

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/12, 15/63, 1/21, 5/00, C07K 7/00, 14/435		A1	(11) International Publication Number: WO 99/66041 (43) International Publication Date: 23 December 1999 (23.12.99)
(21) International Application Number: PCT/US99/13418		20851 (US). SOPPET, Daniel, R. [US/US]; 15050 Stillfield Place, Centreville, MD 22020 (US). BREWER, Laurie, A. [US/US]; Apartment 115, 410 Van Dyke Street, St. Paul, MN 55119-4321 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US). MUCENSKI, Michael [US/US]; 3263 Mandale Drive, Cincinnati, OH 45239 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace, #316, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 3142 Quesada Street, N.W., Washington, DC 20015 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place, #24, Gaithersburg, MD 20878 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, #102, Gaithersburg, MD 20878 (US). MOORE, Paul, A. [US/US]; 19005 Leatherbark Drive, Germantown, MD 20874 (US). KOMATSOULIS, George [US/US]; 9518 Garwood Street, Silver Spring, MD 20901 (US).	
(22) International Filing Date: 15 June 1999 (15.06.99)		(30) Priority Data: 60/089,509 16 June 1998 (16.06.98) US 60/089,510 16 June 1998 (16.06.98) US 60/089,508 16 June 1998 (16.06.98) US 60/089,507 16 June 1998 (16.06.98) US 60/090,112 22 June 1998 (22.06.98) US 60/090,113 22 June 1998 (22.06.98) US	
(71) Applicant (<i>for all designated States except US</i>): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).		(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). WEI, Ying-Fei [CN/US]; 242 Gravett Drive, Berkeley, CA 94705 (US). YOUNG, Paul, E. [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). FLORENCE, Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville, MD	
		(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).	
		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
<p>Published</p> <p><i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i> <i>With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.</i></p>			
(54) Title: 94 HUMAN SECRETED PROTEINS			
(57) Abstract			
<p>The present invention relates to novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

94 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and 5 polypeptides, and their production.

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or 10 organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic 15 reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

20 Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in 25 secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes 30 encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoietin. Thus, in light of

the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

5

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and 10 polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

15

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original 20 environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable 25 of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

In specific embodiments, the polynucleotides of the invention are less than 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, or 7.5 kb in length. In a further embodiment, polynucleotides of the invention comprise at least 15 contiguous nucleotides of the coding sequence, but do not comprise all or a portion of any intron.

- 5 In another embodiment, the nucleic acid comprising the coding sequence does not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene in the genome).

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone

- 10 deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a
15 molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig analysis). A representative clone containing all or most of the sequence for SEQ ID

- 20 NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of
25 microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's

solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions.

- 5 Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M
10 NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

- 15 Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above,
20 due to problems with compatibility.

- Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid
25 molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

- The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of
30 single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA

- that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA
- 5 backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.
- The polypeptide of the present invention can be composed of amino acids
- 10 joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more
- 15 detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of
- 20 modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a
- 25 heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation,
- 30 iodination, methylation, myristylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

(See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

20 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

Preferred polypeptides of the invention comprise the following amino acid sequence: TRPEKVKQAPLKWFKFQILDPP (SEQ ID NO:249). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in dendritic cells and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune, nervous system, and inflammatory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in dendritic cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, and autism. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system. Furthermore, expression of this gene product in primary dendritic cells also indicates that it may play a role in mediating responses to infection and controlling immunological responses, such as those that occur during immune surveillance. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:11 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 885 of SEQ ID NO:11, b is an integer of 15 to 899, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:11, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

The translation product of this gene share homology with the Tbc1 gene of *Mus musculus* which is thought to play a role in the cell cycle and differentiation of various tissues (See Genebank accession no. gi|988221 as well as Medline article

- 5 no.96032578; all references available through these accessions are hereby incorporated by reference herein). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

SAEFGVAPLPGRRGSPVRQLAQFRRRLRGSGGRGAPGRPPRCGEARVMXPPSCIQDEPFPHPLEPEP
GVSAQPGPGKPSDKRFRWLWYVGGSCLDHRTTLPMLPWLMAEIRRSQKPEAGGCAGAPAAREVILVLSAP
10 FLRCVPAPGAGASGGTSPSATQPNNPAVFIFEHKAQHISRFIHNSHDLTYFAYLIKAPQDDPESQMACHV
FRATDPSQVPDVSSIQLSKXAMKEDAKPSKDNEADFYNSQKFEVLYCGKVTVPQEGPLKPHR
(SEQ ID NO: 250); PMLPWLMAEIRRS (SEQ ID NO: 251); IHNSHDLTYFAYLIKAPQD
(SEQ ID NO: 252); KFEVLYCGKVT (SEQ ID NO: 253); and/or ISSIRQLSKAMKE
(SEQ ID NO: 254). Polynucleotides encoding these polypeptides are also provided.

- 15 This gene is expressed primarily in smooth muscle and dendritic cells and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are 20 not limited to, cardiovascular diseases and immune and inflammatory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and cardiovascular system, expression of this gene at significantly 25 higher or lower levels is routinely detected in certain tissues or cell types (e.g., smooth muscle and dendritic cells, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from 30 an individual not having the disorder.

The tissue distribution in smooth muscle and dendritic cells and homology to a protein involved in regulation of cell cycle and tissue differentiation indicates that polynucleotides and polypeptides corresponding to this gene are useful for the

detection/treatment and/or prevention of immune system disorders, cardiovascular disorders or diseases, including cancer and other proliferative disorders. The tissue distribution indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders.

- 5 Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation
10 of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g., by boosting immune responses).

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such
15 as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus
20 erythematosus, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, scleroderma and tissues. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of
25 various blood lineages, and in the differentiation and/or proliferation of various cell types.

Alternatively, the protein is useful in the detection, treatment, and/or prevention of vascular conditions, which include, but are not limited to, microvascular disease, vascular leak syndrome, aneurysm, stroke, atherosclerosis, arteriosclerosis, or
30 embolism. For example, this gene product may represent a soluble factor produced by smooth muscle that regulates the innervation of organs or regulates the survival of neighboring neurons. Likewise, it is involved in controlling the digestive process, and

such actions as peristalsis. Similarly, it is involved in controlling the vasculature in areas where smooth muscle surrounds the endothelium of blood vessels. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate 5 their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 10 related to SEQ ID NO:12 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 15 formula of a-b, where a is any integer between 1 to 1126 of SEQ ID NO:12, b is an integer of 15 to 1140, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:12, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

20 The translation product of this gene shares sequence homology with alpha-1 antitrypsin (See Genebank accession no. gnl|PID|d1021080; all references available through this accession are hereby incorporated by reference herein). Alpha-1-antitrypsin is an important plasma protease inhibitor affecting a wide variety of serine proteases involved in coagulation, fibrinolysis and kinin generation.

25 Preferred polypeptides of the invention comprise the following amino acid sequence: GERRNWGGEVYYSTGYSSRK (SEQ ID NO:255). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in healing groin wound and to a lesser extent in some other tissues.

30 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

not limited to, wound healing disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the healing groin wound, expression of this 5 gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., healing, regenerative, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from 10 an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 132 as residues: Phe-25 to Tyr-30, Gln-37 to Arg-42, Lys-106 to Leu-112, Leu-123 to Leu-130, Gln-142 to Phe-150, Gln-183 to Lys-188, Asp-219 to Glu-226, Lys-359 to Glu-366. Polynucleotides encoding said polypeptides 15 are also provided.

The tissue distribution in healing groin wound and homology to alpha-1 antitrypsin indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of wound healing disorders. In addition, since healing wounds have transcriptional environments similar to 20 developing tissues, The translation product of this gene is useful for the diagnosis and treatment of cancer and other proliferative disorders. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, 25 antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:13 and may have been publicly available prior to conception of 30 the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1431 of SEQ ID NO:13, b is an integer of 15 to 1445, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:13, and where b is greater than or equal to a + 14.

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

The translation product of this gene shares homology with members of the HEMK family of modification methylases (See, e.g., Genbank Accession No. gb|AAD26417.1|AF131220_1; all references available through this accession are 10 hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: EPGAAQESW (SEQ ID NO:256); LCARPSCSYTGAENQQPRSPGWGSSHVGWGWG VGSPFGLSQEWNSGLAPDLPDQEEEQPVGRHSCPDMSCQCIKRGHQPVGFSKHAWRCLVGCCPWEERKSC HPFGAXLLWVLRFALQPXVYEDPAALDGGEEGMDIXTHILALAPRLLKDGSISIFLEVDPHPXLVSSWL 15 QSRPDLYLNLVAVRRDFCGRPRFLHIRSGP (SEQ ID NO:257); LCARPSCSYTGAENQQPSPGWGSSHVGWGVGSP (SEQ ID NO:258); FLGSQEWSGLAPDLPDQEEEQPVGRHSCPDMSCQCIKR (SEQ ID NO:259); GHQPVGFSKHAWRCLVGCCPWEERKRSCHPFGAXLLW (SEQ ID NO:260); VLRFALQPXVYEDPAALDGGEEGMDIXTHILALAPRL (SEQ ID NO:261); and/or LKDSGSISIFLEVDPHPXLVSSWLQSRPDLYLNLVAVRRDFCGRPRFLHIRSGP (SEQ ID 20 NO:262). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in immune and tumor tissues, and to a lesser extent in some other tissues such as heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 25 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune and inflammatory disorders and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and 30 tumor tissues, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative

to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 133 as residues: Met-1 to Cys-6, Ser-26 to Gly-35.

5 Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in tumors of immune origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of such tumors, in addition to other tumors where expression has been indicated. Additionally, this gene is a good target for antagonists, particularly 10 small molecules or antibodies, which block binding of the receptor by its cognate ligand(s). Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show 15 utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:14 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically 20 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1194 of SEQ ID NO:14, b is an integer of 15 to 1208, where both a and b correspond to the positions of nucleotide 25 residues shown in SEQ ID NO:14, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

The translation product of this gene shares sequence homology with mouse von Ebner minor salivary gland protein which may play a role in carbohydrate 30 metabolism (See Genebank Accession No. gb|AAA87581.1; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: QELLVKIPLDMVAGFNTPL (SEQ ID NO:263); LRIQLLHKLSFLVNALAK QVMNLLVP (SEQ ID NO:264); AGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVKEK LTQELKDHNATSILQLPLI (SEQ ID NO:266); and/or HXIWLKVITXNILQLQVKPS 5 (SEQ ID NO:265). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in respiratory tissues such as trachea, larynx and other pulmonary tissues, and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 10 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, respiratory system and oral disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the respiratory tissues, 15 expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an 20 individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 134 as residues: Lys-39 to Asn-48, Arg-63 to Gly-68, Pro-101 to Gln-106. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution combined with the homology to von Ebner minor 25 salivary gland protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of respiratory and oral diseases. Furthermore, The tissue distribution in pulmonary tissues also indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of tumors within these tissues, in addition to other tumors where 30 expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the

above listed tumors and tissues. Protein may show utility in the diagnosis, treatment, and/or prevention of disorders in carbohydrate metabolism.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 5 related to SEQ ID NO:15 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 10 formula of a-b, where a is any integer between 1 to 1161 of SEQ ID NO:15, b is an integer of 15 to 1175, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:15, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

15 The gene encoding the disclosed cDNA is believed to reside on chromosome 2. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 2.

This gene is expressed primarily in fast-growing tissues such as fetal tissues, hematopoietic cells and tumor tissues and to a lesser extent in other tissues.

20 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, growth disorders, tumorigenesis, and immune or inflammatory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are 25 useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fast-growing tissues such as fetal tissues, hematopoietic cells and tumor tissues, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., cancerous and wounded 30 tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a

disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in fast growing tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment 5 of cancer and other proliferative disorders. Expression in embryonic tissue and other cellular sources marked by proliferating cells indicates that this protein may play a role in the regulation or cellular division. Additionally, the expression in hematopoietic cells and tissues indicates that this protein may play a role in the proliferation, differentiation, and/or survival of hematopoietic cell lineages which 10 implicates the protein product of this gene as being useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 15 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. Thus, this gene is useful in the 20 treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor cells.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 25 related to SEQ ID NO:16 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2360 of SEQ ID NO:16, b is an integer of 15 to 2374, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:16, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The translation product of this gene shares sequence homology with mitochondrial NADH-Ubiuinone oxidoreductase, chain 2.

5 Preferred polypeptides of the invention comprise the following amino acid sequence: HFIITLTTFFTNYFL (SEQ ID NO:267); and/or MKITFQDLFPMWNFKCFL HGNVFSLFVLFPPLTCFSFPYTVNSGTKLDWVGWLGVWFFLEFMYINKGEVTSENNISKRVLVRENIR IKSSPERVLRM (SEQ ID NO:268). Polynucleotides encoding these polypeptides are also provided.

10 This gene is expressed primarily in stromal cells (cell code TF274), induced epithelial cells and human cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are 15 not limited to, metabolic disorders and conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, brain, and integument, expression of this gene at significantly higher or lower levels is routinely detected in 20 certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, bile, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

25 The tissue distribution in epithelial and cerebral tissues combined with the homology to a known mitochondrial NADH-Ubiuinone oxidoreductase gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis, prevention, and/or treatment of various metabolic disorders such as Tay-Sach's disease, phenylkenonuria, galactosemia, porphyrias, and Hurler's 30 syndrome. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional

supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:17 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1581 of SEQ ID NO:17, b is an integer of 15 to 1595, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:17, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

The translation product of this gene shares sequence homology with Platelet activating factor acetylhydrolase which inactivates Platelet activating factor, a potent phospholipid mediator affecting various physiological processes (See, e.g., Genbank Accession Nos. gi|349824|gb|AAA02880.1| and gi|2072303|gb|AAC04610.1|; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: RFWGSYEPHFSQEVSVIP (SEQ ID NO:269); and/or IRGNYFSGRKSSSDT PKGSKDKISVWNRSQXACIRICKVHPNYIQIYLWHSATSF (SEQ ID NO:270).

Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in CD34 depleted buffy coat (cord blood) and to a lesser extent in human prostate cancer, stage 3 fraction.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, particularly of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of

disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., prostate, cancerous and wounded tissues) or bodily fluids (e.g., lymph, cord blood, serum, plasma, urine, synovial fluid and spinal fluid) or

5 another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34 depleted buffy coat combined with the homology to Platelet-activating factor acetylhydrolases, proteins involved in

10 regulation of platelet activity, indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Expression of this gene product in hematopoietic cells indicates a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells.

15 Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g. by boosting immune responses.

20 Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or

25 receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly

30 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:18 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1273 of SEQ ID NO:18, b is an integer of 15 to 1287, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:18, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

Preferred polypeptides of the invention comprise the following amino acid sequence: AGNQVEPFHVSLPSCLSPLPHLGHSMGVPSPTAWPSLASFHTQKKARIRQEEES PPLPSPQELAFSALRVFFRV (SEQ ID NO:271). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in primary dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immunosuppression and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 138 as residues: Arg-20 to Lys-44, Arg-59 to Arg-68, Trp-74 to Lys-86, Thr-91 to Val-102. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in primary dendritic cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment

of a variety of immune system disorders. Expression of this gene product in dendritic cells indicates a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g. by boosting immune responses.

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:19 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1382 of SEQ ID NO:19, b is an integer of 15 to 1396, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:19, and where b is greater than or equal to a + 14.

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

The translation product of this gene shares sequence homology with peptide/histidine transporter from *Rattus norvegicus* and other peptide transporters which are thought to be important in transporting amino acids and peptides into cells (See, e.g., Genbank Accession No. gb|AAD24570.1|AF121080_1; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: FIQQNISFLLGYSIPVGCVGLAFFIFLFATPVFITKPP (SEQ ID NO:272).

Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 11. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 11.

This gene is expressed primarily in macrophages and to a lesser extent in other immune cells including primary dendritic cells, neutrophils, resting T-cells, B cell lymphomas) and lung and fetal liver spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer and disorders, particularly of the immune and hematopoietic systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 139 as residues: Arg-23 to Gln-30, Asp-37 to Asp-50, Glu-230 to Met-235, Pro-271 to Arg-281, Arg-306 to Ser-316, Ser-318 to Gly-325. Polynucleotides encoding said polypeptides are also provided.

- The tissue distribution in macrophages and other immune cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g., by boosting immune responses). Alternatively expression within embryonic tissue and other cellular sources marked by proliferating cells indicates that this protein may play a role in the regulation or cellular division. Additionally, the expression in hematopoietic cells and tissues indicates that this protein may play a role in the proliferation, differentiation, and/or survival of hematopoietic cell lineages.
- Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. In such an event, this gene is useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor cells. Similarly, embryonic development also involves decisions involving cell differentiation and/or apoptosis in pattern formation. Thus this protein may also be involved in apoptosis or tissue differentiation and could again be useful in cancer therapy. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
- Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:20 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1263 of SEQ ID NO:20, b is an

integer of 15 to 1277, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:20, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 11

5 The translation product of this gene shares sequence homology with procollagen-proline dioxygenase, an apparently secreted protein which is thought to be important in the formation of 4-hydroxyproline in collagens (See, e.g., Genbank Accession No. pir|A33832|DACHA; all references available through this accession are hereby incorporated by reference herein). Furthermore, the translation product has
10 an EF-hand domain (Prosite PS00018) which is a calcium binding domain as found in calmodulin, calpain, spectrin alpha chain, etc., (See, e.g. GeneSeq Accession No.R78523; all references available through this accession are hereby incorporated by reference herein).

15 Preferred polypeptides of the invention comprise the following amino acid sequence:

VSAHHPSGADEGVNTAXQILPTEEYEEAMSTMQVSQQLDLFRLLDQN RDGHLQLREVLAQTRLGNGWWMTP
ESIQEMYAAIKADPDGDGVLSLQEFSNMDLRDFHKYMRSHKAESSELVRNSHHTWLYQGEGAHIMRAI
RQRVRLRLTRLSPEI VELSEPLQVVRYGEGGHYHAHVDSGPVYPETICSHTKLVANESVPFETSCRYMTV
LFYLNNTGGGETVFPVADNRTYDEM SLIQDDVDL RDTRRHCDKG NLRVKPQQGTAVFW NYLPDGQGW
20 VGDVDDYSLHGGCLVTRGTKWIANNWINVDP SRARQALFQQEMARLAREGGTDSQPEW ALDRAXXDARV
EL (SEQ ID NO: 273); AVFWYN (SEQ ID NO: 274); TVLFYLNNTGGGETVFP (SEQ ID NO: 275); DLFRLLDQN RDGHLQLREVLAQTRLGNGWWMTPESIQEMYAAIKADPDGDGVLS
LQEFS (SEQ ID NO: 276); VSAHHPSGADEGVNTAXQILPTEEYEEAMSTMQVSQQLDL (SEQ ID NO: 277), FRLLDQN RDGHLQLREVLAQTRLGNGWWMTPESIQEMY (SEQ ID NO: 278);
25 AAIKADPDGDGVLSLQEFSNMDLRDFHKYMRSHKAESS (SEQ ID NO: 279); ELVRNSHHTWLY
QGEGAHIMRAIRQRVRLRLTRLSPEI (SEQ ID NO: 280); VELSEPLQVVRYGEGGHYHAHVDS
GPVYPETICSHTKL (SEQ ID NO: 281); VANESVPFETSCRYMTVLFYLNNTGGGETVFPVA
DNR (SEQ ID NO: 282); TYDEM S LIQDDVDL RDTRRHCDKG NLRVKPQQGTAVFW (SEQ ID NO: 283); YNYLPDGQGWVGDVDDYSLHGGCLVTRGTKWIANNWIN (SEQ ID NO: 284);
30 and/or VDPSR ARQALFQQEMARLAREGGTDSQPEW ALDRAXXDARVEL (SEQ ID NO: 285).

Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 3. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 3.

This gene is expressed primarily in human endometrial tumor and to a lesser extent in brain, as well as a variety of other normal and cancerous tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

5 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, endometrial cancer, in addition to other proliferative disorders.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the 10 reproductive and neural systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., neural, reproductive, and/or other tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid, lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

15 expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 140 as residues: Ser-21 to His-33, Ala-35 to Thr-43.

Polynucleotides encoding said polypeptides are also provided.

20 The tissue distribution in endometrial tumors combined with the homology to procollagen-proline dioxygenase indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, treatment and prevention of these tumors, in addition to other tumors where expression has been indicated. The polypeptides of the invention is a good target for antagonists, particularly small molecules or antibodies, which block binding of the receptor by its cognate ligand(s).

25 Accordingly, preferred are antibodies and or small molecules which specifically bind an extracellular portion of The translation product of this gene. Also provided is a kit for detecting endometrial cancer. Such a kit comprises in one embodiment an antibody specific for The translation product of this gene bound to a solid support.

30 Also provided is a method of detecting endometrial cancer in an individual which comprises a step of contacting an antibody specific for The translation product of this gene to a bodily fluid from the individual, preferably serum, and ascertaining

whether antibody binds to an antigen found in the bodily fluid. Preferably the antibody is bound to a solid support and the bodily fluid is serum. Additionally, the homology to a conserved collagen metabolizing protein would suggest that this protein may also be important in the diagnosis or treatment of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis as well as dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias ie. spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:21 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1767 of SEQ ID NO:21, b is an integer of 15 to 1781, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:21, and where b is greater than or equal to a + 14.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in human osteoblastoma cell lines (5/23 unique sequences) and to a lesser extent in T cells (4/23).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, osteoblastoma, and other bone-related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., bone and/or other tissues) or bodily fluids (e.g., 5 lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of bone origins indicates that polynucleotides 10 and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Additionally, this gene is a good target for antagonists, particularly small molecules or antibodies, which block binding of the receptor by its cognate ligand(s). Accordingly, preferred are antibodies and or small molecules which specifically bind 15 an extracellular portion of The translation product of this gene. The extracellular regions can be ascertained from the information regarding the transmembrane domains as set out above. Also provided is a kit for detecting osteoblastoma and other bone related cancers. Such a kit comprises in one embodiment an antibody specific for The translation product of this gene bound to a solid support. Also provided is 20 a method of detecting bone related cancers in an individual which comprises a step of contacting an antibody specific for The translation product of this gene to a bodily fluid from the individual, preferably serum, and ascertaining whether antibody binds to an antigen found in the bodily fluid. Preferably the antibody is bound to a solid support and the bodily fluid is serum. Furthermore, the protein may also be used to 25 determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

30 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:22 and may have been publicly available prior to conception of

the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1477 of SEQ ID NO:22, b is an integer of 15 to 1491, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:22, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

The translation product of this gene is a human homolog of the mouse acetylcholine receptor gamma chain, and is almost identitcal to a human acetylcholine receptor gamma chain (See, e.g., Genbank Accession Nos.: emb|CAA27442.1| and gb|AAA51568.1|; all references available through these accessions are hereby incorporated by reference herein) which is thought to be important in transmission of nerve impulses to muscles.

Preferred polypeptides of the invention comprise the following amino acid sequence: LLADLMRNYDPHLRP (SEQ ID NO:286); ISVTYFPFDWQNCSLIFQS (SEQ ID NO:287); SMARGVRKVFLRLLPQ (SEQ ID NO:288); QASPAIQACVDACNLMAR (SEQ ID NO:289); and/or YNQVPDLPFPGDPRPYL (SEQ ID NO:290). Polynucleotides encoding these polypeptides are also provided. This gene maps to chromosome 2, and therefore, is used as a marker in linkage analysis for chromosome 2. Included in this invention as preferred domains are Neurotransmitter-gated ion-channels domains, which were identified using the ProSite analysis tool. Structurally, members of the family of Neurotransmitter-gated ion-channels are composed of a large extracellular glycosylated N-terminal ligand-binding domain,followed by three hydrophobic transmembrane regions which form the ionic channel, followed by an intracellular region of variable length. A fourth hydrophobic region is found at the C-terminal of the sequence. In the N-terminal extracellular domain of AchR/GABA/5HT3/Gly receptors, there are two conserved cysteine residues, which, in AchR, have been shown to form a disulfide bond essential to the tertiary structure of the receptor. A number of amino acids between the two disulfide-bonded cysteines are also conserved. We have therefore used this region as a signature pattern for this subclass

of proteins. The consensus pattern is as follows: C-x-[LIVMFQ]-x-[LIVMF]-x(2)-[FY]-P-x-D-x(3)-C.

Preferred polypeptides of the invention comprise the following amino acid sequence: CSISVTYFPFDWQNC (SEQ ID NO:291). Polynucleotides encoding these 5 polypeptides are also provided. Further preferred are polypeptides comprising the Neurotransmitter-gated ion-channel domain of the amino acid sequence referenced in Table 1 for this gene, and at least 5, 10, 15, 20, 25, 30, 50, or 75 additional contiguous amino acid residues of the amino acid sequence referenced in Table 1 for this gene . The additional contiguous amino acid residues is N-terminal or C-terminal to the 10 Neurotransmitter-gated ion-channel domain. Alternatively, the additional contiguous amino acid residues is both N-terminal and C-terminal to the Neurotransmitter-gated ion-channel domain, wherein the total N- and C-terminal contiguous amino acid residues equal the specified number. The above preferred polypeptide domain is characteristic of a signature specific to Neurotransmitter-gated ion-channels.

15 This gene is expressed primarily in fetal tissues (56/58 unique sequences), specifically lung (42/58) and Dura Mater (14/58). It was also detected (1 sequence each) in a differentially expressed human cerebellum library and human tonsil library

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 20 biological sample. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly fetal lung and brain, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues and cell 25 types (e.g., developmental, neural, differentiating, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid, pulmonary surfactant) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

30 Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 142 as residues: Met-1 to Pro-7, Gln-21 to Glu-27,

Arg-35 to Asp-49, Asn-66 to Leu-72, Trp-82 to Glu-95, Pro-158 to Asn-163.

Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in dura mater combined with the homology to a conserved acetylcholine receptor indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses , autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and preception. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, and/or disorders of the cardiovascular and pulmonary systems. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:23 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1825 of SEQ ID NO:23, b is an integer of 15 to 1839, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:23, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

Preferred polypeptides of the invention comprise the following amino acid sequence: VLKYALFLVLKNYYYYCPY (SEQ ID NO:292). Polynucleotides

5 encoding these polypeptides are also provided.

This gene is expressed primarily in small intestine and to a lesser extent in lung cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 10 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, gastrointestinal and pulmonary disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the intestinal and pulmonary 15 systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., gastrointestinal, pulmonary, and/or other tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, lymph, and/or pulmonary surfactant) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., 20 the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in small intestine indicates a role in the detection and/or treatment of gastro-intestinal disorders including Whipple's disease, Ulcers, and indigestion. Expression in the lung indicates a potential role in the treatment and/or 25 detection of certain pulmonary defects such as pulmonary edema and embolism, bronchitis, cystic fibrosis and lung cancer. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed 30 against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:24 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically 5 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1370 of SEQ ID NO:24, b is an integer of 15 to 1384, where both a and b correspond to the positions of nucleotide 10 residues shown in SEQ ID NO:24, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

In another embodiment, polypeptides of the invention comprise the following amino acid sequence:

15 MREYGVERDLAVYNQLLNIFPKEVFRPRNIIQRIFVHYPRQQECGIAVLEQMNHGVMNKETEFLLIQ
IFGRKSYPMLKLVRLKLWFPFRFMNVNPFPVPRDLPQDPVELAMFGLRHMEPDLSARVTIYQVPLPKDST
GAADPPQPHIVGIQSPDQQALARHNPAPRPFVVEGPFSLWRNKCVYYHILRADLLPEEREVEETPEE
WNLYYPMQLDLEYVRSGWDNYEFIDINEVEEGPVFAMCMAGAHDQATMAKWIQGLQETNPTLAQIPVVFR
LAGSTRELQTSSAGLEEPPLPEDHQEEEDNLQRQQGQS (SEQ ID NO: 293).

20 Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in brain and to a lesser extent in pancreas, testes, and other tissue types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 25 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological, behavioral, gastrointestinal, and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the 30 nervous system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., brain, endocrine, and/or other tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, and lymph) or another tissue or cell sample taken from an individual having such a

disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 144 as residues: Val-33 to Arg-39, Ser-57 to Thr-66, 5 Pro-80 to Lys-86, Pro-155 to Cys-160, Val-215 to Pro-223, Pro-250 to Gly-255, Pro-311 to Glu-323, Arg-338 to Tyr-344, Ser-396 to Gln-401, Pro-410 to Ser-431. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in brain indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative 10 disease states and behavioural disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment 15 and/or detection of developmental disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, 20 antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:25 and may have been publicly available prior to conception of 25 the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1667 of SEQ ID NO:25, b is an 30 integer of 15 to 1681, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:25, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

The translation product of this gene shares sequence homology with the acid labile subunit of the insulin like growth factor binding subunit which is thought to be important in modulating the activity of Insulin like growth factor. In addition, this 5 gene also shares homology with the melibiose carrier protein (thiomethylgalactoside permease II) of *Caenorhabditis elegans* (See Genebank Accession No. gi|1280135; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid 10 sequence: FQFGWASTQISHLSLIPEL (SEQ ID NO:294); LRYAFTVVANITYV (SEQ ID NO:295); FVYGSMSFLDKVANGLA (SEQ ID NO:296); WHLVGTVCVLLSFPPFIF (SEQ ID NO:297); and/or GHFLNDLCASMWFTY (SEQ ID NO:298). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in macrophages and to a lesser extent in 15 dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune and hematopoietic disorders. Similarly, polypeptides and 20 antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and/or immune systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g.hematopoietic, immune, and/or 25 other tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, and lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic 30 epitopes shown in SEQ ID NO: 145 as residues: Ala-28 to Ala-33, Arg-38 to Leu-48, Thr-120 to Lys-125, Gly-155 to Gln-163, Gly-200 to Glu-214. Polynucleotides encoding said polypeptides are also provided.

- The tissue distribution predominantly in dendritic cells and macrophages combined with homology to a growth factor binding subunit indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, 5 pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex vivo culture, bone marrow transplantation, bone marrow 10 reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of 15 various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
- 20 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:26 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is 25 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1935 of SEQ ID NO:26, b is an integer of 15 to 1949, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:26, and where b is greater than or equal to a + 14.

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

The translation product of this gene was shown to have homology to the T13C5.6 gene product from *Caenorhabditis elegans* (See Genebank Accession No. gi|1049369; all references available through this accession are hereby incorporated by reference herein).

5 Preferred polypeptides of the invention comprise the following amino acid sequence: AIPLRVLVVLWAFVLGLSRVMLGRHNVTDVAFGFFLGYMQ (SEQ ID NO:299); and/or VGLSRVLGRHTDV (SEQ ID NO:300). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in placenta and small intestine.

10 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, pregnancy, reproductive, and/or gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing 15 immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the intestinal and endocrine systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, gastrointestinal, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid 20 and spinal fluid, amniotic fluid,) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in placenta indicates a potential role for this protein in 25 the detection and/or treatment of pregnancy disorders such as miscarriage and/or gastro-intestinal disorders such as indigestion, ulcers and Whipple's disease.

Alternatively, polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis, prevention, and/or treatment of various metabolic disorders such as Tay-Sachs disease, phenylketonuria, galactosemia, porphyrias, and Hurler's 30 syndrome. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional

supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:27 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2272 of SEQ ID NO:27, b is an integer of 15 to 2286, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:27, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

Preferred polypeptides of the invention comprise the following amino acid sequence: SFYKMKRNSYDRLRKVV (SEQ ID NO:301). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 1. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in prostate and spleen and to a lesser extent in most cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, prostate and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and endocrine systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, immune, and/or other tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, seminal fluid,

and lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in prostate indicates a potential role in the treatment and/or detection of prostate disorders including benign prostate hyperplasia and prostate cancer. Expression in spleen indicates a role in the treatment and/or detection of spleen disorders such as splenitis and spleen cancer. Alternatively, the expression in the spleen may suggest that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Expression of this gene product in tonsils indicates a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g. by boosting immune responses.

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:28 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 516 of SEQ ID NO:28, b is an integer of 15 to 530, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:28, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

10 This gene was shown to have homology to both a human IgE-binding protein as well as to the human gene for Human Factor XIII (See Genebank Accession Nos. gb|S76337|S76337 and Q25893, respectively).

Preferred polypeptides of the invention comprise the following amino acid sequence: LHQLRPPHRFPLIPPAAAEGAGAPPAGCGYCVFWLLNPLP (SEQ ID NO:302),
15 and/or MPWKRAVVLMLWFIGQAMWLAPAYVLEFQGKNTFLFIWLAGLFFLLINCSILIQIISH YKEEPLTERIKYD (SEQ ID NO:303). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as
20 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological and behavioural disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of
25 disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., neural, immune, and/or other tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, and lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard
30 gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in infant brain indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and

5 "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses , autism,

10 and altered behaviors, including disorders in feeding, sleep patterns, balance, and preception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or

15 immunotherapy targets for the above listed tumors and tissues. Alternatively, considering the homology to a conserved human gene for IgE as well as to a conserved blood clotting factor may suggest this gene is useful for the diagnosis and treatment of a variety of immune system disorders. Homology of this gene to a blood clotting factor, specifically, indicates a role in the regulation of the proliferation;

20 survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g., by boosting immune responses.

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a

25 nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. In addition, this gene product may have commercial utility in the expansion of

stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:29 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1282 of SEQ ID NO:29, b is an integer of 15 to 1296, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:29, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

Preferred polypeptides of the invention comprise the following amino acid sequence: ARAQPFAFQLRPAPGRPGSPVA (SEQ ID NO:304);
AGLPGALTAPAXHHADSRPAELVVQPLSPPRPLLSHAGLASAAGASSLXRVPGEAESLCALSPGSALR
FPAACCSRXPXREPSGDEGTAGALPSPWLAALGPGRPAVRRVLPRLGGRAGQLPRGLPVPRGLRHAGRY
HLLRLLRAPLLRRGRRQAGAGRHLQRPPRTGAPRHCAACLRPLSHRRLHLHCVHHPGLCSGYLLLHL
FETQGALAAANPLTPQLSDRDPAHDPDHLHQPGTLPAVQHSHELQLHRRRLHPQVLLSHLVSWCHPSI
SLTPFSRSRSPHWLGRAVQTFSX (SEQ ID NO:305); AGLPGALTAPAXHHADSRPAELVVQP
LSPPRPLLSHA (SEQ ID NO:306); GLASAAGASSLXRVPGEAESLCALSPGSALRFPAACCSR
(SEQ ID NO:307); XREPSGDEGTAGALPSPWLAALGPGRPAVRRVLPRLGGR (SEQ ID
NO:308); AGQLPRGLPVPRGLRHAGRYHLLRLRAPLLRRGRRQAG (SEQ ID NO:309);
AGRLHQRPPRTGAPRHCAACLRPLSHRRLHLHCVHHPGL (SEQ ID NO:310); CSGYLLLHLF
ETQGALAAANPLTPQLSDRDPAHDPDHLHQ (SEQ ID NO:311); and/or PQGTLPAVQHSH
ELQLHRRRLHPQVLLSHLVSWCHPSISLTPFSRSRSPHWLGRAVQTFSX (SEQ ID NO:312).

Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 4. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 4.

This gene is expressed primarily in heart and to a lesser extent in the embryo. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cardiovascular and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of 5 disorders of the above tissues or cells, particularly of the cardiovascular and developmental systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., cardiopulmonary, developmental, and/or other tissues) or bodily fluids (e.g., lymph, sputum, serum, plasma, urine, synovial fluid and spinal fluid, amniotic fluid) or another tissue or cell 10 sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 149 as residues: Gln-23 to Gly-30, Gln-35 to Gln-43, 15 Leu-73 to Glu-84, Arg-125 to Pro-133, Ser-140 to Thr-145, Thr-153 to Thr-164. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in heart indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of a range of vascular conditions, which include, but are not limited to, microvascular disease, 20 vascular leak syndrome, aneurysm, stroke, atherosclerosis, arteriosclerosis, embolism, vasculitis, myocardial infarction, myocarditis, ischemia, stroke, in addition to developmental and metabolic disorders. For example, this gene product may represent a soluble factor produced by smooth muscle that regulates the innervation of organs or regulates the survival of neighboring neurons. Likewise, it is involved in controlling the digestive process, and such actions as peristalsis. Similarly, it is 25 involved in controlling the vasculature in areas where smooth muscle surrounds the endothelium of blood vessels. Alternatively, the expression in embryonic tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. 30 Furthermore, protein may play a role in the regulation of cellular division. In such an event, this gene is useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early

hematopoietic stem and committed progenitor cells. Similarly, embryonic development also involves decisions involving cell differentiation and/or apoptosis in pattern formation. Thus this protein may also be involved in apoptosis or tissue differentiation and could again be useful in cancer therapy. Furthermore, the protein

5 may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:30 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is

15 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1965 of SEQ ID NO:30, b is an integer of 15 to 1979, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:30, and where b is greater than or equal to a + 14.

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in human teratocarcinoma cell line treated with retinoic acid and human brain.

25 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental abnormalities and neural disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For 30 a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., developing, differentiating, neural, and/or other

tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid, amniotic fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

- 5 The tissue distribution in teratocarcinoma cell line indicates that polynucleotides and polypeptides corresponding to this gene are useful for early diagnosis and treatment of developmental abnormalities, including agenesis, aplasia, hypoplasia, dysraphic anomalies, division failures, dysplasia, etc. Additionally, the gene and its expression can be used for teratogen detection or classification.
- 10 Alternatively, considering the expression within human brain tissue may suggest that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioural disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic
- 15 disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue
- 20 markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

- 25 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:31 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or
- 30 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1260 of SEQ ID NO:31, b is an

integer of 15 to 1274, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:31, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

5 The translation product of this gene was shown to have homology to the human B-cell growth factor which is known to be involved in the maturation of B-cells (See Genebank Accession No. gi|522145; all references available through this accession are hereby incorporated by reference herein).

10 Preferred polypeptides of the invention comprise the following amino acid sequence: VAHTCNLSTLGGQGGRIERTAGQEFKTS (SEQ ID NO:313).

Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in multiple sclerosis and prostate tissues and to a lesser extent in brain and osteoblasts.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, muscle, reproductive, and neural disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of 15 disorders of the above tissues or cells, particularly of the central nervous system and/or PNS, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., muscle, reproductive, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid, seminal fluid) or another tissue or cell sample taken from an individual having 20 such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 151 as residues: Gln-28 to Asp-35. Polynucleotides encoding said polypeptides are also provided.

30 The tissue distribution in multiple sclerosis indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory

conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention Alzheimer's Disease, Parkinson's Disease, Huntington's

5 Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and preception. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, sexually-linked

10 disorders, or disorders of the cardiovascular system. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or

15 immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:32 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

20 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1517 of SEQ ID NO:32, b is an integer of 15 to 1531, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:32, and where b is greater than or equal to a + 14.

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

The translation product of this gene was shown to have homology to the B0035.14 gene of *Caenorhabditis elegans* (See, e.g., Genbank Accession No. gnl|PID|e242592; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: TIKMQTENLGVVYVNKDF (SEQ ID NO:314); MVSNPPY (SEQ ID NO:316); HASEL (SEQ ID NO:317); and/or VEEDYVTNIRNNC (SEQ ID NO:315). Polynucleotides encoding these polypeptides are also provided.

- 5 This gene is expressed primarily in bone marrow and to a lesser extent in lung and various tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are 10 not limited to, hematopoietic, and/or cardiopulmonary disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic system, expression of this gene at significantly higher or lower levels is routinely 15 detected in certain tissues or cell types (e.g., proliferating, haematopoietic, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid, pulmonary surfactant) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the 20 disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 152 as residues: Ile-34 to Glu-39, Lys-49 to Lys-56, Val-63 to Glu-68, Thr-73 to Asp-88, Arg-97 to Pro-107. Polynucleotides encoding said polypeptides are also provided.

- 25 The tissue distribution in bone marrow indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune 30 Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or

chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency, etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and

5 in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or

10 immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:33 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

15 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2076 of SEQ ID NO:33, b is an integer of 15 to 2090, where both a and b correspond to the positions of nucleotide

20 residues shown in SEQ ID NO:33, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

Preferred polypeptides of the invention comprise the following amino acid sequence: LVALDRMEYVRTFRKREDLRGRLFWVALDLLLDLLD (SEQ ID NO:318).

25 Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in T-cells and breast cancer tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

30 not limited to, immune disorders and breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of

disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, breast, proliferating, and/or other tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, breast milk, and lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 153 as residues: Tyr-105 to Pro-113, Gln-122 to Pro-133, Pro-140 to Asp-155. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in T cells and breast cancer indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in T-cells indicates a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g., by boosting immune responses.

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the

differentiation and/or proliferation of various cell types. The expression of the gene in the breast cancer tissue may indicate T-cell mediated immune reaction to the cancer tissue.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:34 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or 10 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 992 of SEQ ID NO:34, b is an integer of 15 to 1006, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:34, and where b is greater than or equal to a + 14.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 25

The translation product of this gene shares sequence homology with an yeast ankyrin repeat-containing protein Akr1p which is thought to be important in pheromone response pathway (See Genebank Accession No. gi|466522; all references available through this accession are hereby incorporated by reference herein).

20 Preferred polypeptides of the invention comprise the following amino acid sequence: SVALFYNFGKSWKSDPGIICKTTEEQKKKTIVELAETGSLDLSIFCSTCLIRKPVRSK HCGVCNRCAKFDHHC PWVGNCVGAGNHRYF (SEQ ID NO:319); FDHHCPWVGNCV (SEQ ID NO:320); and/or QMYQISCLGITTNERMNARR (SEQ ID NO:321). Polynucleotides encoding these polypeptides are also provided.

25 The gene encoding the disclosed cDNA is believed to reside on chromosome 12. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 12.

This gene is expressed primarily in human lung cancer cells, B-cell lymphoma and to a lesser extent in fetal tissues and tumor cells of various origins.

30 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

not limited to, cancer of various origins, particularly of the lungs and hematopoietic systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, 5 particularly of the lung, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., lung, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, pulmonary surfactant, and lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., 10 the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 154 as residues: Thr-28 to Phe-35, Asp-140 to Ser-145. Polynucleotides encoding said polypeptides are also provided.

15 The tissue distribution in lung cancer indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene 20 product in lymphomas indicates a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g., by boosting immune responses.

25 Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed 30 tumors and tissues. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Alternatively, distribution

in tumor tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers of various origins, especially lung B-cell lymphoma, stomach cancer, osteoclastoma. Additionally, this gene is a good target for antagonists, particularly small molecules or antibodies, which block 5 binding of the receptor by its cognate ligand(s). Accordingly, preferred are antibodies and/or small molecules which specifically bind an extracellular portion of The translation product of this gene. Also provided is a kit for detecting lung cancer. Such a kit comprises in one embodiment an antibody specific for The translation product of this gene bound to a solid support. Also provided is a method of detecting lung cancer 10 in an individual which comprises a step of contacting an antibody specific for The translation product of this gene to a bodily fluid from the individual, preferably serum, and ascertaining whether antibody binds to an antigen found in the bodily fluid. Preferably the antibody is bound to a solid support and the bodily fluid is serum. Furthermore, the protein may also be used to determine biological activity; 15 raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly 20 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:35 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or 25 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1773 of SEQ ID NO:35, b is an integer of 15 to 1787, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:35, and where b is greater than or equal to a + 14.

30 **FEATURES OF PROTEIN ENCODED BY GENE NO: 26**

The gene encoding the disclosed cDNA is believed to reside on chromosome 15. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 15.

This gene is expressed primarily in infant brain and to a lesser extent in a 5 variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental and neurodegenerative diseases of the brain and 10 nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, CNS, and/or PNS, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., 15 developmental, differentiating, neural, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

20 Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 155 as residues: Ser-33 to Ile-41. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in infant brain indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or 25 prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, 30 Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia,

mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in
5 normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a
10 nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are
15 related to SEQ ID NO:36 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general
20 formula of a-b, where a is any integer between 1 to 1187 of SEQ ID NO:36, b is an integer of 15 to 1201, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:36, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

25 The translation product of this gene shares sequence homology with a zinc transporter, ZnT-1, which is thought to regulate zinc excretion from cells and maintain homeostasis (See Genebank Accession No. gb|AAA79234.1|, all references available through this accession are hereby incorporated by reference herein; as well as Palmiter and Findley, EMBO J. 14:639-649 (1995), which is hereby incorporated
30 by reference herein). Transformation of normal cells with a mutant rat ZnT-1 lacking the first membrane-spanning domain conferred zinc sensitivity on wild-type cells, suggesting that ZnT-1 functions as a multimer. Deletion of the first two membrane-

spanning domains resulted in a non-functional molecule, whereas deletion of the C-terminal tail produced a toxic phenotype. Transmembrane domains of the protein of the current invention are predicted using PSORT to comprise the following amino acid residues of the amino acid sequence referenced in Table 1 for this gene: Ser-42

5 to Ala-58, Ala-83 to Leu-99, Leu-115 to Gly-131, Val-249 to Val-265, and/or Val-314 to Leu-330. Therefore, preferred polypeptides of the present invention are the predicted extracellular domains, comprising the following amino acid sequence:

RVTSSLAMLSDS (SEQ ID NO:322); AIERFIEPHEMQQPL (SEQ ID NO:323); and/or NALVFYFSWKGCGSEGDFCVNPCFPDPCKPFVIIINSTHASVYEAGPCWV (SEQ ID NO:324). An

10 additional preferred polypeptide fragment of the invention comprises the following amino acid sequence: AGIRHERNRGRLLCMLALTFMFMVLEVVSRR

VTSSLAMLSDSFHMLSDVLAVALVVAERFARRTHATQKNTFGWIRAEVMGALVNAIFLTGLCFAILLE
AIERFIEPHEMQQPLVVLGVGVAGLLNVNLGLCLFHHSGGFSQDSGHXHSHGGHGHGLPKGPRVKST

15 RPGSSDINVAPGEQGPQEEETNLTAVANTSNSNGLKLDPADPENPRSGDTVEVQVNGNLVREPDHMELEE
DRAGQLNMRGVFLHVLGDALGSVIVVVNALVFYFSWKGCGSEGDFCVNPCFPDPCKAFVEILIVLMHQFM

(SEQ ID NO:325). Polynucleotides encoding this sequence are also provided.

This gene is expressed primarily in colon, lung, liver, lymphoma, osteosarcoma, adrenal gland tumor and fibroblasts.

Therefore, polynucleotides and polypeptides of the invention are useful as 20 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegenerative disorders, as well as gastrointestinal disorders.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell 25 type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., neural, gastrointestinal, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such

30 a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 156 as residues: Arg-50 to Thr-58, Ser-125 to Gly-132. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution and homology to ZnT-1 indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders associated with the regulation of zinc homeostasis. Although zinc is an important trace element in many biological systems, several lines of evidence suggest that this transporter may serve as a point of intervention particularly in the treatment of neurological diseases. The metabolism of zinc in the brain has been shown to be regulated by a number of transport proteins, including ZnT-1. Pharmacological doses of zinc cause neuronal death, and some estimates indicate that extracellular concentrations of zinc could reach neurotoxic levels under pathological conditions. In Alzheimer's disease, zinc has been shown to aggregate beta-amyloid, a form which is potentially neurotoxic. The zinc-dependent transcription factors NF-kappa B and Sp1 bind to the promoter region of the amyloid precursor protein (APP) gene. Zinc also inhibits enzymes which degrade APP to nonamyloidogenic peptides and which degrade the soluble form of beta-amyloid. The changes in zinc metabolism which occur during oxidative stress is important in neurological diseases where oxidative stress is implicated, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Zinc is a structural component of superoxide dismutase 1, mutations of which give rise to one form of familiar ALS. After HIV infection, zinc deficiency is found which is secondary to immune-induced cytokine synthesis. Zinc is involved in the replication of the HIV virus at a number of sites. Collectively, this transporter may prove useful in the treatment and diagnosis of several disorders related to zinc regulation. Alternatively, the tissue distribution within lymphomas indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Expression of this gene product in immune tissue indicates a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or

other processes that may also suggest a usefulness in the treatment of cancer e.g. by boosting immune responses.

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:37 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1882 of SEQ ID NO:37, b is an integer of 15 to 1896, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:37, and where b is greater than or equal to a + 14.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 28

The translation product of this gene was shown to have homology to the mouse interferon-stimulated gene 15 and human calnexin (See Genbank Accession Nos. gb|AAB02697.1| and gi|306481|gb|AAA21013.1|; all references available through these accessions are hereby incorporated by reference herein) which may implicate this gene as playing a role in regulation of proliferating and differentiating cells.

Preferred polypeptides comprise the following amino acid sequence:

MFTFASMTKEDSKLIALIWPSEWQMIQKLFVVDHVIKITRIEVGDVPSETQYISEPKLCPECREGLLC
QQQRDLREYTQATIYVHKVVNDNKKVMKDSAPELNVSSETEEDKEEAKPDGEKDPDFNQSXGGTKRQKI
SHQNYIAYQKQVIRRSMRHRKVRGEKALLVSANQTLKELKIQIMHAFSVAPFDQNLSIDGKILSDDCAT

- 5 LGTLGVIPESVILLKADEPIADYAAMDDVMQVMPEEGFKGTGLGH (SEQ ID NO:326);
SAPELNVSSETEEDKEEAKP (SEQ ID NO:327);
FQDKNRPCLSNWPEDTDVLYIVSQFFVEEWRKFVRKPTRCSPVSSVGNNSALLCPHGL (SEQ ID
NO:329); MFTFASMTKEDSKLIALIWPSEWQMIQKLFVVDHVIKITRIE (SEQ ID NO:330);
VGDVNPSETQYISEPKLCPECREGLLCQQQRDLREYTQATIY (SEQ ID NO:331); VHKVVDNK
10 KVMKDSAPELNVSSETEEDKEEAKPDGEKDPDF (SEQ ID NO:332); NQSXGGTKRQKISHQN
YIAVQKQVIRRSMRHRKVRGEKALLV (SEQ ID NO:333); SANQTLKELKIQIMHAFSVAPFDQ
NLSIDGKILSDDCATLGT (SEQ ID NO:334); LGVIPESVILLKADEPIADYAAMDDVMQVM
PEEGFKGTGLGH (SEQ ID NO:335); and/or KELKIQIMHAFSVAPFDQ (SEQ ID
NO:328). Polynucleotides encoding these polypeptides are also provided.

15 This gene is expressed primarily in brain and hematological tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers, developmental and regulatory diseases of the brain and

20 immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g.,
25 cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

30 Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 157 as residues: His-26 to Phe-31. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in brain indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of

neurodegenerative disease states, behavioral disorders, or inflammatory conditions.

Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of

- 5 Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS,
- 10 psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, expression in T-cells and bone marrow, and homology to the mouse interferon-stimulated gene 15 and human calnexin proteins indicate that the protein product of this gene might also be useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, auto-
- 15 immunities, immunodeficiencies (e.g., AIDS), immuno-suppressive conditions (transplantation) and hematopoietic disorders. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of general microbial infection, inflammation, and cancer (e.g., by boosting immune responses). Furthermore, the protein may also be used to
- 20 determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

- 25 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:38 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1138 of SEQ ID NO:38, b is an

integer of 15 to 1152, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:38, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

5 Preferred polypeptides of the invention comprise the following amino acid sequence: RGERSEELLGREGLGSQ (SEQ ID NO:336), and/or AEEAEGEKGVRSCWAER DCPAPRCWASWGAQPSWDGSQVLLWRSCCCCCWPAPFSTDGRTVTWRGTVQLQGETESAGPSLGPGGG GATWESFTITVILATYLMCRMWASTTTTPATXLTTXTTTPTATIPATLAEAAVAGACGQQQLPLPSH LFPGQVDPMFPCGRMHHLWGERXEQ (SEQ ID NO:337). Polynucleotides encoding these

10 polypeptides are also provided.

This gene is expressed primarily in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are 15 not limited to, developmental anomalies or fetal deficiencies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing fetus, expression of this gene at significantly higher or lower levels is routinely detected in certain 20 tissues or cell types (e.g., reproductive, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid, amniotic fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

25 Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 158 as residues: Gly-35 to Asp-40, Asn-51 to Trp-59. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in placenta indicates that polynucleotides and 30 polypeptides corresponding to this gene are useful for the treatment and diagnosis of developmental anomalies or fetal deficiencies, reproductive dysfunction, as well as ovarian and other endometrial cancers. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate

ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

- 5 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:39 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is
- 10 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1003 of SEQ ID NO:39, b is an integer of 15 to 1017, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:39, and where b is greater than or equal to a + 14.

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

- The translation product of this gene shares sequence homology with ALS (Acid Labile Subunit of Insulin-Like Growth Factor) which is thought to be important in the regulation of IGF availability. As such, it is likely that the product of this gene
- 20 is involved in the regulation of various proliferation-dependent cellular processes that is attributable to cancer progression (See Genbank Accession No. gi|184808; all references available through this accession are hereby incorporated by reference herein).

- Preferred polypeptides of the invention comprise the following amino acid sequence: FHGLGRLHTVHL (SEQ ID NO:338), AAFTGLALLEQLDLSDLNAQLR (SEQ ID NO:339), HEVPDAPRPTPT (SEQ ID NO:341), and/or AFRGLHSLD (SEQ ID NO:340). Polynucleotides encoding these polypeptides are also provided.

- The gene encoding the disclosed cDNA is believed to reside on chromosome 22. Accordingly, polynucleotides related to this invention are useful as a marker in
- 30 linkage analysis for chromosome 22.

This gene is expressed primarily in cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegenerative diseases, growth deficiencies, osteoporosis, 5 catabolic disorders and diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system and other periferial tissues, expression of this gene at significantly higher or lower levels is routinely detected in 10 certain tissues or cell types (e.g., neural, proliferating, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15 Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 159 as residues: Thr-41 to Gly-47, Pro-170 to Asp-176, Leu-257 to Trp-262, Gln-276 to Ser-283, Arg-323 to Leu-330, Pro-362 to Val-374. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution cerebellum and homology to ALS (Acid Labile Subunit 20 of Insulin-Like Growth Factor) indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of a variety of metabolic disorders, growth deficiencies, osteoporosis, catabolic disorders (including AIDS) and diabetes. Nearly all of the insulin-like growth factor (IGF) in the circulation is bound in a heterotrimeric complex composed of IGF, IGF-binding 25 protein-3, and the acid-labile subunit (ALS). The protein product of this gene therefore may afford the ability to potentiate the biological actions of IGF or similar growth factors and cytokines. Studies which demonstrate the beneficial effect of IGF-I in amyotrophic lateral-sclerosis, would suggest a role in this disease as well. Furthermore, the protein may also be used to determine biological activity, raise 30 antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement.

Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:40 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1763 of SEQ ID NO:40, b is an integer of 15 to 1777, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:40, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

The translation product of this gene was shown to have homology to diacylglycerol kinase which is known to be important in lipid metabolism (See Genebank Accession No.gi|1939; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: MVVADRNRASSSYLCLLLFSLSLFLCHETVCDRATCLFFFLLKFFFLFMCRCMSW GFKNFKAGLLMQSMPTSGILRERKRLHVVRIPQGTEKKLETVEMQI (SEQ ID NO:342), and/or IPQGTEKKLETV (SEQ ID NO:343). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental and neurodegenerative diseases of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels

is routinely detected in certain tissues or cell types (e.g., neural, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or
5 bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 160 as residues: Gly-49 to Ser-54, Lys-61 to Arg-68. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in brain combined with the homology to a known enzyme involved in lipid metabolism indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, 15 the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive 20 compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In particular, this gene may have utility in the diagnosis, treatment, and/or prevention of disorders involving the PNS, CNS and/or other tissues which rely on lipid-containing structures such as myelin sheath 25 dependent nerves. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

30 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:41 and may have been publicly available prior to conception of

the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 989 of SEQ ID NO:41, b is an integer of 15 to 1003, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:41, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

This gene is expressed primarily in amygdala.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental and neurodegenerative diseases of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 161 as residues: Met-1 to Lys-6. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in amygdala indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection,

treatment, and/or prevention of aphasia, depression, schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, specific brain tumors, mania, dementia, paranoia, addictive behavior and sleep disorders. The amygdala processes sensory information and relays this to other areas of the brain including the endocrine and autonomic domains of the hypothalamus and the brain stem. As such, The translation product of this gene may show commercial utility in the diagnosis, treatment, and/or prevention of various endocrine, cardiovascular, and pulmonary disorders, particularly those disorders directly associated with CNS/autonomic control. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:42 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1187 of SEQ ID NO:42, b is an integer of 15 to 1201, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:42, and where b is greater than or equal to a + 14.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 33

The gene encoding the disclosed cDNA is believed to reside on chromosome 9. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 9.

Preferred polypeptides of the invention comprise the following amino acid sequence: NPRLPLPRGGSLRLLSSPANSNAKAYPFSRFPSPIF (SEQ ID NO:344). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in B-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, haemopoietic and immune diseases and/or disorders including cancer.

- 5 Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the haemopoietic and immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.
- 10

- 15 The tissue distribution in B-cell lymphoma indicates polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease; inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and
- 20
- 25
- 30

graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lens tissue injury, demyelination, systemic lupus erythematosus, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma.

Furthermore, the protein may also be used to determine biological activity, to raise

- 5 antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement.

Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly

- 10 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:43 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or
15 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1162 of SEQ ID NO:43, b is an integer of 15 to 1176, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:43, and where b is greater than or equal to a + 14.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene is expressed primarily in breast cancer.

- Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are
25 not limited to, diseases and/or disorders of the reproductive organs and cancer, particularly of the mammary glands. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at
30 significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, breast, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell

sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 163 as residues: Asp-77 to Gly-127. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in tumors of breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of such tumors, in addition to other tumors. Representative uses are described in the "Hyperproliferative Disorders", "Infectious Disease", and "Binding Activity" sections below, in Example 11, and 27, and elsewhere herein. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:44 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 555 of SEQ ID NO:44, b is an integer of 15 to 569, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:44, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 35

Preferred polypeptides encoded by this gene comprise the following amino acid sequence: MVQEAPALVRLSLGSHRVKGPLPVLKLQPEGWSPSTLWSCASVWKDSC (SEQ ID NO:345), and/or ALASSLVAENQGFVAALMVQEAPALVRLSLGSHRVKGPLPVLKLQPEGWSPST

LWSCASVWKDSCMHPWRLSMCPACVLAALPALCSCLDSPDARPHGWMSMPFTPHPLVSRA
(SEQ ID NO:346). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 11. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 11.

This gene is expressed primarily in placenta, dendritic cells, brain, and to a lesser extent in infant cells and tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of developing cells and tissues, particularly growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the placenta and other developing organs and tissues, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., developing, neural, placental, brain, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, amniotic fluid, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 164 as residues: Pro-27 to Gly-34. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in placental tissue indicates the protein protein is useful in the detection, treatment, and/or prevention of vascular conditions, which include, but are not limited to, microvascular disease, vascular leak syndrome, aneurysm, stroke, atherosclerosis, arteriosclerosis, or embolism. For example, this gene product may represent a soluble factor produced by smooth muscle that regulates the innervation of organs or regulates the survival of neighboring neurons. Likewise, it is involved in controlling the digestive process, and such actions as peristalsis.

Similarly, it is involved in controlling the vasculature in areas where smooth muscle surrounds the endothelium of blood vessels. The expression within cellular sources marked by proliferating cells (e.g., infant cells and tissues) indicates this protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, 5 treatment, and/or prevention of developmental diseases and disorders, cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in 10 inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the 15 treatment of cancers. It may also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, detecting, and/or preventing said disorders and conditions, in addition to other types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and is useful in the detection, 20 treatment, and/or prevention of degenerative or proliferative conditions and diseases. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise 25 antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly 30 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:45 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 972 of SEQ ID NO:45, b is an integer of 15 to 986, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:45, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

The translation product of this gene shares sequence homology with ion channel proteins which are thought to be important in many physiological processes including neural and muscular function (See, for example, Genebank Accession No. gi|1065507, and gb|AAC68885.1; all references available through these accession numbers are hereby incorporated herein; for example, FEBS Lett. 445, 231-236 (1999)). Specifically, this protein is homologous to the putative four repeat ion channel of *Rattus norvegicus*. Based upon the sequence similarity, The translation product of this gene is expected to share at least some biological activities with ion channel proteins. Such activities are known in the art, some of which are described elsewhere herein.

Preferred polypeptides comprise the following amino acid sequence:
FYFIFTLIFFLAWLVKNVFIAVIIETFAEIRVQF (SEQ ID NO:347), SIFTVYEAASQEGWV (SEQ ID NO:348), and/or HEGTSIFTVYEAASQEGWVFL (SEQ ID NO:349). Also preferred are polynucleotides encoding these polypeptides.

This gene is expressed primarily in spinal cord.
Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the central and peripheral nervous system, particularly neural degenerative conditions, and is useful in restoring cognitive function.
Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system, expression of this gene at significantly higher or lower levels is

routinely detected in certain tissues or cell types (e.g., neural, brain, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 165 as residues: Phe-8 to Ser-13, Ala-84 to Ser-90. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in spinal cord tissue, combined with the homology to ion channel proteins, indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are

related to SEQ ID NO:46 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or 5 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1526 of SEQ ID NO:46, b is an integer of 15 to 1540, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:46, and where b is greater than or equal to a + 14.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 37

When tested against fibroblast cell lines, supernatants removed from cells containing this gene activated the early growth response gene 1 (EGR) pathway. Thus, it is likely that this gene activates fibroblast cells, and to a lesser extent, other cells and tissue cell-types, through the EGR signal transduction pathway. The early 15 growth response gene is a separate signal transduction pathway from the Jak-STAT, genes containing the EGR1 promoter are induced in various tissues and cell types upon activation, leading the cells to undergo differentiation and proliferation.

This gene is expressed primarily in uterus, colon cancer, synovium, fetal lung, and to a lesser extent in fetal and adult heart.

20 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders of developing cells and tissues, particularly infertility and cancer. Similarly, polypeptides and antibodies directed to these 25 polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing and reproductive systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, developing, gastrointestinal, synovium, skeletal, 30 heart, lung, cardiovascular, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, amniotic fluid, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative

to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 166 as residues: Lys-32 to His-38. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in developing and reproductive tissues, combined with the detected EGR1 biological activity, indicates this protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment, and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, detecting, and/or preventing said disorders and conditions, in addition to certain types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and is useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases.

The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

- Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:47 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically
- 5 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 778 of SEQ ID NO:47, b is an integer of 15 to 792, where both a and b correspond to the positions of nucleotide
- 10 residues shown in SEQ ID NO:47, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

- Preferred polypeptides of the invention comprise the following amino acid sequence: CKTSFGLA (SEQ ID NO:350). Polynucleotides encoding these
- 15 polypeptides are also provided. In an alternative embodiment, polypeptides of the invention comprise the following amino acid sequence: MITLSSAFSAKQKTHAHKNTHACM
CATDMANPKLVLHFEVIVALLSLLQTLISLLLQRTWLAHLYVLSTENXALHTVGTQKHLLPHDWCFGK
HCVSCRHHIFHRFCISSTLKRSGFEG (SEQ ID NO:351). Polynucleotides encoding these polypeptides are also provided.
- 20 This gene is expressed primarily in fetal bone, B and T cell lymphoma, and dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hematopoietic, skeletal, and immune diseases and/or disorders.

25 Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is

30 routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, skeletal, developmental, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, amniotic fluid, urine, synovial fluid and spinal fluid) or

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

- Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 167 as residues: Ser-33 to His-42. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in T-cells and dendritic cells indicates polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:48 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1483 of SEQ ID NO:48, b is an integer of 15 to 1497, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:48, and where b is greater than or equal to a + 14.

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, reproductive diseases and/or disorders, particularly prostate cancer.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the

15 male reproductive system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, prostate, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, seminal fluid, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene
20 expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 168 as residues: Pro-21 to Pro-26, Arg-31 to Asn-37. Polynucleotides encoding said polypeptides are also provided.

25 The tissue distribution in prostate tissue indicates that the protein products of this gene are useful for the diagnosis and intervention of prostate cancers, in addition to other tumors within the urogenital and reproductive system. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents
30 (antagonists) are useful as male contraceptive agents. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions,

in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:49 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1326 of SEQ ID NO:49, b is an integer of 15 to 1340, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:49, and where b is greater than or equal to a + 14.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 40

The translation product of this gene shares sequence homology with the human proliferating-cell nucleolar antigen as well as to a protein from *Schizosaccharomyces pombe* of unknown function (See Genebank Accession Nos. 189422 and gnl|PID|e349594, as well as Medline Article 90315275; all references available through these accessions are hereby incorporated herein by reference). This protein is the most cancer specific of the proliferation- associated nucleolar proteins identified thus far. In addition, it is of special interest because of its expression pattern in the early G1 phase, and, in studies prior to 1989, it has not been detected in benign tumors and most normal resting tissues.

25 In another embodiment, polypeptides of the invention comprise the following amino acid sequence:

SATEHGAVCCSCKRVRGRRGEPPGSIKGLVYSSNFQNVKQLYALVCETQRYSAVLDAVIASAGLL
RAEKKLRPHLAKVLVYELLLGKGFRGGGRWKALLGRHQARLKAELARLKVRGVSRNEDLLEVGSRPG
P
30 ASQLPRFVRVNTLKTCSDDVVDFKRQGFSYQGRASSLDDLRAKGKHFLLDPLMPELLVFPQAQTDLHE
H
PLYRAGHLILQDRASCLPAMLLDPGGSHVIDACAAPGNKTSHLAALLKNQGKIFAFDLDAKRLASMAT
L

LAXAGVSCCELAEEDFLAVSPXDPRYXEVHYXLLDPSCSGSGMPSRQLEXPAGTPSPVRLHALAGFQQ
RALCHALTFFPSLQLRVYSTCSLCQEENEDVVRDALQQNPGAFRLAPALPAWPHRGLSTFPGAEHCLRAS
PE TTLSSGFFVAVIERVEXPSSASQAKASAPERTPSPAPKRKKRQQRAAGACTPPCT (SEQ ID
NO:356), CAAPGNKTSHLAA (SEQ ID NO:352), EHPLYRAGHLILQDRASCLPAMLL (SEQ
5 ID NO:353), LLDPSCSGSGMPSRQ (SEQ ID NO:354), YSTCSLCQEENEDVVRDALQQNP
(SEQ ID NO:355), and/or YEPHSTHSRERAMTSHARVSLGPSRDPLERPHLAKVLVYELLGK
GFRGGGRWKALLGRHQARLKAELARLKVRGVSRNEDLLEVGSRPGPASQLPRFVRVNTLKTCSDDVV
DYFKRQGFSYQGRASSLDDLRAKGKHFLLDPLMPELLVFPAQTDLHEHPLYRAGHLILQDRASCLPAM
10 LLDPGGPSHVIDACAAPGNKTSHLAALLKNQGKIFAFDLDAKRLASMATLLAXAGVSCCELAEEDFLAV
SPXDPRYXEVHYXLLDPSCSGSGMPSRQLEEPAGTPSPVRLHALAGFQQRALCHALTFFPSLQLRVYST
CSLCQEENEDVVRDALQQNPGAFRLAPALPAWPHRGLSTFPGAEHCLRASPETTLSSGFFVAVIEREV
PSSASQAKASAPERTPSPAPKRKKRQQXAAAGACTPPCT (SEQ ID NO:357).

Polynucleotides encoding these polypeptides are also provided. This gene maps to chromosome 7, and therefore, is used as a marker in linkage analysis for chromosome
15 7.

This gene is expressed primarily in T cells and rejected kidney and to a lesser extent in keratinocytes and various other normal and transformed, predominately haemopoietic cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as
20 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune diseases and/or disorders, particularly host-vs-graft disease, and transplant rejection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential
25 identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., rejected transplant tissue, immune, haemopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal
30 fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in T-cells and rejected kidney, indicates polynucleotides and polypeptides corresponding to this gene are useful for the

diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; 5 survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions.

10 Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and

15 graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lens tissue injury, demyelination, systemic lupus erythematosus, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to

20 sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to

25 its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 30 related to SEQ ID NO:50 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is

cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1525 of SEQ ID NO:50, b is an integer of 15 to 1539, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:50, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

The gene encoding the disclosed cDNA is believed to reside on chromosome 12. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 12.

This gene is expressed primarily in placenta, uterus, 12 week old, early stage, embryo and to a lesser extent in epithelium.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, developmental and reproductive diseases and/or disorders, in addition to disorders of the integumentary system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developmental and epithelial tissues, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., developmental, reproductive, uterine, placental, integumentary, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, amniotic fluid, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in placental, uterine, and embryonic cells and tissues indicates this protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment, and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections

below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, detecting, and/or preventing said disorders and conditions, in addition to other types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and is useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. The protein is useful for the detection, treatment, and/or prevention of various types of cancer, particularly of the integumentary system. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:51 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1409 of SEQ ID NO:51, b is an

integer of 15 to 1423, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:51, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

5 The translation product of this gene was shown to have homology to the human, bovine, mouse, and rat G protein gamma-3 subunit (See Genbank Accession Nos. W09413, pir|A36204|RBOG3, gi|2582400 (AF022088), and gi|1353498) which are known to play a role in the regulation of signal transduction pathways. Moreover, the protein shares structural homology to a yeast mitochondrion membrane protein
10 Q0225 (See Genbank Accession No. pir|S72689|S72689).

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

15 NREQKAKSQLRSQLYSTLDLPYFFQCVGTRCTAVCVCVCVCVCX
 YLPIHWQVNLHLVYLAMLCFLPIPLLSILSPQTQASRLLDETVRRKHFLTYPFG
 ISSIITQALL (SEQ ID NO:360). Polynucleotides encoding these polypeptides are also provided.

20 In yet another embodiment, polypeptides of the invention comprise the following amino acid sequence: MGTHSVSGRFSKTSPPYCPPSSSLPGPISSIGFNKSLHECL
 FISEKELLPLPFPPDLKSFISYLTSMMLKPGPLIVSLKIWVSYPITRPRYLPPMLKSLNISFLYIQYIW
 AYIHLHYTSFYIYIISVSFFLDKPFYIVVISFPKPPHFLFASLSKTQEFLHFHVQPQHHFFLIFSPQVSSPIS
 CFARLLKSPLFTPVPTEISPFTYNCAYYSADIPSPQLVWGPISHQTWLLLKLGLLPKRGFQVRGDRL
 (SEQ ID NO:358), and/or CFARLLKSPLFTPVPTEISPFTYNCAYYSA (SEQ ID
25 NO:359). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in infant brain, fetal tissue, frontal cortex, corpus collosum, and to a lesser extent in amygdala tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a
30 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neural and CNS diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological

probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and peripheral nervous systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., neural, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 171 as residues: Thr-26 to Leu-33. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in various neural cells and tissues, combined with the similarity to G Protein Gamma-3 subunit indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as,

antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 5 related to SEQ ID NO:52 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 10 formula of a-b, where a is any integer between 1 to 1350 of SEQ ID NO:52, b is an integer of 15 to 1364, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:52, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 43

15 The translation product of this gene shares homology with the human alpha-3 type IX collagen protein (See Genebank Accession No.gi|1196421). This protein likely represents a Type IIIb membrane protein. Although the preferred open reading frame of the present invention contains a signal peptide (as delineated in Table 1 and described elsewhere herein), the protein appears to have several transmembrane 20 domains. The transmembrane domains are located at about amino acid position 111 - 162, 137 - 162, 163 - 186, and 64 - 85 of the sequence referenced in Table 1 for this gene. Preferred are polypeptides comprising the following amino acid sequence:
PGPEAQWPWGPDLPA VGSRGPGRLAAVSAPRLGLLAGADPVGPEACHLP (SEQ ID NO: 361), GRLRGPDENVGAPFHPGPATPGLADPLRPAEPXHWLPSLGPT (SEQ ID NO: 362),
25 PGPEAQWPWGPDLPAVGSR (SEQ ID NO: 363), and/or ATPGLADPLRPAEPXHWLP (SEQ ID NO: 364). Polynucleotides encoding these polypeptides are also provided.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the 30 following amino acid sequence:

QWPEKDPVMAASSISSLSPWGKHFKAIALMVLVALILLHSALAQSRRDFAPP
GQQKREAPVDVLTQIGRSVRGTLDAWIGPETMHLVSESSSQVLWAISSAISVAFFALSGIAAQLLNALG
LAGDYLAQGLKLSPGQVQTFLWGAGALVVYWLSSLGLVLALLGRILWGLKLVIFLAGFVALMRSVP

DPSTRALLLALLILYALL SRXTGSRASGAQLEAKVRGLERQVEELRWRQRQXAKGARSVEEE (SEQ ID NO: 365). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 11. Accordingly, polynucleotides related to this invention are useful as a marker in 5 linkage analysis for chromosome 11.

This gene is expressed primarily in melanocytes, and to a lesser extent in synovial sarcoma and larynx sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 10 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, melanoma and other disorders of the integumentary system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the synovial and 15 epithelial tissues, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., integumentary, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression 20 level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 172 as residues: Gln-15 to Phe-20, Pro-22 to Ala-30, 25 Val-160 to Thr-165. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in melanocytes and sarcoma tissue indicates that 30 polynucleotides and polypeptides corresponding to this gene are useful for the study treatment and diagnosis of various cancers and their metastases, particularly of the integumentary system. Additionally, the homology to a conserved collagen protein would suggest that this protein may also be important in the diagnosis or treatment of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis as well as dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias ie. spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal

chondrodysplasia type Schmid. Moreover, polynucleotides and polypeptides corresponding to this gene are useful for the treatment, diagnosis, and/or prevention of various skin disorders. Representative uses are described in the "Biological Activity", "Hyperproliferative Disorders", "Infectious Disease", and "Regeneration" sections below, in Example 11, 19, and 20, and elsewhere herein. Briefly, the protein is useful in detecting, treating, and/or preventing congenital disorders (i.e. nevi, moles, freckles, Mongolian spots, hemangiomas, port-wine syndrome), integumentary tumors (i.e. keratoses, Bowen's disease, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, mycosis fungoides, and Kaposi's sarcoma), injuries and inflammation of the skin (i.e. wounds, rashes, prickly heat disorder, psoriasis, dermatitis), atherosclerosis, uticaria, eczema, photosensitivity, autoimmune disorders (i.e. lupus erythematosus, vitiligo, dermatomyositis, morphea, scleroderma, pemphigoid, and pemphigus), keloids, striae, erythema, petechiae, purpura, and xanthelasma. In addition, such disorders may predispose increased susceptibility to viral and bacterial infections of the skin (i.e. cold sores, warts, chickenpox, molluscum contagiosum, herpes zoster, boils, cellulitis, erysipelas, impetigo, tinea, athletes foot, and ringworm). Moreover, the protein product of this gene may also be useful for the treatment or diagnosis of various connective tissue disorders (i.e., arthritis, trauma, tendonitis, chondromalacia and inflammation, etc.), autoimmune disorders (i.e., rheumatoid arthritis, lupus, scleroderma, dermatomyositis, etc.), dwarfism, spinal deformation, joint abnormalities, and chondrodysplasias (i.e. spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid). Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:53 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2274 of SEQ ID NO:53, b is an integer of 15 to 2288, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:53, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

The translation product of this gene shares sequence homology with tumor progression inhibitor which is thought to be important in inhibition of tumor growth as well as its metastasis (See Genebank Accession No. W26667). Preferred are polypeptides comprising the following amino acid sequence:

EXPRIXGXNAPQVPVRNSR

VDPRVRPRVRSVLFCDEVHQWYVNGVNYFTDLWNVMDTLGLFYFIAGIVFRLHSSNKSSLYSGRVI

FCLDYIIFTLRLIHIFTVSRNLGPKII (SEQ ID NO:366), NILLVNLLVAMF (SEQ ID NO:367), and/or QVWKFQRYFL (SEQ ID NO:368). Polynucleotides encoding these polypeptides are also provided.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

EXPRIXGXNAPQVPVRNSRVDPRVRPRVRSVLVFVLCDEVHQWYVNGVNY

FTDLWNVMDTLGLFYFIAGIVFRLHSSNKSSLYSGRVIFCLDYIIFTLRLIHIFTVSRNLGPKIIIMLQR

MLIDVXXFLFLFAVWMVAFGVAXQGILRQNEDQRWRWIFRSVIYEPXLAMFGQVPSXVDGTTYDFAHCTF

TGNESKPLCVXLDEHNLPRFPEWITIPLVCIYMLSTNILLVNLLVAMFGYTVGTVQENNDQVWKFQRYF
LVQEYCSRNLIPFPFIVFAYFY MVVKCFKCCCKEXNXESSVCCSKMXTMRLWHGRVS (SEQ ID NO:369). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in adult liver, prostate, gall bladder, and to a lesser extent, in Hodkin's lymphoma II.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, liver cancer and other hepatic diseases and/or disorders. Similarly,

polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels is routinely detected in certain 5 tissues or cell types (e.g., hepatic, reproductive, metabolic, immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, bile, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not 10 having the disorder.

The tissue distribution in liver and gall bladder cells and tissues indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers. Representative uses are described in the "Hyperproliferative Disorders", "Infectious Disease", and "Binding 15 Activity" sections below, in Example 11, and 27, and elsewhere herein. Briefly, the protein can be used for the detection, treatment, and/or prevention of hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of 20 various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show 25 utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:54 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically 30 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

formula of a-b, where a is any integer between 1 to 1498 of SEQ ID NO:54, b is an integer of 15 to 1512, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:54, and where b is greater than or equal to a + 14.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The polypeptide of the present invention is thought to have an intramitochondrial signal indicating that the protein could play a role in metabolic processes, including apoptosis. Based upon this fact, it is expected that the protein product of this gene will share at least some biological activities with other mitochondrial proteins having a similar signal. Such activities are known in the art, some of which are described elsewhere.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

MEFQNMYIQLFGFSFFIVIIVRMLLLGLCVSARQPVMRATLWGHLS
WVLVPWTPRACGQAAPGRGHVASDHKSGLPWPKHCSCLHPRASQPCLFSLNSNRTVFTAIQRVALGWTF
WVQANLVRCT (SEQ ID NO:370). Polynucleotides encoding these polypeptides are also provided.

20 The gene encoding the disclosed cDNA is believed to reside on chromosome 4. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 4.

This gene is expressed primarily in human prostate cancer, and to a lesser extent in soares melanocyte and human colon.

25 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, prostate cancer, melanoma, and other diseases and/or disorders of the integumentary system. Similarly, polypeptides and antibodies directed to these 30 polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene

at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., prostate, reproductive, integumentary, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, seminal fluid, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 174 as residues: Ser-36 to Gly-41, Pro-43 to Ser-49. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in tumors of prostate, colon, and integument origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Representative uses are described elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:55 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1343 of SEQ ID NO:55, b is an integer of 15 to 1357, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:55, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 46

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

LLLCVTGVYSYGLMHPIPSSFMIKAVSSFLTAEEASVGNPEGAFMKVLQAR
KNXTSTELIVEPEEPSDSSGINLSGFGSEQLDTNDESDXISTLSYILPYFSAVNLDVXSXLLPFIKLPT
XGNSLAKIQTVGQNQXQVXRVLMGPRSIQKRHFKEVGRQSIRREQGAQASVENAAEEKRLGSPAPREXE
10 QPHTQQGPEKLAGNAXYTKPSFTQEHKAAVSVLXPFSKGAPSTSSPAKALPQVRDRWKDXTHXISILES
AKARVTNMKASKPISHSRKKYRFHKTRSRMTHRTPKVKKSPKFRKKSYLSRMLANRPPFSAAXSLINS
PSQGAFSSLGDLSHQENPFLXVSAPSEHFIETTNIKDTTARNALEENVMENTNMPEVTISENTNYNHP
PEADSXGTAFNLGPTVKQTET (SEQ ID NO: 371). Polynucleotides encoding these polypeptides are also provided.

15 This gene is expressed primarily in duodenum and cheek carcinoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, gastrointestinal disorders and carcinomas, in addition to disorders of the epithelium and mucosa. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., gastrointestinal, epithelial, mucosa, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

30 The tissue distribution in duodenal tissues and epithelia indicates that the protein product of this gene is useful for the diagnosis and intervention of tumors and other disorders within these tissues, in addition to other tumors. The expression within embryonic tissue and other cellular sources marked by proliferating cells indicates

this protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment, and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below

5 and elsewhere herein. Briefly, this protein may modulate apoptosis or tissue differentiation and is useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new

10 insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or

15 immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:56 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

20 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1975 of SEQ ID NO:56, b is an integer of 15 to 1989, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:56, and where b is greater than or equal to a + 14.

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 47

The translation product of this gene shares sequence homology with mouse magnesium dependent protein phosphatase (See Genebank Accession Nos.

30 gnl|PID|d1004752 and emb|CAA06555.1| (AJ005458); all references available through these accessions are hereby incorporated herein by reference; for example, J. Neurosci. Res. 51 (3), 328-338 (1998) which is thought to be important in normal

protein metabolism and possibly gene regulation. Based on the sequence similarity,

The translation product of this gene is expected to share at least some biological activities with phosphatase proteins. Such activities are known in the art, some of which are described elsewhere herein.

5 Preferred polypeptides comprise the following amino acid sequence:

CFSNAPKVSDEAVKKDSELDKHLESRVEEIMEKSGEEGMPDLAHVMRILSAENIPNLPPGGGLAGXRNV
IEAVYSRLNPRESDGGAGDLED PW (SEQ ID NO: 372), CFSNAPKVSDEAVKKDSELDKHLES
RVEEIMEKSGEEGMPDLAHVMRILSAENIPN (SEQ ID NO: 373), RNVIEAVYSRLNPRESDG
GAGDLED (SEQ ID NO: 374), DSELDKHLESRVEEIM (SEQ ID NO: 375), KSGEEGMP
10 DLAHVMRILSAENIPN (SEQ ID NO: 376), and/or CFSNAPKVS (SEQ ID NO: 377).

Polynucleotides encoding these polypeptides are also provided.

A preferred polypeptide fragment of the invention comprises the following amino acid sequence: MSRKSLAFPIIICSYLCFLTVATCSIACTTVFFANLRHTRYICIELSALET
SGVISPQINNVPEVHGKYS (SEQ ID NO: 378). Polynucleotides encoding these

15 polypeptides are also provided.

This gene is expressed primarily in prostate and to a lesser extent in melanocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 20 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, proliferative conditions and cancers, in addition to reproductive, visual, and integumentary diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this 25 gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, visual, retinal, integumentary, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, aqueous humor, vitreous humor, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression 30 level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 176 as residues: Asp-6 to His-13, Asp-114 to Gly-131, Thr-166 to Gln-181, Val-210 to Thr-216, Pro-222 to Tyr-227. Polynucleotides encoding said polypeptides are also provided.

- 5 The tissue distribution in prostate tissue, combined with the homology to mouse magnesium dependent protein phosphatase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the study and treatment of various cancers and reproductive disorders. This protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment,
- 10 and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in
- 15 inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). This protein may modulate apoptosis or tissue differentiation and is useful in the detection, treatment, and/or prevention of degenerative or proliferative
- 20 conditions and diseases. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. The activity of this protein has been determined to be dependent upon the presence of magnesium ions. This protein is useful in the treatment,
- 25 detection, and/or prevention of varoius visual disorders, particularly degenerative conditions, and retinitis pigmentosa. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the
- 30 protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

- Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:57 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically
- 5 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2529 of SEQ ID NO:57, b is an integer of 15 to 2543, where both a and b correspond to the positions of nucleotide
- 10 residues shown in SEQ ID NO:57, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with ribosomal protein L32 and L14, a mitochondrial protein from rat tissues thought to be important

15 in translation (See Genebank Accession No.gi|868267). Preferred are polypeptides comprising the following amino acid sequence: IQKMTTRVRRVVDNSALG (SEQ ID NO: 379), PRCIHVYKKNGVGK (SEQ ID NO: 380), GDQILLAIKGQKKKA (SEQ ID NO: 381), and/or NPVGTRIKTPIPTSL (SEQ ID NO: 382). Polynucleotides encoding these polypeptides are also provided.

20 In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

VLIPSFSSSFLCSRGGPLPXDLSDPMMAFFTGLWGPFTCVSRVLSHHCF
25 STTGSLSAIQKMTTRVRRVVDNSALGNSPYHRAPRCIHVYKKNGVGKVGQDQILLAIKGQKKKALIVGHCMP
GPRMTPRFDSNNVVIEDNGNPVGTRIKTPIPTSLRKREGEYSKVLAIAQNFS (SEQ ID NO: 383). Polynucleotides encoding these polypeptides are also provided. This gene maps to chromosome 6, and therefore, is used as a marker in linkage analysis for chromosome 6.

30 This gene is expressed primarily in uterus, fetal liver/spleen, human endometrial stromal cells-treated with estradiol and amniotic cells - Primary Culture, and to a lesser extent in, human fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, endometriosis and reproductive disorders, particularly of the female reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the female reproductive system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., uterine, endometrium, reproductive, immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 177 as residues: Pro-92 to Ser-102, Leu-127 to Tyr-134. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in endometrium and uterine tissues, combined with the homology to a ribosomal protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of tumors within said tissue, in addition to other tumors where expression has been indicated. This protein may play a role in cellular division, and may show utility in the diagnosis, treatment, and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of potential roles in proliferation and differentiation, this

- gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, detecting, and/or preventing said disorders and
- 5 conditions, in addition to other types of degenerative conditions. Antagonists, including antibodies directed against this invention, is useful in inhibiting cellular proliferation and thus is useful in inhibiting cancers, in addition to other proliferative diseases and/or disorders. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues.
- 10 The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show
- 15 utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:58 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 763 of SEQ ID NO:58, b is an integer of 15 to 777, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:58, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 49

This gene is expressed primarily in liver, hepatoma and to a lesser extent in epithelial-TNF α and INF induced.

30 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

not limited to, liver diseases and/or disorders, particularly cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, 5 expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., hepatic, liver, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, bile, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in 10 healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 178 as residues: Glu-28 to Gly-45, Ser-63 to Gly-69, Gln-96 to Trp-104, Gly-112 to Pro-117, Arg-121 to Pro-128. Polynucleotides encoding said polypeptides are also provided.

15 The tissue distribution in liver and hepatoma tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). Representative uses are described in 20 the "Hyperproliferative Disorders", "Infectious Disease", and "Binding Activity" sections below, in Example 11, and 27, and elsewhere herein. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the 25 protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

30 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:59 and may have been publicly available prior to conception of

the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 865 of SEQ ID NO:59, b is an integer of 15 to 879, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:59, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

ARVVQPAARAGMWAGGRSSCQAEVLRATRGGAARGNAAPGRALEMVPGAAAG
WCCLVLWLFPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQIHLVPAEPPEACGE
LSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNALTMTASTWR (SEQ ID NO: 384).
Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 2. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 2.

This gene is expressed primarily in breast lymph node, ovary, osteoclast cells, and to a lesser extent in human jurkat membrane-bound polysomes and human placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, breast cancer and immune diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, endocrine, skeletal, bone, placental,

and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, amniotic fluid, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an 5 individual not having the disorder.

The tissue distribution in human breast and placental tissue indicates that the protein product of this gene is useful for diagnosis and intervention of tumors within these tissues, in addition to other tumors and tissues where expression has been indicated. Since the gene is expressed in cells of lymphoid origin, the natural gene 10 product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a 15 nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 20 related to SEQ ID NO:60 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 25 formula of a-b, where a is any integer between 1 to 1147 of SEQ ID NO:60, b is an integer of 15 to 1161, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:60, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

30 In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the

following amino acid sequence:

IATAALFFFFYCQVAGFIGKGQSLRSWPQRLLGLEPQLQPMQQSRLLLP
FLFFLLEGCAPSSLGPGAAPGSGHSLGPPGSPGAPGPQPAVGPSSPCQPGPSPSSPAAAAASSQSSVAS
WPCTLRCAAPSPDASALRPAAASPATAATNRGPPRRRRRNARTA

5 (SEQ ID NO: 385). Polynucleotides encoding these polypeptides are also provided.

In yet another embodiment, polypeptides of the invention comprise the following amino acid sequence: ERPPPRRTGTPVARPRGPPDPAVAAGTALRAKQFARYGAASG
VVPGLWPSPEQLREAEEREWYPSLATMQESLRVKQLAEEQKREREQHIAECMAKMPQMIVNWQQQ
QRENWEKAQADKERRARLQAEEAQELLGYQVDPRSARFQELLQDLEKKERNPQGGKTETEFGATAALAA
10 AVAQDPAASGAPSS (SEQ ID NO: 386). Polynucleotides encoding these polypeptides are also provided. The polypeptide sequence of the latter embodiment was found to have homology to the human HPK/GCK-like kinase HGK (See Genbank Accession No. gb|AAD16137.1| (AF096300); all references available through this accession are hereby incorporated herein by reference; for example, J. Biol. Chem. 274 (4), 2118-
15 2125 (1999)) which is thought to play a role in modulating gene expression, particularly for genes involved in the c-jun pathway. Based on the sequence similarity, The translation product of this gene is expected to share at least some biological activities with signalling and kinase proteins. Such activities are known in the art, some of which are described elsewhere herein.

20 The gene encoding the disclosed cDNA is believed to reside on chromosome 19. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 19.

This gene is expressed primarily in HL-60, PMA 4H and to a lesser extent in Soares breast 2NbHBst, Human Pituitary, subt IX, and Human Fetal Kidney.

25 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune, hematopoietic, developmental, and proliferative diseases and/or disorders, particularly promyelocytic leukemia. Similarly, polypeptides and 30 antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain

- tissues or cell types (e.g., immune, hematopoietic, reproductive, developmental, proliferative, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene
- 5 expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 180 as residues: Ser-54 to Ser-63, Asn-132 to Thr-145. Polynucleotides encoding said polypeptides are also provided.

10 The tissue distribution in HL-60 cells indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene

15 product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the

20 natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to

25 transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other

30 blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of

various cell types. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show 5 utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:61 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically 10 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 673 of SEQ ID NO:61, b is an integer of 15 to 687, where both a and b correspond to the positions of nucleotide 15 residues shown in SEQ ID NO:61, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 52

The translation product of this gene shares sequence homology with the human hypothetical L1 protein (third intron of gene TS) (See Genebank Accession 20 No. pir|JU0033|JU0033), which is thought to be important for the regulation of RNA-dependent DNA polymerases.

Preferred polypeptides comprise the following amino acid sequence:
YQSLAETQQKKENFRPISLKNDAKILNKILANQIQQHIKKLIHNDRVGFIPEMQGWFNICKSINVHH
INRTKDKNHHMIIISIDAEEKAFDKIRQSFMLKTLNLGIHGMYLGR (SEQ ID NO: 387), KKENDR
25 PISLKNDAKILNKILANQIQQHIKKLIHNDRVGFIPEMQGWFNICKSINVHHINRTKDKNHHMIIISID
AEKAFDKIRQSFMLKTLNLGIHGMY (SEQ ID NO: 388), DAKILNKILAN (SEQ ID NO:
389), IQQHIKKLIH (SEQ ID NO: 390), KDKNHMIIISIDAEEKAFDKI (SEQ ID NO:
391), MLKTLNLGI (SEQ ID NO: 392), and/or KKENDRPI (SEQ ID NO:
393). Polynucleotides encoding these polypeptides are also provided.

30 In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence: WTMFIDLHMLNQPCISGMKPTRSL

- WISFLMCCWIWFANILLRIFASVFFRDIGLKFSFFCCVSARLWYQDDAGLINE
GRIPSFY (SEQ ID NO: 394). Polynucleotides encoding these polypeptides are also provided. The presence of the amino acid sequences upstream of the predicted signal sequence of the latter embodiment may alter the characteristics of the protein of the present invention such that either the full protein, or fragments thereof, are bound to the membrane in a form analogous to a Type II membrane protein. This form of the protein is thought to have a cytoplasmic tail covering about the first 21 amino acids. Based on the structural similarity, the translation product of this latter embodiment is expected to share at least some biological activities with type II membrane proteins.
- Such activities are known in the art, some of which are described elsewhere herein.
- This gene is expressed primarily in ulcerative colitis.
- Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, gastrointestinal diseases and/or disorders, particularly ulcerative colitis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., gastrointestinal, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, chyme, bile, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in ulcerative colon tissue combined with its homology to an RNA-dependent DNA polymerase regulatory protein may suggest that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of tumors and other proliferative conditions within the indicated tissues, and to a lesser extent in other tissues and cell types. Moreover, the expression within cellular sources marked by proliferating cells indicates this protein may play a role in the regulation of cellular division, and may show utility in the diagnosis,

treatment, and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:62 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 504 of SEQ ID NO:62, b is an integer of 15 to 518, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:62, and where b is greater than or equal to a + 14.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 53

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

30 ERPEEGTEPSPSPVAEQASVSMTPVFRAGLWVYVLPTGFPGPCCMMLLELF
FPKESVPQAYQGILLYLHFGF (SEQ ID NO: 395). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in ovary, testis, Hodkin's lymphoma, resting T-Cell; re-excision and to a lesser extent in soares multiple sclerosis, human corpus colosum, and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as
5 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, reproductive, immune, and hematopoietic diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell
10 type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, ovarian, testicular, breast, immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, seminal fluid, breast milk, plasma, urine, synovial
15 fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in testicular tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of
20 conditions concerning proper testicular function (e.g. endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment
25 and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that is expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product is expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few
30 possible target indications. Moreover, the protein product of this gene has also been shown to be expressed in ovary and breast tissue which, in combination with the detected expression in testis, indicates that this protein represents a secreted factor

that plays an important role in proper reproduction (e.g., hormone, signalling factor, etc.). Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:63 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 897 of SEQ ID NO:63, b is an integer of 15 to 911, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:63, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

When tested against U937 cell lines, supernatants removed from cells containing this gene activated the GAS (gamma activating sequence) promoter element. Thus, it is likely that this gene activates myeloid cells, and to a lesser extent, other cells and tissue cell-types, through the JAK-STAT signal transduction pathway. GAS is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence: RGE
VPHQPHPTRRTVVSGQAPWXPGPXALGQXVETAAGMGMPLVTVAATFPTL

SCPPRAWPEVEAPEAPALP

VVPELPEVPMEMPLVLPPELELLSLEAVHRYQXGGTLMGWTRAESANGS

(SEQ ID NO: 396). Polynucleotides encoding these polypeptides are also provided. In yet another embodiment,

- 5 Preferred polypeptides of the invention comprise the following amino acid sequence: MVLDPYRAVALELQANREPDFSSLVSPLSPRRMAARVFYLLLGECKMHVCVMGRDTETRGPYRDSPDLPSPLLTSALSATDSSRETRKAIWSPPDAGAQIPLRLESIYKAARKPATSSKPRASLKKKKK (SEQ ID NO: 397). Polynucleotides encoding these polypeptides are also provided. Polypeptides of the latter embodiment share homology to the human
- 10 hHR21spB (See Genbank Accession No.gi|4101480|gb|AAD01193.1| (AF006264); all references available through this accession are hereby incorporated by reference herein) which is thought to play a role in DNA repair. Based on the sequence similarity, The translation product of this gene is expected to share at least some biological activities with DNA repair proteins. Such activities are known in the art, 15 some of which are described elsewhere herein.

The gene encoding the disclosed cDNA is believed to reside on chromosome 22. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 22.

- This gene is expressed primarily in resting T-Cells, testis, uterine cancer, bone 20 marrow, and to a lesser extent in cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune, reproductive, and neural diseases and/or disorders. Similarly, 25 polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, neural, reproductive, and 30 cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, seminal fluid, amniotic fluid, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in bone marrow and resting T-cells, combined with the detected GAS biological activity, indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as,

antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:64 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 949 of SEQ ID NO:64, b is an integer of 15 to 963, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:64, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 55

The translation product of this gene was shown to have homology to the human platelet membrane glycoprotein V, which is a part of the Ib-V-IX system of surface glycoproteins (GPs Ib alpha, Ib beta, V, IX) that constitute the receptor for von Willebrand factor (vWf) and mediate the adhesion of platelets to injured vascular surfaces in the arterial circulation, a critical initiating event in hemostasis (See Genebank Accession No.gi|388760). Moreover, the protein product of this gene was also shown to have homology to human toll and toll-like receptors (See Genbank Accession Nos. W86352, and gb|AF051151|AF051151; all references available through this accession are hereby incorporated herein by reference; for example, Blood 91 (11), 4020-4027 (1998)). Based on the sequence similarity, The translation product of this gene is expected to share at least some biological activities with toll-receptor proteins. Such activities are known in the art, some of which are described elsewhere herein. Preferred are polypeptides comprising the following amino acid sequence: AFRNLPNLRIL (SEQ ID NO: 398), and/or AFQGLFHLFELRL (SEQ ID No: 399). Polynucleotides encoding these polypeptides are also provided.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by

the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

NKXILEVPSARTTRIMGDHLDLLLGVVLMAGPVFGIPSCSFDGRIAFYR
FCNLTQVPQVLNTTERLLSFNYIRTVTASSFPFLEQLQLLELGSQYTPLTIDKEAFRNLPNLRILDG
5 SSKIYFLHPDAFQGLFHLFELRLYFCGLSDAVLKDGYFRNLKALTRLDSLKNQIRSLYLHPSFGKLSL
KSIDFSSNQIFLVCEHELE (SEQ ID NO: 400). Polynucleotides encoding these
polypeptides are also provided.

This gene is expressed primarily in pancreatic tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as
10 reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions which include, but are
not limited to, pancreatic cancer; impaired pancreatic function; altered carbohydrate
metabolism; and immune and hematopoietic diseases and/or disorders. Similarly,
polypeptides and antibodies directed to these polypeptides are useful in providing
15 immunological probes for differential identification of the tissue(s) or cell type(s). For
a number of disorders of the above tissues or cells, particularly of the pancreas or
endocrine system, expression of this gene at significantly higher or lower levels is
routinely detected in certain tissues or cell types (e.g., pancreatic, gastrointestinal,
immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g.,
20 lymph, serum, plasma, urine, bile, synovial fluid and spinal fluid) or another tissue or
cell sample taken from an individual having such a disorder, relative to the standard
gene expression level, i.e., the expression level in healthy tissue or bodily fluid from
an individual not having the disorder.

The tissue distribution in pancreatic tumors indicates that polynucleotides and
25 polypeptides corresponding to this gene are useful for the diagnosis and/or treatment
of disorders of the pancreas. Expression of this gene product in pancreas tumors
indicates a potential involvement in pancreatic cancer, and indicates that the gene
product may play more general roles in cellular proliferation and/or apoptosis as well.
Alternately, expression in the pancreas may suggest a general involvement in
30 pancreatic function, and implicate the utility of this gene product in a variety of
pancreatic disorders. Alternately, as this protein is a secreted protein, it may simply be
produced by the pancreas to have effects at other sites within the body or endocrine

system. In addition, the homology to a conserved receptor for von Willebrand factor indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells
5 are important in the production of cells of hematopoietic lineages. The uses include bone marrow cell ex vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. The product of this gene may
10 also show utility in the treatment of vascular diseases such as athlerosclerosis and stroke. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological
15 activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly
20 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:65 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or
25 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 987 of SEQ ID NO:65, b is an integer of 15 to 1001, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:65, and where b is greater than or equal to a + 14.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 56

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by

the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

AHAALQLSLRTCGPCSSPYPHAGLAALLTHMWALQLSLPTCGLAALLTHMRPCSSPYPHAGLAALLTHM
5 GPCRSPPHGLAAVLTHMRALQLSLPTWGLAALLTHMRPCSSPYPHAGLACCWLSLSSHRSLQVQAT
HRLVVRTIKDRVMLKVLQPQTRRRGPFLSSCRNDVMRNCVPRHAVLVTTCVFVSFPTHCKVGITGPITQV
KQKPGNHSSPCPVIQLVAKAEFELMLPSVPKPVYLTVLSCWCLCDVPCLSVSL (SEQ ID NO:

401). Polynucleotides encoding these polypeptides are also provided. It has been determined that the protein product of this gene has a conserved G-protein receptor motif beginning at amino acid position 89 and ending at amino acid position 105 of the amino acid sequence referenced in Table 1 for this gene.

Preferred polypeptides of the invention comprise the following amino acid sequence: LACCWLWSLSSHRSLQV (SEQ ID NO: 402). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in tonsils and anergic T-cells.

15 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune system disorders; immune dysfunction; impaired immune surveillance. Similarly, polypeptides and antibodies directed to these polypeptides are

20 useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph,

25 serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 185 as residues: Pro-22 to Pro-28, Pro-41 to His-48, Pro-79 to His-86, Pro-126 to Phe-134, Ser-137 to Met-143, Gln-176 to Ser-186.

Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in T-cells and tonsils, combined with the identification of a G-protein receptor motif within the open reading frame, indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the

5 "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or

10 other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease,

15 inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosus, drug induced hemolytic anemia,

20 rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of

25 various cell types. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

30 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:66 and may have been publicly available prior to conception of

- the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general
- 5 formula of a-b, where a is any integer between 1 to 1544 of SEQ ID NO:66, b is an integer of 15 to 1558, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:66, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

10 This gene is expressed primarily in healing groin wound (6.5 hours post incision), and to a lesser extent in testis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

15 not limited to, wounded tissues; disorders involving tissue repair; male reproductive disorders; mucositis; tissue degeneration. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this

20 gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, testis, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, seminal fluid, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in

25 healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 186 as residues: Ser-59 to Gly-68. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in healing groin wound and testis indicates that

30 polynucleotides and polypeptides corresponding to this gene are useful for therapeutic use as an agent to facilitate wound healing and tissue regeneration. Expression of this product during wound healing indicates that it may play a beneficial role during the

process. Alternately, expression during wound healing may also suggest that it plays a negative role during the process, e.g. fibrosis and scarring, and that therapeutics designed to counter the effects of this protein is even more beneficial. In addition, expression of this protein within the groin and testis indicates that it may play a role

5 in reproductive system function - particularly male reproductive function - and that this protein may even have potential uses as a male contraceptive. Alternately, The tissue distribution in testicular tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g. endocrine function, sperm maturation), as

10 well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts

15 that is expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product is expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications.

Furthermore, the protein may also be used to determine biological activity, to raise

20 antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement.

Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly

25 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:67 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

30 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1308 of SEQ ID NO:67, b is an

integer of 15 to 1322, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:67, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

5 A preferred polypeptide fragment of the invention comprises the following amino acid sequence: MGEASPPAPARRHLLVLLLLLSTLVPSAAPIHDADAQESSLGLTGLQS LLQGFSRLFLKVTCFG (SEQ ID NO: 403). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in testis, and to a lesser extent in brain and
10 fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegenerative disorders; psychological disorders; learning
15 disabilities; altered heart function; altered male reproductive function. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, cardiovascular system, or reproductive system, expression of this
20 gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, testis, developmental, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, seminal fluid, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression
25 level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 187 as residues: Pro-82 to His-93. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in testicular tissue indicates that polynucleotides and
30 polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g. endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment

of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that is expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product is expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications. Alternatively, The tissue distribution in brain indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of brain and nervous system disorders. Expression of this gene product in a variety of brain regions indicates a role in brain and nervous system function. This indicates that the protein product is useful in the treatment of neurodegenerative disorders; learning disabilities; psychoses; and behaviours, including feeding; sleeping; perception; balance; etc. Therefore, this gene product is useful in the treatment of a variety of heart conditions, including myocardial infarction; congestive heart failure; arrhythmias; coronary occlusion; and a variety of other disorders of the heart. The secreted protein can also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, and as nutritional supplements. It may also have a very wide range of biological activities.

Representative uses are described in the "Chemotaxis" and "Binding Activity" sections below, in Examples 11, 12, 13, 14, 15, 16, 18, 19, and 20, and elsewhere herein. Briefly, the protein may possess the following activities: cytokine, cell proliferation/differentiation modulating activity or induction of other cytokines; immunostimulating/immunosuppressant activities (e.g. for treating human immunodeficiency virus infection, cancer, autoimmune diseases and allergy); regulation of hematopoiesis (e.g. for treating anemia or as adjunct to chemotherapy); stimulation or growth of bone, cartilage, tendons, ligaments and/or nerves (e.g. for treating wounds, stimulation of follicle stimulating hormone (for control of fertility); chemotactic and chemokinetic activities (e.g. for treating infections, tumors); hemostatic or thrombolytic activity (e.g. for treating hemophilia, cardiac infarction

etc.); anti-inflammatory activity (e.g. for treating septic shock, Crohn's disease); as antimicrobials; for treating psoriasis or other hyperproliferative diseases; for regulation of metabolism, and behavior. Also contemplated is the use of the corresponding nucleic acid in gene therapy procedures. Furthermore, the protein may

5 also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:68 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is

15 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 851 of SEQ ID NO:68, b is an integer of 15 to 865, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:68, and where b is greater than or equal to a + 14.

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

The translation product of this gene shares sequence homology with alpha 1,3 galactosyltransferase which is thought to be important in the regulation of protein glycosylation and sugar transfer (See Genebank Accession No. bs|150271; all

25 references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides comprise the following amino acid sequence:

MLVVSTVIIIVFWEFINSTEGSFLWIYHSKNPEVDDSSAQKGWWFLSWFNNGIHNYQQGEEDIDKEKGRE
ETKGRKMTQQSFYGTGLIQT (SEQ ID NO: 404), and/or FPGRTHASGNVKGVILS

30 (SEQ ID NO: 405). Polynucleotides encoding these polypeptides are also provided.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by

the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

ADQEKIRNVKGKVILSMLVVSTVIIVFWEFINSTEGSFLWIYHSKNPEV
DDSSAQKGWWFLSWFNNNGIHNYQQGEEDIDKEKGREETKGRKMTQQSFGYGTGLIQT (SEQ ID NO:

5 406). Polynucleotides encoding these polypeptides are also provided. The presence of the upstream amino acids of the latter embodiment may significantly alter the secreted characteristics of the present invention. Namely, either the full-length protein, or fragments thereof, is membrane bound in a mechanism analogous to type II membrane proteins. Based on the such characteristics, the translation product
10 of this latter embodiment is expected to share at least some biological activities with type II membrane proteins. Such activities are known in the art, some of which are described elsewhere herein.

fragments.

The gene encoding the disclosed cDNA is believed to reside on chromosome 9. Accordingly, polynucleotides related to this invention are useful as a marker in
15 linkage analysis for chromosome 9.

This gene is expressed primarily in primary dendritic cells, neutrophils, and T cells and to a lesser extent in liver hepatoma and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a
20 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune dysfunction, hematopoietic disorders; inflammation; neurodegenerative disorders; liver hepatoma; T cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For
25 a number of disorders of the above tissues or cells, particularly of the immune system, liver, or CNS, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, neural, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an
30 individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 188 as residues: His-27 to Gly-41, Gln-56 to Tyr-83. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in dendritic cells, combined with the homology to galactosyltransferases indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of a variety of disorders, particularly of the immune and nervous systems since normal function of such tissues depends upon proper glycoprotein recognition and galactosyltransferase function. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Expression of this gene product in dendritic cells indicates a role in the regulation of the immune system and responses to infectious agents. This may involve roles in antigen presentation, antigen processing, stimulation and activation of B and T cells, or stimulation/activation of dendritic cells themselves. This is evidenced by effects on cytokine production. Expression of this gene product in other hematopoietic cells such as T cells and neutrophils also indicates roles in the functions of those cells as well, and involvement in the proliferation, survival, and/or differentiation of hematopoietic cells in general. In addition, the expression also indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. The uses may include bone marrow cell ex vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. Expression of this gene product within infant brain also indicates a role in neuron survival, synapse formation, neurotransmission, perception, etc. The protein is useful in the treatment and/or prevention of degenerative myelinating diseases and/or disorders, particularly multiple sclerosis, in addition to other disorders which occur secondary to aberrant fatty-acid metabolism. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or

receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

- 5 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:69 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is
10 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1136 of SEQ ID NO:69, b is an integer of 15 to 1150, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:69, and where b is greater than or equal to a + 14.

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

This gene is expressed primarily in small intestine and leukocytes.

- Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a
20 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hematopoietic disorders; inflammation; allergy; impaired immunity; autoimmunity, and gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of
25 the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., gastrointestinal, immune, hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a
30 disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in leukocytes indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and/or treatment of a variety of hematopoietic disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 5 16, 18, 19, 20, and 27, and elsewhere herein. Expression of this gene product in small intestines and leukocytes indicates that it is expressed by various hematopoietic cells, for example, in the peyer's patches of intestine as well as within the circulation itself. Thus, it may play a role in the proliferation; survival; differentiation; or activation of 10 various hematopoietic cell lineages. This may affect the cells' ability to recognize antigen; mount an immune response; participate in inflammatory processes; and effectively patrol the body for infectious or foreign agents. Alternately, expression of this gene product in small intestine may reflect a role in digestion and food processing. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to 15 identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 20 related to SEQ ID NO:70 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1384 of SEQ ID NO:70, b is an integer of 15 to 1398, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:70, and where b is greater than or equal to a + 14. 25

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

30 The translation product of this gene shares sequence homology with the *Drosophila strabismus* gene product which is thought to regulate tissue polarity and cell fate decisions (See Genebank Accession No.gi|2854044 (AF044208); all

references available through this reference are hereby incorporated herein by reference). When tested against U937 cell lines, supernatants removed from cells containing this gene activated the GAS (gamma activating sequence) promoter element. Thus, it is likely that this gene activates myeloid cells, and to a lesser extent, 5 other cells and tissue cell types, through the JAK-STAT signal transduction pathway. GAS is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to 10 indicate proteins involved in the proliferation and differentiation of cells.

