CONTENTS 1

DSII Midterm Project

Yiru Gong, yg2832

2022-05-08

${\bf Contents}$

Data Input	2
Exploratory analysis	4
Data split	6
Model fitting	7
Penalized logistic regression	7
GAM	
LDA	10
Model Comparison	11
CV Compare	11
Test data performance	12

```
library(tidyverse)
library(summarytools)
library(corrplot)
library(caret)
library(MASS)
library(mlbench)
library(pROC) #ROCR
library(pdp)
library(vip)
library(AppliedPredictiveModeling) #for transparentTheme function
```

Data Input

```
data = read.csv('Covid19_vacc_predict_handout.csv')
data = data %>%
    na.omit() %>%
    dplyr::select(-id) %>%
    mutate(
        atlas_type_2015_mining_no = factor(atlas_type_2015_mining_no),
        covid_vaccination = factor(covid_vaccination),
        hum_region = factor(hum_region),
        sex_cd = factor(sex_cd),
        race_cd = factor(race_cd),
        lang_spoken_cd = factor(lang_spoken_cd),
        atlas_low_education_2015_update = factor(atlas_low_education_2015_update)
    )
# summary(data)
# by(data[,c(5,7,8,10,11,17,18)], data$covid_vaccination, summary)
dfSummary(data[,c(5,7,8,10,11,17,18)])
```

Data Frame Summary Dimensions: 8308 x 7 Duplicates: 7802

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
1	atlas_type_2015_mining1.rlb2. 1		8177 (98.4%)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	8308	0
	[factor]		131 (1.6%)		(100.0%)	(0.0%)
2	covid _vaccination	1. no_vacc 2. vacc	6682 (80.4%)	IIIIIIIIIIIIIII	8308	0
	[factor]		$1626 \ (19.6\%)$	III	(100.0%)	(0.0%)

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
3	hum_region [factor]	1. CALIFOR- NIA/NEVADA 2. CENTRAL 3. CENTRAL WEST 4. EAST 5. EAST CENTRAL 6. FLORIDA 7. GREAT LAKES/CENTRAL NORTH 8. GULF STATES 9. INTERMOUNTAIN 10. MID- ATLANTIC/NORTH CAROLI [5 others]	299 (3.6%) 551 (6.6%) 238 (2.9%) 491 (5.9%) 1370 (16.5%) 607 (7.3%) 1111 (13.4%) 454 (5.5%) 220 (2.6%) 845 (10.2%) 2122 (25.5%)	I	8308 (100.0%)	0 (0.0%)
4	sex_cd [factor]	1. F 2. M	4527 (54.5%) 3781 (45.5%)	IIIIIIIII IIIIIIIII	8308 (100.0%)	0 (0.0%)
5	lang_spoken_cd [factor]	1. * 2. CHI 3. CRE 4. ENG 5. KOR 6. OTH 7. SPA 8. VIE	10 (0.1%) 13 (0.2%) 4 (0.0%) 7957 (95.8%) 7 (0.1%) 34 (0.4%) 276 (3.3%) 7 (0.1%)		8308 (100.0%)	Ò
6	atlas_low_education_ [factor]	_20 1 5_ <u>0</u> update	7769 (93.5%) 539 (6.5%)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	8308 (100.0%)	0 (0.0%)
7	race_cd [factor]	1. 0 2. 1 3. 2 4. 3 5. 4 6. 5 7. 6	160 (1.9%) 7317 (88.1%) 558 (6.7%) 80 (1.0%) 56 (0.7%) 129 (1.6%) 8 (0.1%)	I I I I I I I I I I I I I I I I I I I	8308 (100.0%)	ò

```
# cat_sum = NULL
# for (n in c(5,8,10,11,17,18)){
  cat = data[,c(n,7)]
  name = colnames(cat)[1]
#
#
  cat2 = cat %>%
#
    group_by(covid_vaccination,cat[,1]) %>%
#
     count() %>%
#
     rename(cat=`cat[, 1]`) %>%
#
    pivot_wider(
#
       names_from = covid_vaccination,
#
       values\_from = n
#
#
     mutate(variable = name) %>%
     relocate(variable, everything())
#
  cat\_sum = rbind(cat\_sum, cat2)
```

```
# knitr::kable(cat_sum)

# cat_sum %>%

# pivot_longer(
# c("no_vacc", "vacc"),
# names_to = 'covid_vaccination',
# values_to = 'count'

# ) %>%

# ggplot(aes(variable, count, group=covid_vaccination, fill=cat))+geom_bar(stat = 'identity')

data2 = model.matrix(covid_vaccination ~ ., data)[ ,-1]
```

