Заняття 12. Атом водню в квантово-механічному розгляді.

Аудиторне заняття

- 1. Електрон в атомі водню знаходиться в основному стані, що описується хвильовою функцією $\psi = A \exp(-r/r_1)$. Знайти а) нормувальний коефіцієнт A; б) енергію E електрона та величину r_1 (за допомогою рівняння Шрьодінгера). ($\sim N \ge 2.47$)
- 2. Для 1*s*-електрона в атомі водню визначити найбільшу імовірну відстань від $r_{\text{iм}}$ та імовірність P знаходження електрону в області $r < r_{\text{iм}}$.
- 3. Для 1s-електрону в атомі водню визначити середнє значення його відстані від ядра < r >.

Домашнє завдання

- 1. Знайти для 2p- та 3d-електронів в атомі водню найбільш ймовірну відстань від ядра. (№2.49а)
- 2. Визначити для 1*s*-електрона в атомі водню середні значення його квадрата відстані від ядра $< r^2 >$ та квадрата середнього відхилення $< (r < r >)^2 >$. (№2.48)
- 3. Частинка масою m перебуває в основному стані у потенціальному полі $U = k x^2 / 2$, а її хвильова функція має вигляд ψ (x) = A exp (- α x^2), де A коефіцієнт нормування, α додатна стала. За допомогою рівняння Шрьодінгера знайти величину α та енергію частинки у цьому стані. (№2.46)