Lecture 5: Floating Point Math

ME/AE 6705
Introduction to Mechatronics
Dr. Jonathan Rogers

Lesson Objectives

- Understand how decimal numbers (floating point numbers) are represented on microprocessors
- Be able to convert a decimal number into floating point representation
- Understand the limits of precision using floating point numbers
- Understand fixed point representations
- Understand methods of explicit type conversion (casting) in C programming

Limits of Integer Math

- Last class we learned how integer arithmetic is performed on microprocessors
- In many applications, integer math is not sufficient for the calculations we need

$$\frac{1024}{1099} = 0.9318 \qquad \longleftarrow \begin{array}{l} \text{Zero is often not an} \\ \text{acceptable result} \end{array}$$

– Example: Robot determines its speed = 4 ft/s and needs to travel 3 ft. Does it have 0 sec or 0.75 sec left to travel?

- Floating point numbers are a way to represent decimal numbers with binary digits
- Floating point numbers <u>almost always</u> use 32-bit or 64-bit representation
 - 64-bit can represent larger range of decimal numbers to higher precision
- IEEE 754 floating point standard (32-bit):

Bit 31: Sign Bits 23-31: Exponent

Bits 0-22: Mantissa (fraction)

 Decimal number A represented in floating point as follows:

$$A = (Sign) \times 2^{exponent} \times mantissa$$

Bit 31: Sign Bits 23-31: Exponent Bits 0-22: Mantissa

- Sign bit 1 if negative number, 0 if positive number
- Mantissa represents number between 1 and 2
 - Mantissa computed by letting each bit represent negative power of 2 in decreasing order

Mantissa = 1+(bit 22)×2⁻¹ + (bit 21)×2⁻² +(bit 0)×2⁻²³
=1+(bit 22)×
$$\frac{1}{2}$$
+(bit 21)× $\frac{1}{4}$ +...(bit 0)× $\frac{1}{8388608}$
= 1 + $\sum_{i=0}^{22}$ (bit i)×2 ^{i -23}

- Exponent represented by bits 23-30 (8 bits total)
 - Exponent is binary integer represented by 8 bits minus
 127
 - The -127 is used so both positive and negative exponents can be represented
 - Value of exponent runs between 128 and -127

Exponent =
$$\left(\sum_{i=23}^{30} \left(\text{bit } i\right) \times 2^{i-23}\right) - 127$$

$$A = (Sign) \times 2^{Exponent} \times mantissa$$

Used here in calculation of floating point number

 Determine decimal value of following floating point number:

```
0 10000000 1111100000000000000000000
```

- Step 1: Number is positive since sign bit is 0.
- Step 2: Compute exponent value
 - Exponent = 2^{7} -127 = 128-127 = 1
- Step 3: Compute mantissa
 - Mantissa = 1 + 1/2 + 1/4 + 1/8 + 1/16 = 1.9375

Putting it all together:

$$A = (Sign) \times 2^{Exponent} \times mantissa$$

= $1 \times 2^{1} \times 1.9375 = 3.875$

- Notes:
 - Range of numbers that 32-bit floating point can represent is +/-1.18x10⁻³⁸ to +/-3.4x10³⁸
 - Zero is represented by mantissa = 0 and exponent = 0 (special case)

 Example problem: Determine the decimal number represented by:

```
1 01010011 00001101001010000001100
```


- Converting decimal number A to floating point representation is a bit trickier
 - Step 1: Note whether number is + or to determine sign bit
 - Step 2: Let $2^z = |A|$ and then determine exponent e as e = floor(z)
 - Step 3: Determine mantissa by recursively adding negative powers of 2

- Example problem: Convert 0.15625 into floating point representation.
 - Step 1: Sign bit will be 0 since number is positive
 - Step 2: Find the exponent

$$z = \log_2(0.15625)$$
$$z = \log_2(0.15625) = \frac{\ln(0.15625)}{\ln(2)}$$
$$= -2.6780719$$

$$e = floor(z) = -3$$

- Example continued...
 - Step 3: Computing the mantissa

$$0.15625 = (1) (2^{-3}) x$$
 \leftarrow (definition of floating point number, x is mantissa)
$$x = \frac{0.15625}{2^{-3}} = 1.25 \qquad (x \text{ will always be } \ge 1)$$

- Start at k=0, compare x-1 to 2^{-k} , if $x \ge 2^{-k}$ then set k^{th} bit to 1, otherwise set it to 0
- Then set $x = x 2^{-k}$ and repeat until k = 23 or x = 0

$$k = 0$$
 $1.25 - 1 \ge 2^{-1}$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$ $1.25 - 1 = 0.25$

