CS 224D: DEEP LEARNING FOR NLP MIDTERM REVIEW

Neural Networks: Terminology, Forward Pass, Backpropagation.

Rohit Mundra May 4, 2015

Overview

- Neural Network Example
- Terminology
- Example 1:
 - Forward Pass
 - Backpropagation Using Chain Rule
 - What is delta? From Chain Rule to Modular Error Flow
- Example 2:
 - Forward Pass
 - Backpropagation

Neural Networks

• One of many different types of non-linear classifiers (i.e. leads to non-linear decision boundaries)

• Most common design involves the stacking of affine transformations followed by point-wise (element-wise) non-linearity

An example of a neural network

- This is a 4 layer neural network.
- 2 hidden-layer neural network.
- 2-10-10-3 neural network (complete architecture defn.)

Our first example

- This is a 3 layer neural network
- 1 hidden-layer neural network

Our first example: **Terminology**

Layer 2

Layer 3

Model Input

Model Output

Our first example: Terminology

Layer 2

Layer 3

Model Input

Model Output

Activation Units

Our first example: **Activation Unit Terminology**

 $z_1^{(2)} = W_{11}^{(1)} a_1^{(1)} + W_{12}^{(1)} a_2^{(1)} + W_{13}^{(1)} a_3^{(1)} + W_{14}^{(1)} a_4^{(1)}$ $a_1^{(2)}$ is the 1st activation unit of layer 2 $a_1^{(2)} = \sigma(z_1^{(2)})$

$$z_1^{(1)} = x_1$$

 $z_2^{(1)} = x_2$
 $z_3^{(1)} = x_3$
 $z_4^{(1)} = x_4$

$$a_1^{(1)} = z_1^{(1)}$$
 $a_2^{(1)} = z_2^{(1)}$
 $a_3^{(1)} = z_3^{(1)}$
 $a_4^{(1)} = z_4^{(1)}$

$$z^{(2)} = W^{(1)} a^{(1)}$$

Affine transformation

$$a^{(2)} = \mathbf{\sigma}(z^{(2)})$$

Point-wise/Element-wise non-linearity

$$z^{(3)} = W^{(2)}a^{(2)}$$

Affine transformation

$$a^{(3)} = z^{(3)}$$

 $s = a^{(3)}$

Let us try to calculate the error gradient wrt $W_{14}^{(1)}$. Thus we want to find:

$$\frac{\partial s}{\partial W_{14}^{(1)}}$$

Let us try to calculate the error gradient wrt $W_{14}^{(1)}$ Thus we want to find:

$$\frac{\partial s}{\partial z_{1}^{(3)}} \frac{\partial z_{1}^{(3)}}{\partial a_{1}^{(2)}} \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \frac{\partial z_{1}^{(2)}}{\partial W_{14}^{(1)}}$$

$$\frac{\partial z_{1}^{(3)}}{\partial a_{1}^{(2)}} \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \frac{\partial z_{1}^{(2)}}{\partial W_{14}^{(1)}}$$

$$\frac{\partial (W_{11}^{(2)} a_{1}^{(2)} + W_{12}^{(2)} a_{2}^{(2)})}{\partial a_{1}^{(2)}} \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \frac{\partial z_{1}^{(2)}}{\partial W_{14}^{(1)}}$$

$$W_{11}^{(2)} \frac{\partial a_1^{(2)}}{\partial z_1^{(2)}} \frac{\partial z_1^{(2)}}{\partial W_{14}^{(1)}}$$

$$W_{11}^{(2)}\sigma'\left(z_1^{(2)}\right)\frac{\partial z_1^{(2)}}{\partial W_{14}^{(1)}}$$

$$W_{11}^{(2)}\sigma'\left(z_{1}^{(2)}\right)\frac{\partial(W_{11}^{(1)}a_{1}^{(1)}+W_{12}^{(1)}a_{2}^{(1)}+W_{13}^{(1)}a_{3}^{(1)}+W_{14}^{(1)}a_{4}^{(1)})}{\partial W_{14}^{(1)}}$$

$$W_{11}^{(2)}\sigma'\left(z_{1}^{(2)}\right)a_{4}^{(1)}$$
 $oldsymbol{\delta}_{1}^{(2)}$

