2004 Vol. 6, No. 20 3453-3456

Azadiene Diels-Alder Cycloaddition of Fulvenes: A Facile Approach to the [1]Pyrindine System

Bor-Cherng Hong,* Jian-Lin Wu, Arun Kumar Gupta, Mahanandeesha Siddappa Hallur, and Ju-Hsiou Liao

Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, R.O.C.

chebch@ccunix.ccu.edu.tw

Received June 29, 2004

ABSTRACT

 R_1 ; R_2 =H, Me, Et, Pr, Ph, p-ClC₆H₄, -(CH₂)₅-; R_3 =CO₂Et, Ph; R_4 =Ts, SO₂Ph

Regioselective and stereoselective inverse-electron-demand Diels-Alder reaction of N-sulfonyl-1-aza-1,3-butadiene with fulvenes are described. The methodology provides an efficient and novel route to tetrahydro-[1]pyrindine systems.

Inverse-electron-demand Diels-Alder chemistry has attracted much attention over the past two decades, and many natural products have been prepared in this manner from N-sulfonyl-1-aza-1,3-butadienes.² Cycloadditions of fulvenes (e.g., [4 +3], [2+2], [4+2], [2+4], [6+4], [6+2], [6+2]

(1) For recent reviews, see: (a) Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002, 58, 379. (b) Behforouz, M.; Ahmadian, M. Tetrahedron 2000, 56, 5259. (c) Boger, D. L. Chemtracts: Org. Chem.

(2) For examples, see: (a) Boger, D. L.; Zhang, M. J. Org. Chem. 1992, 57, 3974. (b) Boger, D. L.; Hüter, O.; Mbiya, K.; Zhang, M. J. Am. Chem. Soc. 1995, 117, 11839. (c) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. J. Am. Chem. Soc. 1991, 113, 1713. (d) Boger, D. L.; Cassidy, K. C.; Nakahara, S. J. Am. Chem. Soc. 1993, 115, 10733. (e) Boger, D. L.;

Nakahara, S. J. Org. Chem. **1991**, 56, 880.
(3) (a) Rawson, D. I.; Carpenter, B. K.; Hoffmann, H. M. J. Am. Chem. Soc. 1979, 101, 1786. (b) Noyori, R.; Hayakawa, Y.; Takaya, H.; Murai, S.; Kobayashi, R.; Sonoda, N. J. Am. Chem. Soc. 1978, 100, 1759.(4) (a) Imafuku, K.; Arai, K. Synthesis 1989, 501. (b) Paquette, L. A.;

Colapret, J. A.; Andrews, D. R. J. Org. Chem. 1985, 50, 201.

(5) (a) Harre, M.; Raddatz, P.; Walenta R.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 480. (b) Gleiter R.; Borzyk, O. Angew. Chem., Int. Ed. Engl. 1995, 34, 1001.
(6) (a) Himeda, Y.; Yamataka, H.; Ueda I.; Hatanaka, M. J. Org. Chem.

1997, 62, 6529. (b) Nair, V.; Nair, A. G.; Radhakrishnan, K. V. Nandakumar, M. V.; Rath, N. P. Synlett 1997, 767.

(7) (a) Gupta, Y. N.; Doa, M. J.; Houk, K. N. J. Am. Chem. Soc. 1982, 104, 7336. (b) Yoshida, Z.-I.; Shibata, M.; Ogino, E.; Sugimoto, T. Angew. Chem., Int. Ed. Engl. 1985, 24, 60.

3]⁹) provide versatile and powerful approaches to various polycyclic systems and natural products. However, to the best of our knowledge, preparation of tetrahydro-[1]pyrindine systems from azadienes and fulvene has never been reported.¹⁰

Recently, we reported a new type of reaction: a formal [6 + 3] cycloaddition of fulvenes and 2H-azirine¹¹ and N-alkylidene glycine esters¹² that yields [2]pyrindines. In conjunction with our continuing efforts in fulvene chemis-

^{(8) (}a) For an example of an intermolecular [6 + 2] cycloaddition, see: Hong, B. C.; Shr, Y. J.; Wu, J. L.; Gupta, A. K.; Lin, K. J. Org. Lett. 2002, 4, 2249. (b) For an example of an intramolecular [6 + 2] cycloaddition, see: Suda, M.; Hafner, K. Tetrahedron Lett. 1977, 2453. (c) Wu T. C.; Houk, K. N. J. Am. Chem. Soc. 1985, 107, 5308.

