

ELTE TTK

MÖSSBAUER-EFFEKTUS VIZSGÁLATA

Olar Alex

Kivonat

A mérés célja az volt, hogy megismerkedjünk a legpontosabb energia mérési módszerrel a magfizikában, azaz a Mössbauer-effektussal. Ennek során különböző minták energiaátmeneteit vizsgáltuk, elektromos és mágneses térben.

Tartalomjegyzék

I.	Elméleti összefoglaló	2
II.	Mérési eszközök	2
II	IA mérés menete	2
	III.1. Kalibrálás	2
	III.2. Energia-eltolódás a lágyváshoz képest	4
	III.3. A gerjesztett állapotok élettartama	5
	III.4. Elektromos térgradiens a nitroprusszid mintában	
	III.5. Az ${}^{57}Fe$ vas mágneses momentuma, másneses térbeli felhasadás	
ΙV	Lehetséges hibák, gravitációs vöröseltolódás	8
	IV.1. Gravitációs vöröseltolódás	8

I. Elméleti összefoglaló

Gerjesztett állapotó atommagok elektromágneses sugárzást bocsáthatnak ki, gammasugárzás formájában, amikor alacsonyabb energiaszintre kerülnek. Ennek során a kibocsátott γ -foton energiája már kisebb, mint egy ugyanilyen mag gerjesztéséhez szükséges energia, hiszen az anyamag visszalökődik. Ahhoz, hogy a kibocsátott foton újra gerjeszteni tudjun a természetes vonalszélességét (energiájának bizonytalanságát) kell növelni. A labor során használt módszer egy hangfalhoz kötötte a mintákat, amiket az állandó gyorsulással rezgetett. A fotonok Doppler-effektusa okozta a vonalkiszélesedést. Így a fotonok már újra el tudtak nyelődni. Az anyagok vizsgálata során elektromos és mágneses térbe is helyezzük a mintákat, vizsgálva például ezáltal a Zeemann-felhasadást.

A Doppler-effektus a sebességgel arányos

$$\Delta E = E\sqrt{\frac{c+v}{c-v}} - E \approx E\frac{v}{c}$$

Azaz a sebességgel arányos a vonalkiszélesedés. A mérés egy sokcsatornás analizátorra van kötve, amely pedig egy proporcionális kamráról kapja az impulzusokat. Ez az ^{57}Co 14.4 keV-es γ -fotonjaira érzékeny, amivel a mintát besugározzuk. A mérési berendezés része egy diszkriminátor is, amely a kisebb és nagyobb energiájú fotonokat nem engedi a sok csatornás analizátorra. A spektrum mérése számítógéppel történt a különböző minták behelyezése után.

II. Mérési eszközök

- sokcsatornás anlizátor kártya
- számítógép
- diszkriminátor
- ⁵⁷Co, valamint nátriumprusszid, lágyvas és rozsdamentes-acél minták

III. A mérés menete

Először a diszkriminátort állítottuk a megfelelő tartományba, hogy ténylegesen csak a 14.4~keV-es fotonokat észleljük. A lineáris csatornaszám, energia kalibráláshoz a lágyvas minta Mössbauer-sprektrumát hasznátluk fel.

III.1. Kalibrálás

A két legszélső csúcs közötti távolság, Doppler-sebességben adott volt, $d_v=10.6162\frac{mm}{s}$, míg a csúcsok távolságát Lorentz-gröbék illesztésével nyertük. Az illesztés és a kalibrálás értéke

