

Lecture 16-17

CM50264: Machine Learning 1
Bayesian Linear Regression
and Gaussian Process Regression

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

Previously in machine learning... Regularized linear least-squares regression

BATH

Data:

$$D = \{(\mathbf{x}^1, \mathbf{y}^1), \dots, (\mathbf{x}^N, \mathbf{y}^N)\} \subset \mathbb{R}^n \times \mathbb{R}.$$

Linear regression function:

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{w}.$$

(Plain) linear least-squares regression minimizes

$$\mathcal{O}(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{\top} \mathbf{x}^{i} - y^{i})^{2}$$

Regularized linear least-squares regression minimizes

$$\mathcal{O}(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{\top} \mathbf{x}^{i} - y^{i})^{2} + \lambda \|\mathbf{w}\|^{2},$$

for the regularization (hyper-)parameter $\lambda \geq 0$.

Bayesian Linear regression

Bayesian non-linear regression

Regularized linear least-squares regression

BATH

Data matrix: $\mathbf{X} = [\mathbf{x}^1, \dots, \mathbf{x}^N]$; Label vector: $\mathbf{y} = [y^1, \dots, y^N]^\top$.

(Plain) linear least-squares regression minimizes

$$\mathcal{O}(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{\top} \mathbf{x}^{i} - y^{i})^{2} = \|\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}\|^{2}.$$

The minimizer w* is obtained by solving a linear system

$$\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{w} = \mathbf{X}\mathbf{y}.$$

For high-dimensional problems (N < n), \mathbf{XX}^{\top} is rank deficient: Infinitely many solutions exist.

• Regularized linear least-squares regression minimizes for $\lambda \geq 0$

$$\mathcal{O}(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{\top} \mathbf{x}^{i} - y^{i})^{2} + \lambda ||\mathbf{w}||^{2} = ||\mathbf{X}^{\top} \mathbf{w} - \mathbf{y}||^{2} + \lambda ||\mathbf{w}||^{2}.$$

The minimizer w* is obtained by solving a linear system

$$(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}\mathbf{y}.$$

For $\lambda > 0$, $\mathbf{XX}^{\top} + \lambda \mathbf{I}$ is always full rank: A unique solution exists.

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

(Deterministic) linear regression summary

- Probabilistic interpretation
- Bayesian Linear regression
- Bayesian non-linear regression
- Gaussian process regression

- Input: Data $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\} \subset \mathbb{R}^n \times \mathbb{R};$ regularization parameter $\lambda \geq 0$.
- Training:
 - Build the data matrix: $\mathbf{X} = [\mathbf{x}^1, \dots, \mathbf{x}^N]$ and label vector $\mathbf{y} = [y^1, \dots, y^N]$;
 - Solve a linear system to obtain \mathbf{w}^* : $(\mathbf{X}\mathbf{X}^\top + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}\mathbf{y}$;
- Testing: $f(\mathbf{x}') = (\mathbf{w}^*)^{\top} \mathbf{x}'$.

Probabilistic setup revisited

We will discuss probabilistic interpretations of (plain) linear regression and regularized linear regression algorithms (see 'L09 Regularisation & Model Types' slides).

- Input and output variables x and y are random variables.
- Training data $\mathcal{D} = \{(\mathbf{x}^N, y^N), \dots, (\mathbf{x}^N, y^N)\}$ is sampled from an unknown probability distribution $p(\mathbf{x}, y)$.
- There is an underlying ground-truth function $f^*(\mathbf{x}) = y$, but our observations (training data) are noisy:

$$y^i = f^*(\mathbf{x}^i) + \mathsf{noise}^i, 1 \le i \le N.$$

• noiseⁱ is a random variable.

robabilistic

Bayesian Linear regression

Bayesian non-linear regression

Independent and identically distributed (i.i.d.) Gaussian noise model

$$y^i = f(\mathbf{x}^i) + \mathsf{noise}^i$$

- noiseⁱ represents the deviation between the observed label y^i and the prediction $f(\mathbf{x}^i)$: training error.
- noiseⁱ is independent of noise^j ($i \neq j$).
- Distribution of noise is Gaussian $\mathcal{N}(\mu, \sigma^2)$ with
 - $\bullet \ \ \mathsf{mean} \ \mu \ \mathsf{zero}$
 - variance σ^2 identical across *i*
- In linear regression:

$$y^i = f(\mathbf{x}^i) + \text{noise}$$

= $\mathbf{w}^{\top} \mathbf{x}^i + \text{noise}$.

torprotation

Bayesian Linear regression

Bayesian non-linear regression

Maximum likelihood (ML) estimation

Training data: $\mathcal{D} = \{(\mathbf{x}^N, y^N), \dots, (\mathbf{x}^N, y^N)\}.$ Data matrix: $\mathbf{X} = [\mathbf{x}^1, \dots, \mathbf{x}^N].$ Label vector: $\mathbf{y} = [y^1, \dots, y^N]^\top$.

