Общие определения и свойства векторов

<u>Вектор</u>- это геометрический объект, характеризуемый длиной и направлением. Визуально вектор можно представить как направленный отрезок.

Для задания произвольного вектора \vec{A} нужно задать три числа, которые называются его проекциями или компонентами. В декартовой системе координат вектор \vec{A} выражается через свои проекции $\{A_X\,,A_Y\,,A_Z\,\}$ следующим образом:

$$\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}.$$

Геометрический смысл проекции на рисунке:

Длина вектора \vec{A} в декартовой системе координат равна:

$$\left| \vec{A} \right| = \sqrt{A_x^2 + A_y^2 + A_z^2}.$$

При переходе от одной декартовой системы координат (x,y,z) к другой (x`,y`,z`) вектор преобразуется: тройка чисел (A_x,A_y,A_z) переходит в новую тройку $(A`_x,A`_y,A`_z)$. При этом преобразовании модуль или длина вектора \vec{A} сохраняется:

$$|\vec{A}| = |A'| = \sqrt{A_x^2 + A_y^2 + A_z^2} = \sqrt{A_x^2 + A_y^2 + A_z^2}.$$

Равенство векторов

Два вектора \vec{A} и \vec{B} равны друг другу, если:

$$A_x = B_x, A_y = B_y, A_z = B_z.$$

С геометрической точки зрения два вектора равны друг другу, если они имеют одну и ту же длину и направлены в одну и ту же сторону. Данное определение означает, что существует

бесконечное большое число векторов равных некоторому вектору \vec{A} . Рисунок, представленный ниже, отражает это свойство векторов.

Все вектора на этом рисунке равны друг другу.

Параллельный перенос векторов

Как показывает рисунок, при параллельном переносе величина вектора \vec{A} не изменяется.

Векторные операции

Умножение вектора на скаляр

Операция $\vec{C}=\alpha\vec{A}$ называется умножением вектора на скаляр. При такой операции длина вектора увеличивается в α раз, а направление вектора сохраняется. В декартовой системе координат: $C_x=\alpha A_x$, $C_y=\alpha A_y$, $C=\alpha A_z$.

Сложение векторов

Суммой двух векторов \vec{A} и \vec{B} является новый вектор $\vec{C} = \vec{A} + \vec{B}$, у которого проекции равны суммам соответствующих проекций векторов \vec{A} и \vec{B} :

$$C_x = A_x + B_x,$$

$$C_y = A_y + B_y,$$

$$C_z = A_z + B_z.$$

Геометрическим представлением сложения векторов является правило параллелограмма.

Вычитание векторов

Вычитание двух векторов является операция обратная сложению: $\vec{C} = \vec{A} - \vec{B}, \vec{C} = \vec{A} + (-\vec{B}) \Rightarrow \vec{C} + \vec{B} = \vec{A}.$

Геометрическим представлением вектора \vec{C} является вектор, соединяющий конец вектора \vec{B} и \vec{C} .

Скалярное произведение

Из двух векторов \vec{A} и \vec{B} можно образовать скалярное произведение:

$$C = \vec{A} \bullet \vec{B} = (\vec{A} \cdot \vec{B}).$$

Величина скалярного произведения равна:

$$C = A_{x}B_{x} + A_{y}B_{y} + A_{z}B_{z},$$

или $C = \left| \vec{A} \right| \cdot \left| \vec{B} \right| \cos lpha$, здесь lpha - угол между векторами \vec{A} и \vec{B} .

Векторное произведение

Операция векторного произведения из двух векторов \vec{A} и \vec{B} образует новый вектор: $\vec{C} = \vec{A} \times \vec{B} = \left[\vec{A} \times \vec{B} \right]$. Модуль векторного произведения равен $\left| \vec{C} \right| = \left| \vec{A} \right| \cdot \left| \vec{B} \right| \sin \alpha$, здесь α -угол между векторами \vec{A} и \vec{B} .

Геометрически модуль векторного произведения равен площади параллелограмма, построенного на векторах \vec{A} и \vec{B} .

Направление векторного произведения определяется правилом правого винта: если головку винта вращать в плоскости векторов \vec{A} и \vec{B} по кратчайшему направлению от вектора \vec{A} к вектору \vec{B} , то направление хода винта укажет направление вектора \vec{C} . Из этого определения следует, что вектор \vec{C} перпендикулярен плоскости векторов \vec{A} и \vec{B} .

Проекции вектора \vec{C} определяются с помощью определителя:

$$\vec{C} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Откуда следует, что:

$$\begin{cases} C_x = A_y B_z - A_z B_y, \\ C_y = A_z B_x - A_x B_z, \\ C_z = A_x B_y - A_y B_z. \end{cases}$$

Основные векторные тождества:

$$\begin{bmatrix} \vec{A} \times \vec{B} \end{bmatrix} = - \begin{bmatrix} \vec{B} \times \vec{A} \end{bmatrix},$$

$$\begin{bmatrix} \vec{\bar{A}} \times \begin{bmatrix} \vec{B} \times \vec{C} \end{bmatrix} \end{bmatrix} = (\vec{A}\vec{C})B - (A\vec{B})\vec{C};$$

$$\begin{bmatrix} \vec{A} \times \vec{B} \end{bmatrix} \circ \begin{bmatrix} \vec{C} \times \vec{D} \end{bmatrix} = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C}).$$