TEMA 4 : TRANSFORMACIONES EN EL PLANO Y EL ESPACIO

· Introducción :

* Una transformación en el placo (IR^2) es una operación que transforma un vector \vec{v} del placo en otro vector \vec{v} del placo.

Ejemplo : da transformación T nos convierte $\vec{v} = (1,1)$ en $\vec{v} = (-1,1)$:

V' = Vector transformado

* Una transformación en el espacio (IR^3) es una operación que transforma un vector \vec{v} del espacio en otro vector \vec{v} del espacio.

Ejemplo : da transformación T transforma el vector $\vec{v} = (1,1,1)$ en el vector $\vec{v}^{\dagger} = (2,2,2)$

* das transformaciones lineales en el plano y el espacio se pueden

representar mediante una aplicación lineal biyectiva:

itiene inversa

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$

PLANO 2D ESPACIO 3D

Ejemplo: da transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$, definida por $T(X_1Y_1) = \{4x_1, y_1\} \text{ convierte } \vec{V} = \{1,1\} \text{ en } \vec{V} = \{4,1\}.$

$$A = \begin{pmatrix} x & y \\ 4 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow T\{1,1\} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

$$\uparrow \uparrow \uparrow \qquad \qquad A \qquad \overrightarrow{V} = \overrightarrow{V} \downarrow \downarrow \downarrow$$

$$T\{1,0\} T\{0,1\} \qquad col \qquad col$$

· Geometria de las transformaciones lineales en IR2:

SIMETRÍA AXIAL RESPECTO AL EJE X

SIMETRÍA AXIAL RESPECTO AL EJE Y

SIMETRÍA AXIAL RESPECTO A LA RECTA Y = X

SIMETRÍA AXIAL RESPECTO A LA RECTA Y = - X

$$T(x,y) = (-y,-x)$$

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

Efercicio: Hallar la matriz asociada a la transformación T de una simetría axial respecto a la recta y = 3x.

SIMETRÍA CENTRAL

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

PROVECCIÓN ORTOGONAL RESPECTO AL EJE X

PROVECCIÓN ORTOGONAL RESPECTO AL EJE Y

Efercicio: Hallar la matrit asociada a la transformación T de una proyección ortogonal respecto a la recta y=3x.

ROTACIÓN EN UN ÁNGULO 9 ANTIHORARIO +

0 > 0

$$T(x,y) = (\cos \theta \cdot x - \sin \theta \cdot y + \sin \theta \cdot x + \cos \theta \cdot y)$$

$$A = \begin{pmatrix} \cos \theta - \sec \theta \\ \sec \theta & \cos \theta \end{pmatrix} \qquad \begin{cases} \cos (-\theta) = \cos (\theta) \\ \sec \theta & \cos \theta \end{cases}$$

$$\sec (-10) = \cos (\theta)$$

$$T(1,0) = (\cos \theta, \sec \theta)$$

$$T(0,1) = [-8m\theta, \cos\theta]$$

ROTACIÓN EN UN ÁNGULO 9 HORARIO

0 < 0

$$T(x,y) = (\cos \theta \cdot x + \sin \theta \cdot y) - \sin \theta \cdot x + \cos \theta \cdot y)$$

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Hallar la matriz asociada a la transformación T, la cual efectua en IR2 una rotación de 120° en sentido antihorario. Calcular T(2,2)

$$T(x,y) = \kappa(x,y) = (\kappa x, \kappa y)$$

$$A = \left(\begin{array}{cc} \kappa & o \\ o & \kappa \end{array}\right)$$

Ejercicio: Aplicar a la figura la transformación T, cuya matriz asociada

es
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
. Representar la figura transformada.

DESLIZAMIENTO CORTANTE EN LA DIRECCIÓN X CON FACTOR K

$$A = \begin{pmatrix} 1 & K \\ 0 & 1 \end{pmatrix} \qquad T(x,y) = (x + Ky + y)$$

DESLIZAMIENTO CORTANTE EN LA DIRECCIÓN Y CON FACTOR K

$$A = \begin{pmatrix} 1 & 0 \\ \kappa & 1 \end{pmatrix} \qquad T(x,y) = (x, \kappa x + y)$$

Ejercicio: Trazar la imagen del rectangulo myos vértices son los

transformaciones:

a)
$$T(x,y) = (x+y,y)$$
 b) $T(x,y) = [x,y+2x]$

· Geometria de las transformaciones lineales en IR3:

SIMETRÍA RESPECTO AL PLANO X Y

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

SIMETRÍA RESPECTO AL PLANO XZ

$$T(x,y,z) = (x,-y,z)$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

SIMETRÍA RESPECTO AL PLANO Y Z

$$T(x,y,z) = (-x,y,z)$$

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

PROYECCION ORTOGONAL RESPECTO AL PLAND XY

$$T(x,y,z) = (x,y,0)$$

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

PROYECCIÓN ORTOGONAL RESPECTO AL PLAND XZ

$$T(x,y,z) = (x,0,z)$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

PROYECCIÓN ORTOGONAL RESPECTO AL PLANO Y Z

$$T(x,y,z) = (0,y,z)$$

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ROTACION RESPECTO AL EJE X

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

ROTACION RESPECTO AL EJE Y

θ > 0

$$A = \begin{pmatrix} \cos \theta & 0 & \text{sen } \theta \\ 0 & 1 & 0 \\ -\text{sen } \theta & 0 & \cos \theta \end{pmatrix}$$

ROTACION RESPECTO AL EJE Z

$$A = \begin{pmatrix} \cos \theta - \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

· Composicion de transformationes :

$$|R^{2} \xrightarrow{T_{1}} |R^{2} \xrightarrow{T_{2}} |R^{2}$$

$$|(x,y) \longrightarrow T_{1}(x,y) = (x^{1},y^{1}) \longrightarrow T_{2}(x^{1},y^{1}) = (x^{11},y^{11})$$

$$|T(x,y) = T_{2} \circ T_{4}(x,y) = (x^{11},y^{11})$$

$$|T(x,y) = T_{2} \circ T_{4}(x,y) = (x^{11},y^{11})$$

$$|T(x,y) = A \cdot (x^{11},y^{11}) = (x^{11},y^{11})$$

$$|T(x,y) = A \cdot (x^{11},y^{11}) = (x^{11},y^{11})$$

Ejercicio: Consideramos una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ que consiste en una rotación de ángulo $\frac{7\Pi}{6}$ respecto al eje x en sentido antihorario y, a continuación, una dilatación con $K=\frac{9}{2}$. Hallar la expresión de T y T (2,0,1).

Ejercicio: Determinar la transformación $T: \mathbb{R}^2 \to \mathbb{R}^2$ que realiza primero una rotación de $\theta = \frac{\pi}{4}$ (seutido antihorario) y después un destizamiento cortante en la dirección del eje x. A demés, se verifica que : $T(-3\sqrt{2}, \sqrt{2}) = (2,-2)$.

Ejercicio: Obtener la matrit asociada a la transformación lineal

 $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que primero aplica una rotación de ángulo $\frac{4\pi}{3}$

y a continuación realiza una simetría respecto al eje y. En caso de existir, encontrar un vector u de IR² perteneciente al subespacio

U = L { (1,- \(\)_3 \\ \} tal que \(\)_ (\(\)_1 = (-10,0).