

2021 年第三届全国高校计算机能力挑战赛 嵌入式系统创意作品赛

作品报告

参赛单位:	<u> </u>
参赛学生:	赵浩冰、林子越、冯卓颖
指导教师:	谢昭 吴克伟

填写说明

- 1. 所有参赛队伍必须完成基本完整的设计。作品报告书旨在能够清晰准确地阐述该参赛队的参赛项目。
- 2. 作品报告采用A4纸撰写。除标题外,所有内容必需为宋体、小四号字、1.5倍 行距。
- 3. 作品报告中各项目说明文字部分仅供参考,作品报告书撰写完毕后,请删除 所有说明文字。(本页不删除)
- 4. 作品报告模板里已经列的内容仅供参考,作者可以在此基础上增加内容或对文档结构进行微调。

目 录

摘要		1
第一章	作品总体方案	.2
1.1	方案论证	. 2
	1.1.1MCU 控制模块方案论证	2
	1.1.2 存储模块方案论证	.3
	1.1.3 数据采集模块方案论证	3
	1.1.4 显示模块方案论证	.4
	1.1.5 音乐播放模块方案论证	5
	1.1.6 语音识别模块方案论证	5
	1.1.7 网络模块方案论证	.6
	1.1.8 移动互联模块方案论证	7
1.2	方案描述	8
	1.2.1 主界面操作功能模块	.8
	1.2.2 阈值警报设置功能模块	8
1.3	系统结构	. 8
第二章	作品设计与实现1	0
2.1	实现原理1	0
2.2	硬件框图1	0
2.3	软件流程1	1
2.4	软件代码1	1
第三章	作品测试与分析2	25
3.1	测试流程2	25
3.2	测试结果2	25
3.3	测试数据2	28
3.4	测试结果分析2	28
第四章	创新性说明2	29
第五章	总结3	0
参考文献	状 :	13

摘要

针对工业物联网逐渐普及的趋势,设计出一款基于STM32的面向移动互联应用的物联网智能家居终端系统。系统以AH-HL-01型单片机与嵌入式系统产品作为硬件开发平台,以ST公司的STM32单片机作为核心控制器,以TFT触摸屏作为控制显示模块,通过温湿度传感器、光敏传感器、红外传感器和直流电机等多种执行器,实现四种信息、四种状态数字可视化,两种模式智能、四种控制、三种联动等多种功能,通过UI界面可视化完成交互,使用户对家庭环境达成信息获取与实时控制。本文重点介绍该系统的硬件、软件设计体现其创新性。

关键字: stm32 智能家居

第一章 作品总体方案

1.1 方案论证

1.1.1MCU 控制模块方案论证

根据题目要求,控制器主要用于对室内各种环境数据采集,对LED灯、直流电机、蜂鸣器等外设进行控制,以及通过TFT屏实现交互控制与显示;为确保嵌入式开发系统设计稳步开展,控制芯片需具有低成本、低功耗、高性能的特点,对此有以下三种方案。

方案一	采用 FPGA (现场可编程门阵列) 作为系统的控制器。
	FPGA 可以实现各种复杂的逻辑功能,规模大、密度高,采用并行的
	输入输出方式,提高了系统的处理速度,适合作为大规模系统控制
	核心。同时,由于芯片的引脚较多,电路板布线复杂,会加大电路
	设计和实际焊接的工作量。
方案二	采用51系列的STC12C5A60S2作为系统控制器。
	STC12C5A60S2是高速、低功耗、超强抗干扰的新一代8051单片机,
	内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换,具
	有使用简便、便宜价格等优点。但其功能相对单一,程序储存空间
	及数据储存空间不够大,难以实现较复杂的任务要求。
方案三	采用ARM系列的STM32F103ZET6作为系统的控制器。
	STM32系列单片机是专为要求高性能、低成本、低功耗的嵌入式应用
	设计的ARM Cortex-M3内核。具有512K片内FLASH,64K片内RAM,多达
	80个I0, 3路SPI接口,2路I2S 接口,2路I2C接口,5路USART等丰富的
	资源,可达到中断自动嵌套所需要求,保护与恢复现场,充分提高
	开发系统的使用效率,具有较高的性价比。

方案比较与论证:

基于上述对每种主控芯片的分析,FPGA资源和工作频率超过需求,高速处理的优势得不到充分体现,存在资源浪费,且性价比不高,故不采用该芯片作为主控芯片。51系列单片机具有工作频率低,可用资源少等缺点,且本系统需实现多线程控制,51单片机无法满足,硬件资源紧张,故本系统不予以采用。采用STM32F103ZET6作为主控芯片,该芯片相对于方案一的FPGA,开发周期短,编程简单,不会存在资源浪费。相对于方案二的STC89C52单片机,算术运算功能强,资源丰富,格外匹配本系统设计的多种需求,是现有芯片中最符合要求且性价比最高的一款产品。基于上述分析考虑,本系统采取方案三,使用STM32F103ZET6作为主控芯片。

