Nº 4584

54 X 465

RNMNX

Сборник индивидуальных заданий

НОВОСИБИРСК 2016

Министерство образования и науки Российской Федерации НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

54 № 4584 X 465

RNMNX

Сборник индивидуальных заданий для самостоятельной работы студентов, обучающихся по технических направлениям и специальностям, дневной формы обучения

НОВОСИБИРСК 2016 Составители: A.И. Anaphee, канд. хим. наук, доцент P.E. Cинчурина, ассистент

Рецензент Т.П. Александрова, канд. хим. наук, доцент

Работа подготовлена на кафедре химии и химической технологии

Тема 3

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ ПРОЦЕССОВ

Задание. Дано уравнение реакции (см. вариант в табл. 4).

- 1. Для всех веществ, участвующих в реакции, выпишите из приложения 1 значения стандартных термодинамических величин $\Delta_f H_{298}^0$ и S_{298}^0 .
- 2. Вычислите изменение энтальпии реакции $\Delta_r H_{298}^0$ и определите, является ли данная реакция экзо- или эндотермической. Запишите термохимическое уравнение реакции.
- 3. По виду уравнения реакции, не прибегая к расчетам, определите знак изменения энтропии реакции $\Delta_r S_{298}^0$. Вычислив изменение энтропии реакции в стандартных условиях, объясните знак $\Delta_r S_{298}^0$.
- 4. Вычислите энергию Гиббса прямой реакции в стандартных условиях $\Delta_r G_{298}^0$ и установите возможность самопроизвольного протекания реакции.
- 5. Определите температуру, при которой реакция находится в равновесии ($T_{\rm D}$).
 - 6. Рассчитайте $\Delta_r G$ при $T_1 = T_p 100$, $T_2 = T_p + 100$.
- 7. Постройте график зависимости $\Delta_r G$ от T и обозначьте на графике область температур самопроизвольного протекания реакции.
- 8. Вычислите значения константы равновесия K_c при температурах T_p , T_1 и T_2 . Сделайте вывод о влиянии температуры на величину K_c и на смещение химического равновесия.

Таблица 4

Номер	Задание 1, 2			Изменение внешних условий							
варианта	$aA + bB \Leftrightarrow cC + dD$	$c_0(A)$, моль/л	<i>c</i> ₀ (В), моль/л	C_{ucx}	p	V	T				
1	$CH_{4(r)} + H_2O_{(r)} = CO_{(r)} + 3 H_{2(r)}$	1	2	1	\downarrow	↓	\downarrow				
2	$CH_{4(r)} + 2 H_2S_{(r)} = CS_{2(r)} + 4 H_{2(r)}$	2	3	1	1	1	\downarrow				
3	$CO_{2(r)} + 2 H_{2(r)} = C_{(r)} + 2 H_2O_{(r)}$	1	3	\downarrow	\downarrow	1	1				
4	$2 \text{ NF}_{3(r)} + O_{2(r)} = 2 \text{ NOF}_{3(r)}$	2	2	1	1	\downarrow	\downarrow				
5	$CO_{2(r)} + 4 H_{2(r)} = CH_{4(r)} + 2 H_2O_{(r)}$	1	2	1	1	\downarrow	\downarrow				
6	$2 \text{ PCl}_{5(r)} + O_2 = 2 \text{ POCl}_{3(r)} + 2 \text{ Cl}_{2(r)}$	3	1	\downarrow	\downarrow	1	1				
7	$CS_{2(r)} + 2 H_2S_{(r)} = 4 S_{(\tau)} + CH_{4(r)}$	2	3	1	1	\downarrow	\downarrow				
8	$SO_{2(\Gamma)} + 3 H_{2(\Gamma)} = H_2 S_{(\Gamma)} + 2 H_2 O_{(\Gamma)}$	3	3	\downarrow	\downarrow	1	1				
9	$2 \text{ NO}_{2(\Gamma)} + F_{2(\Gamma)} = 2 \text{ (NO}_2) F_{(\Gamma)}$	3	2	\downarrow	\downarrow	1	1				
10	$2 NO_{(r)} + Br_{2(r)} = 2 NOBr_{(r)}$	3	3	1	1	\downarrow	\downarrow				
11	$2 \text{ NO}_{(r)} + \text{H}_{2(r)} = \text{N}_2\text{O}_{(r)} + \text{H}_2\text{O}_{(r)}$	4	2	\downarrow	\downarrow	1	1				
12	$S_{2(r)} + 4 CO_{2(r)} = 2 SO_{2(r)} + 4 CO_{(r)}$	1	2	1	1	\downarrow	\downarrow				
13	$S_{2(r)} + 2 H_{2(r)} = 2 H_2 S_{(r)}$	2	3	1	1	1	1				
14	$2 \text{ CO}_{(r)} + 2 \text{ H}_{2(r)} = \text{CH}_{4(r)} + \text{CO}_{2(r)}$	3	2	\downarrow	\downarrow	1	1				
15	$2 H_2 S_{(\Gamma)} + SO_{2(\Gamma)} = 3 S_{(T)} + 2 H_2 O_{(\Gamma)}$	2	1	\downarrow	\downarrow	↓	\downarrow				

