2004 Higher School Certificate Trial Examination (INDEPENDENT)

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used
- Write using black or blue pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your student number and/or name at the top of every page

Total Marks - 100

Section I

Total marks (75)

This section has two parts, Part A and Part B

Part A

Total marks (15)

Attempt questions 1 - 15

Allow about 30 minutes for this part

Part B

Total marks (60)

Attempt questions 16 - 29

Allow about 1 hour 45 minutes for this part

Section II (Page 19)

Total marks (25)

Attempt ONE question from Questions 30-34 Allow about 45 minutes for this section

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

CHECK THE THE TOTAL	ATTEMPTO	ATABATE.	
STUDENT	NOWRER	/NAME:	

Section I

Total marks (75)

Part A
Total marks (15)
Attempt questions 1 – 15
Allow about 30 minutes for this part

Select the alternative A, B, C or D that best answers the question and indicate your choice with a cross (X) in the appropriate space on the grid below.

	A	В	C	D
1				
2				
3				
4				
5				
6				
7				-
8				
9				
10				
11				
12				
13				
14				
15				

1. Saran is a polymer used to make packaging film and seat covers. Shown below is a representation of a Saran chain.

Which of the following is the monomer from which Saran is made?

- (A) 1,1-dichloroethane
- (B) 1,2-dichloroethane
- (C) 1,1-dichloroethene
- (D) 1,2-dichloroethene

2. When ethylene glycol is reacted with terephthalic acid a polyester (Dacron) is formed. The reaction is represented below. What type of reaction is this?

repeating unit of Dacron

- (A) addition polymerisation
- (B) condensation polymerisation
- (C) substitution
- (D) dehydration
- 3. When a lead strip is placed a solution of silver nitrate the lead becomes coated with greyish furry growth. Which is the correct interpretation of the observation?
 - (A) Lead from solution has deposited on the original lead.
 - (B) Silver has deposited on the lead.
 - (C) The lead has reacted with the water which has caused a deposit similar to rust.
 - (D) Lead nitrate has formed a precipitate.

STUDENT NUMBER/NAME:

- Water hardness is used to describe water that contains significant amounts of specific 4. ions. Hard water will not lather easily with soaps. These ions are:
 - (A) Na⁺ and Cl⁻ ions

 - (B) NH₄⁺ and OH ions
 (C) Hg²⁺ and Pb²⁺ ions
 (D) Mg²⁺ and Ca²⁺ ions
- The table below lists some physical and chemical properties of four different carbon 5. compounds.

Compound	Boiling point (°C)	Reactivity in bromine water	Solubility in Water
W	-89	unreactive	insoluble
X	-104	reactive	insoluble
Y	78	unreactive	soluble
Z	138	unreactive	slightly soluble

Which alternative best identifies compounds W, X, Y and Z?

	W	X	Y	Z
(A)	C ₂ H ₆	C_2H_4	C ₂ H ₅ OH	C ₅ H ₁₁ OH
(B)	C ₂ H ₄	C ₂ H ₆	C ₅ H ₁₁ OH	C ₂ H ₅ OH
(C)	C ₅ H ₁₁ OH	C ₂ H ₅ OH	C_2H_4	C_2H_6
(D)	C ₅ H ₁₁ OH	C ₂ H ₄	C ₂ H ₅ OH	C_2H_6

Heart pacemakers are often powered by lithium-silver chromate button cells. 6. The overall cell reaction is:

$$2 \text{ Li}_{(s)} + \text{Ag}_2\text{Cr}_2\text{O}_{4(s)} \rightarrow \text{Li}_2\text{Cr}_2\text{O}_{4(s)} + 2 \text{ Ag}_{(s)}$$

What is the anode in this cell?

- (A) $Ag_{(s)}$
- (B) Li (s)
- Ag^{T}
- (D) $Cr_2O_4^{2-}$
- Which of the following statements identifies the conjugate base of the acid HNO₃? 7.
 - (A) NaOH is the conjugate base of the acid HNO₃
 - (B) OH is the conjugate base of the acid HNO₃
 - (C) NO₃ is the conjugate base of the acid HNO₃
 - (D) NO₃ is the conjugate base of the acid HNO₃

8. The table shows the colours of three indicators at different hydrogen ion concentrations.

[HCl] mol L ⁻¹	10-2	10-4	10 ⁻⁶
Methyl Orange	red	orange	yellow
Bromothymol Blue	yellow	yellow	green
Phenol Red	yellow	red	red

What is the pH of a solution that showed the following indicator colours?

