```
In [1]:
          import numpy as np
          import pandas as pd
          import requests
          import matplotlib.pyplot as plt
          import seaborn as sns
          import os
          for dirname, _, filenames in os.walk('/kaggle/input'):
              for filename in filenames:
                  print(os.path.join(dirname, filename))
In [3]:
           df= pd.read csv('UberDataset.csv')
          df.head()
                                                          START
                                                                                            PURPOSE
Out[3]:
               START_DATE
                                 END_DATE CATEGORY
                                                                          STOP MILES
         0 01-01-2016 21:11 01-01-2016 21:17
                                              Business Fort Pierce
                                                                      Fort Pierce
                                                                                   5.1
                                                                                        Meal/Entertain
                                                                      Fort Pierce
         1 01-02-2016 01:25 01-02-2016 01:37
                                              Business Fort Pierce
                                                                                   5.0
                                                                                                 NaN
                                                                                        Errand/Supplies
         2 01-02-2016 20:25 01-02-2016 20:38
                                              Business Fort Pierce
                                                                      Fort Pierce
                                                                                   4.8
         3 01-05-2016 17:31 01-05-2016 17:45
                                              Business Fort Pierce
                                                                      Fort Pierce
                                                                                   4.7
                                                                                              Meeting
         4 01-06-2016 14:42 01-06-2016 15:49
                                              Business Fort Pierce West Palm Beach
                                                                                  63.7
                                                                                         Customer Visit
In [4]:
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1156 entries, 0 to 1155
         Data columns (total 7 columns):
              Column
                           Non-Null Count
                                            Dtype
                           -----
          0
              START_DATE 1156 non-null
                                            object
              END DATE
          1
                           1155 non-null
                                            object
              CATEGORY
                           1155 non-null
                                            object
          2
          3
              START
                           1155 non-null
                                            object
          4
              STOP
                           1155 non-null
                                            object
          5
              MILES
                           1156 non-null
                                            float64
          6
              PURPOSE
                           653 non-null
                                            object
         dtypes: float64(1), object(6)
         memory usage: 63.3+ KB
```

Data Cleaning

STOP 0 MILES 0 PURPOSE 0 dtype: int64

Data Preprocessing

```
In [6]:
         df['START_DATE'] = pd.to_datetime(df['START_DATE'])
         df['END DATE'] = pd.to datetime(df['END DATE'])
         #create new feature representing time of the ride - morning, afternoon, evening, night
         df['TIME DAY'] = df['START DATE'].apply(lambda i : i.hour)
         df['TIME OF DAY'] = df['START DATE'].apply(lambda i : i.hour)
         df['TIME_OF_DAY'] = pd.cut(x = df['TIME_OF_DAY'], bins = [0, 6, 11, 17, 21, 24],
                                      labels = ['Night', 'Morning','Afternoon','Evening','Night'
         #create new feature representing month of the ride
         df['MONTH OF THE RIDE'] = df['START DATE'].apply(lambda i : i.month)
         month_label = {1.0: 'Jan', 2.0: 'Feb', 3.0: 'Mar', 4.0: 'April', 5.0: 'May', 6.0: 'June
         df['MONTH_OF_THE_RIDE'] = df['MONTH_OF_THE_RIDE'].map(month_label)
         #create new feature representing day (week) of the ride
         df['DAY OF THE RIDE'] = df['START DATE'].apply(lambda i : i.weekday())
         day_label = {0: 'Mon', 1: 'Tues', 2: 'Wed', 3: 'Thus', 4: 'Fri', 5: 'Sat', 6: 'Sun'}
         df['DAY_OF_THE_RIDE'] = df['DAY_OF_THE_RIDE'].map(day_label)
         # duration of the ride
         df['DURATION_OF_THE_RIDE'] = (df['END_DATE'] - df['START_DATE']).astype('timedelta64[m]
         df.head()
```

Out[6]:		START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE	TIME_DAY	TIME_OF_DAY
	0	2016-01-01 21:11:00	2016-01- 01 21:17:00	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain	21	Evening
	1	2016-01-02 01:25:00	2016-01- 02 01:37:00	Business	Fort Pierce	Fort Pierce	5.0	UNKNOWN	1	Night
	2	2016-01-02 20:25:00	2016-01- 02 20:38:00	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies	20	Evening
	3	2016-01-05 17:31:00	2016-01- 05 17:45:00	Business	Fort Pierce	Fort Pierce	4.7	Meeting	17	Afternoon
	4	2016-01-06 14:42:00	2016-01- 06 15:49:00	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit	14	Afternoon
	4									•

Data Exploration

```
In [7]: # summary statistics of the dataset
    df.describe()
```

```
Out[7]:
                    MILES
                            TIME_DAY DURATION_OF_THE_RIDE
         count 1155.000000 1155.000000
                                                  1155.000000
                             14.696104
         mean
                 10.566840
                                                   23.243290
                 21.579106
                              4.575226
                                                   27.318277
           std
                  0.500000
                              0.000000
                                                    0.000000
          min
          25%
                  2.900000
                             12.000000
                                                   10.000000
          50%
                  6.000000
                             15.000000
                                                   16.000000
          75%
                 10.400000
                             18.000000
                                                   27.500000
          max
                310.300000
                             23.000000
                                                   336.000000
In [8]:
          print('Min Timestamp in START TIME is - {}'.format(df['START DATE'].min()))
          print('Max Timestamp in START TIME is - {}'.format(df['START DATE'].max()))
         Min Timestamp in START TIME is - 2016-01-01 21:11:00
        Max Timestamp in START_TIME is - 2016-12-31 22:08:00
In [9]:
          print("Total number of unique categories in CATEGORY - {}".format(df['CATEGORY'].nunique
          print("Total number of unique categories in PURPOSE - {}".format(df['PURPOSE'].nunique(
          print("Total number of unique location in START - {}".format(df['START'].nunique()))
          print("Total number of unique location in STOP - {}".format(df['STOP'].nunique()))
         Total number of unique categories in CATEGORY - 2
         Total number of unique categories in PURPOSE - 11
         Total number of unique location in START - 177
         Total number of unique location in STOP - 188
```

Data Visualization

```
In [10]:
    df['CATEGORY'] = df['CATEGORY'].astype('category')
    fig, axes = plt.subplots(2, 2, figsize=(18, 18))

# Distribution of Categories in CATEGORY
sns.countplot(data=df, x='CATEGORY', ax=axes[0, 0])
axes[0, 0].set_title('Distribution of Categories in CATEGORY')

# Distribution of Categories in PURPOSE
sns.countplot(data=df, x='PURPOSE', ax=axes[1, 0])
axes[1, 0].set_title('Distribution of Categories in PURPOSE')
axes[1, 0].tick_params(axis='x', rotation=90)

# Top 10 Locations for START
temp = df['START'].value_counts().nlargest(10).reset_index()
sns.barplot(data=temp, x='index', y='START', ax=axes[0, 1])
axes[0, 1].set_title('Top 10 START Locations')
```

```
axes[0, 1].tick_params(axis='x', rotation=90)

# Top 10 Locations for STOP
temp = df['STOP'].value_counts().nlargest(10).reset_index()
sns.barplot(data=temp, x='index', y='STOP', ax=axes[1, 1])
axes[1, 1].set_title('Top 10 STOP Locations')
axes[1, 1].tick_params(axis='x', rotation=90)

plt.tight_layout()
plt.show()
```



```
In [11]:
    df['TIME_OF_DAY'] = df['TIME_OF_DAY'].astype('category')
    plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='TIME_OF_DAY')
    plt.show()
```



```
In [12]:

df['MONTH_OF_THE_RIDE'] = df['MONTH_OF_THE_RIDE'].astype('category')

plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='MONTH_OF_THE_RIDE')
    plt.show()
```



```
In [13]: plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='DAY_OF_THE_RIDE')
    plt.show()
```



```
In [14]:
    plt.figure(figsize=(12, 6))
    temp = df.groupby('MONTH_OF_THE_RIDE')['TIME_DAY'].mean().reset_index()
    sns.barplot(x='MONTH_OF_THE_RIDE', y='TIME_DAY', data=temp)
    plt.show()
```



```
In [15]:
    df.to_csv('cleaning_uder_data')
```

In []: