

DOT, CROSS PRODUCT, AND RAYS

- References
 - Chapter 2.11 2.13, 9.2.1

DOT PRODUCT (2.11)

- Symbolically: $\vec{v} \bullet \vec{w}$
- Numeric Interpretation #1: $\vec{v} \cdot \vec{w} = \vec{v_1} * \vec{w_1} + \vec{v_2} * \vec{w_2} + \cdots + \vec{v_n} * \vec{w_n}$
- Numeric Example:

$$[4 \quad 3 \quad -7] \bullet [0 \quad 2 \quad 5]$$

$$= 4 * 0 + 3 * 2 + (-7) * 5$$

$$= 0 + 6 - 35$$

$$= 29$$

- Observations
 - Result is a scalar
 - Commutative
 - Obeys the distributive rule:

$$\vec{v} = [4 \ 3 \ -7], \vec{w} = [0 \ 2 \ 5], \vec{u} = [1 \ -8 \ 6]$$

$$\vec{u} \bullet (\vec{v} + \vec{w}) = \vec{u} \bullet \vec{v} + \vec{u} \bullet \vec{w}$$

$$[1 \ -8 \ 6] \bullet [4 \ 5 \ -2] = (4 - 24 - 42) + (0 - 16 + 30)$$

$$(4 - 40 - 12) = -62 + 14 = -48$$

D.P. APPLICATION #1

- What is $\vec{v} \bullet \vec{v}$?
 - $v_1 * v_1 + ... + v_n * v_n$
 - Simply the magnitude of the vector squared!

$$\vec{v} \bullet \vec{v} = \|\vec{v}\|^2$$

PROBLEM*

- Given:
 - \circ \overrightarrow{T} and \overrightarrow{U} : two spheres (or circle, or hyper-sphere) centers.
 - ot and u: the radii of the spheres
- Determine: does T intersect U, but...
 - We need to improve our frame-rate and square roots are a <u>big</u>
 bottleneck
 - oso no square-roots!
 - o squares are OK, but minimize them.

DOT PRODUCT, CONT.

Numeric Interpretation #2:

$$\overrightarrow{v} \bullet \overrightarrow{w} = \|\overrightarrow{v}\| * \|\overrightarrow{w}\| * \cos(\theta)$$

- Where θ is the angle between v and w (if their tails are together)
- The <u>SAME</u> number as above, just a different way of interpreting / calculating it.
- Why???
- It's due to the Law of Cosines (Geometry)...

Law of Cosines is like the Pythagorean Theorem for any type of triangle (not just right triangles)

$$C^2 = A^2 + B^2 - 2AB\cos(\gamma)$$

Note: for right triangles, the last term is 0...

DERIVATION OF INTERP. #2

1. Let
$$\vec{z} = \vec{w} - \vec{v}$$

2.
$$\|\vec{z}\|^2 = \|\vec{w}\|^2 + \|\vec{v}\|^2 - 2\|\vec{v}\|\|\vec{w}\|\cos(\theta)$$

Law of Cosines

3. (Lemma)
$$\|\vec{a}\|^2 = \vec{a} \cdot \vec{a}$$

4.
$$\vec{z} \bullet \vec{z} = \vec{w} \bullet \vec{w} + \vec{v} \bullet \vec{v} - 2 ||\vec{v}|| ||\vec{w}|| \cos(\theta)$$

5.
$$\vec{z} \bullet \vec{z} = (\vec{w} - \vec{v}) \bullet (\vec{w} - \vec{v})$$

"squaring" step1, using step3

6.
$$\vec{z} \bullet \vec{z} = \vec{w} \bullet \vec{w} + \vec{v} \bullet \vec{v} - 2(\vec{w} \bullet \vec{v})$$
 D.P. follows distributive rule & step 5 (F.O.I.L)

7.
$$\overrightarrow{w} \bullet \overrightarrow{w} + \overrightarrow{v} \bullet \overrightarrow{v} - 2(\overrightarrow{w} \bullet \overrightarrow{v}) = \overrightarrow{w} \bullet \overrightarrow{w} + \overrightarrow{v} \bullet \overrightarrow{v} - 2||\overrightarrow{v}|| ||\overrightarrow{w}|| \cos(\theta)$$

- Step4 and Step6 are equal (but different) definitions of z-dot-z.
- b. Set them equal to each other.

