MA 35300-001-60150 MA 35300-002-60151

GOINS

FINAL EXAM STUDY GUIDE

The following sections will be covered on the Final Exam:

- §1.1: Introduction
- §1.2: Vector Spaces
- §1.3: Subspaces
- §1.4: Linear Combinations and Systems of Linear Equations
- §1.5: Linear Dependence and Linear Independence
- §1.6: Bases and Dimension
- §1.7: Maximal Linearly Independent Subsets
- §2.1: Linear Transformations, Null Spaces, and Ranges
- §2.2: The Matrix Representation of a Linear Transformation
- §2.3: Composition of Linear Transformations and Matrix Multiplication
- §2.4: Invertibility and Isomorphisms
- §2.5: The Change of Coordinate Matrix
- §3.1: Elementary Matrix Operations and Elementary Matrices
- §3.2: The Rank of a Matrix and Matrix Inverses
- §3.3: Systems of Linear Equations Theoretical Aspects
- §3.4: Systems of Linear Equations Computational Aspects
- §4.1: Determinants of Order 2
- $\S4.2$: Determinants of Order n
- §4.3: Properties of Determinants
- §4.4: Summary Important Facts about Determinants
- §5.1: Eigenvalues and Eigenvectors
- §5.2: Diagonalizability
- §5.3: Matrix Limits
- §6.1: Inner Products and Norms
- §6.2: The Gram-Schmidt Orthogonalization Process and Orthogonal Complements
- §6.3: The Adjoint of a Linear Operator
- §6.4: Normal and Self-Adjoint Operators

PRE-MIDTERM EXAM TOPICS

§1.1: Introduction.

Parallelogram Law for Vector Addition. The sum of two vectors x and y that act at the same point P is the vector x+y beginning at P that is represented by the diagonal of a parallelogram having x and y as adjacent sides.

- §1.2: Vector Spaces. We say that a triple $(V, +, \cdot)$ is a vector space over F if we have a nonempty set V, an operation $+: V \times V \to V$ called vector addition, and an operation $\cdot: F \times V \to V$ called scalar multiplication satisfying the following eight axioms:
- (VS 1) Commutativity of Vector Addition: For all x and y in V, we have x + y = y + x.
- (VS 2) Associativity of Vector Addition: For all x, y, and z in V, we have (x+y)+z=x+(y+z).
- (VS 3) Vector Additive Identity: There exists O in V such that x + O = x for each x in V. We call O = 0x the zero element.
- (VS 4) Vector Additive Inverse: For each x in V, there is a y in V such that x + y = O. Many times, we denote this element by -x = (-1)x.
- (VS 5) Scalar Multiplicative Identity: For each vector x we have x = 1x.
- (VS 6) Associativity of Scalar Multiplication: For all a and b in F as well as x in V, we have (ab) x = a(bx).
- (VS 7) Distributivity for Vector Addition: For all a in F as well as x and y in V, we have a(x+y) = ax + ay.
- (VS 8) Distributivity for Scalar Multiplication: For all a in F and b as well as x in V, we have (a + b) x = a x + b x.

§1.3: Subspaces.

Theorem 1.3. Assume that $(V, +, \cdot)$ is a vector space over a field F. The following are equivalent for a subset $W \subseteq V$.

- i. $(W, +, \cdot)$ a vector space over F.
- ii. The following three conditions hold for the operations "vector addition" + and "scalar multiplication" · defined on V:
 - (a) Zero Element: $O \in W$.
 - (b) Closure under Vector Addition: $x + y \in W$ whenever $x \in W$ and $y \in W$.
 - (c) Closure under Scalar Multiplication: $cx \in W$ whenever $c \in F$ and $x \in W$.

Any subset $W \subseteq V$ satisfying either of the equivalent statements above is called a subspace of V.

§1.4: Linear Combinations and Systems of Linear Equations. Let $(V, +, \cdot)$ is a vector space over a field F, and choose a finite subset $S = \{u_1, u_2, \ldots, u_n\}$ of V. For any scalars $a_1, a_2, \ldots, a_n \in F$, we call the vector

$$v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n \in V$$

a linear combination of vectors from S and the a_i are called the coefficients.

Theorem 1.5. Let $(V, +, \cdot)$ be a vector space over a field F, and choose a finite subset $S = \{u_1, u_2, \ldots, u_n\}$ of V. The collection of linear combinations of vectors from S, namely the subset

$$W = \left\{ v \in V \mid v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n \text{ for some } a_1, a_2, \dots, a_n \in F \right\}$$
 is a subspace of V.

We often define $W = \operatorname{span}(S)$ as the span of S. When $S = \emptyset$ has no elements, we define $\operatorname{span}(S) = \{O\}$ as the zero subspace. We say that S generates W.

§1.5: Linear Dependence and Linear Independence. Let $(V, +, \cdot)$ be a vector space over a field F, and choose a finite subset $S = \{u_1, u_2, \ldots, u_n\}$ of V. We say that S is a linearly dependent set if there exist scalars $a_1, a_2, \ldots, a_n \in F$ not all zero such that $a_1 u_1 + a_2 u_2 + \cdots + a_n u_n = O$. Such an equation is called a nontrivial expression of the zero vector O. Otherwise, we say that S is a linearly independent set.

Theorem 1.7. Let $T = \{u_1, u_2, \ldots, u_n\}$ be a subset of a vector space V which is linearly indendent. Choose a vector $v \in V$ such that $v \notin T$, and denote $W = \operatorname{span}(S)$ as the span of the set $S = T \cup \{v\}$. Then $v \in \operatorname{span}(T)$ if and only if S is a linearly dependent set.

$\S 1.6$: Bases and Dimension.

Theorem 1.8. Let $(V, +, \cdot)$ be a vector space over a field F. Given a finite subset $\beta = \{u_1, u_2, \ldots, u_n\} \subseteq V$, the following are equivalent:

- i. We have the two properties
 - a. $V = \text{span}(\beta)$, that is, β spans V; and
 - b. β is a linearly independent set.
- ii. Each $v \in V$ can be uniquely expressed as a linear combination of vectors from β , that is, $v = a_1 u_1 + a_2 u_2 + \cdots + a_n u_n$ for some unique scalars $a_1, a_2, \ldots, a_n \in F$.

If either of these properties are true, we say that β a basis for V.

Theorem 1.9. Let $(V, +, \cdot)$ be a vector space over a field F. Assume that $V = \operatorname{span}(S)$ for some finite set S.

- V has a finite basis β contained in S.
- Every basis β of V has the same number of elements.

For any basis β of V, we call $\dim(V) = |\beta|$ the dimension of V.

- Let $V = \{O\}$ denote the zero space. Then $\beta = \emptyset$ is a basis for V, so that $\dim(V) = 0$.
- Let $V = \mathbb{R}^2$ denote the real plane. For any $a, b \in \mathbb{R}$ not both zero, and denote the two vectors

$$u_1 = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} a \\ b \end{pmatrix}$$
 and $u_2 = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} -b \\ a \end{pmatrix}$.

Then $\beta = \{u_1, u_2\}$ is a basis for V, so that $\dim(V) = 2$.

• Let $V = \mathbb{R}^3$ denote three space. For any $a, b, c \in \mathbb{R}$ such that a and b are not both zero, and denote the three vectors

$$u_{1} = \frac{1}{\sqrt{a^{2} + b^{2} + c^{2}}} \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

$$u_{2} = \frac{1}{\sqrt{a^{2} + b^{2}}} \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix},$$

$$u_{3} = \frac{1}{\sqrt{a^{2} + b^{2}}\sqrt{a^{2} + b^{2} + c^{2}}} \begin{pmatrix} -a c \\ -b c \\ a^{2} + b^{2} \end{pmatrix}.$$

Then $\beta = \{u_1, u_2, u_3\}$ is a basis for V, so that $\dim(V) = 3$.

- Consider the collection $V = F^m$ of m-dimensional vectors over a field F. Then $\beta = \{e_1, e_2, e_3, \ldots, e_m\}$ is a basis for $V = F^m$, where e_i is that m-dimensional vector whose only nonzero entry is a 1 on the ith row. In particular, $\dim(F^m) = m$.
- Consider the collection $V = M_{m \times n}(F)$ of $m \times n$ matrices over a field F. Then $\beta = \{E^{ij} \mid 1 \le i \le m, 1 \le j \le n\}$ is a basis for $V = M_{m \times n}(F)$, where E^{ij} is that $m \times n$ matrix whose only nonzero entry is a 1 in the *i*th row and *j*th column. In particular, $\dim(M_{m \times n}(F)) = m n$.

§1.7: Maximal Linearly Independent Subsets.

Theorems 1.11, 1.12. Let $(V, +, \cdot)$ be a vector space over a field F, and let $W \subseteq V$ be a subspace. Assume that $V = \operatorname{span}(\beta)$ for some basis $\beta = \{u_1, u_2, \ldots, u_n\}$.

- $W = \operatorname{span}(T)$ has a finite basis T.
- $\dim(\mathsf{W}) \leq \dim(\mathsf{V})$.
- $\dim(W) = \dim(V)$ if and only if W = V.

§2.1: Linear Transformations, Null Spaces, and Ranges. Let (V, \oplus, \odot) and (W, \boxplus, \boxdot) be two vector spaces over a common field F. We say that a map $T : V \to W$ is well-defined if $T(x_1) = T(x_2)$ in W whenever $x_1 = x_2$ in V. In this case, we say that V is the domain and W is the codomain.

Proposition. Given a well-defined map $T:V\to W,$ the following are equivalent.

- i. For all $x, y \in V$ and $c \in F$ we have
 - (a) Preserves Vector Addition: $T(x \oplus y) = T(x) \boxplus T(y)$, and
 - (b) Preserves Scalar Multiplication: $T(c \odot x) = c \boxdot T(x)$.
- ii. For any collection $v_1, v_2, \ldots, v_n \in V$ and $a_1, a_2, \ldots, a_n \in F$ we have

$$T((a_1 \odot v_1) \oplus (a_2 \odot v_2) \oplus \cdots \oplus (a_n \odot v_n))$$

$$= (a_1 \boxdot \mathsf{T}(v_1)) \boxplus (a_2 \boxdot \mathsf{T}(v_2)) \boxplus \cdots \boxplus (a_n \boxdot \mathsf{T}(v_n)).$$

A well-defined map $T:V\to W$ satisfying either of these equivalent conditions is said to be a linear transformation.

