

Autonomous Learning

Assignment 4

Simon Reichhuber July 6, 2020

University of Kiel, Summer Term 2020

TABLE OF CONTENTS

Policy Gradient vs. DQN

VALUE-BASED REINFORCEMENT LEARNING

The decision which action to chose in a state is driven by the highest Q-Value (the maximum future reward in every state).

1

The policy is only determined by these action value assessments.

POLICY BASED REINFORCEMENT LEARNING

- no learning of the value function → expected sum of future rewards for given state and action
- direct learning of the policy → mapping of state to an action
- optimisation of the policy function π (without a value function)
- ullet direct parametrisation of π

DETERMINISTIC POLICY

• maps a state directly to an action

$$\pi(s) = a$$

- · applied in deterministic environments
 - The chosen actions determine the result.
 - no uncertainty
 - example: Chess

STOCHASTIC POLICY

returns a random distribution of all actions

$$\pi(s) = P(a_t|s_t)$$

- When an action a is chosen it will only be executed with a certain probability.
- · applied in uncertain environments
 - Partially observable Markov decision process (POMDP)
 - example: robots

Deep Q Learning works well! So, why Policy-based Reinforcement Learning?

ADVANTAGES: CONVERGENCE

- better convergence properties
- · value-based:
 - Strong oscillation during training are possible.
 - A small change of the prediction (action values) can lead to a proportionally dramatic change when selection the action.
- policy gradient:
 - Follow the gradient to find the best parameters.
 - → smooth policy updates with each step
 - Convergence in local maximum (worst case) or global maximum (best case) is guaranteed.

Convergence (2)

ADVANTAGES: HIGH-DIMENSIONAL ACTION SPACE

- more efficient for continuous actions or for an high-dimensional action space
- · value-based:
 - For every time step a value is assigned to every possible action.
 - → curse of dimensionality
 - How to deal with an infinitive number of actions?
 - \rightarrow e. g. self-driving car
- policy based:
 - direct adaptation of the parameters
 - More comprehensible what the maximum actually means.

HIGH-DIMENSIONAL ACTION SPACE (2)

ADVANTAGES: STOCHASTIC POLICIES

- · policy gradient can learn stochastic policies
- no more trade-off between exploration and exploitation
- The output is a probability distribution of the actions.
 - ightarrow The search space is explored without always choosing the same action.
- no problem of perceptual aliasing:
 The states are the same but require different actions.

STOCHASTIC POLICIES (2)

Blue fields are aliased states.

deterministische policy:

problem: The agent is stuck.

STOCHASTIC POLICIES (3)

stochastic policy:

The policy will move randomly to the left or right. \rightarrow no getting stuck

$$\pi = (\textit{wall UP and DOWN} \mid \textit{Go LEFT}) = 0.5$$

$$\pi = (\textit{wall UP and DOWN} \mid \textit{Go RIGHT}) = 0.5$$

DISADVANTAGES

A huge disadvantage:

It often converges to a local maximum instead of a global maximum.

It converges slowly step by step \rightarrow can take longer than DQN

Policy Search

POLICY AS OPTIMISATION PROBLEM

• Policy π has parameter θ and probability distribution of the actions:

$$\pi_{\theta}(a|s) = P[a|s]$$

- When is a policy good?
 - → policy as an optimisation problem:

$$J(\theta) = E_{\pi\theta} \left[\sum \gamma r \right]$$

- 2 steps:
 - Measure the quality of π with a policy score function $J(\theta)$.
 - Find the bester parameter θ with policy gradient ascent.

STEP 1: POLICY SCORE FUNCTION

Depending on environment and goals there are 3 different methods.

- 1. Episodic environment:
 - start value → calculate the mean reward from the first step G₁
 - cumulated discounted reward of the whole episode:

$$J_1(\theta) = E_{\pi}[G_1 = R_1 + \gamma R_2 + \gamma^2 R_3 + \dots] = E_{\pi}(V(s_1))$$

- When repeatedly starting in s₁:
 What is the total reward for this state up to the final state?
- A policy that maximises G₁ is an optimal policy.

EXAMPLE: BREAKOUT

- The game always starts in the same state.
- calculation of the score using $J_1(\theta) \to \text{number of destroyed bricks}$

2. Continuous environment:

- mean value → no fixed starting state
- Every state value is weighted using the probability of that state:

$$J_{avgV}(\theta) = E_{\pi}(V(s)) = \sum d(s)V(s)$$

with:

$$d(s) = \frac{N(s)}{\sum_{s'} N(s')}$$

- N(s) occurrence of state s
- $\sum_{s'} N(s')$ occurrence of all states

3. Environments with average reward per time step:

· highest reward for every time step

$$J_{avgR}(\theta) = E_{\pi}(r) = \sum_{s} d(s) \sum_{a} \pi_{\theta}(s, a) R_{s}^{a}$$

where:

- $\sum_{s} d(s)$ probability of being in state s
- $\sum_{a} \pi_{\theta}(s, a)$ probability of choosing action a
- R_s^a immediate reward

