Les données numériques: mean, variance, standardisation and PCA

Diane Lingrand

2022 - 2023

Outline

- Mean, Variance
- Normalisation, Standardisation
- PCA (Principal Component Analysis)

Outline

1 Mean and variance

2 Normalisation and standardisation

3 PCA (Principal Component Analysis)

D. Lingrand (SI3) mean/var/PCA 2022 - 2023 3

Mean and variance for a 1D vector

- arithmetic mean : $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$
- variance : $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2$
 - standard deviation (*écart type*) : $\sigma = \sqrt{\sigma^2}$
- mean absolute deviation (mad) : $s = \frac{1}{n} \sum_{i=1}^{n} |x_i \mu|$

- arithmetic mean : $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$
- variance : $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2$
 - standard deviation (*écart type*) : $\sigma = \sqrt{\sigma^2}$
- mean absolute deviation (mad) : $s = \frac{1}{n} \sum_{i=1}^{n} |x_i \mu|$

```
a = np.random.randint(low=0, high=20, size=10)
mu = np.mean(a)
print(a)
print("mean = \t %.2f" %mu)
print("std = \t *.2f" %np.std(a))
print("mad = \t *.2f" %np.mean(np.abs(a-mu)))

[16 10 19 4 0 1 5 11 18 16]
mean = 10.00
std = 6.78
mad = 6.00
```

- density probability function : $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
 - for $\mu = 0$ and $\sigma = 1 : f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

Mean and variance for a data set (n samples of dim. d)

- feature (or component) number i for every samples, $0 \le i < d$
- sample number $j: x^j \in \mathcal{R}^d$
- $\bullet \ \operatorname{mean} : \mu_i = \frac{1}{n} \sum_{j=1}^n x_i^j$
- variance : $\sigma_i^2 = \frac{1}{n} \sum_{i=1}^n (x_i^j \mu_i)^2$
- mean absolute deviation : $s_i = \frac{1}{n} \sum_{i=1}^{n} |x_i^j \mu_i|$

```
Xtrain = np.random.randint(10, size=(8,3))
print(Xtrain)
print("shape = ", Xtrain.shape)
[[2 1 0]
 [2 8 6]
 [9 3 1]
 [6 0 3]
 [3 3 1]
 [2 9 1]
 [9 6 2]
 [8 1 4]]
shape = (8, 3)
print("global mean: \t\t", np.mean(Xtrain))
np.set printoptions(precision=2)
print("mean with axis 0:\t", np.mean(Xtrain,axis=0))
print("mean with axis 1:\t", np.mean(Xtrain,axis=1))
global mean:
                        4.75
mean with axis 0: [5.5 4.88 3.88]
mean with axis 1: [5.67 5.67 4.33 1. 7.67 3. 5.33 5.33]
```

```
Xtrain = np.random.randint(10, size=(8,3))
print(Xtrain)
print("shape = ",Xtrain.shape)
[[2 1 0]
 [2 8 6]
 [9 3 1]
 [6 0 3]
 [3 3 1]
 [2 9 1]
 [9 6 2]
 [8 1 4]]
shape = (8, 3)
n = Xtrain.shape[0]
mu = np.mean(Xtrain,axis=0)
var = np.sum((Xtrain-mu)*(Xtrain-mu), axis=0)/n
sigma = np.sqrt(var)
mad = np.sum(np.abs(Xtrain-mu),axis=0)/n
print('mu = ', mu, '; sigma = ', sigma, '; mad = ', mad)
    [5.12 3.88 2.25]; sigma = [3.02 3.18 1.85]; mad = [2.88 2.84 1.56]
```

Outline

1 Mean and variance

2 Normalisation and standardisation

3 PCA (Principal Component Analysis)

D. Lingrand (SI3) mean/var/PCA 2022 - 2023 10

Normalisation and standardisation

- Normalisation :

 - $x \leftarrow \frac{x \mu}{\sigma}$ new mean : 0; new standard deviation : 1
- Standardisation :

 - $\begin{array}{l} \bullet \ \, x \leftarrow \frac{x-\mu}{s} \\ \bullet \ \, \text{new mean} : 0 \, ; \, \text{new mad} : 1 \end{array}$

Normalisation and standardisation

- Normalisation :

 - $x \leftarrow \frac{x \mu}{\sigma}$ new mean : 0; new standard deviation : 1
- Standardisation :
 - $x \leftarrow \frac{x \mu}{s}$
 - new mean : 0; new mad : 1
- For the dataset Xtrain :
 - normalisation : $\forall i \ x_i = \frac{x_i \mu_i}{\sigma_i}$
 - standardisation : $\forall i \ x_i = \frac{x_i \mu_i}{\varepsilon}$

Impact on the accuracy for test set

Experiment using 200 training samples, 200 test samples, dataset Speech Commands, classes 'cat', 'dog' and 'bird'.

How to read a box plot?

Also called boîte à moustaches

Why such differences?

Why such differences?

Best k value

- For standardised data: best k value is 80 for an accuracy of 76.8%
 - was computed from test data (last 200 samples)
 - train data where data from 0 to 199
- Let's test on other data (not training data, not used for computing k)

- Necessity of splitting data into : train/valid/test
 - otherwise, metrics are over-estimated
 - train for training
 - valid for hyperparameters estimation
 - test for evaluation of metrics

D. Lingrand (SI3) mean/var/PCA 2022 - 2023 17/32

To remember

- It is important to standardise the data
- It is important to split dataset into :
 - train for training
 - valid for hyperparameters estimation
 - test for evaluation of metrics

Outline

1 Mean and variance

2 Normalisation and standardisation

3 PCA (Principal Component Analysis)

D. Lingrand (SI3) mean/var/PCA 2022 - 2023 19/32

plt.scatter(Xtrain[:, 0], Xtrain[:, 1], marker="o", c=y)

Can we plot it better ... on a screen?

Covariance

- covariance between 2 variables x_0 and x_1 :
 - measure of the linear relationship between two random variables
 - $\operatorname{covar}(x_0, x_1) = \operatorname{E}[(x_0 \mu_0)(x_1 \mu_1)] = \frac{1}{n} \sum_j (x_0^j \mu_0)(x_1^j \mu_1)$

Covariance

- covariance between 2 variables x_0 and x_1 :
 - measure of the linear relationship between two random variables
 - $\operatorname{covar}(x_0, x_1) = \operatorname{E}[(x_0 \mu_0)(x_1 \mu_1)] = \frac{1}{n} \sum_j (x_0^j \mu_0)(x_1^j \mu_1)$
- \bullet Example of linearly correlated variables : $\mathit{x}_{1}^{j} = \lambda \mathit{x}_{0}^{j}$
 - $\operatorname{covar}(x_0, x_1) = \sum_{j} (x_0^j \mu_0)(x_1^j \mu_1) = \lambda \operatorname{var}(x_0)$
 - high value : means correlation between the 2 variables

- covariance between 2 variables x_0 and x_1 :
 - measure of the linear relationship between two random variables
 - $\operatorname{covar}(x_0, x_1) = \operatorname{E}[(x_0 \mu_0)(x_1 \mu_1)] = \frac{1}{n} \sum_{i} (x_0^i \mu_0)(x_1^i \mu_1)$
- \bullet Example of linearly correlated variables : $\mathit{x}_{1}^{j} = \lambda \mathit{x}_{0}^{j}$
 - $\operatorname{covar}(x_0, x_1) = \sum_{j} (x_0^j \mu_0)(x_1^j \mu_1) = \lambda \operatorname{var}(x_0)$
 - high value : means correlation between the 2 variables
- Example of non correlated variables : $E[x_0 * x_1] = E[x_0] * E[x_1]$

Mean, variance and covariance : dim 2

• n samples of dimension 2 : $\mathbf{x}^j = [x_0^j, x_1^j]$ with $0 \le j < n$

- n samples of dimension $2: \mathbf{x}^j = [x_0^j, x_1^j]$ with $0 \le j < n$
- mean of samples : $\mu = 0.5 [x_0^0 + x_0^1, x_1^0 + x_1^1]$
- variances :

Mean, variance and covariance : dim 2

- n samples of dimension 2 : $\mathbf{x}^j = [x_0^j, x_1^j]$ with $0 \le j < n$
- ullet mean of samples : $\mu = 0.5 \, [x_0^0 + x_0^1, x_1^0 + x_1^1]$
- variances :
 - $\operatorname{var}(x_0) = \operatorname{covar}(x_0, x_0) = \sigma_0^2 = \frac{1}{n} \sum_i (x_0^j \mu_0)^2$
 - $\operatorname{var}(x_1) = \operatorname{covar}(x_1, x_1) = \sigma_1^2 = \frac{1}{n} \sum_{i} (x_1^j \mu_1)^2$
- covariance matrix :

$$\Sigma = \begin{pmatrix} \sigma_0^2 & \mathsf{covar}(x_0, x_1) \\ \mathsf{covar}(x_0, x_1) & \sigma_1^2 \end{pmatrix}$$