Our model:

$$y^i = \mathbf{w}^{ op} \mathbf{x}^i + ext{noise}$$
 noise $\sim \mathcal{N}(0, \sigma^2)$.

The maximum likelihood (ML) estimation chooses w* that maximizes the likelihood of **w** given \mathcal{D} , the possibility of observing training data points \mathcal{D} given the hypothesized solution w:

$$\begin{split} \rho(\mathbf{y}|\mathbf{X},\mathbf{w}) &= \prod_{i=1}^{N} \rho(y^{i}|\mathbf{x}^{i},\mathbf{w}) \text{ (i.i.d. noise)} \\ &= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(\mathbf{w}^{\top}\mathbf{x}^{i} - y^{i})^{2}}{2\sigma^{2}}\right) \text{ (Gaussian noise)} \\ &= \frac{1}{\sqrt{(2\pi\sigma^{2})^{N}}} \exp\left(-\frac{\|\mathbf{X}^{\top}\mathbf{w} - \mathbf{y}\|^{2}}{2\sigma^{2}}\right). \end{split}$$

Bayesian Linear regression

Bayesian non-linear regression

Gaussian process

Maximum likelihood (ML) estimation

Our likelihood model:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp\left(-\frac{\|\mathbf{X}^\top\mathbf{w} - \mathbf{y}\|^2}{2\sigma^2}\right).$$

ML estimation maximizes $p(\mathbf{y}|\mathbf{X}, \mathbf{w})$:

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{arg max}} \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp\left(-\frac{\|\mathbf{X}^\top \mathbf{w} - \mathbf{y}\|^2}{2\sigma^2}\right)$$

$$= \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{arg max}} \exp\left(-\frac{\|\mathbf{X}^\top \mathbf{w} - \mathbf{y}\|^2}{2\sigma^2}\right)$$

$$= \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{arg max}} \left(-\frac{\|\mathbf{X}^\top \mathbf{w} - \mathbf{y}\|^2}{2\sigma^2}\right)$$

$$= \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{arg min}} \frac{\|\mathbf{X}^\top \mathbf{w} - \mathbf{y}\|^2}{2\sigma^2}$$

$$= \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{arg min}} \|\mathbf{X}^\top \mathbf{w} - \mathbf{y}\|^2$$

$$\Leftrightarrow \mathbf{XX}^\top \mathbf{w}^* = \mathbf{Xy}.$$

ML under i.i.d. Gaussian noise is the same as least-squares regression.

Probabilistic

Bayesian Linear regression

Bayesian non-linear regression

Gaussian process

Maximum a posteriori (MAP) estimation

obabilistic

Bayesian Linear regression

Bayesian non-linear regression

Gaussian process regression

In ML, we maximize the likelihood:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{y}|\mathbf{X},\mathbf{w}).$$

In MAP, we maximize the posterior:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \rho(\mathbf{w}|\mathbf{X},\mathbf{y}).$$

Maximum a posteriori (MAP) estimation

Applying Bayes' rule,

$$\arg \max_{\mathbf{w}} p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \arg \max_{\mathbf{w}} \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w}|\mathbf{X})}{p(\mathbf{y}|\mathbf{X})}$$
$$= \arg \max_{\mathbf{w}} \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$
$$= \arg \max_{\mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w}).$$

We know how to calculate $p(\mathbf{y}|\mathbf{X},\mathbf{w})$. What about $p(\mathbf{w})$?

This is where we apply our a priori knowledge of w.

What priori knowledge?

robabilistic

Bayesian Linear regression

Bayesian non-linear regression

Gaussian prior

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) \propto p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})$$

If we assume that $p(\mathbf{w})$ is a centered Gaussian $\mathcal{N}(0, \mathbf{I})$:

$$p(\mathbf{w}) = \frac{1}{\sqrt{(2\pi)^n}} \exp\left(-\frac{\|\mathbf{w}\|^2}{2}\right),$$

maximizing the posterior p(y|X, w)p(w) biases the solution w^* towards 0:

$$\rho(\mathbf{y}|\mathbf{X},\mathbf{w})\rho(\mathbf{w}) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp\left(-\frac{\|\mathbf{X}^\top\mathbf{w}-\mathbf{y}\|^2}{2\sigma^2}\right) \frac{1}{\sqrt{(2\pi)^n}} \exp\left(-\frac{\|\mathbf{w}\|^2}{2}\right).$$

