An overview of ∞-category and Higher Algebra

Jiacheng Liang

SUSTech Department of Mathematics

December 27, 2023

Motivation of ∞-categories

Motivation 1

The most significant motivation is to change the morphism set $Hom_{\mathcal{C}}(X,Y)$ in a category \mathcal{C} to a topological space $Map_{\mathcal{C}}(X,Y)$. Then we can have higher morphisms $\pi_n Map_{\mathcal{C}}(X,Y)$.

For example when considering the category of spectra, we have $\pi_n Map_{\mathcal{C}}(X,Y) = [\Sigma^n X,Y].$

Motivation 2

We want to **internalize** the category theory. In another way, we want to **characterize** a specific ∞ -category by a universal property in the ∞ -category of all ∞ -categories $\mathcal{C}at_{\infty}$.

For instance, we will see the ∞ -category of spaces $\mathcal S$ is "free generated" by the single-point space $*\in\mathcal S$.

Motivation of **∞**-categories

Motivation 1

The most significant motivation is to change the morphism set $Hom_{\mathcal{C}}(X,Y)$ in a category \mathcal{C} to a topological space $Map_{\mathcal{C}}(X,Y)$. Then we can have higher morphisms $\pi_n Map_{\mathcal{C}}(X,Y)$.

For example when considering the category of spectra, we have $\pi_n Map_{\mathcal{C}}(X,Y) = [\Sigma^n X,Y].$

Motivation 2

We want to **internalize** the category theory. In another way, we want to **characterize** a specific ∞ -category by a universal property in the ∞ -category of all ∞ -categories $\mathcal{C}at_{\infty}$.

For instance, we will see the ∞ -category of spaces \mathcal{S} is "free generated" by the single-point space $* \in \mathcal{S}$.

Extracting information from an oc-category

The most intuitive model for ∞ -category is the sSet-enriched (or Top-enriched) category. Actually we have a Quillen equivalence $sSet_{Joyal} \rightleftarrows Cat_{\Delta}$.

Mapping spaces

There are at least 4 definitions of the mapping space $Map_{\mathcal{C}}(X,Y)$ in an ∞ -category \mathcal{C} . But when we take their underlying $Ho(sSet_{Kan})$ -enriched categories, all of them are the same, written as $\underline{h\mathcal{C}}$. (*** most important invariant)

How to extract useful and discard redundant information in certain circumstances is an art in ∞ -category's world.

Example

For example when we want to show a functor between ∞ -categories $F:\mathcal{C}\to\mathcal{D}$ is an equivalence, it suffices to show $\underline{hF}:\underline{h\mathcal{C}}\to\underline{h\mathcal{D}}$ is equivalent. But if we consider colimits in an ∞ -category \mathcal{C} , we need more homotopy coherent information than the same $\underline{h\mathcal{C}}$.

Extracting information from an oc-category

The most intuitive model for ∞ -category is the sSet-enriched (or Top-enriched) category. Actually we have a Quillen equivalence $sSet_{Joyal} \rightleftarrows Cat_{\Delta}$.

Mapping spaces

There are at least 4 definitions of the mapping space $Map_{\mathcal{C}}(X,Y)$ in an ∞ -category \mathcal{C} . But when we take their underlying $Ho(sSet_{Kan})$ -enriched categories, all of them are the same, written as $\underline{h\mathcal{C}}$. (*** most important invariant)

How to extract useful and discard redundant information in certain circumstances is an art in ∞ -category's world.

Example

For example when we want to show a functor between ∞ -categories $F:\mathcal{C}\to\mathcal{D}$ is an equivalence, it suffices to show $\underline{hF}:\underline{h\mathcal{C}}\to\underline{h\mathcal{D}}$ is equivalent.

But if we consider colimits in an ∞ -category \mathcal{C} , we need more homotopy coherent information than those in $\underline{h}\underline{\mathcal{C}}$. In this case, we can't reduce to $\underline{h}\underline{\mathcal{C}}$.

Why use ∞-categories?

Some phenomenons or propositions can't be stated clearly without ∞ -category.

Example

(1) Chromatic convergence and chromatic pullback:

They are homotopy limits of **homotopy**

coherent diagrams $N_*(\mathbb{Z}_{\geq 0}^{op}) \to Sp$ and $\Lambda_2^2 \to Sp$. However, classical framework only provides homotopy diagrams, which can't be used to take homotopy limit.

(2) Postnikov tower in the category of spaces S and its convergence are the same philosophy as above.

Why use ∞ -categories?

Some phenomenons or propositions can't be stated clearly without ∞-category.

Example

(1) Chromatic convergence and chromatic pullback:

coherent diagrams $N_*(\mathbb{Z}_{\geq 0}^{op}) \to Sp$ and $\Lambda_2^2 \to Sp$. However, classical framework only provides homotopy diagrams, which can't be used to take homotopy limit.

(2) Postnikov tower in the category of spaces \mathcal{S} and its convergence are the same philosophy as above.

Why use ∞ -categories?