8.
$$-2(\overrightarrow{w} \bullet \overrightarrow{v}) = -2|\overrightarrow{v}| ||\overrightarrow{w}| ||\cos(\theta)|$$

9.
$$\overrightarrow{w} \bullet \overrightarrow{v} = \|\overrightarrow{v}\| \|\overrightarrow{w}\| \cos(\theta)$$

"Quod Erat Demonstrandum", or "which had to be demonstrated", or this to a mathematician...

NOT CONVINCED?

- Let $\vec{v} = [10 \ 5 \ 0]$ and $\vec{w} = [5 \ -3 \ 0]$
- Let's draw a picture

EXAMPLE, CONTINUED

$$\vec{v} = [10 \ 5 \ 0] \ and \ \vec{w} = [5 \ -3 \ 0]$$

Theta is ~55 degrees.

Interpretation#1:
$$\vec{v} \cdot \vec{w} = 10*5 + 5*(-3) + 0*0 = 50 - 15 = 35$$

Interpretation#2:
$$\vec{v} \cdot \vec{w} = ||\vec{v}|| * ||\vec{w}|| * \cos(\theta)$$

$$\|\vec{v}\| = \sqrt{10^2 + 5^2 + 0^2} = \sqrt{100 + 25} = \sqrt{125} \approx 11.18$$

$$\|\vec{w}\| = \sqrt{5^2 + (-3)^2 + 0^2} = \sqrt{25 + 9} = \sqrt{31} \approx 5.57$$

$$\vec{v} \bullet \vec{w} = ||\vec{v}|| * ||\vec{w}|| * \cos \theta = 11.18 * 5.57 * \cos(55)$$

$$=35.72$$

(we estimated the angle (it's more like 55.8 degrees) and rounded off the lengths, otherwise they'd be identical)

APPLICATION OF D.P #2 (CALCULATION OF Θ)

We can come up with an <u>exact</u> value for θ, given any two vectors using a little algebra and our two definitions of dot product.

$$\vec{v} \cdot \vec{w} = ||\vec{v}|| * ||\vec{w}|| * \cos(\theta)$$

$$\vec{v} \cdot \vec{w} = ||\vec{v}|| * ||\vec{w}|| * \cos(\theta)$$

$$||\vec{v}|| * ||\vec{w}|| = ||\vec{v}|| * ||\vec{w}||$$

$$\frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| * ||\vec{w}||} = \cos(\theta)$$

$$\cos^{-1}(\frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| * ||\vec{w}||}) = \cos^{-1}(\cos(\theta))$$

$$\theta = \cos^{-1}(\frac{\vec{v} \bullet \vec{w}}{\|\vec{v}\| * \|\vec{w}\|})$$

PROBLEM

- You are given:
 - $\circ \overrightarrow{C}$: the position of your character
 - $\circ \widehat{D}$: the direction your character is facing
 - \vec{E} : the position of an enemy
 - \circ O: the half-spread of a shotgun blast (around D). < 45° (the full blast-spread is 2 Θ)
 - on: the distance at which the shotgun does no damage
 - om: the damage the shotgun blast does at point-blank range (the damage falls off linearly the farther away we go)
- Problem: Symbolically find the actual amount of damage the shotgun does to the enemy. Bonus: minimize the use of trig functions and don't use any inverse trig (both are very slow).

PROBLEM (PICTURE)

APPLICATION OF DOT PRODUCT #3

• θ is the angle between v and w. In each of these cases, think of what $cos(\theta)$ would be...

D.P. APPLICATION #3

- We can classify the relationship between vectors cheaply:
 - If $\vec{v} \bullet \vec{w} < 0$, the vectors make an obtuse angle
 - If $\vec{v} \bullet \vec{w} > 0$, the vectors make an acute angle
 - If $\vec{v} \bullet \vec{w} = 0$, the vectors make a right angle
- If v and w happen to be unit-length, we can make more observations:
 - $-1 \le \hat{v} \bullet \hat{w} \le 1$
 - $\hat{v} \bullet \hat{w}$ = 1 if the vectors are equal
 - $\hat{v} \bullet \hat{w} = -1$ if the vectors are negations of one another.