Theorem 2.1, 2.4. Let (V, \oplus, \odot) and (W, \boxplus, \boxdot) be two vector spaces over a common field F, and say that $T : V \to W$ is a linear transformation.

- Let $O_{\mathsf{V}} \in \mathsf{V}$ and $O_{\mathsf{W}} \in \mathsf{W}$ denote the additive identity elements. Then $\mathsf{T}(O_{\mathsf{V}}) = O_{\mathsf{W}}$.
- The subset $N(T) = \left\{ x \in V \middle| T(x) = O_W \right\}$ is a subspace of V. Moreover, the map $T: V \to W$ is one-to-one if and only if $N(T) = \{O_V\}$ is the zero subspace.
- The subset $R(T) = \left\{ u \in W \middle| u = T(x) \text{ for some } x \in V \right\}$ is a subspace of W. Moreover, the map $T : V \to W$ is onto if and only if R(T) = W is the entire space.

The subset $N(T) \subseteq V$ is called the *null space* or the *kernel* of T. The subset $R(T) \subseteq W$ is called the *range* or the *image* of T. If $V = \operatorname{span}(\beta)$ and $W = \operatorname{span}(\gamma)$ have finite bases $\beta \subseteq V$ and $\gamma \subseteq W$, then Theorems 1.11 and 1.12 say that both $N(T) \subseteq V$ and $R(T) \subseteq W$ also have finite bases. We define the *nullity of* T as the dimension of the null space, and the *rank of* T as the dimension of the range. That is,

$$\operatorname{nullity}(\mathsf{T}) = \dim \mathsf{N}(\mathsf{T}) \quad \text{and} \quad \operatorname{rank}(\mathsf{T}) = \dim \mathsf{R}(\mathsf{T}).$$

Theorem 2.3 (Dimension Theorem). Let (V, \oplus, \odot) and (W, \boxplus, \Box) be two finite-dimensional vector spaces over a common field F. For any linear transformation $T: V \to W$, we have the equality

$$\operatorname{nullity}(\mathsf{T}) + \operatorname{rank}(\mathsf{T}) = \dim(\mathsf{V}).$$

Some texts call this result the Rank-Nullity Theorem.

§2.2: The Matrix Representation of a Linear Transformation. Let $\beta = \{v_1, v_2, \dots, v_n\}$ be a basis of a vector space (V, \oplus, \odot) over a field F. We will be concerned with the order of the elements v_i in β ; then we call β an ordered basis. For each $x \in V$, we can write

$$x = (a_1 \odot v_1) \oplus (a_2 \odot v_2) \oplus \cdots \oplus (a_n \odot v_n)$$

for some $a_1, a_2, \ldots, a_n \in F$. Theorem 1.8 asserts that this expression is *unique*. The *coordinate* vector of x relative to β is the well-defined n-dimensional vector

$$\begin{bmatrix} x \end{bmatrix}_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathsf{F}^n.$$

Theorem 2.14. Let (V, \oplus, \odot) and (W, \boxplus, \boxdot) be two vector spaces over a common field F having bases $\beta = \{v_1, v_2, \ldots, v_n\}$ and $\gamma = \{w_1, w_2, \ldots, w_m\}$, respectively. Say that $T: V \to W$ is a linear transformation.

- Consider the map $\phi_{\beta}: \mathsf{V} \to \mathsf{F}^n$ which sends $x \mapsto [x]_{\beta}$. Then ϕ_{β} is a linear transformation.
- There is an $m \times n$ matrix $A = (A_{ij}) \in \mathsf{M}_{m \times n}(F)$ which makes the following diagram commute:

$$\begin{array}{ccc} \mathsf{V} & \stackrel{\mathsf{T}}{\longrightarrow} & \mathsf{W} \\ \phi_{\beta} \downarrow & & \downarrow \phi_{\gamma} \\ \mathsf{F}^n & \stackrel{A}{\longrightarrow} & \mathsf{F}^m \end{array}$$

The map ϕ_{β} is called the standard representation of V with respect to β . The matrix $A = (A_{ij})$ is denoted by $[T]_{\beta}^{\gamma}$; it is the matrix representation of T in the ordered bases β and γ . Later, we will see that the nullity and rank of a linear transformation T are the same as the nullity and rank of the $m \times n$ matrix $[T]_{\beta}^{\gamma}$.

§2.3: Composition of Linear Transformations and Matrix Multiplication. Say that we have two well-defined maps $T: V \to W$ and $U: W \to Z$. Recall that the *composition* $U \circ T: V \to Z$ is that map which sends $x \in V$ to $(U \circ T)(x) = U[T(x)] \in Z$.

Theorem 2.7, 2.9, 2.11. Say that (V, \oplus, \odot) , (W, \boxplus, \boxdot) , and $(Z, +, \cdot)$ are three vector spaces over a common field F.

- Let $\mathcal{L}(V, W)$ denote the collection of all linear transformations $T : V \to W$. Then $\mathcal{L}(V, W)$ is a vector space over F.
- Say that $T:V\to W$ and $U:W\to Z$ are linear transformations. Then $U\circ T:V\to Z$ is also a linear transformation.
- Say that V, W, and Z have finite bases $\beta = \{v_1, \ldots, v_n\}, \ \gamma = \{w_1, \ldots, w_m\}$, and $\alpha = \{z_1, \ldots, z_p\}$. Then we have the matrix product $[\mathsf{U} \circ \mathsf{T}]^{\alpha}_{\beta} = [\mathsf{U}]^{\alpha}_{\gamma} [\mathsf{T}]^{\gamma}_{\beta}$.

§2.4: Invertibility and Isomorphisms.

Theorem 2.19. Let (V, \oplus, \odot) and (W, \boxplus, \boxdot) be two vector spaces over a common field F. The following are equivalent for a linear transformation $T: V \to W$.

- i. There exists a unique function $U:W\to V$ such that the composition $T\circ U=I_W:W\to W$ is the identity map on W (that is, $I_W(y)=y$ for all $y\in W$) and the composition $U\circ T=I_V:V\to V$ is the identity map on V (that is, $I_V(x)=x$ for all $x\in V$).
- ii. T is both one-to-one (that is, $\mathsf{T}(x_1) = \mathsf{T}(x_2)$ in W only when $x_1 = x_2$ in V) and onto (that is, given $y \in \mathsf{W}$, there exists $x \in \mathsf{V}$ such that $y = \mathsf{T}(x)$).
- iii. $\operatorname{rank}(T) = \dim(V) = \dim(W)$ (assuming that V and W are finite-dimensional).

Any linear transformation $T: V \to W$ satisfying either of these equivalent properties is said to be *invertible* or an *isomorphism*. The function $U: W \to V$ is called the *inverse of T*, and we denote $T^{-1} = U$. In this case, we say that V and W are *isomorphic*, and we use the notation $V \simeq W$. The function $U: W \to V$ is called the *inverse of T*, and we denote $T^{-1} = U$.

Theorem 2.17.

- If $T: V \to W$ is an isomorphism, so is its inverse $T^{-1}: W \to V$.
- ullet The binary relation \simeq is an equivalence relation. That is,
 - Reflexivity: $V \simeq V$.
 - Symmetry: $V \simeq W$ if and only if $W \simeq V$.
 - Transitivity: If $V \simeq W$ and $W \simeq Z$, then $V \simeq Z$.

§2.5: The Change of Coordinate Matrix.

Theorem 2.18, 2.20. Let (V, \oplus, \odot) and (W, \boxplus, \boxdot) be two finite dimensional vector spaces over a common field F, and denote their bases as $\beta = \{v_1, v_2, \ldots, v_n\}$ and $\gamma = \{w_1, w_2, \ldots, w_m\}$, respectively.

- We have isomorphisms $V \simeq F^n$, $W \simeq F^m$, and $\mathcal{L}(V, W) \simeq M_{m \times n}(F)$.
- Assume that there exists an isomorphism $T: V \to W$. Then $[T^{-1}]_{\gamma}^{\beta}$ is the inverse of the matrix $[T]_{\beta}^{\gamma}$.

Theorem 2.22, 2.23. Let $(V, +, \cdot)$ be a finite-dimensional vector space over field F, and say that $\beta = \{x_1, x_2, \ldots, x_n\}$ and $\beta' = \{x'_1, x'_2, \ldots, x'_n\}$ are two different bases for V. Denote the $n \times n$ matrix $Q = [|V|]_{\beta'}^{\beta}$.

- The jth column of Q is the coordinate vector $[x'_i]_{\beta}$.
- Q is invertible, and its inverse is the $n \times n$ matrix $Q^{-1} = [\mathsf{I}_{\mathsf{V}}]_{\beta}^{\beta'}$.
- $[v]_{\beta} = Q[v]_{\beta'}$ for any $v \in V$.
- For any linear transformation $T: V \to V$, there exist $n \times n$ matrices A and $B = Q^{-1} A Q$ which make the following diagram make sense:

Remember that $\phi_{\beta}: V \to F^n$ is defined by $\phi_{\beta}(x) = [x]_{\beta}$; it is the standard representation of V with respect to β . The invertible $n \times n$ matrix Q is called the change of coordinates matrix from from the β' -coordinates to the β -coordinates. Note that if $V = F^n$ and $\beta = \{e_1, e_2, \ldots, e_n\}$ is the standard basis, then we can express the vectors for any other basis $\beta' = \{e'_1, e'_2, \ldots, e'_n\}$ in the form

$$e'_{j} = \begin{bmatrix} e'_{j} \end{bmatrix}_{\beta} = \begin{pmatrix} Q_{1j} \\ Q_{2j} \\ \vdots \\ Q_{nj} \end{pmatrix} \quad \text{for } 1 \leq j \leq n \qquad \Longrightarrow \qquad Q = \begin{pmatrix} Q_{11} & Q_{12} & \cdots & Q_{1n} \\ Q_{21} & Q_{22} & \cdots & Q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{n1} & Q_{n2} & \cdots & Q_{nn} \end{pmatrix}.$$

That is, the columns of Q are the vectors in $\beta' = \{e'_1, e'_2, \ldots, e'_3\}$. If A and B are $n \times n$ matrices, we say that B is *similar* to A if there exists an invertible $n \times n$ matrix Q such that such that $B = Q^{-1} A Q$. In this case, we write $B \simeq A$; we state without proof that this is an equivalence relation.

