

The Business of Monitors

By: Ali Daanesh Sayyed, Katelyn Vincent, Katherine Zingerman

Our Team

Ali Sayyed

Katelyn Vincent

Katherine Zingerman

Agenda

Project Goals 4 Results

The Dataset

Secommendations and Next Steps

3 The Analysis

Project Goals

01

Project Goals

Client Request

Discover which monitor attributes are most important to consumers and evaluate the effect of a price increase on one of Dell's best-selling monitors

Execution

Utilize conjoint analysis to determine the most important monitor attributes and run a simulated market share analysis to evaluate elasticity

The Dataset

02

Survey Overview

Responsiveness

Refresh Rates 75-240 hz

Response Time 1-5 ms.

Adaptive Sync G-Sync, Free Sync, None

Size/Shape

Screen TypeWide, Ultra-Wide, Curved,
Curved Ultra-Wide

Screen Size 21"-35"

Monitor Dataset

10 attributes 35 sub-attributes

Color

Color Gamut 70-100%

HDR Yes/No

Image Quality

Resolution 1080p-2160p

Wide Viewing Angle

Yes/No

Price

Price \$250-\$850

The Analysis

03

Our Process

Conjoint Analysis

Survey-based statistical technique

Excel Solver

Package that performs analysis given customer survey data

Underlying Preferences

Determine how customers value different attributes when buying a monitor

Conjoint Analysis - Overview

- STEP 1: Encode the quantitative variables as numeric values and qualitative variables as binary values
- STEP 2: Calculate the utility of buying and not buying
- STEP 3: Calculate the probability of buying and not buying
- **STEP 4:** Calculate the probability the predicted behavior = actual behavior (likelihood) and take the log
- **STEP 5:** Sum the log-likelihoods
- **STEP 6:** With solver, set a maximum constraint on the sum of the logs with the target variables and the intercept as inputs to find the weights of the variables

Model Selection

• Linear (Figure 1)

Numeric values were linearized i.e. screen size = 21"

Log-Transformed

- Screen size p-value > 0.05 so it was insignificant
- Log transformed screen size variable to create significant variable

• Binary (Figure 2)

- Screen size remained in binary form
- All other variables remained linear because they continued being significant
- Screen size became insignificant after 30"
 - Diminishing marginal return
 - As screen size increases, return does not increase

Model Selection

Figure 1

Source	Value	Pr > Chi ²
Intercept	-0.592	0.001
Ultra-Wide	-0.271	< 0.0001
Curved	-0.424	< 0.0001
Curved Ultra-Wide	-0.323	< 0.0001
Screen Size (in)	0.003	0.443
G-Sync	0.240	< 0.0001
Free-Sync	-0.062	0.228
1440p (2k / QHD)	0.269	< 0.0001
2160p (4k / UHD)	0.384	< 0.0001
Refresh Rate (hz)	0.005	< 0.0001
Wide Viewing Angle	0.080	0.048
Response Time (ms)	-0.183	< 0.0001
HDR	0.122	0.003
% Color Spectrum	0.838	< 0.0001
Price	-0.003	< 0.0001

Figure 2

Source	Value	Pr > Chi ²
Intercept	-0.507	0.001
Ultra-Wide	-0.366	< 0.0001
Curved	-0.428	< 0.0001
Curved Ultra-Wide	-0.374	< 0.0001
Screen Size 24"	0.278	< 0.0001
Screen Size 27"	0.286	< 0.0001
Screen Size 30"	0.099	0.119
Screen Size 35"	0.123	0.050
G-Sync	0.225	< 0.0001
Free-Sync	-0.060	0.242
1440p (2k / QHD)	0.262	< 0.0001
2160p (4k / UHD)	0.381	< 0.0001
Refresh Rate (hz)	0.005	< 0.0001
Wide Viewing Angle	0.041	0.327
Response Time (ms)	-0.180	< 0.0001
HDR	0.108	0.009
% Color Spectrum	0.790	< 0.0001
Price	-0.003	< 0.0001

Potential Reasons for Feature Insignificance

Screen Size

Larger monitors potentially unnecessary or overwhelming

Adaptive Sync Technology

Geared towards Gaming Industry

Wide Viewing Angles

- Greater priority for TV's
- Usually one looks at a monitor straight on; a gimmick

Additional Analysis with Conjoint Results

- Relative Value Analysis: Compare the relative utility of each feature in each category to the base case to determine buyer preferences when given two features
- Importance Analysis: Calculate and contrast the importance of each category of features to buyers

Results

04

Relative Feature Importance

37%	Price	5%	Adaptive Sync
16%	Refresh Rates	5%	Color Gamut
14%	Response Time	5%	Screen Size
8%	Screen Type	2%	HDR
7%	Resolution	1%	Wide Viewing Angle

Relative Category Importance

The Upside of Upgrades

 Highest dollar value upgrades to customers are refresh rate, response time, and resolution

Refresh Rate

+\$254 (240 hz)

+\$138_(165 hz)

+\$106 (144 hz)

+\$69_(120 hz)

vs. 75 hz

Resolution

+\$117 2160p (4k/UHD)

+\$81 _{1440p} (2k/QHD)

vs. 1080p (FHD)

