Notes Machine Learning by Andrew Ng on Coursera

Sparsh Jain

November 23, 2020

Contents

1	Inti	oduction 6									
	1.1	Supervised Learning									
		1.1.1 Regression Problem									
		1.1.2 Classification Problems									
	1.2	Unsupervised Learning									
Ι	Su	pervised Learning 7									
2	Lin	ear Regression with One Variable									
	2.1	Notations									
	2.2	Supervised Learning									
	2.3	Gradient Descent									
	2.4	Gradient Descent for Linear Regression									
3	Linear Algebra 10										
	3.1	Matrix									
	3.2	Vector									
	3.3	Addition and Scalar Multiplication									
	3.4	Matrix Matrix Multiplication									
	3.5	Inverse and Transpose									
4	Linear Regression with Multiple Variables 13										
	4.1	Notations									
	4.2	Hypothesis									
	4.3	Gradient Descent									
		4.3.1 Feature Scaling									
		4.3.2 Mean Normalization									
		4.3.3 Learning Rate									
	4.4	Features and Polynomial Regression									
		4.4.1 Features									
		4.4.2 Polynomial Regression									

	4.5 Normal Equation	
5	Octave Tutorial	17
6	Classification	18
	6.1 Logistic Regression	18
	6.2 Decision Boundary	19
	6.3 Cost Function	19
	6.4 Advanced Optimization:	21
	6.5 Multi-Class Classification	22
	6.5.1 One vs All	22
7	Regularization	23
	7.1 Problem of Overfitting	23
	7.2 Addressing Overfitting	23
	7.3 Cost Function	24
	7.4 Regularized Linear Regression	24
	7.5 Regularized Logistic Regression	26
8	Neural Networks	27
	8.1 Non-Linear Hypothesis	27
	8.2 Neural Networks	27
	8.3 Model Representation	27
	8.4 Notations	28
	8.5 Forward Propagation	29
	8.6 Multi-Class Classification	30
9	Back Propagation	31
	9.1 Notations	3
	9.2 Cost Function	32
	9.3 Backpropagation Algorithm	32
	9.3.1 Gradient Computation	32
	9.4 Implementation Note	34
	9.4.1 Unrolling Parameters	34
	9.4.2 Learning Algorithm	35
	9.5 Gradient Checking	35
	9.5.1 Numerical Estimation of gradients	35
	9.5.2 Implementation Note:	37
	9.6 Random Initialization	37
	9.7 Putting it all together	38

10	App	lying Machine Learning	40
	10.1	Deciding what to try next	40
		10.1.1 Debugging a Learning Algorithm	40
		10.1.2 Machine Learning Diagnostics	40
	10.2	Evaluating your Hypothesis	41
		10.2.1 The Standard Way	41
		10.2.2 Train/Test Procedure	41
	10.3	Model Selection	41
		10.3.1 Evaluating your hypothesis	42
	10.4	Bias vs Variance	43
		10.4.1 Effect of regularization	43
	10.5	Learning Curves	44
		10.5.1 High Bias	44
		10.5.2 High Variance	45
	10.6	Deciding what to try next (Revisited)	45
		10.6.1 Neural Networks	45
11	Mac	hine Learning System Design	46
		Prioritizing what to work on: Spam Classification Example	46
	11.1	11.1.1 Time Management?	46
	11 2	Error Analysis	47
	11,2	11.2.1 Recommended approach	47
		11.2.2 Numerical Evaluation	47
	11.3	Skewed Classes	48
		11.3.1 Precision/Recall	48
		11.3.2 Trade-Off	49
		11.3.3 Working with Large Data	49
	•		
12		port Vector Machines	50
	12.1	Optimization Objective	
		12.1.1 Alternative view of logistic regression	
	100	12.1.2 SVM Hypothesis	51
	12,2	Large Margin	52
		12.2.1 Intuition	52
	12.2	12.2.2 Math	52 53
	12.3	Kernels	
		12.3.1 Non-linear Decision Boundary	53 54
		12.3.2 Choosing the Landmarks	54 55
	10 4	12.3.3 SVM Parameters:	55 55
	12.4	Using SVM	55 56
		14.4.1 MIDHEMASS MASSIIIVAHUH	. 10

