FISEVIER

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Review

Emerging *N*-nitrosamines and *N*-nitramines from amine-based post-combustion CO₂ capture – A review

Xiujuan Chen^{a,b}, Gordon Huang^{a,b,*}, Chunjiang An^{b,c}, Yao Yao^{b,c}, Shan Zhao^{b,c}

- ^a Environmental Systems Engineering, Faculty of Applied Science and Engineering, University of Regina, Regina S4S 0A2, Canada
- b UR-SaskPower Laboratory of Environmental Processes for Power Industry, University of Regina, Regina S4S 0A2, Canada
- ^c Institute for Energy, Environment and Sustainability Research, University of Regina, Regina S4S 0A2, Canada

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: Amine-based post-combustion CO_2 capture N-nitrosamine N-nitramine Review

ABSTRACT

Amine-based post-combustion CO_2 capture (PCCC) technology is regarded as one of the most viable solutions for the mitigation of CO_2 emissions. It has been mature enough to be implemented on commercial scales. However, N-nitrosamines and N-nitramines can be formed as by-products of amine degradation during PCCC processes. They are suspected carcinogens and strictly regulated. With the development of PCCC technology across the global, PCCC facility may become a main source of N-nitrosamines and N-nitramines to the environment. Due to the possible adverse effects of N-nitrosamines and N-nitramines on the environment and human health, the interests in the occurrence, fate and mitigation of PCCC-derived N-nitrosamines and N-nitramines have been shared by a growing number of researchers recently. Therefore, this article provides a comprehensive review on

Abbreviations: AMP, 2-amino-2-methyl-1-propanol; AMP-NO₂, 2-methyl-2-(nitroamino)-1-propanol; AOPs, Advanced oxidation processes; CHO, Chinese hamster ovary; DEA, Diethanolamine; DELA, 2-(diethylamino)ethanol; DMNO, N-nitrodimethylamine; DELA, N-ethyldiethanolamine; EOR, Enhanced oil recovery; FT-ICR/MS, Fourier transform ion cyclotron resonance mass spectrometer; GHS, Globally Harmonized System; Gly, Glycine; GC-MS, Gas chromatography-mass spectrometer; GC-MS-TOF, Gas chromatography-mass spectrometer; HEEDA, N-(2-hydroxyethyl)ethylenediamine; HeGly, N-(2-hydroxyethyl)glycine; HPLC, High Performance Liquid Chromatography; LC-MS, Liquid chromatography-mass spectrometer; LC-MS/MS, Liquid chromatography-tandem mass spectrometry; LLE, Liquid-liquid extraction; MA-NO₂, N-nitromethanamine; MDEA, Methyldiethanolamine; MEA, Monomethylamine; MEA-NO₂, Ethanolamine; MNA, N-nitrosopiperazine; MOR, Morpholine; NDEA, N-nitrosodiethylamine; NDELA, N-nitrosopiperidine; NPZ, N-nitropiperazine; NSMO, N-nitrosomorpholine; NDEA, N-nitrosopiperidine; NPZ, N-nitropiperazine; NSMO, N-nitrosomorpholine; PCCC, Post-combustion CO₂ capture; PZ, Piperazine; SPE, Solid-phase extraction; TEA, Triethylamine; TELA, Triethanolamine; TONO, Total N-nitrosamines; TRIS, Tris(hydroxymethyl)aminomethane; UV, Ultraviolet

^{*} Corresponding author at: Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada. E-mail address: huangg@uregina.ca (G. Huang).