

TIF21 – Pengantar Sistem Digital

Capaian Pembelajaran Mata Kuliah

- Mahasiswa dapat menjelaskan apa yang dimaksud dengan sistem Digital (C2, A2)
- Mahasiswa dapat melakukan konversi bilangan desimal, biner, oktal, dan hexadesimal (C3, A3)
- Mahasiswa dapat melakukan operasi-operasi logika dan operasi-operasi sitem digital (C3, A3)
- Mahasiswa dapat menyederhanakan persamaan logika (C3, A3)
- Mahasiswa dapat merepresentasikan bilangan negatif dan pecahan dalam bentuk biner (C3, A3)

Pengenalan Sistem Digital dan Basis Bilangan

Pertemuan 1

Sub-CPMK

- Mahasiswa dapat menjelaskan konsep dasar sistem digital dan bilangan biner, oktal dan hexadesimal (C2, A2)
- Mahasiswa dapat menghitung nilai desimal dari bilangan biner, oktal dan hexadesimal (C3, A3)

Materi

- Pengenalan Sistem Digital
- Bilangan Biner
- Bilangan Oktal
- Bilangan Hexadesimal
- Bit dan Byte

1.

Pengenalan Sistem Digital

Pengenalan sistem digital

- Digital berasal dari kata Digitus, dalam bahasa Yunani berarti jari jemari.
- Apabila kita hitung jari jemari orang dewasa, maka berjumlah sepuluh (10).
- Nilai sepuluh tersebut terdiri dari 2 radix, yaitu 1 dan 0, oleh karena itu Digital merupakan penggambaran dari suatu keadaan bilangan yang terdiri dari angka 0 dan 1 atau off dan on (bilangan biner).
- Semua sistem komputer menggunakan sistem digital sebagai basis datanya. Dapat disebut juga dengan istilah Bit (Binary Digit).

Cikal Bakal Sistem Digital

- Teks tertulis dalam buku yang memiliki jenis karakter terbatas dan penggunaan alfabet sebagai simbol diskrit.
- Kode Morse menggunakan kode titik dan garis untuk menyimbolkan karakter.
 Kode ini digunakan untuk mengirimkan pesan menggunakan gelombang atau cahaya.
- Sistem huruf Braille adalah sistem biner pertama untuk pengkodean karakter, menggunakan 6 bit kode yang ditampilkan menggunakan pola titik.
- Semaphore menggunakan bendera atau benda lainnya, dipegang dengan posisi tertentu untuk mengirimkan pesan kepada penerima yang berada pada jarak tertentu.
- Sebuah modem mengubah sinyal analog, misalnya bunyi, menjadi informasi elektronik biner.

Pemakaian Sistem digital

- Bilangan biner dipergunakan pada semua representasi komputasi.
- Sinyal-sinyal yang dikomunikasikan pada komputasi semua mempergunakan pola digital yang direpresentasikan dalam bentuk biner.
- Hampir semua perhitungan dan logika pada teori komputasi mempergunakan sistem biner, misal pada Steganografi, proses kompresi data, dsb

Pengenalan Bilangan Berbasis

Sistem Bilangan

- Bilangan Desimal
- Bilangan Biner
- Bilangan Oktal
- Bilangan Hexadesimal

Aturan Penulisan bilangan

Bilangan_(basis)

Contoh

 $1011_{(2)} \rightarrow 1011 \text{ basis } 2$

 $236_{(8)} \rightarrow 236 \text{ basis } 8$

 $248_{(10)} \rightarrow 248 \text{ basis } 10$

 $2AF8_{(16)} \rightarrow 2AF8$ basis 16

Bilangan Desimal

- Bilangan Desimal adalah bilangan berbasis 10
- Simbol: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Setiap digitnya mempunyai nilai terendah 0 dan nilai tertinggi
- Jika N merupakan suatu bilangan decimal, dan a_n merupakan bilangan digit ke n dari kanan maka untuk setiap digitnya maka untuk setiap digitnya bernilai:

$$N = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_1 \times 10^1 + a_0 \times 10^0 + a_{-1} \times 10^{-1} + a_{-2} \times 10^{-2} + ... + a_{-(n-1)} \times 10^{-(n-1)} + a_{-n} \times 10^{-n}$$

Figure 1.1: Decimal number system for integers.

Decimal number system for Fractional numbers

Figure 1.2: Decimal number system for fractional numbers.

Contoh bilangan Desimal

$$N_{(10)} = 9 2 3 7 8 \leftarrow Bilangan desimal$$

4 3 2 1 0 \leftarrow Digit ke

$$N = 9 \times 10^{4} + 2 \times 10^{3} + 3 \times 10^{2} + 7 \times 10^{1} + 8 \times 10^{0}$$

$$N = 90000 + 2000 + 300 + 70 + 8$$

$$N = 92378$$

Nilai N adalah 92378 (sembilan puluh dua ribu tiga ratus tujuh puluh delapan)

2.

