# СОДЕРЖАНИЕ

| ВВЕДІ             | ЕНИЕ6                                                                        |
|-------------------|------------------------------------------------------------------------------|
| 1. ПО             | ОСТРОЕНИЕ СУТОЧНЫХ ГРАФИКОВ НАГРУЗКИ7                                        |
| 1.1.              | Исходные данные к курсовой работе7                                           |
| 1.2               | Построение графиков нагрузки                                                 |
| 2. ПО<br>ЭЛЕКТРОО | ОСТРОЕНИЕ ХАРАКТЕРИСТИК ОТНОСИТЕЛЬНЫХ ПРИРОСТОВ<br>СТАНЦИЙ И ЭНЕРГОСИСТЕМЫ11 |
| 2.1               | Расчет характеристики относительных приростов 6хК-300 11                     |
| 2.2               | Расчет характеристики относительных приростов 5хК-200                        |
| 2.3               | Расчет характеристики относительных приростов КЭС 4xK-500 16                 |
| 2.4               | Расчет характеристики относительных приростов 2хПТ-60 18                     |
| 2.5               | Расчет характеристики относительных приростов 3xT-250                        |
|                   | АСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ МЕЖДУ<br>СТАНЦИЯМИ ЭНЕРГОСИСТЕМЫ25        |
| 3.1 электрост     | Определение распределения электрической энергии между ганциями               |
| 3.2               | Определение распределения тепла между электростанциями 26                    |
| 3.3               | Определение годового отпуска тепла на ТЭЦ                                    |
|                   | АСЧЁТ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ РАБОТЫ<br>ИСТЕМЫ                     |
| 4.1               | Расчет годовой выработки мощности по энергосистеме 30                        |
| 4.2               | Расчет годового расхода топлива по энергосистеме                             |
| 4.3               | Расчет эксплуатационных расходов в энергосистеме                             |
| 4.4               | Расчет себестоимость отпуска тепла и электроэнергии                          |
| 4.5               | Расчет основных показателей экономической эффективности 40                   |
| ЗАКЛІ             | ОЧЕНИЕ44                                                                     |
| СПИС              | ОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ45                                                 |

| ПРИЛОЖЕНИЕ А | 40 | 6 |
|--------------|----|---|
| ПРИЛОЖЕНИЕ Б | 5  | 5 |

#### **ВВЕДЕНИЕ**

Энергетика - ведущая отрасль промышленности в стране, от выбора долгосрочной стратегии которой зависит развитие экономики всей страны.

Электроэнергетика находится перед необходимостью решения большого комплекса задач, в реализации которых менеджмент имеет важное значение. Внедрение менеджмента во все звенья структуры управления электроэнергетикой играет решающую роль в ее функционировании и развитии.

Менеджмент является интеграционным процессом, с помощью которого профессионально подготовленные специалисты-менеджеры создают организации и управляют ими путем постановки цели и разработки способов их достижения, выполняя при этом функции планирования, организации, мотивации, контроля и координирования, что обеспечивает условия для производительного и эффективного труда работников организации и получение результатов, соответствующего им.

Конечной целью менеджмента является обеспечение эффективной деятельности организации путем рационального использования всех имеющихся ресурсов.

Основными целями данной курсовой работы является: закрепление полученных при изучении дисциплины знаний, их систематизация и расширение; самостоятельное овладение основами менеджмента с учетом специфики энергетики и их применение на практике; проявление способностей студентов к научным исследованиям и анализу.

Задачи курсовой работы:

- построить графики нагрузок и характеристики относительных приростов;
- распределить электрическую энергию между электростанциями энергосистемы;
- рассчитать технико-экономические показатели энергосистемы.

Структура курсовой работы:

- построение суточных графиков нагрузки;
- построение характеристик относительных приростов электростанций и энергосистемы;
- распределение электрической энергии между электростанциями энергосистемы;
- расчет технико-экономических показателей работы энергосистемы.

## 1. ПОСТРОЕНИЕ СУТОЧНЫХ ГРАФИКОВ НАГРУЗКИ

## 1.1.Исходные данные к курсовой работе

- 2. КЭС 2000 MBт (4×K-500, на буром угле (б.у.));
- 3. КЭС 1000 МВт (5×К-200, на каменном угле (к.у.));
- 4. КЭС 1800 МВт (6×К-300, на газу (г.));
- 5. ТЭЦ 120 МВт ( $2 \times \Pi T$ -60, на газу (г.));
- 6. ТЭЦ 750 MBт (3×T-250, на каменном угле (к.у.));

## 1.2 Построение графиков нагрузки

Для решения задачи необходимо знать объем и режим годового электропотребления. С целью упрощения расчетов весь год представляется в виде двух периодов — летнего и зимнего. Продолжительность летнего периода принимается равной  $n_n=210$  суток, а зимнего  $n_3=155$  суток.

Таким образом, для выполнения работы необходимо знание двух графиков электрической нагрузки — зимнего и летнего.

Максимальную нагрузку рекомендуется принимать на уровне, равном 95% установленной мощности энергосистемы:

$$P_{\text{MaKC}} = (2000 + 1000 + 1800 + 120 + 750) \times 0.95 = 5387 \text{ MBT}$$

Данные по конфигурации этих графиков приведены в таблице 1.1.

Таблица 1.1 – Суточные графики нагрузок для летнего и зимнего периодов

| Часы суток | Летний период | Рл, МВт | Зимний период | Рз, МВт |
|------------|---------------|---------|---------------|---------|
| 1          | 0,5           | 2694    | 0,6           | 3232    |
| 2          | 0,5           | 2694    | 0,6           | 3232    |
| 3          | 0,5           | 2694    | 0,6           | 3232    |
| 4          | 0,5           | 2694    | 0,6           | 3232    |
| 5          | 0,55          | 2963    | 0,65          | 3502    |
| 6          | 0,6           | 3232    | 0,7           | 3771    |
| 7          | 0,7           | 3771    | 0,8           | 4310    |
| 8          | 0,75          | 4040    | 0,9           | 4848    |
| 9          | 0,8           | 4310    | 0,96          | 5172    |
| 10         | 0,8           | 4310    | 0,95          | 5118    |
| 11         | 0,78          | 4202    | 0,9           | 4848    |
| 12         | 0,75          | 4040    | 0,85          | 4579    |
| 13         | 0,65          | 3502    | 0,85          | 4579    |
| 14         | 0,7           | 3771    | 0,9           | 4848    |
| 15         | 0,7           | 3771    | 0,94          | 5064    |
| 16         | 0,72          | 3879    | 0,95          | 5118    |

Продолжение таблицы 1.1

| продолжение п |      |      |      |      |
|---------------|------|------|------|------|
| 17            | 0,73 | 3933 | 0,97 | 5225 |
| 18            | 0,73 | 3933 | 1    | 5387 |
| 19            | 0,7  | 3771 | 0,95 | 5118 |
| 20            | 0,65 | 3502 | 0,9  | 4848 |
| 21            | 0,6  | 3232 | 0,85 | 4579 |
| 22            | 0,6  | 3232 | 0,8  | 4310 |
| 23            | 0,55 | 2963 | 0,7  | 3771 |
| 24            | 0,55 | 2963 | 0,65 | 3502 |

. Построим суточный график нагрузки для летнего и зимнего периода (рисунок 1.1 и 1.2 соответственно).



Рисунок 1.1 – Суточный график нагрузки летом

## Суточный график нагрузки зимой



Рисунок 1.2 – Суточный нагрузки зимой

Построение годового графика нагрузки начинается с максимальной нагрузки. Продолжительность ее в часах равна количеству зимних суток, умноженных на число часов в сутках, в течение которых эта нагрузка имеет место (для максимальной нагрузки составляет 1 ч).

Данные для годового графика нагрузки приведены в таблице 1.2.

Таблица 1.2 – Годовой график нагрузки

| Нагрузка, о.е | Нагрузка Р, МВт | Длительность часов t, ч |
|---------------|-----------------|-------------------------|
| 1             | 5387            | 155                     |
| 0,97          | 5225            | 155                     |
| 0,96          | 5172            | 155                     |
| 0,95          | 5118            | 465                     |
| 0,94          | 5064            | 155                     |
| 0,9           | 4848            | 620                     |
| 0,85          | 4579            | 465                     |
| 0,8           | 4310            | 730                     |
| 0,78          | 4202            | 210                     |
| 0,75          | 4040            | 420                     |
| 0,73          | 3933            | 420                     |
| 0,72          | 3879            | 210                     |
| 0,7           | 3771            | 1150                    |
| 0,65          | 3502            | 730                     |
| 0,6           | 3232            | 1250                    |
| 0,55          | 2963            | 630                     |
| 0,5           | 2694            | 840                     |

Построим годовой график нагрузки (рисунок 1.3).



Рисунок 1.3 – Годовой график электрической нагрузки по продолжительности.

# 2. ПОСТРОЕНИЕ ХАРАКТЕРИСТИК ОТНОСИТЕЛЬНЫХ ПРИРОСТОВ ЭЛЕКТРОСТАНЦИЙ И ЭНЕРГОСИСТЕМЫ

На основании характеристик относительных приростов (XOП) электростанций осуществляется экономическое распределение активной электрической нагрузки между электростанциями энергосистемы. Критерием экономичности является минимум затрат на топливо.

Характеристика относительных приростов энергоблока или электростанции определяется как:

$$\varepsilon_{\text{мин}} = q \times r_{\text{мин}}$$

где q – относительный прирост расхода тепла турбоагрегата;

r – относительный прирост расхода топлива котлоагрегата.

Таким образом, для построения графика XOП электростанции необходимы XOП турбо- и котлоагрегатов. XOП котлоагрегатов приведены в [2, табл. 3.1], энергетические характеристики турбоагрегатов приведены в [2, табл. 3.2].

## 2.1 Расчет характеристики относительных приростов 6хК-300

Минимальная нагрузка котлоагрегата:

$$Q_{\kappa a}^{\text{мин}} = 0.5 \times Q_{\kappa a}^{\text{ном}} = 0.5 \times 605 = 302.5 \, \Gamma$$
кал/ч

Минимальная электрическая нагрузка:

$$\begin{split} P_{\text{кэс(зим)}}^{\text{мин}} &= \frac{Q_{\text{ка}}^{\text{мин}} - Q_{\text{хх}}}{q_1} \times n_1 = \frac{302,5-35}{1,81} \times 6 = 886,74 \text{ MBT} \\ P_{\text{кэс(лет)}}^{\text{мин}} &= \frac{Q_{\text{ка}}^{\text{мин}} - Q_{\text{хx}}}{q_1} \times n_1 = \frac{302,5-35}{1,81} \times (6-1) = 738,95 \text{ MBT} \\ Q_{\text{ка}}^{\text{эк}} &= Q_{\text{хx}} + q_1 \times P_{\text{эк}} = 35 + 1,81 \times 270 = 523,7 \text{ Гкал/ч} \\ Q_{\text{ка}}^{\text{эк}} &= \frac{Q_{\text{ка}}^{\text{эк}}}{Q_{\text{ка}}^{\text{ном}}} \times 100 = \frac{523,7}{605} \times 100 = 86,56 \% \\ P_{\text{кэс(зим)}}^{\text{эк}} &= P_{\text{эк}} \times n = 270 \times 6 = 1620 \text{ MBT} \\ P_{\text{кэс(лет)}}^{\text{эк}} &= P_{\text{эк}} \times (n-1) = 270 \times (6-1) = 1350 \text{ MBT} \\ P_{\text{кэс(зим)}}^{\text{макс}} &= P_{\text{макс}} \times n = 300 \times 6 = 1800 \text{ MBT} \\ P_{\text{кэс(лет)}}^{\text{макс}} &= P_{\text{макс}} \times (n-1) = 300 \times (6-1) = 1500 \text{ MBT} \end{split}$$

Относительный прирост котла:

$$\begin{split} r_{_{3\mathrm{K}}} &= r_{_{11}}' + \frac{Q_{_{\mathrm{Ka}\%}}^{_{3\mathrm{K}}} - Q_{_{1}}}{Q_{_{2}} - Q_{_{1}}} \times (r_{_{21}}' - r_{_{11}}') = 0,16 + \frac{86,56 - 80}{90 - 80} \times \\ & \times (0,165 - 0,16) = 0,163 \\ Q_{_{\mathrm{Ka}}}^{_{\mathrm{MAKC}}} &= Q_{_{\mathrm{XX}}} + q_{_{1}} \times P_{_{9\mathrm{K}}} + q_{_{1}}' \times (P - P_{_{9\mathrm{K}}}) = 35 + 1,81 \times 270 + 1,93 \times \\ & \times (300 - 270) = 581,6 \, \Gamma_{\mathrm{Ka}\pi/4} \\ Q_{_{\mathrm{Ka}\%}}^{_{\mathrm{MAKC}}} &= \frac{Q_{_{\mathrm{Ka}}}^{_{\mathrm{MAKC}}}}{Q_{_{\mathrm{Ka}}}^{_{\mathrm{HOM}}}} \times 100 = \frac{581,6}{605} \times 100 = 96,13 \, \% \\ r_{_{\mathrm{MAKC}}} &= r_{_{11}}' + \frac{Q_{_{\mathrm{Ka}\%}}^{_{\mathrm{MAKC}}} - Q_{_{1}}}{Q_{_{2}} - Q_{_{1}}} \times (r_{_{21}}' - r_{_{11}}') = \\ &= 0,165 + \frac{96,13 - 90}{100 - 90} \times (0,171 - 0,165) = 0,169 \\ \varepsilon_{_{\mathrm{MH}}} &= q_{_{0}} \times r_{_{\mathrm{MH}}} = 1,81 \times 0,151 = 0,273 \, \mathrm{tyr/MBt} \times \mathrm{y} \\ \varepsilon_{_{3\mathrm{K}}} &= q_{_{0}}' \times r_{_{3\mathrm{K}}} = 1,81 \times 0,163 = 0,295 \, \mathrm{tyr/MBt} \times \mathrm{y} \\ \varepsilon_{_{_{3\mathrm{K}}}} &= q_{_{0}}' \times r_{_{3\mathrm{K}}} = 1,93 \times 0,163 = 0,315 \, \mathrm{tyr/MBt} \times \mathrm{y} \\ \varepsilon_{_{\mathrm{MAKC}}} &= q_{_{0}}' \times r_{_{\mathrm{MAKC}}} = 1,93 \times 0,169 = 0,326 \, \mathrm{tyr/MBt} \times \mathrm{y} \end{split}$$

Сведем результаты расчета для КЭС 6хК-300 в таблицу 2.1:

Таблица 2.1 – ХОП КЭС 6хК-300

| Нагрузка |      |        | q, Гкал/МВт×ч | r, тут/Гкал | ε,<br>тут/МВт ×ч |
|----------|------|--------|---------------|-------------|------------------|
| Pmin     | Зима | 886,74 | 1 01          | 0,151       | 0,273            |
| Pillilli | Лето | 738,95 | 1,81          | 0,131       | 0,273            |
| Рэк      | Зима | 1620   | 1,81          | 0.162       | 0,295            |
| ГЭК      | Лето | 1350   | 1,93          | 0,163       | 0,315            |
| Dmax     | Зима | 1800   | 1 02          | 0.160       | 0.226            |
| Pmax     | Лето | 1500   | 1,93          | 0,169       | 0,326            |

По результатам таблицы 2.2 строим XOП КЭС 6хК-300 для зимнего (рисунок 2.3) и летнего (рисунок 2.4) периодов соответственно.

