Advanced Business Data Communications ICT535

Network growth from...

Organisational expansion.

Murdoch UNIVERSITY

- Mergers.
- Individual site growth.
- New technology and applications.
 - Power over Ethernet
 - ○BYOD (Bring Your Own Device)
- Convergence
 - ∘ IP telephony.
 - IP/Ethernet security cameras.
 - Move to intelligent buildings.
- Internet-of-things

Scalable networks

- A network that can transition from small to large.
 - More sites, bigger sites, more throughput, new applications.
 - Without having to be rebuilt from scratch.
 - Availability maintained despite having more equipment that can fail.
- Uses a standard approach.
 - Easily visualised and well understood methodology.
 - Reduces errors.
 - Enhances security.
 - Simplifies documentation.

Non scalable networks

Murdoch UNIVERSITY

Adhoc network designs tend to lead to networks that grow to reach technical limits.

- Badly designed networks often need to be replaced.
 - Downtime
 - Additional cost
 - Risky, with the potential for unanticipated and undocumented requirements.
- Tendency to defer upgrades until the network breaks.
- Bandaid fixes and work-arounds to keep the network going.
- These absolutely exist! Some of WA's major listed companies have (past tense?) had scary networks!

OSI model and growth

Revision - OSI Model - (Open Systems Interconnection)

- Model for breaking down complex communication systems into a series of layers (seven).
- TCP/IP Model (Internet) can be mapped to the OSI.
- Layers
 - Application
 - Presentation] Network applications such as browsers
 - Session
 - Transport TCP / UDP
 - Network IP (Others exist that no-one cares about anymore!)
 - Datalink Ethernet / DSL / PPP / WiFi / Carrier class technologies
 - **Physical** Copper cable / Fibre / Wireless
- Last three are driven by hardware and affected by design decisions you make.

Physical Layer (1) - Growth

- Physical layer
 - Electrical voltage (UTP cable)
 - Light (Fiber)
 - Electromagnetic Radiation (Wireless)
- All diminish with distance.
 - ADSL/VDSL gets slower further from exchange/node.
 - WiFi gets slower as you move away from access point.
- Shared media
 - Doesn't degrade gracefully (linearly) with the number of users.

Physical Layer (1) - Wired

- Collision domains limit growth
- Hubs are dumb and just relay signals without knowledge of destination.
- Only one device can communicate at a time.
- Legacy in the wired world because it doesn't scale well.

Physical Layer (1) - Wireless

- Growth limited:
 Collision domain
 Spectrum space
 Airtime
- Solution
 Smaller cells
 Less power
 More cells
- Complex
- Not going away.

● More power is NOT a solution http://conceptdraw.com/samples/network-diagram-wireless-network

Datalink Layer (2)

Ethernet Switches

Murdoch UNIVERSITY

- Traffic separated by MAC filtering
- Multiple Collision domains
- Broadcasts are flooded
- VLANs solution
- Loops are an issue

Network Layer (3)

IP Routers

- Don't forward broadcasts
- Multiple Collision domains
- Loops are beneficial
- Flexible security
- Slower than switches of the same cost.
- Higher cost.

OSI Conclusions

- Physical layer shared media
 - Wired hubs replace
 - Wireless smaller cells bounded by routers or switches.
- Datalink Layer Switches
 - Limit number of hosts
 - Use VLANs
- Network Layer Routers
 - Increasingly important as networks grow.
 - Security benefits.
 - Cost limits their use.

Other growth issues

- Management:
 - In-band vs Out-of-band management
 - Migration of servers to dedicated facilities and away from work groups.
 - Cloud based?
- Homogenous equipment
 - Same device used throughout network.
 - Where cost can be justified.
 - Lower spare parts inventory
 - Simplification.
 - · Less downtime.

Hierarchical Design

This is the standard model we will consider.

- More later ...
- Note redundancy
 - Devices
 - Links
 - ISP
 - Not seen but assumed:
 - Modules
 - Power supply

Hierarchical Design

Three layers

- Switches for cheap access
- Routers for flexible control and policy enforcement distribution layer
- Routers for their superior ability to handle multiple paths at the core.

Hierarchical Design Model

Collapsed Core

Murdoch

Where the are few sites the distribution routers can also serve the role of the c

Hierarchical Campus Model

Departmental Switch Block

Cisco marketing hype clouds an otherwise consistent and valid approach.

Don't worry about detail yet.

 Key aspect is that the principal of 3 layers holds true Throughout the network.

Workgroup Access

Policy-Based Connectivity

High-Speed Switching

Core

Server Farm

The

What is different within the blocks and why?

How the model aids scaling

Addresses technical performance issues.

- Broadcasts
- Security and organisational structure.
- Interconnectivity and routing
- Balances cost and flexibility

Other growth issues

- Redundancy introduced to improve reliability.
 - Equipment, modules and links.
 - Expensive.
 - Unit emphasis:
 - Preference for using redundant devices for extra capacity when there are no faults.
 - Spanning-tree tends to be wasteful.

Questions?