Министерство науки и высшего образования Российской Федерации

Новосибирский государственный технический университет

Кафедра ТПИ

МЕТОДЫ ОПТИМИЗАЦИИ

Лабораторная работа № 3

Решение нелинейных начально-краевых задач

Факультет: ПМИ Преподаватели:

Лемешко Борис Юрьевич

Чимитова Екатерина Владимировна

Группа: ПМ-81

Студенты: Ефремов А.

Ртищева К.

Бортникова А.

Бригада: 2

Новосибирск 2021

1. Цель работы

Ознакомиться с методами штрафных функций при решении задач нелинейного программирования. Изучить типы штрафных и барьерных функций, их особенности, способы и области применения, влияние штрафных функций на сходимость алгоритмов, зависимость точности решения задачи нелинейного программирования от величины коэффициента штрафа.

2. Задание

Применяя методы поиска минимума 0-го порядка, реализовать программу для решения задачи нелинейного программирования с использованием **метода штрафных функций**.

Исследовать сходимость метода штрафных функций в зависимости от:

- выбора штрафных функций,
- начальной величины коэффициента штрафа,
- стратегии изменения коэффициента штрафа,
- начальной точки,
- задаваемой точности.

Сформулировать выводы.

Применяя методы поиска минимума 0-го порядка, реализовать программу для решения задачи нелинейного программирования с ограничением типа неравенства (только задача а) с использованием метода барьерных функций.

Исследовать сходимость **метода барьерных функций (только задача а)** в зависимости от:

- выбора барьерных функций,
- начальной величины коэффициента штрафа,
- стратегии изменения коэффициента штрафа,
- начальной точки,
- задаваемой точности.

Сформулировать выводы.

Первая задача (а)	Вторая задача (б)
$f(x,y) = 10(y-x)^2 + y^2 \to min$	$f(x,y) = 10(y-x)^2 + y^2 \to min$
$x + y \ge 1$	x = 2 - y

3. Таблицы с исследованиями и выводы для метода штрафных функций

3.1. Для функции G

$$funct_{0} = G(g(\bar{x})) = 0.5(g(\bar{x}) + |g(\bar{x})|)$$

$$funct_{1} = G(g(\bar{x})) = (0.5(g(\bar{x}) + |g(\bar{x})|))^{2}$$

$$funct_{2} = G(g(\bar{x})) = (0.5(g(\bar{x}) + |g(\bar{x})|))^{4}$$

$$funct_{3} = G(g(\bar{x})) = \frac{1}{g(x)}$$

$$rg_{k}^{1} = rg_{k-1}^{1} + 1$$

funct	r0 :	rg_num	x0x	x0y	eps	iterations	f_calc_count	x	У	f	df
0	1	1	-5	2	1	2	6162	0.521216	0.478784	0.247239	2.761235e-03
1	1	1	-5	2	1	2	1670828	0.473684	0.451128	0.208604	4.139578e-02
2	1	1	-5	2	1	2	842985	0.356169	0.339209	0.117939	1.320610e-01
3	1	1	-5	2	1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	1	1	-5	2	0.1	2	6162	0.521216	0.478784	0.247239	2.761235e-03
1	1	1	-5	2	0.1	2	1670828	0.473684	0.451128	0.208604	4.139578e-02
2	1	1	-5	2	0.1	2	842985	0.356169	0.339209	0.117939	1.320610e-01
3	1	1	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	1	1	-5	2	0.01	2	6162	0.521216	0.478784	0.247239	2.761235e-03
1	1	1	-5	2	0.01	3	2507068	0.482759	0.45977	0.216673	3.332673e-02
2	1	1	-5	2	0.01	3	1677983	0.368782	0.351221	0.12644	1.235599e-01
3	1	1	-5	2	0.01	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	1	1	-5	2	0.001	2	6162	0.521216	0.478784	0.247239	2.761235e-03
1	1	1	-5	2	0.001	11	6695051	0.501992	0.478088	0.234282	1.571800e-02
2	1	1	-5	2	0.001	21	12575104	0.426888	0.40656	0.169424	8.057632e-02
3	1	1	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	1	1	-5	2	0.0001	2	6162	0.521216	0.478784	0.247239	2.761235e-03
1	1	1	-5	2	0.0001	34	15083201	0.508651	0.484429	0.240538	9.461692e-03
2	1	1	-5	2	0.0001	100	53652383	0.459589	0.437704	0.196374	5.362564e-02
3	1	1	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	1	1	-5	2	1e-05	2	6162	0.521216	0.478784	0.247239	2.761235e-03
1	1	1	-5	2	1e-05	100	36226456	0.510961	0.48663	0.242729	7.271296e-03
2	1	1	-5	2	1e-05	100	53652383	0.459589	0.437704	0.196374	5.362564e-02
3	1	1	-5	2	1e-05	2	5664	0.521216	0.478784	0.247239	2.761235e-03

						$ra_{1}^{2} =$	$rg_{k-1}^2 + 10$	00			
funct	r0 rg	_num	x0x	х0у	eps		f_calc_count	х	У	f	df
0	1	2	-5	2	1		5664	0.521216	0.478784	0.247239	2.761235e-03
1	1	2	-5	2	1	2	1669949	0.511574	0.487214	0.243312	6.688410e-03
2	1	2	-5	2	1	2	838089	0.470057	0.447674	0.205422	4.457791e-02
3	1	2	-5	2	1	2	5664	0.521216	0.478784	0.247239	2.761236e-03
0	1	2	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	1	2	-5	2	0.1	2	1669949	0.511574	0.487214	0.243312	6.688410e-03
2	1	2	-5	2	0.1	2	838089	0.470057	0.447674	0.205422	4.457791e-02
3	1	2	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761236e-03
0	1	2	-5	2	0.01	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	1	2	-5	2	0.01	2	1669949	0.511574	0.487214	0.243312	6.688410e-03
2	1	2	-5	2	0.01	2	838089	0.470057	0.447674	0.205422	4.457791e-02
3	1	2	-5	2	0.01	2	5664	0.521216	0.478784	0.247239	2.761236e-03
0	1	2	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	1	2	-5	2	0.001	2	1669949	0.511574	0.487214	0.243312	6.688410e-03
2	1	2	-5	2	0.001	9	4185674	0.486347	0.463188	0.219906	3.009351e-02
3	1	2	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761236e-03
0	1	2	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	1	2	-5	2	0.0001	4	2524139	0.511884	0.487508	0.243606	6.393991e-03
2	1	2	-5	2	0.0001	47	22642202	0.497182	0.473507	0.229814	2.018590e-02
3	1	2	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761236e-03
0	1	2	-5	2	1e-05	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	1	2	-5	2	1e-05	12	3738521	0.512091	0.487706	0.243803	6.196596e-03
2	1	2	-5	2	1e-05	100	46145565	0.500496	0.476663	0.232888	1.711196e-02
3	1	2	-5	2	1e-05	2	5664	0.521216	0.478784	0.247239	2.761236e-03
						~ ~ 3	$-2\pi a^3$				
£	-0		0	0			$=2rg_{k-1}^3$	_		_	J.E
funct	r0 rg	_num	x0x	ж0у	eps		$= 2rg_{k-1}^3$ f_calc_count	х	У	f	df
0	2	3	-5	2	1	iterations	f_calc_count 5664	0.521216	0.478784	0.247239	2.761235e-03
0 1	2 2	3	-5 -5	2 2	1 1	iterations 2 2	f_calc_count 5664 1673725	0.521216 0.497041	0.478784 0.473373	0.247239 0.229684	2.761235e-03 2.031616e-02
0 1 2	2 2 2	3 3 3	-5 -5 -5	2 2 2	1 1 1	iterations 2 2 2	f_calc_count 5664 1673725 1671860	0.521216 0.497041 0.395667	0.478784 0.473373 0.376825	0.247239 0.229684 0.145547	2.761235e-03 2.031616e-02 1.044527e-01
0 1	2 2	3	-5 -5	2 2	1 1	iterations 2 2	f_calc_count 5664 1673725	0.521216 0.497041	0.478784 0.473373	0.247239 0.229684	2.761235e-03 2.031616e-02
0 1 2 3	2 2 2 2 2	3 3 3 3 3	-5 -5 -5 -5 -5	2 2 2 2 2 2	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664	0.521216 0.497041 0.395667 0.521216	0.478784 0.473373 0.376825 0.478784	0.247239 0.229684 0.145547 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03
0 1 2 3	2 2 2 2 2	3 3 3 3 3	-5 -5 -5 -5 -5 -5	2 2 2 2 2 2	1 1 1 1 0.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 5664 1673725	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.031616e-02
0 1 2 3 0 1 2	2 2 2 2 2 2 2 2	3 3 3 3 3 3	-5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2	1 1 1 1 0.1 0.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.031616e-02 1.044527e-01
0 1 2 3	2 2 2 2 2 2 2 2	3 3 3 3 3 3	-5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2	1 1 1 1 0.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.031616e-02
0 1 2 3 0 1 2	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5664 1673725 1671860 5664 5664 1673725 1671860 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03
0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3	5664 1673725 1671860 5664 1673725 1671860 5664 2506227	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.761235e-03 1.336697e-02
0 1 2 3 0 1 2 3 0 1 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7	f_calc_count 5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216 0.504505 0.473234	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02
0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.504505 0.473234 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03
0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216 0.504505 0.473234 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03
0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216 0.504505 0.473234 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03
0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.504505 0.473234 0.521216 0.521216 0.521216 0.521216 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.484035	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03
0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.504505 0.473234 0.521216 0.521216 0.511221 0.508237 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.484035 0.478784	0.247239 0.229684 0.145547 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03
0 1 2 3 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216 0.504505 0.473234 0.521216 0.521216 0.511221 0.508237 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.486877 0.486877 0.484035 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664 3577326	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.504505 0.473234 0.521216 0.511221 0.508237 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.484035 0.478784 0.478784 0.478784 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03 2.761235e-03 2.761235e-03 6.155645e-03
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001 0.0001 0.0001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664 3577326 14397128	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216 0.504505 0.473234 0.521216 0.511221 0.508237 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.486877 0.48784 0.478784 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03 6.472318e-03
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.001 0.001 0.001 0.0001 0.0001 0.0001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664 3577326	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.504505 0.473234 0.521216 0.511221 0.508237 0.521216 0.512216 0.512216 0.512216 0.512216 0.512134 0.512134 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.486877 0.48743 0.478784 0.478784 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03 2.761235e-03 6.155645e-03 6.472318e-03 2.761235e-03
0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001 0.0001 0.0001 0.0001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664 3577326 14397128 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216 0.504505 0.473234 0.521216 0.511221 0.508237 0.521216 0.512216 0.512134 0.512134 0.51216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.486877 0.48743 0.478784 0.478784 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03
0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 1 2 3 1 0 1 1 2 1 3 1 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.0001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664 3577326 14397128 5664	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.521216 0.504505 0.473234 0.521216 0.511221 0.508237 0.521216 0.512216 0.512134 0.512134 0.51216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.486877 0.48743 0.478784 0.478784 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03
0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001 0.0001 0.0001 0.0001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	f_calc_count 5664 1673725 1671860 5664 1673725 1671860 5664 2506227 4188391 5664 2531059 10852098 5664 3577326 14397128 5664 5664 5091141 17297580	0.521216 0.497041 0.395667 0.521216 0.521216 0.497041 0.395667 0.521216 0.504505 0.473234 0.521216 0.512216 0.512216 0.512216 0.512216 0.512216 0.512134 0.51216 0.512134 0.51216 0.521216	0.478784 0.473373 0.376825 0.478784 0.478784 0.473373 0.376825 0.478784 0.48048 0.450699 0.478784 0.486877 0.486877 0.486877 0.48743 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784 0.478784	0.247239 0.229684 0.145547 0.247239 0.247239 0.229684 0.145547 0.247239 0.247239 0.236633 0.208208 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239 0.247239	2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.031616e-02 1.044527e-01 2.761235e-03 2.761235e-03 1.336697e-02 4.179209e-02 2.761235e-03 7.024417e-03 9.852967e-03 2.761235e-03 2.761235e-03 2.761235e-03 2.761235e-03 3.761235e-03 6.472318e-03 2.761235e-03

