

Continuous Assessment Test (CAT) - II - April 2024

Programme	:	B.Tech.	Semester	:	Winter 2023-2024
Course Code & Course Title	:	BMAT202L & Probability and Statistics	Slot	:	F1+TF1
Faculty		Dr. Vanchinathan P Dr. Balamurugan B J Dr. Lakshmanan S Dr. Revathi G K Dr. Durga Nagarajan Dr. Padmaja N Ms. Sakthidevi K	Class Number	-	CH2023240500841 CH2023240500842 CH2023240500843 CH2023240500844 CH2023240500845 CH2023240500846 CH2023240500847
Duration	:	90 Mins	Max. Marks	:	50 Marks

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted

				Answer al	I the Que	stion	S					
Q.No.	Sub Sec.				Description	on		Mark				
		With the	e following data	in 6 cities, calcula	ite the Kar	l-Pea	arson's correlation coefficient between					
		the dens	sity of population	n and the death ra	te per 100	0 po	pulation.					
		Cities	Area in sq.	Population (in	No.	of						
			miles	thousands)	deaths							
1		A	150	30	300			10				
		В	180	90	1440							
		C	100	40	560							
		D	60	42	840							
		Е	120	72	1224							
		F	80	24	312							
2	Α	The regression equations of profits (X) on sales (Y) of a certain firm is $3Y - 5X + 108 = 0$.										
		The average sales of the firm were Rs. 44000/- and variance of profits is $\frac{9}{16}$ of the variance										
		of sales.	Find the average	ge profits and the	coefficien	t of c	correlation between sales and profits.					
2	В	In a blade manufacturing factory, the probability of any blade being defective is 0.002. If blades										
		are supplied in packets of 10, find the expected number of packets containing:										
		a) zero defective blade, and										
		b) exactly two defective blades,										
		in a shipment comprising 10000 packets.										
3	Α	If the lifetime X (in hours) of a hearing aid battery has Weibull distribution with $\alpha = 0.1$ and										
	**	$\beta = 0.5$. Determine the probability that such a battery a) will function for more than 300 hours										
		b) will not last 100 hours.										
		,		fetime in hours.								
			-				Page	Lof2				

Let T be the malfunction time (in years) of certain components of a system. The random 3 variable T has exponential distribution with mean time to malfunction is 5. If there are 5 of 5 these components distributed among different systems, determine the probability that at least 2 of them are still operational after 8 years. Assume that the average life span of computers produced by a company is 2040 hours with 4 standard deviation of 60 hours. Find the expected number of computers whose life span is a) more than 2150 hours 5 b) less than 1950 hours c) more than 1920 hours and less than 2160 hours from a pool of 2000 computers assuming that the life span X is normally distributed. A random sample of 40 appliances produced by company A have a mean lifetime of 647 hours 4 of continuous use with a standard deviation of 27 hours, while a sample of 40 produced by another company B have mean lifetime of 638 hours with standard deviation of 31 hours. Does 5 this provide enough evidence to support the assertion by company A that their appliances are superior to those manufactured by company B, at a significance level of 0.05? The CEO of a large software organization claimed that their promotion policy of programmers 5 is impartial with respect to which language skills they possess, whether Java or Python. From a fresh batch of 300 Python programmers recruited 8 years ago, 12 have become project managers. Whereas from 420 fresh Java programmers recruited at the same time, 22 have become project managers. Is the CEO's claim valid at 5 percent significance level?. A farmer promises a commission agent to supply coconuts with mean weight 600 grams and 5 standard deviation 40 grams. A sample of 80 coconuts were weighed and found to have mean weight of 588 grams. Check if the claim of the farmer is acceptable at 1% allowed probability for type I error. **********All the best ********

Page 2 of 2

0