§3.1: Elementary Matrix Operations and Elementary Matrices. Let $A \in M_{m \times n}(F)$ be an $m \times n$ matrix, that is, an array with m rows and n columns:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} \quad \text{where} \quad A_{ij} \in F.$$

There are three types of operations we can perform on the rows (columns, respectively) of A:

- Type 1: Interchanging any two rows (columns, respectively) of A.
- Type 2: Multiplying any row (column, respectively) of A by a nonzero scalar.
- Type 3: Adding a scalar multiple of a row (column, respectively) of A to another row (column, respectively).

These are called the elementary row (column, respectively) operations. An elementary matrix is an $n \times n$ square matrix E which is obtained by performing exactly one of the three elementary operations on the $n \times n$ identity matrix I_n .

Theorems 3.1, 3.2. Let $A \in M_{m \times n}(F)$, and suppose that B is obtained from A by performing an elementary operation.

- If this was a row operation, then B = E A for some elementary $m \times m$ matrix E. Conversely, if E is an elementary $m \times m$ matrix A, then E A is that matrix obtained from A by performing the same elementary row operation which produces E from I_m .
- If this was a column operation, then B = AE for some elementary $n \times n$ matrix E. Conversely, if E is an elementary $n \times n$ matrix A, then AE is that matrix obtained from A by performing the same elementary column operation which produces E from I_n .
- Elementary matrices are invertible, and the inverse of an elementary matrix is of the same type.

§3.2: The Rank of a Matrix and Matrix Inverses. Let $V = F^n$ and $W = F^m$, and denote β and γ as the standard basis for these vector spaces. Given any $m \times n$ matrix A, we define the linear transformation $L_A : F^n \to F^m$ as $L_A(x) = Ax$. Rather explicitly,

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} \implies \mathsf{L}_A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} A_{11} \\ A_{21} \\ \vdots \\ A_{m1} \end{pmatrix} + x_2 \begin{pmatrix} A_{12} \\ A_{22} \\ \vdots \\ A_{m2} \end{pmatrix} + \cdots + x_n \begin{pmatrix} A_{1n} \\ A_{2n} \\ \vdots \\ A_{mn} \end{pmatrix}.$$

This linear transformation is called the *left-multiplication transformation*. Observe that $A = [\mathsf{L}_A]_{\beta}^{\gamma}$. We define the rank of the $m \times n$ matrix A as $rank(A) = rank(\mathsf{L}_A)$.

Theorems 3.3, 3.4. Let A be an $m \times n$ matrix.

- A is invertible if and only if both m = n and rank(A) = n.
- Say that $A = [\mathsf{T}]_{\beta}^{\gamma}$ for some linear transformation $\mathsf{T} : \mathsf{V} \to \mathsf{W}$ between finite-dimensional vector spaces having bases β and γ . Then $\mathrm{rank}(\mathsf{T}) = \mathrm{rank}(A)$.
- Denote B = P A Q for some invertible $m \times m$ matrix P and invertible $n \times n$ matrix Q. Then rank(A) = rank(B). In particular,
 - Similar matrices have the same rank.
 - Elementary operations on a matrix are rank preserving.

Theorem 3.6. Let A be an $m \times n$ matrix of rank r.

- $r \leq m$ and $r \leq n$.
- There exist invertible $m \times m$ and $n \times n$ matrices B and C, respectively, so that

$$D = B A C = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$

where I_r is the $r \times r$ identity matrix; while O_1 is an $r \times (n-r)$ matrix, O_2 is an $(m-r) \times r$ matrix, and O_3 is an $(m-r) \times (n-r)$ matrix consisting of all 0's.

• Both A and its transpose A^t have the same rank, that is, $rank(A^t) = rank(A)$.

Theorem 3.7.

- Let A be an $m \times n$ matrix and B be an $p \times n$ matrix. Then $\operatorname{rank}(B A) \leq \operatorname{rank}(A)$ and $\operatorname{rank}(B A) \leq \operatorname{rank}(B)$.
- Let $T:V\to W$ and $U:W\to Z$ be linear transformations between finite dimensional vector spaces. Then $\mathrm{rank}(U\circ T)\leq \mathrm{rank}(T)$ and $\mathrm{rank}(U\circ T)\leq \mathrm{rank}(U)$.

§3.3: Systems of Linear Equations – Theoretical Aspects. Say that we have a system of m linear equations in n unknowns:

We can write (S) in the single equation Ax = b in we invoke the matrices

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{mn} & \cdots & A_{mn} \end{pmatrix} \in \mathsf{M}_{m \times n}(F), \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathsf{F}^n, \quad \text{and} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathsf{F}^m.$$

We make a few definitions about the system of linear equations (S).

- A vector $s \in \mathsf{F}^n$ is said to be a *solution* to the system (S) if As = b. The collection of all solutions $s \in \mathsf{F}^n$ is called the *solution set* to the system (S).
- We say that (S) is *consistent* if there exists a vector $s \in F^n$ such that As = b. Otherwise, we say that (S) is *inconsistent* if no such vector s exists.
- We say that (S) is homogeneous if b = O is the zero vector in F^m . Otherwise, we say that (S) is inhomogeneous if $b \neq O$.

Theorems 3.8, 3.9, 3.10. Say that (S) is a system of linear equations Ax = b consisting of m linear equations in n unknowns. Denote $V = F^n$ and $W = F^m$.

- Let $K_H = \{s \in V \mid As = O_W\}$ denote the set of solutions s to the honogemeous system $Ax = O_W$. Then $K_H = N(L_A)$ is the null space for the linear transformation $L_A : V \to W$. In particular, K_H is a subspace of V with $\dim(K_H) = n \operatorname{rank}(A)$.
- Say that m < n. Then there is a nonzero solution $s \neq O_V$ to the homogeneous system $Ax = O_W$.
- Let $K = \{s \in V \mid As = b\}$ denote the set of solutions s to the system (S). Say that (S) is consistent, and denote s_0 as one solution. Then all solutions to (S) are in the form $s = s_0 + k$ for some $k \in K_H$. That is,

$$K = \{s_0\} + K_H = \{s_0 + k \in V \mid k \in K_H\}.$$

• Say that m = n. The system (S) has exactly one solution $s_0 \in V$ if and only if A is an invertible $n \times n$ matrix.

§3.4: Systems of Linear Equations – Computational Aspects. A matrix is in reduced row-echelon form (rref) if it satisfies all of the following conditions:

- (a) If a row has nonzero entries, then the first nonzero entry is 1, called the *pivot* in this row. The variables corresponding to the pivots are called *leading variables*, and the other variables are called *free variables*.
- (b) If a column contains a pivot, then all other entries in that column are zero.
- (c) If a row contains a pivot, then each row above contains a pivot further to the left.

Given a matrix A, here is a series of steps to arrive at a matrix B that is in reduced row-echelon form:

- Step 1: If the cursor entry is zero, swap the row with a row below having a nonzero entry in that column. This is a Type 1 operation.
- Step 2: Divide the cursor row with the nonzero entry to make the nonzero entry equal to 1. This is a Type 2 operation.
- Step 3: Eliminate all other entries in the cursor column by subtracting suitable multiples of the cursor row. This is a Type 3 operation.
- Step 4: Move the cursor down one row, and over to the right. If all the entries below are zero, continue to more to the right.

We denote B = rref(A) as its reduced row echelon form. This algorithm is known as Gaussian Elimination.

Theorem 3.16. Let A be an $m \times n$ matrix. Denote B = rref(A) as its reduced row echelon form, and let S denote the collection of pivot columns of B.

- S is a basis for $R(L_A) = R(L_B)$.
- rank(A) = rank(B) = |S| is the number of nonzero rows of B.
- Say that m = n. Then A is invertible if and only if $rref(A) = I_n$ is the $n \times n$ identity matrix.

POST-MIDTERM EXAM TOPICS

§4.1: Determinants of Order 2.

Theorem 4.2. Let A be a 2×2 matrix. Then A is invertible if and only if $det(A) \neq 0$.

Proposition.

• Let $S = \{u, v\}$ be a collection of two vectors in \mathbb{R}^2 , and let $A \in \mathsf{M}_{2 \times 2}(\mathbb{R})$ be that matrix having u and v as its columns. Then the parallelogram determined by S, namely the set

$$\mathcal{P} = \left\{ x \in \mathbb{R}^2 \;\middle|\; x = a\,u + b\,v \text{ for some real numbers} \right\},$$
 satisfying $0 \le a \le 1$ and $0 \le b \le 1$

has area $|\det(A)|$. In particular, $\det(A) = 0$ if and only if its columns u and v are parallel.

• For any 2×2 matrix A, we have the identity

$$(A_{11} A_{12} + A_{21} A_{22})^2 + (A_{11} A_{22} - A_{12} A_{21})^2 = (A_{11}^2 + A_{21}^2) (A_{12}^2 + A_{22}^2).$$

The second statement is often called Lagrange's Identity.

§4.2: Determinants of Order n. Let A be an $n \times n$ matrix. Denote \tilde{A}_{ij} as that $(n-1) \times (n-1)$ matrix obtained from A by deleting the ith row and jth column. We define the determinant of an $n \times n$ matrix A recursively as follows:

- If n = 1, then $det(A) = A_{11}$.
- If $n \ge 2$, then $\det(A) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \cdot \det(\tilde{A}_{1j})$.

The $n \times n$ matrix cof(A), the cofactor of A, is that matrix with entries

$$\left(\operatorname{cof}(A)\right)_{ij} = (-1)^{i+j} \det(\tilde{A}_{ij})$$
 where
$$1 \le i \le n,$$

$$1 \le j \le n.$$

The $n \times n$ matrix adj(A), the adjugate of A or the, is that matrix with entries

$$(\operatorname{adj}(A))_{ij} = (-1)^{i+j} \operatorname{det}(\tilde{A}_{ji})$$
 where
$$1 \le i \le n,$$
$$1 \le j \le n.$$

Observe that the cofactor and classical adjoint are transposes of each other:

$$\operatorname{adj}(A) = \operatorname{cof}(A)^T.$$

Here are some examples.

