Name: Kaushik Indukuri

NetID: kvi3

Section: ECE408 AL/AB

ECE 408/CS483 Milestone 3 Report

0. List Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 10k images from your basic forward convolution kernel in milestone 2. This will act as your baseline this milestone.

Batch Size	Op Time 1	Op Time 2	Total Execution Time	Accuracy
100	1.73674 ms	2.34653 ms	1.231 secs	0.86
1000	1.79239 ms	6.92718 ms	10.162 secs	0.886
10000	17.738 ms	69.3869 ms	1 min 43.661 secs	0.8714

1. Optimization 1: Using Streams to overlap computation with data transfer

a.	Which optimization did you choose to implement? Chose from the optimization below
	by clicking on the check box and explain why did you choose that optimization
	technique.

☐ Tiled shared memory convolution (2 points)
☐ Shared memory matrix multiplication and input matrix unrolling (3 points)
☐ Kernel fusion for unrolling and matrix-multiplication (2 points)
☐ Weight matrix in constant memory (1 point)
☐ Tuning with restrict and loop unrolling (3 points)
☐ Sweeping various parameters to find best values (1 point)
☐ Multiple kernel implementations for different layer sizes (1 point)
☐ Input channel reduction: tree (3 point)
☐ Input channel reduction: atomics (2 point)
☐ Fixed point (FP16) arithmetic. (4 points)

Using Streams to overlap computation with data transfer (4 points)
\square An advanced matrix multiplication algorithm (5 points)
☐ Using Tensor Cores to speed up matrix multiplication (5 points)
☐ Overlap-Add method for FFT-based convolution (8 points)
☐ Other optimizations: please explain

I choose this optimization because I thought it was really cool how you are able to divide the trivial tasks of copy memory and executing a kernel even further into streams of execution queues

b. How does the optimization work? Did you think the optimization would increase performance of the forward convolution? Why? Does the optimization synergize with any of your previous optimizations?

This optimization works by allowing the device overlap which simultaneously executes a kernel while performing a copy between device and host memory. These streams divide the data sets into batches and assign each batch to a stream. Within a stream, there are three major operations that are added to its queue of execution: Memcpy to device, execute kernel function, and Memcpy back to host. I believed this would increase performance significantly by allowing even further parallelism between redundant and independent tasks. This optimization synergizes with additional optimizations as most optimizations require two memcpy's and a kernel call.

 List the Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 10k images using this optimization (including any previous optimizations also used).

Batch Size	Op Time 1	Op Time 2	Total Execution Time	Accuracy
100	0.001047 ms	0.001274m s	1.224 secs	0.86
1000	0.000816 ms	0.000689m s	10.702 sec	0.886
10000	0.000741 ms	0.00086 ms	1min42 secs	0.8714

d. Was implementing this optimization successful in improving performance? Why or why not? Include profiling results from *nsys* and *Nsight-Compute* to justify your

answer, directly comparing to your baseline (or the previous optimization this one is built off of

The streams were successful in that they allowed for more parallelism within the GPU, making the usage of the device more efficient. This can be shown through the screenshots below in that they show that the device and streaming multiprocessor use was much more efficient.

Time(%)	Total Time	Instances	Average	Minimum	Maximum	Name
99.9	8937865	20	446893.3	184383	711131	conv_forward_kernel
0.0	2688		1344.0	1312	1376	prefn_marker_kernel
0.0	2528		1264.0	1248	1280	do_not_remove_this_kernel
Time(%)	Total Time	Calls	Average	Minimum	Maximum	Name
58.6	166552971		20819121.4	9262	165654369	cudaMalloc
41.0	116642963	42	2777213.4	11360	6167556	cudaMemcpyAsync
0.2	531569	24	22148.7	17549	33077	cudaLaunchKernel
0.1	185335		23166.9	379	94358	cudaFree
0.0	135517	20	6775.9	1419	78754	cudaStreamCreate
0.0	79871	20	3993.6	1776	23260	cudaStreamDestroy
0.0	65715		32857.5	25158	40557	cudaMemcpy
0.0	31066		3883.3	1084	8421	cudaDeviceSynchronize

e. What references did you use when implementing this technique?

I used lecture 22 from class as well as this NVIDIA blog post for an additional example with multiple streams:

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/.

f. Please Paste your kernel code for this optimization. Your code should include the non-trivial code that you have changed for this optimization.
For example, it can be the complete kernel code for Tiled shared memory convolution several lines of code for Weight matrix in constant memory, or the "for" loop for loop unrolling

```
const int Height out = Height - K + 1;
  const int Width_out = Width - K + 1;
  int H_grid = ceil(1.0 * Height_out / TILE_WIDTH);
  int W grid = ceil(1.0 * Width out / TILE WIDTH);
  int Y = H_grid * W_grid;
  dim3 blockDim(TILE WIDTH, TILE WIDTH, 1);
  dim3 gridDim(Map_out, Y, Batch/numstreams);
  cudaMalloc((void**)device_output_ptr, Batch * Map_out * Height_out * Width_out * sizeof(float));
  cudaMalloc((void**)device mask ptr, Channel * Map out * K * K * sizeof(float));
  cudaMalloc((void**)device_input_ptr, Batch * Channel * Height * Width * sizeof(float));
  cudaStream_t streams[numstreams];
 int i:
 for (i = 0; i < numstreams; i++) {
    cudaStreamCreate(&streams[i]);
  cudaMemcpyAsync(*device_mask_ptr, host_mask, Channel * Map_out * K * K * sizeof(float),
cudaMemcpyHostToDevice, streams[0]);
 int instreamdiv = Batch * Channel * Height * Width;
  instreamdiv /= numstreams;
 int outstreamdiv = Batch * Map_out * Height_out * Width_out;
  outstreamdiv /= numstreams;
 float * device input = *device input ptr;
 float * device_output = *device_output_ptr;
 float * device_mask = *device_mask_ptr;
 for (i = 0; i < numstreams; i++) {
```

```
cudaMemcpyAsync(device_input + instreamdiv * i, host_input + instreamdiv * i, instreamdiv *
sizeof(float), cudaMemcpyHostToDevice, streams[i]);
    conv_forward_kernel<<<gri>gridDim, blockDim, 0, streams[i]>>>(device_output + outstreamdiv * i, device_input + instreamdiv * i, device_mask, Batch, Map_out, Channel, Height, Width, K);
    cudaMemcpyAsync((float*)host_output + outstreamdiv * i, device_output + outstreamdiv * i, outstreamdiv * sizeof(float), cudaMemcpyDeviceToHost, streams[i]);
}
cudaDeviceSynchronize();

for (i = 0; i < numstreams; i++) {
    cudaStreamDestroy(streams[i]);
}

cudaFree(device_input_ptr);
cudaFree(device_mask_ptr);
cudaFree(device_output_ptr);</pre>
```

2. Optimization 2: Input channel reduction: tree

a. Which optimization did you choose to implement? Chose from the optimization below by clicking on the check box and explain why did you choose that optimization technique.

☐ Tiled shared memory convolution (2 points)
\square Shared memory matrix multiplication and input matrix unrolling (3 points)
☐ Kernel fusion for unrolling and matrix-multiplication (2 points)
☐ Weight matrix in constant memory (1 point)
☐ Tuning with restrict and loop unrolling (3 points)
☐ Sweeping various parameters to find best values (1 point)
☐ Multiple kernel implementations for different layer sizes (1 point)
■ Input channel reduction: tree (3 point)
☐ Input channel reduction: atomics (2 point)
☐ Fixed point (FP16) arithmetic. (4 points)
☐ Using Streams to overlap computation with data transfer (4 points)
☐ An advanced matrix multiplication algorithm (5 points)
☐ Using Tensor Cores to speed up matrix multiplication (5 points)
☐ Overlap-Add method for FFT-based convolution (8 points)
☐ Other optimizations: please explain

I chose this optimization because I was really comfortable with applying the reduction tree to other concepts as I felt I learned it well in lecture and the readings.

b. How does the optimization work? Did you think the optimization would increase performance of the forward convolution? Why? Does the optimization synergize with any of your previous optimizations?

This optimization works by using the reduction tree method we learned and applying it to the channel dimension by reducing the samples based on their channels as we are adding them eventually. I thought it would increase performance by reducing the amount of overhead as well as making it work efficient. This optimization synergizes with only the optimizations that preserve the convolution kernel code we used in milestone 2.

c. List the Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 10k images using this optimization (including any previous optimizations also used).

Batch Size	Op Time 1	Op Time 2	Total Execution Time	Accuracy
100	0.225ms	1.05ms	1.497sec	0.86
1000	2.06ms	10.93ms	9.636sec	0.886
10000	20.44ms	109.3ms	1min34sec	0.8714

d. Was implementing this optimization successful in improving performance? Why or why not? Include profiling results from *nsys* and *Nsight-Compute* to justify your answer, directly comparing to your baseline (or the previous optimization this one is built off of.

