Методы многомерного шкалирования в задачах прогнозирования клинических испытаний

Бородина Кристина Владимировна

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Ермаков М.С. Рецензент: к.ф.-м.н., доцент Алексеева Н.П.

Санкт-Петербург 2015г.

Описание эксперимента. Постановка задачи

В исследовании участвовало 265 больных опийной наркоманией, которых разбили на три группы в зависимости от полученных препаратов:

- PO/PI плацебо орально и плацебо имплант;
- ❷ NO/PI налтрексон орально и плацебо имплант;
- § PO/NI плацебо орально и имплант налтрексона.

Что нам известно о пациентах:

- пол;
- возраст;
- продолжительность лечения (в неделях);
- генотип.

Исследовательская задача

Всестороннее статистическое исследование влияния указанных факторов на эффективность лечения героиновой зависимости.

План исследования

- Критерий согласия хи-квадрат для изучения зависимости от генов и их комбинаций второго ранга.
- Логистическая регрессия для изучения зависимости от пола, возраста и типа терапии.
- Решение задачи классификации:
 - методом многомерного шкалирования;
 - методом главных компонент.
- Исследование влияния новых признаков на эффективность лечения в двумерном пространстве:
 - двухфакторным дисперсионным анализом для изучения зависимости новых признаков от типа терапии и исхода программы;
 - GEE/GLM подходом для изучения зависимости новых признаков от возраста, пола и времени лечения.
- Симптомный анализ для изучения зависимости от различных комбинаций генов.

Критерий согласия хи-квадрат

Используется для выявления связи между категориальными переменными.

Нулевая гипотеза: ξ и η — независимы.

Статистика критерия:

$$t = \sum_{i=1}^{k} \sum_{j=1}^{s} \frac{(n_{ij} - \frac{n_{i} \cdot n_{\cdot j}}{n})^{2}}{\frac{n_{i} \cdot n_{\cdot j}}{n}},$$

- n_{ij} количество индивидов с i-ей градацией признака ξ и j-ой градацией признака η ,
- $n_{i.} = \sum_{j=1}^{s} n_{ij}$,
- $n_{\cdot j} = \sum_{i=1}^k n_{ij}$.

Таблица: Значимость влияния генов на выход из программы

	1	2	3	4	5	4⊕5	1⊕2	3⊕4	1⊕5
p-value	0,49	0,47	0,68	0,07	0,41	0,03	0,49	0,52	0,78

Логистическая регрессия

• Рассматривается множество независимых вещественных переменных x_1, \dots, x_n , на основе значений которых требуется вычислить вероятность принятия значения 0 или 1 зависимой переменной y.

Вероятность наступления события y=1 равна:

$$P(y = 1|x) = \pi(\beta^T x),$$

где $z = \beta^T x$, β — векторы-столбец коэффициентов регрессии.

$$\pi(z) = \frac{1}{1+e^z}$$
.

Функцию распределения y при заданном x можно записать в таком виде:

$$P(y|x) = \pi(\beta^T x)^y (1 - \pi(\beta^T x))^{1-y}, y \in \{0, 1\}.$$

Таблица: Значимость влияния признаков на выход из программы

	group	age	gender
p-value	5,6e-09	0,917	0,076

Многомерное шкалирование

Преимущество метода

Позволяет расположить индивидов в метрическом пространстве выбранной нами размерности, получив в качестве исходных данных матрицу сходства объектов произвольного типа.

Цель

Изучить метод многомерного шкалирования с точки зрения других статистических методов.

- На входе: матрица с категориальными признаками размерности $n \times m$ (n—число индивидов, m—число признаков).
- Каждому признаку сопоставим бинарный индикатор $G_j, j=1,\ldots,n$ размерности $n \times k_j$, где k_j —количество категорий каждого признака.
- На выходе:
 - X матрица оценок объектов размерности $n \times p$,
 - Y_i матрица категорий квантификаций размерности $k_i imes p$.