Example

- (2) Equivariant stable homotopy theory: there are plenty of model categories characterizing it, but all of their underlying ∞ -category are equivalent with Fun(BG, Sp), which is both simple and intuitive.
- (3) In ∞ -framework, the E_{∞} -operad is just commutative operad. And E_{∞} spaces, E_{∞} -spectra are ∞ -commutative monoid objects.
- (4) We have all kinds of well-defined moduli spaces, like $Fun^{\otimes}(C,D)$, $Fun^{lax}(C,D)$ and $CAl(C) \times_C \{X\}$.
- (5) Bousfield localization of an E_{∞} -ring is still an E_{∞} -ring, this is directly by the fact $Sp^{\otimes} \rightleftarrows Sp_E^{\otimes}$ is a symmetric monoidal adjunction, which will induce an adjunction $CAl(Sp) \rightleftarrows CAl(Sp_E)$ by symmetric monoidal ∞ -categorical machine. However, both model category and EKMM can not provide such a machine.
- (6) If C is a 1-category, then $Sp(C) \simeq \{*\}$ is trivial. The stabilization for 1-categories is meaningless.

Outlook and methodology

Preventing Russell's paradox

In order to consider the **category of all categories**, we need to add a set-theoretic axiom into ZFC, i.e. Grothendieck's Assumption:

 \forall cardinal κ , there exists an inaccessible cardinal $\tau > \kappa$. (A good reference: Chap 1, 代数学方法 1, 李文威)

Methodology

By Grothendieck's Assumption

- 1. When not involving category of all categories, technically we can treat all things as small. So all propositions not involving category of all categories will hold in any Grothendieck universe.
- 2. When involving category of all categories, for example $\mathcal{C}at_{\infty}$, we consider it as the ∞ -category $\mathcal{C}at_{\infty}^{\tau}$ of all τ -small categories for an inaccessible cardinal τ . Choose a bigger inaccessible $\tau_2 > \tau$, then technically we can treat $\mathcal{C}at_{\infty}^{\tau}$ as a τ_2 -small ∞ -category in $\mathcal{C}at_{\infty}^{\tau_2}$.

Outlook and methodology

Preventing Russell's paradox

In order to consider the **category of all categories**, we need to add a set-theoretic axiom into ZFC, i.e. Grothendieck's Assumption:

 \forall cardinal κ , there exists an inaccessible cardinal $\tau > \kappa$. (A good reference: Chap 1, 代数学方法 1, 李文威)

Methodology

By Grothendieck's Assumption,

- 1. When not involving **category of all categories**, technically we can treat all things as small. So all propositions not involving **category of all categories** will hold in any Grothendieck universe.
- 2. When involving **category of all categories**, for example Cat_{∞} , we consider it as the ∞ -category Cat_{∞}^{τ} of all τ -small categories for an inaccessible cardinal τ . Choose a bigger inaccessible $\tau_2 > \tau$, then technically we can treat Cat_{∞}^{τ} as a τ_2 -small ∞ -category in Cat_{∞}^{τ} .

Universal properties in the category of categories

Definition (Kan extension along a full subcategory)

Let $i:\mathcal{C}_0\subset\mathcal{C}$ be a full subcategory, we say a functor $F:\mathcal{C}\to\mathcal{D}$ is a left Kan extension along i iff $\forall X\in\mathcal{C},\ (\mathcal{C}_0\times_\mathcal{C}\mathcal{C}_{/X})^\triangleright\to\mathcal{C}\xrightarrow{F}\mathcal{D}$ is a colimit diagram, i.e. $colim_{A\to X,A\in\mathcal{C}_0}F(A)\simeq F(X)$.

Theorem

The restriction $Fun^{LKan}(\mathcal{C},\mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0,\mathcal{D})$ is a categorical equivalence

Example

Let $\mathcal C$ be a small category and $\mathcal D$ be a category that admits small colimits, then

- (1) A functor $F: \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ is a left Kan extension along the Yoneda embedding $i: \mathcal{C} \to \mathcal{P}(\mathcal{C})$ iff F preserves small colimits.
- (2) For any $f \in Fun(\mathcal{C}, \mathcal{D})$, there exists a left Kan extension $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ along i.
- (3) And hence we have $Fun^{colim}(\mathcal{P}(\mathcal{C}), \mathcal{D}) \to Fun(\mathcal{C}, \mathcal{D})$ is an equivalence. (e.g $sSet \to Top$)

Universal properties in the category of categories

Definition (Kan extension along a full subcategory)

Let $i:\mathcal{C}_0\subset\mathcal{C}$ be a full subcategory, we say a functor $F:\mathcal{C}\to\mathcal{D}$ is a left Kan extension along i iff $\forall X\in\mathcal{C},\ (\mathcal{C}_0\times_\mathcal{C}\mathcal{C}_{/X})^{\triangleright}\to\mathcal{C}\xrightarrow{F}\mathcal{D}$ is a colimit diagram, i.e. $colim_{A\to X,A\in\mathcal{C}_0}F(A)\simeq F(X)$.

Theorem

The restriction $Fun^{LKan}(\mathcal{C},\mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0,\mathcal{D})$ is a categorical equivalence.

