Tutorial Sheet 4 - Solutions

- Q1 (i) 2^{nd} order as there are 2 poles (or highest power of s in denominator is 2)
 - (ii) 3^{rd} order as there are 3 poles (or highest power of s in denominator is 3)
 - (iii) 1st order as the degree of the highest (output) derivative is 1
 - (iv) 2nd order as the degree of the highest (output) derivative is 2

Q2 (i)
$$L\frac{di}{dt} + Ri = v_i$$

Solution for i(t) involves two components, i.e.: $i(t) = i_n(t) + i_f(t)$

Finding $i_n(t)$, the zero-input response:

Set
$$v_i = 0$$
 $\Rightarrow L \frac{di_n}{dt} + Ri_n = 0$

Use separation of variables method:

$$L\frac{di_n}{dt} = -Ri_n \Rightarrow \frac{di_n}{i_n} = -\frac{R}{L}dt$$

$$\therefore \int \frac{di_n}{i_n} = -\frac{R}{L} \int dt \qquad \Rightarrow \ln(i_n) = -\frac{R}{L} t + K$$

$$\Rightarrow i_n = e^{\frac{-R}{L}t + K} = e^{K} e^{\frac{-R}{L}t} = A e^{\frac{-R}{L}t}$$

Finding $i_f(t)$, the steady-state response:

Set all derivatives to zero:
$$\frac{di}{dt} = 0 \Rightarrow L(0) + Ri_f = v_i \Rightarrow i_f = \frac{v_i}{R}$$

Complete solution:

$$i(t) = i_n(t) + i_f(t) = Ae^{\frac{-R}{L}t} + \frac{v_i}{R}$$

Since
$$i(0) = 0$$
:
$$0 = Ae^{\frac{-R}{L}(0)} + \frac{v_i}{R} \Rightarrow 0 = A(1) + \frac{v_i}{R} \Rightarrow A = -\frac{v_i}{R}$$

Therefore:
$$i(t) = -\frac{v_i}{R}e^{\frac{-R}{L}t} + \frac{v_i}{R}$$
 or $i(t) = \frac{v_i}{R}\left(1 - e^{-\frac{R}{L}t}\right)$

Q2 (ii)
$$\frac{I(s)}{V_i(s)} = \frac{1}{sL + R}$$

The output is given by:
$$I(s) = \frac{1}{sL + R}V_i(s)$$

The input is a constant value, v_i , hence: $V_i(s) = \frac{v_i}{s}$

Hence:
$$I(s) = v_i \left(\frac{1}{s(sL+R)} \right)$$

Using the partial fraction method:
$$\frac{1}{s(sL+R)} \equiv \frac{A}{s} + \frac{B}{sL+R} = \frac{A(sL+R) + Bs}{s(sL+R)}$$

Equating the coefficients of s gives: $A = \frac{1}{R}$ and AL + B = 0 $\Rightarrow B = -AL = -\frac{L}{R}$

Hence:
$$I(s) = v_i \left(\frac{1}{s(sL+R)}\right) = v_i \left(\frac{\frac{1}{R}}{s} - \frac{\frac{L}{R}}{sL+R}\right) = \frac{v_i}{R} \left(\frac{1}{s} - \frac{1}{s + \frac{R}{L}}\right)$$

Obtaining the Inverse Laplace Transforms:
$$i(t) = \frac{v_i}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

This, as expected, is the same as the solution in part (i).

Q3
$$\frac{Y(s)}{U(s)} = \frac{1}{s^2 + 6s + 8}$$
 \Rightarrow $Y(s) = \frac{1}{s^2 + 6s + 8}U(s)$

$$u(t) = 1 \implies U(s) = \frac{1}{s}$$

Hence:
$$Y(s) = \frac{1}{s(s^2 + 6s + 8)} = \frac{1}{s(s+2)(s+4)}$$
 $\equiv \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+4}$

$$=\frac{A(s+2)(s+4)+Bs(s+4)+Cs(s+2)}{s(s+2)(s+4)}$$

Setting
$$s = 0$$
: $1 = A(2)(4) \implies A = \frac{1}{8}$

Setting
$$s = -2$$
: $1 = B(-2)(2) \implies B = -\frac{1}{4} = -\frac{2}{8}$

Setting
$$s = -4$$
: $1 = C(-4)(-2) \implies C = \frac{1}{8}$

Hence:
$$Y(s) = \frac{1}{8} \left(\frac{1}{s} - \frac{2}{s+2} + \frac{1}{s+4} \right)$$

Finally:

$$y(t) = \frac{1}{8} (1 - 2e^{-2t} + e^{-4t})$$

Q4
$$\frac{d^2x(t)}{dt} - 4x(t) = 4 \rightarrow s^2X(s) - 4X(s) = \frac{4}{s} \Rightarrow X(s) = \frac{4}{s(s^2 - 4)}$$

$$\frac{4}{s(s^2-4)} = \frac{4}{s(s-2)(s+2)} = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{s+2} = \frac{A(s-2)(s+2) + Bs(s+2) + Cs(s-2)}{s(s-2)(s+2)}$$

Setting
$$s = 0$$
: $4 = A(-2)(2) \implies A = -1$

Setting
$$s = 2$$
: $4 = B(2)(4) \Rightarrow B = \frac{1}{2}$

Setting
$$s = -2$$
: $4 = C(-2)(-4) \implies C = \frac{1}{2}$

Hence:
$$X(s) = \frac{1}{2} \left(-\frac{2}{s} + \frac{1}{s-2} + \frac{1}{s+2} \right)$$

Finally:

$$x(t) = \frac{1}{2} \left(-2 + e^{2t} + e^{-2t} \right)$$

Q5 Refer to Notes

Q6 (i)
$$\frac{s}{(s+2)(s+5)}$$

Zero: s = 0 **Poles:** $(s + 2)(s + 5) = 0 \implies s = -2, s = -5$

Hence: $j\omega$ s-plane s-plane s-plane

System is **stable** as both poles are on the LHS of the imaginary axis.

(ii)
$$\frac{s+3}{s(s^2+2s-8)}$$

Zero: $s + 3 = 0 \Rightarrow s = -3$ **Poles:** $s(s-2)(s+4) = 0 \Rightarrow s = 0, s = 2, s = -4$

Hence:

System is **unstable** as one of the poles is on the RHS of the imaginary axis.

(iii)
$$\frac{1}{s(s+2)(s-2)}$$

Zero: None **Poles:** $s(s+2)(s-2) = 0 \implies s = 0, s = -2, s = 2$

Hence:

System is **unstable** as one of the poles is on the RHS of the imaginary axis.

(iv)
$$\frac{s^2 - 3s + 2}{(s^2 + 2s)(s+3)}$$

Zero:
$$(s-1)(s-2) = 0 \implies s = 1, s = 2$$

Poles:
$$s(s+2)(s+3) = 0 \implies s = 0, s = -2, s = -3$$

Hence:

System is **marginally stable** as one of the poles is on the imaginary axis, while the other poles are all on the LHS.

Q7 (i)
$$\frac{1}{(s+2)(s+\alpha)}$$
 \Rightarrow poles at -2 and $-\alpha$ \therefore for stability, $\alpha > 0$

(ii)
$$\frac{s+\alpha}{(s^2+4s+4)}$$

Here, α does not affect the location of the poles (only the zero) and hence it does not affect stability. Since both system poles are at -2 we can state that the system is **always stable** irrespective of α .

(iii)
$$\frac{s}{(s-2)(s+\alpha)}$$
 \Rightarrow poles at 2 and $-\alpha$

Since one pole is always on the RHS of the imaginary axis then this system is **always unstable** irrespective of α .

Q8 (i) Combine forward path blocks to give:
$$\frac{2(s+2)}{8(s+2.5)} = \frac{s+2}{4(s+2.5)}$$

Now, consider the feedback connection. Hence:

$$\frac{G}{1+GH} \to \frac{\frac{s+2}{4(s+2.5)}}{1+\frac{s+2}{4(s+2.5)}(s+1)} = \frac{s+2}{4(s+2.5)+(s+2)(s+1)} = \frac{s+2}{s^2+7s+12}$$

(ii) Order = 2

(iv) System is **stable** as both poles are on the LHS of the imaginary axis

(v)
$$\frac{Y(s)}{U(s)} = \frac{s+2}{(s+3)(s+4)}$$
 \Rightarrow $Y(s) = \frac{s+2}{(s+3)(s+4)}U(s)$

$$u(t) = 1 \implies U(s) = \frac{1}{s}$$

Hence:
$$Y(s) = \frac{s+2}{s(s+3)(s+4)}$$
 $\equiv \frac{A}{s} + \frac{B}{s+3} + \frac{C}{s+4}$

$$=\frac{A(s+3)(s+4)+Bs(s+4)+Cs(s+3)}{s(s+3)(s+4)}$$

Setting
$$s = 0$$
: $2 = A(3)(4) \implies A = \frac{1}{6}$

Setting
$$s = -3$$
: $-1 = B(-3)(1) \Rightarrow B = \frac{1}{3} = \frac{2}{6}$

Setting
$$s = -4$$
: $-2 = C(-4)(-1) \Rightarrow C = -\frac{1}{2} = -\frac{3}{6}$

Hence:
$$Y(s) = \frac{1}{6} \left(\frac{1}{s} + \frac{2}{s+3} - \frac{3}{s+4} \right)$$

Finally:
$$y(t) = \frac{1}{6} (1 + 2e^{-3t} - 3e^{-4t})$$