# 网络熵

# 新网络熵: 图的支配熵

[1]Şahin Bünyamin. New network entropy: The domination entropy of graphs[J]. Information Processing Letters,2022,174:

# 1.起源

熵entropy: 香农在1948年提出的概念。

图熵graph entropy: Rashevsky在1955年提出的概念。用于衡量顶点相对于顶点度的等效类的划分。

#### 介绍一下用熵来衡量某些拓扑结构的优势

以前: 化学、物理、生物的分子拓扑结构,通过一个拓扑指数 (topological indices) 来展示不同分子的差异。 以下是一些拓扑指数:

- 1. Wiener index: 维纳指数等于图中每对顶点之间总距离的二分之一。
- 2. Hosoya index: Hosoya 指数等于匹配总数。
- 3. Merrifield-Simmons index: Merrifield-Simmons 指数等于独立集的总数。

存在的问题:它们通常与分子的相对分子特性相关,但相同的指标不能对不同的分子有很高的区分能力。

后来:运用信息论中的熵,提出了信息指数 (information indices)。结果表明,信息指数比各自的拓扑指数对分子有更大的区分能力。

**再后来**: Dehmer 介绍了一些新的图顶点<u>信息泛函</u>(information functionals,更准确地说,信息泛函基于导出的概率分布量化图的结构信息)。

然后就出现了很多图熵度量(graph entropy measure),基于图的一些不变的属性,如顶点数、边数、顶点的度序列、顶点的度幂(degree powers),还有基于匹配和独立集的。

# 2.关于本文

支配 (domination) 也是图的一个重要的属性。

Haynes等人证明, 图的这些不变的属性, 在树中, 对图的微小变化是十分敏感的。

基于以上种种原因,作者定义了一个基于支配集的图熵的度量。

要得到熵,作者使用了图的支配多项式 (domination polynomials)。

除了一些众所周知的支配多项式之外,我们还定义了细分星图的支配多项式。 此外,我们将支配熵与基于匹配、独立集、顶点度和给出的 21 个图的自同构组的图熵度量进行了比较。 这 21 个五阶图根据其拓扑复杂度进行排序。

# 3.名词、概念

cardinality: [n] 基数;集合的势 subdivide: [vi]细分; [vt]把...细分

### star graph

n阶星图 $S_n$ ,或者称为"n-star",是一个n个节点的 ${f M}$ ,其中一个节点的度为n-1,剩下的n-1个节点的度为1。因此星形图  $S_n$  与完全二部图  $K_{1,n-1}$  同构。



### double star graph

双星图,是由两个星图联合以及连接他们中心的线组成的图形。

n阶双星图 $S_{p,q}$ ,由 $S_{1,p}$  and  $S_{1,q}$ 组成,n=p+q+2。

### subdivided star graph

细分的星图 $S_k^*$ ,由星图 $S_{k+1}$ 得来,通过在k个顶点的星图中度为1的顶点上再添加一个点,因此 $S_k^*$ 的阶数等于  $2\mathbf{k}+1$ 。

### friendship graph

友谊图 $F_k$ ,由循环图  $C_3$  的 k 个副本组成,因此它们都共享一个公共顶点。友谊图 $F_k$ 的阶等于2k+1。

# 度序列degree sequence

假设  $V(G)=\{v_1,\ldots,v_n\}$  和  $deg(v_k)=d_k$ ,  $k=1,\ldots,n$ 。 序列  $D(G)=(d_1,d_2,\ldots,d_n)$  称为 G 的度序列。

### 总支配集total dominating set

对于图 G 和顶点集 V(G) 的子集  $S^t$ ,用  $N_G^t[S^t]$  表示 G 中与  $S^t$  中的顶点相邻的顶点集(G中的所有点都至少与 $S^t$ 中的一个点相邻)。如果  $N_G^t[S^t]=V(G)$ ,则称  $S^t$  是一个总支配集(G 中的顶点)。因为总支配集的成员必须与另一个顶点相邻,所以没有为具有孤立顶点的图定义总支配集。

总支配集与普通支配集的区别在于,在全支配集  $S^t$  中,要求  $S^t$  的成员自身与  $S^t$  中的一个顶点相邻,而在普通支配集 S 中, S 的成员可以在 S 本身或与 S 中的顶点相邻。



## 总支配数total domination number, $\gamma_t(G)$

用于表示图 G 的总支配数(the total domination number of a graph G),这是最小总支配集的基数(which is the cardinality of a total dominating set with minimum order)。

