Python-棒球勝負預測

以類神經網絡方式建構中華職棒的勝隊預測模式 周緬緬 2023/1/5

專案動機

- 棒球是國球,也是從小便有在瞭解與觀看的運動賽事。
- 從世界棒球經典賽(2023年3月開打)到有自己支持的中華職棒球 隊。
- 除了想將棒球的熱情透過所學的知識體現外,更享受在喜歡的事物上有探索的機會與過程。
- 所以想嘗試預測出運動彩券中棒球不讓分的情況下,可以如何預測出來,誰為勝誰為敗?

重點介紹-大綱

方法

- 研究對象
- 資料來源
- 研究流程

結論

- 訓練資料之描述性分析
- 神經網絡預測分析
- 總結

方法-研究對象

- 對象:

- 統一7-ELEVEn獅隊 (UniLions,以下簡稱:統一隊)
- 中信兄弟隊 (Brother,以下簡稱:兄弟隊)

- 源由:

- 1. 兩隊都為四支創始球隊之一。
- 2. 在2020年統一隊為冠軍,2021年兄弟隊為冠軍。

方法-資料來源【資料處理】

資料來源:改寫API的方式去提取中華職棒大聯盟官方網站

■ 資料長度:

- 在2015年至2022年上半季共計7.5個例行賽球季,從2015至2020年每年40場,2021年30場,2022年15場,共計285場對戰組合。
- 採用前一期(上一場)的比賽數據作為本次比賽預測的依據,故需刪除每年的第一場對戰比賽,最終使用的數據,為277筆資料。
- 資料處理:數據匯入至EXCEL的Power Query中進行

年份	2015	2016	2017	2018	2019	2020	20	21	2022	
場次	39 39 39 39 39 26								14	
訓練與測試樣本	260 17									
總計	277									

方法-資料來源【變數設定】

自變數:

■ 投手:防禦面,先發投手表現。

■ 打擊:攻擊面,打擊群表現。

單場:單場比賽之狀態來計算出進階數據。

■ 累計:累計每場直觀數據球員(們)能力。

▪ 應變數:

比賽輸贏狀態,輸、贏、平局

方法-資料來源【變數群組表】

	項目		變數內容 		小計	總計		
	單場防禦(投手)方面	投手獨立防禦率(FIP)						
		被全壘打率(HR%)						
		場內安打率(BABIP)	13					
		每局被上壘率(WHIP)						
	投		投手國籍(本國籍/他國籍)	分為:右投右打、右投左右開弓 右投左打、左投右打、左投左				
	手		個人投球局數(IP)	面對打席(BF)	石坟左	.打、左按右打、左	拉左打	
	面	罗	投球數(NP)					
	まります。 計 自 総	計	全壘打(HR)	9	33			
自 變 數			奪三振(SO)		33			
數			自責分(ER)					
	T/T	జ	場內安打率(BABIP)	擊球入場率(BIP%)				
	撃	單 場	加權攻擊指數(wOBA)	三振率(SO%)	5			
	打		被保送率(BB%)					
	攻擊(打擊)方面	罗	打數(AB)		分為:輸、贏、平原	司		
	面	累計	得分 (R)	安打(H)	6			
			予四壞(BB)	奪三振(SO)				
	賽 當 資 天 訊 比			+ 安根(+相 安相)	0			
	訊比		比賽時段(下午/晚上)	主客場(主場、客場)	2	2		
	應變數		比賽輸贏狀態_3/		3			
			_					

方法-研究流程圖

方法-研究流程【(建立)訓練模型】

- **使用:**「倒傳遞類神經模型」(Back-Propagation Network, BPN)。
- **原理:**將順向傳遞(Forward Propagation)訓練後模型所產生的誤差作為刺激訊號,沿著神經元處理訊號的方向,逐層反向傳遞(Backward Propagation)修正隱藏層中節點的權重(Weight)、偏權值(Bias),讓誤差減少。

9

方法-研究流程【(建立)訓練模型】

■ 設定:

