Introduction to Machine Learning. Lec.9 Logistic Regression

Aidos Sarsembayev, IITU, 2018

Linear Regression

-Simple:

$$y = b_0 + b_1 * x_1$$

-Multiple:

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + ... + b_n * x_n$$

We know how to solve this

We know how to solve this

Linear regression?

Action (Y/N)

Action (Y/N)

$$y = b_0 + b_1 x$$

$$y = b_0 + b_1 x$$

$$p = \frac{1}{1 + e^{-y}}$$

$$y = b_0 + b_1 x$$

 $p = \frac{1}{1 + e^{-y}}$

$$y = b_0 + b_1 x$$

smoid fur.

$$p = \frac{1}{1 + e^{-y}}$$

$$\ln\left(\frac{p}{1-p}\right) = b_0 + b_1 x$$

What just happened???

$$\ln\left(\frac{p}{1-p}\right) = b_0 + b_1 x$$

Actually it's the best fitting line

$$\ln\left(\frac{p}{1-p}\right) = b_0 + b_1 x$$

