杭州电子科技大学信息工程学院学生考试卷(A)卷

课程名称	线性代数	考试日期		2018年	月	日	成 绩	
考生姓名		任课教师如	挡					
学号(8 位)		班级			专	. 业		

考试形式: 闭卷

考试说明: 所有答案写在答题卷对应位置。

- 一,单项选择题(每小题3分,共15分)
- 1. 设矩阵A, B 是同阶方阵,满足AB = O ,则必有()。

- (A) $A = O \ \vec{\boxtimes} B = O$; (B) A + B = O; (C) |A| + |B| = 0; (D) $|A| = 0 \ \vec{\boxtimes} |B| = 0$.
- 2. 三阶范德蒙行列式 $\begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{vmatrix} = ($)。
 - (A) 1; (B) 0; (C) $(x_2-x_1)(x_3-x_1)(x_3-x_2)$; (D) $(x_2-x_1)(x_1-x_3)(x_3-x_2)$.
- $\int \lambda x_1 + x_2 + x_3 = 1$ 3. 若方程组 $\left\{x_1 + \lambda x_2 + x_3 = \lambda \right\}$ 有唯一解,则()。 $x_1 + x_2 + \lambda x_3 = \lambda^2$
 - (A) $\lambda \neq 1, \lambda \neq -2$; (B) $\lambda \neq -1, \lambda \neq 2$; (C) $\lambda \neq 1, \lambda \neq 2$; (D) $\lambda \neq -1, \lambda \neq -2$.
- 4. 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_m (m \ge 4)$ 的秩为 3,则()。
 - (A) 该向量组的任意三个向量线性无关; (B) 该向量组的任意四个向量线性相关;

 - (C) $\alpha_1, \alpha_2, \dots, \alpha_m$ 均为非零向量; (D) 该向量组的任意两个向量线性无关。
- 5. 设矩阵A 满足 $A^2 = E$,则必有()。
- (A) $A = A^{-1}$; (B) A = E; (C) |A| = 1; (D) A = 1.

- 二. 填空题(每小题 3 分, 共计 24 分)

- 4. 设 $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, 则 $A^4 =$ ______。
- 5. 矩阵 $A = \begin{bmatrix} 2 & 2 & -1 \\ 4 & 4 & -2 \\ 0 & -4 & 2 \end{bmatrix}$ 的秩=______。
- 6. 行列式 | *a* 0 1 | 中元素 *a* 的代数余子式的值=______。
- 7. 设向量 β =[0,-1,k]^T能由向量组 α ₁=[1,0,-3]^T, α ₂=[2,1,-1]^T线性表示,

则 k = 。

8. 设四阶方阵 $A=[\alpha,2\gamma_1,3\gamma_2,4\gamma_3]$, $B=[\beta,\gamma_1,\gamma_2,\gamma_3]$, 其中 $\alpha,\beta,\gamma_1,\gamma_2,\gamma_3$ 均为四维列向量,且 |A| = 8, |B| = 1, |A| = 4.

杭州电子科技大学信息工程学院学生答题卷(A)卷

课程名称	线性代数	考试日期	2018 年	三月	日	成绩	
考生姓名		任课教师姓	名				
学号 (8 位)		班级		专	比		

考试形式: 闭卷

考试说明: 所有答案写在第 2-3 页的答题卷对应位置。

题号	_	11	111	四
得分				

- 一. 单项选择题。(每小题 3 分,共 15 分)1. _____ 2. ____ 3. ____ 4. ____ 5. ____
- 二. 填空题(每小题 3 分, 共 24 分)

三. 计算题(每小题7分,共35分)

1. 设矩阵
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 5 \\ 3 & 0 \end{bmatrix}$, 求(1) $A + 2B$; (2) $(AB)^T$ 。

2. 已知向量 $\alpha = [1,2,1]^T$, $\beta = [1,\frac{1}{2},0]^T$,矩阵 $A = \alpha \beta^T$,求 A^3 。

3. 已知向量组 α_1 =[1,1,1]^T, α_2 =[0,1,-3]^T, α_3 =[2,5,k]^T,就以下两种情形分别求k的值: (1)该向量组线性相关: (2) 该向量组线性无关。

4. 设矩阵 $A = \begin{bmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, 且 AX = X + 6A, 求矩阵 X 。

5. 已知
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
, (1)判别 A 是否可逆; (2)若 A 可逆, 要求用矩阵的初等行变换法求 A^{-1} 。

2. (本题 10 分) 已知非齐次线性方程组 $\begin{cases} -x_1 + x_2 + 2x_3 + x_4 = 0 \\ 2x_1 - x_2 + x_3 - 2x_4 = 1 , 求(1)它的一个特解; \\ x_1 - x_2 - 2x_3 + 2x_4 = 6 \end{cases}$

(2)它的导出组(即它对应的齐次方程组)的一个基础解系; (3)它的通解。

四. 综合题(共 26 分)

1. (本题 10 分) 已知向量组 $\alpha_1 = [2,0,2]^T$, $\alpha_2 = [1,-1,-1]^T$, $\alpha_3 = [0,1,2]^T$, $\alpha_4 = [1,3,7]^T$, 求 (1) 该向量组的秩; (2) 它的一个最大无关组; (3) 将其余向量用所求的最大无关组线性表示。

3. (本题 6 分)设A为n阶反对称矩阵,n为奇数,证明: |A|=0。