例如,在上图所示的彼得森图中, $\gamma(P)=3$ ,因为集合  $S=\{1,2,9\}$  是最小支配集(左图),而  $\gamma_t(P)=4$  因为  $S^t=\{4,8,9,10\}$  是最小总支配集(右图)。

## 支配多项式domination polynomial, D(G,x)

D(G,i) 表示基数为 i 的 G 的支配集族(也是一个集合),  $d_i$  表示 D(G,i) 的基数,使得  $d_i(G) = |D(G,i)|$ 。

$$D(G,x) = \sum_{i=\gamma(G)}^{V(G)} d_i(G) x^i$$

#### 例子:

考虑路径图  $P4:v_1v_2v_3v_4$ 。 为了支配图  $P_4$ , 取能够支配其他两个顶点的两个顶点就足够了。 因此  $\gamma(P_4)=2$ 。  $P_4$  的总支配集是  $\{v2,v3\}$  并且  $\gamma_t(P_4)=2$ 。 基数为 2 的  $P_4$  的支配集是  $D(G,2)=\{\{v1,v3\},\{v1,v4\},\{v2,v3\},\{v2,v4\}\}$ 且  $d_2(G)=4$  . 此外,基数为 3 的  $P_4$  的支配集为  $D(G,3)=\{\{v1,v2,v3\},\{v1,v2,v4\},\{v1,v3,v4\},\{v2,v3,v4\}\}$ ,  $d_3(G)=4$ 。 最后,基数为 4 的  $P_4$  的支配集是  $D(G,4)=\{v1,v2,v3,v4\}$ 和  $d_4(G)=1$ 。

因此, $P_4$ 的支配多项式为 $D(G, P_4) = x^4 + 4x^3 + 4x^2$ 。

通过这个多项式,可得知 $P_4$ 的总支配集个数是9 (4+4+1)。

由支配多项式,又可推出一个公式:

$$\gamma_s(G) = \sum_{i=\gamma(G)}^{|V(G)|} d_i(G)$$

 $\gamma_s$  来表示支配集的总数(We use the notation  $\gamma_s$  to denote the total number of dominating sets.)。**注意,不要和总支配数**  $\gamma_t$  **混淆。**很明显, $\gamma_s$  等于图 G 的支配多项式的**系数之和**。

#### 图熵

设 G 是一个图, $f:S\to R_+$  是定义在  $S=\{s_1,s_2,\ldots,s_k\}$  上的信息泛函,使得 S 是 G 的一组元素。定义如下(log以2为底):

$$I_f(G) = -\sum_{i=1}^k rac{f(s_i)}{\sum_{j=1}^k f(s_j)} \log \left(rac{f(s_i)}{\sum_{j=1}^k f(s_j)}
ight) \ = \log \left(\sum_{i=1}^k f(s_i)
ight) - rac{\sum_{i=1}^k f(s_i) \log f(s_i)}{\sum_{j=1}^k f(s_j)}$$

### 支配熵

对图 G , |V|=n 且没有孤立的顶点,我们引入信息泛函使得  $f:=d_i(G)$ ,其中 $d_i(G)=|D(G,i)|$ 。

**Definition 4.** For a graph G with |V| = n without an isolated vertex, we introduce the information functional such that

$$f := d_i(G)$$

where  $d_i(G) = |D(G, i)|$ . Thus, for each  $i < \gamma(G)$   $d_i(G) = 0$ ,  $d_{n-1}(G) = n$ , and  $d_n(G) = 1$ . Then by using Definition 3, we obtain the domination entropy

$$\begin{split} I_{dom}(G) &= I_f(G) = -\sum_{i=1}^n \frac{d_i(G)}{\gamma_s(G)} \log \left( \frac{d_i(G)}{\gamma_s(G)} \right) \\ &= \log \left( \gamma_s(G) \right) - \frac{1}{\gamma_s(G)} \sum_{i=1}^n d_i(G) \log \left( d_i(G) \right) \\ &= \log \left( \gamma_s(G) \right) - \frac{1}{\gamma_s(G)} \sum_{i=1}^{n-2} d_i(G) \log \left( d_i(G) \right) - \frac{n \log n}{\gamma_s(G)}. \end{split}$$

