Università degli Studi di Cagliari

Dipartimento di Matematica e Informatica

Tesi di Laurea Magistrale in Matematica

Il Teorema di Calabi-Yau

Relatore: **Prof. Andrea Loi**

Candidato: Nicolò Leuzzi

Anno Accademico 2021/2022

Indice

In	trod	uzione	1		
1	Ric : 1.1	hiami Fibrati Vettoriali e Connessioni	2		
2	Stru 2.1 2.2	utture Complesse Funzioni Olomorfe e Varietà Complesse	5 5 7		
3	2.3 Ogg	Il Fibrato Esterno Complessificato	10 14		
	3.1	Operatori di Dolbeault e $i\partial\bar\partial$ -Lemma	14		
	3.2	Campi Vettoriali e Forme Olomorfe	16		
	3.3	Fibrati Vettoriali Olomorfi	18		
		3.3.1 Strutture Olomorfe	21		
		3.3.2 Fibrato Canonico di $\mathbb{C}P^m$	22		
4	Fibrati Hermitiani 23				
	4.1	Operatore di Curvatura di una Connessione	23		
	4.2	Strutture Hermitiane	25		
	4.3	La Connessione di Chern	26		
5	Varietà di Kähler 30				
	5.1	Metriche Hermitiane	30		
	5.2	Metriche di Kähler	32		
	5.3	Confronto tra la Connessione di Levi-Civita e di Chern	35		
	5.4	Tensore di Curvatura Kähleriano	37		

6	Operatore di Hodge e Coomologia di De Rham				
	6.1	L'Operatore di Hodge per Varietà Riemanniane	40		
	6.2	Il Laplaciano nelle Varietà di Kähler	42		
	6.3	Coomologia di De Rham	49		
7	Classi di Chern				
	7.1	Teoria di Chern-Weil	50		
	7.2	Proprietà della Prima Classe di Chern	55		
8	Il Teorema di Calabi-Yau				
	8.1	La Forma di Ricci come Forma di Curvatura	58		
	8.2	Il Teorema di Calabi-Yau	62		
Bi	Bibliografia				

Introduzione

Questa tesi si incentra sull'importante *Teorema di Calabi-Yau*, enunciato, sotto forma di congettura, da Eugenio Calabi negli anni '50 del secolo scorso e dimostrato da Shing-Tung Yau vent'anni dopo. Questo teorema, nel contesto delle varietà di Kähler compatte, assicura l'esistenza di una metrica di Kähler la cui forma di Ricci è data da una fissata (1,1)-forma. Un caso particolare si ha quando la prima classe di Chern della varietà è nulla. In questo caso il teorema assicura la possibilità di dotare la varietà di una metrica di Kähler Ricci-piatta.

Il corpo della tesi consiste nell'esposizione dei concetti necessari per la comprensione del teorema, il quale viene discusso nell'ultimo capitolo. Nel primo capitolo vengono richiamati alcuni concetti preliminari. Nei capitoli 2 e 3 vengono introdotti gli strumenti che permettono di passare dal contesto reale delle varietà differenziabili, a quello complesso. Nel quarto capitolo vengono introdotti i fibrati Hermitiani, fondamentali per definire la connessione (complessa) di Chern. Nel quinto capitolo vengono introdotte le varietà di Kähler e vengono esposti degli importanti risultati che valgono su tali varietà. Nel sesto capitolo viene introdotto l'operatore di Hodge nel contesto delle varietà complesse e vengono definiti i gruppi di coomologia di De Rham. Tramite le classi di coomologia, nel settimo capitolo, viene introdotto il concetto di prima classe di Chern e vengono esposte le sue proprietà. Infine, nell'ottavo capitolo, viene enunciato il teorema di Calabi-Yau e viene dato uno schema della sua dimostrazione.

Capitolo 1

Richiami

1.1 Fibrati Vettoriali e Connessioni

Definizione 1.1.1 (Fibrato Vettoriale). Siano E e M due varietà differenziabili e $\pi: E \to M$ un'applicazione differenziabile suriettiva. La terna (E, M, π) è detta **fibrato vettoriale reale di rango k** se:

- a) per ogni $x \in M$, $E_x := \pi^{-1}(x)$ è dotato di una struttura di spazio vettoriale (reale) di dimensione k;
- b) per ogni $x \in M$ esiste un aperto U che contiene x e un diffeomorfismo $\psi : \pi^{-1}(U) \to U \times \mathbb{R}^k$, detto **trivializzazione locale**, tale che $pr \circ \psi = \pi$, in cui pr è la proiezione sul primo fattore;
- c) per ogni $x \in M$, la restrizione $\psi_{|_{E_x}} : E_x \to \{x\} \times \mathbb{R}^k$ definisce un isomorfismo di spazi vettoriali.

 $E \ \dot{e} \ detto \ spazio \ totale, M \ spazio \ di \ base \ e \ \pi : E \longrightarrow M \ proiezione.$

Talvolta i fibrati vettoriali (E, M, π) vengono indicati con $\pi : E \to M$ oppure, qualora la proiezione e lo spazio di base siano ovvi dal contesto, semplicemente con E.

Definizione 1.1.2 (Sezione). Una sezione (liscia) di un fibrato vettoriale $\pi: E \to M$ è un'applicazione differenziabile $\sigma: M \to E$ tale che $\pi \circ \sigma = id_M$. L'insieme delle sezioni lisce di un fibrato vettoriale E si indica con $\Gamma(E)$.

Dei primi esempi di fibrati vettoriali sono:

- il fibrato tangente $TM := \bigsqcup_{x \in M} T_x M$, le cui sezioni sono i campi vettoriali differenziabili $(\mathcal{X}(M) := \Gamma(TM))$;
- il fibrato dei (k, l)-tensori su M

$$\mathcal{T}^{(k,l)}M \coloneqq \bigsqcup_{x \in M} \mathcal{T}^{(k,l)}(T_x M)$$

le cui sezioni sono i campi tensoriali di tipo (k, l);

• il fibrato delle k-forme su M

$$\Lambda^k M := \bigsqcup_{x \in M} \Lambda^k(T_x M)$$

le cui sezioni sono le k-forme differenziali $(\Omega^k M := \Gamma(\Lambda^k M))$.

Definizione 1.1.3 (Connessione). Una connessione ∇ sul fibrato vettoriale $\pi: E \to M$ è un'applicazione \mathbb{R} -lineare $\nabla: \mathcal{X}(M) \times \Gamma(E) \to \Gamma(E)$, tale che $(X, \sigma) \mapsto \nabla_X \sigma$, che soddisfa le seguenti proprietà $\forall X \in \mathcal{X}(M), \forall f \in C^{\infty}(M)$ $e \ \forall \sigma \in \Gamma(E)$:

- $C^{\infty}(M)$ -linearità : $\nabla_{fX}\sigma = f\nabla_{X}\sigma;$
- regola di Leibniz : $\nabla_X(f\sigma) = f\nabla_X\sigma + (\partial_X f)\sigma$.

 $\nabla_X \sigma$ è detta **derivata covariante** di σ rispetto a X.

Teorema 1.1.4. Sia ∇ una connessione lineare su una varietà differenziabile M (ovvero una connessione sul fibrato vettoriale TM). Allora su ogni fibrato tensoriale $\mathcal{T}^{(k,l)}M$ esiste un'unica connessione, indicata sempre con ∇ , tale che:

- i) su $\mathcal{T}^{(0,1)}M = TM$ coincide con la connessione lineare;
- ii) su $\mathcal{T}^{(0,0)}M$ si ha $\nabla_X f = df(X)$;
- iii) per ogni (k,l)-tensore F, per ogni (p,q)-tensore G e per ogni $X \in \mathcal{X}(M)$

$$\nabla_X(F\otimes G)=(\nabla_X F)\otimes G+F\otimes(\nabla_X G);$$

iv) ∇ commuta con le contrazioni dei tensori.

Inoltre una tale connessione soddisfa le seguenti proprietà:

a) per ogni $\omega \in \Omega^1 M$ e per ogni $Y \in \mathcal{X}(M)$

$$\nabla_X(\omega(Y)) = (\nabla_X \omega)(Y) + \omega(\nabla_X Y);$$

b) per ogni $F \in \Gamma(\mathcal{T}^{l,k})$, per ogni $\omega_1, \ldots, \omega_k \in \Omega^1 M$ e per ogni $Y_1, \ldots, Y_l \in \mathcal{X}(M)$

$$(\nabla_X F)(\omega_1, \dots, \omega_k, Y_1, \dots, Y_l) = \partial_X (F(\omega_1, \dots, \omega_k, Y_1, \dots, Y_l)) +$$

$$- \sum_{j=1}^k F(\omega_1, \dots, \nabla_X \omega_j, \dots, \omega_k, Y_1, \dots, Y_l) +$$

$$- \sum_{j=1}^l F(\omega_1, \dots, \omega_k, Y_1, \dots, \nabla_X Y_j, \dots, Y_l).$$

Capitolo 2

Strutture Complesse

2.1 Funzioni Olomorfe e Varietà Complesse

Definizione 2.1.1. Sia $U \subseteq \mathbb{C}$ un aperto $e \ F : U \to \mathbb{C}$ un'applicazione tale che F(x+iy) = f(x+iy) + ig(x+iy), in cui $f,g : U \to \mathbb{R}$. $F \ è$ detta **olomorfa** se soddisfa le seguenti condizioni (dette equazioni di Cauchy-Riemann):

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y} \quad e \quad \frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x} \tag{2.1}$$

Poichè $\mathbb{C} = \mathbb{R}^2$, la moltiplicazione per i in \mathbb{C} ha un corrispettivo in \mathbb{R}^2 , dato dall'endomorfismo $j : \mathbb{R}^2 \to \mathbb{R}^2$ rappresentato dalla matrice

$$j \coloneqq \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

nella base canonica di \mathbb{R}^2 . In questo modo, data un'applicazione $F:U\subseteq\mathbb{R}^2\to\mathbb{R}^2$ liscia, posso esprimere le condizioni (2.1) per F come:

$$j \circ (F_*)_p = (F_*)_p \circ j \quad \forall p \in U$$
 (2.2)

Ovvero:

Proposizione 2.1.2. Un'applicazione liscia $F: U \to \mathbb{R}^2$, definita su un aperto $U \subseteq \mathbb{R}^2$, è olomorfa se e solo se vale la condizione (2.2).

È possibile identificare \mathbb{C}^m e \mathbb{R}^{2m} tramite:

$$(x_1+iy_1,\ldots,x_m+iy_m)\longmapsto (x_1,\ldots,x_m,y_1,\ldots,y_m)$$

Analogamente al caso m=1, la moltiplicazione per i in \mathbb{C}^m ha un corrispettivo in \mathbb{R}^{2m} dato dall'applicazione $j_m: \mathbb{R}^{2m} \to \mathbb{R}^{2m}$ che, nella base canonica di \mathbb{R}^{2m} , è rappresentata dalla matrice:

$$j_m \coloneqq \begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix}$$

Definizione 2.1.3 (Funzione Olomorfa). Un'applicazione liscia $F: U \to \mathbb{R}^{2m}$, definita su un aperto U di \mathbb{R}^{2n} , è **olomorfa**¹ se:

$$j_m \circ F_{*_p} = F_{*_p} \circ j_n \quad \forall p \in U$$

Definizione 2.1.4 (Varietà Complessa). Una varietà complessa m-dimensionale è una varietà topologica (M^m, \mathcal{U}) tale che le carte locali dell'atlante soddisfano la seguente condizione di compatibilità:

 $\forall (U, \varphi_U), (V, \varphi_V) \in \mathcal{U} \text{ tali che } U \cap V \neq \emptyset, \text{ l'applicazione del cambio di coordinate } \varphi_{UV} := \varphi_U \circ \varphi_V^{-1} : \varphi_U(U \cap V) \rightarrow \varphi_V(U \cap V), \text{ in quanto ad applicazione tra aperti di } \mathbb{C}^m, \text{ è olomorfa.}$

In tal caso ogni carta (U, φ_U) è detta **olomorfa** e l'atlante \mathcal{U} è detto **struttura olomorfa**. Un'applicazione $F: M \to \mathbb{C}$ è **olomorfa** se per ogni $x \in M$ esiste una carta olomorfa (U, φ_U) tale che $F \circ \varphi_U$ è olomorfa.

Osservazione 2.1.5. Ogni m-varietà complessa M è una 2m-varietà differenziabile indicata con $M_{\mathbb{R}}$, infatti la condizione di compatibilità per varità complesse implica la condizione di C^{∞} -compatibilità per varietà differenziabili. Su $M_{\mathbb{R}}$ è possibile definire un (1,1)-tensore $J:\Gamma(TM_{\mathbb{R}})\to\Gamma(TM_{\mathbb{R}})$ che permette di identificare il fibrato vettoriale complesso TM con il fibrato vettoriale reale $TM_{\mathbb{R}}$. Tale tensore può essere definito localmente, dato $X \in T_x M_{\mathbb{R}}$ e data (U, φ_U) carta locale attorno a x, tramite:

$$J_U(X) := (\varphi_U)_*^{-1} \circ j_m \circ (\varphi_U)_*(X)$$

La definizione è ben posta, infatti: se sia (U, φ_U) che (V, φ_V) sono carte attorno a x, allora, in $U \cap V$, si ha $\varphi_V = \varphi_{VU} \circ \varphi_U$. Perciò, preso $X \in T_x M_{\mathbb{R}}$, si avrà

$$J_{V}(X) = (\varphi_{V})_{*}^{-1} \circ j_{m} \circ (\varphi_{V})_{*}(X) =$$

$$= (\varphi_{U})_{*}^{-1} \circ (\varphi_{VU})_{*}^{-1} \circ j_{m} \circ (\varphi_{VU})_{*} \circ (\varphi_{U})_{*}(X) =$$

$$= (\varphi_{U})_{*}^{-1} \circ (\varphi_{VU})_{*}^{-1} \circ (\varphi_{VU})_{*} \circ j_{m} \circ (\varphi_{U})_{*}(X) =$$

$$= J_{U}(X),$$

¹vista come funzione tra un aperto di \mathbb{C}^n e \mathbb{C}^m .

Definizione 2.1.6 (Struttura Quasi Complessa). Un (1,1)-tensore J su una varietà differenziabile M è detto **struttura quasi complessa** se $J^2 = -Id$. La coppia (M,J) prenderà il nome di **varietà quasi complessa**.

Osservazione 2.1.7. Se M ammette una struttura quasi complessa J allora M è di dimensione pari. Infatti J in ogni punto $p \in M$ definisce un endomorfismo di T_pM che può essere rappresentato da una matrice J_p . Poichè $J^2 = -Id$, allora $(\det J_p)^2 = \det(-I_n) = (-1)^n$ in cui $n = \dim(M)$. Perciò, affinchè $(\det J_p)^2$ sia un numero reale si deve richiedere che n sia pari.

2.2 Il Fibrato Tangente Complessificato

Sia (M, J) una varità quasi complessa e sia $TM^{\mathbb{C}} := TM \otimes \mathbb{C}$, ovvero il fibrato tangente complessificato. Fatta l'identificazione $iX = X \otimes i$ per ogni $X \in TM$, posso esprimere il complessificato come

$$TM^{\mathbb{C}} = \{X + iY \mid X, Y \in TM\}$$

Inoltre, posso estendere il tensore J per \mathbb{C} -linearità e definire $T^{1,0}M$ e $T^{0,1}M$ come gli auto-fibrati relativi agli autovalori i e -i di J rispettivamente. Ovvero:

$$T^{1,0}M := \{X + iY \in TM^{\mathbb{C}} \mid J(X + iY) = i(X + iY)\}\$$

 $T^{0,1}M := \{X + iY \in TM^{\mathbb{C}} \mid J(X + iY) = -i(X + iY)\}\$

Proposizione 2.2.1. In una varietà quasi complessa (M, J) si hanno:

i)
$$T^{1,0}M = \{X - iJX \mid X \in TM\};$$

ii)
$$T^{0,1}M = \{X + iJX \mid X \in TM\};$$

iii)
$$TM^{\mathbb{C}} = T^{1,0}M \oplus T^{0,1}M$$
.

Dimostrazione. Siano X e Y dei campi vettoriali aventi espressioni locali

$$X = \sum_{j=1}^{m} \left(a_j \frac{\partial}{\partial x_j} + b_j \frac{\partial}{\partial y_j} \right) \quad \text{e} \quad Y = \sum_{j=1}^{m} \left(c_j \frac{\partial}{\partial x_j} + d_j \frac{\partial}{\partial y_j} \right)$$

i)

$$J(X+iY) = \sum_{j=1}^{m} \left(-(b_j + id_j) \frac{\partial}{\partial x_j} + (a_j + ic_j) \frac{\partial}{\partial y_j} \right)$$
$$i(X+iY) = \sum_{j=1}^{m} \left(-(c_j - ia_j) \frac{\partial}{\partial x_j} + (-d_j + ib_j) \frac{\partial}{\partial y_j} \right)$$

Perciò si deve avere $b_j = c_j$ e $d_j = -a_j$ per ogni $j = 1, \ldots, n$, ovvero Y = -JX.

iii) $T^{1,0}M\cap T^{0,1}M=\emptyset$, infatti: se X-iJX=Y+iY allora avrei -JX=JY=JX e quindi X=0=Y.

Infine, dato $X \in TM$, posso scomporlo come

$$X = \frac{1}{2} \left((X - iJX) + (X + iJX) \right)$$

Osservazione 2.2.2. Dal lemma si ottiene direttamente che $Z \in T^{0,1}M$ se e solo se Z - iJZ = 0 e $Z \in T^{1,0}M$ se e solo se Z + iJZ = 0, infatti:

$$\Rightarrow$$
: se $Z = X + iJX$, allora $Z - iJZ = X + iJX - iJX - X = 0$;

 \Leftarrow : se Z=X+iY, supponendo Z-iJZ=0, ottengo:

$$0 = X + iY - iJX + JY = (X + JY) + i(Y - JX)$$

quindi Y = JX.

Per quanto visto nell'Osservazione 2.1.5, ogni varietà complessa è anche una varietà quasi complessa. Il seguente teorema da una condizione necessaria e sufficiente affinchè valga anche il viceversa.

Teorema 2.2.3 (di Newlander–Nirenberg). Sia (M, J) una varietà quasi complessa. J proviene da una struttura olomorfa se e solo se la distribuzione $T^{0,1}M$ è integrabile².

²Una distribuzione D su una varietà differenziabile M è un sottofibrato di TM. $X \in \mathcal{X}(M)$ è **parallelo** a D se per ogni $x \in M$ si ha $X_x \in D_x$. La distribuzione D è detta **integrabile** se per ogni X e Y campi vettoriali paralleli a D anche [X,Y] è parallelo a D.

Dimostrazione.

 \Rightarrow : Supponiamo che J provenga da una struttura olomorfa \mathcal{U} su M. Sia $(U, \varphi_U) \in \mathcal{U}$ e siano $z_{\alpha} = x_{\alpha} + iy_{\alpha}$ le coordinate olomorfe su U. Se $\{e_1, \ldots, e_{2m}\}$ è la base canonica di \mathbb{R}^{2m} , si ha:

$$\frac{\partial}{\partial x_{\alpha}} = (\phi_U)_*^{-1}(e_{\alpha}) \quad e \quad \frac{\partial}{\partial y_{\alpha}} = (\phi_U)_*^{-1}(e_{m+\alpha}) \quad \forall \alpha \in \{1, \dots, m\}.$$

Poichè $j_m(e_\alpha) = e_{m+\alpha}$, si ottiene dalla definizione di J che:

$$J\left(\frac{\partial}{\partial x_{\alpha}}\right) = \frac{\partial}{\partial y_{\alpha}}.$$

Pongo

$$\frac{\partial}{\partial z_{\alpha}} := \frac{1}{2} \left(\frac{\partial}{\partial x_{\alpha}} - i \frac{\partial}{\partial y_{\alpha}} \right) \quad \text{e} \quad \frac{\partial}{\partial \bar{z}_{\alpha}} := \frac{1}{2} \left(\frac{\partial}{\partial x_{\alpha}} + i \frac{\partial}{\partial y_{\alpha}} \right).$$

Allora, dalla proposizione 2.2.1, ricavo che $\{\partial/\partial z_{\alpha}\}$ e $\{\partial/\partial \bar{z}_{\alpha}\}$ sono basi locali per $T^{1,0}M$ e $T^{0,1}M$ rispettivamente. Perciò date due sezioni locali $Z = \sum_{\alpha=1}^{m} Z_{\alpha} (\partial/\partial \bar{z}_{\alpha})$ e $W = \sum_{\alpha=1}^{m} W_{\alpha} (\partial/\partial \bar{z}_{\alpha})$ si ha che

$$[Z, W] = \sum_{\alpha, \beta = 1}^{m} Z_{\alpha} \frac{\partial W_{\beta}}{\partial \bar{z}_{\alpha}} \frac{\partial}{\partial \bar{z}_{\beta}} - \sum_{\alpha, \beta = 1}^{m} W_{\alpha} \frac{\partial Z_{\beta}}{\partial \bar{z}_{\alpha}} \frac{\partial}{\partial \bar{z}_{\beta}}$$

ovvero [Z, W] è ancora una sezione di $T^{0,1}M$.

