Reducing Overfit

Lecture 9

Challenge

You have a dataset with n = 1,000 samples (observations)

Each observation has p = 10,000 predictors (features)

You're asked to develop a classifier for the data

p >> nwhat do you do?

This is the case for most image classification tasks

A problem...

Overfitting to the training data

High model variance

Kyle Bradbury Lecture 9

Overfitting to the training data

How do we reduce model variance?

Option #1: Add more data!

Option #2: Reduce model flexibility to reduce variance

Our conceptual tool...

Image from Speckyboy.co

Occam's Razor / Law of Parsimony

All else being equal, choose the simpler solution

Options for reducing variance

1. Variable/feature subset selection

2. Regularization/shrinkage

3. Dimensionality reduction (in a lecture coming soon!)

These all reduce the number of features modeled and/or model flexibility

Benefits of reducing the number of predictors/features

Some algorithms scale poorly with increased dimensions (computationally)

Irrelevant and redundant features can confuse algorithms - removal of these features can increase generalization performance

Often reduces training data needs

Feature (variable) selection

Filter methods

(e.g. remove correlated features)

Wrapper methods

(e.g. subset selection)

Embedded methods

(e.g. LASSO regularization)

Variable subset selection: wrapper methods for feature selection

Search for subsets of features that perform well

Exhaustive search
Forward selection
Backwards selection
Simulated annealing
Genetic algorithms
Particle swarm optimization

Challenge: requires rerunning the training algorithm (computationally expensive)

Forward selection

- Start with no features
- Greedily include the one feature that most improves performance
- Stop when a desired number of features is reached

Backward selection

- Start with all features included
- Greedily remove the feature that decreases performance least
- Stop when a desired number of features is reached

Challenge: requires rerunning the training algorithm (computationally expensive)

Regularization methods for variance reduction

Reduce the variance by simplifying the model during training

Techniques that reduce generalization error, but NOT training error

Recall the model fitting process

- Choose a hypothesis set of models to train (e.g. linear regression with p predictor variables)
- 2. Identify a **cost function** to measure the model fit to the training data (e.g. mean square error)
- 3. Optimize model parameters to minimize cost (e.g. ordinary least squares or gradient descent)

Regularization

a.k.a. shrinkage

Adjust the cost/loss function to penalize larger parameters

$$L(w) = \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$
Square error
$$L_{2} \text{ regula}$$

L₂ regularization penalty

This term causes the estimated parameter values to "shrink"

More generally: $L(w) = C(w, X, y) + \lambda R(w)$

Norms

Images from Wikipedia, Norm MacDonald photo by playerx licensed under CC BY 2.0

Norms

A function that assigns a positive length or size to a vector

The most familiar is likely the **Euclidean**, or L_2 norm:

$$\|\mathbf{x}\|_{2} \triangleq \sqrt{x_{1}^{2} + \dots + x_{n}^{2}} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} = \sqrt{\mathbf{x}^{T}\mathbf{x}}$$

You'll often see this in its squared form:

$$\|\mathbf{x}\|_{2}^{2} \triangleq x_{1}^{2} + \dots + x_{n}^{2} = \sum_{i=1}^{n} x_{i}^{2} = \mathbf{x}^{T}\mathbf{x}$$

Kyle Bradbury Lecture 9 18

Norms

There's also the L_1 norm

(a.k.a taxicab or Manhattan distance)

$$\|x\|_1 \triangleq |x_1| + \dots + |x_n| = \sum_{i=1}^n |x_i|$$

The general L_p norm:

$$\|\mathbf{x}\|_p \triangleq \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

In the limit, the **infinity norm** is the maximum entry of the vector x:

$$\|\boldsymbol{x}\|_{\infty} \triangleq \max_{i} |x_{i}|$$

Norms of length 1

Assume a 2-D vector whose origin is (0,0): $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

$$||w||_1 = 1$$

$$\|\boldsymbol{w}\|_2 = 1$$

$$\|\mathbf{w}\|_{\infty} = 1$$

Kyle Bradbury Reducing Overfit

Regularization

a.k.a. shrinkage

Adjust the cost/loss function to penalize larger parameter values

L₂ regularization

$$L(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$

L₁ regularization

$$L(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i})^{2} + \lambda \sum_{i=1}^{p} |w_{i}|$$

a.k.a....

ridge regression or weight decay (Tikhonov regularization)

least absolute shrinkage and selection operator (LASSO)

$$L_2 \& L_1$$
 regularization $L(\mathbf{w}) = \sum_{i=1}^n (\mathbf{w}^T \mathbf{x}_i - \mathbf{y}_i)^2 + \lambda_1 \sum_{i=1}^p |\mathbf{w}_i| + \lambda_2 \sum_{i=1}^p \mathbf{w}_i^2$ elastic net regularization

$$L(w) = \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$
Error term (E)
Regularization penalty (R)

First attempt let's just minimize error

$$L(w) = \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$
Error term
Regularization penalty

First attempt let's just minimize error

This leads to a huge regularization penalty

23

$$L(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} - \mathbf{y}_{i})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$
Error term
Regularization penalty

For any level of error (assume E_3 here), there may be a number of parameter values that result in an equal error term

$$L(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$
Error term
Regularization penalty

For any level of error (assume E_3 here), there may be a number of parameter values that result in an equal error term

$$L(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} - \mathbf{y}_{i})^{2} + \lambda \sum_{j=1}^{p} w_{j}^{2}$$
Error term
Regularization penalty

However, we can choose between the options by minimizing the regularization penalty

Regularization reduces variance

Leads to smaller model parameters

L₁ regularization also performs variable selection

Example: predicting credit default

11 features to use to predict default:

- Income
- Credit limit
- Credit rating
- Credit balance
- Number of credit cards
- Age

- Education
- Gender
- Student status
- Ethnicity
- Marriage status

Ridge regression

L₁ regularization

LASSO regularization

Images from James et al., An Introduction to Statistical Learning

L₂ regularization

L₁ regularization

Images from James et al., An Introduction to Statistical Learning

Underdetermined systems and OLS

If p > N, then the system is **underdetermined**

Often means there are infinitely many solutions

Ridge regression makes this problem solvable

Choosing the regularization parameter λ

- λ is a hyperparameter
- Use a training, validation, and test set
- Can also apply nested cross validation

Train

Used for model training / fitting

Validation

Used to approximate generalization performance and optimize hyperparameters

Test

Used to evaluate generalization performance of the final model(s)

Strengths of L₁ and L₂ regularization

Ridge regression (L₂ regularization) handles **multicollinearity** well

LASSO regularization (L₁ regularization) reduces the number of predictors in a model (yields **sparse** models)

LASSO selects among redundant features

You can use a little of both via elastic net regularization

One more approach: Early Stopping

Iterative learning (training) methods, (e.g. gradient descent) tend to learn more complex models over time

Stop the fitting process earlier, before overfit has occurred

Common in neural network training

Kyle Bradbury Lecture 9 36

Takeaways

Reducing the number of features in a model may improve generalization error by reducing overfit

Overly flexible models can be regularized to reduce overfit (reducing variance)

L₁ and L₂ regularization are effective tools for battling overfit