Cálculo Diferencial e Integral I

Propriedades de limites

Universidade Federal de Minas Gerais

Definição formal de limite

Seja f(x) uma função definida em um intervalo aberto contendo a, exceto possivelmente no ponto a.

Definição

Dizemos que $L \in \mathbb{R}$ é o limite de f(x) quando x tende ao ponto a, e denotamos

$$\lim_{x\to a} f(x) = L$$

se, para todo número real $\epsilon>0$ existir um outro número real $\delta>0$ tais que

$$|f(x)-L|<\epsilon$$
 sempre que $|x-a|<\delta$ (com $x \neq a$) .

Intuitivamente, damos um erro $\epsilon>0$ em torno do valor L. Então, podemos encontrar $\delta>0$ tal que, para valores de x a uma distância menor que δ de a (com $x\neq a$), f(x) está a uma distância de L menor que o erro ϵ .

Definição formal de limite

Seja f(x) uma função definida em um intervalo aberto contendo a, exceto possivelmente no ponto a.

Definição

Dizemos que $L \in \mathbb{R}$ é o limite de f(x) quando x tende ao ponto a, e denotamos

$$\lim_{x \to a} f(x) = L$$

se, para todo número real $\epsilon>0$ existir um outro número real $\delta>0$ tais que

$$|f(x) - L| < \epsilon$$
 sempre que $|x - a| < \delta$ (com $x \neq a$).

Intuitivamente, damos um erro $\epsilon>0$ em torno do valor L. Então, podemos encontrar $\delta>0$ tal que, para valores de x a uma distância menor que δ de a (com $x\neq a$), f(x) está a uma distância de L menor que o erro ϵ .

▶ Temos definições análogas para limite à esquerda (considerando apenas pontos x < a) e à direita (considerando apenas pontos x > a).

Definição formal de limite

Seja f(x) uma função definida em um intervalo aberto contendo a, exceto possivelmente no ponto a.

Definição

Dizemos que $L \in \mathbb{R}$ é o limite de f(x) quando x tende ao ponto a, e denotamos

$$\lim_{x \to a} f(x) = L$$

se, para todo número real $\epsilon>0$ existir um outro número real $\delta>0$ tais que

$$|f(x)-L|<\epsilon$$
 sempre que $|x-a|<\delta$ (com $x \neq a$) .

Intuitivamente, damos um erro $\epsilon>0$ em torno do valor L. Então, podemos encontrar $\delta>0$ tal que, para valores de x a uma distância menor que δ de a (com $x\neq a$), f(x) está a uma distância de L menor que o erro ϵ .

- ▶ Temos definições análogas para limite à esquerda (considerando apenas pontos x < a) e à direita (considerando apenas pontos x > a).
- Essa definição formal de limite não será usada ao longo desse curso.

▶ Seja $c \in \mathbb{R}$ uma constante e suponha que existam os limites

$$\lim_{x\to a} f(x) \quad \text{e} \quad \lim_{x\to a} g(x).$$

 $lackbox{ Seja }c\in\mathbb{R}$ uma constante e suponha que existam os limites

$$\lim_{x \to a} f(x)$$
 e $\lim_{x \to a} g(x)$.

1.
$$\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$$

▶ Seja $c \in \mathbb{R}$ uma constante e suponha que existam os limites

$$\lim_{x\to a} f(x)$$
 e $\lim_{x\to a} g(x)$.

- 1. $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- 2. $\lim_{x\to a} (cf(x)) = c \lim_{x\to a} f(x)$

▶ Seja $c \in \mathbb{R}$ uma constante e suponha que existam os limites

$$\lim_{x\to a} f(x)$$
 e $\lim_{x\to a} g(x)$.

- 1. $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- 2. $\lim_{x\to a} (cf(x)) = c \lim_{x\to a} f(x)$
- 3. $\lim_{x\to a} (f(x) \cdot g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$

 $lackbox{ Seja }c\in\mathbb{R}$ uma constante e suponha que existam os limites

$$\lim_{x \to a} f(x)$$
 e $\lim_{x \to a} g(x)$.