Our first example: Backpropagation Observations

We got error gradient wrt $W_{14}^{(1)}$

Required:

- the signal forwarded by $W_{14}^{(1)} = a_4^{(1)}$
- the error propagating backwards $W_{11}^{(2)}$
- the local gradient $\sigma'(z_1^{(2)})$

Our first example: Backpropagation Observations

We tried to get error gradient wrt $W_{14}^{(1)}$

Required:

- the signal forwarded by $W_{14}^{(1)} = a_4^{(1)}$
- the error propagating backwards $W_{11}^{(2)}$
- the local gradient $\sigma'(z_1^{(2)})$

We can do this for all of $W^{(1)}$:

$$\begin{bmatrix} \pmb{\delta}_1^{(2)} a_1^{(1)} & \pmb{\delta}_1^{(2)} a_2^{(1)} & \pmb{\delta}_1^{(2)} a_3^{(1)} & \pmb{\delta}_1^{(2)} a_4^{(1)} \\ \pmb{\delta}_2^{(2)} a_1^{(1)} & \pmb{\delta}_2^{(2)} a_2^{(1)} & \pmb{\delta}_2^{(2)} a_3^{(1)} & \pmb{\delta}_2^{(2)} a_4^{(1)} \end{bmatrix}$$

$$\left(\begin{array}{c} \pmb{\delta}_1^{(2)} \\ \pmb{\delta}_2^{(2)} \end{array} \right) \left(\begin{array}{c} a_1^{(1)} \ a_2^{(1)} \ a_3^{(1)} \ a_4^{(1)} \end{array} \right)$$

Our first example: Let us define δ

 $\delta_1^{(2)}$ is the error flowing backwards at the same point where $z_1^{(2)}$ passed forwards. Thus it is simply the gradient of the error wrt $z_1^{(2)}$.

The chain rule of differentiation just boils down very simple patterns in error backpropagation:

- 1. An error x flowing backwards passes a neuron by getting amplified by the local gradient.
- 2. An error δ that needs to go through an affine transformation distributes itself in the way signal combined in forward pass.

Orange = Backprop. Green = Fwd. Pass

Gradient w.r.t $W^{(2)} = \boldsymbol{\delta}^{(3)} a^{(2)\mathrm{T}}$

- --Reusing the $\delta^{(3)}$ for downstream updates.
- --Moving error vector across affine transformation simply requires multiplication with the transpose of forward matrix
- --Notice that the dimensions will line up perfectly too!

--Moving error vector across point-wise non-linearity requires point-wise multiplication with local gradient of the non-linearity

Gradient w.r.t $W^{(1)} = \boldsymbol{\delta}^{(2)} a^{(1)T}$

Our second example (4-layer network): Backpropagation using error vectors

Our second example (4-layer network): Backpropagation using error vectors

Grad
$$W^{(3)} = \delta^{(4)} a^{(3)T}$$

Grad
$$W^{(2)} = \delta^{(3)} a^{(2)T}$$

Grad
$$W^{(1)} = \delta^{(2)} a^{(1)T}$$

Grad wrt input vector = $W^{(1)T}\delta^{(2)}$

CS224D Midterm Review

Ian Tenney

May 4, 2015

Outline

Backpropagation (continued)
RNN Structure
RNN Backpropagation

Backprop on a DAG

Example: Gated Recurrent Units (GRUs)

GRU Backpropagation

Outline

Backpropagation (continued)

RNN Structure RNN Backpropagation

Backprop on a DAG

Example: Gated Recurrent Units (GRUs)

GRU Backpropagation

Basic RNN Structure

- ► Basic RNN ("Elman network")
- You've seen this on Assignment #2 (and also in Lecture #5)

Basic RNN Structure

Two layers between input and prediction, plus hidden state

$$\begin{array}{lcl} h^{(t)} & = & \operatorname{sigmoid}\left(Hh^{(t-1)} + Wx^{(t)} + b_1\right) \\ \hat{y}^{(t)} & = & \operatorname{softmax}\left(Uh^{(t)} + b_2\right) \end{array}$$

Unrolled RNN

- Helps to think about as "unrolled" network: distinct nodes for each timestep
- Just do backprop on this! Then combine shared gradients.

