

Estrutura de Dados I - Projeto

Campus Ponta Grossa

Projeto - Estrutura de Dados I

Professora: Simone Aires

Valor: 2,0

Equipe: máximo três integrantes

Data de entrega: 01/07/2022

Adaptado de: Prof. David Menotti e Profa. Emiliana Simões

1. Descrição do Problema

Uma fábrica identificou a necessidade de modernizar o sistema de empacotamento de seus produtos. Para que tal investimento aconteça, é necessário decidir quantas máquinas de empacotamento precisam ser adquiridas e qual(is) modelo melhoram a produtividade.

O objetivo da fábrica é o de amortizar o preço de aquisição das máquinas o mais rápido possível. Para isso, vai direcionar todo o lucro para a amortização das máquinas.

Os produtos a serem empacotados são de três diferentes tipos e chegam misturados ao galpão de empacotamento por meio de uma única esteira rolante, de onde são distribuídos para empacotar.

Para decidir quantas e quais máquinas adquirir, a fábrica fará uma simulação do empacotamento.

2. Descrição dos Produtos da Empresa

A empresa trabalha com produtos congelados que chegam ao empacotamento em lotes.

Cada lote deve ser empacotado em um pacote. Há três tipos de lotes: coxinhas, filé de peixe e almôndegas.

As máquinas levam tempos diferentes para empacotar cada tipo de lote.

O lucro que a empresa tem, é calculado como o preço de atacado de um lote menos o custo de produção de um produto (onde estão incluídos todos os fatores até o empacotamento) e o custo operacional da máquina para empacotar o produto.

Os produtos são perecíveis e, portanto, cada lote deve estar empacotado em um tempo máximo após chegar, do contrário será jogado fora.

Tabela 1 - Descrição dos Produtos

Produto	Custo Produção (R\$)	Preço Atacado (R\$)	Tempo deterioração (segundos)	Probabilidade de ser produzido (%)
Coxinha	0.80	1.45	50	50
Peixe	0.70	2.00	20	30
Almôndega	0.40	0.80	90	20

Estrutura de Dados I - Projeto

Campus Ponta Grossa

3. Descrição das Máquinas

Há vários modelos de máquinas empacotadoras no mercado. Algumas empacotam somente um tipo de produto, outras empacotam vários tipos diferentes. Os preços, o consumo de energia e as velocidades de empacotamento são diferentes, de acordo com o modelo.

Todas as máquinas possuem uma fila de entrada no qual vários lotes de produtos podem ser colocados, e a máquina processa um de cada vez.

O tempo que uma máquina leva para processar um produto é +/- 10% do tempo registrado no manual da máquina.

Todas as máquinas consomem energia, mesmo quando estão ociosas. O quilowatt-hora custa R\$ 1,00. Lembre-se que uma hora possui 3.600 segundos.

Um produto que deteriorou na fila não pode ser empacotado e representa um prejuízo que será somado ao custo operacional.

Há no mercado seis tipos diferentes de máquinas empacotadoras que a empresa poderia utilizar, conforme mostrado na Tabela 2.

Tabela 2 – Descrição das Máquinas

Modelo	Produtos Empacotados	Tempo +/- 10% (segundos)	Consumo (KWh)	Preço (R\$)
FishPak	Filé de Peixe	10	20	100.000
chickenPak	Coxinhas	16	20	100.000
AllPak	Coxinhas	18		
	Filé de Peixe	12	22	150.000
	Almôndegas	12		
Plastific	Todos	25	35	60.000
EnSacAll	Todos	30	40	50.000
Universal	Todos	35	35	30.000

Observe que o tempo de empacotamento sempre variará em +/- 10% do tempo de empacotamento da máquina para um produto dado na tabela (O tempo será sempre considerado em segundos, logo, para valores não inteiros considera-se o teto).

Destaca-se que o tempo de empacotamento da máquina AllPak difere dependendo do tipo de produto.

4. Funcionamento da Fábrica

Os lotes de produtos chegam na esteira para serem empacotados em intervalos de dois segundos. A probabilidade de um lote ser coxinha, filé de peixe ou almôndega é a dada na tabela de produtos (última coluna). As probabilidades devem ser consideradas como independentes.

Logo que um lote chega, ele é colocado na fila de uma máquina que pode empacotá-lo. Deve ser escolhida a menor fila das possíveis máquinas candidatas.

Estrutura de Dados I - Projeto

Campus Ponta Grossa

O tempo para um produto ser levado da esteira até a fila de uma máquina é irrelevante e não será considerado.

O tempo de deterioração de um produto passa a ser calculado a partir do momento em que ele é colocado no fim da fila de entrada da máquina (tempo de chegada).

O tempo que uma máquina vai levar para empacotar o produto é calculado quando ele é retirado da fila. A máquina somente estará livre para empacotar outro produto após este tempo.

Deve-se verificar se o produto deteriorou ou se pode ser empacotado quando ele chega no início da fila e a máquina vai empacotá-lo. Se o produto estiver deteriorado, a máquina o descarta e verifica o próximo da fila.

Se um produto é descartado, seu custo de produção será considerado um prejuízo.

Outros detalhes, como o custo com falhas da máquina, não serão considerados.

5. Cálculo da Amortização

A empresa quer pagar as máquinas o mais rápido possível. Para isto todo o lucro será depositado em uma conta para pagar o valor de aquisição das máquinas.

Considerar que a fábrica trabalha ininterruptamente, sem pausas.

O cálculo do lucro/hora do galpão de empacotamento é realizado da seguinte forma: soma do valor de venda de todos os produtos empacotados com sucesso menos o custo de todos os produtos produzidos (inclusive os jogados fora) e o custo operacional das máquinas.

A simulação deve parar quando for obtido lucro suficiente para pagar todas as máquinas adquiridas.

6. Análise de Requisitos do Programa

O programa deverá ser capaz de permitir que o usuário escolha quantas máquinas e de quais tipos serão usadas para a simulação.

Por exemplo: 1 máquina AllPak e 2 máquinas FishPak.

A simulação terminará quando o dinheiro obtido na produção for suficiente para pagar as máquinas **ou** quando se passar 2 anos de operação.

O programa sempre deverá informar ao usuário as seguintes estatísticas:

- a. Quantidade de lotes empacotados considerando cada tipo de produto separadamente e a quantidade total de lotes empacotados (**Lucro**);
- b. Quantidade de lotes jogados fora, considerando cada tipo de produto separadamente e a quantidade total de lotes jogados fora. Calcular o **custo** parcial para cada tipo de produto e o **custo** total.
- c. Custo operacional total de cada máquina
- d. Tempo total para pagar o custo de aquisição das máquinas escolhidas para a simulação.

Estrutura de Dados I - Projeto

Campus Ponta Grossa

6. Modelagem da Fábrica

Um lote de produtos é um TAD simples que possui como informação: o tipo de lote, custo de produção.

Uma máquina é um TAD que possui, entre outros atributos, uma fila de produtos a serem processados. Nessa fila cada célula é um TAD que possui, entre outros possíveis atributos, um produto e o instante de entrada deste produto na fila (= hora de fabricação).

O setor de empacotamento é um TAD lista circular de máquinas, percorrida constantemente para ver qual é a próxima máquina onde um produto vai ficar pronto.

Além disso, o setor de empacotamento possui uma variável relógio, que funciona em segundos.

7. O que deve ser entregue

O Projeto de obrigatoriamente deve:

- 1) Conter o código-fonte do programa em C
- 2) Utilizar as estruturas de listas encadeadas alocação dinâmica.
- 3) Em um arquivo .pdf, deve ser detalhada a estrutura de dados utilizada (de preferência com desenhos ilustrativos), o funcionamento das principais funções e procedimentos utilizados, o formato de entrada e saída de dados, bem como decisões tomadas relativas aos casos e detalhes de especificação que porventura estejam omissos no enunciado.
- 4) Listagem de testes executados: os testes executados devem ser apresentados e analisados e discutidos, quando convier.
- 5) Comentários gerais sobre o trabalho e as principais dificuldades encontradas em sua implementação.
- 6) <u>Vídeo</u>: deverá ser produzido um vídeo de no máximo 10 minutos explicando as principais funções implementadas e demonstrando o funcionamento do programa. No final deste arquivo (seção 9) constam as perguntas que devem ser respondidas no vídeo.

7. Como deve ser feita a entrega

A entrega DEVE ser feita via Moodle (moodle.utfpr.edu.br) na forma de um **único** arquivo zipado, contendo o código, os arquivos e a documentação e um arquivo LEIA-ME explicando como compilar e executar o programa.

8. Comentários Gerais

- Clareza, identação e comentários no programa também vão valer pontos;
- O trabalho é em grupo com no máximo três alunos;
- Trabalhos copiados (CÓDIGO FONTE semelhante) terão nota zero. Será utilizada a ferramenta Moss para avaliar;

Estrutura de Dados I - Projeto

Campus Ponta Grossa

9. Perguntas que devem ser respondidas no Vídeo

A equipe deverá produzir um vídeo com no máximo 10 minutos, além de apresentar o programa funcionando deverá responder as questões a seguir:

- Se seu trabalho foi em equipe, explique como foi dividido. Quem fez o que/qual parte?
- Explique por meio de desenhos como ficaram suas estruturas de dados. Faça as justificativas necessárias em relação as suas escolhas de implementação.
- Qual foi a função mais difícil de implementar? Por quê?
- Tem alguma funcionalidade solicitada no Projeto que não foi atendida?
- Tem algo que não funciona corretamente?
- Saberia apresentar um cenário que não conseguiu fazer o pagamento da(s) máquina(s) em até 2 anos? Como seria o arquivo de entrada?
- Saberia apresentar um cenário que o pagamento foi realizado em um prazo de até 1 ano? Como seria o arquivo de entrada?
- Se achar necessário apresente suas considerações sobre o Projeto.