Stability of the centers of group algebras of $GL_n(q)$

Jinkui Wan
Beijing Institute of Technology, visiting University of Virginia
(joint with Weiqiang Wang)

University of Virginia, 10/20/18

Outline

- STABILITY OF SYMMETRIC GROUPS
- 2 STABILITY FOR $GL_n(q)$
- 3 CONJECTURES AND QUESTIONS

Stability for symmetric groups

Modified type

• Conjugacy classes of symmetric group $S_n \Leftrightarrow Par_n = \{partitions of n\}$

$$n=6.~\sigma=(1,3)(2,4,5,6) \leadsto {\sf type}$$
 $n=7.~\sigma$ again, $\leadsto {\sf type}$

- Problem: same σ in S_n and S_{n+1} , different cycle type.
- Solution: delete the first (=green) column.
- Call the remaining partition,

the modified type of σ

• Conjugacy classes of symmetric group $S_n \Leftrightarrow Par_n = \{partitions of n\}$

$$n = 6. \ \sigma = (1,3)(2,4,5,6) \leadsto \text{type}$$

$$n=7. \ \sigma$$
 again, \leadsto type

- Problem: same σ in S_n and S_{n+1} , different cycle type.
- Solution: delete the first (=green) column.
- Call the remaining partition,

the modified type of σ

• Conjugacy classes of symmetric group $S_n \Leftrightarrow Par_n = \{partitions of n\}$

$$n=6.\ \sigma=(1,3)(2,4,5,6) \leadsto {\sf type}$$
 $n=7.\ \sigma {\sf again}, \leadsto {\sf type}$

- Problem: same σ in S_n and S_{n+1} , different cycle type.
- Solution: delete the first (=green) column.
- Call the remaining partition,

the modified type of o

• Conjugacy classes of symmetric group $S_n \Leftrightarrow Par_n = \{partitions of n\}$

$$n=6.\ \sigma=(1,3)(2,4,5,6) \leadsto {\sf type}$$
 $n=7.\ \sigma {\sf again}, \leadsto {\sf type}$

- Problem: same σ in S_n and S_{n+1} , different cycle type.
- Solution: delete the first (=green) column.
- Call the remaining partition,

the modified type of σ

• Conjugacy classes of symmetric group $S_n \Leftrightarrow Par_n = \{partitions of n\}$

$$n=6.\ \sigma=(1,3)(2,4,5,6) \leadsto {\sf type}$$
 $n=7.\ \sigma {\sf again}, \leadsto {\sf type}$

- Problem: same σ in S_n and S_{n+1} , different cycle type.
- Solution: delete the first (=green) column.
- Call the remaining partition,

- σ has modified type $\lambda \Rightarrow |\lambda| = \text{length } \ell\ell(\sigma) := \text{minimal length for } \sigma$ as a product of transpositions.
- $\mathcal{C}_{\lambda}(n)$: conjugacy class of S_n of modified type λ (if $|\lambda| + \ell(\lambda) \leq n$)
- $c_{\lambda}(n)$: class sum of the class $\mathcal{C}_{\lambda}(n)$ (if $|\lambda| + \ell(\lambda) \leq n$); otherwise = 0.
- Center of the group algebra, $\mathcal{Z}(\mathbb{Z}S_n)$, has a \mathbb{Z} -basis $\{c_{\lambda}(n) \mid \lambda \in \text{Par}\}\setminus\{0\}$. (Here $\text{Par} = \bigcup_{n} \text{Par}_{n}$.)

- σ has modified type $\lambda \Rightarrow |\lambda| = \text{length } \ell\ell(\sigma) := \text{minimal length for } \sigma$ as a product of transpositions.
- $\mathcal{C}_{\lambda}(n)$: conjugacy class of S_n of modified type λ (if $|\lambda| + \ell(\lambda) \leq n$)
- $c_{\lambda}(n)$: class sum of the class $\mathcal{C}_{\lambda}(n)$ (if $|\lambda| + \ell(\lambda) \leq n$); otherwise = 0.
- Center of the group algebra, $\mathcal{Z}(\mathbb{Z}S_n)$, has a \mathbb{Z} -basis $\{c_{\lambda}(n) \mid \lambda \in \text{Par}\}\setminus\{0\}$. (Here $\text{Par} = \bigcup_{n} \text{Par}_{n}$.)

- σ has modified type $\lambda \Rightarrow |\lambda| = \text{length } \ell\ell(\sigma) := \text{minimal length for } \sigma$ as a product of transpositions.
- $\mathcal{C}_{\lambda}(n)$: conjugacy class of S_n of modified type λ (if $|\lambda| + \ell(\lambda) \leq n$)
- $c_{\lambda}(n)$: class sum of the class $\mathcal{C}_{\lambda}(n)$ (if $|\lambda| + \ell(\lambda) \leq n$); otherwise = 0.
- Center of the group algebra, $\mathcal{Z}(\mathbb{Z}S_n)$, has a \mathbb{Z} -basis $\{c_{\lambda}(n) \mid \lambda \in \text{Par}\}\setminus\{0\}$. (Here $\text{Par} = \cup_n \text{Par}_n$.)

- σ has modified type $\lambda \Rightarrow |\lambda| = \text{length } \ell\ell(\sigma) := \text{minimal length for } \sigma$ as a product of transpositions.
- $\mathcal{C}_{\lambda}(n)$: conjugacy class of S_n of modified type λ (if $|\lambda| + \ell(\lambda) \leq n$)
- $c_{\lambda}(n)$: class sum of the class $\mathcal{C}_{\lambda}(n)$ (if $|\lambda| + \ell(\lambda) \leq n$); otherwise = 0.
- Center of the group algebra, $\mathcal{Z}(\mathbb{Z}S_n)$, has a \mathbb{Z} -basis $\{c_{\lambda}(n) \mid \lambda \in \mathsf{Par}\} \setminus \{0\}$.

(Here Par =
$$\cup_n$$
Par_n.)

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_{\lambda}(n)c_{\mu}(n)=\sum_{
u} rac{g_{\lambda\mu}^{
u}(n)c_{
u}(n), \quad ext{ for } g_{\lambda\mu}^{
u}(n)\in\mathbb{N}.$$

Example

 $c_{(1)}(n) := class \ sum \ of \ transpositions \ (=reflections) \ (i,j) \ in \ S_n.$

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 c_{\emptyset}(n) +?? c_{(1,1)}(n) +??? c_{(2)}(n)$$

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_{\lambda}(n)c_{\mu}(n)=\sum_{
u} rac{g_{\lambda\mu}^{
u}(n)c_{
u}(n), \quad ext{ for } g_{\lambda\mu}^{
u}(n)\in\mathbb{N}.$$

Example

 $c_{(1)}(n) := class sum of transpositions (=reflections) (i, j) in S_n$.

