

<u>PÁTENT</u>, #02-0497-UNI Case #F7668(V) IFW

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Antheunisse et al.

Serial No.:

10/643,243

Filed:

August 18, 2003

For:

FROZEN CONFECTION

Edgewater, New Jersey 07020 August 2, 2004

SUBMISSION OF PRIORITY DOCUMENT

Assistant Commissioner for Patents Alexandria, VA 22313-1450

Sir:

Pursuant to rule 55(b) of the Rules of Practice in Patent Cases, Applicant(s) is/are submitting herewith a certified copy of the European Application No. 02255761.5 filed August 19, 2002, upon which the claim for priority under 35 U.S.C. § 119 was made in the United States.

It is respectfully requested that the priority document be made part of the file history.

Respectfully submitted,

Gerard J. McGowan, Jr.

Reg. No. 29,412

Attomey for Applicant(s)

GJM/mt (201) 840-2297

THIS PAGE BLANK (USPTO)
THIS PAGE BLANK (USPTO)

Europäisches Patentamt

European **Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

02255761.5

Der Präsident des Europäischen Patent Im Auftrag

For the President of the European Pate

Le Président de l'Office européen des l p.o.

R C van Dijk

BEST AVAILABLE COPY

THIS PAGE BLANK Aler-

Anmeldung Nr:

Application no.: 02255761.5

Demande no:

Anmeldetag:

Date of filing:

19.08.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Unilever Plc Unilever House, Blackfriars London, Greater London EC4P 4BQ GRANDE BRETAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Frozen confection

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

A23G/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

THIS PAGE BLANK (USPTO)

Frozen confection

Field of the invention

5 The invention relates to a method for the preparation of a frozen aerated confection using a ferulyoated polymer.

Background to the invention

- 10 Powdered products and instant mixes for the preparation of ice cream are well known. One of the advantages of the use of these compounds is that they can be stored and shipped without the need for refrigeration during storage and shipping. These compositions can be re-constituted with water to form an ice 15 cream composition. An example of a process to prepare a
- 15 cream composition. An example of a process to prepare a powdered ice cream product is disclosed in US-A-5,370,893.

However there are several disadvantages to these mixes in preparing the final ice cream. Firstly the reconstitution with

- 20 water to obtain good texture and stable foam requires the use of a conventional ice cream maker which is a disadvantage when such products are used by a consumer for making their individual ice cream. Furthermore the reconstituted products according to the prior art are not always stable i.e. they
- 25 collapse during storage. There is a need for the provision of a simple base composition from which an aerated frozen confection can be prepared in a convenient manner.

It is an object of the invention to provide a method and base 30 composition suitable to overcome one or more of these disadvantages of the prior art compositions.

Summary of the invention

We have surprisingly found that a method wherein the aerated frozen confection is prepared from a base composition with 5 ferulyolated polymer wherein in the base composition an inactivated enzyme composition is present which can be activated at a later stage of the process to form crosslinked polymers stabilising the frozen aerated confection, fulfils this objective.

10

15

Therefore the invention relates to a method for the preparation of an aerated frozen confection which comprises the steps of:

- a) a base composition comprising a ferulyclated polymer and an essentially inactivated enzymatic oxidation system is packed into a container under conditions wherein the enzymatic oxidation system remains essentially inactivated
- b) at least a portion of the base composition is combined with a substance that activates the enzymatic oxidation system
- 20 c) aeration
 - step (b) or step (c) is subjected to freezing conditions.

The invention further relates to a base composition suitable 25 for use in this method and the aerated frozen composition obtainable by this process.

Detailed description of the invention

30

In the context of the invention aerated is defined as containing a gas, preferably a dispersed gas. This gas may be oxygen or air but suitable alternatives include nitrogen,

P.11/35

3

argon, nitrous oxide, carbon dioxide or a combination of any of these.

The aerated frozen confection according to the invention is 5 preferably characterised by an overrun (defined as ((volume of ice cream-volume of premix at ambient temperature) divided by the volume of premix at ambient temperature) times 100%.) of from 50 to 300%.

