Pipelines, feature & text preprocessing

CASE STUDY: SCHOOL BUDGETING WITH MACHINE LEARNING IN PYTHON

Peter Bull
Co-founder of DrivenData

The pipeline workflow

- Repeatable way to go from raw data to trained model
- Pipeline object takes sequential list of steps
 - Output of one step is input to next step
- Each step is a tuple with two elements
 - Name: string
 - Transform: obj implementing .fit() and .transform()
- Flexible: a step can itself be another pipeline!

Instantiate simple pipeline with one step

```
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

pl = Pipeline([
         ('clf', OneVsRestClassifier(LogisticRegression()))
    ])
```


Train and test with sample numeric data

```
sample_df.head()
```

```
label
           numeric
                             with_missing
                       text
0
         -4.167578
                                 -4.084883
                        bar
         -0.562668
                                  2.043464
      a -21.361961
                                -33.315334
        16.402708
                    foo bar
                                30.884604
      a -17.934356
                        foo
                                -27.488405
```


Train and test with sample numeric data

Train and test with sample numeric data

```
accuracy = pl.score(X_test, y_test)
print('accuracy on numeric data, no nans: ', accuracy)
```

accuracy on numeric data, no nans: 0.44

Adding more steps to the pipeline

```
Traceback (most recent call last):
...
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
```


Preprocessing numeric features with missing data

Preprocessing numeric features with missing data

```
pipeline.fit(X_train, y_train)
accuracy = pl.score(X_test, y_test)
print('accuracy on all numeric, incl nans: ', accuracy)
```

```
accuracy on all numeric, incl nans: 0.48
```

No errors!

Let's practice!

CASE STUDY: SCHOOL BUDGETING WITH MACHINE LEARNING IN PYTHON

Text features and feature unions

CASE STUDY: SCHOOL BUDGETING WITH MACHINE LEARNING IN PYTHON

Peter Bull
Co-founder of DrivenData

Preprocessing text features

Preprocessing text features

```
pl.fit(X_train, y_train)
```

```
Pipeline(steps=[('vec', CountVectorizer(analyzer='word', binary=False,
decode_error='strict', dtype=<class 'numpy.int64'>, encoding='utf-8',
input='content', lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None, strip_...=None,
solver='liblinear', tol=0.0001, verbose=0, warm_start=False), n_jobs=1))])
```

```
accuracy = pl.score(X_test, y_test)
print('accuracy on sample data: ', accuracy)
```

accuracy on sample data: 0.64

Preprocessing multiple dtypes

- Want to use **all** available features in one pipeline
- Problem
 - Pipeline steps for numeric and text preprocessing can't follow each other
 - e.g., output of CountVectorizer can't be input to Imputer
- Solution
 - o FunctionTransformer() & FeatureUnion()

FunctionTransformer

- Turns a Python function into an object that a scikit-learn pipeline can understand
- Need to write two functions for pipeline preprocessing
 - Take entire DataFrame, return numeric columns
 - Take entire DataFrame, return text columns
- Can then preprocess numeric and text data in separate pipelines

Putting it all together

Putting it all together

FeatureUnion Text and Numeric Features

Text Features

from sklearn.pipeline import FeatureUnion

FeatureUnion Text and Numeric Features

Text Features Numeric Features

from sklearn.pipeline import FeatureUnion

FeatureUnion Text and Numeric Features

Text Features Numeric Features

Putting it all together

```
numeric_pipeline = Pipeline([
                        ('selector', get_numeric_data),
                        ('imputer', Imputer())
                    ])
text_pipeline = Pipeline([
                         ('selector', get_text_data),
                         ('vectorizer', CountVectorizer())
                     ])
pl = Pipeline([
         ('union', FeatureUnion([
             ('numeric', numeric_pipeline),
             ('text', text_pipeline)
         ])),
         ('clf', OneVsRestClassifier(LogisticRegression()))
          ])
```


Let's practice!

CASE STUDY: SCHOOL BUDGETING WITH MACHINE LEARNING IN PYTHON

Choosing a classification model

CASE STUDY: SCHOOL BUDGETING WITH MACHINE LEARNING IN PYTHON

Peter Bull
Co-founder of DrivenData

Main dataset: lots of text

14

Using pipeline with the main dataset

Using pipeline with the main dataset

```
get_text_data = FunctionTransformer(combine_text_columns,
                                         validate=False)
qet_numeric_data = FunctionTransformer(lambda x:
                        x[NUMERIC_COLUMNS], validate=False)
pl = Pipeline([
             ('union', FeatureUnion([
                     ('numeric_features', Pipeline([
                         ('selector', get_numeric_data),
                         ('imputer', Imputer())
                     ])),
                     ('text_features', Pipeline([
                         ('selector', get_text_data),
                         ('vectorizer', CountVectorizer())
                     ]))
             ),
             ('clf', OneVsRestClassifier(LogisticRegression()))
```


Performance using main dataset

```
pl.fit(X_train, y_train)
```

```
Pipeline(steps=[('union', FeatureUnion(n_jobs=1,
    transformer_list=[('numeric_features', Pipeline(steps=
    [('selector', FunctionTransformer(accept_sparse=False,
    func=<function <lambda> at 0x11415ec80>, pass_y=False,
    validate=False)), ('imputer', Imputer(axis=0, copy=True,
    missing_valu...=None, solver='liblinear', tol=0.0001,
    verbose=0, warm_start=False),n_jobs=1))])
```


Flexibility of model step

- Is current model the best?
- Can quickly try different models with pipelines
 - Pipeline preprocessing steps unchanged
 - Edit the model step in your pipeline
 - Random Forest, Naïve Bayes, k-NN

Easily try new models using pipeline

```
from sklearn.ensemble import RandomForestClassifier
pl = Pipeline([
             ('union', FeatureUnion(
                 transformer_list = [
                     ('numeric_features', Pipeline([
                         ('selector', get_numeric_data),
                         ('imputer', Imputer())
                     ])),
                     ('text_features', Pipeline([
                         ('selector', get_text_data),
                         ('vectorizer', CountVectorizer())
                     ]))
             )),
             ('clf', OneVsRest(RandomForestClassifier()))
         ])
```


Let's practice!

CASE STUDY: SCHOOL BUDGETING WITH MACHINE LEARNING IN PYTHON

