Scilab Textbook Companion for Solid State Devices by B. S. Nair and S. R. Deepa¹

Created by
Sakshi Sharma
B.tech
Electronics Engineering
Dr. A.P.J. Abdul Kalam Technical University
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Devices

Author: B. S. Nair and S. R. Deepa

Publisher: Phi Learning, New Delhi

Edition: 1

Year: 2010

ISBN: 978-81-203-4106-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	CRYSTAL STRUCTURES	5
2	ENERGY BAND THEORY OF SOLIDS	15
3	CARRIER TRANSPORT IN SEMICONDUCTOR	43
4	EXCESS CARRIER IN SEMICONDUCTOR	55
5	PN JUNCTION DIODE	60
6	ELECTRICAL BREAKDOWN IN PN JUNCTIONE	87
7	BIPOLAR JUNCTION TRANSISTORB	107
8	THE FIELD EFFECT TRANSISTOR	117
10	SILICON CONTROLLED RECTIFIER	132

List of Scilab Codes

Exa 1.4	PACKING FRACTION OF SIMPLE CUBIC	5
Exa 1.5	PACKING FRACTION OF BCC	5
Exa 1.6	PACKING FRACTION OF FCC	6
Exa 1.8	PACKING FRACTION OF DIAMOND CRYSTAL STRU	JC-
	TURE	7
Exa 1.9	PACKING FRACTION OF BCC	7
Exa 1.10	MILLER INDICES OF LATTICE PLANE	8
Exa 1.11	MILLER INDICES OF LATTICE PLANE	8
Exa 1.12	MILLER INDICES OF LATTICE PLANE	9
Exa 1.13	MILLER INDICES OF LATTICE PLANE	10
Exa 1.14	MILLER INDICES OF LATTICE PLANE	10
Exa 1.15	MILLER INDICES OF LATTICE PLANE	11
Exa 1.16	NO OF SILICON ATOMS	12
Exa 1.17	VOLUME DENSITY OF A BCC LATTICE	12
Exa 1.18	VOLUME DENSITY OF SILICON	13
Exa 1.19	DENSITY OF SILICON	13
Exa 1.20	VOLUME DENSITY OF A FCC LATTICE	14
Exa 2.1	MINORITY CARRIER CONCENTRATION	15
Exa 2.2	CURRENT GENERATED BY MINORITY CARRIER	
	MOVEMENT	15
Exa 2.3	CURRENT GENERATED BY MINORITY CARRIER	
	MOVEMENT	16
Exa 2.4	FREQUENCY OF RADIATION EMITTED BY GaAs	17
Exa 2.5	FREQUENCY OF RADIATION EMITTED	17
Exa 2.6	FERMI DIREC DISTRIBUTION FUNCTION	18
Exa 2.7	FERMI DIREC DISTRIBUTION FUNCTION	19
Exa 2.8	FERMI DIREC DISTRIBUTION FUNCTION	20
Exa 2.9	FERMI DIREC DISTRIBUTION FUNCTION	21

Exa 2.10	FERMI DIREC DISTRIBUTION FUNCTION	22
Exa 2.11	FERMI DIREC DISTRIBUTION FUNCTION	22
Exa 2.12	NUMBER OF HOLES IN A MEDIMUM DOPED N	
	SEMICONDUCTOR	23
Exa 2.13	VALUE OF FERMI LEVEL	24
Exa 2.14	NUMBER OF HOLES IN A HEAVILY DOPED N SEMI-	
	CONDUCTOR	24
Exa 2.15	VALUE OF INTRINSIC CONCENTRATION	25
Exa 2.16	VALUE OF n	25
Exa 2.17	VALUE OF no	26
Exa 2.18	RESTIVITY AND RESISTANCE OF SEMICONDUC-	
	TOR	27
Exa 2.19	VALUE OF DRIFT CURRENT	28
Exa 2.20	FREQUENCY OF RADIATION EMITTED	29
Exa 2.21	BAND GAP ENERGY AND VALUE OF X	30
Exa 2.22	VALUE OF THERMAL EQUILIBRIUM HOLE CON-	
	CENTRATION IN SILICON	31
Exa 2.23	FRACTION OF ELECTRONS THAT ARE STILL IN	
	THE DONOR STATE	31
Exa 2.24	FRACTION OF HOLES THAT ARE STILL IN THE	
	ACCEPTOR STATE	32
Exa 2.25	ELECTRON AND HOLE CONCENTRATION	33
Exa 2.26	ELECTRON AND HOLE CONCENTRATION	34
Exa 2.27	ELECTRON AND HOLE CONCENTRATION	34
Exa 2.28	VALUE OF THERMAL EQUILIBRIUM HOLE CON-	
	CENTRATION IN SILICON	35
Exa 2.29	INTRINSIC CARRIER CONCENTRATION	36
Exa 2.30	VALUE OF DONOR CONCENTRATION	38
Exa 2.31	DONOR CONCENTRATION IN SILICON	39
Exa 2.32	INTRINSIC CARRIER CONCENTRATION	40
Exa 2.33	RATIO OF INTRINSIC CONCENTRATION	42
Exa 3.1	VALUE OF HALL ELECTRIC FIELD	43
Exa 3.2	VALUE OF HALL COFFICIENT	44
Exa 3.3	VALUE OF HALL VOLTAGE	45
Exa 3.4	VALUE OF HALL RESISTANCE	45
Exa 3.8	MINIMUM CONDUCTIVITY AND MAXIMUM RE-	
	SISTIVITY	46
Exa 3 10	VALUE OF DIFFERENCE IN FERMI LEVELS	47

Exa 3.11	HOLE CURRENT AND STORED EXCESS HOLE CHAI	RGES
		48
Exa 3.12	ELECTRONIC CONCENTRATION AND MOBILITY	49
Exa 3.14	INDUCED ELECTRIC FIELD	50
Exa 3.17	ELECTRON AND HOLE CONCENTRATION AND	
	DRIFT CURRENT DENSITY	51
Exa 3.18	ELECTRON AND HOLE CONCENTRATION AND	
	DRIFT CURRENT DENSITY	52
Exa 3.19	VALUE OF THERMAL EQUILIBRIUM HOLE CON-	
	CENTRATION	53
Exa 3.20	CURRENT THROUGH THE BAR	54
Exa 4.2	DIELECTRIC RELAXATION TIME	55
Exa 4.3	ELECTRON HOLE RECOMBINATION	56
Exa 4.4	GENERATION AND RECOMBINATION RATE OF	
	EHPS AND MAJORITY CARRIER LIFETIME	56
Exa 4.5	QUASI FERMI LEVELS	57
Exa 4.6	ENERGY DIFFERENCE BETWEEN EFn AND EFi	58
Exa 5.5	FERMI LEVEL IN P AND N JUNCTION AND CON-	
	TACT POTENTIAL	60
Exa 5.6	VALUE OF JUNCTION POTENTIAL	61
Exa 5.7	VALUE OF REVERSE AND FORWARD CURRENT	62
Exa 5.8	VALUE OF BUILT IN POTENTIAL	63
Exa 5.9	VALUE OF BUILT IN POTENTIAL	64
Exa 5.10	VALUE OF DEPLETION WIDTH AND ACCEPTOR	
	CONCENTRATION	65
Exa 5.12	VALUE OF MAXIMUM ELECTRIAL FIELD	66
Exa 5.13	VALUE OF N TYPE DOPING CONCENTRATION .	67
Exa 5.14	VALUE OF JUNCTION CAPACITANCE	68
Exa 5.15	VALUE OF JUNCTION CAPACITANCE	69
Exa 5.16	VALUE OF INTRINSIC CONCENTRATION	70
Exa 5.18	VALUE OF Vbi AND FERMI LEVEL AND Vbi FROM	
	FERMI LEVEL	71
Exa 5.19	VALUE OF Vbi AND FERMI LEVEL AND Vbi FROM	
	FERMI LEVEL	72
Exa 5.20	VALUE OF IMPURITY CONCENTRATION AND VbI	73
Exa 5.21	VALUE OF Na Xn Xp AND Emax	74
Exa 5.22	VALUE OF TEMPERATURE	75
Exa 5.23	VALUE OF Vbi AND TEMPERATURE	76

Exa 5.24	VALUE OF Vbi AND W AND Xn AND Xp AND Emax	77
Exa 5.25	MAGNITUDE OF APPLIED REVERSE BIAS	79
Exa 5.26	VALUE OF DOPING CONCENTRATION	80
Exa 5.27	VALUE OF JUNCTION CAPACITANCE	81
Exa 5.28	VALUE OF REVERSE SATURATION CURRENT .	82
Exa 5.29	VALUE OF REVERSE SATURATION CURRENT .	84
Exa 5.30	VALUE OF THE CHANGE IN THE APPLIED VOLT-	
	AGE	85
Exa 5.31	RELATIVE CHANGE IN Io	86
Exa 6.2	VALUE OF Eg Ev Ec and Vbi	87
Exa 6.4	VALUE OF DONOR CONCENTRATION	89
Exa 6.5	VALUE OF THE BARRIER HEIGHT AND BUILT IN	
	POTENTIAL	90
Exa 6.6	VALUE OF DEPLETION WIDTH DIFFUSION LENGTI	Н
	AND SATURATION HOLE CURRENT DENSITY .	91
Exa 6.8	MAXIMUM N TYPE DOPING CONCENTRATION	93
Exa 6.9	VALUE OF REVERSE BREAK DOWN VOLTAGE .	94
Exa 6.10	VALUE OF REVERSE BREAK DOWN VOLTAGE .	95
Exa 6.11	VALUE OF REVERSE BREAK DOWN VOLTAGE .	96
Exa 6.12	VALUE OF THE BARRIER HEIGHT AND BUILT IN	
	POTENTIAL AND DEPLETION WIDTH AND MAX-	
	IMUM ELECTRICAL FIELD	97
Exa 6.13	VALUE OF MAXIMUM ELECTRIAL FIELD AND	
	JUNCTION CAPACITANCE PER UNIT AREA	98
Exa 6.14	VALUE OF VB Xn AND Emax	100
Exa 6.15	CAPACITANCE OF A GOLD SILICON JUNCTION	101
Exa 6.17	VALUE OF LOWERING OF BARRIER HEIGHT	103
Exa 6.18	VALUE OF IDEAL REVERSE SATURATION CUR-	
	RENT AND THE DIODE CURRENT	103
Exa 6.19	VALUE OF FORWARD VOLTAGE	104
Exa 6.20	VALUE OF REVERSE SATURATION CURRENT .	105
Exa 7.1	MAGNITUDE OF Io AND COLLECTOR CURRENT	107
Exa 7.2	CONCENTRATION OF nEO pBO AND nCO	108
Exa 7.3	VALUE OF pBO AND nB	109
Exa 7.5	VALUE OF BASE WIDTH	110
Exa 7.7	VALUE OF DELTA	111
Exa 7.8	COMMON BASE AND COMMON EMITTER CUR-	
	BENT GAIN	111

Exa 7.9	CHANGE IN THE NEUTRAL BASE WIDTH	114
Exa 7.10	CHANGE IN THE COLLECTOR CURRENT	115
Exa 8.1	CAPACITANCE Cox AND Co	117
Exa 8.2	MAXIMUM SPACE CHARGE WIDTH	118
Exa 8.3	MAXIMUM SPACE CHARGE WIDTH	119
Exa 8.5	METAL SEMICONDUCTOR WORK FUNCTION DIF-	
	FERENCE	120
Exa 8.7	CAPACITANCE Co AND FLAT BAND VOLTAGE .	120
Exa 8.9	THRESHOLD VOLTAGE	121
Exa 8.10	VALUE OF Id	123
Exa 8.13	MINIMUM CAPACITANCE AND FLAT BAND CA-	
	PACITANCE	124
Exa 8.14	VALUE OF Qss	125
Exa 8.15	VALUE OF Id	126
Exa 8.16	VALUE OF Id	127
Exa 8.17	RATIO OF W AND L	128
Exa 8.18	PINCH OFF VOLTAGE	129
Exa 8.20	VALUE OF rDS	130
Exa 10.2	VALUE OF PUNCH THROUGH VOLTAGE	132
Exa 10.3	VALUE OF THE DIFFERENTIAL TERM	133

Chapter 1

CRYSTAL STRUCTURES

Scilab code Exa 1.4 PACKING FRACTION OF SIMPLE CUBIC

```
1 clc
2 a=1
3 disp("a= "+string(a)) //initializing value of
      lattice constant (a) = 1.
4 r=a/2
5 \operatorname{disp}("r=a/2 = "+\operatorname{string}(r)) //initializing value of
      radius of atom for simple cubic.
6 v = ((4*\%pi*(r^3))/3)
7 disp("Volume of one atom v = ((4*\%pi*(r^3))/3) = "+
      string(v)) //calcuation.
8 V=a^3
9 disp("Total Volume of the cube, V=a^3 = "+string(V))
      //calcuation.
10 Fp = (v * 100/V)
11 disp("Fp(S.C)=(v*100/V) = "+string(Fp)+"%")//
      calculation
```

Scilab code Exa 1.5 PACKING FRACTION OF BCC

```
1 clc
2 a=1
3 disp("a= "+string(a)) //initializing value of
      lattice constant (a) =1.
4 r = (sqrt(3)*(a^2/4))
5 disp("Radius of the atoms, r = (sqrt(3) * (a^2/4)) = "+
      string(r)) //initializing value of radius of atom
       for BCC.
6 v = ((4*\%pi*(r^3))/3)*2
7 disp("Volume of two atom, v = ((4*\%pi*(r^3))/3)*2 = "+
      string(v)) //calcuation.
8 V=a^3
9 disp("Total Volume of the cube, V=a^3 = "+string(V))
     //calcuation.
10 Fp = (v * 100/V)
11 disp("Fp(B.C.C) = (v*100/V) = "+string(Fp)+"%")//
      calculation
```

Scilab code Exa 1.6 PACKING FRACTION OF FCC

```
11 disp("Fp(F.C.C)=(v*100/V) = "+string(Fp)+"%")// calculation
```

Scilab code Exa 1.8 PACKING FRACTION OF DIAMOND CRYSTAL STRUCTURE

```
1 clc
2 a = 1
3 disp("a= "+string(a)) //initializing value of
      lattice constant (a) = 1.
4 r = ((sqrt(3)*a/8))
5 disp("Radius of the atom, r = (sqrt(3)*a/8)) = "+string"
      (r)) //initializing value of radius of atom for
      diamond.
6 v = (((4*\%pi*(r^3))/3)*8)
7 disp("v=(((4*\%pi*(r^3))/3)*8) = "+string(v)) //
      calcuation.
8 V=a^3
9 \operatorname{disp}("V=a^3 = "+\operatorname{string}(V)) //\operatorname{calcuation}.
10 Fp = (v * 100/V)
11 disp("Fp(Diamond) = (v*100/V) = "+string(Fp)+"%")//
      calculation
```

Scilab code Exa 1.9 PACKING FRACTION OF BCC

Scilab code Exa 1.10 MILLER INDICES OF LATTICE PLANE

```
1 clc
2 x = 1
3 disp("x intercept = "+string(x)) //initializing
      value of x intercept..
4 y = \%inf
5 disp("y intercept = "+string(y)) //initializing
      value of y intercept.
6 z = \%inf
7 disp("z intercept = "+string(z)) //initializing
      value of z intercept.
8 h = [1/x]
9 disp("miller indices, h=(1/x) = "+string(h))//
      calculation
10 k = [1/y]
11 \operatorname{disp}("k=(1/y) = "+\operatorname{string}(k))/\operatorname{calculation}
12 \ 1 = [1/z]
13 disp("l=(1/z) = "+string(1))/calculation
```

Scilab code Exa 1.11 MILLER INDICES OF LATTICE PLANE

```
1 clc
```

```
2 x = \% inf
3 disp("x intercept = "+string(x)) //initializing
      value of x intercept.
4 v = \%inf
5 disp("y intercept = "+string(y)) //initializing
      value of Y intercept.
6 z=1
7 disp("z intercept = "+string(z)) //initializing
      value of Z intercept.
8 h = [1/x]
9 disp("miller indices, h=[1/x] = "+string(h))//
      calculation
10 k = [1/y]
11 \operatorname{disp}("k=[1/y] = "+\operatorname{string}(k))/\operatorname{calculation}
12 \ 1 = [1/z]
13 disp("l = [1/z] = "+string(1))/calculation
```

Scilab code Exa 1.12 MILLER INDICES OF LATTICE PLANE

```
1 clc
2 x = \%inf
3 disp("x intercept = "+string(x)) //initializing
      value of X intercept.
4 \quad y = 1
5 disp("y intercept = "+string(y)) //initializing
       value of Y intercept.
6 z = \%inf
7 disp("z intercept = "+string(z)) //initializing
      value of Z intercept.
8 h = [1/x]
9 disp("miller indices, h=[1/x] = "+string(h))//
       calculation
10 k = [1/y]
11 \operatorname{disp}("k=[1/y] = "+\operatorname{string}(k))/\operatorname{calculation}
12 \ 1 = [1/z]
```

```
13 disp("l=[1/z] = "+string(1))/calculation
```

Scilab code Exa 1.13 MILLER INDICES OF LATTICE PLANE

```
1 clc
2 x = 1
3 disp("x intercept = "+string(x)) //initializing
      value of X intercept.
4 v=1
5 disp("y intercept = "+string(y)) //initializing
      value of Y intercept.
6 z = \%inf
7 disp("z intercept = "+string(z)) //initializing
      value of Z intercept.
8 h = [1/x]
9 disp("miller indices, h=[1/x] = "+string(h))//
      calculation
10 k = [1/y]
11 \operatorname{disp}("k=[1/y] = "+\operatorname{string}(k))/\operatorname{calculation}
12 \ 1 = [1/z]
13 disp("l=[1/z] = "+string(1))/calculation
```

Scilab code Exa 1.14 MILLER INDICES OF LATTICE PLANE

```
7 disp("z intercept = "+string(z)) //initializing
      value of Z intercept.
8 h=[1/x]
9 disp("miller indices, h=[1/x] = "+string(h))//
      calculation
10 k=[1/y]
11 disp("k=[1/y] = "+string(k))//calculation
12 l=[1/z]
13 disp("l=[1/z] = "+string(1))//calculation
```

Scilab code Exa 1.15 MILLER INDICES OF LATTICE PLANE

```
1 clc
2 x=2
3 disp("x intercept = "+string(x)) //initializing
      value of X intercept.
4 y = 2
5 disp("y intercept = "+string(y)) //initializing
      value of Y intercept.
6 z = 2
7 disp("z intercept = "+string(z)) //initializing
      value of Z intercept.
8 c = 2
9 disp("common factor of all the intercept="+string(c
      )) //initializing value of common factor of all
      the intercepts.
10 h = [c/x]
11 disp("miller indices, h=[c/x] = "+string(h))//
      calculation
12 k = [c/y]
13 \operatorname{disp}("k=[c/y] = "+\operatorname{string}(k))//\operatorname{calculation}
14 \ 1 = [c/z]
15 disp("l=[c/z] = "+string(1))/calculation
```

Scilab code Exa 1.16 NO OF SILICON ATOMS

```
1 clc
2 \text{ Wa} = 28.1
3 disp("Wa = "+string(Wa)) //initializing value of
      atomic weight.
4 D=2.33
5 disp("D = "+string(D)+"gram/cm^3") //initializing
      value of density.
6 \text{ Na=} 6.02*10^23
7 disp("Na = "+string(Na)+"atoms/mole") //initializing
       value of avagadro number.
8 \text{ na} = (\text{Na*D})/(\text{Wa})
9 disp("na =(Na*D)/(Wa)= "+string(na)+" atoms/cm<sup>3</sup>")//
      calculation
10
11 //the value of na (number of atoms in 1 cm<sup>3</sup> of
      silicon), provided after calculation in the book
      is wrong.
```

Scilab code Exa 1.17 VOLUME DENSITY OF A BCC LATTICE

```
8 na =(N/(V))

9 disp("na=(no.of atoms in unit cell/Volume of the unit cell) =(N/(V))= "+string(na))//calculation
```

Scilab code Exa 1.18 VOLUME DENSITY OF SILICON

```
1 clc
2 a=5.43*10^-8
3 disp("a = "+string(a)+"cm") //initializing value of lattice constant.
4 N=8
5 disp("N = "+string(N)) //initializing value of no. of atoms in a unit cell.
6 ns =(N/(a^3))
7 disp("Number of atom in the cm^3, ns =(N/(a^3))= "+string(ns))//calculation
```

Scilab code Exa 1.19 DENSITY OF SILICON

```
11 disp(" Density of silicon ,D = (ns*Wa)/(Na) = "+string (D)+" gm/cm^2")//calculation
```

Scilab code Exa 1.20 VOLUME DENSITY OF A FCC LATTICE

Chapter 2

ENERGY BAND THEORY OF SOLIDS

Scilab code Exa 2.1 MINORITY CARRIER CONCENTRATION

```
1 clc
2 n=10^14
3 disp("n = "+string(n)+"/cm^3") //initializing value
        of electrons/cm^3.
4 no=1.5*10^10
5 disp("no. of EHPs/cm^3 = "+string(no)+"/cm^3") //
        initializing value of electron hole pairs/cm^3.
6 p=(no^2/n)
7 disp("minority carriers concentration,p=(no^2/n))= "
        +string(p)+" /cm^3")//calculation
```

Scilab code Exa 2.2 CURRENT GENERATED BY MINORITY CARRIER MOVEMENT

```
1 clc
2 e=1.6*10^-19
```

```
disp(" electron charge = "+string(e)+"columns") //
    initializing the value of electron charge.

4 no=1.5*10^10
5 disp("no. of EHPs/cm^3 = "+string(no)+"/cm^3") //
    initializing value of electron hole pairs/cm^3.
6 n=(1/e)
7 disp("Number of free electrons in 1 columns ,n=(1/e)
    )= "+string(n))//calculation
8 i=(1/n)
9 disp("Current by movement of one electrons ,i=(1/n))
    = "+string(i)+" Amphere ")//calculation
10 I=(no*i)
11 disp("Current by movement of (1.5*10^10) electrons ,
        I=(no*i) = "+string(I)+" Amphere ")//calculation
```

Scilab code Exa 2.3 CURRENT GENERATED BY MINORITY CARRIER MOVEMENT

```
1 clc
2 e=1.6*10^-19
3 disp(" Electron charge = "+string(e)+"columns") //
      initializing the value of electron charge.
4 no=2.5*10<sup>13</sup>
5 disp("Number of free electrons/cm<sup>3</sup> in Ge ,n
      =2.5*10^13 = "+string(no)+" electrons/cm<sup>3</sup>")//
      calculation
6 n = (1/e)
7 disp("Number of free electrons in 1 columns n=(1/e)
      )= "+string(n))//calculation
8 i = (1/n)
9 disp("Current by movement of one electrons, i = (1/n))
      = "+string(i)+" amphere ")//calculation
10 I = (no*i)
11 disp("Current by movement of (2.5*10^13) electrons
      in Ge, I = (no*i) = "+string(I) + "amphere") //
```

