

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Союз Советских
Социалистических
Республик

Государственный комитет
Совета Министров СССР
по делам изобретений
и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к авторскому свидетельству

390070

Зависимое от авт. свидетельства № —

Заявлено 04.II.1971 (№ 1617963/23-4)

М. Кл. С 07c 69/54
С 07c 135/00

с присоединением заявки № —

Приоритет —

Опубликовано 11.VII.1973. Бюллетень № 30

УДК 547.391.1.07
(088.8)

Дата опубликования описания 28.XII.1973

Авторы
изобретения

Р. С. Бурмистрова и З. Г. Попова

Заявитель —

СПОСОБ ПОЛУЧЕНИЯ ЦИАНСОДЕРЖАЩИХ ПРОИЗВОДНЫХ АКРИЛОВОЙ КИСЛОТЫ

1

Изобретение относится к области получения различных полифункциональных соединений циансодержащих производных акриловой кислоты.

Предложенный способ, как и полученные 5 соединения, является новым.

Способ позволяет получать полифункциональные соединения общей формулы

2

где R — водород, алкил, арил, аралкил;

n = 1,2, R₁, R₂ — H, Alk.

эфирами циануксусной кислоты по Кновенгелю.

Описанные в литературе соединения этого класса являются эффективными светостабилизаторами полимерных материалов и получаются конденсацией кетонов или альдегидов с

Полученные соединения, содержащие несколько функциональных групп, синтезировать по Кновенгелю практически невозможно.

Предложенный способ заключается в ацилировании оксиароматических соединений, содержащих $-\text{NH}$, $-\text{S}$, $-\text{SO}_2$, SO , CO -группы, хлорангидридом циансодержащих производных акриловой кислоты в присутствии акцептора хлористого водорода при температуре $25-35^\circ\text{C}$ и выдержкой при температуре $40-60^\circ\text{C}$ и выделении продуктов известными методами.

Выход целевых продуктов составляет 75--85%, считая на соответствующий хлорангидрид.

Полученные соединения идентифицированы элементарным анализом и спектроскопическими методами.

Во всех соединениях отмечаются интенсивные полосы поглощения при $1730-1755 \text{ см}^{-1}$; $3370-3400 \text{ см}^{-1}$ и $2205-2215 \text{ см}^{-1}$, подтверждающие наличие сложноэфирной, вторичной аминной и цианогрупп.

Пример 1. Получение 4-анилинофенилового эфира α -циано- β , β -дифенилакриловой кислоты.

В трехгорлую колбу с мешалкой, термометром и холодильником с хлоркальциевой трубкой загружают 1,85 г (0,01 г·моль) *n*-оксидифениламина, 20 мл абсолютного диоксана, 1,4 мл (0,01 г·моль) триэтиламина и добавляют при температуре $20-25^\circ\text{C}$ хлорангидрида α -циано- β , β -дифенилакриловой кислоты.

После окончания прибавления хлорангидрида выдерживают при $40-45^\circ\text{C}$ в течение 3 час и при $55-60^\circ\text{C}$ в течение 1 час. После охлаждения реакционной массы до комнатной температуры отфильтровывают выпавшую солянокислую соль триэтиламина, а фильтрат выливают в 150 мл дистиллированной воды. Выпавшее масло быстро закристаллизовывается при промывке 2%-ным раствором карбоната натрия и водой. Кристаллы отфильтровывают и сушат. Выход составляет 3,37 г (81% от теории, считая на хлорангидрид кислоты), т. пл. $151-152^\circ\text{C}$ (из этанола).

Вычислено, %: С 80,77; Н 4,81; N 6,73.
 $\text{C}_{26}\text{H}_{20}\text{N}_2\text{O}_2$.

Найдено, %: С 80,79; Н 4,73; N 6,74.

Продукт хорошо растворим в диоксане, бензole, хлороформе, дихлорэтане, плохо растворим в этаноле, практически не растворим в гексане и воде.

