Constants/Conventions

General

Single Phase
$$\overline{\mathbf{S}}$$
: $\overline{S} = \overline{V} \cdot \overline{I}^*$

Q for L and C: $Q_L = \frac{V^2}{X_L}$ $Q_C = \frac{V^2}{X_C}$

Y Connection: $\overline{V_{ll}} = \sqrt{3} \angle 30^\circ \cdot \overline{V_{\phi}}$
 Δ Connection: $\overline{I_l} = \sqrt{3} \angle -30^\circ \cdot \overline{I_{\phi}}$

3 Phase Power: $\overline{S_{3\phi}} = 3 \cdot \overline{V_{\phi}} \cdot \overline{I_{\phi}^*}$
 $S = \sqrt{3} \cdot V_{ll} \cdot I_l$
 $P = S \cdot pf$ $S^2 = P^2 + Q^2$

Per Unit

$$S_{\text{base},1\phi} = P_{\text{base},1\phi} = Q_{\text{base},1\phi}$$

$$I_{\text{base}} = \frac{S_{\text{base},1\phi}}{V_{\text{base},\text{L-N}}}$$

$$Z_{\text{base}} = R_{\text{base}} = X_{\text{base}}$$

$$Z_{\text{base}} = \frac{V_{\text{base},\text{L-N}}}{I_{\text{base}}} = \frac{V_{\text{base},\text{L-N}}^2}{S_{\text{base},1\phi}}$$

$$Three \ \text{Phase:} \qquad S_{\text{base},3\phi} = 3 \cdot S_{\text{base},1\phi}$$

$$V_{\text{base},\text{L-L}} = \sqrt{3}V_{\text{base},\text{L-N}}$$

$$I_{\text{base}} = \frac{S_{\text{base},3\phi}}{\sqrt{3}V_{\text{base},\text{L-L}}}$$

$$Z_{\text{base}} = \frac{V_{\text{base},\text{L-L}}^2}{S_{\text{base},3\phi}}$$

$$Change \ \text{of Base:} \qquad Z_{\text{pu,new}} = Z_{\text{pu,old}} \left(\frac{V_{\text{base,old}}}{V_{\text{base,new}}}\right)^2 \frac{S_{\text{base,new}}}{S_{\text{base,old}}}$$

Transmission Lines

Line Inductance: $L=2\mathrm{x}10^{-7}\cdot\ln\frac{D}{D_s}$ or $L=2\mathrm{x}10^{-7}\cdot\ln\frac{D_{eq}}{D_S}$ or $L=2\mathrm{x}10^{-7}\cdot\ln\frac{D_{eq}}{D_{SL}}$

Line Capacitance:
$$C_{an} = \frac{2\pi\varepsilon}{\ln\frac{D}{r}}$$
 or
$$C_{an} = \frac{2\pi\varepsilon}{\ln\frac{Deq}{r}}$$
 or
$$C_{an} = \frac{2\pi\varepsilon}{\ln\frac{Deq}{D_{SC}}}$$

Nominal
$$\pi$$
 Model:
$$A = D = 1 + \frac{YZ}{2}$$

$$B = Z$$

$$C = Y(1 + \frac{YZ}{4})$$
Eq π Model:
$$Z' = Z \frac{\sinh{(\gamma l)}}{(\gamma l)}$$

$$\frac{Y'}{2} = \frac{Y}{2} \frac{\tanh{\frac{(\gamma l)}{2}}}{\frac{(\gamma l)}{2}}$$

For:
$$x = a + jb$$
,
 $\cosh(x) = \cosh(a)\cos(b) + j\sinh(a)\sin(b)$
 $\sinh(x) = \sinh(a)\cos(b) + j\cosh(a)\sin(b)$