Scilab code Exa 2.4 FREQUENCY OF RADIATION EMITTED BY GaAs

```
1 clc
2 Eg=1.43*1.6*10^-19
3 disp(" energy gap = "+string(Eg)+" Volt") //
      initializing the value of energy gap.
4 h=6.624*10^{-34}
5 disp(" plank constant = "+string(h)+"joule")//
      initializing the value of plank constant.
6 c = 3 * 10^8
7 disp(" light speed = "+string(c)+"m/s") //
      initializing the value of speed of light.
8 f = (Eg/h)
9 disp("frequency of radiation emitted, f=(Eg/h)) = "+
     string(f)+" Hz ")//calculation
10 \quad lamda = (c/f)
11 disp("wavelength of radiation emitted, lamda=(c/f))=
     "+string(lamda)+" metre ")//calculation
```

Scilab code Exa 2.5 FREQUENCY OF RADIATION EMITTED

```
1 clc
2 Eg1=1.43
3 disp(" Energy gap of GaAs = "+string(Eg1)+"eV") //
    initializing the value of energy gap of GaAs.
4 Eg2=2.43
5 disp(" Energy gap of GaP = "+string(Eg2)+"eV")//
    initializing the value of energy gap of Gap.
6 h=6.624*10^-34
7 disp(" plank constant = "+string(h)+"joule")//
    initializing the value of plank constant.
```

```
8 c = 3 * 10^8
9 disp(" light speed = "+string(c)+"m/s") //
      initializing the value of speed of light.
10 \quad x = (Eg2 - Eg1)
11 disp("Difference between the energy gap of GaAs and
      GaP , x = (Eg2 - Eg1) = "+string(x) + "eV") //
      calculation
12 g = (0.5 * x)
13 disp("Excess energy gap added to GaAs to form GaAsP
      =(0.5*x) = "+string(g)+" eV ")//calculation
14 \text{ Eg} = (\text{Eg}1 + \text{g})
15 disp("Band gap energy GaAs(0.5)P(0.5), Eg=(Eg1+g)) = "
      +string(Eg)+" eV ")//calculation
16 lamda=(c*h/(Eg*1.6*10^-19))
17 disp("Wavelength of radiation emitted, w=(c*h/Eg))="
      +string(lamda)+" metre ")//calculation
```

Scilab code Exa 2.6 FERMI DIREC DISTRIBUTION FUNCTION

```
1 clc
2 E=1.1
3 disp(" E = "+string(E) + "eV") //initializing the
      value of energy level E in the crystal.
4 Ef = 0.6
5 disp(" Ef = "+string(Ef)+"eV")//initializing the
      value of energy of fermi level of material.
6 T = 300
7 disp(" temp = "+string(T)+"K")//initializing the
      value of temperature.
8 e = 2.718
9 disp(" e = "+string(e)) //initializing the value of
      exponential.
10 k=1.38*10^-23
11 \operatorname{disp}(" k = "+\operatorname{string}(k) + "J/k") //\operatorname{initializing}  the
      value of boltzmann constant.
```

Scilab code Exa 2.7 FERMI DIREC DISTRIBUTION FUNCTION

```
1 clc
2 E=0.6
3 disp(" E = "+string(E)+"eV") //initializing the
     value of energy level E in the crystal.
4 Ef=1.1
5 disp(" Ef = "+string(Ef)+"eV")//initializing the
     value of fermi level of material.
6 T = 300
7 disp(" temp = "+string(T)+" kelvin") // initializing
     the value of temperature.
8 k=1.38*10^-23
9 disp(" k = "+string(k) + "J/k") //initializing the
     value of boltzmann constant.
10 e=2.718
11 disp(" e = "+string(e)) //initializing the value of
     exponential.
12 a=(((-(Ef-E))*1.6*10^-19)/(k*T))
13 disp("alpha ,a=(((-(Ef-E))*1.6*10^-19)/(k*T))="+
     string(a))//calculation
14 fE=(1/(1+(e^a)))
15 disp("fE(Fermi Direc Distribution Function), fE
```

```
=(1/(1+(e^a))))= "+string(fE))//calculation
16
17 //the value of E is different in the question than
          used in the solution.
18 //I have used the value ,used in the solution(i.e E
          =0.6)
```

Scilab code Exa 2.8 FERMI DIREC DISTRIBUTION FUNCTION

```
1 clc
2 E=1.1
3 disp(" E = "+string(E) + "eV") //initializing the
      value of energy level E in the crystal.
4 \text{ Ef} = 0.6
5 disp(" Ef = "+string(Ef)+"eV")//initializing the
      value of fermi level of material.
6 T = 1000
7 disp(" Temp = "+string(T)+"K")//initializing the
     value of temperature.
8 k=1.38*10^-23
  disp(" k = "+string(k)+"J/k") //initializing the
      value of boltzmann constant.
10 e = 2.718
11 disp(" e = "+string(e)) //initializing the value of
     exponential.
12 a=(((-Ef+E)*1.6*10^-19)/(k*T))
13 disp("alpha ,a=(((-E+Ef)*1.6*10^-19)/(k*T)))= "+
     string(a))//calculation
14 fE=(1/(1+(e^a)))
15 disp("fE(Fermi Direc Distribution Function), fE
     =(1/(1+(e^a)))="+string(fE))//calculation
16
17 //The value of Ef is different in the question than
     used in the solution.
18 //I have used the value , used in the solution (i.e Ef
```

Scilab code Exa 2.9 FERMI DIREC DISTRIBUTION FUNCTION

```
1 clc
2 \text{ Ef} = 0.6
3 disp(" Ef = "+string(Ef)+"eV") //initializing the
     value of fermi level of material.
5 disp(" E = "+string(E)+"eV")//initializing the value
       of level E in a crystal.
6 T = 1000
7 disp(" Temp = "+string(T)+"kelvin")//initializing
     the value of temperature.
8 k=1.38*10^-23
9 disp(" k = "+string(k) + "J/k") //initializing the
      value of boltzmann constant.
10 e = 2.718
11 disp("e = "+string(e)) //initializing the value of
     exponential.
12 a=(((E-Ef)*1.6*10^-19)/(k*T))
13 disp("alpha ,a=(((E-Ef)*1.6*10^-19)/(k*T)))= "+
     string(a))//calculation
14 fE=(1/(1+(e^a)))
15 disp("fE(Fermi Direc Distribution Function), fE
     =(1/(1+(e^a)))="+string(fE))//calculation
16
17 //The value of Ef, temperature is different in the
      question than used in the solution.
18 //I have used the value of Ef, used in the solution (i
     .e Ef=0.6) and value of temperature used is T=1000
     K
19 //The value of a(alpha), provided in the solution
      after calculation is wrong. As book has used
      different value of the temperature in solution
```

Scilab code Exa 2.10 FERMI DIREC DISTRIBUTION FUNCTION

```
1 clc
2 E=1.1
3 disp(" E = "+string(E) + "eV") //initializing the
      value of level E in a crystal.
4 Ef = 0.6
5 disp(" Ef = "+string(Ef)+"eV")//initializing the
      value of fermi level of material.
6 T = 2500
7 disp(" temp = "+string(T)+"K")//initializing the
     value of temperature.
8 k=1.38*10^-23
9 disp(" k = "+string(k) + "J/k") //initializing the
      value of boltzmann constant.
10 e = 2.718
11 disp("e = "+string(e)) //initializing the value of
      exponential.
12 a=(((E-Ef)*1.6*10^-19)/(k*T))
13 disp("alpha, a=(((E-Ef)*1.6*10^-19)/(k*T))="+
     string(a))//calculation
14 fE=(1/(1+(e^a)))
15 disp("fE(Fermi Direc Distribution Function),fE
      =(1/(1+(e^a)))="+string(fE))//calculation
16
17 //The value of Ef is different in the question than
     used in the solution.
18 //I have used the value, used in the solution (i.e Ef
     =0.6)
```

Scilab code Exa 2.11 FERMI DIREC DISTRIBUTION FUNCTION

```
1 clc
2 E=0.6
3 disp(" E = "+string(E) + "eV") //initializing the
      value of level E in a crystal.
4 Ef=1.1
5 disp(" Ef = "+string(Ef)+"eV")//initializing the
      value of fermi level of the material.
6 T = 2500
7 disp(" Temp = "+string(T)+" kelvin")//initializing
      the value of temperature.
8 k=1.38*10^-23
9 disp(" k = "+string(k) + "J/k") //initializing the
      value of boltzmann constant.
10 e = 2.718
11 disp(" e = "+string(e)) //initializing the value of
      exponential.
12 a = (((-(Ef - E)) *1.6 *10^-19)/(k*T))
13 disp("a], a = (((E-Ef)*1.6*10^-19)/(k*T)) = "+string(a)
      )//calculation
14 fE=(1/(1+(e^a)))
15 disp("fE(Fermi Direc Distribution Function), fE
      =(1/(1+(e^a)))="+string(fE))//calculation
16
17
18 //The value of E is different in the question than
     used in the solution.
19 //I have used the value, used in the solution (i.e E
     =0.6)
```

Scilab code Exa 2.12 NUMBER OF HOLES IN A MEDIMUM DOPED N SEMICONDUCTOR

```
1 clc
2 n=10^16
3 disp("n = "+string(n)+" /cm^3") //initializing value
```

```
of number of electrons per cm^3.
4 no=1.5*10^10
5 disp("no = "+string(no)+" /cm^3") //initializing
    value of electron hole pairs/cm^3.
6 p=(no^2/n)
7 disp("Number of hole ,p=(no^2/n))= "+string(p)+" /cm
    ^3")//calculation
```

Scilab code Exa 2.13 VALUE OF FERMI LEVEL

```
1 clc
2 e=1.6*10^-19
3 disp("e = "+string(e)+"columb") //initializing the
      value of electronic charge.
4 n=1*10^16
5 disp("n = "+string(n)) //initializing the value of
      number of electrons per cm<sup>3</sup>.
6 no=1.5*10^10
7 disp("no = "+string(no)+" /cm^3") //initializing
      value of electron hole pairs/cm<sup>3</sup>...
8 T = 300
9 \operatorname{disp}("T = "+\operatorname{string}(no) + "K") //initializing value of
       temperature.
10 k=1.38*10^-23
11 disp("k = "+string(k)+" J/K") //initializing value
      of boltzmann constant.
12 Ef = ((k*T/e)*log(n/no))
13 disp("fermi level , Ef-Efi=((k*T/e)*ln(n/no))) = "+
      string(Ef)+" eV")//calculation
```

Scilab code Exa 2.14 NUMBER OF HOLES IN A HEAVILY DOPED N SEMICONDUCTOR

```
1 clc
2 no=1.5*10^10
3 disp("no = "+string(no)+"/cm^3") //initializing
    value of electrons and hole per cm^3.
4 n=1*10^18
5 disp("n = "+string(n)+"/cm^3") //initializing value
    of number of electrons per cm^3.
6 p=(no^2/n)
7 disp("number of holes ,p=(no^2/n))= "+string(p)+" /
    cm^3")//calculation
8
9
10
11 //this is solved problem 2.1 of chapter 2.
```

Scilab code Exa 2.15 VALUE OF INTRINSIC CONCENTRATION

```
1 clc
2 n=1*10^5
3 disp("n = "+string(n)+" /cm^3") //initializing value
    of electrons and hole per cm^3.
4 p=1*10^19
5 disp("p = "+string(p)+" /cm^3") //initializing value
    of number of hole per cm^3
6 no=sqrt(n*p)
7 disp("Value of intrinsic concentration, no=sqrt(n*p))
    = "+string(no)+" /cm^3")//calculation
8
9
10
11 //this is solved problem 2.2 of chapter 2.
```

Scilab code Exa 2.16 VALUE OF n

```
1 clc
2 e=1.6*10^-19
3 disp("e = "+string(e)+"columb") //initializing the
      value of electronic charge.
4 Ef_Efi=0.309
5 disp("Ef-Efi = "+string(Ef_Efi)+" eV") //
      initializing the value of difference in the
      energy levels.
6 no=2.5*10^13
7 disp("no = "+string(no)+" /cm^3") //initializing
      value of number of electrons per cm<sup>3</sup>
9 \operatorname{disp}(T = + \operatorname{string}(T) + K) //initializing value of
      temperature.
10 \text{ ex} = 2.718
11 disp("exp = "+string(ex)) //initializing the value
      of exponential.
12 k=1.38*10^-23
13 disp("k = "+string(k)+" J/K") //initializing value
      of boltzmann constant.
14 n=no*(ex^((Ef_Efi*e)/(k*T)))
15 disp("number of electrons per cm^3, n=no*(ex^((Ef-
      Efi()/kT)) = "+string(n)+"/cm^3")//calculation
16
17
18
19 //This is solved problem 2.3 of chapter 2.
20 //The value used for "Ef-Efi" in the solution is
      different than provided in the question.
21 //I have used the value provided in the solution (i.
     e Ef_Efi = 0.309
```

Scilab code Exa 2.17 VALUE OF no

1 clc

```
2 e=1.6*10^-19
3 disp("e = "+string(e)+" columb") //initializing the
      value of electronic charge.
4 Ef=0.4065
5 disp("Ef = "+string(Ef)+" eV") //initializing the
      value of fermi level.
6 n = 10^17
7 disp("n = "+string(n)+" /cm^3") //initializing value
       of number of electrons per cm<sup>3</sup>.
8 T=300
9 disp("T = "+string(T)+" K") //initializing value of
      temperature.
10 \text{ ex} = 2.718
11 disp("exp = "+string(ex)) //initializing the value
      of exponential.
12 k=1.38*10^-23
13 disp("k = "+string(k)+" J/K") //initializing value
      of boltzmann constant.
14 no=n/(ex^{((Ef*e)/(k*T))})
15 disp("Number of electrons per cm^3, no=n/(ex^((Ef)/
     kT)) = "+string(no)+" electrons/cm<sup>3</sup>")//
      calculation
16
17
18 //this is solved problem 2.4 of chapter 2.
19 //the value used for "n" in the solution is
      different than provided in the question.
20 //I have used the value provided in the solution (i.
     e n = 10^17
```

Scilab code Exa 2.18 RESTIVITY AND RESISTANCE OF SEMICONDUCTOR

```
1 clc
2 e=1.6*10^-19
```

```
3 disp("e = "+string(e)+"columb") //initializing the
      value of electronic charge.
4 n=1*10^22
5 disp("n = "+string(n)+" /m^3") //initializing value
      of number of electrons per cm<sup>3</sup>
6 u=1200*10^-4
7 disp("u = "+string(u)+" m^2/Vs") //initializing the
      value of mobility.
8 L=0.1*10^-2
9 disp("L = "+string(L)+" m") //initializing the value
       of length.
10 \quad A = 100 * 10^{-12}
11 disp("A = "+string(A) + "m^2") //initializing the
      value of area of cross section.
12 \text{ sigma=n*e*u}
13 disp("conductivity, sigma=n*e*u)="+string(sigma)+"
      siemen/m")//calculation.
14 p = (1/sigma)
15 disp("Resistivity, p=(1/sigma)) = "+string(p)+" ohm
      metre")//calculation.
16 R = (p*L/A)
17 disp("resistance, R=(p*L/A)) = "+string(R)+" ohm")//
      calculation.
18
19
20 //this is solved problem 2.5 of chapter 2.
21 //the value used for "A" in the solution is
      different than provided in the question.
22 //I have used the value provided in the solution (i.
     e A=100*10^-12
```

Scilab code Exa 2.19 VALUE OF DRIFT CURRENT

```
1 clc
2 R=52.08 *10^3
```

Scilab code Exa 2.20 FREQUENCY OF RADIATION EMITTED

```
1 clc
2 \text{ Eg1} = 1.43
3 disp(" Energy gap of GaAs = "+string(Eg1)+"eV") //
      initializing the value of energy gap of GaAs.
4 \text{ Eg2}=2.43
5 disp(" Energy gap of GaP = "+string(Eg2)+"eV")//
      initializing the value of energy gap of Gap.
6 h=6.624*10^{-34}
7 disp(" Plank constant = "+string(h)+"joule")//
      initializing the value of plank constant.
8 c = 3 * 10^8
9 disp(" Light speed = "+string(c)+"m/s") //
      initializing the value of speed of light.
10 \quad x = (Eg2 - Eg1)
11 disp("Difference between the energy gap of GaAs and
      GaP , x=(Eg2-Eg1) = "+string(x)+" eV")//
      calculation
12 g = (0.4 * x)
13 disp("Excess energy gap added to GaAs to form GaAsP
      (0.4*x) = "+string(g)+" eV ")/calculation
14 \text{ Eg} = (\text{Eg}1 + \text{g})
```

```
disp("Band gap energy GaAsP, Eg=(Eg1+g))= "+string(Eg
     )+" eV ")//calculation
lamda=(c*h/(Eg*1.6*10^-19))
disp("wavelength of radiation emitted, lamda=(c*h/Eg)
    )= "+string(lamda)+" metre ")//calculation
// this is solved problem 2.7 of chapter 2.
```

Scilab code Exa 2.21 BAND GAP ENERGY AND VALUE OF X

```
1 clc
2 \text{ Eg1} = 1.43
3 disp(" Energy gap of GaAs = "+string(Eg1)+" eV") //
      initializing the value of energy gap of GaAs.
4 Eg2=2.43
5 disp(" Energy gap of GaP = "+string(Eg2)+" eV")//
      initializing the value of energy gap of Gap.
6 h=6.624*10^{-34}
7 disp(" Plank constant = "+string(h)+" joule")//
      initializing the value of plank constant.
8 c = 3 * 10^8
9 disp(" Light speed = "+string(c)+" m/s") //
      initializing the value of speed of light.
10 lamda=540*10<sup>6</sup>
11 disp(" lamda = "+string(lamda)+" m") //initializing
      the value of wavelength.
12 \quad x = (Eg2 - Eg1)
13 disp("Difference between the energy gap of GaAs and
      GaP , x = (Eg2 - Eg1) = "+string(x) + "eV") //
      calculation
14 Eg=((c*h/(lamda*(1.6*10^-19))))
15 disp("Band gap energy, Eg=(c*h/lamda*(1.6*10^-19))=
      "+string(Eg)+" eV")//calculation
16 \quad X = Eg - (Eg1)
17 \operatorname{disp}("X=Eg-(Eg1)="+\operatorname{string}(X))/\operatorname{calculation}
```

```
18
19
20
21
22  //this is solved problem 2.8 of chapter 2.
23  //the value of Eg(band gap energy ) is provided wrong in the book after calculation. Due to this value of X , also differ.
```

Scilab code Exa 2.22 VALUE OF THERMAL EQUILIBRIUM HOLE CONCENTRATION IN SILICON

```
1 clc
2 T1=500
3 disp(" Temperature 1 = "+string(T1)+"K") //
      initializing the value of temperature 1.
4 Nv = 2 * 10^19
5 disp(" Nv = "+string(Nv)+"cm^-3")//initializing the
      value of effective density of state for valence
     band .
6 T2 = 300
7 disp(" Temperature 2 = "+string(T2)+"K")//
      initializing the value of temperature 2.
8 NV = (Nv * ((500/300)^{(3/2)}))
9 disp("NV at 500K = (Nv((500/300)^{3}(3/2))) = "+string(NV)
     )+" cm^-3")//calculation
10
11
12 //this is solved problem 2.9 of chapter 2.
```

Scilab code Exa 2.23 FRACTION OF ELECTRONS THAT ARE STILL IN THE DONOR STATE

```
1 clc
2 Nd=1*10^17
3 disp("Nd = "+string(Nd)+"cm^-3") //initializing the
      value of effective energy density of state.
4 Ec_Ed = 0.045
5 disp(" Ec_Ed = "+string(Ec_Ed))//initializing the
      value of donor ionisation level.
6 \text{ Vt} = 0.0259
7 \operatorname{disp}("Vt = "+\operatorname{string}(Vt) + "eV") / / \operatorname{initializing} the
      value of thermal voltage.
8 \text{ Nc} = 2.8 * 10^{19}
9 disp(" Nc = "+string(Nc)+"cm^-3")//initializing the
      value of effective density of state of conduction
       band.
10 e = 2.718
11 disp("exp = "+string(e))//initializing the value of
      exponential.
12 N=(((Nc/Nd)*e^((-(Ec_Ed))/Vt))+1)^-1
13 disp("Fraction of electron still in the donor state
      (nd/(nd+n) = (((Nc/Nd) *e^((-Ec_Ed)/Vt)) + 1)^- - 1) = "+
      string(N))//calculation
14
15
16 //this is solved problem 2.10 of chapter 2.
```

Scilab code Exa 2.24 FRACTION OF HOLES THAT ARE STILL IN THE ACCEPTOR STATE

```
1 clc
2 Na=1*10^16
3 disp("Na = "+string(Na)+" cm^-3")//initializing the value of acceptor concentration.
4 Ea_Ev=0.045
5 disp("Ea_Ev = "+string(Ea_Ev))//initializing the value of boron acceptor ionization energy.
```

```
6 Nv=(1.04*10^19)
7 disp("Nv = "+string(Nv)+" cm^-3")//initializing the
    value of effective density of state for valence
    band.
8 Vt=(0.0259)
9 disp("Vt = "+string(Vt)+" eV")//initializing the
    value of thermal voltage.
10 p=(1+((Nv/(4*Na))*exp(-(Ea_Ev)/Vt)))^(-1)
11 disp("Fraction of holes that are still in the
    acceptor state,(pa/(pa+p))=(1+((Nv/4*Na)*exp(-(Ea_Ev)/Vt)))^(-1)= "+string(p))//calculation
12
13 //this is solved problem 2.11 of chapter 2.
```

Scilab code Exa 2.25 ELECTRON AND HOLE CONCENTRATION

```
1 clc
2 Nd=1*10^17
3 disp("Nd = "+string(Nd)+" cm^-3") //initializing the
       value of donor concentration.
4 Na=0
5 disp("Na = "+string(Na)+" cm^-3")//initializing the
      value of acceptor concentration.
6 no=1.5*10^10
7 disp("ni = "+string(no)+" cm^-3")//initializing the
      value of electron hole per cm<sup>3</sup>.
8 n=(-(Na-Nd)+sqrt((Na-Nd)^2+4*no))/2
9 disp ("Electron concentration, n=(-(Na-Nd)+sqrt ((Na-Nd
     (2+4*no)/2 = "+string(n)+" cm^-3")/calculation
10 p = (no^2/n)
11 disp("Hole concentration,p)= "+string(p)+" cm^-3")//
      calculation
12
13
14
```