Preferred polypeptides of the invention comprise the following amino acid sequence: MQSPLVEC PPPSIHYWPSVPAGA QGACSPMFHAAGWSRSQPNGEIPASSXGHLSIQRAAL VVLENYYKDFTIYNPNLLTASKFRAAKHMAGLKVNVNDGPSNNATGQSRAMIAAAARRDSSHNE YYE EAEHERRVKKRKARLVVAVEEAFIHIQRLQAEEQQKAPGEVMDPREAAQAI FPSMARALQKYL RITRQQ 15 NYHSMESILQAPGLLHHQRHPQGLPRTVPQCGPHPAI (SEQ ID NO: 407), LSIQRAALVV LENYYKDFTIYNP (SEQ ID NO: 408), DSSHNE YYEEAEHE (SEQ ID NO: 409), and/or FPSMARALQKYL RITRQQ (SEQ ID NO: 410). Polynucleotides encoding these polypeptides are also provided.

A preferred polypeptide fragment of the invention comprises the following 20 amino acid sequence: MAFKLLILLIGTWALFFRKRRADMPRVFVFRALLVLIFLFCGFPIGFFT GS AFWTLGNRNYQGIVQYAVSPCGMPSSFHPLLAIRPCWSSGSLQPNVPRCRLVPLPTEWGNPRFQXGT PEYPASSIGGPRKLLQRFHHL (SEQ ID NO: 411). Polynucleotides encoding these polypeptides are also provided.

The translation product of this gene was determined to have a transmembrane 25 domain located at amino acid position 249 - 266 of the amino sequence referenced in Table 1 for this gene. Likewise, this protein is thought to be a Type II membrane protein.

This gene is expressed primarily in human osteoclast stromal cells, fetal liver 30 and spleen, and in endometrial tumors and to a lesser extent in hematopoietic cells, including T-cells and CD34 positive cells isolated from cord blood, as well as the thymus, fetal heart, 8 week old whole embryos, and tumors of pancreatic and testicular origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune system disorders, including AIDS and other hematopoietic

5 diseases and/or disorders, in addition to tumors of osteoclast, endometrial, pancreatic, or testicular origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system as well as biological processes

10 involved in cellular proliferation and/or differentiation, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, haematopoietic, skeletal, cancerous, and/or other tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid, lymph, breast milk, and/or seminal fluid) or another tissue or cell sample taken from an

15 individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 190 as residues: Pro-17 to Gln-24, Asp-86 to Ser-96, 20 Arg-106 to Asn-112, Ala-119 to Ala-130, Ala-148 to Pro-155, Gln-223 to Leu-230. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in immune cells and tissues, combined with the detected GAS biological activity, indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of 25 immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene 30 product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the

natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis,

5 hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may

10 represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Alternatively, the tissue expression in liver tissues indicates that

15 polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities,

20 fetal deficiencies, pre-natal disorders and various wound-healing models and/or tissue traumas. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show

25 utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:71 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

formula of a-b, where a is any integer between 1 to 1543 of SEQ ID NO:71, b is an integer of 15 to 1557, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:71, and where b is greater than or equal to a + 14.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 62

A preferred polypeptide fragment of the invention comprises the following amino acid sequence: MGLPVSWAPPALWVLGCCALLSLWALCTACRSPRTL (SEQ ID NO: 412). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in human thymus, human synovial 10 sarcoma, and to a lesser extent in breast cancer cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune diseases and/or disorders, particularly autoimmune disorders 15 such as arthritis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, 20 hematopoietic, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

25 Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 191 as residues: Pro-40 to Arg-50, Ser-72 to Arg-77, His-82 to Leu-91, Gln-171 to Glu-189, Val-203 to Gly-222, Pro-263 to Thr-269, Ser-282 to Trp-287. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in thymus indicates polynucleotides and polypeptides 30 corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19,

20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or 5 other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, 10 inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosus, drug induced hemolytic anemia, 15 rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of 20 various cell types. The protein is useful in modulating the immune response to aberrant polypeptides, as may exist in cancerous and/or proliferative cells and tissues. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. 25 Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:72 and may have been publicly available prior to conception of 30 the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1149 of SEQ ID NO:72, b is an integer of 15 to 1163, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:72, and where b is greater than or equal to a + 14.

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

The translation product of this gene shares sequence homology with human, porcine, and mouse zona pellucida binding protein sp 38 which is known to be important in sperm binding to the zona pellucida of an egg cell. Monoclonal antibodies directed against this protein have resulted in inhibition of the sperm/egg binding reaction. As such The translation product of this gene may show commercial utility as a contraceptive. (See Genebank Accession No. gnl|PID|d1005021; all references available through this accession are hereby incorporated by reference herein).

15 Preferred polypeptides of the invention comprise the following amino acid sequence: IYGKTGQPDKIYVELHQNSP (SEQ ID NO: 413), FLEPLSGLYTCTL SYK (SEQ ID NO: 414), LQVVRLDSCRPGFGKN (SEQ ID NO: 415), and/or CVSVLTYGAKSC (SEQ ID NO: 416). Polynucleotides encoding these polypeptides are also provided.

20 This gene is expressed primarily in a human testes library. It has not been found in other libraries screened at HGS.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, infertility, and/or other reproductive diseases and/or disorders.

25 Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male and female reproductive systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., testes, and

30 cancerous and wounded tissues) or bodily fluids (e.g. seminal fluid, lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression

level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 192 as residues: Lys-35 to Asp-40, Pro-75 to Asn-84, 5 Lys-114 to Arg-129, Arg-138 to Ser-143, Ser-154 to Asn-160, Val-224 to Asn-231, Arg-238 to Asp-243, Asp-276 to Asn-291, Lys-324 to Asp-338. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in testes combined with the homology to the human, porcine, and mouse zona pellucida protein Sp 38 indicates that polynucleotides and 10 polypeptides corresponding to this gene are useful for the production of a contraceptive vaccine. Alternatively, the protein may show utility in the diagnosis, treatment, and/or prevention of a variety of reproductive disorders within both the male and female reproductive systems. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male 15 contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that is expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product is expressed in other specific tissues or organs where it may play related functional roles in other processes, such as 20 hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may 25 show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:73 and may have been publicly available prior to conception of 30 the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1472 of SEQ ID NO:73, b is an integer of 15 to 1486, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:73, and where b is greater than or equal to a + 14.

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

When tested against U937 cell lines, supernatants removed from cells containing this gene activated the GAS (gamma activating sequence) promoter element. Thus, it is likely that this gene activates myeloid, and to a lesser extent, other 10 cells and tissue cell types, through the JAK-STAT signal transduction pathway. GAS is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to 15 indicate proteins involved in the proliferation and differentiation of cells.

This gene is expressed primarily in an apoptotic T-cell library, and to a lesser extent, in whole embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 20 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune, hematopoietic, and developmental diseases and/or disorders, particularly disorders related to aberrant cell death regulation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of 25 disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, hematopoietic, developmental, reproductive, apoptotic cells, and cancerous and healing tissue or cells) or bodily fluids (e.g., serum, lymph, amniotic fluid, plasma, urine, synovial fluid and spinal fluid, and/or lymph) or 30 another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 193 as residues: Met-1 to Ala-6, Gly-51 to Gly-71. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in apoptotic T-cells indicates polynucleotides and 5 polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or 10 activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an 15 agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host 20 diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene 25 product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate 30 ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the

protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 5 related to SEQ ID NO:74 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 10 formula of a-b, where a is any integer between 1 to 1539 of SEQ ID NO:74, b is an integer of 15 to 1553, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:74, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

15 The translation product of this gene shares sequence homology with a 50 kDa glycoprotein of the human erythrocyte membrane associated blood-group antigen which is thought to have a transport or channel function in the erythrocyte membrane (See GenBank No. gb|X64594|HSEPMG50; all references available through this accession are hereby incorporated herein by reference). When tested against 20 Jurkat cell lines, supernatants removed from cells containing this gene activated the GAS (gamma activating sequence) promoter element. Thus, it is likely that this gene activates T-cells, and to a lesser extent, other cells and tissue cell types, through the JAK-STAT signal transduction pathway. GAS is a promoter element found upstream 25 of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells. The translation product of this gene has been determined to contain two transmembrane domains located at amino acid positions 95 30 - 124, and 1 - 27 of the amino acid sequence referenced in Table 1 for this gene. Therefore, this protein may share structural characteristics to Type IIIa membrane protein. Based on the sequence similarity to the human erythrocyte membrane

associated blood-group antigen, and the structural similarity to type IIIa membrane proteins. The translation product of this gene is expected to share at least some biological activities with such proteins. Such activities are known in the art, some of which are described elsewhere herein.

5 In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

PAKGEGERLHDHPHIWRLLWAHSDPDPPLPTQPRAEQGETEFCVPVGPLCH
10 DWHPLPVDTVLAQLQLSHILPWGQPAPSRHQHLLLGSRLRAYLGGNIQCPAKKGKLDMVHIQNATLAGGV.
AVGTAAEMMLMPYGALIIGFVCGIISTLGFVYLTPFLESRLHIQDTCGINNLHGIPGIIGGIVGAVTAA
SASLEVYGKEGLVHSFDFQGFNGDWTARTQGKFQIYGLLVTLAMALMGGIIVGLLRLPFWGQPSDEN
FEDAVYWEMPEGNSTVYIPEPDPTFKPSGPSVPSVPMVSPLPMASSVPLVP (SEQ ID NO: 417).
Polynucleotides encoding these polypeptides are also provided.

15 The gene encoding the disclosed cDNA is believed to reside on chromosome 18. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 18.

This gene is expressed primarily in tonsils and to a lesser extent in the larynx, kidney medulla, epithelial cells, keratinocytes, and cells involved in hematopoiesis, especially neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hematopoietic diseases and/or disorders, in addition to, the proliferation and/or differentiation of integumentary cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., haematopoietic, integumentary, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, lymph) or another tissue or cell sample taken from an individual having such a

disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 194 as residues: Gly-85 to Lys-94, Gln-125 to Cys-
5 131, Glu-151 to Gly-159. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in tonsils, combined with the homology to a 50 kDa glycoprotein of the human erythrocyte membrane protein indicates polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis
10 of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo
15 culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and
20 in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or
25 immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:75 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically
30 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

formula of a-b, where a is any integer between 1 to 1636 of SEQ ID NO:75, b is an integer of 15 to 1650, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:75, and where b is greater than or equal to a + 14.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 66

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

10 PRVRTRAPVVPPAGHRALSPAGVLLAVPAMLSLDLDDVRRMNKRQVSL
VLFFSWLFLSLRGCCCGARRTPGFCEGLSWSDTRVIRFLWRLWPEAALSASLFLTPN (SEQ ID
NO: 418). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in hematopoietic tissues, especially helper T-cells and anergic T-cells.

15 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, tuberculosis, AIDS, and other immune diseases and/or disorders, particularly infections and/or malignancies. Similarly, polypeptides and antibodies
20 directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., haematopoetic, immune, and cancerous, and/or wounded tissues) or
25 bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, and/or lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 195 as residues: Asp-9 to Gln-17. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in immune cells and tissues indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 5 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting 10 immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, 15 hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosus, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may 20 represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological 25 activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly 30 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:76 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically

excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2136 of SEQ ID NO:76, b is an integer of 15 to 2150, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:76, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

The polypeptide of this gene has been determined to have a transmembrane domain at about amino acid position 15 - 34 of the amino acid sequence referenced in Table 1 for this gene. Moreover, a cytoplasmic tail encompassing amino acids 1 - 14 of this protein has also been determined. Based upon these characteristics, it is believed that the protein product of this gene shares structural features to type II membrane proteins.

This gene is expressed primarily in the fetal liver/spleen, human brain, and retina.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune, neurologic, and visual diseases and/or disorders, particularly retinoblastoma as well as other diseases or disorders involving the retina and/or brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurologic system and in eye development, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, visual, retinal, neural, cancerous, and/or wounded tissues) or bodily fluids (e.g., serum, plasma, aqueous humor, vitreous humor, urine, amniotic fluid, synovial fluid and spinal fluid, vitreous and aqueous humors) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 196 as residues: Glu-48 to Thr-54. Polynucleotides encoding said polypeptides are also provided.

- The tissue distribution in fetal liver/spleen indicates polynucleotides and
- 5 polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19,
- 10 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency etc. In addition, this gene product may have commercial utility in
- 15 the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Alternatively, representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of
- 20 Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and preception. In addition, the gene or gene product may also play a role in the treatment and/or detection of
- 25 developmental disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system. Alternatively, expression of this gene with in the retina may suggest gene is useful for the diagnosis, treatment, and/or prevention of a variety of eye disorders and/or conditions. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue
- 30 markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or

immunotherapy targets for the above listed tissues. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies 5 directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:77 and may have been publicly available prior to conception of 10 the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1578 of SEQ ID NO:77, b is an 15 integer of 15 to 1592, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:77, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

The translation product of this gene shares sequence homology with the 20 glutamate-binding subunit of an N-methyl-D-aspartate receptor complex. The amino acids L-glutamic and L-aspartic acids form the most widespread excitatory transmitter network in mammalian brain. The excitation produced by L-glutamic acid is important in the early development of the nervous system, synaptic plasticity and memory formation, seizures and neuronal degeneration. The receptors activated by L- 25 glutamic acid are a target for therapeutic intervention in neurodegenerative diseases, brain ischaemia and epilepsy. As such, the protein product of this gene may also play a role in the regulation of the nitrous oxide synthase gene which is known to be a vital link in various signal transduction pathways within the brain as well as other tissues (See GenBank No. bbs|61979 and Medline Article No.92049755). Moreover, The 30 translation product of this gene was also shown to have homology to a neural membrane protein 35 (See Genbank Accession No. gb|AAC32463.1| (AF044201); all references available through this accession are hereby incorporated herein by

reference; for example, Mol. Cell. Neurosci. 11 (5), 260-273 (1998)). The polypeptide of this gene has been determined to have two transmembrane domains at about amino acid position 42 - 73, and 75 - 94 of the amino acid sequence referenced in Table 1 for this gene. Based upon these characteristics, it is believed that the protein product of 5 this gene shares structural features to IIIa membrane proteins. When tested against U937 and Jurkat cell lines, supernatants removed from cells containing this gene activated the GAS (gamma activating sequence) promoter element. Thus, it is likely that this gene activates myeloid and T-cells, and to a lesser extent, other cells and tissue cell types, through the JAK-STAT signal transduction pathway. GAS is a 10 promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells.

15 Preferred polypeptides of the invention comprise the following amino acid sequence: HASAWNLLLTIVFTLS (SEQ ID NO: 419), VYALGAGVFTLFLALDTQLLMGN (SEQ ID NO: 420), EYIFGALNIYLDIIYIF (SEQ ID NO: 421), and/or WNLILLTVFTLSMAYLTGMLSSYYNT (SEQ ID NO: 422). Polynucleotides encoding these polypeptides are also provided.

20 In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

MAYLTGMLSSYYNTTSVLLCLGITALVCLSVTVFSQTKFDFTSCQGVLF
25 VLLMTLFFSGLILAILLPFQYVPWLHAVYAALGAGVFTLFLALDTQLLMGNRRHSLSPPEYIFGALNIY
LDIIYIFTFFLQLFGTNRE (SEQ ID NO: 242). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in the brain and to a lesser extent in dendritic cells and in the kidney cortex.

30 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are

not limited to, schizophrenia, epilepsy, brain ischaemia, and neurodegenerative diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells,

5 particularly of the nervous system expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g. neural, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in

10 healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 197 as residues: Ala-12 to Glu-27, Pro-35 to Ser-43, Pro-70 to Gly-79, Ser-92 to Val-98, Pro-166 to Leu-175, Ser-234 to Thr-246.

Polynucleotides encoding said polypeptides are also provided.

15 The tissue distribution combined with the homology to a known N-methyl-D-aspartate receptor indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections

20 below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms,

25 hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product

30 is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. This protein may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment,

and/or prevention of developmental diseases and disorders. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents 5 that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 10 related to SEQ ID NO:78 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 15 formula of a-b, where a is any integer between 1 to 1565 of SEQ ID NO:78, b is an integer of 15 to 1579, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:78, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

20 The polypeptide of this gene has been determined to have a transmembrane domain at about amino acid position 37 - 62 of the amino acid sequence referenced in Table 1 for this gene. Based upon these characteristics, it is believed that the protein product of this gene shares structural features to Type Ia membrane proteins. The translation product of this gene was also determined to have a conserved peroxidase-I 25 domain located at about amino acid position 15 - 25 of the amino acid sequence referenced in Table 1 for this gene.

Preferred polypeptides of the invention comprise the following amino acid sequence: TLSLLVSLHTV (SEQ ID NO: 423). Polynucleotides encoding these polypeptides are also provided.

30 This gene is expressed primarily in the brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

- biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological diseases and disorders, a non-limiting example of which includes, epilepsy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential
- 5 identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., neural, cancerous, and/or wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an
- 10 individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain tissue indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease,

20 Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including

25 disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine

30 biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may

show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:79 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1382 of SEQ ID NO:79, b is an integer of 15 to 1396, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:79, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

When tested against Jurkat cell lines, supernatants removed from cells containing this gene activated the GAS (gamma activating sequence) promoter element. Thus, it is likely that this gene activates T-cells, and to a lesser extent, other cells and tissue cell-types, through the JAK-STAT signal transduction pathway. GAS is a promoter element found upstream of many genes which are involved in the Jak-STAT pathway. The Jak-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jak-STAT pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and differentiation of cells. Additional embodiments of the invention include polypeptides comprising the following amino acid sequences:

MSSSGTSDASPGSPVLA
SYKPAPPDKLPETP
RRMKKSL
SAPLHPEFEEVYRFGA
ESRKLLL
REPVD
AMPDP
TPFLLARE
SAEVHLI
KERPLV
IPPIASDR
SGEQHS
PAREKPH
KAHVGV
VAHRIH
HATPPQPAR
DPGGR
PGERR
QGGE
EALRD
GQNC
CVKPA
VPHPAL
SMHCEHH
WEISAT
PFLN
PMHAK
HFSHL
PTHSP
SAS
LALFF
TPKYD
RVPA
AEYV
FPNCC
GQT
PVCR
IA
CF (SEQ ID NO: 424); MSSSGTSDASPGSPV
LASYKPAPPDKLPETP
RRMKKSL
SAPLHPEFEEVYRFGA
ESRKLLL
REPVDAMPD
P
TPFLLARE
SAEVHLI
KERPLV
IPPIASDR
SGEQHS
PAREKPH
KAHVGV
VAHRIH
HATPPQPAR
GEDPG
GRPGERR
(SEQ ID NO: 425); VHLIKERPLV
IPPIASDR
SGEQHS
PAREKPH
KAHVGV
VAHRIH
HATPPQPAR
GEDPG
GRPGERR
(SEQ ID NO: 426); QGGE
EALRD
GQNC
CVKPA
VPHPAL
SMHCEHH
WEISAT
PFLN
PMHAK
HFSHL
PTHSP
SAS
LALFF
TPKYD
RVPA
AEYV
FPNCC
GQT
PVCR
IA
CF (SEQ ID NO:

427); KRASQPPCTRNLKRSTDGQRAGNSFCGNQWMLCPTPPHFCWLGSPPRSTSSKRGPSSS
(SEQ ID NO: 428); and PPSPPTEAASSTARPAKSRTTRPTSGWHIGSTTPPRRSQPEVKTLAV
DQVNNGGKVVRKHSGTDRTV (SEQ ID NO: 429). Additional embodiments are directed
to polynucleotides encoding these polypeptides.

5 The gene encoding the disclosed cDNA is believed to reside on chromosome
12. Accordingly, polynucleotides related to this invention are useful as a marker in
linkage analysis for chromosome 12.

This gene is expressed primarily in Endometrial Tumor, fetal liver,
Hypothalamus, Larynx carcinoma III, Prostate Cancer.

10 Therefore, polynucleotides and polypeptides of the invention are useful as
reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions which include, but are
not limited to, endometrial tumor, larynx carcinoma III, prostate cancer, in addition to
other proliferative diseases and/or disorders. Similarly, polypeptides and antibodies
15 directed to these polypeptides are useful in providing immunological probes for
differential identification of the tissue(s) or cell type(s). For a number of disorders of
the above tissues or cells, particularly of the reproductive, hepatic, and pulmonary
systems, expression of this gene at significantly higher or lower levels is routinely
detected in certain tissues or cell types (e.g., hepatic, developmental, differentiating,
20 proliferative, and cancerous, and/or other tissues) or bodily fluids (e.g., serum,
plasma, urine, synovial fluid and spinal fluid, pulmonary surfactant) or another tissue
or cell sample taken from an individual having such a disorder, relative to the
standard gene expression level, i.e., the expression level in healthy tissue or bodily
fluid from an individual not having the disorder.

25 Preferred polypeptides of the present invention comprise immunogenic
epitopes shown in SEQ ID NO: 199 as residues: Ala-62 to Tyr-71. Polynucleotides
encoding said polypeptides are also provided.

The tissue distribution in tumors of endometrium, larynx, and prostate origins,
combined with the detected GAS biological activity, indicates that polynucleotides
30 and polypeptides corresponding to this gene are useful for diagnosis and intervention
of these tumors, in addition to other tumors where expression has been indicated. The
expression within cellular sources marked by proliferating cells indicates this protein

may play a role in the regulation of cellular division, and may show utility in the diagnosis, treatment, and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. Representative uses are described in the "Hyperproliferative Disorders" and "Regeneration" sections below and

5 elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Alternatively, the tissue distribution within liver tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and

10 conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various wound-healing models and/or tissue trauma. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate

15 cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly

20 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:80 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

25 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1216 of SEQ ID NO:80, b is an integer of 15 to 1230, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:80, and where b is greater than or equal to a + 14.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 71

In another embodiment, polypeptides of the invention comprise the following amino acid sequence: MWNPNAQQPGPNPYPPNIGCPGGSNPAHPPPINPPFPPGPCPPPGAPHGN

PAFPGGPPHPVPQPGYPGCQPLGPYPPYPPPAPGIPPPVNLAPGMVGPAPIVDKMQKKMKAHKKM
HHQKHHKYHKHGKHSSSSSSSDSD (SEQ ID NO: 430); RVGPDADAWEQAAVERLE
DTPKHVESQCRAARAKSISPYWVPWRFQSCPPTY (SEQ ID NO: 431); STLSPRPLSSSPR
SSPWQSSFPPRWAPSSCATARVSRMPTVGSVPSSPTACPWNPSCESLGSHGWTSRQEDAEENEE
5 SS (SEQ ID NO: 432); MPGSGQIHIPPIGALEVPILPHTHLLIHPFPQAPVLLPQELPMA
IQLSPQVGPLILCHSQGIQDANRWVPTLLHTRLPLESSL (SEQ ID NO: 433); and/or
MASIPPLPPPLPAVILTEYRPWTLPSSLTSSALPSSFRCHVVLGECSGPCAPHPLPXPEPHPAVEP
(SEQ ID NO: 434). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in bone marrow and primary dendritic cells,
10 in addition to macrophages.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of immune and haematopoietic diseases and/or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are 15 useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., haematopoietic, immune, and cancerous, and/or other tissues) or bodily fluids (e.g., serum, plasma, 20 urine, synovial fluid and spinal fluid, and/or lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in bone marrow indicates polynucleotides and 25 polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 30 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, therefore, it can be used in immune disorders such as infection, inflammation, allergy,

immunodeficiency etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:81 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1125 of SEQ ID NO:81, b is an integer of 15 to 1139, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:81, and where b is greater than or equal to a + 14.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 72

In another embodiment, polypeptides of the invention comprise the following amino acid sequence:

PRHTYWGIVLVPAAAMASPHSHPAQGVILQPPGPQPRWEDRVALGTRGRSPGAYLTESAPQQASTTPGPPT
CHGKVGSEWAWLGAAPGPLPTHPSHYAIRVPSNICSCPGASSAPALRGVVRQPPGPQNPRQGRRGTRA
25 SPVGSLFcv (SEQ ID NO: 435); MFAVLPAVEGRATPHQDRTCYPSRSRPWPSQSPRGSM
PVPPRPGAARGQLDGHVQGQGWALQWGCPPAPAVYRRMALPPRAAGSYLDRCPHPLPGARLCGPLPL
(SEQ ID NO: 436); VFGAVFLTPSHDLATPTGASGWCLLPWPAPTLTLHRGSCSPQAHSLVG
RTGWPWGQEGGAQGLTSLRVLRPLPSRHPLPQGPPHVMARLVVNGPGWEQPLAHCPPTHLTMQFEFQATFAP
ALGPALPQP (SEQ ID NO: 437); HEEPPAGFGLRSLWRRSSPPHEVGARLPNGAFGFSVRCLLCF
30 PPWRAEPPHIRIGRATPPPGPGPASPALARCLCQGQQPEGSWMATCRVKAGPCSGAGRQPQQFTDA
WLFLPEQPAATWTGNVLIPSLGPGSALAFLCEPLLSLCCLGTPDRGVRVCPSVTFYSPRVEERKRKGSK
GVQTQQ (SEQ ID NO: 438); MATCRVKAGPCSGAGRQPQQFTDAWLFLPEQPAATWTGNVLIP
SLGPGSALAFLCEPLLSLCCLGTPDRGVRVCPSVTFYSPRVEERKRKGSKGVQTQQ (SEQ ID NO:
439); MKWFSTQPLWLNTKQRSHRRGPGPPPAPLSGVLSRGLPHHPSQGWGRAGPRAGANVAWSN

CIVRWVGGQWARGCSQPGPFTTNLAMTCGGPWGSGCLLGSTLSEVSPWAPPSCPQGHPVLPTRLWA
GLQDPLCRVRVGAGHGSRHQPDAPVGVARSDGVVRNTAPKTQNKN
TTNGRRSPPPTEVGFEPLLIFPVSF
LQPLVSRKSQTGTHAHHGQESRDSTKGGVHRGRPGQSLAPGRG (SEQ ID NO: 440); KVTDGH
TRTPRSGVPRQHKERRGSQRKARAEPGPREGMRTFPVQVAAGCSRKSHASVNCWGWRPAPLQGPALTL
5 HVAIQLPSGCPWPWHRHRASRAGLAGPGPGPGGVARPILMWGG
SALHGGKHSKHRTLKP
KAPLGS
LA
PT SWGGDRRHDLS
PKPAGGSSC (SEQ ID NO: 441); and/or MRTFPVQVAAGCSGRKSHASV
NCWGWRPAPLQGPALTLHVAIQLPSGCPWPWHRHRASRAGLAGPGPGPGGVARPILMWGG
SALHGGKHS
KHRTLKP
KAPLGS
LA
PT SWGGDRRHDLS
PKPAGGSSC (SEQ ID NO: 442).

Polynucleotides encoding these polypeptides are also provided.

10 The gene encoding the disclosed cDNA is believed to reside on chromosome 7. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 7.

This gene is expressed primarily in healing wound tissues, macrophage-oxLDL, hemangiopericytoma, and CD34+ cells.

15 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, healing wound, and proliferative diseases and/or disorders, particularly soft tissue cancers, such as hemangiopericytoma. Similarly, polypeptides and
20 antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of healing wounds, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., lymph, cancerous, and/or wounded tissues) or bodily fluids (e.g.,
25 serum, plasma, urine, synovial fluid and spinal fluid, and/or lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 201 as residues: Met-1 to Gly-6, Arg-23 to Gly-33, Arg-60 to Ala-66, Thr-90 to Gly-103, Glu-105 to Trp-112. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution within healing wounds indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. Representative uses are described elsewhere herein. Expression within cellular sources marked by proliferating cells

5 indicates that this protein may play a role in the regulation of cellular division. Additionally, the expression in hematopoietic cells and tissues indicates that this protein may play a role in the proliferation, differentiation, and/or survival of hematopoietic cell lineages. In such an event, this gene is useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various

10 hematopoietic lineages from early hematopoietic stem and committed progenitor cells. Similarly, embryonic development also involves decisions involving cell differentiation and/or apoptosis in pattern formation. Thus this protein may also be involved in apoptosis or tissue differentiation and could again be useful in cancer therapy. Furthermore, the protein may also be used to determine biological activity, to

15 raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly

20 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:82 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

25 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1395 of SEQ ID NO:82, b is an integer of 15 to 1409, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:82, and where b is greater than or equal to a + 14.

30 **FEATURES OF PROTEIN ENCODED BY GENE NO: 73**

The translation product of this gene has homology to the Pro-Pol-dUTPase polyprotein of a newly discovered retrovirus. Since this protein also shares homology

to the human HERV-L element, and considering that most retroviruses integrate their proviral form into eukaryotic genomes through a homologous recombination mechanism, this gene is useful in providing protection against retroviral infections or could be used in the development of gene therapy applications (See Genebank

- 5 Accession No.2065210; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: GLMECLIHRHGSH (SEQ ID NO: 443), and/or STKGMQFILTGITLSGY (SEQ ID NO: 444). Polynucleotides encoding these polypeptides are also provided.

- 10 This gene is expressed primarily in CD34 positive cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune diseases and/or disorders, particularly viral infections.

- 15 Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, and cancerous, wounded,

- 20 and/or other tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid, and/or lymph) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

- 25 Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 202 as residues: Arg-39 to Thr-49, Leu-52 to Gly-60, Ser-67 to Arg-76, Gln-130 to Phe-137, Ser-139 to His-148. Polynucleotides encoding said polypeptides are also provided.

- The tissue distribution in CD34+ immune cells combined with the homology 30 to a retroviral protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Expression of this gene product in immune indicates a role in the regulation

of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g. by boosting immune responses.

5 Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. In addition, this gene product may have commercial utility in
10 the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as,
15 antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:83 and may have been publicly available prior to conception of
20 the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 700 of SEQ ID NO:83, b is an
25 integer of 15 to 714, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:83, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

The translation product of this gene shares sequence homology with mouse,
30 bovine, and human butyrophilins, which are thought to be important in lactation especially during the latter part of pregnancy. Butyrophilin is a glycoprotein of the immunoglobulin superfamily that is secreted in association with the milk-fat-globule

membrane from mammary epithelial cells (See Genbank Accession No. gb|AAB51034.1, and Geneseq Accession No. W97814; all references available through these accessions are hereby incorporated herein by reference; for example, Mamm. Genome 7 (12), 900-905 (1996)). Based on the sequence similarity, The 5 translation product of this gene is expected to share at least some biological activities with glycoproteins. Such activities are known in the art, some of which are described elsewhere herein.

In another embodiment, polypeptides of the invention comprise the following amino acid sequence: PRVRALLFARSLRLCRWGAKRLGVASTEAQRGVSFKLEEKTAHSSLALFRD 10 DTGVKYGLVGLEPTKVALNVERFREWAVVLADTAVTSGRHYWEVTVKRSQQFRIGVADVDMSRDSCIGV DDRSWVFTMPSASGTPCWPTRKPQLRVLGSQEVGLLLEYEAQKLSLVDVSQSVVHTLQTDFRGPVVPA FALWDGELLTHSGLEVP EGL (SEQ ID NO: 445), and/or MSRDSCIGVDDRSWVFTMPSASG TPCWPTRKPQLRVLGSQEVGLLLEYEAQKLSLVDVSQSVVHTLQTDFRGPVVPAFALWDGELLTHSGL EVPEGGL (SEQ ID NO: 446). Polynucleotides encoding these polypeptides are also 15 provided.

This gene is expressed primarily in adult heart, LNCAP cell line, OB cell line (HOS fraction), and epididymis, and to a lesser extent in a variety of other cells and tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as 20 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, coronary disease and heart tumors and reproductive disorders, particularly those of the male reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological 25 probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly those of the heart and reproductive system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., cardiovascular, cardiac, reproductive, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, 30 seminal fluid, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression

level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 203 as residues: Gly-30 to Ser-36. Polynucleotides 5 encoding said polypeptides are also provided.

The tissue distribution and homology to butyrophilin indicates that polynucleotides and polypeptides corresponding to this gene are useful for determining the mechanisms underlying mammary-specific gene expression, lactation, and potentially for the production of copious amounts of butyrophilin or 10 heterologous proteins in the milk of transgenic animals. The secreted protein can also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, and as nutritional supplements. It may also have a very wide range of biological activities. Representative uses are described in the "Chemotaxis" and "Binding 15 Activity" sections below, in Examples 11, 12, 13, 14, 15, 16, 18, 19, and 20, and elsewhere herein. Briefly, the protein may possess the following activities: cytokine, cell proliferation/differentiation modulating activity or induction of other cytokines; immunostimulating/immunosuppressant activities (e.g. for treating human immunodeficiency virus infection, cancer, autoimmune diseases and allergy); 20 regulation of hematopoiesis (e.g. for treating anemia or as adjunct to chemotherapy); stimulation or growth of bone, cartilage, tendons, ligaments and/or nerves (e.g. for treating wounds, stimulation of follicle stimulating hormone (for control of fertility); chemotactic and chemokinetic activities (e.g. for treating infections, tumors); hemostatic or thrombolytic activity (e.g. for treating hemophilia, cardiac infarction 25 etc.); anti-inflammatory activity (e.g. for treating septic shock, Crohn's disease); as antimicrobials; for treating psoriasis or other hyperproliferative diseases; for regulation of metabolism, and behavior. Also contemplated is the use of the corresponding nucleic acid in gene therapy procedures. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to 30 isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies

directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:84 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1083 of SEQ ID NO:84, b is an integer of 15 to 1097, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:84, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

The translation product of this gene shares sequence homology with angiopoietin-2 which is thought to be important in regulation of angiogenesis through the Tie2, or other receptor tyrosine kinase (See Genbank Accession Nos. gb|AAC97965.1| (AF110520), and gb|AAB63189.1| (AF004326); in addition to Geneseq Accession No. R94603; all references available through these accessions are hereby incorporated herein by reference; for example, Science 277 (5322), 55-60 (1997)). Based on the sequence similarity, The translation product of this gene is expected to share at least some biological activities with angiogenic and kinase proteins. Such activities are known in the art, some of which are described elsewhere herein.

In another embodiment, polynucleotides of the invention comprise the following nucleic acid sequence:

GCACGAGCGGCACGAGCGGATCCTCACACGACTGTGATCCGATTCTTCCAGCGGCTCTGCAACCAAG
CGGGCTTACCCCCGGTCCTCCCGCTCCAGTCAGTCCTCGCACCTGGAACCCAACGTCCCCGAGAGTCCC
CGAATCCCCGCTCCAGGCTACCTAACGAGGATGAGCGGTGCTCCGACGGCCGGGCAGCCCTGATGCTC
30 TGCGCCGCCACCGCCGTGCTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTGCG
TCCTGGGACGAGATGAATGTCCTGGCCACGGACTCCTGCAGCTCGGCCAGGGCTGCGCGAACACGCG
GAGCGCACCCGAGTCAGCTGAGCGCCGTGGAGCGGCCCTGAGCGCGTGCAGGGTCCGCCCTGTCAGGGA
ACCGAGGGGTCCACCGACCTCCCGTTAGCCCCCTGAGAGCCGGTGGACCCCTGAGGTCTTCACAGCCTG

CAGACACAACCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGG
 CACCTGGAGAACGCAGCACCTCGAATTCAAGCATCTGCAAAGCCAGTTGGCCTCTGGACCACAAGCAC
 CTAGACCATGAGGTGGCCAAGCCTGCCGAAGAAAGAGGCTGCCGAGATGGCCCAGCCAGTTGACCCG
 GCTCACAATGTCAAGCCGCCCTGCACCGCTGCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGAGAGG
 5 CAGAGTGGACTATTGAAATCCAGCCTCAGGGTCTCCGCCATTGGTGAAGTGCAAGATGACCTCA
 GATGGAGGCTGGACAGTAATTCAAGAGGCCACGATGGCTCAGTGGACTTCACCCGGCTGGGAGAGGTGCATAGC
 TACAAGGCGGGGTTGGGATCCCCACGGCGAGTCTGGCTGGGCTGGGAGAGGTGCATAGC
 GGGGACCGAACAGCCGCCCTGGCGTGCAGCTGCCGACTGGGATGGCAACGCCAGTTGCTGCAGTT
 TCCGTGCACCTGGTGGCGAGGACACGGCTATAGCCTGCAGCTCACTGCACCCGTGCCGCCAGCTG
 10 GGGGCCACCACCGTCCCACCCAGCGGCCCTCCGTACCCCTTCCACTTGGGACCAGGATCACGACCTC
 CGCAGGGACAAGAACTGCGCCAACAGGCCCTCTGGAGGCTGGTGGGACCTGCAGCCATTCAAAC
 CTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGCAGAAGCTTAAGAAGGAAATCTTCTGGAAG
 ACCTGGCGGGGCGCTACTACCCGCTGCAGGCCACCATGGTATCCAGGCCATGGCAGCAGAGGCA
 GCCTCCTAGCGTCTGGCTGGGCTGGTCCAGGGCACGAAAGACGGTGAUTCTGGCTCTGCCAG
 15 GATGTGGCGTCCCTGCCTGGGAGGGCTCCAAGGAGGGGCCATCTGAAACTTGTGGACAGAGAAG
 AAGACCACGACTGGAGAACGCCCCTTCTGAGTGCAAGGGGCTGCATGCGTTGCCTCTGAGATCGAG
 GCTGCAGGATATGCTCAGACTCTAGAGGCGTGGACCAAGGGGATGGAGCTTCACTCCTGCTGGCAG
 GGAGTTGGGACTCAGAGGGGACACTTGGGCCAGCCAGACTGGCTCAATGGCGGACTCAGTCACATT
 GACTGACGGGACCAGGGCTTGTGGTGGACAGAGCGCCCTCATGGTGCTGGTGTGTAGGT
 20 CCCCTGGGACACAAGCAGGCCAACGGTATCTGGCGGAGCTCACAGAGTTCTTGAATAAAAGCAA
 CCTCAGAACAAAAAAAAAAAAAAA (SEQ ID NO: 447),
 and/or
 ATGAGCGGTGCTCCGACGGCGGGGAGCCCTGATGCTCTGCCGCCACCGCCGTGCTACTGAGCGCT
 CAGGGCGACCGTGCAGTCAAGTCGCCGCTTGCCTGGACAGATGAATGCTCTGGCGCAC
 25 GGACTCCTGCAGCTCGGCCAGGGCTGCGCAACACGGAGCGCACCGCAGTCAGCTGAGCGCGCTG
 GAGCGCGCCTGAGCGCGTGGGGTCCCGCTGTCAAGGAACCGAGGGTCCACCGACCTCCCGTTAGCC
 CCTGAGAGCCGGTGGACCCCTGAGGTCTTCACAGCCTGCAGACACAACCAAGGCTCAGAACAGCAGG
 ATCCAGCAACTTCCACAAGGTGGCCAGCAGCAGCGCACCTGGAGAACGAGCACCTGCGAATTCAAG
 CATCTGCAAAGCCAGTTGGCTCTGGACCACAAGCACCTAGACCATGAGGTGGCAAGGCTGCCAG
 30 AGAAAAGAGGCTGCCAGATGGCCAGGCTTGAACCGGCTCACAAATGTCAAGCCCTGCACCGCCTG
 CCCAGGGATTGCCAGGAGCTTCCAGGTTGGGAGAGGCAGAGTGGACTATTGAAATCCAGCCCTAG
 GGGTCTCCGCCATTGGTGAAGTCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAAGGGCGC
 CACGATGGCTCAGTGGACTTCACCGGCCCTGGAAAGCCTACAAGGCGGGTTGGGATCCCCACGGC
 GAGTTCTGGCTGGGTCTGGAGAACGGTGCATAGCATCACGGGAGCGAACAGCCGCCCTGGCGTGCAG
 35 CTGCGGGACTGGGATGGCAACGCCAGTTGCTGCAGTTCTCCGTGCACCTGGTGGGAGGACACGGC
 TATAGCCTGCAGCTCACTGCACCCGTGGCGGCCAGCTGGCGCCACCACCGTCCACCCAGCGGCC
 TCCGTACCCCTCTCCACTTGGGACCAGGATCACGACCTCCGAGGGACAAGAACGAGGCC
 TCTGGAGGCTGGTGGTTGGCACCTGCAGCCATTCAACCGCCAGTACTTCCGCTCCATCCCA
 CAGCAGCGGCAGAACGTTAAGAAGGAAATCTTCTGGAAGACCTGGCGGGCCGACTACCCGCTGCAG
 40 GCCACCAACCATGTTGATCCAGCCATGGCAGCAGAGGCAGCCCTTAG (SEQ ID NO: 448).

A preferred polypeptide fragment of the invention comprises the following amino acid sequence: MAQWTSTGPGKPTRRGLGIPTASSGVWVRRCIASWGTATAAWPCSCGTGMA TPSCCSSPCTWVARTRPIACSSLHPWPASWAPPSPHPAASPYPSPPLGTRITTSAGTRTAPRASLEAGGL APAAIPTFNGPVLPPSHSSGRSLRRESSGRPAGRYYPLQATTMLIQPMAAEAS (SEQ ID NO: 5 449). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 19. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 19.

This gene is expressed primarily in osteoarthritic tissues, kidney cortex, bone 10 marrow, larynx carcinoma, and pineal gland, and to a lesser extent in placenta, stromal cells, epithelioid sarcoma, and a variety of other cells and tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are 15 not limited to, arthritis, kidney and urinary tract disorders, immune cell and system dysfunctions, disorders of the pineal gland and brain, and carcinomas, particularly of the larynx. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, 20 particularly those of the immune, connective, endocrine, and urinary systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene 25 expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 204 as residues: Pro-27 to Arg-34, Glu-60 to Gln-65, Cys-80 to Thr-87, Leu-109 to Ile-116, Ala-124 to Gln-133, Lys-158 to Leu-165, Arg-30 229 to Ser-234, Asp-236 to Trp-241, Thr-266 to Ser-271, Thr-328 to Lys-343, Ser-355 to Tyr-363, Ile-367 to Lys-376, Thr-382 to Tyr-387. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution and homology to angiopoietin-2 indicates that polynucleotides and polypeptides corresponding to this gene are useful for the regulation of angiogenesis, particularly since angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an 5 angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase and, like vascular endothelial growth factor, is essential for normal vascular development in the mouse. Angiopoietin-2 is a naturally occurring antagonist for Angiopoietin-1 and Tie2. Transgenic overexpression of Angiopoietin-2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, 10 Angiopoietin-2 is expressed only at sites of vascular remodeling. As such, this gene, or antagonists thereof, are useful in the diagnosis and treatment of arthritis, bone growth and remodeling, cancers (particularly those of bone, connective, lymphatic, and vascular tissues), ischaemia, lymphangiogenesis, lymphadnitis, lymphadenoma, lymphadenosis, lymphangitis, lymphangioendothelioma, lymphangioma, 15 lymphangiophlebitis, lymphangiosarcom, lymphatitis, lymphedema, lymphenteritis, angioma, angiomegaly, amgiomyosarcoma, amgiomyoma, angiomyolipoma, angiomyoneuroma, angioneuromyoma, angiosarcoma, angiostenosis, angiectasis, and as a lymphagogue. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or 20 receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly 25 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:85 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or 30 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1917 of SEQ ID NO:85, b is an

integer of 15 to 1931, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:85, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

5 The translation product of this gene was shown to have homology to the DPM2 mannosyl transferase gene, which is known to be important in O-linked oligosaccharide glycosylation of proteins. Mutations within this gen have been shown to result in reduced levels of O-glycosylation. Since defects in proper protein glycosylation can result in the development of antigen-specific antibodies to such 10 protein or altered pharmacokinetics (i.e., plasma half-life, in vivo clearance rate, etc.), the protein product of this gene may show utility in the treatment, diagnosis, and/or prevention of various abnormalities involving oligosaccharide metabolism, specifically those associated with O-glycosylation (See Genebank Accession No.R47201).

15 Preferred polypeptides of the invention comprise the following amino acid sequence: GHDLQPDAWLRWVLAGALCAGGWAVNYLPFFL (SEQ ID NO: 450), and/or FLYHYLPALTFQILLPV (SEQ ID NO: 451). Polynucleotides encoding these polypeptides are also provided.

20 The gene encoding the disclosed cDNA is believed to reside on chromosome 9. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 9.

25 This gene is expressed primarily in brain and melanocytes and to a lesser extent in breast, testis, and colon.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 30 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers, particularly of the brain and melanocyte, in addition to neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, central nervous system, PNS, epithelial tissues including other parts of the integumentary system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types

(e.g., neural, cancerous and wounded tissues) or bodily fluids (e.g.lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 205 as residues: His-31 to Gln-38, Tyr-65 to Ser-71. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in brain tissue, combined with the homology to a known enzyme involved in oligosaccharide metabolism, indicates polynucleotides and polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions. Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, meningitis, encephalitis, demyelinating diseases, peripheral neuropathies, neoplasia, trauma, congenital malformations, spinal cord injuries, ischemia and infarction, aneurysms, hemorrhages, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, depression, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, elevated expression of this gene product in regions of the brain indicates it plays a role in normal neural function. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:86 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically 5 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1078 of SEQ ID NO:86, b is an integer of 15 to 1092, where both a and b correspond to the positions of nucleotide 10 residues shown in SEQ ID NO:86, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

Preferred polypeptides of the invention comprise the following amino acid sequence: DICRLERAVCRDEPSALARALTWRQARAQAGA (SEQ ID NO: 453), XAPATXAW 15 DTVVPLPLRKQCQSGSARSHGAGRSALHSPLEGSRPKVPAGAVGKSLPGQSRPQHCLPPKQPKQCRPGL ELKEGPLLTPTRASVQLSHPACLYWAPLLWIRDPAV (SEQ ID NO: 454), XAPATXAWDTVV PPLPRKCQCQSGSARSHGAGRSALHSPLEGSRPKVPAGAVGKSL (SEQ ID NO: 455), PGQSRPQ HCLPPKQPKQCRPGLELKEGPLLTPTRASVQLSHPACLYWAPLLWIRDPAV (SEQ ID NO: 456), and/or MSPLPWPGPLPGGRQGHRLPCCSSGCAGGPTWPHCSSQS WPMXSARHXGLGHC 20 CPSSP (SEQ ID NO: 452). Polynucleotides encoding these polypeptides are also provided.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the 25 following amino acid sequence:

DICRLERAVCRDEPSALARALTWRQARAQAGAMLLFGLCWGPYVATLLL
SVLAXQRPLXPGLTLLSLSLGASAAAAPVAMGLGDQRYTAPWRAAAQRCLQGLWGRASRDSPGPSI
AYHPSSQSSVLDLN (SEQ ID NO: 457). Polynucleotides encoding these 30 polypeptides are also provided.

This gene is expressed primarily in cells of the immune system, including dendritic cells and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases and/or disorders affecting the immune system, particularly immunodeficiencies such as AIDS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, and cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in dendritic and T cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis, treatment and/or prevention of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Expression of this gene product in tonsils indicates a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g., by boosting immune responses.

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, scleroderma and tissues. Moreover, the protein may represent a secreted

factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:87 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 564 of SEQ ID NO:87, b is an integer of 15 to 578, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:87, and where b is greater than or equal to a + 14.

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 78

Preferred polypeptides of the invention comprise the following amino acid sequence: MERVGMEGEMVCGLGSACNNPSDLGQVPVPLWXSVSPPVFGXGNNGH (SEQ ID NO: 458), MRSFQDVSALEEWRGKDLEPTHSLLLLLPLRDLLVLGEIRKRQMEGVWKGWGNPEK 25 WFAVLALPVTRVTLGKSLSLSGXQFLHLYLERYVMGMTEVLSSSDL (SEQ ID NO: 459), MHPAGPTFMGSKPIREQQFGPDACLLLLCVAMAGTEASRAAQOCTSQKVRAQQDFSAHSNPXQIQLVEKL XPREGQGLAQGHSGCYRQSQDRKPFLRIPSPFPYTTLHLPFPDFAKNH (SEQ ID NO: 460), MHPAGPTFMGSKP IREQQFGPDACLLLLCVAMAGTEASRAAQOCTSQKVRAQQDFSAHSNP (SEQ ID NO: 461), PREGQGLAQGHSGCYRQSQDRKPFLRIPSPFPYTTLHLPFPDFAKNH (SEQ ID NO: 462), DPRVRKPPTATLTTARTRPTTD (SEQ ID NO: 463), and/or AALEASVPAIATQRSSRQASGPNCNSLMGLDPMKVGPAGCISWDSVEADQVAGASGGRIEVKGCGMENL 30 XRLHLGSGKGQXX (SEQ ID NO: 464). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in prostate and gall bladder.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders affecting the reproductive and gastrointestinal systems, including cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and urogenital systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, bile, seminal fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 207 as residues: Arg-21 to Glu-30. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in gall bladder indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis, prevention, and/or treatment of various metabolic disorders such as Tay-Sachs disease, phenylketonuria, galactosemia, porphyrias, and Hurler's syndrome. In addition, expression of this gene product in the prostate - while likely to be reflective of non-specific expression of a variety of genes in the testes - may nevertheless be indicative of a role for this gene product in normal prostate function, and may implicate this gene product in male fertility, and could even suggest its use as a male contraceptive. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement.

Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:88 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 685 of SEQ ID NO:88, b is an integer of 15 to 699, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:88, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 79

Preferred polypeptides of the invention comprise the following amino acid sequence: GXANPEDSVCILEGFSVTALSILQHLVCHSGAVRLPITVRSGGRFCCWGRKQEPGSQ XSDGD (SEQ ID NO: 466), AVQQQHRVPQTAHCPPPLVGPWGSPCPHQCQPLSVQHHRERSDHL HITLAVGASDWGQGALAHQA (SEQ ID NO: 467), PKTLPVISCPGSSVCSKCCQSASAQRHPC LACCWLSSSPCWRTTTSWLSSVPTQKAASCCCCTCTSHHGLTEWPWRHNGSSWNKRWCGSWLSLVCK SPLPPVTGSNCQCNVEVVRALTVMHLHQWLTVRRAGGPPRTDQQRRTVRCLRTVLLLHGLSQDKLFM MHCVEVLHQFDQVMPGVMSMLIRGLPDVTDCEEAALDDLCAAETDVEDPEVECG (SEQ ID NO: 468), and/or MLHRQWLTVRRAGGPPRTDQQRRTVRCLRTVLLLHGLSQDKLFMMHCVEVL HQFDQVMPGVMSMLIRGLPDVTDCEEAALDDLCAAETDVEDPEVECG (SEQ ID NO: 465).

Polynucleotides encoding these polypeptides are also provided.

In another embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream of the predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise the following amino acid sequence:

GXANPEDSVCILEGFSVTALSILQHLVCHSGAVRLPITVRSGGRFCCWGRK QEPGSQXSDGDMTSALRGVADDQGQHPLLKMLLHLLAFSSAATGHLQASVLTQCLKVLVKLAENTSCDF LPRFQCVFQVLPKCLSPETPLPSVLLAVELLSLLADHDQLAPQLCSHSEGCLLLLLYMYITSRPDRVAL ETQWLQLEQEVVWLLAKLGVQ EPLAPSHWLQLPV (SEQ ID NO: 469). Polynucleotides encoding these polypeptides are also provided.

The gene encoding the disclosed cDNA is believed to reside on chromosome 3. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 3.

This gene is expressed primarily in breast, prostate, and to a lesser extent in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders affecting the reproductive organs of both males and females, especially cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, seminal fluid, breast milk, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution primarily in breast, prostate, and to a lesser extent in testes indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of disorders affecting the reproductive organs of males and females, including but not limited to cancers. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:89 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general

formula of a-b, where a is any integer between 1 to 1112 of SEQ ID NO:89, b is an integer of 15 to 1126, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:89, and where b is greater than or equal to a + 14.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 80

The translation product of this gene shares sequence homology with epsilon-COP which is part of coatomers which are thought to be important in maintaining Golgi structure and in mediating ER-through- Golgi transport, and which can influence normal endocytic recycling of LDL receptors (See Genebank Accession No. 10 gi|2443869 (AC002985); all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: MSGQLDARPAALHPQGLAHPLWTCLLPRKGPEVPQRPPQLWVVSISVLQQHRGR AGPRDEQSVDVTNTTFLLMAASIYLHDQNPDAAALRALHQGDSLEW (SEQ ID NO: 470), 15 SVDVTNTTFLLMAASIYLHD (SEQ ID NO: 471), QNPDAALRALHQGDSLE (SEQ ID NO: 472), and/or RDSIVVAELDREMSR (SEQ ID NO: 473). Polynucleotides encoding these polypeptides are also provided.

A preferred polypeptide fragment of the invention comprises the following amino acid sequence: MLGLLLCPTPRAWLTLSGPVCFQGRDPLRSRGHGPSCGS (SEQ ID 20 NO: 474). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are 25 not limited to, disorders affecting the immune and reproductive systems, particularly of the mammary glands. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and reproductive systems, expression of 30 this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., reproductive, cancerous and wounded tissues) or bodily fluids (e.g., breast milk, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or

cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

- Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 209 as residues: Gly-24 to Gln-36, Gly-47 to His-66. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in breast tissue and homology to epsilon-COP indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of disorders affecting the immune and reproductive systems, including cancers, which arise from abnormalities in coatomer function, particularly of those tissues actively involved in secretory functions. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:90 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1023 of SEQ ID NO:90, b is an integer of 15 to 1037, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:90, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

The translation product of this gene shares sequence homology with the highly conserved epoxide hydrolase which is thought to have an important function in the catalysis of potentially toxic or carcinogenic epoxides into their corresponding, inert

diols (See e.g., Genbank Accession No. gi|485136; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides of the invention comprise the following amino acid sequence: HGFPEFWYSWR (SEQ ID NO: 475), ASHWLQQDQP (SEQ ID NO: 476),
5 PINHYRNIF (SEQ ID NO: 477), YPEMVMKLI (SEQ ID NO: 478),
PEFWYSWRYQLREF (SEQ ID NO: 479), HDWGGMIAW (SEQ ID NO: 480).
Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in benign and malignant prostate tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as
10 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of the prostate and liver, particularly cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For
15 a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., hepatic, prostate, cancerous and wounded tissues) or bodily fluids (e.g., lymph, seminal fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an
20 individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 210 as residues: Gln-38 to Pro-49, Glu-104 to Tyr-
25 109, His-127 to Lys-132, Thr-236 to Cys-243, Gln-328 to Asp-333, Lys-344 to Asp-351. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in tumors of prostate origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has
30 been indicated. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional

- supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Alternatively, homology to epoxide hydrolase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of
- 5 liver disorders and cancers (e.g., hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various wound-healing models and/or tissue trauma.
- 10 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:91 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is
- 15 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1302 of SEQ ID NO:91, b is an integer of 15 to 1316, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:91, and where b is greater than or equal to a + 14.
- 20
- FEATURES OF PROTEIN ENCODED BY GENE NO: 82**
- This gene is expressed primarily in merkel cells.
- Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a
- 25 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene
- 30 at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g. immune, cancerous and wounded tissues) or bodily fluids (e.g. lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample

taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 211 as residues: Lys-23 to Lys-29. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Expression of this gene product in immune tissue indicates 10 a role in the regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g. by boosting immune responses.

15 Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed 20 tumors and tissues. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

25 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:92 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is 30 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1007 of SEQ ID NO:92, b is an

integer of 15 to 1021, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:92, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 83

- 5 This gene is expressed primarily in liver tissue, particularly hepatomas. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of the liver, including cancers. Similarly, polypeptides and 10 antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic and hematopoietic systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., hepatic, cancerous and wounded tissues) 15 or bodily fluids (e.g., lymph, bile, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic 20 epitopes shown in SEQ ID NO: 212 as residues: Met-1 to Ser-7, His-66 to Phe-72. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in liver indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g., hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and 25 conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various wound-healing models and/or tissue trauma. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate 30 cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed

against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 5 related to SEQ ID NO:93 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 10 formula of a-b, where a is any integer between 1 to 1246 of SEQ ID NO:93, b is an integer of 15 to 1260, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:93, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

15 Preferred polypeptides of the invention comprise the following amino acid sequence: GSLPPKPIYLVVPR (SEQ ID NO: 481). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in skin.

Therefore, polynucleotides and polypeptides of the invention are useful as 20 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders affecting the skin, such as melanoma and wound healing, in addition to other disorders affecting the integumentary system. Similarly, 25 polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and skin, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., epithelial, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal 30 fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 213 as residues: Cys-56 to Pro-73, Pro-83 to Lys-92. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in skin and skin melanoma indicates that

- 5 polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of various skin disorders including skin tumors, in addition to other tumors where expression has been indicated. Representative uses are described in the "Biological Activity", "Hyperproliferative Disorders", "Infectious Disease", and "Regeneration" sections below, in Example 11, 19, and 20, and elsewhere herein.
- 10 Briefly, the protein is useful in detecting, treating, and/or preventing congenital disorders (i.e. nevi, moles, freckles, Mongolian spots, hemangiomas, port-wine syndrome), integumentary tumors (i.e. keratoses, Bowen's disease, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, mycosis fungoides, and Kaposi's sarcoma), injuries and inflammation of the skin (i.e. wounds, rashes, prickly heat disorder, psoriasis, dermatitis), atherosclerosis, urticaria, eczema, photosensitivity, autoimmune disorders (i.e., lupus erythematosus, vitiligo, dermatomyositis, morphea, scleroderma, pemphigoid, and pemphigus), keloids, striae, erythema, petechiae, purpura, and xanthelasma. In addition, such disorders may predispose increased susceptibility to viral and bacterial infections of the skin (i.e.,
- 15 cold sores, warts, chickenpox, molluscum contagiosum, herpes zoster, boils, cellulitis, erysipelas, impetigo, tinea, athlete's foot, and ringworm). Moreover, the protein product of this gene may also be useful for the treatment or diagnosis of various connective tissue disorders (i.e., arthritis, trauma, tendonitis, chondromalacia and inflammation, etc.), autoimmune disorders (i.e., rheumatoid arthritis, lupus,
- 20 scleroderma, dermatomyositis, etc.), dwarfism, spinal deformation, joint abnormalities, and chondrodysplasias (i.e. spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid). Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify
- 25 agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
- 30

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:94 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically 5 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 976 of SEQ ID NO:94, b is an integer of 15 to 990, where both a and b correspond to the positions of nucleotide 10 residues shown in SEQ ID NO:94, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

When tested against kidney K562 cell lines, supernatants removed from cells containing this gene activated the interferon-sensitive responsive element (ISRE) 15 pathway. Thus, it is likely that this gene activates kidney or endothelial cells through the ISRE signal transduction pathway. ISRE is a promoter element found upstream in many genes which are involved in the Jaks-STAT pathway. The Jaks-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells. Therefore, activation of the Jaks-STATs pathway, reflected by the binding of 20 the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. This gene maps to chromosome 10, and therefore, is used as a marker in linkage analysis for chromosome 10.

This gene is expressed primarily in placenta, and to a lesser extent in many other tissues or cells.
25 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, vascular disease including occlusion of vessels and arteries. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing 30 immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels is routinely detected in

certain tissues or cell types (e.g., reproductive, cancerous and wounded tissues) or bodily fluids (e.g., lymph, amniotic fluid, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in
5 healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 214 as residues: His-58 to Gly-68, Thr-76 to Arg-81. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in placenta combined with the biological activity data
10 indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. Expression within highly vascularized tissue and other cellular sources marked by proliferating cells indicates that this protein may play a role in the regulation of cellular division. Additionally, the expression in placenta indicates that this protein may play a role in
15 the proliferation, differentiation, and/or survival of hematopoietic cell lineages. In such an event, this gene is useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor cells. Similarly, embryonic development also involves decisions involving cell differentiation and/or apoptosis in
20 pattern formation. Thus this protein may also be involved in apoptosis or tissue differentiation and could again be useful in cancer therapy. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as,
25 antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:95 and may have been publicly available prior to conception of
30 the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1696 of SEQ ID NO:95, b is an integer of 15 to 1710, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:95, and where b is greater than or equal to a + 14.

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

This gene is Apolipoprotein M (See, e.g., Genbank Accession No. gb|AAD18084.1|(AF129756) and gb|AAD11443.1|(AF118393); all references available through these accessions are hereby incorporated by reference herein). The 10 protein components of human lipoproteins, apolipoproteins, allow the redistribution of cholesterol from the arterial wall to other tissues and exert beneficial effects on systems involved in the development of arterial lesions, like inflammation and hemostasis.

The gene encoding the disclosed cDNA is believed to reside on chromosome 15 6. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 6.

This gene is expressed primarily in fetal liver, fetal spleen, and to a lesser extent in adult liver, hepatocellular tumors, retina and testis.

Therefore, polynucleotides and polypeptides of the invention are useful as 20 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, proliferative disorders of the blood and tumors of the liver or disorders of lipid metabolism. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential 25 identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, metabolic, and hepatic systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., liver, hematopoietic, cancerous and wounded tissues) or bodily fluids (e.g., bile, lymph, serum, plasma, urine, synovial fluid and 30 spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 215 as residues: Glu-106 to Lys-120, Glu-136 to Tyr-141, Asn-148 to Pro-154. Polynucleotides encoding said polypeptides are also provided.

- 5 The tissue distribution of the gene product, ApoM, in fetal liver, and adult liver indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis, treatment and prevention of lipid metabolism disorders, including but not limited to, vascular disease, such as coronary artery disease, arteriosclerosis, and/or atherosclerosis. Additionally, The tissue distribution in fetal
- 10 liver and spleen indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in fetal tissues indicates a role in
- 15 regulating the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production; antigen presentation, or other processes that may also suggest a usefulness in the treatment of cancer e.g., by boosting immune responses.
- 20 Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and
- 25 in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or
- 30 immunotherapy targets for the above listed tissues. Alternatively, expression within liver tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g.

hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various
5 would-healing models and/or tissue trauma.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:96 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically
10 excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 767 of SEQ ID NO:96, b is an integer of 15 to 781, where both a and b correspond to the positions of nucleotide
15 residues shown in SEQ ID NO:96, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

This gene is expressed primarily in LPS treated neutrophils.
Therefore, polynucleotides and polypeptides of the invention are useful as
20 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, chronic or acute inflammatory disease, and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell
25 type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g.,hematopoietic, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such
30 a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in neutrophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic related disorders such as anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of 5 cells of hematopoietic lineages. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia. The gene product may also be involved in lymphopoiesis, 10 therefore, it can be used in immune disorders such as infection, inflammation, allergy, immunodeficiency, etc. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue 15 markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly 20 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:97 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or 25 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1099 of SEQ ID NO:97, b is an integer of 15 to 1113, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:97, and where b is greater than or equal to a + 14.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 88

The translation product of this gene shares sequence homology with prolylcarboxypeptidase which is thought to be important in the processing of

bioactive peptides like angiotensin and bradykinin (See Genbank Accession No. gb|AAA99891.1]; all references available through this accession are hereby incorporated by reference herein).

Preferred polypeptides comprise the following amino acid sequence:

5 LVFAEHRYYGKSLPFG (SEQ ID NO: 482), EQALADFAEL (SEQ ID NO: 483),
GGSYGGMLSAYLRMKYPH (SEQ ID NO: 484), NIIFSGNGNLDPWAGGG (SEQ ID NO:
485), AMMDYPYPTDFLGPLPANPVKV (SEQ ID NO: 486), and/or FYTGNEGD (SEQ
ID NO: 487). Also preferred are the polynucleotides encoding these polypeptides.

An additional preferred polypeptide fragment of the invention comprises the
10 following amino acid sequence:

MGSAPWAPVLLALGLRGLQAGARSGPRLPGALLPAASGPLQLRALRQQDL
PSALPGVGQVLGPGGRGAHLLLHWERGRVGLRQQLGLRRGLAAERGALLVFAEHRYYGKSLPFGAQSTQ
RGHTELLTVEQALADFAELLRALRRDLGAQDAPAIAGGGSYGGMLSAYLRMKYPHLVAGALAASAPVLS
VAGLGDSNQFFRDVTADFEGQSPKCTQGVREAFRQIKDLFLQGAYDTVRWEFGTCQPLSDEKDLTQLFM
15 FARNAFTVLAMMDYPYPTDFLGPLPANPVKGCDRLSEAQRITGLRALAGLVYNASGSEHCYDIYRLY
HSCADPTGCGTPDARAWDYQACTEINLTFASSNVTDMPDLPFTDELQRQRYCLDTWGVVWPRPDWLTS
FWGGDLRAASNIIIFSNGNLDPWAGGGIRRNLSASVIAVTIQGGAHLDLRASHPEDPASVVEARKLEAT
IIGEWVKAARREQQPALRGGPRLSL (SEQ ID NO: 488). Polynucleotides encoding these
polypeptides are also provided.

20 This gene is expressed primarily in uterine cancer, testis, and to a lesser extent
in lymph nodes, dendritic cells and HL60 cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as
reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions which include, but are
25 not limited to, uterine cancer, reproductive, and immune disorders. Similarly,
polypeptides and antibodies directed to these polypeptides are useful in providing
immunological probes for differential identification of the tissue(s) or cell type(s). For
a number of disorders of the above tissues or cells, particularly of the reproductive
system, expression of this gene at significantly higher or lower levels is routinely
30 detected in certain tissues or cell types (e.g., reproductive, cancerous and wounded
tissues) or bodily fluids (e.g., amniotic fluid, seminal fluid, lymph, serum, plasma,
urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an
individual having such a disorder, relative to the standard gene expression level, i.e.,

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 217 as residues: Gly-23 to Ala-30, Pro-44 to Phe-54, 5 Glu-69 to Pro-77, Gln-142 to His-148, Phe-232 to Gly-242, Pro-271 to Leu-278, Ser-340 to Asp-347, Pro-365 to Asp-371, Asp-398 to Leu-406, Arg-500 to Pro-505. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in uterine cancer and homology to prolylcarboxypeptidase indicates that the protein product of this gene would be useful 10 for diagnosis, treatment and prevention of diseases associated with the reproductive system including uterine cancer, as well as, cardiovascular diseases where prolylcarboxypeptidases primary substrate, angiotension, has its greatest affect. In addition, the putative location of prolylcarboxypeptidase within the lysosomal compartment of cells indicates that polynucleotides and polypeptides corresponding 15 to this gene are useful for the diagnosis, prevention, and/or treatment of various metabolic disorders such as Tay-Sachs disease, phenylketonuria, galactosemia, porphyrias, and Hurler's syndrome. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to 20 its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are 25 related to SEQ ID NO:98 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general 30 formula of a-b, where a is any integer between 1 to 1709 of SEQ ID NO:98, b is an integer of 15 to 1723, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:98, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

The translation product of this gene shares sequence homology with the human CGI-06 protein (See, e.g. Genbank Accession No.

- 5 gb|AAD27715.1|AF132940_1 (AF132940); all references available through this accession are hereby incorporated by reference herein). When tested against the myeloid cell line, U937, supernatants removed from cells containing this gene activated the GAS (gamma activation site) pathway. Thus, it is likely that this gene activates myeloid cells through the Jaks-STAT signal transduction pathway. The GAS
10 (gamma activation site) is a promoter element found upstream in many genes which are involved in the Jaks-STAT pathway. The Jaks-STAT pathway is a large, signal transduction pathway involved in the differentiation and proliferation of cells.
Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS element, can be used to indicate proteins involved in the proliferation and
15 differentiation of cells.

The gene encoding the disclosed cDNA is believed to reside on chromosome
20. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 20.

- This gene is expressed primarily in various tumors including endometrial
20 tumors, adenocarcinoma, breast cancer, osteosarcoma, chondrosarcoma, uterine and pancreas tumors and to a lesser extent in embryonic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are
25 not limited to, identification and treatment of many types of solid tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the major organs, expression of this gene at significantly higher or lower levels is routinely detected in
30 certain tissues or cell types (e.g., skeletal, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., breast milk, lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such

a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred polypeptides of the present invention comprise immunogenic epitopes shown in SEQ ID NO: 218 as residues: Pro-25 to Arg-31, Thr-52 to Val-63, 5 Asn-129 to Lys-135, Gln-197 to Trp-202, Thr-230 to Glu-236, Pro-242 to Tyr-248, Leu-280 to Pro-291, Ser-348 to Ser-356, Pro-362 to Gln-368, Thr-398 to His-406, Trp-430 to Leu-435, Glu-499 to Gly-504. Polynucleotides encoding said polypeptides are also provided.

The tissue distribution in solid tumors combined with the GAS-element 10 activity indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. Expression within embryonic tissue and other cellular sources marked by proliferating cells indicates that this protein may play a role in the regulation of cellular division. Representative uses are described in the "Hyperproliferative Disorders" and 15 "Regeneration" sections below and elsewhere herein. Briefly, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain 20 neurodegenerative disorders, such as spinal muscular atrophy (SMA). Because of potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may also act as a morphogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides of the present invention are useful in treating, 25 detecting, and/or preventing said disorders and conditions, in addition to other types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and is useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases.

The protein is useful in modulating the immune response to aberrant 30 polypeptides, as may exist in proliferating and cancerous cells and tissues. The protein can also be used to gain new insight into the regulation of cellular growth and proliferation. Additionally, the expression in hematopoietic cells and tissues indicates

that this protein may play a role in the proliferation, differentiation, and/or survival of hematopoietic cell lineages. In such an event, this gene is useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor 5 cells. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

10 Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:99 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is 15 cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2073 of SEQ ID NO:99, b is an integer of 15 to 2087, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:99, and where b is greater than or equal to a + 14.

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

This gene is expressed primarily in brain medulloblastoma cells. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 25 biological sample and for diagnosis of brain medulloblastoma and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly 30 higher or lower levels is routinely detected in certain tissues or cell types (e.g., neural, cancerous and wounded issues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an

individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in medulloblastoma indicates that polynucleotides and 5 polypeptides corresponding to this gene are useful for the detection, treatment, and/or prevention of neurodegenerative disease states, behavioral disorders, or inflammatory conditions Representative uses are described in the "Regeneration" and "Hyperproliferative Disorders" sections below, in Example 11, 15, and 18, and elsewhere herein. Briefly, the uses include, but are not limited to the detection, 10 treatment, and/or prevention of Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and preception. In addition, the gene or gene product may also play a role in the 15 treatment and/or detection of developmental disorders associated with the developing embryo or disorders of the cardiovascular system. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

Many polynucleotide sequences, such as EST sequences, are publicly 20 available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:100 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or 25 more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 737 of SEQ ID NO:100, b is an integer of 15 to 751, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:100, and where b is greater than or equal to a + 14.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 91

This gene maps to the chromosome X, and therefore, is used as a marker in linkage analysis for chromosome X.

Preferred polypeptides of the invention comprise the following amino acid sequence: CSVFPPSLWFYLPFLVFDGDVQ (SEQ ID NO: 489), GVSLPLLGDASQLGYLGVRDALEEALCLFSDVQLCAGRTSALKAXRQGRSLQRILLPFVWLCPAPQRWSLQRQAGLLELRWAPPS
5 SSFLAALFTPSSLNGGRPSPSLTAXLQFDLRLLC (SEQ ID NO: 490), and/or VCRGFCC LLFGCALPPRGGVYRGRQASLNCGGLHRVRVSWPLCLPPQASAMVGA PPPASLPXCSLISDCCASNX (SEQ ID NO: 491). Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in spleen from chronic lymphocytic leukemia patients.

10 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, chronic lymphocytic leukemia, and other immune disorders, particularly proliferative diseases. Similarly, polypeptides and antibodies directed to 15 these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, 20 plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in spleen from chronic lymphocytic leukemia patients 25 indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders.

Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product in leukemia cells indicates a role in the 30 regulation of the proliferation; survival; differentiation; and/or activation of potentially all hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or

other processes that may also suggest a usefulness in the treatment of cancer e.g., by boosting immune responses.

Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. In addition, this gene product may have commercial utility in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:101 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1209 of SEQ ID NO:101, b is an integer of 15 to 1223, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:101, and where b is greater than or equal to a + 14.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 92

The translation product of this gene was shown to have homology to the human reverse transcriptase gene (See e.g., Genbank Accession No. gi|439877; all references available through this accession are hereby incorporated by reference herein).

30 Preferred polypeptides of the invention comprise the following amino acid sequence: MSHKHMRRSATSYIIRERQIKIIIVRYHYTPIMTT (SEQ ID NO: 492), IRERQIK IIVRYHYTP (SEQ ID NO: 493), KKTCTMFIATLFT (SEQ ID NO: 494), SVASVFIP

LKVSVTKQFIFXFFFFLRRSLAPAWVAERXTSQETKQNKKTPQLRGKVAHACDPITLGGRRWEVGESL
EARSPS (SEQ ID NO: 496) and/or EKIFAKHLSVKGL (SEQ ID NO: 495).

Polynucleotides encoding these polypeptides are also provided.

This gene is expressed primarily in microvascular endothelial cells.

5 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, various diseases of the cardiovascular and circulatory systems.
Similarly, polypeptides and antibodies directed to these polypeptides are useful in
10 providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., vascular, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid
15 and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in microvascular endothelial cells combined with the homology to the conserved human gene for reverse transcriptase indicates that
20 polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders, particularly vascular disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Alternatively expression within microvascular tissue, a tissue
25 marked by proliferating cells, indicates that this protein may play a role in the regulation of cellular division. As such, this protein may play a role in the proliferation, differentiation, and/or survival of hematopoietic cell lineages. In such an event, this gene is useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early
30 hematopoietic stem and committed progenitor cells. Similarly, embryonic development also involves decisions involving cell differentiation and/or apoptosis in pattern formation. Thus this protein may also be involved in apoptosis or tissue

differentiation and could again be useful in cancer therapy. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, 5 antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:102 and may have been publicly available prior to conception 10 of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 996 of SEQ ID NO:102, b is an 15 integer of 15 to 1010, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:102, and where b is greater than or equal to a + 14.

FEATURES OF PROTEIN ENCODED BY GENE NO: 93

The translation product of this gene shares sequence homology with the 20 Y43F4B.5 protein from *Caenorhabditis elegans* (See Genbank Accession No. gnl|PID|e1247424 (AL021481)). Moreover, the translation product also shares homology to phosphoglucomutase proteins (See Genbank Accession No. emb|CAA16334.1| (AL021481)). Based on the sequence similarity, The translation product of this gene is expected to share at least some biological activities with 25 phosphoglucomutase proteins. Such activities are known in the art, some of which are described elsewhere herein.

Preferred polypeptides of the invention comprise the following amino acid sequence: ARGKTVLFAFEEAIGYMCCPFVLDKGVSAAVISAEFLATKNLSLSQQLKAIYVEYG
YHITKASYFICHQETIKKLFENLRNYDGKNNYPKACGKFEISAIRDLTTGYDDSQPDKKAVLPTSKSS
30 QMITFTFANGGVATMRTSGTEPKIKYYAELCAPPNSDPEQLKKELNELVSAIEHFQPQKYNLQPKAD
D (SEQ ID NO: 498), YMCCPFVLDKGVSAAVISAEFLATKNLSLSQQLKAIYVEYGYHIT
KASYFICHQETIKKLFENLRNYDGKNNYPKACGKFEISAIRDLTTGYDDSQPDKKAVLPTSKSSQMIT
FTPANGGVATMRTSGTEPKIKYYAELCAPPNSDPEQLKKELNELVSAIEHFQPQKYNLQPKAD

(SEQ ID NO:497), DKDGVSAAVISAE LASFL (SEQ ID NO: 499), RDLTTGYDDSQPD (SEQ ID NO: 500), KAVLPTSKSSQMITF (SEQ ID NO: 501), and/or TMRTSGTEPKIKYYAEL (SEQ ID NO: 502). Polynucleotides encoding these polypeptides are also provided.

- 5 The gene encoding the disclosed cDNA is believed to reside on chromosome 4. Accordingly, polynucleotides related to this invention are useful as a marker in linkage analysis for chromosome 4.

This gene is expressed primarily in placenta, fetal spleen, and to a lesser extent in prostate, T-cells and neutrophils.

- 10 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, various diseases of the immune and reproductive systems, including cancer. Similarly, polypeptides and antibodies directed to these polypeptides are 15 useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and reproductive systems, expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, reproductive, cancerous and wounded tissues) or bodily fluids (e.g., 20 seminal fluid, lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

- Preferred polypeptides of the present invention comprise immunogenic 25 epitopes shown in SEQ ID NO: 222 as residues: Leu-23 to Met-30. Polynucleotides encoding said polypeptides are also provided.

- The tissue distribution in fetal spleen indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the 30 "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or

activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g., by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the

5 natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to

10 transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other

15 blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Moreover, the protein is useful in the detection, treatment, and/or prevention of a variety of vascular disorders and conditions, which include, but are

20 not limited to microvascular disease, vascular leak syndrome, aneurysm, stroke, embolism, thrombosis, coronary artery disease, arteriosclerosis, and/or atherosclerosis. Furthermore, the protein may also be used to determine biological activity, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional

25 supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:103 and may have been publicly available prior to conception 30 of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or

more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1972 of SEQ ID NO:103, b is an integer of 15 to 1986, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:103, and where b is greater than or equal to a + 14.

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 94

This gene is expressed primarily in activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 10 biological sample and for diagnosis of diseases and conditions which include, but are not limited to, various diseases and/or disorders of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, 15 expression of this gene at significantly higher or lower levels is routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., lymph, serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily 20 fluid from an individual not having the disorder.

The tissue distribution in activated monocytes indicates polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 25 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting 30 immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency

diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lens tissue injury, demyelination, systemic lupus erythematosus, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Furthermore, the protein may also be used to determine biological activity, raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:104 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence is cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1319 of SEQ ID NO:104, b is an integer of 15 to 1333, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:104, and where b is greater than or equal to a + 14.

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	NT Total Seq.	5' NT of Clone Seq.	3' NT of Clone Seq.	5' NT of Start Codon	5' NT of AA SEQ ID NO: Y	First AA of Sig Pep	Last AA of Sig Pep	First AA of Secreted Portion	Last AA of Secreted Portion
1	HWBBP10	209782 04/20/98	pCMVSPORT 3.0	11	899	1	899	66	130	1	26	27
1	HWBBP10	209782 04/20/98	pCMVSPORT 3.0	105	944	1	944	55	224	1	26	27
2	HWBDO80	209782 04/20/98	pCMVSPORT 3.0	12	1140	1	1140	166	131	1	22	23
3	HWHGU54	209782 04/20/98	pCMVSPORT 3.0	13	1445	1	1445	145	132	1	19	20
4	HYACI76	209782 04/20/98	pCMVSPORT 3.0	14	1208	1	1148	385	385	133	1	25
5	HBHMA23	209782 04/20/98	pSport1 3.0	15	1175	2	1175	71	134	1	24	25
5	HBHMA23	209782 04/20/98	pSport1	106	1172	1	1172	70	225	1	24	25
6	HCE3G20	209782 04/20/98	Uni-ZAP XR	16	2374	1	2350	57	135	1	42	43
7	HCEIP80	209782 04/20/98	Uni-ZAP XR	17	1595	1	1595	90	136	1	21	22
8	HCUDD24	209782 04/20/98	ZAP Express	18	1287	89	1287	314	137	1	19	20

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	5' NT of Total NT Seq. NT	3' NT of Clone Seq.	5' NT of AA of Start Signal Codon	AA SEQ ID NO: Y	First AA of Sig Pep	Last AA of Sig Pep	First AA of Secreted Portion	Last AA of ORF
9	HDPTD15	209782 04/20/98	pCMVSPORT 3.0	1396	1	1396	223	223	138	1	18
10	HDPWU34	209782 04/20/98	pCMVSPORT 3.0	20	1277	860	1277	117	139	1	23
10	HDPWU34	209782 04/20/98	pCMVSPORT 3.0	107	427	1	427	111	226	1	16
11	HEOOV79	209782 04/20/98	pSPORT1	21	1781	1	1767	203	140	1	23
12	HFKET93	209782 04/20/98	Uni-ZAP XR	22	1491	1	1491	75	141	1	15
13	HFTDL56	209782 04/20/98	Uni-ZAP XR	23	1839	32	1838	93	93	142	1
14	HFXJX44	209782 04/20/98	Lambda ZAP II	24	1384	1	1384	98	98	143	1
15	HKACU58	209782 04/20/98	pCMVSPORT 2.0	25	1681	1	1681	98	98	144	1
15	HKACU58	209782 04/20/98	pCMVSPORT 2.0	108	1708	69	1708	117	117	227	1
16	HKFBC53	209782 04/20/98	ZAP Express	26	1949	1	1906	41	41	145	1
16	HLDBQ19	209226 08/28/97	pCMVSPORT 3.0	109	1487	401	1487	534	534	228	1

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID	Total NT NO: X	5' NT of Clone Seq.	3' NT of Clone Seq.	5' NT of Start Codon	AA SEQ ID of Signal Pep.	First AA of Sig Pep	Last AA of Sig Pep	First AA of Secreted Portion	Last AA of ORF
16	HLDBQ19	97958 03/13/97	pCMV Sport 3.0	110	1525	401	1480	534	229	1	22	23
17	HLTHR66	209782 04/20/98	Uni-ZAP XR	27	2286	1	2286	5	5	146	1	34
18	HLYBA69	209782 04/20/98	pSport1	28	530	1	530	89	89	147	1	29
19	HNTMX29	209782 04/20/98	pSport1	29	1296	756	1291	118	118	148	1	31
19	HNTMX29	209782 04/20/98	pSport1	111	552	1	552	18	18	230	1	18
20	HNTNC20	209782 04/20/98	pSport1	30	1979	1	1979	270	270	149	1	19
21	HNTNI01	209782 04/20/98	pSport1	31	1274	1	1114	306	306	150	1	33
22	HOHCK70	209782 04/20/98	pCMV Sport 2.0	32	1531	1	1531	245	245	151	1	27
23	HSMBE69	209782 04/20/98	pSport1	33	2090	1	2090	69	69	152	1	18
24	HT4FW61	209782 04/20/98	Uni-ZAP XR	34	1006	31	1006	107	107	153	1	38
25	HYABK95	209782 04/20/98	pCMV Sport 3.0	35	1787	1	1787	267	267	154	1	26

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	5' NT of Total Clone Seq.	3' NT of NT Seq.	5' NT of AA of Start Codon	NT SEQ ID NO: Y	AA of Signal Pep	Last AA of Sig Pep	First AA of Secreted Portion	Last AA of ORF
26	HYACE88	209782 04/20/98	pCMV Sport 3.0	1201	1	1180	316	155	1	16	17
27	HOABR60	209782 04/20/98	Uni-ZAP XR	37	1896	1	903	45	45	156	1
27	HOABR60	209782 04/20/98	Uni-ZAP XR	112	925	1	903	45	45	231	1
28	HAGCT73	209782 04/20/98	Uni-ZAP XR	38	1152	1	1152	119	119	157	1
29	HAPOM45	209782 04/20/98	Uni-ZAP XR	39	1017	34	1017	98	98	158	1
30	HCEIQ69	209782 04/20/98	Uni-ZAP XR	40	1777	1	1777	39	39	159	1
31	HAGFI62	209782 04/20/98	Uni-ZAP XR	41	1003	368	992	429	429	160	1
32	HAGGS43	209782 04/20/98	Uni-ZAP XR	42	1201	1	1201	62	62	161	1
33	HBJHP03	209852 05/07/98	Uni-ZAP XR	43	1176	1	1176	185	185	162	1
34	HCHPF68	209852 05/07/98	pSport1	44	569	1	569	186	186	163	1
35	HDPJF37	209852 05/07/98	pCMV Sport 3.0	45	986	1	986	196	196	164	1

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	NT Total Seq.	5' NT of Clone Seq.	3' NT of Clone Seq.	5' NT of Start Codon	5' NT of AA SEQ ID NO: Y	First AA Sig Pep	Last AA Sig Pep	First AA Sig Portion	Last AA Sig Portion
36	HSDEZ20	209852 05/07/98	Uni-ZAP XR	46	1540	1	1540	66	66	165	1	42
37	HTEKU58	209852 05/07/98	Uni-ZAP XR	47	792	73	792	93	93	166	1	30
38	HLTBL58	209852 05/07/98	Uni-ZAP XR	48	1497	1	1497	26	26	167	1	20
39	HPWDJ42	209852 05/07/98	Uni-ZAP XR	49	1340	1	1340	149	149	168	1	18
39	HPWDJ42	209852 05/07/98	Uni-ZAP XR	113	1340	1	1340	149	149	232	1	21
39	HPWDJ42	209852 05/07/98	Uni-ZAP XR	114	813	1	813	161	161	233	1	18
40	HRACD15	209852 05/07/98	pCMV Sport 3.0	50	1539	24	1539	252	252	169	1	40
40	HRACD15	209852 05/07/98	pCMV Sport 3.0	115	1681	24	1453	252	252	234	1	40
41	HSIAC80	209852 05/07/98	Uni-ZAP XR	51	1423	1	1423	178	178	170	1	17
42	HAGFD18	209852 05/07/98	Uni-ZAP XR	52	1364	94	1364	261	261	171	1	21
43	HMTAT59	209852 05/07/98	pCMV Sport 3.0	53	2288	501	2276	301	301	172	1	14

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	NT Total Seq.	3' NT of Clone Seq.	5' NT of Clone Seq.	First AA of Start Codon	5' NT of SEQ ID NO: Y	AA of Signal Pep	First AA of Sig Pep	Last AA of Sig Pep	First AA of Secreted Portion	Last AA of Secreted Portion	ORF
44	HTDTGC86	209852 05/07/98	pCMVSPORT 2.0	54	1512	1	1512	351	351	173	1	27	28	200
45	HAGDI35	209852 05/07/98	Uni-ZAP XR	55	1357	1	1338	318	318	174	1	25	26	93
46	HELHN47	209852 05/07/98	Uni-ZAP XR	56	1989	883	1989	778	778	175	1	30	31	404
47	HPRBC80	209852 05/07/98	Uni-ZAP XR	57	2543	1245	2543	94	94	176	1	30	31	387
47	HPRBC80	209852 05/07/98	Uni-ZAP XR	116	2052	275	2032	404	404	235	1	26	27	69
48	HAQAR23	209852 05/07/98	Uni-ZAP XR	58	777	66	777	92	92	177	1	19	20	145
49	HAIFL18	209852 05/07/98	Uni-ZAP XR	59	879	1	879	274	274	178	1	29	30	140
50	HIPAY76	209852 05/07/98	Uni-ZAP XR	60	1161	1	1161	134	134	179	1	21	22	127
51	HUSXE77	209852 05/07/98	pSport1	61	687	1	687	156	156	180	1	20	21	146
52	HUFEF62	209852 05/07/98	pSport1	62	518	1	518	190	190	181	1	28	29	68
52	HUFEF62	209852 05/07/98	pSport1	117	539	1	539	182	182	236	1	28	29	68

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	5' NT of Total Clone Seq. NT Seq. X	3' NT of Clone Seq.	5' NT of Start Codon	S' NT First AA SEQ ID NO: Y	AA of Signal Pep	Last AA of Sig Pep	First AA of Secreted Portion	Last AA of ORF
53	HTWJK32	209852 05/07/98	Lambda ZAP II	63	911	211	911	376	376	182	1
54	HTWDF76	209852 05/07/98	pSport1	64	963	1	963	316	316	183	1
55	HTPBN68	209852 05/07/98	Uni-ZAP XR	65	1001	1	1001	429	429	184	1
56	HTOIY21	209852 05/07/98	Uni-ZAP XR	66	1558	1	1558	91	91	185	1
57	HTLDD53	209852 05/07/98	Uni-ZAP XR	67	1322	1	1322	162	162	186	1
58	HTLFG05	209852 05/07/98	Uni-ZAP XR	68	865	1	717	137	137	187	1
58	HTLFG05	209852 05/07/98	Uni-ZAP XR	118	882	1	882	137	137	237	1
59	HDPXR23	209852 05/07/98	pCMVSPORT 3.0	69	1150	20	1150	49	49	188	1
59	HDPXR23	209852 05/07/98	pCMVSPORT 3.0	119	1193	1	1189	95	95	238	1
60	HSIAC45	209852 05/07/98	Uni-ZAP XR	70	1398	1	1398	12	12	189	1
61	HSRGW16	209853 05/07/98	Uni-ZAP XR	71	1557	180	1007	72	72	190	1

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	Total NT Seq.	5' NT of Clone Seq.	3' NT of Clone Seq.	5' NT of Signal Seq.	AA ID of Start Codon	First AA of Signal Pep.	SEQ ID NO: Y	Last AA of Signal Pep.	First AA of Secreted Portion	Last AA of Secreted Portion
61	HSRGW16	209853 05/07/98	Uni-ZAP XR	120	1338	1	1338	170	170	239	1	47	48
62	HSSJC35	209853 05/07/98	Uni-ZAP XR	72	1163	1	1163	55	55	191	1	30	31
62	HSSJC35	209853 05/07/98	Uni-ZAP XR	121	1183	1	1183	66	66	240	1	30	31
63	HTEAX23	209853 05/07/98	Uni-ZAP XR	73	1486	1	1486	72	72	192	1	20	21
64	HTGCH22	209853 05/07/98	Uni-ZAP XR	74	1553	1	1553	12	12	193	1	29	30
65	HTJMA95	209853 05/07/98	pCMVSPORT 2.0	75	1650	198	1569	527	527	194	1	22	23
66	HHEAA08	209853 05/07/98	pCMVSPORT 3.0	76	2150	1	2150	88	88	195	1	38	39
66	HHEAA08	209853 05/07/98	pCMVSPORT 3.0	122	615	1	615			311	241	1	20
67	HBQAA49	209853 05/07/98	Lambda ZAP II	77	1592	1	1592	197	197	196	1	37	38
68	HDDBI32	209853 05/07/98	pCMVSPORT 3.0	78	1579	598	1184	103	103	197	1	30	31
68	HDDBI32	209853 05/07/98	pCMVSPORT 3.0	123	587	1	587	51	51	242	1	35	36

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	NT Total Seq.	5' NT of Clone Seq.	3' NT of Clone Seq.	5' NT of Start Codon	5' NT of AA SEQ ID NO: Y	First AA of Sig Pep	Last AA of Sig Pep	First AA of AA Secreted Portion	Last AA of AA Secreted Portion
69	HBIBF16	209853 05/07/98	Uni-ZAP XR	79	1396	1	1396	15	198	1	35	36
70	HBCAY05	209853 05/07/98	Uni-ZAP XR	80	1230	576	1209	627	199	1	22	23
71	HCUCK44	209853 05/07/98	ZAP Express	81	1139	573	1133	593	200	1	30	31
72	HCE2W56	209853 05/07/98	Uni-ZAP XR	82	1409	1	1409	61	201	1	21	22
73	HCWAG01	209853 05/07/98	ZAP Express	83	714	1	714	192	202	1	25	26
74	HLDBY02	209853 05/07/98	pCMV Sport 3.0	84	1097	1	1097	326	203	1	30	31
75	HDRMI82	209853 05/07/98	pSport1	85	1931	540	1900	170	204	1	25	26
75	HDRMI82	209853 05/07/98	pSport1	124	1379	1	1357	328	243	1	30	31
76	HEPCU48	209853 05/07/98	Uni-ZAP XR	86	1092	1	1092	98	205	1	26	27
77	HDPRK33	209853 05/07/98	pCMV Sport 3.0	87	578	1	573	99	206	1	44	45
78	HKGAX42	209853 05/07/98	pSport1	88	699	1	699	69	207	1	18	19

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	NT Total NT Seq.	5' NT of Clone Seq.	3' NT of Clone Seq.	5' NT of Start Codon	5' NT of Signal Pep.	AA SEQ ID NO: Y	First AA Sig Pep	Last AA Sig Pep	First AA of Secreted Portion	Last AA of Secreted Portion	
79	HLMAZ95	209853 05/07/98	Uni-ZAP XR	89	1126	7	1126	187	208	1	33	34	161	
80	HLMFC07	209853 05/07/98	Lambda ZAP II	90	1037	1	1037	203	209	1	17	18	227	
80	HLMFC07	209853 05/07/98	Lambda ZAP II	125	1268	1	1268	203	244	1	30	31	39	
81	HL2AG87	209853 05/07/98	Uni-ZAP XR	91	1316	1	1316	110	210	1	37	38	351	
82	HKGCO27	209853 05/07/98	pSport1	92	1021	1	1021	313	313	1	26	27	93	
82	HKGCO27	209853 05/07/98	pSport1	126	1311	1	1311	57	245	1	26	27	47	
83	HLDCE79	209853 05/07/98	pCMV Sport 3.0	93	1260	1	1260	342	342	1	63	64	101	
83	HLDCE79	209853 05/07/98	pCMV Sport 3.0	127	1249	1	1249	298	298	1	30	31	34	
84	HERAD40	209853 05/07/98	Uni-ZAP XR	94	990	1	990	85	213	1	38	39	98	
85	HFOXB55	209853 05/07/98	pSport1	95	1710	1	1710	138	214	1	34	35	81	
86	HFVGZ42	209853 05/07/98	pBluescript	96	781	1	781	71	71	215	1	22	23	188

Gene No.	cDNA Clone ID	ATCC Deposit Nr and Date	NT SEQ ID NO: X	5' NT of Total NT Seq.	3' NT of Clone Seq.	5' NT of AA of Start Codon	NT SEQ ID NO: Y	AA of Signal Pep	Last AA of Sig Pep	First AA of Secreted Portion	Last AA of ORF
87	HNHAF39	209853 05/07/98	Uni-ZAP XR	97	1113	1	1113	332	216	1	30
88	HNTSW57	209853 05/07/98	pSport1	98	1723	181	1723	19	19	217	1
88	HNTSW57	209853 05/07/98	pSport1	128	1660	1	1660	38	38	247	1
89	HOGCK20	209853 05/07/98	pCMVSPORT	99	2087	1	2087	57	57	218	1
89	HOGCK20	209853 05/07/98	pCMVSPORT	129	2075	1	2054		53	248	1
90	HMDAL49	209853 05/07/98	Uni-ZAP XR	100	751	1	751	52	52	219	1
91	HLYES38	209853 05/07/98	pSport1	101	1223	1	1223	69	69	220	1
92	HMECK83	209853 05/07/98	Lambda ZAP II	102	1010	1	1010	50	50	221	1
93	HSHAX21	209853 05/07/98	Uni-ZAP XR	103	1986	1	1986	177	177	222	1
94	HMQAG66	209853 05/07/98	Uni-ZAP XR	104	1333	1	1333	657	657	223	1

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related 5 DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits 10 contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." 15 and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is 20 identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal 25 peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization 30

probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID
5 NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or
10 deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

15 Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC,
20 as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a
25 suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed
30 herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

5 The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

10 The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification , such as multiple histidine residues, or an additional sequence for stability during
15 recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40
20 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

25 Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the
30 information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of

these methods is in the range of 75-80%. (von Heinje, *supra*.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted 5 polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., *Protein Engineering* 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis 10 of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., 15 + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides 25 encoding such polypeptides, are contemplated by the present invention.

Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential 30 properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95%

"identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the 5 polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire 10 sequence shown in Table 1, the ORF (open reading frame), or any fragment specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the present invention can be determined conventionally using known 15 computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences 20 are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identiy are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 25 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' 30 truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence

that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using 5 the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

10 For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number 15 of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject 20 sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes 25 of the present invention.

25 By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other 30 words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid.

These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

- 5 As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, 10 can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity.
- 15 Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.
- 20 If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues 25 of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from 30 the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and

C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

5 For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C-
10 termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no
15 residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual
20 corrections are to be made for the purposes of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced
25 by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E.
30 coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an

organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

5 Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988
10 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216
(1988).)

15 Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1 α . They used random mutagenesis to generate over 3,500 individual IL-1 α mutants that averaged 2.5 amino acid changes per variant over
20 the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in
25 activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic

activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of

the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention
5 include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for
10 example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of
15 charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev.
20 Therapeutic Drug Carrier Systems 10:307-377 (1993).)

A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of the present invention having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions,
25 still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions. Of course, in order of ever-increasing preference, it is highly preferable for a polypeptide to have an amino acid sequence which comprises the amino acid sequence of the present invention, which contains at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1
30 amino acid substitutions. In specific embodiments, the number of additions, substitutions, and/or deletions in the amino acid sequence of the present invention or fragments thereof (e.g., the mature form and/or other fragments described herein), is

1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, conservative amino acid substitutions are preferable.

Polynucleotide and Polypeptide Fragments

- 5 In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt 10 in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.
- 15 Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-20 1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini.
- 25 Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein.

- In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the

invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" 5 includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the 10 carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are 15 preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic 20 regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide 25 fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable 30 activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., *supra*; Wilson et al., *supra*; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')₂ fragments) which are capable of specifically binding to protein. Fab and F(ab')₂ fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these

fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

5 Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second 10 protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous 15 functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the 20 polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

25 Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. One reported example describes chimeric proteins consisting of the first two domains of the human CD4- 30 polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., *Nature* 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the

IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion 5 proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, 10 would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. 15 Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, 20 Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 25 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

Vectors, Host Cells, and Protein Production

30 The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral

vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker 5 for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate 10 promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding 15 portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one 20 selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as 25 CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture media and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE- 9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and 30 pTrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1

and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., *Basic Methods In Molecular Biology* (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with the polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids

containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include *in situ* hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

10 Precise chromosomal location of the polynucleotides can also be achieved using fluorescence *in situ* hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

15 For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are 20 more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation 25 of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

30 Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or

translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide 5 and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using 10 polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods 15 rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. 20 Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA 25 hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate 30 manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more 5 restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

10 The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a 15 unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological 20 samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with 25 one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a 30 particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the

present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as
5 molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an
10 immune response.

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

15 A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene
20 expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and
25 biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected *in vivo* by imaging. Antibody labels or markers for *in vivo* imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which
30 emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as

deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, ^{131}I , ^{112}In , $^{99\text{m}}\text{Tc}$), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a 10 human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of $^{99\text{m}}\text{Tc}$. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: 15 The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a 20 standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to 25 supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., 30 soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

20

Immune Activity

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, 5 Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity 15 (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that 20 can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from 25 inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing 30 autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic

anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome,
5 Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitus, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide
10 or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ
15 rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of
20 T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic
25 and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or
30 IL-1.)

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present 5 invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune 10 response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to 15 neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by 20 a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, 25 located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, 30 particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response.

Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, 5 Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, 10 Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., 15 Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox , hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide 20 or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive 25 bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Nocardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, 30 Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Haemophilus, Pasteurella), Pseudomonas, Rickettsiaceae,

Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related

5 infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin

10 diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not

15 limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g.,

20 dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present

25 invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against

30 infectious disease.

Regeneration

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, 5 incisions, or ulcers), age, disease (e.g. osteoporosis, osteoarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal 10 or cardiac), vasculature (including vascular and lymphatics), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased 15 tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure 20 ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic 25 disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stroke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy- 30 Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotactic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotactic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotactic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

20 Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable

of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell

- 5 membrane. Preferred cells include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

10 The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

15 Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

20 Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers.

25 The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

30 Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a

candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity , and (b)

5 determining if a biological activity of the polypeptide has been altered.

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as

10 discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be

15 used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, circadian rhythms, depression (including depressive disorders), tendency for violence,

20 tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat

25 content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated

30 nucleic acid molecule comprising a nucleotide sequence which is at least 95%

identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of 5 positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of 10 positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the 15 range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide 20 sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

25 A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X 30 in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

- A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X
- 5 wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and
- 10 determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence

15 selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

20 A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X

25 wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least

one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of

positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence
5 at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

10 Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted
20 protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the
25 amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in
30 the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA
5 clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 10.
1. 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 20.
1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.
25

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 30.
1; and a complete amino acid sequence of a protein encoded by a human cDNA

clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

- Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a
- 5 polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number 10 shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

- 15 Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the 20 ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as 25 well as the recombinant host cell produced by this method.

- Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and 30 said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of

the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

15

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. 20 Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being 25 isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	<u>Vector Used to Construct Library</u>	<u>Corresponding Deposited</u>
	<u>Plasmid</u>	
	Lambda Zap	pBluescript (pBS)
30	Uni-Zap XR	pBluescript (pBS)
	Zap Express	pBK
	Iafmid BA	plafmid BA

pSport1	pSport1
pCMVSport 2.0	pCMVSport 2.0
pCMVSport 3.0	pCMVSport 3.0
pCR [®] 2.1	pCR [®] 2.1

- 5 Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128,256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.
- 15 Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR[®]2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each 5 cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

10 Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

15 Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ^{32}P - γ -ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as 20 XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for 25 bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 30 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 μl of reaction

mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific

to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

5 **Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide**

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

10 **Example 3: Tissue Distribution of Polypeptide**

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprime™ DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100™ column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

15 Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHyb™ hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed

20 according to standard procedures.

25

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This 30 primer set is then used in a polymerase chain reaction under the following set of conditions : 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and

hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc.). The reactions are analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in
5 the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^R), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the *E. coli* strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^R). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.^{600}) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1

mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The 10 QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

15 The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, 20 containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

25 In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 30 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The

origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating
5 the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

10 The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

15 The following alternative method can be used to purify a polypeptide expressed in *E. coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit
20 weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer
25 (Microfluidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

30 The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without 5 mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive 10 Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 15 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using 20 a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the 25 above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus**Expression System**

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector 5 contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak 10 Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such 15 as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

20 Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) 25 to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a 30 commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

5 The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by
10 gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five µg of a plasmid containing the polynucleotide is co-transfected with 1.0 µg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method
15 described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One µg of BaculoGold™ virus DNA and 5 µg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 µl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 µl Lipofectin plus 90 µl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the
20 transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

25 After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell
30 culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then

resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

5 To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and
10 cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 µCi of ³⁵S-methionine and 5 µCi ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

15 Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLV, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

30 Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109),

pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

5 Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the 10 encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker 15 is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the 20 production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the 25 CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

30 Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be 5 modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

10 The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

15 Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five μ g of the expression plasmid pC6 is cotransfected with 0.5 μ g of the plasmid pSVneo using lipofectin (Felgner et al., *supra*). The plasmid pSV2-neo contains a dominant selectable marker, the *neo* gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded 20 in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 25 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μ M, 2 μ M, 5 μ M, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 μ M. Expression of the desired gene product is analyzed, for instance, by SDS- 30 PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see 5 also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create 10 chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

15 Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

20 For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note 25 that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

GGGATCCGGAGCCCAAATCTTCTGACAAAACACACATGCCACC GTGC
CCAGCACCTGAATTGAGGGTGCACCGTCAGTCTCCTCTCCCCCAAAA
CCCAAGGACACCCTCATGATCTCCGGACTCCTGAGGTACATGCGTGGT
GGTGGACGTAAGCCACGAAGACCCCTGAGGTCAAGTCAACTGGTACGTGG
5 ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA
CAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACT
GGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCA
ACCCCCATCGAGAAAACCATCTCAAAGCAAAGGGCAGCCCCGAGAAC
CACAGGTGTACACCCTGCCCATCCCAGGATGAGCTGACCAAGAAC
10 GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGT
GGAGTGGAGAGCAATGGCAGCCGGAGAACAACTACAAGACCACGCCT
CCCGTGCTGGACTCCGACGGCTCCTCTTACAGCAAGCTCACCGTG
GACAAGAGCAGGTGGCAGCAGGGAACGTCTCTCATGCTCCGTATGCA
TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCGTCTCCGG
15 GTAAATGAGT GCGACGGCCCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention are administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., *Nature* 256:495 (1975); Köhler et al., *Eur. J. Immunol.* 6:511 (1976); Köhler et al., *Eur. J. Immunol.* 6:292 (1976); Hammerling et al., in: *Monoclonal Antibodies and T-Cell Hybridomas*, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in

any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin.

5 The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as
10 described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

15 Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody
20 whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

25 It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic
30 chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced

using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulian et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution
15 (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered
20 Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2×10^5 cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x
25 Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods
30 described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45

minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following 5 tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells 10 first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl₂ (anhyd); 0.00130 mg/L CuSO₄·5H₂O; 0.050 mg/L of Fe(NO₃)₃·9H₂O; 0.417 mg/L of FeSO₄·7H₂O; 15 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄·H₂O; 71.02 mg/L of Na₂HPO₄; .4320 mg/L of ZnSO₄·7H₂O; .002 mg/L of Arachidonic Acid ; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of 20 Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂O; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂O; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 25 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H₂O; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalanine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tyrosine-2Na-2H₂O; 99.65 mg/ml of L- 30 Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319

mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of

- 5 Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for
10 endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

- 15 On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

- It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the
20 polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

25 **Example 12: Construction of GAS Reporter Construct**

- One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site “GAS” elements or interferon-sensitive responsive element (“ISRE”), located in the promoter of many genes. The
30 binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN- α , IFN- γ , and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	<u>Ligand</u>	<u>JAKs</u>	<u>STATS</u>	<u>GAS(elements) or ISRE</u>		
		<u>tyk2</u>	<u>Jak1</u>	<u>Jak2</u>	<u>Jak3</u>	
<u>IFN family</u>						
5	IFN-a/B	+	+	-	-	1,2,3 ISRE
	IFN-g		+	+	-	1 GAS (IRF1>Lys6>IFP)
	Il-10	+	?	?	-	1,3
<u>gp130 family</u>						
10	IL-6 (Pleiotrophic)	+	+	+	?	1,3 GAS (IRF1>Lys6>IFP)
	Il-11(Pleiotrophic)	?	+	?	?	1,3
	OnM(Pleiotrophic)	?	+	+	?	1,3
	LIF(Pleiotrophic)	?	+	+	?	1,3
	CNTF(Pleiotrophic)	-/+	+	+	?	1,3
15	G-CSF(Pleiotrophic)	?	+	?	?	1,3
	IL-12(Pleiotrophic)	+	-	+	+	1,3
<u>g-C family</u>						
20	IL-2 (lymphocytes)	-	+	-	+	1,3,5 GAS
	IL-4 (lymph/myeloid)	-	+	-	+	6 GAS (IRF1 = IFP >>Ly6)(IgH)
	IL-7 (lymphocytes)	-	+	-	+	5 GAS
	IL-9 (lymphocytes)	-	+	-	+	5 GAS
	IL-13 (lymphocyte)	-	+	?	?	6 GAS
	IL-15	?	+	?	+	5 GAS
25						
<u>gp140 family</u>						
	IL-3 (myeloid)	-	-	+	-	5 GAS (IRF1>IFP>>Ly6)
	IL-5 (myeloid)	-	-	+	-	5 GAS
	GM-CSF (myeloid)	-	-	+	-	5 GAS
30						
<u>Growth hormone family</u>						
	GH	?	-	+	-	5
	PRL	?	+/-	+	-	1,3,5
	EPO	?	-	+	-	5 GAS(B-CAS>IRF1=IFP>>Ly6)
35						
<u>Receptor Tyrosine Kinases</u>						
	EGF	?	+	+	-	1,3 GAS (IRF1)
	PDGF	?	+	+	-	1,3
	CSF-1	?	+	+	-	1,3 GAS (not IRF1)
40						

- To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., *Immunity* 1:457-468 (1994)), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is:
- 5 10 5':GCGCCTCGAGATTCCCCGAAATCTAGATTCCCCGAAATGATTCCCC
GAAATGATTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO:3)
- The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTGCAAAGCCTAGGC:3'
(SEQ ID NO:4)
- 15 20 25 PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:
5':CTCGAGATTCCCCGAAATCTAGATTCCCCGAAATGATTCCCCGAAA
TGATTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCG
CCCCTAACTCCGCCATCCGCCCTAACTCCGCCAGTCCGCCATTCT
CCGCCCATGGCTGACTAATTTTTATTATGCAGAGGCCAGGCC
TCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTGGAGGCCT
AGGCTTTGCAAAAAGCTT:3' (SEQ ID NO:5)

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not 5 contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sall and NotI, and inserted into a backbone vector containing the neomycin resistance 10 gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS 15 with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, IL- 20 2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

25 The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATs signal transduction pathway. The T-cell used in this assay is Jurkat T-cells 30 (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 5 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells 10 containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

15 During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1×10^7 cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

20 The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and 25 resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells 30 into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the
5 assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and
10 stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.
15

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the
15 positive control wells.

The above protocol may be used in the generation of both transient, as well as, stable transfected cells, which would be apparent to those of skill in the art.

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

20 The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATs signal transduction pathway. The myeloid cell
25 used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfet U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2×10^6 U937 cells and
30 wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing

10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

- Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM 5 KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

- The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 10 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

- These cells are tested by harvesting 1x10⁸ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of 5x10⁵ cells/ml. Plate 200 ul cells per well in 15 the 96-well plate (or 1x10⁵ cells/well).

- Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant 20 according to the protocol described in Example 17.

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

- When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, 25 EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

- Particularly, the following protocol is used to assess neuronal activity in PC12 30 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor).

The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following 5 protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)

5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

10 Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

15 To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) 20 containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

25 Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

30 To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS

(Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count 5 the cell number and add more low serum medium to reach final cell density as 5×10^5 cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 10 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

15 NF- κ B (Nuclear Factor κ B) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF- κ B regulates the expression of genes involved in immune cell activation, control of 20 apoptosis (NF- κ B appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κ B is retained in the cytoplasm with I- κ B (Inhibitor κ B). However, upon stimulation, I- κ B is phosphorylated and degraded, causing NF- κ B to shuttle to the nucleus, thereby activating transcription of target 25 genes. Target genes activated by NF- κ B include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF- κ B promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF- κ B would be useful in 30 treating diseases. For example, inhibitors of NF- κ B could be used to treat those

diseases related to the acute or chronic activation of NF- κ B, such as rheumatoid arthritis.

To construct a vector containing the NF- κ B promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF- κ B binding site (GGGGACTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site:
5':GCGGCCTCGAGGGACTTCCCAGGGACTTCCGGGGACTTCCGGGAC
TTCCATCCTGCCATCTCAATTAG:3' (SEQ ID NO:9)

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:
10 5':GCGGCAAGCTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)

15 Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGACTTCCCAGGGACTTCCGGGGACTTCCGGGACTTCC
ATCTGCCATCTCAATTAGTCAGCAACCATACTCCGCCCTAACTCCGCC
20 ATCCCGCCCTAACTCCGCCAGTTCCGCCATTCTCCGCCCATGGCTGA
CTAATTTTTTATTTATGCAGAGGCCGAGGCCCTGGCCTTGAGCTA
TTCCAGAAGTAGTGAGGAGGCTTTGGAGGCCTAGGTTTGCAAAAAA
GCTT:3' (SEQ ID NO:10)

25 Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF- κ B/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF- κ B/SV40/SEAP cassette is removed from the above NF- κ B/SEAP vector using restriction enzymes Sall and NotI, and inserted into a vector containing neomycin resistance. Particularly,

the NF- κ B/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

Once NF- κ B/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, 5 the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1, 1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

10 As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

15 Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

20 Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 μ l Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 μ l Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

25 Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
15	85	4.25

16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6
23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small

molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-4 (Molecular Probes, Inc.; catalog no. F-14202), used here.

- For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star 5 black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

- A stock solution of 1 mg/ml fluo-4 is made in 10% pluronic acid DMSO. To load the cells with fluo-4, 50 ul of 12 ug/ml fluo-4 is added to each well. The plate 10 is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

- For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-4 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. 15 The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.
- 20 For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-4. The supernatant is added to the well, and a change in fluorescence is detected.

- To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; 25 and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

- 30 **Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity**

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies.

- 5 In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation 10 of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

- 15 Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

- 20 Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or 25 polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford, MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from 30 Becton Dickinson (Bedford, MA) are used to cover the Loprodyne Silent Screen

Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

- To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium.
- 5 Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na₃VO₄, 2 mM Na₄P₂O₇ and a cocktail of protease inhibitors (# 1836170) obtained from
- 10 Boehringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on
- 15 ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

- Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described
- 20 here.

- Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and
- 25 PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

- The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the

components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

- 5 Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavidin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phosphotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

- 10 Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

- 20 As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

- 25 30 Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G

plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1

and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of
5 the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyn filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants
10 obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place

15 of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing
20 reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

25 RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30
30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTHERM Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring 5 suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by 10 mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenin-deoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, 15 Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for 20 precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical 25 Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

30 **Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample**

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their 5 particular needs.

- For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in 10 Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

- The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled 15 water to remove unbounded polypeptide.

- Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

- 20 Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale).
25 Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

- The secreted polypeptide composition will be formulated and dosed in a 30 fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the

scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), buccally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D-(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al.,

Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms)

- 5 unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage 10 injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

15 Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's 20 solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as 25 phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or 30 arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar

alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of 5 about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are 10 placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml 15 vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical 20 compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the 25 polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by 30 administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an

individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the 5 polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the 10 present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a 15 polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of 20 expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is 25 turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several 30 days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

5 The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the
10 presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

15 The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

20 Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the
25 media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is
30 produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

Example 27: Method of Treatment Using Gene Therapy - In Vivo

5 Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide. The polynucleotide of the present invention may be operatively linked to a promoter
10 or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata H. et al. (1997) *Cardiovasc. Res.* 35(3):470-479, Chao J et al. (1997) *Pharmacol. Res.* 35(6):517-522, Wolff J.A. (1997) *Neuromuscul. Disord.*
15 7(5):314-318, Schwartz B. et al. (1996) *Gene Ther.* 3(5):405-411, Tsurumi Y. et al. (1996) *Circulation* 94(12):3281-3290 (incorporated herein by reference).

The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The
20 polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or
25 precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) *Ann. NY Acad. Sci.* 772:126-139 and Abdallah B. et al. (1995) *Biol. Cell* 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

30 The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in

the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to 5 provide production of the desired polypeptide for periods of up to six months.

The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and 10 connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of 15 the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely 20 differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg 25 body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the 30 condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an

aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is
5 determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

10 Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the
15 knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A
20 time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be used to extrapolate proper
25 dosages and other treatment parameters in humans and other animals using naked DNA.

Example 28: Transgenic Animals.

The polypeptides of the invention can also be expressed in transgenic animals.
30 Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a

specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

Any technique known in the art may be used to introduce the transgene (i.e., 5 polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., *Appl. Microbiol. Biotechnol.* 40:691-698 (1994); Carver et al., *Biotechnology (NY)* 11:1263-1270 (1993); Wright et al., *Biotechnology (NY)* 9:830-834 (1991); and Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retrovirus 10 mediated gene transfer into germ lines (Van der Putten et al., *Proc. Natl. Acad. Sci., USA* 82:6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., *Cell* 56:313-321 (1989)); electroporation of cells or embryos (Lo, 1983, *Mol Cell. Biol.* 3:1803-1814 (1983)); introduction of the 15 polynucleotides of the invention using a gene gun (see, e.g., Ulmer et al., *Science* 259:1745 (1993); introducing nucleic acid constructs into embryonic pluripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (Lavitrano et al., *Cell* 57:717-723 (1989)); etc. For a review of such techniques, see Gordon, "Transgenic Animals," *Intl. Rev. Cytol.* 115:171-229 (1989), which is incorporated by reference herein in its entirety.

20 Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., *Nature* 380:64-66 (1996); Wilmut et al., *Nature* 385:810-813 (1997)).

25 The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, *i.e.*, mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, *e.g.*, head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and 30 activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., *Proc. Natl. Acad. Sci. USA* 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the

particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the 5 endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 10 265:103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent 15 to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening 15 may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, *in situ* hybridization analysis, and reverse 20 transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding 25 strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given 30 integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the

transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of 5 polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Example 29: Knock-Out Animals.

10 Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (E.g., see Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al., Cell 5:313-321 (1989); each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional 15 polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in 20 the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e.g., see Thomas & 25 Capecchi 1987 and Thompson 1989, *supra*). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site *in vivo* using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered 30 to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient *in vivo*. Such cells may be obtained from the patient (i.e.,

- animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (*e.g.*, lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered *in vitro* using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, *e.g.*, by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.
- 5 The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, *e.g.*, in the circulation, or
- 10 15 intraperitoneally.

Alternatively, the cells can be incorporated into a matrix and implanted in the body, *e.g.*, genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U.S. Patent No. 5,399,349; and

20 Mulligan & Wilson, U.S. Patent No. 5,460,959 each of which is incorporated by reference herein in its entirety).

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the development of a host immune response against the introduced cells. For

25 example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description
 on page 198, line N/A

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depository institution American Type Culture Collection

Address of depository institution (*including postal code and country*)

10801 University Boulevard
 Manassas, Virginia 20110-2209
 United States of America

Date of deposit

April 20, 1998

Accession Number

209782

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)This information is continued on an additional sheet D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)E. SEPARATE FURNISHING OF INDICATIONS (*leave blank if not applicable*)

The indications listed below will be submitted to the International Bureau later (*specify the general nature of the indications e.g., "Accession Number of Deposit"*)

For receiving Office use only

 This sheet was received with the international application

For International Bureau use only

 This sheet was received by the International Bureau on:

Authorized officer

Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>199</u>, line <u>N/A</u></p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<p>Further deposits are identified on an additional sheet <input type="checkbox"/></p>
<p>Name of depositary institution American Type Culture Collection</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America</p>		
Date of deposit	Accession Number	
August 28, 1997	209226	
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<p>This information is continued on an additional sheet <input type="checkbox"/></p>
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)</p>		
<p>For receiving Office use only</p> <p><input type="checkbox"/> This sheet was received with the international application</p>		
<p>For International Bureau use only</p> <p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>		
<p>Authorized officer</p>		
<p>Authorized officer</p>		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page <u>200</u> , line <u>N/A</u>		
B. IDENTIFICATION OF DEPOSIT		Further deposits are identified on an additional sheet <input type="checkbox"/>
Name of depositary institution <u>American Type Culture Collection</u>		
Address of depositary institution (<i>including postal code and country</i>) <u>10801 University Boulevard</u> <u>Manassas, Virginia 20110-2209</u> <u>United States of America</u>		
Date of deposit <u>March 13, 1997</u>	Accession Number	<u>97958</u>
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)		This information is continued on an additional sheet <input type="checkbox"/>
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)		
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)		
The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)		
For receiving Office use only		
<input type="checkbox"/> This sheet was received with the international application		
Authorized officer		
For International Bureau use only		
<input type="checkbox"/> This sheet was received by the International Bureau on:		
Authorized officer		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page <u>201</u> , line <u>N/A</u>		
B. IDENTIFICATION OF DEPOSIT		Further deposits are identified on an additional sheet <input type="checkbox"/>
Name of depositary institution American Type Culture Collection		
Address of depositary institution (<i>including postal code and country</i>) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America		
Date of deposit <u>May 7, 1998</u>	Accession Number <u>209852</u>	
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)		This information is continued on an additional sheet <input type="checkbox"/>
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)		
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)		
<div style="display: flex; justify-content: space-around;"> <div style="width: 45%;"> <p>For receiving Office use only</p> <input type="checkbox"/> This sheet was received with the international application </div> <div style="width: 45%;"> <p>For International Bureau use only</p> <input type="checkbox"/> This sheet was received by the International Bureau on: </div> </div>		
<div style="display: flex; justify-content: space-around;"> <div style="width: 45%;"> <p>Authorized officer</p> </div> <div style="width: 45%;"> <p>Authorized officer</p> </div> </div>		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>204</u>, line <u>N/A</u></p>		
<p>B. IDENTIFICATION OF DEPOSIT</p> <p>Further deposits are identified on an additional sheet <input type="checkbox"/></p>		
<p>Name of depositary institution American Type Culture Collection</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America</p>		
Date of deposit May 7, 1998	Accession Number 209853	
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>This information is continued on an additional sheet <input type="checkbox"/></p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)</p>		
<p>For receiving Office use only</p> <p><input type="checkbox"/> This sheet was received with the international application</p>		<p>For International Bureau use only</p> <p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>
<p>Authorized officer</p>		<p>Authorized officer</p>

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

- 5 The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference. Further, the hard copy of the sequence listing submitted herewith and the corresponding computer readable form are both
10 incorporated herein by reference in their entireties.

What Is Claimed Is:

1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
 - (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.

2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.

5 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

10 4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

15 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.

20 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.

7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.

25 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.

9. A recombinant host cell produced by the method of claim 8.

30 10. The recombinant host cell of claim 9 comprising vector sequences.

11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - 5 (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
 - (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included 10 in ATCC Deposit No:Z;
 - (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - 15 (g) a variant of SEQ ID NO:Y;
 - (h) an allelic variant of SEQ ID NO:Y; or
 - (i) a species homologue of the SEQ ID NO:Y.
12. The isolated polypeptide of claim 11, wherein the secreted form or the full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
20
13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
25
14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
30
15. A method of making an isolated polypeptide comprising:
 - (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.

16. The polypeptide produced by claim 15.

17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount 5 of the polypeptide of claim 11 or the polynucleotide of claim 1.

18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:

10 (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and

(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.

19. A method of diagnosing a pathological condition or a susceptibility to 15 a pathological condition in a subject comprising:

(a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and

(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

20

20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:

(a) contacting the polypeptide of claim 11 with a binding partner; and

25 (b) determining whether the binding partner effects an activity of the polypeptide.

21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.

22. A method of identifying an activity in a biological assay, wherein the 30 method comprises:

(a) expressing SEQ ID NO:X in a cell;

(b) isolating the supernatant;

- (c) detecting an activity in a biological assay; and
- (d) identifying the protein in the supernatant having the activity.

23. The product produced by the method of claim 20.

1

<110> Human Genome Sciences, Inc. et al.

<120> 94 Human secreted proteins

<130> PZ029PCT

<140> Unassigned

<141> 1999-06-13

<150> 60/089,508

<151> 1998-06-16

<150> 60/089,507

<151> 1998-06-16

<150> 60/089,510

<151> 1998-06-16

<150> 60/089,509

<151> 1998-06-16

<150> 60/090,112

<151> 1998-06-22

<150> 60/090,113

<151> 1998-06-22

<160> 502

<170> PatentIn Ver. 2.0

<210> 1

<211> 733

<212> DNA

<213> Homo sapiens

<400> 1

gggatccgga	gcccaaatct	tctgacaaaa	ctcacacatg	cccaccgtgc	ccagccac	ctg	60
aattcgagg	tgccaccgtca	gtcttc	ccccccaaa	acccaaggac	accctcatga		120
tctcccgac	tcctgagg	tc acatgcgtgg	tggggacgt	aaggcaca	gaccctgagg		180
tcaagg	ttcaaa	ctggta	cgtg	gacggcgtgg	agg	tgccaa	240
agg	gact	gata	ttgg	tgccaa	gaca	aaggcgcggg	300
ggct	aatgg	caagg	gtac	tccca	accc	caccaggact	360
agaaa	accat	caagg	aatg	ccctccca	ccccc	atcg	420
cat	ccaa	aaagg	caagg	cccgagaacc	acagg	tgac	480
atcc	aggc	ggc	gtac	cccgat	gttgc	atgc	540
ccac	ccgt	ggc	tcc	ctgg	ctgg	ctac	600
aca	ccgt	ggc	cct	gttgc	ctgg	aggcaag	660
aca	ccgt	ggc	cc	gttgc	ctgg	ctcaccgtgg	720
gact	ccgt	ggc	cc	gttgc	ctgg	gat	733

<210> 2

<211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> Site

<222> (3)

<223> Xaa equals any of the twenty naturally occurring L-amino acids

<400> 2
Trp Ser Xaa Trp Ser
1 5
<210> 3
<211> 86
<212> DNA
<213> Homo sapiens

<400> 3
gcccctcgag atttccccga aatcttagatt tcccccggaaat gatttccccg aaatgatttc 60
cccgaaaatat ctgccatctc aattag 86

<210> 4
<211> 27
<212> DNA
<213> Homo sapiens

<400> 4
gcggcaagct ttttgcaaag cctaggc 27

<210> 5
<211> 271
<212> DNA
<213> Homo sapiens

<400> 5
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tcccccggaaat gatttccccg 60
aaatatctgc catctcaatt agtcagcaac catagtccccg cccctaactc cgcccatccc 120
gccccctaact cccggccaggtt ccggccatcc tccggcccat ggctgactaa ttttttttat 180
ttatgcagag gcccggccg cctcgccctc tgagctattc cagaagttagt gaggaggctt 240
ttttggaggc ctaggctttt gcaaaaaagct t 271

<210> 6
<211> 32
<212> DNA
<213> Homo sapiens

<400> 6
gcgcctcgagg gatgacagcg atagaacccc gg 32

<210> 7
<211> 31
<212> DNA
<213> Homo sapiens

<400> 7
gcgaagcttc gcgactcccc ggatccgcct c 31

<210> 8
<211> 12
<212> DNA
<213> Homo sapiens

<400> 8
ggggactttc cc 12

<210> 9
<211> 73

<212> DNA

<213> Homo sapiens

<400> 9

gcggcctcgaa	ggggactttc	ccgggactt	tccgggact	ttccggact	ttccatcctg	60
ccatctcaat	tag					73

<210> 10

<211> 256

<212> DNA

<213> Homo sapiens

<400> 10

ctcgaggggaa	ctttcccggg	gactttccgg	ggactttccg	ggactttcca	tctgccatct	60
caattagtca	gcaaccatag	tccccccct	aactccgccc	atccccc	taactccgccc	120
cagttccgccc	cattctccgc	cccatggctg	actaattttt	tttatttatg	cagaggccga	180
ggccgcctcg	gcctctgagc	tattccagaa	gtagttagga	ggctttttt	gaggcctagg	240
cttttgcaaa	aagctt					256

<210> 11

<211> 899

<212> DNA

<213> Homo sapiens

<400> 11

ccacgcgtcc	ggaaaaaagta	caagcccttc	tcaaatggtt	caagttcaa	atattagacc	60
cacccatggc	aaagacagat	tttagtataa	tactcctaaa	actacactgt	cttttttttt	120
tttctgtcat	aagtgtgc	tgtgctcagt	catttatttc	agtgcaccaa	acagagccca	180
gtccagctgt	ttgtattttc	cctgcagtgg	gaagtggact	agggccatgt	gactaagaaa	240
gccagcctgg	gggctgtctt	ttcacctaca	gatgttttaa	tgtgcitiaac	attatccaat	300
actagcaacc	gagatagtct	aaataccaca	gcaggatctg	attagcttt	tcaaatcact	360
gcctttat	gtgtttgc	aaaaagctt	atccagtgt	agagatcagg	cttcttgctg	420
agccctgggg	tagttctct	cattcttgt	gtcacagtg	gcaggcgat	gtgagcagat	480
tcctcctcct	cctaaattaa	agctgtaaag	tagtaactgt	agtagcaagg	gataaagaga	540
aggaagaaaa	cccaagggaa	aaaagaagac	tgcttattca	taccaagtag	tttcttgat	600
atacacaaaa	gaaagagttt	ctaataatgaa	ttcataaaata	ctgaccc	tgtctttct	660
actca	cagctattaa	gttttattag	gttcagttt	taactacttt	gtgtggat	720
atgttacgtt	tttcatattt	atcctactca	atcaatctca	gttttaccag	aagaattaca	780
tttatttagcc	ataacagtgg	cccttcctt	attctttca	ggctgat	cttttttatt	840
catgagattt	aaaaaagaac	tatcaccacc	actaaca	aaaaaaa	aaaaaaa	899

<210> 12

<211> 1140

<212> DNA

<213> Homo sapiens

<400> 12

cccacgcgtc	cgctgatgtt	attagcagca	taaggcagtc	atcgatgagg	cttgggggg	60
ccttcttgc	gggtcacgg	cacccatcc	cagtaggaa	cttcgaactt	ctgagatgtt	120
taaaaggcgt	cotcattatc	tttgcgggt	ttggcactt	ctttcatggc	cgttttagat	180
aattgccta	tgctgtaat	aacatcagga	acctggctgg	ggctgtggc	ggggaaaac	240
tggcaggcca	tctgcgactc	ggggctgtcg	ggctgcgcct	tgatcagta	ggcaaagtag	300
gtgaggtcgt	ggctgttgt	gatgaagcgc	gagatatgt	gcgccttgt	ctcaagat	360
aataccgc	gggtgggctg	cgtggccgac	ggactagtgc	cccccgaggc	cccaagcc	420
ggcgcgggaa	cgcacgcag	gaagggcg	ctgagcacca	ggatcaccc	tcggccgccc	480
ggcgcgggaa	agccgcccgc	ctcgggctt	tggctgcgc	tgcggatctc	ggccatgagc	540
caggcagca	taggcagcgt	ggtcctgtt	tccaggc	accccccac	gtaccacagc	600
cggaaccgc	tatcgcttgg	cttccgggg	ccgggctgag	ctgagacgc	cggtcgccc	660
tccagggggt	gcgggaacgg	ctcattcctga	atgcagctgg	gcggctycat	aactctcgcc	720

4

tcaccagggc accgcggagg cggccgggc gcaccgcgc ccccactccc	gcmcagaagg	780
cggcccgaa actgtccaa ctggcgcacc ggctyccgc gcctgcctgg	gagcggcg	840
accccaact cccgcgttca gcagccctgc cccatgcagc acttccacgg	gcgcggctcg	900
gaggctccgg cggcgggcac cgaggaagc gcccggcagg cgagggcggg	ttaaatggc	960
atccctctcc tcgggctggc gcctcggca ggacctcccc ttccctccgtc	gcgggtttgc	1020
agggtcagag gaccacgccc agggtccccg cggccgtct agaggatccc	tcgagggggc	1080
caagctttag cgtcatgsg acgtcatagc taatctccct atagggagtt	gcaaaagggt	1140

<210> 13

<211> 1445

<212> DNA

<213> Homo sapiens

<400> 13

ggaaggctgc aggaccagga ccgaaaaagg actaggaggc tgggatcagc	aacaactggg	60
gaaggccaag gaagactgac ctgaggggaa agagaaaact ggggaggtga	ggtctactac	120
tcaacaggat attcttcaag gaaaatgaac cccacactag gcctggccat	tttctggct	180
gttctctca cggtaaaagg tcttctaaag ccgagcttct caccaaggaa	ttataaaagct	240
ttgagcgagg tccaaggatg gaagcaaagg atggcagcca aggagcttgc	aaggcagaac	300
atggacttag gctttaagct gctcaagaag ctggcctttt acaaccctgg	cagaacatc	360
ttccttatccc ctttgagcat ctctacagct ttctccatgc tgtgcctgg	tgcccaggac	420
agcacccctgg acgagatcaa gcaggggttc aacttcagaa agatccaga	aaaagatctt	480
catgagggct tccattacat catccacgag ctgacccaga agacccagga	cctcaaactg	540
agcatggga acacgctgtt cattgaccag agctgcagc cacagctaa	gtttttggaa	600
gatgccaaga acttttacag tgccgaaacc atccttacca actttcagaa	tttggaaatg	660
gctcagaagc agatcaatga ctttatcagt caaaaaaccc atggaaaat	taacaacctg	720
atcgagaata tagaccccg cactgtgatg cttcttgcaa attatatttt	cttgcagcc	780
aggtgtgaaac atgagtttga tccaaatgta actaaagagg aagattctt	tctggagaaa	840
aacagttcag tcaagggtgcc catgatgttc cgtatggca tataccaagt	tggctatgac	900
gataagctct cttgaccat cctggaaata ccctaccaga aaaatatcac	agccatctc	960
atccctcctg atgagggcaa gctgaagcac ttggagaagg gattgcaggt	ggacactttc	1020
tccagatgga aaacattact gtcacgcagg gtcgttagacg tgtctgtacc	cagactccac	1080
atgacggcga ccttcgacact gaagaagact ctctcctaca taggtgtctc	caaaatctt	1140
gaggaacatg gtgatctcac caagatcgcc cctcatcgca gcctgaaagt	ggcgaggct	1200
gtgcacaagg ctgagctgaa gatggatgag aggggtacgg aaggggccgc	tggcaccgga	1260
gcacagactc tgcccatgga gacaccactc gtcgtcaaga tagacaaacc	ctatctgctg	1320
ctgatttaca gcgagaaaat accttccgtg ctcttcctgg gaaagattgt	taaccctatt	1380
ggaaaataaa ggagaattcc tgcttgccac agaccccgaa aaaaaaaaaa	aaaaaggcg	1440
gcccgc		1445

<210> 14

<211> 1208

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (9)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (59)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (79)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (814)

<223> n equals a,t,g, or c

<400> 14

tagcgcggnc gatccattcc ccagaacact ataccctagc tttcaaaaact attagtgcnt	60
ataaaaggctcg cctcaggtncc ggtcgaattc ccgggtcgacc cacgcgtccg ctagaaagag	120
aggttagtgc ctgcaggggcc acgggaggac tcagtgacga cttgaaagca tcaaacacag	180
tggagggctc atacggggtg ctcagtagat gggcgcatca ttttatagaa tactgaggcc	240
cagagaggga aggtgtcttg tctgtggctc catgggggct cagtggaaaa gccgggacta	300
aaagctggcc ccaggctagc tttgtgccag gccatcctgc tcttacacag gggctgagaa	360
ccaggggcag cccaggagtc ctggatgggg cagcagtcat gttggatggg gctgggggtgt	420
tggctctccc ttctctggct ctcaggagtg gtcagggtca gccccagatc tcccaagacca	480
agaagaggag cagcctgtgg ggagacactc atgcctgtac atgagtcatg gcatcaagag	540
aggccatcag ccagtggat tcagcaagca tgccctggc tgccctggtag ggtgctgccc	600
atgggagaa gagaagagga gctgccaccc atttggggcc ytccttctct gggctctcag	660
atttggccctt cagcccarag tctatgaaga ccccgccgccc ctggatgggt gggaggaggg	720
catggacatc wttacccaca ttctggccctt ggacccccc ctccctgaaaag actctggtag	780
tatcttcta gaagtggacc caaggcaccc ggancttgc agcagctgg ttcagagccg	840
gcctgacctg taccttaatc ttgtggctgt ggcagggtac ttctgtggga ggccccgggtt	900
cctgcataatc cggaggctctg ggcatacgca tggctgccc ctggatgcct tgcagtgcc	960
gccagcctga ccagagggga ggtggatggc acttccaga gcccagggttc ttatggcatt	1020
tcccagggtt ctgtgatttc cccatgtct gcatttctag gatatttcta ggacacctgg	1080
atggctcca tcacatcaga gtggctgagg gcagttgtc tggatgggt aaattgtgt	1140
ggggatatcg gggatatgg ccagtaaagt attgagagac taacaaaaaaa aaaaaaaaaa	1200
aaactcga	1208

<210> 15

<211> 1175

<212> DNA

<213> Homo sapiens

<400> 15

gagcggggccg aggactccag cgtgccagg tctggcatcc tgcacttgct gccctctgac	60
acctggaaag atggccggcc cgtggacctt cacccttctc tggatggtttc tggcagccac	120
cttgcataaa gccaccctca gtcccactgc agttctcatc ctcggcccaa aagtcatcaa	180
agaaaagctg acacaggagc tgaaggacca caacgcacc accatcctgc agcagctgcc	240
gctgctcagt gccatgcggg aaaagccagc cggaggcatc cctgtgtctgg gacgcctggt	300
gaacaccgtc ctgaagcaca tcatctggct gaaggtcatc acagctaaca tcctccagct	360
gcaggtgaag ccctcgccca atgaccagga gctgttagtc aagatcccc tggacatgg	420
ggctggattc aacacgcccc tggtaagac catcgtggag ttccacatga cgactgaggc	480
ccaaggccacc atccgcatttgc acaccagtgc aagtggcccc acccgcttgg tcctcagtga	540
ctgtgccacc agccatggga gcctgcgcac ccaactgctg cataagctct cttccctgg	600
gaacgccta gctaaggcagg tcatgaacct cctagtgcca tccatgccaa gttggcccaa	660
ctgatctgc tggaaagtgtt tccctccagt gaagccctcc gccccttggt caccctggc	720
atcgaagcca gtcggaaagc tcagtttac accaaaggtg accaacttat actaacttg	780
aataacatca gtcctgatcg gatccagctg atgaactctg ggattggctg gttccaacct	840
gatgttctga aaaacatcat cactgagatc atccactcca tcctgtgc gaaaccagaat	900
ggcaaattaa gatctgggtt cccagtgta ttggtaagg ctttgggatt cgaggcagct	960
gagtcctcac tgaccaagga tgccctgtg cttactccag cttccctgtg gaaacccagc	1020
tctccctgtct cccagtgaaatc acttggatgg cagccatcag ggaaggctgg gtcccagctg	1080
ggagtgatgg tggatggctct atagaccatc cctytctgca atcaataaac acttgcctgt	1140
aaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaa	1175

<210> 16

<211> 2374

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (556)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2344)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2346)

<223> n equals a,t,g, or c

<400> 16

gatcccacca caacttaatg ttaacatttt aaattatttc ttttttttc atacatatgc	60
atagacaatt actgggtttt tggtttsttt ttgtttttt tttcaagcga cattgtgatt	120
gtattctttt ataccttatt gggtttgwt tttaacttac catggtaaaa atccatttga	180
gtgagcattc ttgagtgggtt ttgcattgtg tcttcacaca gttgtaccat aattraagct	240
gcttttggcc ttgctctgggt aaagcagtgt agcacacact cttaatttct aaggaaagtgt	300
agcgccccct ttagtgaatcr ggagagagat catgaacttg gtgtatgagg tacwctggc	360
tgtctttca agctggggta agtaggcattc tgcaactacc agtcatatat tttgtAACCC	420
actggcccgt gtgtgccctg attgctgagg ctagacagat ccatcagggc ttagacagtt	480
agtgagggtc ctggggatgt gccaaggaa gtcaggtaa tttgtgaagc tgctggaaat	540
tgtgtatgtt gcaganattt gagcagtaa agcttccgat gtggaccaag tacaagtact	600
aagatcacgg cacatcctct aaaaggaagt cagatatttgg gactgtcca gggaaatctgg	660
gagatagtgt gatgggtggca tagcttttc tcatacgaca ctttttatgc ttactcagag	720
tacgaatgcc aagtatttgc acaatacaga ataatatttgc aattgagata ttccctagaaa	780
gacaggtcaa catggctctt ggtcaagaat gacttaggt tcctgccta gtgtcggct	840
ggcttcatgt catagttgg gctgggtcca caggtgggat aagattccac caaagctcac	900
caggctggta ctgacccccag agtgtctccc aggccctacc ttattttagc attctttga	960
attgagtttcc agaggtgatt cagtagtaaa tttatggggaa gaagaatttgc aaaaacccat	1020
ctcttttaa gcagtcatca ttcttaaaca tctgaatttgc ttacaacag agtcagcaaa	1080
cctttcttagc atttctaaaa gatggcagtt tctggagac cacatcttgc caaggcagta	1140
ttttcaaaaat ataaaatagc ccccaaaacca aacctttaaaa catgaaggc aaatggtaa	1200
agacttaata ttcttttgtt gtcaggata cttaatgtaa atcttagtgc ttgtgaagta	1260
gtaatagtaa tagctcctat tattttggc actgactata tttgtctcagc ctctgtgc	1320
ggatctgaca tcactatctc atttcccttc ttcaggcagtt ctggaaaggag tacctaccct	1380
gggtatgc tggccagggcacacagaatgtt actgaatttgc agcaggatttgc ccccccaagt	1440
gtaaaaactc aagagctcct gcacttaggg gttacttca ctaatcatctt aacccat	1500
attatgctta aggttttttc tcagctgacc tgactttgc ttaggtcatt ctttttatgc	1560
ccagcaactgt ttgaaagtgc atgtcaagcg gctagctcca catttgc ttcggaaaggga	1620
aacgcatgca gtaaaaacgt aatgtacatg atgaaatttgc gaggatcata gtcctcgtt	1680
cccccccyct ttctcccatc taggagaccc tccrtggactg cagcaaaatt aaaaataaaag	1740
cacagacaac agaatttttc ttcaactgaga gagtttataa ttcgtttcttca acaccatcta	1800
tacttgc tttt gttttttttt aggtcatcaa cacacatttgc gtttatttcca gagctagaag	1860
ctcttcgtt tgcataactca gttataagaa gatggaaagac ataaactagmc ttacgtattt	1920
cagtagtttgc cycttaatttttccyctac ycytagtttgc caggcgcacct cccaaaggaa	1980
gtatcagtcg actggataaa cagatgagaa agttcacaga tataaggaaa aaaagcagat	2040
cygcacacgc agtggaaatc agcatttgc gcaacaaaat gccatttgc ctttgcyygg	2100
aatgtgtccc catctctact ctaagaaatc cgcaatggac tctttggaga aagaagat	2160
tttaaaaat ttttagtgc tctgttaatc gttcagcgtt tttttttttt tttttttttt	2220
ctcacatttc ttcagttat atttaaaaacc gttgtgtact ttgtacaaag gaatactgt	2280
catacttcta taaaacttac acaataaaat ttcttcttgg twaaaaaaaaaaa aaaaagggggg	2340
gccncnctaa aaaaccaagc ttactttccc ttgc	2374

<210> 17
<211> 1595
<212> DNA
<213> Homo sapiens

<400> 17

ggcacgagcc	ggttattttt	gaactagagt	tgagatgaat	atgacacttc	ataattacac	60
tca	cattttt	tttccaaaat	tat	ttttaa	tgtgaaaag	120
tttttattca	ttttctaaatc	tatgctaaaa	gcttttatca	taagtcttgg	gaacagtgt	180
catttacaca	ttacttactg	cagatata	cactaaatca	ggagggaggt	gtttaatcat	240
ttgatatgt	tagttgacac	tcaggaatag	taatgcctaa	aatttacagt	ggatgaggtc	300
tg	tttcaagt	ttaattctt	ttaaaaatgt	tttacttatt	tttaaatcac	360
ttgac	tttcca	aatgtgttt	ttatgaaatt	ggcaaataaa	tgaaggatt	420
ggaagaatga	cattgccaca	aaatacctt	tttgacacc	tattaacca	ctatgaaaat	480
aactttcag	gatctatttc	ctatgtggaa	ttcttcaaa	tgcttcttc	acggaaatgt	540
tttctca	ctc	ttcg	ttttgt	tcccctact	tacatgtttc	600
ctctgg	aaactagatt	gggtgg	gttgg	tcttct	atactgtgaa	660
gtat	atcaac	aaaggattt	agg	tacttc	tgagtttat	720
tag	aaaaat	ataagaataa	aatccagccc	agagagagta	ctaagaatgt	780
aaaaagccag	tttgaattt	tat	tttacgt	acagtgtat	atgctgtcat	840
caaaaactct	cg	tat	tatc	tttgt	ttttagat	900
gat	tttggtaa	tttacta	at	catgat	ttttagaa	960
ctc	actactc	taagcta	att	gatc	ttttagaa	1020
acc	atc	tttgg	tttgg	ttttagaa	ttttagaa	1080
tag	tttgg	tttgg	tttgg	ttttagaa	ttttagaa	1140
tgt	tttgg	tttgg	tttgg	ttttagaa	ttttagaa	1200
taat	ccc	actt	tttgg	ttttagaa	ttttagaa	1260
cag	ctt	tttgg	tttgg	ttttagaa	ttttagaa	1320
gtt	gg	tttgg	tttgg	ttttagaa	ttttagaa	1380
caga	tttgg	tttgg	tttgg	ttttagaa	ttttagaa	1440
aatt	tttgg	tttgg	tttgg	ttttagaa	ttttagaa	1500
tttgg	tttgg	tttgg	tttgg	ttttagaa	ttttagaa	1560
tttgg	tttgg	tttgg	tttgg	ttttagaa	ttttagaa	1595

<210> 18
<211> 1287
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1188)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1202)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1230)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1264)
<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1277)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1282)

<223> n equals a,t,g, or c

<400> 18

aattccgcac	gagaatttt	tttggtgatg	gcatgttcag	aatcttggat	ccctaagttc	60
aatatatgg	acatatttag	gaactctgga	aattatgtt	ttttcacata	tctagtaact	120
tactagatga	atcagtagat	ttcattaaag	tatatcta	aacagataat	tatgtatgtac	180
ttctgggtt	acatgcatgt	ctctcattat	cagctatcag	tattagtgtc	atgccttgga	240
gacagttatc	tttgaagg	tttgggtt	ttatgaac	cattttccc	aggaaagttt	300
tgtaattcct	cctatgccta	ttcttgctt	ttctatctgc	ttgcagtgt	cgttatttt	360
atcagaggca	attatttt	aggaagaag	aaatcatcaa	gtgacactcc	taaaggcagt	420
aaagaca	aaa	tttcagtctg	gaaccgg	cagaakgc	gtattagaat	480
catccaaatt	atatccaaat	atacttgtt	cacagtgt	ccagtttta	aatgagacg	540
ttactatgt	ggcaga	gtccatgagg	agagagaagg	agctgttc	tttgcctcc	600
agccgccacc	tccttctatt	attggctgaa	tgaatttagt	caaaattagt	agccaaaagg	660
gtagacagt	tgaatggaag	ggaggagaag	gacagaaact	ttaatctcca	gaaagctt	720
tttatcctt	aaaaatgga	aagtggca	ggcgcagt	ctcacgcct	taatgcc	780
actttggag	gccgagg	gcagatc	aggcaggag	atcgagac	tcctggct	840
cacagtaaa	ccctgtctgt	actaaaaaa	aaaaataga	aaaagccagg	cgtgtggca	900
ggcgcctgt	gtcccag	ctcgggagg	tgtggcag	aatgggt	aacctggag	960
gcggagctt	cagt	gagcc	agatgc	actgcact	agcctggca	1020
actccgc	aaaaaaa	aaggaaagtt	gagtgtat	catgtac	aatgctat	1080
ttaaaactgt	ggctactt	cagaatgt	actaatgk	tctcgacc	tgaatgaat	1140
gagaatttgk	atttgat	aaagtca	agtcteg	agtcttnt	aaaccggg	1200
gnngggcccc	tcaat	caacccgg	tggggtacc	caggtaa	ggtaccc	1260
atn	cccc	tataagn	gncggaa			1287

<210> 19

<211> 1396

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (668)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (739)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (751)

<223> n equals a,t,g, or c

<400> 19

gctggtaacc	aggtgaaacc	attcacgt	tccctcccc	gctgcctc	tcccttccc	60
cacctggcc	acagcatgg	gttccctca	cccaccgc	ggccctct	tgctcg	120
cacactcaga	aaaaagcaag	gatcagaca	gaagaagagt	ccccacc	cccgcccc	180
caggagctt	cggtctct	gctaagg	ttttttagag	tgtatgtt	tctcctct	240

ctcggttgc	ctggagatcaa	agggttca	ttctcagcga	gggggtgccag	ggacagattt	300
ctaaacaagt	ctggaccgca	gccagaaaaa	aagataaaaa	caacacactg	taaacagcct	360
ctattcagca	aacctggta	ggtcagaggg	gctytgagga	aagcaagagg	gaggcaggag	420
gagagggaa	cggtggggat	gtgggggggg	cgggggcaca	gttatccctga	atacataaaa	480
acaagtgagg	tcaactgaggt	caggatagt	cccaaacatc	ccccaaatccc	gcctttcctg	540
acaaccagg	ttacatgcag	agtcccaggc	catctgcagg	ttttggaggc	cctgtgcggg	600
gcctgggggt	ctatgtttaa	acacccctt	gtgggttgtc	aagtycccag	aascagggg	660
aggcgcantc	tgggctctga	atggcargtg	gggcagctcc	amtcatcct	cctacatggc	720
acccagca	gggctgcang	cytggcccc	nacttgcgc	aggaatcaat	cctgccagct	780
cagagccscc	gtgtgacaaa	cacccagg	acagaggaga	catgagaag	ggactcacca	840
gcccaactg	ccaggatgtag	aagtgcgc	aggagaagat	gtgtccggg	taggaggaga	900
agaccagctt	gttgcggg	accagcggt	agtcccctgt	gcaggcagag	cgagccagg	960
atgctggta	gacaggcaca	ggtggaggcc	cctgcaccc	acctaacaag	acacaggcac	1020
aggggcacag	gcaggcc	gaggaagccc	coactgtgc	ctttttgtca	tttagcaa	1080
gaggtcattt	gcatataaaa	agtgcata	cgtcaagta	aaaataaaag	ctagcagcaa	1140
aacttatata	gttggsccty	catgtccgt	gttccacat	ccttgattc	aatsgamtg	1200
ggaccaaaaa	tactaggaaa	aaaacatgt	taaaaagaaa	caacacagct	gggtgcagtg	1260
gytsacacct	gtaatccctg	cacttggg	ggccaaggc	ggcggatcac	gaggtcagga	1320
gaccaagacc	atccctggct	acacggtgaa	accgc	tctactaaaaata	caaaaaaaaaa	1380
aaaaaaaggc	ggccgc					1396

<210> 20

<211> 1277

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1207)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1272)

<223> n equals a,t,g, or c

<400> 20

cgtttattca	gcagaacatc	agcttctgc	tggctacag	catccctgt	ggctgtgtgg	60
gcctggcatt	tttcatcttc	ctctttgcca	ccccctgtt	catcaccaag	cccccgatgg	120
gcagccaagt	gtcctctat	cttaagctcg	ctctccaaaa	ctgctgcccc	cagctgtggc	180
aacgacactc	ggccagagac	cgtcaatgt	cccgctgtct	ggccgacgag	aggctcccc	240
agccaggggc	ttccccgcaa	gaggacatcg	ccaaacttcca	ggtgcgtgt	aaagatcttgc	300
ccgtcatgg	gaccctgg	ccctactgga	tggctactt	ccagatgcag	tccacctatg	360
tcctgc	arggttccac	cacatccaa	acatccc	agccaaccc	gccaacatct	420
ctgtggccct	gagagccca	ggcagcagct	acacgatccc	ggaagcctgg	ctccctctgg	480
ccaatgtt	gtgtgtgt	attctggtcc	ctctgaagga	ccgcttgatc	gacccttac	540
tgctgcgt	caagctgct	ccctctgtc	tgcaagat	ggcgctgggg	atgttcttg	600
gttttac	ctgtattgt	gcaggagtcc	tggagatgg	gctgttacac	tacatccacc	660
acaacgagac	cgtgtccca	cagattgggg	aggctctgt	caacgcggca	ccactgtcca	720
tctggggca	gatccctca	tacctgtca	tgggatcag	tgagatctt	gccagcatcc	780
caggcctg	gtttgcctac	tcagaggccc	cgcgtccat	gcagggcgcc	atcatggca	840
tcttcttct	cctgtcgggg	gtgggctac	tgttgggctc	cagcctagtg	gcactgtgt	900
ccttgc	gggctggct	cactgcccc	aggactttgg	gaacatcaac	aattgcccga	960
tggac	cttcttc	ctggctggca	ttcaggccgt	cacggctctc	ctatttgc	1020
ggatcg	ctgg	acgttat	aggcgccc	aggccc	aggc	1080
gggac	ctgaac	aggc	cctattcc	cccccttgc	tcactctacc	1140
cagc	actgt	gggt	ttattctgt	ttagaa	tggttccat	1200
aaataanggg	catgagcc	ttc	taaaaaaaa	aaaaaaa	aaaaaaa	1260
aaaaaaa	aaaaaaa					1277

<210> 21
<211> 1781
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1494)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1496)
<223> n equals a,t,g, or c

<400> 21

gctgggtgcc	atggcggcag	cggcggtgac	aggccagcgg	ctgagaaccg	cggcgcccga	60
ggaggcctcg	aggccgcagt	gggcgcgcgc	agaccactgc	caggctcagg	cggcgcccgg	120
gctggcgac	ggcgaggacy	caccggtgcg	tccgctgtgc	aagcccccg	gcatctgctc	180
gcgcgcctac	ttcctgggtc	tgtatgggtt	cgtgcacctg	tacctggta	acgtgctggc	240
gctgctgctc	ttcgtgcact	acagcaacgg	cgacgaaagc	agcgatccc	ggccccaaaca	300
ccgtgcccag	ggcccccgggc	ccgagcccac	cttaggtccc	ctcacccggc	tggagggcat	360
caagggtgggg	cacgagcgt	aggccagct	ggtcaccgac	agggatca	tcatccgaac	420
cctcagcctc	aagccgctgc	tcttcgaaat	ccccggcttc	ctgactgatg	aagagtgtcg	480
gctcatcatc	catctggcgc	agatgaaggg	gttacagcgc	ascagatcct	gcctactgaa	540
gagtatgaag	aggcaatgag	cactatgcag	gtcagccagc	tggacctt	ccggctgctg	600
gaccagaacc	gtgatgggc	ccttcagctc	cgtgagggtc	tggccagac	tcgcctggga	660
aatggatgtt	ggatgactcc	agagagcatt	caggagatgt	acgcccgc	caaggctgac	720
cctgtatgggt	acggagtgct	gagtctcag	gagttctcca	acatggac	tcggacttc	780
cacaagtaca	tgaggagcca	caaggcagag	tccagtgagc	tggcggaa	cagccaccat	840
acctgctct	accagggtg	gggtgcccac	cacatcatgc	gtgccatcc	ccagagggtg	900
ctgcgcctca	ctcgcctgtc	gcctgagatc	gtggagctca	gcgagccgc	gcagggtt	960
cgatatggtg	agggggggca	ctaccatgcc	cacgtggaca	gtgggcctgt	gtacccagag	1020
accatctgt	cccataccaa	gctggtagcc	aacgagtctg	tacccttcga	gaccctctgc	1080
cgctacatga	cagtgtgtt	ttatgttgc	aacgtca	gtggggcga	gactgttttc	1140
cctgtatgc	ataacacaaac	ctacgtgaa	atgagtctg	ttcaggatg	cgtggac	1200
cgtgacacac	ggaggcactg	tgacaaggga	aacctgcgtg	tcaagcccc	acagggcaca	1260
gcagtttct	ggtacaacta	cctgcctgat	ggcaagg	gggtgggtg	cgtagacgac	1320
tactcgtgc	acgggggtg	cctggtcacg	cgccggcacca	agtggattgc	caacaactgg	1380
attaatgtgg	accccagccg	agcgcggcaa	gcgtgttcc	aacaggagat	ggccgcctt	1440
gccccgagaag	ggggcaccga	ctcacagccc	gagtggctc	tggaccggc	ctancncat	1500
gcgcgcgtgg	aactctgagg	gaagagttag	ccccgggtcc	cagccgcgg	tcgccagtt	1560
cccaagatca	ggggtccggc	tgtccttctg	tcctgctgca	gactaaagg	ctggccaatg	1620
tcttgc	ccccggccagc	cgcgataacgg	cgcagttcct	atattcatgt	tatttattgt	1680
gtactgactc	catctgcccc	gtcaaataaa	aaaccacaag	gttcgaaaaaa	aaaaaaaaaa	1740
aaaatgggg	ggggggcccg	gtacc	ttt	g		1781

<210> 22
<211> 1491
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1425)
<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1426)

<223> n equals a,t,g, or c

<400> 22

ggaagtgtag gtacagattc aggtcataga aaggccata tgcctcaata ttatyytyt	60
tacagagaaa acagatgaaa ttracaattt ttttktytt tccacagacc atcacggcc	120
tcctgcagak ttgtatgtcc aggcaagtag agatgtggc ttccctccc ctccctcatc	180
ccgtcttc ttttcctt ttcttccat tggttaagt agatcattgt gcaaacattg	240
cggccaaggg gagagaaggc agtggctca gctaggtcct caccctcagc tgctgctccc	300
agacagaagc tgacttgagt gctggcaga gaatcaggaa ccagtcaactt cccacgaaag	360
caggacagag acaccgcctg ttctcgtccc aaagagctgg ccagaacggg gggcggtgt	420
tggggaaaat ggtgtatgc tggctggct tggaccctg tgaggggagg gaacggaagc	480
aaaagcttga tgttcttggc tccacttggg aaactgaaac cagcctctc tggttttac	540
tggcccagaa ctgaagtatc tccatttcca ctcaggattg caggggtggc caggggggtgc	600
agctcagctg tgtccaagaa taggctctca ggagaacggg ctggctctc tcagccgagg	660
gctgggtcag aacttcagga aatctaagtc ctggactcgt tagccccaaag ctgggggtgg	720
tcccatctg tgctggcctc tggagggtgg ggcaraaagc ctgagcatat ggcgagcttgc	780
tggtctcctt gaaggaggag aggcgcactc ctggaccagc cagagagcca gaggtggctg	840
acgggtttct cacctgaacs gytaccatg tggcgtacag gtgtcccaag tttgggaccc	900
attctgcact ctgcatctca ctcccttattt ctacccatcc acctcaaaac aactccgcctt	960
ttccctttaa atctctgatt tcatgaatgc tcccccattcc atcccggggc gaggaaatctt	1020
gcactgtctt tggaaaggaaa ggaaaggatg ggagaggggc tggaaagcatt ggcttagtaga	1080
tgatcgaggc tttctataacc accaccaagg tggttatattt ctcatcatcc tgggtgtgtc	1140
aggctgtccc tagagatcac cctgacatca gtgttaaga agaaggccca gatgcagtgg	1200
ctcatgcctg taatcctagc actttggaaag gccgaggcag gcagatcacc tgaggtcagg	1260
agctcgaggc cagcctggcc aacaaggaga aaccctgtct ctactaaaaa tacaaaaatt	1320
agccaggcat ggtggtaagc acctataacc ccagctactt gggggctgag acaggagaat	1380
tgcttgaacc tgggaggcag aggtgcagt gagccgagac cacgnngttg cactccagcc	1440
tggcaacaa gagtgaaact ctgtctcaaa aaaaaaaaaa aaaaactcga g	1491

<210> 23

<211> 1839

<212> DNA

<213> Homo sapiens

<400> 23

aattccggcac gagtgcaggc cgactctaga ggatccccgc taagaagcta gggctattgg	60
tcttccata cacacatcg aactgaggca ccatgcaagg gggccagaga cctcatctcc	120
tcttgctgtc gttggctgtc tgcctggggg cccagagccg caaccaagag gaggctctgc	180
ttggggaccc gatgcgaaac tacgaccccc acctgtcgcc ggctgagcgc gactcagatg	240
tggtaatgt cagcctgaag cttacccatca ccaacctcat ctccctgaat gaacgagagg	300
aggccctcac aactaacgtc tggatagaga tgaatggtg cgactatcgc ctgcgtggg	360
acccaaaaaga ctacgaaggg ctgtggatat tgagggtgcc atctactatg gtctggccggc	420
cagatatcg cctggagaaac aatgtggacg gtgtcttgc ggtggctctc tactgcaatg	480
tcctcggtc cccggacggt tggatctact ggctgccc tgccatcttc cgctcctcct	540
gctccatctc tgcacccatc ttcccttcg atggcagaa ctgtccctc atcttcaat	600
cccagactta cagcaccatg gagatcaact tgcagctgag ccaggargat gggcaagcca	660
ttgagttggat cttcattgac ccggaggctt tcacagagaa tgggragtgg sccatccggc	720
acccgaccggg taaaatgctc ctggactccg tgctcctgc agagruggcg ggcaccaga	780
aggtgggtt ctacctgctt atccagcgca acccccttctt ctacgtcatc aacatcatcg	840
ccccctgtgt gtcatctcc tcagtcgcca tcctcatcta ctcccttcct gctaaggccg	900
gcggccagaa atgcacagtg gccaccaacg tgctcctggc ccagactgtc ttccctttcc	960
ttgtggctaa gaaggtgcct gagacctccc aggcaagtgc actcatcagc aagtacctga	1020
ccttcctcat ggtggtgacc atcctcatcg tgcgtactc tgggtgcgtc ctcaatgtgt	1080
ccttgcggc ccccccacaca cactccatgg cccgtggggt ccgcaagggtg ttccctgaggc	1140
tcctgccccca gctgttacgg atgcatgtgc gcccactage tccagctgtc gtccaggatg	1200
cccggttccg actccagaat ggctcttcct cagggtggcc catcatggct cgagaggaag	1260
gggacctctg tgcctcgatc agcgaactcc tctttaggca aaggcagcgc aatggattag	1320

12

tgcaggcagt	attggagaag	ctagagaatg	gtccagaagt	gaggcagagc	caggagttct	1380
gtggcagcct	gaagcaagcc	tccccagcca	tccaggcctg	tgtggatgcc	tgtAACCTCA	1440
tggctcgtc	ccgacGCCAG	cagactact	ttgacagtgg	gaacgaggag	tggggctgg	1500
tggcccgagt	gctggaccga	gtctgcttcc	tagccatgct	ctccctcttc	atctgtggca	1560
ctgctggcat	cttcttcatg	gcccactaca	accaagtgcc	tgacctgccc	ttccccggag	1620
accccccggcc	ctacctgcct	ttgcccagact	gagccaacca	atccctcttg	ggccctggag	1680
tcagctatga	gggcatgct	gtttgttagag	ctgtatccc	tgttgatgct	gagtgtgctc	1740
ttggggaaat	acccaaggct	tcctggaga	agatagagaa	ataaaagagac	agaggggaaa	1800
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aactcgtag			1839

<210> 24

<211> 1384

<212> DNA

<213> Homo sapiens

<400> 24

ggcacgagca	gttattttca	aatggctat	ggaaaacacg	taagtttaa	aatatgccct	60
ctttctcggt	ttaaaaaaattt	attactattt	tccatacatg	ttactctttt	catctagatt	120
tatcatgttt	cttggcctc	cagtctctgg	tgtttgccta	agctttatta	gagacaggc	180
atttctacct	atgtgtcattt	ttatctatgt	cttgatctta	tgtattcaa	ttgtctttta	240
agattatgtt	ctcttcctat	gtttggttta	tccattatcc	aaattttcca	tttctttaac	300
ctgttatccc	ttgactcttt	acagttctac	ctttttattt	acttagtctt	ttaccctttt	360
tttattcgtt	cacccctttt	tggttgcatt	ggtactcctt	acttatctcc	ttagcctttt	420
cttcttcatc	ttctttctta	cttttcctt	acttcttatt	ttacataata	cttacttttt	480
gtttcagtct	tcaaccattt	tcaatcttgc	ttttccttat	attccatttt	actttctgaa	540
ctactcttta	atcttcgtt	caacactacc	tttccttctt	ttttatcccc	tcttattttac	600
acggtgatttta	caacagtttg	gtatagtctg	atttatctga	ttgtaaaattt	gatgagttgg	660
atgtacccaa	aatataagga	agctaaattt	aaagaaggta	aaagatttgc	ttgtgtcacc	720
tagctggta	attttggcat	atgcattgtt	tctctacata	gtctatgtag	tcaaacaggt	780
ttcattttaga	aatcattccc	cataagaagg	gtttcaattt	gatttgaaca	ggcagagatg	840
aaaaaaattt	cctctctgtat	aactactgct	actgttgtat	accagtagaa	ataaacagc	900
agcactttagg	ttagaagaag	ctcatttagct	attcagaata	aatttcattt	ttcttaattt	960
ttggtaatca	tatctcagcc	tggttgcattt	aacttaaact	ctgaaagaat	tttgggtggc	1020
atthaatttt	tagtttcct	taatgtatgg	gacctaataa	tttggttttaa	aaaattttgc	1080
ttggctggga	gcagtggctc	atgcctgtaa	tcccaagact	ttaggaagcc	aacattggag	1140
gattgcatga	gcccaggattt	tcgagaccag	cctggcaac	acagtgaac	ctcatctcta	1200
aaaaaagtta	aaaaattaac	caactgtgg	gccacatgcc	tgtgtccca	gtgtcttggg	1260
aggatgaggt	gagaggattt	cttgagttcca	ggagtttgag	gctgcagtg	gctatgatca	1320
cactcctgct	cttcagccta	ggtgacacag	caggacacta	tcttggaaaa	aaaaaaattt	1380
aaaa						1384

<210> 25

<211> 1681

<212> DNA

<213> Homo sapiens

<400> 25

tctctggccc	aatatggcag	cgcccaagcaa	caagacagag	ctggccttgg	gtccgcggct	60
ggccgcgtga	gtaggtgatt	gtctgacaag	cagaggcatg	agctgggtcc	aggccacccct	120
actggcccgaa	ggcctctgtt	gggcctgggg	aggcacctgc	ggggccccc	tcacaggaac	180
ctccatctct	caggtccctc	gccggctccc	tcggggcctc	cactgcagcg	cagctgccc	240
tagctctgaa	cagtccctgg	ttccccagccc	accggaaaccc	cgccagaggc	ccaccaaggc	300
tctgggtccc	tttgaggacc	tggttggca	ggccctgtt	ggggaaacggg	acaaggcgg	360
tttcctgcag	acgggtcaga	aatttgcgg	gcacagcgtg	cgtaagcggg	gccacattga	420
tttcatctac	ctggccctgc	gcaagatgcg	ggagtatgg	gtcgagcggg	acctggctgt	480
gtacaaccag	ctgctcaaca	tcttcccaa	ggaggtcttc	cgccctcgca	acatcatcca	540
gcgcatcttc	gtccactacc	ctcggcagca	ggagtgtggg	attgctgtcc	tggagcagat	600
ggagaaccac	ggtgtgatgc	ccaacaagga	gacggagttc	ctgctgatcc	agatcttgg	660
acgcaaaagc	taccccatgc	tcaagttgtt	gcccctgaag	ctgtgggtcc	ctcgattcat	720

13

gaacgtcaac	cccttcccag	tgccccggg	cctggccca	gaccctgtgg	agctggccat	780
gtttggcctg	cggcacatgg	agcctgacct	tagtgcagg	gtcaccatct	accaggttcc	840
tttgc当地	gactcaacag	gtcagcaga	tccccccca	ccccacatcg	taggaatcca	900
gagtccc当地	cagcaggccg	ccctggccc	ccacaatcca	gccccggctg	tctttgtga	960
ggggccccc	tccctgtgc	tccgcaacaa	gtgtgttat	taccacatcc	tcagagctga	1020
cttgc当地	ccggaggaga	gggaagtgg	agagacgccc	gaggagtgg	acctctacta	1080
ccc当地	ctggacctgg	agtatgtgag	gagttggctgg	gacaactacg	agtttgacat	1140
caatgaagtg	gaggaaggcc	ctgtcttcgc	catgtgcatt	gcggggtgc	atgaccaggc	1200
gacgatggct	aagtggatcc	agggcctgca	ggagaccaac	ccaaccctgg	cccagatccc	1260
cgtggcttc	cgcctcgccg	ggtccaccccg	ggagctccag	acatcctctg	cagggctgg	1320
ggagccgccc	ctgcccggagg	accaccagga	agaagacgac	aacctgcagc	gacagcagca	1380
gggccagagc	tagtctgagc	cggcgcgagg	gcacgggctg	tggcccgg	aggcgggtgg	1440
ctgaaggcat	gagatgccct	tttagtgtac	agcaaataa	tgtttccctg	cttggggctc	1500
tcttc当地	tctctagcag	tatggcatcc	cctccccagg	atctcgggct	gccagcgtat	1560
ggcaggc当地	acccttccag	aatctgcagg	cgcctctgg	tctccgaatt	caaataaaaa	1620
ggggc当地	cgctgttggt	tgtgcgc当地	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1680
a						1681

<210> 26

<211> 1949

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1130)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1948)

<223> n equals a,t,g, or c

<400> 26

gctacgcgtt gggacttcc tcaacgacct gtgcgcgtcc atgtggttca cctacccgt
gctctacctg cactcggtgc gcgcctacag ctcccgccgc gcggggctgt gctgtgtgt
ggccagggtgg cgacgggctg tgcacaccgc tcgtggctta cgaggccgac cgccggcc
gctgctgcgc cccgtacggc ccgcgcgaagg cctggcacct gtcggcaacc gtcgtgtcc
tgctgtccctt ccccttcatac tttagccccct gcctggctg tggggccggcc acgcccagtgg
ggctgcccctc ctctactacg gcccgttcat cgtatcttc cagtttggtt gggccctccac
acagatctcc cacccatcgcc tcatcccgga gctgttacc aacgaccatg agaagggtggaa
gctcacgca ctcaggatg cggttaccgt ggtggccaaac atcaccgtt acggccggcc
ctggctctgt ctgcacctgc agggctcgtc gcgggtggag cccacccaag acatcagcat
cagcgaccag ctggggggcc aggacgtgcc cgtgttccgg aacctgtccc tgctgggtgg
gggtgtcgcc gccgttctt cactgtatt ccacccggc accccggaga ggccggcc
gcatgcggag gagccaggcg agcacacccc cctttggcc cctgccacgg cccagcccc
gctgctctgg aagcaactggc tccgggagcc ggcttctac caggtggca tactgtatcat
gaccaccagg ctcatcgta acctgtccca gacctacatg gccatgtacc tcacctactc
gctccacccgt cccaaagaagt tcatcgac catttttgcgtt gtgtatgtacc tcagccggcc
cttgtctcc ttccatgtaa agcccatcaa caagtgcatt gggaggaaca tgacctactt
ctcaggcctc ctgggtatcc tggctttgc cgcctgggtg gcgctggccgg agggactggg
tgtggccgtt taycgagccg ctgtgttgc ggggtgttgc tggccacca tcctcgatcc
ctcgctggcc atgacggccg acctcatgg tccccacacg aacagccgan ckttcgatcc
cggtccatg agtttcttgg ataagggtggc caatgggctg gcaatgtatgg ccatccagag
cctgcacccct tggccctcag agctctgttgc caggccctgc gtgagctttt accactggcc
gtatgtgtgtt gtacggccg gctgtggccgtt ggccgttgcctt ctgtgttgc ttagccct
gctgtggccg accccgcctgc gacgtggga ccgtgtatgcc cggccctgac tcctgacagg
ctccctgcacc tggcaaggaa aactgtgggg acgcacggg atgccccccca gggcccttggg
aaaaagcccc cactggccctt cacttttcc tggaccccca ccctccatcc tcaccccaqct

14

cccgaaaaatg gggtcgggtg	agggcagcag	ggatgcccgc	caggacttg	caaggacccc	1560	
ctgggttttg	agggtgtccc	attctcaact	ctaattccatc	ccagccctct	ggaggatttg	1620
gggtgccccct	ctcggcaggg	aacaggaagt	agaatccca	gaagggtctg	gggaaacct	1680
aaccctgagc	tcaagtccagt	tcacccctca	cctccagcct	gggggtctcc	agacactgcc	1740
agggccccct	caggacggct	ggagcttgg	ggagacagcc	acgggggttgt	ggctgggccc	1800
tggaccccac	cgtggtgggc	agcaggctg	cccgccaggc	ttggtgact	ctgctggcag	1860
caaataaaga	gatgacggca	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1920
aaaaaaaaaa	aggggggggg	gctagttnt				1949

<210> 27

<211> 2286

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (2262)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2264)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2272)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2278)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2279)

<223> n equals a,t,g, or c

<400> 27

gctgatgtcg aggttcatcc	tgaaccacct	ggtgctggcc	attccactga	gggtgcttgt	60	
ggttctgtgg	gccttcgtct	tggccatc	cagggtcatg	ctggggcggc	acaatgtcac	120
cgacgttagct	tttggctttt	ttctggctta	catgcagtagc	agcatcgtag	actattgctg	180
gctctcaccc	cataatgctc	cggccctt	tttactgtgg	agtcaacgat	gacaccatct	240
cattgattat	ggcaccagga	agtctgaagg	tttccacatt	cgatgatgtc	aacctaaacc	300
agcagccatc	cogcttgc	ctcttaggca	tttcaggctt	cctttggat	ttcaggtgtc	360
ccatgatctt	gatgtgtgc	taggctggag	cacacactgg	ccattactga	acacagccat	420
attagggaaa	gcaaaaaaac	ccaaaaaaatc	ctctattgtt	tatattattca	acaactgttt	480
atgttccag	gacaactgca	aagaaaaaca	gctgagggtgg	ttatactgtt	gctgttaaaa	540
gttggtatca	gtaagatitt	ttttttgtga	taatccctaa	atcaacatac	cacttgtaaa	600
ctgaacttcg	agaaaagaaaac	atgatgttca	ttctgttaat	atacatgcag	acaggtcatg	660
tactaatct	agtcccttttc	ctgaggtaga	ttttaaacag	tatttttaaa	gtccaagaca	720
taggttttc	tagtttattc	cctgaagatc	tgttgccaca	gttggagat	ttcttcttaa	780
tcctgatttt	cttggtaagc	tttttactt	tattatctct	ataatttatt	atctctatcc	840
atatttgtgg	atcgggtagt	gggaaaagag	attataatac	ttgtcttct	ctccctctccc	900
tccatccctc	aaaagatctt	tatgcatttc	ccactactcc	cttactgtct	tttagcattc	960
agagaaaaag	ccaaacttgc	taaagagggaa	tcacttaaaa	ggtaggcata	tctaagatgc	1020
tcatagaaga	ggaagaatgg	gacatggccc	catgcttatt	tttggttaca	acgtAACATG	1080
gcatgagaga	gggcagagaa	actaaggttgc	tggggaaagt	tagaggaact	gaaagtttgg	1140

15

gaataggctg	accacatatt	atgccagtga	ccagtatgac	aggagatggg	gccctgctgc	1200
cagtcatctc	caactgaataa	agaataatgc	tcctcttca	ggtaataaaa	gtggggaaaa	1260
ggaacgtctt	ctcaatgcaa	gaacataagc	tttctcgat	atacctgtat	gctacagttt	1320
ttcacatgga	attccgtttt	ctgaggtaca	gcacattta	ggtAACAGTA	ttaacttga	1380
aattcatcat	gggagtctgc	tgctatacca	ggcacaagat	aaaactccaa	aatttctgtt	1440
tacattgacc	tttacattta	aagctgtca	tccatggtgc	ctccccaaat	cataagacca	1500
aagaccacca	aacgcagggt	ggactctgtc	cattattctt	tgacccagaa	agactggaga	1560
aggtatgtgc	ttaagtgtct	gctctacccgt	aaaagaaatc	ctttaaatta	cctatggaaag	1620
tgatgtcctc	agataatctt	aatgactatt	ttggcattta	taaatagaaa	tgattatggaa	1680
ctttgatctg	ccatacggag	gttcggaaacc	tggagaaygg	ctgtgataag	taggtttga	1740
ttgagtgaaa	gcatgagctt	gttcagagtg	agggcatacg	tgaaaaagga	acagccatgc	1800
ctcawaatca	aatcatttgc	rttcccacag	catccctgaat	accgactacc	tcttcaacttg	1860
ctaaagcagc	taaactgtga	agctctaagt	gtttgggtt	tgttgtttaa	ccttagcgag	1920
atcccttaac	tgcagcaata	ttcaagccag	atatttggaa	gcaaatgata	tttccttgc	1980
cagtgtccac	aaatctgaat	attagggca	tgaattttagg	cttaccatct	gatttgtaat	2040
tacaattttg	gaattctctg	tttttagttgc	tgaggcctga	gttttctggc	tcttaaagca	2100
tagatcattt	cacctgatgt	ttttgaagca	tccttaagtac	agtagagtag	aaaactgtatt	2160
tctttgttaa	ttgtacactg	aataatgcct	tttaaaaatc	aaaataaaat	taacaaataaa	2220
ttgtgaaaaa	aaaaaaaaaa	aaaaaaaaact	cgaggggggg	cncnaaaacac	antcgacnna	2280
tagtga						2286

<210> 28

<211> 530

<212> DNA

<213> Homo sapiens

<400> 28

<210> 29

<211> 1296

<212> DNA

<213> *Homo sapiens*

19.

29

cttcatccgg
catgggggg

gcggggggcgcc cgccagggtt
gggggggggggg

tacttgataa	agaaaagact	cgtcgctgt	gcagctgtat	tctatggttt	cgyggtcac	240
atgaagatat	atccagtgac	ttacatccct	cccataaccc	tccacctgt	tccagatcgc	300
gacaatgaca	aaaggctccg	tcaattccgg	tacacttcc	aggcttgg	gtacgagctc	360
ctgaaaaaagc	tgtgtaatcg	ggctgtgtg	ctgttgttag	cagttgctgg	actcacgtt	420
tttgccttga	gctttggttt	ttactatgag	tacggctggg	aatttttgg	acacacctac	480
ttttatcacc	tgactaggcg	ggatatccgt	cacaactttt	ctccgtactt	ctacatgctg	540
tatttgactg	cagagagcaa	gtggagttt	tccctggaa	ttgctgcatt	cctgccacag	600
ctcatcttgc	ttttagctgt	gtctttcgcc	tattacagag	acctcggttt	ttgttgtttt	660
cttcatacgt	ccatttttgt	gacttttaac	aaagtctgca	cctcccaagta	ctttcttgg	720
gtacctctgg	cttactgcct	cttgcgtatgc	cactagtca	aatgccttgg	aaaagagctg	780
tagttctcct	aatgttatgg	tttatagggc	aggccatgtg	gctggctcct	gcctatgttc	840
tagagtttca	aggaaaagaac	acctttctgt	ttatttgggt	agctggttt	ttctttcttc	900
ttatcaatttgc	ttccatcttgc	attcaaatta	tttccccattt	caaagaagaa	ccccctgacag	960

16

agagaatcaa atatgactag tgtatgttcc acaccctctg ctactgtgtt acattctgat	1020
tgtctgtat ggaccagaag agagctttgg gacatTTTT ctgaacattc taagcattct	1080
agtaaaagtt cccatgttcc aacagaactt aaaagcaatg tttgccttat atataaaagg	1140
gacacaataa ttgaggtcca ccttcttagga aatccttagga ctcgtttatt tggacatgg	1200
tggaaataaa ggtcacatat tggaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1260
aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa	1296

<210> 30

<211> 1979

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (968)

<223> n equals a,t,g, or c

<400> 30

gctttgccag ggctgagccg ggctgcctgg tgccctcacc gccccggca wacaccacca	60
tgcwgaactcc cggcctgcgg aactcgtagt gcagccccctg tcgcctcccc ggccccctgct	120
atcccacgca ggactggctt cggccggccgg ggcagcagc ttgcacatgt tccctgggaa	180
ggcgaatcg ctgtgcgcctc tgagccggg ctcaagccctt cgctttccag ctgcgtcctg	240
ctccggcccg sccaggggagc ccagtggcga tgagggact gctggcgctt tgccttcctc	300
ttggctggct ggcgtggggc cggcgccggc cccagcagtc cggagagta tgccacggct	360
gggtggacgt gcagggcaac taccacgagg gttccatgt cccagaggac ttgcacacgc	420
tggacgctac catctgtcgc ggcttcgtcg cgctccgcta ctgttgccgc gggccgacg	480
ccaggcttggc gcagggccggc tgaccaacg accggccgca actggagcac ccaggcatca	540
ctgcgcagcc tgcgtacgtc ccctttctca tcgtcgctc catcttcatt ggcgttcatca	600
tcctggctc tgcgtggct atttattgtt gcacctgtt gagaccaag gagccctcgc	660
agcagccaat cccgttctca ctccgcagct atcagacaga gaccctgccc atgatcctga	720
cctccaccag ccccaaggcga ccctccggc agtccagcac agccacagac tycagcttca	780
caggccgcty catccgcagg ttcttcag ccattctgggtt tcctgggttc accccagttat	840
ttcgcttacc cccttcagca gragcccca ctggctggga agagctgtcc agactttcag	900
ttcccaagtga cacgcccagg ccatgaatyc acaactcagt cagatggcag acaggtggag	960
ccctgtncc attgcccacat gcaatttgc gaaaatttcc cttgtactg atcagtgtcw	1020
tggaggagca tgcttaggaaa acacagcacc ttctaaatttgc aaagttcctg tctccaaatca	1080
cagaaggct aaaccagaga actgtttctg gtttgcaaa catgtatca ttacatttca	1140
atctatgcta cttttattca aaatatgcag cagtttactt taaaaggttgc aaactggcta	1200
aaaacgtttt actggacatt cagctatatt gcttagaaaa gggctacatg tttctttttc	1260
atataaggttt ttcattgtat tatgatagga atatattcat aaataagcaa agaaaaaatac	1320
ctaattgtaa ttatcaaagg ttcactttaa aaattaacta ttagttaaac ttaagggggc	1380
agtaaaaat ctatattga ttctgggactt aacctaacca tgaataatat tagcatwatg	1440
agamcatttm ctttttaaat aaatamctaa attkgttta caaymggagt ttttyccagaa	1500
tacaaggatty caataatcac atgaggagtt taaagtttta aatataactt cagacattca	1560
ttgttaacaca gagtgtatgt aaaatcattt ccccccactca ctggaggagg tattttatgc	1620
agacttttg ttctggcaaca tttagtggc cagtggaaat tggacagttt gggcttaaaa	1680
catttatttg taaaatgagc tatgttcaaa tgtaaatatt tgtaattaa tgtatattacc	1740
mcattgtactg tactaattat ttagtagtca tactgtatatt tttatgtttaa taataactgg	1800
agttcaaaatg ctagcttattt gtataatcat ctaatattat atatatctcc agtgcctctg	1860
aattttatgt ttgtatgacta tatatttggg catatatctt gttggatttag aataaaataaa	1920
acactttataa ttctcatgaa ctctaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1979

<210> 31

<211> 1274

<212> DNA

<213> Homo sapiens

<400> 31

ccccacgcgt ccgctgttgc tcaaaggaaa taggagttgg tgtgctgtg accaagggg

60

17

tacacttmca	gcttttaaaa	ttctccttta	catgtgctca	gtgtttgkt	ttgtgtttg	120
gtttctgttt	tttattttaa	ttcccacatt	gggcacaaga	atcagaatat	ggatagctag	180
ttaagaaac	ttttgtgggt	gcactgttagc	atagatgaca	gaatttgatg	ttccccccat	240
ctccaattca	gttcaggcca	ttccacagtt	aaacagaaaat	gggaacgtgg	ggctcttata	300
aatgaatggg	cgctcacagt	tttggtttc	agctcttcat	gtctgttaagt	gtgctttggg	360
graggctatg	tctgtatggt	cgattctcag	ttatcacatt	tgcctctcct	cccaactacct	420
tcatgamcat	tcaagtctgt	tcgcactgca	gttagagaga	agggacggac	agttggtgac	480
actcagccac	attgctactt	ttatctgttc	tggtaaagaag	ttagatagat	ggtagattga	540
agcaattggg	tagaattagt	tggggaata	tttatgagtt	gctgtgttg	ttgatttagtt	600
ccatctctt	cccattttaa	ctgagaattt	attatataata	gctctaagta	tataggtatt	660
taaacaaccc	cacaagcggc	tgtatcgtta	acattttata	attccactat	agtgaggggag	720
gatttccatt	ctaaataacct	tatTTTgagg	gatttataaa	acttagttgt	aaaagagaaaa	780
gcccacatag	tgggataaaa	ttgctcagc	catttttagt	atttggagac	actagggaaag	840
atgttttagt	gctgtgtgga	tgccttttt	cacaccctgt	ctattgaatg	ctgcatccat	900
tcacgaagtt	aaatgttaca	tgcagttag	ccttaatgt	gactggatct	gtactttgt	960
tttgattaa	aacattttaa	gattttgaa	gtgcagctac	tccccacgtg	catttgmtac	1020
acataaaaagt	catactgtgt	gtgcacaaag	agtacatgga	tttccagca	taytgcettt	1080
aaaaattata	taaaactgtt	aaatattaac	acctcaggct	acctgctgt	ttctgtccca	1140
ttgaccctg	gaattggatt	tactgcaagt	gattgataat	tcaattatgt	ggctttccc	1200
cttaatctt	gccatTTaaa	ttacagtaga	aagacaaaat	caagtaaaaat	aaagtgttag	1260
ataatagaaa	gagt					1274

<210> 32

<211> 1531

<212> DNA

<213> Homo sapiens

<400> 32

tcaaaagact	acttagtgac	actataaaaag	ttacgcctgc	aggtaccgg	ccggaattcg	60
cggccgcgtc	gacgaagtgc	tgaccaattt	ccactggaca	tacttggaaac	aaaataggaa	120
aatggcagca	aactcttcag	gacaagcatt	gcactctcg	gaccctct	taataaggac	180
ttccggatc	acgctgagca	gcagcatatt	gcagcccaac	agaaggcagc	tttgcagcat	240
gctcatgcac	attcatctgg	atacttcattc	actcaagact	ctgcatttgg	gaaccttatt	300
cttcctgttt	tacctcgcc	tgacccagaa	tgaagaaaac	atttgcgatg	gaaaagtgac	360
ttttaatat	caaatgcca	agctacttac	attcagtgt	acatgaactg	tgactttaa	420
aattttggtg	aactttgtata	ttttttgttt	gtctgaaaga	aaggaatgtg	taagtgaaa	480
ctgaaaagaag	ataaaccagg	atgatgagag	ctgtggaa	tgtatcgtcc	aaggaatttga	540
ttatgtaccg	tgactgttaac	ttttttgtaa	tgtgtttaa	ctctcaatca	gactgtgaac	600
tggatggtca	cgaagtccatt	cccccaactcc	tagcaagt	gactgaat	atcatgtcca	660
cagtagattt	tcaagaatca	tttatagtagc	ttaactttaa	agaaaacaagg	ctgctttttaa	720
aaaatgaact	aataggctt	aatcaattgc	atccatattt	gctgtttata	ggattgtat	780
cagtagatacct	tttgcgttta	tagtcaacat	gtatcatcct	gaaatattct	ttctggactt	840
ataactactt	cccccttttt	cactttaaaa	caaacctcaa	gaataaatta	ctaaccagtc	900
ttaaccatct	tttataaaca	tatgccttta	taaatgtt	gactagatgc	aataaaaat	960
aatagggaaat	gtggtaggtt	tttaatttgc	acatcctt	atttagtgtt	accacataaa	1020
tgtatgat	tttgcgttct	gttttccatt	tttgcgttctaa	ctgaaaactt	tttggctgg	1080
cttgaactct	ttggcctcaag	cagtcccttc	gatcctccca	ccttggcctc	ctaaagtgt	1140
gagattacag	gtgtgagcca	ctgcatttgg	cttacttatt	tttgtctatt	tctgttccac	1200
tagtatgtaa	agtcttagag	agcaagaattt	tttgcgttatt	tctttctt	cctcccttcc	1260
tttcttcctc	ttttacttcg	ttcactactg	tattccacat	aaaatattt	tggcatata	1320
taggtgttca	atatgtt	gaaatgtt	aaatgtt	ataga	cttgagggt	1380
gtatTTTTT	ttactgtgt	gagttt	ttatggc	aaaatgtt	aaagccgtt	1440
cagatgtcag	tgctttgacc	ctggaaat	aaaatgtt	aaatgtt	ctaaataat	1500
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	1531

<210> 33

<211> 2090

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (967)

<223> n equals a,t,g, or c

<400> 33

ataggaaag ctggtacgcc	tgcaggtacc ggtccggaat	tcccgggtcg acccacgcgt	60
ccgagctgat	gcccataatt gtattgatcc	tcgtgtcatt attaaggccag	120
ctaattcctcc	ttattcctta tatcccagat	ctggaactgg gcaaactatt	180
cagaaaacctt	gggtgttgtt tattatgtca	acaaggactt caaaaatgaa	240
tgttattaca	aaaggtagaa aagagtgtgg	agaagattt tgtgactaat	300
actgctggaa	agaaagacaa caaaaaacag	atatgcagta tgcaaaaaa	360
atgatcgact	ccgaagaagg cagatgcctt	gagcatggac aactgtaaag	420
gcttaccagt	ctttataaaag gaggatgaac	tgaattttt atttataacct	480
tcttattttt	ttctgttaagt aagtttgtt	tcatcatgag gnatgaagga	540
tactgaaaac	taaactgaat agttggticc	tgaatcttg gactgttat	600
ctccttaaa	tagtaactga aaactaaaat	ggaatatttt agttaacgct	660
ttttcattttt	aaaagcttac atgattccta	actaaagtgt catgagaag	720
cctgttagcaa	tttccagttt tagtGattt	ccatTTTTT cttgtcatg	780
tggaatgatc	atTTTGTGTA catacagggt	actgctttt tatttaattt	840
ttagctccat	gagacacttc agttaaatt	gatggaataa atgttatatg	900
atTTTCTTA	tcaagggtgtc aaatatgtgg	acacatttac actttaaaca	960
aaaamcnaaa	actttaactt tgtgtaaaat	atgaaacttt ttcaaaaaaaga	1020
atattttaa	tattgcccgtt atattccaaa	cttatagttat tatcagctt	1080
aatatcagtt	tgctatTTT tagtataat	gagggaaattt gatggatgt	1140
tgctatactg	ataaaattta aagaaaaat	ctataaataat taaactaaaa	1200
gggtcttcaa	cagtaaagtgc agttatgtc	tttgcctt aaaaaaaaaa	1260
aaattttgtat	gtatatgtcc ttgaagggtct	ccatTTTTT aaggccacc	1320
cccccataga	aatttgcagt ttcttggta	ctcacatttt ctcacatttt	1380
tacaataaag	taataagaaa aatgagtaact	aggatccaa gaatggcctt	1440
gccaactcctt	aaacatataaa gtagattaca	ttaaccctat gatgayctgt	1500
ttggccacat	gcaagtgtga gcagaaatag	tttgcctt agcagcacgt	1560
gtcattcctt	aaaaattctg agctaaaatc	ttttatccat ttagtaattt	1620
ataggaataaa	gtcatttgcata agtaaattca	tttgcctt aatTAATCCC	1680
aaatttgcgtt	tgtatactgg atatgaaact	tttgcattt tagtcttctg	1740
tgtttagcag	tttgcattt ttaatgattt	tttgcattt ttagtgcatac	1800
atatttttgc	tacttcttt tgagtgcag	tttgcattt ttagtgcatac	1860
ttaagttttt	tttgcattt tgagtgcag	tttgcattt ttagtgcatac	1920
tgacccttta	aaaatgttct gttgtatccc	tttgcattt ttagtgcatac	1980
attgaatttag	taggttaaac taaacaacat	tttgcattt ttagtgcatac	2040
aacttgcct	taggttaaac taaacaacat	tttgcattt ttagtgcatac	2090

<210> 34

<211> 1006

<212> DNA

<213> Homo sapiens

<400> 34

gctcgccgc	ctggaccgc	tggagtaacgt ggcaccc	cgcaagcgcg aggacctgc	60
cgccgcctg	ttttgggtgg	cgctggacct gctggacctg	ctggacatgc aggccagcct	120
gtgggagccg	ccgcgcctcg	ggctgcgcgt gtgggcccag	ggcctcacct tcttctactg	180
ctacatgc	ctgctgggtc	tgccgtgcgt ggctgc	ctcagca gaggtcagca	240
gcacatagcg	ccgcagaaga	tgtatgcgtc cccgggtc	agcctcgcca ccgtcaatgt	300
ggtggccgtg	ctggcgcgcg	ccgccaacat ggcgtgttc	cgggacagcc gtgtctcgcc	360
catctcg	ggcaaaaac	tggtgcgcgt cggccaccaag	gcctgcacct tcctggagta	420
ccgcccggc	gtgcgcgact	tcccgcgc	tgctgcatac ctggagctgc	480
cccgccgc	aactcggtgc	cgccgcgc	ggccgcgc acgcgcacc	540
catgtcctcg	cccacgcgtg	accccttgg	cacgtgacag ggccgcgc	600

19

cggccctggg	gcgcagagac	accgggttgg	cttggggcgc	gcggtttgc	tgggatgggg	660
tggggggcggg	ctcccctagg	gacaggtgcc	tcgagtgc	gtgcctgggg	tcccgccg	720
gcttcttcat	ctcaggaatc	tctcgaccg	cgatcctca	gcccccgctc	caccagcccg	780
ccccagsgcg	tgggtctgtt	tgggaggcct	gggcggagc	agagcagagg	tgatccggcc	840
cctgcctgct	ggggccccc	ggtgttggaaagg	gagggcagt	tgggcggaga	tctgtcctt	900
cggtgggggc	ctctggctca	gatttggggc	caaggaggcc	tctgtcattt	taaagactcg	960
tgtttacagt	tttgtaaaaa	aaaaaaaaaa	aaaaaaaaaa	ctcqaq		1006

<210> 35

<211> 1787

<212> DNA

<213> Homo sapiens

<400> 35

cgagtgttgc	acttttctac	aattttggaa	aatcttggaa	atcagatcca	gggattatta	60
aagsracaga	agagcaaaag	aaaaagacaa	tagtgaact	tgcagagaca	ggaagtctgg	120
acctcagtat	attctgcagt	acctgtttga	tacgaaaacc	ggtgagggtcc	aaacattgtg	180
gtgtgtccaa	ccgctgtata	gcaaaatttg	atcatcattt	cccatgggtg	gtaactgtg	240
taggtgcagg	caaccataga	tatTTTatgg	gctacctatt	cttcttgctt	tttatgtatct	300
gctggatgt	ttatggttgt	atatcttact	ggggactcca	ctgtgagacc	acttacacca	360
aggatggatt	ttggacatac	attactcaga	ttgcacgtg	ttcaccttgg	atgttttggaa	420
tgttcctgaa	cagtgtttc	cacttcatgt	gggtggctgt	attactcatg	tgtcagatgt	480
accagatatac	atgtttaggt	attactacaa	atgaaagaat	gaatgccagg	agataacaagc	540
actttaaagt	cacaacaacg	tctattgaaa	gcccattcaa	ccatggatgt	gtaagaaata	600
tttagagactt	ctttgaattt	cgatgctgtg	gcctttcg	tcctgttatac	gtggacttggaa	660
ccaggcagta	tacaatagaa	tatgaccaaa	tatcaggatc	tgggtaccag	ctgggtgtac	720
gacatcttat	cctatgaagc	atattgctga	gtgggtccctg	aaaatttgtt	ctgtccgtgt	780
ctttctcaca	ctcgaatcca	catccttta	acaagagcat	gctatgtgt	gggctaawgg	840
tgaattttac	agtcttttt	tcaacactt	tattamcaaa	agtaaacatg	gacagaacac	900
actgcccatt	tctgggaaga	gtaaagatga	taaaaaataa	tttaatgtt	tcttaatgtg	960
gaaattcaca	acataactcaa	ctttgggtt	ttgttctcac	agtattttc	acaaaaaaaaag	1020
ggtaaactta	ttctattgac	agacatggtg	tactgatcag	aaatgttca	ttttaactaa	1080
aactaaattt	atgttatttg	gctaaatgtt	atgatgcagt	ctagtacgag	tattgcatct	1140
aattccagga	gcattgttt	aagttgattt	actagttatt	atgtacattt	cagaatgtac	1200
acataaaatac	tgtgtatggaa	atcatgtgt	tgggatctac	tgtgtatgtt	tcttcaargg	1260
caggagaaaa	taatgttcac	aataaaaatgt	gctaacaatg	ttttgtttct	atcagcttt	1320
gcaatgtga	tatatttcta	gttcagtga	ataatttgt	gtaaccctac	tctgagggtt	1380
tacggctctga	taatgaagca	cttgcatttgc	tatagtaaatgt	catgtttttt	tgttcaaatt	1440
taaaaaggcct	gctaatttgc	tgacacacca	catagaatgt	atactatgcag	atactatcca	1500
gtgaaggcata	aatttgcata	taatttgcata	ttcaaaaaca	gttccatttt	taagggtttaa	1560
ggtgttattt	tcaagaaaaag	gcagaacaaa	taatgcaaaa	ttctcatttgc	tagtgatatac	1620
tggatatact	tcctttttaaa	ttctcatttgc	caaaataatt	gtagrcaaaa	twatggcatt	1680
taactaaaga	tggagcatga	tctgtgtaca	tagcacatgt	gaataaaaaga	aaagctgaca	1740
gtataaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaggg	cgccccgc		1787

<210> 36

<211> 1201

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (29)

<223> n equals a,t,q, or c

<220>

<221> SITE

<222> (48)

<223> n equals a,t,q, or c

<220>
 <221> SITE
 <222> (63)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (1201)
 <223> n equals a,t,g, or c

<400> 36

taggcTTTg	caaaaagctt	tttaggtgnC	ctatagaagg	tacgcCTnCA	ggtaccggTC	60
cgnaattccc	ggTCgACCCc	acgcgtCCGA	agaaaaactac	ttgagraggg	acccaacttt	120
ccgctatctt	ttgggttcat	tccaaatagt	tttgtGCCat	tgaaaaactt	gaccttcaaa	180
aaaatttGTT	tttcagaata	gaacacaata	ggacagtGac	tgcacagtG	tgaaaaagga	240
agagaatcat	taaagaaaaa	gaaaaaagat	tttaagaccg	ttgaaatcaa	ttatcaagaa	300
cgtccTaaa	cacctatggc	tttgactttg	ttattgatcc	agattatttt	ccttgcattG	360
gggaaaatat	ctttcatatt	tgtttgctgt	aaagatggtt	ttgcaagaat	aagtcaGtGac	420
caagacaAAAC	tgCCAataca	aaagcccact	gatactaatt	atataatgag	aaaaaaatgt	480
atccaactag	gacacatatac	tttgaggtta	tttggactga	aagcttaaga	aaacttggaa	540
aattcttattt	tgtgatctag	tcaagccaca	gttatcaaaag	gctacatttt	cagtGtaaga	600
taaatGGATG	agtaaaactca	aatatgtatc	acgtgtGctt	tgtatcttaa	gatgtgttC	660
caagagcatc	tgaaatttttG	tttgatcatg	tatcttGatc	atttataaaag	ccactgtgat	720
ctataaaatca	agaaaatcca	ttgtcataac	catttttaaa	agtcaaaaat	taagacatcc	780
ttaattaaaa	agtttcaat	ctagacacta	aatgtgtgtG	aatgtacaaa	gaaaacaaac	840
cattgcttat	gctgttatat	actagagaaa	ttttgttttG	cttgctgttt	taacttgaca	900
gatgaaggac	tttagttgaa	cttcataatttG	taagaactgt	taataaaaat	tgtcaagtaa	960
aaagcgtat	atctaaaaaG	actttatgaa	cagttattct	atcaactttt	aaaggttta	1020
aacTgcCcCa	gaaattacct	tggtatctga	agtttccctc	tgtctccTcc	tctaattaag	1080
cttGtttattt	gtcatgcacc	agcattggag	ataataaaaat	ttcttGttct	gtgtaaaaaa	1140
n	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1200
						1201

<210> 37

<211> 1896
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (444)
 <223> n equals a,t,g, or c

<400> 37

ctgcaggaat	tcggcacGAG	cggaaccggg	gccccGCTGCT	gtgcatGCTG	gcgcTGacCT	60
tcatGTTcat	ggTGTGGA	gtggTGTGA	gccccGTCAC	ctcgTCGCTG	gcGATGCTCT	120
ccgactcCTT	ccacatGCTG	tccGacGTGc	tggcGCTGgt	ggTGGCGCTG	gtggCCGAGC	180
gcttcGcccG	gccccGACCCAC	gccacCCAGA	agaacacGTT	cgGCTGGATC	cgAGCCGAGG	240
taatGGGGC	tctGgtGAAC	gccatCTTCC	tGACTGGCCT	ctgtttCGCC	atctGCTGG	300
aggccatCGA	gcgcTTCATC	gagccGcAcG	agatGcAGCA	gccccGTTG	gtccttGGGG	360
tcggcGtGgc	cgGGCTGCTG	gtcaacGtGC	tggGCTCTG	cctcttCCAC	catCACAGCG	420
gcttcAGCCA	ggactCCGc	caCNGCCACT	cgCACGGGGG	tcacGGCCAC	ggCCACGGCC	480
tccccAAAGG	gcctcGCGTT	aagAGCACCC	gccccGGGAG	cAGCGACATC	aacGtGGCCC	540
cggGcGAGCA	ggGTCCCGAC	caggAGGAGA	ccaACACCCt	ggtggCCAAT	accAGCAACT	600
ccaACGGGCT	gaaATTGGAC	cccGcAGACC	cAGAAAACCC	cAGAAAGTGT	gatacAGTGG	660
aagtacaAGT	gaatGGAAT	cttGTCAGAG	aacCTGACCA	tatGGAACTG	gaAGAAGATA	720
ggGCTGGACA	acttaACATG	cgtggAGTT	ttctGcatGT	ccttGGAAGAT	gccttGGGTT	780
cagtGATTGt	agtGATAAAT	gccttagtct	tttacttttC	ttggAAAGGT	tgttctGAAG	840

21

gggatttttg	tgtgaatcca	tgttccctg	acccttgcaa	gccatttgta	gaaataatta	900
atagtactca	tgcacatcggt	tatgaggcgt	gtcccttgctg	ggtgctatat	ttagatccaa	960
ctctttgtgt	tgtatgggt	tgtatacttc	tttacacaac	ctayccattt	cttaaggaat	1020
ctgctcttat	tcttctacaa	actgttccta	aacaaaattga	tatcagaaaat	ttgataaaaag	1080
aacttcgaaa	tgttgaaggaa	gttggagaaag	ttcatgaaatt	acatgtttgg	caacttgctg	1140
gaagcagaat	cattgccact	gctcacataa	aatgtgaaga	tccaacatca	tacatggagg	1200
tggctaaamc	cattaaagac	gttttcata	atcacggaaat	tcacgctact	accattcagc	1260
ctgaatttgc	tagtgttaggc	tctaaatcaa	gtgttagttcc	gtgtgaactt	gcctgcagaa	1320
cccagtgtgc	tttgaagcaa	tgttgggaa	cactaccaca	agccccctct	ggaaaggatg	1380
cagaaaagac	cccagcaggat	agcatttctt	gtttagaact	tagtaacaat	ctagagaaga	1440
agcccaggag	gactaaagct	aaaaacatcc	ctgctgttgt	gatagagatt	aaaaacatgc	1500
ccaaacaaac	aacctgaatc	atcttgcata	gtcttgaaaaa	agatgtgata	tttgactttt	1560
gctttaaact	gcaagaggaa	aaagactcca	ctgaaattct	aagttgcca	agtagtgtaa	1620
ttgaagtccct	tgtctggtca	cacagtttaa	ttctattttt	gtaagaacat	aatgggactg	1680
cataacagag	ttctatattta	caattttgtg	attatttagta	cagagtacag	ctatgctgtg	1740
actgttttgg	aaagccaggat	ttaacactat	gttacatttt	tgtttaaagt	aagttaaacc	1800
ttatataaca	taatgacatt	tgatttctgg	attttccca	tgataaaaat	taggggata	1860
aataaaaattt	ttactgaaat	ttctctgcaa	aaaaaa			1896

<210> 38

<211> 1152

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1145)

<223> n equals a,t,g, or c

<400> 38

agttccagga	taaaaacaga	ccgtgtctca	gtaactggcc	agaggatacg	gatgtcctct	60
acatcggtc	tcaagttcttt	gtagaagagt	ggcggaaatt	tgttagaaag	cctacaagat	120
gcagccctgt	gtcatacggt	ggaaacagtg	ctctttgtg	tccccacggg	ggccctcatgt	180
ttacatttgc	ttccatgacc	aaagaagatt	ctaaacttat	agctctcata	tggcccaatgt	240
agtggcaaat	gataaaaaaaag	ctctttgtg	tgtatcatgt	aattaaaatc	acgagaattg	300
aagtgggaga	tgttaaaccct	tcaaaaaacac	agtatatttc	tgagccaaa	ctctgtccag	360
aatgcagaga	aggcttatttgc	tgtcagcagc	agagggacct	gcgtgaatac	actcaagccaa	420
ccatctatgt	ccataaaaggat	gtggataata	aaaagggtgat	gaaggattcg	gtcccgaaac	480
tgaatgtgag	tagttctgaa	acagaggagg	acaaggaaga	agctaaacca	gatggagaaaa	540
aagatccaga	tttaatcaa	agcmatggtg	gaacaaagcg	gcaaaagata	tcccatcaaa	600
attatatagc	ctatcaaaag	caagttatttc	gccgaagtat	gcgacataga	aaagttcggt	660
gtgagaaagc	acttctcggt	tctgctaatac	agacgttaaa	agaattgaaa	attcagatca	720
tgcatacatt	ttcagttgt	ccttttgacc	agaatttgtc	aattgtatgga	aagattttaa	780
gtgatgactg	tgccaccctta	ggcaccccttg	gcgtcattcc	tgaatctgtc	attttattgt	840
aggctgtatgt	accaatttgca	gattatgtgt	caatggatgt	tgtcatgca	gtttgtatgc	900
cagaagaagg	gtttaaagggt	actggcttc	ttggacattt	atctttgaaat	acttgctgac	960
tgctaaagaaa	tgaccagagg	ggaagaggag	tttgacatgt	tagggcatta	aagcaaaggat	1020
ggatttaaga	attaaaccat	tacatgcccc	ttccaaaagg	cagaaatcca	ttcaaacgtg	1080
actgtcccaa	atgcctttagt	tcaaataaaag	cagattgcac	tgtatggaaaa	aaaaaaaaaa	1140
aaaanactcg	ag					1152

<210> 39

<211> 1017

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (822)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (994)

<223> n equals a,t,g, or c

<400> 39

gaacaaagtt	cagtgactga	gagggctgag	cgaggcgtgc	tgaaggggag	aaaggagtga	60
ggagctgctg	ggcagagagg	gactgtccgg	ctccccatgt	ctgggcctcc	tggggagcac	120
agccctcgta	ggatggatca	caggtgctgc	tgtggcggtc	ctgctgctgc	tgctgctgct	180
ggccacacctc	cttttccacg	gacggcagga	ctgtgacgtg	gagaggaacc	gtacagctgc	240
agggggaaac	cgagtccgccc	gggcccagcc	ttggcccttc	cgccggcggg	gccacctggg	300
aatcttcac	catcaccgtc	atcctggcca	cgtatctcat	gtgccgaatg	tggcctcca	360
ccaccaccac	caccccccgc	acamccctca	ccaccwccac	caccaccacc	accccccaccc	420
ccaccatccc	cggcacgctc	gctgargctg	ctgtcgccgg	tgcctgtgga	cagcagctgc	480
ccctggccctc	ccatctgttc	ccaggacaag	tggaccccat	gtttccatgt	ggaaggatgc	540
atctctgggg	tgaacgargg	gaacaataga	ctggggcttg	ctccagctgc	atttgcatgg	600
catgccccag	tgtactatgg	cagcagagaa	tggaggaaca	ctgggtctgc	agtgctgaag	660
ggtttgggg	gtggagagca	agggtgtctt	ttcggggctg	gacagccgt	cttgtacag	720
tgactccca	tgagcccccag	aaatgacaag	cgtgtcttgg	cagagccagc	acacaagtgg	780
atgtgaagt	cccgctttga	cctcctcatc	aggctgctgc	angcctctgg	cgggcagggc	840
actgggagag	gccctgagaa	tgtcctttt	gtttggagaa	ggcagtgtga	ggctgcacag	900
tcaattcata	gtgtccttag	tccaagaaaa	taaaaaccac	taagaaaaaa	aaaaaaaaaa	960
aatgaccctc	gagggggggc	ccggtaccca	atngcccta	tgaagaggcg	aacagga	1017

<210> 40

<211> 1777

<212> DNA

<213> Homo sapiens

<400> 40

ggcacaggt	ccccgacgct	ccccgcctaa	cccttacgtat	gaagagggcg	tccgctggag	60
ggagccggct	gttggcatgg	gtgctgtggc	tgcaggcctg	gcaggtggca	gccccatgcc	120
caggtgcctg	cgtatgtac	aatgagccca	aggtagcgtac	aagctcccc	cagcaggccc	180
tgcagctgt	gcccggtggc	atccctgtc	ccagccagcg	catcttcctg	cacggcaacc	240
gcatctcgca	tgtgccagct	gccagcttcc	gtgcctgccc	caacctcacc	atccctgtggc	300
tgcactcgaa	tgtgctggcc	cgaattgtat	cggtgcctt	cactggcctg	gccctcctgg	360
agcagctgga	cctcagcgat	aatgcacagc	tccggctgt	ggaccctgccc	acatccacg	420
gcctggccg	cctacacacg	gtgcacctgg	accgtgcgg	cctgcaggag	ctggggccgg	480
ggctgttccg	cggcctggct	gccctgcagt	acctctacat	gcaggacaac	gcgtgcagg	540
caactgcctga	tgacacccctc	cgcgacctgg	gcaacctcac	acaccttcc	ctgcacggca	600
accgcacatc	cagcgtgccc	gagcgcgcct	tccgtggct	gcacagcctc	gaccgtctcc	660
tactgcacca	gaaccgcgtg	gcccatgtc	acccgcacatc	cttccgtgac	cttggccgccc	720
tcatgacact	ctatctgttt	gccaacaatc	tatcagcgct	gcccactgtg	gcccctggccc	780
ccctgcgtgc	cctgcaatac	ctgaggctca	acgacaaccc	ctgggtgtgt	gactgcccgg	840
cacgcccact	ctggggcttgg	ctgcagaatgt	tccgcggctc	ctccctccag	gtgccctgca	900
gcctcccgca	acgcctggct	ggccgtgacc	tcaaacgcct	agctgcaat	gacctgcagg	960
gctgcgtgt	ggccacccggc	cattaccatc	ccatctggac	cgccaggccc	accgatgagg	1020
agccgcgtgg	gtttcccaag	tgctgcacgc	cagatgcgc	tgacaaggcc	tcagtaactgg	1080
agccgtggaa	accagcttcg	gcaggcaatg	cgctgaagggg	accgcgtgccc	ggccggggac	1140
aggccggcg	ggaaacgggtt	tttggccaa	ggaaacatta	atgacttacc	cttttgggac	1200
tctgcctgtt	tttgggtgac	ccccgggtac	ttgcagtgcg	gcccggggga	tccgagccac	1260
cagggtcccc	acttcggggcc	cttcgcggc	ggccaggctg	ttcacgcacag	aaccgcaccc	1320
gcagccatgc	cgtctggggcc	aggcaggcag	cggggggtggc	gggactgggt	actcagaagg	1380
ctcagtgccc	ctacccagcc	tcacctgcag	cctcaccatcc	ctgggcctgg	cgctgggtct	1440
gtggacagtg	cttggggccct	gttgaccccc	agcggacaca	agagcgtgt	cagcagccag	1500
gtgtgtgtac	atacggggtc	tcttcacag	ccgccaagcc	agccggggcg	ccgaccctgt	1560
gggcaggcca	ggccagggtcc	tccctgatgg	acgcctgcgg	ccgcaccc	ccatctccac	1620

23

cccatcatgt ttacagggtt cggcggcagc gtttgttcca gaacgccgcc tcccacccag	1680
atcgcggtat atagagatat gcattttatt tacttgtt aaaaatatcg gacgacgtgg	1740
aataaagagc tctttctta aaaaaaaaaaaaaaaa	1777

<210> 41

<211> 1003

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (990)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1002)

<223> n equals a,t,g, or c

<400> 41

aattcggcac gagttcctct cctcctgttt tgctacattc tcctcagtgg caaaaagttt	60
cactctacct ctgacagcat gtatattgca ccagtagcta acaaaaactg gtctagtcaa	120
accaaatggg cacaaaagaa ccaggatacc aaaagttaag ctcatacagc tgcaaacat	180
atcaacttctt gtaacaatg cagacctcat aaacctaag aagagaaaaga aaagaaaaact	240
tttgttactt tcctttttt cttgtactt atatacaggc tatgtgagaa tataatttgt	300
aggataaca cattaagaaa aagttatctt cattggataag aattgaatgg tggcgctga	360
taggaatagg gcgtcctcta gctcttatct ctgtctctta ctctttctc ttctctttt	420
tctctgtcat gagactgtgt gtgacaggc caccgttctt ttttttttc ttaaattttt	480
ttttttttt atgttagt gcatgtctt gggatttaaa aatttcaagg ctggtttact	540
tatgaaagc atgcctacgt ctggaatact tagggaaaga aagcgactcc atgttgccg	600
aattcctcaa gggacagaaa aaaaattgga gactgttcaa atgcagattt gaagtaattt	660
ttttaaaata ttatttggg ttctgcaca ttgtgaaaaaa ttaaagtgtgt tgtaatac	720
ttaattcaga catgtaccac aagttatgg tagactaaca ctgggggggtt ggtctaggc	780
atcatgcttt tgcagcata ctcttgcact tttaagtcta ctatgtctga actgtggttt	840
cttggttatc ttttttctt tagttggact gtaatgtatg gtctgtcaac ctgtgaatct	900
ttaaagtatg attcaggtat tggttattc ttactgtgt aaaaaaaaaag ttgaaaaaaaaa	960
aaaaaaaaaaa acccaagggg gggcccgtn cctttcccccc tnt	1003

<210> 42

<211> 1201

<212> DNA

<213> Homo sapiens

<400> 42

ccttcactga gtttttctta tctcctttt cagtggtaa ctattgtcac aataatgctg	60
aataaaaaaaaa cacaccaaat gtcagtggct taaaatgacc atccttttc tcacagttat	120
gaagattggc tatggcacct ctgcttcctg ctataggcct gaggttctag ggcttcttat	180
gcctcatcct cttaagcca aaggatagc cagagcatct tgatggcaga agtgcataaa	240
gatgagcccc actgctcggg tacatttca gcccctgggtt gtgtcatgtc tactgatatc	300
tcattggtca aaggaagtcg gaggccaaatg atgaagagggc agggaaatat gcaactgcccc	360
cagtgaagcc atgacaagag tgaggatgca ggaaggcatg aagaattggg gccaacagtt	420
caacttacca tactttctt cacctggaaat tccagatgct tgagctacga aacttagatg	480
caaagaaaatg taaagctaga aggaacctca ggcggcagttt ctcattttgc agattccaaa	540
tgtgaatttc agagagctga gataacttgc ccaaggccat atagaggctg tgactaaatc	600
tggacttaaa tccagactat caatcttgg ccagtgttct ttttcaata tagtccttgg	660
cataatgcta tgcttattag gtagataaaa gggctttagt caagaaattt ggagcagagt	720
ctgattactt gaggcatgaac ataccggacc aaggatgtt ctggaggcat attctagctt	780
ctgagctcat ttttcatgc gagttcatat aaaaatcctcg aaagttttaga aacttagttt	840
tagtagtaac ggagctagaa tcatttcgg gcttattcct gctagttgtt ccatatttct	900

24

agatttcatc ttgaattttt	aaaactgatt taagaatata ttttagtatta ttatttagtaa	960
ggaaatacgc aatccagtt	caattttatt cagaagttagg tcacctaatt ctagaaaatg	1020
gttattagtc tagtgtcgct	tagcaaggta cttaaaagaa aatctgcaca tattcttg	1080
ctgccctct	taaaaaacaga aaacaaaaag tgaagatca tcattgttc ccacatagga	1140
aaaataaaat gtcttcagac	ttgatgtgaa aaaaaaaaaa aaaaaactcg agggggggcc	1200
c		1201

<210> 43

<211> 1176

<212> DNA

<213> Homo sapiens

<400> 43

tttgattgtt ttgtaatgct	caagttctg tcatttcaa atatgttggg cttgttcttc	60
atggcaaacc tagaatccta	gactgcccgt ccccagagga gttctttaa gactgctcag	120
ctctcctgcc aatagcaaca	atgcaaaagc ttaccccttc tcccgtttcc ccagccccat	180
cttcatgtcc tggatgtt	gcttcatcca catttataat ttactctgt ctctctgcta	240
tggttgggt gttgaaagag	tgaagttctt tacctttagt attttaaaaa aagaaacaat	300
gttgctcaat tatttattct	aaatatgtt gttggctttg ctttatttac cctgtttgca	360
tgtctgtt atgtctttt	agtccttatg gcccatcgac ttccattatcc atgaccaga	420
gaggccccag tgatatttt	actttcaaa tgggttgaat aagtgagagt tgttgttga	480
gttaactgtg attttaaata	ttctgattgt tggaggcac ttttctaggt gttgatttc	540
ttgatctgtt ttcttctatg	ccaatttattt aaacagtgtc ttccacagtt tgctaagggt	600
atgatgtgc ctgggttgg	gtttgttgg gttgaataaaa gccctgatgc tggagttca	660
ttgttgttagg tggttcaagt	ggtggagtcc tgaaggcatt cctgtgtatt ctctctgaa	720
taataatgtc gcatattaag	cctagcatcc taccatatt accacataaa ctgttaggtc	780
tgtcctggct tcaattcatg	ttggcgttca cttttttttt taaaataaaa gtttatgttt	840
atttgagggg caagtgacta	tggtaaga atgatatttt tctgaccagt agttttat	900
tattttact ttttattttgt	tccaagatgg agtctgtctc tgtaaccagg gctggagtgt	960
agtacacaa ttcggctga	ctgcaacctc caccccccgg gctcaagaaa ttctcctacc	1020
tcaactactc gggaggctga	ggcaggagaa tcgcttgaac ccgggaggcg gagttgcag	1080
ttagtcgagg tcgcaccatt	gcactccagc ctgggcaaca agagcaagat ccgtctcaa	1140
aaaaaaaaaaa aaaaaaaaaaa	ctcgaggggg ggcccc	1176

<210> 44

<211> 569

<212> DNA

<213> Homo sapiens

<400> 44

cccggtcga cccacgcgtc	cgccaggcag cagggaaagga agcagaggct tcctaaggct	60
gttttcttag cctgtggagaa	gcccgcgtt tctacatgtc cccaaatgtct gtcattgagca	120
cgttctgtac aagtcaagggt	ttcagattgc agtccctggc caacgtcagg attcttacag	180
gttgaatgtt aagtcacccg	atcttgcct caggctctgc ctggcttgc tgctcatttt	240
cacacgtcga gttgtgggtc	tgtctcatag cacaggtgca gtttagtgc gcccacagtgt	300
ccccaggcag ggcggggact	ggagcagccc ccagtgtgcc agcagtgtgg gcaagcggagg	360
ctagggccc atctgtccct	agcaccctcc agggcagtcc cgttttgcag cggatttgg	420
caaaccffff	tccaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	480
aaaaaaaaaa aaaaaaaaaa	aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	540
aaaaaaaaaa aaaaaaaaaa	aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	569

