksie bereik ewewig by 25 °C in 'n fles volgens die volgende gebalanseerde vergelyking:

$$Co(H_2O)_{6}^{2+}(aq) + 4C\ell^{-}(aq) \rightleftharpoons CoC\ell_{4}^{2-}(aq) + 6H_2O(\ell)$$
  $\Delta H > 0$  pienk blou

Watter EEN van die volgende sal die kleur van die mengsel van pienk na blou verander?

- A Voeg water by
- B Koel die fles af
- C Voeg NaOH(aq) by

D Voeg 
$$NH_4Cl(aq)$$
 by (2)

1.7 Verdunde salpetersuur word by 25 °C by gedistilleerde water gevoeg.

Hoe sal dit die hidroniumioonkonsentrasie  $[H_3O^+]$  en die ionisasiekonstante  $(K_w)$  van water by 25 °C beïnvloed?

|   | [H₃O <sup>+</sup> ] | K <sub>w</sub> |
|---|---------------------|----------------|
| Α | Neem toe            | Neem toe       |
| В | Neem toe            | Neem af        |
| С | Neem toe            | Bly dieselfde  |
| D | Bly dieselfde       | Bly dieselfde  |

(2)

1.8 Oorweeg die ionisasiereaksies I en II.

$$I H_2PO_4^- + H_2O(\ell) = H_3O^+(aq) + X$$

II 
$$X + H_2O(\ell) = H_3O^+(aq) + Y$$

Watter EEN van die volgende kombinasies verteenwoordig die formules van **X** en **Y** onderskeidelik?

|   | Х                              | Υ                              |
|---|--------------------------------|--------------------------------|
| Α | HPO <sub>4</sub> <sup>2-</sup> | PO <sub>4</sub> <sup>3-</sup>  |
| В | HPO <sub>4</sub> <sup>2-</sup> | H <sub>3</sub> PO <sub>4</sub> |
| C | H <sub>3</sub> PO <sub>4</sub> | PO <sub>4</sub> <sup>3-</sup>  |
| D | HPO <sub>4</sub> <sup>2-</sup> | H <sub>2</sub> PO <sub>4</sub> |

(2)

1.9 'n Elektrochemiese sel is onder standaardtoestande opgestel deur 'n  $Hg(\ell)|Hg^{2+}(aq)-halfsel en 'n ander halfsel te gebruik.$ 

Watter EEN van die volgende halfselle, wanneer dit aan die  $Hg(\ell)|Hg^{2+}(aq)-halfsel verbind is, sal die HOOGSTE selpotensiaal tot gevolg hê?$ 

- A  $A\ell(s)|A\ell^{3+}(aq)$
- B  $Zn(s)|Zn^{2+}(aq)$
- C  $Co(s)|Co^{2+}(aq)$
- D Pt(s)|H<sub>2</sub>(g)|H<sup>+</sup>(aq) (2)
- 1.10 Die volgende reaksie vind in 'n elektrochemiese sel plaas:

$$CuCl_2(aq) \rightarrow Cu(s) + Cl_2(q)$$

Watter EEN van die volgende is KORREK vir hierdie sel?

- A Dit is 'n galvaniese sel.
- B 'n Kragbron word benodig.
- C Die reaksie is spontaan.
- D Koper tree as die oksideermiddel op.

(2) **[20]** 

# VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters A tot H in die tabel hieronder verteenwoordig agt organiese verbindings.

| Α | Br CH <sub>3</sub><br>     <br>CH <sub>3</sub> CCH <sub>2</sub> CH CHCH <sub>3</sub><br>     <br>CH <sub>3</sub> CH <sub>3</sub> | В | H H H H H H           |
|---|----------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|
| С | Pent-2-een                                                                                                                       | D | CH₃CH₂CH2             |
| E | Butan-2-oon                                                                                                                      | F | 4,4-dimetielpent-2-yn |
| G | Butaan                                                                                                                           | Н | CH₃CH₂CH₂COOH         |

2.1 Skryf die LETTER neer wat 'n verbinding verteenwoordig wat:

| 2.1.1            | 'n Ketoon is  | (1) |
|------------------|---------------|-----|
| <b>∠</b> . I . I | 11 1/61001119 | (1) |

2.1.2 Die algemene formule 
$$C_nH_{2n-2}$$
 het (1)

2.2 Skryf neer die:

2.3 Vir verbinding **D**, skryf neer die:

2.4 Vir verbinding **G**, skryf neer:

2.4.2 'n Gebalanseerde vergelyking vir sy volledige verbranding, deur molekulêre formules te gebruik (3)

[19]

### VRAAG 3 (Begin op 'n nuwe bladsy.)

Leerders ondersoek faktore wat die kookpunte van organiese verbindings beïnvloed. Die kookpunte van sommige organiese verbindings verkry, word in die tabel hieronder getoon.

| \ | /ERBINDING   | MOLEKULÊRE MASSA<br>(g·mol <sup>-1</sup> ) | KOOKPUNT<br>(°C) |  |  |
|---|--------------|--------------------------------------------|------------------|--|--|
| Α | Propaan      | 44                                         | - 42             |  |  |
| В | Butaan       | 58                                         | - 0,5            |  |  |
| С | Pentaan      | 72                                         | 36               |  |  |
| D | Metielbutaan | 72                                         | 28               |  |  |
| Е | Etanol       | 46                                         | 78               |  |  |
| F | Etanaal      | 44                                         | 20               |  |  |

- 3.1 Definieer die term *kookpunt.* (2)
- 3.2 Die kookpunte van verbindings A, B en C word vergelyk.
  - 3.2.1 Hoe verander die kookpunte van verbinding **A** na verbinding **C**?