Example

Let ${\mathcal C}$ be a small category and ${\mathcal D}$ be a category that admits small colimits, then

- (1) A functor $F: \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ is a left Kan extension along the Yoneda embedding $i: \mathcal{C} \to \mathcal{P}(\mathcal{C})$ iff F preserves small colimits.
- (2) For any $f \in Fun(\mathcal{C}, \mathcal{D})$, there exists a left Kan extension $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ along i.
- (3) And hence we have $Fun^{colim}(\mathcal{P}(\mathcal{C}), \mathcal{D}) \to Fun(\mathcal{C}, \mathcal{D})$ is an equivalence. (e.g. $sSet \to Top$)

Universal properties in the category of categories

Definition (Kan extension along a full subcategory)

Let $i:\mathcal{C}_0\subset\mathcal{C}$ be a full subcategory, we say a functor $F:\mathcal{C}\to\mathcal{D}$ is a left Kan extension along i iff $\forall X\in\mathcal{C},\ (\mathcal{C}_0\times_\mathcal{C}\mathcal{C}_{/X})^\triangleright\to\mathcal{C}\xrightarrow{F}\mathcal{D}$ is a colimit diagram, i.e. $colim_{A\to X,A\in\mathcal{C}_0}F(A)\simeq F(X)$.

Theorem

The restriction $Fun^{LKan}(\mathcal{C}, \mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0, \mathcal{D})$ is a categorical equivalence.

Example

Let \mathcal{C} be a small category and \mathcal{D} be a category that admits small colimits, then

- (1) A functor $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ is a left Kan extension along the Yoneda embedding $i : \mathcal{C} \to \mathcal{P}(\mathcal{C})$ iff F preserves small colimits.
- (2) For any $f \in Fun(\mathcal{C}, \mathcal{D})$, there exists a left Kan extension $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ along i.
- (3) And hence we have $Fun^{colim}(\mathcal{P}(\mathcal{C}), \mathcal{D}) \to Fun(\mathcal{C}, \mathcal{D})$ is an equivalence. (e.g. $sSet \to Top$)

Cocompletion

Definition

Let \mathbb{K} be a collection of simplicial sets. We say that an ∞ -category \mathcal{C} is \mathbb{K} -cocomplete if it admits K-diagram colimits, for each $K \in \mathbb{K}$. We say that a functor of ∞ -categories $h: \mathcal{C} \to \widehat{\mathcal{C}}$ exhibits $\widehat{\mathcal{C}}$ as a \mathbb{K} -cocompletion of \mathcal{C} if the ∞ -category $\widehat{\mathcal{C}}$ is \mathbb{K} -cocomplete and for every \mathbb{K} -cocomplete ∞ -category \mathcal{D} , precomposition with h induces an equivalence of ∞ -categories $\operatorname{Fun}^{\mathbb{K}}(\widehat{\mathcal{C}},\mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}(\mathcal{C},\mathcal{D})$.

Theorem

Let \mathbb{K} be a (small) collection of simplicial sets, then for any (small) ∞ -category C, there exists a \mathbb{K} -completion $C \to P^{\mathbb{K}}(C)$. That gives an adjunction $Cat_{\infty} \rightleftarrows Cat(\mathbb{K})_{\infty}$. e.g. $P^{small}(C) = Fun(C, \mathcal{S})$ and $P^{small}(*) = \mathcal{S}$.

Cocompletion

Definition

Let \mathbb{K} be a collection of simplicial sets. We say that an ∞ -category \mathcal{C} is \mathbb{K} -cocomplete if it admits K-diagram colimits, for each $K \in \mathbb{K}$. We say that a functor of ∞ -categories $h: \mathcal{C} \to \widehat{\mathcal{C}}$ exhibits $\widehat{\mathcal{C}}$ as a \mathbb{K} -cocompletion of \mathcal{C} if the ∞ -category $\widehat{\mathcal{C}}$ is \mathbb{K} -cocomplete and for every \mathbb{K} -cocomplete ∞ -category \mathcal{D} , precomposition with h induces an equivalence of ∞ -categories $\operatorname{Fun}^{\mathbb{K}}(\widehat{\mathcal{C}},\mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}(\mathcal{C},\mathcal{D})$.

Theorem

Let \mathbb{K} be a (small) collection of simplicial sets, then for any (small) ∞ -category C, there exists a \mathbb{K} -completion $C \to P^{\mathbb{K}}(C)$. That gives an adjunction $Cat_{\infty} \rightleftarrows Cat(\mathbb{K})_{\infty}$. e.g. $P^{small}(C) = Fun(C, \mathcal{S})$ and $P^{small}(*) = \mathcal{S}$.

Let \mathcal{D} be an ∞ -category.

Theorem (Pointedlization)

If $\mathcal D$ admits final object, then there exists a pointedlization $\mathcal D_{*/} \to \mathcal D$ such that for any pointed ∞ -category $\mathcal C$ the forgetful functor $\theta:\operatorname{Fun}'(\mathcal C,\mathcal D_*)\to\operatorname{Fun}'(\mathcal C,\mathcal D)$ is an equivalence. That provides an adjunction $\operatorname{Cat}_\infty^{Final,pt}\rightleftarrows\operatorname{Cat}_\infty^{Final}$.

Theorem (Stabilization

If $\mathcal D$ admits finite limits, then there exists a stabilization $Sp(\mathcal D) \to \mathcal D$ such that for any stable ∞ -category $\mathcal C$ the forgetful functor $\theta: \operatorname{Fun}^{Flim}(\mathcal C, Sp(\mathcal D)) \to \operatorname{Fun}^{Flim}(\mathcal C, \mathcal D)$ is an equivalence. That provides an adjunction $Cat_\infty^{Flim,st} \rightleftarrows Cat_\infty^{Flim}$.