<210> 45

<211> 986

<212> DNA

<213> Homo sapiens

<400> 45

gcactggct ctcaactgg	tttggcagact gatgggtcag	60
gaggcaccgg ccctgttacg	gctgagcctg gggcccattc gggtaaggc cccactccca	120

25

gtgttgaagc	tccagccgga	gggctggagc	ccatctactc	tctggagctg	cgcttccgtg	180
tggaggaca	gctgtatgca	cccctggagg	ctgtccatgt	gccctgcctg	tgtcctggcc	240
gccctgccc	ccctctgctc	ctgcctctgc	agccccgatg	cccggcccc	gcacggctgg	300
atgtccatgc	ccttacacc	acatccactg	gtctcacgtg	ccatgcccac	ttgccacccc	360
tgttcgtgaa	ctttgccgac	ctcttctgc	cttcccgca	gcctccagag	ggggccgggc	420
tggggcttctt	tgaggagctc	tggattcct	gcctgccaga	gggtgctgag	agtctgtgt	480
ggtgtccact	tgggccacag	ggcctggagg	gttggtgtc	ccgcccacctg	gagcctttt	540
tggtggtggc	ccagcctcct	accagactact	gttagcaat	ccacctgccc	ccggactcaa	600
agctgctgct	gccccctggag	gccccctgg	cagatggagt	gcctgtggcc	tgccggaccga	660
tgactggggc	gtgctcccc	tggcggggga	ctacctccgt	gggctggcgg	ctgctgtctg	720
agccccggga	gaccaggtgg	ggcaggact	gtggcccttg	tggggcccaa	ggcacactcc	780
tgtagctctg	tcgccaaaac	cctgcatcc	gcaagtgcct	cgctggcttg	ttttctttt	840
ggcccccgtt	gggagcaggc	tcctgggggt	gagggtctgt	ctgagtcgt	tttgctgct	900
ctagcaagat	ccctgagacy	ggtaagtt	taataaacag	aatgtattt	gctcagaaaaa	960
aaaaaaaaaa	aaaaaaggc	ggccgc				986

<210> 46

<211> 1540

<212> DNA

<213> Homo sapiens

<400> 46

ggcacgaggg	aactagtata	ttcaccgtct	atgaggccgc	ctcacaggaa	ggctgggtgt	60
tcctcatgta	cagagcaatt	gacagtttc	cccggtggcg	ttcctacttc	tatttcatca	120
ctctcatttt	cttcctcgcc	tggcttgc	agaacgtgtt	tattgtgtt	atcattgaaa	180
catttgcaga	aatcagagta	cagtttcaac	aaatgtgggg	atcgagaagc	agcactacct	240
caacagccac	cacccagatg	tttcatgaag	atgctgctgg	aggttggcag	ctggtagctg	300
tggatgtca	acaagcccca	gggacgcgc	ccagcctgcc	tccaggtgca	gtacaatgac	360
atttttaaaa	atcgcccagc	aaaggcttt	gaattttatt	tcatccaaga	aaatccacag	420
ctcttaagc	tctagatttg	tccaaattt	aaatcctgaa	gttagaagatg	gtatttact	480
ccttcctcta	ttcccaggac	ctagttttt	tttttaaca	tacacaatag	ggatttgata	540
agtttctgtat	ggctgcaggc	atgttaagagc	atttcagtgg	tattgaatca	atgaagaatt	600
ttgttgacat	gtgaaatctt	ataaaaaat	tcttaccga	aggactgagt	tatgtggcag	660
tggcaaaatt	cattgttca	tacccccc	agtaactggg	aaaaatatgt	taatacatag	720
tctctctgtt	tttctgcatt	tggaaagctt	cagaggaaca	taatgttagag	gtgtttcttt	780
agcaaaatgc	actgatagca	aacataagga	ttgcagggtgg	ggcctgagag	tcctcatgag	840
atagattctc	acagtgatta	gaagatggag	tctcacgtcc	ctgcctgtga	actttctgg	900
aaaaccatct	tctccaagct	gccattgaca	acaatatgg	taacaataat	aacaataagg	960
cccaataaaac	tccttatct	cttcttcagg	ggccatact	gacatcttct	cttccttggt	1020
ttccccctct	tgccccctaa	atatccagta	actcattcaa	aataatgtca	ccttaccaag	1080
agcagcaccc	ctaaactttcc	ataatatttt	cacttcatt	ttccctccaa	gcagcccaact	1140
cgtaggaccg	tagaattgtat	tctccaccc	ggagaatttt	atttcttta	gccttttgg	1200
ttttcagtga	caaattctct	tctcgcaagg	ggtggtttcc	atagttgttt	atatcctgccc	1260
ctcataattt	ggagaagtgt	tcacatctgc	cgtggatga	gactgtatct	cttttctttc	1320
ttttgggtct	ttctccagat	agggacttct	tatgcaactc	aaggatgggt	acatgaaaaa	1380
taaaattgtat	ctctgagcca	ttactggtgg	gctatgttta	tatggccatt	ttaccataga	1440
gttatttact	tcttttctt	tctatttgc	ttgaggtgt	attaacaaat	aaaattgtaa	1500
atacttaagg	aaaaaaaaaa	aaaaaaggaa	aaaaaaggaa			1540

<210> 47

<211> 792

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (759)

<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (760)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (774)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (779)
<223> n equals a,t,g, or c

<400> 47

actttccage taaaaaccaa caagtgtctg aggacacagt ttaaaactcca agatgatagg	60
gtcctccctc acctgggctc ccacacctcc tcatacgacc cttttgtgaa atgctgaagg	120
gctctgcagc tggttgtctg gtactgctgg ccttgcctt ctatitagca tggcccttct	180
cccacaaaaac aaaatcacat tctcaactatg cctgttcat ttttcaggac tatttctgg	240
gaaactttta ctacataccct ctctccccct aatctgagtg tctgcttgc tcaggttagca	300
tgtgttcaact ggataaatcc ttgattcctg gcactgaggc agggttctg ttcccaggaa	360
gcagaggcat actattctgtt gaaggattga ctgagtttctt cctaataccca agcagtatct	420
gagggAACAG atgtcttagct taaaatccctc cctagcactt gtcatacgag tgctacgtat	480
tgcctgtgaa ggaagtttaa taactgctga aaggttcgtat tagcttatt tcatacaggat	540
ttgttttact ttacaaattt atttgggtta ttycaacttt taggtcttagt cttaagtata	600
actggatcat attccttcaa gcagccatta cacctctcat aaatttatttt tacacctgca	660
tttttataac tattatgctt ttaatttgggtt gcccaccatt ttttagtgcctt ctgaatttgg	720
atggttctca agcagcagtt gtcacccctgg ttttgaatnn atgctgtgac ggangcttnc	780
aggggaatttcc cc	792

<210> 48
<211> 1497
<212> DNA
<213> Homo sapiens

<400> 48

gtgtaaaaacc agtttcgggt tagccatgtc cggtgcacac atgcatacgat gtgtgttctt	60
gtgcgcgtgt gttttctgtt tagcagagaa tgccgttagag agcgtatca tccgtgtcta	120
ttcatataat aaagatgaag tgagagaaca ttagaggaac caaggccatg tgatggtaca	180
cgtctgacgt tttttccctt cggttacatg tccgtatctc ctctttcccc tttttccctt	240
ttgtcttcat ttgggttcccc tccctatagg gagtttagga caagaagagg ctaaagttt	300
actgtatgagc ctttctgagg gttctccatt aaatccaagg acagaaaaatg tacatgcctc	360
ttattagcat aacgaagcca tcagcattgc atcaagcggg tcctcgatcc cttttccctt	420
taatgggttt tgggttaggg tcctgaggaa gagctgccag cccctacactg atggatcaaa	480
atccccctgg caccaaaagag tgactgtatag tggtaaccat cacaggagac atgtatgtat	540
gtgtgtggaa ctctgacgtg tattttaaac tttcaatag cccaaagtttta atttgggttctt	600
ttgcattttt ttttcaatgg ggtgtggcat tgcttataaa atgttgaatg taagttgcct	660
aggacggcgc ctggcatatg gtggaaactg aataaaaggct gctaggtagt gtagactaga	720
tggactagaa aacagyacag atgcagatgc tttcagatgt tctctctgac acagagagac	780
ctttctgtgt gctttgttca aagttgacag tggtagttaaa ctaccatcaa caaggsgtta	840
cttttgggttta attttttcaat tgkttatccc agttcccttca tccgctttta catagcctct	900
tgkactgcaa gctacactca gttttgaaga tgggtgggttca gctgttagt ggtgttctgt	960
ggccagtggaa ggaggaagct tgctcaactt aatgcagaat gtctaaagcat cctgcgcctaa	1020
ccatggcag gaaggttatt tcagtgagac gctgggttccct tctcacccttgc acccccttcc	1080
tggaaatcacc actgggttca gaaacccata tagrgrggct catttggacg aagtttgg	1140
aaggtgggttta tttagaagact cgcaacttag aaaaggaagt aaacatgttta atactagttt	1200
tcataaaatcc ccctctctaa aaaacaccccc ttctaaaaa attcacattt ctaaggcatc	1260
ccctacacacg aatgttttagt agggaggtat taaaatttaat agcaattctg agtaagttcc	1320

27

<210> 49

<211> 1340

<212> DNA

<213> Homo sapiens

<400> 49

ggcacgagaa	agaaaaggcgaa	gagaaaaatc	aaggcaccaa	attttagatttgc	gagggtctcag	60
aggagca	gttccctcc	ttcgtaacag	ttgaacaact	tccagatgtt	gttagctgca	120
ccccctgtaa	agatgcaggc	tcttacaat	gaagacacat	cttctgtatgt	tccttctctc	180
ctgtatggcc	agatgcacag	gaatagtgcc	caaaagacct	cagcctgtt	tcccttaag	240
gggaaggaga	agaaaaaaact	cctttttatt	tttactttct	ttcagcattt	aatttttgtt	300
gtgtgtatgg	tgacttctgt	ttttggaaa	cggaagaagc	cagcagcatg	ctgaattgtc	360
ctgacaggt	tccgtctggct	cttgcgcagg	tttagcagtgc	tttttttgtt	tttaaacat	420
ctcccggca	gtgtaaaaag	tttgcagggt	cggaatttct	gtctgactgg	tctccggcagt	480
gtctataac	cctgttgtgt	ttcttgataa	aacacagccc	caccctttaa	taaagcaaag	540
attgtatga	aaccagagag	tctattcatt	actgtggagt	aactagagca	gtctgtatgt	600
actagacata	cggaattttag	gaagtcatgg	agttggatt	tttgcattaa	ttttggctgc	660
tcaaagtgc	ccctgttagga	tattttttt	tcggaaatttgc	tttccaaact	tgcctgtctt	720
tatctatgtt	gaaactcaag	ccgcttttta	aggcaaggct	gcaaaacccaa	gtataacat	780
gggctctga	aggcacaggg	agcagattca	cagtctgac	cagtgttagg	gtccccacga	840
gggcccacca	tttgaactca	aggttggcag	actctggccc	cagcacttgc	cgtggtttca	900
ggatggccag	cggtacaca	gggctatgg	accctgggtc	ttcatctt	cccatatcct	960
ttgtttcacc	ttcttttgc	ccatatttt	tttgtcttca	gatagaaatt	ttatttataa	1020
gataaaaaat	agctctgagg	ctgggcacgg	tggctcatgc	ctgtggtccc	agcactttgg	1080
gaggccgagg	tgggtggttc	acgagctcag	cagatcaaga	ccatccttgc	caatatggt	1140
aaaccctgtc	tctgtaaaa	atacaaaat	tggctggcg	ttgtggcgg	tgcctgtatgt	1200
cccagctact	cgggaggctg	aggcgggaga	atcgatttgg	cccaggagac	ggaggttgca	1260
gtgagcttag	atggcaccac	tgcgtccag	cctgggtgac	agagggagac	tgcctcaaaa	1320
aaaaaaaaaaa	aaaaaaaaaaa					1340

.. <210> 50

<211> 1539

<212> DNA

<213> Homo sapiens

<400> 50

cgtatggcccc	gcggccgctc	tagaaagtcc	cgtttttttt	tttttttttt	tttttttttt	60
tttagagta	cgttctgcat	tttatttytg	caggaacac	ttgctcacc	agcaagaaca	120
cagcccragg	aagggaccca	ataaccttc	aaaacscaaa	ctgctkctg	cggtgagggc	180
ccagggtctt	ccacggagag	gacaggcatc	ttcccttccc	accaggaagg	agtcaaaaa	240
gagcctctgc	tatgtcag	gcccgtgtca	agcacccgct	gcrgctyttt	gctgtctttt	300
cttctcttt	ggggctgggc	tgggtgtgcg	ttctggtgct	gatgctttgg	cctgtgaggc	360
ttagcttggc	acctcgaccc	gttcaattac	agcaacgaag	aagccactgc	tgagtgtgtt	420
ctcagggag	gccccggagc	agtgcctggc	acccgggaac	gtgctcaggc	ctcggtgggg	480
ccaggcagggc	agggcgggg	ctagcctgaa	ggcccccggg	ttctgctgca	gcgcatctcg	540
caccacgtct	tcattctctt	cctggcagag	ggagcacgtg	gagtagacga	gccgcgtcgag	600
ggaaggggaaa	gtgagcgcgt	ggcacaggc	tcgctgctgg	aaccctgc	gggcatgcag	660
acgcacccgg	ctaggtgtgc	ctggccccggg	ctccctccagc	tgtctgctcg	gcatacccg	720
gccactgcag	gaaggatcca	gcaggayrta	gtggacctca	ygrtagcgyg	gatcyraggg	780
ggagaccgccc	aggaagtctt	cctcagccag	ytcacagcar	gagacgcag	ccrrggccag	840
cagcgtggcc	atggatgcca	gccgcttggc	atccaggtca	aaggcaaaga	tcttccttg	900
gttcttcaga	agagcagcca	agtgacttgt	cttattgcct	ggggcggcac	aggcatcgat	960
gacatggagg	cctggcgggg	ggtccagcag	catggctggg	agacagctgg	ccctgtcctg	1020
cagaatgagg	tgtccggccc	ggtacagtgg	gtgttcatgc	agatctgtct	ggcgaaa	1080
caccagcagc	tccggcatca	aggggtccag	gagaaaatgc	tcccccttqa	qqqctcgtaa	1140

28

gtcatcgagg	ctggaaagccc	gaccctgata	ggagaaaacct	tgtctcttga	aataatcaac	1200
tacatcatcg	gagcagggtct	tgagagtgtt	cacacgcaca	aatcgaggca	gctgggaggc	1260
tggaccaggc	ctggatccca	cttccaacag	gtcctcattc	cggctcacac	cccgatgaac	1320
ctttagccga	gccaaactcg	ccttgagccct	cgcctggtgc	cggcccaaca	gagccttcca	1380
tcggccccca	ccccctcgaa	agccctttcc	caacaacaac	tcatacacta	gcaccttggc	1440
cagggtcgccg	cgctctagag	gatccctcga	ggggcccaag	cttacgcgtg	catgcgacgt	1500
catacgcttc	tccctagagt	gagtcgaatg	aggttcata			1539

<210> 51

<211> 1423

<212> DNA

<213> Homo sapiens

<400> 51

ggcacgagct	tgaacatata	taatgaagaa	atacagtggc	tctttattaa	aaataatagt	60
tggataatat	aaactgaact	atttatgcattttt	ttttatatac	ttataaatcc	ttccaaatag	120
tttaattct	atccctttac	atataaataa	cttaataagt	gtgctggaaa	aacacagatg	180
ttcacagcac	cactgtttt	ttttttttt	tttgagataa	taaattccat	gagaaatctg	240
ggtttgaata	tttggttact	ttgtctcccta	attgaacacc	actccaggcc	ttctgtctgt	300
ctccccctta	ccccccaaaat	actcacaaaaa	aaattttaag	acaacaaga	accatatata	360
ggtgttggaa	tgattttctc	atttttatct	aatttcattt	cataagtccc	gagtaattta	420
cctaccatag	gctactatac	tgataatata	aatgaaaaccg	aacattttt	gctactaact	480
ctcccccaatt	taatgtgttt	tcgaaataaaa	aattttaaatt	ttttccctt	taattaaaaa	540
gtcatcttg	aagtccttat	tggctgtaca	ttttacatgt	ttgctggac	tattatttg	600
tcagtcagtt	aaagctggca	tgtacagctc	ttggctttaa	tgaaaagcac	attgacataa	660
tgttagtaaa	ttccaaaccc	cggcacagaa	tgtgagttaa	aattaagtc	tgctgggta	720
gtgtacaata	aactataacct	acagacttti	tttaataga	aagaagacaa	agctgttgt	780
ataggatttg	tccttggaa	aaaaaatggag	ggaaacaaac	acaaaaaccc	aatgcagtgt	840
ataaaaataaca	ttttgttcaa	ctacctctta	atgtggatt	atctacttt	atagttccct	900
gacagtaatg	ttaaatagta	actgccaaat	ttgttatttt	cccatctc	ttaaaaaagtt	960
ctttatgatt	attttatata	gttttgagaa	ctttaaagcc	acttttttt	aaccttacat	1020
ttgcataaaaa	atgttttagct	ttaagttaga	gagcaaatta	tgatcatata	ttttgatatt	1080
catgacctgt	ttgactatag	gagtttttt	taaaaaatg	cacttggct	ataaaaaccat	1140
ggatgatttg	atccataaga	tttaaatgtg	ccaccattat	agtattccta	gacatgagct	1200
tgtatgaatgg	tattctgtaa	ttataacgtg	ccccacatta	ttgtgtctta	attgccctta	1260
gcctgaattt	taatgatcaa	tttgttattt	ttgcagatgt	gaatattgtg	cataaaactta	1320
ctaaatttat	gtaaaattgt	ataaaataga	attagaagtc	actaagtct	ttctgtgttag	1380
aagtaataaa	tttattgtaa	cacaaaaaaaaa	aaaaaaaaaa	aaa		1423

<210> 52

<211> 1364

<212> DNA

<213> Homo sapiens

<400> 52

tctacagtaa	acccccacca	taccttctag	ttggcataaa	aacaagaacc	acaaaaactt	60
gaaaaatctg	aaacagagaa	cagaaggcca	agagccagct	tctgcgttct	caactttatt	120
caacattaga	cttaccttat	ttctttca	gtgttagggac	aagatgtact	gctgtgtgtg	180
tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgm	tataccttcc	tatccattgg	caagttAACCC	240
tccatcttgt	ttatttgcc	atgctatgtct	ttcttccat	tcccctgtg	tctattctaa	300
ccccccagac	tcaagcctct	agactcttgg	atgaaacagt	gagaagaaa	cattttctga	360
cttacccttt	tggaatctcc	tccattatta	cccaggctt	gctttaagtt	gcactttaaa	420
tcacactgtc	ctattaatgc	gatctggcat	cttctccac	aagcccccta	cagggAACCC	480
ctacccctta	ccttaactct	aatgggtct	ttagactata	gtctgtctcc	tctgacctga	540
aatcctcttt	taggcaatag	gccgagctt	agaagcagcc	aggctctggg	agaaatgggc	600
ccccataccca	actgtggact	tggaatatca	gcagagtagt	aggcacagtt	gtaaaaaggg	660
gagatttcgg	taggcacagg	tgtaaaaagg	ggagatttca	gaagacgggc	gaaacaactg	720
atgggggaag	atacctgggg	tgagaagatg	agaaaagaaaat	gatgctgagg	gacctagtga	780
aatcaatgaa	actcttgagt	cttgctttagg	ctcqaaaca	aqaaqtgggg	aggcttqgqa	840

29

aattaggata tgacatatat	gaaaggttt	tctaagaaga	aagaaaacaga	gataatatat	900
atataaaaaag	atgttatata	atgttatata	gcccaaata	attgaatgt	960
atattcagag	acttttagcat	tggggcaga	tatcttggcc	tggttatgg	1020
cagatttca	gacttacaat	cagtgtcct	ggttcaaca	tggaagttag	1080
aaggatttca	agtctggaaa	tggaaagg	agggtagaa	gttcctt	1140
aggcattcat	gaaggcttt	gttgaatcct	atgctactga	taggaccagg	1200
ctcgaggac	aataggagg	ggaagtctt	gaaaatctac	cacttacact	1260
atccccagca	gcgtcctgcc	actgtagcgc	cttttaaaa	taaataaaaat	1320
accaaaaaaaaa	aaaattaaaaa	aaaactggag	ggggggccc	gtac	1364

<210> 53

<211> 2288

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (940)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1279)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1798)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2280)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (2285)

<223> n equals a,t,g, or c

<400> 53

gatccattc ttctctcggt	ggaaatgctt	gtggggggaa	aaagaaaacgc	aatagataaa	60
gcggggcgca tgcgtcccc	gcacaggcwt	cgattgtgag	gaargccggc	tagtctccga	120
gctcatccc	ccttgcgcat	gcccggaaagg	taaaccagcg	ccccgagtt	180
ttggggcgc	gtttcagcga	agtcgcacgt	gaaggatagc	agtggctga	240
gtcatggcag	cctccagcat	cagttcacca	tggggaaagc	atgtgttcaa	300
atggcttag	tggcccttat	cctcctccac	tcagcattgg	agccattctg	360
gcaccaccag	cccaacacaaa	gagagaagcc	ccagttgatg	tcttgaccca	420
tctgtgcag	ggacactgg	tgcctggatt	ggccagaga	gataggtcga	480
tcttcgtccc	aagtgttgt	ggccatctca	tcagccattt	ctgtggcctt	540
tctggatcg	ccgcacagct	gctgaatgcc	ttgggactag	cctcgccccag	600
ggcctgaagc	tcaagccctgg	ccaggccag	acccctcgc	tgtggggagc	660
gtcgctact	ggctgctgtc	tctgcctc	ggcttggct	agggccctcg	720
ctgtggggcc	tgaagcttgc	catcttcctg	gccggcttcg	tggccctgat	780
cctgaccctt	ccacccgggc	cctgctactc	ctggccttgc	gaggtcggt	840
agccgytca	ctggctcccc	agccctctgg	gcccaactcg	ggcccaaggt	900
gaacgccagg	tggaggagct	gcccggcgc	cagaggcagn	gcgaggggctg	960
gtggaggagg	agtgagccgg	atgccccaca	caccggcagt	gtcataccaa	1020
tgcttcgggg	ccatgcagcc	ctccctgcc	ccccctgccc	agagctgagc	1080

30

accttcagaa cattgatcc	tgccgcagcc	ccactagcca	agagaaaacag	agaaaagacca	1140	
ttccccctgc	ctgtccttgc	ggccctgtct	tctgagggttc	tctgtctggg	gttggctctc	1200
ttaacccttt	ctctgctccc	agcctgccctc	accagggaag	gttggagggg	cctccctctg	1260
gcttcgtcat	ctgcgccana	aacatcaactg	ccgttggtct	ctcatgactt	aactggcttc	1320
cctctgctgc	tgcccttggct	tcctccta	at gctcggtctc	tcctgtcctt	ctgaaggtgc	1380
tccttggcca	aatctccagc	tcccttcttg	tttcctcat	cctcctaccc	tgtactccca	1440
ccaaaccatg	gtcccttaag	gcacgcct	gtccctcctca	ttgcccagca	gtagggaggg	1500
gcaggggtaa	ggggacctga	ggataaaaggg	tggggaaaca	gggtcccctg	aggcctgtgg	1560
gggctgcagg	ggaggaggat	gtaccttgt	tctcttcaa	gtgccttaat	ccgagccagc	1620
agggccttct	gcttgcctgc	tgccatactg	tatgttagaa	agtgttctgt	ggctgccttg	1680
tgtcaagaaa	agagcagtca	ctctcagaat	cttgattccc	catcagccaa	agcaaaaagat	1740
ggctgcgtct	ttgttaggcat	gtgcctgcaa	gtgggacctt	gttggcatt	atatgcctng	1800
tgggggttcc	agagaccctg	aaagaggagg	gaggaccgc	ctccttgc	gcacaactgc	1860
atgcacttct	ctccccatcg	ctccacaacc	tgaaccgcag	aaggagttgc	tgaccagtgc	1920
ccaccccgcc	agcccccggag	gaacacaggc	agctccttcc	ccttcacgtg	gtctgcagag	1980
agcagggtga	gtgcctcagct	gcccctctcc	accagggtac	cctgtcttgg	tggtagggg	2040
ccactttcc	tttgaggctc	tagtggaggt	ggatgtcctt	ctctgcctagg	cttggcacat	2100
gatgtgaaga	ataaatgcc	aattcttact	gttcaggttt	gatgtggaaat	cacagctgca	2160
gtgatatatata	tttttatca	gtgcctgggt	ggttttaaat	aaagtgcacg	ctatttatt	2220
atcttgttct	gaataaaaatg	tatcttactcc	aaaaaaaaaa	aaaaaaagggs	ggccctctan	2280
agggncca						2288

<210> 54

<211> 1512

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (2)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (8)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (16)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (21)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (29)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (528)

<223> n equals a,t,g, or c

<220>

<221> SITE

31

<222> (600)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1496)

<223> n equals a,t,q, or c

<400> 54

cngaaaancc	ccgtgnccatt	ntggggaaana	acgcocccgca	ggtaccggtc	cggaattccc	60
gggtcgaccc	acgcgtccgc	ccacgcgtcc	gctcgcttgt	ctttgtccctc	ttctgtatgg	120
aagttagaca	gtggtaacgt	aatgggggtga	attattttac	tgacctgtgg	aatgtgtatgg	180
acacgctggg	gctttttac	ttcatagcag	gaatgtatt	tggctccac	tcttctaata	240
aaagctctt	gtattctgga	cgagtcattt	tctgtctgga	ctacattatt	ttcaactctaa	300
gattgatcca	cattttact	gtaaggcagaa	acttaggacc	caagattata	atgctgcaga	360
ggatgctgat	cgtatgtgtc	tycttccgt	tcctcttgc	ggtgtggatg	gtggccttgc	420
gcgtkgccar	gcaagggatc	cttaggcaga	atgagcagcg	ctggagggtgg	atattccgtt	480
cggtcatcta	cgagccctam	ctggccatgt	tcggccaggt	gcccagtnac	gtggatggta	540
ccacgtatga	ctttgcccac	tgcaccttca	ctggaaatga	gtccaagcca	ctgtgtgtgn	600
agctggatga	gcacaacctg	ccccggttcc	ccgagtggt	caccatcccc	ctgggtgtgca	660
tctacatgtt	atccaccaac	atcctgctgg	tcaacctgct	ggtcgccatg	tttgctaca	720
cggtggcac	cgtccaggag	aacaatgacc	aggtctggaa	gttccagagg	tacttcctgg	780
tgcaggagta	ctgcagccgc	ctcaatatcc	cctttccctt	catgtctc	gttacttct	840
acatgggtgt	gaagaagtgc	ttcaagtgtt	gctgcaagga	graaaaacmtg	gagtttctg	900
tctgctgttc	aaaaatgrag	acaatgagac	tctggcatgg	gagggtgtca	tgaaggaaac	960
tacttgtca	agatcaacac	aaagccaacg	acacctcaga	ggaaatgagg	catcgattta	1020
gacaactgga	tacaaagctt	aatgatctca	agggtcttct	gaaagagatt	gctaataaaaa	1080
tcaaataaaa	ctgtatgaac	tctaattggag	aaaaatctaa	ttatagcaag	atcatattaa	1140
ggaatgctga	tgaacaattt	tsctatcgac	tactaaatga	gagatttca	gacccttggg	1200
tacatgggtgg	atgattttaa	atcaccctag	tgtgctgaga	ccttggaaat	aaagtgtgtg	1260
atgggttca	tacttgaaga	cggatataaa	ggaagaatat	ttcctttatg	tgtttctcca	1320
gaatggtgcc	tgtttctctc	tgtgctcaa	tgcctggac	tggaggttga	tagttaagt	1380
gtgttcttac	cgcctccctt	ttcctttaat	cttatttttgc	atgaacacat	atataaggaga	1440
acatctatcc	tatgaataag	aacctggtca	tgctttaaaa	aaaaaaaaaa	aaaaanaaaaa	1500
aagggcggcc	gc					1512

<210> 55

<211> 1357

<212> DNA

<213> Homo sapiens

<400> 55

ggcacgagg	tatttacagg	cataaaaaat	gaaattgtga	gatgtttgc	aagcttcttt	60
ttacttgtag	tagctttaa	tttgatgtt	tttatgtgga	tgaagagcat	tttttatgct	120
tttgtcaat	aggtccaat	atgcatttat	tagacatctg	tttaaatgg	aatgttagcat	180
ttattttgtct	aaatgaaag	ggaacataga	tggaattcca	aaatatgtac	attcagctgt	240
ttggtttttc	gttttcatt	gttattattt	tgagaatgt	gttattgggg	ttgtgtgtga	300
gtgcccgtca	gccagtgt	cctcgggcca	cgctgtgggg	ccacctcagt	cctgcctggg	360
tcctgggtcc	ttggaccccc	cgtgttgt	gccaggctgc	ccctggcgg	ggccatgtgg	420
cctcagacca	caagagcgg	ctgcccgtgc	ccaagcactg	cagctgcctg	caccccccggg	480
cttcgcagcc	ttgcgttgtt	tctctgaaca	gcaacagaac	agtgttcaca	gcgattcaaa	540
gggtggcatt	gggttggacg	ttctgggtac	aagccaaacct	agtcccacgt	tgtacgtgaa	600
tgtttaatgt	gctctcaaaa	catggaaaat	aagttagtg	cacatagcta	aatcacaaaa	660
catccaattt	ctctgttcc	tcaggaagt	attactgcgc	caccacatca	catgaccta	720
acatgatcaa	tgtatttctc	tgccttgaca	tttaaataca	taaattgaga	taatgttagatt	780
agaaaaatcat	tcaaattgata	ccataattt	tacgggacag	ggtgccggca	atggccacgt	840
ggccaaggcc	ccgcaggAAC	gcccggaggt	ctccctcacc	ctccagggt	ccttcgcacc	900
caacagtgcg	tctgaggaac	gagctgcagt	ttgagcgtt	ccctgagatg	tgcgttagcct	960
ccgtgtaaat	gtccactccc	atggcttaat	tgcctatcaq	acgcattttc	ccagacaaa	1020

32

gcaatgttgg	gttggggaaag	acagtgcagc	cacccagcct	ttaccagcag	cgtacggcag	1080
acgaaggcag	tcgaggtgt	gaggtgatca	cgaagataca	tgtgttgac	tgtttaattt	1140
gaaagttac	atttttatg	ctttgttg	gtgtgtatt	tttgtactct	tgtgtggctag	1200
ttttgtcaa	atctttttt	gaatattgt	taaatgttt	gattttatga	tagtgaagct	1260
tgtattcagt	gttttgc当地	ttaatattat	atggttgtaa	taaaagcaaa	agaaaaagctt	1320
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1357
<210>	56					
<211>	1989					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	SITE					
<222>	(31)					
<223>	n equals a,t,g, or c					
<220>						
<221>	SITE					
<222>	(161)					
<223>	n equals a,t,g, or c					
<220>						
<221>	SITE					
<222>	(162)					
<223>	n equals a,t,g, or c					
<220>						
<221>	SITE					
<222>	(1702)					
<223>	n equals a,t,g, or c					
<220>						
<221>	SITE					
<222>	(1943)					
<223>	n equals a,t,g, or c					
<400>	56					
ttaaatgaaa	tcaaaattgg	ccatttgaca	naagttggtt	tttcccctt	ctgcatttt	60
aggacctcaa	agtaatgttt	atccagaaac	tgtatcatt	accaggatt	cattcgtgt	120
tttaacaaca	tggggcatac	attttgcca	aatttgaaaa	nntcttaaca	tacacccaa	180
aatccctgcc	ccaaatttaa	gaacttagggt	ggacacagt	cgttttcca	tgtcgcatct	240
tctgtatgg	ggctacgata	cgtggagca	gagaatgggg	agggtggagc	gcatgccaga	300
tgaggatcta	ttagcaatgg	gacgggkct	ccacttttagc	atctcyaccc	tgctccytc	360
agaggaccgc	ctttcattgc	attcagctgt	gatggtagca	cgaacacagg	tgacaccgagg	420
acgaggagag	caggagcctt	gtgctctc	tgcatctgag	gcaggacagc	acagggtayg	480
gagcgtctg	cagagaggcc	agctcatcg	ggaagcactt	gtctccacc	ttgggcttt	540
actgagca	gggcaattgg	mcyctggga	tcaaygaaat	aatcctaarc	agagttactc	600
tatgtcacac	tatggaatgt	tccaaatg	tgcctgtt	ttcaaaaat	rtatttctc	660
cttttgtt	tgccatttca	taggtttag	atgggtgt	tgtktctc	ctctgaatgg	720
cactcraatg	tttgctgact	cctactctgt	gtgactgggg	tgtacagct	tggactgtat	780
catcccatcc	catcatctt	catgatcaaa	gcagtctctt	ctttttgac	agctgaagaa	840
gcatcggtag	ggaatccaga	aggagcgtt	atgaagggt	tacaagcccg	gaagaactam	900
acaaggactg	agctgattgt	tgagccagag	gagccctcag	acagcagtgg	catcaacttg	960
tcaggcttt	ggagtgagca	gctagacacc	aatgacgaga	gtgatkttat	cagtacacta	1020
agttacatct	tgccwtattt	ctcagcrta	aaccttagatg	tgraatcamt	gttactaccg	1080
ttcattaaac	tgcccaaccmc	agaaacacgc	ctggcaaaga	ttcaaaactgt	aggccaaaac	1140
crccararag	tgaakagagt	cctcatgggc	ccaaggagca	tccagaaaag	gcacttcaaa	1200
gaggtrggaa	ggcagagcat	caggagggaa	cagggtgccc	aggcatctgt	ggagaacgct	1260

gccgaagaaa	aaaggctcg	gagtccagcc	ccaaggggags	tggAACAGCC	ycacacacag	1320
caggggcctg	agaagttagc	ggaaacgccc	rtctacacca	agccttcstt	cacccaagag	1380
cataaggcag	cagtctctgt	gctgamacccc	ttctccaagg	gcgcgccttc	tacctccagc	1440
cctgaaaag	ccctaccaca	ggtgagagac	agatggaaag	acwwmacmca	crctatttcc	1500
attttagaaa	gtgcaaaggc	tagagttaca	aatatgaagg	cttctaaacc	aatttcacat	1560
tccagaaaaa	aataccgctt	tcacaaaact	cgctcccgca	tgaccacag	aacacccaag	1620
gtcaaaaaga	gtccaaagtt	cagaagaaa	agttatctga	gtagactgat	gctcgcaaac	1680
aggcctccgt	tctctgcagc	gnagagcctc	ataaattccc	cttcacaagg	ggcttttca	1740
tccttaggag	acctgagtc	tcaagaaaac	ccttttttgg	ragtatctgc	tccttcagaa	1800
catttatag	aaaccactaa	tataaaagac	acaactgca	gaaatgcctt	ggaagaaaaat	1860
gttttatgg	aaaacactaa	catgccgaa	gtcaccatct	ctgaaaacac	aaactacaat	1920
catccctctg	aggcagattc	cgntggact	gcattcaact	tagggccaac	tgttaaacaa	1980
						1989

<210> 57

<211> 2543

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (2538)

<223> n equals a,t,g, or c

<400> 57

ctccgttggaa	aacttgggt	gagtaccgcg	gcggggcgcga	gcragggcgc	ctagacatct	60
tctccctccc	ttgcctcaga	tttattgcta	aacatgggt	catttttggaa	taaaccacaa	120
actaaaaac	ataatgctca	tgggtctggg	aatggttac	gttatggcct	gagcagcatg	180
caaggatgg	gagtggaaat	ggaagatgca	cacacagctg	ttgttagt	tcctcacggc	240
ttgaaagact	ggtcattttt	tgcagttat	gatggtcatg	ctggatccc	agtggcaa	300
tactgctcaa	cacatttatt	agaacacatc	actactaacg	aagactttag	ggcagctgga	360
aaatcaggat	ctgcttctg	gcttcagtg	gaaaatgtt	agaatgtt	cagaactgga	420
ttttgaaaa	ttgatgaata	catgcgtac	ttttcagacc	tcagaaacgg	gtggacagg	480
agtgttcaa	ctgcgttgg	agttatgatt	tcacctaagc	atatctactt	tatcaactgt	540
ggtgattcac	gtgctgttct	gtataggaaat	ggacaagtct	gtttttctac	ccaggatcac	600
aaacattgca	atccaaggga	aaaggagcga	atccaaaatg	caggaggcag	cgtgtatgata	660
caacgtgtt	atggttcatt	agcagtatct	cgtgctctgg	gggactatga	ttacaagtgt	720
gtttagtggca	agggcccaac	agaacaactt	gttctccag	agcctgaggt	ttatgraatt	780
ttaagagcag	aagaggatga	atttatcatc	ttggcttgt	atggatctg	ggatgtttag	840
agtaatgagg	agctctgt	atatgtaaa	tctaggctt	agttatctga	tgacctggaa	900
aatgtgtc	attgggtatgt	ggacacttgt	ttacacaagg	gaagtgcaga	taacatgagt	960
attgtactag	tttgctttt	aaatgtccc	aaggctcag	atgaagcggt	gaaaaaagat	1020
tcagagttgg	ataagcattt	ggaatcacgg	gttgaagaga	ttatggagaa	gtctggcgag	1080
gaagaatgc	ctgatcttgc	ccatgtcatg	cgcattttgt	ctgcagaaaa	tatcccaat	1140
ttgcctcc	ggggaggtct	tgctgcaas	cgtaatgtt	ttgaagctgt	ttatagtaga	1200
ctgaatccac	ataagaaaag	tgtatgggg	gttggagatc	tagaagaccc	atggtagcct	1260
taaaaaac	ctaaaatgt	tttrattctg	aaaattgggg	gaaaaaactt	ttaatcacaa	1320
ttttctcaa	tacaagggg	aaatattctt	gccccatccc	aacgtttt	gatatgagca	1380
gaaaatcatt	agcatttccc	atcatttgtt	catatttgt	tttctgaca	gttgcactt	1440
gtacgttgc	ctgtactaca	gtatttttt	ccaaacctcag	gcatactcgt	tacatctgt	1500
ttgaactt	ggcccttagaa	accagtggag	ttatttcacc	acaaaatcaac	aatgtgcctg	1560
aggtgcatgg	gaaatatagt	tagctatact	ctgaaaatac	attatgtttt	ttttctttaa	1620
acaaaacaca	caacatgtaa	gcatgtaa	gtaaagaatt	gtatgatatg	ttcccttttt	1680
cagtccacca	agtttggaaagc	citttgccagc	tctgtggctt	ggaatttc	ttgagcaatt	1740
tctataggat	atgttattat	tattgattgt	tatthaawww	wwttccamtt	ttacctgtat	1800
taccaaactg	ggttctccaa	taatgtccaa	attgtatgt	tgccttgctt	caagataaag	1860
tgtatgtgg	aataatattt	taaacccttm	caaattttat	gcatgtatct	actgcac	1920
tcaactctca	ctagaaaatc	ttttgaaacc	aaatggatta	attatggct	atttataatt	1980
tgcttgcaca	tctca	ttttgtt	ggaaattttt	taaagatgag	atttgcc	2040

34

ttgtgatttt tgggtttacat gtgggttct atagtttaa tttttcagc ttttaagata	2100
cgagtttgt gtaatttggt atttttaatc atttatgtta tttaaaaagc tcagaatatc	2160
acattgaaat tactataaat acatttaaaa ttatctattt tagatctaag gaaatactac	2220
agagatattt tcatgggttc agtaacttt cattttataa cattggcac ggtacagagt	2280
gattgtcaca taaggtactt gaagatttat tagtttaattt ctattttac agtaacccttg	2340
aattcttctg agttttgcat gtatcaaattt caattaatgc tgaacatgaa gagtaaagta	2400
tttatctgaa agaagttctt gggtaggag aagtaatgaa tgtatccatt tgtacatggt	2460
ttacatgtt gggatgctt gtaaacattt tcctgtatgt ttaaattgtg tttcagcagg	2520
atgttagttgc ctttgtgnag gtt	2543

<210> 58

<211> 777

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (766)

<223> n equals a,t,g, or c

<400> 58

ggcagagcgt taagtccca ttccctccctt ctccctttcc tttctctgca gtaggggagg	60
cccactcccc ksggatctat cttggatcc catggcttcc ttactggc tctggggccc	120
cttcacctgt gtaaggcagag tgctgagcca tcactgttcc agcaccactg ggagtctgag	180
tgcgattcag aagatgacgc gggtagcgt ggtggacaac agtccctgg gaaacagccc	240
ataccatcg gctcctcgct gcatccatgt ctataagaag aatggagtgg gcaagggtgg	300
cgaccagata ctactggcca tcaaggaca gaagaaaaag ggcctcattt tggggactg	360
catgcctggc cccccgaatga ccccccagatt ygactccaaac aacgtggcc tcattgagga	420
caacggaaac cctgtgggg cacgaattaa gacacccatc cccaccagcc tgcgaagcg	480
ggaaggcgag tattccaagg tgctggccat tgctcagaac ttgtgtgag ttgagcccg	540
gcctctggc gcaggactcg tgaatggagc agttctgaga accaccctt tgctaaggga	600
gcttggagc cacatggctg ctcccttcac actgggtAAC agtgttagtat cctgtgagag	660
aataaatgta ttcatatgt tgggttcca gagcttctg ggatgtggaa aaataaaat	720
cactgaagca gttgaaaggt gaaaaaaaaaaaaaaa aaaaaaaaaa actcgag	777

<210> 59

<211> 879

<212> DNA

<213> Homo sapiens

<400> 59

gctgcatgct gggcggaac taggaagcct ccccaacctc tggcccggtg gagccctcag	60
cctcagctgc agtggaggca cctcggtctc tggggcaacc aagtgtgaca ggtggctgt	120
cacggcaga ggtcctgtgg aagatttcat gtgacgggca gaagaggagg aggaggcagg	180
ggaggaagca catccatgaa cagggctgtc tgggggcagc ctgggtggc gtgaaatagg	240
actcagtggc cttgagtcct catttaggcc ctgatgttct ttagcctgcc tggccttgg	300
caaatcgcca gcttcacgca caacccattt ttcaccttt ggtgtgggg gtcagagtcg	360
ggagagcacc tgcaaagcca caatgatcca gacacacggc aaggtggca cattccatc	420
aggctctcg gggagagca cgcttctgtc cccggagca gcgaaaggta cacaggagga	480
ccgcacccctc ctctgtgtcg tggctccgtt ggtataatca ggactcacgt ggtgttcctc	540
gtgtctgtgc ctttatttgc gaggagcag cacaggctt cttggaaagct cccctcggtc	600
atgtgggtg actccagaga rcccccaccc tgcgagactgg accagtccaa gtggcctkga	660
gccacarcgg cctkgcagta ctkggagg ggtgtatgac aggtgcacac ggaggccat	720
gtggctgtc tggagaatgc cgagatgtg aaatatgtaa tcctgagtgt ggcttctaga	780
aggaaggttc gcaaagctga atatccactc gtgctgtcc cttctcacag gagattccctg	840
tcaacgtccg attctgcctc gaaggcagga ggagtaagg	879

<210> 60

<211> 1161

<212> DNA

<213> Homo sapiens

<400> 60

ggcacagatc	gtccagcccc	cggcgagagc	gggtatgtgg	gcgggaggcc	ggagcagctg	60
tcaggctgaa	gtcctgcgag	cgacgcgcgg	cggggcggcg	agaggaaacg	cggcgccggg	120
ccgggcccctg	gagatggtcc	ccggcgccgc	gggctgggt	tgtctcg	tctggctccc	180
cgcgtcgctc	gccccccacg	gtttccgtat	ccatgattat	ttgtacttc	aagtgttag	240
tcctggggac	attcgataca	tcttacacgc	cacacctgcc	aaggacttt	gtgttatctt	300
tcacacaagg	tatgagcaga	ttcaccttgt	ccccgctgaa	cctccagagg	cctgcgggga	360
actcagcaac	ggtttttca	tccaggacca	gattgtctg	gtggagaggg	ggggctgctc	420
tttcctctcc	aagactcggg	tggtccagga	qacaggcg	cgggcggtga	tcatctctga	480
caacgcattt	acaatgacag	tttctacgtt	gagatgtacc	aggacagtac	ccagcgacaa	540
gctgacatcc	ccgcctcttt	cctgctcg	cgagacggct	acatgatccg	ccgtctctg	600
gaacagcatg	ggctgccc	ggccatcatt	tccatcccag	tcaatgtcac	cagcatcccc	660
acctttgagc	tctgtcaacc	gccctggacc	ttctggtaga	agagtttgc	ccacattcca	720
gccataaagt	actctgagct	gggaagggg	aaccaggaa	ttttgtact	tggaatttgg	780
agatagcatc	tggggacaag	tggagccagg	tagaggaaaa	gggtttgggc	gttgcttaggc	840
tgaaaggaaa	gccacaccac	tggcctccc	ttccccaggg	cccccaaggg	tgtctcatgc	900
tacaagaaga	ggcaagagac	aggcccagg	gcttctggct	agaaccggaa	acaaaaggag	960
ctgaaggcag	gtggcctgag	agccatctgt	gacctgtcac	actcacctgg	ctccagcctc	1020
ccctacccag	ggtctctgca	cagtacactt	cacagcagg	gttggagtt	tttaaagagc	1080
tggtgtttgg	ggactcaata	aaccctact	gactttttag	caataaaagct	tctcatcagg	1140
gttaaaaaaaaa	aaaaaaaaaa	a				1161

<210> 61

<211> 687

<212> DNA

<213> Homo sapiens

<400> 61

ccgggtcgac	ccacgcgtcc	gactaggct	agatcgac	ggccgcctt	tttttttttt	60
tttactgcca	gttagcaggc	tttattgg	aggacaaaag	cctcaggagc	tgggtgcccc	120
agaggctgct	gggtcttgc	ccacagctgc	agccaatgca	gcagtcgcgc	ctccttcttc	180
cgtttctgtt	tttcctcctt	gagggttg	ctccttcttc	tctaggctt	ggagcagctc	240
ctggaaagcgg	gcaactcctt	gttccacctg	gtagcccagg	agctcctgg	cctcagcctg	300
cagtccggcc	cttcctctt	tgtcagctt	ggccttctcc	cagttctccc	gctgctgtcg	360
ctgccagtcc	acaatcatct	gtggcatctt	ggccatgcac	tctgcgtatgt	gctgctccct	420
ctcccacgc	ttctgtctt	cgccagctg	tttcacccgc	agcacttct	gcatggtcgc	480
caggctcggg	taccattcgc	gttcttcggc	ctccagctcc	cgcagctgt	ccggcgacgg	540
ccataacaa	ccggggacca	ccccggaggc	ggcccgtaa	cgcgcgaact	gcttagcgcg	600
tagcgcggc	ccagctgcca	ccggggggc	aggaggtct	cggggtctgg	ccacccggggt	660
cccggtcg	cgcgcccccg	ggccgtc				687

<210> 62

<211> 518

<212> DNA

<213> Homo sapiens

<400> 62

acgcgtccga	gatacattcc	atgaataacct	agtttattga	gagtttttag	catgaaggac	60
tgtcaattt	tgtcaaaggc	tttttctgca	tctattgaga	taatcatgt	gtttttgtct	120
ttggttctgt	ttatgtatgt	gactatgtt	attgatttgc	atatgtt	ccagccttgc	180
atctcaggga	tgaagccaaac	tcgatcg	tggataagct	ttttgatgt	ctgtggatt	240
tggtttgc	atattttatt	gaggatttt	gcatcagt	tcttcagg	tattgtct	300
aaattctt	ttttttgtt	tgtctctg	aggctttgt	atcaggat	tgctggcctc	360
ataaaatgat	tagggaggat	cccttctt	tattgtatc	aatgttca	gaaggaatgg	420
taccagctt	tctttgtacc	tctggtagaa	tttgggtgt	aatctatctt	gtcctggaaat	480
atttttgggg	ttgaaactca	aaaaaaaaaa	aaaaaaaaaa			518

<210> 63
<211> 911
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (911)
<223> n equals a,t,g, or c

<400> 63

gtctgaccag	gggtactaaa	taaacccggcc	ctaacacttc	catctccacc	caccccatct	60
ccctggcgat	gtgctccagg	ccaagcagcc	tccgttaggct	ttagatcctg	tggggccag	120
atccagtcct	ttctaataacc	ctgagtcaac	acattactcc	tgcaggctt	aggctacaat	180
gcagggtccct	tgagggccac	caacatggag	gtaggcagtt	tctaggactg	tccccagttac	240
atctcaccac	ccacagccct	ttttttgcct	tgattcgagc	ctcacccctgg	ccttttggct	300
tcccctgcct	gagagagacc	tgaggagggg	acagagccca	gccccctctcc	tgtggctgag	360
caggcctctg	tgtccatgac	acctgtcttc	cgggcctggg	ggctgtgggt	gtatgtcctc	420
cctactggct	cccccgcccc	ctgctgcatt	atgcctttgg	aactcttccc	caaggagtca	480
gtccccccagg	cctatcaggg	gatccttttg	tatctgcact	ttggggttta	gtttcaaagc	540
tccatcagg	acagcttgca	tttcaggatg	tgtggaaagc	tcgggtgagg	gctgccctgg	600
ttcattatag	ctccacacctc	ctcggaaagga	gtgggctgtt	ggagaccccc	catccatggc	660
acactagctc	agcactgcat	ttcccgagat	gattcccaag	acagctggtg	cctcctggct	720
ttcctgtgcc	aggccaaggg	gcaccacaga	ggaccctgga	tcctttgcct	cttcttggtt	780
gaaggatctc	tatgtatgt	tgtatataaa	tatagtttt	tatctatata	tataaaaaaa	840
aaaaaaaaaa	aaaaaaaaact	cgaggggggg	cccggtaccc	aattcgccat	atggtgatgg	900
caaatggaa n						911

<210> 64
<211> 963
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (2)
<223> n equals a,t,g, or c

<400> 64

tncagaggcc	ctgcggagtt	gttcagaacc	ccaaactctct	ctggctggct	acccctgaa	60
ctactgggtc	tctggaccca	tttgtccag	ccaccccaa	aagccctcag	gcgagagctg	120
cctgaggagg	caccgcttag	gaggaaagga	gaaagattga	agttccaagt	gagattgaga	180
gatctcccta	gaggcagctg	aagaggagaa	gtccccgcattc	agcctcatcc	caccagaaga	240
acggtgtaa	gcggccaggc	tccgttggag	ccagggccca	magcccttgg	ccagktkgtg	300
gaaacagctg	ctgggatggg	tatgcccctt	gtcaactgtca	cagctgccac	cttccctact	360
ctctcatgtc	ctccttagggc	ctggccctgag	gtggaggcgc	cagaagctcc	tgcattgccc	420
gtgggtgcctg	aactccctga	ggtgccatg	gagatgcctt	tggtgctgcc	cccagagctc	480
gagctgctct	cactggaaagc	agtgcacagg	taccagrag	gtggcacctt	gatgggggtgg	540
acccggctg	aaggcctctgc	taatggttct	tgatccctat	agggcagtgg	cactggagyt	600
gcaggctaac	agggagcccg	acttcagcag	cctgggtgtca	mctctcagcc	cccgcaggat	660
ggctgcccgg	gtcttctamc	tgctcctggg	tgartgtatg	catgtgtgtg	tgtgtatgtk	720
gggcaggac	acagagacca	gaggcccgta	cagggactcc	cccgacactgc	cctctcctcg	780
cctcttgacc	agtgcctctca	gchgcaacaga	ttcttcacgt	gaaacaagaa	aagccatatg	840
gtcgccctcct	gatccagccg	gggcccagat	tccactgagg	ttagagtcca	tttacaaagc	900
tgccaggaaa	ccggccactt	ctagtaaacc	acgtcgtgcc	tcactgaaaa	aaaaaaaaaa	960
agg						963

<210> 65

<211> 1001

<212> DNA

<213> Homo sapiens

<400> 65

ccctactctc atctgctcca gccccctgac cttatagttt cccagcttc ctggcaattt	60
actttggcca tcaatacaca ggatttagca tccaggaaag atgtcgagc ctcagatgtt	120
aatttctaa ttgagaatgt tggcgtgtc cgaacctgga gacagagtat cagcgccctt	180
gcttgcgtct gttttgatg ctggaaacca ccacctaag atagtaaaga	240
aaacacagga agcttccgg aaaacaaaaa gtccttctc ctgattcacc aaaaaataaaa	300
atactgacta ccatcactgt gatgagattc ctatagtc aggractgaa gtcttaaac	360
aaccaggac cctctgcccc tagaataagr acatactaga agtcccttct gctaggacaa	420
cgaggatcat gggagaccac ctggacccct tccttaggat ggtgctcatg gccggcctg	480
tgtttgaat tccttcgtc tcctttgatg gccaaatagc cttttatcgt ttctgcaacc	540
tcaccaggc ccccccagtc ctcacacca ctgagaggct cctgctgagc ttcaactata	600
tcaggacagt cactgcttca tcctccccct ttctggaaaca gctgcagctg ctggagctcg	660
ggagccagta tacccccctt actattgaca aggaggcctt cagaaacctg cccaaaccta	720
aatcttggc cctggaaagt agtaagat atcttctgca tccagatgtt tttcaggac	780
tgttccatct gttgaactt agactgttatt ttctgtggct ctctgtatgtt gtattgaaag	840
atggattttt cagaaatttta aaggcttta ctcgcttggc tctatccaaa aatcagattt	900
gtagccctta ccttcatct tcatttgggaa agttgaattt cttaaagtcc atagattttt	960
cctccaaacca aatattccctt gtatgtgaac atgagctcga g	1001

<210> 66

<211> 1558

<212> DNA

<213> Homo sapiens

<400> 66

gcacatgcgg cttgcagct ctcccttacgc acatgcgggc cttgtagctc tccttaccca	60
catgcgggcc ttggcgctct ctttacccac atgtgggcct tgca gctcttc ctttacccaca	120
tgcggcctt cagctcttcc tacccacatg cgcccttgc gctcttc ctttacccaca	180
ggcctgccc ctcttccttcc ccacatgggg ctttgcgcgt ctcccttaccc acatgggggt	240
cttgcagctg tccttacgc catgcgggcc ttgcagctt ctttacccac atggggcctt	300
gcagctctcc ttacccacat gggccttgc agtcttc ctttacccac atggggcctt	360
tgcttttgc tctggagcct ctcgttcac aggtcttcac aggtgcaggc cactcaccgt	420
ctgggtgtca ggaccataaa ggacagggtt atgttaaagg tttgcctca aaccagaagg	480
cgaggaccct ttctgtccag ttgcggaaat gatgtcatga ggaactgtgt gcccaggcac	540
gctgtgttag ttacaacatg tggtttgtt tcattttccca cacactgtaa ggtggcattc	600
actggccca tcacacaggt gaaacagaag cccggaaatc actcttc ctttgc	660
atacaactag tagccaaggc agaatttggaa ctcatgttgc ctcagtc ctttgc	720
tacttaaccc ttgttcttc ctgctgggt ctgtgtatgt tccatgttct gtctgtct	780
ctctaaaggc acagtgcac accaggagga tacccagatg ctggggggcc ttggacaga	840
gtctggagg attgagtgaa ggagcagggtt agggtagcc tggagagaga acggccctgtt	900
ggagagttt ttagaaagg ggattaggc tccggggagga accggatcca tgggtctgc	960
ttagatggct gagtctggca ttcaatgttgc ccacccaaaca gaagaggccc tggaggac	1020
cccccttgc tgggtggcag ccgtgggatt cgggggtctg cttggaggt cttggagagg	1080
atgtctggc cttggcccttca gactcaagct gcttgggtcc agttcagccc ggccactcct	1140
gctgtggcc cttagccagg gccttactc caccgactgc tttgtgttgc tttgtgttgc	1200
tcaccaggc catgtgttca gcaatgttgc tgacagccag tgccgggtgc agccattaca	1260
gggacacacg tgccctggagg ttgaggccac gttctgttca ctggccgc tcgtggcctt	1320
gggctggcc aaaccccccct ttgaaaggat tccttttgc ccctggcata ggctctcatt	1380
gtccttagtga acagctacat cttttaaca agccagaaaa ggccagctgg cttggct	1440
gcctgaaatc ccaagactgg ctggccgaag caggaggatc acttgaggcc agcctggcca	1500
aagtaagcaa gactctgtct ctacaaaaaa ataacaaaaaa aaaaaaaaaa aactcgag	1558

<210> 67

<211> 1322

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (11)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (690)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (719)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (720)

<223> n equals a,t,g, or c

<400> 67

ctragcaact	nagtgggatc	ccccggrrct	ggcaggaatt	cggcacgagg	tggaatctgt	60
gacc	cagaag	taacaaactc	ctttcttgg	gagcagttag	gtattccatt	120
tat	gccaaca	ttaaaaagg	ccaaaaccag	aggcctagaa	aatgtatctg	180
tgagaccgtt	tttgatcatt	gtggccttcc	tggggctcag	tttcctcgct	ttgcaaatgc	240
cattttggca	gggatctgct	gtggggcatc	tccgtgcagg	tggagctgga	gttgcgcate	300
tttctcaggc	ttggcatcata	caggccccag	tgcactctgg	cagggaggggg	cagccccctc	360
ctggatagcc	ccgsccaagg	ccgggargac	tgtgaaggggg	ggatcccact	gcctgacctc	420
agcctgtcg	gccccacagc	gcgtctctct	gtggactgg	cgccggcttc	ctgtggcctg	480
tgtgtcctcc	gagtggctgg	agctttggaa	ccctattctg	tagcttggag	ctccctgagcc	540
tcaaagggc	ggggcctgg	tccttgccca	tccttgccca	gcctgatggc	ctgtgcttgt	600
ggactgtaca	ttggcacctg	ctttaacacc	tggaggagta	ggggctacca	agaagcatgt	660
ggctctggc	ctccctggga	gagtcacten	gccccaggag	aactgagtgg	gacacatcnn	720
ggagtgtctg	tctcatggac	scctkttggc	ctgcagcctg	gagagggggc	ctgaagtgtg	780
tgttccatgc	tcttgacc	cagkaagcac	tcgcctctgt	tgaaaagctc	gtgccgcaga	840
gcgcgattgc	tgtcccgggt	ggacggccat	cacgggctcc	ttgctccggc	gatgccagcg	900
ctccctgggt	tgtgtgtggc	tggctccccc	ttgtctcagc	cctgggctta	gagcaggcca	960
ggtgctcagg	cagtggtttt	gttgcttggaa	gggggggtgtg	tacctgctg	cagcctgtgg	1020
agagcgtgag	ttgctggcag	aagcaaaggc	ggctcttgg	gagatgagag	cagggcagccg	1080
gccttggaggc	ttccatgggg	ctggtcagct	cctgctggct	cttcctggca	caaatccacg	1140
ctgggctggg	tgccttggct	cacacctgta	atcccagcac	tttgggagcc	tgaagtggga	1200
ggatcgctg	agcctgggag	ttcaagacca	gcctgggcaa	cactgtgaga	cccttatctct	1260
atttttaaaa	ataaaaat	aaagataacc	cttcctycaa	aaaaaaaaaa	aaaaaaactcg	1320
ag						1322

<210> 68

<211> 865

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (445)

<223> n equals a,t,g, or c

<400> 68

gaattcggca	cgagcagacc	tgggctcgag	accataactg	tttggcttta	acagtacgtg
------------	------------	------------	------------	------------	------------

60

39

ggcggccgga atccgggagt ccgggtaccc	gggctgtggt	ctagcataaa	ggcgga	scca	120
gaagaagggg cggggtatgg	gagaagc	cctc	cccac	ctgc	180
ggtcctgctg ctgctc	ctatcc	tgtt	gtcccc	ctcc	240
tgctgacgcc caagagagct	ccttgg	gttct	cacagg	cctc	300
cagccgactt ttcctgaaag	gtaac	ctgt	tcgggg	cata	360
catggacttc cggggc	ctgg	gact	gaca	aaag	420
ggggaaacaac accytytcm	gccan	ctca	gatc	gaca	480
ggaggccctg gtacccatcc	agaagg	ccac	ggac	agcaccar	540
gtggccttc tggatcatta	agct	gccc	gccc	ttcc	600
cggccactgg ctcagc	gaga	ggac	accc	ccat	660
ggggaccac aaggacgtcc	taga	aggg	gacc	gagagc	720
ccccccgaaag acccacttac	tgt	acat	cctt	cagg	780
accggggagc acctgcctgt	agccccatc	agacc	ctgccc	ccaag	840
aagtttttc ttacatctaa	aaaaaa				865

<210> 69

<211> 1150

<212> DNA

<213> Homo sapiens

<400> 69

gcggatcagg agaaaataag	aatgtcaaa	ggaaaagtaa	ttctgtcaat	gctgggttgtc	60
tcaactgtga tcattgtgtt	ttgggaaattt	atcaacagca	cagaaggctc	tttcttgtgg	120
atataatcaact caaaaaacc	agaagg	ttgtat	gacagc	atcg	180
ctgagcttgt ttaacaatgg	atccacaat	tatcaacaag	gggaaga	aaag	240
aaaaaaaggaa gagaggagac	caaagg	aaatgac	aacag	actt	300
actggtttaa tccaaacttg	aaggaaatcc	aataactaaa	ctggactctg	gttttctgac	360
tcagtccttc tagaagac	ggactg	agag	atcat	gcgt	420
gaccac	ttggact	cg	agatt	ctca	480
tcagcgtta gcaggat	gac	ctgg	tataga	gcagg	540
tcagacactc cagttgg	gtt	tata	at	aaat	600
ccttcttcc taccctcc	acc	ttt	atctgc	aaat	660
agaatgtca tgaagat	aa	atctgc	aatgg	gatgata	720
attatgttata aataagtata	cctt	atttc	ttt	tttata	780
atgtccagct tatacacatt	taca	agact	atgt	tttt	840
gatcttgac aagct	aaa	taa	atgt	tttt	900
aagttcagaa atgg	tttac	aa	gtt	tttt	960
ttctgg	ttt	caat	ctcg	tttca	1020
tgtaagctac taaa	aaa	acac	tttca	tttca	1080
aatgccaatg caaata	aaaa	aaaa	tttca	tttca	1140
aaaaaaaaaaaa	aaaa	aaaa	aaaa	aaaa	1150

<210> 70

<211> 1398

<212> DNA

<213> Homo sapiens

<400> 70

gggagatagg aatggat	ttt	tcttc	cagaac	taccac	60
caagcagg	gg	ttt	ttt	gt	120
tgagc	cc	cc	cc	cc	180
atttttttt	aa	at	ttt	ttt	240
tgtcataagt taatcaat	tg	ttt	ttt	ttt	300
gatactgtt	ttt	ttt	ttt	ttt	360
tgtatatgtt tatgg	ttt	ttt	ttt	ttt	420
cacatatttcc ttc	ccat	ccat	ccat	ccat	480
agtgaattat cggtg	attat	ttt	ttt	ttt	540
ataatatact tagaa	ttt	ttt	ttt	ttt	600
ttttttgggt catgctgt	ttt	ttt	ttt	ttt	660

40

tatgtttgtt	ttttcttttt	ccttcgtct	gaattctgtt	gcactgagca	atgttgtaat	720
attttttattt	taaatataag	taatatttaa	aattactgga	aatatgtaac	catcagatta	780
ttatcccta	atgataaaaca	gaatttggta	attaagctaa	acctagaatt	gtagacaatt	840
atttttacat	tgcatactaca	ttaaaaatgt	atctcaaaca	cacatacttg	gttgtgtaat	900
atttatctac	tcattaagta	gaaagagtaa	ataaaaaaatt	gctttggat	tattgtatgag	960
ggtggattat	actttagaac	actttattca	aacagttctt	ccacatatct	ccctttgac	1020
ttgactgagc	aactctctt	ctgtgctcg	gttgggtctc	taagtcaag	ttaatatttc	1080
ttgctctatc	tagcatataq	aagcattgtg	ggctgggtgc	agtagctcac	acctgtaatc	1140
ctagcactt	gggcagattt	ccccaaactta	ggagttttag	atcggcctgg	gtaacatggc	1200
gaaatcccgt	ctctactaaa	aacacaaaaaa	aattagctgg	gtatggtggc	gcacgcctgt	1260
aattccagct	acttgggaag	ctgaggcgca	agaattgctg	gaacctggga	ggcggaggtt	1320
gcagtgagcc	gagatttgc	cttgcaactcc	accctggcga	gattctgtct	ccaaaaaaaaaa	1380
aaaaaaaaaa	aactcgta					1398

<210> 71

<211> 1557

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1541)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1549)

<223> n equals a,t,g, or c

<400> 71

gcaaaggta	agctggtttt	catggctcc	tgagggcccc	tggccctgg	gagatgggtc	60
acactccctg	aatgctgtgc	tgttggtttc	cctggaggat	tcttgcgtca	ggccagggtcc	120
cgtattctcc	acactcacca	caagtggctg	ggtgtgactt	gacacgtgt	gaaagtggag	180
gggcgcgagc	actcagtatc	cagcgacgac	cattgggtgt	cctagaaaaat	tactacaaag	240
atttcaccat	ctataaaccctt	aacctccaa	cagcctccaa	attccgagca	gccaaagcata	300
tggccggct	gaaaagtctac	aatgtatgt	gccccagtaa	caatgcact	ggccagtc	360
gggcacatgt	tgcgtcgact	gctcggcga	ggactcaag	ccacaacgag	ttgtattatg	420
aagagccga	acatgaacgg	cgagtaaaga	agcggaaagc	aaggctgggt	gttgcagtgg	480
aagagccctt	catccacatt	cagcgtctcc	aggtgtggaa	gcagcagaaa	gccccagggg	540
aggtgtatgga	cccttagggag	gccgcacccagg	ccatTTTCCC	ctccatggcc	aggctctcc	600
agaagtacct	gogcatcacc	cggcacgaca	actaccacag	catggagagc	atctgcagc	660
acctggcctt	ctgcatcacc	aacggcatga	cccccaaggc	cttcctagaa	cggtacactca	720
gtgcgggccc	caccctgcaa	tatgacaagg	accgctggct	ctctacacag	tggaggcttg	780
tcagtgtatgta	ggctgtgact	aatggattac	ggatggaaat	tgtttcgtc	cttaagtgtct	840
tggacttcag	cctcgttagtc	aatgtgaaga	aaattccatt	catcataactc	tctgaagagt	900
tcataagaccc	caaattctcac	aaatttgc	ttcgcttaca	gtctgagaca	tccgtttaaa	960
agttcttat	ttgtggcttt	ataaaaaaa	aaaraaaaat	atatacagag	atataatatct	1020
atgccagagg	ggtgtctttt	ttaaaaattc	ttcttcattt	ctgactgaaa	ctggcagatg	1080
attgaccagt	atcccttgcac	catctgcact	ttatggaa	ggaagcaggg	gctgtccacc	1140
ctgaaaaaga	gtgactgatg	acatctgact	tttgcgtatg	ggacttctca	agaagccatt	1200
ccttggagct	tctgttacag	ctgtaaacca	aagtggagct	ggtgcttctt	gggaggcctcg	1260
ccttacaact	agttccctgcc	tttcgtccag	taccaagtcc	cccggtgtctt	ctggtcagcc	1320
cacttgtaga	cttccagggg	acacatctt	attctgtttc	aggaaaccag	tcacraca	1380
tccacatatg	tatgtgtat	tgttaatgcc	agtatcaca	caccatgaa	agtcgtgggc	1440
atttcargag	ataccctgsct	tcgtcttgk	tctttgttc	cttaggttct	tcagagaaag	1500
atcmcaacaa	aaaatgtacm	ctgtcgat	cagctawaag	ngatttgant	tgttttt	1557

<210> 72

<211> 1163

<212> DNA

<213> Homo sapiens

<400> 72

ggcacgagct ggctgcaggg tctctgggg gagaaggggc ctcgggttca caggatgggg	60
ctgcacgtgt cttggggccc tcctgcccctc tgggttctag ggtgctgcgc cctgctccctc	120
tgcgtgtgg cgctgtgcac agcctgccgc aggccccagg acgctgttagc ccccaggaaag	180
aggcgccgga ggcagcgggc gaggctgcag ggcagtgcga cggccggcggaa agcgtcccta	240
ctgaggcgga cccacctctg ctccctcagc aagtccggaca ccagactgca cgagctgcac	300
cggggccgc gcagcagcag ggccctgcgg cttgcgcagca tggatcttctt ggcggccacac	360
tggctggagg tttccaggaa catcaccggc cccgcaggcag cccctctgc ctccccacac	420
caggagctgc cccgggctct gccggcagct gcaagccaccc cagggtgcgc tgccctcgag	480
gccacctatt ccaacgtggg gctggcgccc ctccccgggg tcagccctggc ggcagccct	540
gtgggtggccg agtatgcggc cgtccagaag cgcaaaaggaa cccatcgca tccccaagag	600
ccacagcagg ggaagactga ggtgaccccg gccgctcagg tggacgttctt gtactccagg	660
gtctgcagaac ctaaaaaggag ggaccaggaa cccaccacac acccgcttggaa ccccaaggaa	720
caggagcga ttctggccct ggccgggtgac ctggccctacc agaccctccc gctcaggggcc	780
ctggatgtgg acagcggccc cctggaaaac gtgtatgaga gcatccggaa gctgggggac	840
cctgctggca ggacgcggc acgtggggctt gggacggccc ctgcttccag ctgccccagc	900
ctagggaggg gctggagacc cctccctggc tcctggccctt gaacactcaa ggacactgtgc	960
tccttcctcc agagtggggc ccgtcccccg ccccgccccg cctcacagct gacagcgcca	1020
gtcccaaggc cccggggccgc cagcccggtga ggtcccgtag gtcctggccg ctctgacagc	1080
cgcggccctcc cccgggctcca gagaaggccc gctgttaaat aaagcgccag cgaggatga	1140
aagcgaaaaaa aaaaaaaaaaaa aaa	1163

<210> 73

<211> 1486

<212> DNA

<213> Homo sapiens

<400> 73

cggcacgagc cagggcttag gtaggaggga gtcgtccct cgacgcctcc tgcgacgcca	60
gcccctgagc gatgtatgcga acgtgcgtct tactctccgc ggtgctctgg tgccctcacag	120
gagtccaaatg cccgcgtttt accttattca ataaagaaggg cttcattttat ggaagacag	180
gacagccaga caaaatataat gtagagttac atcaaaatag tccagttctt atctgtatgg	240
attttaagct ttctaaaaaa gaaatagtgg acccccaccta cttatggatt gggcctaattt	300
aaaagacgtt aacaggaaat aatagaataa atataactga aactggacag ctgatggtag	360
aagatttttt ggagccctttg tctggactttt acacatgtac tctttcttta aagactgtta	420
aagcagaaac tcaagaagaa aaaacagtca aaaagagata tgactttatg gtctttgcct	480
atcgggaacc tgattattca tatcagatgg ctgtacgttt taccacaagg tcttgatag	540
ggagatacaa tgatgtattt tttagagtgc tgaagaaaaat ctggatatt ctaatttctg	600
atttgtcatg ccatgtcata gagccatcat ataaatgcca ttctgtgaa attccagaac	660
atggcctcat acatgagcta ttatagcat ttcaagttaa tcctttgcgc cgggggtggaa	720
aagggtcttgc caatggatct gttgactgtg aagataccac taatcataat atccctccagg	780
caagagatcg aatagaagac tttttcggaa gccaagcata tattttctac cataacttta	840
ataaaaactct accagcaatg cattttgtgg accacagttt gcaagtagta cgtctggata	900
gctgtcgacc aggctttggaa aaaaatgaac gtctacacag taattgtgct agctgttgc	960
tggtttgcact tttagtcctg atgttaatgt aacttgtcag acctgcgttt	1020
ccgtccttac ctatggatct aaatcttgc cacaacttc aaacaaaaat cagaatatg	1080
aagatttagag gtgaaagcat tgtaacttac ttgtggaaat cggggacata agatgtatctt	1140
cacatcccag agcatcatag atagttccat taagttaaat cagtaagacc aaaccactgg	1200
gaaaacatgc attttgaaaaa tttaaaaata aaatgggtt acatggcatt tctaagaagg	1260
cattaatcc ggtatctcta gtgtacaaag gaaacttgaa ttgtttcatgg attattttttta	1320
atgaaatgtt ttattgtttt caaacggat gttgctgtgt acctaagggt ttagtaagg	1380
caagaagggt ttcaaaagttt aataaaaataa aaattgtata ctctccaaaa aaaaaaaaaaaa	1440
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa	1486

<210> 74

<211> 1553

<212> DNA

<213> Homo sapiens

<400> 74

ggcacgaggg gatgcagca	agaggaggcag ctggaagccg tggctgcgt	ctttccctc	60
tgctggcg	cgttcttc caggtgagtg ctccggctgg	ctacgctcca	120
gggggttagg	gaagatggtc gctttccgg ttccggtag	gggggtctcc	180
cgcatagctc	tgggaaggaa ggagggaggg agcgggacgt	tggacgatg tcacaccac	240
cccgttgagg	atagttggta tttgtcagt ctttctga	gccttggag cttttcacc	300
ttgcgtgacc	tgtcattgtta tttggtagata catacttgat	ggaacacaaa tagctctggc	360
tttggggca	cccggtgtta tttgtggtagtattatcag	tggttgaccg ctgtcggttg	420
ggcgcgttat	accctgatta gaaagaaaac agttctagca	ttcagtagtt tgccccagta	480
gttttggaa	acaaaaatcat gacagtttgtt aattttat	ttttagtga ttattgtagt	540
ctataaaatg	aaatatttgc taatcacaga aaggatgtga	tgtgattcgt tatagaaaaa	600
catatcgatg	aaaaaagtact gctttagcat ttcatactt	tttttaatac aagaaagagc	660
atataaaattc	tgttaaaatt tattaagtaa tacagaagt	agggtattca cactgacatt	720
cacatcttaa	aatttaggtga gtttgctt catataattt	tcagattgca taaatttcaa	780
tccagctaa	ttaccttcat ctcaaggtac aattatttcc	tggattttgt gtatgtgt	840
tttcctggaa	aataaaaat tagtatact agtattagag	tgaattgcta aatttataaa	900
atttcctgta	gggtatggg gatttctgaa agagatattt	aatttataat aaatataaaag	960
acttaaat	aaagacttca gatgtcctaa atcttagcag	ttaaggctgg aaagttttta	1020
actgttgact	aatatttcatg ttgcagcac acccccgtc	cctcccgact gcctgtgtca	1080
tcataagtct	ccagttttta agctaaatta cttgcagta	tgatatttag ctggctact	1140
gtcactccta	ataaaacccag tcctctcttct	ctctcttct cacacacaca cacacacaca	1200
cacacacaca	cacacacaca cacacgagaa atattcaa	attgtcttat tgagaaaaaa	1260
aatctggaaa	tggtggtttc ttaaatctaa tgtcatgtt	ctttgaagag catctgtcaa	1320
gtccagcaga	ccatataatt caatcaaaca tttaaagttt	atttacaat ctctatgtac	1380
ttgtgaata	gatttttgc ctttaaaaaa ataactggtgc	gcaggggtgtg gtgttcttg	1440
cctgtatcc	cagcacttttggagggcag	gcagctggat cacctgaggt caggagttcg	1500
agaccaggct	gaccaacata gtgaaactcc	gtctctacta aaaaaaaaaaaa aaa	1553

<210> 75

<211> 1650

<212> DNA

<213> Homo sapiens

<400> 75

ggaacctcat	caacgctgac ttctgcgtgg cctctgtctg	cgtggccctt gggcagttc	60
tggtaaaagt	cagccccatt cagctgctca tcatgacttt	cttccaagtg acccttctcg	120
ctgtgaatga	gttcattctc cttaacctgc taaaggtgaa	ggatgcagga ggctccatga	180
ccatccacac	atttggcgcc tactttggc tcacagtgac	ccggatcctc taccgacgca	240
accttagagca	gagcaaggag agacagaatt ctgtgtacca	gtcggacactc tttccatga	300
ttggcaccct	cttcctgtgg atgtactggc ccagcttcaa	ctcagccata tcctaccatg	360
gggacagcca	gcacccgagcc gccatcaaca cctactgctc	cttggcagcc tgctgtctt	420
cctcgtggc	aatatccatg gcccctgaaa gaaggcag	ctggacatgg tgcacatcca	480
gaatgccacg	ctcgccaggag gggtggccgt ggttaccgt	gctgagatga tgctcatgcc	540
ttacgtgtcc	cttcatcatcg gttcgctcg cgccatcatc	tccaccctgg gttttgtata	600
cctgacccca	ttcctggagt cccggctgca catccaggac	acatgtggca ttaacaatct	660
gcatggcatt	cctggcatca taggcggcat cgtgggtgt	gtgacagcgg cttccgccc	720
ccttgaagtc	tatggaaaag aagggttgc ccatttctt	gacttcaag gttcaacgg	780
ggactggacc	gcaagaacac agggaaagtt ccagattat	ggtctcttgg tgaccctggc	840
catggccctg	atgggtggca tcattgtgg gctcattttt	agattaccat tctggggaca	900
accttcagat	gagaactgtt ttgaggatgc ggttactgg	gagatgcctg aagggaaacag	960
cactgttac	atcccctgagg accccacctt caagccctca	ggaccctcag taccctcagt	1020
acccatggtg	tccccactac ccatggcttc ctcggtaccc	ttggtaccct aggtccccc	1080
ggcagggtgag	gagcaggctc cacagactgt cctggggccc	agaggagctg gtgtgacact	1140
agcttagggat	gcaagagtga gcaaggcagca ccccccacctg	ctggcttggc ctcaaggtgc	1200
ctccacccct	gccctccccct tcattccagg ggtctgmct	gagaatggag aaggagaagc	1260
tacaaagtgg	gsatccaagc cgggttctgg	ctgcagaagt tctgcctctg cctgggtct	1320

43

tggccacatt ggagaaaaac aggctcaaag tggggctggg acctggtggg tgaacctgag	1380
ctctcccagg agacaactta gctgccagtc accacatag aggctttct accccgtgcc	1440
tgcacctcg ccagcatctc ctatgctccc tgggtcccc agacctctyt gtgttgtgtg	1500
cgtggcagcc tccaggaata aacattcttg ttgtcctttaaaaatggtg tgaatgctcc	1560
aatggggcca gttttaggga gaaaaggacc caagagacct gcttctgccc cagcccttac	1620
cttcatccaa gggtagccaac cacactgcga	1650

<210> 76

<211> 2150

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (874)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1198)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1201)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1266)

<223> n equals a,t,g, or c

<400> 76

ccacgcgtcc ggacccgagc tccagtagtt ccgcggctg gtcatcgcc ccttccct	60
gccgggtgtcc tgctcgccgt ccccgccatg ctgtctctag actttttggc cgatgtgg	120
cgatgaaca agccggcagg tggatgtcc gtcctttt tctcctggct ctcttgcc	180
cttcaggcgt gctgtcgcc ggcggccgg accccagggt tctgggtgtga ggtctgagc	240
tggctgtata cccgggtcat tcgctttttt tggagactgt ggccagaggc cgccctgtcc	300
gcctcattat ttttaacccc gaactgattc agggcttacc tgggggggggg cgaaaaaggc	360
tgttttcacg ttccattcct cccactgagg caggggagca aatggaaacc gtacgcgttt	420
gaagtgggag ttgggggtgt tatttttttata gtcattttaa tgccggccggac tcttgatttc	480
tccagtcggc gcgactccag gtggttcgg gagagacgag gtttagccgg tttctggggc	540
gctcaggaaag gcgattggag gccccacaaa aaccgttttgcgtttcag ctccctgcac	600
cccttagta gagctgaacc gtagccggct gcaccgactt tgacttggac cactctggcc	660
tccgagttgg aacagttaca ctacttgcct ttgcgtccgc ttagactaa ggcggcagcc	720
ctcgaatct atggtttac agtccaatat cagtgcacac gggatctggaa aatgttaggtc	780
tcctgatttt gtccttacac tttactttaa tcttcttagat cgtatgcac atagtactga	840
aatattgtt gtaatttattt agtccctaga aaangttgtt ctgttttatac ttttgcgcct	900
agtgtgtctg tagagcttag ttttgcgtca tcggactttt tttttttttt aaacagtatt	960
ttactgttat gattatcctg atgtcaccat taaggattt tttttccctt ggacttgcac	1020
tttttgtact tataactgcc acttagggaa gtagatacac aacctttccct tactccctt	1080
caggccttag ctatgtcagt gtcaattctg tcagtcagaa ttgagcattc tataaaaaatt	1140
gcgcacaaacgt tactttatgt ctttatgaca acacttcaaa tttttacttg tatagtgn	1200
nctttttta atccatattt ggatttctag atgcccacaga tatttcctg aggaaagtat	1260
ttattnntgag tctgtatattt attgactcta tgcttagtcc aatgagagaa atgcacaaagat	1320
agttaaagaaa gactcggcct tcaaggagcc taaatgtgtaa gaaaaggact aaggcaaaac	1380
aataactttt ttgagctctt gccatgtgtg aagcacttta tacacctgtaa aggttaggtaa	1440
cgttgcgtt attaaacatg aagaaaatgtaa gactttgtgtaa gaagcaatac agtataagaag	1500
ttaagaatat ggactctaaa gctagatttc agaggttgc agtagctctg ctacttactg	1560

44

gctgtgtgac tttgagcaga ttacttaacc tgtctgtgcc tatgtttact tttattgttg	1620
taaaaagata tgcaacataa aatattccat tcaaccgtt tttacgtgta tacttcactg	1680
acattagtt cattcaatat gttgtcaaa cgtagggctcg ctatgaagat taaaatgagtt	1740
aattcatata aagccctcag aagagtgtct ggacatgg gatgttgc tgtactgtgg	1800
tcgatgtcat tgtagagag ctttagtcat ttgcttaaga cagaaggtag actgggtgcg	1860
ggggctcac gcctgtaatc ccagcacattt ggaggctga ggcaggcgg tcacaatgtc	1920
aagagattga gaccatcctg gccagcatgg tgaggccccct tctctactaa aaatacagat	1980
actagctggg cctgttggcg cacgcctgta gtccagcta ctcaggagc tgaggcgggg	2040
aatcgcctg ggaggtggag attgcagtga gctgagatcg tgccaccgca ctccagcctg	2100
gtgacagagt gagactccgt ctcaaaaaaa aaaaaaaaaa aaaaaaaaaa	2150

<210> 77

<211> 1592

<212> DNA

<213> Homo sapiens

<400> 77

cggatttgtt gaggtaatga gaatagtcag tcaagactct ggattgtga atttttaggtg	60
ctgctcattt tcccctttt atcttcagaa atctcgatga aaataatacac atagaagaca	120
aaaccgaaga aatattttat tattttgtgg ggcttctcta atttttgtat agcttttagta	180
agctgaatta gatggcatgg aaccgaagaag ttcccttcta cctgaattgg gtgggagagt	240
gtcacacattt cctcttggcc tcactctgg tttgcctgc tttcttatgg ttagggagac	300
tgcaggaggt tttagcttca gaggcaggaga cttagaagaa atctcaagaa agagaacaaa	360
tgtatttaggg tctcttagag ggacagagct aataggatata atataatcct attatataata	420
tacacagaca cacacacaca tatatatata tacacatata tacatataata tacacacata	480
catgtatata catatataata cacacatata catgtatata catgtatata cacacatata	540
catgtatata catgtatata cacacatata catatataata catatataata cacacacata	600
catgtatata catatataata tacacacata tatgagtttta ttaagtatttta atttacatga	660
tcacaaggc tcataataga gtgtctgcag ctgagggcaa ggagagccag tccaagtccc	720
aaaatttgaag aaatttggagt ccgacatttgg aggctggaa gcattcagca caggagaaag	780
atgttaggctg agaggctgtt cctgtcttgc ctittcacat tttctgtctt gccttatgtt	840
cactgaaaga tgattaaattt atgcacacta gattaagtgc agatgtgc tccccagccc	900
actgactcaa atgttaatct ctttgccaa aacccaacag acacacccag gattaatagt	960
ttgtgtgctt cagtccaaatg aaattgacat tcagtattaa ccatcacaac aaacgtgc	1020
ttacatttgc tagtgaatgt ctttgcactt gttcagtccca gtttcagggtg tcttatttct	1080
tggggtaga ataagaaaag cagagagaag ttttcttttcc ctttggagca ctgttctca	1140
gatacttttta ttttcttagcc ttttatgggg taataataat taaaatggag aaaaataaaaa	1200
taatagtaaa atttggaaaca atgcaaaaaa tgaaaaaacg aaattactga aaaaaggccc	1260
cccattcgccc agaagtaggc aggtggctcc cagaggtggg cagagcttag gctgaaggag	1320
gcgggctgag ctgcacctgg ggtggagagg gcctgagtc actccttagtt aaggtctgtc	1380
aaaccatctt gacccgctca tctgcccag gggaggctgt gaggggcag aacagctcc	1440
tctccctgag ggcttagccat ctggaggag acctacagac ctaatgttta tgctgc	1500
tggaaatgaa ggaatcggtt ggtgctgagg gaacctgtcc cctaaccag accagaggag	1560
gtccggaaattt cgatatcaag cttatcgata cc	1592

<210> 78

<211> 1579

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1529)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1556)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1569)

<223> n equals a,t,g, or c

<400> 78

ggcagaggga acccacgcgg	aggaaggaag agacgcaggc	aggctgcggt tacccaagcg	60
gccaccggg cctcaggac	ccctccccg agagacggca	ccatgaccca gggaaagctc	120
tccgtggta acaaggcccc	tgggaccgag gggcagcgc	agggtcatgg cgagaagaag	180
gaggctccag cagtccctc	agccccaccc tcctatgagg	aagccaccc tggggagggg	240
atgaaggcag gggctttccc	cccagcccc acagcggtgc	ctctccaccc tagctggcc	300
tatgtggacc ccagcagcag	ctccagctat gacaacggtt	tccccaccgg agaccatgag	360
ctcttcacca ctttcagctg	ggatgaccag aaagttcgtc	gagtcttgt cagaaaggtc	420
tacaccatcc tgctgattca	gctgctggtg accttggctg	tcgtggctct cttaacttcc	480
tgtgaccctg tcaaggacta	tgtccaggcc aaccaggct	ggtaactggc atcctatgct	540
gtgttcttg caaacctacct	gaccctggct tgcttctg	gaccaggag gcatttcccc	600
tgggaacctg atttccttga	ccgtctttac cctgtccatg	gcctacctca ctggatgtct	660
gtccagctac tacaacacca	cctccgtgt gctgtgcctg	ggcatcacgg cccttgcctg	720
cctctcaagtc accgtcttca	gcttccagac caagttcgac	ttcacctctt gccagggcgt	780
gctcttcgtg ctttcatga	ctctttctt cagcggactc	atcctggcca tcctcctacc	840
cttccaaat gtgcctggc	tccatgcagt ttatgcagca	ctgggagggg gtgtatttac	900
attgttcctg gcaacttgaca	cccagttgt gatggtaac	cgacgcccact cgctgagccc	960
tgaggagtagt attttggag	ccctcaacat ttacctagac	atcatctata tcttcacctt	1020
cttcctgcag ctttttggca	ctaaccgaga atgaggagcc	ctccctgcctt caccgtcctc	1080
cagagaatgc gcccctccctg	gttccctgtc cctccctgc	gtcctgcga gaccagatat	1140
aaaactagct gccaacccag	cctgtggcca ggtcaactgtc	taccccagcc cagccagcc	1200
ctctgcccgt tgtacatacg	ccatggggac cctgaggaac	tgaggccacg tcaatccctg	1260
tgccgccccca ttcccccgtt	acatcttcca aactgggacg	gtcaaggctg aaggctcctc	1320
tgggttttag ggtccaaggg	acaaggagga gaaggcttagc	aggattttag atgcaggaga	1380
gagaccagg aagccggca	gagcctgagc cccaytgc	ttyctyctag ggstgcacaw	1440
tcatgtggcy ttagggcama	ytgytctgca tccagtctgt	gtctyctgt cttttcatc	1500
caggtcaggc attgacattt	gtaagaaang gggtaaggga	cacagctggg caagtnatt	1560
ggttggcang attgctgtc			1579

<210> 79

<211> 1396

<212> DNA

<213> Homo sapiens

<400> 79

ggcacagaaaa aatatgaag	tgcacagctg tgttgcacc	atcagcatgg ccaaacaccc	60
tttctctct cgttctctc	cacacagtga tgtcattaa	ctggcacctg gtttctgcatt	120
cacacatca tattggaga	attgttatttc tagaaggggg	tggaatgtga cacacctcag	180
ataattgttc tgagaaatga	gtatgaggc ttttaaaaaa	aactttacat taaaacacac	240
aaaccatatta aaaaaaccac	tcctccaaaa cagacacaca	agtgaaacaa accaaatcga	300
ctgtccatcc atttaatttt	gaactatctg caatatcacc	ttaaagctt aagctcctaa	360
tgattttggt cattacaaat	ccaaaataac attatttca	aatgaagtt tactatgatt	420
tttcccattt gggaaacagt	atatccaata caacaagatg	catgtgtacc tccattaaaa	480
ttttaaacaaat tagaaaaatt	agaatttata tatgatagat	taaaatatga ttatttcata	540
aaagtttctt ttagtttac	aggtttgctt ctggattgtc	ttcaatagtt attagtgaat	600
ttaaaaattt attcagtatg	aaggtaatgt acaccatct	tcttcagaac acgtatttt	660
aatgtgaca tcatctgttc	tgagtctaa cactgaagaa	tgaagtgtcc acattcaccg	720
tatttatgca cagacacatt	ctcattccat tgacattaa	gtgatgtaat gaactaaaac	780
tgccacaaag agaggagggt	tgggaggctg agctctggac	agctctgtca ctgggcaagt	840
aacatgggt ttagaaaatc	tctgctccct tctgtgcct	tggcttatat ctctgttttgc	900
gacaaaaaaaaac	atgttctcac tcataggtgg	gaattgaaca atgagaacac	960
ttgcacacag gaaggggaaac	atcacacacc gggcctgtt	gtgggatggg gagagcgggg	1020
aggaatagca ttaggagata	tacctaattgt aaatgacgag	ttaacgggtt cagcacaccca	1080

46

acatggcaca tgtatacata tgtaacaaac ctgcacattt tgcacatgta ccctagaact	1140
taaagtataa taaaataaaaa ataaaaattt agtaaagttt aataaaatct ctgctcctgt	1200
ttgctgtccc cactgataaa atggtagagc agatcactcc taagtcagag ctgtgttaat	1260
agctgcgtag gagtgtgaaa ccaggctact tgggagccag tgctggctcc agaactttcc	1320
agctgcgtgt ctttggkca ggtggtttac actctgttgc ctcagttct ccagcaataa	1380
aaaaaaaaaaa aaaaaaa	1396

<210> 80

<211> 1230

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1223)

<223> n equals a,t,g, or c

<400> 80

cagcaccatc gcctacctga cctccagct gcacgcccgc aagaagaagc tcattagctc	60
cagccccgacc ttagatgcca gcccgtcagg gagccccgtg ctggccagct acaagccagc	120
gccccccaaa gacaagctac cccaaacgcc tcggccgcgc ataaaaaaga gcctctcagc	180
cccccttgac ccggaaatttt aagaggtcta cagattcggg gcagagagca ggaaactctt	240
tttgcgggaa ccagtggatg ctatccccga cccccacccca ttttgcgtgg ctagggagtc	300
cgccgaggc cacccatca aagagaggcc cctcgatc ccccccattcg cttccgaccg	360
aagccggcag cagcacagcc cggccgcga aaagccgcac aaggcccaag tcgggggtggc	420
acatccggatc caccacgcca cccccccgcga gccagccgcga ggtgaagacc ctggccgtcg	480
accaggtaa cggaggcaag gtggtaggaa agcactcagg gacggacaga actgtgtgaa	540
gccccccgtg cccccaccccg cgctgtccat gcactgtgag caccactggg aaatctcagc	600
cacacccctt ctgtttatc ccatgatgc caaacacttt tcacacccatc cgacccattc	660
tccttctgtc tcttctgccc tcttcttcac accaaaatat gatgtgtcc ctggccgcaga	720
atatgtattt cctaattgtc gtggccaaac gcctgtgtgc cgaatcgctt gtttgcgtc	780
ccgctccgtg taacctaagt ggcgtgcagg caaagcccaag gccacgctg cgtcactact	840
gatgttcacg atgccacaca gtcacacacc taattcattc tcaagtcgg acaacacata	900
ccaaaccttga ctttatccctc aagctccagg gcagcctggc cgagcagccc ctgtccctc	960
ctggagacccc ttgtcaccc cccggatc cctggagacc cctgtcacct cctgaccaac	1020
ctttcccaagg gccgcaccga tcacccggca gccgtgcgtg tatctcaagg aactaaataa	1080
gatgacgcta ctcctcatag caccacaacc tgaatgtgtg ttcatatttt ttttgttagtt	1140
ttatccaaaa tttttttttt cccaaacaaac ttattttctt aaacctgcaa aaaaaaaaaaa	1200
aaaaaaaaaaa aaaaaaaaggg ggnccccctt	1230

<210> 81

<211> 1139

<212> DNA

<213> Homo sapiens

<400> 81

acgcgtgggt cccggacgcgt gggcggacgc gtgggagcaa gcccaggcgg cgggtggaaag	60
gctggaggac acacccaaat atgtggaaatc ccaatgcggc gcagccaggg ccaaatccat	120
atccccccaa tattgggtgc cctggagggtt ccaatccctgc ccacccacca cctattaatc	180
caccccttcc cccaggcccc ttgtcccttc ccccaaggagc tccccatggc aatccagctt	240
tccccccagg tggggccccct catccctgtc cacagccagg gtatccagga tgccaaccgt	300
tgggtcccta ccctccctca tacccacccgc ctggccctgg aatccctcct gtgaatccct	360
tggctccctgg catggttggc ccagcagtga tagtagacaa gaagatgcag aagaaaaatga	420
agaaagctca taaaaagatg cacaacgacc aaaagcacca caagtaccac aagcatggca	480
agcattccctc ctcttccctcc tccttcttca gcagtgttgc tgactgaata cagccctgg	540
accctccct caagtctcac cagttctgtc ctcccatcaa gcttcagatg ccatgttgc	600
ctggggaaat gtagcccttg tgctccccac cccctaccts cacctgagcc tcaccctgtc	660
gtttagccct gatgtggctag gggaaatggg aagaggattt ccatggctg gccatcttgc	720
tgctgttgg ttagatcata tagctaattt taggtcagg ggagctattt ttgttagatg	780

47

atgaactaaa	tgttgaagac	aagtttgaga	tctgtaaaaat	gtgatttttt	acttccactt	840
ataatacttg	tgattgggga	ggtttgtgga	aattcaatta	tgtaaaaaa	cctatctttt	900
ttgtaatgtt	gdcatacttg	gggaatttag	tggcaataac	attccccagc	aggcctttt	960
ttgggtgcac	taactgcaag	gttgctggga	agtagagtcc	atttggttga	ttagctttga	1020
ctcggtttt	gaaacttac	ctctcctcct	tagccaata	tgctgttttgc	ggtccttattc	1080
aaataaaagtt	atttctcctg	gtcwmaaaaaa	aacggcacga	gcggcacgag	ctacgtggg	1139

<210> 82

<211> 1409

<212> DNA

<213> Homo sapiens

<400> 82

ggcacgagga	acctcccgcg	ggcttggac	tgaggtccct	gtggcgtcgg	tctccccc	60
atgaagtggg	agcgaggctc	cccaatggtg	ctttggctt	tagtgtacga	tgtttgctgt	120
gtttcccgcc	gtggagggca	gagccacccc	acatcaggat	cggacgtgct	accctcccg	180
gtccccggcc	tggccagcc	agcccagccc	tcgaggctcg	atgcctgtgc	caaggccagg	240
ggcagccaga	gggcagctgg	atggccacgt	gcagggtcaa	ggctggggcc	tgcagtgggg	300
cgggccgcca	gccccagca	tttacagacg	catggcttctt	cctcccaagag	cagccggcag	360
ctacctggac	cgaaaatgtc	ctcatcccc	ccctggggcc	aggctctgcc	ctggccttcc	420
tctgtgaacc	cctcctttct	ttgtgtgtc	tcgggactcc	tgaccgtgg	gtgcgtgtgt	480
gcccgtctgt	gactttctac	tcaccaaggg	ttgaagaaag	gaaacgggga	aaatcaaag	540
gggttcaaac	cccacctca	taggtggagg	ggagcgcctg	ccattgttg	tatttttgtt	600
ctgagtttc	ggtgccgtgt	tcctaactac	tccatccat	gacctcgcca	cacctactgg	660
ggcatctggc	ttgtgcctgc	tgccatggcc	agccccact	ctcaccctgc	acagggggc	720
ttgcagcccc	caggcccaca	gcctcggtgg	gaggacaggg	tggccctggg	gacaagaggg	780
aggagccccag	gggcttacct	cactgagagt	gctccccagc	aggcatccac	taccccaggg	840
ccccccacat	gtcatggca	ggttggtagt	gaatgggcct	ggttgggagc	agccccctggc	900
ccattggcca	cccacccatc	tcactatgc	attcgagttc	caagcaacat	ttgctctgc	960
cctggggcca	gctctggccc	agccctgaga	gggggtggta	ggcagcccc	tggaccccgag	1020
aaccccaagac	aaggggcag	gccccggacc	agggcctctc	ctgtgggatc	ttttttttgt	1080
gtttaaccat	aatgggtgt	tactgaacca	cttcataattt	gttatataata	atatatatat	1140
atataatctc	cttaagactc	agcctcctgg	tttacccccc	cgccctggc	atctgacctc	1200
cagccctctgt	agggccatgg	ctgtatgtac	tgtcgctgt	ttttttgtt	tttttagaac	1260
tgggttgggg	ggctgatttt	tatttttttt	ggggcttttt	ttcttgccaa	atactaaaaaa	1320
tctcgtaat	gtaatttctg	tggtttctat	tcagcttggg	tttcatgttt	taaaaataaat	1380
tttaaaaagc	aaaaaaaaaa	aaaaaaaaaa				1409

<210> 83

<211> 714

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (704)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (709)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (714)

<223> n equals a,t,g, or c

<400> 83

48

atccggcacg agaccaaaga gaggcttggg acagacccta ccctctcagt cttcacagga	60
caacaacct gccccaccc ttagtcttggg cttctagctt ccagagctgt gagaaaataa	120
atgtcttattt tttaagccat ccagtttgtt gtactttatt acaacaaccc tagcaaacta	180
gtacaaagg catgaattt attctcactg gaataacact gtctgggtat ttgtttacct	240
tttctgcctt tgcatgtctt tcagccagca tcactgtctt gggtcttatg gagtgccctga	300
ttcacaggca tggatcccac acaacagac atctgaccag gacacttact tcacagcaaa	360
gctccagagg tcacctgtcc ctatcacaca gcaccaccca aagtaatcaa cctgaaagaa	420
cattagcaact gcttacttggg ggaacagctg acttacccgt ttggaggcaa cactctccaa	480
agatgggtgc catcttccaa gatgctgtat ttgcacttga ctcacaggcc tatttatggg	540
gcattgtttc taataggggag aatatatggg tccctggaaaca atggccccc cccaaagggt	600
tccatcttgc ccaggaaaca ccgcaagagt cccattgggg ctgggcgtgg tggcacacac	660
ctgtaatccc agtactctga gagtacccctt taggagccggg cggnnggcnc atcn	714

<210> 84

<211> 1097

<212> DNA

<213> Homo sapiens

<400> 84

ccacgcgtcc gggcgctgct ttttgcacgt tctttgcgt ttttgcgt gggagccaaa	60
cgattggag ttgcctccac agaggcccag agaggcgta gtttcaact ggaagaaaaaa	120
accgcacca gcaaggctggc actcttcaga gatgatacgg gtgtcaataa tggcttgggt	180
ggattggagc ccaccaagggt ggccttgaat gtggagcgct tccgggagtg ggcagtggt	240
ctggcagaca cagcggtcac cagtggcaga cactactggg aagtgcacgt gaagcgctcc	300
cagcagtcc ggataggagt ggcagatgtg gacatgtccc gggatacgctg cattgggttt	360
gatgatcggtt cttgggttt cactatccc agcgcaagtg gtacaccatg ttggccaacg	420
agaaagcccc agttgagggt attgggcagc caagaagtgg ggctgtgtct ggagtatgag	480
gcccagaagc tgagcgtgg ggtatgtgagc caggtctctg tggttcacac gctacagaca	540
gatttccggg gtccagtggt gcctgcctt gctctctggg atggggagct gctgacccat	600
tcagggcttg aggtgcccga gggcctctag tatgtccatt actggagtc ctaatcacgc	660
ctttggccag cttccctttt aaagtgtccg aagcctttt actttgcctc aagcaacctc	720
tagctccac aattcagtgt tgggtccctt gtgcaatatac atgatcatct tcctcatccc	780
ctaccttgc aaagcttaggc atacagccaa accctccctt tccccaccca ccaacactac	840
tgccaatttc ctaggctacc atgggtgtat ctcccttgc ctgcttccctt cagtcctct	900
gcctccctt gcccaggccct ttctcagact gtattccatc ctgggtctt atcattcagc	960
tttggggaa ttatataatc accatgatac ctcccttcc ctgttgcac atgtaacttg	1020
ttcttggggc tctaccagat ggctgaagag taaatccctt ctacctctga aaaaaaaaaaa	1080
aaaaaaaaaaaa aaaaaaaaaaa	1097

<210> 85

<211> 1931

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1904)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1914)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1921)

<223> n equals a,t,g, or c

<400> 85

ggcacgagcg gcacgagcgg atcctcacac	gactgtgatc cgatttttc cagcggcttc	60
tgcaaccaag cgggtttac ccccggtctt	ccgcgtctcc agtcctcgca cctggAACCC	120
caacgtcccc gagagtcccc	gaatccccgc tcccaggcta cctaagagga tgagcggtgc	180
tccgaaggcc ggggcagccc	tgtatgtctg cgccgcccacc gccgtctac tgagcgctca	240
gggcggaccc gtgcagtcca	agtgcggcgc ctttgcgtcc tgggacgaga tgaatgtcct	300
ggcgcacgga ctccctgcagc	tcggccaggg gctgcgcgaa cacgcggagc gcacccgcag	360
tcagctgagc ggcgtggagc	ggcgcctgag cgctgcggg tccgcctgtc aggaaaccga	420
ggggttccacc gacctcccg	tagccctga gagccgggtg gaccctgagg tccttcacag	480
cctgcagaca caactcaagg	ctcagaacag caggatccag caactttcc acaaggtggc	540
ccagcagcag cggcacctgg	agaagcagca cctgcgaatt cagcatctgc aaagccagtt	600
tggccctcctg gaccacaaggc	accttagacca tgaggtggcc aaggcctgccc gaagaaaagag	660
gctgcccgag atggcccagc	cagttgaccc ggctcacaat gtcagccgccc tgaccggct	720
gcccaggat tgccaggagc	tgttccaggt tggggagagg cagagtggac tatttgaat	780
ccagcctcag gggctccgc	catttttgtt gaactgcaag atgacctcag atggaggctg	840
gacagtaatt cagaggcgc	acgatggctc agtggacttc aaccggccct gggagccata	900
caaggcgggg ttggggatc	cccacggcga gttctggctg ggtctggaga aggtgcata	960
catcacgggg gaccgcaaca	gccgcctggc cgctcagctg cgggactggg atggcaacgc	1020
cgagttgctg cagttctccg	tgcacctggg tggcaggagc acggcctata gcctgcagct	1080
cactgcaccc gtggccggcc	agctggcgc caccaccgtc ccaccaggcg gcctctccgt	1140
accctctcc acttgggacc	aggatcacga cctccgcagg gacaagaact ggcacaagag	1200
cctctctgga ggctgggtt	ttggcacctg cagccattcc aacctcaacg gccagactt	1260
ccgctccatc ccacagcgc	ggcagaagct taagaaggga atcttctgga agacctggcg	1320
ggccgcctac taccgcgtc	aggccaccac catgttgate cagcccatgg cagcagaggc	1380
agcctcttag cgctctggct	gggcctggc ccaggcccac gaaagacggt gactcttggc	1440
tctgcccag gatgtggcc	ttccctgcct gggcaggggc tccaaggagg ggcatactgg	1500
aaacttgtt acagagaaga	agaccacgac tgagaagcc cccttctga gtgcaggggg	1560
gctgcatgc ttgcctcctg	agatcgaggc tgcaaggatat gtcagactc tagaggcgtg	1620
gaccaagggg catggagctt	cactcctgc tgccaggga gttgggact cagagggacc	1680
acttggggcc agccagactg	gcctcaatgg cgactcagt cacattgact gacggggacc	1740
agggcttgtg tgggtcgaga	gcccctcat ggtctggtg ctgttgtgt taggtcccc	1800
ggggacacaa gcaggcgca	atgttatctg ggccggagctc acagagtttct tggataaaaa	1860
gcaacctcag aaaaaaaaaa	aaaaaaaaaa aaaaggcgcc cccncctaaa agntccaag	1920
nttacgttac g		1931

<210> 86

<211> 1092

<212> DNA

<213> Homo sapiens

<400> 86

aggccatgac ctccctcagg atgcctggct	gchgctgggtg ctggctgggg cgctgtgtgc	60
cggtgctgg gcaactgaaact	accccccgtt cttcctgtat gagaagacac tcttcctcta	120
ccactacctg cccgcactca	ccttccaaat cttctgtctc cctgtggtcc tgcaagcacat	180
cagcgaccac ctgtgcagg	cccagctcca gaggagcatc ttcaagcgc tgggtggc	240
ctggtaactcc tccgcgtgcc	acgtgtccaa cacgcgtgc ccactcacct acggggacaa	300
gtcactctcg ccacatgaa	tcaaggccct tcgctggaa gacagctgg acatcttgat	360
ccgaaaacac tagaacaaga	gtgtggaaa gaacaccgt gctgggtcg ggacgagggt	420
gaagggtctt ggtcaatgt	cgtaatgagc agggtggcc ccacgctggg aggacacggg	480
ctgggtctgag caggcctct	agtggacac acatgggtctt cattgaaaag ctctctgtat	540
agcacccctt ttgtgcaaa	gttaattttt tctcgacaat aaagatattc cgtgtcttca	600
cccccgtaaact aagacacagg	gatgtttca gaaggccaa cgtaggagtc atgcacaacg	660
aaaaagccga gaaccacagg	ccagcgttg gagccttcag cagaaccagg gcctggcct	720
tgctaattgc tgcaagggtgg	agtttgcattt ggcagacccg atcccttc atgaacaccc	780
agcaacctga gcaagtcggc	ccctgcctt cagcgagccc ggcaggcgcc cggggacagc	840
tcagttgg agggccac	gaaccacgg ccaggctgg ggcttgcatt tgatgtctca	900
tgacagcgtc aagactggcc	cttggcaccg tgctgtgtgg aaaccctccc ctctgagact	960
ccactgagac gtggctgag	gaaatcttcc tcgtcagtgg tcaaggtgtg tcatccata	1020
agctccatgc ctttgtctt	tttaaatgtt attaaaaaag gaaccaactg gaaaaaaaaa	1080

aaaaaaaaaa aa

1092

<210> 87

<211> 578

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (576)

<223> n equals a,t,g, or c

<400> 87

gggacatctg ccggctggag cgggcagtgt gccgcgatga gcccctcgcc ctggccccggg	60
cccttacctg gaggcaggca agggcacagg ctggagccat gctgcttc ggctgtgct	120
ggggggcccta cgtggccaca ctgctctct cagtcctggc ctatgakcag cggccggccac	180
tgsggcctgg gacactgttg tccctctct cccttaggaag tgccagtgca gggcagtgcc	240
ccgttagccat ggggctgggc gatcagcgt acacagcccc ctggagggca gccgccccaaa	300
ggtgcctgca ggggctgtgg ggaagagcct cccgggacag tcccggcccc agcattgcct	360
accacccaag cagccaaagc agtgcgacc tgacttgaa ctaaaggaag ggctctgct	420
gactcctacc agagcatccg tccagctcg ccattccagcc tgtctctact ggccccact	480
tctctggatc agagaccctg cctctgttg accccgcact gactgaataa agtcctctg	540
gccgtttaaa aaaaaaaaaa aaaaaaaaaa ggggncc	578

<210> 88

<211> 699

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (661)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (694)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (696)

<223> n equals a,t,g, or c

<400> 88

tcgacccacg cgtccggaaag ccccaacag ccacgctcac cactgctcg acgaggccga	60
ccacagacat gagtgtcaggta aagtgcgtcc tgctggtgat cttcaggat ttggatgcg	120
gagttccag gacgtctccg cacttgagga gtggagagga gggaggatc tggagcctac	180
tcacagcctg ctccgtctgt tgcccttctcg tgatcttcta gtggttcttg gcgaaatcag	240
gaaaaggcag atggagggtt gtgtatggaa agggtgggta tggaatccgg agaaaatggtt	300
tgcggtcttg gctctgcctg taacaacccg atgaccccttg ggcaagtcgg tgcctctc	360
tgggscctcg tttctccacc tgtatggta ragggtttggaa atggcactg aagtccgtc	420
cagctctgac cttctgtgaa gtgcactgtt gagcagctct ggaagctct gtccagcca	480
tagccacaca gaggaggcagc aggcaggcat caggcccaa ctgctctct ctgatggct	540
tggacccat gaaagtgggg cctgctggat gcatttcctg ggattctgtg gaagctgatc	600
aggttgctgg ggcaagtggaa ggcaggatag aagtgaaggg ctgtggatg gagaacctca	660
naagactcca tctgggttcc gggaaaggac agananggt	699

