Stream Cipher

0.1 Symmetric Ciphers

Definition 1. Cipher: a cipher defined over (K, M, C) is a pair of "efficient" algs (E, D) where $E : K \times M \to C$, $D : K \times C \to M$ s.t $\forall m \in M, k \in K$, D(k, E(k, m)) = m

Definition 2. *One Time Pad*: $\mathcal{M} = \mathcal{C} = \{0,1\}^n$, $\mathcal{K} = \{0,1\}^n$, $c = E(k,m) = k \oplus m$, $D(k,c) = k \oplus c$.

Definition 3. Shannon(1949): A cipher (E, D) over (K, M, C) has **perfect** secrecy if $\forall m_0, m_1 \in \mathcal{M}(len(m_0)len(m_1))$ and $\forall c \in C$

$$Pr[E(k, m_0) = c] = Pr[E(k, m_1) = c]$$

Where k is uniform in K.

Lemma 1. One Time Pad has prefect secrecy.

Theorem 1. Perfect secrecy implies key length \geq message length.

0.2 Stream Ciphers

idea: replace "random" key with PRG(pseudorandom) key.

Definition 4. PRG: $G: \{0,1\}_{(seed\ space)}^s \rightarrow \{0,1\}^n, where\ n >> s\ and$

$$c = E(k, m) = m \oplus G(k)$$
, $m = D(k, c) = c \oplus G(k)$

Definition 5. Predictability: a PRG, $G : \mathcal{K} \to \{0,1\}^n$ is **predictable** if \exists efficient algorithm A and $1 \le i \le n-1$ s.t

$$Pr[A(G(k)|_{1,\dots,i}) = G(k)|_{i+1}] \ge \frac{1}{2} + \epsilon$$

where k is uniform on K, for some non-negligible ϵ .

Definition 6. Unpredictability: a PRG is unpredictable if it is not predictable: $\forall i$, no efficient algorithm can predict i+1 bit for non-negligible ϵ .

Definition 7. $\epsilon: \mathbb{Z}^{\geq 0} \to \mathcal{R}^{\geq 0}$ is non-negligible if $\exists d: \epsilon(\lambda) \geq \frac{1}{\lambda^d}$ infinitely often.

0.3 Security of PRG

Definition 8. a *Statistical Test* on $\{0,1\}^n$ is an algorithm A such that $A(x) \in \{0,1\}$ (0 denotes x is not random, 1 denotes random)

Definition 9. Advantage of PRG:

$$Adv_{PRG}[A, G] = \Big| Pr[A(G(k)) = 1] - Pr[A(r) = 1] \Big| \in [0, 1]$$

where r is truely random on K (uniform).

 $Adv \rightarrow 1$ means A can distinct G from random.

 $Adv \rightarrow 0$ means A cannot distinct G from random.

Definition 10. $G: \mathcal{K} \to \{0,1\}^n$ is **secure** PRG if for all efficient statistical tests A, $Adv_{PRG}[A,G]$ is negligible.

Theorem 2. PRG predictable iff PRG is insecure. PRG unpredictable iff PRG is secure.

Definition 11. Let P_1 , P_2 be two distributions over $\{0,1\}^n$. P_1 and P_2 are computationally indistinguishable denoted by $P_1 \approx_p P_2$ if for all efficient statistical tests A

$$|Pr_{k \leftarrow P_1}[A(k) = 1] - Pr_{k \leftarrow P_2}[A(k) = 1]| < neg$$

Lemma 2. A PRG is secure if

$$\{G(k) \mid k \leftarrow \mathcal{K}\} \approx_p uniform(\{0,1\}^n)$$