Example

The category spectra Sp(P(*)) is the stabilization of the cocompletion of the trivial ∞ -category.

Let \mathcal{D} be an ∞ -category.

Theorem (Pointedlization)

If $\mathcal D$ admits final object, then there exists a pointedlization $\mathcal D_{*/} \to \mathcal D$ such that for any pointed ∞ -category $\mathcal C$ the forgetful functor $\theta:\operatorname{Fun}'(\mathcal C,\mathcal D_*)\to\operatorname{Fun}'(\mathcal C,\mathcal D)$ is an equivalence. That provides an adjunction $\operatorname{Cat}_\infty^{Final,pt}\rightleftarrows\operatorname{Cat}_\infty^{Final}$.

Theorem (Stabilization)

If $\mathcal D$ admits finite limits, then there exists a stabilization $Sp(\mathcal D) \to \mathcal D$ such that for any stable ∞ -category $\mathcal C$ the forgetful functor $\theta: \operatorname{Fun}^{Flim}(\mathcal C, Sp(\mathcal D)) \to \operatorname{Fun}^{Flim}(\mathcal C, \mathcal D)$ is an equivalence. That provides an adjunction $Cat_\infty^{Flim,st} \rightleftarrows Cat_\infty^{Flim}$.

Example

The category spectra Sp(P(*)) is the stabilization of the cocompletion of the trivial ∞ -category.

Let \mathcal{D} be an ∞ -category.

Theorem (Pointedlization)

If $\mathcal D$ admits final object, then there exists a pointedlization $\mathcal D_{*/} \to \mathcal D$ such that for any pointed ∞ -category $\mathcal C$ the forgetful functor $\theta:\operatorname{Fun}'(\mathcal C,\mathcal D_*)\to\operatorname{Fun}'(\mathcal C,\mathcal D)$ is an equivalence. That provides an adjunction $\operatorname{Cat}_\infty^{Final,pt}\rightleftarrows\operatorname{Cat}_\infty^{Final}$.

Theorem (Stabilization)

If $\mathcal D$ admits finite limits, then there exists a stabilization $Sp(\mathcal D) \to \mathcal D$ such that for any stable ∞ -category $\mathcal C$ the forgetful functor $\theta: \operatorname{Fun}^{Flim}(\mathcal C, Sp(\mathcal D)) \to \operatorname{Fun}^{Flim}(\mathcal C, \mathcal D)$ is an equivalence. That provides an adjunction $Cat_\infty^{Flim,st} \rightleftarrows Cat_\infty^{Flim}$.

Example

The category spectra Sp(P(*)) is the stabilization of the cocompletion of the trivial ∞ -category.

Definition

Let $n \geq -2$, an object Z in an ∞ -category C is n-truncated if, for every object $Y \in C$, the space $Map_C(Y, Z)$ is n-truncated space.

Theorem (Truncation)

If C is a presentable ∞ -category, then there exists an n-truncation functor $C \to \tau_{\leq n} C$. Suppose that $\mathcal D$ is a presentable that all objects are n-truncated, i.e. it's an (n+1)-category. Then composition with $\tau_{\leq n}$ induces an equivalence $s: \operatorname{Fun}^L(\tau_{\leq n} C, \mathcal D) \to \operatorname{Fun}^L(C, \mathcal D)$. That provides an adjunction $\Pr^L \rightleftarrows \Pr^L_{\leq (n+1)}$.

Example

- (1) An space X in S is n-truncated iff all $\pi_i X$ vanish when i>n. Particularly $\mathcal{S}_{<0}\simeq N(Set)$.
- (2) An n-truncated object Cat_{∞} is exactly an n-category. And all n-categories form ar (n+1)-category $(Cat_{\infty})_{\leq n}$.

Definition

Let $n \ge -2$, an object Z in an ∞ -category C is n-truncated if, for every object $Y \in C$, the space $Map_C(Y, Z)$ is n-truncated space.

Theorem (Truncation)

If C is a presentable ∞ -category, then there exists an n-truncation functor $C \to \tau_{\leq n} C$. Suppose that $\mathcal D$ is a presentable that all objects are n-truncated, i.e. it's an (n+1)-category. Then composition with $\tau_{\leq n}$ induces an equivalence $s: \operatorname{Fun}^L(\tau_{\leq n} C, \mathcal D) \to \operatorname{Fun}^L(C, \mathcal D)$. That provides an adjunction $\Pr^L \rightleftarrows \Pr^L_{\leq (n+1)}$.

Example

- (1) An space X in S is n-truncated iff all $\pi_i X$ vanish when i > n. Particularly $S_{<0} \simeq N(Set)$.
- (2) An n-truncated object Cat_{∞} is exactly an n-category. And all n-categories form an (n+1)-category $(Cat_{\infty})_{\leq n}$.

Higher commutative monoid

Definition (Reformulate commutative monoid)

A commutative monoid in an ordinary category C which admits finite products is a functor $M:(Fin_*)_{\leq 3} \to C$ such that the canonical maps $M(\rho_i):M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \leq i \leq n} M(\langle 1 \rangle)$ in the C for $0 \leq n \leq 3$.

Definition

Let C be an ∞ -category with finite products, we define a commutative monoid as a a functor $M: N_*(Fin_*) \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \le i \le n} M(\langle 1 \rangle)$ in the C for all $n \ge 0$.