- Example continued...
- Putting everything together, 1.25 is represented in 32-bit floating point format as

- Writing this in hexadecimal,

- Example continued...
- Putting everything together, 1.25 is represented in 32-bit floating point format as

- Writing this in hexadecimal,

Floating Point Precision

- 32-bit floating point format can only represent a number exactly if it can be created by summing powers of 2 from 2⁻¹ to 2⁻²³
 - i.e., using 24 bits
 - In previous example, our number 0.15625 could be represented exactly because $0.15625 = 2^{-3} + 2^{-5}$
- If the above is not true for the number we are trying to represent, the number will be approximated in floating point by truncating it at the 24th bit
 - This means it will be correct to the ~7th decimal place

Precision Example

 Example: How precisely is 16π represented in floating point format (32 bit)?

Solution:

 By repeating steps from previous example, we find that the floating point representation of 16π is

0x84490FDB mantissa

Precision Example

 The exponent value is 0x84 which is 132 in decimal, thus

exponent =
$$132 - 127 = 5$$

 The mantissa (or fraction) is 0x490FDB which in binary is

```
100 1001 0000 1111 1101 1011
4 9 0 F D B
```


Precision Example

Writing the mantissa f in decimal,

$$f = 1 + 2^{-1} + 2^{-4} + 2^{-7} + 2^{-12} + 2^{-13} + 2^{-14} + 2^{-15} + 2^{-16} + 2^{-17} + 2^{-19} + 2^{-20} + 2^{-22} + 2^{-23}$$
$$= 1.5707963705$$

 Thus, the final decimal value of the floating point representation is:

$$1 \times 2^5 \times 1.5707963705 = 50.265483856$$

Actual value of $16\pi = 50.265482457$

Floating Point Precision

- So far, we have discussed 32-bit floating point numbers
 - In C, these are numbers of type "float"
- In addition, 64-bit floating point numbers are defined to give higher precision
 - In C, these are numbers of type "double"
 - Uses 11-bit exponent instead of 8
 - Uses 52-bit mantissa (or fraction) instead of 23

Floating Point Precision

 Double precision (64-bit) floating point allows much greater precision and range compared to 32-bit

Туре	Width	Range at Full Precision	Precision
Single precision (float)	32 bits	+/-10 ⁻³⁸ to +/-10 ³⁸	Approximately 7 decimal digits
Double precision (double)	64 bits	+/-10 ⁻³⁰⁵ to +/-10 ³⁰⁵	Approximately 15 decimal digits

- Processing floating point numbers (adding, multiplying, dividing, etc) requires a special set of registers on the microprocessor
 - This is called a Floating Point Unit (FPU)
 - Many microcontrollers do not have FPU's
 - If FPU is not available or not activated, processor cannot handle floating point numbers
- Furthermore, floating point math is slower than integer math even if FPU is available
 - Thus, alternative called Fixed Point sometimes used

- Fixed point numbers are used to represent noninteger values
- They consist of an <u>integer</u> I and a <u>fixed constant</u> Δ
 - Integer part I is stored in memory as normal integer type
 - Constant Δ is not stored in memory and cannot be changed, but rather is set by programmer when software is written

$$f = I \times \Delta$$

- Δ is a multiplier value that we use during input and output to convert physical units to integers which are stored in memory and manipulated
 - Example: $\Delta = 0.001$. Thus, to represent 2.314 in memory, we would simply use an integer value of 2314.
 - Before inputting values to program, we would divide our values by 0.001.
 - After outputting values from program, we multiply integer values by 0.001.

- Decimal fixed point number (Δ power of 10)
 - Easier for input and output

Decimal fixed point number = $I \times 10^m$ for some fixed constant m < 0

- Binary fixed point number (Δ power of 2)
 - Easier for mathematical calculations

Binary fixed point number = $I \times 2^n$ for some fixed constant n < 0

 Note: Binary fixed point numbers are easier to use if you have different values of Δ throughout your program and you need to convert between them.

- Example: Suppose for your program you decide to use $\Delta = 0.001$. How would 3π be represented in fixed point format in your program?
 - Furthermore, what size integer is required to represent it?

- Example: Suppose for your program you decide to use $\Delta = 0.001$. How would 3π be represented in fixed point format in your program?
 - Furthermore, what size integer is required to represent it?
- Solution:

```
3\pi = 9.42477796076938

\rightarrow 9.42477796076938 / 0.001 = 9424.7779607...
```

- Thus, an integer of 9425 would be used to represent 3π in memory
- Note this integer must be at least 16 bits to avoid problems with overflow

- Example: Suppose for your program you decide to use $\Delta = 2^{-8}$. How would 3π be represented in fixed point format in your program?
 - Furthermore, what size integer is required to represent it?