PROBLEM

- Given:
 - $\circ \vec{G}$: a guard's position
 - \circ 0: the guard's orientation (if in 2d, this is the angle he is facing; if in 3d, this is a rotation about the y axis, where y is up and the x/z plane is the ground).
 - Note the guard can see to her left / right (and up/down if in 3d) forming a line (or plane in 3d) dividing the non-visible from visible areas).
 - $\circ \vec{P}$: the player's position
- Problem: Symbolically determine if the guard can see the player.
 - o Restriction: no inverse trig calls!

APPLICATION #4 (PROJECTION)

- When you project one vector onto another, you produce two new vectors: a perpendicular and a parallel.
- lacktriangle Say we're projecting \overrightarrow{w} onto \overrightarrow{v}
- We'll get:
 - o $\overrightarrow{w_{||}}$: the parallel projection of w onto v.
 - $\circ \overrightarrow{w_{\perp}}$: the perpendicular projection of ...
 - o such that $\overrightarrow{w} = \overrightarrow{w_{||}} + \overrightarrow{w_{\perp}}$

APPLICATION #4 (PROJECTION)

Recall our trig identities:

$$\sin(\theta) = \frac{O}{H} \quad \cos(\theta) = \frac{A}{H} \quad \tan(\theta) = \frac{O}{A}$$

- So...in the picture below:
 - $\|\overrightarrow{w}\|$ is the length of the hypotenuse (H)
 - $\|\overrightarrow{w_{\perp}}\|$ is the length of the opposite side (0)
 - $\|\overrightarrow{w_{||}}\|$ is the length of the adjacent side (A)
- Also recall that $\vec{v} \bullet \vec{w} = ||\vec{v}|| ||\vec{w}|| \cos(\theta)$
- If we substitute $\cos(\theta) = \frac{A}{H} = \frac{\|\overrightarrow{w_{\parallel}}\|}{\|\overrightarrow{w}\|}$ into the d.p. form...

$$\vec{v} \cdot \vec{w} = ||\vec{v}|| ||\vec{w}|| * \frac{||\vec{w}||}{||\vec{w}||}$$

[cont. on next slide]

APPLICATION #4 (PROJECTION)

- [from last slide...]
- $\overrightarrow{v} \bullet \overrightarrow{w} = \|\overrightarrow{v}\| \|\overrightarrow{w}\| * \frac{\|\overrightarrow{w}\|}{\|\overrightarrow{w}\|}$
 - Now, some algebra produces:

$$\|\overrightarrow{w_{||}}\| = \frac{\overrightarrow{v} \bullet \overrightarrow{w}}{\|\overrightarrow{v}\|}$$

If we actually want the vector $\overrightarrow{w_{||}}$...

$$\overrightarrow{w_{||}} = \frac{\overrightarrow{v} \bullet \overrightarrow{w}}{\|\overrightarrow{v}\|} * \widehat{v} \qquad = \boxed{\frac{\overrightarrow{v} \bullet \overrightarrow{w}}{\overrightarrow{v} \bullet \overrightarrow{v}} \overrightarrow{v}}$$

- Recall (from vector addition):
 - $\overrightarrow{w} = \overrightarrow{w_{||}} + \overrightarrow{w_{\perp}}$
 - Which makes it easy to calculate $\overrightarrow{w_{\perp}}$:

$$\overrightarrow{w_{\perp}} = \overrightarrow{w} - \overrightarrow{w_{||}}$$

PROBLEM

Given:

 $\circ \overrightarrow{B}$: a "beamos"'s position

o α: beamos's rotation

 $\circ \vec{L}$: link's (feet) position

on: link's bounding radius

- **Problem:** Symbolically determine if the beamos's beam hits link (regardless of distance). You can assume this is a 2d problem (although if in 3d, think of α as the y-axis rotation of the beamos)
- **Bonus**: Determine the closest intersection point, \overrightarrow{P} , where the laser hits link's bounding circle / sphere.

APPLICATION #4, CONT.

