Chapter 4.3

The Graph of a Rational Function

4.3.1 Analyze the Graph of a Rational Function

We commented earlier that calculus provides the tools required to graph a polynomial function accurately. The same holds true for rational functions. However, we can gather together quite a bit of information about their graphs to get an idea of the general shape and position of the graph.

Example 1 How to Analyze the Graph of a Rational Function

- Step 1: Factor the numerator and denominator of R. Find the domain of the rational function.
- **Step 2:** Write R in lowest terms.
- **Step 3:** Locate the intercepts of the graph. Determine the behavior of the graph of R near each x-intercept using the same procedure as for polynomial functions. Plot each x-intercept and indicate the behavior of the graph near it.
- Step 4: Locate the vertical asymptotes. Graph each vertical asymptote using a dashed line.
- **Step 5:** Locate the horizontal or oblique asymptote, if one exists. Determine points, if any, at which the graph of R intersects this asymptote. Graph the asymptotes using a dashed line. Plot any points at which the graph of R intersects the asymptote.
- **Step 6:** Use the zeros of the numerator and denominator of *R* to divide the x-axis into intervals.

Now construct Table 11.

- **Step 7:** Analyze the behavior of the graph of R near each asymptote and indicate this behavior on the graph.
- **Step 8:** Use the results obtained in Steps 1 through 7 to graph R.

SUMMARY Analyzing the Graph of a Rational Function R

- **STEP 1:** Factor the numerator and denominator of *R*. Find the domain of the rational function.
- STEP 2: Write R in lowest terms.
- **STEP 3:** Locate the intercepts of the graph. The *x*-intercepts are the zeros of the numerator of *R* that are in the domain of *R*. Determine the behavior of the graph of *R* near each *x*-intercept.
- STEP 4: Determine the vertical asymptotes. Graph each vertical asymptote using a dashed line.
- **STEP 5:** Determine the horizontal or oblique asymptote, if one exists. Determine points, if any, at which the graph of *R* intersects this asymptote. Graph the asymptote using a dashed line. Plot any points at which the graph of *R* intersects the asymptote.
- **STEP 6:** Use the zeros of the numerator and denominator of *R* to divide the *x*-axis into intervals. Determine where the graph of *R* is above or below the *x*-axis by choosing a number in each interval and evaluating *R* there. Plot the points found.
- **STEP 7:** Analyze the behavior of the graph of *R* near each asymptote and indicate this behavior on the graph.
- **STEP 8:** Use the results obtained in Steps 1 through 7 to graph *R*.
- **Example 2** Analyzing the Graph of a Rational Function
- **Example 3** Analyzing the Graph of a Rational Function
- **Example 4** Analyzing the Graph of a Rational Function

Example 5 Analyzing the Graph of a Rational Function with a Hole

4.3 Assess Your Understanding

Skill Building

7.
$$R(x) = \frac{x+1}{x(x+4)}$$

- (a) $Dom(R) = \{x : x \neq 0, x \neq -4\}.$
- (b) Since there are no common factors between the numerator and denominator, *R* is in lowest terms.
- (c) Since 0 is not in the domain of R, there is no y-intercept. To find x-intercepts, solve x+1=0 or x=-1. Therefore, the only real zero of the numerator is x=-1, i.e. the only x-intercept of the graph of R is x=-1.

Near -1:
$$R(x) = \frac{x+1}{x(x+4)} \approx \frac{x+1}{(-1)(-1+4)} = -\frac{1}{3}(x+1)$$

Plot the point (-1,0) and draw a line through (-1,0) with a negative slope.

- (d) Since R is in lowest terms, the vertical asymptotes are x = 0 and x = -4.
- (e) Since R is proper, the horizontal asymptote is y = 0 intersected at (-1,0) because

$$R(x) = \frac{x+1}{x(x+4)} = 0 \Rightarrow x+1 = 0 \Rightarrow x = -1$$

(f) Now construct a table.

Table 1 for Question No. 7

Interval	Number picked	Value of R	Point on graph	Location of graph
$(-\infty, -4)$	-5	$R(-5) = -\frac{4}{5}$	$\left(-5,-\frac{4}{5}\right)$	Below the <i>x</i> -axis
(-4,-1)	-2	$R(-2) = \frac{1}{4}$	$\left(-2,\frac{1}{4}\right)$	Above the <i>x</i> -axis
(-1,0)	$-\frac{1}{2}$	$R\left(-\frac{1}{2}\right) = -\frac{2}{7}$	$\left(-\frac{1}{2}, -\frac{2}{7}\right)$	Below the <i>x</i> -axis
$(0,+\infty)$	1	$R(1) = \frac{2}{5}$	$\left(1,\frac{2}{5}\right)$	Above the <i>x</i> -axis

9.
$$R(x) = \frac{3x+3}{2x+4} = \frac{3(x+1)}{2(x+2)} = \frac{3}{2} \frac{(x+2)-1}{x+2} = \frac{3}{2} \left(1 - \frac{1}{x+2}\right) = \frac{3}{2} - \frac{3}{2(x+2)}$$

- (a) $Dom(R) = \{x : x \neq -2\}.$
- (b) Since there are no common factors between the numerator and denominator, *R* is in lowest terms.
- (c) Since 0 is in the domain of R, the y-intercept is $R(0) = \frac{3}{4}$. To find x-intercepts, solve 3(x+1) = 0 or x = -1. Therefore, the only real zero of the numerator is -1, i.e. the only x-intercept of the graph of R is -1.