<210> 89

<211> 1126

<212> DNA

<213> Homo sapiens

<400> 89

ggcasagcca accctgagga ctcagtgtgc atcctggaag gcttctctgt gactgcactt	60
agcattcttc agcaccttgt gtgccacagc ggaggcgttc gtctccat tactgtcagg	120
agtggggca gattctgctg ctgggaagg aaacaggagc ctggttcaca gyttagtat	180
ggagatatga ctcagccct aagggggtt gctgatgacc aaggacagca cccactgttg	240
aagatgttc ttcacctgtt ggcttctct tctgcagcaa caggtcacct tcaagccagt	300
gtcctgaccc agtgcctaa gtgttggta aattagccg aaaacacttc ctgtgatttc	360
ttgcccaggt tccagtgtgt gttccaaagt ctggccaaagt gcctcagccc agagacaccc	420
ctgccttagcg tgctgctggc tggtagctc ctctccctgc tggcggacca cgaccagctg	480
gcacctcagc tctgttccca ctcagaaggc tggccctgc tgctgctgta catgtacatc	540
acatcacggc ctgacagagt ggcctggag acacaatggc tccagctgga acaagaggtg	600
gtgtggctcc tggctaagct tgggtgcaaa gagccccctt cccccagtc ctggctccaa	660
ctgcccagtgt aatgtggagg tggtagcgc gtcacgggtg atgttgcaca gacagtggct	720
gacagtgcgg agggcagggg gaccccaag gaccgaccag cagaggcggc cagtgcgcgt	780
tctgcgggac acggtgctgc tgctgacgg cctatgcag aaggacaagc tcttcatgat	840
gcactgcgtg gaggtcctgc atcagttga ccaggtgatg cgggggtca gcatgctcat	900
ccgagggctt cctgtatgtga cggactgtga agaggcagcc ctggatgacc tctgtgccgc	960
ggaaaccgat gtggaaagacc ccgagggtgaa gtgtggctga ggccctgagt gtccagccac	1020
atggtggcac cagcaccact ctttcctta ccacatcaac tgattaaagc agtgaccagc	1080
aggaactgcc cagagaactg gaaaaaaaaaaaaa ctcgag	1126

<210> 90

<211> 1037

<212> DNA

<213> Homo sapiens

<400> 90

agggttatggtc aggagtccca gctggccca ccacccctc aggaaggcgg	60
gtgagggtgg tgtgagactg acgggtcctc ctcatgtccc cttggagcgc cccacccac	120
atctcccccgc ctcgggtcct tgcctggccc agcatgagag gtgcttcata ggaacggagg	180
gaggacatgt ygggacagct cgatgtcgg cctgtctgt ctctgcaccc ccagggcctg	240
gctcacccctc tctggacctg tctgttccca aggaagggga ccctctgagg tcccacagag	300
gccaccccaag ytgtgggtcg tgagcatctc tgtcttgcaag ggacagcatc gtggccgagc	360
tggaccgaga gatgagcagg agcgtggacg tgaccaacac camcttcctg ctcatggccg	420
cctccatcta tctccacac cagaacccgg atgcccctgc gctgtgcgtg caccaggggg	480
acagcctgga gtggtagtg gcctccctgc tctggccag cccagggagg caagtgcucc	540
ctgcccacatc tccaggctgc gcacggcctc gctggctgtc gtcatggag cagagaaagg	600
tgggtctgaa atgaggccct ggcctgtgt ccaggctccaa gctccctgc ccagtgtggg	660
aggcactccc atctgcgcac caggctgcgg atccaggac acgggtccca rgctgcaacc	720
ctctgttccc aaggcagag cagaaacggc cttgtctct gctcggttgc tgggtcccca	780
ccccccacga agccttctgt gtctcggccc tggccctgt ctctcaggcc tccccggggcc	840
ccccataccg gcctccctcc agggccctct ggggttgggg tgctgaagcc ctgcaaggtt	900
ggtgcctttcc tccaccctag gatgtgactc cggccatgt ccaggccact ggtcacagaa	960
agtgtgtcag ttcttccctg tgagctgtcc ctgcagtgc tgccctccac tggtagttgc	1020
aagctggca tttcatg	1037

<210> 91

<211> 1316

<212> DNA

<213> Homo sapiens

<400> 91

ggcacgaggc ctggcgcgcgc tcacccgctc ccgaggaagg gcagtggcc	60
ccggccgcgc ctcacccatgg cgaggctgcg ggattgcctg ccccgctga tgctcactgc	120
ccggccctgc ctcttctgt ccctggctca ctgctactgc gggctctgcg cttccatcca	180

52

cctgctcaaa	cttttgtgga	gcctcgcaa	ggggccggcg	cagaccttcc	ggccggccgc	240
ccgggagcac	cctcccgcgt	gcctgagcga	ccccctccgt	ggcacccact	gctacgtcg	300
gatcaaggat	tcaagggttaa	gatttacta	tgttgctgct	ggagaaaagag	gcaaaccact	360
tatgctgctg	cttcatggat	ttccagaatt	ctggatttct	tgccgttacc	aactgagaga	420
atttaaaagt	gaatatcgag	ttttagact	ggatttgaga	ggttatggag	aaacagatgc	480
tcccattcat	cgacagaatt	ataaatggga	ttgtctaatt	acagatataa	aggatatttt	540
agattctta	gggtatagca	aatgtttct	tattggccat	gactgggggg	gcatgattgc	600
ttggctaatt	gccatctgtt	atcctgaaat	ggtgatgaag	cttattgtta	ttaacttccc	660
tcatccaaat	gtatttacag	aatatatttt	acgacaccct	gctcagctgt	tgaatccag	720
ttatttattac	ttcttccaaa	taccatggtt	cccagaattt	atgttctcaa	taaatgattt	780
caaggttttg	aaacatctgt	ttaccagtca	cagcaactggc	attgaaagaa	aaggatgcca	840
attaacaaca	gaggatcttg	aagcttatat	ttatgtcttt	tctcagcctg	gagcattaag	900
tggcccaatt	aaccattacc	gaaatatctt	cagctgcctg	cctctcaaac	atcacatgg	960
gaccactcca	acactactac	tgtgggaga	gaatgacgca	ttcatggagg	ttgagatggc	1020
tgaagtca	aagattttatg	ttaaaaacta	tttcaggcta	actatttgt	cagaagccag	1080
tcattggctt	cagcaagacc	aacctgacat	agtgaacaaa	ttgatatgg	catttctaaa	1140
agaagaaaaca	agaaaaaaaag	attgactttt	ctttatcttc	tatgaagggt	ctgtaatgaa	1200
atctctaaat	aatttttaaa	aattgttcat	caactcttt	atgttttatt	agaaaaaaaac	1260
tgttttaatg	tgctttatca	taaataaata	tcctgacaaa	tggtattgaa	aaaaaa	1316

<210> 92

<211> 1021

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (971)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1004)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1008)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1010)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1018)

<223> n equals a,t,g, or c

<400> 92

ggccgcccctt	tttttttttt	tttttttttt	ttttggcctt	agtcatcatt	60
tcttgaataa	tacaaatagg	taagacaatt	ttacaaaaat	tgtgctatag	120
ttgtgacttt	ttagatgaaa	ttagagct	accccaccca	gccacagata	180
actttcttaa	tagagtata	gttcaaatta	taaagtccac	acactggcta	240
gttcagagtt	tcaatcaatt	ttcattgtaa	ggatgaaact	gagtttact	300
cttttaaga	gaatggccca	cctcccacac	atcctttctc	ttggactttt	360
ctaagtttct	gtatcacgaa	atcagatggc	caaaacaaaa	tctacaggtg	420
gcaagtcccc	aagtgttgc	tacccatacc	aaaatgagaa	ttgctgtat	480

53

tactggamtg gccakgccaa tcttgggact aggattaaat tgcaattaaa ttckgcagtg	540
tacaaaattt ttgtcagttc gyctagaaaa agaaagagaaa ctcttcatg gtagagcagt	600
tactgtgctc acgttgctt ttctaaaaac caacctactt tcaaacaag aatgaggaaa	660
tttgcagtaa attttaataa tgagtcacgg aaatattaag ataatagcat gtgtgggcaa	720
taataaagtat gccaagaat aaagagtaat atacaaaaca atcaaacatt attacattt	780
gctacgaggt tcctaataaa cagggcaaaa taaatagtga aatataataa aatcgttatc	840
atctgataaa aggctgcatg gtactttcc caaacgtaat ggatgacttc aacacatttt	900
cttattaaat atttcaaatt gtttcttcat gtgaaaactg tcttattaat tgaaaaagg	960
atgtaacttg nataggcatg ctcaacaggg gtaagagtaa ttcngtangn gccccctnga	1020
t	1021

<210> 93

<211> 1260

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (32)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (314)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (356)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (590)

<223> n equals a,t,g, or c

<400> 93

tttttttttt tttttttttt tttttttttt tntttttttt tttttttttt tttttttttt	60
tttttttttt tttttttttt aatttcacct gtttccctta ttatgtggct actgaaaat	120
tttaaaatta catatgttagc tcacactata aaacacagat tagaaatatt gtatagcact	180
gacctagaaa cctccattta ggtaaaacat cttAACCCCT ttggaagcaa aatatgttaa	240
ataacagcat aaactcccac caagaaaatc ctcacccccc tcctttcaac acatttatta	300
tatacagctg tcantgcatt gtcaatctgc caaaatggctc tatgttccaa cagggnntgga	360
gtatgcccct gtcacaccca gccttcacaa tacttcccat gtctccctg ttaacctctc	420
tccacccagc acccaggctc ccaactctcc tggtgcctc cagccctcag ctggcaccac	480
tgacatgtg tttccagttac cttttcttc ttctgcattt ctcctgggg gacatacatc	540
cctcatctcg tgacttcagc tgcacataa attcaaattgt ttcaagaactn tatttttac	600
ctcctacatc tgcagttta aatgtcagga tattttactt tcagtaaagc cctaaaaaga	660
caaattctatg tactttaaa gaataaaaaga aatgactggc tgcagctcaa acctacaact	720
gcttgcggaa ctctacaatg tctggcagat gctagaaaaga aggggatcaa gacagagcac	780
acttggcgtg gtatgtatc tatagaaaat gtaaaaataa aattaagtaa tctaggtttc	840
ctctctttat tttctacatc tactctctga agagggcaat aaataaggaa atgtcccaaa	900
gagggacaaa ttaagtccca aaataacaca aaattggca aatcccagtc atgaagaaag	960
aacagagggtt cttaaattgg gacacacaga ggcaggctcg caggcttgg aatctctgaa	1020
catatgtgca aaattctggg tatgtgtgca tatgttataat aacaaagcga agggtccata	1080
tagcttcat cgcatttcaa agggcttagc actgaaataa ggactactgc tatgtgactt	1140
aaaaaaatgaa actcaggctg ggcgcagtgc tcacgcctgt aatcccagca ctttgggagg	1200
ccgaggcaag cagatcacct gagacgagga gttttagacc cgccctggccg gacgcgtggg	1260

<210> 94
<211> 990
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (4)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (916)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (958)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (971)
<223> n equals a,t,g, or c

<400> 94

gcangagagc taccaagtgg ccgagctggc ttatracccct agggcagtct gcccccaaaa	60
cccatctact tgggtgtccc cagaatgggt tggcttggga gaacttgccct tgctcaactcc	120
catttagact ttatttagtg agcccttcctc ttgacttttgc cctatttcct tgcgtttcag	180
gtgtgccctg tgattaataaa atggctctac aacctggacc agcatgtggtaaaagagttg	240
attagaatgt gctggagggtt ggaagggaca ggaacactcc agaagaaagc tcagaaccct	300
ccctcaccct ttgtatattca tttccctta cctcaactctg gcacttctcc tagaccaaaa	360
atctctttcc tgctgaagta gaatggtccc taataataac aacctaataataactcgat	420
ctgacattaa ctgaggggagc ccagtgtgcc aacatgaagc actgtgcctg cactagcaat	480
tgaacgtgca ccttttagcta aggacgtgct gggttcaatt ctattcttc tcccaaggct	540
acagcagctg agatatgaat gaaacacttcc caaggggaga aaatctgccc aattctgcct	600
ttgtcctccc ctaaattttgt atgagttaaa tggatggcag aaaattggtc tgttttcagc	660
ccagacaaac actgcctcct ttcagtagtc gctacctcaa gcatccaaag tttccatatc	720
tgccagaact caaagcaaaa aatgcaagat tgaatctcag cagctcaggc ccccaaggcagg	780
acttcaaact tccaccacca aaaaaaaaaaaa aaaaaaaaaat gctgaattga aagttatatg	840
ccttcattca ctgaatatttc actcgccctg ccaagtgcga gatgccarag tttctaaaat	900
tcccccaag ggggggnccgg gtacccaatt cccccctatt agtgaagtcc tatttacnaa	960
ttcccttggg nccgtccgtt tttacaacc	990

<210> 95
<211> 1710
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1702)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1704)
<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1709)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1710)

<223> n equals a,t,g, or c

<400> 95

ccaggaattc	cggggtcgac	ccacgcgtcc	ggaaacattt	cccatgtcct	aagttcttag	60
aagcaattac	tttagcgttg	gggagcattt	ttctaccaga	cccatttatg	caggggagat	120
gaagcttaaa	agacgggatg	tggggtggga	gtgtgtttct	taagccgaag	ctgtgcagg	180
ctgggggatt	tttgcatttt	ctttttgttt	tgtttttgac	tgcagattct	gtacatctgt	240
ctgtgggagg	agagttgcta	ctcaggacag	gatttaagag	acacattcca	gtgacattta	300
agaacttgca	tggcgggagg	tccttcctcca	ggagtgtggg	ttggtccact	ctgggaccca	360
ccacactaag	aagggggaga	tgataaaaata	acattaaagg	aagaatggcc	tccagcctgc	420
aggttttgtt	ggaaagaaaat	aaaaagggag	tcattaagac	cataaaattca	gattgaggcc	480
tcttggaaaag	gttgatgtgg	gctagcaacc	tgccctgtcga	aacagtccctt	ggttcatcg	540
cagtgtggga	aggcagccaa	ggctcctgca	gattcctggc	atcgcacctt	gaaagcctct	600
gcgatacttg	tgtgtacgaa	tacagcagag	gacagggagg	tccttgccttct	gtggtctctg	660
tttagtgact	gaaaacttaaa	cccaaaggca	agccagatt	gtctggccgt	tcatccccat	720
gctttgatag	gggttaggag	gaacccttcc	cgtatgaaag	acaggcccta	ytagggytta	780
caaccaagcc	aaaggaccat	ctcttccttc	ttccacccct	cttcamccct	gccccgcagc	840
agagccgaga	tgtgagacat	tcattgtcac	ggagcaagga	gacaaaggca	agttcaagtt	900
gagaagcata	tggcagcaaa	cagaaatgaa	aaccatatgt	cccagcaagg	ggaaaagcag	960
tcatttccag	attataaaaa	tcaatgaagt	actctccacc	tagtgcagct	gaaattcgag	1020
ccctcacagt	caggcctgtc	agagaagtt	agcagaaaaca	tctcgggggg	acttctaaaa	1080
tttagtgaag	acaaggcctt	gcaactccaa	agaaaactttt	tttccccccc	ttgaaaacagg	1140
gtcttgctct	gttgcccaggc	ctggagtgca	gtggtgca	cacggctcac	tgcagcctca	1200
agctctggg	ctcaagcact	atccccacct	caacccctt	agtagctgg	actacagggt	1260
cacaccacca	tgcccagcta	accacagaaa	ctttcatctc	ttcatttttt	cttgggcac	1320
cattaatacc	taagacaggt	agaaagggtc	ccagaaagac	accattggta	atggccgatt	1380
gccggctgca	gtcatcgccc	ccagatcagg	ctggtacagg	atgccttaag	gtgatgagag	1440
gtgaggggtgc	atgaagaata	atgagcacag	ggaagagaga	agcaggacaa	agtagcagat	1500
aaaatgcccgg	caaagcacag	atgaatgtct	tcaagaagct	cttgtatttc	tctgcacagt	1560
gtaaatatcc	ttgctatttc	aggatggcgg	ctggcctgct	cagtaacata	catgtccaa	1620
ataaaagattt	tgcattgaaag	aaaaaaaaaa	aaaaaaaggc	ggccgctcta	gaggatccaa	1680
gcttacgtac	gctgtcatgc	gnncngtann				1710

<210> 96

<211> 781

<212> DNA

<213> Homo sapiens

<400> 96

ccgcacgagg	cagccagtag	gggagagagc	agttaggca	cacagagcac	cagctccctc	60
ctgcctgaag	atgttccacc	aaatttgggc	agctctgctc	tacttctatg	gtattatcct	120
taactccatc	taccagtgcc	ctgagcacag	tcaactgaca	actctggcg	tggatggaa	180
ggagttccca	gaggtccact	tggccagtg	gtactttatc	gcagggccag	ctcccaccaa	240
ggaggagttg	gcaacttttg	accctgtgga	caacattgtc	ttcaatatgg	ctgtggctc	300
tgccccgatg	cagctccacc	ttcgtgtcac	catccgcata	aaagatggc	tctgtgtgcc	360
ccggaaatgg	acttaccacc	tgactgaagg	gagcacagat	ctcagaactg	aggccgccc	420
tgacatgaag	actgagctct	tttccagctc	atgcccagg	ggaatcatgc	tgaatgagac	480
aggccagggt	taccagcgct	ttctccctca	caatcgctca	ccacatccctc	ccggaaaagt	540
tgtggaggaa	tcaagtccc	tgacttctg	cctggactcc	aaagccttct	tattgactcc	600
taggaatcaa	gaggcctgtg	agctgtccaa	taactgacct	gtaacttcat	ctaagtcccc	660
agatgggtac	aatgggagct	gagttttgg	aggagaagc	tggagacttc	cagctccagc	720

56

tcccaactcaa gataataaaag ataattttc aatcctcaaa aaaaaaaaaaaa aaaaactcga 780
g 781

<210> 97

<211> 1113

<212> DNA

<213> Homo sapiens

<400> 97

ggagatttgg	gaggcatctga	agagccagag	gagtttagagg	ctctgaagca	cagtgcatttg	60
atgtctaagc	tgtttcttgc	ttcatcccc	tggttggctt	aatctaarc	tgtctctttg	120
cttgtatgt	catagtctcc	tgtcatcggt	ttataagatt	ctccaaatc	agaatgcgca	180
ttgcaaaatc	ctcatggtag	gctggtaag	gacttgacaa	tctgatgata	aattactttg	240
tgaacatgaa	tgaaaaatat	tgcatcatat	attggtgagg	agaaaagtgg	gtaaagaaaa	300
atctccatct	atacacaata	cagctttta	aatgcagcgg	actttcaa	atttgcattt	360
ctacattata	cgtttgttt	caacttacgc	atttattgtt	ttctttcc	tttcttcctc	420
acatgttaat	ggcccatgtg	agaaaaacat	tccctgggt	aaatagatag	aagagatttg	480
tgcaaatgca	agagaaaattt	cagtgtatct	gctatgattt	gaatgtgtcc	cccaacgttc	540
atgtgttgc	aatttatttgc	ccaaatgcagt	ggtgttggga	agtgaggcct	aatgaaaggt	600
gtttgggtca	tgggggcacc	gccttcataa	atggattaat	gccattattg	tgggaatggg	660
ttccttataa	aaagatgagt	tcagtcctt	cttgcctc	tctcaccc	tcttgcct	720
tttaccatag	gctgacacag	caagaaggct	cttgcagat	gctggtagct	tgatattgga	780
tttcccaggc	tccagaacta	aaaagaatga	atttctttc	ttttaaatt	acccagtctg	840
tggtaaattt	atagtagcac	aaaacagatt	aagacaatat	gtcttcaga	tgtcttagct	900
tatbtcattt	gataactgta	agaagagttt	actgttttc	ttttttgaa	attaaagaatt	960
tagctgaatg	ctgttgctca	cacctgtaat	tcccgcactt	tgggaggcgg	aggccggctg	1020
atcacctgt	gtcaggagtt	tgagaccage	ctggccaacg	tggtcaaact	ctgcctctac	1080
taaaaaataca	aaaaaaaaaa	aaaaaaaactc	qta			1113

<210> 98

<211> 1723

<212> DNA

<213> Homo sapiens

<400> 98

gaattcgcgca	cgagcgcacat	ggggctccgct	ccctggggccc	cgggtcctgct	gctggcgctc	60
gggctgcgcg	gcctccaggc	gggggggttag	tggccggcgcc	ccccggccca	ttccccggtc	120
ccggccccgc	ctctgaggtt	cgcgtcccccc	cacagccccgc	aggccccggaa	ccccggcttc	180
caggagcgc	tcttccagca	gctgtctggac	cacttcaact	tcgagcgcctt	ggcaacaaga	240
accttccyc	agcgcttcct	ggtgtcggac	aggttctggg	tccggggcga	ggggcccatc	300
ttcttctaca	ctgggaacga	gggcgacgtg	tgggccttcg	ccaacaactc	gggcttcgtc	360
gcccggactgg	cggccgagcg	gggggctcta	ctggcttcg	cggagcacccg	ctactacggg	420
aagtgcgtgc	cgttcgggtgc	gcagtccacg	cagcgcgggc	acacggagct	gctgacggtg	480
gagcaggccc	tggccgactt	cgcagagctg	ctccgcgcgc	tacgacgcga	cctcggggcc	540
caggatgccc	ccgcacatgc	cttcggtgga	agttatgggg	ggatgctcag	tgcctacctg	600
aggatgaagt	atccccacct	ggtgtggggg	gchgctggcg	ccagcgcgcc	cgttctagct	660
gtggcaggcc	tcggcgactc	caaccaggatc	ttccgggacg	tcacggcgga	ctttgagggc	720
cagagtccca	aatgcaccca	gggtgtgcgg	gaagcggtcc	gacagatcaa	ggacttggtc	780
ctacaggagg	cctacgcacac	ggtccgctgg	gagttcggca	cctgcccagcc	gctgtcagac	840
gagaaggacc	tgacccagct	cttcatgttc	gccccgaatg	ccttcacccgt	gctgcccatt	900
atggactacc	cctacccac	tgacttcctg	ggtcccctcc	ctgccaaccc	cgtcaagggt	960
ggctgtgatc	ggctgctgag	tgaggcccaag	aggatcacgg	ggctgcgagc	actggcaggg	1020
ctggctctaca	acgcctcggg	ctccgagcac	tgctacgaca	tctaccggct	ctaccacagc	1080
tgtgctgacc	ccactggctg	cggcacccgc	cccgcacgca	gggcctggga	ctaccaggcc	1140
tgcaccgaga	tcaacctgac	cttcggccagc	aacaatgtga	ccgatatagtt	ccccgacctg	1200
cccttcactg	acgagctccg	ccagcggta	tgcctggaca	cctggggcgt	gtggccccgg	1260
cccgactggc	tgctgaccag	cttctggggg	ggtgatctya	gagccgcacag	caacatcatc	1320
ttctccaacg	ggaacctgga	ccccctggca	ggggggcggga	ttcggagggaa	cctgagtgcc	1380
tcagtcateg	ccgtcaccat	ccagggggga	gcccgcaccc	tcgacccatc	agcctccac	1440

57

ccagaagatc ctgcttccgt gggtgaggcg cggaagctgg aggccaccat catcgccgag	1500
tggtaaagg cagccaggcg tgagcagcag ccagctctgc gtggggggcc cagactcagc	1560
ctctgagcac aggactggag gggctcaag gtcctcatg gagtgggggc ttcactcaag	1620
cagctggcg cagagggaaag gggctgaata aacgcctgga ggcctggcma aaaaaaaaaa	1680
aaaaaaaaaaaa aaaaaaaaaa aaagggcgcc cgc	1723

<210> 99

<211> 2087

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (56)

<223> n equals a,t,g, or c

<400> 99

tcgaccacg cgtccgtggg gccgagcgcc getggtagg cggaagtagc cgagnatgg	60
cggcgctat gcccgttgc ctgctcgcc tttgtctcc gggcccgcc ggctgggcc	120
ttgcagaacc cccacgcgac agcctgcggg aggaacttgt catcaccccg ctgccttccg	180
gggacgtgc cggcacattc cagttccgca cgccgtggga ttccggactt cagcgggaag	240
gagtgtccca ttacaggctc ttcccaaag ccctggggca gctgatctcc aagtattctc	300
tacggagct gcacctgtca ttcacacaag gctttggag gacccgatac tggggccac	360
ccttcctgca gccccatca gacactgacc actacttct gctatgtgt gtgtggccg	420
gggagggtgt ctgcaccgaa aacctcacc ccttggaaagaa gcttttgc ttttttcca	480
aggcaggct ctctgtctg ctgaaggcag atcgcttgc ccacaccage taccactccc	540
aggcagtgc tatccgcctt gtttgcagaa atgcacgctg tactagatc tcctgggagc	600
tgaggcagac cctgtcagtt gtatgtatg ctttcatcac gggcaggga aaaaagact	660
ggtcctctt cggatgttc tcccgaaccc tcacggagcc ctgccttc gcttcagaga	720
gccgagtcta tgtggacatc accacatca accaggacaa cgagacatta gaggtgcacc	780
caccccgac cactacatat caggacgtca tcctaggcac tcggaaagacc tatgcacatc	840
atgactgtc tgacaccgac atgatcaaca actctcgaaa cctcaacatc cagctcaagt	900
ggaagagacc cccagagaat gaggcccccc cagtgccctt cttgcacgatc cagcggtacg	960
tgagtggcta tggctgcag aagggggagc tgacacact gctgtacaac accacccat	1020
accggccctt cccggctgctg ctgctggaca ccgtaccctg gtatctgcgg ctgtatgtgc	1080
acaccctcac catcacctcc aaggcaagg agaacaacc aagttacatc cactaccagc	1140
ctgcccagga cccgctgca ccccacctcc tggagatgtt gattcagctg cccgccaact	1200
cagtcaccaa gtttccatc cagtttgc gggcgctgtt gaagtggacc gagtacacac	1260
cagatctaa ccatggctt tatgtcagcc catctgtctt cagccctt gtggccagca	1320
tggtagcgc caagccagt gactggaaag agagttccctt cttcaacagc ctgttccag	1380
tctctgtatgg ctctaaactac ttgtgcggc tctacacggc gccgctgtt gtgaacctgc	1440
cgacacccga cttcagcatg ccctacaacg tgatctgcct cacgtcact gtggggccg	1500
tgtgctacgg ctccctctac aatctctca cccgaacctt ccacatcgag gagcccgca	1560
caggtggctt gccaagcgg ctggccaacc ttatccggcg cggccggatgt gtcccccac	1620
tctgatctt gccccttcca gcagctgcag ctggcgttcc tctctggga gggagccca	1680
aggctgttt ctgccacttgc ctctcctcag agtggcttt tgaaccaaag tggccctggac	1740
caggtcaggc cctacagctg tttgtccag tacaggagcc acgagccaaa tgtggcattt	1800
gaatttgaat taacttagaa attcatttcc tcacctgttag tggccacctc tatattgagg	1860
tgctcaataa gaaaaatgg tcggtggctg ctgtattggc cagcacagaa aaagatttcc	1920
atcaccacag aaaggcggc tggcagcaact gccaagggt atgggggttg ctacacagt	1980
tatgtcactg tgtatggat ggagttact gttgtggaa taaaaacggc tgttccgtg	2040
rwwaaaaaaaaaaaaaaa gggcgccgc tctagaggat ccctcga	2087

<210> 100

<211> 751

<212> DNA

<213> Homo sapiens

<220>

<221> SITE
<222> (663)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (702)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (705)
<223> n equals a,t,g, or c

<400> 100

ccgcacgagc tttttctgg	attccaataa attgttaggtt cagtttttt tatgaagtcc	60
catatttctt ggaggcttt	ttcattgc tttaattctt tttctcta ctgtctgca	120
tgctttat	cgcaagggt gtcctcaa ac tcgtatatct tttttctgc ttggcgatt	180
cagctattga tac	tgttcatga agtccccatg ctgttttt cagctccatc	240
aggctttta tg	tgttctctc taaactggct attctactta gcaattcctc taacctttt	300
tcaaggtct tgg	tttctt gtgtgggtt agacatgtat ccttagctc agcatagttt	360
ttcattaccc atcttctgaa	gcctacttct gacgttgcga tcatttggag gagaagaggc	420
actctggct tttgggttt	caaaaattttt tcattgttct tttctcatct ttgtgcattt	480
gtcttagttc ggtt	tttcttggag gcccgtgacc ctggatggg gttttctgg ggctttttt	540
ttgttctga tg	ctgtgttctt gttgcttct gttgtttgt tttcttca atggcggtt	600
ccctcttgc tagggctgt	gaagtttgc ggggttac ttcaggctt attcatctga	660
tnactcgca tgc	cttacttgc tgcctggaga tgcacttgc tgcacttgc tna	720
tgctccttct tctgtatct	ctgaccccgta gacagcata gacaggtgc	751

<210> 101
<211> 1223
<212> DNA
<213> Homo sapiens

<400> 101

gctgtccgt ttttccccca	tctttgtgt ttatctacc tttggctttt gatgtatgg	60
atgtacagat ggggttttgg	tgtggatgtc ctttctgttt gttatgtttt cttctaaacag	120
tcaggaccccg cagttcarg	tctgttggag tttgtggag gtccactcca gaccctctt	180
gcctggat cagcagcaga	agctgcagaa cagcgatata tggtaacag cagatgtgc	240
tgcctgatcg ttccctctgaa	agtttgtct cgagatccc agccatgtga ggtgtcagtc	300
tacccctact gggggatgcc	tcccagttag gctacttggg agtcaggac gcacttgagg	360
aggcactctg tctgttctca	gatgtccagc tgcgtgttgc tagaaccatg gctctytc	420
aggctktcag acagggacgt	ttaagtcgtc agaggattct gctgcctttt gttggctgt	480
gcctgtcccc ccagaggtgg	agtctacaga ggcaggcagg ctccttgaa ttgcgggtgg	540
ctccaccgag ttcgagttt	ctggccgctt tggtaacccc ctcaagctc gcaatgg	600
ggcgccccctc cccccagcctc	actgcccst tgcagttga ttcagactg ctgtgttgc	660
aatgaktr	aatgatgtgg ttagraccc tctgagccag gcatggata taatctcctg	720
gtgtgcatt tg	cttaagacc cattggaaaa gctgtatagggtggaa tgaccaatt	780
ttccagggtgc cgtctgtcac	ccctttctt gactaggaaa gggaaatccc tgacccgtt	840
tgctttccgg gtgaggcaat	gcctcgccct gttcagctc aagcttggtg cgctgcaccc	900
actgtcttgc acccactttc	caacactccc tagttagatg aacccggatc ctcaagtttgc	960
aatgcagaaa tca	acacgtct tctgcgttca cacgctggga gctgttagact ggagctgtt	1020
ctattcggcc atcttggctc	cacctgtcga gatattttac attaacttgc tgcacata	1080
ttatagcaaa acttattttt	tcatgcagaa tagtctat tctatatttta ttgtaaagca	1140
tataccgtac atgggtacta	gtcaccatgc tgcataataa attttctgaa cttataaaaa	1200
aaaaaaawaaa aaagggcg	cg	1223

<210> 102
<211> 1010

<212> DNA
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (607)
 <223> n equals a,t,g, or c

<400> 102

ggttacttcc	aagtctgccc	aactgtgaat	aaagttgcta	taaacatcta	tgtacaggtt	60
tttttgtgt	gtggacctaa	gtttcaact	cctttgggtg	ataccaagga	gcacagtcac	120
tgggacatat	ggttaaggata	tattttagttt	ggcaggaaac	caccatactg	tcttccaaag	180
tagctgtacc	atttgccata	cccaccagca	ctgaatgaga	gttcctgttgc	ctccacattc	240
ttgtcagcat	ttgatgttgc	cagtgtctg	aattttaggtt	gtcatgatag	gtgtgtaatg	300
gtatctca	attatttaa	tttgccttcc	tctgatgatg	tatgtatgttgc	cagatcttct	360
catatgctt	tgtgacatct	gtatatctgg	tgaaaatgtct	gctaaggctct	tasccttattt	420
tttaatargg	atgggtgttt	tcccattgtt	gagttttaaag	agttcccttat	atattttggaa	480
tatTTTAAATA	tactacaaat	aaacagtccct	ttaacagata	aatgttttgc	aaatatTTTC	540
tcttagtctg	tggcttctgt	ctttatttccc	ttgaagggtgt	ctgtcacaaa	gcagtttatac	600
tttttnctt	tttttttttt	tttgagacgt	agtcttgctc	cagcctgggt	ggcagagcga	660
rctacgtctc	aagaaacaaaa	acaacaaaaaa	aaaacacctc	agttgcgcgg	caaggtkgct	720
cacgcctgtg	atccccatcac	tttgggaggt	cgagggtggg	aggtgggaga	atcgcttggag	780
gccaggagtc	cattcttaggt	ctagctgac	cctatctcaa	caacaaaaaa	ataacaatttta	840
gcccaccgtg	gtagtgcatt	tctgttagtcc	tagtacttgg	ggaggctgag	gtgagaggat	900
tgcttggcc	catgagtttgc	aggttacagt	gggtctataat	tacaccactg	cactccagtc	960
tgagtgacag	agcaagaccg	tgtctcaaaaa	aaaaaaaaaa	aaaactcgag		1010

<210> 103

<211> 1986

<212> DNA

<213> Homo sapiens

<400> 103

ggcacgaggg	aaaactgttt	tatTTGcatt	tgaagaagct	attggataca	tgtgctgccc	60
ttttgttctg	gacaaagatg	gagtcaGTgc	cgctgtcata	agtgcagagt	tggtagctt	120
cctagcaacc	aagaatttgc	ctttgtctca	gcaactaaag	gccattttag	tggagtatgg	180
ctaccatatt	actaaagctt	cctattttat	ctgcccattat	caagaaacca	ttaagaaattt	240
atTTGAAAAC	ctcagaaact	acgtatggaa	aaataattat	ccaaaagctt	gtggcaaatt	300
tgaaatttct	gccatttaggg	accttacaac	tggctatgtat	gatagccaa	ctgataaaaa	360
agctgttctt	cccaactagta	aaagcagcca	aatgtatcacc	ttcaccttgc	ctaattggagg	420
cgtggccacc	atcgccacca	gtgggacaga	gcccääatc	aagtactatg	cagagctgtg	480
tgccccaccc	gggaacagtg	atccctgagca	gctgaagaag	gaactgaatg	aactggtcag	540
tgctatgaa	gaacattttt	tccagccaca	gaagtacaat	ctgcagccaa	aagcagacta	600
aaatagtcca	gccttgggtt	tacttgcatt	tacccataat	taagctgggt	ttaacttgc	660
aagcaatatt	ttaaggggcc	aatgattca	aaacatcaca	ggtattttatg	tgttttacaa	720
agacctacat	tcctcattgt	ttcatgttttgc	acctttaagg	tgaaaaaaga	aaatggccaa	780
acccaacaaa	ctaaccattcc	tactaaaaag	ttgagcttgg	acatattttgc	aatttttgc	840
agtgaagatt	tttaaaactga	ctaactttaaa	aaaatagatt	gtaattgtatg	tgccttaatt	900
tgcataaaatc	ataaaatgtat	gtcctctctg	taatttttttgc	aatgtgtgt	tgaatataatcc	960
agaaaaaccta	tggagttatgt	aaatttgcgg	ctgtcatatg	taggataGCC	acttttttagg	1020
tatATGtaca	tttatatttgc	tatcaattcc	ttagaaagta	aaataaaatgt	atagatcaaaa	1080
tgttgtgttc	atgtttgggg	aaaatataat	ttgcagaaac	ctatgaagta	gagcaaagat	1140
gctttaaaaaa	gataagtttgc	tttgaactaa	atTTTtttta	gttctataaa	tgcacatagg	1200
atatttagtac	atcgtaacacg	tgcttaggaaa	aaacagcttc	agtgtcttgc	tttaatgtgt	1260
tgaaactcat	ctttttaaat	cttggaaaaac	caattgttta	cttggaaactt	gaaagtagca	1320
tatTTTCTG	ttttttgggtt	gtttgttcat	ttgtttaggc	acaatttaat	gtaattcctg	1380
gtttggaggc	agcaagaccc	atgagcaaga	actatttact	tgaccctcg	ttttttctct	1440
tgttctgtg	tggtctgaaa	tctaaaacta	gacttttatta	tgatagattt	cctataagcc	1500
aatttctaat	aacaaataga	tttatttattt	aatctgtacc	ttctatcttc	tcataattcg	1560

60

tggcttaca gccttccaaa ataaactccag ttgggcaccc atgagctagg atcaaacttt	1620
ctttatatac ttatataattt tacattatt tctgattttt aaagcaaatg attgccatta	1680
tgattacact caacctaatt agttatgaac agtttcagaa caataaaaaa ttacaataact	1740
atgtgatagt attgtacta tttttctatt ttagtcatat gtcgctata tcctaccaga	1800
actcttaatt ctataatatt cgatatattc tacaaactgc tttattgttag aagccatatt	1860
tatgtttatt ttataatgtt ttctagtgtc aaactgtact gtggagaaaaaa gaaatgttag	1920
atctgtgttc tgtctgcatt tttttgagt acataccctt caccctcaaa aaaaaaaaaaa	1980
aaaaaaaaa	1986

<210> 104

<211> 1333

<212> DNA

<213> Homo sapiens

<400> 104

gaattcggca cgagcccagg agtgcagtgg tatgatcata gttcaccgta gcctcaaact	60
cgtggctca agtgatcctc cagcctaac ctccccgata gcctggctta taggtgcacg	120
ccacacacct gactgctca gatgtaaattt tttactatgc ctaaggttga ccacccat	180
atatgttag gagccatttg tatttcctt tggttccat attgtttgt tcctatccat	240
ttttctacta tacgtttagt atgtgttta ttgttaggg atatgaaccc tttgacagta	300
atgagttgca aatattttctt ttccaaatttgc tcatctgtct tttgctttagt atggctttgt	360
catgagttt aaaaaattttt tatgttagtct gaataccagt ttttttagtgc gtttctggat	420
tttgagtcat aattagaatg twtttctcaa tccagagcaa tagagtaatt cacctaaatt	480
ctacatctaa attttgaacc tctgaagcat attctggcat aagatataag ttatggatct	540
aacctaattt ttcccgccagg tgattaaccc agttgttcca atattatttta ttgaactgtt	600
tgtttttcc tgacgagttt gagargctac attgtatctt tctttagatc cgtcatatgt	660
atttagctgt gtatctgctt ctgtttctt gtatctgttt ctatttcatt gctctat	720
gtcatgact artaccacat tgtttaattt acccaggctt tagtttaat ctatgtcatt	780
ggtcctccctt cattccccc ctgcccacmct tttttttttt taacagttt tctaactgtt	840
ccttattttt cccatatgrg cttaaaaaaa ttcttaacat atagagcata ctaaaactgt	900
ccaaactcaag ttctctccca agggttgcac tttaaccac ttatgttgc actgttctt	960
tgatactttm cctgataaaag atacactttt tactactttt aaattttttt aagtgttctat	1020
ttggcagtgc ccaaacaggat gatggcagat agaggcagga tgcaatgcct gtgtggaaag	1080
aatgtcatct cagtgcatttctt attttaagat agtctctagg aatgattaa ggactgttct	1140
catgtttttt ccttatttctt ttttttattt cattacgaat tatttgcctt aaagttggat	1200
atctgtcaaa gattcataag acaagaggaa gagaccctta aataagtact aaacttgtaa	1260
aatcaatatg tgataaaag tgcaagtaca agaagttact ttggaaaaaa aaaaaaaaaaa	1320
aaaaaaaaact cga	1333

<210> 105

<211> 944

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (889)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (896)

<223> n equals a,t,g, or c

<400> 105

aaaaaaagtac aagccctct caaatggttc aagtttcaaa tattagaccc acccatggca	60
aagacagatt ttagtataat actcctaaaaa ctacactgtc tttttttttt ttctgtcata	120
agtgtgcatt gtgctcagtc atttatttca gtgacccaaa cagagccctt tccagctgtt	180
tgtattttcc ctgcagtggg aagtggacta gggccatgtg actaagaaag ccagcctggg	240

61

ggctgtcttt tcacctacag atgtttaat gtgcttaaca ttatccaata ctagcaaccg	300
agatagtcta aataccacag caggatctga ttagctttt cagatcactg cctttatttg	360
ctgtttgcaa aaaagcttaa tccagtcta gagatcaggc ttccctgctga gcccgggggt	420
agtttctctc attcttgcg ttcacagtgg caggcgtag tgagcagatt ctcctcctc	480
ctaaattaaa gctgtaaagt agtaactgta gtagcaaggg ataaagagaa ggaagaaaaac	540
ccaaggaaaa aaagaagact gtctattcat accaagtagt ttccctgata tacacaaaag	600
aaagagtttc taatatgaat tcataaatac tgacctcagt gtctttcta ctcaatgcac	660
agctattaag ttttatttagg ttcagttgt aactactttg tgtggatata tgttacgttt	720
ttcatatTTTA tcctactcaa tcaatctcag ttttaccaga agaattacat ttattagcca	780
taacagtggc ccttctctta ttctttcag ggctgatatc tttttattc atgagatttc	840
aaaaagaact atcaccacca ctaacaaaaaa aaaaaaaaaa aaaaaaaaaa cggccnctct	900
agaggatccc tcgaggggcc caagcttacg cgtgcattgg acgt	944

<210> 106

<211> 1172

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (904)

<223> n equals a,t,g, or c

<400> 106

ggcggggccga ggactccagc gtgcccaggc ctggcattct gcacttgctg ccctctgaca	60
cctggaaaga tggccggccc gtggaccttc acccttctct gtggtttgct ggcagccacc	120
ttgatccaag ccaccctcag tcccactgca gttctcatcc tcggccaaa agtcatcaaa	180
gaaaagctga cacaggagct gaaggaccac aacgcccacca gcatctgca gcaagctggc	240
ctgctcagtg ccatgcggga aaagccagcc ggagcatccc tgtgctggc accctgggtga	300
acaccgtctt gaagcacrte atctggctga aggtcatcac agytaacatc ctccagctgc	360
aggtgaagcc ctggccaat gamcaggagc tgcttagtcaa gatccccctg gacatgggtgg	420
ctggattcaa cacgccccctg gtcaagacca tcgtggagtt ccacatgacg actgaggccc	480
aagccaccat ccgcatggac accagtgc aaaggccatcc cgcctggc ctcagtgact	540
gtgcccaccat ccatggggac ctgcgcattt aactgctgca taagctctcc ttccctgggtga	600
acgccttagc taagcaggc atgaacctcc tagtgcattt catgccaagg tggcccaact	660
gatctgtctg gaagtgtttt cctccagtga agccctccgc cctttgttca cctctggcat	720
cgaagccagc tcggaagctc agttttacac caaagggtac caacttatac tcaacttgaa	780
taacatcagc tctgatcgga tccagctgat gaactctggg attggctgtt tccaacctgaa	840
tgttctgaaa aacatcatca ctgaratcat ccactccatc ctgctggc accagaatgg	900
caanttaaga ctggggtccc agtgtcattt gtgaaggcc ttggattcga ggcagctgag	960
tcctcactga ccaaggatgc ctttgctt actccagcc ctttggaa acccasctct	1020
cctgtctccc agtgaagact tggatggcag ccatcaggaa argctgggtc ccagctggga	1080
rtatgggtgt gagctctata gaccatccct ctctgcaatc aataaacact tgcctgtgaa	1140
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa	1172

<210> 107

<211> 427

<212> DNA

<213> Homo sapiens

<400> 107

ccacgcgtcc ggtgggctca ctgtgggct ccagcttagt ggcactgctg tcctggcccg	60
ggggctggct gcaactgcccc aaggactttt ggaacatcaa caattggccgg atggacctct	120
actttttctt gctggctggc attcaggccg tcacggctct cctatttgc tgatcgctg	180
gacgtatga gagggcgtcc cagggcccg cctcccacag ccgtttcagc agggacaggg	240
gctgaacagg ccctatttca gcccccttgc ttcaactctac cggacagacg gcagcagtcc	300
cagctctggt ttccctctcg gtttattctg ttagaatgaa atggttccca taaataagg	360
gcatgagccc ttccctcaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	420
aaaaaaaa	427

<210> 108
<211> 1708
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (85)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (254)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (256)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (423)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (424)
<223> n equals a,t,g, or c

<400> 108

ctcgtgcgaa	ttcggcagag	ctctggcca	atatggcagc	gcccgacaa	aagacagagc	60
tggctggag	tccgcggctg	gcccngttag	taggtattt	tctgacaaggc	agaggcatga	120
gctgggtcca	gcccccccta	ctggcccgag	gctctgttag	ggcctgggga	ggcacctgcg	180
ggccgcctt	cacaggaacc	tccatcttc	aggtccctcg	ccggctccct	cggggcctcc	240
actgcagcgc	actncncata	gctctgaaca	gtccctgggt	cccagccac	cggaaccccg	300
gcagaggccc	accaaggctc	tggtgcctt	tgaggacctg	tttgggcagg	cgccctggtgg	360
ggaacgggac	aaggcgagct	tcctgcagac	ggtgcagaaa	tttgcggasa	cagcgtgcgt	420
aannggggcc	acattgactt	catctacctg	gccctgcgca	agatgcggga	gtatgggtgc	480
gagcgggacc	tggctgtgt	caaccagctg	ctcaacatct	tccccaaagg	ggtcttccgg	540
cctcgcaaca	tcatccagcg	catcttcgtc	cactaccctc	ggcagcagga	gtgtgggatt	600
gctgtccctgg	agcagatgga	gaaccacgg	gtgatgcctt	acaaggagac	ggagttccctg	660
ctgatttcaga	tctttggacg	caaaaagctac	cccatgctca	agttggtgct	cctgaagctg	720
tggttccctc	gattcatgaa	cgtcaacccc	ttccctagtgc	cccgggacct	gccccaggac	780
cctgtggagc	tggccatgtt	tggctgcgg	cacatggagc	ctgaccttag	tgccagggtc	840
accatctacc	aggttccctt	gccccaaagac	tcaacagggt	cagcagatcc	ccccccagccc	900
cacatcgtag	gaatccagag	tcccgtatcg	caggccgccc	tggcccggca	caatccagcc	960
cggccgtct	ttgttgagg	cccctctcc	ctgtggctcc	gcaacaagt	tgtgttattac	1020
cacatctca	gagctgactt	gctgccttgc	gaggagaggg	aagtggaaaga	gacgcggag	1080
gagtggaaacc	tctactaccc	gatgcagctg	gacctggagt	atgtgaggag	tggctgggac	1140
aactacgagt	ttgacatcaa	tgaagtggag	gaaggccctg	tcttcggccat	gtgcattggcg	1200
ggtgctcatg	accaggcgac	gatggtaag	tggatccagg	gcctgcagga	gaccaaccca	1260
accctggccc	agatccccgt	ggtctccgc	ctcgccgggt	ccacccggga	gctccagaca	1320
tcctctgcag	ggctggagga	gccgcctctg	cccgaggacc	accaggaaga	agacgacaac	1380
ctgcagcgcac	agcagcagg	ccagagctag	tctgagccgg	cgcgaggggca	crggctgtgg	1440
cccgaggagg	cggtggactg	aaggcatgag	atgcctttt	agtgtacagc	aaatcaatgt	1500
tttcctgctt	ggggctctct	tccctcatct	ctagcagtat	ggcatccct	ccccaggatc	1560
tcgggctgcc	agcgatggc	aggcgagacc	cctccagaat	ctgcaggcgc	ctctggttct	1620

63

ccgaattcaa ataaaaaggg gcgggagcgc tttttgttgc gcgaaaaaaaaaaaaaaaaaa 1680
 aaaaaaaaaaaa aaaaaaaaaagg gcggccgc 1708

<210> 109

<211> 1487

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (78)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (948)

<223> n equals a,t,g, or c

<400> 109

ccgctgctga taactatggc atccccggg cctgcaggaa ttccggcacgg agctacggcg	60
ccgcctggct cctgctgnca cctgcaggct cgtcgcgggt ggagcccacc caagacatca	120
gcatcagcga ccagctgggg ggccaggacg tgccctgttt ccggAACCTG tccctgtgg	180
tgggtgggtgt cggcgcctgt ttctcaactgc tattccaccc gggcacccgg gagaggcgcc	240
ggccgcatgc ggasgagcca ggcgagcaca ccccccgttt ggccctgtcc acggcccgac	300
ccctgctgct ctggaaagcac tggctccggg agcsgggctt ctaccaggtg ggcataactgt	360
acatgaccac caggctcata gtgaacctgt cccagaccta catggccatg tacctcacct	420
actcgctcca cctgcccaga aagttcatcg cgaccattcc cctggtgatg tacctcagcg	480
gcttcttgtc ctcccttcctc atgaagccca tcaacaagtgc cattggagg aacatgaccc	540
acttctcagg cctccctgggt atccctggctt tgccgcctg ggtggcgctg gccggagggac	600
tgggtgtggc cgtgtacgca gcggctgtgc tgctgggtgc tggctgtgcc accatcctcg	660
tcacctcgct ggcctatgcg gcccaccta tcggtccccca cacgaacagc ggagckttcg	720
tgtacggctc catgagctc ttggataagg tggccaatgg gctggcagtc atggccatcc	780
agagcctgca cccttgc(cc) tcagagctct gctgcagggc ctgcgtgagc ttttaccact	840
gggcgatgggt ggctgtgacg ggccggctgg gcgtggccgc tgccctgtgt ctctgttagcc	900
tcctgtgtg gccgacccgc ctgcgacgct gatgagacct gcacgcantg gtcacagca	960
gcacgatttg tgacagcccg aggccggagaa caccgaacac ccagtaagg tgaggggatc	1020
agcacggcgc ggcacccac gcacccacgc gctggatga gactcagcca caaggaggtg	1080
cgaagctctg acccaggcca cagtgcggat gcaccttgag gatgtcacgc tcagtgagag	1140
acaccagaca cagaagggtt cgtgtgatc ccacttcttat gaaatgtcca ggacagacca	1200
atccacagaa tcagggagag gattcgtggg tgccggact gggggggggg acctgggggt	1260
gactaggtga cataatgggg acagggtctgc cttctgggtg atgagaatgt tctggaaatca	1320
gatggatgg ctgcacggcg tggtaaggt actgaacgc acctcactgt aagacggtag	1380
atttgttatt ttaccacaat aaacaaaaca aaacaaaacc aaaaaaaaaaaa aaaaaaaaaaaa	1440
aaaaaaaaagg aattcgatat caagcttatac gataccgtcg acctcga	1487

<210> 110

<211> 1525

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (78)

<223> n equals a,t,g, or c

<400> 110

ccgctgctga taactatggc atccccggg cctgcaggaa ttccggcacgg agctacggcg	60
ccgcctggct cctgctgnca cctgcaggct cgtcgcgggt ggagcccacc caagacatca	120
gcatcagcga ccagctgggg ggccaggacg tgccctgttt ccggAACCTG tccctgtgg	180

64

tgggtgggtgt	cggcgccgtg	ttctcactgc	tattccaccc	gggcacccgg	gagaggcgcc	240
ggccgcatgc	ggasgagcca	ggcgagcacaca	ccccccctgtt	ggcccctgcc	acggcccagc	300
ccctgctgct	ctgaagcac	tggctccggg	agcsgggctt	ctaccaggtg	ggcatactgt	360
acatgaccac	caggtctatc	gtgaacctgt	cccagaccta	catggccatg	tacctcacct	420
actcgctcca	cctgcccagaag	aagttcatcg	cgaccattcc	cctggtgatg	tacctcagcg	480
gcttcttgc	ctcccttcctc	atgaagccca	tcaacaagtg	cattggggagg	aacatgacct	540
acttctcagg	cctccctgggt	atcctggcc	ttggccctg	ggtggcgctg	gcggaggggac	600
tgggtgtggc	cgtgtacgca	gcggctgtgc	tgctgggtgc	tggctgtgcc	accatcctcg	660
tcacctcgct	ggccatgacg	gccgacccatca	tcgggtccccca	cacgaacagc	ggactktcg	720
gtacggctcc	atgagcttct	tggataaagg	ggccaaatggg	ctggcagtc	tggccatcca	780
gagcctgcac	ccttgccttc	cagagctctg	ctgcaggggcc	tgctgtgagct	tttaccactg	840
ggcgatggtg	gctgtacgg	gcggcggtgg	cgtggccgct	gcctgtgtc	tctgttagcct	900
cctgctgtgg	ccgacccgc	tgcgacgctg	ggaccgtat	gcccggccct	gactcctgac	960
agcctctgc	acctgtc	ggaaactgtg	gggacgcacg	aggatgcccc	ccarggcctt	1020
ggggaaaagc	ccccactgcc	cctcactctt	ctctggaccc	ccaccctcca	tcctcaccca	1080
gctcccgggg	gtggggtcgg	gtgagggcag	cagggatgcc	cgccaggggac	ttgcaaggac	1140
ccccctgggtt	ttgagggtgt	cccattctca	actctaattcc	atcccagccc	tctggaggat	1200
ttggggtgtcc	cctctcgcc	gggaacagga	agtaggaatc	ccagaagggt	ctgggggaac	1260
cctaaccctg	agtcagtc	agttcaccc	tcacccctcag	cctgggggtc	tccagacact	1320
gccaggggcc	cctcaggacg	gctggagcc	ggaggagaca	gccacgggg	ggtgggctgg	1380
gcctggaccc	caccgtgggt	ggcagcaggg	ctgccccggca	ggcttgggtgg	actctgtcg	1440
cagcaaataa	agagatgacg	gcaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1500
aaaaaaaaaa	aaacccacccg	tccgc				1525

<210> 111

<211> 552

<212> DNA

<213> Homo sapiens

<400> 111

ccacgcgtcc	ggtcagaatg	ccttggaaaa	gagctgtagt	tctcctaatt	ttatggttta	60
tagggcaggc	catgtggctg	gctcctgcct	atgttctaga	gttcaagga	aagaacacct	120
ttctgtttat	ttggtagct	ggtttgcct	ttcttcttat	caattgttcc	atcctgattc	180
aaattatttc	ccattacaaa	gaagaacccc	tgacagagag	aatcaaataat	gactagtgt	240
tgttccacac	cctctgctac	tgtgttacat	tctgattgtc	ttgtatggac	cagaagagag	300
ctttgggaca	tttttctga	acattctaag	cattctagtg	aaagttccca	tgttccaaca	360
gaactaaaaa	gcaatgttg	ccttatatat	aaaagggaca	caataattga	ggtccacctt	420
ctaggaaatc	ctaggactcg	tttatttggg	acatggggg	aataaaaggtc	acatatttgg	480
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	540
aaaaaaaaaa	aa					552

<210> 112

<211> 925

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (444)

<223> n equals a,t,q, or c

<400> 112

ctgcgaggaaat	tcggcacgag	cggaaacctggg	gccggctgt	gtgcacatgt	gctgcgtac	60
tcatgttcat	ggtgctggag	gtgggtgtga	gccgggtgac	ctcgatcgct	gcgtatgtct	120
ccgactcctt	ccacatgctg	tcggacgtgc	tggcgtgtt	ggtggcgctg	gtggccgagc	180
gcttcgcccc	gcggaccac	gccacccaga	agaacacgtt	cggctggatc	cgagccgagg	240
taatgggggc	tctggtaac	gccatcttcc	tgactggct	ctgtttcgcc	atcctgtcgg	300
aggccatcga	gcgcattcata	gagccgcacg	agatgcagca	gccgctggtg	gtccttgggg	360
tcggcgctggc	cgggctgt	gtcaacgtgc	tggggctctq	cctcttccac	catcacacaqcq	420

65

gcttcagcca ggactccggc cacngccact cgcacggggg tcacggccac gccacggcc	480
tccccaaagg gcctcggtt aagagcaccc gccccggag cagcgacatc aacgtggcc	540
cggcgagca gggtcccgcac caggaggaga ccaacaccct ggtggccaat accagcaact	600
ccaacgggc taaaattggac ccccgagacc cagaaaaacc cagaagtggt gatacagtgg	660
aagtacaagt gaatggaaat cttgtcagag aacctgacca tatggactg gaagaagata	720
gggctggaca acttaacatg cgtggagtt ttctgcgtt cttggagat gccttgggtt	780
cagtgttgtt agtagtaaat gccttagtct ttacttttc ttggaaaggt tgttctgaag	840
gggatttttg tgtgaatcca tgttccctg acccctgcaa agcatttgta gaaatattaa	900
tagtactcat gcatcagttt atgag	925

<210> 113

<211> 1340

<212> DNA

<213> Homo sapiens

<400> 113

ggcacgagaa agaaaaggcga gagaaaaatc aaggcacca attagattt gagggtctcag	60
aggagcagtg tttccctcc ttctgttacat ttgtacaact tccagatgtt gctagctgca	120
ccccctgtaa agatgcaggc tctttacaat gaagacacat cttctgtatgt tccttctctc	180
ctgtatggcc agatgcacag gaatagtgcc caaaagaccc cagccgtt cccttttaag	240
gggaaggaga agaaaaaaact ctttttattt ttactttctt ttcagcattt aatttttgtt	300
gtgtgtatgg tgacttctgt ttgtggaaa cgggaagaag ccagcagcat gctgaattgt	360
cctgacaggc tccgctggc tcttgcgcag gttagcagttt ctttttttt atttaaacca	420
tctccgggc agtgtaaaaa gtttgcaggt gcggacattt tgcgtactg gtcctggcag	480
tgctctataa ccctgttgc tttctgtata aaacacagcc ccaccctta ataaagcaaa	540
gattgctatg aaaccagaga gtctattcat tactgtggag taactagac agtctgtatg	600
gactagacat acggcaattt ggaagtcatg gagttggat tttgtctt atttggctg	660
ctcaaaagtgc cccctgttgg atattttttt ttcgggaaattt gttccaaac ttgcctgtct	720
ttatctatgg tgaaactcaa gcccgtttt aaggcaagcc tgcaaaacca agtatcaaca	780
tgggtctctg aaggcacagg gaggcattt acagttctgtt ccagtttag ggtccccacg	840
aggcccaccc atttgaactc aagggtggca gactctggcc ccagcactt ccgtggttt	900
aggatggcca gcggtgacac agggctatgg aaccctgggtt cttcatctt tccatatacc	960
tttggttcac cttctttttt ccatttttta ttgtgtttca gatagaaaattt ttatataaa	1020
gataaaaaagt agtctgttgg ctgggcacgg tggctcatgc ctgtggccc agactttgg	1080
gaggcccagg tgggtggttt acgagcttgc cagatcaaga ccatccctggc caatatgg	1140
aaaccctgtc tctgtctaaaa atacaaaaat tggctggcg tggtggcg tgcctgttagt	1200
cccaagctact cggggaggctg aggcccggaga atcgatttggc cccaggaggc ggaggttgca	1260
gtgagcctag atggcaccac tgcgtccag cctgggtgac agagggagac tgcctcaaaa	1320
aaaaaaaaaaaa aaaaaaaaaaaa	1340

<210> 114

<211> 813

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (338)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (384)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (389)

<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (799)
<223> n equals a,t,g, or c

<400> 114

ctgcaggaat tcggcacgag aaagaaaaggc gagagaaaaaa tcaaggcacc	aaattttagat	60
tggaggtctc agaggagcag tggtttccct ccttcgtaac agttgaacaa	cttccagatg	120
tagctagctg cacccccgtg aaagatgcag gctctttaca atgaagacac	atcttctgat	180
gttccctctc tcctgtatgg ccagatgcac agaaatagtg cccaaaagac	ctcagcctgc	240
tttccctta aggggaaagg agaagaaaaaa actcctttt attttactt	tcttcagca	300
ttgaattttt gttgtgtta tggtgacttc tggttttngg gaaacgaaag	aagccagcag	360
catgctgaat tgcctgaca ggcntccgnt ggctcttgcc gaggttagca	gtgctttttt	420
tgwatttaaa ccatctcccg ggcagtgtaa aaagtttgca ggtgcggaca	ttctgtctga	480
ctggtctcgg cagtgtctca taaccctgtt gtgtttcttataaaaacaca	gccccaccct	540
ttaataaagc aaagattgct atgaaaccag agagtcttatt cattactgtg	gagtaactag	600
agcagtctgt agtgactaga catacggcaa ttaggaagtc atggagttgg	gatttttgc	660
ttaattttgg ctgctcaaag tgcccccgtg aggatattct ttttcggaa	attgtttcca	720
aacttgcctg tctttatcta tggtaaact caagccgctt tttaaggcaa	gcctgcaaac	780
ccaagtatca acatgggnnc ctgaaggac agg		813

<210> 115
<211> 1681
<212> DNA
<213> Homo sapiens

<400> 115

cgc	60
tttttagagta cggtctgcat ttatattytg caggcaacac ttgtctacc	120
cagcccragg aaggggacca ataacccttc aaaacsaaa ctgckctg cgg	180
ccagggtcct ccacggagag gacaggcatc ttcccttccc accaggaagg	240
gagcctctgc tatgtcaag gcggtgtca agcaccggct gcggctctt	300
tttctctttt ggggctgggc tgggtgtcg ttctggtgct gatgtttgg	360
tgagcttggc ayctcgaccc gttcaattac agcaacgaag aagccactgc	420
ctcaggggar gcccggaggc agtgctcgcc acccggaac gtgctcaggc	480
ccaggcaggc aggggggagg ctagctgaa ggcgcgggg ttctgctgca	540
caccacgtct tcaattctcct cctggcagag ggacacgtg gagtagacga	600
ggaaggggaaa gtgagcgcgt ggcacaggc tcgctgtgg aaccctgcca	660
acgcacccggg cttaggtgtsc ctggccggg mtcctccagc tgcgtctcg	720
gccactgcag gaaggatcca gcaggayrta gtggaccta ygrtagcyyg	780
ggagaccgc agaagtccct cctcaggccag ytcacagcar gagacccag	840
cagcgtggcc atggatgcca gcccgttgc atccaggta aaggcaaaga	900
gttcttcaga agacgagcca agtgacttgt ctattgcct gggcggcac	960
gacatgggg cctggcgggg ggtccagcag catggctggg agacagctgg	1020
cagaatgagg tgcgtggccc ggtacagtgg gtgttcatgc agatctgtct	1080
caccaggcgc tccggcatca aggggtccag gagaaaatgc ttccccttga	1140
gtcatcgagg ctggaaagccc gaccctgata ggagaaaacct tgcgtcttga	1200
tacatcatcg gacgaggctc tgagagtgtt cacacgcaca aatcgaggca	1260
tggaccaggc ctggatccca ttccaacag gtccctcatc cggctcacac	1320
cttgagccga gccaactcag ctttgagcct cgcctggc cggcccaaca	1380
tcggccccc cccccctcgaa agcccttcc caacaacaac tcatacacta	1440
caggtgcggc cgcagcttct tctccgcacg gaggaggccg ggcgtggcga	1500
cagcacggcg gatgtacgcgt gcgtttcgca caccagcgac tacagctgt	1560
gaagtgtctg gatgtacacca acccctgtat agacgctggc ggctctccac	1620
acgcctgcag ctgcagcata cagccccatg ttccgtcgctttaacggct	1680
a	1681

<211> 2052
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (2045)
<223> n equals a,t,g, or c

<400> 116

tttgcttttc	aaatgctccc	aaggctcag	atgaagcggt	aaaaaaagat	tcagagttgg	60
ataagcaactt	ggaatcacgg	gttgaagaga	ttatggagaa	gtctggcgag	gaaggaatgc	120
ctgatcttgc	ccatgtcatg	cgcacatctgt	ctgcagaaaa	tatcccaaattt	ttgcctcctg	180
ggggaggtct	tgctggcaas	cgtaatgtta	ttgaagctgt	ttatagtaga	ctgaatccac	240
atagagaaaag	tgatgggggt	gctggagatc	tagaagaccc	atggtagcct	taaaaacctt	300
ctaaaatgct	tttrattctg	aaaattgggg	aaaaaaactt	ttaatcacaa	tttcttcaa	360
tacaagggga	aaatattctt	gccccattccc	aacgttttgt	gatatgagca	aaaaatcatt	420
agcatttccc	atcatttgg	catatttgcata	tttctgaca	gttgcactt	gtacgattgc	480
ctgtactaca	gtatTTTTG	ccaacctcag	gcataactcgt	tacatctgtat	ttgaactttc	540
ggccctagaa	accagtggag	ttatTCACC	acaaatcaac	aatgtgcctg	agggtcatgg	600
gaaatatagt	tagctatact	ctgaaaatac	attatgtttt	tttctttaaa	acaaaacaca	660
caacatgtaa	gcatgtaa	gtaaagaatt	gtatgatag	ttcctttttt	cagttcacca	720
agttgaagc	cttttgcagc	tctgtggctt	ggaatttcat	ttgagcaatt	tctataggat	780
atgtatttat	tattgattgt	tatTTAawtt	tttcccata	tttacctgtat	ttaccaaact	840
gggttctcca	ataatgtcca	aattgtatag	ttgccttgct	tcaagataaa	gtgtatTTGG	900
gaataatatt	ataaaaccctt	acaaatttta	tgcatgtatc	tactgcattcc	ttcaactctc	960
actagaaaat	cttttgcAAC	caaattggatt	aatttatggc	tatttataat	ttgctttgac	1020
atctcaactgt	tggaaatTTT	ttaaagatga	gatttgcctt	tataatgtaa	attgtgattt	1080
ttgttttaca	tgtgggtttc	tatagttta	atTTTTcag	cttttaagat	acgagTTTG	1140
tgtaatttgg	tatTTTTAAT	catttatgtt	atTTAAAAG	ctcagaatat	cacattgaaa	1200
ttactataaa	tacatttAA	attatctatt	ttagatctaa	ggaaatacta	cagagatatt	1260
ttcatgggtt	cagtaacttt	tcattttata	acattggca	cggtacagag	tgattgtcac	1320
ataaggtaact	tgaagattta	ttagtttaat	tctattttta	cagtaacctt	gaattcttct	1380
gagTTTGCA	tgtattaaat	tcaattaaat	ctgaacatga	agagtaaagt	atttatctga	1440
aagaagtttc	tgggttagga	gaagtaatga	atgtatccat	ttgtacatgg	tttacatgtt	1500
gtggatgctt	tgtaaacattt	ttcctgtatg	tttaaattgt	gtttcagcag	gatgttaattt	1560
cccttgggt	tagtttttt	gagtcatcat	ctggcctttt	gtgaaatgga	attcatggta	1620
ttttctgtaa	cgtttccctg	aagctgtttc	tggagagcca	cacatttaaa	tacagacagc	1680
tttcctgtatc	atttgattta	ttgtgcacat	gatttttgt	ctaaaaggaa	ttattgcccac	1740
aatatatttt	atttatttctt	tagattttag	ccttgcata	taaagtgcctt	tacatgatga	1800
tgtgaaaagc	tgtttgtccc	tttactgggt	ttgggggggtt	gtttaaaagat	agggatgaa	1860
gaatgcaaaa	tgttttatcg	ttcaaactgt	ccactctgtat	ccaaacctgt	actgatagta	1920
cttcccacgt	tgtatattgt	atgtttcata	caatgcagtg	aacataacca	acttgcattacc	1980
taaataaaaga	atgataaaaa	acagtgtac	atattaaaaa	aaaggggggc	ccggtaaccca	2040
attcncccta	ta					2052

<210> 117
<211> 539
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (528)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (529)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (531)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (532)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (537)

<223> n equals a,t,g, or c

<400> 117

gagatacatt ccatgaatac ctatgttttatt gagatgtttt agcatgaagg actgtcgaat	60
tttgtcaaaag gctttttctg catctattga gataatcatg tggttttgt ctgtgggtct	120
gtttatgtga tggactatgt ttattgattt gcatatgttg aaccaggcctt gcatctcagg	180
gatgaagcca actcgatcg tggatgttg ctgtttgtat tgctgtggaa tttgggttgc	240
caatatttta ttgaggattt ttgatcatgt gttcttcagg gatattggtc taaaattctc	300
ttttttttgt tggatgtctgt ccaggcttg gtatcaggat gatgtggcc tcataaatga	360
gttagggagg attccctctt tctattgtac agaatagttt cagaaggaat ggtaccagct	420
cttcgttgcgtt cctctggtag aatttgggtg kgaatctatc ttgkcttgcg atattttgg	480
ggttggaact caaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaa nnnaaaaaanaa	539

<210> 118

<211> 882

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (117)

<223> n equals a,t,g, or c

<400> 118

gaattcggca cgagcagacc tgggctcgag accataactg tttggttta acagtacgtg	60
ggcggccgga atccgggagt ccgggtaccc gggctgtgg ctatcataaa ggcggancca	120
gaagaagggg cggggtatgg gagaagcctc cccacctgcc cccgcaaggc ggcacatctgct	180
ggtcctgctg ctgctcctct ctaccctggat gatcccctcc gctgcagctc ctatccatga	240
tgcgtacgccc caagagagct cttgggtct cacaggcctc cagaggctac tccaaggctt	300
cagccgactt ttcctgaaaat taacctgctt cggggcatag acagcttatt ctctggcccc	360
atggacttcc ggggcctccc tgggaactac cacaaggagg agaaccagg gcaccaggctg	420
gggaacaaca ccctctccag ccacytccag atcgacaaga tgaccgacaa caagacaggaa	480
gaggtgctga tctccgagaa tgtggtggca tccattcaac cagcggagggg gagcttcgag	540
ggtgatttga aggtaccccgatggaggag aaggaggccc tggtacccat ccagaaggcc	600
acggacagct tccacacaga actccatccc cgggtggcct tctggatcat taagctgcca	660
cggcggaggt cccaccaggaa tgccctggag ggcggccact ggctcagcga gaagcgacac	720
cgcctgcagg ccattccggaa tggactccgc aaggggaccc acaaggacgt cctagaagag	780
gggaccgaga gtcctccca ctccaggctg tccccccgaa agaccactt actgtacatc	840
ctcaggccct ctcggcagct gtaggggtgg ggaccggggaa gc	882

<210> 119

<211> 1193

<212> DNA

<213> Homo sapiens

<400> 119

acactatata agttacgcct gcaggttacc ggtccggtaaa ttcccgggtc gtacccacgc	60
gtccggtaat gtcaaaggaa aagtaattct gtcaatgctg gttgtctcaa ctgtatcat	120
tgtgtttgg gaatttataca acagcacaga aggcttttc ttgtggatat atcaactcaa	180
aaaccaggaa gttgatgaca gcagtgcctca gaaggggctgg tgggttctga gctgggttaa	240
caatggatc cacaattatc aacaaggaaa agaagacata gacaaagaaa aaggaagaga	300
ggagaccaaa ggaaggaaaa tgacacaaca gagcttcggc tatggactg gttaatcca	360
aacttgaagg aatccgaata actaaactgg actctgggtt tctgacttag cttctctaga	420
agacctggac tgagagatca tgccgttaag gagggtgtaa caggcggacc acctgttggg	480
actgsgagat tctcaagggg aaggactggg tctcatttct cccatctcg cgcttagcag	540
gatgacctgg tatagagcag ggaactgggaa aatgtgggtc agggatcg acactccagt	600
tgggtctttt atataaaatta aatggaaaa ggctccatac ctttctcctt cttcttacc	660
ctccacttta tctgcaaaat gggatgatg ataacaccca cttcatagaa tggcatgaa	720
gatcaaatga gagaataaaaa gtcaagcact tagcctctgg tgcacaataa gtattaaata	780
agtataccta ttccctcctt tccttttaaaaataat taccaaataatgt ccagcttata	840
cacatttaca agacttagct agtgggttat gtttagagcta ctaaaagatc tttgacaagc	900
taaaaactaag atgcaatgaa tgagggttaa cgaacaagag agtttaagt tcagaaatgg	960
ttacagaagt ataagacagc tgggtgggtg tttttgtt tttgggttct ggttacaat	1020
ctcgcttcc aacaaagatg ggagtttat agaactaaaa gcmccatgt aactactaaa	1080
aacaacaaca aaaaaggctc atcattctc agtctgaatt gacaaaaatg ccaatgc当地	1140
taaaaatgat tactttttt tttttttttt aaaaaaaaaaaa aaaaaaaaaactc gta	1193

<210> 120

<211> 1338

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (519)

<223> n equals a,t,g, or c

<400> 120

ggcacgaggg tgaggccccag gtagcgtttgc caatccagcc ccaccgtcac ctcttttctt	60
ggacttctag ttttcctcac ccctattgcc ttcatcctt tacctccat cctgtggagg	120
gaatgagctg gaggcttgc gcacaatttg tgaggggctc tttatctcca tggcattcaa	180
actcctcatt ctgctcatag ggacctgggc acttttttgc cgcaagcggg gagctgacat	240
gccacgggtg ttgtgtttt gtccctttt gtgggtcctc atcttctct tttgtgggtt	300
ccctatttgc tttttacgg ggtccgcatt ttggactctc gggAACCGGA attaccaagg	360
gattgtgcaat tatgcagtct cccctgtgg aatgccttcc ttctccatc cattactggc	420
catccgtccc tgctggagct caggagctt gcagccaaat ttccacgct gcagggtgg	480
cccgctccca accgaatggg gaaatccccg ctccagcnt gggacacctg agtatccagc	540
gagcagcatt gttggtccta gaaaattact acaaagattt caccatctat aacccaaacc	600
tccttaacagc ctccaaattt ctagcagcca agcatatggc cgggctgaaa gtctacaatg	660
tagatggccc cagtaacaat gccactggcc agtcccgggc catgattgtc gcagctgctc	720
ggcgcaggaa ctcaagccac aacgagttt attatgaaga ggccgaacat gaacggcgag	780
taaagaagcg gaaagcaagg ctgggtttt cagtgaaaga ggccttcatc cacattcage	840
gtctccaggc tgaggagcag cagaaagccc caggggaggt gatggaccct agggaggccg	900
cccaggccat tttccctcc atggccaggc ctctccagaa gtacctgcgc atcacccggc	960
agcagaacta ccacagcatg gagagcatcc tgcaagcacc tggcctctg catcaccaac	1020
ggcatgaccc ccaaggccctt cctagaacgg tacctcagtg cgggccccac cctgcaat	1080
gacaaggacc gctggctctc tacacagtgg aggcttgcgtca gtatgaggc tttgactaat	1140
ggattacggg atgaaattgt gttcgctt aagtgcctt gtttgcctt cttttttttt	1200
gtgaagaaaa ttccattcat catactctt gaaaggttca tagacccaa attcacaaa	1260
tttgccttc gtttacagtc tgagacatcc gttttttttt tttttttttt tttttttttt	1320
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaactc gta	1338

<210> 121

<211> 1183

<212> DNA

<213> Homo sapiens

<400> 121

tgcaggaaatt	cggcacgagc	tggctgcagg	gtctctgggg	agagaagggg	cctcggtttc	60
acaggatggg	gctgccagtg	tcctggccc	ctcctgcctt	ctgggttcta	gggtgctgcg	120
ccctgctcct	ctcgctgtgg	gctgtgcga	cagectgccc	cagccccagg	acgctgttagc	180
ccccaggaag	agggcgccga	ggcagcgccc	gaggctgcag	ggcagtgcga	cgccggccga	240
agcgccctta	ctgaggcgga	cccacccctg	cttccctca	caagtccggac	accagactgc	300
acgagctgca	ccggggcccg	cgcagcagca	gggcctctgc	gcctgcctagy	atggatctcc	360
tgcgccaca	ctggctggag	gtgtccagg	acatcaccgg	accgcaggca	gccccctctg	420
ccttcccaca	ccaggagctg	ccccggctc	tgccggcagg	tgcagccacc	gcagggtgcgc	480
tggctcgag	gccacctatt	ccaacgtggg	gtggcgcc	cttcccccggg	tcagcctggc	540
ggccagccct	gtgggtggccg	agtatgccc	cgtccagaag	cgaaaggaa	ccatcgccag	600
tcccaagag	ccacagcagg	ggaagactga	gtgtaccccg	ggcgctcagg	tgacgtcct	660
gtactccagg	gtctgcaagc	ctaaaaggag	ggacccagg	cccaccacag	accgcgttga	720
cccccaagggc	cagggagcga	ttctgccc	ggcggttgac	ctggcttacc	agaccctccc	780
gctcaggggcc	ctggatgtgg	acagggccc	cctggaaaac	gtgtatgaga	gcatccggga	840
gctgggggac	cctgctggca	ggagcagcac	gtgcggggct	gggacgcccc	ctgcttccag	900
ctgcccagc	ctagggaggg	gctggagacc	cctccctgcc	tccctgccc	gaacactcaa	960
ggacctgtgc	tccttcctcc	agagtggagc	ccgtcccccg	ccccggcccg	cctcacagct	1020
gacagcgcca	gtcccaggc	ccgggcccgc	cagccctgtga	ggtccgtgag	gtcctggcccg	1080
ctctgacagc	cgcggcctcc	ccgggtctca	gagaaggccc	gcgtctaaat	aaagcgccag	1140
cgcaggatga	aagcgaaaaa	aaaaaaaaa	aaaggcgcc	cgc		1183

<210> 122

<211> 615

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (18)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (20)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (584)

<223> n equals a,t,g, or c

<400> 122

cctgtatata	aaattggncn	ctatggcccc	gtacaatgaa	gaaatgcaa	gatagttaag	60
aaagactcgg	cttcaagga	gcctaaatgt	gtagaaaagg	actaaggcaa	aacaataact	120
ttttttagct	cttgcctatgt	gtgaagcact	ttatacacct	gtaaggtagg	taacgttgtt	180
cttattaaac	atgaagaaaa	tgagactttg	tgagaagcaa	tacagtagat	aagttaagaa	240
tatggactct	aaagcttagat	ttcagagggt	tgaagtagct	ctgctactta	ctggctgtgt	300
gactttgagc	agattactta	acctgtctgt	gcctatgttt	acttttattt	ttgtaaaaag	360
atatgcaaca	aaaaatattt	catttcaacc	gtttttacgt	gtataacttca	ctgacattag	420
ttgcattcac	tatgttgtgc	aaacgttaggg	tgcctatgaa	gattaaatga	gttaattcat	480
ataaaaggccct	cagaagagtg	tctggcacat	ggtgagttt	ggctgtactg	tgtcgatgt	540
cattgttaga	gagcttttagt	gatttgctta	agacagaaa	gtanactggg	gtgcgggtgg	600
ctcacccct	ggtta					615

<210> 123
<211> 587
<212> DNA
<213> Homo sapiens

<400> 123

cccacgcgtc cgcctggaac ctgattctcc tgaccgtctt taccctgtcc atggcctacc	60
tcactggat gctgtccagc tactacaaca ccacccgt gctgtgtc ctgggcata	120
cggcccttgt ctgcctctca gtcaccgtct tcagttcca gaccaagtgc gacttcac	180
cctgccaggc cgtgctctc gtgcttca tgactctttt cttcagcggc ctcatcctgg	240
ccatcctcct acccttccaa tatgtgccct ggctccatgc agtttatgca gcactggag	300
cgggtgtatt tacattgttc ctggcacttg acacccagtt gctgtatgggt aaccgacgccc	360
actcgctgag ccctgaggag tatattttt gaggccctcaa catttaccta gacatcatct	420
atatcttcac cttcttcctg cagcttttg gcactaaccg agaatgagga gccctccctg	480
ccccaccgtc ctccagagaa tgcgcccccctc ctggttccct gtccctcccc tgcgctcctg	540
cgagaccaga tataaaaacta gtcgccaacc caaaaaaaaaaaaaaaa aaaaaaaaaa	587

<210> 124
<211> 1379
<212> DNA
<213> Homo sapiens

<400> 124

gggcccagca gcagcggcac ctggagaagc agcacctgcg aattcagcat ctgcaaagcc	60
agtttggctt cctggaccac aagcacctag accatgaggt ggccaaagcct gcccgaagaa	120
agaggtgtcc cgagatggcc cagccagttt accccggctca caatgtcagc cgcctgcacc	180
ggctggccag ggattgccaag gagctgttcc aggttgggg gaggcagagt ggactatattt	240
aaatccagcc tcaggggctt cgcattttt tggtaactg caagatgacc tcagatggag	300
gctggacagt aattcagagg cgccacgatg gtcagtgaa cttcaaccgg ccctgggaag	360
cctacaaggc ggggtttggg gatccccacg gcgagttctg gctgggtctg gagaaggtgc	420
atagcatcat gggggaccgc aacagccgccc tggccgtgca gtcggggac tggatggca	480
acgcccagtt gtcgagttt tccgtgcacc tgggtggcga ggacacggcc tatacgctgc	540
agcttcaactgc accccgtggcc ggccagctgg gcccacccac cgtccacccc agcggccctc	600
ccgttaccctt ctccacttgg gaccaggatc acgacccctcg cagggacaag aactgcgc	660
agagctctc tggaaagctgg tggttggca ctcgcagcca ttccaaacctt caacgggcca	720
gtacttccgg ctccatccca cagcagcggc agaagcttaa gaagggaaatc ttcttggaa	780
cctgcgggccc gctactaccc gtcgaggcc accaccatgt tgatccagcc catggcagca	840
gaggcagcctt cctagcgtcc tggctggcc tggcccagg cccacaaag acgggtactc	900
tggctctgc ccgaggatgt ggccgttccc tgcctggcga ggggctccaa ggaggggcca	960
tctgaaact tggacaga gaagaagacc acgactggag aagccccctt tctgagtgc	1020
ggggggctgc atgcgttgcc tcctgagatc gaggctgcag gatatgtca gactcttagag	1080
gcgtggacca agggggcatgg agcttcaactc cttgctggcc agggagttgg ggactcagag	1140
ggaccacttg gggccagcca gactggcctc aatggcggac tcagtcacat tgactgacgg	1200
ggaccaggc ttgtgtgggt cgagagcggc ctcatggc tgggtgtt gggtgttaggt	1260
cccctggga cacaaggcagg cgccaatggt atctgggcgg agtcacaga gttcttggaa	1320
taaaagcaac ctcagaacac taaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaa	1379

<210> 125
<211> 1268
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1184)
<223> n equals a,t,g, or c

<220>
<221> SITE

<222> (1240)

<223> n equals a,t,g, or c

<400> 125

agggtttagt	ggtttatggtc	aggagtccca	gctgggccc	ccacccctc	aggaaggcgg	60
gtgagggtgg	tgtgagactg	acgggtcc	ctcatgtccc	cttggagcgc	cccacccac	120
atctcccg	ctcgggtct	tgcctggcc	agcatgagag	gtgcttcata	gaaacggagg	180
gaggacatgt	cgggacag	cgatgctcg	cctgctgctg	ctctgcaccc	ccagggcctg	240
gctcaccc	tctggac	tctgcttcca	aggaaggac	cctctgaggt	cccacagagg	300
ccaccc	cgtgggtcg	gagcatctct	gtcttgca	gacagcatcg	tggccgagct	360
ggaccgag	atgagcag	cgtggacgt	accaacacca	ccttcgtct	catggccg	420
tccatctat	tccacgac	gaacccggat	gccgcctgc	gtgcgtc	ccaggggac	480
agcctgg	gtttagtgc	ctccctgctc	ttggccagcc	cagggaggca	agtgc	540
gccacat	caggctgc	acggctcg	ttggctgtcg	catggagca	gagaaagg	600
gtgctgaa	at gggcc	cctgctgtcc	aggctcc	tcccctgccc	agtgtgg	660
gcactcc	ctgcgcac	ggctgcggat	ccaaggacac	gttgc	ccagg	720
ctgtcc	gggcagag	gaaagcgg	ttgtctctgc	tcgg	ccacc	780
ccccac	gttctgtgt	ctcgccctg	ggccc	ctcagg	ccgggg	840
ccatacc	cctcctcc	ggccctctgg	gttgggg	ctgaagcc	gaaagg	900
tgc	ccccctc	caccctaga	tgtgactcc	ggccatgtc	agggcactgg	960
tgtgc	tttccc	gttgc	agctgtcc	ccctccactg	ttagttg	1020
gctgg	catt	tcatgg	tgtgatctg	ctcccatccc	acccatcc	1080
tagaatt	ggcgag	ggcatgt	catgcac	tgttcc	tacttgg	1140
gcggaa	ggat	ttgag	tctgg	gaggtgg	ctgn	1200
tgccact	gca	ctcc	ggtgg	ccagacc	actcac	1260
aaaaaaa	a	a	a	a	a	1268

<210> 126

<211> 1311

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1036)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1112)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1168)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (1223)

<223> n equals a,t,g, or c

<400> 126

aaaaaaagaa	agcaatatgg	aaaccgaact	aaggagattt	taaactgaga	tataagatgc	60
tttcaattat	tcccaatgac	aggctattta	tcaatttaat	attttaagc	aacttcctcc	120
catcagt	ctgggaacca	gctggcaga	tgtgtacac	ccatgtcaga	taccccagtg	180
gcaggg	gtca	acttggtcc	ctccatccc	cccagcc	ctagctc	240
gctc	cggaa	acccccc	atcaatct	gacatttc	aggaataact	300
tctaaggaa	tctgggagga	cgcc	gtatggcgt	cagttac	ctcttaaaga	360

gtcaatagcc cctgcagagg ccagaacact ggaacaaatg taaggaaggt atagtttta	420
aagatttttgc acttgaatta aataggattt gttacttctt gccccctccc agggtggact	480
gtgcacagaa gagacctt caccgggtt gctgtctt ttgcactgt gagttgggt	540
tctaaccgtc agcgttggtc cataacaaaa tggaaatctt ttcttcccc tcctgttaat	600
gccccctgtc ttgtcagtga ctgtcaacc agcaccttt gtggcgaat cagccagcag	660
aagtgcctt cgtgttctt gatttctctt tctgtgggtt catttctt agtctgggt	720
tctcgccctg aatggctcaa cagggggaaa ggcagacagc ttcttcgtgc cagaaacatt	780
ttttttttt tttgaaatar tgagccaaga ttgcgccact gcattccatc ctcagcaaca	840
garcaagact ccaactcawa acaaaacaaa agattgargt wattgtggca acacctgcct	900
ttttttctaa gctgcaattc tctactgttt tcaagaaaaa tacaagtttag cctatttaca	960
gaatgtttt aatttgactcc tgtcctctgg taaaaactcc tctttagata attgatagct	1020
gaaaaggtag gatggntctc tcaaacttga cttccatcta aatcaacgct gagttgatta	1080
acttagatat caagaaaaat tgcctcatta gnttaccctt gaggagatgc ctatgaaggt	1140
acatccttt tacaattaat aagacagnnt tcacatgaag aaacaatttgg aaatatttaa	1200
taagaaaatg gggtaaggc aancattacg gttggggaaa gaccatgcaa gcctttatag	1260
aggataacga ttatataattt cactattaat ttggccgggt aataggaacc t	1311

<210> 127

<211> 1249

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (1217)

<223> n equals a,t,g, or c

<400> 127

ggccaggccgg gtctcaaact cctcgtctca ggtgatctgc ttgcctcgcc ctcccaaagt	60
gctgggatttta caggcgtgag cactgcgcc accctgagg ttcattttta agtcacatag	120
cagtatgttcttatttcgtg cttagaccctt taaaatgcga taaaagctat atggaccctt	180
cgctttgtta tataacatatac gcacacatac ccagaattttt gcacatatgt tcaagatcc	240
ctagacctgc agacctgcct ctgtgtgtcc caatttaaga acctctgtt tttcttcatg	300
actggatttg cccaattttt ttttattttt ggacttaattt tttccctt tgggacattt	360
ccttattttt tggcccttca agagataga tttttttt aaagagagga aaccttagatt	420
acttaattttt aatttaacat tttctataga tagcatatcca cgccaaatgtt gctctgttctt	480
gatcccccttc tttcttagcat ctgcagaca ttgttagagtt tcscaascag ttgttaggtt	540
gagctgcagc cagtcatttc ttttattttt taaaagtaca tagatttgc ttttttagggc	600
tttactgaaa gtaaaatatac ctgacattta aactgacaga ttgttaggatg aaaaaataga	660
gttctgaaac atwtgaattt atgtgacagc tgaagtacg agatgaggka tttatgtccc	720
ccagggaggw tgcagaaaga agaaaaagggt actggaaaca gcatgtcagt ggtgccagct	780
gagggctgga ggcagccagg agagttgggaa gcctgggtc tgggtggaga gaggttaaca	840
ggaaakacat gggaaatattt gtgaaggctg gtgtgagcag gggactactc cagccctgtt	900
ggaacatatac gccatttggc agattgacaa tgcagtgaca gctgtatata ataaaatgtt	960
tggaaaggagg aaggtgagga ttttcttgggt gggagttt gctgttattt aacatatttt	1020
gcttccaaag gggtaagat gtttaccta aatggargtt tctaggtcag ttttataacaa	1080
tatttctaat ctgttttta tagtgtgagc tacatatgtt atttttttt tttcaagtag	1140
ccacataata aaggaaacag gtgaaatttta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1200
aaaaaaaaaaaa aaaaaanaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1249

<210> 128

<211> 1660

<212> DNA

<213> Homo sapiens

<400> 128

ccgggtcgac ccacgcgtcc ggcccgccgg aaggcgacatg ggctccgctc cctggggcccc	60
ggctctgtc ctggcgctcg ggctcgccgg cttccaggcg gggcccgca gcccggcccc	120
gcttccagga gcgcttcttc cagcagcgatc tggaccactt caacttcgag cgcttcggca	180

74

acaagacctt	ccctcagcgc	ttcctggtgt	cggacagggtt	ctgggtccgg	ggcgaggggc	240
ccatcttctt	ctacactggg	aacgaggcg	acgtgtggc	cttcgccaac	aactcgccct	300
tcgtcgccga	ctggcgccg	agcggggggc	tctactggc	ttcgccgagc	accgctacta	360
cggaaagtgc	ctgccgttc	gtgcgcagtc	cacgcagcgc	gggcacacgg	agctgctgac	420
ggtgagcag	gccctggcc	acttcgcaga	gctgtccgc	gcccgtacgac	gcgaccccg	480
ggcccgaggat	gccccggcca	tcgccttcg	tggaaagtat	ggggggatgc	tcaatgccta	540
cctgaggatg	aagtatcccc	acctggtgcc	ggggggcgctg	gcggccagcg	cgcccggttct	600
atctgtggca	ggcctcgccg	actccaaacca	gttctccgg	gacgtcacgg	cggaactttga	660
gggcagagt	cccaaatgca	cccagggtgt	gcgggaagcg	ttccgacaga	tcaaggactt	720
gttcctacag	ggagcctacg	acacgggtcc	ctgggagttc	ggcacccgtcc	agccgctgtc	780
agacgagaag	gacctgaccc	agctcttcat	tttcgccccg	aatgccttca	ccgtgctggc	840
catgatggac	tacccctacc	ccactgactt	cctgggtccc	ctccctgcca	accccgtaa	900
ggtgggctgt	gatcggtgc	tgagtggggc	ccagaggatc	acggggctgc	gagcactggc	960
agggctggtc	tacaacgcct	cgggctccg	gactgctac	gacatctacc	ggctctacca	1020
cagctgtgct	gaccccaactg	gctgcggcac	cgcccccgac	gccaggccct	gggactacca	1080
ggcctgcacc	gagatcaacc	tgacccctgc	cagcaacaat	gtgaccgata	tgttcccgga	1140
cctgcccttc	actgacgac	tccgcccagcg	gtactgcctg	gacacctggg	gcgtgtggcc	1200
ccggcccgac	tggctgctga	ccagcttctg	gggggggtgat	ctcagagccg	ccagcaacat	1260
catcttctcc	aacgggaacc	tggacccttg	gcaggggggc	gggattcggg	ggaacctgag	1320
tgcctcagtc	atcgccgtca	ccatccagg	gggagcgcac	cacccgtacc	tcagagcctc	1380
ccacccagaa	gatccgtctt	ccgtgggttga	ggcgcggaaag	ctggaggcc	ccatcatcg	1440
cgagtggta	aaggcagcca	ggcgtgagca	gcagccagct	ctgcgtgggg	ggcccgagact	1500
cagctctga	gcacaggact	ggaggggtct	caaggctcc	catggagtgg	gggcttcaact	1560
caagcagctg	gccccagagg	gaaggggctg	aataaacgccc	tggaggcctg	gccatgtaaa	1620
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1660

<210> 129

<211> 2075

<212> DNA

<213> Homo sapiens

<400> 129

ccacgcgtcc	gtggggccga	gccccgtgg	gtaggcggaa	gtagccgcag	atggccggcgg	60
ctatccctt	gtctgtctcg	tcctgttgct	cctggggccc	ggcggctgg	gccttgcaga	120
accccaacgc	gacagcctgc	gggaggaact	tgtcatcacc	ccgctgcctt	ccggggacgt	180
agccgccaca	ttccagttcc	gcacgcgtg	ggattcggag	cttcagcggg	aaggagtgtc	240
ccattacagg	ctctttccca	aagccctggg	gcagctgatc	tccaaatatt	ctctacggga	300
gctgcacctg	tcattcacac	aaggctttg	gaggaccgc	tactggggc	cacccttcct	360
gcaggcccc	tcagacactg	accactactt	tctgcgtat	gctgtgtgc	cgccggaggt	420
ggtctgcacc	aaaaacctca	ccccctggaa	gaagctctt	ccctgttagtt	ccaaggcagg	480
cctctctgtg	ctgctgaagg	catatcgctt	gttccacacc	agctaccact	cccaggcagt	540
gcataatccgc	cctgtttgca	gaaatgcacg	ctgtacttagc	atctcctggg	agctgaggca	600
gaccctgtca	gttgtattt	atgccttcat	cacggggcag	ggaaagaaaag	actggccct	660
cttcggatg	ttctcccgaa	ccctcacgg	gccctgcccc	ctggcttcag	agagccgagt	720
ctatgtggac	atcaccac	acaaccagga	caacgagaca	ttagaggtgc	acccacccccc	780
gaccactaca	tatcaggacg	tcatccctagg	cactcggaaag	acctatgcca	tctatgactt	840
gcttgcacacc	gccatgatca	acaactctcg	aaacctcaac	atccagctca	agtggaaagag	900
accccaagag	aatgaggccc	ccccactgccc	cttcctgtcat	gcccagcggt	acgtgagtgg	960
ctatgggctg	cagaaggggg	agctgagcac	actgctgtac	aacaccacc	cataccggc	1020
cttccgggtg	ctgctgtgg	acaccgtacc	ctggtatctg	cggctgtatg	tgcacaccct	1080
caccatcacc	tccaaggcga	aggagaacaa	accaagttac	atccactacc	agcctgcccc	1140
ggaccggctg	caacccccc	tcctggagat	gctgattcag	ctgccccca	actcagtcac	1200
caagtttcc	atccagttt	agcggcgct	gctgaagtgg	accgagatca	caccagatcc	1260
taaccatggc	tctatgtca	gccccatctgt	cctcagcgc	cttgcgtccca	gcatggtagc	1320
agccaagcca	gtggactgg	aagagagtcc	cctcttcaac	agcctgttcc	cagtctctga	1380
tggctcta	tactttgtc	ggctctacac	ggagccgctg	ctggtaacc	tgccgacacc	1440
ggacttcagc	atgccttaca	acgtgatctg	cctcacgtgc	actgtgttgg	ccgtgtgcta	1500
cggctcc	tacaatctcc	tcacccgaac	cttccacat	cgaggagccc	cgcacagg	1560
gcctggccaa	gccccgtggcc	aaccttatcc	ggcgcgcccc	agtgtccccc	ccactctgtat	1620

75

tcttgccctt	tccagcagct	gcagctgccg	tttctctctg	gggaggggag	cccaagggt	1680
gtttctgcca	cttgctctcc	tcagagttgg	cttttgaacc	aaagtgcctt	ggaccaggtc	1740
agggcctaca	gctgtgttgt	ccagtagcagg	agccacgagc	caaatgtggc	atttgaattt	1800
gaatttaactt	agaaattcat	ttcctcacct	gtagtgccca	cctctatatt	gaggtgctca	1860
ataagcaaaa	gtggtcggtg	gctgtgtat	tggacagcac	agaaaaaagat	ttccatcacc	1920
acagaaaagg	cggctggcag	cactggccaa	ggtgatgggg	tgtgctacac	agtgtatgtc	1980
actgtgtagt	ggatggagtt	tactgttgt	ggaataaaaaa	cggctgttcc	cgtggtaaaa	2040
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaa			2075

<210> 130

<211> 56

<212> PRT

<213> Homo sapiens

<400> 130

Met	Ala	Lys	Thr	Asp	Phe	Ser	Ile	Ile	Leu	Leu	Lys	Leu	His	Cys	Leu
1								10						15	

Phe	Phe	Phe	Ser	Val	Ile	Ser	Val	His	Cys	Ala	Gln	Ser	Phe	Ile	Ser
				20				25					30		

Val	Thr	Gln	Thr	Glu	Pro	Ser	Pro	Ala	Val	Cys	Ile	Phe	Pro	Ala	Val
					35			40				45			

Gly	Ser	Gly	Leu	Gly	Pro	Cys	Asp								
					50		55								

<210> 131

<211> 42

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (3)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (42)

<223> Xaa equals stop translation

<400> 131

Met	Ala	Xaa	Leu	Asp	Asn	Cys	Leu	Met	Leu	Leu	Ile	Thr	Ser	Gly	Thr
1								10						15	

Trp	Leu	Gly	Ser	Val	Ala	Arg	Lys	Thr	Trp	Gln	Ala	Ile	Cys	Asp	Ser
				20				25				30			

Gly	Ser	Ser	Gly	Cys	Ala	Leu	Ile	Arg	Xaa						
					35		40								

<210> 132

<211> 415

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

76

<222> (415)

<223> Xaa equals stop translation

<400> 132

Met Asn Pro Thr Leu Gly Leu Ala Ile Phe Leu Ala Val	Leu Leu Thr		
1	5	10	15

Val Lys Gly Leu Leu Lys Pro Ser Phe Ser Pro Arg Asn Tyr	Lys Ala	
20	25	30

Leu Ser Glu Val Gln Gly Trp Lys Gln Arg Met Ala Ala Lys	Glu Leu	
35	40	45

Ala Arg Gln Asn Met Asp Leu Gly Phe Lys Leu Leu Lys Lys	Leu Ala	
50	55	60

Phe Tyr Asn Pro Gly Arg Asn Ile Phe Leu Ser Pro Leu Ser	Ile Ser		
65	70	75	80

Thr Ala Phe Ser Met Leu Cys Leu Gly Ala Gln Asp Ser Thr	Leu Asp	
85	90	95

Glu Ile Lys Gln Gly Phe Asn Phe Arg Lys Met Pro Glu Lys	Asp Leu	
100	105	110

His Glu Gly Phe His Tyr Ile Ile His Glu Leu Thr Gln Lys	Thr Gln	
115	120	125

Asp Leu Lys Leu Ser Ile Gly Asn Thr Leu Phe Ile Asp Gln Arg	Leu	
130	135	140

Gln Pro Gln Arg Lys Phe Leu Glu Asp Ala Lys Asn Phe Tyr	Ser Ala		
145	150	155	160

Glu Thr Ile Leu Thr Asn Phe Gln Asn Leu Glu Met Ala Gln	Lys Gln	
165	170	175

Ile Asn Asp Phe Ile Ser Gln Lys Thr His Gly Lys Ile Asn	Asn Leu	
180	185	190

Ile Glu Asn Ile Asp Pro Gly Thr Val Met Leu Leu Ala Asn	Tyr Ile	
195	200	205

Phe Phe Arg Ala Arg Trp Lys His Glu Phe Asp Pro Asn Val	Thr Lys	
210	215	220

Glu Glu Asp Phe Phe Leu Glu Lys Asn Ser Ser Val Lys Val	Pro Met		
225	230	235	240

Met Phe Arg Ser Gly Ile Tyr Gln Val Gly Tyr Asp Asp Lys	Leu Ser	
245	250	255

Cys Thr Ile Leu Glu Ile Pro Tyr Gln Lys Asn Ile Thr Ala	Ile Phe	
260	265	270

Ile Leu Pro Asp Glu Gly Lys Leu Lys His Leu Glu Lys Gly	Leu Gln	
275	280	285

Val Asp Thr Phe Ser Arg Trp Lys Thr Leu Leu Ser Arg Arg	Val Val
---	---------

77

290	295	300
Asp Val Ser Val Pro Arg Leu His Met Thr Gly Thr Phe Asp Leu Lys		
305	310	315
320		
Lys Thr Leu Ser Tyr Ile Gly Val Ser Lys Ile Phe Glu Glu His Gly		
325	330	335
Asp Leu Thr Lys Ile Ala Pro His Arg Ser Leu Lys Val Gly Glu Ala		
340	345	350
Val His Lys Ala Glu Leu Lys Met Asp Glu Arg Gly Thr Glu Gly Ala		
355	360	365
Ala Gly Thr Gly Ala Gln Thr Leu Pro Met Glu Thr Pro Leu Val Val		
370	375	380
Lys Ile Asp Lys Pro Tyr Leu Leu Leu Ile Tyr Ser Glu Lys Ile Pro		
385	390	395
400		
Ser Val Leu Phe Leu Gly Lys Ile Val Asn Pro Ile Gly Lys Xaa		
405	410	415
<210> 133		
<211> 45		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> SITE		
<222> (45)		
<223> Xaa equals stop translation		
<400> 133		
Met Gly Gln Gln Ser Cys Trp Met Gly Leu Gly Cys Trp Leu Ser Leu		
1	5	10
15		
Ser Gly Leu Ser Gly Val Val Arg Ala Ser Pro Arg Ser Pro Arg Pro		
20	25	30
Arg Arg Gly Ala Ala Cys Gly Glu Thr Leu Met Pro Xaa		
35	40	45
<210> 134		
<211> 197		
<212> PRT		
<213> Homo sapiens		
<400> 134		
Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala Ala		
1	5	10
15		
Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile Leu Gly		
20	25	30
Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys Asp His Asn		
35	40	45
Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser Ala Met Arg Glu		

	78	60
50	55	60
Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser Leu Val Asn Thr Val		
65	70	75
Leu Lys His Ile Ile Trp Leu Lys Val Ile Thr Ala Asn Ile Leu Gln		
85	90	95
Leu Gln Val Lys Pro Ser Ala Asn Asp Gln Glu Leu Leu Val Lys Ile		
100	105	110
Pro Leu Asp Met Val Ala Gly Phe Asn Thr Pro Leu Val Lys Thr Ile		
115	120	125
Val Glu Phe His Met Thr Thr Glu Ala Gln Ala Thr Ile Arg Met Asp		
130	135	140
Thr Ser Ala Ser Gly Pro Thr Arg Leu Val Leu Ser Asp Cys Ala Thr		
145	150	155
160		
Ser His Gly Ser Leu Arg Ile Gln Leu Leu His Lys Leu Ser Phe Leu		
165	170	175
Val Asn Ala Leu Ala Lys Gln Val Met Asn Leu Leu Val Pro Ser Met		
180	185	190
Pro Arg Trp Pro Asn		
195		
<210> 135		
<211> 46		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> SITE		
<222> (11)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<220>		
<221> SITE		
<222> (46)		
<223> Xaa equals stop translation		
<400> 135		
Met His Arg Gln Leu Leu Gly Phe Cys Phe Xaa Phe Cys Phe Phe Phe		
1	5	10
15		
Lys Arg His Cys Asp Cys Ile Leu Leu Tyr Leu Ile Gly Phe Val Phe		
20	25	30
Leu Leu Thr Met Val Lys Ile His Leu Ser Glu His Ser Xaa		
35	40	45
<210> 136		
<211> 41		
<212> PRT		
<213> Homo sapiens		

79

<220>

<221> SITE

<222> (41)

<223> Xaa equals stop translation

<400> 136

Met Leu Lys Arg Val Ile Leu Leu Val Glu Met Phe Ile His Phe Leu
1 5 10 15

Ile Tyr Ala Lys Ser Phe Tyr His Lys Ser Trp Glu Gln Leu Ser Phe
20 25 30

Thr His Tyr Leu Leu Gln Ile Ser Xaa
35 40

<210> 137

<211> 85

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (48)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (85)

<223> Xaa equals stop translation

<400> 137

Met Pro Ile Leu Val Phe Ser Ile Cys Leu Gln Cys Thr Leu Phe Arg
1 5 10 15

Ser Glu Ala Ile Ile Phe Gln Glu Glu Arg Asn His Gln Val Thr Leu
20 25 30

Leu Lys Ala Val Lys Thr Lys Phe Gln Ser Gly Thr Gly Leu Arg Xaa
35 40 45

Pro Val Leu Glu Tyr Ala Lys Ser Ile Gln Ile Ile Ser Lys Tyr Thr
50 55 60

Cys Gly Thr Val Leu Pro Val Phe Lys Met Arg Arg Tyr Tyr Val Gly
65 70 75 80

Gln Lys Cys Gln Xaa
85

<210> 138

<211> 201

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (144)

<223> Xaa equals any of the naturally occurring L-amino acids

80

<220>

<221> SITE

<222> (149)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (160)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (173)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (177)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (189)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (201)

<223> Xaa equals stop translation

<400> 138

Met Phe Phe Leu Leu Cys Leu Val Ala Leu Glu Ile Lys Gly Phe Thr
1 5 10 15

Phe Ser Ala Arg Gly Ala Arg Asp Arg Phe Leu Asn Lys Ser Gly Pro
20 25 30

Gln Pro Gly Lys Lys Met Lys Thr Thr His Cys Lys Gln Pro Leu Phe
35 40 45

Ser Lys Pro Gly Gln Val Arg Gly Ala Leu Arg Lys Ala Arg Gly Arg
50 55 60

Gln Glu Glu Arg Glu Ala Val Gly Met Trp Gly Gly Arg Gly His Ser
65 70 75 80

Tyr Pro Glu Tyr Ile Lys Thr Ser Glu Val Thr Glu Val Arg Asp Ser
85 90 95

Pro Lys His Pro Gln Val Gln Pro Phe Leu Thr Thr Arg Val Thr Cys
100 105 110

Arg Val Pro Gly His Leu Gln Val Leu Glu Ala Leu Cys Gly Ala Trp
115 120 125

Gly Ser Met Phe Lys His Ala Leu Val Val Val Gln Val Pro Arg Xaa
130 135 140

Arg Gly Arg Ala Xaa Leu Gly Ser Glu Trp Gln Val Gly Gln Leu Xaa

		81	
145	150	155	160
Leu Ile Leu Leu His Gly Thr Gln His Trp Ala Ala Xaa Leu Val Pro			
	165	170	175
Xaa Leu Pro Gln Glu Ser Ile Leu Pro Ala Gln Ser Xaa Arg Val Thr			
	180	185	190
Asn Thr Pro Gly Thr Glu Glu Thr Xaa			
	195	200	
<210> 139			
<211> 325			
<212> PRT			
<213> Homo sapiens			
<400> 139			
Met Gly Ser Gln Val Ser Ser Met Leu Lys Leu Ala Leu Gln Asn Cys			
1	5	10	15
Cys Pro Gln Leu Trp Gln Arg His Ser Ala Arg Asp Arg Gln Cys Ala			
	20	25	30
Arg Val Leu Ala Asp Glu Arg Ser Pro Gln Pro Gly Ala Ser Pro Gln			
	35	40	45
Glu Asp Ile Ala Asn Phe Gln Val Leu Val Lys Ile Leu Pro Val Met			
50	55	60	
Val Thr Leu Val Pro Tyr Trp Met Val Tyr Phe Gln Met Gln Ser Thr			
65	70	75	80
Tyr Val Leu Gln Gly Leu His Ile Pro Asn Ile Phe Pro Ala			
	85	90	95
Asn Pro Ala Asn Ile Ser Val Ala Leu Arg Ala Gln Gly Ser Ser Tyr			
	100	105	110
Thr Ile Pro Glu Ala Trp Leu Leu Leu Ala Asn Val Val Val Leu			
	115	120	125
Ile Leu Val Pro Leu Lys Asp Arg Leu Ile Asp Pro Leu Leu Leu Arg			
	130	135	140
Cys Lys Leu Leu Pro Ser Ala Leu Gln Lys Met Ala Leu Gly Met Phe			
145	150	155	160
Phe Gly Phe Thr Ser Val Ile Val Ala Gly Val Leu Glu Met Glu Arg			
	165	170	175
Leu His Tyr Ile His His Asn Glu Thr Val Ser Gln Gln Ile Gly Glu			
	180	185	190
Val Leu Tyr Asn Ala Ala Pro Leu Ser Ile Trp Trp Gln Ile Pro Gln			
	195	200	205
Tyr Leu Leu Ile Gly Ile Ser Glu Ile Phe Ala Ser Ile Pro Gly Leu			
	210	215	220

115

<210> 141
<211> 48
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (8)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (19)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (48)
<223> Xaa equals stop translation

