Álgebra Linear e suas Aplicações

Notas de Aula

Petronio Pulino

$$\begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} = Q \begin{bmatrix} -4 \\ 1 \\ 6 \end{bmatrix} Q^{t}$$

$$Q^t Q = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$$

Álgebra Linear e suas Aplicações Notas de Aula

Petronio Pulino

 $Departamento\ de\ Matemática\ Aplicada$ Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas $E{-}mail{:}\ pulino@ime.unicamp.br$ $www.ime.unicamp.br/{\sim}pulino/ALESA/$

Conteúdo

1	Est	Estruturas Algébricas			
	1.1	Operação Binária. Grupos	2		
	1.2	Corpo Comutativo	7		
	1.3	Corpo com Valor Absoluto	10		
	1.4	Corpo Ordenado	12		
	1.5	Valor Absoluto num Corpo Ordenado	15		
	1.6	Números Reais	17		
	1.7	Números Complexos	20		
	1.8	Característica do Corpo	25		
	1.9	Métricas	27		
2	Ma	trizes e Sistemas Lineares	29		
	2.1	Matrizes	30		
	2.2	Tipos Especiais de Matrizes	41		
	2.3	Inversa de uma Matriz	59		
	2.4	Matrizes em Blocos	63		
	2.5	Operações Elementares. Equivalência	76		
	2.6	Forma Escalonada. Forma Escada	81		
	2.7	Matrizes Elementares	84		
	2.8	Matrizes Congruentes. Lei da Inércia	101		
	2.9	Sistemas de Equações Lineares	107		
3	Esp	paços Vetoriais	L 3 9		
	3.1	Espaço Vetorial. Propriedades	140		
	3.2	Subespaço Vetorial	147		
	3.3	Combinação Linear. Subespaço Gerado	154		
	3.4	Soma e Intersecção. Soma Direta	158		
	3.5	Dependência e Independência Linear	167		
	3.6	Bases e Dimensão	173		
	3.7	Coordenadas	204		
	3.8	Mudança de Base	212		

ii CONTEÚDO

4	Tra	$nsforma \~c\~oes\ Lineares$	219	
	4.1	Transformações do Plano no Plano	. 220	
	4.2	Transformação Linear	. 221	
	4.3	Núcleo e Imagem	. 226	
	4.4	Posto e Nulidade	. 232	
	4.5	Espaços Vetoriais Isomorfos	. 244	
	4.6	Álgebra das Transformações Lineares	. 249	
	4.7	Transformação Inversa	. 253	
	4.8	Representação Matricial	. 268	
5	Produto Interno 28			
	5.1	Introdução	. 284	
	5.2	Definição de Produto Interno	. 284	
	5.3	Desigualdade de Cauchy–Schwarz	. 297	
	5.4	Definição de Norma. Norma Euclidiana	. 299	
	5.5	Definição de Ângulo. Ortogonalidade	. 303	
	5.6	Base Ortogonal. Coeficientes de Fourier	. 311	
	5.7	Processo de Gram–Schmidt	. 316	
	5.8	Complemento Ortogonal	. 324	
	5.9	Decomposição Ortogonal	. 329	
	5.10	Identidade de Parseval	. 337	
	5.11	Desigualdade de Bessel	. 339	
	5.12	Operadores Simétricos	. 341	
	5.13	Operadores Hermitianos	. 345	
	5.14	Operadores Ortogonais	. 347	
	5.15	Projeção Ortogonal	. 353	
	5.16	Reflexão sobre um Subespaço	. 361	
	5.17	Melhor Aproximação em Subespaços	. 365	
6	Autovalores e Autovetores 369			
	6.1	Autovalor e Autovetor de um Operador Linear	. 370	
	6.2	Autovalor e Autovetor de uma Matriz	. 379	
	6.3	Multiplicidade Algébrica e Geométrica	. 394	
	6.4	Matrizes Especiais	. 399	
	6.5	Aplicação. Classificação de Pontos Críticos	. 411	
	6.6	Diagonalização de Operadores Lineares	. 416	
	6.7	Diagonalização de Operadores Hermitianos	. 438	

CONTEÚDO iii

7	Funcionais Lineares e Espaço Dual		463	
	7.1	Introdução	464	
	7.2	Funcionais Lineares	465	
	7.3	Espaço Dual	471	
	7.4	Teorema de Representação de Riesz	488	
8	$\acute{A}lg$	ebra Linear Computacional	493	
	8.1	Introdução	494	
	8.2	Decomposição de Schur. Teorema Espectral	495	
	8.3	Normas Consistentes em Espaços de Matrizes	501	
	8.4	Análise de Sensibilidade de Sistemas Lineares	514	
	8.5	Sistema Linear Positivo—Definido	532	
	8.6	Métodos dos Gradientes Conjugados	537	
	8.7	Fatoração de Cholesky	552	
	8.8	Métodos Iterativos para Sistemas Lineares	563	
	8.9	Sistema Linear Sobredeterminado	588	
	8.10	Subespaços Fundamentais de uma Matriz	594	
	8.11	Projeções Ortogonais	612	
	8.12	Matriz de Projeção Ortogonal	618	
	8.13	Fatoração QR	626	
		Modelos de Regressão Linear		
	8.15	Solução de norma—2 Mínima	681	
		Problemas de Ponto Sela		
	8.17	Decomposição em Valores Singulares	708	
	Bib	liografia	731	

iv *CONTEÚDO*

4

Transformações Lineares

Conteúdo				
4.1	Transformações do Plano no Plano			
4.2	Transformação Linear			
4.3	Núcleo e Imagem			
4.4	Posto e Nulidade			
4.5	Espaços Vetoriais Isomorfos			
4.6	Álgebra das Transformações Lineares $\dots \dots 249$			
4.7	Transformação Inversa			
4.8	Representação Matricial			

4.1 Transformações do Plano no Plano

Exemplo 4.1.1 Considere o espaço vetorial real \mathbb{R}^2 , e um escalar $\lambda \in \mathbb{R}$ fixo. A transformação

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = \lambda(x,y)$$

é uma contração para $|\lambda| < 1$. Quando $|\lambda| > 1$, dizemos que T é uma expansão.

Exemplo 4.1.2 Considere o espaço vetorial real \mathbb{R}^2 . A transformação

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (x,-y)$$

é a reflexão em torno do eixo-ox.

Exemplo 4.1.3 Considere o espaço vetorial real \mathbb{R}^2 . A transformação

é a reflexão em torno da origem.

Exemplo 4.1.4 Considere o espaço vetorial real \mathbb{R}^2 . Dado um elemento $(a,b) \in \mathbb{R}^2$, a transformação

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (x,y) + (a,b)$$

é uma translação.

Exemplo 4.1.5 Considere o espaço vetorial real \mathbb{R}^2 . A transformação

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longrightarrow T(x,y) = (x\cos(\theta) - y\sin(\theta), x\sin(\theta) + y\cos(\theta))$

é uma rotação de um ângulo θ no sentido anti-horário.

4.2 Transformação Linear

Definição 4.2.1 Sejam V e W espaços vetoriais sobre o corpo **F** e T uma aplicação de V em W. Dizemos que T é uma **Transformação Linear** se possui as seguintes propriedades:

(a)
$$T(u + v) = T(u) + T(v)$$
 para todo $u, v \in V$.

(b)
$$T(\lambda u) = \lambda T(u)$$
 para todo $u \in V$, $\lambda \in \mathbb{F}$.

Das duas propriedades de transformação linear, obtemos facilmente que

$$T(au + bv) = aT(u) + bT(v)$$

para todo $u, v \in V$ e todos escalares $a, b \in \mathbb{F}$. Por indução, obtemos uma relação mais geral

$$T\left(\sum_{j=1}^{n} \alpha_{j} u_{j}\right) = \sum_{j=1}^{n} \alpha_{j} T(u_{j})$$

para quaisquer elementos $u_1, \dots, u_n \in V$ e quaisquer escalares $\alpha_j, \dots, \alpha_n \in \mathbb{F}$.

Finalmente, fazendo $\lambda = 0$ na propriedade (b), tem-se $T(0_V) = 0_W$.

Exemplo 4.2.1 Seja V um espaço vetorial sobre o corpo \mathbb{F} . Vamos definir a seguinte transformação linear T(v) = v para todo $v \in V$, que é a transformação identidade, denotada por I_V .

Exemplo 4.2.2 Seja V um espaço vetorial sobre o corpo IF. Vamos definir a seguinte transformação linear $T(v) = 0_V$ para todo $v \in V$, que é a transformação nula.

Exemplo 4.2.3 Dado um elemento $c = (c_1, \dots, c_n) \in \mathbb{R}^n$ fixo, porem arbitrário, vamos definir a seguinte transformação linear

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$x \longrightarrow T(x) = \sum_{j=1}^n c_j x_j$$

A transformação linear T é o produto escalar entre o elemento x e o elemento c.

Exemplo 4.2.4 Seja V um espaço vetorial real. Considerando um escalar $\lambda \in \mathbb{R}$ fixo, porem arbitrário, definimos a seguinte transformação linear

A transformação linear T é uma **contração** para $|\lambda| < 1$. Quando $|\lambda| > 1$, dizemos que a transformação linear T é uma **expansão**.

Exemplo 4.2.5 Considerando os espaços vetoriais reais C([a,b]) e $C^1([a,b])$, definimos a sequinte transformação linear

$$T: \mathcal{C}^1([a,b]) \longrightarrow \mathcal{C}([a,b])$$

$$f \longrightarrow T(f) = f'$$

 $com T(f)(x) = f'(x) ; x \in [a, b].$

Exemplo 4.2.6 Considerando os espaços vetoriais reais C([a,b]) e $C^1([a,b])$, definimos a seguinte transformação linear

$$T: \mathcal{C}([a,b]) \longrightarrow \mathcal{C}^1([a,b])$$

$$f \longrightarrow g = T(f)$$

$$com \ g(x) = T(f)(x) = \int_{a}^{x} f(t)dt \ ; \ x \in [a, b].$$

Exemplo 4.2.7 Considere os espaços vetoriais reais \mathbb{R}^m e \mathbb{R}^n . Dada uma matriz $A = [a_{ij}] \in \mathbb{M}_{m \times n}(\mathbb{R})$, definimos a transformação linear associada a matriz A da seguinte forma:

$$T_A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$x \longrightarrow y = T_A(x)$$

onde

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 para $i = 1, \dots, m$

é a i-ésima componente do elemento $y=(y_1,\cdots,y_m)$.

Teorema 4.2.1 Sejam V e W espaços vetoriais sobre o corpo F, com dim(V) igual a n, $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V e w_1, \dots, w_n elementos arbitrários de W. Então, existe uma única transformação linear $T: V \longrightarrow W$ tal que

$$T(v_i) = w_i$$
 para $j = 1, \dots, n$.

Demonstração – Inicialmente vamos mostrar que existe pelo menos uma transformação linear T com $T(v_j) = w_j$. Dado um elemento $u \in V$, sabemos que u é escrito de modo único como:

$$u = \sum_{i=1}^{n} c_i v_i.$$

Para este elemento u, vamos definir uma aplicação $T: V \longrightarrow W$ da forma:

$$T(u) = \sum_{i=1}^{n} c_i w_i.$$

Temos que T é uma transformação bem definida. Pela definição, fica evidente que $T(v_i) = w_i$. Para mostrar que T é uma transformação linear, sejam $\lambda \in \mathbb{F}$ e um elemento $v \in V$ escrito de modo único como:

$$v = \sum_{i=1}^{n} b_i v_i.$$

Assim, temos que

$$T(u + \lambda v) = \sum_{i=1}^{n} (c_i + \lambda b_i) w_i = \sum_{i=1}^{n} c_i w_i + \lambda \sum_{i=1}^{n} b_i w_i = T(u) + \lambda T(v).$$

mostrando que a aplicação T é linear.

Finalmente vamos mostrar a unicidade da transformação linear T. Para isso, supomos que existe uma outra transformação linear $P:V\longrightarrow W$ tal que

$$P(v_j) = w_j$$
 para $j = 1, \dots, n$.

Desse modo, temos que

$$P(u) = P\left(\sum_{i=1}^{n} c_i v_i\right) = \sum_{i=1}^{n} c_i P(v_i) = \sum_{i=1}^{n} c_i w_i.$$

Logo, P é exatamente a regra da transformação linear T definida acima. Portanto, provamos a unicidade da transformação linear T, o que completa a demonstração.

Exemplo 4.2.8 A aplicação $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_2(\mathbb{R})$ tal que

$$T(1,0) = 1 - x$$
 e $T(0,1) = 1 - x^2$

define uma transformação linear de \mathbb{R}^2 em $\mathcal{P}_2(\mathbb{R})$.

Estamos considerando o espaço vetorial \mathbb{R}^2 com a base canônica

$$\beta = \{(1,0), (0,1)\}.$$

Assim, dado um elemento $(a,b) \in \mathbb{R}^2$, podemos representa—lo de modo único como:

$$(a,b) = a(1,0) + b(0,1).$$

Desse modo, temos que

$$T(a,b) = aT(1,0) + bT(0,1) = a(1-x) + b(1-x^2).$$

Portanto, obtemos explicitamente a transformação linear T

$$T(a,b) = (a+b) - ax - bx^2$$
 para todo $(a,b) \in \mathbb{R}^2$.

Exemplo 4.2.9 A aplicação $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_3(\mathbb{R})$ tal que

$$T(1,1) = x$$
 e $T(-1,1) = x - x^3$

define uma transformação linear de \mathbb{R}^2 em $\mathcal{P}_3(\mathbb{R})$.

Estamos considerando o espaço vetorial \mathbb{R}^2 com a base ordenada

$$\gamma = \{ (1,1), (-1,1) \}.$$

Assim, dado um elemento $(a,b) \in \mathbb{R}^2$, podemos representa—lo de modo único como:

$$(a,b) = \frac{a+b}{2}(1,1) + \frac{b-a}{2}(-1,1).$$

Desse modo, para todo $(a,b) \in \mathbb{R}^2$, temos que

$$T(a,b) = \frac{a+b}{2}T(1,1) + \frac{b-a}{2}T(-1,1) = \frac{a+b}{2}x + \frac{b-a}{2}(x-x^3).$$

obtendo explicitamente a transformação linear T, dada por:

$$T(a,b) = bx + \frac{a-b}{2}x^3.$$

Exercícios

Exercício 4.1 Determine a transformação linear T do plano no plano que representa uma rotação anti-horária de $\frac{\pi}{4}$ seguida por uma dilatação de $\sqrt{2}$.

Exercício 4.2 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por:

$$T(x,y) = (x,-y).$$

Seja K um triângulo de vértices A=(-1,4), B=(3,1) e C=(2,6). Faça a representação gráfica da imagem de K pela transformação T.

Exercício 4.3 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ associada a matriz

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Considere o círculo $S = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Faça a representação gráfica da imagem do círculo S pela transformação linear T.

Exercício 4.4 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por:

$$T(x,y) = (2x - y, -x + 2y).$$

Determine uma base para cada um dos seguintes subespaços:

$$W = \{ (x,y) \in \mathbb{R}^2 / T(x,y) = 3(x,y) \}$$

$$U = \{ (x,y) \in \mathbb{R}^2 / T(x,y) = (x,y) \}$$

Exercício 4.5 Determine a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$T(1,0,0) = (0,0,1)$$
 , $T(1,0,1) = (1,1,1)$ e $T(0,-1,1) = (1,1,0)$.

Exercício 4.6 Determine a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_3(\mathbb{R})$ tal que

$$T(1,1) = x^2 - 1$$
 e $T(1,-1) = x^3 + 1$.

Exercício 4.7 Determine a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathcal{P}_2(\mathbb{R})$ tal que

$$T(1,0,0) = 1 - x$$
, $T(0,1,0) = 1 + x$ e $T(0,0,1) = 1 - x^2$.

Exercício 4.8 Determine a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$T(1,0,0) = (1,0), T(0,1,0) = (1,-1)$$
 e $T(0,0,1) = (0,1)$.

4.3 Núcleo e Imagem

Definição 4.3.1 Sejam V e W espaços vetoriais sobre o corpo **I**F e T umo transformação linear de V em W. O conjunto

$$Im(T) = \{ w \in W / w = T(v) \text{ para algum } v \in V \}$$

é denominado **imagem** da transformação T.

Teorema 4.3.1 O conjunto $Im(T) \subset W$ é um subespaço vetorial de W.

Demonstração – Sabemos que $T(0_V) = 0_W$. Assim, $0_W \in Im(T)$.

Agora, tomando $T(u), T(v) \in Im(T)$, tem-se que

$$T(u) + T(v) = T(u + v)$$

como $u + v \in V$ e $T(u + v) \in W$, temos que $T(u) + T(v) \in Im(T)$.

Finalmente, tomando $T(u) \in Im(T)$ e $\lambda \in \mathbb{F}$, temos que

$$\lambda T(u) = T(\lambda u)$$

como $\lambda u \in V$ e $T(\lambda u) \in W$, obtemos que $\lambda T(u) \in Im(T)$.

