Coloração de Vértices

Eduardo Queiroga, Luan Teylo

09 Junho de 2017

Coloração de Vértices Definição

Uma k-coloração de vértices de G é uma atribuição de k cores
 (1,2,...,k) em V. A coloração é própria quando vértices adjacentes
 recebem cores distintas.

Coloração de Vértices Definição

Uma k-coloração de vértices de G é uma atribuição de k cores
 (1,2,...,k) em V. A coloração é própria quando vértices adjacentes
 recebem cores distintas.

• Uma k-coloração própria de vértices de um grafo sem loops é um particionamento (V_1, V_2, \ldots, V_k) de V em k conjuntos independentes.

Coloração de Vértices Definição

Uma k-coloração de vértices de G é uma atribuição de k cores
 (1,2,...,k) em V. A coloração é própria quando vértices adjacentes
 recebem cores distintas.

- Uma k-coloração própria de vértices de um grafo sem loops é um particionamento (V_1, V_2, \ldots, V_k) de V em k conjuntos independentes.
- G é dito k-colorível se admitir uma k-coloração própria.

Coloção de Vértices Definição

- Claramente, um grafo é k-colorível se e somente se o seu grafo simples subjacente for k-colorível. Portanto, apenas grafos simples serão considerados.
- Um grafo simples é *1-colorível* se e somente se ele for vazio e *2-colorível* se e somente se for bipartido.

Coloração de Vértices

Definição

- O **número cromático** de G, $\chi(G)$, é o menor k tal que G seja k-colorível.
 - ▶ Se $\chi(G) = k$, então G é dito k-cromático.

Grafo 3-cromático

Coloração de Vértices

Definição

- Dizemos que um grafo G é **crítico** se para todo *subgrafo próprio H* de G, $\chi(H) < \chi(G)$
 - ▶ Um grafo *k-crítico* é aquele que é *k-cromático* e crítico; todo grafo *k-cromático* tem um subgrafo *k-crítico*.

O grafo 4-crítico de Grötzsch e um subgrafo qualquer.

Teorema

Se G é k-crítico, então $\delta > k-1$

Prova:

Por contradição. Se possível, seja G um grafo k-crítico com $\delta < k-1$, e seja v um vértice de grau δ em G. Uma vez que G é k-crítico, G-v é (k-1)-colorível.

Seja $(V_1, V_2, \ldots, V_{k-1})$ uma (k-1)-coloração de G-v. Por definição, v é adjacente em G a $\delta < k-1$ vértices e, portanto, v precisa ser **não** adjacente em G a todo vértice de algum V_j .

Mais então, $(V_1, V_2, \dots, V_j \cup \{v\}, \dots, V_{k-1})$ é uma (k-1)-coloração de G. Contradição, portanto $\delta \geq k-1$.

Corolário 8.1.1

Corolário

Todo grafo k-cromático tem pelo menos k vértices com grau $\geq k-1$

Um Grafo 4-cromático

Corolário 8.1.1

Prova:

Seja G um grafo k-cromático, e seja H um subgrafo k-crítico de G.

Pelo teorema 8.1, todo vértice $v \in V$ têm grau de pelo menos k-1 em H e, portanto, também em G. Segue então que H, sendo k-cromático,

claramente tem ao menos k vértices.

Corolário 8.1.2

Corolário

Para qualquer grafo G, $\chi \leq \Delta + 1$

Prova:

Suponha que a afirmação não seja verdadeira. Portanto, existe um grafo G com n'umero crom'atico $\Delta + 2$.

Pelo teorema 8.1, deve existir pelo menos $\Delta+2$ vértices com grau maior ou igual que $\Delta+1$. Isso é impossível.

Definição

S-Componentes

- Seja S um corte por vértice de um grafo conexo G, sendo que os componentes de G-S apresentam os seguintes conjuntos de vértices V_1, V_2, \ldots, V_n .
 - ▶ Os subgrafos $G_i = G[V_i \cup S]$ são chamados de **S-componentes** de G.

G e as suas $\{u, v\}$ -componentes.

Definição

S-Componentes

• Dizemos que as colorações de G_1, G_2, \ldots, G_n concordam em S, se e somente se $\forall v \in S$ a atribuição de cores for igual em qualquer uma das colorações.

