히든:그레이스

실전! 데이터 분석 R

-일단 함 해보자! 실전 데이터 분석 첫걸음-

Profile

김영우

(취히든그레이스 데이터분석팀장 데이터분석 교육(데이터분석방법론, R, SPSS, AMOS) 연구방법론 및 통계분석 대학원 출강(2013~현재) 데이터 저널리즘 언론매체 '데이터 저널(datajournal.kr)' 대표 오마이뉴스 시민기자 - '데이터로 보는 뉴스' 연재 연애심리 연구 집단 '모태솔로연구소' 소장 한국데이터베이스진흥원 빅데이터 분석 전문가 과정 수료

1.카이검정

1단계.준비하기

패키지 설치 & 로드

```
# 패키지 설치
install.packages("dplyr") # 데이터 정제
install.packages("ggplot2") # 그래프 만들기

# 패키지 로드
library(dplyr)
library(ggplot2)
# 데이터 불러오기
raw_01 <- read.csv(file="01_chi_t.csv", header = T)

# 복사본 생성
df_a <- raw_01
```

2단계.전처리

```
# 데이터 탐색
head(df_a)
    id sex alc snack prefer1 prefer2 prefer3 m_prefer
##
## 1 1
        1
           2
                1
                                    4
                                         4.33
## 2 2 1
          2
                2
                                         2.33
                                    1
## 3 3 1 2
                2
                             4
                                    5
                                        4.67
## 4 4 1 1
                1
                      4
                                    4 3.67
## 5 5 1 2
                1
                                        3.67
                                    5
                2
## 6 6 1
                             5
                                         3.67
```

```
summary(df a)
## id
                            alc snack
               sex
  Min. : 1.00
                Min. :1.00
                            Min. :1.00
                                        Min. :1.0
##
  1st Qu.: 25.75
               1st Qu.:1.0
##
  Median : 50.50
               Median :1.00 Median :2.00
##
                                        Median :1.0
               Mean :1.49 Mean :1.55
   Mean : 50.50
                                        Mean :1.3
##
   3rd Qu.: 75.25
               3rd Qu.:2.00 3rd Qu.:2.00
                                        3rd Qu.:2.0
##
   Max. :100.00
               Max. :2.00 Max. :2.00
                                        Max. :2.0
##
  prefer1 prefer2 prefer3 m prefer
##
  Min. :1.00 Min. :1.00 Min. :1.00
                                      Min. :1.33
##
  1st Qu.:2.00    1st Qu.:2.00    1st Qu.:2.00
                                      1st Qu.:2.33
##
   Median :3.00
             Median :3.00
                          Median :3.00
##
                                      Median :3.33
##
   Mean :3.28
              Mean :3.23
                           Mean :3.33
                                      Mean :3.28
   3rd Qu.:4.00 3rd Qu.:4.00
                          3rd Qu.:4.00
                                      3rd Qu.:4.33
##
```

Max. :5.00

Max. :5.00

Max. :5.00

##

Max. :5.00

```
# 값 변경

df_a$sex <- ifelse(df_a$sex == 1, "M", "F")

table(df_a$sex)

##

## F M

## 49 51

df_a$alc <- ifelse(df_a$alc == 1, "Beer", "Soju")

table(df_a$alc)

##

## Beer Soju

## 45 55
```

3단계.분석

1.분할표 만들기

(1)빈도 분할표

```
tab_alc <- table(df_a$alc, df_a$sex)
tab_alc

##
##
##
Beer 29 16
##
Soju 20 35</pre>
```

(2)비율 분할표 - 열 기준

```
# 백분율 표기

proptab_alc <- prop.table(tab_alc, 2)*100

proptab_alc

##

##

##

Beer 59.18367 31.37255

## Soju 40.81633 68.62745
```

```
# 소숫점 둘째자리까지 표기
proptab_alc <- round(prop.table(tab_alc, 2)*100, 2)
proptab_alc

##
##
##
##
##
Beer 59.18 31.37
##
## Soju 40.82 68.63
```

(3)파일로 저장

```
# <u>U</u>도표, 비율표 합치기

tab.cross <- cbind(tab_alc, proptab_alc)
tab.cross

## F M F M

## Beer 29 16 59.18 31.37

## Soju 20 35 40.82 68.63

#csv 로 저장
write.csv(tab.cross, "output_chi.csv")
```

2.카이검정

```
chisq.test(df_a$sex, df_a$alc, correct = F)

##
## Pearson's Chi-squared test
##
## data: df_a$sex and df_a$alc
## X-squared = 7.8096, df = 1, p-value = 0.005197
```

```
chisq.test(df_a$sex, df_a$alc)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: df_a$sex and df_a$alc
## X-squared = 6.7263, df = 1, p-value = 0.0095
```

