# HIGH-BRIGHTNESS INTERBAND CASCADE LASERS



Conference on Lasers and Electro-Optics – San Jose CA (12 May 2015)

Jerry R. Meyer, Chadwick L. Canedy, Chul Soo Kim, William W. Bewley, Charles D. Merritt, & Igor Vurgaftman

Naval Research Lab, Washington DC 20375 [(202)767-3276; mwir\_laser@nrl.navy.mil]

#### Mijin Kim

Sotera Defense Solutions, Crofton MD 21114

Also thanks to: Gerard Wysocki Group (Princeton), Paul Ewart Group (Oxford), Leonid Glebov Group (CREOL), Siamak Forouhar Group (JPL)



## III-V SEMICONDUCTOR LASER FAMILIES



Interband mid-IR requires GaSb-Based: Great flexibility, but other issues...



## WHY IS LASING @ LONG $\lambda$ SO #%\$ DIFFICULT?

 $j_{\rm th} \propto \gamma_3$ 

## Cryogenic InAs mid-IR diode in 1963, but no RT cw for over 40 years - Why?

- Stubborn materials: GaSb growth & fab immature & intrinsically harder
- *High loss:* Free carrier absorption scales as  $\lambda^2$  to  $\lambda^3$
- Short upper-state lifetime: Rapid Auger decay of upper lasing level

 $10^{-25}$ 



 $\lambda_{g}$  (µm)
Lasing is literally orders of magnitude more challenging @  $\lambda$  > 3 µm than  $\lambda$  = 1 µm!

2 Alternatives: (1) Abandon the diode (QCL); (2) Improve the diode (ICL)



# **SOLUTION #1:** ABANDON THE DIODE! THE QUANTUM CASCADE LASER (QCL)

Rather than employing e-h recombination as in a conventional diode laser

QCL exploits optical transitions between *electron* subbands in a QW - No holes, so not a diode

 Very different regime from diodes — Upper lasing level lifetime ≈ 1 ps rather than ≈ 1 ns

• Tune  $\lambda$  with QW width (2.6 - 700  $\mu$ m!)

With cascade staircase,
 1 electron in can yield
 30-40 photons out!

Energy Gap

WB

Holes

CB

QW Width

CB

CB



Electrons ===>

Advantages: (1) High cw output power;

(2) Broad spectral coverage (3  $\mu$ m to THz!)

Disadvantages: (1) High threshold drive power;

(2) More challenging @  $\lambda$  < 4  $\mu$ m

Any alternative?



## HISTORICAL BACKGROUND:

# TYPE-I vs. TYPE-II CONVENTIONAL DIODES

Type-I InAsSb/InAlAsSb QW *(MIT-LL,c.1993)* 



#### Advantage:

(1) Strong wavefunction overlap (high gain)

#### **Disadvantages**:

- (1) Poor electrical confinement
- (2) Limited wavelength range
- (3) Short Auger lifetime

Type-II InAs/GaInSb Superlattice (HRL, 1994)



#### Disadvantage:

(1) Spatially indirect (but good gain for thin QWs)

#### Advantages:

- (1) Excellent electrical confinement
- (2) Access to much longer  $\lambda$
- (3) Suppressed Auger



# LOWER THRESHOLDS VIA AUGER SUPPRESSION

[Vurgaftman et al., JSTQE 19, 1200120 (2013)]



Consistent  $\gamma_3$  for > 60 ICL wafers with 3, 5, 7, & 10 stages, numerous designs



## TYPE-II SUPERLATTICE vs. TYPE-II QWs

#### Type-II Superlattice



So much wf penetration that  $m_n^*$  nearly isotropic (3D)



#### Advantages:

(1) Excellent electrical confinement

(2) Longer  $\lambda$ 

#### Disadvantage:

3D Density-of-States



3-Layer Type-II (NRL unp., *c*. 1994)



AISb is barrier for both e & h – Now really 2D



#### Advantage:

2D DOS for electrons & holes

#### Disadvantage:

Reduced wavefunction overlap



## TYPE-II SUPERLATTICE vs. TYPE-II QW

#### Type-II Superlattice



So much wf penetration that  $m_n^*$  nearly isotropic (3D)



#### Advantages:

(1) Excellent electrical confinement

(2) Longer  $\lambda$ 

#### Disadvantage:

3D Density-of-States



3-Layer Type-II (NRL unp., *c*. 1994)



