2023 CSP七连测-day03

题目名称	杠上开花	公交星槎	记忆碎片	金人旧巷
题目类型	传统型	传统型	传统型	传统型
英文题目名称	bloom	bus	memory	street
输入文件名	bloom.in	bus.in	memory.in	street.in
输出文件名	bloom.out	bus.out	memory.out	street.out
每个测试点时限	1s	1s	1s	1s
内存限制	512MB	512MB	512MB	512MB
提交源文件名	bloom.cpp	bus.cpp	memory.cpp	street.cpp

【C++编译选项】 -lm -std=c++14 -Wl,--stack=1000000000 -02

【试题下载地址】 ftp://172.16.2.202/竞赛资料/20231007.zip 匿名访问即可

【结果上传地址】 ftp://172.16.2.202/20231007文件回收 用户名密码均为test

【赛后补题地址】 http://zhb.wms.edu/d/JH2023/ 训练

【提交文件夹格式】

--准考证号\ **(平时训练用中文姓名)**

T1 [2023CSP七连 Day3-01] 杠上开花

题目描述

帝垣琼玉是风靡仙舟的棋牌游戏。

青雀是帝垣琼玉的粉丝,甚至使用帝垣琼玉牌战斗。

现在青雀面对 n 个排成一排的敌人,从左到右第 i 个敌人有整数血量 a_i $(1 \le a_i \le 2)$ 。每个回合,她可以选择一个敌人,对它造成 2 点伤害,并对与它相邻的敌人造成 1 点伤害。

当一个敌人的血量小于等于 0,它就会死亡。同时,若第 i 个敌人死亡,那么原来的第 i+1 个敌人会变成第 i 个,第 i+2 个会变成第 i+1 个,以此类推。

此外,青雀攻击时一定会确保最左边的第一个敌人的血量减少,即攻击第一个敌人或第二个敌人。

小 X 想知道, 青雀最少需要多少回合才能解决所有敌人。

输入格式

一行四个整数, 表示 n, s1, s2, s3。

然后你可以用以下程序生成序列 a_i :

```
void Gen(int n, unsigned s1, unsigned s2, unsigned s3) {
   for(int i = 1; i <= n; ++i) {
      s1 ^= s3;
      s3 += 3055373123u;
      a[i] = (1 << ((s1 >> s2) & 1));
      s2 = (s2 ^ s3) & 31;
      s3 = (s3 >> s2) | ((s3 << (31 ^ s2)) << 1);
   }
}</pre>
```

输出格式

输出一个整数,表示最小回合数。

样例数据

样例输入1

5 114514 3 1919810

样例输出 1

2

样例输入2

114514 166032413 6 102134106

样例输出 2

49469

样例解释

对于第一组样例, 敌人的血量依次是: 12211。

第一回合打一个血量为2的敌人,之后会剩下111,可以一回合结束战斗。

数据范围

对于 5% 的数据, n=1。

对于 20% 的数据, $n \leq 3$ 。

对于 30% 的数据, $n \leq 10$ 。

对于 50% 的数据, $n \leq 20$ 。

对于 70% 的数据, $n < 10^6$.

对于 100% 的数据, $n \le 3 \times 10^7, 0 \le s1, s3 < 2^{32}, 0 \le s2 < 32$ 。

T2 [2023CSP七连 Day3-02] 公交星槎

题目描述

为了方便居民的出行和提倡绿色出行,仙舟罗浮有一套公交星槎系统。

罗浮有 n 个公交站,一个公交站可以看作一个节点,编号为 1 到 n。它们由 p 条公交线路连通,每条线路途经若干个节点,第 i 条线路用它依次经过的节点 $s_{i,0},s_{i,1},\cdots,s_{i,m_i}$ 来表示。

一开始,这些线路上没有星槎在运行。

对于每条线路 i,每天的第 0 个时刻,会有一班公交星槎从 $s_{i,0}$ 驶出,然后按照 $s_{i,0},s_{i,1},s_{i,2},\cdots,s_{i,m_i},s_{i,m_{i-1}},s_{i,m_{i-2}},\cdots,s_{i,0}$ 的路径一直循环运行,从一个节点到下一个节点需要花费 1 个单位的时间。之后在 $g_i,2g_i,3g_i,\cdots$ 等 g_i 的倍数时刻,如果此时 $s_{i,0}$ 的位置没有按照线路运行的星槎,会有一艘星槎从 $s_{i,0}$ 驶出,按照上述路径运行(保证 g_i 是 $2m_i$ 的约数)。

小 X 在这天的第 0 时刻来到 1 号节点,然后搭乘一条线路,之后如果有该线路上的公交星槎到达小 X 所在的节点,他可以选择乘坐该星槎(也可以不乘坐)并随该星槎移动到线路上的其他节点。小 X 可以 在节点处更换搭乘的线路,但这会花费它 t 个单位的时间。即,如果小 X 由线路 i 在 a 时刻到达节点 u,之后想要搭乘线路 j,那么他只能搭乘 a+t 时刻以后的 j 线路上的星槎。

保证任意两个节点都是可以相互到达的。

小 X 想知道,他到达 n 号节点需要的最少时间是多少。

输入格式

第一行三个整数,表示 n, p, t。

接下来 2p 行,每两行表示一条线路:第一行两个整数 m_i,g_i ,第二行 m_i+1 个整数,表示 $s_{i,0},s_{i,1},\cdots,s_{i,m_i}$ 。

输出格式

一行一个整数,表示从 1 号节点到达 n 号节点的最少时间。

样例数据

样例输入1

5 3 1

3 3

4 2 3 5

2 1

2 1 4

2 4

4 1 2

样例输出 1

6

数据范围

对于 20% 的数据, $n, p \leq 100, \sum m_i \leq 200$.

对于 40% 的数据, $n, p \leq 1000, \sum m_i \leq 2000$ 。

对于另外 20% 的数据, $\sum m_i = n-1$ 。

对于 100% 的数据,保证 $2 \leq n, p \leq 10^5, \sum m_i \leq 2 \times 10^5, 1 \leq t \leq n$ 。

T3 [2023CSP七连 Day3] 记忆碎片

题目描述

小 X 有一个记忆仓库。它可以存储两类记忆碎片:事件与回忆。每一个记忆碎片是一段字符串,每个字符是 a 到 z 的小写字母。其中,**没有某个事件碎片的字符串为另一个事件碎片的字符串的前缀**。

一开始,仓库是空的。然后,小 X 每次会向仓库中添加一个事件碎片或者一个回忆碎片。

回忆是事件组成的。小 X 想知道,仓库中有哪些回忆碎片可以通过将若干个(可以是一个)仓库中的事件碎片(同一个可以使用多次)首尾连接得到。

你需要在每次加入操作后立刻回答小X的问题。(强制在线)

由于这样输出就太多了,所以小 X 只需要知道每次加入操作后,之前不能组成、现在可以组成的回忆碎片有哪些。

输入格式

第一行一个整数 n,表示要加入的碎片个数。

接下来 n 行,第 i 行由一个字符和一个字符串 s_i' 组成,字符是 + 或 ? ,分别表示加入的是事件碎片和回忆碎片。该碎片的真实字符串由 s_i' 解密得到,实际的字符串 s_i 是 s_i' 做 m_i-1 次向左循环移位的结果,其中 m_i-1 的定义见输出格式, $m_0=0$ 。

向左循环移位: 即将字符串开头的字符放到字符串末尾。

输出格式

输出 n 行,第 i 行开头一个整数 m_i 表示第 i 次操作后新的能够被组成的回忆碎片个数。之后 m_i 个空格隔开的递增整数,表示这些回忆碎片的编号。

一个回忆碎片的编号为先于它加入的回忆碎片个数 +1。

样例数据

样例输入1

5

? abcabd

+ abc

? abcabc

? dabdab

+ abd

样例输出 1

0

0

1 2

0

2 1 3

样例解释

实际加入的字符串:

记忆碎片 abcabd。

事件碎片 abc。

记忆碎片 abcabc。

记忆碎片 abdabd。

事件碎片 abd。

数据范围

令 m 为字符串总长度。

对于 20% 的数据,满足 m < 500。

对于 40% 的数据,满足 $n \leq 500, m \leq 10^6$ 。

对于另外 20% 的数据,满足所有 + 操作均在所有 ? 前出现。

对于另外 20% 的数据,满足所有 ? 操作均在所有 + 前出现。

对于 100% 的数据,满足 $n, m \leq 10^6$ 。

T4 [2023CSP七连 Day3] 金人旧巷

题目描述

金人巷是仙舟罗浮上著名的夜市。

小 X 参与金人巷的复兴计划,增加它的热闹程度。其地图可以抽象为一棵 n 个点的无根树,每一个节点代表一个区域,这 n 个区域由 n-1 条无向道路连接在一起,每个节点有一个热闹程度。在复兴计划中,记第 n 个节点增加的热闹程度为 n0。

然后小X 开始依次进行Q 次操作。每一个操作可能是:

• 1 u w p 小 X 在节点 u 上新建一个商铺。然后,对于所有节点 v (包括u本身) ,记它与 u 之间的简单路径的边数为 d ,那么 a_v 会增加 $\lfloor \frac{w}{v^d} \rfloor$ 。

• 2 u v 由于人流量限制,小 X 关闭了节点 u 和 v 之间的道路(保证存在)。他想知道,这条道路 切断后,能到达 u 的所有节点 p 的 a_p 之和以及能到达 v 的所有节点 q 的 a_q 之和。注意:询问之间相互独立,即本次询问关闭的道路在下一次询问时不会关闭。

小X需要你帮忙回答所有的2操作。保证答案在 long long 范围内。

输入格式

第一行两个整数, 表示 n, Q。

接下来 n-1 行,每行两个整数,表示树上的一条边。

接下来Q行,每行一个询问。

输出格式

对每个操作 2 输出一行,每行两个整数,分别表示能到达 u 的所有节点 p 的 a_p 之和、能到达 v 的所有节点 q 的 a_q 之和。

样例数据

样例输入1

6 10

5 2

6 1

3 2

4 2

6 2

1 4 5 2

2 6 2

1 2 13 3

1 6 9 2

2 4 2

2 6 1

1 1 14 2

1 3 3 1

1 4 4 1

2 6 1

样例输出 1

1 9

11 52

58 5

106 26

数据范围

对于 30% 的数据, $n, q \leq 3000$.

对于另外 20% 的数据,保证每个节点的度数不超过 2,即树形成一条链。

对于另外 20% 的数据, 保证树的直径 (即树上最长简单路径) 长度 (边的条数) 不超过 20。

对于 100% 的数据,保证 $1 \le n, q \le 10^5, 1 \le w, p \le 10^9$ 。