# 基于匹配的熵度量(Hosoya index, or Z-index)

具有 k 条边的匹配数用  $z_k(G)$  表示。 假设空集是匹配的,并且  $z_0(G)=1$ 。

图 G 的 Hosoya 指数(或 Z 指数)计算为  $Z(G) = \sum_{k=0}^m Z_k(G)$ 。

**Definition 5.** For a graph G with |E(G)| = m, the entropy measure—which is based on the number of matchings—is denoted by  $I_{nm}$  and computed by [29]

$$I_{nm}(G) = -\sum_{k=0}^{m} \frac{z_k(G)}{Z(G)} \log \left( \frac{z_k(G)}{Z(G)} \right).$$

### 基于独立集的熵度量 (Merrifield-Simmons index, or σ-index)

 $\sigma_k(G)$  表示基数为 k 的独立集合的数量。空集可以认为是一个独立的集, $\sigma_0(G)=1$ 。

图 G 的 Merrifield-Simmons 指数(或  $\sigma$ -index)计算为  $\sigma(G) = \sum_{k=0}^n \sigma_k(G)$ 。

**Definition 6.** For a graph G of order n, the entropy measure — which is based on the number of independent sets — is denoted by  $I_{nis}$  and computed by [29]

$$I_{nis}(G) = -\sum_{k=0}^{n} \frac{\sigma_k(G)}{\sigma(G)} \log \left( \frac{\sigma_k(G)}{\sigma(G)} \right).$$

### 基于度幂(degree power)的熵度量

相关文章: Extremality of degree-based graph entropies

这个度幂degree power, 就是字面意思, 度的n次方。

$$I_d^k(G) = -\sum_{i=1}^n \frac{deg(v_i)^k}{\sum_{j=1}^n deg(v_j)^k} \log \left( \frac{deg(v_i)^k}{\sum_{j=1}^n deg(v_j)^k} \right).$$

当k=1时,可得到 first-degree entropy。

**Definition 7.** For a graph G of order n, the first-degree entropy is defined as

$$I_{fd}(G) = -\sum_{i=1}^{n} \frac{deg(v_i)}{\sum_{j=1}^{n} deg(v_j)} \log \left( \frac{deg(v_i)}{\sum_{j=1}^{n} deg(v_j)} \right).$$

# 拓扑信息内容 (topological information content)

**Definition 8.** Let G be a simple graph of order n and  $n_i$   $(1 \le i \le k)$  be the cardinality of the i-th orbit of G. Then, the topological information content  $I_{\alpha}$  is defined as follows:

$$I_{\alpha}(G) = -\sum_{i=1}^{k} \frac{n_i}{n} \log \left( \frac{n_i}{n} \right).$$

It is clear that  $I_{\alpha}(G)$  has the maximum value for graphs, which have no symmetry [32]. This means that the automorphism group of G is trivial.

什么是 orbit of G ??

# 4.一些图的支配熵

假设 $H_1$ 和 $H_2$ 是两个连通图, $H=H_1\cup H_2$ 分别是 $H_1$ 和 $H_2$ 的不相交并集。 我们得到:

$$I_{dom} = \log \left( \sum_{i=\gamma(H)}^n d_i(H) 
ight) - rac{1}{\sum_{i=\gamma(H)}^n d_i(H)} \sum_{i=1}^n d_i(H) \log \left( d_i(H) 
ight)$$

完全图 $K_n$ , 可得:

$$I_{dom}(K_n) = \log\left(2^n-1
ight) - rac{1}{2^n-1} \sum_{i=1}^n C_n^i \log\left(C_n^i
ight)$$

证 明: 支 配 多 项 式  $D(G,x)=(1+x)^n-1$  , 通 过 二 项 式 展 开 定 理 , 可 得  $\gamma_s(G)=2^n-1$  ,  $d_i(G)=C_n^i,1\leq i\leq n$ 。 (为什么要减1? 答:因为二项式展开的第一项为 $C_n^01^n\times x^0=1$ ,而 $d_0(G)=0$  ,因此这项对于该图来说并不存在,所以要减1)

星图 $S_n$ ,可得:

$$I_{dom}(S_n) = \log \left(2^{n-1} + 1
ight) - rac{1}{2^{n-1} + 1} (\sum_{i=1}^{n-3} C_{n-1}^i \log \left(C_{n-1}^i
ight)) - rac{n \log n}{2^{n-1} + 1}$$

推导:

先推导 $S_n$ 的支配多项式(找规律):

1. n=1:  $d_1(G) = 1$ 

2. n=2:  $d_1(G) = 2, d_2(G) = 1$ 

3. n=3:  $d_1(G) = 1, d_2(G) = 3, d_3(G) = 1$ 

4. n=4:  $d_1(G) = 1, d_2(G) = 3, d_3(G) = 4, d_4(G) = 1$ 

5. n=5:  $d_1(G) = 1, d_2(G) = 4, d_3(G) = 6, d_4(G) = 5, d_5(G) = 1$ 

6. ....

