Лабораторная 6. Решение систем линейных уравнений методом Гаусса

Основные определения алгебры матриц

Матрицей A размерностью n×m называется таблица чисел

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ & & \ddots & \ddots & \ddots \\ a_{nI} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

Выражения a_{ij} , i=1,n, j=1,m называют элементами матрицы, первый индекс обозначает строку, а второй столбец матрицы.

Множество всех матриц размерностью $n \times m$ образуют векторное пространство обозначаемое $C^{n \times m}$.

Основные операции с матрицами следующие:

- Сложение C=A+B, A,B,C-матрицы размерностью $n \times m$ $c_{ii} = a_{ii} + b_{ij}$, i = 1, n, j = 1, m
- Умножение на скаляр $C = \alpha A$ $c_{ij} = \alpha a_{ij}, \ i = 1, n, \ j = 1, m$
- ullet Перемножение матриц C=A×B где $A \in C^{n imes m}$, $B \in C^{m imes p}$, $C \in C^{n imes p}$,

иногда перемножение матриц записывают в виде: $C_{np} = A_{nm} B_{mp}$, указывая явно размерности матриц. Из этой формулы следует, что перемножение матриц возможно, если число столбцов матрицы A совпадает с числом строк матрицы B.

$$c_{ij} = \sum_{k=1}^{m} a_{ik} \times b_{kj}, i = 1, ..., n, j = 1, ..., p$$

Вводится следующее обозначение для векторов:

Вектор-столбец a_{*i} – это вектор-столбец, составляющий j-ый столбец матрицы A

$$a_{*j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}$$

Подобную запись можно сделать для вектора-строки

$$a_{j*} = (a_{j1}, a_{j2}, \ldots, a_{jn})$$

Тогда матрица А может быть записана в виде

$$A = (a_{*_1}, a_{*_2}, \ldots, a_{*_m})$$

либо

$$A = \begin{pmatrix} a_{1*} \\ a_{2*} \\ \vdots \\ \vdots \\ a_{n*} \end{pmatrix}$$

Число (скаляр) можно рассматривать как матрицу типа 1х1

Транспонирование матрицы А

Транспонированная матрица $A \in C^{n \times m}$ есть матрица $C \in C^{m \times n}$ элементы которой определяются с.о.

$$c_{ji} = a_{ij}, i = 1, n, j = 1, m$$

Транспонированную матрицу обозначают A^T

Сопряженной матрицей называют матрицу, обозначаемую A^H , и определяемую как

$$A^H = \overline{A}^T = \overline{A}^T$$

где черта сверху обозначает комплексное сопряжение каждого элемента.

Говорят, что матрицы связаны линейным отображением между векторными пространствами конечной размерности. Это обусловлено тем, что заданы два базиса: один для начального векторного пространства, а другой базис в пространстве отображений.

Квадратные матрицы и собственные числа

Матрица A является квадратной, если число строк равно числу столбцов. Примером квадратной матрицы является единичная

$$I = \{\delta_{ij}\}, i = 1,2,\ldots,n$$

- $δ_{ij}$ - символ Кронекера.

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Единичная матрица для любой матрицы А размерностью п удовлетворяет соотношению

$$IA=AI=A$$

Матрица обратная к A обозначается A^{-1} . Матрица C обратная к A, если она существует, удовлетворяет соотношению

$$AC=CA=I$$

Детерминант матрицы может определяться несколькими способами. Для простоты будем использовать следующее рекурсивное определение через миноры:

$$det(A) = \sum_{i=1}^{n} (-1)^{1+i} a_{1j} \times A_{1j}$$

Минор A_{1j} — это определитель матрицы размерностью (n-1), полученный из исходной матрицы A путем вычеркивания первой строки и j-го столбца.

Говорят, что матрица $\underline{cuнгулярная}$, если $\det(A)=0$ и не сингулярная в остальных случаях.

Основные свойства определителей

- det(AB)=det(BA)
- $det(A^T)=det(A)$
- $det(\alpha B) = \alpha^n det(A)$
- $det(\overline{A}) = \overline{det(A)}$
- det(I)=1

Решение систем линейных уравнений

Система т уравнений с п неизвестными вида

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(1)

называется системой линейных уравнений, причем x_i - неизвестные, a_{ij} - коэффициенты при неизвестных, b_i - свободные коэффициенты . Система из m линейных уравнений с n неизвестными может быть описана при помощи матриц:

$$AX = B$$
,

где

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} , \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} , \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

X - вектор неизвестных, A матрица коэффициентов при неизвестных или матрица системы, B - вектор свободных членов системы, или вектор правых частей.

