EECS 16B DISI Craoque Review - KCL: the sum of oull currents entering a mode - KVL: the sum of an voltages in a civant loop must egner o - Op - amp (sperationed amplifier) Figure 3: General Op-Amp Model ideal Op-amp: a) Rin -> 00 b) Rout -> 0

Figure 4: Ideal Op-Amp in Negative Feedback

Golden Rules of ideal op-amps in negative feedback:

- (a) No current can flow into the input terminals $(I_{-} = 0 \text{ and } I_{+} = 0)$. (b) The (+) and (-) terminals are at the same voltage $(V_{+} = V_{-})$.

1. KVL/KCL Review

Use Kirchhoff's Laws on the circuit below to find V_x in terms of V_{in}, R_1, R_2, R_3 .

Figure 5: Example Circuit

- (a) What is V_x ?
- (b) As $R_3 \to \infty$, what is V_x ? What is the name we used for this type of circuit?

Ip, - Ip, - Ip, =0

$$\frac{V_{in}-V_x}{P_1} - \frac{V_x-0}{P_2} = 0$$

$$\Rightarrow V_X = V_{in} \frac{R_2}{P_i + P_2}$$

Whase divider

2. Op-Amp Summer

Consider the following circuit (assume the op-amp is ideal):

Figure 6: Op-amp Summer

What is the output V_o in terms of V_1 and V_2 ? You may assume that R_1 , R_2 , and R_g are known.

$$\frac{V_1}{P_1} + \frac{V_2}{P_2} = \frac{1}{P_2}$$

3	• Current Sources And Capacitors (The following problem has been adapted from EECS16A Fall 20 Disc 9A.)
_	Recall charge has units of Coulombs (C), and capacitance is measured in Farads (F) = $\frac{\text{Coulomb}}{\text{Volt}}$. It may also help to note metric prefix examples: $3\mu\text{F} = 3 \times 10^{-6}\text{F}$.
_	Given the circuit below, find an expression for $v_{\text{out}}(t)$ in terms of I_s , C , V_0 , and t , where V_0 is the initial voltage across the capacitor at $t = 0$.
_	Then plot the function $v_{\text{out}}(t)$ over time on the graph below for the following conditions detailed below.
	Use the values $I_s = 1$ mA and $C = 2 \mu$ F.
_	(a) Capacitor is initially uncharged $V_0 = 0$ at $t = 0$.
	(b) Capacitor has been charged with $V_0 = +1.5V$ at $t = 0$.
	(c) Practice: Swap this capacitor for one with half the capacitance $C = 1 \mu\text{F}$, which is initially uncharged $V_0 = 0$ at $t = 0$.
	HINT: Recall the calculus identity $\int_a^b f'(x)dx = f(b) - f(a)$, where $f'(x) = \frac{df}{dx}$.
	Capacitor: Q=CV
	at out
	this problem Want Is
	dt C
	Vout (t) = Vo + (+) t