⁽⁹⁾ Barluenga, J.; Martinez, S.; Suárez-Sobrino, A. L.; Tomás, M. J. Am. Chem. Soc. 2001, 123, 11113.

^{(10) (}a) Theoretically, the Diels-Alder reaction of isoxazole with alkenes should not proceed; see: Gonzãlez, J.; Taylor, E. C.; Houk, K. N. J. Org. Chem. 1992, 57, 3753. (b) A low-yielding [4+2] cycloaddition of isoxazole has been reported; see: Nesi, R.; Giomi, D.; Papaleo, S.; Turchi, S. J. Org. Chem. 1992, 57, 3713. (c) A low-yielding [4 + 2] cycloaddition of triazine has been reported; see: Diaz-Ortiz, A.; Hoz, A.; Prieto, P.; Carrillo, J. R.; Moreno, A.; Neunhoeffer, H. Synlett 2001, 236.

⁽¹¹⁾ Hong, B.-C.; Gupta, A. K.; Wu, M.-F.; Liao, J.-H. Tetrahedron Lett. **2004**, 45, 1663.

⁽¹²⁾ Hong, B.-C.; Gupta, A. K.; Wu, M.-F.; Liao, J.-H.; Lee, H.-H. Org. Lett. 2003, 5, 1689.

Figure 1. Examples of naturally occurring [1]pyrindine.

try,¹³ we have now developed an efficient and general hetero Diels—Alder cycloaddition of fulvenes with azadienes to give tetrahydro-[1]pyrindines.

Piperidine alkaloids are common constituents of plants and possess a wide range of biological activities. For example, streptazolin, a microbial metabolite, has antibiotic and antifungal acitivity, ¹⁴ while 5-O-(β -D-xylopyranosyl)-streptazolin shows in vitro cytotoxic activity against certain human cancer cell lines, Figure 1. The unique structural features and promising bioactivity of streptazolins and specifically streptazone C prompted us to explore the synthesis of this natural product via a fulvene cycloaddition strategy. ¹⁵ We initially envisioned that an electron-deficient azadiene such as ethyl (E)-4-[(phenylsulfonyl)imino]-2-butenoate¹⁶ and

(13) For previous papers in this series, see: (a) Hong, B.-C.; Shr, Y.-J.; Wu, J.-L.; Gupta, A. K.; Lin, K.-J. *Org. Lett.* **2002**, *4*, 2249. (b) Hong, B.-C.; Shr, Y.-J.; Liao, J.-H. *Org. Lett.* **2002**, *4*, 663.

(14) (a) Streptazolin, streptazon C, and streptazon A were isolated from Streptomyces FORM5, Stain A1, viridochromogenes and leteogriseus. See: (i) Puder, C.; Krastel, P.; Zeeck, A. J. Nat. Prod. 2000, 63, 1258. (ii) Puder, C.; Loya, S.; Hizi, A.; Zeeck, A. J. Nat. Prod. 2001, 64, 42. (iii) Grabley, S.; Kluge, H.; Hoppe, H.-U. Angew. Chem. 1987, 99, 692. (b) Abikoviromycin was isolated from Isolierung aus Streptomyces-Arten. See: (i) Sakagami, Y.; Utahara, R.; Yagishita, K.; Umezawa, H. J. Antibiot. **1958**, *11*, 231. (ii) Gurevich, A. I.; Kolosov, M. N.; Korobko, V. G.; Onoprienko, V. V. *Tetrahedron Lett.* **1968**, *9*, 2209. (iii) Maruyama, H.; Okamoto, S.; Kubo, Y.; Tsuji, G.; Fujii, I.; Ebizuka, Y.; Furihata, K.; Hayakawa, Y.; Nagasawa, H.; Sakuda, S. J. Antibiot. 2003, 56, 801. (c) Pyrindicin was isolated from Streptomyces sp. SCC 2313. See: Hegde, V. R.; Dai, P.; Patel, M. G.; Troyanovich, J. J.; Das, P.; Puar, M. S. J. Antibiot. 1994, 47, 110. (d) trans-5,7-Dimethyl-6,7-dihydro-5H-[1]pyrindine was isolated from aus Erdoel. See: Monti, S. A.; Schmidt, R. R.; Shoulders, B. A.; Lochte, H. L. J. Org. Chem. 1972, 37, 3834. (e) Octahydro-[1]pyrindine-3,4,5-triol was Isolation from Rhizoctonia leguminicola. See: Guengerich, F. P.; DiMari, S. J.; Broquist, H. P. J. Am. Chem. Soc. 1973, 95, 2055. (f) 1-Methyl-4-azafluorenone was isolated from branches of *Porcelia macro*carpa (Warm.). See: Chaves, M. H.; Santos, L. de A.; Lago, J. H. G.; Roque, N. F. J. Nat. Prod. 2001, 64, 40.