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 c_{\emptyset}(n) +?? c_{(1,1)}(n) +??? c_{(2)}(n)$$

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_{\lambda}(n)c_{\mu}(n)=\sum_{
u} rac{g_{\lambda\mu}^{
u}(n)c_{
u}(n), \quad ext{ for } g_{\lambda\mu}^{
u}(n)\in\mathbb{N}.$$

Example

 $c_{(1)}(n) := class sum of transpositions (=reflections) (i, j) in S_n$.

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 c_{\emptyset}(n) +?? c_{(1,1)}(n) +??? c_{(2)}(n)$$

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_{\lambda}(n)c_{\mu}(n)=\sum_{
u} rac{g_{\lambda\mu}^{
u}(n)c_{
u}(n), \quad ext{ for } g_{\lambda\mu}^{
u}(n)\in\mathbb{N}.$$

Example

 $c_{(1)}(n) := class sum of transpositions (=reflections) (i, j) in S_n$.

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 c_{\emptyset}(n) +?? c_{(1,1)}(n) +??? c_{(2)}(n)$$

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_{\lambda}(n)c_{\mu}(n)=\sum_{
u} rac{g_{\lambda\mu}^{
u}(n)c_{
u}(n), \quad ext{ for } g_{\lambda\mu}^{
u}(n)\in\mathbb{N}.$$

Example

 $c_{(1)}(n) := class sum of transpositions (=reflections) (i, j) in S_n$.

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 c_{\emptyset}(n) +?? c_{(1,1)}(n) +??? c_{(2)}(n)$$

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_{\lambda}(n)c_{\mu}(n)=\sum_{\nu} rac{g_{\lambda\mu}^{
u}(n)c_{
u}(n), \quad ext{ for } g_{\lambda\mu}^{
u}(n)\in\mathbb{N}.$$

Example

 $c_{(1)}(n) := class sum of transpositions (=reflections) (i, j) in <math>S_n$.

$$c_{(1)}(n) c_{(1)}(n) = n(n-1)/2 c_{\emptyset}(n) +?? c_{(1,1)}(n) +??? c_{(2)}(n)$$

Stability for symmetric groups

An example of structure constants

Write the multiplication in the center $\mathcal{Z}(\mathbb{Z}S_n)$ as

$$c_{\lambda}(n)c_{\mu}(n)=\sum_{\nu} rac{g_{\lambda\mu}^{
u}(n)c_{
u}(n), \quad ext{ for } g_{\lambda\mu}^{
u}(n)\in\mathbb{N}.$$

Example

 $c_{(1)}(n) := class sum of transpositions (=reflections) (i, j) in <math>S_n$.

$$c_{(1)}(n) \ c_{(1)}(n) = n(n-1)/2 \ c_{\emptyset}(n) +?? \ c_{(1,1)}(n) +??? \ c_{(2)}(n)$$

- (0) $g_{\lambda\mu}^{\nu}(n)$ is polynomial in n
- (1) $g_{\lambda\mu}^{\nu}(n) = 0$ unless $|\nu| \leq |\lambda| + |\mu|$
- (2) If $|\nu| = |\lambda| + |\mu|$, then $g_{\lambda\mu}^{\nu}(n) = g_{\lambda\mu}^{\nu}$ is independent of n
- Application: modular representation theory of S_n
- Connections: Jucys-Murphy elements

- (0) $g_{\lambda\mu}^{\nu}(n)$ is polynomial in n
- (1) $g_{\lambda\mu}^{\nu}(n) = 0$ unless $|\nu| \leq |\lambda| + |\mu|$
- (2) If $|\nu|=|\lambda|+|\mu|$, then $g_{\lambda\mu}^{\nu}(n)=g_{\lambda\mu}^{\nu}$ is independent of n
- Application: modular representation theory of S_n
- Connections: Jucys-Murphy elements

- (0) $g_{\lambda\mu}^{\nu}(n)$ is polynomial in n
- (1) $g_{\lambda\mu}^{\nu}(n) = 0$ unless $|\nu| \leq |\lambda| + |\mu|$
- (2) If $|\nu| = |\lambda| + |\mu|$, then $g_{\lambda\mu}^{\nu}(n) = g_{\lambda\mu}^{\nu}$ is independent of n
- Application: modular representation theory of S_n
- Connections: Jucys-Murphy elements

- (0) $g_{\lambda\mu}^{\nu}(n)$ is polynomial in n
- (1) $g_{\lambda\mu}^{\nu}(n) = 0$ unless $|\nu| \leq |\lambda| + |\mu|$
- (2) If $|\nu| = |\lambda| + |\mu|$, then $g_{\lambda\mu}^{\nu}(n) = g_{\lambda\mu}^{\nu}$ is independent of n
- Application: modular representation theory of S_n
- Connections: Jucys-Murphy elements

- (0) $g_{\lambda\mu}^{\nu}(n)$ is polynomial in n
- (1) $g_{\lambda\mu}^{\nu}(n) = 0$ unless $|\nu| \leq |\lambda| + |\mu|$
- (2) If $|\nu| = |\lambda| + |\mu|$, then $g_{\lambda\mu}^{\nu}(n) = g_{\lambda\mu}^{\nu}$ is independent of n
- Application: modular representation theory of S_n
- Connections: Jucys-Murphy elements

• S_n and the center $\mathcal{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

- ① The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n) = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu}c_{\nu}(n)$
- ② \exists a stable center " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})$ " with basis $\{c_{\lambda} \mid \lambda \in Par\}$ and $c_{\lambda}c_{\mu} = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^{\nu}c_{\nu}$
- ③ \exists an epi " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})$ " $\longrightarrow \mathcal{Z}^{gr}(\mathbb{Z}S_n), c_{\lambda} \mapsto c_{\lambda}(n)$.

- 1 The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})"$ is a polynomial algebra in c_{∞} , r > 1 and $"\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \cong \Lambda$
- ② $\mathbb{Z}^{gr,*}(\mathbb{Z}S_n)\cong H^{2*}(Hilb^n(\mathbb{C}^2),\mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, -Vasaerot] \longrightarrow 3 \longrightarrow 3 \bigcirc 3 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 6 \bigcirc 7 \bigcirc 7 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 9 \bigcirc 8 \bigcirc 9 \bigcirc 9

• S_n and the center $\mathcal{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

- ① The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n) = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu}c_{\nu}(n)$
- ② \exists a stable center " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})$ " with basis $\{c_{\lambda} \mid \lambda \in Par\}$ and $c_{\lambda}c_{\mu} = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu}c_{\nu}$
- ③ \exists an epi " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})$ " $\longrightarrow \mathcal{Z}^{gr}(\mathbb{Z}S_n), c_{\lambda} \mapsto c_{\lambda}(n)$.