Backprop on RNN

Usual cross-entropy loss (k-class):

$$\bar{P}(y^{(t)} = j \mid x^{(t)}, \dots, x^{(1)}) = \hat{y}_j^{(t)}$$

$$J^{(t)}(\theta) = -\sum_{j=1}^k y_j^{(t)} \log \hat{y}_j^{(t)}$$

▶ Just do backprop on this! First timestep ($\tau = 1$):

$$\frac{\partial J^{(t)}}{\partial U} \qquad \frac{\partial J^{(t)}}{\partial b_2}$$

$$\frac{\partial J^{(t)}}{\partial H}\Big|_{(t)} \qquad \frac{\partial J^{(t)}}{\partial h^{(t)}} \qquad \frac{\partial J^{(t)}}{\partial W}\Big|_{(t)} \qquad \frac{\partial J^{(t)}}{\partial x^{(t)}}$$

Backprop on RNN

First timestep (s = 0):

$$\begin{array}{ccc} \frac{\partial J^{(t)}}{\partial U} & \frac{\partial J^{(t)}}{\partial b_2} \\ \\ \frac{\partial J^{(t)}}{\partial H}\Big|_{(t)} & \frac{\partial J^{(t)}}{\partial h^{(t)}} & \frac{\partial J^{(t)}}{\partial W}\Big|_{(t)} & \frac{\partial J^{(t)}}{\partial x^{(t)}} \end{array}$$

▶ Back in time $(s = 1, 2, ..., \tau - 1)$

$$\left. \frac{\partial J^{(t)}}{\partial H} \right|_{(t-s)} \qquad \frac{\partial J^{(t)}}{\partial h^{(t-s)}} \qquad \left. \frac{\partial J^{(t)}}{\partial W} \right|_{(t-s)} \qquad \frac{\partial J^{(t)}}{\partial x^{(t-s)}}$$

Backprop on RNN

Yuck, that's a lot of math!

- Actually, it's not so bad.
- Solution: error vectors (δ)

- Chain rule to the rescue!
- $a^{(t)} = Uh^{(t)} + b_2$
- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- ► Gradient is *transpose* of Jacobian:

$$\nabla_a J = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}}\right)^T = \hat{y}^{(t)} - y^{(t)} = \delta^{(2)(t)} \in \mathbb{R}^{k \times 1}$$

Now dimensions work out:

$$\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial b_2} = (\delta^{(2)(t)})^T I \quad \in \mathbb{R}^{(1 \times k) \cdot (k \times k)} = \mathbb{R}^{1 \times k}$$

- Chain rule to the rescue!
- $a^{(t)} = Uh^{(t)} + b_2$
- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Gradient is transpose of Jacobian:

$$\nabla_a J = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}}\right)^T = \hat{y}^{(t)} - y^{(t)} = \delta^{(2)(t)} \in \mathbb{R}^{k \times 1}$$

Now dimensions work out:

$$\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial b_2} = (\delta^{(2)(t)})^T I \quad \in \mathbb{R}^{(1 \times k) \cdot (k \times k)} = \mathbb{R}^{1 \times k}$$

- Chain rule to the rescue!
- $a^{(t)} = Uh^{(t)} + b_2$
- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Gradient is transpose of Jacobian:

$$\nabla_a J = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}}\right)^T = \hat{y}^{(t)} - y^{(t)} = \delta^{(2)(t)} \in \mathbb{R}^{k \times 1}$$

