

MISURA DELLA COSTANTE ELASTICA DI UNA MOLLA E DELL'ACCELERAZIONE DI GRAVITÀ

G. Galbato Muscio

L. Gravina

L. Graziotto

M. Rescigno

Gruppo B2.3

Esperienza di laboratorio 6~aprile~2017

Consegna della relazione 11 aprile 2017

Sommario

L'accelerazione di gravità g influenza il moto oscillatorio di una massa appesa ad una molla. Studiando il periodo e l'allungamento di essa, ne calcoliamo la costante elastica k e stimiamo g.

Indice

0	Convenzioni e formule			
1	Scopo e descrizione dell'esperienza			
2	App 2.1 2.2	Strumenti	4	
3	Seq. 3.1 3.2 3.3	Metodo 1	4 4 4	
4	Con	Considerazioni finali		
5 E	Appendice: tabelle e grafici 5.1 Tabelle metodo 1			
	1 Allungamento della molla rispetto alla posizione di equilibro iniziale in seguito al posizionamento dei dischetti			
	3	5 misure del periodo di 50 oscillazioni della molla sottoposta a pesi differenti	7	
	$\frac{4}{5}$	Misure di K e g ricavate dalle 50 oscillazioni	7	
	Э	K e g derivanti da 50 misure di 5 oscillazioni	Č	

Elenco delle figure

0 Convenzioni e formule

In questa relazione verranno usate le seguenti convenzioni:

- 1. sarà usato il punto [.] come separatore decimale;
- 2. l'approssimazione decimale della cifra 5 sarà fatta per eccesso;
- 3. al fine di migliorare la qualità dell'elaborazione dei dati, ogni grafico/isto-gramma prodotto a mano su carta millimetrata sarà riportato insieme al suo equivalente prodotto attraverso un software di analisi dati¹;
- 4. al fine di snellire la relazione e migliorarne la leggibilità, riporteremo nel corpo del documento solamente le tabelle riepilogative e dedicheremo un'appendice finale alle tabelle contenenti tutte le singole misure e i singoli risultati.

Inoltre, si farà riferimento alle seguenti formule:

1. media

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i;$$
 (1)

2. varianza

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2;$$
 (2)

3. deviazione standard

$$\sigma = \sqrt{\sigma^2}. (3)$$

1 Scopo e descrizione dell'esperienza

Una molla di costante elastica k a cui è attaccata una massa m soggetta alla forza peso $m\vec{g}$, reagisce con una forza data dalla **Legge di Hooke** $F=-k(x-x_0)$, e si porta nella posizione di equilibrio $x_{\rm eq}=x_0+mg/k$; spostando la massa dalla posizione di equilibrio, si origina un moto armonico di periodo $T=2\pi\sqrt{m/k}$.

In questa esperienza calcoliamo in modo indiretto la costante elastica k della molla a partire dalle misure del periodo di oscillazione, e misurando la posizione di equilibrio in funzione della massa applicata, stimiamo la costante di accelerazione gravitazionale g.

Adottiamo due metodi diversi:

- 1. misuriamo ripetutamente periodo e allungamento e dai valori medi calcoliamo k e g;
- 2. misuriamo il periodo e l'allungamento in funzione della massa applicata e, graficamente, ricaviamo i coefficienti di proporzionalità tra determinati valori che ci consentono di estrarre k e g.

 $^{^{1}}$ In questo contesto i dati sono stati elaborati con il software di analisi R.

2 Apparato Sperimentale

2.1 Strumenti

- Molla appesa ad un supporto con carta millimetrata per misurarne l'allungamento [divisione 1 mm, incertezza 0,3 mm];
- Bilancia per la misura della massa dei campioni [risoluzione 0,1 g, incertezza 0,03 g, portata 2000 g];
- Cronometro a lettura digitale per le misure di periodo [risoluzione 0,01 s, incertezza 0,003 s];
- Squadra per ridurre l'errore di parallasse nella misura di allungamento.

2.2 Campioni

• 10 dischetti che si possono appendere alla molla.

