5.3

HOMOMORPHISM AND ISOMORPHISM

5.3.1 Homomorphism

Definition of homomorphism. Let (G, \circ) and (G', *) be two groups. Then a mapping $f: G \to G'$ is said to be a homomorphism if

$$f(a \circ b) = f(a) * f(b) \forall a, b \in G.$$

Epimorphism & Monomorphism

A homomorphism is said to be **epimorphism** if it is onto mapping and is said to be **monomorphism** if it is one - one.

Endomorphism

A homomorphism of a group into itself is called an endomorphism.

Illustration

(i) Let
$$G = (Z,+)$$
, $G' = (3Z,+)$,

Consider a mapping $f: G \to G'$ defined by $f(x) = 3x, x \in G$

Then
$$f(x_1) = 3x_1$$
, $f(x_2) = 3x_2$, $\forall x_1, x_2 \in G$.

Now
$$x_1, x_2 \in G \Rightarrow x_1 + x_2 \in G \Rightarrow f(x_1 + x_2) = 3(x_1 + x_2)$$

Hence
$$f(x_1 + x_2) = f(x_1) + f(x_2)$$
.

So f is a homomorphism.

(ii) Let (G, \circ) be a group and $f: G \to G$ be a mapping defined by f(a) = e, the identity element, $\forall a \in G$. Then f(a) = e, $f(b) = e \ \forall \ a,b \in G$. Now $a,b \in G \Rightarrow a \circ b \in G \Rightarrow f(a \circ b) = e$ $\Rightarrow f(a \circ b) = e \circ e = f(a) \circ f(b)$.

$$\therefore f(a \circ b) = f(a) \circ f(b) \ \forall a, b \in G$$

Thus f is a homomorphism of G into G. Hence f is an endomorphism.

Theorem 1. Let $f: G \to G'$ be a homomorphism. Then

(i) f(e)=e' where e and e' are identities of G and G' respectively.

[W.B.U.Tech 2006]

(iii) o(f(a)) is a divisor of o(a) when o(a) is finite $\forall a \in G$

(iv) the homomorphic image f(G) of G is a subgroup of G

Proof: (i) Let $a \in G$. Then $f(a) \in G$

 $\therefore f(a) * e' = f(a)$, as e' is the identity of G'= $f(a \circ e)$, as e is the identity of G = f(a)*f(e) (:: f is a homomorphism)

 $\therefore f(a) * e' = f(a) * f(e), \text{ in } G'$ $\Rightarrow e' = f(e)$, by left cancellation law in group.

 $\therefore f(e) = e'$

(ii) Let $a \in G$. Then $a^{-1} \in G$.

Now $e' = f(e) = f(a \circ a^{-1}) = f(a) * f(a^{-1})$

Also $e' = f(e) = f(a^{-1} \circ a) = f(a^{-1}) * f(a)$.

 $\therefore f(a) * f(a^{-1}) = f(a^{-1}) * f(a) = e'$

Hence $f(a^{-1})$ is the inverse of f(a) in G'. Thus $f(a^{-1}) = [f(a)]^{-1}$

(iii) Let $a \in G$ and o(a) = m, a finite number

 $\therefore a^m = e \implies f(a^m) = f(e) \Rightarrow f(a \circ a \circ a \dots m \text{ times}) = e'$

 $\Rightarrow f(a) * f(a) * f(a) \dots m \text{ times} = e' \Rightarrow [f(a)]^m = e'$

Therefore, if n is the order of f(a) in G', then n must be a divisor of m, by an earlier theorem. Hence o(f(a)) is a divisor

Kernel of a Homomorphism

Let (G, \circ) and (G', *) be two groups and $f: G \to G'$ be a homomorphism. Then the kernel of f is a subset of those element of G which are mapped to the identity element e' in G' and is denoted by Ker f. Thus Ker $f = \{x \in G : f(x) = e'\}$.

HOMOMORPHISM AND ISOMORPHISM

Theorem 2: Let $f: G \to G'$ be a homomorphism. Then Kerf is a normal substant of G. proof: Let e, e' be the identities of G and G' respectively.

Then f(e) = e'. So Ker f is a non-empty subset of G.

Let $a, b \in \text{Ker} f$. Then f(a) = e', f(b) = e'.

Now $f(a \circ b^{-1}) = f(a) * f(b^{-1}) = f(a) * \{f(b)\}^{-1} = e' * e'^{-1} = e'$

 $a \circ b^{-1} \in \text{Ker } f$

Therefore Ker f is a subgroup of G.

Next let $g \in G$, $h \in \text{Ker } f$. Then f(h) = e'.

