Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3z_1 + 2z_2 = 3(5+2i) + 2(3-3i) = 15+6i+6-6i =$	3 p
	=15+6=21	2 p
2.	$x+1 = x^2 - x + 2 \Leftrightarrow x^2 - 2x + 1 = 0$	2p
	x=1	3 p
3.	$3^{x^2+3} = 3^{1+3x} \Leftrightarrow x^2 + 3 = 1 + 3x \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	x=1 sau $x=2$	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre, care sunt divizibile cu 3 și cu 5 , are 6 elemente, deci sunt 6 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{90} = \frac{1}{15}$	1p
5.	Ecuația dreptei AB este $y = x + 2$	2 p
	Punctul C aparține dreptei $AB \Leftrightarrow m = -2$	3 p
6.	$BC^{2} = AB^{2} + AC^{2} - 2AB \cdot AC \cdot \cos A = 16 + 64 - 2 \cdot 4 \cdot 8 \cdot \frac{1}{2} = 48$	3p
	$BC = 4\sqrt{3}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -2 & 0 & 3 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -2 & 0 & 3 \end{vmatrix} =$	3p
	= 0 + 0 + 0 - (-2) - 0 - 0 = 2	2 p
b)	$A(x)A(-x) = \begin{pmatrix} 2+x^2 & 0 & -x^2-1 \\ 0 & 1 & 0 \\ 2+2x^2 & 0 & -2x^2-1 \end{pmatrix} \Rightarrow \det(A(x)A(-x)) = \begin{vmatrix} 2+x^2 & 0 & -x^2-1 \\ 0 & 1 & 0 \\ 2+2x^2 & 0 & -2x^2-1 \end{vmatrix} =$	3p
	$=(x^2+2)(-2x^2-1)-(-x^2-1)(2x^2+2)=-x^2 \le 0$, pentru orice număr real x	2 p
c)	$A(m)A(n) = \begin{pmatrix} 2-mn & 0 & mn-1 \\ 0 & 1 & 0 \\ 2(1-mn) & 0 & 2mn-1 \end{pmatrix} = A(mn)$	3p
	A(mn) = A(2), deci $mn = 2$ și, cum m și n sunt numere naturale, obținem $m + n = 3$	2p
2.a)	$f(1) = 0 \Leftrightarrow 1^3 + 2 \cdot 1^2 + a \cdot 1 + 1 = 0$	2 p
	a = -4	3 p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

b)	$f = X^3 + 2X^2 + 2X + 1$ și câtul este $X + 1$	3p
	Restul este 0	2 p
c)	111213	2 p
	Cum f are cel puțin o rădăcină reală, una dintre rădăcini este egală cu -1 sau cu 1	1p
	Dacă $x_1 = -1$, obținem $f(-1) = 0$, deci $a = 2$, ceea ce convine, deoarece $ x_2 = x_3 = 1$	1p
	Dacă $x_1 = 1$, obținem $f(1) = 0$, deci $a = -4$, ceea ce nu convine, deoarece $ x_2 \neq x_3 $	1p

SUBIECTUL al III-lea

(30 de puncte)

	-	
1.a)	$f'(x) = (e^x)' - 1' - (\ln(x+2))' =$	2p
	$= e^{x} - 0 - \frac{(x+2)'}{x+2} = e^{x} - \frac{1}{x+2}, \ x \in (-2, +\infty)$	3 p
b)	$= e^{x} - 0 - \frac{(x+2)'}{x+2} = e^{x} - \frac{1}{x+2}, \ x \in (-2, +\infty)$ $f''(x) = e^{x} + \frac{1}{(x+2)^{2}}, \ x \in (-2, +\infty)$	2p
	$f''(x) \ge 0$, deci funcția f este convexă pe $(-2, +\infty)$	3p
c)	$\lim_{x \to +\infty} \frac{e^x - 1}{x} = \lim_{x \to +\infty} e^x = +\infty$	2p
	$\lim_{x \to +\infty} \frac{\ln(x+2)}{x} = \lim_{x \to +\infty} \frac{1}{x+2} = 0$	2p
	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{e^x - 1}{x} - \frac{\ln(x+2)}{x} \right) = +\infty$	1p
2.a)	$\int_{1}^{e} x dx = \frac{x^2}{2} \left \frac{e}{1} \right =$	3р
	$=\frac{e^2}{2} - \frac{1}{2} = \frac{e^2 - 1}{2}$	2p
b)	$x \in [1, e] \Rightarrow 0 \le \ln x \le 1 \Rightarrow \ln x - 1 \le 0$	2p
	$I_{n+1} - I_n = \int_{1}^{e} x \ln^n x (\ln x - 1) dx \le 0$, deci $I_{n+1} \le I_n$, pentru orice număr natural nenul n	3р
c)	$I_{n+1} = \int_{1}^{e} x \ln^{n+1} x dx = \frac{x^2}{2} \ln^{n+1} x \left \frac{e}{1} - \frac{n+1}{2} \int_{1}^{e} x \ln^{n} x dx \right = \frac{e}{1} \int_{1}^{e} x \ln^{n+1} x dx$	3р
	$= \frac{e^2}{2} - \frac{n+1}{2}I_n$, deci $2I_{n+1} + (n+1)I_n = e^2$, pentru orice număr natural nenul n	2p