4/21/15: Randomized Algorithms II

Solving 3-SAT

Input & Initial Analysis

- variables $x_1, ..., x_n$
- clauses $C_1, ..., C_m$
 - each with ≤ 3 terms
- Easy Algorithm: try $all 2^n$ truth assignments
 - $-O(m2^n)$ time
- Goal: $O(m^ab^n)$ where b < 2, a is a constant

What happens when set variables?

$$C_1 = \bar{x}_1 \vee x_2$$

- if set $x_1 = 0$,
 - then clause is satisfied
- if set $x_1 = 1$,
 - then $T \vee x_2 = x_2$, have fewer terms in clause
 - **notation:** T = True and F = False
- If a clause has one term, it determines the value of the variable in that term.

Backtracking

Backtrack

$$T(n) \le T(n-1) + T(n-2) + T(n-3) + \dots + \text{(small terms)}$$

guess $T(n) = b^n$

need

$$b^n \le b^{n-1} + b^{n-2} + b^{n-3} \Leftrightarrow b^3 \le b^2 + b + 1$$

- $b \approx 1.84$
- $T(n) \leq O(m1.84^n)$

Shoning (1999)

• expected time: $(\frac{3}{4})^n$

Idea

- Assume that there is a satisfying assignment, X^* , and let x be a setting that does not satisfy all clauses.
- Let C_j be any clause that is not satisfied by x, then x and x^* must differ on a variable in C_j .
- So, pick a random variable in that clause, and flip its value.
- Now, that clause is satisfied.

Algorithm 1

```
input:
         begin
3
            First x^0 uniformly at random in \{0.1\}^n. x = x^0
for i = 1...n:

if there is clause left unset by x
let C_j such a clause
                    pick a random var in C_j, and flip its value
9
         end
```

• if \exists a satisfying assignment, Algorithm 1 finds one with $Pr \geq (\frac{2}{3})^n$

Hamming Distance

 $d(x^0, x^*) =$ number of vars in which x and x^* differ

$$Pr[d(x^{0}, x^{*}) = k] = \frac{\binom{n}{k}}{2^{n}}$$

- in each step, $Pr[d(x,x^*)decreases] \ge \frac{1}{3}$ let $Y = \{$ in all of the first k steps, $d(x^0,x^*)$ decreases or we find a satisfying x before then $\}$

$$Pr[\{d(x, x^*) = k\} \land Y] \ge \frac{\binom{n}{k}}{2^n} (\frac{1}{3})^k$$

 $Pr[\text{alg finds a sat. assignment}] \ge \sum_{k=0}^{n} \frac{\binom{n}{k}}{2^n} (\frac{1}{3})^k = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} (\frac{1}{3})^k$

- $=\frac{1}{2^n}(1+\frac{1}{3})^n=\frac{1}{2^n}(\frac{4}{3})^n=(\frac{2}{3})^n$ Run it $(\frac{3}{2})^n$ times

Looking at "Progress"

- a step is "good" if x satisfies, or $d(x, x^*)$ decreases, "bad" otherwise
- if $d(x^0, x^*) = k$ and $\{\# \text{ "good" steps}\} = \{\# \text{ "bad" steps}\} \ge k$, we're done.
- so, just look inside the first 3k steps!
- that is:

$$Pr[d(x, x^*) = k \text{ and } \ge 2k \text{ of first } 3k \text{ steps are good}]$$

$$\geq \frac{\binom{n}{k}}{2^n} \binom{3k}{2k} (\frac{1}{3})^{2k} (\frac{2}{3})^k = 2^{-n} \binom{n}{k} \binom{3k}{2k} \frac{2k}{3^{3k}}$$

- recall: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

 - $n! \approx \sqrt{2\pi n} \frac{n^n}{e^n}$ $\binom{3k}{2k} \ge \frac{1}{\sqrt{5k}} \frac{3^{3k}}{2^{2k}}$, where k > 1

$$Pr[\text{alg works}] \ge \sum_{k} 2^{-n} \binom{n}{k} \frac{1}{2^k} \frac{1}{\sqrt{5k}}$$

$$\geq \frac{1}{\sqrt{5k}} 2^{-n} \sum_{k} \binom{n}{k} \frac{1}{2^k} = \frac{1}{\sqrt{5k}} 2^{-n} (\frac{3}{2})^n = \frac{1}{\sqrt{5k}} (\frac{3}{4})^n$$