AISb is barrier for both e & h – Now really 2D



#### Advantage:

2D DOS for electrons & holes

#### Disadvantage:

Reduced wavefunction overlap

#### **Solution:**

The Type-II "W" Laser



## TYPE-II "W" LASER



#### **ADVANTAGES:**

- (1) Strong wavefunction overlapFor high gain
- (2) 2D DOS for both electrons & holes
- (3) Excellent electrical confinement
- (4) Arbitrarily-long wavelength
- (5) Auger suppression

First interband mid-IR laser to operate at room temperature (Pulsed optical pumping, 1996)

Meyer et al. APL 67,757 (1995) U.S. Patent # 5,793,787



# CW T<sub>max</sub> TIMELINE (TO 2005)



Nonetheless, by 2005 prospects for mid-IR diodes operating cw @ RT seemed remote - But another card to play...



### THE INTERBAND CASCADE LASER

Hybrid of conventional diode (*Interband* active transitions) & QCL (*Cascaded* stages)



1st **Proposed**: R. Q. Yang (1994)

**Design Improvements:** Meyer & Vurgaftman (1996)

Distance (Å)

1st Experimental Demo: U. Houston & Sandia (1997)

Further Development: ARL, Maxion, JPL, U. Oklahoma, U. Würzburg, Nanoplus, Wroclaw U.

1<sup>st</sup> NRL ICL growth: 2005

Type-I ICLs: Proposed NRL (1996), Demo Sandia (1998), 3 Growths NRL (2011), Improved Designs NRL (2011), Demos: SUNY (2013), NRC Canada & Oklahoma (2014)



### FULL LAYERED STRUCTURE

Active ICL stages surrounded by separate confinement & optical cladding layers, each separated by transition regions

- Lattice-Matching: Each region carefully strain-compensated to minimize dislocations
- Full structure: 7–8 μm thick &
   > 3000 layers (takes 7-8 hours to grow)
- Yield: Surprisingly high Most NRL ICL wafers produce high-quality lasers





# 3 DISTINCT WAYS TO PROVIDE CARRIERS FOR POPULATION INVERSION



ICL uniquely generates holes and electrons internally - How?



# TYPE-II BAND ALIGNMENT @ InAs/GaSb INTERFACE



External bias applied to small-gap type-II InAs/GaSb interface induces semimetallic band alignment — *Creates electrons & holes!* 



## TYPE-II ALIGNMENT IN THE LASER



Semimetallic interface supplies carriers to electron & hole injectors



## RT CW ICLs (2008)

After initial NRL MBE growth of ICLs in 2005, iterative reduction of  $j_{th}$  led to 1<sup>st</sup> RT cw in 2008:

 $P_{\text{max}} = 10 \text{ mW}; \text{ WPE} = 0.7\% @ P_{\text{max}}$ 









Best as of 2009:  $P_{\text{max}} = 59 \text{ mW}$ , WPE = 3.1% @  $P_{\text{max}}$ 



# 2010: A SIGNIFICANT DESIGN FLAW REMAINED

NRL simulations revealed that conventional designs with moderately-doped (≈ 4 x 10<sup>17</sup> cm<sup>-3</sup>) injector QWs suffered from serious population imbalance in active QWs



Even though more electrons than holes throughout the stage (due to *n*-doping of injector), most electrons populate injector while most holes populate active HQW



## DENSITIES & GAIN vs. BIAS



> 5x more holes than electrons in active QWs at threshold — Consequence was excessive internal loss & Auger non-radiative decay



# **SOLUTION:** INCREASE INJECTOR DOPING LEVEL BY > ORDER OF MAGNITUDE



Heavier n-doping of injector "rebalances" active electron & hole populations, to make them roughly equal



## DENSITIES & GAIN vs. BIAS (REBALANCED)



Simulations predicted rebalancing should enable lasing at much lower carrier concentration, plus longer Auger lifetime & lower loss (because much lower  $p_{th}$ )



# EXPERIMENTAL TEST: REBALANCING EFFECT ON THRESHOLD



**Dramatic threshold reduction compared to all previous** 



# ICL SPECTRAL RANGE & LOW DRIVE POWER



Power density thresholds 30x lower than record QCL results

CW operation to T = 48 °C @  $\lambda = 5.7$  µm

T = 25 °C: Input for lasing < 30 mW

Best QCL result: 400 mW (Alpes)

Critical for battery-operated,
hand-held, solar-powered, etc.



