Homework 6

Liu Huihang

SA 18017026 QQ: 184050473

MAIL: huihang@mail.ustc.edu.cn

Problem 1 Let $X_1, \ldots, X_m i.i.d \sim F$, $Y_1, \ldots, Y_n i.i.d \sim G$ and $\{X_i\}$ is independent with $\{Y_i\}$, then

- (1) get the *U*-statistic U_n with kernel $h(x_1, x_2, x_3) = I(x_1 < y_1, x_2 < y_2)$,
- (2) get the limit distribution of U-statistic U_n with $m+n\to\infty, \frac{m}{n+m}\to p\in(0,1),$
- (3) get the limit distribution of U-statistic U_n under null hypothesis $H_0: F = G$.

Solution

Problem 2 Suppose the distribution of X is symmetric about the origin with variance $\sigma^2 > 0$ and $EX^4 < \infty$, consider kernel $h(x,y) = xy + (x^2 - \sigma^2)(y^2 - \sigma^2)$, then

- (1) prove that the U-statistic U_n with kernel h is degenerated of order 1,
- (2) get λ_1, λ_2 and orthogonal functions $\Phi_1(x), \Phi_2(x)$, such that $h(x, y) = \lambda_1 \varphi_1(x) \varphi_1(y) + \lambda_2 \varphi_2(x) \varphi_2(y)$,
 - (3) get the limit distribution of nU_n .

Solution

Problem 3 Prove the Hoeffding decomposition in page 13.

Solution

Problem 4 Prove the T decomposition in page 12.

Solution