Chapitre 1 : Programmation linéaire – Méthode du simplexe

Connaissances préalables nécessaires :

<u>Semestre 7</u>: Chapitre 5: initiation à la programmation linéaire (résolution graphique)

N'hésitez pas à revoir les chapitres cités, si vous pensez que cela est nécessaire. Dès le début du semestre 8, nous démarrons

Exercice 1:

Soit le modèle de programmation linéaire suivant :

- $x_1 = nombre de produits A à vendre$
- x₂=nombre de produits B à vendre.

Et Z = bénéfice obtenu

Max
$$Z= 25 x_1 + 15 x_2$$

Sous:
$$2x_1 + 2x_2 \le 240$$

 $3x_1 + x_2 \le 140$
 $x_1 \ge 0, x_2 \ge 0$

1ère phase:

Transformation des contraintes à l'aide des variables d'écart afin d'obtenir un système d'équations

Max Z=
$$25x_1 + 15x_2 + 0s_1 + 0s_2$$

Sous: $2x_1 + 2x_2 + s_1 = 240$
 $3x_1 + 1x_2 + s_2 = 140$
 $x_1 \ge 0, x_2 \ge 0 \quad s_1 \ge 0, s_2 \ge 0$

			Coefficients C _j correspondants aux variables	
	Variable Base (VB)	Quantité (Q _i)	Toutes les variables	
Coefficients Ci _B des variables de base	Variables de base	Seconds membres des équations	a _{ij} Matrice des coefficients des contraintes du programme standard	RT Q _i / a _{ije}
o, Lat, usung tu ob systemic and obtained	non married no basep yett ni tano y	QiCi	$Z_{j} = \sum_{i \in \{iB\}} C_{i} a_{ij}$ $D_{j} = C_{j} - Z_{j}$	un da 191 Life bousq Life al 7
			première ligne moins dernière ligne	18531 NO H

2^{ème} phase :

1^{er} tableau du simplexe (j colonnes et i lignes)

	Cj→		25	15	0	0
Ci↓	VB	Q	X 1	X2	s1	s2
0	s1	240	2	2	1	0
0	s2	140	3	1	0	1

3^{ème} phase:

Méthode itérative

1) <u>lère itération du simplexe :</u>

Cj			25	15	0	0	
	VB	Q	X 1	X2	s1	s2	RT
0	s1	240	2	2	1	0	
0	s2	140	3	1	0	1	
	Zj	0	0	0	0	0	
	Cj -Zj		25	15	0	0	

a) Détermination de la colonne pivot : Le plus grand (Cj-Zj). Strictement positif (Le plus petit coefficient Cj en cas d'égalité)

Cj			25	15	0	0		
	VB	Q	X 1	X2	s1	s2	RT	
0	s1	240	2	2	1	0	240/2	
0	s2	140	3	1	0	1	140/3	←
	Zj	0	0	0	0	0		•
	Cj -Zj		25	15	0	0		

b) Attention, seulement pour les aij strictement positifs sur la colonne pivot, détermination de la ligne pivot : le plus petit ratio (Qj/aij) positif ou nul

Deuxième tableau issu des combinaisons linéaires : (l'ensemble devant être effectué "en un seul tenant" sur le même tableau)

- c) Passer dans la base (à la place de la variable s2 de la ligne pivot), la variable de la colonne pivot (ici x1 qui est actuellement hors base)
- d) Diviser chaque valeur de la ligne pivot par le nombre pivot qui est à l'intersection de la ligne et de la colonne pivot (ici diviser par 3)

	Cj			25	15	0	0
		VB	Q	X ₁	X2	s1	s2
	0	s1	240	2	2	1	0
-	25	x1	140/3	\bigcirc	1/3	0	1/3
•		Zj	0	0	0	0	0
		Cj -Zj		25	15	0	0

e) Pour chaque ligne restante, soustraire un multiple approprié de la nouvelle ligne pivot. Ce multiple est égal à la valeur située à l'intersection de la colonne pivot et de la ligne courante

Ici L1<- L1 – 2 L2 avec L2 ligne pivot. (On pratique ici comme pour le pivot de Gauss vu en IR3)

	Cj			25	15	0	0
		VB	Q	X 1	X2	s1	s2
-	0	s1	440/3	0	4/3	1	-2/3
	25	x1	140/3	\bigcirc	1/3	0	1/3
		Zj	3500/3	25	25/3	0	25/3
		Cj -Zj		0	20/3	0	-25/3

2^{ème} itération du simplexe :

Cj			25	15	0	0		
	VB	Q	X1	X2	s1	s2	RT	
0	s1	440/3	0	4/3	1	-2/3	110	•
25	x1	140/3	1	1/3	0	1/3	140	
	Zj	3500/3	25	25/3	0	25/3		
	Cj -Zj		0	20/3	0	-25/3		

- a) Détermination de la colonne pivot : Le plus grand (Cj-Zj)
- b) Détermination de la ligne pivot : le plus petit (Qj/aij) positif ou nul Le pivot est 4/3

Troisième tableau issu des combinaisons linéaires : (l'ensemble étant ici effectué "en un seul tenant" sur le même tableau)

- c) Passer dans la base (à la place de la variable s1 de la ligne pivot), la variable de la colonne pivot (ici x2 qui est actuellement hors base)
- d) Diviser chaque valeur de la ligne pivot par le nombre pivot qui est à l'intersection de la ligne et de la colonne pivot (ici diviser par 4/3)
- e) Pour chaque ligne restante, soustraire un multiple approprié de la nouvelle ligne pivot. Ce multiple est égal à la valeur située à l'intersection de la colonne pivot et de la ligne courante

Ici L2<- L2 – 1/3 L1 avec L1 ligne pivot. (On pratique ici comme pour le pivot de Gauss vu en IR3)

	Cj			25	15	0	0
		VB	Q	X 1	X2	s1	s2
\dashv	15	x2	110	0		3/4	-1/2
\dashv	2 5	x1	10	1	0	-1/4	1/2
,		Zj	1900	25	15	5	5
		Cj -Zj		0	0	-5	-5

Tous les Cj-Zj sont négatifs ou nuls → La solution est optimale.

Fin de la phase 3.

Conclusion:

- x1=10
- x2=110
- s1=0
- s2=0
- z=1900

Remarques:

- Chaque itération est l'occasion de choisir une variable qui *entre* dans la base et une variable qui *sort* de la base. Ces variables sont respectivement *entrantes* et *sortantes*.
- L'équation correspondant à la variable sortante est appelée *ligne pivot*. Le coefficient de la variable entrante pour cette équation est appelé *valeur pivot*. L'opération qui consiste à créer un nouveau tableau issu de combinaisons linéaires à partir du tableau précédent est appelée *pivot* (de Gauss)

Exercice 2:

Résoudre en utilisant la méthode du simplexe :

$$Max Z= 100 x + 150 y$$

Sous:
$$10x + 4y \le 160$$

 $x + y \le 20$
 $10x + 20y \le 300$
 $x \ge 0, y \ge 0$

Exercice de synthèse :

Fournissez l'algorithme du simplexe tel que présenté pas à pas dans cette documentation.

Vous présenterez l'algorithme en pseudo-code