

Grafos

Disciplina: Estrutura de Dados II

Prof. Fermín Alfredo Tang Montané

Curso: Ciência da Computação

Grafos (*Graphs*) Definição

- A estrutura de dados grafo, difere de todas as outras pelo seguinte aspecto principal: cada nó pode ter vários predecessores e vários sucessores.
- Os grafos são estruturas muito úteis. Podem ser utilizadas para resolver problemas de roteirização complexos, tais como projetar e roteirizar linhas aéreas entre os aeroportos que elas servem.
- Também podem ser utilizadas para roteirizar mensagens em uma rede de computadores de um nó para outro.

Grafos (*Graphs*) Definição

• Um grafo é uma coleção de nós, chamados vértices e uma coleção segmentos, chamados de linhas, conectando pares de vértices.

Um grafo compreende dois conjuntos: um conjunto de vértices e um conjunto de linhas (conexões).

Grafos (*Graphs*) Conceitos Básicos

- Os grafos podem ser classificados em dois tipos:
 - o grafos direcionados ou digrafos (directed graphs or digraphs) e
 - não-direcionados (undirected graphs).
- Em um grafo direcionado (ou Digrafo) as linhas (relações entre os objetos) possuem uma direção que serve para indicar o sucessor de um objeto (uma seta na representação gráfica). Neste caso os objetos são chamados de **nós** (nodes) e as linhas entre esses objetos são chamados de **arcos** (arcs). O fluxo entre dois nós deve seguir necessariamente a direção do arco.
- Em um grafo não-direcionado as linhas (relações entre os objetos) não possuem qualquer direção. Neste caso os objetos são chamados de vértices (vertices) e as linhas são chamados de arestas (edges). O fluxo entre dois vértices pode seguir qualquer direção.

Grafos (Graphs) Conceitos Básicos

Grafos Direcionados e não Direcionados

Directed and Undirected Graphs

Conceitos Básicos

- Um grafo é um modelo matemático que representa as relações entre objetos de determinado conjunto.
- Um grafo G(V, A) é definido em termos de dois conjuntos:
- Um conjunto V de vértices, que são os itens (objetos) representados em um grafo.
- Um conjunto A de arestas, que são utilizadas para conectar qualquer par de vértices. Neste caso, dois vértices são conectados segundo critério previamente estabelecido.

$$V = \{1, 2, 3, 4\}$$

$$G = (V, A)$$

$$A = \{(1, 2); (2, 3); (2, 4); (3, 4); (4, 4); (2, 1); (3, 2); (4, 2); (4, 3); \}$$

Representação de Grafos

- Ao se modelar um problema utilizando um grafo, surge a questão: como representar este grafo no computador? Existem duas abordagens muito utilizadas para representar um grafo no computador:
 - Matriz de adjacência.
 - Lista de adjacência.
- A representação escolhida para um grafo depende da aplicação. Não existe uma representação que seja melhor que a outra em todas os casos.

Representação de Grafos

Matriz de Adjacência

- A representação de um grafo por matriz de adjacência faz uso de uma simples matriz para descrever as relações entre os vértices.
- Neste tipo de representação, um grafo contendo N vértices utiliza uma matriz de ordem NxN, com N linhas e N colunas para armazenar o grafo.
- Uma aresta ligando dois vértices é representada por uma marca na posição (i, j) da matriz, sendo i o vértice inicial e j o vértice final da aresta (p.e. 1 se existe aresta, e 0 caso não exista).

Grafo

	1	2	3	4
1 2 3 4	0	1	0	0
2	1	0	1	1
3	0	1	0	1
4	0	1	1	1 1 1

Representação de Grafos

Matriz de Adjacência

- A representação de um grafo por matriz de adjacência possui um alto custo computacional, $O(N^2)$. Além disso, não é indicada para um grafo que possui muitos vértices mas poucas arestas ligando-os.
- Operações como encontrar todos os vértices adjacentes a um vértice exigem que se pesquise em toda a linha da matriz.
- No entanto, se a matriz de adjacências armazenar somente a conectividade dos vértices (arestas), apenas um bit será necessário para cada posição da matriz. Isso tornaria essa representação bastante compacta.

Digrafo

	1	2	3	4
1 2 3 4	0	1	0	0 1 1 1
2	1	0	1	1
3	0	1	0	1
4	0	1	1	1]

	1	2	3	4
1 2 3 4	0	1	0	0
2	0	0	1	0 1 1 1
3	0	0	0	1
4	0	0	0	1

Representação – Matriz de Adjacência

Matriz de Adjacência

(a) Adjacency matrix for nondirected graph

(b) Adjacency matrix for directed graph

Representação – Lista de Adjacência

Lista de Adjacência

Vértices (Nós) adjacentes

 Dois vértices (ou nós) em um grafo são ditos vértices adjacentes (ou nós adjacentes) se existe um caminho de comprimento um entre eles.

- Na figura (a), B é adjacente a A; D é adjacente a E; no entanto, E não é adjacente a D.
- Na figura (b), E e D são adjacentes; já D e F não são adjacentes.

Grafos (Graphs) Caminhos

 Um caminho (path) é uma sequência de vértices em que cada vértice é adjacente ao próximo.

- Exemplos de caminhos: i) {A, B, C, E} ii) {A, B, E, F}
- Em ambos tipos de grafos, temos caminhos. No entanto, apenas em grafos não-direcionados podemos percorrer o caminho em qualquer direção.

Grafos (Graphs) Ciclos e loops

- Um **ciclo** é um caminho que começa e termina no mesmo vértice ou nó. Em princípio esse ciclo deve possuir pelo menos três vértices (nós). No entanto, podemos pensar em casos com dois e até apenas um vértices (nós).
- Um **loop** é um caso particular do ciclo no qual existe um único arco com inicio e fim no mesmo nó (uma única aresta com inicio e fim no mesmo vértice). Os dois extremos da linha são iguais.

- Exemplo de ciclo: i) {A, B, C, A}
- Exemplo de loop: i) {B, B}

Ciclos e loops

- Na figura (a), {B, C, E, B} não é um ciclo, porque ele não respeita a direção dos arcos.
- Na figura (b), {B, C, E, B} é um ciclo. Neste caso as arestas podem ser percorridas em qualquer direção.

Tipos de Grafos Grafo Conexo

- Chama-se de grafo conexo todo grafo em que, para quaisquer dois vértices distintos, sempre existe um caminho que os une.
- Quando isso não acontece, temos um grafo desconexo. Um grafo desconexo contém no mínimo duas partes, cada uma delas chamada componente conexa.

Grafos (Graphs) Grafos Conexos

- Dois vértices são ditos conexos (connected) se existe um caminho entre eles.
- Um grafo é dito conexo se, ignorando a direção, existe um caminho de qualquer vértice para qualquer outro vértice.
- Um grafo direcionado é **fortemente conexo** (*strongly connected*), se existe um caminho direcionado de cada vértice a cada outro vértice.
- Um grafo direcionado é **simplesmente conexo** (*weakly connected*), se não existe um caminho direcionado entre pelo menos um par de vértices.
- Um grafo é desconexo (disjoint graph) se não é conexo.

Tipos de Conexidade

Grafos Conexos e Não Conexos

Grau de um vértice (nó)

- O grau (degree) de um vértice (ou nó) é o número de linhas (arestas ou arcos) que incidem nele.
- Em grafos direcionados existem dois conceitos adicionais:
 - O grau de saída (outdegree) é o número de arcos que saem do nó.
 - O grau de entrada (in degree) é o número de arcos que entram no nó.
- O grau de um nó em grafos direcionados é igual a soma dos graus de saída e de entrada.

- Na figura (a), o nó B tem grau 3. O grau de entrada de B é I, enquanto o grau de saída de B é 2.
- Na figura (b), o nó E tem grau 4. O grau de entrada de E é 3, enquanto o grau de saída de E é 1.

Grafos (Graphs) Árvores são grafos

- Uma árvore é um tipo particular de grafo em que cada nó (ou vértice) possui somente um predecessor.
- Assim, toda árvore é um grafo, porém nem todo grafo é uma árvore.
- Alguns grafos possuem um ou mais árvores dentro deles os quais podem ser algoritmicamente determinados.

Arvores

Árvores são grafos

- Uma árvore é um tipo especial de grafo não direcionado que possui as seguintes características:
 - É conexo;
 - Não possui ciclos.
- Toda árvore permite conectar entre si um conjunto de vértices utilizando o menor número de arestas possíveis;
- Uma coleção de árvores é chamada de floresta.

Tipos de Grafos

Definições

 Um grafo trivial é a forma mais simples de grafo que existe. Trata-se de um grafo que possui um único vértice e nenhuma aresta ou laço.

• Já um grafo simples é a forma mais comum de grafo que existe. Trata-se de um grafo não direcionado, sem laços e sem arestas paralelas.

Tipos de Grafos Grafo Completo

 Um grafo completo consiste em um grafo simples (ou seja, um grafo não direcionado, sem laços e sem arestas paralelas), onde cada vértice seu se conecta a todos os outros vértices do grafo.

Grafo Completo

Grafo Completo

Tipos de Grafos

Grafo Regular

 Um grafo regular é um grafo em que todos os vértices possuem o mesmo grau (número de arestas ligadas a ele).

Tipos de Grafos Subgrafo

• Dado um grafo G(V,A), temos que o grafo $G_S(V_S,A_S)$, é um subgrafo de G(V,A) se o conjunto de vértices V_S for um subconjunto de $V,V_S\subseteq V$, e se o conjunto de arestas A_S for um subconjunto de $A,A_S\subseteq A$.

Tipos de Grafos Grafo Bipartido

- Um grafo G = (V, A) é chamado grafo bipartido se o seu conjunto de vértices puder ser dividido em dois subconjuntos V_1 e V_2 sem intersecção.
- De maneira que as arestas conectam apenas os vértices que estão em subconjuntos diferentes, ou seja, uma aresta sempre conecta um vértice de V_1 a V_2 ou vice-versa, porém ela nunca conecta vértices do mesmo subconjunto entre si.
- Podem se atribuir duas cores diferentes ao vértices, sem que existam arestas entre vértices de cores diferentes.
- Em um grafo bipartido, todo ciclo tem comprimento par.

Grafo Bipartido

Tipos de Grafos

Definições

- Um grafo G = (V, A) é chamado grafo bipartido se o seu conjunto de vértices puder ser dividido em dois subconjuntos V_1 e V_2 sem intersecção.
- De maneira que as arestas conectam apenas os vértices que estão em subconjuntos diferentes, ou seja, uma aresta sempre conecta um vértice de V₁ a V₂ ou vice-versa, porém ela nunca conecta vértices do mesmo subconjunto entre si.
- Podem se atribuir duas cores diferentes ao vértices, sem que existam arestas entre vértices de cores diferentes.
- Em um grafo bipartido, todo ciclo tem comprimento par.

Tipos de Grafos

Grafos Isomorfos

- Dois grafos G_1 (V_1 , A_1) e G_2 (V_2 , A_2) são ditos isomorfos se existir uma função que faça o mapeamento de vértices e arestas de modo que os dois grafos se tornem coincidentes (idênticos em aparência).
- Em outras palavras, dois grafos são isomorfos se houver uma função f tal que, para cada dois vértices a e b adjacentes no grafo G_1 , f(a) e f(b) também sejam adjacentes no grafo G_2 .
- Condições necessárias para que dois grafos sejam isomorfos:
 - Possuírem o mesmo número de vértices;
 - Possuírem o mesmo número de arestas;
 - Possuírem o mesmo número de vértices com graus correspondentes.

Operações

- Definem-se seis operações primitivas de grafos que são necessárias para a manutenção de um grafo:
 - Inserção de um vértice (insert vertex);
 - Remoção de um vértice (delete vertex);
 - Adição de uma aresta (add edge);
 - Remoção de uma aresta (delete edge);
 - Buscar um vértice (find vertex);
 - Percorrer o grafo (traverse graph).

Operações – Inserir um Vértice

• Insere um novo vértice ao grafo. Quando um vértice é inserido ele fica disjunto, não esta conectado aos outros vértices do grafo.

Operações – Eliminar um Vértice

• Elimina um vértice do grafo. Quando um vértice é removido, todas as arestas que tem esse vértice com um de seus extremos, são também removidas.

Operações – Adicionar uma Aresta

- Adicionar uma aresta conecta um vértice a outro vértice. Esta operação exige que dois vértices sejam especificados.
- Se o grafo for um digrafo, um dos vértices deve ser especificado como origem e o outro como destino.
- Se um vértice precisa de várias arestas, a operação de adição deve ser repetida para cada vértice adjacente.

A figura ilustra a inserção da aresta {A,E} ao grafo.

Grafos (Graphs) Operações – Remover uma Aresta

Esta operação remove uma aresta do grafo.

A figura ilustra a remoção da aresta {A,E} do grafo.

Operações – Buscar um vértice

• Esta operação percorre o grafo, buscando um vértice especifico. Se o vértice é encontrado seus dados são retornados. Caso contrário, retorna-se um indicador de erro.

A figura ilustra a busca pelo vértice C.

Grafos (Graphs) Percurso em Grafos

- Percorrer um Grafo
 - Profundidade Primeiro (Depth-first)
 - Largura Primeiro (Bread-first)

Grafos (Graphs) Percurso em Profundidade

 No caso particular em que o grafo é uma árvore temos como ponto de partida a raiz.

Depth-first Traversal of a Tree

Grafos (Graphs) Percurso em Profundidade

- Para percorrer um grafo em profundidade (Depth-first) fazemos uso de uma estrutura de pilha.
- Os vértices (ou nós) adjacentes são colocados na pilha assim que descobertos e processados de acordo com as regras dessa estrutura.

Depth-first Traversal of a Graph

Percurso em Largura

 No caso particular em que o grafo é uma árvore temos como ponto de partida a raiz.

Percurso em Largura

- Para percorrer um grafo em largura (Depth-first) fazemos uso de uma estrutura de fila.
- Os vértices (ou nós) adjacentes são colocados na fila assim que descobertos e processados de acordo com as regras dessa estrutura.

Redes (Networks) Definição

Uma rede ou grafo ponderado é um grafo em que existe um ou mais atributos associados a suas conexões. Por exemplo, um atributo representando distância ou capacidade de uma conexão.

Redes (Networks)

Representação da Rede

Representações possíveis de uma rede ou grafo ponderado.

Referências

• Gilberg, R.F. e Forouzan, B. A. Data Structures_A Pseudocode Approach with C. Capítulo II. Graphs. Segunda Edição. Editora Cengage, Thomson Learning, 2005.