Statistical Inference Course Project-1

Shivangi

8/8/2020

PART-1: SIMULATION

In this project you will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

Observing the population:

In R, we can obtain n samples from an exponential distribution with the following code:

```
rexp(10,0.2)
```

```
## [1] 4.1459726 8.9412334 2.1036556 2.4309440 2.2686856 2.0802944 7.3294407
## [8] 0.4649387 5.7457492 1.7137721
```

Now we take the exponential population with 50,000 subjects.

```
pop <- rexp(50000,0.2)
mu <- mean(pop)
sigma <- sd(pop)
cat("mu= ",mu)
cat("\nsigma= ",sigma)</pre>
```

Histogram of the population having exponential ditribution:

```
library(ggplot2)
qplot(pop,col=I("blue"),fill=I("green"),main="Population",binwidth=0.5,xlab = "")
```


Sampling 40 samples from exponential population:

Distribution of 1000 averages of 40 random exponentials are:

```
mean = NULL
for (i in 1:1000){
mean <- c(mean, mean(rexp(40,0.2)))
}
qplot(mean,col=I("blue"),fill=I("pink"),main="Samples",binwidth=0.1,xlab = "")</pre>
```


Although it's slightly skewed to the right, the bell shape of the Normal distribution is evident. Strikingly, the mean appears to be around 5, which is what we expected.

Calculating sample mean and standard deviation from distribution function:

Now we calculate the expected mean and variances for the exponential distribution of samples(n) equal to 40.

```
n <-40
lambda \leftarrow 0.2
exp_mean <- 1/lambda
exp_sd <- 1/lambda/sqrt(40)</pre>
sprintf("expected sample mean = %s",exp_mean)
```

[1] "expected sample mean = 5"

```
sprintf("expected sample std deviation = %s",exp_sd)
```

[1] "expected sample std deviation = 0.790569415042095"

Comparing the theoretical or expected sample mean of the population from the sample mean:

We know the expected value of sample mean is the estimate of the population mean. Mean of sample means is the expected value of mean.

```
cat("The expected mean =",exp_mean)

## The expected mean = 5

cat("\t Actual mean = ",mean(mean))

## Actual mean = 4.972216
```

Comparing the theoretical or estimated sample standard deviated of the population from the sample mean:

It is known that standard deviation of sample mean

```
cat("Expected SD =",exp_sd)

## Expected SD = 0.7905694

cat("\t Actual SD =",sd(mean))

## Actual SD = 0.7948669
```

Unsurprisingly, the CLT works.