Problem Set 4 - ECON 880

Spring 2022 - University of Kansas

Gunawan, Minh Cao

February 27, 2022

In this exercise, we are interested in solving the following minimization problem

$$\min_{x,y} f(x,y) = 100(y - x^2)^2 + (1 - x)^2$$

using both steepest descent and conjugate gradient method. We try different starting values $\tilde{x}^0 = (x^0, y^0)$ starting from (0, 0), (-1, -1) and (-1, 2), and report $\tilde{x}^k = (x^k, y^k)$ for the first 5 iterations. Note that (x, y) = (1, 1) is a unique solution.

1 Steepest Descent

We use the following steps for the steepest descent method

Step 0. Choose \tilde{x}^0 (see above), $\delta=10^{-5},\,\epsilon=10^{-10}$

Step 1. Compute $s^k = -\nabla f(\tilde{x}^k)$

Step 2. Solve $\lambda_k = \arg\min_{\lambda} f(\tilde{x}^k + \lambda s^k)$

Step 3. Set $\tilde{x}^{k+1} = \tilde{x}^k + \lambda_k s^k$

Step 4. If $||\tilde{x}^k - \tilde{x}^{k+1}|| < \epsilon(1 + ||\tilde{x}^k||)$, go to Step 5. Otherwise, go to Step 1.

Step 5. If $||\nabla f(\tilde{x}^k)|| < \delta(1 + f(x^k))$, stop and report success. Else, stop and report convergence to a nonoptimal point.

Table 1 shows the values of $\tilde{x}^k = (x^k, y^k)$ for k = 1, 2, ..., 5 for three different starting values. Steepest descent method leads to the correct solution using our specified tolerance levels at different numbers iteration.

$\tilde{x}^k = (x^k, y^k)$	x^k	y^k	x^k	y^k	x^k	y^k
k = 0	0	0	-1	-1	-1	2
k = 1	0.16133	0	0.25748	-0.37439	-1.348	1.8242
k=2	0.16132	0.025915	0.0708	0.0003852	-1.337	1.8076
k = 3	0.2135	0.026592	0.48295	0.22121	-1.341	1.8049
k = 4	0.21326	0.045502	0.47934	0.22794	-1.3402	1.804
k = 5	0.2462	0.045405	0.49917	0.23846	-1.3398	1.8028
Convergence at	k = 177,644 (success)		k = 1,409,717 (success)		k = 112,965 (success)	
\tilde{x}^{final}	1	1	1	1	1	1

Table 1: Results for steepest descent method

2 Conjugate Gradient

We use the following steps for the conjugate gradient method

Step 0. Choose
$$\tilde{x}^0$$
 (see above), $\delta = 10^{-5}$, $\epsilon = 10^{-10}$, and $s^0 = -\nabla f(\tilde{x}^0)$

Step 1. Solve
$$\lambda_k = \arg\min_{\lambda} f(\tilde{x}^k + \lambda s^k)$$

Step 2. Set
$$\tilde{x}^{k+1} = \tilde{x}^k + \lambda_k s^k$$

Step 3. Compute the search direction
$$s^{k+1} = -\nabla f(\tilde{x}^{k+1}) + \frac{||\nabla f(\tilde{x}^{k+1})||^2}{||\nabla f(\tilde{x}^k)||^2} s^k$$

Step 4. If
$$||\tilde{x}^k - \tilde{x}^{k+1}|| > \epsilon(1 + ||\tilde{x}^k||)$$
, go to Step 1. Otherwise, go to Step 5.

Step 5. If $||\nabla f(\tilde{x}^k)|| < \delta(1 + |f(x^k)|)$, stop and report success. Else, stop and report convergence to a nonoptimal point.

Table 2 shows the values of $\tilde{x}^k = (x^k, y^k)$ for k = 1, 2, ..., 5 for three different starting values. Conjugate gradient method does not lead to the correct solution (1,1) at our specified tolerance levels. Although for starting values (0,0) and (-1,-1), the final values are close to the true solution, these are nonoptimal according to the specified δ .

$\tilde{x}^k = (x^k, y^k)$	x^k	y^k	x^k	y^k	x^k	y^k
k = 0	0	0	-1	-1	-1	2
k = 1	0.16133	0	0.25748	-0.37439	-1.348	1.8242
k=2	0.29279	0.050517	0.11558	0.01084	-1.3367	1.8069
k = 3	0.42553	0.1432	0.31233	0.074648	-1.0855	1.1367
k=4	0.5803	0.30357	0.48326	0.20686	-0.94572	0.82968
k = 5	0.84321	0.70196	0.71518	0.49616	-0.84507	0.63618
Convergence at	k = 147 (nonoptimal)		k = 36 (nonoptimal)		k = 113 (nonoptimal)	
\tilde{x}^{final}	1.00021	1.00037	1.00627	1.01202	1.43299	2.01758

Table 2: Results for conjugate gradient method