02.Uczenie modelu

Mamy już przygotowane w poprzenim kroku zadanie regresji:

```
autoMpgTask = readRDS('data/01_task.RDS')

print(autoMpgTask)

## Supervised task: auto_mpg

## Type: regr

## Target: mpg

## Observations: 398

## Features:

## numerics factors ordered

## 9 0 0

## Missings: TRUE

## Has weights: FALSE

## Has blocking: FALSE
```

czas na wytrenowanie pierwszych modeli.

Przydatne informacje:

- $\bullet \ \ http://mlr-org.github.io/mlr-tutorial/devel/html/learner/index.html$
- $\bullet \ \ https://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/index.html$
- $\bullet \ \ http://mlr-org.github.io/mlr-tutorial/devel/html/tune/index.html$
- $\bullet \ \ http://mlr-org.github.io/mlr-tutorial/devel/html/parallelization/index.html$

Jaki model wybrać?

Sprawdźmy najpierw jakie modele regresyjne (metoda listLearners):

class	name	short.name		
regr.IBk	K-Nearest Neighbours	ibk		
regr.cforest	Random Forest Based on Conditional	cforest		
_	Inference Trees			
regr.ctree	Conditional Inference Trees	ctree		
regr.cvglmnet	GLM with Lasso or Elasticnet	$\operatorname{cvglmnet}$		
	Regularization (Cross Validated Lambda)			
regr.featureless	Featureless regression	featureless		
regr.gausspr	Gaussian Processes	gausspr		
$\operatorname{regr.glm}$	Generalized Linear Regression	$_{ m glm}$		
$\operatorname{regr.glmnet}$	GLM with Lasso or Elasticnet	glmnet		
	Regularization			
$_{ m regr.km}$	Kriging	km		
$_{ m regr.ksvm}$	Support Vector Machines	ksvm		
$_{ m regr.lm}$	Simple Linear Regression	lm		
$\operatorname{regr.mob}$	Model-based Recursive Partitioning	mob		
	Yielding a Tree with Fitted Models			
	Associated with each Terminal Node			
$\operatorname{regr.nnet}$	Neural Network	nnet		
regr.randomForest	Random Forest	rf		
regr.randomForestSRC	Random Forest	rfsrc		

class	name	short.name
regr.rpart	Decision Tree	rpart
$\operatorname{regr.rvm}$	Relevance Vector Machine	rvm
$\operatorname{regr.svm}$	Support Vector Machines (libsvm)	svm
$\operatorname{regr.xgboost}$	eXtreme Gradient Boosting	xgboost

Sprawdźmy co jest dostępne dla naszego zadania:

class	name	short.name		
regr.cforest	Random Forest Based on Conditional Inference Trees	cforest		
${ m regr.ctree} \ { m regr.featureless}$	Conditional Inference Trees Featureless regression	ctree featureless		
$\begin{array}{c} \operatorname{regr.randomForestSRC} \\ \operatorname{regr.rpart} \end{array}$	Random Forest Decision Tree	rfsrc rpart		

Trenowanie

Spróbujmy wytrenować proste drzewo losowe (rpart) stosując do tego walidację krzyżową:

```
## rmse.test.rmse rmse.test.sd
## 3.5908830 0.5430745
```

Strojenie parametrów

Parametry naszego algorytmu to (ich wyjaśnienia ?rpart.control):

```
getParamSet('regr.rpart')
```

##		Туре	len	Def		Constr	Req	Tunable	Trafo
## min	split	integer	-	20	1	to Inf	-	TRUE	-
## min	bucket	integer	-	-	1	to Inf	-	TRUE	-
## cp		numeric	-	0.01		0 to 1	-	TRUE	-
## max	compete	integer	-	4	0	to Inf	-	TRUE	-
## max	surrogate	integer	-	5	0	to Inf	-	TRUE	-
## use	surrogate	discrete	-	2		0,1,2	_	TRUE	-
## sur	rogatestyle	discrete	-	0		0,1	-	TRUE	-
## max	depth	integer	-	30	:	1 to 30	-	TRUE	-
## xva	1	integer	-	10	0	to Inf	-	FALSE	-

Dodamy strojenie parametrów do procesu uczenia:

- 1. tworzymy ParamSet dla parametrów cp,
- 2. wybieramy strategię strojenia np. po hipersiatce sprawdzając 20 różnych wartości,
- 3. "opakowujemy" nasz algorytm uczący dodając strojenie,
- 4. powtarzamy eksperyment dla zadania autoMpgTask.

```
## rmse.test.rmse rmse.test.sd
## 3.3272988 0.4622236
```

Aby przyspieszyć obliczenia możemy zastosować zrównoleglenie przy pomocy pakieru parallelMap. Zmienna level kontroluje poziom, na którym obliczenia będą prowadzone równolegle - schemat jest następujący:

```
parallelMap::parallelStartMulticore(level = 'mlr.resample')
doTraining()
parallelMap::parallelStop()
```

Porównanie z modelem liniowym

Model liniowy nie wspiera brakujących danych - można je uzupełniać w trakcie uczenia: http://mlr-org.github.io/mlr-tutorial/devel/html/impute/index.html

```
## rmse.test.rmse rmse.test.sd
## 3.3967104 0.4335909
```

Porównanie kilku modeli

Z naszych modeli możemy utworzyć benchmark:

http://mlr-org.github.io/mlr-tutorial/devel/html/benchmark experiments/index.html

```
## task.id learner.id rmse.test.rmse rmse.test.sd
## 1 auto_mpg regr.lm.imputed 3.336596 0.3976971
## 2 auto_mpg regr.rpart.tuned 3.230362 0.5304323
```

Dodatkowe ćwiczenia:

- 1. jakie inne metody uzupełnienia danych możemy zastosować?
- 2. co gdy mamy dwa benchmarki, które chcielibyśmy połączyć?
- 3. czy zastosowanie PCA poprawia wyniki naszego modelu?
- 4. jak wpłynie na nasze modele bagging?
- 5. czy losowe przeszukiwanie przestrzeni parametrów lub metoda irace prowadzą do lepszych wyników?