

UNIVERSITÀ DEGLI STUDI DI PADOVA

High-level vision: object recognition, template matching, bag of words

Stefano Ghidoni

Agenda

Finding object in an image

Template matching

Histogram of oriented gradients

Bag of words

- Consider the high-level task of getting some information from an image about objects
- Object recognition is a general term to describe a collection of related computer vision tasks that involve identifying objects in images or videos

IAS-LAB

Classification

CAT

Output: A label

IAS-LAB

Output:
A label + a bounding box

IAS-LAB

Output: Multiple bounding boxes with label

IAS-LAB

Classification + Localization

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

Output: Multiple areas with label

Modeling variability

- The tasks discussed so far shall cope with
 - Different camera positions
 - Perspective deformations
 - Illumination changes
 - Intra-class variations

Camera position

Perspective deformation

Illumination changes

Intra-class variations

Approaches to object recognition

- We already covered a method for object detection
 - Which one?

• Anti spoiler ©

Approaches to object detection

- We already covered a method for object detection
 - Which one?
- Boosting for face detection (Viola and Jones)
 - Can be applied to other targets

Approaches to object detection

- We already covered a method for object detection
 - Which one?
- Other approaches are available
 - Template matching
 - Histogram of Oriented Gradients (HOG)
 - Bag of Words
 - Machine learning / deep learning

Template matching

- A template is
 - Something fashioned, shaped or designed to serve as a model
 - Something formed after a model
 - A representative instance (an example)

Template matching

- "Where is a given object?"
- Find instances of the templates in the image
- A similarity measure should be chosen

Challenges

- Template variability, deformable objects
- Imaging device properties
- Viewpoint changes
- Affine transforms scale, rotations, translations, ...
- Noise
- Illumination

How to apply a template?

- Given
 - An image
 - A template
- How can we evaluate the match?

Anti spoiler

Matching the template

- Common option: correlation-based approach
- Template T: rigid object, often a small image
- Sliding window
- Comparison of
 - Pixel values
 - Features
 - Edges or gradient orientation
- Similarity metrics: SSD, SAD, ZNCC

Sliding window

- Template-based approaches are often based on a sliding window
- The template is placed in every possible position across the image
 - Basic approach w/out rotation and scaling

Correlation-based

- Common option: correlation-based approach
- Template T: rigid object, often a small image
- Sliding window
- Comparison of
 - Pixel values
 - Features
 - Edges or gradient orientation
- Similarity metrics: SSD, SAD, ZNCC

Correlation-based

- Common option: correlation-based approach
- Template T: rigid object, often a small image
- Sliding window
- Comparison of
 - Pixel values
 - Features
 - Edges or gradient orientation
- Similarity metrics: SSD, SAD, ZNCC

 Simple differencing does not always provide reliable results – why in this case?

Correlation-based

- Common option: correlation-based approach
- Template T: rigid object, often a small image
- Sliding window
- Comparison of
 - Pixel values
 - Features
 - Edges or gradient orientation
- Similarity metrics: SSD, SAD, ZNCC

Correlation-based

- Common option: correlation-based approach
- Template T: rigid object, often a small image
- Sliding window
- Comparison of
 - Pixel values
 - Features
 - Edges or gradient orientation
- Similarity metrics: SSD, SAD, ZNCC

Sum of Squared Differences (SSD)

$$\phi(x,y) = \sum_{u,v \in T} (I(x+u,y+v) - T(u,v))^2$$

Sum of Absolute Differences (SAD)

$$\phi(x,y) = \sum_{u,v \in T} |I(x+u,y+v) - T(u,v)|$$

Zero-mean Normalized Cross-Correlation (ZNCC)

$$\phi(x,y) = \frac{\sum_{u,v \in T} \left(I(x+u,y+v) - \overline{I}(x,y) \right) (T(u,v) - \overline{T})}{\sigma_I(x,y) \sigma_T}$$

• $\bar{I}(x,y)$: average on window, \bar{T} : template average, $\sigma_I(x,y)$, σ_T : standard deviation on image window and on template

Università TM weak points and how to cope with

- Dealing with illumination changes
 - Use edge maps instead of images
 - Use ZNCC: subtracts the uniform illumination component
- Dealing with scale changes
 - Matching with several scaled versions of the template
 - Work with multiple rescaled copies of the image
- Dealing with rotation
 - Matching with several rotated versions of the template

TM in general

IAS-LAB

The basic idea of TM generated a family of approaches

 Different ways of defining the template

Different ways of dealing with the template

TM in general

IAS-LAB

- The generalized Hough transform can be seen as a form of template matching
- The Hough transform works for more complex shapes
- General equation:

$$g(\mathbf{v}, \mathbf{c}) = 0$$

– Where $oldsymbol{v}$ is a vector of coordinates and $oldsymbol{c}$ a vector of coefficients

Generalized Hough transform

IAS-LAB

• E.g. (circle):

$$(x - c_1)^2 + (y - c_2)^2 = c_3^2$$

The parameter space might have high dimensionality

Generalized Hough transform – ex.

Histogram of Oriented Gradients (HOG)

- HOG-based detectors work by
 - Sliding a window (similarly to TM)
 - Characterizing the window by evaluating the edge magnitude and phase – this produces a descriptor (similar to feature descriptor)
 - Classifying the descriptor

- HOG descriptor evaluation
 - Intensity normalization/histogram equalization + smoothing
 - 2. Calculate edge map (magnitude + phase)

- HOG descriptor evaluation
 - 3. Evaluate edge histogram on 8x8 non-overlapping cells this creates voting vectors (e.g., 9 bins of 20° for covering 180°)

- HOG descriptor evaluation
 - 4. Create overlapping blocks of 2x2 cells
 - 5. Normalize voting vectors over each block and create block vectors (36 elements)

- HOG descriptor evaluation
 - 6. Serialize block vectors

- Consider a 64x128 window
 - How many bins?
 - How many blocks?
 - What is the feature size?

• Anti spoiler ©

- Consider a 64x128 window
 - How many bins? 8x16 bins
 - How many blocks? 7x15 blocks
 - What is the feature size? 3780 elements

Characteristics of the HOG descriptor

- The HOG descriptor characterizes the content of a bounding box
- The HOG approach needs BBoxes normalized to a standard size
- Multiple scales can be managed by resizing BBoxes of different dimensions to the standard size

Using the HOG descriptor

- The HOG descriptor is commonly used to train a classifier
- Note the number (cell and block size) described above are one possible implementation for HOG
 - This has an influence on the descriptor size and meaning

Bag of words: approach

IAS-LAB

Approach taken from document analysis

- Image and object classification
- Designed to be invariant to several factors
 - Mainly viewpoint and deformations
- Decomposes complex patterns into (semi) independent features

IAS-LAB

Decomposition into visual words

Decomposition into visual words

IAS-LAB

Histogram representation

codewords dictionary

- Words can be represented using features
 - Exploit discriminative properties
 - Exploit invariance properties
 - Re-use an efficient description

IAS-LAB

1. Extract features – keypoints and descriptors

IAS-LAB

2. Clustering in the feature space (e.g., K-means)

IAS-LAB

3. Codebook generation: each cluster generates a representative sample (e.g., centroid)

- Image classification:
 - Evaluate the occurrence of each word in the codeword
 - Classify based on histogram

UNIVERSITÀ DEGLI STUDI DI PADOVA

High-level vision: object recognition, template matching, bag of words

Stefano Ghidoni