16	$2 \text{ PCl}_{3(\Gamma)} + O_{2(\Gamma)} = 2 \text{ PCl}_{3}O_{(\Gamma)}$	3	1	1	1	1	1
17	$SiCl_{4(r)} + 2 H_{2(r)} = Si_{(r)} + 4 HCl_{(r)}$	2	3	↓	↓	\downarrow	↓
18	$2 \text{ NO}_{(r)} + \text{Cl}_{2(r)} = 2 \text{ NOCl}_{(r)}$	3	2	1	1	1	↓
19	$CH_{4(r)} + 3 CO_{2(r)} = 4 CO_{(r)} + 2 H_2O_{(r)}$	2	4	↓	1	1	\downarrow
20	$2 \text{ CO}_{(r)} + 4 \text{ H}_{2(r)} = \text{C}_2\text{H}_5\text{OH}_{(r)} + \text{H}_2\text{O}_{(r)}$	1	3	↑	\downarrow	1	1
21	$2 H_2O_{(r)} + 2 Cl_{2(r)} = 4 HCl_{(r)} + O_{2(r)}$	3	2	1	\downarrow	\downarrow	1
22	$N_{2(r)} + 2 SO_{3(r)} = 2 NO_{(r)} + 2 SO_{2(r)}$	3	3	\rightarrow	1	\downarrow	1
23	$CS_{2(r)} + 2 Cl_{2(r)} = CCl_{4(r)} + 2 S_{(r)}$	1	1	↑	\downarrow	1	1
24	$2 \text{ NO}_{(r)} + 2 \text{ SO}_{2(r)} = N_{2(r)} + 2 \text{ SO}_{3(r)}$	3	4	↑	1	\downarrow	1
25	$SiF_{4(r)} + 2 H_2O_{(r)} = 4 HF_{(r)} + SiO_{2(r)}$	2	3	\downarrow	1	1	\downarrow
26	$H_2S_{(r)} + 2 H_2O_{(r)} = SO_{2(r)} + 3 H_{2(r)}$	1	3	\downarrow	\downarrow	1	1
27	$CH_{4(r)} + 2 H_2O_{(r)} = CO_{2(r)} + 4 H_{2(r)}$	2	2	↑	\downarrow	\downarrow	1
28	$2 SO_{2(r)} + O_{2(r)} = 2 SO_{3(r)}$	2	3	\rightarrow	1	↓	↓
29	$SO_{2(r)} + 2 CO_{(r)} = S_{(r)} + 2 CO_{2(r)}$	3	3	1	1	\downarrow	\downarrow
30	$CO_{(\Gamma)} + 2 H_{2(\Gamma)} = CH_3OH_{(\Gamma)}$	3	3	1	↓	↓	1

