```
In [1]: # NAME-AKSHAY SINGH ADHIKARI
#TASK-INTERMEDIATE TASK 1
```

In [2]: # Given is a project as the intermediate task #decision trees on iris dataset to classify the new species using decision tree

In [66]: # first,importing the python libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [67]: # import dataset
 df=pd.read_csv("Iris (2).csv")

import seaborn as sns

Out[67]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [68]: # to see the information about the dataset df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
dtype	es: float64(4),	int64(1), object	t(1)

memory usage: 7.2+ KB

Out[69]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
_	0 1	5.1	3.5	1.4	0.2	Iris-setosa
	1 2	4.9	3.0	1.4	0.2	Iris-setosa
:	2 3	4.7	3.2	1.3	0.2	Iris-setosa
;	3 4	4.6	3.1	1.5	0.2	Iris-setosa
	4 5	5.0	3.6	1.4	0.2	Iris-setosa

In [70]: # to see statistical data of the data df.describe()

Out[70]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [71]: # to see Last records
          df.tail()
Out[71]:
                 Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                                 Species
           145 146
                                6.7
                                              3.0
                                                            5.2
                                                                          2.3 Iris-virginica
           146 147
                               6.3
                                              2.5
                                                            5.0
                                                                          1.9 Iris-virginica
           147 148
                               6.5
                                              3.0
                                                            5.2
                                                                          2.0 Iris-virginica
           148 149
                                6.2
                                              3.4
                                                            5.4
                                                                          2.3 Iris-virginica
           149 150
                                5.9
                                              3.0
                                                            5.1
                                                                          1.8 Iris-virginica
In [72]: # to see unique classes
          df['Species'].unique()
Out[72]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
In [73]: #encode the target variable
          from sklearn.preprocessing import LabelEncoder
          le=LabelEncoder()
          df['Species']=le.fit transform(df['Species'])
In [76]: # Here, After encoding,
          # 0 denotes iris setosa
          # 1 denotes iris-versicolor
          # 2 denotes iris-virginica
In [75]: df
Out[75]:
                 Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
             0
                  1
                                5.1
                                              3.5
                                                            1.4
                                                                          0.2
                                                                                    0
             1
                  2
                               4.9
                                              3.0
                                                            1.4
                                                                          0.2
                                                                                    0
             2
                  3
                               4.7
                                              3.2
                                                                          0.2
                                                                                    0
                                                            1.3
             3
                               4.6
                                              3.1
                                                                          0.2
                  4
                                                            1.5
                                                                                    0
             4
                  5
                                5.0
                                              3.6
                                                            1.4
                                                                          0.2
                                                                                    0
                                ...
                                              ...
                                                             ...
                                                                                    ...
```

3.0

2.5

3.0

3.4

3.0

5.2

5.0

5.2

5.4

5.1

2.3

1.9

2.0

2.3

1.8

2

2

2

2

2

150 rows × 6 columns

6.7

6.3

6.5

6.2

5.9

145 146

146 147

147 148

148 149

149 150

In [12]: df

Out[12]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	0
1	2	4.9	3.0	1.4	0.2	0
2	3	4.7	3.2	1.3	0.2	0
3	4	4.6	3.1	1.5	0.2	0
4	5	5.0	3.6	1.4	0.2	0
145	146	6.7	3.0	5.2	2.3	2
146	147	6.3	2.5	5.0	1.9	2
147	148	6.5	3.0	5.2	2.0	2
148	149	6.2	3.4	5.4	2.3	2
149	150	5.9	3.0	5.1	1.8	2

150 rows × 6 columns

In [13]: # Now splitting the data into training and testing dataset
 # training :70 and testing :30
 from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [14]: print(x_train , x_test)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm		
138	6.0	3.0	4.8	1.8		
129	7.2	3.0	5.8	1.6		
3	4.6	3.1	1.5	0.2		
119	6.0	2.2	5.0	1.5		
99	5.7	2.8	4.1	1.3		
••			···			
113	5.7	2.5	5.0	2.0		
114	5.8	2.8	5.1	2.4		
86	6.7	3.1	4.7	1.5		
69	5.6	2.5	3.9	1.1		
91	6.1	3.0	4.6	1.4		
_	rows x 4 colum	ıns] Sepal	LengthCm Sepal	WidthCm Peta	lLengthCm	Petal
Widtl	hCm					
124	6.7	3.3	5.7	2.1		
144	6.7	3.3	5.7	2.5		
137	6.4	3.1	5.5	1.8		
16	5.4	3.9	1.3	0.4		
108	6.7	2.5	5.8	1.8		
41	4.5	2.3	1.3	0.3		
9	4.9	3.1	1.5	0.1		
62	6.0	2.2	4.0	1.0		
149	5.9	3.0	5.1	1.8		
43	5.0	3.5	1.6	0.6		
141	6.9	3.1	5.1	2.3		
58	6.6	2.9	4.6	1.3		
130	7.4	2.8	6.1	1.9		
29	4.7	3.2	1.6	0.2		
14	5.8	4.0	1.2	0.2		
22						
	4.6	3.6	1.0	0.2		
143	6.8	3.2	5.9	2.3		
132	6.4	2.8	5.6	2.2		
25	5.0	3.0	1.6	0.2		
142	5.8	2.7	5.1	1.9		
125	7.2	3.2	6.0	1.8		
13	4.3	3.0	1.1	0.1		
55	5.7	2.8	4.5	1.3		
44	5.1	3.8	1.9	0.4		
97	6.2	2.9	4.3	1.3		
33	5.5	4.2	1.4	0.2		
101	5.8	2.7	5.1	1.9		
78	6.0	2.9	4.5	1.5		
70	5.9	3.2	4.8	1.8		
50	7.0	3.2	4.7	1.4		
11	4.8	3.4	1.6	0.2		
1	4.9	3.0	1.4	0.2		
56	6.3	3.3	4.7	1.6		
20	5.4	3.4	1.7	0.2		
111	6.4	2.7	5.3	1.9		
60	5.0	2.0	3.5	1.0		
127	6.1	3.0	4.9	1.8		
4	5.0	3.6	1.4	0.2		
103	6.3	2.9	5.6	1.8		
105	7.6	3.0	6.6	2.1		
30	4.8	3.1	1.6	0.2		
146	6.3	2.5	5.0	1.9		

```
80 5.5 2.4 3.8 1.1
18 5.7 3.8 1.7 0.3
123 6.3 2.7 4.9 1.8
```

```
In [15]: y_test
Out[15]: 124
                 2
         144
                 2
         137
                 2
         16
                 0
                 2
         108
         41
                 0
         9
                 0
         62
                 1
         149
                 2
         43
                 0
         141
                 2
         58
                 1
         130
                 2
         29
                 0
                 0
         14
         22
                 0
                 2
         143
         132
                 2
                 0
         25
                 2
         142
                 2
         125
         13
                 0
          55
                 1
         44
                 0
         97
                 1
         33
                 0
                 2
         101
         78
                 1
                 1
         70
         50
                 1
         11
                 0
         1
                 0
                 1
         56
                 0
         20
         111
                 2
                 1
         60
         127
                 2
                 0
         4
         103
                 2
         105
                 2
         30
                 0
         146
                 2
         80
                 1
                 0
         18
         123
                 2
```

Name: Species, dtype: int32

In [16]: y_train Out[16]: 138 . . Name: Species, Length: 105, dtype: int32

In [17]: sns.heatmap(df.corr())

Out[17]: <AxesSubplot:>


```
In [18]: import seaborn as sns
         sns.barplot(x=df["SepalLengthCm"],y=df['PetalLengthCm'])
```

Out[18]: <AxesSubplot:xlabel='SepalLengthCm', ylabel='PetalLengthCm'>

APPLYING DECISION TREE

```
In [54]: # taking criteria as 'entropy'
         from sklearn.tree import DecisionTreeClassifier
         clf=DecisionTreeClassifier(criterion='entropy')
         clf.fit(x train,y train)
Out[54]:
                     DecisionTreeClassifier
          DecisionTreeClassifier(criterion='entropy')
In [55]: # Now predicting the target class
         y_pred=clf.predict(x_test)
In [56]: y_pred
Out[56]: array([2, 2, 2, 0, 2, 0, 0, 1, 2, 0, 2, 1, 2, 0, 0, 0, 0, 2, 2, 0, 2, 2, 0,
                1, 0, 1, 0, 2, 1, 2, 1, 0, 0, 1, 0, 2, 1, 2, 0, 2, 2, 0, 2, 1, 0,
In [57]: # to see shape of training and testing data
In [58]: y_test.shape ,y_train.shape ,x_test.shape , x_train.shape
Out[58]: ((45,), (105,), (45, 4), (105, 4))
```

```
In [59]: y_test.head()
Out[59]: 124
                2
         144
                2
         137
                2
         16
                0
         108
                2
         Name: Species, dtype: int32
In [60]: y_pred[0:5]
Out[60]: array([2, 2, 2, 0, 2])
In [26]: print("Accuracy:",clf.score(x_test,y_test)*100)
         Accuracy: 97.7777777777777
In [27]: | print("Accuracy:", clf.score(x_train, y_train)*100)
         Accuracy: 100.0
In [28]: # to see confusion _matrix showing the true positive, true negative, false posit
         from sklearn.metrics import confusion matrix
         cm=confusion_matrix(y_test,y_pred)
         \mathsf{cm}
Out[28]: array([[17, 0, 0],
                [0, 9, 1],
                [ 0, 0, 18]], dtype=int64)
In [29]: from sklearn.metrics import precision_recall_fscore_support
         precision_recall_fscore_support(y_test,y_pred)
Out[29]: (array([1.
                           , 1.
                                       , 0.94736842]),
          array([1., 0.9, 1.]),
                       , 0.94736842, 0.97297297]),
          array([1.
          array([17, 10, 18], dtype=int64))
```

In [30]: # visualizing the confusion matrix of data import matplotlib.pyplot as plt from sklearn.metrics import plot_confusion_matrix color = 'green' matrix = plot_confusion_matrix(clf, x_test, y_test, cmap=plt.cm.Blues) matrix.ax_.set_title('Confusion Matrix', color=color) plt.xlabel('Predicted Label', color=color) plt.ylabel('True Label', color=color) plt.gcf().axes[0].tick_params(colors=color) plt.gcf().axes[1].tick_params(colors=color) plt.show()

C:\Users\Akshay\AppData\Local\Programs\Python\Python310\lib\site-packages\skl earn\utils\deprecation.py:87: FutureWarning: Function plot_confusion_matrix i s deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.

warnings.warn(msg, category=FutureWarning)


```
In [31]: # Visualizing the decision tree using matplotlib
from sklearn import tree
import matplotlib.pyplot as plt
plt.figure(figsize = (25,25))
tree.plot_tree(clf)
```

```
\nsamples = 105 \cdot value = [33, 40, 32]'),
      0]'),
      Text(0.55555555555556, 0.75, X[3] <= 1.75 \neq 0.991 \Rightarrow 0.991 = 72
     \nvalue = [0, 40, 32]'),
      \nsamples = 45\nvalue = [0, 40, 5]'),
      \nsamples = 39\nvalue = [0, 38, 1]'),
      0]'),
      Text(0.333333333333333, 0.25, 'entropy = 0.0\nsamples = 1\nvalue = [0, 0, 0]
     1]'),
      \nsamples = 6\nvalue = [0, 2, 4]'),
      Text(0.55555555555556, 0.25, 'entropy = 0.0\nsamples = 3\nvalue = [0, 0, 0]
     3]'),
      Text(0.77777777777778, 0.25, 'X[0] <= 6.95 \nentropy = 0.918 \nsamples = 3 \n
     value = [0, 2, 1]'),
      alue = [0, 2, 0]'),
      Text(0.88888888888888888, 0.0833333333333333, 'entropy = 0.0 \nsamples = 1 \nv
     alue = [0, 0, 1]'),
      Text(0.666666666666666, 0.583333333333334, 'entropy = 0.0\nsamples = 27\nv
     alue = [0, 0, 27]')]
```


In [32]: # accuracy score for the dataset
 from sklearn.metrics import accuracy_score
 clf=accuracy_score(y_test,y_pred)
 clf

Out[32]: 0.977777777777777

	precision	recall	f1-score	support
0	1.00	1.00	1.00	17
1	1.00	0.90	0.95	10
2	0.95	1.00	0.97	18
accuracy			0.98	45
macro avg	0.98	0.97	0.97	45
weighted avg	0.98	0.98	0.98	45

```
In [34]: # taking entropy as log loss
         from sklearn.tree import DecisionTreeClassifier
         clf=DecisionTreeClassifier(criterion='log_loss')
         clf.fit(x train,y train)
Out[34]:
                     DecisionTreeClassifier
          DecisionTreeClassifier(criterion='log loss')
In [35]: # Now predicting the target class
         y_pred_1=clf.predict(x_test)
         y_pred_1
Out[35]: array([2, 2, 2, 0, 2, 0, 0, 1, 2, 0, 2, 1, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0,
                1, 0, 1, 0, 2, 1, 2, 1, 0, 0, 1, 0, 2, 1, 2, 0, 2, 2, 0, 2, 1, 0,
                2])
In [36]: # accuracy score for the dataset
         from sklearn.metrics import accuracy_score
         clf=accuracy_score(y_test,y_pred_1)
         clf
Out[36]: 0.9777777777777777
In [37]: # metrics performance from classification report
         from sklearn.metrics import classification report
         print(classification_report(y_test, y_pred_1))
                       precision
                                    recall f1-score
                                                        support
                    0
                            1.00
                                      1.00
                                                 1.00
                                                             17
                    1
                            1.00
                                      0.90
                                                 0.95
                                                             10
                    2
                            0.95
                                      1.00
                                                0.97
                                                             18
                                                0.98
                                                             45
             accuracy
                                                             45
            macro avg
                            0.98
                                      0.97
                                                0.97
         weighted avg
                            0.98
                                      0.98
                                                0.98
                                                             45
 In [ ]:
In [47]: # Let's predict the target class(species) using the feature variables
In [62]: y_preds=clf.predict([[5.0,3.6,1.4,0.2]])
         y_preds
         C:\Users\Akshay\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\base.py:450: UserWarning: X does not have valid feature names, but Decis
         ionTreeClassifier was fitted with feature names
           warnings.warn(
```

Out[62]: array([0])

In []: # we get prediction as 0 which denotes iris setosa