

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica DEM/POLI/UFRJ

Motores de Combustão Interna Relatório – Lista de Exercício em Excel

Maria Elisa Tomás Matias Alexandre (121147062) Kevin Monteiro Santos (121137059) Professor: Sílvio Carlos Aníbal de Almeida

Universidade Federal do Rio de Janeiro

Sumário

1. Introdução	3
2. Metodologia	4
2.1. Primeira questão	4
2.2. Segunda questão	5
2.3. Terceira questão	6
2.4. Quarta questão	7
2.5. Quinta questão	8
2.6. Sexta questão	9
2.7. Sétima questão	10
2.7.1. Sétima questão letra (a)	10
2.7.2 Sétima questão letra (b)	11
3. Conclusão	13
Figuras	
Figura 1	5
Figura 2	ϵ
Figura 3	7
Figura 4	8
Figura 5	8
Figura 6	9
Figura 7	11
Figura 8	12

1. Introdução

O presente relatório tem como objetivo apresentar a resolução de uma lista de exercícios envolvendo cálculos fundamentais relacionados a motores de combustão interna, utilizando o Microsoft Excel como ferramenta de apoio. A proposta do trabalho consiste em desenvolver uma planilha capaz de realizar os cálculos de forma genérica, permitindo a inserção de diferentes parâmetros de entrada e fornecendo, como saída, grandezas como cilindrada, volume total, volume morto, curso, razão de compressão e rendimento, entre outras.

Durante a execução das atividades, foram aplicadas fórmulas matemáticas e conceitos de engenharia de motores, com atenção especial à padronização das unidades e à clareza na notação das variáveis. Além disso, os resultados obtidos na planilha são apresentados neste relatório em conjunto com a explicação detalhada das fórmulas utilizadas, garantindo o entendimento do procedimento de cálculo.

Para organizar e reaproveitar os cálculos de forma eficiente, foi utilizada também a função LAMBDA do Excel, que possibilitou a criação de módulos personalizados para cada exercício. Essa abordagem tornou a planilha mais estruturada e reutilizável, facilitando a aplicação dos mesmos cálculos para diferentes entradas.

2. Metodologia

Nesta seção são apresentadas as fórmulas utilizadas para a resolução de cada exercício proposto, bem como a origem dos cálculos aplicados e a explicação das variáveis envolvidas. Para cada questão, são detalhados os parâmetros de entrada, as etapas de cálculo e os resultados obtidos, com as respectivas unidades. As unidades foram padronizadas de acordo com o enunciado do trabalho, de forma a manter consistência nos cálculos: todos os comprimentos (diâmetro, curso, espessura da junta, etc.) foram expressos em milímetros (mm) e os volumes (cilindrada, volume total e volume morto) em centímetros cúbicos (cm³).

2.1 Primeira questão

Variáveis de entrada:

• Número de cilindros (Z): 4

• Diâmetro (D): 8,2 cm (82 mm)

• Curso (S): 7,8 cm (78 mm)

• Taxa de compressão (r): 8,5

Variáveis de saída:

• Cilindrada ou deslocamento volumétrico do motor (V) em cm³

• Cilindrada unitária (Vu) em cm³

• Volume total de um cilindro (V1) em cm³

• Volume morto (V2) em cm³

Para calcular a cilindrada do motor ou o volume total deslocado soma-se o volume deslocado correspondente a cada cilindro do motor:

$$V = z * \frac{\pi D^2 S}{4}$$

Para calcular o volume total de um cilindro é necessário dividir a cilindrada total pelo número de cilindros do motor para encontrar a cilindrada unitária, o volume total do cilindro será a cilindrada unitária acrescido do volume morto:

$$V_{u} = \frac{V}{z} = \frac{\pi D^{2} S}{4}$$

$$r = \frac{V1}{V2} = \frac{V_{u} + V2}{V2} = \frac{V_{u}}{V2} + 1 \rightarrow V2 = \frac{V_{u}}{r - 1}$$

$$Vtotal_{1cil} = V1 = V_{u} + \frac{V_{u}}{r - 1} = \frac{r * V_{u}}{r - 1}$$

$$\therefore V1 = \frac{r * V_{u}}{r - 1}$$

Para calcular o volume morto:

$$V2 = \frac{V_u}{r-1} (*)$$
Ou
$$V2 = V1 - V_u$$

(*) Expressão usada no Excel

Questão 1			
Dados de Entrada			
Número de Cilindros (z)	4		
Diâmetro do Cilindro (D)	82	mm	
Curso (s)	78	mm	
Taxa de Compressão (r _v)	8,5		
Dados de Saída			
Cilindrada Unitária (V _u)	411,92	cm³	
Cilindrada (V)	1647,68	cm ³	
Volume Total de um Cilindro (V ₁)	466,84	cm ³	
Volume da Câmara de Combustão (V₂)	54,92	cm ³	