借助杨辉三角,可得以下规律:



支配多项式的系数为n-1行,所以写成 $(1+x)^{n-1}$ ;

但这样所有x的幂都少了1,所以再乘一个x,得 $x(1+x)^{n-1}$ ;

而第n-1个的系数需要加1,因此加一个 $x^{n-1}$ ,得 $D(S_n,x)=x^{n-1}+x(1+x)^{n-1}$ 。

那么也就易得 $\gamma_s(S_n) = \sum_{i=\gamma(S_n)=1}^n d_i(G) = 2^{n-1} + 1$ 。

带入之前的公式,即可得出。

双星图 $S_{a,b}$ , 可得:

$$egin{aligned} I_{dom}(S_{a,b}) =& \log \left( \gamma_s(S_{a,b}) 
ight) - rac{1}{\gamma_s(S_{a,b})} (\sum_{i=2}^{a+b-3} d_i(G) \log \left( d_i(G) 
ight) \ & - rac{\left( C_{a+b-2}^2 + a + b - 1 
ight) \log \left( C_{a+b-2}^2 + a + b - 1 
ight) + \left( a + b 
ight) \log \left( a + b 
ight)}{\gamma_s(S_{a,b})} \end{aligned}$$

梳子图 $E_k$ ,有n=2k个顶点,可得:

$$I_{dom}(E_k) = \log\left(3^k
ight) - rac{1}{3^k}(\sum_{i=k}^{2k} C_{i-k}^k 2^{2k-i}\log\left(C_{i-k}^k 2^{2k-i}
ight))$$



**Fig. 1.** Comb graph  $E_k$ .

友谊图 $F_k$ ,有n=2k+1个顶点,可得:

$$egin{aligned} I_{dom}(F_k) =& \log \left(3^k + 2^{2k}
ight) \ &- rac{1}{3^k + 2^{2k}} (\sum_{i=0}^{2k} (C_{2k}^{i-1} + C_k^{i-k} 2^{2k-i}) \log \left(C_{2k}^{i-1} + C_k^{i-k} 2^{2k-i}
ight)) \end{aligned}$$



**Fig. 2.** Friendship graphs  $F_2$ ,  $F_3$  and  $F_4$ .

细分的星图 $S_k^*$ ,有n=2k+1个顶点,可得:

$$egin{aligned} I_{dom}(S_k^*) &= \log \left(2 imes 3^k - 1
ight) \ &- rac{1}{2 imes 3^k - 1} ((2^k - 1) \log \left(2^k - 1
ight) + \sum_{i=0}^k (C_k^i 2^{k-i} + C_k^{i+1} 2^{k-i-1}) \log \left(C_k^i 2^{k-i} + C_k^{i+1} 2^{k-i-1}
ight)) \end{aligned}$$



**Fig. 3.** The subdivided star graph  $S_k^*$ .

推导:该图的支配多项式是由作者推导出的,其他图的支配多项式别人已经推导出了

- :: 要支配 $S_k^*$ ,那么每个臂 (arm) 都至少要有一个点在支配集中。
- $\therefore \gamma(S_k^*) = k$ , 并有以下两种情形:
  - 1. 在每个臂上,有1个基数为2的集合(取臂上的2个点) , 2个基数为1的集合(臂上的2个点2选1),中心点可选可不选,则可得到 $(x^2+2x)^k(x+1)=x^k(x+2)^k(x+1)$ 。
- 2. 满足1的情况下,只有一种情况不是支配集:就是全部由度为1的点组成的集合。因此要把这种情况去除。因而可得 $x^k(x+2)^k(x+1)-x^k$ 。

$$\therefore D(S_k^*,x) = \sum_{i=k}^{n=2k+1} d_i(G) x^i = x^k (x+2)^k (x+1) - x^k$$
 .