It works even if they make an obtuse angle

CROSS PRODUCT (2.12)

- Symbolically: $\vec{v} \times \vec{w}$
 - Again, NOT, NOT, NOT vector multiplication!
 - The result is a vector.
 - Note: cross product is not commutative.
 - Only makes sense in 3d (at least for us)
- Numerically:

$$[\overrightarrow{v_{\chi}} \quad \overrightarrow{v_{y}} \quad \overrightarrow{v_{z}}] \ \chi \ [\overrightarrow{w_{\chi}} \quad \overrightarrow{w_{y}} \quad \overrightarrow{w_{z}}] = \begin{bmatrix} \overrightarrow{v_{y}} * \overrightarrow{w_{z}} - \overrightarrow{v_{z}} * \overrightarrow{w_{y}} \\ \overrightarrow{v_{z}} * \overrightarrow{w_{\chi}} - \overrightarrow{v_{\chi}} * \overrightarrow{w_{z}} \end{bmatrix}^{T}$$

(the little T means "transpose" - flip it sideways [it's easier to read this way])

- Tips to memorizing this:
 - determinant of a matrix (next slide)
 - xyzzy (slide after that)
 - ... something else.

C.P. MNEMONIC #1

- This is actually where the formula comes from.
 - The determinant of the following matrix
- Suppose we're calculating \vec{r} , where $\vec{r} = \vec{v} \ x \ \vec{w}$

$$\vec{r} = \begin{bmatrix} v_y w_z - v_z w_y \\ v_z w_x - v_x w_z \\ v_x w_y - v_y w_x \end{bmatrix}$$

r_x	v_{x}	w_{x}
r_y	v_y	w_y
r_z	v_z	w_z
r_{χ}	v_x	w_x
r_y	v_y	Wy
rz	v_z	W_Z

subtract these...

add these...

C.P. MNEMONIC #2

NOTE ABOUT PARALLEL VECTORS

• Note: $\vec{v} \times \vec{v}$ is the zero vector

Actually any two vectors that are in the same or opposite directions will give a zero vector if crossed)

CROSS PRODUCT, CONT.

Graphically:

- Note that \vec{v} and \vec{w} (3d, non-parallel, non-zero) define a plane.
 - If v and w or zero or (anti-) parallel, you'll get a zero vector as the result.
- The cross product is a vector perpendicular to that plane.
- The *length* of that vector is: $\|\vec{v}\| \|\vec{w}\| \sin(\theta)$

DIRECTION

- Cross product is anti-commutative
 - Meaning: $\vec{v} \times \vec{w} = -(\vec{w} \times \vec{v})$
- Determining direction of result:
 - If in a right-handed system, use your right-hand (if in left, use left hand).
 - Line your palm up with the first vector.
 - Curl all your fingers but your thumb in the shortest arc you can towards the second vector.
 - Your thumb points in the direction of the result.

ADDITIONAL PROPERTIES

- lacktriangle Imagine a parallelogram with sides \overrightarrow{v} and \overrightarrow{w}
- Recall: area of a parallelogram is base * height
- So...the area is $\|\vec{v}\| * (\|\vec{w}\| \sin(\theta))$
- Which is just $\|\overrightarrow{v} \times \overrightarrow{w}\|$

the parallelogram viewed along the green arrow

PRACTICE PROBLEM

- Given: \overrightarrow{A} , \overrightarrow{B} , and \overrightarrow{C} , which are three ordered points along a character's path (all of them are on the xy plane).
- Problem: Did the character take a left / right / straight turn at point B?

RAYS (9.2.1)

Description

- [Compare to (directed) line (segments)]
- straightforward definition:
 - \vec{O} : An origin (a point)
 - \widehat{D} : A (unit-length) direction (a vector)

Parametric form

Vector notation:

$$\overrightarrow{P(t)} = \overrightarrow{O} + t\widehat{D}$$

"Component" notation

$$\frac{\overrightarrow{P(t)_{x}}}{\overrightarrow{P(t)_{y}}} = \frac{\overrightarrow{O_{x}} + t\widehat{D_{x}}}{\overrightarrow{O_{y}} + t\widehat{D_{y}}}$$

...