приложения

Приложение 1 Термодинамические характеристики некоторых веществ при 298 К

Разилатра	$\Delta_f H^0$,	S^0 ,	$\Delta_{\!f}G^0,$
Вещество	кДж/моль	Дж/(моль·К)	кДж/моль
$Al_2O_{3(T)}$	-1675,7	50,92	-1582,27
$As_{(r)}$	288,7	174,1	247,4
$AsH_{3(r)}$	66,4	222,96	68,91
$AsCl_{3(r)}$	-271,1	326,8	-258,1
$B_{(\kappa)}$	0	5,86	0
$BCl_{3(r)}$	-403,8	289,5	-388,7
BCl _{3(ж)}	-427,1	206	-387,1
$BaO_{(\kappa)}$	-557,9	70,29	-528,4
BaCl _{2(κ)}	-860,1	126	-810,9
$\mathrm{BeO}_{(\kappa)}$	-598,7	14,1	-581,6
$BeCl_{2(\kappa)}$	-494	63	-468
Br _{2(ж)}	0	152,2	0
$\mathrm{Br}_{2(\Gamma)}$	30,92	245,35	3,14
$C_{\text{графит}}$	0	5,74	0
Салмаз	1,83	2,38	2,85
$CO_{(\Gamma)}$	-110,5	197,54	-137,14
$CO_{2(r)}$	-393,51	213,68	-394,38
$CF_{4(\Gamma)}$	-933	261,37	-888,4
$CCl_{4(r)}$	-102,9	309,9	-60,7
$CCl_{4(m)}$	-135,4	214,4	-64,6
$CH_{4(\Gamma)}$	-74,81	186,31	-50,82
$C_2H_{2(\Gamma)}$	226,75	200,82	209,21
$C_2H_{4(r)}$	52,3	219,45	68,14
$C_2H_{6(r)}$	-84,68	229,5	-32,89
$C_6H_{6(r)}$	82,93	269,2	129,68
$CH_3OH_{(\Gamma)}$	-202	239,7	-163,3
СН ₃ ОН _(ж)	-239,45	126,6	-167,1
$C_2H_5OH_{(\Gamma)}$	-235,3	278,0	-167,4

Продолжение таблицы П1

_		-	
Вещество	$\Delta_f H^0$,	S^0 ,	$\Delta_{f}G^{0}$,
	кДж/моль	Дж/(моль·К)	кДж/моль
$CS_{2(r)}$	110,7	237,77	66,55
$CS_{2(m)}$	88,7	151,04	64,41
$CaO_{(\kappa)}$	-635,5	39,7	-605,2
$Ca(OH)_{2(\kappa)}$	-986,2	83,4	-898,5
CaCO _{3(K)}	-1207,1	92,88	-1128,76
$\text{Cl}_{2(r)}$	0	222,96	0
CuO _(K)	-162	42,63	-134,3
$Cu_2O_{(\kappa)}$	-173,2	92,9	-150,6
$F_{2(r)}$	0	202,7	0
FeO _(K)	-263,8	58,8	-244,3
Fe ₂ O _{3(K)}	-822,16	89,96	-740,98
$H_{2(\Gamma)}$	0	130,52	0
$HBr_{(r)}$	-35,98	198,59	-53,3
$HCl_{(\Gamma)}$	-92,31	186,79	-95,27
HF _(r)	-268,61	173,51	-270,7
$HI_{(r)}$	26,57	206,48	1,78
$H_2O_{(\Gamma)}$	-241,82	188,72	-228,61
Н ₂ О _(ж)	-285,84	70,08	-237,2
$H_2S_{(r)}$	-20,9	205,69	-33,8
H ₂ SO _{4(ж)}	-814,2	156,9	-690,3
$I_{2(\Gamma)}$	62,43	260,58	19,37
$N_{2(\Gamma)}$	0	191,5	0
NH _{3(r)}	-46,19	192,66	-16,66
$NF_{3(\Gamma)}$	-131,7	260,7	-84
$N_2F_{4(r)}$	-22	317	79
$N_2O_{(\Gamma)}$	82,01	219,83	104,12
$N_2O_{3(\Gamma)}$	90,22	307,1	110,5
$N_2O_{4(\Gamma)}$	9,6	303,8	98,4
$NO_{(\Gamma)}$	90,25	210,62	86,58
$NO_{2(\Gamma)}$	33,5	240,2	51,55
$NOCl_{(r)}$	52,59	263,5	66,37
$NOF_{(r)}$	65	248	-51
$NOF_{3(r)}$	-187	277,6	_
5(1)		, .	I.

