ACH2002 - Introdução à Análise de Algoritmos

Notações assintóticas

Prof. Flávio Luiz Coutinho

Notações matemáticas que permitem caracterizar a "cara" de uma função, deixando de fora detalhes desnecessários:

-
$$T(n) = 5n^3 - 7n^2 + 10n \longrightarrow T(n) = \Theta(n^3)$$

-
$$5n \le T(n) \le 2n \log_2(3n) - 8$$
 $T(n) = \Omega(n) e T(n) = O(n\log_2(n))$

O uso (e a familiaridade) com estas notações, facilita a descrição dos aspectos comportamentais dos algoritmos:

"O algoritmo XYZ tem complexidade assintótica Θ(n²) em relação ao tempo de execução e consumo de memória Θ(n)"

Por que assintóticas?

- Porque estamos interessados em entender o comportamento de um algoritmo (isto é, a função associada ao consumo de um certo recurso) em casos limites.
- Conceito de assíntota (n → 0 , n → ∞, etc).
- No contexto específico de algoritmos, estamos interessados em caracterizar
 o comportamento dos mesmos para valores grandes de n, ou seja n → ∞.
- Caracterizar o comportamento de um algoritmo para valores pequenos de n não possui muito valor prático.

Notações assintóticas (notação O)

$$O(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \mid 0 \le f(n) \le cg(n), para todo n \ge n_0 \}$$

O que tudo isso quer dizer???

- O(g(n)) define um conjunto de funções.
- g(n) é uma função geradora do conjunto.
- As funções membro deste conjunto devem satisfazer uma propriedade:
 - $0 \le f(n) \le cg(n)$ [devem ser limitadas superiormente por cg(n)].
- f(n) cresce em ritmo menor ou igual ao ritmo de crescimento de g(n).

Notações assintóticas (notação Ω)

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \mid 0 \le cg(n) \le f(n), para todo n \ge n_0 \}$$

O que tudo isso quer dizer???

- $\Omega(g(n))$ define um conjunto de funções.
- g(n) é uma função geradora do conjunto.
- As funções membro deste conjunto devem satisfazer uma propriedade:
 - $0 \le cg(n) \le f(n)$ [devem ser limitadas inferiormente por cg(n)].
- f(n) cresce em ritmo maior ou igual ao ritmo de crescimento de g(n).

Notações assintóticas (notação Θ)

Notação Θ é a combinação das duas notações anteriores:

$$\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, c_2 > 0, n_0 > 0 |$$

 $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$

- Funções membro deste conjunto são limitadas inferiormente e superiormente por g(n) de forma simultânea (limite justo).
- f(n) cresce de modo similar à função g(n) [ritmo de crescimento equivalente].

Quando $f(n) \in \Theta(g(n))$ [ou O(g(n)), ou $\Omega(g(n))$], dizemos que:

$$f(n) = \Theta(g(n))$$
 [ou $f(n) = O(g(n))$, ou $f(n) = \Omega(g(n))$]

É um abuso de notação, mas aceito no contexto de análise de algoritmos, e pode ser conveniente para certas manipulações matemáticas.

Exemplos de uso das notações:

- $-3n^2 7n + 15 = \Theta(n^2)$
- $-4n^3 + 100n^2 = \Omega(n^2), 4n^3 + 100n^2 = O(n^4)$
- $nlog(n) = \Omega(n)$, $nlog(n) = O(n^2)$, $nlog(n) = \Theta(nlog(n))$
- Quicksort é $\Omega(n\log(n))$ e $O(n^2)$
- *Insertion sort* $\in \Omega(n)$ e $O(n^2)$

Mais exemplos:

$$T(n) = 3n^2 - 7n + 15$$

= $3n^2 - 7n + \Theta(1)$
= $3n^2 - \Theta(n)$
= $\Theta(n^2)$

Mais exemplos:

$$T(n) = \Theta(n^3) + \Omega(n^2)$$

$$= \Omega(n^2) \qquad (1)$$

$$= \Omega(n^3) \qquad (2)$$

Qual igualdade é mais informativa? (1) ou (2)?

