Agriculture & Agri-Food Canada Phage Genomics Workshop Andrew M. Kropinski Department of Pathobiology University of Guelph, Canada Email: Phage.Canada@gmail.com

PART 3

Taxonomy

Outline

- ☐ History of phage taxonomy
- ☐ Who is responsible for the taxonomy of phages?
- ☐ How do I classify my phage?
- ☐ How do I get my classification officially recognized?

Nobody likes change but it is inevitable

- ☐ "There is nothing permanent except change" (Heraclitus of Ephesus, c. 535 c. 475 BCE)
- ☐ "Progress is impossible without change" (George Bernard Shaw, 1856 1950)
- ☐ "Intelligence is the ability to adapt to change" (Stephen Hawking, 1942 2018).

Taxonomy

- ☐ Taxonomy is a human invention
- ☐ It is not stable, with each generation comes a new viewpoint; plus, the plethora of new phages in GenBank give us a new perspectives on diversity & diversification
- ☐ Bacterial viral taxonomy is the purview of ICTV Bacterial Viruses Subcommittee
- ☐ Taxonomy is controversial

Franz Joseph Haydn (1732–1809) – The Creation/Die Schöpfung

- Adam Lau, bass, singing the part of Adam about the newly created animals: lion, tiger, stag, horse, cattle sheep, insects, and ...
- □ https://www.youtube.com/watch?v=fROA7ZQ8Htk

Sense and Nonsense in Bacterial]
Taxonomy (Samuel Tertius Cowan	
1971) □Taxonomy is written by taxonomists for taxonomists; in this form the subject is so dull	
that few, if any, non-taxonomists are tempted to	
read it, and presumably even fewer try their hand at it.	
☐It is the most subjective branch of any	
biological discipline full-time taxonomists like to think of ourselves	
as artists able to perceive form, shape, colour	
and relationships that are hidden from the gaze of the more mundane scientists.	
like artists, we are argumentative and	
aggressive, we feel self-important and are scathing of the views of others.	
stating of the views of others.	
	1
☐ "I see all these characteristics in myself,	
thereby confirming that I am a successful taxonomist, and since the subject is	
armchair biology I expect to continue at it	
to a ripe old age." (1905-1976)	
Take-home messages]
☐Taxonomies change — e.g. Pseudomonas	
acidovorans, became Comamonas acidovorans,	
and now <i>Delftia acidovorans</i>	
☐A taxon (a taxonomic group of any rank) is not an individual. <i>Homo sapiens</i> in a taxon, each one of	
you is an exemplar – an individual human being.	
The Treachery of Images aka	
This is not a Pipe - Belgian surrealist painter René	
Magritte (Created: 1928–	
Leci n'est pas une pipe.	

History of tailed phage taxonomy 1998 1 Order (Caudovirales), 3 Families, 15 Genera & 265 Species Classification largely based upon morphology, Life style (lytic, temperate) and host 2011 1 Order, 3 Families, 5 Subfamilies, 37 Genera & 135 Species Classification using comparative proteomics Classical Families were not monophyletic	
History of phage taxonomy 2 2017 □ First new Family introduced – Ackermannviridae □ Classification using comparative genomics 2019 □ ICTV introduced 15 ranks (realm, subrealm, kingdom, subkingdom, phylum, subphylum, class, subclass, order, suborder, family, subfamily, genus, subgenus, and species). Where realm (viruses) = domain (bacteria) 2022 □ Caudovirales and its three Families abolished	
History of phage taxonomy 3 2023 Latinate binomial taxonomy mandated Exemplar Salmonella phage P22 Pseudomonas phage Jeff Pbunavirus jeff 2025 1 Class (Caudoviricetes), 11 Orders, 105 Families, 132 Subfamilies, 1680 Genera & 5799 Species None of this would be possible without new bioinformatic/taxonomic tools and insights	

Accession number versus RefSeq number

- ☐ GenBank is part of the International Nucleotide Sequence Database Collaboration, which comprises the DNA DataBank of Japan (DDBJ), the European Nucleotide Archive (ENA), and GenBank at NCBI.
- exchange information
- ☐ RefSeq records are distinguished from INSDC records by: Accession format: The most distinguishing feature of a RefSeq record is the distinct accession number format that begins with two characters followed by an underscore (e.g., NP_). INSDC accession numbers never include an underscore
- ☐ The RefSeg database NCBI

Massaging fasta file □ Change fasta line from: >NC 054988.1 Leuconostoc phage Ln-7, complete genome GGTTAATAGTAGTCTTTTTGAATCTATGCCCAATTTTACGAAAGTCCGAATAAATGCTAATACGAATTAAATTTTAATC to: >NC 054988.1 Leuc_phg_Ln-7 GGTTAATAGTAGTGTTTTTTGAATCTATGCCCAATTTTACGAAAGTCCGAATAATACGTAATACGAATTAAATTTTAATT □ N.B. If you are satisfied with just the accession or RefSeq number don't do anything

