Topology of the O(3) non-linear sigma model under the gradient flow

Stuart Thomas

Christopher Monahan

May 3, 2021

Topology of the O(3) non-linear sigma model under the gradient flow

Stuart Thomas

Christopher Monahan

May 3, 2021

particles \Rightarrow fields

particles \Rightarrow fields

• particle physics and condensed matter

particles \Rightarrow fields

- particle physics and condensed matter
- incorporates many-particle quantum mechanics and special relativity

particles \Rightarrow fields

- particle physics and condensed matter
- incorporates many-particle quantum mechanics and special relativity
- remarkably accurate[1]

Path Integral Formulation

"quantum principle of least action"

$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \hat{O}[\phi] \, e^{iS[\phi]}$$

Wick Rotation

$$t \Rightarrow it$$

Minkowski Spacetime \Rightarrow Euclidean Spacetime

Wick Rotation

$$t \Rightarrow it$$

Minkowski Spacetime ⇒ Euclidean Spacetime

$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \hat{O}[\phi] \, e^{iS[\phi]}$$

$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \hat{O}[\phi] \, e^{-S_E[\phi]}$$

Wick Rotation

$$t \Rightarrow it$$

Minkowski Spacetime ⇒ Euclidean Spacetime

$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \hat{O}[\phi] \, e^{iS[\phi]}$$
 \Downarrow

$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \hat{O}[\phi] \, e^{-S_E[\phi]}$$

ϕ^4 model

$$S_E[\phi] = \int d^2x_E \left[\frac{1}{2} (\partial_t \phi)^2 + \frac{1}{2} (\partial_x \phi)^2 + \frac{1}{2} m_0^2 \phi^2 + \frac{\lambda}{4} \phi^4 \right]$$

- real scalar field
- describes a boson
- spontaneous symmetry breaking at $\lambda = 0.5, m_0^2 = -0.72$

Euclidean Action

$$S_E = \frac{\beta}{2} \int d^2x \left[(\partial_t \vec{e})^2 + (\partial_x \vec{e})^2 \right]$$

• O(3) non-linear sigma model (NLSM) in 1+1 dimensions

$$S_E = rac{eta}{2} \int d^2x \, \left[(\partial_t \vec{e})^2 + (\partial_x \vec{e})^2 \right]$$

- \bullet O(3) non-linear sigma model (NLSM) in 1+1 dimensions
- \vec{e} is 3-component vector constrained by $|\vec{e}| = 1$

$$S_E = \frac{\beta}{2} \int d^2x \, \left[(\partial_t \vec{e})^2 + (\partial_x \vec{e})^2 \right]$$

- O(3) non-linear sigma model (NLSM) in 1+1 dimensions
- \vec{e} is 3-component vector constrained by $|\vec{e}| = 1$
- Applications
 - Prototypical model for strong nuclear force
 - Models Heisenberg ferromagnets
 - Applications to string theory

$$S_E = \frac{\beta}{2} \int d^2x \, \left[(\partial_t \vec{e})^2 + (\partial_x \vec{e})^2 \right]$$

- O(3) non-linear sigma model (NLSM) in 1+1 dimensions
- \vec{e} is 3-component vector constrained by $|\vec{e}| = 1$
- Applications
 - Prototypical model for strong nuclear force
 - Models Heisenberg ferromagnets
 - Applications to string theory
- Merits
 - mass gap
 - asymptotic freedom

• Envision spacetime as a sphere

Figure: Homotopy group of $S^1 \to S^1$

^[2] P. Goddard and P. Mansfield, Rep. Prog. Phys. 49, 725 (1986)

^[3] A. Y. Kitaev, Russ. Math. Surv. **52**, 1191 (1997)

- Envision spacetime as a sphere
- ② The NLSM field \vec{e} becomes mapping between Riemann spheres $(S^2 \to S^2)$.

Figure: Homotopy group of $S^1 \to S^1$

^[2] P. Goddard and P. Mansfield, Rep. Prog. Phys. 49, 725 (1986)

^[3] A. Y. Kitaev, Russ. Math. Surv. **52**, 1191 (1997)

- Envision spacetime as a sphere
- ② The NLSM field \vec{e} becomes mapping between Riemann spheres $(S^2 \to S^2)$.
- lacktriangleq Associates every configuration with topological charge Q

Figure: Homotopy group of $S^1 \to S^1$

^[2] P. Goddard and P. Mansfield, Rep. Prog. Phys. 49, 725 (1986)

^[3] A. Y. Kitaev, Russ. Math. Surv. **52**, 1191 (1997)

- Envision spacetime as a sphere
- ② The NLSM field \vec{e} becomes mapping between Riemann spheres $(S^2 \to S^2)$.
- lacktriangleq Associates every configuration with topological charge Q
- Topology is important to cosmology[2] and fault-tolerant quantum computing[3].

Figure: Homotopy group of $S^1 \to S^1$

^[2] P. Goddard and P. Mansfield, Rep. Prog. Phys. 49, 725 (1986)

^{3]} A. Y. Kitaev, Russ. Math. Surv. **52**, 1191 (1997)

Non-trivial NLSM

$$S[\vec{e}\,] \to S[\vec{e}\,] - i\theta Q[\vec{e}\,].$$

Nonzero θ implies nonzero $\langle Q \rangle$.

Topological Susceptibility

Proportional to variance of topological charge

$$\chi_t \equiv \frac{\langle Q^2 \rangle - \langle Q \rangle^2}{L^2}$$

Topological Susceptibility

Proportional to variance of topological charge

$$\chi_t \equiv \frac{\langle Q^2 \rangle - \langle Q \rangle^2}{L^2}$$

In trivial NLSM:

In nontrivial NLSM:

$$\chi_t = \frac{\langle Q^2 \rangle}{L^2}$$

$$\chi_t \propto \frac{\partial \langle Q \rangle}{\partial \theta}$$

Topological Susceptibility

Proportional to variance of topological charge

$$\chi_t \equiv \frac{\langle Q^2 \rangle - \langle Q \rangle^2}{L^2}$$

In trivial NLSM:

In nontrivial NLSM:

$$\chi_t = \frac{\langle Q^2 \rangle}{L^2}$$

$$\chi_t \propto \frac{\partial \langle Q \rangle}{\partial \theta}$$

Main Problem

Topological stability predicts $\chi_t = 0$, but χ_t diverges in numerical results [a].

[a] B. Berg and M. Lüscher, Nuclear Physics B 190, 412 (1981).

• Successful in removing χ_t divergence in QCD (model of the strong nuclear force).

- Successful in removing χ_t divergence in QCD (model of the strong nuclear force).
- Reduces high-momentum modes

- Successful in removing χ_t divergence in QCD (model of the strong nuclear force).
- Reduces high-momentum modes
- Introduces a new dimension, τ , called the "flow time," which pushes fields towards action minima

- Successful in removing χ_t divergence in QCD (model of the strong nuclear force).
- Reduces high-momentum modes
- Introduces a new dimension, τ , called the "flow time," which pushes fields towards action minima
- In the ϕ^4 model

$$\frac{\partial \rho(\tau, x)}{\partial \tau} = \partial^2 \rho(\tau, x)$$

with the boundary condition $\rho(0,x) = \phi(x)$.

Figure: Effect of flow time evolution on a random lattice in the symmetric phase. White represents positive values of ϕ while black represents negative.

Research Question

Can the gradient flow remove the topological susceptibility divergence in the NLSM?

Methods

- Construct Monte Carlo simulation following Euclidean path integral formalism
- 2 Apply gradient flow to configurations
- Measure topological susceptibility

Fields on the Lattice

$$x \to ia\hat{t} + ja\hat{x}$$
$$\int dt dx \to a^2 \sum_i$$

where a is the lattice spacing.

Periodic boundary conditions:

$$\phi\left(x_{i+L,j}\right) = \phi\left(x_{i,j+L}\right) = \phi\left(x_{i,j}\right)$$

Markov chain Monte Carlo

Due to Boltzmann factor e^{-S} , we need only consider configurations near action minima.

Markov chain Monte Carlo

Due to Boltzmann factor e^{-S} , we need only consider configurations near action minima.

• Starting at configuration ϕ_a , we transition to configuration ϕ_b with probability

$$P(\phi_a \to \phi_b)$$
.

Metropolis Algorithm

Changes a single site randomly

$$P(\phi_a \to \phi_b) = \begin{cases} e^{S[\phi_a] - S[\phi_b]} & S[\phi_b] > S[\phi_a] \\ 1 & \text{otherwise} \end{cases}$$

Performing this process on every site forms a "sweep"

Wolff Cluster Algorithm

Grows one cluster probabilistically, flips sign[2]

(a) before cluster flip

(b) after cluster flip

Thermalization

How do we start the Markov chain?