- 1. $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- 2. $\lim_{x\to a} (cf(x)) = c \lim_{x\to a} f(x)$
- 3. $\lim_{x\to a} (f(x) \cdot g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$
- 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ se } \lim_{x \to a} g(x) \neq 0$

▶ Seja $c \in \mathbb{R}$ uma constante e suponha que existam os limites

$$\lim_{x \to a} f(x)$$
 e $\lim_{x \to a} g(x)$.

- 1. $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- 2. $\lim_{x\to a} (cf(x)) = c \lim_{x\to a} f(x)$
- 3. $\lim_{x\to a} (f(x) \cdot g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$
- 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ se } \lim_{x \to a} g(x) \neq 0$
- Em resumo: o limite comuta com as operações matemáticas elementares.

▶ Supondo ainda que existe o limite $\lim_{x\to a} f(x)$, temos:

- ▶ Supondo ainda que existe o limite $\lim_{x\to a} f(x)$, temos:
 - 5. $\lim_{x\to a} c = c$

- ▶ Supondo ainda que existe o limite $\lim_{x\to a} f(x)$, temos:
 - 5. $\lim_{x\to a} c = c$
 - 6. $\lim_{x\to a} x = a$

- ▶ Supondo ainda que existe o limite $\lim_{x\to a} f(x)$, temos:
 - 5. $\lim_{x\to a} c = c$
 - 6. $\lim_{x\to a} x = a$
 - 7. $\lim_{x\to a} x^n = a^n$ onde $a \in \mathbb{N}$

- ▶ Supondo ainda que existe o limite $\lim_{x\to a} f(x)$, temos:
 - 5. $\lim_{x\to a} c = c$
 - 6. $\lim_{x\to a} x = a$
 - 7. $\lim_{x\to a} x^n = a^n$ onde $a \in \mathbb{N}$
 - 8. De um modo mais geral: $\lim_{x\to a} (f(x))^n = (\lim_{x\to a} f(x))^n$

- ▶ Supondo ainda que existe o limite $\lim_{x\to a} f(x)$, temos:
 - 5. $\lim_{x\to a} c = c$
 - 6. $\lim_{x\to a} x = a$
 - 7. $\lim_{x\to a} x^n = a^n$ onde $a \in \mathbb{N}$
 - 8. De um modo mais geral: $\lim_{x\to a} (f(x))^n = (\lim_{x\to a} f(x))^n$
 - 9. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$, onde $n \in \mathbb{N}$ e $a \ge 0$ se n é par.

- ▶ Supondo ainda que existe o limite $\lim_{x\to a} f(x)$, temos:
 - 5. $\lim_{x\to a} c = c$
 - 6. $\lim_{x\to a} x = a$
 - 7. $\lim_{x\to a} x^n = a^n$ onde $a \in \mathbb{N}$
 - 8. De um modo mais geral: $\lim_{x\to a} (f(x))^n = (\lim_{x\to a} f(x))^n$
 - 9. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$, onde $n \in \mathbb{N}$ e $a \ge 0$ se n é par.
 - 10. De um modo mais geral: $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$, onde $n\in\mathbb{N}$ e $\lim_{x\to a} f(x)\geq 0$ se n é par.

Exemplo. $\lim_{x\to 5} (2x^2 - 3x + 4)$

- **Exemplo.** $\lim_{x\to 5} (2x^2 3x + 4)$
- Solução:

$$\lim_{x \to 5} (2x^2 - 3x + 4) \stackrel{\text{P.1} \& \text{P.2}}{=} 2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 5} x + \lim_{x \to 5} 4$$

$$\stackrel{\text{P.5}, \text{ P.6} \& \text{P.7}}{=} 2(5^2) - 3(5) + 4$$

$$= 39$$

Exemplo. $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$

- **Exemplo.** $\lim_{x \to -2} \frac{x^3 + 2x^2 1}{5 3x}$
- ▶ Solução: Como $\lim_{x\to -2} (5-3x) = 5-3(-2) = 11 \neq 0$. Então podemos usar P.4:

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} x^3 + 2x^2 - 1}{\lim_{x \to -2} 5 - 3x}$$

$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)} \text{ (P.1, P.2, P.5, P.6 e P.7)}$$

$$= -\frac{1}{11}$$

De uma maneira mais geral, temos a seguinte propriedade: Se f(x) é uma função polinomial ou racional então

$$\lim_{x\to a}f(x)=f(a)$$

(a no domínio de f, no caso de função racional)

- $\blacktriangleright \text{ Exemplo. } \lim_{x \to 1} \frac{x^2 1}{x 1}$
- **Solução:** Seja $f(x) = \frac{(x-1)(x+1)}{x-1}$.

