Boletín 1

Autor: Adrián Losada Álvarez

Fecha: 18/04/2022

Problema 1:

En primer lugar, rellenaremos la tabla de verdad del circuito:

Gray				Binaria				
GHNSB	G ₃	62	GILSB	Bymsa	B_3	B ₂	ByLSB	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1_	1	0	0	1	0	
0	0	1	0	0	0	1	1	
0	1	-1	0	0	1	0	0	
0	1	1	1	0	1	0	1	
0	1	0	1	0	1	1	0	
0	1	0	0	0	1	1	1	
	1	0	0	1	0	0	0	
1	1	0	1	1	0	0	1	
1	1	1	1	1	0	1	0	
1	1	1	0	1	0	1	1	
11	0	1	0	1	1	0	0	
1	0	1	1	1	1	0	1	
1	0	0	1	1	1	1	0	
1	0	0	0	1	1	1	1	

Una vez hecho esto, realizamos los mapas de Karnaugh correspondientes a cada columna de bits en binario (B4, B3, B2 y B1). Obteniendo así las funciones simplificadas para cada bit.

Montamos el circuito:

Problema 2:

El siguiente problema se puede realizar de 2 formas distintas:

1. Obteniendo la salida de cada puerta lógica mediante algébra booleana:

2. Mediante el método de Karnaugh:

Una vez obtenida la expresión booleana del circuito, podemos simplificarlo fácilmente con puertas NAND siguiendo el siguiente esquema:

Puerta lógica	Implementación con NAND
A	A A A A A
A B	A A B A B
A + B	A

Dando como resultado el siguiente circuito simplificado:

Problema 3:

Para obtener las expresiones lógicas de la tabla de verdad aplicamos Karnaugh a cada una de las funciones:

Construimos los circuitos con cada una de las maneras solicitadas:

1.- Con puertas lógicas cualesquiera:

2.- Usando solamente puertas AND de 2 entradas:

3.- Usando solamente puertas NAND de 2 entradas:

Problema 4:

En el siguiente problema indicaremos que configuración de entrada (S1,S0) utilizará cada función:

A continuación, rellenaremos la tabla de verdad del circuito siguiendo el criterio anterior:

Tabla de verdad:			Rines de entrada				
	S,	So	E ₃	Ez	E,	E.	
	10	0	F ₃	F ₂	F4	Fo) Nov
uerte del 1	10	1	F ₂	Fa	Fo	F ₃	NUX correspondient
DX \	1	0	F ₂	Fo	F ₃	Fz	(a los pines de entr
aregrendient	1	1	Fo	F ₃	Fz	F	de según la configue ción de Si, So.

Por último, realizamos las conexiones tal y como se indica en la tabla de verdad anterior:

