### **Time-Series-Assessment-2.R**

Grace Laryea

2022-04-03

```
#Code is in deep blue
#Loading of library packages to enable the functionality of my functions
library(tseries)
## Warning: package 'tseries' was built under R version 4.0.5
## Registered S3 method overwritten by 'quantmod':
##
     method
                        from
##
     as.zoo.data.frame zoo
library(forecast)
## Warning: package 'forecast' was built under R version 4.0.5
Q1
#Setting random number generator at value 639
set.seed(639)
#Running ARIMA Simulation
#n= number of values, 350 values in this case
#model list defines parameters of AR and MA series
#alpha 1=0.4, alpha 2=-0.1 for AR series
#beta1 = 0.57
x = arima.sim(n=350, model=list(ar=c(0.4, -0.1), ma=0.57))
Explanation:
We are simulating a time series of length 350, and ARMA(2,1) with parameters
\alpha_1 = 0.4, \alpha_2 = -0.1 and \beta_1 = 0.57 respectively
Also, the set.seed, ensure we are able to replicate our time series each time
, without randomly generating different values each time.
```

Q1(b)
#We use the tsdisplay function to plot the ARIMA time series simulation of x
#This produces a graph of the Time series, its respective ACF and PACF graphs
#code
tsdisplay(x,main="Time series Plot, ACF and PACF Plots ")

#### Time series Plot, ACF and PACF Plots





Q1b)a #Can also be produced using ts.plot(), acf() and pacf()
ts.plot(x)

**Output** 



```
Q1b)b
#code:
par(mfrow=c(1,2))
acf(x)
pacf(x)
```



```
01(c)
Our simulation of Time series is stationary, but I am checking for clarity
Running Dicky-Fuller Test to prove stationarity
#code:
adf.test(x)
Output
## Warning in adf.test(x): p-value smaller than printed p-value
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -6.695, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
Q2c)a
#Fitting the ARIMA time series to get ARMA(2,2)
\#ARIMA(2,0,2) or ARMA(2,2)
#I have assigned ARMA(2,2) as fit 1
fit1=arima(x,order=c(2,0,2))
#Calling fit1
Output
fit1
##
## Call:
## arima(x = x, order = c(2, 0, 2))
## Coefficients:
##
             ar1
                      ar2
                              ma1
                                      ma2 intercept
         -0.0655 -0.0207 1.0440 0.3108
##
                                              0.0982
## s.e. 0.6073
                   0.2067 0.6063 0.4021
                                              0.1229
## sigma^2 estimated as 1.129: log likelihood = -518.38, aic = 1048.77
#(b)
\#ARIMA(2,0,1) or ARMA(2,1)
#Assigning ARMA(2,1) as fit2
fit2=arima(x, order = c(2,0,1))
#Calling fit2
Output
fit2
##
## Call:
## arima(x = x, order = c(2, 0, 1))
##
```

```
## Coefficients:
## ar1 ar2 ma1 intercept
## 0.3775 -0.1402 0.5969 0.0986
## s.e. 0.0832 0.0726 0.0694 0.1188
##
## sigma^2 estimated as 1.131: log likelihood = -518.64, aic = 1047.28
Q1(c)
```

## I choose model 2, ARMA(2,1) as it has the lowest AIC, Maximum likelihood value. Hence AR MA(2,1) is the best model.

```
ARMA(2,2)--\rightarrow log likelihood = -518.38, aic = 1048.77
ARMA(2,1)--\rightarrowlog likelihood = -518.64, aic = 1047.28
```

# Q1(d) #Running a diagnostic test of fit2 tsdiag(fit2)

### **Output**



Equation of model chosen:

ARMA(2,1)

$$y_t = 0.4y_1 - 0.1y_2 - 0.57\varepsilon_1$$

The output suggests some forecasting can be done, also, the ACF plots suggest white noise a s well as the p-values of Ljung-Box statistic being greater than the significance value of 5%.

Also, since our p-values are greater than 5%, we can suggest, our null hypothesis is not true, hence no evidence of serial correlation amongst the fitted model (fit2).

Looking at the 2<sup>nd</sup> plot, we can observe the lags of the ACF residuals do not exceed the 95% level, hence model is quite a good fit!