- 1 The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})"$ is a polynomial algebra in c_{∞} , r > 1 and $"\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \cong \Lambda$
- ② $\mathbb{Z}^{gr,*}(\mathbb{Z}S_n)\cong H^{2*}(Hilb^n(\mathbb{C}^2),\mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, -Vasaerot] \longrightarrow 3 \longrightarrow 3 \bigcirc 3 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 6 \bigcirc 7 \bigcirc 7 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 9 \bigcirc 9

• S_n and the center $\mathcal{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

- The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n)=\sum_{|
 u|=|\lambda|+|\mu|}g_{\lambda\mu}^{
 u}c_{
 u}(n)$

- 1 The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})"$ is a polynomial
- $\mathbb{Z}^{gr,*}(\mathbb{Z}S_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2),\mathbb{Z}),$ cohomology ring of Hilbert scheme of n points on C2 [Lehn-Sorger, Vasaeroff + + 1 > 2 > 2 > 2

• S_n and the center $\mathcal{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

- The associated graded $\mathcal{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n) = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu}c_{\nu}(n)$
- ② \exists a stable center " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})$ " with basis $\{c_{\lambda} \mid \lambda \in Par\}$ and $c_{\lambda}c_{\mu} = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^{\nu}c_{\nu}$
- $@\exists an \ epi \ ``\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \longrightarrow \mathcal{Z}^{gr}(\mathbb{Z}S_n), c_{\lambda} \mapsto c_{\lambda}(n).$

- The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})"$ is a polynomial algebra in $c_{(r)}, r \geq 1$ and " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \cong \Lambda$.
- ② $\mathcal{Z}^{gr,*}(\mathbb{Z}S_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2),\mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Wasseroll + 1 > 2 > 2 <

• S_n and the center $\mathcal{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

- The associated graded $\mathcal{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n) = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu}c_{\nu}(n)$
- ② \exists a stable center " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})$ " with basis $\{c_{\lambda} \mid \lambda \in Par\}$ and $c_{\lambda}c_{\mu} = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^{\nu}c_{\nu}$
- $lackbox{0} \ \exists \ an \ epi \ ``\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \longrightarrow \mathcal{Z}^{gr}(\mathbb{Z}S_n), c_{\lambda} \mapsto c_{\lambda}(n).$

- The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})"$ is a polynomial algebra in $c_{(r)}, r \geq 1$ and " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \cong \Lambda$.
- ② $\mathbb{Z}^{gr,*}(\mathbb{Z}S_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2),\mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Wasserott \mathbb{Z}^2 2000]

• S_n and the center $\mathcal{Z}(\mathbb{Z}S_n)$ admits a filtration by $\ell\ell(\sigma)$ (minimal length for σ as a product of transpositions), $\forall \sigma \in S_n$.

Theorem (Farahat-Higman reformulated)

- The associated graded $\mathcal{Z}^{gr}(\mathbb{Z}S_n)$ has structure constants independent of n: $c_{\lambda}(n)c_{\mu}(n) = \sum_{|\nu|=|\lambda|+|\mu|} g^{\nu}_{\lambda\mu}c_{\nu}(n)$
- ② \exists a stable center " $\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})$ " with basis $\{c_{\lambda} \mid \lambda \in Par\}$ and $c_{\lambda}c_{\mu} = \sum_{|\nu|=|\lambda|+|\mu|} g_{\lambda\mu}^{\nu}c_{\nu}$
- $lackbox{0} \ \exists \ an \ epi \ ``\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \longrightarrow \mathcal{Z}^{gr}(\mathbb{Z}S_n), c_{\lambda} \mapsto c_{\lambda}(n).$

- The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} "\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})"$ is a polynomial algebra in $c_{(r)}, r \geq 1$ and $"\mathcal{Z}^{gr}(\mathbb{Z}S_{\infty})" \cong \Lambda$.
- ② $\mathcal{Z}^{gr,*}(\mathbb{Z}S_n)\cong H^{2*}(Hilb^n(\mathbb{C}^2),\mathbb{Z})$, cohomology ring of Hilbert scheme of n points on \mathbb{C}^2 [Lehn-Sorger, Vasserot]

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ a wreath product
- [Wang'04]. Generalization of Farahat-Higman stability to Γ_n .
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
- (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang'04]
- (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang'04]
- [Francis-Wang'09]. Analogous stability for Hecke algebra associated to S_n .

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ a wreath product
- [Wang'04]. Generalization of Farahat-Higman stability to Γ_n .
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
- (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang'04]
- (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang'04]
- [Francis-Wang'09]. Analogous stability for Hecke algebra associated to S_n

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ a wreath product
- [Wang'04]. Generalization of Farahat-Higman stability to Γ_n .
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
- (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang'04]
- (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang'04]
- [Francis-Wang'09]. Analogous stability for Hecke algebra associated to S_n

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ a wreath product
- [Wang'04]. Generalization of Farahat-Higman stability to Γ_n .
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathcal{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
- (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang'04]
- (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang'04]
- [Francis-Wang'09]. Analogous stability for Hecke algebra associated to S_n

Stability for symmetric groups

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ a wreath product
- [Wang'04]. Generalization of Farahat-Higman stability to Γ_n .
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathcal{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
- (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang'04]
- (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang'04]
- [Francis-Wang'09]. Analogous stability for Hecke algebra associated to S_n

Stability for symmetric groups

- Γ: a finite group
- $\Gamma_n := \Gamma^n \rtimes S_n$ a wreath product
- [Wang'04]. Generalization of Farahat-Higman stability to Γ_n .
- Let $\Gamma \leq SL_2(\mathbb{C})$. $\mathbb{Z}^{gr,*}(\mathbb{Z}\Gamma_n) \cong H^{2*}(Hilb^n(\mathbb{C}^2//\Gamma))$, cohomology ring of Hilbert scheme of n points on the surfaces $\mathbb{C}^2//\Gamma$
- Analogous stability for
- (i) cohomology ring of Hilbert scheme of n points of more general surfaces [Li-Qin-Wang'04]
- (ii) Chen-Ruan orbifold cohomology of symmetric products [Qin-Wang'04]
- [Francis-Wang'09]. Analogous stability for Hecke algebra associated to S_n .

Reflection filtration on $GL_n(q)$

- $G_n := GL_n(q) = \{g \in \operatorname{Mat}_n(\mathbb{F}_q) \text{ invertible}\}\$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n : $g \in G_n$ such that codim $V^g = 1$.

