Chapter 6

6.1
$$\int_{\alpha}^{\alpha+p(\beta-\alpha)} \frac{1}{\beta-a} dx = \frac{1}{\beta-\alpha} [\alpha+p(\beta-\alpha)-\alpha] = p$$

6.2
$$\mu = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \frac{1}{\beta - a} x \, dx = \frac{1}{\beta - \alpha} \left(\frac{\beta^2}{2} - \frac{\alpha^2}{2} \right) = \frac{1}{2(\beta - \alpha)} \cdot (\beta - \alpha)(\beta + \alpha) = \frac{\alpha + \beta}{2}$$

$$\mu_2' = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} x^2 dx = \frac{1}{3(\beta - \alpha)} (\beta^3 - \alpha^3) = \frac{1}{3} (\beta^2 + \alpha\beta + \alpha^2)$$

$$\sigma^{2} = \frac{1}{3}(\beta^{2} + \alpha\beta + \alpha^{2}) - \frac{(\alpha + \beta)^{2}}{4} = \frac{1}{12}[4\beta^{2} + 4\alpha\beta + 4\alpha^{2} - 3\alpha^{2} - 6\alpha\beta - 3\beta^{2})$$
$$= \frac{1}{12}(\beta^{2} - 2\alpha\beta + \alpha^{2}) = \frac{1}{12}(\beta - \alpha)^{2}$$

6.3
$$F(x) = \frac{1}{\beta - \alpha} \int_{\alpha}^{x} dx = \frac{x - \alpha}{\beta - \alpha}$$

$$f(x) = \begin{cases} 0 & x \le \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \alpha < x < \beta \\ 1 & \beta \le x \end{cases}$$

6.4
$$\mu_{r} = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \left[x - \frac{\alpha - \beta}{2} \right]^{r} dx = \frac{1}{(\beta - \alpha)2^{r}} \int_{\alpha}^{\beta} [2x - (\alpha + \beta)]^{r} dx$$
$$= \frac{1}{(\beta - \alpha)2^{r}} \left[\frac{[2x - (\alpha + \beta)]^{r+1}}{2(r+1)} \right] \left| \beta \right|_{\alpha}$$
$$= \frac{1}{(\beta - \alpha)2^{r}} \cdot \frac{(\beta - \alpha)^{r+1} - (-1)^{r+1} (\beta - \alpha)^{r+1}}{2(r+1)}$$

(a) = 0 when r is odd

(b)
$$= \frac{1}{(\beta - \alpha)2^{r+3}(r+1)} 2(\beta - \alpha)^{r+1} = \frac{1}{r+1} \left(\frac{\beta - \alpha}{2}\right)^r \text{ when } r \text{ is even}$$

6.5
$$\mu_1 = 0, \ \mu_2 = \frac{1}{3} \frac{(\beta - \alpha)^2}{4} = \frac{(\beta - \alpha)^2}{12}, \ \mu_3 = 0, \ \mu_4 = \frac{1}{5} \left(\frac{\beta - \alpha}{2}\right)^4 = \frac{1}{80} (\beta - \alpha)^4$$

$$\alpha_3 = 0 \text{ and } \alpha_4 = \frac{\frac{1}{80} (\beta - \alpha)^4}{\frac{(\beta - \alpha)^4}{144}} = \frac{9}{5}$$

6.6 Intergals do not exist.

6.7
$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$$

$$u = x^{\alpha - 1}$$

$$dv = e^{-x} dx$$

$$= -x^{\alpha - 1} e^{-x} \Big|_{0}^{\infty} + (\alpha - 1) \int_{0}^{\infty} x^{\alpha - 2} e^{-x} dx$$

$$= (\alpha - 1)\Gamma(\alpha - 1)$$

$$QED$$

$$u = x^{\alpha - 1}$$

$$dv = e^{-x} dx$$

$$du = (\alpha - 1)x^{\alpha - 2} dx$$

$$v = -e^{-x}$$

6.8
$$y = \frac{1}{2}z^{2} \qquad \Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha - 1} e^{-y} dy = \int_{0}^{\infty} \left(\frac{z^{2}}{2}\right)^{\alpha - 1} e^{-(1/2)z^{2}} z \ dz$$

$$dy = z \ dz$$

$$= 2^{1-\alpha} \int_{0}^{\infty} z^{2\alpha - 1} e^{-(1/2)z^{2}} \ dz$$

6.9
$$x = r\cos\theta$$
 $y = r\sin\theta$ $dx \, dy = r \, dr \, d\theta$

$$\left[\Gamma\left(\frac{1}{2}\right)\right]^{2} = 2 \int_{0}^{\pi/2} \int_{0}^{\infty} re^{-(1/2)r^{2}} \, dr \, d\theta = \pi \int_{0}^{\infty} re^{-(1/2)r^{2}} \, dr$$

$$= \pi \int_{0}^{\infty} -e^{u} \, du = -\pi [e^{u}] \Big|_{0}^{\infty} = \pi \qquad \text{QED}$$

$$du = -r \, dr$$

6.10 (a)
$$\alpha = 2$$
, $\beta = 3$, $x > 4$, $p = \int_{4}^{\infty} \frac{1}{9 \cdot 1} x \ e^{-x/3} \ dx = \frac{1}{9} \int_{4}^{\infty} x \ e^{-x/3} \ dx$
$$= \frac{1}{9} \left[\frac{e^{-x/3}}{1/9} \left(-\frac{1}{3} x - 1 \right) \right] = e^{-4/3} \left(\frac{7}{3} \right) = \frac{7}{3} e^{-4/3} = \frac{7}{3} (0.2645) = 0.6171$$