STEP 2: POLICY GRADIENT ASCENT

- maximising $J(\theta) \to \text{Gradient Ascent on policy parameters}$
- Gradient Ascent is the inverse of Gradient Descent (steepest ascent).
- No Gradient Descent because it is not about minimising something (error function vs. score function).
- Find the gradient that updates the current policy towards the highest ascent and iterate:
 - 1. policy: π_{θ}
 - 2. objective function: $J(\theta)$
 - 3. gradient: $\nabla_{\theta} J(\theta)$
 - 4. update: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

POLICY GRADIENT ASCENT (2)

Goal: Find the best parameter θ^* that maximises the score:

$$heta^* = \operatorname*{argmax}_{ heta} \underbrace{E_{\pi heta} \left[\sum_t R(s_t, a_t)
ight]}_{J(heta)}$$

Score function:

$$J(\theta) = \overbrace{E_{\pi}}^{\substack{\text{expexted}\\ \text{given policy}}} \underbrace{\frac{\text{expected}}{\text{future reward}}}_{\substack{S_0, a_0, r_1, \\ S_1, a_1, r_2,}}$$

 \Rightarrow total sum of all expected rewards given policy π

POLICY GRADIENT ASCENT (3)

Differentiating the score function:

$$J_1(\theta) = V_{\pi\theta}(s_1) = E_{\pi\theta}[v_1] = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) R_s^a$$

Problem:

- The policy parameters influence how the actions are chosen.
 - → rewards and which state is visited how often
- The performance depends on the action choice and the distribution of the respective states.
 - → The challenge is to find changes that ensure improvement.
- How do the parameters influence the state distribution?
 - → The environment function is unknown.
- How is the gradient determined regarding π when it depends on an unknown relation between changes in the state distribution?

POLICY GRADIENT ASCENT (4)

Solution: Policy Gradient Theorem

It offers an analytic expression for the gradient ∇ von $J(\theta)$ regarding π that does not include a differentiation of the state distribution:

$$J(\theta) = E_{\pi}[R(\tau)]$$

$$\nabla_{\theta}J(\theta) = \nabla_{\theta}\sum_{\tau}\pi(\tau;\theta)R(\tau)$$

$$= \sum_{\tau}\nabla_{\theta}\pi(\tau;\theta)R(\tau)$$

Likelihood ratio trick:

$$\pi(\tau; \theta) \frac{\nabla_{\theta \pi}(\tau; \theta)}{\pi(\tau; \theta)} \quad \nabla \log x = \frac{\nabla x}{x}$$

$$= \sum_{\tau} \pi(\tau; \theta) \nabla_{\theta} (\log \pi(\tau; \theta)) R(\tau)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\nabla_{\theta} J(\theta) = E_{\pi} \left[\nabla_{\theta} (\log \frac{\pi(\tau|\theta)}{t_{\text{inction}}}) \frac{R(\tau)}{s_{\text{core function}}} \right]$$

POLICY GRADIENT ASCENT (5)

- policy gradient: $E_{\pi}[\nabla_{\theta}(\log \pi(s, a, \theta))R(\tau)]$
- update rule: $\Delta \theta = \alpha \times \nabla_{\theta} (\log \pi(s, a, \theta)) R(\tau)$
- $R(\tau)$ is a scalar:
 - · total discounted future reward
 - large R(τ) → On average actions are chosen that lead to a high reward. The probability of seen actions increases.
 - small $R(\tau) \to \text{The probability of seen actions decreases.}$

Algorithm 1: REINFORCE: Monte-Carlo Policy Gradient Control (episodic) for π

Initialize θ

for each episode do

Generate an epsiode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$ following π_θ for

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \log \pi (A_t | S_t, \theta)$$

REINFORCE IN KERAS

- $G_t = r_t + \gamma * r_{t+1} + \gamma^2 * r_{t+2} + ...$
- Keras minimises its error function using Gradient Descent.
- Trick: negative sign → Gradient Descent
- $J(\theta)$ as error function:

$$loss_t = -\log \pi(A_t, S_t) * G_t$$
 $loss = \frac{\sum_t loss_t}{T}$

Technische Fakultät

```
1 from keras lavers import Input. Dense
 2 from keras, models import Model
3 from keras.optimizers import RMSProp
  import keras.backend as K
6 inL = Input(self.state size)
   h1 = Dense(16, activation='relu')(inL)
   out = Dense(self.action_size, activation='softmax')(h1)
   self.model = Model(input=inL, output=out)
10 self. build train()
12
   def build train():
13
     # placholder Tensor for target values
14
     target = K.placeholder()
     prediction = self.model.output
15
16
     # compute error
     error = K.mean(K.sgrt(1 + K.square(prediction - target)) - 1, axis=-1)
18
     # create optimizer
     opimizer = RMSProp(Ir=self.learningrate)
19
20 l
     update = optimizer.get_updates(loss=error, params=self.model.trainable_weights)
     # create fit function with inputs and outputs
     self.fit = K.function(inputs=[self.model.input, target], outputs=[error], updates=update)
   # train model
25 err = self.fit([states. targets])
```


- · normalised exponential function
- It "squeezes" a vector of dimension K into a vector of dimension K and a value range of (0, 1).
- The components sum up to 1.
- probability distribution over K different events

Bibliography

PICTURES

• https://medium.freecodecamp.org/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f