Definição 4.3.2 Sejam V e W espaços vetoriais sobre o corpo **F** e T uma transformação linear de V em W. O conjunto

$$Ker(T) = \{ v \in V / T(v) = 0_W \}$$

é denominado **núcleo** da transformação T.

Teorema 4.3.2 O conjunto $Ker(T) \subset V$ é um subespaço vetorial de V.

Demonstração – Sabemos que $T(0_V) = 0_W$. Assim, $0_V \in Ker(T)$.

Agora, tomando $u, v \in Ker(T)$, temos que

$$T(u) + T(v) = T(u + v) = 0_W.$$

 $Logo, u + v \in Ker(T).$

Finalmente, tomando $u \in Ker(T)$ e $\lambda \in \mathbb{F}$, temos que

$$T(\lambda u) = \lambda T(u) = 0_W.$$

Logo, $\lambda u \in Ker(T)$, o que completa a demonstração.

Exemplo 4.3.1 Determinar o núcleo da transformação linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longrightarrow T(x,y) = 3x + 2y$$

Resposta:
$$T(x,y) = 3x + 2y = 0 \implies y = -\frac{3}{2}x$$

Exemplo 4.3.2 Determinar o núcleo da transformação diferenciação

$$T: \mathcal{C}^1([a,b]) \longrightarrow \mathcal{C}([a,b])$$

$$u \longrightarrow T(u) = u'$$

Note que T(u)(x) = u'(x) para $x \in [a, b]$.

Resposta:
$$T(u)(x) = u'(x) = 0 \implies Ker(T) = [1] = \mathcal{P}_0(\mathbb{R})$$

Exemplo 4.3.3 Determinar o núcleo da transformação linear

$$T: \ \mathcal{C}^2([a,b]) \ \longrightarrow \ \mathcal{C}([a,b])$$

$$u \ \longrightarrow \ T(u) = u''$$

Note que T(u)(x) = u''(x) para $x \in [a, b]$.

Resposta:
$$T(u)(x) = u''(x) = 0 \implies Ker(T) = [1, x] = \mathcal{P}_1(\mathbb{R})$$

Exemplo 4.3.4 Determinar o núcleo da transformação linear

$$T: \mathcal{C}^2([a,b]) \longrightarrow \mathcal{C}([a,b])$$

$$u \longrightarrow T(u) = u'' + u$$

Note que T(u)(x) = u''(x) + u(x) para $x \in [a,b]$.

Resposta:
$$T(u)(x) = u''(x) + u(x) = 0 \implies Ker(T) = [\sin(x), \cos(x)]$$

Exemplo 4.3.5 Determinar o núcleo da transformação linear

$$T: \mathcal{C}^2([a,b]) \longrightarrow \mathcal{C}([a,b])$$

$$u \longrightarrow T(u) = -u'' + u$$

Note que T(u)(x) = -u''(x) + u(x) para $x \in [a, b]$.

Resposta:
$$T(u)(x) = -u''(x) + u(x) = 0 \implies Ker(T) = [\exp(x), \exp(-x)]$$

Exemplo 4.3.6 Considere a transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longrightarrow T(x, y, z) = (x - 3y + 5z, -x + 4y - z)$$

Determine os subespaços Im(T) e Ker(T), e dim(Im(T)).

A transformação T pode ser escrita da seguinte forma:

$$T(x,y,z) = x(1,-1) + y(-3,4) + z(5,-1)$$
, $x, y, z \in \mathbb{R}$.

Assim, temos que $Im(T)=[(1,-1)\,,\,(-3,4)\,,\,(5,-1)]$. Podemos verificar facilmente que $\{\,(1,-1),\,(-3,4)\,\}$ é uma base para Im(T). Logo, dim(Im(T))=2.

O núcleo da transformação T é o conjunto solução do sistema linear homogêneo

$$\begin{cases} x - 3y + 5z = 0 \\ -x + 4y - z = 0 \end{cases} \iff \begin{cases} x - 3y + 5z = 0 \\ y + 4z = 0 \end{cases}$$

Assim, temos que Ker(T) = [(-17, -4, 1)]. Logo, dim(Ker(T)) = 1.

Exemplo 4.3.7 Dado o elemento $c=(1,-1,2)\in\mathbb{R}^3$. O núcleo da transformação linear T definida pelo produto escalar entre os elementos $(x,y,z)\in\mathbb{R}^3$ e o elemento fixo c, veja o Exemplo 4.2.3, é dado por:

$$Ker(T) = \{ (x, y, z) \in \mathbb{R}^3 / T(x, y, z) = x - y + 2z = 0 \},$$

isto é, Ker(T) é um plano contido em \mathbb{R}^3 . Assim, temos que dim(Ker(T)) = 2. Note que a $Im(T) = \mathbb{R}$. Logo, dim(Im(T)) = 1.

Exemplo 4.3.8 Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathcal{P}_3(\mathbb{R})$ definida por:

$$T(1,0,1) = 2 + x^2 + x^3$$
, $T(0,1,0) = 1 + x^2$ e $T(0,0,1) = x^2 - x^3$.

- (a) Calcule T(a,b,c) para a transformação linear T.
- (b) Determine uma base para o subespaço Im(T).

Podemos verificar facilmente que o conjunto

$$\gamma = \{ (1,0,1), (0,1,0), (0,0,1) \}$$

é uma base para o espaço vetorial \mathbb{R}^3 . Desse modo, tomando um elemento genérico $(a,b,c)\in\mathbb{R}^3$ vamos fazer sua representação em relação à base γ , isto é,

$$(a,b,c) = c_1(1,0,1) + c_2(0,1,0) + c_3(0,0,1),$$

obtendo $c_1 = a$, $c_2 = b$ e $c_3 = c - a$. Desse modo, temos que (a, b, c) = a(1, 0, 1) + b(0, 1, 0) + (c - a)(0, 0, 1).

(a) Portanto, podemos escrever a transformação linear T da seguinte forma:

$$T(a,b,c) = aT(1,0,1) + bT(0,1,0) + (c-a)T(0,0,1)$$

$$= a(2 + x^2 + x^3) + b(1 + x^2) + (c-a)(x^2 - x^3)$$

$$= a(2 + 2x^3) + b(1 + x^2) + c(x^2 - x^3)$$

Assim, determinamos explicitamente a expressão da transformação linear T dada por:

$$T(a,b,c) = a(2 + 2x^3) + b(1 + x^2) + c(x^2 - x^3)$$

para todo $(a, b, c) \in \mathbb{R}^3$.

(b) Considerando T(a, b, c), sabemos que

$$Im(T) = [2 + 2x^3, 1 + x^2, x^2 - x^3].$$

Assim, a partir do sistema de geradores vamos determinar uma base para o subespaço Im(T). Para isso, construímos a matriz A cujas linhas são formadas pelas coordenadas dos elementos do sistema de geradores em relação à base canônica de $\mathcal{P}_3(\mathbb{R})$, dada por:

$$A = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$$

Em seguida, efetuamos o escalonamento da matriz A, obtendo uma matriz \widehat{A} na forma escalonada, linha equivalente a matriz A, dada por:

$$\widehat{A} = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Portanto, podemos concluir que

$$\{2 + 2x^3, 1 + x^2\}$$

é uma base para o subespaço Im(T).

Exercícios

Exercício 4.9 Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dada por:

$$T(x, y, z) = (x - y - z, 2z - x).$$

Determine uma base para Ker(T) e uma base para Im(T).

Exercício 4.10 Seja $U \subset M_3(\mathbb{R})$ o subespaço das matrizes diagonais. Considere a transformação linear $T : \mathcal{P}_2(\mathbb{R}) \longrightarrow U$ definida por:

$$T(a + bx + cx^{2}) = \begin{bmatrix} a - b + 2c & 0 & 0 \\ 0 & 2a + b & 0 \\ 0 & 0 & -a - 2b + 2c \end{bmatrix}.$$

Determine uma base para Ker(T) e uma base para Im(T).

Exercício 4.11 Considere a transformação linear $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$ dada por:

$$T(p)(x) = p'(x) + \int_0^x p(t)dt$$
.

Determine Ker(T) e uma base para Im(T).

Exercício 4.12 Considere a transformação linear $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$ dada por:

$$T(p)(x) = p'(x) + xp(x).$$

Determine uma base para Ker(T) e uma base para Im(T).

Exercício 4.13 Considere a transformação linear $T: \mathcal{P}_4(I\!\!R) \longrightarrow \mathcal{P}_4(I\!\!R)$ dada por:

$$T(p(x)) = -p''(x) + p(x).$$

Determine uma base para Ker(T) e uma base para Im(T).

Exercício 4.14 Considere a transformação linear $T: \mathcal{P}_4(\mathbb{R}) \longrightarrow \mathcal{P}_4(\mathbb{R})$ dada por:

$$T(p(x)) = p''(x) + p(x).$$

Determine uma base para Ker(T) e uma base para Im(T).

Exercício 4.15 Considere a transformação linear $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ dada por:

$$T(p(x)) = \int_{-1}^{1} p(x)dx + p'(0).$$

Determine uma base para Ker(T) e uma base para Im(T).

4.4 Posto e Nulidade

Definição 4.4.1 Sejam V e W espaços vetoriais sobre o corpo **F** e T uma transformação linear de V em W. Definimos

- (a) O **Posto** de T, que denotamos por posto(T), como sendo a dimensão da imagem de T, isto é, posto(T) = dim(Im(T)).
- (b) A **Nulidade** de T, que denotamos por Null(T), como sendo a dimensão do núcleo de T, isto é, Null(T) = dim(Ker(T)).

Definição 4.4.2 Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e T uma aplicação de V em W. Dizemos que T é uma aplicação **injetora** se, e somente se, para $u, v \in V$, com $u \neq v$ tem-se que $T(u) \neq T(v)$. De modo equivalente, T é **injetora** se, e somente se, para $u, v \in V$, com T(u) = T(v) implica que u = v.

Definição 4.4.3 Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e T uma aplicação de V em W. Dizemos que T é uma aplicação **sobrejetora** se, e somente se, Im(T) = W, isto é, para todo $w \in W$, existe $v \in V$ tal que T(v) = w.

Teorema 4.4.1 Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e T uma transformação linear de V em W. Então, T é uma aplicação injetora se, e somente se, $Ker(T) = \{ 0_V \}$.

Demonstração

 (\Longrightarrow) Por hipótese temos que T é injetora, isto é, T(u)=T(v) implica que u=v. Vamos mostrar que $Ker(T)=\{\ 0_V\}$.

Seja $u \in Ker(T)$, isto é, $T(u) = 0_W$. Como $T(0_V) = 0_W$, temos que $T(u) = T(0_V)$. Pelo fato de T ser injetora, devemos ter $u = 0_V$. Logo, $Ker(T) = \{0_V\}$.

(\Leftarrow) Por hipótese temos que $Ker(T) = \{ 0_V \}$. Vamos mostrar que T é injetora. Para isso, tomamos $u, v \in V$ tais que T(u) = T(v). Assim, temos que

$$T(u) - T(v) = T(u - v) = 0_W.$$

Como $Ker(T) = \{ 0_V \}$, obtemos

$$(u - v) \in Ker(T) \implies u - v = 0_V \implies u = v.$$

Logo, T é injetora, o que completa a demonstração.

Teorema 4.4.2 Sejam V e W espaços vetoriais sobre o corpo $I\!\!F$, com dim(V) = n, e $T:V\longrightarrow W$ é uma transformação linear. Então,

$$dim(Ker(T)) + dim(Im(T)) = dim(V).$$

Demonstração – Seja $\{v_1, \dots, v_m\}$ uma base para Ker(T), com $m \leq n$. Assim, esse conjunto faz parte de uma base para V. Desse modo, existem elementos v_{m+1}, \dots, v_n em V tais que $\{v_1, \dots, v_m, v_{m+1}, \dots, v_n\}$ seja uma base para V. Vamos mostrar que $\{T(v_{m+1}), \dots, T(v_n)\}$ é uma base para Im(T).

Inicialmente vamos mostrar que $Im(T) = [T(v_{m+1}), \dots, T(v_n)]$. Seja $w \in Im(T)$, isto é, w = T(u) para algum $u \in V$. Assim, como $u \in V$, tem-se que

$$u = \sum_{i=1}^{m} c_i v_i + \sum_{i=m+1}^{n} c_i v_i.$$

Logo, w = T(u) é representado na forma:

$$w = \sum_{i=1}^{m} c_i T(v_i) + \sum_{i=m+1}^{n} c_i T(v_i) = \sum_{i=m+1}^{n} c_i T(v_i),$$

uma vez que $T(v_1) = T(v_2) = \cdots = T(v_m) = 0_W$.

Devemos mostrar que $\{T(v_{m+1}), \dots, T(v_n)\}$ é linearmente independente em Im(T).

Suponhamos que existam escalares $c_{m+1}, \dots, c_n \in \mathbb{F}$ tais que

$$\sum_{i=m+1}^{n} c_i T(v_i) = 0_W \iff T\left(\sum_{i=m+1}^{n} c_i v_i\right) = T(v) = 0_W.$$

Desse modo, o elemento $v \in Ker(T)$, que é definido por:

$$v = \sum_{i=m+1}^{n} c_i v_i , (4.1)$$

pode também ser representado da seguinte forma:

$$v = \sum_{i=1}^{m} b_i v_i , (4.2)$$

uma vez que $\{v_1, \dots, v_m\}$ é uma base para Ker(T). Subtraindo (4.1) de (4.2), obtemos

$$\sum_{i=1}^{m} b_i v_i - \sum_{i=m+1}^{n} c_i v_i = 0_V ,$$

como $\{v_1, \dots, v_m, v_{m+1}, \dots, v_n\}$ é linearmente independente em V, isso implica que

$$b_1 = \cdots = b_m = c_{m+1} = \cdots = c_n = 0.$$

Assim, provamos que $\{T(v_{m+1}), \dots, T(v_n)\}$ é linearmente independente em Im(T). Logo, temos que dim(Im(T)) = n - m e dim(Ker(T)) = m.

Portanto, provamos que

$$dim(Ker(T)) + dim(Im(T)) = n = dim(V),$$

o que completa a demonstração.

Teorema 4.4.3 Sejam V e W espaços vetoriais sobre o corpo $I\!\!F$, com dim(V) = n, e $T:V\longrightarrow W$ é uma transformação linear. As seguintes afirmações são equivalentes:

- (a) T é injetora.
- (b) Seja $\{v_1, \dots, v_m\}$ linearmente independente em V. Então,

$$\{T(v_1), \cdots, T(v_m)\}$$

 \acute{e} linearmente independente em Im(T).

- (c) dim(Im(T)) = n.
- (d) Seja $\{v_1, \dots, v_n\}$ uma base para V. Então, $\{T(v_1), \dots, T(v_n)\}$ é uma base para Im(T).

Demonstração

Vamos mostrar que $(a) \Longrightarrow (b)$. Tomando uma combinação linear nula

$$0_W = \sum_{i=1}^m c_i T(v_i) = T \left(\sum_{i=1}^m c_i v_i \right)$$

e considerando a hipótese que $\,T\,$ é injetora, pelo Teorema 4.4.1, temos que

$$\sum_{i=1}^m c_i v_i = 0_V.$$

Como $\,\{\,v_1\;,\;\cdots\;,\;v_m\,\}\,$ é linearmente independente em $\,V,$ implica que

$$c_1 = c_2 = \cdots = c_m = 0.$$

Portanto, $\{T(v_1), \dots, T(v_m)\}$ é linearmente independente em Im(T).

Vamos mostrar que $(b) \Longrightarrow (c)$. Seja $\{v_1, \dots, v_n\}$ uma base para V. Assim, temos que $\{T(v_1), \dots, T(v_n)\}$ é linearmente independente em Im(T). Desse modo, temos que $dim(Im(T)) \ge n$. Pelo Teorema 4.4.2, temos que $dim(Im(T)) \le n$. Portanto, obtemos dim(Im(T)) = n.

Vamos mostrar que $(c) \Longrightarrow (d)$. Seja $\{v_1, \dots, v_n\}$ uma base para V. Considerando um elemento $w \in Im(T)$, isto é, w = T(u) para algum $u \in V$. Como $u \in V$, temos que

$$u = \sum_{i=1}^{n} c_i v_i \implies w = T \left(\sum_{i=1}^{n} c_i v_i \right) = \sum_{i=1}^{n} c_i T(v_i)$$

Como dim(Im(T)) = n, temos que $\{T(v_1), \cdots, T(v_n)\}$ é uma base para Im(T).

Finalmente, vamos mostrar que $(d) \Longrightarrow (a)$. Seja $\{v_1, \dots, v_n\}$ uma base para V. Tomando $u \in V$, temos que

$$u = \sum_{i=1}^{n} c_i v_i \implies T(u) = \sum_{i=1}^{n} c_i T(v_i)$$

Se $T(u) = 0_W$, isto é, $u \in Ker(T)$, implica que

$$c_1 = c_2 = \cdots = c_n = 0$$
,

pois $\{T(v_1), \dots, T(v_n)\}$ é linearmente independente. Logo, $Ker(T) = \{0_V\}$. Pelo Teorema 4.4.1, temos que T é injetora, o que completa a demonstração.

Corolário 4.4.1 Sejam V e W espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} e $T:V\longrightarrow W$ uma transformação linear. Se $\dim(V)=\dim(W)$, então T é injetora se, e somente se, T é sobrejetora.

Demonstração – A prova pode ficar a cargo do leitor.

Corolário 4.4.2 Sejam V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} e $T:V\longrightarrow W$ uma transformação linear injetora. Se $\dim(V)=\dim(W)$, então T leva base em base.

Demonstração – Seja $\{v_1, \dots, v_n\}$ uma base para V. Pelo Teorema 4.4.3, temos que $\{T(v_1), \dots, T(v_n)\}$ é linearmente independente em W. Como dim(V) = dim(W), obtemos que $\{T(v_1), \dots, T(v_n)\}$ é uma base para W.

Definição 4.4.4 Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e T uma aplicação de V em W. Dizemos que T é uma aplicação **bijetora** se, e somente se, T é injetora e sobrejetora ao mesmo tempo.

Exemplo 4.4.1 Considere a seguinte transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

$$(x,y,z) \longrightarrow T(x,y,z) = -x + y + 2z.$$

Determine Ker(T), Null(T) = dim(Ker(T)), Im(T) e posto(T) = dim(Im(T)).

O núcleo da transformação T são os elementos $(x, y, z) \in \mathbb{R}^3$ que satisfazem a equação

$$T(x, y, z) = -x + y + 2z = 0.$$

Assim, temos que Ker(T) = [(1,1,0),(2,0,1)]. Podemos verificar facilmente que dim(Ker(T)) = 2. Portanto, pelo Teorema 4.4.2, tem—se que dim(Im(T)) = 1. Logo, como $Im(T) \subset \mathbb{R}$, temos que $Im(T) = \mathbb{R}$.

Exemplo 4.4.2 A transformação linear definida da forma:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longrightarrow T(x,y) = (2x - y, x + y)$

é uma transformação linear injetora.

O núcleo da transformação linear T é conjunto solução do sistema linear homogêneo

$$\begin{cases} 2x - y = 0 \\ x + y = 0 \end{cases} \iff \begin{cases} 2x - y = 0 \\ 3y = 0 \end{cases}$$

que possui somente a solução trivial x = 0 e y = 0.

Desse modo, temos que $Ker(T) = \{ 0_{\mathbb{R}^2} \}$. Assim, provamos que a transformação linear T é injetora.

Exemplo 4.4.3 Determine o núcleo e a imagem do operador linear

$$T: \mathcal{P}_3(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$$

 $p(x) \longrightarrow T(p(x)) = x^2 p''(x)$

Resposta:
$$Ker(T) = \mathcal{P}_1(\mathbb{R})$$
 e $Im(T) = [x^2, x^3]$

Exemplo 4.4.4 Considere a transformação linear $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ definida por:

$$T(x, y, z, t) = (x - 2y + t, 2x + y - z, 5y - z - 2t).$$

- (a) Determine uma base para o subespaço Ker(T).
- (b) Determine uma base para o subespaço Im(T).
- (c) Determine uma base γ para o \mathbb{R}^4 contendo uma base de Ker(T).

Todo elemento $(x, y, z, t) \in Ker(T)$ satisfaz o seguinte sistema linear homogêneo

$$\begin{cases} x - 2y + t = 0 \\ 2x + y - z = 0 \\ 5y - z - 2t = 0 \end{cases}$$

Colocando na forma matricial e escalonando, obtemos

$$\begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & 1 & -1 & 0 \\ 0 & 5 & -1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 5 & -1 & -2 \\ 0 & 5 & -1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2/5 & 1/5 \\ 0 & 1 & -1/5 & -2/5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Assim, temos que a solução do sistema linear homogêneo é dado por:

$$x = \frac{2}{5}z - \frac{1}{5}t$$
 e $y = \frac{1}{5}z + \frac{2}{5}t$.

Dessa forma, temos que todo elemento $(x, y, z, t) \in Ker(T)$ é escrito da forma:

$$(x, y, z, t) = z\left(\frac{2}{5}, -\frac{1}{5}, 1, 0\right) + t\left(-\frac{1}{5}, \frac{2}{5}, 0, 1\right)$$
 para $z, t \in \mathbb{R}$.

Como os elementos

$$\left(\frac{2}{5}, -\frac{1}{5}, 1, 0\right)$$
 e $\left(-\frac{1}{5}, \frac{2}{5}, 0, 1\right)$

são claramente linearmente independentes, temos que

$$\{(2,-1,5,0), (-1,2,0,5)\}$$

é uma base de Ker(T). Assim, dim(Ker(T)) = 2. Logo, dim(Im(T)) = 2.

Sabemos que Im(T) é gerado pela imagem dos elementos de uma base do domínio pela transformação linear T. Desse modo, considerando a base canônica para \mathbb{R}^4 , temos que Im(T) é gerado pelos seguintes elementos:

$$T(1,0,0,0) = (1,2,0)$$

$$T(0,1,0,0) = (-2,1,5)$$

$$T(0,0,1,0) = (0,-1,-1)$$

$$T(0,0,0,1) = (1,0,-2)$$

Como a dimensão da imagem é 2, podemos escolher quaisquer dois desses elementos que sejam linearmente independentes, isto é,

$$Im(T) = [(1,2,0), (-2,1,5), (0,-1,-1), (1,0,-2)] = [(1,2,0), (0,-1,-1)].$$

Assim, temos $\{(1,2,0), (0,-1,-1)\}$ é uma base do subespaço Im(T).

Para obter a base γ de \mathbb{R}^4 temos que acrescentar mais dois elementos a base de Ker(T), de maneira a termos 4 elementos linearmente independentes no \mathbb{R}^4 . Escolhemos então

$$\gamma = \{ (2, -1, 5, 0), (-1, 2, 0, 5), (1, 0, 0, 0), (0, 1, 0, 0) \}.$$

Quando calculamos T na base canônica de \mathbb{R}^4 , já vimos que os elementos

$$e_1 = (1, 0, 0, 0)$$
 e $e_2 = (0, 1, 0, 0)$

não estavam no subespaço Ker(T), sendo portanto uma boa escolha. Além disso, a equação

$$a_1(2,-1,5,0) + a_2(-1,2,0,5) + a_3(1,0,0,0) + a_4(0,1,0,0) = (0,0,0,0)$$

da origem ao sistema linear homogêneo

$$\begin{cases} 2a_1 - a_2 + 5a_3 & = 0 \\ -a_1 + 2a_2 & + 5a_4 = 0 \\ a_1 & = 0 \\ a_2 & = 0 \end{cases}$$

cuja única solução é $a_1=0,\ a_2=0,\ a_3=0,\ a_4=0.$

Logo, γ é um conjunto de 4 elementos do \mathbb{R}^4 que é linearmente independente. Como \mathbb{R}^4 tem dimensão 4, resulta que γ é uma base do \mathbb{R}^4 e contém a base de Ker(T), conforme foi pedido.

Exemplo 4.4.5 Seja T um operador linear sobre \mathbb{R}^3 tal que

$$T(1,0,0) = (1,1,1)$$
 , $T(0,1,0) = (1,-2,1)$ e $T(0,0,1) = (1,0,-1)$

Mostre que T é um operador linear bijetor.

Para isso basta mostrar que dim(Im(T)) = 3, onde

$$Im(T) = [(1,1,1), (1,-2,1), (1,0,-1)].$$

Assim, pelo Teorema do núcleo e da imagem, temos que dim(Ker(T)) = 0, isto é, $Ker(T) = \{0_{\mathbb{R}^3}\}$. Portanto, T é um operador injetor e sobrejetor, isto é, T é um operador bijetor.

Exemplo 4.4.6 A transformação linear definida da forma:

$$T: \quad I\!\!R^2 \quad \longrightarrow \quad I\!\!R^3$$

$$(x,y) \quad \longrightarrow \quad T(x,y) = (x \ - \ y, \ x, \ x \ + \ y)$$

não é uma transformação linear bijetora.

Podemos verificar facilmente que T é injetora, isto é, $Ker(T) = \{0_{\mathbb{R}^2}\}$, e utilizando o Teorema do núcleo e da imagem, obtemos que dim(Im(T)) = 2. Logo, $Im(T) \neq \mathbb{R}^3$. Portanto, T não é sobrejetora. Assim, T não é bijetora.

Exemplo 4.4.7 Mostre que não existem transformações lineares $T: \mathbb{R}^m \longrightarrow \mathbb{R}^n$, com m < n, que são bijetoras.

Considerando $Ker(T) = \{0_{\mathbb{R}^m}\}$, isto é, dim(Ker(T)) = 0, e utilizando o Teorema do núcleo e da imagem, obtemos dim(Im(T)) = m < n. Logo, $Im(T) \neq \mathbb{R}^n$. Portanto, T não é sobrejetora. Assim, podemos concluir que não existem transformações lineares bijetoras nestas condições.

Exemplo 4.4.8 Determine uma transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$

$$tal\ que\ Im(T) = [(1,1,2,1),(2,1,0,1)].$$

Podemos verificar facilmente que dim(Im(T)) = 2. Logo, dim(Ker(T)) = 1. Assim, tomando a base canônica para o \mathbb{R}^3 , podemos definir uma transformação linear T da seguinte forma:

$$T(1,0,0) = (0,0,0,0)$$

$$T(0,1,0) = (1,1,2,1)$$

$$T(0,0,1) = (2,1,0,1)$$

Desse modo, dado um elemento $(x, y, z) \in \mathbb{R}^3$ temos que

$$T(x,y,z) = xT(1,0,0) + yT(0,1,0) + zT(0,0,1)$$
$$= (y+2z, y+z, 2y, y+z)$$

Note que esse problema possui infinitas soluções, pois sua resolução depende da escolha de uma base para o espaço vetorial \mathbb{R}^3 , e também da escolha do subespaço Ker(T).

Exemplo 4.4.9 Determine uma transformação linear $T : \mathbb{R}^3 \longrightarrow \mathcal{P}_2(\mathbb{R})$ de modo que dim(Ker(T)) = 1.

Como dim(Ker(T)) = 1, devemos ter que dim(Im(T)) = 2. Assim, escolhendo a base canônica para o \mathbb{R}^3 , podemos definir uma transformação linear T da seguinte forma:

$$T(1,0,0) \; = \; 0 \quad , \quad T(0,1,0) \; = \; x \qquad {\rm e} \qquad T(0,0,1) \; = \; x^2 \; , \label{eq:total_total_total}$$

onde $Im(T) = [x, x^2]$. Logo, T não é sobrejetora, pois $Im(T) \neq \mathcal{P}_2(\mathbb{R})$.

Desse modo, dado um elemento $(a,b,c) \in \mathbb{R}^3$ temos que

$$T(a,b,c) \ = \ aT(1,0,0) \ + \ bT(0,1,0) \ + \ cT(0,0,1) \ = \ bx \ + \ cx^2 \ .$$

Note que esse problema possui infinitas soluções, pois sua resolução depende da escolha de uma base para o espaço vetorial \mathbb{R}^3 , e também da escolha do subespaço Im(T), através da escolha de uma base.

Exemplo 4.4.10 Determine um operador linear

$$T: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$$

$$tal\ que\ Ker(T) = [(1,0,1,0),(0,1,0,1)].$$

Podemos verificar facilmente que dim(Ker(T)) = 2. Assim, pelo Teorema do núcleo e da imagem, temos que dim(Im(T)) = 2. Agora vamos escolher uma base para o \mathbb{R}^4 , contendo a base do núcleo do operador T, da seguinte forma:

$$\gamma = \{ (1,0,1,0), (0,1,0,1), (0,1,0,0), (0,0,1,0) \}.$$

Desse modo, podemos definir um operador linear T da seguinte forma:

$$T(1,0,1,0) = (0,0,0,0)$$

$$T(0,1,0,1) = (0,0,0,0)$$

$$T(0,1,0,0) = (1,0,0,0)$$

$$T(0,0,1,0) = (0,1,0,0)$$

onde
$$Im(T) = [(1,0,0,0), (0,1,0,0)].$$

Finalmente, considerando um elemento $(x,y,z,t)\in I\!\!R^4$ vamos fazer sua representação em relação à base γ

$$(x, y, z, t) = a(1, 0, 1, 0) + b(0, 1, 0, 1) + c(0, 1, 0, 0) + d(0, 0, 1, 0)$$

obtendo

$$a = x$$
 , $b = t$, $c = y - t$ e $d = z$

Desse modo, temos que

$$T(x,y,z,t) = xT(1,0,1,0) + tT(0,1,0,1) + (y-t)T(0,1,0,0) + zT(0,0,1,0)$$
$$= (y-t)(1,0,0,0) + z(0,1,0,0)$$
$$= (y-t,z,0,0)$$

Note que esse problema possui infinitas soluções, pois sua resolução depende da maneira como completamos a base do subespaço Ker(T) para obter uma base do espaço vetorial \mathbb{R}^4 , e também de como escolhemos o subespaço Im(T), através da escolha de uma base.

Exercícios

Exercício 4.16 Determine uma transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$Ker(T) = \{ (x, y, z) \in \mathbb{R}^3 / x + y + z = 0 \}.$$

Exercício 4.17 Sejam U e W subespaços vetoriais de \mathbb{R}^3 definidos por:

$$U = \{ (x, y, z) \in \mathbb{R}^3 / x + y + z = 0 \}$$

$$W = [(1, 0, 1), (0, -1, 1)]$$

Determine um operador linear T sobre \mathbb{R}^3 tal que Im(T) = U e $Ker(T) = U \cap W$.

Exercício 4.18 Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ a transformação linear definida por:

$$T(2,1) = (3,0,2)$$
 e $T(1,2) = (1,1,0)$.

Determine uma transformação linear $P: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que Ker(P) = Im(T).

Exercício 4.19 Verifique se é Falsa ou Verdadeira cada uma das afirmações abaixo, justificando sua resposta.

- (a) Existe uma transformação linear $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ que é injetora.
- (b) Existe uma transformação linear $T: \mathbb{R}^4 \longrightarrow \mathcal{P}_2(\mathbb{R})$ que é sobrejetora.
- (c) Existe uma transformação linear $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_2(\mathbb{R})$ que é bijetora.

Exercício 4.20 Sejam $u, v \in \mathbb{R}^2$ tais que $\beta = \{u, v\}$ é uma base para \mathbb{R}^2 . Considere uma transformação linear $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^n$, para $n \geq 2$. Mostre que somente uma das seguintes alternativas se verifica:

- (a) $\{T(u), T(v)\}\$ é linearmente independente.
- (b) dim(Im(T)) = 1.
- (c) $Im(T) = \{ 0_{\mathbb{R}^n} \}$.

Exercício 4.21 Sejam V um espaço vetorial de dimensão finita, com $\dim(V) = n$, $e \ T : V \longrightarrow V$ uma transformação linear tal que Im(T) = Ker(T). Mostre que n é par. Considerando $V = \mathbb{R}^4$, dê exemplo de uma transformação linear com essas propriedades.

Exercício 4.22 Determine uma transformação linear $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{M}_2(\mathbb{R})$ que satisfaça simultaneamente as sequintes condições:

- (a) O elemento $p(x) = (1 + x^2) \in Ker(T)$.
- (b) O elemento $q(x) = 1 \notin Ker(T)$.
- (c) O elemento $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \in Im(T)$.

Exercício 4.23 Determine explicitamente a expressão de uma transformação linear

$$T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$$

satisfazendo simultaneamente as seguintes condições:

- (a) O elemento $p(x) = (1 + x) \in Ker(T)$.
- (b) O elemento $q(x) = x \notin Ker(T)$.
- (c) Im(T) = [(1, 1, 1)].

Exercício 4.24 Sejam V um espaço vetorial de dimensão finita e $T:V \longrightarrow \mathbb{R}^3$ uma transformação linear não-nula. Se $\dim(Ker(T))=2$, determine as possíveis dimensões de V. Se T é sobrejetora, qual a dimensão de V? Considerando $V=\mathbb{R}^3$, dê exemplo de uma transformação linear com essas propriedades, se possível.

Exercício 4.25 Considere U, V e W espaços vetoriais de dimensão finita. Sejam $T: U \longrightarrow V$ e $P: V \longrightarrow W$ transformações Lineares. Mostre que

- (a) se T e P são injetoras, então $dim(U) \leq dim(V) \leq dim(W)$.
- (b) se T e P são sobrejetoras, então $\dim(U) \geq \dim(V) \geq \dim(W)$.

4.5 Espaços Vetoriais Isomorfos

Definição 4.5.1 Sejam V e W espaços vetoriais de dimensão finita sobre o corpo $I\!\!F$. Uma transformação linear $T:V\longrightarrow W$ bijetora, isto é, injetora e sobrejetora ao mesmo tempo, é denominada um **isomorfismo** de V em W. Quando existe um isomorfismo de V em W, dizemos que eles são **isomorfos**, ou que V é **isomorfo** a W. Um isomorfismo $T:V\longrightarrow V$ é denominado um **automorfismo** de V.