## SINGLE-MODE DISTRIBUTED FEEDBACK ICLS

[Kim et al., APL 101, 061104 (2012)]

Several architectures explored @ NRL - Here DFB fabricated by etching grating into

deposited Ge





Single-mode tuning with temperature: 21.5 nm with current: 10 nm









## CORRUGATED-SIDEWALL ICLS



4<sup>th</sup>-order grating provides distributed feedback Corrugations also suppress higher-order lateral modes for enhanced brightness





## **CORRUGATED-SIDEWALL DFBs**







[Vurgaftman et al., JSTQE 19, 1200210 (2013)]

FWHM  $\leq$  0.15 nm (FTIR-limited) SMSR  $\approx$  17-20 dB 55 mW cw in single spectral mode @ T = 25 °C





### JPL DFBs

#### Grown @ NRL, Processed & tested @ JPL: 2<sup>nd</sup>-order side grating yields single mode

[Forouhar et al., APL 105, 051110 (2014)]



Double ridge provides less abrupt index step



 $P_{max}^{cw} = 18 \text{ mW } @ T = 46 \text{ }^{\circ}\text{C}$ 

Threshold drive power < 400 mW @ 36 °C

Lifetime testing: > 10,000 hrs. cw operation @ 40 °C with negligible degradation



# MORE JPL DFBs (METHANE WAVELENGTH)

[Borgentun et al., Opt. Expr. 23, 2446 (2015)]

#### Again employed NRL wafer material





L-I-V vs. temperature

Spectra vs. current & temperature



### MORE ICL LIFETIME TESTING

Besides JPL, CW lifetimes of NRL ICL ridges being measured by 2 industrial collaborators

### **Company A:**

1 device tested for 1000 hrs. @ RT, then 9000 hrs. @ T = 90 °C - Negligible degradation implies lifetime > 100,000 hrs.

Another device tested 6000 hrs.

Devices showed slight I-V drift, but miniscule variation of cw output power





Company B: Tested 2 devices ( $\lambda$  = 4.7  $\mu$ m) for 2600 hrs. @ I = 0.4 A & T = 20 °C - Negligible degradation



## EXTERNAL CAVITY ICL

Caffey et al., Opt. Expr. 18, 15691 (2010)

- Narrow linewidth in EC-ICL configuration
- 105 nm tuning range
- > 1 mW cw @ all λ (Gen1)
- Low power consumption (< 1 W)</li>











### COMMERCIAL DFB ICLS

#### Since 2012, Maxion/ThorLabs & Nanoplus license NRL ICL patents



Nanoplus DFB: Drive power only 138 mW (> 10x lower than QCLs at  $\lambda = 5.2 \mu m$ )

[von Edlinger et al., PTL 26, 480 (2014)]

ICLs now incorporated into several commercial sensing products





### MASS MEDIA PENETRATION!



On February 8, 2015, the German Vox Television Network news magazine Auto Mobil aired a 7-minute segment on a drive-by alcohol sensor developed by AirOptic (incorporating ICLs from Nanoplus)





# ICLs for Multi-Heterodyne Spectroscopy

## Collaboration with Gerard Wysocki group (Princeton U.)

- Princeton group recently demonstrated novel multi-heterodyne spectroscopy technique using QCLs
  - Successful sensing of N<sub>2</sub>O, NH<sub>3</sub>, etc.
- Objective is high-resolution mid-IR sensing
  - No FTIR required
  - Employs matched pairs of mid-IR Fabry-Perot lasers (Broader bandwidth & less expensive than DFBs)
- This collaboration: Extend to ICLs, for expanded spectral coverage, low drive power budget, small spatial footprint
- All experiments performed at Princeton U., using narrow-ridge FP ICLs supplied by NRL



# Multi-Heterodyne Spectroscopy Set-Up



- Two conventional FP lasers [L. Diehl et al., APL 88, 201115 (2006)]
- Same gain material But different ridge-widths provide different I<sub>th</sub> & FSR
- 1 GHz MCT photodetector





Y. Wang, G. Wysocki, et al., APL 104, 0311141 (2014)



## Preliminary ICL Multi-Heterodyne Spectra

Beatnote spectrum: Combined outputs from 2 narrow-ridge FP ICLs ( $\lambda \approx 3.6 \mu m$ ):



- ICL cavity lengths intentionally mismatched (FSR too small for sister cavities)
- FWHM Linewidth = 11 MHz (Limited by spectral jitter)
- Greater spectral resolution attainable by increasing cavity length (Shorter FSR)
- Next step: Apply to gas sensing