<400> 141
Met Lys Leu Thr Ile Phe Phe Xaa Phe Pro Gln Thr Ile Thr Gly Leu
1 5 10 15

Leu Gln Xaa Leu Met Ser Arg Gln Val Glu Asp Val Ala Phe Leu Pro
20 25 30

Leu Pro His Pro Val Phe Ser Phe Ser Phe Phe Phe Pro Leu Val Xaa
35 40 45

<210> 142
<211> 520
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (205)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (207)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (213)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (225)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (520)

<223> Xaa equals stop translation

<400> 142

Met Gln Gly Gly Gln Arg Pro His Leu Leu Leu Leu Leu Ala Val
1 5 10 15

Cys Leu Gly Ala Gln Ser Arg Asn Gln Glu Glu Arg Leu Leu Ala Asp
20 25 30

Leu Met Arg Asn Tyr Asp Pro His Leu Arg Pro Ala Glu Arg Asp Ser
35 40 45

Asp Val Val Asn Val Ser Leu Lys Leu Thr Leu Thr Asn Leu Ile Ser
50 55 60

Leu Asn Glu Arg Glu Glu Ala Leu Thr Thr Asn Val Trp Ile Glu Met
65 70 75 80

Gln Trp Cys Asp Tyr Arg Leu Arg Trp Asp Pro Lys Asp Tyr Glu Gly
85 90 95

Leu Trp Ile Leu Arg Val Pro Ser Thr Met Val Trp Arg Pro Asp Ile
100 105 110

Val Leu Glu Asn Asn Val Asp Gly Val Phe Glu Val Ala Leu Tyr Cys
115 120 125

Asn Val Leu Val Ser Pro Asp Gly Cys Ile Tyr Trp Leu Pro Pro Ala
130 135 140

Ile Phe Arg Ser Ser Cys Ser Ile Ser Val Thr Tyr Phe Pro Phe Asp
145 150 155 160

Trp Gln Asn Cys Ser Leu Ile Phe Gln Ser Gln Thr Tyr Ser Thr Ser
165 170 175

Glu Ile Asn Leu Gln Leu Ser Gln Glu Asp Gly Gln Ala Ile Glu Trp
180 185 190

Ile Phe Ile Asp Pro Glu Ala Phe Thr Glu Asn Gly Xaa Trp Xaa Ile
195 200 205

Arg His Arg Pro Xaa Lys Met Leu Leu Asp Ser Val Ala Pro Ala Glu
210 215 220

Xaa Ala Gly His Gln Lys Val Val Phe Tyr Leu Leu Ile Gln Arg Lys
225 230 235 240

Pro Leu Phe Tyr Val Ile Asn Ile Ile Ala Pro Cys Val Leu Ile Ser
245 250 255

Ser Val Ala Ile Leu Ile Tyr Phe Leu Pro Ala Lys Ala Gly Gly Gln
260 265 270

Lys Cys Thr Val Ala Thr Asn Val Leu Leu Ala Gln Thr Val Phe Leu

	85		
275	280	285	
Phe Leu Val Ala Lys Lys Val Pro Glu Thr Ser Gln Ala Val Pro Leu			
290	295	300	
Ile Ser Lys Tyr Leu Thr Phe Leu Met Val Val Thr Ile Leu Ile Val			
305	310	315	320
Val Asn Ser Val Val Leu Asn Val Ser Leu Arg Ser Pro His Thr			
325	330	335	
His Ser Met Ala Arg Gly Val Arg Lys Val Phe Leu Arg Leu Leu Pro			
340	345	350	
Gln Leu Leu Arg Met His Val Arg Pro Leu Ala Pro Ala Ala Val Gln			
355	360	365	
Asp Ala Arg Phe Arg Leu Gln Asn Gly Ser Ser Ser Gly Trp Pro Ile			
370	375	380	
Met Ala Arg Glu Glu Gly Asp Leu Cys Leu Pro Arg Ser Glu Leu Leu			
385	390	395	400
Phe Arg Gln Arg Gln Arg Asn Gly Leu Val Gln Ala Val Leu Glu Lys			
405	410	415	
Leu Glu Asn Gly Pro Glu Val Arg Gln Ser Gln Glu Phe Cys Gly Ser			
420	425	430	
Leu Lys Gln Ala Ser Pro Ala Ile Gln Ala Cys Val Asp Ala Cys Asn			
435	440	445	
Leu Met Ala Arg Ala Arg Arg Gln Gln Ser His Phe Asp Ser Gly Asn			
450	455	460	
Glu Glu Trp Leu Leu Val Gly Arg Val Leu Asp Arg Val Cys Phe Leu			
465	470	475	480
Ala Met Leu Ser Leu Phe Ile Cys Gly Thr Ala Gly Ile Phe Leu Met			
485	490	495	
Ala His Tyr Asn Gln Val Pro Asp Leu Pro Phe Pro Gly Asp Pro Arg			
500	505	510	
Pro Tyr Leu Pro Leu Pro Asp Xaa			
515	520		
<210> 143			
<211> 48			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> SITE			
<222> (48)			
<223> Xaa equals stop translation			
<400> 143			
Met Leu Leu Phe Ser Ser Arg Phe Ile Met Phe Leu Trp Pro Pro Val			

1	5	86 10	15
Ser Gly Val Cys Leu Ser Phe Ile Arg Asp Arg Ser Phe Leu Pro Met			
20 25		30	
Cys His Phe Ile Tyr Val Leu Ile Leu Cys Asn Ser Ile Ala Leu Xaa			
35 40		45	
<210> 144			
<211> 431			
<212> PRT			
<213> Homo sapiens			
<400> 144			
Met Ser Trp Val Gln Ala Thr Leu Leu Ala Arg Gly Leu Cys Arg Ala			
1	5	10	15
Trp Gly Gly Thr Cys Gly Ala Ala Leu Thr Gly Thr Ser Ile Ser Gln			
20 25		30	
Val Pro Arg Arg Leu Pro Arg Gly Leu His Cys Ser Ala Ala Ala His			
35	40	45	
Ser Ser Glu Gln Ser Leu Val Pro Ser Pro Pro Glu Pro Arg Gln Arg			
50	55	60	
Pro Thr Lys Ala Leu Val Pro Phe Glu Asp Leu Phe Gly Gln Ala Pro			
65	70	75	80
Gly Gly Glu Arg Asp Lys Ala Ser Phe Leu Gln Thr Val Gln Lys Phe			
85	90	95	
Ala Glu His Ser Val Arg Lys Arg Gly His Ile Asp Phe Ile Tyr Leu			
100	105	110	
Ala Leu Arg Lys Met Arg Glu Tyr Gly Val Glu Arg Asp Leu Ala Val			
115	120	125	
Tyr Asn Gln Leu Leu Asn Ile Phe Pro Lys Glu Val Phe Arg Pro Arg			
130	135	140	
Asn Ile Ile Gln Arg Ile Phe Val His Tyr Pro Arg Gln Gln Glu Cys			
145	150	155	160
Gly Ile Ala Val Leu Glu Gln Met Glu Asn His Gly Val Met Pro Asn			
165	170	175	
Lys Glu Thr Glu Phe Leu Leu Ile Gln Ile Phe Gly Arg Lys Ser Tyr			
180	185	190	
Pro Met Leu Lys Leu Val Arg Leu Lys Leu Trp Phe Pro Arg Phe Met			
195	200	205	
Asn Val Asn Pro Phe Pro Val Pro Arg Asp Leu Pro Gln Asp Pro Val			
210	215	220	

87

Glu	Leu	Ala	Met	Phe	Gly	Leu	Arg	His	Met	Glu	Pro	Asp	Leu	Ser	Ala
225				230					235						240

Arg	Val	Thr	Ile	Tyr	Gln	Val	Pro	Leu	Pro	Lys	Asp	Ser	Thr	Gly	Ala
	245					250				255					

Ala	Asp	Pro	Pro	Gln	Pro	His	Ile	Val	Gly	Ile	Gln	Ser	Pro	Asp	Gln
	260				265					270					

Gln	Ala	Ala	Leu	Ala	Arg	His	Asn	Pro	Ala	Arg	Pro	Val	Phe	Val	Glu
	275				280					285					

Gly	Pro	Phe	Ser	Leu	Trp	Leu	Arg	Asn	Lys	Cys	Val	Tyr	Tyr	His	Ile
	290			295					300						

Leu	Arg	Ala	Asp	Leu	Leu	Pro	Pro	Glu	Glu	Arg	Glu	Val	Glu	Glu	Thr
	305				310				315						320

Pro	Glu	Glu	Trp	Asn	Leu	Tyr	Tyr	Pro	Met	Gln	Leu	Asp	Leu	Glu	Tyr
	325					330			335						

Val	Arg	Ser	Gly	Trp	Asp	Asn	Tyr	Glu	Phe	Asp	Ile	Asn	Glu	Val	Glu
	340					345					350				

Glu	Gly	Pro	Val	Phe	Ala	Met	Cys	Met	Ala	Gly	Ala	His	Asp	Gln	Ala
	355				360				365						

Thr	Met	Ala	Lys	Trp	Ile	Gln	Gly	Leu	Gln	Glu	Thr	Asn	Pro	Thr	Leu
	370				375				380						

Ala	Gln	Ile	Pro	Val	Val	Phe	Arg	Leu	Ala	Gly	Ser	Thr	Arg	Glu	Leu
	385				390				395						400

Gln	Thr	Ser	Ser	Ala	Gly	Leu	Glu	Glu	Pro	Pro	Leu	Pro	Glu	Asp	His
	405					410					415				

Gln	Glu	Glu	Asp	Asp	Asn	Leu	Gln	Arg	Gln	Gln	Gln	Gly	Gln	Ser	
	420				425					430					

<210> 145
<211> 443
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (364)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (443)
<223> Xaa equals stop translation

<400> 145
Met Trp Phe Thr Tyr Leu Leu Leu Tyr Leu His Ser Val Arg Ala Tyr
1 5 10 15

Ser Ser Arg Gly Ala Gly Cys Cys Cys Cys Trp Ala Arg Trp Arg Arg

	88	
20	25	30
Ala Val His Thr Ala Arg Gly Leu Arg Gly Arg Pro Arg Arg Gln Leu 35 40 45		
Leu Arg Pro Leu Arg Pro Ala Gln Gly Leu Ala Pro Gly Arg His Arg 50 55 60		
Leu Arg Pro Ala Val Leu Pro Leu His Leu Gln Pro Leu Pro Gly Leu 65 70 75 80		
Trp Gly Gly His Ala Glu Trp Ala Ala Leu Leu Tyr Tyr Gly Pro Phe 85 90 95		
Ile Val Ile Phe Gln Phe Gly Trp Ala Ser Thr Gln Ile Ser His Leu 100 105 110		
Ser Leu Ile Pro Glu Leu Val Thr Asn Asp His Glu Lys Val Glu Leu 115 120 125		
Thr Ala Leu Arg Tyr Ala Phe Thr Val Val Ala Asn Ile Thr Val Tyr 130 135 140		
Gly Ala Ala Trp Leu Leu His Leu Gln Gly Ser Ser Arg Val Glu 145 150 155 160		
Pro Thr Gln Asp Ile Ser Ile Ser Asp Gln Leu Gly Gly Gln Asp Val 165 170 175		
Pro Val Phe Arg Asn Leu Ser Leu Leu Val Val Gly Val Gly Ala Val 180 185 190		
Phe Ser Leu Leu Phe His Leu Gly Thr Arg Glu Arg Arg Arg Pro His 195 200 205		
Ala Glu Glu Pro Gly Glu His Thr Pro Leu Leu Ala Pro Ala Thr Ala 210 215 220		
Gln Pro Leu Leu Leu Trp Lys His Trp Leu Arg Glu Pro Ala Phe Tyr 225 230 235 240		
Gln Val Gly Ile Leu Tyr Met Thr Thr Arg Leu Ile Val Asn Leu Ser 245 250 255		
Gln Thr Tyr Met Ala Met Tyr Leu Thr Tyr Ser Leu His Leu Pro Lys 260 265 270		
Lys Phe Ile Ala Thr Ile Pro Leu Val Met Tyr Leu Ser Gly Phe Leu 275 280 285		
Ser Ser Phe Leu Met Lys Pro Ile Asn Lys Cys Ile Gly Arg Asn Met 290 295 300		
Thr Tyr Phe Ser Gly Leu Leu Val Ile Leu Ala Phe Ala Ala Trp Val 305 310 315 320		
Ala Leu Ala Glu Gly Leu Gly Val Ala Val Tyr Ala Ala Ala Val Leu 325 330 335		

89

Leu Gly Ala Gly Cys Ala Thr Ile Leu Val Thr Ser Leu Ala Met Thr
340 345 350

Ala Asp Leu Ile Gly Pro His Thr Asn Ser Gly Xaa Phe Val Tyr Gly
355 360 365

Ser Met Ser Phe Leu Asp Lys Val Ala Asn Gly Leu Ala Val Met Ala
370 375 380

Ile Gln Ser Leu His Pro Cys Pro Ser Glu Leu Cys Cys Arg Ala Cys
385 390 395 400

Val Ser Phe Tyr His Trp Ala Met Val Ala Val Thr Gly Gly Val Gly
405 410 415

Val Ala Ala Ala Leu Cys Leu Cys Ser Leu Leu Leu Trp Pro Thr Arg
420 425 430

Leu Arg Arg Trp Asp Arg Asp Ala Arg Pro Xaa
435 440

<210> 146
<211> 76
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (76)
<223> Xaa equals stop translation

<400> 146

Met Ser Arg Phe Ile Leu Asn His Leu Val Leu Ala Ile Pro Leu Arg
1 5 10 15

Val Leu Val Val Leu Trp Ala Phe Val Leu Gly Leu Ser Arg Val Met
20 25 30

Leu Gly Arg His Asn Val Thr Asp Val Ala Phe Gly Phe Phe Leu Gly
35 40 45

Tyr Met Gln Tyr Ser Ile Val Asp Tyr Cys Trp Leu Ser Pro His Asn
50 55 60

Ala Pro Val Leu Phe Leu Leu Trp Ser Gln Arg Xaa
65 70 75

<210> 147
<211> 52
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (52)
<223> Xaa equals stop translation

<400> 147

Met Ala Gly Trp Phe Arg Gly Phe Phe Gly Phe Leu Phe Phe Leu

1	5	90	
		10	15
Cys Leu Phe Asn Leu Lys Leu Phe Lys Leu Lys His Ser Gln Met Phe			
20		25	30
Gly Gly Lys His Pro Leu Lys Met Gly Pro Cys Ala Cys Leu Leu Gly			
35		40	45
Arg Arg Ser Xaa			
50			
<210> 148			
<211> 209			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> SITE			
<222> (3)			
<223> Xaa equals any of the naturally occurring L-amino acids			
<220>			
<221> SITE			
<222> (39)			
<223> Xaa equals any of the naturally occurring L-amino acids			
<400> 148			
Met Ala Xaa Ser Ser Arg Gly Asn Ala Asp Ser Ile Val Ala Ser Leu			
1	5	10	15
Val Leu Met Val Leu Tyr Leu Ile Lys Lys Arg Leu Val Ala Cys Ala			
20		25	30
Ala Val Phe Tyr Gly Phe Xaa Val His Met Lys Ile Tyr Pro Val Thr			
35		40	45
Tyr Ile Leu Pro Ile Thr Leu His Leu Leu Pro Asp Arg Asp Asn Asp			
50		55	60
Lys Ser Leu Arg Gln Phe Arg Tyr Thr Phe Gln Ala Cys Leu Tyr Glu			
65		70	75
			80
Leu Leu Lys Lys Leu Cys Asn Arg Ala Val Leu Leu Phe Val Ala Val			
85		90	95
Ala Gly Leu Thr Phe Phe Ala Leu Ser Phe Gly Phe Tyr Tyr Glu Tyr			
100		105	110
Gly Trp Glu Phe Leu Glu His Thr Tyr Phe Tyr His Leu Thr Arg Arg			
115		120	125
Asp Ile Arg His Asn Phe Ser Pro Tyr Phe Tyr Met Leu Tyr Leu Thr			
130		135	140
Ala Glu Ser Lys Trp Ser Phe Ser Leu Gly Ile Ala Ala Phe Leu Pro			
145		150	155
			160
Gln Leu Ile Leu Leu Ser Ala Val Ser Phe Ala Tyr Tyr Arg Asp Leu			
165		170	175

91

Val Phe Cys Cys Phe Leu His Thr Ser Ile Phe Val Thr Phe Asn Lys
180 185 190

Val Cys Thr Ser Gln Tyr Phe Leu Trp Val Pro Leu Ala Tyr Cys Leu
195 200 205

Leu

<210> 149

<211> 219

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (168)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (174)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (198)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (213)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (219)

<223> Xaa equals stop translation

<400> 149

Met Arg Ala Leu Leu Ala Leu Cys Leu Leu Leu Gly Trp Leu Arg Trp
1 5 10 15

Gly Pro Ala Gly Ala Gln Gln Ser Gly Glu Tyr Cys His Gly Trp Val
20 25 30

Asp Val Gln Gly Asn Tyr His Glu Gly Phe Gln Cys Pro Glu Asp Phe
35 40 45

Asp Thr Leu Asp Ala Thr Ile Cys Cys Gly Ser Cys Ala Leu Arg Tyr
50 55 60

Cys Cys Ala Ala Ala Asp Ala Arg Leu Glu Gln Gly Gly Cys Thr Asn
65 70 75 80

Asp Arg Arg Glu Leu Glu His Pro Gly Ile Thr Ala Gln Pro Val Tyr
85 90 95

92

Val Pro Phe Leu Ile Val Gly Ser Ile Phe Ile Ala Phe Ile Ile Leu
100 105 110

Gly Ser Val Val Ala Ile Tyr Cys Cys Thr Cys Leu Arg Pro Lys Glu
115 120 125

Pro Ser Gln Gln Pro Ile Arg Phe Ser Leu Arg Ser Tyr Gln Thr Glu
130 135 140

Thr Leu Pro Met Ile Leu Thr Ser Thr Ser Pro Arg Ala Pro Ser Arg
145 150 155 160

Gln Ser Ser Thr Ala Thr Ser Xaa Ser Phe Thr Gly Gly Xaa Ile Arg
165 170 175

Arg Phe Phe Ser Ala Ile Trp Phe Pro Gly Val Thr Pro Val Phe Arg
180 185 190

Leu Pro Pro Ser Ala Xaa Ala Pro Thr Gly Trp Glu Glu Leu Ser Arg
195 200 205

Leu Ser Val Pro Xaa Asp Thr Pro Arg Pro Xaa
210 215

<210> 150

<211> 50

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (41)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (50)

<223> Xaa equals stop translation

<400> 150

Met Gly Ala His Ser Phe Gly Phe Gln Leu Phe Met Ser Val Ser Val
1 5 10 15

Leu Trp Gly Arg Leu Cys Leu Tyr Gly Arg Phe Ser Val Ile Thr Phe
20 25 30

Ala Ser Pro Pro Thr Thr Phe Met Xaa Ile Gln Cys Cys Ser His Cys
35 40 45

Ser Xaa

50

<210> 151

<211> 41

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

93

<222> (41)

<223> Xaa equals stop translation

<400> 151

Met His Ile His Leu Asp Thr Ser Ser Leu Lys Thr Leu His Leu Gly
1 5 10 15

Thr Leu Phe Phe Leu Phe Tyr Leu Ala Leu Thr Gln Asn Glu Glu Asn
20 25 30

Ile Cys Asp Gly Lys Val Thr Leu Xaa
35 40

<210> 152

<211> 108

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (108)

<223> Xaa equals stop translation

<400> 152

Met Pro Ile Ile Val Leu Ile Leu Val Ser Leu Leu Ser Gln Leu Met
1 5 10 15

Val Ser Asn Pro Pro Tyr Ser Leu Tyr Pro Arg Ser Gly Thr Gly Gln
20 25 30

Thr Ile Lys Met Gln Thr Glu Asn Leu Gly Val Val Tyr Tyr Val Asn
35 40 45

Lys Asp Phe Lys Asn Glu Tyr Lys Gly Met Leu Leu Gln Lys Val Glu
50 55 60

Lys Ser Val Glu Glu Asp Tyr Val Thr Asn Ile Arg Asn Asn Cys Trp
65 70 75 80

Lys Glu Arg Gln Gln Lys Thr Asp Met Gln Tyr Ala Ala Lys Val Tyr
85 90 95

Arg Asp Asp Arg Leu Arg Arg Arg Gln Met Pro Xaa
100 105

<210> 153

<211> 157

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (157)

<223> Xaa equals stop translation

<400> 153

Met Gln Ala Ser Leu Trp Glu Pro Pro Arg Ser Gly Leu Pro Leu Trp
1 5 10 15

94

Ala Glu Gly Leu Thr Phe Phe Tyr Cys Tyr Met Leu Leu Leu Val Leu
 20 25 30

Pro Cys Val Ala Leu Ser Glu Val Ser Met Gln Gly Glu His Ile Ala
 35 40 45

Pro Gln Lys Met Met Leu Tyr Pro Val Leu Ser Leu Ala Thr Val Asn
 50 55 60

Val Val Ala Val Leu Ala Arg Ala Ala Asn Met Ala Leu Phe Arg Asp
 65 70 75 80

Ser Arg Val Ser Ala Ile Phe Val Gly Lys Asn Val Val Ala Leu Ala
 85 90 95

Thr Lys Ala Cys Thr Phe Leu Glu Tyr Arg Arg Gln Val Arg Asp Phe
 100 105 110

Pro Pro Pro Ala Leu Ser Leu Glu Leu Gln Pro Pro Pro Pro Gln Arg
 115 120 125

Asn Ser Val Pro Pro Pro Pro Leu His Gly Pro Pro Gly Arg Pro
 130 135 140

His Met Ser Ser Pro Thr Arg Asp Pro Leu Asp Thr Xaa
 145 150 155

<210> 154

<211> 151

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (151)

<223> Xaa equals stop translation

<400> 154

Met Gly Tyr Leu Phe Phe Leu Leu Phe Met Ile Cys Trp Met Ile Tyr
 1 5 10 15

Gly Cys Ile Ser Tyr Trp Gly Leu His Cys Glu Thr Thr Tyr Thr Lys
 20 25 30

Asp Gly Phe Trp Thr Tyr Ile Thr Gln Ile Ala Thr Cys Ser Pro Trp
 35 40 45

Met Phe Trp Met Phe Leu Asn Ser Val Phe His Phe Met Trp Val Ala
 50 55 60

Val Leu Leu Met Cys Gln Met Tyr Gln Ile Ser Cys Leu Gly Ile Thr
 65 70 75 80

Thr Asn Glu Arg Met Asn Ala Arg Arg Tyr Lys His Phe Lys Val Thr
 85 90 95

Thr Thr Ser Ile Glu Ser Pro Phe Asn His Gly Cys Val Arg Asn Ile
 100 105 110

Arg Arg Thr His Ala Thr Gln Lys Asn Thr Phe Gly Trp Ile Arg Ala
 50 55 60

Glu Val Met Gly Ala Leu Val Asn Ala Ile Phe Leu Thr Gly Leu Cys
 65 70 75 80

Phe Ala Ile Leu Leu Glu Ala Ile Glu Arg Phe Ile Glu Pro His Glu
 85 90 95

Met Gln Gln Pro Leu Val Val Leu Gly Val Gly Val Ala Gly Leu Leu
 100 105 110

Val Asn Val Leu Gly Leu Cys Leu Phe His His His Ser Gly Phe Ser
 115 120 125

Gln Asp Ser Gly His Xaa His Ser His Gly Gly His Gly His Gly His
 130 135 140

Gly Leu Pro Lys Gly Pro Arg Val Lys Ser Thr Arg Pro Gly Ser Ser
 145 150 155 160

Asp Ile Asn Val Ala Pro Gly Glu Gln Gly Pro Asp Gln Glu Glu Thr
 165 170 175

Asn Thr Leu Val Ala Asn Thr Ser Asn Ser Asn Gly Leu Lys Leu Asp
 180 185 190

Pro Ala Asp Pro Glu Asn Pro Arg Ser Gly Asp Thr Val Glu Val Gln
 195 200 205

Val Asn Gly Asn Leu Val Arg Glu Pro Asp His Met Glu Leu Glu Glu
 210 215 220

Asp Arg Ala Gly Gln Leu Asn Met Arg Gly Val Phe Leu His Val Leu
 225 230 235 240

Gly Asp Ala Leu Gly Ser Val Ile Val Val Val Asn Ala Leu Val Phe
 245 250 255

Tyr Phe Ser Trp Lys Gly Cys Ser Glu Gly Asp Phe Cys Val Asn Pro
 260 265 270

Cys Phe Pro Asp Pro Cys Lys Pro Phe Val Glu Ile Ile Asn Ser Thr
 275 280 285

His Ala Ser Val Tyr Glu Ala Gly Pro Cys Trp Val Leu Tyr Leu Asp
 290 295 300

Pro Thr Leu Cys Val Val Met Val Cys Ile Leu Leu Tyr Thr Thr Tyr
 305 310 315 320

Pro Leu Leu Lys Glu Ser Ala Leu Ile Leu Leu Gln Thr Val Pro Lys
 325 330 335

Gln Ile Asp Ile Arg Asn Leu Ile Lys Glu Leu Arg Asn Val Glu Gly
 340 345 350

Val Glu Glu Val His Glu Leu His Val Trp Gln Leu Ala Gly Ser Arg

	⁹⁷	
355	360	365
Ile Ile Ala Thr Ala His Ile Lys Cys Glu Asp Pro Thr Ser Tyr Met		
370	375	380
Glu Val Ala Lys Xaa Ile Lys Asp Val Phe His Asn His Gly Ile His		
385	390	395
Ala Thr Thr Ile Gln Pro Glu Phe Ala Ser Val Gly Ser Lys Ser Ser		
405	410	415
Val Val Pro Cys Glu Leu Ala Cys Arg Thr Gln Cys Ala Leu Lys Gln		
420	425	430
Cys Cys Gly Thr Leu Pro Gln Ala Pro Ser Gly Lys Asp Ala Glu Lys		
435	440	445
Thr Pro Ala Val Ser Ile Ser Cys Leu Glu Leu Ser Asn Asn Leu Glu		
450	455	460
Lys Lys Pro Arg Arg Thr Lys Ala Glu Asn Ile Pro Ala Val Val Ile		
465	470	475
480		
Glu Ile Lys Asn Met Pro Lys Gln Thr Thr		
485	490	
<210> 157		
<211> 31		
<212> PRT		
<213> Homo sapiens		
<400> 157		
Met Gln Pro Cys Val Ile Ser Trp Glu Gln Cys Ser Phe Val Ser Pro		
1	5	10
15		
Arg Gly Pro His Val Tyr Ile Cys Phe His Asp Gln Arg Arg Phe		
20	25	30
<210> 158		
<211> 115		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> SITE		
<222> (96)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<220>		
<221> SITE		
<222> (100)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<400> 158		
Met Leu Gly Leu Leu Gly Ser Thr Ala Leu Val Gly Trp Ile Thr Gly		
1	5	10
15		
Ala Ala Val Ala Val Leu Leu Leu Leu Leu Leu Ala Thr Cys Leu		
20	25	30

Phe His Gly Arg Gln Asp Cys Asp Val Glu Arg Asn Arg Thr Ala Ala
35 40 45

Gly Gly Asn Arg Val Arg Arg Ala Gln Pro Trp Pro Phe Arg Arg Arg
50 55 60

Gly His Leu Gly Ile Phe His His His Arg His Pro Gly His Val Ser
65 70 75 80

His Val Pro Asn Val Gly Leu His His His His His His Pro Arg His Xaa
85 90 . 95

Pro His His Xaa His His His His Pro His Arg His His Pro Arg
100 105 110

His Ala Arg
115

<210> 159
<211> 380
<212> PRT
<213> *Homo sapiens*

<400> 159

Met Lys Arg Ala Ser Ala Gly Gly Ser Arg Leu Leu Ala Trp Val Leu
1 5 10 15

Trp Leu Gln Ala Trp Gln Val Ala Ala Pro Cys Pro Gly Ala Cys Val
20 25 30

Cys Tyr Asn Glu Pro Lys Val Thr Thr Ser Cys Pro Gln Gln Gly Leu
35 40 45

Gln Ala Val Pro Val Gly Ile Pro Ala Ala Ser Gln Arg Ile Phe Leu
50 55 60

His	Gly	Asn	Arg	Ile	Ser	His	Val	Pro	Ala	Ala	Ser	Phe	Arg	Ala	Cys
65					70						75				80

Arg Asn Leu Thr Ile Leu Trp Leu His Ser Asn Val Leu Ala Arg Ile
85 90 95

Asp Ala Ala Ala Phe Thr Gly Leu Ala Leu Leu Glu Gln Leu Asp Leu
100 105 110

Ser Asp Asn Ala Gln Leu Arg Ser Val Asp Pro Ala Thr Phe His Gly
115 120 125

Leu Gly Arg Leu His Thr Val His Leu Asp Arg Cys Gly Leu Gln Glu
130 135 140

Leu Gly Pro Gly Leu Phe Arg Gly Leu Ala Ala Leu Gln Tyr Leu Tyr
145 150 155 160

Leu Gln Asp Asn Ala Leu Gln Ala Leu Pro Asp Asp Thr Phe Arg Asp
165 170 175

Leu Gly Asn Leu Thr His Leu Phe Leu His Gly Asn Arg Ile Ser Ser

	⁹⁹ 180	¹⁸⁵ 195 200	¹⁹⁰ 205
Val Pro Glu Arg Ala Phe Arg Gly Leu His Ser Leu Asp Arg Leu Leu			
195	200	205	
Leu His Gln Asn Arg Val Ala His Val His Pro His Ala Phe Arg Asp			
210	215	220	
Leu Gly Arg Leu Met Thr Leu Tyr Leu Phe Ala Asn Asn Leu Ser Ala			
225	230	235	240
Leu Pro Thr Glu Ala Leu Ala Pro Leu Arg Ala Leu Gln Tyr Leu Arg			
245	250	255	
Leu Asn Asp Asn Pro Trp Val Cys Asp Cys Arg Ala Arg Pro Leu Trp			
260	265	270	
Ala Trp Leu Gln Lys Phe Arg Gly Ser Ser Ser Glu Val Pro Cys Ser			
275	280	285	
Leu Pro Gln Arg Leu Ala Gly Arg Asp Leu Lys Arg Leu Ala Ala Asn			
290	295	300	
Asp Leu Gln Gly Cys Ala Val Ala Thr Gly Pro Tyr His Pro Ile Trp			
305	310	315	320
Thr Gly Arg Ala Thr Asp Glu Glu Pro Leu Gly Leu Pro Lys Cys Cys			
325	330	335	
Gln Pro Asp Ala Ala Asp Lys Ala Ser Val Leu Glu Pro Gly Arg Pro			
340	345	350	
Ala Ser Ala Gly Asn Ala Leu Lys Gly Pro Arg Ala Gly Arg Gly Gln			
355	360	365	
Ala Arg Arg Glu Thr Val Phe Gly Pro Arg Glu His			
370	375	380	
<210> 160			
<211> 92			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> SITE			
<222> (92)			
<223> Xaa equals stop translation			
<400> 160			
Met Arg Leu Cys Val Thr Gly Pro Pro Val Phe Phe Phe Leu Asn			
1	5	10	15
Phe Phe Phe Leu Cys Val Gly Ala Cys Leu Gly Asp Leu Lys Ile			
20	25	30	
Ser Arg Leu Val Tyr Leu Cys Lys Ala Cys Leu Arg Leu Glu Tyr Leu			
35	40	45	
Gly Lys Glu Ser Asp Ser Met Leu Ser Glu Phe Leu Lys Gly Gln Lys			

50	55	100
		60
Lys Asn Trp Arg Leu Leu Lys Cys Arg Phe Glu Val Ile Phe Leu Lys		
65	70	75
		80

Tyr Tyr Phe Gly Phe Cys Asp Ile Val Lys Asn Xaa		
85		90

<210> 161

<211> 45

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (45)

<223> Xaa equals stop translation

<400> 161

Met Lys Lys His Thr Lys Cys Gln Trp Leu Lys Met Thr Ile Leu Phe		
1	5	10
		15

Leu Thr Val Met Lys Ile Gly Tyr Gly Thr Ser Ala Ser Cys Tyr Arg		
20		25
		30

Pro Glu Val Leu Gly Leu Leu Met Pro His Pro Leu Xaa		
35	40	45

<210> 162

<211> 46

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (46)

<223> Xaa equals stop translation

<400> 162

Met Ser Cys Gly Cys Cys Phe Ile His Ile Tyr Asn Leu Leu Ser		
1	5	10
		15

Leu Cys Tyr Gly Leu Gly Val Glu Arg Val Lys Phe Phe Thr Phe Ser		
20	25	30

Ile Leu Lys Lys Glu Thr Met Leu Leu Asn Tyr Leu Phe Xaa		
35	40	45

<210> 163

<211> 128

<212> PRT

<213> Homo sapiens

<400> 163

Met Leu Ser Ser Pro Ile Leu Ala Ser Gly Pro Ala Trp Leu Ala Cys		
1	5	10
		15

Ser Phe Ser His Val Gln Trp Trp Val Cys Leu Ile Ala Gln Val Gln		
20	25	30

101

Phe Ser Ala Ala Thr Val Ser Pro Gly Arg Ala Gly Thr Gly Ala Ala
 35 40 45

Pro Ser Val Pro Ala Val Trp Ala Ala Glu Ala Arg Gly Pro Ser Val
 50 55 60

Pro Ser Thr Leu Gln Gly Ser Pro Val Leu Gln Arg Asp Leu Ala Asn
 65 70 75 80

Pro Pro Pro Lys
 85 90 95

Lys
 100 105 110

Lys Gly Gly Pro
 115 120 125

<210> 164

<211> 58

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (58)

<223> Xaa equals stop translation

<400> 164

Met His Pro Trp Arg Leu Ser Met Cys Pro Ala Cys Val Leu Ala Ala
 1 5 10 15

Leu Pro Ala Leu Cys Ser Cys Leu Cys Ser Pro Asp Ala Arg Pro Pro
 20 25 30

His Gly Trp Met Ser Met Pro Phe Thr Pro His Pro Leu Val Ser Arg
 35 40 45

Ala Met Pro Thr Cys His Pro Cys Ser Xaa
 50 55

<210> 165

<211> 98

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (98)

<223> Xaa equals stop translation

<400> 165

Met Tyr Arg Ala Ile Asp Ser Phe Pro Arg Trp Arg Ser Tyr Phe Tyr
 1 5 10 15

102

Phe	Ile	Thr	Leu	Ile	Phe	Phe	Leu	Ala	Trp	Leu	Val	Lys	Asn	Val	Phe
20									25					30	

Ile	Ala	Val	Ile	Ile	Glu	Thr	Phe	Ala	Glu	Ile	Arg	Val	Gln	Phe	Gln
35							40				45				

Gln	Met	Trp	Gly	Ser	Arg	Ser	Ser	Thr	Thr	Ser	Thr	Ala	Thr	Thr	Gln
50						55					60				

Met	Phe	His	Glu	Asp	Ala	Ala	Gly	Gly	Trp	Gln	Leu	Val	Ala	Val	Gly
65					70					75				80	

Cys	Gln	Gln	Ala	Pro	Gly	Thr	Arg	Pro	Ser	Leu	Pro	Pro	Gly	Ala	Val
85								90					95		

Gln Xaa

<210> 166

<211> 60

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (60)

<223> Xaa equals stop translation

<400> 166

Met	Thr	Ser	Phe	Cys	Glu	Met	Leu	Lys	Gly	Ser	Ala	Ala	Gly	Cys	Leu
1						5									
														15	

Val	Leu	Leu	Ala	Phe	Ala	Phe	Tyr	Leu	Ala	Cys	Ser	Phe	Ser	His	Lys
20								25					30		

Thr	Lys	Ser	His	Ser	His	Tyr	Ala	Leu	Phe	Ile	Leu	Gln	Asp	Tyr	Leu
35						40					45				

Leu Gly Asn Phe Tyr Tyr Ile Pro Leu Ser Pro Xaa

50			55			60		
----	--	--	----	--	--	----	--	--

<210> 167

<211> 43

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (43)

<223> Xaa equals stop translation

<400> 167

Met	Ser	Val	Ala	His	Met	His	Ala	Cys	Val	Phe	Leu	Cys	Ala	Cys	Val
1									5						15

Phe	Cys	Leu	Ala	Glu	Asn	Ala	Leu	Glu	Ser	Val	Ile	Ile	Leu	Cys	Tyr
20							25						30		

Ser Tyr Asn Lys Asp Glu Val Arg Glu His Xaa

103

35

40

<210> 168

<211> 54

<212> PRT

<213> Homo sapiens

<400> 168

Met Lys Thr His Leu Leu Met Phe Leu Leu Ser Cys Met Ala Arg Cys
1 5 10 15Thr Gly Ile Val Pro Lys Arg Pro Gln Pro Ala Phe Pro Leu Arg Gly
20 25 30Arg Arg Arg Lys Asn Ser Phe Leu Phe Leu Leu Ser Phe Ser Ile Glu
35 40 45Phe Leu Leu Cys Val Trp
50

<210> 169

<211> 53

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (11)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 169

Met Cys Lys Ala Val Cys Lys His Arg Leu Xaa Leu Phe Ala Val Ser
1 5 10 15Ser Phe Ser Leu Gly Leu Gly Trp Val Cys Val Leu Val Leu Met Leu
20 25 30Trp Pro Val Arg Leu Ser Leu Ala Pro Arg Pro Val Gln Leu Gln Gln
35 40 45Arg Arg Ser His Cys
50

<210> 170

<211> 54

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (54)

<223> Xaa equals stop translation

<400> 170

Met Phe Thr Ala Pro Leu Phe Phe Phe Phe Phe Phe Glu Ile Ile Asn
1 5 10 15Ser Met Arg Asn Leu Gly Leu Asn Ile Cys Leu Leu Cys Leu Leu Ile
20 25 30

104

Glu His His Ser Arg Pro Ser Val Cys Leu Pro Phe Thr Pro Lys Ile
35 40 45

Leu Thr Lys Lys Phe Xaa
50

<210> 171
<211> 49
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (49)
<223> Xaa equals stop translation

<400> 171
Met Leu Cys Phe Leu Pro Ile Pro Leu Leu Ser Ile Leu Ser Pro Gln
1 5 10 15

Thr Gln Ala Ser Arg Leu Leu Asp Glu Thr Val Arg Arg Lys His Phe
20 25 30

Leu Thr Tyr Pro Phe Gly Ile Ser Ser Ile Ile Thr Gln Ala Leu Leu
35 40 45

Xaa

<210> 172
<211> 224
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (183)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (214)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 172
Met Val Leu Val Ala Leu Ile Leu Leu His Ser Ala Leu Ala Gln Ser
1 5 10 15

Arg Arg Asp Phe Ala Pro Pro Gly Gln Gln Lys Arg Glu Ala Pro Val
20 25 30

Asp Val Leu Thr Gln Ile Gly Arg Ser Val Arg Gly Thr Leu Asp Ala
35 40 45

Trp Ile Gly Pro Glu Thr Met His Leu Val Ser Glu Ser Ser Ser Gln
50 55 60

Val Leu Trp Ala Ile Ser Ser Ala Ile Ser Val Ala Phe Phe Ala Leu

		105		
65	70		75	80
Ser Gly Ile Ala Ala Gln Leu Leu Asn Ala Leu Gly Leu Ala Gly Asp				
	85		90	95
Tyr Leu Ala Gln Gly Leu Lys Leu Ser Pro Gly Gln Val Gln Thr Phe				
	100		105	110
Leu Leu Trp Gly Ala Gly Ala Leu Val Val Tyr Trp Leu Leu Ser Leu				
	115		120	125
Leu Leu Gly Leu Val Leu Ala Leu Leu Gly Arg Ile Leu Trp Gly Leu				
	130		135	140
Lys Leu Val Ile Phe Leu Ala Gly Phe Val Ala Leu Met Arg Ser Val				
	145		150	155
Pro Asp Pro Ser Thr Arg Ala Leu Leu Leu Ala Leu Leu Ile Leu				
	165		170	175
Tyr Ala Leu Leu Ser Arg Xaa Thr Gly Ser Arg Ala Ser Gly Ala Gln				
	180		185	190
Leu Glu Ala Lys Val Arg Gly Leu Glu Arg Gln Val Glu Glu Leu Arg				
	195		200	205
Trp Arg Gln Arg Gln Xaa Ala Lys Gly Ala Arg Ser Val Glu Glu Glu				
	210		215	220

<210> 173

<211> 201

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (10)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (11)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (27)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (50)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

106

<222> (60)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (84)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (178)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (180)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (190)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (201)

<223> Xaa equals stop translation

<400> 173

Met	Leu	Gln	Arg	Met	Leu	Ile	Asp	Val	Xaa	Xaa	Phe	Leu	Phe	Leu	Phe
1				5					10					15	

Ala	Val	Trp	Met	Val	Ala	Phe	Gly	Val	Ala	Xaa	Gln	Gly	Ile	Leu	Arg
			20					25					30		

Gln	Asn	Glu	Gln	Arg	Trp	Arg	Trp	Ile	Phe	Arg	Ser	Val	Ile	Tyr	Glu
			35				40					45			

Pro	Xaa	Leu	Ala	Met	Phe	Gly	Gln	Val	Pro	Ser	Xaa	Val	Asp	Gly	Thr
				50			55				60				

Thr	Tyr	Asp	Phe	Ala	His	Cys	Thr	Phe	Thr	Gly	Asn	Glu	Ser	Lys	Pro
				65			70			75			80		

Leu	Cys	Val	Xaa	Leu	Asp	Glu	His	Asn	Leu	Pro	Arg	Phe	Pro	Glu	Trp
				85				90				95			

Ile	Thr	Ile	Pro	Leu	Val	Cys	Ile	Tyr	Met	Leu	Ser	Thr	Asn	Ile	Leu
				100				105			110				

Leu	Val	Asn	Leu	Leu	Val	Ala	Met	Phe	Gly	Tyr	Thr	Val	Gly	Thr	Val
				115				120			125				

Gln	Glu	Asn	Asn	Asp	Gln	Val	Trp	Lys	Phe	Gln	Arg	Tyr	Phe	Leu	Val
				130			135			140					

Gln	Glu	Tyr	Cys	Ser	Arg	Leu	Asn	Ile	Pro	Phe	Pro	Phe	Ile	Val	Phe
				145			150			155		160			

107
Ala Tyr Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys Lys
165 170 175

Glu Xaa Asn Xaa Glu Ser Ser Val Cys Cys Ser Lys Met Xaa Thr Met
180 185 190

Arg Leu Trp His Gly Arg Val Ser Xaa
195 200

<210> 174

<211> 93

<212> PRT

<213> Homo sapiens

<400> 174

Met Pro Arg Ala Thr Leu Trp Gly His Leu Ser Pro Ala Trp Val Leu
1 5 10 15

Val Pro Trp Thr Pro Arg Ala Cys Gly Gln Ala Ala Pro Gly Arg Gly
20 25 30

His Val Ala Ser Asp His Lys Ser Gly Leu Pro Trp Pro Lys His Cys
35 40 45

Ser Cys Leu His Pro Arg Ala Ser Gln Pro Cys Leu Phe Ser Leu Asn
50 55 60

Ser Asn Arg Thr Val Phe Thr Ala Ile Gln Arg Val Ala Leu Gly Trp
65 70 75 80

Thr Phe Trp Val Gln Ala Asn Leu Val Pro Arg Cys Thr
85 90

<210> 175

<211> 404

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (41)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (77)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (96)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (98)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

108

<221> SITE
<222> (108)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (122)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (124)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (126)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (175)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (192)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (210)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (236)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (239)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (309)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (335)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (389)
<223> Xaa equals any of the naturally occurring L-amino acids

109

<400> 175
Met His Pro Ile Pro Ser Ser Phe Met Ile Lys Ala Val Ser Ser Phe
1 5 10 15

Leu Thr Ala Glu Glu Ala Ser Val Gly Asn Pro Glu Gly Ala Phe Met
20 25 30

Lys Val Leu Gln Ala Arg Lys Asn Xaa Thr Ser Thr Glu Leu Ile Val
35 40 45

Glu Pro Glu Glu Pro Ser Asp Ser Ser Gly Ile Asn Leu Ser Gly Phe
50 55 60

Gly Ser Glu Gln Leu Asp Thr Asn Asp Glu Ser Asp Xaa Ile Ser Thr
65 70 75 80

Leu Ser Tyr Ile Leu Pro Tyr Phe Ser Ala Val Asn Leu Asp Val Xaa
85 90 95

Ser Xaa Leu Leu Pro Phe Ile Lys Leu Pro Thr Xaa Gly Asn Ser Leu
100 105 110

Ala Lys Ile Gln Thr Val Gly Gln Asn Xaa Gln Xaa Val Xaa Arg Val
115 120 125

Leu Met Gly Pro Arg Ser Ile Gln Lys Arg His Phe Lys Glu Val Gly
130 135 140

Arg Gln Ser Ile Arg Arg Glu Gln Gly Ala Gln Ala Ser Val Glu Asn
145 150 155 160

Ala Ala Glu Glu Lys Arg Leu Gly Ser Pro Ala Pro Arg Glu Xaa Glu
165 170 175

Gln Pro His Thr Gln Gln Gly Pro Glu Lys Leu Ala Gly Asn Ala Xaa
180 185 190

Tyr Thr Lys Pro Ser Phe Thr Gln Glu His Lys Ala Ala Val Ser Val
195 200 205

Leu Xaa Pro Phe Ser Lys Gly Ala Pro Ser Thr Ser Ser Pro Ala Lys
210 215 220

Ala Leu Pro Gln Val Arg Asp Arg Trp Lys Asp Xaa Thr His Xaa Ile
225 230 235 240

Ser Ile Leu Glu Ser Ala Lys Ala Arg Val Thr Asn Met Lys Ala Ser
245 250 255

Lys Pro Ile Ser His Ser Arg Lys Lys Tyr Arg Phe His Lys Thr Arg
260 265 270

Ser Arg Met Thr His Arg Thr Pro Lys Val Lys Lys Ser Pro Lys Phe
275 280 285

Arg Lys Lys Ser Tyr Leu Ser Arg Leu Met Leu Ala Asn Arg Pro Pro
290 295 300

Phe Ser Ala Ala Xaa Ser Leu Ile Asn Ser Pro Ser Gln Gly Ala Phe

110
305 310 315 320
Ser Ser Leu Gly Asp Leu Ser Pro Gln Glu Asn Pro Phe Leu Xaa Val
 325 330 335

Ser Ala Pro Ser Glu His Phe Ile Glu Thr Thr Asn Ile Lys Asp Thr
 340 345 350

Thr Ala Arg Asn Ala Leu Glu Glu Asn Val Phe Met Glu Asn Thr Asn
 355 360 365

Met Pro Glu Val Thr Ile Ser Glu Asn Thr Asn Tyr Asn His Pro Pro
 370 375 380

Glu Ala Asp Ser Xaa Gly Thr Ala Phe Asn Leu Gly Pro Thr Val Lys
 385 390 395 400

Gln Thr Glu Thr

<210> 176
<211> 387
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (228)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (359)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 176
Met Gly Ala Phe Leu Asp Lys Pro Lys Thr Glu Lys His Asn Ala His
1 5 10 15

Gly Ala Gly Asn Gly Leu Arg Tyr Gly Leu Ser Ser Met Gln Gly Trp
20 25 30

Arg Val Glu Met Glu Asp Ala His Thr Ala Val Val Gly Ile Pro His
35 40 45

Gly Leu Glu Asp Trp Ser Phe Phe Ala Val Tyr Asp Gly His Ala Gly
50 55 60

Ser Arg Val Ala Asn Tyr Cys Ser Thr His Leu Leu Glu His Ile Thr
65 70 75 80

Thr Asn Glu Asp Phe Arg Ala Ala Gly Lys Ser Gly Ser Ala Leu Glu
85 90 95

Leu Ser Val Glu Asn Val Lys Asn Gly Ile Arg Thr Gly Phe Leu Lys
100 105 110

Ile Asp Glu Tyr Met Arg Asn Phe Ser Asp Leu Arg Asn Gly Met Asp
115 120 125

111

Arg Ser Gly Ser Thr Ala Val Gly Val Met Ile Ser Pro Lys His Ile
130 135 140

Tyr Phe Ile Asn Cys Gly Asp Ser Arg Ala Val Leu Tyr Arg Asn Gly
145 150 155 160

Gln Val Cys Phe Ser Thr Gln Asp His Lys Pro Cys Asn Pro Arg Glu
165 170 175

Lys Glu Arg Ile Gln Asn Ala Gly Gly Ser Val Met Ile Gln Arg Val
180 185 190

Asn Gly Ser Leu Ala Val Ser Arg Ala Leu Gly Asp Tyr Asp Tyr Lys
195 200 205

Cys Val Asp Gly Lys Gly Pro Thr Glu Gln Leu Val Ser Pro Glu Pro
210 215 220

Glu Val Tyr Xaa Ile Leu Arg Ala Glu Glu Asp Glu Phe Ile Ile Leu
225 230 235 240

Ala Cys Asp Gly Ile Trp Asp Val Met Ser Asn Glu Glu Leu Cys Glu
245 250 255

Tyr Val Lys Ser Arg Leu Glu Val Ser Asp Asp Leu Glu Asn Val Cys
260 265 270

Asn Trp Val Val Asp Thr Cys Leu His Lys Gly Ser Arg Asp Asn Met
275 280 285

Ser Ile Val Leu Val Cys Phe Ser Asn Ala Pro Lys Val Ser Asp Glu
290 295 300

Ala Val Lys Lys Asp Ser Glu Leu Asp Lys His Leu Glu Ser Arg Val
305 310 315 320

Glu Glu Ile Met Glu Lys Ser Gly Glu Glu Gly Met Pro Asp Leu Ala
325 330 335

His Val Met Arg Ile Leu Ser Ala Glu Asn Ile Pro Asn Leu Pro Pro
340 345 350

Gly Gly Gly Leu Ala Gly Xaa Arg Asn Val Ile Glu Ala Val Tyr Ser
355 360 365

Arg Leu Asn Pro His Arg Glu Ser Asp Gly Gly Ala Gly Asp Leu Glu
370 375 380

Asp Pro Trp
385

<210> 177

<211> 145

<212> PRT

<213> Homo sapiens

<400> 177

Met Ala Phe Phe Thr Gly Leu Trp Gly Pro Phe Thr Cys Val Ser Arg

112
1 5 10 15

Val Leu Ser His His Cys Phe Ser Thr Thr Gly Ser Leu Ser Ala Ile
20 25 30

Gln Lys Met Thr Arg Val Arg Val Val Asp Asn Ser Ala Leu Gly Asn
35 40 45

Ser Pro Tyr His Arg Ala Pro Arg Cys Ile His Val Tyr Lys Lys Asn
50 55 60

Gly Val Gly Lys Val Gly Asp Gln Ile Leu Leu Ala Ile Lys Gly Gln
65 70 75 80

Lys Lys Lys Ala Leu Ile Val Gly His Cys Met Pro Gly Pro Arg Met
85 90 95

Thr Pro Arg Phe Asp Ser Asn Asn Val Val Leu Ile Glu Asp Asn Gly
100 105 110

Asn Pro Val Gly Thr Arg Ile Lys Thr Pro Ile Pro Thr Ser Leu Arg
115 120 125

Lys Arg Glu Gly Glu Tyr Ser Lys Val Leu Ala Ile Ala Gln Asn Phe
130 135 140

Val
145

<210> 178
<211> 140
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (129)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (132)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (134)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 178
Met Phe Phe Ser Leu Pro Gly Leu Trp Gln Ile Ala Ser Phe Thr His
1 5 10 15

Asn Leu Ile Phe His Leu Trp Val Trp Gly Ser Glu Ser Gly Glu His
20 25 30

Leu Gln Ser His Asn Asp Pro Asp Thr Arg Gln Gly Gly His Ile Pro
35 40 45

113

Ile	Arg	Leu	Leu	Gly	Glu	Ser	Ser	Ala	Ser	Val	Pro	Gly	Ser	Ser	Glu
50						55					60				

Gly	His	Thr	Gly	Gly	Pro	Ala	Pro	Pro	Arg	Val	Gly	Gly	Ser	Ala	Gly
65						70				75				80	

Ile	Ile	Arg	Thr	His	Val	Val	Phe	Leu	Val	Ser	Trp	Pro	Leu	Leu	Gln
							85			90			95		

Arg	Glu	Gln	His	Arg	Leu	Ser	Trp	Lys	Leu	Pro	Ser	Val	Met	Trp	Gly
						100			105			110			

Asp	Ser	Arg	Glu	Pro	His	Leu	Ala	Arg	Leu	Asp	Gln	Ser	Lys	Trp	Pro
						115			120			125			

Xaa	Ala	Thr	Xaa	Ala	Xaa	Gln	Tyr	Leu	Gly	Arg	Gly				
						130			135			140			

<210> 179
<211> 127
<212> PRT
<213> Homo sapiens

<400> 179

Met	Val	Pro	Gly	Ala	Ala	Gly	Trp	Cys	Cys	Leu	Val	Leu	Trp	Leu	Pro
1						5				10			15		

Ala	Cys	Val	Ala	Ala	His	Gly	Phe	Arg	Ile	His	Asp	Tyr	Leu	Tyr	Phe
						20			25			30			

Gln	Val	Leu	Ser	Pro	Gly	Asp	Ile	Arg	Tyr	Ile	Phe	Thr	Ala	Thr	Pro
						35			40			45			

Ala	Lys	Asp	Phe	Gly	Gly	Ile	Phe	His	Thr	Arg	Tyr	Glu	Gln	Ile	His
						50			55			60			

Leu	Val	Pro	Ala	Glu	Pro	Pro	Glu	Ala	Cys	Gly	Glu	Leu	Ser	Asn	Gly
							65		70		75		80		

Phe	Phe	Ile	Gln	Asp	Gln	Ile	Ala	Leu	Val	Glu	Arg	Gly	Cys	Ser	
							85		90			95			

Phe	Leu	Ser	Lys	Thr	Arg	Val	Val	Gln	Glu	His	Gly	Gly	Arg	Ala	Val
						100			105			110			

Ile	Ile	Ser	Asp	Asn	Ala	Leu	Thr	Met	Thr	Ala	Ser	Thr	Trp	Arg	
							115		120			125			

<210> 180
<211> 146
<212> PRT
<213> Homo sapiens

<400> 180

Met	Gln	Gln	Ser	Arg	Leu	Leu	Leu	Pro	Phe	Leu	Phe	Leu	Leu	Glu	
1							5		10			15			

Gly	Cys	Ala	Pro	Ser	Ser	Leu	Gly	Pro	Gly	Ala	Ala	Pro	Gly	Ser	Gly
						20			25			30			

114

His Ser Leu Gly Pro Pro Gly Ser Pro Gly Ala Pro Gly Pro Gln Pro
35 40 45

Ala Val Gly Pro Ser Ser Pro Cys Gln Pro Gly Pro Ser Pro Ser Ser
50 55 60

Pro Ala Ala Ala Ala Ala Ser Ser Gln Ser Val Ala Ser Trp Pro
65 70 75 80

Cys Thr Leu Arg Cys Ala Ala Pro Ser Pro Asp Ala Ser Ala Leu Arg
85 90 95

Pro Ala Ala Ser Pro Ala Ala Thr Pro Ala Trp Ser Pro Gly Ser Gly
100 105 110

Thr Ile Arg Val Leu Arg Pro Pro Ala Pro Ala Ala Pro Ala Thr
115 120 125

Ala Ile Thr Asn Arg Gly Pro Pro Arg Arg Arg Arg Asn Ala Arg
130 135 140

Thr Ala
145

<210> 181
<211> 68
<212> PRT
<213> Homo sapiens

<400> 181
Met Lys Pro Thr Arg Ser Leu Trp Ile Ser Phe Leu Met Cys Cys Trp
1 5 10 15

Ile Trp Phe Ala Asn Ile Leu Leu Arg Ile Phe Ala Ser Val Phe Phe
20 25 30

Arg Asp Ile Gly Leu Lys Phe Ser Phe Phe Cys Cys Val Ser Ala Arg
35 40 45

Leu Trp Tyr Gln Asp Asp Ala Gly Leu Ile Asn Glu Leu Gly Arg Ile
50 55 60

Pro Ser Phe Tyr
65

<210> 182
<211> 51
<212> PRT
<213> Homo sapiens

<400> 182
Met Thr Pro Val Phe Arg Ala Trp Gly Leu Trp Val Tyr Val Leu Pro
1 5 10 15

Thr Gly Phe Pro Gly Pro Cys Cys Met Met Leu Leu Glu Leu Phe Pro
20 25 30

Lys Glu Ser Val Pro Gln Ala Tyr Gln Gly Ile Leu Leu Tyr Leu His

	115	
35	40	45
Phe Gly Phe 50		
<210> 183		
<211> 85		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> SITE		
<222> (68)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<400> 183		
Met Gly Met Pro Leu Val Thr Val Thr Ala Ala Thr Phe Pro Thr Leu		
1	5	10
		15
Ser Cys Pro Pro Arg Ala Trp Pro Glu Val Glu Ala Pro Glu Ala Pro		
20	25	30
Ala Leu Pro Val Val Pro Glu Leu Pro Glu Val Pro Met Glu Met Pro		
35	40	45
Leu Val Leu Pro Pro Glu Leu Glu Leu Leu Ser Leu Glu Ala Val His		
50	55	60
Arg Tyr Gln Xaa Gly Gly Thr Leu Met Gly Trp Thr Arg Ala Glu Ala		
65	70	75
		80
Ser Ala Asn Gly Ser		
85		
<210> 184		
<211> 191		
<212> PRT		
<213> Homo sapiens		
<400> 184		
Met Gly Asp His Leu Asp Leu Leu Leu Gly Val Val Leu Met Ala Gly		
1	5	10
		15
Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe		
20	25	30
Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr		
35	40	45
Glu Arg Leu Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser		
50	55	60
Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Leu Glu Leu Gly Ser Gln		
65	70	75
		80
Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn		
85	90	95
Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro		

116

100	105	110
Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe		
115	120	125
Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu		
130	135	140
Lys Ala Leu Thr Arg Leu Asp Leu Ser Lys Asn Gln Ile Arg Ser Leu		
145	150	155
Tyr Leu His Pro Ser Phe Gly Lys Leu Asn Ser Leu Lys Ser Ile Asp		
165	170	175
Phe Ser Ser Asn Gln Ile Phe Leu Val Cys Glu His Glu Leu Glu		
180	185	190
<210> 185		
<211> 231		
<212> PRT		
<213> Homo sapiens		
<400> 185		
Met Trp Ala Leu Gln Leu Ser Leu Pro Thr Cys Gly Leu Ala Ala Leu		
1	5	10
Leu Thr His Met Arg Pro Cys Ser Ser Pro Tyr Pro His Ala Gly Leu		
20	25	30
Ala Ala Leu Leu Thr His Met Gly Pro Cys Arg Ser Pro Tyr Pro His		
35	40	45
Gly Gly Leu Ala Ala Val Leu Thr His Met Arg Ala Leu Gln Leu Ser		
50	55	60
Leu Pro Thr Trp Gly Leu Ala Ala Leu Leu Thr His Met Arg Pro Cys		
65	70	75
80		
Ser Ser Pro Tyr Pro His Ala Gly Leu Ala Cys Cys Trp Leu Trp Ser		
85	90	95
Leu Ser Ser His Arg Ser Leu Gln Val Gln Ala Thr His Arg Leu Val		
100	105	110
Val Arg Thr Ile Lys Asp Arg Val Met Leu Lys Val Leu Pro Gln Thr		
115	120	125
Arg Arg Arg Gly Pro Phe Leu Ser Ser Cys Arg Asn Asp Val Met Arg		
130	135	140
Asn Cys Val Pro Arg His Ala Val Leu Val Thr Thr Cys Val Phe Val		
145	150	155
160		
Ser Phe Pro Thr His Cys Lys Val Gly Ile Thr Gly Pro Ile Thr Gln		
165	170	175
Val Lys Gln Lys Pro Gly Asn His Ser Ser Pro Cys Pro Val Ile Gln		
180	185	190

117

Leu Val Ala Lys Ala Glu Phe Glu Leu Met Leu Pro Ser Val Pro Lys
195 200 205

Pro Val Tyr Leu Thr Leu Val Leu Ser Cys Trp Cys Leu Cys Asp Val
210 215 220

Pro Cys Leu Ser Val Ser Leu
225 230

<210> 186
<211> 68
<212> PRT
<213> Homo sapiens

<400> 186

Met Tyr Leu Glu Val Ala Val Arg Pro Phe Leu Ile Ile Val Ala Phe
1 5 10 15

Leu Gly Leu Ser Phe Leu Ala Leu Gln Met Pro Phe Trp Gln Gly Ser
20 25 30

Ala Val Gly His Leu Arg Ala Gly Gly Ala Gly Val Ala His Leu Ser
35 40 45

Gln Ala Gly Ile Ile Gln Ala Pro Val His Ser Gly Arg Glu Gly Gln
50 55 60

Pro Pro Pro Gly
65

<210> 187
<211> 211
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (100)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (103)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 187

Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val
1 5 10 15

Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Ala Pro
20 25 30

Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu
35 40 45

Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Gly Asn Leu
50 55 60

Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp Phe Arg Gly

		118	
65	70	75	80
Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His Gln Leu Gly			
	85	90	95
Asn Asn Thr Xaa Ser Ser Xaa Leu Gln Ile Asp Lys Val Pro Arg Met			
	100	105	110
Glu Glu Lys Glu Ala Leu Val Pro Ile Gln Lys Ala Thr Asp Ser Phe			
	115	120	125
His Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile Lys Leu Pro			
	130	135	140
Arg Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His Trp Leu Ser			
	145	150	155
160			
Glu Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu Arg Lys Gly			
	165	170	175
Thr His Lys Asp Val Leu Glu Gly Thr Glu Ser Ser Ser His Ser			
	180	185	190
Arg Leu Ser Pro Arg Lys Thr His Leu Leu Tyr Ile Leu Arg Pro Ser			
	195	200	205
Arg Gln Leu			
	210		
<210> 188			
<211> 90			
<212> PRT			
<213> Homo sapiens			
<400> 188			
Met Leu Val Val Ser Thr Val Ile Ile Val Phe Trp Glu Phe Ile Asn			
1	5	10	15
Ser Thr Glu Gly Ser Phe Leu Trp Ile Tyr His Ser Lys Asn Pro Glu			
	20	25	30
Val Asp Asp Ser Ser Ala Gln Lys Gly Trp Trp Phe Leu Ser Trp Phe			
	35	40	45
Asn Asn Gly Ile His Asn Tyr Gln Gln Gly Glu Glu Asp Ile Asp Lys			
	50	55	60
Glu Lys Gly Arg Glu Glu Thr Lys Gly Arg Lys Met Thr Gln Gln Ser			
	65	70	75
80			
Phe Gly Tyr Gly Thr Gly Leu Ile Gln Thr			
	85	90	
<210> 189			
<211> 62			
<212> PRT			
<213> Homo sapiens			
<400> 189			

119

Met	Glu	Leu	Met	Ala	Leu	Phe	Phe	Arg	Thr	Thr	Thr	Val	Ala	Ala	Met
1				5					10				15		

Ala Ser Arg Gly Ala Leu Ala Leu Phe Leu Arg Lys Ile Leu Ser Glu
20 25 30

Ala Lys Phe Lys Leu Ser Leu Thr Pro Gln Pro Pro Gln Pro Phe Tyr
35 40 45

Ile Tyr Met Ala Tyr Tyr Ser Glu Asn Phe Phe Leu Lys Phe
50 55 60

<210> 190

<211> 295

<212> PRT

<213> Homo sapiens

<400> 190

Met	Leu	Cys	Cys	Trp	Phe	Pro	Trp	Arg	Ile	Leu	Ala	Ala	Gly	Gln	Val
1				5					10				15		

Pro Tyr Ser Pro His Ser Pro Gln Val Ala Gly Cys Asp Leu Thr Arg
20 25 30

Cys Glu Ser Gly Gly Ala Arg Ala Leu Ser Ile Gln Arg Ala Ala Leu
35 40 45

Val Val Leu Glu Asn Tyr Tyr Lys Asp Phe Thr Ile Tyr Asn Pro Asn
50 55 60

Leu Leu Thr Ala Ser Lys Phe Arg Ala Ala Lys His Met Ala Gly Leu
65 70 75 80

Lys Val Tyr Asn Val Asp Gly Pro Ser Asn Asn Ala Thr Gly Gln Ser
85 90 95

Arg Ala Met Ile Ala Ala Ala Arg Arg Arg Asp Ser Ser His Asn
100 105 110

Glu Leu Tyr Tyr Glu Glu Ala Glu His Glu Arg Arg Val Lys Lys Arg
115 120 125

Lys Ala Arg Leu Val Val Ala Val Glu Glu Ala Phe Ile His Ile Gln
130 135 140

Arg Leu Gln Ala Glu Glu Gln Gln Lys Ala Pro Gly Glu Val Met Asp
145 150 155 160

Pro Arg Glu Ala Ala Gln Ala Ile Phe Pro Ser Met Ala Arg Ala Leu
165 170 175

Gln Lys Tyr Leu Arg Ile Thr Arg Gln Gln Asn Tyr His Ser Met Glu
180 185 190

Ser Ile Leu Gln His Leu Ala Phe Cys Ile Thr Asn Gly Met Thr Pro
195 200 205

Lys Ala Phe Leu Glu Arg Tyr Leu Ser Ala Gly Pro Thr Leu Gln Tyr
210 215 220

120

Asp Lys Asp Arg Trp Leu Ser Thr Gln Trp Arg Leu Val Ser Asp Glu
225 230 235 240

Ala Val Thr Asn Gly Leu Arg Asp Gly Ile Val Phe Val Leu Lys Cys
245 250 255

Leu Asp Phe Ser Leu Val Val Asn Val Lys Lys Ile Pro Phe Ile Ile
260 265 270

Leu Ser Glu Glu Phe Ile Asp Pro Lys Ser His Lys Phe Val Leu Arg
275 280 285

Leu Gln Ser Glu Thr Ser Val
290 295

<210> 191

<211> 295

<212> PRT

<213> Homo sapiens

<400> 191

Met Gly Leu Pro Val Ser Trp Ala Pro Pro Ala Leu Trp Val Leu Gly
1 5 10 15

Cys Cys Ala Leu Leu Leu Ser Leu Trp Ala Leu Cys Thr Ala Cys Arg
20 25 30

Arg Pro Glu Asp Ala Val Ala Pro Arg Lys Arg Ala Arg Arg Gln Arg
35 40 45

Ala Arg Leu Gln Gly Ser Ala Thr Ala Ala Glu Ala Ser Leu Leu Arg
50 55 60

Arg Thr His Leu Cys Ser Leu Ser Lys Ser Asp Thr Arg Leu His Glu
65 70 75 80

Leu His Arg Gly Pro Arg Ser Ser Arg Ala Leu Arg Pro Ala Ser Met
85 90 95

Asp Leu Leu Arg Pro His Trp Leu Glu Val Ser Arg Asp Ile Thr Gly
100 105 110

Pro Gln Ala Ala Pro Ser Ala Phe Pro His Gln Glu Leu Pro Arg Ala
115 120 125

Leu Pro Ala Ala Ala Ala Thr Ala Gly Cys Ala Gly Leu Glu Ala Thr
130 135 140

Tyr Ser Asn Val Gly Leu Ala Ala Leu Pro Gly Val Ser Leu Ala Ala
145 150 155 160

Ser Pro Val Val Ala Glu Tyr Ala Arg Val Gln Lys Arg Lys Gly Thr
165 170 175

His Arg Ser Pro Gln Glu Pro Gln Gln Gly Lys Thr Glu Val Thr Pro
180 185 190

Ala Ala Gln Val Asp Val Leu Tyr Ser Arg Val Cys Lys Pro Lys Arg

	121	
195	200	205
Arg Asp Pro Gly Pro Thr Thr Asp Pro Leu Asp Pro Lys Gly Gln Gly		
210	215	220
Ala Ile Leu Ala Leu Ala Gly Asp Leu Ala Tyr Gln Thr Leu Pro Leu		
225	230	235
240		
Arg Ala Leu Asp Val Asp Ser Gly Pro Leu Glu Asn Val Tyr Glu Ser		
245	250	255
Ile Arg Glu Leu Gly Asp Pro Ala Gly Arg Ser Ser Thr Cys Gly Ala		
260	265	270
Gly Thr Pro Pro Ala Ser Ser Cys Pro Ser Leu Gly Arg Gly Trp Arg		
275	280	285
Pro Leu Pro Ala Ser Leu Pro		
290	295	
<210> 192		
<211> 338		
<212> PRT		
<213> Homo sapiens		
<400> 192		
Met Met Arg Thr Cys Val Leu Leu Ser Ala Val Leu Trp Cys Leu Thr		
1	5	10
15		
Gly Val Gln Cys Pro Arg Phe Thr Leu Phe Asn Lys Lys Gly Phe Ile		
20	25	30
Tyr Gly Lys Thr Gly Gln Pro Asp Lys Ile Tyr Val Glu Leu His Gln		
35	40	45
Asn Ser Pro Val Leu Ile Cys Met Asp Phe Lys Leu Ser Lys Lys Glu		
50	55	60
Ile Val Asp Pro Thr Tyr Leu Trp Ile Gly Pro Asn Glu Lys Thr Leu		
65	70	75
80		
Thr Gly Asn Asn Arg Ile Asn Ile Thr Glu Thr Gly Gln Leu Met Val		
85	90	95
Lys Asp Phe Leu Glu Pro Leu Ser Gly Leu Tyr Thr Cys Thr Leu Ser		
100	105	110
Tyr Lys Thr Val Lys Ala Glu Thr Gln Glu Glu Lys Thr Val Lys Lys		
115	120	125
Arg Tyr Asp Phe Met Val Phe Ala Tyr Arg Glu Pro Asp Tyr Ser Tyr		
130	135	140
Gln Met Ala Val Arg Phe Thr Thr Arg Ser Cys Ile Gly Arg Tyr Asn		
145	150	155
160		
Asp Val Phe Phe Arg Val Leu Lys Lys Ile Leu Asp Ile Leu Ile Ser		
165	170	175

122

Asp Leu Ser Cys His Val Ile Glu Pro Ser Tyr Lys Cys His Ser Val		
180	185	190
Glu Ile Pro Glu His Gly Leu Ile His Glu Leu Phe Ile Ala Phe Gln		
195	200	205
Val Asn Pro Phe Ala Pro Gly Trp Lys Gly Ala Cys Asn Gly Ser Val		
210	215	220
Asp Cys Glu Asp Thr Thr Asn His Asn Ile Leu Gln Ala Arg Asp Arg		
225	230	235
Ile Glu Asp Phe Phe Arg Ser Gln Ala Tyr Ile Phe Tyr His Asn Phe		
245	250	255
Asn Lys Thr Leu Pro Ala Met His Phe Val Asp His Ser Leu Gln Val		
260	265	270
Val Arg Leu Asp Ser Cys Arg Pro Gly Phe Gly Lys Asn Glu Arg Leu		
275	280	285
His Ser Asn Cys Ala Ser Cys Cys Val Val Cys Ser Pro Ala Thr Phe		
290	295	300
Ser Pro Asp Val Asn Val Thr Cys Gln Thr Cys Val Ser Val Leu Thr		
305	310	315
Tyr Gly Ala Lys Ser Cys Pro Gln Thr Ser Asn Lys Asn Gln Gln Tyr		
325	330	335
Glu Asp		

<210> 193
<211> 78
<212> PRT
<213> *Homo sapiens*

<400> 193
Met Gln Gln Arg Gly Ala Ala Gly Ser Arg Gly Cys Ala Leu Phe Pro
1 5 10 15

Leu Leu Gly Val Leu Phe Phe Gln Val Ser Ala Pro Ala Gly Tyr Ala
20 25 30

Pro Leu Pro Ala Gly Gly Leu Gly Lys Met Val Ala Phe Pro Val Pro
35 40 45

Gly Arg Gly Val Ser Arg Lys Pro Pro His Ser Ser Gly Lys Glu Gly
50 55 60

Gly Arg Glu Arg Asp Val Gly Thr Met Ser Ser Pro Pro Arg
65 70 75

<210> 194
<211> 181

<210> 194
<211> 181
<212> PRT
<213> *Homo sapiens*

123

<400> 194

Met	Met	Leu	Met	Pro	Tyr	Gly	Ala	Leu	Ile	Ile	Gly	Phe	Val	Cys	Gly
1									10					15	

Ile	Ile	Ser	Thr	Leu	Gly	Phe	Val	Tyr	Leu	Thr	Pro	Phe	Leu	Glu	Ser
				20				25					30		

Arg	Leu	His	Ile	Gln	Asp	Thr	Cys	Gly	Ile	Asn	Asn	Leu	His	Gly	Ile
				35			40					45			

Pro	Gly	Ile	Ile	Gly	Gly	Ile	Val	Gly	Ala	Val	Thr	Ala	Ala	Ser	Ala
				50			55				60				

Ser	Leu	Glu	Val	Tyr	Gly	Lys	Glu	Gly	Leu	Val	His	Ser	Phe	Asp	Phe
				65			70			75		80			

Gln	Gly	Phe	Asn	Gly	Asp	Trp	Thr	Ala	Arg	Thr	Gln	Gly	Lys	Phe	Gln
				85			90				95				

Ile	Tyr	Gly	Leu	Leu	Val	Thr	Leu	Ala	Met	Ala	Leu	Met	Gly	Gly	Ile
				100				105			110				

Ile	Val	Gly	Leu	Ile	Leu	Arg	Leu	Pro	Phe	Trp	Gly	Gln	Pro	Ser	Asp
				115			120				125				

Glu	Asn	Cys	Phe	Glu	Asp	Ala	Val	Tyr	Trp	Glu	Met	Pro	Glu	Gly	Asn
				130			135			140					

Ser	Thr	Val	Tyr	Ile	Pro	Glu	Asp	Pro	Thr	Phe	Lys	Pro	Ser	Gly	Pro
				145			150			155		160			

Ser	Val	Pro	Ser	Val	Pro	Met	Val	Ser	Pro	Leu	Pro	Met	Ala	Ser	Ser
				165				170			175				

Val	Pro	Leu	Val	Pro										
				180										

<210> 195

<211> 79

<212> PRT

<213> Homo sapiens

<400> 195

Met	Leu	Ser	Leu	Asp	Phe	Leu	Asp	Asp	Val	Arg	Arg	Met	Asn	Lys	Arg
1						5			10			15			

Gln	Val	Ser	Leu	Ser	Val	Leu	Phe	Phe	Ser	Trp	Leu	Phe	Leu	Ser	Leu
					20			25			30				

Arg	Gly	Cys	Cys	Cys	Gly	Ala	Arg	Arg	Thr	Pro	Gly	Phe	Trp	Cys	Glu
				35			40			45					

Gly	Leu	Ser	Trp	Ser	Asp	Thr	Arg	Val	Ile	Arg	Phe	Leu	Trp	Arg	Leu
				50			55			60					

Trp	Pro	Glu	Ala	Ala	Leu	Ser	Ala	Ser	Leu	Phe	Leu	Thr	Pro	Asn
				65			70			75				

<210> 196

124

<211> 69
<212> PRT
<213> Homo sapiens

<400> 196

Met Glu Pro Arg Ser Phe Leu Leu Pro Glu Leu Gly Gly Arg Val Ser
1 5 10 15

His Ile Pro Leu Gly Leu Thr Leu Val Phe Ala Cys Phe Leu Met Val
20 25 30

Arg Glu Thr Ala Gly Gly Phe Ser Phe Arg Ala Gly Asp Leu Glu Glu
35 40 45

Ile Ser Arg Lys Arg Thr Asn Val Leu Gly Ser Leu Arg Gly Thr Glu
50 55 60

Leu Ile Gly Tyr Ile
65

<210> 197

<211> 271

<212> PRT

<213> Homo sapiens

<400> 197

Met Thr Gln Gly Lys Leu Ser Val Ala Asn Lys Ala Pro Gly Thr Glu
1 5 10 15

Gly Gln Gln Gln Val His Gly Glu Lys Lys Glu Ala Pro Ala Val Pro
20 25 30

Ser Ala Pro Pro Ser Tyr Glu Glu Ala Thr Ser Gly Glu Gly Met Lys
35 40 45

Ala Gly Ala Phe Pro Pro Ala Pro Thr Ala Val Pro Leu His Pro Ser
50 55 60

Trp Ala Tyr Val Asp Pro Ser Ser Ser Ser Tyr Asp Asn Gly Phe
65 70 75 80

Pro Thr Gly Asp His Glu Leu Phe Thr Thr Phe Ser Trp Asp Asp Gln
85 90 95

Lys Val Arg Arg Val Phe Val Arg Lys Val Tyr Thr Ile Leu Leu Ile
100 105 110

Gln Leu Leu Val Thr Leu Ala Val Val Ala Leu Phe Thr Phe Cys Asp
115 120 125

Pro Val Lys Asp Tyr Val Gln Ala Asn Pro Gly Trp Tyr Trp Ala Ser
130 135 140

Tyr Ala Val Phe Phe Ala Thr Tyr Leu Thr Leu Ala Cys Cys Ser Gly
145 150 155 160

Pro Arg Arg His Phe Pro Trp Glu Pro Asp Ser Pro Asp Arg Leu Tyr
165 170 175

125
Pro Val His Gly Leu Pro His Trp Asp Ala Val Gln Leu Leu Gln His

His Leu Arg Ala Ala Val Pro Gly His His Gly Pro Cys Leu Pro Leu
195 200 205

Ser His Arg Leu Gln Leu Pro Asp Gln Val Arg Leu His Leu Leu Pro
210 215 220

Gly Arg Ala Leu Arg Ala Ser His Asp Ser Phe Leu Gln Arg Thr His
225 230 235 240

Pro Gly His Pro Pro Thr Leu Pro Ile Cys Ala Leu Ala Pro Cys Ser
245 250 255

Leu Cys Ser Thr Gly Ser Gly Cys Ile Tyr Ile Val Pro Gly Thr
260 265 270

<210> 198

<211> 51

<212> PRT

<213> Homo sapiens

<400> 198

Met Lys Cys Thr Ala Val Phe Ala Pro Ser Ala Trp Pro Asn Thr Leu
 1 5 10 15

Ser Leu Leu Val Ser Leu His Thr Val Met Cys Ile Asn Trp His Leu
20 25 30

Val Ser Ala Ser His Met His Ile Gly Arg Ile Val Ile Leu Glu Gly
35 40 45

Asp Gly Met

50

<210> 199

<211> 71

<212> PRT

<213> Homo sapiens

<400> 199

Met Pro E

1

20 25 30

35 40 45

Ala Ser Asp Pro Ala Pro Cys Asn Leu Ser Ala Leu Gin Ala Lys Pro
50 55 60

Arg 110 Arg 112 Arg 113 Arg 114 His 115 Tyr 116

<210> 200

126

<212> PRT

<213> Homo sapiens

<400> 200

Met Leu Tyr Trp Gly Asn Val Ala Leu Val Leu Pro Thr Pro Tyr Leu
1 5 10 15

His Leu Ser Leu Thr Leu Leu Leu Ser Pro Glu Trp Leu Gly Glu Met
20 25 30

Gly Arg Gly Leu Pro Trp Pro Gly His Leu Val Ala Ala Trp Leu Asp
35 40 45

His Ile Ala Asn Glu Leu Gly Arg Gly Ala Ile Phe
50 55 60

<210> 201

<211> 143

<212> PRT

<213> Homo sapiens

<400> 201

Met Lys Trp Glu Arg Gly Ser Pro Met Val Leu Leu Ala Leu Val Tyr
1 5 10 15

Asp Val Cys Cys Ala Ser Arg Arg Gly Gly Gln Ser His Pro Thr Ser
20 25 30

Gly Ser Asp Val Leu Pro Leu Pro Val Pro Ala Leu Ala Gln Pro Ala
35 40 45

Gln Pro Ser Arg Leu Asp Ala Cys Ala Lys Ala Arg Gly Ser Gln Arg
50 55 60

Ala Ala Gly Trp Pro Arg Ala Gly Ser Arg Leu Gly Pro Ala Val Gly
65 70 75 80

Arg Ala Ala Ser Pro Ser Ser Leu Gln Thr His Gly Ser Ser Ser Gln
85 90 95

Ser Ser Arg Gln Leu Pro Gly Pro Glu Met Ser Ser Ser Pro Pro Trp
100 105 110

Gly Gln Ala Leu Pro Trp Pro Ser Ser Val Asn Pro Ser Phe Leu Cys
115 120 125

Ala Val Ser Gly Leu Leu Thr Val Val Cys Val Cys Ala Arg Leu
130 135 140

<210> 202

<211> 148

<212> PRT

<213> Homo sapiens

<400> 202

Met Gln Phe Ile Leu Thr Gly Ile Thr Leu Ser Gly Tyr Leu Phe Thr
1 5 10 15

Phe Ser Ala Cys Ala Val Leu Ser Ala Ser Ile Thr Val Trp Gly Leu

	127	
20	25	30
Met Glu Cys Leu Ile His Arg His Gly Ser His Thr Thr Glu His Leu		
35	40	45
Thr Arg Thr Leu Thr Ser Gln Gln Ser Ser Arg Gly His Leu Ser Leu		
50	55	60
Ser His Ser Thr Thr Gln Ser Asn Gln Pro Glu Arg Thr Leu Ala Leu		
65	70	75
Leu Thr Gly Gly Thr Ala Asp Leu Ser Val Trp Arg Gln His Ser Pro		
85	90	95
Lys Met Gly Ala Ile Phe Gln Asp Ala Val Phe Ala Leu Asp Ser Gln		
100	105	110
Ala Tyr Leu Trp Gly Ile Val Ser Asn Arg Glu Asn Ile Trp Val Leu		
115	120	125
Glu Gln Trp Pro Pro Pro Lys Gly Phe His Ser Cys Gln Glu Thr Pro		
130	135	140
Gln Glu Ser His		
145		
<210> 203		
<211> 36		
<212> PRT		
<213> Homo sapiens		
<400> 203		
Met Trp Thr Cys Pro Gly Ile Ala Ala Leu Val Leu Met Ile Val Pro		
1	5	10
15		
Gly Cys Ser Leu Cys Pro Ala Gln Val Val His His Val Gly Gln Arg		
20	25	30
Glu Ser Pro Ser		
35		
<210> 204		
<211> 406		
<212> PRT		
<213> Homo sapiens		
<400> 204		
Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala		
1	5	10
15		
Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser		
20	25	30
Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu		
35	40	45
Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg Ser		
50	55	60

128

Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala Cys Gly Ser Ala Cys
65 70 75 80

Gln Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg
85 90 95

Val Asp Pro Glu Val Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln
100 105 110

Asn Ser Arg Ile Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln Arg
115 120 125

His Leu Glu Lys Gln His Leu Arg Ile Gln His Leu Gln Ser Gln Phe
130 135 140

Gly Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala
145 150 155 160

Arg Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His
165 170 175

Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe
180 185 190

Gln Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Ile Gln Pro Gln Gly
195 200 205

Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Trp
210 215 220

Thr Val Ile Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro
225 230 235 240

Trp Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp
245 250 255

Leu Gly Leu Glu Lys Val His Ser Ile Thr Gly Asp Arg Asn Ser Arg
260 265 270

Leu Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu Leu Leu Gln
275 280 285

Phe Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu
290 295 300

Thr Ala Pro Val Ala Gly Gln Leu Gly Ala Thr Thr Val Pro Pro Ser
305 310 315 320

Gly Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg
325 330 335

Arg Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly
340 345 350

Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Ile Pro
355 360 365

Gln Gln Arg Gln Lys Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg
370 375 380

Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Ile Gln Pro Met
385 390 395 400

Ala Ala Glu Ala Ala Ser
405

<210> 205
<211> 91
<212> PRT
<213> *Homo sapiens*

<400> 205
Met Glu Lys Thr Leu Phe Leu Tyr His Tyr Leu Pro Ala Leu Thr Phe
1 5 10 15

Gln Ile Leu Leu Leu Pro Val Val Leu Gln His Ile Ser Asp His Leu
20 25 30

Cys Arg Ser Gln Leu Gln Arg Ser Ile Phe Ser Ala Leu Val Val Ala
35 40 45

Trp Tyr Ser Ser Ala Cys His Val Ser Asn Thr Leu Arg Pro Leu Thr
50 55 60

Tyr Gly Asp Lys Ser Leu Ser Pro His Glu Leu Lys Ala Leu Arg Trp
 65 70 75 80

Lys Asp Ser Trp Asp Ile Leu Ile Arg Lys His
85 90

<210> 206
<211> 101
<212> PRT
<213> *Homo sapiens*

<220>
<221> SITE
<222> (23)
<223> xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (29)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 206
Met Leu Leu Phe Gly Leu Cys Trp Gly Pro Tyr Val Ala Thr Leu Leu
1 5 10 15

Leu Ser Val Leu Ala Tyr Xaa Gln Arg Pro Pro Pro Leu Xaa Pro Gly Thr
20 25 30

Leu Leu Ser Leu Leu Ser Leu Gly Ser Ala Ser Ala Ala Ala Val Pro
35 40 45

Val Ala Met Gly Leu Gly Asp Gln Arg Tyr Thr Ala Pro Trp Arg Ala
50 55 60

130

Ala Ala Gln Arg Cys Leu Gln Gly Leu Trp Gly Arg Ala Ser Arg Asp
65 70 75 80

Ser Pro Gly Pro Ser Ile Ala Tyr His Pro Ser Ser Gln Ser Ser Val
85 90 95

Asp Leu Asp Leu Asn
100

<210> 207
<211> 50
<212> PRT
<213> Homo sapiens

<400> 207

Met Ser Ala Gly Lys Trp Leu Leu Leu Val Ile Phe Arg Asp Leu Gly
1 5 10 15

Cys Gly Val Ser Arg Thr Ser Pro His Leu Arg Ser Gly Glu Glu Gly
20 25 30

Arg Ile Trp Ser Leu Leu Thr Ala Cys Ser Cys Cys Cys Leu Phe Val
35 40 45

Ile Phe
50

<210> 208
<211> 161
<212> PRT
<213> Homo sapiens

<400> 208

Met Thr Ser Ala Leu Arg Gly Val Ala Asp Asp Gln Gly Gln His Pro
1 5 10 15

Leu Leu Lys Met Leu Leu His Leu Leu Ala Phe Ser Ser Ala Ala Thr
20 25 30

Gly His Leu Gln Ala Ser Val Leu Thr Gln Cys Leu Lys Val Leu Val
35 40 45

Lys Leu Ala Glu Asn Thr Ser Cys Asp Phe Leu Pro Arg Phe Gln Cys
50 55 60

Val Phe Gln Val Leu Pro Lys Cys Leu Ser Pro Glu Thr Pro Leu Pro
65 70 75 80

Ser Val Leu Leu Ala Val Glu Leu Leu Ser Leu Leu Ala Asp His Asp
85 90 95

Gln Leu Ala Pro Gln Leu Cys Ser His Ser Glu Gly Cys Leu Leu Leu
100 105 110

Leu Leu Tyr Met Tyr Ile Thr Ser Arg Pro Asp Arg Val Ala Leu Glu
115 120 125

Thr Gln Trp Leu Gln Leu Glu Gln Glu Val Val Trp Leu Leu Ala Lys
130 135 140

Leu Gly Val Gln Glu Pro Leu Ala Pro Ser His Trp Leu Gln Leu Pro
145 150 155 160

Val

<210> 209

<211> 227

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (67)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (170)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 209

Met Leu Gly Leu Leu Leu Cys Thr Pro Arg Ala Trp Leu Thr Leu
1 5 10 15

Ser Gly Pro Val Cys Phe Gln Gly Arg Gly Pro Ser Glu Val Pro Gln
20 25 30

Arg Pro Pro Gln Leu Trp Val Val Ser Ile Ser Val Leu Gln Gly Gln
35 40 45

His Arg Gly Arg Ala Gly Pro Arg Asp Glu Gln Glu Arg Gly Arg Asp
50 55 60

Gln His Xaa Leu Pro Ala His Gly Arg Leu His Leu Ser Pro Arg Pro
65 70 75 80

Glu Pro Gly Cys Arg Pro Ala Cys Ala Ala Pro Gly Gly Gln Pro Gly
85 90 95

Val Val Ser Gly Leu Pro Ala Leu Gly Gln Pro Arg Glu Ala Ser Ala
100 105 110

Pro Cys His Ile Ser Arg Leu Arg Thr Ala Ser Leu Ala Val Val Met
115 120 125

Gly Ala Glu Lys Gly Gly Ala Glu Met Arg Pro Trp Pro Ala Val Gln
130 135 140

Ala Pro Ala Pro Leu Pro Ser Val Gly Gly Thr Pro Ile Cys Ala Pro
145 150 155 160

Gly Cys Gly Ser Lys Asp Thr Val Pro Xaa Leu Gln Pro Ser Val Pro
165 170 175

Lys Gly Arg Ala Glu Ser Gly Phe Val Ser Ala Arg Phe Leu Cys Pro
180 185 190

132

His Pro Pro Arg Ser Leu Leu Cys Leu Gly Pro Gly Pro Ser Leu Ser
195 200 205

Gly Leu Pro Gly Pro Pro Ile Pro Ala Leu Leu Gln Gly Pro Leu Gly
210 215 220

Leu Gly Cys
225

<210> 210
<211> 351
<212> PRT
<213> Homo sapiens

<400> 210

Met Leu Thr Leu Arg Ser Leu Leu Phe Trp Ser Leu Val Tyr Cys Tyr
1 5 10 15

Cys Gly Leu Cys Ala Ser Ile His Leu Leu Lys Leu Leu Trp Ser Leu
20 25 30

Gly Lys Gly Pro Ala Gln Thr Phe Arg Arg Pro Ala Arg Glu His Pro
35 40 45

Pro Ala Cys Leu Ser Asp Pro Ser Leu Gly Thr His Cys Tyr Val Arg
50 55 60

Ile Lys Asp Ser Gly Leu Arg Phe His Tyr Val Ala Ala Gly Glu Arg
65 70 75 80

Gly Lys Pro Leu Met Leu Leu His Gly Phe Pro Glu Phe Trp Tyr
85 90 95

Ser Trp Arg Tyr Gln Leu Arg Glu Phe Lys Ser Glu Tyr Arg Val Val
100 105 110

Ala Leu Asp Leu Arg Gly Tyr Gly Glu Thr Asp Ala Pro Ile His Arg
115 120 125

Gln Asn Tyr Lys Leu Asp Cys Leu Ile Thr Asp Ile Lys Asp Ile Leu
130 135 140

Asp Ser Leu Gly Tyr Ser Lys Cys Val Leu Ile Gly His Asp Trp Gly
145 150 155 160

Gly Met Ile Ala Trp Leu Ile Ala Ile Cys Tyr Pro Glu Met Val Met
165 170 175

Lys Leu Ile Val Ile Asn Phe Pro His Pro Asn Val Phe Thr Glu Tyr
180 185 190

Ile Leu Arg His Pro Ala Gln Leu Leu Lys Ser Ser Tyr Tyr Tyr Phe
195 200 205

Phe Gln Ile Pro Trp Phe Pro Glu Phe Met Phe Ser Ile Asn Asp Phe
210 215 220

Lys Val Leu Lys His Leu Phe Thr Ser His Ser Thr Gly Ile Gly Arg
225 230 235 240

133

Lys Gly Cys Gln Leu Thr Thr Glu Asp Leu Glu Ala Tyr Ile Tyr Val
 245 250 255

Phe Ser Gln Pro Gly Ala Leu Ser Gly Pro Ile Asn His Tyr Arg Asn
 260 265 270

Ile Phe Ser Cys Leu Pro Leu Lys His His Met Val Thr Thr Pro Thr
 275 280 285

Leu Leu Leu Trp Gly Glu Asn Asp Ala Phe Met Glu Val Glu Met Ala
 290 295 300

Glu Val Thr Lys Ile Tyr Val Lys Asn Tyr Phe Arg Leu Thr Ile Leu
 305 310 315 320

Ser Glu Ala Ser His Trp Leu Gln Gln Asp Gln Pro Asp Ile Val Asn
 325 330 335

Lys Leu Ile Trp Thr Phe Leu Lys Glu Glu Thr Arg Lys Lys Asp
 340 345 350

<210> 211

<211> 93

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (59)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (61)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (84)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 211

Met Gly His Leu Pro His Ile Leu Ser Leu Gly Leu Phe Leu Thr Leu
 1 5 10 15

Leu Met Phe Cys Ile Thr Lys Ser Asp Gly Gln Asn Lys Ile Tyr Arg
 20 25 30

Cys Phe Lys Lys Ala Ser Pro Gln Val Ile Val Thr His Thr Lys Met
 35 40 45

Arg Ile Ala Ala Ile Ile Cys Ser Tyr Trp Xaa Gly Xaa Ala Asn Leu
 50 55 60

Gly Thr Arg Ile Lys Leu Gln Leu Asn Ser Ala Val Tyr Lys Ile Phe
 65 70 75 80

Val Ser Leu Xaa Arg Lys Arg Lys Arg Thr Leu Ser Trp

	134
85	90

<210> 212
<211> 101
<212> PRT
<213> Homo sapiens

<400> 212
Met Phe Gln Gln Gly Trp Ser Ser Pro Leu Leu Thr Pro Ala Phe Thr
1 5 10 15

Ile Leu Pro Met Ser Ser Leu Leu Thr Ser Leu His Pro Ala Pro Arg
20 25 30

Leu Pro Thr Leu Leu Ala Ala Ser Ser Pro Gln Leu Ala Pro Leu Thr
35 40 45

Cys Cys Phe Gln Tyr Pro Phe Leu Leu Ser Ala Ser Ser Leu Gly Asp
50 55 60

Ile His Pro Ser Ser Arg Asp Phe Ser Cys His Ile Asn Ser Asn Val
65 70 75 80

Ser Glu Leu Tyr Phe Leu Pro Pro Thr Ser Val Ser Leu Asn Val Arg
85 90 95

Ile Phe Tyr Phe Gln
100

<210> 213
<211> 98
<212> PRT
<213> Homo sapiens

<400> 213
Met Gly Trp Leu Gly Arg Thr Cys Leu Ala His Ser His Leu Asp Phe
1 5 10 15

Ile Ser Gly Ala Leu Leu Leu Thr Phe Ala Tyr Phe Leu Val Phe Gln
20 25 30

Val Cys Pro Val Ile Asn Lys Trp Leu Tyr Asn Leu Asp Gln His Val
35 40 45

Val Lys Glu Leu Ile Ser Lys Cys Trp Arg Trp Glu Gly Thr Gly Thr
50 55 60

Leu Gln Lys Lys Ala Gln Asn Pro Pro Ser Pro Phe Val Phe His Phe
65 70 75 80

Pro Leu Pro His Ser Gly Thr Ser Pro Arg Pro Lys Ile Ser Phe Leu
85 90 95

Leu Lys

<210> 214
<211> 81
<212> PRT

135

<213> Homo sapiens

<400> 214

Met	Trp	Gly	Gly	Ser	Val	Phe	Leu	Lys	Pro	Lys	Leu	Leu	Gln	Ala	Gly
1					5				10				15		

Gly	Phe	Leu	His	Phe	Leu	Phe	Val	Leu	Phe	Leu	Thr	Ala	Asp	Ser	Val
					20			25			30				

His	Leu	Ser	Val	Gly	Gly	Glu	Leu	Leu	Leu	Arg	Thr	Gly	Phe	Lys	Arg
					35			40			45				

His	Ile	Pro	Val	Thr	Phe	Lys	Asn	Leu	His	Gly	Gly	Arg	Ser	Phe	Ser
					50			55			60				

Arg	Ser	Val	Gly	Trp	Ser	Thr	Leu	Gly	Pro	Thr	Thr	Leu	Arg	Arg	Gly
					65			70			75			80	

Arg

<210> 215

<211> 188

<212> PRT

<213> Homo sapiens

<400> 215

Met	Phe	His	Gln	Ile	Trp	Ala	Ala	Leu	Leu	Tyr	Phe	Tyr	Gly	Ile	Ile
1					5				10				15		

Leu	Asn	Ser	Ile	Tyr	Gln	Cys	Pro	Glu	His	Ser	Gln	Leu	Thr	Thr	Leu
					20			25			30				

Gly	Val	Asp	Gly	Lys	Glu	Phe	Pro	Glu	Val	His	Leu	Gly	Gln	Trp	Tyr
					35			40			45				

Phe	Ile	Ala	Gly	Ala	Ala	Pro	Thr	Lys	Glu	Glu	Leu	Ala	Thr	Phe	Asp
					50			55			60				

Pro	Val	Asp	Asn	Ile	Val	Phe	Asn	Met	Ala	Ala	Gly	Ser	Ala	Pro	Met
65					70				75			80			

Gln	Leu	His	Leu	Arg	Ala	Thr	Ile	Arg	Met	Lys	Asp	Gly	Leu	Cys	Val
					85			90			95				

Pro	Arg	Lys	Trp	Ile	Tyr	His	Leu	Thr	Glu	Gly	Ser	Thr	Asp	Leu	Arg
					100			105			110				

Thr	Glu	Gly	Arg	Pro	Asp	Met	Lys	Thr	Glu	Leu	Phe	Ser	Ser	Ser	Cys
					115			120			125				

Pro	Gly	Gly	Ile	Met	Leu	Asn	Glu	Thr	Gly	Gln	Gly	Tyr	Gln	Arg	Phe
					130			135			140				

Leu	Leu	Tyr	Asn	Arg	Ser	Pro	His	Pro	Pro	Glu	Lys	Cys	Val	Glu	Glu
145					150				155			160			

Phe	Lys	Ser	Leu	Thr	Ser	Cys	Leu	Asp	Ser	Lys	Ala	Phe	Leu	Leu	Thr
					165			170			175				

136

Pro Arg Asn Gln Glu Ala Cys Glu Leu Ser Asn Asn
180 185

<210> 216

<211> 44

<212> PRT

<213> Homo sapiens

<400> 216

Met Gln Arg Thr Phe Lys Tyr Leu His Phe Tyr Ile Ile Arg Phe Val
1 5 10 15

Ser Thr Tyr Ala Phe Ile Val Phe Phe Pro Phe Ser Ser Ser His Val
20 25 30

Asn Gly Pro Cys Glu Lys Asn Ile Pro Leu Gly Lys
35 40

<210> 217

<211> 515

<212> PRT

<213> Homo sapiens

<400> 217

Met Gly Ser Ala Pro Trp Ala Pro Val Leu Leu Leu Ala Leu Gly Leu
1 5 10 15

Arg Gly Leu Gln Ala Gly Gly Glu Trp Arg Arg Pro Pro Ala His Ser
20 25 30

Pro Val Pro Ala Pro Pro Leu Arg Phe Ala Ser Pro His Ser Pro Gln
35 40 45

Ala Pro Asp Pro Gly Phe Gln Glu Arg Phe Phe Gln Gln Arg Leu Asp
50 55 60

His Phe Asn Phe Glu Arg Phe Gly Asn Lys Thr Phe Pro Gln Arg Phe
65 70 75 80

Leu Val Ser Asp Arg Phe Trp Val Arg Gly Glu Gly Pro Ile Phe Phe
85 90 95

Tyr Thr Gly Asn Glu Gly Asp Val Trp Ala Phe Ala Asn Asn Ser Gly
100 105 110

Phe Val Ala Glu Leu Ala Ala Glu Arg Gly Ala Leu Leu Val Phe Ala
115 120 125

Glu His Arg Tyr Tyr Gly Lys Ser Leu Pro Phe Gly Ala Gln Ser Thr
130 135 140

Gln Arg Gly His Thr Glu Leu Leu Thr Val Glu Gln Ala Leu Ala Asp
145 150 155 160

Phe Ala Glu Leu Leu Arg Ala Leu Arg Arg Asp Leu Gly Ala Gln Asp
165 170 175

Ala Pro Ala Ile Ala Phe Gly Gly Ser Tyr Gly Gly Met Leu Ser Ala

	137		
180	185	190	
Tyr Leu Arg Met Lys Tyr Pro His Leu Val Ala Gly Ala Leu Ala Ala			
195	200	205	
Ser Ala Pro Val Leu Ala Val Ala Gly Leu Gly Asp Ser Asn Gln Phe			
210	215	220	
Phe Arg Asp Val Thr Ala Asp Phe Glu Gly Gln Ser Pro Lys Cys Thr			
225	230	235	240
Gln Gly Val Arg Glu Ala Phe Arg Gln Ile Lys Asp Leu Phe Leu Gln			
245	250	255	
Gly Ala Tyr Asp Thr Val Arg Trp Glu Phe Gly Thr Cys Gln Pro Leu			
260	265	270	
Ser Asp Glu Lys Asp Leu Thr Gln Leu Phe Met Phe Ala Arg Asn Ala			
275	280	285	
Phe Thr Val Leu Ala Met Met Asp Tyr Pro Tyr Pro Thr Asp Phe Leu			
290	295	300	
Gly Pro Leu Pro Ala Asn Pro Val Lys Val Gly Cys Asp Arg Leu Leu			
305	310	315	320
Ser Glu Ala Gln Arg Ile Thr Gly Leu Arg Ala Leu Ala Gly Leu Val			
325	330	335	
Tyr Asn Ala Ser Gly Ser Glu His Cys Tyr Asp Ile Tyr Arg Leu Tyr			
340	345	350	
His Ser Cys Ala Asp Pro Thr Gly Cys Gly Thr Gly Pro Asp Ala Arg			
355	360	365	
Ala Trp Asp Tyr Gln Ala Cys Thr Glu Ile Asn Leu Thr Phe Ala Ser			
370	375	380	
Asn Asn Val Thr Asp Met Phe Pro Asp Leu Pro Phe Thr Asp Glu Leu			
385	390	395	400
Arg Gln Arg Tyr Cys Leu Asp Thr Trp Gly Val Trp Pro Arg Pro Asp			
405	410	415	
Trp Leu Leu Thr Ser Phe Trp Gly Gly Asp Leu Arg Ala Ala Ser Asn			
420	425	430	
Ile Ile Phe Ser Asn Gly Asn Leu Asp Pro Trp Ala Gly Gly Ile			
435	440	445	
Arg Arg Asn Leu Ser Ala Ser Val Ile Ala Val Thr Ile Gln Gly Gly			
450	455	460	
Ala His His Leu Asp Leu Arg Ala Ser His Pro Glu Asp Pro Ala Ser			
465	470	475	480
Val Val Glu Ala Arg Lys Leu Glu Ala Thr Ile Ile Gly Glu Trp Val			
485	490	495	

138

Lys Ala Ala Arg Arg Glu Gln Gln Pro Ala Leu Arg Gly Gly Pro Arg		
500	505	510
Leu Ser Leu		
515		
<210> 218		
<211> 522		
<212> PRT		
<213> Homo sapiens		
<400> 218		
Met Ala Ala Ala Met Pro Leu Ala Leu Leu Val Leu Leu Leu Gly		
1	5	10
15		
Pro Gly Gly Trp Cys Leu Ala Glu Pro Pro Arg Asp Ser Leu Arg Glu		
20	25	30
Glu Leu Val Ile Thr Pro Leu Pro Ser Gly Asp Val Ala Ala Thr Phe		
35	40	45
Gln Phe Arg Thr Arg Trp Asp Ser Glu Leu Gln Arg Glu Gly Val Ser		
50	55	60
His Tyr Arg Leu Phe Pro Lys Ala Leu Gly Gln Leu Ile Ser Lys Tyr		
65	70	75
80		
Ser Leu Arg Glu Leu His Leu Ser Phe Thr Gln Gly Phe Trp Arg Thr		
85	90	95
Arg Tyr Trp Gly Pro Pro Phe Leu Gln Ala Pro Ser Asp Thr Asp His		
100	105	110
Tyr Phe Leu Arg Tyr Ala Val Leu Pro Arg Glu Val Val Cys Thr Glu		
115	120	125
Asn Leu Thr Pro Trp Lys Lys Leu Leu Pro Cys Ser Ser Lys Ala Gly		
130	135	140
Leu Ser Val Leu Leu Lys Ala Asp Arg Leu Phe His Thr Ser Tyr His		
145	150	155
160		
Ser Gln Ala Val His Ile Arg Pro Val Cys Arg Asn Ala Arg Cys Thr		
165	170	175
Ser Ile Ser Trp Glu Leu Arg Gln Thr Leu Ser Val Val Phe Asp Ala		
180	185	190
Phe Ile Thr Gly Gln Gly Lys Lys Asp Trp Ser Leu Phe Arg Met Phe		
195	200	205
Ser Arg Thr Leu Thr Glu Pro Cys Pro Leu Ala Ser Glu Ser Arg Val		
210	215	220
Tyr Val Asp Ile Thr Thr Tyr Asn Gln Asp Asn Glu Thr Leu Glu Val		
225	230	235
240		
His Pro Pro Pro Thr Thr Tyr Gln Asp Val Ile Leu Gly Thr Arg		
245	250	255

139

Ser Arg Asn Leu Asn Ile Gln Leu Lys Trp Lys Arg Pro Pro Glu Asn
275 280 285

Glu Ala Pro Pro Val Pro Phe Leu His Ala Gln Arg Tyr Val Ser Gly
290 295 300

Tyr Gly Leu Gln Lys Gly Glu Leu Ser Thr Leu Leu Tyr Asn Thr His
 305 310 315 320

Pro Tyr Arg Ala Phe Pro Val Leu Leu Leu Asp Thr Val Pro Trp Tyr
325 330 335

Leu Arg Leu Tyr Val His Thr Leu Thr Ile Thr Ser Lys Gly Lys Glu
340 345 350

Asn Lys Pro Ser Tyr Ile His Tyr Gln Pro Ala Gln Asp Arg Leu Gln
355 360 365

Pro His Leu Leu Glu Met Leu Ile Gln Leu Pro Ala Asn Ser Val Thr
370 375 380

Lys Val Ser Ile Gln Phe Glu Arg Ala Leu Leu Lys Trp Thr Glu Tyr
 385 390 395 400

Thr Pro Asp Pro Asn His Gly Phe Tyr Val Ser Pro Ser Val Leu Ser

Ala Leu Val Pro Ser Met Val Ala Ala Lys Pro Val Asp Trp Glu Glu

Ser Pro Leu Phe Asn Ser Leu Phe Pro Val Ser Asp Gly Ser Asn Tyr

Phe Val Arg Leu Tyr Thr Glu Pro Leu Leu Val Asn Leu Pro Thr Pro

Asp Phe Ser Met Pro Tyr Asn Val Ile Cys Leu Thr Cys Thr Val Val

Ala Val Cys Tyr Gly Ser Phe Tyr Asn Leu Leu Thr Arg Thr Phe His

Ile Glu Glu Pro Arg Thr Gly Gly Leu Ala Lys Arg Leu Ala Asn Leu

Ile Arg Arg Ala Arg Gly Val Pro Pro Leu

<210> 219

<211> 52

<212> PRT

<400> 219

Met Lys Ser His Ile Ser Trp Arg Leu Cys Ser Leu Leu Leu Ile Leu

140
1 5 10 15

Phe Ser Leu Ile Leu Ser Ala Cys Phe Ile Ser Ala Arg Trp Ser Ser
20 25 30

Asn Ser Asp Ile Phe Phe Ser Ala Trp Ser Ile Gln Leu Leu Ile Leu
35 40 45

Val Tyr Ala Ser
50

<210> 220
<211> 73
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (24)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 220
Met Gly Phe Trp Cys Gly Cys Pro Phe Cys Leu Leu Val Phe Leu Leu
1 5 10 15

Thr Val Arg Thr Arg Ser Phe Xaa Ser Val Gly Val Cys Trp Arg Ser
20 25 30

Thr Pro Asp Pro Leu Cys Leu Gly Ile Ser Ser Arg Ser Cys Arg Thr
35 40 45

Ala Asp Ile Gly Glu Gln Gln Met Leu Leu Pro Asp Arg Ser Ser Gly
50 55 60

Ser Phe Val Ser Glu Tyr Pro Ala Met
65 70

<210> 221
<211> 54
<212> PRT
<213> Homo sapiens

<400> 221
Met Tyr Arg Phe Phe Leu Cys Val Asp Leu Ser Phe Gln Leu Leu Trp
1 5 10 15

Val Ile Pro Arg Ser Thr Val Thr Gly Thr Tyr Gly Lys Asp Ile Phe
20 25 30

Ser Leu Ala Gly Asn His His Thr Val Phe Gln Ser Ser Cys Thr Ile
35 40 45

Leu His Thr His Gln His
50

<210> 222
<211> 72
<212> PRT
<213> Homo sapiens

141

<400> 222

Met Ala Thr Ile Leu Leu Lys Leu Pro Ile Leu Ser Ala Met Ile Lys
1 5 10 15

Lys Pro Leu Arg Asn Tyr Leu Lys Thr Ser Glu Thr Thr Met Glu Lys
20 25 30

Ile Ile Ile Gln Lys Leu Val Ala Asn Leu Lys Phe Leu Pro Leu Gly
35 40 45

Thr Leu Gln Leu Ala Met Met Ile Ala Asn Leu Ile Lys Lys Leu Phe
50 55 60

Phe Pro Leu Val Lys Ala Ala Lys
65 70

<210> 223

<211> 69

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (26)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (51)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (68)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 223