Teorema

Em um grafo k-crítico, nenhum corte por vértice é uma clique.

Prova:

Por contradição. Seja G um grafo k-crítico, e suponha que G possui um corte por vértice S que é uma clique.

Denote as S-componentes de G por G_1, G_2, \ldots, G_n . Uma vez que G é k-crítico, cada G_i é (k-1)-colorível. Além disso, como S é uma clique, os vértices em S precisam receber cores distintas em qualquer (k-1)-coloração de G_i .

Segue então, que existem (k-1)-colorações de G_1, G_2, \ldots, G_n que concordam em S. Porém, essas colorações juntas produzem uma (k-1)-coloração de G, que é uma contradição, pois G é k-crítico.

Corolário 8.2

Corolário

Todo grafo crítico é um bloco.

Prova:

Se v é um vértice de corte, então $\{v\}$ é um corte por vértice que também é uma clique. Portanto, segue do teorema 8.2 que nenhum grafo crítico tem um vértice de corte. $\hfill\Box$

Consequência do Teorema 8.2

Uma consequência do teorema 8.2 é que se um grafo G k-crítico tem um 2- $corte por vértice <math>\{u, v\}$, então u e v não podem ser adjacentes.

Veremos que um {u, v}-componente G_i de G é do tipo 1, se toda (k-1)-coloração de G_i atribui as mesmas cores para u e v. E é do tipo 2, se toda (k-1)-coloração de G_i atribui cores diferentes para u e v.

(Dirac, 1953)

Teorema 8.3

Seja G um grafo k-crítico com um 2-corte por vértices $\{u,v\}$. Então:

- 1. $G = G_1 \cup G_2$, onde G_i é um $\{u, v\}$ -componente do tipo tipo i $(i = \{1, 2\})$ e,
- 2. Ambos $G_1 + uv$ e $G_2 \cdot uv$ são k-crítico (onde $G_2 \cdot uv$ denota o grafo obtido a partir da contração dos vértices u e v).

Teorema 8.3 (Dirac, 1953)

Prova:

1. Como G é crítico, cada $\{u,v\}$ -componente de G é (k-1)-colorível. Portanto, não pode existir (k-1)-colorações em todos estes $\{u,v\}$ -componentes que concordam em $\{u,v\}$, já que tais colorações iriam juntos produzir uma (k-1)-coloração em G.

Logo, há dois $\{u,v\}$ -componentes G_1 e G_2 tal que nenhuma (k-1)-coloração de G_1 concorda com alguma (k-1)-coloração de G_2 .

Claramente um, digamos G_1 , deve ser do tipo 1 e outro, G_2 , do tipo 2. Como G_1 e G_2 são de tipos diferentes, o subgrafo $G_1 \cup G_2$ de G **não é** (k-1)-colorível. Assim, como G é crítico, temos que ter $G = G_1 \cup G_2$.

Teorema 8.3 (Dirac, 1953)

Prova:

2. Faça $H_1 = G_1 + uv$. Como G_1 é do tipo 1, H_1 é k-cromático. Iremos provar que H_1 é crítico, mostrando que para cada aresta \mathbf{e} de H_1 , $H_1 - e$ é (k-1)-colorível.

Isso claramente é verdade se e = uv, pois $H_1 - e = G_1$.

Seja e outra aresta de H_1 . Em Qualquer (k-1)-coloração de G-e, os vértices u e v devem receber cores diferentes, já que G_2 é um subgrafo de G-e. A restrição de tal coloração nos vértices de G_1 é uma (k-1)-coloração de H_1-e . Portanto, G_1+uv é crítico. Um argumento análogo mostra que $G_2 \cdot uv$ é k-crítico

Corolário 8.3

Corolário

Seja G um grafo k-crítico com um 2-corte por vértice $\{u, v\}$. Então:

$$d(u)+d(v)\geq 3k-5\tag{1}$$

Prova:

Seja G_1 o $\{u,v\}$ -componente do tipo 1 e G_2 o $\{u,v\}$ -componente do tipo 2. Faça $H_1=G_1+uv$ e $H_2=G_2\cdot uv$. Pelos teoremas 8.3 e 8.1, temos:

$$d_{H_1}(u) + d_{H_1}(v) \ge 2k - 2$$
 e $d_{H_2}(w) \ge k - 1$

onde w é o novo vértice obtido por identificar (contrair) u e v.