- 10 In the context of the invention viscous is defined as a viscosity in the range of 1 to 100,000 mPa s at a shear rate of 100s⁻¹ and a temperature of 5 °C, preferably 10 to 1000 mPa s under these conditions.
- 15 The invention is based on the presence of essentially inactivated enzymatic oxidation system in a base composition. This base composition comprises a ferulyolated polymer. Such polymers containing ferulic acid groups attached to their backbone are known to be susceptible to oxidation. An example
- 20 of these polymers is pectin from certain plants, e.g. sugar

 beet. The oxidation may be achieved by addition of an

 appropriate amount of an enzyme of the oxidase type e.g.

 laccase or peroxidase. The oxidation reaction leads to the

 formation of ferulic acid-ferulic acid covalent bonds (di
 25 ferulic acid residues) and this enables the formation of a

 crosslinked polymer.

"Essentially inactivated" enzymatic oxidation system means that under the conditions used in the base composition, less than 5 30 number% of ferulic acid residues on the polymer are converted to di-ferulic acid residues after storage for 1 week.

In step (b) at least a part of the base composition is combined with a substance that activates the oxidation system.

"Activated enzyme system" is defined as follows: more than 15
5 number* of ferulic acid residues on the polymer are converted
to di-ferulic acid residues within 15 minutes. Preferably the
activation is such that the oxidation system facilitates
oxidation of 30 to 90 number*, more preferred 40 to 80 number*
ferulic acid residues within 15 minutes. Even more preferred
10 this level of oxidation is obtained within from 1 to 10 minutes
after activation of the oxidation system, most preferred within
from 1 to 5 minutes.

The amount of di-ferulic acid groups formed can be determined 15 by measuring the decrease of ferulic acid by the HPLC method described in the examples.

Alternatively the amount of non-oxidised ferulic acid residues may be determined using OD 375 nm assay at pH 10 which is also described in the examples.

20

composition comprising a ferulyolated polymer and an essentially inactivated enzymatic oxidation system is packed into a container under conditions wherein the enzymatic

25 oxidation system remains essentially inactivated.

Such conditions for example include the absence of oxygen, the absence of water, the absence of a substance essential to the activation of the oxidising system such as hydrogen peroxide or persulfate, the absence of a required co-factor or enhancer,

30 control of pH or temperature such that the oxidation system is essentially inactivated.

The container as used in step (a) may be a small size can or tub such as a manually operated aerosol can. Such containers are preferably 10 to 1000 ml in size for individual use.

Alternatively the base composition is stored in amounts suitable for use on factory scale. In such cases an individual container may be 1 kg to 1000 kg in size.

In step (b) at least a portion of the base composition is combined with a substance that activates the enzymatic

10 oxidation system.

A variety of enzymes are capable of oxidising the ferulic acid groups such that diferulic groups are formed. Enzymes that are suitable for catalysing this reaction are generally part of two different groups. The first group comprises oxygenases such as

- 15 laccase, the second group comprises peroxidases such as horseradish peroxidase. The first group is dependent on oxygen for catalysing oxidation reactions. The second group is dependent on hydrogen peroxide for catalysing oxidation reactions. Hence the oxygenases are in inactivated state as
- 20 long as the conditions are essentially oxygen free. The peroxidases are essentially inactive as long as conditions are essentially hydrogen peroxide free. Both groups of enzymes are most active if water is present and hence an essentially water free environment is generally sufficient to keep the enzymes in essentially inactivated state.

Optionally the formation of hydrogen peroxide is mediated by an oxygenase such as glucose oxygenase.

The substance activating the oxidation system is preferably 30 water or oxygen. This activation leads to an oxidation of ferulic acid residues forming di-ferulic acid.

The activation of the oxidation system may take place at any suitable temperature provided that the subsequent oxidation takes place at sufficient speed. Suitable temperatures are between minus (-) 40 °C and 60 °C. Preferably the temperature 5 is from -10 °C to 40 °C.

At some stage in the method according to the invention, the frozen confection is aerated. This aeration is carried out according to general methods known in the art of preparing 10 frozen confections. Whipping of the composition or dispersion of a gas via a gas line are examples of suitable methods. The gas applied is preferably selected from the group comprising oxygen, air, nitrous oxide and carbon dioxide.

