Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of the Claims

- 1. (original) A GLP-1 compound comprising a GLP-1 peptide modified with a reactive group that reacts with a thiol group on a blood component to form a covalent bond, wherein said reactive group is selected from the group consisting of an activated disulfide bond group or an S-sulfonate.
- 2. (original) The GLP-1 compound of claim 1, said GLP-1 peptide having the amino acid sequence of formula 1 (SEQ ID NO:1)

 $Xaa_7-Xaa_8-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Lys-Gly-Arg-Xaa_{37}$

Formula 1 (SEQ ID NO: 1)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu;

Xaa33 is: Val, or Ile;

Xaa₃₇ is: L-Cys, D-Cys, homocysteine, or penicillamine;

wherein said GLP-1 peptide is modified at Xaa₃₇; and provided that the GLP-1 compound does not have the sequence of GLP-1(7-37)OH, GLP-1(7-36)-NH₂, Gly⁸-GLP-1(7-37)OH, Gly⁸-GLP-1(7-36)NH₂, Val⁸-GLP-1(7-37)OH, Gly⁸-GLP-1(7-36)NH₂, Val⁸-GLP-1(7-36)NH₂, Val⁸-M₂-CLP-1(7-36)NH₂, Val⁸-M₂-CLP-1(7

37)OH, Val⁸-GLP-1(7-36)NH₂, Leu⁸-GLP-1(7-37)OH, Leu⁸-GLP-1(7-36)NH₂, Ile⁸-GLP-1(7-37)OH, Ile⁸-GLP-1(7-36)NH₂, Ser⁸-GLP-1(7-37)OH, Ser 36)NH₂, Thr⁸-GLP-1(7-37)OH, Thr⁸-GLP-1(7-36)NH₂, Val⁸-Tyr¹²-GLP-1(7-37)OH, Val⁸-Tyr¹²-GLP-1(7-36)NH₂, Val⁸-Tyr¹⁶-GLP-1(7-37)OH, Val⁸-Tyr¹⁶-36)NH₂, Val⁸-Glu²²-GLP-1(7-37)OH, Val⁸-Glu²²-GLP-1(7-36)NH₂, Gly⁸-Glü²²-GLP-1(7-37)OH, Gly⁸-Glu²²-GLP-1(7-36)NH₂, Val⁸-Asp²²-GLP-1(7-37)OH, Val⁸-Asp²²-GLP-1(7-36)NH₂, Gly⁸-Asp²²-GLP-1(7-37)OH, Gly⁸-Asp²²-GLP-1(7-36)NH₂, Val⁸-Lys²²-GLP-1(7-37)OH, Val⁸-Lys²²-GLP-1(7-36)NH₂, Gly⁸-Lys²²-GLP-1(7-37)OH, Gly⁸-Lys²²-GLP-1(7-36)NH₂, Leu⁸-Glu²²-GLP-1(7-37)OH, Leu⁸-Glu²²-GLP-1(7-36)NH₂, Ile⁸-Glu²²-GLP-1(7-37)OH, Ile⁸-Glu²²-GLP-1(7-36)NH₂, Leu⁸-Asp²²-GLP-1(7-37)OH, Leu⁸-Asp²²-GLP-1(7-36)NH₂, Ile⁸-Asp²²-GLP-1(7-37)OH, Ile⁸-Asp²²-GLP-1(7-36)NH₂, Leu⁸-Lys²²-GLP-1(7-37)OH, Leu⁸-Lys²²-GLP-1(7-36)NH₂, Ile⁸-Lys²²-GLP-1(7-37)OH, Ile⁸-Lys²²-GLP-1(7-36)NH₂, Ser⁸-Glu²²-GLP-1(7-37)OH, Ser⁸-Glu²²-GLP-1(7-36)NH₂, Thr⁸-Glu²²-GLP-1(7-37)OH, Thr⁸-Glu²²-GLP-1(7-36)NH₂, Ser⁸-Asp²²-GLP-1(7-37)OH, Ser⁸-Asp²²-GLP-1(7-36)NH₂, Thr⁸-Asp²²-GLP-1(7-37)OH, Thr⁸-Asp²²-GLP-1(7-36)NH₂, Ser⁸-Lys²²-GLP-1(7-37)OH, Ser⁸-Lys²²-GLP-1(7-36)NH₂, Thr⁸-Lys²²-GLP-1(7-37)OH, Thr⁸-Lys²²-GLP-1(7-36)NH₂, Glu²²-GLP-1(7-37)OH, Glu²²-GLP-1(7-36)NH₂, Asp²²-GLP-1(7-37)OH, Asp 36)NH₂, Lys²²-GLP-1(7-37)OH, Lys²²-GLP-1(7-36)NH₂, Val⁸-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu²²-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-36)NH₂, Gly⁸-Glu³⁰-GLP-1(7-37)OH, Gly⁸-Glu³⁰-GLP-1(7-36)NH₂, Leu⁸-Glu³⁰-GLP-1(7-37)OH, Leu⁸-Glu³⁰-GLP-1(7-36)NH₂, Ile⁸-Glu³⁰-GLP-1(7-37)OH, Ile⁸-Glu³⁰-GLP-1(7-36)NH₂, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Ser⁸-Glu³⁰-GLP-1(7-36)NH₂, Thr⁸-Glu³⁰-GLP-1(7-37)OH, Thr⁸-Glu³⁰-GLP-1(7-36)NH₂, Val⁸-His³⁷-GLP-1(7-37)OH, Val⁸-His³⁷-GLP-1(7-36)NH₂ Gly⁸-His³⁷-GLP-1(7-37)OH, Gly⁸-His³⁷-GLP-1(7-36)NH₂ Leu⁸-His³⁷-GLP-1(7-37)OH, Leu⁸-His³⁷-GLP-1(7-36)NH₂ Ile⁸-His³⁷-GLP-1(7-37)OH, Ile⁸-His³⁷-GLP-1(7-36)NH₂ Ser⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-36)NH₂ Thr⁸-His³⁷-GLP-1(7-37)OH, Thr⁸-His³⁷-GLP-1(7-36)NH₂.

3. (original) The GLP-1 compound of claim 1, said GLP-1 peptide having the amino acid sequence of formula 2 (SEQ ID NO:2)

Xaa₇-Xaa₈-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Xaa₁₆-Ser-Xaa₁₈-Tyr-Leu-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Xaa₃₃-Lys-Gly-Arg-Xaa₃₇
Formula 2 (SEQ ID NO:2)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Gly, Ala, Val, Leu, Ile, Ser, or Thr;

Xaa₁₆ is: Val, Phe, Tyr, or Trp;

Xaa₁₈ is: Ser, Tyr, Trp, Phe, Lys, Ile, Leu, or Val;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₃₃ is: Val or Ile; and

