7. **CLAIMS**

What is claimed is:

1	1. A compensator for a liquid crystal display, wherein:
2	(a) said compensator comprises a layer of a birefringent material
3	having an optical symmetry axis;
4	(b) said birefringent material comprises a polymer matrix including
5	polymerized nematic material and unpolymerized nematic material; and
6	(c) each of (i) a tilt angle ϕ , relative to the plane of the layer, and
7	(ii) an azimuthal angle θ , relative to a reference axis in the plane of the layer, of said
8	optical symmetry axis varies along an axis normal to said layer; and
9	(d) said variations in tilt angle and azimuthal angle being defined by
10	a combination of molecular orientations of said polymerized nematic material and said
11	unpolymerized nematic material.
1	2. A compensator for a liquid crystal display, said compensator
2	comprising a layer of a birefringent material having an optical symmetry axis,
73	wherein said optical symmetry axis varies along an axis normal to said layer.
1	3. The compensator of claim 2, wherein said layer of birefringent material
2	comprises a polymer matrix that defines said variation of the optical symmetry axis,

al comprises a polymer matrix that defines said variation of the optical symmetry axis, said polymer matrix comprising polymerized nematic material.

1 2

3

3

The compensator of claim 2, wherein said layer of birefringent material 4. comprises a polymer matrix, said polymer matrix including polymerized nematic material and unpolymerized nematic material having respective molecular orientations

4 which, in combination, define said variation of the optical symmetry axis.

Page 34 G:\ROCL\017\PA

1	5.	The compensator of claim 2, wherein an azimuthal angle θ , relative to
2	a reference a	xis in the plane of the layer, of said optical symmetry axis varies along
3	an axis norm	al to said layer.
1	6.	The compensator of claim 2, wherein a tilt angle ϕ , relative to the
2	plane of the l	layer, of the optical symmetry axis varies along an axis normal to said
3	layer.	
1	7.	The compensator of claim 2, wherein each of (i) a tilt angle ϕ , relative
2	to the plane of	of the layer, and (ii) an azimuthal angle θ , relative to a reference axis in
3	the plane of t	the layer, of said optical symmetry axis varies along an axis normal to
4	said layer.	
1	8.	A compensator for a liquid crystal display, said compensator
2	comprising a	plurality of ayers, each layer comprising a birefringent material having
3	an optical syr	nmetry axis which varies along an axis normal to said layer.
1	9. /	The compensator of claim 8, wherein:
2		(1) the optical symmetry axis of each layer has an azimuthal angle θ
3	which varies	along an axis normal to said layer; and
4		(2) the optical symmetry axes of adjacent said layers vary
5	azimuthally	h a positive sense and a negative sense respectively.
1	10/	The compensator of claim 9, wherein the optical symmetry axis of each
2	layer has a ti	It angle ϕ which varies along an axis normal to said layer.
1	/ 11.	The compensator of claim 10, wherein the tilt angles of adjacent said
2	layers vary in	a positive sense and a negative sense respectively.
	l	

G:\ROCL\017\PA Page 35

	1	12. The compensator of claim 8, wherein (1) the birefringent material in				
	2	each said layer includes a plurality of mojeties of a liquid-crystal material, and (2) a				
α_{\prime}	3	specified said layer aligns the moieties of liquid crystal material in an adjacent said				
	4	-layer.				
	1	13. A compensator for a liquid crystal display, said compensator				
	2	comprising a plurality of layers, wherein:				
	3	(a) each layer comprises a birefringent material including a plurality				
	4	of moieties of a liquid crystal material;				
	5	(b) the optical symmetry axis of each layer has a respective tilt				
	6	angle ϕ , relative to the plane of the layer, which varies along an axis normal to the				
	7	layer, with the tilt angles of adjacent, said layers varying in a positive sense and a				
	8	negative sense respectively,				
	9	(c) the optical symmetry axis of each layer has a respective				
)	10	azimuthal angle θ , relative to a reference axis in the plane of the layer, which varies				
/ (11	along an axis normal to said layer, with the azimuthal angles of adjacent said layers				
	12	varying in a positive sense and a negative sense respectively; and				
	13	(d) a specified said layer aligns the moieties of liquid crystal				
(14	material in an adjacent said layer.				
	1	14. The compensator of a specified one of claims 2 or 8, further				
	2	comprising one or more A-plate layers.				
		· · · · · · · · · · · · · · · · · · ·				
)) _{\(\alpha\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	7	15. The compensator of claim 14, further comprising one or more C-plate				
6,2	'2	layers				
-						
	1	16. A method of manufacturing an O-plate compensator having a layer of a				
	2	birefringent material, referred to as a compensator layer, said birefringent material				

0.7

an 2

G:\ROCL\017\PA

3	having an optical syr	nmetry axis which varies along an axis normal to said layer, said
4	method comprising t	he steps of:
5	(a)	providing a substrate;
6	(b)	applying a liquid crystal alignment layer to said substrate;
7	(c)	applying to said alignment layer a thin film of a polymerizable
8	liquid crystal materia	al that has:
9		(1) a specified air-nematic tilt angle,
10		(2) a pre-tilt angle on said alignment layer, said pre-tilt angle
11	differing from said a	ir-nematic tilt angle by an amount sufficient to produce a desired
12	splay of the orientati	on of the optical symmetry axis through the thin film, and
13		(3) a cholesteric pitch that produces a desired twist in the
14	orientation of the opt	tical symmetry axis through the thin film;
15	(d)	heat-treating said thin film to obtain a specified director
16	orientation configura	tion of said thin film; and
17	(e)	illuminating said thin film with actinic radiation to polymerize
18	said thin film.	
1	17. A met	hod of manufacturing an O-plate compensator having a layer of a
2	birefringent material	, referred to as a compensator layer, said birefringent material
3	having an optical syr	nmetry axis which varies along an axis normal to said layer, said
4	method comprising t	he/steps of:
5	(a)	providing a substrate;
6	(b) /	applying a liquid crystal alignment layer to said substrate;
7	(c) /	applying to said alignment layer a thin film of a polymerizable
8	nematic liquid crysta	I material that has one or more of:
9		(1) a specified air-nematic tilt angle and a pre-tilt angle on said
10	alignment layer, said	pre-tilt angle differing from said air-nematic tilt angle by an

G:\ROCL\017\PA / Page 37

11	amount suffic	ient to	produce a desired splay of the orientation of the optical symmetry
12	axis through	the thin	film, and
13			(2) a cholesteric pitch that produces a desired twist in the
14	orientation of	the opt	cical symmetry axis through the thin film;
15		(d)	heat-treating said thin film to obtain a specified configuration of
16	the orientation	n of the	optical symmetry axis through said thin film; and
17		(e)	illuminating said thin film with actinic radiation to polymerize
18	said thin film	•	
1	18.	The m	ethod of claim 17/wherein said step (c) of applying a thin film
2	comprises the	substep	os of:
3		(1)	dissolving said liquid crystal material in a solvent to form a
4	solution,		
5		(2)	applying said solution to said alignment layer, and
6		(3)	evaporating said solvent to form said thin film.
1	19.	The m	ethod of claim 17, wherein said alignment layer is a previous
2	thin-film laye	r of the	kind/described in step (c).
1	20.	A met	hod of manufacturing an O-plate compensator having a layer of a
2	birefringent n	naterial,	referred to as a compensator layer, said birefringent material
3	having an opt	ical sy	nmetry axis which varies along an axis normal to said layer, said
4	method comp	rising/tl	ne steps of:
5		(a)/	providing a substrate;
6		(b)	applying a liquid crystal alignment layer to said substrate;
7		(¢)	applying to said alignment layer a thin film of a polymerizable
8	liquid crystal	materia	It hat has a chiral smectic-C phase having a pitch greater than

G:\ROCL\017\PA

9	the thickness of the thin film to produce a desired twist in the orientation of the
10	optical symmetry axis through the thin film,
11	(d) heat-treating said thin film to obtain a specified configuration of
12	the orientation of the optical symmetry axis through said thin film; and
13	(e) illuminating said thin film with actinic radiation to polymerize
14	said thin film.
1	21. The method of claim 20, wherein said step (c) of applying a thin film
2	comprises the substeps of:
3	(1) dissolving said liquid crystal material in a solvent to form a
4	solution,
5	(2) Capplying said solution to said alignment layer, and
6	evaporating said solvent to form said thin film.
1	22. The method of claim 20, wherein said alignment layer is a previous
2	thin-film layer of the kind described in step (c).
	/
1	23. A liquid crystal display for viewing at various angles with respect to a
2	normal axis perpendicular to the display, comprising:
3	(a) a polarizer layer;
4	(b) an analyzer layer;
5	(c) a liquid crystal layer disposed between the polarizer layer and
6	the analyzer layer;
77/	(d) a first electrode proximate to a first major surface of the liquid
8	crystal layer;
9	(e) a second electrode proximate to a second major surface of the
10	liquid crystal layer, the first and second electrodes being adapted to apply a voltage

G:\ROCL\017\PA

Page 39

11	across the liquid crysta	l layer when	the electrodes	are connected	to a source

12 electrical potential; and

and of

- 13 a compensator in accordance with a specified one of claims 100,
- 14 110, etc., disposed between the polarizer layer and the analyzer layer.
 - The liquid crystal display of claim 23, wherein said compensator is
 - 2 optically matched with said liquid crystal layer to provide a desired viewing
 - 3 characteristic over a specified field of view.

G:\ROCL\017\PA Page 40