Meta-analytic

Functional Decoding

Youngjo Song

But we can ...

working memory 54% emotion 32% language 14%

Forward/Reverse Inference

Why We Need Meta-Analysis in fMRI Research

- Rapid growth of fMRI studies has produced massive amounts of data.
- Individual studies are often underpowered and prone to false positives.
- Reliable conclusions require evidence across multiple studies.
- Meta-analysis enables large-scale data aggregation and synthesis.

NiMARE: Neuroimaging Meta-Analysis Research Environment

- NiMARE is a Python package for conducting metaanalyses of neuroimaging studies.
- It provides a standardized, flexible interface for multiple algorithms and databases

Contents

fMRI Meta-analysis via NiMARE

Overview of fMRI Meta-Analysis Workflow

Using NiMARE: Practical Guide and Example

Alternative Options and Key Details

01

Overview of fMRI Meta-Analysis Workflow

An Overview of Meta-analysis

Müller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., ... & Eickhoff, S. B. (2018). Ten simple rules for neuroimaging meta-analysis. *Neuroscience & Biobehavioral Reviews*, *84*, 151-161.

An Overview of Meta-analysis

An Overview of NiMARE Input

02

Using NiMARE: Practical Guide and Example

Goal: Functionally Characterizing a Given Spatial Map

- We aim to interpret three spatial maps.
 - These maps are three different components from NeuroMark 2.2 template.

Sensorimotor z = 61DMN (Precu) DMN (MPFC)

You need to threshold the spatial maps to retain only the most significant regions.

This step is required in order to use the NeuroSynth Decoder.

How can we collect data from the studies for

meta-analysis?

Activation patterns are reported based on the local maxima (i.e., peaks).

	Pea	k coordin	ates		
Region of interest	MNI _x	MNI _y	MNIz	N _{vox}	
Default Mode Network					
PCC/PCUN	-1	-57	26	5561	SFG PCC/PCUN mPFC I-MTG
mPFC	-1	59	2	2537	FCC/FCON
right-AG	48	-66	31	1024	
left-AG	-45	-69	31	1712	
right-SFG	24	33	45	170	医学到 医 6 3 医学到
left-SFG	-22	34	45	267	
left-MTG	-61	-12	-21	287	AG
Anti-Correlated Netwo	rk				SMA r-SMG DLPFC INS
SMA	7	4	53	1630	
right-SMG	56	-38	38	2142	
right-INS	48	10	3	2093	に 12 日本 12
left-INS	-47	6	-0	1406	にまる
right-DLPFC	40	42	19	1074	
left-DLPFC	-37	41	22	347	

Activation patterns are reported based on the local maxima (i.e., peaks).

	Pea	k coordin	ates		
Region of interest	MNI _x	MNI _y	MNIz	N _{vox}	
Default Mode Network				_	
PCC/PCUN	-1	-57	26	5561	SFG PCC/PCUN mPFC I-MTG
mPFC	-1	59	2	2537	PCC/PCOIN
right-AG	48	-66	31	1024	
left-AG	-45	-69	31	1712	
right-SFG	24	33	45	170	
left-SFG	-22	34	45	267	
left-MTG	-61	-12	-21	287	AG
Anti-Correlated Network					SMA r-SMG DLPFC INS
SMA	7	4	53	1630	
right-SMG	56	-38	38	2142	
right-INS	48	10	3	2093	に
left-INS	-47	6	-0	1406	にまる
right-DLPFC	40	42	19	1074	
left-DLPFC	-37	41	22	347	

We need to extract these.

NeuroSynth provides a database that stores the extracted peaks

All we need is just downloading the data.

STEP 1. Download datasets

- First, we need to download the dataset that will be used to train the NeuroSynth decoder.
 - The activation peak coordinates extracted and study-annotated data are provided by NeuroSynth via GitHub.


```
# DownLoad Neurosynth
# Neurosynth's data files are stored at https://aithub.com/neurosynth/neurosynth-data.
from nimare import extract
import os
from nimare import io
# The overall procedure may take a while (~10 minutes)
# Download the desired version of Neurosynth from GitHub.
files = extract.fetch neurosynth(
   data dir='./neurosynth data',
   version="7".
   source="abstract".
   vocab="terms",
   overwrite=True.
print(files)
neurosynth db = files[0]
# Convert the files to a Dataset.
neurosynth dset = io.convert neurosynth to dataset(
   coordinates_file=neurosynth_db["coordinates"],
   metadata file=neurosvnth db["metadata"].
   annotations files=neurosynth db["features"],
# Save the Dataset for Later use.
neurosynth dset.save(os.path.join('./neurosynth data', "neurosynth dataset.pkl.gz"))
INFO:nimare.extract.utils:Dataset created in ./neurosynth data/neurosynth
INFO:nimare.extract.extract:Searching for any feature files matching the following criteria: [('source-abstract', 'vocab-terms', 'data-neurosynth', 'version-7')]
Downloading data-neurosynth version-7 coordinates.tsv.gz
Downloading data-neurosynth version-7 metadata.tsv.gz
Downloading data-neurosynth version-7 vocab-terms source-abstract type-tfidf features.npz
Downloading data-neurosynth version-7 vocab-terms vocabulary.txt
```

[{'coordinates': '/home/users/ysong30/Documents/Projects/Functional_Decoding_Tutorial/neurosynth_data/neurosynth/data-neurosynth_version-7_coordinates.tsv.gz', 'metadata': '/home/users/ysong30/Documents/Projects/Functional_Decoding_Tutorial/neurosynth_data/neurosynth/data-neurosynth_version-7_metadata.tsv.gz', 'features': '/home/users/ysong30/Documents/Projects/Functional_Decoding_Tutorial/neurosynth data/neurosynth/data-neurosynth version-7 vocab-terms source-abstract type-tfidf features.npz'. 'vocabular

y': '/home/users/ysong30/Documents/Projects/Functional Decoding Tutorial/neurosynth data/neurosynth/data-neurosynth version-7 vocab-terms vocabulary.txt'}

WARNING:nimare.utils:Not applying transforms to coordinates in unrecognized space 'UNKNOWN'

Checks how many studies are included in this dataset.
All coordinates are represented in MNI152 space.

print(neurosynth_dset)

Dataset(14371 experiments, space='mni152_2mm')

	id	study_id	contrast_id	authors	journal	year	title
0	10022492-1	10022492	1	Callicott JH, Mattay VS, Bertolino A, Finn K,	Cerebral cortex (New York, N.Y. : 1991)	1999	Physiological characteristics of capacity cons
1	10022494-1	10022494	1	Toni I, Schluter ND, Josephs O, Friston K, Pas	Cerebral cortex (New York, N.Y. : 1991)	1999	Signal-, set- and movement-related activity in
2	10022496-1	10022496	1	Lockwood AH, Salvi RJ, Coad ML, Arnold SA, Wac	Cerebral cortex (New York, N.Y. : 1991)	1999	The functional anatomy of the normal human aud
3	10051677-1	10051677	1	Denton D, Shade R, Zamarippa F, Egan G, Blair	Proceedings of the National Academy of Science	1999	Correlation of regional cerebral blood flow an
4	10191322-1	10191322	1	Chee MW, Tan EW, Thiel T	The Journal of neuroscience : the official jou	1999	Mandarin and English single word processing st

Check which studies are included.
neurosynth_dset.metadata.head()

The coordinates of activation peaks are extracted for each study. neurosynth_dset.coordinates.head()

	id	study_id	contrast_id	х	у	z	space
1483	10022492-1	10022492	1	36.0	-58.0	52.0	mni152_2mm

1483	10022492-1	10022492	1	36.0	-58.0	52.0	mni152_2mm
1499	10022492-1	10022492	1	48.0	24.0	20.0	mni152_2mm
4.400	10000100 1	10000100	4	40.0	26.0	20.0	:450.0

1497 10022492-1 10022492

1496 10022492-1 10022492

1483	10022492-1	10022492	1	36.0	-58.0	52.0	mni152_2mm
1499	10022492-1	10022492	1	48.0	24.0	20.0	mni152_2mm
1498	10022492-1	10022492	1	-42.0	26.0	20.0	mni152_2mm

1 -30.0

1 -36.0 30.0 16.0 mni152_2mm

32.0

0.0 mni152_2mm

How can we know each study or each peak is

related to which cognitive aspect?

