1

Assignment 16

Jayati Dutta

Abstract—This is a simple document explaining how to determine whether a set of polynomials are linearly independent or not.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let S be a set of non-zero polynomials over a field F. If no two elements of S have the same degree, show that S is an independent set in F[x].

2 Solution

Hence, it can be said that f_B is a linear functional on V.

Given	S be a set of non-zero polynomial over a field F No two elements of S have the same degree
To prove	S is an independent set in F[x]
Properties of Trace of Matrix	$1.tr(\mathbf{M} + \mathbf{N}) = tr(\mathbf{M}) + tr(\mathbf{N})$ $2. tr(c\mathbf{M}) = c(tr(\mathbf{M}))$ Where M and N are two square matrices
Proof	$As f_{B}(\mathbf{A}) = tr(\mathbf{B}^{t}\mathbf{A})$ $\implies f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2})$ $= tr(\mathbf{B}^{t}(c\mathbf{A}_{1} + \mathbf{A}_{2}))$ $\implies f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2}) = tr(c\mathbf{B}^{t}\mathbf{A}_{1})$ $+ tr(\mathbf{B}^{t}\mathbf{A}_{2})$ $\implies f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2}) = c(tr(\mathbf{B}^{t}\mathbf{A}_{1}))$ $+ tr(\mathbf{B}^{t}\mathbf{A}_{2})$ $\implies f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2})$ $= cf_{B}(\mathbf{A}_{1}) + f_{B}(\mathbf{A}_{2})$