## Derivations: Conditional Demand and Total Cost

Econ 50 - Lecture 13

February 18, 2016

## 1 Deriving Conditional Input Demand (and LR total cost)

For the function  $f(L, K) = L^{\frac{1}{4}}K^{\frac{1}{4}}$ :

1. Sketch an isoquant for q = 10. An isoquant for q = 10 will be various points such that

$$L^{\frac{1}{4}}K^{\frac{1}{4}} = 10$$

or

$$LK = 10,000$$

So for example, (10, 1000) will work, as will (20, 500), (50, 200), and (100, 100).

2. Calculate the  $MRTS_{L,K}$ .

$$MP_L = \frac{1}{4}L^{-\frac{3}{4}}K^{\frac{1}{4}}$$

$$MP_K = \frac{1}{4}L^{\frac{1}{4}}K^{-\frac{3}{4}}$$

Therefore

$$MRTS_{L,K} = \frac{MP_L}{MP_K} = \frac{\frac{1}{4}L^{-\frac{3}{4}}K^{\frac{1}{4}}}{\frac{1}{4}L^{\frac{1}{4}}K^{-\frac{3}{4}}} = \frac{K}{L}$$

3. Derive the conditional demands for labor and capital – that is,  $L^*(w,r,q)$  and  $K^*(w,r,q)$ . To do this we set  $MRTS = \frac{w}{r}$ :

$$\frac{K}{L} = \frac{w}{r}$$

or

$$K = \frac{w}{r}L$$

We then substitute this back into the isoquant for q:

$$\begin{split} f(L,K) &= q \\ L^{\frac{1}{4}}K^{\frac{1}{4}} &= q \\ LK &= q^4 \\ L \times \frac{w}{r}L &= q^4 \\ L^2 &= \frac{r}{w}q^4 \\ L^* &= \sqrt{\frac{r}{w}}q^2 \\ K^* &= \frac{w}{r}L^* = \frac{w}{r}\sqrt{\frac{r}{w}}q^2 = \sqrt{\frac{w}{r}}q^2 \end{split}$$

4. Find the total cost of producing q units, for general w and r.

$$TC(q) = wL^*(w, r, q) + rK^*(w, r, q)$$

$$= w\sqrt{\frac{r}{w}}q^2 + r\sqrt{\frac{w}{r}}q^2$$

$$= \sqrt{rw}q^2 + \sqrt{rw}q^2$$

$$= 2\sqrt{rw}q^2$$

5. Confirm that when w=9 and r=16, we obtain  $L^*=133, K^*=75, TC=\$2,400$  if we want to produce q=10.

$$L^* = \sqrt{\frac{r}{w}}q^2 = \sqrt{\frac{16}{9}} \times 10^2 = \frac{4}{3} \times 100 \approx 133$$
 
$$K^* = \sqrt{\frac{w}{r}}q^2 = \sqrt{\frac{9}{16}} \times 10^2 = \frac{3}{4} \times 100 = 75$$
 
$$TC(10) = 2\sqrt{rw}q^2 = 2\sqrt{9 \times 16} \times 10^2 = 2 \times 12 \times 100 = 2,400$$

## 2 Short-run and long-run total cost curves

Let's look at the same production function  $(f(L,K) = L^{\frac{1}{4}}K^{\frac{1}{4}})$  and now fix capital at some value  $\overline{K}$ . In order to produce q units, therefore, the amount of labor required is

$$f(L, K) = q$$

$$L^{\frac{1}{4}} \overline{K}^{\frac{1}{4}} = q$$

$$L \overline{K} = q^4$$

$$L(q) = \frac{q^4}{\overline{K}}$$

Therefore the total cost of production is

$$TC(q) = wL(q) + r\overline{K}$$
  
=  $w\frac{q^4}{\overline{K}} + r\overline{K}$ 

Suppose w = r = 10. Then this becomes

$$TC(q) = \frac{10q^4}{\overline{K}} + 10\overline{K}$$

For different levels of capital, therefore, the cost function will be different. We can find the general cost function, as well as the specific costs of producing certain quantities

| Capital $(\overline{K})$ | TC(q)                    | TC(3) | TC(4) | TC(5) | TC(6) |
|--------------------------|--------------------------|-------|-------|-------|-------|
| 9                        | $\frac{10q^4}{9} + 90$   | 180   | 374   | 784   | 1530  |
| 16                       | $\frac{10q^4}{16} + 160$ | 211   | 320   | 551   | 970   |
| 25                       | $\frac{10q^4}{25} + 250$ | 282   | 352   | 500   | 768   |
| 36                       | $\frac{10q^4}{36} + 360$ | 382   | 431   | 534   | 720   |

From this we can see that the cost-minimizing quantity of capital depends on the amount of output we want to produce. Indeed, from our derivations above, we found that the cost-minimizing quantity of capital was  $K^* = \sqrt{\frac{w}{r}}q^2$ ; in this case, since w = r, the optimal quantity of capital is  $q^2$ . So, the firm with  $\overline{K} = 9$  has the lowest cost of producing q = 3 units of output, the firm with  $\overline{K} = 16$  has the lowest cost of producing q = 4 units of output, and so on.

If we plot out the total cost curves of each of the firms, along with the long-run total cost curve when K is flexible, we can see that TC(q) is actually the lower envelope of the "short-run" total cost curves for a fixed K:



Figure 1: Short-Run and Long-Run Total Cost Curves