自测题 1 签案

B C C C A C

二、填空器

1. 点 2. (x+y)e^{xy}f₁+1(
$$\frac{1}{y}$$
- $\frac{x}{y^2}$)f₂ 3. $dx-dy$ 4. (1,1,2)

5. $\int_{-1}^{0} dx \int_{x^2}^{f_1} f(x,y) dy$ 6. $\frac{4\pi}{y}$

三、计算下3) 全器

1. 解 $\frac{dy}{dx} = \frac{1-\frac{y}{x}}{1+2\frac{y}{x}}$, $\frac{y}{x} = \mu$, $\frac{y}{x}$ $\frac{1+2\mu}{1-2\mu-2\mu^2}$ $d\mu = \frac{1}{x} dx$

(成立示3分, $\int \frac{1+2\mu}{1-2\mu-2\mu^2} d\mu = \int \frac{1}{x} dx$, $-\frac{1}{x} \int \frac{1}{1-2\mu-2\mu^2} d(1-2\mu-2\mu^2) = \int \frac{1}{x} dx$ $-\frac{1}{x} \int \frac{1}{1-2\mu-2\mu^2} d(1-2\mu-2\mu^2) = \int \frac{1}{x} dx$ (反正是任式学数)

 $x^2(1-2\frac{y}{x}-2\frac{y^2}{x^2}) = C$ $x^2-2xy-2y^2=-3$

2. ၏: 在道线
$$\begin{cases} x+y+1=0 \\ x+2-2=0 \end{cases} - L 任 - L A(1,0,1) \end{cases}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & \vec{1} & \vec{1} \\ \vec{1} & \vec{1} & \vec{1} \end{vmatrix} = (1,-1,-1)$$

$$\vec{S} = \begin{vmatrix} \vec{1} & \vec{1} & \vec{1} \\ 1 & 0 \end{vmatrix} = (1,-1,-1)$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 1 & 0 \end{vmatrix} = (1,-1,-1)$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 1 & 0 \end{vmatrix} = (1,-1,-1)$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 1 & 1 \end{vmatrix} = \frac{3}{-1}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

$$\vec{S} = \begin{vmatrix} \vec{1} & 1 & 1 \\$$

2.
$$i\frac{1}{2} F(x,y,z) = x^{3} + y^{3} + z^{3} + xy^{2} - 4$$

$$F_{x} = 3x^{2} + yz, \quad F_{y} = 3y^{2} + xz, \quad F_{z} = 3z^{2} + xy.$$

$$\frac{\partial z}{\partial x} = -\frac{F_{x}}{F_{z}} = -\frac{3x^{2} + yz}{3z^{2} + xy}, \quad \frac{\partial z}{\partial y} = -\frac{F_{y}}{F_{z}} = -\frac{3y^{2} + xz}{3z^{2} + xy}$$

$$\frac{\partial z}{\partial x} |_{(I,I,I)} = -I, \quad \frac{\partial z}{\partial y} |_{(I,I,I)} = -I$$

$$dz|_{(I,I,I)} = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = -Ldx + dy)$$

$$f(x,y) = y^{2} - xy + \frac{1}{2}x$$

$$f(x,y) = y^{2} - xy + \frac{1}{2}x$$

$$f(x,y) = y^{2} - xy + \frac{1}{2}x$$

$$f(x,y) = \frac{1}{2}x, \quad f(x,y) = 0$$

$$f(x,y) = \frac{1}{2}x, \quad f(x,y) = 0$$

$$f(x,y) = 0$$

3.
$$P = e^{x} \sin y - x + 1$$
, $Q = e^{x} \cos y - 1$

$$P = e^{x} \sin y - x + 1$$
, $Q = e^{x} \cos y - 1$

$$\frac{\partial Q}{\partial x} = e^{x} \cos y$$
, $\frac{\partial P}{\partial y} = e^{x} \cos y$ $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

可知积分与路径元关.

$$\overline{OA}: \begin{cases} x=x & \overline{IS.t} = \int_{\overline{OA} + \overline{AB}} (e^x \sin y - x + 1) dx + (e^x \cos y - 1) dy \end{cases}$$

$$\overline{AB}: \begin{cases} x=1 \\ y=y \end{cases} y: 0 \rightarrow 1$$
 = \int (-x+1) dx + \int (easy -1) dy

=...

2.
$$M!$$
: $\langle x-1=t, \frac{2}{n}; 0 \rangle = t, \frac{2}{n}$ $\langle x-1=t, \frac{2}{n}; 0 \rangle = t, \frac{2}{n}$

-2<t52 , -2< ×-152 , -1< ×=3 署科教是(-1)ⁿ⁻¹ (×-1)ⁿ 的收敛域为(-1,3).

(4)