Lecture - 4 Task Environments

Artificial Intelligence

Dr. Ahmed Mateen

Today's Agenda

- Classical vs. Modern Al
- Task Environments
- Specifying Task Environments
- Properties (Types) of Task Environments

Classical Al

- Relies more on:
 - Pre-conceived rules
 - Symbolic reasoning
 - Inferences drawn
- For example, given as a set of constraints, deduce a conclusion.

Classical historical examples of this conception of intelligence

- Deep Blue, whose aim in life was to be the master of chess, ruling over the intelligent mankind.
- Eliza, a computer based therapist.
- Expert systems

Expert Systems

Modern Al

- Modern AI is based on:
 - Computational intelligence
 - Neural networks
 - Deep learning
 - making inference in layers
- Has much better performance

Agents & Environments

PEAS

- Task Environment
 - -Problems to which rational agents are solution
- To specify task environment we need:
- P Performance measure
- E Environment
- A Actuators
- S Sensors

Automated Taxi Driver Agent

- Performance Measures:
- -Getting to correct Destination
- -less cost
- -high safety
- Environment:
- -variety of roads
- -Traffic
- -different types of passenger

Actuators:

-Accelerators

-Steering & brakes

SENSORS:

- -Camera
- -GPS
- IR sensors

Fully Observable

- —An agent's sensors give it access to the complete state of the environment at each point in time
- —A task environment is effectively fully observable if the sensors detect all aspects that are **relevant**.
- —Fully observable environments are convenient
- —Example: Chess with a clock
- —Image recognition operates in fully observable domains

Partially Observable

- —The relevant features of the environment are only partially observable
- —An environment might be partially observable because of:
 - Noisy sensors
 - Missing parts
- —Example: Automated Taxi

- Single Agent Environment
 - —One and only one agent operating by itself in an environment
 - Playing a crossword puzzle single agent
 - Sudoku
 - Map Coloring
- Multiagent Environment
 - —Two or more than two agents environment
 - —Competitive multiagent environment
 - Al environments face Al agents against each other in order to optimize a specific outcome
 - Chess playing
 - Tic Tac Toe
 - —Cooperative multiagent environment
 - —Relies on the cooperation between multiple AI agents
 - Automated taxi driver
 - Smart home sensors

Deterministic

- —The next state of the environment is completely determined by the current state and the action executed by the agent
 - What if environment is partially observable?
 - What happens in multiagent environment?
- —Strategic environment: deterministic except for actions of other agents

Stochastic

- Cannot clearly predict next state of the environment from current state of actions
- Example-Taxi Driving
 - Cannot clearly predict behavior of traffic exactly
 - Tires blow out
 - Engine seize up without warning
- uncertainty about outcomes is quantified in terms of probabilities

Episodic

- —Agent's experience is divided into **atomic** episodes
- —In each episode the agent receives a percept and then performs a single action
- —Next episode does not depend on the actions taken in previous episodes
- —Many **classification** tasks are episodic

Sequential

- —The current decision could **affect** all **future** decisions
- Chess and taxi driving are sequential
- —Short-term actions can have long-term consequences
- Which one is simpler and why?

- Static
 - Environment cannot change while an agent is deliberating
- Dynamic
 - —Environment can change while an agent is deliberating
- SemiDynamic
 - environment itself does not change with the passage of time but the agent's performance score does
- Which one is simpler and why?

Discrete

- —If there are a **limited** number of **distinct states**, clearly defined percepts and actions, the environment is discrete
- —Example- Chess Game
- —Tic Tac Toe
- —Sudoku

Continuous

- Assumes continuous values
- —Continuous time problem
- —Example- Taxi Driving
- Input from Digital Cameras?

Characteristics of Environments

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	•	Static	Discrete
Chess with a clock	Fully	Multi	Deterministic		Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic		•	Continuous Continuous
Image analysis Part-picking robot	Fully	Single	Deterministic	Episodic	Semi	Continuous
	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	•	Continuous
Interactive English tutor	Partially	Multi	Stochastic	Sequential		Discrete