# 5.支配熵与其他熵度量的比较

**Table 1** Measures of  $I_{\alpha}$ ,  $I_{fd}$ ,  $I_{nis}$ ,  $I_{nm}$ ,  $I_{dom}$  and TC of 21 graphs.

|        | •            |          |       |          |           |       |
|--------|--------------|----------|-------|----------|-----------|-------|
| Graphs | $I_{\alpha}$ | $I_{fd}$ | Inis  | $I_{nm}$ | $I_{dom}$ | TC    |
| 1      | 1,522        | 2,25     | 1.643 | 1,406    | 1.712     | 60    |
| 2      | 1.922        | 2.156    | 1,727 | 1.379    | 1.688     | 76    |
| 3      | 0.722        | 2        | 2.022 | 0.722    | 2.022     | 100   |
| 4      | 0            | 2,322    | 1.349 | 1.349    | 1.704     | 160   |
| 5      | 1.922        | 2,242    | 1.349 | 1,361    | 1.741     | 172   |
| 6      | 1.922        | 2,246    | 1.650 | 1,361    | 1.713     | 290   |
| 7      | 1.522        | 2.171    | 1,650 | 1,352    | 1.712     | 212   |
| 8      | 1.522        | 2,122    | 1.760 | 1.299    | 1.952     | 230   |
| 9      | 1.522        | 2,292    | 1,361 | 1.314    | 1.719     | 482   |
| 10     | 0.722        | 2,252    | 1.361 | 1.325    | 1.890     | 292   |
| 11     | 0.971        | 2,292    | 1.677 | 1.314    | 1.719     | 504   |
| 12     | 1.922        | 2,292    | 1.361 | 1.314    | 1.741     | 511   |
| 13     | 1.922        | 2.189    | 1.677 | 1.322    | 1.927     | 566   |
| 14     | 1.522        | 2.306    | 1.352 | 1.272    | 1.709     | 1278  |
| 15     | 1.522        | 2.271    | 1.352 | 1.287    | 1.890     | 1316  |
| 16     | 0.971        | 2.236    | 1.685 | 1.296    | 1.719     | 1394  |
| 17     | 1.371        | 2.217    | 1.352 | 1.296    | 1.923     | 1396  |
| 18     | 0.722        | 2.311    | 1.298 | 1,236    | 1.863     | 3216  |
| 19     | 1.522        | 2.281    | 1.299 | 1.252    | 1.709     | 3290  |
| 20     | 0.971        | 2.308    | 1.149 | 1.207    | 2.001     | 7806  |
| 21     | 0            | 2.322    | 0.650 | 1.169    | 2.060     | 18180 |



Fig. 4. All connected graphs with 5 vertices which have increased topological complexity measures.

第一个重要结果是图3的 $I_{nis}$ 等于图3的 $I_{dom}$ 。图3是星形图 $S_5$ 。

$$\begin{split} I_{dom}(S_n) &= \log(2^{n-1}+1) - \frac{1}{2^{n-1}+1} \left( \sum_{i=1}^{n-3} \binom{n-1}{i} \log\left(\binom{n-1}{i}\right) \right) - \frac{n \log n}{2^{n-1}+1} \\ &= \log(2^{n-1}+1) - \frac{n \log n}{2^{n-1}+1} \\ &- \frac{1}{2^{n-1}+1} \left[ \binom{n-1}{1} \log\binom{n-1}{1} + \dots + \binom{n-1}{n-3} \log\binom{n-1}{n-3} \right]. \end{split}$$

 $I_{nis}$  of the stars is defined in [29], such that

$$\begin{split} I_{nis}(S_n) &= \log(2^{n-1}+1) - \frac{n\log n}{2^{n-1}+1} - \frac{1}{2^{n-1}+1} \left( \sum_{i=2}^{n-1} \binom{n-1}{i} \log \left( \binom{n-1}{i} \right) \right) \\ &= \log(2^{n-1}+1) - \frac{n\log n}{2^{n-1}+1} \\ &- \frac{1}{2^{n-1}+1} \left[ \binom{n-1}{2} \log \binom{n-1}{2} + \dots + \binom{n-1}{n-2} \log \binom{n-1}{n-2} \right]. \end{split}$$

Because the equation  $\binom{n-1}{2} = \binom{n-1}{n-2}$  is attained, the third terms of  $I_{dom}$  and  $I_{nis}$  are equal. Therefore, we obtain  $I_{dom}(S_n) = I_{nis}(S_n)$ .