Methyl Orange	Yellow
Bromothymol Blue	Green
Phenol Red	Red

- (A) 2
- (B) 4
- (C) 6
- (D) 8

9. What is a correct name for the compound with the molecular formula CH₂O₂?

- (A) ethanoic acid
- (B) ethanol
- (C) methanol
- (D) methanoic acid

10. Identify the pH at the neutralisation point when sodium hydroxide is neutralised by hydrochloric acid.

- (A) pH = 0
- (B) pH = 7
- (C) pH > 7
- (D) pH < 7

11. Nitrogen dioxide, NO₂, a brown gas and dinitrogen tetroxide, N₂O₄, a colourless gas are in equilibrium according to the equation-:

$$2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$$

If a sealed tube of the gases is placed in an ice-water bath the colour fades from brown to almost colourless. Which conclusion is correct?

- (A) The forward reaction is exothermic
- (B) The reverse reaction is exothermic
- (C) The pressure has increased.
- (D) The pressure has not changed

- 12. Identify the compound in the atmosphere which reacts with chlorofluorocarbons (CFC's).
 - (A) water
 - (B) carbon monoxide
 - (C) ozone
 - (D) carbon dioxide
- 13. Sulfuric acid reacts with pyrosulfuric acid according to the equation-:

$$H_2SO_{4(1)} + H_2S_2O_{7(1)} \rightleftharpoons H_3SO_4^+_{(1)} + HS_2O_7^-_{(1)}$$

Identify a method of increasing the concentration of H_3SO_4 ⁺ in the mixture at equilibrium.

- (A) increase the pressure on the system
- (B) add H₂SO₄
- (C) add a catalyst
- (D) add HS_2O_7
- 14. Select the molecule from below that possesses a coordinate covalent bond.
 - (A) carbon dioxide
 - (B) water
 - (C) ozone
 - (D) oxygen
- 15. What is the correct systematic name of this compound?

- (A) 1,1,1,2,2,2-chlorofluoroethane
- (B) 1,1,1-trifluoro 2,2,2-trichloromethane
- (C) 1,1,1,2,2,2-chlorofluoromethane
- (D) 1,1,1-trichloro 2,2,2-trifluoroethane

Saa	etion I — continued	
Atte	rt B al marks (60) empt questions 16 – 29 ow about 1 hour 45 minutes for this part	
Ans	wer the questions in the spaces provided	
Sho	w all relevant working in questions involving calculations.	· · · · · · · · · · · · · · · · · · ·
Que	estion 16 (4 marks)	Marks
	reaction is strongly endothermic.	
(a)	Construct the equation for this reaction.	1
(b)	Justify the use of a high temperature for this reaction.	 1
(c)	Describe what is observed when ethane and ethene gases are bubbled separately through bromine water.	2

STUDENT NUMBER/NAME:

Question 17 (5 marks)

Marks

1

1

Two beakers are set up as follows:

- (a) One the diagram include additional components needed to obtain an electric current from this arrangement.
- (b) Label on the diagram:-
 - (i) the cathode and anode
 - (ii) the direction of electron movement
- (c) Construct the equation for the cell reaction
- (d) Determine the cell voltage under standard conditions.

Page 8

e e	STUDENT NUMBER	/NAME:	

Marks

2

Cellulose is a naturally occurring *condensation polymer* that makes up a major proportion of biomass. Its structure is represented below.

Question 18 (4 marks)

$$-O-C_{6}H_{10}O_{4}-O-C_{6}H_{10}O_{6}+O-C_{6}H_{10}O_{6}+O-C_{6}H_{10}O_{6}+O-C_{6}H_{10}O_{6}+O-C_{6}H_{10}O_{6}+O-C_{6}H_{$$

(a)	Identify the monomer from which cellulose forms.		

(b)	Explain what is meant by the term condensation.	1

(c)	Using an example to illustrate your answer, explain how the formation of an addition polymer is different to the formation of a condensation polymer.			
	••••••			

TT	IDEN	TNU	MRER	/NAME:	
σ	JULIN	1110	エムギブファーエノ	7 T 4 7 ZTATT	

Question 19 (3 marks)

Marks

A student designed an experiment to investigate the displacement of metals from solution. She placed an iron nail into one test tube containing some dilute copper sulfate solution and a piece of copper wire into a separate test tube containing some dilute iron (II) sulfate solution. Her observations are recorded in the table below.

test tube	metal	solution	Observations
199	iron	copper sulfate	A red/brown deposit appeared on the nail. The blue colour of the solution faded.
2	copper	iron (II) sulfate	No changes were observed.