 $rg_k^4 = 200rg_{k-1}^4$

							20019k-1	-			
funct	r0 rg	_num	x0x	х0у	eps	iterations	f_calc_count	x	У	f	df
0	2	4	-5	2	1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	4	-5	2	1	2	1664950	0.512895	0.487103		6.078814e-03
2	2	4	-5	2	1	2	833514		0.482212	0.238342	1.165804e-02
3	2	4	-5	2	1	2					2.761235e-03
										0.247233	2.7012556-05
0	2	4	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	4	-5	2	0.1	2	1664950	0.512895	0.487103	0.243921	6.078814e-03
2	2	4	-5	2	0.1	2	833514	0.506323	0.482212	0.238342	1.165804e-02
3	2	4	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	4	-5	2	0.01	2	5664	0.521216		0.247239	
1	2	4	-5	2	0.01	2	1664950	0.512895	0.487103	0.243921	6.078814e-03
2	2	4	-5	2	0.01	3	859254		0.486846	0.242944	7.055981e-03
3	2	4	-5	2	0.01	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	4	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	4	-5	2	0.001	2	1664950	0.512895	0.487103	0.243921	6.078814e-03
2	2	4	-5	2	0.001	4	989242	0.512023	0.487641	0.243738	6.261671e-03
3	2	4	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	4	-5		0.0001	2	5664	0.521216		0.247239	
1	2	4	-5	2	0.0001	4	3324970	0.521215	0.478785	0.247238	2.761661e-03
2	2	4	-5	2	0.0001	6	2490068	0.512727	0.487263	0.24391	6.090450e-03
3	2	4	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	4	-5	2	1e-05	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	4	-5	2	1e-05	5	4154980		0.478784	0.247239	2.761237e-03
2	2	4	-5	2	1e-05	12	7470128		0.478785		2.761776e-03
3	2	4	-5	2	1e-05	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	4	-5	2	1e-06	2	5664	0.521216	0.478784		2.761235e-03
1	2	4	-5	2	1e-06	5	4154980	0.521216	0.478784	0.247239	2.761237e-03
2	2	4	-5	2	1e-06	13	8300138	0.521216	0.478784	0.247239	2.761328e-03
3	2	4	-5	2	le-06	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	4	-5	2	1e-07	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	4	-5	2	1e-07	6	4984990	0.521216	0.478784	0.247239	2.761235e-03
2	2	4	-5	2	1e-07	14	9130148	0.521216	0.478784	0.247239	2.761251e-03
3	2	4	-5	2	1e-07	2	5664	0.521216	0.478784		2.761235e-03
3	4	4	-3	4	16-01	4	3004	0.321210	0.4/0/04	0.24/239	2.7012336403

$$rg_k^5 = \left(rg_{k-1}^5\right)^2$$

funct	r0 :	rg_num	x0x	х0у	eps	iterations	f_calc_count	x	У	f	df
0	2	5	-5	2	1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	1	2	1668742	0.504505	0.48048	0.236633	1.336697e-02
2	2	5	-5	2	1	2	1670988	0.417998	0.398093	0.16244	8.755965e-02
3	2	5	-5	2	1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	0.1	2	1668742	0.504505	0.48048	0.236633	1.336697e-02
2	2	5	-5	2	0.1	2	1670988	0.417998	0.398093	0.16244	8.755965e-02
3	2	5	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	0.01	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	0.01	3	1688747	0.511708	0.487341	0.243438	6.561651e-03
2	2	5	-5	2	0.01	5	3473667	0.512039	0.487656	0.243754	6.246341e-03
3	2	5	-5	2	0.01	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	0.001	4	2518757	0.512592	0.487404	0.243907	6.092792e-03
2	2	5	-5	2	0.001	7	5133687	0.521216	0.478784	0.247239	2.761235e-03
3	2	5	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	0.0001	6	3351599	0.521216	0.478784	0.247239	2.761235e-03
2	2	5	-5	2	0.0001	8	5136519	0.521216	0.478784	0.247239	2.761235e-03
3	2	5	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	1e-05	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	1e-05	6	3351599	0.521216	0.478784	0.247239	2.761235e-03
2	2	5	-5	2	1e-05	8	5136519	0.521216	0.478784	0.247239	2.761235e-03
3	2	5	-5	2	1e-05	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	le-06	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	1e-06	6	3351599	0.521216	0.478784	0.247239	2.761235e-03
2	2	5	-5	2	1e-06	8	5136519	0.521216	0.478784	0.247239	2.761235e-03
3	2	5	-5	2	1e-06	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	le-07	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	1e-07	7	3354431	0.521216	0.478784	0.247239	2.761235e-03
2	2	5	-5	2	1e-07	8	5136519	0.521216	0.478784	0.247239	2.761235e-03
3	2	5	-5	2	1e-07	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	1e-08	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	le-08	7	3354431	0.521216	0.478784	0.247239	2.761235e-03
2	2	5	-5	2	le-08	8	5136519	0.521216	0.478784	0.247239	2.761235e-03
3	2	5	-5	2	1e-08	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	5	-5	2	le-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	5	-5	2	1e-09	7	3354431	0.521216	0.478784	0.247239	2.761235e-03
2	2	5	-5	2	le-09	8	5136519	0.521216	0.478784	0.247239	2.761235e-03
3	2	5	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03

funct	r0	rg_num	x0x	ж0у	eps	- 10	$= (rg_{k-1}^6)^3$ f_calc_count	x	У	f	df
0	2	 6	 -5	 2	1	2	 Eeea	0 531316	0 470704	0.247220	2.761235e-03
1	2	6	-5 -5	2	1	2	1672416		0.487573	0.247239	6.329772e-03
		6									
2	2	-	-5	2	1	2	1672353		0.458192		3.481189e-02
3	2	6	-5 	2 	1	2	5004	0.521216	0.4/8/84	0.247239	2.761235e-03
0	2	6	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	6	-5	2	0.1	2	1672416	0.511951	0.487573	0.24367	6.329772e-03
2	2	6	-5	2	0.1	2	1672353	0.481101	0.458192	0.215188	3.481189e-02
3	2	6	-5	2	0.1	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	6	-5	 2	0.01	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	6	-5	2	0.01	3	2502426	0.521202	0.478798	0.247229	2.771381e-03
2	2	6	-5	2	0.01	4	2552007		0.478795	0.247231	2.769345e-03
3	2	6	-5	2	0.01	2	5664			0.247239	
0	2	6	-5	2	0.001	2	5664		0.478784	0.247239	2.761235e-03
1	2	6	-5	2	0.001	4	2505258	0.521216	0.478784	0.247239	2.761235e-03
2	2	6	-5	2	0.001	5	2554839		0.478784	0.247239	
3	2	6	-5	2	0.001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	6	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	6	-5	2	0.0001	4	2505258	0.521216	0.478784	0.247239	2.761235e-03
2	2	6	-5	2	0.0001	5	2554839	0.521216	0.478784	0.247239	2.761235e-03
3	2	6	-5	2	0.0001	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	6	 -5	 2	1e-05	2	5664	0.521216	0.478784	0 247239	2.761235e-03
1	2	6	-5	2	1e-05	5	2508090	0.521216	0.478784	0.247239	2.761235e-03
2	2	6	-5	2	1e-05	5	2554839		0.478784	0.247239	2.761235e-03
3	2	6	-5 -5	2		2			0.478784		
					1e-05		5664 	0.521216		0.247239	2.7612356-03
0	2	6	-5	2	1e-06	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	6	-5	2	1e-06	5	2508090	0.521216	0.478784	0.247239	2.761235e-03
2	2	6	-5	2	1e-06	6	2557671	0.521216	0.478784	0.247239	2.761235e-03
3	2	6	-5	2	1e-06	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	6	 -5	 2	1e-07	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2	6	-5	2	1e-07	5	2508090		0.478784	0.247239	2.761235e-03
2	2	6	-5	2	1e-07	6	2557671		0.478784		
3	2	6	-5	2	1e-07	2	5664		0.478784		
0	2	_			1e-08	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2				1e-08		2508090				
2	2		-5		1e-08						2.761235e-03
3	2	6	-5 		1e-08	2					2.761235e-03
0	2	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	2				1e-09	5	2508090	0.521216	0.478784	0.247239	2.761235e-03
2	2	6	-5	2	1e-09	6					2.761235e-03
3	2	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03

Лучше всего себя показали функции $funct_0 = G\big(g(\bar x)\big) = 0.5(g(\bar x) + |g(\bar x)|)$, $funct_3 = G\big(g(\bar x)\big) = \frac{1}{g(x)}$ — они показывают примерно одинаковую и лучшую среди всех функций точность и скорость схождения. Предпочтение стоить отдать $funct_0$, так как в $funct_3$ присутствует вычислительно затратная операция деления.

Лучше всего себя показала стратегия изменения коэффициента штрафа $rg_k^6=(rg_{k-1}^6)^3$ - как минимум с точки зрения количества итераций метода штрафных функций.

