```
# Import necessary libraries
In [2]:
        import pandas as pd
        from sklearn.model_selection import train_test_split
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.metrics import mean squared error, r2 score
        import matplotlib.pyplot as plt
        # Load the dataset
        dataset path = "C:\\Users\\ARYAN PARIKH\\Desktop\\Oasis Internship\\archive (2
        car_data = pd.read_csv(dataset_path)
        # Display the first few rows of the dataset to understand its structure
        print(car data.head())
        # Explore the dataset to understand the features and target variable
        print(car data.info())
        # Select relevant features and target variable
        X = car_data[['Year', 'Present_Price', 'Driven_kms', 'Fuel_Type', 'Selling_tyr
        y = car data['Selling Price']
        # Convert categorical variables into dummy/indicator variables
        X = pd.get_dummies(X, drop_first=True)
        # Split the dataset into training and testing sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
        # Train a Random Forest Regressor model
        model = RandomForestRegressor(n_estimators=100, random_state=42)
        model.fit(X_train, y_train)
        # Make predictions on the test set
        y pred = model.predict(X test)
        # Evaluate the model
        mse = mean_squared_error(y_test, y_pred)
        r2 = r2_score(y_test, y_pred)
        print(f'Mean Squared Error: {mse}')
        print(f'R-squared Score: {r2}')
        # Visualize predicted vs. actual prices
        plt.scatter(y_test, y_pred)
        plt.xlabel('Actual Selling Price')
        plt.ylabel('Predicted Selling Price')
        plt.title('Actual vs. Predicted Selling Price')
        plt.show()
```

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	\
0	ritz	2014	3.35	5.59	27000	Petrol	
1	sx4	2013	4.75	9.54	43000	Diesel	
2	ciaz	2017	7.25	9.85	6900	Petrol	
3	wagon r	2011	2.85	4.15	5200	Petrol	
4	swift	2014	4.60	6.87	42450	Diesel	

	Selling_type	Transmission	Owner
0	Dealer	Manual	0
1	Dealer	Manual	0
2	Dealer	Manual	0
3	Dealer	Manual	0
4	Dealer	Manual	0
		_	

<class 'pandas.core.frame.DataFrame'> RangeIndex: 301 entries, 0 to 300

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype	
0	Car_Name	301 non-null	object	
1	Year	301 non-null	int64	
2	Selling_Price	301 non-null	float6	
3	Present_Price	301 non-null	float6	
4	Driven_kms	301 non-null	int64	
5	Fuel_Type	301 non-null	object	
6	Selling_type	301 non-null	object	
7	Transmission	301 non-null	object	
8	Owner	301 non-null	int64	
dtype	es: float64(2),	<pre>int64(3), object(4)</pre>		
memoi	ry usage: 21.3+	KB		

None

Mean Squared Error: 0.8209857844262285 R-squared Score: 0.9643601062650229

In []: