Generative models for synthetic panel data

Jessie Lamontagne, Paul Edwards (Scotiabank) André dos Santos, Denilson Barbosa (University of Alberta)

Scotiabank®

Who we are

Jessie Lamontagne

Data Scientist

André dos Santos

Postdoctoral Fellow

Introduction

Data Privacy Will Be The Most Important Issue In The Next Decade

-Forbes, 2019

We are interested in synthetic data because it allows us to:

- 1. Develop a tool for analyzing and modelling data for which there are privacy concerns
- 2. Accelerate innovation by sharing representative, but synthetic data
- 3. Gain more insight into transactional behaviour

Can generative models
allow us to learn about
transactional behaviour at
the same time as we create
a fully private, synthetic
dataset?

Fig. 1: A Variational autoencoder is one kind of generative model

Motivation

Generative models

A generative model learns about a domain (commonly text or image) by fitting a function that minimizes the difference between the data it generates, and the true data.

Fig 2: Overview of Generative Models

Advances in generative models came from Natural Language Processing and Computer Vision...

StyleGAN (2018)

Yet in a circle pallid as it flow, by this bright sun, that with his light display, roll'd from the sands, and half the buds of snow, and calmly on him shall infold away

Deep-speare (2018)

Can we transfer architectural frameworks from these domains to the transaction domain?

Data

~4 million

IDs

1/4 billion

transactions

24

months of records

Transaction data

What is a transaction?

Table 1: A short sequence of transactions for customer "A"*

Customer	Card type	Transaction amount	Datetime stamp	Merchant category type
A	Debit	200.00	2019-05-08 02:15:22	ABM
A	Debit	22.50	2019-05-09 12:22:46	Grocery
A	Credit	78.72	2019-05-09 22:12:23	Restaurant
A	Debit	200.00	2019-05-11 09:23:34	ABM

^{*}not a real customer

Multi-objective optimization

Privacy-Utility: a pareto frontier

Fig 3: The utility-privacy optimization, and the pareto frontier

- A synthetic dataset has high **privacy** if none of the records can be mapped back to a real customer
- A synthetic dataset has high **utility** if it can be used to train a model that makes accurate prediction when faced with the real data

Developing a new technology for synthesizing data can help us **expand** the pareto frontier: for a given privacy level, more utility/for a given utility level, more privacy.

How do you show that a synthetic dataset is Private? Useful?

Privacy

Utility

Algorithmically

Analysis of distributions

Statistically

Training a model

Privacy challenge

Technology

Variational Auto-Encoders

Fig 4: Understanding VAE as a directed graph, and the corresponding neural net representation. The encoder learns an approximation of the intractable posterior $p_{\vartheta}(z|x)$.

How do transactions tell a story?

LSTM-based encoder-decoder networks

Transactions

CNN-based encoder-decoder networks

CNN-based encoder-decoder networks

Fig 6: Convolutional window and stride

CNN-based encoder-decoder networks

Features as channels

Time as pixel position

Focusing on the transaction intervals was a better solution

Data cleaning and Pre-Processing only possible with GPU help

clustering

rough clustering to help initialize the training

loss

Training went like...

val_loss

Users clusters

How well is that multi-objective optimization going?

Thankyous

Questions? Suggestions?

Jessie.Lamontagnel@Scotiabank.com

Scotiabank®