Проведем дополнительные исследования с помощью $rg_k^6 = (rg_{k-1}^6)^3$ с варьированием начального коэффициента штрафа.

funct	r0 1					iterations	f_calc_count	x x	У	f	df
0	1	 6	 -5	 2	1e-09	2	7324	0 521216	0 478784	n 247239	2.761235e-03
1	1	6	-5	2	1e-09	2					9.236832e-02
2	1	6	-5	2	1e-09	2	21698				1.664715e-01
3	1	6	-5	2	1e-09	2					2.761235e-03
0	1.5	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	1.5	6	-5	2	le-09	5	3329857	0.521216	0.478784	0.247239	2.761235e-03
2	1.5	6	-5	2	le-09	6	4161196	0.521216	0.478784	0.247239	2.761235e-03
3	1.5	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2	6	-5	2	1e-09	2					2.761235e-03
1	2	6	-5	2	le-09	5					2.761235e-03
2	2	6	-5	2	le-09	6					2.761235e-03
3	2	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	2.5	6	-5	2	le-09	4	11328	0 521216	0 478784	0 247239	2.761235e-03
1	2.5	6	-5	2	1e-09	5					2.761235e-03
2	2.5	6	-5	2	1e-09	6					2.761235e-03
3	2.5	6	-5	2	1e-09	2					2.761235e-03
0	3	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	3	6	-5	2	1e-09	4	1668843	0.521216	0.478784	0.247239	2.761235e-03
2	3	6	-5	2	1e-09	5	3327864	0.521216	0.478784	0.247239	2.761235e-03
3	3	6	-5	2	le-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	3.5	6	-5	2	1e-09	2					2.761235e-03
1	3.5	6	-5	2	1e-09	4					2.761235e-03
2	3.5	6	-5	2	1e-09	5					2.761235e-03
3	3.5	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	4	6	-5	2	le-09	2	5664	0 521216	0 478784	0 247239	2.761235e-03
1	4	6	-5	2	1e-09	4					2.761235e-03
2	4	6	-5	2	1e-09	5					2.761235e-03
3	4	6	-5	2	1e-09	2					2.761235e-03
0	4.5	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	4.5	6	-5	2	1e-09	4					2.761235e-03
2	4.5	6	-5	2	le-09	5					2.761235e-03
3	4.5	6	-5	2	le-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
0	5	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
1	5	6	-5	2	1e-09	4	847338	0.521216	0.478784	0.247239	2.761235e-03
2	5	6	-5	2	le-09	5	1680140	0.521216	0.478784	0.247239	2.761235e-03
3	5	6	-5	2	1e-09	2	5664	0.521216	0.478784	0.247239	2.761235e-03
					1- 00			0.501016	0.470704	0.047000	2 761225- 22
0	5.5	6	-5	2	1e-09	2					2.761235e-03
1 2	5.5	6	-5	2	1e-09	4					2.761235e-03
3	5.5	6	-5	2	1e-09	5					2.761235e-03
3	5.5	6	-5	2	1e-09	2	5664	0.521216	0.4/8784	0.247239	2.761235e-03

Вывод: для данной задачи лучшей функцией является $funct_0 = G\big(g(\bar x)\big) = 0.5(g(\bar x) + |g(\bar x)|)$, оптимальной стратегией выбора коэффициента штрафа является степенная функция $rg_k^6 = (rg_{k-1}^6)^3$, оптимальный начальный коэффициент штрафа для этой функции выбирается достаточно свободно в диапазоне от 1.5.

3.2. Для функции Н

$$funct_0 = H(h(\bar{x})) = |h(\bar{x})|$$

$$funct_1 = H(h(\bar{x})) = h(\bar{x})^2$$

$$funct_2 = H(h(\bar{x})) = h(\bar{x})^4$$

$$rg_k^1 = rg_{k-1}^1 + 1$$

						'9k -	'9k-1'	L			
funct	r0	rh_num	x0x	х0у	eps	iterations	f_calc_count	x	У	f	df
0	1	1	 -5	2	1	2	624	1	1	1	1.776357e-15
1	1	1	-5	2	1	2					1.655831e-01
2	1	1	-5	2	1	2	7020				3.771617e-01
0	1	1	-5	2	0.1	2	624	1			1.776357e-15
1	1	1	-5	2	0.1	2					1.655831e-01
2	1	1	-5 	2	0.1	2	7020	0.818493	0.779517	0.622838	3.771617e-01
0	1	1	-5	2	0.01	2	624	1	1	1	1.776357e-15
1	1	1	-5	2	0.01	7	3903588	0.994083	0.946746	0.918735	8.126466e-02
2	1	1	-5	2	0.01	8	3131700	0.878237	0.836416	0.717082	2.829183e-01
0	1	1	-5	2	0.001	2	624	1	1	1	1.776357e-15
1	1	1	-5	2	0.001	27	6251700	1	0.974359	0.95595	4.404997e-02
2	1	1	-5	2	0.001	48	18767441	0.939425	0.894691	0.820483	1.795171e-01
0	1	1	-5		0.0001	2	624	1			1.776357e-15
1	1	1	-5		0.0001	100	6285933		0.991071		1.698023e-02
2	1	1	-5 	2	0.0001	100	36/44///	0.957209	0.911628	0.851842	1.481583e-01
0	1	1	-5	2	le-05	2	624	1			1.776357e-15
1	1	1	-5	2	1e-05	100	6285933	1	0.991071	0.98302	1.698023e-02
2	1	1	-5	2	1e-05	100	36744777	0.957209	0.911628	0.851842	1.481583e-01
						$ra_{1}^{2} = r$	$rg_{k-1}^2 + 10$	00			
funct	r0	rh num	x0x	x0v	eps		f_calc_count		V	f	df
0	1	2	-5	2	1	2	938	1			1.776357e-15
1	1	2	-5	2	1	2	938				9.189214e-03
2	1	2	-5	2	1	2	780938	0.97073	0.924505	0.876077	1.239233e-01
0	1	2	-5	2	0.1	2	938	1	1	1	1.776357e-15
1	1	2	-5	2	0.1	2	938	1	0.995283	0.990811	9.189214e-03
2	1	2	-5	2	0.1	2	780938	0.97073	0.924505	0.876077	1.239233e-01
0	1	2	-5	2	0.01	2	938	1	1	1	1.776357e-15
1	1	2	-5	2	0.01	2	938	1	0.995283		9.189214e-03
2	1	2	-5	2	0.01	4	784528	0.981606	0.934863	0.895818	1.041821e-01
0	1	2	-5	 2	0.001		938	1	1	1	1.776357e-15
1	1	2	-5	2	0.001	5	2345	_	_		3.864289e-03
2	1	2	-5								7.435207e-02
0	1	2	-5		0.0001	2	938				1.776357e-15
1	1	2	-5	2	0.0001	15	7035	1	0.999339	0.998682	1.317939e-03
				2				1	0.999339	0.998682	
1	1	2	-5	2	0.0001	15	7035	1	0.999339 0.968103	0.998682 0.947397	1.317939e-03
1 2	1	2 2	-5 -5	2 2 2 2 2	0.0001	15 100	7035 14876416	1 1 1	0.999339 0.968103 1 0.999783	0.998682 0.947397 1 0.999567	1.317939e-03 5.260269e-02

funct	r0 rl	h_num	x0x	ж0у	eps		$= 2rg_{k-1}^3$ f_calc_count	х	У	f	df
0	2	3	-5	2	1	2	624	1	1	1	1.776357e-15
1	2	3	-5	2	1	2	781872	0.994083	0.946746		8.126466e-02
2	2	3	-5	2	1	2	782652	0.872705	0.831147	0.708076	2.919243e-01
0	2	3	-5	2	0.1	2	624	1	1	1	1.776357e-15
1	2	3	-5	2	0.1	2	781872	0.994083	0.946746	0.918735	8.126466e-02
2	2	3	-5	2	0.1	2	782652	0.872705	0.831147	0.708076	2.919243e-01
0	2	3	-5	2	0.01	2	624	1	1	1	1.776357e-15
1	2	3	-5	2	0.01	7	784216	1	0.996255	0.992664	7.336334e-03
2	2	3	-5 	2	0.01	11	3130616	1	0.9593	0.936821	6.317866e-02
0	2	3	-5	2	0.001	2	624	1	1	1	1.776357e-15
1	2	3	-5	2	0.001	10	785623	1	0.999514	0.999031	
2	2	3	-5	2	0.001	25	3137182	1	0.998061	0.996163	3.836913e-03
0	2	3	-5	2	0.0001	2	624	1	1	1	1.776357e-15
1	2	3	-5	2	0.0001	14	787499	1	0.999969		6.100437e-05
2	2	3	-5 	2	0.0001	36	3142341	1	0.999846	0.999693	3.071644e-04
0	2	3	-5	2	1e-05	2	624	1	1	1	1.776357e-15
1	2	3	-5	2	1e-05	17	788906		0.999996		7.628869e-06
2	2	3	-5	2	1e-05	45	3146562	1	0.999981	0.999962	3.844297e-05
						4	2004				
							$=200rg_{k-1}^{4}$			_	
funct	r0 rl	h_num	x0x	ж0у	eps		$=200rg_{k-1}^4$ $= f_{calc_count}$	L x	У	f	df
0	2	4	-5	2	1	iterations			У		df 1.776357e-15
0 1	2 2	4 4	-5 -5	2 2	1 1	iterations 2 2	f_calc_count 938 938	1 1	1	1 0.999975	1.776357e-15 2.499488e-05
0	2	4	-5	2	1	iterations	f_calc_count	1	1	1	1.776357e-15
0 1	2 2	4 4	-5 -5 -5 -5	2 2	1 1	2 2 2 2	f_calc_count 938 938	1 1	1	0.999975 0.96889	1.776357e-15 2.499488e-05
0 1 2 0 1	2 2 2 2	4 4 4 4 4	-5 -5 -5 -5 -5 -5	2 2 2 2 2	1 1 1 0.1	iterations 2 2 2 2 2 2 2 2	f_calc_count 938 938 3434 938 938	1 1 1 1	1 0.999988 0.982822 1 0.999988	1 0.999975 0.96889 1 0.999975	1.776357e-15 2.499488e-05 3.111019e-02
0 1 2	2 2 2 2	4 4 4 4	-5 -5 -5 -5	2 2 2 2	1 1 1 0.1	2 2 2 2	f_calc_count 938 938 3434 938	1 1 1	1 0.999988 0.982822 1 0.999988	1 0.999975 0.96889 1 0.999975	1.776357e-15 2.499488e-05 3.111019e-02
0 1 2 0 1	2 2 2 2	4 4 4 4 4	-5 -5 -5 -5 -5 -5	2 2 2 2 2	1 1 1 0.1	iterations 2 2 2 2 2 2 2 2	f_calc_count 938 938 3434 938 938	1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822	1 0.999975 0.96889 1 0.999975 0.96889	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02
0 1 2 0 1 2 0 1	2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	938 938 938 3434 938 938 3434 938	1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05
0 1 2 0 1 2	2 2 2 2 2 2 2 2 2	4 4 4 4 4 4	-5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2	0.1 0.1 0.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	938 938 938 3434 938 938 3434	1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02
0 1 2 0 1 2 0 1	2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	938 938 3434 938 3434 938 3434 938 938 938	1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05
0 1 2 0 1 2 0 1 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.001	2 2 2 2 2 2 2 2 4	938 938 938 3434 938 938 3434 938 938 938 4372	1 1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 1.071912e-03
0 1 2 0 1 2 0 1 2	2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	938 938 938 3434 938 938 3434 938 938 938 4372	1 1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 1.071912e-03
0 1 2 0 1 2 0 1 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001	2 2 2 2 2 2 2 2 2 2 3 3	938 938 3434 938 3434 938 938 938 4372 938 4372	1 1 1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462 1 1 0.999908	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928 1 1	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 1.071912e-03 1.776357e-15 1.249944e-07 1.840461e-04
0 1 2 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.0001	2 2 2 2 2 2 2 3 5 5 2 3	938 938 938 3434 938 938 3434 938 4372 938 1407 4841	1 1 1 1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462 1 1 0.999908	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928 1 1 0.999816	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 1.071912e-03 1.776357e-15 1.249944e-07 1.840461e-04
0 1 2 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.0001	2 2 2 2 2 2 2 2 2 3 3 5 2 2 2 2 2 2 3 3 5 5 2 2 2 2	938 938 938 3434 938 938 938 938 4372 938 1407 4841	1 1 1 1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462 1 1 0.999908	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928 1 1 0.999816	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 1.071912e-03 1.776357e-15 1.249944e-07 1.840461e-04
0 1 2 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.0001	2 2 2 2 2 2 2 3 5 5 2 3	938 938 938 3434 938 938 938 938 4372 938 1407 4841 938 1407 5779	1 1 1 1 1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462 1 1 0.999908	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928 1 1 0.999816	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 1.071912e-03 1.776357e-15 1.249944e-07 1.840461e-04 1.776357e-15 1.249944e-07 5.385954e-06
0 1 2 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1 0.1 0.1 0.01 0.01 0.001 0.001 0.0001 0.0001 0.0001	2 2 2 2 2 2 2 3 3 5 7 2 2 3 7 2 2	938 938 938 3434 938 938 938 938 4372 938 1407 4841 938 1407 5779 938 1407	1 1 1 1 1 1 1 1 1 1 1 1	1 0.999988 0.982822 1 0.999988 0.982822 1 0.999988 0.999462 1 1 0.9999908	1 0.999975 0.96889 1 0.999975 0.96889 1 0.999975 0.998928 1 1 0.999816 1 1 0.999995	1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 3.111019e-02 1.776357e-15 2.499488e-05 1.071912e-03 1.776357e-15 1.249944e-07 1.840461e-04 1.776357e-15 1.249944e-07 5.385954e-06