• Let n = 2. Let's cross out the row and column where A_{11} and A_{12} appear:

This diagram says " $A_{11} \cdot |A_{22}|$ " and " $A_{12} \cdot |A_{21}|$ ", respectively. We take the alternating sum of these two in order to compute the determinant:

$$\det(A) = (-1)^{1+1} A_{11} \det(\tilde{A}_{11}) + (-1)^{1+2} A_{12} \det(\tilde{A}_{12})$$
$$= A_{11} A_{22} - A_{12} A_{21}.$$

The cofactor matrix is

$$\operatorname{cof}(A) = \begin{pmatrix} (-1)^{1+1} \det(\tilde{A}_{11}) & (-1)^{1+2} \det(\tilde{A}_{12}) \\ (-1)^{2+1} \det(\tilde{A}_{21}) & (-1)^{2+2} \det(\tilde{A}_{22}) \end{pmatrix} = \begin{pmatrix} A_{22} & -A_{21} \\ -A_{12} & A_{11} \end{pmatrix}.$$

The classical adjoint is the transpose of this matrix, that is, $\operatorname{adj}(A) = \operatorname{cof}(A)^T$. If $\det(A) \neq 0$, then A has inverse

$$A^{-1} = \frac{1}{A_{11} A_{22} - A_{12} A_{21}} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

• Let n=3. Let's cross out the row and column where A_{11} , A_{12} and A_{13} appear:

This diagram says " A_{11} $\begin{vmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{vmatrix}$ ", " A_{12} $\begin{vmatrix} A_{21} & A_{23} \\ A_{31} & A_{33} \end{vmatrix}$ ", and " A_{13} $\begin{vmatrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{vmatrix}$ ", respectively. We take the alternating sum of these three in order to compute the determinant:

$$\begin{aligned} \det(A) &= (-1)^{1+1} \, A_{11} \, \det(\tilde{A}_{11}) + (-1)^{1+2} \, A_{12} \, \det(\tilde{A}_{12}) + (-1)^{1+3} \, A_{13} \, \det(\tilde{A}_{13}) \\ &= A_{11} \cdot \begin{vmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{vmatrix} - A_{12} \cdot \begin{vmatrix} A_{21} & A_{23} \\ A_{31} & A_{33} \end{vmatrix} + A_{13} \cdot \begin{vmatrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{vmatrix} \\ &= A_{11} \left(A_{22} \, A_{33} - A_{23} \, A_{32} \right) - A_{12} \left(A_{21} \, A_{33} - A_{23} \, A_{31} \right) + A_{13} \left(A_{21} \, A_{32} - A_{22} \, A_{31} \right) \\ &= \left(A_{11} \, A_{22} \, A_{33} + A_{12} \, A_{23} \, A_{31} + A_{13} \, A_{21} \, A_{32} \right) \\ &- \left(A_{11} \, A_{23} \, A_{32} + A_{12} \, A_{21} \, A_{33} + A_{13} \, A_{22} \, A_{31} \right). \end{aligned}$$

We can also express this formula using the following diagram:

Recall that the arrows mean "multiply all of these numbers together", where right-ward arrows correspond to "+" and the left-ward arrows correspond to "-". The adjugate matrix is

$$cof(A) = \begin{pmatrix}
(-1)^{1+1} \det(\tilde{A}_{11}) & (-1)^{1+2} \det(\tilde{A}_{12}) & (-1)^{1+3} \det(\tilde{A}_{13}) \\
(-1)^{2+1} \det(\tilde{A}_{21}) & (-1)^{2+2} \det(\tilde{A}_{22}) & (-1)^{2+3} \det(\tilde{A}_{23}) \\
(-1)^{3+1} \det(\tilde{A}_{31}) & (-1)^{3+2} \det(\tilde{A}_{32}) & (-1)^{3+3} \det(\tilde{A}_{33})
\end{pmatrix}$$

$$= \begin{pmatrix}
+\begin{vmatrix}
A_{22} & A_{23} \\
A_{32} & A_{33}\end{vmatrix} & -\begin{vmatrix}
A_{21} & A_{23} \\
A_{31} & A_{33}\end{vmatrix} & +\begin{vmatrix}
A_{21} & A_{22} \\
A_{31} & A_{32}\end{vmatrix} \\
-\begin{vmatrix}
A_{12} & A_{13} \\
A_{32} & A_{33}\end{vmatrix} & +\begin{vmatrix}
A_{11} & A_{13} \\
A_{31} & A_{33}\end{vmatrix} & -\begin{vmatrix}
A_{11} & A_{12} \\
A_{31} & A_{32}\end{vmatrix} \\
+\begin{vmatrix}
A_{12} & A_{13} \\
A_{22} & A_{23}\end{vmatrix} & -\begin{vmatrix}
A_{11} & A_{13} \\
A_{21} & A_{23}\end{vmatrix} & +\begin{vmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}\end{vmatrix}
\end{pmatrix}.$$

The classical adjoint is the transpose of this matrix, that is, $\operatorname{adj}(A) = \operatorname{cof}(A)^T$. If $\operatorname{det}(A) \neq 0$, then A has inverse

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$
. use cofector to calculate A inverse

Theorem 4.3. Let $\{a_1, a_2, \ldots, a_n\}$ denote the rows of an $n \times n$ matrix A. For each integer r satisfying $1 \le r \le n$, define the function $\mathsf{T}_r : \mathsf{F}^n \to \mathsf{F}^1$ by $\mathsf{T}_r(x) = \det(B)$ where B is that $n \times n$ matrix obtained from A by replacing row r, namely a_r , with x:

$$B_{ij} = \begin{cases} A_{ij} & \text{if } i \neq r, \\ x_j & \text{if } i = r; \end{cases} \quad \text{where} \quad \begin{aligned} 1 \leq i \leq n, \\ 1 \leq j \leq n. \end{aligned}$$

Then T_r is a linear transformation. That is, the determinant of an $n \times n$ matrix is a linear function of each row when the remaining rows are held fixed.

§4.3: Properties of Determinants.

Theorem 4.4. Let A be an $n \times n$ matrix.

expansion along any row.

 \bullet For any row i, we have the expression

 $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \cdot \det(\tilde{A}_{ij}).$ That is, the determinant of a square matrix can be evaluated by cofactor

- det(A) = 0 whenever A has a row of zeroes.
- $\det(A) = 0$ whenever A has two identical rows.

det(A) = 0 的情况

Let $A \in M_{m \times n}(F)$ be an $m \times n$ matrix, that is, an array with m rows and n columns:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} \quad \text{where} \quad A_{ij} \in F.$$

There are three types of operations we can perform on the rows (columns, respectively) of A:

- Type 1: Interchanging any two rows (columns, respectively) of A.
- Type 2: Multiplying any row (column, respectively) of A by a nonzero scalar.
- Type 3: Adding a scalar multiple of a row (column, respectively) of A to another row (column, respectively).

These are called the elementary row (column, respectively) operations. An elementary matrix is an $n \times n$ square matrix E which is obtained by performing exactly one of the three elementary operations on the $n \times n$ identity matrix I_n .

Theorem 4.5, 4.6. Let A be an $n \times n$ square matrix.

det(A) self operation

- Let B be an $n \times n$ matrix obtained from A by interchanging two distinct rows. Then det(B) = -det(A).
- Let B be an $n \times n$ matrix obtained from A multiplying one row of A by a (nonzero) scalar k. Then det(B) = k det(A).
- Let B be an $n \times n$ matrix obtained from A adding a multiple of one row of A to another row of A. Then det(B) = + det(A).

Corollary Let E be an $n \times n$ elementary matrix, and let I_n be the $n \times n$ identity matrix.

- Let E be an $n \times n$ matrix obtained from I_n by interchanging two distinct rows. Then det(E) = -1.
- Let E be an $n \times n$ matrix obtained from I_n multiplying one row of I_n by a nonzero scalar k. Then $\det(E) = k$.
- Let E be an $n \times n$ matrix obtained from I_n adding a multiple of one row of I_n to another row of I_n . Then $\det(E) = 1$.

§4.4: Summary – Important Facts about Determinants.

Theorem 4.7. Let A be an $n \times n$ matrix.

- For any $n \times n$ matrix B, we have $\det(AB) = \det(A) \det(B)$.
- A is invertible if and only if $\det(A) \neq 0$. In particular, $\det(A^{-1}) = \det(A)^{-1}$. $\det(A)^{-1} = 0 \iff A \text{ invertible}$
- $\det(A^t) = \det(A)$.

Theorem 4.9 (Cramer's Rule). Say that we have a system of n linear equations in n unknowns:

$$A_{11} x_1 + A_{12} x_2 + \cdots + A_{1n} x_n = b_1$$

$$A_{21} x_1 + A_{22} x_2 + \cdots + A_{2n} x_n = b_2$$
(S)
$$\vdots$$

$$A_{n1} x_1 + A_{n2} x_2 + \cdots + A_{mn} x_n = b_m$$

which we write as the single equation Ax = b in terms of the matrices

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \text{and} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \text{ elet(A) != 0} \\ \text{adjugate} = \text{transpose of cof} \end{pmatrix}$$

Assume that $det(A) \neq 0$.

- $A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$ in terms of the classical adjoint of A.
 - get inverse
 get solution
- The system (S) has a unique solution $s_0 \in \mathsf{F}^n$, namely

$$s_0 = \frac{\operatorname{adj}(A) b}{\det(A)},$$
 that is, $x_k = \frac{\det(M_k)}{\det(A)}$ for $1 \le k \le n$

where M_k is the $n \times n$ matrix obtained from A by replacing column k by b.

Here is an example when n=2. Consider a system of linear equations in the form

$$(S) \qquad \begin{array}{rcl} A_{11} x_1 & + & A_{12} x_2 & = & b_1 \\ A_{21} x_1 & + & A_{22} x_2 & = & b_2 \end{array}$$

We can express the system of linear equations (S) in the form Ax = b in terms of the matrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \text{and} \quad b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Assuming that $det(A) = A_{11} A_{22} - A_{12} A_{21} \neq 0$, we can find the desired solution as

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1} b = \frac{1}{A_{11} A_{22} - A_{12} A_{21}} \begin{pmatrix} +A_{22} b_1 - A_{12} b_2 \\ -A_{21} b_1 + A_{11} b_2 \end{pmatrix}.$$

in other words,

$$x_1 = \frac{\det \begin{pmatrix} b_1 & A_{12} \\ b_2 & A_{22} \end{pmatrix}}{\det \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}} \quad \text{and} \quad x_2 = \frac{\det \begin{pmatrix} A_{11} & b_1 \\ A_{21} & b_2 \end{pmatrix}}{\det \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}}.$$

§5.1: Eigenvalues and Eigenvectors.