Preferably aeration is simultaneous with activation of the 15 oxidation system in step (b).

In the method according to the invention the base composition and/or the composition resulting from step (b) or step (c) is subjected to freezing conditions. It is preferred that the base 20 composition is not subjected to freezing conditions but is kept at room temperature. Most preferred the freezing takes place after aeration.

Preferably before or after freezing the product is packed into 25 individual containers.

Suitable freezing conditions are temperatures of from - (minus) 5 to - (minus) 80 °C, more preferred - (minus) 10 to - (minus) 30 °C.

The final product may be consumed directly after it's preparation or may be stored at a preferred temperature of from -(minus) 10 to - (minus) 40 °C.

- 5 Regarding the order of steps of the method according to the invention there are several preferred routes.

 According to one embodiment oxidation by activation of the oxidation system, aeration and freezing are carried out simultaneously.
- 10 According to another embodiment exidation is followed by aeration and freezing.

 According to another embodiment aeration and exidation take place after freezing. It will be appreciated that this embodiment is preferred if exidation is by an enzyme that shows sufficient activity at sub-zero temperatures.

Optionally the method according to the invention includes one or more steps in which other ingredients are added. Examples of such ingredients are fat, emulsifier, sweetener, colouring 20 agent, flavouring agent, fruit paste, fruit concentrate, protein, stabiliser, herbs, chocolate pieces, cookie pieces, are pre-prepared ice phase.

In case the base composition is a powder, the addition of an 25 aqueous liquid is required before or during step (b) to ensure the enzymatic oxidation system functions and the end product is similar to a general aerated frozen confection.

In general it is recommended that compositions with more than 30 15% water should be kept under anaerobic conditions before step (b) to ensure that the oxidation system, remains inactivated.

8

The method according to the invention may be carried out as one sequence of events on one location, e.g. in a factory or other production facility. It is however preferred that step (a) takes place at one location whereafter the container is 5 transported to a remote location before step (b) takes place.

According to one embodiment the container is of a size suitable to hold an amount of base composition suitable to prepare from 1 to 10, preferably 1 to 5 end products, whereby an end product 10 is of the size of one average serving for an individual consumer. In this embodiment, the container is transported to a location where the product is distributed to buyers (e.g. a supermarket). Subsequently the buyer or another third person may carry out step (b) of the method.

Preferably the container is disposable.

Even more preferred the container has a size of one serving and in step (b) the entire contents of the container are combined 20 with a substance that activates the enzymatic oxidation system.

"一个""智慧的是"智慧是全国的"国际"等"智慧的是""是智力的主要等的企业的一种被告诉,并必要的特别的一种中央的"多"。这是这个一种一种

In a further aspect the invention relates to a base composition for a frozen aerated confection, characterised in that the composition comprises a ferulyolated polymer and an essentially 25 inactivated enzymatic oxidation system.

The compound comprising ferulyolated groups is a polymer, more preferred a polysaccharide. Generally suitable polymers have a weight average molecular weight of over 3.000 g per mol and 30 preferably over 10.000 g per mol. Examples of suitable polymers include pectin, arabinan, galactan, cellulose derivatives, galactomannans such as guar gum, locust bean gum, starches or

other polymers comprising hydroxyl groups which can be esterified to a ferulic acid group.

The polymers comprising ferulic acid groups can be naturally occurring or synthesised polymers. Examples of naturally 5 occurring polymers with ferulic acid groups are sugar beet pectin and arabinoxylanes isolated from cereals. Synthetic processes to prepare polymers with ferulic acid groups generally include esterification of ferulic acid to a free hydroxyl group situated on the polymer backbone or on a 10 sugar substituent.

In a highly preferred embodiment, the ferulyolated polymer is a pectin, even more preferred sugar beet pectin. The principal building units of pectin are smooth homogalacturonic regions

15 and rhammified hairy regions in which most neutral sugars are located. Arabinose is the predominant neutral sugar. Galactose is present in rhamnogalacturonan. 50-55% of the ferulic acid groups are linked to arabinose units and about 45-50% of the ferulic acid groups are linked to galactose residues.

