习题课七

2019年11月23日

- [记号] 设 $A = (a_{ij})$ 是 n 阶方阵, $(n \ge 2)$, $C = (c_{ij})$, 其中 c_{ij} 为 a_{ij} 的代数余子式。记 $A^* = C^T$, A^* 称为 A 的伴随矩阵.
- [事实] 代数学基本定理: 设 $f(t) = a_0 t^n + \cdots + a_n$ 是关于 t 的 n 次多项式,系数 a_i 为复数, $a_0 \neq 0$,则 f(t) 恰好有 n 个复数根 (计重数).

习题 1. 设

$$D = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ -2 & 2 & -2 & -3 \\ -1 & 2 & -2 & -3 \end{vmatrix}$$

不直接计算 C_{ij} , 求解以下各题:

- (1) $-2C_{11} + 2C_{21} + 3C_{31} + 4C_{41}$;
- (2) $C_{13} + C_{23} + C_{33} + C_{43}$.

习题 2. 设

$$D = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 3 & 6 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ -1 & 2 & -2 & -3 \end{vmatrix}$$

习题 3. 当 A 为可逆矩阵时, 求:

 $(1) (A^*)^{-1};$

A- (A-) 1 = |A-1] $(A^{2})^{A} = \underbrace{A}_{[A]} \underbrace{J}^{2} \underbrace{A}_{[A]}$

$$(3) (kA)^*; \quad AA^* = |A|$$

(3)
$$(kA)^*$$
; $AA^* = |A|$] $(kA)(kA)^* = k|A|$]. $|A^+| = \frac{1}{|A|}$

$$(4) (A^*)^*$$

习题 4. 设

求 D'(x).

习题 5. 设 A 为可逆方阵, D 为方阵, 证明:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A||D - CA^{-1}B|. \qquad (A) \qquad$$

习题 6. 求如下推广的 n 阶范德蒙行列式:

$$\begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-2} & x_1^n \\ 1 & x_2 & \cdots & x_2^{n-2} & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-2} & x_n^n \end{vmatrix}$$

习题 7. 设 $A \in n$ 阶实方阵, 求证: 存在充分小的 t > 0, 使得 $A + tI_n$ 是可逆的 (粗略地说, 给定任何一个方阵, 总可以做一个微扰, 得到可逆矩阵).

习题 8. 设 $A \in \mathbb{R}$ 阶实方阵, $x \to \mathbb{R}^n$ 中的列向量, $\lambda \in \mathbb{R}$ 。若方程 $Ax = \lambda x$ 有非零解, 则 称 λ 为 A 的特征值, x 为属于特征值 λ 的特征向量。求证: A 至多有 n 个不同的特征值。

习题 9. 设 $A, B \in n$ 阶方阵, $A^* \to A$ 的伴随矩阵。求证: $(AB)^* = B^*A^*$ 。

习题 10. 设 $A=(a_{ij})$ 是一个主对角线占优的 n 阶实方阵, 即 $a_{ii} > \sum_{1 \le i \le n} |a_{ij}|$, 对于所有 的 $1 \le i \le n$ 成立。求证: |A| > 0.

习题 11. 设 Q 是 n 阶正交矩阵, 即 $Q^TQ = QQ^T = I_n$ 。

- (1) 若 |Q| < 0, 求证: $|Q + I_n| = 0$, 因此存在非零向量 $v \in \mathbb{R}^n$, 使得 Qv = -v.
- (2) 若 |Q| > 0。试分析 $|Q I_n| = 0$ 何时成立.

习题 12. 设 A 是一个 $m \times n$ 阶矩阵。取 A 的任意 k 行和任意 k 列构成一个 k 阶方阵,它的行列式称为 A 的一个 k 阶子式. 定义

 $r_{\text{det}}(A) := \max\{k \mid A有一个非零的 k 阶子式\}.$

求证: $r_{det}(A) = r(A)$.

习题 13. 设 A 是 n 阶方阵,根据 r(A) 的取值,试分析 $r(A^*)$.