• variance : $var(\mathbf{x}) = tr(\Sigma) = \sigma_0^2 + \sigma_1^2$

- ullet original variables of dimension $p\geq 2: \mathsf{X}^{\mathsf{j}} = [x_0^{\mathsf{j}} \dots x_{p-1}^{\mathsf{j}}]$
- variance-covariance matrix : symmetric matrix of dim $p \times p$:

$$\Sigma = \begin{pmatrix} \mathsf{var}(x_0) & \mathsf{covar}(x_0, x_1) & \dots & \mathsf{covar}(x_0, x_{p-1}) \\ \mathsf{covar}(x_0, x_1) & \mathsf{var}(x_1) & \dots & \mathsf{covar}(x_0, x_{p-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{covar}(x_0, x_{p-1p}) & \mathsf{covar}(x_1, x_{p-1}) & \dots & \mathsf{var}(x_{p-1}) \end{pmatrix}$$

• variance : $var(x) = tr(\Sigma) = \sum_i \sigma_i^2$

PCA (1901 Karl Pearson, 1936 H. Hotelling)

- Unsupervised
- Analysis of variance-covariance matrix
- Reducing the dimension of data
- Visualisation of data if the reduced dimension is 2 or 3
- Interpretation : dependance between variables
- PCA : often as pre-processing

$$\Sigma = \begin{pmatrix} \mathsf{var}(x_0) & \mathsf{covar}(x_0, x_1) & \dots & \mathsf{covar}(x_0, x_{p-1}) \\ \mathsf{covar}(x_0, x_1) & \mathsf{var}(x_1) & \dots & \mathsf{covar}(x_0, x_{p-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{covar}(x_0, x_{p-1p}) & \mathsf{covar}(x_1, x_{p-1}) & \dots & \mathsf{var}(x_{p-1}) \end{pmatrix}$$

- variance = $\operatorname{tr}(\Sigma) = \sum_{i} \sigma_{i}^{2}$
 - symmetric squared matrix : diagonalization is possible!
 - there exists a basis of orthogonal vectors where the covariance matrix is diagonal
 - these vectors are eigenvectors of Σ
 - elements on the diagonal are eigenvalues
 - variance = $\sum_k \lambda_k$
- Idea of PCA
 - \bullet diagonalisation of Σ
 - order eigenvalues by decreasing order
 - if 0 is an eigenvalue : the corresponding dimensions can be removed
 - the lower eigenvalues do not contribute a lot to the variance

25/32

Geometrical interpretation

- original variables : $x_1, x_2, ..., x_p$
- principal components : $c_1, c_2, ..., c_q$ with $q \leq p$
- $c_k = \sum_j a_{jk} x_j$ with :
 - c_k and c_j not correlated
 - maximum variance and
 - decreasing importance

PCA: python code

- standardise the data
- compute the covariance matrix (numpy.cov). Caution : read the doc to adapt to Xtrain shape/order.
 - compute it's eigenvalues and eigenvectors (numpy.linalg.eig)
 - sort the eigenvalues in decreasing order (numpy.argsort)
 - select some of the eigenvalues (2 for visualisation on your screen)
 - use the corresponding eigenvectors for transforming the data (numpy.matmult or @)
 - compare the obtained variance with the original variance
- for the validation or test dataset
 - apply the exact same transformation
 - do not recompute covariance or eigenvalues and eigenvectors

Details on numpy.linalg.eig

- the function returns :
 - val, vec = np.linalg.eig(myCovMatrix)
 - an array of eigen values : val[i] is the ith eigen value
 - an array of eigen vectors: vec[:,i] is the ith eigen vector corresponding to the ith eigen value
- after ordering both eigenvals and eigenvectors, we can reduce the target space to a smaller dimension (equal dimension is also possible)
- in order to express a sample s in the new basis : Bs
 - B^T is the matrix for basis change Xtrain[:,j]
 - we need to transpose vec
 - we need to transpose Xtrain
 - and transpose the result :
 - Xtrain@vec

28 / 32

Example: Iris dataset

Examples: variance explained

PCA on Iris dataset (4 features):
if we perform the PCA on dimension 4 (not very useful):
with 4 components: 100% of the variance is explained
with 3 components: 99.5%
with 2 components: 97.8%
PCA on 'cat', 'dog', 'bird' (13 features):
with 13 components: 100%
with 11 components: 96%
with 2 components: 47%

Conclusion

- PCA is for dimension reduction
 - in dimension 2 for visualisation on screen
 - or any other smaller dimension than the original one
 - simple and quite fast
- PCA is not the best dimension reduction algorithm
 - only linear transformation
 - do not guaranty that close (resp. distant) samples in the original space will be close (resp. distant) in the projected space.
 - we will study tSNE next year