Ve270 Introduction to Logic Design

Homework 1

Assigned: May 14, 2020

Due: May 21, 2020, 2:00pm.

A pop quiz will be given on the due date.

1. Fill out the blank spaces, assuming unsigned numbers. Show steps to earn partial credits. (8 points)

$$11011101.001_2 = __221.125_{_10} = __DD.2_{_16}$$
 $63.89_{10} = 111111.1110_{_2} = 77.7_{_8} = 2100.220_{_3}$

2. Fill out the blank spaces, assuming 2's complement numbers. (16 points)

$$-71_{10} = __10111001__2 = __B9__{16}$$
 $71_{10} = __01000111__2 = __47__{16}$
 $10110101101_2 = __-595__{10}$
 $FBA9_{16} = 1111101110101001_2 = __-1111__{10}$

3. Perform the following arithmetic operations <u>step by step</u>, assuming 2's complement numbers: (12 points)

$$(6FA49D + 73BD)_{16} = 70185A_{16}$$
 no overflow.
 $(10100 - 10101001)_2 = 01001011_2$ no overflow.

 $(534-265)_8 = 7247_8$ with overflow. (247₈ with overflow is also acceptable).

- 4. Problem 2.14 (Boolean equation = logic equation) (4 points)
 - 2.14 Evaluate the Boolean equation F = a AND (b OR (c AND d)) for the given values of variables a, b, c, and d:
 - a. a=1, b=1, c=0, d=1
 - b. a=0, b=0, c=0, d=1
 - c. a=1, b=0, c=0, d=0
 - d. a=1, b=0, c=1, d=1
 - a) F = 1 AND (1 OR (0 AND 1)) = 1 AND (1 OR 0) = 1 AND 1 = 1
 - b) F = 0 AND (0 OR (0 AND 1)) = 0 AND (0 OR 0) = 0 AND 0 = 0
 - c) F = 1 AND (0 OR (0 AND 0)) = 1 AND (0 OR 0) = 1 AND 0 = 0
 - d) F = 1 AND (0 OR (1 AND 1)) = 1 AND (0 OR 1) = 1 AND 1 = 1
- 5. Problem 2.16 (10 points)
 - 2.16 Show the conduction paths and output value of the AND gate transistor circuit in Figure 2.14 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1.

- 6. Problem 2.19 (10 points)
 - 2.19 Convert each of the following equations directly to gate-level circuits:

$$a.F = abc + a'bc$$

$$b.F = a + bcd' + ae + f'$$

$$c.F = (a + b) + (c' * (d + e + fg))$$

7. Problem 2.20 (10 points)

2.20 Design a system that sounds a buzzer inside a home whenever motion outside is detected at night. Assume a motion sensor has an output M that indicates whether motion is detected (M=1 means motion detected) and a light sensor with output L that indicates if light is detected (L=1 means light is detected). The buzzer inside the home has a single input B that when 1 sounds the buzzer. Capture the desired system behavior using an equation, and then convert the equation to a circuit using AND, OR, and NOT gates.

$$B = M * L'$$

- 8. Problem 2.35 (10 points)
 - 2.35 Convert each of the following Boolean equations to a truth table:

$$a. F(a,b,c) = a' + bc'$$

b.
$$F(a,b,c) = (ab)' + ac' + bc$$

c.
$$F(a,b,c) = ab + ac + ab'c' + c'$$

$$d.F(a,b,c,d) = a'bc + d'$$

Inputs			Outputs	
a	b	C	F	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	
(a)				

Inputs			Outputs	
a	b	C	F	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	
(b)				

Inputs			Outputs
a	b	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
		(c)	•

Inputs				Outputs	
a	b	С	d	F	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	0	
1	1	1	0	1	
1	1	1	1	0	
(d)					

9. Build a truth table for the following circuit. (10 points)

A	B	C	\mathcal{D}	out
000	0	0	0	ı
0	0	0	I	Ö
D	0	l	0	ι
0	o	l	l	0
0 0 0	l	0	0	Ĭ.
0	١	0	C	O
D	l	1		1
5	l	l	ſ	٥
1	O	O	0	ı
ı	0	0	١	Ð
1	o	ı	O	0
1	0	l	1	٥
1	l	o	0	0
1	Ī	O	l	0
1	ι	1	0	0
١	l	l	1	0

10. Given a logic equation F = a'bc' + b'c + abc, draw an output waveform for F based on the given input waveforms. (10 points)

