Network Layer Overview

Manas Ranjan Lenka School of Computer Engineering, KIIT University

Heterogeneous Communication

Internet Architecture: Hour Glass

Network Layer

- Communication in Internet is heterogeneous i.e. different hosts uses different technology to communicate.
 - Heterogeneity: Addressing conventions, bandwidth, latency, loss rates, packet sizes
- Solution: Internet Protocol (IP)
 - Internet: Interconnect Networks
 - Invented by Robert Kahn and Vint Cerf

Internet Layer Services

- Services offered by Internet layer
 - host-to-host packet delivery.
 - routing of packets.
 - Fragmentation and reassembly of packets.
 - IP Addressing
 - Error Reporting
 - connectionless Best Effort Service.
 - Will make best effort to deliver the packet
 - Packets can get lost, corrupted, reordered, misdelivered, duplicated, delayed.
 - IP protocol's greatest strength
 - Runs over anything

IP datagram Format

Legend

VER: version number HLEN: header length

byte: 8 bits

a. IP datagram	IP datag	ram
----------------	----------	-----

0					
VER 4 bits	HLEN 4 bits	Service type 8 bits	Total length 16 bits		
T OILS	Identification 16 bits		Flags Fragmentation offset 3 bits 13 bits		
Time-1		Protocol 8 bits	Header checksum 16 bits		
Source IP address (32 bits)					
Destination IP address (32 bits)					
Options + padding (0 to 40 bytes)					
b. Header format					

IP datagram Format

- Version: Specifies the version of the protocol
 - IPv4, IPv6
- Header Length: Specifies the header in 32-bit words
 - 5 words (without options)
- Type of Service: Permits packets to be treated differently
 - Research Focus
- Total Length: Specifies the length of the datagram (in bytes) including header
- Identification/Flags/ Fragment Offset:
 - Max size of IP packet is 65535 Bytes
 - Physical Networks may not support large packets
 - Need Fragmentation and reassembly

IP datagram Format

- Time to Live: Helps catch packets doing rounds
 - Not really time but hop count
 - Routers decrement the field by one before forwarding; if zero discard
 - Default value = 64
- Protocol: Demux key that identifies higher layer protocol
 - TCP: 6, UDP: 17
- Checksum (Internet): Detects errors in header
- Source/Destination IP address: 32-bit
 - Destination key to forwarding
 - Source for replying back
 - Global address space, independent of physical network address (MAC)
- Options: Rarely used
 - Record Time stamp
 - Record route taken
 - Specify source route

Fragmentation and Reassembly

- Goal: Interconnect heterogeneous networks
- Problem: Each technology has different Maximum Transmission Unit (MTU) size
 - MTU: Largest IP datagram that can be carried in a frame
 - E.g. Ethernet: 1500, FDDI: 4352, PPP: 296 (Negotiable),WiFi: 7981
- At host: Select MTU of link it is connected to
- At intermediate router: Forward datagram on a network with smaller MTU
 - Need to fragment the datagram
- Where to reassemble?
 - Next hop router? Increases overhead and datagram may again be fragmented
 - Destination is the best place

Fragmentation Fields

- Identification: Helps identify a datagram
 - All fragments carry same identification
- Flags: 3 bits
 - bit 0: Reserved, set to zero
 - bit 1: Don't Fragment (DF); Useful for path MTU discovery
 - bit 2: More Fragments (MF); Set to one to indicate more fragments to follow
- Fragmentation Offset: 13 bits long
 - Measures data/payload in units of eight-byte blocks
 - For a particular fragment, offset specifies start of data relative to the beginning of the original unfragmented IP datagram.
 - E.g first fragment would have an offset of zero

Example

8 hyter

- Original datagram:
 - 1500B

- 208
- Data within is 1480B
- MTU: 296B
- 276
- Max Data within is
 276B
- Offset has to be multiple
 of 8 → Data within

272	D/
111	K)
414	D.

Inside a Router

Terminates physical link; Performs data-link-layer functions;

Can also perform look-up,

forwarding, Queuing;

Routing protocol info passed to

Inside a Router

Stores incoming packets (queues) and transmits on outgoing link; Performs data-link, phy layer

functionality

forwarding tables

Routing Processor

Router Functions

- Data-path functions: Operations performed on every datagram
 - forwarding, checksum calculation, FIFO scheduling etc
 - Often implemented in specialized hardware for high speed
- Control functions: Operations performed infrequently (packet exchange for routing protocols, system/network management)
 - Implemented in software

1st Generation Routers

- In 1980's
- Every packet involves the Processor
 - Processorbecomesbottleneck

2nd Generation Routers

- Early1990's
- Parallelism:
 More hardware
 in each line card
- Packets travel bus only once
- Limitation: Bus becomes the bottleneck

Router Performance

- Minimize delay, losses → high forwarding speeds
- Look-up speed: determine output port
 - Forwarding table look-up at incoming port itself
- Look-up speed should exceed line-speed
 - E.g. 1Gbps link, packet size is 40 bytes → ~3 million
 packets per second → lookup speed has to be greater than 3 million lookups per second → each lookup should be under
 8ns
- Switching fabric speed (S): Rate at which packets are moved from input to output
- N input and output ports with identical line speeds
- Input Port: No queue build-up if S > (N * line speed) → No loss
- Output Port: queues can build and losses can occur
 - If all N incoming packets on different input ports are directed to same output port