

Evaluating Predictions

Data Science & Machine Learning Team

09/25/2020

Andrew Wheeler, PhD

andrew.wheeler@hms.com

Agenda

- Train/Test approach
 - Example overfitting to in sample
- Weighing False Positives/False Negatives
- AUC and ROC Curves
 - Positive Predictive % based on prevalence
- Simple models as baseline
 - Predicting most common class
 - Mean prediction and linear regression
- Example Out of sample comparison in Python

Evaluating Models

- We need to fit a model to current data, but want to get the best predictions we can for future data.
- We can perfectly predict current data, but it will overfit

The 9th order polynomial function is a perfect fit to the sample data.

Evaluating Models

 Solution: have a training dataset to fit the model, and a testing dataset to see how well the predictions do out of sample

Test predictions out of sample

The 9th order polynomial model has much larger errors on the testing dataset than the simpler linear regression

Weighing False Positives & False Negatives

- Many problems we are predicting a binary outcome (e.g. Overpayment vs Claim is Correct)
- We can then think of four different outcomes:
 - Correctly guess a claim had an overpayment (True Positive)
 - Guess claim was overpayed, but is not (False Positive)
 - Guess claim was correctly paid and it is correctly paid (True Negative)
 - Guess claim was correctly paid, but it is an overpayment (False Negative)
- These each have different costs and benefits of each outcome.
 - E.g. False Positives are wasting ours (and/or clients) time
 - False Negatives are leaving potential revenue on the table

	Actual False	Actual True		
Predicted False	True Negative (TN)	False Negative (FN)		
Predicted True	False Positive (FP)	True Positive (TP)		

- Hypothetical Example:
- Score 1,000 claims for probability it is an overpayment:
 - <u>True Positive Rate</u> (TP) of model is 90% (proportion of actual overpayments we capture)
 - <u>False Positive Rate</u> (FP) is 5% (proportion of cases that aren't overpayments our model incorrectly flags as overpayments)
 - **Prevalence** of match is 20% (overall proportion of overpayments, positive mix %)
 - Accuracy is the proportion of cases we predict correctly, (TP + TN)/Cases

	Actual False	Actual True
Predicted False	True Negative (TN)	False Negative (FN)
Predicted True	False Positive (FP)	True Positive (TP)

- Hypothetical Example:
- Score 1,000 claims for probability it is an overpayment:
 - <u>True Positive Rate</u> (TP) of model is 90% (proportion of actual overpayments we capture)
 - <u>False Positive Rate</u> (FP) is 5% (proportion of cases that aren't overpayments our model incorrectly flags as overpayments)
 - **Prevalence** of match is 20% (overall proportion of overpayments, positive mix %)
 - Accuracy is the proportion of cases we predict correctly, (TP + TN)/Cases

	Actual False	Actual True	
Predicted False	True Negative (TN)	False Negative (FN)	
Predicted True	False Positive (FP)	True Positive (TP)	/Т
			\'

<u>FP</u> (TN + FP)

- Hypothetical Example:
- Score 1,000 claims for probability it is an overpayment:
 - True Positive Rate (TP) of model is 90% (proportion of actual overpayments we capture)
 - <u>False Positive Rate</u> (FP) is 5% (proportion of cases that aren't overpayments our model incorrectly flags as overpayments)
 - **Prevalence** of match is 20% (overall proportion of overpayments, positive mix %)
 - Accuracy is the proportion of cases we predict correctly, (TP + TN)/Cases

	Actual False	Actual True		
Predicted False	True Negative (TN) False Negative (FN			
Predicted True	False Positive (FP)	True Positive (TP)		

- Hypothetical Example:
- Score 1,000 claims for probability it is an overpayment:
 - True Positive Rate (TP) of model is 90% (proportion of actual overpayments we capture)
 - <u>False Positive Rate</u> (FP) is 5% (proportion of cases that aren't overpayments our model incorrectly flags as overpayments)
 - Prevalence of match is 20% (overall proportion of overpayments, positive mix %)
 - Accuracy is the proportion of cases we predict correctly, (TP + TN)/Cases

- Hypothetical Example:
- Score 1,000 claims for probability it is an overpayment:
 - True Positive Rate (TP) of model is 90% (proportion of actual overpayments we capture)
 - False Positive Rate (FP) is 5% (proportion of cases that aren't overpayments our model incorrectly flags as overpayments)
 - **Prevalence** of match is 20% (overall proportion of overpayments, positive mix %)
 - **Accuracy** is the proportion of cases we predict correctly, (TP + TN)/Cases

Hypothetical Example

Hypothetical Example

Area Under The Curve (AUC)

- If you flag more claims, you will capture more true positives, but will increase false positives
- ROC curves show this trade-off
- AUC is the area under the curve.
 - 1 is perfect
 - will get 0.5 with random guessing
- Is AUC = 0.82 good enough? Depends on costs/benefits of false positives/true positives
- For cases with extremely low positive mix % (e.g. 5% positive), there might be many more false positives than true positives. In this case accuracy is NOT a good metric.

Translating AUC to Confusion Tables

- Where to set the threshold depends on costs of false positives and benefits of true positives.
- Tradeoff: different threshold settings yield different accuracy and error rates, for the model with same AUC

Low Thresh.	Actual False	Actual True		
Predicted False	29,349 (TN)	1,962 (FN)		
Predicted True	4,318 (FP)	2,969 (TP)		

Lower False Positives (13%) and True Positives (60%), Accuracy is 84%

Higher False Positives (34%) and True Positives (84%), Accuracy is 68%

High Thresh.	Actual False	Actual True	
Predicted False	22,193 (TN)	807 (FN)	
Predicted True	11,474 (FP)	4,124 (TP)	

Comparing AUC for Different Models

- Larger AUC values will capture more *true positives* for a given *false positive rate* if the line *is above* the alternative in a ROC chart.
- In most cases, a higher AUC yields higher true positive rates and accuracy given the same false positive rates

Better Model 1 (Red), False Positives (20%) and True Positives (86%), Accuracy 80%

Low Thresh.	Actual False	Actual True		
Predicted False	106,943 (TN)	2,823 (FN)		
Predicted True	27,727 (FP)	16,900 (TP)		

Worse Model 2 (Blue), False Positives (20%) and True Positives (72%), Accuracy 79%

High Thresh.	Actual False	Actual True		
Predicted False	107,898 (TN)	5,572 (FN)		
Predicted True	26,772 (FP)	14,151 (TP)		

Simple Models as a Baseline

- If outcome is rare, predict the most common class.
 - If outcome only happens 1% of the time, if you always guess "No" you will be right 99% of the time.
 - Probably not useful to meet business objectives
 - Need to weigh False Positives vs False Negatives to get a much better predictive model than simple model in that case
- For grouped data (e.g. diagnoses code), can simply predict mean of that group
- Good to start simple (e.g. linear regression), and see how much better more complicated models perform (e.g. random forest)
 - More complicated models need more data to train them

Example Using Python

What we will be doing today

- 1) Load in data, create test and train datasets 3) Evaluate accuracy of those two models (test)

- 2) Train a logistic & random forest model
- 4) Compare AUC, and accuracy for models
- Example predicting Failed Restaurant Inspections in Chicago based on variables such as past number of failures, time since last inspection, garbage nearby, plus others.
- Original data can be downloaded from https://chicago.github.io/food-inspections- evaluation/ (I've limited the number of variables for simplicity.)
- Github link to follow along, https://github.com/hmsholdings/data-science- utils/tree/master/education/Intro DataScience/Evaluating Predictions/Analysis

Loading in Data

```
In [1]: #Loading in the libraries we will be using
        import pandas as pd
        import numpy as np
        import os
        import matplotlib.pyplot as plt
        #The models
        from sklearn.linear model import LogisticRegression
                                                                                            The "Inspector" variable
        from sklearn.ensemble import RandomForestClassifier
                                                                                            designates different areas
        #For evaluation
                                                                                            of Chicago.
        from sklearn.metrics import confusion_matrix, roc_curve, auc
        from sklearn.model_selection import train_test_split
        #Setting the working directory to where our data is stored
        os.chdir(r'C:\Users\e009156\Documents\GitHub\data-science-utils\education\Intro DataScience\Evaluating Predictions\Analysis')
        #Reading in the CSV data of food inspections
        insp dat = pd.read csv('FoodInspect.csv')
        #A quick view of the first few rows of data
        insp dat.head()
```

Out[1]:

	Inspection_ID	Inspector	pastSerious	pastCritical	timeSinceLast	ageAtInspection	consumption_on_premises_ir	ncidental_activity	tobacco_retail_over_counter
0	269961	green	0	0	2.0	1		0	1
1	507211	blue	0	0	2.0	1		0	0
2	507212	blue	0	0	2.0	1		0	0
3	507216	blue	0	0	2.0	1		0	0
4	507219	blue	0	0	2.0	1		0	0
4									•

Preparing Variables for Modelling

In [2]: #Data Prep

```
#We only have a few inspectors, so dummy coding those
print( insp dat['Inspector'].value counts() )
                                                                                Since the "Inspector" variable
insp dum = pd.get dummies(insp dat['Inspector'], drop first=False)
my_dat = pd.concat([insp_dat, insp_dum], axis=1)
                                                                                is categorical, we need to
                                                                                change it to a set of numeric
#variable we are predicting -- if restaurant failed their inspection
dep var = 'criticalFound'
                                                                                0/1 (dummy) variables for
#Inspection ID is not needed for the predictive model
                                                                               modelling.
drop vars = ['Inspection ID', 'Inspector'] #I dont want these variables in the model
ind_vars = list( set(my_dat) - set(drop_vars + [dep_var]) )
print("\nIndependent Variables")
print(ind vars)
         4940
green
         4068
orange
blue
         3434
         3004
vellow
brown
         1993
purple
         1273
Name: Inspector, dtype: int64
Independent Variables
['timeSinceLast', 'temperatureMax', 'ageAtInspection', 'brown', 'consumption on premises incidental activity', 'orange', 'blu
e', 'yellow', 'pastSerious', 'green', 'heat_sanitation', 'tobacco_retail_over_counter', 'heat_garbage', 'pastCritical', 'purpl
e']
```

Splitting Train/Test Data & Estimating Models

min impurity decrease=0.0, min impurity split=None,

min_weight_fraction_leaf=0.0, n_estimators=500,
n jobs=None, oob score=False, random state=None,

min samples leaf=30, min samples split=2,

verbose=0, warm start=False)

Evaluating Predictions (Part 1 – Accuracy)

```
In [4]: #Generating Predicted Probabilities on the TEST dataset for each model
        pred probL = logit model.predict proba(X = test[ind vars])[::,1]
       pred probR = rf model.predict proba(X = test[ind vars])[::,1]
        #Generating a confusion matrix, setting threshold to predict failed inspection at 30%
        th = 0.30
        con matL = pd.DataFrame(confusion matrix(test[dep var], pred probL > th),
                             columns=['Predict Pass','Predict Fail'], index=['Pass Inspect', 'Fail Inspect'])
        con matR = pd.DataFrame(confusion matrix(test[dep var], pred probR > th),
                             columns=['Predict Pass','Predict Fail'], index=['Pass Inspect', 'Fail Inspect'])
        #The correct guesses are on the diagonal of the confusion matrix
        accuracyL = (con matL.iloc[0,0] + con matL.iloc[1,1]) / len(test)
        print("Accuracy Logit Model")
       print("%.2f" % accuracyL)
       print( con matL )
        accuracyR = (con matR.iloc[0,0] + con matR.iloc[1,1]) / len(test)
       print("\nAccuracy Random Forest Model")
       print("%.2f" % accuracyR)
       print( con matR )
       Accuracy Logit Model
       0.83
                                                         The overall failure rate in the
                    Predict Pass Predict Fail
       Pass Inspect
                            4450
                                          351
                                                         dataset is 14%, so a simple model
       Fail Inspect
                             609
                                          204
                                                         of always guessing "Pass" would be
       Accuracy Random Forest Model
                                                         86% accurate.
       0.83
                    Predict Pass Predict Fail
```

Pass Inspect

Fail Inspect

4480

614

321

199

Evaluating Predictions (Part 2 – AUC)

AUC Statistic for Random Forest Model

0.73

```
In [5]: #Evaluating the AUC of the two models, and plot the ROC curves
       #Getting the ROC curve statistics
       fprL, tprL, threshL = roc_curve(test[dep_var], pred_probL, pos_label=1)
       fprR, tprR, threshR = roc curve(test[dep var], pred probR, pos label=1)
       #Calculating the Area Under the Curve for each model
       aucL = auc(fprL, tprL)
       print("AUC Statistic for Logit Model")
       print(round(aucL,2))
                                                                Both models perform very similar
       aucR = auc(fprR, tprR)
       print("\nAUC Statistic for Random Forest Model")
                                                                when comparing AUC, and both are
       print(round(aucR,2))
                                                                much better than random (AUC = 0.5)
       AUC Statistic for Logit Model
       0.73
```

Evaluating Predictions (Part 3 – ROC Curve)

```
In [6]: #Now making an ROC graph to illustrate
    fig, ax = plt.subplots()
    fig.set_size_inches(6,6)
    ax.plot(fprL, tprL, drawstyle='steps-post', label='Logistic Model', linewidth=2)
    ax.plot(fprR, tprR, drawstyle='steps-post', label='Random Forest Model', linewidth=2)
    ax.plot([0,1], [0,1], color='grey', linewidth=0.8) #mid-reference line
    ax.set_title("ROC Plot")
    plt.xticks(np.arange(0,1.1,0.1))
    plt.yticks(np.arange(0,1.1,0.1))
    ax.legend(loc='lower right')
    ax.set_xlabel('False Positive Rate')
    ax.set_ylabel('True Positive Rate')
    ax.set_aspect(aspect='equal')
    plt.show()
```


In terms of ranking predictions, both models perform equally well.

Since the Logistic regression is simpler than the Random Forest, you may prefer that model.

Future Topics

 Show different cross-validation strategies to evaluate models and various statistics. See "validation-strategies-best-practices" within our <u>DSML goverance docs</u>.

• How to optimize the threshold for binary predictions using cost-benefit analysis.

Show how to choose the best hyperparameters for Random Forest.

Questions?

Future Topics

Have requests? Let me know!

Introduction to Data Science Course Outline

Andrew Wheeler, PhD, andrew.wheeler@hms.com

- Lesson 01: Data Science 101
- Lesson 02: Machine Learning 101
- Lesson 03: Evaluating Predictions
- ▶ Lesson 04: Intro Data Transformation in Python
- ▶ Lesson 05: Data Visualization 101
- Lesson 06: Feature Engineering
- Lesson 07: Missing Data
- Lesson 08: Big Data and Parallel Computing Intro
- Lesson 09: Dimension Reduction and Unsupervised Learning
- Lesson 10: High Cardinality (Many Categories)
- Lesson 11: Intro to Forecasting
- Lesson 12: Conducting Experiments

Evaluating Predictions

Data Science & Machine Learning Team

09/25/2020

Andrew Wheeler, PhD

andrew.wheeler@hms.com