METAMORPHIC FLUIDS AND UPLIFT-EROSION HISTORY OF A PORTION OF THE KAPUSKASING STRUCTURAL ZONE, ONTARIO, AS DEDUCED FROM FLUID INCLUSIONS

R.L. RUDNICK*, L.D. ASHWAL, and D.J. HENRY, Lunar and Planetary Inst., Houston, TX 77058 (*now at Res. School of Earth Sci., Aust. Nat. Univ., Canberra, Aust.)

Introduction

Fluid inclusions can be used to determine the compositional evolution of fluids present in high grade metamorphic rocks (Touret, 1979) along with the general P-T path followed by the rocks during uplift and erosion (Hollister et al., 1979). In this context, samples of high-grade gneisses from the Kapuskasing structural zone (KSZ, Fig. 1) of eastern Ontario were studied in an attempt to define the composition of syn- and post-metamorphic fluids and help constrain the uplift and erosion history of the KSZ. Recent work by Percival (1980), Percival and Card (1983) and Percival and Krogh (1983) shows that the KSZ represents lower crustal granulites that form the lower portion of an oblique cross-section through the Archean crust, which was up-faulted along a northeast- striking thrust fault. The present fluid inclusion study places constraints upon the P-T path which the KSZ followed during uplift and erosion.

Occurrence, Morphology and Composition of Fluid Inclusions

Fluid inclusions present in quartz in high-grade $(700-800^{\circ}\text{C}, 6-8 \text{ kbar})$ rocks (paragneisses, amphibolite, gabbro gneiss and a tonalite dike) collected near the Shawmere anorthosite complex in the KSZ (Fig. 1), consist of three types (listed in order of decreasing abundance): (1) CO₂-rich inclusions (no visible H₂0)(generally 1 to 12 um, but up to 20 um); (2) H₂0-rich inclusions (no visible CO₂) (1-35 um); and (3) mixed CO₂ and H₂0 (of variable sizes).

CO_-rich inclusions occur along healed fractures and exhibit irregular to negative crystal morphologies with a few possessing an acicular morphology (up to 30um by 2um) (Fig. 2). At room temperature some of the CO_ inclusions contain a birefreingent solid phase that exhibits a large variation in relief upon rotation of the microscope stage (probably carbonate). In addition, there are acicular carbonate grains associated which acicular CO_ inclusions within the same fracture. These CO_ inclusions have apparently developed in the casts of carbonate grains. Melting points of the CO_ inclusions range from -61.5 to -56.6 C (Fig. 3), indicating the presence of variable amounts of another component which depresses the melting temperature. Laser Raman spectroscopy performed on a CO_-rich inclusion which posseses one of the lowest melting temperatures (-61.5 °C), shows the presence of CH_A and no apparent N_2. From this data, the melting point depressions of the CO_ are tenatively attributed to Varying amounts of CH_A in the CO_ phase. The amount of CH_A within CO_-rich inclusions appears to be dependent on host rock lithology: meta-igneous rocks contain predominantly pure CO_ (T_m = -56.8 to -57.0 + .5°C, with one trail in SH80-22A yielding a T_m of -57.7°C, Fig. 3) while meta-sedimentary rocks contain varying proportions of CH_A (T_m = -61.5 to -57.2 + .5°C, Fig. 3). Homogenization temperatures for the CO_ inclusions (T_h, vapor to liquid) range from -47 to +31°C (Fig. 3), with older-looking inclusions having lower T_h than younger-looking inclusions. A late-stage tonalite dike (41-D2) and a garnet gabbro gneiss (22A) contain "pseudo-secondary", negative crystal form CO_ inclusions (cf. Roedder, 1980), which are believed to have been entrapped during initial crystallization of the host mineral. The pseudo-secondary inclusions in the tonalite dike along with planar, negative crystal form inclusions found in the KSZ rocks (Fig. 3). The high dehsity inclusions in the amphibolite show significant melting point depression

H₂O-rich fluid inclusions have been found in all lithologies studied. These aqueous inclusions are always in planar arrangements and have morphologies varying from irregular to ovoid to partial negative crystal form (Fig. 2). The planes of aqueous inclusions often cut across grain boundaries, indicating post-crystallization entrapment. The aqueous inclusions generally possess one or more daughter phases: several cubic, isotropic phases (NaCl plus ?), a

Rudnick, R.L. et al.

rectangular, birefringent phase identified as CaCO $_3$ through Raman spectroscopy and, rarely, an opaque, acicular phase. In addition, many $\rm H_2O$ -rich inclusions contain minute amounts of $\rm CO_2$, which can only be observed through the formation of a clathrate which melts around +10°C. Melting points for the $\rm H_2O$ -rich inclusions range from -37 to +10°C depending upon the dissolved components present, while some of the aqueous inclusions do not appear to freeze down to -190°C.

Mixed CO_2 + H_2O inclusions (with both phases visible) are rare in the KSZ rocks and generally only occur where a trail of H_2O -rich inclusions intersects a trail of CO_2 -rich inclusions. The morphologies of the mixed CO2 - H2O inclusions vary from negative crystal form (inherited from the original CO₂ inclusions) to irregular.

Source of Fluids

The source of CO₂ in granulite facies rocks is poorly constrained. Two models are generally invoked: (1) CO₂ is derived from surrounding rocks by decarbonation reactions during metamorphism, or by oxidation of graphite, or (2) CO₂ is derived from the mantle. Either or both of these two models may apply to the CO₂ inclusions in the KSZ. The presence of CO₂ filling carbonate mineral casts suggest that some CO₂ may be derived from in situ decarbonation. However, the lack of extensive carbonate layers in the KSZ requires an additional source for the CO₂ without prepared carbonate layers oxidized graphite (graphite occurs in source for the CO2; either unexposed carbonate layers, oxidized graphite (graphite occurs in some of the KSZ paragneisses (Percival, 1980)), or perhaps the CO_2 is fluxed from the mantle (Newton <u>et</u> al., 1980).