Xaa₃₇ is: L-Cys, D-Cys, homocysteine, or penicillamine;

wherein said GLP-1 peptide is modified at Xaa₃₇; and

provided that the GLP-1 compound does not have the sequence of GLP-1(7-37)OH, GLP-1(7-36)-NH₂, Gly⁸-GLP-1(7-37)OH, Gly⁸-GLP-1(7-36)NH₂, Val⁸-GLP-1(7-37)OH, Val⁸-GLP-1(7-36)NH₂, Leu⁸-GLP-1(7-37)OH, Leu⁸-GLP-1(7-36)NH₂, Ile⁸-GLP-1(7-37)OH, Ile⁸-GLP-1(7-36)NH₂, Ser⁸-GLP-1(7-37)OH, Ser⁸-SLP-1(7-37)OH, Ser⁸-SLP-1(7-37)OH, Ser⁸-SLP-1(7-37)OH, Ser 36)NH₂, Thr⁸-GLP-1(7-37)OH, Thr⁸-GLP-1(7-36)NH₂, Val⁸-Tyr¹⁶-GLP-1(7-37)OH, Val⁸-Tyr¹⁶-GLP-1(7-36)NH₂, Val⁸-Glu²²-GLP-1(7-37)OH, Val 36)NH₂, Gly⁸-Glu²²-GLP-1(7-37)OH, Gly⁸-Glu²²-GLP-1(7-36)NH₂, Val⁸-Asp²²-GLP-1(7-37)OH, Val⁸-Asp²²-GLP-1(7-36)NH₂, Gly⁸-Asp²²-GLP-1(7-37)OH, Gly⁸-Asp²²-GLP-1(7-36)NH₂, Val⁸-Lys²²-GLP-1(7-37)OH, Val⁸-Lys²²-GLP-1(7-36)NH₂, Gly⁸-Lys²²-GLP-1(7-37)OH, Gly⁸-Lys²²-GLP-1(7-36)NH₂, Leu⁸-Glu²²-GLP-1(7-37)OH, Leu⁸-Glu²²-GLP-1(7-36)NH₂, Ile⁸-Glu²²-GLP-1(7-37)OH, Ile⁸-Glu²²-GLP-1(7-36)NH₂, Leu⁸-Asp²²-GLP-1(7-37)OH, Leu⁸-Asp²²-GLP-1(7-36)NH₂, Ile⁸-Asp²²-GLP-1(7-37)OH, Ile⁸-Asp²²-GLP-1(7-36)NH₂, Leu⁸-Lys²²-GLP-1(7-37)OH, Leu⁸-Lys²²-GLP-1(7-36)NH₂, Ile⁸-Lys²²-GLP-1(7-37)OH, Ile⁸-Lys²²-GLP-1(7-36)NH₂, Ser⁸-Glu²²-GLP-1(7-37)OH, Ser⁸-Glu²²-GLP-1(7-36)NH₂, Thr⁸-Glu²²-GLP-1(7-37)OH, Thr⁸-Glu²²-GLP-1(7-36)NH₂, Ser⁸-Asp²²-GLP-1(7-37)OH, Ser⁸-Asp²²-GLP-1(7-36)NH₂, Thr⁸-Asp²²-GLP-1(7-37)OH, Thr⁸-Asp²²-GLP-1(7-36)NH₂, Ser⁸-Lys²²-GLP-1(7-37)OH, Ser⁸-Lys²²-GLP-1(7-36)NH₂, Thr⁸-Lys²²-GLP-1(7-37)OH, Thr⁸-Lys²²-GLP-1(7-36)NH₂, Glu²²-GLP-1(7-37)OH, Glu²²-GLP-1(7-36)NH₂, Asp²²-GLP-1(7-37)OH, Asp²²-GLP-1(7-36)NH₂, Lys²²-GLP-1(7-37)OH, Lys²²-GLP-1(7-36)NH₂.

4. (original) The GLP-1 compound of claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 3 (SEQ ID NO:3)

Xaa7-Xaa8-Glu-Gly-Thr-Xaa12-Thr-Ser-Asp-Xaa16-Ser-Xaa18-Xaa19-Xaa20-Glu-

Xaa22-Gln-Ala-Xaa25-Lys-Xaa27-Phe-Ile-Xaa30-Trp-Leu-Xaa33-Xaa34-Gly-

 $Xaa_{36}-Xaa_{37}-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}$

Formula 3 (SEQ ID NO:3)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu;

Xaa₃₃ is: Val or Ile;

Xaa₃₄ is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, Ser, L-Cys, D-Cys, homocysteine, or penicillamine;

Xaa₃₈ is: Ser, Pro, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂;

Xaa₃₉ is: Ser, Arg, Thr, Trp, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₀ is: Ser, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₂ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent:

Xaa₄₆ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; and

Xaa₄₈ is: L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; wherein said extended GLP-1 peptide contains a single L-Cys, D-Cys, homocysteine, or penicillamine which occurs at one of Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈, said GLP-1 is modified at said single L-Cys, D-Cys, homocysteine, or penicillamine; and provided that if Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent and further provided that the GLP-1 peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₆: Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Pro-Ser-NH₂.

5. (original) The GLP-1 compound of claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 4 (SEQ ID NO:4) Xaa₇-Xaa₈-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Xaa₁₆-Ser-Ser-Tyr-Lys-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Xaa₃₃-Xaa₃₄-Gly-Xaa₃₆-Xaa₃₇-Xaa₃₈-Xaa₃₉-Xaa₄₀-Xaa₄₁-Xaa₄₂-Xaa₄₃-Xaa₄₄-Xaa₄₅-Xaa₄₆-Xaa₄₇-Xaa₄₈
Formula 4 (SEQ ID NO: 4)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₂₂ is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₃₃ is: Val or Ile;

Xaa₃₄ is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

- Xaa₃₇ is: Gly, Pro, Ser, L-Cys, D-Cys, homocysteine, or penicillamine;
- Xaa₃₈ is: Ser, Pro, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₃₉ is: Ser, Arg, Thr, Trp, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₀ is: Ser, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₂ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₃ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₄ is: Pro, Ala, Arg, Lys, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₅ is: Ser, His, Pro, Lys, Arg, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₆ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₇ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; and
- Xaa₄₈ is: L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
 wherein said extended GLP-1 peptide contains a single L-Cys, D-Cys, homocysteine, or penicillamine which occurs at one of Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈, said GLP-1 is modified at said single L-Cys, D-Cys, homocysteine, or penicillamine; and provided that if Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent and further provided that the GLP-1 peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₆: Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH₂.
- (original) The GLP-1 compound of claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 5 (SEQ ID NO:5)

Xaa₇-Xaa₈-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Lys-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Xaa₃₃-Lys-Gly-Gly-Pro-Xaa₃₈-Xaa₃₉-Xaa₄₀-Xaa₄₁-Xaa₄₂-Xaa₄₃-Xaa₄₄-Xaa₄₅-Xaa₄₆-Xaa₄₇- Xaa₄₈
Formula 5 (SEQ ID NO:5)

wherein:

Docket No. X-15642

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Gly, Val, Leu, Ile, Ser, or Thr;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₃₃ is: Val or Ile;

Xaa₃₈ is: Ser, Pro, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₃₉ is: Ser, Arg, Thr, Trp, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₀ is: Ser, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₂ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent:

Xaa₄₆ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; and

Xaa₄₈ is: L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; wherein said extended GLP-1 peptide contains a single L-Cys, D-Cys, homocysteine, or penicillamine which occurs at one of Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈, said GLP-1 is modified at said single L-Cys, D-Cys, homocysteine, or penicillamine; and provided that if Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent.

