

@dynamicdataduo

We process dynamic EHR data

National, longitudinal real-world datasets refreshed monthly, with 30-day recency

How we approach our problem

OBJECTIVES

- Codify statistical and domain knowledge in a library of composable, modular functions
- Decouple the high-level checks and reasoning from the low-level implementation details
- Extend reasoning about a single dataset to apply across an expanding number of datasets

BENEFITS

- ★ Reproducible and documented best practices are easily shared
- ★ Abstraction reduces the cognitive complexity of an analysis and makes reasoning more transparent
- ★ Easier to scale analysis not just within a dataset, but as the number of datasets and elements increase

Core principles of functional programming

- → Functions!
- → that can be composed into higher-order functions (compositionality)
- → which abstract out what is being done (declarative) from how it will be carried out (imperative)
- → and which avoid side-effects and external state dependencies (immutability)

Building blocks of our approach to data quality

NESTED DATA STRUCTURES

Tibbles to stash your tibbles!

PACKAGE DEVELOPMENT

Promote visibility, unit testing and documentation for your functions

DIFFERENTIATED CODE REVIEW

For technical and non-technical project team members

Implementation code review

Store tibbles, lists, and in-database lazy tbls as columns in a nested tibble

Data + metadata + evaluation metrics + summary statistics = FRIENDS FOREVER

```
# A tibble: 40 x 6
                                                                                          patient_list
                           disease_prefix
                                             table_name lazy_tbl raw_data
  schema
                           <chr>
                                                            st>
                                                                                          st>
   <chr>
                                               <chr>
1 market_tracking_20190131 met_breast_oral_lot demographics <tb_PSQLC> <tibble [100 × 9]> <chr [18,754]>
2 market_tracking_20190131 met_breast_oral_lot drugepisode <tb_PSQLC> <tibble [100 x 14]> <chr [16,514]>
 3 market_tracking_20190131 nsclc_oral_lot
                                               demographics <tb_PSQLC> <tibble [100 x 9]> <chr [52,551]>
4 market_tracking_20190131 nsclc_oral_lot
                                               drugepisode <tb_PSQLC> <tibble [100 x 14]> <chr [37,079]>
 5 market_tracking_20190228 met_breast_oral_lot demographics <tb_PSQLC> <tibble [100 × 9]> <chr [18,961]>
6 market_tracking_20190228 met_breast_oral_lot drugepisode <tb_PSQLC> <tibble [100 × 14]> <chr [16,690]>
 7 market_tracking_20190228 nsclc_oral_lot
                                               demographics <tb_PSQLC> <tibble [100 × 9]> <chr [53,185]>
8 market_tracking_20190228 nsclc_oral_lot
                                               drugepisode <tb_PSQLC> <tibble [100 x 14]> <chr [37,588]>
9 market_tracking_20190331 met_breast_oral_lot demographics <tb_PSQLC> <tibble [100 × 9]> <chr [19,156]>
10 market_tracking_20190331 met_breast_oral_lot drugepisode <tb_PSQLC> <tibble [100 × 14]> <chr [16,867]>
# ... with 30 more rows
```

Nested data structures for comparing and evaluating multiple datasets

```
count records <- purrr::partial(execute query,</pre>
                               select = "COUNT(*)")
count patients <- purrr::partial(execute query,</pre>
                                    select = "COUNT(distinct patientid)")
fetch patients = purrr::partial(execute query,
                                   select = "DISTINCT patientid",
                                   limit = 100)
data %<>%
    mutate(n records = purrr::map(lazy tbl, count records, con = conn),
           n patients = purrr::map(lazy tbl, count patients, con = conn),
           cohort = purrr::map(lazy tbl, fetch patients, con = conn))
```

What does all this get you?

- * Readability
- ★ Compositionality
- * Reproducibility
- * Robustness
- ★ Efficiency

Readability

Abstraction and Declarative intent

Analysis code can be **understood** and **sanity-checked** by non-technical staff

Clarity of intent: abstract declarative code is self-documenting

Docstrings and unit tests to align implementation with intention

```
compare snapshots(
   january data,
   february data,
   fn = compute time to dx)
find added patients (
 old data =
   january data$cohort,
 new data =
   february_data$cohort)
```

Compositionality Reasoning with higher level functions

```
### Function definitions
                                       ### Analysis code
process drug episodes <- . %>%
                                       data processed <-
  filter persistent patients %>%
                                           process drug episodes (data)
  compute change from prev(
   var = "num drug episodes",
   prev var = "prev drug episodes") %>%
  summarize change distribution(
   change var = "change num drug episodes")
```

Compositionality Reasoning with higher level functions

```
lm(Sepal.Length ~ Species,
   data = iris) %>%
broom::tidy(
   conf.int = TRUE) %>%
filter(p.value < 0.05) %>%
arrange(desc(statistic))
```

```
tidy lm <- purrr::compose(</pre>
    lm,
    ~ broom::tidy(.x,
        conf.int = TRUE),
    ~ filter(.x,
        p.value < 0.05),
    ~ arrange(.x,
        desc(statistic)),
    .dir = "forward")
tidy_lm(Sepal.Length ~ Species,
    data = iris)
```

Compositionality Reasoning with higher level functions

```
### Analysis code
cohort %<>%
  left_join(demographics) %>%
  left_join(mortality) %>%
  left_join(drugepisode) %>%
  left_join(progression)
```

```
### Function definitions
left join all <- function(...) {</pre>
   purrr::reduce(list(...),
    .f = dplyr::left join)
### Analysis code
cohort %<>%
    left_join_all(demographics,
                   mortality,
                   drugepisode,
                   progression)
```

Reproducibility

Avoiding side effects and external states

- Running the same function with the same input should always produce the same result
- Safeguard reproducibility with
 - Immutable inputs + outputs
 - Idempotent processes
 - Deterministic algorithms

Reproducibility

Clearly separate pure functions from functions desired for their side effects

No side effects intended! Returns something

Robustness

Testability and elegant error handling

- Functional modular code makes for happy unit testing
 - Avoid difficult to test code stemming from Mutability, Side-Effects, Responsibility overload, and Procedural instructions
- Avoid side effects and maintain your functional flow
 - try-catch exception blocks can be refactored as higher order functions

```
error prone fn <- function(data)</pre>
    exprs
safe fn <- purrr::safely(</pre>
    .f = error prone fn,
    otherwise = c())
data %>%
    mutate(results = purrr::map(
         input, safe fn))
```

Efficiency

Delayed evaluation and lazy backends

Efficiency Caching with memoise

Use when repeatedly evaluating a function over rows/chunks of data, with some repeated inputs

Performance gains depend on how often a function is being called with same arguments

```
compute biomarker status <- function(</pre>
    biomarker results) {
    exprs
compute biomarker status cached <-
    memoise::memoise(
         compute biomarker status)
data %<>%
 mutate(biomarker status =
    purrr::map(biomarker results,
         compute biomarker status cached)
```

Thanks!

@jgutman

@dynamicdataduo