ÁREAS DE CONHECIMENTO DO PMBKO 6ª EDIÇÃO Parte 3

Profo MSc. Henderson Matsuura Sanches

- O Gerenciamento da qualidade em projetos busca assegurar que o projeto satisfaça as necessidades do cliente e envolve todas atividades do projeto por todo o seu ciclo de vida.
- Para ter qualidade nos projetos, é fundamental que a organização opere com seus processos funcionando de acordo com as melhores práticas de mercado. Abaixo você terá acesso aos fundamentos e aos processos necessários para não só otimizar seus processos conforme as melhores práticas de mercado, mas, também para aperfeiçoá-los de forma contínua.
- O primeiro passo é Planejar o gerenciamento da qualidade, cujo objetivo é identificar os requisitos e/ou padrões da qualidade do projeto e do produto, bem como documentar de que modo o projeto demonstrará a conformidade.
- O segundo passo é Gerenciar a qualidade, onde será executado aquilo que foi detalhado no plano de gerenciamento da qualidade de modo a certificar que os padrões da qualidade e definições operacionais apropriadas estão sendo utilizados.

Planejar o gerenciamento da qualidade

Identificar requisitos e padrões da qualidade do projeto e do produto e documentar como o projeto demonstrará a conformidade.

Gerenciar a Qualidade

Executar o plano de gerenciamento da qualidade.

Controlar a Qualidade

Monitorar e registrar os resultados da execução das atividades para avaliar a performance e recomendar mudanças necessárias.

- E finalmente, como as mudanças e os erros no planejamento são inevitáveis, será necessário Controlar a qualidade em paralelo a execução do plano (Passo 2 - Gerenciar a qualidade), com o intuito de monitorar e registrar os resultados da execução das atividades da qualidade para avaliar o desempenho e recomendar mudanças necessárias.
- Os três processos de gerenciamento da qualidade são:
- Planejar o gerenciamento da qualidade
- Gerenciar a qualidade
- Controlar a qualidade

 Para se obter o máximo dos processos, importante entender as definições e os fundamentos da qualidade relacionados a seguir.

Qualidade Grau em que um conjunto de características inerentes atende aos requisitos Adequação ao uso

Conformidade aos requisitos

- Segundo a American Society for Quality, qualidade é um termo subjetivo que cada pessoa ou setor tem sua própria definição, entretanto, qualidade do ponto de vista técnico pode ter mais de um significado:
- Características de um produto ou serviço que satisfazem necessidades declaradas ou implícitas [Juran - Adequação ao uso];
- Produto ou serviço livre de defeitos [Crosby Conformidade aos requisitos].

- Segundo a ISO 9000 (mesmo conceito adotado pelo Guia PMBOK, pag. 228):
- Qualidade é o grau em que um conjunto de características inerentes atende aos requisitos;
- Grau: categoria atribuída à entregas que têm a mesma utilidade funcional, mas, diferentes características técnicas.
- Por exemplo: Um software pode ter alta qualidade (sem defeitos óbvios, manual compreensível, ...) e grau baixo (número limitado de recursos) ou baixa qualidade (muitos defeitos) e grau alto (diversos recursos).

Qualidade de vida

- Além do conceito de qualidade, importante refletirmos sobre a definição de qualidade de vida. Segundo a OMS (Organização Mundial da Saúde), "Qualidade de vida é a percepção do indivíduo de sua posição na vida, no contexto da cultura e sistemas de valores nos quais ele vive, e em relação aos seus objetivos, expectativas, padrões e preocupações".
- Portanto, importante ressaltar que a qualidade está relacionada com a percepção de quem está nos avaliando, e portanto devemos nos preocupar também com a qualidade percebida no projeto que às vezes pode ser diferente da qualidade entregue.
- Em outras palavras, importante você criar produtos e serviços que satisfaçam as necessidades dos clientes, mas, talvez ainda mais importante, é que seus clientes percebam que suas necessidades estão sendo atendidas (Não adianta criar um produto que atenda as necessidades dos clientes se nenhum cliente percebe isso).

