Package 'SARtisanal'

November 5, 2024

Title A Comprehensive R Package for Analyzing the Swept Area Ratio (SAR) of Artisanal Fishing Fleets

Version 0.0.0.9000

Maintainer Mauricio Mardones <mauricio.mardones@ieo.csic.es>

Description

The SARtisanal package is designed to calculate the Swept Area Ratio (SAR) for artisanal fishing fleets that have information on green boxes related to monitoring their fishing activities. It includes functions to compute the SAR as an indicator of fishing pressure, allowing users to evaluate the sustainability of fishing practices in a given temporal and spatial context. The package also offers tools for incorporating and analyzing data from green boxes, facilitating a better understanding of fishing activities and their impact on marine ecosystems. Additionally, it features custom plotting functions to visualize SAR results, providing clear insights into fishing pressure over time and across different geographical areas. The package is designed to be accessible for both novice and experienced R users, enabling effective data analysis and visualization.

Contents

artdata	2
distart	3
read_artdata	3
remo_dup	4
SAbarrida	5

2 artdata

artdata

Fisheries Monitoring Data from "Green boxes"

Description

This dataset contains monitoring information from various fishing vessels, including timestamps, geographic coordinates, and operational details.

Usage

artdata

Format

artdata:

A data frame with 182,176 rows and 20 columns:

FK ERES Unique identifier for the fishing event

FECHA Date of the fishing event (in character format)

DIA Day of the week (in character format)

HORA Time of the fishing event (in character format)

FK_BUQUE Unique identifier for the fishing vessel

MATRICULA Registration number of the fishing vessel

PUERTO Port of departure or arrival (in character format)

FK_TIPO_F Type of fishing activity (as a factor)

F_LOCALIZA Locality identifier (in character format)

N_LONGITUD Longitude of the vessel's position (in decimal degrees)

N_LATITUD Latitude of the vessel's position (in decimal degrees)

N_X X-coordinate in a projected coordinate system

N_Y Y-coordinate in a projected coordinate system

N_VELOCIDAD Speed of the vessel (in knots)

N_RUMBO Heading of the vessel (in degrees)

N_SATELITES Number of satellites used for position fixing

N_EN_PUERTO Indicator if the vessel is in port (0 = No, 1 = Yes)

L_BACKUP Backup indicator (0 or 1)

FK_ACTIVI Activity type code

FK ESTADO Status code

FK_MODAL Modal code of the fishing activity

Source

Internal monitoring system data

distart 3

distart Calculates the Euclidean distance in meters using the Haversine formula	-
---	---

Description

This function computes the distance between two geographical points specified by their latitude and longitude coordinates using the Haversine formula, which accounts for the curvature of the Earth.

Usage

```
distart(lat1, lon1, lat2, lon2)
```

Arguments

lat1	Latitude of point 1 (in degrees).
lon1	Longitude of point 1 (in degrees).
lat2	Latitude of point 2 (in degrees).
lon2	Longitude of point 2 (in degrees).

Value

The calculated distance in meters.

Examples

```
# Example usage:
# Distance between two points: (lat1, lon1) and (lat2, lon2)
distancia <- distart(
   40.7128, -74.0060, # New York coordinates
   34.0522, -118.2437 # Los Angeles coordinates
)
print(distancia) # Distance between New York and Los Angeles</pre>
```

read_artdata Reads and combines multiple data files, retaining the source of each file

Description

This function reads multiple text files located in a specific folder, adds a column indicating the source file, and then combines them into a single data frame.

Usage

```
read_artdata(archivos, carpeta, sep = ",", header = TRUE)
```

4 remo_dup

Arguments

archivos Un vector de nombres de archivos (por ejemplo, "archivo1.txt", "archivo2.txt",

...).

carpeta La ruta de la carpeta donde se encuentran los archivos.

sep El separador de los archivos (por ejemplo, "," para coma, ";" para punto y

coma, o " " para espacio). Este separador se aplica a todos los archivos.

header Lógico, TRUE si los archivos tienen encabezado.

Value

Un data frame con todos los archivos combinados, incluyendo una columna "archivo_origen" que indica el archivo de origen para cada fila.

Examples

```
archivos <- c("Draga_01.txt", "Draga_02.txt", "Draga_03.txt")
carpeta <- "ruta/a/tu/carpeta"
# Verificar que todos los archivos existen antes de ejecutar la función
if (all(file.exists(file.path(carpeta, archivos)))) {
   datos_combinados <- read_artdata(archivos, carpeta, sep = ",")
   print(datos_combinados)
} else {
   warning("Uno o más archivos no se encuentran en la carpeta especificada.")
}</pre>
```

remo_dup

Remove duplicates from a data frame

Description

This function identifies and removes duplicate rows in a data frame that commonly occur in this type of records. You can choose to remove duplicates while keeping only the last occurrence of each duplicated row.

Usage

```
remo_dup(datos, mantener_ultima = FALSE)
```

Arguments

datos A data frame in which duplicates will be searched (for example, artdata). mantener_ultima

Logical, TRUE to keep the last occurrence of each duplicated row. Defaults to FALSE, which keeps the first occurrence.

Value

A data frame without duplicate rows.

Examples

```
artdata_without_duplicates <- remo_dup(artdata, mantener_ultima = TRUE)</pre>
```

SAbarrida 5

SAbarrida	Calculates the Swept Area (SA) based on distance and the width of the fishing gear.
	Justility gear.

Description

Calculates the Swept Area (SA) based on distance and the width of the fishing gear.

Usage

```
SAbarrida(distancia, ancho)
```

Arguments

distancia A vector representing distances in meters.

ancho A vector representing the width of the fishing gear in meters. It must be the

same size as 'distancia' or a single value.

Value

A vector with the calculated swept area.

Examples

```
# Calculate the swept area with a width of 2.5 meters
distances <- c(100, 200, 300)
swept_area <- SAbarrida(distances, ancho = 2.5)
swept_area_pre <- SAbarrida(distances, ancho = 2.5)</pre>
```