The tree reduction was not as successful as I hoped as the operation time increased from 1.73 seconds to 2.06. Additionally, the memory accesses were inefficient as the hit rates for the cashes decreased significantly. I had hoped that the reduction would allow for a much faster speed of data movement from the accumulated variable to the output, but the results show that the tradeoffs are not effective.

Time(%)	Total Time	Calls	Average	Minimum	Maximum	Name
54.7		8	21758161.2	74670	173044306	cudaMalloc
33.2	105498763	8	13187345.4	18058	57027982	cudaMemcpy
11.7	37372028	6	6228671.3	3231	35285237	cudaDeviceSynchronize
0.3	1022861	8	127857.6	64176	245535	cudaFree
0.0	133165	6	22194.2	16095	27141	cudaLaunchKernel

Generating	Generating CUDA Kernel Statistics								
	Generating CUDA Memory Operation Statistics CUDA Kernel Statistics (nanoseconds)								
Time(%)	Total Time	Instances	Average	Minimum	Maximum	Name			
100.0	37354744	2	18677372.0	2073011	35281733	conv_forward_kernel			
0.0	2784	2	1392.0	1280	1504	prefn_marker_kernel			
0.0	2496	2	1248.0	1216	1280	do_not_remove_this_kernel			

e. What references did you use when implementing this technique?

I used the lecture slides and the reading going over tree reduction.

f. Please Paste your kernel code for this optimization. Your code should include the non-trivial code that you have changed for this optimization.
For example, it can be the complete kernel code for Tiled shared memory convolution several lines of code for Weight matrix in constant memory, or the "for" loop for loop unrolling

```
const int Height_out = Height - K + 1;
  const int Width_out = Width - K + 1;
  int H grid = (Height out + TILE WIDTH - 1) / TILE WIDTH;
  int W_grid = (Width_out + TILE_WIDTH - 1) / TILE_WIDTH;
  //(void)Height_out; // silence declared but never referenced warning, remove this line when you
start working
  //(void)Width out; // silence declared but never referenced warning. remove this line when you
start working
  // We have some nice #defs for you below to simplify indexing. Feel free to use them, or create your
own.
  // An example use of these macros:
  // float a = in 4d(0,0,0,0)
  // \text{ out}_4d(0,0,0,0) = a
  extern __shared__ float tree[];
  #define out_4d(i3, i2, i1, i0) output[(i3) * (Map_out * Height_out * Width_out) + (i2) * (Height_out
* Width out) + (i1) * (Width out) + i0]
  #define in_4d(i3, i2, i1, i0) input[(i3) * (Channel * Height * Width) + (i2) * (Height * Width) + (i1) *
(Width) + i0
  #define mask 4d(i3, i2, i1, i0) mask[(i3) * (Channel * K * K) + (i2) * (K * K) + (i1) * (K) + i0]
  #define tree_3d(i2, i1, i0) tree[(i2) * (Channel * TILE_WIDTH) + (i1) * (Channel) + i0]
  // Insert your GPU convolution kernel code here
  int m = blockIdx.x;
  int h = (blockldx.z / W grid) * TILE WIDTH + threadIdx.y;
  int w = (blockIdx.z % W grid) * TILE WIDTH + threadIdx.x;
  float acc = 0.0:
  if (h < Height out && w < Width out) {
      for (int p = 0; p < K; p++) {
         for (int q = 0; q < K; q++) {
           acc += in_4d(blockldx.x, threadldx.z, h + p, w + q) * mask_4d(blockldx.y, threadldx.z, p, q);
       }
```

```
}
tree_3d(threadIdx.y, threadIdx.x, threadIdx.z) = acc;
for (unsigned int stride = 1; stride < Channel; stride <<= 1) {
    __syncthreads();
    if ((threadIdx.z + stride < Channel) && (threadIdx.z % (2 * stride) == 0)) {
        tree_3d(threadIdx.y, threadIdx.x, threadIdx.z) += tree_3d(threadIdx.y, threadIdx.x, threadIdx.z + stride);
    }
}
__syncthreads();
out_4d(blockIdx.x, blockIdx.y, h, w) = tree_3d(threadIdx.y, threadIdx.x, 0);
}
</pre>
```

3. Optimization 3: Fixed point (FP16) arithmetic

a. Which optimization did you choose to implement? Chose from the optimization below by clicking on the check box and explain why did you choose that optimization technique.