Scilab code Exa 2.26 ELECTRON AND HOLE CONCENTRATION

```
1 clc
2 \text{ Nd} = 6 * 10^16
3 disp("Nd = "+string(Nd)+" cm^-3") //initializing the
       value of donor concentration.
4 Na=10<sup>17</sup>
5 disp("Na = "+string(Na)+" cm^-3")//initializing the
      value of acceptor concentration.
6 no=1.5*10^10
7 disp("no = "+string(no)+" cm^-3")//initializing the
      value of electron and hole per cm<sup>3</sup>.
8 p=((Na-Nd)+sqrt((Na-Nd)^2+4*no))/2
9 disp("Hole concentration, n=(-(Na-Nd)+sqrt ((Na-Nd)
      ^2+4*no))/2)= "+string(p)+" cm^-3")//calculation
10 \quad n = (no^2/p)
11 disp("Electron concentration, n=(no^2/p)) = "+string(n
      ))//calculation
12
13
14
15 //this is solved problem 2.14 of chapter 2.
16 //the value of Na, Nd in the solution is different
      than provided in the question
17 //I have used the value used in the solution (i.e Na
      =10^17, Nd=6*10^16
```

Scilab code Exa 2.27 ELECTRON AND HOLE CONCENTRATION

```
1 clc
2 Nd=6*10^16
```

```
3 disp("Nd = "+string(Nd)+" cm^-3") //initializing the
      value of donor concentration.
4 Na=10^17
5 disp("Na = "+string(Na)+" cm^-3")//initializing the
      value of acceptor concentration.
6 no=1.5*10^10
7 disp("no = "+string(no)+" cm^-3")//initializing the
      value of electron and hole per cm<sup>3</sup>.
8 p=((Na-Nd)+sqrt((Na-Nd)^2+4*no))/2
9 disp("Hole concentration, n=(-(Na-Nd)+sqrt((Na-Nd)
      (2+4*no)/2 = "+string(p)+"cm-3")/calculation
10 n=(no^2/p)
11 disp("Electron concentration, n=(no^2/p)) = "+string(n
     ))//calculation
12
13
14 //this is solved problem 2.15 of chapter 2.
15 //the value of Na, Nd in the solution is different
     than provided in the question
16 //I have used the value used in the solution (i.e Na
     =10^17, Nd=6*10^16
```

Scilab code Exa 2.28 VALUE OF THERMAL EQUILIBRIUM HOLE CONCENTRATION IN SILICON

```
1 clc
2 Nv1=1.04*10^19
3 disp("Nv = "+string(Nv1)+" cm^-3")//initializing the value of valence band concentration at 300K.
4 Ef_Ev=0.3
5 disp("Ef_Ev = "+string(Ef_Ev)+" eV")//initializing the value of boron acceptor ionization energy.
6 T1=300
7 disp("T = "+string(T1)+"K")//initializing the value of temperature 1.
```

```
8 T2 = 500
9 \operatorname{disp}(\mathrm{T} = \mathrm{T+string}(\mathrm{T2}) + \mathrm{K}) / \operatorname{initializing} the value
       of temperature 2.
10 Vt1=0.0259
11 \operatorname{disp}("Vt1 = "+\operatorname{string}(Vt1) + "eV") / / \operatorname{initializing}  the
       value of thermal voltage at 300K.
12 k=1.38*10^-23
13 \operatorname{disp}("k = "+\operatorname{string}(k) + "J/K") //initializing value of
        boltzmann constant.
14 \text{ e=} 1.6 * 10^{-19}
15 disp("e = "+string(e)+"columb") //initializing the
       value of electronic charge.
16 K1 = (Nv1/((T1)^{(3/2)})
17 disp("Value of constant, K1=(Nv/((T)^(3/2)))="+
       string (K1)+" cm^-3 K(-2/3)")//calculation
18 Nv2=K1*T2^{(3/2)}
19 disp ("Value of valence band concentration at 500K, Nv
      =K1*T(3/2)= "+string(Nv2)+" cm<sup>-3</sup>")//calculation
20 \text{ VT} = (k*T2/e)
21 disp("Value of parameter VT at 500K, VT=(K*T/e)="+
       string (VT)+" cm^-3")//calculation
22 p = (Nv2*(exp(-(Ef_Ev)/(VT))))
23 disp("Hole concentration, p=(Nv*(exp(Ef_Ev)/(VT)))="
       +string(p)+"cm^-3")/calculation
24
25 //this is solved problem 2.16 of chapter 2.
```

Scilab code Exa 2.29 INTRINSIC CARRIER CONCENTRATION

```
1 clc
2 Nv=7*10^18
3 disp("Nv = "+string(Nv)+"cm^-3")//initializing the
    value of valence band concentration at 300K.
4 Nc=4.7*10^17
5 disp("Nc = "+string(Nc)+"cm^-3")//initializing the
```

```
value of conduction band concentration at 300K.
6 T1=300
7 \operatorname{disp}(\mathrm{T} = \mathrm{T+string}(\mathrm{T1}) + \mathrm{K}) / \operatorname{initializing} the value
       of temperature 1.
8 T2 = 450
9 \operatorname{disp}(\mathrm{T} = \mathrm{T+string}(\mathrm{T2}) + \mathrm{K}) / \operatorname{initializing} the value
       of temperature 2.
10 \text{ Vt1} = 0.0259
11 \operatorname{disp}("Vt1 = "+\operatorname{string}(Vt1) + "eV") // \operatorname{initializing}  the
       value of thermal voltage at 300K.
12 Vt2=0.03881
13 \operatorname{disp}("Vt2 = "+\operatorname{string}(Vt2) + "eV") / / \operatorname{initializing}  the
       value of thermal voltage at 450K.
14 \text{ Eg} = 1.42
15 disp("Eg = "+string(Eg)+"eV")//initializing the
       value of thermal voltage.
16 no=(sqrt(Nc*Nv*(exp(-Eg/Vt1))))
17 disp ("intrinsic concentration at 300K, no=(sqrt (Nc*Nv
       *(\exp(-Eg/Vt1))) = "+string(no))/calculation
18 K1 = (Nc/((T1)^{(3/2)})
19 disp("Value of constant, K1=(Nc/((T)^{(3/2)}))="+
       string(K1))//calculation
20 k1 = (K1 * T2^{(3/2)})
21 disp("Value of constant k1 at 450K, k1=(K1*T2^(3/2))
       = "+string(k1))//calculation
22 K2=(Nv/((T1)^{(3/2)})
23 disp("Value of constant, K2 = (Nv/((T1)^{(3/2)})) = "+
       string(K2))//calculation
24 \text{ k2} = (\text{K2} \times \text{T2}^{(3/2)})
25 disp("Value of constant k2 at 450K, k2=(K2*T2^(3/2))
       = "+string(k2))//calculation
26 \ K = k1 * k2
27 disp("Value of constant K_{,=}"+string(K))//
       calculation
28 no1=(sqrt(K*(exp(-Eg/Vt2))))
29 disp ("intrinsic concentration at 450K, no=(sqrt (K*(
       \exp(-\text{Eg/Vt2}))) = "*string(no1) + "cm^3")//
       calculation
```

Scilab code Exa 2.30 VALUE OF DONOR CONCENTRATION

```
1 clc
2 \text{ Nv} = 1.04 * 10^{19}
3 disp("Nv = "+string(Nv)+"cm^-3")//initializing the
       value of valence band concentration at 300K.
4 Nc=2.8*10^19
5 \operatorname{disp}("Nc = "+\operatorname{string}(Nc) + "\operatorname{cm}^-3") // \operatorname{initializing}  the
       value of conduction band concentration at 300K.
6 T1=300
7 \operatorname{disp}(\mathrm{T} = \mathrm{T+string}(\mathrm{T1}) + \mathrm{K}) / \operatorname{initializing} the value
       of temperature 1.
8 T2 = 550
9 \operatorname{disp}(\mathrm{T} = \mathrm{T+string}(\mathrm{T2}) + \mathrm{K}) / \operatorname{initializing} the value
       of temperature 2.
10 Vt1=0.0259
11 \operatorname{disp}("Vt1 = "+\operatorname{string}(Vt1) + "eV") / / \operatorname{initializing}  the
       value of thermal voltage at 300K.
12 \text{ Vt2=0.0474}
13 \operatorname{disp}("Vt2 = "+\operatorname{string}(Vt2) + "eV") / / \operatorname{initializing}  the
       value of thermal voltage at 550K.
14 Eg1=1.12
15 disp("Eg1 = "+string(Eg1)+"eV")//initializing the
       value of thermal voltage.
16 no=(sqrt(Nc*Nv*(exp(-Eg1/Vt1))))
17 disp ("intrinsic concentration at 300K, no=(sqrt (Nc*Nv
       *(\exp(-Eg1/Vt1))) = "+string(no))/calculation
18 K1 = (Nc/((T1)^(3/2)))
19 disp("Value of constant, K1=(Nc/((T)^{(3/2)}))="+
       string(K1))//calculation
20 k1 = (K1 * T2^{(3/2)})
21 disp("Value of constant k1 at 550K, k1=(K1*T2^(3/2))
       = "+string(k1))//calculation
```

```
22 K2 = (Nv/((T1)^{3}/2))
23 disp("Value of constant, K2=(Nv/((T1)^{(3/2)}))="+
      string(K2))//calculation
24 \text{ k2} = (\text{K2} \times \text{T2}^{(3/2)})
25 disp("Value of constant k2 at 550K, k2=(K2*T2^(3/2))
      = "+string(k2))//calculation
26 \ K = k1 * k2
27 disp("Value of constant K_{,=}"+string(K))//
      calculation
28 no1=(sqrt(K*(exp(-Eg1/Vt2))))
29 disp ("Intrinsic concentration at 550K, no=(sqrt (K*(
      \exp(-\text{Eg1/Vt2}))) = "*string(no1) + "cm^3")//
      calculation
30 Nd = (4*(no1^2)/(1.2))
31 disp ("Donor concentration at which intrinsic
      concentration is 10% of the total electron
      concentration, Nd = (4*(no1^2)/(1.2)) = "+string(Nd) +
      " cm^3")//calculation
32 //this is solved problem 2.18 of chapter 2.
33 //the value of temperature and % of the intrinsic
      carrier concentration given in the question is
      different than used in the solution.
34 //I have used the value provided in the solution (i.
      e T2=550 and % of the intrinsic carrier
      concentration =10\%)
35 //the value of Donor concentration at which
      intrinsic concentration is 10% of the total
      electron concentration (Nd), is provided wrong in
      the book after calculation.
```

Scilab code Exa 2.31 DONOR CONCENTRATION IN SILICON

```
1 clc
2 Ec_Ef=0.2
3 disp("Ec_Ef = "+string(Ec_Ef)+" eV") //initializing
```

```
the value of difference in the energy levels.
4 Nc=2.8*10^19
5 disp("Nc = "+string(Nc)+" cm^-3")//initializing the
      value of conduction band concentration.
6 \text{ Na}=3*10^16
7 disp("Na = "+string(Na)+" cm^-3")//initializing the
      value of acceptor concentration.
8 \text{ Vt} = 0.0259
9 \operatorname{disp}("Vt = "+\operatorname{string}(Vt) + "eV") / / \operatorname{initializing}  the
      value of thermal voltage at 300K.
10 Nd = (Nc*(exp(-(Ec_Ef)/(Vt)))) + (Na)
11 disp("Donor concentration, Nd=(Nc*(exp(-(Ec_Ef)/(Vt)))
      ) + (Na) = "+string(Nd) + "cm^-3") // calculation
12
13
14 //this is solved problem 2.19 of chapter 2.
```

Scilab code Exa 2.32 INTRINSIC CARRIER CONCENTRATION

```
1 clc
2 \text{ Nv} = 6 * 10^18
3 disp("Nv = "+string(Nv)+"cm^-3")//initializing the
      value of valence band concentration at 300K.
4 Nc=1.04*10^19
5 disp("Nc = "+string(Nc)+"cm^-3")//initializing the
      value of conduction band concentration at 300K.
6 T1=300
7 \operatorname{disp}(T1 = "+\operatorname{string}(T1) + "K") / / \operatorname{initializing}  the value
       of temperature 1.
8 T2 = 200
9 disp("T2 = "+string(T2)+"K")//initializing the value
       of temperature 2.
10 Vt1=0.0259
11 disp("Vt1 = "+string(Vt1)+"eV")//initializing the
      value of thermal voltage at 300K.
```

```
12 Vt2=0.0173
13 disp("Vt2 = "+string(Vt2)+"eV")//initializing the
       value of thermal voltage at 200K.
14 Eg1=0.60
15 disp("Eg1 = "+string(Eg1)+"eV")//initializing the
       value of thermal voltage used for 300K.
16 no=(sqrt(Nc*Nv*(exp(-Eg1/Vt1))))
17 disp ("intrinsic concentration at 300K, no=(sqrt (Nc*Nv
       *(\exp(-\text{Eg1/Vt1}))) = "+\text{string(no)})/(\text{calculation})
18 \text{ Eg2} = 0.66
19 \operatorname{disp}(\operatorname{"Eg2} = \operatorname{"+string}(\operatorname{Eg2}) + \operatorname{"eV"}) // \operatorname{initializing} the
       value of thermal voltage used for 200K.
20 K1 = (Nc/((T1)^{(3/2)})
21 disp("Value of constant, K1=(Nc/((T)^{(3/2)}))="+
      string(K1))//calculation
22 k1 = (K1 * T2^{(3/2)})
23 disp("Value of constant k1 at 200K, k1=(K1*T2^(3/2))
      = "+string(k1))//calculation
24 K2 = (Nv/((T1)^{3/2}))
25 disp("Value of constant, K2=(Nv/((T1)^{(3/2)}))="+
      string(K2))//calculation
26 \text{ k2} = (\text{K2} \times \text{T2}^{(3/2)})
27 disp("Value of constant k2 at 200K, k2=(K2*T2^(3/2))
      = "+string(k2))//calculation
28 \text{ K} = \text{k1} * \text{k2}
29 disp("Value of constant K_{,=}"+string(K))//
       calculation
30 no1=(sqrt(K*(exp(-Eg2/Vt2))))
31 disp("intrinsic concentration at 200K, no=(sqrt(K*(
      \exp(-\text{Eg2/Vt2}))) = "*string(no1) + "cm^3")//
       calculation
32
33 //this is solved problem 2.20 of chapter 2.
34 //The answer of intrinsic concentration at 300K, (no)
        is provided wrong in the book.
```

Scilab code Exa 2.33 RATIO OF INTRINSIC CONCENTRATION

```
1 clc
2 Eg1=2
3 disp("Eg1 = "+string(Eg1)+" eV") //initializing the
      value of band energy gap for semiconductor1.
4 Eg2=2.2
5 disp("Eg2 = "+string(Eg2)+" eV")//initializing the
      value of band energy gap for semiconductor2.
6 Vt=0.0259
7 disp("Vt = "+string(Vt)+" eV")//initializing the
      value of thermal voltage at 300K.
8 No=sqrt(exp((-Eg1/Vt)-(-Eg2/Vt)))
9 disp("Ratio of their intrinsic concentration at 300K
      ,(no1/no2)=sqrt(exp((-Eg1/Vt)-(-Eg2/Vt)))= "+
      string(No))//calculation
```

Chapter 3

CARRIER TRANSPORT IN SEMICONDUCTOR

Scilab code Exa 3.1 VALUE OF HALL ELECTRIC FIELD

```
1 clc
2 I = 5 * 10^{-3}
3 disp("I = "+string(I)+" amphere") //initializing
      value of current flowing through the sample.
4 B=1*10^-6
5 disp("B= "+string(B)+" Tesla") //initializing value
      of magnetic field.
6 \quad w = 0.01 * 10^{-2}
7 disp("w = "+string(w)+" m") //initializing value of
      width of germanium sample.
8 1=0.1*10^-2
9 disp("l = "+string(1)+"m") ///initializing value
      of length of germanium sample.
10 t=0.001*10^-2
11 disp("t = "+string(t)+" m") ///initializing value
      of thickness of germanium sample.
12 p=10<sup>1</sup>7
13 disp("p = "+string(p)+" atoms/m^3") //initializing
      value of doped acceptor atoms.
```

```
14 e=1.6*10^-19
15 disp("e = "+string(e)+" columb") //initializing
        value of charge of electron.
16 EH=(I*B)/(w*t*p*e)
17 disp("Hall electric field ,EH=(I*B)/(w*t*p*e)= "+
        string(EH)+" V/m")// calculation
18 E=EH*10^-2
19 disp("Hall electric field in centimeter ,EH=(I*B)/(w*t*p*e)= "+string(E)+" V/cm")// calculation
```

Scilab code Exa 3.2 VALUE OF HALL COFFICIENT

```
1 clc
2 I = 5 * 10^{-3}
3 disp("I = "+string(I)+" amphere") //initializing
      value of current flowing through the sample.
4 B=1*10^-6
5 disp("B= "+string(B)+" Tesla") //initializing value
      of magnetic field.
6 \quad w = 0.01 * 10^{-2}
7 disp("w = "+string(w)+" m") //initializing value of
      width of germanium sample.
8 1=0.1*10^-2
9 disp("l = "+string(1)+" m") //initializing value of
      length of germanium sample.
10 t = 0.001 * 10^{-2}
11 disp("t = "+string(t)+" m") //initializing value of
      thickness of germanium sample.
12 p=10<sup>1</sup>7
13 disp("p = "+string(p)+" atoms/cm^3") //initializing
      value of doped acceptor atoms.
14 \text{ e=} 1.6 * 10^{-19}
15 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
16 Rh = (1/(p*e))
```

```
17 disp("hall cofficient, Rh=(1/(p*e))="+string(Rh)+" cm^3/C")//calculation
```

Scilab code Exa 3.3 VALUE OF HALL VOLTAGE

```
1 clc
2 I=10*10^-3
3 disp("I = "+string(I)+" amphere") //initializing
      value of current flowing through the sample.
4 B=10*10^-6
5 disp("B= "+string(B)+" Tesla") //initializing value
      of magnetic field.
6 \quad w = 0.01 * 10^{-2}
7 disp("w = "+string(w)+" m") //initializing value of
      width of germanium sample.
8 1 = 0.1 * 10^{-2}
9 disp("l = "+string(1)+" m") //initializing value of
      length of germanium sample.
10 t = 0.001 * 10^{-2}
11 disp("t = "+string(t)+" m") //initializing value of
      thickness of germanium sample.
12 n=10<sup>1</sup>6
13 disp("n = "+string(n)+" atoms/cm^3") //initializing
      value of doped donor atoms.
14 \text{ e=1.6*10^--19}
15 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
16 Vh = ((I*B)/(n*e*t))
17 disp("Hall voltage, Vh = ((I*B)/(n*e*t)) = "+string(Vh)
      +" V")//calculation
```

Scilab code Exa 3.4 VALUE OF HALL RESISTANCE

```
1 clc
2 I = 10 * 10^{-3}
3 disp("I = "+string(I)+" amphere") //initializing
      value of current flowing through the sample.
4 B=10*10^-6
5 disp("B= "+string(B)+" Tesla") //initializing value
      of magnetic field.
6 \quad w = 0.01 * 10^{-2}
7 disp("w = "+string(w)+" m") //initializing value of
      width of germanium sample.
8 1=0.1*10^-2
9 disp("l = "+string(1)+" m") ///initializing value
      of length of germanium sample.
10 t = 0.001 * 10^{-2}
11 disp("t = "+string(t)+" m") ///initializing value
      of thickness of germanium sample.
12 p=10<sup>18</sup>
13 disp("p = "+string(p)+" atoms/cm^3") //initializing
      value of doped donor atoms.
14 \text{ e=} 1.6 * 10^{-19}
15 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
16 Yh = ((B)/(p*e*t))
17 disp("Hall voltage, Yh = ((B)/(p*e*t)) = "+string(Yh)+"
       ohm")//calculation
```

Scilab code Exa 3.8 MINIMUM CONDUCTIVITY AND MAXIMUM RESISTIVITY

```
1 clc
2 no=1.5*10^10
3 disp("no = "+string(no)) //initializing value of
    electron hole per cm^3.
4 n=2*10^16
5 disp("n= "+string(n)) //initializing value of number
```

```
of electrons per cm<sup>3</sup>.
6 un = 1200
7 disp("un = "+string(un)) //initializing value of
      mobility of n-type carrier.
8 \text{ up} = 500
9 disp("up = "+string(up)) ///initializing value of
      mobility of p-type carrier.
10 e = 1.6 * 10^{-19}
11 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
12 p=(1/(2*e*no*(sqrt(un*up))))
13 disp("resistivity, p = (1/(2*e*no*(sqrt(un/up)))) = "+
      string(p)+" ohm")//calculation
14 sigmamin = (1/p)
15 disp("conductivity, s=(1/p)) = "+string(sigmamin)+" S
      /cm")//calculation
16 sigma=e*no*(un+up)
17 disp("intrinsic conductivity , sigma=e*no*(un+up)) = "
      +string(sigma) + "S/cm")/calculation
```

Scilab code Exa 3.10 VALUE OF DIFFERENCE IN FERMI LEVELS

```
value of area.
10 \text{ up} = 300
11 disp("up = "+string(up)+" cm<sup>2</sup>/Vs") //initializing
      value of mobility of p-type carrier.
12 t = 7 * 10^{-9}
13 disp("t = "+string(t)+" sec") //initializing value
      of transit time.
14 T=300
15 \operatorname{disp}(T = + \operatorname{string}(T) + K) / \operatorname{initializing}  value of
      temperature.
16 \quad Vt = 0.0259
17 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage at 300K.
18 \quad x = 500 * 10^{-8}
19 disp("x = "+string(x)+" cm") //initializing value of
       distance at which difference in fermi level is
      to calculated.
20 Dp=(Vt*up)
21 disp("Diffusion cofficient, Dp=(Vt*up)) = "+string(Dp)
      +" cm^2/s")//calculation
22 \text{ Lp=(sqrt(Dp*t))}
23 disp("Diffusion length, Lp = (sqrt(Dp*t)) = "+string(Lp)
      )+" cm")//calculation
24 px = (po + (Po * exp(-x/Lp)))
25 disp("Excess charge generated, p(x) = (po + (P(o) * exp(-x/
      Lp)) = "+string(px)+" cm^-3")//calculation
26 Efi_Efp=(Vt*log(px/no))
27 disp("Fermi level, Efi_Efp = (Vt * log(p(x)/no)) = "+
      string(Efi_Efp)+" eV")//calculation
```