We will look into this further in part(e)

```
Q1(e)
# I assumed my x value to be my chosen fitted ARIMA series
#fitdf= number of degrees of freedom to be subtracted if x is a series of
#residuals.
#In our case its 4, as our p=2 from AR terms and q=1 from MA terms and -1
#We normally don't tend to use it, but as I am using my fitted time series to
#check for serial correlation
#The question demanded a lag of length 10
#Type of Box.test is Ljung-Box
Box.test(residuals(fit2),fitdf =4,lag = 10,type = "Ljung-Box")
Output
##
## Box-Ljung test
##
## data: residuals(fit2)
## X-squared = 9.8832, df = 6, p-value = 0.1297
Explanation:
Q = T(T+2) \sum_{k=1}^{s} r_k^2 / (T-k) \to \chi_{s-p-q}^2
                                               (4.11)
X-squared represents the Q value for Ljung-Box test(Portmanteau statistic), so
our Q value is 9.8832, total degree of freedom= 10-3-1=6,p-value= is probabil
ity of our Q value occurring.
So in this context:
Our p-value > 5%, hence adequacy of fitted ARMA(p,q) should be re-analyzed.
H_0 = Residuals of white noise observed
H_1 = No residuals of white noise observed
T = 350
#using the checkresiduals() to see if my answer is right
checkresiduals(fit2)
Output
##
## Ljung-Box test
## data: Residuals from ARIMA(2,0,1) with non-zero mean
```

```
## Q* = 9.8832, df = 6, p-value = 0.1297
##
## Model df: 4. Total lags used: 10
#Since p-value is greater than 5%, we need to use the GARCH model
#......#
```

|   | Question 2  Generate a random sample of $y!$ a) $g(y) = 1 \sin(y)$ ; $0 < y < T$                                                                                                     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $G_{y}(u) = \int_{-\infty}^{\infty} g_{y}(u) dy$                                                                                                                                     |
|   | = Sign Cy) dy                                                                                                                                                                        |
|   | $= \frac{y}{2} \int_{0}^{u} \delta m(y) dy$                                                                                                                                          |
|   | $= \frac{1}{2} \left[ \frac{-\cos(\omega)}{2} \right] \frac{1}{2}$ $= \frac{1}{2} \left[ \frac{\cos(\omega)}{2} \right] \frac{1}{2}$ $= \frac{1}{2} \left[ 1 - \cos(\omega) \right]$ |
|   | Gy(u) = 1/2 (1-cos (u))                                                                                                                                                              |
|   | Making 4 the Inspect!                                                                                                                                                                |
|   | Fig (4) = y                                                                                                                                                                          |
|   | $y = \frac{1}{2} \left( 1 - \cos(\alpha) \right)$                                                                                                                                    |
| 3 | $2y = 1 - \cos u$                                                                                                                                                                    |
|   | 1-2y = - coscu)                                                                                                                                                                      |
|   |                                                                                                                                                                                      |

|   | 3 1 - 3                                                           |
|---|-------------------------------------------------------------------|
|   | $2y-1 = \cos(\alpha)$                                             |
|   | arcos (2y-1) = u                                                  |
|   | 2. u= arcos (2y-1)                                                |
|   |                                                                   |
|   |                                                                   |
|   | b) Method of rejection sampling                                   |
|   |                                                                   |
|   | $Y \sim g(y) = \frac{1}{2} \sin(y)$                               |
|   | $X \sim f(x) = \frac{1}{\pi} \qquad \frac{3}{3} \times V(0, \pi)$ |
|   | We Know 400 C-11                                                  |
|   | We know the $G_y(u) = arcos(2u-1)$ $\chi = \gamma$                |
|   | snp = M                                                           |
|   | fcy)                                                              |
|   | $M = \sup_{y \in W} g(y)$                                         |
|   | <del></del>                                                       |
|   | = 1/2 sm (y)                                                      |
|   | = 75 sm(y) => ln(12 sm(y))                                        |
| 7 | 15 ( ) T mes 1                                                    |
|   | dy (1/2 sm (y)) = (05 (y))  dy (1/2 sm (y)) = (05 (y))            |
|   | 5                                                                 |

| 3 | Cos (y)  Emicy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $\frac{\operatorname{Cos}(y) = 0}{y = \operatorname{arcos}(0)}$ $y = \frac{\pi}{2} = n\pi_{2}  \text{for } n = 1,2,3,\dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 | $\frac{d^2y}{dy^2} = -\cos^2(y) - 1 < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | deg co, hence 9= 1/2 of a maximum/punity print.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | = 1/2 Am (T/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\frac{1}{1} \frac{g(y)}{g(y)} = \frac{1}{2} \frac{g(y)}{g(y)} = \frac{1}$ |
|   | $= \frac{\operatorname{finty}_{2}}{\operatorname{finty}_{2}} = \frac{\operatorname{finty}_{3}}{\operatorname{finty}_{2}} \times \frac{1}{\operatorname{finty}_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| : |                                                                                                                                                 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                 |
| • | $ \underline{\mathbf{A}}(g) = \underline{\mathbf{s}}(g) = \underline{\mathbf{s}}(g) $ $ \underline{\mathbf{M}}(g) = \underline{\mathbf{s}}(g) $ |
|   |                                                                                                                                                 |
| 1 | Since Sm(T/2) = 1                                                                                                                               |
|   |                                                                                                                                                 |
|   | Algoritum                                                                                                                                       |
|   | O Generate a random number U                                                                                                                    |
| e | 1 Set Y = arcos (24-1) [ Whed in (a) by Thuertim]                                                                                               |
|   | (B) Coverate anglier random number 1/2                                                                                                          |
|   | Q If $v_2 \leq sm(y)$ , then set $x=y$ ,                                                                                                        |
|   | or otherwise start all over from 1                                                                                                              |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| - |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| 1 |                                                                                                                                                 |

I

|      | Hence dorhlowhim frichin for Y is - Top (2)                                                     |
|------|-------------------------------------------------------------------------------------------------|
|      | Since $(1-e^{-6})^{-1} \approx 1$                                                               |
|      | $P.d.f = \begin{cases} 2(1-e^{-f})^{-1}e^{-2y}, 0 < y < 3 \\ 0, 67 \\ 0 \end{cases}$            |
|      | Ь)                                                                                              |
| el . | Algoritan for generating samples of random variable y using standard uniform v(0,1)  Y ~ Exp(2) |
|      | Gy (u) = 14 gr (v) dy                                                                           |
|      | $= \int_0^4 g_{\gamma}(u) dy$                                                                   |
|      | = 54 211-e-6)-1 e-24 dy                                                                         |
|      | using integral by substitution!                                                                 |
|      | 1-e-f = e-2y dy                                                                                 |
|      | let 4 = -2 y                                                                                    |
|      | dy = -2<br>dy = dy = dy                                                                         |
|      |                                                                                                 |
|      | 1-e-6 ) 0 e du 2 1-e-6 ) 0 e du                                                                 |
|      |                                                                                                 |

| 0        | $\frac{-1}{1-e^{-f}} \int_{0}^{a} e^{u} du$                                                    |
|----------|------------------------------------------------------------------------------------------------|
|          |                                                                                                |
|          | 1-e- [ea] 4                                                                                    |
|          | $\frac{-1}{1-e^{-6}} \Rightarrow (e^{u}-e^{o}) = -e^{u}+e^{o} = 1-e^{u}$ $1-e^{-6} = 1-e^{-6}$ |
|          | $= 1 - e^{-2y}$ fince $u = 2y$<br>$1 - e^{-6}$                                                 |
|          | =': Gylu) = 1-e-24 let Gyly)=4                                                                 |
|          | Setting: $\frac{1 - e^{-2y}}{1 - e^{-6}} = u$                                                  |
|          | $1 - e^{-2y} = u(1 - e^{-6})$                                                                  |
| <u> </u> | $1 - 4(1 - e^{-e}) = e^{-2y}$                                                                  |
|          | $\ln \left[ 1 - 4 \left( 1 - e^{-6} \right) \right] = -2y$                                     |
|          | y = - In[1-4(1-e-6)]                                                                           |
|          | y = - In [1-u(1-e-t)]                                                                          |
|          | 2                                                                                              |
| <b>-</b> |                                                                                                |
| ,        |                                                                                                |