[참고] default - 2x2 경우 예이츠 수정지표

4단계.시각화

(1)비율표 -> 데이터프레임 변환

```
proptab_alc
##
##
             F M
## Beer 59.18 31.37
## Soju 40.82 68.63
df_proptab <- as.data.frame(proptab_alc)</pre>
df proptab
## Var1 Var2 Freq
## 1 Beer F 59.18
## 2 Soju F 40.82
## 3 Beer M 31.37
## 4 Soju M 68.63
# 변수명 변경
df_proptab <- rename(df_proptab,</pre>
                    alc = Var1,
                    sex = Var2,
                    pct = Freq)
df_proptab
```

```
## alc sex pct
## 1 Beer F 59.18
## 2 Soju F 40.82
## 3 Beer M 31.37
## 4 Soju M 68.63
```

(2)그래프 생성

ggplot(data = df_proptab, aes(x = sex, y = pct, fill = alc)) +
 geom_col()

그래프 Tip - x축 순서 지정

```
ggplot(data = df_proptab, aes(x = sex, y = pct, fill = alc)) +
  geom_col() +
  scale_x_discrete(limit = c("M", "F"))
```


카이검정 복습!

1단계.준비하기

```
# 패키지 설치 & 로드
library(dplyr)
library(ggplot2)

# 데이터 로드
raw_01 <- read.csv(file="01_chi_t.csv", header = T)

# 복사본 생성
df_a <- raw_01
```

2단계.전처리

```
# 데이터 탐색
str(df_a)
summary(df_a)
head(df_a)

# 값 변경

df_a$sex <- ifelse(df_a$sex == 1, "M", "F")
df_a$alc <- ifelse(df_a$alc == 1, "Beer", "Soju")
```

3단계.분석

```
# 1. 분할표 만들기
#(1) 빈도 분할표
tab_alc <- table(df_a$alc, df_a$sex)</pre>
tab_alc
##
##
           F M
## Beer 29 16
##
   Soju 20 35
#(2) 비율 분할표
proptab_alc <- round(prop.table(tab_alc, 2)*100, 2)</pre>
proptab_alc
##
##
              F
                   Μ
## Beer 59.18 31.37
    Soju 40.82 68.63
##
```

```
#(3) 파일로 저장

# 번도표, 비율표 합치기

tab.cross <- cbind(tab_alc, proptab_alc)
tab.cross

## F M F M

## Beer 29 16 59.18 31.37

## Soju 20 35 40.82 68.63

# csv 로 저장

write.csv(tab.cross, "output_crosstab.csv")
```

```
# 2. 카이검정

chisq.test(df_a$sex, df_a$alc, correct = F)

##

## Pearson's Chi-squared test

##

## data: df_a$sex and df_a$alc

## X-squared = 7.8096, df = 1, p-value = 0.005197
```

4단계.시각화

2.t-test

1.기술통계표 만들기

2.t-test

3.시각화

3.회귀분석

1. 준비하기

```
# 데이로 로드
raw_02 <-read.csv(file="02_reg.csv", header = T)
# 복사본 생성
df_b <- raw_02
```

```
# 데이터 탐색
str(df b)
## 'data.frame': 133 obs. of 3 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ skill: num 2.71 1.57 2.39 3.33 1.57 ...
## $ sat : num 3.18 1.23 2.05 1.3 1.74 ...
summary(df b)
## id skill
                                sat
  Min. : 1
              Min. :1.157
##
                            Min. :1.022
  1st Qu.:1.907
##
## Median : 67
              Median :2.443
                            Median :2.614
## Mean : 67 Mean :2.580 Mean :2.598
## 3rd Qu.:100 3rd Qu.:2.857 3rd Qu.:3.068
                            Max. :5.000
## Max. :133
              Max. :5.000
head(df b)
    id skill sat
##
## 1 1 2.714286 3.181818
## 2 2 1.571429 1.231818
## 3 3 2.390000 2.045455
## 4 4 3.330000 1.295455
## 5 5 1.571429 1.735648
## 6 6 1.714286 1.045455
```

2.회귀분석

```
out_reg <- lm(data = df_b, sat ~ skill) # 분석
                                 # 분석결과 출력
summary(out reg)
##
## Call:
## lm(formula = sat ~ skill, data = df b)
##
## Residuals:
       Min 10 Median
##
                                 30
                                        Max
## -2.03714 -0.51331 0.02348 0.48926 2.333349
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.78790 0.20973 3.757 0.000258 ***
## skill 0.70172 0.07701 9.113 1.19e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7758 on 131 degrees of freedom
## Multiple R-squared: 0.388, Adjusted R-squared: 0.3833
## F-statistic: 83.04 on 1 and 131 DF, p-value: 1.194e-15
```

```
# 회귀분석표 html 출력
install.packages("ztable") # 회귀분석표 정리용
library(ztable)
# html 출력
ztable(out_reg)
```

3.시각화

```
# 산점도 만들기
```



```
# 회귀선 추가
```

```
ggplot(data = df_b, aes(x = skill, y = sat)) +
  geom_point() +
  geom_smooth(method = lm, se = F)
```


실전 분석 프로젝트!