Article annotation

- The content of each article is represented as a TF-IDF vector, where each element corresponds to a cognitive term (or label).
- The raw text used to annotate the NeuroSynth database is the article abstract.

Physiological Characteristics of Capacity Constraints in Working Memory as Revealed by Functional MRI

A fundamental characteristic of working memory is that its capacity to handle information is limited. While there have been many brain mapping studies of working memory, the physiological basis of its capacity limitation has not been explained. We identified characteristics of working memory capacity using functional magnetic resonance imaging (fMRI) in healthy subjects. Working memory capacity was studied using a parametric 'n-back' working memory task involving increasing cognitive load and ultimately decreasing task performance. Loci within dorsolateral prefrontal cortex (DLPFC) evinced exclusively an 'inverted-U' shaped neurophysiological response from lowest to highest load, consistent with a capacity-constrained response. Regions outside of DLPFC, in contrast, were more heterogeneous in response and often showed early plateau or continuously increasing responses, which did not reflect capacity constraints. However, sporadic loci, including in the premotor cortex, thalamus and superior parietal lobule, also demonstrated putative capacity-constrained responses, perhaps arising as an upstream effect of DLPFC limitations or as part of a broader network-wide capacity limitation. These results demonstrate that regionally specific nodes within the working memory network are capacity-constrained in the physiological domain, providing a missing link in current explorations of the capacity characteristics of working memory.

TF-IDF: term frequency-inverse document frequency

A measure of importance of a word to a document in a collection or corpus, adjusted for the fact that some words appear more frequently in general.

Cognitive Terms

- You can check the all the terms are used to annotate the studies.
- A frequency vector of each term represents a single study.

```
# Cognitive Labels to describe studies
neurosynth_dset.annotations.columns.tolist()[100:110]

['terms_abstract_tfidf__actively',
  'terms_abstract_tfidf__activities',
  'terms_abstract_tfidf__acts',
  'terms_abstract_tfidf__actual',
  'terms_abstract_tfidf__actually',
  'terms_abstract_tfidf__acute',
  'terms_abstract_tfidf__ad',
  'terms_abstract_tfidf__adaptation',
  'terms_abstract_tfidf__adapted',
  'terms_abstract_tfidf__adaptive']
```


0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5 rows × 3231 columns

neurosynth_dset.annotations.head()

3 10051677-1 10051677

4 10191322- 10191322

This dataset includes annotations for each study using TF-IDF (Term Frequency-Inverse Document Frequency).

0.0

0.0

3228 terms are used to annotate each study.

0.0

0.0

TF-IDF

terms_abstract_tfidfwords	terms_abstract_tfidfwork	terms_abstract_tfidfworking	terms_abstract_tfidf_working memory
0.0	0.0	0.317592	0.320417
0.0	0.0	0.000000	0.00000
0.0	0.0	0.000000	0.000000
0.0	0.0	0.000000	0.000000
0.0	0.0	0.000000	0.000000

TF-IDF value for working memory

Check "Code02_Decoding_with_neurosynth_data.ipynb"

STEP 2. Specify Terms of Interest

Only 24 topic terms were used in Margulias et al. (2016)'s work.

- More than 3,000 terms are used for annotation in the NeuroSynth dataset.
 - However, these include non-cognitive terms (e.g., brain regions or demographic information) and semantically duplicated terms (e.g., short-term memory vs. working memory).
- Refining these terms can improve both decoding efficiency and interpretability


```
neuroquery dset copy = neuroquery dset.copy()
neuroquery_dset_copy.annotations=neuroquery_dset_copy.annotations.iloc[:, [0,1,2,
                                                           71-1, 452-1, 478-1, 511-1, 1084-1, 1806-1, 1956-1, 1967-1, 2721-1, 2932-1, 3347-1,
                                                           3509-1, 3557-1, 3777-1, 3964-1, 4674-1, 4850-1, 5259-1, 6143-1,
                                                           6150-1, 6168-1, 6184-1, 6280-1]]
# display the selected cognitive terms
column names = neuroquery dset copy.annotations.columns.tolist()
new_column_names = column_names[:3]
for i in range(3,len(column_names)):
    cleaned_term = column_names[i].split("__")[1]
    print(cleaned term)
    new_column_names.append(cleaned_term)
# Replace column names
neuroquery_dset_copy.annotations.columns = new_column_names
action
attention
auditorv
autobiographical
                                                           You should select cognitive terms for decoding.
cognitive control
emotional
eye movement
                                                           Here, for demonstration purposes, I used terms
face
                                                           similar to those in Margulias et al. (2016).
inhibition
language
memory
motor
multisensory
numerical
pain
reading
reward
social cognition
visual
visual attention
visual perception
visuospatial
working memory
```