(i) diag
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \end{pmatrix}$$
, or conjugates – (unipotent)

(ii)
$$egin{array}{c|c} \xi & 0 \ 0 & T_{n-1} \end{array}$$
 with $\xi \in \mathbb{F}_q \setminus \{0,1\}$, or conjugates – (semisimple)

• Fact. G_n is generated by reflections.

Proof. Gaussian elimination (Linear Algebra)

• Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n . This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$

- $G_n := GL_n(q) = \{g \in \mathsf{Mat}_n(\mathbb{F}_q) \text{ invertible}\}\ \text{acts on } V = \mathbb{F}_q^n.$
- Reflections on G_n : $g \in G_n$ such that codim $V^g = 1$.

(i) diag
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \end{pmatrix}$$
, or conjugates – (unipotent)

(ii)
$$egin{bmatrix} \xi & 0 \ 0 & T_{n-1} \end{bmatrix}$$
 with $\xi \in \mathbb{F}_q \setminus \{0,1\}$, or conjugates – (semisimple)

- Fact. G_n is generated by reflections.
 - Proof. Gaussian elimination (Linear Algebra)
- Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n . This induces a filtration on the center of the group algebra $\mathcal{Z}_n(g) := \mathcal{Z}(\mathbb{Z}GL_n(g))$

- $G_n := GL_n(q) = \{g \in \mathsf{Mat}_n(\mathbb{F}_q) \text{ invertible}\}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n : $g \in G_n$ such that codim $V^g = 1$.

(i) diag
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \end{pmatrix}$$
, or conjugates – (unipotent)

(ii)
$$\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$$
 with $\xi \in \mathbb{F}_q \setminus \{0, 1\}$, or conjugates – (semisimple)

• Fact. G_n is generated by reflections.

Proof. Gaussian elimination (Linear Algebra)

• Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$

- $G_n := GL_n(q) = \{g \in \mathsf{Mat}_n(\mathbb{F}_q) \text{ invertible}\}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n : $g \in G_n$ such that codim $V^g = 1$.

(i) diag
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \end{pmatrix}$$
, or conjugates – (unipotent)

(ii)
$$\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$$
 with $\xi \in \mathbb{F}_q \setminus \{0,1\}$, or conjugates – (semisimple)

• Fact. *G_n* is generated by reflections.

Proof. Gaussian elimination (Linear Algebra)

• Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$

- $G_n := GL_n(q) = \{g \in \mathsf{Mat}_n(\mathbb{F}_q) \text{ invertible}\}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n : $g \in G_n$ such that codim $V^g = 1$.

(i) diag
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \end{pmatrix}$$
, or conjugates – (unipotent)

(ii)
$$\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$$
 with $\xi \in \mathbb{F}_q \setminus \{0,1\}$, or conjugates – (semisimple)

• Fact. *G_n* is generated by reflections.

Proof. Gaussian elimination (Linear Algebra)

• Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$

- $G_n := GL_n(q) = \{g \in \mathsf{Mat}_n(\mathbb{F}_q) \text{ invertible}\}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n : $g \in G_n$ such that codim $V^g = 1$.

(i) diag
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \end{pmatrix}$$
, or conjugates – (unipotent)

(ii)
$$\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$$
 with $\xi \in \mathbb{F}_q \setminus \{0,1\}$, or conjugates – (semisimple)

- Fact. G_n is generated by reflections.
 - Proof. Gaussian elimination (Linear Algebra)
- Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n

This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$

- $G_n := GL_n(q) = \{g \in \mathsf{Mat}_n(\mathbb{F}_q) \text{ invertible}\}$ acts on $V = \mathbb{F}_q^n$.
- Reflections on G_n : $g \in G_n$ such that codim $V^g = 1$.

(i) diag
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, I_{n-2} \end{pmatrix}$$
, or conjugates – (unipotent)

(ii)
$$\begin{bmatrix} \xi & 0 \\ 0 & T_{n-1} \end{bmatrix}$$
 with $\xi \in \mathbb{F}_q \setminus \{0,1\}$, or conjugates – (semisimple)

- Fact. *G_n* is generated by reflections.
 - Proof. Gaussian elimination (Linear Algebra)
- Assigning $\ell\ell(g)$ = minimal length of $g \in G_n$ as products of reflections defines a filtered ring structure on G_n . This induces a filtration on the center of the group algebra $\mathcal{Z}_n(q) := \mathcal{Z}(\mathbb{Z}GL_n(q))$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- ullet $g\in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g=\mathbb{F}_q^n, \quad t\cdot v=gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- ullet $g\in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g=\mathbb{F}_q^n, \quad t\cdot v=gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = \|\lambda\| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- ullet $g\in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g=\mathbb{F}_q^n, \quad t\cdot v=gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- ullet $g\in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g=\mathbb{F}_q^n, \quad t\cdot v=gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- ullet $g\in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g=\mathbb{F}_q^n, \quad t\cdot v=gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = \|\lambda\| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- ullet $g\in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g=\mathbb{F}_q^n, \quad t\cdot v=gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = \|\lambda\| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- $ullet g \in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g = \mathbb{F}_q^n$, $t \cdot v = gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- $\Phi = \{\text{irreducible monic polynomials in } \mathbb{F}_q[t]\} \setminus \{t\}$
- $ullet g \in G_n$ gives a $\mathbb{F}_q[t]$ -module on $V_g = \mathbb{F}_q^n$, $t \cdot v = gv$
- $\mathbb{F}_q[t]$ is PID $\Rightarrow V_g \cong \oplus \mathbb{F}_q[t]/(f)^m$, for suitable $f \in \Phi, m \geq 1$.
- Then $V_g \cong V_{\lambda} = \bigoplus_{f \in \Phi, i} \mathbb{F}_q[t]/(f)^{\lambda_i(f)}$, for a multi-partition $\lambda = (\lambda(f))_{f \in \Phi}$, with $\lambda(f) = (\lambda_1(f), \lambda_2(f), \ldots)$ such that $n = ||\lambda|| := \sum_f |\lambda(f)|$; λ is the type of g
- Basic fact. Conjugacy classes of $G_n \Leftrightarrow \{\lambda \mid ||\lambda|| = n\}$
- For $f = t^d \sum_{i=1}^d a_i t^{i-1} \in \Phi$,

$$J(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(f) = \begin{bmatrix} J(f) & I_d & 0 & \cdots & 0 & 0 \\ 0 & J(f) & I_d & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & J(f) & I_d \\ 0 & 0 & 0 & \cdots & 0 & J(f) \end{bmatrix}$$

- Let $g \in G_n$ be of type λ . Define modified type $\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi}$:
- (i) $\tilde{\lambda}(f) = \lambda(f)$, for $f \neq t-1$
- (ii) $\tilde{\lambda}(t-1) = \text{``}\lambda(t-1)$ with 1st column removed'' (as for S_n)
- Fact. $\ell\ell(g) = \|\mu\|$, for g of modified type μ