ИКС: ν_{CO} 1740 см^{-1} , ν_{NN} 3370 см^{-1} , ν_{CN} 2210 см^{-1} .

Пример 2. Получение 4-аминонафтилфенилового эфира α -циано- β , β -дифенилакриловой кислоты.

В условиях примера 1 из 2,35 г (0,01 г·моль) *n*-оксинаэозина и 2,67 г (0,01 г·моль) хлорангидрида α -циано- β , β -дифенилакриловой кислоты в 20 мл абсолютного диоксана в присутствии 1,4 мл (0,01 г·моль) триэтиламина получают 3,63 г (77,8% от теории) 4-аминонафтилфенилового эфира α -циано- β , β -дифенилакриловой кислоты с т. пл. $159-160^\circ\text{C}$ (из этанола).

Вычислено, %: С 82,3; Н 4,73; N 6,01.
 $\text{C}_{32}\text{H}_{22}\text{N}_2\text{O}_2$.
Найдено, %: С 82,71; Н 4,78; N 6,58.

Растворимость продукта подобна предыдущему образцу.

ИКС: ν_{CO} 1730 см^{-1} , ν_{NN} 3410 см^{-1} , ν_{CN} 2205 см^{-1} .

Пример 3. Получение продукта ацилирования *n*-аминофенола хлорангидридом α -циано- β , β -дифенилакриловой кислоты.

В условиях примера 1 из 0,545 г (0,005 г·моль) *n*-аминофенола, 2,67 г (0,01 г·моль) хлорангидрида α -циано- β , β -дифенилакриловой кислоты в 20 мл диоксана в присутствии 1,4 мл (0,01 г·моль) триэтиламина получают продукт ацилирования. Выход 2,72 г (80% от теории), т. пл. $238-239^\circ\text{C}$ (из бензола).

Вычислено, %: С 79,8; Н 4,38; N 7,35.
 $\text{C}_{38}\text{H}_{26}\text{N}_3\text{O}_3$.

Найдено, %: С 79,36; Н 4,55; N 7,73.

Продукт хорошо растворим в ацетоне, диоксане; плохо растворим в бензоле, практически не растворим в гексане и воде.

ИКС: ν_{CO} 1750 см^{-1} , ν_{CN} 2215 см^{-1} .

Пример 4. Получение тиобис-(фенилового эфира α -циано- β , β -дифенилакриловой кислоты).

В трехгорлую колбу с мешалкой, термометром и холодильником с хлоркальциевой трубкой загружают 1,09 г (0,05 г·моль) 4,4-дифенилолсульфида, 20 мл диоксана, 1,4 мл (0,01 г·моль) триэтиламина и при $20-25^\circ\text{C}$ добавляют 2,67 г (0,01 г·моль) хлорангидрида α -циано- β , β -дифенилакриловой кислоты. После окончания прибавления хлорангидрида выдерживают в течение 2 час при $35-40^\circ\text{C}$, 2 час при $45-50^\circ\text{C}$ и 1 час при 60°C . После охлаждения реакционной массы до комнатной температуры отфильтровывают выпавшую солянокислую соль триэтиламина. Фильтрат выливают в воду. Выпавшие кристаллы отфильтровывают, промывают 2%-ным раствором карбоната натрия и водой до нейтральной реакции.

Выход 3,08 г (75% от теории, считая на хлорангидрид кислоты), т. пл. $180-182^\circ\text{C}$ (из уксусной кислоты).

Вычислено, %: С 77,7; Н 4,12; N 4,12; S 4,71.

$\text{C}_{44}\text{H}_{28}\text{N}_2\text{SO}_4$.

Найдено, %: С 77,32; Н 3,97; N 4,01; S 4,35.

Продукт хорошо растворим в диоксане, плохо растворим в этаноле и уксусной кислоте; практически не растворим в воде и гексане.

ИКС: ν_{CO} 1755 см^{-1} , ν_{CN} 2215 см^{-1} .