Near -1:
$$R(x) = \frac{3(x+1)}{2(x+2)} \approx \frac{3(x+1)}{2(-1+2)} = \frac{3}{2}(x+1)$$

Plot the point (-1,0) and draw a line through (-1,0) with a positive slope.

- (d) Since R is in lowest terms, the only vertical asymptote is x = -2.
- (e) Since R is proper, the horizontal asymptote is $y = \frac{3}{2}$ which does not intersect at (-1,0) because

$$R(x) = \frac{3x+3}{2x+4} = \frac{3}{2} \implies 6x+12 = 6x+6 \implies 12 = 6$$
 is absurd

(f) Now construct a table.

Table 2 for Question No. 9

Interval	Number picked	Value of R	Point on graph	Location of graph
$(-\infty, -2)$	-3	R(-3) = 3	(-3,3)	Above the x-axis
(-2,-1)	$-\frac{3}{2}$	$R\left(-\frac{3}{2}\right) = -\frac{3}{2}$	$\left(-\frac{3}{2}, -\frac{3}{2}\right)$	Below the <i>x</i> -axis
$(-1,+\infty)$	0	$R(0) = \frac{3}{4}$	$\left(0,\frac{3}{4}\right)$	Above the <i>x</i> -axis

11.
$$R(x) = \frac{3}{x^2 - 4} = \frac{3}{(x+2)(x-2)}$$

- (a) $Dom(R) = \{x : x \neq -2, x \neq 2\}.$
- (b) Since there are no common factors between the numerator and denominator, *R* is in lowest terms.
- (c) Since 0 is in the domain of R, the y-intercept is $R(0) = -\frac{3}{4}$ and there is no x-intercept.
- (d) Since R is in lowest terms, the vertical asymptotes are x = -2 and x = 2.

- (e) Since *R* is proper, the horizontal asymptote is y = 0.
- (f) Now construct a table.

Table 3 for Question No. 11

Interval	Number picked	Value of R	Point on graph	Location of graph
$(-\infty, -2)$	-3	$R(-3) = \frac{3}{5}$	$R\left(-3,\frac{3}{5}\right)$	Above the <i>x</i> -axis
(-2, 2)	0	$R(0) = -\frac{3}{4}$	$\left(0,-\frac{3}{4}\right)$	Below the x-axis
(2,+∞)	3	$R(3) = \frac{3}{5}$	$\left(3,\frac{3}{5}\right)$	Above the x-axis

13.
$$P(x) = \frac{x^4 + x^2 + 1}{x^2 - 1}$$

6.		<u>1</u> →		
	Interval	(-∞, -1)	(-1, 1)	(1, ∞)
	Number Chosen	-2	0	2
	Value of P	P(-2) = 7	P(0) = -1	P(2) = 7
	Location of Graph	Above x-axis	Below x-axis	Above x-axis
	Point on Graph	(-2,7)	(0, -1)	(2, 7)

15.
$$H(x) = \frac{x^3 - 1}{x^2 - 9}$$

6. (-3, 1)(1, 3)Interval $(-\infty, -3)$ (3, ∞) Number Chosen $H(0) = \frac{1}{9}$ $H(-4) \approx -9.3$ H(2) = -1.4H(4) = 9Value of H Below x-axis Above x-axis Above x-axis Location of Graph Below x-axis $\left(0,\frac{1}{9}\right)$ (-4, -9.3)(2, -1.4)(4, 9)Point on Graph

-	- 1
7/8.	y (4, 9)
	$\left(0,\frac{1}{9}\right)$ 8 $y = x$
	(-4, -9.3) 10 x
	x = -3 $x = 3$

17.
$$R(x) = \frac{x^2}{x^2 + x - 6}$$

6.

	→	3	0	2
Interval	$(-\infty, -3)$	(-3, 0)	(0, 2)	(2, ∞)
Number Chosen	-6	-1	1	3
Value of R	R(-6) = 1.5	$R(-1) = -\frac{1}{6}$	R(1) = -0.25	R(3) = 1.5
Location of Graph	Above x-axis	Below x-axis	Below x-axis	Above x-axis
Point on Graph	(-6, 1.5)	$\left(-1,-\frac{1}{6}\right)$	(1, -0.25)	(3, 1.5)

19.
$$G(x) = \frac{x}{x^2 - 4}$$

6.

	-2	2	0	2
Interval	(-∞, -2)	(-2, 0)	(0, 2)	(2, ∞)
Number Chosen	-3	-1	1	3
Value of G	$G(-3) = -\frac{3}{5}$	$G(-1) = \frac{1}{3}$	$G(1) = -\frac{1}{3}$	$G(3) = \frac{3}{5}$
Location of Graph	Below x-axis	Above x-axis	Below x-axis	Above x-axis
Point on Graph	$\left(-3,-\frac{3}{5}\right)$	$\left(-1,\frac{1}{3}\right)$	$\left(1,-\frac{1}{3}\right)$	$\left(3,\frac{3}{5}\right)$

21.
$$R(x) = \frac{3}{(x-1)(x^2-4)}$$

23.
$$H(x) = \frac{x^2 - 1}{x^4 - 16}$$

25.
$$F(x) = \frac{x^2 - 3x - 4}{x + 2}$$

27.
$$R(x) = \frac{x^2 + x - 12}{x - 4}$$