Rolling (without slipping)

$$V_c = r\omega$$
 $\vec{V}_c = r\omega \hat{e}_t$
 $a_c = r\omega$
 $\vec{a}_c = r\omega \hat{e}_t$

Rolling on curved surface

inst center of wheel?

A=PV

B: G V

C: C

D: other

 $\vec{V}_{z} = \vec{V}_{p}^{q0} + \vec{\omega} \times \vec{r}_{pc}$ $= r\omega \hat{e}_{t}$ Same as flat.

g= rad. curve ground
R= rad. curve. C

$$d_c = r \times \hat{q} + \frac{v_c^2 \hat{e}_n}{R}$$