- Example: Suppose for your program you decide to use $\Delta = 2^{-8}$. How would 3π be represented in fixed point format in your program?
 - Furthermore, what size integer is required to represent it?
- Solution:

$$3\pi / 2^{-8} = 9.4247779607 / 0.00390625$$

= 2412.74315795...

- Thus, an integer of value 2413 would be used to represent 3π in memory
- Note this integer must be at least 16 bits to avoid problems with overflow

Fixed Point Arithmetic

- Δ can be thought of as just a "scale factor" that converts units in your program to physical units
- For example, you may be dealing with Volts in the "physical" domain, but processor will deal with millivolts if $\Delta = 0.001$.
- As a result, fixed point numbers can be added, subtracted, multiplied, and divided exactly the same as with integers
 - If they have different values of Δ, conversion to same Δ must be done first

- Suppose you have a value of B = 4386 in memory, which is a fixed point value with Δ = 0.001 representing voltage measured across two pins
- You have another value of C = 357421 which is fixed point value with $\Delta = 10^{-6}$ representing voltage measured across two other pins
- You wish to add these voltages in your program so that D = B + C is a fixed point value. How do you do this so as to maintain <u>maximum precision</u> (minimum truncation error)?

Fixed vs Floating Point

Floating Point

- Uses more memory and is slower
 - All numbers use at least 32 bits
- Must have FPU available and active
- Can handle large variation in range of numbers
- Called "floating point" because number of decimal places varies depending on how large number is

Fixed Point

- Uses less memory and is faster
- Will always work regardless of processor (even if no FPU available)
- Only accurate if range of numbers is known and small
- Called "fixed point" because number of decimal places always fixed for each number

- C99 compilers will automatically perform type conversions when arithmetic is done on two different variable types
- When two types are operated on, lower order is converted to higher with result stored as higher order
- Order is:

- Double
- Float
- Signed 32 bit
- Unsigned 32 bit
- Signed 16 bit
- Unsigned 16 bit
- Signed 8 bit
- Unsigned 8 bit

Consider fragment of C program below:

```
int8 t num1 = 77;
int8 t num2 = 82;
int16 t num3 = -534;
int32 t res = 0;
res = num3 - (num1 + num2);
                Added as 8 bit, stored as 8 bit
             8 bit converted to 16 bit,
             added as 16 bit
```


- Explicit conversion from one variable to type to another can be done at any time by placing (type) directly before variable
 - This is called <u>typecasting</u>
- Consider previous case. Adding num1 and num2 would cause overflow (since 77 + 82 > 127)
- Can fix this by typecasting one number to 16-bit integer

```
int8_t num1 = 77;
int8_t num2 = 82;
int16_t num3 = -534;
int32_t res = 0;

res = (int32_t) num3 - ((int16_t) num1 + num2);
```

 Similarly, typecasting is also done for 32 bit and 64 bit floating point types

```
float num1 = 77.6598;
float num2 = 82.4758;
int16_t num3 = -534;
double res = 0;

res = num3 - (num1 / num2);
```

- num1 and num2 divided as 32 bit floats, num3 converted to 32 bit float and added to –(num1+num2)
- Result then converted to 64 bit float and set equal to res

 Using explicit typecasting is always better as it helps to keep track of precision during math operations

```
float num1 = 77.6598;
float num2 = 82.4758;
int16_t num3 = -534;
double res = 0;

res = (double)((float)num3 - (num1 / num2));
```


printf Function in C

- In C, you can print variables to screen during runtime using printf function
 - Supported for TI microcontroller in debug mode
- Example functionality:

Important: %XX characters tell compiler how to interpret value during printing process (i.e., variable type).

Prints num2 and num3 to screen, then ends line (return).

printf Function in C

Specifier	Output	Example
%C	Character	a
%d or %i	Signed decimal integer	-392
%ld	Signed 32 bit long decimal integer	65846214
%e	Scientific notation	6.022141e23
%E	Scientific notation, capital letter	6.022141E23
%f	Floating point	3.14159
%0	Unsigned octal	610
%S	String of characters	Sample
%u	Unsigned decimal integer	7235
% X	Unsigned hexadecimal integer	7fa
%X	Unsigned hexadecimal integer (capital letters)	7FA
%4.10f	Specific precision floating point	0014.6589743241

printf Function in C

 Note: Printing out using the wrong specifier for the type of variable can produce some very strange results

```
int32_t res = 15;

printf("res = %f\n'', res);

prints res = 0.000
```

```
int32_t res = 15;

printf("res = %d\n", res);

prints res = 15
```


Review Example Code

Review Lecture 5 example code