Bilangan Biner

Bilangan Biner

- Bilangan Biner adalah bilangan berbasis 2
- Simbol: 0, 1
- Setiap digitnya mempunyai nilai terendah 0 dan nilai tertinggi 1
- Jika N merupakan suatu bilangan biner, dan a_n merupakan bilangan digit ke n dari kanan maka untuk setiap digitnya dapat disimpulkan:

$$N = a_n x 2^n + a_{n-1} x 2^{n-1} + ... + a_1 x 2^1 + a_0 x 2^0 + a_{-1} x 2^{-1} + a_{-2} x 2^{-2} + ... + a_{-(n-1)} x 2^{-(n-1)} + a_{-n} x 2^{-n}$$

Binary Number system

Figure 1.3: Binary number system with an example.

Contoh bilangan Biner

$$N_{(2)} = 1 \ 0 \ 1 \ 1 \ \leftarrow Bilangan biner$$

4 3 2 1 0 \leftarrow Digit ke

$$N = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$N = 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1$$

$$N = 16 + 0 + 4 + 2 + 1$$

$$N = 23$$

Nilai N dalam satuan desimal adalah 23 (dua puluh tiga)

3.

Bilangan Oktal

Bilangan Oktal

- Bilangan oktal adalah bilangan berbasis 8
- Simbol: 0, 1, 2, 3, 4, 5, 6, 7
- Setiap digitnya mempunyai nilai terendah 0 dan nilai tertinggi 7
- Jika N merupakan suatu bilangan oktal, dan a_n merupakan bilangan digit ke n dari kanan maka untuk setiap digitnya bernilai:

$$N = a_n \times 8^n + a_{n-1} \times 8^{n-1} + ... + a_1 \times 8^1 + a_0 \times 8^0 + a_{-1} \times 8^{-1} + a_{-2} \times 8^{-2} + ... + a_{-(n-1)} \times 8^{-(n-1)} + a_{-n} \times 8^{-n}$$

Octal Number systems

Contoh bilangan oktal

$$N_{(8)} = 3 \quad 5 \quad 1 \quad 0 \quad 6 \quad \leftarrow$$
 Bilangan oktal $4 \quad 3 \quad 2 \quad 1 \quad 0 \quad \leftarrow$ Digit ke

$$N = 3 \times 8^4 + 5 \times 8^3 + 1 \times 8^2 + 0 \times 8^1 + 6 \times 8^0$$
 $N = 3 \times 4096 + 5 \times 512 + 1 \times 64 + 0 \times 8 + 6 \times 1$
 $N = 12288 + 2560 + 64 + 0 + 6$
 $N = 14918$

Nilai N dalam satuan desimal adalah 14918 (empat belas ribu sembilan ratus delapan belas)

4.

Bilangan Hexadesimal

Bilangan Hexadesimal

- Bilangan hexadesimal adalah bilangan berbasis 16,
- Disimbolkan dengan 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Setiap digitnya mempunyai nilai terendah 0 dan nilai tertinggi F
 - $-A_{(16)}$ bernilai $10_{(10)}$,
 - $B_{(16)}$ bernilai $11_{(10)}$,
 - C₍₁₆₎ bernilai 12₍₁₀₎,
 - D₍₁₆₎ bernilai 13₍₁₀₎,
 - E₍₁₆₎ bernilai 14₍₁₀₎,
 - $F_{(16)}$ bernilai $15_{(10)}$.
- Jika N merupakan suatu bilangan hexadesimal, dan a_n merupakan bilangan digit ke n dari kanan maka untuk setiap digitnya bernilai:

$$N = a_n \times 16^n + a_{n-1} \times 16^{n-1} + ... + a_1 \times 16^1 + a_0 \times 16^0 + a_{-1} \times 16^{-1} + a_{-2} \times 16^{-2} + ... + a_{-(n-1)} \times 16^{-(n-1)} + a_{-n} \times 16^{-n}$$

Hexadecimal Number system

Contoh bilangan hexadecimal

$$N_{(16)} = 1 A F 0 2 \leftarrow Bilangan hexadesimal$$

4 3 2 1 0 \leftarrow Digit ke

```
N = 1 \times 16^4 + 10 \times 16^3 + 15 \times 16^2 + 0 \times 16^1 + 2 \times 16^0

N = 1 \times 65536 + 10 \times 4096 + 15 \times 256 + 0 \times 16 + 2 \times 1

N = 65536 + 40960 + 3840 + 0 + 2

N = 110338
```

Nilai N dalam satuan desimal adalah 110338 (seratus sepuluh ribu tiga ratus tiga puluh delapan)

5.