## ХОП КЭС 6хК-300 для зимнего периода



Рисунок 2.1 – ХОП КЭС 6хК-300 для зимнего периода



Рисунок 2.2-ХОП КЭС 6хК-300 для летнего периода

# 2.2 Расчет характеристики относительных приростов 5хК-200

Минимальная нагрузка котлоагрегата:

$$Q_{\mathrm{\kappa a}}^{\mathrm{muh}} = 0.6 imes Q_{\mathrm{\kappa a}}^{\mathrm{hom}} = 0.6 imes 410 = 246$$
 Гкал/ч

Минимальная электрическая нагрузка КЭС:

$$P_{ ext{KЭC}(3 ext{IMM})}^{ ext{MUH}} = rac{Q_{ ext{KA}}^{ ext{MUH}} - Q_{ ext{XX}}}{q_0} imes n = rac{246 - 29,4}{1,82} imes 5 = 595,055 \, ext{MBT}$$
 $P_{ ext{KЭC}( ext{ЛЕТ})}^{ ext{MUH}} = rac{Q_{ ext{KA}}^{ ext{MUH}} - Q_{ ext{XX}}}{q_0} imes (n-1) = rac{246 - 29,4}{1,82} imes (5-1) = 476,044 \, ext{MBT}$ 
 $Q_{ ext{KA}}^{ ext{3K}} = Q_{ ext{XX}} + q_1 imes P_{ ext{3K}} = 29,48 + 1,82 imes 173 = 344,34 \, ext{ГКАЛ/Ч}$ 
 $Q_{ ext{KA}}^{ ext{3K}} = rac{Q_{ ext{KA}}^{ ext{3K}}}{Q_{ ext{KA}}^{ ext{HOM}}} imes 100 = rac{344,34}{410} imes 100 = 83.985 \, ext{%}$ 
 $P_{ ext{KAC}(3 ext{IMM})}^{ ext{3K}} = P_{ ext{3K}} imes (n-1) = 173 imes (5-1) = 692 \, ext{MBT}$ 
 $P_{ ext{KAC}(3 ext{IMM})}^{ ext{MAKC}} = P_{ ext{MAKC}} imes n = 200 imes 5 = 1000 \, ext{MBT}$ 
 $P_{ ext{KAC}(3 ext{IMM})}^{ ext{MAKC}} = P_{ ext{MAKC}} imes (n-1) = 200 imes (5-1) = 800 \, ext{MBT}$ 

Относительный прирост котла:

# Сведем результаты расчета для КЭС 5хК-200 в таблицу 2.2.

Таблица 2.2 – XOП КЭС 5xK-200

| 140/1114 2:12 11011 110 2 3/11 200 |                   |         |               |             |                 |  |  |
|------------------------------------|-------------------|---------|---------------|-------------|-----------------|--|--|
| Нагрузка, МВт                      |                   |         | q, Гкал/МВт×ч | r, тут/Гкал | ε,<br>тут/МВт×ч |  |  |
| Pmin                               | Этой Зима 595,055 |         | 0,154         | 0,280       |                 |  |  |
| Pmin                               | Лето              | 476,044 | 1,82          | 0,134       | 0,280           |  |  |
| Doze                               | Зима              | 865     | 1,82          | 0.164       | 0,298           |  |  |
| Рэк                                | Лето              | 692     | 1,95          | 0,164       | 0,32            |  |  |
| Pmax                               | Зима              | 1000    | 1 05          | 0.172       | 0.24            |  |  |
|                                    | Лето              | 800     | 1,95          | 0,173       | 0,34            |  |  |

## ХОП КЭС 5хК-200 для зимнего периода



Рисунок 2.3 – XOП КЭС 5хК-200 для зимнего периода

## ХОП КЭС 5хК-200 для летнего периода



Рисунок 2.4 –XOП КЭС 5хК-200 для летнего периода

2.3 Расчет характеристики относительных приростов КЭС 4хК-500

Минимальная нагрузка котлоагрегата:

$$Q_{\mathrm{\kappa a}}^{\scriptscriptstyle\mathrm{MИH}} = 0.6 \times Q_{\mathrm{\kappa a}}^{\scriptscriptstyle\mathrm{HOM}} = 0.6 \times 1025 = 615$$
 Гкал/ч

Минимальная электрическая нагрузка КЭС:

$$P_{ ext{кэс(зим)}}^{ ext{мин}} = rac{Q_{ ext{ка}}^{ ext{мин}} - Q_{ ext{xx}}}{q_0} imes n_1 = rac{615 - 58}{1,805} imes 4 = 1234.4 \, ext{MBT}$$
 
$$P_{ ext{кэс(лет)}}^{ ext{мин}} = rac{Q_{ ext{ка}}^{ ext{мин}} - Q_{ ext{xx}}}{q_0} imes (n_1 - 1) = \\ = rac{615 - 58}{1,805} imes (4 - 1) = 925.8 \, ext{MBT}$$
 
$$Q_{ ext{ka}}^{ ext{эк}} = Q_{ ext{xx}} + q_1 imes P_{ ext{эк}} = 58 + 1,805 imes 450 = 870.25 \, ext{Гкал/Ч}$$
 
$$Q_{ ext{ka}}^{ ext{эк}} = rac{Q_{ ext{ka}}^{ ext{эк}}}{Q_{ ext{ka}}^{ ext{Hom}}} imes 100 = rac{870.25}{1025} imes 100 = 84,9\%$$
 
$$P_{ ext{кэс(зим)}}^{ ext{эк}} = P_{ ext{эк}} imes n = 450 imes 4 = 1800 \, ext{MBT}$$
 
$$P_{ ext{кэс(зим)}}^{ ext{эк}} = P_{ ext{эк}} imes n = 450 imes (4 - 1) = 1350 \, ext{MBT}$$
 
$$P_{ ext{кэс(зим)}}^{ ext{makc}} = P_{ ext{makc}} imes n = 500 imes 4 = 2000 \, ext{MBT}$$

$$P_{\text{K9C}(\text{Лет})}^{\text{MAKC}} = P_{\text{MAKC}} \times n = 800 \times (4-1) = 1500 \text{ MBT}$$

Относительный прирост котла:

$$\begin{split} r_{_{3\mathrm{K}}} &= r_{11}' + \frac{Q_{_{\mathrm{Ka}\%}}^{_{3\mathrm{K}}} - Q_{_{1}}}{Q_{_{2}} - Q_{_{1}}} \times (r'_{_{21}} - r'_{_{11}}) = 0,158 + \\ &+ \frac{84,9 - 80}{90 - 80} \times (0,162 - 0,158) = 0,16 \ \mathrm{Ty.\,T/\Gamma KaJ} \\ Q_{_{\mathrm{Ka}}}^{_{\mathrm{MAKC}}} &= Q_{_{XX}} + q_{_{1}} \times P_{_{9\mathrm{K}}} + q_{_{1}}' \times (P - P_{_{9\mathrm{K}}}) = \\ &= 58 + 1,9 \times 450 + 1,9 \times (500 - 450) = 1008 \ \Gamma \mathrm{KaJ/Y} \\ Q_{_{\mathrm{Ka}\%}}^{_{\mathrm{MAKC}}} &= \frac{Q_{_{\mathrm{Ka}}}^{_{\mathrm{MAKC}}}}{Q_{_{\mathrm{Ka}}}^{_{\mathrm{HOM}}}} \times 100 = \frac{1008}{1025} \times 100 = 98.34 \ \% \\ r_{_{\mathrm{MAKC}}} &= r_{11}' + \frac{Q_{_{\mathrm{Ka}\%}}^{_{\mathrm{MAKC}}} - Q_{_{1}}}{Q_{_{2}} - Q_{_{1}}} \times (r'_{_{21}} - r'_{_{11}}) = \\ &= 0,162 + \frac{98,34 - 90}{100 - 90} \times (0,167 - 0,162) = 0,166 \\ \varepsilon_{_{\mathrm{MUH}}} &= q_{_{0}} \times r_{_{\mathrm{MH}}} = 1,805 \times 0,152 = 0,274 \ \mathrm{Ty.\,T./MBT} \times \mathrm{Y} \\ \varepsilon_{_{9\mathrm{K}}} &= q_{_{0}} \times r_{_{9\mathrm{K}}} = 1,805 \times 0,16 = 0,289 \ \mathrm{Ty.\,T./MBT} \times \mathrm{Y} \\ \varepsilon'_{_{9\mathrm{K}}} &= q_{_{0}}' \times r_{_{9\mathrm{K}}} = 1,9 \times 0,166 = 0,304 \ \mathrm{Ty.\,T./MBT} \times \mathrm{Y} \\ \varepsilon_{_{\mathrm{MAKC}}} &= q_{_{0}}' \times r_{_{\mathrm{MAKC}}} = 1,9 \times 0,166 = 0,315 \ \mathrm{Ty.\,T./MBT} \times \mathrm{Y} \end{split}$$

Сведем результаты расчета для КЭС 4хК-500 в таблицу 2.3.

Таблица 2.3 – XOП КЭС 4xK-500

| Нагрузка, МВт |      | Нагрузка, МВт q, Гкал/МВт*ч |       | r, т у. т./Гкал | έ,<br>т у. т./МВт ×ч |  |
|---------------|------|-----------------------------|-------|-----------------|----------------------|--|
| Pmin          | Зима | 1234.4                      | 1,805 | 0,152           | 0,274                |  |
| 1 111111      | Лето | 925.8                       | 1,003 | 0,132           | 0,274                |  |
| Рэк           | Зима | 1800                        | 1,805 | 0.16            | 0,289                |  |
| ГЭК           | Лето | 1350                        | 1,9   | 0,16            | 0,304                |  |
| Dmov          | Зима | 2000                        | 1.0   | 0.166           | 0.215                |  |
| Pmax          | Лето | 1500                        | 1,9   | 0,166           | 0,315                |  |

## ХОП КЭС 4хК-500 для зимнего периода



Рисунок 2.5-ХОП КЭС 4хК-500 для зимы





Рисунок 2.6 – ХОП КЭС 4хК-500 для лета

## 2.4 Расчет характеристики относительных приростов 2хПТ-60

Удельный расход топлива на отпущенное тепло:

$$b_{q} = \frac{1}{7 \times \eta_{\kappa}} = \frac{1}{7 \times 0.9} = 0.159,$$

где среднегодовой КПД котла  $\eta_{\scriptscriptstyle K}=0.87-0.91.$ 

Относительный прирост расхода топлива ТЭЦ по конденсационному циклу:

$$\varepsilon = q_k \times b_q = 1,99 \times 0,159 = 0,316$$

Максимальная производственная нагрузка согласно:

$$Q_{\pi}^{\text{макс}} = 0.85 \times Q_{\pi}^{\text{ном}} = 0.85 \times 85 = 72.25 \, \Gamma$$
кал/ч

Производственная нагрузка:

- ullet с 0 до 8 часов:  $Q_{\Pi}=0.6 imes Q_{\Pi}^{ ext{MaKC}}=0.6 imes 72,25=43,35$  Гкал/ч
- ullet с 8 до 24 часов:  $Q'_{\pi} = Q_{\pi}^{\text{макс}} = 72,25 \ \Gamma$ кал/ч

Теплофикационная нагрузка:

$$Q_{\scriptscriptstyle T}^{\scriptscriptstyle \mathrm{3MM}}=0.85\times Q_{\scriptscriptstyle T}^{\scriptscriptstyle \mathrm{HOM}}=0.85\times 52=44.2$$
 Гкал/ч  $Q_{\scriptscriptstyle T}^{\scriptscriptstyle \mathrm{Лет}}=0.3\times Q_{\scriptscriptstyle T}^{\scriptscriptstyle \mathrm{3MM}}=0.3\times 44.2=13.26$  Гкал/ч

Теплофикационная электрическая нагрузка:

• Зима

с 0 до 8 часов: 
$$P_{\mathrm{T}}^{\mathtt{3}\mathtt{1}\mathtt{M}}=0.35\times Q_{\mathrm{II}}+0.614\times Q_{\mathrm{T}}^{\mathtt{3}\mathtt{M}}-8.7=$$

$$=0.35\times 43.35+0.614\times 44.2-8.7=33.611\ \mathrm{MBT}$$

$$Q_{\mathtt{Час3}\mathtt{1}\mathtt{M}}^{\mathtt{3}}=12+1.99\times P-1.12\times P_{\mathrm{T}}^{\mathtt{3}\mathtt{1}\mathtt{M}}=$$

$$=12+1.99\times 60-1.12\times 33.611=93.76\ \Gamma\mathrm{ка}\mathrm{J}\mathrm{J}\mathrm{H}$$
с 8 до 24 часов:  $P_{\mathrm{T}}^{\mathtt{3}\mathtt{1}\mathtt{M}}=0.35\times Q_{\mathrm{II}}^{\prime}+0.614\times Q_{\mathrm{T}}^{\mathtt{3}\mathtt{1}\mathtt{M}}-8.7=$ 

$$=0.35\times 72.25+0.614\times 44.2-8.7=43.726\ \mathrm{MBT}$$

$$Q_{\mathtt{Час3}\mathtt{1}\mathtt{M}}^{\prime\mathtt{3}}=12+1.99\times P-1.12\times P_{\mathrm{T}}^{\prime\mathtt{3}\mathtt{1}\mathtt{M}}=$$

$$=12+1.99\times 60-1.12\times 43.726=82.427\ \Gamma\mathrm{ка}\mathrm{J}\mathrm{J}\mathrm{J}\mathrm{H}$$

Лето

с 0 до 8 часов: 
$$P_{\scriptscriptstyle T}^{\scriptscriptstyle \rm ЛеT}=0.35\times Q_{\scriptscriptstyle \Pi}+0.614\times Q_{\scriptscriptstyle T}^{\scriptscriptstyle \rm ЛеT}-8.7=$$
 
$$=0.35\times 43.35+0.614\times 13.26-8.7=14.614~{\rm MBT}$$
  $Q_{\scriptscriptstyle \rm Часлет}^9=12+1.99\times P-1.12\times P_{\scriptscriptstyle T}^{\scriptscriptstyle \rm ЛеT}=$ 

$$=12+1,99\times60-1,12\times14,614=115,03$$
 Гкал/ч с 8 до 24 часов:  $P_{_{\mathrm{T}}}^{\prime,\mathrm{net}}=0,35\times Q_{_{\mathrm{II}}}^{\prime}+0,614\times Q_{_{\mathrm{T}}}^{\mathrm{net}}-8,7=$   $=0,35\times72,25+0,614\times13,26-8,7=24,729$  МВт  $Q_{_{\mathrm{Часлет}}}^{\prime9}=12+1,99\times P-1,12\times P_{_{\mathrm{T}}}^{\prime,\mathrm{net}}=$   $=12+1,99\times60-1,12\times24,729=103,703$  Гкал/ч

Конденсационная мощность:

$$P_{\kappa}^{\text{MUH}} = 0.05 \times P = 0.05 \times 60 = 3 \text{ MBT}$$

Теплофикационная электрическая мощность вписывается в базовую часть графика электрической нагрузки энергосистемы как вынужденная мощность. К вынужденной мощности ТЭЦ относятся так же и минимально необходимая конденсаторная мощность, обусловленная пропуском пара в конденсатор. Для каждого агрегата эту мощность можно принять 5 % от номинальной. Тогда полная вынужденная мощность агрегата и всей ТЭЦ определяется как:

$$P_{\text{вын}} = P_{\text{т}} + P_{\text{K}}^{\text{мин}}$$

• Зима

$$C\ 0$$
 до 8 часов:  $P_{\text{вын}}^{\text{зим}} = n \times (P_{\text{т}}^{\text{зим}} + P_{\text{к}}^{\text{мин}}) = 2 \times (33,611+3) = 73,222\ \text{MBT}$   $C\ 8$  до 24 часов:  $P_{\text{вын}}^{\prime\text{зим}} = n \times (P_{\text{т}}^{\prime\text{зим}} + P_{\text{к}}^{\text{мин}}) = 2 \times (43,726+3) = 93,5\ \text{MBT}$ 

• Лето

С 0 до 8 часов: 
$$P_{\text{вын}}^{\text{лет}} = n \times (P_{\text{т}}^{\text{лет}} + P_{\text{к}}^{\text{мин}}) = 2 \times (14,614 + 3) = 35,228 \, \text{МВт}$$
 С 8 до 24 часов:  $P_{\text{вын}}^{\prime \text{лет}} = n \times (P_{\text{т}}^{\prime \text{лет}} + P_{\text{к}}^{\text{мин}}) = 4 \times (24,729 + 3) = 55,458 \, \text{МВт}$ 

Расход топлива на выработку электроэнергии по ТЭЦ:

$$B = b_q \times Q_{\text{vac}}^{\vartheta}$$

• Зима

$$C\ 0$$
 до 8 часов:  $B_{_{\mathrm{ЗИМ}}}=b_{\mathrm{q}}\times Q_{_{\mathrm{Часзим}}}^{9}=0,159\times 93,755=14,879\ \mathrm{T}\ \mathrm{y.\,T.}$   $C\ 8$  до 24 часов:  $B'_{_{\mathrm{ЗИМ}}}=b_{\mathrm{q}}\times Q'_{_{\mathrm{Часзим}}}^{9}=0,159\times 82,426=13,081\ \mathrm{T}\ \mathrm{y.\,T.}$ 

• Лето

С 0 до 8 часов: 
$$B_{\text{лет}} = b_{\text{q}} \times Q_{\text{часлет}}^{9} = 0,159 \times 115,03 = 18,256$$
 т у. т.

С 8 до 24 часов:  $B'_{\text{лет}} = b_{\text{q}} \times Q'^{9}_{\text{часлет}} = 0,159 \times 103,703 = 16,489 \,\text{ т. у. т.}$ 

Вывод в ремонт.

$$(n imes Q_{\Pi}^{\mathrm{Makc}}) = 2 imes 85 = 170 \, \Gamma$$
кал/ч  $(n imes Q_{\Pi}^{\mathrm{Makc}}) = 2 imes 72,25 = 144,5 \, \Gamma$ кал/ч  $\left(\frac{n imes Q_{\Pi}^{\mathrm{Makc}}}{n-1}\right) \leq Q_{\Pi}^{\mathrm{HoM}}$   $\left(\frac{n imes Q_{\Pi}^{\mathrm{Makc}}}{n-1}\right) = \left(\frac{1 imes 144,5}{2-1}\right)$   $Q_{\Pi \, \mathrm{Hom}} = 85 \, \Gamma$ кал/ч

Тепловая нагрузка не обеспечивается, поэтому в летний период в ремонт турбоагрегат не выводится.

$$P_{\text{Makc}} = P \times n = 60 \times 2 = 120 \text{ MBT}$$

Строим XOП ТЭЦ  $2x\Pi T$ -60, которые представлены на рисунках 2.7 (для зимнего периода) и 2.8 (для летнего периода).

## ХОП ТЭЦ 2хПТ-60 для зимнего периода



Рисунок 2.7 – ХОП ТЭЦ 2хПТ-60 для зимнего периода

## ХОП ТЭЦ 2хПТ-60 для летнего периода



Рисунок 2.8 - ХОП ТЭЦ 2хПТ-60 для лет

2.5 Расчет характеристики относительных приростов 3хТ-250

Среднегодовое КПД котла  $\eta_{\kappa} = 0.9$ .

Удельный расход топлива на отпущенное тепло:

$$b_q = \frac{1}{7 \times \eta_{\kappa}} = \frac{1}{7 \times 0.9} = 0.159$$

где среднегодовой КПД котла  $\eta_{\kappa} = 0.87 - 0.91$ .

