Kapitel 1

Funktionalanalysis

1.1 Grundlagen

Bekannt aus Analysis I-III

- Banachraum: vollständiger normierter Vektorraum (wir schreiben $(X,\|\cdot\|_X)$
- Hilbertraum: vollständiger Skalarproduktvektorraum mit $\|\cdot\| = \sqrt{(\cdot,\cdot)_X}$. Wobei (\cdot,\cdot) das Skalarprodukt bezeichnet.
- Cauchy-Folge: $(x_n), \forall \varepsilon > 0 \ \exists n \in \mathbb{N} : \forall m \ge n : ||x_m x_n|| < \varepsilon$
- vollständiger metrischer Raum, Topologie.

Definition 1.1 (Halbnorm, Seminorm). Sei X ein $\mathbb{K} - Vektorraum$, wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Für $x, y \in X$, $\lambda \in \mathbb{K}$ ist eine Halbnorm oder Seminorm eine Abbildung $||| \cdot ||| : X \to \mathbb{R}$, die die folgenden Eigenschaften erfüllt:

- (i) $|||x||| \ge 0$
- (ii) $|||\lambda x||| = |\lambda| \cdot |||x|||$
- (iii) $|||x + y||| \le |||x||| + |||y|||$

Eine Norm efüllt zusätzlich noch die Bedingung, dass sie nur dann verschwindet, wenn das Argument verschwindet.

Bemerkung 1.2. (a) $N := \{x \in X : |||x||| = 0\}$ bildet einen Unterraum von X.

- (b) X/N ist ein normierter Raum über(?) ||x + N|| := |||x|||
- (c) X ist ein vollständiger seminormierter Raum $\Rightarrow X/N$ ist ein Banachraum

Beispiel 1.3 (wichtige Vektorräume). Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum

- (a) $p \in [1, \infty)$ $\mathcal{L}^p(\Omega, \mu) = \{f : \Omega \to \mathbb{C} \text{ messbar}, \int_{\Omega} |f|^p d\mu < \infty \}$ ist ein seminormierter Raum mit $|||f|||_p := (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}}$. $L^p(\Omega, \mu)$ ist ein vollständiger normierter Raum (\nearrow Ana III).
- (b) $\mathcal{L}^{\infty}(\Omega,\mu) := \{f: \Omega \to \mathbb{C} \text{ messbar und essentiell beschränkt} \}$ ist ebenfalls seminormiert mit $|||f|||_{\infty} := \underset{x \in \Omega}{\operatorname{ess \, sup}} |f(x)|.$ $L^{\infty}(\Omega,\mu)$ ist ein vollständiger normierter Raum.
- (c) $p \in [1, \infty], |\cdot|$ sei das Zählmaß auf \mathbb{N} und der Maßraum sei gegeben durch $(\mathbb{N}, P(\mathbb{N}), |\cdot|)$. $\ell^p := \mathcal{L}^p(\mathbb{N}, |\cdot|)$ heißt Folgenraum und ist ein normierter unendlichdimensionaler Raum.

- (d) $\Omega \subseteq \mathbb{R}$ messbar, λ^n Lebesgue-Maß auf \mathbb{R}^n . $L^p(\Omega) := L^p(\Omega, \lambda^n)$ heißt Lebesgue-Raum.
- (e) Sei (Ω, \mathcal{T}) ein topologischer Raum. $BC(\Omega) := \{f : \Omega \to \mathbb{C} \mid f \text{ stetig und beschränkt} \}$ versehen mit der Suprenumsnorm ist ein Banachraum.