Segue que:

$$d_{G_1}(u) + d_{G_2}(v) > 2k - 4$$
 e $d_{G_2}(u) + d_{G_2}(v) > k - 1$

Essas duas inequações produzem (8.1)

Teorema 8.4

• O teorema de Vizing ($\chi' = \Delta$ ou $\chi' = \Delta + 1$) é um resultado consideravelmente mais forte do que o *upper bound* dado no corolário 8.1.2 ($\chi \leq \Delta + 1$).

Teorema 8.4

Se G é um grafo simples conexo e não é um ciclo ímpar e também não é um grafo completo, então $\chi \leq \Delta$

Prova:

Seja G um grafo k-cromático que satisfaz a hipótese do teorema. Sem perda de generalidade, podemos assumir que G é k-crítico. Pelo corolário 8.2, G é um bloco. Além disso, uma vez que grafos 1-crítico e 2-crítico são completos e grafos 3-crítico são ciclos ímpares, temos que $k \ge 4$.

Teorema 8.4

Prova (cont.):

Se G tem um 2-corte por vértice $\{u,v\}$, usando o corolário 8.3, temos que:

$$2\Delta \ge d(u) + d(v) \ge 3k - 5 \ge 2k - 1$$

Isso implica que $\chi = k \le \Delta$, uma vez que 2Δ é par.

Teorema 8.4

Prova (cont.):

Assuma que G é 3-conexo. Uma vez que G não é completo, existem três vértices u, v e w em G tal que $uv, vw \in E$ e $uw \notin E$.

Faça $u = v_1$ e $w = v_2$ e seja $v_3, v_4, \ldots, v_v = v$ qualquer ordem dos vértices de $G - \{u, w\}$ tal que cada v_i é adjacente a algum v_j com j > i. (Isso pode ser alcançado por arranjar os vértices em ordem não crescente de sua distância de v).

Podemos agora descrever uma Δ -coloração de G:

- 1. atribua **cor** 1 para $v_1 = u$ e v2 = w;
- 2. então, sucessivamente, colore v_3, v_4, \ldots, v_v com a primeira cor disponível na lista $1, 2, \ldots, \Delta$.

Teorema 8.4

Teorema 8.4

Prova (cont.):

Pela construção da sequência v_1, v_2, \ldots, v_v , cada vértice v_i , $1 \le i \le v-1$, é adjacente a algum vértice v_j com j > i, e a no máximo $\Delta-1$ vértices v_i com j < i.

Segue que, quando v_i for colorido, v_i é adjacente a no máximo $\Delta-1$ cores, e portanto uma das cores $1, 2, \ldots, \Delta$ estará disponível.

Finalmente, uma vez que v_v é adjacente a dois vértices de cor 1 (v_1 e v_2), v_v é adjacente a no máximo $\Delta-2$ outras cores e pode receber uma das cores $2, 3, \ldots, \Delta$.

Conjectura de Hajó

Conjecture de Hajó

Se G é k-cromático, então G contém uma subdivisão de K_k .

Uma subdivisão de um grafo G é um grafo que pode ser obtido a partir de G, por uma sequência de divisões de arestas.

Subdivisões de um K_4 .

Note que essa condição não é suficiente; por exemplo, um 4-ciclo é uma subdivisão de um k_3 , mas não é 3-cromático

Conjectura de Hajó

Conjecture de Hajó

Se G é k-cromático, então G contém uma subdivisão de K_k .

Para k=1 e k=2 a validade da conjectura de Hajós é óbvia. A conjectura também é facilmente verificada para k=3, pois um grafo 3-cromático necessariamente contém um ciclo ímpar, e todo ciclo ímpar é subdivisão do k_3 . Dirac (1952) provou o caso de k=4.

Teorema

Se G é 4-cromático, então G contém uma subdivisão do K_4 .

Prova

Seja G um grafo 4-cromático. Note que se algum subgrafo de G contiver uma subdivisão do K_4 , então G também terá.

