Network Layer

Application

Transport

Network

Data Link

Physical

- Network Layer
- 네트워크 간에 데이터를 전송 하는 기능을 제공

Network Layer

- 장비 : Router. L3 장비
- Protocol : 일반적으로 IP를 사용
- Addressing
 - 네트워크에 연결된 모든 호스트는 주소를 가져야 한다.
- Encapsulation
 - 장비 간에 메시지를 전달 하기 위해서 제어 정보를 추가한다.
 - PDU : Packet
- Fragmentation
 - 2계층에서 처리할 수 있는 크기의 데이터로 분할한다.
- Routing
 - 데이터를 전달할 다음 장비를 알아야 한다.
 - Gateway
 - 동일하지 않은 네트워크에 데이터를 전달 하기 위해서는 gateway를 거쳐야 한다.

Network Layer

IP Class Scope

Network Layer

IP Address Classes

Class	첫번째 옥텟	첫째 옥텟 최소값	첫째 옥텟 최대값		이론적 IP 주소 범위
A Class	0xxx xxxx	0000 0000	0111 1111	0 ~ 127	$0.0.0.0 \sim 127.255.255.255$
B Class	10xx xxxx	1000 0000	1011 1111	128 ~ 191	128.0.0.0 ~ 191.255.255.255
C Class	110x xxxx	1100 0000	1101 1111	192 ~ 223	192.0.0.0 ~ 223.255.255.255
D Class	1110 xxxx	1110 0000	1110 1111	224 ~ 239	224.0.0.0 ~ 239.255.255.255
E Class	1111 xxxx	1111 0000	1111 1111	240 ~ 255	240.0.0.0 ~ 255.255.255.255

Network Layer

Multicast Address

범위 시작 주소	범위 끝 주소	설명
224.0.0.0	224.0.0.255	유명한 특수 멀티캐스트 주소로 예약
224.0.1.0	238.255.255.255	전역 범위 (인터넷 전체) 멀티캐스트 주소
239.0.0.0	239.255.255.255	관리용(로컬) 멀티캐스트 주소

- 224.0.0.0 : 예약됨. 쓰이지 않음
- 224.0.0.1 : 서브넷의 모든 장비
- 224.0.0.2 : 비 서브넷의 모든 라우터
- 224.0.0.3 : 예약됨
- 224.0.0.4 : DVMRP를 사용하는 모든 라우터
- 224.0.0.5 : OSPF를 사용하는 모든 라우터
- 224.0.0.6: OSPF로 지정된 라우터
- 224.0.0.9: RIPv2로 지정된 라우터
- 224.0.0.11 : 모바일 에이전트(모바일 IP용)
- 224.0.0.12 : DHCP 서버/중계 에이전트

Network Layer

Type of Data Transmissions(Unicsat)

- 호스트 A가 호스트 B에게 데이터를 전달하는 가장 일반적인 방법이다.
- 출발지 주소와 목적지 주소를 명시하여 해당하는 장비만 데이터를 처리하도록 한다.
- 동일한 정보를 많은 호스트에 전달 할때는 비효율적인 방법일수 있다.
- 호스트 대 호스트 전달을 기반으로 함으로 다른 호스트에 부하를 주지않는다.

Network Layer

Type of Data Transmissions(Broadcast)

- 단일 Host가 Segment의 모든 호스트를 대상으로 Data 전달 시 사용된다.
- 목적지 주소에 Broadcast Address를 입력하여 전달하면, 동일 네트워크 안의 모든 호스트가 이 메시지를 수신한다.
- 동일한 정보를 한번에 모든 호스트에게 전달하는 장점을 갖는다.
- 많은 Broadcast는 호스트의 성능저하를 가져온다.

Network Layer

Type of Data Transmissions(Multicast)

- 단일 Host가 Segment의 특정 그룹에 소속되어 있는 host들을 대상으로 Data를 전달할 때 사용되다.
- 목적지 주소에 Multicast Address를 입력하여 전달하면, 동일 그룹에 가입한 모든 호스트가 이 메시지를 수신한다.
- 동일한 정보를 한번에 여러 호스트에게 전달하는 장점을 갖는다

Network Layer

Subneting

- 동일 네트워크 안에서 Broadcast traffic이 발생하면, 해당 traffic을 수신한 모든 호스트는 broadcast traffic을 처리해야 한다
- Broadcast Domain에서는 보안이 취약하기 때문에 Firewall이나 ACL과 같은 정책을 구현하기 위해서는 Network Segment를 나누는 것이 효율적이다.
- ISP업체에서는 회선을 임대한 기업들에 IP를 할당하기 위하여 Subnetting을 한 후에 IP를 할당하여 주소를 절약한다.

Network Layer

Subnet 구조

- Subnetting 작업 순서
 - Host or Subnet 수를 파악한다
 - Subnet mask를 만들기 위해 Major Network ID자리와 Host ID로 사용되는 bit의 왼쪽부터 1을 입력한다
 - Host ID의 남은 자리에 모두 0을 입력하면 Subnetwork ID가 나온다.
 - Host ID 부분이 모두 1이면Subnet Broadcast Address이다

Network Layer

Subnet 서브네팅 예제

- 1.211.100.10.0/24 네트워크를 각 네트워크 당 60개의 Host가 사용할 수 있도록 Subneting 하시오
 - ①어떤 Subnet mask가 효율적인가?
 - ②Subnet의 개수
 - ③Host의 개수
 - ④마지막 Subnet의 Network-ID는?
 - ⑤첫 번째 Subnet의 Broadcast 주소는?
 - ⑥두 번째 Subnet의 사용 가능한 IP 범위는?
- 2.195.168.12.0/24 네트워크를 8개의 네트워크로 사용할 수 있도록 Subneting 하시오
 - ①어떤 Subnet mask가 효율적인가?
 - ②Subnet의 개수
 - ③Host의 개수
 - ④마지막 Subnet의 Network-ID는?
 - ⑤첫 번째 Subnet의 Broadcast 주소는?
 - ⑥두 번째 Subnet의 사용 가능한 IP 범위는?