The H₂O-rich inclusions and mixed H₂O-CO₂ inclusions clearly formed after the peak metamorphism. H₂O apparently penetrated the KSZ during uplift and may be associated with minor not not not be a specific to the control of t retrograde metamórphism (which is manifested by sericitized feldspars and epidote-chlorite alteration on some of the mafic mineral phases). The mixed H_2O-CO_2 inclusions form where a trail of H₂O crosses a trail of earlier CO₂.

Interpretation of Fluid Inclusion Data

Several inferences can be made from the above data. $\rm CO_2$ appears to have been the fluid phase present during the peak metamorphism. Small amounts of $\rm CH_4$, present in the metasedimentary units, may have been locally derived. Two rocks, a tonalite dike and an amphibolite, possess high density CO₂ inclusions which, in the case of the tonalite dike, were trapped during crystallization of the host quartz. The corresponding isochore for these dense inclusions passes through the lower portion of the estimated P-T conditions of metamorphism of the KSZ. After entrapment of these high density CO₂ inclusions, the P-T path of the KSZ granulites is constrained to have remained within 1.5 kbar of the 1.05 g/cm isochore (the shaded region in Fig. 4A). If the rocks passed below this range, the fluid inclusions would have decrepitated due to the large pressure differential thus created between the interior and exterior of the fluid inclusion (Hollister et al., 1979). Therefore the KSZ was not uplifted while retaining high temperatures, as the Tertiary coast range granulites of British Columbia (path B, Fig. 4)(Hollister, 1979). Additionally, the KSZ granulites could not have cooled isobarically, producing denser, late-stage inclusions, as Swanenberg (1980) found for Precambrian granulites from southern Norway (path C, Fig. 4); the morphologically later inclusions in the KSZ invariably have lower densities. The KSZ granulites were uplifted along the path shown in Fig. 4A. As the P and T dropped, CO₂ was released and re-trapped, forming the lower density inclusions. The lowest density CO₂ inclusions present are 0.5 g/cm, and must have been trapped along that isochore within the shaded region (Fig. 4A). H₂O penetrated the KSZ as higher levels were reached (producing the retrograde assemblages present in some units) and was higher levels were reached (producing the retrograde assemblages present in some units) and was trapped, as fractures in the quartz continued to form and heal.

References

- Hollister, L.S. (1979) Metamorphism and crustal displacements: new insights. Episodes, 1979,
- Hollister, L.S., Burruss, R.C., Henry, D.L. and Hendel, E. (1979) Physical conditions during uplift of metamorphic terranes, as recorded by fluid inclusions. Soc. Francais
 Mineral. Cristall. Bull., 102, 555-561.

 Newton, R.C., Smith, J.V. and Windley, B. (1980) Carbonic metamorphism, granulites and crustal
 growth. Nature, 288, 45-52.

 Percival, J.A. (1980) Geological evolution of part of the central Superior Province based on
- relations among the Abitibi and Wawa Subprovinces and the Kapuskasing structural zone. PhD

Rudnick, R.L. et al.

Min. Assoc. Canada Short Course Handbook, 6, 182-208.

Dissertation, Queen's Univ., Kingston, Ont., 300 p. Percival, J.A. (in press) High-grade metamorphism in the Chapleau-Foleyet area, Ontario.

Am. Min., 68.

Percival, J.A. and Card, K.D. (1983) Archean crust as revealed in the Kapuskasing uplift,
Superior Province, Canada. Geology, 11, 323-326.

Percival, J.A. and Krogh, T.E. (1983) U-Pb 200 geochronology of the Kapuskasing structural zone and vicinity in the Chapleau-Foleyet area, Ontario. Can. J. Earth Sci., 20, 830-843.

Roedder, E. (1980) Origin of fluid inclusions and changes that occur after trapping. In:
Hollister, L.S. and Crawford, M.L., eds., Short Course in Fluid Inclusions: Applications to
Petrology, Min. Assoc. Canada Short Course Handbook, 6, 101-137.

Swanenberg, H.E.C. (1980) Fluid inclusions in high-grade metamorphic rocks from S.W. Norway.
Geologica Ultrajectina, 25, 147 p.

Touret, J. (1980) Fluid inclusions in high grade metamorphic rocks. In: Hollister, L.S. and
Crawford, M.L., eds., Short Course in Fluid Inclusions: Applications to Petrology,
Min. Assoc. Canada Short Course Handbook, 6, 182-208.

Fig. 1, Geologic map of the Kapuskasing structural zone showing sample localities for this study (from Percival and Krogh, 1983).

Fig. 3, Temperature of homogenization (T_h) and temperature of melting (T_m) for CO_2 -rich fluid inclusions from high-grade rocks from the Kapuskasing structural zone, Ontario. Q = quartz, Pc = plagioclase, Gt = garnet, B = biotite, A = amphibole.

80 Rudnick, R.L. et al.

Fig. 4, A: P and T of metamorphism of the KS2 (from Percival and Gard, 1933) and uplift path deduced by high density fluid inclusions (1.03 g/cm³). Isochore with $\mathcal{C} = .5$ g/cm³ represents least dense CO_2 inclusions in KS2. These lower density inclusions must have been trapped along the .5 g/cm³ isochore within the shaded region. B: conditions of metamorphism and uplift path for S. Norway granulites from Swanenberg (1980). C: conditions of metamorphism and uplift path for Tertiary Granulites from the Coast Range, British Columbia from Hollister, 1979.