SECTION 1.5: Sequences & Series of C-numbers.

A sequence of complex numbers is an ordered list $a_1, a_2, a_3, ..., a_n, ..., where <math>a_n \in \mathbb{C}$ (a: N $\rightarrow \mathbb{C}$).

Notations: {an}, and (an) =.

Examples

•
$$a_n = \frac{1}{n}, n \in \mathbb{N}$$
. So
$$\begin{cases} a_n \end{cases}_{n=1}^{\infty} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}.$$

$$(a_n)_{n=1}^{\infty} = (1, \frac{1}{2}, \frac{1}{3}, \dots).$$

•
$$a_n = i^n$$
, $n \in \mathbb{N}$. So $\{a_n\}_{n=1}^{\infty} = \{i, -1, -i, 1, i, -1, -i, 1, ...\}$

Convergence of sequences

Example: For $\{(1+i)/n\}_{n=1}^{\infty}$, as n gets bigger and bigger, $\frac{1+i}{n}$ gets closer and closer to O. How big n should be to get $|a_n| < 0.001$?

 $\Rightarrow \frac{\sqrt{2}}{n} < \frac{1}{1000} \iff 1000\sqrt{2} < n.$

We would require n> L1000√z] + 1=1414+1 ⇔ n> [415].

Def. A sequence $\{an\}_{n=1}^{\infty}$ converges to a $a \in C$ if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that if $n \ge N$, then $|an-a| < \epsilon$. If $\{an\}_{n=1}^{\infty}$ dues not converge, we say it diverges.

Remarks:

- 1) Notation: an -> a or lim an = a.
 - Divergent: an →a.

 Negation: ∃E>0, YNEIN, ∃n≥N s.t.

 |an-a|≥E.

Proof. (=>) Assume that an -> xxiy. Let E>0. Notice that $|x_n-x| \leq |a_n-(x+iy)| \quad \forall n \in \mathbb{N}.$ From the def. of an- xxiy, there's an NEW oil. Jan-12 tig) | < E, Yn=N. So, if n>N, then |2n-x| = |an-(xtiy)| < E. so, xn->x by def. Similarly, you get yr -> y. (=) Assume xn->x and yn->y. Recall: | Z | E | Rez | + | Imz | , YZEC. Let E>0. then |an- (x+iy)| < bcn-x1+ yn-y1 Let NIEN o.t. if n≥ N, , then Let N2EIN o.t. if n=N2, then |yn-y| < E/2

Let N = max { N, Nz3. If n > N, then $|an-(x+iy)| \leq |xn-x| + |yn-y|$ $\leq |x| + |x| = |x|$ So, an -> ztig. Properties: 1 Prop. 1.5.2: an-sa => a is unique. 2) Prop. 1.5.4: an-sa => (an) is bounded. (bounded: 3H>0 o.t. lan1 ≤ H, yn). (3) Pop. 1.5.6: Let (an), (bn) be two seq. (i) an so and Ibn/ = lan/ => bn so. (ii) an so and (bn) bounded => anbn >0. (4) Prop. 1.5.7: Assume an->a and bn->b. (i) xan+ Bbn -> da+Bb d,BEC. (ii) anbn -> ab. (iii) If $b \neq 0$, $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$. (iv) an -> a (lim an = lim an). (v) lant -> lat (lim lant = | lim an).

From the properties:

=
$$(3+2i)^2$$
 lim $\frac{1}{n+1}$ + $\lim_{n\to\infty} \frac{n+n^2i}{n^3i}$

$$= 0 + \lim_{n\to\infty} \frac{h + n^2 i}{n^3 i}$$

$$=\lim_{n\to\infty}\left(\frac{1}{n^2i}+\frac{1}{n}\right)$$

$$=\frac{1}{i}\lim_{n\to\infty}\frac{1}{n^2}+\lim_{n\to\infty}\frac{1}{n}=0.$$

Example 1.5.9

(a) If
$$|z| < 1$$
, then compute lim z^n .

Sol.

(a) If we want to show that
$$z^n \to 0$$
, then we have to consider:

 $|z^n - 0| = |z|^n$.

From Calculus, lim r = 0, 0 < r < 1. Put r= |z| => lim |z| = 0. (b) Assume $z \neq 1$ and $|z| \geq 1$. For a proof by contradiction, assume lin z'= L, for some LEC. he have $L = \lim_{n\to\infty} z^n = z \lim_{n\to\infty} z^{n-1} = zL$ ⇒ L=ZL Since $|z| \ge 1 \Rightarrow |z|^n \ge 1 \Rightarrow |L| \ge 1$ So, $L \neq 0 \Rightarrow \frac{L}{L} = \frac{zL}{L}$ => 1=2 #. So, lim z 7. DEF. A sequence fan]n=1 is a Cauchy sequence if YE>O, JNEW such that if n,m > N, then |an-am| < E.

THM 1.5.11 Let banking, be a sequence, anec.

(i) If fant is convergent, then it is Cauchy.

(ii) If fant is Cauchy, then hank converges.

Series of complex numbers

An infinite peries is an expression of the form $\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \cdots$

Partial sums: $S_n = \sum_{j=0}^n a_j = a_0 + a_1 + \dots + a_n$

DEF. 1.5.12 $\sum_{n=0}^{\infty}$ an converges to some $A \in C$ if $\lim_{n\to\infty}$ so $\lim_{n\to\infty}$ so $\lim_{n\to\infty}$ $S_n = A$.