☐ Tiled shared memory convolution (2 points)
\square Shared memory matrix multiplication and input matrix unrolling (3 points)
☐ Kernel fusion for unrolling and matrix-multiplication (2 points)
☐ Weight matrix in constant memory (1 point)
☐ Tuning with restrict and loop unrolling (3 points)
\square Sweeping various parameters to find best values (1 point)
☐ Multiple kernel implementations for different layer sizes (1 point)
☐ Input channel reduction: tree (3 point)
☐ Input channel reduction: atomics (2 point)
■ Fixed point (FP16) arithmetic. (4 points)
☐ Using Streams to overlap computation with data transfer (4 points)
☐ An advanced matrix multiplication algorithm (5 points)
☐ Using Tensor Cores to speed up matrix multiplication (5 points)
☐ Overlap-Add method for FFT-based convolution (8 points)
\square Other optimizations: please explain

I chose this optimization as I come from a hardware background so it was really interesting to me how we are tampering with the amount of data stored in a float and data structure.

b. How does the optimization work? Did you think the optimization would increase performance of the forward convolution? Why? Does the optimization synergize with any of your previous optimizations?

The fp16 performance optimization works by reducing the time needed for each floating point operation. Typically, floats are represented by 32 bits but fp16 operations use the __half data type which are 16 bits. The floats fed in are converted to __half as they are passed in. Special operations are used to perform multiplication and addition on this data type. This makes computations faster along with making memory transfers more efficient. This optimization will increase the performance of forward convolution at the cost of a slight decrease in accuracy.

c. List the Op Times, whole program execution time, and accuracy for batch size of 100, 1k, and 10k images using this optimization (including any previous optimizations also used).

Batch Size	Op Time 1	Op Time 2	Total Execution Time	Accuracy
100	0.184ms	0.696ms	1.365sec	0.77
1000	1.704ms	6.722ms	10.767sec	0.829
10000	16.884ms	66.922ms	1min45sec	0.84

d. Was implementing this optimization successful in improving performance? Why or why not? Include profiling results from *nsys* and *Nsight-Compute* to justify your answer, directly comparing to your baseline (or the previous optimization this one is built off of

Yes, this performance optimization was successful. The operation time decreased from 1.77 seconds to 1.69 seconds after the optimization. Memory usage was also greatly decreased. This is likely a result of the 16 bit half data type which reduced memory transfers and space allocated.

Time(%)	Total Time	Calls	Average	Minimum	Maximum	Name
74.6	195425124	8	24428140.5	72807	194226307	cudaMalloc
21.7	56756869	8	7094608.6	20809	30225595	cudaMemcpy
3.2	8445037	6	1407506.2	2936	6725825	cudaDeviceSynchron
0.4	1127017	8	140877.1	61346	289483	cudaFree
0.1	188136	6	31356.0	24384	41877	cudaLaunchKernel
0.1	100130		31330.0	21301	11077	cadaladiiciikeriiee

99.9 8423380 2 4211690.0 1698775 6724605 conv_for	ward_kernel
0.0 2720 2 1360.0 1344 1376 prefn_ma	rker_kernel
0.0 2624 2 1312.0 1248 1376 do_not_re	emove_this_kernel

e. What references did you use when implementing this technique?

I used this link to learn more about the data types that NVIDIA commonly uses

https://docs.nvidia.com/cuda/cuda-math-api/group CUDA MATH HALF MISC.html

f. Please Paste your kernel code for this optimization. Your code should include the non-trivial code that you have changed for this optimization.
For example, it can be the complete kernel code for Tiled shared memory convolution several lines of code for Weight matrix in constant memory, or the "for" loop for loop unrolling

```
__half2 load1;
__half2 load2;
__half2 acc = __half2half2(0);
 half2 halfmul;
if (h < Height out && w < Width out) {
  for (int c = 0; c < Channel; c++) {
    for (int p = 0; p < K; p++) {
       for (int q = 0; q < K; q+=2) {
         load2 = \underline{\hspace{0.5cm}} halves2half2(mask_4d(m,c,p,q),mask_4d(m,c,p,q+1));
         load1 = __halves2half2(in_4d(blockldx.z,c,h+p,w+q),in_4d(blockldx.z,c,h+p,w+q+1));
         halfmul = __hmul2(load1,load2);
         acc = __hadd2(acc,halfmul);
       }
    }
  out_4d(blockldx.z, m, h, w) = __hadd(__high2half(acc),__low2half(acc));
}
```