Definizione 2.2.4 (Struttura Complessa). Se una struttura quasi complessa J che proviene da una struttura olomorfa è detta **struttura complessa**.

Definizione 2.2.5. Un'applicazione $f:(M,J_1)\to (N,J_2)$ tra due varietà complesse è detta **olomorfa** se $f_*\circ J_1=J_2\circ f_*$

2.3 Il Fibrato Esterno Complessificato

Sia (M, J) una varità quasi complessa e sia

$$\Lambda^*M := \bigoplus_{k=1}^{\infty} \Lambda^k M$$

il fibrato esterno. Sia $\Lambda^*_{\mathbb{C}}M := \Lambda^*M \otimes \mathbb{C}$ il fibrato esterno complessificato. Fatta l'identificazione $i\omega = \omega \otimes i$ per ogni $\omega \in \Lambda^*M$, posso esprimere il complessificato come

$$\Lambda_{\mathbb{C}}^*M=\{\omega+i\eta\mid \omega,\eta\in\Lambda^*M\}.$$

Definisco quindi i sottofibrati di $\Lambda_{\mathbb{C}}^*M$

$$\begin{split} & \Lambda^{1,0}M \coloneqq \{\xi \in \Lambda^1_{\mathbb{C}} \mid \xi(Z) = 0, \ \forall Z \in T^{0,1}M \} \\ & \Lambda^{0,1}M \coloneqq \{\xi \in \Lambda^1_{\mathbb{C}} \mid \xi(Z) = 0, \ \forall Z \in T^{1,0}M \} \end{split}$$

Le sezioni di questi due fibrati vengono chiamate (1,0)-forme e (0,1)-forme rispettivamente.

Lemma 2.3.1. In una varietà quasi complessa (M, J) si hanno:

- i) $\Lambda^{1,0}M = \{\omega i\omega \circ J \mid \omega \in \Lambda^1 M\};$
- ii) $\Lambda^{0,1}M = \{\omega + i\omega \circ J \mid \omega \in \Lambda^1 M\};$
- iii) $\Lambda^1_{\mathbb{C}}M = \Lambda^{1,0}M \oplus \Lambda^{0,1}M$.

Dimostrazione.

i) Siano $\xi = \omega + i\tau \in \Lambda^{1,0}$ e $Z = X + iJX \in T^{0,1}M.$ Allora $\forall X \in TM$:

$$0 = \xi(Z) =$$

$$= (\omega + i\tau)(X + iJX) =$$

$$= (\omega - \tau \circ J)(X) + i(\omega \circ J + \tau)(X).$$

Perciò $\omega = \tau \circ J$ e $-\omega \circ J = \tau$, ovvero $\xi = \omega - i\omega \circ J$.

iii) Ogni $\omega \in \Lambda^1 M$ può essere scomposta come:

$$\omega = \frac{1}{2} \left(\left(\omega - i\omega \circ J \right) + \left(\omega + i\omega \circ J \right) \right).$$

Posso quindi definire

$$\Lambda^{k,0} := \bigwedge_{i=1}^k \Lambda^{1,0} \quad \text{e} \quad \Lambda^{0,k} := \bigwedge_{i=1}^k \Lambda^{0,1}$$

e infine $\Lambda^{p,q}M := \Lambda^{p,0}M \otimes \Lambda^{0,q}M$. Essendo $\Lambda^k(E \oplus F) \cong \bigoplus_{i=0}^k \Lambda^i E \otimes \Lambda^{k-i}F$, posso esprimere $\Lambda^k_{\mathbb{C}}$ come:

$$\Lambda^k_{\mathbb{C}} \cong \bigoplus_{p+q=k} \Lambda^{p,q} M.$$

Le sezioni di $\Lambda^{p,q}M$ vengono chiamate (p,q)-forme e si indica $\Omega^{p,q}M := \Gamma(\Lambda^{p,q}M)$.

Osservazione 2.3.2. Una k-forma complessa ω appartiene a $\Omega^{k,0}M$ (risp. $\Omega^{0,k}M$) se e solo se $Z \sqcup \omega = 0 \quad \forall Z \in T^{0,1}M$ (risp. $\forall Z \in T^{1,0}M$). Quindi una k-forma complessa appartiene a $\Omega^{p,q}M$ se e solo se si annulla se applicata a p+1 vettori di $T^{0,1}M$ o a q+1 vettori di $T^{1,0}M$.

Data una varietà quasi complessa (M,J) e considerate le coordinate locali x_{α} e y_{α} , posso definire le 1-forme

$$dz_{\alpha} := dx_{\alpha} + idy_{\alpha}$$
 e $d\bar{z}_{\alpha} := dx_{\alpha} - idy_{\alpha}$

che formano una base locale rispettivamente per $\Omega^{1,0}M$ e $\Omega^{0,1}M$. Perciò una base locale per $\Omega^{p,q}M$ sarà data da:

$$\left\{ dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_q} \mid i_1 < \cdots < i_p, \quad j_1 < \cdots < j_q \right\}$$

Proposizione 2.3.3. Sia J una struttura quasi complessa su una 2m-varietà differenziabile M. Le seguenti affermazioni sono equivalenti:

- 1) J è una struttura complessa;
- 2) $T^{0,1}M$ è integrabile;
- 3) $d(\Omega^{1,0}M) \subseteq \Omega^{2,0}M \oplus \Omega^{1,1}M;$
- 4) $d(\Omega^{p,q}M) \subseteq \Omega^{p+1,q}M \oplus \Omega^{p,q+1}M, \quad \forall 0 \le p, q \le m;$

5) il (2,1)-tensore N^J, detto **tensore di Nijenhuis associato a** J, definito da:

$$N^J(X,Y) = [X,Y] + J[JX,Y] + J[X,JY] - [JX,JY], \quad \forall X,Y \in \mathcal{X}(M)$$
è identicamente nullo.

Dimostrazione.

- $1 \Leftrightarrow 2$: è assicurata dal Teorema 2.2.3.
- $2 \Leftrightarrow 3$: sia $\omega \in \Omega^{1,0}M$. Esteso per \mathbb{C} -linearità l'operatore d di derivata esterna, per l'Osservazione 2.3.2, ho che la componente (0,2) di $d\omega \in \Lambda^2_{\mathbb{C}}M$ è nulla se e solo se $d\omega(Z,W)=0 \quad \forall Z,W\in T^{0,1}M$.

Siano ora $Z, W \in \Gamma(T^{0,1}M)$, allora, essendo $\omega \in \Omega^{1,0}M$, si ha che:

$$d\omega(Z, W) = \partial_Z \omega(W) - \partial_W \omega(Z) - \omega(Z, W) = -\omega([Z, W]).$$

Da cui

$$\begin{split} d\omega(Z,W) &= 0, \quad \forall Z, W \in T^{0,1}M, \quad \forall \omega \in \Omega^{1,0}M \\ \Leftrightarrow \quad \omega([Z,W]) &= 0, \quad \forall Z, W \in T^{0,1}M, \quad \forall \omega \in \Omega^{1,0}M \\ \Leftrightarrow \quad [Z,W] \in \Gamma(T^{1,0}M), \quad \forall Z, W \in T^{0,1}M \end{split}$$

- $4 \Rightarrow 3$: ovvia;
- $3 \Rightarrow 4$: per definizione $d\bar{z}_{\alpha} = dx_{\alpha} idy_{\alpha}$, ovvero, nel fibrato esterno complessificato, dz_{α} e $d\bar{z}_{\alpha}$ sono uno il coniugato dell'altro. Essendo d esteso per \mathbb{C} -linearità e supponendo che valga la (3), si ottiene anche:

$$d\left(\Omega^{0,1}M\right) \subseteq \Omega^{0,2}M \oplus \Omega^{1,1}M$$
.

Poichè ogni elemento di $\Omega^{p,q}M$ è somma di elementi della forma $\omega_1 \wedge \cdots \wedge \omega_p \wedge \bar{\tau}_1 \wedge \cdots \wedge \bar{\tau}_q$, in cui $\omega_i \in \Omega^{1,0}M$ e $\bar{\tau}_i \in \Omega^{0,1}M$, applicando la regola di Leibniz si ottiene che $d\omega \in \Omega^{p+1,q}M \oplus \Omega^{p,q+1}M$ per ogni $\omega \in \Omega^{p,q}M$.

 $2 \Leftrightarrow 5$: siano $X, Y \in \mathcal{X}(M)$ e sia Z = [X + iJX, Y + iJY]. Allora:

$$\begin{split} Z - iJZ &= [X,Y] + i[X,JY] + i[JX,Y] - [JX,JY] + \\ &- i(J[X,Y] + iJ[X,JY] + iJ[JX,Y] - J[JX,JY]) = \\ &= N^J(X,Y) - iJN^J(X,Y). \end{split}$$

Per l'Osservazione 2.2.2, $Z\in T^{0,1}M$ se e solo se Z-iJZ=0. Allora $[X+iJX,Y+iJY]\in T^{0,1}M$ se e solo se $N^J(X,Y)=0$ e quindi $T^{0,1}M$ è integrabile se e solo se N^J è identicamente nullo.

Capitolo 3

Oggetti Olomorfi

3.1 Operatori di Dolbeault e $i\partial\bar{\partial}$ -Lemma

In questa e nella prossima sezione (M,J) è varietà complessa m-dimensionale. Dalla Proposizione 2.3.3 sappiamo che $d\left(\Omega^{p,q}M\right)\subseteq\Omega^{p+1,q}M\oplus\Omega^{p,q+1}M$, $\forall 0\leq p,q\leq m$. Ciò giustifica la seguente definizione.

Definizione 3.1.1 (Operatori di Dolbeault). Definisco gli operatori di Dolbeault come la famiglia di operatori

$$\partial:\Omega^{p,q}M\to\Omega^{p+1,q}M \quad e \quad \bar{\partial}:\Omega^{p,q}M\to\Omega^{p,q+1}M$$

tali che $d = \partial + \bar{\partial}$.

Lemma 3.1.2. I precedenti operatori godono delle seguenti proprietà:

- $i) \partial^2 = 0;$
- $ii) \ \bar{\partial}^2 = 0;$
- $iii) \partial \bar{\partial} + \bar{\partial} \partial = 0.$

Dimostrazione. Essendo

$$0 = d^2 = (\partial + \bar{\partial})^2 = \partial^2 + \bar{\partial}^2 + (\partial \bar{\partial} + \bar{\partial} \partial),$$

applicando d^2 ad una (p,q)-forma si ottiene la somma di una (p+2,q)-forma, una (p,q+2)-forma e una (p+1,q+1)-forma corrispondenti ai 3 operatori della somma. Avendo $\Omega^{p+2,q}$, $\Omega^{p,q+2}$ e $\Omega^{p+1,q+1}$ in comune solo la (p+q+2)-forma nulla, si deduce che $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$.

Osservazione 3.1.3. Per ogni applicazione liscia $f: M \to \mathbb{C}$ si ha:

$$\partial f = \sum_{\alpha=1}^{m} \frac{\partial f}{\partial z_{\alpha}} dz_{\alpha} \quad \text{e} \quad \bar{\partial} f = \sum_{\alpha=1}^{m} \frac{\partial f}{\partial \bar{z}_{\alpha}} d\bar{z}_{\alpha}.$$

Infatti:

$$df = \sum_{\alpha=1}^{m} \left(\frac{\partial f}{\partial x_{\alpha}} dx_{\alpha} + \frac{\partial f}{\partial y_{\alpha}} dy_{\alpha} \right) =$$

$$= \sum_{\alpha=1}^{m} \left(\frac{\partial f}{\partial x_{\alpha}} dx_{\alpha} + \frac{\partial f}{\partial y_{\alpha}} dy_{\alpha} \pm \frac{1}{2} \frac{\partial f}{\partial x_{\alpha}} i dy_{\alpha} \pm \frac{1}{2} i \frac{\partial f}{\partial y_{\alpha}} dx_{\alpha} \right) =$$

$$= \sum_{\alpha=1}^{m} \left[\left[\frac{1}{2} \left(\frac{\partial f}{\partial x_{\alpha}} - i \frac{\partial f}{\partial y_{\alpha}} \right) dx_{\alpha} + \frac{1}{2} \left(\frac{\partial f}{\partial x_{\alpha}} - i \frac{\partial f}{\partial y_{\alpha}} \right) i dy_{\alpha} \right] +$$

$$+ \left[\frac{1}{2} \left(\frac{\partial f}{\partial x_{\alpha}} + i \frac{\partial f}{\partial y_{\alpha}} \right) dx_{\alpha} - \frac{1}{2} \left(\frac{\partial f}{\partial x_{\alpha}} + i \frac{\partial f}{\partial y_{\alpha}} \right) i dy_{\alpha} \right] \right] =$$

$$= \sum_{\alpha=1}^{m} \left(\frac{\partial f}{\partial z_{\alpha}} dz_{\alpha} + \frac{\partial f}{\partial \bar{z}_{\alpha}} d\bar{z}_{\alpha} \right)$$

Lemma 3.1.4 (di Dolbeault). Una (0,1)-forma $\bar{\partial}$ -chiusa ω (i.e. $\bar{\partial}\omega = 0$) è localmente $\bar{\partial}$ -esatta (i.e. esiste η tale che $\omega = \bar{\partial}\eta$).

Lemma 3.1.5 ($i\partial\bar{\partial}$ -Lemma Locale). Sia $\omega \in \Lambda^{1,1}M \cap \Lambda^2M$ una 2-forma reale del tipo (1,1) su una varietà complessa M. ω è chiusa se e solo se per ogni $x \in M$ esiste un aperto U di M che contiene x e una applicazione liscia $u: U \to \mathbb{R}$ tale che $\omega_{|_U} = i\partial\bar{\partial}u$.

Dimostrazione.

 \Leftarrow : una forma $i\partial\bar{\partial}$ -esatta e anche chiusa, infatti:

$$d(i\partial\bar{\partial}) = i(\partial + \bar{\partial})\partial\bar{\partial} = i(\partial^2\bar{\partial} - \partial\bar{\partial}^2) = 0$$

 \Rightarrow : ω , in quanto a (1,1)-forma chiusa, per il Lemma di Poincarè¹, è localmente esatta. Sia quindi τ una 1-forma reale definita in un aperto semplicemente connesso tale che $d\tau = \omega$. Poichè, in particolare,

 $^{^1{\}rm Una}~p$ -forma definita su un aperto semplicemente connesso è chiusa se e solo se è esatta

 $\tau\in\Lambda^1_{\mathbb{C}}\cong\Lambda^{1.0}M\oplus\Lambda^{0,1}M,$ posso scomporla come $\tau=\tau^{1,0}+\tau^{0,1},$ in cui $\tau^{1,0}=\overline{\tau^{0,1}}.^2$ Inoltre

$$\bar{\partial}\tau^{1,0} + \left(\partial\tau^{1,0} + \bar{\partial}\tau^{0,1}\right) + \partial\tau^{0,1} = d\tau = \omega \in \Lambda^{1,1}M.$$

Non essendo i termini tra parentesi di tipo (1,1), allora $\omega = \bar{\partial}\tau^{1,0} + \partial\tau^{0,1}$ e $\bar{\partial}\tau^{0,1} = 0$. Allora per il lemma di Dolbeault esiste una funzione locale f tale che $\tau^{0,1} = \bar{\partial}f$ e si ha

$$\tau^{1,0} = \overline{\tau^{0,1}} = \overline{\partial} \overline{f} = {}^{3}\partial \overline{f}.$$

Perciò

$$\omega = (\partial \tau^{0,1} + \bar{\partial} \tau^{1,0}) = \partial \bar{\partial} f + \bar{\partial} \partial \bar{f} = \partial \bar{\partial} f - \partial \bar{\partial} \bar{f} = 0$$
$$= \partial \bar{\partial} (f - \bar{f}) = i \partial \bar{\partial} (2 \operatorname{Im}(f))$$

3.2 Campi Vettoriali e Forme Olomorfe

Lemma 3.2.1. Sia $f: M \to \mathbb{C}$ liscia, allora le seguenti affermazioni sono equivalenti:

- 1) f è olomorfa;
- 2) $\partial_Z f = 0$, $\forall Z \in T^{0,1}M$;
- 3) df è una forma di tipo (1,0).

Dimostrazione.

²suppongo che $\tau^{1,0} = \eta_1 - i\eta_1 \circ J$ e $\tau^{0,1} = \eta_2 + i\eta_2 \circ J$. Essendo τ reale, allora:

$$(\eta_1 + \eta_2) + i(\eta_2 - \eta_1) \circ J = \tau^{1,0} + \tau^{0,1} = \overline{\tau^{1,0}} + \overline{\tau^{0,1}} = (\eta_1 + \eta_2) + i(\eta_1 - \eta_2) \circ J$$

da cui ricavo $\eta_1 = \eta_2$ e quindi $\tau^{1,0} = \overline{\tau^{0,1}}$.

³Per l'Osservazione 3.1.3 si ha che

$$\overline{\bar{\partial}f} = \sum_{\alpha=1}^{m} \overline{\frac{\partial f}{\partial \bar{z}_{\alpha}}} \overline{d\bar{z}_{\alpha}} = \sum_{\alpha=1}^{m} \frac{\partial \bar{f}}{\partial z_{\alpha}} dz_{\alpha} = \partial \bar{f}$$

 $2 \Leftrightarrow 3: df \in \Omega^{1,0}M \iff df(Z) = 0 \quad \forall Z \in T^{0,1}M \iff \partial_Z f = 0 \quad \forall Z \in T^{0,1}M.$

1
$$\Leftrightarrow$$
 3: $f \in \text{olomorfa} \iff f \circ \varphi_U^{-1} \in \text{olomorfa} \iff f_* \circ (\varphi_U)_*^{-1} \circ j_m = j_1 \circ f_* \circ (\varphi_U)_*^{-1} \iff f_* \circ J = if_* \iff idf(X + iJX) = 0, \forall X \in TM \iff df \in \Omega^{1,0}M.$

Osservazione 3.2.2. Un campo vettoriale complesso Z è del tipo (0,1) se e solo se per ogni f funzione olomorfa localmente definita si ha $\partial_Z f = 0$. Infatti dal lemma precedente ho che vale la prima implicazione. Al contrario, se $0 = \partial_Z f = df(Z)$ per ogni f olomorfa localmente definita, allora, se Z = X + iY, dalla dimostrazione del lemma precedente ottengo che df(X) = -idf(Y) = -df(JY). Poichè ciò vale per ogni f olomorfa localmente definita, allora Y = JX e quindi Z è del tipo (0,1).

Osservazione 3.2.3. Se $f:M\to\mathbb{C}$ è un'applicazione liscia, ho che f è olomorfa se e solo se $\bar{\partial}f=0$, infatti:

$$f$$
 è olomorfa $\Leftrightarrow df$ è una $(1,0)$ -forma $\Leftrightarrow df = \partial f \Leftrightarrow \bar{\partial} f = 0$

Definizione 3.2.4 (Campo Vettoriale Olomorfo). Un campo vettoriale $Z \in \Gamma(T^{1,0}M)$ è detto **olomorfo** se $\partial_Z f$ è olomorfo per ogni funzione olomorfa f definita localmente.

Definizione 3.2.5 (Campo Vettoriale Olomorfo Reale). $X \in \mathcal{X}(M)$ è detto campo vettoriale olomorfo reale se la sua componente (1,0) $X - iJX \in \Gamma(T^{1,0}M)$ è un campo vettoriale olomorfo.

Definizione 3.2.6 (p-Forma Olomorfa). $\omega \in \Omega^{p,0}M$ è detta **olomorfa** se $\bar{\partial}\omega = 0$.

Lemma 3.2.7. Sia X un campo vettoriale reale su una varietà complessa (M, J). Le seguenti affermazioni sono equivalenti:

- 1) X è olomorfo reale;
- 2) $\mathcal{L}_X J^4 = 0$.