_	/ E	$\sqrt{2}$
$rg_k^3 =$	(rg_{k-}^{s})	-1)

						' y k	-('9k-1)				
funct	r0	rh_num	x0x	х0У	eps	iterations	f_calc_count	x	У	f	df
0	2	5	-5	2	1	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1	2	2340	1	0.962963	0.941015	5.898491e-02
2	2	5	-5	2	1	2	4056				2.425207e-01
0	2	5	-5	2	0.1	2	624	1	1		1.776357e-15
1	2	5	-5	2	0.1	2	2340	1			5.898491e-02
2	2	5	-5	2	0.1	4	6086	1	0.981732	0.967135	3.286492e-02
0	2	5	-5	2	0.01	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	0.01	4	3278	1	0.999985	0.999969	3.050995e-05
2	2	5	-5	2	0.01	6	7024	1			6.007758e-07
0	2	5	-5	2	0.001	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	0.001	5	3747	1	1	1	4.655440e-10
2	2	5	-5	2	0.001	6	7024	1	1	0.999999	6.007758e-07
0	2	5	-5	2	0.0001	2	624	1	1	1	1.776357e-15
1	2	5	-5	2		5	3747	1	1		4.655440e-10
2	2	5	-5	2		7	7493	1	1	_	2.289280e-13
0	2	5	-5	2	1e-05	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-05	7	4391	-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-05	7	7493	1	1	1	2.289280e-13
0	2	5	 -5	 2	1e-06	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-06	7		-2.81e-16	2		4.300000e+01
2	2	5	-5	2	1e-06	7	7493	1	1		2.289280e-13
					16-06		7493				2.209200E-13
0	2	5	-5	2	1e-07	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-07	7	4391	-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-07	9	8137	-2.81e-16	2	44	4.300000e+01
0	2	5	 -5	 2	1e-08	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-08	7		-2.81e-16	2		4.300000e+01
2	2	5	-5	2	1e-08	9		-2.81e-16	2		4.300000e+01
					16-00		0137	2.016-10			4.3000000000000
0	2	5	-5	2	1e-09	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-09	7	4391	-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-09	9	8137	-2.81e-16	2	44	4.300000e+01

						rg_k^6 =	$=(rg_{k-1}^6)^3$;			
funct	r0 rh	_num	x0x	х0у	eps		f_calc_count	x	У	f	df
0	2	5	-5	2	1	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1	2	2340	1	0.962963	0.941015	5.898491e-02
2	2	5	-5	2	1	2	4056	0.902636	0.859654	0.757479	2.425207e-01
0	2	5	-5	2	0.1	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	0.1	2	2340	1	0.962963	0.941015	5.898491e-02
2	2	5	-5	2	0.1	4	6086	1	0.981732	0.967135	3.286492e-02
0	2	5	-5	2	0.01	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	0.01	4	3278	1	0.999985	0.999969	3.050995e-05
2	2	5	-5	2	0.01	6	7024	1	1	0.999999	6.007758e-07
0	2	5	-5	2	0.001	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	0.001	5	3747	1	1	1	4.655440e-10
2	2	5	-5	2	0.001	6	7024	1	1	0.999999	6.007758e-07
0	2	5	-5	2	0.0001	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	0.0001	5	3747	1	1	1	4.655440e-10
2	2	5	-5	2	0.0001	7	7493	1	1	1	2.289280e-13
0	2	5	-5	2	1e-05	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-05	7	4391	-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-05	7	7493	1	1	1	2.289280e-13
0	2	5	-5	2	1e-06	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-06	7	4391	-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-06	7	7493	1	1	1	2.289280e-13
0	2	5	-5	2	1e-07	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-07	7	4391	-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-07	9	8137	-2.81e-16	2	44	4.300000e+01
0	2	5	-5	2	le-08	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-08	7		-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-08	9	8137	-2.81e-16	2	44	4.300000e+01
0	2	5	-5	2	le-09	2	624	1	1	1	1.776357e-15
1	2	5	-5	2	1e-09	7	4391	-2.81e-16	2	44	4.300000e+01
2	2	5	-5	2	1e-09	9	8137	-2.81e-16	2	44	4.300000e+01

Лучше всего себя показала функция $funct_0 = H\big(h(\bar x)\big) = |h(\bar x)|$ - она ищет правильный экстремум за минимальное и константное число итераций, причем с максимальной точностью. Также стоит отметить, что функция $funct_1 = H\big(h(\bar x)\big) = h(\bar x)^2$ также показывает хороший результат, точность которого можно контролировать параметром **eps**.

Лучше всего себя показала стратегия изменения коэффициента штрафа $rg_k^4=200rg_{k-1}^4$. Использование степенных функций нежелательно, так как приводит к нахождению ложной точки минимума.

Проведем дополнительные исследования с помощью $rg_k^4 = 200rg_{k-1}^4$ с варьированием начального коэффициента штрафа.

funct	r0	rh_num	x0x	х0у	eps	iterations	f_calc_count	x x	У	f	df
0	140	4	 -5	 2	1e-09	2	938				1.776357e-15
1	140	4	-5 -5	2	1e-09	5	2345	1	1	1	4.352074e-14
				2							
2	140	4	-5 		1e-09	12	5628	1	1		1.910152e-10
0	150	4	-5	2	1e-09	2	938	1	1	1	1.776357e-15
1	150	4	-5	2	1e-09	5	2345	1	1	1	4.063416e-14
2	150	4	-5	2	1e-09	12	5628	1	1	1	1.865716e-10
0	160	4	 -5	2	1e-09	2	938	1	1	1	1.776357e-15
1	160	4	-5	2	1e-09	5	2345	1	1		3.352874e-14
2	160	4	-5	2	1e-09	12	5628	1	1		1.826532e-10
0	170	4	-5	2	1e-09	2	938	1	1		1.776357e-15
1	170	4	-5	2	1e-09	5	2345	1	1		3.352874e-14
2	170	4	-5	2	1e-09	12	5628	1	1	1	1.790303e-10
0	180	4	-5	2	le-09	2	938	1	1	1	1.776357e-15
1	180	4	-5	2	1e-09	5	2345	1	1		3.352874e-14
2	180	4	-5	2	1e-09	12	5628	1	1		1.756799e-10
0	190	4	-5	2	1e-09	2	938	1	1	1	1.776357e-15
1	190	4	-5	2	1e-09	5	2345	1	1	1	3.108624e-14
2	190	4	-5	2	1e-09	12	5628	1	1	1	1.725058e-10
0	200	4	 -5	 2	1e-09	2	938	1	1	1	1.776357e-15
1	200	4	-5 -5	2	1e-09	5	2345	1	1		3.108624e-14
2	200	4		2				1	1		
	200	4	-5 		1e-09	12	5628				1.697658e-10
0	210	4	-5	2	1e-09	2	938	1	1	1	1.776357e-15
1	210	4	-5	2	le-09	5	2345	1	1	1	2.819966e-14
2	210	4	-5	2	le-09	12	5628	1	1	1	1.669287e-10
0	220	4	-5	2	1e-09	2	938	1	1	1	1.776357e-15
1	220	4	-5	2	1e-09	5	2345	1	1		2.819966e-14
2	220	4	-5	2	1e-09	12	5628	1	1		1.642926e-10
0	230	4	-5	2	1e-09	2	938	1	1		1.776357e-15
1	230	4	-5	2	1e-09	5	2345	1	1		2.819966e-14
2	230	4	-5	2	le-09	12	5628	1	1	1	1.618972e-10
0	240	4	-5	2	1e-09	2	938	1	1	1	1.776357e-15
1	240	4	-5	2	1e-09	5	2345	1	1		2.287059e-14
2	240	4	-5	2	1e-09	12	5628	1	1		1.596183e-10
					1- 00						1 226052- 15
0	250	4	-5	2	1e-09	2	938	1	1		1.776357e-15
1	250	4	-5	2	le-09	4	1876	1	1	1	4.978240e-12
2	250	4	-5	2	1e-09	12	5628	1	1	1	1.574634e-10

Вывод: для данной задачи лучшими функциями являются $funct_0 = H\big(h(\bar x)\big) = |h(\bar x)|$ и $funct_1 = H\big(h(\bar x)\big) = h(\bar x)^2$, оптимальной стратегией выбора коэффициента штрафа является мультипликативная функция $rg_k^4 = 200rg_{k-1}^4$, оптимальный начальный коэффициент штрафа для этой функции примерно равен **240**.