A is a diagonal matrix

• We say that T is diagonalizable if there is an ordered basis β such that $[T]^{\beta}_{\beta}$ is a diagonal matrix, that is, if we can write

$$\text{(Aij) = matrix A = } \begin{bmatrix} \mathsf{T} \end{bmatrix}_{\beta}^{\beta} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \qquad \begin{array}{c} \mathsf{T} \text{ is linear transformation of Vj} \\ & \Leftrightarrow & \mathsf{T}(v_j) = \lambda_j \, v_j \text{ for } 1 \leq j \leq n. \\ & & \mathsf{= sum}(\mathsf{Aij*vi}) \\ \end{array}$$

• A square matrix $A \in M_{n \times n}(F)$ is said to be diagonalizable if the linear transformation "left multiplication by A," namely $L_A : F^n \to F^n$ defined by $x \mapsto Ax$, is diagonalizable. To be more precise, let $\gamma = \{e_1, e_2, \ldots, e_n\}$ denote the standard basis of $V = F^n$; Theorem 2.15 asserts that, $A = [L_A]_{\gamma}^{\gamma}$. For any other basis $\beta = \{v_1, v_2, \ldots, v_n\}$, Theorem 2.11 asserts that

$$\begin{bmatrix} \mathsf{L}_{A} \right]_{\gamma}^{\gamma} \left[\mathsf{I}_{\mathsf{V}} \right]_{\beta}^{\gamma} &= \left[\mathsf{L}_{A} \circ \mathsf{I}_{\mathsf{V}} \right]_{\beta}^{\gamma} \\
&= \left[\mathsf{L}_{A} \right]_{\beta}^{\gamma} \\
&= \left[\mathsf{I}_{\mathsf{V}} \circ \mathsf{L}_{A} \right]_{\beta}^{\gamma} \qquad \Longrightarrow \qquad Q^{-1} A Q = \left[\mathsf{L}_{A} \right]_{\beta}^{\beta} = \begin{pmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{pmatrix} \\
&= \left[\mathsf{I}_{\mathsf{V}} \right]_{\beta}^{\gamma} \left[\mathsf{L}_{A} \right]_{\beta}^{\beta} \qquad \Longrightarrow \qquad \lambda_{n} \end{pmatrix}$$

where $Q = \begin{bmatrix} \mathsf{I}_{\mathsf{V}} \end{bmatrix}_{\beta}^{\gamma}$ is that invertible $n \times n$ matrix whose column j is the vector v_j .

dnf: eigenvalue, eigenvector

- Let $T: V \to V$ be a linear transformation on a finite dimensional vector space V. A nonzero vector $v \in V$ is called an *eigenvector* of T if there exists a scalar $\lambda \in F$ such that $T(v) = \lambda v$. The scalar λ is called the *eigenvalue* associated to the eigenvector v.
- Let $A \in M_{n \times n}(F)$. A vector $x \in F^n$ is called an *eigenvector* of A if there exists a scalar $\lambda \in F$ such that $A = \lambda x$. The scalar λ is called the *eigenvalue* associated to the eigenvector x.

Theorem 5.1, 5.2, 5.3, 5.4. Let V be a finite dimensional vector space over a field F with basis β . Let $T: V \to V$ be a linear transformation, and denote $A = [T]_{\beta}^{\beta}$ as its matrix representation.

- T is diagonalizable if and only if there exists an ordered basis $\beta = \{v_1, v_2, \ldots, v_n\}$ consisting of eigenvectors v_j of T. Furthermore, if T is diagonalizable, then A is a diagonal matrix and $A_{jj} = \lambda_j$ is the eigenvalue associated to v_j for $1 \le j \le n$.
- The following are equivalent for $\lambda \in F$:

A diagonal matrix:

- i. λ is an eigenvalue for T.
- ii. λ is an eigenvalue for A.
- iii. $\det(A \lambda I_n) = 0$. = characteristic polynomial of T
- iv. There exists $v \neq O_V$ such that $v \in \mathsf{E}_{\lambda} = \mathsf{N}(\mathsf{T} \lambda \mathsf{I}_V)$.
- For any variable t, the $n \times n$ determinant

$$f(t) = \det(A - t I_n) = \det(A) + \dots + (-1)^n t^n$$

is a polynomial of degree n which is independent of choice of basis β . In particular, T has at most n distinct eigenvalues λ .

We use this result to compute the eigenvalues λ of a linear transformation $T: V \to V$ as follows.

- #1. Choose a basis $\beta = \{v_1, v_2, \dots, v_n\}$ of V.
- #2. Compute the $n \times n$ matrix $A = [\mathsf{T}]_{\beta}^{\beta}$.
- #3. Compute the degree n polynomial $f(t) = \det(A t I_n) = \det(A) + \cdots + (-1)^n t^n$.
- #4. Compute the roots λ of the equation $f(\lambda) = 0$. These roots λ are the eigenvalues of T.

The polynomial f(t) is called the *characteristic polynomial of T*.

§5.2: Diagonalizability.

Theorem 5.5. Let $T: V \to V$ be a linear transformation for an *n*-dimensional vector space V.

- Assume that T has $k \leq n$ distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. If $S = \{v_1, v_2, \ldots, v_k\}$ is a collection of nonzero vectors such that $\mathsf{T}(v_j) = \lambda_j \, v_j$ for $1 \leq j \leq k$, then S is a linearly independent set.
- If T has n distinct eigenvalues, then T is diagonalizable.
- If T has n distinct eigenvalues, then a collection $\beta = \{v_1, v_2, \dots, v_n\}$ of eigenvectors is a basis. For example, the reflection $T : V \to V$ about the line y = mx in $V = \mathbb{R}^2$ has n = 2 distinct eigenvalues, namely $\lambda_1 = +1$ and $\lambda_2 = -1$. We have seen that its eigenvectors

$$v_1 = \frac{1}{\sqrt{1+m^2}} \begin{pmatrix} 1 \\ m \end{pmatrix}$$
 and $v_2 = \frac{1}{\sqrt{1+m^2}} \begin{pmatrix} -m \\ 1 \end{pmatrix} \Longrightarrow [T]_{\beta}^{\beta} = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix}$

form a basis $\beta = \{v_1, v_2\}$ for V.

• If T has $k \neq n$ distinct eigenvalues, then T may still be diagonalizable – and its eigenvectors may still form a basis. For example, the identity map $I_V : V \to V$ on $V = F^2$ has just k = 1

eigenvalue, namely $\lambda_1 = 1$. We have seen that its eigenvectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ \Longrightarrow $\begin{bmatrix} \mathsf{I}_{\mathsf{V}} \end{bmatrix}_{\gamma}^{\gamma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

form the standard basis $\gamma = \{e_1, e_2\}$ for V.

Let V be a n-dimensional vector space over a field F with basis β . Let T: V \rightarrow V be a linear transformation, and denote $A = [\mathsf{T}]_{\beta}^{\beta}$ as its matrix representation. Assume that T has $k \leq n$ distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Then we have the characteristic polynomial

$$f(t) = \det(A - t I_n) = \det(A) + \dots + (-1)^n t^n = (-1)^n (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \dots (t - \lambda_k)^{m_k}$$

for some exponents m_1, m_2, \ldots, m_k . We say that m_i is the (algebraic) multiplicity of λ_i . Observe that the sum of the multiplicities must be the dimension of the vector space:

$$m_1 + m_2 + \dots + m_k = \deg(f) = n = \dim(V).$$

Recall that Theorem 5.4 asserts that λ is an eigenvalue of T if and only if there exists $v \neq O_V$ contained in the null space

eigenspace =
$$\mathbb{E}_{\lambda} = \mathbb{N}(\mathsf{T} - \lambda \mathsf{I}_{\mathsf{V}}) = \left\{ v \in \mathsf{V} \middle| \mathsf{T}(v) = \lambda v \right\}.$$

We call this subspace the eigenspace of T corresponding to λ .

distinct eigenvalues property

Theorem 5.7, 5.8, 5.9. Let $T: V \to V$ be a linear transformation for an n-dimensional vector space V. Assume that T has $k \leq n$ distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, where each λ_i has multiplicity m_i .

- $1 \leq \dim(\mathsf{E}_{\lambda_i}) \leq m_i$.
- $\mathsf{E}_{\lambda_i} \cap \mathsf{E}_{\lambda_j} = \{O_\mathsf{V}\}$ whenever $i \neq j$. Let S_i be a linearly independent subset of E_{λ_i} . Then the union $S = \mathsf{E}_{\lambda_i}$ $S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent subset of V.
- T is diagonalizable if and only if $\dim(\mathsf{E}_{\lambda_i}) = m_i$ for $1 \leq i \leq k$. If T is indeed diagonalizable, let $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ denote the union of bases β_i for E_{λ_i} . Then $\beta = \{v_1, v_2, \ldots, v_n\}$ is an ordered basis for V consisting of eigenvectors v_i for T . distinct eigenvalues with diagonal

§5.3: Matrix Limits. Denote $F = \mathbb{C}$ as the collection of complex numbers. Following Appendix D in the text, denote the absolute value or the modulus of a complex number z = a + bi as the real number $|z| = \sqrt{a^2 + b^2}$. Fix an extended number p satisfying $1 \le p \le \infty$. For any n-dimensional vector define the p-norm as the real number

$$||x||_p = \begin{cases} \sum_{j=1}^n |x_j| & \text{when } p = 1, \\ \left(\sum_{j=1}^n |x_j|^p\right)^{1/p} & \text{when } 1$$

When p=1 this is called the *city block distance*, the Manhattan distance, or the Manhattan length; when p=2, this is called the *Euclidean norm*; and when $p=\infty$ this is called the *maximum norm*, the uniform norm, or the Chebyshev distance.