Specify the scope of cognitive terms

STEP 3. Choose and Train a Decoder

- Several decoding algorithms are available in NiMARE:
 - NeuroSynth decoder
 - BrainMap decoder
 - ROI Association Decoder
 - Correlation Decoder
- These algorithms are based on different assumptions and inference approaches.

inference for functional decoding, there isn't much to fit (i.e., train) although NiMARE uses the basic fit–transform.

Since ROI decoders essentially perform Bayesian

```
#### Training NeuroSynth Decoder ####

from nimare.decode import discrete

# Get studies with voxels in the mask
ids = neurosynth_dset.get_studies_by_mask(ICN_SM_thres_mni152)

# Train the decoder
decoder = discrete.NeurosynthDecoder(correction=None)
```

decoder.fit(neurosynth_dset_copy)

STEP 4. Decode

- Perform Bayesian inference to quantify the degree of association between term use and voxel activation.
 - If probReverse is high, a given region activates more consistently in studies that mention the current term than in those that do not.

Major outputs for reports #### Decode #### decoded df = decoder.transform(ids=ids) decoded_df.sort_values(by="probReverse", ascending=False) zForward probForward pReverse zReverse probReverse Term motor 0.000000e+00 0.416853 5.714893e-180 28.60565 0.674786 NaN NaN 0.436507 1.255302e-07 5.285254 0.631976 eve movements 1.467755e-27 5.912026e-14 7.510016 0.400493 10.877983 0.610139 visual attention NaN NaN 0.382826 3.987689e-03 2.879134 0.579309 visuospatial NaN NaN 0.372239 4 167178e-04 3 529264 0.568481 attention 3.370160e-116 22.913990 0.348409 6.875312e-09 5.793942 0.548643 9.181554e-30 -11.331315 0.355107 1.024070e-03 3.283829 0.548476 5.873927 3.509021e-05 4.137636 0.543657 1.708363e-15 -7.960868 0.350032 2.608555e-03 3.010456 0.541904 visual perception NaN NaN 0.348176 3.253452e-01 0.983533 0.536358 -8.969764 4.210679e-02 2.032463 0.529080 cognitive control 2.971511e-19 0.341351 visual 0.000000e+00 0.330133 9.353038e-03 2.598873 0.518645 numerical NaN NaN 0.323850 9.742068e-01 0.032333 0.501098 memory 3.035747e-231 32.467821 0.321518 5.946423e-01 -0.532121 0.495893 0.319151 8.337580e-01 -0.209884 0.493604 multisensory NaN NaN social cognition NaN NaN 0.313993 5.520877e-01 -0.594635 0.484956 3.268939e-04 3.592999 0.314631 1.357842e-01 -1.491676 0.483603 2.444843e-15 -7.916401 0.312389 1.778519e-01 -1.347399 0.480830 1.525824e-02 -2.426191 0.302649 1.481385e-03 -3.178306 0.460416 2.043242e-60 -16.395978 0.300651 2.009105e-02 -2.324643 0.459656

Ref: https://neurosynth.org/faq/#q18

0.436507

0.400493

0.382826

1.255302e-07

3.987689e-03

1.467755e-27 10.877983

5.285254

2.879134

0.631976

0.610139

0.579309

NaN

NaN

7.510016

eye movements

visual attention

action

NaN

NaN

5.912026e-14

Forward/Reverse Inference

a.k.a. Uniformity test

The degree to which each voxel is consistently activated in studies that use a given term.

a.k.a. Association test

The degree to which a given region activates more consistently in studies that mention the current term than in those that do not

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8(8), 665-670.

Forward/Reverse Inference for Emotion

If a given brain area is all activated during working memory-, emotion-, and language-mentioned studies, ...