Example

$$J_f = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_d \end{bmatrix}, \quad J_m(t-1) = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Let $g \in G_n$ be of type λ . Define modified type $\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi}$:
- (i) $\tilde{\lambda}(f) = \lambda(f)$, for $f \neq t-1$
- (ii) $\tilde{\lambda}(t-1) = \text{``}\lambda(t-1)$ with 1st column removed'' (as for S_n)
- Fact. $\ell\ell(g) = \|\mu\|$, for g of modified type μ

Example

$$J_{f} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_{1} & a_{2} & a_{3} & \cdots & a_{d} \end{bmatrix}, \quad J_{m}(t-1) = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Let $g \in G_n$ be of type λ . Define modified type $\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi}$:
- (i) $\tilde{\lambda}(f) = \lambda(f)$, for $f \neq t-1$
- (ii) $\tilde{\lambda}(t-1) = \text{``}\lambda(t-1)$ with 1st column removed'' (as for S_n)
- Fact. $\ell\ell(g) = \|\mu\|$, for g of modified type μ

Example

$$J_{f} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_{1} & a_{2} & a_{3} & \cdots & a_{d} \end{bmatrix}, \quad J_{m}(t-1) = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Let $g \in G_n$ be of type λ . Define modified type $\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi}$:
- (i) $\tilde{\lambda}(f) = \lambda(f)$, for $f \neq t-1$
- (ii) $\tilde{\lambda}(t-1) = \text{``}\lambda(t-1)$ with 1st column removed'' (as for S_n)
- Fact. $\ell\ell(g) = \|\mu\|$, for g of modified type μ

Example

$$J_{f} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_{1} & a_{2} & a_{3} & \cdots & a_{d} \end{bmatrix}, \quad J_{m}(t-1) = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Let $g \in G_n$ be of type λ . Define modified type $\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi}$:
- (i) $\tilde{\lambda}(f) = \lambda(f)$, for $f \neq t-1$
- (ii) $\tilde{\lambda}(t-1) = \text{``}\lambda(t-1)$ with 1st column removed'' (as for S_n)
- Fact. $\ell\ell(g) = \|\mu\|$, for g of modified type μ

Example

$$J_{f} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_{1} & a_{2} & a_{3} & \cdots & a_{d} \end{bmatrix}, \qquad J_{m}(t-1) = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Let $g \in G_n$ be of type λ . Define modified type $\tilde{\lambda} = (\tilde{\lambda}(f))_{f \in \Phi}$:
- (i) $\tilde{\lambda}(f) = \lambda(f)$, for $f \neq t-1$
- (ii) $\tilde{\lambda}(t-1) = \text{``}\lambda(t-1)$ with 1st column removed'' (as for S_n)
- Fact. $\ell\ell(g) = \|\mu\|$, for g of modified type μ

Example

$$J_{f} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_{1} & a_{2} & a_{3} & \cdots & a_{d} \end{bmatrix}, \qquad J_{m}(t-1) = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Modified type, II

- [Huang-Lewis-Reiner '17]
- (i) $\ell\ell(g) = \operatorname{codim} V^g$
- (ii) Let λ, μ, ν be the modified types of g, h, gh. If $\|\lambda\| + \|\mu\| = \|\nu\|$, then $V^g \cap V^h = V^{gh}$ and $V = V^g + V^h$

Modified type, II

- [Huang-Lewis-Reiner '17]
- (i) $\ell\ell(g) = \operatorname{codim} V^g$
- (ii) Let λ, μ, ν be the modified types of g, h, gh. If $\|\lambda\| + \|\mu\| = \|\nu\|$, then $V^g \cap V^h = V^{gh}$ and $V = V^g + V^h$

- $K_{\lambda}(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \le n$); otherwise = 0.
- The multiplication in the center is $K_{\lambda}(n)K_{\mu}(n) = \sum_{\nu} a_{\lambda\mu}^{\nu}(n)K_{\nu}(n)$, for $a_{\lambda\mu}^{\nu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang'18)

- (1) $a_{\lambda\mu}^{
 u}(n) = 0$ unless $\|
 u\| \le \|\lambda\| + \|\mu\|$
- (2) If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a_{\lambda\mu}^{\nu}(n) = a_{\lambda\mu}^{\nu}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

- $K_{\lambda}(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \le n$); otherwise = 0.
- The multiplication in the center is $K_{\lambda}(n)K_{\mu}(n) = \sum_{\nu} a_{\lambda\mu}^{\nu}(n)K_{\nu}(n)$, for $a_{\lambda\mu}^{\nu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang'18)

- (1) $a_{\lambda\mu}^{\nu}(n)=0$ unless $\|\nu\|\leq \|\lambda\|+\|\mu\|$
- (2) If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a_{\lambda\mu}^{\nu}(n) = a_{\lambda\mu}^{\nu}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

- $K_{\lambda}(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \le n$); otherwise = 0.
- The multiplication in the center is $K_{\lambda}(n)K_{\mu}(n) = \sum_{\nu} a_{\lambda\mu}^{\nu}(n)K_{\nu}(n)$, for $a_{\lambda\mu}^{\nu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang'18)

- (1) $a_{oldsymbol{\lambda}oldsymbol{\mu}}^{
 u}(n)=0$ unless $\|oldsymbol{
 u}\|\leq \|oldsymbol{\lambda}\|+\|oldsymbol{\mu}\|$
- (2) If $\|
 u\|=\|\lambda\|+\|\mu\|$, then $a_{\lambda\mu}^{
 u}(\mathsf{n})=a_{\lambda\mu}^{
 u}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

Stability for $GL_n(q)$

Stable structure constants

- $K_{\lambda}(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \le n$); otherwise = 0.
- The multiplication in the center is $K_{\lambda}(n)K_{\mu}(n) = \sum_{\nu} a_{\lambda\mu}^{\nu}(n)K_{\nu}(n)$, for $a_{\lambda\mu}^{\nu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang'18)

- (1) $a_{oldsymbol{\lambda}oldsymbol{\mu}}^{
 u}(n)=0$ unless $\|oldsymbol{
 u}\|\leq \|oldsymbol{\lambda}\|+\|oldsymbol{\mu}\|$
- (2) If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a_{\lambda\mu}^{\nu}(n) = a_{\lambda\mu}^{\nu}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

Stability for $GL_n(q)$

Stable structure constants

- $K_{\lambda}(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \le n$); otherwise = 0.
- The multiplication in the center is $K_{\lambda}(n)K_{\mu}(n) = \sum_{\nu} a_{\lambda\mu}^{\nu}(n)K_{\nu}(n)$, for $a_{\lambda\mu}^{\nu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang'18)

- (1) $a_{oldsymbol{\lambda}oldsymbol{\mu}}^{
 u}(n)=0$ unless $\|oldsymbol{
 u}\|\leq \|oldsymbol{\lambda}\|+\|oldsymbol{\mu}\|$
- (2) If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a_{\lambda\mu}^{\nu}(n) = a_{\lambda\mu}^{\nu}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

- $K_{\lambda}(n)$: class sum of elements in $GL_n(q)$ of modified type λ (if $\|\lambda\| + \ell(\lambda(t-1)) \le n$); otherwise = 0.
- The multiplication in the center is $K_{\lambda}(n)K_{\mu}(n) = \sum_{\nu} a_{\lambda\mu}^{\nu}(n)K_{\nu}(n)$, for $a_{\lambda\mu}^{\nu}(n) \in \mathbb{N}$.