(b)
$$\alpha = 3$$
, $\beta = 4$, $p = \int_{4}^{\infty} \frac{1}{64 \cdot 2} x^2 e^{-x/4} dx = \frac{1}{128} \int_{4}^{\infty} x^2 e^{-x/4} dx = 0.7818$

6.11
$$\frac{\partial}{\partial x} = x^{\alpha - 1} \left(-\frac{1}{\beta} e^{-x/\beta} \right) + e^{-x/\beta} (\alpha - 1) x^{\alpha - 2}$$
$$= x^{\alpha - 2} e^{-x/\beta} \left(-\frac{x}{\beta} + \alpha - 1 \right) = 0 \qquad x = \beta(\alpha - 1)$$

 $0 < \alpha < 1$ function $\rightarrow \infty$ when $x \rightarrow 0$ $\alpha = 1$ function has absolute maximum at x = 0.

6.13
$$M = (1 - \beta t)^{-\alpha} = 1 - \alpha(-\beta t) + \alpha(\alpha + 1) \frac{(-\beta t)^2}{2} - \alpha(a + 1)(\alpha + 2) \frac{(-\beta t)^2}{3!}$$
$$= 1 + \alpha \beta t + \alpha(\alpha + 1) \frac{\beta^2 t^2}{2!} + \frac{\alpha(\alpha + 1)(\alpha + 2)\beta^2 t^2}{3!} + \alpha(\alpha + 1)(\alpha + 2)(a + 3) \frac{\beta^4 t^4}{4!} + \dots$$
$$\mu'_1 = \alpha \beta, \ \mu'_2 = \alpha(\alpha + 1)\beta^2, \ \mu'_3 = \alpha(\alpha + 1)(\alpha + 2)\beta^3$$

6.14
$$\mu_3 = (\alpha + 1)(\alpha + 2)\beta^3 - 3\alpha(\alpha + 1)\beta^2\alpha\beta + 2\alpha^3\beta^3$$

= $\alpha\beta^3[(\alpha + 1)(\alpha + 2) - 3\alpha(\alpha + 1) + 2\alpha^2] = \alpha\beta^3[2] = 2\alpha\beta^3$

$$\alpha_3 = \frac{2\alpha\beta^2}{(\alpha\beta^2)^{3/2}} = \frac{2}{\sqrt{\alpha}}$$

 $\mu'_4 = \alpha(\alpha+1)(\alpha+2)(\alpha+3)\beta^4$

$$\mu_{4} = \alpha(\alpha+1)(\alpha+2)(\alpha+3)\beta^{4} - 4\alpha(\alpha+1)(\alpha+2)\beta^{3} \cdot \alpha\beta + 6\alpha(\alpha+1)\beta^{2} \cdot \alpha^{2}\beta^{2} - 3\alpha^{4}\beta^{4}$$
$$= 2\beta^{4}[(\alpha+1)(\alpha+2)(\alpha+3) - 4\alpha(\alpha+1)(\alpha+2) + 6\alpha^{2}(\alpha+1) - 3\alpha^{3}] = \alpha\beta^{4}$$

$$\alpha^4 = \frac{\alpha\beta^4(3\alpha + 6)}{\alpha^2\beta^4} = 3 + \frac{6}{\alpha}$$

6.15
$$f(x) = \frac{1}{\theta} e^{-x/\theta} \qquad p = \int_{0}^{-\theta \ln(1-p)} \frac{1}{\theta} e^{-x/\theta} d\theta = [-e^{-x/\theta}] \begin{vmatrix} -\theta \ln(1-p) \\ 0 \end{vmatrix}$$
$$= 1 - e^{\ln(1-p)} = 1 - (1-p) = p$$

6.16
$$\frac{p(x \ge t + T)}{P(x \ge T)} = \frac{e^{-(t+T)/\theta}}{e^{-T/\theta}} = e^{-t/\theta} = p(x \ge t)$$

6.17
$$M_x = (1 - \theta t)^{-1}$$
 $M_{x-\theta} = e^{-\theta t} (1 - \theta t)^{-1} = \frac{e^{-\theta t}}{1 - \theta t}$

$$6.18 \quad \left(1 - \theta t + \frac{\theta^2 t^2}{2!} - \frac{\theta^3 t^3}{3!} + \frac{\theta^4 t^4}{4!} \dots\right) (1 + \theta t + \theta^2 t^2 + \theta^3 t^3 + \theta^4 t^4 \dots)$$

$$1 + \left(1 + \frac{1}{2} - 1\right) \theta^2 t^2 + \left(-\frac{1}{6} + \frac{1}{2} - 1 + 1\right) \theta^3 t^3 + \left(\frac{1}{24} - \frac{1}{6} + \frac{1}{2} - 1 + 1\right) \theta^4 t^4 \dots$$

$$1 + \frac{\theta^2 t^2}{2!} + 2 \cdot \frac{\theta^3 t^3}{3!} + \frac{9\theta^4 t^4}{4!} + \dots$$

$$\alpha_3 = \frac{2\theta^3}{\theta^3} = 2$$

$$\alpha_4 = \frac{9\theta^4}{\theta^4} = 9$$

6.19
$$\alpha = \frac{v}{2}$$
, $\beta = 2$ See 6.11
From 6.11 $x = \beta(\alpha - 1) = 2\left(\frac{v}{2} - 1\right) = v - 2$
 $0 < v < 2$ function $\rightarrow \infty$ when $x \rightarrow 0$
 $v = 2$ function has absolute maximum at $x = 0$

