Домашнее задание 9. Свойства выводимости.

$$(2 ноября \rightarrow 9 ноября)$$

- 1) Используя теорему дедукции, докажите следующие свойства отношения выводимости (S и T любые множества формул; φ , ψ и θ , если не оговорено противное, произвольные формулы):
 - (a) Если $\varphi \in T$, то $T \vdash \varphi$;
 - (б) Если $T \vdash \varphi$, то $T_0 \vdash \varphi$ для подходящего конечного множества $T_0 \subseteq T$.
 - (в) Если $S \vdash \varphi$ и все формулы множества S выводимы из T, то $T \vdash \varphi$.
 - (г) Если $T \cup \{\varphi\} \vdash \theta$ и $T \cup \{\psi\} \vdash \theta$, то $T \cup \{\varphi \lor \psi\} \vdash \theta$ (φ и ψ предложения).
 - (д) Если $T \cup \{\varphi\} \vdash \psi$ и $T \cup \{\varphi\} \vdash \neg \psi$, то $T \vdash \neg \varphi$ (φ предложение).
 - (e) $T \vdash \varphi \land \psi$ тогда и только тогда, когда $T \vdash \varphi$ и $T \vdash \psi$.
- 2) Докажите, что для любой формулы $\varphi = \varphi(x_1, \dots, x_n)$ и любых термов t_1, \dots, t_n в исчислении предикатов выводимы формулы

$$\forall x_1 \dots \forall x_n \ \varphi \ \to \ \varphi(t_1, \dots, t_n) \ \ \mathsf{M} \ \ \varphi(t_1, \dots, t_n) \ \to \ \exists x_1 \dots \exists x_n \ \varphi.$$

- 3) Если из множества формул выводима любая формула, то его называют противоречивым, а в противном случае непротиворечивым. Докажите следующее:
 - (a) Множество формул T противоречиво тогда и только тогда, когда из него выводима хотя бы одна формула вида $\theta \land \neg \theta$.
 - (б) Если множества формул $T_n, n \in \mathbb{N}$ непротиворечивы и $T_0 \subseteq T_1 \subseteq \dots$, то множество $\bigcup_n T_n$ непротиворечиво.
 - (в) Если φ предложение, T множество формул и $T \cup \{\varphi\}$ противоречиво, то $T \vdash \neg \varphi$.
 - (г) Если множество формул T непротиворечиво, то для любого предложения φ непротиворечиво хотя бы одно из множеств $T \cup \{\varphi\}$ и $T \cup \{\neg \varphi\}$.
 - (д) Если множество предложений $S = T \cup \{\exists x \ \psi(x)\}$ непротиворечиво, то и множество $S \cup \{\psi(c)\}$ непротиворечиво для любого не входящего в формулы из S сигнатурного константного символа c.
- 4) Пусть T теория Хенкина, т. е. T непротиворечива, любое предложение или его отрицание выводимо из T и для любого выводимого из T предложения вида $\exists x \psi(x)$ существует константный символ $c \in \sigma$ такой, что $T \vdash \psi(c)$. Докажите следующее:
 - (a) $T \vdash \neg \varphi \iff T \not\vdash \varphi$.
 - (б) $T \vdash (\varphi \lor \psi) \iff T \vdash \varphi$ или $T \vdash \psi$.
 - (в) $T \vdash (\varphi \to \psi) \iff T \not\vdash \varphi$ или $T \vdash \psi$.
 - (Γ) $T \vdash \exists x \theta(x) \iff T \vdash \theta(t)$ для некоторого терма t без переменных.
- (д) $T \vdash \forall x \theta(x) \iff T \vdash \theta(t)$ для любого терма t без переменных.
- 5) Докажите, что любая непротиворечивая теория не более чем счетной сигнатуры σ может быть расширена до теории Хенкина сигнатуры σ_C , где C счетное множество новых константных символов.