Pelo resultado do Teorema 4.4.2, podemos observar que espaços isomorfos devem ter a mesma dimensão. Desse modo, pelo Corolário 4.4.2, um isomorfismo leva base em base. Assim, do ponto de vista da Álgebra Linear, espaços isomorfos são considerados idênticos, mesmo que os elementos e as operações definidas nesses espaços sejam bem diferentes.

Seja $T: V \longrightarrow W$ é um isomorfismo, isto é, T é uma transformação linear bijetora. Então, para cada elemento $w \in W$ podemos fazer a associação $T(v) \longrightarrow w$ para um único elemento $v \in V$. Desse modo, temos uma nova aplicação de W em V, tendo em vista que não teremos $T(v_1) = T(v_2)$ com $v_1 \neq v_2$, uma vez que T é injetora.

Essa nova aplicação, que vamos denotar por T^{-1} , $T^{-1}:W\longrightarrow V$ é denominada aplicação inversa de T. Desse modo, temos que

$$T^{-1}(T(v)) = v$$
 e $T(T^{-1}(w)) = w$ para todo $v \in V$ e $w \in W$.

Na seção 4.7 vamos estudar com mais detalhes as transformações inversas e teremos a oportunidade de mostrar que a aplicação inversa de uma transformação linear também é linear. Além disso, mostraremos que se T é um isomorfismo, então T^{-1} também é um isomorfismo denominado **isomorfismo inverso**.

Exemplo 4.5.1 Considere V o subespaço de $M_2(\mathbb{R})$ definido da seguinte forma:

$$V = \left\{ A \in \mathbb{M}_2(\mathbb{R}) / A = \begin{bmatrix} a & a+b \\ 0 & c \end{bmatrix}, a, b, c \in \mathbb{R} \right\}.$$

Construa um isomorfismo de V em \mathbb{R}^3 .

Podemos verificar facilmente que dim(V) = 3 e que os elementos

$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 , $A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ e $A_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

formam uma base ordenada para V. Desse modo, a aplicação $T:V\longrightarrow \mathbb{R}^3$ definida por T(A)=(a,a+b,c) é um isomorfismo. Note que T leva a base ordenada $\gamma=\{\,A_1\,,\,A_2\,,\,A_3\,\}$ de V na base ordenada $\beta=\{\,(1,1,0)\,,\,(0,1,0)\,,\,(0,0,1)\,\}$ do \mathbb{R}^3 .

Exemplo 4.5.2 Seja $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_1(\mathbb{R})$ definida por T(a,b) = a + (a+b)x. Podemos verificar facilmente que T é um isomorfismo e que o isomorfismo inverso T^{-1} de $\mathcal{P}_1(\mathbb{R})$ em \mathbb{R}^2 é definido por $T^{-1}(a+bx) = (a,b-a)$. Assim, os espaços vetoriais \mathbb{R}^2 e $\mathcal{P}_1(\mathbb{R})$ são isomorfos.

Teorema 4.5.1 Seja V um espaço vetorial sobre o corpo \mathbb{F} , com dim(V) = n. $Ent\tilde{ao}$, V é isomorfo ao espaço vetorial \mathbb{F}^n .

Demonstração – Seja $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V. Vamos definir uma aplicação T de V em \mathbb{F}^n da seguinte forma:

$$T: V \longrightarrow \mathbb{F}^n$$

$$u \longrightarrow T(u) = (c_1, \dots, c_n)$$

onde $c_1, \dots, c_n \in \mathbb{F}$ são as coordenadas do elemento u com relação à base β .

Podemos verificar facilmente que T é uma transformação linear. Pelo Teorema 3.7.1, temos que T é uma transformação linear injetora e pelo Teorema do núcleo e da imagem obtemos que $Im(T) = I\!\!F^n$. Logo, T é sobrejetora. Portanto, T é uma transformação linear bijetora, o que completa a demonstração.

Teorema 4.5.2 Sejam V e W espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} . Então, V e W são isomorfos se, e somente se, $\dim(V) = \dim(W)$.

Demonstração

 (\Longrightarrow) Seja $T:V\longrightarrow W$ um isomorfismo, isto é, $Ker(T)=\{\ 0_V\}$ e Im(T)=W. Pelo Teorema do núcleo e da imagem, temos que

$$dim(V) = dim(Ker(T)) + dim(Im(T)) \implies dim(V) = dim(W)$$

(\Leftarrow) Sejam $\beta = \{v_1, \dots, v_n\}$ uma base para V e $\gamma = \{w_1, \dots, w_n\}$ uma base para W. Vamos definir uma transformação linear $T: V \longrightarrow W$ da seguinte forma:

$$T\left(\sum_{i=1}^{n} c_{i} v_{i}\right) = \sum_{i=1}^{n} c_{i} T(v_{i}) = \sum_{i=1}^{n} c_{i} w_{i},$$

onde estamos definindo $T(v_i) = w_i$ para $i = 1, \dots, n$.

Podemos verificar facilmente que $Ker(T) = \{ 0_V \}$. De fato, considere um elemento $v \in Ker(T)$ que é escrito de modo único como:

$$v = \sum_{i=1}^{n} c_i v_i \qquad \Longrightarrow \qquad T(v) = \sum_{i=1}^{n} c_i w_i = 0_W ,$$

como $\{w_1, \cdots, w_n\}$ é linearmente independente, implica em

$$c_1 = \cdots = c_n = 0.$$

Portanto, provamos que T é uma transformação injetora.

Finalmente, pelo Teorema do núcleo e da imagem, tem-se que

$$dim(V) = dim(Ker(T)) + dim(Im(T)) \implies dim(Im(T)) = n.$$

Assim, Im(T) = W. Logo, T é uma transformação sobrejetora.

Portanto, mostramos que T é um isomorfismo de V em W.

Exemplo 4.5.3 Em muita situações identificamos o espaço vetorial \mathbb{R}^n com o espaço vetorial das matrizes reais de ordem $n \times 1$. Esta identificação é feita, muitas vezes, sem que façamos alguma referência ao fato que esses espaços vetoriais sejam isomorfos. Uma ilustração muito simples dessa idéia, é quando estamos trabalhando com **espaço solução** de um **sistema linear homogêneo**, veja Teorema 2.9.8, considerando a representação matricial para sistemas lineares. Desse modo, existe um isomorfismo evidente entre o espaço vetorial real \mathbb{R}^n e o espaço vetorial real $\mathbb{M}_{n\times 1}(\mathbb{R})$, definido da seguinte forma:

$$(x_1, \dots, x_i, \dots, x_n) \in \mathbb{R}^n \longrightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{M}_{n \times 1}(\mathbb{R}).$$

Assim, sempre que conveniente vamos fazer a identificação do espaço vetorial real \mathbb{R}^n com o espaço vetorial real $\mathbb{M}_{n\times 1}(\mathbb{R})$, em geral, por simplicidade de notação.

Exemplo 4.5.4 De modo análogo ao Exemplo 4.5.3, podemos construir um isomorfismo entre o espaço vetorial complexo \mathbb{C}^n e o espaço vetorial complexo $\mathbb{M}_{n\times 1}(\mathbb{C})$, uma vez que $\dim(\mathbb{C}^n) = \dim(\mathbb{M}_{n\times 1}(\mathbb{C})) = n$. Assim, sempre que conveniente vamos fazer a identificação do espaço vetorial complexo \mathbb{C}^n com o espaço vetorial complexo $\mathbb{M}_{n\times 1}(\mathbb{C})$, em geral, por simplicidade de notação.

Exemplo 4.5.5 Considerando \mathbb{C}^2 como um espaço vetorial real, do Exemplo 3.6.13, sabemos que o conjunto $\gamma = \{z_1, z_2, z_3, z_4\}$, onde

$$z_1 = (1,0)$$
 , $z_2 = (i,0)$, $z_3 = (0,1)$ e $z_4 = (0,i)$,

é uma base ordenada para \mathbb{C}^2 . Logo, temos que $dim(\mathbb{C}^2) = 4$. Considere agora o espaço vetorial real \mathbb{R}^4 com a base canônica $\beta = \{e_1, e_2, e_3, e_4\}$, onde

$$e_1 = (1,0,0,0)$$
 $e_2 = (0,1,0,0)$
 $e_3 = (0,0,1,0)$
 $e_4 = (0,0,0,1)$

De acordo com o Teorema 4.5.2, podemos definir um isomorfismo T de \mathbb{C}^2 em \mathbb{R}^4 da seguinte forma:

$$T(z_i) = e_i \quad para \quad i = 1, \dots, 4.$$

Desse modo, a expressão explicita de T(z, w) é dada por:

$$T(z,w) = (a,b,c,d),$$

onde $(z, w) \in \mathbb{C}^2$ é escrito como

$$(z,w) = (a+ib, c+id) = az_1 + bz_2 + cz_3 + dz_4$$

para $a, b, c, d \in \mathbb{R}$, pois todo elemento de \mathbb{C}^2 é escrito de modo único como uma combinação linear dos elementos de γ .

De fato, note que T(z, w) pode ser escrito da forma:

$$T(z,w) = T(az_1 + bz_2 + cz_3 + dz_4)$$

$$= aT(z_1) + bT(z_2) + cT(z_3) + dT(z_4)$$

$$= ae_1 + be_2 + ce_3 + de_4$$

$$= (a, b, c, d)$$

o que completa a construção do isomorfismo T.

Assim, mostramos que \mathbb{C}^2 como um espaço vetorial real é isomorfo ao espaço vetorial real \mathbb{R}^4 .

Exercícios

Exercício 4.26 Mostre que o operador linear T sobre \mathbb{R}^3 definido por:

$$T(x, y, z) = (x - 2y, z, x + y)$$

 \acute{e} um isomorfismo de $I\!\!R^3$.

Exercício 4.27 Mostre que a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathcal{P}_2(\mathbb{R})$ definida por:

$$T(a,b,c) = (a - b) + (c - a)x + (b + c)x^{2}$$

é um isomorfismo de \mathbb{R}^3 em $\mathcal{P}_2(\mathbb{R})$.

Exercício 4.28 Mostre que o espaço vetorial real \mathbb{R}^2 é isomorfo ao subespaço S do espaço vetorial real \mathbb{R}^3 definido por:

$$S = \{ (x, y, z) \in \mathbb{R}^3 / x - y + 2z = 0 \},$$

exibindo um isomorfismo T de \mathbb{R}^2 em S.

Exercício 4.29 Mostre que o espaço vetorial real \mathbb{R}^2 é isomorfo a qualquer subespaço S do espaço vetorial real \mathbb{R}^3 tal que $\dim(S)=2$, exibindo um isomorfismo T de \mathbb{R}^2 em S.

Exercício 4.30 Mostre que o espaço vetorial real \mathbb{R}^3 é isomorfo ao subespaço S do espaço vetorial real $M_2(\mathbb{R})$ definido por:

$$S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} / a, b, c \in \mathbb{R} \right\},\,$$

exibindo um isomorfismo T de \mathbb{R}^3 em S.

Exercício 4.31 Seja V um espaço vetorial real, com $dim(V) \geq 3$. Mostre que o espaço vetorial real \mathbb{R}^3 é isomorfo a qualquer subespaço S do espaço vetorial V tal que dim(S) = 3, exibindo um isomorfismo T de \mathbb{R}^3 em S.

Exercício 4.32 Mostre que o espaço vetorial real \mathbb{R}^3 é isomorfo ao espaço vetorial real $\mathbb{M}_{3\times 1}(\mathbb{R})$, exibindo um isomorfismo T de \mathbb{R}^3 em $\mathbb{M}_{3\times 1}(\mathbb{R})$.

Exercício 4.33 Mostre que \mathbb{C}^2 como um espaço vetorial real é isomorfo ao espaço vetorial real $M_2(\mathbb{R})$, exibindo um isomorfismo T de \mathbb{C}^2 em $M_2(\mathbb{R})$.

4.6 Álgebra das Transformações Lineares

Definição 4.6.1 Sejam V e W espaços vetoriais sobre o corpo $I\!\!F$. Denotamos por L(V,W) o conjunto de todas as transformações lineares de V em W, isto é,

$$L(V, W) = \{ T : V \longrightarrow W / T \text{ \'e uma transformaç\~ao linear } \}.$$

Definição 4.6.2 Dadas as transformações lineares $T, P \in L(V, W)$. Definimos a adição de transformações $T + P : V \longrightarrow W$ da seguinte forma:

$$(T + P)(v) = T(v) + P(v) ; \forall v \in V.$$

A aplicação assim definida é também uma transformação linear.

Definição 4.6.3 Dada a transformação linear $T \in L(V, W)$ e o escalar $\lambda \in \mathbb{F}$. Definimos a multiplicação de uma transformação por um escalar $\lambda T : V \longrightarrow W$ da seguinte forma:

$$(\lambda T)(v) = \lambda T(v) \quad ; \quad \forall v \in V.$$

A aplicação assim definida é também uma transformação linear.

Teorema 4.6.1 L(V,W) é um espaço vetorial sobre o corpo F com relação as operações de adição de transformações lineares e multiplicação por escalar definidas acima.

Demonstração

Inicialmente, devemos mostrar que a operação de adição tem as seguintes propriedades:

- (A_1) Comutatividade. T + P = P + T; $\forall T, P \in L(V, W)$.
- (A_2) Associatividade. T + (P + S) = (T + P) + S; $\forall T, P, S \in L(V, W)$.
- (A_3) Elemento Neutro. A transformação linear nula $O_L:V\longrightarrow W$ é tal que

$$T + O_L = T \quad ; \quad \forall \ T \in L(V, W) \,,$$

isto é, $O_L(v) = 0_W$ para todo $v \in V$.

 (A_4) Elemento Simétrico. Para toda transformação linear $T \in L(V, W)$ existe a transformação $(-T) \in L(V, W)$ tal que $T + (-T) = O_L$.

Finalmente, devemos mostrar que a operação de multiplicação por escalar tem as seguintes propriedades:

- $(M_1) \ {\rm Associatividade.} \ (\alpha\,\beta)\,T \ = \ \alpha\,(\beta\,T) \ ; \ \forall \ T \ \in \ L(V,W) \ \ {\rm e} \ \ \forall \ \alpha, \ \beta \ \in \ I\!\!F \, .$
- (M_2) Distributividade para a Adição de Elementos. $\alpha (T + S) = \alpha T + \alpha S$; $\forall T, S \in L(V, W)$ e $\forall \alpha \in \mathbb{F}$.
- (M_3) Distributividade para a Multiplicação por Escalar. $(\alpha + \beta)T = \alpha T + \beta T$; $\forall T \in L(V, W)$ e $\forall \alpha, \beta \in \mathbb{F}$.
- (M_4) Elemento Identidade. $1_{\mathbb{F}}T = T$; $\forall T \in L(V, W)$.

As provas das propriedades acima podem ficar a cargo do leitor.

Teorema 4.6.2 Sejam V e W espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} , com dimensões n e m, respectivamente. Então, o espaço vetorial L(V,W) tem dimensão finita e $\dim(L(V,W)) = nm$.

Demonstração − A demonstração pode ser vista na referência [12].

Definição 4.6.4 Sejam U, V e W espaços vetoriais sobre o corpo $I\!\!F$. Considere as transformações lineares $T:U\longrightarrow V$ e $P:V\longrightarrow W$. Definimos a composição das transformações P e T, que denotamos por $S=P\circ T:U\longrightarrow W$, da seguinte forma:

$$S(u) = (P \circ T)(u) = P(T(u)) \in W \quad ; \quad \forall u \in U.$$

Teorema 4.6.3 A aplicação $S = P \circ T$ é uma transformação linear de U em W.

Demonstração – A prova pode ficar a cargo do leitor.

Definição 4.6.5 Seja V um espaço vetorial sobre o corpo IF. Um **operador linear** sobre V é uma transformação linear de V em V.

Definição 4.6.6 Seja V um espaço vetorial sobre o corpo IF. Denotamos por L(V) o conjunto de todos os operadores lineares sobre V, isto \acute{e} ,

$$L(V) \ = \ \{ \ T: V \longrightarrow V \ / \ T \ \acute{e} \ um \ operador \ linear \, \} \, .$$

Pelo Teorema 4.6.1, temos que L(V) é um espaço vetorial sobre o corpo F com as operações de adição de operadores e multiplicação por escalar definidas para transformações lineares.

Exemplo 4.6.1 Considere as transformações lineares $T: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por: T(x,y) = x - 3y e $P: \mathbb{R} \longrightarrow \mathbb{R}$ definida por: P(x) = 4x. Determine, se possível, as seguintes aplicações T+P, $T\circ P$ e $P\circ T$.

Note que as aplicações T+P e $T\circ P$ não estão definidas. Assim, podemos definir somente a aplicação $P\circ T$ que é dada por:

$$(P \circ T)(x,y) = P(T(x,y)) = P(x-3y) = 4x - 12y.$$

Exemplo 4.6.2 Sejam P e T operadores lineares sobre \mathbb{R}^2 definidos por:

$$T(x,y) = (2x, x - y)$$
 e $P(x,y) = (x + y, 4x)$.