3 Sequenza Operazioni Sperimentali

3.1 Verifica degli strumenti

Per quanto riguarda la molla, notiamo che applicando meno di tre dischetti questa non si deforma, dunque non possiamo compiere misure di allungamento o di periodo in tale circostanza (il problema sarà meglio trattato nel paragrafo 3.3). Inoltre scegliamo di adottare un'incertezza di 0,3 mm per l'allungamento in quanto non riusciamo a interpolare tra meno di mezza tacca: la nostra risoluzione è dunque 0,5 mm e l'incertezza è pari a 0,5 mm/ $\sqrt{3}=0,3$ mm. La bilancia può essere tarata prima di ogni misurazione e assumiamo come incertezza 0,3 volte la sua risoluzione. La misura del periodo non è compromessa dal tempo di reazione dello sperimentatore nell'azionare il cronometro in quanto stimiamo che l'intervallo tra l'inizio del fenomeno e la partenza del cronometro sia pari a quello tra la fine del fenomeno e lo stop del cronometro.

3.2 Metodo 1

Misuriamo la massa complessiva di 5 dischetti e quindi di tutti i 10 dischetti con la bilancia, e quindi l'allungamento della molla a cui essi sono applicati, ripetendo in entrambi i casi le misure 5 volte. Eseguiamo poi 50 misure ripetute di 5 periodi di oscillazione e successivamente 5 misure ripetute di 50 periodi di oscillazione, applicando sia 5 dischetti sia 10 dischetti.

I dati sperimentali sono riportati nelle tabelle ??,??,??,?? e ??, e negli istogrammi di figure ?? e ??.

3.3 Metodo 2

Misuriamo in modo integrale la massa dei dischetti e dunque l'allungamento della molla aggiungendoli progressivamente. Eseguiamo al contempo per ogni campione aggiunto 20 misure ripetute del tempo impiegato per compiere 10 oscillazioni. I dati sperimentali raccolti sono riportati nelle tabelle ?? e ??.

Tracciamo quindi il grafico (figura ??) di T^2 in funzione della massa m, e quello (figura ??) dell'allungamento in funzione della massa m. Estraiamo i coefficienti angolari delle rette che meglio approssimano i punti sperimentali e ricaviamo k e g.

4 Considerazioni finali

5 Appendice: tabelle e grafici

5.1 Tabelle metodo 1

Tabella 1: Allungamento della molla rispetto alla posizione di equilibro iniziale in seguito al posizionamento dei dischetti

-	Allungamento 5 dischetti [mm]	Allungamento 10 dischetti [mm]
	(± 0.5)	(± 0.5)
1	42.0	125.0
2	41.0	123.5
3	41.5	124.5
4	41.0	123.5
5	41.0	125.5

Tabella 2: 50 misure del periodo di 5 oscillazioni della molla sottoposta a pesi differenti

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 3.100 0.620 4.270 0.88 2 3.170 0.634 4.310 0.86 3 3.370 0.674 4.240 0.84 4 3.190 0.638 4.230 0.84 5 3.050 0.610 4.190 0.85 6 3.100 0.620 4.230 0.84 7 3.110 0.622 4.230 0.84 8 3.270 0.654 4.230 0.84 9 3.100 0.620 4.210 0.84 10 3.130 0.626 4.220 0.84 11 3.130 0.626 4.230 0.84 12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.230 0.84 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.260 0.85 6 3.170 0.634 4.220	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
6 3.100 0.620 4.230 0.84 7 3.110 0.622 4.230 0.84 8 3.270 0.654 4.230 0.84 9 3.100 0.620 4.210 0.84 10 3.130 0.626 4.220 0.84 11 3.130 0.626 4.140 0.85 12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.170 0.85 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.83	
7 3.110 0.622 4.230 0.84 8 3.270 0.654 4.230 0.84 9 3.100 0.620 4.210 0.84 10 3.130 0.626 4.220 0.84 11 3.130 0.626 4.140 0.85 12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.170 0.83 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.83	8
8 3.270 0.654 4.230 0.84 9 3.100 0.620 4.210 0.84 10 3.130 0.626 4.220 0.84 11 3.130 0.626 4.140 0.85 12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.170 0.85 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.85	6
9 3.100 0.620 4.210 0.84 10 3.130 0.626 4.220 0.84 11 3.130 0.626 4.140 0.85 12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.170 0.83 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.83	6
10 3.130 0.626 4.220 0.84 11 3.130 0.626 4.140 0.85 12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.170 0.85 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.85	6
11 3.130 0.626 4.140 0.82 12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.170 0.85 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.83	2
12 3.130 0.626 4.230 0.84 13 3.130 0.626 4.170 0.85 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.85 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.85	4
13 3.130 0.626 4.170 0.83 14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.83	8
14 3.150 0.630 4.260 0.85 15 3.150 0.630 4.190 0.83 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.83	6
15 3.150 0.630 4.190 0.85 6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.85	4
6 3.170 0.634 4.220 0.84 17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.85	2
17 3.250 0.650 4.220 0.84 18 3.110 0.622 4.170 0.85	8
18 3.110 0.622 4.170 0.85	4
	4
	4
19 3.070 0.614 4.220 0.84	4
20 3.100 0.620 4.230 0.84	.6
21 3.070 0.614 4.190 0.85	8
22 3.190 0.638 4.230 0.84	6
23 3.100 0.620 4.190 0.85	8
24 3.120 0.624 4.250 0.85	0
25 3.090 0.618 4.230 0.84	6
26 3.100 0.620 4.230 0.84	6
27 3.070 0.614 4.230 0.84	6

Continued on next page

Tabella 2 – Continued from previous page

First entry	Second entry	Third entry	Fourth entry	Fourth entry
28	3.070	0.614	4.260	0.852
29	3.100	0.620	4.290	0.858
30	3.130	0.626	4.250	0.850
31	3.020	0.604	4.190	0.838
32	3.070	0.614	4.250	0.850
33	3.080	0.616	4.230	0.846
34	3.070	0.614	4.190	0.838
35	3.080	0.616	4.240	0.848
36	3.070	0.614	4.220	0.844
37	3.090	0.618	4.230	0.846
38	3.120	0.624	4.230	0.846
39	3.110	0.622	4.270	0.854
40	3.160	0.632	4.190	0.838
41	3.030	0.606	4.250	0.850
42	3.100	0.620	4.180	0.836
43	3.100	0.620	4.170	0.834
44	3.020	0.604	4.200	0.840
45	3.030	0.606	4.200	0.840
46	3.090	0.618	4.250	0.850
47	3.030	0.606	4.230	0.846
48	3.030	0.606	4.270	0.854
49	3.090	0.618	4.190	0.838
50	3.090	0.618	4.250	0.850

Tabella 3: 5 misure del periodo di 50 oscillazioni della molla sottoposta a pesi differenti

	5 dischi	5 dischi	10 dischi	10 dischi
	50 oscillazioni	1 oscillazione	50 oscillazioni	1 oscillazione
	(± 0.003)	(± 0.003)	(± 0.003)	(± 0.003)
1	30.670	0.613	42.110	0.842
2	30.690	0.614	42.160	0.843
3	30.600	0.612	41.920	0.838
4	30.610	0.612	41.930	0.839
5	30.690	0.614	42.140	0.843

Tabella 4: K ${\bf e}$ g ricavate da 5 misure di 50 oscillazioni

	K 50 oscillazioni	g 50 oscillazioni
1	46.8	9.84
2	46.6	9.74
3	47.5	9.98
4	47.5	9.92
5	46.7	10.00

Tabella 5: K ${\bf e}$ g ricavate da 50 misure di 5 oscillazioni

-		
	K	g (+0.02)
1	$(\pm 0.?)$ 45.2	$(\pm 0.0?)$
	$45.2 \\ 45.7$	9.50
$\frac{2}{3}$	45.7 58.9	$9.55 \\ 12.37$
3 4		12.57 10.55
4 5	50.5	
	47.2	10.10
6	47.1	9.89
7	47.4	9.90
8	54.1	11.38
9	48.0	10.03
10	48.6	10.41
11	53.1	11.16
12	48.1	10.06
13	51.3	10.79
14	47.4	9.90
15	51.1	10.93
16	50.2	10.56
17	53.8	11.24
18	50.5	10.62
19	46.5	9.71
20	47.1	10.07
21	47.9	10.07
22	50.5	10.55
23	49.0	10.31
24	46.8	9.78
25	46.7	9.99
26	47.1	9.89
27	46.0	9.62
28	44.7	9.39
29	44.3	9.26
30	47.2	10.09
31	46.2	9.71
32	45.1	9.43
33	46.4	9.74
34	47.9	10.01
35	45.9	9.82
36	46.5	9.77
37	46.7	9.76
38	47.8	10.04
39	45.5	9.51
40	51.5	11.02
41	43.9	9.22
42	49.6	10.36
43	50.1	10.53
44	45.7	9.56
	Continue	d on nert nage

Continued on next page

 ${\it Tabella 5-Continued from previous page}$

20001100	continuou jioni proctous pug		
First entry	Second entry	Third entry	
45	46.1	9.86	
46	45.8	9.62	
47	44.7	9.35	
48	43.1	9.05	
49	48.7	10.17	
50	45.8	9.79	