

Programa del curso EE-0604

# Sistemas digitales

Escuela de Ingeniería Electromecánica Carrera de Ingeniería Electromecánica



# I parte: Aspectos relativos al plan de estudios

# 1. Datos generales

Nombre del curso: Sistemas digitales

Código: EE-0604

Tipo de curso: Teórico - Práctico

Obligatorio o electivo: Obligatorio

Nº de créditos: 2

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 2

**Ubicación en el plan de estudios:** Curso de 6<sup>to</sup> semestre en Ingeniería Electromecánica

Requisitos: EE-0503 Sistemas analógicos

Correquisitos: Ninguno

El curso es requisito de: EE-0705 Microcontroladores

Asistencia: Libre

Suficiencia: No

Posibilidad de reconocimiento: Sí

Aprobación y actualización del pro-

grama:

01/01/2026 en sesión de Consejo de Escuela 01-2026



# 2. Descripción general

El curso de *Sistemas digitales* aporta en el desarrollo de los siguientes rasgos del plan de estudios: conocer y aplicar los principios de los circuitos eléctricos y la electrónica, y analizar su funcionamiento en las diversas aplicaciónes en ingeniería electromecánica.

Los aprendizajes que los estudiantes desarrollarán en el curso son: estudiar técnicas de simplificación de variables en circuitos combinacionales; estudiar conectivas lógicas y su implementación en lógica digital y lógica programada en FPGA; estudiar el funcionamiento, diseño e implementación de contadores digitales, MUX y Decos y ADC; y diseñar circuitos digitales combinacionales y secuenciales usando lenguajes como VHDL o Verilog.

Para desempeñarse adecuadamente en este curso, los estudiantes deben poner en práctica lo aprendido en los cursos de: Sistemas analógicos, y Introducción a la computación.

Una vez aprobado este curso, los estudiantes podrán emplear algunos de los aprendizajes adquiridos en los cursos de: Microcontroladores, y Control por eventos discretos.

# 3. Objetivos

Al final del curso la persona estudiante será capaz de:

#### Objetivo general

 Implementar circuitos digitales con componentes monolíticos y componentes programados.

#### Objetivos específicos

- Estudiar técnicas de simplificación de variables en circuitos combinacionales.
- Estudiar conectivas lógicas y su implementación en lógica digital y lógica programada en FPGA.
- Estudiar el funcionamiento, diseño e implementación de contadores digitales,
  MUX y Decos y ADC.
- Diseñar circuitos digitales combinacionales y secuenciales usando lenguajes como VHDL o Verilog.

#### 4. Contenidos

En el curso se desarrollaran los siguientes temas:

- 1. Introducción a los Sistemas Digitales
  - 1.1. Conceptos básicos
  - 1.2. Diferencias entre sistemas digitales y analógicos
- 2. Reducción de expresiones booleanas
  - 2.1. Álgebra de Boole
  - 2.2. Teoremas y postulados
  - 2.3. Variables y funciones booleanas
  - 2.4. Simplificación de funciones booleanas

# TEC | Tecnológico de Costa Rica

- 2.5. Mapas de Karnaugh
  - 2.5.1. Mapas cicliclos, semi-ciclicos
  - 2.5.2. Mapas de variable ingresada
- 2.6. Suma de productos y Producto de Sumas
- 3. Circuitos Combinacionales
  - 3.1. Puertas lógicas básicas (AND, OR, NOT, NAND, NOR, XOR, XNOR)
  - 3.2. Diseño y análisis de circuitos combinacionales
  - 3.3. Sumadores y restadores
  - 3.4. Multiplexores (MUX)
  - 3.5. Demultiplexores (DEMUX)
  - 3.6. Codificadores y decodificadores (ENCODERS y DECODERS)
- 4. Circuitos Secuenciales
  - 4.1. Conceptos de memoria y almacenamiento
  - 4.2. Flip-Flops (SR, D, JK, T)
  - 4.3. Contadores y registros
  - 4.4. Máquinas de estados finitos (FSM)
  - 4.5. Maquinas de Mealy / Moore
- 5. Elementos de Memoria
  - 5.1. Tipos de flip-flops y sus aplicaciones
  - 5.2. Diseño de registros y contadores
  - 5.3. Memorias RAM y ROM
- 6. Unidad Aritmética y Lógica (ALU)
  - 6.1. Diseño y funcionamiento de una ALU
  - 6.2. Operaciones aritméticas y lógicas
- 7. Lenguaje de Descripción de Hardware (VHDL)
  - 7.1. Introducción a VHDL
  - 7.2. Modelado de circuitos combinacionales y secuenciales en VHDL
  - 7.3. Simulación y síntesis de diseños en VHDL
- 8. FPGAs (Field-Programmable Gate Arrays)
  - 8.1. Introducción a las FPGAs
  - 8.2. Tipos de FPGAs y sus aplicaciones
  - 8.3. Arquitectura interna de una FPGA
  - 8.4. Ventajas y desventajas de las FPGAs