Determine os seguintes operadores P+T, $P \circ T$ e $T \circ P$.

Neste caso, todas as aplicações estão definidas. Assim, temos que

•
$$(T+P)(x,y) = T(x,y) + P(x,y) = (3x+y,5x-y)$$
.

•
$$(P \circ T)(x,y) = P(T(x,y)) = P(2x,x-y) = (3x-y,8x)$$
.

•
$$(T \circ P)(x,y) = T(P(x,y)) = P(x+y,4x) = (2x+2y,y-3x).$$

Definição 4.6.7 No espaço vetorial L(U) podemos definir a operação **potenciação** para expoentes naturais de um operador $T \in L(U)$ da seguinte forma:

$$T^0 = I$$
 , $T^1 = T$, $T^2 = T \circ T$ e $T^n = T \circ T^{n-1}$ para $n \in \mathbb{N}$.

Definição 4.6.8 Sejam V um espaço vetorial sobre o corpo \mathbb{F} e T um operador linear sobre V. Dizemos que T é um **operador idempotente** se $T^2 = T$, isto é,

$$(T \circ T)(v) = T(T(v)) = T(v)$$
 para todo $v \in V$.

Exemplo 4.6.3 Considere o espaço vetorial real \mathbb{R}^3 . O operador linear de projeção sobre o plano xy

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x, y, z) \longrightarrow T(x, y, z) = (x, y, 0)$$

é um operador idempotente.

Definição 4.6.9 Sejam V um espaço vetorial sobre o corpo \mathbb{F} e T um operador linear sobre V. Dizemos que T é um **operador auto-reflexivo** se $T^2 = I$, isto é,

$$(T \circ T)(v) = T(T(v)) = v$$
 para todo $v \in V$.

Exemplo 4.6.4 Considere o espaço vetorial real \mathbb{R}^2 . O operador linear de reflexão em torno do eixo-ox

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (x,-y)$$

é um operador auto-reflexivo.

Definição 4.6.10 Sejam V um espaço vetorial sobre o corpo \mathbb{F} e T um operador linear sobre V. Dizemos que T é um **operador nilpotente** se $T^n = 0$ para um certo $n \in \mathbb{N}$, isto é,

$$(T \circ T^{n-1})(v) = T(T^{n-1}(v)) = 0_V \quad para \ todo \quad v \in V.$$

Exemplo 4.6.5 Considere o espaço vetorial real $\mathcal{P}_3(\mathbb{R})$ e o operação de derivação D sobre $\mathcal{P}_3(\mathbb{R})$, isto é, D(p(x)) = p'(x) para $p(x) \in \mathcal{P}_3(\mathbb{R})$. Podemos verificar facilmente que D é um operador nilpotente.

4.7 Transformação Inversa

Definição 4.7.1 Sejam V e W espaços vetoriais sobre o corpo F e $T:V\longrightarrow W$ uma transformação linear. A aplicação $L:Im(T)\subset W\longrightarrow V$ é denominada **inversa** a esquerda da transformação linear T se

$$(L \circ T)(u) = u \quad ; \quad \forall \ u \in V,$$

isto é, $L \circ T$ é a transformação identidade em V.

A transformação $R: Im(T) \subset W \longrightarrow V$ é denominada **inversa a direita** de T se

$$(T \circ R)(w) = w \quad ; \quad \forall w \in Im(T),$$

isto é, $T \circ R$ é a transformação identidade em Im(T).

Teorema 4.7.1 Considere os espaços vetoriais V e W de dimensão finita sobre o corpo \mathbb{F} . Seja $T:V\longrightarrow W$ uma transformação linear que possui inversa a esquerda L. Então, L é também inversa a direita de T. Além disso, L é única.

Demonstração — Primeiramente devemos observar que, pela Definição 4.7.1, tanto a inversa a esquerda quanto a inversa a direita estão definidas em $Im(T) \subset W$.

Vamos mostrar que L é única. Suponhamos que T possui duas inversas a esquerda L_1 e L_2 , isto é, para todo $u \in V$ tem—se que

$$(L_1 \circ T)(u) = u$$
 e $(L_2 \circ T)(u) = u$.

Temos que $L_1(w) = u$ e $L_2(w) = u$ para $w \in Im(T)$. Desse modo,

$$L_1(w) - L_2(w) = 0_V \implies (L_1 - L_2)(w) = 0_V ; w \in Im(T).$$

Logo, $L_1 = L_2$, o que prova a unicidade de L.

Agora vamos mostrar que L é também a inversa a direita de T. Seja $w \in Im(T)$. Assim, basta mostrar que $(T \circ L)(w) = w$.

Como $w \in Im(T)$, temos que w = T(u) para algum $u \in V$. Como L é a inversa a esquerda de T, tem—se que

$$u \ = \ L(T(u)) \ = \ L(w) \quad \Longrightarrow \quad T(u) \ = \ T(L(w)) \; .$$

Portanto, $T(L(w)) = (T \circ L)(w) = w$, uma vez que w = T(u). Assim, provamos que L é a inversa a direita de T, o que completa a demonstração.

Exemplo 4.7.1 Considere a transformação linear $T: \mathbb{R} \longrightarrow \mathbb{R}^2$ definida por:

$$T(x) = (x, 2x).$$

Primeiramente vamos observar que o subespaço Im(T) = [(1,2)]. Logo, todo elemento $(x,y) \in Im(T)$ é da forma (x,2x). Além disso, a transformação linear T é **injetora**.

Temos que a **inversa a esquerda** $L: Im(T) \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ é definida por:

$$L(x,y) = \frac{x}{3} + \frac{y}{3}.$$

Assim, temos que $(L \circ T)(x) = x$ para todo $x \in \mathbb{R}$.

A inversa a direita $R: Im(T) \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ é definida por:

$$R(x,y) = \frac{x}{3} + \frac{y}{3}.$$

Assim, temos que $(T \circ R)(x,y) = (x,y)$ para todo $(x,y) \in Im(T) \subset \mathbb{R}^2$.

Desse modo, apresentamos um excelente exemplo para o Teorema 4.7.1, mostrando que a existência e unicidade da inversa a esquerda implica na existência e unicidade da inversa a direita e que são iguais.

Exemplo 4.7.2 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por:

$$T(x,y) = x + y.$$

Primeiramente vamos observar que a transformação linear T não é injetora, pois

$$Ker(T) = \{(x, y) \in \mathbb{R}^2 / x = -y\}.$$

Logo, dim(Ker(T)) = 1, o que implica na Im(T) = IR, pelo Teorema do núcleo e da imagem.

A transformação T não possui **inversa a esquerda**, entretanto, podemos apresentar vários exemplos de **inversa a direita**. Desse modo, podemos tomar como exemplos de **inversa a direita** $R: Im(T) = \mathbb{R} \longrightarrow \mathbb{R}^2$ as seguintes transformações:

$$R(x) = \left(\frac{x}{2}, \frac{x}{2}\right)$$
 e $R(x) = \left(\frac{2x}{3}, \frac{x}{3}\right)$.

Assim, temos que $(T \circ R)(x) = x$ para todo $x \in Im(T) = \mathbb{R}$.

Desse modo, apresentamos um exemplo onde a não existência da inversa a esquerda implica na não unicidade da inversa a direita.

Exemplo 4.7.3 Considere a transformação linear $T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por:

$$T_A(x,y) = (x+y, 2x+y),$$

associada à matriz $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$.

Primeiramente vamos observar que a transformação linear T_A é **injetora**. Além disso, pelo Teorema do núcleo e da imagem, podemos concluir que $Im(T_A) = \mathbb{R}^2$. Logo, T é um isomorfismo.

Temos que a **inversa a esquerda** $L: Im(T_A) \longrightarrow \mathbb{R}^2$ é a transformação linear

$$L(x,y) = (-x+y, 2x-y)$$

associada à matriz $A^{-1} = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$.

Assim, temos que $(L \circ T)(x,y) = (T \circ L)(x,y) = (x,y)$ para todo $(x,y) \in \mathbb{R}^2$.

Exemplo 4.7.4 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ definida por:

$$T(x,y) = (x+y, y-x, x+3y).$$

Note que a transformação linear T é **injetora** e que o subespaço Im(T) tem como uma base o conjunto $\{(1,-1,1),(1,1,3)\}.$

Temos que a inversa a esquerda $L: Im(T) \subset \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ é definida por:

$$L(x, y, z) = \left(\frac{-3x - 3y + 2z}{2}, \frac{x + y}{2}\right).$$

Assim, temos que $(L \circ T)(x,y) = (x,y)$ para todo $(x,y) \in \mathbb{R}^2$. Além disso, temos que $(T \circ L)(x,y,z) = (x,y,z)$ para todo $(x,y,z) \in Im(T)$.

Desse modo, desenvolvemos dois exemplos como ilustração do Teorema 4.7.2, sobre a existência da inversa a esquerda, que vamos apresentar a seguir.

Teorema 4.7.2 Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e T uma transformação linear de V em W. Então, T possui inversa a esquerda se, e somente se, T é injetora.

Demonstração

 (\Longrightarrow) Seja $L:Im(T)\longrightarrow V$ a inversa a esquerda de $\,T.\,$ Sejam $\,u,\,v\in V\,$ com $\,T(u)\,=\,T(v).\,$ Assim, temos que

$$u = L(T(u)) = L(T(v)) = v$$

Logo, T é injetora.

(\Leftarrow) Por hipótese temos T injetora. Seja $w \in Im(T)$, isto é, w = T(u) para um único $u \in V$. Assim, definimos a transformação $L: Im(T) \longrightarrow V$ da seguinte forma L(w) = u tal que T(u) = w. Logo, L é a inversa a esquerda de T, o que completa a demonstração.

Definição 4.7.2 Seja $T: V \longrightarrow W$ uma transformação linear injetora. A única transformação inversa a esquerda de T, que também é a transformação inversa a direita, é denotada por T^{-1} . Dizemos que a transformação T é **invertível**, e chamamos a transformação $T^{-1}: Im(T) \subset W \longrightarrow V$ de **transformação inversa** de T.

Teorema 4.7.3 Sejam V e W espaços vetoriais sobre o corpo F e $T:V\longrightarrow W$ um isomorfismo. Então, $T^{-1}:W\longrightarrow V$ é uma transformação linear.

Demonstração – Sejam $w_1, w_2 \in W$ e $\lambda \in \mathbb{F}$. Queremos mostrar que

$$T^{-1}(\lambda w_1 + w_2) = \lambda T^{-1}(w_1) + T^{-1}(w_2)$$
.

Sejam $u_1 = T^{-1}(w_1)$ e $u_2 = T^{-1}(w_2)$, isto é, u_1 e u_2 são os únicos elementos em V tais que $T(u_1) = w_1$ e $T(u_2) = w_2$.

Como T é uma transformação linear, temos que

$$T(\lambda u_1 + u_2) = \lambda T(u_1) + T(u_2) = \lambda w_1 + w_2.$$

Desse modo, $\lambda u_1 + u_2$ é o único elemento em V que é levado pela transformação linear T no elemento $\lambda w_1 + w_2$ em W. Portanto

$$T^{-1}(\lambda w_1 + w_2) = \lambda u_1 + u_2 = \lambda T^{-1}(w_1) + T^{-1}(w_2)$$

provando que $\,T^{-1}\,$ é uma transformação linear.

Proposição 4.7.1 Sejam V e W espaços vetoriais de dimensão finitas sobre o corpo F e T um isomorfismo de V em W. Então, $T^{-1}:W\longrightarrow V$ é também um isomorfismo.

Demonstração – Pelo Teorema 4.7.3, sabemos que T^{-1} é uma transformação linear. Assim, temos devemos mostrar que T^{-1} é bijetora.

Sejam $w_1, w_2 \in W$ tais que $T^{-1}(w_1) = T^{-1}(w_2) = v$. Desse modo, temos $T(v) = w_1$ e $T(v) = w_2$. Logo, $w_1 = w_2$, pois T é uma aplicação. Portanto, T^{-1} é injetora.

Para mostrar que T^{-1} é sobrejetora basta observar que $Ker(T^{-1})=\{0_W\}$, pois T^{-1} é injetora, e aplicar o Teorema do núcleo e da imagem,

$$\dim(\,Ker(T^{-1})\,) \ + \ \dim(\,Im(T^{-1})\,) \ = \ \dim(W) \;,$$

obtendo que $dim(Im(T^{-1})) = dim(W) = dim(V)$, pois V e W são isomorfos. Assim, $Im(T^{-1}) = V$, o que completa a demonstração.

Sejam V e U espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} . Podemos observar que V é isomorfo a V, pois o operador identidade I_V é um isomorfismo de V em V.

Além disso, se V é isomorfo a U por meio de um isomorfismo T, então U é isomorfo a V por meio do isomorfismo inverso T^{-1} .

Exemplo 4.7.5 Considere V, U e W espaços vetoriais de dimensão finita sobre o corpo IF. Sejam $T:V\longrightarrow U$ um isomorfismo, isto é, V é isomorfo a U, e $P:U\longrightarrow W$ um isomorfismo, isto é, U é isomorfo a W. Podemos verificar facilmente que $P\circ T:V\longrightarrow W$ é um isomorfismo, isto é, V é isomorfo a W.

Primeiramente observamos que dim(V) = dim(U) e dim(U) = dim(W), pois são isomorfos. Logo, dim(V) = dim(W). Além disso, sabemos que $Ker(T) = \{ 0_V \}$ e que $Ker(P) = \{ 0_V \}$. Assim, basta mostrar que $Ker(P \circ T) = \{ 0_V \}$.

Tomando um elemento $v \in Ker(P \circ T)$, isto é,

$$(P \circ T)(v) \ = \ P(T(v)) \ = \ 0_W \quad \Longrightarrow \quad T(v) \ = \ 0_U \quad \Longrightarrow \quad v \ = \ 0_V \, .$$

Logo, mostramos que $Ker(P \circ T) = \{ 0_V \}.$

Finalmente, podemos concluir que o **isomorfismo** é uma **relação de equivalência** sobre a classe dos espaços vetoriais de mesma dimensão.

Exemplo 4.7.6 Considere $T \in L(\mathbb{R}^2)$ definido por:

$$T(x,y) = (x+y, x-y).$$

Mostre que T é um isomorfismo, e determine o isomorfismo inverso.

Inicialmente vamos mostrar que T é um isomorfismo sobre \mathbb{R}^2 . Para isso, basta mostrar que $Ker(T) = \{ 0_{\mathbb{R}^2} \}$, e em seguida utilizar o Teorema do núcleo e da imagem para mostrar que $Im(T) = \mathbb{R}^2$, isto é, T é um operador sobrejetor. Assim, provamos que T é um operador bijetor.

Para determinar o núcleo do operador T, temos que encontrar os elementos $(x,y) \in \mathbb{R}^2$ tais que

$$T(x,y) = (x+y, x-y) = (0,0) \implies \begin{cases} x + y = 0 \\ x - y = 0 \end{cases}$$

Podemos verificar facilmente que o sistema linear homogêneo acima possui somente a solução trivial x = y = 0. Logo, $Ker(T) = \{ 0_{\mathbb{R}^2} \}$.

Finalmente, vamos determinar o isomorfismo inverso. Dado um elemento $(x,y) \in \mathbb{R}^2$, supomos que $T^{-1}(x,y) = (a,b)$, então (x,y) = T(a,b). Assim, obtemos o sistema linear

$$(x,y) = (a+b, a-b) \implies \begin{cases} a+b=x\\ a-b=y \end{cases}$$

que possui uma única solução

$$a = \frac{x+y}{2} \qquad e \qquad b = \frac{x-y}{2} .$$

Desse modo, temos que o isomorfismo inverso T^{-1} é definido por:

$$T^{-1}(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$$

para todo $(x,y) \in \mathbb{R}^2$.

Exemplo 4.7.7 Considere $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_1(\mathbb{R})$ a transformação linear tal que

$$T(1,-1) = 2 + x$$
 e $T(0,1) = x - 1$.

Mostre que T é um isomorfismo de \mathbb{R}^2 em $\mathcal{P}_1(\mathbb{R})$, e determine o isomorfismo inverso T^{-1} de $\mathcal{P}_1(\mathbb{R})$ em \mathbb{R}^2 .

Podemos verificar facilmente que $\gamma = \{(1, -1), (0, 1)\}$ é uma base para o \mathbb{R}^2 . Para isso, basta mostrar que γ é linearmente independente.

Considere a combinação linear nula

$$a(1,-1) + b(0,1) = (0,0)$$
 \iff
$$\begin{cases} a = 0 \\ -a + b = 0 \end{cases}.$$

Assim, obtemos a = b = 0. Logo, γ é linearmente independente em \mathbb{R}^2 .