6.20
$$\mu = 2\alpha \int_{0}^{\infty} x^{2} e^{-\alpha x^{2}} dx$$
 $u = \alpha x^{2}$ $du = 2\alpha x dx$

$$= \frac{1}{\sqrt{\alpha}} \int_{0}^{\infty} u^{1/2} e^{-u} du = \frac{1}{\sqrt{a}} \Gamma\left(\frac{3}{2}\right) = \frac{1}{\sqrt{\alpha}} \cdot \frac{1}{2} \cdot \sqrt{\pi} = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

$$\mu'_{2} = 2\alpha \int_{0}^{\infty} x^{3} e^{-\alpha x^{2} dx} = \frac{1}{\alpha} \qquad \sigma^{2} = \frac{1}{\alpha} - \frac{1}{4} \cdot \frac{\pi}{\alpha} - \frac{1}{\alpha} \left(1 - \frac{\pi}{4}\right)$$

6.21
$$\mu'_r = \alpha \int_1^\infty x^{r-\alpha-1} dx$$
 exists only if $r - \alpha - 1 < 1$ $r < \alpha - 2$

6.22
$$\mu_1' = \alpha \int_1^\infty x^{-\alpha} dx = \alpha \frac{x^{1-\alpha}}{1-\alpha} \Big|_1^\infty = \frac{\alpha}{\alpha - 1}$$

6.23 (a)
$$k \int_{0}^{\infty} x^{\beta-1} e^{-\alpha x^{\beta}} dx = 1$$
 let $u = \alpha x^{\beta}$ $du = \alpha \beta x^{\beta-1} dx$

$$= k \int_{0}^{\infty} \frac{1}{\alpha \beta} e^{-u} du = \frac{k}{\alpha \beta} = 1 \qquad k = \alpha \beta$$

(b)
$$\mu = \alpha \beta \int_{0}^{\infty} x^{\beta} e^{-\alpha x^{\beta}} dx$$
$$= \alpha^{-1/\beta} \int u^{1/\beta} e^{-u} du = \alpha^{-1/\beta} \Gamma \left(1 + \frac{1}{\beta} \right)$$

6.24 (a)
$$f(x) = \frac{1}{\theta} e^{-x/\theta} \qquad F(t) = \int_{0}^{t/\theta} e^{-u} du = 1 - e^{-t/\theta} = 1 - e^{-t/\theta}$$
$$\frac{f(t)}{1 - F(t)} = \frac{\frac{1}{\theta} e^{-t/\theta}}{e^{-t/\theta}} = \frac{1}{\theta}$$

(b)
$$F(t) = \alpha \beta \int_{0}^{t} x^{\beta - 1} e^{-\alpha x^{\beta}} dx = 1 - e^{-\alpha t^{\beta}}$$
$$\frac{f(t)}{1 - F(t)} = \frac{\alpha \beta t^{\beta - 1} e^{-\alpha t^{\beta}}}{e^{-\alpha t^{\beta}}} = \alpha \beta t^{\beta - 1}$$

6.25 (a)
$$\frac{\Gamma(6)}{\Gamma(2)\Gamma(4)} \int_{0}^{1} x(1-x)^{3} dx = 20 \left[\frac{x^{2}}{2} - x^{3} + \frac{3x^{4}}{4} - \frac{x^{5}}{5} \right] \Big|_{0}^{1}$$
$$= 20 \left(\frac{1}{2} - 1 + \frac{3}{4} - \frac{1}{5} \right) = 20 \cdot \frac{1}{20} = 1$$

(b)
$$\frac{\Gamma(6)}{\Gamma(3)\Gamma(3)} \int_{0}^{1} x^{2} (1-x)^{2} dx = 30 \left[\frac{1}{3} - \frac{1}{2} + \frac{1}{5} \right] = 30 \cdot \frac{1}{30} = 1$$

6.26
$$f(x) = kx^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$\frac{df}{dx} = k \ x^{\alpha - 1} (\beta - 1)(1 - x)^{\beta - 2} (-1) + k(1 - x)^{\beta - 1} (\alpha - 1)x^{\alpha - 2}$$

$$= k \ x^{\alpha - 2} (1 - x)^{\beta - 2} [-x(\beta - 1) + (\alpha - 1)(1 - x)]$$

$$x(2 - \alpha - \beta) = 1 - \alpha \text{ and } x = \frac{\alpha - 1}{\alpha + \beta - 2}$$

6.28
$$\mu_2' = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 x^{\alpha+1} (1 - x)^{\beta-1} dx$$
$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(\alpha + 2)\Gamma(\beta)}{\Gamma(\alpha + \beta + 2)} = \frac{(\alpha + 1)\alpha}{(\alpha + \beta + 1)(\alpha + \beta)}$$

6.29
$$\mu = \frac{\alpha\beta}{\alpha + \beta} \qquad \sigma^2 = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

$$\alpha + \beta = \frac{\alpha}{\mu} \qquad \sigma^2 = \mu(1 - \mu) \frac{1}{\alpha + \beta + 1}$$

$$\alpha + \beta + 1 = \frac{\mu(1 - \mu)}{\sigma^2}, \quad \frac{\alpha}{\mu} = \frac{\mu(1 - \mu)}{\sigma^2} - 1, \quad \alpha = \mu \left[\frac{\mu(1 - \mu)}{\sigma^2} - 1 \right]$$

$$\beta = \frac{\alpha}{\mu} - \alpha = \alpha \left(\frac{1}{\mu} - 1 \right) = \frac{\alpha(1 - \mu)}{\mu}$$

$$= (1 - \mu) \left[\frac{\mu(1 - \mu)}{\sigma^2} - 1 \right]$$

6.30 (a)
$$\frac{1}{f(x)} \frac{df(x)}{dx} = \frac{d-x}{bx} = \frac{d}{bx} - \frac{1}{5}$$
$$\ln f(x) - \frac{d}{b} \ln x = -\frac{1}{b} x + c$$
$$\ln \frac{f(x)}{x^{b/d}} = -\frac{1}{b} x, f(x) = kx^{b/d} e^{-(1/b)x}$$

