EESTEC Hackathon- Radar Based Indoor People Counting

Problem Statement

- Build a ML based People Counting solution using Infineon's BGT60TR13C radar chip
 - Target Scenario Indoor moving person count (0-3 persons) within a range of 3m.
 - Height of Radar from ground 0.8m to 1.5 m

Criteria	Points
Algorithm Innovation (Data Collection, Overall Flow, etc.)	20
People Counting Accuracy	20
Application Note	20
Pitch	20
Algorithm Complexity	20

Radar Sensor Principle

Parameters	Symbol	Value
Ramp start frequency	f_{min}	60.5 GHz
Ramp end frequency	$f_{ m max}$	61.5 GHz
Bandwidth	В	1 GHz
Range Resolution	δr	15 cm
Max. Range	$R_{ m max}$	9.6 m
Sampling frequency	f_{s}	2 MHz
Chirp repitition time	Т	400 us
Tx Power level	P_{max}	31
Frame repitition time	T_{Frame}	0.05 sec
Number of chirps per frame	N_c	64
Num of Tx antennas	N_{Tx}	1
Num of Rx antennas	N_{Rx}	3
Number of samples per chirp	N_{S}	128

Radar Data Basics

Frames

7

Sample Pre-Processing

1. ADC data corresponding to chirps are stored as the rows of a matrix

2. A range-FFT on each row resolved objects in range (real data is symmetric)

3. A doppler-FFT along the column resolves each column in velocity

Example Algorithm Flow

References

- Multi-Modal Cross Learning for Improved People Counting using Short-Range FMCW Radar
- People Counting Solution Using an FMCW Radar with Knowledge Distillation From Camera Data

Part of your life. Part of tomorrow.