PODSTAWY SZTUCZNEJ INTELIGENCJI

Grubsze ogony

Kostrzewa Łukasz, Napieralski Adam

23 kwietnia 2020

1 Wstęp

Celem projektu było zaimplementowanie algorytmu ewolucyjnego, korzystającego przy mutacji z rozkładu Cauchy'ego zamiast rozkładu normalnego i porównanie działania obu wersji algorytmu. Do formalnej analizy wykorzystano standardowe funkcje, dane testowe i metodę raportowania z CEC 2017 [1]. W tezie zakładamy, że mutacja z wykorzystaniem rozkładu Cauchy'ego pozwala na szybsze dojście do globalnego maksimum niż ta korzystająca z rozkładu normalnego.

1.1 Podział zadań

Kostrzewa Łukasz	Napieralski Adam		
selekcja, krzyżowanie	mutacja, zastępowanie		
Klasa algorytmu i klasa do jego analizy	Próbny przypadek testowy 2D i 3D		
Funkcje z CEC2017 (3 pierwsze:	Funkcje z CEC2017 (4 ostatnie:		
implementacja i zastosowanie algorytmu)	implementacja i zastosowanie algorytmu)		
Dokumentacja: wykresy, algorytm, analiza,	Dokumentacja: wyniki tabelaryczne,		
wnioski	analiza, wnioski		

1.2 Wykorzystane narzędzia

Algorytm zaimplementowano w języku *Python*, opierając się przede wszystkim na bibliotece *numpy*. Analizę działania algorytmu z użyciem stworzonych klas realizowano w środowisku *Jupyter Notebook*. Do analizy wyników wykorzystano biblioteki *matplotlib* oraz *tabulate*.

2 Algorytm

Schemat wykorzystanego algorytmu ewolucyjnego.

Inicjuj t := 0, P(0) := {x₁, ...x_μ} losowe wartości początkowe
for i = 1 to λ
if(a < p)
O(t,i) := mutation(crossover(select(P(t),k)))
else
O(t,i) := mutation(select(P(t),1))
P(t+1) = replacement(P(t), O(t))
Jeśli warunek stopu jest spełniony zwróć populację P(t+1), w p.p. t = t+1 i wróć do kroku 2.

Gdzie:

P(k) – populacja w k-tej iteracji,

 μ – liczba osobników w populacji,

 λ – liczba potomstwa,

a – zmienna losowa $\mathcal{U}(0,1)$,

p – liczba z przedziału $(0,\ 1)$ określająca jaka część potomstwa powinna powstać z krzyżowania rodziców,

O(k) – potomstwo w k-tej iteracji.

Kroki algorytmu:

- 1. Selekcja selekcja turniejowa o rozmiarze turnieju 2.
- 2. Krzyżowanie metoda interpolacyjna z wagami losowanymi z $\mathcal{U}(0,1)$.
- 3. Mutacja mutacja parametrów z wykorzystaniem rozkładu normalnego (o odchyleniu standardowym równym 1) lub normalnego rozkładu Cauchy'ego [2].
- 4. Zastępowanie populacji jako nowa populacja wybierana jest populacja potomna, jeśli najlepszy osobnik ze starej populacji jest lepszy od najgorszego z potomnej, zastępuje go.

3 Wyniki działania algorytmów

Oba algorytmy analizowano dla wybranych funkcji z CEC 2017 [1]. Parametry analiz dobrano wzorując się na tych z CEC 2017:

Obszar przeszukiwania – (-50, 50) dla każdego wymiaru;

Wymiary – D=2 oraz D=10;

Maksymalna liczna iteracji – 1000*D;

Warunek stopu – błąd bezwzględny $\leq 10^{-7}$;

Liczba powtórzeń dla każdego problemu – 51;

Inicializacja – losowe wartości z $\mathcal{U}(-50, 50)$.

Końcowe wyniki działania algorytmów w postaci wartości funkcji błędów: minimalnej, maksymalnej, średniej i mediany ich wartości, a także odchylenia standardowego, przedstawiono w Tabelach 1 i 2.

Funkcja	Mutacja	Min	Max	Średnia	Mediana	Odchylenie standardowe
Bent Cigar	Cauchy	$6,31\cdot10^{-5}$	0,15	0,03	0,03	0,03
	Normal.	$1,59 \cdot 10^{-4}$	0,02	0,01	$4,21\cdot10^{-3}$	0,01
Zakharova	Cauchy	$1,88 \cdot 10^{-6}$	$9,95 \cdot 10^{-4}$	$1,79 \cdot 10^{-4}$	$1,18\cdot10^{-4}$	$2 \cdot 10^{-4}$
	Normal.	$8,98 \cdot 10^{-8}$	$2,28\cdot10^{-4}$	$4,45\cdot10^{-5}$	$3{,}15{\cdot}10^{-5}$	$4,61\cdot10^{-5}$
Rosenbrocka	Cauchy	0,02	0,02	0,02	0,02	0
	Normal	0,02	0,02	0,02	0,02	0
Rastrigina	Cauchy	$1,02\cdot10^{-3}$	0,21	0,05	0,03	0,04
	Normal.	$1,96 \cdot 10^{-5}$	0,05	0,01	0,01	0,01
Shaffera	Cauchy	$2,44\cdot10^{-5}$	0,01	$9,45\cdot10^{-4}$	$3,797\cdot10^{-4}$	$1,74\cdot10^{-3}$
	Normal.	$9,72 \cdot 10^{-6}$	$9,01\cdot10^{-4}$	$2,17\cdot10^{-4}$	$1,55\cdot10^{-4}$	$2,08\cdot10^{-4}$
Levy'ego	Cauchy	$2,53\cdot10^{-9}$	$4,58\cdot10^{-7}$	$1,04\cdot10^{-7}$	$8,11\cdot10^{-8}$	$9,98 \cdot 10^{-8}$
	Normal.	$5,26\cdot10^{-9}$	$1,21\cdot10^{-7}$	$4,98 \cdot 10^{-8}$	$5,09 \cdot 10^{-8}$	$2,58\cdot10^{-8}$
Schwefela	Cauchy	$3,75\cdot10^{-5}$	0,01	$1,17\cdot10^{-3}$	$1,12\cdot10^{-3}$	$2,14\cdot10^{-3}$
	Normal.	$1,96 \cdot 10^{-5}$	217,14	$4,\!26$	$3,95 \cdot 10^{-4}$	30,11