Bit dan Byte

Bit

- Bit merupakan satuan bilangan biner terkecil.
- Setiap bit merepresentasikan 1 digit bilangan biner
- Untuk setiap digit bilangan oktal direpresentasikan oleh 3 digit bilangan biner, jadi setiap 1 digit bilangan oktal direpresentasikan oleh 3 bit biner
- Untuk setiap digit bilangan hexadesimal direpresentasikan oleh 4 digit bilangan biner, jadi setiap 1 digit bilangan hexadesimal direpresentasikan oleh 4 bit biner.

MSB dan LSB

- MSB = Most Significant Bit: Bit dengan derajat nilai paling tinggi
- Jika serangkaian data terdiri dari n bit, maka bit ke n adalah MSB dengan nilai aⁿ.
- LSB = Least Significant Bit: bit dengan derajat nilai paling rendah atau bit ke 0, dengan nilai a⁰.

Pengertian LSB dan MSB

- LSB / Least Significant Bit adalah posisi bit terendah, yang menghadirkan unit terkecil dari suatu bilangan biner.
- LSB biasanya ditempatkan pada bit paling kanan.
- LSB merupakan bit dengan derajat nilai paling rendah atau bit ke 0, dengan nilai a⁰.

- MSB / Most Significant Bit adalah posisi bit tertinggi, yang menghadirkan unit terbesar dari suatu bilangan biner.
- MSB biasanya ditempatkan pada bit paling kiri
- Jika serangkaian data terdiri dari n bit, maka bit ke n adalah MSB dengan nilai aⁿ.

1 0 0 1 0 1 0 1

 1
 0
 0
 1
 0
 1
 0
 1

Byte

- Kebanyakan mikrokomputer menangani dan menyimpan data dan informasi dalam sebuah group 8 bit.
- Serangkaian bit dinamakan byte
- 1 byte terdiri dari serangkaian 8 bit
- Setiap pembagian 8 bit atau disebut 1 byte dapat merepresentasikan bilangan data atau informasi

Contoh

Contoh:

- Berapa byte kah bilangan integer 32 bit?
 32 / 8 = 4 → jadi 1 bilangan integer adalah 4 byte
- Berapa bit kah yang diperlukan untuk menyimpan sebuah data char?

1 char = 1 byte; 1 byte = 8 bit, jadi sebuah tipe data char memerlukan 8 bit biner

BCD (Binary Coded Decimal)

- Sistem bilangan BCD hampir sama dengan sistem bilangan biner.
- Pada sistem bilangan ini, setiap satu digit desimal diwakili secara tersendiri ke dalam bit-bit biner.
- Karena pada sistem bilangan desimal terdapat 10 digit, maka dibutuhkan 4 bit biner untuk mewakili setiap digit desimal.
- Setiap digit desimal dikodekan ke sistem bilangan biner tak bertanda.
- Sistem bilangan BCD biasanya digunakan untuk keperluan penampil tujuh segmen (seven-segment).
- Kode BCD yang mewakili tiap digit decimal adalah $0000_{(2)}$ sampai $1001_{(2)}$, selebihnya mulai dari $1010_{(2)}$ s/d $1111_{(2)}$ dianggap tidak ada.

Desimal	Biner	Oktal	Hexadesimal	BCD
0	0000	0	0	0000
1	0001	1	1	0001
2	0010	2	2	0010
3	0011	3	3	0011
4	0100	4	4	0100
5	0101	5	5	0101
6	0110	6	6	0110
7	0111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	Α	0001 0000
11	1011	13	В	0001 0001
12	1100	14	С	0001 0010
13	1101	15	D	0001 0011
14	1110	16	E	0001 0100
15	1111	17	F	0001 0101

Ringkasan

- Bilangan Desimal adalah bilangan berbasis 10, memiliki simbol: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Bilangan Biner adalah bilangan berbasis 2, memiliki simbol: 0, 1
- Bilangan oktal adalah bilangan berbasis 8, memiliki Simbol: 0, 1, 2, 3, 4, 5, 6, 7
- Bilangan hexadesimal adalah bilangan berbasis 16, Disimbolkan dengan 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Bit merupakan satuan bilangan biner terkecil.
- 1 byte terdiri dari serangkaian 8 bit
- MSB = Most Significant Bit: Bit dengan derajat nilai paling tinggi
- LSB = Least Significant Bit: bit dengan derajat nilai paling rendah atau bit ke 0, dengan nilai a⁰.

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)