Forward probability (p(activaiton|term)) of this area is high. Reverse probability (p(term|activation)) of this area is low.

Forward/Reverse Inference for Emotion

If a given brain area is specifically activated during emotion-mentioned task, ...vv

Forward probability (p(activaiton|term)) of this area is high. Reverse probability (p(term|activation)) of this area is high.

Forward/Reverse Inference

I highly recommend you to understand the formula to get the nuiances in these two probability.

a.k.a. Uniformity test

$$p(A_j = 1 | T_k = 1) = \left[\sum_i A_{ij} T_{ik} + 1 \right] / \left[\sum_i T_{ik} + 2 \right]$$

Reverse inference

a.k.a. Association test

$$p(T_k = 1|A_j = 1) = p(A_j = 1|T_k = 1)p(T_k = 1)/p(A_j = 1)$$

 $p(T_k = 1) = p(T_k = 0) = 0.5$

 T_{ik} : Whether term k is present in study i (0 or 1). A_{ij} : Whether voxel j is activated in study i (0 or 1) A_j : Whether voxel j is activated (0 or 1). T_k : Whether term k is present (0 or 1).

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8(8), 665-670.

STEP 4. Decode

 NeuroSynth decoder accesses statistical significance by performing a chi-square test to determine if presence of the label and selection are independent.

Ref:

https://nimare.readthedocs.io/en/0.0.11/decodin g.html#the-neurosynth-roi-association-approach

Statistical significance #### Decode #### decoded df = decoder.transform(ids=ids) decoded_df.sort_values(by="probReverse", ascending=False) zForward probForward pReverse zReverse probReverse pForward Term motor 0.000000e+00 0.416853 5.714893e-180 28.605651 0.674786 eye movements NaN NaN 0.436507 1.255302e-07 5.285254 0.631976 10.877983 5.912026e-14 7.510016 0.400493 1.467755e-27 0.610139 visual attention NaN NaN 0.382826 3.987689e-03 2.879134 0.579309 visuospatial NaN NaN 0.372239 4.167178e-04 3 529264 0.568481 attention 3.370160e-116 22.913990 0.348409 6.875312e-09 5.793942 0.548643 9.181554e-30 -11.331315 0.355107 1.024070e-03 3.283829 0.548476 4.255896e-09 5.873927 0.348996 3.509021e-05 4.137636 0.543657 inhibition 1.708363e-15 -7.960868 0.350032 2.608555e-03 3.010456 0.541904 visual perception NaN NaN 0.348176 3.253452e-01 0.983533 0.536358 -8.969764 0.341351 4.210679e-02 2.032463 0.529080 cognitive control 2.971511e-19 visual 0.000000e+00 0.330133 9.353038e-03 2.598873 0.518645 numerical NaN NaN 0.323850 9.742068e-01 0.032333 0.501098 memory 3.035747e-231 32.467821 0.321518 5.946423e-01 -0.532121 0.495893 0.319151 8.337580e-01 -0.209884 0.493604 multisensory NaN NaN social cognition NaN NaN 0.313993 5.520877e-01 -0.594635 0.484956 3.268939e-04 3.592999 0.314631 1.357842e-01 -1.491676 0.483603 2.444843e-15 -7.916401 0.312389 1.778519e-01 -1.347399 0.480830 1.525824e-02 -2.426191 0.302649 1.481385e-03 -3.178306 0.460416 emotion 2.043242e-60 -16.395978 0.300651 2.009105e-02 -2.324643 0.459656

Decoding Results – sensorimotor

	pForward	zForward	probForward	pReverse	zReverse	probReverse
Term						
motor	0.000000e+00	inf	0.416853	5.714893e-180	28.605651	0.674786
eye movements	NaN	NaN	0.436507	1.255302e-07	5.285254	0.631976
action	5.912026e-14	7.510016	0.400493	1.467755e-27	10.877983	0.610139
visual attention	NaN	NaN	0.382826	3.987689e-03	2.879134	0.579309
visuospatial	NaN	NaN	0.372239	4.167178e-04	3.529264	0.568481
attention	3.370160e-116	22.913990	0.348409	6.875312e-09	5.793942	0.548643
pain	9.181554e-30	-11.331315	0.355107	1.024070e-03	3.283829	0.548476
working memory	4.255896e-09	5.873927	0.348996	3.509021e-05	4.137636	0.543657
inhibition	1.708363e-15	-7.960868	0.350032	2.608555e-03	3.010456	0.541904
visual perception	NaN	NaN	0.348176	3.253452e-01	0.983533	0.536358
cognitive control	2.971511e-19	-8.969764	0.341351	4.210679e-02	2.032463	0.529080
visual	0.000000e+00	inf	0.330133	9.353038e-03	2.598873	0.518645
numerical	NaN	NaN	0.323850	9.742068e-01	0.032333	0.501098

