Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра программного обеспечения информационных технологий Дисциплина: Основы алгоритмизации и программирования (ОАиП)

ОТЧЕТ

по лабораторной работе №1

Тема работы: Расчет функции

Выполнил

студент: гр. 151004 Башлыков В.В.

Проверил: Фадеева Е.П.

Минск 2021

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ	2
1 ПОСТАНОВКА ЗАДАЧИ	
2 ХОД РЕШЕНИЯ	
3 ТЕКСТОВЫЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ	
4 СТРУКТУРА ДАННЫХ	
5 СХЕМА АЛГОРИТМА ПО ГОСТ 19.701-90	
6 РЕЗУЛЬТАТЫ РАСЧЕТОВ	
ПРИЛОЖЕНИЕ А	
ПРИЛОЖЕНИЕ Б	

1 ПОСТАНОВКА ЗАДАЧИ

Для заданной функции (описанной в задании №2 лабораторной работы №1):

$$f(k,x) = \sqrt[3]{x + \frac{n-3}{n}} + \sum_{k=1}^{n} \left(\frac{20 + \sqrt[k]{e^{kx-2}}}{\ln(kx) + \frac{3}{5 + \log_2(kx)}} \right)$$

вычислить её значение для n = 10;11...15 и значении x, изменяющемся от xн = 0.6 до xк = 1.1 с шагом Step = 0.1.

Вывести на печать результаты расчётов: n =значение, x =значение, f(k,x) =значение.

2 ХОД РЕШЕНИЯ

2.1 Решение проблемы чисел со степенями:

Так как в данной лабораторной работе не можем воспользоваться библиотекой Math, то чтобы возвести выражение в степень, использую свойство логарифма $x^y = e^{y \cdot \ln(x)}$.

2.2 Ход решения:

Для решения этой функции уместно использовано три цикла с предусловием. В данном случае циклы с предусловием использовать наиболее удобно.

Для вычисления математической суммы выведено следующее выражение: Sum := Sum + $(20 + \exp(\text{Ln}(\exp(N*X-3)) / N)) / (\text{Ln}(N*X) + 3 / (5 + \text{Ln}(N*X) / \text{Ln}(2))).$

Для вычесления подкоренной части уравнения выведено следующее выражение: Final := Sum + $\exp(\text{Ln}(X + (N - 3) / N) / 3)$;

Цикл A1 используется для реализации изменения аргумента x фцнкции f(k,x) и охватывает все последующие циклы. Это необходимо для реализации

изменения аргумента х фцнкции f(k,x) в момент достижения n значения 15.

Далее цикл В1 используется для реализации вычисления математической суммы для значений $n=1,2,\ldots,9$. Такое решение позволит облегчить дальнейшие действия, связанные с вычислением математической суммы и получением финального результата функции.

После цикла B1 следует цикл B2. Цикл B2 используется для вычисления значений суммы при $n=10,11,\ldots,15$, а так же получения финального результата функции f(k,x).

Для реализации вышесказанных решений уместно заменить аргумент функции k на n. Это решение позволит уменьшить количество используемых переменных и упростить выполнение программы.

3 ТЕКСТОВЫЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ

№ шага	Назначение шага	
Шаг 1	X = 0.6 (Определение значения аргумента х функции $f(k,x)$. В	
	дальнейшем х принимает все последующие значения аргумента х	
	функции f(k,x))	
Шаг 2	Step = 1 (Определение значения шага, которое будет изменять значение N)	
Шаг3	Counter = 0 (Обнуление счетчика. Счетчик используется для	
	нумерации значений функции f(k,x))	
Шаг 4	X <= 1.1 (Вход в цикл с предусловием А1 . Цикл используется для	
	изменения значения аргумента х функции f(k,x))	
Шаг 5	Sum = 0 (Обнуление значения математической суммы. Это	
	необходимо для того, чтобы для каждого последующего значения	
	х, значения математической суммы имело значение 0, иначе	
	вычисления будут неправильными)	
Шаг 6	N = 1 до 9 (Вход в цикл с предусловием В1. Цикл используется для	
	вычисления промежуточного значения математической суммы, при	
	n = 1, 2,, 9, и сохранения этого значения)	
Шаг 7	Sum := Sum + (20 + exp(Ln(exp(N * X - 3)) / N)) / (Ln(N * X) + 3 / (5))	
	+ Ln(N * X) / Ln(2))) (Вычисление и сохранение значения	
	математической суммы)	
Шаг 8	Модификация параметра цикла $B1: N = N + 1$	
Шаг 9	Выход из цикла В1	
Шаг 10	N = 10 до 15 (Вход в цикл с предусловием В2. Цикл используется	
	для вычисления значения математической суммы, при n =	
	10,11,,15, и получения финального результата функции)	

