	Discrete	Continuous
Support	Countable set of values	Uncountable set of values
Probabilities	pmf: P(X = x) = p(x)	$P(X = x) = 0 \neq f(x)$ for all x
		$P(a \le X \le b) = \int_a^b f(x)dx = F(b) - F(a)$
Joint	$p_{XY}(x,y) = \mathbb{P}(X=x,Y=y)$	$\mathbb{P}(X \in [a, b], Y \in [c, d]) = \int_a^b \int_c^d f_{XY}(x, y) dx dy$
Marginal	$p_X(x) = \sum_y p_{XY}(x, y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$
Conditioning	$p_{X Y}(x y) = p_{XY}(x,y)/p_Y(y)$	$f_{X Y}(x y) = f_{XY}(x,y)/f_Y(y)$
Independence	$p_{XY}(x,y) = p_X(x)p_Y(y)$	$f_{XY}(x,y) = f_X(x)f_Y(y)$
Expected Value	$\mu_X = \mathbb{E}[X] = \sum_x xp(x)$	$\mu_X = \mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \ dx$
	$\mathbb{E}[g(X)] = \sum_{x} g(x)p(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \ dx$
	$\mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) \ dx \ dy$

Table 1: Differences between Discrete and Continous Random Variables

Probability Mass Function $p(x)$	Probability Density Function $f(x)$
Discrete Random Variables	Continuous Random Variables
p(x) = P(X = x)	$f(x) \neq P(X = x) = 0$
$p(x) \ge 0$	$f(x) \neq P(X = x) = 0$ $f(x) \ge 0$
$p(x) \le 1$	f(x) can be greater than one!
$\sum_{x} p(x) = 1$	$f(x) can be greater than one!$ $\int_{-\infty}^{\infty} f(x) dx = 1$ $F(x) = \int_{-\infty}^{x} f(t) dt$
$F(x_0) = \sum_{x \le x_0} p(x)$	$F(x) = \int_{-\infty}^{x} f(t) dt$

Table 2: Probability mass function (pmf) versus probability density function.

Definition of R.V.	$X \colon S \to \mathbb{R}$ (RV is a fixed function from sample space to reals)
Support	Set of all values the RV can take
CDF	$F(x_0) = P(X \le x_0)$
Definition of Variance	$\sigma_X^2 = \operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$
Shortcut for Variance	$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$
Definition of Std. Dev.	$\sigma_X = \sqrt{\sigma_X^2}$
Covariance	$\sigma_{XY} = \operatorname{Cov}(X, Y) = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)\left(Y - \mathbb{E}[Y]\right)\right]$
Cov. and Independence	X, Y indep. $\Rightarrow \operatorname{Cov}(X, Y) = 0$ but $\operatorname{Cov}(X, Y) = 0 \Rightarrow X, Y$ indep.
Functions and Independence	X, Y indep. $\Rightarrow g(X), h(Y)$ indep. where g, h are any functions
Shortcut for Covariance	$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
Definition of Correlation	$\rho_{XY} = Corr(X, Y) = \sigma_{XY}/(\sigma_X \sigma_Y)$
Expectations of Functions	$\mathbb{E}[g(X)] \neq g\left(\mathbb{E}[X]\right)$
Linear Functions of RVs	$\mathbb{E}[a+bX]=a+b\mathbb{E}[X]$ where a, b are constants and X is a RV
	$Var(a + bX) = b^2 Var(X)$ where a, b are constants and X is a RV
	$\mathbb{E}[X_1 + \ldots + X_k] = \mathbb{E}[X_1] + \ldots \mathbb{E}[X_k]$ where X_1, \ldots, X_k are any RVs
	$\operatorname{Var}(X_1 + \ldots + X_k) = \operatorname{Var}(X_1) + \ldots \operatorname{Var}(X_k)$ if X_1, \ldots, X_k are independent RVs
	$\operatorname{Var}(aX+bY+c)=a^2\operatorname{Var}(X)+b^2\operatorname{Var}(Y)+2ab\operatorname{Cov}(X,Y)$ for any RVs X,Y and constants a,b,c
	Cov(a + bX, c + dY) = bdCov(X, Y) for any constants a, b, c, d and RVs X, Y
	Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z) for any RVs X, Y, Z

Table 3: Essential facts that hold for all random variables, continuous or discrete

	Sample Statistic	Population Parameter	Population Parameter
Setup	population	Population viewed as list of objects	Population viewed as a RV
Mean	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\mu_X = \frac{1}{N} \sum_{i=1}^{N} x_i$	Discrete $\mu_X = \sum_x x p(x)$
		1.0	Continuous $\mu_X = \int_{-\infty}^{\infty} x f(x) dx$
Variance	$s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$	$\sigma_X^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu_X)^2$	$\sigma_X^2 = E\left[(X - E[X])^2 \right]$
Std. Dev.	$s_X = \sqrt{s_X^2}$	$\sigma_X = \sqrt{\sigma_x^2}$	$\sigma_X = \sqrt{\sigma_x^2}$
Covariance	$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$	$(\bar{x})(y_i - \bar{y}) \sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)$	$\sigma_{XY} = E\left[\left(X - \mu_X \right) \left(Y - \mu_Y \right) \right]$
Correlation	Correlation $r_{XY} = s_{XY}/(s_X s_Y)$	$\rho_{XY} = \sigma_{XY} / (\sigma_X \sigma_Y)$	$\rho_{XY} = \sigma_{XY} / (\sigma_X \sigma_Y)$