1.1.2 存储模块方案论证

方案一	采用产品外设的E ² PROM模块存储,EPROM是一种非易失性的计算机储存
	芯片,其原理是按字节操作,非常适合做数据存储器,本系统设计中
	音乐播放模块对存储空间的要求较高,E ² PROM的存储空间有限,读写
	速度不高, 所以无法满足本系统设计要求。
方案二	采用STM32的内置SRAM存储,SRAM是静态随机存取存储器,它是一种具
	有静止存取功能的内存,不需要刷新电路即能保存它内部存储的数据。
	STM32片内自带SRAM, 用来存储程序运行中的中间变量, 也可以通过
	FSMC外设来拓展SRAM,但由于存储空间资源有限,实现可行性不高
方案三	采用产品外设的SD卡存储,实验开发板的SD卡模块可以实现数据高速
	读写存储,相对于本系统设计需求开说,存储空间丰富,读写速度较
	快,可以匹配系统控制器的各类指令。

方案比较与论证:

不论是从存储空间还是读写速度来说,在该硬件开发平台中,以SD卡为存储模块 实现音乐播放器的多功能是最高效的选择。

1.1.3 数据采集模块方案论证

方案一	采用热电阻电桥与ADC0809作为温度采集器。
	热电阻在温度变化时,阻值相应发生改变,两端电压相应发生变化,
	可使用ADC进行采集,通过计算并查表获知温度值;同时采用三线制方
	案,搭建电桥进行差分,消除导线因温度变化产生的影响,提高测温
	准确度。该方案成本非常低廉,测量速度很快,模块体积小,探头安
	装十分灵活。但由于热电阻通常温阻曲线线性较差,查表时会产生较
	大误差。
方案二	采用TN095红外测温模块作为温度采集器。
	TN095红外测温模块采用SPI通信协议与单片机连接,可进行非接触式
	的温度测量,具有响应快,测量精度高,测量范围广等优点。但该方
	案成本较高,且对具体物体的温度敏感性较强,在狭窄且有人的应用
	场景中不能较好反映环境平均温度。
方案三	采用DS18B20作为温度采集器。
	DS18B20是常用的数字温度传感器,其输出的是数字信号,大大提高传
	感器使用过程中的稳定性,具有体积小,硬件开销低,抗干扰能力强,
	精度高的特点。该传感器接线方便,封装成后可应用于多种场合,通
	过传感器内部的测温元件与单片机的联动,可以实时采集本地温度数
	据。

方案比较与论证:

采用DS18B20作为热传感器,相对于方案一精度较高且硬件搭建简单;相对于方案二的TN905红外测温传感器,成本较低且能较好测量探头周围环境温度,是现有芯片中最符合要求且性价比最高的一款产品,基于上述分析考虑,本系统采用方案三。

1.1.4 显示模块方案论证

方案一	采用12864显示屏,LCD显示占用较少的单片机接口,编程实现简单,但
	显示信息量小,美观度不高。
方案二	采用OLED屏, OLED屏使用串口通信, 编程实现简单, 设计思路便捷, 但
	有一个缺点是无法实现触屏控制,使得其在车载应用场景中实用性不

	强。
方案三	用TFT彩屏显示方案,TFT彩屏规避了方案一和方案二的缺点,不仅可以
	彩屏显示GUI界面,还集合了触屏控制功能,非常匹配车载应用场景,
	体验性好,实用性高。

方案比较与论证:通过综合考虑,拟采用方案三。

1.1.5 音乐播放模块方案论证

方案一	采用实验箱上的VS1053芯片,该芯片是单片Ogg
	Vorbis/MP3/AAC/WMA/MIDI音频解码器,以及IMA ADPCM编码器和用户加
	载的Ogg Vorbis编码器。它包含了一个高性能、有专利的低功耗DSP处
	理器内核VSDSP、工作数据存储器、供用户应用程序和任何固化解码
	器仪器运行的16KiB指令RAM以及0.5KiB 多的数据RAM、串行的控制和输
	入数据接口、最多8个可用的通用的I/0引脚、一个UART、 并有一个优
	质的可变采样率立体声ADC和立体声DAC、和跟随的一个耳机功放以及一
	个 公共电压缓冲器。
方案二	采用ES8388低功耗音频芯片,ES8388芯片是一种高性能、低功耗、低成
	本的音频编解码器。它由两路ADC、2通道DAC,话筒放大器、耳机放大
	器、数字音效、 模拟混合和增益功能。

方案比较与论证:实验箱上的音频解码芯片足够实现题目的要求,ES8388芯片虽然好用,但是相关资料不足,最终选定使用VS1053芯片。

1.1.6 语音识别模块方案论证

方案一	采用LD3320语音控制模块。 LD3320芯片是一款语音识别的专用芯片,
	采用了ASR技术,集成了语音识别处理 器和一些外围电路,不需要外接
	任何的辅助芯片如Flash、RAM等,直接可完成语音识 别任务,且可自
	由编辑关键词列表,具有较高的精确度。该模块成本较低,应用简便,
	被广泛应用在语音识别的场景中,支持资料充足。
方案二	采用A550语音识别芯片作为语音控制器。 A550支持非特定人中文、英

文语音的识别,通过双麦克风降噪收音,并允许用户 通过USB接口对关键词和关键句的更新;同时可以支持多达1000词条的语音识别,对于非易混词表,系统给出的识别率达到97%以上,系统支持在噪音环境下的语音识别,芯片中加入了专门的滤波模块。但于应用环境而言,该款芯片性能冗余较大;采购渠道狭窄,且无现成模块,外围电路搭建较为繁琐;且缺乏开发支持,入手不易。

