DATA 605 - Discussion 6

Omer Ozeren

Table of Contents

Chapter 4 Exercise 26 :	1
Answer:	1

Chapter 4 Exercise 26:

Suppose that A and B are events such that P(A|B) = P(B|A) and $P(A \cup B) = 1$ and $P(A \cap B) > 0$. Prove that P(A) > 1/2.

Answer:

Using the formula for conditional probability for events A and B:

$$P(A|B) = P(A \cap B)/P(B)$$
 and $P(B|A) = P(B \cap A)/P(A)$

we can rewrite the equality in the question to be:

a) $P(A \cap B)P(A) = P(B \cap A)P(B)$ using cross-multiplication.

Per the probability communitive law for two events, $P(A \cap B) = P(B \cap A)$

thus we can divide the $P(A \cap B)$ on both sides to get

b)
$$P(A) = P(B)$$

We have to show P(A) > 1/2 and to do this, recall the formula

of $P(A \cup B)$ that is the probability of either of the two events A and B happening

is:

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- We can solve for P(B) to get
- $P(A \cup B) + P(A \cap B) P(A) = P(B)$ and plug it into b. to get
- $P(A) = P(A \cup B) + P(A \cap B) P(A)$
- Adding P(A) on both sides gives
- $2P(A) = P(A \cup B) + P(A \cap B)$

- Dividing on both sides by 2 gives
- $P(A) = P(A \cup B)/2 + P(A \cap B)/2$
- $P(A \cup B) = 1$ as per the information given so
- $P(A) = 1/2 + P(A \cap B)/2$
- Finally note that the second operand $P(A \cap B)/2$ will always be within (0,1]
- so P(A) > 1/2