INDEX

S.No.	Experiments	Date	Signature
1	Installing and understanding the KNIME workflow.		
2	Basic & Advanced Row and Column Filtering with KNIME.		
3	Interactive Univariate Visual Exploration with data exploration hub using KNIME.		
4	Interactive Bivariate Visual Exploration with a Scatter Plot using KNIME.		
5	Understanding and exploring composite views of datasets using KNIME.		
6	Introducing Exploratory Data Analysis (EDA) using SPARK.		
7	Using Spark SQL for basic data analysis e.g., Identifying Missing Data, computing basic statistics, Identifying data outliers etc.		
8	Visualizing data with Apache Zeppelin (web-based tool that supports interactive data analysis and visualization)		
9	VALUE ADDED EXPERIMENTS: Introduction to D3.js, basic principles. DEMO		
10	Basic Charting with D3: building bar chart, adding labels, building line chart, building scatter plots etc.		
11	Working with external data sources: CSV, JSON		
12	Working web data: Web APIs.		

AIM: Installing and Understanding the KNIME Workflow

THEORY:

To install KNIME and understand its workflow components and basic operations. Steps:

1. Download KNIME Analytics Platform from the official website.

Figure 1: Download the Installation file (.exe)

2. Install the software following the on-screen instructions.

Figure 2: Steps while installing

- 3. Launch KNIME and explore the interface:
 - a. KNIME Explorer: Manages workflows.
 - b. Workflow Editor: Design and execute workflows.
 - c. Node Repository: Contains various nodes for data processing.

Figure 3: Summary of the working page of KNIME software

OUTPUT:

Hence, the KNIME software has been downloaded on the system.

AIM: Basic & Advanced Row and Column Filtering with KNIME

THEORY:

To perform row and column filtering using KNIME nodes.

Steps:

Basic Filtering:

- 1. Load a dataset using the "CSV Reader" node.
- 2. Use the "Row Filter" node to filter rows based on a condition (e.g. port number less than or equal to 2).

3. Use the "Column Filter" node to keep or remove specific columns.

4. Connect a "Table Viewer" node to visualize results.

OUTPUT:

Advanced Filtering:

1. Use "Row Splitter" to divide data into subsets.

2. Use "Column Resorter" to rearrange columns.

3. Execute and compare the output with the original dataset.

OUTPUT:

AIM: Interactive Univariate Visual Exploration with Data Exploration Hub using KNIME

THEORY: To explore univariate data visually using KNIME's Data Exploration Hub. Steps:

- 1. Load a dataset using the "CSV Reader" node.
- 2. Use the "Missing Value" node to handle missing data.
- 3. Apply the "Duplicate Row Filter" node to remove duplicate entries.
- 4. Use the "Bar Chart" node to visualize categorical data distributions.
- 5. Use the "Histogram" node to visualize numerical data distributions.
- 6. Execute the workflow and analyze results.

Figure 4: Workflow

OUTPUT:

Figure 5: Bar Chart for binary classes

Figure 6: Histogram for Protocols

AIM: Interactive Bivariate Visual Exploration with Scatter Plot Hub using KNIME

THEORY:

To explore univariate data visually using KNIME's Data Exploration Hub. Steps:

- 1. Load a dataset using the "CSV Reader" node.
- 2. Use the "Missing Value" node to handle missing data.
- 3. Apply the "Duplicate Row Filter" node to remove duplicate entries.
- 4. Use the "Scatter Plot" node to visualize 'bytecount' vs 'pktcount'.
- 5. Use the "Scatter Plot" node to visualize 'byteperflow' vs 'pktperflow'.
- 6. Execute the workflow and analyze results.

Figure 1: Workflow

OUTPUT:

Figure 2: bytecount vs pktcount

Figure 3: byterperflow vs pktperflow

<u>AIM</u>: To understand and explore composite views of datasets using KNIME, focusing on different visualization and transformation techniques.

THEORY:

- 1. Load Dataset in KNIME
 - Open KNIME and create a new workflow.
 - Drag 'File Reader' node to import a dataset.

- Connect the output to a 'Data Explorer' node to view basic statistics.
- 2. Exploring Data with Composite Views
 - Use 'Column Filter' to select specific columns.
 - Apply 'GroupBy' to aggregate and summarize data.

• Drag 'Pivoting' to transform the dataset into different views.