$$\begin{aligned} \arg\max_{\mathbf{w}} \rho(\mathbf{y}|\mathbf{X}, \mathbf{w}) \rho(\mathbf{w}) &= \arg\max_{\mathbf{w}} \exp\left(-\frac{\|\mathbf{X}^{\top}\mathbf{w} - \mathbf{y}\|^{2}}{2\sigma^{2}}\right) \exp\left(-\frac{\|\mathbf{w}\|^{2}}{2}\right) \\ &= \arg\max_{\mathbf{w}} \exp\left(-\frac{\|\mathbf{X}^{\top}\mathbf{w} - \mathbf{y}\|^{2}}{2\sigma^{2}} - \frac{\|\mathbf{w}\|^{2}}{2}\right) \\ &= \arg\max_{\mathbf{w}} \left(-\frac{\|\mathbf{X}^{\top}\mathbf{w} - \mathbf{y}\|^{2}}{2\sigma^{2}} - \frac{\|\mathbf{w}\|^{2}}{2}\right) \\ &= \arg\min_{\mathbf{w}} \frac{\|\mathbf{X}^{\top}\mathbf{w} - \mathbf{y}\|^{2}}{2\sigma^{2}} + \frac{\|\mathbf{w}\|^{2}}{2} \\ &= \arg\min\|\mathbf{X}^{\top}\mathbf{w} - \mathbf{y}\|^{2} + \sigma^{2}\|\mathbf{w}\|^{2}. \end{aligned}$$

robabilistic

Bayesian Linear regression

Bayesian non-linear regression

Maximum a posteriori estimation with Gaussian prior

 $p(\mathbf{w}|\mathbf{X},\mathbf{y}) \propto p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})$

Assuming that $p(\mathbf{w})$ is a Gaussian $\mathcal{N}(0, \mathbf{I})$, maximizing $p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$ biases the solution \mathbf{w}^* towards 0.

$$\begin{aligned} \mathbf{w}^* &= \mathop{\arg\max}_{\mathbf{w}} \rho(\mathbf{y}|\mathbf{X},\mathbf{w}) \rho(\mathbf{w}) \\ &= \mathop{\arg\min}_{\mathbf{w}} \|\mathbf{X}^\top \mathbf{w} - \mathbf{y}\|^2 + \sigma^2 \|\mathbf{w}\|^2 \\ &\vdots \\ \Leftrightarrow (\mathbf{X}\mathbf{X}^\top + \sigma^2 I) \mathbf{w}^* = \mathbf{X}\mathbf{y}. \end{aligned}$$

With a Gaussian prior and i.i.d. Gaussian noise model, MAP estimate becomes regularized least-squares solution with σ^2 as the regularization hyper-parameter.

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression
Gaussian process

Why Gaussian prior?

MAP linear regression summary

robabilistic

Bayesian Linear regression

Bayesian non-linear regression

- Input: Data $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\} \subset \mathbb{R}^n \times \mathbb{R}$; noise parameter $\sigma^2 \geq 0$.
- Training:
 - Build the data matrix: X = [x¹,...,x^N] and label vector y = [y¹,...,y^N];
 - Solve a linear system to obtain \mathbf{w}^* : $(\mathbf{X}\mathbf{X}^{\top} + \sigma^2\mathbf{I})\mathbf{w} = \mathbf{X}\mathbf{y}$;
- Testing: $f(\mathbf{x}') = (\mathbf{w}^*)^{\top} \mathbf{x}'$.

MAP linear regression summary

Probabilistic interpretation

Bayesian Linear

Bayesian non-linear regression

Gaussian process regression

We choose \mathbf{w}^* by maximizing $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$

and then,

apply the resulting linear regression function f to a new data point \mathbf{x}' : $f(\mathbf{x}') = (\mathbf{w}^*)^{\top} \mathbf{x}'$.

Bayesian linear regression: basic idea

Probabilistic interpretation

ayesian Linear grossion

Bayesian non-linear regression

Gaussian process regression

We don't really need to build f (equivalently \mathbf{w}^*) explicitly as an intermediate result

if we just want to make a prediction y' for a given input \mathbf{x}' (or inputs):

We can maximize the posterior (or predictive distribution):1

$$p(y'|\mathbf{x}',\mathbf{y},\mathbf{X}).$$

Rewrite this in plain text!

¹Cf. the parameter posterior $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$.

Marginalization

BATH

Probabilistic interpretation

ayesian Linear aression

Bayesian non-linear regression

Gaussian process regression

From a given joint distribution $p(\mathbf{a}, \mathbf{b})$, one can calculate the marginal distribution $p(\mathbf{a})$ by integrating \mathbf{b} out:

$$p(\mathbf{a}) = \int p(\mathbf{a}, \mathbf{b}) d\mathbf{b}.$$

Similarly,

$$p(\mathbf{a}, \mathbf{c}) = \int p(\mathbf{a}, \mathbf{b}, \mathbf{c}) d\mathbf{b}$$

= $\int p(\mathbf{a}|\mathbf{b}, \mathbf{c}) p(\mathbf{b}|\mathbf{c}) d\mathbf{b}$.