Decoding Results - DMN (Precuneus)

Decoding Results - DMN (MPFC)

	pForward	zForward	probForward	pReverse	zReverse	probReverse
Term						
autobiographical memory	NaN	NaN	0.535312	9.027011e-12	6.821221	0.667168
social cognition	NaN	NaN	0.472863	4.280846e-13	7.246372	0.624821
reward	8.437706e-42	13.545379	0.443557	5.480242e-33	11.964079	0.610085
emotion	2.670773e-41	13.460507	0.416818	1.069867e-18	8.827557	0.581853
pain	5.044729e-10	-6.217707	0.406055	1.815443e-06	4.772953	0.563180
inhibition	9.747957e-04	-3.297702	0.397881	1.641752e-05	4.308756	0.554101
cognitive control	1.803367e-05	-4.287941	0.389350	7.586440e-04	3.367459	0.543312
memory	0.000000e+00	inf	0.364064	7.328978e-02	1.791022	0.512517
attention	1.196019e-107	22.039824	0.358597	9.702710e-01	0.037268	0.500312

Decoding Results - DMN (MPFC)

Compared to the Precuneus, Reward/Emotion shows a higher rank and statistical significance in the MPFC.

03

Alternative Options and Key Details

Alternative Option – NeuroQuery Dataset

- NeuroQuery is a tool for meta-analysis of neuroimaging studies.
- Unlike NeuroSynth, NeuroQuery is focused on producing a brain map that predicts where in the brain a study on the topic of interest is likely report observations.

Alternative Option – NeuroQuery Dataset

 The dataset used in NeuroQuery includes more diverse cognitive terms for annotation and covers a wider range of journals.

	NeuroSynth	NeuroQuery
Dataset size		
articles	14 371	13 459
terms	3 228 (1 335 online)	7 547
journals	60	458
raw text length (words)	≈4 M	≈75 M
unique term occurrences	1 063 670	5 855 483
unique term occurrences in voc intersection	677 345	3 089 040
coordinates	448 255	418 772
Coordinate extraction errors on conflicting articles		
articles with false positives / 40	20	3
articles with false negatives / 40	28	8

They provide the dataset through GitHub.

We can use this for decoding!

Check "Code03_Decoding_with_neuroquery_data.ipynb"

Decoding Results – DMN (MPFC)

NeuroSynth Decoder trained with the NeuroQuery Dataset

	pForward	zForward	probForward	pReverse	zReverse	probReverse
Term						
autobiographical	NaN	NaN	0.499960	4.829034e-47	14.404773	0.625802
emotional	0.000000e+00	inf	0.400049	1.192973e-92	20.416506	0.608044
reward	9.894976e-01	-0.013163	0.435347	2.677134e-51	15.066814	0.589664
social cognition	NaN	NaN	0.447569	3.299004e-21	9.452795	0.578420
pain	0.000000e+00	-inf	0.421356	6.375812e-11	6.534651	0.549733
cognitive control	7.322371e-12	-6.851218	0.412854	3.366900e-14	7.583371	0.547715
inhibition	2.706134e-11	6.661735	0.398485	6.474637e-06	4.510266	0.526218
attention	0.000000e+00	inf	0.384278	5.011440e-05	4.055093	0.523276
memory	0.000000e+00	inf	0.387311	5.985336e-03	2.748584	0.515232
face	2.016254e-16	8.221112	0.391470	2.858343e-01	1.067305	0.506159
action	2.413422e-14	7.626431	0.389724	9.894885e-01	0.013175	0.500076

Results should be similar.