比较与方案论证:

方案一的LD3320功能更符合应用场景,即简单的语音交互,且易购得、成本低、 开发便利,具有较好可行性。

1.1.7 网络模块方案论证

方案一	通过ESP8266实现网络连接 ESP8266-01S是上海乐鑫公司专为移动设
	备、可穿戴电子产品和物联网应用而设 计的低价、低功耗、高度集成、
	具备无线上网功能的WiFi芯片。支持STA/AP/STA+AP 三种工作模式,本
	系统采用STA工作模式, ESP8266接入热点或路由器后接入广域网, 实 现
	无线模式的网络连接,与 OneNet云服务器互联。
方案二	通过WCDMA+Wi-Fi网关模块实现车内wifi 利用码分多址复用方法的宽
	带扩频3G移动通信空中接口,车载设备与基站采用 3G/4G通讯,再配置
	以太WAN端口,通过运营商的3GNET接入点连接至网络,使用SIM卡 购买
	互联资费,再转换成供乘客使用的Wi-Fi,公共无线网络智能交互技术
	车载Wi-Fi 技术虽然便捷实用,但有一点不足会产生一定的费用。
方案三	通过W5500模块和路由器连接以太网 W5500芯片是一款集成全硬件
	TCP/IP 协议栈的嵌入式以太网控制器,支持高速 标准4线SPI接口与主
	机进行通信,集成了以太网数据链路层和10BaseT/100BaseTX以 太网物
	理层,支持自动协商(全双工/半双工)、掉电模式和网络唤醒功能,
	但需要 通过网线连接路由器,配置网关协议才能实现连接以太网。

方案比较与论证:

方案三需要有线连接且环境限制为局域网,不适用于智能家居需求;方案二虽能 实现家庭内部wifi,但这种方式存在计费,用户每个月会多一笔花销;相比较来说, 方案一是最适合当前使用环境的模式,通过STA工作模式实现移动互联,匹配家居应用环境。

1.1.8 移动互联模块方案论证

方案一	通过阿里云物联网平台实现移动互联 车载终端作为车辆与外界网络
	之间的连接桥梁,它直接连接了用户、车辆和云服 务,在网联化应
	用中具有举足轻重的作用。3阿里云物联网平台支持基于WebSocket的
	MQTT协议,需首先使用WebSocket建立连接,然后在WebSocket通道上,
	使用MQTT协议 进行通信,即MQTT over WebSocket。通过指定的wifi
	模块实现系统与云平台的连接, 对硬件有一定的限制条件。
方案二	通过esp8266的AP模式实现手机端与系统互联 esp8266可通过AT指令
	实现单热点模式,通过手机端连接esp8266的热点,在同一 局域网下
	实现手机端和系统端的通信,该模式下免去资讯费用,但是传输数据
	和通信 协议需自己编制,在数据处理方案花费大量不必要的精力,
	开发周期较长。
方案三	通过OneNet云服务器实现移动互联 OneNet是中移物联网公司支持开
	发的用于物联网开发的专用平台,可适配各种网 络环境和协议类型,
	支持各类传感器和智能硬件的快速接入和大数据服务,能实时收 发
	信息和数据异常的智能触发信息推送,提供丰富的API和应用模板以
	支持各类行业 应用和智能硬件的开发,能够有效降低物联网应用开
	发和部署成本,满足物联网领 域设备连接、协议适配、数据存储、
	数据安全、大数据分析等平台级服务需求。

方案比较与论证:

方案一对阿里云平台硬件有一定限制,现有条件受到限制,故不采取该方案;方案二只能满足信息通讯且无法实现上网服务,不适用于实际场景,故不采用;方案二对阿里云平台硬件有一定限制,现有条件受到限制,故不采取该方案;方案三0neNet平台对于个人提供免费的试用,可以有效缩短开发周期,降低开发成本,非常适合此次的开发,故采用方案三。

1.2 方案描述

1.2.1 主界面操作功能模块

左端显示通过各个传感器模块采集的温度、湿度、光强、灯光等信息;

右端显示:入侵状态、窗户状态、警报状态、遮阳状态;

下端为各个功能按钮: den窗户开关、音乐播放、异常检测、数据查询、遮阳帘控制、模式切换。

1.2.2 阈值警报设置功能模块

系统设置界面,可以设计第一阈值、第二阈值、第三阈值、第四阈值、温度阈值、 湿度阈值。

1.3 系统结构

根据题目的基本要求,设计任务主要完成:

两种模式	撤防模式、布防模式
四种信息	温度,湿度,光强,灯光
四种状态	入侵状态,窗户状态,报警状态,遮阳状态
四种互动	亮度调节,窗户开关,异常报警,遮阳帘控制
三种联动	光照度信息与照明灯状态联动,温湿度信息与窗户、遮阳帘联动,
	入侵信息与报警器联动
三种拓展功能	语音控制功能、传感器历史查询功能、家居音箱播放功能
移动互联功能	状态数据的上传、对播放器的控制、界面显示与控制功能

系统设计包含以下几个基本模块:wifi模块、数据采集模块、网络模块、娱乐播放模块、显示模块、输出模块、输入模块.总的系统框图如图所示。

第二章 作品设计与实现

2.1 实现原理

1. 音乐播放

通过 SDIO 与 SD 卡通讯,读取卡中的 mp3 文件,然后通过高速 SPI 将文件数据直接发给 VS1053 芯片,由 VS1053 完成音频的解码和播放。我们可以通过 SPI 通讯控制和调整 VS1053 的播放参数,比如音量、速度等。

2. 录制音频

通过 SPI 通信,将 VS1053 录制的数据保存于 SD 卡中,文件格式 wav.