Mais exemplos:

$$T(n) = \Theta(n^3) + O(n^4)$$
$$= O(n^4)$$

Uma propriedade importante:

$$T(n) = \Theta(g(n)) \Leftrightarrow T(n) = \Omega(g(n)) \in T(n) = O(g(n))$$

Como demonstrar formalmente que $f(n) = \Theta(g(n))$ [ou $\Omega(g(n))$, O(g(n))]?

- Devemos achar um conjunto de constantes c₁, c₂ e n₀ [ou c, n₀] que torne verdadeira a condição de pertinências para o conjunto.
- Encontrar apenas um trio (ou dupla) de constantes é suficiente!

E como demonstrar formalmente que $f(n) \neq \Theta(g(n))$ [ou $\Omega(g(n))$, O(g(n))]?

- Não basta encontrar um trio (ou dupla) de constantes que não satisfaça a condição de pertinência.
- É preciso demonstrar que é impossível determinar um trio (ou dupla) de constantes que satisfaça a condição de pertinência.

Exemplo: mostrar que $f(n) = 3n^2 - 8n + 15 = \Theta(n^2)$:

- Estratégia: fixar c₁ e c₂ (chute "consciente") e verificar para quais valores de n as desigualdades são válidas: $c_1 = 2$, $c_2 = 3$.
- Desigualdade referente ao limite inferior:

 $n^2 - 8n + 15 >= 0$

$$c_1 n^2 <= 3n^2 - 8n + 15$$
 $n = (8 \pm 2) / 2$ (raízes da função)
 $2n^2 <= 3n^2 - 8n + 15$ $n_- = 3, n_+ = 5$
 $0 <= n^2 - 8n + 15$ Por se tratar de uma função de grau
 2 , a desigualdade será verdadeira

para qualquer n <= 3 ou n >= 5

Exemplo: mostrar que $f(n) = 3n^2 - 8n + 15 = \Theta(n^2)$:

- Estratégia: fixar c₁ e c₂ (chute "consciente") e verificar para quais valores de n as desigualdades são válidas: c₁ = 2, c₂ = 3.
- Desigualdade referente ao limite inferior:

$$c_1 n^2 \le 3n^2 - 8n + 15$$
 $2n^2 \le 3n^2 - 8n + 15$
 $0 \le n^2 - 8n + 15$
 $n^2 - 8n + 15 >= 0$

$$n = (8 \pm 2) / 2$$
 (raízes da função)
 $n_{_{}} = 3, n_{_{+}} = 5$

Por se tratar de uma função de grau 2, a desigualdade será verdadeira para qualquer n <= 3 ou n >= 5

Exemplo: mostrar que $f(n) = 3n^2 - 8n + 15 = \Theta(n^2)$:

- Estratégia: fixar c₁ e c₂ (chute "consciente") e verificar para quais valores de n as desigualdades são válidas: c₁ = 2, c₂ = 3.
- Desigualdade referente ao limite superior:

$$3n^2 - 8n + 15 \le 3n^2$$
 $n = 15/8$ (raiz da função)
 $-8n + 15 \le 0$ Por se tratar de uma função de grau 1, a desigualdade será verdadeira para n >= 15/8 (1.875)

Exemplo: mostrar que $f(n) = 3n^2 - 8n + 15 = \Theta(n^2)$:

- Estratégia: fixar c₁ e c₂ (chute "consciente") e verificar para quais valores de n as desigualdades são válidas: c₁ = 2, c₂ = 3.
- Desigualdade referente ao limite superior:

$$3n^2 - 8n + 15 \le 3n^2$$
 $n = 15/8$ (raiz da função)
 $-8n + 15 \le 0$ Por se tratar de uma função de grau 1, a desigualdade será verdadeira para n >= 15/8 (1.875)

Exemplo: mostrar que $f(n) = 3n^2 - 8n + 15 = \Theta(n^2)$:

- Combinando os resultados para ambas as desigualdades, obtidas tomando-se c₁ = 2 e c₂ = 3, temos:
 - Desigualdade do limite inferior válida para n >= 5.
 - Desigualdade do limite superior válida para n >= 1.875.
 - Para que as duas desigualdades sejam simultaneamente satisfeitas, e sejam sempre satisfeitas a partir de um certo valor, tomamos n₀ = 5.
- Visualização gráfica.

