

FIG. 1
(Prior Art)

FIG. 2a
(Prior Art)

Sheet 2 of 13

Title: SYSTEM AND METHOD FOR EFFICIENT
SIMULATION OF REFLECTIONOMETRY et al.
Inventor: Jumwei BAO
Application No.: To Be Assigned

FIG. 2b
(Prior Art)

FIG. 3b
(Prior Art)

FIG. 3a
(Prior Art)

Sheet 4 of 13

Title: SYSTEM AND METHOD FOR EFFICIENT
SIMULATION OF REFLECTOMETRY et al.
Inventor: Jurnwei BAO
Application No.: To Be Assigned

Title: SYSTEM AND METHOD FOR EFFICIENT
SIMULATION OF REFLECTOMETRY et al.
Inventor: Jumpei BAO
Application No.: To Be Assigned

Fig. 4

FIG. 5b

FIG. 5a

FIG. 6

Title: SYSTEM AND METHOD FOR EFFICIENT
SIMULATION OF REFLECTOMETRY et al.
Inventor: Junwei BAO
Application No.: To Be Assigned

Fig. 7

Fig. 8

900

Sheet 10 of 13

905

Obtain the numerical aperture and the light intensity distribution across the aperture from the manufacturer.

Determine two optional points x_1 and x_2 and within the aperture from which to approximate the integrated reflectance response of the aperture.

910

Approximate the reflectance for any line within the aperture that is parallel to the two-dimensional grating structure.

915

Approximate the reflectance function $R(x)$ for any wavelength from the two-dimensional grating structure with a set of orthonormal functions.

920

Integrate the reflectance response across the aperture.

925

Solve for x_1 and x_2 and their respective weights w_1 and w_2 .

930

Rigorously simulate the reflectance response of the light incident at points x_1 and x_2 using a computer.

935

Approximate the overall response from the aperture using the weighted average (weights w_1 and w_2 , respectively) of responses at points x_1 and x_2 .

940

Fig. 9

Fig. 10

FIG. 11

1200

Obtain the numerical aperture and the light intensity distribution across the aperture from the manufacturer.

1205

Determine two optimal points x_1 and x_2 and within the aperture from which to approximate the integrated reflectance response of the aperture.

1240

Approximate the reflectance response for any line within the aperture that is parallel to the two-dimensional grating structure.

1215

Approximate the reflectance function $R(x)$ for any wavelength for the two-dimensional grating structure with a set of orthonormal functions.

1220

Integrate the reflectance response across the aperture.

1225

Solve for x_1 and x_2 and their respective weights w_1 and w_2 .

1230

Rigorously simulate the reflectance response of the light incident at points x_1 and x_2 using a computer.

1235

Approximate the overall response from the aperture using the weighted average (weights w_1 and w_2 , respectively) of responses at points x_1 and x_2 .

1235

Fig. 12