4. Таблицы с исследованиями и выводы для метода барьерных функций

$$funct_0 = -\frac{1}{g(x)}$$

$$funct_1 = -\ln(-g(x))$$

$$rg_k^1 = rg_{k-1}^1 - 0.01$$

funct	r0 rg_	num	x0x	x0y	eps	iterations	f_calc_count	x	У	f	df
0	2 2		-0.5 -0.5	0.2	1	2 2	1667365 1660010	1.189	1.133	1.315	1.0652e+00 1.3682e+00
0 1	2 2		-0.5 -0.5	0.2	0.1 0.1	2 2	1667365 1660010	1.189 1.319	1.133 1.256	1.315 1.618	1.0652e+00 1.3682e+00
0	2 2		-0.5 -0.5	0.2 0.2	0.01	2 2	1667365 1660010	1.189 1.319	1.133 1.256	1.315 1.618	1.0652e+00 1.3682e+00
0	2 2		-0.5 -0.5	0.2	0.001	58 100	30175941 48664665	0.8 1.033	0.2 0.9837	3.64 0.9918	3.3900e+00 7.4185e-01
0	2 2		-0.5 -0.5		0.0001	58 100	30175941 48664665	0.8 1.033	0.2 0.9837	3.64 0.9918	3.3900e+00 7.4185e-01
0	2 2		-0.5 -0.5	0.2	1e-05 1e-05	58 100	30175941 48664665	0.8 1.033	0.2 0.9837	3.64 0.9918	3.3900e+00 7.4185e-01

 $rg_k^2 = \frac{rg_{k-1}^2}{2}$

_	_		_	_						_	
funct	r0 rg	_num	x0x	ж0у	eps	iterations	f_calc_count	х	У	f	df
0	2	2	-0.5	0.2	1	5	1720160	0.1026	0.09775	0.009794	2.4021e-01
1	2	2	-0.5	0.2	1	2	840821	0.8344	0.7947	0.6474	3.9736e-01
0	2	2	-0.5	0.2	0.1	6	1757234	0.03834	0.03651	0.001366	2.4863e-01
1	2	2	-0.5	0.2	0.1	5	1684931	0.5711	0.5439	0.3032	5.3181e-02
0	2		-0.5	0.2	0.01	6	1757234	0.03834	0 02651	0.001366	2.4863e-01
1	2		-0.5	0.2	0.01	8	3349420	0.03034	0.4955		1.6543e-01
			-0.5		0.01		3349420	0.5205	0.4955	0.2517	1.65436-03
0	2	2	-0.5	0.2	0.001	8	1827665	0.008482	0.008078	6.688e-05	2.4993e-01
1	2	2	-0.5	0.2	0.001	11	5025883	0.5132	0.4888	0.2449	5.1220e-03
0	2	2	-0.5	0.2	0.0001	9	1859719	0.004169	0.003971	1.616e-05	2.4998e-01
1	2	2	-0.5	0.2	0.0001	15	5245987	0.5123	0.4879	0.244	6.0365e-03
					1- 05						
0	2		-0.5	0.2	1e-05	11	2730175			9.854e-07	2.5000e-01
1	2	2	-0.5	0.2	1e-05	18	6699770	0.5122	0.4878	0.2439	6.0899e-03
0	2	2	-0.5	0.2	1e-06	12	2766107	0.0005137	0.0004893	2.454e-07	2.5000e-01
1	2		-0.5	0.2	1e-06	20	8365671			0.2439	6.0929e-03
0	2	2	-0.5	0.2	1e-07	14	2837519	0.0001282	0.0001221	1.529e-08	2.5000e-01
1	2	2	-0.5	0.2	1e-07	39	24177194	0.5033	0.4967	0.2472	2.8265e-03
0	2		-0.5	0.2	1e-08	16				9.549e-10	2.5000e-01
1	2	2	-0.5	0.2	1e-08	43	27503764	0.5033	0.4967	0.2472	2.8264e-03
0	2		-0.5	0.2	1e-09	17	37/3600	1 6026-05	1 5266-05	2.387e-10	2.5000e-01
1	2		-0.5	0.2	1e-09	44	28335393		0.4967		2.8264e-03
	4	4	-0.3	0.2	16-09	44	20333393	0.5055	0.450/	0.24/2	2.0204E-03

$$rg_k^3 = \frac{rg_{k-1}^3}{10}$$

	y f	df
0 2 3 -0.5 0.2 1 2 41318 0.02302 0.02	2193 0.0004928	2.4951e-01
	.507 0.2635	1.3523e-02
0 2 3 -0.5 0.2 0.1 3 876325 0.002117 0.002	2017 4.169e-06	2.5000e-01
	4898 0.2459	4.1016e-03
	2017 4 160- 06	2 5000- 01
0 2 3 -0.5 0.2 0.01 3 876325 0.002117 0.002 1 2 3 -0.5 0.2 0.01 4 876798 0.5124 0.	.488 0.2441	2.5000e-01 5.8976e-03
0 2 3 -0.5 0.2 0.001 3 876325 0.002117 0.002 1 2 3 -0.5 0.2 0.001 5 1193115 0.5122 0.4	2017 4.169e-06 4878 0.2439	2.5000e-01 6.0776e-03
1 2 3 -0.3 0.2 0.001 3 1155113 0.5122 0.0		
0 2 3 -0.5 0.2 0.0001 4 914446 0.0002102 0.0002	2002 4. 107e-08	2.5000e-01
1 2 3 -0.5 0.2 0.0001 6 2025894 0.512 0.	.488 0.2439	6.0936e-03
0 2 3 -0.5 0.2 le-05 4 914446 0.0002102 0.0002	2002 4.107e-08	2.5000e-01
	4967 0.2472	2.8269e-03
0 2 3 -0.5 0.2 le-06 5 953972 2.le-05 26		2 5000- 01
	e-05 4.101e-10 4967 0.2472	2.5000e-01 2.8265e-03
	e-05 4.101e-10	2.5000e-01
1 2 3 -0.5 0.2 le-07 13 7850036 0.5033 0.4	4967 0.2472 	2.8264e-03
0 2 3 -0.5 0.2 le-08 6 992227 2.le-06 26	e-06 4.101e-12	2.5000e-01
1 2 3 -0.5 0.2 le-08 14 8681580 0.5033 0.4	4967 0.2472	2.8264e-03
	e-06 4.101e-12	2.5000e-01
0 2 3 -0.5 0.2 le-09 6 992227 2.le-06 26	E-00 4.101E-12	
	4967 0.2472	2.8264e-03
1 2 3 -0.5 0.2 le-09 15 9513408 0.5033 0.4		
$rg_k^4 = (rg_{k-1}^4)^{0.5}$		
1 2 3 -0.5 0.2 le-09 15 9513408 0.5033 0.4	4967 0.2472 y f	2.8264e-03 df
1 2 3 -0.5 0.2 le-09 15 9513408 0.5033 0.4	4967 0.2472 у f 0.2 3.64	2.8264e-03 df 3.3900e+00
1 2 3 -0.5 0.2 le-09 15 9513408 0.5033 0.4	4967 0.2472 y f	2.8264e-03 df
$rg_k^4 = (rg_{k-1}^4)^{0.5}$ funct r0 rg_num x0x x0y eps iterations f_calc_count x 0 2 4 -0.5 0.2 1 2 664 0.8 1 2 4 -0.5 0.2 1 2 24458 1.096 1	y f 0.2 3.64 1.044 1.116 0.2 3.64	2.8264e-03 df 3.3900e+00
$rg_k^4 = (rg_{k-1}^4)^{0.5}$ funct r0 rg_num x0x x0y eps iterations f_calc_count x $0 2 4 -0.5 0.2 1 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.1 2 664 0.8$	y f 0.2 3.64 1.044 1.116	2.8264e-03 df 3.3900e+00 8.6643e-01
$rg_k^4 = (rg_{k-1}^4)^{0.5}$ funct r0 rg_num x0x x0y eps iterations f_calc_count x 0 2 4 -0.5 0.2 1 2 664 0.8 1 2 4 -0.5 0.2 1 2 24458 1.096 1	y f 0.2 3.64 1.044 1.116 0.2 3.64	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00
$rg_k^4 = (rg_{k-1}^4)^{0.5}$ funct r0 rg_num x0x x0y eps iterations f_calc_count x $0 2 4 -0.5 0.2 1 2 664 0.8 \\ 1 2 4 -0.5 0.2 1 2 24458 1.096 1$ $0 2 4 -0.5 0.2 0.1 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1$ $0 2 4 -0.5 0.2 0.1 2 664 0.8$	y f 0.2 3.64 1.044 1.116 0.2 3.64 1.013 1.052	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 8.0173e-01 3.3900e+00
$rg_k^4 = (rg_{k-1}^4)^{0.5}$ funct r0 rg_num x0x x0y eps iterations f_calc_count x $0 2 4 -0.5 0.2 1 2 664 0.8 \\ 1 2 4 -0.5 0.2 1 2 24458 1.096 1$ $0 2 4 -0.5 0.2 0.1 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1$ $0 2 4 -0.5 0.2 0.1 3 856957 1.064 1$ $0 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 6 1710297 1.037 0.$	y f 0.2 3.64 1.013 1.052 0.2 3.64 9873 0.9991	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 8.0173e-01 3.3900e+00 7.4908e-01
$rg_k^4 = (rg_{k-1}^4)^{0.5}$ funct r0 rg_num x0x x0y eps iterations f_calc_count x $0 2 4 -0.5 0.2 1 2 664 0.8 \\ 1 2 4 -0.5 0.2 1 2 24458 1.096 1 \\ 0 2 4 -0.5 0.2 0.1 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1 \\ 0 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.001 2 664 0.8 \\ 2$	y f 0.2 3.64 1.044 1.116 0.2 3.64 1.013 1.052 0.2 3.64 9873 0.9991 0.2 3.64	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 8.0173e-01 3.3900e+00 7.4908e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x $ 0 2 4 -0.5 0.2 1 2 664 0.8 \\ 1 2 4 -0.5 0.2 1 2 24458 1.096 1 \\ 0 2 4 -0.5 0.2 0.1 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1 \\ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 \\ 0 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 6 1710297 1.037 0. \\ 0 2 4 -0.5 0.2 0.001 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.001 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.001 9 2564718 1.033 0. $	y f 0.2 3.64 0.04 1.116 0.2 3.64 0.013 1.052 0.2 3.64 9873 0.9991 0.2 3.64 9841 0.9927	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 8.0173e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x	y f 0.2 3.64 0.044 1.116 0.2 3.64 0.013 1.052 0.2 3.64 0.9873 0.9991 0.2 3.64 0.9841 0.9927 0.2 3.64	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 8.0173e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x	y f 0.2 3.64 1.016 0.2 3.64 1.013 1.052 0.2 3.64 9873 0.9991 0.2 3.64 9841 0.9927 0.2 3.64 9837 0.9919	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4190e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x	y f 0.2 3.64 1.044 1.116 0.2 3.64 1.013 1.052 0.2 3.64 1.013 0.9991 0.2 3.64 1.052 0.2 3.64 1.052 0.2 3.64 1.052 0.2 3.64 1.052 0.2 3.64 1.052 0.2 3.64 1.052 0.2 3.64 1.052 0.2 3.64 1.052 0.2 3.64 1.052	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4190e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x $ 0 2 4 -0.5 0.2 1 2 664 0.8 \\ 1 2 4 -0.5 0.2 1 2 24458 1.096 1 $ $ 0 2 4 -0.5 0.2 0.1 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.01 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.001 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.001 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.001 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.0001 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.0001 2 664 0.8 \\ 1 2 4 -0.5 0.2 0.0001 13 2606648 1.033 0. $ $ 0 2 4 -0.5 0.2 0.0001 13 2606648 1.033 0. $ $ 0 2 4 -0.5 0.2 1e-05 2 664 0.8 \\ 1 2 4 -0.5 0.2 1e-05 16 3459436 1.033 0. $	y f 0.2 3.64 0.044 1.116 0.2 3.64 0.013 1.052 0.2 3.64 0.9873 0.9991 0.2 3.64 0.9841 0.9927 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4190e-01 3.3900e+00 7.4185e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x $ 0 2 4 -0.5 0.2 1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	y f 0.2 3.64 0.044 1.116 0.2 3.64 0.013 1.052 0.2 3.64 0.9873 0.9991 0.2 3.64 0.9841 0.9927 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4190e-01 3.3900e+00 7.4185e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x $ 0 2 4 -0.5 0.2 1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 1 3 2606648 1.033 0. $ $ 0 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $ $ 1 2 4 -0.5 0.2 1e-05 2 664 0.8 $	y f 0.2 3.64 1.044 1.116 0.2 3.64 1.013 1.052 0.2 3.64 1.013 0.9991 0.2 3.64 1.052	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4190e-01 3.3900e+00 7.4185e-01 3.3900e+00
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x $ 0 2 4 -0.5 0.2 1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.01 5 6 1710297 1.037 0. $ $ 0 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 1 3 2606648 1.033 0. $ $ 0 2 4 -0.5 0.2 0.0001 1 3 2606648 1.033 0. $ $ 0 2 4 -0.5 0.2 1e-05 16 3459436 1.033 0. $ $ 0 2 4 -0.5 0.2 1e-05 16 3459436 1.033 0. $	y f 0.2 3.64 0.044 1.116 0.2 3.64 0.013 1.052 0.2 3.64 0.9873 0.9991 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4190e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	y f 0.2 3.64 0.044 1.116 0.2 3.64 0.013 1.052 0.2 3.64 0.9873 0.9991 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4190e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01
$ rg_k^4 = (rg_{k-1}^4)^{0.5} $ funct r0 rg_num x0x x0y eps iterations f_calc_count x $ 0 2 4 -0.5 0.2 1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.1 3 856957 1.064 1 $ $ 0 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.01 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.01 5 6 1710297 1.037 0. $ $ 0 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 2 664 0.8 $ $ 1 2 4 -0.5 0.2 0.0001 1 3 2606648 1.033 0. $ $ 0 2 4 -0.5 0.2 0.0001 1 3 2606648 1.033 0. $ $ 0 2 4 -0.5 0.2 1e-05 16 3459436 1.033 0. $ $ 0 2 4 -0.5 0.2 1e-05 16 3459436 1.033 0. $	y f 0.2 3.64 0.044 1.116 0.2 3.64 0.013 1.052 0.2 3.64 0.9873 0.9991 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9919 0.2 3.64 0.9837 0.9918 0.2 3.64 0.9837 0.9918	2.8264e-03 df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	y f 0.2 3.64 1.013 1.052 0.2 3.64 1.013 1.052 0.2 3.64 1.9873 0.9991 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918	df 3.3900e+00 8.6643e-01 3.3900e+00 8.0173e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	y f 0.2 3.64 1.013 1.052 0.2 3.64 1.013 1.052 0.2 3.64 1.9873 0.9991 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918	df 3.3900e+00 8.6643e-01 3.3900e+00 8.0173e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	y f 0.2 3.64 1.013 1.052 0.2 3.64 1.013 1.052 0.2 3.64 1.9873 0.9991 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9919 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918 0.2 3.64 1.9837 0.9918	df 3.3900e+00 8.6643e-01 3.3900e+00 7.4908e-01 3.3900e+00 7.4275e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01 3.3900e+00 7.4185e-01

