IBB31103 | ISB46703 Introduction to/Principles of Artificial Intelligence

Universiti Kuala Lumpur July 2023 Dr. Faiz

Mini Project

Weight: 15% Due: 24 September 2023

1 Introduction

The objective of this group assignment is to apply K-Nearest Neighbour (K-NN) classification techniques on a car insurance claim dataset to predict whether a customer will file an insurance claim or not based on given features. This assignment will cover basic exploratory data analysis, data visualisation, data pre-processing and model evaluation for the K-NN model.

1.1 Goal

Your final goal is to predict whether the policy holder will file a claim in the next 6 months or not.

2 Dataset

The dataset used for this assignment is a car insurance claim dataset containing policyholders attributes like policy tenure, age of the car, age of the car owner, the population density of the city, make and model of the car, power, engine type, etc, and the target variable indicating whether the policyholder files a claim in the next 6 months or not. Dataset download link: https://github.com/faizuddin/ISB46703/tree/main/data/insurance:

Variable	Description
policy_id	Unique identifier of the policyholder
policy_tenure	Time period of the policy
age_of_car	Normalised age of the car in years
age_of_policyholder	Normalised age of policyholder in years
area_cluster	Area cluster of the policyholder
population density	Population density of the city (Policyholder
	City)
make	Encoded Manufacturer/company of the car
segment	Segment of the car (A/ B1/ B2/ C1/ C2)
model	Encoded name of the car
fuel_type	Type of fuel used by the car

Maximum Torque generated by the car max_torque (Nm@rpm) Maximum Power generated by the car max_power (bhp@rpm) Type of engine used in the car engine_type Number of airbags installed in the car airbags Boolean flag indicating whether Electronic is_esc Stability Control (ESC) is present in the car or not. Boolean flag indicating whether the steering is_adjustable_steering wheel of the car is adjustable or not. Boolean flag indicating whether Tyre Presis_tpms sure Monitoring System (TPMS) is present in the car or not. Boolean flag indicating whether parking senis_parking_sensors sors are present in the car or not. Boolean flag indicating whether the parking is_parking_camera camera is present in the car or not. Type of brakes used in the rear of the car. rear_brakes_type Engine displacement of the car (cc). engine_displacement Number of cylinders present in the engine of cylinder the car. Transmission type of the car. transmission_type gear_box Number of gears in the car. Type of the power steering present in the steering_type The space a vehicle needs to make a certain turning_radius turn (Meters). Length of the car (Millimetre). length Width of the car (Millimetre). width Height of the car (Millimetre). height The maximum allowable weight of the fullygross_weight loaded car, including passengers, cargo and equipment (Kg). is_front_fog_lights Boolean flag indicating whether front fog lights are available in the car or not. Boolean flag indicating whether the rear is_rear_window_wiper window wiper is available in the car or not. Boolean flag indicating whether the rear is_rear_window_washer window washer is available in the car or not. Boolean flag indicating whether rear window is_rear_window_defogger defogger is available in the car or not. Boolean flag indicating whether the brake is_brake_assist assistance feature is available in the car or not. Boolean flag indicating whether a power is_power_door_lock

door lock is available in the car or not.

is_central_locking	Boolean flag indicating whether the central locking feature is available in the car or not.
is_power_steering	Boolean flag indicating whether power steering is available in the car or not.
is_driver_seat_height_adjustable	Boolean flag indicating whether the height of the driver seat is adjustable or not.
is_day_night_rear_view_mirror	Boolean flag indicating whether day and night rearview mirror is present in the car or not.
is_ecw	Boolean flag indicating whether Engine Check Warning (ECW) is available in the car or not.
is_speed_alert	Boolean flag indicating whether the speed alert system is available in the car or not.
ncap_rating	Safety rating given by NCAP (out of 5)
is_claim	Outcome: Boolean flag indicating whether the policyholder file a claim in the next 6 months or not.

Table 1: Car policyholder dataset.

The dataset consists of a combination of attributes with different data types. Some of the attributes, such as fuel_type and segment, are categorical, while others, like max_torque and cylinder, are numeric. The training dataset contains a total of 58,592 examples, and each example is described by 44 features whilst testing dataset consists of a total of 39,063 examples with the labels (is_claim) removed for evaluation purposes.

3 Instructions

3.1 Exploratory Data Analysis [10 points]

- 1. Load the car policyholder claim dataset.
- 2. Perform basic exploratory data analysis to gain insights into the dataset.
- 3. Analyse the distribution of features, identify any missing values, and handle them appropriately.
- 4. Explore relationships between features and the claim status (is_claim).
- 5. Interpret the findings and discuss any patterns or trends observed.

3.2 Data Visualisation [10 points]

- 1. Create visualisations to explore relationships between features and the claim status.
- 2. Use appropriate plots and charts to illustrate the patterns and trends in the data.
- 3. Analyse the impact of different features on the likelihood of filing an insurance claim.

3.3 Data Preprocessing [10 points]

1. Perform necessary preprocessing steps such as handling missing (NaN) values, encoding categorical variables, and scaling numeric features by computing its z-score:

$$z = \frac{x - \mu}{\delta}$$

2. Split the dataset into training and testing sets (70:30 ratio) using train_test_-split() function.

3.4 Modelling [10 points]

- 1. Import the necessary libraries for K-Nearest Neighbour (K-NN) classification.
- 2. Create an K-NN classifier using an appropriate K value.
- 3. Fit the classifier to the training data.

3.5 Model Evaluation [20 points]

- 1. Predict the claim status using the trained K-NN model on the testing data.
- 2. Evaluate the performance of the model using the following evaluation metrics:
 - Accuracy
 - Precision
 - Recall
 - F1-score.
- 3. Repeat 3.4 using different K and evaluate its performance.
- 4. Interpret the results and discuss the model's effectiveness in predicting car insurance claims.

3.6 Conclusion and Discussion [10 points]

- 1. Summarise the findings of the assignment, including the initial model's performance and the impact of using different K on the classification model.
- 2. Discuss the limitations of the study and suggest potential improvements.
- 3. Reflect on the importance and relevance of K-NN classification in predicting car policyholder claim status.

4 Assignment Collaboration Policy

Encourages collaboration while emphasising originality. Students can discuss, share resources, but must submit unique work. Plagiarism is strictly prohibited. Acknowledge significant contributions. Violations, including plagiarism, will be penalised.

5 Presentation

Each group will present their findings, including an overview of the dataset, exploratory data analysis, data visualisation, data pre-processing steps, model creation, evaluation results, parameter tuning process, and final conclusions. Visual aids, such as graphs and plots, are encouraged to enhance the clarity of the presentation.

Presentation date: Monday 25 September 2023, 9:30am - 12:30pm

6 Submission

Submit the following materials:

- Jupyter Notebook or code files used for data analysis and modeling via VLE.
- Presentation slides summarising the key findings and insights from the assignment.