Bemerkung 1.4 (diverse Fakten). Seien $p, q, r \in [1, \infty)$

- (a) $L^p(\Omega,\mu)$ ist ein Banachraum, $L^2(\Omega,\mu)$ ist ein Hilbertraum mit $(f,g)_2 := \int_{\Omega} f\overline{g}d\mu$
- (b) Falls $\mu(\Omega) < \infty$, $p \ge r \Rightarrow L^p(\Omega, \mu) \subseteq L^r(\Omega, \mu)$
- (c) Wenn $p \geq r \Rightarrow L^p(\Omega, \mu) \cap L^{\infty}(\Omega, \mu) \subseteq L^p(\Omega, \mu)$
- (d) $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(\Omega, \mu)$, $g \in L^q(\Omega, \mu) \Rightarrow fg \in L^1(\Omega, \mu)$ mit $\|fg\|_1 \leq \|f\|_p \|g\|_q$ (Hölder-Ungleichung). Dies gilt auch für $p = 1, q = \infty$ wobei $\underline{\text{hier}} \frac{1}{\infty} := 0$.
- (e) Sei $\Omega \subseteq \mathbb{R}^n$ ein Gebiet. $C_0^k := \{f : \Omega \to \mathbb{C} \mid \text{supp} f \text{ kompakt und } f \in C^k(\Omega, \mathbb{C})\}$ ist dicht in $L^p(\Omega) \ \forall p \in [1, \infty)$. Dies gilt nicht für $p = \infty$, da f = const oder f = sign sich nicht durch Funktionen aus C_0^k approximieren lassen.
- (f) $BC(\Omega)$ ist abgeschlossen in $L^{\infty}(\Omega)$, aber nicht in $L^{p}(\Omega)$ für $p < \infty$, dennoch ist $BC(\Omega)$ in beiden Fällen ein Unterraum.

1.2 Lineare Operatoren

Definition 1.5 (linearer Operator). Seien X,Y \mathbb{K} -Vektorräume. Eine Abbildung $T:X\to Y$ heißt $linearer\ Operator\ wenn$

$$T(\lambda x + \mu y) = \lambda T(x) + \mu T(y) \ \forall \lambda, \mu \in \mathbb{K}, \ x, y \in X$$

wir schreiben Tx statt T(x).

Wenn $Y = \mathbb{K}$ dann heißt ein linearer Operator $T: X \to \mathbb{K}$ Funktional.

Wenn X, Y normierte \mathbb{K} -Vektorräume sind, heißt ein linearer Operator T beschränkt, wenn $T(U_1(0)) \subseteq Y$ beschränkt ist. $(\Leftrightarrow \exists M \in \mathbb{R}_{>0}, \text{ so dass } ||Tx||_Y \leq M \ \forall x \in X \text{ mit } ||x||_X < 1)$

Aus der Definition erkennt man, dass Bilder beschränkter Mengen M unter einem beschränkten linearen Operator T beschränkt sind. Denn $\exists R > 0 : M \subseteq U_R(0)$, sodass $T(M) \subseteq T(U_R(0)) = T(R \cdot U_1(0)) = R \cdot T(U_1(0))$, und dies ist beschränkt.

Beispiel 1.6. a) $X = \mathbb{K}^n$, $Y = \mathbb{K}^m$, $\{T : X \to Y : T \text{ linearer Operator}\} = \mathbb{K}^{m \times n}$. $T \in \mathbb{K}^{n \times m}$ ist beschränkt. Wir stellen fest:

$$||T||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |t_{ij}| < \infty, \ t_{ij} \text{ sind die Einträge der Matrix } T.$$

Da auf einem endlichdimensionalen Vektorraum alle Normen äquivalent sind, ist T beschränkt.

b) $T: L^1(\Omega, \mu) \to \mathbb{K}$, $Tf:=\int_{\Omega} f d\mu$. Es gilt $|Tf|=|\int_{\Omega} f d\mu| \leq \int_{\Omega} |f| d\mu = \|f\|_1$. Also $|Tf|<1 \ \forall f \in L^1(\Omega, \mu): \|f\|_1 < 1 \Rightarrow T$ beschränkt

Satz 1.7. Seien X, Y normierte Räume, $T: X \to Y$ ein linearer Operator. Dann sind äquivalent:

- (i) T beschränkt,
- (ii) T ist lipschitz stetiq,
- (iii) T ist gleichmäßig stetig,
- (iv) T ist stetig,

- (v) T stetig in 0,
- (vi) $\exists x \in X : T \text{ stetig in } x.$

Beweis: "(i) \Rightarrow (ii)": Sei M > 0, so dass $||Tx||_Y \leq M \ \forall x \in U_1(0)$. Es gilt T0 = 0. Weiterhin gilt für $x \in X \setminus \{0\}$:

$$||Tx||_Y = ||2||x||_X T\left(\frac{x}{2||x||_X}\right)|| = 2||x||_X ||T\underbrace{\left(\frac{x}{2||x||_X}\right)}_{\in U_1(0)} ||_Y \le 2M||x||_X.$$

Also gilt $\|Tx\|_Y \leq 2M\|x\|_X \ \forall x \in \|x\|_X$ und daraus folgt die Lipschitz Stetigkeit wegen

$$||Tx_1 - Tx_2|| = ||T(x_1 - x_2)|| \le 2M||x_1 - x_2||_X \ \forall x_1, x_2 \in X$$

 $(ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi)$: Der Beweis dieser Implikationskette ist Gegenstand der Grundvorlesungen ¹.

