PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

6. SRA

Exercise 6.1. Show that the Weyl algebra W(V) is a filtered deformation of S(V) (the case $\dim V = 2$ was considered before). Moreover, check that the Poisson bracket on S(V) induced from W(V) coincides with the initial bracket.

Exercise 6.2. Show that if $\operatorname{gr} H_{\kappa} = S(V) \# \Gamma$, then $\kappa : \bigwedge^2 V^* \to \mathbb{C}\Gamma$ is a Γ -equivariant map (where Γ acts on $\mathbb{C}\Gamma$ via the adjoint representation). Furthermore, show that if $-1_V \in \Gamma$, then the image of κ lies in $\mathbb{C}\Gamma$.

Exercise 6.3. For $\kappa = \sum_{\gamma \in \Gamma} \kappa_{\gamma} \gamma$, we have $[\kappa(u, v), w] = \sum_{\gamma \in \Gamma} \kappa_{\gamma} (u, v) (\gamma(w) - w) \gamma$.

Exercise 6.4. Show that $\operatorname{im}(\gamma - 1_V) \oplus \ker(\gamma - 1_V) = V$ for any $\gamma \in \Gamma$. Further, show that the summands are orthogonal with respect to ω and, in particular, the restrictions of ω to these subspaces are non-degenerate.

Exercise 6.5. Show that $\omega_{\gamma}(u,v)(\gamma(w)-w)+\omega_{\gamma}(v,w)(\gamma(u)-u)+\omega_{\gamma}(w,u)(\gamma(v)-v)=0.$

Exercise 6.6. Show that a symplectically irreducible Γ -module V is either irreducible, or is the sum $U \oplus U^*$, where U is irreducible and not symplectic. Deduce that the space of Γ -invariant skew-symmetric forms on V is one-dimensional and so is generated by ω .

Exercise 6.7. Prove that S_0, \ldots, S_r exhaust the conjugacy classes of symplectic reflections in $\Gamma_n = \mathfrak{S}_n \ltimes \Gamma_1^n$.

Problem 6.1. The goal of this problem is to construct a family of complex reflection groups, that includes the Weyl groups of types B, D (and, to some extent, A). Namely, fix $n, \ell \ge 1$ and a divisor r of ℓ . Consider all $n \times n$ -matrices with the following properties: each column and each row contains a single non-zero element that is a root of 1 of order ℓ , and the product of these elements is a root of 1 of order r. Show that this is a complex reflection group. This group is denoted by $G(\ell, r, n)$. In particular, $B_n = G(2, 1, n)$ and $D_n = G(2, 2, n)$.

Problem 6.2. This problem concerns an exceptional complex reflection group, G_4 . Take the Kleinian group Γ of type E_6 . It has three two-dimensional irreducible representations, \mathbb{C}^2 and two other. Prove that the other two are dual to each other and Γ acts on them as a complex reflection group.

Problem 6.3. Show that the relations for a RCA can be written as follows. For a complex reflection s let $\alpha_s \in \operatorname{im}(s-1_{\mathfrak{h}^*}), \alpha_s^{\vee} \in \operatorname{im}(s-1_{\mathfrak{h}})$ be such that $\langle \alpha_s, \alpha_s^{\vee} \rangle = 2$ (this is motivated by the Weyl group case). Show that the relations for the RCA can be written as

$$[x, x'] = 0, [y, y'] = 0, [y, x] = t\langle y, x \rangle - \sum_{s \in S} c_s \langle \alpha_s, y \rangle \langle \alpha_s^{\vee}, x \rangle s, \quad x, x' \in \mathfrak{h}^*, y, y' \in \mathfrak{h}.$$

Note that here the coefficients c_s are not quite the same as in the presentation of an SRA. How are the coefficients related?

Exercise 6.8. Suppose B is a graded deformation of B_0 over A. Show that a basis in B can be obtained as follows. Let ι be any graded section of the projection $B \to B_0$. Then for a basis of B (viewed as an A-module) we can take $\iota(B_0)$.

Exercise 6.9. Check that $d^2 = 0$, where d is the Hochschild differential $C^{\bullet}(A, M) \rightarrow C^{\bullet+1}(A, M)$.

Exercise 6.10. Show that $HH^0(A, M)$ coincides with the center of M, i.e., the space of all elements $m \in M$ such that am = ma. Show that Hochschild 1-cocycles are the derivations of M, i.e., the maps $A \to M$ that satisfy the Leibniz identity, while the Hochshild 1-coboundaries are inner derivations, i.e., maps $A \to M$ of the form $a \mapsto am - ma$ for $m \in M$. So $HH^1(A, M)$ is the quotient of the two, the so called space of outer derivations.