- **7.** Sean $A_1, A_2 \ y \ B_1, B_2$ dos pares de conjuntos tales que $A_1 \sim B_1 \ y \ A_2 \sim B_2$.
 - (a) Si A_1 y A_2 son disjuntos y B_1 y B_2 también, probar que $A_1 \cup A_2 \sim B_1 \cup B_2$.
 - (b) Si A_1 y B_1 son numerables, probar que $A_1 \cup A_2 \sim B_1 \cup B_2$.

8. Probar que si #A = n entonces $\#\mathcal{P}(A) = 2^n$.

$$\#A = n$$

$$A = \{a_1, a_2, ..., a_n\} \qquad \text{quiero}$$

$$P(A) = \{B : B \subseteq A\} \xrightarrow{\sim} \{0, 1\}$$

$$\mathcal{P}(A) = \left\{ \mathcal{B} : \mathcal{B} \subseteq A \right\} \xrightarrow{\sim} \left\{ 0, 1 \right\}$$

$$2^{\circ} \text{ elementos}$$

$$P(A) \xrightarrow{\sim} \{0,1\}^{A}$$

$$B \longrightarrow \left(a \longrightarrow \begin{cases} 1 \text{ si } a \in B \\ 0 \text{ si } a \notin B \end{cases} \right)$$

$$A = \left\{ \begin{array}{l} \square, O, \\ \varnothing, + \end{array} \right\} \qquad \# A = 0$$

$$P(A) = \begin{cases} 1 & \phi \\ {\binom{1}{n}} & \text{individus les} \\ {\binom{2}{n}} & \text{diples} \\ {\binom{3}{n}} & \text{triples} \end{cases}$$

 $P(A) = \begin{cases} 1 & \phi \\ \binom{1}{n} \text{ individus ler} \\ \binom{2}{n} \text{ dupler} \\ \binom{3}{n} \text{ tripler} \end{cases}$ 2 une funcion, que mapes 2 cade elemento, que mapes 2 cade "sub elemento" de A con 3 tripler $1 \circ 0, \text{ según si } \exists \text{ en } B :$

$$\mathbb{B} \longrightarrow \left(\begin{array}{c} a & \longrightarrow \\ & \downarrow \\ & \downarrow$$

Mostrando inversa, muertro bijectividad:

$$\left\{ \alpha \in A : \psi(\alpha) = 1 \right\} \quad \longleftarrow \quad \psi$$

es biyective.

- **9.** (a) Sea A y B conjuntos contables. Probar que $A \cup B$ es contable.
 - (b) Sea $(A_n)_{n\in\mathbb{N}}$ una familia de conjuntos contables. Probar que $\bigcup_{n\in\mathbb{N}} A_n$ es contable.
 - (c) Sea A un conjunto finito y no vacío y $S = \bigcup_{m \in \mathbb{N}} A^m$. Probar que $\#S = \aleph_0$. Deducir que, cualquiera sea el alfabeto utilizado, hay más números reales que palabras para nombrarlos. ¿Cuántos subconjuntos de \mathbb{N}^2 pueden ser definidos en un lenguaje fijo? ¿Cuántos hay en total?

10. Sea c el cardinal de \mathbb{R} . Probar:

- (a) Si #A = c y #B = c, entonces $\#(A \cup B) = c$.
- (b) Si $\#A_n = c \ \forall n \in \mathbb{N}$, entonces $\#(\bigcup_{n \in \mathbb{N}} A_n) = c$.