_	(5	$\sqrt{0.25}$
$rg_k^3 =$	(rg_{k-1}^3)	1)

funct	r0 r	g_num	x0x	х0у	eps	iterations	f_calc_count	x	У	f	df
0 1	2 2		-0.5 -0.5	0.2	1 1	2 2	664 22142	0.8 1.048	0.2 0.9982	3.64 1.021	3.3900e+00 7.7121e-01
0	2		-0.5 -0.5	0.2	0.1 0.1	2 2	664 22142	0.8 1.048	0.2 0.9982	3.64 1.021	3.3900e+00 7.7121e-01
0	2		-0.5 -0.5	0.2	0.01 0.01	2 4	664 45124	0.8 1.034	0.2 0.9846	3.64 0.9936	3.3900e+00 7.4365e-01
0	2 2	_	-0.5 -0.5	0.2	0.001 0.001	2 6	664 66252	0.8 1.033	0.2 0.9838	3.64 0.992	3.3900e+00 7.4196e-01
0 1	2 2				0.0001 0.0001	2 7	664 76900	0.8 1.033	0.2 0.9837	3.64 0.9919	3.3900e+00 7.4188e-01
0 1	2 2		-0.5 -0.5	0.2	1e-05 1e-05	2 9	664 919211	0.8 1.033	0.2 0.9837	3.64 0.9918	3.3900e+00 7.4185e-01
0 1	2		-0.5 -0.5		le-06 le-06	2 11	664 2580899	0.8 1.033	0.2 0.9837		3.3900e+00 7.4185e-01
0	2 2			0.2	le-07 le-07	2 12	664 3412564	0.8 1.033	0.2 0.9837	3.64 0.9918	3.3900e+00 7.4185e-01
0	2		-0.5 -0.5		le-08 le-08	2 15	664 4265685	0.8 1.033	0.2 0.9837	3.64 0.9918	3.3900e+00 7.4185e-01
0	2		-0.5 -0.5	0.2	le-09 le-09	2 28	664 5222638	0.8 1.033	0.2 0.9837	3.64 0.9918	3.3900e+00 7.4185e-01

Лучше всего себя показывает $funct_1 = -\ln(-g(x))$.

Лучше всего себя показали мультипликативные стратегии изменения коэффициента штрафа, а именно $rg_k^3=rac{rg_{k-1}^3}{10}$. Использование степенных функций нежелательно, так как приводит к нахождению ложной точки минимума.

Проведем дополнительные исследования с помощью $rg_k^3 = \frac{rg_{k-1}^3}{10}$ с варьированием начального коэффициента штрафа.

<u>'</u>						<u>'</u>	<u>'</u>				
funct	r0 r	g_num	x0x	х0У	eps	iterations	f_calc_count	х	У	f	df
0	0.1	3	-0.5	0.2	1e-09	5	973903	1.05e-06	1e=06	1.025e-12	2.5000e-01
1			-0.5	0.2	1e-09	14	9850083	0.5033			2.8264e-03
	0.35		-0.5	0.2	1e-09	6		3.675e-07		1.256e-13	2.5000e-01
1	0.35	3	-0.5	0.2	1e-09	16	11671641	0.5033	0.4967	0.2472	2.8264e-03
0	0.6	3	-0.5	0.2	1e-09	6	1043966	6.3e-07	6e-07	3.691e-13	2.5000e-01
1	0.6		-0.5	0.2	1e-09	15	10115970	0.5033	0.4967	0.2472	2.8264e-03
	0.85		-0.5 -0.5	0.2	1e-09 1e-09	6 15	2609207 10756896			7.407e-13 0.2472	
			-0.5				10/56696	0.5055	0.4967	0.24/2	2.02046-03
0	1.1	3	-0.5	0.2	1e-09	6	2621034	1.155e-06	1.1e-06	1.24e-12	2.5000e-01
1	1.1	3	-0.5	0.2	1e-09	15	8975881	0.5033	0.4967	0.2472	2.8264e-03
	1.35		-0.5	0.2	1e-09	6	1004556	1 4100-06	1 250_06	1.868e-12	2.5000e-01
	1.35	_	-0.5	0.2	1e-09	15	11339881	0.5033			2.8264e-03
0	1.6		-0.5	0.2	1e-09	6		1.68e-06		2.624e-12	2.5000e-01
1	1.6	3	-0.5	0.2	1e-09	15	10867369	0.5033	0.4967	0.2472	2.8264e-03
0	1.85	3	-0.5	0.2	le-09	6	1813996	1.943e-06	1.85e-06	3.509e-12	2.5000e-01
1	1.85	3	-0.5	0.2	1e-09	15	9552393				2.8264e-03
0	2.1		-0.5 -0.5	0.2	1e-09 1e-09	6 15	187426 12482389	2.205e-06 0.5033		4.521e-12 0.2472	2.5000e-01 2.8264e-03
										0.24/2	2.02046-03
0	2.35	3	-0.5	0.2	1e-09	6	2615435	2.468e-06	2.35e-06	5.661e-12	2.5000e-01
1	2.35	3	-0.5	0.2	1e-09	15	9462601	0.5033	0.4967	0.2472	2.8264e-03
0	2.6	3	-0.5	0.2	le-09	6	1909724	2.73e-06	2 65-06	6.93e-12	2.5000e-01
_	2.6		-0.5	0.2	1e-09	15	9443394	0.5033			2.8264e-03
	2.85		-0.5	0.2	1e-09	6				8.326e-12	2.5000e-01
1	2.85	3	-0.5	0.2	1e-09	17	11093037	0.5033	0.4967	0.2472	2.8264e-03
0	3.1	3	-0.5	0.2	le-09	6	184829	3.255e-06	3.1e-06	9.851e-12	2.5000e-01
1	3.1		-0.5	0.2	1e-09	17	12513741	0.5033			2.8264e-03
	3.35		-0.5	0.2	1e-09	7				1.151e-13	2.5000e-01
	3.35		-0.5	0.2	1e-09	17	11684893	0.5033	0.4967	0.2472	2.8264e-03
0	3.6	3	-0.5	0.2	1e-09	7	227020	3.78e-07	3.6e-07	1.329e-13	2.5000e-01
1	3.6	3	-0.5	0.2	1e-09	17	11856939	0.5033	0.4967	0.2472	2.8264e-03
	2 05				10.00	7	1017360	4 042- 02	2 05- 05	1 50- 10	2 5000- 01
	3.85 3.85		-0.5 -0.5	0.2	1e-09 1e-09	17		0.5033		1.52e-13 0.2472	2.5000e-01 2.8264e-03
_		_				- /					

Вывод: для данной задачи лучшей функцией является $funct_1 = -\ln(-g(x))$, оптимальной стратегией выбора коэффициента штрафа является мультипликативная функция $rg_k^3 = \frac{rg_{k-1}^3}{10}$, оптимальный начальный коэффициент штрафа для этой функции выбирается достаточно свободно в диапазоне от **0.1**.

5. Общие выводы

Большое число вычисления функций объясняется необходимостью для каждой итерации метода штрафных или барьерных функций вызывать функцию метода Гаусса, который в свою очередь для каждой своей итерации два раза вызывает функцию одномерного поиска по компонентам методом золотого сечения, который в свою очередь вызывает функцию поиска отрезка с минимумом.

Высокая погрешность решения объясняется несовершенством метода Гаусса, работоспособность которого зависит от выбора начальной точки, а также вариацией параметра delta в функции поиска отрезка с минимумом.

