

Airservices Australia

ATM Modernisation and Research Initiatives

Greg McDonaldSenior Operational Specialist
AFS Solutions ATM Automation

connecting australian aviation

In brief

- Air Traffic Control (ATC)
- Aviation Rescue and Fire Fighting (ARFF)
- Communication, Navigation, Surveillance (CNS) supported by the Projects and Engineering business group

In brief

- Government-owned corporation
- Over 4000 employees
- Total income 2011-12 was \$898m
- 11% of the world's airspace
- More than four million flights per year
- Around 80 million passengers per year

Locations

ARFF Stations

Broome Port Hedland Karratha Alice Springs Ayers Rock Perth Perth Perth Sunshine Coast Brisbane Gold Coast Coffs Harbour

Adelaide-

Avalon

Canberra

Melbourne

ATC Towers

Our Vision

Connecting the Australian aviation industry to deliver world best industry performance.

Our Mission

To provide safe, secure, efficient and environmentally responsible services to the aviation industry.

Planned Technologies

Technologies for future Australian ATM – to 2020

- GNSS primary means navigation for PBN with a back-up network of ground based navigation aids
 - About half the existing navaids to be retained
 - Mainly VOR and NDB numbers to be reduced
- Mode S SSR and primary in terminal areas, with ADS-B
- ADS-B & MULTILAT for A-SMGCS at 4 major aerodromes
- ADS-B surveillance in controlled airspace across the continent (plus Mode S SSR in high density en-route airspace on east coast)

Regulations to Support

Aircraft mandates to support future Australian ATM

- GNSS primary means navigation minimum equipage mandates required for PBN and ADS-B (CAO 20.18)
- PBN NAV specs (NPRM 1002AS) include RNP 10, 4, Basic RNP 1, RNP APP, RNP AR, Baro-VNAV
- Mode S transponders (with ADS-B capability)
- Further ADS-B mandates in controlled airspace
- TCAS II Version 7.1 new turbine-powered aircraft i.a.w. the ICAO Annex 10 Volume IV standard

Rebuilding – assets

- We are investing \$1.1 billion over five years on upgrading and modernising our infrastructure and facilities
- Nationwide surveillance
- Navigation program
- New towers
- Building upgrades
- Fire vehicle replacement
- Fire control centre upgrades
- Integrated civil military ATM system

oneSKY AUSTRALIA

One Team ▶ One System ▶ One Sky

Why are we doing this?

Meet customer, stakeholder and owner expectations

Address limitations of existing system

Manage future growth and complexity

Improve service provision

Drivers for change

1. Demand and capacity

- >50% increase in daily movements by 2028
- Increased complexity
- Network approach required
- Current ATM system cannot meet demands
- Technology is the solution

2. Future operating environment

- ICAO Operating Concept
- Greater collaboration by all stakeholders
- New gen aircraft and emerging technologies
- Close the aircraft and ATM technology gap

3. Customers and stakeholder expectations

- Currently struggle to meet expectations
- Closer management of network
- Airlines use new aircraft capability
- Community aircraft noise management
- Improved system capability required

4. Limitations of existing system

- Limitations of existing system already evident
- Legacy software
- Impact on business continuity
- Limitations of Brisbane and Melbourne FDRs
- Lack of civil military integration

The aircraft and ATM technology gap airservices

Key capability improvements

Improving our safety through...

One national system

One Australian FIR

Business continuity and contingency responses

ATC workload management

Customer benefits

Modular and open architecture

Modern design standards

Globally-aligned development path

Program timeline

ATM Research - Trajectory Prediction airservices

Air Based

or Combination?

Ground Based

- + Has complete forecast
- + ATC intent
- Missing aircraft intent
- Unclear aircraft performance

Air Based

- + Actual weather
- + Actual aircraft performance model
- Limited forecast
- Unaware of ATC intent

ATM Research - Trajectory Prediction airservices

Aircraft Intent

- Flightplan
- Speeds
- AIP
- FANS IPI

- Start position
- Weight

ATM Research - Trajectory Prediction airservices

Collaborative approach to Trajectory Prediction uses best available information

- Best available aircraft intent
- Best available aircraft performance models
- Best available weather models

Combined appropriately to provide:

- Understanding of Estimate Uncertainty
- Allow aircraft to efficiently optimise their operation for a speed to meet a time Results achieved are better than the current ground system and the aircraft itself.