Относительный прирост расхода топлива ТЭЦ по конденсационному циклу:

$$\varepsilon = q_k \times b_q = 1,89 \times 0,159 = 0,31$$

Теплофикационная нагрузка:

$$Q_{\scriptscriptstyle T}^{\scriptscriptstyle \mathsf{3ИM}} = 0.85 \times Q_{\scriptscriptstyle \mathsf{T}}^{\scriptscriptstyle \mathsf{HOM}} = 0.85 \times 355 = 301,75\ \Gamma$$
кал/ч $Q_{\scriptscriptstyle \mathsf{T}}^{\scriptscriptstyle \mathsf{Лет}} = 0.3 \times Q_{\scriptscriptstyle \mathsf{T}}^{\scriptscriptstyle \mathsf{3UM}} = 0.3 \times 301,75 = 90,525\ \Gamma$ кал/ч

Теплофикационная электрическая нагрузка:

$$P_{ ext{\tiny T}}^{ ext{\tiny 3ИМ}} = 0,7 imes Q_{ ext{\tiny T}}^{ ext{\tiny 3ИМ}} - 20$$
  $Q_{ ext{\tiny Часзим}}^{ ext{\tiny 3}} = 32 + 1,84 imes P - 1 imes P_{ ext{\tiny T}}^{ ext{\tiny 3ИМ}}$ 

• Зима

$$P_{\scriptscriptstyle 
m T}^{\scriptscriptstyle 
m 3ИM}=0.7 imes301,75-20=191,225\ 
m MBт$$
  $Q_{\scriptscriptstyle 
m MAC3MM}^{\scriptscriptstyle 
m 3}=32+1,84 imes250-1 imes191,225=300,775\ \Gamma$ кал/ч

• Лето

$$P_{\scriptscriptstyle
m T}^{{\scriptscriptstyle
m Лет}}=0$$
,7  $imes$  90,525  $-$  20  $=$  43,37 МВт  $Q_{{
m часлет}}^{9}=32+1$ ,84  $imes$  100  $-$  1  $imes$  43037  $=$  448,63 Гкал/ч

Расход топлива на выработку электроэнергии по ТЭЦ:

• Зима

$$B_{\text{зим}} = b_q \times Q_{\text{часзим}}^3 = 0,159 \times 300,775 = 47,82 \text{ т у. т.}$$

• Лето

$$B_{\text{лет}} = b_q \times Q_{\text{часлет}}^9 = 0.159 \times 448.63 = 71.33 \text{ т у. т.}$$

Вывод в ремонт:

$$n \times (Q_{\mathrm{T}}^{\mathsf{ЛЕТ}\Pi\mathsf{T}}) + n(\times Q_{\mathrm{T}}^{\mathsf{HOM}\,\mathsf{T}}) \leq n \times (Q_{\mathrm{\Pi}}^{\mathsf{HOM}\,\mathsf{\Pi}\mathsf{T}}) + (n-1) \times (Q_{\mathrm{T}}^{\mathsf{ЛЕТ}\,\mathsf{T}})$$
 $n \times (Q_{\mathrm{T}}^{\mathsf{ЛЕТ}\Pi\mathsf{T}}) + n(\times Q_{\mathrm{T}}^{\mathsf{HOM}\,\mathsf{T}}) = 2 \times 13,26 + 3 \times 301,75 = 931,77\,\mathsf{Гкал/ч}$ 
 $n \times (Q_{\mathrm{\Pi}}^{\mathsf{HOM}\,\mathsf{\Pi}\mathsf{T}}) + (n-1) \times (Q_{\mathrm{T}}^{\mathsf{ЛЕТ}\,\mathsf{T}}) = 2 \times 85 + (3-1) \times \times 90,525 = 351,05\,\mathsf{Гкал/ч}$ 

Тепловая нагрузка не обеспечивается, поэтому в летний период в ремонт котлоагрегат не выводится.

$$P_{\text{Makc}} = P_{\text{H}} \times n = 250 \times 3 = 750 \text{ MB}_{\text{T}}$$

Конденсационная мощность:

$$P_{\kappa}^{\text{muh}} = 0.05 \times P = 0.05 \times 250 = 12.5 \text{ MBT}$$

Теплофикационная электрическая мощность вписывается в базовую часть графика электрической нагрузки энергосистемы как вынужденная мощность. К вынужденной мощности ТЭЦ относятся так же и минимально необходимая конденсаторная мощность, обусловленная пропуском пара в конденсатор. Для каждого агрегата эту мощность можно принять 5 % от номинальной. Тогда полная вынужденная мощность агрегата и всей ТЭЦ определяется как:

$$P_{\text{вын}} = P_{\text{т}} + P_{\text{K}}^{\text{мин}}$$

• Зима

$$P_{\mathrm{BbH}}^{\mathrm{3UM}} = n \times (P_{\mathrm{T}}^{\mathrm{3UM}} + P_{\mathrm{K}}^{\mathrm{MUH}}) = 3 \times (191,225 + 12,5) = 611,18 \,\mathrm{MBT}$$

• Лето

$$P_{ ext{BbH}}^{ ext{лет}} = (n-1) \times (P_{ ext{\tiny T}}^{ ext{лет}} + P_{ ext{\tiny K}}^{ ext{MUH}}) = 3 \times (43,37 + 12,5) = 111,7 \text{ MBT}$$



Рисунок 2.9-ХОП ТЭЦ 3хТ-250 для зимнего периода



Рисунок 2.10 – XOП ТЭЦ 3xT-250 для летнего периода

На основании XOП электростанций строим XOП всей энергосистемы. Полученные таблицы и графики представлены в Приложении A.

# 3. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ МЕЖДУ ЭЛЕКТРОСТАНЦИЯМИ ЭНЕРГОСИСТЕМЫ

3.1 Определение распределения электрической энергии между электростанциями

Распределение электрической энергии между электростанциями определяем по таблицам характеристик относительных приростов в приложении A, и заносим в таблицы 3.1 и 3.2:

Таблица 3.1 – Распределение электрической энергии между электростанциями в

зимний период

| зимний г    | <u> гериод</u>    |          |          |          |         |          |
|-------------|-------------------|----------|----------|----------|---------|----------|
| t, час      | $P_{\rm H}$ , MBT | 5xK-200  | 6xK-300  | 4xK-500  | 2xΠT-60 | 3xT-250  |
| 1           | 3232              | 595,06   | 886,74   | 1234,4   | 73,22   | 611,18   |
| 2           | 3232              | 595,06   | 886,74   | 1234,4   | 73,22   | 611,18   |
| 3           | 3232              | 595,06   | 886,74   | 1234,4   | 73,22   | 611,18   |
| 4           | 3232              | 595,06   | 886,74   | 1234,4   | 73,22   | 611,18   |
| 5           | 3502              | 595,06   | 950,44   | 1272,11  | 73,22   | 611,18   |
| 6           | 3771              | 595,06   | 1086,72  | 1404,82  | 73,22   | 611,18   |
| 7           | 4310              | 689,72   | 1286,7   | 1649,17  | 73,22   | 611,18   |
| 8           | 4848              | 805,01   | 1558,59  | 1800     | 73,22   | 611,18   |
| 9           | 5172              | 865      | 1620     | 1982,32  | 93,5    | 611,18   |
| 10          | 5118              | 865      | 1620     | 1928,32  | 93,5    | 611,18   |
| 11          | 4848              | 790,02   | 1553,3   | 1800     | 93,5    | 611,18   |
| 12          | 4579              | 725,34   | 1386,69  | 1762,29  | 93,5    | 611,18   |
| 13          | 4579              | 725,34   | 1386,69  | 1762,29  | 93,5    | 611,18   |
| 14          | 4848              | 790,02   | 1553,3   | 1800     | 93,5    | 611,18   |
| 15          | 5064              | 865      | 1620     | 1874,32  | 93,5    | 611,18   |
| 16          | 5118              | 865      | 1620     | 1928,32  | 93,5    | 611,18   |
| 17          | 5225              | 865      | 1620     | 1896,5   | 93,5    | 750      |
| 18          | 5387              | 865      | 1652     | 2000     | 120     | 750      |
| 19          | 5118              | 865      | 1620     | 1928,32  | 93,5    | 611,18   |
| 20          | 4848              | 790,02   | 1553,3   | 1800     | 93,5    | 611,18   |
| 21          | 4579              | 725,34   | 1386,69  | 1762,29  | 93,5    | 611,18   |
| 22          | 4310              | 670,04   | 1286,11  | 1649,17  | 93,5    | 611,18   |
| 23          | 3771              | 595,06   | 1086,04  | 1385,23  | 93,5    | 611,18   |
| 24          | 3502              | 595,06   | 953,4    | 1248,87  | 93,5    | 611,18   |
| За<br>сутки | 105425            | 17526,33 | 31946,93 | 39571,94 | 2108,26 | 14945,96 |

Таблица 3.2 – Распределение электрической энергии между электростанциями летом

| t, yac      | $P_{\rm\scriptscriptstyle H}$ , MBT | 5xK-200  | 6xK-300  | 4xK-500  | 2xΠT-60 | 3xT-250 |
|-------------|-------------------------------------|----------|----------|----------|---------|---------|
| 1, 400      | **                                  |          |          |          |         |         |
| 1           | 2694                                | 488,04   | 935,27   | 1123,76  | 35,23   | 111,7   |
| 2           | 2694                                | 488,04   | 935,27   | 1123,76  | 35,23   | 111,7   |
| 3           | 2694                                | 488,04   | 935,27   | 1123,76  | 35,23   | 111,7   |
| 4           | 2694                                | 488,04   | 935,27   | 1123,76  | 35,23   | 111,7   |
| 5           | 2963                                | 536,03   | 1072,25  | 1207,79  | 35,23   | 111,7   |
| 6           | 3232                                | 584,02   | 1151,05  | 1350     | 35,23   | 111,7   |
| 7           | 3771                                | 692      | 1350     | 1582,07  | 35,23   | 111,7   |
| 8           | 4040                                | 692      | 1350     | 1212,77  | 35,23   | 750     |
| 9           | 4310                                | 692      | 1350     | 1462,54  | 55,46   | 750     |
| 10          | 4310                                | 692      | 1350     | 1462,54  | 55,46   | 750     |
| 11          | 4202                                | 692      | 1350     | 1354,54  | 55,46   | 750     |
| 12          | 4040                                | 692      | 1350     | 1193,54  | 55,46   | 750     |
| 13          | 3502                                | 634,84   | 1350     | 1350     | 55,46   | 111,7   |
| 14          | 3771                                | 692      | 1350     | 1561,84  | 55,46   | 111,7   |
| 15          | 3771                                | 692      | 1350     | 1561,84  | 55,46   | 111,7   |
| 16          | 3879                                | 692      | 1350     | 1669,84  | 55,46   | 111,7   |
| 17          | 3933                                | 692      | 1350     | 1723,94  | 55,46   | 111,7   |
| 18          | 3933                                | 692      | 1350     | 1723,94  | 55,46   | 111,7   |
| 19          | 3771                                | 692      | 1350     | 1561,84  | 55,46   | 111,7   |
| 20          | 3502                                | 634,84   | 1350     | 1350     | 55,46   | 111,7   |
| 21          | 3232                                | 572,02   | 1171,1   | 1321,72  | 55,46   | 111,7   |
| 22          | 3232                                | 572,02   | 1171,1   | 1321,72  | 55,46   | 111,7   |
| 23          | 2963                                | 542,76   | 1044,48  | 1208,6   | 55,46   | 111,7   |
| 24          | 2963                                | 542,76   | 1044,48  | 1208,6   | 55,46   | 111,7   |
| За<br>сутки | 84096                               | 14875,45 | 29295,54 | 32884,71 | 1169,2  | 5872,3  |

В ходе расчета установлено, что есть необходимость продажи электроэнергии в первые 4 часа зимнего периода.

# 3.2 Определение распределения тепла между электростанциями

Произведём расчет расхода тепла на агрегат за каждый час суток с помощью энергетических характеристик турбоагрегатов согласно [2, стр.8]:

$$\begin{aligned} Q_{\mathrm{K-200}} &= 29,\!48 + 1,\!82 \cdot P_{\scriptscriptstyle \mathrm{3K}} + 1,\!95 \cdot (P - P_{\scriptscriptstyle \mathrm{3K}}) = \\ &= 29,\!48 + 1,\!82 \cdot 173 + 1,\!95 \cdot \left(\frac{595,\!055}{5} - 173\right) = 239,\!061 \; \mathrm{MBT} \\ Q_{\mathrm{K-300}} &= 58 + 1,\!805 \cdot P_{\scriptscriptstyle \mathrm{3K}} + 1,\!9 \cdot (P - P_{\scriptscriptstyle \mathrm{3K}}) = \end{aligned}$$

$$= 58 + 1,805 \cdot 270 + 1,9 \cdot \left(\frac{886,74}{6} - 270\right) = 287,83 \text{ MBT}$$

$$Q_{K-500} = 87 + 1,8 \cdot P_{9K} + 1,9 \cdot (P - P_{9K}) =$$

$$= 87 + 1,8 \cdot 450 + 1,88 \cdot \left(\frac{1234.4}{4} - 450\right) = 631,168 \text{ MBT}$$

$$Q_{\Pi T-60} = 20 + 1,95 \cdot P - 1,11 \cdot P_{T}, P_{T} = 0.36 \cdot Q_{\Pi} + 0,616 \cdot Q_{T} - 14,5 =$$

$$= 20 + 1,95 \cdot \frac{73,222}{2} - 1,11 \cdot (0,36 \cdot 43,35 - 0,616 \cdot 44,2 - 14,5) =$$

$$= 47,21 \text{ MBT}$$

$$Q_{T-250} = 15 + 1,89 \cdot P - 1,02 \cdot P_{T}, P_{T} = 0,63 \cdot Q_{T} - 95 =$$

$$= 15 + 1,89 \cdot \frac{611,18}{3} - 1,02 \cdot (0,63 \cdot 301,75 - 9,5) = 215,83 \text{ MB}$$

Результаты расчетов сведем в таблицу 3.3 и 3.4.

Таблица 3.3 – Расход тепла на агрегат за каждый час суток зимой

| Тиолици з | із таследтег |         | и каждын тас с | J TOR SHINTON | T       |
|-----------|--------------|---------|----------------|---------------|---------|
| t, час    | 5xK-200      | 6xK-300 | 4xK-500        | 2xΠT-60       | 3xT-250 |
| 1         | 239,06       | 287,83  | 601,59         | 47,21         | 215,83  |
| 2         | 239,06       | 287,83  | 601,59         | 47,21         | 215,83  |
| 3         | 239,06       | 287,83  | 601,59         | 47,21         | 215,83  |
| 4         | 239,06       | 287,83  | 601,59         | 47,21         | 215,83  |
| 5         | 239,06       | 308,32  | 619,5          | 47,21         | 215,83  |
| 6         | 239,06       | 352,16  | 682,54         | 47,21         | 215,83  |
| 7         | 275,98       | 416,49  | 798,61         | 47,21         | 215,83  |
| 8         | 320,94       | 503,95  | 870,25         | 47,21         | 215,83  |
| 9         | 344,34       | 523,7   | 956,85         | 67,39         | 215,83  |
| 10        | 344,34       | 523,7   | 931,2          | 67,39         | 215,83  |
| 11        | 315,1        | 502,24  | 870,25         | 67,39         | 215,83  |
| 12        | 289,87       | 448,65  | 852,34         | 67,39         | 215,83  |
| 13        | 289,87       | 448,65  | 852,34         | 67,39         | 215,83  |
| 14        | 315,1        | 502,24  | 870,25         | 67,39         | 215,83  |
| 15        | 344,34       | 523,7   | 905,55         | 67,39         | 215,83  |
| 16        | 344,34       | 523,7   | 931,2          | 67,39         | 215,83  |
| 17        | 344,34       | 523,7   | 916,09         | 67,39         | 303,29  |
| 18        | 344,34       | 533,99  | 965,25         | 93,76         | 303,29  |
| 19        | 344,34       | 523,7   | 931,2          | 67,39         | 215,83  |
| 20        | 315,1        | 502,24  | 870,25         | 67,39         | 215,83  |
| 21        | 289,87       | 448,65  | 852,34         | 67,39         | 215,83  |

Продолжение таблицы 3.3

| 22       | 268,31 | 416,3    | 798,61   | 67,39   | 215,83  |
|----------|--------|----------|----------|---------|---------|
| 23       | 239,06 | 351,94   | 673,23   | 67,39   | 215,83  |
| 24       | 239,06 | 309,28   | 608,46   | 67,39   | 215,83  |
| За сутки | 7003   | 10338,62 | 19162,67 | 1482,29 | 5354,84 |

Таблица 3.4 – Расход тепла на агрегат за каждый час суток летом

| t, час   | 5xK-200 | ба на агрегат з<br>6хК-300 | 4xK-500 | 2xΠT-60 | 3xT-250 |
|----------|---------|----------------------------|---------|---------|---------|
| 1        | 209,09  | 302,84                     | 535,6   | 30,69   | 36,89   |
| 2        | 209,09  | 302,84                     | 535,6   | 30,69   | 36,89   |
| 3        | 209,09  | 302,84                     | 535,6   | 30,69   | 36,89   |
| 4        | 209,09  | 302,84                     | 535,6   | 30,69   | 36,89   |
| 5        | 216,04  | 347,51                     | 588,95  | 30,69   | 36,89   |
| 6        | 234,76  | 372,85                     | 656,5   | 30,69   | 36,89   |
| 7        | 276,87  | 436,85                     | 766,73  | 30,69   | 36,89   |
| 8        | 276,87  | 436,85                     | 591,32  | 30,69   | 439,02  |
| 9        | 276,87  | 436,85                     | 709,96  | 50,81   | 439,02  |
| 10       | 276,87  | 436,85                     | 709,96  | 50,81   | 439,02  |
| 11       | 276,87  | 436,85                     | 658,66  | 50,81   | 439,02  |
| 12       | 276,87  | 436,85                     | 582,18  | 50,81   | 439,02  |
| 13       | 254,58  | 436,85                     | 656,5   | 50,81   | 36,89   |
| 14       | 276,87  | 436,85                     | 757,12  | 50,81   | 36,89   |
| 15       | 276,87  | 436,85                     | 757,12  | 50,81   | 36,89   |
| 16       | 276,87  | 436,85                     | 808,42  | 50,81   | 36,89   |
| 17       | 276,87  | 436,85                     | 834,12  | 50,81   | 36,89   |
| 18       | 276,87  | 436,85                     | 834,12  | 50,81   | 36,89   |
| 19       | 276,87  | 436,85                     | 757,12  | 50,81   | 36,89   |
| 20       | 254,58  | 436,85                     | 656,5   | 50,81   | 36,89   |
| 21       | 230,08  | 379,3                      | 643,07  | 50,81   | 36,89   |
| 22       | 230,08  | 379,3                      | 643,07  | 50,81   | 36,89   |
| 23       | 218,67  | 338,57                     | 589,34  | 50,81   | 36,89   |
| 24       | 218,67  | 338,57                     | 589,34  | 50,81   | 36,89   |
| За сутки | 6016,26 | 9483,36                    | 15932,5 | 1058,48 | 2896,01 |