## MULTI-MODE ABSORPTION SPECTROSCOPY (MUMAS)

## Collaboration with Paul Ewart group (Oxford U.)

- Oxford group recently developed & demonstrated MUMAS spectroscopy
  - Scan (with current) laser spectral output across one longitudinal-mode spacing
     Observe transmission dip every time any laser mode crosses a molecular absorption line
  - Model response to a given molecule by combining known laser emission spectrum with known Hi-Tran (or other) molecular absorption spectrum
  - Broad spectral range of multi-mode ridge laser suitable for simultaneous detection of multiple gas species
- Objective is simple, robust, inexpensive sensing system Requires only a single, multi-mode laser
- Previously applied to visible & near-IR, using standard diodes & diode-pumped Er:Yb:glass; also mid-IR using DFG (with inconveniently-slow scan rate)
- This collaboration: ICL source for faster, simpler, & less expensive mid-IR system
- All experiments performed at Oxford, using narrow-ridge FP ICLs supplied by NRL



## MUMAS APPLICATION TO CHA



[Northern et al., submitted to Opt. Lett.]

CH<sub>4</sub> absorption spectrum

Laser emission spectrum (showing multiple longitudinal modes)

Modeled & measured transmission spectra

Residuals







#### SIMULTANEOUS DETECTION OF 3 SPECIES



[Northern et al., submitted to Opt. Lett.]



Detected concentrations of 0.86 mbar for  $CH_4$  & 2.2 mbar for  $C_2H_2$  agree well with actual values of 1.2 & 1.6 – Actual  $H_2CO$  (from vapor above water/methanol solution) concentration insufficiently calibrated to compare (0.1 mbar detected)



#### **VOLUME BRAGG GRATING CAVITY ICL**



### Collaboration with Leonid Glebov group (CREOL)

- External cavity with volume Bragg grating (VBG) mirror substantially narrows laser linewidth & enhances spectral/spatial brightness
- PTR glass employed in visible & near-IR absorbs at  $\lambda \ge 2.8 \,\mu m$  (& much more strongly @  $\lambda \ge 4 \,\mu m$ ) Transparent glasses for mid-IR now under development
- Nonetheless, investigate whether VBG feedback sufficient for external-cavity ICL (with high gain) operating at  $\lambda \approx 3.1~\mu m$
- Simulation: VBG diffraction efficiency ≈ 30% & spectral linewidth ≈ 1.2 nm (both
  - degraded by Fresnel reflection from uncoated VBG surface)
- All experiments performed at CREOL, using FP ICLs (18 μm x 4.5 mm, HR/AR-coated) supplied by NRL





## ICL VBG - SPECTRA





Free: Broad multi-mode VBG: 2<sup>nd</sup> line appears (FP at uncoated VBG surface?)



Free: Continues to broaden VBG: More parasitic lines emerge



#### **VBG:** L-I CHARACTERISTICS





VBG line narrowing incurs relatively modest power sacrifice



## ALTERNATIVE IR SENSING SOURCE: IC LEDs

Single attempt, with no optimization or measures to enhance out-coupling efficiency (beyond AR coating on output surface)







#### **ICLEDS: INITIAL PERFORMANCE RESULTS**



 $P_{out}^{cw}$  = 1.6 mW - Record for mid-IR LED (Highest commercial  $\approx$  200  $\mu$ W) Emission intensity 5x any previous report



## Gen3: HIGHER CW POWER & WPE (2011)



 $P_{max}^{cw}$  (25 °C) = 159 mW ( $M^2 \approx 3$ ); WPE = 9.9% @  $P_{max}$ 



# EPI-DOWN MOUNTING: HIGHER T<sub>max</sub>cw

[Bewley et al., Opt. Expr. 20, 20894 (2012); U.S. Patent #8,879,593 (2014)]





#### CORRUGATED-SIDEWALL ICLS





 $P_{\text{max}}^{\text{cw}} > 200 \text{ mW} @ T = 25 \text{ °C } (M^2 = 1.6)$ 





Suppress higher-order modes for better beam quality



Wider ridge (25.1  $\mu$ m): 305 mW ( $M^2$  = 2.2); WPE = 6.6% @  $P_{\text{max}}$ 



 $P_{\text{max}}^{\text{cw}}$  (25 °C) = 403 mW ( $M^2$  = 2.3), WPE = 7.0% @  $P_{\text{max}}$ 