3. 触摸屏按键

我们用的是电容屏,屏幕某点被按下后,该点的电容改变,单片机循环检测获取 该点的坐标,通过算法转化为虚拟按键的键值。

4. 数据采集

(1) 温度采集:

采用 DS18B20 作为温度传感器。MCU 通过 1WIRE 协议与 DS18B20 通信,返回浮点类型的温度数值。

(2) 光照采集:

采用光敏电阻进行光照采集,根据其组织变化带来的电流变化,进而判断光照情况,便于进行联动。

(3) 入侵信息采集:

采用红外线传感器进行入侵信息采集,如采集到入侵信息,则将其回传,并在显示设备上进行相关显示。

4. 语音控制

采用 LD3320 语音识别模块,通过识别用户的语音信息,转化为对应的指令编号,经串口通信将指令发送至 MCU,执行对应动作。

2.2 硬件框图

系统以AH-HL-01型单片机与嵌入式系统产品作为硬件开发平台,STM32F103ZET6

为核心控制器,TFT 触摸屏作为控制显示模块,SD 卡为核心存储模块,VS1053 为语音播放模块,实现车载娱乐播放;以产品集成的数据采集模块、控制模块为基础模拟车辆运行,EEPROM 为功能存储模块,LD3320 为语音识别模块,实现语音控制的智能车载仪表系统;通过正点原子公司的 ESP8266 无线网络模块实现嵌入式系统、OneNet云服务器与手机 APP 的三端互联,实现移动互联功能;系统的硬件框图如下所示:

2.3 软件流程

系统软件通过C语言在程序开发平台keil JDK中完成编制。软件主要实现的功能为各传感器模块数据采集、GUI界面设计、TFT触摸控制、ESP8266与OneNET平台的联网对接及数据传输。系统上电后,STM32、传感器模块和WiFi模块初始化,经串口发送AT指令给ESP8266芯片,通过检测返回值确保ESP8266连上OneNET服务器,并按照OneNET平台的mqtt协议规定及Json数据格式将各参数(包括服务器网址、设备ID,APIkey,数据流名称,采集的数据等)封装成连接请求包,上传平台。功能模块分界面显示,通过TFT屏扫描判断触摸点对应功能按键,进入对应子程序。

2.4 软件代码

/***********************information 函数*************/

```
#include "Information.h"
#include "sys.h"
extern int page id;
extern int State;////0:撤防模式, 1:布防模式
extern int LedPower;
u8 AlarmState = 0;//报警铃 默认 0 表示 off
u8 WindowState = 0;//窗户 默认 0 表示 off
u8 CurtainState = 0;//窗帘 默认 0 表示 off
u8 *pname;
u8 temperature; //温度
u8 humidity; //湿度
u8 Light; //光照强度
int TouchArea;//点触范围
    1:报警铃
    2:窗户
    3:遮阳帘
    **********
int LedValue1 = 20;
int LedValue2 = 40;
int LedValue3 = 60;
int LedValue4 = 80;
int TemperatureValue = 25;
int HumidityValue = 50;
void MainFace()
    MAIN GUI();
    LCD ShowString(430,48,36,12,12,"OFF");//入侵状态
    LCD_ShowString(430,96,36,12,12,"OFF");//窗户状态
    LCD ShowString(430,148,36,12,12,"OFF");//报警器状态
    LCD_ShowString(430,196,36,12,12,"OFF");//遮阳帘状态
    if(State == 0)
            pname = "0:/GUI/CheFang.gif";
        if(State == 1)
            pname = "0:/GUI/BuFang.gif";
        ai load picfile(pname,190,33,104,19,0);//显示图片
                                                        //切换为0
    TouchArea=0;//开启扫描
```

```
while(page id == 1)
{
    /*触点检测*/
    while(TouchArea == 0)
       ctp1 val();
       /*UI 左侧数据*/
       POINT COLOR=BLUE;
       DHT11 Read Data(&temperature,&humidity); //读取温湿度值
       LCD ShowNum(88,48,temperature,2,16); //显示温度
                                            //显示湿度
       LCD ShowNum(88,96,humidity,2,16);
       Light=Lsens Get Val();//读取光照强度
       LCD_ShowxNum(88,148,Light,2,16,0);//显示光照强度
       LCD_ShowNum(88,196,(LedPower/200)+1,1,16);
                                                    //显示补光等级
       TIM_SetCompare1(TIM2,LedPower); //设置灯光光强
       POINT COLOR=RED;
       if(INFRARED Check() == 1)//检测有无入侵
        {
            LCD ShowString(430,48,36,12,12,"ON ");//入侵状态
       if(INFRARED_Check() == 0)//检测有无入侵
        {
            LCD ShowString(430,48,36,12,12,"OFF");//入侵状态
       DeployMode();
    switch(TouchArea)
       case 1://警报
            AlarmState = !AlarmState; TouchArea=0;tp dev.init();
       break;
       case 2://窗户
            WindowState = !WindowState;TouchArea=0;tp dev.init();
       break;
       case 3://窗帘
            CurtainState = !CurtainState;TouchArea=0;tp dev.init();
       break;
       case 4://光照+
            if(LedPower<800)
                LedPower+=200;
            TIM SetCompare1(TIM2,LedPower); //设置灯光光强
            TouchArea=0;tp dev.init();
```

```
break;
    case 5://光照-
        if(LedPower>200)
            LedPower=200;
        TIM_SetCompare1(TIM2,LedPower); //设置灯光光强
        TouchArea=0;tp_dev.init();
    break:
    case 6://模式切换
        State = !State;TouchArea=0;
        if(State == 0)
                 pname = "0:/GUI/chefang.gif";
        if(State == 1)
                 pname = "0:/GUI/bufang.gif";
                                                          //切换为0
        ai load picfile(pname,190,33,104,19,0);//显示图片
    tp dev.init();
    break;
    default:
        tp_dev.init();
    break;
/*UI 右侧数据*/
POINT COLOR=RED;
if(AlarmState == 0)//OFF
    LCD_ShowString(430,148,36,12,12,"OFF");//报警器状态
    BEEP OFF();
}else
    LCD_ShowString(430,148,36,12,12,"ON ");//报警器状态
    BEEP ON();
if(WindowState == 0)//OFF
    LCD_ShowString(430,96,36,12,12,"OFF");//窗户状态
    RELAY OFF();
}else
    LCD ShowString(430,96,36,12,12,"ON ");//窗户状态
    RELAY_ON();
if(CurtainState == 0)//OFF
```