Tabela 1: Podsumowanie uzyskanych wyników dla 2 wymiarów

Funkcja	Mutacja	Min	Max	Średnia	Mediana	Odchylenie standardowe
Bent Cigar	Cauchy	4300,19	28388,8	17331	16784,3	5160,71
	Normal.	3146,44	11916,6	$7335,\!12$	$7341,\!45$	1984,13
Zakharova	Cauchy	0,18	5,3	3	2,92	0,89
	Normal.	0,54	1,86	1,17	1,19	0,28
Rosenbrocka	Cauchy	5,23	9,68	6,93	7,05	1,13
	Normal	5,2	$5,\!25$	5,23	$5,\!22$	0,01
Rastrigina	Cauchy	37,61	73,21	53,12	53,16	7,2
	Normal.	22,21	41,19	33,51	33,7	3,92
Shaffera	Cauchy	0,9	2,26	1,64	1,63	0,34
	Normal.	0,49	2,97	1,72	1,73	$0,\!52$
Levy'ego	Cauchy	$7,61\cdot10^{-4}$	$4,57\cdot10^{-3}$	$2,68\cdot10^{-3}$	$2,81\cdot10^{-3}$	$7,65\cdot10^{-4}$
	Normal.	$6,07 \cdot 10^{-4}$	1,73	0,16	$1,13\cdot10^{-3}$	$0,\!35$
Schwefela	Cauchy	22,91	658,42	260,91	254,09	142,45
	Normal.	227,43	1404,74	909,38	979,91	301,14

Tabela 2: Podsumowanie uzyskanych wyników dla 10 wymiarów

4 Wykresy przebiegu funkcji błędu

Poniżej przedstawiono wybrane wykresy funkcji błędu od liczby iteracji.

5 Analiza wyników i wnioski

Na podstawie przedstawionych danych nie można jednoznacznie określić który algorytm jest uniwersalnie lepszy. W sytuacjach, gdy funkcja przystosowania posiada niewiele ekstremów lokalnych (np. funkcja Rastrigina – Rys. 2), algorytm z rozkładem normalnym jest bardziej odpowiedni, ponieważ jego wyniki są dokładniejsze i bardziej spójne — otrzymane wartości odchylenia standardowego są w niemal wszystkich przypadkach mniejsze niż dla rozkładu

Cauchy'ego. W przypadkach, gdzie funkcja przystosowania posiada wiele ekstremów lokalnych (np. funkcja Schwefela – Rys. 3) algorytm z rozkładem normalnym często zatrzymuje się na ekstremum lokalnym i daje wyniki zdecydowanie gorsze niż algorytm korzystający z rozkładu Cauchy'ego, przez co ten drugi lepiej nadaje się do takich przypadków.

Na podstawie wykresów przebiegu funkcji błędu dla funkcji testowych, można zauważyć, że algorytm korzystający z rozkładu Cauchy'ego na etapie mutacji szybciej odnajduje rozwiązanie.

Algorytm z rozkładem Cauchy'ego lepiej radzi sobie z lokalnymi ekstremami z powodu charakteru tego rozkładu (różnego od normalnego – Rys. 1) w postaci tytułowych "grubszych ogonów". Argumenty bardziej oddalone od przyjętej średniej rozkładu mają nadal dużo większą wartość gęstości prawdopodobieństwa niż te same argumenty w przypadku rozkładu normalnego. Prawdopodobieństwo wylosowania wartości bardziej oddalonych od średniej rozkładu jest dużo większe niż w przypadku rozkładu normalnego. Umożliwia to częstsze takie mutacje osobników, by znalazły się one dalej od rodziców, a co za tym idzie - w przypadku "utknięcia" w lokalnym ekstremum, miały większe szanse wyjścia poza nie i znalezienia interesującego globalnego ekstremum.

Rys. 1: Porównanie przebiegu rozważanych rozkładów

Rys. 2: Wykres funkcji Rastrigina

Rys. 3: Wykres funkcji Schwefela

Realizacja projektu pomogła nam zrozumieć i poznać od praktycznej strony szczegóły każdego z kroków algorytmu ewolucyjnego, a w szczególności mutacji.

Literatura

- $[1] \ \mathtt{https://github.com/P-N-Suganthan/CEC2017-BoundContrained}$
- [2] https://numpy.org/devdocs/reference/random/generated/numpy.random.standard_cauchy.html
- [3] https://staff.elka.pw.edu.pl/~jarabas/ALHE/wyklad6.pdf