(b)
$$\frac{1}{f(x)} \frac{df(x)}{dx} = -\frac{1}{b} \ln f(x) = -\frac{1}{b} x + c$$
 $f(x) = ke^{-(1/b)x}$

(c)
$$\frac{1}{f(x)} \frac{df(x)}{dx} = -\frac{d-x}{cx(1-x)} = \frac{-d/c}{x(1-x)} + \frac{1/c}{(1-x)}$$
$$\frac{-d/c}{x(1-x)} = \frac{A}{x} + \frac{B}{1-x} = \frac{A(1-x+Bx)}{x(1-x)} \qquad A = -d/c = B$$
$$\frac{1}{f(x)} \frac{df(x)}{dx} = \frac{-d/c}{x} - \frac{d/c}{1-x} + \frac{1/c}{1-x} = \frac{-d/c}{x} - \frac{(d-1)/c}{1-x}$$
$$\ln f(x) = -\frac{d}{c} \ln x + \frac{(d-1)}{c} \ln(1-x)$$
$$f(x) = k \ x^{-d/c} (1-x)^{(d-1)/c}$$

6.31
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(1/2)[(x-\mu)/\sigma]^2}$$
 $\ln f(x) = -\ln \sqrt{2\pi\sigma} - \frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2$

(a)
$$\ln f(x) = k - \frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2$$

$$\frac{1}{f(x)} \frac{df(x)}{dx} = -\frac{1}{\sigma} \left(\frac{x - \mu}{\sigma} \right) \qquad -\frac{1}{\sigma} \left(\frac{x - \mu}{\sigma} \right) = 0 \qquad x = \mu$$

(b)
$$\frac{df(x)}{dx} = -\left(\frac{x-\mu}{\sigma^2}\right)f(x)$$

$$\frac{d^2f(x)}{dx} = -\frac{1}{\sigma^2}f(x) - \left(\frac{x-\mu}{\sigma^2}\right) \cdot \left[-\left(\frac{x-\mu}{\sigma^2}\right)f(x)\right]$$

$$= -\frac{f(x)}{\sigma^2} \left[1 - \left(\frac{x-\mu}{\sigma}\right)^2\right] = 0$$

$$\left(\frac{x-\mu}{\sigma}\right)^2 = 1 \qquad \frac{x-\mu}{\sigma} = \pm 1 \qquad x = \mu \pm \sigma$$

6.32
$$\frac{1}{f(x)} \frac{df(x)}{dx} = \frac{d-x}{a} \qquad \ln f(x) = -\frac{(d-x)^2}{2a} + c$$
$$f(x) = ke^{-1/2a}(x-d)^2 \qquad \text{QED}$$

6.33
$$M''' = [(\mu + \sigma^2 t)^2 + \sigma^2](\mu + \sigma^2 t)M + M[2(\mu + \sigma^2 t)\sigma^2]$$

$$= M(\mu + \sigma^2 t)[(\mu + \sigma^2 t)^2 + 3\sigma^2]$$

$$M'''(0) = \mu(\mu^2 + 3\sigma^2) = \mu^3 + 3\mu\sigma^2]$$

$$M'''' = M(\mu + \sigma^2 t)[2\sigma^2(\mu + \sigma^2 t)] + M[(\mu + \sigma^2 t)^2 + 3\sigma^2]\sigma^2$$

$$+ (\mu + \sigma^2 t)[(\mu + \sigma^2 t)^2 + 3\sigma^2](\mu + \sigma^2 t)M$$

$$M''''(0) = 3\sigma^4 + 6\sigma^2\mu^2 + \mu^4$$

$$\mu_3 = \mu^3 + 3\mu\sigma^2 - 3(\mu^2 + \sigma^2)\mu + 2\mu^3 = 0$$

$$\mu_4 = 3\sigma^4 + 6\sigma^2\mu^2 + \mu^4 - 4(\mu^3 + 3\mu\sigma^2)\mu + 6\mu^2(\mu^2 + \sigma^2) - 3\mu^4 = 3\sigma^4$$

6.35
$$\alpha_3 = 0 \text{ and } \alpha_4 = \frac{3\sigma^4}{\sigma^4} = 3$$

6.36
$$M_x(t) = e^{\mu t + (1/2)\sigma^2 t^2}$$

$$M_{(x-\mu)/\sigma} = e^{-(\mu/\sigma)t} \cdot e^{\mu(t/\sigma) + (1/2)\sigma^2(t/\sigma)^2} = e^{(1/2)t^2}$$

6.37
$$E(x) = \mu$$
, $E(x^2) = \sigma^2 + \mu^2$, $E(x^3) = \mu^3 + 3\mu\sigma^2$
 $cov(x, x^2) = (\mu^3 + 3\mu\sigma^2) - \mu(\sigma^2 + \mu^2) = 2\mu\sigma^2$
for standard normal distribution $\mu = 0 \rightarrow cov(x, x^2) = 0$

6.38
$$M = e^{(1/2)t^2} = 1 + \frac{\left(\frac{1}{2}t^2\right)}{1!} + \frac{\left(\frac{1}{2}t^2\right)^2}{2!} + \dots + \frac{\left(\frac{1}{2}t^2\right)^{r/2}}{(r/2)!}$$
$$\frac{t^r}{2^{r/2}(r/2)!} = \frac{r!}{2^{r/2}(r/2)!} \cdot \frac{t^r}{r!}$$

- (a) $\mu_r = 0$ since coefficient of t with r odd is zero.
- **(b)** $\mu_r = \frac{r!}{(r/2)!} \frac{1}{2^{r/2}}$ read off for *r* even.