# TO FURTHER ENHANCE POWER & BRIGHTNESS: INCREASE EFFICIENCY

Wavelength (µm)



Try varying other parameters in rich ICL design space, e.g.:

Thicker n-GaSb separate confinement layers (SCLs),
 for lower mode overlap with active & clad, hence reduced loss

• More active stages (e.g., 7 vs. 5), for higher slope efficiency & gain

Top Clad
SCL

**Active QWs** 

SCL

**Bottom Clad** 

Substrate



### 5 STAGES WITH THICKER SCLs



Thick SCLs increase efficiency at 300 K, but fail to provide enough gain at high T



#### 7 STAGES

[Bewley et al., Opt. Expr. 22, 7702 (2014)]



Thick SCLs increase advantage at 300 K, while retaining sufficient gain at high T Even better news: Slope<sub>7</sub>/Slope<sub>5</sub> > 7/5 indicates lower loss!



#### IMPROVED EDQE

#### Result is significantly higher EDQE:



7-stage ICLs with thick SCLs (Gen3B) exhibit higher EDQE & lower loss at all  $\lambda$ 



### 7-STAGE NARROW RIDGES



[Canedy et al., Opt. Expr. 22, 7702 (2014)]



 $P_{\text{max}}^{\text{cw}} = 384 \text{ mW}$  in high-quality beam ( $M^2 = 2.6$ )

WPE = 12.4%



## BUT Pmax LIMITED BY EFFICIENCY DROOP

#### [Merritt et al., submitted to Appl. Opt.]



All ICLs from NRL (& elsewhere) show substantial droop above I<sub>th</sub> – Why?

Pulsed data indicate substantial non-thermal component



# CAVITY LENGTH INVESTIGATION vs. J

- For 2 wafers: Measured EDQEs for 5 cavity lengths, 5 current densities, 3 temperatures
- Extracted internal efficiency from intercept & internal loss from slope



Wafer B ( $\lambda = 3.45 \mu m$ )

T = 300 K

1 kA/cm<sup>2</sup>

2 kA/cm<sup>2</sup>

2.5 kA/cm<sup>2</sup>

1/EDQE

2

Droop at high currents clearly due to higher internal loss rather than lower internal efficiency – Effect much greater at shorter  $\lambda$ 



#### CAVITY LENGTH SUMMARY

- Efficiency droop with strong non-thermal component universal in ICLs
  - Attributable to increasing  $\alpha_i$  with  $J_i$  rather than decreasing  $\eta_i$
  - Correlates with lack of carrier-density pinning in ICLs above threshold (from EL)
  - Type-I mid-IR diodes also fail to pin (although not as severe)
- η<sub>i</sub> nearly independent of J (but why 70-90% rather than 100%?)
- With increasing T (up to 345 K),  $\alpha_i$  relatively constant while  $\eta_i$  decreases
- Threshold gain vs.  $J_{th}$  from cavity length data follows expected logarithmic form, but magnitude > 20% below theory (?)
- Efficiency droop, & associated increase of  $\alpha_i$ , greater at short  $\lambda$ 
  - ICL performance in general degrades gradually at  $\lambda \le 3.1 \mu m$
  - Unexplained Intuition says free carrier absorption & Auger decay should decrease rather than increase with decreasing  $\lambda$

New information clarifies & quantifies unexplained observations, but does not resolve!



# SUMMARY: CW POWER & BRIGHTNESS



| Year | Stages | λ<br>(μm) | α <sub>i-1</sub> ) | Ridge               | Mount    | L <sub>cav</sub><br>(mm) | width<br>( <sub>µ</sub> m) | P <sub>max</sub> <sup>25C</sup> (mW) | WPE( <i>P</i> <sub>max</sub> )<br>(%) | M²                | Brightness<br>(Pmax/M <sup>2</sup> ) |
|------|--------|-----------|--------------------|---------------------|----------|--------------------------|----------------------------|--------------------------------------|---------------------------------------|-------------------|--------------------------------------|
| 2008 | 5      | 3.75      | 12.2               | Straight            | Epi-Up   | 3                        | 9                          | 10                                   | 0.7                                   | ≈ 2               | 5                                    |
| 2009 | 5      | 3.67      | 6.6                | u                   | "        | 3                        | 10                         | 59                                   | 3.1                                   | ≈ 2               | 30                                   |
| 2011 | 5      | 3.57      | 6.9                | 11                  | "        | 3                        | 11                         | 158                                  | 9.9                                   | 3                 | 53                                   |
| 2012 | 5      | 3.66      | 4.5                | Straight<br>Corrug. | Epi-Down | 4                        | 11<br>25                   | 198<br>305                           | 7.1<br>6.5                            | 1.8<br>2.2        | 110<br>139                           |
| 2013 | 5      | 3.72      | 5.2                | Tapered             | II       | 4                        | 5 - 63                     | 403                                  | 7.0                                   | 2.3               | 175                                  |
| 2014 | 7      | 3.45      | 3.0                | Corrug.             | 11       | 3                        | 22<br>28<br>32             | 383<br>522<br>592                    | 12.4<br>10.3<br>10.1                  | 2.4<br>3.1<br>3.7 | 160<br>168<br>160                    |
|      |        |           |                    |                     |          |                          | <b>~</b> _                 |                                      |                                       | •                 | . • •                                |