Figura 1: Questão 1 (Excel)

2.2 Segunda questão

Variáveis de entrada:

- Número de cilindros (Z): 6
- Cilindrada total (V): 5,2 L (5200 cm³)
- Diâmetro (D): 10,2 cm (102 mm)
- Volume morto (V2): 54,2 cm³

Variáveis de saída:

- Cilindrada unitária (Vu) em cm³
- Curso do pistão (S) em mm
- Razão de compressão (r)
- Volume total de um cilindro (V1) em cm³

Para calcular o curso do pistão:

$$V = z * \frac{\pi D^2 S}{4} \rightarrow S = \frac{4V}{z\pi D^2}$$

Para calcular a razão de compressão:

$$V_u = \frac{V}{Z} = \frac{\pi D^2 S}{4}$$

$$r = \frac{V1}{V2} = \frac{V_u + V2}{V2} = \frac{V_u}{V2} + 1$$

Para calcular volume total de um cilindro:

$$V1 = V_u + V2$$

Questão 2		
Dados de Entrada		
Número de Cilindros (z)	6	
Cilindrada (V)	5200	cm ³
Diâmetro do Cilindro (D)	102	mm
Volume da Câmara de Combustão (V ₂)	54,2	cm³
Dados de Saída		
Cilindrada Unitária (V _u)	866,67	cm³
Curso(s)	106,06	mm
Taxa de Compressão (r _v)	16,99	
Volume Total de um Cilindro (V ₁)	920,87	cm ³

Figura 2: Questão 2 (Excel)

2.3 Terceira questão

Variáveis de entrada:

- Número de cilindros (Z): 4
- Diâmetro (D): 7,8 cm (78 mm)
- Curso do pistão (S): 8,2 cm (82 mm)
- Razão de compressão inicial (ri): 8
- Razão de compressão depois do rebaixo (rd): 12
- Espessura da junta (t): 1 mm

Variáveis de saída:

- Volume da câmara de combustão antes do rebaixo (Vcci) em cm³
- Rebaixo do cabeçote (h) em mm
- Volume da câmara de combustão depois do rebaixo (Vccd) em cm³
- Rendimento antes e depois de rebaixar o cabeçote (Ei e Ed)

Para calcular o volume da câmara de combustão antes do rebaixo:

$$V_{u} = \frac{V}{z} = \frac{\pi D^{2}S}{4}$$

$$ri = \frac{V1i}{V2i} = \frac{V_{u} + V2i}{V2i} = \frac{V_{u}}{V2i} + 1 \rightarrow V2i = \frac{V_{u}}{ri - 1}$$

$$Vcci = V2i - \frac{\pi D^{2}t}{4}$$

Para calcular o volume da câmara de combustão depois do rebaixo:

$$V2d = \frac{V_u}{rd - 1}$$

$$Vccd = V2d - \frac{\pi D^2 t}{4}$$

Para calcular o rebaixo do cabeçote:

$$\frac{\pi D^2}{4} * h = Vcci - Vccd$$

$$h = \frac{4 * (Vcci - Vccd)}{\pi D^2}$$

Para calcular o rendimento antes e depois do rebaixo:

$$Ei = 1 - \frac{1}{ri^{k-1}}$$

$$Ed = 1 - \frac{1}{rd^{k-1}}$$

Questão 3		
Dados de Entrada		
Número de Cilindros (z)	4	
Diâmetro do Cilindro (D)	78	mm
Curso (s)	82	mm
Taxa de Compressão Inicial (r _{vi})	8	
Espessura da junta (e _j)	1	mm
Taxa de Compressão Final (r _{vt})	12	
Dados de Saída		
Cilindrada Unitária (V _u)	391,83	cm³
Volume Morto Inicial (V _{mi})	55,98	cm ³
Volume da Junta (V _i)	4,78	cm³
Volume Inicial da Câmara de Combustão (V _{cci})	51,2	cm ³
Volume Morto Final (V _{mf})	35,62	cm³
Volume Final da Câmara de Combustão (V _{ccf})	30,84	cm ³
Espessura de Rebaixamento do Cabeçote (e _c)	4,26	mm
Rendimento Inicial	0,56	
Rendimento Final	0,63	