Окончание таблицы П1

	A 7.70	S^0 ,	A C ⁰
Вещество	$\Delta_f H^0,$ кДж/моль	З , Дж/(моль·К)	$\Delta_{\!f}G^0,$ кДж/моль
$(NO_2)F_{(\Gamma)}$	-109	259,3	37
NOBr _(r)	79,5	273,55	79,74
(NH ₂) ₂ CO	-333,17	104,6	-197,15
$\text{Cl}_{2(\Gamma)}$	0	222,98	0
$O_{2(r)}$	0	205,04	0
$O_{3(\Gamma)}$	142,26	238,82	162,76
PH _{3(Γ)}	5,44	210,2	13,39
$P_2O_{5(\kappa)}$	-1507,2	140,3	-1371,7
$PCl_{3(\Gamma)}$	-279,5	311,71	-260,45
$PCl_{5(r)}$	-374,89	364,47	-297,14
POCl _{3 (r)}	-306	323,84	-512,92
$PF_{3(\Gamma)}$	-956,5	272,6	-935,66
$POF_{3(\Gamma)}$	-1252,27	284,93	-1203,75
$S_{(\kappa)}$	0	31,88	0
$S_{(r)}$	287,81	167,75	238,91
$S_{2(\Gamma)}$	127,52	228,03	78,55
$\mathrm{SO}_{2(\Gamma)}$	-296,9	248,1	-300,2
$SO_{3(r)}$	-395,8	256,7	-372,2
$SO_2Cl_{2(\Gamma)}$	-363,17	311,3	-318,85
Si _(T)	0	18,83	0
$SiO_{2(T)}$	-905,88	40,38	-851,17
$SiF_{4(\Gamma)}$	-1614,95	282,0	-1572,53
SiCl _{4(Γ)}	-657,52	330,95	-617,6
SiH _{4(r)}	34,73	204,55	57,19
SiO _{2(к, стекл)}	-903,5	46,86	-850,7

Приложение 3 Произведение растворимости ПР некоторых малорастворимых электролитов при 298 К

Вещество	ПР	Вещество	ПР	Вещество	ПР
Be(OH) ₂	$2,09 \cdot 10^{-19}$	$Zn(OH)_2$	$3,69 \cdot 10^{-17}$	Fe(OH) ₂	4.10^{-16}
Mg(OH) ₂	$6,76 \cdot 10^{-12}$	Sc(OH) ₃	$2 \cdot 10^{-30}$	Fe(OH) ₃	$2,51\cdot10^{-39}$
Ga(OH) ₃	$1,58 \cdot 10^{-37}$	Sn(OH) ₂	$6,3\cdot10^{-27}$	Al(OH) ₃	$1,1\cdot 10^{-34}$
Bi(OH) ₃	$3,2\cdot 10^{-36}$	Sn(OH) ₄	1.10^{-57}	Co(OH) ₂	$2 \cdot 10^{-16}$
Pd(OH) ₂	10^{-30}	Pb(OH) ₂	$1,2\cdot 10^{-20}$	Co(OH) ₃	4.10^{-45}
Cd(OH) ₂	$2,2\cdot 10^{-14}$	Cr(OH) ₂	10^{-17}	Ni(OH) ₂	$6,31\cdot10^{-18}$
Cu(OH) ₂	$2 \cdot 10^{-20}$	Cr(OH) ₃	$6,3\cdot 10^{-31}$	In(OH) ₃	1,29.10 ⁻³⁷
Au(OH) ₃	$5,5\cdot 10^{-46}$	Mn(OH) ₂	$1,9 \cdot 10^{-13}$	La(OH) ₃	$6,5\cdot 10^{-20}$

Приложение 4

Температуры кипения $T_{\text{кип}}$, кристаллизации $T_{\text{зам}}$, криоскопическая $K_{\text{кр}}$ и эбуллиоскопическая K_{36} постоянные некоторых чистых растворителей