Шаг 11	Sum := Sum + (20 + exp(Ln(exp(N * X - 3)) / N)) / (Ln(N * X) + 3 / (5 + Ln(N * X) / Ln(2))) (Вычисление и сохранение значения
	математической суммы)
Шаг 12	Final := Sum + $\exp(\text{Ln}(X + (N - 3) / N) / 3);$
	(Вычисление финального значения функции путем добавления к
	математической сумме подкоренного выражения)
Шаг 13	Вывод финальных значений функции $f(k,x)$ (n =, x =, $f(k,x)$ =)
Шаг 14	Модификация параметра цикла B2: $N = N + 1$
Шаг 15	Выход из цикла В2
Шаг 16	Модификация параметра цикла A1: X = X + Step

Таблица 1 - Текстовый алгоритм решения задачи

4 СТРУКТУРА ДАННЫХ

Элементы данных	Рекомендуемый тип	Назначение
X	Real	Начальное значение аргумента х,
		потом принимает все последующие
		значения этого аргумента
Step	Real	Модификатор переменной Х
Final	Real	Финальное значение функции
		f(k,x)
Sum	Real	Переменная для временного
		хранения значений
		математической суммы
Counter	Integer	Счетчик решений
N	Integer	Количество слагаемых

Таблица 2 - Структура данных

5 СХЕМА АЛГОРИТМА ПО ГОСТ 19.701-90

Схема 1 - счема алгоритма по ГОСТ 19.701-90

Схема 2 - схема алгоритма по ГОСТ 19.701-90

6 РЕЗУЛЬТАТЫ РАСЧЕТОВ

В следствии выполнения программы на экран выводятся следующие результаты рассчетов:

```
D:\Программирование\Делфи\Win32\Debug\Project1.exe
1) x:= 0.6 n:= 10 f(k,x):= 234.410003
2) x:= 0.6 n:= 11 f(k,x):= 243.816283
3) x:= 0.6 n:= 12 f(k,x):= 252.912477
4) x:= 0.6 n:= 13 f(k,x):= 261.740407
5) x:= 0.6 n:= 14 f(k,x):= 270.333245
6) x:= 0.6 n:= 15 f(k,x):= 278.717821
7) x:= 0.7 n:= 10 f(k,x):= 182.905372
8) x:= 0.7 n:= 11 f(k,x):= 191.814882
9) x:= 0.7 n:= 12 f(k,x):= 200.448286
10) x:= 0.7 n:= 13 f(k,x):= 208.841920
11) x:= 0.7 n:= 14 f(k,x):= 217.024737
12) x:= 0.7 n:= 15 f(k,x):= 225.020246
13) x:= 0.8 n:= 10 f(k,x):= 158.330490
14) x:= 0.8 n:= 11 f(k,x):= 166.866982
15) x:= 0.8 n:= 12 f(k,x):= 175.152550
16) x:= 0.8 n:= 13 f(k,x):= 183.219539
17) x:= 0.8 n:= 14 f(k,x):= 191.093815
18) x:= 0.8 n:= 15 f(k,x):= 198.796455
19) x:= 0.9 n:= 10 f(k,x):= 143.264910
20) x:= 0.9 n:= 11 f(k,x):= 151.513915
21) x:= 0.9 n:= 12 f(k,x):= 159.531502
22) x:= 0.9 n:= 13 f(k,x):= 167.346962
23) x:= 0.9 n:= 14 f(k,x):= 174.983797
24) x:= 0.9 n:= 15 f(k,x):= 182.461206
25) x:= 1.0 n:= 10 f(k,x):= 132.881514
26) x:= 1.0 n:= 11 f(k,x):= 140.905735
27) x:= 1.0 n:= 12 f(k,x):= 148.714161
28) x:= 1.0 n:= 13 f(k,x):= 156.333658
29) x:= 1.0 n:= 14 f(k,x):= 163.785840
30) x:= 1.0 n:= 15 f(k,x):= 171.088411
31) x:= 1.1 n:= 10 f(k,x):= 125.233770
32) x:= 1.1 n:= 11 f(k,x):= 133.081460
33) x:= 1.1 n:= 12 f(k,x):= 140.726198
34) x:= 1.1 n:= 13 f(k,x):= 148.192862
35) x:= 1.1 n:= 14 f(k,x):= 155.501522
36) x:= 1.1 n:= 15 f(k,x):= 162.668650
```

ПРИЛОЖЕНИЕ А

(обязательное)