# 3.3 Определение годового отпуска тепла на ТЭЦ

## • 2xПT-60:

$$Q_{
m otn\Pi}^{
m cyt}=8 imes Q_{
m i}+16 imes Q_{
m i}'=8 imes 43,35+16 imes 72,25=1503$$
 Гкал/час 
$$Q_{
m otn\Pi}^{
m rod}=Q_{
m otn}^{
m cyt} imes (n_{
m i}+n_{
m i})=1503 imes (210+155)=548595$$
 Гкал/год

$$Q_{
m otnT}^{
m cyt(лет)}=Q_{
m T}^{
m net} imes 24=13,26 imes 24=318,2\ \Gamma$$
кал/сут 
$$Q_{
m otnT}^{
m cyt(зим)}=Q_{
m T}^{
m 3им} imes 24=44,2 imes 24=1061\ \Gamma$$
кал/сут 
$$Q_{
m otnT}^{
m rod}=n imes Q_{
m otn}^{
m cyt(лет)} imes n_{_{\rm J}}+n imes Q_{
m otn}^{
m cyt(зим)} imes n_{_{\rm J}}=12 imes 318,2 imes 210+2 imes 1061 imes 155=120$$

$$=2 imes 318,2 imes 210+2 imes 1061 imes 155=120$$

$$=462554\ \Gamma$$
кал/год 
$$Q_{
m otn}^{
m rod}=Q_{
m otn}^{
m rod}+Q_{
m otn}^{
m rod}=548595+462554=1011149\ \Gamma$$
кал/год

• 3xT-250:

$$Q_{
m otnT}^{
m cyt(лет)}=Q_{
m T}^{
m лет} imes 24=90{,}525 imes 24=2173\ \Gamma$$
кал/сут 
$$Q_{
m otnT}^{
m cyt(зим)}=Q_{
m T}^{
m sum} imes 24=301{,}75 imes 24=7242\Gamma$$
кал/сут 
$$Q_{
m otn}^{
m rod}=(n-1) imes Q_{
m otn}^{
m cyt(лет)} imes n_{
m J}+n imes Q_{
m otn}^{
m cyt(зим)} imes n_{
m 3}=(3-1) imes 2173 imes 210+\\ +3 imes 7242 imes 155=4280190\ \Gamma$$
кал/год

Отпущенная тепловая энергия для двух агрегатов:

$$Q_{
m o T \Pi}^{
m rod} = Q_{
m o T \Pi (2x\Pi T-60)}^{
m rod} + Q_{
m o T \Pi (2xT-250)}^{
m rod} = 1011149 + 4280190 =$$
 
$$= 5291339 \ \Gamma {
m ka} \pi/{
m rod}$$

# 4. РАСЧЁТ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ РАБОТЫ ЭНЕРГОСИСТЕМЫ

4.1 Расчет годовой выработки мощности по энергосистеме

Число часов использования установленной мощности энергосистемы:

$$h_{y} = \frac{\Theta_{\text{выр}}}{N_{y}}$$

Таблица 4.1 – Суточная выработка мощности (зимний период)

| Станция   | 5xK-200  | 6xK-300  | 4xK-500  | 2xΠT-60 | 3xT-250  |
|-----------|----------|----------|----------|---------|----------|
| Рсут, МВт | 17526,33 | 31946,93 | 39571,94 | 2108,26 | 14945,96 |

Таблица 4.2 – Суточная выработка мощности (летний период)

| Станция   | 5xK-200  | 6xK-300  | 4xK-500  | 2xΠT-60 | 3xT-250 |
|-----------|----------|----------|----------|---------|---------|
| Рсут, МВт | 14875,45 | 29295,54 | 32884,71 | 1169,2  | 5872,3  |

#### • K9C 5xK-200

## • K9C 6xK-300

$$\exists_{\text{выр}}^{\text{кэс(6xK-300)}} = \sum P_{\text{зим}} \times n_{\text{3}} + \sum P_{\text{лет}} \times n_{\text{лет}} = 31946,93 \times 155 + 29295,54 \times 210 = 11\ 103\ 837,55\ \text{MBT} \times \text{Ч}$$

$$h_{y} = \frac{11\ 103\ 837,55}{1800} = 6168,8\ \text{Ч}$$

#### K∋C 4xK-500

$$\exists_{\text{выр}}^{\text{кэс(4xK-500)}} = \sum P_{\text{зим}} \times n_{\text{3}} + \sum P_{\text{лет}} \times n_{\text{лет}} = 39571,94 \times 155 + 32884,71 \times 210 = 13 039 439,8 \, \text{MBT} \times \text{ч}$$

$$h_y = \frac{13\ 039\ 439,8}{2000} = 6519,72\ ч$$

ТЭЦ 2хПТ-60

$$\exists_{\text{выр}}^{\text{тэц(2хПТ-60)}} = \sum P_{\text{зим}} \times n_3 + \sum P_{\text{лет}} \times n_{\text{лет}} = 2108,26 \times 155 + 1169,2 \times 210 = 572312,3 \, \text{МВт} \times \Psi$$

$$h_y = \frac{572312,3}{120} = 4769,27 \, \Psi$$

ТЭЦ 3хТ-250

$$egin{align*} \Im_{ ext{выр}}^{ ext{тэц(3xT-250)}} &= \sum \mathrm{P}_{ ext{зим}} imes n_{ ext{3}} + \sum \mathrm{P}_{ ext{лет}} imes n_{ ext{лет}} = 14945,96 imes 155 + 5872,3 imes \\ & imes 210 = 3\,549\,806,8\,\mathrm{MBt} imes \mathrm{q} \\ h_{y} &= rac{3549806,8}{750} = 4733,08\,\mathrm{q} \end{aligned}$$

#### Энергосистема:

$$\begin{split} \Im_{\text{Bыp}}^{\mathcal{GC}} &= \Im_{\text{Bыp}}^{\text{K9C}(5\text{xK}-200)} + \Im_{\text{Bыp}}^{\text{K9C}(6\text{xK}-300)} + \Im_{\text{Bыp}}^{\text{K9C}(4\text{xK}-500)} + \Im_{\text{Bыp}}^{\text{T9L}(2\text{xIIT}-60)} + \\ &+ \Im_{\text{Bыp}}^{\text{T9L}(3\text{xT}-250)} = 5840425,65 + 11103837,55 + 13039439,8 + \\ &+ 572312,3 + 3549806,8 = 34\ 105\ 822,1\ \text{MBT} \times \text{Y} \\ N_y^{\mathcal{GC}} &= N_y^{\text{K9C}(4\text{xK}-200)} + N_y^{\text{K9C}(6\text{xK}-300)} + N_y^{\text{K9C}(4\text{xK}-500)} + N_y^{\text{T9L}(2\text{xIIT}-60)} + \\ &+ N_y^{\text{T9L}(2\text{xT250})} = 1000 + 1800 + 2000 + 120 + 750 = 5670\ \text{MBT} \\ h_y^{\mathcal{GC}} &= \frac{\Im_{\text{Bыp}}^{\mathcal{GC}}}{N_y^{\mathcal{GC}}} = \frac{34105822,1}{5670} = 6015,14\ \text{Y} \end{split}$$

4.2 Расчет годового расхода топлива по энергосистеме

Удельный расход топлива на отпуск тепла:

$$b_q = \frac{1}{7 \times \eta_k} = \frac{1}{7 \times 0.87} = 0.164$$

Суточный расход топлива:

$$B_c = b_q \times \sum Q^{\text{сут}}$$

Удельный расход топлива на 1 кВт×ч, отпущенный в сеть:

$$b_{\mathfrak{I}}^{\text{отп}} = \frac{B_{\mathfrak{I}}^{\text{год}}}{\mathfrak{I}_{\text{год}}^{\text{отп}}}$$

• K9C 5xK-200:

$$B_{\text{СКЭС}}^{\text{ЗИМ}} = b_q \times \sum Q_{\text{КЭС}}^{\text{ЗИМ}} \times n = 0,164 \times 7003 \times 5 = 5742,46 \text{ т. у. т.}$$
 
$$B_{\text{СКЭС}}^{\text{ЛЕТ}} = b_q \times \sum Q_{\text{КЭС}}^{\text{ЛЕТ}} \times (n-1) = 0,164 \times 6016,26 \times (5-1) = 3946,67 \text{ т. у. т.}$$
 
$$B_{\text{ГОД}}^{\text{КЭС}(5\text{ХК}-200)} = B_{\text{СКЭС}}^{\text{ЗИМ}} \times n_3 + B_{\text{СКЭС}}^{\text{ЛЕТ}} \times n_\pi = 5742,46 \times 155 + 3946,67 \times 210 = 1718\,882 \text{ т. y. т.}$$
 
$$\times 210 = 1\,718\,882 \text{ т. y. т.}$$
 
$$b_9^{\text{ОТП}} = \frac{B_{\text{ГОД}}^{\text{КЭС}(5\text{ХК}-200)}}{9^{\text{КЭС}(5\text{ХК}-200)}} = \frac{1718882}{5840425,65} = 0,294 \text{ кг/кВт} \times \text{ч.}$$

• 6xK-300

$$\begin{split} B_{\text{СКЭС}}^{\text{ЗИМ}} &= b_q \times \sum Q_{\text{КЭС}}^{\text{ЗИМ}} \times n = 0,\!164 \times 10338,\!62 \times 6 = 10173,\!2 \text{ т. у. т.} \\ B_{\text{СКЭС}}^{\text{ЛЕТ}} &= b_q \times \sum Q_{\text{КЭС}}^{\text{ЛЕТ}} \times (n-1) = 0,\!164 \times 9483,\!36 \times (6-1) = \\ &= 7776,\!36 \text{ т. у. т.} \\ B_{\text{ГОД}}^{\text{КЭС}(6\text{хК}-300)} &= B_{\text{СКЭС}}^{\text{ЗИМ}} \times n_{_3} + B_{\text{СКЭС}}^{\text{ЛЕТ}} \times n_{_7} = 10173,\!2 \times 155 + 7776,\!36 \times \\ &\times 210 = 3209881,\!6 \text{ т. у. т.} \\ b_{_{9}}^{\text{ОТП}} &= \frac{B_{\text{ГОД}}^{\text{КЭС}(6\text{хK}-300)}}{9_{\text{ВЫр}}^{\text{КЭС}(6\text{xK}-300)}} = \frac{3209881,\!6}{11103837,\!55} = 0,\!289 \text{ кг/кВт} \times \text{ч} \end{split}$$

• 4xK-500

$$B_{\rm ckəc}^{\rm зим} = b_q \times \sum Q_{\rm kəc}^{\rm зим} \times n = 0,\!164 \times 19162,\!67 \times 4 = 12570,\!71{\rm T.\,y.\,T.}$$
 
$$B_{\rm ckəc}^{\rm лет} = b_q \times \sum Q_{\rm kəc}^{\rm лет} \times (n-1) = 0,\!164 \times 15932,\!5 \times (4-1) = 7838,\!79 \;{\rm T.\,y.\,T.}$$

$$b_{\mathfrak{I}}^{\text{отп}} = \frac{B_{\text{год}}^{\text{кэс(4хК-500)}}}{\mathfrak{I}_{\text{выр}}^{\text{кэс(4хК-500)}}} = \frac{3594605,95}{13039439,8} = 0,276 \ \text{кг/кВт} \times \text{ч}$$

#### • 2 x ∏T-60

$$\begin{split} B_{\text{стэц}}^{\text{зим}} &= b_q \times \sum Q_{\text{тэц}}^{\text{зим}} \times n = 0,\!164 \times 1482,\!29 \times 2 = 486,\!19 \text{ т. у. т.} \\ B_{\text{стэц}}^{\text{лет}} &= b_q \times \sum Q_{\text{тэц}}^{\text{лет}} \times n = 0,\!164 \times 1058,\!48 \times 2 = 173,\!59 \text{ т. у. т.} \\ B_{\text{годээ}}^{\text{тэц(2x\Pi T-60)}} &= B_{\text{стэц}}^{\text{зим}} \times n_3 + B_{\text{стэц}}^{\text{лет}} \times n_4 = 486,\!19 \times 155 + 173,\!59 \times 210 = \\ &= 111813,\!35 \text{ т. у. т.} \\ B_{\text{годтэ}}^{\text{тэц(2x\Pi T-60)}} &= Q_{\text{отп}}^{\text{год}} \times b_q = 1011149 \times 0,\!164 = 165828,\!44 \text{ т. у. т.} \\ B_{\text{год}}^{\text{тэц(2x\Pi T-60)}} &= B_{\text{годээ}}^{\text{тэц(2x\Pi T-60)}} + B_{\text{годтэ}}^{\text{тэц(2x\Pi T-60)}} = 111813,\!35 + 165828,\!44 = \\ &= 277641,\!79 \text{ т. y. т.} \\ b_3^{\text{отп}} &= \frac{B_{\text{год}}^{\text{тэц(2x\Pi T-60)}}}{3^{\text{тэц(2x\Pi T-60)}}} &= \frac{277641,\!79}{572312,\!3} = 0,\!485 \text{ кг/кВт} \times \text{ч.} \end{split}$$

## • ТЭЦ 3xT-250

$$B_{\text{стэц}}^{\text{зим}} = b_q \times \sum Q_{\text{тэц}}^{\text{зим}} \times n = 0,164 \times 5354,84 \times 3 = 2634,58 \text{ т. у. т.}$$
 
$$B_{\text{стэц}}^{\text{лет}} = b_q \times \sum Q_{\text{тэц}}^{\text{лет}} \times (n-1) = 0,164 \times 2896,01 \times (3-1) = 949,89 \text{ т. у. т.}$$
 
$$B_{\text{годээ}}^{\text{тэц(3хТ-250)}} = B_{\text{стэц}}^{\text{зим}} \times n_3 + B_{\text{стэц}}^{\text{лет}} \times n_3 = 2634,58 \times 155 + \\ +949,89 \times 210 = 607836,8 \text{ т. у. т.}$$
 
$$B_{\text{годтэ}}^{\text{тэц(3хТ-250)}} = Q_{\text{отп}}^{\text{год}} \times b_q = 4280190 \times 0,164 = 701951,16 \text{ т. у. т.}$$
 
$$B_{\text{год}}^{\text{тэц(3хТ-250)}} = B_{\text{годээ}}^{\text{тэц(3хТ-250)}} + B_{\text{годтэ}}^{\text{тэц(3хТ-250)}} = 607836,8 + 701951,16 = \\ = 1309787,96 \text{ т. у. т.}$$

$$b_{\mathfrak{I}}^{\text{отп}} = \frac{B_{\text{год}}^{\text{тэц(3xT-250)}}}{\mathfrak{I}_{\text{выр}}^{\text{тэц(3xT-250)}}} = \frac{1309787,96}{3549806,8} = 0,369 \text{ кг/кВт × ч}$$

## Удельный расход топлива по энергосистеме:

## 4.3 Расчет эксплуатационных расходов в энергосистеме

## Условно-переменные затраты:

$$C_{\mathrm{T}} = \coprod_{\mathrm{T}} \times B$$
,

$$C_{\rm T}^{5{\rm xK}-200} = \coprod_{\rm T} \times B_{\rm rog}^{5{\rm xK}-200} = 210 \times 1718882 = 360965220 \, USD$$

$$C_{\rm T}^{6{\rm xK}-300} = \coprod_{\rm T} \times B_{\rm rog}^{6{\rm xK}-300} = 210 \times 3209881, 6 = 674075136 \, USD$$

$$C_{\rm T}^{4{\rm xK}-500} = \coprod_{\rm T} \times B_{\rm rog}^{4{\rm xK}-500} = 210 \times 3594605, 95 = 754867249, 5 \, USD$$

$$C_{\rm T}^{2{\rm x\Pi T}-60} = \coprod_{\rm T} \times B_{\rm rog}^{2{\rm x\Pi T}-60} = 210 \times 277641, 79 = 58304775, 9 \, USD$$

$$C_{\rm T}^{3{\rm xT}-250} = \coprod_{\rm T} \times B_{\rm rog}^{2{\rm xT}-250} = 210 \times 1309787, 96 = 275055471, 6 \, USD$$

## В целом по энергосистеме:

$$C_{\text{T}}^{\text{9c}} = C_{\text{T}}^{5\text{xK}-200} + C_{\text{T}}^{6\text{xK}-300} + C_{\text{T}}^{4\text{xK}-500} + C_{\text{T}}^{2\text{x}\Pi\text{T}-60} + C_{\text{T}}^{3\text{xT}-250} =$$

$$= (360965220 + 674075136 + 754867249,5 +$$

$$+58304775,9 + 275055471,6) \times 2.5 = 5308169632,5 \text{ py6}.$$

#### Условно-постоянные расходы:

Амортизационные отчисления:

$$C_{\rm am} = P_{\rm am} \times K_y \times N_y$$

где  $P_{\mathsf{a}\mathsf{M}}$  – годовая норма амортизационных отчислений, о.е. [2, табл. 5.1]

$$P_{\text{aM}}^{5\text{xK}-200} = 6.5 \%$$
  
 $P_{\text{aM}}^{6\text{xK}-300} = 6.8 \%$   
 $P_{\text{aM}}^{4\text{xK}-500} = 7.15 \%$   
 $P_{\text{aM}}^{2\text{xIIT}-60} = 6.9 \%$   
 $P_{\text{aM}}^{3\text{xT}-250} = 7.8 \%$ 

 $K_y$  – удельные капиталовложения в электростанцию. [2, табл. 5.2]

$$K_y^{5\text{xK}-200} = 147 \, \mathrm{py6./\kappa BT}$$
;  $K_y^{6\text{xK}-300} = 120 \, \mathrm{py6./\kappa BT}$ ;  $K_y^{4\text{xK}-500} = 132 \, \mathrm{py6./\kappa BT}$ ;  $K_y^{2\text{x}\Pi T-60} = 240 \, \mathrm{py6./\kappa BT}$ ;  $K_y^{3\text{xT}-250} = 240 \, \mathrm{py6./\kappa BT}$ ;

Для перевода  $K_y$  от 1991 к ценам 2021 года используем коэффициент перевода: K=0.001189.