Como o denominador se anula, não podemos usar P.4 e nem P.11. Porém, podemos fazer operações algébricas de modo a cancelar o denominador:

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1 \text{ se } x \neq 1.$$

Temos então:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

Se f(x) = g(x) quando $x \neq a$, então $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ desde que os limites existam.

- Se f(x) = g(x) quando $x \neq a$, então $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ desde que os limites existam.
- Exemplo.

$$\lim_{x\to 1}f(x)$$

onde

$$f(x) = \begin{cases} x+1 & \text{se } x \neq 1 \\ \pi & \text{se } x = 1 \end{cases}$$

- Se f(x) = g(x) quando $x \neq a$, então $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ desde que os limites existam.
- Exemplo.

$$\lim_{x\to 1} f(x)$$

onde

$$f(x) = \begin{cases} x+1 & \text{se } x \neq 1 \\ \pi & \text{se } x = 1 \end{cases}$$

▶ **Solução:** Seja g(x) = x + 1. Temos que f(x) = g(x) quando $x \neq 1$. Pela propriedade acima,

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) = \lim_{x \to 1} (x+1) = 2.$$

▶ Solução (continuação): Veja no gráfico abaixo que, apesar de $f(1) = \pi$, temos $\lim_{x \to 1} f(x) = 2$, pois o limite quando $x \to 1$ não depende do valor da função em x = 1.

Exemplo. $\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$

- **Exemplo.** $\lim_{h \to 0} \frac{(3+h)^2 9}{h}$
- **Solução:** Como o denominador de $f(h) = \frac{(3+h)^2 9}{h}$ se anula, não podemos usar P.4.

Fazendo uma simplificação algébrica:

$$\frac{(3+h)^2-9}{h}=\frac{(9+6h+h^2)-9}{h}=\frac{6h+h^2}{h}=6+h \text{ se } h\neq 0.$$

Portanto:

$$\lim_{h\to 0}\frac{(3+h)^2-9}{h}=\lim_{h\to 0}(6+h)=6.$$

Exemplo. $\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$

- **Exemplo.** $\lim_{t \to 0} \frac{\sqrt{t^2 + 9} 3}{t^2}$
- ▶ **Solução:** Como no exemplo anterior, o denominador se anula e não podemos usar a P.4.

Fazemos uma simplificação algébrica:

$$\frac{\sqrt{t^2+9}-3}{t^2} = \frac{\sqrt{t^2+9}-3}{t^2} \underbrace{\frac{\sqrt{t^2+9}+3}{\sqrt{t^2+9}+3}}_{1}$$
$$= \frac{t^2}{t^2(\sqrt{t^2+9}-3)} = \frac{1}{\sqrt{t^2+9}+3} \text{ se } t \neq 0.$$

Portanto

$$\lim_{t\to 0}\frac{\sqrt{t^2+9}-3}{t^2}=\lim_{t\to 0}\frac{1}{\sqrt{t^2+9}+3}=\frac{1}{6}.$$

► Recordamos o seguinte resultado:

Proposição

Se x = a pode ser acumulado, pelos dois lados, por pontos do domínio de f(x), vale o seguinte:

$$\lim_{x\to a} f(x) = L \quad \text{se, e somente se,} \quad \lim_{x\to a^-} f(x) = L \quad \text{e} \quad \lim_{x\to a^+} f(x) = L.$$

Recordamos o seguinte resultado:

Proposição

Se x = a pode ser acumulado, pelos dois lados, por pontos do domínio de f(x), vale o seguinte:

$$\lim_{x\to a} f(x) = L \quad \text{se, e somente se,} \quad \lim_{x\to a^-} f(x) = L \quad e \quad \lim_{x\to a^+} f(x) = L.$$

 $\blacktriangleright \ \, \textbf{Exemplo.} \ \, \lim_{x \to 0} |x| = 0$

Recordamos o seguinte resultado:

Proposição

Se x = a pode ser acumulado, pelos dois lados, por pontos do domínio de f(x), vale o seguinte:

$$\lim_{x \to a} f(x) = L$$
 se, e somente se, $\lim_{x \to a^-} f(x) = L$ e $\lim_{x \to a^+} f(x) = L$.

- $\blacktriangleright \ \, \textbf{Exemplo.} \ \, \lim_{x \to 0} |x| = 0$
- ► Solução: Como

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0, \end{cases}$$

temos:

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0 \qquad \text{e} \qquad \lim_{x \to 0^-} |x| = \lim_{x \to 0^-} -x = 0.$$

Pela proposição, temos $\lim_{x\to 0} |x| = 0$.

Exemplo. $\lim_{x\to 0} \frac{|x|}{x}$ não existe.

- **Exemplo.** $\lim_{x\to 0} \frac{|x|}{x}$ não existe.
- Solução: Temos

$$\frac{|x|}{x} = \frac{x}{x} = 1 \text{ se } x > 0$$
 e $\frac{|x|}{x} = \frac{-x}{x} = -1 \text{ se } x < 0.$

Veja o gráfico:

► Solução (continuação): Logo,

$$\lim_{x\to 0^-}\frac{|x|}{x}=-1 \qquad \mathrm{e} \qquad \lim_{x\to 0^+}\frac{|x|}{x}=1.$$

Pela proposição anterior, $\lim_{x\to 0} \frac{|x|}{x}$ não existe.

Exemplo Determine se existe $\lim_{x\to 4} f(x)$, onde

$$f(x) = \begin{cases} \sqrt{x-4} & \text{se } x > 4\\ 8 - 2x & \text{se } x < 4 \end{cases}$$

Exemplo Determine se existe $\lim_{x\to 4} f(x)$, onde

$$f(x) = \begin{cases} \sqrt{x-4} & \text{se } x > 4\\ 8 - 2x & \text{se } x < 4 \end{cases}$$

► Solução: Veja que

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sqrt{x - 4} = 0$$

е

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} (8 - 2x) = 0.$$

Logo, pela proposição anterior,

$$\lim_{x\to 4} f(x) = 0.$$

► Solução (continuação): Veja o gráfico:

Temos $\lim_{x\to 4^-} f(x) = 0$ e $\lim_{x\to 4^+} f(x) = 0$ e, portanto, $\lim_{x\to 4} f(x) = 0$.

Proposição

Se $f(x) \le g(x)$ para todo x próximo de a (excetuando, eventualmente, o ponto a), então vale

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x),$$

desde que os limites existam.

Proposição

Se $f(x) \le g(x)$ para todo x próximo de a (excetuando, eventualmente, o ponto a), então vale

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x),$$

desde que os limites existam.

Teorema

(do confronto ou sanduíche) Se $f(x) \le g(x) \le h(x)$ para todo x próximo de a (excetuando, eventualmente, o ponto a) e

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

então

$$\lim_{x\to a}g(x)=L.$$

Exemplo. $\lim_{x\to 0} x^2 \operatorname{sen} \frac{1}{x}$

- **Exemplo.** $\lim_{x\to 0} x^2 \operatorname{sen} \frac{1}{x}$
- ▶ **Solução:** Sabemos que $-1 \le \text{sen } x \le 1, \forall x$. Assim

$$-1 \le \sin\frac{1}{x} \le 1.$$

Como $x^2 > 0 \ \forall \ x \neq 0$, multiplicando a desigualdade por x^2 , obtemos

$$-x^2 \le x^2 \mathrm{sen} \, \frac{1}{x} \le x^2.$$

Faça,
$$f(x) = -x^2$$
, $g(x) = x^2 \operatorname{sen} \frac{1}{x} e h(x) = x^2$.

Como $\lim_{x\to 0} f(x) = 0 = \lim_{x\to 0} h(x)$, pelo **teorema do confronto**, segue que

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 \operatorname{sen} \frac{1}{x} = 0.$$

► Solução (continuação): Observe o gráfico:

$$\lim_{x \to 0} x^2 = \lim_{x \to 0} (-x^2) = 0 \Rightarrow \lim_{x \to 0} x^2 \operatorname{sen} \frac{1}{x} = 0.$$