Now $f(g \circ h \circ g^{-1}) = f(g) * f(h) * f(g^{-1})$ $= f(g) * e' * \{f(g)\}^{-1} = f(g) * \{f(g)\}^{-1} = e'$

 $\therefore g \circ h \circ g^{-1} \in \text{Ker } f$

Therefore $\operatorname{Ker} f$ is a normal subgroup of G.

Theorem 3: Let $f: G \rightarrow G'$ be a homomorphism. Then f is one-to-one if and only if $Ker f = \{e\}$.

proof: Let f be one-to-one.

Also let $a \in \text{Ker } f$ be arbitrary. Then f(a) = e', the identity element of G'.

 $f(a) = f(e) \quad [\because f(e) = e']$

or, a = e [: f is one-to-one]

Thus $a \in \text{Ker } f \Rightarrow a = e$

 \therefore Ker $f = \{e\}$

Conversely, let $Ker f = \{e\}$.

Let $a, b \in G$. Then f(a) = f(b) $\Rightarrow f(a) * \{f(b)\}^{-1} = f(b) * \{f(b)\}^{-1}$

 $\Rightarrow f(a) * f(b^{-1}) = e'$ [:: f is a homomorphism]

 $\Rightarrow f(a \circ b^{-1}) = e' \Rightarrow a \circ b^{-1} \in \text{Ker } f \Rightarrow a \circ b^{-1} = e \Rightarrow a = b$

: f is one-to-one.

5.3.2 Isomorphism.

Definition of Isomorphism

Let (G,\circ) , (G',*) be two groups and $f:G\to G'$ be a homomorphism. Then f is said to be an isomorphism if f is oneto-one and onto (i.e if f is a monomorphism as well as an epimorphism.)

Isomorphic Groups.

Two groups (G, \circ) and (G', *) are said to be isomorphic if there exists an isomorphism $f, f: G \to G'$. Two isomorphic groups are writen as $G \approx G'$.

Automorphism: An isomorphism of a group G onto itself is called an automorphism.

Illustration. Let G = (Z,+), G' = (2Z,+) be two groups. Consider a mapping $f: G \to G'$ defined by f(a) = -2a, $a \in G$. Then $f(a) = -2a, f(b) = -2b \ \forall a, b \in G$.

Now $a,b \in G \Rightarrow a+b \in G$.

$$a,b \in G \Rightarrow a+b \in G$$

$$\therefore f(a+b) = -2(a+b) = -2a - 2b = f(a) + f(b)$$

:: f is a homomorphism.

Again $f(a) = f(b) \Rightarrow -2a = -2b \Rightarrow a = b$.

Let $b \in 2Z$. Then $-\frac{b}{2} \in Z$ and $f\left(-\frac{b}{2}\right) = (-2) \cdot \left(\frac{-b}{2}\right) = b$. So each element in Z has a pre-image under f.

 $\therefore f$ is onto.

Combining all these we find that f is an isomorphism.

Theorem: Fundamental Theorem of Homomorphism.

Every homomorphic image of a group G is isomorphic to

Proof: Let G' be the homomorphic image of a group G and fbe the corresponding homomorphism. We know that this G' is also

group Let K = Ker f. Then K is a normal subgroup of G. We now consider the quotient group G/K and define a

mapping $\phi G/K \Rightarrow G'$ such that $\phi(Ka) = f(a) \ \forall a \in G$.

HOMOMORPHISM AND ISOMORPHISM

(i) First we shall show that the mapping ϕ is well defined i.e. if $a,b \in G$ and Ka = Kb, then $\phi(Ka) = \phi(Kb)$.

Now $Ka = Kb \Rightarrow ab^{-1} \in K \Rightarrow f(ab^{-1}) = e'$, the identity of G' $\Rightarrow f(a)f(b^{-1}) = e' \Rightarrow f(a)[f(b)]^{-1} = e'$

 $\Rightarrow f(a) = f(b) \Rightarrow \phi(Ka) = \phi(Kb)$. φ is well defined.

(ii) Now $\phi \{(Ka)(Kb)\} = \phi (Kab) = f(ab) = f(a)f(b)$ $= \phi(Ka)\phi(Kb)$

∴ o is a homomorphism.

(iii) Again $\phi(Ka) = \phi(Kb) \Rightarrow f(a) = f(b)$

 $\Rightarrow f(a)[f(b)]^{-1} = f(b)[f(b)]^{-1}$

 $\Rightarrow f(a)f(b^{-1})=e' \Rightarrow f(ab^{-1})=e' \quad [: f \text{ is homomorphism}]$

 $\Rightarrow ab^{-1} \in K \Rightarrow Ka = Kb$ ∴ o is one - to - one.

(iv) Lastly let $y \in G'$. Then y = f(a) for some $a \in G$. Again $f(a) = \phi(Ka)$. This shows that for each $f(a) \in G'$, there exist $Ka \in G \mid K$ such that $\phi(Ka) = f(a)$. Hence ϕ is onto G'.

Thus ϕ is an isomorphism of G/K onto G'. Hence $G/K \approx G'$.

Illustrative Examples.

Ex.1.Let $G = (C', \cdot)$, $G' = (R^+, \cdot)$ where $C' = C - \{0\}$, the set of all non-zero complex numbers. Show that the mapping Determine Ker \ and Im \.

Let $z_1, z_2 \in C'$. Then $\phi(z_1) = |z_1|, \phi(z_2) = |z_2|$.

. Now $\phi(z_1 z_2) = |z_1 z_2| = |z_1||z_2| = \phi(z_1)\phi(z_2)$

∴ o is a homomorphism of G into G

The identity of R^+ is 1.

Let $z \in C'$ such that $\phi(z)=1 \Rightarrow |z|=1$.

Obviously $Im \phi = R^+$. $\therefore \operatorname{Ker} \phi = \{z \in C' : |z| = 1\}$

Ex.2.Let $G = S_3$ and $\phi: G \to G$ is defined by $\phi(x) = x^2, x \in S_1$.

Examine whether the mapping ϕ is a homomorphism. Here $G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ where $f_1 = I$, $f_2 = (1, 2)$,

 $f_3 = (2, 3), f_4 = (3, 1), f_5 = (123), f_6 = (132).$

Let $f_2, f_3 \in G$. Then $f_2 f_3 = f_6 \in G$

Let
$$f_2, f_3 \in G$$
. Then $f_2 = f_3$ and $f_3 = f_3 = f_3 = f_3 = f_3$.

$$\therefore f_2 = f_2 = f_2 = f_1 \text{ and } f_3 = f_3 = f_3 = f_3$$

∴ φ is not a homomorphism. Hence $\phi(f_2f_3)\neq\phi(f_2)\phi(f_3)$.

Ex. 3. Let (Z,+) be the additive group of all integers and $(Q-\{0\},+)$ be the multiplicative group of non-zero rational numbers. Define $f: Z \to Q - \{0\}$ by $f(x) = 3^x$ for all $n \in Z$. Show that f is a homomorphism but not an isomorphism. [W.B.U.Tech 2004]

Let $x_1, x_2 \in Z$. Then $f(x_1) = 3^{x_1}$, $f(x_2) = 3^{x_2}$

Now $f(x_1 + x_2) = 3^{x_1 + x_2} = 3^{x_1} * 3^{x_2}$

 $\therefore f$ is a homomorphism.

Again, $f(x_1) = f(x_2) \Rightarrow 3^{x_1} = 3^{x_2} \Rightarrow x_1 = x_2$

:: f is one-to-one.

Let $y_1 \in Q - \{0\}$.

Then $f(x_1) = y_1$ gives $3^{x_1} = y_1$ i.e. $x_1 = \log_3 y_1$ which is not necessarily integer.

Thus each element of $Q-\{0\}$ has no pre-image under f.

:. f is not onto.

Consequently f is not an isomorphism.

Show that every homomorphic image of an abelian group is helian and converse is not true. is abelian and converse is not true.

abelian group G

Let G' be the homomorphic image of an abelian group G Let the corresponding homomorphism.

Let $a_1, b_1 \in G'$. Then $f(a) = a_1, f(b) = b_1$ for some $a, b \in G$

Now $a_1b_1 = f(a)f(b) = f(ab)$ [: f is a homomorphism] = f(ba) [:: G is abelian]

 $= f(b)f(a) = b_1a_1$

: G' is abelian.

 $\therefore a_1b_1 = b_1a_1 \quad \forall a_1, b_1 \in G'$ $\therefore a_1 v_1$ We know the symmetric group S_3 is a non-abelian group and the alternating group S_3 is a normal subgroup of S_3 . Then and unitient group S_3/A_3 is a homomorphic image of S_3 (by the quotient group shaling Part 3) the 4 which is non-abelian. But S_3/A_3 is of the order 2 and Th-3) which is non-abelian. hence is abelian.

Show that every homomorphic image of a cyclic group is cyclic and converse is not true.

Let G' be the homomorphic image of a cyclic group G and fbe the corresponding homomorphism.

Let $G = \langle a \rangle$. Also let $b_1 \in G'$. Then $f(b) = b_1$ for some $b \in G$. Since $b \in G$, $b = a^n$ for some integer n.

[::f is a homomorphism] :. $b_1 = f(b) = f(a^n) = \{f(a)\}^n$

 $\Rightarrow G' = \langle f(a) \rangle$

Hence G' is a cyclic group, generated by f(a).

We know the symmetric group S_3 is not a cyclic and A_3 is a normal subgroup of S_3 . Then the quotient group S_3/A_3 is a homomorphic image of S_3 which is not cyclic. But S_3/A_3 is of order 2 and it is cyclic which can be easily shown.

Ex. 6. Let G be a group and the mapping $f: G \rightarrow G$ be defined by $f(x)=x^{-1}, x \in G$. Show that f is an automorphism if and only if G is abelian.

E.M-IV-39

Let G be abelian. and $x, y \in G$.

Let G be abelian. and
$$x, y \in G$$
.
Then $f(x) = f(y) \Rightarrow x^{-1} = y^{-1} \Rightarrow (x^{-1})^{-1} = (y^{-1})^{-1} \Rightarrow x = y$.
 $\therefore f$ is one-one.

Next let $x \in G$, the co-domain of f. Then $\exists x^{-1} \in G$, the domain of f such that $f(x^{-1}) = (x^{-1})^{-1} = x$

.. f is onto.

Lastly
$$f(xy) = (xy)^{-1} = y^{-1}x^{-1} = f(y)f(x)$$

Thus f is a homomorphism.

Hence f is an automorphism of G.

Conversely let f be an automorphism of G and $x, y \in G$.

Then
$$f(xy) = f(x)f(y) \Rightarrow (xy)^{-1} = x^{-1}y^{-1}$$

$$\Rightarrow ((xy)^{-1})^{-1} = (x^{-1}y^{-1})^{-1} \Rightarrow xy = (y^{-1})^{-1}(x^{-1})^{-1} \Rightarrow xy = yx,$$

 $\therefore xy = yx \ \forall \ x, y \in G,$

::G is abelian.

EXERCISE

I. SHORT ANSWER QUESTIONS

- 1. Define the kernel of group homomorphism
- Show that every homomorphic image of an abelian group under multiplication is also abelian.
- Show that the function $\phi: G \to G$ defined by $\phi(a) = a^{-1} \forall a \in G$ is a homomorphism if G is commutative.
- Determine the Kernel of the homomorphism $f: G \rightarrow G'$ where G = (R, +), $G' = (R^+, -)$ defined by $f(a) = 2^a \forall a \in R$.
- Define Isomorphism of groups with example.
- For any three groups G_1 , G_2 and G_3 prove that $G_1 \times G_2$ is iso morphic to $G_2 \times G_1$.
- 7. Find the kernel of $f:(C-\{0\},\cdot)\rightarrow (R-\{0\},\cdot)$ defined by f(z) = |z|

gOMOMORPHISM AND ISOMORPHISM If $M = \left\{ \begin{pmatrix} ab \\ ba \end{pmatrix} : a, b \text{ are integers} \right\}$ show that $f: M \to Z$ defined by $f \begin{pmatrix} a & b \\ b & a \end{pmatrix} = a - b$ is a homomorphism

g. If * is defined as $(a_1,b_1)*(a_2,b_2)=(a_1+a_2,b_1+b_2)$ and if $f:(N\times N,^*)\to (Z,+)$ is defined by f(a,b)=a-b, show that fis a homomorphism. Is it isomorphism?

10. $f:(C-\{0\},\cdot)\to(C-\{0\},\cdot)$ defined by $f(z)=z^4$

(i) Show that f is a homomorphism. (ii) find the kernel of f.

11. $C = \{z : z \text{ is a complex number and } |z| = 1\}$. Prove that $f:(R+) = \{C, \}$ defined by $f(x) = e^{ix}$ is a homomorphism. Find the kernel of f.

ANSWERS

4. Kerf = {0} 7. pts on the circumference of a unit circle

10. $\{1,-1,i,-i\}$ 11. $\{2n\pi: n \in z\}$ 9. No

II. LONG ANSWER QUESTIONS

Verify whether the following mapping is a homomorphism. If so, determine Ker f.

(i) Let G = (Z,+), G' = (Z,+) and $f: G \rightarrow G'$ defined by

(ii) Let G = GL(2,R), G' = (R,+) and $f = G \rightarrow G'$ defined by $f\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right\} = a + b + c + d.$

(iii) Let G = (R,+), $G' = (\{z \in C; |z|=1\},.)$ and f:

 $G \to G'$ defined by $f(x) = e^{2i\pi x}$.

(iv) Let G = (Z,+), G' = (Z,+) and $f: G \to G'$ defined by [W.B.U Tech 2005] f(x)=|x|.