 (original) The GLP-1 compound of claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 6 (SEQ ID NO:6)

 $Xaa_{7}-Xaa_{8}-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Xaa_{34}-Gly-Ile-Xaa_{30}-Ile-Xa$

 $Xaa_{36}-Xaa_{37}-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}-Xaa_{49}-Xaa_{50}-Xaa_{51}$

Formula 6 (SEQ ID NO:6)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu

Xaa₃₃ is: Val or Ile;

Xaa₃₄ is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, or Ser;

Xaa₃₈ is: Ser, Pro, or His;

Xaa₃₉ is: Ser, Arg, Thr, Trp, or Lys;

Xaa₄₀ is: Ser or Gly;

Xaa41 is: Ala, Asp, Arg, Glu, Lys, or Gly;

Xaa₄₂ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, NH₂, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, Pro, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Docket No. X-15642

Xaa₄₈ is: Gly, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₉ is: Pro, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₅₀ is: Ser, His, Ser-NH₂, His-NH₂, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; and

Xaa₅₁ is: L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; wherein said extended GLP-1 peptide contains a single L-Cys, D-Cys, homocysteine, or penicillamine which occurs at one of Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, Xaa₅₀, or Xaa₅₁ said GLP-1 is modified at said single L-Cys, D-Cys, homocysteine, or penicillamine; and provided that if Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, or Xaa₅₀, is absent each amino acid downstream is absent and further provided that if Xaa₃₆ is Arg and Xaa₃₇ is Gly or Ser, the GLP-1 peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₈: Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH₂.

(original) The GLP-1 compound of claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 7 (SEQ ID NO:7)

Formula 7 (SEQ ID NO:7)

Wherein:

Xaa₃₈ is: Ser, Pro, or His;

Xaa₃₉ is: Ser, Arg, Thr, Trp, or Lys;

Xaa₄₀ is: Ser or Gly;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, or Gly;

Xaa₄₂ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, NH₂, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, Pro, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₈ is: Gly, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₉ is: Pro, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₅₀ is: Ser, His, Ser-NH₂, His-NH₂, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; and

Xaa₅₁ is: L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; wherein said extended GLP-1 peptide contains a single L-Cys, D-Cys, homocysteine, or penicillamine which occurs at one of Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, Xaa₅₀, or Xaa₅₁ said GLP-1 is modified at said single L-Cys, D-Cys, homocysteine, or penicillamine; and provided that if Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, or Xaa₅₀, is absent each amino acid downstream is absent.

9. (original) The GLP-1 compound of Claim 1, said GLP-1 peptide having the amino acid sequence of formula 8 (SEQ ID NO:8)

Xaa₇-Xaa₈-Glu-Gly-Thr-Xaa₁₂-Thr-Ser-Asp-Xaa₁₆-Ser-Xaa₁₈-Xaa₁₉-Xaa₂₀-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Xaa₂₇-Phe-Ile-Xaa₃₀-Trp-Leu-Xaa₃₃-Lys-Gly-Arg-Lys

Formula 8 (SEQ ID NO:8)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa₂₂ is: Gly, Glu, Asp, Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu; and

Xaa₃₃ is: Val, or Ile;

wherein said GLP-1 peptide is modified at Lys³⁷; and,

provided that the GLP-1 compound does not have the sequence of GLP-1(7-37)OH, GLP-1(7-36)-NH₂, Gly⁸-GLP-1(7-37)OH, Gly⁸-GLP-1(7-36)NH₂, Val⁸-GLP-1(7-37)OH, Val⁸-GLP-1(7-36)NH₂, Leu⁸-GLP-1(7-37)OH, Leu⁸-GLP-1(7-36)NH₂, Ile⁸-GLP-1(7-37)OH, Ile⁸-GLP-1(7-36)NH₂, Ser⁸-GLP-1(7-37)OH, Ser⁸-GLP-1(7-36)NH₂, Thr⁸-GLP-1(7-37)OH, Thr⁸-GLP-1(7-36)NH₂, Val⁸-Tyr¹²-GLP-1(7-37)OH, Val⁸-Tyr¹²-GLP-1(7-36)NH₂, Val⁸-Tyr¹⁶-GLP-1(7-37)OH, Val⁸-Tyr¹⁶-GLP-1(7-36)NH₂, Val⁸-Glu²²-GLP-1(7-37)OH, Val⁸-Glu²²-GLP-1(7-36)NH₂, Gly⁸-Glu²²-GLP-1(7-37)OH, Gly⁸-Glu²²-GLP-1(7-36)NH₂, Val⁸-Asp²²-GLP-1(7-37)OH, Val⁸-Asp²²-GLP-1(7-36)NH₂, Gly⁸-Asp²²-GLP-1(7-37)OH, Gly⁸-Asp²²-GLP-1(7-36)NH₂, Val⁸-Lys²²-GLP-1(7-37)OH, Val⁸-Lys²²-GLP-1(7-36)NH₂, Gly⁸-Lys²²-GLP-1(7-37)OH, Gly⁸-Lys²²-GLP-1(7-36)NH₂, Leu⁸-Glu²²-GLP-1(7-37)OH, Leu⁸-Glu²²-GLP-1(7-36)NH₂, Ile⁸-Glu²²-GLP-1(7-37)OH, Ile⁸-Glu²²-GLP-1(7-36)NH₂, Leu⁸-Asp²²-GLP-1(7-37)OH, Leu⁸-Asp²²-GLP-1(7-36)NH₂, Ile⁸-Asp²²-GLP-1(7-37)OH, Ile⁸-Asp²²-GLP-1(7-36)NH₂, Leu⁸-Lys²²-GLP-1(7-37)OH, Leu⁸-Lys²²-GLP-1(7-36)NH₂, Ile⁸-Lys²²-GLP-1(7-37)OH, Ile⁸-Lys²²-GLP-1(7-36)NH₂, Ser⁸-Glu²²-GLP-1(7-37)OH, Ser⁸-Glu²²-GLP-1(7-36)NH₂, Thr⁸-Glu²²-GLP-1(7-37)OH, Thr⁸-Glu²²-GLP-1(7-36)NH₂, Ser⁸-Asp²²-GLP-1(7-37)OH, Ser⁸-Asp²²-GLP-1(7-36)NH₂, Thr⁸-Asp²²-GLP-1(7-37)OH, Thr⁸-Asp²²-GLP-1(7-36)NH₂, Ser⁸-Lys²²-GLP-1(7-37)OH, Ser⁸-Lys²²-GLP-1(7-36)NH₂, Thr⁸-Lys²²-GLP-1(7-37)OH, Thr⁸-Lys²²-GLP-1(7-36)NH₂, Glu²²-GLP-1(7-37)OH, Glu²²-GLP-1(7-36)NH₂, Asp²²-GLP-1(7-37)OH, Asp²²-GLP-1(7-36)NH₂, Lys²²-GLP-1(7-37)OH, Lys²²-GLP-1(7-36)NH₂, Val⁸-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu²²-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-36)NH₂, Gly⁸-Glu³⁰-GLP-1(7-37)OH, Gly⁸-Glu³⁰-GLP-1(7-36)NH₂, Leu⁸-Glu³⁰-GLP-1(7-37)OH, Leu⁸-Glu³⁰-GLP-1(7-36)NH₂, Ile⁸-Glu³⁰-GLP-1(7-37)OH, lle⁸-Glu³⁰-GLP-1(7-36)NH₂, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Ser⁸-Glu³⁰-GLP-1(7-36)NH₂, Thr⁸-Glu³⁰-GLP-1(7-37)OH, Thr⁸-Glu³⁰-GLP-1(7-36)NH₂, Val⁸-His³⁷-GLP-1(7-37)OH, Val⁸-His³⁷-GLP-1(7-36)NH₂ Gly⁸-His³⁷-GLP-1(7-37)OH, Gly⁸-His³⁷-GLP-1(7-36)NH₂ Leu⁸-His³⁷-GLP-1(7-37)OH, Leu⁸-His³⁷-GLP-1(7-36)NH₂ Ile⁸-His³⁷-GLP-1(7-37)OH, Ile⁸-His³⁷-GLP-1(7-36)NH₂ Ser⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-36)NH₂ Thr⁸-His³⁷-GLP-1(7-37)OH, Thr⁸-His³⁷-GLP-1(7-36)NH₂, Lys³⁷-GLP-1(7-37)OH.