(15) Several synthetic approaches to streptazolins have been reported. (a) For 8α-hydroxystreptazolone, see: Izumi Nomura, I.; Mukai, C. *J. Org. Chem.* **2004**, *69*, 1803. (b) For streptazolin, see: Kozikowski, A. P.; Park, P. *J. Am. Chem. Soc.* **1985**, *107*, 1763.

(16) Prepared from the corresponding 4-oxo-crotonic acid ethyl ester and benzenesulfonamide (Et₃N, TiCl₄, CH₂Cl₂; 60% yield), see: Boger, D. L.; Curran, T. T. *J. Org. Chem.* **1990**, *55*, 5439 and ref 2c.

fulvene would undergo an inverse-electron-demand Diels—Alder reaction to afford the hetero [4 + 2] cycloadduct.¹⁷ In a model study, dimethyl fulvene (**1a**) and azadiene (**2a**) were stirred in CH₂Cl₂ for 65 h to afford [1]pyrindine **3a** as the only isolable product (70% yield), Table 1, entry 1, method A. A higher yield and a faster reaction time were achieved under microwave conditions (30 min, 96% yield, method

Figure 2. ORTEP plots for X-ray crystal structures of 4d and 5.

3454 Org. Lett., Vol. 6, No. 20, 2004

Table 1. Hetero Diels—Alder Reaction of 1-Aza-1,3-butadiene with Fulvene **1a**

2a: R₃ = CO₂Et; R₄ = Bs 2b: R₃ = Ph; R₄ = Ts

3: R₃ = CO₂Et; R₄ = Bs 4: R₃ = Ph; R₄ = Ts

	20.103 - 111,104 10		4. 113 1 11, 114 10			
entry	fulvene	product	metho d	time (h)	yield (%) ^a	
		$R_1=R_2=Me$,	Α	65	70	
	Me Me	$R_3=CO_2Et$,	В	0.48	96	
	Ĭ	$R_4=SO_2Ph;$ 3a	C	3.5	83	
			D	5.5	76	
1	1a		E	7	64	
			F	3.5	67	
			G	0.5	29^c	
			H	0.83	68	
			I	1.25	65	
	Me Me	$R_1=R_2=Me$,	Α	240	27^b	
	Ϋ́	R ₃ =Ph,	В	7	92	
2	$\langle \rangle$	R ₄ =Ts; 4a	C	65	80	
-	<u>س</u> 1a		D	72	48 ^c	
			E	72	46 ^c	
			F	72	54 ^c	
			G	5	36	
			H	7	65	
			Ι	7	48 ^c	

 a Isolated yield based on starting azadiene. b Recovered most of the starting material. c Recovered some starting material and many complicated mixtures. Method A: CH2Cl2, 25 °C. Method B: ClC6H3-, microwave, 125 °C. Method C: toluene, TinyClave, $\sim\!6$ bar, 110 °C. Method D: EDC, reflux, 85 °C. Method E: benzene, reflux, 80 °C. Method F: toluene, reflux, 110 °C. Method G: DMF, microwave, 110 °C. Method H: toluene, microwave, 100 °C. Method I: 1,4-dioxane, microwave, 90 °C.

B). The reaction was also attempted in a TinyClave¹⁸ at ca. 6 bar in toluene (3.5 h, 83% yield, method C). The structure of **3a** was assigned on the basis of IR, ¹H, ¹³C NMR, COSY, DEPT, HMQC, MS, and HRMS analysis. The reaction also

Table 2. Hetero Diels—Alder Reaction of 1-Aza-1,3-butadiene with Fulvenes

entry	fulvene	product	metho d	time (h)	yield (%) ^a
Et	Et Et	$R_1=R_2=Et, R_3=CO_2Et,$	Α	68	64
	Ţ	$R_4=SO_2Ph;$ 3b	В	0.48	92
	□ _{1b}	$R_1=R_2=Et, R_3=Ph,$	В	7	91
		$R_4 = Ts; 4b$	C	72	75
2	Dr. Dr	$R_1=R_2=Pr, R_3=CO_2Et,$	Α	68	63
		$R_4=SO_2Ph;$ 3c	В	0.5	87
	$\langle \hat{n} \rangle$	$R_1=R_2=Pr, R_3=Ph,$	В	7.5	82
	□ 1c	$R_4 = Ts; 4c$	C	72	74
3	Ph Ph	R ₁ =R ₂ =Ph, R ₃ =CO ₂ Et,	Α	56	73
	``` <b>\</b> ```	$R_4 = SO_2Ph;$ 3d	В	0.58	86
	(i)	$R_1=R_2=Ph$ , $R_3=Ph$ ,	В	7.5	77
	<u> </u>	$R_4 = Ts$ ; <b>4d</b>	С	65	68
CIC 4	CIC ₆ H ₄ CI	$R_1=R_2=p-C1C_6H_4,$	Α	45	82
	C6114C1	$R_3$ = $CO_2Et$ , $R_4$ = $SO_2Ph$ ; <b>3e</b>	В	0.67	89
	(h) 42	$R_1=R_2=p-ClC_6H_4$	В	8	70
	( <u>-</u> ) 1e	R ₃ =Ph, R ₄ =Ts; <b>4e</b>	C	60	67
5	abla	$R_1=R_2=-(CH_2)_4-,$	Α	78	63
	$\gamma$	$R_3$ = $CO_2Et$ , $R_4$ = $SO_2Ph$ ; <b>3f</b>	В	0.48	90
	<b>⇔</b>	$R_1=R_2=-(CH_2)_4-,$	В	7	85
	₩ 1f	$R_3=Ph, R_4=Ts; 4f$	C	75	56
6	^	$R_1=R_2=-(CH_2)_5-,$	Α	72	65
	Ų	$R_3$ = $CO_2Et$ , $R_4$ = $SO_2Ph$ ; <b>3g</b>	В	0.5	87
	人	$R_1=R_2=-(CH_2)_5-,$	В	7.5	82
	<b>™</b> 1g	$R_3=Ph, R_4=Ts; 4g$	C	75	57
7	Dh H	$R_1=Ph, R_2=H,$	Α	56	73(3:
	`" <b>\</b>	$R_3$ = $CO_2Et$ , $R_4$ = $SO_2Ph$ ; 3h	В	0.33	74(3:
		$R_1=Ph, R_2=H,$	В	6.7	73(1:
	<u>"</u> " 1h	$R_3=Ph, R_4=Ts; 4h$	С	62	71(1:
8	Mo H	$R_1=Me$ , $R_2=H$ ,	Α	45	67(3:
	Me X H	$R_3=CO_2Et$ , $R_4=SO_2Ph$ ; 3i	В	0.33	72(3:
	$\langle \hat{a} \rangle$	$R_1 = Me, R_2 = H,$	В	6	70(1:
	₩ 1i	$R_3=Ph, R_4=Ts; 4i$	C	54	65(1:

^a Isolated yield based on starting azadiene.

works in other solvents at reflux, albeit with lower yield (entry 1, methods D–I). The exclusive regio- and diastereoselectivity of the reaction can be attributed to two mutually reinforcing occurrences that stabilize the *endo*-head-to-head transition state as depicted in Scheme 1: (1) secondary orbital interactions between the azadiene and the  $C_5$ – $C_6$  double bond of fulvene and (2) the interaction between the ester carbonyl group and the  $C_1$ – $C_2$  double bond of fulvenes. The first feature is noticeably absent in the corresponding *exo*-head-to-head transition state, while the second interaction

Org. Lett., Vol. 6, No. 20, 2004

⁽¹⁷⁾ For other regioselective [2 + 4] cycloadditions of fulvenes to electron-deficient dienes, see: (a) Houk, K. N.; Luskus, L. J. J. Org. Chem. 1973, 38, 3836. (b) Bimanand, A. Z.; Gupta, Y. N.; Doa, M. J.; Eaton, T. A.; Houk, K. N. J. Org. Chem. 1983, 48, 403. (c) Lewis, N. J.; Collins, W. J.; Knight, D. B. J. Med. Chem. 1979, 22, 1505. (d) Nair, V.; Anilkumar, G.; Radhakrishnan, K. V.; Sheela, K. C.; Rath, N. P. Tetrahedron 1997, 53, 17361.

⁽¹⁸⁾ TinyClave (Büchiglassuster) is a miniature laboratory autoclave for safe small-scale experiment under pressure. It allows one to run chemical reactions in organic media under pressure up to 10 bar and 150  $^{\circ}$ C.

provides the high regioselectivity of the product and is disfavored in the *endo*-head-to-tail approach.¹⁹