Bayesian linear regression

Applying the marginalization of ${\bf w}$ to the predictive distribution

$$p(y'|\mathbf{x}',\mathbf{y},\mathbf{X}) = \int p(y'|\mathbf{x}',\mathbf{w})p(\mathbf{w}|\mathbf{y},\mathbf{X})d\mathbf{w}$$

and combining it with the parameter posterior and likelihood

$$\rho(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \mathcal{N}\left((\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{X}\mathbf{y}, \sigma^{2}(\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\right) \qquad (1)$$

$$\rho(\mathbf{y}'|\mathbf{x}', \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top}\mathbf{x}', \sigma^{2}),$$

we obtain

$$p(\mathbf{y}'|\mathbf{x}',\mathbf{y},\mathbf{X}) = \mathcal{N}\left(\mathbf{x}'^{\top}(\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{X}\mathbf{y}, \mathbf{x}'^{\top}\sigma^{2}(\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{x}'\right). \tag{2}$$

Prove Eqs. 1 and 2.

Probabilistic interpretation

Sayesian Linear egression

Bayesian non-linear regression

Gaussian process

Predictive distribution

 $p(y|\mathbf{x}',\mathbf{y},\mathbf{X}) = \mathcal{N}\left(\mathbf{x}'^{\top}(\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{X}\mathbf{y}, \mathbf{x}'^{\top}\sigma^{2}(\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{x}'\right)$ (3)

 $p(y'|\mathbf{x}',\mathbf{y},\mathbf{X}) = \int p(y'|\mathbf{x}',\mathbf{w})p(\mathbf{w}|\mathbf{y},\mathbf{X})d\mathbf{w}. \tag{4}$

- The output of Bayesian linear regression is a probability distribution: Gaussian for Gaussian prior + Gaussian noise.
- If we take the mean of this predictive distribution, the result is the same as the MAP solution:

$$\begin{split} \mathbf{x}'^\top (\mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})^{-1} \mathbf{X} \mathbf{y} &= \mathbf{x}'^\top \mathbf{w}^*, \\ \mathbf{w}^* &= (\mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})^{-1} \mathbf{X} \mathbf{y}. \end{split}$$

 Equation 3 represents the posterior p(y|x', y, X) without explicitly involving the parameter vector w*. This does not mean that our regression model

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$$

is removed: The posterior should be consistent with the marginalization rule (Eq. 4).

Mean = mode for Gaussian.

Probabilistic interpretation

ayesian Linear

Bayesian non-linear regression

Predictive distribution

Probabilistic interpretation

iyesian Linea aression

Bayesian non-linear regression

Gaussian process regression

$$p(\mathbf{y}|\mathbf{x}',\mathbf{y},\mathbf{X}) = \mathcal{N}\left(\mathbf{x}'^{\top}(\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{X}\mathbf{y},\mathbf{x}'^{\top}\sigma^{2}(\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{x}'\right).$$

The prediction is a Gaussian distribution characterized by

predictive mean:
$$\mathbf{x}'^{\top} (\mathbf{X}\mathbf{X}^{\top} + \sigma^2 \mathbf{I})^{-1} \mathbf{X} \mathbf{y}$$

predictive variance: $\mathbf{x}'^{\top} \sigma^2 (\mathbf{X}\mathbf{X}^{\top} + \sigma^2 \mathbf{I})^{-1} \mathbf{x}'$.

The predictive variance represents how confident the prediction is

- Large variance → low confidence.
- Under the i.i.d. Gaussian noise model, predictive variances are independent of training labels y (and underlying f). For other noise models, predictive variances might depend on y.
- Similarly to the mean prediction, our predictive variance is limited by the model assumption:
 - If $\mathbf{x}' = \mathbf{0}$, we have an absolutely confident prediction. Why is 0 special?

Bayesian linear regression

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

Gaussian process regression

Demo

Marginal likelihood

How can we choose the noise hyperparameter σ^2 (or equivalently λ)?

When we were applying Bayes' rule

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})},$$

we discarded $p(\mathbf{y}|\mathbf{X})$ since it is independent of \mathbf{w} .

The marginal likelihood $p(\mathbf{y}|\mathbf{X})$ is a function of σ^2 :

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}.$$

This represents how well $p(\mathbf{w})$ respects the observed data and it can be used as a criteria for optimizing σ^2 .

Probabilistic interpretation

egression

Bayesian non-linear regression

Bayesian linear regression summary

Probabilistic interpretation

Bayesian Linea Paression

Bayesian non-linear regression

Gaussian process regression

- Input: Data $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\} \subset \mathbb{R}^n \times \mathbb{R};$ noise parameter $\sigma^2 > 0$.
- Construct the predictive distribution p(y'|x', y, X) for a given input x':

$$\begin{split} \rho(\mathbf{y}|\mathbf{x}',\mathbf{y},X) &= \mathcal{N}\left(\mathbf{x}'^{\top}\mathbf{A}\mathbf{X}\mathbf{y}\right),\mathbf{x}'^{\top}\sigma^{2}\mathbf{A}\mathbf{x}'\right) \\ \mathbf{A} &= (\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I})^{-1}. \end{split}$$

No clear distinction of training and testing stages;
 AXy could be pre-calculated.