10 (original) The GLP-1 compound of Claim 1, said GLP-1 peptide having the amino acid sequence of formula 9 (SEQ ID NO:9)

Xaa₇-Xaa₈-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Xaa₁₆-Ser-Xaa₁₈-Tyr-Leu-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Xaa₃₃-Lys-Gly-Arg-Lys Formula 9 (SEQ ID NO:9)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Gly, Ala, Val, Leu, Ile, Ser, or Thr;

Xaa₁₆ is: Val, Phe, Tyr, or Trp;

Xaa₁₈ is: Ser, Tyr, Trp, Phe, Lys, Ile, Leu, or Val;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu; and

Xaa33 is: Val or Ile;

wherein said GLP-1 peptide is modified at Lys³⁷; and, provided that the GLP-1 compound does not have the sequence of GLP-1(7-37)OH, GLP-1(7-36)-NH₂, Glv⁸-GLP-1(7-37)OH, Glv⁸-GLP-1(7-36)NH₂, Val⁸-GLP-1(7-37)OH, Val⁸-GLP-1(7-36)NH₂, Leu⁸-GLP-1(7-37)OH, Leu⁸-GLP-1(7-36)NH₂, Ile⁸-GLP-1(7-37)OH, Ile⁸-GLP-1(7-36)NH₂, Ser⁸-GLP-1(7-37)OH, Ser 36)NH₂, Thr⁸-GLP-1(7-37)OH, Thr⁸-GLP-1(7-36)NH₂, Val⁸-Tyr¹²-GLP-1(7-37)OH, Val⁸-Tyr¹²-GLP-1(7-36)NH₂, Val⁸-Tyr¹⁶-GLP-1(7-37)OH, Val⁸-Tyr¹⁶-GLP-1(7-36)NH₂, Val⁸-Glu²²-GLP-1(7-37)OH, Val⁸-Glu²²-GLP-1(7-36)NH₂, Gly⁸-Glu²²-GLP-1(7-37)OH, Glv⁸-Glu²²-GLP-1(7-36)NH₂, Val⁸-Asp²²-GLP-1(7-37)OH, Val⁸-Asp²²-GLP-1(7-36)NH₂, Gly⁸-Asp²²-GLP-1(7-37)OH, Gly⁸-Asp²²-GLP-1(7-36)NH₂, Val⁸-Lys²²-GLP-1(7-37)OH, Val⁸-Lys²²-GLP-1(7-36)NH₂, Gly⁸-Lys²²-GLP-1(7-37)OH, Gly⁸-Lys²²-GLP-1(7-36)NH₂, Leu⁸-Glu²²-GLP-1(7-37)OH, Leu⁸-Glu²²-GLP-1(7-36)NH₂, Ile⁸-Glu²²-GLP-1(7-37)OH, Ile⁸-Glu²²-GLP-1(7-36)NH₂, Leu⁸-Asp²²-GLP-1(7-37)OH, Leu⁸-Asp²²-GLP-1(7-36)NH₂, Ile⁸-Asp²²-GLP-1(7-37)OH, Ile⁸-Asp²²-GLP-1(7-36)NH₂, Leu⁸-Lvs²²-GLP-1(7-37)OH, Leu⁸-Lvs²²-GLP-1(7-36)NH₂, Ile⁸-Lys²²-GLP-1(7-37)OH, Ile⁸-Lys²²-GLP-1(7-36)NH₂, Ser⁸-Glu²²-GLP-1(7-37)OH, Ser⁸-Glu²²-GLP-1(7-36)NH₂. Thr⁸-Glu²²-GLP-1(7-37)OH. Thr⁸-Glu²²-GLP-1(7-36)NH₂, Ser⁸-Asp²²-GLP-1(7-37)OH, Ser⁸-Asp²²-GLP-1(7-36)NH₂, Thr⁸-Asp²²-GLP-1(7-37)OH, Thr⁸-Asp²²-GLP-1(7-36)NH₂, Ser⁸-Lvs²²-GLP-1(7-37)OH, Ser⁸-Lvs²²-GLP-1(7-36)NH₂, Thr⁸-Lys²²-GLP-1(7-37)OH, Thr⁸-Lys²²-GLP-1(7-36)NH₂, Glu²²-GLP-1(7-37)OH, Glu²²-GLP-1(7-36)NH₂, Asp²²-GLP-1(7-37)OH, Asp²²-GLP-1(7-37)OH,

36)NH₂, Lys²²-GLP-1(7-37)OH, Lys²²-GLP-1(7-36)NH₂, Val⁸-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu²²-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-36)NH₂, Gly⁸-Glu³⁰-GLP-1(7-36)NH₂, Leu⁸-Glu³⁰-GLP-1(7-37)OH, Leu⁸-Glu³⁰-GLP-1(7-36)NH₂, Ile⁸-Glu³⁰-GLP-1(7-37)OH, Ile⁸-Glu³⁰-GLP-1(7-36)NH₂, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Ser⁸-Glu³⁰-GLP-1(7-36)NH₂, Thr⁸-Glu³⁰-GLP-1(7-37)OH, Thr⁸-Glu³⁰-GLP-1(7-36)NH₂, Val⁸-His³⁷-GLP-1(7-37)OH, Val⁸-His³⁷-GLP-1(7-36)NH₂, Gly⁸-His³⁷-GLP-1(7-37)OH, Gly⁸-His³⁷-GLP-1(7-36)NH₂, Leu⁸-His³⁷-GLP-1(7-37)OH, Leu⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-37)OH, Thr⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-36)NH₂, Thr⁸-His³⁷-GLP-1(7-37)OH, Thr⁸-His³⁷-GLP-1(7-36)NH₂, Lys³⁷-GLP-1(7-37)OH.

 (original) The GLP-1 compound of Claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 10 (SEQ ID NO:10)

 $Xaa_{7}-Xaa_{8}-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Xaa_{34}-Gly-Xaa_{36}-Xaa_{37}-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}$

Formula 10 (SEQ ID NO:10)

wherein:

Xaa $_7$ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa20 is: Leu, Phe, Tyr, or Trp;

Xaa₂₂ is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu;

Xaa₃₃ is: Val or Ile;

Xaa34 is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, Ser, or Lys;

Xaa₃₈ is: Ser, Pro, His, Lys, NH₂;

Xaa₃₉ is: Ser, Arg, Thr, Trp, Lys, NH₂, or is absent;

Xaa₄₀ is: Ser, Gly, Lys, NH₂, or is absent;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, NH₂, or is absent;

Xaa₄₂ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa44 is: Pro, Ala, Arg, Lys, His, NH2, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, NH₂, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, NH₂, or is absent; and

Xaa₄₈ is: Lys, NH₂, or is absent;

wherein said extended GLP-1 peptide is modified at a single Lys which occurs at one of Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈; and provided that if Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent and further provided that the GLP-1 peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₆: Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH₂.

