BAB VI

HASIL PENELITIAN DAN PEMBAHASAN

6.1. HASIL PENGUJIAN SISTEM

Bab ini menjelaskan hasil dari pengujian sistem pengambilan keputusan untuk memilih objek wisata yang terbaik menggunakan metode (TOPSIS). Dalam tahap pengujian dilakukan untuk memeriksa apakah sistem yang dihasilkan dapat dijalankan sesuai dengan yang diharapkan. Hasil pengujian sistem dapat dilihat pada tabel 6.1

Tabel 6.1 Pengujian Sistem

No	Point yang diuji	Pengujian	Hasil
1	Login Admin	Login	Sistem dapat melakukan
		menggunakan	proses validasi pada
		username dan	data yang telah di
		password yang	inputkan apabila data
		telah tersimpan	belum tersimpan maka
		dan yang belum	sistem akan
		tersimpan.	menampilkan pesan
			username dan password
			salah.
2	Admin dapat	Melakukan	Pengguna dapat
	melakukan operasi	pengelolaan data	menghapus, mengedit

	tambah data, edit,	yang berupa	dan menambah data
	hapus pada data	tambah data, edit,	pada daftar wisata,
	daftar wisata, kriteria	hapus pada daftar	kriteria, pembobotan.
	dan pembobotan.	wisata, kriteria,	Sistem akan
		input nilai pada	menampilkan hasil .
		pembobotan.	
3	Admin dapat	Melakukan operasi	Pengguna dapat
	menentukan kriteria	menentukan	melakukan perhitungan
	bobot setiap objek	kriteria,	dan pembaharuan data
	dan mengisi nilai	pembobotan	TOPSIS.
	pembobotan setiap	sehingga	
	alternatif	menemukan nilai	
	wisata.Untuk	preferensi terbaik	
	melakukan	dengan metode	
	perhitungan dan	TOPSIS.	
	menentukan objek		
	wisata terbaik.		
4	User dapat melihat	Melakukan operasi	User mendapatkan
	hasil urutan dari	pada setiap menu	informasi perenkingan
	perengkingan objek	pada tampilan	wisata dan melihat
	wisata dan detail	user.	persebaran jalur yang
	wisata.		dilalui.

6.2. PEMBAHASAN IMPLEMENTASI METODE TOPSIS

Bab ini menjelaskan tentang tahapan perhitungan perangkingan untuk menentukan objek wisata terbaik dengan *metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)* yang sudah di implementasikan ke dalam sistem. Pembahasan ini bertujuan untuk mengetahui tahapan yang dilakukan oleh sistem.

Tahap awal adalah merancang sistem yang akan dibuat, setelah itu mencari data yang valid agar sistem yang dibuat sesuai dengan tujuan awal untuk mempermudah pengguna.Setelah data terkumpul lalu mengolah data dimana nama wisata didapat dari Dinas Kebudayaan dan Pariwisata Kabupaten Rembang. Adapun keterangan data yang digunakan, antara lain:

- Harga diperoleh dari harga tiket masuk dan parkir mobil angka diambil dalam Ribuan.
- 2. Jarak diperoleh dari alun-alun kota rembang(titik pusat) menuju alternatif wisata dan diambil angka dalam per (Km)
- 3. Failitas didapat dari banyak fasilitas yang ada di objek wisata
- 4. Tingkat keramaian diperoleh dari data pengunjung setiap objek wisata (dibagi 3) dari tahun 2015- 2017.

data alternatif dapat dilihat pada tabel 6.1. yang dapat memberi gambaran tentang data yang akan diolah kedalam sistem.