Bayesian non-linear regression

Probabilistic interpretation

Gaussian process

Bayesian Linear regression

Idea: map **x** to a feature space \mathcal{F} using a non-linear map ϕ and build a linear regressor in \mathcal{F} :

$$f(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}).$$

$$\begin{split} \rho(\mathbf{y}'|\mathbf{x}',\mathbf{y},\mathbf{X}) &:= \rho(\mathbf{y}'|\mathbf{x}',\mathbf{y},\mathbf{\Phi}) \\ &= \mathcal{N}\Big(\phi(\mathbf{x}')^{\top}(\mathbf{\Phi}\mathbf{\Phi}^{\top} + \sigma^2\mathbf{I})^{-1}\mathbf{\Phi}\mathbf{y}, \\ \phi(\mathbf{x}')^{\top}(\mathbf{\Phi}\mathbf{\Phi}^{\top} + \sigma^2\mathbf{I})^{-1}\sigma^2\phi(\mathbf{x}')\Big), \\ \mathbf{\Phi} &= [\phi(\mathbf{x}^1),\dots,\phi(\mathbf{x}^N)]. \end{split}$$

Kernelization

Probabilistic interpretation

Bayesian Linear regression

egression

Gaussian process regression

$$\begin{split} & \rho(\mathbf{y}'|\mathbf{x}',\mathbf{y},\mathbf{\Phi}) \\ &= \mathcal{N}\Big(\phi(\mathbf{x}')^{\top}(\mathbf{\Phi}\mathbf{\Phi}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{\Phi}\mathbf{y},\phi(\mathbf{x}')^{\top}\sigma^{2}(\mathbf{\Phi}\mathbf{\Phi}^{\top} + \mathbf{I})^{-1}\phi(\mathbf{x}')\Big), \\ &= \mathcal{N}\Big(\phi(\mathbf{x}')^{\top}\mathbf{\Phi}(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y}, \\ & \phi(\mathbf{x}')^{\top}\phi(\mathbf{x}') - \phi(\mathbf{x}')^{\top}\mathbf{\Phi}(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \sigma^{2}\mathbf{I})^{-1}\mathbf{\Phi}^{\top}\phi(\mathbf{x}')\Big), \\ & \mathbf{\Phi} = [\phi(\mathbf{x}^{1}), \dots, \phi(\mathbf{x}^{N})]. \end{split}$$

 ϕ is always given in the inner-product form $\phi(\mathbf{a})^{\top}\phi(\mathbf{b})$.

see Sherman-Morrison-Woodbury formula (last slide) for the second equality.

Kernelization

BATH

Using a positive definite kernel function $k(\mathbf{a}, \mathbf{b}) = \phi(\mathbf{a})^{\top} \phi(\mathbf{b})$, we obtain

$$\begin{split} \rho(\mathbf{y}'|\mathbf{x}',\mathbf{y},\mathbf{\Phi}) &= \mathcal{N}\Big(\phi(\mathbf{x}')^{\top}\mathbf{\Phi}(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y}, \\ \phi(\mathbf{x}')^{\top}\phi(\mathbf{x}') &- \phi(\mathbf{x}')^{\top}\mathbf{\Phi}(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \sigma^{2}\mathbf{I})^{-1}\mathbf{\Phi}^{\top}\phi(\mathbf{x}')\Big), \\ &= \mathcal{N}\Big(\mathbf{k}^{\top}(\mathbf{K} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y}, k(\mathbf{x}',\mathbf{x}') - \mathbf{k}^{\top}(\mathbf{K} + \sigma^{2}\mathbf{I})^{-1}\mathbf{k}\Big), \end{split}$$

$$\mathbf{k} = [k(\mathbf{x}', \mathbf{x}^1), \dots, k(\mathbf{x}', \mathbf{x}^N)]^{\top}$$
$$[\mathbf{K}]_{i,j} = k(\mathbf{x}^i, \mathbf{x}^j).$$

Probabilistic interpretation

Bayesian Linear regression

Gaussian process

Two modes of Bayesian non-linear regression

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear egression

Gaussian process regression

Original: complexity
$$\mathcal{O}(n^3)$$
 $(n = \dim(\mathcal{F}))$

$$\begin{split} & \rho(y|\mathbf{x}',\mathbf{y},\mathbf{X}) := \rho(y|\mathbf{x}',\mathbf{y},\mathbf{\Phi}) \\ & = \mathcal{N}\Big(\sigma^{-2}\phi(\mathbf{x}')^{\top}(\mathbf{\Phi}\mathbf{\Phi}^{\top} + \sigma^{2}\mathbf{I})^{-1}\mathbf{\Phi}\mathbf{y}, \phi(\mathbf{x}')^{\top}\sigma^{2}(\mathbf{\Phi}\mathbf{\Phi}^{\top} + \sigma^{2}\mathbf{I})^{-1}\phi(\mathbf{x})\Big). \end{split}$$

Kernelized version: complexity $\mathcal{O}(N^3)$ (N = # data points)

$$p(\mathbf{y}|\mathbf{x}',\mathbf{y},\mathbf{X}) = \mathcal{N}\left(\mathbf{k}^{\top}(K+\sigma^{2}\mathbf{I})^{-1}\mathbf{y}, k(\mathbf{x}',\mathbf{x}') - \mathbf{k}^{\top}(K+\sigma^{2}\mathbf{I})^{-1}\mathbf{k}\right).$$

When n > N, kernelized version is preferable.

Gaussian kernels

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

- $k(\mathbf{a}, \mathbf{b}) = \exp\left(-\frac{\|\mathbf{a} \mathbf{b}\|^2}{\sigma_k^2}\right)$
- Simple linear regression is powerful in high-dimensional spaces (see 'L15 Regularized Regression and Support Vector Machines' slides).
- For any positive definite kernel k, there is a (non-unique) feature map $\phi : \mathbb{R}^n \to \mathcal{H}$ such that $k(\mathbf{a}, \mathbf{b}) = \phi(\mathbf{a})^\top \phi(\mathbf{b})$.
- For the Gaussian kernel, the dimensionality of the feature space $\ensuremath{\mathcal{H}}$ is infinite.

Bayesian nonlinear regression summary

BATH

- Input: Data $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\} \subset \mathbb{R}^n \times \mathbb{R}$; noise parameter $\sigma^2 > 0$.
- Construct the predictive distribution p(y'|x', y, X) for a given input x':

$$\rho(\mathbf{y}'|\mathbf{x}',\mathbf{y},\mathbf{X}) = \mathcal{N}\Big(\mathbf{k}^{\top}(\mathbf{K} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y},$$
$$k(\mathbf{x}',\mathbf{x}') - \mathbf{k}^{\top}(\mathbf{K} + \sigma^{2}\mathbf{I})^{-1}\mathbf{k}\Big).$$

No clear distinction of training and testing stages;
 (K + σ²I)⁻¹y could be pre-calculated.

The deterministic part (i.e. predictive mean) of kernelized Bayesian nonlinear regression is also called kernel ridge regression and regularization networks.

Probabilistic interpretation

Bayesian Linear regression

Gaussian process

Demo

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-línear regression

Gaussian process regression

- Effect of varying hyper-parameters, noise variance σ^2 and kernel parameter σ_{ν}^2 ?
- How do we select hyper-parameters? The marginal likelihood $p(\mathbf{y}|\mathbf{X})$ is a function of σ^2 and σ_k^2 :

$$ho(\mathbf{y}|\mathbf{X}) :=
ho(\mathbf{y}|\Phi) = \int
ho(\mathbf{y}|\Phi,\mathbf{w})
ho(\mathbf{w}) d\mathbf{w}.$$

This represents how well $p(\mathbf{w})$ respects the observed data and it can be used as a criteria for optimizing σ^2 and σ_k^2 (see 'Calculating the marginal likelihood' in the last slide).

This is not a truly Bayesian approach. How do we choose the hyper-parameters in a fully Bayesian way?

Parametric regression

For Bayesian linear regression, we adopted the model assumption

$$f(\mathbf{x}) = (\mathbf{w}^*)^{\top} \mathbf{x}$$

and made predictions using the marginalization

$$p(y'|\mathbf{x}',\mathbf{y},\mathbf{X}) = \int p(y'|\mathbf{x}',\mathbf{w})p(\mathbf{w}|\mathbf{y},\mathbf{X})d\mathbf{w}.$$

The parameter posterior $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$ can be evaluated by combining the likelihood $p(\mathbf{y}|\mathbf{X}, \mathbf{w})$ and the prior $p(\mathbf{w}) = p(\mathbf{w}|\mathbf{X})$.

We used a centered Gaussian $\mathcal{N}(0, \mathbf{I})$ prior:

$$p(\mathbf{w}) = \frac{1}{\sqrt{(2\pi)^n}} \exp\left(-\frac{\|\mathbf{w}\|^2}{2}\right).$$

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

Gaussian proces

Non-parametric regression

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

Baussian process egression

If we remove the model assumption $f(\mathbf{x}) = (\mathbf{w}^*)^{\top} \mathbf{x}$ and use f as a variable, our prediction rule will look like

$$p(y'|\mathbf{x}',\mathbf{y},\mathbf{X}) = \int p(y'|\mathbf{x}',f)p(f|\mathbf{y},\mathbf{X})df.$$

The function posterior $p(f|\mathbf{y}, \mathbf{X})$ depends on the likelihood $p(\mathbf{y}|f, \mathbf{X})$ and the prior $p(f|\mathbf{X})$.