20

-Preferably in the base composition at most 15 numbers, more preferred at most 5% of the ferulic acid groups of the ferulyolated polymer are oxidized.

- 25 The base composition preferably comprises from 1 to 50 wt% of the ferulyolated polymer, more preferred from 1.5 to 20 wt%. It is preferred that the final product comprises from 1 to 3 wt% of the ferulyolated polymer.
- 30 The polymer preferably comprises from 0.1 to 4 wt% ferulic acid groups on total polymer weight, more preferred from 0.4 to 2 wt%.

The base composition comprises an inactivated exidation system. Preferably this is an enzymatic exidation system wherein the enzyme is selected from the group comprising peroxidase, exygenase such as laccase, a polyphenol exidase such as catechol exidase, tyrosinase, or a combination thereof.

Peroxidases can be divided into those originating from plants, fungi or bacteria and those originating from a mammalian source such as myeloperoxidase and lactoperoxidase (LPO).

10

Laccases are obtainable from a variety of microbial sources notably bacteria and fungi (including filementous fungi and yeasts), and suitable examples of laccases include those obtainable from strains of Aspergillus, Neurospora (e.g. N.

15 crassa), Prodospora, Botrytis, Collybia, Fomes, Lentinus,
Pleurotus, Trametes [some species/strains of which are known by
various names and/or have previously been classified within
other genera], Polyporus, Rhizoctonia, Coprinus, Psatyrella,
Myceliophtora, Schytalidium, Phlebia or Coriolus.

20

Preferred enzymes are selected from the group comprising horseradish peroxidase, soy bean peroxidase, Arthromyces ramosus peroxidase and laccases that show a redox potential of preferably more than 550 mV as described in E. Solomon et al, 25 Chem Rev, 1996, p 2563-2605.

The amount of enzyme added is expressed in terms of activity units corresponding to the activity shown after the enzyme has been converted to the active state (e.g. after addition of 30 water or oxygen). Preferably enzyme is present in excess. The amount of enzyme added is preferably such that fast crosslinking occurs. For a peroxidase the amount of enzyme

11

added is preferably from 10 to 100.000 units ABTS activity per ml of liquid end product.

Freferably the base composition comprises ingredients common to 5 an aerated frozen confection. More preferred the base composition comprises fat, sweetener, protein, stabiliser, emulsifier, and optionally flavouring agents or colouring agents or a combination thereof.

10 The fat is preferably dairy fat or a vegetable fat or a combination thereof. The preferred vegetable fat is coconut oil. The amount of fat in the base composition is preferably from 0 to 50 wt%. The amount on final product after step (b) is preferably from 0 to 15 wt%.

Suitable sweeteners include but are not limited to sugars, sugar alcohols, corn syrup, starches. The preferred sweetener is sucrose. The amount of sweetener in the base composition is preferably from 5 to 90 wt%. The amount on final product after 20 step (b) is preferably from 5 to 40 wt%.

The first continues of the second of the sec

Optionally the base composition comprises a stabiliser. The stabiliser is preferably selected from the group comprising locust bean gum, guar gum, carrageenan or a combination 25 thereof. The amount of stabiliser in the base composition is preferably from 0 to 10 wt%. The amount on final product after step (b) is preferably from 0 to 2 wt%.

Optionally the base composition comprises an emulsifier.

30 Suitable emulsifiers are for example monoglycerides of fatty acids, diglycerides of fatty acids, organic acid esters of monoglycerides such as lactic, citric and acetic acids, or a combination thereof. The amount of emulsifier in the base

composition is preferably from 0 to 10 wt%. The amount on final product after step (b) is preferably from 0 to 2 wt%.

Preferably the base composition comprises a protein. Although 5 also other proteins may be included such as soy protein; the use of dairy protein is highly preferred because of their taste contribution. Preferred protein is derived from cream, skim milk (powder), milk (powder), butter milk (powder), or a combination thereof. The amount of protein in the base 10 composition is preferably from 1 to 40 wt%. The amount on final product after step (b) is preferably from 0.6 to 6 wt%.

The base composition may be in any physical state. Because of ease of handling the viscous or powder form is preferred but 15 also other states are encompassed in the invention. Preferably the base composition is a powder.