Exploratory analysis

#correlation corrplot(cor(data[,-c(5,7,8,10,11,17,18)]), method = "circle", type = "full")

Data split 6

Data split

Model fitting

Penalized logistic regression

```
## alpha lambda
## 89 0.05 0.07642629
```


7

GAM 8

GAM

plot(model.gam\$finalModel)

```
set.seed(1)
model.gam <- train(data[rowTrain,-c(7:8)], y,</pre>
                   method = "gam",
                   metric = "ROC",
                   trControl = ctrl)
### row 8: hum_region report error
model.gam$finalModel
## Family: binomial
## Link function: logit
##
## Formula:
## .outcome ~ sex_cd + atlas_low_education_2015_update + race_cd +
       cons_rxadhm + s(est_age) + s(cons_chmi) + s(atlas_pct_sbp15) +
       s(atlas_povertyallagespct) + s(cons_lwcm07) + s(atlas_percapitainc) +
##
##
       s(atlas_medhhinc) + s(atlas_hh65plusalonepct) + s(rwjf_resident_seg_black_inx) +
##
       s(rwjf_uninsured_adults_pct)
##
## Estimated degrees of freedom:
## 2.60 1.00 5.64 1.82 1.00 3.50 1.69
## 7.31 1.00 1.20 total = 36.76
## UBRE score: -0.02449249
# fig 2
par(mfrow=c(4,3))
```

GAM 9

LDA 10

LDA

```
lda.fit <- lda(y~x)
plot(lda.fit)</pre>
```


Model Comparison

CV Compare

```
res <- resamples(list(GLMNET = model.glmn,</pre>
                      GAM = model.gam,
                      LDA = model.lda))
#KNN
summary(res)
##
## Call:
## summary.resamples(object = res)
## Models: GLMNET, GAM, LDA
## Number of resamples: 10
##
## ROC
##
               Min.
                      1st Qu.
                                 Median
                                             Mean
                                                     3rd Qu.
## GLMNET 0.5429205 0.5624063 0.5865405 0.5872412 0.6059043 0.6387389
         0.5400922 0.5726839 0.5844861 0.5816581 0.5903860 0.6107550
                                                                          0
## LDA
          0.5351253\ 0.5645383\ 0.5778804\ 0.5822242\ 0.6033940\ 0.6224134
                                                                          0
##
## Sens
               Min. 1st Qu. Median
##
                                        Mean 3rd Qu. Max. NA's
## GLMNET 1.000000
                         1
                                 1 1.0000000
                                                   1
## GAM
        0.9978632
                                 1 0.9995726
                                                         1
                                                              0
                          1
                                                    1
## LDA
          1.0000000
                                 1 1.0000000
##
## Spec
         Min. 1st Qu. Median
                                     Mean 3rd Qu.
                                                        Max. NA's
## GLMNET
           0
                    0
                           0 0.000000000
                                                0 0.00000000
                     0
## GAM
             0
                            0 0.000877193
                                                0 0.00877193
                                                                 0
## LDA
                     0
                            0 0.000000000
                                                0 0.00000000
                                                                 0
# figure 4
bwplot(res, metric = "ROC")
```


Test data performance