Now we need a Gaussian distribution $p(f|\mathbf{X})$ on the space of functions.

Gaussian random vectors

 A Gaussian random variable w follows a Gaussian distribution:

$$egin{aligned} m{w} &\sim \mathcal{N}(\mu, \sigma^2) \ m{p}(m{w}) &= rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(m{w}-\mu)^2}{2\sigma^2}
ight) \end{aligned}$$

with mean μ and variance σ^2 .

• A Gaussian random vector $\mathbf{w} \in \mathbb{R}^n$ is a collection of random variables $\{\mathbf{w}_j\}_{j=1}^n$ that has a joint Gaussian distribution

$$\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{w}) = \frac{1}{\sqrt{(2\pi\sigma^2)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{w} - \boldsymbol{\mu})\boldsymbol{\Sigma}^{-1}(\mathbf{w} - \boldsymbol{\mu})\right)$$

with mean vector μ and covariance matrix Σ . Elements $\{\mathbf{w}_j\}_{j=1}^n$ of \mathbf{w} is indexed by an integer $j \in 1, \ldots, n$.

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

aussian proces gression

Gaussian processes

BATH

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

A Gaussian process (GP) *f* is a collection of random variables, any finite subset of which has a joint Gaussian distribution.

 A GP is specified by a mean function m(x) and a covariance function k(x, x'):

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

 $k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))].$

- The elements of a GP f is indexed by a continuous variable $\mathbf{x} \in \mathbb{R}^n$.
- For any set $\mathbf{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^N\}$, $\mathbf{f}_{\mathbf{X}} =: \{f(\mathbf{x}^1), \dots, f(\mathbf{x}^N)\}$ is a Gaussian random vector characterized by mean vector $\boldsymbol{\mu}_{\mathbf{X}} = [m(\mathbf{x}^1), \dots, m(\mathbf{x}^N)]^{\top}$ covariance matrix $\mathbf{K}_{\mathbf{X}} : [\mathbf{K}_{\mathbf{X}}]_{i,j} = k(\mathbf{x}^i, \mathbf{x}^j)$.

Gaussian processes

BATH

 A GP is specified by a mean function m(x) and a covariance function k(x, x'):

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

 $k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))].$

- For any set $\mathbf{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^N\}$, $\mathbf{f}_{\mathbf{X}} =: \{f(\mathbf{x}^1), \dots, f(\mathbf{x}^N)\}$ is a Gaussian random vector characterized by mean vector $\boldsymbol{\mu}_{\mathbf{X}} = [m(\mathbf{x}^1), \dots, m(\mathbf{x}^N)]^\top$ covariance matrix $\mathbf{K}_{\mathbf{X}} : [\mathbf{K}_{\mathbf{X}}]_{i,i} = k(\mathbf{x}^i, \mathbf{x}^j)$.
- A GP is the generalization of a Gaussian random vector to infinite-dimensional objects, e.g. functions:

$$f \sim \mathcal{GP}(m, k)$$
.

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

aussian process

Gaussian processes regression

For $\overline{\mathbf{X}} := \mathbb{R}^n \setminus \{\mathbf{X}, \mathbf{x}'\}$ (all inputs other than training and test inputs),

$$\begin{split} \rho(y'|\mathbf{x}',\mathbf{y},\mathbf{X}) &= \int \rho(y'|\mathbf{x}',f)\rho(f|\mathbf{y},\mathbf{X})df \\ &= \int \rho(y'|\mathbf{x}',\mathbf{f}_{\mathbf{X}},\mathbf{f}_{\overline{\mathbf{X}}})\rho(\mathbf{f}_{\mathbf{X}},\mathbf{f}_{\overline{\mathbf{X}}}|\mathbf{y},\mathbf{X})d\mathbf{f}_{\mathbf{X}}d\mathbf{f}_{\overline{\mathbf{X}}} \\ &= \int \rho(y'|\mathbf{x}',\mathbf{f}_{\mathbf{X}})\rho(\mathbf{f}_{\mathbf{X}}|\mathbf{y},\mathbf{X})d\mathbf{f}_{\mathbf{X}}. \end{split}$$

The third equality is called the marginalization property of GPs, generalizing

$$p(\mathbf{a}) = \int p(\mathbf{a}, \mathbf{b}) d\mathbf{b}.$$

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

Gaussian process regression

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

$$\begin{split} \rho(y'|\mathbf{x}',\mathbf{y},\mathbf{X}) &= \int \rho(y'|\mathbf{x}',\mathbf{f_x}) \rho(\mathbf{f_x}|\mathbf{y},\mathbf{X}) d\mathbf{f_x} \\ \rho(\mathbf{f_x}|\mathbf{y},\mathbf{X}) &= \frac{\rho(\mathbf{y}|\mathbf{X},\mathbf{f_x}) \rho(\mathbf{f_x}|\mathbf{X})}{\rho(\mathbf{y}|\mathbf{X})} \end{split}$$