Response Time

+\$222 (1 ms)

+\$111 (3 ms)

vs. 5 ms

The Downside of Upgrades

Adaptive Sync

+\$69 (G-Sync)

-\$18 (Free-Sync)

vs. None

- G-Sync is the most preferred type of adaptive sync, while customers would require an \$18 subsidy to accept free-sync over no sync
- Customers would require subsidies of \$113-\$132 to accept a screen type other than widescreen

Market Share Analysis

Model 1 (\$250)

Model 2 (\$250)

Model 3 (\$400)

Model 4 (\$550)

Market Share Analysis

Feature	Model 1	Model 2	Model 3	Model 4
Screen Type	Widescreen	Widescreen	Curved	Curved Ultra-Wide
Screen Size	21"	24"	27"	35"
Adaptive Sync	None	None	Free-Sync	G-Sync
Resolution	1080p	1080p	1440p	1440p
Refresh Rate	75hz	120hz	144hz	100hz
Response Time	5ms	3ms	3ms	3ms
HDR	No	No	Yes	No
% Color Gamut	70%	85%	100%	85%
Price	\$250	\$250	\$400	\$550
Wide Viewing Angle	No	No	No	No

Market Share Analysis

					% Change	Elasticity
Price of Model 2	\$250	\$300	\$350	\$400	46%	
Model 1	10%	10%	11%	11%	11%	0.234
Model 2	27%	24%	21%	18%	-37%	-0.812
Model 3	19%	19%	20%	21%	11%	0.234
Model 4	9%	9%	9%	10%	11%	0.234
None	36%	38%	39%	40%	11%	0.234

Profit Analysis

Price	\$250	\$300	\$350	\$400
% of Market Share	27%	24%	21%	18%
Sales (Units)	132,815	117,577	103,593	90,877
Breakeven Volume	119,048	54,348	35,211	26,042
Fixed Cost	\$5,000,000	\$5,000,000	\$5,000,000	\$5,000,000
Unit Cost	\$208	\$208	\$208	\$208
% Margin	17%	31%	41%	48%
Profit	\$578,247	\$5,817,055	\$9,710,224	\$12,448,468

Profit Analysis

Total Market = 500,000

	% Margin
Product 1	26%
Product 3	14%
Product 4	11%

Recommendations and Next Steps

05

Recommendations

New Models

When developing new monitors, prioritize features that have high utility for customers (eg. refresh rate and response time), and increase the ratio of widescreen monitors

Current Pricing

Dependant on competitive analysis, explore the possibility of increasing the price of Model 2

Next Steps

- Limitations: missing brand information, customer demographic information
- Variables of interest to include in future surveys: brand, panel technology (IPS vs TN vs LED), bezel, hdmi cable included, blue light, weight

Thank You

Any Questions?

Appendix

- Conjoint Analysis Steps (Detailed)
- Conjoint Analysis with Solver Steps
- Importance Analysis with Conjoint Results
- Relative Value Analysis with Conjoint Results

Steps for Conjoint Analysis

- STEP 1: Encode the quantitative variables as numeric values and qualitative variables as binary values
 - 1/numeric value = variable impacts buying outcome
 - 0 = variable has no impact on buying outcome
- **STEP 2:** Calculate the utility of buying (uB) and not buying (uD)
 - u(B) = SUMPRODUCT(Variable Weights: Survey Responses)+ Intercept
 - \circ u(D) = 0 because there is no utility of not buying

Steps for Conjoint Analysis

- **STEP 3:** Calculate the probability of buying (Prob(B)) and not buying (Prob(D))
 - \circ Prob(B) = EXP(uB)/(EXP(uB) + EXP(uD))
 - \circ Prob(D) = EXP(uD)/(EXP(uB) + EXP(uD)) = 1 Prob(B)
- **STEP 4:** Calculate the probability the predicted behavior = actual behavior i.e. likelihood and take the log
 - Log-Likelihood = LN(Prob(B)^Choice + Prob(D)^(1-Choice))
- STEP 5: Sum all the log-likelihoods

Conjoint Analysis with XLSTAT Solver

- Process: Allows user to set constraints on specific cells to find the optimal weights of target variables to reach a specified value, maximum, or minimum based on an equation
- **Equation:** Choice = Intercept + b1*Ultra-Wide + b2*Curved + b3*Curved Ultra-Wide + b4*Screen Size + b5*G-Sync + b6*Free-Sync + b7*1440p + b8*2160p + b9*Refresh Rate + b10*Wide Viewing Angle + b11*Response Time + b12*HDR + b13*Color Spectrum + b14*Price
- Goal: Maximize the sum of log-likelihoods

Importance Analysis with Conjoint Results

- Process: Calculate and contrast the importance of each category of features to buyers
 - Identify the maximum and minimum utility of each feature in each category using the feature weights (b)
 - Calculate the difference between maximum and minimum utility
 - Find % importance by taking difference/sum of differences

Relative Value Analysis with Conjoint Results

- Process: Compare the relative utility of each feature in each category to the base case to determine buyer preferences when given two features
 - Calculate relative utility by taking the utility of the feature utility of basecase feature
 - Take relative utility/price weight (b14)