(a)	Write an ionic equation for the reaction occurring in test tube 1.	1
(b)	Referring to the Table of Standard Potentials explain the recorded observations.	2
Que	estion 20 (4 marks)	
	ing your practical work you performed a first-hand investigation to carry out the tentation of glucose.	
(a)	With the aid of a relevant equation, explain any changes in mass observed during this fermentation process.	2
(b)	Justify the conditions under which this fermentation was carried out.	2

	STUDENT NUMBER/NAME:		
Que	estion 21 (5 marks)	Marks	
	sulfur diesel fuels used in coal mining must have a sulfur content of less than 0.05% ar by mass.		
(a)	Calculate the volume of sulfur dioxide at 25°C and 100 kPa produced by burning 1.0 kg of low (0.05%) sulfur diesel.	2	
(b)	Discuss the impact on the environment of using high sulfur fuels.	3	
		••	
		•• ••	
		•• ••	
		••	
		•• ,	

	STUDENT NUMBER/NAME:	
Ouestion 22 (4 marks)		Marks

The phosphate buffer system operates in the internal fluid of all cells. This buffer system is represented by the chemical equation below:

$$H_2PO_4$$
 \longrightarrow $H^+ + HPO_4^2$

(a)	Define the term 'buffer' and identify the key components of any buffer system.	2
(b)	Using relevant equations explain what happens if:	1
	(i) H ⁺ ions are added to this system.	
	(") OIT :	
	(ii) OH ions are added to this system.	

COTT	TO DO TO	ATT TA ATA DE	ATABATT.	
SIL	JDENT	NUMBER	VNAME:	

Question 23 (5 marks)

Marks

A student used indicator paper to estimate the pH of three different acids, to the nearest integer value. Each acid was at a concentration of 0.10 mol L⁻¹ in aqueous solution. The table below records these measurements:

Acid	pН
acetic	3
citric	2
hydrochloric	1

(a)	Compare the hydrogen ion concentrations in these three solutions.	2
(b)	Account for the differences in these values.	3

	STUDENT NUMBER/NAME:	•	
Ques	stion 24 (6 marks)	rks	
A botacid).	ttle of vinegar is labelled 4.0% w/v (4.0 g per 100 mL of solution) acetic acid (ethanoic		
(a)	Describe the laboratory procedure you would use to verify this concentration.	3	
(b)	Calculate the volume of 0.118 mol L ⁻¹ NaOH required to neutralise the acid in 5.0 mL of this vinegar.	3	
,		-	

OFF TOTAL	NITED ADDING ALARAM.	
STUDENT	NUMBER/NAME:	

Que	estion 25 (6 marks)	Marks
(a)	Identify the steps you followed in performing a first hand investigation to measure the sulfate content of lawn fertiliser.	3
(b)	Describe how you calculated the percentage of sulfate in the fertiliser including relevant equations in your answer.	3
Que	estion 26 (2 marks)	
(a)	Identify ONE factor that can affect water quality.	1
(b)	Describe how this factor will affect the quality of water in a freshwater lake.	1
		•
		•

TTP	IDENT	NIIMBER/NAME	
o ι ι		INDIVIDED INTERIOR	

Question 27 (4 marks)

Marks

A sample of river water was analysed for nickel using Atomic Absorption Spectroscopy (AAS).

A 25mL sample was diluted to 250mL with distilled water, and measured with the AAS instrument. An average absorbance reading of 0.350 was obtained, for the diluted sample. The results for a set of nickel standards is included in the table below.

Standard nickel concentration g.mL ⁻¹	Absorbance
2.0 x 10 ⁻⁶	0.134
4.0 x 10 ⁻⁶	0.272
6.0 x 10 ⁻⁶	0.416

(a) Construct a calibration graph for the standard nickel solutions.

2

Using the graph, determine the concer water.	oh, determine the concentration of nickel in the original sample of r							
Water.								
		,						

Que	estion 28 (3 marks)	Marks
Whe	en ammonia reacts with hydrochloric acid, the ammonium ion is formed.	
(a)	Draw an electron dot formula for the ammonium ion.	1
(b)	Explain the term "coordinate covalent bond" using this example.	2

STUDENT NUMBER/NAME:

TT	IDENT	NUMBER	/NAME	
. TI I	JIJENI	INCHVIDER	CANALYLL.	