	12.4.2 Logistic Regression vs SVM	 56
II	Unsupervised Learning	57
13	Clustering	58
	13.1 Unsupervised Learning	 58
	13.2 Clustering	 58
	13.2.1 Application	 58
	13.3 <i>K</i> -means	58
	13.3.1 Algorithm	 58
	13.3.2 <i>K</i> -means for non-separated clusters	 59
	13.3.3 Optimization Objective	59
	13.3.4 Random Initialization	60
	13.3.5 Choosing K	 60
14	Dimensionality Reduction	61
	14.1 Motivation	 61
	14.1.1 Data Compression	 61
	14.1.2 Data Visualization	 61
	14.2 Principle Component Analysis	61
	14.2.1 Problem Formulation	 61
	14.3 Algorithm	 62
	14.3.1 Data Preprocessing	 62
	14.3.2 Procedure	 62
	14.3.3 Reconstruction	 63
	14.4 Choosing the number of principle components	 63
	14.4.1 Algorithm	 64
	14.5 Applying PCA	 64
	14.5.1 Supervised Learning Speedup	64
	14.5.2 Visualization	 64
	14.5.3 Bad use of PCA: To prevent overfitting	 65
	14.5.4 PCA is sometimes used where it shouldn't be	 65
15	Anomaly Detection	66
	15.1 Example	 66
	15.1.1 Aircraft Engine!	66
	15.1.2 Fraud Detection	66
	15.1.3 Manufacturing	66
	15.1.4 Monitoring computers in a data center	66
	15.2 Gaussian (Normal) Distribution	67
	15.2.1 Definition	67

		15.2.2 Parameter Estimation	67
	15.3	Algorithm	67
		15.3.1 Density Estimation	67
		15.3.2 Anomaly Detection Algorithm	68
	15.4	Developing and Evaluating an Anomaly Detection System	69
		15.4.1 The importance of real-number evaluation	69
		15.4.2 Algorithm Evaluation	69
	15.5	Anomaly Detection vs Supervised Learning	70
	15.6	Choosing what features to use	70
		15.6.1 Transformations	70
		15.6.2 Error analysis for anomaly detection	71
		15.6.3 Other techniques:	71
	15.7	Multivariate Gaussian (Normal) Distribution	71
	15.8	Anomaly Detection using Multivariate Gaussian Distribution	72
		15.8.1 Model	72
		15.8.2 Anomaly Detection	72
		15.8.3 Relationship to original model	73
16	Reco	ommender Systems	74
		Problem Formulation	74
	16.2	Content-Based Recommendations	74
		16.2.1 Optimization Objective	75
		16.2.2 Optimization Algorithm	75
	16.3	Collaborative Filtering	76
		16.3.1 Algorithm	76
	16.4	Vectorization: Low Rank Matrix Vectorization	77
		16.4.1 Vectorization	77
		16.4.2 Finding related movies	78
	16.5	Implementational Detail: Mean Normalization	78

Part I Supervised Learning

Part II Unsupervised Learning

Chapter 16

Recommender Systems

16.1 Problem Formulation

Example: Predicting movie ratings! Collect movie ratings from users for the movies they have watched, and predict ratings for the movies they haven't watched.

Notations:

```
n_u = no. users n_m = no. movies r(i, j) = 1 if user j has rated movie i y^{(i,j)} = rating given by user j to movie i (defined only if r(i, j) = 1)
```

16.2 Content-Based Recommendations

Features could be the degree of genre of the movie, say romance or action. One way could be, for each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^{n+1}$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

Notations:

$$n = \text{no. features}$$
 $\theta^{(j)} = \text{parameter vector for user } j$
 $x^{(i)} = \text{feature vector for movie } i$
 $(\theta^{(j)})^T x^{(i)} = \text{predicted rating for user } j, \text{ movie } i$
 $m^{(j)} = \text{no. movies rated by user } j$

To learn $\theta^{(j)}$:

$$\min_{\theta^{(j)}} \left(\frac{1}{2m^{(j)}} \sum_{i: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i,j)} \right)^2 + \frac{\lambda}{2m^{(j)}} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2 \right)$$

For recommender systems, we make some simplifications:

• Get rid of the constant $m^{(j)}$

16.2.1 Optimization Objective

To learn $\theta^{(j)}$ (parameter for user j):

$$\begin{aligned} & \min_{\theta^{(j)}} J(\theta^{(j)}) \\ & \min_{\theta^{(j)}} \left(\frac{1}{2} \sum_{i: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2 \right) \end{aligned}$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} J(\theta^{(1)}, \dots, \theta^{(n_u)})$$

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \left(\frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i, j)=1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i, j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2 \right)$$

16.2.2 Optimization Algorithm

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)}$$
 (for $k = 0$)

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$
 (for $k = 0$)

16.3 Collaborative Filtering

Feature Learning!

