Get started with Speech Recognition using TensorFlow

Nourchene Ferchichi ©

Research Engineer ML Google Developer Expert

Introduction

How does information travel from our brains into the computer?

Introduction

Automatec Speech Recognition, Defined Computer Science + Linguistics

In this Presentation

Here's what we'll cover:

1 Applications

2 SR Dataset

3 DNN for Acoustic modeling

4 Language Models

5 Practice

Applications of ASR

Telecome Industry

Conversational Chatbots to Enhance customer support Resolve Technical Issues Provide Personalised Advice

Marketing

Voice Search for accurate product search

Internet of Things

Smart TVs
Autonumus cars
Hands-free help at home

Applications of ASR

Health Care

Digital Assistant:

Medical guidance
Quick access to
administrative information

Banking

Request transaction information

Make payments

Workplace

Transcribe real-time conferences

Report meetings

Pipeline

Acoustic Model

Transcripts

Datasets format

Features (X)

Labels (y)

++++

Good Morning!

Audio wave

Transcript

Audio clips of spoken sequences

Text transcripts of what was spoken

Audio

Audio

1.Convert to uniform dimensions

Standardize the dimensions of our audio data

Audio

1.Convert to uniform dimensions

Standardize the dimensions of our audio data

2. Data Augmentation of raw audio

Add more variety to our input data

Audio

1.Convert to uniform dimensions

Standardize the dimensions of our audio data

2. Data Augmentation of raw audio

Add more variety to our input data

3. Mel Spectrograms

Captures the nature of the audio as an image

Audio

1.Convert to uniform dimensions

Standardize the dimensions of our audio data

2. Data Augmentation of raw audio

Add more variety to our input data

3. Mel Spectrograms

Captures the nature of the audio as an image

4. MFCC

Extract the most essential frequency coefficients

Audio

1.Convert to uniform dimensions

Standardize the dimensions of our audio data

2. Data Augmentation of raw audio

Add more variety to our input data

3. Mel Spectrograms

Captures the nature of the audio as an image

4. MFCC

Extract the most essential frequency coefficients

5. Data Augmentation of Spectrograms

Apply random Frequency and Time Masking

Datasets Preprocessing: Transcripts

Normalization

Bring the words to their closer to a predefined "standard"

Punctuation Removal

Remove punctuation characters like $!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ from a text$

Buid the vocabulary

Build a vocabulary from each character in the transcript and convert them into character IDs.

Datasets exaples

AudioMNIST

Libriispeech

LJ Speech

VoxForge

DNN for Acoustic modeling Different Types

1 A CNN plus RNN-based architecture that uses the CTC

2 RNN-based sequence-to-sequence network

DNN for Acoustic modeling Model architecture Overview

- 4 Connectionist Temporial Classification Decoder
- A Linear Layer
- Recurrent Neural Network
- 1 Convolutional Neural Network

DNN for Acoustic modeling Model architecture Explained

1 Convolutional Neural Network

DNN for Acoustic modeling Model architecture Explained

Bi-directional LSTM

Feature Maps

2 Recurrent Neural Network

DNN for Acoustic modeling Model architecture Explained

3 A Linear Layer

DNN for Acoustic modeling Model architecture Explained

Connectionist Temporial Classification

0.12 0.58

0.05

0.03

0.82

Hello is a are green day!

Original Transcript

Model Prediction

Word Error Rate =

Inserted + Deleted + Substituted

Total words in transcript

$$= 0.5$$

Metrics — Word Error Rate (WER)

The metric formula is fairly straightforward. It is the percent of differences relative to the total number of words.

Adding a Language Model

Great speech to text AI requires a great language model we recognize what words we predict, as well as pronunciation models to handle differences between accents, dialects, age, gender, and the many other factors that make our voices unique.

Inverse Normalization

Reverse Normalization

Adding puntuation

Adding capitalization

"The advance of technology is based on making it fit in so that you don't really even notice it, so it's part of everyday life."

Bill Gates

Practice Time!

Do you have any questions?

We hope you learned something new.