Proposition

Let C be an n-category with finite products, then $Fun^{CM}(N_*(Fin_*), C) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq (n+2)}, C)$ is categorical equivalent since in this case any commutative monoid $M: N_*(Fin_*) \to C$ is a right Kan extension along $N_*(Fin_*)_{\leq (n+2)} \subset N_*(Fin_*)$.

Higher commutative monoid

Definition (Reformulate commutative monoid)

A commutative monoid in an ordinary category C which admits finite products is a functor $M:(Fin_*)_{\leq 3} \to C$ such that the canonical maps $M(\rho_i):M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \leq i \leq n} M(\langle 1 \rangle)$ in the C for $0 \leq n \leq 3$.

Definition

Let C be an ∞ -category with finite products, we define a commutative monoid as a a functor $M: N_*(Fin_*) \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \le i \le n} M(\langle 1 \rangle)$ in the C for all $n \ge 0$.

Proposition

Let C be an n-category with finite products, then $Fun^{CM}(N_*(Fin_*), C) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq (n+2)}, C)$ is categorical equivalent since in this case any commutative monoid $M: N_*(Fin_*) \to C$ is a right Kan extension along $N_*(Fin_*)_{\leq (n+2)} \subset N_*(Fin_*)$.

Higher commutative monoid

Definition (Reformulate commutative monoid)

A commutative monoid in an ordinary category C which admits finite products is a functor $M:(Fin_*)_{\leq 3} \to C$ such that the canonical maps $M(\rho_i):M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \leq i \leq n} M(\langle 1 \rangle)$ in the C for $0 \leq n \leq 3$.

Definition

Let C be an ∞ -category with finite products, we define a commutative monoid as a a functor $M: N_*(Fin_*) \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \le i \le n} M(\langle 1 \rangle)$ in the C for all $n \ge 0$.

Proposition

Let C be an n-category with finite products, then $Fun^{CM}(N_*(Fin_*), C) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq (n+2)}, C)$ is categorical equivalent since in this case any commutative monoid $M: N_*(Fin_*) \to C$ is a right Kan extension along $N_*(Fin_*)_{\leq (n+2)} \subset N_*(Fin_*)$.

Symmetric monoidal ∞-category

Definition

A symmetric monoidal ∞ -category is a commutative monoid in Cat_{∞} . Particularly, when a symmetric monoidal ∞ -category C is 1-category, it is a commutative monoid in the $(Cat_{\infty})_{\leq 1}$, which is a 2-category. So we have

$$CMon(Cat_{\leq 1}) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq 4}, (Cat_{\infty})_{\leq 1}).$$

By (un)straightening equivalence $Fun(N_*(Fin_*), Cat_{\infty}) \simeq CoCart_{/N_*(Fin_*)}$, we get the following equivalent definition.

Definition

 $p:\mathcal{C}^{\otimes} \to N_*(Fin_*)$ with the following property: For each $n \geq 0$, the maps $\left\{ \rho^i: \langle n \rangle \to \langle 1 \rangle \right\}_{1 \leq i \leq n}$ induce functors $\rho^i_!: \mathcal{C}^{\otimes}_{\langle n \rangle} \to \mathcal{C}^{\otimes}_{\langle 1 \rangle}$ which determine an equivalence $\mathcal{C}^{\otimes}_{\langle n \rangle} \simeq (\mathcal{C}^{\otimes}_{\langle 1 \rangle})^n$. And define $\mathcal{C}^{\otimes}_{\langle 1 \rangle}$ as its underlying ∞ -category.

Symmetric monoidal ∞ -category

Definition

A symmetric monoidal ∞ -category is a commutative monoid in Cat_{∞} . Particularly, when a symmetric monoidal ∞ -category C is 1-category, it is a commutative monoid in the $(Cat_{\infty})_{\leq 1}$, which is a 2-category. So we have

$$CMon(Cat_{\leq 1}) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq 4}, (Cat_{\infty})_{\leq 1}).$$

By (un)straightening equivalence $Fun(N_*(Fin_*), Cat_{\infty}) \simeq CoCart_{(N_*(Fin_*))}$, we get the following equivalent definition.

Definition

A symmetric monoidal ∞ -category is a coCartesian fibration of simplicial sets $p: \mathcal{C}^{\otimes} \to N_*(Fin_*)$ with the following property: For each $n \geq 0$, the maps $\left\{ \rho^i : \langle n \rangle \to \langle 1 \rangle \right\}_{1 \leq i \leq n}$ induce functors $\rho^i_! : \mathcal{C}^{\otimes}_{\langle n \rangle} \to \mathcal{C}^{\otimes}_{\langle 1 \rangle}$ which determine an equivalence $\mathcal{C}_{(n)}^{\otimes} \simeq (\mathcal{C}_{(1)}^{\otimes})^n$. And define $\mathcal{C}_{(1)}^{\otimes}$ as its underlying ∞-category.

Tensor product of ∝-categories

Let K be the collection of all small simplicial sets.

Definition

Given 2 cocomplete ∞ -categories C and D, we define the tensor product as a functor $C \times D \to C \otimes D$ such that for any cocomplete E, we have $Fun^{\mathbb{K}}(C \otimes D, E) \xrightarrow{\sim} Fun^{\mathbb{K} \boxtimes \mathbb{K}}(C \times D, E)$. Such tensor product always exists because the natural functor $C \times D \to \mathcal{P}^{\mathbb{K}}_{\mathbb{K} \boxtimes \mathbb{K}}(C \times D)$ satisfies that.

Theorem

The above gives a symmetric monoidal structure $Cat_{\infty}(\mathbb{K})^{\otimes} \to N_{*}(Fin_{*})$ and makes the cocompletion funcor a symmetric monoidal adjunction $\widehat{Cat}_{\infty}^{\otimes} \rightleftarrows \widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$. So $\mathcal{S} = \mathcal{P}(*)$ is the unit in $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$.

Tensor product of ∞-categories

Let **K** be the collection of all small simplicial sets.

Definition

Given 2 cocomplete ∞ -categories C and D, we define the tensor product as a functor $C \times D \to C \otimes D$ such that for any cocomplete E, we have $Fun^{\mathbb{K}}(C \otimes D, E) \xrightarrow{\sim} Fun^{\mathbb{K} \boxtimes \mathbb{K}}(C \times D, E)$. Such tensor product always exists because the natural functor $C \times D \to \mathcal{P}^{\mathbb{K}}_{\mathbb{K} \boxtimes \mathbb{K}}(C \times D)$ satisfies that.

Theorem

The above gives a symmetric monoidal structure $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes} \to N_{*}(Fin_{*})$ and makes the cocompletion funcor a symmetric monoidal adjunction $\widehat{Cat}_{\infty}^{\otimes} \rightleftarrows \widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$. So $\mathcal{S} = \mathcal{P}(*)$ is the unit in $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$.

Cocomplete symmetric monoidal structure

Remark

By (un)straightening equivalence, $CAl(\widehat{Cat}_{\infty}(\mathbb{K})) \subset CAl(\widehat{Cat}_{\infty})$ is the subcategory whose objects are symmetric monoidal ∞ -categories such that $-\otimes -$ preserves colimits separately in each variable (called **cocomplete symmetric monoidal** categories), and whose morphisms are **colimit-preserving** symmetric monoidal functors.

Corollary

The symmetric monoidal adjunction induces an adjunction between algebras $F: CAl(\widehat{Cat}_{\infty}) \rightleftarrows CAl(\widehat{Cat}_{\infty}(\mathbb{K})).$

Corollary

- (1) The $S = \mathcal{P}(*)$ is the unit in $Cat_{\infty}(\mathbb{K})^{\otimes}$, which means it is initial object in $CAl(\widehat{Cat}_{\infty}(\mathbb{K}))$ and hence S admits a cocomplete symmetric monoidal structure S
- (2) So for any cocomplete symmetric monoidal ∞ -category, there exists essentially unique colimit-preserving symmetric monoidal functor $\mathcal{S}^{\otimes} \to \mathcal{C}^{\otimes}$.

Cocomplete symmetric monoidal structure

Remark

By (un)straightening equivalence, $CAl(Cat_{\infty}(\mathbb{K})) \subset CAl(Cat_{\infty})$ is the subcategory whose objects are symmetric monoidal ∞ -categories such that $-\otimes -$ preserves colimits separately in each variable (called **cocomplete symmetric monoidal** categories), and whose morphisms are **colimit-preserving** symmetric monoidal functors.

Corollary

The symmetric monoidal adjunction induces an adjunction between algebras $F: CAl(\widehat{Cat}_{\infty}) \rightleftarrows CAl(\widehat{Cat}_{\infty}(\mathbb{K})).$

Corollary

- (1) The $S = \mathcal{P}(*)$ is the unit in $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$, which means it is initial object in $\widehat{CAl}(\widehat{Cat}_{\infty}(\mathbb{K}))$ and hence S admits a cocomplete symmetric monoidal structure S.
- (2) So for any cocomplete symmetric monoidal ∞ -category, there exists essentially unique colimit-preserving symmetric monoidal functor $S^{\otimes} \to C^{\otimes}$.

Localization

Proposition (Localization)

Let \mathcal{C} be an ∞ -category and let $L:\mathcal{C}\to\mathcal{C}$ be a functor with essential image $L\mathcal{C}\subseteq\mathcal{C}$. The following conditions are equivalent:

- (1) There exists a functor $f: \mathcal{C} \to \mathcal{D}$ with a fully faithful right adjoint $g: \mathcal{D} \to \mathcal{C}$ and an equivalence between $g \circ f$ and L.
- (2) When regarded as a functor from \mathcal{C} to $L\mathcal{C}, L$ is a left adjoint of the inclusion $L\mathcal{C} \subseteq \mathcal{C}$.
- (3) There exists a natural transformation from $id_{\mathcal{C}} \to L$ such that, $L \circ id_{\mathcal{C}} \to L \circ L$ and $id_{\mathcal{C}} \circ L \to L \circ L$ are equivalences in $Fun(\mathcal{C}, \mathcal{C})$, i.e. an idempotent object in $Fun(\mathcal{C}, \mathcal{C})$.

Proposition

The full subcat $Pr^L \subset \widehat{Cat}_{\infty}(\mathbb{K})$ is closed under tensor product and hence inherits a symmetric monoidal structure Pr_L^{\otimes} .