The base composition may be prepared in any suitable manner.

According to one embodiment the base composition is prepared by

20 mixing the ferulyolated polymer and optionally other

ingredients at a temperature from 40 to 90 °C. Optionally the

product is then homogenised. The product is then cooled. The

resulting mixture is degassed to remove oxygen. Optionally the

mixture is bubbled with nitrous oxide to ensure it is

25 essentially free of oxygen. The mixture is kept under anaerobic

conditions. Subsequently a de-oxygenated enzyme solution

comprising the oxidation system is added to the mixture whereby

care is taken not to introduce oxygen or air. The resulting

base composition is stored under anaerobic conditions.

The base composition is suitable for use in preparing aerated frozen confection products such as frozen ice cream, milk ice or water ice products. Ice cream, water ice and milk ice products are for example described in "Ice Cream" by R.T.

5 Marshall & W.S. Arbuckle, 5th edition 1996, Chapmann & Hall, New

5 Marshall & W.S. Arbuckle, 5th edition 1996, Chapmann & Hall, New York.

In a further aspect the invention relates to a frozen aerated confection obtainable by the method according to the invention.

10 Such confections show a surprisingly good stability against collapsing at temperatures of from -(minus) 40 to 60 °C.

In another aspect the invention relates to an aerosol can comprising a base composition according to the invention and a 15 propellant gas under pressure.

It has surprisingly been found that when an aqueous base mix, propellant gas and a mixture of a ferulyolated polymer and an inactivated oxidising enzyme are combined in an aerosol can under conditions wherein oxidation does not yet take place, the 20 product released from the can is stabilised by oxidized ferulyolated polymers.

By the term aerosol can is meant a packaging comprising a product and at least a propellant gas having an initial

25 pressure of at least 3 barg and preferably from 5 to 10 barg at 20 °C. The can is preferably provided with an opening. Such opening preferably is a valve enabling controlled dosage of the product.

- 30 The aerosol can is preferably prepared in a process comprising a) introducing a viscous base composition without oxidation system into a container,
 - b) removing oxygen from said base composition

- c) introducing in said container an inactivated oxidation system
- d) charging the container with a gaseous propellant
- e) chilling the container to a temperature below (minus) 5 °C
- 5 f) discharging the mix from the container to provide an aerated frozen confection product.

The resulting aerated confections are less prone to shrinkage or deformation upon storage than known products in the art, 10 such as those disclosed in WO-A-93/21777 which discloses a frozen gas-containing desert product having a thermal transition temperature in excess of -18 °C and a bulk density below 0.45 g/ml down to 0.09 g/ml to prevent or reduce unintended shrinkage and deformation.

15

The invention is illustrated by the following non limiting examples.

20

Examples

General

5 Methods for identification of crosslink reaction:

Method based on release of diferulic acid via hydrolysis of esterbonds by NaOH and analysis of diferulic acid by HPLC.

10 Method:

- 5 gram product (ice cream) was taken.
- dilute sample 25 x, in 0.1 N NaOH 19 hr (hydrolysation of esterbonds, diFA release)
- neutralise sample with HCl, add 2% HAc/ 5% CH3CN
- 15 centrifuge 10 min in Eppendorftm (14000 rpm, 15800 g)
 - filtrate supernatant resulting from centrifuge step through 0.22 µm filter prior to injection (20 µl) on HPLC

As a result of the alkali treatment ferulic acid was released 20 from the feruloylated pectin and quantitative analysis of ferulic acid at 325 nm was done by external standard calibration of the ferulic acid peak in the pectin samples against pure ferulic acid references. A C18 ODS Hypersil column was used (3 µm 0.4x100 mm) with a Lichrospher 100 RP-18 guard column (5 µm 4x4 mm) from Hewlett Packard, USA. The following gradient was used for separation of different ferulic acid groups:

Solvents: A) 2% CH3CN / 2% HAc / 96 % MilliQ water pH 2.8,

B) 100% CH3CN; flow 1 ml/min

t=0' 95 % A, 5 % B

t=10' 70% A, 30 % B

t=18' 35 % A, 65 % B

t=20' 0% A, 100 % B

Stop time 25'; Post time 5'

The decrease of F-acid (retention time 7.2' cis and 7.5' trans) 5 and the formation of the major diffacids components (retention times 8.5', 9.2', 11.3' and 11.5') were analysed.

