```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from collections import Counter
from sklearn import feature_extraction, model_selection, naive_bayes, metrics, svm
from IPython.display import Image
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline

data = pd.read_csv('/content/archive.zip', encoding='latin-1')
data.head(n=10)
```

	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN
1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN
3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN
4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN
5	spam	FreeMsg Hey there darling it's been 3 week's $$n_{\cdots}$$	NaN	NaN	NaN
6	ham	Even my brother is not like to speak with me	NaN	NaN	NaN

As ner vour request 'Melle Melle (Oru

```
count_Class=pd.value_counts(data["v1"], sort= True)
count_Class.plot(kind= 'bar', color= ["blue", "orange"])
plt.title('Bar chart')
plt.show()
```



```
count_Class.plot(kind = 'pie', autopct='%1.0f%%')
plt.title('Pie chart')
plt.ylabel('')
plt.show()
```

Pie chart


```
count1 = Counter(" ".join(data[data['v1']=='ham']["v2"]).split()).most_common(20)
df1 = pd.DataFrame.from_dict(count1)
df1 = df1.rename(columns={0: "words in non-spam", 1: "count"})
count2 = Counter(" ".join(data[data['v1']=='spam']["v2"]).split()).most_common(20)
df2 = pd.DataFrame.from_dict(count2)
df2 = df2.rename(columns={0: "words in spam", 1: "count_"})

df1.plot.bar(legend = False)
y_pos = np.arange(len(df1["words in non-spam"]))
plt.xticks(y_pos, df1["words in non-spam"])
plt.title('More frequent words in non-spam messages')
plt.xlabel('words')
plt.ylabel('number')
plt.show()
```



```
df2.plot.bar(legend = False, color = 'orange')
y_pos = np.arange(len(df2["words in spam"]))
plt.xticks(y_pos, df2["words in spam"])
plt.title('More frequent words in spam messages')
plt.xlabel('words')
plt.ylabel('number')
plt.show()
```

More frequent words in spam messages 600 500 400 300 200 100 0 your call or the the for you from have ur with Call and o words

```
f = feature_extraction.text.CountVectorizer(stop_words = 'english')
X = f.fit\_transform(data["v2"])
np.shape(X)
     (5572, 8404)
data["v1"]=data["v1"].map({'spam':1,'ham':0})
X_{\texttt{train}}, \ X_{\texttt{test}}, \ y_{\texttt{train}}, \ y_{\texttt{test}} = \texttt{model\_selection.train\_test\_split}(X, \ \mathsf{data['v1']}, \ \mathsf{test\_size=0.33}, \ \mathsf{random\_state=42})
print([np.shape(X_train), np.shape(X_test)])
     [(3733, 8404), (1839, 8404)]
list_alpha = np.arange(1/100000, 20, 0.11)
score_train = np.zeros(len(list_alpha))
score_test = np.zeros(len(list_alpha))
recall_test = np.zeros(len(list_alpha))
precision_test= np.zeros(len(list_alpha))
count = 0
for alpha in list_alpha:
    bayes = naive_bayes.MultinomialNB(alpha=alpha)
    bayes.fit(X_train, y_train)
    score_train[count] = bayes.score(X_train, y_train)
    score_test[count] = bayes.score(X_test, y_test)
    recall_test[count] = metrics.recall_score(y_test, bayes.predict(X_test))
    precision_test[count] = metrics.precision_score(y_test, bayes.predict(X_test))
    count = count + 1
matrix = np.matrix(np.c_[list_alpha, score_train, score_test, recall_test, precision_test])
models = pd.DataFrame(data = matrix, columns =
              ['alpha', 'Train Accuracy', 'Test Accuracy', 'Test Recall', 'Test Precision'])
models.head(n=10)
```