- 1. 使用PyTorch框架創建一個帶有3層全連接網絡模型。
- 2. 啟動函數(activation function):非線性Mish函數以及Softmax演算法。
- 3. 損失函數:交叉熵(CrossEntropyLoss)。
- 4. 最佳化器(Optimizer): Adam()。
- 5. 學習率衰減:ReduceLROnPlateau。

方法-研究流程【驗證模型】

▪ **使用:scikit-learn**中提供的TimeSeriesSplit方法進行時序的劃分 ∘

■ **原理:**此交叉驗證是K-Fold的特殊情況,在第k個劃分中,會產生

出:前k組資料作為訓練集,第(k+1)組資料作為驗證集。

方法-研究流程【驗證模型】

- 設定:

- 1. 資料分為「訓練階段(Train Phase)」以及「測試階段(Test Phase)」, 分別為260筆與17筆。
- 2. 透過TimeSeriesSplit將訓練階段的數據,分為訓練集(Training Set)與驗證集(Valid Set)。
- 3. 採取時序性的方式將訓練資料劃分成4個fold後,一邊維持訓練和驗證 資料的時序關係性;一邊反覆進行驗證資料誤差值的計算。

方法-研究流程【數據預測】

• 使用:Optuna 函數庫(自動探詢函數庫)

原理:進行貝氏最佳化(Bayesian Optimization),考慮過去探索紀錄,有效率地找到需要的超參數。

- 設定:

- 1. 針對Optuna,除了設定每個超參數搜尋範圍,並將驗證後分數(準確率及損失值)進行探索,找尋最適超參數解。
- 2. n_trials為[50,1500],以每50為一區間,來控制將執行多少個參數空間,每個區間都會找出一個最適解,共計30個。
- 3. 最後,以Fold4之驗證集(52筆資料)與劃分於訓練集中的2021年數據 (26筆)之準確率,進行最終最適超參數解的尋找。

兩隊主客場勝率

【整體】先發投手投球習慣佔比

- ■左投左打
- ■右投左右開弓
- ■右投左打
- ■左投右打

【整體】本國籍與他國籍佔比

- ■他國籍-右投右打
- ■他國籍-左投左打
- ■他國籍-右投左右開弓
- ■他國籍-右投左打
- ■他國籍-左投右打

- 平均每位先發球員負擔場次:
 - >統一隊: 7.22場/每位先發投手
 - ▶兄弟隊: 5.91場/每位先發投手
- 兩隊先發投手投球習慣佔比:

統一隊先發投手投球習慣

■多數投球習慣(場次) ■ 少數投球習慣(場次)

兄弟隊先發投手投球習慣

■多數投球習慣(場次) ■少數投球習慣(場次)

結論-神經網絡預測分析

- 透過Optuna與驗證準確率找到最適解在n_trails為1400集合中:
 - 1. 隱藏層中神經元數目:第一層為146個神經元、第二層為28個神經元。
 - 2. 丟棄率:第一層丟棄率0.07704681063017517、第二層丟棄率 0.011019629397251096。
 - 3. 循環次數:289
 - 4. 訓練的學習率:0.02551773884251893。

結論-神經網絡預測分析

平均驗證損失值最小化

平均驗證準確率最大化

結論-神經網絡預測分析

■ 最後預測結果:

- 召回率:100%,精確率為70%。
- 代表統一獅贏球時,都可以被鎖定,其預測有誤的部分,都在於預測統一隊勝,但實際上統一隊是敗的情況。
- 預測準確率為82.3529%。

1為統一隊勝;0為統一隊敗(兄弟隊 勝);2為平局之虛擬變數。

實際勝負	1	0	0	0	0	0	1	1	0	1	1	0	0	1	0	1	0
預測勝負	1	1	0	0	0	1	1	1	1	1	1	0	0	1	0	1	0

	真實勝	真實敗
預測勝	7	3
預測敗	0	7

總結(貢獻)

- 將模型的預測,運用在運動彩券中,推敲出下一場比賽的輸贏狀態。
 - 1. 爬取中華職棒網頁中的數據資料。
 - 2. 變數中加入進階數據,而非僅使用直觀數據。
 - 3. 考量數據含有時間序列。
 - 4. 透過Python中Pytorch框架建立模型(非使用統計軟體)。