pthread kill(3)

NAME

pthread_kill - send a signal to a thread

LIBRARY

POSIX threads library (libpthread, -lpthread)

SYNOPSIS

```
#include <signal.h>
```

int pthread_kill(pthread_t thread, int sig);

Feature Test Macro Requirements for glibc (see **feature_test_macros**(7)):

```
pthread_kill():
```

```
_POSIX_C_SOURCE >= 199506L || _XOPEN_SOURCE >= 500
```

DESCRIPTION

The **pthread_kill**() function sends the signal *sig* to *thread*, a thread in the same process as the caller. The signal is asynchronously directed to *thread*.

If sig is 0, then no signal is sent, but error checking is still performed.

RETURN VALUE

On success, pthread_kill() returns 0; on error, it returns an error number, and no signal is sent.

ERRORS

EINVAL

An invalid signal was specified.

ATTRIBUTES

For an explanation of the terms used in this section, see **attributes**(7).

Interface	Attribute	Value
pthread_kill()	Thread safety	MT-Safe

STANDARDS

POSIX.1-2001, POSIX.1-2008.

NOTES

Signal dispositions are process-wide: if a signal handler is installed, the handler will be invoked in the thread *thread*, but if the disposition of the signal is "stop", "continue", or "terminate", this action will affect the whole process.

The glibc implementation of **pthread_kill**() gives an error (**EINVAL**) on attempts to send either of the real-time signals used internally by the NPTL threading implementation. See **nptl**(7) for details.

POSIX.1-2008 recommends that if an implementation detects the use of a thread ID after the end of its lifetime, **pthread_kill**() should return the error **ESRCH**. The glibc implementation returns this error in the cases where an invalid thread ID can be detected. But note also that POSIX says that an attempt to use a thread ID whose lifetime has ended produces undefined behavior, and an attempt to use an invalid thread ID in a call to **pthread_kill**() can, for example, cause a segmentation fault.

SEE ALSO

 $\label{eq:sigmask} \textbf{kill}(2), \ \textbf{sigaction}(2), \ \textbf{sigpending}(2), \ \textbf{pthread_self}(3), \ \textbf{pthread_sigmask}(3), \ \textbf{raise}(3), \ \textbf{pthreads}(7), \ \textbf{signal}(7)$