ELL782 – Computer Architecture

Department of Electrical Engineering, IIT-Delhi Kaushik Saha ksaha@ee.iitd.ac.in

High Level List of Topics

Kaushik Saha

- Review of Boolean logic
 - Arithmetic using Boolean logic
 - Number systems, Adders, Subtractors
- RISC V ISA (Instruction set architecture)
 - Instruction format
 - Assembly language
 - Execution units Multipliers, Dividers
- Single cycle CPU architecture

Prof. Smruti Sarangi

- In Order CPU Pipeline
- Out of order CPU Pipeline
- Multiprocessor systems
- Other advanced topics

Grading

• 2 assignments $-2 \times 15 \text{ marks} = 30 \text{ marks}$

• 1 minor = 30 marks

• 1 major = 40 marks

• Total marks for grading = 100 marks

Audit criteria: Student opting for Audit must obtain 40/100 in aggregate for Audit Pass

Grading: Relative grading on the marks distribution curve

Course Policy

- 1. All deadlines are final. No deadline will be extended under any circumstances. Delay of even 1 minute beyond deadline will not be permitted.
- A student who misses the major exam must apply for an I grade. The academic section will decide the eligibility for a re-major
- 3. If any student getting an E or I grade will only be eligible to write the re-major. The student will not be allowed to submit any assignment after the deadline.
- 4. If a student who misses the minor exam or an assignment deadline is eligible for a re-minor or the third assignment. These will be considerably more difficult than the regular minor or any of the assignments, respectively. No medical certificate needs to be submitted.
- 5. Instructors will not entertain any direct e-mail communication. All the questions need to be asked via the Piazza group for this course.
 - 1. https://piazza.com/iit_delhi/summer2024/ell782 ; access code: ell782
- 6. Zero-tolerance policy for plagiarism. A plagiarized submission will be given 0.0 marks. The instructor's judgement is final.
- 7. All standard rules and penalties of IIT-Delhi regarding academic dishonesty apply. They are tough, so do not break the rules.

Texts

- Basic Computer Architecture S.R.Sarangi
- Next-Gen Computer Architecture S.R.Sarangi
- URL https://www.cse.iitd.ac.in/~srsarangi/archbooksoft.html
- Computer Arithmetic: Algorithms and Hardware Designs Behrooz Parhami **

Simple CPU Architecture

Why 32 bits?

Scope of Computer Arithmetic

Hardware

Design of efficient digital circuits for primitive and other arithmetic operations such as +, -, \times , \div , $\sqrt{}$, log, sin, and cos

Issues: Algorithms

Precision (Error analysis)

Dynamic range (smallest to largest val)

Speed/cost trade-offs

Hardware implementation

Testing, verification

Software

Numerical methods for solving systems of linear equations, partial differential eq'ns, and so on

Issues: Algorithms

Computational complexity

Programming

Testing, Verification

General-purpose

Flexible data paths Fast primitive operations like $+, -, \times, \div, \sqrt{}$

Special-purpose

Tailored to application areas such as:
Digital filtering Image processing Graphics & gaming

Machine learning (neuromorphic processing)

Example of Finite Precision Problems

Failure of Patriot Missile (1991 Feb. 25)

Source http://www.ima.umn.edu/~arnold/disasters/disasters.html

American Patriot Missile battery in Dharan, Saudi Arabia, failed to intercept incoming Iraqi Scud missile

The Scud struck an American Army barracks, killing 28

Cause, per GAO/IMTEC-92-26 report: "software problem" (inaccurate calculation of the time since boot)

Problem specifics:

Time in tenths of second as measured by the system's internal clock was multiplied by 1/10 to get the time in seconds

Internal registers were 24 bits wide

1/10 = 0.0001 1001 1001 1001 1001 100 (chopped to 24 b)

Error $\approx 0.1100 \ 1100 \times 2^{-23} \approx 9.5 \times 10^{-8}$

Error in 100-hr operation period

$$\approx 9.5 \times 10^{-8} \times 100 \times 60 \times 60 \times 10 = 0.34 \text{ s}$$

Distance traveled by Scud = $(0.34 \text{ s}) \times (1676 \text{ m/s}) \approx 570 \text{ m}$

Example of Inadequate Dynamic Range Problem

Example: Explosion of Ariane Rocket (1996 June 4)

Source http://www.ima.umn.edu/~arnold/disasters/disasters.html

Unmanned Ariane 5 rocket of the European Space Agency veered off its flight path, broke up, and exploded only 30 s after lift-off (altitude of 3700 m)

The \$500 million rocket (with cargo) was on its first voyage after a decade of development costing \$7 billion

Cause: "software error in the inertial reference system"

Problem specifics:

A 64 bit floating point number relating to the horizontal velocity of the rocket was being converted to a 16 bit signed integer

An SRI* software exception arose during conversion because the 64-bit floating point number had a value greater than what could be represented by a 16-bit signed integer (max 32 767)

*SRI = Système de Référence Inertielle or Inertial Reference System

Numbers and Their Encodings

Some 4-bit number representation formats

Possible Ways of Encoding Numbers in 4 Bits

Some of the possible ways of assigning 16 distinct codes to represent numbers. Small triangles denote the radix point locations.

1.4 Fixed-Radix Positional Number Systems

$$(x_{k-1}x_{k-2}...x_1x_0.x_{-1}x_{-2}...x_{-l})_r = \sum_{i=-l}^{k-1} x_i r^i$$

One can generalize to:

Arbitrary radix (not necessarily integer, positive, constant)

Arbitrary digit set, usually $\{-\alpha, -\alpha+1, \ldots, \beta-1, \beta\} = [-\alpha, \beta]$

Example Balanced ternary number system:

Radix r = 3, digit set = [-1, 1]

Example Digit set [-4, 5] for r = 10:

 $(3 - 1 5)_{ten}$ represents 295 = 300 - 10 + 5

Example Digit set [-7, 7] for r = 10:

$$(3 -1 5)_{ten} = (3 0 -5)_{ten} = (1 -7 0 -5)_{ten}$$

Dot Notation: A Useful Visualization Tool

Dot notation to depict number representation formats and arithmetic algorithms.

Signed-Magnitude Representation

4-bit signed-magnitude number representation system for integers.

Signed-Magnitude Adder $-y \pm x$

Adding signed-magnitude numbers using pre-complementation and post-complementation.

Biased Representations

A 4-bit biased integer number representation system with a bias of 8.

Arithmetic with Biased Numbers

Addition/subtraction of biased numbers

$$x + y + bias = (x + bias) + (y + bias) - bias$$

 $x - y + bias = (x + bias) - (y + bias) + bias$

A power-of-2 (or $2^a - 1$) bias simplifies addition/subtraction

Comparison of biased numbers:

Compare like ordinary unsigned numbers find true difference by ordinary subtraction

We seldom perform arbitrary arithmetic on biased numbers Main application: Exponent field of floating-point numbers

Complement Representations

Complement representation of signed integers.

1's-Complement Number Representation (k-bit registers)

A 4-bit 1's-complement number representation system for integers.

2's-Complement Numbers

A 4-bit 2's-complement number representation system for integers.

Arithmetic with Complement Representations

Addition in a complement number system with complementation constant M and range [-N, +P]

Desired operation	Computation to be performed mod <i>M</i>	Correct result with no overflow	Overflow condition
(+x) + (+y)	x + y	x + y	x + y > P
(+x) + (-y)	x + (M - y)	$x - y$ if $y \le x$ M - (y - x) if $y > x$	N/A
(-x) + (+y)	(M-x)+y	$y - x$ if $x \le y$ M - (x - y) if $x > y$	N/A
(-x) + (-y)	(M-x)+(M-y)	M-(x+y)	-x + -y > -∧

Some Details for 2's- and 1's Complement

Range/precision extension for 2's-complement numbers

$$X_{k-1} X_{k-1} X_{k-1} X_{k-1} X_{k-2} \dots X_1 X_0 X_{k-1} X_{k-2} \dots X_{k-1} 0 0 0 \dots$$
 $X_{k-1} X_{k-1} X_{k-1} X_{k-2} \dots X_1 X_0 X_{k-1} X_{k-2} \dots X_{k-1} 0 0 0 \dots$
 $X_{k-1} X_{k-1} X_{k-1} X_{k-1} X_{k-2} \dots X_1 X_0 X_{k-1} X_{k-2} \dots X_{k-1} 0 0 0 \dots$
 $X_{k-1} X_{k-1} X_{k-1} X_{k-1} X_{k-2} \dots X_1 X_0 X_{k-1} X_{k-2} \dots X_{k-1} 0 0 0 \dots$
 $X_{k-1} X_{k-1} X_{k-1} X_{k-1} X_{k-2} \dots X_1 X_0 X_{k-1} X_{k-2} \dots X_{k-1} X_{k-1} \dots X_{k-1} X_{k-1} \dots X_{k-1} X_{k-2} \dots X_{k-1} X_{k-2} \dots X_{k-1} X_{k-1} \dots X_{k-1} \dots X_{k-1} X_{k-1} \dots X_{k-1} X_{k-1} \dots X_{k-1} X_{k-1} \dots X_{k-1} \dots X_{k-1} \dots X_{k-1} X_{k-1} \dots X_{k$

Range/precision extension for 1's-complement numbers

$$X_{k-1}$$
 X_{k-1} X_{k-1} X_{k-1} X_{k-2} X_1 X_0 X_{k-1} X_{k-2} X_{k-1} $X_$

Mod- 2^k operation needed in 2's-complement arithmetic is trivial: Simply drop the carry-out (subtract 2^k if result is 2^k or greater)

Mod- $(2^k - ulp)$ operation needed in 1's-complement arithmetic is done via end-around carry

$$(x + y) - (2k - ulp) = (x - y - 2k) + ulp$$
 Connect c_{out} to c_{in}

Which Complement System Is Better?

Comparing radix- and digit-complement number representation systems

Feature/Property	Radix complement	Digit complement
Symmetry $(P = N?)$	Possible for odd <i>r</i> (radices of practical interest are even)	Possible for even <i>r</i>
Unique zero?	Yes	No, there are two 0s
Complementation	Complement all digits and add <i>ulp</i>	Complement all digits
Mod- <i>M</i> addition	Drop the carry-out	End-around carry

Using Signed Positions or Signed Digits

A key property of 2's-complement numbers that facilitates direct signed arithmetic:

$$x = (1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0)_{\text{two's-compl}}$$
 $-2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0$
 $-128 \quad + \quad 32 \quad + \quad 4 \quad + \quad 2 \quad = -90$

Check:
 $x = (1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0)_{\text{two's-compl}}$
 $-x = (0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0)_{\text{two}}$
 $2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0$
 $64 \quad + \quad 16 \quad + \quad 8 \quad + \quad 2 \quad = 90$

Interpreting a 2's-complement number as having a negatively weighted most-significant bit.

Why 2's-Complement Is the Universal Choice

Adder/subtractor architecture for 2's-complement numbers.

Signed-Magnitude vs 2's-Complement

