Statistics for Data Science

Lecture 4

Moments

Ken Cameron

Content

Moments

Moment generating functions

• Leibnitz's Rule

Moments

 If you are not a mathematician then moments are about any physical quantity that can be multiplied by distance.

- For example,
 - Force,
 - Electric charge,
 - Mass.

Mass

• 1st Moment - mass.

• 2nd Moment - centre of gravity.

Moments – Some Maths

• The nth moment of a function f(x) about a value c

$$u_n = \int_{-\infty}^{\infty} (x - c)^n f(x) dx$$

c is usually zero.

Statistical Moments

• We can calculate moments for a set of data points.

$$\frac{(x_1^s + x_2^s + x_3^s + x_4^s + \dots + x_n^s)}{n}$$

• Were s is the sth moment.

First

• If s is 1:

$$\frac{(x_1 + x_2 + x_3 + x_4 + \dots + x_n)}{n}$$

• 1st moment is the mean.

Second

• If s is 2:

$$\frac{(x_1^2 + x_2^2 + x_3^2 + x_4^2 + \dots + x_n^2)}{n}$$

Not that useful.

Second, about the mean

• Remember c, what if we make that the mean instead of zero

$$\frac{((x_1-m)^2+(x_2-m)^2+(x_3-m)^2+...+(x_n-m)^2)}{n}$$

• 2^{nd} moment about the mean is the variance. σ^2

Higher Moments

- Using the mean turns the moments into central moments.
 - We can also divide by the variance to normalise them.
 - So nth normalised central moment is:

$$\frac{E[(X-\mu)^n]}{\sigma^2}$$

Third Moment

Skewness

 A measure of the asymmetry of the probability distribution of a random variable (real valued) about the mean.

Not always easy to interpret.

Fourth Moment

Kurtosis

 Often described as a measure of 'peakedness' but is actually indicative of the tails.

Excess kurtosis

• Excess kurtosis is defines as kurtosis -3

Mesokurtic. Distributions with zero excess kurtosis.

Leptokurtic Positive excess kurtosis. (Fatter tails)

• Platykurtic Negative excess kurtosis. (Thinner tails.)

Some odd cases

• The 0^{th} moment about zero = 1.

• The 1st moment about the mean = 0.

• Suppose X has an exponential distribution (λ),

• i.e. It has the pdf:

$$f_X(x) = \frac{1}{\lambda} e^{-x/\lambda}$$

$$0 \le x \le \infty$$
, $\lambda > = 0$

Calculate variance

• Var X = E(X -
$$\lambda$$
)² = $\int_{0}^{\infty} (x - \lambda)^{2} \frac{1}{\lambda} e^{-x/\lambda} dx$
= $\int_{0}^{\infty} (x^{2} - 2x\lambda + \lambda^{2}) \frac{1}{\lambda} e^{-x/\lambda} dx$

- Integrate by parts on the x^2 and x terms.
- Var $X = \lambda^2$

Moment generating functions

Given a random variable X with a cdf F_x,

• We define a moment generating function of X as $M_x(t)$

$$M_x(t) = Ee^{tX}$$

- Provided the expectation exists for t in some neighbourhood of h.
 - I.e. h > 0 such that for all t, -h < t < h, Ee^{tX} exists.

mgf of X

$$M_{x}(t) = \sum_{x} e^{tx} P(X = x)$$

 $M_{x}(t) = \int_{-\infty}^{\infty} e^{tx} f_{x}(x) dx$

Discrete

Continuous

If X has a mgf $M_x(t)$

then

$$EX^n = M_x^{(n)}(0)$$

$$M_x^{(n)}(t) = \frac{d^n}{dt^n} Mx(t) \Big|_{t=0}$$

Proof

Assuming we can differentiate under the integral sign,

$$\frac{d}{dt}Mx(t) = \frac{d}{dt} \int_{-\infty}^{\infty} e^{tx} fx(x) dx$$

$$= \int_{-\infty}^{\infty} (\frac{d}{dt} e^{tx}) fx(x) dx$$

$$= \int_{-\infty}^{\infty} (xe^{tx}) fx(x) dx$$

$$= \text{EXe}^{\text{tx}}$$

Proof cont.

Thus,

$$\frac{d}{dt}Mx(t)\Big|_{t=0} = EXe^{tx}\Big|_{t=0} = EX$$

Analogously,

$$\frac{d^n}{dt^n} Mx(t)\Big|_{t=0} = EX^n e^{tx}\Big|_{t=0} = EX^n$$

 The proof required we interchange the order of the integration and differentiation.

 The more you look at theoretical statistics, the more often you will come across this requirement.

- So this raises the question, can we do this?
 - And under what conditions.

- The answer is yes.
 - Obviously, as we've already seen one example.
- The question of the conditions remains.
 - They can be established using standard theorems from calculus.
 - The detailed proofs will not be presented here.
 - You'll find them in most calculus texts.

• Here, we'll establish the method, Leibnitz's Rule, of calculating:

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t)dt$$

• Where $-\infty < a(x)$, $b(x) < \infty$ for all x.

• If f(x,t), a(x) and b(x) are differentiable with respect to x then,

$$rac{d}{dx}\left(\int_{a(x)}^{b(x)}f(x,t)\,dt
ight)=fig(x,b(x)ig)\cdotrac{d}{dx}b(x)-fig(x,a(x)ig)\cdotrac{d}{dx}a(x)+\int_{a(x)}^{b(x)}rac{\partial}{\partial x}f(x,t)\,dt,$$

• If a(x) and b(x) are constants:

$$rac{d}{dx}\left(\int_a^b f(x,t)\,dt
ight) = \int_a^b rac{\partial}{\partial x} f(x,t)\,dt.$$

Limits

- It's the interchange of the limits that controls when Leibniz's Rule applies.
 - In general, given two limiting operations we cannot assume the same result is produced when the are applied in either order.
 - However,
 - If both upper and lower limits are taken as constants
 - and D_x is the partial derivative with respect to x,
 - and I_t is the integral operator with respect to t over a fixed interval

$$I_t D_x = D_x I_t$$