(Retention times vary with each column/ guard column).

This method was based on the following reference:

10 Harukaza, A., Sugiyama, S., Iwamoto, Y. et al.; Convenient analysis and quantification of diferulic acids in foods; Food Science and Technology Res.; 2000, Vol. 6, no.2, p. 122-125

15 2) Method 2: Spectrophotometric assay [Rombouts 1986]:

The amount of feruloylated groups in the different pectin samples was estimated by the spectrophotometric assay as described by Rombouts [1986]. In this experiment 50 µl 2% 20 pectin was added to 950 µl 0.1M glycine /NaOH buffer pH 10 and the absorbance at 375 nm was measured. The concentration of esterified feruloyl groups at pH 10 can be calculated using molar extinction of £ 375 nm =31.6 mM⁻¹. cm⁻¹ [Fry, 1982 Phenolic components of the primary cell wall. Biochem. J. Vol 203, 493-25 504].

The decrease of the esterified ferulates of 2% pectin samples was used to determine the amount of cross links.

30 The cross linked samples were pre-treated with pectinase by adding 0.02 ml Pectinex (Novo Nordisk) per ml sample to breakdown the pectin network. After 10 min the gel became fluid and a 50 µl sample containing 2 % pectin was added to 950 µl

0.1M glycine /NaOH buffer pH 10 and the absorbance at 375 nm was measured.

The total amount of ferulates are present in the pectin sample without enzyme and therefor a 50 µl 2% untreated pectin was 5 added to 950 µl 0.1M glycine /NaOH buffer pH 10 and the absorbance at 375 nm was measured. As a reference 0.1M glycine /NaOH buffer pH was used.

The amount of cross links of the sample is:

10

[OD 375 nm pectin] - [OD 375 nm cross linked pectin] x100%

References:

1 Rombouts, Thibault, (1986). Chemistry and function of 15 pectins, ACS, 310, 49-60.

Example 1

In this example, it is demonstrated that the use of the sugar

20 beet pectin-oxidase system allows the creation of an ice cream

mix that is liquid inside an aerosol can but which structures

rapidly during foaming upon extrusion into an oxygen-containing

atmosphere. As with conventional aerosol whipped creams,

foaming is achieved by the effervescence of nitrous oxide upon

25 decompression. The foam produced is extremely stable and

therefore suitable for quiescent freezing to produce ice cream.

Base Mix formulation

30 (Concentrations are w/w unless otherwise stated)
2% Sugar beet pectin (Genu® Beta Pectin, CP Kelco).
20 % Dextrose.
5% SMP.

5% Butterfat.

1% LACTEM L22 (lactic acid esters of mono- / di-glycerides, Danisco).

Water to 100%.

5

Procedure to prepare the base mix (500 g)

Pectin, dextrose and SMP were dispersed in hot (60°C) water using a Silversontm mixer. The melted, liquid fat was then added, followed by the LACTEMtm and mixing continued for 5 10 minutes. The mix was then cooled at 20°C for 2 hours.

Filling procedure for the aerosol

Clear, high-pressure 100 ml test glasses (Pamasoltm) were used as the pressure vessels instead of aerosol cans to allow 15 visualisation of the product under pressure. Two of these vessels were each filled with 60 g of the mix, fitted with standard aerosol valves and degassed under vacuum. In order to ensure complete removal of O₂, the vessels were gassed to 9 bar with N₂O, shaken for 1 minute and then degassed. This

20 gassing/shaking/degassing process was performed a total of 3 times.

Introduction of the enzyme

25 To one of the vessels, 1 ml of an oxidase enzyme stock solution (Polyporus pinsitus laccase SP710 from Novo Nordisk; stock concentration = 6.6 mg ml⁻¹, 22 units/mg) was introduced through the valve using a syringe. Care was taken not to introduce any air with the enzyme solution.