alpha	Train Accuracy	Test Accuracy	Test Recall	Test Precision
0.00001	0.998661	0.974443	0.920635	0.895753
0.11001	0.997857	0.976074	0.936508	0.893939
0.22001	0.997857	0.977162	0.936508	0.900763
0.33001	0.997589	0.977162	0.936508	0.900763
0.44001	0.997053	0.977162	0.936508	0.900763
0.55001	0.996250	0.976618	0.936508	0.897338
0.66001	0.996518	0.976074	0.932540	0.896947
0.77001	0.996518	0.976074	0.924603	0.903101
0.88001	0.996250	0.976074	0.924603	0.903101
0.99001	0.995982	0.976074	0.920635	0.906250
	0.00001 0.11001 0.22001 0.33001 0.44001 0.55001 0.66001 0.77001 0.88001	0.00001 0.998661 0.11001 0.997857 0.22001 0.997857 0.33001 0.997589 0.44001 0.997053 0.55001 0.996250 0.66001 0.996518 0.77001 0.996250 0.88001 0.996250	0.00001 0.998661 0.974443 0.11001 0.997857 0.976074 0.22001 0.997857 0.977162 0.33001 0.997589 0.977162 0.44001 0.997053 0.977162 0.55001 0.996250 0.976618 0.66001 0.996518 0.976074 0.77001 0.996250 0.976074 0.88001 0.996250 0.976074	0.00001 0.998661 0.974443 0.920635 0.11001 0.997857 0.976074 0.936508 0.22001 0.997857 0.977162 0.936508 0.33001 0.997589 0.977162 0.936508 0.44001 0.997053 0.977162 0.936508 0.55001 0.996250 0.976618 0.936508 0.66001 0.996518 0.976074 0.932540 0.77001 0.996250 0.976074 0.924603 0.88001 0.996250 0.976074 0.924603

```
best_index = models['Test Precision'].idxmax()
models.iloc[best_index, :]
```

```
alpha 15.730010
Train Accuracy 0.979641
Test Accuracy 0.969549
Test Recall 0.777778
Test Precision 1.000000
Name: 143, dtype: float64
```

models[models['Test Precision']==1].head(n=5)

```
alpha Train Accuracy Test Accuracy Test Recall Test Precision
143 15.73001
                     0.979641
                                     0.969549
                                                  0.777778
                                                                        1.0
144 15.84001
                     0.979641
                                     0.969549
                                                  0.777778
                                                                        1.0
145 15.95001
                     0.979641
                                     0.969549
                                                  0.777778
                                                                        1.0
146 16.06001
                                     0.969549
                     0.979373
                                                  0.777778
                                                                        1.0
147 16.17001
                     0.979373
                                     0.969549
                                                  0.777778
                                                                        1.0
```

Train Accuracy 0.979641
Test Accuracy 0.969549
Test Recall 0.777778
Test Precision 1.000000
Name: 143, dtype: float64

Predicted 0 Predicted 1 Actual 0 1587 0 Actual 1 56 196

```
list_C = np.arange(500, 2000, 100) #100000
score_train = np.zeros(len(list_C))
score_test = np.zeros(len(list_C))
recall_test = np.zeros(len(list_C))
precision_test= np.zeros(len(list_C))
count = 0
for C in list C:
   svc = svm.SVC(C=C)
   svc.fit(X_train, y_train)
   score_train[count] = svc.score(X_train, y_train)
    score_test[count] = svc.score(X_test, y_test)
   recall_test[count] = metrics.recall_score(y_test, svc.predict(X_test))
   precision_test[count] = metrics.precision_score(y_test, svc.predict(X_test))
   count = count + 1
matrix = np.matrix(np.c_[list_C, score_train, score_test, recall_test, precision_test])
models = pd.DataFrame(data = matrix, columns =
             ['C', 'Train Accuracy', 'Test Accuracy', 'Test Recall', 'Test Precision'])
models.head(n=10)
```

	С	Train Accuracy	Test Accuracy	Test Recall	Test Precision
0	500.0	1.0	0.979337	0.853175	0.99537
1	600.0	1.0	0.979337	0.853175	0.99537
2	700.0	1.0	0.979337	0.853175	0.99537
3	800.0	1.0	0.979337	0.853175	0.99537
4	900.0	1.0	0.979337	0.853175	0.99537
5	1000.0	1.0	0.979337	0.853175	0.99537
6	1100.0	1.0	0.979337	0.853175	0.99537
7	1200.0	1.0	0.979337	0.853175	0.99537
8	1300.0	1.0	0.979337	0.853175	0.99537
9	1400.0	1.0	0.979337	0.853175	0.99537

best_index = models['Test Precision'].idxmax()
models.iloc[best_index, :]

C 500.000000
Train Accuracy 1.000000
Test Accuracy 0.979337
Test Recall 0.853175
Test Precision 0.995370
Name: 0, dtype: float64