感觉作者是不是写错了?应该是蓝线部分相等,才有 $I_{nis}=I_{dom}$ 。

如表1所示, $I_{\alpha}$ 的度量顺序为1.522七次、1.922五次、0.971三次、0.722三次、0两次和1.371一次。 图4和图21 是正则图,它们的自同构群根据它们的对称结构由一个轨道组成(their automorphism groups consist of one orbit based on their symmetry structure,不太懂什么意思)。 图 21 在 21 图中具有最大的拓扑复杂度度量。 但是,它的  $I_{\alpha}$  值为零。

从表1可以看出,由于图4和图21是正则图,对于n个顶点,它们的first-degree熵等于logn。

可以看出这些图的拓扑复杂度存在显着差异,可这些图的first-degree熵和拓扑复杂度值之间没有显着相关性。 而且,表中 $P_5$ 的复杂度最小,完全图 $K_5$ 的拓扑复杂度最大。所以研究一下,用first-degree熵度量 $P_n$ 和 $K_n$ ,看看隐藏着什么秘密or问题。

#### 初步观察:

From the last equation, we can compute  $I_{fd}$  of  $P_n$ , and we add the values of  $I_{fd}$  for  $K_n$   $(3 \le n \le 6)$ .

 $I_{fd}(P_3) = 1.5$ ,  $I_{fd}(K_3) = 1.585$  and  $I_{fd}(K_3) - I_{fd}(P_3) = 0.085$ 

 $I_{fd}(P_4) = 1.919$ ,  $I_{fd}(K_4) = 2$  and  $I_{fd}(K_4) - I_{fd}(P_4) = 0.081$ 

 $I_{fd}(P_5) = 2.25$ ,  $I_{fd}(K_5) = 2.322$  and  $I_{fd}(K_5) - I_{fd}(P_5) = 0.072$ 

 $I_{fd}(P_6) = 2.521$ ,  $I_{fd}(K_6) = 2.585$  and  $I_{fd}(K_6) - I_{fd}(P_6) = 0.064$ .

It is understood that if the order of paths increases, the weight of the vertices with degree two also increases. Therefore, the difference  $I_{fd}(K_n) - I_{fd}(P_n)$  decreases, while n increases.

有点规律,但好像又说明不了什么。

#### 再看看支配熵的表现:

It is time to mention the domination polynomials of the paths. For every  $n \ge 4$ , the domination polynomial of a path graph is defined by [38]:

$$D(P_n, x) = x [D(P_{n-1}, x) + D(P_{n-2}, x) + D(P_{n-3}, x)]$$

with initial conditions  $D(P_1, x) = x$ ,  $D(P_2, x) = x^2 + 2x$ , and  $D(P_3, x) = x^3 + 3x^2 + x$ . Therefore, the total number of dominating sets of paths for  $n \ge 4$  is attained as

$$\gamma_s(P_n) = \gamma_s(P_{n-1}) + \gamma_s(P_{n-2}) + \gamma_s(P_{n-3})$$

with initial conditions  $\gamma_s(P_1) = 1$ ,  $\gamma_s(P_2) = 3$  and  $\gamma_s(P_3) = 5$ .

Now, we calculate  $I_{dom}$  of  $P_n$  and  $K_n$  for  $3 \le n \le 6$ .

 $I_{dom}(P_3) = 1.371$ ,  $I_{dom}(K_3) = 1.45$  and  $I_{dom}(K_3) - I_{dom}(P_3) = 0.079$ 

 $I_{dom}(P_4) = 1.390$ ,  $I_{dom}(K_4) = 1.809$  and  $I_{dom}(K_4) - I_{dom}(P_4) = 0.419$ 

 $I_{dom}(P_5) = 1.712$ ,  $I_{dom}(K_5) = 2.060$  and  $I_{dom}(K_5) - I_{dom}(P_5) = 0.348$ 

 $I_{dom}(P_6) = 1.829$ ,  $I_{dom}(K_6) = 3.110$  and  $I_{dom}(K_6) - I_{dom}(P_6) = 1.281$ .

 $K_n$ 和 $P_n$ 的 $I_{dom}$ 差异比较明显,对比3~6阶相同图的 $I_{fd}$ 差异。差异是相对明显了,但没有规律。作者也没有继续进行说明。

# 6.结论

- 1. 我们得到了完全图、星图、双星图、梳状图、友谊图和细分星图的支配熵;
- 2. 我们定义了细分星图的支配多项式。
- 3. 我们对21个图表的五个熵度量进行了一些观察。
- 4. 我们发现星星的  $I_{dom}$  和  $I_{nis}$  是相等的。