Scilab code Exa 3.11 HOLE CURRENT AND STORED EXCESS HOLE CHARGES

```
1 clc
2 A=0.1*10^-4
```

```
3 disp("A = "+string(A)+" cm^2") //initializing value
      of area.
4 Dp = 7.77 * 10^{-4}
5 disp("Dp= "+string(Dp)+" cm<sup>2</sup>/s") //initializing
      value of diffusion cofficient.
6 Lp=0.233*10^-5
7 disp("Lp = "+string(Lp)+" cm") //initializing value
      of diffusion length.
8 x = 500 * 10^{-8}
9 \operatorname{disp}("x = "+\operatorname{string}(x)+" \operatorname{cm}") //\operatorname{initializing} value of
       distance
10 P = 10^17 * 10^6
11 disp("P(O)-po = "+string(P)) //initializing value of
       P(O)-po
12 e=1.6*10^-19
13 disp("e = "+string(e)+"column")//initializing value
      of charge of electron.
14 I = (((e*A*Dp*P)/Lp)*exp(-x/Lp))
15 disp("Hole current, I = (((e*A*Dp*[P(O)-po])/Lp)*exp(-x)
      /Lp))= "+string(I)+"amphere")//calculation
16 Q=(e*A*Dp*Lp*P)
17 disp("stored excess hole ,Q=(e*A*Dp*Lp*P))= "+string
      (Q) + C'' / calculation
18
19 //the value of current(I) given after calculation in
       the book is wrong, (as the value of Lp used in
      the formula while finding value of hole current (
      I) at two places //is used different).
20 //I have used the value Lp=0.233*10^-5 cm
```

Scilab code Exa 3.12 ELECTRONIC CONCENTRATION AND MOBILITY

```
1 clc
2 I=2*10^-3
```

```
3 disp("I = "+string(I)+" amphere") //initializing
      value of current flowing through the sample.
4 B=1000*10^-4
5 disp("B= "+string(B)+" Tesla") //initializing value
      of magnetic field.
6 \quad w = 0.2 * 10^{-3}
7 disp("w = "+string(w)+" mm") //initializing value of
       width of sample.
8 1 = 2 * 10^{-3}
9 disp("l = "+string(1)+" m") //initializing value of
      length of sample.
10 t = 0.02 * 10^{-3}
11 disp("t = "+string(t)+" m") //initializing value of
      thickness of sample.
12 Vaa=10
13 disp("Vaa = "+string(Vaa)+" V") //initializing value
       of applied voltage.
14 \quad Vh = -10*10^{-3}
15 disp("Vh = "+string(Vh)+" V") //initializing value
      of hall voltage.
16 \text{ e=} 1.6*10^-19
17 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
18 n = ((I*B)/(e*t*Vh))
19 disp("electron concentration, n=((I*B)/(e*t*Vh))="+
      string(n)+" m^-3")//calculation
20 un=(I*1/(e*abs(n)*Vaa*w*t))
21 disp("mobility, un=(I*L/(e*n*Vaa*w*t))= "+string(un)+
     " m^2/Vs") // calculation
```

Scilab code Exa 3.14 INDUCED ELECTRIC FIELD

Scilab code Exa 3.17 ELECTRON AND HOLE CONCENTRATION AND DRIFT CURRENT DENSITY

```
1 clc
2 Nd=10^17
3 disp("Nd = "+string(Nd)+" /cm<sup>3</sup>") //initializing
      value of donor concentration.
4 Na=0
5 disp("Na= "+string(Na)+" /cm^3") //initializing
      value of acceptor concentration.
6 no=1.8*10^6
7 disp("no = "+string(no)+" /cm<sup>3</sup>") //initializing
      value of electron and hole concentration per cm
      ^ 3.
8 E=5
9 disp("E = "+string(E)+" V/cm") ///initializing
      value of electric field.
10 un=7500
11 disp("un = "+string(un)+" cm^2/s") ///initializing
```

```
value of mobility.
12 n1=10<sup>1</sup>7
13 \operatorname{disp}("n1="+\operatorname{string}(n1)+" \operatorname{cm}^-3") // initializing
       value of impurity concentration.
14 \text{ e=} 1.6 * 10^{-19}
15 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
16 n = (-(Na-Nd) + sqrt((Na-Nd)^2 + 4*no))/2
17 disp ("Electron concentration, n=(-(Na-Nd)+sqrt ((Na-Nd
      )^2+4*no))/2)= "+string(n)+" cm<sup>2</sup>-3")//calculation
18 p = (no^2/n)
19 disp("Hole concentration, p=(no^2/n) = "+string(p)+"
      cm^-3")//calculation
20 Jdrift=n1*un*e*E
21 disp("Drift current density, Jdrift=n1*un*e*E)= "+
      string(Jdrift)+" A/cm<sup>2</sup>")//calculation
```

Scilab code Exa 3.18 ELECTRON AND HOLE CONCENTRATION AND DRIFT CURRENT DENSITY

```
1 clc
2 Nd=0
3 disp("Nd = "+string(Nd)+" /cm^3") //initializing
    value of donor concentration.
4 Na=10^17
5 disp("Na= "+string(Na)+" /cm^3") //initializing
    value of acceptor concentration.
6 no=1.8*10^6
7 disp("no = "+string(no)+" /cm^3") //initializing
    value of electron and hole concentration per cm
    ^3.
8 E=10
9 disp("E = "+string(E)+" V/cm") ///initializing
    value of electric field.
10 un=200
```

```
11 disp("un = "+string(un)+" cm^2/s") ///initializing
      value of mobility.
12 p1=10<sup>1</sup>7
13 \operatorname{disp}("p1="+\operatorname{string}(p1)+" \operatorname{cm}^-3") // initializing
      value of impurity concentration.
14 e=1.6*10^-19
15 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
16 p=-(-(Na-Nd)-sqrt((Na-Nd)^2+4*(no^2)))/2
17 disp("Electron concentration, p=-(-(Na-Nd)-sqrt((Na-
      Nd)^2+4*(no^2))/2= "+string(p)+" cm^-3")//
      calculation
18 \quad n = (no^2/p)
19 disp("Hole concentration, n=(no^2/p) = "+string(n)+"
      cm^-3")//calculation
20 Jdrift=p1*un*e*E
21 disp("Drift current density, Jdrift=n1*un*e*E)= "+
      string(Jdrift)+" A/cm^2")//calculation
```

Scilab code Exa 3.19 VALUE OF THERMAL EQUILIBRIUM HOLE CONCENTRATION

```
1 clc
2 D=120
3 disp("D = "+string(D)+" A/cm^2") //initializing
      value of drift current density.
4 E=5
5 disp("E = "+string(E)+" V/cm") //initializing value
      of electric field.
6 e=1.6*10^-19
7 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
8 p=(D/(450*e*E))
9 disp("thermal equilibrium value of hole
      concentration ,p=(D/(450*e*E)))= "+string(p)+" /
```

Scilab code Exa 3.20 CURRENT THROUGH THE BAR

```
1 clc
2 \text{ Nd} = 5 * 10^16
3 disp("Nd = "+string(Nd)+" /cm<sup>3</sup>") //initializing
      value of donor concentration.
4 A = 50 * 10^{-8}
5 disp("A= "+string(A)+" cm^2") //initializing value
      of area.
6 1=0.2
7 disp("l = "+string(1)+" /cm") //initializing value
      of length.
8 E = 10
9 disp("E = "+string(E)+"V") //initializing value of
      electric field.
10 \text{ up} = 1100
11 disp("un = "+string(up)+" cm^2/s") //initializing
      value of mobility.
12 p=5*10^16
13 \operatorname{disp}("p="+\operatorname{string}(p)+"/\operatorname{cm}^-3") //initializing value
       of impurity concentration.
14 e=1.6*10^-19
15 disp("e = "+string(e)+" columb") //initializing
      value of charge of electron.
16 I = (p*up*e*E*A)/1
17 disp("Current through the bar, I = (p*up*e*E*A)/1) = "+
      string(I)+"A")//calculation
```

Chapter 4

EXCESS CARRIER IN SEMICONDUCTOR

Scilab code Exa 4.2 DIELECTRIC RELAXATION TIME

```
1 clc
2 \text{ Nd} = 2 * 10^17
3 disp("Nd = "+string(Nd)+"cm^-3") //initializing
     value of donor concentration.
4 Er=11.9
5 disp("Er = "+string(Er)) //initializing value of
      relative dielectric constant.
6 e=1.6*10^-19
7 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
8 Eo=8.854*10^-14
9 disp("eo = "+string(Eo)) //initializing value of
     permittivity of free space.
10 un=1350
11 disp("un = "+string(un)+"cm2/Vs") //initializing
     value of mobility.
12 sigma=e*un*Nd
13 disp("conducitivity, sigma=e*un*Nd)="+string(sigma)+"
     S/cm")//calculation
```

Scilab code Exa 4.3 ELECTRON HOLE RECOMBINATION

```
1 clc
2 n=10^15
3 disp("n = "+string(n)+"cm^-3") //initializing value
      of concentration of electrons/cm<sup>3</sup>.
4 no=10^10
5 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic concentration of electron.
6 t=10^-6
7 disp("t = "+string(t)+"s") //initializing value of
      carrier lifetime.
8 c = 1 * 10^14
9 disp("Excess electron concentration = "+string(c)+"
     cm^-3") //initializing value of excess electrons
      concentration.
10 R = (c/t)
11 disp("electron hole recombination, R=(c/t))="+string(
     R)+" /\text{cm}^3\text{s}")//calculation
```

Scilab code Exa 4.4 GENERATION AND RECOMBINATION RATE OF EHPS AND MAJORITY CARRIER LIFETIME

```
1 clc
2 Nd=10^15
3 disp("Nd = "+string(Nd)+"cm^-3") //initializing
    value of donor concentration..
4 tn=10*10^-6
```

```
5 disp("minority carrier lifetime = "+string(tn)+"s")
      //initializing value of minority carrier lifetime
6 no=1.5*10^10
7 \operatorname{disp}("no = "+string(no) + "cm^-3") // \operatorname{initializing}
      value of electron and hole concentration per cm
      ^3.
8 p = (no^2/Nd)
9 disp("excess carrier concentration, p=(no^2/Nd))="+
      string(p)+"/cm<sup>3</sup>")//calculation
10 R=(p/tn)
11 disp("electron hole generation and recombination
      rate, R=(p/t))="+string(R)+"/cm<sup>3</sup>s")//calculation
12 t=Nd/R
13 disp("majority carrier concentration, t=Nd/R)="+
      string(t)+"s")//calculation.
14
15
16 //the value of majority carrier concentration, t=Nd/R
       (after calculation), is provided wrong in the
      solution.
```

Scilab code Exa 4.5 QUASI FERMI LEVELS

```
1 clc
2 Nd=10^16
3 disp("Nd = "+string(Nd)+" cm^-3") //initializing
      value of donor concentration.
4 p=10^6
5 disp("p = "+string(p)+" cm^-3") //initializing value
      of minority hole concentration.
6 no=10^10
7 disp("no = "+string(no)+" cm^-3") //initializing
      value of electron and hole concentration per cm
      ^3..
```

```
8 n1=10<sup>15</sup>
9 disp("n* = "+string(n1)+" cm^-3") //initializing
      value of excess electron carrier concentration (
      denoted by n*).
10 p1=10<sup>15</sup>
11 \operatorname{disp}("p* = "+\operatorname{string}(p1) + "\operatorname{cm}^{-3}") // \operatorname{initializing}
      value of excess hole carrier concentration (
      denoted by p*).
12 KT=0.0259
13 disp("KT = "+string(KT)+" eV") //initializing value
      of multipication of temperature and bolzmann
      constant.
14 T=300
15 disp("T = "+string(T)+" K") //initializing value of
      temperature.
16 Ef_Efi=(\log(Nd/no)*KT)
17 disp("Thermal equilibirium fermi level, (Ef_Efi)=(KT*
      \log(n/no))="+string(Ef_Efi)+"eV")//calculation.
18 Efn_Efi=log((Nd+n1)/no)*KT
19 disp("Quasi-fermi levels for n-type dopant, (Efn_Efi)
      =(KT*log((n+n*)/no))="+string(Efn_Efi)+" eV")//
      calculation.
20 Efi_Efp=log((Nd+p1)/no)*KT
21 disp("Quasi-fermi levels for p-type dopant, (Efi_Efp)
      =(KT*log((p+p*)/no))="+string(Efi_Efp)+" eV")//
      calculation.
22
23 //the answer for Efn_Efi, Efi_Efp is provided wrong
      in the book.
24 //In this question, Nd=(n(used in the formula)).
```

Scilab code Exa 4.6 ENERGY DIFFERENCE BETWEEN EFn AND EFi

```
1 clc
2 Nd=5*10^16
```

```
3 disp("Nd = "+string(Nd)+"cm^-3") //initializing
       value of donor ion concentration.
4 Na=0
5 disp("Na = "+string(Na)+"cm^-3") //initializing
       value of acceptor ion concentration.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of electron and hole concentration per cm
      ^ 3.
8 n1=5*10^14
9 disp("n* = "+string(n1) + "cm^-3") //initializing
       value of excess electron carrier concentration.
10 p1=5*10^14
11 \operatorname{disp}("p* = "+\operatorname{string}(p1) + "\operatorname{cm}^-3") // \operatorname{initializing}
      value of excess hole carrier concentration.
12 \quad KT = 0.0259
13 disp("KT = "+string(KT)) //initializing value of
      thermal voltage.
14 Ef_Efi=(KT*log(Nd/no))
15 disp("thermal equilibrium fermi level, (Ef_Efi)=(KT*
      \log(n/no)) = "+string(Ef_Efi) + "eV") // calculation.
16 Efn_Efi=log((Nd+n1)/no)*KT
17 disp("Excess carrier concentration ,(Efn_Efi)=(KT*
      \log ((n+n*)/no) = "+string(Efn_Efi) + "eV") //
       calculation.
18 Efi_Efp=log((Na+p1)/no)*KT
19 \operatorname{disp}("(\operatorname{Ef_-Efi}) = (\operatorname{KT} * \log ((p+p*)/\operatorname{no})) = "+ \operatorname{string}(\operatorname{Efi_Efp})
      +"eV")//calculation.
```

Chapter 5

PN JUNCTION DIODE

Scilab code Exa 5.5 FERMI LEVEL IN P AND N JUNCTION AND CONTACT POTENTIAL

```
1 clc
2 Na=10^17
3 disp("Na = "+string(Na)+"/cm<sup>3</sup>") //initializing
      value of medium p doping concentration.
4 Nd=10<sup>15</sup>
5 disp("Nd = "+string(Nd)+"/cm<sup>3</sup>") //initializing
      value of light n doping.
6 no=1.5*10<sup>10</sup>
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic carrier concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
10 \text{ K=1.38*10^--23}
11 \operatorname{disp}(\mathrm{"K} = \mathrm{"+string}(\mathrm{K}) + \mathrm{"J/k"}) //initializing value of
       boltzmann constant.
12 T=300
13 disp("T = "+string(T)+"K") //initializing value of
      temperature.
14 Efi_Efp=((K*T/e)*log(Na/no))
```

Scilab code Exa 5.6 VALUE OF JUNCTION POTENTIAL

```
1 clc
2 Na=10^17
3 disp("Na = "+string(Na)+"/cm^3") //initializing
      value of medium p doping concentration.
4 Nd=10^15
5 disp("Nd = "+string(Nd)+"/cm^3") //initializing
      value of light n doping.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic carrier concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+"columbs") //initializing
      value of charge of electrons.
10 \quad K=1.38*10^-23
11 \operatorname{disp}(\mathrm{"K} = \mathrm{"+string}(\mathrm{K}) + \mathrm{"J/k"}) //initializing value of
       boltzmann constant.
12 T=300
13 disp("T = "+string(T)+"K") //initializing value of
      temperature.
14 V_{j}=((K*T/e)*log((Na*Nd)/(no)^2))
15 disp("Junction potential, V_j = ((K*T/e)*log((Na*Nd)/(no))
```

```
)^2)="+string(Vj)+"eV")//calculation.
```

Scilab code Exa 5.7 VALUE OF REVERSE AND FORWARD CURRENT

```
1 clc
2 \text{ Pp=} 10^{18}
3 disp("Pp = "+string(Pp)+"/cm^3") //initializing
       value of doping concentration in p region.
4 Nn=10<sup>15</sup>
5 disp("Nn = "+string(Nn)+"/cm<sup>3</sup>") //initializing
       value of doping concentration in n region.
6 \text{ tp} = 7 * 10^{-6}
7 disp("tp = "+string(tp)+"s") //initializing value of
        hole lifetime.
8 tn=0.2*10^-6
9 disp("tn = "+string(tn)+"s") //initializing value of
        electron lifetime.
10 up=800
11 disp("up = "+string(up)+"cm2/Vs") //initializing
       value of P side mobility.
12 un=300
13 disp("un = "+string(un)+"cm2/Vs") //initializing
       value of n side mobility.
14 no=1.5*10^10
15 \operatorname{disp}("no = "+string(no)+"cm^-3") //initializing
       value of intrinsic concentration.
16 \text{ Vf} = 0.6
17 \operatorname{disp}("Vf = "+\operatorname{string}(Vf)+"V") //initializing value of
        forward bias voltage.
18 \quad A = 100 * 10^{-6}
19 \operatorname{disp}(A) = \operatorname{string}(A) + \operatorname{m^2}(A) + \operatorname{m^2}(A) + \operatorname{m^2}(A)
        diode cross-sectional area.
20 e = 1.6 * 10^{-19}
21 disp("e = "+string(e)+"columns") //initializing
       value of charge of electrons.
```

```
22 K=1.38*10^-23
23 disp("K = "+string(K)+"J/k") //initializing value of
         boltzmann constant.
24 T = 300
25 disp("T = "+string(T)+"K") //initializing value of
        temperature.
26 Vt=(K*T/e)
27 \operatorname{disp}("Vt=(K*T/e))="+\operatorname{string}(Vt)+"eV")//\operatorname{calculation}.
28 Dp=Vt*un
29 \operatorname{disp}("Dp=Vt*un="+string(Dp)+"cm^-3")//\operatorname{calculation}.
30 \quad Dn = Vt * up
31 \operatorname{disp}("\operatorname{Dn=Vt*up="+string}(\operatorname{Dn}) + "\operatorname{cm}^-3") / \operatorname{calculation}.
32 Lp=sqrt(Dp*tp)
33 \operatorname{disp}("\operatorname{Lp}=(\operatorname{sqrt}(\operatorname{Dp}*\operatorname{tp}))="+\operatorname{string}(\operatorname{Lp})+"\operatorname{cm}")//
        calculation.
34 Ln=(sqrt(Dn*tn))
35 \operatorname{disp}("\operatorname{Ln}=(\operatorname{sqrt}(\operatorname{Dn}*\operatorname{tn}))="+\operatorname{string}(\operatorname{Ln})+"\operatorname{cm}")//
        calculation.
36 \text{ npo} = (\text{no}^2/\text{Pp})
37 disp("npo=(no^2/Pp)="+string(npo)+"cm^-3")//
        calculation.
38 \operatorname{Ppo}=(\operatorname{no}^2/\operatorname{Nn})
39 disp("Ppo=(no^2/Nn)="+string(Ppo)+"cm^-3")//
        calculation.
40 Io=(((Dp*Ppo)/(Lp))+((Dn*npo)/(Ln)))*e*A
41 disp("Reverse saturation current , Io = (((Dp*Ppo)/(Lp)
        +((Dn*npo)/(Ln))*e*A="+string(Io)+"A")//
        calculation.
42 If=Io*((exp(Vf/Vt))-1)
43 disp("Diode forward current, If=Io*((exp(Vf/Vt))-1)="
        +string(If)+"A")//calculation.
44 //the value of Io(reverse saturation current), after
         calculation is provided wrong in the book. Due to
         which If (diode forward current ) also differ.
```

Scilab code Exa 5.8 VALUE OF BUILT IN POTENTIAL

```
1 clc
2 Na=4*10^16
3 disp("Na = "+string(Na)+"cm^-3") //initializing
      value of acceptor concentration.
4 \text{ Nd} = 2 * 10^19
5 disp("Nd = "+string(Nd)+"cm^-3") //initializing
      value of donor concentration.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic carrier concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
10 \quad K=1.38*10^-23
11 \operatorname{disp}(\mathrm{K} = \mathrm{String}(\mathrm{K}) + \mathrm{J/K}) //initializing value of
       boltzmann constant.
12 T=300
13 disp("T = "+string(T)+"K") //initializing value of
      temperature.
14 Vbi = ((K*T/e)*log((Na*Nd)/(no)^2))
15 disp("Built in potential potential, Vbi=((K*T/e)*log
      ((Na*Nd)/(no)^2)="+string(Vbi)+"V")//calculation
16
17 //The value used for Nd in the book for solution is
      different than provided in the question.
18 //I have used the value provided in the solution (i.e.
       Nd = 2*10^19
```

Scilab code Exa 5.9 VALUE OF BUILT IN POTENTIAL

```
1 clc
2 Na=4*10^16
```

```
3 disp("Na = "+string(Na)+"cm^-3") //initializing
      value of acceptor concentration.
4 Nd=2*10^19
5 disp("Nd = "+string(Nd)+"cm^-3") //initializing
      value of donor concentration.
6 no=1.8*10<sup>6</sup>
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic carrier concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
10 \quad K=1.38*10^-23
11 \operatorname{disp}(\mathrm{"K} = \mathrm{"+string}(\mathrm{K}) + \mathrm{"J/k"}) //initializing value of
       boltzmann constant.
12 T=300
13 disp("T = "+string(T)+"K") //initializing value of
      temperature.
14 Vbi = ((K*T/e)*log((Na*Nd)/(no)^2))
15 disp("Built in potential potential, Vbi = ((K*T/e)*log)
      ((Na*Nd)/(no)^2)="+string(Vbi)+"V")//calculation
```

Scilab code Exa 5.10 VALUE OF DEPLETION WIDTH AND ACCEPTOR CONCENTRATION

```
1 clc
2 Na=10^16
3 disp("Na = "+string(Na)+"/cm^3") //initializing
        value of medium p doping concentration.
4 Nd=10^18
5 disp("Nd = "+string(Nd)+"/cm^3") //initializing
        value of light n doping.
6 Vbi=0.64
7 disp("Vbi = "+string(Vbi)+"V") //initializing value
        of built in voltage.
```

```
8 e=1.6*10^-19
9 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
10 \text{ Er} = 11.9
11 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
       relative dielectric permittivity constant.
12 Eo=8.854*10^-14
13 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
14 E=Eo*Er
15 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
      )//calculation.
16 W = sqrt((2*E*Vbi/e)*((Nd+Na)/(Na*Nd)))
17 disp("W=sqrt((2*E*Vbi/e)*((Nd+Na)/(Na*Nd))))="+
      string(W)+" cm")//calculation.
18 xn = ((W*Na)/(Nd+Na))
19 disp("xn = ((W*Na)/(Nd+Na))) = "+string(xn)+"cm")//
      calculation.
20 \quad xp = ((W*Nd)/(Nd+Na))
21 disp("xp=((W*Nd)/(Nd+Na)))="+string(xp)+"cm")//
       calculation.
22 \operatorname{Emax} = (-e * \operatorname{Nd} * \operatorname{xn}) / E
23 disp("Emax=(-e*Nd*xn)/E)="+string(Emax)+"V/cm")//
       calculation.
24
25 //the value and unit of W(depletion width), provided
       after calculation in the book is wrong. Due to
      this xn,xp ,Emax also differ.
```

Scilab code Exa 5.12 VALUE OF MAXIMUM ELECTRIAL FIELD

```
1 clc
2 Na=10^16
3 disp("Na = "+string(Na)+"/cm^3") //initializing
     value of medium p doping concentration.
```

```
4 Nd=10<sup>18</sup>
5 disp("Nd = "+string(Nd)+"/cm<sup>3</sup>") //initializing
      value of light n doping.
6 \text{ Vbi} = 0.64
7 disp("Vbi = "+string(Vbi)+"V") //initializing value
      of built in voltage.
8 Vr=20
9 \operatorname{disp}("Vr = "+\operatorname{string}(Vr)+"V") //initializing value of
       applied reverse voltage.
10 e=1.6*10^-19
11 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
12 Er=11.9
13 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
14 Eo=8.854*10^-14
15 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
16 \quad E = Eo * Er
17 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
      )//calculation.
18 Emax = -(sqrt(((2*e*(Vbi+Vr))/(E))*((Nd*Na)/(Na+Nd))))
19 disp("Emax=-(sqrt(((2*e*(Vbi+Vr))/(E))*((Nd*Na)/(Na+
      Nd))))="+string(Emax)+"V/cm")//calculation.
```

Scilab code Exa 5.13 VALUE OF N TYPE DOPING CONCENTRATION

```
1 clc
2 Emax=2*10^5
3 disp("Emax = "+string(Emax)+"V/cm") //initializing
        value of maximum electric field.
4 Nd=10^18
5 disp("Nd = "+string(Nd)+"/cm^3") //initializing
        value of donor concentration .
6 Vbi=0.54
```

```
7 disp("Vbi = "+string(Vbi)+"V") //initializing value
      of built in voltage.
8 Vr = 20
9 \operatorname{disp}("Vr = "+\operatorname{string}(Vr)+"V") //initializing value of
       applied reverse voltage.
10 e = 1.6 * 10^{-19}
11 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
12 Er=11.9
13 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
14 \text{ Eo} = 8.854 * 10^{-14}
15 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
16 \quad E = Eo * Er
17 \operatorname{disp}(" \operatorname{total} \operatorname{permittivity}, E=Eo*Er="+string(E)+" F/cm"
      )//calculation.
18 Na=(Emax^2*E*Nd)/((2*e*(Vbi+Vr)*Nd)-(Emax^2*E))
19 disp("Na=(Emax^2*E*Nd)/((2*e*(Vbi+Vr)*Nd)-(Emax^2*E))
      ) = "+string(Na) + "cm^-3")/calculation.
```

Scilab code Exa 5.14 VALUE OF JUNCTION CAPACITANCE

```
9 \operatorname{disp}("Vj = "+\operatorname{string}(Vj)+"V") //initializing value of
        built in voltage.
10 \ Va = 10
11 disp("Va = "+string(Va)+"V") //initializing value of
        applied reverse voltage.
12 e=1.6*10^-19
13 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
14 Er=11.9
15 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
16 Eo=8.854*10^-14
17 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
18 \quad E = Eo * Er
19 \operatorname{disp}(" \operatorname{total} \operatorname{permittivity}, E = Eo * Er = " + \operatorname{string}(E) + " F/cm"
      )//calculation.
20 Cj=sqrt((e*E*A^2/(2*(Va+Vj)))*((Na*Nd)/(Na+Nd)))
21 disp("Cj=sqrt((e*E*A^2/(2*(Va+Vj)))*((Na*Nd)/(Na+Nd)))
      ) = "+string(Cj)+" f/cm^2")//calculation.
```

Scilab code Exa 5.15 VALUE OF JUNCTION CAPACITANCE

```
1 clc
2 Na=10^15
3 disp("Na = "+string(Na)+" cm^-3") //initializing
    value of acceptor concentration.
4 Nd=10^18
5 disp("Nd = "+string(Nd)+" cm^-3") //initializing
    value of donor concentration.
6 no=1.8*10^6
7 disp("no = "+string(no)+" cm^-3") //initializing
    value of intrinsic carrier concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+" columbs") //initializing
```

```
value of charge of electrons.

10 K=1.38*10^-23

11 disp("K = "+string(K)+" J/k") //initializing value
        of boltzmann constant.

12 T=300

13 disp("T = "+string(T)+" K") //initializing value of
        temperature.

14 Vbi=((K*T/e)*log((Na*Nd)/(no)^2))

15 disp("Built in potential potential, Vbi=((K*T/e)*log
        ((Na*Nd)/(no)^2))="+string(Vbi)+" V")//
        calculation.
```

Scilab code Exa 5.16 VALUE OF INTRINSIC CONCENTRATION

```
1 clc
2 Na=10^18
3 disp("Na = "+string(Na)+" cm^-3") //initializing
      value of acceptor concentration.
4 Nd=10^18
5 disp("Nd = "+string(Nd)+" cm^-3") //initializing
      value of donor concentration.
6 \ Vbi=1.4
7 disp("Vbi = "+string(Vbi)+" V") //initializing value
       of built in voltage.
8 e=1.6*10^-19
9 disp("e = "+string(e)+" columbs") //initializing
      value of charge of electrons.
10 \quad K=1.38*10^-23
11 disp("K = "+string(K)+" J/k") //initializing value
      of boltzmann constant.
12 T=300
13 disp("T = "+string(T)+" K") //initializing value of
      temperature.
14 Vt=0.0259
15 \operatorname{disp}("Vt = "+\operatorname{string}(Vt) + "eV") //\operatorname{initializing} value
```

```
of thermal voltage.

16 no=sqrt((Na*Nd)/(exp(Vbi/Vt)))

17 disp("no=sqrt((Na*Nd)/(exp(Vbi/Vt)))="+string(no)+"
cm^-3")//calculation.
```

Scilab code Exa 5.18 VALUE OF Vbi AND FERMI LEVEL AND Vbi FROM FERMI LEVEL

```
1 clc
2 Na=10^17
3 disp("Na = "+string(Na)+" cm^-3") //initializing
      value of acceptor concentration.
4 Nd=5*10^16
5 disp("Nd = "+string(Nd)+" cm^-3") //initializing
      value of donor concentration.
6 \text{ e=} 1.6 * 10^{-19}
7 disp("e = "+string(e)+" columbs") //initializing
      value of charge of electrons.
8 \text{ no=1.5*10^10}
9 disp("no = "+string(no)+" cm<sup>3</sup>") //initializing
      value of intrinsic carrier concentration.
11 disp("T = "+string(T)+" K") //initializing value of
      temperature.
12 Vt=0.0259
13 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
14 Vbi=(Vt*(log(Na*Nd/(no^2))))
15 disp("(a) Vbi = (Vt * (log(Na*Nd/(no^2)))) = "+string(Vbi) +
      " V")//calculation.
16 Efi_Efp=(Vt*log(Na/(no)))
17 disp("(b) value of fermi level on each side of
      junction, Efi_Efp = (Vt * log(Na/(no))) = "*+string(
      Efi_Efp)+" V")//calculation.
18 Efn_Efi=(Vt*log(Nd/(no)))
```

Scilab code Exa 5.19 VALUE OF Vbi AND FERMI LEVEL AND Vbi FROM FERMI LEVEL

```
1 clc
2 Na=5*10^17
3 disp("Na = "+string(Na)+"/cm<sup>3</sup>") //initializing
      value of medium p doping concentration.
4 \text{ Nd} = 5 * 10^17
5 disp("Nd = "+string(Nd)+"/cm^3") //initializing
      value of light n doping.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+"columbs") //initializing
      value of charge of electrons.
10 \text{ K=1.38*10^--23}
11 \operatorname{disp}(\mathrm{K} = \mathrm{Tstring}(\mathrm{K}) + \mathrm{J/k}) //initializing value of
       boltzmann constant.
13 disp("T = "+string(T)+"K") //initializing value of
      temperature.
14 Vbi = ((K*T/e)*log((Na*Nd)/(no)^2))
15 disp("(a)) Built in potential potential, Vbi=((K*T/e)*)
      \log ((Na*Nd)/(no)^2) = "+string(Vbi)+"eV")//
      calculation.
16 Efi_Efp=((K*T/e)*log(Na/no))
```

Scilab code Exa 5.20 VALUE OF IMPURITY CONCENTRATION AND VbI

```
1 clc
2 \text{ Nc} = 2.8 * 10^19
3 disp("Nc = "+string(Nc)+" /cm<sup>3</sup>") //initializing
      value of number of electron in the conduction
      band.
4 Nv=1.04*10^19
5 disp("Nv = "+string(Nv)+" /cm<sup>3</sup>") //initializing
      value of number of electron in the valence band..
6 no=1.5*10^10
7 \operatorname{disp}("no = "+string(no)+" cm^-3") //initializing
      value of intrinsic carrier concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+" columbs") //initializing
      value of charge of electrons.
10 \text{ K} = 8.62 * 10^{-5}
11 disp("K = "+string(K)+" J/k") //initializing value
      of boltzmann constant.
13 disp("T = "+string(T)+" K") //initializing value of
      temperature.
14 Vt=0.0259
15 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
16 Ec_Ef = 0.21
17 disp("Ec_Ef = "+string(Ec_Ef)+" eV") //initializing
```

Scilab code Exa 5.21 VALUE OF Na Xn Xp AND Emax

```
1 clc
2 \ Vbi=1.2
3 disp("Vbi = "+string(Vbi)+"/cm^3") //initializing
       value of built in voltage.
4 no=1.8*10<sup>6</sup>
5 disp("no = "+string(no)+"cm^-3") //initializing
       value of intrinsic concentration.
6 \text{ Vt} = 0.0259
7 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
8 \text{ Er} = 13.1
9 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
       relative dielectric permittivity constant.
10 Eo=8.854*10^-14
11 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
12 e=1.6*10^-19
```

```
13 disp("e = "+string(e)+" columbs") //initializing
        value of charge of electrons.
14 \quad E = Eo * Er
15 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
        )//calculation.
16 NaNd=((no^2)*(exp(Vbi/Vt)))
17 \operatorname{disp}("(a)\operatorname{NaNd}=((no^2)*(\exp(\operatorname{Vbi}/\operatorname{Vt})))="+\operatorname{string}(\operatorname{NaNd})+
        " /\text{cm}^6") //\text{calculation}.
18 Na=(sqrt(NaNd/(4)))
19 disp("Na=(sqrt(NaNd/(4)))="+string(Na)+" /cm<sup>3</sup>")//
        calculation.
20 \text{ Nd} = 4 * \text{Na}
21 disp("(b)Nd=4*Na="+string(Nd)+"/cm^3")//calculation
22 \text{ W=} \text{sqrt} ((2*E*Vbi/e)*((Nd+Na)/(Na*Nd)))
23 disp("(c)W=sqrt((2*E*Vbi/e)*((Nd+Na)/(Na*Nd))))="+
        string(W)+" cm")//calculation.
24 \text{ xn} = 0.2 * W
25 \operatorname{disp}("(d) \times n = 0.2 * W = " + \operatorname{string}(\times n) + " \operatorname{cm}") / / \operatorname{calculation}
26 \text{ xp} = 0.8 * W
27 \operatorname{disp}("xp=0.8*W="+string(xp)+" \operatorname{cm"})//\operatorname{calculation}.
28 \operatorname{Emax} = (-e * \operatorname{Nd} * \operatorname{xn}) / \operatorname{E}
29 disp("(e)Emax=(-e*Nd*xn)/E)="+string(Emax)+"V/cm")//
        calculation.
30 //The value of Na after calculation is provided
        wrong in the book. Due to which value of W, xn, xp
        and Emax differ than the answer provided in the
        book.
```

Scilab code Exa 5.22 VALUE OF TEMPERATURE

```
1 clc
2 Na=10^16
3 disp("Na = "+string(Na)+"cm^-3") //initializing
     value of acceptor concentration.
```

```
4 \text{ Nd} = 5 * 10^15
5 disp("Nd = "+string(Nd)+"cm^-3") //initializing
      value of donor concentration.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic concentration.
8 \text{ Vbi} = 0.676
9 disp("Vbi = "+string(Vbi)+"V") //initializing value
      of built in voltage.
10 e=1.6*10^-19
11 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
12 K=1.38*10^-23
13 disp("K = "+string(K)+"J/k") //initializing value of
       boltzmann constant.
14 T=(Vbi*(e/K)*(1/(log((Na*Nd)/(no^2)))))
15 disp("T=(Vbi*(e/K)*(1/(log((Na*Nd)/(no^2))))))="+
     string(T) + "K") // calculation.
```

Scilab code Exa 5.23 VALUE OF Vbi AND TEMPERATURE

```
1 clc
2 Na=5*10^17
3 disp("Na = "+string(Na)+"cm^-3") //initializing
    value of acceptor concentration.
4 Nd=10^17
5 disp("Nd = "+string(Nd)+"cm^-3") //initializing
    value of donor concentration.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
    value of intrinsic concentration.
8 e=1.6*10^-19
9 disp("e = "+string(e)+"columns") //initializing
    value of charge of electrons.
10 K=1.38*10^-23
```

```
11 disp("K = "+string(K)+"J/k") //initializing value of
       boltzmann constant.
12 T=300
13 disp("T = "+string(T)+"K") //initializing value of
      temperature.
14 VBI=0.847
15 disp("VBI = "+string(VBI)+"V") //initializing value
      of VBI when VBI is reduced by 1%.
16 Vbi = ((K*T/e)*log((Na*Nd)/(no)^2))
17 disp("(a) Built in potential potential, Vbi=((K*T/e)*
      \log ((Na*Nd)/(no)^2) = "+string(Vbi)+" V")//
      calculation.
18 T = (e * VBI/K) * ((log(Na*Nd/(no^2)))^-1)
19 disp("(b)T=(VBI*(e/K)*(1/(log((Na*Nd)/(no^2))))))="+
      string(T) + "K") // calculation.
20 //the answer for part (b) is not provided in the
     book.
```

Scilab code Exa 5.24 VALUE OF Vbi AND W AND Xn AND Xp AND Emax

```
1 clc
2 Na=4*10^12
3 disp("Na = "+string(Na)+" /cm^3") //initializing
    value of medium p doping concentration.
4 Nd=4*10^16
5 disp("Nd = "+string(Nd)+" /cm^3") //initializing
    value of light n doping.
6 no=1.5*10^10
7 disp("no = "+string(no)+" /cm^3") //initializing
    value of intrinsic carrier concentration.
8 K=1.38*10^-23
9 disp("K = "+string(K)+" J/k") //initializing value
    of boltzmann constant.
10 T=300
```

```
11 disp("T = "+string(T)+" K") //initializing value of
      temperature.
12 e=1.6*10^-19
13 disp("e = "+string(e)+" columbs") //initializing
      value of charge of electrons.
14 Er=11.9
15 disp("Er = "+string(Er)) //initializing value of
       relative dielectric permittivity constant.
16 Eo=8.854*10^-14
17 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
18 \quad E = Eo * Er
19 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
      )//calculation.
20 Vbi = ((K*T/e)*log((Na*Nd)/(no)^2))
21 disp("Built in potential potential, Vbi=((K*T/e)*log
       ((Na*Nd)/(no)^2)="*string(Vbi)+" eV")//
      calculation.
22 \text{ W=} \text{sqrt} ((2*E*Vbi/e)*((Nd+Na)/(Na*Nd)))
23 disp("W=sqrt((2*E*Vbi/e)*((Nd+Na)/(Na*Nd))))="+
      string(W)+" cm")//calculation.
24 \quad xn = ((W*Na)/(Nd+Na))
25 disp("xn=((W*Na)/(Nd+Na)))="+string(xn)+" cm")//
       calculation.
26 xp = ((W*Nd)/(Nd+Na))
27 disp("xp=((W*Nd)/(Nd+Na)))="+string(xp)+" cm")//
       calculation.
28 \operatorname{Emax} = (e * \operatorname{Nd} * \operatorname{xn}) / E
29 \operatorname{disp}("\operatorname{Emax}=(e*\operatorname{Nd}*\operatorname{xn})/E)="+\operatorname{string}(\operatorname{Emax})+" V/\operatorname{cm}")//
       calculation.
30 //the value of W(depletion width), after calculation
        is provided wrong in the book, due to this xn, xp
       Emax also differ (also, the value of Nd+Na
      substitute in the
31 //formula for for xn, xp is wrong )
```

Scilab code Exa 5.25 MAGNITUDE OF APPLIED REVERSE BIAS

```
1 clc
2 \text{ Na}=4*10^17
3 disp("Na = "+string(Na)+"/cm<sup>3</sup>") //initializing
      value of donor concentration.
4 \text{ Nd} = 4 * 10^15
5 disp("Nd = "+string(Nd)+"/cm<sup>3</sup>") //initializing
      value of light n doping.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic concentration.
8 \text{ Emax} = 300 * 10^3
9 disp("Emax = "+string(Emax)+"/cm<sup>3</sup>") //initializing
      value of maximum electric field.
10 \text{ K=1.38*10^--23}
11 \operatorname{disp}(\mathrm{K} = \mathrm{String}(\mathrm{K}) + \mathrm{J/K}) //initializing value of
       boltzmann constant.
12 T=300
13 disp("T = "+string(T)+"K") //initializing value of
      temperature.
14 e = 1.6 * 10^{-19}
15 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
16 Er=11.9
17 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
18 Eo=8.854*10^-14
19 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
20 \quad E = Eo * Er
21 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
      )//calculation.
22 Vbi = ((K*T/e)*log((Na*Nd)/(no)^2))
```

Scilab code Exa 5.26 VALUE OF DOPING CONCENTRATION

```
1 clc
2 \text{ Na} = 5 * 10^{15}
3 disp("Na = "+string(Na)+"cm^-3") //initializing
      value of acceptor concentration.
4 Nd=10^18
5 disp("Nd = "+string(Nd)+"cm^-3") //initializing
      value of donor concentration.
6 \text{ e=} 1.6 * 10^{-19}
7 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
8 Vr = 10
9 disp("Vr = "+string(Vr)+"V") //initializing value
      reverse voltage.
10 Er=11.9
11 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
12 Eo=8.854*10^-14
13 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
14 \quad E = Eo * Er
```

Scilab code Exa 5.27 VALUE OF JUNCTION CAPACITANCE

```
1 clc
2 Na=5*10^15
3 disp("Na = "+string(Na)+"cm^3") //initializing value
       of acceptor concentration.
4 Nd=10<sup>18</sup>
5 disp("Nd = "+string(Nd)+"cm<sup>3</sup>") //initializing value
       of donor concentration .
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic carrier concentration.
9 disp("Vr1 = "+string(Vr1)+"V") //initializing value
      of built in voltage.
10 Vr2=5
11 disp("Vr2 = "+string(Vr2)+"V") //initializing value
      of applied reverse voltage.
12 \quad A = 3 * 10^{-5}
13 disp("A = "+string(A)+"cm^2") //initializing value
      of cross sectional area.
14 \text{ e=} 1.6 * 10^{-19}
15 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
```

```
16 \text{ Er} = 11.9
17 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
18 Eo=8.854*10^-14
19 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
20 \quad E = Eo * Er
21 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
     )//calculation.
22 Vt=0.0259
23 disp("Vt="+string(Vt)+" V")//initializing the value
      of thermal voltage.
24 Vbi = ((Vt) * log((Na*Nd)/(no)^2))
25 disp("Built in potential , Vbi=(Vt*log((Na*Nd)/(no)
      ^2) = "+string(Vbi) + "V") // calculation.
26 Cj1=sqrt((e*E*(A^2)/(2*(Vr1+Vbi)))*((Na*Nd)/(Na+Nd))
     )
  disp("Cj1=sqrt((e*E*(A^2)/(2*(Vr1+Vbi))*((Na*Nd)/(Na
     +Nd)))="+string(Cj1)+"F")//calculation.
  Cj2=sqrt((e*E*(A^2)/(2*(Vr2+Vbi)))*((Na*Nd)/(Na+Nd))
  disp("Cj2=sqrt((e*E*(A^2)/(2*(Vr2+Vbi))*((Na*Nd)/(Na*Nd)))
     +Nd)))="+string(Cj2)+"F")//calculation.
30 //the value of Vr2 use for calculating answer of Cj2
       is different than provided in question.
31 //I have used the value provided in the solution (i.
     e.Vr2=5
```

Scilab code Exa 5.28 VALUE OF REVERSE SATURATION CURRENT

```
5 disp("Nd = "+string(Nd)+"cm<sup>3</sup>") //initializing value
       of donor concentration .
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic concentration.
8 \quad Dn = 25
9 disp("Dn = "+string(Dn)+"cm<sup>2</sup>/sec") //initializing
      value of diffusion cofficient on the P side.
10 \, \text{Dp} = 10
11 disp("Dp = "+string(Dp)+"cm<sup>2</sup>/sec") //initializing
      value of diffusion cofficient on the N side.
12 \text{ tp=}5*10^-7
13 disp("tn = "+string(tp)+"s") //initializing value of
       hole lifetime.
14 tn=5*10^-7
15 disp("tp = "+string(tn)+"s") //initializing value of
       electron lifetime.
16 \text{ e=1.6*10}^{-19}
17 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
18 Pno=(no^2/Nd)
19 disp("Pno=(no^2/Nd))="+string(Pno)+"cm^-3")//
      calculation.
20 Npo=(no^2/Na)
21 disp("Npo=(no^2/Na))="+string(Npo)+"cm^-3")//
      calculation.
22 Lp=(sqrt(Dp*tp))
23 disp("Lp=(sqrt(Dp*tp)))="+string(Lp)+"cm")//
      calculation.
24 Ln=(sqrt(Dn*tn))
25 disp("Ln=(sqrt(Dn*tn)))="+string(Ln)+"cm")//
      calculation.
26 Jo = ((e*((Dp*Pno/(Lp))+(Dn*Npo)/(Ln))))
27 disp("Jo=((e*((Dp*Pno/(Lp))+(Dn*Npo)/(Ln))))="+
      string(Jo)+" A/cm^2")//calculation.
```

Scilab code Exa 5.29 VALUE OF REVERSE SATURATION CURRENT

```
1 clc
2 Na=10^15
3 \operatorname{disp}("Na = "+\operatorname{string}(Na) + "\operatorname{cm}^3") // \operatorname{initializing} value
       of acceptor concentration.
4 Nd=10<sup>15</sup>
5 disp("Nd = "+string(Nd)+"cm<sup>3</sup>") //initializing value
       of donor concentration.
6 no=1.5*10^10
7 disp("no = "+string(no)+"cm^-3") //initializing
      value of intrinsic carrier concentration.
9 disp("Dn = "+string(Dn)+"cm<sup>2</sup>/sec") //initializing
      value of built in voltage.
10 Dp = 20
11 disp("Dp = "+string(Dp)+"cm^2/sec") //initializing
      value of applied reverse voltage.
12 \text{ tp}=5*10^-7
13 disp("tn = "+string(tp)+"s") //initializing value of
       hole lifetime.
14 \text{ tn} = 5 * 10^{-7}
15 disp("tp = "+string(tn)+"s") //initializing value of
       electrons lifetime.
16 \text{ e=} 1.6 * 10^{-19}
17 disp("e = "+string(e)+"columns") //initializing
      value of charge of electrons.
18 Pno=(no^2/Nd)
19 disp("Pno=(no^2/Nd))="+string(Pno)+"cm^-3")//
      calculation.
20 Npo=(no^2/Na)
21 disp("Npo=(no^2/Na))="+string(Npo)+"cm^-3")//
      calculation.
22 Lp=(sqrt(Dp*tp))
```

```
disp("Lp=(sqrt(Dp*tp)))="+string(Lp)+"cm")//
        calculation.

Ln=(sqrt(Dn*tn))

disp("Ln=(sqrt(Dn*tn)))="+string(Ln)+"cm")//
        calculation.

Jo=((e*((Dp*Pno/(Lp))+(Dn*Npo)/(Ln))))

disp("Jo=((e*((Dp*Pno/(Lp))+(Dn*Npo)/(Ln))))="+
        string(Jo)+"A/cm^2")//calculation.

//the value of tp,tn provided in the question, is
        different than that provided in the solution.

//I have used the value ,provided in the solution(i.e.tp=tn=5*10^7)
```

Scilab code Exa 5.30 VALUE OF THE CHANGE IN THE APPLIED VOLTAGE

```
1 clc
2 \text{ Eg} = -1.1
3 disp("Eg = "+string(Eg)+"V") //initializing value of
        energy gap.
4 Vf1=0.6
5 disp("Vf1 = "+string(Vf1)+"V") //initializing value
       of forward voltage for case 1.
6 T1=300
7 \operatorname{disp}("T1 = "+\operatorname{string}(T1) + "K") //initializing value of
        temperature for case 1.
8 T2 = 310
9 \operatorname{disp}(T2) = \operatorname{"+string}(T2) + \operatorname{"K"}) //initializing value of
        temperature for case 2.
10 Vf2 = (((Eg + Vf1) * T2) / (T1)) - Eg
11 disp("Forward voltage for case 2, Vf2 = ((Eg+Vf1)*T2)/(
      T1)+Eg)="+string(Vf2)+"V")//calculation.
```

Scilab code Exa 5.31 RELATIVE CHANGE IN Io

```
1 clc
2 T = 300
3 \operatorname{disp}(T = + \operatorname{string}(T) + K) //initializing value of
      temperature.
4 Eg=0.7*1.6*10^-19
5 disp("Eg = "+string(Eg)+" V") //initializing value
      of Band Gap energy of the material.
6 \text{ K=1.38*10^--23}
7 disp("K = "+string(K)+" J/K") //initializing value
      of boltzmann constant.
8 X = ((Eg/(K*T^2))) + (3/T)
9 disp("Relative change in Io,... 1/Io*(dIo/dT)="+
      string(X))//calculation
10 //in percent form
11 disp("Relative change in Io,... 1/Io*(dIo/dT)="+
      string(X*100)+" %")//calculation
12
13 //... taking, (1/Io)*(dIo/dT) as 'X'
14
15 //This is the solved example of chapter 5 (Ex 5.1) On
       page 128
```

Chapter 6

ELECTRICAL BREAKDOWN IN PN JUNCTIONE

Scilab code Exa 6.2 VALUE OF Eg Ev Ec and Vbi

```
1 clc
2 X1 = 4.13
3 disp("X1 = "+string(X1)+" eV") //initializing value
       of eldelta_Ectron effinity of germanium.
4 X2 = 4.07
5 disp("X2 = "+string(X2)+" eV") //initializing value
       of electron effinity of gallium arsenide.
6 \text{ Eg1} = 0.7
7 disp("Eg1 = "+string(Eg1)+" eV") //initializing
       value of energy gap of germanium.
8 \text{ Eg}2=1.43
9 disp("Eg2 = "+string(Eg2)+" F/cm") //initializing
       value of energy gap of gallium arsenide..
10 \text{ Nv1} = 6 * 10^{18}
11 \operatorname{disp}("Nv1 = "+\operatorname{string}(Nv1) + "\operatorname{cm}^-3") //\operatorname{initializing}
       value of density of states in Valence band, Nv for
        germanium.
12 \text{ Nv2} = 7 * 10^{18}
13 \operatorname{disp}("Nv2 = "+\operatorname{string}(Nv2) + "\operatorname{cm}^{-3}") //\operatorname{initializing}
```

```
value of density of states in Valence band, Nv for
                     galliminum arsenide.
14 Vt=0.0259
15 disp("Vt = "+string(Vt)+" eV") //initializing value
                  of thermal voltage ... Vt = K*T/e
16 \text{ e=1.6*10}^-19
17 disp("e = "+string(e)+" columbs") //initializing
                  value of electronic charge.
18 no=2.5*10<sup>13</sup>
19 \operatorname{disp}("no = "+string(no) + "cm^-3") //initializing
                  value of intrinsic carrier concentration.
20 \text{ Pp} = 10^{17}
21 \operatorname{disp}("Pp = "+string(Pp)+" \operatorname{cm}^{-3}") // \operatorname{initializing}
                  value of hole concentration on the depletion edge
                     of the N region.
22 Nd=10^17
23 \operatorname{disp}("Nd = "+\operatorname{string}(Nd) + "cm^-3") // \operatorname{initializing}
                  value of number of donor ions (which is equal to
                  hole concentration on the depletion edge of the N
                     region).
24 \text{ np}=(\text{no}^2)/\text{Pp}
25 \operatorname{disp}("np="+string(np)+" \operatorname{cm}^-3")/\operatorname{calculation}
26 \text{ delta_Eg=(Eg2-Eg1)}
27 \operatorname{disp}(\operatorname{delta}_{-}\operatorname{Eg} = (\operatorname{Eg2} - \operatorname{Eg1}) = "+ \operatorname{string}(\operatorname{delta}_{-}\operatorname{Eg}) + " \operatorname{eV}") / /
                   calculation
28 \text{ delta\_Ec} = (X1 - X2)
29 \operatorname{disp}(\operatorname{delta_Ec} = (X1-X2) = + \operatorname{string}(\operatorname{delta_Ec}) + \operatorname{eV}) / 
                   calculation
30 delta_Ev=(delta_Eg-delta_Ec)
31 \operatorname{disp}("\operatorname{delta}_{-}\operatorname{Ev} = (\operatorname{delta}_{-}\operatorname{Eg} - \operatorname{delta}_{-}\operatorname{Ec}) = "+\operatorname{string}(\operatorname{delta}_{-}\operatorname{Ev})
                  )+" eV")//calculation
32 Vbi = ((delta_Ev*1.6*10^-19)/(e)) + ((Vt*log((Nv1*Nd)/(e))) + ((V
                  np*Nv2))))
33 disp("Vbi=((delta_Ev*1.6*10^-19)/(e))+((Vt*log((Nv1*
                 Nd)/(np*Nv2)))="+string(Vbi)+"V")//calculation
```

Scilab code Exa 6.4 VALUE OF DONOR CONCENTRATION

```
1 clc
2 \text{ Nc} = 2.8 * 10^19
3 disp("Nc = "+string(Nc)+" cm^-3") //initializing
       value of effective density of state in the
       conduction band.
4 k = -4 * 10^15
5 disp("k = "+string(k)+" cm^4F^-2V^-1") //
       initializing value of slope of the (1/C^2) versus
        V curve.
6 \text{ Er} = 11.9
7 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
       relative dielectric permittivity constant.
8 \text{ Eo} = 8.854 * 10^{-14}
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
       value of dielectric constant of free space.
10 e=1.6*10^-19
11 disp("e = "+string(e)+" columns") //initializing
       value of charge of electrons.
12 Vt=0.0259
13 disp("Vt = "+string(Vt)+" eV") //initializing value
       of thermal voltage.
14 VBI=0.3
15 disp("VBI = "+string(VBI)+" V") //initializing value
        of built in voltage.
16 \quad E = Eo * Er
17 disp("total permittivity, E=Eo*Er ="+string(E)+" F/cm
       ")//calculation
18 Nd = ((-2)/(e*E)*(1/k))
19 \operatorname{disp}("Nd=((-2)/(e*E)*(1/k)))="+\operatorname{string}(Nd)+" \operatorname{cm}^-3")
       //calculation
20 Vn = (Vt * (log(Nc/Nd)))
21 \operatorname{disp}("\operatorname{Vn}=(\operatorname{Vt}*(\log(\operatorname{Nc}/\operatorname{Nd})))="+\operatorname{string}(\operatorname{Vn})+" \operatorname{V"})//
```

```
calculation
22 VBn=(VBI+Vn)
23 disp("VBn=(VBI+Vn)="+string(VBn)+" V")//calculation
24
25
26 // taking ,... d(1/C^2)/dV as k,... for simlification
```

Scilab code Exa 6.5 VALUE OF THE BARRIER HEIGHT AND BUILT IN POTENTIAL

```
1 clc
2 \text{ Nd} = 2 * 10^17
3 disp("Nd = "+string(Nd)+"/cm^-3") //initializing
       value of donor concentration.
4 Nc = 2.8 * 10^19
5 disp("Nc = "+string(Nc)+"/cm^-3") //initializing
       value of effective density of state in the
       conduction band.
6 Js = 40 * 10^{-6}
7 disp("Js = "+string(Js)+"A/cm^2") //initializing
       value of saturation current density.
8 T=300
9 \operatorname{disp}(T = + \operatorname{string}(T) + K) / \operatorname{initializing}  value of
       absolute temperature.
10 R=110
11 \operatorname{disp}("R = "+\operatorname{string}(R) + "A/(K-\operatorname{cm}^2)") // initializing
       value of richardson's constant.
12 Vt=0.0259
13 disp("Vt = "+string(Vt)+" eV") //initializing value
       of thermal voltage.
14 VBn = (Vt * (log(R*T^2/Js)))
15 disp("VBn = "+string(VBn)+" V") // calculation.
16 Vn = (Vt * (log(Nc/Nd)))
17 \operatorname{disp}("Vn = "+\operatorname{string}(Vn) + "V") // \operatorname{calculation}.
```

Scilab code Exa 6.6 VALUE OF DEPLETION WIDTH DIFFUSION LENGTH AND SATURATION HOLE CURRENT DENSITY

```
1 clc
2 \text{ Nd} = 2 * 10^17
3 disp("Nd = "+string(Nd)+" /\text{cm}^-3") //\text{initializing}
       value of donor concentration.
4 Dp = 30
5 disp("Dp = "+string(Dp)+" cm<sup>2</sup>/s") //initializing
       value of diffusion cofficient.
6 Nc=2.8*10^19
7 disp("Nc = "+string(Nc)+" /cm^-3") //initializing
       value of effective density of state in the
       conduction band.
8 \text{ Js} = 40 * 10^{-6}
9 disp("Js = "+string(Js)+ "A/cm<sup>2</sup>") //initializing
       value of saturation current density.
10 no=1.5*10^10
11 \operatorname{disp}("no = "+string(no) + "cm^-3") //initializing
       value of intrinsic concentration of electrons.
12 tp=10^-6
13 disp("tp = "+string(tp)+" s") //initializing value
       of hole life-time.
14 T=300
15 \operatorname{disp}(T = + \operatorname{string}(T) + K) / \operatorname{initializing}  value of
       absolute temperature.
16 R=110
17 \operatorname{disp}(R = \operatorname{"+string}(R) + \operatorname{A/(K-cm^2)"}) / \operatorname{initializing}
       value of richardson's constant.
```

```
18 \text{ Vt} = 0.0259
19 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
20 e = 1.6 * 10^{-19}
21 disp("e = "+string(e)+" columbs") //initializing
      value of charge of electrons.
22 Er=11.9
23 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
24 \text{ Eo} = 8.854 * 10^{-14}
25 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of dielectric constant of free space.
26 E=Eo*Er
27 disp("total permittivity, E=Eo*Er)="+string(E)+" F/cm
     ")//calculation
28 VBn = (Vt * (log(R*T^2/Js)))
29 disp("VBn = "+string(VBn)+" V") // calculation.
30 Vn = (Vt * (log(Nc/Nd)))
31 disp("Vn = "+string(Vn)+"V") // calculation.
32 \quad VBI = (VBn - Vn)
33 disp("VBI=(VBn-Vn))="+string(VBI)+" V")//calculation
34 W=(sqrt((E*VBI)/(e*Nd)))
35 disp ("current density in a metal semiconductor
      junction W = "+string(W) + "A" / calculation.
36 Lp=(sqrt(Dp*tp))
37 disp("Diffusion length, Lp=(sqrt(Dp*tp)) = "+string(
     Lp)+" cm") // calculation.
38 Jpo=(e*Dp*no^2)/(Lp*Nd)
39 disp("saturation hole current density, Jpo=(e*Dp*no
      (2)/(Lp*Nd) = "+string(Jpo) + "A/cm^2") //
      calculation.
40
41
42 //The value of Vn (after calculation ) is provided
      wrong in the book, due to which VBI differ and due
       to VBI, current density in a metal semiconductor
       junction (W) gets changed.
43 //The value of Jpo (saturation hole current density)
```

, after calculation is also provided wrong in the book.

Scilab code Exa 6.8 MAXIMUM N TYPE DOPING CONCENTRATION

```
1 clc
2 \text{ Er} = 11.9
3 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
      relative dielectric permittivity constant.
4 Eo=8.854*10^-14
5 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
6 VBD=20
7 disp("VBD = "+string(VBD)+" V") //initializing value
       of break down voltage.
8 e=1.6*10^-19
9 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
10 \quad E = Eo * Er
11 disp("total permittivity, E=Eo*Er)="+string(E)+" F/cm
      ")//calculation
12 Emax = 5*10^5
13 disp("Emax = "+string(Emax)+" V/cm") //initializing
      value of maximum critical electric field.
14 ND = (Eo * Er * (Emax^2)) / (2 * e * VBD)
15 disp("ND=(Eo*Er*(Emax^2))/(2*e*VBD)="+string(ND)+"
      cm^-3")//calculation
16
17
18 //the formula given in the solution for VBD is
      somewhat written wrong. The correct formula is (
      VBD = (E*Emax^2/2*e*ND)).
```

Scilab code Exa 6.9 VALUE OF REVERSE BREAK DOWN VOLTAGE

```
1 clc
2 \text{ Er} = 11.9
3 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
       relative dielectric permittivity constant.
4 Eo=8.854*10^-14
5 disp("Eo = "+string(Eo)+" F/cm") //initializing
       value of permittivity of free space.
6 e=1.6*10^-19
7 disp("e = "+string(e)+" columns") //initializing
       value of charge of electrons.
8 no=1.5*10^10
9 disp("no = "+string(no)+"cm^-3") //initializing
       value of intrinsic concentration of electrons.
10 Nd=1*10^16
11 \operatorname{disp}("Nd="+\operatorname{string}(Nd)+" \operatorname{cm}^-3")//\operatorname{initializing} the
       value of donor concentration.
12 Emax = 2 * 10^5
13 disp("Emax = "+string(Emax)+" V/cm") //initializing
       value of maximum critical electric field.
14 Na=1*10^16
15 \operatorname{disp}("Na="+\operatorname{string}(Na)+" \operatorname{cm}^-3")//\operatorname{initializing} the
       value of acceptor concentration.
16 \text{ Vt} = 0.0259
17 disp("Vt = "+string(Vt)+" eV") //initializing value
       of thermal voltage.
18 \quad E = Eo * Er
19 disp("total permittivity, E=Eo*Er)="+string(E)+" F/cm
      ")//calculation
20 VBI=(Vt*(log(Na*Nd/no^2)))
21 \operatorname{disp}("VBI=(Vt*(\log(Na*Nd/no^2))) = "+string(VBI)+" V
      ") // calculation.
22 V = (E * Emax^2) / (e * Nd)
23 disp("breakdown voltage for symetrical abrupt
       junction, VBD+VBI=(E*Emax^2)/(e*Nd)="+string(V)+"
       V")//calculation
24 VBD=V-VBI
```

Scilab code Exa 6.10 VALUE OF REVERSE BREAK DOWN VOLTAGE

```
1 clc
2 \text{ Er} = 11.9
3 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
       relative dielectric permittivity constant.
4 Eo=8.854*10^-14
5 disp("Eo = "+string(Eo)+" F/cm") //initializing
       value of permittivity of free space.
6 e=1.6*10^-19
7 disp("e = "+string(e)+" columns") //initializing
       value of charge of electrons.
8 \text{ no=} 1.5 * 10^{10}
9 disp("no = "+string(no)+"cm^-3") //initializing
       value of intrinsic concentration of electrons.
10 \text{ Emax} = 10^6
11 disp("Emax = "+string(Emax)+" V/cm") //initializing
       value of maximum critical electric field...
12 Nd=1*10^18
13 \operatorname{disp}("Nd="+\operatorname{string}(Nd)+" \operatorname{cm}^-3")//\operatorname{initializing} the
       value of donor concentration.
14 Na=1*10^18
15 \operatorname{disp}("Na="+\operatorname{string}(Na)+" \operatorname{cm}^-3")//\operatorname{initializing} the
       value of acceptor concentration.
16 Vt=0.0259
17 disp("Vt = "+string(Vt)+" eV") //initializing value
       of thermal voltage.
18 VBI = (Vt * (log(Na*Nd/no^2)))
19 \operatorname{disp}("VBI=(Vt*(\log(Na*Nd/no^2))) = "+string(VBI)+" V
       ") // calculation.
20 \quad E = Eo * Er
21 disp("total permittivity, E=Eo*Er)="+string(E)+" F/cm
```

```
")//calculation

22 V=(E*Emax^2)/(e*Nd)

23 disp("breakdown voltage for symetrical abrupt
    junction, VBD+VBI=(E*Emax^2)/(e*Nd))="+string(V)+"
    V")//calculation

24 VBD=V-VBI

25 disp("VBD=V-VBI)="+string(VBD)+" V")//calculation
```

Scilab code Exa 6.11 VALUE OF REVERSE BREAK DOWN VOLTAGE

```
1 clc
2 \text{ Nd} = 1 * 10^18
3 disp("Nd = "+string(Nd)+" cm^-3") //initializing
      value of donor concentration.
4 Na = -1 * 10^18
5 disp("Na = "+string(Na)+" cm^3") //initializing
      value of acceptor concentration.
6 \text{ Er} = 11.9
7 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
8 Eo=8.854*10^-14
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of dielectric constant of free space.
10 e=1.6*10^-19
11 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
12 \text{ Vt} = 0.0259
13 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
14 Vbd=15
15 disp("Vbd = "+string(Vbd)+" eV") //initializing
      value of break down voltage.
16 \ W = 2 * 10^{-4}
17 disp("W = "+string(W)+" cm") //initializing value of
```

```
the distance over which doping profile varies.
18 E=Eo*Er
19 disp("total permittivity, E=Eo*Er)="+string(E)+" F/cm
    ")//calculation
20 a=((Nd-Na)/(W))
21 disp("slope of doping profile curve, a=((Nd-Na)/(W))=
    "+string(a)+" cm^-4")//calculation
22 Emax=(((Vbd)^2)*9*e*a/(32*E))^(1/3)
23 disp("Emax=(((Vbd)^2)*9*e*a/(32*E))^(1/3)="+string(Emax)+" V/cm")//calculation
```

Scilab code Exa 6.12 VALUE OF THE BARRIER HEIGHT AND BUILT IN POTENTIAL AND DEPLETION WIDTH AND MAXIMUM ELECTRICAL FIELD

```
1 clc
2 \text{ Ew} = 4.55
3 disp("Ew = "+string(Ew)+" V") //initializing value
      of work function of tungusten.
4 X = 4.01
5 \operatorname{disp}("X = "+\operatorname{string}(X)+"V") //initializing value of
      electron effinity of silicon.
6 \text{ Er} = 11.9
7 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
8 \text{ Eo} = 8.854 * 10^{-14}
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
10 e=1.6*10^-19
11 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
12 \text{ Nc} = 2.8 * 10^{19}
13 disp("Nc = "+string(Nc)+"/cm^-3") //initializing
      value of effective density of state in the
      conduction band.
```

```
14 Nd=10<sup>1</sup>7
15 \operatorname{disp}("Nd = "+\operatorname{string}(Nd) + "/\operatorname{cm}^{-3}") // initializing
       value of donor concentration.
16 Vt=0.0259
17 disp("Vt = "+string(Vt)+" eV") //initializing value
       of thermal voltage.
18 VB = (Ew - X)
19 disp("Barrier height, VB=(Ew-X) = "+string(VB)+" V")
       // calculation.
20 Ec_Ef = (Vt * log(Nc/Nd))
21 disp("Ec_Ef = (Vt * log(Nc/Nd)) = "+string(Ec_Ef) + "V")//
        calculation
22 VBI = (VB - (Ec_Ef))
23 \operatorname{disp}("VBI=(VB-(Ec_Ef))="+\operatorname{string}(VBI)+"V")//
        calculation
24 \text{ xn} = \text{sqrt} (2*\text{Eo}*\text{Er}*\text{VBI}/(e*\text{Nd}))
25 disp("Depletion width, xn=sqrt(2*Eo*Er*VBI/(e*Nd))="+
       string(xn)+" cm")//calculation
26 \operatorname{Emax} = (e * \operatorname{Nd} * \operatorname{xn} / (\operatorname{Eo} * \operatorname{Er}))
27 disp("maximum electric field, Emax=(e*Nd*xn/(Eo*Er))=
       "+string(Emax)+" V/cm")//calculation
```

Scilab code Exa 6.13 VALUE OF MAXIMUM ELECTRIAL FIELD AND JUNCTION CAPACITANCE PER UNIT AREA

```
1 clc
2 Ew=4.5
3 disp("Ew = "+string(Ew)+" V") //initializing value
      of work function of tungusten.
4 X=4.01
5 disp("X = "+string(X)+"V") //initializing value of
      electron effinity of silicon.
6 Er=12
7 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
```

```
8 Eo=8.854*10^-14
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
10 \text{ Vr}=3
11 \operatorname{disp}("Vr = "+\operatorname{string}(Vr)+"V") //initializing value
      of reverse voltage.
12 e=1.6*10^-19
13 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
14 \text{ Nc} = 2.8 * 10^19
15 disp("Nc = "+string(Nc)+"/cm^-3") //initializing
      value of effective density of state in the
      conduction band.
16 Nd=10^17
17 disp("Nd = "+string(Nd)+"/cm^-3") //initializing
      value of donor concentration.
18 Vt=0.0259
19 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
20 VB = (Ew - X)
21 disp("barrier height, VB=(Ew-X) = "+string(VB)+"V")
      // calculation.
22 Ec_Ef = (Vt*log(Nc/Nd))
disp("Ec_Ef = (Vt * log(Nc/Nd)) = "+string(Ec_Ef) + "V")//
      calculation
24 VBI = (VB - (Ec_Ef))
25 \operatorname{disp}("VBI=(VB-(Ec_Ef))="+string(VBI)+"V")//
      calculation
26 \text{ xn} = \text{sqrt}((2*Eo*Er*(VBI+Vr))/(e*Nd))
27 disp("Depletion width, xn=sqrt(2*Eo*Er*(VBI+Vr)/(e*Nd
      ) = "+string(xn)+" cm")//calculation
28 \operatorname{Emax} = (e * \operatorname{Nd} * \operatorname{xn} / (\operatorname{Eo} * \operatorname{Er}))
29 disp("maximum electric field, Emax=(e*Nd*xn/(Eo*Er))=
      "+string(Emax)+" V/cm")//calculation
30 C=sqrt((e*Eo*Er*Nd)/(2*(VBI+Vr)))
31 disp("Capitance per unit area, C=sqrt((e*Eo*Er*Nd)
      /(2*(VBI+Vr)))="+string(C)+"F/cm^2")//
      calculation
```

- 32 //the Value of reverse voltage(Vr) provided in the question is different than used in the solution. I have used the value provided in the solution (i.e Vr=3).
- 33 //the value of C (Capitance per unit area) after calculation is provided wrong in the book.

Scilab code Exa 6.14 VALUE OF VB Xn AND Emax

```
1 clc
2 \text{ Ew} = 4.28
3 disp("Ew = "+string(Ew)+" V") //initializing value
      of work function of tungusten.
4 X = 4.01
5 \operatorname{disp}("X = "+\operatorname{string}(X)+"V") //initializing value of
      electron effinity of silicon.
6 \text{ Er} = 11.9
7 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
8 \text{ Eo} = 8.854 * 10^{-14}
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
10 e=1.6*10^-19
11 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
12 \text{ Nc} = 2.8 * 10^{19}
13 disp("Nc = "+string(Nc)+"/cm^-3") //initializing
      value of effective density of state in the
      conduction band.
14 Nd=10<sup>15</sup>
15 disp("Nd = "+string(Nd)+"/cm^-3") //initializing
      value of donor concentration.
16 Vt=0.0259
17 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
```

```
18 VB = (Ew - X)
19 disp("barrier height, VB=(Ew-X) = "+string(VB)+" V")
       // calculation.
20 Ec_Ef = (Vt * log(Nc/Nd))
21 disp("Ec_Ef = (Vt * log(Nc/Nd)) = "+string(Ec_Ef) + "V")//
       calculation
22 VBI = (VB - (Ec_Ef))
disp("VBI=(VB-(Ec_Ef))="+string(VBI)+" V")//
       calculation
24 \text{ xn} = \text{sqrt} (2*\text{Eo}*\text{Er}*\text{VBI}/(e*\text{Nd}))
25 disp("Depletion width, xn=sqrt(2*Eo*Er*VBI/(e*Nd))="+
       string(xn)+" cm")//calculation
26 \operatorname{Emax} = (e * \operatorname{Nd} * \operatorname{xn} / (\operatorname{Eo} * \operatorname{Er}))
27 disp("maximum electric field, Emax=(e*Nd*xn/(Eo*Er))=
       "+string(Emax)+" V/cm")//calculation
28
29 //the Value of donor concentration (Nd) provided in
       the question is different than used in the
       solution. I have used the value provided in the
       question (i.e Nd=10^15)., i.e answer differs than
       provided in the book.
```

Scilab code Exa 6.15 CAPACITANCE OF A GOLD SILICON JUNCTION

```
1 clc
2 Ew=5.1
3 disp("Ew = "+string(Ew)+" V") //initializing value
      of work function of tungusten.
4 X=4.01
5 disp("X = "+string(X)+"V") //initializing value of
      electron effinity of silicon.
6 Er=11.9
7 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
```

```
8 Eo=8.854*10^-14
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
10 e = 1.6 * 10^{-19}
11 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
12 \text{ Nc} = 2.8 * 10^{19}
13 disp("Nc = "+string(Nc)+"/cm^-3") //initializing
      value of effective density of state in the
      conduction band.
14 Nd=5*10^15
15 disp("Nd = "+string(Nd)+"/cm^-3") //initializing
      value of donor concentration.
16 Vt=0.0259
17 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
18 \text{ Vr}=5
19 disp("Vr = "+string(Vr)+" V") //initializing value
      of reverse voltage.
20 \quad A = 1 * 10^{-4}
21 \operatorname{disp}(A = +\operatorname{string}(A) + \operatorname{cm}^2) //initializing value
      of area of the gold silicon junction diode ...
22 \quad VB = (EW - X)
23 disp("barrier height, VB=(Ew-X) = "+string(VB)+"V")
      // calculation.
24 Ec_Ef = (Vt * log(Nc/Nd))
25 disp("Ec_Ef = (Vt * log(Nc/Nd)) = "+string(Ec_Ef) + "V")//
      calculation
26 VBI = (VB - (Ec_Ef))
27 disp("VBI=(VB-(Ec_Ef))="+string(VBI)+" V")//
      calculation
28 C1=sqrt((e*Eo*Er*Nd)/(2*(VBI+Vr)))
29 disp("Capitance per unit area, C1=sqrt((e*Eo*Er*Nd)
      /(2*(VBI+Vr)))="+string(C1)+"F/cm^2")//
      calculation
30 C = C1 * A
31 disp("total junction capatiance, C=C1*A="+string(C)+"
       F")//calculation
```

Scilab code Exa 6.17 VALUE OF LOWERING OF BARRIER HEIGHT

```
1 clc
2 \text{ Er} = 13.1
3 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
4 Eo=8.854*10^-14
5 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
6 \text{ e=} 1.6 * 10^{-19}
7 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
8 \text{ Emax} = 30 * 10^3
9 disp("Emax = "+string(Emax)+" V/cm") //initializing
      value of maximum critical electric field..
10 \quad E = Eo * Er
11 disp("total permittivity, E=Eo*Er)="+string(E)+" F/cm
      ")//calculation
12 V=sqrt(e*Emax/(4*%pi*E))
13 disp("lowering of the barrier height, V=sqrt(e*Emax
      /(4*\%pi*E)) = "+string(V) + "V")//calculation
14 Xmax = sqrt(e/(16*\%pi*E*Emax))
15 disp("position of the maximum barrier height, Xmax=
      sqrt(e/(16*\%pi*E*Emax))="+string(Xmax)+" cm")//
      calculation
```

Scilab code Exa 6.18 VALUE OF IDEAL REVERSE SATURATION CURRENT AND THE DIODE CURRENT

```
1 clc
2 A=10^-4
```

```
3 disp("A = "+string(A)+" cm^-2") //initializing value
       of cross sectional area.
4 \text{ VBn} = 0.55
5 disp("VBn = "+string(VBn)+"V") //initializing value
      of barrier height.
6 T = 300
7 disp("T = "+string(T)+"K") //initializing value of
      absolute temperature.
8 R = 110
9 disp("R = "+string(R)+" A/(K-cm^2)") //initializing
      value of richardson's constant.
10 \text{ Vt} = 0.0259
11 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
12 V = 0.25
13 disp("V = "+string(V)+" V") //initializing value of
      forward bias voltage.
14 Io=A*R*T^2*exp(-VBn/Vt)
15 disp ("reverse saturation current, Io=A*R*T^2*exp(-VBn)
     /Vt) = "+string(Io)+" A") // calculation.
16 I = Io*((exp(V/Vt))-1)
17 disp("diode current, I=Io(exp(V/Vt)-1)="+string(I)+"
     A")//calculation
```

Scilab code Exa 6.19 VALUE OF FORWARD VOLTAGE

```
1 clc
2 Io1=10^-9
3 disp("Io1 = "+string(Io1)+" A") //initializing value
    of reverse saturation current of silicon SBD.
4 Io2=10^-14
5 disp("Io2 = "+string(Io2)+"A") //initializing value
    of reverse saturation current of a PN junction.
6 Vt=0.0259
7 disp("Vt = "+string(Vt)+" eV") //initializing value
```

```
of thermal voltage.
8 I=100*10^-6
9 disp("I = "+string(I)+" A") //initializing value of required current.
10 VfSBD=Vt*((log(I/Io1+1)))
11 disp("forward Voltage for silicon SBD, VfSBD=Vt*((log(I/Io1+1)))= "+string(VfSBD)+" V") // calculation
.
12 VfPN=Vt*((log(I/Io2+1)))
13 disp("forward Voltage for silicon SBD, VfPN=Vt*((log(I/Io2+1)))="+string(VfPN)+" V")// calculation
```

Scilab code Exa 6.20 VALUE OF REVERSE SATURATION CURRENT

```
1 clc
2 \text{ Io1} = 10 * 10^{-7}
3 disp("Io1 = "+string(Io1)+" A") //initializing value
       of reverse saturation current of silicon SBD.
4 Io2=10*10^-7
5 disp("Io2 = "+string(Io2)+"A") //initializing value
      of reverse saturation current of a PN junction.
6 Vt = 0.0259
7 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
8 I = 1 * 10^{-3}
9 disp("I = "+string(I)+" A") //initializing value of
      forward current.
10 \quad V = 0.25
11 disp("V = "+string(V)+" V") //initializing value of
      difference in the forward voltage of the two
      diode.
12 VfSBD=Vt*((log(I/Io1+1)))
13 disp("forward Voltage for silicon SBD, VfSBD=Vt*((log
      (I/Io1+1)) = "+string(VfSBD)+" V") // calculation
```

Chapter 7

BIPOLAR JUNCTION TRANSISTORB

Scilab code Exa 7.1 MAGNITUDE OF Io AND COLLECTOR CURRENT

```
1 clc
2 \quad Dnb=20
3 disp("Dnb = "+string(Dnb)+" cm^2/s") //
      initializiation the value of one of base
      parametre of NPN transistor.
4 nB = 10^4
5 disp("nB = "+string(nB)+" /cm<sup>3</sup>") //initializiation
      the value of one of base parametre of NPN
      transistor.
6 xB=1*10^-6
7 \operatorname{disp}("xB = "+string(xB)+" m") //initializiation the
      value of one of base parametre of NPN transistor.
8 AB = 10^{-4}
9 disp("AB = "+string(AB)+" cm^2") //initializiation
      the value of one of base parametre of NPN
      transistor.
10 e = 1.6 * 10^{-19}
11 disp("e = "+string(e)+" columns") //initializiation
      the value of electronic charge.
```

```
12 Vbe=0.5
13 disp("Vbe = "+string(Vbe)+" V") //initializiation
      the value of base emitter voltage of NPN
      transistor..
14 VT=0.0259
15 disp("VT = "+string(VT)+"V") //initializiation the
      value of threshold voltage.
16 \text{ WB} = 10^{-4}
17 disp("WB = "+string(WB)+" cm") //initializiation the
       value of base width of NPN transistor.
18 Io=((e*AB*Dnb*nB)/(WB))
19 disp("Magnitude of Io, Io=((e*AB*Dnb*nB)/(WB))="+
      string(Io)+" A")//calculation
20 Ic=Io*(exp(Vbe/VT)-1)
21 disp("Collector current, Ic=Io((exp(Vbe/VT))-1))="+
      string(Ic)+" A")//calculation
```

Scilab code Exa 7.2 CONCENTRATION OF nEO pBO AND nCO

```
disp("no = "+string(no)+"cm^-3") //initializing the
    intrinsic carrier concentration.

pEO=(no^2/NE)

disp("Number of Majority holes in the emitter,pEO=(
    no^2/NE) )="+string(pEO)+" /cm^3")//calculation

nBO=(no^2/NB)

disp("Number of Majority holes in the base,nBO=(no
    ^2/NB))="+string(nBO)+" /cm^3")//calculation

pCO=(no^2/NC)

disp("Number of Majority holes in the collector,pCO
    =(no^2/NC))="+string(pCO)+" /cm^3")//calculation
```

Scilab code Exa 7.3 VALUE OF pBO AND nB

```
1 clc
2 NE = 5 * 10^17
3 disp("NE = "+string(NE)+" /\text{cm}^3") //\text{initializiation}
       of doping concentration in the emitter.
4 NB=10<sup>1</sup>6
5 disp("NB = "+string(NB)+" /cm<sup>3</sup>") //initializiation
       of doping concentration in the base.
6 \text{ NC} = 10^{15}
7 disp("NC = "+string(NC)+" /\text{cm}^3") //\text{initializiation}
       of doping concentration in the collector.
8 \quad WB = 0.8 * 10^{-4}
9 disp("WB = "+string(WB)+" cm") //initializiation
       the value of base width of NPN transistor.
10 no=1.5*10^10
11 \operatorname{disp}("no = "+\operatorname{string}(no) + "cm^-3") // \operatorname{initializing}  the
       value of intrinsic carrier concentration.
12 VT=0.0259
13 \operatorname{disp}("VT = "+\operatorname{string}(VT) + "V") //\operatorname{initializiation} the
       value of threshold voltage.
14 VJ=0.6258
15 disp("VJ=Vbe = "+string(VJ)+" V") //initializiation
```

```
the value of base emitter voltage.
16 \text{ pEO} = (\text{no}^2/\text{NE})
17 disp ("Number of Majority holes in the emitter, pEO=(
       \text{no}^2/\text{NE}) = \text{"+string}(\text{pEO}) + \text{"}/\text{cm}^3\text{"})//\text{calculation}
18 \quad nBO = (no^2/NB)
19 disp("Number of Majority holes in the base,nBO=(no
         2/NB) = "+string(nBO) + "/cm^3")//calculation
20 \text{ pCO} = (\text{no}^2/\text{NC})
21 disp("Number of Majority holes in the collector,pCO
       =(\text{no}^2/\text{NC})="+\text{string}(\text{pCO})+"/\text{cm}^3")//\text{calculation}
22 pE=pE0*(exp(VJ/VT))
23 \operatorname{disp}("pE(O)=pEO*(\exp(VJ/VT)))="+\operatorname{string}(pE)+"/cm^3")
       //calculation
24 \text{ nB=nBO*}(\exp(VJ/VT))
25 \operatorname{disp}("nB=(nBO*(\exp(VJ/VT))))="+\operatorname{string}(nB)+"/cm^3")
       //calculation
26
27
28 //the answer provided in the book for pE, nB is some
       what different than actual calculated.
```

Scilab code Exa 7.5 VALUE OF BASE WIDTH

Scilab code Exa 7.7 VALUE OF DELTA

```
1 clc
2 Jro=10^-9
3 disp("Jro = "+string(Jro)+" A/cm^2") //
     initializiation the value of recombination
     current density.
4 Jo=10^-12
5 disp("Jo = "+string(Jo)+" A/cm^2") //initializiation
      the value of reverse saturation current density.
6 \text{ Vbe} = 0.5
7 disp("Vbe = "+string(Vbe)+" V") //initializiation
     the value of base emitter voltage.
8 VT = 0.0259
9 disp("VT = "+string(VT)+" V") //initializiation the
     value of threshold voltage.
10 delta=(1+((Jro/Jo)*(exp((-Vbe)/(2*VT)))))^-1
11 disp("delta (recombination factor) = (1+((Jro/Jo)*(exp)
     ((-Vbe)/(2*VT))))^-1="+string(delta))//
     calculation.
```

Scilab code Exa 7.8 COMMON BASE AND COMMON EMITTER CURRENT GAIN

```
1 clc
2 NE=1*10^17
```

```
3 disp("NE = "+string(NE)+" /cm<sup>3</sup>") //initializiation
      the value of doping concentration of emitter in
      the NPN transistor.
4 NB = 10^15
5 disp("NB = "+string(NB)+" /cm<sup>3</sup>") //initializiation
      the value of doping concentration of base in the
      NPN transistor.
6 \text{ WE} = 0.6 * 10^{-4}
7 disp("WE = "+string(WE)+" cm") //initializiation the
       value of one of parametre of the transistor.
8 \text{ WB} = 0.8 * 10^{-4}
9 disp("WB = "+string(WB)+" cm") //initializiation the
       value of one of parametre of the transistor.
10 no=1.5*10^10
11 \operatorname{disp}("no = "+string(no) + "cm^-3") //initializing the
      value of intrinsic carrier concentration.
12 e=1.6*10^-19
13 disp("e = "+string(e)+" columns") //initializiation
      the value of electronic charge
14 DE=15
15 disp("DE = "+string(DE)+" cm^2/s") //initializiation
       the value of one of parametere of the transistor
16 DB=20
17 disp("DB = "+string(DB)+" cm<sup>2</sup>/s") //initializiation
      the value of one of parametere of the transistor
18 tE=0.2*10^-6
19 disp("tE = "+string(tE)+" s") //initializiation the
      value of one of parametere of the transistor.
20 \text{ tB} = 0.1 * 10^{-6}
21 disp("tB = "+string(tB)+" s") //initializiation the
      value of one of parametere of the transistor.
22 \text{ Vbe} = 0.60
23 disp("Vbe = "+string(Vbe)+" V") //initializiation
      the value of base emitter voltage.
24 VT=0.0259
25 \operatorname{disp}("VT = "+\operatorname{string}(VT) + "V") //\operatorname{initializiation} the
```

```
value of threshold voltage.
26 \text{ Jro} = 2 * 10^- 8
27 disp("Jro = "+string(Jro)+" A/cm^2") //
               initializiation the value of recombination
               current density.
28 LE=(sqrt(DE*tE))
29 disp("LE=(sqrt(DE*tE)))="+string(LE)+" cm")//
               calculation
30 LB=(sqrt(DB*tB))
31 \operatorname{disp}("LB = (\operatorname{sqrt}(DB * \operatorname{tB}))) = "+\operatorname{string}(LB) + " \operatorname{cm}") / /
               calculation
32 \text{ pEO} = (\text{no}^2/\text{NE})
33 disp("Number of Majority holes in the emitter, pEO=(
              no^2/NE) ="+string(pEO)+" /cm^3")//calculation
34 \text{ nBO} = (\text{no}^2/\text{NB})
35 disp ("Number of Majority holes in the base, nBO=(no
                (2/NB) = "+string(nBO) + "/cm^3")//calculation
36 \quad Y = (1 + (((NB*DE*LB)/(NE*DB*LE))*((tanh(WB/LB)/tanh(WE/LB)))*((tanh(WB/LB)/tanh(WE/LB)))*((tanh(WB/LB)/tanh(WE/LB)))*((tanh(WB/LB)/tanh(WE/LB)/tanh(WE/LB)))*((tanh(WB/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE/LB)/tanh(WE
               LE)))))^(-1)
37 disp ("Emitter injection efficiency, Y=(1+((NB*DE*LB))
               /(NE*DB*LE) * (tanh (WB/LB) / tanh (WE/LE)))) ) ="+
               string(Y))//calculation
38 Bt = (\cosh(WB/LB))^-1
39 disp("Base transport factor, Bt = (\cosh(WB/LB))^- - 1) = "+
               string(Bt))//calculation
40 Jo=((e*DB*nBO)/(LB*tanh(WB/LB)))
41 disp("Reverse saturation current Density, Jro=((e*DB*
              nBO)/(LB*tanh(WB/LB)))="*string(Jo)+"A/cm^2")//
               calculation
42 delta=(1+((Jro/Jo)*(exp((-Vbe)/(2*VT))))^-1
43 disp("delta(recombination factor) = (1+((Jro/Jo)*(exp
               ((-Vbe)/(2*VT))))^-1="*string(delta)+"A")//
               calculation
44 \text{ a=Bt*delta*Y}
45 disp ("common base current amplification factor, (
               alpha=Bt*delta*Y)="+string(a))//calculation
46 B = (a/(1-a))
47 disp("common emitter current amplification factor,
```

```
Beta=(a/(1-a)))="+string(B))//calculation

48 //the value of NE provided in the question is different than used in the solution .

49 //I have used the value (while solving) provided in the question (i.e NE=10^17/cm^3).
```

Scilab code Exa 7.9 CHANGE IN THE NEUTRAL BASE WIDTH

```
1 clc
2 NB = 5 * 10^16
3 disp("NB = "+string(NB)+" /\text{cm}^3") //initializiation
      the doping concentration in the base.
4 NC = 2 * 10^15
5 disp("NC = "+string(NC)+" /\text{cm}^3") //\text{initializiation}
      the doping concentration in the collector.
6 WBm = 0.6 * 10^{-4}
7 disp("WBm = "+string(WBm)+" cm") //initializiation
      the value of actual base width.
8 e=1.6*10^-19
9 disp("e = "+string(e)+" columns") //initializiation
      the value of electronic charge.
10 VCB1=1
11 disp("VCB1 = "+string(VCB1)+" V") //initializiation
      the initial value of collector base voltage.
12 VCB2=4
13 disp("VCB2 = "+string(VCB2)+" V") //initializiation
      the final value of collector base voltage.
14 Er=11.9
15 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
16 Eo=8.854*10^-14
17 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
18 no=1.5*10<sup>10</sup>
19 \operatorname{disp}("no = "+string(no)+"cm^-3") //initializing
```

```
value of intrinsic charge carriers
20 VT = 0.0259
21 disp("VT = "+string(VT)+"V") //initializing the
      value of threshold voltage.
22 VBI=VT*(log((NB*NC)/no^2))
23 \operatorname{disp}("VBI=VT*(\log((NB*NC)/no^2))="+\operatorname{string}(VBI)+"V"
      )//calculation
24 \text{ WBS1} = ((2*Eo*Er*(VBI+VCB1)/e)*(NC/NB)*(1/(NC+NB)))
      ^{(1/2)}
  disp("WBS=((2*Eo*Er*(VBI+VCB1)/e)*(NC/NB)*(1/(NC+NB))
      (1/2) ="+string(WBS1)+" cm")//calculation
26 Wb1=WBm-WBS1
27 disp("Neutral base width for VCB1,WB(neutral)=WBm-
     WBS1="+string(Wb1)+" cm")//calculation
  WBS2 = ((2*Eo*Er*(VBI+VCB2)/e)*(NC/NB)*(1/(NC+NB)))
      ^{(1/2)}
  disp("WBS=((2*Eo*Er*(VBI+VCB2)/e)*(NC/NB)*(1/(NC+NB))
      (1/2) ="+string(WBS2)+" cm")//calculation
30 \text{ Wb2=WBm-WBS2}
31 disp("Neutral base width for VCB2, WB(neutral)=WBm-
     WBS2="+string(Wb2)+" cm")//calculation
32 deltaWbneutral=Wb1-Wb2
33 disp("change in the neutal base width ,deltaWb(
      neutral)=Wb1-Wb2="+string(deltaWbneutral)+" cm")
      //calculation
```

Scilab code Exa 7.10 CHANGE IN THE COLLECTOR CURRENT

Chapter 8

THE FIELD EFFECT TRANSISTOR

Scilab code Exa 8.1 CAPACITANCE Cox AND Co

```
1 clc
2 Nd=10<sup>16</sup>
3 disp("Nd = "+string(Nd)+" /cm<sup>3</sup>") //initializing
       value of donor ion concentration.
4 \text{ Er} = 3.9
5 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
       relative dielectric permittivity constant.
6 \text{ Eo} = 8.854 * 10^{-14}
7 disp("Eo = "+string(Eo)+" F/cm") //initializing
       value of permittivity of free space.
8 \ W=0.5*10^-4
9 disp("W = "+string(W)+" cm") //initializing value of
        width of p-substrate.
10 L = 10^{-4}
11 disp("L = "+string(L)+" cm") //initializing value of
        length of p-substrate.
12 \text{ tox} = 400 * 10^- - 8
13 disp("tox = "+string(tox)+" cm") //initializing
       value of thickness of p-substrate.
```

Scilab code Exa 8.2 MAXIMUM SPACE CHARGE WIDTH

```
1 clc
2 Na=10^17
3 disp("Na = "+string(Na)+" /cm<sup>3</sup>") //initializing
       value of acceptor ion concentration.
4 \text{ Vt} = 0.0259
5 \operatorname{disp}("Vt = "+\operatorname{string}(Vt)+"V") //initializing value of
        thermal voltage.
6 \text{ e=} 1.6 * 10^{-19}
7 disp("e = "+string(e)+" columns") //initializing
       value of charge of electrons.
8 \text{ ni} = 1.5 * 10^{10}
9 disp("ni = "+string(ni)+"/cm<sup>3</sup>") //initializing
       value of intrinsic carrier concentration.
10 Er=11.9
11 \operatorname{disp}("\operatorname{Er} = "+\operatorname{string}(\operatorname{Er})) //initializing value of
       relative dielectric permittivity constant
12 Eo=8.854*10^-14
13 disp("Eo = "+string(Eo)+" F/cm") //initializing
       value of permittivity of free space.
14 Vs=Vt*log(Na/ni)
15 disp("Vs=Vt*log(Na/ni))="+string(Vs)+" V")//
       calculation
16 \quad E = Eo * Er
```

Scilab code Exa 8.3 MAXIMUM SPACE CHARGE WIDTH

```
1 clc
2 \text{ Nd} = 3 * 10^18
3 disp("Nd = "+string(Nd)+" /cm<sup>3</sup>") //initializing
      value of acceptor ion concentration.
4 \text{ Vt} = 0.0259
5 \operatorname{disp}("Vt = "+\operatorname{string}(Vt)+"V") //initializing value of
       thermal voltage.
6 e=1.6*10^-19
7 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
8 ni=1.5*10<sup>10</sup>
9 disp("ni = "+string(ni)+"/cm<sup>3</sup>") //initializing
      value of intrinsic carrier concentration.
10 Er=11.9
11 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant
12 Eo=8.854*10^-14
13 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
14 Vs=Vt*log(Nd/ni)
15 disp("Vs=Vt*log(Nd/ni))="+string(Vs)+" V")//
      calculation
16 E=Eo*Er
17 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
      )//calculation
18 Wd = sqrt (4*E*Vs/(e*Nd))
19 disp("maximum depletion width, Wd(max)=Sqrt(4*E*Vs/(e
```

```
*Nd))="+string(Wd)+"cm")//calculation
```

Scilab code Exa 8.5 METAL SEMICONDUCTOR WORK FUNCTION DIFFERENCE

```
1 clc
2 \text{ Vm} = 3.2
3 disp("Vm = "+string(Vm)+" V") //initializing value
      of modified metal work function.
4 X = 3.25
5 disp("X = "+string(X)+" V") //initializing value of
      modified electron affinity.
6 \text{ Nd} = 2 * 10^{16}
7 disp("Nd = "+string(Nd)+" /cm<sup>3</sup>") //initializing
      value of donor concentration.
8 \text{ ni}=1.5*10^{10}
9 disp("ni = "+string(ni)+" V") //initializing value
      of intrinsic carrier concentration.
10 Vt=0.0259
11 \operatorname{disp}("Vt = "+\operatorname{string}(Vt) + "V") //initializing value of
       thermal voltage.
12 Eg=1.12
13 disp("Eg = "+string(Eg)+"V") //initializing value of
       energy gap.
14 Vfp=(Vt*log(Nd/ni))
15 \operatorname{disp}("Vfp=(Vt*log(Nd/ni))="+string(Vfp)+"V")//
      calculation.
16 Vms = -(Vm + (Eg/2) + Vfp - Vm)
17 disp("Vms=-(Vm+(Eg/2)+Vfp-Vm)="+string(Vms)+" V")//
      calculation.
```

Scilab code Exa 8.7 CAPACITANCE Co AND FLAT BAND VOLTAGE

```
1 clc
2 Nd=10<sup>1</sup>6
3 disp("Nd = "+string(Nd)+" /cm<sup>3</sup>") //initializing
      value of donor ion concentration.
4 \text{ Vms} = -1.12
5 disp("Vms = "+string(Vms)+" V") //initializing value
       of metal semiconductor work function difference.
6 \text{ Er} = 3.9
7 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
8 Eo=8.854*10^-14
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
10 \text{ tox} = 200 * 10^{-8}
11 disp("tox = "+string(tox)+" cm") //initializing
      value of thickness of p-type substrate.
12 \quad Qss = 2.5 * 10^{-8}
13 disp("Qss = "+string(Qss)+" columbs/cm^2") //
      initializing value of charge density on
      semiconductor surface.
14 \quad \text{Eox} = \text{Eo} * \text{Er}
15 disp("Total permittivity, Eox=Eo*Er="+string(Eox)+" F
      /cm")//calculation
16 \text{ Co} = (\text{Eox/tox})
17 disp("Capacitance per unit area, Co=(E/tox))="+string
      (Co)+"F/cm^2")//calculation
18 Vfb=(Vms-(Qss/Co))
19 disp("Flat band voltage, Vfb=(Vms-(Qss/Co)))="+string
      (Vfb)+"V")//calculation
20
21 //the answer for Co after calculation is provided
      wrong in the book.
```

Scilab code Exa 8.9 THRESHOLD VOLTAGE

```
1 clc
2 Na=3*10^16
3 disp("Na = "+string(Na)+" /cm<sup>3</sup>") //initializing
      value of acceptor ion concentration.
4 \text{ Vms} = -1.12
5 disp("Vms = "+string(Vms)+"V") //initializing value
      of metal semiconductor work function difference.
6 \text{ Er} = 11.9
7 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
8 Eo=8.854*10^-14
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
10 ni=1.5*10<sup>10</sup>
11 disp("ni = "+string(ni)+"cm^-3") //initializing
      value of intrinsic concentration of electrons.
12 e=1.6*10^-19
13 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
14 \text{ tox} = 300 * 10^{-8}
15 disp("tox = "+string(tox)+" cm") //initializing
      value of thickness of p-type substrate.
16 \quad Vfb = -1.12
17 disp("Vfb = "+string(Vfb)+" V") //initializing value
       of flat band voltage.
18 Qss=10<sup>1</sup>1
19 disp("Qss = "+string(Qss)+" electronic charge
      columns/cm<sup>2</sup>") //initializing value of charge
      density on semiconductor surface.
20 \text{ Vt} = 0.0259
21 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
22 \text{ er} = 3.9
23 disp("er = "+string(er)) //initializing value of
      relative dielectric permittivity constant
24 \quad \text{Eox=Eo*Er}
25 disp("total permittivity, Eox=Eo*Er="+string(Eox)+" F
      /cm")//calculation
```

Scilab code Exa 8.10 VALUE OF Id

```
1 clc
2 L=1.25*10^-4
3 disp("L = "+string(L)+" cm") //initializing value of
       length of channel.
4 un = 600
5 disp("un = "+string(un)+"cm<sup>2</sup>/V-s") //initializing
      value of mobility of n-channel MOS transistor.
6 Co=6.9*10^-9
7 disp("Co = "+string(Co)+"F/cm^2") //initializing
      value of capacitance per unit area.
9 disp("VT = "+string(VT)+" V") //initializing value
      of threshold Voltage.
10 \text{ Vgs}=4
11 disp("Vgs = "+string(Vgs)+" V") //initializing value
       of gate to source voltage.
12 W = 12 * 10^{-4}
13 \operatorname{disp}(W) = \operatorname{string}(W) + \operatorname{cm}(W) + \operatorname{cm}(W)
```

```
width of channel.

14 Id=((Co*un*W)/(L)*((Vgs-VT)^2/(2)))

15 disp("Drain current, Id=((Co*un*W)/(L)*((Vgs-VT)^2/(2)))="+string(Id)+" A")// calculation.

16
17
18 //The answer provided in the book (for Id) is wrong as the value of mobility used for solution is different than provided in the question and also value of (Vgs-Vt) is put wrong in the solution than given in the book.

19 //I have used the value given in the question i.e. answer differ.
```

Scilab code Exa 8.13 MINIMUM CAPACITANCE AND FLAT BAND CAPACITANCE

```
1 clc
2 Na = 2 * 10^17
3 disp("Na = "+string(Na)+" /cm^3") //initializing
      value of acceptor ion concentration.
4 Er=11.9
5 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
6 Eo=8.854*10^-14
7 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
8 \text{ ni}=1.5*10^10
9 disp("ni = "+string(ni)+"cm^-3") //initializing
      value of intrinsic concentration of electrons.
10 e = 1.6 * 10^{-19}
11 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
12 \text{ tox} = 400 * 10^- - 8
13 disp("tox = "+string(tox)+" cm") //initializing
```

```
value of thickness of p-type substrate.
14 Vt=0.0259
15 disp("Vt = "+string(Vt)+" eV") //initializing value
      of thermal voltage.
16 \text{ er} = 3.9
17 disp("er = "+string(er)) //initializing value of
      relative dielectric permittivity constant
18 Vfp=Vt*(log(Na/(ni)))
19 \operatorname{disp}("Potential, Vfp=Vt*(log(Na/(ni))))="+string(Vfp)
      +" V")//calculation
20 Wd=sqrt((4*Er*Eo*Vfp)/(e*Na))
21 disp("Depletion width, Wd=sqrt((4*Er*Eo*Vs)/(e*Nd))=
      "+string(Wd)+" cm")//calculation
22 \operatorname{CTmin} = (\operatorname{er} * \operatorname{Eo} / (((\operatorname{er} / \operatorname{Er}) * (\operatorname{Wd})) + (\operatorname{tox})))
23 disp("Minimum Capacitance, CTmin=(er*Eo/((er/Er)*(Wd)
      +(tox))="+string(CTmin)+" F/cm^2")//calculation
24 CFB=((er*Eo)/((((er/Er)*sqrt(Vt*Er*Eo/(e*Na))))+(tox
      )))
25 disp("Flat band capacitance, CFB=((er*Eo)/(((er/Er)*
      sqrt(Vt*Er*Eo/(e*Na)))+(tox))="+string(CFB)+"F/
      cm^2")//calculation
26
27 //the value of Na (acceptor ion concentration) and
      tox (thickness of p-type substrate) is provided
      different in the question than used in the
      solution.
28 //I have used the value provided in the solution.(i.
      e Na=2*10^17 and tox=400*10^8cm
```

Scilab code Exa 8.14 VALUE OF Qss

```
4 \text{ Vms} = -0.9
5 disp("Vms = "+string(Vms)+"V") //initializing value
      of metal semiconductor work function difference.
6 \text{ tox} = 200 * 10^{-8}
7 \operatorname{disp}("tox = "+string(tox)+"cm") // \operatorname{initializing}
      value of gate oxide thickness.
8 \text{ et} = 3.9
9 disp("et = "+string(et)) //initializing value of
      relative permittivity.
10 \text{ eo=8.85*10^--14}
11 disp("eo = "+string(eo)+"F/cm") //initializing value
       of free space permittivity.
12 e=1.6*10^-19
13 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
14 \text{ eox} = (\text{eo} * \text{et})
15 disp("eox=(eo*et))="+string(eox)+" F/cm^2")//
      calculation
16 \quad Cox = (eox/tox)
17 disp("Oxide capacitance, Cox=(eox/tox))="+string(Cox)
      +" F/cm^2")//calculation
18 Qss = ((Vms - Vfb) * Cox)
19 disp ("charge density on semiconductor surface, Qss=((
      Vms-Vfb)*Cox)="+string(Qss)+" C/cm^2")//
      calculation
20 \quad Qss1=Qss/e
21 disp ("charge density on semiconductor surface (in
      terms of number of charges) , Qss*=Qss/e)="+string"
      (Qss1)+" electrons/cm<sup>2</sup>")//calculation
```

Scilab code Exa 8.15 VALUE OF Id

```
1 clc
2 L=3*10^-6
3 disp("L = "+string(L)+" meter") //initializing value
```

```
of length of channel.
4 un=800
5 disp("un = "+string(un)+"cm^2/V-s") //initializing
      value of mobility of n-channel MOS transistor.
6 VT = 1
7 disp("VT = "+string(VT)+" V") //initializing value
      of threshold Voltage.
8 \text{ Vgs}=0
9 disp("Vgs = "+string(Vgs)+" V") //initializing value
       of gate to source voltage.
10 \text{ tox} = 500 * 10^{-8}
11 disp("tox = "+string(tox)+" cm") //initializing
      value of gate oxide thickness.
12 \text{ et} = 3.9
13 disp("et = "+string(et)) //initializing value of
      relative permittivity.
14 \text{ eo} = 8.85 * 10^{-14}
15 disp("eo = "+string(eo)+"F/cm") //initializing value
       of free space permittivity.
16 \quad W = 30 * 10^{-6}
17 disp("W = "+string(W)+"m") //initializing value of
      width of channel.
18 \text{ eox} = (\text{eo} * \text{et})
19 disp("eox=(eo*et))="+string(eox)+" F/cm^2")//
      calculation
20 Id=((eox*un*W)/(tox*L)*((Vgs-VT)^2/(2)))
21 disp("Drain current, Id = ((eox*un*W)/(tox*L)*((Vgs-VT))
      (2/(2)) ="+string(Id)+" A")//calculation
```

Scilab code Exa 8.16 VALUE OF Id

```
4 un = 800
5 disp("un = "+string(un)+"cm<sup>2</sup>/V-s") //initializing
      value of mobility of n-channel MOS transistor.
6 VT = 0.8
7 disp("VT = "+string(VT)+" V") //initializing value
      of threshold Voltage.
8 \text{ Vgs}=1
9 disp("Vgs = "+string(Vgs)+"V") //initializing value
       of gate to source voltage.
10 \text{ tox} = 400 * 10^{-8}
11 disp("tox = "+string(tox)+" cm") //initializing
      value of gate oxide thickness.
12 \text{ et} = 3.9
13 disp("et = "+string(et)) //initializing value of
      relative permittivity.
14 \text{ eo} = 8.85 * 10^{-14}
15 disp("eo = "+string(eo)+"F/cm") //initializing value
       of free space permittivity.
16 \text{ eox} = (\text{eo} * \text{et})
17 disp("eox=(eo*et))="+string(eox)+" F/cm^2")//
      calculation
18 \quad W = 25 * 10^{-6}
19 disp("W = "+string(W)+"m") //initializing value of
      width of channel ..
20 Id=((eox*un*W)/(tox*L)*((Vgs-VT)^2/(2)))
21 disp("Drain current, Id = ((eox*un*W) / (tox*L)*((Vgs-VT))
      (2/(2)) ="+string(Id)+" A")//calculation
```

Scilab code Exa 8.17 RATIO OF W AND L

```
1 clc
2 un=525
3 disp("un = "+string(un)+"cm^2/V-s") //initializing
     value of mobility of n-channel MOS transistor.
4 VT=0.75
```

```
5 disp("VT = "+string(VT)+" V") //initializing value
      of threshold Voltage.
6 \text{ Vgs}=2
7 disp("Vgs = "+string(Vgs)+" V") //initializing value
       of gate to source voltage.
8 \text{ tox} = 400 * 10^- - 8
9 disp("tox = "+string(tox)+" cm") //initializing
      value of gate oxide thickness.
10 \text{ et} = 3.9
11 disp("et = "+string(et)) //initializing value of
      relative permittivity.
12 \text{ eo} = 8.85 * 10^{-14}
13 disp("eo = "+string(eo)+"F/cm") //initializing value
       of free space permittivity.
14 \text{ eox} = (\text{eo} * \text{et})
15 disp("eox=(eo*et))="+string(eox)+" F/cm^2")//
      calculation
16 Id=6*10^-3
17 disp("Id = "+string(Id)+"A") //initializing value of
       width of channel ...
18 X=((Id*tox*2)/(eox*un*((Vgs-VT)^2)))
19 disp("width to length ratio, W/L = ((Id*tox*2)/(eox*un))
      *((Vgs-VT)^2)))="+string(X))/calculation
```

Scilab code Exa 8.18 PINCH OFF VOLTAGE

```
1 clc
2 Nd=2*10^16
3 disp("Nd = "+string(Nd)+" /cm^3") //initializing
        value of donor ion concentration.
4 a=2*10^-4
5 disp("a = "+string(a)+" cm") //initializing value of
        height of channel at pinch off.
6 e=1.6*10^-19
7 disp("e = "+string(e)+" columns") //initializing
```

```
value of charge of electrons.
8 Er=11.9
9 disp("Er = "+string(Er)) //initializing value of
    relative permittivity.
10 Eo=8.85*10^-14
11 disp("Eo = "+string(Eo)+"F/cm") //initializing value
    of free space permittivity.
12 E=(Eo*Er)
13 disp("E=(Eo*Er))="+string(E)+" F/cm^2")//calculation
14 Vp=((e*Nd*a^2)/(2*E))
15 disp("Pinch off Voltage, Vp=((e*Nd*a^2)/(2*E)))="+
    string(Vp)+" V")//calculation
```

Scilab code Exa 8.20 VALUE OF rDS

```
1 clc
2 a = 2 * 10^{-4}
3 disp("a = "+string(a)+" cm") //initializing value of
       height of channel at pinch off.
4 Er=11.9
5 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
6 \text{ Eo} = 8.854 * 10^{-14}
7 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
8 un=1350
9 disp("un = "+string(un)+"cm<sup>2</sup>/V-s") //initializing
      value of mobility of n-type silicon Mosfet.
10 \quad W = 8 * 10^{-4}
11 disp("W = "+string(W)+" cm") //initializing value of
       width of p-substrate.
12 L = 10 * 10^{-4}
13 disp("L = "+string(L)+" cm") //initializing value of
       length of p-substrate.
14 \text{ e=} 1.6 * 10^{-19}
```

```
15 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
16 \text{ Vp}=4
17 disp("Vp = "+string(Vp)+" V") //initializing value
      of thickness of p-substrate.
18 Vgs=0
19 disp("Vgs = "+string(Vgs)+"V") //initializing value
       of gate to source voltage.
20 \quad E = Eo * Er
21 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
      )//calculation
22 \text{ Nd} = ((Vp*2*E)/(e*a^2))
23 disp("Donor ion concentration, Nd = ((Vp*2*E)/(e*a^2)))
      ="+string(Nd)+"/cm^3")//calculation
24 rds=(L/(W*a*e*un*Nd))
25 \operatorname{disp}("On Drain resistance, rds = (L/(W*a*e*un*Nd))) = "+
      string(rds)+" ohm")//calculation
```

Chapter 10

SILICON CONTROLLED RECTIFIER

Scilab code Exa 10.2 VALUE OF PUNCH THROUGH VOLTAGE

```
1 clc
2 Nd=10<sup>14</sup>
3 disp("Nd = "+string(Nd)+" /\text{cm}^-3") //initializing
      value of donor ion concentration.
4 Er=11.9
5 disp("Er = "+string(Er)) //initializing value of
      relative dielectric permittivity constant.
6 e=1.6*10^-19
7 disp("e = "+string(e)+" columns") //initializing
      value of charge of electrons.
8 Eo=8.854*10^-14
9 disp("Eo = "+string(Eo)+" F/cm") //initializing
      value of permittivity of free space.
10 \quad W = 100 * 10^{-4}
11 disp("W = "+string(W)+" cm") //initializing value of
       width of SCR.
12 \quad E = Eo * Er
13 disp("total permittivity, E=Eo*Er="+string(E)+" F/cm"
      )//calculation
```

```
14  \begin{array}{ll} \text{Vpt=(e*Nd*W^2)/(2*E)} \\ \text{15 disp("Punch trough voltage, Vpt=(e*Nd*W^2)/(2*E))="+string(Vpt)+" V")//calculation} \end{array}
```

Scilab code Exa 10.3 VALUE OF THE DIFFERENTIAL TERM

```
1 clc
2 Ia = 2 * 10^{-3}
3 disp("Ia = "+string(Ia)+" A") //initializing value
      of forward current of thyrsistor.
4 x = 0.9
5 disp("(ap+an) = "+string(x)) //initializing value of
       sum of current gain of n, ptype semiconductor [
      value is get in by variable x, but represented on
      console window through ap +an].
6 a = 0.45
7 disp("a = "+string(a)) //initializing value of
      current gain of both n,p type semiconductor (as
      it is assume that ap [current gain of n type
      semiconductor = an current gain of ptype
      semiconductor in the question).
8 Ico=Ia*(1-(2*a))
9 disp("Ico=Ia*(1-(2*an))="+string(Ico)+"A")//
      calculation
10 y=1/2*Ico*((Ia)^-2)
11 \operatorname{disp}("(\operatorname{da}/\operatorname{dt}) = 1/2 * \operatorname{Ico} * ((\operatorname{Ia})^{-} - 2)) = " + \operatorname{string}(y) + "/A")
      //calculation
12
13 //The answer for (da/dt) after
                                        doing calculation is
       provided wrong in the book.
```