```
import pandas as pd
 In [1]:
 In [2]: df= pd.read_csv('weight-height.csv')
 In [5]:
         df
 Out[5]:
                Gender
                           Height
                                      Weight
             0
                  Male
                        73.847017 241.893563
                  Male
                        68.781904
                                  162.310473
             2
                  Male
                        74.110105 212.740856
                        71.730978 220.042470
             3
                  Male
             4
                  Male 69.881796
                                  206.349801
          9995
                Female 66.172652
                                 136.777454
          9996
                Female 67.067155
                                  170.867906
          9997
                Female 63.867992
                                  128.475319
          9998
                Female 69.034243 163.852461
          9999
                Female 61.944246 113.649103
         10000 rows × 3 columns
 In [7]:
         df.shape
 Out[7]: (10000, 3)
 In [9]:
         df.isna().sum()
 Out[9]:
          Gender
          Height
                    0
          Weight
          dtype: int64
In [11]:
         df.duplicated().sum()
Out[11]: 0
In [13]:
         df.dtypes
Out[13]:
          Gender
                     object
                    float64
          Height
          Weight
                    float64
          dtype: object
In [15]:
         df=df.drop("Gender",axis="columns")
In [17]:
```

Out[17]:		Height	Weight
	0	73.847017	241.893563
	1	68.781904	162.310473
	2	74.110105	212.740856
	3	71.730978	220.042470
	4	69.881796	206.349801
	•••		
	9995	66.172652	136.777454
	9996	67.067155	170.867906
	9997	63.867992	128.475319
	9998	69.034243	163.852461
	9999	61.944246	113.649103
	10000	rows × 2 co	lumns
T. [20].			port metrics
	X = d- X	f.iloc[:,0	:1]
Out[20]:	X	Height	:1]
	X 0	Height 73.847017	:1]
	0 1	Height 73.847017 68.781904	:1]
	0 1 2	Height 73.847017 68.781904 74.110105	:1]
	0 1 2 3	Height 73.847017 68.781904 74.110105 71.730978	:1]
	0 1 2 3 4	Height 73.847017 68.781904 74.110105 71.730978 69.881796	:1]
	0 1 2 3 4	Height 73.847017 68.781904 74.110105 71.730978 69.881796	:1]
	0 1 2 3 4 	Height 73.847017 68.781904 74.110105 71.730978 69.881796 66.172652	:1]
	x 0 1 2 3 4 9995 9996	Height 73.847017 68.781904 74.110105 71.730978 69.881796	:1]
	0 1 2 3 4 9995 9996 9997	Height 73.847017 68.781904 74.110105 71.730978 69.881796 66.172652 67.067155	:1]
	x 0 1 2 3 4 9995 9996 9997 9998	Height 73.847017 68.781904 74.110105 71.730978 69.881796 66.172652 67.067155 63.867992	:1]

```
In [23]:
         Y = df.iloc[:,1:2]
Out[23]:
                  Weight
             0 241.893563
             1 162.310473
             2 212.740856
             3 220.042470
             4 206.349801
         9995 136.777454
         9996 170.867906
         9997 128.475319
         9998 163.852461
         9999 113.649103
         10000 rows × 1 columns
In [25]: X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size = 0.2)
In [27]: Reg = LinearRegression()
In [29]: Reg.fit(X_train,Y_train)
Out[29]: ▼ LinearRegression
         LinearRegression()
In [31]: Y_predict = Reg.predict(X_test)
In [33]: print(Reg.coef_)
        [[7.72633084]]
In [35]: print(Reg.intercept_)
        [-351.28031984]
In [37]: plt.scatter(X_test,Y_test)
         plt.plot(X_test,Y_predict,color = "red")
Out[37]: [<matplotlib.lines.Line2D at 0x1c44ed29b90>]
```


In [39]: print('meansqaureerror', metrics.mean_squared_error(Y_test,Y_predict))

meansqaureerror 144.0251904853563

In [41]: print("meanabsoluteerror", metrics.mean_absolute_error(Y_test,Y_predict))
meanabsoluteerror 9.484232633357667

In [43]: Rsquare = Reg.score(X_train,Y_train)

In [45]: print(Rsquare)

0.8546781617760344

In []: