	Last Time
	Actor-Critc
	Exploration: RND
	This Time
	POMDP Bayesian Filters
	How to choose an RL algorithm (According Serger Levine)
	Serger Levine)
	Sample Efficiency Ease of Use/Stability
Fewer	More 1 1 1 Samples
Samples	Model-Based Model-Based Off Policy Actor On Policy Evolutionary/ Shallow RL Deep RL Q-learning Critic Policy Grad. Gradient-Free
	Shallow RL Deep RL Cx-learning Critic tolicy Grad. Gradient-Free
	With fast simulator, wall clock time is roughly reversed
	DOMDPS
	POMPPS ?
	4rw ?
	S,AT,R,O,Z
	$S = \frac{1}{5}TLTR^{\frac{3}{2}}$ $T(\frac{5}{5}, \frac{1}{5}, \frac{1}{5}) = \frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}$
	$S = \{TL, TR\}$ $A = \{OL, \delta R, L\}$ $T(S \mid S, \alpha) = \{Oo, \omega\}$
	Reward: +10 if open empty door, -100 if open tiger door
	8 = 0.99
	0= {TL,TR}
	$P(o s) = \{0.85 \text{ if } o=s = Z(o s)\}$

$$\hat{\mathcal{R}}(TL) = 0R$$

$$\hat{\mathcal{R}}(TR) = 0L$$

$$= -6.5$$

Belief Updating

Hidden Markov Model HMM

$$P(s, | 0_i) = \frac{P(0, | s_i) P(s_i)}{P(0_i)} = \frac{P(0, | s_i) \sum_{s \in S} P(s_i | s_s = s) P(s_s = s)}{P(s_i)} P(s_i | s_s)$$

$$Q P(0, | s_i) \sum_{s \in S} P(s_i | s_s = s) P(s_s = s)$$

$$D_{t}(s) = P(s_t = s | h_t)$$

$$h_{t} = (0_1, ..., 0_t)$$

$$D_{t}(s) = P(s_t | s_t, h_{t+1}) P(s_t, h_{t+1})$$

$$Q P(s_t | s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$Q P(s_t | s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_{t+1} | h_{t+1}) P(s_{t+1} | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t | h_{t+1})$$

$$D_{t}(s) = D_{t}(s_t) \sum_{s \in S} P(s_t | s_{t+1}, h_{t+1}) P(s_t |$$

$$b_{o}(TL) = 0.5$$
 $0_{i} = TL$
 $0_{i} = TR$

(belief update?

 $b_{i}(TL) = 0.85$
 $b_{i}(TL) = 0.15$
 $0_{2} = TL$
 $0_{3} = TR$
 $0_{3} = TR$
 $0_{4}(TL) = 0.85$