• KЭC 5xK-200

$$C_{\text{ам}}^{5\text{xK}-200} = P_{\text{ам}} \times K_y \times N_y = \frac{6.5}{100} \times 147 \times 1000 \times 10^3 \times 0,001189 = 11360,9 \text{ руб}$$

• K9C 6xK-300

$$C_{\text{am}}^{6x\text{K}-300} = P_{\text{am}} \times K_y \times N_y = \frac{6.8}{100} \times 120 \times 1800 \times 10^3 \times 0.001189 =$$
  
= 17464,03 py6.

K∋C 4xK-500

$$C_{\text{am}}^{4\text{xK}-500} = P_{\text{am}} \times K_y \times N_y = \frac{7,15}{100} \times 132 \times 2000 \times 10^3 \times 0,001189 =$$
$$= 22443,56 \text{ py6}.$$

• ТЭЦ 2хПТ-60

$$C_{\text{am}}^{2 \times \Pi T - 60} = P_{\text{am}} \times K_y \times N_y = \frac{6.9}{100} \times 240 \times 120 \times 10^3 \times 0,001189 = 2362,78 \text{ py6}.$$

• ТЭЦ 3xT-250

$$C_{\text{am}}^{3\text{xT}-250} = P_{\text{am}} \times K_y \times N_y = \frac{7.8}{100} \times 240 \times 750 \times 10^3 \times 0.001189 = 16693,56 \text{ py6}.$$

## В целом по энергосистеме:

$$C_{\text{aM}}^{\text{9C}} = C_{\text{aM}}^{5\text{xK}-200} + C_{\text{aM}}^{6\text{xK}-300} + C_{\text{aM}}^{4\text{xK}-500} + C_{\text{aM}}^{2\text{x\PiT}-60} + C_{\text{aM}}^{3\text{xT}-250} =$$

$$= 11360,9 + 17464,03 + 22443,56 + 2362,78 + 16693,56 =$$

$$= 70324,83 \text{ py6}.$$

## Заработная плата:

$$C_{3\Pi} = K_{IIIT} \times N_{y} \times \Phi_{3\Pi}^{rod}$$

где  $K_{\rm шт}$  — штатный коэффициент для компенсационной электростанции; [2, табл. 5.3]

$$K_{
m IIT}^{5
m xK-200}=0,577$$
 чел./МВт;  $K_{
m IIIT}^{6
m xK-300}=0,29$  чел./МВт;  $K_{
m IIIT}^{4
m xK-500}=0,363$  чел./МВт;  $K_{
m IIIT}^{2
m x\Pi T-60}=2,14$  чел./МВт;  $K_{
m IIIT}^{3
m xT-250}=0,69$  чел./МВт;

 $\Phi_{\mathfrak{I}\mathfrak{I}}^{\mathrm{rod}}$  – среднегодовой фонд заработной платы

$$\Phi_{_{3\Pi}}^{^{\mathrm{rod}}} = \Pi$$
ср. год  $\times n = 1100 \times 12 = 13200$  руб/чел  $\times$  год

K∋C 5xK-200

$$C_{\mathfrak{I}_{\Pi}}^{5 \times K-200} = K_{\text{IIIT}} \times N_{\mathcal{Y}}^{5 \times K-200} \times \Phi_{\mathfrak{I}_{\Pi}}^{\text{rod}} = 0,577 \times 1000 \times 13200 = 7 616 400 \text{ py6}.$$

• K3C 6xK-300

$$C_{3\pi}^{6xK-300} = K_{\text{IIIT}} \times N_{\nu}^{6xK-300} \times \Phi_{3\pi}^{\text{rod}} = 0.29 \times 1800 \times 13200 = 6890400 \text{ py6}.$$

• K3C 4xK-500

$$C_{3\Pi}^{4xK-500} = K_{\text{IIIT}} \times N_y^{4xK-500} \times \Phi_{3\Pi}^{\text{rod}} = 0,363 \times 2000 \times 13200 = 9583200 \text{ py6}.$$

KЭС 2хПТ-60

$$C_{3\pi}^{2\times\Pi T-60}=K_{\text{IIIT}}\times N_y^{2\times\Pi T-60}\times \Phi_{3\pi}^{\text{rod}}=2,14\times 120\times 13200\ =3\ 389\ 760\ \text{py6}.$$

• K9C 3xT-250

$$C_{_{3\Pi}}^{3\mathrm{xT-250}} = K_{_{\mathrm{IIIT}}} \times N_{_{\mathcal{Y}}}^{3\mathrm{xT-250}} \times \Phi_{_{3\Pi}}^{^{\mathrm{rod}}} = 0,69 \times 750 \times 13200 \ = 6831\ 000\ \mathrm{py6}.$$

В целом по энергосистеме:

$$C_{3\Pi}^{9c} = C_{3\Pi}^{5xK-200} + C_{3\Pi}^{6xK-300} + C_{3\Pi}^{4xK-500} + C_{3\Pi}^{4x\Pi T-60} + C_{3\Pi}^{3xT-250} =$$

= 7616400 + 6890400 + 9583200 + 3389760 + 6831000 = 34310760 py6.

Суммарные эксплуатационные затраты по всем электростанциям энергосистемы:

$$C_{\Sigma} = (C_{\mathrm{T}}^{\mathrm{9C}} + C_{\mathrm{aM}}^{\mathrm{9C}} + C_{\mathrm{3\Pi}}^{\mathrm{9C}}) \times (1 + \alpha) =$$

$$= (C_{\mathrm{T}}^{\mathrm{9C}} + C_{\mathrm{aM}}^{\mathrm{9C}} + C_{\mathrm{3\Pi}}^{\mathrm{9C}}) \times (1 + \alpha) = (5308169632.5 +$$

$$+70324.83 + 34310760) \times (1 + 1) = 10685101434.66 \text{ py6}$$

где:  $\alpha$ -коэффициент, учитывающий прочие расходы,  $\alpha$ =1

4.4 Расчет себестоимость отпуска тепла и электроэнергии

Себестоимость единицы тепла, отпущенной для КЭС [1, с. 17]:

$$C_{\text{K} \ni \text{C}}^{\ni \ni} = \coprod_{\text{T}} \times B_{\text{rog}}^{\text{K} \ni \text{C}} + (C_{\text{am}}^{\text{K} \ni \text{C}} + C_{\text{sil}}^{\text{K} \ni \text{C}}) \times (1 + \alpha), \text{ py6}.$$

где  $\alpha$ -коэффициент, учитывающий прочие расходы,  $\alpha=1$ 

$$C_{5xK-200}^{99} = \coprod_{T} \times B_{rog}^{5xK-200} + (C_{am}^{5xK-200} + C_{3\pi}^{5xK-200}) \times (1 + \alpha) = 210 \times 2.5 \times 10^{-200}$$

$$\times$$
 1718882 + (11360,9 + 7616400)  $\times$  (1 + 1) = 917 668 571,8 pyб.

$$C_{6xK-300}^{99} = \coprod_{T} \times B_{rog}^{6xK-300} + (C_{am}^{6xK-300} + C_{gg}^{6xK-300}) \times (1 + \alpha) = 210 \times 2.5 \times 10^{-2}$$

$$\times$$
 3209881,6 + (17464,03 + 6890400)  $\times$  (1 + 1) = 1 699 003 568,06 py6.

$$C_{4 \text{xK}-500}^{99} = \coprod_{\text{T}} \times B_{\text{rog}}^{4 \text{xK}-500} + (C_{\text{am}}^{4 \text{xK}-500} + C_{3 \text{II}}^{4 \text{xK}-500}) \times (1 + \alpha) = 210 \times 2.5 \times 10^{-2}$$

$$\times 3594605,95 + (22443,56 + 9583200) \times (1 + 1) = 1906379410,87$$
 py6.

Себестоимость единицы тепла, отпущенной для ТЭЦ:

$$C_{\mathrm{TЭII}}^{\mathrm{ЭЭ}} = \mathrm{II}_{\mathrm{T}} \times B_{\mathrm{голЭЭ}}^{\mathrm{ТЭII}} + 0.6 \times \left( C_{\mathrm{ам}}^{\mathrm{ТЭII}} + C_{\mathrm{3п}}^{\mathrm{ТЭII}} \right) \times (1 + \alpha),$$
 руб.

$$C_{\text{KЭC}}^{\mathfrak{I}\mathfrak{I}} = \coprod_{\mathsf{T}} \times B_{\mathsf{rogT}\mathfrak{I}}^{\mathsf{K}\mathfrak{I}\mathfrak{C}} + 0.4 \times \left(C_{\mathsf{aM}}^{\mathsf{T}\mathfrak{I}\mathsf{I}\mathsf{I}\mathsf{I}} + C_{\mathfrak{I}\mathsf{I}}^{\mathsf{T}\mathfrak{I}\mathsf{I}\mathsf{I}}\right) \times (1 + \alpha),$$
руб.

• 2x∏T-60

$$C_{2x\Pi T-60}^{T9} = \coprod_{T} \times B_{rogT9}^{2x\Pi T-60} + 0.4 \times (C_{aM}^{2x\Pi T-60} + C_{3\Pi}^{2x\Pi T-60}) \times (1 + \alpha) = 210 \times 2.5 \times 165828.44 + 0.4 \times (2362.78 + 3389760) \times (1 + 1) = 89773629.22 \text{ py6}.$$

• 3xT-250

$$C_{3xT-250}^{99} = \coprod_{T} \times B_{roд99}^{3xT-250} + 0.6(C_{aM}^{3xT-250} + C_{3\Pi}^{3xT-250}) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + 1) = 2200 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + 1) = 2200 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times 607836,8 + 0.6 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1 + \alpha) = 210 \times 2.5 \times (16693,56 + 6831000) \times (1669$$

 $= 374\ 002\ 513,85\ \text{py}$ 6.

#### Суммарные затраты в энергосистеме:

$$\mathcal{C}_{\Sigma} = \mathcal{C}_{\Sigma}^{\mathrm{T}9} + \mathcal{C}_{\Sigma}^{99}, \text{py6}$$
 
$$\mathcal{C}_{\Sigma}^{99} = \mathcal{C}_{5x\mathrm{K}-200}^{99} + \mathcal{C}_{6x\mathrm{K}-300}^{99} + \mathcal{C}_{4x\mathrm{K}500}^{99} + \mathcal{C}_{2x\mathrm{\Pi}T-60}^{99} + \mathcal{C}_{3x\mathrm{T}-250}^{99} =$$
 
$$= 917668571,8 + 1699003568,06 + 1906379410,87 + \\ +62772556,09 + 327331552,27 = 4913155659,09 \text{ py6}.$$
 
$$\mathcal{C}_{\Sigma}^{\mathrm{T}9} = \mathcal{C}_{2x\mathrm{\Pi}T-60}^{\mathrm{T}9} + \mathcal{C}_{3x\mathrm{T}-250}^{\mathrm{T}9} = 89773629,22 + 374002513,85 =$$
 
$$= 463776143,07 \text{ py6}$$
 
$$\mathcal{C}_{\Sigma} = 4913155659,09 + 463776143,07 = 5376931802,16 \text{ py6}$$

## Себестоимость 1 кВт×ч, отпущенного в сеть:

$$C_{99} = \frac{C_{\Sigma}^{99}}{9_{\text{вып}}^{90}}$$
, руб./кВт × ч

где  $C_{\Sigma}^{39}$  — суммарные эксплуатационные расходы, относящиеся к отпуску электроэнергии, руб.

$$C_{\text{ээ}} = \frac{C_{\Sigma}^{\text{ээ}}}{9_{\text{выр}}^{\text{ЭС}}} = \frac{4913155659,09}{34105822,1 \times 1000} = 0,144 \text{ руб./кВт × ч}$$

## Себестоимость единицы тепла, отпущенной от всех ТЭЦ:

$$C_{ ext{ iny T3}} = rac{C_{\Sigma}^{ ext{ iny T3}}}{Q_{\Sigma}^{ ext{ iny orm}}}$$
, руб./Гкал

$$C_{ ext{ iny T9}} = rac{C_{\Sigma}^{ ext{ iny T9}}}{Q_{\Sigma}^{ ext{ iny orm}}} = rac{463\ 776\ 143,07}{5\ 291\ 339} = 87,65\ ext{руб.}/\Gamma$$
кал

## Эксплуатационные расходы в электрических сетях:

$$C_{\operatorname{эc}} = p \times K_{\operatorname{эc}}$$
, руб

где p – коэффициент, учитывающий отчисления на амортизацию, заработную плату и прочие затраты: p=0.07;

 $K_{\rm эc}$  — стоимость электрических сетей, принимаемая равной 30% от стоимости электростанций, руб:

$$K_{3c} = 0.3 \times (K_{y5xK-200} \times N_y^{5xK-200} + K_{y6xK-300} \times N_y^{6xK-300} + K_{y4xK-500} \times N_y^{4xK-500} + K_{y4xK-500} \times N_y^{4xK-500} + K_{y2x\Pi T-60} \times N_y^{2x\Pi T-60} + K_{y3xT-250} \times N_y^{3xT-250}) \times 1000 = 0.3 \times (147 \times 1000 + 120 \times 1800 + 132 \times 2000 + 200 \times 120 + 200 \times 750) \times 1000 \times 2.5 = 626 850 000 \text{ py6}.$$

$$C_{3c} = 0.07 \times 626 850 000 = 43 879 500 \text{ py6}$$

#### Общие затраты в энергосистеме, относимые к электроэнергии:

$$C_{\text{эн}}^{\mathfrak{I}\mathfrak{I}}=C_{\Sigma}+C_{\mathfrak{I}\mathfrak{I}}$$
, руб

$$\mathcal{C}_{\scriptscriptstyle \mathrm{3H}}^{\, \mathrm{39}} = \mathcal{C}_{\Sigma} + \mathcal{C}_{\scriptscriptstyle \mathrm{3c}} = 5\,376\,931\,802,\!16 + 43\,879\,500,\!00 \ = 5\,420\,811\,302,\!16$$
 руб

## Себестоимость 1 кВт × ч энергии, полезно отпущенной потребителям:

$$C_{99}^{\text{пол}} = \frac{C_{9\text{H}}^{99} + C_{\text{пок}} - C_{\text{прод}}}{9_{\text{год}}^{\text{отп}} \times (1 - K_{\text{пок}})}$$

где  $K_{\text{пот}}$  – коэффициент потерь в сетях:  $K_{\text{пот}} = 0,1$ ;

## Количество покупной и продаваемой энергии:

$$\theta_{\text{прод}} = (168,6 \times 4) \times 155 = 104532 \text{ MBT}$$

$$C_{\text{прод}} = \vartheta_{\text{прод}} \times T_{\text{мэс}} = 104532 \times 1000 \times 0,16 = 16725120$$
 руб.

 $\Gamma$ де  $T_{\text{мэс}}$  -тариф на межсистемный переток

#### 4.5 Расчет основных показателей экономической эффективности

## Стоимость реализации энергии:

где:  $T_{99}^{cp}$ -средний тариф на электроэнергию, отпускаемую потребителям,

$$T_{99}^{cp} = 0.28666 \times \frac{2.5}{2.5789} = 0.278 \frac{py6}{\kappa BT \times Y}$$

 $T_{{
m T}9}^{{
m cp}}$ -средний тариф на тепловую энергию, отпускаемую потребителям,  $T_{{
m T}9}^{{
m cp}}=128 imesrac{2,5}{2,5789}=124,388~rac{{
m py6}}{{
m \kappa BT} imes {
m q}}$ 

$$\mathcal{A} = \mathfrak{I}_{\text{год}}^{\text{отп}} \times (1 - K_{\text{пот}}) \times T_{\mathfrak{I}\mathfrak{I}}^{\text{ср}} + Q_{\text{отп}}^{\text{год}} \times T_{\text{т}\mathfrak{I}\mathfrak{I}}^{\text{ср}} = 34105822, 1 \times 1000 \times (1 - 0, 1) \times 0,278 + 5291339 \times 124,388 = 9191455764,95 \text{ руб.}$$

Прибыль энергосистемы:

$$\Pi = \mathcal{I} - (C_{\text{эн}} + C_{\text{пок}} - C_{\text{прол}})$$

$$C_{\scriptscriptstyle \mathrm{3H}} = C_{\scriptscriptstyle \mathrm{3H}}^{\scriptscriptstyle \mathrm{39}} + C_{\scriptscriptstyle \Sigma}^{\scriptscriptstyle \mathrm{T9}} = 5$$
 420 811 302,16 + 463 776 143,07 = 5 884 587 445,23 руб.

$$\Pi = 9\ 191\ 455\ 764,95 - (5\ 884\ 587\ 445,23 - 16\ 725\ 120) =$$

$$= 3\ 323\ 593\ 439,72\ \text{py}6$$

Прибыль, остающаяся в распоряжении энергосистемы, после осуществления всех выплат:

$$\Pi_{\text{ост}} = (1 - j) \times \Pi$$
, руб.