    Kies uit NEEM TOE, NEEM AF of BLY DIESELFDE. (1)
  - 3.2.2 Verduidelik die antwoord op VRAAG 3.2.1. (3)
- 3.3 Die kookpunte van verbindings **B**, **C** en **D** word vergelyk.

Is dit 'n regverdige vergelyking?

Kies uit JA of NEE. Gee 'n rede vir die antwoord. (2)

- 3.4 Die kookpunte van verbindings **E** en **F** word vergelyk.
  - 3.4.1 Noem die onafhanklike veranderlike vir hierdie vergelyking. (1)
  - 3.4.2 Skryf die naam van die sterkste Van der Waals-krag teenwoordig in verbinding **F** neer. (1)
- 3.5 Watter verbinding, **D** of **E**, het 'n hoër dampdruk? Gee 'n rede vir die antwoord. (2) [12]

# VRAAG 4 (Begin op 'n nuwe bladsy.)

4.1 Bestudeer die volgende onvolledige vergelykings vir organiese reaksies I en II.

Verbindings  ${\bf P}$  en  ${\bf Q}$  is ORGANIESE verbindings en  ${\bf T}$  is 'n ANORGANIESE verbinding.

I CH<sub>3</sub> 
$$\rightarrow$$
 P + NaBr + T  $\rightarrow$  CH<sub>3</sub>CH CHCH<sub>3</sub> + NaOH (gekons.)  $\rightarrow$  P + NaBr + T  $\rightarrow$  (hoofproduk) Br  $\rightarrow$  CH<sub>3</sub>COOH + verbinding  $\mathbf{Q} \rightarrow$  butieletanoaat + H<sub>2</sub>O

Vir reaksie I, skryf neer die:

Vir reaksie II, skryf neer:

4.2 Die kraking van 'n lang ketting koolwaterstof,  $C_{10}H_{22}$ , vind in proefbuis **A** plaas, soos hieronder getoon.



Twee REGUITKETTING organiese verbindings, **X** en **Z**, word in proefbuis **A** volgens die volgende gebalanseerde vergelyking geproduseer:

$$C_{10}H_{22}(\ell) \rightarrow 2X(g) + Z(g)$$

4.2.1 Noem die funksie van die  $Al_2O_3(s)$  in proefbuis **A**. (1)

Die organiese verbindings,  $\mathbf{X}$  en  $\mathbf{Z}$ , word nou by kamertemperatuur deur broomwater,  $Br_2(aq)$ , in proefbuis  $\mathbf{B}$  geborrel. Slegs verbinding  $\mathbf{X}$  reageer met die broomwater.

- 4.2.2 Buiten gasborrels wat vorm, noem nog 'n ander waarneembare verandering in proefbuis **B**. (1)
- 4.2.3 Skryf die TIPE reaksie neer wat in proefbuis **B** plaasvind. (1)
- 4.2.4 Skryf die molekulêre formule van verbinding **Z** neer. (3)
- 4.2.5 Skryf die STRUKTUURFORMULE van verbinding **X** neer. (3) [17]

#### VRAAG 5 (Begin op 'n nuwe bladsy.)

Leerders gebruik die reaksie van MgCO<sub>3</sub>(s) met OORMAAT verdunde HCl(aq) om die verwantskap tussen temperatuur en die tempo van 'n chemiese reaksie te ondersoek.

Die gebalanseerde vergelyking vir die reaksie is:

$$MgCO_3(s) + 2HC\ell(aq) \rightarrow MgC\ell_2(aq) + CO_2(g) + H_2O(\ell)$$

Die resultate wat verkry is, word in die grafiek hieronder voorgestel.

# Grafiek van gemiddelde tempo van produksie van CO<sub>2</sub> (in g·min<sup>-1</sup>) teenoor temperatuur



5.1 Definieer die term *reaksietempo*.

(2)

5.2 Noem TWEE toestande wat gedurende hierdie ondersoek konstant gehou moet word.

(2)

5.3 Gebruik die botsingsteorie om die verwantskap getoon in die grafiek, te verduidelik.

(4)

(6)

5.4 Die leerders het die grafiek hierbo verkry deur 5 g MgCO<sub>3</sub>(s) met 'n OORMAAT HCl by 40 °C te gebruik.

Bereken die:

- 5.4.1 Tyd geneem vir die reaksie om volledig te verloop
- 5.4.2 Molêre gasvolume by 40 °C indien 1,5 dm<sup>3</sup> CO<sub>2</sub> in 'n spuit versamel is (2)

5.5 Die grafiek hieronder stel die Maxwell-Boltzmann-verspreidingskurwe vir  $CO_2(g)$  by 40 °C voor.



Teken die grafiek hierbo in die ANTWOORDEBOEK oor. Benoem die kurwe duidelik as **A**.

Op dieselfde assestelsel, skets die kurwe wat vir die  $CO_2(g)$  by 20 °C verkry sal word. Benoem hierdie kurwe as  ${\bf B}$ .

(2) **[18]** 

# VRAAG 6 (Begin op 'n nuwe bladsy.)

Fisiese Wetenskappe/V2

6.1 Aanvanklik word 4 mol  $H_2(g)$  en 4 mol  $I_2(g)$  toegelaat om te reageer in 'n verseëlde 2 dm<sup>3</sup>-fles volgens die volgende gebalanseerde vergelyking:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
  $\Delta H < 0$ 

Die grafiek hieronder toon die konsentrasies van  $H_2(g)$  and HI(g) teenoor tyd gedurende die reaksie.



- 6.1.1 Skryf die waarde van **Y** neer. (1)
- 6.1.2 Stel Le Chatelier se beginsel.
- 6.1.3 Veranderinge is aan die temperatuur van die fles by tyd t<sub>2</sub> gemaak.
  - Is die fles VERHIT of AFGEKOEL? (1)
- 6.1.4 Verduidelik volledig die antwoord op VRAAG 6.1.3.

6.2 Die vergelyking hieronder verteenwoordig die omkeerbare reaksie wat plaasvind wanneer  $NO_2(g)$  na  $N_2O_4(g)$  omgeskakel word.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

Aanvanklik word  $\mathbf{x}$  mol  $NO_2(g)$  in 'n 1 dm<sup>3</sup>-houer by 350 K verseël. Wanneer ewewig by hierdie temperatuur bereik word, is 0,81 mol  $N_2O_4(g)$  in die houer teenwoordig.

- 6.2.1 Skryf die betekenis van die term *omkeerbare reaksie* neer. (1)
- 6.2.2 Toon dat die ewewigskonstante vir hierdie reaksie deur  $\frac{0.81}{(x-1.62)^2}$  gegee word. (5)

 $0,79 \text{ mol } N_2O_4(g)$  word nou by die ewewigsmengsel hierbo gevoeg. Wanneer die NUWE ewewig by 350 K bereik word, word gevind dat die hoeveelheid  $NO_2(g)$  met 1,2 mol toegeneem het.

6.2.3 Bereken die waarde van **x**. (6)

[19]

(2)

(3)

# VRAAG 7 (Begin op 'n nuwe bladsy.)

Fisiese Wetenskappe/V2

7.1 Twee sure, HX en HY, met GELYKE KONSENTRASIES word vergelyk. Die pH van HX is 2,7 en die pH van HY is 0,7.

- 7.1.1 Definieer 'n *suur* in terme van die Lowry-Brønsted-teorie. (2)
- 7.1.2 Watter suur, HX of HY, is STERKER? Gee 'n rede vir die antwoord. (2)
- 7.1.3 Suur HX ioniseer in water volgens die volgende vergelyking:

$$HX(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + X^-(aq)$$

Die K<sub>a</sub>-waarde vir die reaksie is 1,8 x 10<sup>-5</sup> by 25 °C.

Is die konsentrasie van die hidroniumione HOËR AS, LAER AS of GELYK AAN die konsentrasie van HX? Gee 'n rede vir die antwoord.

(2)

7.2 Leerders voeg 150 cm³ van 'n natriumhidroksiedoplossing, NaOH, met 'n onbekende konsentrasie by 200 cm³ van 'n 0,03 mol·dm⁻³-soutsuuroplossing, HCℓ, soos hieronder geïllustreer. Hulle vind dat die finale oplossing 'n pH van 2 het. Aanvaar dat die volumes bymekaartel.



Die gebalanseerde vergelyking vir die reaksie is:

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

Bereken die:

7.2.1 Konsentrasie van die  $H_3O^+$ -ione in die finale oplossing (3)

7.2.2 Aanvanklike konsentrasie van die NaOH(aq) (7) [16]

#### VRAAG 8 (Begin op 'n nuwe bladsy.)

8.1 'n Elektrochemiese sel word opgestel deur 'n aluminiumstaaf, Al, en 'n gas X te gebruik.

15

Die aanvanklike emk by standaardtoestande gemeet, is 2,89 V.

- 8.1.1 Noem die standaardtoestande waaronder hierdie sel funksioneer. (3)
- 8.1.2 Gebruik 'n berekening om gas **X** te identifiseer. (5)
- 8.1.3 Skryf die FORMULE van die reduseermiddel in hierdie sel neer. (1)
- 8.1.4 Skryf die halfreaksie neer wat by die katode plaasvind. (2)
- 8.1.5 Skryf die selnotasie vir hierdie sel neer.
- 8.2 Watter houer, SINK of KOPER, sal geskikter wees om 'n waterige oplossing van nikkel-ione, Ni<sup>2+</sup>, te stoor?

Verwys na die Tabel van Standaard-Reduksiepotensiale om die antwoord volledig in terme van die relatiewe sterkte van reduseermiddels te verduidelik.

(4) [18]

(3)

# VRAAG 9 (Begin op 'n nuwe bladsy.)

Die vereenvoudigde diagram hieronder verteenwoordig 'n elektrochemiese sel wat gebruik word vir die elektrolise van 'n gekonsentreerde natriumchloriedoplossing, NaCl(aq). **X** en **Y** is koolstofelektrodes.



9.1 Definieer die term *elektrolise*. (2)

9.2 Chloorgas,  $Cl_2(g)$ , word by elektrode **X** vrygestel.

Skryf neer die:

9.2.1 Letter (**X** of **Y**) van die elektrode waar oksidasie plaasvind (1)

9.2.2 Halfreaksie wat by elektrode **Y** plaasvind (2)

9.2.3 Rigting waarin elektrone in die eksterne stroombaan vloei

Kies uit X tot Y OF Y tot X. (1)

9.2.4 Gebalanseerde vergelyking vir die netto (algehele) selreaksie wat in die sel plaasvind (3)

9.3 Hoe sal die pH van die elektroliet gedurende die reaksie verander?

Kies uit TOENEEM, AFNEEM of BLY DIESELFDE. (1)

9.4 Gee 'n rede vir die antwoord op VRAAG 9.3. (1) [11]

TOTAAL: 150

# DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

# GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

#### TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

| NAME/NAAM                                       | SYMBOL/SIMBOOL | VALUE/WAARDE                              |
|-------------------------------------------------|----------------|-------------------------------------------|
| Standard pressure Standaarddruk                 | pθ             | 1,013 x 10⁵ Pa                            |
| Molar gas volume at STP Molêre gasvolume by STD | V <sub>m</sub> | 22,4 dm <sup>3</sup> ·mol <sup>-1</sup>   |
| Standard temperature Standaardtemperatuur       | Τθ             | 273 K                                     |
| Charge on electron  Lading op elektron          | е              | -1,6 x 10 <sup>-19</sup> C                |
| Avogadro's constant  Avogadro-konstante         | N <sub>A</sub> | 6,02 x 10 <sup>23</sup> mol <sup>-1</sup> |

# TABLE 2: FORMULAE/TABEL 2: FORMULES

| $n = \frac{m}{M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $n = \frac{N}{N_A}$                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| $c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $n = \frac{V}{V_m}$                                                |
| $\frac{c_a v_a}{c_b v_b} = \frac{n_a}{n_b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $pH = -log[H_3O^+]$                                                |
| $K_{\rm w} = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | з К                                                                |
| $E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode}  / E^{\theta}_{sel} = E^{\theta}_{katode}  -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $E_{anode}^{\theta}$                                               |
| $\begin{array}{c} \text{or/of} \\ E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} / E_{sel}^{\theta} = E_{reduksion}^{\theta} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $_{ m e}-{\sf E}_{ m oksidasie}^{ m 	heta}$                        |
| or/of $E_{cell}^\theta = E_{oxidisingagent}^\theta - E_{reducingagent}^\theta \ /  E_{sel}^\theta = E_{oxidisingagent}^\theta \ /  E_{oxidisingagent}^\theta \ /  E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /  E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   \; E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   \; \; E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   \; \; \; \; E_{oxidisingagent}^\theta = E_{oxidisingagent}^\theta \ /   \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$ | $=E^{	heta}_{	ext{oksideemiddel}}-E^{	heta}_{	ext{reduseemiddel}}$ |
| $n = \frac{Q}{e}$ or/of $n = \frac{Q}{q_e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |

# TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

|     | 1<br>(I)       |     | 2<br>(II) |     | 3   |     | 4   | 5      | 6               | 7      | 8                              | 9               | 10              | 11     | 12     | 13<br>(III)  | 14<br>(IV)      | 15<br>(V)   | 16<br>(VI)                     | 17<br>(VII)       | 18<br>(VIII) |
|-----|----------------|-----|-----------|-----|-----|-----|-----|--------|-----------------|--------|--------------------------------|-----------------|-----------------|--------|--------|--------------|-----------------|-------------|--------------------------------|-------------------|--------------|
|     |                | 1   | ` ,       |     |     |     |     |        |                 | Α      | tomic n                        | umber           |                 |        |        | ` ,          | ` ,             | ` ,         | ` ,                            | , ,               |              |
|     | 1              |     |           |     |     |     |     | KEY/SL | EUTEL           |        | Atoom                          | getal           |                 |        |        |              |                 |             |                                |                   | 2            |
| 2,1 | Н              |     |           |     |     |     |     |        |                 |        | $\downarrow$                   | _               |                 |        |        |              |                 |             |                                |                   | He           |
|     | 1              |     |           |     |     |     |     |        |                 |        | 29                             |                 |                 |        |        |              |                 |             |                                |                   | 4            |
|     | 3              |     | 4         |     |     |     |     | Electr | onegati         | vitv   |                                | Sv              | mbol            |        |        | 5            | 6               | 7           | 8                              | 9                 | 10           |
| 1,0 | Li             | 2,  | Be        |     |     |     |     |        | onegativ        |        | ್ಲ್ Cn                         | Sir             | mbool           |        |        | 0,2 B        | 2,5<br>C        | င္တိ N      | 3,5                            | 6,4<br>F          | Ne           |
| 7   | <u> </u>       | _   | 9         |     |     |     |     |        |                 |        | 63,5                           | 5               |                 |        |        | 11           | 12              | 14          | 16                             | 19                | 20           |
|     | <u>'</u><br>11 |     | 12        |     |     |     |     |        |                 | L      | <b>↑</b>                       |                 |                 |        |        | 13           | 14              | 15          | 16                             | 17                | 18           |
| 6   |                | 7   |           |     |     |     |     |        | Annre           | vimato | rolativ                        | e atomic        | mace            |        |        |              |                 |             |                                |                   | _            |
| 6,0 | Na             | 1,2 | Mg        |     |     |     |     |        |                 |        |                                | e atoom         |                 |        |        | ± <b>Υ</b> δ | <sup>−</sup> Si | 2, <b>b</b> | S,5                            | တို့ ငြ           | Ar           |
|     | 23             |     | 24        |     |     | 1   |     | 1      |                 |        |                                |                 |                 | T      | T      | 27           | 28              | 31          | 32                             | 35,5              | 40           |
|     | 19             |     | 20        |     | 21  |     | 22  | 23     | 24              | 25     | 26                             | 27              | 28              | 29     | 30     | 31           | 32              | 33          | 34                             | 35                | 36           |
| 0,8 | K              | 1,0 | Ca        | 1,3 | Sc  | 1,5 | Ti  | 4, V   | ç Cr            | ਨੂੰ Mu | <sup>∞</sup> Fe                | <sup>2</sup> Co | <sup>2</sup> Ni | ್ಲ್ Cu | ို့ Zn | ç Ga         | <sup>∞</sup> Ge | % As        | <sup>2</sup> / <sub>4</sub> Se | <sup>8</sup> , Br | Kr           |
|     | 39             |     | 40        |     | 45  |     | 48  | 51     | 52              | 55     | 56                             | 59              | 59              | 63,5   | 65     | 70           | 73              | 75          | 79                             | 80                | 84           |
|     | 37             |     | 38        |     | 39  |     | 40  | 41     | 42              | 43     | 44                             | 45              | 46              | 47     | 48     | 49           | 50              | 51          | 52                             | 53                | 54           |
| 8,0 | Rb             | 0,1 | Sr        | 1,2 | Υ   | 4,  | Zr  | Nb     | <sup>2</sup> Mo | ್ಲ್ Tc | <sup>2</sup> ⁄ <sub>2</sub> Ru | ₹ Rh            | 7 Pd            | ್ಲ್ Ag | Ç Cd   | r In         | <sup>∞</sup> Sn | ್ಲ್ Sb      | ₹ Te                           | 2,5               | Xe           |
| 0   | 86             | _   | 88        | _   | 89  | 7   | 91  | 92     | 96              | 7 .0   | 101                            | 103             | 106             | 108    | 112    | 115          | 119             | 122         | 128                            | 127               | 131          |
|     | 55             |     | 56        |     | 57  |     | 72  | 73     | 74              | 75     | 76                             | 77              | 78              | 79     | 80     | 81           | 82              | 83          | 84                             | 85                | 86           |
| 7   |                | 6   |           |     | _   | 9,1 |     |        | W               |        | _                              |                 | _               |        |        | _            |                 |             |                                |                   |              |
| 0,7 | Cs             | 6'0 | Ba        |     | La  | 7,  | Hf  | Ta     |                 | Re     | Os                             | Ir              | Pt              | Au     |        | ~ <b>T</b> € | ,               | 1 -         | % Po                           | 5,5 <b>At</b>     | Rn           |
|     | 133            |     | 137       |     | 139 |     | 179 | 181    | 184             | 186    | 190                            | 192             | 195             | 197    | 201    | 204          | 207             | 209         |                                |                   |              |
|     | 87             |     | 88        |     | 89  |     |     |        |                 |        |                                |                 |                 |        |        |              |                 |             |                                |                   |              |
| 0,7 | Fr             | 6,0 | Ra        |     | Ac  |     |     | 58     | 59              | 60     | 61                             | 62              | 63              | 64     | 65     | 66           | 67              | 68          | 69                             | 70                | 71           |
|     |                |     | 226       |     |     |     |     | Ce     | Pr              | Nd     | Pm                             | Sm              | Eu              | Gd     | Tb     |              | Ho              | Er          | Tm                             | Yb                | Lu           |
|     |                |     |           |     |     |     |     |        |                 |        | FIII                           |                 |                 |        |        | Dy           |                 |             |                                |                   |              |
|     |                |     |           |     |     |     |     | 140    | 141             | 144    |                                | 150             | 152             | 157    | 159    | 163          | 165             | 167         | 169                            | 173               | 175          |
|     |                |     |           |     |     |     |     | 90     | 91              | 92     | 93                             | 94              | 95              | 96     | 97     | 98           | 99              | 100         | 101                            | 102               | 103          |
|     |                |     |           |     |     |     |     | Th     | Pa              | U      | Np                             | Pu              | Am              | Cm     | Bk     | Cf           | Es              | Fm          | Md                             | No                | Lr           |
|     |                |     |           |     |     |     |     | 232    |                 | 238    |                                |                 | 7               |        |        |              |                 |             |                                |                   |              |
|     |                |     |           |     |     |     |     |        |                 |        |                                |                 |                 |        |        |              |                 |             |                                |                   |              |