Introduction of gas

To both vessels, N₂O was added through the valve (taking care not to introduce air) at a pressure of 9 bar. The vessels were then removed from the gas supply and shaken vigorously for 10 seconds before being topped up by reconnecting to the 9 bar gas supply for a few seconds. Both vessels were left at 20 °C for 2 hours before testing.

Results

10

Visual inspection showed that the mix had remained liquid in both vessels during the 2 hour storage period (i.e. all of the mix flowed down the tube upon inverting it for 5 seconds). This implies that sufficient oxygen had been removed from the 15 vessels to prevent cross-linking and gelation of the pectin.

Both mixes were then extruded into petri-dishes from the inverted vessels using an actuator designed for dispensing aerosol whipped creams. Extrusion from the vessel to which no

- 20 enzyme had been added gave a foam structure that underwent rapid collapse. Conversely, extrusion from the vessel to which the enzyme had been added gave a very stable structure, implying that oxidative gelation of the pectin occurred very rapidly upon extrusion. The structure of the sample extruded
- 25 from the vessel that contained enzyme was stable for the duration of the storage period (4 hours, 20 °C)

A further 50 ml portion was extruded into a tub from the vessel to which enzyme was added and immediately placed in a -25 °C 30 cold store. Inspection of the resulting ice confection after 24

hours showed that the foam had frozen without visible collapse, shrinkage or separation.

Example 2

5

In this example, it is demonstrated that the use of a sugar beet pectin-peroxidase system allows the creation of a stable powdered ice cream mix that structures rapidly during simultaneous hydration and foaming. The enzyme system,

10 (consisting of a peroxidase and glucose oxidase) is activated by hydration of the powder. Foaming is achieved by mechanical whipping. The foam produced is extremely stable and therefore suitable for freezing to produce ice cream.

15 Base Mix formulations

(Concentrations are w/w)

Mix A (No enzymes)

- 20 6.0% Sugar beet pectin (Genu® Beta Pectin, CP Kelco).
- 71.68 Sucrose.
 - 12.0% Cream powder (36% fat cream powder from Dairy Crest Ingredients, contains 22.5% milk protein, 32.5% lactose, 6% ash and < 3% moisture).
- 25 7.2% Skim milk powder
 - 1.6% Hyfoama DS (Hydrolysed milk protein from Quest International).
- 1.6 % Dextrose.

Mix B (+ enzymes)

Enzymes were added to Mix A to give:

- 0.8% Biobake Wheat (A peroxidase enzyme system from Quest International, Activity is 2000 U/g)
- 5 0.04% Hyderase (A glucose oxidase from Amano).

From the material supplier's specifications, the mixes were calculated to contain approximately, 4% butter fat, 6% milk protein, 81% sugars (including lactose), 6% pectin and <3% 10 moisture.

Procedure to prepare the base mixes

The powdered ingredients of mix A were thoroughly mixed in a dry bowl with a spoon to ensure homogenous distribution of all 15 components. This mix was then divided in half and the powdered enzymes added to one portion to form Mix B. Mix B was then thoroughly mixed in a dry bowl with a spoon to ensure homogenous distribution of the enzymes. Each dry mix was then sealed in a water-proof polythene bag and stored for 24 hours 20 at 20 °C.

Hydration and Aeration

The polythene bag containing the mix was opened and 125 g of mix immediately placed in the dry bowl of a Hobart mixer. To 25 this, 375 g of cold tap water was added. The powder was then dispersed by gentle mixing (30 s at setting number 1) and then aerated, at 20 °C, by whipping for 4 minutes on setting 2.

30 Characterisation of the Resulting Foams

Immediately following cessation of whipping, a cup of known volume was filled with foam and weighed. This was then repeated every 5 minutes for 15 minutes. The resulting densities were converted to overrun using the following relationship:

5

Overrun =

100 * (Density of unaerated mix - Density of foam) / Density of foam.

Where the density of the unaerated mix was 1.1 g ml⁻¹.

10

In addition, a transparent plastic beaker was filled with foam immediately following cessation of whipping and inspected at 5-minute intervals for evidence of bubble creaming and serum separation.

15

Results

The foam created from mix A had an initial overrun of 84%.

After 5 minutes, there was clear serum separation and creaming

20 and after 10 minutes the overrun had decreased to 57%.