The hetero [4+2] cycloaddition of 4-[(phenylsulfonyl)-imino]-2-butenoate with electron-rich alkenes is well documented, yet there is only one example of the corresponding reaction of zimtaldehydiminotosylate. In our hands, zimtal-dehydiminotosylate²¹ (**2b**) reacted with fulvene (**1a**) in CH₂-Cl₂ at ambient temperature to yield a similar hetero Diels—Alder adduct (**4a**). However, this reaction was much slower and gave a lower yield when compared to **2a** (240 h, 27% yield, vs 65 h, 70% yield, entries 1 and 2, Method A). Various solvents and reaction conditions were screened, and the best yield (92%) was observed under microwave conditions in ClC₆H₅ at 125 °C.

A series of homologous fulvenes were then reacted with 1-aza-1,3-butadienes **2a** and **2b** to afford the corresponding [1]pyrindines (entries 1–8, Table 2).²²

The structure of  $4d^{23}$  and the *p*-bromobenzoate derivative  $5^{24}$  (prepared from the corresponding dibromophenylfulvene) were unambiguously assigned by single-crystal X-ray analysis, Figure 1. Interestingly, the olefinic isomers of the

monoalkylfulvenes **1h** and **1i** gave the two olefinic regioisomers in a nearly 1:1 ratio.

In summary, the above regioselective and stereoselective hetero [4+2] cycloadditions emphasize a new feature of the reactivity of fulvene and azadienes. This methodology represents an unprecedented approach to tetrahydra-[1]-pyrindine. Further applications of this methodology toward total synthesis of natural products are currently under active investigation in our laboratory, and the results will be published in due course.

**Acknowledgment.** We are grateful to Dr. Sepehr Sarshar for valuable discussions. Financial support from National Science Council and National Health Research Institute are gratefully acknowledged.

**Supporting Information Available:** Crystallographic information files (CIF) for **4d** and **5**. Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

## OL048762C

3456 Org. Lett., Vol. 6, No. 20, 2004

⁽¹⁹⁾ Selectivity may also be explained by the LUMO (azadiene) and HOMO (fulvene) coefficients; see ref 2c.

⁽²⁰⁾ Croce, P.; Ferraccioli, R.; Rosa, C. L. J. Chem. Soc., Perkin Trans. 1 1994, 2499.

⁽²¹⁾ Prepared from toluene-4-sulfonamide and 3-phenyl-propenal (TiCl₄, NEt₃, CH₂Cl₂, 78%); see: Marchand, E.; Morel, G.; Sinbandhit, S. *Eur. J. Org. Chem.* **1942**, *7*, 1729.

⁽²²⁾ All new compounds were fully characterized by ¹H NMR, ¹³C NMR, DEPT, IR, MS, and HRMS. In most cases, COSY and HMQC spectra were also obtained. Yields refer to spectroscopically and chromatographically homogeneous (>95%) materials.

⁽²³⁾ Four independent molecules in an asymmetric unit. Crystallographic data for **4d**:  $C_{34}H_{29}NO_2S$ , M=515.64, monoclinic, space group  $P2_1$ , T=298 K, a=9.8136(10), b=37.446(4), c=15.0320(16) Å,  $\beta=90.095(2)^\circ$ , V=5523.9(10) Å³, Z=8, D=1.240 g/cm³,  $\lambda$  (Mo K $\alpha$ ) = 0.71073 Å, 34 867 reflections collected, 20 465 unique reflections, 1374 parameters refined on  $F^2$ , R=0.0852, w $R_2[F^2]=0.1495$  [13 042 data with  $F^2>2\sigma(F^2)$ ].

⁽²⁴⁾ Compound **5** was prepared from di-*p*-bromophenylfulvene with **2b**, method B; 85% yield. Crystallographic data for **5**:  $C_{34}H_{27}Br_2NO_2S$ , M=673.45, monoclinic, space group  $P2_1/n$ , T=298 K, a=17.5841(15), b=9.7852(8), c=18.2955(15) Å,  $\beta=110.9240(10)^\circ$ , V=2940.4(4) ų, Z=4, D=1.521 g/cm³,  $\lambda$  (Mo K $\alpha$ ) = 0.71073 Å, 34 131 reflections collected, 7166 unique reflections, 362 parameters refined on  $F^2$ , R=0.0457, w $R_2-[F^2]=0.1250$  [5487 data with  $F^2>2\sigma(F^2)$ ].