Функция потерь:

$$\sum_{j=1}^{m} tr(X - G_j Y_j)^T (X^{(t)} - G_j Y_j) \to \min_{\{X\}, \{Y_j\}}.$$

Применение метода многомерного шкалирования

Таблица: Значимость влияния признаков на кластеры

	group	gender	endpore1	agegroup
p-value	0,529	0,967	0,883	0,685

Кластеризация на основе информационного разнообразия групп

- \square Пусть имеется группа n индивидов, характеризуемая признаком ξ со значениями x_1,\ldots,x_m .
- \square Пусть $n=a_1+\cdots+a_m$, где a_i количество индивидов со значением x_i признака ξ .

Информационное разнообразие I этой группы:

$$I = n \ln n - \sum_{i=1}^{m} a_i \ln a_i.$$

Информационный выигрыш от слияния двух групп A и B с разнообразиями I_A и I_B равен

$$\Delta I = I_{A+B} - I_A - I_B.$$

Таблица: Таблица сопряженности кластеров многомерного шкалирования и информационного разнообразия

	1	2	3
1	103	0	0
2	0	139	0
3	3	2	20

Метод главных компонент

Применяется для снижения размерности пространства наблюдаемых векторов, не приводя к существенной потере информативности.

На входе: числовые признаки $f_1(x), \ldots, f_n(x)$. **На выходе**: новые признаки $g_1(x), \ldots, g_m(x), (m < n)$.

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x) u_{js}, j = 1, \dots, n,$$

$$\sum_{i=1}^l \sum_{j=1}^n (\hat{f}_j(x_i) - f_j(x_i))^2 \to \min_{\{g_s(x_i)\}, \{u_{js}\}, \{u_{js}\}$$

где u_{js} — значения матрицы нагрузки, x_1,\dots,x_l — обучающая выборка.

Применение метода главных компонент

Рис.: Вклад каждой компоненты в разброс данных

Рис.: Расположение индивидов на графике первых двух компонент

Таблица: Коэффициенты корреляции новых признаков

	D1	D2
PC1	0,32	-0,89
PC2	0,94	0,29

Двухфакторный дисперсионный анализ

Модель двухфакторного дисперсионного анализа:

$$x_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \xi_{ijk},$$

- A, B факторы;
- \bullet x_{ijk} значение переменной X;
- μ генеральное среднее;
- α_i эффект фактора A;
- β_j эффект фактора B;
- $(\alpha\beta)_{ij}$ эффект взаимодействия факторов A, B;
- ullet ξ_{ijk} ошибки, независимые и нормально распределенные.

Таблица: Значения p-value в дисперсионном анализе

	D1	D2	PC1	PC2
group	0,502	0,387	0,264	0,537
endpore1	0,172	0,986	0,664	0,29
group*endpore1	0,411	0,798	0,625	0,47

GEE подход

Рассмотрим следующую задачу: на каждом из $i=1,\cdots,N$ объекте сделано n_i измерений $y_i=(y_{i1},\cdots,y_{in_i}).$

Пусть

$$\mu = E(y) = g(x^T \beta),$$
$$Var(y) = \phi v(\mu),$$

- \bullet x матрица исходных данных (независимых признаков),
- βp -мерный вектор коэффициентов регрессии,
- q так называемая функция связи,
- Var(y) дисперсия y,
- ullet ϕ параметр масштаба,
- v функция дисперсии.

Обобщенные уравнения оценок имеют вид:

$$\sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta} \Sigma(y_i)^{-1} (y_i - \mu_i(\beta)) = 0,$$

где $\Sigma(y_i)$ — это матрица ковариации.

Применение GEE подхода

Таблица: Значения p-value в GEE/GLM подходе

	D1	D2	PC1	PC2
group	0.51	0,45	0,59	0,47
age	0,73	0,66	0,57	0,61
gender	0,45	0,19	0,26	0,10
endw	0,13	0,51	0,90	0,14

D1, D2 новые признаки, полученные многомерным шкалированием; PC1, PC2 новые признаки, полученные методом главных компонент.