Shared proteins - CoreGenes ☐ CoreGenes 5.0 (https://coregenes.ngrok.io/) CoreGenes 3.5 (http://binf.gmu.edu:8080/CoreGenes3.5/)			
	The number of homologs in each column is : 26 Total number of genes in genome 1: 40 % in common, with respect to genome 1: 65 Total number of genes in genome 2: 41 % in common, with respect to geneme 2: 63.41		
	Leuconostoc phage Lmd1	Leuconostoc phage LN34	
	PI:YP_006560458.1 PRODUCT:HNH endonuclease	NC_024388 PI:YP_009044872.1 PRODUCT:putative phage HNH endonuclease	
	PI:YP_006560460.1 PRODUCT:RusA-like Holliday junction resolvase	PI:YP_009044875.1 PRODUCT:RusA-like Holliday junction resolvase	
	PI:YP_006\$60461.1 PRODUCT:DNA helicase	PI:YP_009044876.1 PRODUCT:DNA helicase	
➤ High % of homologous proteins - Subfamily			

Phylogeny	
☐ "One Click" at https://ngphylogeny.fr/	
☐ Lemoine F et al. 2019. Nucleic Acids Res. 47(W1): W260-W265. doi: 10.1093/nar/gkz303. PMID: 31028399	
□ latter program interfaces with iTOL ITOL INTERACTIVE TREE OF LIFE Tree scale: 1 Tree scale: 1	
AVACKS061 I view pig vviczinii VP 0000484776 1 Leuc pig 1 AM VP 000168351 I Leuc pig 1 AM AV7 000168351 I Leuc pig 1 AM AV7 000168351 I Leuc pig 1 AM VP 000006851 I Leuc pig 1 AM VP 0000006851 I Leuc pig 1 AM VP 00000006851 I Leuc pig 1 AM VP 0000006851 I Leuc pig 1 AM	116

Phylogeny 2 ☐ in some cases a phylogenetic tree based upon a single protein doesn't support the proposed taxonomy; repeat with a polyprotein

Take home message 2	
□ Name your isolated after the primary isolation host i.e. <i>Escherichia</i> phage xxx □ Check Adriaenssens & Brister (2017). How to Name and Classify Your Phage: An Informal Guide (https://www.mdpi.com/1999-4915/9/4/70)	
Take home message 3	
☐ Consult the ICTV website (https://ictv.global/) for the latest taxonomy ☐ Consider sending an email to the Bacterial Viruses Subcommittee	
☐ Be willing to accept that you isolate may be currently a genomic orphan ☐ Consider submitting an International Community on Taxonomy of Viruses (ICTV) Taxonomy Proposal (TaxoProp)	
	_
ICTV Documentation	
☐ ICTV Taxonomy Proposal: two parts (Word & Excel) https://ictv.global/taxonomy/templ	
ates	

ICTV Documentation 2	
☐ Species demarcation criteria: Two phages are assigned to the same species if their genomes are more than 95% identical over their genome length for isolates. These values can be calculated by a number of tools, such as BLASTn [1,2] – usually calculated using intergenomic distance calculator VIRIDIC [3].	-
☐ Genus demarcation criteria: In search for criteria that create cohesive and distinct genera that are reproducible and monophyletic, the Bacterial Viruses Subcommittee has established 70% nucleotide identity of the genome length as the cut-off for genera. Genus-level groupings should always be monophyletic in the signature genes,	
as tested with a phylogenetic tree. [10]	
☐ Subfamily demarcation criteria: Subfamilies are to be created when two or more genera are related below the family level. In practical terms, this usually means that they share a low degree of sequence similarity (usually about 40-50%) and that the genera form a clade in a marker tree phylogeny. [10]	
☐ Family demarcation criteria: The family is represented by a cohesive and monophyletic group in the main predicted proteome-based clustering tools (VirClust, ViPTree, GRAVITy dendrogram, vConTACT2 network). Members of the family share a significant number of orthologous genes (the number will depend on the genome	
sizes and number of coding sequences of members of the family). [10]	
Comparative genomics and proteomics	
☐ Classical	
➤ progressiveMauve - Darling AE et al. 2010. PLoS One 5(6) : e11147. doi: 10.1371/journal.pone.	
0011147. PMID: 20593022 https://usegalaxy.eu/	
Easyfig - Sullivan MJ et al. 2011. Bioinformatics 27(7): 1009-10. doi: 10.1093/bioinformatics/	
btr039. PMID: 21278367 http://mjsull.github.io/Easyfig/files.html	
	
Comparative genomics and proteomics	
□ Modern	
➤ clinker at CAGECAT - CompArative GEne Cluster Analysis Toolbox	
➤ Gilchrist CLM & Chooi YH. 2021. Bioinformatics. 37(16): 2473-2475. doi: 10.1093/bioinformatics/	
btab007. PMID: 33459763	
https://cagecat.bioinformatics.nl/ input: gbk files	
Input Genome files*	-

Selected files: Pseudomonas phage R12.gbk, Pseudomonas phage SN.gbk

Alignment