Матрица (A\b) формируется путем приписывания к матрице коэффициентов А столбца свободных членов b, называется расширенной матрицей системы.

Если все b = 0, то речь идет об однородной системе линейных уравнений, иначе говорят о неоднородной системе.

Совокупность всех решений системы называется множеством решений, или просто решением системы. Две системы уравнений называются эквивалентными, если они имеют одинаковое множество решений.

Однородные системы линейных уравнений $A \cdot x = 0$ всегда разрешимы, так как последовательность ($x_1 = 0$, $x_2 = 0$,..., $x_n = 0$) удовлетворяет всем уравнениям системы. Решение x = 0 называют тривиальным. Вопрос о решении однородных систем сводится к вопросу о том, существуют ли кроме тривиального другие, нетривиальные, решения.

Система линейных уравнений может не иметь ни одного решения, и тогда на называется несовместной. Например, в системе

$$\begin{cases} x_1 + x_2 = 1, \\ x_1 + x_2 = 3 \end{cases}$$

Левые части уравнений совпадают, а правые различны, поэтому никакие значения x_1 , и x_2 не могут удовлетворить обоим уравнениям сразу.

Если же система линейных уравнений обладает решением, то она называется совместной. Совместная система называется определенной, если она обладает одним единственным решением, и неопределенной, если решений больше, чем одно. Так, система

$$\begin{cases} x_1 + 2x_2 = 7, \\ x_1 + x_2 = 6 \end{cases}$$

определена и имеет единственное решение: $x_1 = 5$ и $x_2 = 1$, а система уравнений

$$\begin{cases} 3x_1 - x_2 = 1, \\ 6x_1 + x_2 = 2 \end{cases}$$

не определена, так как имеет бесконечное множество решений вида $x_1 = k$ и $x_2 = 3k - 1$, где число k произвольно. Совокупность всех решений неопределенной системы уравнений называется ее общим решением, а какое-то одно конкретное решение - частным. Частное решение, полученное из общего при нулевых значениях свободных переменных, называется базисным.

При определении совместности систем уравнений важную роль играет понятие ранга матрицы. Пусть дана матрица A размером n×m. Вычеркиванием некоторых строк или столбцов из нее можно получить квадратные матрицы k-го порядка, определители которых называются минорами порядка к матрицы A.

Наивысший порядок не равных нулю миноров матрицы A называют рангом матрицы и обозначают r(A). Из определения вытекает, что

$$r(A) \leq min(n,m)$$
,

r(A) = 0, только если матрица нулевая и r(A) = n для невырожденной матрицы n-го порядка. При элементарных преобразованиях (перестановке строк матрицы, умножении строк на число, отличное от нуля, и сложении строк) ранг матрицы не изменяется.

Исследовании системы на совместность:

система т линейных уравнений с п неизвестными:

- несовместна, если r(A|b) > r(A)
- совместна, если r(A|b) = r(A), причем при r(A|b) = r(A) = n имеет единственное решение, а при r(A|b) = r(A) < n имеет бесконечно много решений.

Метод Гаусса

Проблема решения линейной системы Ax = b является центральной в научных вычислениях. В этом разделе мы остановимся на методе исключения Гаусса, который используют, когда матрица A квадратная, плотная и без специфики. Это точный способ решения систем линейных уравнений. Его также называют методом последовательного исключения неизвестных.

Треугольные системы решаются «легко». Идея исключения Гаусса - это преобразование системы Ax = b в эквивалентную треугольную систему. Преобразование осуществляется составлением соответствующих линейных комбинаций уравнений. Например, в системе

$$\begin{cases} 3x_1 + 5x_2 = 9, \\ 6x_1 + 7x_2 = 4 \end{cases}$$

умножая первую строку на 2 и вычитая ее из второй, мы получим

$$\begin{cases} 3x_1 + 5x_2 = 9, \\ -3x_2 = -14 \end{cases}$$

Это и есть исключение Гаусса при n = 2.

Будем рассматривать только квадратные матрицы. Рассмотрим расширенную матрицу А. Для этого в матрицу А добавим свободный член В:

$$\hat{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{pmatrix} . \tag{2}$$

Прямой ход

Первый этап решения системы уравнений (1), называемый прямым ходом метода Гаусса, заключается в приведении расширенной матрицы (2) к треугольному виду это

означает, что все элементы матрицы (2) ниже главной диагонали должны быть равны нулю:

$$\hat{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ 0 & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & a_{n2} & \dots & a_{nn} & b_n \end{pmatrix} . \tag{3}$$

Для формирования первого столбца матрицы (3) необходимо из каждой строки (начиная со второй) вычесть первую, умноженную на некоторое число М. В общем виде этот процесс можно записать так:

2-я строка = 2-я строка - $M \times 1$ -я строка,

.....

n-я строка = n-я строка — $M \times 1$ -я строка.

Т.е преобразование элементов 2 строки будет происходить по формулам:

$$a_{21} = a_{21} - M \ a_{11}$$
, $a_{22} = a_{22} - M \ a_{12}$,, $a_{2n} = a_{2n} - M \ a_{1n}$, $b_{2} = b_{2} - M \ b_{1}$ - 2 строка

Так как целью данных преобразований является обнуление первого элемента строки, то М выбирается из условия:

$$a_{21} - M a_{11} = 0$$

Следовательно,

$$M = \frac{a_{21}}{a_{11}}$$

Элементы всех остальных строк и коэффициент М можно рассчитать аналогично:

$$a_{j1}=a_{j1}-M$$
 a_{11} , $a_{j2}=a_{j2}-M$ a_{12} ,......, $a_{jn}=a_{jn}-M$ a_{1n} , $b_{j}=b_{j}-M$ b_{1} - j строка.
$$M=\frac{a_{j1}}{a_{11}}$$

В итоге будет получена матрица (3) в которой в первом столбце все нули кроме первого элемента. Далее подобная процедура будет продолжена для второго столбца начиная с третьей строки. В итоге матрица будет приведена к треугольному виду

$$\hat{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ 0 & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn} & b_n \end{pmatrix}$$

Замечание: если в матрице (2) на главной диагонали встретится элемент а_{kk}, равный нулю, то расчет коэффициента М будет невозможен и обнулить столбец таким образом невозможно. Избежать деления на ноль можно, избавившись от нулевых элементов на главной диагонали. Для этого перед обнулением элементов в k-м столбце необходимо найти в нем максимальный по модулю элемент(начиная со строки k), запомнить номер строки, в которой он находится, и поменять ее местами с k-ой.

В результате выполнения прямого метода Гаусса система уравнений будет иметь вид:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots \\ a_{nn}x_n = b_n \end{cases}$$

Обратный ход

Решение примет вид:

$$\begin{cases} x_1 = \frac{b_1 - (a_{12}x_2 + a_{23}x_3 + \dots + a_{1n}x_n)}{a_{11}} \\ x_2 = \frac{b_2 - (a_{23}x_3 + \dots + a_{1n}x_n)}{a_{11}} \\ \dots \\ x_n = \frac{b_n}{a_{nn}} \end{cases}$$

Алгоритм, реализующий метод Гаусса представлен ниже в виде программы для SkiLab

Метод Гаусса

```
A0=[1,3,3,1;0,1,0,3;2,2,2,0;0,4,1,3];
B=[1;0;2;4];
А=[A0 В] // - конкатенации матрицы и вектора столбца
//Прямой ход
//1) Выбор ведущего элемента в k-ом столбце
for k=1:n //Цикл по столбцам
    Max=abs(A(k,k))
     kmax=k
                   //цикл по строкам
    for i=k+1:n
        if abs(A(i,k))>Max then
            {\tt Max=(A(i,k))} // ведущий элемент в k-ом столбце {\tt kmax=i} // строка с максимальным элементом
       end
    end
// Перестановка строк
   if(kmax>k) then
          for j=k:n+1 //Цикл по столбцу
               x=A(k,j)
              A(k,j) = A(kmax,j)
```

```
A(kmax, j) = x
         end
    end
// Обнуление столбца c номером k
    for i=k+1:n //цикл по строкам
      M=A(i,k)/A(k,k)
       M=A(i,k)/A(k,k) for j=k:n+1 // цикл по столбцам
           \overline{A(i,j)} = A(i,j) - M^*A(k,j)
       end
    end
end
disp(A)
//Обратный ход
X = [0; 0; 0; 0]
for i=n:-1:1
  sumA=0
   for j=i:n
     sumA=sumA+A(i,j)*X(j)
   B1=A(i,n+1)
   X(i) = (B1-sumA)/A(i,i)
```