Theorem 1 (W-Wang'18)

- (1) $a_{oldsymbol{\lambda}oldsymbol{\mu}}^{
 u}(n)=0$ unless $\|oldsymbol{
 u}\|\leq \|oldsymbol{\lambda}\|+\|oldsymbol{\mu}\|$
- (2) If $\|\nu\| = \|\lambda\| + \|\mu\|$, then $a_{\lambda\mu}^{\nu}(n) = a_{\lambda\mu}^{\nu}$ is independent of n

Proof uses a [remarkable] normal form for triples (g, h, gh) of modified type λ, μ, ν with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Remark

A stable ring

- $\mathcal{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell\ell(K_{\lambda}(n)) = \|\lambda\|$.
- ② The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

$$K_{\lambda}(n)K_{\mu}(n) = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a_{\lambda\mu}^{\nu} K_{\nu}(n).$$

- ③ \exists a stable center $\mathfrak{G}(q) := "\mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))"$ with basis $\{K_{\lambda} \mid \lambda \in Par(\Phi)\}$ and $K_{\lambda}K_{\mu} = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a_{\lambda\mu}^{\nu}K_{\nu}$.

Stability for $GL_n(q)$

A stable ring

- **①** $\mathcal{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell\ell(K_{\lambda}(n)) = \|\lambda\|$.
- ② The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

$$K_{\lambda}(n)K_{\mu}(n) = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a^{\nu}_{\lambda\mu}K_{\nu}(n).$$

- ③ \exists a stable center $\mathfrak{G}(q) := "\mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))"$ with basis $\{K_{\lambda} \mid \lambda \in Par(\Phi)\}$ and $K_{\lambda}K_{\mu} = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a_{\lambda\mu}^{\nu}K_{\nu}$.
- \bigcirc \exists an epi $\Im(q) \longrightarrow \mathcal{Z}^{gr}(\mathbb{Z}GL_n(q)), \ K_{\lambda} \mapsto K_{\lambda}(n).$

Stability for $GL_n(q)$

A stable ring

- $\mathcal{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell\ell(K_{\lambda}(n)) = \|\lambda\|$.
- ② The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

$$K_{\lambda}(n)K_{\mu}(n) = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a_{\lambda\mu}^{\nu} K_{\nu}(n).$$

- ③ ∃ a stable center $\mathfrak{G}(q) := "\mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))"$ with basis $\{K_{\lambda} \mid \lambda \in Par(\Phi)\}$ and $K_{\lambda}K_{\mu} = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a_{\lambda\mu}^{\nu}K_{\nu}$.
- ⓐ \exists an epi $\mathfrak{G}(q)$ → $\mathcal{Z}^{gr}(\mathbb{Z}GL_n(q))$, $K_{\lambda} \mapsto K_{\lambda}(n)$.

A stable ring

- **①** $\mathcal{Z}(\mathbb{Z}GL_n(q))$ is a filtered ring with $\ell\ell(K_{\lambda}(n)) = \|\lambda\|$.
- ② The associated graded $\mathbb{Z}^{gr}(\mathbb{Z}GL_n(q))$ has structure constants independent of n:

$$K_{\lambda}(n)K_{\mu}(n) = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a_{\lambda\mu}^{\nu} K_{\nu}(n).$$

- ③ ∃ a stable center $\mathfrak{G}(q) := "\mathcal{Z}^{gr}(\mathbb{Z}GL_{\infty}(q))"$ with basis $\{K_{\lambda} \mid \lambda \in Par(\Phi)\}$ and $K_{\lambda}K_{\mu} = \sum_{\|\nu\| = \|\lambda\| + \|\mu\|} a_{\lambda\mu}^{\nu}K_{\nu}$.
- **③** ∃ an epi $\mathfrak{G}(q) \longrightarrow \mathcal{Z}^{gr}(\mathbb{Z}GL_n(q)), \ K_{\lambda} \mapsto K_{\lambda}(n).$

Examples of stable structure constants $a_{\lambda\mu}^{\nu}$

Example

1 Computed $a_{\lambda\mu}^{
u}$ completely when $\|\lambda\| = \|\mu\| = 1$, e.g.,

$$a_{(1)_{t-\xi}(1)_{t-\eta}}^{(2)_{t-\xi'}} = q \text{ if } \xi' \notin \{\xi, \eta\};$$

 $a_{(1)_{t-\xi}(1)_{t-\xi}}^{(1,1)_{t-\xi}} = q^2 + q$

②
$$q = 3$$
, $x = y = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $h = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $\Rightarrow [[x]][[y]] = 3[[h]] + ...$
Let $x' = diag(x, 1), y' = diag(y, 1), h = diag(h, 1)$
 $\Rightarrow [[x']][[y']] = 3[[h']] + ...$

Examples of stable structure constants $a_{\lambda\mu}^{\nu}$

Example

1 Computed $a_{\lambda\mu}^{\nu}$ completely when $\|\lambda\| = \|\mu\| = 1$, e.g.,

$$a_{(1)_{t-\xi}(1)_{t-\eta}}^{(2)_{t-\xi'}} = q \text{ if } \xi' \notin \{\xi, \eta\};$$

 $a_{(1)_{t-\xi}(1)_{t-\xi}}^{(1,1)_{t-\xi}} = q^2 + q$

2
$$q = 3$$
, $x = y = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $h = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $\Rightarrow [[x]][[y]] = 3[[h]] + ...$
Let $x' = diag(x, 1), y' = diag(y, 1), h = diag(h, 1)$
 $\Rightarrow [[x']][[y']] = 3[[h']] + ...$

Example, II

Example

Let
$$\lambda = (1)_{t-\xi_1}, \mu = (1)_{t-\xi_2} \cup \cdots \cup (1)_{t-\xi_d}$$
 with distinct ξ_i . Then

$$a_{\lambda\mu}^{\lambda\cup\mu}=(2q-1)^{d-1}.$$

• Recall 2 types of reflections: semisimple or unipotent. The structure constants in Examples above ignore such differences.