6.39
$$M_{x-\mu} = e^{-\mu t} M_x(t)$$
 $K_x(t) = -\mu t + \ln M_x(t)$
 $M_x(t) = 1 + \mu_1' t + \mu_2' \frac{t^2}{2!} + \mu_3' \frac{t^3}{3!} + \mu_4' \frac{t^4}{4!}$
 $\ln M_x(t) = \ln \left[1 + \left(\mu_1' t + \mu_2' \frac{t^2}{2!} + \mu_3' \frac{t^3}{3!} + \mu_4' \frac{t^4}{4!} + \dots \right) \right]$
 $\ln(1+z) = z - \frac{1}{2} z^2 + \frac{1}{3} z^3 - \frac{1}{4} z^4 + \dots$
 $K_x(t) = 1 - \mu t + \left[\mu_1' t + \mu_2' \frac{t^2}{2!} + \mu_3' \frac{t^3}{3!} + \mu_4' \frac{t^4}{4!} + \dots \right]$
 $- \frac{1}{2} \left\{ \mu_1' t + \mu_2' \frac{t^2}{2!} + \mu_3' \frac{t^3}{3!} + \dots \right\}^2$
 $+ \frac{1}{3} \left\{ \mu_1' t + \mu_2' \frac{t^2}{2!} + \mu_3' \frac{t^3}{3!} + \dots \right\}^3$
 $- \frac{1}{4} \left\{ \mu_1' t + \mu_2' \frac{t^2}{2!} + \mu_3' \frac{t^3}{3!} + \dots \right\}^4$
 $= \frac{t^2}{2!} \left[\mu_2' - (\mu_1') \right]^2 + \frac{t^2}{3!} \left[\mu_2' \mu_1' + 2(\mu_1')^2 \right] + \frac{t^2}{4!} \left[\mu_4' - 3(\mu_2')^2 - 4\mu_1' \mu_3' + 12(\mu_1')^2 \mu_2' - 6(\mu_1')^4 \right] + \dots$
(a) $K_2 = \mu_2$, (b) $K_3 = \mu_3$, (c) $K_4 = \mu_4 - 3\mu_2^2$

6.40
$$M_{x-\mu} = e^{-\mu t} M_x(t) = e^{-\mu t + \mu t + (1/2)t^2 \sigma^2}$$

$$\ln M_{x-\mu}(t) = \frac{1}{2} t^2 \sigma^2$$

$$K_x(t) = \frac{1}{2} t^2 \sigma^2$$

$$K_1 = 0, K_2 = \sigma^2; K_r = 0 \text{ for } r > 2$$

$$\begin{aligned} \textbf{6.41} \quad & M_x(t) = e^{\lambda(e^t - 1)} \qquad \mu = \lambda, \ \sigma = \sqrt{\lambda} \\ & M_{(x - \mu)/\sigma}(t) = e^{-(\mu/\sigma)t} M_x \left(\frac{t}{\sigma}\right) = e^{-\sqrt{\lambda}t} e^{\lambda(e^{t/\sigma} - 1)} \\ & \ln M_{(x - \mu)/\sigma}(t) = -\sqrt{\lambda}t + \lambda(e^{t/\sigma} - 1) \\ & = -\sqrt{\lambda}t + \lambda(e^{t/\sqrt{\lambda}} - 1) \\ & = -\sqrt{\lambda}t + \lambda \left[\frac{t}{\sqrt{\lambda}} + \frac{t^2}{2\lambda} + \frac{t^3}{3\sqrt{\lambda}} + \dots\right] \\ & = -\sqrt{\lambda}t + \sqrt{\lambda}t + \frac{t^2}{2} + \frac{t^3}{3\sqrt{\lambda}} + \dots \\ & \lambda \to \infty \qquad = \frac{1}{2}t^2 \end{aligned}$$

6.42
$$M_{x}(t) = (1 - \beta t)^{-\alpha} \qquad \mu = \alpha \beta, \ \sigma = \beta \sqrt{\alpha}$$

$$M_{(x-\mu)/\sigma} = e^{-\sqrt{\alpha}t} \left(1 - \frac{t}{\sqrt{\alpha}} \right)^{-\alpha}$$

$$\ln M_{(x-\mu)/\alpha} = -\sqrt{\alpha}t - \alpha \ln \left(1 - \frac{t}{\sqrt{\alpha}} \right) \qquad \ln(1+z) = +z + \frac{z^{2}}{2} + \frac{z^{3}}{3} + \dots$$

$$= -\sqrt{\alpha}t + \alpha \left[\frac{t}{\sqrt{a}} - \frac{t^{2}}{2\alpha} + \frac{t^{3}}{3\alpha\sqrt{\alpha}} \dots \right] = +\frac{t^{2}}{2} \text{ when } \alpha \to \infty$$