1. ábra. A lágyvas sprektruma és a rá illesztett Lorentz-görbék

Innen leolvasható, hogy a két szélső csúcs távolsága $d_{ch}=366.6\pm0.1$ csatornaszámban megadva. Ebből számolható a az energia-csatorna átvátálsi tényező (ezután Δ^*)

paraméter	illesztett érték	
Lágyvas		
alapvonal (B)	61883 ± 22	
1. amplitúdó (A_1)	8418 ± 83	
1. csúcs helye (felhasadás nélkül) $(x_{0,1})$	252.09 ± 0.07	
1. csúcs szélessége (Γ_1)	13.86 ± 0.2	
1. felhasadás (S_1)	366.6 ± 0.1	
2. amplitúdó (A_2)	7682 ± 86	
2. csúcs helye (felhasadás nélkül) $(x_{0,2})$	251.86 ± 0.07	
2. csúcs szélessége (Γ_2)	12.62 ± 0.2	
2. felhasadás (S_2)	212.8 ± 0.1	
3. amplitúdó (A_3)	4327 ± 89	
3. csúcs helye (felhasadás nélkül) $(x_{0,3})$	252.06 ± 0.12	
3. csúcs szélessége (Γ_3)	11.89 ± 0.4	
3. felhasadás (S_3)	57.92 ± 0.24	

1. táblázat. Illesztett görbe paraméterei

$$\Delta^* = E_{\Gamma} \frac{d_v}{d_{ch} \cdot c} = (1.3909 \pm 0.0005) \cdot 10^{-9} eV$$

Azaz megkaptuk a Doppler-effektusból származó energiakiszélesedés értékét csatornaszámra vonatkoztatva.

III.2. Energia-eltolódás a lágyváshoz képest

Ehhez meg kellett határozni a nem felhasadt csúcs helyét mindhárom esetben, ehhez a további két spektrumot is illeszteni kellett és mivel 6 kölönböző csúcs volt a lágyvasnál, 3 különböző középértékkel, így azokat átlagoltuk.

Az illesztések paraméterei pedig

paraméter	illesztett érték	
Rozsdamentes acél		
alapvonal (B)	1170.6 ± 1.7	
amplitúdó (A)	342.0 ± 13.3	
csúcs helye (x_0)	247.65 ± 0.32	
szélesség (Γ)	16.57 ± 0.96	
Nitroprusszid-nátrium		
alapvonal (B)	2631.9 ± 2.6	
amplitúdó (A)	364.5 ± 18.7	
csúcs helye (felhasadás nélkül) (x_0)	242.55 ± 0.25	
szélesség (Γ)	9.86 ± 0.73	
felhasadás (S)	59.51 ± 0.50	

2. táblázat. A további illesztett görbék paraméterei

2. ábra. A nitroprusszid sprektruma és a 3. ábra. Az acél sprektruma és a rá illeszrá illesztett Lorentz-görbék tett Lorentz-görbe

	csúcs helye	abszolút hiba
lágyvas	252.003	0.157
nitroprusszid	242.555	0.252
acél	247.648	0.322

3. táblázat. A csúcsok helyei és azok hibái

Ebből az előbbi Δ^* paraméterrel számolható a vas-acél és vas-nitroprusszid eltolódás

	ernegia $[10^{-9} \text{ eV}]$	abszolút hiba $[10^{-9} \text{ eV}]$
lágyvas-acél	6.0579	0.4999
lágyvas-nitroprusszid	13.1418	0.4182

4. táblázat. Izomér eltolódás

Az energia értékekhez a lágyvascsúcshoz képesti csatornaszámkülönbségét (Δ_{ch}) és az előbb számított Δ^* -t használtuk

$$\Delta E = \Delta^* \cdot \Delta_{ch}$$

III.3. A gerjesztett állapotok élettartama

A lágyvas 6 részre hasadt csúcsainak vonalszélességéit az illeszétsekből korábban magkaptuk. Az intenzitásuk a csúcsok alatti területtel arányos. A mért vonalszélesség, intezitás és valós vonalszélessgé között a következő összefüggés ismert

$$\Gamma_{\rm m\acute{e}rt}^{(i)} = 2.405\Gamma + \frac{1}{4}w_i T_A \Gamma$$

Amely egyenletben w_i a számolt intenzitások, T_A a minta vastagsága, és elhanyagolásokat eszközültünk.