6. Текст программы

main.cpp

```
#include <iostream>
#include <fstream>
#include "Gauss.h"
#include "PenaltyMethodData.h"
#include "PenaltyMethod.h"
#include "BarrierMethodData.h"
#include "BarrierMethod.h"
#include "Test.h"
using namespace std;
void PenaltyGTest(const string& file_name)
   // Объект для хранения тестовых функций
   Test test = Test(0);
   // Объект с данными для метода штрафных функций
   PenaltyMethodData penalty method data = PenaltyMethodData(test);
   // Объект метода штрафных функций
   PenaltyMethod penalty method = PenaltyMethod(penalty method data);
   // Поток вывода
   ofstream fout(file name);
   int rg_num = 6;
   vector<double> x0 = \{ -5, 2 \};
   fout << setw(5) << "funct" << setw(6) << "r0" << setw(7) << "rg_num";</pre>
  fout << setw(5) << "x0x" << setw(6) << "x0y";
fout << setw(8) << "eps" << setw(12) << "iterations" << setw(14) << "f_calc_count";
fout << setw(10) << "x" << setw(10) << "y" << setw(10) << "f";
   fout << setw(14) << "df" << endl;
   for(double i = 1; i < 10; i+=0.5)</pre>
      double r0 = i;
      fout << "----";
      fout << "----" << endl;
      double f_eps = pow(10, -9);
      for(int funct_n = 0; funct_n < 4; funct_n++)</pre>
         penalty_method.barrier_method_data.funct_n = funct_n;
         vector<double> x = penalty_method.FindExtremum(x0, r0, rg_num, 0, f_eps);
         // Блок вывода
```

```
fout << setw(5) << penalty method.barrier method data.funct n << setw(6) << r0 <<</pre>
setw(7) << rg_num;</pre>
         fout << setw(6) << x0[0] << setw(6) << x0[1];
         fout << setw(8) << f_eps << setw(12) << penalty_method.iterations_count;</pre>
         fout << setw(14) << penalty_method.f_calc_cout;</pre>
         fout << setw(10) << x[0] << setw(10) << x[1] << setw(10) << penal-
ty_method_data.test.f(x) << scientific;</pre>
         fout << setw(14) << abs(penalty_method_data.test.f(x) - penal-</pre>
ty_method_data.test.f_min1) << defaultfloat << endl;</pre>
   fout.close();
}
void PenaltyHTest(const string& file name)
   // Объект для хранения тестовых функций
   Test test = Test(0);
   // Объект с данными для метода штрафных функций
   PenaltyMethodData penalty_method_data = PenaltyMethodData(test);
   // Объект метода штрафных функций
   PenaltyMethod penalty_method = PenaltyMethod(penalty_method_data);
   // Поток вывода
   ofstream fout(file_name);
   int rh num = 4;
   vector<double> x0 = \{ -5, 2 \};
   fout << setw(5) << "funct" << setw(6) << "r0" << setw(7) << "rh num";
   fout << setw(6) << "x0x" << setw(6) << "x0y";
   fout << setw(8) << "eps" << setw(12) << "iterations" << setw(14) << "f calc count";</pre>
   fout << setw(10) << "x" << setw(10) << "y" << setw(10) << "f";
   fout << setw(14) << "df" << endl;
   for(int i = 140; i < 260; i += 10)
   {
      double r0 = i;
      fout << "----";
      fout << "----" << endl;
      double f_eps = pow(10, -9);
      for(int funct_n = 0; funct_n < 3; funct_n++)</pre>
         penalty_method.barrier_method_data.funct_n = funct_n;
         vector<double> x = penalty_method.FindExtremum(x0, r0, 0, rh_num, f_eps);
         // Блок вывода
         fout << setw(5) << penalty_method.barrier_method_data.funct_n << setw(6) << r0 <<</pre>
setw(7) << rh num;</pre>
         fout << setw(6) << x0[0] << setw(6) << x0[1];
         fout << setw(8) << f_eps << setw(12) << penalty_method.iterations_count;</pre>
         fout << setw(14) << penalty_method.f_calc_cout;</pre>
         fout \langle\langle setw(10) \langle\langle x[0] \langle\langle setw(10) \langle\langle x[1] \langle\langle setw(10) \langle\langle penal-
ty_method_data.test.f(x) << scientific;</pre>
         fout << setw(14) << abs(penalty_method_data.test.f(x) - penal-</pre>
ty_method_data.test.f_min2) << defaultfloat << endl;</pre>
   }
   fout.close();
```

```
}
void BarrierGTest(const string& file name)
   // Объект для хранения тестовых функций
   Test test = Test(0);
   // Объект с данными для метода барьерных функций
   BarrierMethodData barrier method data = BarrierMethodData(test);
   // Объект метода штрафных функций
   BarrierMethod penalty method = BarrierMethod(barrier method data);
   // Поток вывода
   ofstream fout(file_name);
   int rg_num = 3;
   vector<double> x0 = \{ -0.5, 0.2 \};
   fout << setw(5) << "funct" << setw(6) << "r0" << setw(7) << "rg_num";</pre>
   fout << setw(6) << "x0x" << setw(6) << "x0y";
   fout << setw(8) << "eps" << setw(12) << "iterations" << setw(14) << "f_calc_count";</pre>
   fout << setw(10) << "x" << setw(10) << "y" << setw(10) << "f";
   fout << setw(14) << "df" << endl;
   fout << setprecision(4);</pre>
   for(double i = 0.1; i < 5; i += 0.25)
      double r0 = i;
      fout << "-----";
      fout << "----" << endl;
      double f_{eps} = pow(10, -9);
      for(int funct n = 0; funct n < 2; funct n++)</pre>
      {
         penalty method.barrier method data.funct n = funct n;
         vector<double> x = penalty_method.FindExtremum(x0, r0, rg_num, f_eps);
         // Блок вывода
         fout << setw(5) << penalty_method.barrier_method_data.funct_n << setw(6) << r0 <<</pre>
setw(7) << rg_num;</pre>
         fout << setw(6) << x0[0] << setw(6) << x0[1];
         fout << setw(8) << f_eps << setw(12) << penalty_method.iterations_count;</pre>
         fout << setw(14) << penalty_method.f_calc_cout;</pre>
         fout << setw(10) << x[0] << setw(10) << x[1] << setw(10) << barri-
er_method_data.test.f(x) << scientific;</pre>
         fout << setw(14) << abs(barrier_method_data.test.f(x) - barri-
er_method_data.test.f_min1) << defaultfloat << endl;</pre>
   }
   fout.close();
}
int main()
   PenaltyGTest("results/penalty_g_test.txt");
   //PenaltyHTest("results/penalty_h_test.txt");
   //BarrierGTest("results/barrier_g_test.txt");
   cout << "Done!";</pre>
}
vector.h
#pragma once
```

```
#include <vector>
#include <iomanip>
#include <fstream>
using namespace std;
// Умножение вектора на число
vector<double> operator * (const double& val, vector<double> vec)
{
   const size_t size = vec.size();
   for (size_t i = 0; i < size; ++i)</pre>
      vec[i] *= val;
   return vec;
}
// Деление вектора на число
vector<double> operator / (const double& val, vector<double> vec)
   const size_t size = vec.size();
   for(size_t i = 0; i < size; ++i)</pre>
      vec[i] /= val;
   return vec;
}
vector<double>& operator *= (vector<double>& vec, const double& val)
   const size_t size = vec.size();
   for(size_t i = 0; i < size; ++i)</pre>
      vec[i] *= val;
   return vec;
}
// Сложение векторов
vector<double> operator + (vector<double> vec1, const vector<double>& vec2)
   const size_t size = vec1.size();
   for (size_t i = 0; i < size; ++i)</pre>
      vec1[i] += vec2[i];
   return vec1;
}
// Вычитание векторов
vector<double> operator - (vector<double>vec1, const vector<double>& vec2)
   const size_t size = vec1.size();
   for (size_t i = 0; i < size; ++i)</pre>
      vec1[i] -= vec2[i];
   return vec1;
}
// Скалярное произведение векторов
double operator * (const vector<double>& vec1, const vector<double>& vec2)
{
   const size_t size = vec1.size();
   double res = 0;
```

```
for(size_t i = 0; i < size; ++i)</pre>
      res += vec1[i] * vec2[i];
  return res;
}
// Норма вектора
double Norm(const vector<double>& vec)
   const size t size = vec.size();
   double res = 0;
   for(int i = 0; i < size; i++)</pre>
      res += vec[i] * vec[i];
   return sqrt(res);
Function.h
#pragma once
#include <vector>
class Function
public:
   virtual double GetValue(const std::vector<double>&) const = 0;
};
Test.h
#pragma once
#include <vector>
using namespace std;
// Класс с информацией о тестовых функциях и коэффициентах r
class Test
public:
  int test_n;
   Test() : test_n(0) {}
   Test(int t_test_n) : test_n(t_test_n) {}
   double f(const vector<double>& x) const
      switch(test_n)
         case 0: return 10 * (x[1] - x[0]) * (x[1] - x[0]) + x[1] * x[1];
         case 1: return (x[0] - 1) * (x[0] - 1) + (x[1] - 3) * (x[1] - 3);
         case 2: return x[0] * x[0] + x[1] * x[1];
         case 3: return 5 * (x[1] + x[0]) * (x[1] + x[0]) + (x[0] - 2) * (x[0] - 2);
      }
   }
   double h(const vector<double>& x) const
   {
      return x[0] + x[1] - 2;
   }
   double g(const vector<double>& x) const
   {
      return 1 - x[0] - x[1];
   }
```

```
// Точные значения минимума задач и точек
   // в которых эти значения достигаются
   double f min1 = 0.25;
   double x \min 1 = 0.5;
   double y min1 = 0.5;
   double f_min2 = 1;
   double x min2 = 1;
   double y_min2 = 1;
};
Gauss.h
#include "Function.h"
using namespace std;
/// <summary>
/// Класс для поиска экстремума функции многомерного параметра
/// методом Гаусса
/// </summary>
class Gauss
public:
                           // Размерность вектора
// Приближение на текущем шаге
// Новое приближение,
   size_t size = 0;
   vector<double> prev;
   vector<double> curr;
   double delta = 10;
   int max_iter_count = 5000; // Максимальное количество итераций
   ///<param name = "t_size">- размерность вектора функции</param>
   Gauss(const size_t& t_size);
   /// <summary>
   /// Поиск экстремума функции методом Гаусса
   /// </summary>
   /// <param name="funct">- объект класса-наследника класса Function с информацией о функ-
ции</param>
   /// <param name="x0">- вектор начального приближения</param>
   /// <param name="f eps">- точость по изменению функции</param>
   /// <param name="xs_eps">- точность по компонентам</param>
  /// <param name="fout">- поток вывода</param>
   /// <returns>Количество итераций</returns>
   int FindExtremum(const Function& funct,
                    const vector<double>& x0,
                    const double& f_eps, const double& xs_eps);
   const double SQRT5 = sqrt(5);
   const double PI = 3.141592653589793238462;
   int f_calc_count = 0;
                                   // Количество вычислений функции
   /// <summary>
   /// Поиск отрезка с минимумом функции для метода Гаусса
   /// </summary>
  /// <param name="funct">- объект класса-наследника класса Function с информацией о функ-
ции</param>
  /// <param name="x">- вектор компонент</param>
   /// <param name="comp_n">- номер компоненты</param>
```

