A Crash Course on Yoneda Reasoning

Jacob Neumann University of Nottingham MGS 2024 Participant Talk

11 April 2024

Cool Structure: Exponentials

Given two sets B, C, I can form the set C^B of all functions $B \to C$. I can define the function $\epsilon \colon C^B \times B \to C$ which sends (g, b) to g(b). This satisfies the universal property of the exponential: for any $f \colon A \times B \to C$, there is a unique function $\overline{f} \colon A \to C^B$ such that

commutes.

What about **groups** instead of sets?

Cool Structure: Exponentials

Given two groups B, C, I can form the set (group?) C^B of all homomorphisms $B \to C$. I can define the function $\epsilon \colon C^B \times B \to C$ which sends (g, b) to g(b).

Does this satisfy the universal property of the exponential: for any $f: A \times B \to C$, there is a unique homomorphism $\overline{f}: A \to C^B$ such that

commutes

What about **groups** instead of sets?

No!

Thm. The category Grp of groups and group homomorphisms is *not* a cartesian closed category.

Lemma In a cartesian closed category $\mathbb C$ with an initial object $\mathbf 0$, any morphism $\mathbb C(A,\mathbf 0)$ is an isomorphism.

Fact The trivial group $\mathbf{0}$ is both initial and terminal in the category of groups. So any group G has a unique morphism $C(G, \mathbf{0})$.

Conclusion: Grp doesn't have exponentials

Be a lot cooler if you did

sn't

Idea: Make a better version of Grp that does have these things

The category of presheaves

For any category \mathbb{C} , define the category $\mathsf{Psh}(\mathbb{C})$ of presheaves on \mathbb{C} to be the category whose

- ullet Objects are functors $\mathbf{C}^{\mathrm{op}} o \mathsf{Set}$
- Morphisms are natural transformations.

There is a functor $y: C \to Psh(C)$ taking each object A of C to the representable presheaf yA.

Thm (Yoneda) For any objects A, B of C, the morphism part of the y functor gives an isomorphism

$$C(A, B) \cong (Psh(C))(yA, yB).$$

The Yoneda Lemma: the fundamental lemma of category theory

Lemma (Yoneda) For any presheaf $F: \mathbb{C}^{op} \to \mathsf{Set}$, there is an isomorphism

$$FA\cong (\mathbf{Psh}(\mathbf{C}))(\mathbf{y}A,F)$$

natural in A.

Yoneda Reasoning: To define a presheaf F having a nice universal property in $Psh(\mathbb{C})$,

- 1 Assume you already have F
- 2 Apply the Yoneda Lemma
- Rewrite using the desired universal property
- 4 Obtain what the definition must be

Example 1: Products in Psh(C)

Claim Psh(C) has products: for any presheaves F, G, there is a presheaf $F \times G$ such that

$$(\mathsf{Psh}(\mathsf{C}))(H,F\times G)\cong (\mathsf{Psh}(\mathsf{C}))(H,F)\times (\mathsf{Psh}(\mathsf{C}))(H,G)$$
 (*)

naturally in *H*.

By Yoneda Reasoning:

$$(F \times G)(A) \cong (Psh(C))(yA, F \times G)$$

 $\cong (Psh(C))(yA, F) \times (Psh(C))(yA, G)$
 $\cong (F A) \times (G A)$
(YL)

Now take $(F \times G)(A) := F(A) \times \overline{G}(A)$, prove this has property (*).

Example 2: Exponentials in Psh(C)

Claim Psh(C) has exponentials: for any presheaves F, G, there is a presheaf G^F such that

$$(\mathsf{Psh}(\mathsf{C}))(H,G^F)\cong (\mathsf{Psh}(\mathsf{C}))(H\times F,G)$$
 (**)

naturally in H.

By Yoneda Reasoning:

$$(G^F)(A) \cong (\mathsf{Psh}(C))(\mathsf{y}A, G^F)$$

 $\cong (\mathsf{Psh}(C))(\mathsf{y}A \times F, G)$ (YL)

Now take $(G^F)(A) := (Psh(C))(yA \times F, G)$, prove this has property (**).

Question: Is there Yoneda machinery for verifying the definition correct?

Yes!

Already have it for representables

Want:

$$(\mathsf{Psh}(\mathsf{C}))(H,G^F)\cong (\mathsf{Psh}(\mathsf{C}))(H\times F,G)$$

Have it when $H = \mathbf{y}A$:

$$(\mathsf{Psh}(\mathsf{C}))(\mathsf{y}\mathsf{A},\mathsf{G}^\mathsf{F})\cong \mathsf{G}^\mathsf{F}(\mathsf{A}):=(\mathsf{Psh}(\mathsf{C}))(\mathsf{y}\mathsf{A}\times\mathsf{F},\mathsf{G})(***)$$

Want: fit holds for all representables, it holds for all presheaves

The Co-Yoneda Lemma

Lemma Every presheaf H is the colimit of representable presheaves:

$$H \cong \operatorname{colim}_{(A,a): \int H} \mathbf{y} A$$

$$(\mathbf{Psh}(\mathbf{C}))(H, G^{F}) = (\mathbf{Psh}(\mathbf{C})) \begin{pmatrix} \operatorname{colim} \mathbf{y}A, G^{F} \\ (A,a) \colon \int H \end{pmatrix}$$

$$= \lim_{(A,a) \colon \int H} (\mathbf{Psh}(\mathbf{C}))(\mathbf{y}A \times F, G)$$

$$= \lim_{(A,a) \colon \int H} (\mathbf{Psh}(\mathbf{C}))(\mathbf{y}A \times F, G)$$

$$= (\mathbf{Psh}(\mathbf{C})) \begin{pmatrix} \operatorname{colim} \mathbf{y}A \times F, G \\ (A,a) \colon \int H \end{pmatrix}$$

$$= (\mathbf{Psh}(\mathbf{C})) \begin{pmatrix} \operatorname{colim} \mathbf{y}A \\ (A,a) \colon \int H \end{pmatrix} \times F, G$$

$$\cong (\mathbf{Psh}(\mathbf{C}))(H \times F, G)$$

$$(CYL)$$

Summary

- Presheaf categories rich, other categories poor
- Yoneda tells you what your definitions should be
- CoYoneda helps vouch for the answer Yoneda gives

Thank you!