The foam created from mix B had an initial overrun of 95%. No creaming, serum separation or overrun loss was apparent even after 15 minutes. After 10 minutes, the pectin had clearly gelled as the container could be inverted without flow of the

25 foam. In addition, quiescent freezing of a 50 ml portion of this foam (achieved by placing the portion in a store for 24 hours at -18 °C, immediately following cessation of whipping) resulted in an ice confection with no visible collapse, shrinkage or separation.

30

Example 3

The following recipe of home made ice cream was used:

Formulation in terms of wt% on final product weight with number

- 5 of grams used and supplier name in brackets.
 - 5% egg white powder (10 g, van Enthoven, the Netherlands)
 - 3% whey powder (6 g Lacprodan-80 Arla Food products, Denmark)
 - 18% sucrose powder (36 g CSM, the Natherlands)
 - 0.1% glucose (or 0.05%) (0.2 g Sigma, USA)
- 10 2% sugar beet pectin (4 g CP Kelco, Denmark)
 - 0.2% Biobake wheat comprising soy bean peroxidase (food grade, Quest the Netherlands)
 - 0.005% glucose oxidase (0.01 g Hydrase, from Amano, Japan)
- 15 150 ml water or milk was added to come to a final product volume of 200 ml followed by mixing 3 till 5 minutes using a normal kitchen mixer or a Hobart mixer, followed by freezing the ice mix in a normal freezer (-20 °C).
- 20 The resulting product was stable and did not collapse upon storage.

Claims

- 1) A method for the preparation of an aerated frozen confection which comprises the steps of
- a) a base composition comprising a ferulyolated polymer and an essentially inactivated enzymatic oxidation system is packed into a container under conditions wherein the enzymatic oxidation system remains essentially inactivated
- b) at least a portion of the base composition is combined with a substance that activates the enzymatic oxidation system
- c) aeration
- d) the base composition and/or the composition resulting from step (b) or step (c) is subjected to freezing conditions.
- 2) A method for the preparation of an aerated frozen confection according to claim 1 wherein the container of step (a) is transported to a remote location before step (b) takes place.
- 3) A method for the preparation of an aerated frozen confection
 - 4) A method for the preparation of an aerated frozen confection according to claim I wherein the container has a size of one serving and in step (b) the entire contents of the container are combined with a substance that activates the enzymatic oxidation system.
 - 5) A method for the preparation of a frozen confection according to claim 2 wherein aeration is simultaneous with activation of the oxidation system in step (b).

- 6) A method for the preparation of a frozen confection according to claim 1 wherein the substance that activates the enzymatic oxidation system is selected from the group comprising oxygen and water or a combination thereof.
- 7) Base composition for a frozen aerated confection, characterised in that the composition comprises a ferulyolated polymer and an essentially inactivated enzymatic oxidation system.
- 8) Base composition according to claim 7 or process according to claim 1 wherein the ferulyolated polymer is a pectin.
- 9) Base composition according to claim 7 or process according to claim 1 wherein in the base composition at most 15 number% of the ferulic acid groups of the ferulyolated polymer are oxidized.
- 10) Base composition according to claim 7 or process according to claim 1 wherein the enzymatic oxidation system is an enzyme selected from the group comprising peroxidase, a polyphenol oxidase such as catechol oxidase, tyrosinase, or a laccase or a combination thereof.
- 11) Base composition according to claim 9 or process according to claim 1 wherein the base composition further comprises fat, sweetener, protein, stabiliser, emulsifier, and optionally flavouring agents or colouring agents or a combination thereof.
- 12) Base composition according to claim 7 or process according to claim 1 wherein the base composition is a powder.

13) Frozen aerated confection obtainable by the process according to claim 1.

- 14) Aerosol can comprising a base composition according to claim 7, and a propellant gas under pressure.
- 15) Use of a base composition according to any of claims 7-12 for preparing a frozen confection.

0

27

Abstract

The invention relates to a method to prepare a frozen aerated confection wherein pectin is subjected to oxidation. In a further aspect the invention relates to a base composition suitable for preparing the frozen confection and to an aerosol can comprising the base composition.

0044751 19 AUG 02 03 522

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
I IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)