

Problem M. Dividing Chains

For a sequence z_1, z_2, \dots, z_n , consider a set $S = \{1, n+1\}$. Little Cyan Fish may perform the following operations **exactly** n-1 times:

- Choose an integer x s.t. $x \notin S$ and $1 < x \le n$.
- Let l be the **predecessor** of x in S, i.e., the largest integer in S such that l < x.
- Let r be the successor of x in S, i.e., the smallest integer in S such that x < r.
- Do nothing **or** apply the following update to the sequence z
 - Reverse the subsegment $z_l, z_{l+1}, \ldots, z_{r-1}$, i.e., z_i becomes $z_{r-1-(i-l)}$ for all $l \leq i \leq r-1$.
- Update $S \leftarrow S \cup \{x\}$.

Obviously, in the end, S will become $\{1, 2, ..., n, n + 1\}$. For a given **monotonically non-decreasing** sequence $a_1, a_2, ..., a_n$, you need to count the number of sequences $z_1, z_2, ..., z_n$, modulo 998 244 353, that satisfy the following condition:

• There exists a way to apply the operations above to convert the sequence z_1, z_2, \dots, z_n to a_1, a_2, \dots, a_n .

This problem sounds non-sensical to Little Cyan Fish. Therefore, he asked you to solve this problem.

Input

The first line of the input contains a single integer n ($1 \le n \le 500$).

The next line of the input contains n integers a_1, a_2, \ldots, a_n $(1 \le a_1 \le a_2 \le \ldots \le a_n \le n)$.

Output

Output a single line containing a single integer, indicating the answer modulo 998 244 353.

Examples

standard input	standard output
3	3
2 3 3	
5	29
1 1 3 3 5	
9	26276
1 2 3 5 5 6 7 8 9	