Section 14 Law of Large Number

TA: Yasi Zhang

May 19, 2022

About CLT: When you read the problem and want to use CLT, first take notice that it is the case I (Normal) or the case II (other distributions) (sample size must be large).

1 Parameter Estimation

Parameters θ are given in probability while they are not given in statistics (or in real life)!

e.g. You never know the exact P(X = head) when tossing a coin. You can only toss many many times to estimate the probability.

True parameter θ is not a random variable! It could be regarded as an unknown constant while $\hat{\theta}$ is considered as a random variable.

How do we judge an estimate is good or not?

- Bias: $Bias(\hat{\theta}) = E\hat{\theta} \theta$
- Consistency: $\hat{\theta} \xrightarrow{p} \theta$?
- MSE: $E(\hat{\theta} \theta)^2 = Bias^2(\hat{\theta}) + Var(\hat{\theta})$

1.1 Practice

- 4. Suppose $\{X_1, X_2, ..., X_2\}$ is an i.i.d. random sample from some population with unknown mean μ and variance σ^2 . Define parameter $\theta = (\mu 2)^2$.
- (a) Suppose $\hat{\theta} = (\bar{X}_n 2)^2$ is an estimator for θ , where \bar{X}_n is the sample mean. Show that $\hat{\theta}$ is not unbiased for θ . [Hint: $\bar{X}_n 2 = \bar{X}_n \mu + \mu 2$.]
- (b) Find an unbiased estimator for θ . Hint: Consider an estimator which corrects the bias of $\hat{\theta} = (\bar{X}_n 2)^2$.

Suppose $\{X_i\}$ are i.i.d. and $E(X_i) = \mu, Var(X_i) = \sigma^2$. Our interest is to estimate μ , using the following class of estimator:

$$\hat{\mu} = \sum_{i=1}^{n} c_i X_i$$

- a. Show that $\hat{\mu}$ is unbiased for μ if and only if $\sum_{i=1}^{n} c_i = 1$.
- b. Find the best unbiased estimator $\hat{\mu}^*$. Hint: Minimize $Var(\hat{\mu})$. Use Cauchy-Schwarz Inequality.

Remark 1 We may pick X_1 as our estimate for μ and it is an unbiased estimater, but it is not as good as the estimate given in (b).

2 Asymptotic Theory

Lemma 19 (7.2). [Markov's Inequality]: Suppose X is a random variable and g(X) is a nonnegative function. Then for any $\epsilon > 0$, and any k > 0, we have

$$P[g(X) \ge \epsilon] \le \frac{E[g(X)^k]}{\epsilon^k}.$$

Definition 74 (7.6). [Convergence in Probability]: A sequence of random variables $\{Z_n, n = 1, 2, \cdots\}$ converges in probability to a random variable Z if for every small constant $\epsilon > 0$,

$$P[|Z_n - Z| > \epsilon] \to 0 \text{ as } n \to \infty.$$

When Z_n converges in probability to Z, we write $\lim_{n\to\infty} P(|Z_n-Z|>\epsilon)=0$ for every $\epsilon>0$, or $p\lim_{n\to\infty} Z_n=Z$, or $Z_n\stackrel{p}{\to} Z$, or $Z_n-Z=o_P(1)$, or $Z_n-Z\stackrel{p}{\to} 0$.

Definition 73 (7.5). $[L_p$ -convergence]: Let $0 , and let <math>\{Z_n, n = 1, 2, \cdots\}$ be a sequence of random variables with $E|Z_n|^p < \infty$, and let Z be a random variable with $E|Z|^p < \infty$. Then Z_n converges in L_p to Z if

$$\lim_{n\to\infty} E|Z_n - Z|^p = 0.$$

Theorem 84 (7.4). [Weak Law of Large Numbers (WLLN)]: Let $X^n = (X_1, \dots, X_n)$ be an IID random sample with $E(X_i) = \mu$ and $\text{var}(X_i) = \sigma^2 < \infty$. Define $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then for any given constant $\epsilon > 0$ and as $n \to \infty$,

$$P[|\bar{X}_n - \mu| \leq \epsilon] \rightarrow 1,$$

or $\bar{X}_n - \mu \stackrel{p}{\rightarrow} 0$ or $\bar{X}_n - \mu = o_P(1).$

Lemma 22 (7.6). [Continuity]: Suppose $g(\cdot)$ is a continuous function, and Z_n converges in probability to Z. Then $g(Z_n)$ also converges in probability to g(Z). That is, if $g(\cdot)$ is continuous, then $Z_n \stackrel{p}{\to} Z$ as $n \to \infty$ implies

$$g(Z_n) \stackrel{p}{\to} g(Z)$$
 as $n \to \infty$

If $a_n \stackrel{p}{\to} a$, $b_n \stackrel{p}{\to} b$, then

$$a_n + b_n \xrightarrow{p} a + b$$

$$a_n b_n \xrightarrow{p} ab$$

$$Ca_n \xrightarrow{p} Ca$$

$$g(a_n) \xrightarrow{p} g(a)$$

where $g(\cdot)$ is a continuous function and C is a constant.

Remark 2 Since $S_n^2 \stackrel{p}{\to} \sigma^2$ (You can think about how to prove it), then $\sqrt{S_n^2} \stackrel{p}{\to} \sigma$, although $E\sqrt{S_n^2} \neq \sigma$.

Since $\bar{X}_n \stackrel{p}{\to} \mu$, $\bar{X}_n^k \stackrel{p}{\to} \mu^k$.

3 Practice

Example 175 (7.11). Suppose $X^n = (X_1, \dots, X_n)$ is an IID random sample from a $U[0, \theta]$ distribution, where $\theta > 0$ is an unknown parameter. Define a statistic $Z_n = \max_{1 \le i \le n} (X_i)$. Is Z_n consistent for θ ?

Hint:
$$P(\max_{i=1}^{n}(X_i) < a) = P(X_1 < a, X_2 < a, ..., X_n < a)$$

 $P(\min_{i=1}^{n}(X_i) > a) = P(X_1 > a, X_2 > a, ..., X_n > a)$

4. Let X_1, X_2, \ldots be a sequence of random variables such that

$$\mathbb{P}\left(X_n = \frac{1}{n}\right) = 1 - \frac{1}{n^2}$$
 and $\mathbb{P}\left(X_n = n\right) = \frac{1}{n^2}$.

Does X_n converge in probability? Does X_n converge in quadratic mean?

1. Suppose $\{X_i\}$ are i.i.d and follow U(0,1). Let

$$Z_n = (\prod_{i=1}^n X_i)^{1/n}$$

Show that $Z_n \xrightarrow{p} C$, where C is a constant and find the value of C. Hint: If $a_n \xrightarrow{p} a$, then $g(a_n) \xrightarrow{p} g(a)$ where $g(\cdot)$ is a continuous function.

4 Take-Home Practice

Show that $S_n^2 \xrightarrow{p} \sigma^2$ when X_i are iid normal.

Then, show that $S_n^2 \xrightarrow{p} \sigma^2$ when X_i are only iid.

Hint: Given that $a_n \stackrel{p}{\to} a$, we have $\frac{n}{n-1}a_n \stackrel{p}{\to} a$.

Example 175 (7.11). Suppose $X^n = (X_1, \dots, X_n)$ is an IID random sample from a $U[0, \theta]$ distribution, where $\theta > 0$ is an unknown parameter. Define a statistic $Z_n = \max_{1 \le i \le n} (X_i)$. Is Z_n consistent for θ ?

Solution: Given $\{|Z_n - Z| > \epsilon\} = \{Z_n - Z > \epsilon\} \cup \{Z_n - Z < -\epsilon\}$, we have $P(|Z_n - \theta| > \epsilon) = P(Z_n > \theta + \epsilon) + P(Z_n < \theta - \epsilon)$ $= P(Z_n < \theta - \epsilon)$ $= P\left[\max_{1 \le i \le n} (X_i) < \theta - \epsilon\right]$ $= P(X_1 < \theta - \epsilon, X_2 < \theta - \epsilon, \cdots, X_n < \theta - \epsilon)$ $= \prod_{i=1}^n P(X_i < \theta - \epsilon) \text{ by independence}$ $= \left(\frac{\theta - \epsilon}{\theta}\right)^n$ $= \left(1 - \frac{\epsilon}{\theta}\right)^n$ $\to 0 \text{ as } n \to \infty \text{ for any given } \epsilon > 0.$

It follows that Z_n is consistent for θ . The statistic $Z_n = \max_{1 \le i \le n} |X_i|$ is called an order statistic which involves some sort of ranking for the n random variables in the random sample X^n .

Take-Home Practice

iid normal case: show the convergence in L2, i.e. $E(S_n^2 - \sigma^2)^2 \to 0$ iid case:

$$\begin{split} S_n^2 &= \frac{1}{n-1} \Biggl(\sum_{i=1}^n X_i^2 - n \overline{X}_n^2 \Biggr) \\ &= \frac{n}{n-1} \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}_n^2 \end{split}$$

where $c_n=d_n=rac{n}{n-1} o 1$.

Applying the law of large numbers to X_i^2 :

$$n^{-1}\sum_{i=1}^n X_i^2 \overset{\mathrm{P}}{
ightarrow} \mathbb{E}(X_i^2) = \sigma^2 + \mu^2$$

$$\overline{X}_n \overset{\mathrm{P}}{ o} \mathbb{E}(X_i) = \mu \Rightarrow \overline{X}_n^2 \overset{\mathrm{P}}{ o} \mu^2$$

Therefore, from theorem 6.5.e, $S_n^2=c_nn^{-1}\sum_{i=1}^nX_i^2-d_n\overline{X}_n^2\overset{\mathrm{P}}{\to}\sigma^2+\mu^2-\mu^2=\sigma^2.$

4.
(a)
$$E\hat{Q} = E(\bar{x}_{n}-z)^{2} \stackrel{7}{=} (\mu-z)^{2}$$

= $E(\bar{x}_{n}-\mu+\mu-z)^{2}$
= $E(\bar{x}_{n}-\mu)^{2}+2E(\bar{x}_{n}-\mu)(\mu-z)+(\mu-z)^{2}$
 $Var(\bar{x}_{n})$
= $\frac{\sigma^{2}}{\Omega}+(\mu-z)^{2}$

Bias
$$(\hat{Q}) = E\hat{Q} - Q = \frac{5^2}{n} \neq 0$$
.
Biased!

$$Q = (\overline{X_n} - \overline{\lambda})^2 - (\overline{X_n} - \mu)^2 \qquad (X)$$

```
6.
(a) E = E = Co Xi
         = Z ci EX
         = \begin{pmatrix} \frac{N}{2} & Ci \end{pmatrix} M
 if and only if

\begin{array}{ccc}
\hline
D & \neq \stackrel{\wedge}{\mu} = \stackrel{\wedge}{\mu} & \Rightarrow & \stackrel{\wedge}{\geq} & \text{Ci} = 1 \\
\hline
D & \stackrel{\wedge}{\xi} & \text{Ci} = 1 & \Rightarrow & \neq \stackrel{\wedge}{\mu} = \stackrel{\wedge}{\mu}
\end{array}

 (b) Var(Xi)=02
          min \frac{n}{2} Ci^2
            s.t. \( \sum_{i}^{n} \) Ci = (
      By Cauly-Schwarz. Inequality,
                  \left(\sum_{i=1}^{n} (c_i \cdot 1)\right)^2 \leq \left(\sum_{i=1}^{n} c_i^2\right) \left(\sum_{i=1}^{n} 1\right)
                       \left(E(s\cdot 1)\right)^2 \leq Es^2 E 1
       =) \frac{\pi}{2} c_i^2 > \frac{1}{\pi}
     The equality holds if and only if ( ( hear dependent)
                      Ci= C.1, Vi where Cis a constant
        Thus, C_1 = C_2 = \cdots = C_n
        Hence, C_1 = C_2 = \cdots = C_n = \frac{1}{n}, M = \frac{x_1 + \cdots + x_n}{n}
          Remark: Given {Xi}i=1, we have multiple choices for its
               When Var(Xi) = 02, Xn is the best
               \sim \sim \sim \sim
               · \hat{p} = X_1 or \frac{X_1 + X_2}{2} unbiased but its variance to large
```

$$\begin{aligned}
E_{X_{1}} &= \frac{1}{h} \left(1 - \frac{1}{h^{2}} \right) + n \frac{1}{h^{2}} \\
&= \frac{2}{h} - \frac{1}{h^{3}} \\
&= \frac{1}{h} \left(2 - \frac{1}{h^{2}} \right)
\end{aligned}$$

$$\frac{E \times n}{2} = \left(\frac{2}{N} - \frac{1}{N^3}\right) = \frac{2}{2} \longrightarrow 0$$

Thus Xn 1 0

$$=\frac{1}{n^2}-\frac{1}{n^2}+1 \neq 0$$

$$E(X_n-X)^2$$

$$= E \times n^2 - 2E \times n \times + \times^2$$

$$= \frac{1}{n^2 - \frac{1}{n^2} + 1} + \frac{2x}{n} (2 - \frac{1}{n^2}) + x^2$$

$$\rightarrow$$
 $1+x^2 > 1$, $\forall x$

by
$$2n = \frac{1}{n} \log 77 \times v$$

$$= \frac{1}{n} \sum \log x i \longrightarrow E \log x i$$

$$= (y \log y - y) / 0$$

$$= -1$$

Thus, log 7 n -1 Zn -1