A Bachelor's Thesis Defense

Michal Grňo

September 14, 2021

A magnetic quantum Hamiltonian

$$\label{eq:H0} \textit{H}_0 = \left(-\mathrm{i}\vec{\nabla} + \vec{\textit{A}}\right)^2,$$

2/17

A magnetic quantum Hamiltonian

$$H_0 = \left(-i\vec{\nabla} + \vec{A}\right)^2$$

$$ec{
abla} imes ec{A} = ec{B}_0 = \mathsf{const.}$$

2/17

A magnetic quantum Hamiltonian

$$H_0 = \left(-i\vec{\nabla} + \vec{A}\right)^2$$

$$\vec{
abla} imes \vec{A} = \vec{B}_0 = \text{const.}$$

restricted to a 2D plane orthogonal to \vec{B}_0 .

A magnetic quantum Hamiltonian

$$H_0 = \left(-i\vec{\nabla} + \vec{A}\right)^2$$

$$\vec{\nabla} \times \vec{A} = \vec{B}_0 = \text{const.}$$

restricted to a 2D plane orthogonal to \vec{B}_0 .

This is the Landau Hamiltonian.

A magnetic quantum Hamiltonian

$$H_0 = \left(-i\vec{\nabla} + \vec{A}\right)^2,$$

$$\vec{
abla} imes \vec{A} = \vec{B}_0 = \text{const.}$$

restricted to a 2D plane orthogonal to \vec{B}_0 .

This is the Landau Hamiltonian.

Its spectrum is
$$\sigma(H) = \sigma_{\mathrm{p}}(H) = \Big\{ \left(2n+1\right) \|B_0\| \ \Big| \ n \in \mathbb{N}_0 \Big\}.$$

Michal Grňo

• potential obstacle: $H = H_0 + V(x, y)$

3 / 17

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x,y)$

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x,y), \ \vec{b} \parallel \vec{B}_0$

3/17

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x, y)$, $\vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - ▶ the system is not restricted to a plane, but to a thin layer

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x, y), \ \vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - ▶ the system is not restricted to a plane, but to a thin layer
 - ► the layer is smoothly bent

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x, y), \ \vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - the system is not restricted to a plane, but to a thin layer
 - the layer is smoothly bent
 - ▶ Dirichlet boundary is assumed $(\psi(x) = 0 \text{ for } x \text{ on boundary})$

Magnetic Transport Along

Translationally Invariant Obstacles

- potential obstacle: $H = H_0 + V(x)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x)$, $\vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - the system is not restricted to a plane, but to a thin layer
 - lacktriangle the layer is smoothly bent and invariant under translation $y\mapsto y+c$
 - ▶ Dirichlet boundary is assumed $(\psi(x) = 0 \text{ for } x \text{ on boundary})$

Classically:

Classically:

Classically:

Quantum Mechanics:

Quantum Mechanics:

• Spectrum of *H* is pure point

- Spectrum of H is pure point
 - there is a basis consisting of stationary states

- Spectrum of *H* is pure point
 - there is a basis consisting of stationary states
 - *** time evolution is trivial

- Spectrum of H is pure point
 - there is a basis consisting of stationary states
 - time evolution is trivial
- Spectrum of *H* is continuous

- Spectrum of H is pure point
 - there is a basis consisting of stationary states
 - time evolution is trivial
- Spectrum of H is continuous
 - there are no stationary states

- Spectrum of H is pure point
 - $\begin{tabular}{ll} \longleftrightarrow & there is a basis consisting of stationary states \\ \end{tabular}$
 - time evolution is trivial
- Spectrum of *H* is continuous
 - there are no stationary states
 - Magnetic Transport! (or Iwatsuka type effect)

The Hamiltonian is either of these:

(a)
$$H = (-i\vec{\nabla} + \vec{A})^2 + V(x)$$
 on $L^2(\Omega \subset \mathbb{R}^2)$

(b)
$$H = \left(-i\vec{\nabla} + \vec{A}(x)\right)^2$$
 on $L^2(\Omega \subset \mathbb{R}^2)$

(c)
$$H=(-\mathrm{i}\vec{\nabla}+\vec{A})$$
 on $L^2(\Omega)$, Ω being a thin layer in \mathbb{R}^3

And we are interested in its pure point / continuous spectrum.

7 / 17

The two parts

The two parts

- Summary of known results
 - ▶ Steep potential wall (Macris et al., 1999) and (Fröhlich et al., 2000)
 - ► Half-plane with Dirichlet boundary (Fröhlich et al., 2000)
 - Bounded magnetic perturbation (Iwatsuka, 1983 and 1985)
 - Layer with one-sided fold, asymptotically flat layer, very thin layer (Exner et al., 2018)

The two parts

- Summary of known results
 - ▶ Steep potential wall (Macris et al., 1999) and (Fröhlich et al., 2000)
 - ► Half-plane with Dirichlet boundary (Fröhlich et al., 2000)
 - ▶ Bounded magnetic perturbation (Iwatsuka, 1983 and 1985)
 - ► Layer with one-sided fold, asymptotically flat layer, very thin layer (Exner et al., 2018)
- Original work (potential obstacles)
 - Half-plane with Robin boundary

*
$$\psi \in L^2([0,\infty))$$
, $\alpha \psi(0,y) + \partial_x \psi(0,y) = 0$

- ▶ Dirac δ -interaction on a line
 - * $\psi \in L^2(\mathbb{R})$, $\partial_x \psi(0+,y) \partial_x \psi(0-,y) = \alpha \psi(0,y)$

We choose the Landau gauge:

$$A_x = 0$$
, $A_y = b Q_x$.

The Hamiltonian is:

$$H = P_x^2 + (P_y + b Q_x)^2 + V(x)$$

9 / 17

We choose the Landau gauge:

$$A_x = 0$$
, $A_y = b Q_x$.

The Hamiltonian is:

$$H = P_x^2 + (P_y + b Q_x)^2 + V(x) \qquad / P_y \stackrel{\mathscr{F}}{\longmapsto} Q_p$$

9 / 17

We choose the Landau gauge:

$$A_x = 0$$
, $A_y = b Q_x$.

The Hamiltonian is:

$$H = P_x^2 + (P_y + b Q_x)^2 + V(x) \qquad / P_y \stackrel{\mathscr{F}}{\longmapsto} Q_p$$
$$\simeq P_x^2 + (Q_p + b Q_x)^2 + V(x)$$

We choose the Landau gauge:

$$A_x = 0$$
, $A_y = b Q_x$.

The Hamiltonian is:

$$H = P_x^2 + (P_y + b Q_x)^2 + V(x) \qquad / P_y \stackrel{\mathscr{F}}{\longmapsto} Q_p$$

$$\simeq P_x^2 + (Q_p + b Q_x)^2 + V(x) \qquad / \text{"fix } p\text{"}$$

We choose the Landau gauge:

$$A_x = 0$$
, $A_y = b Q_x$.

The Hamiltonian is:

$$H = P_x^2 + (P_y + b Q_x)^2 + V(x) \qquad / P_y \stackrel{\mathscr{F}}{\longmapsto} Q_p$$

$$\simeq P_x^2 + (Q_p + b Q_x)^2 + V(x) \qquad / \text{"fix } p\text{"}$$

$$\simeq \int_{\mathbb{R}}^{\oplus} (P_x^2 + (p + b Q_x)^2 + V(x)) dp$$

9 / 17

We choose the Landau gauge:

$$A_x = 0$$
, $A_y = b Q_x$.

The Hamiltonian is:

$$H = P_x^2 + (P_y + b Q_x)^2 + V(x) \qquad / P_y \stackrel{\mathscr{F}}{\longmapsto} Q_p$$

$$\simeq P_x^2 + (Q_p + b Q_x)^2 + V(x) \qquad / \text{"fix } p\text{"}$$

$$\simeq \int_{\mathbb{R}}^{\oplus} (P_x^2 + (p + b Q_x)^2 + V(x)) dp$$

$$=: \int_{\mathbb{R}}^{\oplus} \mathscr{H}(p) dp,$$

where $\mathcal{H}(p)$ is 1D and (hopefully) has discrete spectrum.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か 9 で

9 / 17

The Spectrum of a Direct Integral

Half-plane with Robin boundary

Half-plane with Robin boundary

Half-plane with Robin boundary

Michal Grňo Magnetic Transport September 14, 2021 13 / 17

Dirac δ -interaction

Dirac δ -interaction

Dirac δ -interaction

Michal Grňo Magnetic Transport September 14, 2021 16 / 17

Thank you for your attention!