CS 312: Artificial Intelligence Laboratory Lab 6 Report

S V Praveen - 170010025 Deepak H R - 170010026 March 11, 2020

1 Introduction

The objective of this task is to solve the Optimal Matrix Multiplication Problem. Given a set of N matrices (coordinates) and their dimensions, find the least cost of multiplying the matrices. For the given problem, the input is a $N \times 1$ list of dimensions of the N matrices. The output is the least cost for the order of multiplying the matrices.

2 Heuristic Functions Considered

The following functions are appropriately designed to satisfy the constraints as shown below. Here d is the list of dimensions of the N matrices.

2.1 Over-Estimate

$$h_1(d) = (d_0 * d_1 * d_2 ... * d_{N+1}) * N$$
(1)

2.2 Under-Estimate

$$h_2(d) = (d_0 * d_1 * d_2 ... * d_{N+1})/N$$
 (2)

3 Observations and Analysis

The results obtained using AO^* algorithm with various heuristics are summarized in the below table -

Input	Least Cost Found	
	$h_1(u)$	$h_2(u)$
input ₁	18	18
input ₂	328	101
input ₃	600	300
input ₄	59938	10881

We see least cost is always found when the underestimating heuristic($h_2(u)$) is used. As expected, overestimating($h_1(u)$) does not always guarantee optimal cost as AO* isn't guaranteed to be admissible in this case.