 (original) The GLP-1 compound of Claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 11 (SEQ ID NO:11)

Xaa₇-Xaa₈-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Xaa₁₆-Ser-Ser-Tyr-Lys-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Xaa₃₃-Xaa₃₄-Gly-Xaa₃₆-Xaa₃₇-Xaa₃₈-Xaa₃₉-Xaa₄₀-Xaa₄₁-Xaa₄₂-Xaa₄₃-Xaa₄₄-Xaa₄₅-Xaa₄₆-Xaa₄₇-Xaa₄₈

Formula 11 (SEQ ID NO:11)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa33 is: Val or Ile;

Xaa34 is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, Ser, or Lys;

Xaa₃₈ is: Ser, Pro, His, Lys, NH₂, or is absent;

Xaa₃₉ is: Ser, Arg, Thr, Trp, Lys, NH₂, or is absent;

Xaa₄₀ is: Ser, Gly, Lys, NH₂, or is absent;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, NH₂, or is absent;

Xaa₄₂ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa44 is: Pro, Ala, Arg, Lys, His, NH2, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, NH₂, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, NH₂, or is absent; and

Xaa₄₈ is: Lys, NH₂, or is absent;

wherein said extended GLP-1 peptide is modified at a single Lys which occurs at one of Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈; and provided that if Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent and further provided that the GLP-1 peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₆: Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Pro-Ser-NH₂.

 (original) The GLP-1 compound of Claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 12 (SEQ ID NO:12)

Xaa₇-Xaa₈-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Lys-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Xaa₃₃-Lys-Gly-Gly-Pro-Xaa₃₈-Xaa₃₉-Xaa₄₀-Xaa₄₁-Xaa₄₂-Xaa₄₃-Xaa₄₄-Xaa₄₅-Xaa₄₆-Xaa₄₇- Xaa₄₈
Formula 12 (SEQ ID NO:12)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Gly, Val, Leu, Ile, Ser, or Thr;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu;

Xaa₃₃ is: Val or Ile;

Xaa₃₈ is: Ser, Pro, His, Lys, NH₂, or is absent;

Xaa₃₉ is: Ser, Arg, Thr, Trp, Lys, NH₂, or is absent;

Xaa₄₀ is: Ser, Gly, Lys, NH₂, or is absent;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, NH₂, or is absent;

Xaa42 is: Pro, Ala, Lys, NH2, or is absent;

Xaa₄₃ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, NH₂, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, NH₂, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, NH₂, or is absent; and

Xaa₄₈ is: Lys, NH₂, or is absent;

wherein said extended GLP-1 peptide is modified at a single Lys which occurs at one of Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈; and provided that if Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent.

 (original) The GLP-1 compound of Claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 13 (SEQ ID NO:13)

 $Xaa_{7}-Xaa_{8}-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Xaa_{34}-Gly-Xaa_{36}-Xaa_{37}-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}-Xaa_{49}-Xaa_{50}-Xaa_{51}$

Formula 13 (SEQ ID NO:13)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Docket No. X-15642

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu

Xaa₃₃ is: Val or Ile;

Xaa34 is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, or Ser;

Xaa₃₈ is: Ser, Pro, or His;

Xaa₃₉ is: Ser, Arg, Thr, Trp, or Lys;

Xaa₄₀ is: Ser or Gly;

Xaa41 is: Ala, Asp, Arg, Glu, Lys, or Gly;

Xaa₄₂ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, NH₂, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, NH₂, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, NH₂, or is absent; and

Xaa₄₈ is: Lys, NH₂, or is absent;

Xaa₄₉ is: Pro, His, Lys, NH₂, or is absent;

Xaa₅₀ is: Ser, His, Lys, NH₂, or is absent; and

Xaa₅₁ is: Lys, NH₂, or is absent;

wherein said extended GLP-1 peptide is modified at a single Lys which occurs at one of Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, Xaa₅₀, or Xaa₅₁; and provided that if Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, or Xaa₅₀, is absent each amino acid downstream is absent.

 (original) The GLP-1 compound of Claim 1, wherein said GLP-1 peptide is an extended GLP-1 peptide having the amino acid sequence of formula 14 (SEQ ID NO:14)

 $\label{lis-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Gly-Pro-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}-Xaa_{49}-Xaa_{50}-Xaa_{51}$

Formula 14 (SEQ ID NO:14)

Wherein:

Xaa₃₈ is: Ser, Pro, or His;

Xaa₃₉ is: Ser, Arg, Thr, Trp, or Lys;

Xaa₄₀ is: Ser or Gly;

Xaa41 is: Ala, Asp, Arg, Glu, Lys, or Gly;

Xaa₄₂ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa44 is: Pro, Ala, Arg, Lys, His, NH2, or is absent;

Xaa45 is: Ser, His, Pro, Lys, Arg, NH2, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, NH₂, or is absent; and

Xaa₄₈ is: Lys, NH₂, or is absent;

Xaa₄₉ is: Pro, His, Lys, NH₂, or is absent;

Xaa₅₀ is: Ser, His, Lys, NH₂, or is absent; and

Xaa₅₁ is: Lys, NH₂, or is absent;

wherein said extended GLP-1 peptide is modified at a single Lys which occurs at one of Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, Xaa₅₀, or Xaa₅₁; and provided that if Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, or Xaa₅₀, is absent each amino acid downstream is absent.

- 16. (currently amended) The GLP-1 compound of any of claims 1-15 Claim 1 wherein said reactive group is an activated disulfide bond group.
- 17. (currently amended) The GLP-1 compound of any of claims 1-15 Claim 1 wherein said reactive group is an S-sulfonate.

18. (original) A GLP-1 compound comprising a GLP-1 peptide modified with a reactive group that reacts with an amino group, a hydroxyl group, or a thiol group on a blood component to form a covalent bond, wherein said reactive group is selected from the group consisting of a succinimidyl group and a maleimido group, said GLP-1 peptide having the amino acid sequence of formula 15 (SEQ ID NO:15)

 $Xaa_{7}-Xaa_{8}-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Lys-Gly-Arg-Xaa_{37}$

Formula 15 (SEQ ID NO:15)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa₂₂ is: Gly, Glu, Asp, Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu

Xaa33 is: Val, or Ile; and

Xaa₃₇ is: Gly, His, Lys, or NH₂, or is absent,

provided that the GLP-1 compound does not have the sequence of GLP-1(7-37)OH, GLP-1(7-36)-NH₂, Gly⁸-GLP-1(7-37)OH, Gly⁸-GLP-1(7-36)NH₂, Val⁸-GLP-1(7-36)NH₂, Ile⁸-GLP-1(7-36)NH₂, Leu⁸-GLP-1(7-37)OH, Leu⁸-GLP-1(7-36)NH₂, Ile⁸-GLP-1(7-37)OH, Ile⁸-GLP-1(7-36)NH₂, Ser⁸-GLP-1(7-37)OH, Ser⁸-GLP-1(7-36)NH₂, Thr⁸-GLP-1(7-37)OH, Thr⁸-GLP-1(7-36)NH₂, Val⁸-Tyr¹²-GLP-1(7-37)OH, Val⁸-Tyr¹²-GLP-1(7-36)NH₂, Val⁸-Tyr¹⁶-GLP-1(7-37)OH, Val⁸-Tyr¹⁶-GLP-1(7-36)NH₂, Val⁸-Glu²²-GLP-1(7-37)OH, Val⁸-Glu²²-GLP-1(7-37)OH, Val⁸-Glu²²-GLP-1(7-36)NH₂, Gly⁸-Glu²²-GLP-1(7-36)NH₂, Val⁸-Asp²²-GLP-1(7-36)NH₂, Val⁸-Asp²²-GLP-1(7-36)

