

Model Development Phase

Date	28 July 2025
Project Title	Flight Delays Prediction Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report:

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
1. Decision Tree

sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)

classifier = DecisionTreeClassifier()
classifier = DecisionTreeClassifier(random_state = 0)
classifier.fit(x_train, y_train)

→ DecisionTreeClassifier ②
→ Parameters
```

```
2. Random Forest

rf = RandomForestClassifier(n_estimators=100, max_depth=None, random_state=0, n_jobs=-1)
rf.fit(x_train, y_train)

d:\Projects\Flight Delays Prediction\env\Lib\site-packages\sklearn\base.py:1363: DataConversionWreturn fit_method(estimator, *args, **kwargs)

RandomForestClassifier  Parameters
```



```
3. Support Vector Machine

svm = svc(kernel='linear', C=1.0, gamma='scale', random_state=0)
svm.fit(x_train, y_train)

d:\Projects\Flight Delays Prediction\env\Lib\site-packages\sklearn\utils\valida
y = column_or_1d(y, warn=True)

v svc Parameters

Parameters
```

4. LightGBM

[42]

```
lgbm = LGBMClassifier(n_estimators=100, learning_rate=0.1, random_state=0)
lgbm.fit(x_train, y_train)
```


Test the models

```
decisiontree = classifier.predict(x test)
dt_pred = accuracy_score(y_test, decisiontree)
print("Decision Tree Metrics:")
print("Accuracy:", accuracy_score(y_test, decisiontree))
print("Precision:", precision_score(y_test, decisiontree))
print("Recall:", recall_score(y_test, decisiontree))
print("F1-Score:", f1_score(y_test, decisiontree))
print("\nClassification Report:\n", classification_report(y_test, decisiontree))
randomforest = rf.predict(x_test)
print("Random Forest Metrics:")
print("Accuracy:", accuracy_score(y_test, randomforest))
print("Precision:", precision_score(y_test, randomforest))
print("Recall:", recall_score(y_test, randomforest))
print("F1-Score:", f1_score(y_test, randomforest))
print("\nClassification Report:\n", classification_report(y_test, randomforest))
svmp = svm.predict(x_test)
print("SVM Metrics:")
print("Accuracy:", accuracy_score(y_test, svmp))
print("Precision:", precision_score(y_test, svmp))
print("Recall:", recall_score(y_test, svmp))
print("F1-Score:", f1_score(y_test, svmp))
print("\nClassification Report:\n", classification report(y_test, svmp))
lgbmp = lgbm.predict(x test)
print("LightGBM Metrics:")
print("Accuracy:", accuracy_score(y_test, lgbmp))
print("Precision:", precision_score(y_test, lgbmp))
print("Recall:", recall_score(y_test, lgbmp))
print("F1-Score:", f1_score(y_test, lgbmp))
print("\nClassification Report:\n", classification_report(y_test, lgbmp))
```


Model	Classification F	Report				F1 Score	Confusion Matrix
Decision Tree	Classification False True accuracy macro avg weighted avg	n Report: precision 0.99 0.97 0.98 0.99	recall 0.99 0.97 0.98 0.99	f1-score 0.99 0.97 0.99 0.98 0.99	support 1802 445 2247 2247 2247	97.3	Confusion Matrix: [[1790 12] [12 433]]
Random Forest	Classification False True accuracy macro avg weighted avg	Report: precision 0.90 0.93 0.92 0.91	recall 0.99 0.58 0.78 0.91	f1-score 0.94 0.71 0.91 0.83 0.90	support 1802 445 2247 2247 2247	71.2	Confusion Matrix: [[1782 20] [188 257]]
SVM	Classification False True accuracy macro avg weighted avg	n Report: precision 0.80 0.00 0.40 0.64	recall 1.00 0.00 0.50 0.80	f1-score 0.89 0.00 0.80 0.45 0.71	support 1802 445 2247 2247 2247	0	Confusion Matrix: [[1802 0] [445 0]]

LGBM	Classification	n Report:				93.7	Confusion Matrix:
		precision	recall	f1-score	support	[[1780 22]	
	False	0.98	0.99	0.98	1802		[33 412]]
	True	0.95	0.93	0.94	445		
	accuracy			0.98	2247		
	macro avg	0.97	0.96	0.96	2247		
	weighted avg	0.98	0.98	0.98	2247		