}

{

{

```
LCD ShowString(430,196,36,12,12,"OFF");//遮阳帘状态
             DCMOTOR OFF();
         }else
         {
             LCD ShowString(430,196,36,12,12,"ON ");//遮阳帘状态
             DCMOTOR ON();
         }
    }
}
//触屏扫描
void ctp1 val(void)
    u8 t=0;
                           //记录最后一次的数据
    u16 lastpos[5][2];
         tp dev.scan(0);
         for(t=0;t<CT MAX TOUCH;t++)
             if((tp_dev.sta)&(1<<t))
                  if(tp dev.x[t]<lcddev.width&&tp dev.y[t]<lcddev.height)
                      if(lastpos[t][0]==0XFFFF)
                       {
                           lastpos[t][0] = tp dev.x[t];
                           lastpos[t][1] = tp_dev.y[t];
                       }
                      lastpos[t][0]=tp_dev.x[t];
                      lastpos[t][1]=tp dev.y[t];
    if(tp dev.x[t]<(lcddev.width-200)&&tp dev.x[t]>(lcddev.width-230)&&tp dev.y[t]<(lcddev.height
-230)&&tp_dev.y[t]>(lcddev.height-280))
                           TouchArea = 1;
                       }
    if(tp dev.x[t]<(lcddev.width-60)&&tp dev.x[t]>(lcddev.width-90)&&tp dev.y[t]<(lcddev.height-2
30)&&tp dev.y[t]>(lcddev.height-280))
                           TouchArea = 2;
                       }
```

```
if(tp dev.x[t]<(lcddev.width-335)&&tp dev.x[t]>(lcddev.width-385)&&tp dev.y[t]<(lcddev.height
-230)&&tp dev.y[t]>(lcddev.height-280))
                            TouchArea = 3;
                       }
    if(tp dev.x[t]<(lcddev.width-200)&&tp dev.x[t]>(lcddev.width-240)&&tp dev.y[t]<(lcddev.height
-180)&&tp_dev.y[t]>(lcddev.height-210))
                            TouchArea = 4;
                       }
    if(tp\_dev.x[t] < (lcddev.width-255) & tp\_dev.x[t] > (lcddev.width-295) & tp\_dev.y[t] < (lcddev.height) 
-180)&&tp dev.y[t]>(lcddev.height-210))
                            TouchArea = 5;
                       }
    if(tp dev.x[t]<(lcddev.width-430)&&tp dev.x[t]>(lcddev.width-460)&&tp dev.y[t]<(lcddev.height
-230)&&tp dev.y[t]>(lcddev.height-280))
                            TouchArea = 6;
                       }
    if(tp dev.x[t]<(lcddev.width-19)&&tp dev.x[t]>(lcddev.width-60)&&tp dev.y[t]<(lcddev.height-1
0)&&tp dev.y[t]>(lcddev.height-45))
                            page id = 2;//跳转至 Setting
                            TouchArea = 88;
                       }
    if(tp dev.x[t]<(lcddev.width-115)&&tp dev.x[t]>(lcddev.width-165)&&tp dev.y[t]<(lcddev.height
-235)&&tp dev.y[t]>(lcddev.height-270))
                            page id = 3;//跳转至 MP3
                            TouchArea = 88;
                       }
    if(tp dev.x[t]<(lcddev.width-255)&&tp dev.x[t]>(lcddev.width-300)&&tp dev.y[t]<(lcddev.height
-235)&&tp dev.y[t]>(lcddev.height-270))
                       {
                            page id = 4;//跳转至历史记录
                            TouchArea = 88;
                       }
```

```
}else
                 lastpos[t][0]=0XFFFF;
             tp dev.x[t] = 0;
             tp_dev.y[t] = 0;
    delay_ms(5);
}
/*布防模式*/
void DeployMode(void)
{
    if(State == 1)//布防模式标志
        /*光照强度*/
        if(Light < LedValue1)LedPower = 850;</pre>
        if(Light > LedValue1 - 1 && Light < LedValue2)LedPower=650;
        if(Light > LedValue2 - 1 && Light < LedValue3)LedPower=450;
        if(Light > LedValue3 - 1 && Light < LedValue4)LedPower=250;
        if(Light > LedValue4 - 1)LedPower = 50;
        /*温度与窗户*/
        if(temperature < Temperature Value)//OFF
        {
             WindowState = 0;
             LCD ShowString(430,96,36,12,12,"OFF");//窗户状态
             RELAY_OFF();
        }else
         {
             WindowState = 1;
             LCD ShowString(430,96,36,12,12,"ON ");//窗户状态
             RELAY_ON();
        /*湿度与窗帘*/
        if(humidity < HumidityValue)//OFF
        {
             CurtainState = 0;
             LCD_ShowString(430,196,36,12,12,"OFF");//遮阳帘状态
             DCMOTOR_OFF();
        }else
             CurtainState = 1;
```

```
LCD ShowString(430,196,36,12,12,"ON ");//遮阳帘状态
          DCMOTOR ON();
      /*入侵信息与报警器*/
       if(INFRARED Check() == 1)//检测有无入侵
       {
          LCD ShowString(430,48,36,12,12,"ON ");//入侵状态
          BEEP_ON();
       if(INFRARED Check() == 0)//检测有无入侵
          LCD ShowString(430,48,36,12,12,"OFF");//入侵状态
          BEEP_OFF();
       }
   }
#include "gui.h"
void MAIN GUI ()
   u8 *pname;
   pname = "0:/GUI/MainInterface.gif";
   LCD Clear(BLACK);
   ai load picfile(pname,0,0,lcddev.width,lcddev.height,0);//显示图片
                                                        //切换为0
}
void SETTING GUI ()
   u8 *pname;
   pname = "0:/GUI/Setting.gif";
   LCD_Clear(BLACK);
   ai load picfile(pname,0,0,lcddev.width,lcddev.height,0);//显示图片
                                                        //切换为0
}
void MP3 GUI ()
   u8 *pname;
   pname = "0:/GUI/MP3.gif";
```

```
LCD Clear(BLACK);
                                                             //切换为 0
   ai load picfile(pname,0,0,1cddev.width,1cddev.height,0);//显示图片
}
void RECORD GUI ()
   u8 *pname;
   pname = "0:/GUI/录音.gif";
   LCD Clear(BLACK);
   ai load picfile(pname,0,0,lcddev.width,lcddev.height,0);//显示图片
                                                            //切换为0
}
void LIST_GUI()
   u8 *pname;
   pname = "0:/GUI/列表.gif";
   LCD_Clear(BLACK);
   ai load picfile(pname,0,0,lcddev.width,lcddev.height,0);//显示图片
                                                            //切换为 0
}
void RECU GUI ()
   u8 *pname;
   pname = "0:/GUI/复现.gif";
   LCD Clear(BLACK);
   ai load picfile(pname,0,0,1cddev.width,1cddev.height,0);//显示图片
                                                            //切换为0
#include "SettingFace.h"
extern int page id;
extern int LedValue1;
extern int LedValue2;
extern int LedValue3;
extern int LedValue4;
extern int TemperatureValue;
extern int HumidityValue;
```

```
int SettingTouchArea;//点触范围