Bousfield localization

Let \mathcal{C}^{\otimes} be a presentable symmetric monoidal category, i.e. an object in $CAl(Pr^{L})$.

Theorem (Bousfield localization)

Let $E \in \mathcal{C}$ be an object, then $W_E = \{X \to Y | X \otimes E \xrightarrow{\sim} Y \otimes E\} \subset Fun(\Delta^1, \mathcal{C})$ is a small-generated strongly saturated collection, which means there exists an accessible localization functor $L_E : \mathcal{C} \to \mathcal{C}$.

Furthermore, Bousfield localization is compatible with its symmetric monoidal structure, meaning it forms a symmetric monoidal adjunction $\mathcal{C}^{\otimes} \rightleftarrows \mathcal{C}_{E}^{\otimes}$.

Corollary

Symmetric monoidal adjunction gives an adjunction $CAl(\mathcal{C}) \rightleftarrows CAl(\mathcal{C}_E)$. And a morphims $A \to B$ in $CAl(\mathcal{C})$ is a $CAl(\mathcal{C}_E)$ -localization iff underlying $p(A) \to p(B)$ is an E-localization in \mathcal{C} .

Localization and idempotent object

Definition (idempotent object)

Let C be a monoidal (∞ -)category. A morphism $1_C \to X$ is idempotent iff $1_C \otimes X \to X \otimes X$ and $X \otimes 1_C \to X \otimes X$ are equivalences. (e.g. $\mathbb{Z} \to \mathbb{Z}[1/p]$)

Theorem

Let $\mathcal C$ be a symmetric monoidal ∞ -category and let $e: \mathbf 1 \to E$ be a morphism in $\mathcal C$. The following conditions are equivalent:

- (1) The map e exhibits E as an idempotent object of ${\mathcal C}$
- (2) Let $l_E : \mathcal{C} \to \mathcal{C}$ be the functor given by left tensor product with E. Then e induces a functor $\alpha : \mathrm{id}_{\mathcal{C}} \to l_E$ which exhibits l_E as a localization functor on \mathcal{C} .

Localization and idempotent object

Definition (idempotent object)

Let C be a monoidal (∞ -)category. A morphism $1_C \to X$ is idempotent iff $1_C \otimes X \to X \otimes X$ and $X \otimes 1_C \to X \otimes X$ are equivalences. (e.g. $\mathbb{Z} \to \mathbb{Z}[1/p]$)

Theorem

Let \mathcal{C} be a symmetric monoidal ∞ -category and let $e: \mathbf{1} \to E$ be a morphism in \mathcal{C} . The following conditions are equivalent:

- (1) The map e exhibits E as an idempotent object of C.
- (2) Let $l_E : \mathcal{C} \to \mathcal{C}$ be the functor given by left tensor product with E. Then e induces a functor $\alpha : \mathrm{id}_{\mathcal{C}} \to l_E$ which exhibits l_E as a localization functor on \mathcal{C} .

Symmetric localization and idempotent algebra

Definition

Let \mathcal{C} be a symmetric monoidal ∞ -category. We will say that a commutative algebra object $A \in \operatorname{CAlg}(\mathbb{C})$ is idempotent if unit map $e: \mathbf{1} \to A$ is idempotent.

Theorem

Let $\mathcal C$ be a symmetric monoidal ∞ -category with unit object 1, which we regard as a trivial algebra object of $\mathcal C$. Then the functor

$$heta: \operatorname{CAlg}^{idem} \left(\mathcal{C}
ight) \subseteq \operatorname{CAlg} (\mathcal{C}) \simeq \operatorname{CAlg} (\mathcal{C})_{1/} o \mathcal{C}_{1/2}$$

is fully faithful, and its essential image are idempotent objects in \mathcal{C} , which gives an equivalence $\mathrm{CAlg}^{idem}\left(\mathcal{C}\right)\stackrel{\sim}{\to} (\mathcal{C}_{1/})^{idem}$. Furthermore, any mapping space in $(\mathcal{C}_{1/})^{idem}$ is either empty or contractible, i.e. it is a 0-category and equivalent to a partial-order set N(I).

Symmetric localization and idempotent algebra

Definition

Let \mathcal{C} be a symmetric monoidal ∞ -category. We will say that a commutative algebra object $A \in \operatorname{CAlg}(\mathbb{C})$ is idempotent if unit map $e: \mathbf{1} \to A$ is idempotent.

Theorem

Let \mathcal{C} be a symmetric monoidal ∞ -category with unit object $\mathbf{1}$, which we regard as a trivial algebra object of \mathcal{C} . Then the functor

$$\theta: \mathrm{CAlg}^{idem} (\mathcal{C}) \subseteq \mathrm{CAlg}(\mathcal{C}) \simeq \mathrm{CAlg}(\mathcal{C})_{1/} \to \mathcal{C}_{1/}$$

is fully faithful, and its essential image are idempotent objects in \mathcal{C} , which gives an equivalence $\operatorname{CAlg}^{idem}(\mathcal{C}) \xrightarrow{\sim} (\mathcal{C}_{1/})^{idem}$. Furthermore, any mapping space in $(\mathcal{C}_{1/})^{idem}$ is either empty or contractible, i.e. it is a 0-category and equivalent to a partial-order set N(I).

