DEVOIR EN TEMPS LIBRE

DIAGRAMME E-pH

On prendra $\frac{RT}{F}$ lnx = 0.06 Logx

Diagramme potentiel-pH du manganèse :

On donne le diagramme potentiel-pH du manganèse à 298 K, pour une concentration totale en espèces dissoutes de 10^{-2} mol.L⁻¹ (figure 1). On s'intéresse aux espèces suivantes : Mn(s), Mn(OH)_{3(s)}, Mn²⁺, Mn(OH)_{2(s)} et Mn³⁺. On superpose en pointillés le diagramme E-pH de l'eau.

Les frontières verticales sont respectivement à pH = 2.8 et à pH = 8.6.

- 1) Préciser le nombre d'oxydation du manganèse dans chacune des formes envisagées. En déduire quelles sont les espèces qui correspondent à chacun des domaines numérotés de I à V.
- 2) Rappeler les deux demi-équations « rédox » associées à l'eau. En déduire les deux équations des droites qui délimitent le domaine de stabilité de l'eau, avec la convention habituelle : $P(H_2) = P(O_2) = 1$ bar, à T = 298 K.
- 3) D'après les positions des domaines de prédominance ou d'existence des différentes espèces liées au manganèse, déterminer les valeurs approchées du pK_s de Mn(OH)₂ et du potentiel standard $E^{\circ}(Mn^{2+}/Mn_{(s)})$.
- **4)** Lorsqu'on verse un peu de poudre de manganèse dans de l'eau légèrement acidifiée, on observe un dégagement gazeux. De quel gaz s'agit-il ?
- 5) Ce diagramme est-il utilisable pour une concentration de travail de 2.10⁻² mol.L⁻¹ ?

Dosage du dioxygène dissous :

Première étape :

On remplit d'eau à doser une fiole de 250 mL jusqu'à son trait de jauge. On y place un barreau aimanté. On ajoute ensuite quelques pastilles de soude et 2,00 g de chlorure de manganèse.

- **6)** On bouche immédiatement la fiole jaugée avant d'agiter jusqu'à dissolution des réactifs. Justifier cette opération.
- **7)** Ecrire le bilan de la réaction chimique entre la soude et le manganèse (II). Le composé obtenu est-il soluble ?
- **8)** Ecrire le bilan de la réaction chimique entre le composé précédent et l'oxygène dissous dans l'eau. Justifier, par l'analyse du diagramme potentiel-pH, l'utilisation de la soude.

Deuxième étape :

On ouvre la fiole jaugée au bout de 30 minutes, on verse son contenu dans un erlenmeyer et on ajoute immédiatement un peu d'acide sulfurique concentré et 1,00 g d'iodure de potassium.

- **9)** Justifier pourquoi on doit attendre 30 minutes avant d'effectuer cette seconde étape. Quelles précautions indispensables, liées à la sécurité, doit-on prendre lors de cette deuxième étape ?
- 10) Après addition de l'acide sulfurique, sous quelle forme se trouve le Mn(III)?
- 11) Ecrire le bilan de la réaction chimique entre le manganèse (III) et l'ion iodure.
- **12)** En fait, le diiode est peu soluble dans l'eau, mais soluble dans une solution contenant des ions iodures. On obtient alors un ion complexe I_3 . La solution est alors limpide et de couleur jaune. Quelle équation doit-on écrire en toute riqueur pour cette deuxième étape ?

Troisième étape :

On prélève alors un volume $V_0 = 100$ mL de cette solution et on la dose par une solution de thiosulfate de sodium de concentration $C = 1,50.10^{-2}$ mol.L⁻¹. On utilise de l'iotect (thiodène) comme indicateur de fin de réaction qui donne une coloration bleue à la solution en présence de I_2 .

- 13) Quel instrument de verrerie peut-on utiliser pour mesurer ce prélèvement ?
- **14)** Le dosage effectué cet hiver nous a donné un volume à l'équivalence : $V_{\text{éq}}$ = 15,3 mL avec une incertitude de 0,5 mL.
- **14) a)** Ecrire l'équation bilan entre le thiosulfate et le complexe I₃-, ou entre le thiosulfate et le diiode.
- 14) b) En déduire la concentration de [O₂] dissous. On précisera son incertitude relative.
- **15)** Les quantités de chlorure de manganèse et d'iodure de potassium introduites initialement étaientelles suffisantes ?

Données

Potentiels standards à 298 K:

 $E^{\circ}(I_{2(ag)}/I^{-}) = 0.62 \text{ V}, E^{\circ}(S_4O_6^{2-}/S_2O_3^{2-}) = 0.08 \text{ V}.$

 $E^{\circ}(O_2/H_2O) = 1,23 \text{ V}, E^{\circ}(H^+/H_2) = 0 \text{ V}.$

On prendra : $\frac{RT}{F}$ ln(x) =0.06Log(x)

Masse molaire du chlorure de manganèse (MnCl₂, 4H₂O): 198 g.mol⁻¹.

Masse molaire de l'iodure de potassium KI: 166 g.mol⁻¹.