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

| BEL 4A: STANDAARD-REDUKSIEPOTENSIA                                       |               |                                       |                  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|---------------|---------------------------------------|------------------|--|--|--|--|--|--|
| Half-reactions/ <i>Halfreaksies</i> $E^{	heta}$ (V)                      |               |                                       |                  |  |  |  |  |  |  |
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                     | =             | 2F <sup>-</sup>                       | + 2,87           |  |  |  |  |  |  |
| Co <sup>3+</sup> + e <sup>-</sup>                                        | $\Rightarrow$ | Co <sup>2+</sup>                      | + 1,81           |  |  |  |  |  |  |
| $H_2O_2 + 2H^+ + 2e^-$                                                   | =             | 2H₂O                                  | +1,77            |  |  |  |  |  |  |
| $MnO_{4}^{-} + 8H^{+} + 5e^{-}$                                          | =             | $Mn^{2+} + 4H_2O$                     | + 1,51           |  |  |  |  |  |  |
| $C\ell_2(g) + 2e^-$                                                      | =             | 2Cℓ <sup>-</sup>                      | + 1,36           |  |  |  |  |  |  |
| $Cr_2O_7^{2-} + 14H^+ + 6e^-$                                            | =             | $2Cr^{3+} + 7H_2O$                    | + 1,33           |  |  |  |  |  |  |
| $O_2(g) + 4H^+ + 4e^-$                                                   | =             | 2H <sub>2</sub> O                     | + 1,23           |  |  |  |  |  |  |
| $MnO_2 + 4H^+ + 2e^-$                                                    | =             | $Mn^{2+} + 2H_2O$                     | + 1,23           |  |  |  |  |  |  |
| Pt <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Pt                                    | + 1,20           |  |  |  |  |  |  |
| $Br_2(\ell) + 2e^-$                                                      | =             | 2Br <sup>-</sup>                      | + 1,07           |  |  |  |  |  |  |
| $NO_3^- + 4H^+ + 3e^-$                                                   | =             | $NO(g) + 2H_2O$                       | + 0,96           |  |  |  |  |  |  |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Hg(ℓ)                                 | + 0,85           |  |  |  |  |  |  |
| Ag⁺ + e⁻                                                                 | =             | Ag                                    | + 0,80           |  |  |  |  |  |  |
| $NO_3^- + 2H^+ + e^-$                                                    | =             | $NO_2(g) + H_2O$                      | + 0,80           |  |  |  |  |  |  |
| Fe <sup>3+</sup> + e <sup>-</sup>                                        | =             | Fe <sup>2+</sup>                      | + 0,77           |  |  |  |  |  |  |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup>                   | =             | $H_2O_2$                              | + 0,68           |  |  |  |  |  |  |
| l <sub>2</sub> + 2e <sup>-</sup>                                         | =             | 2I <sup>-</sup>                       | + 0,54           |  |  |  |  |  |  |
| Cu⁺ + e⁻                                                                 | =             | Cu                                    | + 0,52           |  |  |  |  |  |  |
| $SO_2 + 4H^+ + 4e^-$                                                     | =             | S + 2H2O                              | + 0,45           |  |  |  |  |  |  |
| 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>                     | =             | 40H <sup>-</sup>                      | + 0,40           |  |  |  |  |  |  |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Cu                                    | + 0,34           |  |  |  |  |  |  |
| $SO_4^{2-} + 4H^+ + 2e^-$                                                | =             | $SO_2(g) + 2H_2O$                     | + 0,17           |  |  |  |  |  |  |
| Cu <sup>2+</sup> + e <sup>-</sup>                                        | =             | Cu <sup>+</sup>                       | + 0,16           |  |  |  |  |  |  |
| Sn <sup>4+</sup> + 2e⁻                                                   | =             | Sn <sup>2+</sup>                      | + 0,15           |  |  |  |  |  |  |
| S + 2H <sup>+</sup> + 2e <sup>-</sup>                                    | =             | H <sub>2</sub> S(g)                   | + 0,14           |  |  |  |  |  |  |
| 2H <sup>+</sup> + 2e <sup>-</sup>                                        | =             | H <sub>2</sub> (g)                    | 0,00             |  |  |  |  |  |  |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                       | =             | Fe                                    | - 0,06           |  |  |  |  |  |  |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Pb                                    | - 0,13           |  |  |  |  |  |  |
| Sn <sup>2+</sup> + 2e <sup>-</sup><br>Ni <sup>2+</sup> + 2e <sup>-</sup> | =             | Sn                                    | - 0,14           |  |  |  |  |  |  |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Ni<br>Co                              | - 0,27<br>- 0,28 |  |  |  |  |  |  |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Cd                                    | - 0,28<br>- 0,40 |  |  |  |  |  |  |
| Cr <sup>3+</sup> + e <sup>-</sup>                                        | #             | Cr <sup>2+</sup>                      | - 0,40<br>- 0,41 |  |  |  |  |  |  |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                       | +             | Fe                                    | - 0,44           |  |  |  |  |  |  |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                       | <del>=</del>  | Cr                                    | - 0,74           |  |  |  |  |  |  |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                       | <b>≠</b>      | Zn                                    | - 0,76           |  |  |  |  |  |  |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                      | =             | H <sub>2</sub> (g) + 2OH <sup>-</sup> | - 0,83           |  |  |  |  |  |  |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Cr                                    | - 0,91           |  |  |  |  |  |  |
| Mn <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Mn                                    | - 1,18           |  |  |  |  |  |  |
| $A\ell^{3+} + 3e^{-}$                                                    | =             | Αℓ                                    | - 1,66           |  |  |  |  |  |  |
| Mg <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Mg                                    | - 2,36           |  |  |  |  |  |  |
| Na <sup>+</sup> + e <sup>-</sup>                                         | =             | Na                                    | - 2,71           |  |  |  |  |  |  |
| Ca <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Ca                                    | - 2,87           |  |  |  |  |  |  |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Sr                                    | - 2,89           |  |  |  |  |  |  |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                       | =             | Ва                                    | - 2,90           |  |  |  |  |  |  |
| Cs <sup>+</sup> + e <sup>-</sup>                                         | =             | Cs                                    | - 2,92           |  |  |  |  |  |  |
| K⁺ + e⁻                                                                  | =             | K                                     | - 2,93           |  |  |  |  |  |  |
| Li <sup>+</sup> + e⁻                                                     | =             | Li                                    | - 3,05           |  |  |  |  |  |  |

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |               |                    |                    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|--------------------|--------------------|--|--|--|--|--|--|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Half-reactions                                         | /Hal          | freaksies          | Ε <sup>θ</sup> (V) |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Li⁺ + e⁻                                               | =             | Li                 | - 3,05             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $K^+ + e^-$                                            | =             | K                  | - 2,93             |  |  |  |  |  |  |
| $Sr^{2+} + 2e^{-} = Sr                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | =             | Cs                 | - 2,92             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | =             | Ва                 | - 2,90             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | =             | Sr                 | - 2,89             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | =             | Ca                 | - 2,87             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | =             |                    | - 2,71             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                      | $\Rightarrow$ |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | =             |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | $\Rightarrow$ |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | =             | _                  | *                  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               | _                  |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               | _                  |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $Fe^{3+} + 3e^{-} = Fe$ $2H^{+} + 2e^{-} = H_{2}(g)$ $S + 2H^{+} + 2e^{-} = H_{2}S(g)$ $S + 2H^{+} + 2e^{-} = Sn^{2+}$ $Cu^{2+} + e^{-} = Cu^{+}$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + 2e^{-} = Cu$ $SO_{2}^{2-} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $SO_{2}^{2-} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{+} + e^{-} = Cu$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{+} + e^{-} = Cu$ $1_{2} + 2e^{-} = 2I^{-}$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2}$ $1_{2} + 2e^{-} = 2I^{-}$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O$ $Ag^{+} + e^{-} = Ag$ $Hg^{2+} + 2e^{-} = Hg(\ell)$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-}$ $Pt^{2+} + 2e^{-} = Pt$ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 2H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + 2H^{+} + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2}(g) + $ |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |               |                    |                    |  |  |  |  |  |  |
| $Sn^{4+} + 2e^{-} = Sn^{2+} + 0,15$ $Cu^{2+} + e^{-} = Cu^{+} + 0,16$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} = Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} = Cu + 0,52$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $C(\ell_{2}(g) + 2e^{-} = 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | ,             |                    |                    |  |  |  |  |  |  |
| $Cu^{2+} + e^{-} = Cu^{+} + 0,16$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} = Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} = Cu + 0,52$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,33$ $C\ell_{2}(g) + 2e^{-} = 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |               |                    |                    |  |  |  |  |  |  |
| $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                      |               |                    |                    |  |  |  |  |  |  |
| $\begin{array}{rclcrcl} 2H_2O + O_2 + 4e^- & = & 4OH^- \\ SO_2 + 4H^+ + 4e^- & = & S + 2H_2O \\ Cu^+ + e^- & = & Cu \\ I_2 + 2e^- & = & 2I^- \\ O_2(g) + 2H^+ + 2e^- & = & H_2O_2 \\ Fe^{3+} + e^- & = & Fe^{2+} \\ NO_3^- + 2H^+ + e^- & = & NO_2(g) + H_2O \\ Ag^+ + e^- & = & Ag \\ Hg^{2+} + 2e^- & = & Hg(\ell) \\ NO_3^- + 4H^+ + 3e^- & = & NO(g) + 2H_2O \\ Br_2(\ell) + 2e^- & = & 2Br^- \\ Pt^{2+} + 2 e^- & = & Pt \\ MnO_2 + 4H^+ + 2e^- & = & Mn^{2+} + 2H_2O \\ O_2(g) + 4H^+ + 4e^- & = & 2H_2O \\ Cr_2O_7^- + 14H^+ + 6e^- & = & 2Cr^{3+} + 7H_2O \\ MnO_4^- + 8H^+ + 5e^- & = & Mn^{2+} + 4H_2O \\ H_2O_2 + 2H^+ + 2 e^- & = & 2H_2O \\ Co^{3+} + e^- & = & 2H_2O \\ & & + 1,33 \\ Co^{3+} + e^- & = & 2H_2O \\ & & + 1,51 \\ H_2O_2 + 2H^+ + 2 e^- & = & 2H_2O \\ & & + 1,77 \\ Co^{3+} + e^- & = & Co^{2+} \\ & & + 1,81 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                                                    | =             |                    | + 0,34             |  |  |  |  |  |  |