Met Tyr Leu Ala Val Tyr Leu Leu Leu Phe Leu Cys Ile Cys Phe Tyr
1 5 10 15

Phe Ile Ala Leu Phe Ser His Ala Leu Xaa Pro His Cys Phe Asn Tyr
20 25 30

Pro Gly Phe Ser Phe Asn Leu Val His Trp Ser Ser Leu Ile Pro Pro
35 40 45

Leu Pro Xaa Phe Phe Phe Asn Ser Phe Ser Asn Cys Ser Leu Phe
50 55 60

Phe Pro Tyr Xaa Leu
65

<210> 224

<211> 57

<212> PRT

<213> Homo sapiens

<220>

142

<221> SITE

<222> (57)

<223> Xaa equals stop translation

<400> 224

Met Ala Lys Thr Asp Phe Ser Ile Ile Leu Leu Lys Leu His Cys Leu
1 5 10 15

Phe Phe Phe Ser Val Ile Ser Val His Cys Ala Gln Ser Phe Ile Ser
20 25 30

Val Thr Gln Thr Glu Pro Ser Pro Ala Val Cys Ile Phe Pro Ala Val
35 40 45

Gly Ser Gly Leu Gly Pro Cys Asp Xaa
50 55

<210> 225

<211> 77

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (77)

<223> Xaa equals stop translation

<400> 225

Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala Ala
1 5 10 15

Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile Leu Gly
20 25 30

Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys Asp His Asn
35 40 45

Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser Ala Met Arg Glu
50 55 60

Lys Pro Ala Gly Ala Ser Leu Cys Trp Ala Ala Trp Xaa
65 70 75

<210> 226

<211> 45

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (45)

<223> Xaa equals stop translation

<400> 226

Met Asp Leu Tyr Phe Phe Leu Leu Ala Gly Ile Gln Ala Val Thr Ala
1 5 10 15

Leu Leu Phe Val Trp Ile Ala Gly Arg Tyr Glu Arg Ala Ser Gln Gly
20 25 30

Pro Ala Ser His Ser Arg Phe Ser Arg Asp Arg Gly Xaa
 35 40 45

<210> 227
 <211> 102
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (47)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (98)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (102)
 <223> Xaa equals stop translation

<400> 227

Met Ser Trp Val Gln Ala Thr Leu Leu Ala Arg Gly Leu Cys Arg Ala
 1 5 10 15

Trp Gly Gly Thr Cys Gly Ala Ala Leu Thr Gly Thr Ser Ile Ser Gln
 20 25 30

Val Pro Arg Arg Leu Pro Arg Gly Leu His Cys Ser Ala Leu Xaa Ile
 35 40 45

Ala Leu Asn Ser Pro Trp Phe Pro Ala His Arg Asn Pro Gly Arg Gly
 50 55 60

Pro Pro Arg Leu Trp Cys Pro Leu Arg Thr Cys Leu Gly Arg Arg Leu
 65 70 75 80

Val Gly Asn Gly Thr Arg Arg Ala Ser Cys Arg Arg Cys Arg Asn Leu
 85 90 95

Arg Xaa Gln Arg Ala Xaa
 100

<210> 228
 <211> 132
 <212> PRT
 <213> Homo sapiens

<400> 228

Met Thr Tyr Phe Ser Gly Leu Leu Val Ile Leu Ala Phe Ala Ala Trp
 1 5 10 15

Val Ala Leu Ala Glu Gly Leu Gly Val Ala Val Tyr Ala Ala Ala Val
 20 25 30

Leu Leu Gly Ala Gly Cys Ala Thr Ile Leu Val Thr Ser Leu Ala Met

35	40	45
----	----	----

Thr Ala Asp Leu Ile Gly Pro His Thr Asn Ser Gly Ala Phe Val Tyr
 50 55 60

Gly Ser Met Ser Phe Leu Asp Lys Val Ala Asn Gly Leu Ala Val Met
 65 70 75 80

Ala Ile Gln Ser Leu His Pro Cys Pro Ser Glu Leu Cys Cys Arg Ala
 85 90 95

Cys Val Ser Phe Tyr His Trp Ala Met Val Ala Val Thr Gly Gly Val
 100 105 110

Gly Val Ala Ala Ala Leu Cys Leu Cys Ser Leu Leu Leu Trp Pro Thr
 115 120 125

Arg Leu Arg Arg
 130

<210> 229

<211> 66

<212> PRT

<213> Homo sapiens

<400> 229

Met Thr Tyr Phe Ser Gly Leu Leu Val Ile Leu Ala Phe Ala Ala Trp
 1 5 10 15

Val Ala Leu Ala Glu Gly Leu Gly Val Ala Val Tyr Ala Ala Ala Val
 20 25 30

Leu Leu Gly Ala Gly Cys Ala Thr Ile Leu Val Thr Ser Leu Ala Met
 35 40 45

Thr Ala Asp Leu Ile Gly Pro His Thr Asn Ser Gly Leu Ser Cys Thr
 50 55 60

Ala Pro
 65

<210> 230

<211> 73

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (73)

<223> Xaa equals stop translation

<400> 230

Met Pro Trp Lys Arg Ala Val Val Leu Leu Met Leu Trp Phe Ile Gly
 1 5 10 15

Gln Ala Met Trp Leu Ala Pro Ala Tyr Val Leu Glu Phe Gln Gly Lys
 20 25 30

Asn Thr Phe Leu Phe Ile Trp Leu Ala Gly Leu Phe Phe Leu Leu Ile

	145	
35	40	45
Asn Cys Ser Ile Leu Ile Gln Ile Ile Ser His Tyr Lys Glu Glu Pro		
50	55	60
Leu Thr Glu Arg Ile Lys Tyr Asp Xaa		
65	70	
<210> 231		
<211> 293		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> SITE		
<222> (134)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<400> 231		
Met Leu Ala Leu Thr Phe Met Phe Met Val Leu Glu Val Val Val Ser		
1	5	10
15		
Arg Val Thr Ser Ser Leu Ala Met Leu Ser Asp Ser Phe His Met Leu		
20	25	30
Ser Asp Val Leu Ala Leu Val Val Ala Leu Val Ala Glu Arg Phe Ala		
35	40	45
Arg Arg Thr His Ala Thr Gln Lys Asn Thr Phe Gly Trp Ile Arg Ala		
50	55	60
Glu Val Met Gly Ala Leu Val Asn Ala Ile Phe Leu Thr Gly Leu Cys		
65	70	75
80		
Phe Ala Ile Leu Leu Glu Ala Ile Glu Arg Phe Ile Glu Pro His Glu		
85	90	95
Met Gln Gln Pro Leu Val Val Leu Gly Val Gly Val Ala Gly Leu Leu		
100	105	110
Val Asn Val Leu Gly Leu Cys Leu Phe His His Ser Gly Phe Ser		
115	120	125
Gln Asp Ser Gly His Xaa His Ser His Gly Gly His Gly His Gly His		
130	135	140
Gly Leu Pro Lys Gly Pro Arg Val Lys Ser Thr Arg Pro Gly Ser Ser		
145	150	155
160		
Asp Ile Asn Val Ala Pro Gly Glu Gln Gly Pro Asp Gln Glu Glu Thr		
165	170	175
Asn Thr Leu Val Ala Asn Thr Ser Asn Ser Asn Gly Leu Lys Leu Asp		
180	185	190
Pro Ala Asp Pro Glu Asn Pro Arg Ser Gly Asp Thr Val Glu Val Gln		
195	200	205
Val Asn Gly Asn Leu Val Arg Glu Pro Asp His Met Glu Leu Glu Glu		

	146	
210	215	220
Asp Arg Ala Gly Gln Leu Asn Met Arg Gly Val Phe Leu His Val Leu		
225	230	235
240		
Gly Asp Ala Leu Gly Ser Val Ile Val Val Val Asn Ala Leu Val Phe		
245	250	255
Tyr Phe Ser Trp Lys Gly Cys Ser Glu Gly Asp Phe Cys Val Asn Pro		
260	265	270
Cys Phe Pro Asp Pro Cys Lys Ala Phe Val Glu Ile Leu Ile Val Leu		
275	280	285
Met His Gln Phe Met		
290		
<210> 232		
<211> 55		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> SITE		
<222> (55)		
<223> Xaa equals stop translation		
<400> 232		
Met Lys Thr His Leu Leu Met Phe Leu Leu Ser Cys Met Ala Arg Cys		
1	5	10
15		
Thr Gly Ile Val Pro Lys Arg Pro Gln Pro Ala Phe Pro Leu Arg Gly		
20	25	30
Arg Arg Arg Lys Asn Ser Phe Leu Phe Leu Leu Ser Phe Ser Ile Glu		
35	40	45
Phe Leu Leu Cys Val Trp Xaa		
50	55	
<210> 233		
<211> 47		
<212> PRT		
<213> Homo sapiens		
<400> 233		
Met Lys Thr His Leu Leu Met Phe Leu Leu Ser Cys Met Ala Arg Cys		
1	5	10
15		
Thr Gly Ile Val Pro Lys Arg Pro Gln Pro Ala Phe Pro Leu Arg Gly		
20	25	30
Lys Glu Lys Lys Lys Leu Leu Phe Ile Phe Thr Phe Phe Gln His		
35	40	45
<210> 234		
<211> 54		
<212> PRT		
<213> Homo sapiens		

<220>
<221> SITE
<222> (41)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (54)
<223> Xaa equals stop translation

<400> 234

Met Cys Lys Ala Val Cys Lys His Arg Leu Arg Leu Phe Ala Val Ser
1 5 10 15

Ser Phe Ser Leu Gly Leu Gly Trp Val Cys Val Leu Val Leu Met Leu
20 25 30

Trp Pro Val Arg Leu Ser Leu Ala Xaa Arg Pro Val Gln Leu Gln Gln
35 40 45

Arg Arg Ser His Cys Xaa
50

<210> 235
<211> 70
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (70)
<223> Xaa equals stop translation

<400> 235

Met Ser Arg Lys Ser Leu Ala Phe Pro Ile Ile Cys Ser Tyr Leu Cys
1 5 10 15

Phe Leu Thr Val Ala Thr Cys Ser Ile Ala Cys Thr Thr Val Phe Phe
20 25 30

Ala Asn Leu Arg His Thr Arg Tyr Ile Cys Ile Glu Leu Ser Ala Leu
35 40 45

Glu Thr Ser Gly Val Ile Ser Pro Gln Ile Asn Asn Val Pro Glu Val
50 55 60

His Gly Lys Tyr Ser Xaa
65 70

<210> 236
<211> 69
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (69)
<223> Xaa equals stop translation

148

<400> 236

Met Lys Pro Thr Arg Ser Leu Trp Ile Ser Phe Leu Met Cys Cys Trp
1 5 10 15

Ile Trp Phe Ala Asn Ile Leu Leu Arg Ile Phe Ala Ser Val Phe Phe
20 25 30

Arg Asp Ile Gly Leu Lys Phe Ser Phe Phe Cys Cys Val Ser Ala Arg
35 40 45

Leu Trp Tyr Gln Asp Asp Ala Gly Leu Ile Asn Glu Leu Gly Arg Ile
50 55 60

Pro Ser Phe Tyr Xaa
65

<210> 237

<211> 67

<212> PRT

<213> Homo sapiens

<400> 237

Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val
1 5 10 15

Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Ala Pro
20 25 30

Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu
35 40 45

Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Val Thr Cys
50 55 60

Phe Gly Ala
65

<210> 238

<211> 90

<212> PRT

<213> Homo sapiens

<400> 238

Met Leu Val Val Ser Thr Val Ile Ile Val Phe Trp Glu Phe Ile Asn
1 5 10 15

Ser Thr Glu Gly Ser Phe Leu Trp Ile Tyr His Ser Lys Asn Pro Glu
20 25 30

Val Asp Asp Ser Ser Ala Gln Lys Gly Trp Trp Phe Leu Ser Trp Phe
35 40 45

Asn Asn Gly Ile His Asn Tyr Gln Gln Gly Glu Glu Asp Ile Asp Lys
50 55 60

Glu Lys Gly Arg Glu Glu Thr Lys Gly Arg Lys Met Thr Gln Gln Ser
65 70 75 80

149

Phe	Gly	Tyr	Gly	Thr	Gly	Leu	Ile	Gln	Thr
85								90	

<210> 239

<211> 140

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (117)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 239

Met	Ala	Phe	Lys	Leu	Leu	Ile	Leu	Ile	Gly	Thr	Trp	Ala	Leu	Phe
1				5				10				15		

Phe	Arg	Lys	Arg	Arg	Ala	Asp	Met	Pro	Arg	Val	Phe	Val	Phe	Arg	Ala
								20	25				30		

Leu	Leu	Leu	Val	Leu	Ile	Phe	Leu	Phe	Cys	Gly	Phe	Pro	Ile	Gly	Phe
								35	40				45		

Phe	Thr	Gly	Ser	Ala	Phe	Trp	Thr	Leu	Gly	Asn	Arg	Asn	Tyr	Gln	Gly
					50		55				60				

Ile	Val	Gln	Tyr	Ala	Val	Ser	Pro	Cys	Gly	Met	Pro	Ser	Ser	Phe	His
		65		70			75				80				

Pro	Leu	Leu	Ala	Ile	Arg	Pro	Cys	Trp	Ser	Ser	Gly	Ser	Leu	Gln	Pro
					85			90			95				

Asn	Val	Pro	Arg	Cys	Arg	Leu	Val	Pro	Leu	Pro	Thr	Glu	Trp	Gly	Asn
		100				105					110				

Pro	Arg	Phe	Gln	Xaa	Gly	Thr	Pro	Glu	Tyr	Pro	Ala	Ser	Ser	Ile	Gly
		115				120					125				

Gly	Pro	Arg	Lys	Leu	Leu	Gln	Arg	Phe	His	His	Leu
	130			135				140			

<210> 240

<211> 37

<212> PRT

<213> Homo sapiens

<400> 240

Met	Gly	Leu	Pro	Val	Ser	Trp	Ala	Pro	Pro	Ala	Leu	Trp	Val	Leu	Gly
	1			5				10			15				

Cys	Cys	Ala	Leu	Leu	Leu	Ser	Leu	Trp	Ala	Leu	Cys	Thr	Ala	Cys	Arg
			20			25					30				

Ser	Pro	Arg	Thr	Leu
				35

<210> 241

<211> 21

<212> PRT

150

<213> Homo sapiens

<220>

<221> SITE

<222> (21)

<223> Xaa equals stop translation

<400> 241

Arg Leu Leu Asn Leu Ser Val Pro Met Phe Thr Phe Ile Val Val Lys
1 5 10 15

Arg Tyr Ala Thr Xaa

20

<210> 242

<211> 138

<212> PRT

<213> Homo sapiens

<400> 242

Met Ala Tyr Leu Thr Gly Met Leu Ser Ser Tyr Tyr Asn Thr Thr Ser
1 5 10 15

Val Leu Leu Cys Leu Gly Ile Thr Ala Leu Val Cys Leu Ser Val Thr
20 25 30

Val Phe Ser Phe Gln Thr Lys Phe Asp Phe Thr Ser Cys Gln Gly Val
 35 40 45

Leu Phe Val Leu Leu Met Thr Leu Phe Phe Ser Gly Leu Ile Leu Ala
50 55 60

Ile Leu Leu Pro Phe Gln Tyr Val Pro Trp Leu His Ala Val Tyr Ala
65 70 75 80

Ala Leu Gly Ala Gly Val Phe Thr Leu Phe Leu Ala Leu Asp Thr Gln
85 90 95

Leu Leu Met Gly Asn Arg Arg His Ser Leu Ser Pro Glu Glu Tyr Ile
100 105 110

Phe Gly Ala Leu Asn Ile Tyr Leu Asp Ile Ile Tyr Ile Phe Thr Phe
115 120 125

Phe Leu Gln Leu Phe Gly Thr Asn Arg Glu
130 135

<210> 243

<211> 175

212 PRT

<213> Homo sapiens

<400> 243

Met Ala Gln Trp Thr Ser Thr Gly Pro Gly Lys Pro Thr Arg Arg Gly
 1 5 10 15

Leu Gly Ile Pro Thr Ala Ser Ser Gly Trp Val Trp Arg Arg Cys Ile
20 25 30

151

Ala Ser Trp Gly Thr Ala Thr Ala Ala	Trp Pro Cys Ser Cys Gly Thr		
35	40	45	
Gly Met Ala Thr Pro Ser Cys Cys Ser Ser Pro Cys Thr Trp Val Ala			
50	55	60	
Arg Thr Arg Pro Ile Ala Cys Ser Ser Leu His Pro Trp Pro Ala Ser			
65	70	75	80
Trp Ala Pro Pro Pro Ser His Pro Ala Ala Ser Pro Tyr Pro Ser Pro			
85	90	95	
Leu Gly Thr Arg Ile Thr Thr Ser Ala Gly Thr Arg Thr Ala Pro Arg			
100	105	110	
Ala Ser Leu Glu Ala Gly Gly Leu Ala Pro Ala Ala Ile Pro Thr Phe			
115	120	125	
Asn Gly Pro Val Leu Pro Ala Pro Ser His Ser Ser Gly Arg Ser Leu			
130	135	140	
Arg Arg Glu Ser Ser Gly Arg Pro Ala Gly Arg Tyr Tyr Pro Leu Gln			
145	150	155	160
Ala Thr Thr Met Leu Ile Gln Pro Met Ala Ala Glu Ala Ala Ser			
165	170	175	
<210> 244			
<211> 39			
<212> PRT			
<213> Homo sapiens			
<400> 244			
Met Leu Gly Leu Leu Leu Cys Thr Pro Arg Ala Trp Leu Thr Leu			
1	5	10	15
Ser Gly Pro Val Cys Phe Gln Gly Arg Asp Pro Leu Arg Ser His Arg			
20	25	30	
Gly His Pro Ser Cys Gly Ser			
35			
<210> 245			
<211> 47			
<212> PRT			
<213> Homo sapiens			
<400> 245			
Met Leu Ser Ile Ile Pro Asn Asp Arg Leu Phe Ile Asn Leu Ile Phe			
1	5	10	15
Leu Ser Asn Phe Leu Pro Ser Val Leu Trp Glu Pro Ala Gly Gln Met			
20	25	30	
Trp Tyr Thr His Val Arg Tyr Pro Ser Gly Arg Leu Leu Ser Leu			
35	40	45	
<210> 246			
<211> 34			

152

<212> PRT

<213> Homo sapiens

<400> 246

Met Thr Gly Phe Ala Gln Phe Cys Val Ile Leu Gly Leu Asn Leu Ser
1 5 10 15

Leu Phe Gly Thr Phe Pro Tyr Leu Leu Pro Ser Ser Glu Ser Arg Cys
20 25 30

Arg Lys

<210> 247

<211> 490

<212> PRT

<213> Homo sapiens

<400> 247

Met Gly Ser Ala Pro Trp Ala Pro Val Leu Leu Leu Ala Leu Gly Leu
1 5 10 15

Arg Gly Leu Gln Ala Gly Ala Arg Ser Gly Pro Arg Leu Pro Gly Ala
20 25 30

Leu Leu Pro Ala Ala Ser Gly Pro Leu Gln Leu Arg Ala Leu Arg Gln
35 40 45

Gln Asp Leu Pro Ser Ala Leu Pro Gly Val Gly Gln Val Leu Gly Pro
50 55 60

Gly Arg Gly Ala His Leu Leu Leu His Trp Glu Arg Gly Arg Arg Val
65 70 75 80

Gly Leu Arg Gln Gln Leu Gly Leu Arg Arg Gly Leu Ala Ala Glu Arg
85 90 95

Gly Ala Leu Leu Val Phe Ala Glu His Arg Tyr Tyr Gly Lys Ser Leu
100 105 110

Pro Phe Gly Ala Gln Ser Thr Gln Arg Gly His Thr Glu Leu Leu Thr
115 120 125

Val Glu Gln Ala Leu Ala Asp Phe Ala Glu Leu Leu Arg Ala Leu Arg
130 135 140

Arg Asp Leu Gly Ala Gln Asp Ala Pro Ala Ile Ala Phe Gly Gly Ser
145 150 155 160

Tyr Gly Gly Met Leu Ser Ala Tyr Leu Arg Met Lys Tyr Pro His Leu
165 170 175

Val Ala Gly Ala Leu Ala Ala Ser Ala Pro Val Leu Ser Val Ala Gly
180 185 190

Leu Gly Asp Ser Asn Gln Phe Phe Arg Asp Val Thr Ala Asp Phe Glu
195 200 205

Gly Gln Ser Pro Lys Cys Thr Gln Gly Val Arg Glu Ala Phe Arg Gln

	153		
210	215	220	
Ile Lys Asp Leu Phe Leu Gln Gly Ala Tyr Asp Thr Val Arg Trp Glu			
225	230	235	240
Phe Gly Thr Cys Gln Pro Leu Ser Asp Glu Lys Asp Leu Thr Gln Leu			
245	250	255	
Phe Met Phe Ala Arg Asn Ala Phe Thr Val Leu Ala Met Met Asp Tyr			
260	265	270	
Pro Tyr Pro Thr Asp Phe Leu Gly Pro Leu Pro Ala Asn Pro Val Lys			
275	280	285	
Val Gly Cys Asp Arg Leu Leu Ser Glu Ala Gln Arg Ile Thr Gly Leu			
290	295	300	
Arg Ala Leu Ala Gly Leu Val Tyr Asn Ala Ser Gly Ser Glu His Cys			
305	310	315	320
Tyr Asp Ile Tyr Arg Leu Tyr His Ser Cys Ala Asp Pro Thr Gly Cys			
325	330	335	
Gly Thr Gly Pro Asp Ala Arg Ala Trp Asp Tyr Gln Ala Cys Thr Glu			
340	345	350	
Ile Asn Leu Thr Phe Ala Ser Asn Asn Val Thr Asp Met Phe Pro Asp			
355	360	365	
Leu Pro Phe Thr Asp Glu Leu Arg Gln Arg Tyr Cys Leu Asp Thr Trp			
370	375	380	
Gly Val Trp Pro Arg Pro Asp Trp Leu Leu Thr Ser Phe Trp Gly Gly			
385	390	395	400
Asp Leu Arg Ala Ala Ser Asn Ile Ile Phe Ser Asn Gly Asn Leu Asp			
405	410	415	
Pro Trp Ala Gly Gly Ile Arg Arg Asn Leu Ser Ala Ser Val Ile			
420	425	430	
Ala Val Thr Ile Gln Gly Gly Ala His His Leu Asp Leu Arg Ala Ser			
435	440	445	
His Pro Glu Asp Pro Ala Ser Val Val Glu Ala Arg Lys Leu Glu Ala			
450	455	460	
Thr Ile Ile Gly Glu Trp Val Lys Ala Ala Arg Arg Glu Gln Gln Pro			
465	470	475	480
Ala Leu Arg Gly Gly Pro Arg Leu Ser Leu			
485	490		

<210> 248
<211> 555
<212> PRT
<213> Homo sapiens

<220>

154

<221> SITE

<222> (555)

<223> Xaa equals stop translation

<400> 248

Gly	Gly	Gly	Tyr	Ala	Leu	Ala	Leu	Leu	Val	Leu	Leu	Leu	Gly	Pro
1				5				10					15	

Gly	Gly	Trp	Cys	Leu	Ala	Glu	Pro	Pro	Arg	Asp	Ser	Leu	Arg	Glu	Glu
				20				25				30			

Leu	Val	Ile	Thr	Pro	Leu	Pro	Ser	Gly	Asp	Val	Ala	Ala	Thr	Phe	Gln
				35				40				45			

Phe	Arg	Thr	Arg	Trp	Asp	Ser	Glu	Leu	Gln	Arg	Glu	Gly	Val	Ser	His
	50				55					60					

Tyr	Arg	Leu	Phe	Pro	Lys	Ala	Leu	Gly	Gln	Leu	Ile	Ser	Lys	Tyr	Ser
65				70					75			80			

Leu	Arg	Glu	Leu	His	Leu	Ser	Phe	Thr	Gln	Gly	Phe	Trp	Arg	Thr	Arg
	85							90				95			

Tyr	Trp	Gly	Pro	Pro	Phe	Leu	Gln	Ala	Pro	Ser	Asp	Thr	Asp	His	Tyr
	100				105						110				

Phe	Leu	Arg	Tyr	Ala	Val	Leu	Pro	Arg	Glu	Val	Val	Cys	Thr	Glu	Asn
	115				120						125				

Leu	Thr	Pro	Trp	Lys	Lys	Leu	Leu	Pro	Cys	Ser	Ser	Lys	Ala	Gly	Leu
130				135						140					

Ser	Val	Leu	Leu	Lys	Ala	Asp	Arg	Leu	Phe	His	Thr	Ser	Tyr	His	Ser
145				150					155			160			

Gln	Ala	Val	His	Ile	Arg	Pro	Val	Cys	Arg	Asn	Ala	Arg	Cys	Thr	Ser
	165				170						175				

Ile	Ser	Trp	Glu	Leu	Arg	Gln	Thr	Leu	Ser	Val	Val	Phe	Asp	Ala	Phe
	180				185						190				

Ile	Thr	Gly	Gln	Gly	Lys	Lys	Asp	Trp	Ser	Leu	Phe	Arg	Met	Phe	Ser
	195				200					205					

Arg	Thr	Leu	Thr	Glu	Pro	Cys	Pro	Leu	Ala	Ser	Glu	Ser	Arg	Val	Tyr
210				215						220					

Val	Asp	Ile	Thr	Thr	Tyr	Asn	Gln	Asp	Asn	Glu	Thr	Leu	Glu	Val	His
225				230					235			240			

Pro	Pro	Pro	Thr	Thr	Tyr	Gln	Asp	Val	Ile	Leu	Gly	Thr	Arg	Lys	
	245				250					255					

Thr	Tyr	Ala	Ile	Tyr	Asp	Leu	Leu	Asp	Thr	Ala	Met	Ile	Asn	Asn	Ser
		260						265				270			

Arg	Asn	Leu	Asn	Ile	Gln	Leu	Lys	Trp	Lys	Arg	Pro	Pro	Glu	Asn	Glu
	275				280				285						

155

Ala Pro Pro Val Pro Phe Leu His Ala Gln Arg Tyr Val Ser Gly Tyr		
290	295	300
Gly Leu Gln Lys Gly Glu Leu Ser Thr Leu Leu Tyr Asn Thr His Pro		
305	310	315
Tyr Arg Ala Phe Pro Val Leu Leu Leu Asp Thr Val Pro Trp Tyr Leu		
325	330	335
Arg Leu Tyr Val His Thr Leu Thr Ile Thr Ser Lys Gly Lys Glu Asn		
340	345	350
Lys Pro Ser Tyr Ile His Tyr Gln Pro Ala Gln Asp Arg Leu Gln Pro		
355	360	365
His Leu Leu Glu Met Leu Ile Gln Leu Pro Ala Asn Ser Val Thr Lys		
370	375	380
Val Ser Ile Gln Phe Glu Arg Ala Leu Leu Lys Trp Thr Glu Tyr Thr		
385	390	395
400		
Pro Asp Pro Asn His Gly Phe Tyr Val Ser Pro Ser Val Leu Ser Ala		
405	410	415
Leu Val Pro Ser Met Val Ala Ala Lys Pro Val Asp Trp Glu Glu Ser		
420	425	430
Pro Leu Phe Asn Ser Leu Phe Pro Val Ser Asp Gly Ser Asn Tyr Phe		
435	440	445
Val Arg Leu Tyr Thr Glu Pro Leu Leu Val Asn Leu Pro Thr Pro Asp		
450	455	460
Phe Ser Met Pro Tyr Asn Val Ile Cys Leu Thr Cys Thr Val Val Ala		
465	470	475
480		
Val Cys Tyr Gly Ser Phe Tyr Asn Leu Leu Thr Arg Thr Phe Pro His		
485	490	495
Arg Gly Ala Pro His Arg Trp Pro Gly Gln Ala Ala Gly Gln Pro Tyr		
500	505	510
Pro Ala Arg Pro Ser Val Pro Pro Thr Leu Ile Leu Ala Leu Ser Ser		
515	520	525
Ser Cys Ser Cys Arg Phe Ser Leu Gly Arg Gly Ala Gln Gly Leu Phe		
530	535	540
Leu Pro Leu Ala Leu Leu Arg Val Gly Phe Xaa		
545	550	555
<210> 249		
<211> 21		
<212> PRT		
<213> Homo sapiens		
<400> 249		
Thr Arg Pro Glu Lys Val Gln Ala Pro Leu Lys Trp Phe Lys Phe Gln		
1	5	10
15		

Ile Leu Asp Pro Pro
20

<210> 250

<211> 272

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (51)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (229)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 250

Ser Ala Glu Phe Gly Val Ala Pro Leu Pro Gly Arg Arg Gly Ser Pro
1 5 10 15

Val Arg Gln Leu Ala Gln Phe Arg Arg Arg Leu Leu Arg Gly Ser Gly
20 25 30

Gly Arg Gly Ala Pro Gly Arg Pro Pro Arg Cys Pro Gly Glu Ala Arg
35 40 45

Val Met Xaa Pro Pro Ser Cys Ile Gln Asp Glu Pro Phe Pro His Pro
50 55 60

Leu Glu Pro Glu Pro Gly Val Ser Ala Gln Pro Gly Pro Gly Lys Pro
65 70 75 80

Ser Asp Lys Arg Phe Arg Leu Trp Tyr Val Gly Gly Ser Cys Leu Asp
85 90 95

His Arg Thr Thr Leu Pro Met Leu Pro Trp Leu Met Ala Glu Ile Arg
100 105 110

Arg Arg Ser Gln Lys Pro Glu Ala Gly Gly Cys Gly Ala Pro Ala Ala
115 120 125

Arg Glu Val Ile Leu Val Leu Ser Ala Pro Phe Leu Arg Cys Val Pro
130 135 140

Ala Pro Gly Ala Gly Ala Ser Gly Gly Thr Ser Pro Ser Ala Thr Gln
145 150 155 160

Pro Asn Pro Ala Val Phe Ile Phe Glu His Lys Ala Gln His Ile Ser
165 170 175

Arg Phe Ile His Asn Ser His Asp Leu Thr Tyr Phe Ala Tyr Leu Ile
180 185 190

Lys Ala Gln Pro Asp Asp Pro Glu Ser Gln Met Ala Cys His Val Phe
195 200 205

157

Arg Ala Thr Asp Pro Ser Gln Val Pro Asp Val Ile Ser Ser Ile Arg
210 215 220

Gln Leu Ser Lys Xaa Ala Met Lys Glu Asp Ala Lys Pro Ser Lys Asp
225 230 235 240

Asn Glu Asp Ala Phe Tyr Asn Ser Gln Lys Phe Glu Val Leu Tyr Cys
245 250 255

Gly Lys Val Thr Val Thr Pro Gln Glu Gly Pro Leu Lys Pro His Arg
260 265 270

<210> 251

<211> 14

<212> PRT

<213> Homo sapiens

<400> 251

Pro Met Leu Pro Trp Leu Met Ala Glu Ile Arg Arg Arg Ser
1 5 10

<210> 252

<211> 19

<212> PRT

<213> Homo sapiens

<400> 252

Ile His Asn Ser His Asp Leu Thr Tyr Phe Ala Tyr Leu Ile Lys Ala
1 5 10 15

Gln Pro Asp

<210> 253

<211> 12

<212> PRT

<213> Homo sapiens

<400> 253

Lys Phe Glu Val Leu Tyr Cys Gly Lys Val Thr Val
1 5 10

<210> 254

<211> 13

<212> PRT

<213> Homo sapiens

<400> 254

Ile Ser Ser Ile Arg Gln Leu Ser Lys Ala Met Lys Glu
1 5 10

<210> 255

<211> 20

<212> PRT

<213> Homo sapiens

158

<400> 255
Gly Glu Arg Arg Asn Trp Gly Gly Glu Val Tyr Tyr Ser Thr Gly Tyr
1 5 10 15

Ser Ser Arg Lys
20

<210> 256
<211> 9
<212> PRT
<213> Homo sapiens

<400> 256
Glu Pro Gly Ala Ala Gln Glu Ser Trp
1 5

<210> 257
<211> 202
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (108)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (120)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (138)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (165)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 257
Leu Cys Ala Arg Pro Ser Cys Ser Tyr Thr Gly Ala Glu Asn Gln Gly
1 5 10 15

Gln Pro Arg Ser Pro Gly Trp Gly Ser Ser His Val Gly Trp Gly Trp
20 25 30

Gly Val Gly Ser Pro Phe Leu Gly Ser Gln Glu Trp Ser Gly Leu Ala
35 40 45

Pro Asp Leu Pro Asp Gln Glu Glu Gln Pro Val Gly Arg His Ser
50 55 60

Cys Pro Asp Met Ser Gln Cys Ile Lys Arg Gly His Gln Pro Val Gly
65 70 75 80

Phe Ser Lys His Ala Trp Arg Cys Leu Val Gly Cys Cys Pro Trp Glu
85 90 95

159

Glu Glu Lys Arg Ser Cys His Pro Phe Gly Ala Xaa Leu Leu Trp Val
100 105 110

Leu Arg Phe Ala Leu Gln Pro Xaa Val Tyr Glu Asp Pro Ala Ala Leu
115 120 125

Asp Gly Gly Glu Glu Gly Met Asp Ile Xaa Thr His Ile Leu Ala Leu
130 135 140

Ala Pro Arg Leu Leu Lys Asp Ser Gly Ser Ile Phe Leu Glu Val Asp
145 150 155 160

Pro Arg His Pro Xaa Leu Val Ser Ser Trp Leu Gln Ser Arg Pro Asp
165 170 175

Leu Tyr Leu Asn Leu Val Ala Val Arg Arg Asp Phe Cys Gly Arg Pro
180 185 190

Arg Phe Leu His Ile Arg Arg Ser Gly Pro
195 200

<210> 258

<211> 37

<212> PRT

<213> Homo sapiens

<400> 258

Leu Cys Ala Arg Pro Ser Cys Ser Tyr Thr Gly Ala Glu Asn Gln Gly
1 5 10 15

Gln Pro Arg Ser Pro Gly Trp Gly Ser Ser His Val Gly Trp Gly Trp
20 25 30

Gly Val Gly Ser Pro
35

<210> 259

<211> 37

<212> PRT

<213> Homo sapiens

<400> 259

Phe Leu Gly Ser Gln Glu Trp Ser Gly Leu Ala Pro Asp Leu Pro Asp
1 5 10 15

Gln Glu Glu Glu Gln Pro Val Gly Arg His Ser Cys Pro Asp Met Ser
20 25 30

Gln Cys Ile Lys Arg
35

<210> 260

<211> 37

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

160

<222> (34)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 260

Gly His Gln Pro Val Gly Phe Ser Lys His Ala Trp Arg Cys Leu Val
1 5 10 15Gly Cys Cys Pro Trp Glu Glu Glu Lys Arg Ser Cys His Pro Phe Gly
20 25 30Ala Xaa Leu Leu Trp
35

<210> 261

<211> 37

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (9)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (27)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 261

Val Leu Arg Phe Ala Leu Gln Pro Xaa Val Tyr Glu Asp Pro Ala Ala
1 5 10 15Leu Asp Gly Gly Glu Glu Gly Met Asp Ile Xaa Thr His Ile Leu Ala
20 25 30Leu Ala Pro Arg Leu
35

<210> 262

<211> 54

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (17)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 262

Leu Lys Asp Ser Gly Ser Ile Phe Leu Glu Val Asp Pro Arg His Pro
1 5 10 15Xaa Leu Val Ser Ser Trp Leu Gln Ser Arg Pro Asp Leu Tyr Leu Asn
20 25 30Leu Val Ala Val Arg Arg Asp Phe Cys Gly Arg Pro Arg Phe Leu His
35 40 45

Ile Arg Arg Ser Gly Pro

161

50

<210> 263
<211> 19
<212> PRT
<213> Homo sapiens

<400> 263
Gln Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe Asn
1 5 10 15

Thr Pro Leu

<210> 264
<211> 26
<212> PRT
<213> Homo sapiens

<400> 264
Leu Arg Ile Gln Leu Leu His Lys Leu Ser Phe Leu Val Asn Ala Leu
1 5 10 15

Ala Lys Gln Val Met Asn Leu Leu Val Pro
20 25

<210> 265
<211> 20
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (2)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (10)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 265
His Xaa Ile Trp Leu Lys Val Ile Thr Xaa Asn Ile Leu Gln Leu Gln
1 5 10 15

Val Lys Pro Ser
20

<210> 266
<211> 58
<212> PRT
<213> Homo sapiens

<400> 266
Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala Ala Thr
1 5 10 15

Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile Leu Gly Pro
20 25 30

162

Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys Asp His Asn Ala
35 40 45

Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu
50 55

<210> 267

<211> 15

<212> PRT

<213> Homo sapiens

<400> 267

His Phe Ile Ile Thr Leu Thr Thr Phe Phe Thr Asn Tyr Phe Leu
1 5 10 15

<210> 268

<211> 99

<212> PRT

<213> Homo sapiens

<400> 268

Met Lys Ile Thr Phe Gln Asp Leu Phe Pro Met Trp Asn Ser Phe Lys
1 5 10 15

Cys Phe Leu His Gly Asn Val Phe Ser Leu Phe Val Leu Phe Pro Leu
20 25 30

Leu Thr Cys Phe Ser Phe Pro Tyr Thr Val Asn Ser Gly Thr Lys Leu
35 40 45

Asp Trp Val Gly Trp Leu Val Gly Trp Phe Phe Leu Glu Phe Met Tyr
50 55 60

Ile Asn Lys Gly Phe Glu Val Thr Ser Glu Asn Asn Ile Ser Lys Arg
65 70 75 80

Val Leu Val Arg Glu Asn Ile Arg Ile Lys Ser Ser Pro Glu Arg Val
85 90 95

Leu Arg Met

<210> 269

<211> 19

<212> PRT

<213> Homo sapiens

<400> 269

Arg Phe Trp Gly Ser Tyr Glu Pro His Phe Ser Gln Glu Val Ser Val
1 5 10 15

Ile Pro Pro

<210> 270

<211> 56

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (32)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 270

Ile	Arg	Gly	Asn	Tyr	Phe	Ser	Gly	Arg	Lys	Lys	Ser	Ser	Ser	Asp	Thr
1					5				10					15	

Pro	Lys	Gly	Ser	Lys	Asp	Lys	Ile	Ser	Val	Trp	Asn	Arg	Ser	Gln	Xaa
					20				25				30		

Ala	Cys	Ile	Arg	Ile	Cys	Lys	Val	His	Pro	Asn	Tyr	Ile	Gln	Ile	Tyr
					35			40				45			

Leu	Trp	His	Ser	Ala	Thr	Ser	Phe								
					50			55							

<210> 271

<211> 74

<212> PRT

<213> Homo sapiens

<400> 271

Ala	Gly	Asn	Gln	Val	Glu	Pro	Phe	His	Val	Ser	Leu	Pro	Ser	Cys	Leu
1					5				10			15			

Ser	Pro	Leu	Pro	His	Leu	Gly	His	Ser	Met	Gly	Val	Pro	Ser	Pro	Thr
					20			25			30				

Ala	Trp	Pro	Ser	Leu	Ala	Ser	Phe	His	Thr	Gln	Lys	Lys	Ala	Arg	Ile
					35			40			45				

Arg	Gln	Glu	Glu	Glu	Ser	Pro	Pro	Leu	Pro	Ser	Pro	Gln	Glu	Leu	Ala
					50			55			60				

Phe	Ser	Ala	Leu	Arg	Val	Phe	Phe	Arg	Val						
					65			70							

<210> 272

<211> 38

<212> PRT

<213> Homo sapiens

<400> 272

Phe	Ile	Gln	Gln	Asn	Ile	Ser	Phe	Leu	Leu	Gly	Tyr	Ser	Ile	Pro	Val
1					5				10			15			

Gly	Cys	Val	Gly	Leu	Ala	Phe	Phe	Ile	Phe	Leu	Phe	Ala	Thr	Pro	Val
					20			25			30				

Phe	Ile	Thr	Lys	Pro	Pro										
				35											

<210> 273

<211> 347

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (16)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (340)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (341)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 273

Val	Ser	Ala	His	His	Pro	Ser	Gly	Ala	Asp	Glu	Gly	Val	Thr	Ala	Xaa
1					5				10					15	

Gln	Ile	Leu	Pro	Thr	Glu	Glu	Tyr	Glu	Glu	Ala	Met	Ser	Thr	Met	Gln
					20			25					30		

Val	Ser	Gln	Leu	Asp	Leu	Phe	Arg	Leu	Leu	Asp	Gln	Asn	Arg	Asp	Gly
					35			40				45			

His	Leu	Gln	Leu	Arg	Glu	Val	Leu	Ala	Gln	Thr	Arg	Leu	Gly	Asn	Gly
					50			55			60				

Trp	Trp	Met	Thr	Pro	Glu	Ser	Ile	Gln	Glu	Met	Tyr	Ala	Ala	Ile	Lys
					65		70			75			80		

Ala	Asp	Pro	Asp	Gly	Asp	Gly	Val	Leu	Ser	Leu	Gln	Glu	Phe	Ser	Asn
					85			90				95			

Met	Asp	Leu	Arg	Asp	Phe	His	Lys	Tyr	Met	Arg	Ser	His	Lys	Ala	Glu
					100			105			110				

Ser	Ser	Glu	Leu	Val	Arg	Asn	Ser	His	His	Thr	Trp	Leu	Tyr	Gln	Gly
					115			120			125				

Glu	Gly	Ala	His	His	Ile	Met	Arg	Ala	Ile	Arg	Gln	Arg	Val	Leu	Arg
					130		135			140					

Leu	Thr	Arg	Leu	Ser	Pro	Glu	Ile	Val	Glu	Leu	Ser	Glu	Pro	Leu	Gln
					145		150			155			160		

Val	Val	Arg	Tyr	Gly	Glu	Gly	Gly	His	Tyr	His	Ala	His	Val	Asp	Ser
					165			170			175				

Gly	Pro	Val	Tyr	Pro	Glu	Thr	Ile	Cys	Ser	His	Thr	Lys	Leu	Val	Ala
					180			185			190				

Asn	Glu	Ser	Val	Pro	Phe	Glu	Thr	Ser	Cys	Arg	Tyr	Met	Thr	Val	Leu
					195			200			205				

Phe	Tyr	Leu	Asn	Asn	Val	Thr	Gly	Gly	Glu	Thr	Val	Phe	Pro	Val	
					210		215			220					

165

Ala	Asp	Asn	Arg	Thr	Tyr	Asp	Glu	Met	Ser	Leu	Ile	Gln	Asp	Asp	Val
225										235					240

Asp	Leu	Arg	Asp	Thr	Arg	Arg	His	Cys	Asp	Lys	Gly	Asn	Leu	Arg	Val
					245				250					255	

Lys	Pro	Gln	Gln	Gly	Thr	Ala	Val	Phe	Trp	Tyr	Asn	Tyr	Leu	Pro	Asp
						260			265				270		

Gly	Gln	Gly	Trp	Val	Gly	Asp	Val	Asp	Asp	Tyr	Ser	Leu	His	Gly	Gly
					275			280				285			

Cys	Leu	Val	Thr	Arg	Gly	Thr	Lys	Trp	Ile	Ala	Asn	Asn	Trp	Ile	Asn
						290		295				300			

Val	Asp	Pro	Ser	Arg	Ala	Arg	Gln	Ala	Leu	Phe	Gln	Gln	Glu	Met	Ala
					305			310			315			320	

Arg	Leu	Ala	Arg	Glu	Gly	Gly	Thr	Asp	Ser	Gln	Pro	Glu	Trp	Ala	Leu
					325				330				335		

Asp	Arg	Ala	Xaa	Xaa	Asp	Ala	Arg	Val	Glu	Leu					
					340			345							

<210> 274
<211> 6
<212> PRT
<213> Homo sapiens

<400> 274
Ala Val Phe Trp Tyr Asn
1 5

<210> 275
<211> 18
<212> PRT
<213> Homo sapiens

<400> 275
Thr Val Leu Phe Tyr Leu Asn Asn Val Thr Gly Gly Glu Thr Val
1 5 10 15

Phe Pro

<210> 276
<211> 59
<212> PRT
<213> Homo sapiens

<400> 276
Asp Leu Phe Arg Leu Leu Asp Gln Asn Arg Asp Gly His Leu Gln Leu
1 5 10 15

Arg	Glu	Val	Leu	Ala	Gln	Thr	Arg	Leu	Gly	Asn	Gly	Trp	Trp	Met	Thr
						20		25				30			

Pro	Glu	Ser	Ile	Gln	Glu	Met	Tyr	Ala	Ala	Ile	Lys	Ala	Asp	Pro	Asp
						35		40				45			

Gly Asp Gly Val Leu Ser Leu Gln Glu Phe Ser
50 55

<210> 277

<211> 38

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (16)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 277

Val Ser Ala His His Pro Ser Gly Ala Asp Glu Gly Val Thr Ala Xaa
1 5 10 15

Gln Ile Leu Pro Thr Glu Glu Tyr Glu Ala Met Ser Thr Met Gln
20 25 30

Val Ser Gln Leu Asp Leu
35

<210> 278

<211> 38

<212> PRT

<213> Homo sapiens

<400> 278

Phe Arg Leu Leu Asp Gln Asn Arg Asp Gly His Leu Gln Leu Arg Glu
1 5 10 15

Val Leu Ala Gln Thr Arg Leu Gly Asn Gly Trp Trp Met Thr Pro Glu
20 25 30

Ser Ile Gln Glu Met Tyr
35

<210> 279

<211> 38

<212> PRT

<213> Homo sapiens

<400> 279

Ala Ala Ile Lys Ala Asp Pro Asp Gly Asp Gly Val Leu Ser Leu Gln
1 5 10 15

Glu Phe Ser Asn Met Asp Leu Arg Asp Phe His Lys Tyr Met Arg Ser
20 25 30

His Lys Ala Glu Ser Ser
35

<210> 280

<211> 38

<212> PRT

<213> Homo sapiens

167

<400> 280

Glu Leu Val Arg Asn Ser His His Thr Trp Leu Tyr Gln Gly Glu Gly
1 5 10 15

Ala His His Ile Met Arg Ala Ile Arg Gln Arg Val Leu Arg Leu Thr
20 25 30

Arg Leu Ser Pro Glu Ile
35

<210> 281

<211> 38

<212> PRT

<213> Homo sapiens

<400> 281

Val Glu Leu Ser Glu Pro Leu Gln Val Val Arg Tyr Gly Glu Gly Gly
1 5 10 15

His Tyr His Ala His Val Asp Ser Gly Pro Val Tyr Pro Glu Thr Ile
20 25 30

Cys Ser His Thr Lys Leu
35

<210> 282

<211> 38

<212> PRT

<213> Homo sapiens

<400> 282

Val Ala Asn Glu Ser Val Pro Phe Glu Thr Ser Cys Arg Tyr Met Thr
1 5 10 15

Val Leu Phe Tyr Leu Asn Asn Val Thr Gly Gly Gly Glu Thr Val Phe
20 25 30

Pro Val Ala Asp Asn Arg
35

<210> 283

<211> 38

<212> PRT

<213> Homo sapiens

<400> 283

Thr Tyr Asp Glu Met Ser Leu Ile Gln Asp Asp Val Asp Leu Arg Asp
1 5 10 15

Thr Arg Arg His Cys Asp Lys Gly Asn Leu Arg Val Lys Pro Gln Gln
20 25 30

Gly Thr Ala Val Phe Trp
35

<210> 284

<211> 38

<212> PRT

<213> Homo sapiens

<400> 284

Tyr Asn Tyr Leu Pro Asp Gly Gln Gly Trp Val Gly Asp Val Asp Asp
1 5 10 15

Tyr Ser Leu His Gly Gly Cys Leu Val Thr Arg Gly Thr Lys Trp Ile
20 25 30

Ala Asn Asn Trp Ile Asn
35

<210> 285

<211> 43

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (36)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (37)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 285

Val Asp Pro Ser Arg Ala Arg Gln Ala Leu Phe Gln Gln Glu Met Ala
1 5 10 15

Arg Leu Ala Arg Glu Gly Gly Thr Asp Ser Gln Pro Glu Trp Ala Leu
20 25 30

Asp Arg Ala Xaa Xaa Asp Ala Arg Val Glu Leu
35 40

<210> 286

<211> 15

<212> PRT

<213> Homo sapiens

<400> 286

Leu Leu Ala Asp Leu Met Arg Asn Tyr Asp Pro His Leu Arg Pro
1 5 10 15

<210> 287

<211> 19

<212> PRT

<213> Homo sapiens

<400> 287

Ile Ser Val Thr Tyr Phe Pro Phe Asp Trp Gln Asn Cys Ser Leu Ile
1 5 10 15

Phe Gln Ser

<210> 288

<211> 16

169

<212> PRT
<213> Homo sapiens

<400> 288

Ser Met Ala Arg Gly Val Arg Lys Val Phe Leu Arg Leu Leu Pro Gln
1 5 10 15

<210> 289

<211> 18

<212> PRT

<213> Homo sapiens

<400> 289

Gln Ala Ser Pro Ala Ile Gln Ala Cys Val Asp Ala Cys Asn Leu Met
1 5 10 15

Ala Arg

<210> 290

<211> 17

<212> PRT

<213> Homo sapiens

<400> 290

Tyr Asn Gln Val Pro Asp Leu Pro Phe Pro Gly Asp Pro Arg Pro Tyr
1 5 10 15

Leu

<210> 291

<211> 15

<212> PRT

<213> Homo sapiens

<400> 291

Cys Ser Ile Ser Val Thr Tyr Phe Pro Phe Asp Trp Gln Asn Cys
1 5 10 15

<210> 292

<211> 18

<212> PRT

<213> Homo sapiens

<400> 292

Val Leu Lys Tyr Ala Leu Phe Leu Val Leu Lys Asn Tyr Tyr Tyr Cys
1 5 10 15

Pro Tyr

<210> 293

<211> 315

<212> PRT

<213> Homo sapiens

170

<400> 293

Met Arg Glu Tyr Gly Val Glu Arg Asp Leu Ala Val Tyr Asn Gln Leu
1 5 10 15

Leu Asn Ile Phe Pro Lys Glu Val Phe Arg Pro Arg Asn Ile Ile Gln
20 25 30

Arg Ile Phe Val His Tyr Pro Arg Gln Gln Glu Cys Gly Ile Ala Val
35 40 45

Leu Glu Gln Met Glu Asn His Gly Val Met Pro Asn Lys Glu Thr Glu
50 55 60

Phe Leu Leu Ile Gln Ile Phe Gly Arg Lys Ser Tyr Pro Met Leu Lys
65 70 75 80

Leu Val Arg Leu Lys Leu Trp Phe Pro Arg Phe Met Asn Val Asn Pro
85 90 95

Phe Pro Val Pro Arg Asp Leu Pro Gln Asp Pro Val Glu Leu Ala Met
100 105 110

Phe Gly Leu Arg His Met Glu Pro Asp Leu Ser Ala Arg Val Thr Ile
115 120 125

Tyr Gln Val Pro Leu Pro Lys Asp Ser Thr Gly Ala Ala Asp Pro Pro
130 135 140

Gln Pro His Ile Val Gly Ile Gln Ser Pro Asp Gln Gln Ala Ala Leu
145 150 155 160

Ala Arg His Asn Pro Ala Arg Pro Val Phe Val Glu Gly Pro Phe Ser
165 170 175

Leu Trp Leu Arg Asn Lys Cys Val Tyr Tyr His Ile Leu Arg Ala Asp
180 185 190

Leu Leu Pro Pro Glu Glu Arg Glu Val Glu Glu Thr Pro Glu Glu Trp
195 200 205

Asn Leu Tyr Tyr Pro Met Gln Leu Asp Leu Glu Tyr Val Arg Ser Gly
210 215 220

Trp Asp Asn Tyr Glu Phe Asp Ile Asn Glu Val Glu Glu Gly Pro Val
225 230 235 240

Phe Ala Met Cys Met Ala Gly Ala His Asp Gln Ala Thr Met Ala Lys
245 250 255

Trp Ile Gln Gly Leu Gln Glu Thr Asn Pro Thr Leu Ala Gln Ile Pro
260 265 270

Val Val Phe Arg Leu Ala Gly Ser Thr Arg Glu Leu Gln Thr Ser Ser
275 280 285

Ala Gly Leu Glu Glu Pro Pro Leu Pro Glu Asp His Gln Glu Glu Asp
290 295 300

171
Asp Asn Leu Gln Arg Gln Gln Gln Gly Gln Ser
305 310 315

<210> 294
<211> 19
<212> PRT
<213> Homo sapiens

<400> 294
Phe Gln Phe Gly Trp Ala Ser Thr Gln Ile Ser His Leu Ser Leu Ile
1 5 10 15

Pro Glu Leu

<210> 295
<211> 14
<212> PRT
<213> Homo sapiens

<400> 295
Leu Arg Tyr Ala Phe Thr Val Val Ala Asn Ile Thr Val Tyr
1 5 10

<210> 296
<211> 17
<212> PRT
<213> Homo sapiens

<400> 296
Phe Val Tyr Gly Ser Met Ser Phe Leu Asp Lys Val Ala Asn Gly Leu
1 5 10 15

Ala

<210> 297
<211> 17
<212> PRT
<213> Homo sapiens

<400> 297
Trp His Leu Val Gly Thr Val Cys Val Leu Leu Ser Phe Pro Phe Ile
1 5 10 15

Phe

<210> 298
<211> 15
<212> PRT
<213> Homo sapiens

<400> 298
Gly His Phe Leu Asn Asp Leu Cys Ala Ser Met Trp Phe Thr Tyr
1 5 10 15

<210> 299
<211> 40

172

<212> PRT

<213> Homo sapiens

<400> 299

Ala Ile Pro Leu Arg Val Leu Val Val Leu Trp Ala Phe Val Leu Gly
1 5 10 15Leu Ser Arg Val Met Leu Gly Arg His Asn Val Thr Asp Val Ala Phe
20 25 30

Gly Phe Phe Leu Gly Tyr Met Gln

35 40

<210> 300

<211> 13

<212> PRT

<213> Homo sapiens

<400> 300

Val Gly Leu Ser Arg Val Leu Gly Arg His Thr Asp Val
1 5 10

<210> 301

<211> 17

<212> PRT

<213> Homo sapiens

<400> 301

Ser Phe Tyr Lys Met Lys Arg Asn Ser Tyr Asp Arg Leu Arg Lys Val
1 5 10 15

Val

<210> 302

<211> 39

<212> PRT

<213> Homo sapiens

<400> 302

Leu His Gln Leu Arg Pro Pro His Arg Phe Pro Leu Ile Pro Pro Ala
1 5 10 15Ala Ala Glu Gly Ala Gly Ala Pro Pro Gly Cys Gly Tyr Cys Val Phe
20 25 30

Trp Leu Leu Asn Pro Leu Pro

35

<210> 303

<211> 72

<212> PRT

<213> Homo sapiens

<400> 303

Met Pro Trp Lys Arg Ala Val Val Leu Leu Met Leu Trp Phe Ile Gly
1 5 10 15

Gln Ala Met Trp Leu Ala Pro Ala Tyr Val Leu Glu Phe Gln Gly Lys

	¹⁷³	
20	25	30
Asn Thr Phe Leu Phe Ile Trp Leu Ala Gly Leu Phe Phe Leu Leu Ile		
35	40	45
Asn Cys Ser Ile Leu Ile Gln Ile Ile Ser His Tyr Lys Glu Glu Pro		
50	55	60
Leu Thr Glu Arg Ile Lys Tyr Asp		
65	70	
<210> 304		
<211> 22		
<212> PRT		
<213> Homo sapiens		
<400> 304		
Ala Arg Ala Gln Pro Phe Ala Phe Gln Leu Arg Pro Ala Pro Gly Arg		
1	5	10
15		
Pro Gly Ser Pro Val Ala		
20		
<210> 305		
<211> 297		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> SITE		
<222> (12)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<220>		
<221> SITE		
<222> (50)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<220>		
<221> SITE		
<222> (79)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<220>		
<221> SITE		
<222> (297)		
<223> Xaa equals any of the naturally occurring L-amino acids		
<400> 305		
Ala Gly Leu Pro Gly Ala Leu Thr Ala Pro Ala Xaa His His His Ala		
1	5	10
15		
Asp Ser Arg Pro Ala Glu Leu Val Val Gln Pro Leu Ser Pro Pro Arg		
20	25	30
Pro Leu Leu Ser His Ala Gly Leu Ala Ser Ala Ala Gly Ala Ser Ser		
35	40	45
Leu Xaa Arg Val Pro Gly Glu Ala Glu Ser Leu Cys Ala Leu Ser Pro		

		174	
50	55		60
Gly Ser Ala Leu Arg Phe Pro Ala Ala Ser Cys Ser Arg Pro Xaa Arg			
65	70	75	80
Glu Pro Ser Gly Asp Glu Gly Thr Ala Gly Ala Leu Pro Ser Pro Trp			
85		90	95
Leu Ala Ala Leu Gly Pro Gly Gly Arg Pro Ala Val Arg Arg Val Leu			
100		105	110
Pro Arg Leu Gly Gly Arg Ala Gly Gln Leu Pro Arg Gly Leu Pro Val			
115	120		125
Pro Arg Gly Leu Arg His Ala Gly Arg Tyr His Leu Leu Arg Leu Leu			
130	135		140
Arg Ala Pro Leu Leu Leu Arg Arg Gly Arg Arg Gln Ala Gly Ala Gly			
145	150	155	160
Arg Leu His Gln Arg Pro Pro Arg Thr Gly Ala Pro Arg His His Cys			
165		170	175
Ala Ala Cys Leu Arg Pro Leu Ser His Arg Arg Leu His Leu His Cys			
180		185	190
Val His His Pro Gly Leu Cys Ser Gly Tyr Leu Leu Leu His Leu Phe			
195	200		205
Glu Thr Gln Gly Ala Leu Ala Ala Asn Pro Leu Leu Thr Pro Gln			
210	215		220
Leu Ser Asp Arg Asp Pro Ala His Asp Pro Asp Leu His Gln Pro Gln			
225	230	235	240
Gly Thr Leu Pro Ala Val Gln His Ser His Glu Leu Gln Leu His Arg			
245		250	255
Arg Leu His Pro Gln Val Leu Leu Ser His Leu Val Ser Trp Cys His			
260		265	270
Pro Ser Ile Ser Leu Thr Pro Phe Ser Arg Ser Pro His Trp Leu Gly			
275	280		285
Arg Ala Val Gln Thr Phe Ser Ser Xaa			
290	295		
<210> 306			
<211> 38			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> SITE			
<222> (12)			
<223> Xaa equals any of the naturally occurring L-amino acids			
<400> 306			
Ala Gly Leu Pro Gly Ala Leu Thr Ala Pro Ala Xaa His His His Ala			

1 5 175
 10 15

Asp Ser Arg Pro Ala Glu Leu Val Val Gln Pro Leu Ser Pro Pro Arg
20 25 30

Pro Leu Leu Ser His Ala
35

<210> 307
<211> 40
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (12)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 307
Gly Leu Ala Ser Ala Ala Gly Ala Ser Ser Leu Xaa Arg Val Pro Gly
1 5 10 15

Glu Ala Glu Ser Leu Cys Ala Leu Ser Pro Gly Ser Ala Leu Arg Phe
20 25 30

Pro Ala Ala Ser Cys Ser Arg Pro
35 40

<210> 308
<211> 40
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (1)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 308
Xaa Arg Glu Pro Ser Gly Asp Glu Gly Thr Ala Gly Ala Leu Pro Ser
1 5 10 15

Pro Trp Leu Ala Ala Leu Gly Pro Gly Gly Arg Pro Ala Val Arg Arg
20 25 30

Val Leu Pro Arg Leu Gly Gly Arg
35 40

<210> 309
<211> 40
<212> PRT
<213> Homo sapiens

<400> 309
Ala Gly Gln Leu Pro Arg Gly Leu Pro Val Pro Arg Gly Leu Arg His
1 5 10 15

Ala Gly Arg Tyr His Leu Leu Arg Leu Leu Arg Ala Pro Leu Leu Leu
20 25 30

176

Arg Arg Gly Arg Arg Gln Ala Gly
35 40

<210> 310
<211> 40
<212> PRT
<213> Homo sapiens

<400> 310
Ala Gly Arg Leu His Gln Arg Pro Pro Arg Thr Gly Ala Pro Arg His
1 5 10 15

His Cys Ala Ala Cys Leu Arg Pro Leu Ser His Arg Arg Leu His Leu
20 25 30

His Cys Val His His Pro Gly Leu
35 40

<210> 311
<211> 40
<212> PRT
<213> Homo sapiens

<400> 311
Cys Ser Gly Tyr Leu Leu Leu His Leu Phe Glu Thr Gln Gly Ala Leu
1 5 10 15

Ala Ala Ala Asn Pro Leu Leu Thr Pro Gln Leu Ser Asp Arg Asp Pro
20 25 30

Ala His Asp Pro Asp Leu His Gln
35 40

<210> 312
<211> 59
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (59)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 312
Pro Gln Gly Thr Leu Pro Ala Val Gln His Ser His Glu Leu Gln Leu
1 5 10 15

His Arg Arg Leu His Pro Gln Val Leu Leu Ser His Leu Val Ser Trp
20 25 30

Cys His Pro Ser Ile Ser Leu Thr Pro Phe Ser Arg Ser Pro His Trp
35 40 45

Leu Gly Arg Ala Val Gln Thr Phe Ser Ser Xaa
50 55

<210> 313
<211> 28

177

<212> PRT
<213> Homo sapiens

<400> 313

Val Ala His Thr Cys Asn Leu Ser Thr Leu Gly Gly Gln Gly Gly Arg
1 5 10 15

Ile Glu Arg Thr Ala Gly Gln Glu Phe Lys Thr Ser
20 25

<210> 314

<211> 19

<212> PRT

<213> Homo sapiens

<400> 314

Thr Ile Lys Met Gln Thr Glu Asn Leu Gly Val Val Tyr Tyr Val Asn
1 5 10 15

Lys Asp Phe

<210> 315

<211> 13

<212> PRT

<213> Homo sapiens

<400> 315

Val Glu Glu Asp Tyr Val Thr Asn Ile Arg Asn Asn Cys
1 5 10

<210> 316

<211> 7

<212> PRT

<213> Homo sapiens

<400> 316

Met Val Ser Asn Pro Pro Tyr
1 5

<210> 317

<211> 5

<212> PRT

<213> Homo sapiens

<400> 317

His Ala Ser Glu Leu
1 5

<210> 318

<211> 35

<212> PRT

<213> Homo sapiens

<400> 318

Leu Val Ala Leu Asp Arg Met Glu Tyr Val Arg Thr Phe Arg Lys Arg
1 5 10 15

Glu Asp Leu Arg Gly Arg Leu Phe Trp Val Ala Leu Asp Leu Asp

178
20 25 30

Leu Leu Asp
35

<210> 319
<211> 88
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (21)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 319
Ser Val Ala Leu Phe Tyr Asn Phe Gly Lys Ser Trp Lys Ser Asp Pro
1 5 10 15

Gly Ile Ile Lys Xaa Thr Glu Glu Gln Lys Lys Lys Thr Ile Val Glu
20 25 30

Leu Ala Glu Thr Gly Ser Leu Asp Leu Ser Ile Phe Cys Ser Thr Cys
35 40 45

Leu Ile Arg Lys Pro Val Arg Ser Lys His Cys Gly Val Cys Asn Arg
50 55 60

Cys Ile Ala Lys Phe Asp His His Cys Pro Trp Val Gly Asn Cys Val
65 70 75 80

Gly Ala Gly Asn His Arg Tyr Phe
85

<210> 320
<211> 12
<212> PRT
<213> Homo sapiens

<400> 320
Phe Asp His His Cys Pro Trp Val Gly Asn Cys Val
1 5 10

<210> 321
<211> 20
<212> PRT
<213> Homo sapiens

<400> 321
Gln Met Tyr Gln Ile Ser Cys Leu Gly Ile Thr Thr Asn Glu Arg Met
1 5 10 15

Asn Ala Arg Arg
20

<210> 322
<211> 12
<212> PRT
<213> Homo sapiens

179

<400> 322
Arg Val Thr Ser Ser Leu Ala Met Leu Ser Asp Ser
1 5 10

<210> 323
<211> 15
<212> PRT
<213> Homo sapiens

<400> 323
Ala Ile Glu Arg Phe Ile Glu Pro His Glu Met Gln Gln Pro Leu
1 5 10 15

<210> 324
<211> 49
<212> PRT
<213> Homo sapiens

<400> 324
Asn Ala Leu Val Phe Tyr Phe Ser Trp Lys Gly Cys Ser Glu Gly Asp
1 5 10 15
Phe Cys Val Asn Pro Cys Phe Pro Asp Pro Cys Lys Pro Phe Val Glu
20 25 30

Ile Ile Asn Ser Thr His Ala Ser Val Tyr Glu Ala Gly Pro Cys Trp
35 40 45
Val

<210> 325
<211> 307
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (148)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 325
Ala Gly Ile Arg His Glu Arg Asn Arg Gly Arg Leu Leu Cys Met Leu
1 5 10 15

Ala Leu Thr Phe Met Phe Met Val Leu Glu Val Val Val Ser Arg Val
20 25 30

Thr Ser Ser Leu Ala Met Leu Ser Asp Ser Phe His Met Leu Ser Asp
35 40 45

Val Leu Ala Leu Val Val Ala Leu Val Ala Glu Arg Phe Ala Arg Arg
50 55 60

Thr His Ala Thr Gln Lys Asn Thr Phe Gly Trp Ile Arg Ala Glu Val
65 70 75 80

Met Gly Ala Leu Val Asn Ala Ile Phe Leu Thr Gly Leu Cys Phe Ala

	180	
85	90	95
 Ile Leu Leu Glu Ala Ile Glu Arg Phe Ile Glu Pro His Glu Met Gln 100 105 110		
 Gln Pro Leu Val Val Leu Gly Val Gly Val Ala Gly Leu Leu Val Asn 115 120 125		
 Val Leu Gly Leu Cys Leu Phe His His His Ser Gly Phe Ser Gln Asp 130 135 140		
 Ser Gly His Xaa His His Ser His Gly Gly His Gly His Gly Leu 145 150 155 160		
 Pro Lys Gly Pro Arg Val Lys Ser Thr Arg Pro Gly Ser Ser Asp Ile 165 170 175		
 Asn Val Ala Pro Gly Glu Gln Gly Pro Asp Gln Glu Glu Thr Asn Thr 180 185 190		
 Leu Val Ala Asn Thr Ser Asn Ser Asn Gly Leu Lys Leu Asp Pro Ala 195 200 205		
 Asp Pro Glu Asn Pro Arg Ser Gly Asp Thr Val Glu Val Gln Val Asn 210 215 220		
 Gly Asn Leu Val Arg Glu Pro Asp His Met Glu Leu Glu Glu Asp Arg 225 230 235 240		
 Ala Gly Gln Leu Asn Met Arg Gly Val Phe Leu His Val Leu Gly Asp 245 250 255		
 Ala Leu Gly Ser Val Ile Val Val Val Asn Ala Leu Val Phe Tyr Phe 260 265 270		
 Ser Trp Lys Gly Cys Ser Glu Gly Asp Phe Cys Val Asn Pro Cys Phe 275 280 285		
 Pro Asp Pro Cys Lys Ala Phe Val Glu Ile Leu Ile Val Leu Met His 290 295 300		
 Gln Phe Met 305		
 <210> 326		
<211> 254		
<212> PRT		
<213> Homo sapiens		
 <220>		
<221> SITE		
<222> (130)		
<223> Xaa equals any of the naturally occurring L-amino acids		
 <400> 326		
Met Phe Thr Phe Ala Ser Met Thr Lys Glu Asp Ser Lys Leu Ile Ala 1 5 10 15		
 Leu Ile Trp Pro Ser Glu Trp Gln Met Ile Gln Lys Leu Phe Val Val		

	¹⁸¹ 20 35	²⁵ 40	³⁰ 45
Asp His Val Ile Lys Ile Thr Arg Ile Glu Val Gly Asp Val Asn Pro			
Ser Glu Thr Gln Tyr Ile Ser Glu Pro Lys Leu Cys Pro Glu Cys Arg			
Glu Gly Leu Leu Cys Gln Gln Gln Arg Asp Leu Arg Glu Tyr Thr Gln			
Ala Thr Ile Tyr Val His Lys Val Val Asp Asn Lys Lys Val Met Lys			
Asp Ser Ala Pro Glu Leu Asn Val Ser Ser Ser Glu Thr Glu Glu Asp			
Lys Glu Glu Ala Lys Pro Asp Gly Glu Lys Asp Pro Asp Phe Asn Gln			
Ser Xaa Gly Gly Thr Lys Arg Gln Lys Ile Ser His Gln Asn Tyr Ile			
Ala Tyr Gln Lys Gln Val Ile Arg Arg Ser Met Arg His Arg Lys Val			
Arg Gly Glu Lys Ala Leu Leu Val Ser Ala Asn Gln Thr Leu Lys Glu			
Leu Lys Ile Gln Ile Met His Ala Phe Ser Val Ala Pro Phe Asp Gln			
Asn Leu Ser Ile Asp Gly Lys Ile Leu Ser Asp Asp Cys Ala Thr Leu			
Gly Thr Leu Gly Val Ile Pro Glu Ser Val Ile Leu Leu Lys Ala Asp			
Glu Pro Ile Ala Asp Tyr Ala Ala Met Asp Asp Val Met Gln Val Cys			
Met Pro Glu Glu Gly Phe Lys Gly Thr Gly Leu Leu Gly His			
<210> 327			
<211> 21			
<212> PRT			
<213> Homo sapiens			
<400> 327			
Ser Ala Pro Glu Leu Asn Val Ser Ser Ser Glu Thr Glu Glu Asp Lys			
Glu Glu Ala Lys Pro			
<210> 328			
<211> 18			
<212> PRT			

182

<213> Homo sapiens

<400> 328

Lys Glu Leu Lys Ile Gln Ile Met His Ala Phe Ser Val Ala Pro Phe
1 5 10 15

Asp Gln

<210> 329

<211> 58

<212> PRT

<213> Homo sapiens

<400> 329

Phe Gln Asp Lys Asn Arg Pro Cys Leu Ser Asn Trp Pro Glu Asp Thr
1 5 10 15Asp Val Leu Tyr Ile Val Ser Gln Phe Phe Val Glu Glu Trp Arg Lys
20 25 30Phe Val Arg Lys Pro Thr Arg Cys Ser Pro Val Ser Ser Val Gly Asn
35 40 45Ser Ala Leu Leu Cys Pro His Gly Gly Leu
50 55

<210> 330

<211> 42

<212> PRT

<213> Homo sapiens

<400> 330

Met Phe Thr Phe Ala Ser Met Thr Lys Glu Asp Ser Lys Leu Ile Ala
1 5 10 15Leu Ile Trp Pro Ser Glu Trp Gln Met Ile Gln Lys Leu Phe Val Val
20 25 30Asp His Val Ile Lys Ile Thr Arg Ile Glu
35 40

<210> 331

<211> 42

<212> PRT

<213> Homo sapiens

<400> 331

Val Gly Asp Val Asn Pro Ser Glu Thr Gln Tyr Ile Ser Glu Pro Lys
1 5 10 15Leu Cys Pro Glu Cys Arg Glu Gly Leu Leu Cys Gln Gln Gln Arg Asp
20 25 30Leu Arg Glu Tyr Thr Gln Ala Thr Ile Tyr
35 40

<210> 332

<211> 42

183

<212> PRT
<213> Homo sapiens

<400> 332

Val His Lys Val Val Asp Asn Lys Lys Val Met Lys Asp Ser Ala Pro
1 5 10 15

Glu Leu Asn Val Ser Ser Ser Glu Thr Glu Glu Asp Lys Glu Glu Ala
20 25 30

Lys Pro Asp Gly Glu Lys Asp Pro Asp Phe
35 40

<210> 333

<211> 42

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (4)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 333

Asn Gln Ser Xaa Gly Gly Thr Lys Arg Gln Lys Ile Ser His Gln Asn
1 5 10 15

Tyr Ile Ala Tyr Gln Lys Gln Val Ile Arg Arg Ser Met Arg His Arg
20 25 30

Lys Val Arg Gly Glu Lys Ala Leu Leu Val
35 40

<210> 334

<211> 42

<212> PRT

<213> Homo sapiens

<400> 334

Ser Ala Asn Gln Thr Leu Lys Glu Leu Lys Ile Gln Ile Met His Ala
1 5 10 15

Phe Ser Val Ala Pro Phe Asp Gln Asn Leu Ser Ile Asp Gly Lys Ile
20 25 30

Leu Ser Asp Asp Cys Ala Thr Leu Gly Thr
35 40

<210> 335

<211> 44

<212> PRT

<213> Homo sapiens

<400> 335

Leu Gly Val Ile Pro Glu Ser Val Ile Leu Leu Lys Ala Asp Glu Pro
1 5 10 15

Ile Ala Asp Tyr Ala Ala Met Asp Asp Val Met Gln Val Cys Met Pro
20 25 30

184

Glu Glu Gly Phe Lys Gly Thr Gly Leu Leu Gly His
35 40

<210> 336
<211> 18
<212> PRT
<213> Homo sapiens

<400> 336
Arg Gly Glu Arg Ser Glu Glu Leu Leu Gly Arg Glu Gly Leu Ser Gly
1 5 10 15

Ser Gln

<210> 337
<211> 179
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (119)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (123)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (177)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 337
Ala Glu Ala Ala Glu Gly Glu Lys Gly Val Arg Ser Cys Trp Ala Glu
1 5 10 15

Arg Asp Cys Pro Ala Pro Arg Cys Trp Ala Ser Trp Gly Ala Gln Pro
20 25 30

Ser Trp Asp Gly Ser Gln Val Leu Leu Trp Arg Ser Cys Cys Cys Cys
35 40 45

Cys Cys Trp Pro Pro Ala Phe Ser Thr Asp Gly Arg Thr Val Thr Trp
50 55 60

Arg Gly Thr Val Gln Leu Gln Gly Glu Thr Glu Ser Ala Gly Pro Ser
65 70 75 80

Leu Gly Pro Ser Gly Gly Ala Thr Trp Glu Ser Phe Thr Ile Thr
85 90 95

Val Ile Leu Ala Thr Tyr Leu Met Cys Arg Met Trp Ala Ser Thr Thr
100 105 110

Thr Thr Thr Pro Ala Thr Xaa Leu Thr Xaa Thr Thr Thr Thr Thr

185
115 120 125
Pro Thr Ala Thr Ile Pro Ala Thr Leu Ala Glu Ala Ala Val Ala Gly
130 135 140

Ala Cys Gly Gln Gln Leu Pro Leu Pro Ser His Leu Phe Pro Gly Gln
145 150 155 160

Val Asp Pro Met Phe Pro Cys Gly Arg Met His Leu Trp Gly Glu Arg
165 170 175

Xaa Glu Gln

<210> 338
<211> 12
<212> PRT
<213> Homo sapiens

<400> 338
Phe His Gly Leu Gly Arg Leu His Thr Val His Leu
1 5 10

<210> 339
<211> 21
<212> PRT
<213> Homo sapiens

<400> 339
Ala Ala Phe Thr Gly Leu Ala Leu Leu Glu Gln Leu Asp Leu Ser Asp
1 5 10 15

Asn Ala Gln Leu Arg
20

<210> 340
<211> 9
<212> PRT
<213> Homo sapiens

<400> 340
Ala Phe Arg Gly Leu His Ser Leu Asp
1 5

<210> 341
<211> 13
<212> PRT
<213> Homo sapiens

<400> 341
His Glu Val Pro Asp Ala Pro Arg Pro Thr Pro Thr Xaa
1 5 10

<210> 342
<211> 101
<212> PRT
<213> Homo sapiens

<400> 342

186

Met	Val	Val	Ala	Asp	Arg	Asn	Arg	Ala	Ser	Ser	Ser	Ser	Tyr	Leu	Cys
1									10					15	

Leu	Leu	Leu	Phe	Ser	Leu	Ser	Leu	Phe	Leu	Cys	His	Glu	Thr	Val	Cys
					20				25				30		

Asp	Arg	Ala	Thr	Cys	Leu	Phe	Phe	Leu	Lys	Phe	Phe	Leu	Phe		
					35				40			45			

Met	Cys	Arg	Cys	Met	Ser	Trp	Gly	Phe	Lys	Asn	Phe	Lys	Ala	Gly	Leu
					50				55			60			

Leu	Met	Gln	Ser	Met	Pro	Thr	Ser	Gly	Ile	Leu	Arg	Glu	Arg	Lys	Arg
					65				70			75			80

Leu	His	Val	Val	Arg	Ile	Pro	Gln	Gly	Thr	Glu	Lys	Lys	Leu	Glu	Thr
					85				90				95		

Val	Glu	Met	Gln	Ile											
				100											

<210>	343														
<211>	12														
<212>	PRT														
<213>	Homo sapiens														

<400>	343														
Ile	Pro	Gln	Gly	Thr	Glu	Lys	Lys	Leu	Glu	Thr	Val				
1					5				10						

<210>	344														
<211>	37														
<212>	PRT														
<213>	Homo sapiens														

<400>	344														
Asn	Pro	Arg	Leu	Pro	Leu	Pro	Arg	Gly	Gly	Ser	Leu	Arg	Leu	Leu	Ser
1					5					10				15	

Ser	Pro	Ala	Asn	Ser	Asn	Asn	Ala	Lys	Ala	Tyr	Pro	Phe	Ser	Arg	Phe
					20				25				30		

Pro	Ser	Pro	Ile	Phe											
			35												

<210>	345														
<211>	48														
<212>	PRT														
<213>	Homo sapiens														

<400>	345														
Met	Val	Gln	Glu	Ala	Pro	Ala	Leu	Val	Arg	Leu	Ser	Leu	Gly	Ser	His
1									5				10		15

Arg	Val	Lys	Gly	Pro	Leu	Pro	Val	Leu	Lys	Leu	Gln	Pro	Glu	Gly	Trp
					20				25				30		

Ser	Pro	Ser	Thr	Leu	Trp	Ser	Cys	Ala	Ser	Val	Trp	Lys	Asp	Ser	Cys
					35				40			45			

<210> 346
<211> 122
<212> PRT
<213> Homo sapiens

<400> 346

Ala Leu Ala Ser Ser Leu Val Ala Glu Asn Gln Gly Phe Val Ala Ala
1 5 10 15

Leu Met Val Gln Glu Ala Pro Ala Leu Val Arg Leu Ser Leu Gly Ser
20 25 30

His Arg Val Lys Gly Pro Leu Pro Val Leu Lys Leu Gln Pro Glu Gly
35 40 45

Trp Ser Pro Ser Thr Leu Trp Ser Cys Ala Ser Val Trp Lys Asp Ser
50 55 60

Cys Met His Pro Trp Arg Leu Ser Met Cys Pro Ala Cys Val Leu Ala
65 70 75 80

Ala Leu Pro Ala Leu Cys Ser Cys Leu Cys Ser Pro Asp Ala Arg Pro
85 90 95

Pro His Gly Trp Met Ser Met Pro Phe Thr Pro His Pro Leu Val Ser
100 105 110

Arg Ala Met Pro Thr Cys His Pro Cys Ser
115 120

<210> 347

<211> 33

<212> PRT

<213> Homo sapiens

<400> 347

Phe Tyr Phe Ile Thr Leu Ile Phe Phe Leu Ala Trp Leu Val Lys Asn
1 5 10 15

Val Phe Ile Ala Val Ile Ile Glu Thr Phe Ala Glu Ile Arg Val Gln
20 25 30

Phe

<210> 348
<211> 15
<212> PRT
<213> Homo sapiens

<400> 348

Ser Ile Phe Thr Val Tyr Glu Ala Ala Ser Gln Glu Gly Trp Val
1 5 10 15

<210> 349

188

<211> 21
<212> PRT
<213> Homo sapiens

<400> 349

His Glu Gly Thr Ser Ile Phe Thr Val Tyr Glu Ala Ala Ser Gln Glu
1 5 10 15

Gly Trp Val Phe Leu
20

<210> 350

<211> 8

<212> PRT

<213> Homo sapiens

<400> 350

Cys Lys Thr Ser Phe Gly Leu Ala
1 5

<210> 351

<211> 122

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (73)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 351

Met Ile Thr Leu Ser Ser Ala Phe Ser Ala Lys Gln Lys Thr His Ala
1 5 10 15

His Lys Asn Thr His Ala Cys Met Cys Ala Thr Asp Met Ala Asn Pro
20 25 30

Lys Leu Val Leu His Phe Glu Val Ile Val Ala Leu Leu Ser Leu Leu
35 40 45

Gln Thr Ile Leu Ser Leu Leu Gly Gln Arg Thr Trp Leu Ala His
50 55 60

Leu Tyr Val Leu Ser Thr Glu Asn Xaa Ala Leu His Thr Val Gly Thr
65 70 75 80

Gln Lys His Leu Leu Pro His Asp Trp Cys Phe Gly Lys His Cys Val
85 90 95

Ser Cys Arg His His Ile Phe His Arg Phe Cys Ser Ile Phe Ser Ser
100 105 110

Thr Leu Lys Arg Ser Gln Gly Phe Glu Gly
115 120

<210> 352

<211> 13

<212> PRT

<213> Homo sapiens

<400> 352

Cys Ala Ala Pro Gly Asn Lys Thr Ser His Leu Ala Ala
1 5 10

<210> 353

<211> 24

<212> PRT

<213> Homo sapiens

<400> 353

Glu His Pro Leu Tyr Arg Ala Gly His Leu Ile Leu Gln Asp Arg Ala
1 5 10 15

Ser Cys Leu Pro Ala Met Leu Leu

20

<210> 354

<211> 15

<212> PRT

<213> Homo sapiens

<400> 354

Leu Leu Asp Pro Ser Cys Ser Gly Ser Gly Met Pro Ser Arg Gln
1 5 10 15

<210> 355

<211> 23

<212> PRT

<213> Homo sapiens

<400> 355

Tyr Ser Thr Cys Ser Leu Cys Gln Glu Glu Asn Glu Asp Val Val Arg
1 5 10 15

Asp Ala Leu Gln Gln Asn Pro

20

<210> 356

<211> 470

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (277)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (296)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (301)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

190

<221> SITE

<222> (306)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (324)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (431)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 356

Ser	Ala	Thr	Glu	His	Gly	Ala	Val	Cys	Cys	Ser	Cys	Arg	Arg	Val	Gly
1															

Arg	Arg	Gly	Glu	Pro	Pro	Gly	Ser	Ile	Lys	Gly	Leu	Val	Tyr	Ser	Ser
20									25						30

Asn	Phe	Gln	Asn	Val	Lys	Gln	Leu	Tyr	Ala	Leu	Val	Cys	Glu	Thr	Gln
					35				40						45

Arg	Tyr	Ser	Ala	Val	Leu	Asp	Ala	Val	Ile	Ala	Ser	Ala	Gly	Leu	Leu
					50			55							60

Arg	Ala	Glu	Lys	Lys	Leu	Arg	Pro	His	Leu	Ala	Lys	Val	Leu	Tyr	
					65			70			75				80

Glu	Leu	Leu	Leu	Gly	Lys	Gly	Phe	Arg	Gly	Gly	Gly	Arg	Trp	Lys	
					85				90						95

Ala	Leu	Leu	Gly	Arg	His	Gln	Ala	Arg	Leu	Lys	Ala	Glu	Leu	Ala	Arg
						100			105						110

Leu	Lys	Val	His	Arg	Gly	Val	Ser	Arg	Asn	Glu	Asp	Leu	Leu	Glu	Val
						115		120							125

Gly	Ser	Arg	Pro	Gly	Pro	Ala	Ser	Gln	Leu	Pro	Arg	Phe	Val	Arg	Val
					130			135			140				

Asn	Thr	Leu	Lys	Thr	Cys	Ser	Asp	Asp	Val	Val	Asp	Tyr	Phe	Lys	Arg
					145			150			155				160

Gln	Gly	Phe	Ser	Tyr	Gln	Gly	Arg	Ala	Ser	Ser	Leu	Asp	Asp	Leu	Arg
						165			170						175

Ala	Leu	Lys	Gly	Lys	His	Phe	Leu	Leu	Asp	Pro	Leu	Met	Pro	Glu	Leu
						180		185							190

Leu	Val	Phe	Pro	Ala	Gln	Thr	Asp	Leu	His	Glu	His	Pro	Leu	Tyr	Arg
						195		200							205

Ala	Gly	His	Leu	Ile	Leu	Gln	Asp	Arg	Ala	Ser	Cys	Leu	Pro	Ala	Met
					210			215							220

Leu	Leu	Asp	Pro	Pro	Pro	Gly	Ser	His	Val	Ile	Asp	Ala	Cys	Ala	Ala
					225			230			235				240

191

Pro Gly Asn Lys Thr Ser His Leu Ala Ala Leu Leu Lys Asn Gln Gly
 245 250 255

Lys Ile Phe Ala Phe Asp Leu Asp Ala Lys Arg Leu Ala Ser Met Ala
 260 265 270

Thr Leu Leu Ala Xaa Ala Gly Val Ser Cys Cys Glu Leu Ala Glu Glu
 275 280 285

Asp Phe Leu Ala Val Ser Pro Xaa Asp Pro Arg Tyr Xaa Glu Val His
 290 295 300

Tyr Xaa Leu Leu Asp Pro Ser Cys Ser Gly Ser Gly Met Pro Ser Arg
 305 310 315 320

Gln Leu Glu Xaa Pro Gly Ala Gly Thr Pro Ser Pro Val Arg Leu His
 325 330 335

Ala Leu Ala Gly Phe Gln Gln Arg Ala Leu Cys His Ala Leu Thr Phe
 340 345 350

Pro Ser Leu Gln Arg Leu Val Tyr Ser Thr Cys Ser Leu Cys Gln Glu
 355 360 365

Glu Asn Glu Asp Val Val Arg Asp Ala Leu Gln Gln Asn Pro Gly Ala
 370 375 380

Phe Arg Leu Ala Pro Ala Leu Pro Ala Trp Pro His Arg Gly Leu Ser
 385 390 395 400

Thr Phe Pro Gly Ala Glu His Cys Leu Arg Ala Ser Pro Glu Thr Thr
 405 410 415

Leu Ser Ser Gly Phe Phe Val Ala Val Ile Glu Arg Val Glu Xaa Pro
 420 425 430

Ser Ser Ala Ser Gln Ala Lys Ala Ser Ala Pro Glu Arg Thr Pro Ser
 435 440 445

Pro Ala Pro Lys Arg Lys Lys Arg Gln Gln Arg Ala Ala Ala Gly Ala
 450 455 460

Cys Thr Pro Pro Cys Thr
 465 470

<210> 357

<211> 429

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (236)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (255)

192

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (260)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (265)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (418)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 357

Tyr Glu Pro His Ser Thr His Ser Arg Glu Arg Ala Met Thr Ser His
1 5 10 15Ala Arg Val Ser Leu Gly Pro Ser Arg Asp Pro Leu Glu Arg Pro His
20 25 30Leu Ala Lys Val Leu Val Tyr Glu Leu Leu Leu Gly Lys Gly Phe Arg
35 40 45Gly Gly Gly Gly Arg Trp Lys Ala Leu Leu Gly Arg His Gln Ala Arg
50 55 60Leu Lys Ala Glu Leu Ala Arg Leu Lys Val His Arg Gly Val Ser Arg
65 70 75 80Asn Glu Asp Leu Leu Glu Val Gly Ser Arg Pro Gly Pro Ala Ser Gln
85 90 95Leu Pro Arg Phe Val Arg Val Asn Thr Leu Lys Thr Cys Ser Asp Asp
100 105 110Val Val Asp Tyr Phe Lys Arg Gln Gly Phe Ser Tyr Gln Gly Arg Ala
115 120 125Ser Ser Leu Asp Asp Leu Arg Ala Leu Lys Gly Lys His Phe Leu Leu
130 135 140Asp Pro Leu Met Pro Glu Leu Leu Val Phe Pro Ala Gln Thr Asp Leu
145 150 155 160His Glu His Pro Leu Tyr Arg Ala Gly His Leu Ile Leu Gln Asp Arg
165 170 175Ala Ser Cys Leu Pro Ala Met Leu Leu Asp Pro Pro Pro Gly Ser His
180 185 190Val Ile Asp Ala Cys Ala Ala Pro Gly Asn Lys Thr Ser His Leu Ala
195 200 205Ala Leu Leu Lys Asn Gln Gly Lys Ile Phe Ala Phe Asp Leu Asp Ala
210 215 220

193

Lys Arg Leu Ala Ser Met Ala Thr Leu Leu Ala Xaa Ala Gly Val Ser
 225 230 235 240

Cys Cys Glu Leu Ala Glu Glu Asp Phe Leu Ala Val Ser Pro Xaa Asp
 245 250 255

Pro Arg Tyr Xaa Glu Val His Tyr Xaa Leu Leu Asp Pro Ser Cys Ser
 260 265 270

Gly Ser Gly Met Pro Ser Arg Gln Leu Glu Glu Pro Gly Ala Gly Thr
 275 280 285

Pro Ser Pro Val Arg Leu His Ala Leu Ala Gly Phe Gln Gln Arg Ala
 290 295 300

Leu Cys His Ala Leu Thr Phe Pro Ser Leu Gln Arg Leu Val Tyr Ser
 305 310 315 320

Thr Cys Ser Leu Cys Gln Glu Glu Asn Glu Asp Val Val Arg Asp Ala
 325 330 335

Leu Gln Gln Asn Pro Gly Ala Phe Arg Leu Ala Pro Ala Leu Pro Ala
 340 345 350

Trp Pro His Arg Gly Leu Ser Thr Phe Pro Gly Ala Glu His Cys Leu
 355 360 365

Arg Ala Ser Pro Glu Thr Thr Leu Ser Ser Gly Phe Phe Val Ala Val
 370 375 380

Ile Glu Arg Val Glu Val Pro Ser Ser Ala Ser Gln Ala Lys Ala Ser
 385 390 395 400

Ala Pro Glu Arg Thr Pro Ser Pro Ala Pro Lys Arg Lys Lys Arg Gln
 405 410 415

Gln Xaa Ala Ala Ala Gly Ala Cys Thr Pro Pro Cys Thr
 420 425

<210> 358

<211> 245

<212> PRT

<213> Homo sapiens

<400> 358

Met Gly Thr His Ser Val Ser Gly Arg Phe Ser Lys Thr Ser Pro Pro
 1 5 10 15

Tyr Cys Pro Pro Ser Ser Ser Leu Pro Gly Pro Ile Ser Ser Ile Gly
 20 25 30

Phe Asn Lys Ser Leu His Glu Cys Leu Phe Ile Ser Glu Lys Glu Leu
 35 40 45

Leu Pro Leu Pro Phe Pro Phe Pro Asp Leu Lys Ser Phe Ile Ser Tyr
 50 55 60

Leu Thr Ser Met Leu Lys Pro Gly Pro Leu Ile Val Ser Leu Lys Ile

65	70	194	75	80
Trp Val Ser Tyr Pro Ile Thr Arg Pro Arg Tyr Leu Pro Pro Met Leu				
85 90 95				
Lys Ser Leu Asn Ile Ser Phe Leu Tyr Ile Gln Tyr Ile Trp Ala Tyr				
100 105 110				
Ile His Leu Tyr Thr Ser Phe Tyr Ile Tyr Ile Ile Ser Val Ser Phe				
115 120 125				
Phe Leu Asp Lys Pro Phe Ile Tyr Val Ile Ser Phe Pro Lys Pro Pro				
130 135 140				
His Phe Leu Phe Ala Ser Leu Ser Lys Thr Gln Glu Phe His Phe His				
145 150 155 160				
Val Pro Gln His His Phe Phe Leu Ile Phe Ser Pro Gln Val Ser Ser				
165 170 175				
Pro Ile Ser Cys Phe Ala Arg Leu Leu Lys Ser Pro Leu Phe Thr Pro				
180 185 190				
Val Pro Thr Glu Ile Ser Pro Phe Tyr Asn Cys Ala Tyr Tyr Ser Ala				
195 200 205				
Asp Ile Pro Ser Pro Gln Leu Val Trp Gly Pro Ile Ser His Gln Thr				
210 215 220				
Trp Leu Leu Leu Lys Leu Gly Leu Leu Pro Lys Arg Gly Phe Gln Val				
225 230 235 240				
Arg Gly Asp Arg Leu				
245				
<210> 359				
<211> 29				
<212> PRT				
<213> Homo sapiens				
<400> 359				
Cys Phe Ala Arg Leu Leu Lys Ser Pro Leu Phe Thr Pro Val Pro Thr				
1 5 10 15				
Glu Ile Ser Pro Phe Tyr Asn Cys Ala Tyr Tyr Ser Ala				
20 25				
<210> 360				
<211> 111				
<212> PRT				
<213> Homo sapiens				
<220>				
<221> SITE				
<222> (47)				
<223> Xaa equals any of the naturally occurring L-amino acids				
<400> 360				
Asn Arg Glu Gln Lys Ala Lys Ser Gln Leu Leu Arg Ser Gln Leu Tyr				

	195		15
1	5	10	15
Ser Thr Leu Asp Leu Pro Tyr Phe Phe Gln Cys Val Gly Thr Arg Cys			
	20	25	30

	35	40	45
Thr Ala Val Cys Val Cys Val Cys Val Cys Val Cys Xaa Tyr			

50	55	60	
Leu Pro Ile His Trp Gln Val Asn Leu His Leu Val Tyr Leu Ala Met			

65	70	75	80
Leu Cys Phe Leu Pro Ile Pro Leu Leu Ser Ile Leu Ser Pro Gln Thr			

85	90	95	
Gln Ala Ser Arg Leu Leu Asp Glu Thr Val Arg Arg Lys His Phe Leu			

100	105	110	
Thr Tyr Pro Phe Gly Ile Ser Ser Ile Ile Thr Gln Ala Leu Leu			

<210> 361

<211> 51

<212> PRT

<213> Homo sapiens

<400> 361

1	5	10	15
Pro Gly Pro Glu Ala Gln Pro Trp Pro Gly Pro Asp Leu Pro Ala Val			

20	25	30	
Gly Ser Arg Gly Pro Gly Arg Leu Leu Ala Ala Val Ser Ala Pro Arg			

35	40	45	
Leu Gly Leu Gly Leu Ala Gly Ala Asp Pro Val Gly Pro Glu Ala Cys			

His Leu Pro

50

<210> 362

<211> 42

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (32)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 362

1	5	10	15
Gly Arg Leu Arg Gly Pro Asp Glu Val Gly Ala Pro Phe His Pro Gly			

20	25	30	
Pro Ala Thr Pro Gly Leu Ala Asp Pro Leu Arg Pro Ala Glu Pro Xaa			

35	40		
His Trp Leu Pro Ser Leu Trp Gly Pro Thr			

<210> 363

196

<211> 19
<212> PRT
<213> Homo sapiens

<400> 363
Pro Gly Pro Glu Ala Gln Pro Trp Pro Gly Pro Asp Leu Pro Ala Val
1 5 10 15

Gly Ser Arg

<210> 364
<211> 19
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (15)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 364
Ala Thr Pro Gly Leu Ala Asp Pro Leu Arg Pro Ala Glu Pro Xaa His
1 5 10 15

Trp Leu Pro

<210> 365
<211> 251
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (210)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (241)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 365
Gln Trp Pro Glu Lys Asp Pro Val Met Ala Ala Ser Ser Ile Ser Ser
1 5 10 15

Pro Trp Gly Lys His Val Phe Lys Ala Ile Leu Met Val Leu Val Ala
20 25 30

Leu Ile Leu Leu His Ser Ala Leu Ala Gln Ser Arg Arg Asp Phe Ala
35 40 45

Pro Pro Gly Gln Gln Lys Arg Glu Ala Pro Val Asp Val Leu Thr Gln
50 55 60

Ile Gly Arg Ser Val Arg Gly Thr Leu Asp Ala Trp Ile Gly Pro Glu
65 70 75 80

197

Thr	Met	His	Leu	Val	Ser	Glu	Ser	Ser	Ser	Gln	Val	Leu	Trp	Ala	Ile
				85						90					95

Ser Ser Ala Ile Ser Val Ala Phe Phe Ala Leu Ser Gly Ile Ala Ala

Ser	Ser	Ala	Ile	Ser	Val	Ala	Phe	Phe	Ala	Leu	Ser	Gly	Ile	Ala	Ala
				100				105							110

Gln Leu Leu Asn Ala Leu Gly Leu Ala Gly Asp Tyr Leu Ala Gln Gly

Gln	Leu	Leu	Asn	Ala	Leu	Gly	Leu	Ala	Gly	Asp	Tyr	Leu	Ala	Gln	Gly
				115				120							125

Leu Lys Leu Ser Pro Gly Gln Val Gln Thr Phe Leu Leu Trp Gly Ala

Leu	Lys	Leu	Ser	Pro	Gly	Gln	Val	Gln	Thr	Phe	Leu	Leu	Trp	Gly	Ala
				130				135							140

Gly Ala Leu Val Val Tyr Trp Leu Leu Ser Leu Leu Leu Gly Leu Val

Gly	Ala	Leu	Val	Val	Tyr	Trp	Leu	Leu	Ser	Leu	Leu	Leu	Gly	Leu	Val
				145				150							160

Leu Ala Leu Leu Gly Arg Ile Leu Trp Gly Leu Lys Leu Val Ile Phe

Leu	Ala	Leu	Leu	Gly	Arg	Ile	Leu	Trp	Gly	Leu	Lys	Leu	Val	Ile	Phe
				165				170							175

Leu Ala Gly Phe Val Ala Leu Met Arg Ser Val Pro Asp Pro Ser Thr

Leu	Ala	Gly	Phe	Val	Ala	Leu	Met	Arg	Ser	Val	Pro	Asp	Pro	Ser	Thr
				180				185							190

Arg Ala Leu Leu Leu Ala Leu Ile Leu Tyr Ala Leu Leu Ser

Arg	Ala	Leu	Leu	Leu	Ala	Leu	Ile	Leu	Tyr	Ala	Leu	Leu	Ser		
				195				200							205

Arg Xaa Thr Gly Ser Arg Ala Ser Gly Ala Gln Leu Glu Ala Lys Val

Arg	Xaa	Thr	Gly	Ser	Arg	Ala	Ser	Gly	Ala	Gln	Leu	Glu	Ala	Lys	Val
				210				215							220

Arg Gly Leu Glu Arg Gln Val Glu Glu Leu Arg Trp Arg Gln Arg Gln

Arg	Gly	Leu	Glu	Arg	Gln	Val	Glu	Glu	Leu	Arg	Trp	Arg	Gln	Arg	Gln
				225				230							240

Xaa Ala Lys Gly Ala Arg Ser Val Glu Glu Glu

Xaa	Ala	Lys	Gly	Ala	Arg	Ser	Val	Glu	Glu	Glu					
				245				250							

<210> 366
<211> 116
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (2)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (5)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (7)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (9)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 366

198

Glu Xaa Pro Arg Xaa Ile Xaa Gly Xaa Asn Ala Pro Gln Val Pro Val
1 5 10 15

Arg Asn Ser Arg Val Asp Pro Arg Val Arg Pro Arg Val Arg Ser Leu
20 25 30

Val Phe Val Leu Phe Cys Asp Glu Val Arg Gln Trp Tyr Val Asn Gly
35 40 45

Val Asn Tyr Phe Thr Asp Leu Trp Asn Val Met Asp Thr Leu Gly Leu
50 55 60

Phe Tyr Phe Ile Ala Gly Ile Val Phe Arg Leu His Ser Ser Asn Lys
65 70 75 80

Ser Ser Leu Tyr Ser Gly Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile
85 90 95

Phe Thr Leu Arg Leu Ile His Ile Phe Thr Val Ser Arg Asn Leu Gly
100 105 110

Pro Lys Ile Ile
115

<210> 367
<211> 12
<212> PRT
<213> Homo sapiens

<400> 367
Asn Ile Leu Leu Val Asn Leu Leu Val Ala Met Phe
1 5 10

<210> 368
<211> 10
<212> PRT
<213> Homo sapiens

<400> 368
Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu
1 5 10

<210> 369
<211> 316
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (2)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (5)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE

<222> (7)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (9)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (126)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (127)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (143)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (166)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (176)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (200)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (294)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (296)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (306)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 369

Glu Xaa Pro Arg Xaa Ile Xaa Gly Xaa Asn Ala Pro Gln Val Pro Val
1 5 10 15Arg Asn Ser Arg Val Asp Pro Arg Val Arg Pro Arg Val Arg Ser Leu
20 25 30

200

Val Phe Val Leu Phe Cys Asp Glu Val Arg Gln Trp Tyr Val Asn Gly
 35 40 45

Val Asn Tyr Phe Thr Asp Leu Trp Asn Val Met Asp Thr Leu Gly Leu
 50 55 60

Phe Tyr Phe Ile Ala Gly Ile Val Phe Arg Leu His Ser Ser Asn Lys
 65 70 75 80

Ser Ser Leu Tyr Ser Gly Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile
 85 90 95

Phe Thr Leu Arg Leu Ile His Ile Phe Thr Val Ser Arg Asn Leu Gly
 100 105 110

Pro Lys Ile Ile Met Leu Gln Arg Met Leu Ile Asp Val Xaa Xaa Phe
 115 120 125

Leu Phe Leu Phe Ala Val Trp Met Val Ala Phe Gly Val Ala Xaa Gln
 130 135 140

Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser
 145 150 155 160

Val Ile Tyr Glu Pro Xaa Leu Ala Met Phe Gly Gln Val Pro Ser Xaa
 165 170 175

Val Asp Gly Thr Thr Tyr Asp Phe Ala His Cys Thr Phe Thr Gly Asn
 180 185 190

Glu Ser Lys Pro Leu Cys Val Xaa Leu Asp Glu His Asn Leu Pro Arg
 195 200 205

Phe Pro Glu Trp Ile Thr Ile Pro Leu Val Cys Ile Tyr Met Leu Ser
 210 215 220

Thr Asn Ile Leu Leu Val Asn Leu Leu Val Ala Met Phe Gly Tyr Thr
 225 230 235 240

Val Gly Thr Val Gln Glu Asn Asn Asp Gln Val Trp Lys Phe Gln Arg
 245 250 255

Tyr Phe Leu Val Gln Glu Tyr Cys Ser Arg Leu Asn Ile Pro Phe Pro
 260 265 270

Phe Ile Val Phe Ala Tyr Phe Tyr Met Val Val Lys Lys Cys Phe Lys
 275 280 285

Cys Cys Cys Lys Glu Xaa Asn Xaa Glu Ser Ser Val Cys Cys Ser Lys
 290 295 300

Met Xaa Thr Met Arg Leu Trp His Gly Arg Val Ser
 305 310 315

<210> 370

<211> 129

<212> PRT

<213> Homo sapiens

201

<400> 370
Met Glu Phe Gln Asn Met Tyr Ile Gln Leu Phe Gly Phe Ser Phe Phe
1 5 10 15

Ile Val Ile Ile Val Arg Met Leu Leu Leu Gly Leu Cys Val Ser Ala
20 25 30

Arg Gln Pro Val Met Pro Arg Ala Thr Leu Trp Gly His Leu Ser Pro
35 40 45

Ala Trp Val Leu Val Pro Trp Thr Pro Arg Ala Cys Gly Gln Ala Ala
50 55 60

Pro Gly Arg Gly His Val Ala Ser Asp His Lys Ser Gly Leu Pro Trp
65 70 75 80

Pro Lys His Cys Ser Cys Leu His Pro Arg Ala Ser Gln Pro Cys Leu
85 90 95

Phe Ser Leu Asn Ser Asn Arg Thr Val Phe Thr Ala Ile Gln Arg Val
100 105 110

Ala Leu Gly Trp Thr Phe Trp Val Gln Ala Asn Leu Val Pro Arg Cys
115 120 125

Thr

<210> 371
<211> 417
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (54)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (90)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (109)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (111)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (121)
<223> Xaa equals any of the naturally occurring L-amino acids

202

<220>
<221> SITE
<222> (135)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (137)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (139)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (188)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (205)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (223)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (249)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (252)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (322)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (348)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (402)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 371
Leu Leu Leu Cys Val Thr Gly Val Tyr Ser Tyr Gly Leu Met His Pro
1 5 10 15

	203	
Ile Pro Ser Ser Phe Met Ile Lys Ala Val Ser Ser Phe Leu Thr Ala		
20	25	30
Glu Glu Ala Ser Val Gly Asn Pro Glu Gly Ala Phe Met Lys Val Leu		
35	40	45
Gln Ala Arg Lys Asn Xaa Thr Ser Thr Glu Leu Ile Val Glu Pro Glu		
50	55	60
Glu Pro Ser Asp Ser Ser Gly Ile Asn Leu Ser Gly Phe Gly Ser Glu		
65	70	75
80		
Gln Leu Asp Thr Asn Asp Glu Ser Asp Xaa Ile Ser Thr Leu Ser Tyr		
85	90	95
Ile Leu Pro Tyr Phe Ser Ala Val Asn Leu Asp Val Xaa Ser Xaa Leu		
100	105	110
Leu Pro Phe Ile Lys Leu Pro Thr Xaa Gly Asn Ser Leu Ala Lys Ile		
115	120	125
Gln Thr Val Gly Gln Asn Xaa Gln Xaa Val Xaa Arg Val Leu Met Gly		
130	135	140
Pro Arg Ser Ile Gln Lys Arg His Phe Lys Glu Val Gly Arg Gln Ser		
145	150	155
160		
Ile Arg Arg Glu Gln Gly Ala Gln Ala Ser Val Glu Asn Ala Ala Glu		
165	170	175
Glu Lys Arg Leu Gly Ser Pro Ala Pro Arg Glu Xaa Glu Gln Pro His		
180	185	190
Thr Gln Gln Gly Pro Glu Lys Leu Ala Gly Asn Ala Xaa Tyr Thr Lys		
195	200	205
Pro Ser Phe Thr Gln Glu His Lys Ala Ala Val Ser Val Leu Xaa Pro		
210	215	220
Phe Ser Lys Gly Ala Pro Ser Thr Ser Ser Pro Ala Lys Ala Leu Pro		
225	230	235
240		
Gln Val Arg Asp Arg Trp Lys Asp Xaa Thr His Xaa Ile Ser Ile Leu		
245	250	255
Glu Ser Ala Lys Ala Arg Val Thr Asn Met Lys Ala Ser Lys Pro Ile		
260	265	270
Ser His Ser Arg Lys Lys Tyr Arg Phe His Lys Thr Arg Ser Arg Met		
275	280	285
Thr His Arg Thr Pro Lys Val Lys Lys Ser Pro Lys Phe Arg Lys Lys		
290	295	300
Ser Tyr Leu Ser Arg Leu Met Leu Ala Asn Arg Pro Pro Phe Ser Ala		
305	310	315
320		
Ala Xaa Ser Leu Ile Asn Ser Pro Ser Gln Gly Ala Phe Ser Ser Leu		
325	330	335

204

Gly Asp Leu Ser Pro Gln Glu Asn Pro Phe Leu Xaa Val Ser Ala Pro
 340 345 350

Ser Glu His Phe Ile Glu Thr Thr Asn Ile Lys Asp Thr Thr Ala Arg
 355 360 365

Asn Ala Leu Glu Glu Asn Val Phe Met Glu Asn Thr Asn Met Pro Glu
 370 375 380

Val Thr Ile Ser Glu Asn Thr Asn Tyr Asn His Pro Pro Glu Ala Asp
 385 390 395 400

Ser Xaa Gly Thr Ala Phe Asn Leu Gly Pro Thr Val Lys Gln Thr Glu
 405 410 415

Thr

<210> 372

<211> 94

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (66)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 372

Cys Phe Ser Asn Ala Pro Lys Val Ser Asp Glu Ala Val Lys Lys Asp
 1 5 10 15

Ser Glu Leu Asp Lys His Leu Glu Ser Arg Val Glu Glu Ile Met Glu
 20 25 30

Lys Ser Gly Glu Glu Gly Met Pro Asp Leu Ala His Val Met Arg Ile
 35 40 45

Leu Ser Ala Glu Asn Ile Pro Asn Leu Pro Pro Gly Gly Leu Ala
 50 55 60

Gly Xaa Arg Asn Val Ile Glu Ala Val Tyr Ser Arg Leu Asn Pro His
 65 70 75 80

Arg Glu Ser Asp Gly Gly Ala Gly Asp Leu Glu Asp Pro Trp
 85 90

<210> 373

<211> 56

<212> PRT

<213> Homo sapiens

<400> 373

Cys Phe Ser Asn Ala Pro Lys Val Ser Asp Glu Ala Val Lys Lys Asp
 1 5 10 15

Ser Glu Leu Asp Lys His Leu Glu Ser Arg Val Glu Glu Ile Met Glu
 20 25 30

205

Lys Ser Gly Glu Glu Gly Met Pro Asp Leu Ala His Val Met Arg Ile
35 40 45

Leu Ser Ala Glu Asn Ile Pro Asn
50 55

<210> 374
<211> 26
<212> PRT
<213> Homo sapiens

<400> 374
Arg Asn Val Ile Glu Ala Val Tyr Ser Arg Leu Asn Pro His Arg Glu
1 5 10 15

Ser Asp Gly Gly Ala Gly Asp Leu Glu Asp
20 25

<210> 375
<211> 16
<212> PRT
<213> Homo sapiens

<400> 375
Asp Ser Glu Leu Asp Lys His Leu Glu Ser Arg Val Glu Glu Ile Met
1 5 10 15

<210> 376
<211> 24
<212> PRT
<213> Homo sapiens

<400> 376
Lys Ser Gly Glu Glu Gly Met Pro Asp Leu Ala His Val Met Arg Ile
1 5 10 15

Leu Ser Ala Glu Asn Ile Pro Asn
20

<210> 377
<211> 9
<212> PRT
<213> Homo sapiens

<400> 377
Cys Phe Ser Asn Ala Pro Lys Val Ser
1 5

<210> 378
<211> 69
<212> PRT
<213> Homo sapiens

<400> 378
Met Ser Arg Lys Ser Leu Ala Phe Pro Ile Ile Cys Ser Tyr Leu Cys

206
1 5 10 15

Phe Leu Thr Val Ala Thr Cys Ser Ile Ala Cys Thr Thr Val Phe Phe
20 25 30

Ala Asn Leu Arg His Thr Arg Tyr Ile Cys Ile Glu Leu Ser Ala Leu
35 40 45

Glu Thr Ser Gly Val Ile Ser Pro Gln Ile Asn Asn Val Pro Glu Val
50 55 60

His Gly Lys Tyr Ser
65

<210> 379
<211> 16
<212> PRT
<213> Homo sapiens

<400> 379
Ile Gln Lys Met Thr Arg Val Arg Val Val Asp Asn Ser Ala Leu Gly
1 5 10 15

<210> 380
<211> 14
<212> PRT
<213> Homo sapiens

<400> 380
Pro Arg Cys Ile His Val Tyr Lys Lys Asn Gly Val Gly Lys
1 5 10

<210> 381
<211> 15
<212> PRT
<213> Homo sapiens

<400> 381
Gly Asp Gln Ile Leu Leu Ala Ile Lys Gly Gln Lys Lys Ala
1 5 10 15

<210> 382
<211> 15
<212> PRT
<213> Homo sapiens

<400> 382
Asn Pro Val Gly Thr Arg Ile Lys Thr Pro Ile Pro Thr Ser Leu
1 5 10 15

<210> 383
<211> 171
<212> PRT
<213> Homo sapiens

<220>

207

<221> SITE

<222> (20)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 383

Val	Leu	Ile	Pro	Ser	Phe	Ser	Ser	Ser	Phe	Leu	Cys	Ser	Arg	Gly	Gly
1															
					5					10					15

Pro	Leu	Pro	Xaa	Asp	Leu	Ser	Trp	Asp	Pro	Met	Ala	Phe	Phe	Thr	Gly
					20				25						30

Leu	Trp	Gly	Pro	Phe	Thr	Cys	Val	Ser	Arg	Val	Leu	Ser	His	His	Cys
					35			40							45

Phe	Ser	Thr	Thr	Gly	Ser	Leu	Ser	Ala	Ile	Gln	Lys	Met	Thr	Arg	Val
					50			55				60			

Arg	Val	Val	Asp	Asn	Ser	Ala	Leu	Gly	Asn	Ser	Pro	Tyr	His	Arg	Ala
					65			70			75				80

Pro	Arg	Cys	Ile	His	Val	Tyr	Lys	Lys	Asn	Gly	Val	Gly	Lys	Val	Gly
					85			90					95		

Asp	Gln	Ile	Leu	Leu	Ala	Ile	Lys	Gly	Gln	Lys	Lys	Lys	Ala	Leu	Ile
					100			105				110			

Val	Gly	His	Cys	Met	Pro	Gly	Pro	Arg	Met	Thr	Pro	Arg	Phe	Asp	Ser
					115			120			125				

Asn	Asn	Val	Val	Leu	Ile	Glu	Asp	Asn	Gly	Asn	Pro	Val	Gly	Thr	Arg
					130			135			140				

Ile	Lys	Thr	Pro	Ile	Pro	Thr	Ser	Leu	Arg	Lys	Arg	Glu	Gly	Glu	Tyr
					145			150			155			160	

Ser	Lys	Val	Leu	Ala	Ile	Ala	Gln	Asn	Phe	Val
					165			170		

<210> 384

<211> 171

<212> PRT

<213> Homo sapiens

<400> 384

Ala	Arg	Val	Val	Gln	Pro	Ala	Ala	Arg	Ala	Gly	Met	Trp	Ala	Gly	Gly
					1		5		10			15			

Arg	Ser	Ser	Cys	Gln	Ala	Glu	Val	Leu	Arg	Ala	Thr	Arg	Gly	Gly	Ala
					20			25			30				

Ala	Arg	Gly	Asn	Ala	Ala	Pro	Gly	Arg	Ala	Leu	Glu	Met	Val	Pro	Gly
					35			40			45				

Ala	Ala	Gly	Trp	Cys	Cys	Leu	Val	Leu	Trp	Leu	Pro	Ala	Cys	Val	Ala
					50			55			60				

Ala	His	Gly	Phe	Arg	Ile	His	Asp	Tyr	Leu	Tyr	Phe	Gln	Val	Leu	Ser
					65			70			75			80	

208

Pro Gly Asp Ile Arg Tyr Ile Phe Thr Ala Thr Pro Ala Lys Asp Phe
 85 90 95

Gly Gly Ile Phe His Thr Arg Tyr Glu Gln Ile His Leu Val Pro Ala
 100 105 110

Glu Pro Pro Glu Ala Cys Gly Glu Leu Ser Asn Gly Phe Phe Ile Gln
 115 120 125

Asp Gln Ile Ala Leu Val Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys
 130 135 140

Thr Arg Val Val Gln Glu His Gly Arg Ala Val Ile Ile Ser Asp
 145 150 155 160

Asn Ala Leu Thr Met Thr Ala Ser Thr Trp Arg
 165 170

<210> 385
<211> 187
<212> PRT
<213> Homo sapiens

<400> 385

Ile Ala Thr Ala Ala Leu Phe Phe Phe Tyr Cys Gln Val Ala Gly
 1 5 10 15

Phe Ile Gly Lys Gly Gln Ser Leu Arg Ser Trp Val Pro Gln Arg Leu
 20 25 30

Leu Gly Leu Glu Pro Gln Leu Gln Pro Met Gln Gln Ser Arg Leu Leu
 35 40 45

Leu Pro Phe Leu Phe Phe Leu Leu Glu Gly Cys Ala Pro Ser Ser Leu
 50 55 60

Gly Pro Gly Ala Ala Pro Gly Ser Gly His Ser Leu Gly Pro Pro Gly
 65 70 75 80

Ser Pro Gly Ala Pro Gly Pro Gln Pro Ala Val Gly Pro Ser Ser Pro
 85 90 95

Cys Gln Pro Gly Pro Ser Pro Ser Ser Pro Ala Ala Ala Ala Ser
 100 105 110

Ser Gln Ser Ser Val Ala Ser Trp Pro Cys Thr Leu Arg Cys Ala Ala
 115 120 125

Pro Ser Pro Asp Ala Ser Ala Leu Arg Pro Ala Ala Ser Pro Ala Ala
 130 135 140

Thr Pro Ala Trp Ser Pro Gly Ser Gly Thr Ile Arg Val Leu Arg Pro
 145 150 155 160

Pro Ala Pro Ala Ala Ala Pro Ala Thr Ala Ile Thr Asn Arg Gly Pro
 165 170 175

Pro Arg Arg Arg Arg Asn Ala Arg Thr Ala
 180 185

<210> 386

<211> 194

<212> PRT

<213> Homo sapiens

<400> 386

Glu Arg Pro Pro Pro Arg Arg Thr Gly Thr Pro Val Ala Arg Pro Arg
 1 5 10 15

Gly Pro Pro Asp Pro Ala Val Ala Ala Gly Thr Ala Leu Arg Ala Lys
 20 25 30

Gln Phe Ala Arg Tyr Gly Ala Ala Ser Gly Val Val Pro Gly Ser Leu
 35 40 45

Trp Pro Ser Pro Glu Gln Leu Arg Glu Leu Glu Ala Glu Glu Arg Glu
 50 55 60

Trp Tyr Pro Ser Leu Ala Thr Met Gln Glu Ser Leu Arg Val Lys Gln
 65 70 75 80

Leu Ala Glu Glu Gln Lys Arg Arg Glu Arg Glu Gln His Ile Ala Glu
 85 90 95

Cys Met Ala Lys Met Pro Gln Met Ile Val Asn Trp Gln Gln Gln Gln
 100 105 110

Arg Glu Asn Trp Glu Lys Ala Gln Ala Asp Lys Glu Arg Arg Ala Arg
 115 120 125

Leu Gln Ala Glu Ala Gln Glu Leu Leu Gly Tyr Gln Val Asp Pro Arg
 130 135 140

Ser Ala Arg Phe Gln Glu Leu Leu Gln Asp Leu Glu Lys Lys Glu Arg
 145 150 155 160

Asn Pro Gln Gly Lys Thr Glu Thr Glu Glu Gly Gly Ala Thr Ala
 165 170 175

Ala Leu Ala Ala Ala Val Ala Gln Asp Pro Ala Ala Ser Gly Ala Pro
 180 185 190

Ser Ser

<210> 387

<211> 113

<212> PRT

<213> Homo sapiens

<400> 387

Tyr Gln Ser Leu Ala Glu Thr Gln Gln Lys Lys Glu Asn Phe Arg Pro
 1 5 10 15

Ile Ser Leu Lys Asn Thr Asp Ala Lys Ile Leu Asn Lys Ile Leu Ala
 20 25 30

Asn Gln Ile Gln Gln His Ile Lys Lys Leu Ile His Asn Asp Arg Val

35	40	45
210		
Gly Phe Ile Pro Glu Met Gln Gly Trp Phe Asn Ile Cys Lys Ser Ile		
50	55	60
Asn Ile Val His His Ile Asn Arg Thr Lys Asp Lys Asn His Met Ile		
65	70	75
Ile Ser Ile Asp Ala Glu Lys Ala Phe Asp Lys Ile Arg Gln Ser Phe		
85	90	95
Met Leu Lys Thr Leu Asn Lys Leu Gly Ile His Gly Met Tyr Leu Gly		
100	105	110

Arg

<210> 388		
<211> 101		
<212> PRT		
<213> Homo sapiens		
<400> 388		
Lys Lys Glu Asn Phe Arg Pro Ile Ser Leu Lys Asn Thr Asp Ala Lys		
1	5	10
Ile Leu Asn Lys Ile Leu Ala Asn Gln Ile Gln Gln His Ile Lys Lys		
20	25	30
Leu Ile His Asn Asp Arg Val Gly Phe Ile Pro Glu Met Gln Gly Trp		
35	40	45
Phe Asn Ile Cys Lys Ser Ile Asn Ile Val His His Ile Asn Arg Thr		
50	55	60
Lys Asp Lys Asn His Met Ile Ile Ser Ile Asp Ala Glu Lys Ala Phe		
65	70	75
80		
Asp Lys Ile Arg Gln Ser Phe Met Leu Lys Thr Leu Asn Lys Leu Gly		
85	90	95
Ile His Gly Met Tyr		
100		
<210> 389		
<211> 11		
<212> PRT		
<213> Homo sapiens		
<400> 389		
Asp Ala Lys Ile Leu Asn Lys Ile Leu Ala Asn		
1	5	10
<210> 390		
<211> 10		
<212> PRT		
<213> Homo sapiens		
<400> 390		

		211								
Ile	Gln	Gln	His	Ile	Lys	Lys	Leu	Ile	His	
1				5				10		

<210> 391
<211> 19
<212> PRT
<213> Homo sapiens

<400> 391
Lys Asp Lys Asn His Met Ile Ile Ser Ile Asp Ala Glu Lys Ala Phe
1 5 10 15

Asp Lys Ile

		212
<210>	392	
<211>	10	
<212>	PRT	
<213>	Homo sapiens	

<400> 392
Met Leu Lys Thr Leu Asn Lys Leu Gly Ile
1 5 10

<210> 393
<211> 10
<212> PRT
<213> Homo sapiens

<400> 393
Lys Lys Glu Asn Phe Arg Pro Ile Ser Leu
1 5 10

<210> 394
<211> 85
<212> PRT
<213> Homo sapiens

<400> 394
Trp Thr Met Phe Ile Asp Leu His Met Leu Asn Gln Pro Cys Ile Ser
1 5 10 15

Gly Met Lys Pro Thr Arg Ser Leu Trp Ile Ser Phe Leu Met Cys Cys
20 25 30

Trp Ile Trp Phe Ala Asn Ile Leu Leu Arg Ile Phe Ala Ser Val Phe
35 40 45

Phe Arg Asp Ile Gly Leu Lys Phe Ser Phe Phe Cys Cys Val Ser Ala
50 55 60

Arg Leu Trp Tyr Gln Asp Asp Ala Gly Leu Ile Asn Glu Leu Gly Arg
65 70 75 80

Ile Pro Ser Phe Tyr
85

<210> 395
<211> 72

212

<212> PRT

<213> Homo sapiens

<400> 395

Glu Arg Pro Glu Glu Gly Thr Glu Pro Ser Pro Ser Pro Val Ala Glu
1 5 10 15

Gln Ala Ser Val Ser Met Thr Pro Val Phe Arg Ala Trp Gly Leu Trp
20 25 30

Val Tyr Val Leu Pro Thr Gly Phe Pro Gly Pro Cys Cys Met Met Leu
35 40 45

Leu Glu Leu Phe Pro Lys Glu Ser Val Pro Gln Ala Tyr Gln Gly Ile
50 55 60

Leu Leu Tyr Leu His Phe Gly Phe
65 70

<210> 396

<211> 123

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (23)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (27)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (32)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (106)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 396

Arg Gly Glu Val Pro His Gln Pro His Pro Thr Arg Arg Thr Val Val
1 5 10 15

Ser Gly Gln Ala Pro Trp Xaa Pro Gly Pro Xaa Ala Leu Gly Gln Xaa
20 25 30

Val Glu Thr Ala Ala Gly Met Gly Met Pro Leu Val Thr Val Thr Ala
35 40 45

Ala Thr Phe Pro Thr Leu Ser Cys Pro Pro Arg Ala Trp Pro Glu Val
50 55 60

Glu Ala Pro Glu Ala Pro Ala Leu Pro Val Val Pro Glu Leu Pro Glu
65 70 75 80

Val Pro Met Glu Met Pro Leu Val Leu Pro Pro Glu Leu Glu Leu Leu
85 90 95

Ser Leu Glu Ala Val His Arg Tyr Gln Xaa Gly Gly Thr Leu Met Gly
100 105 110

Trp Thr Arg Ala Glu Ala Ser Ala Asn Gly Ser
115 120

<210> 397

<211> 133

<212> BBT

<213> Homo sapiens

£400 > 397

Met Val Leu Asp Pro Tyr Arg Ala Val Ala Leu Glu Leu Gln Ala Asn
1 5 10 15

Arg Glu Pro Asp Phe Ser Ser Leu Val Ser Pro Leu Ser Pro Arg Arg
20 25 30

Met Ala Ala Arg Val Phe Tyr Leu Leu Leu Gly Glu Cys Met His Val
35 40 45

Cys Val Cys Met Trp Gly Arg Asp Thr Glu Thr Arg Gly Pro Tyr Arg
50 55 60

Asp Ser Pro Asp Leu Pro Ser Pro Arg Leu Leu Thr Ser Ala Leu Ser
65 70 75 80

Ala Thr Asp Ser Ser Arg Glu Thr Arg Lys Ala Ile Trp Ser Pro Pro
85 90 95

Asp Pro Ala Gly Ala Gln Ile Pro Leu Arg Leu Glu Ser Ile Tyr Lys
100 105 110

Ala Ala Arg Lys Pro Ala Thr Ser Ser Lys Pro Arg Arg Ala Ser Leu
115 120 125

Lys Lys Lys Lys Lys
130.