Vamos tomar um elemento genérico $(a,b) \in \mathbb{R}^2$ e representa—lo com relação à base ordenada γ , isto é, vamos representa—lo através da combinação linear

$$(a,b) = c(1,-1) + d(0,1) = (c, -c+d).$$

Assim, obtemos o seguinte sistema linear

$$\begin{cases}
c = a \\
-c + d = b
\end{cases}$$

que possui uma única solução c = a e d = a + b.

Desse modo, temos que o elemento $(a,b) \in \mathbb{R}^2$ é escrito de modo único como:

$$(a,b) = a(1,-1) + (a+b)(0,1).$$

Finalmente, fazendo

$$T(a,b) = aT(1,-1) + (a+b)T(0,1)$$
$$= a(2+x) + (a+b)(x-1)$$
$$= (a-b) + (2a+b)x$$

obtemos a transformação linear T dada por:

$$T(a,b) = (a - b) + (2a + b)x$$

para todo $(a,b) \in \mathbb{R}^2$.

Para mostrar que T é um isomorfismo, basta mostrar que $Ker(T) = \{ 0_{\mathbb{R}^2} \}$. Assim, considerando um elemento $(a,b) \in Ker(T)$, temos que

$$T(a,b) = (a-b) + (2a+b)x = 0_{\mathcal{P}_1(\mathbb{R})}$$
 para todo $x \in \mathbb{R}$.

Assim, obtemos o seguinte sistema linear homogêneo

$$\begin{cases} a - b = 0 \\ 2a + b = 0 \end{cases}$$

que possui somente a solução trivial a = b = 0. Logo, T é um isomorfismo.

Vamos encontrar o isomorfismo inverso. Dado um elemento $p(x)=a+bx\in \mathcal{P}_1(I\!\! R)$, supomos que $T^{-1}(a+bx)=(c,d)$. Assim, temos que T(c,d)=a+bx, isto é,

$$(c-d) + (2c+d)x = a+bx,$$

obtendo o seguinte sistema linear

$$\begin{cases} c - d = a \\ 2c + d = b \end{cases}$$

que possui uma única solução

$$c = \frac{a+b}{3} \qquad e \qquad d = \frac{b-2a}{3} .$$

Portanto, temos que o isomorfismo inverso T^{-1} é dado por:

$$T^{-1}(a + bx) = \left(\frac{a+b}{3}, \frac{b-2a}{3}\right),$$

para todo $p(x) = a + bx \in \mathcal{P}_1(\mathbb{R}).$

Exemplo 4.7.8 Sejam V um espaço vetorial sobre o corpo \mathbb{F} , T e P operadores lineares sobre V tais que $T \circ P = P \circ T$. Então,

$$Ker(T) + Ker(P) \subset Ker(T \circ P) = Ker(P \circ T)$$
.

Considerando $v \in Ker(T) + Ker(P)$, isto é, v = u + w com $u \in Ker(T)$ e $w \in Ker(P)$. Vamos mostrar que $v \in Ker(T \circ P)$.

Para isso, vamos avaliar $(T \circ P)(u + w)$

$$(T \circ P)(u + w) = (T \circ P)(u) + (T \circ P)(w)$$

$$= T(P(u)) + T(P(w)) = T(P(u)) + T(0_V) = (T \circ P)(u)$$

$$= (P \circ T)(u) = P(T(u)) = P(0_V) = 0_V$$

Assim, mostramos que $v \in Ker(T \circ P) = Ker(P \circ T)$, o que completa a nossa prova.

Exemplo 4.7.9 O operador linear $T \in L(\mathbb{R}^3)$ dado por:

$$T(x, y, z) = (x - y, 2y, y + z)$$

é invertível e T^{-1} é dado por: $T^{-1}(x,y,z) = \frac{1}{2}(2x+y, y, 2z-y)$.

Para mostrar que T é um operador invertível, basta mostrar que T é um operador bijetor, isto é, T é um automorfismo de \mathbb{R}^3 . Para isso, vamos determinar o núcleo do operador T, isto é, vamos encontrar os elementos $(x, y, z) \in \mathbb{R}^3$ tais que

$$T(x, y, z) = (x - y, 2y, y + z) = (0, 0, 0) \implies Ker(T) = \{ (0, 0, 0) \}.$$

Portanto, pelo teorema do núcleo e da imagem temos que $Im(T) = \mathbb{R}^3$. Logo, T é um automorfismo de \mathbb{R}^3 .

Dado $(x,y,z)\in\mathbb{R}^3$, supomos que $T^{-1}(x,y,z)=(a,b,c)$, então (x,y,z)=T(a,b,c). Assim, obtemos o sistema linear

$$(x, y, z) = (a - b, 2b, b + c) \implies \begin{cases} a - b & = x \\ 2b & = y \\ b + c & = z \end{cases}$$

que possui uma única solução

$$a = x + \frac{y}{2}$$
, $b = \frac{y}{2}$ e $c = z - \frac{y}{2}$.

Desse modo, temos que o automorfismo inverso T^{-1} é definido por:

$$T^{-1}(x, y, z) = \frac{1}{2}(2x + y, y, 2z - y)$$

para todo $(x, y, z) \in \mathbb{R}^3$.

Exemplo 4.7.10 Seja $T \in L(V)$ um operador linear tal que $T^2 - T + I = 0$. Então, T é um operador invertível e $T^{-1} = I - T$.

Tomando a hipótese, temos que

$$T^2 - T + I = 0 \iff (T - I)T + I = 0 \iff (I - T)T = I.$$

Assim, mostramos que T é invertível, e que o automorfismo inverso é $T^{-1} = I - T$.

Exemplo 4.7.11 Considere a transformação linear de derivação

$$D: \mathcal{P}_3(\mathbb{R}) \longrightarrow \mathcal{P}_2(\mathbb{R})$$

$$p(x) \longrightarrow D(p(x)) = p'(x)$$

e a transformação linear de integração

$$T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$$

$$p(x) \longrightarrow T(p(x)) = \int_0^x p(t)dt.$$

Mostre que $D \circ T$ é o operador identidade sobre $\mathcal{P}_2(\mathbb{R})$ e que $T \circ D$ é diferente do operador identidade sobre $\mathcal{P}_3(\mathbb{R})$. Determine o núcleo e a imagem do operador $T \circ D$.

Inicialmente vamos determinar o operador $T \circ D$ sobre $\mathcal{P}_3(\mathbb{R})$

$$(T \circ D)(p)(x) = T(D(p))(x) = \int_0^x p'(t)dt = p(x) - p(0).$$

Logo, $(T \circ D)(p)(x) \neq p(x)$.

Podemos verificar facilmente que $Im(T \circ D) = [x, x^2, x^3]$ e $Ker(T \circ D) = [1]$.

Finalmente, vamos determinar o operador $D \circ T$ sobre $\mathcal{P}_2(\mathbb{R})$. Utilizando o Primeiro Teorema Fundamental do Cálculo ([2] página 202), obtemos

$$(D \circ T)(p)(x) = D(T(p))(x) = \frac{d}{dx} \int_0^x p(t)dt = p(x).$$

Logo, $D \circ T$ é o operador identidade sobre $\mathcal{P}_2(\mathbb{R})$.

Exemplo 4.7.12 Considere os seguintes operadores lineares sobre o espaço vetorial $\mathcal{P}(\mathbb{R})$

$$D(p(x)) = p'(x)$$
 e $T(p(x)) = xp(x)$.

Podemos verificar facilmente que o operador $D \circ T - T \circ D$ é o operador identidade sobre $\mathcal{P}(R)$, isto é, $(D \circ T - T \circ D)(p(x)) = p(x)$.

Para uma simples verificação considere o polinômio $p(x) = 2 + 3x - 4x^2 + 6x^3$.

Exemplo 4.7.13 A transformação linear $T: \mathcal{P}_1(\mathbb{R}) \longrightarrow \mathbb{R}^2$ dada por:

$$T(a+bx) = (a, a+b)$$

é um isomorfismo e o isomorfismo inverso $T^{-1}: \mathbb{R}^2 \longrightarrow \mathcal{P}_1(\mathbb{R})$ é dado por:

$$T^{-1}(c,d) = c + (d-c)x$$
.

Exemplo 4.7.14 Sejam V um espaço vetorial sobre o corpo \mathbb{F} e T um operador idempotente sobre V. Então, $V = Ker(T) \oplus Im(T)$.

Inicialmente vamos provar que

$$Ker(T) \cap Im(T) = \{ 0_V \}.$$

Para isso, consideramos um elemento $v \in Ker(T) \cap Im(T)$, isto é, $T(v) = 0_V$ e $v \in Im(T)$. Assim, existe um elemento $u \in V$ tal que v = T(u).

Tomando T(v), obtemos

$$0_V = T(v) = T(T(u)) = T^2(u) = T(u).$$

Como v = T(u), temos que $v = 0_V$. Assim, provamos que

$$Ker(T) \cap Im(T) = \{ 0_V \}.$$

Finalmente, vamos mostrar que V = Ker(T) + Im(T). Dado um elemento $v \in V$, vamos mostrar que v = u + w com $u \in Ker(T)$ e $w \in Im(T)$.

Tomando $w = T(v) \in Im(T)$ e u = v - w. Vamos mostrar que $u \in Ker(T)$. De fato, fazendo

$$T(u) = T(v - w) = T(v) - T(w) = T(v) - T^{2}(v) = T(v) - T(v) = 0_{V}.$$

Logo, temos que $u = (v - T(v)) \in Ker(T)$, o que completa a nossa prova.

Exemplo 4.7.15 Considere $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_1(\mathbb{R})$ a transformação linear tal que

$$T(1,1) = 1 - x$$
 e $T(1,-1) = 1 + 3x$.

Mostre que T é um isomorfismo de \mathbb{R}^2 em $\mathcal{P}_1(\mathbb{R})$. Determine explicitamente a expressão do isomorfismo inverso $T^{-1}(a_0 + a_1x)$.

Vamos mostrar que T é um isomorfismo mostrando que $\{(1,1), (1,-1)\}$ é uma base de \mathbb{R}^2 , e que $\{1-x, 1+3x\}$ é uma base de $\mathcal{P}_1(\mathbb{R})$.

Dessa forma teremos que T leva base em base, demonstrando que T é um isomorfismo. Como \mathbb{R}^2 e $\mathcal{P}_1(\mathbb{R})$ tem dimensão 2, basta mostrar que esses dois conjuntos são linearmente independente, pois cada um deles tem 2 elementos.

Inicialmente, vamos mostrar que o conjunto

$$\gamma = \{ (1,1), (1,-1) \}$$

é linearmente independente. Para isso, consideramos a equação

$$a(1,1) + b(1,-1) = 0$$

que resulta no sistema linear homogêneo

$$\begin{cases} a + b = 0 \\ a - b = 0 \end{cases}$$

com matriz

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

que possui determinante não—nulo. Logo invertível. Assim, o sistema linear homogêneo possui somente a solução trivial a=0 e b=0, mostrando que os elementos do conjunto γ são linearmente independentes.

Para com conjunto $\alpha = \{1-x, 1+3x\}$ procedemos da mesma maneira. A equação

$$a(1-x) + b(1+3x) = 0$$

da origem ao sistema homogêneo

$$\begin{cases} a + b = 0 \\ -a + 3b = 0 \end{cases}$$

com matriz

$$\begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$

que possui determinante não—nulo. Logo invertível. Assim, o sistema homogêneo possui somente a solução trivial a=0 e b=0, mostrando que os elementos do conjunto α são linearmente independentes. Portanto, mostramos que a transformação linear T é um isomorfismo.

Vamos agora determinar o isomorfismo inverso. Já sabemos que

$$T^{-1}(1-x) = (1,1)$$
 e $T^{-1}(1+3x) = (1,-1)$.

Inicialmente, vamos escrever um polinômio genérico $p(x) = a_0 + a_1 x$ na base

$$\alpha = \{ 1 - x, 1 + 3x \},\,$$

isto é,

$$p(x) = a_0 + a_1 x = m(1-x) + n(1+3x)$$
.

Assim, podemos escrever o isomorfismo inverso T^{-1} da seguinte maneira:

$$T^{-1}(a_0 + a_1 x) = T^{-1}(m(1-x) + n(1+3x))$$

$$= mT^{-1}(1-x) + nT^{-1}(1+3x)$$

$$= m(1,1) + n(1,-1) = (m+n, m-n)$$

Como

$$m(1-x) + n(1+3x) = (m+n) + (-m+3n)x$$
,

obtemos o sistema linear

$$\begin{cases} m + n = a_0 \\ -m + 3n = a_1 \end{cases}$$

que possui uma única solução

$$m = \frac{3a_0 - a_1}{4}$$
 e $n = \frac{a_0 + a_1}{4}$.

Desse modo, obtemos

$$m + n = a_0$$
 e $m - n = \frac{a_0 - a_1}{2}$,

e podemos concluir

$$T^{-1}(a_0 + a_1 x) = \left(a_0, \frac{a_0 - a_1}{2}\right).$$

Exemplo 4.7.16 Sejam V um espaço vetorial sobre o corpo \mathbb{F} e T um operador linear sobre V. Então, T é um operador idempotente se, e somente se, I-T é um operador idempotente.

Inicialmente fazendo uso da hipótese $T^2 = T$, obtemos

$$(I - T)^2 = I - 2T + T^2 = I - T$$

Logo, I - T é um operador idempotente.

Finalmente, fazendo uso da hipótese que $\,I\,-\,T\,$ é um operador idempotente, obtemos

$$I - T = (I - T)^2 = I - 2T + T^2$$

Logo, $T^2 = T$, isto é, T é um operador idempotente, o que completa a nossa prova.

Uma aplicação direta dos resultados do Exemplo 4.7.14 e do Exemplo 4.7.16, será feita quando da apresentação de **projeção ortogonal** em subespaço de dimensão finita, que vamos estudar com todo detalhe na seção 5.15.

Exercícios

Exercício 4.34 Determine o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ que representa a reflexão em torno da reta y = -x, utilizando conceitos de geometria analítica. Mostre que T é um operador auto-reflexivo.

Exercício 4.35 Determine o operador linear $P: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ que representa a projeção no plano $S = \{ (x, y, z) \in \mathbb{R}^3 \ / \ x + y + z = 0 \}$, utilizando conceitos de geometria analítica. Mostre que P é um operador idempotente.

Exercício 4.36 Seja $T \in L(\mathbb{R}^2)$ tal que T(1,0) = (2,1) e T(0,1) = (1,4).

- (a) Determine T(2,4).
- (b) Determine o elemento $(x,y) \in \mathbb{R}^2$ tal que T(x,y) = (2,3).
- (c) Mostre que T é um automorfismo de \mathbb{R}^2 .

Exercício 4.37 Seja $T \in L(\mathbb{R}^3)$ tal que

$$T(1,0,0) = (1,1,1)$$
 , $T(0,1,0) = (1,0,1)$ e $T(0,1,2) = (0,0,4)$.

T é um automorfismo de \mathbb{R}^3 ? Em caso afirmativo, determine o automorfismo inverso.

Exercício 4.38 Dado o elemento $q(x) = 3 + x \in \mathcal{P}_1(\mathbb{R})$. Considere o operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por: T(p)(x) = q(x)p'(x) + 2p(x) e a transformação linear $P: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ definida por: $P(a + bx + cx^2) = (a + b, c, a - b)$. Determine a transformação linear $P \circ T$ e verifique se é um isomorfismo de $\mathcal{P}_2(\mathbb{R})$ em \mathbb{R}^3 .

Exercício 4.39 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ definida por:

$$T(x,y) = (2x, x - y, y)$$

e a transformação linear $P: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por:

$$P(x, y, z) = (y - z, z - x)$$
.

- (a) Determine a transformação linear $P \circ T$ e uma base para o subespaço $Ker(P \circ T)$.
- $(b) \ \ Determine \ a \ transformação \ linear \ \ T\circ P \ \ e \ uma \ base \ para \ o \ subespaço \ \ Im(\ T\circ P\).$
- (c) Verifique se $T \circ P$ é um automorfismo de \mathbb{R}^3 . Em caso afirmativo, determine o automorfismo inverso.

4.8 Representação Matricial

Sejam V e W espaços vetoriais de dimensão finita sobre o corpo F. Vamos considerar $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V e $\gamma = \{w_1, \dots, w_m\}$ uma base ordenada para W. Seja $T: V \longrightarrow W$ uma transformação linear, pelo Teorema 4.2.1, sabemos que T fica bem determinada pelo seu efeito sobre os elementos da base β de V. Assim, cada elemento $T(v_i) \in W$ pode ser escrito de modo único da forma:

$$T(v_j) = \sum_{i=1}^m t_{ij} w_i$$
 para $j = 1, \dots, n$,

onde os escalares t_{1j} , \cdots , $t_{mj} \in \mathbb{F}$ são as coordenadas do elemento $T(v_j)$ com relação à base ordenada γ de W. Desse modo, a transformação linear T fica bem determinada pela matriz $m \times n$ cuja j-ésima coluna são as coordenadas do elemento $T(v_j)$ com relação à base ordenada γ de W. Vamos denotar essa matriz por $[T]_{\gamma}^{\beta} = [t_{ij}]$, que é a representação matricial da transformação linear T com relação à base ordenada β de V e a base ordenada γ de W.