| •  | (6)                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------|
|    | X has pidet of fox), and the invertion is hard.                                                                      |
|    | Y has pady of g(x), and the inversion is eary.                                                                       |
|    | Lots askine;                                                                                                         |
|    | $\frac{f(x)}{g(x)} \leq M \leq \infty  \text{for all values of } x.$                                                 |
| Q. | a random variable Y with p.d.f gly).                                                                                 |
|    | $f(x) = \frac{1}{2} e^{-x^2/2}$                                                                                      |
|    | (D(3) -05) J2T                                                                                                       |
|    |                                                                                                                      |
|    | $g(x) = 2(1-e^{-6})^{-1}e^{-2x}$                                                                                     |
|    | lot x = 4 /                                                                                                          |
|    | · M = Emp f(x)                                                                                                       |
| () | $M = \sup_{x} f(x)$                                                                                                  |
|    | We will use ME, to get a proper estmente of the major                                                                |
|    |                                                                                                                      |
|    | $= e^{-\alpha/2} + (1-e^{-6})$                                                                                       |
|    | $= e^{-\frac{2}{2}} \qquad (1-e^{-6})$ $= e^{-\frac{2}{2}} \qquad (1-e^{-2})$ $= e^{-\frac{2}{2}} \qquad (1-e^{-2})$ |
|    | $= 2^{-\sqrt{2}} + 2\sqrt{100}$ $= 2(\sqrt{2}(\sqrt{2}) - 0\sqrt{2})\sqrt{2}\sqrt{2}$                                |
|    | ) (F (3)-01) V24                                                                                                     |

In [e-1/2+24 (1-e-6) (1-e-6) - x2 +2x - In [p(3)-00) 2/21 ] + In [1-e-6]  $\frac{d}{dx} \left[ \frac{-x^2 + 2x}{2} \right] - \frac{d}{dx} \left( \frac{d}{dx} (x) - 0x \right) = \sqrt{2\pi} \int_{-\infty}^{\infty} \frac{d}{dx} \left( 1 - e^{-6} \right)$ Maximum of x pears at 2 d² = 1 (Hence maximum ocarrs at x=2)

$$M = \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-\frac{x}{2}})}{2(\frac{x}{2}(3) - 0x^{2}) (3xT)}, \text{ where } x = 2$$

$$M = \frac{e^{-\frac{x}{2} + 2xe^{2}} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (5xT)}$$

$$M = \frac{e^{-\frac{x+4}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{+\frac{x}{2}} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} - 2}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2}) (2xT)}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2})}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 0x^{2})}$$

$$= \frac{e^{-\frac{x}{2} + 2x} (1 - e^{-6})}{2(\frac{x}{2}(3) - 2x^{2$$

| * *     | at the state of th | Ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| )       | e) Algoritem to perform run in (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | amus<br>amus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 1 Generate a random number U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL STATE OF THE |
|         | V1 = 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ② Set Y= -½ In [1-u,(1-e-6)] m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u></u> | $Y = -\frac{1}{2} \ln \left[ 1 - 0.86(1 - e^{-6}) \right]$<br>Y = 0.9755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | & Generate another random number $v_2$<br>$v_2 = 0.34$ , where $h(4) = e^{-9\%2 + 2y - 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Anna.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | D If v₂ ≤ e-9°/2+2y-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | U2 & e-0.935/2 + 210495/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | U2. = 0159167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Ence uz 60.59167, we enthere!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | and start the proces over!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | So u & h(y) > Mg(y)u & f(y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | where mg(y)u is a put below mg(y),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Hence we acept this put betin fly).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Z = number of attempts with we accept X p = Probability ( telept X at each attempt) p = P(Accept & at each alternal) = 100 h(y) g(y) by  $= \frac{1}{m} \int_{-\infty}^{\infty} f(y) dy$  $M = \frac{e^{2}(1-e^{-6})}{2(\sqrt{2\pi})(\sqrt{2}(3)-04)}$ 2√2T (\$(n-0·1) (3) = 0,9986501 P = 0.8392

| <br>#(2) = number of pairs of random numbers.     |
|---------------------------------------------------|
| = 1 = M<br>P                                      |
| <br>= 2.948<br>- 2.98 × 3 pairs of Random nusers, |
| 2 2013 No paris & Racation numbers,               |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |