Exam Formulas for Term 3 Material

Laplace Transform Pairs

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$\mathbf{F}(\mathbf{s}) = \mathcal{L}\{\mathbf{f}(\mathbf{t})\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$\mathbf{F}(\mathbf{s}) = \mathcal{L}\{\mathbf{f}(\mathbf{t})\}$
δ(t)	1	$\frac{1}{\beta - \alpha} (e^{-\alpha t} - e^{-\beta t}) u(t)$	$\frac{1}{(s+\alpha)(s+\beta)}$
u(t)	$\frac{1}{s}$	sin ωt u(t)	$\frac{\omega}{s^2 + \omega^2}$
tu(t)	$\frac{1}{s^2}$	cos ωt u(t)	$\frac{s}{s^2 + \omega^2}$
$\frac{t^{n-1}}{(n-1)!}u(t), n = 1,2,$	$\frac{1}{s^n}$	$\sin(\omega t + \theta)u(t)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\cos(\omega t + \theta)u(t)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$
$te^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^2}$	e ^{-αt} sin ωt u(t)	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t), n = 1,2,$	$\frac{1}{(s+\alpha)^n}$	e ^{-αt} cos ωt u(t)	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

Term 3: 1 of 61

Laplace Transform Operations

Operation	f(t)	F(s)	
Addition	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$	
Scalar Multiplication	kf(t)	kF(s)	
Time Differentiation	$\frac{\mathrm{df}}{\mathrm{dt}}$	$sF(s) - f(0^-)$	
	$\frac{d^2f}{dt^2}$	$s^2F(s) - sf(0^-) - f'(0^-)$	
	$\frac{d^3f}{dt^3}$	$s^{3}F(s) - s^{2}f(0^{-}) - sf'(0^{-})$ - $f''(0^{-})$	
Time Integration	$\int_{0^{-}}^{t} f(t) dt$	$\frac{1}{s}F(s)$	
	$\int_{-\infty}^{t} f(t) dt$	$\frac{1}{s}F(s) + \frac{1}{s} \int_{-\infty}^{0^{-}} f(t) dt$	
Convolution	$f_1(t) * f_2(t)$	$F_1(s)F_2(s)$	
Time Shift	$f(t-a)u(t-a), a \ge 0$	e ^{-as} F(s)	
Frequency Shift	f(t)e ^{-at}	F(s+a)	
Frequency Differentiation	-tf(t)	$\frac{dF(s)}{ds}$	
Frequency Integration	f(t) t	$\int_{s}^{\infty} F(s) ds$	
Scaling	$f(at), a \ge 0$	$\frac{1}{a}F\left(\frac{s}{a}\right)$	
Initial Value	f(0 ⁺)	$\lim_{s\to\infty} sF(s)$	
Final Value	f(∞)	$\lim_{s\to 0} sF(s)$ All poles of $sF(s)$ in LHP	
Time Periodicity	f(t) = f(f + nT), n = 1,2,	$\frac{1}{1 - e^{-Ts}} F_1(s)$ Where $F_1(s) = \int_{0^-}^T f(t)e^{-st} dt$	