Teorema 4.8.1 Sejam V e W espaços vetoriais sobre o corpo $I\!\!F$, β uma base ordenada para V, γ uma base ordenada para W e T uma transformação linear de V em W. Então, para todo $v \in V$ temos que

$$[T(v)]_{\gamma} = [T]_{\gamma}^{\beta} [v]_{\beta} .$$

Demonstração – Considere o elemento $v \in V$, que é escrito de modo único na forma:

$$v = \sum_{j=1}^n c_j v_j.$$

Assim, temos que

$$T(v) = \sum_{j=1}^{n} c_j T(v_j) = \sum_{j=1}^{n} c_j \sum_{i=1}^{m} t_{ij} w_i = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} t_{ij} c_j \right) w_i,$$

onde

$$\sum_{i=1}^{n} t_{ij} c_j$$

é a i-ésima coordenada do elemento $T(v) \in W$ com relação a base ordenada γ , que é o produto da i-ésima linha da matriz $[T]^{\beta}_{\gamma}$ pelo vetor coordenada $[v]_{\beta}$ do elemento $v \in V$ com relação a base ordenada β . Portanto, mostramos que

$$[T(v)]_{\gamma} = [T]_{\gamma}^{\beta} [v]_{\beta} ,$$

o que completa a demonstração.

Teorema 4.8.2 Sejam V e W espaços vetoriais de dimensão finita sobre o corpo $I\!\!F$, β uma base ordenada para V, γ uma base ordenada para W, T e P transformações lineares de V em W. Então,

(a)
$$[T + P]^{\beta}_{\gamma} = [T]^{\beta}_{\gamma} + [P]^{\beta}_{\gamma}$$
.

(b)
$$[\lambda T]^{\beta}_{\gamma} = \lambda [T]^{\beta}_{\gamma}$$
 para todo $\lambda \in \mathbb{F}$.

Demonstração – Sejam $\beta = \{v_1, \dots, v_n\}$ e $\gamma = \{w_1, \dots, w_m\}$ bases ordenadas para V e W, respectivamente.

Pelo Teorema 4.8.1, sabemos que existem escalares a_{ij} e b_{ij} , para $i=1,\dots,n$ e $j=1,\dots,m$, tais que

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$
 e $P(v_j) = \sum_{i=1}^{m} b_{ij} w_i$

para
$$j = 1, \dots, n$$
. Assim, $[T]_{\gamma}^{\beta} = A = [a_{ij}]$ e $[P]_{\gamma}^{\beta} = B = [b_{ij}]$.

Desse modo, temos que

$$(T + P)(v_j) = T(v_j) + P(v_j)$$

$$= \sum_{i=1}^m a_{ij} w_i + \sum_{i=1}^m b_{ij} w_i$$

$$= \sum_{i=1}^m (a_{ij} + b_{ij}) w_i$$

Portanto, mostramos que $[T + P]^{\beta}_{\gamma} = [T]^{\beta}_{\gamma} + [P]^{\beta}_{\gamma}$.

Finalmente, temos que

$$(\lambda T)(v_j) = \lambda T(v_j) = \lambda \sum_{i=1}^m a_{ij} w_i = \sum_{i=1}^m (\lambda a_{ij}) w_i.$$

Assim, provamos que $[\lambda T]^{\beta}_{\gamma} = \lambda [T]^{\beta}_{\gamma}$, o que completa a demonstração.

Exemplo 4.8.1 Considerando o espaço vetorial V de dimensão finita sobre o corpo \mathbb{F} , e a transformação identidade $I_V: V \longrightarrow V$, onde o domínio está com a base ordenada β e contra-domínio está com a base ordenada γ , podemos verificar facilmente que

$$[I_V]^{\beta}_{\gamma} = [I]^{\beta}_{\gamma}.$$

Assim, justifica a notação $[I]^{\beta}_{\gamma}$ para a matriz de mudança da base β para a base γ .

Teorema 4.8.3 Considere $U, V \in W$ espaços vetoriais com dimensão finita sobre o corpo F, com as respectivas bases γ , β e α . Sejam $T: U \longrightarrow V$ e $P: V \longrightarrow W$ transformações lineares. Então, a matriz da transformação linear $S = P \circ T: U \longrightarrow W$ é dada por:

$$[P \circ T]^{\gamma}_{\alpha} = [P]^{\beta}_{\alpha} [T]^{\gamma}_{\beta}$$

Demonstração – A prova é feita aplicando o Teorema 4.8.1 na transformação linear $S = P \circ T$, e utilizando também o resultado do Teorema 2.1.9.

Corolário 4.8.1 Sejam V e W espaços vetoriais de dimensão finitas sobre o corpo $I\!\!F$, β uma base ordenada para V, γ uma base ordenada para W e T um isomorfismo de V em W. Então, $[T^{-1}]^{\gamma}_{\beta} = ([T]^{\beta}_{\gamma})^{-1}$.

Demonstração – Aplicando o resultado Teorema 4.8.3, e considerando a transformação identidade I_V sobre V e a transformação identidade I_W sobre W, obtemos

$$[I_V]^{\beta}_{\beta} = [T^{-1} \circ T]^{\beta}_{\beta} = [T^{-1}]^{\gamma}_{\beta} [T]^{\beta}_{\gamma}$$

$$[I_W]^\gamma_\gamma \ = \ [T \circ T^{-1}]^\gamma_\gamma \ = \ [T]^\beta_\gamma \, [T^{-1}]^\gamma_\beta$$

onde $[I_V]^{\beta}_{\beta} = [I_W]^{\gamma}_{\gamma} = I_n$ é a matriz identidade de ordem n, com

$$dim(V) \ = \ dim(W) \ = \ n \ ,$$

o que completa a demonstração.

Corolário 4.8.2 Sejam V e W espaços vetoriais de mesma dimensão sobre o corpo $I\!\!F$, β uma base ordenada para V, γ uma base ordenada para W e T uma transformação linear de V em W. Então, T é um isomorfismo se, e somente se, $[T]^{\beta}_{\gamma}$ é uma matriz não-singular.

Demonstração – A prova pode ficar a cargo do leitor.

Exemplo 4.8.2 Considere os espaços vetoriais $\mathcal{P}_1(\mathbb{R})$ e \mathbb{R}^2 com as respectivas bases canônicas $\gamma = \{1, x\}$ e $\beta = \{(1, 0), (0, 1)\}$. Para a transformação linear T de $\mathcal{P}_1(\mathbb{R})$ em \mathbb{R}^2 definida por:

$$T(a + bx) = (a, a+b),$$

temos que

$$[T]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad e \qquad [T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}.$$

Podemos verificar facilmente que $T^{-1}: \mathbb{R}^2 \longrightarrow \mathcal{P}_1(\mathbb{R})$ é definido por:

$$T^{-1}(c,d) = c + (d-c)x,$$

como vimos no Exemplo 4.7.13.

Exemplo 4.8.3 Considere a transformação linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (3x+y, x+3y)$$

Determine a representação matricial de T com relação à base canônica do \mathbb{R}^2 .

Utilizando a notação $[T]^{\beta}_{\beta} = [t_{ij}]$, temos que

$$T(1,0) = (3,1) = t_{11}(1,0) + t_{21}(0,1)$$

$$T(0,1) = (1,3) = t_{12}(1,0) + t_{22}(0,1)$$

Portanto, obtemos

$$[T]^{\beta}_{\beta} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Exemplo 4.8.4 Considere a transformação linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longrightarrow T(x,y) = (3x+y, x+3y)$$

Determine a representação matricial da transformação linear T com relação à base ordenada γ do \mathbb{R}^2 dada por:

$$\gamma = \{ (1, 1), (-1, 1) \}.$$

Utilizando a notação $[T]^{\gamma}_{\gamma} = [t_{ij}]$, temos que

$$T(1,1) = (4,4) = t_{11}(1,1) + t_{21}(-1,1)$$

$$T(-1,1) = (-2,2) = t_{12}(1,1) + t_{22}(-1,1)$$

Assim, temos que obter a solução dos seguintes sistemas lineares

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} t_{11} \\ t_{21} \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \quad e \quad \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} t_{12} \\ t_{22} \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}.$$

Portanto, obtemos

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}.$$

Exemplo 4.8.5 Considere a transformação linear

$$T: \mathcal{P}_3(\mathbb{R}) \longrightarrow \mathcal{P}_2(\mathbb{R})$$

$$p(x) \longrightarrow T(p(x)) = p'(x)$$

Determine a matriz $[T]^{\beta}_{\gamma}$, onde $\beta = \{1, x, x^2, x^3\}$ é a base canônica de $\mathcal{P}_3(\mathbb{R})$ e $\gamma = \{1, x, x^2\}$ é a base canônica de $\mathcal{P}_2(\mathbb{R})$.

Resposta:
$$T_{\gamma}^{\beta} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Exemplo 4.8.6 Considere a transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longrightarrow T(x, y, z) = (2x + y - z, 3x - 2y + 4z)$$

Determine $[T]^{\beta}_{\gamma}$, onde β é a base canônica de \mathbb{R}^3 e γ é a base canônica de \mathbb{R}^2 .

Resposta:
$$[T]_{\gamma}^{\beta} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -2 & 4 \end{bmatrix}$$

273

Exemplo 4.8.7 Considere a transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longrightarrow T(x, y, z) = (2x + y - z, 3x - 2y + 4z)$$

Determine a representação matricial de T com relação às bases

$$\beta = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0) \} do \mathbb{R}^{3}$$

$$\gamma = \{ (1, 3), (1, 4) \} do \mathbb{R}^{2}.$$

Resposta: $\begin{bmatrix} T \end{bmatrix}_{\gamma}^{\beta} = \begin{bmatrix} 3 & 11 & 5 \\ -1 & -8 & -3 \end{bmatrix}$

Exemplo 4.8.8 Considere a transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x, y, z) \longrightarrow T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)$$

Determine a matriz $[T]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 .

Resposta: $[T]^{\beta}_{\beta} = \begin{bmatrix} 3 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 2 & 4 \end{bmatrix}$

 ${\bf Exemplo~4.8.9~\it Considere~a~transformação~linear}$

$$T: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3$$

$$(x, y, z) \quad \longrightarrow \quad T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)$$

Determine a representação matricial da transformação linear T com relação à base ordenada γ do \mathbb{R}^3 dada por:

$$\gamma = \{ (1, 0, 1), (-1, 2, 1), (2, 1, 1) \}.$$

Resposta: $T_{\gamma}^{\gamma} = \frac{1}{4} \begin{bmatrix} 17 & 35 & 22 \\ -3 & 15 & -6 \\ -2 & -14 & 0 \end{bmatrix}$

Exemplo 4.8.10 Considere a transformação linear

$$T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$$

$$p \longrightarrow q = T(p)$$

com

$$q(x) = T(p(x)) = \int_0^x p(t)dt.$$

Determine a matriz $[T]_{\gamma}^{\beta}$, onde $\beta = \{1, x, x^2\}$ é a base canônica de $\mathcal{P}_2(\mathbb{R})$ e $\gamma = \{1, x, x^2, x^3\}$ é a base canônica de $\mathcal{P}_3(\mathbb{R})$.

Dado o elemento $p(x)=2\,x^2+x$, determine as coordenadas de q(x)=T(p(x)) com relação à base canônica γ .

Resposta:
$$[T]_{\gamma}^{\beta} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 \\ 6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 $e \quad [q]_{\gamma} = [T]_{\gamma}^{\beta} [p]_{\beta} = \frac{1}{6} \begin{bmatrix} 0 \\ 0 \\ 3 \\ 4 \end{bmatrix}$

Exemplo 4.8.11 Considere o operador linear $T: \mathbb{M}_2(\mathbb{R}) \longrightarrow \mathbb{M}_2(\mathbb{R})$ definido por:

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left[\begin{array}{cc}2a+b&2b\\2c&3d\end{array}\right].$$

Considerando $M_2(\mathbb{R})$ com a base canônica $\beta = \{A_1, A_2, A_3, A_4\}$, onde

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 , $A_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $e A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Determine a matriz $[T]^{\beta}_{\beta}$. Mostre que T é um automorfismo de $\mathbb{M}_2(\mathbb{R})$.

$$egin{aligned} \pmb{Resposta:} & [T]^{eta}_{eta} = egin{bmatrix} 2 & 0 & 1 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 3 \end{bmatrix} \end{aligned}$$

Exemplo 4.8.12 Sejam V um espaço vetorial real e $\beta = \{v_1, v_2, v_3\}$ uma base ordenada para V. Determine um operador linear T sobre V tal que $T(v_1) = v_2$ e que deixa fixos todos os elementos do subespaço $W \subset V$ definido da seguinte forma:

$$W = \{ x v_1 + y v_2 + z v_3 \in V \ / \ x - y + z = 0 \ para \ x, y, z \in \mathbb{R} \}.$$

Determine a matriz $[T]^{\beta}_{\beta}$. T é um automorfismo (isomorfismo) de V?

Inicialmente, vamos determinar uma base para o subespaço W. Utilizando a condição x-y+z=0, obtemos x=y-z. Logo, todo elemento $w\in W$ é escrito como

$$w = y(v_1 + v_2) + z(v_3 - v_1)$$
 para $y, z \in \mathbb{R}$.

Portanto, $\{(v_1+v_2), (v_3-v_1)\}$ é uma base para o subespaço W. Impondo a condição que o operador T deixa fixos os elemento de W e que $T(v_1) = v_2$, tem-se que

$$v_1 + v_2 = T(v_1 + v_2) = T(v_1) + T(v_2) = v_2 + T(v_2) \implies T(v_2) = v_1$$

$$v_3 - v_1 = T(v_3 - v_1) = T(v_3) - T(v_1) = T(v_3) - v_2 \implies T(v_3) = v_3 - v_1 + v_2$$

Portanto, obtemos que a matriz do operador T com relação à base β é dada por:

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Vamos verificar se T é um automorfismo de V. Para isso, determinamos

$$Ker(T) = \{ v = x v_1 + y v_2 + z v_3 \in V / T(v) = 0_V \}.$$

Podemos observar que o operador T é escrito da forma:

$$T(v) = x T(v_1) + y T(v_2) + z T(v_3) = x v_2 + y v_1 + z (v_3 - v_1 + v_2).$$

Assim, impondo que o elemento $v = a v_1 + b v_2 + c v_3 \in Ker(T)$, isto é,

$$T(v) = (b - c) v_1 + (a + c) v_2 + c v_3 = 0_V,$$

obtemos a = b = c = 0, uma vez que $\{v_1, v_2, v_3\}$ é linearmente independente.

Portanto, $Ker(T) = \{0_V\}$, isto é, T é um operador injetor. Utilizando o Teorema do núcleo e da imagem, obtemos dim(Im(T)) = dim(V). Logo, Im(T) = V, isto é, T é um operador sobrejetor. Portanto, T é um automorfismo de V.

Exemplo 4.8.13 Sejam T um operador linear sobre \mathbb{R}^4 , $\gamma = \{v_1, v_2, v_3, v_4\}$ uma base ordenada para o espaço vetorial real \mathbb{R}^4 e o subespaço $S = [v_1, v_2, v_3]$.

- (a) Sabendo que T(v) = v para todo $v \in S$ e $T(v_4) = v_1 + v_3$, determine $[T]_{\gamma}^{\gamma}$.
- (b) Sabendo que

$$[I]_{\gamma}^{\beta} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

onde $\beta = \{e_1, e_2, e_3, e_4\}$ é a base canônica de \mathbb{R}^4 , determine $[T(e_1)]_{\gamma}$.

Sabendo que T(v) = v para todo $v \in S$ e que $T(v_4) = v_1 + v_3$, obtemos

$$T(v_1) = v_1$$
 = $1v_1 + 0v_2 + 0v_3 + 0v_4$
 $T(v_2) = v_2$ = $0v_1 + 1v_2 + 0v_3 + 0v_4$
 $T(v_3) = v_3$ = $0v_1 + 0v_2 + 1v_3 + 0v_4$
 $T(v_4) = v_1 + v_3$ = $1v_1 + 0v_2 + 1v_3 + 0v_4$

Portanto, temos que

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Conhecemos as matrizes $[I]_{\gamma}^{\beta}$ e $[T]_{\gamma}^{\gamma}$, para encontrar $[T(e_1)]_{\gamma}$, vamos determinar inicialmente $[e_1]_{\gamma}$ da seguinte forma:

$$[e_{1}]_{\gamma} = [I]_{\gamma}^{\beta}[e_{1}]_{\beta} \iff [e_{1}]_{\gamma} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Finalmente, calculamos

$$[T(e_1)]_{\gamma} = [T]_{\gamma}^{\gamma} [e_1]_{\gamma} \iff [T(e_1)]_{\gamma} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix},$$

o que completa a resolução.

