

Problem,
Motivation &
Objective

Problem

- Traditional techniques for statistical tracking in soccer often employs the use of paper and pencil, especially on the non-professional level.
 - Limited
 - Lack precision and accuracy
 - Slow
 - Manual
- There is a wealth of information available in videos and images that should be extracted to provide...

Benefits of Computer Vision

Enhance Perception

Computer vision improves the ability to interpret and analyze visual information

Insight from Data

Extract useful information from visual data

1

2

Real-Time Analysis

3

4

Computer Vision systems can provide instant analysis for decision making

Immersive Experiences

Allows for overlays of statistics and visualizations during broadcasts

Objective & Proposed Approach

Utilize Computer Vision to track a soccer ball and compute its instantaneous speed

Related Work

Related Work

- Multiple studies for player/ball detection and tracking utilize deep learning techniques (Naik et al. 2022):
 - You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD), Variational Autoencoder (VAE)
 - Common tracking difficulties include
 - Complex occlusions
 - Similar appearance of objects
 - Unpredictable movements
 - Unstable camera motion
 - Motion blur
- Orwell et al. 2009 used the Kalman filter to obtain ball paths using features like ground plane velocity, longevity, normalized size, and color
 - Assigns a likelihood measure to estimate the relative likelihood that the obtain paths represent the motion of the ball

Methodology

Ground Truth

- Measured scene with tape measure
- Ensured fixed camera relative to scene
- Computed the average speed of the ball
 - Number of frames to travel from Point A to B
 - Convert to m/s

$$\Delta Time = rac{EndFrame \# - StartFrame \#}{Frames Per Second}$$
 $Speed = rac{\Delta Distance}{\Delta Time}$

Camera Calibration

- Created calibration pattern
- Found and defined object and image points
- Computed Camera Calibration
 - Direct Linear Transform (DLT) Algorithm

$$M_{int} = \begin{bmatrix} 3796.232 & 0.000 & 544.075 \\ 0.000 & 2877.279 & 959.079 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

$$f_{phone} = 24mm$$

Soccer Ball Detection & Tracking

- Preprocessing
 - Grayscale
 - Gaussian Blur w/ 9x9 Kernel
- Object Detection Initialization
 - Hough Transform (CHT) for detecting circles
- Object Tracking
 - Channel and Spatial Reliability of Discriminative Correlation Filter (CSRT)
 - Non-deep learning approach
 - Correlation filter based on the appearance of the target object in the initial frame
 - Correlation to estimate object's position in subsequent frames

Optical Flow Based Speed Computation

- Optical Flow
 - Apparent motion of pixels between consecutive frames
 - Solve for the Optical Flow Equation → (u,v) =
 Displacement of Pixels over Time
- Farneback Optical Flow Implementation
 - Estimate Dense Optical Flow
 - Convert from Pixels/Time to m/s using camera parameters

Results & Analysis

Kickflow Tracker

Kickflow Tracker

Evaluation

$$\Delta Time = rac{EndFrame \# - StartFrame \#}{Frames Per Second}$$

$$Speed = rac{\Delta Distance}{\Delta Time}$$

Ground Truth (distance traveled = 1.8288 meters)				
Trial Number	Number of Frames from Point A to B	Average Speed Calculation (m/s)		
1	24	4.57		
2	23	4.77		
3	20	5.48		
4	25	4.39		

Evaluation

Ground Truth vs. Estimated Speed				
Trial Number	Ground Truth Average Speed (m/s)	Optical Flow Derived Average Speed (m/s)	Error (m/s)	
1	4.57	3.86	0.71	
2	4.77	3.36	1.41	
3	5.48	4.02	1.46	
4	4.39	4.29	0.10	

RMSE Error = 1.08 m/s RMSE Std = 0.65 m/s

Discussion & Conclusion

Conclusion & Discussion

- Modern object detection and tracking algorithms rely on deep learning algorithms
 - However, this presents barriers to entry...
 - Cost, Technology, Technical, Interpretability
- KickFlow Tracker utilizes non-deep learning techniques to decrease the impact of these barriers so that organizations with less resources can leverage computer vision with their videos
 - Instantaneous Speed
 - Automated ball tracking
- KickFlow Tracker improvements
 - Improved Camera Calibration
 - More robust logic for object detection initialization
 - Additional objects and motions tracked
 - Velocity (speed & orientation)
 - Biomechanics of players kicking

References

[1] Naik BT, Hashmi MF, Bokde ND. A Comprehensive Review of Computer Vision in Sports: Open Issues, Future Trends and Research Directions. *Applied Sciences*. 2022; 12(9):4429. https://doi.org/10.3390/app12094429

[2] Ren J, Orwell J, Jones GA, Xu M. Tracking the soccer ball using multiple fixed cameras. *ScienceDirect*. 2009. https://www.sciencedirect.com/science/article/abs/pii/S107731420800043X?casa_token=jjFki9U-7jAAAAAA:gaupldu4Zry5lXTewevTU7mYEnr1WbXxX a53yMcwU1KGWq7UEspGx6w7Panj9wObvKsHTTqddo

[3] OpenCV Documentation. (2023)