Signaltheorie

Montag, 26. September 2022

//26.09.2022 - 1.Stunde

= Summe(k=1/n){a_k * coskt + b_k * sinht)

16bit

U_max/U_0 = 96dB --> zugeordnet 16 Bit, also 2^16 Permutationen --> 1,41 Mb/s

Verlustlos komprimieren:

- Speicherung der Fourier Reihe
- Alle notwendigen Daten werden Gespeichert
- Am Ende ist eine Rücktransformation nötig, um wieder auf's Ursprüngliche Signal zu kommen

MP3:

(Bei Video werden Flächen zusammengefasst, und nicht Linien. Grund: es ändert sich eher nichts)

//26.09.2022 - 2.Stunde

// MPEG: Motion Pictures Engineering Group

Einführung in die Systemtheorie

Linearität: k*u(t) --> k*y(t)

Homogenität: $u_1 + u_2 --> y_1 + y_2$

Zeitvarianz: u(t+T) --> y(t+T)

Kausalität: t=0, y(t)=0, h(t)= 0, wenn t<0 (Ausgangssignal nie vor Eingangssignal!)

Ein lineares System n-ter Ordnung wird durch folgendes Differentialgleichungssystem betrieben:

--> Definition!

Linearität: Alle Differntialquotienten kommen nur in erster (=linearer) Ordnung vor!

Bzw. nur in 1. Grades vor --> Keine Hochzahl größer 1

Zeitinvarianz (Stationarität): Koeffizienten a_n, b_k sind konstanten!

Allgemeine Lösung von (1) im Zeitbereich durch Integration Ergebnis:

//siehe Discord für Glg.; // des Komische Zeichen //ist gleich wie das d von //dy/dt Allgemeine Lösung von (1) im Zeitbereich durch Integration Ergebnis:

$$y(t) = Intergral(0/t)\{u(t') * h*(t - t_1) dt'\}$$

--> Allgemeines Lösung für lineare Filter. Die Kunst liegt in der Bestimmung von h(t).

Obiges Integral wird auch als Faltungsintegral bezeichnet.

--> Faltung (Symbol 8)

$$y(t) = u(t) \otimes h(t)$$
 (1

//30.09.2022

Korrektur von der letzten Stunde ... "so afoch geht des leider ned" - "wir miaßns bei der Funktion lossn"

t' hat nichts mit einer Ableitung zu tun, sondern ist nur eine Art Hilfsvariable

// MS von 3.10. fehlt

// 07.10.2022

Zapf:

- Wieso Faltungsintergral: Lösung ist für alle Eingangsspannungen
- Verlustlos & Verlustbehaftete Komprimierung

Kompression Videodaten:

1) Fourier-Reihen-Zerlegung einzelne Matrizen

z.B. 16*16 Pixel

--> von Ortsraum -_> Frequenzraum

Intensitätsänderu
Intensitäten ng über den Ort
über den Ort --> Frequenz

- 2) Anstatt jedes Bild abspeichern --> nur Änderungen
- 3) Eigenheiten des menschlichen Auges werden berücksichtigt --> verlustbehaftete (Daten-) Kompression

//10.10.2022 - Zapf

Faltung:

$$u(t) = kt h(t) = 7 \int (kt' (t-t')) M' = \int (ktt' - kt'^2) = \frac{1}{2} k \cdot t \cdot t'^2 - \frac{1}{3} k t'^3 / T = y(t) = \frac{1}{2} k t T^2 - \frac{1}{3} k T^3$$

$$2^{\times} = \frac{MB}{A} = \frac{10V}{10mV} = 1000$$

$$X = \frac{10}{10mV} (\Rightarrow 2^{10} ... 1024 \text{ Parm botionen})$$

Datenrate ermitteln, wenn wir (Sinus-)Signale bis zu 50kHz abtasten wollen

$$f_{abtast} = 2.50 \text{ kHz} = 100 \text{ kHz}$$

$$D_{abtast} = 1024 \cdot 100 \text{ kHz} = 1024 \frac{111}{5} \approx 1 \frac{\text{Mbit}}{5}$$

$$= \frac{1}{6} \frac{\text{Mbyte}}{5}$$

Quantisierungsfehler = +/- 1/2 * Auflösung = +/- 5mV

Fehlerfortpflanzung

$$(x+\Delta X) \cdot (y+\Delta y) = X \cdot y + \Delta X \cdot y + X \cdot \Delta y + \Delta X \cdot \Delta y$$

$$= X \cdot (1 + \frac{\Delta X}{X}) \cdot y \cdot (1 + \frac{\Delta Y}{Y})$$

$$= X \cdot y \cdot (1 + \frac{\Delta X}{X} + \frac{\Delta Y}{Y} + \frac{\Delta X \cdot \Delta y}{X \cdot y})$$

Warum ist das nicht ein reales Beispiel?

- Fehler wird in +/- angegeben
 - o Mit beiden Extremwerten angeben

Was ist die Standardabweichung? Was ist die Varianz?

Für was brauchen wir Transformationen? (z.B. Faltungsintegral, ...)

Komprimieren von Daten z.B. Audio- & Videodaten

FFT: Zeit --> Frequenz

Sinustransformation: 100 Hz Sing-Signal

Anythode

Rns

100 > 1

Rahmenbedingungen für FFT:

Bis höchste Vorkommende Frequenz // Rest interessiert uns nicht

• Signal muss Periodisch sein --> kommt real nicht vor, darum kurze Teilabschnitte als Ideal annehmen

//14.10.2022

Betrag des Frequenzgangs

.....