Proposition. Fix two extended numbers p and q satisfying

$$1 \le p \le \infty$$
, $1 \le q \le \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$.

For $x, y \in \mathbb{C}^n$ and $c \in \mathbb{C}$, the *p*-norm satisfies the following properties.

- Positivity: $||x||_p \geq 0$.
- Non-degeneracy: $||x||_p = 0$ if and only if x is the zero vector.

- Multiplicativity: $\|c x\|_p = |c| \|x\|_p$. Hölder's Inequality: $\sum_{j=1}^n |x_j y_j| \le \|x\|_p \|y\|_q$. Minkowski's Inequality: $\|x+y\|_p \le \|x\|_p + \|y\|_p$.

Note that when p=1 we have $q=\infty$; and when p=2 we have q=2. When p=q=2, Hölder's Inequality is the same as the Cauchy-Bunyakovsky-Schwarz (CBS) Inequality, and Minkowski's Inequality is the same as the *Triangle Inequality*:

$$\left| \sum_{j=1}^{n} x_j \, \overline{y_j} \right| \le \sqrt{\sum_{j=1}^{n} |x_j|^2} \cdot \sqrt{\sum_{j=1}^{n} |y_j|^2} \quad \text{and} \quad \sqrt{\sum_{j=1}^{n} |x_j + y_j|^2} \le \sqrt{\sum_{j=1}^{n} |x_j|^2} + \sqrt{\sum_{j=1}^{n} |y_j|^2}.$$

Now that we have the concept of a p-norm on vectors $x \in \mathbb{C}^n$, we can extend this to the concept of a p-norm on matrices. For any $m \times n$ matrix A in $M_{m \times n}(\mathbb{C})$, define the p-norm or the induced norm or the operator norm as the real number

$$||A||_p = \sup \left\{ \frac{||Ax||_p}{||x||_p} \mid x \in \mathbb{C}^n, \ x \neq (0, 0, \dots, 0) \right\}.$$

If $x \in \mathbb{C}^n$ is not the zero vector, then we found above that $||x||_p \neq 0$, so that the ratio $||Ax||_p / ||x||_p$ is a well-defined nonnegative real number. The quantity $||A||_p$ is the supremum over all such ratios: you can think of this p-norm as the largest value that the ratio $||Ax||_p/||x||_p$ can get. Observe by definition that

$$||Ax||_p \le ||A||_p ||x||_p$$
 for all $x \in \mathbb{C}^n$.

This norm has properties similar to those above.

Proposition. Fix an extended number p satisfying $1 \leq p \leq \infty$. For $A, B \in M_{m \times n}(\mathbb{C})$ and $c \in \mathbb{C}$, the p-norm satisfies the following properties.

- Positivity: $||A||_p \ge 0$.
- Non-degeneracy: $||A||_p = 0$ if and only if A is the $m \times n$ zero matrix.
- Multiplicativity: $||cA||_p = |c| ||A||_p$.
- Minkowski's Inequality: $||A + B||_p \le ||A||_p + ||B||_p$.
- We have the values

$$\rho(A) = \max \left\{ \rho_i(A) \mid 1 \le i \le m \right\} = ||A||_{\infty}, \quad \rho_i(A) = \sum_{j=1}^n |A_{ij}|;$$

$$\nu(A) = \max \left\{ \nu_j(A) \mid 1 \le j \le n \right\} = ||A||_1, \quad \nu_j(A) = \sum_{i=1}^m |A_{ij}|.$$

• If $\lambda \in \mathbb{C}$ is an eigenvalue of A, then

$$|\lambda| \le \inf \left\{ ||A||_p \mid 1 \le p \le \infty \right\} \le \min \left\{ \rho(A), \nu(A) \right\}.$$

Observe that $\rho_i(A)$ is the sum over the entries in row i, while $\nu_j(A)$ is the sum over the entries in column j. We call $\rho(A)$ the row sum of A, and $\nu(A)$ the column sum of A. Note that they are special cases of $||A||_p$ of the operator norm for $p=\infty$ and p=1, respectively.

Let $A \in M_{n \times n}(\mathbb{C})$ be an $n \times n$ square matrix. Recall that an eigenvalue λ is a root of the characteristic polynomial

$$f(t) = \det(A - t I_n) = \det(A) + \dots + (-1)^n t^n.$$

We wish to give an algorithm to approximate these eigenvalues using the row sum above.

Theorem 5.16 (Gerschgorin's Disk Theorem). Let $A \in M_{n \times n}(\mathbb{C})$. For each row i of A, define the region

$$C_i = \left\{ z \in \mathbb{C} \mid |z - A_{ii}| \le \rho_i(A) - |A_{ii}| \right\} \quad \text{where} \quad \rho_i(A) = \sum_{j=1}^n |A_{ij}|$$

as a disk of radius $\rho_i(A) - |A_{ii}|$ centered around the *i*th diagonal entry A_{ii} . Then each eigenvalue $\lambda \in C_i$ for some $1 \le i \le n$.

The C_i 's are sometimes called Gerschgorin Disks. Observe that if $0 \notin C_i$ for $1 \le i \le n$, then each eigenvalue $\lambda \ne 0$. Since the characteristic polynomial factors as

$$f(t) = \det(A - t I_n)$$

$$= (-1)^n (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \cdots (t - \lambda_k)^{m_k} \implies \det(A) = f(0) = \lambda_1^{m_1} \lambda_2^{m_2} \cdots \lambda_k^{m_k} \neq 0.$$

The Corollary to Theorem 4.7 asserts that A is an invertible matrix. Hence Gerschgorin Disks give a computational way to determine whether a matrix is invertible.

Consider a sequence $\{z_1, z_2, \ldots, z_k, \ldots\} \subseteq \mathbb{C}$ of complex numbers. The expression

$$\lim_{k \to \infty} z_k = z_{\infty}$$

for some complex number z_{∞} means, given a real number $\epsilon > 0$, we can find a real number $\delta > 0$ such that $|z_k - z_{\infty}| < \epsilon$ whenever $k > \delta$. We also say that the sequence "converges to a limit ℓ ".

Similarly, the expression

$$\lim_{k \to \infty} z_k = \infty$$

means, given a real number $\epsilon > 0$, we can find a real number $\delta > 0$ such that $|z_k| > \epsilon$ whenever $k > \delta$. We also say that the sequence "increases without bound."

Proposition. Let $\{A_1, A_2, \ldots, A_k, \ldots, \} \subseteq M_{m \times n}(\mathbb{C})$ be a sequence of $m \times n$ matrices with complex entries. Then the following are equivalent for an $m \times n$ matrix L:

- i. For each extended number p satisfying $1 \le p \le \infty$, we can find a $\delta > 0$ such that for any given $\epsilon > 0$ we have $||A_k L||_p < \epsilon$ whenever $k > \delta$.
- ii. For some extended number p_0 satisfying $1 \le p_0 \le \infty$, we can find a $\delta > 0$ such that for any given $\epsilon > 0$ we have $||A_k L||_{p_0} < \epsilon$ whenever $k > \delta$.
- iii. We have the m n limits

 $\lim_{k o \infty} (A_k)_{ij} = L_{ij}$ for all $1 \le i \le m,$ each entry has a limit 1 < j < n.

If any of these equivalent statements is true, then we write " $\lim_{k\to\infty} A_k = L$ " and we say that the sequence "converges to a limit L".

complex matrix limitation thm

Theorem 5.12. Let $\{A_1, A_2, \ldots, A_k, \ldots, \} \subseteq M_{m \times n}(\mathbb{C})$ be a sequence of $m \times n$ matrices with complex entries which converges to a limit L.

- n matrices with complex entries which converges to a limit L. • Let $c \in \mathbb{C}$. Then the sequence $\{\ldots, c A_k, \ldots\} \subseteq \mathsf{M}_{m \times n}(\mathbb{C})$ tends to the lim (k->inf) c Ak = c Lk
- Let $P \in \mathsf{M}_{q \times m}(\mathbb{C})$. Then the sequence $\{\ldots, PA_k, \ldots\} \subseteq \mathsf{M}_{q \times n}(\mathbb{C})$ tends to the limit PL.
- Let $Q \in \mathsf{M}_{n \times q}(\mathbb{C})$. Then the sequence $\{\ldots, A_k Q, \ldots\} \subseteq \mathsf{M}_{m \times q}(\mathbb{C})$ tends to the limit LQ.
- Assume that each $A_k = A^k \in \mathsf{M}_{n \times n}(\mathbb{C})$ are powers of a square matrix, and let $Q \in \mathsf{M}_{n \times n}(\mathbb{C})$ be invertible. Then the sequence $\{\ldots, Q^{-1} A^k Q, \ldots\} \subseteq \mathsf{M}_{n \times n}(\mathbb{C})$ tends to the limit $Q^{-1} L Q$.

 $\lim (k\rightarrow \inf) Q-1 Ak Q = Q-1 L Q$

§6.1: Inner Products and Norms. Denote $V = \mathbb{C}^n$. The length of a vector $x \in V$ is the scalar

$$||x||_2 = \sqrt{|a_1|^2 + |a_2|^2 + \dots + |a_n|^2}.$$

We use this to motivate the following: We define a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ by

complex conjugate

$$\langle x, y \rangle = a_1 \, \overline{b_1} + a_2 \, \overline{b_2} + \dots + a_n \, \overline{b_n} \qquad \Longrightarrow \qquad \langle x, x \rangle = |a_1|^2 + |a_2|^2 + \dots + |a_n|^2 = ||x||_2^2.$$

This is known as the standard inner product.

limit cL.

Proposition. For $x, y, z \in \mathbb{C}^n$ and $c \in \mathbb{C}$, the standard inner product has the following properties.

- Linearity: $\langle c x + z, y \rangle = c \langle x, y \rangle + \langle z, y \rangle$.
- Symmetry: $\overline{\langle x, y \rangle} = \langle y, x \rangle$.
- Positivity: $\langle x, x \rangle \geq 0$.
- Non-degeneracy: $\langle x, x \rangle = 0$ if and only if x is the zero vector.
- Lagrange's Identity:

$$\left| \sum_{k=1}^{n} a_k \, \overline{b_k} \right|^2 + \left(\sum_{i < j} |a_i \, b_j - a_j \, b_i|^2 \right) = \left(\sum_{k=1}^{n} |a_k|^2 \right) \left(\sum_{k=1}^{n} |b_k|^2 \right).$$

In particular, $|\langle x, y \rangle| \le ||x||_2 ||y||_2$.