Tabel 6.2. Penilaian Alternatif

No	Nama Wisata	Harga	Jarak	Fasilitas	Tingkat
					Keramaian
1.	Pantai Karang Jahe	10	8.4	10	31534,44
2.	Pantai Wates	5	8.4	5	16122.75
3.	TRP Kartini	10	1.5	14	10192.05
4.	Pantai Caruban	10	12	4	8461.33
5.	Hutan Mangrove	4.3	2	2	7882.33
6.	Pasujudhan Sunan Bonang	17	4	4	5276.31
7.	Makam Kartini	22	4	4	2267.61
8.	Museum Kartini	0.24	2	2	1123.19
9.	Pantai Nyamplung	7	4	4	602.67

Tahap selanjutnya adalah inisialisasi kriteria dimana dalam kriteria dibutuhkan pembobotan. Nilai pembobotan diambil dari olah 30 kuisoner responden. Dimana tingkat prioritas bobot terdiri dari:

1. Sangat penting = 5

4. Tidak Penting = 2

2. Penting = 4

5. Sangat Tidak Penting =1

3. Cukup Penting =3

Tabel 6.3 Inisialisasi Kriteria

Nama Kriteria	Inisialisai	Tingkat	Bobot
	Kriteria	Prioritas	
Harga	C1	Penting	4
Jarak	C2	Sangat Penting	5
Fasilitas	C3	Sangat Penting	5
Tingkat Keramaian	C4	Penting	4

Setelah bobot dari setiap kriteria diperoleh, proses selanjutnya yaitu melakukan olah data sehingga dapat memperoleh nilai preferensi setiap wisata dan perangkingan wisata menggunakan metode *TOPSIS*.

Tahapan yang dilakukan untuk melakukan perhitungan menggunakan metode TOPSIS, antara lain:

1. Tabel Nilai Matriks (matriks ternormalisasi)

Langkah pertama yang dilakukan pada tahap perengkingan topsis yaitu menghitung atau mencari nilai matriks pada setiap alternatif.

Tabel 6.4 Nilai Matriks

No	Nama	Harga	Jarak	Fasilitas	Tingkat
	Wisata				Keramaian
1.	Pantai	0.516	0.250	0.504	0.807

	Karang Jahe				
2.	Pantai Wates	0.258	0.250	0.252	0.413
3.	TRP Kartini	0.516	0.045	0.706	0.261
4.	Pantai Caruban	0.516	0.357	0.202	0.217
5.	Hutan Mangrove	0.258	0.128	0.101	0.202
6.	Pasujudhan Sunan Bonang	0	0.506	0.202	0.135
7.	Makam Kartini	0	0.655	0.202	0.058
8.	Museum Kartini	0	0.007	0.101	0.029
9.	Pantai Nyamplung	0.258	0.208	0.202	0.015

Gambar 6.1. Source code Nilai Matriks

2. Matriks ternormalisasi

Proses atau langkah selanjutnya adalah menghitung matriks ternormalisasi terbobot atau disebut dengan matriks ternormalisasi.

Tabel 6.5. Matriks Ternormalisasi

No	Nama Wisata	Harga	Jarak	Fasilitas	Tingkat
					Keramaian
1.	Pantai Karang Jahe	2.064	1.25	2.52	3.228
2.	Pantai Wates	1.032	1.25	1.26	1.652
3.	TRP Kartini	2.064	0.225	3.53	1.044
4.	Pantai Caruban	2.064	1.785	1.01	0.868
5.	Hutan Mangrove	1.032	0.64	0.505	0.808
6.	Pasujudhan Sunan Bonang	0	2.53	1.01	0.54
7.	Makam Kartini	0	3.275	1.01	0.232
8.	Museum Kartini	0	0.035	0.505	0.116
9.	Pantai	1.032	1.04	1.01	0.06

Nyamplung		

```
<?php
$no=1;
$sql akar matrix=mysql query("SELECT
                                                 daftarwisata.id alternatif,
daftarwisata.nm_alternatif,
        sqrt(sum(pow(penilaian.harga,2))) harga,
        sqrt(sum(pow(penilaian.jarak,2))) jarak,
        sqrt(sum(pow(penilaian.fasilitas,2))) fasilitas,
        sqrt(sum(pow(penilaian.t_keramaian,2))) t_keramaian
FROM
             daftarwisata
                                 left
                                            join
                                                        penilaian
                                                                         on
daftarwisata.id alternatif=penilaian.id alternatif");
$r_akar_matrix=mysql_fetch_array($sql_akar_matrix);
$sql=mysql_query("SELECT daftarwisata.id_alternatif
                                                               idalternatif,
daftarwisata.nm alternatif, penilaian.* FROM
daftarwisata
                       left
                                     join
                                                    penilaian
                                                                         on
daftarwisata.id_alternatif=penilaian.id_alternatif");
```

Gambar 6.2. Source code Matrik Ternormalisasi

3. Matriks Ideal Positif dan Negatif

Pada proses tahap ketiga untuk mencari matriks ideal negatif dan matriks ideal positif. Untuk hasil dari matriks ideal negative dapat dilihat pada tabel 6.6. Matriks Ideal Negative.

