Ch. 21 – Comparing Two Population Means

Notation: Two samples require appropriate subscripts $\rightarrow \mu_1$ and μ_2 , n_1 and n_2

The Pooled t-Test

Assumptions:

- 1. The two samples are random and independent.
- 2. At least one of the following is also true:
 - i. Both samples are large $(n_1 \ge 30 \text{ and } n_2 \ge 30)$
 - ii. If either one or both sample sizes are small, then both populations from which the samples are drawn are normally distributed.
- 3. The standard deviations σ_1 and σ_2 of the two populations are unknown and equal to each other; that is, $\sigma_1 = \sigma_2$.

Checking the Assumptions:

Assumption #1: Analyze the experimental design.

Assumption #2: Same method as Ch. 20.

Assumption #3: Officially requires a formal test that *can be* highly sensitive, however, side-by-side boxplots are helpful and an informal rule suggests that if the sample sizes are approximately equal and both sample sizes are large enough (≥ 15) , check if

$$\frac{s_{\text{max}}}{s_{\text{min}}} < 2$$

Hypotheses:

Similar to Ch. 19, there are two population proportions (which are parameters) in our data structure, we consider them together as ONE parameter: $\mu_1 - \mu_2$. Thus, we have

$$H_0$$
: $\mu_1 - \mu_2 = 0$ H_A : $\mu_1 - \mu_2 \neq 0$

Note that we could use any value to compare to, but zero has a 'special' interpretation. Also, tests can be one-sided, too.

Test statistic:

If the assumptions hold, then we may use the *t*-distribution. Due to assuming equal variances, the standard error of $\bar{y}_1 - \bar{y}_2$ uses the *pooled sample standard deviation*, or s_p .

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Thus, the standard error of $\bar{y}_1 - \bar{y}_2$ is

$$SE(\overline{y}_1 - \overline{y}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

The test statistic t_0 is

$$t_0 = \frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{SE(\bar{y}_1 - \bar{y}_2)}$$

where t_0 follows a t-distribution with $df = n_1 + n_2 - 2$.

P-value: No different than how we calculated it in Ch. 20.

Conclusion: Reject/do not reject as in one-sample test; answer hypotheses/question posed.

Confidence Interval The $(1 - \alpha)100\%$ CI for $\mu_1 - \mu_2$ is

$$\overline{y}_1 - \overline{y}_2 \pm t_{\alpha/2, df} \times SE(\overline{y}_1 - \overline{y}_2)$$

Assumptions: as per hypothesis test.

Notes: - CI tends to be more informative than a test.

- check if zero falls within the interval; check sign and magnitude.

What if we can't assume the variances are equal?

The pooled *t*-test works best when the sample sizes are small. Unfortunately, this is the hardest time to prove equal variances since s_1 and s_2 might under/overestimate σ_1 and σ_2 with such small sample sizes. The more general (and generally safer) method changes the 3^{rd} assumption to the following.

3. The standard deviations σ_1 and σ_2 of the two populations are unknown. Note: We don't assume $\sigma_1 \neq \sigma_2$; rather, we just don't assume $\sigma_1 = \sigma_2$.

If any of the conditions for the pooled variance procedure's 3rd assumption do NOT hold, then use this test where we do NOT assume equal variances.

Here, the standard error of $\bar{y}_1 - \bar{y}_2$ is

$$SE(\overline{y}_1 - \overline{y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

The test statistic t_0 is still written as

$$t_0 = \frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{SE(\bar{y}_1 - \bar{y}_2)}$$

where t_0 follows a t-distribution with a complicated df (see footnote on p. 657). For the **exam**, we will instead use a conservative lower bound: $df \ge \min\{n_1 - 1, n_2 - 1\}$.

P-value and conclusion processes do not change.

The $(1 - \alpha)100\%$ CI for $\mu_1 - \mu_2$ can still be written as

$$\overline{y}_1 - \overline{y}_2 \pm t_{\alpha/2, df} \times SE(\overline{y}_1 - \overline{y}_2)$$

where df is as above for the given confidence level.

Ch. 22 - Two Population Means for Paired Samples

Def'n: Two samples are said to be <u>paired</u> or <u>matched samples</u> when, for each value collected from one sample, there is a corresponding value collected from the second sample. In other words, these values are collected from the same source.

Notation: The value *d* denotes a paired difference.

The corresponding sample statistics are:

$$\overline{d} = \frac{\sum d_i}{n}$$

$$s_d^2 = \frac{1}{n-1} \left[\sum d_i^2 - \frac{\left(\sum d_i\right)^2}{n} \right] \quad \text{and} \quad s_d = \sqrt{s_d^2}$$

Assumptions:

- 1. The samples are paired.
- 2. The *n* sample differences are viewed as a random sample from a pop'n of differences.
- 3. The sample size is large (generally \geq 30) OR the population distribution is (approximately) normal.

Hypotheses:

Since we now have a "single sample" of differences, then we return to "ONE" parameter, but we need to define d first; it will be different for each situation.

$$H_0$$
: $\mu_d = 0$ H_A : $\mu_d \neq 0$

Again, we could use any value to compare to, but zero has a 'special' interpretation. Also, tests can still be one-sided.

Test statistic:

If the assumptions hold, then we may use the *t*-distribution. In fact, we return to one-sample inference, so df = n - 1 and our test statistic *t* is

$$t_0 = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$

P-values and conclusions are found as before in this chapter.

Confidence Interval

The $(1 - \alpha)100\%$ CI for μ_d is

$$\overline{d} \pm t_{\alpha/2, n-1} \left(\frac{s_d}{\sqrt{n}} \right)$$

Assumptions: as per hypothesis test.

Ch. 21-22 Summary

- same pitfalls and subtleties that exist in Ch. 20 exist here, too.
- keep note of extensions to 2-sample data.
- not all assumptions can be checked graphically/statistically.