Now dimensions work out:

$$\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial b_2} = (\delta^{(2)(t)})^T I \quad \in \mathbb{R}^{(1 \times k) \cdot (k \times k)} = \mathbb{R}^{1 \times k}$$

- Chain rule to the rescue!
- $a^{(t)} = Uh^{(t)} + b_2$
- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Matrix dimensions get weird:

$$\frac{\partial a^{(t)}}{\partial U} \in \mathbb{R}^{k \times (k \times D_h)}$$

But we don't need fancy tensors:

$$\nabla_U J^{(t)} = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial U}\right)^T = \delta^{(2)(t)} (h^{(t)})^T \in \mathbb{R}^{k \times D_h}$$

▶ NumPy: self.grads.U += outer(d2, hs[t])

- Chain rule to the rescue!
- $a^{(t)} = Uh^{(t)} + b_2$
- $\hat{y}^{(t)} = \operatorname{softmax}(a^{(t)})$
- Matrix dimensions get weird:

$$\frac{\partial a^{(t)}}{\partial U} \in \mathbb{R}^{k \times (k \times D_h)}$$

But we don't need fancy tensors:

$$\nabla_U J^{(t)} = \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial U}\right)^T = \delta^{(2)(t)} (h^{(t)})^T \in \mathbb{R}^{k \times D_h}$$

▶ NumPy: self.grads.U += outer(d2, hs[t])

- Really just need one simple pattern:
- $z^{(t)} = Hh^{(t-1)} + Wx^{(t)} + b_1$
- $h^{(t)} = f(z^{(t)})$
- ▶ Compute error delta ($s = 0, 1, 2, \ldots$):
 - From top: $\delta^{(t)} = \left[h^{(t)} \circ (1 h^{(t)})\right] \circ U^T \delta^{(2)(t)}$
 - ▶ Deeper: $\delta^{(t-s)} = \left[h^{(t-s)} \circ (1 h^{(t-s)})\right] \circ H^T \delta^{(t-s+1)}$
- These are just chain-rule expansions!

$$\frac{\partial J^{(t)}}{\partial z^{(t)}} = \frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}} = (\delta^{(t)})^T$$

- Really just need one simple pattern:
- $z^{(t)} = Hh^{(t-1)} + Wx^{(t)} + b_1$
- $h^{(t)} = f(z^{(t)})$
- ▶ Compute error delta ($s = 0, 1, 2, \ldots$):
 - From top: $\delta^{(t)} = \left[h^{(t)} \circ (1 h^{(t)})\right] \circ U^T \delta^{(2)(t)}$
 - ▶ Deeper: $\delta^{(t-s)} = [h^{(t-s)} \circ (1 h^{(t-s)})] \circ H^T \delta^{(t-s+1)}$
- These are just chain-rule expansions!

$$\frac{\partial J^{(t)}}{\partial z^{(t)}} = \frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}} = (\delta^{(t)})^T$$

These are just chain-rule expansions!

$$\begin{split} \frac{\partial J^{(t)}}{\partial b_1} \bigg|_{(t)} &= \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}} \right) \cdot \frac{\partial z^{(t)}}{\partial b_1} = (\delta^{(t)})^T \frac{\partial z^{(t)}}{\partial b_1} \\ \frac{\partial J^{(t)}}{\partial H} \bigg|_{(t)} &= \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}} \right) \cdot \frac{\partial z^{(t)}}{\partial H} = (\delta^{(t)})^T \frac{\partial z^{(t)}}{\partial H} \\ \frac{\partial J^{(t)}}{\partial z^{(t-1)}} &= \left(\frac{\partial J^{(t)}}{\partial a^{(t)}} \cdot \frac{\partial a^{(t)}}{\partial h^{(t)}} \cdot \frac{\partial h^{(t)}}{\partial z^{(t)}} \right) \cdot \frac{\partial z^{(t)}}{\partial h^{(t-1)}} = (\delta^{(t)})^T \frac{\partial z^{(t)}}{\partial z^{(t-1)}} \end{split}$$