<210> 398

<211> 11

<212> PRT

<213> Homo sapiens

<400> 398

Ala Phe

1

<211> 13

<213> DBT

212 PR1
213 V-

<213> *Homo sapiens*

<400> 399

Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu

1	5	214 10
---	---	-----------

<210> 400

<211> 206

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (3)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 400

Asn	Lys	Xaa	Ile	Leu	Glu	Val	Pro	Ser	Ala	Arg	Thr	Thr	Arg	Ile	Met
1			5			10			15						

Gly	Asp	His	Leu	Asp	Leu	Leu	Gly	Val	Val	Leu	Met	Ala	Gly	Pro
20			25				30							

Val	Phe	Gly	Ile	Pro	Ser	Cys	Ser	Phe	Asp	Gly	Arg	Ile	Ala	Phe	Tyr
35			40			45									

Arg	Phe	Cys	Asn	Leu	Thr	Gln	Val	Pro	Gln	Val	Leu	Asn	Thr	Thr	Glu
50			55			60									

Arg	Leu	Leu	Leu	Ser	Phe	Asn	Tyr	Ile	Arg	Thr	Val	Thr	Ala	Ser	Ser
65				70			75			80					

Phe	Pro	Phe	Leu	Glu	Gln	Leu	Gln	Leu	Leu	Glu	Leu	Gly	Ser	Gln	Tyr
85			90			95									

Thr	Pro	Leu	Thr	Ile	Asp	Glu	Ala	Phe	Arg	Asn	Leu	Pro	Asn	Leu	
100			105			110									

Arg	Ile	Leu	Asp	Leu	Gly	Ser	Ser	Lys	Ile	Tyr	Phe	Leu	His	Pro	Asp
115			120			125									

Ala	Phe	Gln	Gly	Leu	Phe	His	Leu	Phe	Glu	Leu	Arg	Leu	Tyr	Phe	Cys
130				135			140								

Gly	Leu	Ser	Asp	Ala	Val	Leu	Lys	Asp	Gly	Tyr	Phe	Arg	Asn	Leu	Lys
145			150			155			160						

Ala	Leu	Thr	Arg	Leu	Asp	Leu	Ser	Lys	Asn	Gln	Ile	Arg	Ser	Leu	Tyr
165			170			175									

Leu	His	Pro	Ser	Phe	Gly	Lys	Leu	Asn	Ser	Leu	Lys	Ser	Ile	Asp	Phe
180			185			190									

Ser	Ser	Asn	Gln	Ile	Phe	Leu	Val	Cys	Glu	His	Glu	Leu	Glu		
195			200			205									

<210> 401

<211> 261

<212> PRT

<213> Homo sapiens

<400> 401

Ala His Ala Ala Leu Gln Leu Ser Leu Arg Thr Cys Gly Pro Cys Ser

		215	
1	5	10	15
Ser Pro Tyr Pro His Ala Gly Leu Ala Ala Leu Leu Thr His Met Trp			
20		25	30
Ala Leu Gln Leu Ser Leu Pro Thr Cys Gly Leu Ala Ala Leu Leu Thr			
35		40	45
His Met Arg Pro Cys Ser Ser Pro Tyr Pro His Ala Gly Leu Ala Ala			
50		55	60
Leu Leu Thr His Met Gly Pro Cys Arg Ser Pro Tyr Pro His Gly Gly			
65		70	75
80			
Leu Ala Ala Val Leu Thr His Met Arg Ala Leu Gln Leu Ser Leu Pro			
85		90	95
Thr Trp Gly Leu Ala Ala Leu Leu Thr His Met Arg Pro Cys Ser Ser			
100		105	110
Pro Tyr Pro His Ala Gly Leu Ala Cys Cys Trp Leu Trp Ser Leu Ser			
115		120	125
Ser His Arg Ser Leu Gln Val Gln Ala Thr His Arg Leu Val Val Arg			
130		135	140
Thr Ile Lys Asp Arg Val Met Leu Lys Val Leu Pro Gln Thr Arg Arg			
145		150	155
160			
Arg Gly Pro Phe Leu Ser Ser Cys Arg Asn Asp Val Met Arg Asn Cys			
165		170	175
Val Pro Arg His Ala Val Leu Val Thr Thr Cys Val Phe Val Ser Phe			
180		185	190
Pro Thr His Cys Lys Val Gly Ile Thr Gly Pro Ile Thr Gln Val Lys			
195		200	205
Gln Lys Pro Gly Asn His Ser Ser Pro Cys Pro Val Ile Gln Leu Val			
210		215	220
Ala Lys Ala Glu Phe Glu Leu Met Leu Pro Ser Val Pro Lys Pro Val			
225		230	235
240			
Tyr Leu Thr Leu Val Leu Ser Cys Trp Cys Leu Cys Asp Val Pro Cys			
245		250	255
Leu Ser Val Ser Leu			
260			
<210> 402			
<211> 17			
<212> PRT			
<213> Homo sapiens			
<400> 402			
Leu Ala Cys Cys Trp Leu Trp Ser Leu Ser Ser His Arg Ser Leu Gln			
1	5	10	15

216

Val

<210> 403
<211> 67
<212> PRT
<213> Homo sapiens

<400> 403
Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val
1 5 10 15

Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Ala Pro
20 25 30

Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu
35 40 45

Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Val Thr Cys
50 55 60

Phe Gly Ala
65

<210> 404
<211> 90
<212> PRT
<213> Homo sapiens

<400> 404
Met Leu Val Val Ser Thr Val Ile Ile Val Phe Trp Glu Phe Ile Asn
1 5 10 15

Ser Thr Glu Gly Ser Phe Leu Trp Ile Tyr His Ser Lys Asn Pro Glu
20 25 30

Val Asp Asp Ser Ser Ala Gln Lys Gly Trp Trp Phe Leu Ser Trp Phe
35 40 45

Asn Asn Gly Ile His Asn Tyr Gln Gln Gly Glu Glu Asp Ile Asp Lys
50 55 60

Glu Lys Gly Arg Glu Glu Thr Lys Gly Arg Lys Met Thr Gln Gln Ser
65 70 75 80

Phe Gly Tyr Gly Thr Gly Leu Ile Gln Thr
85 90

<210> 405
<211> 18
<212> PRT
<213> Homo sapiens

<400> 405
Phe Pro Gly Arg Thr His Ala Ser Gly Asn Val Lys Gly Lys Val Ile
1 5 10 15

Leu Ser

<210> 406
<211> 106
<212> PRT
<213> Homo sapiens

<400> 406
Ala Asp Gln Glu Lys Ile Arg Asn Val Lys Gly Lys Val Ile Leu Ser
1 5 10 15

Met Leu Val Val Ser Thr Val Ile Ile Val Phe Trp Glu Phe Ile Asn
20 25 30

Ser Thr Glu Gly Ser Phe Leu Trp Ile Tyr His Ser Lys Asn Pro Glu
35 40 45

Val Asp Asp Ser Ser Ala Gln Lys Gly Trp Trp Phe Leu Ser Trp Phe
50 55 60

Asn Asn Gly Ile His Asn Tyr Gln Gln Gly Glu Glu Asp Ile Asp Lys
65 70 75 80

Glu Lys Gly Arg Glu Glu Thr Lys Gly Arg Lys Met Thr Gln Gln Ser
85 90 95

Phe Gly Tyr Gly Thr Gly Leu Ile Gln Thr
100 105

<210> 407
<211> 236
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (50)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 407
Met Gln Ser Pro Leu Val Glu Cys Pro Pro Pro Ser Ile His Tyr Trp
1 5 10 15

Pro Ser Val Pro Ala Gly Ala Gln Gly Ala Cys Ser Pro Met Phe His
20 25 30

Ala Ala Gly Trp Ser Arg Ser Gln Pro Asn Gly Glu Ile Pro Ala Ser
35 40 45

Ser Xaa Gly His Leu Ser Ile Gln Arg Ala Ala Leu Val Val Leu Glu
50 55 60

Asn Tyr Tyr Lys Asp Phe Thr Ile Tyr Asn Pro Asn Leu Leu Thr Ala
65 70 75 80

Ser Lys Phe Arg Ala Ala Lys His Met Ala Gly Leu Lys Val Tyr Asn
85 90 95

Val Asp Gly Pro Ser Asn Asn Ala Thr Gly Gln Ser Arg Ala Met Ile
100 105 110

218

Ala Ala Ala Ala Arg Arg Arg Asp Ser Ser His Asn Glu Leu Tyr Tyr
115 120 125

Glu Glu Ala Glu His Glu Arg Arg Val Lys Lys Arg Lys Ala Arg Leu
130 135 140

Val Val Ala Val Glu Glu Ala Phe Ile His Ile Gln Arg Leu Gln Ala
145 150 155 160

Glu Glu Gln Gln Lys Ala Pro Gly Glu Val Met Asp Pro Arg Glu Ala
165 170 175

Ala Gln Ala Ile Phe Pro Ser Met Ala Arg Ala Leu Gln Lys Tyr Leu
180 185 190

Arg Ile Thr Arg Gln Gln Asn Tyr His Ser Met Glu Ser Ile Leu Gln
195 200 205

Ala Pro Gly Leu Leu His His Gln Arg His Asp Pro Gln Gly Leu Pro
210 215 220

Arg Thr Val Pro Gln Cys Gly Pro His Pro Ala Ile
225 230 235

<210> 408

<211> 23

<212> PRT

<213> Homo sapiens

<400> 408

Leu Ser Ile Gln Arg Ala Ala Leu Val Val Leu Glu Asn Tyr Tyr Lys
1 5 10 15

Asp Phe Thr Ile Tyr Asn Pro
20

<210> 409

<211> 15

<212> PRT

<213> Homo sapiens

<400> 409

Asp Ser Ser His Asn Glu Leu Tyr Tyr Glu Glu Ala Glu His Glu
1 5 10 15

<210> 410

<211> 18

<212> PRT

<213> Homo sapiens

<400> 410

Phe Pro Ser Met Ala Arg Ala Leu Gln Lys Tyr Leu Arg Ile Thr Arg
1 5 10 15

Gln Gln

<210> 411

219

<211> 140
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (117)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 411

Met	Ala	Phe	Lys	Leu	Leu	Ile	Leu	Leu	Ile	Gly	Thr	Trp	Ala	Leu	Phe
1				5					10				15		

Phe	Arg	Lys	Arg	Arg	Ala	Asp	Met	Pro	Arg	Val	Phe	Val	Phe	Arg	Ala
							20		25				30		

Leu	Leu	Leu	Val	Leu	Ile	Phe	Leu	Phe	Cys	Gly	Phe	Pro	Ile	Gly	Phe
								40				45			

Phe	Thr	Gly	Ser	Ala	Phe	Trp	Thr	Leu	Gly	Asn	Arg	Asn	Tyr	Gln	Gly
							50		55		60				

Ile	Val	Gln	Tyr	Ala	Val	Ser	Pro	Cys	Gly	Met	Pro	Ser	Ser	Phe	His
							65		70		75		80		

Pro	Leu	Leu	Ala	Ile	Arg	Pro	Cys	Trp	Ser	Ser	Gly	Ser	Leu	Gln	Pro
							85		90			95			

Asn	Val	Pro	Arg	Cys	Arg	Leu	Val	Pro	Leu	Pro	Thr	Glu	Trp	Gly	Asn
							100		105		110				

Pro	Arg	Phe	Gln	Xaa	Gly	Thr	Pro	Glu	Tyr	Pro	Ala	Ser	Ser	Ile	Gly
							115		120		125				

Gly	Pro	Arg	Lys	Leu	Leu	Gln	Arg	Phe	His	His	Leu				
							130		135		140				

<210> 412
 <211> 37
 <212> PRT
 <213> Homo sapiens

<400> 412

Met	Gly	Leu	Pro	Val	Ser	Trp	Ala	Pro	Pro	Ala	Leu	Trp	Val	Leu	Gly
1				5					10			15			

Cys	Cys	Ala	Leu	Leu	Leu	Ser	Leu	Trp	Ala	Leu	Cys	Thr	Ala	Cys	Arg
							20		25		30				

Ser	Pro	Arg	Thr	Leu											
				35											

<210> 413
 <211> 20
 <212> PRT
 <213> Homo sapiens

<400> 413

Ile	Tyr	Gly	Lys	Thr	Gly	Gln	Pro	Asp	Lys	Ile	Tyr	Val	Glu	Leu	His
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

220
1 5 10 15

Gln Asn Ser Pro
20

<210> 414
<211> 16
<212> PRT
<213> Homo sapiens

<400> 414
Phe Leu Glu Pro Leu Ser Gly Leu Tyr Thr Cys Thr Leu Ser Tyr Lys
1 5 10 15

<210> 415
<211> 16
<212> PRT
<213> Homo sapiens

<400> 415
Leu Gln Val Val Arg Leu Asp Ser Cys Arg Pro Gly Phe Gly Lys Asn
1 5 10 15

<210> 416
<211> 12
<212> PRT
<213> Homo sapiens

<400> 416
Cys Val Ser Val Leu Thr Tyr Gly Ala Lys Ser Cys
1 5 10

<210> 417
<211> 308
<212> PRT
<213> Homo sapiens

<400> 417
Pro Ala Lys Gly Glu Gly Cys Arg Arg Leu His Asp His Pro His Ile
1 5 10 15

Trp Arg Leu Leu Trp Ala His Ser Asp Pro Asp Pro Leu Pro Thr Gln
20 25 30

Pro Arg Ala Glu Gln Gly Glu Thr Glu Phe Cys Val Pro Val Gly Pro
35 40 45

Leu Cys His Asp Trp His Pro Leu Pro Val Asp Val Leu Ala Gln Leu
50 55 60

Gln Leu Ser His Ile Leu Pro Trp Gly Gln Pro Ala Pro Ser Arg His
65 70 75 80

221

Gln	His	Leu	Leu	Leu	Gly	Ser	Leu	Arg	Ala	Tyr	Leu	Gly	Gly	Asn
				85				90						95

Ile Gln Cys Pro Ala Lys Lys Gly Lys Leu Asp Met Val His Ile Gln
 100 105 110

Asn Ala Thr Leu Ala Gly Gly Val Ala Val Gly Thr Ala Ala Glu Met
 115 120 125

Met Leu Met Pro Tyr Gly Ala Leu Ile Ile Gly Phe Val Cys Gly Ile
 130 135 140

Ile Ser Thr Leu Gly Phe Val Tyr Leu Thr Pro Phe Leu Glu Ser Arg
 145 150 155 160

Leu His Ile Gln Asp Thr Cys Gly Ile Asn Asn Leu His Gly Ile Pro
 165 170 175

Gly Ile Ile Gly Gly Ile Val Gly Ala Val Thr Ala Ala Ser Ala Ser
 180 185 190

Leu Glu Val Tyr Gly Lys Glu Gly Leu Val His Ser Phe Asp Phe Gln
 195 200 205

Gly Phe Asn Gly Asp Trp Thr Ala Arg Thr Gln Gly Lys Phe Gln Ile
 210 215 220

Tyr Gly Leu Leu Val Thr Leu Ala Met Ala Leu Met Gly Gly Ile Ile
 225 230 235 240

Val Gly Leu Ile Leu Arg Leu Pro Phe Trp Gly Gln Pro Ser Asp Glu
 245 250 255

Asn Cys Phe Glu Asp Ala Val Tyr Trp Glu Met Pro Glu Gly Asn Ser
 260 265 270

Thr Val Tyr Ile Pro Glu Asp Pro Thr Phe Lys Pro Ser Gly Pro Ser
 275 280 285

Val Pro Ser Val Pro Met Val Ser Pro Leu Pro Met Ala Ser Ser Val
 290 295 300

Pro Leu Val Pro
 305

<210> 418
<211> 108
<212> PRT
<213> Homo sapiens

<400> 418

Pro	Arg	Val	Arg	Thr	Arg	Ala	Pro	Val	Val	Pro	Pro	Ala	Gly	His	Arg
1															
							5			10					15

Ala Leu Ser Pro Ala Gly Val Leu Leu Ala Val Pro Ala Met Leu Ser
 20 25 30

Leu Asp Phe Leu Asp Asp Val Arg Arg Met Asn Lys Arg Gln Val Ser
 35 40 45

222

Leu Ser Val Leu Phe Phe Ser Trp Leu Phe Leu Ser Leu Arg Gly Cys
50 55 60

Cys Cys Gly Ala Arg Arg Thr Pro Gly Phe Trp Cys Glu Gly Leu Ser
65 70 75 80

Trp Ser Asp Thr Arg Val Ile Arg Phe Leu Trp Arg Leu Trp Pro Glu
85 90 95

Ala Ala Leu Ser Ala Ser Leu Phe Leu Thr Pro Asn
100 105

<210> 419

<211> 16

<212> PRT

<213> Homo sapiens

<400> 419

His Ala Ser Ala Trp Asn Leu Ile Leu Leu Thr Val Phe Thr Leu Ser
1 5 10 15

<210> 420

<211> 24

<212> PRT

<213> Homo sapiens

<400> 420

Val Tyr Ala Ala Leu Gly Ala Gly Val Phe Thr Leu Phe Leu Ala Leu
1 5 10 15

Asp Thr Gln Leu Leu Met Gly Asn
20

<210> 421

<211> 18

<212> PRT

<213> Homo sapiens

<400> 421

Glu Glu Tyr Ile Phe Gly Ala Leu Asn Ile Tyr Leu Asp Ile Ile Tyr
1 5 10 15

Ile Phe

<210> 422

<211> 26

<212> PRT

<213> Homo sapiens

<400> 422

Trp Asn Leu Ile Leu Leu Thr Val Phe Thr Leu Ser Met Ala Tyr Leu
1 5 10 15

Thr Gly Met Leu Ser Ser Tyr Tyr Asn Thr

223
20 25

<210> 423
<211> 11
<212> PRT
<213> Homo sapiens

<400> 423
Thr Leu Ser Leu Leu Val Ser Leu His Thr Val
 1 5 10

<210> 424
<211> 241
<212> PRT
<213> Homo sapiens

<400> 424
Met Ser Ser Ser Gly Thr Ser Asp Ala Ser Pro Ser Gly Ser Pro Val
 1 5 10 15

Leu Ala Ser Tyr Lys Pro Ala Pro Pro Lys Asp Lys Leu Pro Glu Thr
 20 25 30

Pro Arg Arg Arg Met Lys Lys Ser Leu Ser Ala Pro Leu His Pro Glu
 35 40 45

Phe Glu Glu Val Tyr Arg Phe Gly Ala Glu Ser Arg Lys Leu Leu Leu
 50 55 60

Arg Glu Pro Val Asp Ala Met Pro Asp Pro Thr Pro Phe Leu Leu Ala
 65 70 75 80

Arg Glu Ser Ala Glu Val His Leu Ile Lys Glu Arg Pro Leu Val Ile
 85 90 95

Pro Pro Ile Ala Ser Asp Arg Ser Gly Glu Gln His Ser Pro Ala Arg
 100 105 110

Glu Lys Pro His Lys Ala His Val Gly Val Ala His Arg Ile His His
 115 120 125

Ala Thr Pro Pro Gln Pro Ala Arg Gly Glu Asp Pro Gly Gly Arg Pro
 130 135 140

Gly Glu Arg Arg Gln Gly Gly Glu Glu Ala Leu Arg Asp Gly Gln Asn
 145 150 155 160

Cys Val Lys Pro Ala Val Pro His Pro Ala Leu Ser Met His Cys Glu
 165 170 175

His His Trp Glu Ile Ser Ala Thr Pro Phe Leu Phe Asn Pro Met His
 180 185 190

Ala Lys His Phe Ser His Leu Pro Thr His Ser Pro Ser Ala Ser Leu
 195 200 205

Ala Leu Phe Phe Thr Pro Lys Tyr Asp Arg Val Pro Ala Ala Glu Tyr
 210 215 220

Phe

<210> 425
<211> 85
<212> PRT
<213> *Homo sapiens*

<400> 425
Met Ser Ser Ser Gly Thr Ser Asp Ala Ser Pro Ser Gly Ser Pro Val
1 5 10 15

Leu Ala Ser Tyr Lys Pro Ala Pro Pro Lys Asp Lys Leu Pro Glu Thr
20 25 30

Pro Arg Arg Arg Met Lys Lys Ser Leu Ser Ala Pro Leu His Pro Glu
35 40 45

Phe Glu Glu Val Tyr Arg Phe Gly Ala Glu Ser Arg Lys Leu Leu Leu
50 55 60

Arg Glu Pro Val Asp Ala Met Pro Asp Pro Thr Pro Phe Leu Leu Ala
65 70 75 80

Arg Glu Ser Ala Glu
85

<210> 426
<211> 63
<212> PRT
<213> *Homo sapiens*

<400> 426
Val His Leu Ile Lys Glu Arg Pro Leu Val Ile Pro Pro Ile Ala Ser
1 5 10 15

Asp Arg Ser Gly Glu Gln His Ser Pro Ala Arg Glu Lys Pro His Lys
20 25 30

Ala His Val Gly Val Ala His Arg Ile His His Ala Thr Pro Pro Gln
35 40 45

Pro Ala Arg Gly Glu Asp Pro Gly Gly Arg Pro Gly Glu Arg Arg
50 55 60

<210> 427
<211> 93
<212> PRT
<213> *Homo sapiens*

<400> 427
Gln Gly Gly Glu Gl
1

20 25 30

225

Ile Ser Ala Thr Pro Phe Leu Phe Asn Pro Met His Ala Lys His Phe
35 40 45

Ser His Leu Pro Thr His Ser Pro Ser Ala Ser Leu Ala Leu Phe Phe
50 55 60

Thr Pro Lys Tyr Asp Arg Val Pro Ala Ala Glu Tyr Val Phe Pro Asn
65 70 75 80

Cys Cys Gly Gln Thr Pro Val Cys Arg Ile Ala Cys Phe
85 90

<210> 428

<211> 59

<212> PRT

<213> Homo sapiens

<400> 428

Lys Arg Ala Ser Gln Pro Pro Cys Thr Arg Asn Leu Lys Arg Ser Thr
1 5 10 15

Asp Ser Gly Gln Arg Ala Gly Asn Ser Phe Cys Gly Asn Gln Trp Met
20 25 30

Leu Cys Pro Thr Pro Pro His Phe Cys Trp Leu Gly Ser Pro Pro Arg
35 40 45

Ser Thr Ser Ser Lys Arg Gly Pro Ser Ser Ser
50 55

<210> 429

<211> 65

<212> PRT

<213> Homo sapiens

<400> 429

Pro Pro Ser Pro Pro Thr Glu Ala Ala Ser Ser Thr Ala Arg Pro Ala
1 5 10 15

Lys Ser Arg Thr Arg Pro Thr Ser Gly Trp His Ile Gly Ser Thr Thr
20 25 30

Pro Pro Arg Arg Ser Gln Pro Glu Val Lys Thr Leu Ala Val Asp Gln
35 40 45

Val Asn Gly Gly Lys Val Val Arg Lys His Ser Gly Thr Asp Arg Thr
50 55 60

Val

65

<210> 430

<211> 148

<212> PRT

<213> Homo sapiens

<400> 430

Met Trp Asn Pro Asn Ala Gly Gln Pro Gly Pro Asn Pro Tyr Pro Pro

		226	
1	5	10	15
Asn Ile Gly Cys Pro Gly Gly Ser Asn Pro Ala His Pro Pro Pro Ile			
20		25	30
Asn Pro Pro Phe Pro Pro Gly Pro Cys Pro Pro Pro Pro Gly Ala Pro			
35		40	45
His Gly Asn Pro Ala Phe Pro Pro Gly Gly Pro Pro His Pro Val Pro			
50		55	60
Gln Pro Gly Tyr Pro Gly Cys Gln Pro Leu Gly Pro Tyr Pro Pro Pro			
65		70	75
Tyr Pro Pro Pro Ala Pro Gly Ile Pro Pro Val Asn Pro Leu Ala Pro			
85		90	95
Gly Met Val Gly Pro Ala Val Ile Val Asp Lys Lys Met Gln Lys Lys			
100		105	110
Met Lys Lys Ala His Lys Lys Met His Lys His Gln Lys His His Lys			
115		120	125
Tyr His Lys His Gly Lys His Ser Ser Ser Ser Ser Ser Ser Ser			
130		135	140
Ser Asp Ser Asp			
145			
<210> 431			
<211> 58			
<212> PRT			
<213> Homo sapiens			
<400> 431			
Arg Val Gly Pro Asp Ala Trp Ala Asp Ala Trp Glu Gln Ala Gln Ala			
1		5	10
Ala Val Glu Arg Leu Glu Asp Thr Pro Lys His Val Glu Ser Gln Cys			
20		25	30
Arg Ala Ala Arg Ala Lys Ser Ile Ser Pro Gln Tyr Trp Val Pro Trp			
35		40	45
Arg Phe Gln Ser Cys Pro Pro Thr Thr Tyr			
50		55	
<210> 432			
<211> 84			
<212> PRT			
<213> Homo sapiens			
<400> 432			
Ser Thr Leu Ser Pro Arg Pro Leu Ser Ser Ser Pro Arg Ser Ser Pro			
1		5	10
Trp Gln Ser Ser Phe Pro Pro Arg Trp Ala Pro Ser Ser Cys Ala Thr			
20		25	30

<210> 433
<211> 86
<212> PRT
<213> *Homo sapiens*

<400> 433
Met Pro Gly Ser Gln Gly Gln Ile His Ile Pro Pro Ile Leu Gly Ala
1 5 10 15

Leu Glu Val Pro Ile Leu Pro Thr His His His Leu Leu Ile His His Pro Phe
20 25 30

Pro Gln Ala Pro Val Leu Leu Pro Gln Glu Leu Pro Met Ala Ile Gln
35 40 45

Leu Ser Pro Gln Val Gly Pro Leu Ile Leu Cys His Ser Gln Gly Ile
50 55 60

Gln Asp Ala Asn Arg Trp Val Pro Thr Leu Leu His Thr His Arg Leu
 65 70 75 80

Pro Leu Glu Ser Leu Leu
85

<210> 434
<211> 65
<212> PRT
<213> *Homo sapiens*

<220>
<221> SITE
<222> (56)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 434
Met Ala Ser Ile Pro Pro Leu Pro Pro Pro Leu Pro Ala Val Ile Leu
1 5 10 15

Thr Glu Tyr Arg Pro Trp Thr Leu Pro Ser Ser Leu Thr Ser Ser Ala
20 25 30

Leu Pro Ser Ser Phe Arg Cys His Val Val Leu Gly Glu Cys Ser Pro
35 40 45

Cys Ala Pro His Pro Leu Pro Xaa Pro Glu Pro His Pro Ala Val Glu
50 55 60

228

Pro

65

<210> 435

<211> 147

<212> PRT

<213> Homo sapiens

<400> 435

Pro	Arg	His	Thr	Tyr	Trp	Gly	Ile	Trp	Leu	Val	Pro	Ala	Ala	Met	Ala
1							5			10				15	

Ser	Pro	His	Ser	His	Pro	Ala	Gln	Gly	Val	Leu	Gln	Pro	Pro	Gly	Pro
							20			25				30	

Gln	Pro	Arg	Trp	Glu	Asp	Arg	Val	Ala	Leu	Gly	Thr	Arg	Gly	Arg	Ser
							35			40			45		

Pro	Gly	Ala	Tyr	Leu	Thr	Glu	Ser	Ala	Pro	Gln	Gln	Ala	Ser	Thr	Thr
							50			55			60		

Pro	Gly	Pro	Pro	Thr	Cys	His	Gly	Lys	Val	Gly	Ser	Glu	Trp	Ala	Trp
							65			70			75		80

Leu	Gly	Ala	Ala	Pro	Gly	Pro	Leu	Pro	Thr	His	Pro	Ser	His	Tyr	Ala
							85			90			95		

Ile	Arg	Val	Pro	Ser	Asn	Ile	Cys	Ser	Cys	Pro	Gly	Ala	Ser	Ser	Ala
							100			105			110		

Pro	Ala	Leu	Arg	Gly	Val	Val	Arg	Gln	Pro	Pro	Gly	Pro	Gln	Asn	Pro
							115			120			125		

Arg	Gln	Gly	Gly	Arg	Arg	Gly	Thr	Arg	Ala	Ser	Pro	Val	Gly	Ser	Leu
							130			135			140		

Phe Cys Val

145

<210> 436

<211> 105

<212> PRT

<213> Homo sapiens

<400> 436

Met	Phe	Ala	Val	Leu	Pro	Ala	Val	Glu	Gly	Arg	Ala	Thr	Pro	His	Gln
1							5			10			15		

Asp	Arg	Thr	Cys	Tyr	Pro	Ser	Arg	Ser	Arg	Pro	Trp	Pro	Ser	Gln	Pro
							20			25			30		

Ser	Pro	Arg	Gly	Ser	Met	Pro	Val	Pro	Arg	Pro	Gly	Ala	Ala	Arg	Gly
							35			40			45		

Gln	Leu	Asp	Gly	His	Val	Gln	Gly	Gln	Gly	Trp	Ala	Leu	Gln	Trp	Gly
							50			55			60		

Gly	Pro	Pro	Ala	Pro	Ala	Val	Tyr	Arg	Arg	Met	Ala	Leu	Pro	Pro	Arg
65							70			75			80		

229

Ala Ala Gly Ser Tyr Leu Asp Arg Lys Cys Pro His Pro Leu Pro Gly
85 90 95

Ala Arg Leu Cys Pro Gly Leu Pro Leu
100 105

<210> 437
<211> 127
<212> PRT
<213> *Homo sapiens*

<400> 437

Val Phe Gly Ala Val Phe Leu Thr Thr Pro Ser His Asp Leu Ala Thr
1 5 10 15

Pro Thr Gly Ala Ser Gly Trp Cys Leu Leu Pro Trp Pro Ala Pro Thr
..... 20 25 30

Leu Thr Leu His Arg Gly Ser Cys Ser Pro Gln Ala His Ser Leu Val
35 40 45

Gly Arg Thr Gly Trp Pro Trp Gly Gln Glu Gly Gly Ala Gln Gly Leu
50 55 60

Thr Ser Leu Arg Val Leu Pro Ser Arg His Pro Leu Pro Gln Gly Pro
65 70 75 80

Pro His Val Met Ala Arg Leu Val Val Asn Gly Pro Gly Trp Glu Gln
85 90 95

Pro Leu Ala His Cys Pro Pro Thr His Leu Thr Met Gln Phe Glu Phe
100 105 110

Gln Ala Thr Phe Ala Pro Ala Leu Gly Pro Ala Leu Pro Gln Pro
115 120 125

<210> 438
<211> 186
<212> PRT
<213> *Homo sapiens*

<400> 438

His Glu Glu Pro Pro Ala Gly Phe Gly Leu Arg Ser Leu Trp Arg Arg
 1 5 10 15

Ser Pro Pro His Glu Val Gly Ala Arg Leu Pro Asn Gly Ala Phe Gly
20 25 30

Phe Ser Val Arg Cys Leu Leu Cys Phe Pro Pro Pro Trp Arg Ala Glu Pro
 35 40 45

Pro His Ile Arg Ile Gly Arg Ala Thr Pro Pro Gly Pro Gly Pro Gly
50 55 60

Pro Ala Ser Pro Ala Leu Glu Ala Arg Cys Leu Cys Gln Gly Gln Gly
65 70 75 80

Gln Pro Glu Gly Ser Trp Met Ala Thr Cys Arg Val Lys Ala Gly Pro

	230		
85	90		95
Cys Ser Gly Ala Gly Arg Gln Pro Gln Gln Phe Thr Asp Ala Trp Leu			
100	105		110
Phe Leu Pro Glu Gln Pro Ala Ala Thr Trp Thr Gly Asn Val Leu Ile			
115	120		125
Pro Ser Leu Gly Pro Gly Ser Ala Leu Ala Phe Leu Cys Glu Pro Leu			
130	135		140
Leu Ser Leu Cys Cys Leu Gly Thr Pro Asp Arg Gly Val Arg Val Cys			
145	150		155
160			
Pro Ser Val Thr Phe Tyr Ser Pro Arg Val Glu Glu Arg Lys Arg Gly			
165	170		175
Lys Ser Lys Gly Val Gln Thr Pro Pro Gln			
180	185		
<210> 439			
<211> 100			
<212> PRT			
<213> Homo sapiens			
<400> 439			
Met Ala Thr Cys Arg Val Lys Ala Gly Pro Cys Ser Gly Ala Gly Arg			
1	5	10	15
Gln Pro Gln Gln Phe Thr Asp Ala Trp Leu Phe Leu Pro Glu Gln Pro			
20	25		30
Ala Ala Thr Trp Thr Gly Asn Val Leu Ile Pro Ser Leu Gly Pro Gly			
35	40		45
Ser Ala Leu Ala Phe Leu Cys Glu Pro Leu Leu Ser Leu Cys Cys Leu			
50	55		60
Gly Thr Pro Asp Arg Gly Val Arg Val Cys Pro Ser Val Thr Phe Tyr			
65	70	75	80
Ser Pro Arg Val Glu Glu Arg Lys Arg Gly Lys Ser Lys Gly Val Gln			
85	90		95
Thr Pro Pro Gln			
100			
<210> 440			
<211> 244			
<212> PRT			
<213> Homo sapiens			
<400> 440			
Met Lys Trp Phe Ser Thr Gln Pro Leu Trp Leu Asn Thr Lys Gln Arg			
1	5	10	15
Ser His Arg Arg Gly Pro Gly Pro Pro Pro Ala Pro Leu Ser Gly Val			
20	25		30

231

Leu	Gly	Ser	Arg	Gly	Leu	Pro	His	His	Pro	Ser	Gln	Gly	Trp	Gly	Arg
35					40						45				
Ala	Gly	Pro	Arg	Ala	Gly	Ala	Asn	Val	Ala	Trp	Asn	Ser	Asn	Cys	Ile
50					55						60				
Val	Arg	Trp	Val	Gly	Gly	Gln	Trp	Ala	Arg	Gly	Cys	Ser	Gln	Pro	Gly
65					70					75				80	
Pro	Phe	Thr	Thr	Asn	Leu	Ala	Met	Thr	Cys	Gly	Gly	Pro	Trp	Gly	Ser
					85					90				95	
Gly	Cys	Leu	Leu	Gly	Ser	Thr	Leu	Ser	Glu	Val	Ser	Pro	Trp	Ala	Pro
					100				105					110	
Pro	Ser	Cys	Pro	Gln	Gly	His	Pro	Val	Leu	Pro	Thr	Arg	Leu	Trp	Ala
					115				120				125		
Trp	Gly	Leu	Gln	Asp	Pro	Leu	Cys	Arg	Val	Arg	Val	Gly	Ala	Gly	His
					130			135			140				
Gly	Ser	Arg	His	Gln	Pro	Asp	Ala	Pro	Val	Gly	Val	Ala	Arg	Ser	Trp
					145			150			155			160	
Asp	Gly	Val	Val	Arg	Asn	Thr	Ala	Pro	Lys	Thr	Gln	Asn	Lys	Asn	Thr
					165				170				175		
Thr	Asn	Gly	Arg	Arg	Ser	Pro	Pro	Pro	Thr	Glu	Val	Gly	Phe	Glu	Pro
					180				185				190		
Leu	Leu	Ile	Phe	Pro	Val	Ser	Phe	Leu	Gln	Pro	Leu	Val	Ser	Arg	Lys
					195				200			205			
Ser	Gln	Thr	Gly	Thr	His	Ala	His	His	Gly	Gln	Glu	Ser	Arg	Asp	Ser
					210			215			220				
Thr	Lys	Lys	Gly	Gly	Val	His	Arg	Gly	Arg	Pro	Gly	Gln	Ser	Leu	Ala
					225			230			235			240	
Pro	Gly	Arg	Gly												

<210> 441
<211> 165
<212> PRT
<213> Homo sapiens

<400> 441
Lys Val Thr Asp Gly His Thr Arg Thr Pro Arg Ser Gly Val Pro Arg
1 5 10 15
Gln His Lys Glu Arg Arg Gly Ser Gln Arg Lys Ala Arg Ala Glu Pro
20 25 30
Gly Pro Arg Glu Gly Met Arg Thr Phe Pro Val Gln Val Ala Ala Gly
35 40 45
Cys Ser Gly Arg Lys Ser His Ala Ser Val Asn Cys Trp Gly Trp Arg
50 55 60

232

Pro Ala Pro Leu Gln Gly Pro Ala Leu Thr Leu His Val Ala Ile Gln
65 70 75 80

Leu Pro Ser Gly Cys Pro Trp Pro Trp His Arg His Arg Ala Ser Arg
85 90 95

Ala Gly Leu Ala Gly Pro Gly Pro Gly Gly Val Ala Arg Pro
100 105 110

Ile Leu Met Trp Gly Gly Ser Ala Leu His Gly Gly Lys His Ser Lys
115 120 125

His Arg Thr Leu Lys Pro Lys Ala Pro Leu Gly Ser Leu Ala Pro Thr
130 135 140

Ser Trp Gly Gly Asp Arg Arg His Arg Asp Leu Ser Pro Lys Pro Ala
145 150 155 160

Gly Gly Ser Ser Cys
165

<210> 442

<211> 128

<212> PRT

<213> Homo sapiens

<400> 442

Met Arg Thr Phe Pro Val Gln Val Ala Ala Gly Cys Ser Gly Arg Lys
1 5 10 15

Ser His Ala Ser Val Asn Cys Trp Gly Trp Arg Pro Ala Pro Leu Gln
20 25 30

Gly Pro Ala Leu Thr Leu His Val Ala Ile Gln Leu Pro Ser Gly Cys
35 40 45

Pro Trp Pro Trp His Arg His Arg Ala Ser Arg Ala Gly Leu Ala Gly
50 55 60

Pro Gly Pro Gly Pro Gly Gly Val Ala Arg Pro Ile Leu Met Trp Gly
65 70 75 80

Gly Ser Ala Leu His Gly Gly Lys His Ser Lys His Arg Thr Leu Lys
85 90 95

Pro Lys Ala Pro Leu Gly Ser Leu Ala Pro Thr Ser Trp Gly Gly Asp
100 105 110

Arg Arg His Arg Asp Leu Ser Pro Lys Pro Ala Gly Gly Ser Ser Cys
115 120 125

<210> 443

<211> 13

<212> PRT

<213> Homo sapiens

<400> 443
 Gly Leu Met Glu Cys Leu Ile His Arg His Gly Ser His
 1 5 10

<210> 444
 <211> 17
 <212> PRT
 <213> Homo sapiens

<400> 444
 Ser Thr Lys Gly Met Gln Phe Ile Leu Thr Gly Ile Thr Leu Ser Gly
 1 5 10 15

Tyr

<210> 445
 <211> 209
 <212> PRT
 <213> Homo sapiens

<400> 445
 Pro Arg Val Arg Ala Leu Leu Phe Ala Arg Ser Leu Arg Leu Cys Arg
 1 5 10 15

Trp Gly Ala Lys Arg Leu Gly Val Ala Ser Thr Glu Ala Gln Arg Gly
 20 25 30

Val Ser Phe Lys Leu Glu Glu Lys Thr Ala His Ser Ser Leu Ala Leu
 35 40 45

Phe Arg Asp Asp Thr Gly Val Lys Tyr Gly Leu Val Gly Leu Glu Pro
 50 55 60

Thr Lys Val Ala Leu Asn Val Glu Arg Phe Arg Glu Trp Ala Val Val
 65 70 75 80

Leu Ala Asp Thr Ala Val Thr Ser Gly Arg His Tyr Trp Glu Val Thr
 85 90 95

Val Lys Arg Ser Gln Gln Phe Arg Ile Gly Val Ala Asp Val Asp Met
 100 105 110

Ser Arg Asp Ser Cys Ile Gly Val Asp Asp Arg Ser Trp Val Phe Thr
 115 120 125

Met Pro Ser Ala Ser Gly Thr Pro Cys Trp Pro Thr Arg Lys Pro Gln
 130 135 140

Leu Arg Val Leu Gly Ser Gln Glu Val Gly Leu Leu Leu Glu Tyr Glu
 145 150 155 160

Ala Gln Lys Leu Ser Leu Val Asp Val Ser Gln Val Ser Val Val His
 165 170 175

Thr Leu Gln Thr Asp Phe Arg Gly Pro Val Val Pro Ala Phe Ala Leu
 180 185 190

234

Trp	Asp	Gly	Glu	Leu	Leu	Thr	His	Ser	Gly	Leu	Glu	Val	Pro	Glu	Gly
195														205	

Leu

<210> 446

<211> 98

<212> PRT

<213> Homo sapiens

<400> 446

Met	Ser	Arg	Asp	Ser	Cys	Ile	Gly	Val	Asp	Asp	Arg	Ser	Trp	Val	Phe
1														15	

Thr	Met	Pro	Ser	Ala	Ser	Gly	Thr	Pro	Cys	Trp	Pro	Thr	Arg	Lys	Pro
	20								25				30		

Gln	Leu	Arg	Val	Leu	Gly	Ser	Gln	Glu	Val	Gly	Leu	Leu	Leu	Glu	Tyr
							35				40			45	

Glu	Ala	Gln	Lys	Leu	Ser	Leu	Val	Asp	Val	Ser	Gln	Val	Ser	Val	Val
							50			55			60		

His	Thr	Leu	Gln	Thr	Asp	Phe	Arg	Gly	Pro	Val	Val	Pro	Ala	Phe	Ala
						65				70			75		80

Leu	Trp	Asp	Gly	Glu	Leu	Leu	Thr	His	Ser	Gly	Leu	Glu	Val	Pro	Glu
							85				90			95	

Gly Leu

<210> 447

<211> 1913

<212> DNA

<213> Homo sapiens

<400> 447

GCACGAGCGG CACGAGCCGA TCCTCACACG ACTGTGATCC GATTCTTCAGCGGGCTTCT	60
---	----

GCAACCAAAGC GGGTCTTACC CCCGGTCCTC CGCGTCTCCA GTCCCTCGCAC CTGGAACCCC	120
---	-----

AACGTCCCCG AGAGTCCCCG AATCCCCGCT CCCAGGCTAC CTAAGAGGAT GAGCGGTGCT	180
---	-----

CCGACGGCCG GGGCAGCCCT GATGCTCTGC GCCGCCACCG CCGTGCTACT GAGCGCTCAG	240
---	-----

GGCGGACCCG TGCAGTCAA GTGCCGCGGC TTTGCGTCCT GGGACGAGAT GAATGTCCTG	300
--	-----

GCGCACGGAC TCCTGCAGCT CGGCCAGGGG CTGCGCGAAC ACAGCGAGCG CACCCGCACT	360
---	-----

CAGCTGAGCG CGCTGGAGCG GCGCCTGAGC GCGTGCAGGT CCGCCTGTCA GGGAAACCGAG	420
--	-----

GGGTCCACCG ACCTCCCGTT AGCCCCTGAG AGCCGGGTGG ACCCTGAGGT CCTTCACAGC	480
---	-----

CTGCAGACAC AACTCAAGGC TCAGAACAGC AGGATCCAGC AACTCTTCCA CAAGGTGGCC	540
---	-----

CAGCAGCAGC GGCACCTGGA GAAGCAGCAC CTGCGAATTC AGCATCTGCA AAGCCAGTTT	600
---	-----

235	
GGCCTCCTGG ACCACAAGCA CCTAGACCAT GAGGTGGCCA AGCCTGCCG AAGAAAGAGG	660
CTGCCCCAGA TGGCCCAGCC AGTTGACCCG GCTCACAAATG TCAGCCGCCT GCACCGGCTG	720
CCCAGGGATT GCCAGGAGCT GTTCCAGGTT GGGGAGAGGC AGAGTGGACT ATTTGAAATC	780
CAGCCTCAGG GGTCTCCGCC ATTTTGGTG AACTGCAAGA TGACCTCAGA TGGAGGCTGG	840
ACAGTAATTC AGAGGCGCCA CGATGGCTCA GTGGACTTCA ACCGGCCCTG GGAAGCCTAC	900
AAGGCAGGGT TTGGGGATCC CCACGGCGAG TTCTGGCTGG GTCTGGAGAA GGTGCATAGC	960
ATCACGGGG ACCGCAACAG CCGCCTGGCC GTGCAGCTGC GGGACTGGGA TGGCAACGCC	1020
GAGTTGCTGC AGTTCTCCGT GCACCTGGGT GGCGAGGACA CGGCCTATAG CCTGCAGCTC	1080
ACTGCACCCG TGGCCGGCCA GCTGGCGCC ACCACCGTCC CACCCAGCGG CCTCTCCGTA	1140
CCCTTCTCCA CTTGGGACCA GGATCACGAC CTCCGCAGGG ACAAGAACTG CGCCAAGAGC	1200
CTCTCTGGAG GCTGGTGGTT TGGCACCTGC AGCCATTCCA ACCTCAACGG CCAGTACTTC	1260
CGCTCCATCC CACAGCAGCG GCAGAACGTT AAGAAGGGAA TCTTCTGGAA GACCTGGCGG	1320
GGCCGCTACT ACCCGCTGCA GGCCACCACC ATGTTGATCC AGCCCATGGC AGCAGAGGCA	1380
GCCTCCTAGC GTCCTGGCTG GGCTGGTCC CAGGCCACG AAAGACGGTG ACTCTTGGCT	1440
CTGCCCGAGG ATGTGGCCGT TCCCTGCCTG GGCAAGGGCT CCAAGGAGGG CCCATCTGGA	1500
AACTTGTGGA CAGAGAAGAA GACCACGACT GGAGAACCCC CCTTTCTGAG TGCAGGGGG	1560
CTGCATGCGT TGCCTCCTGA GATCGAGGCT GCAGGATATG CTCAGACTCT AGAGGCGTGG	1620
ACCAAGGGGC ATGGAGCTTC ACTCCTTGCT GGCCAGGGAG TTGGGGACTC AGAGGGACCA	1680
CTTGGGGCCA GCCAGACTGG CCTCAATGGC GGACTCAGTC ACATTGACTG ACGGGGACCA	1740
GGGCTTGTGT GGGTCGAGAG CGCCCTCATG GTGCTGGTGC TGTTGTGTGT AGGTCCCCTG	1800
GGGACACAAG CAGGCGCCAA TGGTATCTGG GCGGAGCTCA CAGAGTTCTT GGAATAAAAG	1860
CAACCTCAGA ACAAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAA	1913

<210> 448
<211> 1221
<212> DNA
<213> Homo sapiens

<400> 448	
ATGAGCGGTG CTCCGACGGC CGGGGCAGCC CTGATGCTCT GCGCCGCCAC CGCCGTGCTA	60
CTGAGCGCTC AGGGCGGACC CGTGCAGTCC AAGTCGCCGC GCTTTCGTC CTGGGACGAG	120
ATGAATGTCC TGGCGCACGG ACTCCTGCAG CTCGGCCAGG GGCTGCGCGA ACACGGGAG	180
CGCACCCGCA GTCAGCTGAG CGCGCTGGAG CGGCGCCTGA GCGCGTGCAG GTCCGCCTGT	240

236	
CAGGGAACCG AGGGTCCAC CGACCTCCCG TTAGCCCCTG AGAGCCGGGT GGACCCTGAG	300
GTCCTTCACA GCCTGCAGAC ACAACTCAAG GCTCAGAACCA GCAGGATCCA GCAACTCTTC	360
CACAAGGTGG CCCAGCAGCA GCGGCACCTG GAGAAGCAGC ACCTGCGAAT TCAGCATCTG	420
CAAAGCCAGT TTGGCCTCCT GGACCACAAG CACCTAGACC ATGAGGTGGC CAAGCCTGCC	480
CGAAGAAAGA GGCTGCCGA GATGGCCCAG CCAGTTGACC CGGCTCACAA TGTCAGCCGC	540
CTGCCACCGGC TGCCCAGGGA TTGCCAGGAG CTGTTCCAGG TTGGGGAGAG GCAGAGTGGA	600
CTATTGAAA TCCAGCCTCA GGGGTCTCCG CCATTTTGG TGAACTGCAA GATGACCTCA	660
GATGGAGGCT GGACAGTAAT TCAGAGGCGC CACGATGGCT CAGTGGACTT CAACCGGCC	720
TGGGAAGCCT ACAAGGCGGG GTTGGGGAT CCCCACGGCG AGTTCTGGCT GGGTCTGGAG	780
AAGGTGCATA GCATCACGGG GGACCGAAC AGCCGCCTGG CCGTGCAGCT GCGGGACTGG	840
GATGGCAACG CCGAGTTGCT GCAGTTCTCC GTGCACCTGG GTGGCGAGGA CACGGCCTAT	900
AGCCTGCAGC TCACTGCACC CGTGGCCGGC CAGCTGGCG CCACCACCGT CCCACCCAGC	960
GGCCTCTCCG TACCTTCTC CACTTGGGAC CAGGATCACG ACCTCCGCAG GGACAAGAAC	1020
TGCGCCAAGA GCCTCTCTGG AGGCTGGTGG TTTGGCACCT GCAGCCATTC CAACCTCAAC	1080
GGCCAGTACT TCCGCTCCAT CCCACAGCAG CGGCAGAAC TTAAGAAGGG AATCTTCTGG	1140
AAGACCTGGC GGGGCCGCTA CTACCCGCTG CAGGCCACCA CCATGTTGAT CCAGCCCCATG	1200
GCAGCAGAGG CAGCCTCCTA G	1221

<210> 449

<211> 175

<212> PRT

<213> Homo sapiens

<400> 449

Met Ala Gln Trp Thr Ser Thr Gly Pro Gly Lys Pro Thr Arg Arg Gly

1 5 10 15

Leu Gly Ile Pro Thr Ala Ser Ser Gly Trp Val Trp Arg Arg Cys Ile
20 25 30Ala Ser Trp Gly Thr Ala Thr Ala Ala Trp Pro Cys Ser Cys Gly Thr
35 40 45Gly Met Ala Thr Pro Ser Cys Cys Ser Ser Pro Cys Thr Trp Val Ala
50 55 60Arg Thr Arg Pro Ile Ala Cys Ser Ser Leu His Pro Trp Pro Ala Ser
65 70 75 80Trp Ala Pro Pro Pro Ser His Pro Ala Ala Ser Pro Tyr Pro Ser Pro
85 90 95

237

Leu Gly Thr Arg Ile Thr Thr Ser Ala Gly Thr Arg Thr Ala Pro Arg
 100 105 110

Ala Ser Leu Glu Ala Gly Gly Leu Ala Pro Ala Ala Ile Pro Thr Phe
 115 120 125

Asn Gly Pro Val Leu Pro Ala Pro Ser His Ser Ser Gly Arg Ser Leu
 130 135 140

Arg Arg Glu Ser Ser Gly Arg Pro Ala Gly Arg Tyr Tyr Pro Leu Gln
 145 150 155 160

Ala Thr Thr Met Leu Ile Gln Pro Met Ala Ala Glu Ala Ala Ser
 165 170 175

<210> 450

<211> 32

<212> PRT

<213> Homo sapiens

<400> 450

Gly His Asp Leu Pro Gln Asp Ala Trp Leu Arg Trp Val Leu Ala Gly
 1 5 10 15

Ala Leu Cys Ala Gly Gly Trp Ala Val Asn Tyr Leu Pro Phe Phe Leu
 20 25 30

<210> 451

<211> 18

<212> PRT

<213> Homo sapiens

<400> 451

Phe Leu Tyr His Tyr Leu Pro Ala Leu Thr Phe Gln Ile Leu Leu Leu
 1 5 10 15

Pro Val

<210> 452

<211> 59

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (44)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (49)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 452

Met Ser Pro Leu Pro Trp Pro Gly Pro Leu Pro Gly Gly Arg Gln Gly

		238		
1	5	10	15	
His Arg Leu Glu Pro Cys Cys Ser Ser Gly Cys Ala Gly Gly Pro Thr				
	20	25		30
Trp Pro His Cys Ser Ser Gln Ser Trp Pro Met Xaa Ser Ala Arg His				
	35	40		45
Xaa Gly Leu Gly His Cys Cys Pro Ser Ser Pro				
	50	55		
<210> 453				
<211> 32				
<212> PRT				
<213> Homo sapiens				
<400> 453				
Asp Ile Cys Arg Leu Glu Arg Ala Val Cys Arg Asp Glu Pro Ser Ala				
1	5	10		15
Leu Ala Arg Ala Leu Thr Trp Arg Gln Ala Arg Ala Gln Ala Gly Ala				
	20	25		30

<210> 454				
<211> 114				
<212> PRT				
<213> Homo sapiens				
<220>				
<221> SITE				
<222> (1)				
<223> Xaa equals any of the naturally occurring L-amino acids				
<220>				
<221> SITE				
<222> (6)				
<223> Xaa equals any of the naturally occurring L-amino acids				
<400> 454				
Xaa Ala Pro Ala Thr Xaa Ala Trp Asp Thr Val Val Pro Pro Leu Pro				
1	5	10		15
Arg Lys Cys Gln Cys Ser Gly Ser Ala Arg Ser His Gly Ala Gly Arg				
	20	25		30
Ser Ala Leu His Ser Pro Leu Glu Gly Ser Arg Pro Lys Val Pro Ala				
	35	40		45
Gly Ala Val Gly Lys Ser Leu Pro Gly Gln Ser Arg Pro Gln His Cys				
	50	55		60
Leu Pro Pro Lys Gln Pro Lys Gln Cys Arg Pro Gly Leu Glu Leu Lys				
	65	70	75	80
Glu Gly Pro Leu Leu Thr Pro Thr Arg Ala Ser Val Gln Leu Ser His				
	85	90		95

Pro Ala Cys Leu Tyr Trp Ala Pro Leu Leu Trp Ile Arg Asp Pro Ala
100 105 110

Ser Val

<210> 455
<211> 55
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (1)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (6)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 455
Xaa Ala Pro Ala Thr Xaa Ala Trp Asp Thr Val Val Pro Pro Leu Pro
1 5 10 15

Arg Lys Cys Gln Cys Ser Gly Ser Ala Arg Ser His Gly Ala Gly Arg
20 25 30

Ser Ala Leu His Ser Pro Leu Glu Gly Ser Arg Pro Lys Val Pro Ala
35 40 45

Gly Ala Val Gly Lys Ser Leu
50 55

<210> 456
<211> 59
<212> PRT
<213> Homo sapiens

<400> 456
Pro Gly Gln Ser Arg Pro Gln His Cys Leu Pro Pro Lys Gln Pro Lys
1 5 10 15

Gln Cys Arg Pro Gly Leu Glu Leu Lys Glu Gly Pro Leu Leu Thr Pro
20 25 30

Thr Arg Ala Ser Val Gln Leu Ser His Pro Ala Cys Leu Tyr Trp Ala
35 40 45

Pro Leu Leu Trp Ile Arg Asp Pro Ala Ser Val
50 55

<210> 457
<211> 133
<212> PRT
<213> Homo sapiens

<220>

240

<221> SITE

<222> (55)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (61)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 457

Asp	Ile	Cys	Arg	Leu	Glu	Arg	Ala	Val	Cys	Arg	Asp	Glu	Pro	Ser	Ala
1				5					10					15	

Leu	Ala	Arg	Ala	Leu	Thr	Trp	Arg	Gln	Ala	Arg	Ala	Gln	Ala	Gly	Ala
				20				25					30		

Met	Leu	Leu	Phe	Gly	Leu	Cys	Trp	Gly	Pro	Tyr	Val	Ala	Thr	Leu	Leu
					35			40				45			

Leu	Ser	Val	Leu	Ala	Tyr	Xaa	Gln	Arg	Pro	Pro	Leu	Xaa	Pro	Gly	Thr
				50			55				60				

Leu	Leu	Ser	Leu	Leu	Ser	Leu	Gly	Ser	Ala	Ser	Ala	Ala	Ala	Val	Pro
				65			70			75			80		

Val	Ala	Met	Gly	Leu	Gly	Asp	Gln	Arg	Tyr	Thr	Ala	Pro	Trp	Arg	Ala
				85				90				95			

Ala	Ala	Gln	Arg	Cys	Leu	Gln	Gly	Leu	Trp	Gly	Arg	Ala	Ser	Arg	Asp
					100			105			110				

Ser	Pro	Gly	Pro	Ser	Ile	Ala	Tyr	His	Pro	Ser	Ser	Gln	Ser	Ser	Val
					115			120			125				

Asp Leu Asp Leu Asn
130

<210> 458

<211> 48

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (34)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (43)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 458

Met	Glu	Arg	Val	Gly	Met	Glu	Ser	Gly	Glu	Met	Val	Cys	Gly	Leu	Gly
1					5				10			15			

Ser	Ala	Cys	Asn	Asn	Pro	Ser	Asp	Leu	Gly	Gln	Val	Pro	Val	Pro	Leu
					20				25			30			

241

Trp Xaa Ser Val Ser Pro Pro Val Phe Gly Xaa Gly Trp Asn Gly His	
35	40
	45

<210> 459
<211> 107
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (84)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 459
Met Arg Ser Phe Gln Asp Val Ser Ala Leu Glu Glu Trp Arg Gly Gly
1 5 10 15

Lys Asp Leu Glu Pro Thr His Ser Leu Leu Leu Leu Pro Leu Arg
20 25 30

Asp Leu Leu Val Val Leu Gly Glu Ile Arg Lys Arg Gln Met Glu Gly
35 40 45

Cys Val Trp Lys Gly Trp Gly Trp Asn Pro Glu Lys Trp Phe Ala Val
50 55 60

Leu Ala Leu Pro Val Thr Thr Arg Val Thr Leu Gly Lys Ser Leu Ser
65 70 75 80

Leu Ser Gly Xaa Gln Phe Leu His Leu Tyr Leu Glu Arg Val Gly Met
85 90 95

Gly Thr Glu Val Leu Ser Ser Asp Leu Leu
100 105

<210> 460
<211> 118
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (62)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (70)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 460
Met His Pro Ala Gly Pro Thr Phe Met Gly Ser Lys Pro Ile Arg Glu
1 5 10 15

Gln Gln Phe Gly Pro Asp Ala Cys Leu Leu Leu Cys Val Ala Met
20 25 30

Ala Gly Thr Glu Ala Ser Arg Ala Ala Gln Gln Cys Thr Ser Gln Lys
35 40 45

Val Arg Ala Gly Gln Asp Phe Ser Ala His Ser Asn Pro Xaa Gln Ile
50 55 60

Gln Val Glu Lys Leu Xaa Pro Arg Glu Gly Gln Gly Leu Ala Gln Gly
65 70 75 80

His Ser Gly Cys Tyr Arg Gln Ser Gln Asp Arg Lys Pro Phe Leu Arg
85 90 95

Ile Pro Ser Pro Pro Phe Pro Tyr Thr Thr Leu His Leu Pro Phe Pro
100 105 110

Asp Phe Ala Lys Asn His
115

<210> 461

<211> 61

<212> PRT

<213> Homo sapiens

<400> 461

Met His Pro Ala Gly Pro Thr Phe Met Gly Ser Lys Pro Ile Arg Glu
1 5 10 15

Gln Gln Phe Gly Pro Asp Ala Cys Leu Leu Leu Cys Val Ala Met
20 25 30

Ala Gly Thr Glu Ala Ser Arg Ala Ala Gln Gln Cys Thr Ser Gln Lys
35 40 45

Val Arg Ala Gly Gln Asp Phe Ser Ala His Ser Asn Pro
50 55 60

<210> 462

<211> 48

<212> PRT

<213> Homo sapiens

<400> 462

Pro Arg Glu Gly Gln Gly Leu Ala Gln Gly His Ser Gly Cys Tyr Arg
1 5 10 15

Gln Ser Gln Asp Arg Lys Pro Phe Leu Arg Ile Pro Ser Pro Pro Phe
20 25 30

Pro Tyr Thr Thr Leu His Leu Pro Phe Pro Asp Phe Ala Lys Asn His
35 40 45

<210> 463

<211> 22

<212> PRT

<213> Homo sapiens

<400> 463

Asp	Pro	Arg	Val	Arg	Lys	Pro	Pro	Thr	Ala	Thr	Leu	Thr	Thr	Ala	Arg
1						5			10					15	

Thr	Arg	Pro	Thr	Thr	Asp
			20		

<210> 464

<211> 82

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (70)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (81)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (82)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 464

Ala	Ala	Leu	Glu	Ala	Ser	Val	Pro	Ala	Ile	Ala	Thr	Gln	Arg	Ser	Ser
1						5			10				15		

Arg	Gln	Ala	Ser	Gly	Pro	Asn	Cys	Cys	Ser	Leu	Met	Gly	Leu	Asp	Pro
						20			25			30			

Met	Lys	Val	Gly	Pro	Ala	Gly	Cys	Ile	Ser	Trp	Asp	Ser	Val	Glu	Ala
						35			40			45			

Asp	Gln	Val	Ala	Gly	Ala	Ser	Gly	Gly	Arg	Ile	Glu	Val	Lys	Gly	Cys
						50			55			60			

Gly	Met	Glu	Asn	Leu	Xaa	Arg	Leu	His	Leu	Gly	Ser	Gly	Lys	Gly	Gln
						65			70			75			80

Xaa Xaa

<210> 465

<211> 99

<212> PRT

<213> Homo sapiens

<400> 465

Met	Leu	His	Arg	Gln	Trp	Leu	Thr	Val	Arg	Arg	Ala	Gly	Gly	Pro	Pro
1						5			10				15		

Arg	Thr	Asp	Gln	Gln	Arg	Arg	Thr	Val	Arg	Cys	Leu	Arg	Asp	Thr	Val
							20			25			30		

244

Leu	Leu	Leu	His	Gly	Leu	Ser	Gln	Lys	Asp	Lys	Leu	Phe	Met	Met	His
35					40						45				

Cys	Val	Glu	Val	Leu	His	Gln	Phe	Asp	Gln	Val	Met	Pro	Gly	Val	Ser
50					55					60					

Met	Leu	Ile	Arg	Gly	Leu	Pro	Asp	Val	Thr	Asp	Cys	Glu	Glu	Ala	Ala
65					70				75					80	

Leu	Asp	Asp	Leu	Cys	Ala	Ala	Glu	Thr	Asp	Val	Glu	Asp	Pro	Glu	Val
					85				90				95		

Glu Cys Gly

<210> 466

<211> 62

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (2)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (58)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 466

Gly	Xaa	Ala	Asn	Pro	Glu	Asp	Ser	Val	Cys	Ile	Leu	Glu	Gly	Phe	Ser
1				5					10				15		

Val	Thr	Ala	Leu	Ser	Ile	Leu	Gln	His	Leu	Val	Cys	His	Ser	Gly	Ala
				20					25				30		

Val	Arg	Leu	Pro	Ile	Thr	Val	Arg	Ser	Gly	Gly	Arg	Phe	Cys	Cys	Trp
				35				40			45				

Gly	Arg	Lys	Gln	Glu	Pro	Gly	Ser	Gln	Xaa	Ser	Asp	Gly	Asp		
50					55					60					

<210> 467

<211> 65

<212> PRT

<213> Homo sapiens

<400> 467

Ala	Val	Gln	Gln	Gln	His	Arg	Val	Pro	Gln	Thr	Ala	His	Cys	Pro	Pro
1					5				10				15		

Leu	Leu	Val	Gly	Pro	Trp	Gly	Ser	Pro	Cys	Pro	Pro	His	Cys	Gln	Pro
				20				25			30				

Leu	Ser	Val	Gln	His	His	Arg	Glu	Arg	Ser	Asp	His	Leu	His	Ile	Thr
				35				40			45				

Leu Ala Val Gly Ala Ser Asp Trp Gly Gln Gly Ala Leu Ala His Gln

	245		
50	55	60	
Ala			
65			
<210> 468			
<211> 220			
<212> PRT			
<213> Homo sapiens			
<400> 468			
Pro Lys Thr Leu Pro Val Ile Ser Cys Pro Gly Ser Ser Val Cys Ser			
1	5	10	15
Lys Cys Cys Gln Ser Ala Ser Ala Gln Arg His Pro Cys Leu Ala Cys			
20	25	30	
Cys Trp Leu Leu Ser Ser Ser Pro Cys Trp Arg Thr Thr Ser Trp			
35	40	45	
His Leu Ser Ser Val Pro Thr Gln Lys Ala Ala Ser Cys Cys Cys Cys			
50	55	60	
Thr Cys Thr Ser His His Gly Leu Thr Glu Trp Pro Trp Arg His Asn			
65	70	75	80
Gly Ser Ser Trp Asn Lys Arg Trp Cys Gly Ser Trp Leu Ser Leu Val			
85	90	95	
Cys Lys Ser Pro Leu Pro Pro Val Thr Gly Ser Asn Cys Gln Cys Asn			
100	105	110	
Val Glu Val Val Arg Ala Leu Thr Val Met Leu His Arg Gln Trp Leu			
115	120	125	
Thr Val Arg Arg Ala Gly Gly Pro Pro Arg Thr Asp Gln Gln Arg Arg			
130	135	140	
Thr Val Arg Cys Leu Arg Asp Thr Val Leu Leu Leu His Gly Leu Ser			
145	150	155	160
Gln Lys Asp Lys Leu Phe Met Met His Cys Val Glu Val Leu His Gln			
165	170	175	
Phe Asp Gln Val Met Pro Gly Val Ser Met Leu Ile Arg Gly Leu Pro			
180	185	190	
Asp Val Thr Asp Cys Glu Glu Ala Ala Leu Asp Asp Leu Cys Ala Ala			
195	200	205	
Glu Thr Asp Val Glu Asp Pro Glu Val Glu Cys Gly			
210	215	220	
<210> 469			
<211> 223			
<212> PRT			
<213> Homo sapiens			
<220>			

246

<221> SITE

<222> (2)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (58)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 469

Gly	Xaa	Ala	Asn	Pro	Glu	Asp	Ser	Val	Cys	Ile	Leu	Glu	Gly	Phe	Ser
1				5					10					15	

Val	Thr	Ala	Leu	Ser	Ile	Leu	Gln	His	Leu	Val	Cys	His	Ser	Gly	Ala
					20			25					30		

Val	Arg	Leu	Pro	Ile	Thr	Val	Arg	Ser	Gly	Gly	Arg	Phe	Cys	Cys	Trp
						35		40			45				

Gly	Arg	Lys	Gln	Glu	Pro	Gly	Ser	Gln	Xaa	Ser	Asp	Gly	Asp	Met	Thr
					50			55			60				

Ser	Ala	Leu	Arg	Gly	Val	Ala	Asp	Asp	Gln	Gly	Gln	His	Pro	Leu	Leu
					65		70		75				80		

Lys	Met	Leu	Leu	His	Leu	Leu	Ala	Phe	Ser	Ser	Ala	Ala	Thr	Gly	His
						85		90				95			

Leu	Gln	Ala	Ser	Val	Leu	Thr	Gln	Cys	Leu	Lys	Val	Leu	Val	Lys	Leu
					100			105			110				

Ala	Glu	Asn	Thr	Ser	Cys	Asp	Phe	Leu	Pro	Arg	Phe	Gln	Cys	Val	Phe
						115		120			125				

Gln	Val	Leu	Pro	Lys	Cys	Leu	Ser	Pro	Glu	Thr	Pro	Leu	Pro	Ser	Val
					130		135		140						

Leu	Leu	Ala	Val	Glu	Leu	Leu	Ser	Leu	Leu	Ala	Asp	His	Asp	Gln	Leu
					145		150		155			160			

Ala	Pro	Gln	Leu	Cys	Ser	His	Ser	Glu	Gly	Cys	Leu	Leu	Leu	Leu	Leu
					165			170			175				

Tyr	Met	Tyr	Ile	Thr	Ser	Arg	Pro	Asp	Arg	Val	Ala	Leu	Glu	Thr	Gln
						180		185			190				

Trp	Leu	Gln	Leu	Glu	Gln	Glu	Val	Val	Trp	Leu	Leu	Ala	Lys	Leu	Gly
						195		200			205				

Val	Gln	Glu	Pro	Leu	Ala	Pro	Ser	His	Trp	Leu	Gln	Leu	Pro	Val
					210		215			220				

<210> 470

<211> 102

<212> PRT

<213> Homo sapiens

<400> 470

Met Ser Gly Gln Leu Asp Ala Arg Pro Ala Ala Leu His Pro Gln

247
1 5 10 15

Gly Leu Ala His Pro Leu Trp Thr Cys Leu Leu Pro Arg Lys Gly Pro
20 25 30

Ser Glu Val Pro Gln Arg Pro Pro Gln Leu Trp Val Val Ser Ile Ser
35 40 45

Val Leu Gln Gly Gln His Arg Gly Arg Ala Gly Pro Arg Asp Glu Gln
50 55 60

Ser Val Asp Val Thr Asn Thr Thr Phe Leu Leu Met Ala Ala Ser Ile
65 70 75 80

Tyr Leu His Asp Gln Asn Pro Asp Ala Ala Leu Arg Ala Leu His Gln
85 90 95

Gly Asp Ser Leu Glu Trp
100

<210> 471
<211> 20
<212> PRT
<213> Homo sapiens

<400> 471
Ser Val Asp Val Thr Asn Thr Thr Phe Leu Leu Met Ala Ala Ser Ile
1 5 10 15

Tyr Leu His Asp
20

<210> 472
<211> 17
<212> PRT
<213> Homo sapiens

<400> 472
Gln Asn Pro Asp Ala Ala Leu Arg Ala Leu His Gln Gly Asp Ser Leu
1 5 10 15

Glu

<210> 473
<211> 14
<212> PRT
<213> Homo sapiens

<400> 473
Arg Asp Ser Ile Val Ala Glu Leu Asp Arg Glu Met Ser Arg
1 5 10

<210> 474
<211> 39
<212> PRT
<213> Homo sapiens

<400> 474

248

Met Leu Gly Leu Leu Leu Cys Thr Pro Arg Ala Trp Leu Thr Leu
1 5 10 15

Ser Gly Pro Val Cys Phe Gln Gly Arg Asp Pro Leu Arg Ser His Arg
20 25 30

Gly His Pro Ser Cys Gly Ser
35

<210> 475

<211> 11

<212> PRT

<213> Homo sapiens

<400> 475

His Gly Phe Pro Glu Phe Trp Tyr Ser Trp Arg
1 5 10

<210> 476

<211> 10

<212> PRT

<213> Homo sapiens

<400> 476

Ala Ser His Trp Leu Gln Gln Asp Gln Pro
1 5 10

<210> 477

<211> 9

<212> PRT

<213> Homo sapiens

<400> 477

Pro Ile Asn His Tyr Arg Asn Ile Phe
1 5

<210> 478

<211> 9

<212> PRT

<213> Homo sapiens

<400> 478

Tyr Pro Glu Met Val Met Lys Leu Ile
1 5

<210> 479

<211> 14

<212> PRT

<213> Homo sapiens

<400> 479

Pro Glu Phe Trp Tyr Ser Trp Arg Tyr Gln Leu Arg Glu Phe
1 5 10

<210> 480

<211> 9

<212> PRT

<213> Homo sapiens

249

<400> 480
His Asp Trp Gly Gly Met Ile Ala Trp
1 5

<210> 481
<211> 14
<212> PRT
<213> Homo sapiens

<400> 481
Gly Ser Leu Pro Pro Lys Pro Ile Tyr Leu Val Val Pro Arg
1 5 10

<210> 482
<211> 16
<212> PRT
<213> Homo sapiens

<400> 482
Leu Val Phe Ala Glu His Arg Tyr Tyr Gly Lys Ser Leu Pro Phe Gly
1 5 10 15

<210> 483
<211> 10
<212> PRT
<213> Homo sapiens

<400> 483
Glu Gln Ala Leu Ala Asp Phe Ala Glu Leu
1 5 10

<210> 484
<211> 18
<212> PRT
<213> Homo sapiens

<400> 484
Gly Gly Ser Tyr Gly Gly Met Leu Ser Ala Tyr Leu Arg Met Lys Tyr
1 5 10 15

Pro His

<210> 485
<211> 16
<212> PRT
<213> Homo sapiens

<400> 485
Asn Ile Ile Phe Ser Asn Gly Asn Leu Asp Pro Trp Ala Gly Gly Gly
1 5 10 15

<210> 486

250

<211> 22

<212> PRT

<213> Homo sapiens

<400> 486

Ala Met Met Asp Tyr Pro Tyr Pro Thr Asp Phe Leu Gly Pro Leu Pro
1 5 10 15

Ala Asn Pro Val Lys Val

20

<210> 487

<211> 8

<212> PRT

<213> Homo sapiens

<400> 487

Phe Tyr Thr Gly Asn Glu Gly Asp
1 5

<210> 488

<211> 490

<212> PRT

<213> Homo sapiens

<400> 488

Met Gly Ser Ala Pro Trp Ala Pro Val Leu Leu Leu Ala Leu Gly Leu
1 5 10 15

Arg Gly Leu Gln Ala Gly Ala Arg Ser Gly Pro Arg Leu Pro Gly Ala
20 25 30

Leu Leu Pro Ala Ala Ser Gly Pro Leu Gln Leu Arg Ala Leu Arg Gln
35 40 45

Gln Asp Leu Pro Ser Ala Leu Pro Gly Val Gly Gln Val Leu Gly Pro
50 55 60

Gly Arg Gly Ala His Leu Leu Leu His Trp Glu Arg Gly Arg Arg Val
65 70 75 80

Gly Leu Arg Gln Gln Leu Gly Leu Arg Arg Gly Leu Ala Ala Glu Arg
85 90 95

Gly Ala Leu Leu Val Phe Ala Glu His Arg Tyr Tyr Gly Lys Ser Leu
100 105 110

Pro Phe Gly Ala Gln Ser Thr Gln Arg Gly His Thr Glu Leu Leu Thr
115 120 125

Val Glu Gln Ala Leu Ala Asp Phe Ala Glu Leu Leu Arg Ala Leu Arg
130 135 140

Arg Asp Leu Gly Ala Gln Asp Ala Pro Ala Ile Ala Phe Gly Gly Ser
145 150 155 160

Tyr Gly Gly Met Leu Ser Ala Tyr Leu Arg Met Lys Tyr Pro His Leu
165 170 175

251

Val Ala Gly Ala Leu Ala Ala Ser Ala Pro Val Leu Ser Val Ala Gly			
180	185	190	
Leu Gly Asp Ser Asn Gln Phe Phe Arg Asp Val Thr Ala Asp Phe Glu			
195	200	205	
Gly Gln Ser Pro Lys Cys Thr Gln Gly Val Arg Glu Ala Phe Arg Gln			
210	215	220	
Ile Lys Asp Leu Phe Leu Gln Gly Ala Tyr Asp Thr Val Arg Trp Glu			
225	230	235	240
Phe Gly Thr Cys Gln Pro Leu Ser Asp Glu Lys Asp Leu Thr Gln Leu			
245	250	255	
Phe Met Phe Ala Arg Asn Ala Phe Thr Val Leu Ala Met Met Asp Tyr			
260	265	270	
Pro Tyr Pro Thr Asp Phe Leu Gly Pro Leu Pro Ala Asn Pro Val Lys			
275	280	285	
Val Gly Cys Asp Arg Leu Leu Ser Glu Ala Gln Arg Ile Thr Gly Leu			
290	295	300	
Arg Ala Leu Ala Gly Leu Val Tyr Asn Ala Ser Gly Ser Glu His Cys			
305	310	315	320
Tyr Asp Ile Tyr Arg Leu Tyr His Ser Cys Ala Asp Pro Thr Gly Cys			
325	330	335	
Gly Thr Gly Pro Asp Ala Arg Ala Trp Asp Tyr Gln Ala Cys Thr Glu			
340	345	350	
Ile Asn Leu Thr Phe Ala Ser Asn Asn Val Thr Asp Met Phe Pro Asp			
355	360	365	
Leu Pro Phe Thr Asp Glu Leu Arg Gln Arg Tyr Cys Leu Asp Thr Trp			
370	375	380	
Gly Val Trp Pro Arg Pro Asp Trp Leu Leu Thr Ser Phe Trp Gly Gly			
385	390	395	400
Asp Leu Arg Ala Ala Ser Asn Ile Ile Phe Ser Asn Gly Asn Leu Asp			
405	410	415	
Pro Trp Ala Gly Gly Ile Arg Arg Asn Leu Ser Ala Ser Val Ile			
420	425	430	
Ala Val Thr Ile Gln Gly Gly Ala His His Leu Asp Leu Arg Ala Ser			
435	440	445	
His Pro Glu Asp Pro Ala Ser Val Val Glu Ala Arg Lys Leu Glu Ala			
450	455	460	
Thr Ile Ile Gly Glu Trp Val Lys Ala Ala Arg Arg Glu Gln Gln Pro			
465	470	475	480
Ala Leu Arg Gly Gly Pro Arg Leu Ser Leu			
485	490		

252

<210> 489
<211> 22
<212> PRT
<213> Homo sapiens

<400> 489
Cys Ser Val Phe Pro Pro Ser Leu Trp Phe Tyr Leu Pro Leu Val Phe
1 5 10 15

Asp Asp Gly Asp Val Gln
20

<210> 490
<211> 122
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (46)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (113)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 490
Gly Val Ser Leu Pro Leu Leu Gly Asp Ala Ser Gln Leu Gly Tyr Leu
1 5 10 15

Gly Val Arg Asp Ala Leu Glu Glu Ala Leu Cys Leu Phe Ser Asp Val
20 25 30

Gln Leu Cys Ala Gly Arg Thr Ser Ala Leu Phe Lys Ala Xaa Arg Gln
35 40 45

Gly Arg Leu Ser Leu Gln Arg Ile Leu Leu Pro Phe Val Trp Leu Cys
50 55 60

Pro Ala Pro Gln Arg Trp Ser Leu Gln Arg Gln Ala Gly Leu Leu Glu
65 70 75 80

Leu Arg Trp Ala Pro Pro Ser Ser Ser Phe Leu Ala Ala Leu Phe Thr
85 90 95

Pro Ser Ser Leu Gly Asn Gly Gly Arg Pro Ser Pro Ser Leu Thr Ala
100 105 110

Xaa Leu Gln Phe Asp Leu Arg Leu Leu Cys
115 120

<210> 491
<211> 74
<212> PRT
<213> Homo sapiens

<220>

253

<221> SITE

<222> (62)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (74)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 491

Val	Cys	Arg	Gly	Phe	Cys	Cys	Leu	Leu	Phe	Gly	Cys	Ala	Leu	Pro	Pro
1				5					10					15	

Arg	Gly	Gly	Val	Tyr	Arg	Gly	Arg	Gln	Ala	Ser	Leu	Asn	Cys	Gly	Gly
				20				25				30			

Leu	His	Arg	Val	Arg	Val	Ser	Trp	Pro	Leu	Cys	Leu	Pro	Pro	Gln	Ala
				35				40				45			

Ser	Ala	Met	Val	Gly	Ala	Pro	Pro	Pro	Ala	Ser	Leu	Pro	Xaa	Cys	Ser
				50				55				60			

Leu	Ile	Ser	Asp	Cys	Cys	Ala	Ser	Asn	Xaa						
				65			70								

<210> 492

<211> 34

<212> PRT

<213> Homo sapiens

<400> 492

Met	Ser	His	Lys	His	Met	Arg	Arg	Ser	Ala	Thr	Ser	Tyr	Ile	Ile	Arg
1					5					10				15	

Glu	Arg	Gln	Ile	Lys	Ile	Ile	Val	Arg	Tyr	His	Tyr	Thr	Pro	Ile	Met
				20				25				30			

Thr Thr

<210> 493

<211> 16

<212> PRT

<213> Homo sapiens

<400> 493

Ile	Arg	Glu	Arg	Gln	Ile	Lys	Ile	Ile	Val	Arg	Tyr	His	Tyr	Thr	Pro
1					5				10				15		

<210> 494

<211> 13

<212> PRT

<213> Homo sapiens

<400> 494

Lys Lys Thr Cys Thr Met Phe Ile Ala Thr Leu Phe Thr

254
1 5 10

<210> 495
<211> 13
<212> PRT
<213> Homo sapiens

<400> 495
Glu Lys Ile Phe Ala Lys His Leu Ser Val Lys Gly Leu
1 5 10

<210> 496
<211> 85
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (21)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (39)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 496
Ser Val Ala Ser Val Phe Ile Pro Leu Lys Val Ser Val Thr Lys Gln
1 5 10 15

Phe Ile Phe Phe Xaa Phe Phe Phe Leu Arg Arg Ser Leu Ala Pro
20 25 30

Ala Trp Val Ala Glu Arg Xaa Thr Ser Gln Glu Thr Lys Gln Asn Lys
35 40 45

Lys Thr Pro Gln Leu Arg Gly Lys Val Ala His Ala Cys Asp Pro Ile
50 55 60

Thr Leu Gly Gly Arg Arg Trp Glu Val Gly Glu Ser Leu Glu Ala Arg
65 70 75 80

Ser Pro Ser Xaa Xaa
85

<210> 497
<211> 184
<212> PRT
<213> Homo sapiens

<400> 497
Tyr Met Cys Cys Pro Phe Val Leu Asp Lys Asp Gly Val Ser Ala Ala
1 5 10 15

Val Ile Ser Ala Glu Leu Ala Ser Phe Leu Ala Thr Lys Asn Leu Ser
20 25 30

Leu Ser Gln Gln Leu Lys Ala Ile Tyr Val Glu Tyr Gly Tyr His Ile
35 40 45

255

Thr Lys Ala Ser Tyr Phe Ile Cys His Asp Gln Glu Thr Ile Lys Lys
 50 55 60

Leu Phe Glu Asn Leu Arg Asn Tyr Asp Gly Lys Asn Asn Tyr Pro Lys
 65 70 75 80

Ala Cys Gly Lys Phe Glu Ile Ser Ala Ile Arg Asp Leu Thr Thr Gly
 85 90 95

Tyr Asp Asp Ser Gln Pro Asp Lys Lys Ala Val Leu Pro Thr Ser Lys
 100 105 110

Ser Ser Gln Met Ile Thr Phe Thr Phe Ala Asn Gly Gly Val Ala Thr
 115 120 125

Met Arg Thr Ser Gly Thr Glu Pro Lys Ile Lys Tyr Tyr Ala Glu Leu
 130 135 140

Cys Ala Pro Pro Gly Asn Ser Asp Pro Glu Gln Leu Lys Lys Glu Leu
 145 150 155 160

Asn Glu Leu Val Ser Ala Ile Glu Glu His Phe Phe Gln Pro Gln Lys
 165 170 175

Tyr Asn Leu Gln Pro Lys Ala Asp
 180

<210> 498

<211> 199

<212> PRT

<213> Homo sapiens

<400> 498

Ala Arg Gly Lys Thr Val Leu Phe Ala Phe Glu Glu Ala Ile Gly Tyr
 1 5 10 15

Met Cys Cys Pro Phe Val Leu Asp Lys Asp Gly Val Ser Ala Ala Val
 20 25 30

Ile Ser Ala Glu Leu Ala Ser Phe Leu Ala Thr Lys Asn Leu Ser Leu
 35 40 45

Ser Gln Gln Leu Lys Ala Ile Tyr Val Glu Tyr Gly Tyr His Ile Thr
 50 55 60

Lys Ala Ser Tyr Phe Ile Cys His Asp Gln Glu Thr Ile Lys Lys Leu
 65 70 75 80

Phe Glu Asn Leu Arg Asn Tyr Asp Gly Lys Asn Asn Tyr Pro Lys Ala
 85 90 95

Cys Gly Lys Phe Glu Ile Ser Ala Ile Arg Asp Leu Thr Thr Gly Tyr
 100 105 110

Asp Asp Ser Gln Pro Asp Lys Lys Ala Val Leu Pro Thr Ser Lys Ser
 115 120 125

Ser Gln Met Ile Thr Phe Thr Phe Ala Asn Gly Gly Val Ala Thr Met

256
130 135 140

Arg Thr Ser Gly Thr Glu Pro Lys Ile Lys Tyr Tyr Ala Glu Leu Cys
145 150 155 160

Ala Pro Pro Gly Asn Ser Asp Pro Glu Gln Leu Lys Lys Glu Leu Asn
165 170 175

Glu Leu Val Ser Ala Ile Glu Glu His Phe Phe Gln Pro Gln Lys Tyr
180 185 190

Asn Leu Gln Pro Lys Ala Asp
195

<210> 499

<211> 18

<212> PRT

<213> Homo sapiens

<400> 499

Asp Lys Asp Gly Val Ser Ala Ala Val Ile Ser Ala Glu Leu Ala Ser
1 5 10 15

Phe Leu

<210> 500

<211> 13

<212> PRT

<213> Homo sapiens

<400> 500

Arg Asp Leu Thr Thr Gly Tyr Asp Asp Ser Gln Pro Asp
1 5 10

<210> 501

<211> 15

<212> PRT

<213> Homo sapiens

<400> 501

Lys Ala Val Leu Pro Thr Ser Lys Ser Ser Gln Met Ile Thr Phe
1 5 10 15

<210> 502

<211> 17

<212> PRT

<213> Homo sapiens

<400> 502

Thr Met Arg Thr Ser Gly Thr Glu Pro Lys Ile Lys Tyr Tyr Ala Glu
1 5 10 15

Leu

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>199</u>, line <u>N/A</u></p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<p>Further deposits are identified on an additional sheet <input type="checkbox"/></p>
<p>Name of depositary institution American Type Culture Collection</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America</p>		
Date of deposit <u>August 28, 1997</u>	Accession Number <u>209226</u>	
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<p>This information is continued on an additional sheet <input type="checkbox"/></p>
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p> <p>Europe In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)</p>		
<p>For receiving Office use only</p> <p><input checked="" type="checkbox"/> This sheet was received with the international application</p> <p>Elvira Rivera Authorized PCT Operations - IAPD Team 1 (703) 305-3678 (703) 305-3230 (FAX)</p>		
<p>For International Bureau use only</p> <p><input type="checkbox"/> This sheet was received by the International Bureau on:</p> <p>Authorized officer</p>		

ATCC Deposit 209226
Page 2

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

ATCC Deposit No. 209226

Page 3

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDENS

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>201</u>, line <u>N/A</u></p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<p>Further deposits are identified on an additional sheet <input type="checkbox"/></p>
<p>Name of depositary institution <u>American Type Culture Collection</u></p>		
<p>Address of depositary institution (<i>including postal code and country</i>) <u>10801 University Boulevard</u> <u>Manassas, Virginia 20110-2209</u> <u>United States of America</u></p>		
<p>Date of deposit <u>May 7, 1998</u></p>	<p>Accession Number <u>209852</u></p>	
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<p>This information is continued on an additional sheet <input type="checkbox"/></p>
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>Europe In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p>		
<p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)</p>		
<p>For receiving Office use only</p>		
<p><input checked="" type="checkbox"/> This sheet was received with the international application</p>		
<p>For International Bureau use only</p>		
<p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>		
<p>Authorized officer <u>Enora Rivera</u> PCT Operations - IAPD Team 1 (703) 305-3678 (703) 305-3230 (FAX)</p>		
<p>Authorized officer</p>		

ATCC Deposit 209852

Page 2

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

ATCC Deposit No. 209852
Page 3

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>204</u>, line <u>N/A</u></p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<p>Further deposits are identified on an additional sheet <input type="checkbox"/></p>
<p>Name of depositary institution American Type Culture Collection</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America</p>		
<p>Date of deposit</p> <p>May 7, 1998</p>	<p>Accession Number</p> <p>209853</p>	
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<p>This information is continued on an additional sheet <input type="checkbox"/></p>
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p> <p>Europe In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)</p>		
<p>For receiving Office use only</p> <p><input checked="" type="checkbox"/> This sheet was received with the international application</p>		
<p>For International Bureau use only</p> <p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>		
<p>Authorized officer</p> <p>Elvira Rivera PCT Operations - IAPD Team 1 (703) 305-3670 (703) 305-3230 (FAX)</p>		

ATCC Deposit 209853

Page 2

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

ATCC Deposit No. 209853
Page 3

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
~~PATENT~~

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page <u>200</u> , line <u>N/A</u>																
B. IDENTIFICATION OF DEPOSIT		Further deposits are identified on an additional sheet <input type="checkbox"/>														
Name of depositary institution American Type Culture Collection																
Address of depositary institution (<i>including postal code and country</i>) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America																
Date of deposit <u>March 13, 1997</u>	Accession Number	<u>97958</u>														
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)		This information is continued on an additional sheet <input type="checkbox"/>														
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>) Europe In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).																
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)																
<table border="1"> <tr> <td colspan="2">For receiving Office use only</td> </tr> <tr> <td><input checked="" type="checkbox"/> This sheet was received with the international application</td> <td></td> </tr> <tr> <td colspan="2">Elona Rivera</td> </tr> <tr> <td colspan="2">Authorized officer PCT Operations - IAPD Team 1 (703) 305-3678 (703) 305-3230 (FAX)</td> </tr> </table> <table border="1"> <tr> <td colspan="2">For International Bureau use only</td> </tr> <tr> <td><input type="checkbox"/> This sheet was received by the International Bureau on:</td> <td></td> </tr> <tr> <td colspan="2">Authorized officer</td> </tr> </table>			For receiving Office use only		<input checked="" type="checkbox"/> This sheet was received with the international application		Elona Rivera		Authorized officer PCT Operations - IAPD Team 1 (703) 305-3678 (703) 305-3230 (FAX)		For International Bureau use only		<input type="checkbox"/> This sheet was received by the International Bureau on:		Authorized officer	
For receiving Office use only																
<input checked="" type="checkbox"/> This sheet was received with the international application																
Elona Rivera																
Authorized officer PCT Operations - IAPD Team 1 (703) 305-3678 (703) 305-3230 (FAX)																
For International Bureau use only																
<input type="checkbox"/> This sheet was received by the International Bureau on:																
Authorized officer																

ATCC Deposit 97958

Page 2

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

ATCC Deposit No. 97958

Page 3

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
~~DEUD~~

(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>198</u>, line <u>N/A</u></p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<p>Further deposits are identified on an additional sheet <input type="checkbox"/></p>
<p>Name of depositary institution American Type Culture Collection</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America</p>		
Date of deposit April 20, 1998	Accession Number 209782	
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<p>This information is continued on an additional sheet <input type="checkbox"/></p>
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p> <p>Europe In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications e.g., "Accession Number of Deposit"</i>)</p>		
<p>For receiving Office use only</p> <p><input checked="" type="checkbox"/> This sheet was received with the international application</p> <p>Elvira Rivera Authorized officer - IAPD Team 1 (703) 305-3678 (703) 305-3230 (FAX)</p>		
<p>For International Bureau use only</p> <p><input type="checkbox"/> This sheet was received by the International Bureau on:</p> <p>Authorized officer</p>		

ATCC Deposit 209782

Page 2

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

ATCC Deposit No. 209782
Page 3

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/13418

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C12N 15/12, 15/63, 1/21, 5/00; C07K 7/00, 14/435
 US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/69.1, 69.3, 70.1, 325, 243, 320.1; 530/300, 350, 399; 536/23.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, MEDLINE, EMBASE, WPIDS, BIOSIS

search terms: secreted protein, antigenic, antigen

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JACOBS et al. A genetic selection for isolating cDNAs encoding secreted proteins. Gene. 1997, Vol. 198, pages 289-296.	1-12, 14-16, 21
X	US 5,534,409 A (GRONER et al) 09 July 1996, columns 21-26, especially see SEQ ID NO:2.	1-3, 7-11, 14-16

Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance		
B earlier document published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O document referring to an oral disclosure, use, exhibition or other means	"A"	document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

02 SEPTEMBER 1999

Date of mailing of the international search report

29 OCT 1999

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231
 Facsimile No. (703) 305-3230

Authorized officer

CHRISTINE SAOUD

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/13418

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-12, 14-16 and 21 with regard to SEQ ID NO:11, 130

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/13418

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/69.1, 69.3, 70.1, 325, 243, 320.1; 530/300, 350, 399; 536/23.1

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-12, 14-16 and 21, drawn to polynucleotides, polypeptides, and recombinant methods of production.

Group II, claim(s) 13, drawn to an antibody.

Group III, claim(s) 17, drawn to methods of treatment by administering the polypeptide.

Group IV, claim(s) 17, drawn to methods of treatment by administering the polynucleotides.

Group V, claim(s) 18, drawn to methods of diagnosing by detecting the polynucleotide.

Group VI, claim(s) 19, drawn to methods of diagnosing by detecting the polypeptide.

Group VII, claim(s) 20, drawn to methods of determining a binding partner.

Group VIII, claim(s) 22, drawn to methods of identifying an activity in an assay.

Group IX, claim(s) 23, drawn to a binding partner.

In addition to the 11 groups listed above, each group is further directed to 94 distinct embodiments corresponding to the 94 pairs of sequence identifiers for the 94 different polynucleotides and polypeptides encoded thereby. Each polynucleotide and encoded polypeptides lack unity of invention because they do not share the same special technical feature. A special technical feature means those features that define a contribution which each of the claimed inventions, considered as a whole, makes over the prior art. The special technical feature of each polynucleotide is the specific nucleic acid sequence of the polynucleotide molecule. Unity of invention is found between the polynucleotide, the polypeptide and the recombinant methods of use of the polynucleotide to make the polypeptide because claims to these categories of invention all share the special technical feature of the polynucleotide.

The inventions listed as Groups II-IX do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the inventions of Groups II and IX do not share the special technical feature of Group I, which is the nucleic acid sequence of the polynucleotide. Groups III-VIII are directed to additional methods, however, PCT Article 17(3)(a) does not provide for multiple products, processes of manufacture or uses which are claimed. Therefore, the first invention of the category first mentioned in the claims of the application and the first recited invention of each of the other categories related thereto is considered the main invention of the claims.