Question 29 (5 marks)

The table below shows the percentage yield of ammonia using the Haber process at a pressure of 30 MPa.

Temperature (Kelvin)	Percentage yield of ammonia
200	94
300	66
400	44
500	22
600	9

(a)	Use the table values to predict whether the production of ammonia is endothermic or exothermic. Justify your answer.	2
		. 1
(b)	Predict how an increase in temperature would affect the rate of production of ammonia.	. 1
(c)	Identify and explain the effect of increased pressure on the production of ammonia.	2

End of Section I

	CONTRACTOR	
CTUDENT NUA	ARHR/NAMH.	
DIODENI NON	TOTAL TAXALLA	

Section II

Total marks (25)

Attempt ONE question from Questions 30-34 Allow about 45 minutes for this part

Answer the question in a separate writing booklet. Extra writing booklets are available.

		Pages
Question 30	Industrial Chemistry	20
Question 31	Shipwrecks, Salvage and Conservation	21
Question 32	Biochemistry of Movement	22
Question 33	Chemistry of Art	23
Question 34	Forensic Chemistry	25

Question 30 – Industrial Chemistry (25 marks)

Marks

0.100 mole of iodine, I_2 , and 0.100 mole of Γ (in the form of KI) is added to water to (a) make 1 L of solution. In this solution the following equilibrium is established at 25°C.

 $I_2 + \Gamma \Leftrightarrow I_3$

Write an expression for the equilibrium constant. (i)

1

At equilibrium the solution contains 2.0 x 10⁻² mole each of iodine and iodide ion, and 8.0 x 10⁻² mole of the I₃ ion. Calculate the value of the equilibrium constant for this reaction at 25°C.

2

(iii) Describe the effect on the equilibrium state and the value of the equilibrium constant, of adding some potassium iodide crystals.

2

(iv) If the solution is cooled in an ice bath the equilibrium constant decreases. What conclusion can be made concerning the energy of reaction?

1

Predict and explain the different products of the electrolysis of molten sodium chloride and a concentrated solution of sodium chloride.

4

During your course you performed a first hand investigation to carry out a chemical (c) step involved in the Solvay process for the production of sodium carbonate. Describe the chemical step and the results obtained and relate them to the sequence of steps used in the commercial production of sodium carbonate.

Describe the steps and chemistry involved in the commercial production of sulfuric (d) acid. In your answer analyse the process to predict ways in which the output of sulfuric acid is maximised.

5

Explain how the effect of hard water on the action of early soaps led to the (e) development of new synthetic cleaning agents and associated environmental problems.

Question 31 – Shipwrecks, Corrosion and Conservation (25 marks) Marks Cadmium and zinc are often used as protective coats to prevent corrosion of mild steel. (a) 1 Explain why zinc is a passivating metal. (i) Account for the difference in corrosion when zinc and cadmium plated steels are (ii) 3 cut or drilled You have carried out a first hand investigation to compare the effectiveness of different (b) protections used to coat iron and thus prevent corrosion. Describe and explain the 5 results of the experimental procedure used in the investigation. Chloride ions are removed from steel artefacts using an alkaline electrolytic cell. (c) Construct a diagram to show how chloride ions could be removed from a steel (i) cannon, clearly labelling the anode and cathode, and identifying the half reaction 3 at the anode. Justify the use of sodium hydroxide solution as the electrolyte for this procedure. 2 (ii) Contrast the corrosion of metal shipwrecks at great depth with those wrecked in (d) (i) shallow water 3 2 Describe the action of sulfate reducing bacteria around deep ocean wrecks. (ii) Outline and analyse the impact of Volta, Davy and Faraday on our understanding of (e) electron transfer reactions.

Question 32 – Biochemistry of Movement (25 marks)

Marks

(a) (i) State the general formula for a carbohydrate, and demonstrate that glucose matches this formula.

2

(ii) Describe how glycogen is produced from glucose and identify sites of glycogen storage in the body

2

(b) Adenosine diphosphate (ADP) has the structure:

- (i) Describe the process, involving NADH, which converts ADP to ATP.
- (ii) Explain the role of ATP in muscle action.
- (c) With reference to a named example describe the general structure of enzymes.