Network Layer

Subnet 서브네팅 예제

- 3.152.0.61.0/24 네트워크를 각 네트워크 당 100개의 Host가 사용할 수 있도록 Subneting 하시오
 - ①어떤 Subnet mask가 효율적인가?
 - ②Subnet의 개수
 - ③Host의 개수
 - ④마지막 Subnet의 Network-ID는?
 - ⑤첫 번째 Subnet의 Broadcast 주소는?
 - ⑥두 번째 Subnet의 사용 가능한 IP 범위는?

Network Layer

- VLSM variable-length subnet mask(가변 길이 서브넷 마스크)의 약어.
 - 서로 다른 서브넷에서 동일한 네트워크 번호로 다른 서브넷 마스크를 지정할 수 있는 특성.
- VLSM은 가용 주소 공간을 최적화하는데 도움이 된다

Cobin Cabin in iRaCha

Network Layer

VLSM Example

Subnet Number	Subnet Address
Subnet 0	192.168.20.0/27
Subnet 1	192.168.20.32/27
Subnet 2	192.168.20.64/27
Subnet 3	192.168.20.96/27
Subnet 4	192.168.20.128/27
Subnet 5	192.168.20.160/27
Subnet 6	192.168.20.192/27
Subnet 7	192.168.20.224/27

Subnet Number	Subnet Address
Subnet 0	192.168.20.192/30
Subnet 1	192.168.20.196/30
Subnet 2	192.168.20.200/30
Subnet 3	192.168.20.204/30
Subnet 4	192.168.20.208/30
Subnet 5	192.168.20.212/30
Subnet 6	192.168.20.216/30
Subnet 7	192.168.20.20/30

Network Layer

<u>VLSM</u> 예제

1.회사가 201.102.1.0/24 (Class C)네트워크를 사용한다. 영업부에는 Host 120개를 사용할 네트워크, 인사부에는 Host 60개를, 그리고 관리부에 Host 20개, 홍보부에 Host 20개를 사용할 네트워크로 VLSM 하시오

- -영업부/인사부/관리부/홍보부-
 - ①Subnetmask
 - ②사용 가능한 IP 범위
 - ③Network-ID
 - ④Broadcast 주소

Network Layer

<u>VLSM</u> 예제

2.회사에 192.168.1.0 C Class를 배정하였다. 인사부에는 10개의 host를 만족하는 network, 마케팅부에는 30개의 host를 만족하는 network, 영업부에는 120개의 host를 만족하는 network를 사용하려고한다. 조건을 맞도록 VLSM Subnetting을 하시오.

- -영업부/마케팅부/인사부-
 - **1**Subnetmask
 - ②사용 가능한 IP 범위
 - ③Network-ID
 - ④Broadcast 주소

Network Layer

Defining CIDR

- Classless Inter-network Domain Routing
 - Class 구조를 따르지 않는 주소 할당 방식
- Class 기반 주소에 비해 주소 손실을 줄여 준다
- Routing Table을 줄여 packet Delay를 줄인다.

Network Layer

IP Header Format

Network Layer-IP Header 설명

필드 명	비트	역할
Version	4	IP Protocol Version 정보 현재 인터넷에서 사용되는 Version은 v4 이다.
Header Length	4	IP Header의 길이를 32비트 단위로 나타낸다. (Default 5) 5 x 32 = 160bit = 20Byte
Type-of-Service Flags	8	Internet의 Application, Host, 그리고 Router에 우선순위 서비스를 제공한다. 이 필드를 설정하여 Datagram의 처리순서를 빠르게 할 수 있다.
Total Packet Length	16	헤더와 몸체를 포함한 전체 IP Packet의 길이를 바이트 단위로 나타낸다.
Fragment Identifier	16	분열이 발생한 경우 조각을 다시 결합하는 일을 돕기 위한 조각들이 속한 원래의 Datagram을 나타낸다.
Fragmentation Flags	3	현재의 분열상태의 단서 제공 3Bit중 마지막2Bit만 사용 (첫번째 Bit는 예비용 두번째 Bit는 분열허용여부 (0: 허용 1: 허용 안됨) 세번째 Bit는 현재의 조각이 마지막인지 여부표시 마지막 인 경우 0 더 있으면 1로 표기한다.
Fragmentation Offset	13	8바이트의 오프셋으로 조각에 저장된 원래 Datagram의 바이트 범위를 나타낸다.
Time-to-Live	8	Datagram이 전달 불가능한 것으로 판단되어 소멸되기 이전에 Datagram이 이동할 수 있는 단계의 수를 나타낸다.
Protocol Identifier	8	IP Datagram의 몸체에 저장된 상위 계층 프로토콜을 나타낸다.
Header Checksum	16	IP 헤더의 Checksum을 저장한다.
Source IP Address	32	Datagram을 전송한 원래 컴퓨터의 32비트의 IP Address이다.
Destination IP Address	32	Datagram 수신할 최종목적지의 32비트 IP Address이다.
Option	가변	IP가 Type-of-Service를 통해 우선순위 서비스를 제공하는 것처럼 Option 필드를 사용하여 특별한 처리 옵션을 추가로 정의할 수 있다.
Padding	가변	IP 헤더의 길이는 32비트 단위여야 한다. 헤더에 옵션이 추가되면 헤더는 32비트로 나눠 떨어지도록 부족분이 채워져야 한다.