Dimostrazione.

 $^{{}^4\}mathcal{L}_XJ$ indica la derivata di Lie del (1,1)-tensore J che può essere espressa come $\mathcal{L}_XJ = \mathcal{L}_X(JY) - J(\mathcal{L}_XY)$, in cui, se $X,Y \in \mathcal{X}(M)$, $\mathcal{L}_XY \coloneqq [X,Y]$.

 $1 \Leftrightarrow 2$: dall'Osservazione 3.2.2 ottengo che per ogni $X \in \mathcal{X}(M)$ si ha che $\partial_{X+iJX}f = 0$ con f olomorfa localmente definita. Poichè 2X = (X + iJX) + (X - iJX), ottengo $\partial_{X-iJX}f = 2\partial_X f$ e quindi, per la definizione di campo reale olomorfo, si deve avere che anche $\partial_X f$ è olomorfa, da cui ricavo che per ogni $Y \in \mathcal{X}(M)$ si deve avere $\partial_{Y+iJY}f = 0 = \partial_{Y+iJY}(\partial_X f)$. Allora per ogni f olomorfa localmente definita si ha $\partial_{[Y+iJY,X]}f = 0$, ovvero [Y + iJY,X] è un campo del tipo (0,1), e quindi [JY,X] = J[Y,X]. Infine posso ora calcolare la derivata di Lie

$$(\mathcal{L}_X J)(Y) = \mathcal{L}_X (JY) - J(\mathcal{L}_X Y) = [X, JY] - J[X, Y] = 0.$$

Poichè ciò vale per ogni Y, ho verificato la (2).

 $2 \Leftrightarrow 1$: ripercorrendo i passaggi precedenti in senso opposto si ottiene che $\partial_X f$ è olomorfa e quindi anche $\partial_{X-iJX} f$ lo è.

3.3 Fibrati Vettoriali Olomorfi

Definizione 3.3.1 (Fibrato Vettoriale Olomorfo). Sia M una varietà complessa $e \pi : E \to M$ un fibrato vettoriale complesso⁵. E è detto fibrato vettoriale olomorfo se esiste un ricoprimento aperto \mathcal{U} di M tale che per ogni $U \in \mathcal{U}$ esiste una trivializzazione locale $\psi_U : \pi^{-1}(U) \to U \times \mathbb{C}^k$ tale che:

- $pr_U \circ \psi_U = \pi$, in cui $pr_U : U \times \mathbb{C}^k \to U$ è la proiezione sul primo fattore;
- per ogni $U, V \in \mathcal{U}$ tali che $U \cap V \neq \emptyset$, $\psi_U \circ \psi_V^{-1}(x, v) = (x, g_{UV}(x)v)$, in cui $g_{UV} : U \cap V \to \operatorname{Gl}_k(\mathbb{C}) \subseteq \mathbb{C}^{k^2}$ sono funzioni olomorfe.

Se E è un fibrato vettoriale olomorfo, posso definire il fibrato delle (p,q)forme su M a valori in E come $\Lambda^{p,q}(E) := \Lambda^{p,q}M \otimes E$. Indicate le sezioni di
questo fibrato come $\Omega^{p,q}(E)$, definisco l'operatore $\bar{\partial}: \Omega^{p,q}(E) \to \Omega^{p,q+1}(E)$ nel
seguente modo: se una sezione σ di $\Lambda^{p,q}(E)$, che in una trivializzazione locale

⁵La definizione di fibrato vettoriale complesso è del tutto analoga al caso reale, con le uniche differenze che le fibre sono spazi vettoriali complessi e le trivializzazioni locali $\psi_U:\pi^{-1}(U)\to U\times\mathbb{C}^k$, punto per punto, sono isomorfismi di spazi vettoriali complessi.

può essere espressa come $\sigma = (\omega_1, \dots, \omega_k)^6$, in cui le ω_i sono (p, q)-forme su M, definisco $\bar{\partial}\sigma := (\bar{\partial}\omega_1, \dots, \bar{\partial}\omega_k)$.

La definizione è ben posta, nel senso che non dipende dalla trivializzazione locale, infatti:

considero le due trivializzazioni ψ_U e ψ_V e siano $\sigma_i(x) = \psi_U^{-1}(x, e_i)$ e $\tilde{\sigma}_i(x) = \psi_V^{-1}(x, e_i)$. Allora esisteranno delle funzioni olomorfe g_{ij} per cui $\tilde{\sigma}_i = \sum_j g_{ji}\sigma_j$. Supposto di avere espressioni locali $(\omega_1, \ldots, \omega_k)$ e (τ_1, \ldots, τ_k) per σ nelle trivializzazioni ψ_U e ψ_V rispettivamente, ovvero

$$\sigma = \sum_{i} \omega_{i} \otimes \sigma_{i} = \sum_{i} \tau_{i} \otimes \tilde{\sigma}_{i}$$

in $U \cap V$, ricavo che

$$\omega_j = \sum_i g_{ji} \tau_i.$$

Quindi

$$\sum_{j} \bar{\partial} \omega_{j} \otimes \sigma_{j} = \sum_{j} \left(\sum_{i} g_{ji} \bar{\partial} \tau_{i} \right) \otimes \sigma_{j} = \sum_{i} \bar{\partial} \tau_{i} \otimes \left(\sum_{j} g_{ji} \sigma_{j} \right) = \sum_{i} \bar{\partial} \tau_{i} \otimes \tilde{\sigma}_{i}.$$

Inoltre, poichè valgono per le espressioni nelle trivializzazioni locali, è soddisfatta $\bar{\partial}^2=0$ e la regola di Leibniz:

$$\bar{\partial}(\omega \wedge \sigma) = (\bar{\partial}\omega) \wedge \sigma + (-1)^{p+q}\omega \wedge (\bar{\partial}\sigma), \quad \forall \omega \in \Omega^{p,q}M, \quad \forall \sigma \in \Omega^{r,s}(E).$$

Osservazione 3.3.2. Se (M, J) è una varietà quasi complessa, possiamo dotare TM della struttura di fibrato complesso definendo il prodotto per scalari:

$$(a+ib)X := aX + bJX, \quad \forall X \in TM, \forall a+ib \in \mathbb{C}.$$

Se inoltre (M, J) è un varietà complessa, è possibile indurre una struttura di fibrato olomorfo su $T^{1,0}M$. Infatti, se (U, z) e (V, z') sono due sistemi di coordinate olomorfe su M, abbiamo

$$\frac{\partial}{\partial z'_j} = \sum_{k=1}^n \frac{\partial z'_j}{\partial z_k} \frac{\partial}{\partial z_k},$$

⁶Se $\{\sigma_i\}$ base per le sezioni di E relativa alla trivializzazione, si intende che $\sigma = \sum_i \omega_i \otimes \sigma_i$.

quindi le mappe di transizione $g_{jk} = \frac{\partial z'_j}{\partial z_k}$ sono olomorfe. Infine è possibile indurre anche su TM una struttura di fibrato olomorfo, tramite l'isomorfismo di fibrati complessi $F:TM\to T^{1,0}M$ definito da

$$F(X) = \frac{1}{2}(X - iJX).$$

In questo modo, tramite la costruzione precedente, posso definire $\bar{\partial}$ sulle sezioni di $T^{1,0}M$ (e di conseguenza anche su quelle di TM).

Quindi, se (U, z_1, \dots, z_n) è una carta locale olomorfa di M, la relativa trivializzazione locale su $T^{1,0}M$ è data da

$$\psi_U: T^{1,0}U \longrightarrow U \times \mathbb{C}^k$$
$$\sum_{j=1}^n \alpha_j(p) \frac{\partial}{\partial z_j} \Big|_p \longmapsto (p, \alpha_1(p), \dots, \alpha_n(p)).$$

Perciò, se $Z = \sum_{j=1}^m \alpha_j \frac{\partial}{\partial z_j}$, allora per definizione

$$\bar{\partial}Z = \sum_{j=1}^{m} \bar{\partial}\alpha_j \frac{\partial}{\partial z_j}.$$

Quindi Z sarà olomorfo in quanto a sezione locale di $T^{1,0}M$ (i.e. $\bar{\partial}Z=0$) se e solo se le sue componenti a_i sono funzioni olomorfe (i.e. $\bar{\partial}a_i=0$). Poichè

$$\sum_{j} \left(a_{j} \frac{\partial}{\partial x_{j}} + b_{j} \frac{\partial}{\partial y_{j}} \right) \stackrel{F}{\longmapsto} \sum_{j} \left(a_{j} + ib_{j} \right) \frac{\partial}{\partial z_{j}}$$

e poichè la struttura olomorfa sul fibrato complesso TM è indotta tramite F, ho che

$$\bar{\partial}\left(a_j\frac{\partial}{\partial x_j}+b_j\frac{\partial}{\partial y_j}\right)=0 \Leftrightarrow \bar{\partial}\left(a_j+ib_j\right)=0 \Leftrightarrow \bar{\partial}a_j=\bar{\partial}b_j=0.$$

Quindi un campo vettoriale è olomorfo, in quanto a sezione del fibrato olomorfo TM, se e solo se le sue componenti sono delle funzioni olomorfe.

Infine, se X ha espressione locale $\sum_{j} \left(a_{j} \frac{\partial}{\partial x_{j}} + b_{j} \frac{\partial}{\partial y_{j}} \right)$, si ottiene che X è reale olomorfo se e solo se per ogni f fuzione olomorfa localmente definita si ha

$$0 = \bar{\partial} \left(\partial_{X-iJX} f \right) = \bar{\partial} \left(\sum_{j} a_{j} \frac{\partial f}{\partial x_{j}} + b_{j} \frac{\partial f}{\partial y_{j}} \right) =$$
$$= \sum_{j} \left(\frac{\partial f}{\partial x_{j}} \bar{\partial} a_{j} + \frac{\partial f}{\partial y_{j}} \bar{\partial} b_{j} \right)$$

(in cui nell'ultima uguaglianza è stato usato il fatto che, se f è olomorfa, anche le sue derivate parziali lo sono). Quindi in conclusione $X \in TM$ è olomorfo reale se e solo se è olomorfo come sezione del fibrato olomorfo TM.

3.3.1 Strutture Olomorfe

Definizione 3.3.3 (Struttura Pseudo-Olomorfa). Una struttura pseudoolomorfa su un fibrato vettoriale complesso E è un operatore $\bar{\partial}: \Omega^{p,q}(E) \to \Omega^{p,q+1}(E)$ che soddisfa la regola di Leibniz. Una sezione σ di un fibrato pseudo-olomorfo $(E,\bar{\partial})$ è detta olomorfa se $\bar{\partial}\sigma = 0$. Se inoltre $\bar{\partial}$ soddisfa $\bar{\partial}^2 = 0$, $\bar{\partial}$ è detta struttura olomorfa.

Lemma 3.3.4. Sia $(E, \bar{\partial})$ un fibrato vettoriale pseudo-olomorfo di rango k. Supponiamo che per ogni $x \in M$ esista un aperto U che contiene x e delle sezioni olomorfe $\sigma_1, \ldots, \sigma_k : U \to E$ tali che $\{\sigma_i(x)\}$ forma una base sulla fibra E_x . Allora E è un fibrato olomorfo.

Dimostrazione. Se $\{\sigma_i\}$ e $\{\tilde{\sigma}_i\}$ sono due basi locali per le sezioni olomorfe relative alle trivializzazioni olomorfe ψ_U e ψ_V rispettivamente. Allora in $U \cap V$ esistono delle applicazioni lisce tali che $\sigma_i = \sum_{j=1}^k g_{ij}\tilde{\sigma}_j$. Allora:

$$0 = \bar{\partial}\sigma_i = \sum_{j=1}^k \left((\bar{\partial}g_{ij}) \otimes \tilde{\sigma}_j + g_{ij}(\bar{\partial}\tilde{\sigma}_j) \right) = \sum_{j=1}^k (\bar{\partial}g_{ij}) \otimes \tilde{\sigma}_j$$

perciò $\bar{\partial}g_{ij}=0$, ovvero funzioni g_{ij} sono olomorfe. Di conseguenza anche la funzione di passaggio $g_{UV}=(g_{ij}):U\cap V\to \mathrm{Gl}_k(\mathbb{C})$ è olomorfa.

Teorema 3.3.5. Un fibrato vettoriale complesso E è olomorfo se e solo è possibile definire una struttura olomorfa $\bar{\partial}$ su E.

Infatti, se E è olomorfo è possibile definire $\bar{\partial}$ come illustrato in precedenza. Per l'implicazione opposta, si dimostra che, a partire da una base locale per le sezioni di E, è possibile costruirne un'altra le cui sezioni sono olomorfe. Basterà sfruttare il Lemma precedente per ottenere la tesi. Per maggiori dettagli si faccia riferimento al Teorema 9.2 di [1].

3.3.2 Fibrato Canonico di $\mathbb{C}P^m$

Definizione 3.3.6 (Fibrato Canonico). Sia (M, J) una varietà complessa di dimensione complessa m. Il **fibrato canonico** di M è il fibrato in rette⁷ $K_M := \Lambda^{m,0} M$.

Il fibrato tautologico in rette (olomorfo) su $\mathbb{C}P^m$ è il fibrato in rette complesso $\pi: L \to \mathbb{C}P^m$ in cui la fibra $L_{[z]}$, nel punto $[z] \in \mathbb{C}P^m$, è data da $\langle z \rangle \subseteq \mathbb{C}^{m+1}$. Se $(U_{\alpha}, \varphi_{\alpha})$ è una carta olomorfa canonica di $\mathbb{C}P^m$, ovvero $U_{\alpha} = \{[(z_0, \ldots, z_m)] \in \mathbb{C}P^m \mid z_{\alpha} \neq 0\}$, la relativa trivializzazione locale $\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{C}$ è definita da

$$\psi_{\alpha}([z], w) = ([z], w_{\alpha})$$

in cui $w \in \mathbb{C}^{m+1}$ è un rappresentante della classe [z]. Poichè

$$\psi_{\alpha} \circ \psi_{\beta}^{-1}([z], \lambda) = \psi_{\alpha}\left([z], \frac{\lambda}{z_{\beta}}z\right) = \left([z], \lambda \frac{z_{\alpha}}{z_{\beta}}\right)$$

si deduce che le funzioni di transizione $g_{\alpha\beta}([z]) = \frac{z_{\alpha}}{z_{\beta}}$ sono olomorfe e quindi L è effettivamente un fibrato olomorfo.

Proposizione 3.3.7. $K_{\mathbb{C}P^m} \cong L^{m+1}$.

Per una dimostrazione di questa Proposizione, si faccia riferimento alla Proposizione 9.4 di [1].

⁷Ovvero un fibrato di rango 1.

Capitolo 4

Fibrati Hermitiani

4.1 Operatore di Curvatura di una Connessione

Sia M una varietà differenziabile di dimensione n e $E \to M$ un fibrato vettoriale di rango k su M. Introducendo l'insieme $\Omega^p(E)$ delle sezioni del fibrato $\Lambda^p M \otimes E$ è possibile riformulare la Definizione 1.1.3 nel seguente modo.

Definizione 4.1.1 (Connessione). Una connessione ∇ su E è un operatore \mathbb{C} -lineare $\nabla : \Gamma(E) \to \Omega^1(E)$ che soddisfa la regola di Leibniz:

$$\nabla (f\sigma) = df \otimes \sigma + f \nabla \sigma.$$

Questa definizione può essere estesa anche per le p-forme a valori in E, ottenendo $\nabla: \Omega^p(E) \to \Omega^{p+1}(E)$ ponendo:

$$\nabla(\omega \otimes \sigma) = d\omega \otimes \sigma + (-1)^p \omega \wedge \nabla \sigma \tag{4.1}$$

in cui, se $\{e_i\}$ è una base locale di TM e $\{e_i^*\}$ la sua duale di Λ^1M , il prodotto $\omega \wedge \nabla \sigma$ è da interpretare come $\omega \wedge \nabla \sigma = \sum_{i=1}^n \omega \wedge e_i^* \otimes \nabla_{e_i} \sigma^{-1}$.

Definizione 4.1.2 (Operatore di Curvatura). L'operatore di curvatura della connessione è la 2-forma a valori in $\operatorname{End}(E)$ R^{∇} definita da:

$$R^{\nabla}(\sigma) = \nabla(\nabla\sigma), \quad \forall \sigma \in \Gamma(E).$$

 $^{{}^{1}\}text{Con }\nabla_{e_{i}}\sigma$ si intende $\nabla_{e_{i}}\sigma = (\nabla\sigma)(e_{i})$, in cui data una generica 1-forma a valori in E $\tilde{\omega}\otimes\tilde{\sigma}$, si definisce $(\tilde{\omega}\otimes\tilde{\sigma})(e_{i}):=\tilde{\omega}(e_{i})\tilde{\sigma}$.

Osservazione 4.1.3.

• R^{∇} definisce una sezione di $\Lambda^2 M \otimes \operatorname{End}(E)$, infatti: dati $X, Y \in \mathcal{X}(M)$, R^{∇} associa a (X,Y) l'endomorfismo $R_{X,Y}^{\nabla}: \Gamma(E) \to \Gamma(E)$ definito da

$$R_{X,Y}^{\nabla}(\sigma) = (\nabla(\nabla\sigma))(X,Y), \quad \forall \sigma \in \Gamma(E).$$

 $\bullet \ R^\nabla$ ha carattere tensoriale, infatti: usando la regola di Leibniz

$$\nabla^2(f\sigma) = \nabla(df\otimes\sigma + f\nabla\sigma) = d^2f\otimes\sigma - df\wedge\nabla\sigma + df\wedge\nabla\sigma + f\nabla^2\sigma = f\nabla^2\sigma.$$

Siano ora $\{\sigma_1, \ldots, \sigma_k\}$ delle sezioni locali di E che formano una base su ogni fibra su un aperto U. Posso quindi descrivere ∇ e R^{∇} in termini di questa base, ottenendo le seguenti definizioni.

Definizione 4.1.4 (Forme di Connessione Locali). Definisco le **forme di** connessione locali $\omega_{ij} \in \Omega^1 U$ (relative alla base $\{\sigma_i\}$) come le 1-forme su M definite dalla relazione:

$$\nabla \sigma_i = \sum_{j=1}^k \omega_{ij} \otimes \sigma_j.$$

Definizione 4.1.5 (Forme di Curvatura Locali). Definisco le **2-forme di** curvatura locali $R_{ij}^{\nabla} \in \Omega^2 U$ (relative alla base $\{\sigma_i\}$) come le 2-forme su M definite dalla relazione:

$$R^{\nabla}\left(\sigma_{i}\right) = \sum_{j=1}^{k} R_{ij}^{\nabla} \otimes \sigma_{j},$$

Osservazione 4.1.6. È possibile esprimere le 2-forme di curvatura locali in termini delle 1-forme di connessione locali infatti: usando la notazione degli indici ripetuti

$$R_{ij}^{\nabla} \otimes \sigma_j = R^{\nabla} (\sigma_i) = \nabla (\omega_{ij} \otimes \sigma_j) = (d\omega_{ij}) \otimes \sigma_j - \omega_{il} \wedge \omega_{lj} \otimes \sigma_j,$$

da cui ottengo

$$R_{ij}^{\nabla} = d\omega_{ij} - \omega_{il} \wedge \omega_{lj}. \tag{4.2}$$

4.2 Strutture Hermitiane

Definizione 4.2.1 (Struttura Hermitiana). Sia $E \to M$ un fibrato vettoriale complesso di rango k sulla varietà differenziabile M. Una **struttura Hermitiana** H su E è un campo liscio di prodotti Hermitiani definiti sulle fibre di E, ovvero per ogni $x \in M$, l'applicazione $H: E_x \times E_x \to \mathbb{C}$ soddisfa:

- H(u, v) è \mathbb{C} -lineare nel primo argomento;
- $H(u,v) = \overline{H(v,u)}, \forall u,v \in E_x;$
- $H(u,u) > 0, \forall u \in E_x \setminus \{0\};$
- l'applicazione $H(\sigma, \tau) : M \to \mathbb{C} \ \dot{e} \ liscia \ \forall \sigma, \tau \in \Gamma(E)$.

Un fibrato vettoriale complesso dotato di una struttura Hermitiana è detto fibrato vettoriale Hermitiano.

Osservazione~4.2.2.

• Una struttura Hermitiana H è \mathbb{C} -antilineare nel secondo argomento, infatti:

$$H(u, \lambda v + \mu w) = \overline{\lambda H(v, u)} + \overline{\mu H(w, u)} = \overline{\lambda} H(u, v) + \overline{\mu} H(u, w).$$

• H, pensata come applicazione $H: E \to E^*$ definita da $\sigma \mapsto H(\sigma)$, in cui $H(\sigma)(\tau) := H(\tau, \sigma)$, è un isomorfismo \mathbb{C} -antilineare. Infatti: presa una base locale per le sezioni di E, poichè $H(\sigma, \sigma) > 0$ per ogni sezione non nulla, è possibile applicare il metodo di ortogonalizzazione (rispetto ad H) di Gram-Schmidt ottenendo una nuova base locale $\{\sigma_i\}$. Allora $\{H(\sigma_i)\}$ è una base locale per le sezioni di E^* . Infatti, data φ sezione di E^*

$$\varphi = \sum_{j} \varphi(\sigma_j) H(\sigma_j)$$

essendo

$$\left(\sum_{j} \varphi(\sigma_{j}) H(\sigma_{j})\right) (\sigma_{i}) = \varphi(\sigma_{i}).$$

• Ogni fibrato vettoriale complesso E ammette una struttura Hermitiana, infatti: considerato un ricoprimento aperto $\mathcal{U} = \{U_i\}$ di E, su cui sono definite le trivializzazioni locali ψ_i , considerata la partizione dell'unità $\{f_i\}$ subordinata al ricoprimento \mathcal{U} , per ogni $x \in U_i$ posso definire la struttura Hermitiana su ogni U_i come

$$(H_i)_x(u,v) := (H_{\mathbb{C}^k})(\psi_i|_{E_x}(u),\psi_i|_{E_x}(v))$$

e quindi globalmente $H := \sum_i f_i H_i$.

4.3 La Connessione di Chern

Sia M una varietà complessa e siano $\pi^{1,0}$ e $\pi^{0,1}$ le proiezioni

$$\pi^{1,0}: \Lambda^1(E) \to \Lambda^{1,0}(E)$$
 e $\pi^{0,1}: \Lambda^1(E) \to \Lambda^{0,1}(E)$.

Se ∇ è una connessione su E, posso definire le sue componenti (1,0) e (0,1) come $\nabla^{1,0} := \pi^{1,0} \circ \nabla$ e $\nabla^{0,1} := \pi^{0,1} \circ \nabla$. Inoltre, dalla regola di Leibniz (4.1) e dalla (4) della Proposizione 2.3.3, ottengo che posso estendere gli operatori in modo da ottenere

$$\nabla^{1,0}: \Omega^{p,q} \to \Omega^{p+1,q}$$
 e $\nabla^{0,1}: \Omega^{p,q} \to \Omega^{p,q+1}$.

Tali operatori soddisfano le seguenti regole di Leibniz:

$$\nabla^{1,0}(\omega \otimes \sigma) = \partial \omega \otimes \sigma + (-1)^{p+q} \omega \wedge \nabla^{1,0} \sigma$$

$$\nabla^{0,1}(\omega \otimes \sigma) = \bar{\partial}\omega \otimes \sigma + (-1)^{p+q}\omega \wedge \nabla^{0,1}\sigma.$$

In particolare $\nabla^{0,1}$ definisce una struttura pseudo-olomorfa su E per ogni connessione ∇ .

Definizione 4.3.1 (Connessione Hermitiana). Una connessione ∇ su un fibrato Hermitiano (E, H) è detta H-connessione, oppure connessione Hermitiana, se H è ∇ -parallela, nel senso che $(\nabla_X H)(\sigma, \tau) = 0 \ \forall X \in \mathcal{X}(M)$ e $\forall \sigma, \tau \in \Gamma(E)$, in cui:

$$(\nabla_X H)(\sigma, \tau) := \partial_X (H(\sigma, \tau)) - H(\nabla_X \sigma, \tau) - H(\sigma, \nabla_X \tau).$$

Osservazione 4.3.2. Se E un fibrato vettoriale su cui è stata definita una connessione ∇ , sul duale E^* è possibile indurre la connessione ∇^* definita da:

$$(\nabla_X^* \sigma^*)(\tau) := \partial_X(\sigma^*(\tau)) - \sigma^*(\nabla_X \tau).$$

 ∇^* è effettivamente una connessione, infatti è $\mathbb{C}\text{-lineare}$ e soddisfa la regola di Leibniz:

$$(\nabla_X^*(f\sigma^*))(\tau) = \partial_X((f\sigma^*)(\tau)) - (f\sigma^*)(\nabla_X\tau) =$$

$$= (\partial_X f)\sigma^*(\tau) + f(\partial_X(\sigma^*(\tau))) - f(\sigma^*(\nabla_X\tau)) =$$

$$= df(X)\sigma^*(\tau) + f((\nabla_X^*\sigma^*)(\tau))$$

ovvero $\nabla^*(f\sigma^*) = df \otimes \sigma^* + f\nabla^*\sigma^*$. Inoltre, se E è olomorfo con struttura olomorfa $\bar{\partial}$, su E^* è possibile definire la struttura olomorfa $\bar{\partial}^*$ ponendo per le sezioni di E^* :

$$(\bar{\partial}^* \sigma^*)(X, \sigma) := (\bar{\partial}(\sigma^*(\sigma)))(X) - \sigma^*(\bar{\partial}\sigma(X))$$

per ogni $\sigma^* \in \Gamma(E^*)$, $\sigma \in \Gamma(E)$, $X \in \mathcal{X}(M)$. In questo modo ottengo che per ogni $Z \in T^{0,1}M$, per ogni sezione olomorfa σ di E e per ogni σ^* sezione di E^* , se $\nabla^{0,1} = \bar{\partial}$ allora $(\nabla^*)^{0,1} = \bar{\partial}^*$, infatti

$$\begin{split} \big((\nabla^*)^{0,1} \sigma^* \big) (Z,\sigma) &= \big(\nabla^* \sigma^* \big) (Z,\sigma) = \\ &= (\partial + \bar{\partial}) (\sigma^*(\sigma)) (Z) - \sigma^* ((\nabla^{1,0} + \nabla^{0,1}) (\sigma) (Z)) = \\ &= \bar{\partial} (\sigma^*(\sigma)) (Z) - \sigma^* (\bar{\partial} \sigma(Z)) = \\ &= (\bar{\partial}^* \sigma^*) (Z,\sigma). \end{split}$$

Teorema 4.3.3. Su ogni fibrato olomorfo $(E, \bar{\partial})$ e per ogni struttura Hermitiana H esiste un'unica H-connessione ∇ tale che $\nabla^{0,1} = \bar{\partial}$. Tale connessione è detta **connessione** di **Chern**.

Dimostrazione. Dall'Osservazione 4.3.2, sul fibrato duale E^* è possibile introdurre ∇^* . Pensando la struttura Hermitiana come $H: E \to E^*$, ottengo che:

$$(\nabla_X H)(\sigma)(\tau) = (\nabla_X H)(\tau, \sigma) =$$

$$= \partial_X (H(\tau, \sigma)) - H(\nabla_X \tau, \sigma) - H(\tau, \nabla_X \sigma) =$$

$$= \left(\partial_X (H(\sigma)(\tau)) - H(\sigma)(\nabla_X \tau)\right) - H(\nabla_X \sigma)(\tau) =$$

$$= \left((\nabla_X^* (H(\sigma)) - H(\nabla_X \sigma)\right)(\tau).$$

Se quindi ∇ è una H-connessione su E, per ogni $X \in \mathcal{X}(M)$ e per ogni $\sigma \in \Gamma(E)$, ottengo

$$\nabla_X^*(H(\sigma)) = (\nabla_X H)(\sigma) + H(\nabla_X \sigma) = H(\nabla_X \sigma).$$

Inoltre $\nabla_Z^*(H(\sigma)) = H(\nabla_{\bar{Z}}\sigma)$ per ogni $Z \in TM^{\mathbb{C}}$, infatti:

$$\nabla_{X+iY}^*(H(\sigma)) = \nabla_X^*(H(\sigma)) + i\nabla_Y^*(H(\sigma)) =$$

$$= H(\nabla_X \sigma) + iH(\nabla_Y \sigma) = H(\nabla_X \sigma - i\nabla_Y \sigma) =$$

$$= H(\nabla_{X-iY} \sigma).$$

Inoltre, supponendo che $\nabla^{0,1} = \bar{\partial}$, se σ è una sezione olomorfa di E, allora

$$\nabla \sigma = (\nabla^{1,0} + \nabla^{0,1})(\sigma) = \nabla^{1,0} \sigma + \bar{\partial} \sigma = \nabla^{1,0} \sigma$$

ovvero $\nabla \sigma \in \Omega^{1,0}M.$ Perciò se $Z \in T^{1,0}M$ e $\nabla^{0,1} = \bar{\partial}$ ottengo²

$$H(\nabla_Z^{1,0}\sigma) = H(\nabla_Z\sigma) = \nabla_{\bar{Z}}^*(H(\sigma)) =$$

$$= \left(\left((\nabla^*)^{1,0} + (\nabla^*)^{0,1} \right) (H(\sigma)) \right) (\bar{Z}) =$$

$$= (\nabla^*)_{\bar{Z}}^{0,1}(H(\sigma))$$

ovvero $\nabla^{1,0}\sigma = H^{-1}((\nabla^*)^{0,1}(H(\sigma)))$. Infine dall'Osservazione 4.3.2 ottengo $\nabla^{1,0} = H^{-1} \circ \bar{\partial}^* \circ H$. Perciò l'unica connessione di Chern sarà quella definita da $\nabla = \nabla^{1,0} + \nabla^{0,1} = H^{-1} \circ \bar{\partial}^* \circ H + \bar{\partial}$.

Corollario 4.3.4. Sia E un fibrato complesso. Allora E è olomorfo se e solo se esiste una connessione ∇ per cui $(R^{\nabla})^{0,2} = 0$.

Dimostrazione. Notiamo che per ogni sezione σ di E, data una connessione ∇ , si ha

$$R^{\nabla}(\sigma) = \nabla^{2}\sigma = (\nabla^{1,0} + \nabla^{0,1})^{2}(\sigma) =$$

$$= (\nabla^{1,0})^{2}(\sigma) + (\nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0})(\sigma) + (\nabla^{0,1})^{2}(\sigma)$$
(4.3)

quindi $(R^{\nabla})^{0,2} = (\nabla^{0,1})^2$.

²Nella terza uguaglianza viene usato il fatto che, essendo $(\nabla^*)^{1,0}\sigma^*$ una (1,0)-forma, $(\nabla^*)^{1,0}_{\bar{Z}}\sigma^*=0$ per ogni $\bar{Z}\in T^{0,1}M$.

- \Leftarrow : se $(R^{\nabla})^{0,2}=0$ per qualche connessione ∇ , la struttura pseudo-olomorfa definita da $\nabla^{0,1}$ è in realtà una struttura olomorfa quindi, per il Teorema 3.3.5, E è olomorfo;
- \Rightarrow : scelta una qualsiasi struttura Hermitiana su E, per il teorema precedente, esisterà la connessione di Chern ∇ su E che soddisfa $\nabla^{0,1} = \bar{\partial}$ e quindi $0 = \bar{\partial}^2 = (\nabla^{0,1})^2 = (R^{\nabla})^{0,2}$.

Osservazione 4.3.5. Sia la componente (0,2), che quella (2,0) di \mathbb{R}^{∇} , in cui ∇ è la connessione di Chern associata ad un fibrato olomorfo Hermitiano E, sono identicamente nulle. Infatti dall'equazione (4.3)

$$(R^{\nabla})^{2,0} = \nabla^{1,0}\nabla^{1,0}(\sigma) = H^{-1} \circ \bar{\partial}^* \circ H \circ H^{-1} \circ \bar{\partial}^* \circ H(\sigma) = H^{-1} \circ (\bar{\partial}^*)^2 \circ H(\sigma) = 0.$$

Capitolo 5

Varietà di Kähler

5.1 Metriche Hermitiane

Definizione 5.1.1 (Metrica Hermitiana). Una metrica Hermitiana su una varietà quasi complessa (M, J) è una metrica Riemanniana h, tale che

$$h(JX, JY) = h(X, Y), \quad \forall X, Y \in TM.$$

La 2-forma $\Omega(X,Y) := h(JX,Y)$ è detta **forma fondamentale** della metrica Hermitiana h.

Osservazione 5.1.2.

• Ω è effettivamente una 2-forma, infatti:

$$\Omega(Y, X) = h(JY, -J^2X) = -h(Y, JX) = -h(JX, Y) = -\Omega(X, Y).$$

- \bullet Estesa per \mathbb{C} -linearità a $TM^{\mathbb{C}},$ la metrica Hermitiana soddisfa le seguenti proprietà:
 - i) $h(\overline{Z}, \overline{W}) = \overline{h(Z, W)}, \quad \forall Z, W \in TM^{\mathbb{C}};$
 - ii) $h(Z, \overline{Z}) > 0$, $\forall Z \in TM^{\mathbb{C}} \setminus \{0\}$;
 - iii) h(Z, W) = 0, $\forall Z, W \in T^{1,0}M$ oppure $\forall Z, W \in T^{0,1}M$.

Infatti:

i) se
$$Z = Z_1 + iZ_2$$
 e $W = W_1 + iW_2$ allora
$$h(\overline{Z}, \overline{W}) = h(Z_1, W_1) - h(Z_2, W_2) - i(h(Z_1, W_2) + h(Z_2, W_1)) = \overline{h(Z, W)};$$

ii)
$$h(Z_1 + iZ_2, Z_1 - iZ_2) = h(Z_1, Z_1) + h(Z_2, Z_2) > 0;$$

iii)
$$h(X+iJX,Y+iJY)=h(X,Y)+ih(X,JY)+ih(JX,Y)-h(JX,JY)=0.$$

- Viceversa, se h è un tensore simmetrico su $TM^{\mathbb{C}}$ che soddisfa le proprietà precedenti, allora, ristretta a TM, definisce una metrica Hermitiana, infatti:
 - per ogni $X \in TM \setminus \{0\}, h(X, X) = h(X, \bar{X}) > 0;$
 - -0 = h(X + iJX, (JY) + iJ(JY)) = h(X, JY) + ih(JX, JY) ih(X, Y) h(JX, Y) quindi, in particolare, h(X, Y) = h(JX, JY) per ogni $X, Y \in TM$.
- \bullet Se h è una metrica Hermitiana su M allora

$$H(X,Y) := h(X,Y) - ih(JX,Y) = (h - i\Omega)(X,Y)$$

definisce una struttura Hermitiana sul fibrato vettoriale complesso (TM, J). Viceversa se H è una struttura Hermitiana sul fibrato vettoriale complesso TM, allora $h := \mathfrak{Re}(H)$ definisce una metrica Hermitiana su M.

• Ogni varietà Riemanniana quasi complessa ammette una metrica Hermitiana h(X,Y) := g(X,Y) + g(JX,JY).

Lemma 5.1.3. Sia (M^{2m}, h, J) una varietà Hermitiana complessa e siano z_{α} le coordinate olomorfe locali. Allora

$$\Omega = i \sum_{\alpha,\beta=1}^{m} h_{\alpha\bar{\beta}} dz_{\alpha} \wedge d\bar{z}_{\beta}$$

in cui $h_{\alpha\bar{\beta}} \coloneqq h\left(\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial \bar{z}_{\beta}}\right)$.

Dimostrazione. Dalla (iii) dell'Osservazione 5.1.2 si ottiene che

$$\Omega\left(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial z_{\alpha}}\right) = h\left(J\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial z_{\alpha}}\right) = {}^{1}h\left(i\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial z_{\alpha}}\right) = ih_{\alpha\alpha} = 0.$$

$$\frac{1}{J\frac{\partial}{\partial z_{\alpha}}} = \frac{1}{2} \left(J\frac{\partial}{\partial x_{\alpha}} - iJ\frac{\partial}{\partial y_{\alpha}} \right) = \frac{1}{2} \left(\frac{\partial}{\partial y_{\alpha}} + i\frac{\partial}{\partial x_{\alpha}} \right) = i\frac{\partial}{\partial z_{\alpha}}.$$

Analogamente $\Omega\left(\frac{\partial}{\partial \bar{z}_{\beta}}, \frac{\partial}{\partial \bar{z}_{\beta}}\right) = 0$ e $\Omega\left(\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial \bar{z}_{\beta}}\right) = ih_{\alpha\bar{\beta}}$. Infine, poichè $TM^{\mathbb{C}} = T^{1,0}M \oplus T^{0,1}M$, con basi locali $\left\{\frac{\partial}{\partial z_{\alpha}}\right\}$ e $\left\{\frac{\partial}{\partial \bar{z}_{\beta}}\right\}$ e rispettive duali $\left\{dz_{\alpha}\right\}$ e $\left\{d\bar{z}_{\beta}\right\}$, si ottiene la tesi.

5.2 Metriche di Kähler

Se la forma fondamentale Ω di una varietà Hermitiana complessa è chiusa, per il $i\partial\bar{\partial}$ -lemma, localmente esiste una applicazione reale u tale che $\Omega=i\partial\bar{\partial}u$. Perciò in coordinate locali, per l'Osservazione 3.1.3, si ottiene

$$h_{\alpha\bar{\beta}} = \frac{\partial^2 u}{\partial z_\alpha \partial \bar{z}_\beta}.$$

Definizione 5.2.1 (Metrica di Kähler). Una metrica Hermitiana h su una varietà quasi complessa (M, J) è detta **metrica di Kähler** se J è una struttura complessa e se la forma fondamentale Ω è chiusa, ovvero:

$$h \ \dot{e} \ di \ K\ddot{a}hler \iff \begin{cases} N^J = 0 \\ d\Omega = 0. \end{cases}$$

Un'applicazione reale locale u, tale che $\Omega = i\partial \bar{\partial} u$, è detta **potenziale locale** di Kähler della metrica h.

Lemma 5.2.2. Sia h una metrica Hermitiana su una varietà quasi complessa (M, J) e ∇ la connessione di Levi-Civita di (M, h). Allora J è integrabile² se e solo se

$$(\nabla_{JX}J)Y = J(\nabla_XJ)Y, \quad \forall X, Y \in TM$$
(5.1)

Dimostrazione. Siano $X,Y \in TM$ e li estendo a campi paralleli su M che indico ancora con X e Y. Poichè ∇ è di Levi-Civita, allora $[X,Y] = \nabla_X Y - \nabla_Y X$ e quindi [X,Y] = 0. Inoltre, poichè $(\nabla_X J)Y = \nabla_X (JY) - J(\nabla_X J)$, ho che

$$[X, JY] = \nabla_X(JY) - \nabla_{JY}X = \nabla_X(JY).$$

Quindi

$$N^{J}(X,Y) = [X,Y] + J[JX,Y] + J[X,JY] - [JX,JY] =$$

$$= J(\nabla_{X}J)Y - J(\nabla_{Y}J)X - (\nabla_{JX}J)Y + (\nabla_{JY}J)X$$

$$= (J(\nabla_{X}J)Y - (\nabla_{JX}J)Y) - (J(\nabla_{Y}J)X - (\nabla_{JY}J)X).$$
(5.2)

²Nel senso che il suo tensore di Nijenhuis N^J è identicamente nullo.

 \Leftarrow : se vale la (5.1), per la (5.2), ottengo $N^{J}(X,Y)=0$;

 \Rightarrow : definisco $A(X,Y,Z)=h\left(J\left(\nabla_XJ\right)Y-\left(\nabla_{JX}J\right)Y,Z\right)$. Supponendo $N^J=0,$ allora

$$(J(\nabla_X J)Y - (\nabla_{JX} J)Y) = (J(\nabla_Y J)X - (\nabla_{JY} J)X).$$

Quindi A è simmetrico nei primi due argomenti. Inoltre J e $\nabla_X J$ anti-commutano³ e h è anti-simmetrico rispetto ad essi⁴, perciò A è anti-simmetrico anche negli ultimi due argomenti. Allora permutando ciclicamente gli argomenti ottengo

$$A(X, Y, Z) = -A(Y, Z, X) = A(Z, X, Y) = -A(X, Y, Z)$$

che implica la (5.1).

Osservazione 5.2.3. Se ∇ è di Levi-Civita, allora

$$d\omega(X_0,\ldots,X_p) = \sum_{i=0}^p (-1)^i (\nabla_{X_i}\omega)(X_0,\ldots,\widehat{X}_i,\ldots,X_p)$$

 $^{3}J(\nabla_{X}J)Y = J\nabla_{X}(JY) - J^{2}\nabla_{X}Y = -(\nabla_{X}J)(JY).$ ⁴essendo ∇ di Levi-Civita abbiamo $\nabla h = 0$, ovvero

$$\partial_X h(Y,Z) = \nabla_X (h(Y,Z)) = h(\nabla_X Y, Z) + h(Y, \nabla_X Z), \quad \forall X, Y, Z \in \mathcal{X}(M)$$

Perciò, sfruttando h(JY, Z) = -h(Y, JZ), ottengo:

$$h(\nabla_X JY, Z) + h(JY, \nabla_X Z) = \nabla_X (h(JY, Z)) =$$

= $-\nabla_X (h(Y, JZ)) = -(h(\nabla_X Y, JZ) + h(Y, \nabla_X JZ))$

da cui

$$h((\nabla_X J)Y, Z) + h(J(\nabla_X Y), Z) + h(JY, \nabla_X Z) =$$

$$= -h(Y, (\nabla_X J)Z) - h(\nabla_X Y, JZ) - h(Y, J(\nabla_X Z))$$

in cui i secondi e terzi addendi si semplificano rispettivamente e quindi:

$$h((\nabla_X J)Y, Z) = -h(Y, (\nabla_X J)Z).$$

per ogni $X_0, \ldots, X_p \in \mathcal{X}(M)$ e $\omega \in \Omega^p M$. Infatti: dalla definizione di d si ricava che

$$d\omega(X_0, ..., X_p) = \sum_{i=0}^{p} (-1)^i X_i(\omega(X_0, ..., \widehat{X}_i, ..., X_p)) + \sum_{i < j} (-1)^{i+j} \omega\left([X_i, X_j], X_0, ..., \widehat{X}_i, ..., \widehat{X}_j, ..., X_p\right).$$

Essendo

$$(\nabla_{X_i}\omega)(X_0,\dots,\widehat{X}_i,\dots,X_p) = X_i(\omega(X_0,\dots,\widehat{X}_i,\dots,X_p)) +$$

$$-\sum_{j=1}^{i-1} (-1)^j \omega(\nabla_{X_i}X_j,X_0,\dots,\widehat{X}_i,\dots,X_p) +$$

$$+\sum_{j=i+1}^k (-1)^j \omega(\nabla_{X_i}X_j,X_0,\dots,\widehat{X}_i,\dots,X_p)$$

e $[X,Y] = \nabla_X Y - \nabla_Y X$ ottengo la tesi.

Teorema 5.2.4. Una metrica Hermitiana h su una varietà quasi complessa è di Kähler se e solo se J è parallelo rispetto alla connessione di Levi-Civita.

Dimostrazione. Notiamo che poichè $(\nabla_X J)Y = \nabla_X (JY) - J(\nabla_X Y)$, ed essendo ∇ di Levi-Civita, allora:

$$\nabla\Omega(X,Y,Z) = \partial_X(h(JY,Z)) - h(\nabla_X(JY) - (\nabla_XJ)Y,Z) - h(JY,\nabla_XZ) =$$

$$= (\nabla h)(X,JY,Z) + h((\nabla_XJ)Y,Z) =$$

$$= h((\nabla_XJ)Y,Z).$$

 \Leftarrow : dalla (5.2), se J è parallelo, allora $N^J=0$ ed inoltre, per l'osservazione appena fatta, $\nabla\Omega=0$. Quindi dall'Osservazione 5.2.3 si ottiene che anche $d\Omega=0$.

 \Rightarrow : definisco $B(X,Y,Z) := h((\nabla_X J)Y,Z)$. Poichè $J \in \nabla_X J$ anti-commutano, allora B(X,Y,JZ) = B(X,JY,Z), infatti:

$$B(X,Y,JZ) = -h\left(J\left(\nabla_X J\right)Y,Z\right) = h\left(\left(\nabla_X J\right)JY,Z\right) = B(X,JY,Z).$$

Inoltre, poichè $N^J=0$, vale la (5.1) e quindi

$$B(JX, Y, Z) + B(X, Y, JZ) = 0$$

da cui anche

$$B(JX, Y, Z) + B(X, JY, Z) = 0.$$

Sfruttando l'Osservazione 5.2.3 ottengo

$$0 = d\Omega(X, Y, JZ) =$$

$$= (\nabla_X \Omega)(Y, JZ) + (\nabla_Y \Omega)(JZ, X) + (\nabla_{JZ} \Omega)(X, Y) =$$

$$= B(X, Y, JZ) + B(Y, JZ, X) + B(JZ, X, Y)$$

e analogamente

$$B(X, JY, Z) + B(JY, Z, X) + B(Z, X, JY) = 0.$$

Allora

$$0 = (B(X, Y, JZ) + B(Y, JZ, X) + B(JZ, X, Y)) + (B(X, JY, Z) + B(JY, Z, X) + B(Z, X, JY)) = = 2B(X, Y, JZ).$$

Poichè ciò vale per ogni $X, Y, Z \in \mathcal{X}(M)$, allora, in particolare, $(\nabla_X J)Y = 0$ e quindi J è ∇ -parallelo.

5.3 Confronto tra la Connessione di Levi-Civita e di Chern

Lemma 5.3.1. Per ogni sezione Y del fibrato vettoriale complesso (TM, J), $\bar{\partial}Y$, visto come (0,1)-forma a valori su TM, è uguale a

$$\bar{\partial}^{\nabla}Y(X) = \frac{1}{2} \left(\nabla_X Y - J \nabla_{JX} Y - J (\nabla_Y J) X \right)$$
 (5.3)

in cui ∇ è la connessione di Levi-Civita di una qualsiasi metrica Hermitiana h su M.

Dimostrazione. Notiamo che $(\bar{\partial}f)(X) = \frac{1}{2}\partial_{X+iJX}f$. Infatti, sfruttando 2X = (X+iJX) + (X-iJX), si ottiene

$$2\left(\bar{\partial}f\right)(X) = \left(\bar{\partial}f\right)(X+iJX) = df(X+iJX) - \partial f(X+iJX) = df(X+iJX).$$

Allora, sfruttando (a+ib)X = a+bJX per ogni $X \in TM$, si ottiene

$$\bar{\partial}^{\nabla}(fY)(X) = \frac{1}{2}f\left(\nabla_X Y - J\nabla_{JX}Y - J(\nabla_Y J)X\right) + \frac{1}{2}\left((\partial_X f)Y + (\partial_{JX} f)JY\right) =$$

$$= f\bar{\partial}^{\nabla}Y(X) + \bar{\partial}f(X)Y$$

ovvero $\bar{\partial}^{\nabla}$ soddisfa la regola di Leibniz. Inoltre, per l'Osservazione 3.3.2 un campo vettoriale è una sezione olomorfa del fibrato olomorfo TM se e solo se è olomorfo reale. Per il Lemma 3.2.7, un campo vettoriale è olomorfo reale se e solo se $\mathcal{L}_X J = 0$. Quindi per ogni $X \in \mathcal{X}(M)$

$$0 = (\mathcal{L}_{Y}J) X = \mathcal{L}_{Y}(JX) - J\mathcal{L}_{Y}X = [Y, JX] - J[Y, X] =$$

$$= \nabla_{Y}JX - \nabla_{JX}Y - J\nabla_{Y}X + J\nabla_{X}Y =$$

$$= (\nabla_{Y}J) X - \nabla_{JX}Y + J\nabla_{X}Y =$$

$$= J(\nabla_{X}Y + J\nabla_{JX}Y - J(\nabla_{Y}J)X) =$$

$$= 2J(\bar{\partial}^{\nabla}Y)(X).$$

Perciò $\bar{\partial}^{\nabla}$ è un operatore che soddisfa la regola di Leibniz e si annulla su ogni sezione olomorfa di TM, quindi $\bar{\partial}^{\nabla} = \bar{\partial}$. Infatti, essendo TM olomorfo, esisterà per ogni punto di M una base locale $\{\sigma_j\}$ per le sezioni olomorfe di TM, da cui, se una generica sezione Y si esprime localmente come $Y = \sum_i Y_j \sigma_j$, allora

$$\bar{\partial}^{\nabla} Y = \sum_{j} \left(f \bar{\partial}^{\nabla} \sigma_{j} + \bar{\partial} Y_{j} \otimes \sigma_{j} \right) = \sum_{j} \left(\bar{\partial} Y_{j} \otimes \sigma_{j} \right) = \bar{\partial} Y.$$

Proposizione 5.3.2. Su una varietà Hermitiana (M, h, J), la connessione di Chern $\bar{\nabla}$ coincide con la connessione di Levi-Civita ∇ se e solo se (M, h, J) è di Kähler.

Dimostrazione. Sia $H:=h-i\Omega$ la struttura Hermitiana TM. Tenendo conto della struttura complessa su TM e della \mathbb{C} -linearità di $\bar{\nabla}$ si ottiene

$$(\bar{\nabla}J)(X,Y) = \bar{\nabla}_X(JY) - J\bar{\nabla}_XY = \bar{\nabla}_X(iY) - i\bar{\nabla}_XY = 0$$

quindi $\bar{\nabla}J = 0$.

- \Rightarrow : se $\nabla=\bar{\nabla}$ allora J è anche ∇ -parallelo e quindi, per il Teorema 5.2.4, h è di Kähler.
- \Leftarrow : se h è di Kähler, allora $\nabla J = 0$ e $\nabla_X(JY) = J(\nabla_XY)$. Quindi, poichè J proviene da una struttura olomorfa, ∇ è una connessione \mathbb{C} -lineare su TM, inoltre essendo $\nabla h = 0$

$$\nabla H(X, Y, Z) = \nabla h(X, Y, Z) - i\nabla h(X, JY, Z) - ih((\nabla_X J)Y, Z) = 0.$$

ovvero ∇ è una H-connessione. Infine essendo $X=\frac{1}{2}((X+iJX)+(X-iJX)),$ ed essendo $\nabla^{0,1}_Z=0$ per ogni $Z\in T^{1,0}M$ e $\nabla^{1,0}_W=0$ per ogni $W\in T^{0,1}M$, allora

$$\nabla_{X}^{0,1} = \frac{1}{2} \left(\nabla_{X+iJX}^{0,1} \right) = \frac{1}{2} \left(\nabla_{X+iJX} - \nabla_{X+iJX}^{1,0} \right) = \frac{1}{2} \left(\nabla_{X} + J \nabla_{JX} \right).$$

Poichè J è ∇ -parallelo, dalla (5.3) si ottiene $\nabla^{0,1} = \bar{\partial}$ e quindi $\nabla = \bar{\nabla}$.

5.4 Tensore di Curvatura Kähleriano

Sia (M^{2m}, h, J) una varietà di Kähler dotata della connessione di Levi-Civita ∇ . Su M è possibile definire il (3, 1)-tensore di curvatura di ∇

$$R^{\nabla}(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \quad \forall X, Y, Z \in \mathcal{X}(M)$$

il (4,0)-tensore di curvatura Riemanniana di ∇

$$R(X, Y, Z, W) = h(R^{\nabla}(X, Y)Z, W), \quad \forall X, Y, Z, W \in \mathcal{X}(M)$$

e il (2,0)-tensore di Ricci

$$\operatorname{Ric}(X,Y) = \operatorname{Tr}(V \mapsto R^{\nabla}(V,X)Y) = \sum_{i=1}^{2m} R(e_i,X,Y,e_i) \quad \forall X,Y \in \mathcal{X}(M)$$

in cui $\{e_i\}$ è una base ortonormale locale di TM.

Dal Teorema 5.2.4, ho che $\nabla_X(JZ) = J\nabla_X Z$ e quindi

$$R^{\nabla}(X,Y)JZ = JR^{\nabla}(X,Y)Z$$

per ogni $X, Y, Z \in \mathcal{X}(M)$. Sfruttando le identità del tensore di curvatura Riemanniano, ottengo anche

$$R(X, Y, JZ, JW) = R(X, Y, Z, W) = R(JX, JY, Z, W).$$

Data $\{e_i\}$ è una base ortonormale locale di TM, allora

$$Ric(JX, JY) = \sum_{i=1}^{2m} R(e_i, JX, JY, e_i) =$$

$$= \sum_{i=1}^{2m} R(Je_i, J^2X, J^2Y, Je_i) =$$

$$= \sum_{i=1}^{2m} R(Je_i, X, Y, Je_i) =$$

$$= Ric(X, Y).$$

Infatti $\{Je_i\}$ è ancora una base ortonormale locale di TM.

Quindi Ric(JX,Y) = -Ric(X,JY) = -Ric(JY,X) e ciò giustifica la seguente definizione.

Definizione 5.4.1 (Forma di Ricci). Definisco la forma di Ricci di una varietà di Kähler come la 2-forma definita da

$$\rho(X,Y) := \text{Ric}(JX,Y), \quad \forall X,Y \in \mathcal{X}(M)$$

Proposizione 5.4.2. 1) $\operatorname{Ric}(X,Y) = \frac{1}{2}\operatorname{Tr}(R^{\nabla}(X,JY) \circ J);$

2) la forma di Ricci è chiusa, ovvero $d\rho = 0$.

Dimostrazione.

1) Se $\{e_i\}$ è una base locale di TM, allora, sfruttando la prima identità di $Bianchi^5$ e le simmetrie di R, si ottiene

$$Ric(X,Y) = \sum_{i=1}^{2m} R(e_i, X, Y, e_i) =$$

$$= \sum_{i=1}^{2m} R(e_i, X, JY, Je_i) =$$

$$= \sum_{i=1}^{2m} (-R(X, JY, e_i, Je_i) - R(JY, e_i, X, Je_i)) =$$

 $^{{}^{5}}R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,W) = 0.$

$$= \sum_{i=1}^{2m} (R(X, JY, Je_i, e_i) + R(Y, Je_i, X, Je_i)) =$$

$$= \sum_{i=1}^{2m} h(R^{\nabla}(X, JY)Je_i, e_i) - \text{Ric}(X, Y)$$

da cui la tesi.

2) dalla (1), $2\rho(X,Y) = \text{Tr}(R^{\nabla}(X,Y) \circ J)$. Sfruttando che la traccia commuta con le derivate covarianti e il fatto che J è ∇ -parallelo, allora

$$2d\rho(X,Y,Z) = 2\Big[(\nabla_X \rho)(Y,Z) - (\nabla_Y \rho)(X,Z) + (\nabla_Z \rho)(X,Y)\Big] =$$

$$= \operatorname{Tr}\Big(\Big[(\nabla_X R^{\nabla})(Y,Z) + (\nabla_Y R^{\nabla})(Z,X) + (\nabla_Z R^{\nabla})(X,Y)\Big] \circ J\Big) = 0$$

in cui nell'ultima uguaglianza è stata usata la seconda identità di Bianchi.⁶

$$\overline{{}^{6}(\nabla_{X}R^{\nabla})(Y,Z) + (\nabla_{Y}R^{\nabla})(Z,X)} + (\nabla_{Z}R^{\nabla})(X,Y) = 0.$$

Capitolo 6

Operatore di Hodge e Coomologia di De Rham

6.1 L'Operatore di Hodge per Varietà Riemanniane

Sia (M^n, g) una varietà Riemanniana orientata, dotata della connessione di Levi-Civita, con forma di volume dv. Sia ora $\{e_1, \ldots, e_n\}$ una base ortonormale locale, parallela in un punto p di M. Tramite l'isomorfismo tra TM e T^*M posso estendere q alle 1-forme ponendo

$$g(\omega, \eta) = g(\omega^{\sharp}, \eta^{\sharp}).$$

Quindi se localmente $\omega=\sum_{i=1}^m \omega_i e_i^{\flat}$ e $\eta=\sum_{i=1}^m \eta_i e_i^{\flat}$ allora

$$g(\omega, \eta) = \sum_{i=1}^{m} \omega_i \eta_i.$$

È possibile estendere ulteriormente g alle k-forme ponendo, se $\omega_1, \ldots, \omega_n, \eta_1, \ldots, \eta_n \in \Lambda^1 M$,

$$g(\omega_1 \wedge \cdots \wedge \omega_n, \eta_1 \wedge \cdots \wedge \eta_n) = \det((g(\omega_i, \eta_j))_{ij}).$$

Tramite queste definizioni $\{e_{i_1}^{\flat} \wedge \cdots \wedge e_{i_k}^{\flat} \mid 1 \leq i_1 < \cdots < i_k \leq m\}$ forma una base ortonormale locale rispetto a g per $\Lambda^k M$. g_x definisce quindi un

prodotto scalare su ogni $\Lambda_x^1 M$ per ogni $x \in M$. Per definire un prodotto scalare su $\Omega^k M$, supponendo che M sia compatta, possiamo porre

$$(\omega, \eta) := \int_{M} g(\omega, \eta) dv, \quad \forall \omega, \eta \in \Omega^{k} M.$$

Dalle definizioni precedenti ricavo che il prodotto esterno e interno di forme differenziali sono uno l'operatore aggiunto dell'altro, nel senso che:

$$g(X \sqcup \omega, \tau) = g(\omega, X^{\flat} \wedge \tau), \quad \forall X \in TM, \omega \in \Lambda^{k}M, \tau \in \Lambda^{k-1}M.$$
 (6.1)

Posso quindi definire l'operatore di Hodge come $*:\Omega^kM\to\Omega^{n-k}M$ tale che

$$\omega \wedge *\tau = g(\omega, \tau)dv, \quad \forall \omega, \tau \in \Omega^k M$$

o equivalentemente

$$(\omega,\tau) = \int_{M} \omega \wedge *\tau.$$

Dall'Osservazione 5.2.3, identificando i campi vettoriali e le 1-forme, ricavo che l'operatore di derivata esterna $d: \Omega^k M \to \Omega^{k+1} M$ localmente è dato da

$$d = \sum_{i=1}^{n} e_i \wedge \nabla_{e_i}.$$

Posso definire quindi l'operatore $\delta: \Omega^{k+1} \to \Omega^k M$ come l'aggiunto formale di d, ovvero come l'operatore tale che:

$$(d\alpha,\beta)=(\alpha,\delta\beta), \quad \forall \alpha\in\Omega^kM, \beta\in\Omega^{k+1}M.$$

Allora, dalla (6.1), si ricava che

$$\delta = -\sum_{i=1}^{n} e_i \, \lrcorner \, \nabla_{e_i}$$

inoltre si ha anche

$$\delta = -(-1)^{nk} * d * .$$

Posso quindi definire l'operatore Laplaciano come $\Delta : \Omega^k M \to \Omega^k M$ tale che $\Delta := d\delta + \delta d$. Il Laplaciano è un operatore autoaggiunto, nel senso che

$$(\Delta\omega, \tau) = (\omega, \Delta\tau), \quad \forall \omega, \tau \in \Omega^k M.$$

6.2 Il Laplaciano nelle Varietà di Kähler

Sia (M^{2m}, h, J) una varietà quasi Hermitiana con forma fondamentale Ω e sia $\{e_1, \ldots, e_{2m}\}$ una base ortonormale locale di di TM. Identificato TM con il suo duale T^*M , posso esprimere localmente la forma fondamentale come

$$\Omega = \frac{1}{2} \sum_{j=1}^{2m} e_i \wedge J e_i.$$

Infatti, dalla definizione degli isomorfismi musicali,

$$\left(\frac{1}{2}\sum_{j=1}^{2m} e_j \wedge Je_j\right)(e_h, e_k) = \frac{1}{2}\sum_{j=1}^{2m} \begin{vmatrix} e_j(e_h) & Je_j(e_h) \\ e_j(e_k) & Je_j(e_k) \end{vmatrix} =
= \frac{1}{2}\sum_{j=1}^{2m} [\delta_{jh}\Omega(e_j, e_k) - \delta_{jk}\Omega(e_j, e_h)] = \Omega(e_h, e_k).$$

Definisco quindi gli operatori $L:\Lambda^kM\to\Lambda^{k+2}M$ e $\Lambda:\Lambda^{k+2}M\to\Lambda^kM$ come

$$L(\omega) := \Omega \wedge \omega = \frac{1}{2} \sum_{i=1}^{2m} e_i \wedge Je_i \wedge \omega$$

$$\Lambda(\omega) := \frac{1}{2} \sum_{i=1}^{2m} J e_i \, \lrcorner \, e_i \, \lrcorner \, \omega$$

Dalla (6.1) ricavo che L e Λ sono uno l'operatore aggiunto dell'altro, nel senso che

$$h(L(\omega),\tau)=h(\omega,\Lambda(\tau)), \quad \forall \omega \in \Lambda^k M, \tau \in \Lambda^{k+2} M$$

L e Λ possono essere estesi per \mathbb{C} -linearità al fibrato esterno complessificato. L'estensione alle k-forme fatta per una metrica Riemanniana, può essere ulteriormente estesa al fibrato esterno complessificato, richiedendo che puntualmente definisca un prodotto interno Hermitiano. Supponendo di indicare

 $\langle \omega, \tau \rangle = h(\omega, \bar{\tau})$

tale estensione con
$$\langle \cdot, \cdot \rangle$$
 e di estendere per \mathbb{C} -linearità h , allora

infatti:

$$\overline{\langle \tau, \omega \rangle} = \overline{h(\tau_1 + i\tau_2, \overline{\omega_1 + i\omega_2})} =$$

$$= \overline{h(\tau_1, \omega_1) + ih(\tau_2, \omega_1) - ih(\tau_1, \omega_2) + h(\tau_2, \omega_2)} =$$

$$= h(\omega_1, \tau_1 - i\tau_2) + ih(\omega_2, \tau_1 - i\tau_2) = \langle \omega, \tau \rangle.$$

Esteso per C-linearità, l'operatore di Hodge soddisfa la proprietà

$$\omega \wedge *\overline{\tau} = \langle \omega, \tau \rangle dv. \tag{6.2}$$

In questo modo, il prodotto scalare di k-forme, diventa

$$(\omega, \tau) = \int_{M} \langle \omega, \tau \rangle dv = \int_{M} \omega \wedge *\bar{\tau}.$$

Lemma 6.2.1. Valgono le seguenti affermazioni:

- 1) l'operatore di Hodge associa a (p,q)-forme (m-q,m-p)-forme;
- 2) $[X \, \lrcorner, \Lambda] = 0;$
- 3) $[X \sqcup, L] = JX \wedge .^1$

Dimostrazione.

1) indicati con $dz_J = dz_1 \wedge \cdots \wedge dz_j$, $d\bar{z}_J = d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_j$, $dx_J = dx_1 \wedge \cdots \wedge dx_j$ e $dy_J = dy_1 \wedge \cdots \wedge dy_j$, voglio dimostrare per induzione che

$$dz_M \wedge d\bar{z}_M = (-2i)^m dx_M \wedge dy_M.$$

$$j = 1$$
) $dz \wedge d\bar{z} = -idx \wedge dy + idy \wedge dx = -2idx \wedge dy;$
 $j \Rightarrow j + 1$)

$$z_{J+1} \wedge d\bar{z}_{J+1} = (-1)^j dz_J \wedge d\bar{z}_J \wedge dz_{j+1} \wedge d\bar{z}_{j+1} =$$

$$= (-1)^j (-2i)^j dx_J \wedge dy_J \wedge ((-2i)dx_{j+1} \wedge dy_{j+1}) =$$

$$= (-2i)^{j+1} dx_{J+1} \wedge dy_{J+1}$$

 $^{^1 \}text{Se } P$ e Qsono due operatori che agiscono sulle sezioni di uno stesso fibrato vettoriale, si definisce $[P,Q] \coloneqq P \circ Q - Q \circ P.$

Allora

$$dv = \sqrt{|h|} dx_1 \wedge \dots \wedge dx_m \wedge dy_1 \wedge \dots \wedge dy_m =$$

$$= \sqrt{|h|} \left(\frac{i}{2}\right)^m dz_1 \wedge \dots \wedge dz_m \wedge \dots \wedge d\bar{z}_1 \wedge d\bar{z}_m$$

Per semplicità dimostriamo l'enunciato per la (p,q)-forma $dz_P \wedge d\bar{z}_Q$. Indicati con P^c e Q^c gli indici complementari di P e Q, allora

$$(dz_P \wedge d\bar{z}_Q) \wedge \overline{(d\bar{z}_{P^c} \wedge dz_{Q^c})} = (dz_P \wedge d\bar{z}_Q) \wedge (dz_{P^c} \wedge d\bar{z}_{Q^c}) = \lambda dv$$

con $\lambda = (2i)^m (-1)^{(m-p)q} / \sqrt{|h|}$. Dalla (6.2) deduco che, a meno di una moltiplicazione per una funzione liscia,

$$*(dz_P \wedge d\bar{z}_Q) = dz_{Q^c} \wedge d\bar{z}_{P^c}$$

e quindi $*(dz_P \wedge d\bar{z}_Q)$ è una (m-q, m-p)-forma.

2)
$$[X \, \lrcorner, \Lambda] = \frac{1}{2} \left(\sum_{j=1}^{2m} \omega(e_j, Je_j, X, \lrcorner) - \sum_{j=1}^{2m} \omega(X, e_j, Je_j, \lrcorner) \right) = 0.$$

3) $[X \, \lrcorner, L]\omega = \frac{1}{2} \sum_{j=1}^{2m} \left[(e_j \wedge Je_j \wedge \omega)(X, \lrcorner) - e_j \wedge Je_j \wedge (\omega(X, \lrcorner)) \right]$. Poichè \lrcorner gode della proprietà

$$X \, \lrcorner \, (\omega \wedge \tau) = (X \, \lrcorner \, \omega) \wedge \tau + (-1)^p \omega \wedge (X \, \lrcorner \, \tau)$$

per ogni $\omega \in \Omega^p M$ e per ogni $\tau \in \Omega^q M$, allora

$$[X \rfloor, L]\omega = \frac{1}{2} \sum_{j=1}^{2m} (X \rfloor (e_j \wedge Je_j)) \wedge \omega =$$

$$= \frac{1}{2} \sum_{j=1}^{2m} X_j Je_j \wedge \omega - \frac{1}{2} \sum_{j=1}^{2m} (Je_j)(X)e_J \wedge \omega.$$

Inoltre

$$Je_j(X) = \sum_{k=1}^{2m} h(Je_j, X_k e_k) = -\sum_{k=1}^{2m} h(e_j, X_k Je_k) = -(JX)_j$$

quindi

$$[X \,\lrcorner, L] \omega = \frac{1}{2} (JX \wedge \omega - (-JX) \wedge \omega) = JX \wedge \omega.$$

Definisco l'operatore $d^c:\Omega^kM\to\Omega^{k+1}M$ come

$$d^c\omega := \sum_{j=1}^{2m} Je_j \wedge \nabla_{e_j} \omega$$

e sia $\delta^c:\Omega^{k+1}M\to\Omega^kM$ il suo operatore aggiunto. Allora in modo analogo al codifferenziale

$$\delta^c = - * d^c * = -\sum_{i=1}^{2m} Je_j \, \lrcorner \, \nabla_{e_j}$$

Lemma 6.2.2. Su una varietà di Kähler valgono le seguenti identità, dette identità di Kähler.

- 1. $[L, \delta] = d^c$;
- 2. [L,d] = 0;
- 3. $[\Lambda, d] = -\delta^c$;
- 4. $[\Lambda, \delta] = 0$.

Dimostrazione.

1.

$$\begin{split} [L,\delta] &= -\sum_{j=1}^{2m} [L,e_j \,\lrcorner\, \nabla_{e_j}] = \\ &= -\frac{1}{2} \sum_{i,h=1}^{2m} \left[e_h \wedge J e_h \wedge (e_j \,\lrcorner\, \nabla_{e_j}) - e_j \,\lrcorner\, \nabla_{e_j} (e_h \wedge J e_h \wedge \lrcorner) \right] \end{split}$$

Essendo gli e_i paralleli e sfruttando il Lemma 6.2.1

$$[L, \delta] = -\frac{1}{2} \sum_{j,h=1}^{2m} \left[e_h \wedge J e_h \wedge (e_j \sqcup \nabla_{e_j}) - e_j \sqcup e_h \wedge J e_h \wedge \nabla_{e_j} \right] =$$

$$= -\sum_{j=1}^{2m} [L, e_j \sqcup] \nabla_{e_j} = \sum_{j=1}^{2m} J e_j \wedge \nabla_{e_j} = d^c$$

2.
$$[L,d] = \Omega \wedge d_- - d(\Omega \wedge \underline{\ }) = \Omega \wedge d_- - d\Omega \wedge \underline{\ } - \Omega \wedge d_- = 0$$

3.

$$-\delta^{c} = *d^{c}* = *[L, \delta]* = *(\Omega \wedge \delta *_{-}) - *\delta(\Omega \wedge *_{-}) =$$

$$= (-1)^{k+1} (*(\Omega \wedge *))d_{-} - (-1)^{k}d(*(\Omega \wedge *_{-})) =$$

$$= ((-1)^{k+1} * L*)d_{-} - d((-1)^{k} * L*_{-}) = [\Lambda, d]$$

infatti, se $\alpha \in \Omega^k M$ e $\beta \in \Omega^{k+2} M$:

$$h(L\alpha,\beta)dv = \Omega \wedge \alpha \wedge *\beta = \alpha \wedge \Omega \wedge *\beta =$$

= $(-1)^k \alpha \wedge *(*\Omega \wedge *\beta) = h(\alpha,(-1)^k * L * \beta)$

ovvero $\Lambda: \Lambda^{k+2}M \to \Lambda^k M$ è tale che $\Lambda = (-1)^k * L*.$

$$4. \ \ [\Lambda,\delta] = (-1)^{k+1} * L * \delta - (-1)^k \delta * L * = - * L d * + * d L * = - * [L,d] * = 0.$$

Siano ora $\partial^*: \Omega^{p,q}M \to \Omega^{p-1,q}M$ e $\bar{\partial}^*: \Omega^{p,q}M \to \Omega^{p,q-1}M$ gli aggiunti formali di ∂ e $\bar{\partial}$ rispetto a (\cdot,\cdot) rispettivamente. Allora $\delta = \partial^* + \bar{\partial}^*$ ed inoltre

$$\partial^* = -*\bar{\partial}*$$
 e $\bar{\partial}^* = -*\partial*$.

Infatti se $\alpha \in \Omega^{p,q}M$ e $\beta \in \Omega^{p,q+1}M$

$$(\bar{\partial}\alpha,\beta) = \int_{M} \bar{\partial}\alpha \wedge *\bar{\beta} = \int_{M} \bar{\partial}(\alpha \wedge *\bar{\beta}) - (-1)^{p+q} \int_{M} \alpha \wedge \bar{\partial} *\bar{\beta} =$$

$$= \int_{\partial M} \alpha \wedge *\bar{\beta} - (-1)^{p+q} \int_{M} \alpha \wedge *(\overline{*^{-1}\partial *\beta}) =$$

$$= -\int_{M} \alpha \wedge *(\overline{*\partial *\beta}) = (\alpha, -*\partial *\beta).$$

Il caso ∂ è analogo.

Posso definire quindi gli operatori di Laplace

$$\Delta^{\partial} := \partial \partial^* + \partial^* \partial$$
 e $\Delta^{\bar{\partial}} := \bar{\partial} \bar{\partial}^* + \bar{\partial}^* \bar{\partial}$

Osservazione 6.2.3. Posso estendendo l'identificazione di TM con T^*M per \mathbb{C} -linearità tramite gli isomorfismi musicali definiti da

$$Z^{\flat}(W) = h(Z, W) \quad \text{e} \quad h(\omega^{\sharp}, Z) = \omega(Z) \quad \forall Z, W \in TM^{\mathbb{C}}, \forall \omega \in \Lambda^{1}_{\mathbb{C}}M$$

in cui h è l'estensione per \mathbb{C} -linearità della metrica di Hermitiana. Allora

$$\left(\frac{\partial}{\partial z_{\alpha}}\right)^{\flat} \left(\frac{\partial}{\partial z_{\beta}}\right) = h\left(\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial z_{\beta}}\right) = 0$$

$$\left(\frac{\partial}{\partial z_{\alpha}}\right)^{\flat} \left(\frac{\partial}{\partial \bar{z}_{\beta}}\right) = h\left(\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial \bar{z}_{\beta}}\right) = h_{\alpha\bar{\beta}}$$

quindi

$$\left(\frac{\partial}{\partial z_{\alpha}}\right)^{\flat} = \sum_{\beta=1}^{m} h_{\alpha\bar{\beta}} d\bar{z}_{\beta} \in \Omega^{0,1} M.$$

Inoltre poichè

$$h\left((d\bar{z}_{\alpha})^{\sharp}, \frac{\partial}{\partial \bar{z}_{\alpha}}\right) = (d\bar{z}_{\alpha})\left(\frac{\partial}{\partial \bar{z}_{\alpha}}\right) = 1 \neq 0$$

si deduce che $(d\bar{z}_{\alpha})^{\sharp} \notin T^{0,1}M$. Quindi ottengo un isomorfismo tra $T^{1,0}M$ e $\Lambda^{0,1}M$.

Teorema 6.2.4. Nelle varietà di Kähler vale l'uquaglianza

$$\Delta = 2\Delta^{\bar{\partial}} = 2\Delta^{\partial}$$

Dimostrazione. Dall'Osservazione 6.2.3 ho che gli (1,0)-vettori vengono identificati con le (0,1)-forme, quindi posso esprimere

$$\partial = \frac{1}{2} \sum_{j=1}^{2m} (e_j + iJe_j) \wedge \nabla_{e_j} \quad \text{e} \quad \bar{\partial} = \frac{1}{2} \sum_{j=1}^{2m} (e_j - iJe_j) \wedge \nabla_{e_j}.$$

Allora $d^c = i(\bar{\partial} - \partial)$ e quindi

$$\delta^c = -*d^c * = -i(*\bar{\partial} * - *\partial *) = i(\partial^* - \bar{\partial}^*).$$

Dalle prime due uguaglianze del Lemma 6.2.2 si deducono quindi

$$[L, \partial^*] = i\bar{\partial}, \quad [L, \bar{\partial}^*] = -i\partial, \quad [L, \partial] = [L, \bar{\partial}] = 0$$

invece dalle ultime due

$$[\Lambda,\partial]=i\bar{\partial}^*,\quad [\Lambda,\bar{\partial}]=-i\partial^*,\quad [\Lambda,\partial^*]=[\Lambda,\bar{\partial}^*]=0.$$

Allora

$$-i(\bar{\partial}\partial^* + \partial^*\bar{\partial}) = \bar{\partial}[\Lambda, \bar{\partial}] + [\Lambda, \bar{\partial}]\bar{\partial} = \bar{\partial}\Lambda\bar{\partial} - \bar{\partial}^2\Lambda + \Lambda\bar{\partial}^2 - \bar{\partial}\Lambda\bar{\partial} = 0,$$

ovvero $\bar{\partial}\partial^* + \partial^*\bar{\partial} = 0$ e analogamente anche $\partial\bar{\partial}^* + \bar{\partial}^*\partial = 0$. Quindi

$$\begin{split} \Delta &= (\partial + \bar{\partial})(\partial^* + \bar{\partial}^*) + (\partial^* + \bar{\partial}^*)(\partial + \bar{\partial}) = \\ &= (\partial \partial^* + \partial^* \partial) + (\bar{\partial} \bar{\partial}^* + \bar{\partial}^* \bar{\partial}) + (\bar{\partial} \partial^* + \partial^* \bar{\partial}) + (\partial \bar{\partial}^* + \bar{\partial}^* \partial) = \\ &= \Delta^{\partial} + \Delta^{\bar{\partial}} \end{split}$$

Infine si ha anche che $\Delta^{\partial} = \Delta^{\bar{\partial}}$, infatti:

$$\begin{split} -i\Delta^{\partial} &= -i(\partial + \bar{\partial})(\partial^* + \bar{\partial}^*) = \partial[\Lambda, \bar{\partial}] + [\Lambda, \bar{\partial}]\partial = \\ &= \partial\Lambda\bar{\partial} - \partial\bar{\partial}\Lambda + \Lambda\bar{\partial}\partial - \bar{\partial}\Lambda\partial = \\ &= [\partial, \Lambda] + \bar{\partial}[\partial, \Lambda] = -i\bar{\partial}^*\bar{\partial} - i\bar{\partial}\bar{\partial}^* = -i\Delta^{\bar{\partial}}. \end{split}$$

Osservazione 6.2.5. È possibile estendere J alle k-forme definendo $J:\Lambda^kM\to\Lambda^kM$ come

$$J(\omega) := \sum_{j=1}^{2m} Je_j \wedge (e_j \, \lrcorner \, \omega).$$

Questa definizione è concorde alla precedente identificazione fatta tra TM e T^*M , infatti

$$J(e_h^{\flat}) = \sum_{i=1}^{2m} (Je_j)^{\flat} \wedge (e_h^{\flat}(e_j)) = (Je_h)^{\flat}.$$

Vale la seguente proprietà per ogni $\alpha\in\Omega^pM$ e per ogni $\beta\in\Omega^kM$

$$J(\alpha \wedge \beta) = J(\alpha) \wedge \beta + \alpha \wedge J(\beta)$$

infatti:

$$J(\alpha \wedge \beta) = \sum_{j=1}^{2m} Je_j \wedge (e_j \, \lrcorner \, (\alpha \wedge \beta)) =$$

$$= \sum_{j=1}^{2m} Je_j \wedge (e_j \, \lrcorner \, \alpha) \wedge \beta + \sum_{j=1}^{2m} ((-1)^p Je_j \wedge \alpha) \wedge (e_j \, \lrcorner \, \beta) =$$

$$= J(\alpha) \wedge \beta + \alpha \wedge J(\beta).$$

6.3 Coomologia di De Rham

Sia (M^n,g) una varietà Riemanniana compatta e orientata e indichiamo con $\Omega^k_{\mathbb{C}}M:=\Gamma(\Lambda^kM\otimes\mathbb{C})$ le k-forme lisce su M a valori complessi. Posto

$$\mathcal{Z}_{\mathbb{C}}^{k}M := \left\{ \omega \in \Omega_{\mathbb{C}}^{k} \mid d\omega = 0 \right\}$$

ho che $d\Omega^{k-1}_{\mathbb{C}}M\subseteq\mathcal{Z}^k_{\mathbb{C}}M$ e posso definire i **gruppi di coomologia di De Rham** come il quoziente

$$H_{DR}^k(M,\mathbb{C}) := \frac{\mathcal{Z}_{\mathbb{C}}^k M}{d\Omega_{\mathbb{C}}^{k-1} M}.$$

Il Teorema di De Rham mette in relazione i gruppi di coomologia di De Rham con i gruppi di coomologia singolare su M a coefficienti complessi.

Teorema 6.3.1 (Teorema di De Rham). Indicato con $H^k(M, \mathbb{C})$ il gruppo di coomologia singolare su M, la seguente applicazione definisce un isomorfismo di gruppi

$$I: H^k_{DR}(M, \mathbb{C}) \longrightarrow H^k(M, \mathbb{C})$$

 $[\omega] \longmapsto [I(\omega)]$

in cui per ogni k-simplesso singolare $\sigma: \Delta^k \to M$, definito sul simplesso Δ^k ,

$$I(\omega)(\sigma) := \int_{\Lambda^k} \sigma^* \omega.$$

Capitolo 7

Classi di Chern

7.1 Teoria di Chern-Weil

Prendiamo come definizione la seguente proposizione di caratterizzazione della **prima classe di Chern**.

Proposizione 7.1.1. Sia E un fibrato vettoriale complesso sulla varietà differenziabile M. La **prima classe di Chern** di E è $c_1(E) \in H^2(M, \mathbb{Z})$ che soddisfa i seguenti assiomi:

- Naturalità: per ogni $f: M \to N$ liscia e per ogni fibrato vettoriale complesso E su N, si ha $f^*(c_1(E)) = c_1(f^*E)$ in cui $(f^*E)_x := E_{f(x)}$ per ogni $x \in M$.
- Somma di Whitney: per ogni E, F fibrati complessi su M

$$c_1(E \oplus F) = c_1(E) \oplus c_1(F)$$

in cui $E \oplus F$ è la **somma di Whitney** definita da $E \oplus F := i^*(E \times F)$ con $i: M \to M \times M$ inclusione canonica¹.

