Delta-X Workshop -9th May 2024

Numerical Understanding of Marsh Accretion & Resilience – NUMAR

Robert R. Twilley¹, Principal Investigator
Andre Rovai ^{1,2}
Andy Cassaway ⁴
Alex Christensen ³
Ivan A. Vargas-Lopez¹, Postdoctoral Researcher
Pradipta Biswas¹, Graduate Assistant

¹ Louisiana State University
² U.S. Army Engineer Research and Development Center
³ Jet Propulsion Laboratory, California Institute of Technology
⁴ GIS Engineering, LLC

Delta-X Workshop | 9th May 2024

Recap of Evolution

Variables Used in the Model

Symbol	Definition	Unit
oms	Organic matter loading rate on the feldspar	$g cm^{-2} yr^{-1}$
si	Inorganic matter loading rate on the feldspar	$\mathrm{g}\mathrm{cm}^{-2}\mathrm{yr}^{-1}$
b_{o}	Self-packing density of organic matter	g cm ⁻³
b_i	Self-packing density of inorganic matter	g cm ⁻³
c_0	Lignin content in the dry mass deposit over feldspar	$g g^{-1}$
c_1	Ash content in the biomass	$g g^{-1}$
c_2	Cellulose content in the surface deposit	$\mathrm{g}\mathrm{g}^{-1}$
c_4	Cellulose content in the biomass	$\mathrm{g}\mathrm{g}^{-1}$
e	Root distribution parameter	cm ⁻¹
fc_1	Lignin content in the fine roots	$\mathrm{g}\mathrm{g}^{-1}$
k_{b}	Belowground decomposition rate of labile organic matter	yr ^{−1}
k_c	Cellulose decomposition rate	yr ^{−1}
k_l	Lignin decomposition rate	yr ^{−1}
k_r	Fine root turnover rate	yr ^{−1}
R_0	Live root biomass at the surface	g cm ⁻²

Source of Variables

Symbol	Definition	Unit	
oms	Organic matter loading rate on	g cm ⁻² yr ⁻¹	
	the feldspar		Cassaway et al. (2024);
si	Inorganic matter loading rate on	$g cm^{-2} yr^{-1}$	Twilley et al. (2023)
	the feldspar		
c_0	Lignin content in the dry mass	g g - r	
	deposit over feldspar		
c_1	Ash content in the biomass	$g g^{-1}$	
fc_1	Lignin content in the fine roots	$\mathrm{g}\mathrm{g}^{-1}$	Fontenot (2022)
k_{b}	Belowground decomposition rate	yr ^{−1}	
	of labile organic matter		
k_{c}	Cellulose decomposition rate	yr ⁻¹	Means et al. (1985)
$\mathbf{k_l}$	Lignin decomposition rate	yr ^{−1}	Ivicalis et al. (1903)
c_4	Cellulose content in the biomass	$g g^{-1}$	Wilson (1985)

Delta-X Workshop| 9th May 2024

Active Brackish

Active Saline

Calibration done using Data from Castañeda-Moya & Solohin (2023)

Calibration of Root Biomass at the surface and Root Attenuation Rate

$$Root\ biomass, R = R_0 \exp(-eD)$$

$$Objective\ function, \min(R_o,e) \sum_{n=1}^n \left\| R_{ob,i} - R_{pre,i} \right\|^2$$

```
R_0 = Root biomass at the surface (g cm^{-2})
```

 $e = \text{attenuation rate } (cm^{-1})$

D =Corresponding soil Depth (cm)

Observation data from Casteneda-Moya & Solohin (2023)

n is the respective data points in the array

 $R_{ob,i}$ = observation data from field-based measurements

 $R_{pre,i}$ = prediction from iteration

Calibration of Self-packing Density of Organic and Inorganic Matter

$$BD = \frac{1}{\frac{OM}{b_o} + \frac{IM}{b_i}}$$

Objective function,
$$\frac{1}{n} \sum_{n=1}^{n} \left\| BD_{ob,i} - BD_{pre,i} \right\|^{2}$$

OM, $IM = Organic and inorganic matter fraction from field observation <math>(g \ g^{-1})$

 b_0 , b_i = Self packing density of organic and inorganic matter (g cm^{-3})

Observation data from Casteneda-Moya & Solohin (2023)

n is the respective data points in the array

 $BD_{ob,i}$ = observation data (BD) from field-based measurements

 $BD_{pre,i}$ = prediction (BD) from iteration

Calibration of Root Turnover Rate

- Root and its turnover are main driver for addition of organic matter in the belowground soil.
- Root turnover can be set in a range
- Once randomized, calculated the top 50cm soils average root turnover rate
- Find the most matching root turnover which produce the nearest OM% aligned with field observation

Calibrated Parameters

Delta-X Workshop| 9th May 2024

Landscape NUMAR

- It's a direct adaptation of unit NUMAR to landscape.
- Every pixel or eco-geomorphic cells have to be populated with the cell specific parameters.
- Right now, we don't have enough data to populate all of the cells. But we populated using the site information available for a few of the study sites of Delta-X in different salinity zone.

Landscape NUMAR

Pixel/ cell

Landscape NUMAR General Workflow Overview

Preliminary Results

Discussion

- The Newest version provides wide range of output variables including soil accretion, bulk density, organic matter content, volume contribution of different source, carbon density, carbon sequestration, necromass etc.
- Parameter uncertainty demands more intensive field study for the population of the cells.
- It's better not to depend on only one site in each salinity zone for a generalization and population landscape input parameters.
- Mechanistic or process-based model demands precise input parameters to get realistic outputs through simulation.
- Organic and inorganic matter loading rate, self-packing densities, root turnover, root biomass at the surface are among most affecting parameters.
- The model generality have been increased over the years. And it can go beyond marsh environment and can be effective in any other environments.

THANK YOU... Any questions?