(b) L = 404

Thermalization

How do we start the Markov chain?

(b) L = 404

Figure: Action histogram comparing hot vs. cold start after 1000 sweep thermalization

Autocorrelation

How many sweeps per measurement?

Figure: Plots of automatic windowing[3] procedure used to calculate τ_{int} for the NLSM model. W is summation window size.

Therefore, we measure every 50 sweeps with a Wolff cluster step every 5 sweeps.

[3] U. Wolff, Computer Physics Communications 176, 383 (2007).

Topological Charge on the Lattice

Following Berg & Lüsher[4], define topological charge density $q(x^*)$ for each plaquette x^* such that

$$Q = \sum_{x^*} q(x^*)$$

(b) signed area of triangle

$$q(x^*) = \frac{1}{4\pi} \left[A(\vec{e}(x_1), \vec{e}(x_2), \vec{e}(x_3)) + A(\vec{e}(x_1), \vec{e}(x_3), \vec{e}(x_4)) \right].$$

[4] B. Berg and M. Lüscher, Nuclear Physics B **190**, 412 (1981).

Topological Charge Measurement

Figure: Histogram of topological charge values Q for trivial NLSM. $L=404,\,10,000$ measurements.

Gradient flow on NLSM

We solve the Gradient Flow numerically using

- fourth-order Runge Kutta
- adaptive step size

ϕ^4 results

Figure: The lattice average $|\langle \bar{\phi} \rangle|$, the magnetic susceptibility χ_m , the Binder cumulant U [5] and the bimodality B plotted as functions of m_0^2 . L=64, $\lambda=0.5$. 1000 measurements

[5] K. Binder, Zeitschrift für Physik B Condensed Matter 43, 119 (1981).

Comparison with Berg & Lüscher

Figure: Comparison with [6], $L=100,\,1000$ measurements.

[6] B. Berg and M. Lüscher, Nuclear Physics B 190, 412 (1981).

Topological Susceptibility in Flow Time

Figure: $\chi_t \xi_2^2$ as a function of flow time τ . Simulation run with 10,000 measurements

χ_t Divergence

Figure: Divergent properties with comparison to [7], 10,000 measurements

[7] W. Bietenholz et al., Phys. Rev. D 98, 114501 (2018).

Effect of θ -term on $\langle Q \rangle$

- Berg & Lüscher[8] provide three possible reasons
 - 1 high-frequency modes cause divergence
 - ② the definition of Q is problematic
 - 3 the NLSM has no well-defined continuum limit

^[8] B. Berg and M. Lüscher, Nuclear Physics B 190, 412 (1981).

^[9] M. Bögli et al., J. High Energ. Phys. **2012**, 117 (2012).

- Berg & Lüscher[8] provide three possible reasons
 - high-frequency modes cause divergence
 - ② the definition of Q is problematic
 - 3 the NLSM has no well-defined continuum limit

[9] M. Bögli et al., J. High Energ. Phys. **2012**, 117 (2012).

^[8] B. Berg and M. Lüscher, Nuclear Physics B 190, 412 (1981).

- Berg & Lüscher[8] provide three possible reasons
 - high-frequency modes cause divergence
 - ② the definition of Q is problematic
 - 3 the NLSM has no well-defined continuum limit
- Relatively high χ^2/DOF values indicate errors underestimated.

^[8] B. Berg and M. Lüscher, Nuclear Physics B 190, 412 (1981).

^{9]} M. Bögli et al., J. High Energ. Phys. **2012**, 117 (2012).

- Berg & Lüscher[8] provide three possible reasons
 - high-frequency modes cause divergence
 - ② the definition of Q is problematic
 - 3 the NLSM has no well-defined continuum limit
- Relatively high χ^2/DOF values indicate errors underestimated.
- Clearer perspective on the effect θ helpful for condensed matter systems[9].

^[8] B. Berg and M. Lüscher, Nuclear Physics B 190, 412 (1981).

^{9]} M. Bögli et al., J. High Energ. Phys. **2012**, 117 (2012).

• 1693 Scholars program (funding for summer research)

- 1693 Scholars program (funding for summer research)
- HPC Computing Group

- 1693 Scholars program (funding for summer research)
- HPC Computing Group
- Prof. Christopher Monahan

- 1693 Scholars program (funding for summer research)
- HPC Computing Group
- Prof. Christopher Monahan
- Friends and family