Interesting applications

Proposition

The full subcat $Pr^L \subset \widehat{Cat}_{\infty}(\mathbb{K})$ is closed under tensor product (so \mathcal{S} is also the unit in Pr^L) and hence inherits a symmetric monoidal structure. In this case, for any $C, D \in Pr^L$, we have natural equivalence $C \otimes D \simeq RFun(C^{op}, D)$.

Theorem

The following 3 colimit-preserving functors $\mathcal{S} \xrightarrow{\tau \leq n} \tau_{\leq n} \mathcal{S}$, $\mathcal{S} \xrightarrow{(-)_+} \mathcal{S}_*$ and $\mathcal{S} \xrightarrow{\Sigma_+^{\omega}} Sp$ are idempotent objects in Pr^L . Let \mathcal{C} be a presentable ∞ -category, then

- (1) The functor $\tau_{\leq n}$ induces a map $\theta: \mathcal{C} \simeq \mathcal{C} \otimes \mathcal{S} \to \mathcal{C} \otimes \tau_{\leq n} \mathcal{S} \simeq \tau_{\leq n} \mathcal{C}$ which exhibits θ as an n-truncation functor.
- (2) The functor $(-)_+$ induces a map $\theta: \mathcal{C} \simeq \mathcal{C} \otimes \mathcal{S} \to \mathcal{C} \otimes \mathcal{S}_* \simeq \mathcal{C}_*$ which exhibits θ as a copointedlization functor.
- (3) The functor Σ_+^{∞} induces a map $\theta: \mathcal{C} \simeq \mathcal{C} \otimes \mathcal{S} \to \mathcal{C} \otimes Sp \simeq Sp(\mathcal{C})$ which exhibits θ as a cospectralization functor.

Interesting applications

Proposition

The full subcat $Pr^L \subset \widehat{Cat}_{\infty}(\mathbb{K})$ is closed under tensor product (so \mathcal{S} is also the unit in Pr^L) and hence inherits a symmetric monoidal structure. In this case, for any $C, D \in Pr^L$, we have natural equivalence $C \otimes D \simeq RFun(C^{op}, D)$.

Theorem

The following 3 colimit-preserving functors $\mathcal{S} \xrightarrow{\tau \leq n} \tau_{\leq n} \mathcal{S}$, $\mathcal{S} \xrightarrow{(-)_+} \mathcal{S}_*$ and $\mathcal{S} \xrightarrow{\Sigma_+^{\infty}} Sp$ are idempotent objects in Pr^L . Let \mathcal{C} be a presentable ∞ -category, then

- (1) The functor $\tau_{\leq n}$ induces a map $\theta: \mathcal{C} \simeq \mathcal{C} \otimes \mathcal{S} \to \mathcal{C} \otimes \tau_{\leq n} \mathcal{S} \simeq \tau_{\leq n} \mathcal{C}$ which exhibits θ as an n-truncation functor.
- (2) The functor $(-)_+$ induces a map $\theta: \mathcal{C} \simeq \mathcal{C} \otimes \mathcal{S} \to \mathcal{C} \otimes \mathcal{S}_* \simeq \mathcal{C}_*$ which exhibits θ as a copointedlization functor.
- (3) The functor Σ_+^{∞} induces a map $\theta: \mathcal{C} \simeq \mathcal{C} \otimes \mathcal{S} \to \mathcal{C} \otimes Sp \simeq Sp(\mathcal{C})$ which exhibits θ as a cospectralization functor.

Reinterpretation

Corollary

By
$$\operatorname{CAlg}(Pr^L)^{\operatorname{idem}} \xrightarrow{\sim} (Pr_{\mathcal{S}/}^L)^{\operatorname{idem}}$$
 and the fact that $\mathcal{S} \xrightarrow{\tau \leq n} \tau_{\leq n} \mathcal{S}$, $\mathcal{S} \xrightarrow{(-)_+} \mathcal{S}_*$,

$$\mathcal{S} \xrightarrow{\Sigma_+^\infty} Sp \in (Pr_{\mathcal{S}/}^L)^{\mathsf{idem}}$$
 ,

- (1) There is a unique cocomplete symmetric monoidal structure on S such that * is the unit, which coincides its **Cartesian monoidal** structure.
- (2) There is a unique cocomplete symmetric monoidal structure on $\tau_{\leq n} S$ such that * is the unit, which coincides its **Cartesian monoidal** structure.
- (3) There is a unique cocomplete symmetric monoidal structure on S_* such that S^0 is the unit.
- (4) There is a unique cocomplete symmetric monoidal structure on Sp such that $\sum_{i=0}^{\infty} S^{0}$ is the unit.

Bousfield localization with respect to an idempotent object

Theorem

Let \mathcal{C}^{\otimes} be a symmetric monoidal ∞ -category and $1_C \to E$ be an idempotent object in \mathcal{C} , then there exists a symmetric monoidal localization $L_E^{\otimes}: \mathcal{C}^{\otimes} \rightleftarrows \mathcal{C}_E^{\otimes}$. Furthermore, The inclusion $\mathcal{C}_E^{\otimes} \to \mathcal{C}^{\otimes}$ is closed under tensor product and hence (strong) symmetric monoidal.

Corollary

The following 3 collections of presentable ∞ -categories are closed under tensor product:

- (1) Pointed presentable ∞-categories;
- (2) Stable presentable ∞-categories;
- (3) Presentable (n+1)-categories.