Example, II

Example

Let
$$\lambda = (1)_{t-\xi_1}, \mu = (1)_{t-\xi_2} \cup \cdots \cup (1)_{t-\xi_d}$$
 with distinct ξ_i . Then

$$a_{\lambda\mu}^{\lambda\cup\mu}=(2q-1)^{d-1}.$$

• Recall 2 types of reflections: semisimple or unipotent. The structure constants in Examples above ignore such differences.

Conjecture I: a polynomial ring

Computations have suggested general patterns. We shall present several conjectures and open problems.

Conjecture

The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} \mathscr{G}(q)$ is a polynomial algebra generated by the single cycle class sums $K_{(r)_t}$, for all $r \geq 1$ and $f \in \Phi$.

(Analogous statements hold for S_n and wreath products.)

Conjecture I: a polynomial ring

Computations have suggested general patterns. We shall present several conjectures and open problems.

Conjecture I

The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} \mathscr{G}(q)$ is a polynomial algebra generated by the single cycle class sums $K_{(r)_f}$, for all $r \geq 1$ and $f \in \Phi$.

(Analogous statements hold for S_n and wreath products.)

Conjecture I: a polynomial ring

Computations have suggested general patterns. We shall present several conjectures and open problems.

Conjecture I

The stable center $\mathbb{Q} \otimes_{\mathbb{Z}} \mathscr{G}(q)$ is a polynomial algebra generated by the single cycle class sums $K_{(r)_f}$, for all $r \geq 1$ and $f \in \Phi$.

(Analogous statements hold for S_n and wreath products.)

- $\forall \lambda \in Par(\Phi)$, define its support $\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \}$
- Let $\{\lambda, \mu, \nu\}$, $\{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume \exists a degree-preserving bijection $\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \stackrel{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}, \text{ s.t.}$ $\lambda(f) = \tilde{\lambda}(\tilde{f}), \mu(f) = \tilde{\mu}(\tilde{f}), \nu(f) = \tilde{\nu}(\tilde{f}), \forall f.$ (Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants $a_{\lambda\mu}^{\nu}$ only depend on the configurations of $\{\lambda,\mu,\nu\}$, i.e., $a_{\lambda\mu}^{\nu}=a_{\tilde{\lambda}\tilde{\mu}}^{\tilde{\nu}}$.

- $\forall \lambda \in Par(\Phi)$, define its support $\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \}$
- Let $\{\lambda, \mu, \nu\}, \{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume \exists a degree-preserving bijection $\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \stackrel{\text{1:1}}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}$, s.t. $\lambda(f) = \tilde{\lambda}(\tilde{f}), \mu(f) = \tilde{\mu}(\tilde{f}), \nu(f) = \tilde{\nu}(\tilde{f}), \forall f$. (Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants $a_{\lambda\mu}^{\nu}$ only depend on the configurations of $\{\lambda,\mu,\nu\}$, i.e., $a_{\lambda\mu}^{\nu}=a_{\tilde{\lambda}\tilde{\mu}}^{\tilde{\nu}}$.

- $\forall \lambda \in Par(\Phi)$, define its support $\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \}$
- Let $\{\lambda, \mu, \nu\}, \{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume \exists a degree-preserving bijection

$$\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \stackrel{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}, \text{ s.t.}$$

$$\lambda(f) = \tilde{\lambda}(f), \, \mu(f) = \tilde{\mu}(f), \, \nu(f) = \tilde{\nu}(f), \, \forall f.$$

(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants $a^{\nu}_{\lambda\mu}$ only depend on the configurations of $\{\lambda,\mu,\nu\}$, i.e., $a^{\nu}_{\lambda\mu}=a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}}$.

- $\forall \lambda \in Par(\Phi)$, define its support $\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \}$
- Let $\{\lambda, \mu, \nu\}, \{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume ∃ a degree-preserving bijection

$$\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \stackrel{\text{1:1}}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}, \text{ s.t.}$$

$$\lambda(f) = \tilde{\lambda}(\tilde{f}), \, \mu(f) = \tilde{\mu}(\tilde{f}), \, \nu(f) = \tilde{\nu}(\tilde{f}), \, \forall f.$$

(Say the two triples have same configuration

Conjecture II (Independence of supports

The structure constants $a^{\nu}_{\lambda\mu}$ only depend on the configurations of $\{\lambda,\mu,\nu\}$, i.e., $a^{\nu}_{\lambda\mu}=a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}}$.

- $\forall \lambda \in Par(\Phi)$, define its support $\Phi(\lambda) = \{f \in \Phi \mid \lambda(f) \neq \emptyset\}$
- Let $\{\lambda, \mu, \nu\}, \{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume ∃ a degree-preserving bijection

$$\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \stackrel{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}, \text{ s.t.}$$

$$\lambda(f) = \tilde{\lambda}(\tilde{f}), \, \mu(f) = \tilde{\mu}(\tilde{f}), \, \nu(f) = \tilde{\nu}(\tilde{f}), \, \forall f.$$

(Say the two triples have same configuration)

Conjecture II (Independence of supports

The structure constants $a^{\nu}_{\lambda\mu}$ only depend on the configurations of $\{\lambda,\mu,\nu\}$, i.e., $a^{\nu}_{\lambda\mu}=a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}}$.

- $\forall \lambda \in \mathsf{Par}(\Phi)$, define its support $\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \}$
- Let $\{\lambda, \mu, \nu\}, \{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume ∃ a degree-preserving bijection

$$\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \stackrel{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}, \text{s.t.}$$

$$\lambda(f) = \tilde{\lambda}(\tilde{f}), \, \mu(f) = \tilde{\mu}(\tilde{f}), \, \nu(f) = \tilde{\nu}(\tilde{f}), \, \forall f.$$

(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants $a^{\nu}_{\lambda\mu}$ only depend on the configurations of $\{\lambda,\mu,\nu\}$, i.e., $a^{\nu}_{\lambda\mu}=a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}}$.

- $\forall \lambda \in \mathsf{Par}(\Phi)$, define its support $\Phi(\lambda) = \{ f \in \Phi \mid \lambda(f) \neq \emptyset \}$
- Let $\{\lambda, \mu, \nu\}, \{\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}\}$ with $\|\nu\| = \|\lambda\| + \|\mu\|$.