Lys²²-GLP-1(7-37)OH, Val⁸-Lys²²-GLP-1(7-36)NH₂, Gly⁸-Lys²²-GLP-1(7-37)OH, Glv⁸-Lvs²²-GLP-1(7-36)NH₂, Leu⁸-Glu²²-GLP-1(7-37)OH, Leu⁸-Glu²²-GLP-1(7-36)NH₂, Ile⁸-Glu²²-GLP-1(7-37)OH, Ile⁸-Glu²²-GLP-1(7-36)NH₂, Leu⁸-Asp²²-GLP-1(7-37)OH, Leu⁸-Asp²²-GLP-1(7-36)NH₂, Ile⁸-Asp²²-GLP-1(7-37)OH, Ile⁸-Asp²²-GLP-1(7-36)NH₂, Leu⁸-Lys²²-GLP-1(7-37)OH, Leu⁸-Lys²²-GLP-1(7-36)NH₂, Ile⁸-Lvs²²-GLP-1(7-37)OH, Ile⁸-Lvs²²-GLP-1(7-36)NH₂, Ser⁸-Glu²²-GLP-1(7-37)OH, Ser⁸-Glu²²-GLP-1(7-36)NH₂, Thr⁸-Glu²²-GLP-1(7-37)OH, Thr⁸-Glu²²-GLP-1(7-36)NH₂, Ser⁸-Asp²²-GLP-1(7-37)OH, Ser⁸-Asp²²-GLP-1(7-36)NH₂, Thr⁸-Asp²²-GLP-1(7-37)OH, Thr⁸-Asp²²-GLP-1(7-36)NH₂, Ser⁸-Lys²²-GLP-1(7-37)OH, Ser⁸-Lys²²- $GLP-1(7-36)NH_2,\ Thr^8-Lys^{22}-GLP-1(7-37)OH,\ Thr^8-Lys^{22}-GLP-1(7-36)NH_2,\ Glu^{22}-GLP-1(7-36)NH_2,\ Glu^{22}-GLP-1(7-3$ GLP-1(7-37)OH, Glu²²-GLP-1(7-36)NH₂, Asp²²-GLP-1(7-37)OH, Asp²²-GLP-1(7-37)OH, 36)NH₂, Lys²²-GLP-1(7-37)OH, Lys²²-GLP-1(7-36)NH₂, Val⁸-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu²²-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-36)NH₂, Gly⁸-Glu³⁰-GLP-1(7-37)OH, Gly⁸-Glu³⁰-GLP-1(7-36)NH₂, Leu⁸-Glu³⁰-GLP-1(7-37)OH, Leu⁸-Glu³⁰-GLP-1(7-36)NH₂, Ile⁸-Glu³⁰-GLP-1(7-37)OH, lle⁸-Glu³⁰-GLP-1(7-36)NH₂, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Ser⁸-Glu³⁰-GLP-1(7-36)NH₂, Thr⁸-Glu³⁰-GLP-1(7-37)OH, Thr⁸-Glu³⁰-GLP-1(7-36)NH₂, Val⁸-His³⁷-GLP-1(7-37)OH, Val⁸-His³⁷-GLP-1(7-36)NH₂ Gly⁸-His³⁷-GLP-1(7-37)OH, Gly⁸-His³⁷-GLP-1(7-36)NH₂ Leu⁸-His³⁷-GLP-1(7-37)OH, Leu⁸-His³⁷-GLP-1(7-36)NH₂ Ile⁸-His³⁷-GLP-1(7-37)OH, Ile⁸-His³⁷-GLP-1(7-36)NH₂ Ser⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-36)NH₂, Thr⁸-His³⁷-GLP-1(7-37)OH, Thr⁸-His³⁷-GLP-1(7-36)NH₂, Lys³⁷-GLP-1(7-37)OH.

- 19. (original) The GLP-1 compound of Claim 18, wherein Xaa₃₇ of said GLP-1 peptide is Lys and said GLP-1 peptide is modified at Xaa₃₇.
- 20. (original) A GLP-1 compound comprising an extended GLP-1 peptide modified with a reactive group that reacts with an amino group, a hydroxyl group, or a thiol group on a blood component to form a covalent bond, wherein said reactive group is selected from the group consisting of a succinimidal group and a maleimido group, said extended GLP-1 peptide having the amino acid sequence of formula 10 (SEQ ID NO:10)

 Xaa_7-Xaa_8 -Glu-Gly-Thr- Xaa_{12} -Thr-Ser-Asp- Xaa_{16} -Ser- Xaa_{18} - Xaa_{19} - Xaa_{20} -Glu- Xaa_{22} -Gln-Ala- Xaa_{25} -Lys- Xaa_{27} -Phe-Ile- Xaa_{30} -Trp-Leu- Xaa_{33} - Xaa_{34} -Gly-

 $Xaa_{36}-Xaa_{37}-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}$

Formula 10 (SEQ ID NO:10)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa30 is: Ala or Glu

Xaa₃₃ is: Val or Ile;

Xaa34 is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, Ser, or Lys;

Xaa₃₈ is: Ser, Pro, His, or Lys;

Xaa39 is: Ser, Arg, Thr, Trp, Lys, NH2, or is absent;

Xaa₄₀ is: Ser, Gly, Lys, NH₂, or is absent;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, Lys, NH₂, or is absent;

Xaa₄₂ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa44 is: Pro, Ala, Arg, Lys, His, NH2, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, NH₂ or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, NH₂ or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, NH₂ or is absent; and

Xaa₄₈ is Lys, NH₂, or is absent;

provided that if Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent and further provided that the GLP-1

peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₆: Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH₂.

- 21. (original) The GLP-1 compound of Claim 20, wherein said GLP-1 peptide is modified at a Lys, and said Lys occurs at either Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈.
- 22. (original) A GLP-1 compound comprising an extended GLP-1 peptide modified with a reactive group that reacts with an amino group, a hydroxyl group, or a thiol group on a blood component to form a covalent bond, wherein said reactive group is selected from the group consisting of a succinimidal group and a maleimido group, said extended GLP-1 peptide having the amino acid sequence of formula 13 (SEQ ID NO:13)

 $Xaa_{7}-Xaa_{8}-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Xaa_{34}-Gly-Xaa_{36}-Xaa_{37}-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}-Xaa_{49}-Xaa_{50}-Xaa_{51}$

Formula 13 (SEQ ID NO:13)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu

Xaa₃₃ is: Val or Ile;

Xaa₃₄ is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, or Ser;

Xaa₃₈ is: Ser, Pro, or His;

Xaa39 is: Ser, Arg, Thr, Trp, or Lys;

Xaa₄₀ is: Ser or Gly;

Xaa41 is: Ala, Asp, Arg, Glu, Lys, or Gly;

Xaa₄₂ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, Lys, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, NH₂, or is absent;

Xaa45 is: Ser, His, Pro, Lys, Arg, NH2, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, NH₂, or is absent; and

Xaa₄₈ is: Lys, NH₂, or is absent;

Xaa₄₉ is: Pro, His, Lys, NH₂, or is absent;

Xaa50 is: Ser, His, Lys, NH2, or is absent; and

Xaa₅₁ is: Lys, NH₂, or is absent;

wherein said extended GLP-1 peptide is modified at a single Lys which occurs at one of Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, Xaa₅₀, or Xaa₅₁; and provided that if Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, or Xaa₅₀, is absent each amino acid downstream is absent.

23. (original) The GLP-1 compound of Claim 22, wherein said GLP-1 peptide is modified at a Lys, and said Lys occurs at either Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, Xaa₅₀ or Xaa₅₁.

24-25. (cancelled)

26. (original) A GLP-1 compound comprising a GLP-1 peptide modified with a reactive group that reacts with a thiol group on a blood component to form a covalent bond, wherein said reactive group is a succinimidal group, said GLP-1 peptide having the amino acid sequence of formula 1 (SEQ ID NO:1)

 $Xaa_{7}-Xaa_{8}-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Lys-Gly-Arg-Xaa_{37}$

Formula 1 (SEQ ID NO:1)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa20 is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu;

Xaa33 is: Val, or Ile; and

Xaa₃₇ is: L-Cys, D-Cys, homocysteine, or penicillamine;

wherein said GLP-1 peptide is modified at Xaa₃₇; and provided that the GLP-1 compound does not have the sequence of GLP-1(7-37)OH, GLP-1(7-36)-NH₂, Gly⁸-GLP-1(7-37)OH, Gly⁸-GLP-1(7-36)NH₂, Val⁸-GLP-1(7-37)OH, Val⁸-GLP-1(7-36)NH₂, Leu⁸-GLP-1(7-37)OH, Leu⁸-GLP-1(7-36)NH₂, Ile⁸-GLP-1(7-37)OH, Ile⁸-GLP-1(7-36)NH₂, Ser⁸-GLP-1(7-37)OH, Ser⁸-SLP-1(7-37)OH, Ser⁸-SLP-1(7-37)OH, Ser⁸-SLP-1(7-37)OH, Ser 36)NH₂, Thr⁸-GLP-1(7-37)OH, Thr⁸-GLP-1(7-36)NH₂, Val⁸-Tyr¹²-GLP-1(7-37)OH, Val8-Tyr12-GLP-1(7-36)NH₂, Val8-Tyr16-GLP-1(7-37)OH, Val8-Tyr16-GLP-36)NH₂, Val⁸-Glu²²-GLP-1(7-37)OH, Val⁸-Glu²²-GLP-1(7-36)NH₂, Gly⁸-Glu²²-GLP-1(7-37)OH, Glv⁸-Glu²²-GLP-1(7-36)NH₂, Val⁸-Asp²²-GLP-1(7-37)OH, Val⁸-Asp²²-GLP-1(7-36)NH₂, Glv⁸-Asp²²-GLP-1(7-37)OH, Glv⁸-Asp²²-GLP-1(7-36)NH₂, Val⁸-Lys²²-GLP-1(7-37)OH, Val⁸-Lys²²-GLP-1(7-36)NH₂, Gly⁸-Lys²²-GLP-1(7-37)OH, Gly⁸-Lys²²-GLP-1(7-36)NH₂, Leu⁸-Glu²²-GLP-1(7-37)OH, Leu⁸-Glu²²-GLP-1(7-36)NH₂, Ile⁸-Glu²²-GLP-1(7-37)OH, Ile⁸-Glu²²-GLP-1(7-36)NH₂, Leu⁸-Asp²²-GLP-1(7-37)OH, Leu⁸-Asp²²-GLP-1(7-36)NH₂, Ile⁸-Asp²²-GLP-1(7-37)OH, Ile⁸-Asp²²-GLP-1(7-36)NH₂, Leu⁸-Lys²²-GLP-1(7-37)OH, Leu⁸-Lys²²-GLP-1(7-36)NH₂, Ile⁸-Lvs²²-GLP-1(7-37)OH, Ile⁸-Lvs²²-GLP-1(7-36)NH₂, Ser⁸-Glu²²-GLP-1(7-37)OH, Ser⁸-Glu²²-GLP-1(7-36)NH₂, Thr⁸-Glu²²-GLP-1(7-37)OH, Thr⁸-Glu²²-GLP-1(736)NH₂, Ser⁸-Asp²²-GLP-1(7-37)OH, Ser⁸-Asp²²-GLP-1(7-36)NH₂, Thr⁸-Asp²²-GLP-1(7-37)OH, Thr⁸-Asp²²-GLP-1(7-36)NH₂, Ser⁸-Lys²²-GLP-1(7-37)OH, Ser⁸-Lys²²-GLP-1(7-36)NH₂, Thr⁸-Lys²²-GLP-1(7-37)OH, Thr⁸-Lys²²-GLP-1(7-36)NH₂, Glu²²-GLP-1(7-37)OH, Glu²²-GLP-1(7-36)NH₂, Asp²²-GLP-1(7-37)OH, Asp²²-GLP-1(7-36)NH₂, Lys²²-GLP-1(7-37)OH, Lys²²-GLP-1(7-36)NH₂, Val⁸-Ala²⁷-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-37)OH, Val⁸-Glu³⁰-GLP-1(7-36)NH₂, Leu⁸-Glu³⁰-GLP-1(7-37)OH, Leu⁸-Glu³⁰-GLP-1(7-37)OH, Leu⁸-Glu³⁰-GLP-1(7-37)OH, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Ile⁸-Glu³⁰-GLP-1(7-36)NH₂, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Ser⁸-Glu³⁰-GLP-1(7-37)OH, Clp⁸-His³⁷-GLP-1(7-37)OH, Clp⁸-His³⁷-GLP-1(7-36)NH₂, Val⁸-His³⁷-GLP-1(7-36)NH₂, Ile⁸-His³⁷-GLP-1(7-36)NH₂, Ile⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-36)NH₂, Thr⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-37)OH, Ser⁸-His³⁷-GLP-1(7-36)NH₂, Thr⁸-His³⁷-GLP-1(7-37)OH, Thr⁸-His³⁷-GLP-1(7-36)NH₂.

27. (original) A GLP-1 compound comprising an extended GLP-1 peptide modified with a reactive group that reacts with a thiol group on a blood component to form a covalent bond, wherein said reactive group is a succinimidal group, said extended GLP-1 peptide having the amino acid sequence of formula 3 (SEQ ID NO:3)

 $Xaa_{7}-Xaa_{8}-Glu-Gly-Thr-Xaa_{12}-Thr-Ser-Asp-Xaa_{16}-Ser-Xaa_{18}-Xaa_{19}-Xaa_{20}-Glu-Xaa_{22}-Gln-Ala-Xaa_{25}-Lys-Xaa_{27}-Phe-Ile-Xaa_{30}-Trp-Leu-Xaa_{33}-Xaa_{34}-Gly-Xaa_{36}-Xaa_{37}-Xaa_{38}-Xaa_{39}-Xaa_{40}-Xaa_{41}-Xaa_{42}-Xaa_{43}-Xaa_{44}-Xaa_{45}-Xaa_{46}-Xaa_{47}-Xaa_{48}$

Formula 3 (SEQ ID NO:3)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa20 is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa25 is: Ala, Val, Ile, or Leu;

Xaa27 is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu

Xaa₃₃ is: Val or Ile;

Xaa₃₄ is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, Ser, L-Cys, D-Cys, homocysteine, or penicillamine;

Xaa₃₈ is: Ser, Pro, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂;

Xaa₃₉ is: Ser, Arg, Thr, Trp, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₀ is: Ser, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₁ is: Ala, Asp, Arg, Glu, Lys, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₂ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₄ is: Pro, Ala, Arg, Lys, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₅ is: Ser, His, Pro, Lys, Arg, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₆ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₇ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; and

Xaa₄₈ is: L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
wherein said extended GLP-1 peptide contains a single L-Cys, D-Cys, homocysteine, or penicillamine which occurs at one of Xaa₃₇, Xaa₃₈, Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, or Xaa₄₈, said GLP-1 is modified at said single L-Cys, D-Cys, homocysteine, or penicillamine; and provided that if Xaa₃₉, Xaa₄₀, Xaa₄₁, Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, or Xaa₄₇ is absent each amino acid downstream is absent and further provided that the GLP-1 peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₆: Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH₂.

28. (original) A GLP-1 compound comprising an extended GLP-1 peptide modified with a reactive group that reacts with a thiol group on a blood component to form a covalent bond, wherein said reactive group is a succinimidal group, said extended GLP-1 peptide having the amino acid sequence of formula 6 (SEQ ID NO:6)

Xaa₇-Xaa₈-Glu-Gly-Thr-Xaa₁₂-Thr-Ser-Asp-Xaa₁₆-Ser-Xaa₁₈-Xaa₁₉-Xaa₂₀-Glu-Xaa₂₂-Gln-Ala-Xaa₂₅-Lys-Xaa₂₇-Phe-Ile-Xaa₃₀-Trp-Leu-Xaa₃₃-Xaa₃₄-Gly-Xaa₃₆-Xaa₃₇-Xaa₃₈-Xaa₃₉-Xaa₄₀-Xaa₄₁-Xaa₄₂-Xaa₄₃-Xaa₄₄-Xaa₄₅-Xaa₄₆-Xaa₄₇-Xaa₄₈-Xaa₄₉-Xaa₅₀-Xaa₅₁

Formula 6 (SEQ ID NO:6)

wherein:

Xaa₇ is: L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, β -hydroxy-histidine, homohistidine, α -fluoromethyl-histidine, or α -methyl-histidine;

Xaa₈ is: Ala, Gly, Val, Leu, Ile, Ser, or Thr;

Xaa₁₂ is: Phe, Trp, or Tyr;

Xaa₁₆ is: Val, Trp, Ile, Leu, Phe, or Tyr;

Xaa₁₈ is: Ser, Trp, Tyr, Phe, Lys, Ile, Leu, Val;

Xaa₁₉ is: Tyr, Trp, or Phe;

Xaa₂₀ is: Leu, Phe, Tyr, or Trp;

Xaa22 is: Gly, Glu, Asp, or Lys;

Xaa₂₅ is: Ala, Val, Ile, or Leu;

Xaa₂₇ is: Glu, Ile, or Ala;

Xaa₃₀ is: Ala or Glu

Xaa₃₃ is: Val or Ile;

Xaa₃₄ is: Lys, Asp, Arg, or Glu;

Xaa₃₆ is: Gly, Pro, or Arg;

Xaa₃₇ is: Gly, Pro, or Ser;

Xaa₃₈ is: Ser, Pro, or His;

Xaa₃₉ is: Ser, Arg, Thr, Trp, or Lys;

Xaa₄₀ is: Ser or Gly;

Xaa41 is: Ala, Asp, Arg, Glu, Lys, or Gly;

Xaa₄₂ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

Xaa₄₃ is: Pro, Ala, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;

- Xaa₄₄ is: Pro, Ala, Arg, Lys, His, NH₂, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₅ is: Ser, His, Pro, Lys, Arg, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent:
- Xaa₄₆ is: His, Ser, Arg, Lys, Pro, Gly, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₇ is: His, Ser, Arg, Lys, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₈ is: Gly, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₄₉ is: Pro, His, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent;
- Xaa₅₀ is: Ser, His, Ser-NH₂, His-NH₂, L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; and
- Xaa₅₁ is: L-Cys, D-Cys, homocysteine, penicillamine, NH₂, or is absent; wherein said extended GLP-1 peptide contains a single L-Cys, D-Cys, homocysteine, or penicillamine which occurs at one of Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, Xaa₅₀, or Xaa₅₁ said GLP-1 is modified at said single L-Cys, D-Cys, homocysteine, or penicillamine; and provided that if Xaa₄₂, Xaa₄₃, Xaa₄₄, Xaa₄₅, Xaa₄₆, Xaa₄₇, Xaa₄₈, Xaa₄₉, or Xaa₅₀, is absent each amino acid downstream is absent and further provided that if Xaa₃₆ is Arg and Xaa₃₇ is Gly or Ser, the GLP-1 peptide does not have the following C-terminal amino acid extension beginning at Xaa₃₈: Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH₂.
- 29. (currently amended) The GLP-1 compound of any of Claims 2, 3, 9, 10, 18, 19, or 26 Claim 2 provided that the GLP-1 compound does not differ from GLP-1(7-37)OH or GLP-1(7-36)NH₂ by more than 5 amino acids.
- 30. The GLP-1 compound of Claim 29 provided that the GLP-1 compound does not differ from GLP-1(7-37)OH or GLP-1(7-36)NH₂ by more than 4 amino acids.
- 31. The GLP-1 compound of Claim 30 provided that the GLP-1 compound does not differ from GLP-1(7-37)OH or GLP-1(7-36)NH₂ by more than 3 amino acids.
- 32. (currently amended) The GLP-1 compound of any of Claims 4 8, 11-15, 20-23, 27 or 28 Claim 7 wherein the first 31 amino acids of the peptide do not differ from GLP-1(7-37) by more than 6 amino acids.

- 33. The GLP-1 compound of Claim 32 wherein the first 31 amino acids of the peptide do not differ from GLP-1(7-37) by more than 5 amino acids.
- 34. The GLP-1 compound of Claim 33 wherein the first 31 amino acids of the peptide do not differ from GLP-1(7-37) by more than 4 amino acids.
- 35. (currently amended) The GLP-1 compound of Claim 33 34 wherein the first 31 amino acids of the peptide do not differ from GLP-1(7-37) by more than 3 amino acids.
- 36. (currently amended) A conjugate comprising a GLP-1 compound of any of claims 1 through 35 Claim 1 covalently bonded ex vivo to a blood component.
- 37. (currently amended) A conjugate comprising a GLP-1 compound of any of claims 1 through 35 Claim 1 covalently bonded ex vivo to a blood serum albumin.
- 38. (currently amended) A method for extending the in vivo half-life of a GLP-1 compound as claimed in any of claims 1 through 35 Claim 1, comprising reacting said reactive group of said pharmaceutical composition with a thiol group on a blood component in vivo.
- 39. A method for extending the in vivo half-life of a GLP-1 compound as claimed in any of claims 1 through 35 Claim 1, comprising reacting said reactive group of said pharmaceutical composition with a thiol group on blood serum albumin in vivo.
- 40. A method of stimulating the GLP-1 receptor in a subject in need of such stimulation, said method comprising the step of administering to the subject an effective amount of the GLP-1 compound of any one of Claims 1 through 35 Claim 1.
- 41. The method of Claim 40 wherein the subject is being treated for non-insulin dependent diabetes.

Docket No. X-15642

- 42. The method of Claim 40 wherein the subject is being treated prophylactically for non insulin dependent diabetes.
- 43. The method of Claim 40 wherein the subject is being treated for obesity.
- 44. The method of Claim 40 wherein the subject is being treated for stroke, myocardial infarction, stroke, stress-induced hyperglycemia, or irritable bowel syndrome.

45-47. (cancelled)