| $SO_2 + 4H^+ + 4e^- = S + 2H_2O + 0,45$ $Cu^+ + e^- = Cu + 0,52$ $I_2 + 2e^- = 2I^- + 0,54$ $O_2(g) + 2H^+ + 2e^- = H_2O_2 + 0,68$ $Fe^{3+} + e^- = Fe^{2+} + 0,77$ $NO_3^- + 2H^+ + e^- = NO_2(g) + H_2O + 0,80$ $Ag^+ + e^- = Ag + 0,80$ $Hg^{2+} + 2e^- = Hg(\ell) + 0,85$ $NO_3^- + 4H^+ + 3e^- = NO(g) + 2H_2O + 0,96$ $Br_2(\ell) + 2e^- = 2Br^- + 1,07$ $Pt^{2+} + 2e^- = Pt + 1,20$ $MnO_2 + 4H^+ + 2e^- = Mn^{2+} + 2H_2O + 1,23$ $O_2(g) + 4H^+ + 4e^- = 2H_2O + 1,23$ $Cr_2O_7^{2-} + 14H^+ + 6e^- = 2C\ell^{-} + 1,36$ $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O + 1,51$ $H_2O_2 + 2H^+ + 2e^- = 2H_2O + 1,77$ $Co^{3+} + e^- = Co^{2+} + 1,81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>   | <b>=</b>      |                    | *                  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | <b>=</b>      |                    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | <b>=</b>      | Cu                 |                    |  |  |  |  |  |  |
| $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O + 1,33$ $C\ell_{2}(g) + 2e^{-} = 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l <sub>2</sub> + 2e <sup>-</sup>                       | <b>=</b>      | 2I <sup>-</sup>    |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup> | <b>=</b>      | $H_2O_2$           |                    |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe <sup>3+</sup> + e <sup>-</sup>                      | =             | Fe <sup>2+</sup>   | + 0,77             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $NO_3^- + 2H^+ + e^-$                                  | =             | $NO_2(g) + H_2O$   | + 0,80             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ag⁺ + e⁻                                               | =             | Ag                 | + 0,80             |  |  |  |  |  |  |
| $\begin{array}{rclcrcl} Br_2(\ell) + 2e^- & = & 2Br^- & + 1,07 \\ Pt^{2^+} + 2e^- & = & Pt & + 1,20 \\ MnO_2 + 4H^+ + 2e^- & = & Mn^{2^+} + 2H_2O & + 1,23 \\ O_2(g) + 4H^+ + 4e^- & = & 2H_2O & + 1,23 \\ Cr_2O_7^{2^-} + 14H^+ + 6e^- & = & 2Cr^{3^+} + 7H_2O & + 1,33 \\ C\ell_2(g) + 2e^- & = & 2C\ell^- & + 1,36 \\ MnO_4^- + 8H^+ + 5e^- & = & Mn^{2^+} + 4H_2O & + 1,51 \\ H_2O_2 + 2H^+ + 2e^- & = & 2H_2O & + 1,77 \\ Co^{3^+} + e^- & = & Co^{2^+} & + 1,81 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hg <sup>2+</sup> + 2e <sup>-</sup>                     | =             | Hg(ℓ)              | + 0,85             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $NO_3^- + 4H^+ + 3e^-$                                 | =             |                    |                    |  |  |  |  |  |  |
| $\begin{array}{rclcrcl} & MnO_2 + 4H^+ + 2e^- & \rightleftharpoons & Mn^{2+} + 2H_2O & + 1,23 \\ & O_2(g) + 4H^+ + 4e^- & \rightleftharpoons & 2H_2O & + 1,23 \\ & Cr_2O_7^{2-} + 14H^+ + 6e^- & \rightleftharpoons & 2Cr^{3+} + 7H_2O & + 1,33 \\ & & C\ell_2(g) + 2e^- & \rightleftharpoons & 2C\ell^- & + 1,36 \\ & MnO_4^- + 8H^+ + 5e^- & \rightleftharpoons & Mn^{2+} + 4H_2O & + 1,51 \\ & & H_2O_2 + 2H^+ + 2e^- & \rightleftharpoons & 2H_2O & + 1,77 \\ & & & Co^{3+} + e^- & \rightleftharpoons & Co^{2+} & + 1,81 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | =             | 2Br <sup>-</sup>   | + 1,07             |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | =             |                    | + 1,20             |  |  |  |  |  |  |
| $Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$ + 1,33<br>$Cl_2(g) + 2e^- = 2Cl^-$ + 1,36<br>$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$ + 1,51<br>$H_2O_2 + 2H^+ + 2e^- = 2H_2O$ + 1,77<br>$Co^{3+} + e^- = Co^{2+}$ + 1,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $MnO_2 + 4H^+ + 2e^-$                                  | =             | $Mn^{2+} + 2H_2O$  | + 1,23             |  |  |  |  |  |  |
| $C\ell_{2}(g) + 2e^{-} = 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $O_2(g) + 4H^+ + 4e^-$                                 | $\Rightarrow$ |                    | + 1,23             |  |  |  |  |  |  |
| $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$ + 1,51<br>$H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ + 1,77<br>$Co^{3+} + e^{-} = Co^{2+}$ + 1,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Cr_2O_7^{2-} + 14H^+ + 6e^-$                          | =             | $2Cr^{3+} + 7H_2O$ | + 1,33             |  |  |  |  |  |  |
| $H_2O_2 + 2H^+ + 2e^- = 2H_2O$ +1,77<br>$Co^{3+} + e^- = Co^{2+}$ +1,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cl <sub>2</sub> (g) + 2e <sup>-</sup>                  | =             | 2Cℓ <sup>-</sup>   | + 1,36             |  |  |  |  |  |  |
| $Co^{3+} + e^{-} = Co^{2+} + 1,81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $MnO_{4}^{-} + 8H^{+} + 5e^{-}$                        | =             | $Mn^{2+} + 4H_2O$  | + 1,51             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H_2O_2 + 2H^+ + 2e^-$                                 | =             |                    | +1,77              |  |  |  |  |  |  |
| $F_2(g) + 2e^- = 2F^- + 2.87$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co <sup>3+</sup> + e <sup>-</sup>                      | =             | Co <sup>2+</sup>   | + 1,81             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F <sub>2</sub> (g) + 2e <sup>-</sup>                   | =             | 2F <sup>-</sup>    | + 2,87             |  |  |  |  |  |  |

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels