Problem B. Building Resistors

You are conducting a physics experiment. During the experiment, you need a resistor with resistant value $\frac{p}{q}[\Omega]$, where p and q are both positive integers.

However, you have only 10^{100000} unit resistors, which means resistors that have unit resistance value $R_0=1[\Omega]$. By plugging these unit resistors, we will make a new circuit element with resistance $\frac{p}{q}[\Omega]$. In this problem, only these are considered as elements:

- 1. *One* unit resistor
- 2. **An** element and **one** unit resistor plugged in series (consecutive connection)

3. **An** element and **one** unit resistor plugged in a row (parallel connection)

Re
$$R_e$$
 $R_o = I[\Omega]$

Although you have lots of unit resistors, you are too lazy to plug those, so you want to use the *minimum number of unit resistors*. Given p and q, write a program that calculates the minimum number of unit resistors that you need to make a new circuit element with resistance $\frac{p}{q}[\Omega]$. We can prove that it is always possible.

Input

Your input consists of an arbitrary number of records, but no more than 10,000.

Each input record is a line that contains two integers p and q ($1 \le p, q \le 10^{18}$), separated by a space.

The end of input is indicated by a line containing only the value -1.

Output

For each input record, print a line that contains the minimum number of unit resistors that you need to make a new circuit element with resistance $\frac{p}{a}[\Omega]$.

Example

Standard input	Standard output
3 1 3 2 3 3 -1	3 3 1

Explanation of the example

For the second example:

- Connect two unit resistors (we can view as one element + one unit resistor) in parallel and make a circuit element with resistance $\frac{1}{\frac{1}{2} + \frac{1}{4}} = \frac{1}{2} [\Omega]$.
- Connect this element and a unit resistor consecutively and make a new circuit element with resistance $\frac{1}{2} + 1 = \frac{3}{2} [\Omega]$.

Time Limit

1 second.