3. Visualizing the Data

• Use 'Histogram' to see frequency distributions.

• 'Scatter Plot' to analyze relationships between variables.

 'Bar Chart' for categorical data analysis. Exporting Processed Data Connect 'CSV Writer' to save transformed data. Run and verify the output. 	

<u>AIM</u>: To perform Exploratory Data Analysis (EDA) using Apache Spark to summarize, visualize, and clean data.

THEORY:

1. Setting Up Spark

```
[1] from pyspark.sql import SparkSession
    spark = SparkSession.builder.appName("EDA_Experiment").getOrCreate()
```

2. Loading Dataset into Spark

```
[8] df = spark.read.csv("<a href="/>content/Titanic-Dataset.csv">csv</a>", header=True, inferSchema=True)
     df.show(5) # Display first 5 rows
₹
     |PassengerId|Survived|Pclass|
                                                   Name | Sex | Age | SibSp | Parch |
                                                                                            Ticket|
                                                                                                        Fare | Cabin | Embarked |
                                 3|Braund, Mr. Owen ...| male|22.0|
                                                                                          A/5 21171|
                                                                                                        7.25| NULL
                21
                                 1|Cumings, Mrs. Joh...|female|38.0|
                                                                                           PC 17599 | 71.2833 |
                                                                                                              C85
                                                                                                                           C
                                                                                0|STON/02. 3101282|
                                 3 | Heikkinen, Miss. ... | female | 26.0 |
                31
                                                                                                      7.925 NULL
                                                                                                                           SI
                                 1|Futrelle, Mrs. Ja...|female|35.0|
                                                                                             113803
                                                                                                        53.1 C123
                                                                                                                           SI
                                 3|Allen, Mr. Willia...| male|35.0|
                5
                         01
                                                                                             373450
                                                                                                        8.05| NULL|
                                                                                                                           S
     only showing top 5 rows
```

3. Understanding Dataset Structure

4. Handling Missing Values

5. Performing Basic Visualization (Using Pandas & Matplotlib)

```
[11] import pandas as pd
  import matplotlib.pyplot as plt

pdf = df.toPandas() # Convert Spark DataFrame to Pandas DataFrame
pdf['Age'].hist(bins=20)
plt.title("Age Distribution")
plt.show()
```


6. Finding Correlations

[12] from pyspark.sql.functions import col
 df.select([col(column).cast("float") for column in df.columns]).summary().show()

summary	PassengerId	Survived	Pclass Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin En	abin Embarked	
count	891	891	891 (1 01	714	891	891	661	891	0	0	
mean	446.0	0.3838383838383838]	2.308641975308642 NULL	NULL	29.69911764704046	0.5230078563411896 0	.38159371492704824 2	60318.54916792738	32.20420804114722	NULL	NULL	
stddev 257	3538420152301 0	.48659245426485753	0.8360712409770491 NULL	NULL	14.526497332370992	1.1027434322934315	0.8060572211299488 4	71609.26868834975	49.69342916316158	NULL	NULL	
min	1.0	0.0	1.0 NULL	NULL	0.42	0.0	0.0	693.0	0.0	NULL	NULL	
25%	223.0	0.0	2.0 NULL	NULL	20.0	0.0	0.0	19996.0	7.8958	NULL	NULL	
50%	446.0	0.0	3.0 NULL	NULL	28.0	0.0	0.0	236171.0	14.4542	NULL	NULL	
75%	669.0	1.0	3.0 NULL	NULL	38.0	1.0	0.0	347743.0	31.0	NULL	NULL	
max	891.0	1.0	3.0 NULL	NULL	80.0	8.0	6.0	3101298.0	512.3292	NULL	NULL	

Objective: Using spark SQL for basic data analysis e.g. identifying missing data, computing basic statistics, identifying data outliers etc.

1. Initialize Spark Session: Set up the Spark environment to run SQL queries.

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, mean, stddev, count, when
# Initialize Spark Session
spark = SparkSession.builder.appName("SparkSQLAnalysis").getOrCreate()
```

2. Load Data: Read the Titanic dataset as a Spark DataFrame.

3. Missing Data: Check for missing values in each column.

4. Basic Statistics: Generate summary statistics like count, mean, standard deviation, etc.

5. Outlier Detection: Identify outliers in the Age column using the Z-score method (values beyond 3 standard deviations from the mean).