- Análise de custo-benefício: A Análise de Custo x Benefício considera o trade-off entre o custo e o benefício de adotar algo (Nova ferramenta, mudança em processos, ...).
- Alguns dos benefícios a serem considerados:
- Menor retrabalho;
- Maior produtividade;
- Menor custo;
- Aumento de satisfação do cliente.

- Custo da qualidade: O custo da qualidade é o custo total incorrido no investimento em prevenir não conformidade aos requisitos.
- Custos de conformidade são os custos usados para prevenir a não conformidade, ou seja, o dinheiro gasto durante o projeto para evitar falhas. Entre eles:
- Custos de prevenção (Fabricar um produto de qualidade)
- → Treinamento;
- Documentar processos;
- → Equipamento;
- → Tempo para executar do modo correto.

- Custo da qualidade:
- Custos de avaliação (Avaliar a qualidade)
- → Testes;
- → Perda de teste destrutivo;
- → Inspeções.

- Custo da qualidade:
- Custos de não conformidade são considerados custos de baixa qualidade gerados por retrabalhos, ações corretivas, serviços adicionais, tratamento de reclamações, desgaste político, entre outros.
- Eles são os custos gerados devido a falta de conformidade, ou seja, dinheiro gasto durante e após o projeto devido a falhas. Podem ser divididos em:

- As sete ferramentas básicas da qualidade: As sete ferramentas básicas da qualidade, também conhecidas como ferramentas de controle de qualidade são muito usadas para resolver problemas relacionados a qualidade. Veja detalhamento nos links abaixo:
- Diagrama de causa-efeito
- Fluxograma
- Folha de verificação
- Histograma
- Diagrama de Pareto
- Gráfico de controle
- Diagrama de dispersão

- **Diagrama de causa-efeito:** O Diagrama de causa-efeito, também conhecido como diagrama de espinha de peixe ou diagrama de Ishikawa, é usado na análise de Causa e Efeito ou na análise de Causa-Raiz. Ele usa técnicas de diagrama para identificar as relações entre causa e efeito.
- Análise de Causa e Efeito é composta de 6 Etapas:
- 1. Identificar o problema;
- Selecionar equipe interdisciplinar baseado no conhecimento requerido para determinar as causas do problema;
- 3. Desenhar a caixa do problema e a seta principal;
- 4. Especificar as principais categorias (Básicas: Pessoal, Método, Material, Equipamento, Medidas e Ambiente);
- 5. Identificar as causas relacionadas para cada categoria (Ordem aleatória, importância, sequencial);
- 6. Identificar ações corretivas.

 Fluxograma: O fluxograma ajuda a analisar como os problemas ocorrem através da representação gráfica de um processo. Ele mostra atividades, pontos de decisão e ordem de processamento, além de como os diversos elementos do processo se inter-relacionam.

Histograma:

 O Histograma é um gráfico de barras que mostra a distribuição de variáveis. Cada coluna representa um atributo ou característica. A altura de cada coluna § » representa a frequência relativa do atributo ou característica. Ele é a representação gráfica de dados como uma distribuição de frequências e avalia atributo (ok, falha) e variável (medidas), além de mostrar a situação atual dos dados acumulados. O histograma é muito útil para entender frequência relativa (%), frequência (Qtd) e como os dados estão distribuídos.

- Diagrama de Pareto:
- Vilfredo Pareto foi um economista, filosofo e estudioso que observou que 80% das terras da Itália pertenciam a 20% da população. Joseph Juran, um dos papas da Qualidade, generalizou o princípio, afirmando que em muitas situações, 80% dos efeitos devem-se a 20% das causas.
- O princípio 80/20 do Pareto é, na minha opinião, um dos princípios mais importante a ser adotado por todos.

- Diagrama de Pareto:
- Princípio 80/20: 80% dos problemas se devem a 20% das causas.
- O principal motivo é o grande volume de trabalho que todos nós temos sem atuar onde realmente faremos a diferença.
- Se trabalharmos de forma efetiva resolvendo os 20% das causas que originam 80% dos problemas, teremos muito mais tempo para trabalharmos de forma mais efetiva.

- Diagrama de Pareto:
- Análise de Pareto:
- Histograma ordenado por frequência de ocorrência;
- Usada principalmente para identificar e avaliar não-conformidades;
- Ajuda a identificar e priorizar áreas problemas;
- Mostra quantos defeitos foram gerados por tipo ou categoria de causa identificada;
- Lei de Pareto afirma poucas causas normalmente produzem a maioria dos problemas ou defeitos.

- Gráfico de controle:
- O principal objetivo do Gráfico de controle é determinar se um processo é ou não estável ou tem desempenho previsível. Ele serve para mostrar quando um processo está sujeito a uma variação de causa especial que cria uma condição fora de controle.
- O Gráfico de controle:
- Ilustra como um processo se comporta ao longo do tempo;
- É a representação gráfica da interação de variáveis para determinar se estão dentro dos limites aceitáveis;
- Quando um processo está dentro dos limites aceitáveis, ele não precisa ser ajustado;
- Quando um processo está fora dos limites aceitáveis, ele deve ser ajustado.

- Gráfico de controle:
- Um processo é considerado fora de controle quando um ponto de dados excede um limite de controle, ou se sete pontos consecutivos estiverem acima ou abaixo da media.
- Para controlar as variações, são definidos um limite de controle inferior e um superior, cujo intervalo determina os limites aceitáveis.
- Pode existir também um limite de especificação que fica após os limites de controle. Normalmente, usado quando existe um nível de serviço acordado com o cliente final.

 Veja a figura abaixo com os limites de controle, limite de especificação e um exemplo da regra

dos setes pontos.

- Diagrama de dispersão:
- Mostra o padrão da relação entre duas variáveis;
- Permite identificar a relação entre as mudanças observadas em duas variáveis;
- São traçadas as variáveis dependentes versus as variáveis independentes;
- Quanto mais próximos os pontos estiverem da linha diagonal, mais próxima será a relação entre eles.

- **Benchmarking:** Benchmarking é o processo de comparar os métodos de trabalho em relação às melhores práticas e resultados com o propósito de identificar mudanças que levem a resultados de melhor qualidade.
- Os indicadores são a base do benchmarking e correspondem aos critérios que devem ser entendidos e interpretados de modo a refletir de forma fiel o processo a ser acompanhado.
- Eles devem ser monitorados continuamente e sempre que houverem desvios em relação ao padrão, devem ser determinadas e priorizadas ações de melhoria ou solução de problemas.
- Os participantes do benchmarking são os responsáveis pela gestão e principalmente os envolvidos no processo.

- Tipos de Benchmarking:
- Engenharia reversa: "Desmontar" um determinado produto para verificar como foi gerado.
- Benchmarking competitivo: Monitoramos a concorrência e aprendemos com ela.
 Análise e comparação da concorrência.
- Benchmarking do processo: Busco os melhores de um determinado processo.
 Exemplo: Cobrança Cartão de crédito.
- Benchmarking estratégico: Desempenho global através de análise de estratégia de longo prazo e iniciativas de sucesso.
- Benchmarking global: Soluções fora do seu mercado. Líderes mundiais em seus campos de atuação.

- Projeto de experimentos: Projeto de experimentos é um método estatístico que ajuda a identificar quais fatores podem influenciar variáveis específicas de um produto ou processo em desenvolvimento.
- São muito usados em Projetos Industriais para otimizar processos e produtos.
- Avaliam materiais com custos diferenciados para determinar sua melhor composição.
- Exemplo: definição da mistura de materiais que resultará no melhor concreto.

Areia	20%	30%	15%
Cal	30%	40%	15%
Cimento	50%	30%	70%
Tempo Cura	2 dias	3 dias	1 dia
Custo	R\$ 20,00	R\$ 15,00	R\$ 30,00

- Amostragem estatística: Com o intuito de reduzir os custos ao analisar todos os indivíduos de uma população, usa-se um pequeno grupo de indivíduos dessa população para chegar a conclusões sobre toda a população.
- A amostragem estatística tem como objetivo fazer generalizações sobre uma população com base nos dados de uma amostra.
- A população é o conjunto de todos os elementos sob investigação.
- A amostra é qualquer subconjunto da população.

- Ferramentas adicionais de planejamento da qualidade: São várias as ferramentas adicionais usadas no planejamento da qualidade.
- Abaixo, algumas das citadas pelo Guia PMBOK®:
- Brainstorming;
- Técnica de grupo nominal;
- Diagramas Matriciais;
- Matriz de priorização.