Exemplo 4.8.14 Considere o operador linear $T: \mathcal{P}_3(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$ definido por:

$$T(p(x)) = p(x) + (1 + x)p'(x).$$

Verifique se T é um automorfismo de $\mathcal{P}_3(\mathbb{R})$, e determine a matriz $[T]^{\beta}_{\beta}$, onde β é a base canônica de $\mathcal{P}_3(\mathbb{R})$.

Vamos verificar se o operador T é um automorfismo de $\mathcal{P}_3(\mathbb{R})$. Para isso, devemos determinar o subespaço Ker(T), isto é,

$$Ker(T) = \{ p(x) \in \mathcal{P}_3(\mathbb{R}) / T(p(x)) = 0_{\mathcal{P}_3(\mathbb{R})} \}.$$

Tomando um elemento genérico $p(x) = a + bx + cx^2 + dx^3$, vamos impor a condição que $p(x) \in Ker(T)$, isto é,

$$T(p(x)) = (a + bx + cx^{2} + dx^{3}) + (1 + x)(b + 2cx + 3dx^{2}) = 0_{\mathcal{P}_{3}(\mathbb{R})}$$
$$= (a + b) + (2b + 2c)x + (3c + 3d)x^{2} + 4dx^{3} = 0_{\mathcal{P}_{3}(\mathbb{R})}$$

o que nos leva a um sistema linear homogêneo que possui somente a solução trivial

$$a = b = c = d = 0$$
.

Assim, mostramos que $Ker(T) = \{0_{\mathcal{P}_3(\mathbb{R})}\}$, isto é, T é um operador injetor.

Pelo Teorema do núcleo e da imagem, sabemos que $Im(T) = \mathcal{P}_3(\mathbb{R})$, isto é, T é um operador sobrejetor. Portanto, mostramos que T é um automorfismo de $\mathcal{P}_3(\mathbb{R})$.

Finalmente, vamos determinar a representação matricial do operador T com relação à base canônica $\beta = \{1, x, x^2, x^3\}$ de $\mathcal{P}_3(\mathbb{R})$. Para isso, vamos calcular

$$T(1) = 1$$

 $T(x) = 1 + 2x$
 $T(x^2) = 2x + 3x^2$
 $T(x^3) = 3x^2 + 4x^3$

Desse modo, obtemos

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix},$$

o que completa a resolução.

Exemplo 4.8.15 Considere uma matriz $A \in I\!\!M_{m \times n}(I\!\!R)$. Definimos a transformação linear T_A de $I\!\!R^n$ em $I\!\!R^m$ associada à matriz $A = [a_{ij}]$ da seguinte forma:

$$y = T_A(x)$$
 para todo $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

onde a i-ésima componente do elemento $y = (y_1, \dots, y_m) \in \mathbb{R}^m$ é dada por:

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 ; $i = 1, \dots, m$.

Podemos verificar que a matriz $[T_A]^{\beta}_{\gamma} = A$, onde β é a base canônica do \mathbb{R}^n e γ é a base canônica do \mathbb{R}^m . Assim, $[T_A(x)]_{\gamma} = [T_A]^{\beta}_{\gamma}[x]_{\beta} = A[x]_{\beta}$ para todo $x \in \mathbb{R}^n$.

Definição 4.8.1 Sejam $A \in M_{m \times n}(\mathbb{R})$ e a transformação linear T_A de \mathbb{R}^n em \mathbb{R}^m , associada à matriz A. Definimos o **posto** da matriz A, que denotamos por posto(A), como sendo a dimensão da imagem de T_A , isto é, posto $(A) = \dim(Im(T_A))$.

Exemplo 4.8.16 Sejam $A \in M_{m \times n}(\mathbb{R})$ e a transformação linear T_A de \mathbb{R}^n em \mathbb{R}^m associada à matriz A. Podemos verificar facilmente que o posto(A) é igual ao número de colunas de A que são linearmente independentes em \mathbb{R}^m , tendo em vista que a $Im(T_A)$ é o subespaço gerado pelas colunas da matriz A. Sendo assim, denotando a matriz $A = [v_1 \cdots v_j \cdots v_n]$, onde $v_j \in \mathbb{R}^m$ é a j-ésima coluna de A, temos que todo elemento $y \in Im(T_A)$ é escrito como:

$$y = \sum_{j=1}^{n} c_j v_j.$$

Exemplo 4.8.17 Considere a matriz $A \in \mathbb{M}_{3\times 4}(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 1 & 3 & 4 & 1 \\ -1 & 5 & 2 & 1 \\ 3 & 1 & 6 & 1 \end{bmatrix}.$$

Determine a transformação linear T_A associada à matriz A e o posto(A).

Exemplo 4.8.18 Considere a matriz $A \in \mathbb{M}_{4\times 3}(\mathbb{R})$ dada por:

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -1 & 5 & 2 \\ 3 & 1 & 6 \\ 1 & 1 & 1 \end{bmatrix}.$$

Determine a transformação linear T_A associada à matriz A e o posto(A).

Na seção 8.10 apresentamos um estudo mais detalhado sobre os resultados envolvendo o **posto de A**, mostrando que a Definição 2.6.3 e a Definição 4.8.1 são compatíveis. A seguir apresentamos alguns resultados importantes sobre o posto de uma matriz.

Teorema 4.8.4 Sejam $A \in M_{m \times n}(\mathbb{R})$, $T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ a transformação linear associada à matriz $A, Q \in M_n(\mathbb{R})$ uma matriz invertível, $T_Q : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ a transformação linear associada à matriz $Q, e T_{AQ} : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ a transformação linear associada à matriz AQ. Então,

$$Im(T_{AQ}) = Im(T_A \circ T_Q) = Im(T_A).$$

Demonstração – Como Q é uma matriz invertível, do Teorema 3.7.2, provamos que $Im(T_Q) = \mathbb{R}^n$, isto é, todo elemento $y \in \mathbb{R}^n$ pode ser escrito como $y = T_Q(x)$ para algum $x \in \mathbb{R}^n$. Além disso, do Teorema 2.9.7, temos que $Ker(T_Q) = \{ 0_{\mathbb{R}^n} \}$. Portanto, mostramos que T_Q é bijetora. Desse modo, temos que todo elemento $z \in Im(T_{AQ})$ é representado da forma:

$$z = T_{AQ}(x) = (T_A \circ T_Q)(x) = T_A(T_Q(x)) = T_A(y)$$

onde $y = T_Q(x)$, para algum $x \in \mathbb{R}^n$, o que completa a demonstração.

Corolário 4.8.3 Sejam $A \in \mathbb{M}_{m \times n}(\mathbb{R})$ e $Q \in \mathbb{M}_n(\mathbb{R})$ uma matriz invertível. Então, posto(AQ) = posto(A).

Demonstração — A prova segue imediata da Definição 4.8.1 e do Teorema 4.8.4.

Exemplo 4.8.19 Considere a matriz $A \in M_{4\times 3}(\mathbb{R})$ e $Q \in M_3(\mathbb{R})$ uma matriz invertível dadas por:

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -1 & 5 & 2 \\ 3 & 1 & 6 \\ 1 & 1 & 1 \end{bmatrix} \qquad e \qquad Q = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

- (a) Determine as transformações lineares T_A , T_Q e T_{AQ} .
- (b) Verifique que posto(AQ) = posto(A).

Teorema 4.8.5 Sejam $A \in \mathbb{M}_{m \times n}(\mathbb{R})$ e $P \in \mathbb{M}_m(\mathbb{R})$ uma matriz invertível. Então, posto(PA) = posto(A).

Demonstração – A prova pode ficar a cargo do leitor.

Exercícios

Exercício 4.40 Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por:

$$T(x, y, z) = (x - y + z, -x + 2z)$$
.

Determine $[T]^{\gamma}_{\beta}$, onde γ é a base canônica de \mathbb{R}^3 e β é a base canônica de \mathbb{R}^2 .

Exercício 4.41 Considere o operador linear T sobre \mathbb{R}^3 definida por:

$$T(x, y, z) = (x - y + z, x + y + 2z, x + 2y + z).$$

Determine $[T]^{\beta}_{\beta}$, onde β é a base canônica de \mathbb{R}^3 .

Exercício 4.42 Considere o operador linear T sobre \mathbb{R}^2 definido por:

$$T(x,y) = (x + 2y, 2x + 4y).$$

 $Determine \ [T]^{\beta}_{\beta} \ \ , \ \ [T]^{\beta}_{\alpha} \ \ , \ \ [T]^{\alpha}_{\beta} \ \ e \ \ \ [T]^{\gamma}_{\alpha} \ , \ onde \ as \ base \ \beta \ , \ \alpha \ \ e \ \ \gamma \ \ s\~{ao} \ \ dadas \ por:$

$$\beta = \{ (1,0), (0,1) \}$$
, $\alpha = \{ (1,-1), (0,1) \}$ e $\gamma = \{ (1,-1), (1,1) \}$.

Exercício 4.43 Considere o operador linear T sobre \mathbb{R}^3 definido por:

$$T(x,y,z) \ = \ \left(\ x + 2y + z \ , \ 2x - y \ , \ 2y + z \ \right) \, .$$

Determine as matrizes $[T]^{\beta}_{\beta}$, $[T]^{\gamma}_{\beta}$ e $[T]^{\beta}_{\gamma}$, onde as bases β e γ são dadas por:

$$\beta \ = \ \left\{ \ (1,0,0) \, , \, (0,1,0) \, , \, (0,0,1) \ \right\} \qquad e \qquad \gamma \ = \ \left\{ \ (1,0,1) \, , \, (0,1,1) \, , \, (0,0,1) \ \right\} \, .$$

Exercício 4.44 Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por:

$$T(x,y,z) = (x + y - z, 2x - y + 2z).$$

Determine a matriz $[T]^{\gamma}_{\beta}$, onde as bases β e γ são dadas por:

$$\gamma = \{ (1,0,-1), (0,1,1), (1,1,0) \}$$
 $e \quad \beta = \{ (1,-1), (0,1) \}.$

Exercício 4.45 Seja U um subespaço de $\mathcal{P}_3(\mathbb{R})$. Considere a transformação linear $T: U \longrightarrow \mathcal{P}_2(\mathbb{R})$ dada por: T(p(x)) = p'(x) + (x+1)p(0). Seja

$$[T]_{\gamma}^{\beta} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 onde $\beta = \{x - x^2 + x^3, 1 + x + x^2\}.$

- $(a) \ \ Determine \ \ [p(x)]_{\beta} \ \ sabendo \ que \ \ [T(p(x))]_{\gamma} \ = \ \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix}.$
- (b) Se $\gamma = \{x+2, p_1(x), p_2(x)\}, determine 3p_1(x) + 3p_2(x).$

Exercício 4.46 Mostre que a transformação linear $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ definida por: T(p(x)) = (p(-1), p(0), p(1)) é bijetora. Determine a matriz $[T]^{\gamma}_{\beta}$, onde γ é a base canônica de $\mathcal{P}_2(\mathbb{R})$ e β é a base canônica de \mathbb{R}^3 .

Exercício 4.47 Mostre que o operador linear T sobre \mathbb{R}^3 definido por:

$$T(x, y, z) = (x - y, 2y, y + z)$$

é invertível e determine o isomorfismo inverso T^{-1} , utilizando a matriz $[T]^{\beta}_{\beta}$, onde β é a base canônica do \mathbb{R}^3 .

Exercício 4.48 Considere o operador linear T sobre \mathbb{R}^2 definido por:

$$T(x,y) = (x-2y, -2x+y).$$

- (a) Determine a matriz $[T]^{\beta}_{\beta}$, onde $\beta = \{(1,1), (1,-1)\}.$
- (b) Determine o isomorfismo inverso T^{-1} , se possível.

Exercício 4.49 Considere a matriz $A \in M_{3\times 2}(\mathbb{R})$ e $P \in M_3(\mathbb{R})$ uma matriz invertível dadas por:

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 1 & -1 \end{bmatrix} \qquad e \qquad P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Verifique que posto(PA) = posto(A).

Exercício 4.50 Sejam $A \in M_{m \times n}(\mathbb{R}), P \in M_m(\mathbb{R})$ e $Q \in M_n(\mathbb{R})$ matrizes invertíveis. Mostre que posto(PAQ) = posto(A).

Exercício 4.51 Sejam $A \in M_{m \times n}(\mathbb{R})$ e $H \in M_m(\mathbb{R})$ uma matriz elementar de linha. Mostre que posto(HA) = posto(A). Sugestão: faça uso do Teorema 2.7.4.

Exercício 4.52 Sejam $A \in M_{m \times n}(\mathbb{R})$ e $K \in M_n(\mathbb{R})$ uma matriz elementar de coluna. Mostre que posto(AK) = posto(A). Sugestão: faça uso do Teorema 2.7.5.

Exercício 4.53 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que

$$[T]_{\gamma}^{\beta} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix},$$

onde β é a base canônica de \mathbb{R}^2 e $\gamma = \{ (1,0,1), (-1,0,1), (0,1,0) \}.$

- (a) Determine T(1,0) e T(0,1).
- (b) Determine uma base para Im(T).
- (c) A transformação T é injetora ?

Exercício 4.54 Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ o operador linear definido por:

$$T(x,y) = (3x - 2y, -2x + 3y).$$

(a) Determine uma base para cada um dos seguintes subespaços:

$$U_1 = \{ (x,y) \in \mathbb{R}^2 / T(x,y) = 5(x,y) \}$$

$$U_2 = \{ (x,y) \in \mathbb{R}^2 / T(x,y) = (x,y) \}$$

(b) Mostre que o conjunto $\beta = \beta_1 \cup \beta_2$, onde β_1 é uma base para U_1 e β_2 é uma base para U_2 , é uma base para \mathbb{R}^2 e determine $[T]^{\beta}_{\beta}$.

Exercício 4.55 Sejam T um operador linear sobre \mathbb{R}^4 , $\gamma = \{v_1, v_2, v_3, v_4\}$ uma base ordenada para o espaço vetorial real \mathbb{R}^4 e o subespaço $S = [v_1, v_2, v_3]$.

- (a) Sabendo que T(v) = v para todo $v \in S$ e $T(v_4) = v_1 + v_3$, determine $[T]_{\gamma}^{\gamma}$.
- (b) Sabendo que

$$[I]_{\gamma}^{\beta} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

onde $\beta = \{e_1, e_2, e_3, e_4\}$ é a base canônica de \mathbb{R}^4 , determine $[T(e_1)]_{\gamma}$.

Bibliografia

- [1] Tom M. Apostol, Análisis Matemático, Segunda Edición, Editorial Reverté, 1977.
- [2] Tom M. Apostol, Calculus, Volume I, Second Edition, John Wiley & Sons, 1976.
- [3] Tom M. Apostol, Calculus, Volume II, Second Edition, John Wiley & Sons, 1976.
- [4] Tom M. Apostol, Linear Algebra–A First Course with Applications to Differential Equations, John Wiley & Sons, 1997.
- [5] Alexander Basilevsky, Applied Matrix Algebra in the Statistical Sciences, Dover, 1983.
- [6] J. L. Boldrini, S. I. R. Costa, V. L. Figueiredo e H. G. Wetzler, Álgebra Linear, Terceira Edição, Editora Harbra Ltda, 1986.
- [7] C. A. Callioli, H. H. Domingues e R. C. F. Costa, Álgebra Linear e Aplicações, Sexta Edição, Atual Editora, 2003.
- [8] R. Charnet, C. A. L. Freire, E. M. R. Charnet e H. Bonvino, *Análise de Modelos de Regressão Linear com Aplicações*, Editora da Unicamp, Segunda Edição, 2008.
- [9] F. U. Coelho e M. L. Lourenço, Um Curso de Álgebra Linear, edusp, 2001.
- [10] S. H. Friedberg, A. J. Insel and L. E. Spence, *Linear Algebra*, Prentice—Hall, Third Edition, 1997.
- [11] Gene H. Golub & Charles F. Van Loan, *Matrix Computations*, Third Edition, John Hopkins, 1996.
- [12] K. Hoffman e R. Kunze, Álgebra Linear, Editora da USP, 1971.
- [13] Roger A. Horn and Charles R. Johnson, *Matrix Analysis*, Cambridge University Press, 1996.
- [14] Bernard Kolman e David R. Hill, *Introdução à Álgebra Lienar com Aplicações*, LTC, Oitava Edição, 2006.
- [15] Serge Lang, Introduction to Linear Algebra, Second Edition, Springer, 1986.
- [16] Elon L. Lima, Álgebra Linear, Coleção Matemática Universitária, IMPA, 1996.
- [17] Elon L. Lima, Curso de Análise, Projeto Euclides, IMPA, 1996.

- [18] Seymour Lipschutz, Álgebra Linear, Terceira Edição, Makron Books, 1994.
- [19] Patricia R. de Peláez, Rosa F. Arbeláez y Luz E. M. Sierra, *Algebra Lineal con Aplicaciones*, Universidad Nacional de Colombia, 1997.
- [20] Gilbert Strang, *Linear Algebra and its Applications*, Third Edition, Harcourt Brace Jovanovich Publishers, 1988.
- [21] David S. Watkins, Fundamentals of Matrix Computations, John Wiley & Sons, 1991.