JEE EXPERT

ANSWER KEY

REGULAR TEST SERIES - (RTS-02)

Batch: 12TH Pass (Desire A01)
Date 21.07.2019

PHYSICS									
		_		_		_		_	
1	(D)	2	(A)	3	(B)	4	(A)	5	(D)
6	(B)	7	(B)	8	(D)	9	(A)	10	(C)
11	(A)	12	(A)	13	(D)	14	(B)	15	(A)
16	(D)	17	(B)	18	(C)	19	(D)	20	(B)
21	(C)	22	(D)	23	(C)	24	(B)	25	(D)
26	(C)	27	(A)	28	(B)	29	(D)	30	(B)
CHEMISTRY									
31	(A)	32	(B)	33	(C)	34	(C)	35	(C)
36	(A)	37	(D)	38	(B)	39	(B)	40	(C)
41	(C)	42	(B)	43	(A)	44	(A)	45	(D)
46	(C)	47	(C)	48	(A)	49	(C)	50	(A)
51	(B)	52	(B)	53	(C)	54	(D)	55	(D)
56	(B)	57	(D)	58	(C)	59	(B)	60	(C)
MATHEMATICS									
61	(C)	62	(C)	63	(D)	64	(B)	65	(A)
66	(D)	67	(C)	68	(D)	69	(A)	70	(D)
71	(C)	72	(C)	73	(A)	74	(C)	75	(A)
76	(B)	77	(C)	78	(A)	79	(A)	80	(A)
81	(C)	82	(D)	83	(A)	84	(B)	85	(C)
86	(B)	87	(D)	88	(B)	89	(C)	90	(A)

JEE EXPERT

SOLUTIONS

REGULAR TEST SERIES - (RTS-02)

Batch: 12TH Pass (Desire A01)
Date 21.07.2019

CHEMISTRY

- **31.** (A) O.N. of Fe is +1: x + 5(0) + 0 = +2 or x = +1.
- **32. (B)** Glycinato is an unsymmetrical bidentate ligand.
- **33. (C)** These are coordination isomers.
- **34. (C)** Small magnitude of charge on the central metal atom does not help in formation of stable complexes.
- **35.** (C) cis- $[Co(NH_3)_2 (en)_2]^{3+}$ can exhibit two enantiomeric forms as shown below.

- **36. (A)** Two geometrical forms are possible.
- **37.** (D) $[Pt(en)_2Cl_2]$ will show two geometrial forms and cis form will show optical isomerism.
- **38. (B)** The compound is also known as cisplatin.
- **39. (B)** II and III are optical isomers and not geometrical isomers.
- **40.** (C) $Co(NO_2)_3 + 3KNO_2 \longrightarrow K_3[Co(NO_2)_6]$ Potassium cobaltinitrite
- 41. (C) $CuSO_4$.5 $H_2O \xrightarrow{Strong} CuO + SO_2 + \frac{1}{2}O_2 + 5H_2O$
- 42. **(B)** $ZnSO_3 \xrightarrow{\Delta} ZnO + SO_2$ ZnO is yellow when it is hot and white when it is cold.

$$\begin{aligned} &\text{Ba(OH)}_2 + \text{SO}_2 &\rightarrow \underset{\text{White ppt.}}{\text{BaSO}_3} + \text{H}_2\text{O} \\ &\text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4 + 3\text{SO}_2 \rightarrow \text{K}_2\text{SO}_4 + \text{Cr}_2(\text{SO}_4)_3 + \text{H}_2\text{O} \end{aligned}$$

- **43.** (A) Because $Zn(OH)_2$ is white ppt, but $Cu(OH)_2$ is water soluble.
- **44. (A)** AgCl is white ppt.
- **45. (D)** In this condition CuS can be precipitated, not the ZnS because the K_{sp} of ZnS is more than that of CuS.
- **46.** (C)
- **47.** (C)
- **48.** (A)
- **49.** (C) $NaNO_3 + 4Zn + 7NaOH \rightarrow 4Na_2ZnO_2 + NH_3 + 2H_2O$
- **50.** (A) $Pb^{2+} + KI \rightarrow PbI_2 + 2K^+$ yellow ppt.
- **51. (B)**
- **52. (B)**
- **53.** (C) Since, $2r = \frac{a\sqrt{2}}{2}$: $r = \frac{150}{2\sqrt{2}} = \frac{75}{\sqrt{2}}$ pm
- **54. (D)** $7.5 \times 10^3 = \frac{\text{mass in a unit cell}}{(400 \times 10^{-12})^3}$

Mass in a unit cell = 480×10^{-27} kg

So, number of unit cells = $\frac{0.015}{480 \times 10^{-27}} = 3.125 \times 10^{22}$

55. (D) % Vacant space = 100 - % packing

$$=100 - \frac{1 \times \frac{4}{3} \pi r^3}{a^3} \times 100$$

$$=100 - \frac{1 \times \frac{4}{3} \pi r^3}{8 r^3} \times 100$$

$$=100-\frac{\pi}{6}\times100$$

56. (B)
$$Z_A = 1 + \frac{2}{2} = 2$$
 $Z_B = 8$ i.e. A_2B_8 i.e. AB_4

57. (D)
$$Z_{A^{+n}} = 1$$
 $Z_{B^{-m}} = 4 + 4 = 8$ m formula is AB_8

- **58. (C)** The spinel structure consists of an FCC arrangement of O²⁻ ions in which the divalent cation occupies one-eight of the tetrahedral voids and trivalent cation occupies one-half of the octahedral voids.
- **59. (B)**
- **60.** (C) Number of oxide ions = $\frac{1}{8} \times 8$ corners + $\frac{1}{2} \times 6$ face-centres = 4

Number of A^{2+} ions present in tetrahedral void = 1

Number of B^{3+} ions = 2

 \therefore Formula of compound = AB_2O_4