" $(vi) \Rightarrow (v)$ ": Sei $x \in X$, so dass T stetig in x ist. Sei (x_n) Nullfolge in X

$$\Rightarrow \lim_{n \to \infty} (x + x_n) = x \Rightarrow \lim_{n \to \infty} T(x + x_n) = Tx \stackrel{\text{stetig in } 0}{\Rightarrow} \lim_{n \to \infty} Tx_n = 0 = T 0$$

"(v) \Rightarrow (i)": Beweis durch Widerspruch: Angenommen T ist unbeschränkt $\Rightarrow \forall n \in \mathbb{N} \ \exists x_n \in U_1(0)$, so dass $||Tx_n||_Y \geq n \ (\Rightarrow x_n \neq 0 \ \forall n \in \mathbb{N})$. Dann gilt $\frac{x_n}{n} \stackrel{n \to \infty}{\longrightarrow} 0$, aber $||T\frac{x_n}{n}||_Y = \frac{1}{n}||Tx_n||_Y \geq \frac{1}{n} \cdot n = 1$ Das hieße aber T ist unstetig in 0.

Bemerkung 1.8. a) $\mathcal{B}(X,Y) := \{T : X \to Y : T \text{ beschränkt}\}$

- b) $\mathcal{B}(X) := \mathcal{B}(X, X)$ beides sind $\mathbb{K} VR$.
- c) $X' := \mathcal{B}(X, \mathbb{K})$ topologischer Dualraum von X.

Bemerkung 1.9. c) Ker T, Im T sind UVR.

- d) (i) (vi) äquivalent zu (vii): Jede beschränkte Menge wird auf eine beschränkte Menge abgebildet.
- e) Es gibt beschränkte lineare Operatoren, so dass Im T nicht abgeschlossen \nearrow Übung
- f) $Ker\ T$ abgeschlossen $\forall\ T\in\mathcal{B}(X,Y),$ da T stetig und $Ker\ T=T^{-1}(\{0\}),$ wobei $\{0\}$ abgeschlossen sen in Y.

Satz 1.10 (Operatornormen). X, Y normierte Räume. $\mathcal{B}(X,Y)$ normierter Raum mit folgendener $Norm ||T|| := \sup ||Tx||_Y.$

Beweis: (Positivität:) ||0|| = 0. Sei $||T|| = 0 \Rightarrow Tx = 0 \ \forall \ x \in U_1(0)$. Sei $x \in X$ beliebig. $\Rightarrow Tx = 0$ $2||x||_X T\left(\frac{x}{2||x||_X}\right) = 0 \Rightarrow T = 0.$

(Homogenität:) Sei $\lambda \in \mathbb{K}$, $T \in \mathcal{B}(X,Y)$. Dann $\|\lambda T\| = \sup_{x \in U_1(0)} \|(\lambda T)x\|_Y = |\lambda| \sup_{x \in U_1(0)} \|Tx\| = |\lambda| \sup_{x \in U_1(0)} \|Tx\|$

$$(\text{Dreiecksungleichug:}) \text{ Seien } T_1, T_2 \in \mathcal{B}(X,Y). \text{ Dann } \|T_1 + T_2\| = \sup_{x \in U_1(0)} (\|T_1x + T_2x\|_Y) \leq \sup_{x \in U_1(0)} (\|T_-4x\|_Y + \|T_2x\|_Y) \leq \sup_{x_1, x_2 \in U_1(0)} (\|T_1x_1\|_Y + \|T_2x_2\|_Y) \leq \sup_{x_1, x_2 \in U_1(0)} \|T_1x_1\|_Y + \sup_{x_2 \in U_1(0)} \|T_1x_2\|_Y = \|T_1\| + \|T_2\|$$

 $Bemerkung \ 1.11. \ \text{Es gilt} \ \|T\| = \sup_{x \in \overline{U_1(0)}} \|Tx\|_Y = \sup_{x \in \partial U_1(0)} \|Tx\|_Y = \sup_{\substack{x \in X \\ x \neq 0}} \frac{\|Tx\|_Y}{\|x\|_X} \ (\nearrow \ \text{Übung}).$

Satz 1.12. X normierter Raum, Y Banachraum. Dann ist $\mathcal{B}(X,Y)$ Banachraum.

¹Damit meinen wir stets Sätze, die in Analysis/LA I,II oder Höhere Analysis bewiesen wurden.

Beweis: Sei (T_n) CF in $\mathcal{B}(X,Y)$, d.h. $\forall \varepsilon \exists N \in \mathbb{N} \forall n,m > N : ||T_n - T_m|| < \varepsilon$. Also $||T_nx - T_mx||_Y \le ||T_n - T_m|| \cdot ||x|| < \varepsilon \cdot ||x|| \ \forall x \in X$. Daraus folgt wegen der Vollständigkeit von Y, dass (T_nx) in Y für alle $x \in X$ konvergiert. Wir setzen den Grenzwert auf $T : X \to Y$, $Tx := \lim_{n \to \infty} T_nx$. Die so definierte Abbildung, also dieser Grenzwert, erfüllt folgende Eigenschaften:

- a) T ist ein linearer Operator.
- b) T ist beschränkt.
- c) $\lim_{n \to \infty} ||T T_n|| = 0$

Zu a):
$$T(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} T_n(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} (\lambda T_n x_1 + \mu T_n x_2) = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda T x_1 + \mu T x_2$$

zu b): Wegen
$$||T_n - T_m|| \ge (||T_n|| - ||T_m||)$$
 gilt $||T_n||$ ist CF in \mathbb{R} , also beschränkt: $M := \sup_{n \in \mathbb{N}} ||T_n|| < \infty$. Für $x \in U_1(0)$ gilt $||Tx||_Y = \lim_{n \to \infty} ||T_nx||_Y \le \lim_{n \to \infty} ||T_n|| \cdot ||x||_X \le M \cdot ||x||_X \le M$. (vgl. Def 1.5, " \Leftrightarrow ")

zu c): Sei
$$\varepsilon > 0 \Rightarrow \exists N \in \mathbb{N} \ \forall m, n > N : \|T_n - T_m\| < \frac{\varepsilon}{2}$$
. Für $x \in U_1(0)$ gilt somit $\|(T - T_n)x\| = \lim_{m \to \infty} \|(T_m - T_n)x\| \le \frac{\varepsilon}{2} \Rightarrow \|T - T_n\| = \sup_{x \in U_1(0)} \|(T - T_n)x\| \le \frac{\varepsilon}{2} < \varepsilon \ \forall n \ge N$

Also ist $T \in \mathcal{B}(X,Y)$ und aufgrund der Beliebigkeit der CF, folgt die Vollstüandigkeit.

Korollar 1.13. X normierter Raum $\Rightarrow X'$ Banachraum.

Bemerkung 1.14. a) $T \in \mathcal{B}(X,Y), S \in \mathcal{B}(Y,Z) \Rightarrow ST \in \mathcal{B}(X,Z) \text{ und } ||ST|| \leq ||S|| \cdot ||T||$

- b) $id \in \mathcal{B}(X, X), ||id|| = 1.$
- c) Aus punktweise Konvergenz $T_n x \to T x$ folgt i.A. $\underline{\text{nicht}} \lim_{n \to \infty} T_n = T$ (d.h. $\lim_{n \to \infty} ||T_n T|| = 0$).

Etwaige Begriffe

- 1. **Hausdorffsch, Hausdorffeigenschaft** Eine Menge heißt *hausdorffsch*, wenn je zwei versch. Punkte stets disjunkte Umgebungen haben. Metrische Räume sind zum Beispiel hausdorffsch, da zwei versch. Punkte stets einen Abstand > 0 haben.
- 2. **essentiell beschränkt** $(\Omega, \mathfrak{A}, \mu)$ sei ein Maßraum. Eine Funktion $f : \Omega \to \mathbb{R}$ heißt essentiell beschränkt, falls

$$\operatorname{ess\,sup}_{x\in\Omega}|f(x)|:=\inf_{\substack{N\in\mathfrak{A}\\\mu(N)=0}}\sup_{x\in\Omega\setminus N}|f(x)|<\infty$$

oder auch: f ist fast überall beschränkt. Ein Beispiel ist $f(x) := x \cdot \chi_{\mathbb{Q}}(x)$ und $\mu = \lambda$, da f nur auf \mathbb{Q} nicht null ist, und \mathbb{Q} ist Lesbesgue-Nullmenge.

3. topologischer Raum (X, \mathcal{T}) - Ein Raum, dessen offene Mengen durch \mathcal{T} gegeben sind, wobei die offenen Mengen die bekannten Eigenschaften behalten sollen.