- 6.43 (a) Constant terms of g(x) and h(y) are $\frac{1}{\sigma_1\sqrt{2\pi}}$ and $\frac{1}{\sigma_2\sqrt{2\pi}}$ Constant term of $f(x,y) = \frac{1}{2\pi\sigma_2\sigma_2\sqrt{1-p^2}}$ If independent then $\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-p^2}} = \frac{1}{\sigma_1\sqrt{2\pi}} \cdot \frac{1}{\sigma_2\sqrt{2\pi}}\sqrt{1-p^2} = 1$, p = 0
 - **(b)** Substitute p = 0 into f(x, y) and it becomes product of g(x) and h(y).
- **6.44** Substitute y = a + bx into f(x, y)
- **6.45** (a) $\mu_1 = -2$, $\mu_2 = 1$; Let k^2 be suitable constant. $\frac{k^2}{\sigma_1^1} = 1$, $\frac{k^2}{\sigma_2^2} = 4$, $\frac{2pk^2}{\sigma_1\sigma_2} = 2.8$, so that $\sigma_1 = k$, $\sigma_2 = \frac{k}{2}$ and $\frac{2pk^2}{k^2/2} = 2.8$, $4p = 2.8, \ p = 0.7$ $-\frac{1}{2(1-p^2)} = \frac{-1}{2(0.51)} = \frac{-1}{1.02}$ $-\frac{1}{102} \left[\left(\frac{x+2}{10} \right)^2 2.8 \left(\frac{x+2}{10} \right) \left(\frac{y-1}{10} \right) + \left(\frac{y-1}{5} \right)^2 \right]$ so that $\sigma_1 = 10$ and $\sigma_2 = 5$
- Equating coefficients of x^2 , xy, and y^2 with those of bivariate normal density $27 = (1 \rho^2)\sigma_1^2 \qquad \text{multiply first and third and divide by square of second}$ $-27 = \frac{(1 \rho^2)\sigma_1\sigma_2}{\rho}$ $27 = 4(1 \rho^2)\sigma_2^2 \qquad \frac{27 \cdot 27}{(-27)^2} = \frac{4(1 \rho^2)^2\sigma_1^2\sigma_2^2}{(1 \rho^2)^2\sigma_1^2\sigma_2^2} \cdot \rho^2$ $\rho^2 = \frac{1}{4} \qquad \rho = \pm \frac{1}{2}$

from second equation must be $\rho = -\frac{1}{2}$

$$\sigma_1^2 = \frac{27}{0.75} = 36, \ \sigma_1 = 6$$

$$\sigma_2^2 = \frac{27}{4(0.75)} = 9, \ \sigma_2 = 3$$

6.47
$$\mu_1 = 2, \ \mu_2 = 5, \ \sigma_1 = 3, \ \sigma_2 = 6, \ p = \frac{2}{3}$$

$$\mu_{Y|1} = 5 + \frac{2}{3} \cdot \frac{6}{3} (1 - 2) = 5 - \frac{4}{3} = \frac{11}{3}$$

$$\sigma_{Y|1}^2 = 36 \left(1 - \frac{4}{9} \right) = \frac{36 \cdot 5}{9} = 20 \qquad \sigma_{Y|1} = \sqrt{20} = 4.47$$

6.48
$$U = X + Y, \ V = X - Y$$

 $E(U) = \mu_1 + \mu_2, \ E(V) = \mu_1 = \mu_2$
 $\sigma_U^2 = \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2$
 $\sigma_V^2 = \sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2$
 $E(UV) = E[(X + Y)(X - Y)] = E(X^2 - Y^2) = \sigma_1^2 + \mu_1^2 - \sigma_2^2 - \mu_2^2$
 $\cot(UV) = \sigma_1^2 + \mu_1^2 - \sigma_2^2 - \mu_2^2 - (\mu_1 + \mu_2)(\mu_1 - \mu_2) = \sigma_1^2 - \sigma_2^2$
 $\rho = \frac{\sigma_1^2 - \sigma_2^2}{\sqrt{(\sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2)(\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2)}}$
 $\rho = \frac{\sigma_1^2 - \sigma_2^2}{\sqrt{(\sigma_1^2 - \sigma_2^2)^2 - 4\rho^2\sigma_1^2\sigma_2^2}}$

6.49 (a)
$$M(t_1, t_2) = e^{t_1\mu_1 + t_2\mu_2 + (1/2)[\sigma_1^2 t_1^2 + 2\rho\sigma_1\sigma_2 t_1 t_2 + \sigma_2^2 t_2^2]} = e^{Q}$$

$$\frac{\partial}{\partial t_1} = (\mu_1 + \sigma_1^2 t_1 + \rho\sigma_1\sigma_2 t_2)e^{Q} = \mu_1 \text{ at } t_1 = t_2 = 0$$
(b)
$$\frac{\partial^2}{\partial t_1^2} = (\mu_1 + \sigma_1^2 t_1 + \rho\sigma_1\sigma_2 t_2)^2 e^{Q} + \sigma_1^2 e^{Q} = (\mu_1^2 + \sigma_1^2) = \sigma_1^2 + \mu_1^2 \text{ at } t_1 = t_2 = 0$$
(c)
$$\frac{\partial^2}{\partial t_1 \partial t_2} = (\mu_1 + \sigma_1^2 t_1 + \rho\sigma_1\sigma_2 t_2)e^{Q}(\mu_2 + \sigma_2^2 t_2 + \rho\sigma_1\sigma_2 t_2) + \rho\sigma_1\sigma_2 \cdot e^{Q}$$

$$= \mu_1 \mu_2 + \rho\sigma_1\sigma_2 \text{ at } t_1 = t_2 = 0$$

6.50 (a)
$$\frac{0.003 - (0.002)}{0.03} = \frac{0.005}{0.030} = \frac{1}{6}$$
; (b) $\frac{2(0.1)}{0.03} = \frac{2}{3}$