- 9. Programación de FPGAs con VHDL
  - 9.1. Diseño del circuito en VHDL
  - 9.2. Simulación y verificación del diseño
  - 9.3. Síntesis y generación del bitstream
  - 9.4. Implementación y programación en la FPGA

# Il parte: Aspectos operativos

## 5. Metodología

En este curso, se utilizará el enfoque sistémico-complejo para la ejecución de las sesiones magistrales y se integrará la investigación práctica aplicada para las sesiones prácticas. Esta última se implementará mediante técnicas como el modelado, simulación, prototipado y la experimentación controlada.

#### Las personas estudiantes podrán desarrollar actividades en las que:

- Analizarán y definirán los requisitos del sistema, estableciendo el mejor circuito que solucione el problema planteado.
- Evaluarán distintos circuitos y los compara con el fin de determinar cuál es la mejor alternativa que negocie entre complejidad y error deseado.
- Aplicarán herramientas de simulación para verificar el funcionamiento de la solución planteada

Este enfoque metodológico permitirá a la persona estudiante implementar circuitos digitales con componentes monolíticos y componentes programados

Si un estudiante requiere apoyos educativos, podrá solicitarlos a través del Departamento de Orientación y Psicología.

# 6. Evaluación

La evaluación se distribuye en los siguientes rubros:

- Pruebas parciales: evaluaciones formales que miden el nivel de comprensión y aplicación de los conceptos clave del curso. Generalmente cubren una parte significativa del contenido visto hasta la fecha y pueden incluir problemas teóricos y prácticos.
- Tareas: evaluaciones que tienen el propósito de reforzar, aplicar o evaluar el aprendizaje de un tema específico. Pueden requerir investigación, resolución de problemas, desarrollo de habilidades prácticas o aplicación de conocimientos teóricos.
- Act. aprendizaje activo: actividad diseñada para que los estudiantes se involucren de manera directa y práctica en la construcción de su conocimiento, a través de la resolución de problemas, la discusión y la aplicación de conceptos teóricos en contextos reales o simulados.



| Pruebas parciales (2)       | 60 %  |
|-----------------------------|-------|
| Tareas (6)                  | 15 %  |
| Act. aprendizaje activo (1) | 25 %  |
| Total                       | 100 % |

De conformidad con el artículo 78 del Reglamento del Régimen Enseñanza-Aprendizaje del Instituto Tecnológico de Costa Rica y sus Reformas, en este curso la persona estudiante **no** tiene derecho a presentar un examen de reposición.

# 7. Bibliografía

- [1] S. Brown y Z. Vranesic, Fundamentals of Digital Logic with Verilog Design. McGraw-Hill Education, 2007.
- [2] M. M. Mano y C. R. Kime, Logic and Computer Design Fundamentals. Pearson, 2008.
- [3] D. M. Harris y S. L. Harris, *Digital Design and Computer Architecture*. Morgan Kaufmann, 2012.
- [4] R. H. Katz, Contemporary Logic Design. Prentice Hall, 2005.
- [5] T. L. Floyd, Fundamentos de Sistemas Digitales. Pearson Educación, 2006.
- [6] V. P. Nelson, H. T. Nagle, B. D. Carroll y J. D. Irwin, *Análisis y Diseño de Circuitos Lógicos Digitales*. Prentice Hall, 1995.
- [7] J. P. Hayes, Introducción al Diseño Lógico Digital. McGraw-Hill, 1993.
- [8] R. S. Sandige, Modern Digital Design. McGraw-Hill, 2002.
- [9] K. L. Short, VHDL for Engineers. Prentice Hall, 2008.
- [10] P. P. Chu, FPGA Prototyping by VHDL Examples. Wiley-Interscience, 2008.

### 8. Persona docente

8. Persona do- El curso será impartido por:

### Mag. Lisandro Araya Rodriguez

Maestría Ingeniería en Computación. Bachillerato en Ingeniería Electrónica Instituto Tecnológico de Costa Rica. Costa Rica

Correo: laraya@itcr.ac.cr Teléfono: 0

Oficina: 19 Escuela: Ingeniería Electromecánica Sede: Cartago

#### M.Sc. Nicolás Vaguerano Pineda

Maestría en Electrónica con énfasis en Sistemas Embebidos. Instituto Tecnológico de Costa Rica. Costa Rica

Correo: nvaquerano@itcr.ac.cr Teléfono: 0

Oficina: 0 Escuela: Ingeniería Electromecánica Sede: Cartago