Sem perda de generalidade, podemos assumir que G é crítico, e portanto que G é um bloco com $\delta \geq 3$ (teorema 8.1). Se n=4, então G é K_4 (caso trivial).

Por indução em n, assuma que o teorema é válido para todo grafo 4-cromático com menos de n vértices, e seja n(G) = n > 4

Prova

Primeiro, suponha que G tem um 2-corte por vértice $\{u, v\}$. Pelo teorema 8.3, G tem dois $\{u, v\}$ -componentes G_1 e G_2 , onde $G_1 + uv$ é 4-crítico.

Como $n(G_1 + uv) < n(G)$, podemos aplicar a hipótese de indução e deduzir que $G_1 + uv$ contém uma subdivisão do K_4 .

Segue que, como P é um (u,v)-caminho em G_2 , então $G_1 \cup P$ contém uma subdivisão do K_4 . Como $G_1 \cup P \subseteq G$, então G também contém uma subdivisão do K_4

Prova

Agora, suponha que G é 3-conexo. Como $\delta \geq 3$, G tem um ciclo C de tamanho > 4.

Sejam u e v vértices não consecutivas em C. Como $G - \{u, v\}$ é conexo, existe um caminho P em $G - \{u, v\}$ conectando as duas componentes de $C - \{u, v\}$; podemos assumir que a origem x e o término y são os únicos vértices de P em C. De forma similar, há um caminho Q em $G - \{x, y\}$.

Se P e Q não têm nenhum vértice em comum, então $C \cup P \cup Q$ é uma subdivisão do K_4 . Caso contrário, seja w o primeiro vértice de P em Q, e denote por P' a (x, w)-seção de P. Então $C \cup P' \cup Q$ é uma subdivisão do K_4 . Logo, em ambos os casos, G contém uma subdivisão do K_4 .

8.7

Teorema 8.7

Para qualquer inteiro k positivo, existe um grafo k-cromático que não contém triângulos.

Para qualquer inteiro k positivo, existe um grafo k-cromático que não contém triângulos.

Prova:

Para k=1 e k=2, os grafos K_1 e K_2 apresentam a propriedade requerida. Prosseguimos por indução em k.

Suponha que tenhamos construído um grafo G_k sem triângulo com um número cromático $k \geq 2$. Sejam v_1, v_2, \ldots, v_n os vértices de G_k . Forme um novo grafo G_{k+1} a partir de G_k da seguinte forma:

- 1. Adicione n + 1 novos vértices u_1, u_2, \ldots, u_n, v ,
- 2. e então, para $1 \le i \le n$, una u_i aos vizinhos de v_i e a v.

8.7

8.7

8.7

Prova:

Claramente, o grafo G_{k+1} não tem triângulos. Pois, como $\{u_1, u_2, \ldots, u_n\}$ é um conjunto independente em G_{k+1} , nenhum triângulo pode conter mais que um u_i ; e se $u_i v_j v_k u_i$ eram um triângulo em G_{k+1} , então $v_i v_j v_k v_i$ seria um triângulo em G_k , contrariando o pressuposto.

Mostraremos agora que G_{k+1} é (k+1)-cromático.

Note que G_{k+1} é certamente (k+1)-colorível, já que qualquer coloração de G_k pode ser estendida para uma (k+1)-coloração em G_{k+1} colorindo u_i do mesmo modo que v_i , $1 \leq i \leq n$, e então atribuindo uma nova cor para v.

Portanto, resta mostrar que G_{k+1} não é k-colorível.

8.7

Prova (cont):

Se possível, considere uma k-coloração de G_{k+1} no qual, sem perda de generalidade, v é atribuído a cor k. Claramente, nenhum u_i pode também ter a cor k. Agora, recolora cada vértice v_i , cuja cor é k, com a cor atribuída a u_i .

Isso resulta em uma (k-1)-coloração do grafo k-cromático G_k . Portanto, G_{k+1} é também (k+1)-cromático. O teorema segue pelo princípio da indução.

Dúvidas?

https://github.com/luanteylo/coloracao_vertices

Todo os arquivos desta apresentação foram disponibilizados inicialmente em: