Solving the 1D-Poisson Equation Numerically

Kristian Gjestad Vangsnes

Department of physics, University of Oslo

Date: 9. September 2019

1 Introduction

2 Theory

In this project we study the one-dimentional Poisson equation with Dirichlet boundary conditions which reads

$$-u''(x) = f(x), \quad x \in (0,1), \quad u(0) = u(1) = 0.$$

We will use the source term $f(x) = 100e^{-10x}$. This gives the particular solution $u(x) = 1 - (1 - e^{-10})x - e^{-10x}$. We will compare our numerical solution to this exact solution.

3 Numerical methods

In order to model this equation in a computer we need to define the discretized approximated solution to u(x) as $v_i = v(x_i)$ where $x_i = x_0 + ih = ih$ since $x_0 = 0$. We let $x_{n+1} = 1$, this means $h = \frac{1}{n+1}$. From Taylor expanding $u(x \pm h)$ we get

$$u(x \pm h) = u(x) \pm hu'(x) + \frac{h^2}{2!}u''(x) \pm O(h^3)$$

We see that $u''(x) = \frac{u(x+h) + u(x-h) - 2u(x)}{h^2} - O(h^4)$. Hence for the approximated solution we get that

$$-\frac{v_{i+1} + v_{i-1} - 2v_i}{h^2} = f_i \quad \text{for i} = 1, ..., n$$

where $f_i = f(x_i)$. If we set $g_i = h^2 f_i$ we get that $2v_i - v_{i+1} - v_{i-1} = g_i$. This is just n equations, given by i = i, ..., n. We can write this in matrix form

$$Av = g$$

where **A** is a $n \times n$ tridiagonal matrix on the form

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & 0 & \dots \\ \vdots & 0 & \ddots & \ddots & \ddots & \dots \\ 0 & \dots & \dots & -1 & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 2 \end{bmatrix}$$

 \mathbf{v} and \mathbf{g} are vectors on the form

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \qquad \mathbf{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

3.1 General algorithm

The general algorithm to solve a set of equation on a tridiagonal form is done by Gaussian elimination, which is a forward- and a backward substitution. On matrix form the problem is $\mathbf{A}\mathbf{v} = \mathbf{g}$. Where \mathbf{v} contains the unknowns v_i . In our case the unknowns are the solution to the Poisson equation at $x_i = ih$, i.e. $v(x_i) = v_i$.

$$\mathbf{A} = \begin{bmatrix} d_1 & b_1 & 0 & \dots & \dots & 0 \\ a_1 & d_2 & b_2 & 0 & \dots & 0 \\ 0 & a_2 & d_3 & b_3 & 0 & \dots \\ \vdots & 0 & \ddots & \ddots & \ddots & \dots \\ 0 & \dots & \dots & a_{n-2} & d_{n-1} & b_{n-1} \\ 0 & \dots & \dots & 0 & a_{n-1} & d_n \end{bmatrix}, \qquad \mathbf{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}.$$

Component wise the forward substitution is given by

$$\tilde{d}_{i+1} = d_{i+1} - \frac{a_i b_i}{\tilde{d}_i}$$

$$\tilde{g}_{i+1} = g_{i+1} - \frac{a_i \tilde{g}_i}{\tilde{d}_i}$$

Where $\tilde{d}_1 = d_1$ and $\tilde{g}_1 = g_1$. Now our problem in on the form $\tilde{\mathbf{A}}\mathbf{v} = \tilde{\mathbf{g}}$ where

$$\tilde{\mathbf{A}} = \begin{bmatrix} \tilde{d}_1 & b_1 & 0 & \dots & \dots & 0 \\ 0 & \tilde{d}_2 & b_2 & 0 & \dots & 0 \\ 0 & 0 & \tilde{d}_3 & b_3 & 0 & \dots \\ \vdots & 0 & \ddots & \ddots & \ddots & \dots \\ 0 & \dots & \dots & 0 & \tilde{d}_{n-1} & b_{n-1} \\ 0 & \dots & \dots & 0 & 0 & \tilde{d}_n \end{bmatrix}, \qquad \mathbf{g} = \begin{bmatrix} \tilde{g}_1 \\ \tilde{g}_2 \\ \vdots \\ \tilde{g}_n \end{bmatrix}.$$

To get the problem to a diagonal form we have to perform a backward substitution, this is done component wise by

$$v_{n-i} = \frac{\tilde{g}_{n-i} - b_{n-i}v_{n+1-i}}{\tilde{d}_{n-i}}$$

where $v_n = \frac{\tilde{g}_n}{d_n}$. The number of floating points operations (FLOPS) performed in this general algorithm is 9n, 6n FLOPS in the forward substitution, two subtractions, two multiplications and two divisions. 3n FLOPS in the backward substitution, one subtraction, one multiplication and one division.

3.2 Specialized algorithm

4 results

This algorithm was programed using c++ and the solution for matrix size n=10, 100 and 1000 was compared to the exact solution and plotted using python as shown below.

Figure 1: Numerical solution of the Poisson equation for matrix size $n=10,\,100$ and 1000 is plotted as red dots. The exact solution is plotted in green.