|--|

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNA-GOA

TUTORIAL NO: 3 (Batch 1)

Semester: II (RC 2019-'20)

Course Instructor: Prof. Komal Paroolkar

Mathematics-II

Topic: Surface area of revolution (in Cartesian and polar coordinates).

		<u>CO</u>	<u>CL</u>
Q1.	Find the area of the surface generated by the revolution	CO1	CL3
	of $x = \frac{y^3}{3}$; $0 \le y \le 1$ about the Y-axis.		

- Q2 The loop of the curve $6y^2 = x(x-2)^2$ is revolved about the X-axis. Evaluate the surface area of the surface formed.
- Q3 Determine the surface area of the hollow object CO1 CL3 generated by the revolution of $x^{2/3} + y^{2/3} = 1$ about the X-axis.
- **Q4.** The curve $r = 2a \cos\theta$ is revolved about the initial line. **CO1 CL3** Use integration to evaluate the surface area of the surface formed.
- Q5. Find the area of the surface formed by the revolution of $y = \sqrt{x+2}$; $0 \le x \le 4$ about the X-axis.

Roll No:						
----------	--	--	--	--	--	--

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNA-GOA

TUTORIAL NO: 3 (Batch 2)

Semester: II (RC 2019-'20)

Course Instructor: Prof. Komal Paroolkar

Mathematics-II

Topic: Surface area of revolution (in Cartesian and polar coordinates).

Q1. The curve $y = \frac{5}{12}x^{6/5} - \frac{5}{8}x^{4/5}$ is revolved from x = 0 to x = 1 about the Y-axis. Evaluate the surface area of the surface generated.

- Q2 The loop of the curve $9y^2 = x(x-3)^2$ is revolved about the X-axis. Evaluate the surface area of the surface formed.
- Q3 Find the area of the surface formed by the revolution of $y = \sqrt{x+2}$; $0 \le x \le 4$ about the X-axis.
- Q4. The curve $r = 2a \sin\theta$ is revolved about the line $\theta = \frac{\pi}{2}$.

 Use integration to evaluate the surface area of the surface formed.
- **Q5.** Evaluate the surface of the surface formed by revolving the asteroid $x = a\cos^3 t$, $y = a\sin^3 t$ about the Y-axis.

Roll No:						
----------	--	--	--	--	--	--

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNA-GOA

TUTORIAL NO: 3 (Batch 3)

Semester: II (RC 2019-'20)

Course Instructor: Prof. Komal Paroolkar

Mathematics-II

Topic: Surface area of revolution (in Cartesian and polar coordinates).

Q1. Find the area of the surface generated by revolving $y = \sqrt{x+2}$; $0 \le x \le 4$ about the X-axis.

Q2 The loop of the curve $x = t^2$, $y = t - \frac{t^3}{3}$ is revolved about the X-axis. Evaluate the surface area of the object generated.

Q3 The cardiode $r = 1 + \sin \theta$ is revolved about the line CO1 CL3 $\theta = \frac{\pi}{2}$. Find the surface area of the surface generated.

Q4. Find the area of the surface generated by the revolution of $y = \frac{x^3}{9}$; $0 \le x \le 2$ about the X-axis.

Q5. The curve $r = 2a \cos\theta$ is revolved about the initial line. Use integration to evaluate the surface area of the surface formed.