- Auditorias de qualidade: A auditoria é uma análise estruturada e independente que busca identificar políticas, processos e procedimentos ineficientes e ineficazes em uso no projeto e não aderentes às políticas e procedimentos do projeto e da empresa.
- Ela pode ser agendada ou aleatória. A aleatória tem a vantagem de contar com o fator surpresa que impede da área se preparar antecipadamente apresentando uma realidade que não condiz com o dia-a-dia.
- Ela pode ser executada por auditores internos ou externos. O mais importante é não existir nenhum tipo de interesse pessoal do auditor na análise de modo a garantir independência e transparência na análise.

- Análise de processos: A análise de processos segue os passos definidos no plano de melhorias dos processos.
- Ela busca identificar as melhorias necessárias do ponto de vista organizacional e técnico através do exame de problemas e restrições sofridas e atividades sem valor agregado.
- Usa a análise de causa-raiz para analisar um problema e determinar suas causas e criar ações preventivas para problemas semelhantes.

- Inspeção: A inspeção é usada para manter os erros fora das mãos do cliente, enquanto, a prevenção é usada para manter os erros fora do processo.
- O ideal é sempre atuarmos de forma preventiva, evitando os custos relacionados aos problemas identificados na inspeção.
- Por isso, a "Qualidade deve ser planejada, não inspecionada."

- Inspeção:
- A inspeção avalia as entregas com o intuito de identificar não conformidades (defeitos).
- Portanto, os produtos devem ser inspecionados antes da entrega ao cliente final determinando pela:
- Entrega do produto;
- Retrabalho ou
- Descarte dos itens defeituosos.
- Inspeções periódicas garantem que o processo está indo conforme planejado e revelam deficiências mais cedo.
- Abaixo, algumas das atividades de inspeção:
- Medir características físicas do produto
- Examinar montagem dos produtos
- Testar desempenho dos produtos

Modelos/Templates de Gerenciamento de Projetos

- Plano de gerenciamento da qualidade.docx
- Plano de Melhoria de Processos.docx
- CheckList.xlsx ou Lista de Verificação de Qualida de
- Métricas da Qualidade.xlsx
- Termo de Aceite da Entrega.docx

Ferramentas de Gerenciamento de Projetos

- Brainstorming com priorizacao.xlsx
- Indicadores de Gerenciamento de Projetos.xlsx
- CheckList.xlsx ou Lista de Verificação de Qualida de
- Avaliação de Maturidade de Gerenciamento de Projetos.xlsx

Exemplos de Projetos

- Plano de gerenciamento da qualidadevExemplo. docx
- Métricas da Qualidade vSAC.xlsx
- Métricas da Qualidade vPMO.xlsx
- Listas de verificação da qualidade.xlsx
- Plano de Melhoria de Processos vPMO.docx

Tabela das saídas dos processos de qualidade com seus templates/modelos e exemplos

Processo	Saída	Modelo	Exemplo
Planejar o Gerenciamento da Qualidade			
	Plano de gerenciamento da qualidade	Plano de gerenciamento da qualidade.do cx	Plano de gerenciamento da qualida devExemplo.docx
		Métricas da Qualidade.xlsx	Métricas da Qualidade vSAC.xlsx
	Métricas da qualidade		Métricas da Qualidade vPMO.xlsx
		Listas de verificação da qualidade.xlsx	Listas de verificação da qualidade.x
	Listas de verificação da qualidade		
	Plano de melhorias no processo	Plano de Melhoria de Processos.docx	Plano de Melhoria de Processos vP MO.docx
Gerenciar a qualidade			
Controlar a qualidade			

Referencias

- MONTES, Eduardo. Administração do Tempo, 1^a Ed. São Paulo; 2019.
- MONTES, Eduardo. Introdução ao Gerenciamento de Projetos, 1ª Ed. São Paulo; 2017.
- PMI PROJECT MANAGEMENT INSTITUTE. Guia PMBOK®: Um Guia para o Conjunto de Conhecimentos em Gerenciamento de Projetos, Sexta edição, Pennsylvania: PMI, 2017.