где j – налог на прибыль: j = 18 %.

$$\Pi_{\text{ост}} = (1 - j) \times \Pi = (1 - 0.18) \times 3323593439,72 = 2725346620,57 \text{ руб.}$$

## Хозрасчётный доход предприятия:

$$X_{\mu} = C_{3\pi}^{3C} + \Pi_{oct}$$
, руб.

$$X_{\rm g} = C_{\rm 3H}^{\rm 3C} + \Pi_{\rm oct} = 34\,310\,760,00 + 2\,725\,346\,620,57 = 2\,759\,657\,380,57$$
 py6.

#### Фондоотдача

$$\Phi_{0} = 1,3 \times (K_{y5xK-200} \times N_{y}^{5xK-200} + K_{y6xK-300} \times N_{y}^{6xK-300} + K_{y4xK-500} \times N_{y}^{4xK-500} + K_{y2x\Pi T-60} \times N_{y}^{2x\Pi T-60} + K_{y3xT-250} \times N_{y}^{3xT-250}) \times \\ \times 1000 = 1,3 \times (147 \times 1000 + K_{y2xM-200} \times 120 + 200 \times 750) \times 1000 \times 2,5 = \\ = 2716350000 \text{ py6}$$

$$K_{\Phi_{0}} = \frac{\mathcal{I}}{\Phi_{0}}$$

$$K_{\Phi_{0}} = \frac{\mathcal{I}}{2716350000} = 3,384$$

#### Рентабельность

$$K_{\rm peh} = \frac{\Pi}{\Phi_{\rm o}}$$
 
$$K_{\rm peh} = \frac{\Pi}{\Phi_{\rm o}} = \frac{3323593439,72}{2716350000} = 1,224$$

Коэффициент эффективности использования установленной мощности электростанций и всей энергосистемы:

где  $N_{\rm pa6}^{\rm cp}$  – средняя рабочая мощность [1, с. 19]:

$$K_{9} = \frac{N_{\text{pa6}}^{\text{cp}}}{N_{\gamma}^{\text{cp}}}$$

$$N_{
m pa6}^{
m cp}=N_{
m y}^{
m cp}-N_{
m плрем}^{
m cp}-N_{
m вынрем}^{
m cp}-N_{
m кот}^{
m cp}-N_{
m nep}^{
m cp}-N_{
m orp}^{
m cp}$$
, МВт

При определении  $N_{\rm pa6}^{\rm cp}$ , учитывется только вывод в плановый ремонт  $N_{\rm плрем}^{\rm cp}$ . Все остальные слагаемые в целях упрощения расчета опущены. Для одного энергоблока:

$$N_{\text{плрем}}^{\text{cp}} = N_{y} \times \frac{T_{\text{рем}}}{T_{K}}$$
, МВт

где  $N_y$  – установленная мощность блока;

 $T_{
m pem}$  – время его ремонта:  $T_{
m pem}=210$  дней;

 $T_K$  — время календарного периода:  $T_K = 365$  дней.

Среднюю установленную мощность принимаем равной номинальной, пренебрегая, с целью упрощения, различными факторами, снижающими эту мощность.

#### • 5xK-200

$$N_{\text{пл.рем5xK-200}}^{\text{cp}} = N_{\text{y}} \times \frac{T_{\text{pem}}}{T_{K}} = 200 \times \frac{210}{365} = 115,07 \text{ MBT}$$

$$N_{\rm pa65xK-200} = N_y^{\rm 5xK-200} - N_{\rm m.n.pem5xK-200}^{\rm cp} = 1000 - 115,07 = 884,93~{
m MBr}$$

$$K_9^{5\text{xK}-200} = \frac{N_{\text{pa65xK}-200}}{N_y^{5\text{xK}-200}} = \frac{884,93}{1000} = 0,885$$

## • 8xK-300

$$N_{\text{пл.рем6xK-300}}^{\text{cp}} = N_{\text{y}} \times \frac{T_{\text{рем}}}{T_{K}} = 300 \times \frac{210}{365} = 172,6 \text{ MBT}$$

$$N_{\rm pa66xK-300} = N_y^{\rm 6xK-300} - N_{\rm пл. pem6xK-300}^{\rm cp} = 1800 - 172,6 = 1627,4~{
m MBT}$$

$$K_9^{6xK-00} = \frac{N_{\text{pa66xK-300}}}{N_y^{6xK-300}} = \frac{1627,4}{1800} = 0,904$$

#### • 5 x K-500

$$N_{\text{пл.рем4xK-500}}^{\text{cp}} = N_{\text{y}} \times \frac{T_{\text{рем}}}{T_{K}} = 500 \times \frac{210}{365} = 287,67 \text{ MBT}$$
 $N_{\text{раб4xK-500}} = N_{\text{y}}^{4\text{xK-500}} - N_{\text{пл.рем4xK-500}}^{\text{cp}} = 2000 - 287,67 = 1712,33 \text{ MBT}$ 
 $K_{9}^{4\text{xK-500}} = \frac{N_{\text{раб4xK-500}}}{N_{\text{y}}^{4\text{xK-500}}} = \frac{1712,33}{2000} = 0,856$ 

#### • 2x∏T-60

$$N_{\text{пл.рем2xПT-60}}^{\text{cp}} = 0 \text{ MBT}$$

$$N_{\text{pa62x\Pi T}-60} = N_y^{2\text{x}\Pi T-60} - N_{\text{пл.рем2x}\Pi T-60}^{\text{cp}} = 120 - 0 = 120 \text{ MBT}$$

$$K_9^{2 \times \Pi T - 60} = \frac{N_{\text{pa62} \times \Pi T - 60}}{N_y^{2 \times \Pi T - 60}} = \frac{120}{120} = 1$$

## • 3 x T-250

$$N_{\text{пл.рем3xT-250}}^{\text{cp}} = 0 \text{ MBT}$$

$$N_{\text{раб3xT-250}} = N_y^{3\text{xT-250}} - N_{\text{пл.рем3xT-250}}^{\text{cp}} = 750 - 0 = 750 \text{ MBt}$$

$$K_9^{3\text{xT}-250} = \frac{N_{\text{pa63xT}-250}}{N_y^{3\text{xT}-250}} = \frac{750}{750} = 1$$

Энергосистема:

$$K_{9}^{3C} = \frac{N_{\text{pa65xK}-200} + N_{\text{pa66xK}-300} + N_{\text{pa64xK}-500} + N_{\text{pa62x\PiT}-60} + N_{\text{pa63xT}-250}}{\sum N_{y}^{\text{cp}}} = \frac{884.9 + 1627.4 + 1712.3 + 120 + 750}{1000 + 1800 + 2000 + 120 + 750} = 0.899$$

#### ЗАКЛЮЧЕНИЕ

В ходе курсовой работы выполнили:

- построение суточных и годового графики нагрузки;
- построение характеристик относительных приростов электростанций и энергосистемы;
- распределение электрической и тепловой энергии между электростанциями энергосистемы;
- расчет годовой выработки мощности и годового расхода топлива по энергосистеме;
- расчет себестоимости отпуска тепла и электроэнергии;
- расчет основных показателей экономической эффективности: прибыль, рентабельность, фондоотдача.

В курсовой работе произвели расчет годовой выработки мощности по энергосистеме, которая составила 34105822,1 МВт×ч, расход топлива по энергосистеме составил 10110799,3 т.у.т. В целом по энергосистеме условнопеременные и условно-постоянные расходы составили 5 308 169 632,5 руб. и 70168,12 руб. соответственно. Суммарные эксплуатационные затраты по всем электростанциям энергосистемы получились равные 10 685101434,66 руб.

При расчете технико-экономических показателей энергосистемы получили себестоимость 1 кBt\* ч электроэнергии, полезно отпущенной потребителям равной 0.144 р./кBt\* ч, а себестоимость единицы тепла, отпущенной от всех ТЭЦ составила  $87.65 \text{ руб/}\Gamma$ кал.

Прибыль энергосистемы получилась равной 3323593439,72руб, а рентабельность составила 1,224.

С помощью данной курсовой работой были закреплены полученные знания при изучении дисциплины, а также самостоятельное овладение основами менеджмента с учетом специфики энергетики.

#### СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Декларация об уровнях тарифов на электрическую энергию [Электронный ресурс]/ РУП"Гомельэнерго" Гомель, 2021. Режим доступа: http://www.gomelenergo.by/docs/tarif/tarif ee.pdf. Дата доступа: 11.10.2021.
- 2. Методические указания по выполнению курсовой работы по дисциплине «Менеджмент в энергетике» для студентов специальности 1-43-01-02 «Электроэнергетические системы и сети», специализации «Проектирование, монтаж и эксплуатация электрических сетей» / авт.-сост.: Т.А.Маляренко.-Гомель: ГГТУ им. П.О. Сухого, 2012.- 52с.
- 3. Декларация об уровнях тарифов на тепловую энергию [Электронный ресурс]/ РУП"Гомельэнерго". Гомель, 2021. Режим доступа: http://www.belenergo.by/upload/doc/brest111021.pdf. Дата доступа: 11.10.2021.

# ПРИЛОЖЕНИЕ А

Таблица A1 — Характеристики относительных приростов энергосистемы для зимнего периода  $0-8\ \mbox{ч}$ 

| G HOO         | 5xK-200, | 6xK-300, | 4xK-500, | 2xΠT-60, | 3xT-250, | Рсист,  |
|---------------|----------|----------|----------|----------|----------|---------|
| <i>Е</i> ,час | МВт      | МВт      | МВт      | МВт      | МВт      | МВт     |
| 0,273         | 595,06   | 886,74   | 1234,40  | 73,22    | 611,18   | 3400,60 |
| 0,274         | 595,06   | 920,07   | 1234,40  | 73,22    | 611,18   | 3433,93 |
| 0,275         | 595,06   | 953,40   | 1272,11  | 73,22    | 611,18   | 3504,96 |
| 0,276         | 595,06   | 986,73   | 1309,81  | 73,22    | 611,18   | 3576,00 |
| 0,277         | 595,06   | 1020,06  | 1347,52  | 73,22    | 611,18   | 3647,04 |
| 0,278         | 595,06   | 1053,39  | 1385,23  | 73,22    | 611,18   | 3718,07 |
| 0,279         | 595,06   | 1086,72  | 1422,93  | 73,22    | 611,18   | 3789,11 |
| 0,280         | 595,06   | 1120,05  | 1460,64  | 73,22    | 611,18   | 3860,15 |
| 0,281         | 610,05   | 1153,38  | 1498,35  | 73,22    | 611,18   | 3946,18 |
| 0,282         | 625,05   | 1186,71  | 1536,05  | 73,22    | 611,18   | 4032,21 |
| 0,283         | 640,05   | 1220,04  | 1573,76  | 73,22    | 611,18   | 4118,25 |
| 0,284         | 655,04   | 1253,37  | 1611,47  | 73,22    | 611,18   | 4204,28 |
| 0,285         | 670,04   | 1286,70  | 1649,17  | 73,22    | 611,18   | 4290,32 |
| 0,286         | 685,04   | 1320,03  | 1686,88  | 73,22    | 611,18   | 4376,35 |
| 0,287         | 700,03   | 1353,36  | 1724,59  | 73,22    | 611,18   | 4462,38 |
| 0,288         | 715,03   | 1386,69  | 1762,29  | 73,22    | 611,18   | 4548,42 |
| 0,289         | 730,03   | 1420,02  | 1800,00  | 73,22    | 611,18   | 4634,45 |
| 0,290         | 745,02   | 1453,35  | 1800,00  | 73,22    | 611,18   | 4682,78 |
| 0,291         | 760,02   | 1486,68  | 1800,00  | 73,22    | 611,18   | 4731,10 |
| 0,292         | 775,02   | 1520,01  | 1800,00  | 73,22    | 611,18   | 4779,43 |
| 0,293         | 790,02   | 1553,34  | 1800,00  | 73,22    | 611,18   | 4827,76 |
| 0,294         | 805,01   | 1586,67  | 1800,00  | 73,22    | 611,18   | 4876,08 |
| 0,295         | 820,01   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4924,41 |
| 0,296         | 835,01   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4939,41 |
| 0,297         | 850,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4954,41 |
| 0,298         | 865,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4969,40 |
| 0,299         | 865,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4969,40 |
| 0,300         | 865,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4969,40 |
| 0,301         | 865,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4969,40 |
| 0,302         | 865,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4969,40 |
| 0,303         | 865,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4969,40 |
| 0,304         | 865,00   | 1620,00  | 1800,00  | 73,22    | 611,18   | 4969,40 |
| 0,305         | 865,00   | 1620,00  | 1818,18  | 73,22    | 611,18   | 4987,58 |
| 0,306         | 865,00   | 1620,00  | 1836,36  | 73,22    | 611,18   | 5005,77 |
| 0,307         | 865,00   | 1620,00  | 1854,55  | 73,22    | 611,18   | 5023,95 |
| 0,308         | 865,00   | 1620,00  | 1872,73  | 73,22    | 611,18   | 5042,13 |

| продолжени | ле таблицы | Al      |         |        |        |         |
|------------|------------|---------|---------|--------|--------|---------|
| 0,309      | 865,00     | 1620,00 | 1890,91 | 73,22  | 611,18 | 5060,31 |
| 0,310      | 865,00     | 1620,00 | 1909,09 | 73,22  | 611,18 | 5078,49 |
| 0,311      | 865,00     | 1620,00 | 1927,27 | 73,22  | 750,00 | 5235,49 |
| 0,312      | 865,00     | 1620,00 | 1945,45 | 73,22  | 750,00 | 5253,68 |
| 0,313      | 865,00     | 1620,00 | 1963,64 | 73,22  | 750,00 | 5271,86 |
| 0,314      | 865,00     | 1620,00 | 1981,82 | 73,22  | 750,00 | 5290,04 |
| 0,315      | 865,00     | 1620,00 | 2000,00 | 73,22  | 750,00 | 5308,22 |
| 0,316      | 865,00     | 1636,36 | 2000,00 | 73,22  | 750,00 | 5324,59 |
| 0,317      | 865,00     | 1652,73 | 2000,00 | 120,00 | 750,00 | 5387,73 |
| 0,318      | 865,00     | 1669,09 | 2000,00 | 120,00 | 750,00 | 5404,09 |
| 0,319      | 865,00     | 1685,45 | 2000,00 | 120,00 | 750,00 | 5420,45 |
| 0,320      | 865,00     | 1701,82 | 2000,00 | 120,00 | 750,00 | 5436,82 |
| 0,321      | 871,75     | 1718,18 | 2000,00 | 120,00 | 750,00 | 5459,93 |
| 0,322      | 878,50     | 1734,55 | 2000,00 | 120,00 | 750,00 | 5483,05 |
| 0,323      | 885,25     | 1750,91 | 2000,00 | 120,00 | 750,00 | 5506,16 |
| 0,324      | 892,00     | 1767,27 | 2000,00 | 120,00 | 750,00 | 5529,27 |
| 0,325      | 898,75     | 1783,64 | 2000,00 | 120,00 | 750,00 | 5552,39 |
| 0,326      | 905,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5575,50 |
| 0,327      | 912,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5582,25 |
| 0,328      | 919,00     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5589,00 |
| 0,329      | 925,75     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5595,75 |
| 0,330      | 932,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5602,50 |
| 0,331      | 939,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5609,25 |
| 0,332      | 946,00     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5616,00 |
| 0,333      | 952,75     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5622,75 |
| 0,334      | 959,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5629,50 |
| 0,335      | 966,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5636,25 |
| 0,336      | 973,00     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5643,00 |
| 0,337      | 979,75     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5649,75 |
| 0,338      | 986,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5656,50 |
| 0,339      | 993,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5663,25 |
| 0,340      | 1000,00    | 1800,00 | 2000,00 | 120,00 | 750,00 | 5670,00 |
|            |            |         |         |        |        |         |