Exemplo: mostrar que $f(n) = 5n^3 \neq O(n^2)$:

- Não podemos fixar um valor de c, e verificar que a desigualdade não é atendida para o valor escolhido. Precisamos mostrar que qualquer que seja c, a desigualdade nunca será atendida.
- Desigualdade do limite superior:

$$5n^{3} <= cn^{2}$$
 $n <= c/5$
 $5n^{3} - cn^{2} <= 0$
 $n^{2}(5n - c) <= 0$
 $5n - c <= 0$

Exemplo: mostrar que $f(n) = 5n^3 \neq O(n^2)$:

- Não podemos fixar um valor de c, e verificar que a desigualdade não é atendida para o valor escolhido. Precisamos mostrar que qualquer que seja c, a desigualdade nunca será atendida.
- Desigualdade do limite superior:

Revisitando alguns resultados prévios já conhecidos

Algoritmos de ordenação (número de comparações):

- Selection sort
$$f(n) \sim (n^2) / 2$$
 $f(n) = \Theta(n^2)$

- Mergesort
$$f(n) \le n\log_2(n)$$
 $f(n) = O(n\log_2(n))$

Revisitando alguns resultados prévios já conhecidos

Max (tempo de execução):

- iterativo: $T(n) \sim an$ $T(n) = \Theta(n)$
- rec. 1 [1 subproblema n 1]: $T(n) \sim bn$ $T(n) = \Theta(n)$
- rec. 2 [2 subproblemas n/2]: $T(n) \sim c(2n 1)$ $T(n) = \Theta(n)$

Max (memória - apenas memória necessária no call stack):

- iterativo: 1 chamada $M(n) = \Theta(1)$
- rec. 1: n chamadas encadeadas $M(n) = \Theta(n)$
- rec. 2: $\log_2(n) + 1$ chamadas encadeadas $M(n) = \Theta(\log_2(n))$

Revisitando alguns resultados prévios já conhecidos

Algoritmos de ordenação (número de comparações):

- Algoritmo 1 (selection sort)
$$f(n) \sim (n^2) / 2$$
 $f(n) = \Theta(n^2)$

- Algoritmo 2 (merge sort)
$$f(n) \le n\log_2(n)$$
 $f(n) = O(n\log_2(n))$

Fibonacci:

- iterativo
$$T(n) \sim an$$
 $T(n) = \Theta(n)$

- recursivo 1
$$c(\sqrt{2^n}) \le T(n) \le c(2^n)$$
 $T(n) = \Omega(\sqrt{2^n}) \in O(2^n)$

- recursivo 2
$$T(n) = c(2n - 1)$$
 $T(n) = \Theta(n)$

Revisitando alguns resultados prévios já conhecidos

Soma (tempo de execução):

- iterativo: $T(n) \sim an$ $T(n) = \Theta(n)$
- soma 1 [1 subproblema n 1]: $T(n) \sim bn$ $T(n) = \Theta(n)$
- soma 2 [2 subproblemas n/2]: $T(n) \sim c(2n 1)$ $T(n) = \Theta(n)$

Soma (memória - apenas memória necessária no call stack):

- iterativo: 1 chamada $M(n) = \Theta(1)$
- soma 1: n chamadas encadeadas $M(n) = \Theta(n)$
- soma 2: $\log_2(n) + 1$ chamadas encadeadas $M(n) = \Theta(\log_2(n))$