

Presentations

Presentations

- Scheduled for Monday and Tuesday next week
 check timetable for individual slots
- Assessed on a threshold basis i.e. turn up and present to pass
- Prepare a 10 minute presentation
- Use whatever you like to prepare slides
 - But please ensure you have your slides readily accessible on the day – I strongly advise bringing them on a USB stick rather than relying on the cloud!
- Consider this a practice run for your proposal vivas after Christmas

What to include

- (E) Deliver a 10-minute practice presentation that will:
 - i. explain the context of your project
 - ii. identify and discuss the scientific literature relevant to your project
 - iii. propose one or more research questions for your project
 - iv. articulate the ethical considerations you have made
 - illustrate your approach to collecting, analysing, and presenting data

What to include

- Part E consists of a single formative submission. This work is individual and will be assessed on a threshold basis. To pass, answer the following questions:
- i. What is the **context** of your project? How does it fit into the research field of computing for games?
- ii. What are the **key results from the literature** upon which your project will be built?
- iii. What is the **current state of knowledge** in the field? What are the open questions and challenges?
- iv. What is (are) the key **research question(s)** that you will seek to answer in your project?
- v. What are the key legal, social, ethical, and/or professional issues associated with your project?

Standard Deviation

- Denoted σ
- A measure of the "width", "spread", "variability" of a normal distribution

https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg

- Consider two samples with means μ_1 and μ_2
- Is the difference between μ_1 and μ_2 statistically significant?

https://www.leeds.ac.uk/educol/documents/00002182.htm

- The means don't tell us much without also considering the standard deviation
- What matters is the effect size the standardised difference between means

effect size =
$$\frac{|\mu_1 - \mu_2|}{\sigma}$$

• Here σ should be the population standard deviation – in practice this is probably not known so must be estimated from the samples

• So an effect size of 1 means that μ_1 and μ_2 are one standard deviation apart

Effect Size – Rules of Thumb for t-tests

 First proposed by Cohen (1988), expanded by Sawilowski (2009)

Effect Size d	Description
0.01	Tiny
0.2	Small
0.5	Medium
0.8	Large
1.2	Very large
2.0	Huge

Effect Size – Rules of Thumb for ANOVA

 ANOVA uses a different effect size measure, so Cohen has different guidelines:

Effect Size f	Description
0.1	Small
0.25	Medium
0.4	Large

Power Analysis with G*Power

What is power analysis?

- Statistical significance depends on several factors
 - α probability of type 1 error
 - β probability of type 2 error
 - d effect size
 - N sample size
- Power analysis allows us to determine one of these given the others
- Most useful for us: determine what N gives us a desired α , β , d
- I.e. determine how many participants you need for your experiments!

G*Power

- Download from http://www.gpower.hhu.de/
- Available for Windows and MacOSX

- G*Power supports many different statistical tests – it's vitally important to choose the correct one!
- More on this in a few slides' time

- A priori analysis (to calculate sample size) is the most useful for us
- Other settings are useful e.g. for analysing results a posteriori, for designing replication studies, etc.

One-tailed test:

$$\mu_1 < \mu_2$$

Two-tailed test:

$$\mu_1 \neq \mu_2$$

- If your hypothesis states whether something will increase or decrease, that's one-tailed
- If it only states that something will change, that's two-tailed

- I recommend using Cohen's guidelines to set effect size
- For the scope of your dissertation project, best to stick to looking for "medium" (0.5) or "large" (0.8) effects
- The "Determine" button is for calculating effect size from existing data

- $\alpha = \beta = 0.05$ (i.e. 95% confidence) is standard
- Advisable to reduce α
 if testing multiple
 hypotheses to mitigate
 for Type 1 error
 inflation ("green jelly
 beans cause acne")
- Bonferroni correction: divide α by the number of hypotheses

 The total sample size is what we're trying to find – the number of participants!

- Hypothesis: the presence of background music in a game affects the length of time the player takes to complete the level
- Experiment design: A-B test (A=music, B=no music), each participant plays both variants in a random order

- We are comparing two means so we should use a t-test
- How many tails?
- Samples in the two groups are paired same participants for both groups

Set the test:

All other settings as discussed on previous slides

- Hypothesis: Games Academy students will achieve a higher score in the game than students from other courses
- Experiment design: two groups (GA students, non-GA students)

- We are comparing two means so we should use a t-test
- How many tails?
- Samples in the two groups are independent – different participants for each group

Set the test:

• Allocation ratio = 1 for equal number of participants in each group, or another value if not:

All other settings as discussed on previous slides

- Hypothesis: the colour of the protagonist's hair in the game will influence the player's enjoyment
- Experiment design: multiple groups, each participant assigned to a group at random

- We are comparing more than two means so we should use ANOVA
- ANOVA is always two-tailed (with more than two means we can't make a onetailed hypothesis)
- One independent variable (colour)
 → one-way ANOVA

Illustrating Your Findings

- There are various techniques for reformatting and reducing data to make the analysis more interpretable or to illustrate a key point
- Graphical representations will also assist in decision making and reinforce the justification for those decisions --- e.g., has a hypothesis been falsified? To what extent is it clearly falsified?
- An overall picture of the data can be gleaned and initial conclusions drawn

- It is important to select the **most** effective ways to illustrate your findings in the dissertation
- Your communication skills are under assessment --- keep all graphical depiction meaningful to justifying your analysis and/or your intellectual decisions
- Provides an overall picture of the data underlying your findings to reach and support your conclusions
- Be wary of delegating charts solely to important data:
 - Depictions can distort message of original data
 - Concise, but often lacks precision
 - Ensure adequate support in body of text
 - Leverage explicit references (e.g., "as shown in Figure 1")

- There are many ways of creating graphs in R and Rstudio!
- We will use a library called ggplot2, which you may need to install and load
- > install.packages("ggplot2", dependencies=TRUE)
- > library(ggplot2)
- Among its functions should be a qplot(), which covers most of the common charts.

Common formats for presenting information include:

- Bar Chart
- Histogram
- Frequency Polygon & Ogive
- Pie Chart
- Scatter Plot
- Box Plot

Do You Know Your Charts and Graphs?

Which chart or graph is associated with which description?

Frequency distribution	A circular chart with slices presenting percentage breakdown
Histogram	A summary of data presented as classes and frequencies
Ogive	A two-dimensional graph of data from two variables
Pie chart	A cumulative frequency polygon
Scatter plot	A vertical bar chart presenting a frequency distribution

- A bar chart or bar graph is a chart or graph that presents categorical data with rectangular bars with heights or lengths proportional to the values that they represent.
- The bars can be plotted vertically or horizontally.
- Bar charts are useful for displaying data that are classified into nominal or ordinal categories in order to make comparisons.

To a simple bar chart:

```
> qplot(dat$GENDER, geom="bar", stat="identity")
```

The **geom** argument refers to the type of chart that **qplot** will produce.

The **stat** argument is depreciated, but useful when no statistical analysis or summary statistic like a mean is needed. For a bar chart, "identify" defaults to a count.

 Bar charts can be made much more complex using other ggplot functions:

http://www.cookbook-r.com/Graphs/Bar and line graphs (ggplot2)/

Histogram

- A type of vertical bar chart used to depict a frequency distribution
- Construction steps:
 - Label the x axis with the class endpoints
 - Label the y axis with the frequencies
 - Label the chart with an appropriate title,
 i.e. not 'bar chart'
- A quick look at the histogram reveals which class intervals produce the highest frequency totals
 - E.g. which age group most often enrols in undergraduate computing courses?

Histogram

To display a frequency table, examining birth years from 1975 to 2000 in 5-year intervals, use the following command:

```
> summary(cut(dat$BIRTH_YEAR, c(1975,seq(1980,2000,5)),
include.lowest=T,right=FALSE))
```

To display a histogram based on this data:

```
> hist(dat$BIRTH_YEAR, xlab="Year of Birth",
ylab="Count", main="Breakdown of Birth Years", breaks=5)
```


Histogram

Frequency Polygon

- A graph in which line segments connecting the dots depict a frequency distribution
- Construction steps:
 - Label the x axis with the class endpoints
 - Label the y axis with the frequencies
 - Plot a dot for the frequency value at the midpoint of each class interval (different to Ogive)
 - Connect these dots with a line

Frequency Polygon

To display a histogram of students' conscientiousness, use the following command:

```
> ggplot(dat, aes(CONSCIENTIOUSNESS), stat="count") +
    geom freqpoly(binwidth = 20)
```


Frequency Polygon

Ogive

- A Cumulative Frequency (CF) polygon
- Construction steps:
 - Label the x axis with the class endpoints
 - Label the y axis with the cumulative frequencies
 - A dot of '0' is placed at the beginning of the first class
 - Mark a dot for the CF value at the end of each class interval
 - Connect these dots with a line

Ogive

To construct an ogive, you need to format the data into cumulative frequencies:

```
> cumfreq0 <- c(0, cumsum(table(cut(dat$CONSCIENTIOUSNESS,
seq(0, 240, by=20), right=FALSE))))
```

Then plot the chart based on this data:

```
> plot(seq(0, 240, by=20), cumfreq0, main="Range of
Conscientiousness", xlab="Level of Conscientiousness",
ylab="Cumulative Frequency") + lines(seq(0, 240, by=20),
cumfreq0)
```


Ogive

- A circular depiction of data where the area of the whole pie = 100% of the data being studied. Slices represent a % breakdown of each of the values
- Business uses: e.g. for depicting budget categories, market share, time and resource allocation
- Generally more difficult to interpret the size of the slices compared to the bars in a histogram. But- usage of '%' can clarify slice size

Construction steps:

1. Convert each toothpaste brand amount to a proportion by dividing each individual amount by the total

E.g.
$$102 / 200 = 0.51$$

2. Convert each proportion to degrees by multiplying by 360°

E.g.
$$0.51 * 360^{\circ} = 183.6^{\circ}$$

To construct a pie chart, you first need to label the categories:

```
> Lbls <- c("Prior Experience with \na Pre-University
Qualification", "Prior Experience without \na Pre-University
Qualification", "No Prior Experience")</pre>
```

Then plot the pie chart based on this data:

```
> pie(table(dat$PRIOR_EXP), labels = lbls)
```


Wrapping up commands into a single line:

> qplot(factor(dat\$PRIOR_EXP, labels=c("Prior Experience with
\na Pre-University Qualification", "Prior Experience without \na
Pre-University Qualification", "No Prior Experience")),
dat\$ANXIETY, geom = "boxplot", main="Anxiety of Students from
Different Backgrounds", xlab="Background", ylab="Level of
Programming Anxiety")

Take note of the **factor()** command --- useful for distinguishing between different nominal characteristics or members of experimental and non-experimental groups!

The labels struct is setup in ascending order.

Scatter Plot

- Illustrates the relationship between two variables based on its underlying data points
- E.g. the link between neurotic personality traits and programming anxiety
- Scatter graph a two-dimensional graph plot of pairs of points from two variables
- Relationships will vary in strength, line of best fit used to indicate magnitude through slope

Scatter Plot

For the line of best fit, going to use the **rlm()** function for a robust linear model to mitigate the influence of dataset outliers:

> library(MASS)

Then using the **qplot()** command with a combination of **geom** arguments including "point" (the scatter dots) and "smooth" (the line of best fit.

```
> qplot(dat$ANXIETY, dat$NEUROTICISM, geom = c("point",
"smooth"), method="rlm", main="Correlation between Anxiety and
Neuroticism", xlab="Anxiety", ylab="Neuroticism")
```

Try without the **method** argument. What happens?

Scatter Plot

Box Plot

- Illustrates proportions of a distribution, and useful for comparing groups
- Looking "down" on the distribution from the top, like viewing hills on a plane
- Lines outside the box represent range
- Box represents the lower and upper quartiles
- Line inside the box represents the median

Box Plot