//17.10.2022

// WDH Betrag des Frequenzgangs

Ortskurven

05_Ortsku...

Sinn der Ortskurve?

Wieso ist die Fourier Transformation (händisch) unendlich viel Arbeit?

- Wir müssen für alle ω ausrechnen
- Nicht wegen den Grenzen!

Beispiel Fourier-Transformation:

En psychologisdes Arelogon vouve des Lesen aues Budes; An die Zulekt geleiere Grenere) Serk (kopill) kann man sid stebs bersen erinnen als an die zeitlich neiter zurüch liegende. Für die hier zu behandelnden kausalen Signale bonnen and die Beitrage vor t= p neeggelessen neerell. Mit allem Bisherigen folgt die Definition " Eurschige doplece transformierk für kausak Signale"; (u(+) e-st dt (3) Das Verfalie nourde ungarishe tothematike Joseph Miksa Petzval (1807-1891) asknal systematish august , roderend du französiste hallematika Pierre Simon daplace (1749-1827) - noldun das Verfalu benannt vourde nur um Rohme seiner Wohrsheinlich: beits shaker emfisherte. Ende Hunseise auf the I de findle man bereit beim Schweizen Leanhard Enle (1007-1783) akken mallematische Grund lage für die breite Anwendung in Tellen k und Naturiors enselofte (1950er-1960 er john) er ar britek aber der Danber dellemetike Guster Doebel (1892-1977)

			,
(3) Ikann immer konsergent genällt neind (mallimatish	gemalt neer de	in, wenn or	groß yenny
geneally nound (mathematisk	benetis box:		
	411		
-> Beispiel (contd) von	vor him!		
$F(i\omega) = \int_{0}^{\infty} e^{(\alpha-\alpha-i)}$	iwltd+ =	1 a-0-iw	Q-0-1W 2
= 1 V+iw-a	= 1	= F(s)	
Emleibspring; a=0 -	$\Rightarrow F(s) = \frac{c}{s}$		
Impulsantions :	Lodoplace	Trensform	rierle d. 1-Sprun,
Gushub -			
Impulsantwort:	nah Ruchtra	no focilie	810
0			
O(P)=U(1) - 1-111 - 1/11			14.14)
	000	fint=0	Ī
Diroc Impuls: Sl	() = { o	soust	
4	,		6 0
y(t) = \(\int \(\delta(t') \). h(t+t') o	$\mathcal{L} = h(t)$		
0			
Die Impulsantroort en	nes LT1-Sy	slems enbp.	ridl
Die Impulsantroort au seiner Öberhagungs	further!		110
- NEUTUS TO THE			
doplace - Richtansform			
+∞	£ . s=0+ju	1 0	f st.
$u(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} v(s) e^{s}$	dw -	275 W-300	Juste ds (4)
- 30		1	-iw

Angabe der Messgenauigkeit eines Messgeräts

By lekouk Menkler: R(20c) = 400Ω

$$P = \frac{U^2}{R}$$
 dishipmenty bei $90^{\circ}C \implies \Delta R = 2 \Omega_{\perp}$ veil ich viell, sloss $R(30^{\circ}C) = 102 \Omega_{\parallel}$ ish + ich viell, sloss $U_m = U_{\perp} + 1\%$ U_w regar Shomielligs /lenny

Weil beide Fehler in dieselbe Richtung gehen, heben sich die Fehler auf

$$P = I^{2} \cdot R = I_{m}^{2} (1+2\%) \cdot R (1-2\%)$$

$$I + 1\% - 2\%$$

Hebt sich **nur** auf, **wenn** kleiner Anteil von 1, weil wir nehmen dann an:

Anteil von 1, weil wir nehmen dann an:
$$\frac{1}{1-x} = 1+x \quad \frac{1}{1+x} = 1-x$$

$$\sqrt{\frac{1}{1+x}} = 1-x$$

// 24.10.2022

Ohmmeter: wie misst man den Widerstand ohne den Strom zu messen? Also wie ist funktioniert ein Ohmmeter

· Konstantstromquelle & Shunt-Widerstand

By ziealich islole fasmysquelle: Magrate

Reale Spannungsquelle

Reale Stromquelle

Reales Voltmeter

Bestimmte Messfehler

Stromrichtige oder Spannungsrichtige

Teststoff:

- Physikalische Größen, Einheiten, Formeln
 - o SI-Größen + Einheiten
 - o Kraft, Druck, Drehmoment
 - o Arbeit, Energie, Leistung
 - o f, T, c, λ, Plancksches Wirkungsquantum "E_photon= h*f= (hquer) *ω"
- Schaltung + Ri von VM, AM, Uq, Iq
- Grundlagen Digitalisierung von Messwerten:
 - o Auflösung, Quantisierungsfehler, Abtatsttheorem, Permutation, Wertebereich, Datenrate
- Messfehler
 - o Bekannt, unbekannt
 - o Fehlerfortpflanzung
 - o Normalverteilung, Standardabweichung
- Transformation t-->f
 - o Wieso?
 - Verlustlos, Verlustbehaftet } Datenkompression
 - Was ist eine Faltung?
 - o Fourier-Reihe, Fourier-Transformation
 - Wann kann man sie verwenden?
 - Grenzer

// Formin
$$F(jw) = \int_{-\infty}^{\infty} (f(t) \cdot e^{-jwt}) M$$