We wish to extend the concept of the standard inner product on $V = \mathbb{C}^n$ to something similar for $V = M_{m \times n}(\mathbb{C})$. In general, let V be a vector space over $F = \mathbb{C}$. We say that a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ is an *inner product* if the following properties hold for all $x, y, z \in V$ and $c \in \mathbb{C}$:

- Linearity: $\langle c x + z, y \rangle = c \langle x, y \rangle + \langle z, y \rangle$.
- Symmetry: $\overline{\langle x, y \rangle} = \langle y, x \rangle$.
- Positivity: $\langle x, x \rangle \ge 0$.
- Non-degeneracy: $\langle x, x \rangle = 0$ if and only if $x = O_V$.

Here are some examples.

• Let $V = \mathbb{C}^n$. We have seen that the standard inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ defined by

$$\langle x, y \rangle = a_1 \, \overline{b_1} + a_2 \, \overline{b_2} + \dots + a_n \, \overline{b_n}$$
 where $x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ and $y = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$

is an example of an inner product. More generally, choose n positive real numbers r_1, r_2, \ldots, r_n , and consider the new map $\langle \cdot, \cdot \rangle' : V \times V \to \mathbb{C}$ defined by

$$\langle x, y \rangle' = r_1 a_1 \overline{b_1} + r_2 a_2 \overline{b_2} + \dots + r_n a_n \overline{b_n}.$$

This is also an inner product.

• Let $V = M_{m \times n}(\mathbb{C})$ denote the collection of $m \times n$ matrices. If $B \in V$ is an $m \times n$ matrix, define its adjoint $B^* \in M_{n \times m}(\mathbb{C})$ as that $n \times m$ matrix found by computing the transpose of the complex conjugate of B. That is,

$$B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mn} \end{pmatrix} \implies B^* = \begin{pmatrix} \overline{B_{11}} & \overline{B_{21}} & \cdots & \overline{B_{m1}} \\ \overline{B_{12}} & \overline{B_{22}} & \cdots & \overline{B_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{B_{1n}} & \overline{B_{2n}} & \cdots & \overline{B_{mn}} \end{pmatrix}.$$

Define the map $V \times V \to \mathbb{C}$ which takes a pair A and B of $m \times n$ matrices to the trace of the $n \times n$ matrix B^*A :

$$\operatorname{tr}(B^*A) = \sum_{i=1}^m \sum_{j=1}^n A_{ij} \, \overline{B_{ij}}.$$

This called the *Frobenius inner product*. Note that this reduces to the standard inner product when either m=1 or n=1. More generally, choose $m\,n$ positive real numbers $r_{11},\,r_{12},\,\ldots,\,r_{mn}$, and consider the map $\langle\cdot,\,\cdot\rangle: \mathsf{V}\times\mathsf{V}\to\mathbb{C}$ defined by

$$\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} A_{ij} \overline{B_{ij}}.$$

This is always an inner product.

Let V be a vector space over $F = \mathbb{C}$, and say that a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ is an inner product. Since $\langle x, x \rangle \geq 0$, we define $\|x\| = \sqrt{\langle x, x \rangle}$ as the *norm* of $x \in V$.

Norm defn and property

Theorem 6.2. Let V be a vector space over $F = \mathbb{C}$, and say that a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ is an inner product. Then for all $x, y \in V$ and $c \in \mathbb{C}$, the map $\| \cdot \| : V \to \mathbb{R}$ defined by $\| x \| = \sqrt{\langle x, x \rangle}$ has the following properties.

- Positivity: $||x|| \ge 0$.
- Non-degeneracy: ||x|| = 0 if and only if x is the zero vector.
- Multiplicativity: ||c x|| = |c| ||x||.
- Cauchy-Bunyakovsky-Schwarz (CBS) Inequality: $|\langle x, y \rangle| \leq ||x|| \, ||y||$.
- Triangle Inequality: $||x + y|| \le ||x|| + ||y||$.

Any map $\|\cdot\|: V \to \mathbb{R}$ with the properties is called a *norm*. Observe that if V has an inner product, then it has a norm – but not all norms come from inner products! Indeed, we have p-norms $\|\cdot\|_p$ on \mathbb{C}^n for any extended number p satisfying $1 \le p \le \infty$, but it only comes from an inner product if p=2. A vector space V with a norm is called a *Banach Space*, while a vector space with an inner product is called an *Inner Product Space*.

§6.2: The Gram-Schmidt Orthogonalization Process and Orthogonal Complements. Let V be an *n*-dimensional linear space over either $F = \mathbb{R}$ or $F = \mathbb{C}$. Fix an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$. We say that a subset $\beta = \{u_1, u_2, \dots, u_n\}$ of V is an *orthonormal basis* if

- Span: Given any $x \in V$, we can find scalars a_i such that $x = a_1 u_1 + a_2 u_2 + \cdots + a_n u_n$.
- Linear Independence: The only scalars $a_i \in F$ which satisfy $a_1 u_1 + a_2 u_2 + \cdots + a_n u_n = O_V$ are $a_1 = a_2 = \cdots = a_n = 0$.
- Orthogonality: Any pair u_i , $u_j \in \beta$ has the inner product $\langle u_i, u_j \rangle = 1$ whenever $i \neq j$.
- Normalized: Each vector in $u_i \in \beta$ has norm $||u_i|| = \sqrt{\langle u_i, u_i \rangle} = 1$.

Orthonormal property

Here are some examples.

• Let $V = F^2$, and choose $\langle \cdot, \cdot \rangle : V \times V \to F$ as the standard inner product. Recall that

$$\gamma = \{e_1, e_2\}$$
 in terms of $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

is the standard basis for V. We give a much more general statement: let $a, b \in \mathbb{R}$ be any scalars not both zero, and denote the two vectors

$$v_1 = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} a \\ b \end{pmatrix}$$
 and $v_2 = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} -b \\ a \end{pmatrix}$.

(We recover e_1 and e_2 when a=1 and b=0.) Then $\beta=\{v_1,v_2\}$ is an orthonormal basis for V. In particular, γ is an orthonormal basis for V, and there are infinitely many orthonormal bases for V.

• Let $V = F^3$, and choose $\langle \cdot, \cdot \rangle : V \times V \to F$ as the standard inner product. Recall that

$$\gamma = \{e_1, e_2\}$$
 in terms of $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

is the standard basis for V. We give a much more general statement: let $a, b, c \in \mathbb{R}$ be any scalars such that a and b are not both zero, and denote the three vectors

$$v_{1} = \frac{1}{\sqrt{a^{2} + b^{2} + c^{2}}} \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

$$v_{2} = \frac{1}{\sqrt{a^{2} + b^{2}}} \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix},$$

$$v_{3} = \frac{1}{\sqrt{a^{2} + b^{2}}\sqrt{a^{2} + b^{2} + c^{2}}} \begin{pmatrix} -a c \\ -b c \\ a^{2} + b^{2} \end{pmatrix}.$$

(We recover e_1 , e_2 , and e_3 when a=1, b=0, and c=0.) Then $\beta=\{v_1,v_2,v_3\}$ is an orthonormal basis for V. In particular (like above), γ is an orthonormal basis for V, and there are infinitely many orthonormal bases for V.

Any finite dimensional inner product space V has an orthonormal basis

Theorem 6.3, 6.4, 6.5. Let V be a vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, and fix an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$.

• Let $W = \operatorname{span}(S)$ be the span of an linearly independent subset $S = \{w_1, w_2, \ldots, w_k\}$ of V. Define $S' = \{v_1, v_2, \ldots, v_k\}$ by

$$v_{i} = \begin{cases} w_{1} & \text{for } i = 1, \\ w_{i} - \sum_{j=1}^{i-1} \frac{\langle w_{i}, v_{j} \rangle}{\|v_{j}\|^{2}} v_{j} & \text{for } 2 \leq i \leq k. \end{cases}$$

Then S' is an orthogonal set of nonzero vectors such that $W = \operatorname{span}(S')$.

• Let W = span(S') be the span of an orthogonal subset $S' = \{v_1, v_2, \ldots, v_k\}$ of V consisting of nonzero vectors, that is, $\langle v_i, v_j \rangle = 0$ for $i \neq j$ and $v_i \neq O_V$. Then S' is a linearly independent set. Moreover, each $y \in W$ can uniquely expressed in the form

ely expressed in the form
$$y = \sum_{i=1}^k \frac{\langle y, \, v_i \rangle}{\|v_i\|^2} \, v_i.$$
 ui is unit length, 2, 3 the same They are to normalize

• Let $W = \operatorname{span}(S'')$ be the span of an orthonormal subset $S'' = \{u_1, u_2, \ldots, u_k\}$ of V. Then S'' is a basis for W. Moreover, each $y \in W$ can uniquely expressed in the form

$$y = \sum_{i=1}^{k} \langle y, u_i \rangle u_i.$$

The act of turning a linearly independent set $S = \{w_1, w_2, \ldots, w_k\}$ into an orthogonal set $S' = \{v_1, v_2, \ldots, v_k\}$ without zero vectors is called the *Gram-Schmidt Orthogonalization Process*. In particular, if V is a finite-dimensional vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, then V has an orthonormal basis β with respect to any given an inner product $\langle \cdot, \cdot \rangle : \mathsf{V} \times \mathsf{V} \to F$. The construction goes as follows:

- #1. Choose a basis $\gamma = \{w_1, w_2, \ldots, w_n\}$ for V.
- #2. Construct an orthogonal basis $\{v_1, v_2, \ldots, v_n\}$ for V via the Gram-Schmidt Orthogonalization Process:

$$v_{i} = \begin{cases} w_{1} & \text{for } i = 1, \\ w_{i} - \sum_{j=1}^{i-1} \frac{\langle w_{i}, v_{j} \rangle}{\|v_{j}\|^{2}} v_{j} & \text{for } 2 \leq i \leq n. \end{cases}$$

#3. Construct an orthonormal basis $\beta = \{u_1, u_2, \dots, u_n\}$ for V via Normalizing:

$$u_i = \frac{1}{\|v_i\|} v_i$$
 for $1 \le i \le n$.

