Decision Trees

CS 480 Intro to Artificial Intelligence

An example classification task

"Should you eat at this new restaurant?"

Binary Features

- Alternate: suitable alternative nearby
- Bar: has a bar to wait in
- Fri/Sat: it's Friday/Saturday
- Hungry: you are hungry
- Raining: is it currently raining
- Reservation: made a reservation

$\mathbf{x} = \langle y, y, n, y, Some, \$, n, n, Thai, 0-10 \rangle$

$$y = \text{True}$$

Categorical Features

- Patrons: how many people are inside (None, Some, Full)
- Price: (\$, \$\$, \$\$\$)
- Type: (French, Itallian, Thai, Burger)
- WaitEstimate: estimated time to get a table (0-10, 10-30, 30-60, >60)

Given \mathbf{x} , how can we predict y?

Decision Tree Representation

Decision is based on the answers to a sequence of questions, represented as a tree

- Nodes represent questions about x ("attributes" or "features")
- Edges represent values that attributes take
- Leaves represent output (final decision)
- Sequence/number of questions may depend on answers (not a full/complete tree)
- Doesn't make sense to ask the same question more than once on the same path from the root (already know the answer)

A tree for our example

Data for our example

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Using data to build a tree (1)

Label True 1, 3, 4, 6, 8, 12
False 2, 5, 7, 9, 10, 11

Let's examine how the attributes split up the examples

Example #

Not the best split

- Each branch has both T and F examples
- Try another attribute first

Using data to build a tree (2)

True	1, 3, 4, 6, 8, 12
False	2, 5, 7, 9, 10, 11

Final tree for the 12 examples

Algorithm sketch for Decision Trees

Given Data S:

- 1. Pick "best" question Q, make a node N
- Split S into subsets for each possible response to Q
- 3. Make children of N by recursing on each subset

Base Cases

How do we define "best" question?

- Hit depth limit (leaf: majority label)
- All examples have the same label (leaf: that label)
- Subset is empty (leaf: majority label of parent)
- Run out of questions (leaf: majority label)

Defining what makes a good question (1)

Which of these three splits is "best"?

Defining what makes a good question (2)

- Q1 subdivided the examples into sets with equal proportions of both labels (have we learned anything?)
- Q2 split off a single example
- Q3 took a completely disordered set of examples and divided them perfectly by class

How do we measure disorder? $H(S) = -\sum_{y_i} p(y_i) \log p(y_i)$

 $p(y_i) = (\# \text{ examples labeled } y_i)/(\# \text{ examples})$

11

Entropy example: flipping a coin

- Fair coin: p(heads) = p(tails) = 0.5
 H(fair coin) = -(0.5) log (0.5) (0.5) log (0.5) = (-0.5)(-1) + (-0.5)(-1) = 1.0
- Biased coin: p(heads)=0.75, p(tails)=0.25
 H(biased coin) = -(0.75) log (0.75) (0.25) log (0.25) = 0.8112...
- Two-headed coin: p(heads)=1, p(tails)=0
 H(2-h coin) = -(1) log (1) (0) log (0) = 0

 $x \log x \rightarrow 0 \text{ as } x \rightarrow 0$

Information Gain

- We want to measure how much entropy a question removes
- Measure entropy before and after split, averaging over all branches

$$IG(Q,S) = H(S) - H(S \mid Q)$$
 "Remainder" $H(S) = \sum_{y_i} p(y_i) \log p(y_i)$

$$H(S \mid Q) = \sum_{a_i} \frac{|S_{a_i}|}{|S|} H(S_{a_i})$$

 $S_{a_i} = \text{Subset of S that matches } a_i$

Restaurant Example: "Type?"

Before splitting: 6 True, 6 False

 $H(S) = -(0.5) \log (0.5) - (0.5) \log (0.5) = 1.0$

After splitting

- "French": 1 True, 1 False
 - H(S|Type=French) = 2/12*(-0.5*log(0.5) 0.5*log(0.5)) = 2/12
- "Italian": 1 True, 1 False, H(S|Type=Italian) = 2/12
- "Thai": 2 True, 2 False, H(S|Type=Thai) = 4/12
- "Burger": 2 True, 2 False, H(S|Type=Burger) = 4/12

Remainder(S,Type?) = 2/12 + 2/12 + 4/12 + 4/12 = 1Gain(Type?) = H(S) - Remainder(S,Type) = 1-1 = 0

Restaurant Example: "Patrons?"

Before splitting: 6 True, 6 False

 $H(S) = -(0.5) \log (0.5) - (0.5) \log (0.5) = 1.0$

After splitting

- "Some": 4 True, 0 False
 - H(S|Patrons=Some) = 4/12*(-1.0*log(1.0) 0.0*log(0.0)) = 0
- "None": 0 True, 2 False, H(S|Patrons=None) = 0
- "Full": 2 True, 4 False, H(S|Type=Thai)
 - H(S|Patrons=Full) = 6/12*((-2/6)*log(2/6) (4/6)*log(4/6)) = 0.459

Remainder(S,Patrons?) = 0 + 0 + 0.459 = 0.459Gain(Patrons?) = H(S) - Remainder(S, Patrons) = 1-0.459 = 0.541

DT learning algorithm revisited

decision-tree-learning(examples, questions, default_val):

- IF examples is empty THEN RETURN leaf(default_val)
- 2. ELSE IF all examples have same label THEN RETURN leaf(label)
- ELSE IF remaining questions is empty THEN RETURN leaf(majority-label(examples))
 ELSE

```
best_q = question with highest info-gain
node = new DT node with question best_q
subtree_default = majority-label(examples)
subtree_questions = questions without best_q
FOREACH "v" response to best_q DO:
     subset = {element of examples where best_q(example)=v}
```

recursion

→ subtree = decision-tree-learning(subset,subtree_questions,subtree_default)

add branch to node for v pointing to subtree

return node

Base cases (make a leaf)

- 1. Empty subset: leaf value = most common label of parent
- 2. All one label: leaf value = that label
- 3. No more questions to ask: leaf value = most common label of subset

Complexity of Decision Trees

Restriction: binary inputs, binary outputs

$$\mathcal{X} = \{0, 1\}^D$$
$$\mathcal{Y} = \{0, 1\}$$

,

Can represent functions as truth tables

columns:

D

distinct inputs:

 2^D

possible tables:

 2^{2^D}

Hypothesis class is quite complex! How can we combat overfitting?

Handling Overfitting in DTs

Set a max depth

- 4th base case to terminate recursion
- Shallow trees represent less complex hypotheses
- Easy to code, ignores the data

Maybe there's a better way...
Boosting and Bagging, next time!

Pre-pruning

- If the best attribute has info-gain < threshold, make a leaf instead
- Easy to code, requires tuning of threshold

Post-pruning

- Build the full tree
- Start at the bottom, merge leaves into parent if criteria met (CV error, statistical measures)

Summary and preview

Wrapping up

- Represent a decision process as a sequence of answers to questions → Decision Tree
 - Nodes are questions, edges are answers, leaves are decisions/labels
 - How to classify a new point x? Traverse the tree, following path according to x's attributes
- When building DTs given data, order matters
- "Best" attributes give the most information (Info-Gain, Gini, Variance, etc.)
- Info-Gain = Entropy Remainder
- DTs are expressive! Need to handle overfitting.

Next time: Ensemble methods