```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   import warnings
   warnings.simplefilter(action='ignore')
```

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Se
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

7253 rows × 14 columns

```
In [3]: df=df[['Seats','Price']]
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 7253 entries, 0 to 7252
        Data columns (total 2 columns):
             Column Non-Null Count Dtype
             -----
                                     float64
         0
             Seats
                     7200 non-null
             Price 6019 non-null
                                     float64
         1
        dtypes: float64(2)
        memory usage: 113.5 KB
In [5]: df.dropna(inplace=True)
In [6]: | df.isna().any()
Out[6]: Seats
                 False
        Price
                 False
        dtype: bool
In [7]: | df.head()
Out[7]:
           Seats Price
         0
             5.0
                 1.75
         1
             5.0 12.50
         2
             5.0
                 4.50
         3
             7.0
                 6.00
             5.0 17.74
```

```
In [8]: #sns.lmplot(x='kil',y='price',data=df)
plt.scatter(df['Seats'],df['Price'])
```

Out[8]: <matplotlib.collections.PathCollection at 0x204d1db5fc0>


```
In [9]: x=df[['Seats']]
y=df['Price']
```

```
In [10]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

```
In [12]: lr.fit(x_train,y_train)
```

```
In [13]: lr.predict(x_test)
```

Out[13]: array([9.23098781, 9.23098781, 9.23098781, ..., 9.23098781, 9.23098781, 9.23098781])

```
In [14]: print(lr.score(x_test,y_test))
```

0.0020763086361255123

```
In [15]: y_pred=lr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [ ]:
```