vector<double> x,

/// <returns>Пара чисел - отрезок с минимумом функции</returns> pair<double, double> FindSegmentWithMin(const Function& funct,

```
const int& comp n);
```

```
/// <summary>
   /// Поиск аргумента минимума функции для метода Гаусса
   /// </summary>
   /// <param name="funct">- объект класса-наследника класса Function с информацией о функ-
ции</param>
   /// <param name="x">- вектор компонент</param>
   /// <param name="comp n">- номер компоненты</param>
   /// <param name="eps">- точность поиска</param>
   /// <returns>Аргумент минимума функции</returns>
   double FindMinArgGolden(const Function& funct,
                            vector<double> x,
                            const int& comp_n,
                            const double& eps);
};
Gauss.cpp
#include <vector>
#include <fstream>
#include "Gauss.h"
Gauss::Gauss(const size_t& t_size) : size(t_size)
   prev = vector<double>(t size);
   curr = vector<double>(t size);
}
int Gauss::FindExtremum(const Function& funct,
                 const vector<double>& x0,
                 const double& f_eps, const double& xs_eps)
{
   prev = x0;
   curr = x0;
   bool result fit = false;
   int iter_count = 0;
   do
   {
      for(size t i = 0; i < size; i++)</pre>
         curr[i] = FindMinArgGolden(funct, curr, i, 1e-15);
      iter count++;
      // Расчет изменения решения на текущей итерации
      if(abs(funct.GetValue(prev) - funct.GetValue(curr)) < f_eps)</pre>
         result_fit = true;
      for(int i = 0; i < size && result_fit; i++)</pre>
         if(abs(prev[i] - curr[i]) > xs_eps)
            result_fit = false;
      prev = curr;
   } while(iter_count < max_iter_count && !result_fit);</pre>
   return iter_count;
}
pair<double, double> Gauss::FindSegmentWithMin(const Function& funct,
                                         vector<double> x,
                                         const int& comp_n)
{
   pair<double, double> result;
   double x0 = 0;
   double xk, xk1, xk_1, h = 1;
```

```
x[comp_n] = x0;
double f = funct.GetValue(x);
f_calc_count += 1;
x[comp_n] = x0 + delta;
if(f == funct.GetValue(x))
   result.first = x0;
   result.second = x0 + delta;
   f_calc_count = 2;
   return result;
}
else
{
   x[comp_n] = x0 - delta;
   if(f == funct.GetValue(x))
      result.first = x0 - delta;
      result.second = x0;
      f_calc_count = 3;
      return result;
   }
   else
   {
      x[comp_n] = x0 + delta;
      if(f > funct.GetValue(x))
         xk = x0 + delta;
         h = delta;
         f_calc_count++;
      }
      else
      {
         x[comp_n] = x0 - delta;
         if(f > funct.GetValue(x))
         {
            xk = x0 - delta;
            h = -delta;
            f_calc_count += 2;
         }
         else
         {
            result.first = x0 - delta;
            result.second = x0 + delta;
            f_calc_count += 2;
            return result;
      }
      xk_1 = x0;
      bool exit = false;
      do
         h *= 2;
         xk1 = xk + h;
         x[comp_n] = xk;
         double f1 = funct.GetValue(x);
         x[comp_n] = xk1;
```

```
double f2 = funct.GetValue(x);
            if(f1 > f2)
            {
               xk_1 = xk;
               xk = xk1;
            }
            else
               exit = true;
            f calc count += 2;
         } while(!exit);
         result.first = xk_1;
         result.second = xk;
   }
   return result;
}
double Gauss::FindMinArgGolden(const Function& funct,
                        vector<double> x,
                        const int& comp_n,
                        const double& eps)
{
   pair<double, double> segment = FindSegmentWithMin(funct, x, comp_n);
   double a = segment.first, b = segment.second;
   double x1 = a + (3 - SQRT5) / 2 * (b - a);
   double x2 = a + (SQRT5 - 1) / 2 * (b - a);
  x[comp_n] = x1;
   double f1 = funct.GetValue(x);
  f_calc_count += 1;
  x[comp_n] = x2;
   double f2 = funct.GetValue(x);
   f_calc_count += 1;
   double a1, b1;
   int iter_count = 0;
   for(; abs(b - a) > eps; iter_count++)
   {
      a1 = a, b1 = b;
      if(f1 < f2)
         b = x2;
         x2 = x1;
         x1 = a + (3 - SQRT5) / 2 * (b - a);
         f2 = f1;
         x[comp_n] = x1;
         f1 = funct.GetValue(x);
         f_calc_count += 1;
      }
      else
      {
         a = x1;
         x1 = x2;
         x2 = a + (SQRT5 - 1) / 2 * (b - a);
         f1 = f2;
         x[comp_n] = x2;
```

```
f2 = funct.GetValue(x);
   f_calc_count += 1;
}
}
return a;
}
```

PenaltyMethodData.cpp

```
#pragma once
#include<vector>
#include "Test.h"
#include "Function.h"
using namespace std;
class PenaltyMethodData : public Function
public:
  Test test;
  int funct_n = 0;
   double rg = 0;
   double rh = 0;
   PenaltyMethodData(const Test& t_test, int t_funct_n) :
      test(t_test), funct_n(t_funct_n) { }
   PenaltyMethodData(const Test& t_test) : test(t_test) { }
   double G(const vector<double>& x) const
      if(test.g(x) <= 0)
        return 0;
      else
         switch(funct_n)
            case 0: return 0.5 * (test.g(x) + abs(test.g(x)));
            case 1: return pow(0.5 * (test.g(x) + abs(test.g(x))), 2);
            case 2: return pow(0.5 * (test.g(x) + abs(test.g(x))), 4);
            case 3: return 1.0 / test.g(x);
            default: return 0;
      }
   }
   double H(const vector<double>& x) const
      switch(funct_n)
         case 0: return abs(test.h(x));
         case 1: return pow(test.h(x), 2);
         case 2: return pow(test.h(x), 4);
         default: return 0;
      }
   }
   double GetValue(const vector<double>& x) const override
      return test.f(x) + rg * G(x) + rh * H(x);
   }
};
```

PenaltyMethod.cpp

```
#pragma once
#include <iomanip>
#include "PenaltyMethodData.h"
using namespace std;
class PenaltyMethod
{
public:
   PenaltyMethodData barrier_method_data;
   int max iter count = 100; // Максимальное количество итераций
   int iterations count = 0;
   int f_calc_cout = 0;
   double CalcNewR(const int& num, const double& r)
      switch(num)
      {
         case 0: return 0.0;
         case 1: return r + 1.0;
         case 2: return r + 100;
         case 3: return r * 2;
         case 4: return r * 200;
         case 5: return r * r;
         case 6: return r * r * r;
      }
   }
   PenaltyMethod(const PenaltyMethodData& t penalty method data):
      barrier_method_data(t_penalty_method_data) { }
   /// <summary>
   /// Поиск экстремума методом штрафных функций
   /// </summary>
   /// <param name="x0">- начальная точка</param>
   /// <param name="r0">- начальное значение коэффициента штрафа</param>
   /// <param name="rg_num">- номер функции для вычисления параметра штрафа для функции
G</param>
   /// <param name="rh_num">- номер функции для вычисления параметра штрафа для функции
H</param>
  /// <param name="f_eps">- точость по изменению функции</param>
   /// <returns>Точка с найденным экстремумом</returns>
   vector<double> FindExtremum(const vector<double>& x0,
                     const double& r0,
                     const int& rg_num,
                     const int& rh num,
                     const double& f_eps)
   {
      barrier_method_data.rg = r0;
      barrier_method_data.rh = r0;
      // Значения функции на предыдущей и текущей итерациях
      double prev f = barrier method data.test.f(x0);
      double curr_f;
      // Найденная точка
      vector<double> x(2);
```

```
f calc cout = 0;
      iterations count = 0;
      bool result_fit = false;
      do
      {
         Gauss gauss = Gauss(2);
         // Изменение коэффициентов штрафа
         barrier_method_data.rg = CalcNewR(rg_num, barrier_method_data.rg);
         barrier method data.rh = CalcNewR(rh num, barrier method data.rh);
         // Поиск экстремума методом Гаусса
         gauss.FindExtremum(barrier_method_data, x0, 1e-20, 1e-20);
         // Полученная точка
         x = gauss.curr;
         // Функция в этой точке
         curr_f = barrier_method_data.test.f(gauss.curr);
         iterations_count++;
         f_calc_cout += gauss.f_calc_count;
         if(abs(prev_f - curr_f) < f_eps)</pre>
            result_fit = true;
         prev_f = curr_f;
      } while(!result_fit && iterations_count < max_iter_count);</pre>
      return x;
   }
};
BarrierMethodData.cpp
#pragma once
#include<vector>
#include "Test.h"
#include "Function.h"
using namespace std;
class BarrierMethodData : public Function
public:
   Test test;
   int funct_n = 0;
   double rg = 0;
   BarrierMethodData(const Test& t_test, int t_funct_n) :
      test(t_test), funct_n(t_funct_n) { }
   BarrierMethodData(const Test& t_test) : test(t_test) { }
   double G(const vector<double>& x) const
      switch(funct_n)
         case 0: return - 1.0 / test.g(x);
         case 1: return -1.0 * log(-1.0 * test.g(x));
         default: return 0;
      }
   }
```

```
double GetValue(const vector<double>& x) const override
   {
      return test.f(x) + rg * G(x);
};
BarrierMethod.cpp
#pragma once
#include <iomanip>
#include "BarrierMethodData.h"
using namespace std;
class BarrierMethod
{
public:
   BarrierMethodData barrier method data;
   int max iter count = 100; // Максимальное количество итераций
   int iterations_count = 0;
   int f_calc_cout = 0;
   double CalcNewR(const int& num, const double& rg)
      switch(num)
         case 0: return 0.0;
         case 1: return rg - 0.01;
         case 2: return rg / 2;
         case 3: return rg / 10;
         case 4: return pow(rg, 0.5);
         case 5: return pow(rg, 0.25);
      }
   }
   BarrierMethod(const BarrierMethodData& t_barrier_method_data) :
      barrier_method_data(t_barrier_method_data) { }
   /// <summary>
   /// Поиск экстремума методом барьерных функций
   /// </summary>
   /// <param name="x0">- начальная точка</param>
   /// <param name="r0">- начальное значение коэффициента штрафа</param>
   /// <param name="rg_num">- номер функции для вычисления параметра штрафа для функции
G</param>
   /// <param name="f_eps">- точость по изменению функции</param>
   /// <returns>Точка с найденным экстремумом</returns>
   vector<double> FindExtremum(const vector<double>& x0,
                               const double& r0,
                               const int& rg_num,
                               const double& f_eps)
      barrier_method_data.rg = r0;
      // Значения функции на предыдущей и текущей итерациях
      double prev_f = barrier_method_data.test.f(x0);
      double curr_f;
      // Найденная точка
      vector<double> x(2);
```

```
f_calc_cout = 0;
      iterations_count = 0;
      bool result_fit = false;
      do
      {
         Gauss gauss = Gauss(2);
         // Изменение коэффициентов штрафа
         barrier_method_data.rg = CalcNewR(rg_num, barrier_method_data.rg);
         // Поиск экстремума методом Гаусса
         gauss.FindExtremum(barrier_method_data, x0, 1e-20, 1e-20);
         // Полученная точка
         x = gauss.curr;
         // Функция в этой точке
         curr_f = barrier_method_data.test.f(gauss.curr);
         iterations_count++;
         f_calc_cout += gauss.f_calc_count;
         if(abs(prev_f - curr_f) < f_eps)</pre>
            result_fit = true;
         prev_f = curr_f;
      } while(!result_fit && iterations_count < max_iter_count);</pre>
      return x;
  }
};
```