Таблица: Значения p-value в GEE/GLM подходе для индивидов с group=0

	D1	D2	PC1	PC2
gender	0,093	0,311	0,074	0,063
endpore1	0,403	0,005	0,392	0,149

Понятие симптома

- ullet Случайный вектор $X = (X_1, \dots, X_m)^T$ со значениями 0 или 1.
- Множество Ω_m размерности 2^m возможных значений вектора $x=(x_1,\ldots,x_m)^T, x_i\in F_2.$

Определение

Обозначим k-подмножество из m натуральных чисел через $au=(t_1,\ldots,t_k)\subseteq (1,2,\ldots,m)$ и зададим вектор-строку $A_{ au}=(a_1,\ldots,a_m)$ с компонентами

$$a_i = \left\{ \begin{array}{ll} 1, & i \in \tau \\ 0, & i \notin \tau \end{array} \right.$$

Линейная комбинация вида $X_{\tau} = A_{\tau}X(mod2)$ называется **симптомом** ранга k.

Алгоритм отбора симптомов

Задача

Выявление совокупности генетических факторов, значимо влияющих на тяжесть наркотической зависимости.

- Выбор признаков индикатора рецессивности генотипов.
- Построение линейных комбинаций признаков над F_2 (симптомов) с ограничением на ранг k < 4.
- Исследование влияния симптомов на результат лечения в качестве фактора на всей выборке и на кластерах, полученных в результате многомерного шкалирования
 - в модели правого цензурирования;
 - в модели интервального цензурирования.
- Вычисление вероятности ошибки классификации.

Анализ результатов

 Правое цензурирование. Индикатор — результат выполнения программы.

Таблица: Значимость эффекта симптома ранга 3 в модели правого цензурирования

симптом	p-value(0)	p-value(2)	энтропия
$1 \oplus 4 \oplus 5$	0,0126	0,6618	0,2724
$3 \oplus 4 \oplus 5$	0,0246	0,8123	0,2686

• Интервальное цензурирование. Наблюдаемая величина $[t_1,t_2];\,t_1$ —точка последнего наблюдения, $t_2=t_1+1.$

Таблица: Значимость эффекта симптома ранга 3 в модели интервального цензурирования

симптом	p-value(0)	p-value(2)	энтропия
$1 \oplus 4 \oplus 5$	0,0186	0,7376	0,2724
$3 \oplus 4 \oplus 5$	0,0329	0,9860	0,2686

Анализ результатов

Рис.: Симптом $1 \oplus 4 \oplus 5$

Рис.: Симптом $3 \oplus 4 \oplus 5$

- $1 \oplus 4 \oplus 5$ —сочетание генов, отвечающее за никотиновую зависимость, когнитивные задачи и дисфорию;
- $3 \oplus 4 \oplus 5$ —сочетание генов, отвечающее за импульсивность, когнитивные задачи и дисфорию.

Вывод

Все препараты снимают влияние генетических факторов.

Анализ результатов

Таблица: Значимые симптомы ранга 3 многомерного шкалирования в модели правого (интервального) цензурирования

кластер 1	кластер 2	кластер 3
нет значимых	$1 \oplus 4 \oplus 5$	нет значимых
нет значимых	$3 \oplus 4 \oplus 5$	нет значимых

Вероятность ошибки классификации

- Разобьем всю выборку объемом n=265 на тренировочную и тестовую.
- Вычислим вероятность ошибки классификатора на тестовой выборке

	$1 \oplus 4 \oplus 5$	$3 \oplus 4 \oplus 5$
на всей выборке	0,564	0,512
на 2-ом кластере	0,576	0,576

Вывод

Вероятность ошибки во всех случаях оказалась очень большой, что не дает нам возможности полагаться на полученные результаты классификации.

Результаты

В ходе данной работы было сделано следующее:

- проведено первичное исследование исходных данных с помощью критерия хи-квадрат и логистической регрессии;
- ② реализован алгоритм в языке программирования R, который позволил из исходных категориальных данных получить новые признаки D1, D2 и PC1, PC2;
- исследованы новые признаки с помощью двухфакторного дисперсионного анализа и GLM подхода, последний реализован на языке R;
- построен алгоритм для выявления линейных комбинаций над конечным полем факторов рецессивности генов (симптомов);
- **3** в перспективе проверить гипотезу, что аналогом многомерного шкалирования является симбиоз метода главных компонент и кластерного анализа на основе информационного разнообразия.