Alternative Option - BrainMap Decoder

 BrainMap decoder accounts for the number of activation foci per study.


```
#### BrainMap Decoder ####
from nimare.decode import discrete
# Get studies with voxels in the mask
ids = neurosynth dset.get studies by mask(ICN SM thres mni152)
# Decode
decoder = discrete.BrainMapDecoder(correction="fdr bh")
decoder.fit(neurosynth dset copy)
decoded_df = decoder.transform(ids=ids)
decoded_df.sort_values(by="probReverse", ascending=False)
/home/users/ysong30/anaconda3/envs/fmri/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:84: Future
in a future version this will reduce over both axes and return a scalar. To retain the old behavior, pass
  return reduction(axis=axis, out=out, **passkwargs)
                                           zForward likelihoodForward
                            pForward
                                                                             pReverse zReverse probReverse
                   Term
                        0.000000e+00
                                                  inf
                                                              1.441339 5.714893e-180 28.605651
                                                                                                     0.163733
                         4.085129e-01
                                        8.265135e-01
                                                              1.006461
                                                                         9.353038e-03
                                                                                       2.598873
                                                                                                     0.138624
                                                                         5.946423e-01
                                                                                      -0.532121
                         9.691869e-01
                                        3.862815e-02
                                                              0.938963
                                                                                                     0.114108
                         1.838037e-05
                                       4.283708e+00
                                                              1.171541
                                                                         6.875312e-09
                                                                                       5.793942
                                                                                                     0.095001
       working memory
                         5.194925e-03
                                       2.794692e+00
                                                              1.134622
                                                                         3.509021e-05
                                                                                       4.137636
                                                                                                     0.054822
                         2.170422e-10
                                       6.348771e+00
                                                              1.366431
                                                                         1.467755e-27
                                                                                     10.877983
                                                                                                     0.053617
                         9.854723e-01
                                        1.820873e-02
                                                              0.894990
                                                                         1.357842e-01 -1.491676
                                                                                                     0.049625
                auditory
                         9.798428e-01
                                       -2.526605e-02
                                                              0.887025
                                                                         1.481385e-03
                                                                                     -3.178306
                                                                                                     0.040738
                         9.999966e-01
                                       -4.204964e-06
                                                              0.780283
                                                                         6.593925e-04
                                                                                      -3.405929
                                                                                                     0.038047
               language
                         9.327199e-01 -8.442331e-02
                                                              0.909637
                                                                         1.069239e-03 -3.271645
                                                                                                     0.037143
               inhibition 3.175586e-04 -3.600539e+00
                                                              1.259354
                                                                         2.608555e-03
                                                                                       3.010456
                                                                                                     0.033520
        cognitive control 3.352167e-03 -2.933451e+00
                                                              1.204387
                                                                         4.210679e-02
                                                                                       2.032463
                                                                                                     0.031897
```

Check "Code02_Decoding_with_neurosynth_data.ipynb"

Alternative Option - ROI Association Decoder

 The ROI association decoding method computes the correlation between averaged modeled activation within a target ROI and term weights for all labels, yielding one correlation coefficient per label

```
#### ROI Assoication Decoder (used in Margulias et al. 2016) ####
from nimare.decode import discrete
decoder = discrete.ROIAssociationDecoder(ICN_SM_thres_mni152)
decoder.fit(neurosynth_dset_copy)
# The `transform` method doesn't take any parameters.
decoded_df = decoder.transform()
decoded_df.sort_values(by="r", ascending=False)
                feature
                        0.300255
                 motor
                        0.089180
         eye movements 0.072698
              attention 0.034519
       working memory 0.029189
            visuospatial 0.026658
              inhibition
                        0.022357
                   pain 0.011743
         visual attention 0.006437
                 visual 0.003127
       cognitive control -0.001027
       visual perception -0.002997
              numerical -0.003374
                reading -0.007402
        social cognition -0.009577
           multisensory -0.010492
```

z=61

Check "Code02_Decoding_with_neurosynth_data.ipynb"

verbal -0.013694

Useful references...

- NeuroSynth paper: Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8(8), 665-670.
- NiMARE paper: https://preprint.neurolibre.org/10.55458/neurolibre.00007/00_abstract.html
- NiMARE docs: https://nimare.readthedocs.io/en/stable/index.html

Enjoy exploring it!