6.51
$$x + (a - x) > \frac{a}{2}$$

$$x + \frac{a}{2} > a - x$$

$$(a - x) + \frac{a}{2} > x$$

$$x < \frac{3}{4}$$
Probability is $\frac{1}{2}$

$$\alpha = -0.015$$
 and $\beta = 0.015$, $\beta - \alpha = 0.03$

6.52
$$\alpha = 3, \ \beta = 2$$

$$\rho = \frac{1}{8 \cdot 2} \int_{12}^{\infty} x^2 e^{-x/2} \ dx = \frac{1}{16} \left[\frac{x^2 3^{-(1/2)x}}{-1/2} - \frac{2}{-1/2} \cdot \frac{e^{(-1/2)x}}{1/4} \left(-\frac{1}{2} x - 1 \right) \right]_{12}^{\infty}$$

$$= \frac{1}{16} \left[-2x^2 e^{-(1/2)x} + 16e^{-(1/2)x} \left(\frac{1}{2} x + 1 \right) \right]_{12}^{\infty}$$

$$= \frac{1}{16} \left[288e^{-6} + 16e^{-6} 0.7 \right] = 25e^{-6} = 25(0.002479) = 0.062$$

6.53
$$\mu = \alpha \beta = 80 \cdot 2\sqrt{n} = 160\sqrt{n}$$

$$E = 160\sqrt{n} - 8n \qquad \frac{dE}{dn} = \frac{160}{2\sqrt{n}} - 8 = 0 \qquad n = 100$$

6.54 (a)
$$\int_{0}^{24} \frac{1}{120} e^{-(1/120)x} dx = -e^{-x/120} \begin{vmatrix} 24 \\ 0 \end{vmatrix} = 1 - e^{-0.2} = 1 - 0.8187 = 0.1813$$

(b)
$$\int_{180}^{\infty} \frac{1}{120} e^{-1/120} dx = -e^{-x/120} \Big|_{180}^{\infty} = e^{-1.5} = 0.2231$$

6.55 (a)
$$\int_{20}^{\infty} \frac{1}{40} e^{-(1/40)x} dx = -e^{-x/40} \Big|_{20}^{\infty} = e^{-1/2} = 0.6065$$
(b)
$$\int_{0}^{30} \frac{1}{40} e^{-(1/40)x} dx = -e^{-x/40} \Big|_{0}^{30} = 1 - e^{-3/4} = 1 - 0.4724 = 0.5276$$

6.56
$$\lambda = 0.4 \text{ per hour } \int_{2}^{\infty} 0.4e^{-0.4t} dt = -e^{-0.4t} \Big|_{2}^{\infty} = e^{-0.8} = 0.4493$$

6.57
$$\lambda = 1.2 \text{ per hour } \int_{1}^{\infty} 1.2e^{-1.2t} dt = -e^{-1.2t} \Big|_{1}^{\infty} = e^{-1.2} = 0.1827$$

6.58
$$\alpha = 2, \ \beta = 9$$

$$90 \int_{0}^{0.1} x(1-x)^8 \ dx \qquad y = 1-x \qquad dy = -dx$$

$$= 90 \int_{0.9}^{1} y^8 (1-y) \ dy = 90 \left[\frac{1}{9} - \frac{1}{10} - \frac{(0.9)^9}{9} + \frac{(0.9)^{10}}{10} \right] = 0.2463$$

6.59
$$\lambda = 0.5 \int_{3}^{\infty} e^{-0.5t} dt = -e^{-0.5t} \left| \frac{B}{3} \right| = e^{-1.5} = 0.2231$$

6.60
$$\alpha = 1, \beta = 4$$

(a)
$$\mu = \frac{1}{1+4} = \frac{1}{5}$$

(b)
$$\frac{\Gamma(5)}{\Gamma(1)\Gamma(4)} \int_{0.25}^{1} (1-x)^3 dx = 4 \int_{0}^{0.75} y^2 dy \qquad y = 1-x \\ dy = -dx$$
$$= 4 \cdot \frac{y^4}{4} \Big|_{0}^{0.75} = (0.75)^4 = \left(\frac{3}{4}\right)^4 = \frac{81}{256} = 0.3164$$

6.61
$$\alpha = 0.025, \beta = 0.5$$

(a)
$$\mu = (0.025)^{-2} \Gamma(3) = \frac{2}{(0.025)^2} = 3200 \text{ hours}$$

(b)
$$\alpha \beta \int_{4000}^{\infty} x^{\beta - 1} e^{-\alpha x^{\beta}} dx$$
 $y = \alpha x^{\beta}$ $y = 0.025 \cdot \sqrt{4000} = 1.58$ $dy = \alpha \beta x^{\beta - 1} dx$ $y = 0.025 \cdot \sqrt{4000} = 1.58$

6.62 (a)
$$0.5 + 0.4082 = 0.9082$$

(b)
$$0.5 + 0.2852 = 0.7852$$

(c)
$$0.3888 - 0.2088 = 0.1800$$

(d)
$$0.4713 + 0.1700 = 0.6413$$

6.63 (a)
$$0.5 - 0.3729 = 0.1271$$

(b)
$$0.5 + 0.1406 = 0.6406$$

(c)
$$0.1772 - 0.359 = 0.1413$$

(d)
$$0.2190 + 0.3686 = 0.5876$$

6.64 (a)
$$z_1 = 1.48$$

(b)
$$z_2 = -0.74$$

(c)
$$z_3 = 0.55$$

(d)
$$z_4 = 2.17 \quad 0.4850$$

6.65 (a)
$$z = 1.92$$

(b)
$$z = 2.22$$

(c)
$$z = 1.12$$
 0.3686

(d)
$$z = \pm 1.44$$
 0.4251

6.66 (a)
$$2(0.3413) = 0.6826$$

(b)
$$2(0.4772) = 0.9544$$

(c)
$$2(0.4987) = 0.9974$$

(d)
$$2(0.49997) = 0.99994$$

6.67 (a)
$$z_{0.05} = 1.645$$
 0.4500

(b)
$$z_{0.025} = 1.96$$
 0.475

(c)
$$z_{0.01} = 2.33$$
 0.49

(d)
$$z_{0.005} = 2.575$$
 0.495

6.68 (a) Using MINITAB and entering = -2.159 and 0.5670 into C1, then giving the commands