#### **NEXT TRY 10 STAGES**



EDQE comparable for 10-stage vs. 7-stage (Both greater than 5-stage)



### INTERNAL LOSS vs. WAVELENGTH



7-stage & 10-stage designs have comparable loss, on average (But note increase when  $\lambda$  < 3.2  $\mu$ m)



## 10-STAGE NARROW RIDGES: L-I & FAR-FIELD



Also:  $P_{\text{max}}^{\text{cw}} = 464 \text{ mW (WPE} = 11.2\%, M^2 = 1.9) @ 25 °C$ 



# CW POWER & BRIGHTNESS SUMMARY



| Year | Stages | λ<br>(μm) | α <sub>i-1</sub> ) | Ridge               | Mount    | L <sub>cav</sub><br>(mm) | width<br>(µm) | P <sub>max</sub> <sup>25C</sup> (mW) | WPE(P <sub>max</sub> )<br>(%) | M²         | Brightness<br>(Pmax/M²) |
|------|--------|-----------|--------------------|---------------------|----------|--------------------------|---------------|--------------------------------------|-------------------------------|------------|-------------------------|
| 2008 | 5      | 3.75      | 12.2               | Straight            | Epi-Up   | 3                        | 9             | 10                                   | 0.7                           | ≈ 2        | 5                       |
| 2009 | 5      | 3.67      | 6.6                | 11                  | "        | 3                        | 10            | 59                                   | 3.1                           | ≈ 2        | 30                      |
| 2011 | 5      | 3.57      | 6.9                | 11                  | "        | 3                        | 11            | 158                                  | 9.9                           | 3          | 53                      |
| 2012 | 5      | 3.66      | 4.5                | Straight<br>Corrug. | Epi-Down | 4                        | 11<br>25      | 198<br>305                           | 7.1<br>6.5                    | 1.8<br>2.2 | 110<br>139              |
| 2013 | 5      | 3.72      | 5.2                | Tapered             | п        | 4                        | 5 - 63        | 403                                  | 7.0                           | 2.3        | 175                     |
| 2014 | 7      | 3.45      | 3.0                | Corrug.             | "        | 3                        | 28            | 522                                  | 10.3                          | 3.1        | 168                     |
|      | 10     | 3.45      | 3.4                | Corrug.             | "        | 4.5                      | 18            | 464                                  | 11.2                          | 1.9        | 245                     |
|      | 7      | 3.11      | 3.3                | Corrug.             | "        | 4.5                      | 18            | 326                                  | 6.9                           | 1.3        | 243                     |



#### RECORD ICL WALLPLUG EFFICIENCIES

#### With shorter (1 mm) cavity & straight sidewalls:



CW WPEs for 4 devices from 2 wafers (7-Stage & 10-Stage): 17.8-18.4%



### QCL vs. ICL



- Older QCLs much more mature & widely studied
- $\lambda = 3-4 \mu m$ : ICLs generally preferred
  - QCLs now produce  $P_{\text{max}}^{\text{cw}} > 1 \text{ W @ RT, but with}$  higher threshold & lower efficiency
- $\lambda = 4-6 \mu m$ : QCL sweet spot for high power (Up to 5 W cw demonstrated)
  - But ICL still preferred in applications requiring low power from ultracompact battery-operated package (most laser spectroscopy)
- $\lambda = 2.5-15 \mu m$  LEDs: Only ICLs suitable for top emission
- $\lambda = 6-150 \mu m$  Lasers: QCLs the *only* option (ICL loss too high)
- Conclusion: QCLs & ICLs more complementary than competitive