Assume ∃ a degree-preserving bijection

$$\Phi(\lambda) \cup \Phi(\mu) \cup \Phi(\nu) \stackrel{1:1}{\leftrightarrow} \Phi(\tilde{\lambda}) \cup \Phi(\tilde{\mu}) \cup \Phi(\tilde{\nu}), f \mapsto \tilde{f}, \text{ s.t.}$$

$$\lambda(f) = \tilde{\lambda}(\tilde{f}) \cup (f) \cup (f) \cup (f) = \tilde{\lambda}(\tilde{f}) \cup (f) \cup (f) = \tilde{\lambda}(\tilde{f}) \cup (f) \cup (f) \cup (f) = \tilde{\lambda}(\tilde{f}) \cup (f) \cup (f) \cup (f) = \tilde{\lambda}(\tilde{f}) \cup (f) \cup ($$

$$\lambda(f) = \tilde{\lambda}(\tilde{f}), \, \mu(f) = \tilde{\mu}(\tilde{f}), \, \nu(f) = \tilde{\nu}(\tilde{f}), \, \forall f.$$

(Say the two triples have same configuration)

Conjecture II (Independence of supports)

The structure constants $a^{\nu}_{\lambda\mu}$ only depend on the configurations of $\{\lambda,\mu,\nu\}$, i.e., $a^{\nu}_{\lambda\mu}=a^{\tilde{\nu}}_{\tilde{\lambda}\tilde{\mu}}$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathbb{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{q}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathbb{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{q}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathbb{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{q}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathbb{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{q}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathbb{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(\mathbf{q}), \forall \mathbf{q} \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{\mathbf{q}}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathcal{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{q}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathbb{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{q}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Question. How does $a_{\lambda\mu}^{\nu}$ depend on q?

- Write $\Phi_q = \Phi$ to indicate its dependence on q.
- $\Phi_{\mathbb{Z}}$: set of monic irreducible polynomials in $\mathbb{Z}[t]$ other than t.
- Any polynomial in $\mathbb{Z}[t]$ lies in $\mathbb{F}_q[t]$ by reduction modulo q. $(\forall f(t) \in \Phi_{\mathbb{Z}}, f(t) \in \Phi_q$ for q any power of a large enough prime.)

- (1) Suppose $\lambda, \mu, \nu \in \mathbb{P}(\Phi_{\mathbb{Z}})$. Then $\exists A_{\lambda\mu}^{\nu}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ such that $a_{\lambda\mu}^{\nu} = A_{\lambda\mu}^{\nu}(q), \forall q \text{ with } \Phi_{\mathbb{Z}}(\lambda), \Phi_{\mathbb{Z}}(\mu), \Phi_{\mathbb{Z}}(\nu) \subset \Phi_{q}$.
- (2) (Positivity) Let $B^{\nu}_{\lambda\mu} \in \mathbb{Z}[\mathbf{q}]$ be s.t. $B^{\nu}_{\lambda\mu}(\mathbf{q}) = A^{\nu}_{\lambda\mu}(\mathbf{q}+1)$. Then $B^{\nu}_{\lambda\mu} \in \mathbb{N}[\mathbf{q}]$.

Integrality (beyond stable centers)

- [Méliot'14] \exists polynomials $\tilde{p}^{\nu}_{\lambda\mu}(x)$ with rational coefficients such that $a^{\nu}_{\lambda\mu}(n) = \tilde{p}^{\nu}_{\lambda\mu}(q^n)$
- (Equiv.) \exists a polynomial $\mathfrak{p}_{\lambda\mu}^{\nu}(x)$ with rational coefficients such that $a_{\lambda\mu}^{\nu}(n)=\mathfrak{p}_{\lambda\mu}^{\nu}([n]_q)$. (Use $q^n=(q-1)[n]_q+1$)

Conjecture IV (Integrality)

We have $\mathfrak{p}_{\lambda\mu}^{\nu}(x) \in \mathbb{Z}[x], \ \forall \lambda, \mu, \nu$.

Integrality (beyond stable centers)

- [Méliot'14] \exists polynomials $\tilde{p}^{\nu}_{\lambda\mu}(x)$ with rational coefficients such that $a^{\nu}_{\lambda\mu}(n)=\tilde{p}^{\nu}_{\lambda\mu}(q^n)$
- (Equiv.) \exists a polynomial $\mathfrak{p}_{\lambda\mu}^{\nu}(x)$ with rational coefficients such that $a_{\lambda\mu}^{\nu}(n) = \mathfrak{p}_{\lambda\mu}^{\nu}([n]_q)$. (Use $q^n = (q-1)[n]_q + 1$)

Conjecture IV (Integrality)

We have $\mathfrak{p}_{\lambda\mu}^{\nu}(x) \in \mathbb{Z}[x], \ \forall \lambda, \mu, \nu$

Integrality (beyond stable centers)

- [Méliot'14] \exists polynomials $\tilde{p}^{\nu}_{\lambda\mu}(x)$ with rational coefficients such that $a^{\nu}_{\lambda\mu}(n) = \tilde{p}^{\nu}_{\lambda\mu}(q^n)$
- (Equiv.) \exists a polynomial $\mathfrak{p}_{\lambda\mu}^{\nu}(x)$ with rational coefficients such that $a_{\lambda\mu}^{\nu}(n) = \mathfrak{p}_{\lambda\mu}^{\nu}([n]_q)$. (Use $q^n = (q-1)[n]_q + 1$)

Conjecture IV (Integrality)

We have $\mathfrak{p}_{\lambda\mu}^{\nu}(x) \in \mathbb{Z}[x], \ \forall \lambda, \mu, \nu$.

Integrality (beyond stable centers)

- [Méliot'14] \exists polynomials $\tilde{p}^{\nu}_{\lambda\mu}(x)$ with rational coefficients such that $a^{\nu}_{\lambda\mu}(n)=\tilde{p}^{\nu}_{\lambda\mu}(q^n)$
- (Equiv.) \exists a polynomial $\mathfrak{p}_{\lambda\mu}^{\nu}(x)$ with rational coefficients such that $a_{\lambda\mu}^{\nu}(n) = \mathfrak{p}_{\lambda\mu}^{\nu}([n]_q)$. (Use $q^n = (q-1)[n]_q + 1$)

Conjecture IV (Integrality)

We have $\mathfrak{p}_{\lambda\mu}^{\nu}(x) \in \mathbb{Z}[x], \ \forall \lambda, \mu, \nu$.

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,.....
- You are invited to establish some or all conjectures above!

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,.....
- You are invited to establish some or all conjectures above!

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,.....
- You are invited to establish some or all conjectures above!

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,.....
- You are invited to establish some or all conjectures above!

- Stability of [finite] unitary, orthogonal, symplectic groups
- Stability of the affine groups
- Geometric interpretation,.....
- You are invited to establish some or all conjectures above!

References

[W-Wang'18] Stability of the centers of group algebras of $GL_n(q)$, arxiv:1805.08796

Thank you!