MTB> CDF C1;

SUBC> Normal 1.786 1.0416

we get K P(X LESS THAN OR = K)-2.1590 0.3601

0.5670 0.9881

Thus the required probability is 0.9881 - 0.3601 = 0.6280

(b)
$$z_1 = \frac{-2.159 + 1.786}{1.0416} = -0.958$$
 $z_2 = \frac{0.5670 + 1.786}{1.0416} = 2.25$

The corresponding cumulative probabilities are obtained from Table II (with interpolation) to be 0.3602 and 0.9881. Thus the required probability is 0.9881 - 0.3602 = 0.6279

6.69 (a) Using MINITAB and entering 8.626 into C1,

MTB> CDF C1;

SUBC> Normal 5.853 1.361

K P(X LESS THAN OR = K)

8.626 .9792

Thus, the required probability is 1 - 0.9792 = 0.0208.

(b)
$$z = \frac{8.625 - 5.853}{1.361} = 2.0367; \therefore p = 0.5 - 0.47915 = 0.02085$$

6.70 (a)
$$z = \frac{44.5 - 37.6}{4.6} = 1.5$$
 $0.5 - 0.4332 = 0.0668$

(b)
$$z = \frac{35 - 37.6}{4.6} = -.565$$
 $0.5 - 0.214 = 0.2860$

(c)
$$z_1 = \frac{30 - 37.6}{4.6} = -1.65$$
 $0.4505 + 0.1985 = 0.6490$ $z_2 = \frac{40 - 37.6}{4.6} = 0.52$

6.71 (a)
$$z = \frac{16 - 15.40}{0.48} = 1.25$$
 $0.5 - 0.3944 = 0.1056$

$$0.5 - 0.3944 = 0.1056$$

(b)
$$z = \frac{14.2 - 15.4}{0.48} = -2.5$$

$$0.5 - 0.4938 = 0.0062$$

(c)
$$z_1 = \frac{15 - 15.4}{0.48} = -0.83$$

 $z_2 = 0.83$

$$2(0.2967) = 0.5934$$

6.72

$$\frac{82.5 - \mu}{10} = 0.92$$
$$82.5 - \mu = 9.2$$

$$\mu - 73.3$$

$$z = \frac{58.3 - 73.3}{10} = -1.5$$

$$0.5 + 0.4332 = 0.9332$$

6.73

$$r = -1.88$$

$$z = -1.88 \qquad \frac{6 - \mu}{0.05} = -1.88$$

$$6 - \mu = 0.094$$

$$\mu = 6.094$$
 ounces

- 6.74 (a) $n\theta = 3.2$, $n(1-\theta) = 15.68$, No
 - **(b)** $n\theta = 6.5$, $n(1-\theta) = 58.5$, Yes
 - $n\theta = 117.6$, $n(1-\theta) = 2.4$, No (c)
- $n\theta = 7.5$, $n(1-\theta) = 142.5$, Yes 6.75 (a)

(b)
$$\mu = 7.5$$
, $\sigma^2 = 150(0.05)(0.95) = 7.125$, $\sigma = 2.6693$

$$z = \frac{0.5 - 7.5}{0.5 - 7.5} = -2.6224$$

$$z_1 = \frac{0.5 - 7.5}{2.6693} = -2.6224,$$
 $z_2 = \frac{1.5 - 7.5}{2.6693} = -2.2478$

Probability =
$$0.4956 - 0.4877 = 0.0079$$

(c)
$$\frac{0.0079 - 0.0036}{0.0036} \cdot 100 = 119\%$$

6.76
$$n = 14, x = 7, \theta = \frac{1}{2}, z_1 = \frac{6.5 - 7}{1.871} = -0.27, z_2 = \frac{7.5 - 7}{1.871} = 0.27$$

$$\rho = 2(0.1064) = 0.2128$$
 Table yields 0.2095

6.77
$$\lambda = 7.5, \ p(1; \ 7.5) = \frac{7.5^1 e^{-7.5}}{1!} = 7.5(0.00055) = 0.0041$$

6.78
$$n = 120, \ \theta = -0.23$$

 $\mu = 27.6, \ \sigma = \sqrt{21.25} = 4.61$
 $z = \frac{32.5 - 27.6}{4.61} = 1.06$
 $0.5 - 0.3554 = 0.1446$

6.79
$$n = 225$$
, $\theta = 0.2$, $\mu = 45$, $\sigma = 6$

$$z = \frac{40.5 - 45}{6} = -0.75$$

$$0.5 - 0.2734 = 0.2266$$

6.80 (a)
$$\mu = 50$$
, $\sigma = 5$, $z = \frac{51.5 - 50}{5} = 0.3$
49 to 51 $2(0.1179) = 0.2358 = 0.24$

(b)
$$\mu = 500$$
, $\sigma = 15.81$, $z = \frac{510.5 - 500}{15.81} = 0.664$
490 to 510 $2(0.2454) = 0.49$

(c)
$$\mu = 5000$$
, $\sigma = 50$, $z = \frac{5100.5 - 5000}{50} = 2.01$
4900 to 5100 $2(0.4778) = 0.96$