int Point;
void SettingF(void)
    SETTING GUI();
    LCD_ShowNum(130,55,LedValue1,2,16);
    LCD ShowNum(130,95,LedValue2,2,16);
    LCD ShowNum(130,130,LedValue3,2,16);
    LCD ShowNum(130,170,LedValue4,2,16);
    LCD ShowNum(130,210,TemperatureValue,2,16);
    LCD_ShowNum(130,250,HumidityValue,2,16);
    SettingTouchArea = 0;
    while(page id == 2)
        while(SettingTouchArea == 0)
        {
            Setting ctp1 val();
        switch(SettingTouchArea)
            case 1:
                 Point = 1;
                 POINT COLOR=BLUE;
                 LCD ShowNum(130,55,LedValue1,2,16);
                 POINT COLOR=RED;
                 LCD ShowNum(130,95,LedValue2,2,16);
                 LCD_ShowNum(130,130,LedValue3,2,16);
                 LCD ShowNum(130,170,LedValue4,2,16);
                 LCD ShowNum(130,210,TemperatureValue,2,16);
                 LCD ShowNum(130,250,HumidityValue,2,16);
                 SettingTouchArea = 0;
                 break;
            case 2:
                 Point = 2;
                 POINT COLOR=BLUE;
                 LCD ShowNum(130,95,LedValue2,2,16);
                 POINT COLOR=RED;
                 LCD ShowNum(130,55,LedValue1,2,16);
                 LCD ShowNum(130,130,LedValue3,2,16);
                 LCD ShowNum(130,170,LedValue4,2,16);
                 LCD ShowNum(130,210,TemperatureValue,2,16);
                 LCD ShowNum(130,250,HumidityValue,2,16);
```

```
SettingTouchArea = 0;
    break;
case 3:
    Point = 3;
    POINT COLOR=BLUE;
    LCD ShowNum(130,130,LedValue3,2,16);
    POINT COLOR=RED;
    LCD ShowNum(130,55,LedValue1,2,16);
    LCD ShowNum(130,95,LedValue2,2,16);
    LCD ShowNum(130,170,LedValue4,2,16);
    LCD ShowNum(130,210,TemperatureValue,2,16);
    LCD ShowNum(130,250,HumidityValue,2,16);
    SettingTouchArea = 0;
    break;
case 4:
    Point = 4;
    POINT COLOR=BLUE;
    LCD ShowNum(130,170,LedValue4,2,16);
    POINT COLOR=RED;
    LCD_ShowNum(130,55,LedValue1,2,16);
    LCD ShowNum(130,95,LedValue2,2,16);
    LCD ShowNum(130,130,LedValue3,2,16);
    LCD ShowNum(130,210,TemperatureValue,2,16);
    LCD ShowNum(130,250,HumidityValue,2,16);
    SettingTouchArea = 0;
    break;
case 5:
    Point = 5;
    POINT_COLOR=BLUE;
    LCD ShowNum(130,210,TemperatureValue,2,16);
    POINT COLOR=RED;
    LCD ShowNum(130,55,LedValue1,2,16);
    LCD ShowNum(130,95,LedValue2,2,16);
    LCD_ShowNum(130,130,LedValue3,2,16);
    LCD ShowNum(130,170,LedValue4,2,16);
    LCD ShowNum(130,250,HumidityValue,2,16);
    SettingTouchArea = 0;
    break;
case 6:
    Point = 6;
    POINT COLOR=BLUE;
    LCD ShowNum(130,250,HumidityValue,2,16);
    POINT COLOR=RED;
    LCD ShowNum(130,55,LedValue1,2,16);
```

```
LCD ShowNum(130,95,LedValue2,2,16);
                  LCD ShowNum(130,130,LedValue3,2,16);
                  LCD ShowNum(130,170,LedValue4,2,16);
                  LCD ShowNum(130,210,TemperatureValue,2,16);
                  SettingTouchArea = 0;
                  break;
             case 7:
                  switch(Point)
                  {
                       case 1:LedValue1 ++;SettingTouchArea=1;break;
                       case 2:LedValue2 ++;SettingTouchArea=2;break;
                       case 3:LedValue3 ++;SettingTouchArea=3;break;
                       case 4:LedValue4 ++;SettingTouchArea=4;break;
                       case 5:TemperatureValue ++;SettingTouchArea=5;break;
                       case 6:HumidityValue ++;SettingTouchArea=6;break;
                       default: break;
                  break;
             case 8:
                  switch(Point)
                       case 1:LedValue1 --;SettingTouchArea=1;break;
                       case 2:LedValue2 --;SettingTouchArea=2;break;
                       case 3:LedValue3 --;SettingTouchArea=3;break;
                       case 4:LedValue4 --;SettingTouchArea=4;break;
                       case 5:TemperatureValue --;SettingTouchArea=5;break;
                       case 6:HumidityValue --;SettingTouchArea=6;break;
                       default : break;
                  }
                  break;
         }
    }
}
//触屏扫描
void Setting_ctp1_val(void)
    u8 t=0;
                           //记录最后一次的数据
    u16 lastpos[5][2];
         tp dev.scan(0);
         for(t=0;t<CT_MAX_TOUCH;t++)</pre>
             if((tp dev.sta)&(1 \le t))
```

```
if(tp dev.x[t]<lcddev.width&&tp dev.y[t]<lcddev.height)
                        if(lastpos[t][0]==0XFFFF)
                            lastpos[t][0] = tp dev.x[t];
                            lastpos[t][1] = tp dev.y[t];
                       lastpos[t][0]=tp_dev.x[t];
                       lastpos[t][1]=tp dev.y[t];
    if(tp dev.x[t]<(lcddev.width-0)&&tp dev.x[t]>(lcddev.width-50)&&tp dev.y[t]<(lcddev.height-20)
&&tp_dev.y[t]>(lcddev.height-50))
                            page id = 1;//跳转至主界面
                            SettingTouchArea = 88;
                        }
    if(tp dev.x[t]<(lcddev.width-40)&&tp dev.x[t]>(lcddev.width-100)&&tp dev.y[t]<(lcddev.height-
280)&&tp dev.y[t]>(lcddev.height-320))
                            SettingTouchArea = 1;
                        }
    if(tp dev.x[t]<(lcddev.width-150)&&tp dev.x[t]>(lcddev.width-210)&&tp dev.y[t]<(lcddev.height
-280)&&tp dev.y[t]>(lcddev.height-320))
                            SettingTouchArea = 2;
                        }
    if(tp dev.x[t]<(lcddev.width-280)&&tp dev.x[t]>(lcddev.width-340)&&tp dev.y[t]<(lcddev.height
-280)&&tp dev.y[t]>(lcddev.height-320))
                        {
                            SettingTouchArea = 3;
                        }
    if(tp dev.x[t]<(lcddev.width-410)&&tp dev.x[t]>(lcddev.width-480)&&tp dev.y[t]<(lcddev.height
-280)&&tp dev.y[t]>(lcddev.height-320))
                            SettingTouchArea = 4;
                        }
```

if(tp_dev.x[t]<(lcddev.width-270)&&tp_dev.x[t]>(lcddev.width-330)&&tp_dev.y[t]<(lcddev.height -160)&&tp_dev.y[t]>(lcddev.height-230))

```
{
                         SettingTouchArea = 5;
                     }
    if(tp dev.x[t]<(lcddev.width-380)&&tp dev.x[t]>(lcddev.width-435)&&tp dev.y[t]<(lcddev.height
-160)&&tp dev.y[t]>(lcddev.height-230))
                         SettingTouchArea = 6;
                     }
    if(tp dev.x[t]<(lcddev.width-245)&&tp dev.x[t]>(lcddev.width-345)&&tp dev.y[t]<(lcddev.height
-45)&&tp dev.y[t]>(lcddev.height-110))
                     {
                         SettingTouchArea = 7;
                     }
    if(tp dev.x[t]<(lcddev.width-375)&&tp dev.x[t]>(lcddev.width-445)&&tp dev.y[t]<(lcddev.height
-45)&&tp_dev.y[t]>(lcddev.height-110))
                         SettingTouchArea = 8;
            }else
                 lastpos[t][0]=0XFFFF;
            tp_dev.x[t] = 0;
            tp_dev.y[t] = 0;
        }
    delay ms(40);
}
```

