

מסמך מלווה – מעבדה 1

מטרת מסמך זה הוא הסבר על ארבעת מודולי המערכת.

:AdderSub מודול

בהינתן כניסה של x,y וקטורים באורך n ביטים יתבצעו חיבור, חיסור או הוצאת ערכו השלילי של x,y בהינתן כניסה של x,y וקטורים באורך n ביטים מתייחסות ליצוג המספרים בשיטת המשלים ל2. קביעת הפעולה תתבצע בהתאם לכניסת וקטור sctr (00 מחבר, 01 מחסר, 10 הפיכת הסימן של

קביעת הפעולה תתבצע בהתאם לכניסת וקטור sctr . (טט מחבר, דט מחסר, טד הפיכת הסימן של x).

מוצא המודול:

.carry outi וקטור התוצאה באורך n ביטים

+ /tb_addsub/y	103	8	O	127	123	119	115	111	107	(103	1		
+> /tb_addsub/x	24	8	Ю		4	8	12	16	20	24			
	79	16	0	127	119	111	103	95	87	79		-24	
/tb_addsub/cout	0										4		
→ /tb_addsub/sctr → /tb_addsub/sctr	01	00	01									10	

:Shifter מודול

בהינתן כניסה של x,y וקטורים באורך n ביטים תתבצע הזזה של הוקטור y כאשר מספר ההזזות בהינתן כניסה של x,y בייצוג Unsigned.

ההזזות יתבצעו לצד ימין או שמאל בהתחשבות בקלט הביט: shiftLorR. (0 שמאלה, 1 ימינה) מוצא המודול:

.carry outi לאחר ההזזות y וקטור

:Logical מודול

בין הוקטורים. bit bit באורך ח ביטים יבוצע חישוב פעולות לוגיות x,y באורך ביטים יבוצע חישוב פעולות מ,y באורך n ביטים יבוצע not(y), or, and, xor, nor, nand : הפעולות

בחירת הפעולה הרצויה מתבצעת בהתחשבות בוקטור ALUFN שאורכו 3 ביט.

: טבלת פונקציונליות

ALUFN[2]	ALUFN[1]	ALUFN[0]	Ор
0	0	0	NOT(Y)
0	0	1	OR(X,Y)
0	1	0	AND(X,Y)
0	1	1	XOR(X,Y)
1	0	0	NOR(X,Y)
1	0	1	NAND(X,Y)

מוצא המודול:

תוצאת החישוב הלוגי כוקטור באורך n ביטים.

יצוג בינרי של סוג הפעולה

<u>מודול top:</u>

באורך n ביטים יבוצע הפעולות לעיל. x,y בהינתן וקטורי כניסה

בחירת התוצאה הרצויה מתבצעת בהתחשבות בוקטור ALUFN שאורכו 5 ביט.

טבלת פונקציונליות:

ALUFN[4]	ALUFN[3]	Module
0	1	AdderSub
1	0	Shifter
1	1	Logical

מוצא המערכת:

. Zero-Z,Carry-C,Negative-N ביטים ושלושה דגלים בהתאם לתוצאה: n ביטים ושלושה דגלים בהתאם

מימוש:

בעזרת שערים לוגיים נבחר את המוצא של הקומפוננטה המתאימה (בדומה לפעולת מוקס) בהתאם לכניסת ALUFN.

ובנוסף נחשב את הדגלים:

.בעזרת כניסת ה- carry – בעזרת כניסת – Cflag

.msb שווה לביט – Nflag

or מימוש – Zflag – מימוש – Zflag