Intenzitás	$\Gamma_{\text{mért}}^{(i)} [10^{-9} \text{ eV}]$	$\Gamma_{\text{mért}}^{(i)} \text{ hiba } [10^{-9} \text{ eV}]$
0.22	19.2958	0.278
0.183	17.5695	0.278
0.097	16.5532	0.5574

Ezekre az adatokra egyenest illesztve, annak $\Gamma^{(i)}_{\text{mért}}$ tengellyel vett metszete adja majd $2.4 \cdot \Gamma$ -t, azaz a valódi vonalszélesség értékét. Ezt eszközölve

4. ábra. A vonalszélesség vizsgálata

Az illesztett egyenes adatai pedig

$$\Gamma_{\text{mért}}(I) = 2.405\Gamma + \frac{1}{4}IT_A\Gamma = (13.607 \pm 2.283) \cdot 10^{-9} + (24.312 \pm 11.799)\Gamma eV$$

Azaz ebből kapjuk, hogy a vonalszélesség valós értéke

$$\Gamma = (5.658 \pm 0.949) \cdot 10^{-9} \ eV$$

Innen már könnyen számaztatható az átlagos élettartam ami $\Gamma = \frac{\hbar}{\tau}$ -ból számolható

$$\tau = (116.34 \pm 19.52) \ ns$$

Ez az irodalmi adattól még hibahatáron belül is több mint 5%-al eltér. Ennek okát nem tudjuk, csak találgatni tudunk, hiszen az illesztésünkön is pontosítottunk ameddig csak lehetett.

III.4. Elektromos térgradiens a nitroprusszid mintában

A nátrium-nitroprusszidban az atomok elrendeződése miatt inhomogén elektromos tér alakul ki, ami kölcsönhat a mag kvadrupólmomentumával így az enrgiaszintek az alábbi egyenlet szerint felhasadnak

$$\Delta E = \frac{eQ}{4I(2I-1)} \frac{\partial^2 V}{\partial z^2} (3m_I^2 - I(I+1)) \sqrt{1 + \frac{\eta^2}{3}}$$

A kvadrupólmomentum, Q, adott $0.21\cdot 10^{-28}m^2$, míg I = 3/2, valamint $\eta=0$. A megfeleleő értékeket behelyettesítve azt vehetjük észre, hogy csak két részre hasadnak az energia-szintek

$$\Delta E = \frac{eQ}{2} \frac{\partial^2 V}{\partial z^2}$$

A kiszélesedés energiaértékét ki tudjuk számolni a korábbi Δ^* paraméterrel. A többi adat adott, így a térgradiens értéke

$$\frac{\partial^2 V}{\partial z^2} = (7.883 \pm 0.0697) \cdot 10^{21} \ \frac{V}{m^2}$$

Elméleti úton kapjuk, hogy a Bohr-modellben a proton helyén, a Coulomb-potenciál kétszeri deriválásával kapjuk, hogy

$$\frac{\partial^2 V}{\partial z^2} = 1.95 \cdot 10^{22} \frac{V}{m^2}$$

Azaz közel 1 nagyságrendet tévedtünk, de egészen jól megközelítettük a Bohrmodellben prezentált elméleti értéket.

III.5. Az ^{57}Fe vas mágneses momentuma, másneses térbeli felhasadás

A mágneses knyatumszámok szerinti felhasadást a Zeemann-effektus írja le. Az energiaeltolódást az m kvantumszám szerint a következő összefüggés adja meg

$$\Delta E_m = -\frac{m_I}{I} \mu_I B$$

A vizsgált minta energiaszintjei 6 részre hasadnak, amelyek között hat átmenet lehetséges. Az I=3/2 és I=1/2 enegiaszintek közötti energia különbség ΔE_I , míg ezek közül a nagyobb 4, míg a kisebb magspinű 2 részre hasad. Az utóbbi energiakülönbsége $\Delta E_{1/2}$, míg az előbbié az egymás mellettiek között $\Delta E_{3/2}$. Így Az átmenetekhez tartozó energiakülönségek táblázatba foglalva

Ámenet	Energia értékek paraméterekkel
$\pm \frac{3}{2} \leftarrow \pm \frac{1}{2}$	$\Delta E_{1/2} + 3\Delta E_I$
$\pm \frac{1}{2} \leftarrow \pm \frac{1}{2}$	$\Delta E_{1/2} + \Delta E_I$
$\pm \frac{3}{2} \leftarrow \mp \frac{1}{2}$	$\Delta E_{1/2}$ - ΔE_I

5. táblázat. Energia-átmenetek

Innen $N = C \cdot \Delta E + A$ egyenesre illesztést végeztünk, ahol ΔE az előbbi táblázat második oszlopában lévő energiaadatok, melyek értéke

Átmenet	Energiaszint $(10^{-9} eV)$
ΔE_1	509.9 ± 0.19
ΔE_2	295.98 ± 0.16
ΔE_3	80.56 ± 0.33

Majd az illesztés

5. ábra. Zeemann-felhasadás, a mágneses momentum származtatható

Tudjuk, hogy alapállapotban $\mu_{1/2} = 0.090604 \cdot \mu_N$, valamint

$$\Delta E = \frac{\mu_{1/2}B}{I_{1/2}} = A$$
 $\Delta E = \frac{\mu_{3/2}B}{I_{3/2}} = -C$

Ahol A és C az illesztés paraméterei

A $[10^{-9} \ eV]$	B $[10^{-9} \ eV]$
(188.145 ± 0.414)	(107.335 ± 0.216)

Ebből $\mu_{3/2}$ egy osztás után meghatározható, majd B is számolható

$$\mu_{3/2} = (-5.43 \pm 0.13) \cdot 10^{-9} \frac{eV}{T}$$
 $B = (32.94 \pm 0.07) T$

Az elméleti érték a Bohr-modell alapján kapható, amihez képest a mért adat közel háromszoros.

$$B_{\rm elm\'eleti} = \frac{\mu_0 \hbar c}{m_e 4 \pi r_{Bohr}^2} \approx 12.5 \ T$$

IV. Lehetséges hibák, gravitációs vöröseltolódás

A mérés során az állandónak vett minta-forrás távolság természetesen változik, hiszen pontosan a minta mozgatása miatti Doppler-effektus szélesíti ki az energianívókat. A háromszögjel periódusideje a jegyzet szerint $T=41.2\pm 2~ms$, a maximális sebesség pedig

$$v_{max} = c \frac{\Delta E_{\text{sz\'els\~o}}}{E_0} = (7.418 \pm 0.002) \ \frac{mm}{s}$$

Ahol E_{szls} a legutolsó 255-ös csatorna energiaszintjéhez tartozó kiszélesedés. A maximális kitérés így $v_{max}\frac{T}{4}$, hiszen a periódusidő negyedénél van maximuma a sebsségnek

$$d_{max} = (0.0764 \pm 0.004) \ mm$$

IV.1. Gravitációs vöröseltolódás

A Föld felszín közeli gravitációs potenciálja $\varphi = gh$. A laborban 0.5 csatorna pontossággal tudunk mérni ez azt jelenti, hogy a kezdeti Δ^* energia fele lehet a mérés hibája, hogy meg tudjuk határozni a gravitációs vöröseltolódást, amit a potenciálkülönbség miatt szenved el a fény. Így

$$h = \frac{\Delta^*}{2 \cdot E_{\Gamma}} \frac{c^2}{q} \approx 440 \ m$$

Ahol E_{Γ} a mérésben használt 14.4 keV-es foton energiája. Jól látható, hogy annak ellenére, hogy ezt a '60-as években kimérték, mi nem tudnánk ilyen Γ -fotonokkal reprodukálni.

V. Összefoglalás

Ez volt eddig a legnehezebb mérésünk. Kicsit talán sok kiértékelési feladat van, és a feladatok leírásából nem egyszerű rájönni, hogy pontosan hogyan kell végrehajtani a kiértékelést, de általánosságban természetesen nem túl bonyolult feladatokat kaptunk. A hibákat végig hibaterjedéssel számoltuk, a feladatokat közösen értékeltük ki, így az ábráink és néhol a táblázataink megegyezhetnek. Összességében sikeres mérést kiviteleztünk.