• Normalizzazione: la prima classe di Chern del fibrato tautologico di $\mathbb{C}P^1$ è -1 in $H^2(\mathbb{C}P^1,\mathbb{Z})\cong\mathbb{Z}$, o equivalentemente, se ω è un rappresentante della classe, allora

$$\int_{\mathbb{C}P^1} \omega = -1.$$

 $¹⁽E \oplus F)_x = (E \times F)_{(x,x)} = E_x \times F_x \cong E_x \oplus F_x.$

Sia $E \to M$ un fibrato vettoriale complesso di rango k e sia ∇ una connessione su E. Scelta una base locale $\{\sigma_j\}$ per le sezioni di E, è possibile, come fatto nella Sezione 4.1, definire la 2-forma di curvatura locale e le 1-forme di connessione locali che soddisferanno le condizioni dell'Osservazione 4.1.6. Definita la traccia di R^{∇} come la traccia della matrice $\left(R_{ij}^{\nabla}\right)$ (ovvero $\operatorname{Tr}\left(R^{\nabla}\right) := \sum_{i=1}^{k} R_{ii}^{\nabla}$ e posto $\omega := (\omega_{ij})$, poichè

$$\sum_{i,l=1}^{k} \omega_{il} \wedge \omega_{li} = -\sum_{i,l=1}^{k} \omega_{li} \wedge \omega_{il} = -\sum_{i,l=1}^{k} \omega_{il} \wedge \omega_{li}$$

ho che

$$\operatorname{Tr}(R^{\nabla}) = d\left(\sum_{i=1}^{k} \omega_{ii}\right) = d\left(\operatorname{Tr}(\omega)\right).$$

Quindi $Tr(R^{\nabla})$ è un 2-forma localmente esatta, perciò è chiusa ed ha senso considerare la sua classe di coomologia di De Rham.

Osservazione 7.1.2. Nonostante i coefficienti R_{ij}^{∇} e ω_{ij} dipendano dalla scelta della base $\{\sigma_j\}$, la traccia di R^{∇} è indipendente da tale scelta. Infatti, se $\{\tilde{\sigma}_j\}$ è un'altra base, esisteranno delle funzioni lisce g_{ij} tali che $\tilde{\sigma}_i = \sum_j g_{ij}\sigma_j$. Allora

$$\sum_{j,h} g_{jh} \tilde{R}_{ij}^{\nabla} \otimes \sigma_h = \sum_j \tilde{R}_{ij}^{\nabla} \otimes \tilde{\sigma}_j = R^{\nabla}(\tilde{\sigma}_i) = \sum_j g_{ij} R^{\nabla}(\sigma_j) = \sum_{j,h} g_{ij} R_{jh}^{\nabla} \otimes \sigma_h,$$

ovvero ho la seguente uguaglianza matriciale

$$\left(\tilde{R}^{\nabla}\right)\left(g\right) = \left(g\right)\left(R^{\nabla}\right).$$

Quindi le due matrici (\tilde{R}^{∇}) e (R^{∇}) sono simili e hanno la stessa traccia.

Lemma 7.1.3. La classe di coomologia $\left[\operatorname{Tr}(R^{\nabla})\right] \in H^2(M,\mathbb{C})$ non dipende da ∇ .

Dimostrazione. Siano ∇ e $\tilde{\nabla}$ due connessioni su E, allora $A := \tilde{\nabla} - \nabla$ gode della proprietà $A(\omega \otimes \sigma) = (-1)^k \omega \wedge A(\sigma)$, per ogni $\omega \in \Omega^k M$ e per ogni $\sigma \in \Gamma(E)$, infatti

$$A(\omega \otimes \sigma) = d\omega \otimes \sigma + (-1)^k \omega \wedge \bar{\nabla} \sigma - d\omega \otimes \sigma - (-1)^k \omega \wedge \nabla \sigma = (-1)^k \omega \wedge A(\sigma).$$

Inoltre si ottiene $\operatorname{Tr}\left(R^{\tilde{\nabla}}\right) = \operatorname{Tr}\left(R^{\nabla}\right) + d\operatorname{Tr}(A)$, infatti:

$$-A^{2}(\sigma_{i}) = A\left(\sum_{j} A_{ij} \otimes \sigma_{j}\right) = -\sum_{j} A_{ij} \wedge A(\sigma_{j}) = -\sum_{j,l} A_{il} \wedge A_{lj} \otimes \sigma_{j};$$

$$-(A\nabla)(\sigma_{i}) = -\sum_{j,l} \omega_{il} \wedge A_{lj} \otimes \sigma_{j};$$

$$-(\nabla A)(\sigma_{i}) = \sum_{j} \left[dA_{ij} \otimes \sigma_{j} - \sum_{l} A_{il} \wedge \omega_{lj} \otimes \sigma_{j}\right];$$

$$\Rightarrow \sum_{j} R_{ij}^{\tilde{\nabla}} \otimes \sigma_{j} = R^{\tilde{\nabla}}(\sigma_{i}) = \tilde{\nabla}^{2}(\sigma_{i}) = (\nabla + A)^{2}(\sigma_{i}) =$$

$$= R^{\nabla}(\sigma_{i}) + A^{2}(\sigma_{i}) + (\nabla A + A\nabla)(\sigma_{i}) =$$

$$= \sum_{j} \left[R_{ij}^{\nabla} + dA_{ij} - \sum_{l} (A_{il} \wedge A_{lj} + \omega_{il} \wedge A_{lj} + A_{il} \wedge \omega_{lj})\right] \otimes \sigma_{j}$$

$$\Rightarrow \operatorname{Tr}\left(R^{\tilde{\nabla}}\right) = \sum_{i} R_{ii}^{\tilde{\nabla}} = \sum_{i} R_{ii}^{\nabla} + d\left(\sum_{i} A_{ii}\right) = \operatorname{Tr}\left(R^{\nabla}\right) + d(\operatorname{Tr}(A)).$$

Osservazione 7.1.4. $[\operatorname{Tr}(R^{\nabla})]$ può essere rappresentata da una 2-forma puramente immaginaria. Infatti, scelte una struttura Hermitiana h su E, una connessione ∇ tale che $\nabla h = 0$ e una base $\{\sigma_i\}$ ortonormale rispetto ad h, si ha

$$0 = \nabla \delta_{ij} = \nabla \left(h(\sigma_i, \sigma_j) \right) = h(\nabla \sigma_i, \sigma_j) + h(\sigma_i, \nabla \sigma_j) = \omega_{ij} + \overline{\omega_{ji}}$$

allora

$$\overline{R_{ij}^{\nabla}} = d\overline{\omega_{ij}} - \sum_{i=1}^{k} \overline{\omega_{il}} \wedge \overline{\omega_{lj}} = -d\omega_{ji} - \sum_{i=1}^{k} \omega_{li} \wedge \omega_{jl} = -R_{ji}^{\nabla}$$

e quindi

$$\operatorname{Tr}(R^{\nabla}) = \sum_{i=1}^{k} R_{ii}^{\nabla} = -\sum_{i=1}^{k} \overline{R_{ii}^{\nabla}} = -\overline{\operatorname{Tr}(R^{\nabla})}.$$

Teorema 7.1.5. Sia ∇ una connessione sul fibrato complesso E su M. La classe di coomologia $c_1(\nabla) := \left[\frac{i}{2\pi} \operatorname{Tr}(R^{\nabla})\right] \in H^2(M,\mathbb{R})$ è uguale all'immagine di $c_1(E)$ tramite $H^2(M,\mathbb{Z}) \hookrightarrow H^2(M,\mathbb{R})$.

Dimostrazione. Basta dimostrare che $c_1(\nabla)$ soddisfa le proprietà della Proposizione 7.1.1.

Naturalità : sia $f: M \to N$ liscia e sia $\pi: E \to N$ un fibrato di rango k, allora

$$f^*E = \{(x, v) \in M \times E \mid f(x) = \pi(v)\}$$

e se $\{\sigma_i\}$ base locale per le sezioni di E allora le $f^*\sigma_j: M \to f^*E$, tali che $x \mapsto (x, \sigma_i(f(x)))$, formano una base locale per le sezioni f^*E . Definisco quindi la connessione $f^*\nabla$ su f^*E tramite $(f^*\nabla)(f^*\sigma) := f^*(\nabla \sigma)$. Rispetto alle basi $\{f^*\sigma_i\}$ e $\{\sigma_i\}$, allora

$$\sum_{j=1}^{k} R_{ij}^{f^*\nabla} \otimes f^*\sigma_i = R^{f^*\nabla}(f^*\sigma_i) = (f^*\nabla)^2(f^*\sigma_i) =$$
$$= f^*R^{\nabla}(\sigma_i) = f^*\left(\sum_{j=1}^{k} R_{ij}^{\nabla} \otimes \sigma_j\right)$$

ovvero $R_{ij}^{f^*\nabla}=f^*(R_{ij}^{\nabla})$. Perciò $\mathrm{Tr}\big(R^{f^*\nabla}\big)=f^*(\mathrm{Tr}\big(R^{\nabla}\big))$ e quindi $c_1(f^*\nabla)=f^*c_1(\nabla)$.

Somma di Whitney : siano E e F due fibrati complessi su M di rango k e h, con connessioni ∇ e $\tilde{\nabla}$ rispettivamente. Definisco la connessione $\nabla \oplus \tilde{\nabla}$ su $E \oplus F$ come

$$(\nabla \oplus \tilde{\nabla})_x(\sigma \oplus \tilde{\sigma}) \coloneqq \nabla_x \sigma \oplus \tilde{\nabla}_x \tilde{\sigma}.$$

Se $\{\sigma_i\}$ e $\{\tilde{\sigma}_i\}$ sono delle basi locali per le sezioni di E e F rispettivamente, allora $\{\sigma_i \oplus 0, 0 \oplus \tilde{\sigma}_i\}$ forma una base di $E \oplus F$. Rispetto alle precedenti basi allora

$$\operatorname{Tr}\left(R^{\nabla \oplus \tilde{\nabla}}\right) = \operatorname{Tr}\left(\begin{array}{c|c} (R_{ij}^{\nabla}) & 0_{k,h} \\ \hline 0_{h,k} & (R_{ij}^{\tilde{\nabla}}) \end{array}\right) = \operatorname{Tr}\left(R^{\nabla}\right) + \operatorname{Tr}\left(R^{\tilde{\nabla}}\right).$$

Quindi $c_1(\nabla \oplus \tilde{\nabla}) = c_1(\nabla) + c_1(\tilde{\nabla}).$

Normalizzazione: sia $\pi: L \to \mathbb{C}P^1$ il fibrato in rette tautologico di $\mathbb{C}P^1$. Siano $\sigma_i: U_i \subseteq \mathbb{C}P^1 \to \mathbb{C}$, con i=1,2, le espressioni della sezione $\sigma: \mathbb{C}P^1 \to L$ nelle trivializzazioni ψ_i^2 . Il prodotto Hermitiano di \mathbb{C}^2 induce una struttura Hermitiana h su L e sia quindi ∇ la connessione

²Ovvero $\sigma_i := pr \circ \psi_i \circ \sigma$ in cui $pr : U_i \times \mathbb{C} \to \mathbb{C}$ è la proiezione sul secondo fattore.

di Chern associata ad h. Se σ è una sezione olomorfa di L, indico con $u = h(\sigma, \sigma) > 0$ e con ω la forma di connesione di σ rispetto a ∇ (i.e. $\nabla \sigma = \omega \otimes \sigma$). Allora per ogni $X \in T\mathbb{C}P^1$, ho che

$$du(X) = \partial_X(h(\sigma, \sigma)) = h(\nabla_X \sigma, \sigma) + h(\sigma, \nabla_X \sigma) = \omega(X)u + \overline{\omega}(X)u$$

Quindi

$$(\omega + \bar{\omega})(X) = \frac{1}{u}du(X) = d(\log u)(X)$$

ed essendo

$$\omega \otimes \sigma = \nabla \sigma = \nabla^{1,0} \sigma + \bar{\partial} \sigma = \nabla^{1,0} \sigma$$

deduco che $\omega \in \Omega^{1,0}M$ e perciò $\omega = \partial(\log u)$. Allora

$$\operatorname{Tr}(R^{\nabla}) = d\omega = d(\partial \log u) = \bar{\partial} \partial \log u$$

e quindi dimostrare che $c_1(\nabla) = -1$ è equivalente a dimostrare

$$\frac{i}{2\pi} \int_{\mathbb{C}P^1} \bar{\partial} \partial \log u = -1.$$

Per dimostrarlo basta calcolare l'integrale su $U_0 = \mathbb{C}P^1 \setminus \{[(0,1)]\}$. Sia $z := \varphi_0([(z_0, z_1)]) = \frac{z_1}{z_0}$ la coordinata olomorfa su U_0 e sia σ la sezione olomorfa su U_0 tale che $\sigma_0 \equiv 1$, ovvero $\sigma([(z_0, z_1)]) = (1, z)$. Allora $u = h(\sigma, \sigma) = |(1, z)|^2 = 1 + |z|^2$. Espressa z in coordinate polari, ovvero $z = r \cos \theta + ir \sin \theta$, e scelta una applicazione $f = f(z) = f(r, \theta)$, ho che

$$\bar{\partial}\partial f = \frac{i}{2} \left(r \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial f}{\partial r} \right) dr \wedge d\theta.$$

Scelta $f = \log(1 + r^2) = \log(u)$ allora

$$\begin{split} \frac{i}{2\pi} \int_{\mathbb{C}P^1} \bar{\partial} \partial \log u &= \frac{i}{2\pi} \int_{[0,+\infty) \times [0,2\pi]} \frac{i}{2} \left(r \frac{\partial^2 f}{\partial r^2} + \frac{\partial f}{\partial r} \right) dr \wedge d\theta = \\ &= -\frac{1}{2} \int_0^{+\infty} d \left(r \frac{\partial f}{\partial r} \right) = -\frac{1}{2} \lim_{r \to \infty} r \frac{\partial f}{\partial r} = \\ &= -\lim_{r \to \infty} \frac{r}{2} \frac{2r}{1+r^2} = -1 \end{split}$$

Definizione 7.1.6. Sia (M, J) una varietà quasi complessa, la **prima classe di Chern** di M è definita come $c_1(M) := c_1(TM)$, in cui TM è visto come fibrato vettoriale complesso su M.

7.2 Proprietà della Prima Classe di Chern

Osservazione 7.2.1.

La prima classe di Chern dei fibrati banali (ovvero i fibrati vettoriale in cui tutte le fibre sono date dallo stesso spazio vettoriale) è 0. Infatti se E → M è un fibrato banale complesso su M (i.e. E = M × V con V C-spazio vettoriale) allora, data P = {p} una varietà 0-dimensionale, P × V ^{pr₁} P definisce un fibrato banale su P. Inoltre esiste un'unica applicazione f : M → P e si ha che E_x = V = (P × V)_{f(x)} = (f*(P × V))_x. Essendo H²(P, Z) = {0}, allora per l'assioma di naturalità

$$c_1(E) = c_1(f^*(P \times V)) = f^*(c_1(P \times V)) = 0.$$

• Siano E un fibrato in rette e E^* il suo duale, allora $E \otimes E^* \cong \mathbb{C}$, in cui \mathbb{C} è visto come fibrato banale. Infatti $E \otimes E^* \cong \operatorname{End}(E)$, inoltre ogni $\varphi \in \operatorname{End}(E)$ è determinata da $\lambda \in \mathbb{C}$ tale che $\varphi(\sigma) = \lambda \sigma$ con $\{\sigma\}$ base delle sezioni di E.

Proposizione 7.2.2. Sia M una varietà differenziabile e E, F due fibrati vettoriali complessi su M. Allora:

- i) $c_1(E) = c_1(\Lambda^k E)$, in cui k = rk(E);
- ii) $c_1(E \otimes F) = rk(F)c_1(E) + rk(E)c_1(F);$
- iii) $c_1(E^*) = -c_1(E)$, in cui E^* è il fibrato duale di E.

Dimostrazione.

i) Data ∇ connessione su E, posso indurre una connessione $\tilde{\nabla}$ su $\Lambda^k E$ definendo

$$\tilde{\nabla}(\sigma_1 \wedge \cdots \wedge \sigma_k) := \sum_{j=1}^k \sigma_1 \wedge \cdots \wedge \sigma_{j-1} \wedge \nabla \sigma_j \wedge \sigma_{j+1} \wedge \cdots \wedge \sigma_k.$$

Se $\{\sigma_i\}$ è una base locale per le sezioni di E, allora $\sigma := \sigma_1 \wedge \cdots \wedge \sigma_k$ è una sezione non nulla di $\Lambda^k E$ e quindi forma una base locale. Siano $\omega := (\omega_{ij})$ e $\tilde{\omega}$ le forme di connessione relative alle basi $\{\sigma_i\}$ e $\{\sigma\}$ rispettivamente, ovvero

$$\nabla \sigma_i = \sum_{j=1}^k \omega_{ij} \otimes \sigma_j \quad \text{e} \quad \tilde{\nabla} \sigma = \tilde{\omega} \otimes \sigma.$$

Allora

$$\tilde{\nabla}\sigma = \sum_{j=1}^{k} \sigma_1 \wedge \dots \wedge \sigma_{j-1} \wedge \left(\sum_{h=1}^{k} \omega_{jh} \otimes \sigma_h\right) \wedge \sigma_{j+1} \wedge \dots \wedge \sigma_k =$$

$$= \sum_{j=1}^{k} \omega_{jj} \otimes \sigma.$$

Quindi

$$\operatorname{Tr}\left(R^{\tilde{\nabla}}\right) = d\tilde{\omega} = d\left(\sum_{j=1}^{k} \omega_{jj}\right) = d\operatorname{Tr}(\omega) = \operatorname{Tr}\left(R^{\nabla}\right)$$

e di conseguenza $c_1(E) = c_1(\Lambda^k E)$.

ii) Nel caso particolare in cui rk(E)=rk(F)=1, scelte due connessioni ∇^E e ∇^F sui rispettivi fibrati, posso indurre su $E\otimes F$ la connessione ∇ definita da

$$\nabla(\sigma^E\otimes\sigma^F)\coloneqq(\nabla^E\sigma^E)\otimes\sigma^F+\sigma^E\otimes(\nabla^F\sigma^F).$$

Allora le forme di connessione saranno legate dalla relazione $\omega = \omega^E + \omega^F$, infatti:

$$\omega \otimes (\sigma^E \otimes \sigma^F) = \nabla(\sigma^E \otimes \sigma^F) =$$

$$= (\omega^E \otimes \sigma^E) \otimes \sigma^F + \sigma^E \otimes (\omega^F \otimes \sigma^F) =$$

$$= (\omega^E + \omega^F) \otimes \sigma^E \otimes \sigma^F.$$

Quindi

$$\operatorname{Tr}(R^{\nabla}) = d\omega = d\omega^E + d\omega^F = \operatorname{Tr}(R^{\nabla^E}) + \operatorname{Tr}(R^{\nabla^F}).$$

Infine, se rk(E) = e e rk(F) = f, poichè

$$\Lambda^{ef}E \otimes F \cong (\Lambda^e E)^{\otimes f} \otimes (\Lambda^f E)^{\otimes e},$$

sfruttando la (i) e sfruttando la discussione fatta nel caso con il rango uguale a 1, si ottiene

$$c_1(E \otimes F) = c_1(\Lambda^{ef}E \otimes F) = fc_1(\Lambda^{e}E) + ec_1(\Lambda^{f}F) = fc_1(E) + ec_1(F)$$

iii) Poichè $(\Lambda^k E)^* \cong \Lambda^k E^*,$ per l'Osservazione 7.2.1 e per ciò appena dimostrato, allora

$$0 = c_1((\Lambda^k E)^* \otimes \Lambda^k E) = c_1(\Lambda^k E) + c_1(\Lambda^k E^*) = c_1(E) + c_1(E^*).$$

Capitolo 8

Il Teorema di Calabi-Yau

8.1 La Forma di Ricci come Forma di Curvatura

Sia (M^{2m}, h, J) una varietà di Kähler con forma di Ricci ρ . Per l'Osservazione 3.3.2, TM è un fibrato olomorfo, inoltre, definendo $H := h - i\Omega$, è anche un fibrato Hermitiano. Abbiamo definito, a partire da una connessione complessa (ad esempio come quella di Chern), la 2-forma di curvatura, e, a partire dalla connessione di Levi-Civita su una varietà Riemanniana, il tensore di curvatura. Il seguente Lemma dimostra che su una varietà di Kähler questi due concetti, come conseguenza dell'uguaglianza tra la connessione di Chern e di Levi-Civita, sono equivalenti.

Lemma 8.1.1. L'operatore di curvatura $R^{\nabla} \in \Gamma(\Lambda^2 M \otimes \operatorname{End}(TM))$ della connessione di Chern e il tensore di curvatura R della connessione di Levi-Civita sono legati dalla seguente relazione:

$$R_{X,Y}^{\nabla}(\xi) = R(X,Y)\xi, \quad \forall X,Y \in \mathcal{X}(M), \forall \xi \in \Gamma(TM).$$

Dimostrazione. Sia $\{e_i\}$ una base locale per i campi vettoriali su M e $\{e_i^*\}$ la sua duale locale delle 1-forme su M. Allora (usando la notazione degli indici ripetuti)

$$R^{\nabla}\xi = \nabla^2\xi = \nabla(e_i^* \otimes \nabla_{e_i}\xi) = de_i^* \otimes \nabla_{e_i}\xi - e_i^* \wedge e_i^* \otimes \nabla_{e_i}\nabla_{e_i}\xi$$

Siano $X = X_i e_i = e_i^*(X) e_i$ e $Y = Y_i e_i = e_i^*(Y) e_i$ due campi vettoriali locali. Allora

$$de_i^*(X,Y) = \partial_X(e_i^*(Y)) - \partial_Y(e_i^*(X)) - e_i^*([X,Y]) =$$

= $\partial_X(Y_i) - \partial_Y(X_i) - e_i^*([X,Y])$

e quindi

$$\begin{split} R_{X,Y}^{\nabla}(\xi) &= de_i^*(X,Y) \nabla_{e_i} \xi - (e_i^* \wedge e_j^*)(X,Y) \nabla_{e_j} \nabla_{e_i} \xi = \\ &= (\partial_X Y_i - \partial_Y X_i - e_i^*([X,Y])) \nabla_{e_i} \xi - (X_i Y_j - X_j Y_i) \nabla_{e_j} \nabla_{e_i} \xi = \\ &= -\nabla_{[X,Y]} \xi - (\partial_Y X_i + X_i \nabla_Y) \nabla_{e_i} \xi + (\partial_X Y_i + Y_i \nabla_X) \nabla_{e_i} \xi = \\ &= -\nabla_{[X,Y]} \xi - \nabla_Y \nabla_X \xi + \nabla_X \nabla_Y \xi = \\ &= R(X,Y) \xi. \end{split}$$

Osservazione~8.1.2.

• Sia ∇ una connessione sul fibrato complesso E e ∇^* la connessione su E^* definita nell'Osservazione 4.3.2. Allora

$$R^{\nabla^*}(X,Y) = -\left(R^{\nabla}(X,Y)\right)^*$$

in cui se un operatore $A \in \text{End}(E)$, il suo operatore aggiunto $A^* \in \text{End}(E^*)$ è definito da $A^*(\sigma^*)(\sigma) := \sigma^*(A(\sigma))$.

Infatti

$$(\nabla_Y^* \nabla_X^* \sigma^*)(\sigma) = \partial_Y \Big((\nabla_X^* \sigma^*)(\sigma) \Big) - (\nabla_X^* \sigma^*)(\nabla_Y \sigma) =$$

$$= \partial_Y \Big(\partial_X (\sigma^*(\sigma)) \Big) - \partial_Y \Big(\sigma^*(\nabla_X \sigma) \Big) - \partial_X \Big(\sigma^*(\nabla_Y \sigma) \Big) + \sigma^* \Big(\nabla_X \nabla_Y \sigma \Big)$$

inoltre

$$\left(\nabla_{[X,Y]}^*\sigma^*\right)(\sigma) = \partial_{[X,Y]}\Big(\sigma^*(\sigma)\Big) - \sigma^*\Big(\nabla_{[X,Y]}\sigma\Big)$$

allora

$$\begin{split} \Big(R^{\nabla^*}(X,Y)(\sigma^*)\Big)(\sigma) &= \Big(\nabla_X^*\nabla_Y^*\sigma^* - \nabla_Y^*\nabla_X^*\sigma^* - \nabla_{[X,Y]}^*\sigma^*\Big)(\sigma) = \\ &= \sigma^*(\nabla_X\nabla_Y\sigma - \nabla_Y\nabla_X\sigma - \nabla_{[X,Y]}\sigma) = \\ &= \sigma^*(R^{\nabla}(X,Y)(\sigma)) = \\ &= \Big(\Big(R^{\nabla}(X,Y)\Big)^*(\sigma^*)\Big)(\sigma). \end{split}$$

• Sia $K = \Lambda^{m,0}M$ il fibrato canonico di una varietà di Kähler M^{2m} , allora $K^* \cong \Lambda^{0,m}M$. Infatti, per l'Osservazione 6.2.3, si ha che

$$K^* = \left(\bigwedge_{i=1}^m \Lambda^{1,0} M\right)^* \cong \left(\bigwedge_{i=1}^m (T^{1,0} M)^*\right)^* \cong \bigwedge_{i=1}^m T^{1,0} M \cong$$
$$\cong \bigwedge_{i=1}^m \Lambda^{0,1} M = \Lambda^{0,m} M.$$

Proposizione 8.1.3. La curvatura della connessione di Chern del fibrato canonico di una varietà di Kähler è uguale a $i\rho$.

Dimostrazione. Siano r e r^* le curvature della connessione di Chern del fibrato canonico $K = \Lambda^{m,0}M$ e di $K^* = \Lambda^{0,m}M$. Allora, per l'Osservazione precedente, $r = -r^*$. La struttura Hermitiana su TM induce una struttura Hermitiana su $\Lambda^m(TM)$ e la connessione indotta dalla connessione di Chern di (TM, H) è la connessione di Chern di $(\Lambda^m TM, H)$.

Inoltre $\Lambda^m TM \cong \Lambda^{0,m} M$, infatti

$$\Lambda^m TM \cong \bigwedge_{i=1}^m TM \cong \bigwedge_{i=1}^m \Lambda^{0,1} M = \Lambda^{0,m} M.$$

Allora dalla dimostrazione della (i) della Proposizione 7.2.2 e dalla Proposizione 5.3.2 ho che

$$r^*(X,Y) = \operatorname{Tr}(r^*) = \operatorname{Tr}(R_{X,Y}^{\nabla}) = \operatorname{Tr}(R(X,Y)).$$

Sfruttando la Proposizione allora 5.4.2

$$i\rho(X,Y) = i\mathrm{Ric}(JX,Y) = \frac{i}{2}\operatorname{Tr}^{\mathbb{R}}(R(X,Y)\circ J) = \frac{i}{2}\left(2i\operatorname{Tr}^{\mathbb{C}}(R(X,Y))\right) = -\operatorname{Tr}^{\mathbb{C}}(R(X,Y)) = -r^{*}(X,Y) = r(X,Y).$$

In cui nella quarta uguaglianza è stato usato il fatto che che per ogni endomorfismo anti-Hermitiano si ha $\operatorname{Tr}^{\mathbb{R}}(A^{\mathbb{R}} \circ J) = 2i \operatorname{Tr}^{\mathbb{C}}(A)$.

¹Se C = A + iB è un endomorfismo anti Hermitiano di \mathbb{C}^m (in particolare $\mathrm{Tr}^{\mathbb{R}}(A) = 0$),

Osservazione 8.1.4. Dalla definizione di $c_1(M)$ e dalla Proposizione 7.2.2 ottengo che $c_1(M) = c_1(\Lambda^m TM) = c_1(K^*)$. Per il Teorema 7.1.5 allora in $H^2(M,\mathbb{R})$, $c_1(M) = c_1(\nabla)$ in cui ∇ è la connessione di Chern di K^* . Infine per la Proposizione 8.1.3 ottengo che

$$c_1(M) = \left[\frac{i}{2\pi}r^*\right] = \left[\frac{1}{2\pi}\rho\right].$$

allora, poiché gli endomorfismi $C^{\mathbb{R}}$ e J di \mathbb{R}^{2m} sono rappresentati dalle matrici

$$C^{\mathbb{R}} = \left(\begin{array}{cc} A & -B \\ B & A \end{array} \right) \quad \text{e} \quad J = \left(\begin{array}{cc} 0_m & -I_m \\ I_m & 0_m \end{array} \right),$$

si ottiene

$$2i\operatorname{Tr}^{\mathbb{C}}(C) = 2i(\operatorname{Tr}^{\mathbb{R}}(A) + i\operatorname{Tr}^{\mathbb{R}}(B)) = -2\operatorname{Tr}^{\mathbb{R}}(B) = \operatorname{Tr}^{\mathbb{R}}\left(\begin{array}{cc} -B & -A \\ A & -B \end{array}\right) = \operatorname{Tr}^{\mathbb{R}}(C^{\mathbb{R}} \circ J).$$

8.2 Il Teorema di Calabi-Yau

Teorema 8.2.1 (Teorema di Calabi-Yau). Sia M^m una varietà di Kähler compatta con forma di Kähler Ω e forma di Ricci ρ . Allora per ogni (1,1)-forma reale e chiusa $\rho_1 \in \Omega^{1,1}M$, nella stessa classe di coomologia di $2\pi c_1(M)$, esiste un'unica metrica di Kähler, con forma di Kähler Ω_1 nella stessa classe di coomologia di Ω , tale che la sua forma di Ricci sia ρ_1 . In particolare, se la prima classe di Chern di una varietà di Kähler è nulla, M è dotata di una metrica di Kähler Ricci-piatta.

Per dimostrare questo Teorema si cerca di ricondursi all' equazione di $Monge-Amp\`ere$

$$e^f(\Omega^m + i\partial\bar{\partial}u)^m = \Omega^m \tag{8.1}$$

e di esprimere l'insieme delle metriche di Kähler, le cui forme fondamentali sono nella stessa classe di coomologia di Ω , in funzione delle funzioni u dell'equazione (8.1).

Dal $i\partial\bar{\partial}$ -Lemma Globale² sappiamo che l'insieme

$$\mathcal{K} = \left\{ u \in \mathcal{C}^{\infty}(M) \mid \Omega + i\partial \bar{\partial}u > 0, \quad \int_{M} u\Omega^{m} = 0 \right\}$$

è in biezione con l'insieme delle metriche di Kähler le cui forme fondamentali sono nella stessa classe di coomologia di Ω . Con la prima condizione si intende che una (1,1)-forma φ è positiva se $\varphi(\cdot,J\cdot)$ è un tensore positivo, la seconda condizione permette di determinare univocamente u che, altrimenti, sarebbe definita a meno di una costante. Infatti:

• se g_1 è un'altra metrica di Kähler la cui forma fondamentale Ω_1 è nella stessa classe di coomologia di Ω , allora, per l' $i\partial\bar{\partial}$ -Lemma globale, $\Omega_1 = \Omega + i\partial\bar{\partial}u$, per una certa funzione u liscia reale, la quale è univocamente determinata dalla seconda condizione dell'insieme \mathcal{K} . Allora $g_1 \mapsto u \in \mathcal{K}$ è ben definita;

Lemma 8.2.2 ($i\partial\bar{\partial}$ -Lemma Globale). Sia φ una (1,1)-forma reale esatta su una varietà di Kähler compatta. Allora esiste un'applicazione reale e liscia u tale che $\varphi = i\partial\bar{\partial}u$.

• data $u \in \mathcal{K}$, definisco $\Omega_1 := \Omega - i\partial \bar{\partial} u$ e $g_1(\cdot, \cdot) := \Omega_1(J \cdot, \cdot)$. Allora g_1 è definita positiva e

$$g_1(J\cdot, J\cdot) = -\Omega_1(\cdot, J\cdot) = \Omega(J\cdot, \cdot) = g_1(\cdot, \cdot)$$

ovvero è una metrica Hermitiana. Inoltre

$$d\Omega_1 = d\Omega + id\partial\bar{\partial}u = 0$$

ovvero g_1 è una metrica di Kähler la cui forma di Kähler è nella stessa classe di coomologia di Ω ;

• le due associazioni $g_1 \mapsto u$ e $u \mapsto g_1$ appena descritte sono una l'inversa dell'altra.

Siano ora g e g_1 due metriche di Kähler con rispettive forme di Kähler Ω e Ω_1 nella stessa classe di coomologia. Definisco quindi le forme di volume su M

$$dv := \frac{1}{m!} \Omega^m \quad \text{e} \quad dv_1 := \frac{1}{m!} \Omega_1^m$$

e definisco la fuzione liscia $f: M \to \mathbb{R}$ ponendo

$$e^f dv = dv_1$$
.

Essendo $[\Omega] = [\Omega_1]$ in $H^2(M, \mathbb{C})$, allora $[\Omega^m] = [\Omega]^m = [\Omega_1]^m = [\Omega_1^m]$ in $H^{2m}(M, \mathbb{C})$. Quindi, per il *Teorema di Stokes*³

$$\int_{M} m! (e^{f} - 1) dv = \int_{M} (\Omega_{1}^{m} - \Omega^{m}) = \int_{M} d\eta = 0$$

ovvero

$$\int_{M} e^{f} dv = \int_{M} dv. \tag{8.2}$$

3

Teorema 8.2.3 (Teorema di Stokes). Sia M^n una varietà differenziabile con bordo, compatta e orientata. Sia ω una (n-1)-forma differenziale su M e sia $i: \partial M \to M$ l'inclusione canonica del bordo di M in M. Allora

$$\int_{M} d\omega = \int_{\partial M} i^* \omega.$$

Siano ora ρ e ρ_1 le forme di Ricci di g e g_1 rispettivamente, allora, per la Proposizione 8.1.3, $i\rho$ e $i\rho_1$ sono le curvature sul fibrato canonico K_M . Per quanto visto nella dimostrazione del Teorema 7.1.5, per ogni sezione olomorfa di ω di K_M , allora

$$i\rho = \bar{\partial}\partial \log g(\omega, \bar{\omega}) \quad \text{e} \quad i\rho_1 = \bar{\partial}\partial \log g_1(\omega, \bar{\omega})$$
 (8.3)

Inoltre, per la definizione dell'operatore * di Hodge per forme complesse,

$$g(\omega,\bar{\omega})dv = \omega \wedge *\bar{\omega} = g_1(\omega,\bar{\omega})dv_1 = e^f g_1(\omega,\bar{\omega})dv$$

quindi

$$e^f g_1(\omega, \bar{\omega}) = g(\omega, \bar{\omega}).$$
 (8.4)

Allora, sfruttando la (8.3), la (8.4) e il Lemma 3.1.2, ottengo

$$i\rho_1 - i\rho = \bar{\partial}\partial \left[\log(g_1(\omega,\bar{\omega})) - \log(e^f g_1(\omega,\bar{\omega}))\right] = \bar{\partial}\partial \log(e^{-f}) = \partial\bar{\partial}f.$$

Ottengo quindi che

$$\rho_1 = \rho - i\partial\bar{\partial}f$$
 in cui $f = \log\left(\frac{(\Omega + i\partial\bar{\partial}u)^m}{\Omega^m}\right).^4$ (8.5)

Sia ora ρ_1 una generica (1,1)-forma reale e chiusa nella stessa classe di coomologia di $2\pi c_1(M)$. Allora, per l' $i\partial\bar{\partial}$ -Lemma Globale, esiste una applicazione liscia reale f tale che $\rho_1 = \rho - i\partial\bar{\partial}f$. f è determinata univocamente imponendo la condizione (8.2). Pongo

$$\mathcal{K}' = \left\{ f \in \mathcal{C}^{\infty}(M) \mid \rho_1 = \rho - i\partial\bar{\partial}f, \int_M e^f dv = \int_M dv \right\}.$$

Allora il Teorema di Calabi-Yau è equivalente al seguente Teorema.

Teorema 8.2.4. L'applicazione $Cal: \mathcal{K} \to \mathcal{K}'$ tale che

$$u \mapsto \log \left(\frac{(\Omega + i\partial \bar{\partial} u)^m}{\Omega^m} \right)$$

è un diffeomorfismo.

 $^{^4}$ Con il quoziente di due 2m-forme si intende la funzione liscia di cui differiscono essendo sezioni non nulle di un fibrato vettoriale di rango 1.

Pongo, fissata $u \in \mathcal{K}$, $\Omega_1 := \Omega + i\partial \bar{\partial} u$, in cui Ω è la forma di Kähler della metrica di Kähler di partenza g.

Iniettività. Sia $u \in \mathcal{K}$ tale che Cal(u) = 0, allora $\Omega_1^m = \Omega^m$, quindi

$$0 = \Omega_1^m - \Omega^m = (\Omega_1 - \Omega) \wedge \sum_{k=0}^{m-1} \Omega_1^k \wedge \Omega^{m-k-1}.5$$

Poichè $2i\partial\bar{\partial}=dd^c$ e $d\Omega=d\Omega_1=0$, allora

$$0 = 2iu\partial\bar{\partial}u \wedge \sum_{k=0}^{m-1} \Omega_1^k \wedge \Omega^{m-k-1} = udd^c u \sum_{k=0}^{m-1} \Omega_1^k \wedge \Omega^{m-k-1} = udd^c u \sum_{k=0}^{m-1} \Omega_1^k \wedge \Omega^{m-k-1} = udd^c u \sum_{k=0}^{m-1} \Omega_1^k \wedge \Omega^{m-k-1} - udd^c u \sum_{k=0}^{m-1} \Omega_1^k \wedge \Omega^{m-k-1} = udd^c u \sum_{k=0}^{m-1$$

Per il Teorema di Stokes e per l'Osservazione 6.2.5 allora

$$0 = \sum_{k=0}^{m-1} \int_M du \wedge J du \wedge \Omega_1^k \wedge \Omega^{m-k-1}.$$
 (8.6)

 Ω_1 induce un'altra metrica di Kähler g_1 su M, inoltre TM ha una base ortonormale (rispetto a g) locale $\{e_1, Je_1, \ldots, e_m, Je_m\}$ rispetto alla quale (fatta l'identificazione tra TM e T^*M)

$$\Omega = \sum_{j=1}^{m} e_j \wedge Je_j \quad \text{e} \quad \Omega_1 = \sum_{j=1}^{m} a_j e_j \wedge Je_j$$

in cui a_j sono delle funzioni locali lisce strettamente positive. Allora per ogni k

$$\Omega_1^k \wedge \Omega^{m-k-1} = * \left(\sum_{j=1}^m b_j^k e_j \wedge J e_j \right)$$

$$a^{n} - b^{n} = (a - b) \circ \sum_{j=1}^{n-1} a^{n-j-1} \circ b^{j} \quad \forall a, b \in R.$$

Poichè le 2-forme commutano, la medesima dimostrazione continua a valere anche per le 2-forme.

⁵In generale, su un anello commutativo $(R, +, \circ)$, per $n \geq 2$, allora

con b_j^k funzioni locali lisce strettamente positive. Allora le funzioni integrande in (8.6) sono strettamente positive a meno che du=0. Quindi u è costante e poichè $u \in \mathcal{K}$, integrata su M si annulla, quindi necessariamente u=0. Quindi Cal è iniettiva.

Diffeomorfismo Locale. Al più scegliendo un'opportuna metrica di Kähler su M, senza perdita di generalità, possiamo scegliere u = 0. Per dimostrare che Cal è un diffeomorfismo locale, per il $Teorema\ della\ Funzione\ Inversa$, è sufficiente dimostrare che il suo differenziale in 0 è identicamente nullo. Sia quindi $v \in T_0\mathcal{K} \cong \mathcal{K}$, allora, poichè le 2-forme commutano,

$$\begin{split} Cal_*(v) &= \frac{d}{dt}\Big|_{t=0} Cal(tv) = \frac{d}{dt}\Big|_{t=0} \log\left(\frac{(\Omega + i\partial\bar{\partial}tv)^m}{\Omega^m}\right) = \\ &= \left[\left(\frac{\Omega^m}{(\Omega + i\partial\bar{\partial}tv)^m}\right) + \sum_{k=0}^{m-1} \frac{d}{dt}\left(\frac{\binom{m}{k}t^{m-k}\Omega^k \wedge (i\partial\bar{\partial}v)^{m-k}}{\Omega^m}\right)\right]\Big|_{t=0} = \\ &= m\frac{i\partial\bar{\partial}v \wedge \Omega^{m-1}}{\Omega^m} = \Lambda(i\partial\bar{\partial}v) = -\bar{\partial}^*\bar{\partial}v = -\Delta^{\bar{\partial}}v = -\frac{1}{2}\Delta v. \end{split}$$

Poichè il Laplaciano definisce una biezione dell'insieme delle applicazioni ad integrale nullo su M, ottengo che Cal_* è biettiva.

Bibliografia

- [1] Andrei Moroianu. Lectures on Kähler geometry. Cambridge University Press, 2013.
- [2] John M. Lee. Riemannian manifolds: An introduction to curvature. Springer, 1997.
- [3] Gregory L. Naber. Topology, geometry, and gauge fields interactions. Springer, 2011.
- [4] Shigeyuki Morita. Geometry of differential forms. American Mathematical Society, 2001.