"한국인의 삶의 질, 원인 분석 프로젝트" - 한국복지패널 데이터

분석1. 성별에 따른 소득

1.준비하기

```
# foreign 패키지 설치 & 로드
install.packages("foreign")
library(foreign)

# 복지패널데이터 로드
raw_03 <- read.spss("data_spss_Koweps2014.sav", to.data.frame=T)

# 복사본 생성

df_c <- raw_03
```

```
# 데이터 검토

dim(df_c)
str(df_c, list.len=10)
summary(df_c)
head(df_c)
View(df_c)
```

2.독립변수, 종속변수 검토 및 정제

변수명 변경

변수 검토 - 성별

```
class(df_c$sex)
## [1] "numeric"
summary(df_c$sex)
     Min. 1st Qu. Median Mean 3rd Qu. Max.
##
    1.000 1.000 1.000 1.309 2.000 2.000
##
table(df_c$sex)
##
##
     1 2
## 4873 2175
# 이상치 결측처리 - 모름/무응답=9
df_c$sex <- ifelse(df_c$sex == 9, NA, df_c$sex)</pre>
table(is.na(df c$sex))
##
## FALSE
   7048
##
```

```
# sex 항목 이름 부여

df_c$sex <- ifelse(df_c$sex == 1, "M", "F")

table(df_c$sex)

##

## F M

## 2175 4873
```

변수 검토 - 소득

```
class(df_c$income)
## [1] "numeric"
summary(df_c$income)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -20520 1108 2404 3336 4642 108900
```

qplot(df_c\$income)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
qplot(df_c$income) + xlim(0, 10000)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
# 소득 결측치 확인
table(is.na(df_c$income))
##
## FALSE
## 7048
```

3.분석

(1)기술통계표 만들기

```
income_sex <- df_c %>%
 group_by(sex) %>%
  summarise(n = n(),
           m = round(mean(income), 2),
           sd = round(sd(income), 2))
income_sex
## # A tibble: 2 × 4
##
      sex
                            sd
          n
                     m
## <chr> <int> <dbl> <dbl>
## 1 F 2175 1581.25 2103.14
## 2 M 4873 4118.90 3870.89
# 표 저장
write.csv(income_sex, "output_income_sex.csv")
```

(2)t-test

```
t.test(data = df_c, income ~ sex, var.equal = T)

##

## Two Sample t-test

##

## data: income by sex

## t = -28.738, df = 7046, p-value < 2.2e-16

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -2710.746 -2364.551

## sample estimates:

## mean in group F mean in group M

## 1581.255 4118.903</pre>
```

4.시각화

분석2. 30~40대의 성별에 따른 소득차이

1.준비하기

- 패키지 설치 & 로드
- 데이터 불러오기

2.데이터 추출

30~40대 추출

```
# 변수명 변경
df c <- rename(df c,</pre>
             birth = h0901_5)
# 나이 변수 생성
df_c$age <- 2014 - df_c$birth + 1</pre>
summary(df_c$age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 13.00 49.00 63.00 62.01 75.00 97.00
# 30~40 대 추출
df_3040 <- df_c %>%
 filter(age >= 30 & age <= 49)
# 데이터 확인
summary(df_3040$age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
    30.00 38.00 42.00 41.48 46.00
##
                                       49.00
```

3.독립변수, 종속변수 검토 및 정제 - 성별, 소득

• 앞에서 완료

4.분석

(1)기술통계표 만들기

(2)t-test

```
t.test(data = df_3040, income ~ sex, var.equal = T)

##

## Two Sample t-test

##

## data: income by sex

## t = -6.5403, df = 1750, p-value = 8.036e-11

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -2922.773 -1574.208

## sample estimates:

## mean in group F mean in group M

## 3223.847 5472.337
```

5.시각화

$$ggplot(data = tab_3040, aes(x = sex, y = m)) + geom_col()$$

'통계,히든:그레이스에서 답을 찾다

데이터분석강의

공공데이터분석

논문통계분석

논문통계강의

빅데이터분석

서비스소개

데이터분석

데이터분석교육

논문통계

Contact

010-5461-7445

stats7445@gmail.com

김영우, Kim Young Woo 역 등 등 등 등 역 데이터분석팀장

- www.hidden-analysis.co.kr 32
 - 010.5461.7445
 - stats7445@gmail.com

김성은, Kim Sung Eun 숙분분위부분 중국 대표이사

- www.hidden-analysis.co.kr -}
 - 010.3558.8121
- admin@hiddenigrace.com

찿아오는길

◎ 대중교통 이용시

지하철

강남역신분당선 하차후 강남역 5번 출구, 도보 1분거리

간선버스 140, 400, 402, 407, 420, 440, 441, 462, 470, 471, 541, 542 광역버스 M4403, M6427, M7412, M7426, 9404, 9408

강남역 도씨에빛 11 하차

직행버스 1311,5300,5300-1,6800 광역버스 9500,9501,9802

🔍 찾는 방법

(STEP 1) 파리바게뜨와 아리따움 화장품 가게를 지난다.

(STEP 2) CU편의점과 GUGUS 옆 모모안경점 사이에 도씨에빛 2 건물 출입구를 찾는다.

(STEP 3) 엘레베이터 18층을 누른다.

(STEP 4) 오른쪽 끝에 있는 1801호 (유리문)으로 온다.