And there's shortcuts for them too:

$$\left(\frac{\partial J^{(t)}}{\partial b_1}\Big|_{(t)}\right)^T = \delta^{(t)}$$

$$\left(\frac{\partial J^{(t)}}{\partial H}\Big|_{(t)}\right)^T = \delta^{(t)} \cdot (h^{(t-1)})^T$$

$$\left(\frac{\partial J^{(t)}}{\partial z^{(t-1)}}\right)^T = \left[h^{(t-1)} \circ (1 - h^{(t-1)})\right] \circ H^T \delta^{(t)} = \delta^{(t-1)}$$

Outline

Backpropagation (continued RNN Structure RNN Backpropagation

Backprop on a DAG

Example: Gated Recurrent Units (GRUs) GRU Backpropagation

Motivation

- Gated units with "reset" and "output" gates
- Reduce problems with vanishing gradients

Figure: You are likely to be eaten by a GRU. (Figure from Chung, et al. 2014)

Intuition

- ▶ Gates z_i and r_i for *each* hidden layer neuron
- $z_i, r_i \in [0, 1]$
- $lacksim ilde{h}$ as "candidate" hidden layer
- \tilde{h} , z, r all depend on on $x^{(t)}$, $h^{(t-1)}$
- $lackbox{ } h^{(t)}$ depends on $h^{(t-1)}$ mixed with $\tilde{h}^{(t)}$

Figure: You are likely to be eaten by a GRU. (Figure from Chung, et al. 2014)

Equations

- $z^{(t)} = \sigma \left(W_z x^{(t)} + U_z h^{(t-1)} \right)$
- $r^{(t)} = \sigma \left(W_r x^{(t)} + U_r h^{(t-1)} \right)$
- $\tilde{h}^{(t)} = \tanh \left(W x^{(t)} + r^{(t)} \circ U h^{(t-1)} \right)$
- $h^{(t)} = z^{(t)} \circ h^{(t-1)} + (1 z^{(t)}) \circ \tilde{h}^{(t)}$
- Optionally can have biases; omitted for clarity.

Figure: You are likely to be eaten by a GRU. (Figure from Chung, et al. 2014)

Same eqs. as Lecture 8, subscripts/superscripts as in Assignment #2.

Backpropagation

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

- lacksquare Start with $\delta^{(t)} = \left(rac{\partial J}{\partial h^{(t)}}
 ight)^T \in \mathbb{R}^d$
- $h^{(t)} = z^{(t)} \circ h^{(t-1)} + (1 z^{(t)}) \circ \tilde{h}^{(t)}$
- Expand chain rule into sum (a.k.a. product rule):

$$\frac{\partial J}{\partial x^{(t)}} = \frac{\partial J}{\partial h^{(t)}} \cdot \left[z^{(t)} \circ \frac{\partial h^{(t-1)}}{\partial x^{(t)}} + \frac{\partial z^{(t)}}{\partial x^{(t)}} \circ h^{(t-1)} \right] + \frac{\partial J}{\partial h^{(t)}} \cdot \left[(1 - z^{(t)}) \circ \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} + \frac{\partial (1 - z^{(t)})}{\partial x^{(t)}} \circ \tilde{h}^{(t)} \right]$$

It gets (a little) better

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

▶ Drop terms that don't depend on $x^{(t)}$:

$$\begin{split} \frac{\partial J}{\partial x^{(t)}} &= \frac{\partial J}{\partial h^{(t)}} \cdot \left[z^{(t)} \circ \frac{\partial h^{(t-1)}}{\partial x^{(t)}} + \frac{\partial z^{(t)}}{\partial x^{(t)}} \circ h^{(t-1)} \right] \\ &+ \frac{\partial J}{\partial h^{(t)}} \cdot \left[(1 - z^{(t)}) \circ \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} + \frac{\partial (1 - z^{(t)})}{\partial x^{(t)}} \circ \tilde{h}^{(t)} \right] \\ &= \frac{\partial J}{\partial h^{(t)}} \cdot \left[\frac{\partial z^{(t)}}{\partial x^{(t)}} \circ h^{(t-1)} + (1 - z^{(t)}) \circ \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} \right] \\ &- \frac{\partial J}{\partial h^{(t)}} \frac{\partial z^{(t)}}{\partial x^{(t)}} \circ \tilde{h}^{(t)} \end{split}$$

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

- Now we really just need to compute two things:
- Output gate:

$$\frac{\partial z^{(t)}}{\partial x^{(t)}} = z^{(t)} \circ (1 - z^{(t)}) \circ W_z$$

▶ Candidate \tilde{h} :

$$\frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} = (1 - (\tilde{h}^{(t)})^2) \circ W + (1 - (\tilde{h}^{(t)})^2) \circ \frac{\partial r^{(t)}}{\partial x^{(t)}} \circ Uh^{(t-1)}$$

- ▶ Ok, I lied there's a third.
- ▶ Don't forget to check all paths!

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

- Now we really just need to compute two things:
- Output gate:

$$\frac{\partial z^{(t)}}{\partial x^{(t)}} = z^{(t)} \circ (1 - z^{(t)}) \circ W_z$$

▶ Candidate \tilde{h} :

$$\frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} = (1 - (\tilde{h}^{(t)})^2) \circ W$$

$$+ (1 - (\tilde{h}^{(t)})^2) \circ \frac{\partial r^{(t)}}{\partial x^{(t)}} \circ Uh^{(t-1)}$$

- ▶ Ok, I lied there's a third.
- ▶ Don't forget to check all paths!

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

- Now we really just need to compute two things:
- Output gate:

$$\frac{\partial z^{(t)}}{\partial x^{(t)}} = z^{(t)} \circ (1 - z^{(t)}) \circ W_z$$

▶ Candidate \tilde{h} :

$$\begin{split} \frac{\partial \tilde{h}^{(t)}}{\partial x^{(t)}} = & (1 - (\tilde{h}^{(t)})^2) \circ W \\ & + (1 - (\tilde{h}^{(t)})^2) \circ \frac{\partial r^{(t)}}{\partial x^{(t)}} \circ U h^{(t-1)} \end{split}$$

- Ok, I lied there's a third.
- Don't forget to check all paths!

Multi-path to compute $\frac{\partial J}{\partial x^{(t)}}$

Last one:

$$\frac{\partial r^{(t)}}{\partial x^{(t)}} = r^{(t)} \circ (1 - r^{(t)}) \circ W_r$$

- Now we can just add things up!
- (I'll spare you the pain...)

Whew.

- Why three derivatives?
- ▶ Three arrows from $x^{(t)}$ to distinct nodes
- Four paths total $(\frac{\partial z^{(t)}}{\partial x^{(t)}}$ appears twice)

Whew.

- GRUs are complicated
- All the pieces are simple
- Same matrix gradients that you've seen before

Summary

- Check your dimensions!
- Write error vectors δ ; just parentheses around chain rule
- Combine simple operations to make complex network
 - Matrix-vector product
 - Activation functions (tanh, sigmoid, softmax)

Good luck on Wednesday!

May the 4th be with you!

CS 224d Midterm Review (word vectors)

Peng Qi

May 5, 2015

Outline

- word2vec and GloVe revisited
- word2vec with backpropagation

Outline

- word2vec and GloVe revisited
 - ► Skip-gram revisited
 - ▶ (Optional) CBOW and its connection to Skip-gram
 - (Optional) word2vec as matrix factorization (conceptually)
 - ► GloVe v.s. word2vec
- word2vec with backpropagation

Skip-gram

- ► *Task:* given a center word, predict its context words
- ► For each word, we have an "input vector" v_w and an "output vector" v_w'

Skip-gram

We have seen two types of costs for an expected word given a vector prediction r

$$CE(w_i|r) = -\log\left(\frac{\exp(r^\top v'_{w_i})}{\sum_{j=1}^{|V|} \exp(r^\top v'_{w_j})}\right)$$

$$\begin{aligned} \textit{NEG}(w_i|r) &= -\log(\sigma(r^\top v'_{w_i})) \\ &- \sum_{k=1}^K \log(\sigma(-r^\top v'_{w_k})) \end{aligned}$$

In the case of skip-gram, the vector prediction r is just the "input vector" of the center word, v_{w_i} .

 $\sigma(\cdot)$ is the sigmoid (logistic) function.

Skip-gram

Now we have all the pieces of skip-gram, the cost for a context window $[w_{i-C}, \cdots, w_{i-1}, w_i, w_{i+1}, \cdots, w_{i+C}]$ is (w_i) is the center word)

$$J_{\text{skip-gram}}([w_{i-C}, \cdots, w_{i+C}]) = \sum_{i-C \le j \le i+C, i \ne j} F(w_j | v_{w_i})$$

where F is one of the cost functions we defined in the previous slide.

You might ask: but why are we introducing so many notations?

Skip-gram v.s. CBOW

All word2vec figures are from http://arxiv.org/pdf/1301.3781.pdf

word2vec as matrix factorization (conceptually)

Matrix factorization

$$\begin{bmatrix} M \end{bmatrix}_{n \times n} \approx \begin{bmatrix} A^{\top} \end{bmatrix}_{n \times k} \begin{bmatrix} B \end{bmatrix}_{k \times n}$$
$$M_{ij} \approx a_i^{\top} b_j$$

▶ Imagine M is a matrix of counts for events co-occurring, but we only get to observe the co-occurrences one at a time. E.g.

$$M = \left[\begin{array}{rrr} 1 & 0 & 4 \\ 0 & 0 & 2 \\ 1 & 3 & 0 \end{array} \right]$$

but we only see (1,1), (2,3), (3,2), (2,3), (1,3), ...

word2vec as matrix factorization (conceptually)

$$M_{ij} pprox a_i^ op b_j$$

- ▶ Whenever we see a pair (i,j) co-occur, we try to increasing $a_i^{\top}b_j$
- ▶ We also try to make all the other inner-products smaller to account for pairs never observed (or unobserved yet), by decreasing $a_{\neg i}^{\top}b_{j}$ and $a_{i}^{\top}b_{\neg j}$
- ▶ Remember from the lecture that the word co-occurrence matrix usually captures the semantic meaning of a word? For word2vec models, roughly speaking, M is the windowed word co-occurrence matrix, A is the output vector matrix, and B is the input vector matrix.
- Nhy not just use one set of vectors? It's equivalent to A = B in our formulation here, but less constraints is usually easier for optimization.

GloVe v.s. word2vec

	Fast training	Efficient usage of statistics	Quality affected by size of corpora	Captures complex patterns
Direct prediction (word2vec) GloVe	Scales with size of corpus	No	No*	Yes
	Yes	Yes	No	Yes

^{*} Skip-gram and CBOW are qualitatively different when it comes to smaller corpora

Outline

- word2vec and GloVe revisited
- word2vec with backpropagation

word2vec with backpropagation

$$CE(w_i|r) = -\log\left(rac{\exp(r^{ op}v_{w_i}')}{\sum_{j=1}^{|V|}\exp(r^{ op}v_{w_j}')}
ight)$$
 $CE(w_i|r) = CE(\hat{y}, y_i)$

$$egin{aligned} \mathsf{CE}(w_i|r) &= \mathsf{CE}(\hat{y},y_i) \ \hat{y} &= \mathrm{softmax}(\theta) \ heta &= (V')^{ op} r \end{aligned}$$

$$\delta = \frac{\partial CE}{\partial \theta} = \hat{y} - y_i$$
$$\frac{\partial CE}{\partial V'} = r\delta^{\top}$$
$$\frac{\partial CE}{\partial r} = V'\delta$$

Thanks for your attention and best of luck with the mid-term!

Any questions?