Таблица A2 — Характеристики относительных приростов энергосистемы для зимнего периода  $8-24\ \mathrm{y}$ 

| 6 1100        | 5xK-200, | 6xK-300, | 4xK-500, | 2xΠT-60, | 3xT-250, | Рсист,  |
|---------------|----------|----------|----------|----------|----------|---------|
| <i>ε</i> ,час | МВт      | МВт      | МВт      | МВт      | МВт      | МВт     |
| 0,273         | 595,06   | 886,74   | 1234,40  | 93,50    | 611,18   | 3420,88 |
| 0,274         | 595,06   | 920,07   | 1234,40  | 93,50    | 611,18   | 3454,20 |
| 0,275         | 595,06   | 953,40   | 1272,11  | 93,50    | 611,18   | 3525,24 |

| 0,276         595,06         1020,06         1347,52         93,50         611,18         3596,28           0,277         595,06         1020,06         1347,52         93,50         611,18         3667,31           0,279         595,06         1086,72         1422,93         93,50         611,18         3809,39           0,280         595,06         1120,05         1460,64         93,50         611,18         3809,39           0,281         610,05         1153,38         1498,35         93,50         611,18         3966,46           0,282         625,05         1186,71         1536,05         93,50         611,18         4052,49           0,283         640,05         1220,04         1573,76         93,50         611,18         4138,53           0,284         655,04         1253,37         1611,47         93,50         611,18         4310,59           0,285         670,04         1286,70         1649,17         93,50         611,18         4310,59           0,286         685,04         1320,03         1686,88         93,50         611,18         4310,59           0,287         700,03         1353,36         1724,59         93,50         611,18 <td< th=""><th>продолжен</th><th>ис таолицы</th><th><math>\Lambda \mathcal{L}</math></th><th></th><th></th><th>7</th><th></th></td<> | продолжен | ис таолицы | $\Lambda \mathcal{L}$ |         |       | 7      |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------------------|---------|-------|--------|---------|
| 0,278         595,06         1053,39         1385,23         93,50         611,18         3738,35           0,279         595,06         1086,72         1422,93         93,50         611,18         3809,39           0,280         595,06         1120,05         1460,64         93,50         611,18         3809,39           0,281         610,05         1153,38         1498,35         93,50         611,18         3966,46           0,282         625,05         1186,71         1536,05         93,50         611,18         4052,49           0,283         640,05         1220,04         1573,76         93,50         611,18         4138,53           0,284         655,04         1253,37         1611,47         93,50         611,18         4138,53           0,285         670,04         1286,70         1649,17         93,50         611,18         4396,50           0,286         685,04         1320,03         1686,88         93,50         611,18         4396,66           0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18 <td< td=""><td>0,276</td><td>595,06</td><td>986,73</td><td>1309,81</td><td>93,50</td><td>611,18</td><td>3596,28</td></td<>           | 0,276     | 595,06     | 986,73                | 1309,81 | 93,50 | 611,18 | 3596,28 |
| 0,279         595,06         1086,72         1422,93         93,50         611,18         3809,39           0,280         595,06         1120,05         1460,64         93,50         611,18         3880,43           0,281         610,05         1153,38         1498,35         93,50         611,18         3966,46           0,282         625,05         1186,71         1536,05         93,50         611,18         4052,49           0,283         640,05         1220,04         1573,76         93,50         611,18         4052,49           0,284         655,04         1253,37         1611,47         93,50         611,18         4224,56           0,285         670,04         1286,70         1649,17         93,50         611,18         4310,59           0,286         685,04         1320,03         1686,88         93,50         611,18         4396,63           0,287         700,03         1386,69         1762,29         93,50         611,18         4456,66           0,289         730,03         1420,02         1800,00         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18 <td< td=""><td>0,277</td><td>595,06</td><td>1020,06</td><td>1347,52</td><td>93,50</td><td>611,18</td><td>3667,31</td></td<>          | 0,277     | 595,06     | 1020,06               | 1347,52 | 93,50 | 611,18 | 3667,31 |
| 0,280         595,06         1120,05         1460,64         93,50         611,18         3880,43           0,281         610,05         1153,38         1498,35         93,50         611,18         3966,46           0,282         625,05         1186,71         1536,05         93,50         611,18         4052,49           0,283         640,05         1220,04         1573,76         93,50         611,18         4138,53           0,284         655,04         1253,37         1611,47         93,50         611,18         4224,56           0,285         670,04         1286,70         1649,17         93,50         611,18         4310,59           0,286         685,04         1320,03         1686,88         93,50         611,18         4310,59           0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18         4458,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4753,35           0,290         745,02         1453,35         1800,00         93,50         611,18 <td< td=""><td>0,278</td><td>595,06</td><td>1053,39</td><td>1385,23</td><td>93,50</td><td>611,18</td><td>3738,35</td></td<>          | 0,278     | 595,06     | 1053,39               | 1385,23 | 93,50 | 611,18 | 3738,35 |
| 0,281         610,05         1153,38         1498,35         93,50         611,18         3966,46           0,282         625,05         1186,71         1536,05         93,50         611,18         4052,49           0,283         640,05         1220,04         1573,76         93,50         611,18         4138,53           0,284         655,04         1253,37         1611,47         93,50         611,18         4224,56           0,285         670,04         1286,70         1649,17         93,50         611,18         4396,63           0,286         685,04         1320,03         1686,88         93,50         611,18         4396,63           0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18         4482,66           0,289         730,03         1420,02 <t>1800,00         93,50         611,18         4654,73           0,290         745,02         1453,35         1800,00         93,50         611,18         4703,05           0,291         760,02         1486,68         1800,00         93,50         611,18</t>                                                                                                                                       | 0,279     | 595,06     | 1086,72               | 1422,93 | 93,50 | 611,18 | 3809,39 |
| 0,282         625,05         1186,71         1536,05         93,50         611,18         4052,49           0,283         640,05         1220,04         1573,76         93,50         611,18         4138,53           0,284         655,04         1253,37         1611,47         93,50         611,18         4224,56           0,285         670,04         1286,70         1649,17         93,50         611,18         4310,59           0,286         685,04         1320,03         1686,88         93,50         611,18         4396,63           0,287         700,03         1353,36         1724,59         93,50         611,18         4396,63           0,288         715,03         1386,69         1762,29         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4751,38           0,290         745,02         1453,35         1800,00         93,50         611,18         4751,38           0,291         760,02         1486,68         1800,00         93,50         611,18 <td< td=""><td>0,280</td><td>595,06</td><td>1120,05</td><td>1460,64</td><td>93,50</td><td>611,18</td><td>3880,43</td></td<>          | 0,280     | 595,06     | 1120,05               | 1460,64 | 93,50 | 611,18 | 3880,43 |
| 0,283         640,05         1220,04         1573,76         93,50         611,18         4138,53           0,284         655,04         1253,37         1611,47         93,50         611,18         4224,56           0,285         670,04         1286,70         1649,17         93,50         611,18         4310,59           0,286         685,04         1320,03         1686,88         93,50         611,18         4396,63           0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4654,73           0,290         745,02         1453,35         1800,00         93,50         611,18         479,305           0,291         760,02         1486,68         1800,00         93,50         611,18         479,138           0,292         775,02         1520,01         1800,00         93,50         611,18         479,71           0,293         790,02         1553,34         1800,00         93,50         611,18                                                                                                                                       | 0,281     | 610,05     | 1153,38               | 1498,35 | 93,50 | 611,18 | 3966,46 |
| 0,284         655,04         1253,37         1611,47         93,50         611,18         4224,56           0,285         670,04         1286,70         1649,17         93,50         611,18         4310,59           0,286         685,04         1320,03         1686,88         93,50         611,18         4396,63           0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4568,69           0,290         745,02         1453,35         1800,00         93,50         611,18         4751,33           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,33           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,33           0,291         760,02         1520,01         1800,00         93,50         611,18         479,71           0,293         790,02         1553,34         1800,00         93,50         611,18                                                                                                                                       | 0,282     | 625,05     | 1186,71               | 1536,05 | 93,50 | 611,18 | 4052,49 |
| 0,285         670,04         1286,70         1649,17         93,50         611,18         4310,59           0,286         685,04         1320,03         1686,88         93,50         611,18         4396,63           0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4654,73           0,290         745,02         1453,35         1800,00         93,50         611,18         4703,05           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,38           0,292         775,02         1520,01         1800,00         93,50         611,18         479,31           0,293         790,02         1553,34         1800,00         93,50         611,18         489,04           0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4                                                                                                                              | 0,283     | 640,05     | 1220,04               | 1573,76 | 93,50 | 611,18 | 4138,53 |
| 0,286         685,04         1320,03         1686,88         93,50         611,18         4396,63           0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4654,73           0,290         745,02         1453,35         1800,00         93,50         611,18         4751,38           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,38           0,292         775,02         1520,01         1800,00         93,50         611,18         4799,71           0,293         790,02         1553,34         1800,00         93,50         611,18         4894,63           0,294         805,01         1586,67         1800,00         93,50         611,18         4894,63           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,284</td><td>655,04</td><td>1253,37</td><td>1611,47</td><td>93,50</td><td>611,18</td><td>4224,56</td></td<>          | 0,284     | 655,04     | 1253,37               | 1611,47 | 93,50 | 611,18 | 4224,56 |
| 0,287         700,03         1353,36         1724,59         93,50         611,18         4482,66           0,288         715,03         1386,69         1762,29         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4654,73           0,290         745,02         1453,35         1800,00         93,50         611,18         4703,05           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,38           0,292         775,02         1520,01         1800,00         93,50         611,18         4799,71           0,293         790,02         1553,34         1800,00         93,50         611,18         4896,36           0,294         805,01         1586,67         1800,00         93,50         611,18         4894,69           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4959,69           0,297         850,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,285</td><td>670,04</td><td>1286,70</td><td>1649,17</td><td>93,50</td><td>611,18</td><td>4310,59</td></td<>          | 0,285     | 670,04     | 1286,70               | 1649,17 | 93,50 | 611,18 | 4310,59 |
| 0,288         715,03         1386,69         1762,29         93,50         611,18         4568,69           0,289         730,03         1420,02         1800,00         93,50         611,18         4654,73           0,290         745,02         1453,35         1800,00         93,50         611,18         4703,05           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,38           0,292         775,02         1520,01         1800,00         93,50         611,18         4799,71           0,293         790,02         1553,34         1800,00         93,50         611,18         4848,04           0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4974,68           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,299         865,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,286</td><td>685,04</td><td>1320,03</td><td>1686,88</td><td>93,50</td><td>611,18</td><td>4396,63</td></td<>          | 0,286     | 685,04     | 1320,03               | 1686,88 | 93,50 | 611,18 | 4396,63 |
| 0,289         730,03         1420,02         1800,00         93,50         611,18         4654,73           0,290         745,02         1453,35         1800,00         93,50         611,18         4703,05           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,38           0,292         775,02         1520,01         1800,00         93,50         611,18         4799,71           0,293         790,02         1553,34         1800,00         93,50         611,18         4848,04           0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4974,68           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,287</td><td>700,03</td><td>1353,36</td><td>1724,59</td><td>93,50</td><td>611,18</td><td>4482,66</td></td<>          | 0,287     | 700,03     | 1353,36               | 1724,59 | 93,50 | 611,18 | 4482,66 |
| 0,290         745,02         1453,35         1800,00         93,50         611,18         4703,05           0,291         760,02         1486,68         1800,00         93,50         611,18         4751,38           0,292         775,02         1520,01         1800,00         93,50         611,18         4799,71           0,293         790,02         1553,34         1800,00         93,50         611,18         4848,04           0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4959,69           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,288</td><td>715,03</td><td>1386,69</td><td>1762,29</td><td>93,50</td><td>611,18</td><td>4568,69</td></td<>          | 0,288     | 715,03     | 1386,69               | 1762,29 | 93,50 | 611,18 | 4568,69 |
| 0,291         760,02         1486,68         1800,00         93,50         611,18         4751,38           0,292         775,02         1520,01         1800,00         93,50         611,18         4799,71           0,293         790,02         1553,34         1800,00         93,50         611,18         4848,04           0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4959,69           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,289</td><td>730,03</td><td>1420,02</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4654,73</td></td<>          | 0,289     | 730,03     | 1420,02               | 1800,00 | 93,50 | 611,18 | 4654,73 |
| 0,292         775,02         1520,01         1800,00         93,50         611,18         4799,71           0,293         790,02         1553,34         1800,00         93,50         611,18         4848,04           0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4959,69           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,290</td><td>745,02</td><td>1453,35</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4703,05</td></td<>          | 0,290     | 745,02     | 1453,35               | 1800,00 | 93,50 | 611,18 | 4703,05 |
| 0,293         790,02         1553,34         1800,00         93,50         611,18         4848,04           0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         495,69           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18                                                                                                                                       | 0,291     | 760,02     | 1486,68               | 1800,00 | 93,50 | 611,18 | 4751,38 |
| 0,294         805,01         1586,67         1800,00         93,50         611,18         4896,36           0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4959,69           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,292</td><td>775,02</td><td>1520,01</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4799,71</td></td<>          | 0,292     | 775,02     | 1520,01               | 1800,00 | 93,50 | 611,18 | 4799,71 |
| 0,295         820,01         1620,00         1800,00         93,50         611,18         4944,69           0,296         835,01         1620,00         1800,00         93,50         611,18         4959,69           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18 <td< td=""><td>0,293</td><td>790,02</td><td>1553,34</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4848,04</td></td<>          | 0,293     | 790,02     | 1553,34               | 1800,00 | 93,50 | 611,18 | 4848,04 |
| 0,296         835,01         1620,00         1800,00         93,50         611,18         4959,69           0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1836,36         93,50         611,18 <td< td=""><td>0,294</td><td>805,01</td><td>1586,67</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4896,36</td></td<>          | 0,294     | 805,01     | 1586,67               | 1800,00 | 93,50 | 611,18 | 4896,36 |
| 0,297         850,00         1620,00         1800,00         93,50         611,18         4974,68           0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,307         865,00         1620,00         1854,55         93,50         611,18 <td< td=""><td>0,295</td><td>820,01</td><td>1620,00</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4944,69</td></td<>          | 0,295     | 820,01     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4944,69 |
| 0,298         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,306         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,307         865,00         1620,00         1872,73         93,50         611,18 <td< td=""><td>0,296</td><td>835,01</td><td>1620,00</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4959,69</td></td<>          | 0,296     | 835,01     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4959,69 |
| 0,299         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1872,73         93,50         611,18         5044,23           0,308         865,00         1620,00         1890,91         93,50         611,18 <td< td=""><td>0,297</td><td>850,00</td><td>1620,00</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4974,68</td></td<>          | 0,297     | 850,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4974,68 |
| 0,300         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1872,73         93,50         611,18         5044,23           0,308         865,00         1620,00         1890,91         93,50         611,18 <td< td=""><td>0,298</td><td>865,00</td><td>1620,00</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4989,68</td></td<>          | 0,298     | 865,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4989,68 |
| 0,301         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1854,55         93,50         611,18         5044,23           0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,312         865,00         1620,00         1927,27         93,50         750,00 <td< td=""><td>0,299</td><td>865,00</td><td>1620,00</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4989,68</td></td<>          | 0,299     | 865,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4989,68 |
| 0,302         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1854,55         93,50         611,18         5044,23           0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1999,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00 <td< td=""><td>0,300</td><td>865,00</td><td>1620,00</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4989,68</td></td<>          | 0,300     | 865,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4989,68 |
| 0,303         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1854,55         93,50         611,18         5044,23           0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00 <td< td=""><td>0,301</td><td>865,00</td><td>1620,00</td><td>1800,00</td><td>93,50</td><td>611,18</td><td>4989,68</td></td<>          | 0,301     | 865,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4989,68 |
| 0,304         865,00         1620,00         1800,00         93,50         611,18         4989,68           0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1854,55         93,50         611,18         5044,23           0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00         5292,14                                                                                                                                                                                                                                  | 0,302     | 865,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4989,68 |
| 0,305         865,00         1620,00         1818,18         93,50         611,18         5007,86           0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1854,55         93,50         611,18         5044,23           0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00         5292,14                                                                                                                                                                                                                                                                                                                                              | 0,303     | 865,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4989,68 |
| 0,306         865,00         1620,00         1836,36         93,50         611,18         5026,04           0,307         865,00         1620,00         1854,55         93,50         611,18         5044,23           0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00         5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,304     | 865,00     | 1620,00               | 1800,00 | 93,50 | 611,18 | 4989,68 |
| 0,307         865,00         1620,00         1854,55         93,50         611,18         5044,23           0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00         5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,305     | 865,00     | 1620,00               | 1818,18 | 93,50 | 611,18 | 5007,86 |
| 0,308         865,00         1620,00         1872,73         93,50         611,18         5062,41           0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00         5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,306     | 865,00     | 1620,00               | 1836,36 | 93,50 | 611,18 | 5026,04 |
| 0,309         865,00         1620,00         1890,91         93,50         611,18         5080,59           0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00         5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,307     | 865,00     | 1620,00               | 1854,55 | 93,50 | 611,18 | 5044,23 |
| 0,310         865,00         1620,00         1909,09         93,50         611,18         5098,77           0,311         865,00         1620,00         1927,27         93,50         750,00         5255,77           0,312         865,00         1620,00         1945,45         93,50         750,00         5273,95           0,313         865,00         1620,00         1963,64         93,50         750,00         5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,308     | 865,00     | 1620,00               | 1872,73 | 93,50 | 611,18 | 5062,41 |
| 0,311     865,00     1620,00     1927,27     93,50     750,00     5255,77       0,312     865,00     1620,00     1945,45     93,50     750,00     5273,95       0,313     865,00     1620,00     1963,64     93,50     750,00     5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,309     | 865,00     | 1620,00               | 1890,91 | 93,50 | 611,18 | 5080,59 |
| 0,312     865,00     1620,00     1945,45     93,50     750,00     5273,95       0,313     865,00     1620,00     1963,64     93,50     750,00     5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,310     | 865,00     | 1620,00               | 1909,09 | 93,50 | 611,18 | 5098,77 |
| 0,313 865,00 1620,00 1963,64 93,50 750,00 5292,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,311     | 865,00     | 1620,00               | 1927,27 | 93,50 | 750,00 | 5255,77 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,312     | 865,00     | 1620,00               | 1945,45 | 93,50 | 750,00 | 5273,95 |
| 0,314 865,00 1620,00 1981,82 93,50 750,00 5310,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,313     | 865,00     | 1620,00               | 1963,64 | 93,50 | 750,00 | 5292,14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,314     | 865,00     | 1620,00               | 1981,82 | 93,50 | 750,00 | 5310,32 |
| 0,315 865,00 1620,00 2000,00 93,50 750,00 5328,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,315     | 865,00     | 1620,00               | 2000,00 | 93,50 | 750,00 | 5328,50 |
| 0,316 865,00 1636,36 2000,00 93,50 750,00 5344,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,316     | 865,00     | 1636,36               | 2000,00 | 93,50 | 750,00 | 5344,86 |

| продолжен | ие таолицы | AZ      |         |        |        |         |
|-----------|------------|---------|---------|--------|--------|---------|
| 0,317     | 865,00     | 1652,73 | 2000,00 | 120,00 | 750,00 | 5387,73 |
| 0,318     | 865,00     | 1669,09 | 2000,00 | 120,00 | 750,00 | 5404,09 |
| 0,319     | 865,00     | 1685,45 | 2000,00 | 120,00 | 750,00 | 5420,45 |
| 0,320     | 865,00     | 1701,82 | 2000,00 | 120,00 | 750,00 | 5436,82 |
| 0,321     | 871,75     | 1718,18 | 2000,00 | 120,00 | 750,00 | 5459,93 |
| 0,322     | 878,50     | 1734,55 | 2000,00 | 120,00 | 750,00 | 5483,05 |
| 0,323     | 885,25     | 1750,91 | 2000,00 | 120,00 | 750,00 | 5506,16 |
| 0,324     | 892,00     | 1767,27 | 2000,00 | 120,00 | 750,00 | 5529,27 |
| 0,325     | 898,75     | 1783,64 | 2000,00 | 120,00 | 750,00 | 5552,39 |
| 0,326     | 905,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5575,50 |
| 0,327     | 912,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5582,25 |
| 0,328     | 919,00     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5589,00 |
| 0,329     | 925,75     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5595,75 |
| 0,330     | 932,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5602,50 |
| 0,331     | 939,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5609,25 |
| 0,332     | 946,00     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5616,00 |
| 0,333     | 952,75     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5622,75 |
| 0,334     | 959,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5629,50 |
| 0,335     | 966,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5636,25 |
| 0,336     | 973,00     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5643,00 |
| 0,337     | 979,75     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5649,75 |
| 0,338     | 986,50     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5656,50 |
| 0,339     | 993,25     | 1800,00 | 2000,00 | 120,00 | 750,00 | 5663,25 |
| 0,340     | 1000,00    | 1800,00 | 2000,00 | 120,00 | 750,00 | 5670,00 |

Таблица A3 — Характеристики относительных приростов энергосистемы для летнего периода  $0-8\ \mbox{ч}$ 

|               | 5xK-200, | 6xK-300, | 4xK-500, | 2xΠT-60, | 3xT-250, | Рсист,  |
|---------------|----------|----------|----------|----------|----------|---------|
| <i>ε</i> ,час | МВт      | МВт      | МВт      | МВт      | МВт      | МВт     |
| 0,273         | 476,04   | 738,95   | 925,80   | 35,23    | 111,70   | 2287,72 |
| 0,274         | 476,04   | 766,73   | 925,80   | 35,23    | 111,70   | 2315,50 |
| 0,275         | 476,04   | 794,50   | 954,08   | 35,23    | 111,70   | 2371,55 |
| 0,276         | 476,04   | 822,28   | 982,36   | 35,23    | 111,70   | 2427,61 |
| 0,277         | 476,04   | 850,05   | 1010,64  | 35,23    | 111,70   | 2483,66 |
| 0,278         | 476,04   | 877,83   | 1038,92  | 35,23    | 111,70   | 2539,72 |
| 0,279         | 476,04   | 905,60   | 1067,20  | 35,23    | 111,70   | 2595,77 |
| 0,280         | 476,04   | 933,38   | 1095,48  | 35,23    | 111,70   | 2651,83 |
| 0,281         | 488,04   | 961,15   | 1123,76  | 35,23    | 111,70   | 2719,88 |
| 0,282         | 500,04   | 988,93   | 1152,04  | 35,23    | 111,70   | 2787,93 |
| 0,283         | 512,04   | 1016,70  | 1180,32  | 35,23    | 111,70   | 2855,98 |

| продолжен | ис таолицы | 113     |         |        |        |         |
|-----------|------------|---------|---------|--------|--------|---------|
| 0,284     | 524,03     | 1044,48 | 1208,60 | 35,23  | 111,70 | 2924,04 |
| 0,285     | 536,03     | 1072,25 | 1236,88 | 35,23  | 111,70 | 2992,09 |
| 0,286     | 548,03     | 1100,03 | 1265,16 | 35,23  | 111,70 | 3060,14 |
| 0,287     | 560,03     | 1127,80 | 1293,44 | 35,23  | 111,70 | 3128,19 |
| 0,288     | 572,02     | 1155,58 | 1321,72 | 35,23  | 111,70 | 3196,25 |
| 0,289     | 584,02     | 1183,35 | 1350,00 | 35,23  | 111,70 | 3264,30 |
| 0,290     | 596,02     | 1211,13 | 1350,00 | 35,23  | 111,70 | 3304,07 |
| 0,291     | 608,02     | 1238,90 | 1350,00 | 35,23  | 111,70 | 3343,85 |
| 0,292     | 620,01     | 1266,68 | 1350,00 | 35,23  | 111,70 | 3383,62 |
| 0,293     | 632,01     | 1294,45 | 1350,00 | 35,23  | 111,70 | 3423,39 |
| 0,294     | 644,01     | 1322,23 | 1350,00 | 35,23  | 111,70 | 3463,16 |
| 0,295     | 656,01     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3502,94 |
| 0,296     | 668,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3514,93 |
| 0,297     | 680,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3526,93 |
| 0,298     | 692,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3538,93 |
| 0,299     | 692,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3538,93 |
| 0,300     | 692,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3538,93 |
| 0,301     | 692,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3538,93 |
| 0,302     | 692,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3538,93 |
| 0,303     | 692,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3538,93 |
| 0,304     | 692,00     | 1350,00 | 1350,00 | 35,23  | 111,70 | 3538,93 |
| 0,305     | 692,00     | 1350,00 | 1363,64 | 35,23  | 111,70 | 3552,56 |
| 0,306     | 692,00     | 1350,00 | 1377,27 | 35,23  | 111,70 | 3566,20 |
| 0,307     | 692,00     | 1350,00 | 1390,91 | 35,23  | 111,70 | 3579,84 |
| 0,308     | 692,00     | 1350,00 | 1404,55 | 35,23  | 111,70 | 3593,47 |
| 0,309     | 692,00     | 1350,00 | 1418,18 | 35,23  | 111,70 | 3607,11 |
| 0,310     | 692,00     | 1350,00 | 1431,82 | 35,23  | 111,70 | 3620,75 |
| 0,311     | 692,00     | 1350,00 | 1445,45 | 35,23  | 750,00 | 4272,68 |
| 0,312     | 692,00     | 1350,00 | 1459,09 | 35,23  | 750,00 | 4286,32 |
| 0,313     | 692,00     | 1350,00 | 1472,73 | 35,23  | 750,00 | 4299,96 |
| 0,314     | 692,00     | 1350,00 | 1486,36 | 35,23  | 750,00 | 4313,59 |
| 0,315     | 692,00     | 1350,00 | 1500,00 | 35,23  | 750,00 | 4327,23 |
| 0,316     | 692,00     | 1363,64 | 1500,00 | 35,23  | 750,00 | 4340,86 |
| 0,317     | 692,00     | 1377,27 | 1500,00 | 120,00 | 750,00 | 4439,27 |
| 0,318     | 692,00     | 1390,91 | 1500,00 | 120,00 | 750,00 | 4452,91 |
| 0,319     | 692,00     | 1404,55 | 1500,00 | 120,00 | 750,00 | 4466,55 |
| 0,320     | 692,00     | 1418,18 | 1500,00 | 120,00 | 750,00 | 4480,18 |
| 0,321     | 697,40     | 1431,82 | 1500,00 | 120,00 | 750,00 | 4499,22 |
| 0,322     | 702,80     | 1445,45 | 1500,00 | 120,00 | 750,00 | 4518,25 |
| 0,323     | 708,20     | 1459,09 | 1500,00 | 120,00 | 750,00 | 4537,29 |
| 0,324     | 713,60     | 1472,73 | 1500,00 | 120,00 | 750,00 | 4556,33 |

| 0,325 | 719,00 | 1486,36 | 1500,00 | 120,00 | 750,00 | 4575,36 |
|-------|--------|---------|---------|--------|--------|---------|
| 0,326 | 724,40 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4594,40 |
| 0,327 | 729,80 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4599,80 |
| 0,328 | 735,20 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4605,20 |
| 0,329 | 740,60 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4610,60 |
| 0,330 | 746,00 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4616,00 |
| 0,331 | 751,40 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4621,40 |
| 0,332 | 756,80 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4626,80 |
| 0,333 | 762,20 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4632,20 |
| 0,334 | 767,60 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4637,60 |
| 0,335 | 773,00 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4643,00 |
| 0,336 | 778,40 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4648,40 |
| 0,337 | 783,80 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4653,80 |
| 0,338 | 789,20 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4659,20 |
| 0,339 | 794,60 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4664,60 |
| 0,340 | 800,00 | 1500,00 | 1500,00 | 120,00 | 750,00 | 4670,00 |

Таблица A4 — Характеристики относительных приростов энергосистемы для летнего периода  $8-24\ \mbox{ч}$ 

| <i>ε</i> ,час | 5xK-200, | 6xK-300, | 4xK-500, | 2xΠT-60, | 3xT-250, | Рсист,  |
|---------------|----------|----------|----------|----------|----------|---------|
| c, iac        | МВт      | МВт      | МВт      | МВт      | МВт      | МВт     |
| 0,273         | 476,04   | 738,95   | 925,80   | 55,46    | 111,70   | 2307,95 |
| 0,274         | 476,04   | 766,73   | 925,80   | 55,46    | 111,70   | 2335,73 |
| 0,275         | 476,04   | 794,50   | 954,08   | 55,46    | 111,70   | 2391,78 |
| 0,276         | 476,04   | 822,28   | 982,36   | 55,46    | 111,70   | 2447,84 |
| 0,277         | 476,04   | 850,05   | 1010,64  | 55,46    | 111,70   | 2503,89 |
| 0,278         | 476,04   | 877,83   | 1038,92  | 55,46    | 111,70   | 2559,95 |
| 0,279         | 476,04   | 905,60   | 1067,20  | 55,46    | 111,70   | 2616,00 |
| 0,280         | 476,04   | 933,38   | 1095,48  | 55,46    | 111,70   | 2672,06 |
| 0,281         | 488,04   | 961,15   | 1123,76  | 55,46    | 111,70   | 2740,11 |
| 0,282         | 500,04   | 988,93   | 1152,04  | 55,46    | 111,70   | 2808,16 |
| 0,283         | 512,04   | 1016,70  | 1180,32  | 55,46    | 111,70   | 2876,21 |
| 0,284         | 524,03   | 1044,48  | 1208,60  | 55,46    | 111,70   | 2944,27 |
| 0,285         | 536,03   | 1072,25  | 1236,88  | 55,46    | 111,70   | 3012,32 |
| 0,286         | 548,03   | 1100,03  | 1265,16  | 55,46    | 111,70   | 3080,37 |
| 0,287         | 560,03   | 1127,80  | 1293,44  | 55,46    | 111,70   | 3148,42 |
| 0,288         | 572,02   | 1155,58  | 1321,72  | 55,46    | 111,70   | 3216,48 |
| 0,289         | 584,02   | 1183,35  | 1350,00  | 55,46    | 111,70   | 3284,53 |
| 0,290         | 596,02   | 1211,13  | 1350,00  | 55,46    | 111,70   | 3324,30 |
| 0,291         | 608,02   | 1238,90  | 1350,00  | 55,46    | 111,70   | 3364,08 |

| 0,292     620,01     1266,68     1350,00     55,46       0,293     632,01     1294,45     1350,00     55,46       0,294     644,01     1322,23     1350,00     55,46 | 111,70<br>111,70<br>111,70 | 3403,85<br>3443,62 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|
|                                                                                                                                                                      |                            | 3443,62            |
| 0,294 644,01 1322,23 1350,00 55,46                                                                                                                                   | 111.70                     |                    |
|                                                                                                                                                                      |                            | 3483,39            |
| 0,295   656,01   1350,00   1350,00   55,46                                                                                                                           | 111,70                     | 3523,17            |
| 0,296   668,00   1350,00   1350,00   55,46                                                                                                                           | 111,70                     | 3535,16            |
| 0,297   680,00   1350,00   1350,00   55,46                                                                                                                           | 111,70                     | 3547,16            |
| 0,298   692,00   1350,00   1350,00   55,46                                                                                                                           | 111,70                     | 3559,16            |
| 0,299 692,00 1350,00 1350,00 55,46                                                                                                                                   | 111,70                     | 3559,16            |
| 0,300   692,00   1350,00   1350,00   55,46                                                                                                                           | 111,70                     | 3559,16            |
| 0,301 692,00 1350,00 1350,00 55,46                                                                                                                                   | 111,70                     | 3559,16            |
| 0,302 692,00 1350,00 1350,00 55,46                                                                                                                                   | 111,70                     | 3559,16            |
| 0,303 692,00 1350,00 1350,00 55,46                                                                                                                                   | 111,70                     | 3559,16            |
| 0,304 692,00 1350,00 1350,00 55,46                                                                                                                                   | 111,70                     | 3559,16            |
| 0,305   692,00   1350,00   1363,64   55,46                                                                                                                           | 111,70                     | 3572,79            |
| 0,306   692,00   1350,00   1377,27   55,46                                                                                                                           | 111,70                     | 3586,43            |
| 0,307 692,00 1350,00 1390,91 55,46                                                                                                                                   | 111,70                     | 3600,07            |
| 0,308 692,00 1350,00 1404,55 55,46                                                                                                                                   | 111,70                     | 3613,70            |
| 0,309 692,00 1350,00 1418,18 55,46                                                                                                                                   | 111,70                     | 3627,34            |
| 0,310 692,00 1350,00 1431,82 55,46                                                                                                                                   | 111,70                     | 3640,98            |
| 0,311 692,00 1350,00 1445,45 55,46                                                                                                                                   | 750,00                     | 4292,91            |
| 0,312 692,00 1350,00 1459,09 55,46                                                                                                                                   | 750,00                     | 4306,55            |
| 0,313 692,00 1350,00 1472,73 55,46                                                                                                                                   | 750,00                     | 4320,19            |
| 0,314 692,00 1350,00 1486,36 55,46                                                                                                                                   | 750,00                     | 4333,82            |
| 0,315   692,00   1350,00   1500,00   55,46                                                                                                                           | 750,00                     | 4347,46            |
| 0,316 692,00 1363,64 1500,00 55,46                                                                                                                                   | 750,00                     | 4361,09            |
| 0,317 692,00 1377,27 1500,00 120,00                                                                                                                                  | 750,00                     | 4439,27            |
| 0,318 692,00 1390,91 1500,00 120,00                                                                                                                                  | 750,00                     | 4452,91            |
| 0,319 692,00 1404,55 1500,00 120,00                                                                                                                                  | 750,00                     | 4466,55            |
| 0,320 692,00 1418,18 1500,00 120,00                                                                                                                                  | 750,00                     | 4480,18            |
| 0,321   697,40   1431,82   1500,00   120,00                                                                                                                          | 750,00                     | 4499,22            |
| 0,322 702,80 1445,45 1500,00 120,00                                                                                                                                  | 750,00                     | 4518,25            |
| 0,323 708,20 1459,09 1500,00 120,00                                                                                                                                  | 750,00                     | 4537,29            |
| 0,324 713,60 1472,73 1500,00 120,00                                                                                                                                  | 750,00                     | 4556,33            |
| 0,325 719,00 1486,36 1500,00 120,00                                                                                                                                  | 750,00                     | 4575,36            |
| 0,326 724,40 1500,00 1500,00 120,00                                                                                                                                  | 750,00                     | 4594,40            |
| 0,327 729,80 1500,00 1500,00 120,00                                                                                                                                  | 750,00                     | 4599,80            |
| 0,328 735,20 1500,00 1500,00 120,00                                                                                                                                  | 750,00                     | 4605,20            |
| 0,329 740,60 1500,00 1500,00 120,00                                                                                                                                  | 750,00                     | 4610,60            |
| 0,330 746,00 1500,00 1500,00 120,00                                                                                                                                  | 750,00                     | 4616,00            |
| 0,331 751,40 1500,00 1500,00 120,00                                                                                                                                  | 750,00                     | 4621,40            |
| 0,332 756,80 1500,00 1500,00 120,00                                                                                                                                  | 750,00                     | 4626,80            |

|       | по тассить |         |         |        |        |         |
|-------|------------|---------|---------|--------|--------|---------|
| 0,333 | 762,20     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4632,20 |
| 0,334 | 767,60     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4637,60 |
| 0,335 | 773,00     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4643,00 |
| 0,336 | 778,40     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4648,40 |
| 0,337 | 783,80     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4653,80 |
| 0,338 | 789,20     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4659,20 |
| 0,339 | 794,60     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4664,60 |
| 0,340 | 800,00     | 1500,00 | 1500,00 | 120,00 | 750,00 | 4670,00 |



Рисунок А1 – Суммарная ХОП энергосистемы для зимнего периода



Рисунок А2 – Суммарная ХОП энергосистемы для летнего периода

## приложение Б

# Штатные коэффициенты КЭС по эксплуатационному персоналу, чел./МВт

| Manuscans I/DC MD- | Количество | Видт    | гоплива    |
|--------------------|------------|---------|------------|
| Мощность КЭС, МВт  | блоков     | твердое | Газ, мазут |
| 600                | 4          | 0,93    | 0,7        |
| 900                | 6          | 0,73    | 0,56       |
| 800                | 4          | 0,7     | 0,52       |
| 900                | 3          | 0,59    | 0,45       |
| 1200               | 6          | 0,55    | 0,42       |
| 1200               | 4          | 0,48    | 0,37       |
| 1800               | 6          | 0,38    | 0,29       |
| 2400               | 8          | 0,33    | 0,25       |
| 3000               | 6          | 0,23    | 0,18       |
| 4000               | 8          | 0,22    | 0,16       |
| 4000               | 5          | 0,20    | 0,15       |

Рисунок Б1 — Штатные коэффициенты КЭС по эксплуатационному персоналу

| Штатныс коэффициенты ТЭЦ<br>по эксплуатационному персоналу, чел./МВт |                              |             |            |
|----------------------------------------------------------------------|------------------------------|-------------|------------|
| Мощность ТЭЦ, МВт                                                    | Количество<br>турбоагрегатов | Вид топлива |            |
|                                                                      |                              | Твердое     | Газ, мазут |
| 100                                                                  | 2                            | 3,2         | 2,3        |
| 150                                                                  | 3                            | 2,5         | 1,9        |
| 200                                                                  | 4                            | 2,0         | 1,3        |
| 200                                                                  | 2                            | 1,9         | 1,2        |
| 300                                                                  | 3                            | 1,3         | 0,8        |
| 300                                                                  | 6                            | 1.5         | 1.0        |

Рисунок Б2 - Штатные коэффициенты ТЭЦ по эксплуатационному персоналу