Homozygous Standard Workflow – Non-Essential genes [**NE1**] **Bsd** first wt/wt -> tm1 -> tm1a -> tm1/tm1a

FEP: SEP/PIQ:

Diagram:		O	0— Bsd 1— 0— 1—	O Neo D	O Neo Neo	O Neo Neo	o Neo Neo
Genotype:		wt/wt	tm1/wt	tm1/tm1a	wt/tm1a	tm1/tm1e	wt/tm1e
LOA CRIT	- OHT	2	1	1	2	1	1
LOA TAM	+ OHT	2	1	0	1	1	1
LOA DEL	- OHT	2	1	0	1	0	1
BSD		0	1	1	0	1	0

FEP:

tm1/wt is what you want

SEP: tm1/tm1a is what you want

wt/wt is total failure of electroporation

wt/tm1a is best possible control but rare

* No final loxp site with Bsd vector so no benefit in doing + OHT assay?

tm1/wt is second best control and very likely

wt/wt is total failure of both electroporations but still a useful control

<u>Homozygous Standard Workflow – Non-Essential genes [**NE1a**]</u> **Neo** first wt/wt -> tm1a -> tm1a/tm1

FEP: SEP/PIQ:

Diagram:			o Neo	o Neo	o Neo Neo Bsd III	o Neo Bsd	0 Bsd 1 Bsd		
Genotype:		wt/wt	tm1a/wt	tm1e/wt	tm1a/tm1	tm1e/tm1	wt/tm1	tm1a/off target Bsd	off target Neo/tm1
LOA CRIT	- OHT	2	2	2	1	1	1	2	1
LOA TAM	+ OHT	2	1	2	0	1	1	1	1
LOA DEL *	- OHT	2	1	1	0	0	1	1	1
NEO		0	1	1	1	1	0	1	1
BSD **		0	0	0	1	1	1	1	1

FEP:	
tm1a/wt is what you want	

tm1e/wt is where most of the cassette goes

in but the final loxp does not

wt/wt is total failure of electroporation

* LOA DEL assay optional at FEP stage

** No Bsd resistance in cassette so no benefit to performing the Bsd assay at FEP stage

SEP:

tm1a/tm1 is what you want

wt/tm1 is best possible control but rare

tm1a/wt is second best control and very likely

wt/wt is total failure of both electroporations but still a useful control

off target affects suggested by data, may not be real

Homozygous Standard Workflow – Essential genes [E] Neo first wt/wt -> tm1a -> (Dox) -> tm1 -> tm1c/tm1

FEP:

Diagram:		(o Neo Neo		o Neo	
Genotype:		wt/wt	tm1a/wt	tm1c/wt	tm1e/wt	tm1f/wt
LOA CRIT	- OHT	2	2	2	2	2
LOA TAM	+ OHT	2	1	1	2	2
LOA DEL	- OHT	2	1	1	1	1
NEO		0	1	0	1	0

FEP:

tm1c/wt is what you want.

tm1a/wt is where the Dox does not excise the Neo resistance.

tm1f/wt is where the Dox does excise the Neo resistance but the final loxp site was not inserted.

tm1e/wt is where the Dox does not excise the Neo resistance and the final loxp was not inserted.

wt/wt is total failure of electroporation.

Homozygous Standard Workflow – Essential genes [E] Neo first wt/wt -> tm1a -> (Dox) -> tm1 -> tm1c/tm1

SEP/PIQ:

Diagram:		0 Bsd 1 D	o Neo Bsd -	o—Bsd	o Neo Bsd —	o Bsd o		
Genotype:		wt/tm1	tm1a/tm1	tm1c/tm1	tm1e/tm1	tm1f/tm1	tm1a/off target Bsd	off target Neo/tm1
LOA CRIT	- OHT	1	1	1	1	1	2	1
LOA TAM	+ OHT	1	0	0	1	1	1	1
LOA DEL	- OHT	1	0	0	0	0	1	1
NEO		0	1	0	1	0	1	1
BSD		1	1	1	1	1	1	1

SEP:

tm1c/tm1 is what you want

tm1c/wt shows the SEP failed and is a good control

wt/tm1 is also a good control

<u>Heterozygous Cre Knockin Standard Workflow – No Dre [CreKi]</u> wt/wt -> tm1 -> tm1/wt

EP/PIQ:

Diagram:	0-1-0	o-Cre Puro	o-Cre Puro (-	
Genotype:	wt/wt	tm1/wt	tm1 lrpcr/wt	wt/crepuro off target wt
CRE	0	1	1	1
LOA DEL	2	1	Х	2
PURO	0	1	1	1
LOA CRIT	2	1	1	2
LRPCR	Х	Х	Pass	Х

<u>EP:</u>

tm1/wt is what you want

wt/wt is total failure of electroporation

In addition to these tests they must all pass chromosome tests Chry and Chr8, and if the LOA DEL test fails then LRPCR primer bands can be checked

<u>Heterozygous Cre Knockin Standard Workflow – Dre [CreKiDre]</u> wt/wt -> tm1 -> (Dre) -> tm1.1/wt

EP/PIQ:

Diagram:		o-Cre (Puro (o Cre				
Genotype:	wt/wt	tm1/wt	tm1.1/wt	tm1 lrpcr/wt	tm1.1 lrpcr/ wt	wt crepuro off target/ wt/	wt cre off target/wt
CRE	0	1	1	1	1	1	1
LOA DEL	2	1	1	Х	Х	2	2
PURO	0	1	0	1	0	1	0
LOA CRIT	2	1	1	Х	Х	2	2
LR PCR	Х	Х	Х	Pass	Pass	Х	Х

<u>EP:</u>

tm1.1/wt is what you want

tm1/wt is a failure of the *Dre* recombinase step

wt/wt is total failure of electroporation

Irpcr check is done if LOA DEL is absent or fails

In addition to these tests they must all pass chromosome tests Chry and Chr8a (pass or passb).