Растворитель	<i>Т</i> _{зам} , °С	<i>Т</i> _{кип} , °С	$K_{\mathrm{кр}}, \frac{\mathrm{кr} \cdot \mathrm{K}}{\mathrm{моль}}$	$K_{ ext{96}}, \ rac{ ext{k}\Gamma \cdot ext{K}}{ ext{моль}}$
Ацетон	-95,35	56,24	2,4	1,48
Бензол	5,53	80,1	5,12	2,57
Вода	0	100	1,86	0,52
Диэтиловый эфир	-116	34,5	1,79	2,12
Пиридин	-45	115,8	4,97	2,687
Сероуглерод	-111,6	46,2	3,8	2,29
Уксусная кислота	16,75	118,1	3,9	3,07
Циклогексан	6,6	80,75	20,2	2,75
Хлороформ	-63,5	61,2	4,9	3,61
Четыреххлористый углерод	-22,96	76,75	29,8	5,25
Этанол	-114,5	78,3	1,99	1,22

Приложение 8

Растворимость веществ в воде

Ионы	Li⁺	Na⁺	K+	Be ²⁺	Mg ²⁺	Ca ²⁺	Sr2+	Ba ²⁺	Zn2+	Cd2+	Hg²+	Pd ²⁺	Al³+	In³+	Ga³+	Sn2+	Pb ²⁺	Sb3+	Bi³+	Cr3+	Mn²+	Fe ²⁺	Fe ³⁺	Co2+	Ni ²⁺	Cu ²⁺	Ag⁺	Au ³⁺
OH-	Р	Р	Р	Н	Н	M	M	Р	Н	Н		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	M	Н
F-	M	Р	Р	Р	M	Н	Н	M	M	Р	Γ	M	M	M	Н	Р	M	Р	Н	Р	Р	Н	Н	Н	Р	Р	Р	Γ
CI-	Р	P	Р	Р	Р	Р	Р	P	Р	P	P	Р	Р	Р	Р	Р	M	Р	P	P	Р	Р	Р	Р	Р	Р	Н	Р
CIO ₃	Р	Р	Р	Р	Р	Р	Р	Р	Р		Р		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	И	Р	Р	Р
ClO ₄	Р	Р	М	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Br-	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	M	Н	Р	Р	Р	Р	М	Р	Р	Р	Р	Р	Р	Р	Р	Р	Н	M
BrO [−] ₃	Р	Р	Р		Р	Р	Р	М	Р	Р	М		Р			Р	Р							Р	Р	Р	М	
ŀ	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Н	Н	Р	Р	Р	М	М	Р	Н	Р	Р	Р	Д	Р	Р	Д	Н	Д
IO _ 3	Р	Р	Р		Р	Н	Н	М	М	Р			М		М													
S ²⁻	Р	Р	Р	Γ	M	M	Р	Р	Н	Н	Н	Н	Γ	Н	Γ	Н	Н	Н	Н	Γ	Н	Н	Д	Н	Н	Н	Н	Н
S ₂ O ₃ ²⁻	Р	Р	Р	Р	Р	Р	Р	М	Р	Р	Р		Р	Р		Р	М	Р	Р	Р	Р	Р	Р	Р	Р	Р	М	
SO ₃ ²⁻	Р	Р	Р	М	М	Н	Н	М	М	М	Н		Г		Н	Γ	Н		Н	Γ	Н	М	Д	Н	Н	Н		Р
SO ₄ ²⁻	Р	Р	Р	Р	Р	М	М	Н	Р	Р	Р	Р	Р	Р	Р	Р	Н	Р	Р	Р	Р	Р	Р	Р	Р	Р	М	Р
NO ₂	Р	Р	Р	Γ	Р	Р	Р	Р	Р	Р	Р	Γ	Г		Γ	Г	Р	Γ	Γ	Γ	Р	Р	Γ	Р	Р	Р	М	Γ
NO ₃	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
PO ₄ ³⁻	М	Р	Р	Н	Н	Н	Н	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	Н	M
CO ₃ ²⁻	M	Р	Р	М	M	Н	Н	Н	Н	Н	Н		Г	Γ	Γ	Γ	Н	Γ	Н	Γ	Н	Н	Г	Н	Н	Н	Н	Γ