第三章 作品测试与分析

3.1 测试流程

- 1. 测试环境:测试环境使用的是 keil jdk 和串口调试助手,分别完成程序编译和硬件调试。
- 2. 测试设备:测试设备使用的是嵌入式实验开发板(程序运行)、一部 PC (程序烧录)
 - 3. 测试方案: 分别完成题目要求功能指标的基础项和扩展项。

3.2 测试结果

开机页面:

系统功能主界面:

实现室内环境监测功能,数据每隔2秒动态刷新;调整室内温湿度和亮度信号变化,可见动态变化效果;运行正常,满足功能要求。

同时,各项阈值可以调整,例如可以调整温湿度报警的阈值与LED灯的亮度。

阈值设置界面:

左侧显示当前信息,关机时可记录当前时刻的仪表信息存储于EEPROM硬件中,关 机后重新开机复现前次信息于右侧。

识别关灯、开打、通电、断电等指令,实验开发板有对应功能响应

3.3 测试数据

改变实验条件,在不同情况下测试数据:

实验条件	温度	湿度	光照	灯光
正常	30	26	80	1
手遮挡温湿度传	35	79	78	2
感器				
手遮挡光敏传感	32	32	27	4
器				

3.4 测试结果分析

实验结果显示正确,屏幕触摸判断准确,并执行相应的指令,智能仪表模块改变对应变量值,传感器工作正常,有数据的实时更新,实验数据准确,符合题目要求。

第四章 创新性说明

- ▶ 终端数据可视化:由智能家居终端集中显示室内状态信息,实现数据可视化,进行了页面设计,增强用户体验质量。
 - ▶ 个性化:用户可根据实际需求,设定各项警报阈值与室内环境亮度。
 - ▶ 异常行为警报: 当检测到室内有非法闯入行为时, 启动警报。

第五章 总结

本设计完成了基于 STM32 的物联网家居终端系统,实现了题目要求的各项功能,满足题目要求指标,且根据实际需求设计了创新性的扩展优化功能,使得产品适应使用场景,提高了产品的实用性、兼容性,为构建智能家居终端新模式设计并实现了可行性方案。

附录

硬件连接图:

参考文献:

- [1] 毛 臻,丁 涛 杰,杨 兵 . 分 布 式 多 场 景 支 持 智 能 家 居 控 制 器 [J]. 电 子 设 计 工程,2021,29(23):118-122+127.DOI:10.14022/j.issn1674-6236.2021.23.025.
- [2] 周正贵,王松林.基于 NB-IoT 技术的智能家居系统设计[J].齐齐哈尔大学学报(自然科学版),2022,38(01):17-20.
- [3] 陈洪,宋丽涵,陈莉莉,陈羽颀,黄禄强,沈佳慧.基于 STM32 的智能控制型消毒系统[J].科技与创新,2021(22):120-123.DOI:10.15913/j.cnki.kjycx.2021.22.051.
- [4] 朱洪涛,吴雅威.面向智库需求的嵌入式智慧数据服务模式及策略研究[J/OL].情报理论与实践:1-10[2021-12-02].http://kns.cnki.net/kcms/detail/11.1762.G3.20211126.1023.002.html.
- [5] 张 传 深 , 蔡 东 成 , 曹 银 杰 . 基 于 STM32 的 智 能 仓 储 系 统 设 计 [J]. 自 动 化 技 术 与 应 用,2021,40(11):31-34.