Each user j just tells us how much they like different types of movies $\theta^{(j)}$. If we get these parameters from the users, then it is possible to infer what are the features for each movie from the ratings.

Optimization Algorithm

Given $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \left(\frac{1}{2} \sum_{j: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n \left(x_k^{(i)} \right)^2 \right)$$

Given $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(n_u)}$, to learn $x^{(1)}, ..., x^{(n_m)}$:

$$\min_{x^{(i)}} \left(\frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(i)} \right)^2 \right)$$

Collaboration

Guess $\theta \rightarrow x \rightarrow \theta \rightarrow x \rightarrow \dots$

16.3.1 Algorithm

Minimizing $x^{(1)},...,x^{(n_m)}$ and $\theta^{(1)},...,\theta^{(n_u)}$ simultaneously:

$$J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j):r(i,j)=1} \left(\left(\theta^{(j)}\right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(i)}\right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta^{(j)}\right)^2$$

$$\min_{\substack{x^{(1)},...,x^{(n_m)}\\\theta^{(1)},...,\theta^{(n_u)}}} J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$$

When learning features this way, we're going to do away with $x_0 = 1$ and hence, now our $x \in \mathbb{R}^n$ and $\theta \in \mathbb{R}^n$, and the reason is that now that we're learning the features, if there is a need for such a feature, the algorithm can learn it by itself.

Collaborative Filtering Algorithm

- 1. Initialize $x^{(1)},...,x^{(n_m)}$ and $\theta^{(1)},...,\theta^{(n_u)}$ to small random values (just like neural network).
- 2. Minimize $J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$ using Gradient Descent (or an advanced optimization algorithm).

E.g. for every $j = 1, ..., n_u, i = 1, ..., n_m$:

$$\begin{aligned} x_k^{(i)} &:= x_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) \theta_k^{(j)} + \lambda x_k^{(i)} \right) \\ \theta_k^{(j)} &:= \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \end{aligned}$$

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

16.4 Vectorization: Low Rank Matrix Vectorization

16.4.1 Vectorization

$$Y = \begin{bmatrix} y^{(i,j)} \end{bmatrix}$$

$$= \begin{bmatrix} \left(\theta^{(j)}\right)^T x^{(i)} \end{bmatrix}$$

$$X = \begin{bmatrix} \left(x^{(1)}\right)^T & \cdots \\ \left(x^{(2)}\right)^T & \cdots \\ \vdots & \vdots \\ \left(x^{(n_m)}\right)^T & \cdots \end{bmatrix}$$

$$\Theta = \begin{bmatrix} \left(\theta^{(1)}\right)^T & \cdots \\ \left(\theta^{(2)}\right)^T & \cdots \\ \vdots & \vdots \\ \left(\theta^{(n_u)}\right)^T & \cdots \end{bmatrix}$$

$$Y = Y\Theta^T$$

Name *Low Rank Matrix Vectorization* comes from the fact that $X\Theta^T$ is a *Low Rank Matrix*.

16.4.2 Finding related movies

Q: For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$. How to find movies j related to movie i?

A: Small $||x^{(i)} - x^{(j)}|| \to \text{movies } j \text{ and } i \text{ are similar.}$ 5 most similar movies to i: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$

16.5 Implementational Detail: Mean Normalization

Let's consider an example of a user who hasn't rated any movie. So in our optimization objective

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} \left(\left(\theta^{(j)}\right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(i)}\right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta^{(j)}\right)^2$$

the first term plays no role, and hence we have to minimize $\frac{\lambda}{2}(\theta_1^2 + \theta_2^2)$ which will give $\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and so we will predict $\theta^T x = 0$ for all x, which will give us no good way to recommend movies to the new user. So, calculate mean rating for each movie and subtract the mean from all ratings (so that each movie has a mean rating of zero).

$$Y = \begin{bmatrix} y^{(1,j)} \\ y^{(2,j)} \\ \vdots \\ y^{(n_m,j)} \end{bmatrix}$$

$$\mu = \begin{bmatrix} \operatorname{mean}(y^{(1)}) \\ \operatorname{mean}(y^{(2)}) \\ \vdots \\ \operatorname{mean}(y^{(n_m)}) \end{bmatrix}$$

$$Y_{new} := Y - \mu$$

Now, learn $\theta^{(j)}$, $x^{(i)}$ on this Y_{new} . For user j, on the movie i predict: $(\theta^{(j)})^T(x^{(i)}) + \mu_i$

Check Lecture 16.pdf for more details.