HCO ₃	Р	Р	Р		Р	Р	Р	Р	Р	Р							Р				Р	Р		Р	Р			
BO_2^-	M	Р	Р	Н	М	М	Р	Н	Н	Р			Н	Н	Н	Н	Н	Γ	Н	Н	Н	Н	Н	Н	Н	Р	M	
SiO ₃ ²⁻	Р	Р	P	Н	Н	Н	Н	Н	Н	M	Н	Н	Н	Н	Н	Γ	Н	Γ	Γ	Н	Н	Н	Н	Н	Н	Н	Н	
AsO ₃ ³	Р	P	P		P	Н	Н	Н	Н	Н	Н		Н		Γ	Н	Н	Γ	Н	Γ	Н	Н	Н	Н	Н	Н	Н	
AsO ₄ ³⁻	Н	P	P	Н	Н	M	M	M	Н	Н	M		Н	Н	Н	Н	M	Н	M	Н	Н	Н	Н	Н	Н	Н	Н	
SeO ₄ ²⁻	Р	P	P	P	M		M	M	P	P		P	Р	Р	P	P	Н	P	P	P	P	P	P	P	P	P		Р
MnO ₄	Р	Р	P	Р	Р	P	P	P	Р	P	Р		Р	Р	P	Р	Р	P		P	P	P	P	P	Р	P	M	
CrO ₄ ²⁻	Р	Р	P		P	P	P	Н	M	M	М						Н		Н		Н			Н	Н	M	Н	Γ
C ₂ O ₄ ²⁻	Р	P	P		M	Н	Н	M	Н	Н	M		Н	Н	Н	Н	Н		Н	M	M	M	Н	Н	Н	Н	Н	Н
HCOO-	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р		Р	Р	Р	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р	
CH₃COO-	Р	Р	Р	M	Р	Р	Р	Р	Р	Р	Р		M	Р	Р		Р	Γ	Γ	Р	Р	Р	Р	Р	Р	Р	M	Γ
CN-	Р	Р	Р	Γ	Γ	Р	Р	M	Н	Н	Р	Н	Γ	Н	Γ	Γ	M	Γ	Γ	Н	Н	Н	Н	Н	Н	Н	Н	M
SCN-	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	M	M	Р	Р	Р	Р	Н	Р	Γ	Р	Р	Р	Р	Р	Р	Н	Н	Н
[Fe(CN) ₆] ³⁻	Р	Р	Р		M	Р	Р	Р	Н		Н		Γ			Н	M		Н	Γ	Н	Н		Н	Н	Н	Н	
[Fe(CN) ₆] ⁴⁻	Р	P	P		P	P	P	M	Н	Н	Д		Γ			Н	Н		Н	Γ	Н	Н	Н	Н	Н	Н	Н	

Обозначение: P — вещество растворимо в воде (> 1 г/100 г раствора); M — вещество мало растворимо в воде (0,01—1 г/100 г раствора); H — вещество не растворимо в воде (< 0,01 г/100 г раствора); Γ — вещество необратимо гидролизуется; Π — вещество диспропорционирует при контакте с водой; -- — вещество не существует. Не заполненная клет-ка — нет данных.

химия

Сборник индивидуальных заданий

Редактор Л.Н. Ветчакова Выпускающий редактор И.П. Брованова Компьютерная верстка Л.А. Веселовская

Налоговая льгота – Общероссийский классификатор продукции Издание соответствует коду 95 3000 ОК 005-93 (ОКП)

Подписано в печать 04.04.2016. Формат 60 × 84 1/16. Бумага офсетная. Тираж 200 экз. Уч.-изд. л. 2,79. Печ. л. 3,0. Изд. № 61. Заказ № Цена договорная

Отпечатано в типографии Новосибирского государственного технического университета 630073, г. Новосибирск, пр. К. Маркса, 20