We place a zero mean GP prior on f:
 For any set X = {x¹,...,x^N},
 f_X|X is a Gaussian random vector:

$$p(\mathbf{f_x}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_X).$$

We place a zero-mean i.i.d. Gaussian noise model on y:

$$p(\mathbf{y}|\mathbf{X},\mathbf{f}_{\mathbf{X}}) = \mathcal{N}(\mathbf{f}_{\mathbf{X}},\sigma^{2}\mathbf{I}).$$

Gaussian process regression

BATH

With the zero mean GP prior:

$$p(\mathbf{f_x}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_X).$$

and i.i.d. Gaussian noise model:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{f}_{\mathbf{X}}) = \mathcal{N}(\mathbf{f}_{\mathbf{X}}, \sigma^{2}\mathbf{I}),$$

the joint distribution of **y** and $f(\mathbf{x}')$ is obtained as

$$\begin{pmatrix} \mathbf{y} \\ f(\mathbf{x}') \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} (\mathbf{K}_{X} + \sigma^{2}\mathbf{I}) & \mathbf{k} \\ \mathbf{k}^{\top} & k(\mathbf{x}', \mathbf{x}') \end{pmatrix} \right)$$
 (5)

with $\mathbf{k} = [k(\mathbf{x}', \mathbf{x}^1), \dots, k(\mathbf{x}', \mathbf{x}^N)]^{\top}$.

Using the Gaussian conditioning formula (last slide), we obtain the posterior

$$p(\mathbf{y}'|\mathbf{x}',\mathbf{y},\mathbf{X}) = \mathcal{N}\left(\mathbf{k}^{\top}(\mathbf{K}_{\mathbf{X}} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y}, k(\mathbf{x}',\mathbf{x}') - \mathbf{k}^{\top}(\mathbf{K}_{\mathbf{X}} + \sigma^{2}\mathbf{I})^{-1}\mathbf{k}\right).$$

How do we derive the joint distribution (Eq. 5)?

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

aussian process

Equivalence of GP regression and kernelized Bayesian nonlinear regression

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

aussian process gression

Loéve's theorem [Ber]:

 $k(\cdot,\cdot)$ is a covariance function of a GP $\Leftrightarrow k(\cdot,\cdot)$ is a symmetric positive definite function (kernel).

Nonlinear feature map + linear Bayesian regression is the same as GP regression.

• Sherman-Morrison-Woodbury formula: For matrices $\mathbf{A} \in \mathbb{R}^{m \times m}$, $\mathbf{U} \in \mathbb{R}^{m \times n}$, $\mathbf{C} \in \mathbb{R}^{n \times n}$, $\mathbf{V} \in \mathbb{R}^{n \times m}$,

$$\begin{split} \left({\bm A} + {\bm U} {\bm C} {\bm V} \right)^{-1} &= {\bm A}^{-1} - {\bm A}^{-1} {\bm U} \left({\bm C}^{-1} + {\bm V} {\bm A}^{-1} {\bm U} \right)^{-1} {\bm V} {\bm A}^{-1} \\ \left({\bm A} + {\bm U} {\bm C} {\bm V} \right)^{-1} {\bm U} {\bm C} &= {\bm A}^{-1} {\bm U} \left({\bm C}^{-1} + {\bm V} {\bm A}^{-1} {\bm U} \right)^{-1} \,. \end{split}$$

When n < m, $(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}$ is less costly to calculate than $(\mathbf{A} + \mathbf{UCV})^{-1}$.

Conditioning of a joint Gaussian is a Gaussian:

$$\begin{split} \rho\left(\left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right]\right) &= \mathcal{N}\left(\mathbf{0}, \left[\begin{array}{cc} \mathbf{A} & \mathbf{C}^{\top} \\ \mathbf{C} & \mathbf{B} \end{array}\right]\right) \\ \Rightarrow \rho(\mathbf{a}|\mathbf{b}) &= \mathcal{N}(\mathbf{C}^{\top}\mathbf{B}^{-1}\mathbf{b}, \mathbf{A} - \mathbf{C}^{\top}\mathbf{B}^{-1}\mathbf{C}). \end{split}$$

Calculating the marginal likelihood:

$$-2\log p(\mathbf{y}|\mathbf{X}) = \mathbf{y}^{\top}(\mathbf{K} + \sigma^2 \mathbf{I})^{-1}\mathbf{y} + \log |\mathbf{K} + \sigma^2 \mathbf{I}| + N\log 2\pi.$$

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

aussian process

References

Probabilistic interpretation

Bayesian Linear regression

Bayesian non-linear regression

Gaussian process regression

Ber Berlinet and Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability And Statistics, Kluwer Academic, 2004.

Pet Petersen and Pedersen, The Matrix Cookbook

Teu Teukolsky, Vetterling, Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press (any edition)
http://www.nr.com/