Let V be a vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, and fix an inner product $\langle \cdot, \cdot \rangle : \mathsf{V} \times \mathsf{V} \to F$. Given a subset $S \subseteq \mathsf{V}$, we define the *orthogonal complement of* S as the subset

$$S^{\perp} = \left\{ x \in \mathsf{V} \mid \langle x, y \rangle = 0 \text{ for all } y \in S \right\}.$$

The symbol " S^{\perp} " is read as "S perp(endicular)".

Theorem 6.6, 6.7. Let V be a vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, and fix an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$. Let W be a finite-dimensional subspace.

- W^{\perp} is a subspace of V.
- $\bullet \ \mathsf{W} \cap \mathsf{W}^{\perp} = \{O_{\mathsf{V}}\}.$
- For each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that y = u + z. Moreover, the vector u is the unique vector in W that is "closest" to y; that is, for any $x \in W$ we have the inequality $||y x|| \ge ||y u||$, with equality if and only if x = u.
- If V is finite-dimensional, then $\dim(W) + \dim(W^{\perp}) = \dim(V)$.

There exists a linear transformation $\operatorname{proj}_W:V\to V$ which sends $y\mapsto u$. It is easy to see that $R(\operatorname{proj}_W)=W$ is the image of such a map, while $N(\operatorname{proj}_W)=W^\perp$ is the null space of such a map. Observe that

$$||y - x|| \ge ||y - \operatorname{proj}_{\mathsf{W}}(y)||$$
 for any $x \in \mathsf{W}$ and $y \in \mathsf{V}$.

Here is an example. Let $V = \mathbb{R}^2$ denote the real plane along with the standard inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$. Recall that V has an orthonormal basis $\beta = \{u_1, u_2\}$ in terms of the vectors

$$u_1 = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} a \\ b \end{pmatrix}$$
 and $u_2 = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} -b \\ a \end{pmatrix}$.

Theorem 6.5 asserts that any vector $v \in V$ can be expressed in the form $v = v^{\perp} + v^{\parallel}$, where

$$v^{\perp} = \langle v, u_1 \rangle \ u_1 = \frac{a x + b y}{a^2 + b^2} \begin{pmatrix} a \\ b \end{pmatrix}$$
 and $v^{\parallel} = \langle v, u_2 \rangle \ u_2 = \frac{a y - b x}{a^2 + b^2} \begin{pmatrix} -b \\ a \end{pmatrix}$.

We give a geometric interpretation of this expression. Consider the line

$$W = \operatorname{span} \{u_2\} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid a x + b y = 0 \right\}$$

going through the origin. We have the perpendicular line

$$\mathsf{W}^{\perp} = \mathrm{span} \left\{ u_1 \right\} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid b \, x - a \, y = 0 \right\}.$$

We can use this to define a linear transformation $\operatorname{proj}_W : V \to V$ as the map $\operatorname{proj}_W(v) = v^{||}$ which is the orthogonal projection onto W. Observe that $R(\operatorname{proj}_W) = W$ is the image of such a map, while $N(\operatorname{proj}_W) = W^{\perp}$ is the null space of such a map.

§6.3: The Adjoint of a Linear Operator.

Theorem 6.8, 6.9. Let V be a vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, and fix an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$.

- For each $y \in V$, let $g : V \to F$ be the map which sends $x \mapsto \langle x, y \rangle$. Then g is a linear transformation. Conversely, let $g : V \to F$ be a linear transformation. Then there exists a unique $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$.
- Let $T: V \to V$ be a linear transformation. There exists a unique linear transformation $T^*: V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$.

In other words, linear transformations $g: V \to F$ are in one-to-one correspondence with vectors $y \in V$. The linear transformation $T^*: V \to V$ is called the *adjoint* of T. The symbol " T^* " is read as "T-star."

Conjugate transpose

Theorem 6.10, 6.11. Let V be a vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, and fix an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$. Let T, U : V \to V be linear transformations and $c \in F$ be a scalar.

- Let β be an orthonormal basis for V. Then the adjoint of $A = [\mathsf{T}]_{\beta}^{\beta}$ is the matrix $A^* = [\mathsf{T}^*]_{\beta}^{\beta}$ as the complex conjugate of the transpose of A.
- We have the following three properties:

$$-(cT + U)^* = \overline{c}T^* + U^*$$

$$-(T \circ U)^* = U^* \circ T^*$$

$$-(T^*)^* = T.$$

Given an $n \times n$ matrix $A \in \mathsf{M}_{n \times n}(F)$, the $n \times n$ matrix A^* which is the complex conjugate of the transpose of A is called the *adjoint* of A. This should not be confused with the *classical adjoint* of A: this is that $n \times n$ matrix $\mathsf{adj}(A)$, also called the *adjugate* of A, with entries

$$\left(\operatorname{adj}(A)\right)_{ij} = (-1)^{i+j} \operatorname{det}(\tilde{A}_{ji})$$
 for
$$1 \le i \le n,$$
$$1 \le j \le n;$$

where \tilde{A}_{ij} is that $(n-1) \times (n-1)$ matrix obtained from A by deleting the ith row and jth column. For example when n=2 we have the matrices

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 implies $A^* = \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix}$ but $\operatorname{adj}(A) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$.

Consider the special case where $V = F^n$. The standard inner product on V can be expressed in terms of the adjoint as follows:

$$\langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n}$$

$$= y^* x$$
 for all $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in V.$

It is easy to see that the standard basis $\beta = \{e_1, e_2, \dots, e_n\}$ is an orthonormal basis with respect to the standard inner product on V. Observe that

$$\left[\mathsf{L}_{A}\right]_{\beta}^{\beta} = A \qquad \Longrightarrow \qquad \left[\left(\mathsf{L}_{A}\right)^{*}\right]_{\beta}^{\beta} = A^{*} = \left[\mathsf{L}_{A^{*}}\right]_{\beta}^{\beta} \qquad \Longrightarrow \qquad \left(\mathsf{L}_{A}\right)^{*} = \mathsf{L}_{A^{*}}.$$

Say that in an experiment we have the following data:

Time	t_1	t_2	t_3	• • •	t_m
Value	y_1	y_2	y_3	• • •	y_m
00					

The "least squares best linear fit" y(t) = ct + d has coefficients

$$\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{m} t_i^2 & \sum_{i=1}^{m} t_i \\ \sum_{i=1}^{m} t_i & \sum_{i=1}^{m} 1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_{i=1}^{m} t_i y_i \\ \sum_{i=1}^{m} y_i \end{pmatrix}.$$

This is part of a general phenomenon.

Theorem 6.12. Let $A \in \mathsf{M}_{m \times n}(F)$ and $y \in \mathsf{F}^n$ for either $F = \mathbb{R}$ or $F = \mathbb{C}$. The vector $x_0 = (A^* A)^{-1} (A^* y)$ in F^n satisfies $||A x_0 - y|| \le ||A x - y||$ for all $x \in \mathsf{F}^n$.

The expression $(A^*A) x_0 = (A^*y)$ is called the *normal equation*.

§6.4: Self-Adjoint Operators. Let V be a finite dimensional vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, and fix an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$. A linear operator $T : V \to V$ is said to be normal if $TT^* = T^*T$.

Theorem 6.15. Let $T:V\to V$ be a normal linear operator on a finite dimensional inner product space V.

- $\|\mathsf{T}(x)\| = \|\mathsf{T}^*(x)\|$ for all $x \in \mathsf{V}$.
- $T c |_{V}$ is normal for any scalar $c \in F$.
- Say that $x \in V$ is an eigenvector of T with eigenvalue $\lambda \in F$, that is, $T(x) = \lambda x$. Then x is also an eigenvector of T^* but with eigenvalue the complex conjugate of λ , that is, $T^*(x) = \overline{\lambda} x$.
- Say that $x_1, x_2 \in V$ are eigenvectors of T corresponding to distinct eigenvalues $\lambda_1, \lambda_2 \in F$. Then x_1 and x_2 are orthogonal.

Theorem 6.14, 6.16. Let $T: V \to V$ be a linear operator on a *n*-dimensional inner product space V.

• (Issai Schur) Assume that the characteristic polynomial of T splits over F, that is, the polynomial

$$f(t) = \det\left(\left[\mathsf{T}\right]_{\beta}^{\beta} - t\,I_{n}\right) = \det(\mathsf{T}) + \dots + (-1)^{n}\,t^{n}$$
$$= (-1)^{n} \cdot (t - \lambda_{1})^{m_{1}} (t - \lambda_{2})^{m_{2}} \cdots (t - \lambda_{k})^{m_{k}}$$

has linear factors with each eigenvalue $\lambda_k \in F$. Then there exists an orthonormal basis $\beta = \{v_1, v_2, \ldots, v_n\}$ for V such that the matrix $[\mathsf{T}]_{\beta}^{\beta}$ is upper triangular.

• Assume that V is a vector space over $F = \mathbb{C}$. Then T is normal if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.

Let V be a finite dimensional vector space over either $F = \mathbb{R}$ or $F = \mathbb{C}$, and fix an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$. A linear operator $T : V \to V$ is said to be *self-adjoint* or *Hermitian* if $T = T^*$.

In practice, we choose $F = \mathbb{R}$, so that a self-adjoint operator T corresponds to a symmetric matrix $A = [\mathsf{T}]_{\beta}^{\beta}$, that is, $A = A^t$.

Theorem 6.17. Let $T:V\to V$ be a linear operator on a n-dimensional inner product space V.

- T is normal.
- Every eigenvalue λ of T is a real number, that is, $\lambda \in \mathbb{R}$.
- The characteristic polynomial of T splits, that is, the polynomial

$$f(t) = \det\left(\left[\mathsf{T}\right]_{\beta}^{\beta} - t\,I_{n}\right) = \det(\mathsf{T}) + \dots + (-1)^{n}\,t^{n}$$
$$= (-1)^{n} \cdot (t - \lambda_{1})^{m_{1}} (t - \lambda_{2})^{m_{2}} \cdots (t - \lambda_{k})^{m_{k}}$$

has linear factors.

• Assume that V is a vector space over $F = \mathbb{R}$. Then T is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.