Figura 3: Questão 3 (Excel)

2.4 Quarta questão

Variáveis de entrada:

- Número de cilindros (Z): 6
- Diâmetro antes (Di): 10 cm (100 mm)
- Cilindrada total no início (Vi): 4,8 L (4800 cm³)
- Cilindrada total no final (Vd): 5,4 L (5400 cm³)

Variáveis de saída:

- Novo diâmetro (Dd) em mm
- Curso do pistão (S) em mm

Sem alterar o virabrequim o curso do pistão se mante o mesmo:

$$Vi = z * \frac{\pi Di^2 S}{4} \to S = \frac{4Vi}{Z\pi D^2}$$

$$Vd = z * \frac{\pi Dd^2S}{4} \rightarrow Dd = 2 * \sqrt{\frac{Vd}{z\pi S}}$$

Questão 4		
Dados de Entrada		
Número de Cilindros (z)	6	
Cilindrada Inicial (V _i)	4800	cm ³
Diâmetro do Cilindro (D)	100	mm
Cilindrada Final (V _f)	5400	cm ³
Dados de Saída		
Cilindrada Unitária Inicial (V _{ui})	800	cm ³
Cilindrada Unitária Final (V _{ut})	900	cm³
Curso (s)	101,86	mm
Diâmetro Final (D _t)	106,1	mm

Figura 4: Questão 4 (Excel)

2.5 Quinta questão

Variáveis de entrada:

- Número de cilindros (Z): 8
- Razão de compressão (r): 9
- Cilindrada total (V): 5 L (5000 cm³)

Variáveis de saída:

- Cilindrada unitária (Vu) em cm³
- Volume total de 1 cilindro (V1)

Para calcular cilindrada unitária:

$$V_u = \frac{V}{z}$$

Para calcular o volume total de 1 cilindro:

$$r = \frac{V1}{V2} = \frac{V_u + V2}{V2} = \frac{V_u}{V2} + 1 \to V2 = \frac{V_u}{r - 1}$$

$$V1 = V_u + V2$$

$$V1 = \frac{rV_u}{r - 1}$$

Questão 5			
Dados de Entrada			
Número de Cilindros (z)	8		
Cilindrada (V)	5000	cm ³	
Taxa de Compressão (r _v)	9		
Dados de Saída			
Cilindrada Unitária (V _u)	625	cm³	
Volume Total de um Cilindro (V ₁)	703,13	cm ³	

Figura 5: Questão 5 (Excel)

2.6 Sexta questão

Variáveis de entrada:

- Número de cilindros (Z): 4
- Razão de compressão (r): 8,5
- Cilindrada total (V): 1,6 L (1600 cm³)
- Curso do pistão (S): 9 cm (90 mm)
- Espessura da junta antes (ti): 4 mm
- Espessura da junta depois (td): 3 mm

Variáveis de saída:

- Cilindrada unitária (Vu) em cm³
- Diâmetro do cilindro (D) em mm
- Volume morto antes (V2i) em cm³
- Volume morto depois (V2d) em cm³
- Razão de compressão depois (r)

$$V_{u} = \frac{V}{z}$$

$$V2i = \frac{V_{u}}{ri - 1}$$

$$Vcci = V2i - \frac{\pi D^{2}}{4}ti$$

$$Vccd = Vcci$$

$$V2d = Vcci + \frac{\pi D^{2}}{4}td$$

$$V2d = \frac{V_{u}}{rd - 1} \rightarrow rd = \frac{V_{u}}{V2d} + 1$$

Questão 6		
Dados de Entrada		
Espessura da junta original (eji)	4	mm
Espessura da junta alternativa (e _{ja})	3	mm
Cilindrada (V)	1600	cm ³
Número de Cilindros (z)	4	
Curso (s)	90	mm
Taxa de Compressão Inicial (r _{vi})	8,5	
Dados de Saída		
Cilindrada Unitária (V _u)	400	cm³
Diâmetro do Cilindro (D)	75,2	mm
Volume Morto Inicial (V _{mi})	53,33	cm ³
Volume da Junta Inicial (V _{ji})	17,77	cm ³
Volume da Câmara de Combustão (Vcc)	35,56	cm3
Volume da Junta Final(V _{jt})	13,32	cm3
Volume Morto Final (V _{mt})	48,88	cm ³
Taxa de Compressão Final (r _{vt})	9,18	

Figura 6: Questão 6 (Excel)

2.7 Sétima questão

2.7.1 Sétima questão/Letra (a)

Variáveis de entrada:

- Motor 4 tempos (x): 2
- Razão de compressão inicial (ri): 16,3
- Cilindrada total (V): 10 L (10000 cm³)
- Curso do pistão (S): 13,6 cm (136 mm)
- Diâmetro (D): 125 mm
- Potência máxima do ciclo (Nc): 246 kW
- Rotação (n): 2100 rpm

Variáveis de saída:

- Cilindrada unitária (Vu) em cm³
- Número de cilindros (Z):
- Trabalho médio do ciclo (Wc) em kJ
- Velocidade média do pistão (Vp) em m/s
- Pressão Media Efetiva (PME) em kPa

Para calcular a cilindrada unitária:

$$V_u = \frac{\pi D^2 S}{4}$$

Para calcular o trabalho do ciclo:

$$Wc = \frac{\left(\frac{Nc}{Z}\right)x}{n}$$

Para calcular a velocidade média do pistão:

$$Vp = 2 s \frac{n}{60}$$

Para calcular a Pressão Media Efetiva:

$$PME = \frac{Wc}{V1 - V2} = \frac{Wc}{V_u}$$

Questão 7 Letra A		
Dados de Entrada		
Motor 4 Tempos (x)	2	
Cilindrada (V)	10000	cm ³
Diâmetro (D)	125	mm
Curso (s)	136	mm
Taxa de Compressão Inicial (r _{vi})	16,3	
Potência Máxima do Ciclo (N _c)	246	kW
Rotação (n)	2100	rpm
Dados de Saída		
Cilindrada Unitária (V _u)	1668,97	cm ³
Número de Cilindros (z)	6	
Trabalho Médio do Ciclo (W _c)	2,34	kJ
Velocidade Média do Pistão (v _p)	9,52	m/s
Pressão Média Efetiva (PME)	14,06	Bar

Figura 7: Questão 7a (Excel)

2.7.2 Sétima questão/Letra (b)

Variáveis de entrada:

- Motor 4 tempos (x): 2
- Razão de compressão inicial (ri): 16,3
- Cilindrada total (V): 1,47 L (1470 cm³)
- Curso do pistão (S): 8 cm (80 mm)
- Diâmetro (D): 76,5 mm
- Potência máxima do ciclo (Nc): 37 kW
- Rotação (n): 5000 rpm

Variáveis de saída:

- Cilindrada unitária (Vu) em cm³
- Número de cilindros (Z):
- Trabalho médio do ciclo (Wc) em kJ
- Velocidade média do pistão (Vp) em m/s
- Pressão Media Efetiva (PME) em kPa

Para calcular a cilindrada unitária:

$$V_u = \frac{\pi D^2 S}{4}$$

Para calcular o trabalho do ciclo:

$$Wc = \frac{\left(\frac{Nc}{Z}\right)x}{n}$$

Para calcular a velocidade média do pistão:

$$Vp = 2 s \frac{n}{60}$$

Para calcular a Pressão Media Efetiva:

$$PME = \frac{Wc}{V1 - V2} = \frac{Wc}{V_u}$$

Questão 7 Letra B		
Dados de Entrada		
Motor 4 Tempos (x)	2	
Cilindrada (V)	1470	cm ³
Diâmetro (D)	76,5	mm
Curso (s)	80	mm
Taxa de Compressão Inicial (r _{vi})		
Potência Máxima do Ciclo (N _c)	37	kW
Rotação (n)	5000	rpm
Dados de Saída		
Cilindrada Unitária (V _u)	367,71	cm ³
Número de Cilindros (z)	4	
Trabalho Médio do Ciclo (W _c)	0,22	kJ
Velocidade Média do Pistão (v _p)	13,33	m/s
Pressão Média Efetiva (PME)	6,04	Bar

Figura 8: Questão 7b (Excel)

3. Conclusão

O trabalho permitiu aplicar conceitos de motores de combustão interna de forma prática, utilizando o Excel para realizar cálculos de forma organizada e precisa. Foram determinados parâmetros importantes, como cilindrada, volume morto, curso e rendimento, reforçando a compreensão da teoria e a importância da padronização de unidades.