BST 283 Cancer Genome Analysis Harvard T. H. Chan School of Public Health Spring 2017

Instructor: Scott L. Carter

TA's: TBN

Lectures: M, W 1:30-3:20 PM

Contact information:

Office: Dana-Farber Center for Life Sciences Building 11026

Phone: 617. 632.3038

E-mail: scarter@jimmy.harvard.edu

Learning Objectives

Achieve a basic working knowledge for modern statistical computing techniques used to characterize and interpret cancer genome sequencing datasets. By the end of this course students will be able to apply state-of-the art analysis to cancer genome datasets and to critically evaluate papers employing cancer genome data.

Overview

Classes will be organized into 1 2-hour lecture / week. Homeworks will involve application of methods presented in lectures to real cancer genome datasets.

This course will begin with a basic introduction to DNA, genes, and genomes for students with no biology background. We will then introduce cancer as an evolutionary process and review landmarks in the history of cancer genetics.

We will then discuss the basics of sequencing technology and modern NGS. We will cover the main steps involved in turning billions of short sequencing reads into a representation of the somatic genetic alterations characterizing an individual patient's cancer. We will build on this foundation to study topics related to identifying mutations under positive selection from multiple tumors sampled in a population.

Outcome measures

Class Participation

Active learning through class participation and discussion are an important component of the course. Students are expected to attend and participate in all classes.

Assignments

There will be five (5) homework assignments. These will require you to apply methods discussed in class to real cancer genome datasets. In some cases, key statistical aspects of a method must be filled in by the students. Each assignment will be graded on a scale of up to 10 points each. The assignment is due before the start of class on the date due. Projects, including code, graphics, and a written summary, will be submitted electronically.

Project

You will complete a final project for the course that will explore an area of cancer genome analysis in detail. Students will propose projects to the instructor and incorporate feedback into their project research plan, which must be approved by the instructor. Examples of student projects include: detailed evaluation of competing methods or approaches on a defined dataset, or extending an existing algorithm or method. The project includes an in-class presentation. In addition, it is expected that after the presentation, there will be in-depth in-class discussion on key aspects of the project.

The class project is worth 50 points. The grade is based on the group presentation, the post-presentation discussion (i.e., your ability to ask and respond to relevant questions).

Grading Criteria

Grades are based on a total of 100 points. There are a total of the five (5) homework assignments (up to 50 points total) plus the grade on the class project (up to 50 points).

Schedule

Weekly Th. TBD

Prerequisites

To accommodate both statistics students with little biology background as well as biology students with little data analysis background, we will allow biology and statistics students to work as pairs to complete the homeworks and final project. These assignments will require basic programming and data manipulation ability in a statistical scripting language such as R (http://projects.iq.harvard.edu/rtc/event/introduction-r). In addition, basic knowledge of probability and statistical inference are encouraged.

Tools

R, Unix

Recommended readings

Information Theory, Inference and Learning Algorithms By David J. C. MacKay

Course outline

Date	Topic	Reading		
23-Jan	Introduction	Weinberg textbook/ Garraway, Levi A., and Eric S. Lander. "Lessons from the		
25-Jan	DNA, genes, and genomes	cancer genome." Cell 153.1 (2013): 17-37. Weinberg textbook/ Garraway, Levi A., and Eric S. Lander. "Lessons from the cancer genome." Cell 153.1 (2013): 17-37.		
30-Jan	Cancer as an evolutionary process	Nowell 1976		
1-Feb	Cancer as an evolutionary process	Nowell 1976		
6-Feb	Landmarks in cancer genetics	Bishop/Varmus/Weinberg		
8-Feb	DNA sequencing	Illumina / Gnirke Nat. Biotech 2009		
13- Feb	Alignment	Li and Durbin 2009 Bioinformatics 25 (14), 1754-1760		
14- Feb	Point-mutation calling	Cibulskis 2013 Nat. Biotech / Strelka		
22- Feb	Point-mutation calling	Cibulskis 2013 Nat. Biotech / Strelka		
27- Feb	Copy-number alteration calling	Chaing Nat. Methods 2009 / Olshen 2007		
1-Mar	Copy-number alteration calling	Chaing Nat. Methods 2009 / Olshen 2007		
6-Mar	Structural alterations	Campbell / Berger		
8-Mar	Data quality control	Stewart		
20- Mar	Absolute copy number	Carter Nat. Biotech 2012		
22- Mar	Tumor clonal substructure	Nik-Zainal 2012		
27- Mar	Tumor clonal substructure	Nik-Zainal 2012		
29-	Multi-sample analysis	Gerlinger NEJM 2012 / Landau Cell 2013		
Mar 3-Apr	Phylogenetic inference	Stachler Nat. Genetics 2015		
5-Apr	DNA damage mechanisms	Lawrence 2013		
10- Apr	Mutational processes	Alexandrov 2013		
12- Apr	Recurrent somatic copy number alterations	Beroukhim/Getz PNAS 2008, Mermel Genome Biol. 2010		
17-	Recurrent somatic point mutations	Lawrence Nature 2013 / Lawrence Nature 2014		
Apr 19-	RNA sequencing	Wang 2008 Cell		
Apr 24-	DNA methylation	Bernstein 2007 Cell		
Apr 26-	Chip-seq	Bernstein 2007 Cell		
Apr 1-May	Clinical cancer genomics	Van Allen Nat. Medicine 2014		
5-May	Final project presentations	Tanana Addicate Bol I		
8-May	Final project presentations			
10-	Final project presentations			
May				