

Speed at Scale: Using GPUs to Accelerate Analytics for Extreme Use Cases

Austin Big Data Meetup June 19, 2018

Aaron Williams
VP of Global Community

/williamsaaron

The Evolution of Data as a Weapon

Make It Make it Collect It Actionable **Predictive**

Core Density Makes a Huge Difference

20 Cores

	Latency	Throughput
CPU	l ns per task	(1 task/ns) x (20 cores) = 20 tasks/ns
GPU	10 ns per task	(0.1 task per ns) x (40,000 cores) = 4,000 task per ns

Latency: Time to do a task. | Throughput: Number of tasks per unit time.

*fictitious example

GPU Processing

MapD is the analytics platform created for GPUs

DEMO TIME

Advanced memory management

Three-tier caching to GPU RAM for speed and to SSDs for persistent storage

GPU RAM (L1) **Hot Data Speedup = 1500x to 5000x** 24GB to 256GB **Over Cold Data** 1000-6000 GB/sec COMPUTE LAYER Warm Data CPU RAM (L2) Speedup = 35x to 120x32GB to 3TB Over Cold Data 70-120 GB/sec SSD or NVRAM STORAGE (L3) **Cold Data STORAGE** 250GB to 20TB **LAYER** 1-2 GB/sec Data Lake/Data Warehouse/System Of Record

© MapD 2018 7

The GPU Open Analytics Initiative

G Ai

Creating common data frameworks to accelerate data science on GPUs

Machine Learning Pipeline

© MapD 2018 9

ML Examples

 We've published a few notebooks showing how to connect to a MapD database and use an ML algorithm to make predictions

 We've also shared a real-world example of churn, which we implemented with VW

And Now ... Native Geospatial!

First Data Types

- POINT
- LINE
- POLYGON

First Functions

- DISTANCE
- CONTAINS

Get Involved

- Roadmap Being Discussed MapD (OSS) Working Group geo-wg@mapd.com
- Beta Available Now
 Email Aaron aaron@mapd.com

Next Steps

- mapd.com/demos
 Play with our demos
- mapd.cloud
 Get a MapD instance in less than 60 seconds
- mapd.com/platform/download-community/ Download the Community Edition
- community.mapd.com
 Ask questions and share your experiences

Thank you! Questions?