 Explain why the shape of an enzyme is essential for its function.
- (d) (i) Construct a structural formula for glycerol.
 - (ii) Explain the solubility of glycerol in water. 2
 - (iii) Demonstrate the role of glycerol in storing fatty acids and account for the hydrophobic properties the stored substances.

 3
- (e) Compare the respiratory pathways and products in the action of Type 1 and Type 2 muscle cells.

Question 33 - Chemistry of Art (25 marks)

Marks

Identify the chemical composition of two minerals used in cosmetics in ancient culture (a) and assess the potential health risks associated with their use.

3

- The study of spectra has enabled scientists to develop new technologies in the study of (b) pigments.
 - 2
 - Outline the differences between line emission spectra and absorption spectra. (i)

2

How did Bohr explain spectral lines in the emission spectra? (ii)

The diagram below shows an absorption spectrum for the hydrated titanium(III) (iii) ion in graphical form.

2

Predict the colour of this ion. Give a reason for your answer.

Question 33 continues on the next page

Question 33 continued

Marks

(c) Examine the two complex ions shown below.

(i) Write the ground state electronic configuration of the cobalt atom in terms of sub-shells.

1

(ii) By referring to the two complex ions discuss the following in relation to modelling the structure of complex ions.

4

- ligands
- · chelation
- nature of the coordinate bonds.

(d) The table below shows the successive ionisation energies for the sodium atom.

Ionisation	Ionisation energy (kJmol ⁻¹)
1st	502
2nd	4 569
3rd	6 919
4th	9 550
5th	13 356
6th	16 616
7th	20 121
8th	25 497
9th	. 28 941
10th	141 373
11th	159 086

(i) Write an equation to show the first ionisation for sodium.

1

(ii) Explain how the trend in successive ionisation energies provides information about the electronic structure of the sodium atom.

3

(e) (i) Define the term transition element.

1

(ii) Analyse why transition metal compounds are able to be extensively used in pigments in paints and to colour glass, enamel and ceramics. Supplement your answer with specific examples.

6

Marks Question 34 – Forensic Chemistry (25 marks) Distinguish between organic and inorganic compounds. 1 (a) (i) Alkanes, alkanols and alkanoic acids are different classes of organic (or (ii) carbon) compounds. Describe a sequence of tests that could be used to 3 distinguish between any THREE of these classes of compounds. Sucrose is an example of a carbohydrate that is classified as both a disaccharide and a (b) non-reducing sugar. 1 Explain what is meant by the term "disaccharide". (i) 3 Describe the chemical difference between reducing and non-reducing sugars. (ii) Discuss the use of line emission spectra to identify the presence of elements and explain how such information can assist in the analysis of the origins of a soil sample 5 Improvements in computer technology have increased the use of stored data banks of (d) information for use in forensic analysis. Describe how a data bank is useful for a forensic chemist performing analyses (i) 2 using a mass spectrometer. Discuss issues associated with the maintenance of data banks of DNA. (ii) Evaluate the use of electrophoresis in identifying the amino acids present in a mixture. (e)

End of Question 34

End of Paper

Chemistry

DATA SHEET

Avogadro constant, N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	
	at 0°C (273.15 K) 22.71 L
	at 25°C (298.15 K) 24.79 L
Ionisation constant for water a	1.25 °C (298.15 K), K_w 1.0×10^{-14}
Specific heat capacity of water	4.18 × 10^3 J kg ⁻¹ K ⁻¹

Some useful formulae

$$pH = -\log_{10}[H^+]$$

 $\Delta H = -m \, C \, \Delta T$

Some standard potentials

K ⁺ + e	~~ .	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	~	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$		Ca(s)	–2.87 V
Na ⁺ + e ⁻	=	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	=	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^-$	~ 2	Mn(s)	-1.18 V
$H_2O + e^-$	~	$\frac{1}{2}\mathrm{H}_2(g) + \mathrm{OH}^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	₩	Zn(s)	–0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^-$	₹ 2	Ni(s)	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	₩.	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	/_	Pb(s)	-0.13 V
H ⁺ + e ⁻		$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	-	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	4	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH-	0.40 V
Cu ⁺ + e ⁻	_	Cu(s)	0.52 V
$\frac{1}{2}\mathbf{I}_2(s) + \mathbf{e}^-$	(_	Γ.,	0.54 V
$\frac{1}{2}I_2(aq) + e^{-}$	=	I_	0.62 V
Fe ³⁺ + e ⁻	=	Fe ²⁺	0.77 V
$Ag^+ + e^-$	~	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	=	Br	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	/ 2	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	~	H ₂ O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + \mathrm{e}^-$	₹	CIT	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	~	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\operatorname{Cl}_2(aq) + e^-$	~	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	~2	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}$ F ₂ (g) + e ⁻	₩	F	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