Решить систему уравнений методом Гаусса и осуществить проверку решения методом подстановки (AX=B)

Вариант	СЛАУ
1.	2,15 0,84 0,31 0,16 3,18 0,84 3,14 0,62 0,21 4,61 0,32 0,62 4,82 0,82 5,96 0,16 0,21 0,82 6,41 8,14
2.	
3.	
4.	\begin{pmatrix} 1 & 0,42 & 0,54 & 0,66 & & 0,3 \\ 0,42 & 1 & 0,32 & 0,44 & & 0,5 \\ 0,54 & 0,32 & 1 & 0,22 & & 0,7 \\ 0,66 & 0,44 & 0,22 & 1 & & 0,9 \end{pmatrix}
5.	2,37 0,93 0,35 0,18 3,50 0,93 3,46 0,69 0,23 5,07 0,35 0,69 5,30 0,91 6,56 0,18 0,23 0,91 7,05 8,96

6.	$ \begin{pmatrix} 1,23 & 0,14 & 0,15 & 0,16 & & 1,70 \\ 0,17 & 1,28 & 0,19 & 0,21 & & 1,81 \\ 0,22 & 0,23 & 1,34 & 0,25 & & 1,92 \\ 0,26 & 0,27 & 0,28 & 1,39 & & 2,03 \end{pmatrix} $
7.	$ \begin{pmatrix} 0.86 & -0.02 & -0.13 & -0.15 & & 0.84 \\ -0.02 & 0.95 & -0.04 & 0.48 & & 0.09 \\ -0.13 & -0.04 & 0.79 & -0.09 & & 1.23 \\ -0.15 & 0.48 & -0.09 & 0.81 & & 0.75 \end{pmatrix} $
8.	1,1 0,46 0,59 0,73 0,33 0,46 1,1 0,35 0,48 0,55 0,59 0,35 1,1 0,24 0,77 0,73 0,48 0,24 1,1 0,99
9.	$ \begin{pmatrix} 0,84 & 3,14 & 0,62 & 0,21 & & 4,61 \\ 2,15 & 0,84 & 0,31 & 0,16 & & 3,18 \\ 0,32 & 0,62 & 4,82 & 0,82 & & 5,96 \\ 0,16 & 0,21 & 0,82 & 6,41 & & 8,14 \end{pmatrix} $
10.	$ \begin{pmatrix} 0,20 & 0,21 & 1,22 & 0,23 & & 1,75 \\ 0,16 & 1,17 & 0,18 & 0,19 & & 1,65 \\ 1,12 & 0,13 & 0,14 & 0,14 & & 1,55 \\ 0,24 & 0,25 & 0,26 & 1,27 & & 1,85 \end{pmatrix} $
11.	$ \begin{pmatrix} 0,26 & 0,27 & 0,28 & 1,39 & & 2,03 \\ 0,17 & 1,28 & 0,19 & 0,21 & & 1,81 \\ 0,22 & 0,23 & 1,34 & 0,25 & & 1,92 \\ 1,23 & 0,14 & 0,15 & 0,16 & & 1,70 \end{pmatrix} $
12.	
13.	$ \begin{pmatrix} 0,24 & 0,25 & 0,26 & 1,27 & & 1,85 \\ 0,16 & 1,17 & 0,18 & 0,19 & & 1,65 \\ 0,20 & 0,21 & 1,22 & 0,23 & & 1,75 \\ 1,12 & 0,13 & 0,14 & 0,14 & & 1,55 \end{pmatrix} $
14.	$ \begin{pmatrix} 0.93 & -0.04 & 0.21 & -0.18 & & -1.24 \\ 0.25 & -1.23 & 0.07 & -0.09 & & -0.84 \\ -0.21 & 0.07 & 0.80 & -0.13 & & 2.56 \\ 0.15 & -0.31 & 0.06 & -0.84 & & 0.93 \end{pmatrix} $
15.	$ \begin{pmatrix} 0,22 & 0,23 & 1,34 & 0,25 & & 1,92 \\ 0,17 & 1,28 & 0,19 & 0,21 & & 1,81 \\ 1,23 & 0,14 & 0,15 & 0,16 & & 1,70 \\ 0,26 & 0,27 & 0,28 & 1,39 & & 2,03 \end{pmatrix} $