

Project Report

Submitted By:

Name: Md. Fahmid Bin Mostafa

ID: 212-15-4233 **Section**: 59 A

Course Title: Big data and IoT

Course Code: CSE412

Submitted To:

Name: Md. Asif Mahmud Ridoy

Department: Computer Science and Engineering

Submission Date: 04/06/2024

IoT-Based Architectural Model for Big Data Utilization in Decision-Making

1. Introduction

The Internet of Things (IoT) integrates devices for real-time data collection, and Big Data analytics processes this information to enhance decision-making across various sectors.

2. Objectives

- Integrate IoT devices for seamless data collection.
- Utilize Big Data technologies for processing and analysis.
- Enable real-time, data-driven decision-making.
- Improve operational efficiency and strategic planning.
- Ensure data security and privacy.

3. Working Procedure

Data Collection

- Sensors and Devices: Deployed in various environments to collect data on different parameters.
- Connectivity: Data is transmitted to a central server or cloud platform via Wi-Fi, Bluetooth, Zigbee, or cellular networks.

Data Ingestion and Storage

- Data Ingestion: Uses technologies like Apache Kafka or AWS Kinesis for data streaming.
- Data Storage: Employs systems such as HDFS or Amazon S3.

Data Processing and Analysis

- Data Processing: Utilizes frameworks like Apache Spark for cleaning and transforming data.
- Real-Time Analytics: Uses engines like Spark Streaming for immediate insights.
- Batch Analytics: Analyzes historical data.

Data Analysis and Machine Learning

• Descriptive Analytics: Identifies trends and patterns.

- Predictive Analytics: Uses machine learning to forecast outcomes.
- Prescriptive Analytics: Recommends actions to optimize results.

Decision-Making

- Dashboards and Visualization: Tools like Tableau or Power BI present data insights.
- Automated Decision Systems: Make decisions based on predefined rules.

4. Social Impacts

Positive Impacts

- Enhanced Efficiency: Reduces waste and optimizes resources.
- Better Quality of Life: Improves safety, health, and convenience.
- Economic Growth: Drives innovation and new business opportunities.

Negative Impacts

- Privacy Concerns: Risks of data breaches and unauthorized access.
- Job Displacement: Potential for automation to reduce certain jobs.
- Digital Divide: Unequal access to technology.

5. Conclusion

Integrating IoT with Big Data analytics revolutionizes decision-making by providing real-time insights and enhancing efficiency. Addressing privacy, security, and inclusivity concerns is crucial for equitable benefits. This model promotes a data-driven approach to a smarter future.