Исходный код программы

```
program Laba1;
{$APPTYPE CONSOLE}
var
  N, Counter: Integer;
  X, Sum, Final, Step: Real;
  { N - Количество слагаемых,
    Counter - счетчик вариантов ответа
    Х - значение х,
    Sum - результат математической суммы,
    Final - финальные значения функции,
    Step - изменение значения х; }
begin
  X := 0.6;
  Step := 0.1;
  Counter := 0;
  while X <= 1.1 do // Вход в цикл A1
  begin
    Sum := 0;
    for N := 1 to 9 do // Вход в цикл В1
      Sum := Sum + (20 + exp(Ln(exp(N * X - 3)) / N)) /
        (Ln(N * X) + 3 / (5 + Ln(N * X) / Ln(2)));
```

```
{ Вычисление значений математической суммы для N
= 10, 11, \ldots, 15
    for N := 10 to 15 do // Вход в цикл В2
    begin
      Counter := Counter + 1;
      Sum := Sum + (20 + exp(Ln(exp(N * X - 3)) / N)) /
        (Ln(N * X) + 3 / (5 + Ln(N * X) / Ln(2)));
      Final := Sum + \exp(\text{Ln}(X + (N - 3) / N) / 3);
      { Вычисление значений математической
суммы для N= 10,11,...,15 и финального
результата }
      WriteLn (Counter, ')', 'x:=', X:2:1, 'n:=', N,
        ' f(k,x) := ', Final:9:6);
    end; // Выход из цикла В2
    WriteLn('');
    X := X + Step;
  end; // Выход из цикла A1
  ReadLn;
```

End.

ПРИЛОЖЕНИЕ Б (ОБЯЗАТЕЛЬНОЕ) Тестовые наборы

Номер	Исходные данные и ожидаемый	Полученный результат
теста	результат (Matchcad)	
1.	f(0.6,10) = 234.410003	1) x:= 0.6 n:= 10 f(k,x):= 234.410003 2) x:= 0.6 n:= 11 f(k,x):= 243.816283 3) x:= 0.6 n:= 12 f(k,x):= 252.912477
	f(0.6,11) = 243.816283	4) x:= 0.6 n:= 13 f(k,x):= 261.740407 5) x:= 0.6 n:= 14 f(k,x):= 270.333245 6) x:= 0.6 n:= 15 f(k,x):= 278.717821
	f(0.6,12) = 252.912477	
	f(0.6,13) = 261.740407	
	f(0.6,14) = 270.333245	
	f(0.6,15) = 278.717821	
2.	f(0.7,10) = 182.905372	7) x:= 0.7 n:= 10 f(k,x):= 182.905372 8) x:= 0.7 n:= 11 f(k,x):= 191.814882 9) x:= 0.7 n:= 12 f(k,x):= 200.448286
	f(0.7,11) = 191.814882	10) x:= 0.7 n:= 13 f(k,x):= 208.841920 11) x:= 0.7 n:= 14 f(k,x):= 217.024737 12) x:= 0.7 n:= 15 f(k,x):= 225.020246
	f(0.7,12) = 200.448286	
	f(0.7,13) = 208.84192	
	f(0.7,14) = 217.024737	
	f(0.7,15) = 225.020246	

3.	f(0.8,10) = 158.33049 $f(0.8,11) = 166.866982$	13) x:= 0.8 n:= 10 f(k,x):= 158.330490 14) x:= 0.8 n:= 11 f(k,x):= 166.866982 15) x:= 0.8 n:= 12 f(k,x):= 175.152550 16) x:= 0.8 n:= 13 f(k,x):= 183.219539 17) x:= 0.8 n:= 14 f(k,x):= 191.093815 18) x:= 0.8 n:= 15 f(k,x):= 198.796455
	f(0.8,12) = 175.15255 $f(0.8,13) = 183.219539$ $f(0.8,14) = 191.093815$	
4.	f(0.8,15) = 198.796455	19) x:= 0.9 n:= 10 f(k,x):= 143.264910
	f(0.9,10) = 143.26491 $f(0.9,11) = 151.513915$ $f(0.9,12) = 159.531502$	20) x:= 0.9 n:= 11 f(k,x):= 151.513915 21) x:= 0.9 n:= 12 f(k,x):= 159.531502 22) x:= 0.9 n:= 13 f(k,x):= 167.346962 23) x:= 0.9 n:= 14 f(k,x):= 174.983797 24) x:= 0.9 n:= 15 f(k,x):= 182.461206
	f(0.9,12) = 133.331302 $f(0.9,13) = 167.346962$ $f(0.9,14) = 174.983797$	
5.	f(0.9,15) = 182.461206	25) x:= 1.0 n:= 10 f(k,x):= 132.881514
	f(1.0,10) = 132.881514 $f(1.0,11) = 140.905735$ $f(1.0,12) = 148.714161$	26) x:= 1.0 n:= 11 f(k,x):= 140.905735 27) x:= 1.0 n:= 12 f(k,x):= 148.714161 28) x:= 1.0 n:= 13 f(k,x):= 156.333658 29) x:= 1.0 n:= 14 f(k,x):= 163.785840 30) x:= 1.0 n:= 15 f(k,x):= 171.088411
	f(1.0,12) = 148.714161 $f(1.0,13) = 156.333658$ $f(1.0,14) = 162.78584$	
	f(1.0,14) = 163.78584 $f(1.0,15) = 171.088411$	

```
6. f(1.1,10) = 125.23377
f(1.1,11) = 133.08146
f(1.1,12) = 140.726198
f(1.1,13) = 148.192862
f(1.1,15) = 162.66865
```