Stochastic Simulation & ML

Wind up toys – let loose in a system

Random Numbers

-runif(100,0,1)

Stochastic Simulation

- -Programming with random numbers
- -Replicate existing systems
- -Experimentation

Structure

- -Clock
- -Programmed rules and outcomes per interval
- -State management
- -Run many trials
- -Collect results

Example

Odds or Evens

```
step <- 100
dice <- c()

for (x in 1:step) {
   outcome <- sample(c(1,2,3,4,5,6), 1, prob=c(1/6,1/6,1/6,1/6,1/6,1/6))
   dice<-c(dice,outcome)
}

sum(dice %% 2 == 0)/step</pre>
```

Example

Result is 0.45

or

45% of outcomes are even in 100 spins

Example

Odds or Evens with many trials

```
library(ggplot2)
trials <- 10000
step <- 100
result <- c()
for (x in 1:trials) {
   dice <- c()
   for (y in 1:step) {
        outcome <- sample(c(1,2,3,4,5,6), 1, prob=c(1/6,1/6,1/6,1/6,1/6,1/6))
        dice<-c(dice,outcome)</pre>
    result <- c(result, sum(dice %% 2 == 0)/step)
dfResult <- data.frame(x=result)</pre>
ggplot(data=dfResult, aes(x = x)) + geom histogram(color = "white", fill = "deepskyblue3", binwidth = .01) +
labs(title="10,000 trials of Odds or Evens Dice") + xlab("Proportion of Evens") + ylab("Frequency")
mean(dfResult$x)
```

Outcome

Average of ~0.5 (50%)

Examples

Odds or Evens with many trials & biased dice

```
library(ggplot2)
trials <- 10000
step <- 100
result <- c()
for (x in 1:trials) {
    dice <- c()
    for (y in 1:step) {
        outcome \leftarrow sample(c(1,2,3,4,5,6), 1, prob=c(1.8/6,.2/6,1.8/6,.2/6,1.8/6,.2/6))
        dice<-c(dice,outcome)</pre>
    result <- c(result, sum(dice %% 2 == 0)/step)
dfResult <- data.frame(x=result)</pre>
ggplot(data=dfResult, aes(x = x)) + geom histogram(color = "white", fill = "deepskyblue3", binwidth =
.01) + labs(title="10,000 trials of Odds or Evens with biased dice") + xlab("Proportion of Evens") +
ylab("Frequency")
mean(dfResult$x)
```

Outcome

Average of ~0.1 (10%)

Something more useful

Example Overview

- -Programming represents the business
- -Random numbers represent actor behaviour

Simulate Business Case

- -Restaurants & Customers
- -Repeated consumption, Experiential
- -Diminishing returns
- -Reasonable chance of departure

Business Details

- -Actor signs up for free
- -Discounts at selected options
- -Restaurant can drive volume

Diner Riders

Diner TM Riders

Actor

Actor

Actor Purchase Options

Name	Cost	Gratification
Option 1 (Garage Pie)	20	1
Option 2	50	2
Option 3	100	3
Option 4	300	4
Option 5	500	5
Option 6 (Oyster Box)	1000	6

Actor

80% Chance of going out

15% Chance of going out

Actor

>Personal schedule

>Monthly entertainment budget

Monthly Actor Budget

Actor

- >Personal schedule
- >Monthly entertainment budget
- >Reward

Actor

- >Personal schedule
- >Monthly entertainment budget
- >Reward
- >Reward degradation and repair

Actor

- >Personal schedule
- >Monthly entertainment budget
- >Reward
- >Reward degradation and repair
- >Departure threshold

Actor

- >Personal schedule (Uniform)
- >Monthly entertainment budget (Gamma)
- >Reward (5)
- >Reward degradation and repair (Uniform)
- >Departure threshold

Sequence of events

END

```
START :
    >Start loop 1 in 200

>Instantiate 20 actors while day < 100

>Loop through actors and compute each ones decisions for the day
    >Collect daily statistics
```


Activities of actor

```
START:
   >decrement reward total
   reward level less than 0?
       >leave the service
   reward level less than threshold 5 ?
       Is the actors schedule free for the current day of the week?
           >Select option that is affordable and has the highest expected return on reward
           >Buy the option
           >Diminish option reward
           >Transfer reward to actor
```


Simulation Parameters

Simulation Run 1: 200 days, 20 customers onboarded per day for 100 days without ML intervention

Train classifier using

time_since_last_action,cost,actions_taken,ticker,day,total_consumption,u_consumption

Simulation Run 3: 200 days, 20 customers onboarded per day for 100 days with ML intervention

40 trials, revenue output

Attrition Detection Variable liportance

	Overall
u_consumption	745.0947
ticker	697.8151
total_consumption	665.0622
actions_taken	428.8530
<pre>time_since_last_action</pre>	346.7254
cost	340.1042
day	192.3521

Attrition Detection Model Performance

	REFERENCE		
PREDICTED	FALSE	TRUE	
FALSE	40101	352	
TRUE	81	221	

Precision: 0.7318

Recall : 0.3857

F1 : 0.5

Total Accuracy: 0.99

Model Implementation

On purchase : when score > 0.5 – unlock option 7

Activities of actor with treatment

```
START:
   >decrement reward total
   reward less than 0?
       >leave the service
   reward less than threshold 5 ?
        Is the actors schedule free for the current day of the week?
           Are they going to leave? (.5+)
             Reveal new high value offer - 100% chance of acceptance
           >Select option that is affordable and has the highest expected return on reward
           >Buy the option
           >Diminish option reward
           >Transfer reward to actor
```


40 trials, revenue output with intervention

Comparison

t-test : 8.54, p-value ~ 0

Concluding remarks

- -A good way to model complex systems
- -Experimentation on interventions
- -Programming with random numbers

Checks

- -Classes
- -Command/batch exec of R
- -Stochastic = random random variables over time

Thank you!

Email: currieroad@gmail.com

LinkedIn: https://www.linkedin.com/in/ray-bosman

