- $a^2x^2 + 2h(a+b)xy + b^2y^2 = 0$ are (a) equally inclined (b) perpendicular
 - (c) bisector of the angle
- - (d) None of the above
- 2. If R be a relation from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$ such that $(a, b) \in R \Leftrightarrow a < b$, then ROR-1 is (a) $\{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$

1. To the lines $ax^2 + 2hxy + by^2 = 0$, the lines

- (b) {(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)}
- (c) {(3, 3), (3, 5), (5, 3), (5, 5)} (d) $\{(3, 3), (3, 4), (4, 5)\}$
 - 3. If $x + iy = (1 i\sqrt{3})^{100}$, then find (x, y). (a) $(2^{99}, 2^{99}\sqrt{3})$ (b) $(2^{99}, -2^{99}\sqrt{3})$
 - (c) $(-2^{99}, 2^{99}\sqrt{3})$ (d) None of these 4. For a GP, $a_n = 3(2^n)$, $\forall n \in \mathbb{N}$. Find the
 - common ratio. (a) 2 (b) 1/2 (d) 1/3(c) 3
 - 5. If a, b, c are in HP, then $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ will be in
 - (a) AP (b) GP (d) None of these (c) HP
 - 6. If $\frac{x^2 + 2x + 7}{2x + 3} < 6$, $x \in \mathbb{R}$, then
 - (a) x > 11 or $x < -\frac{3}{2}$

its y-intercept?

(a) 1/3

(c) 1

(b) x > 11 or x < -1(c) $-\frac{3}{2} < x < -1$

A line passes through (2, 2) and is

perpendicular to the line 3x + y = 3. What is

(b) 2/3

(d) 4/3

- (d) -1 < x < 11 or $x < -\frac{3}{2}$ 7. The number of ways of painting the faces of a cube of six different colours is (a) 1 (b) 6
- (d) 36 (c) 6!

- 9. The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y = 24$ is (a) 0 (c) 3 (d) 4
- 10. If D is the set of all real x such that $1 e^{(1/x)^{-1}}$ is positive, then D is equal to (a) $(-\infty, 1]$ (b) $(-\infty, 0)$ (d) $(-\infty, 0) \cup (1, \infty)$ (c) $(1, \infty)$
 - (a) 0(b) 1

- (a) A
- (b) 2A (c) 3A (d) 4A 15. If the roots of the equation $x^2 + ax + b = 0$ are c and d, then one of the roots of the equation

(b) d-c

(d) 2c

(b) - 2(a) 2 (d) - 1/2(c) 1/214. If one AM 'A' and two GM p and q are inserted between two given numbers, then find the

 $x^{2} + (2c + a)x + c^{2} + ac + b = 0$ is

where n is a positive integer, is

16. The sum of the coefficients of $(6a - 5b)^n$,

(a) c

(c) 2d

(a) 1

(c) 2^n

- (c) $\frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x^2 4}{x\sqrt{2}} \right) + C$ (d) None of the above 13. Evaluate $\int_{\pi/4}^{3\pi/4} \frac{1}{1 + \cos x} dx$
- (c) $\sqrt{2}$ (d) does not exist (a) $\frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 4}{2x\sqrt{2}} \right) + C$
- 11. Find the value of the limit lim
- 12. Evaluate $\int \frac{x^2 + 4}{x^4 + 16} dx$. (b) $\frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 4}{2\sqrt{2}} \right) + C$

	Find the value of $(7.995)^{1/3}$ correct to four decimal places. (a) 1.9995 (b) 1.9996 (c) 1.9990 (d) 1.9991 The values of constants a and b so that	24.	If α , β and γ are the roots of $x^3 + ax^2 + b = 0$, then the value of $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$ is $(a) - a^3$ (b) $a^3 - 3b$				
91. 91	$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0 \text{ are}$		(c) a^3 (d) $a^2 - 3b$				
bar i	(a) $a = 0, b = 0$ (b) $a = 1, b = -1$ (c) $a = -1, b = 1$ (d) $a = 2, b = -1$	25.	If the axes are shifted to the point $(1, -2)$ without solution, then the equation $2x^2 + y^2 - 4x + 4y = 0$ becomes (a) $2X^2 + 3Y^2 = 6$				
19.	The projection of the vector $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ on the vector $4\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$ is		(b) $2X^2 + Y^2 = 6$ (c) $X^2 + 2Y^2 = 6$				
Re-			(d) None of the above				
	(a) $\frac{5\sqrt{6}}{10}$ (b) $\frac{19}{9}$		1 22 27 1 1 2 A 1 1 1 2 A				
	(a) $\frac{5\sqrt{6}}{10}$ (b) $\frac{19}{9}$ (c) $\frac{9}{19}$ (d) $\frac{\sqrt{6}}{19}$	26.	If $f(x) = \begin{cases} x^2, & x \le 0 \\ 2\sin x, & x > 0 \end{cases}$, then $x = 0$ is				
20	If a , b , c are three non-zero vectors such that		(a) point of minima				
Eat 16	$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ and $m = \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$, then	0,000	(c) point of maxima (d) None of the above				
	(a) $m < 0$ (b) $m > 0$	0.7	A CONTRACTOR OF THE RESIDENCE OF THE SECOND CONTRACTOR OF THE SECOND CO				
	(c) $m = 0$ (d) $m = 3$	27.	In a group $(G, *)$, then equation $x * a = b$ has a (a) unique solution $b * a^{-1}$				
21.	A line making angles 45° and 60° with the		(b) unique solution $a^{-1} * b$				
	positive directions of the axes of x and y	di.	(c) unique solution $a^{-1} * b^{-1}$				
	makes with the positive direction of z-axis, an		(d) many solutions				
1	angle of (a) 60° (b) 120°	28	A die is rolled twice and the sum of the				
	(c) 60° or 120° (d) None of these	20.	numbers appearing on them is observed to be				
			7. What is the conditional probability that the				
22.	If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and		number 2 has appeared at least once?				
	$[\cos\theta \sin\theta]$		(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) $\frac{2}{5}$				
	$B = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}, \text{ then } B \text{ is equal to}$		2 3 2				
	(a) $I \cos \theta + J \sin \theta$		(c) $\frac{-}{3}$ (d) $\frac{-}{5}$				
	(b) $I \sin \theta + J \cos \theta$	29	The locus of the mid-points of the focal chord				
	(c) $I\cos\theta - J\sin\theta$		of the parabola $y^2 = 4ax$ is				
	$(d) - I\cos\theta + J\sin\theta$		(a) $y^2 = a(x - a)$ (b) $y^2 = 2a(x - a)$				
23.	Which of the following is correct?		(c) $y^2 = 4a(x - a)$ (d) None of these				
	(a) Determinant is a square matrix (b) Determinant is a number associated to a matrix		Find the value of sin 12° sin 48° sin 54°.				
	(c) Determinant is a number associated to a		(a) $\frac{1}{2}$ (b) $\frac{1}{4}$				
	square matrix		(c) $\frac{1}{6}$ (d) $\frac{1}{6}$				
	(d) All of the above		6				

(a) 2:3:5

(b) 1:2:3

(c) 1:3:7

(d) 3:7:9

32. Let p and q be two statements. Then, $p \lor q$ is false, if

(a) p is false and q is true

(b) both p and q are false

(c) both p and q are true

(d) None of the above

33. In how many ways 6 letters be posted in 5 different letter boxes?

(a) 5^6

(b) 6^5

(c) 5!

(d) 6!

34. If A and B be two sets such that $A \times B$ consists of 6 elements. If three elements $A \times B$ are (1, 4), (2, 6) and (3, 6), find $B \times A$.

(a) {(1, 4), (1, 6), (2, 4), (2, 6), (3, 4), (3, 6)}

(b) {(4, 1), (4, 2), (4, 3), (6, 1), (6, 2), (6, 3)}

(c) $\{(4, 4), (6, 6)\}$

(d) $\{(4, 1), (6, 2), (6, 3)\}$

35. Let $f: R \to R$ be defined as $f(x) = x^2 + 1$, find $f^{-1}(-5)$.

(a) $\{\phi\}$

(b) ¢

 $(c) {5}$

 $(d) \{-5, 5\}$

36. If X is a poisson variate such that P(X = 1) = P(X = 2), then P(X = 4) is equal

(a)
$$\frac{1}{2e^2}$$

b) $\frac{1}{3e^2}$

(c) $\frac{2}{3e^2}$

(d) $\frac{1}{e^2}$

37. The area enclosed by y = 3x - 5, y = 0, x = 3 and x = 5 is

(a) 12 sq units

(b) 13 sq units

(c) $13\frac{1}{2}$ sq units

(d) 14 sq units

38. The order and degree of the differential equation $\left(1 + 4 \frac{dy}{dx}\right)^{2/3} = 4 \frac{d^2y}{dx^2}$ are

respectively

(a) $1, \frac{2}{3}$

(b) 3, 2

(c) 2, 3

(d) 2, $\frac{2}{3}$

39. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$, is

(a) $(4x + y + 1) = \tan(2x + C)$

(b) $(4x + y + 1)^2 = 2 \tan (2x + C)$

(c) $(4x + y + 1)^3 = 3 \tan (2x + C)$

(d) $(4x + y + 1) = 2 \tan (2x + C)$

40. The system of equations 2x + y - 5 = 0, x - 2y + 1 = 0, 2x - 14y - a = 0, is consistent. Then, a is equal to

(a) 1

b) 2

(c) 5

(d) None of these

Answer Key

1. a	2. c	3. c	4. a	5. c	6. d	7. a	8. d	9. b	10. d
11. d	12. a	13. a	14. b	15. b	16. a	17. b	18. b	19. b	20. a
21. a	22. a	23. c	24. c	25. b	26. a	27. a	28. b	29. b	30. d
31. b	32. b	33. a	34. b	35. b	36. c	37. d	38. c	39. d	40. d