							C,							-					ᆲ
		∞ 0	16.00	Oxygen	91 S.S.	32.07	Sulfur	% 34 8.	78.96	Selenium	52	127 K	Tellurium	P84 P0	[210.0]	Polonium	116 Uuh		Ununhexium
		r-2	14.01	Nitrogen	15 P	30.97	Phosphorus	33 As	74.92	Arsenic	51	30	Antimony	B.S3	209.0	Bismuth	115		2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2
		٥٥	12.01	Carbon	4 %	28.09	Silicon	32 Ge	72.61	Germanium	20	3fl 118.7	Ę	82 Pb	207.2	Lead	114 Uuq	·	Ununquadium
		S a	10.81	Boron	13 A1	26.98	Aluminium	31 Ga	69.72	Gallium	49	H 7	Indium	81 TI	204.4	Thallium	113		
SINE								30 Zn	65.39	Zinc	48	2 <u>2</u>	Cadmium	80 Hg	200.6	Mercury	112 Uub		Ununbium
ELEMENTS				ŧ				73 Cn	63.55	Copper	47	Ag 1070	Silver	79 Au	197.0	Gold	111 Uuu		Unununium
OF THE		Symbol of element		Name of element				7.8 Zi8	58.69	Nickel	46	10 K	Palladium	78 Pt	195.1	Platinum	110 Um		Ununnilium
	KEY	79	197.0	Cold	-			77 Co	58.93	Cobalt	45	12.0	Rhodium	77 Ir	192.2	Iridium	109 Mt	[568]	Meitnerium
PERIODIC TABLE		Atomic Number	Atomic Weight					76 Fe	55.85	Iron	44	1 Ed	Ruthenium	% Os	190.2	Osmium	108 Hs	[265.1]	Hassium
PERIO		¥						25 Mn	54.94	Manganese	43	10 011	Technetium	75 Re	186.2	Rhenium	107 Bh	[264.1]	Bohrium
								24 Cr	52.00	Chromium	42	0X 07	Molybdenum	4 ≫	183.8	Tungsten	106 Sg	[263.1]	Seaborgium
								l .						73 Ta		- 1			ı
								22 Ti	47.87	Titanium	40	01.22	Zirconium	72 Hf	178.5	Hafnium	104 Rf	[261.1]	Rutherfordium
								21 Sc								Lanthanides	89–103		Actinides
	•	4 B	9.012	Beryllium	12 Mg	24.31	Magnesium	Ca Sa	40.08	Calcium	38	27.67	Strontium	56 Ba	137.3	Barinm	88 Ra	[226.0]	Radium

3 Li 6.941 Liftium 11 Na 22.99 Sodium 19 K 39.10 Potassium 37 Rb 85.47

1 H 1.008 Hydrogen

9
F 10.00
Fluorine
17
C1
35.45
C1
35.45
Br 79.90
Brownine
53
I 126.9
Lodine
85
At
[210.0]
Astatine

Lanthanide	SS													
57	58	59	8	61	62	63	64	65	99	. 19	89	69	0/	71
La	ථ	P	PN	Pm	Sm	En	පි	TP	D	Но	Ē	Tm	λP	Ξ
138.9	140.1	140.9	144.2	[146.9]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

87 Fr [223.0] Francium

55 Cs 132.9 Caesium

86 Rn [222.0] Radon 118 Uuo Ununoctium

			9.1] [262.1]		
			[258.1] [259.1]		
			[257.1] [25		
	-		[252.1] [25	_	
	86		[252.1]	_	
	97	Bk	[249.1]	Berkelium	
	96	Ü	[244.1]	Curium	
			[241.1]	`	
	94	Pu	[239.1]	Plutonium	
	93	ď	[237.0]	Neptunium	
	92	n	238.0	Uranium	
	91	Pa	231.0	Protactinium	
	06	ᄪ	232.0	Thorium	
Actinides	68	Ac	[227.0]	Actinium	

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes ²³⁷Np and ⁹⁹Tc.