Tabel 6.6. Matriks Ideal Negative

Harga	Jarak	Fasilitas	Tingkat Keramaian
0	0.035	0.505	0.06

\$sql=mysql_query("SELECT min(harga)harga, min(jarak)jarak, min(fasilitas)fasilitas, min(t_keramaian)t_keramaian FROM `matriksternormalisasi`");

Gambar 6.3. Source code Matrik Ideal Negatif

Pada tabel 6.7. Matriks Ideal Positif menunjukkan hasil dari perhitungan matriks ideal positif.

Tabel 6.7. Matriks Ideal Positif

Harga	Jarak	Fasilitas	Tingkat Keramaian
2.064	3.275	3.53	3.228

\$sql=mysql_query("SELECT max(harga)harga, max(jarak)jarak, max(fasilitas)fasilitas, max(t_keramaian)t_keramaian FROM `matriksternormalisasi`");

Gambar 6.4. Source Code Matriks Ideal Positif

4. Jarak Solusi Ideal Positif dan Negatif

Pada keempat mencari hasil dari jarak solusi ideal positif dan ideal negatif. Adapun hasil dari perhitungan dapat dilihar pada tabel 6.6 Jarak Solusi Ideal dan Negatif.

Tabel 6.8. Jarak Solusi Ideal Negatif

Nama	Jarak Solusi Ideal Negatif
Pantai Karang Jahe	4.453
Pantai Wates	2.376
TRP Kartini	3.798

Pantai Caruban	2.869
Hutan Mangrove	1.411
Pasujudhan Sunan	2.590
Bonang	
Makam Kartini	3.284
Museum Kartini	0.056
Pantai Nyamplung	1.526

SELECT min(harga) negatif_harga, min(jarak)negatif_jarak, min(fasilitas)negatif_fasilitas, min(t_keramaian)negatif_t_keramaian FROM `matriksternormalisasi`

Gambar 6.5 Source code Jarak solusi ideal negatif

Pada tabel 6.9. merupakan tampilan dari perhitungan solusi ideal positif.

Tabel 6.9. Jarak Solusi Ideal Positif

Nama	Jarak Solusi Ideal Positif
Pantai Karang Jahe	2.263
Pantai Wates	3.578
TRP Kartini	3.751
Pantai Caruban	3.760
Hutan Mangrove	4.797
Pasujudhan Sunan Bonang	4.288

Makam Kartini	4.426
Museum Kartini	5.796
Pantai Nyamplung	4.738

SELECT max(harga) max_harga, max(jarak) max_jarak, max(fasilitas) max_fasilitas, max(t_keramaian)max_t_keramaian FROM

`matriksternormalisasi`

Gambar 6.6. Source code jarak matriks ideal positif

5. Nilai Preferensi

Nilai Preferensi berguna untuk mendapatkan hasil akhir perhitungan lalu di ambil perengkingan nilainya dari yang paling tinggi ke nilai paling rendah.

Tabel 6.10. Nilai Preferensi

Nama	Nilai Preferensi
Pantai Karang Jahe	0.663
TRP Kartini	0.503
Pantai Caruban	0.433
Makam Kartini	0.426
Pantai Wates	0.399
Pasujudhan Sunan Bonang	0.377
Pantai Nyamplung	0.244
Hutan Mangrove	0.227

Museum Kartini	0.010

```
<?php
$no=1;
$sql=mysql_query("select a.nm_alternatif,a.id_alternatif,
a.solusi_ideal_negatif, b.solusi_ideal_postif,
a.solusi_ideal_negatif/(a.solusi_ideal_negatif+b.solusi_ideal_po
stif) as hasil_akhir from(SELECT
matriksternormalisasi.id_alternatif,
daftarwisata.nm_alternatif,</pre>
```

Gambar 6.7. Source code nilai preferensi