Excercise V, Computational Physics

Dipartimento di Fisica, Università di Trento

May 27, 2020

1 V:Simulazione Montecarlo di un Box di particelle

Il task di questo esercizio è la simulazione montecarlo per descrivere la termodinamica di un sistema periodico di N atomi di Argon soggetto a un potenziale interatomico che dipenda solo dalle posizioni delle particelle come il Lennard Jones. In particolare, lo scopo e' di calcolare delle curve isoterme la capacità termica a Volume costante e si cercheranno le Temperature critiche del materiale.

Partendo da un termine del viriale

$$A_i = m\mathbf{r}_i \cdot \mathbf{v}_i \tag{1}$$

e derivando nel tempo:

$$\frac{\partial A_i}{\partial t} = m\mathbf{v}_i^2 + \mathbf{r}_i \cdot \mathbf{F}_i = 2E_i + \mathbf{r}_i \cdot \mathbf{F}_i \tag{2}$$

facendo la media il termine a sinistra è zero (dalla scorsa settimana)

$$\frac{\partial A_i}{\partial t} = m\mathbf{v}_i^2 + \mathbf{r}_i \cdot \mathbf{F}_i = 2E_i + \mathbf{r}_i \cdot \mathbf{F}_i \tag{3}$$

$$\sum_{i} 2 \langle E_i \rangle + \langle \mathbf{r}_i \cdot \mathbf{F}_i \rangle = 0 \tag{4}$$

Le forze si dividono in quelle interne ed esterne ed il valor medio dell'energia è $3/2Nk_BT$ Il termine con le forze esterne è il termine con la pressione volume. l'eq. precedente diviene.

$$3Nk_BT = 3PV - \langle \mathbf{r}_i \cdot \mathbf{F}_i \rangle \tag{5}$$

$$\mathbf{F}_{k} = -\nabla_{k} \sum_{i < j} V(r_{ij}) = -\sum_{i \neq k} \frac{\partial}{\partial r} V(r_{ki}) \hat{\mathbf{r}}_{ki}$$
(6)

 $\operatorname{con} r_{ij} = |\mathbf{r}_i - \mathbf{r}_j| \in \hat{\mathbf{r}}_{ki} = \hat{\mathbf{r}}_k - \hat{\mathbf{r}}_i.$

$$P = \frac{NK_BT}{V} - \frac{1}{3V} < \sum_{i} \sum_{i \neq k} \frac{1}{2} \frac{\partial}{\partial r_{ki}} V(r_{ki}) r_{ki} >$$
 (7)

$$C_V = \frac{\partial U}{\partial T} = \frac{\partial}{\partial T} \left(\langle T \rangle + \langle V \rangle \right) = \frac{3}{2} N K_B + \frac{\langle V^2 \rangle - \langle V \rangle^2}{K_B T^2}$$
 (8)

Conseguentemente, serve calcolare solo i valori medi del potenziale.

1.1 Algoritmo

Per calcolare il termine con le forze interne creiamo una griglia con un passo di Δ

$$\mathbf{x}' = \mathbf{x}' + \Delta \left[\eta - 0.5 \right] \tag{9}$$

con $\eta = \frac{RN}{MaxRN}$ così la particella si può muovere al massimo di $\Delta/2$ l'accettazione è

$$A(\mathbf{R} \to \mathbf{R}') = \exp\left[-\beta \left(V(\mathbf{R}) - V(\mathbf{R}')\right)\right] \tag{10}$$

Se $\eta > A$ allora il passo viene rifiutato altrimenti con $\eta < A$, la particella si muove.

1.2 scelta del parametro Δ

Il passo Δ si calcola stimando la funzione di correlazione in due punti differenti del potenziale V(R). Se il Δ è troppo piccolo la funzione di correlazione sarà vicina al valore 1. Viceversa, l'autocorrelazione sarà zero. L'andamento dell'autocorrelazione è esponenzialmente discendente $e^{-x/\tau}$. L'idea è che la Δ debba essere dello stesso ordine.

1.3 Condizioni a contorno

Applichiamo lo stesso approccio con le condizioni di Born-Von Karman: sono condizioni peridioche ripetute n volte per lato della box L ($N=n^3$ in totale), in modo che la particella uscita da un lato rientri dall'altro in modo che ogni osservabile ϕ in questione sia:

$$\phi(\mathbf{x}) = \phi(\mathbf{x} - round(L)) \tag{11}$$

Nota a margine: Per ripercorrere l'esperienza di Mc Donald, probabilmente dobbiamo prendere una Box con condizioni a contorno periodiche dove le particelle partono inizialmente su una griglia equidistanziata. Per favore, controllate che la densità non sia troppo "rarefatta": potrebbe spaziare da $\rho * = 0.001$ ad 1.2 con $\rho * = \rho \sigma^3$ ma serve un check: per fissareil range di variabilità di L, si può discutere insieme.

Il numero totale N delle particelle può essere fissato a 125, tuttavia controllate la distanza L.

TASKS Calcolare e plottare l'isoterme P-V per l'argon. Plottare la C_V in funzione della densità . Seguendo gli articoli in calce, stimare la temperatura critica.