WHAT IS CLAIMED IS:

6

1

2

3

4

1

2

3

4

5

· 7

A method of detecting a disc defect comprising the steps of:
writing a first data track to the disc with a write head including a write element and a thermal asperity detector;

detecting magnetic defects on the first data track with a certification head; and

scanning the first data track for thermal asperities with the thermal asperity detector.

- 2. The method of claim 1, further including the steps of:
 writing a second data track to the disc;
 detecting magnetic defects on the second data track; and
 scanning the second data track for thermal asperities.
- 3. The method of claim 1, further including the step of:
 upon locating a thermal asperity during the step of scanning, writing a
 burst pattern to the disc in a location where a thermal asperity is detected wherein the
 burst pattern is detectable in further analysis of the disc.

7.

1

2

3

4

5

1	4	A method of detecting magnetic and thermal asperities on a disc
2	comprising th	e steps of:
3		writing a first data stream to a first wide track on the disc with a write
4	head located	on a write head;
5	`	reading the first data stream on a first portion of the first wide track for
6	magnetic defe	with a read element located on a certifier head; and
7		scanning the first wide track for thermal asperities with a thermal
8	asperity detec	tor located on the write head.
1	5.	The method of claim 4, further including the steps of:
2		writing a second data stream to a second wide track on the disc with
3	the write element;	
4		reading the second data stream on a second portion of the second wide
5	track for mag	netic defects with the certifier head; and
6		scanning the second wide track for thermal asperities with the thermal
7	asperity detec	tor.
1	6.	The method of claim 4, further including the step of:
2		upon locating a thermal asperity during the step of scanning, writing a
3	burst pattern	to the disc in a location where a thermal asperity is detected wherein the
4	burst pattern	is detectable in further analysis of the disc.

The method of claim 4, further including the step of:

reading the first data stream on a portion of first wide write track.

stopping writing of the first data stream on the first wide track while

٠O
Ü
IJ
M
Ų
ij
Щ
23
m
N
i≕

1

2

3

12.

4

1	8.	A testing system comprising:
2	\	a disc drive having a spindle on which a disc can be mounted and
3	motor for rot	ating the disc; and
4		means for detecting thermal asperities and magnetic defects.
1	9.	$\$ The testing system of claim 8, wherein the means for detecting thermal
2	asperities is f	abricated from magnetic material.
1	10.	The testing system of claim 8, wherein the means for detecting thermal
2	asperities is 1	abricated from nickel.
1	11.	The testing system of claim 8, wherein the means for detecting thermal
2	asperities is f	abricated from a material picked from a group consisting of nickel,
3	beryllium and	d nickel-iron.

asperities has a width ranging from 10 microns to 100 microns.

The testing system of claim 8, wherein the means for detecting thermal

.815525430US

10

3	
1	13. A testing system for detecting thermal asperities and magnetic defects
2	on a disc comprising:
3	a write head including a write element, the write head located on a first
4	support arm wherein the write element is activated to write a track onto the disc
5	during a first period;
6	a thermal asperity detector, wherein the asperity detector is activated to
7	detect asperities during a second period; and
8	a read head located on a second support arm wherein the read head is
9	positioned to read the track written by the write element.

1	
2	on
3	
4	the
5	wr
6	to
7	
8	pos
1	
2	fab
1	
2	fab
3	nic
1	
2	has

2

1

2

3

from about 20 microns to 100 microns.

20.

about 75 microns.

10		
1	\14 .	A testing system for detecting thermal asperities and magnetic defects
2	on a disc comprising:	
3	\	a write head including a write element and a thermal asperity detector,
4	the write head	d located on a first support arm wherein the write element is activated to
5	write a track onto the disc during a first period and the asperity detector is activated	
6	to detect asperities during a second period; and	
7		a read head located on a second support arm wherein the read head is
8	positioned to	read the track written by the write element.
1	15.	The testing system of claim 14 wherein the thermal asperity detector is
2	fabricated from a non-magnetic material.	
1	16.	The testing system of claim 14 wherein the thermal asperity detector is
2	fabricated fro	m a material picked from a group consisting of nickel, beryllium and
3	nickel-iron.	
1	17.	The testing system of claim 14 wherein the thermal asperity detector
2	has a width ra	anging from about 10 microns to 100 microns.
1	18.	The testing system of claim 14, wherein the thermal asperity detector is
2	fabricated from nickel.	
1	19.	The testing system of claim 14, wherein the width of the write head is

The testing system of claim 17, wherein the width of the write head is

3

1

2

3

21. The testing system of claim 14, wherein the write element has a first width and the read element has a second width and a ratio of the first width to the second width is from 2 to 11.