Пример 5. Получение тиобис-(3-метил-5-трет-бутилфенилового эфира α -циано- β , β -дифенилакриловой кислоты).

В условиях примера 4 из 1,79 г (0,005 г·моль) бис-(2-метил-5-трет-бутил-4-оксифенил)-сульфида и 2,67 г хлорангидрида α -циано- β , β -дифенилакриловой кислоты в 20 мл диоксана в присутствии 1,4 мл (0,01 г·моль) триэтиламина получают 2,91 г (71% от теории) продукта ацилирования, т. пл. $204-205^\circ\text{C}$ (из

уксусной кислоты).

Вычислено, %: C 79,02; H 5,85; N 3,4; S 3,9.

C₂₉H₁₉N₂SO₄.

Найдено, %: C 78,66; H 5,89; N 3,04; S 4,05.

Растворимость продукта подобна предыдущему образцу.

ИКС: ν_{CO} 1740 см⁻¹, ν_{CN} 2205 см⁻¹, ν_{CO} 1688 (амид I).

Пример 6. Получение 3-окси-4-бензоилфенилового эфира α -циано- β , β -дифенилакриловой кислоты.

В условиях примера 4 из 2,15 г (0,01 г·моль) 2,4-диоксибензофенона и 2,67 г (0,01 г·моль) хлорацетида α -циано- β , β -дифенилакриловой кислоты в 20 мл диоксана в присутствии 1,4 мл (0,01 г·моль) триэтиламина получают 2,35 г (53% от теории) 3-окси-4-бензоилфенилового эфира α -циано- β , β -дифенилакриловой кислоты, т. пл. 138—139°C (из этанола).

Вычислено, %: C 78,4; H 4,28; N 3,15.

C₂₉H₁₉N₂O₄.

Найдено, %: C 78,3; H 4,20; N 3,05.

Продукт хорошо растворим в большинстве органических растворителей (диоксан, бензой, дихлорэтан), плохо растворим в этаноле.

ИКС: ν_{CO} 1755 см⁻¹, ν_{CN} 2210 см⁻¹.

Предмет изобретения

1. Способ получения циансодержащих производных акриловой кислоты общей формулы

где R — водород, алкил, арил или аралкил;

n=1, 2, R₁ и R₂ — водород, алкил, отличающийся тем, что оксиароматические соединения, содержащие —NH, —S, —SO, —SO₂, CO-группы, подвергают взаимодействию с хлорацетидом циансодержащих производных акриловой кислоты в присутствии акцептора хлористого водорода в среде органического

растворителя при нагревании с последующим выделением целевого продукта известными приемами.

2. Способ по п. 1, отличающийся тем, что процесс ведут при температуре 25—35°C с последующей выдержкой при температуре 40—60°C.

Составитель Л. Крючкова
 Редактор Е. Хорина Техред А. Камышникова Корректор А. Степанова
 Заказ 3301/5 Изд. № 1726 Тираж 523 Полное
 ЦНИИПИ Государственного комитета Совета Министров СССР
 по делам изобретений и открытий
 Москва, Ж-35, Раушская наб., д. 4/5

Типография, пр. Сапунова, 2

WEST

 Generate Collection

L1: Entry 33 of 34

File: DWPI

Dec 28, 1973

DERWENT-ACC-NO: 1974-56342V

DERWENT-WEEK: 197431

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Aromatic esters of alpha-cyano-beta-beta-di phenyl acrylic acids - prep'd by esterifying the corresp. hydroxy aromatic cpd. with a substd acrylic acid chloride

PATENT-ASSIGNEE: BURMISTROVA R S ET AL (BURMI)

PRIORITY-DATA: 1971SU-1617963 (February 4, 1971)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
SU 390070 A	December 28, 1973		000	

INT-CL (IPC): C07C 69/54; C07C 135/00

ABSTRACTED-PUB-NO: SU 390070A

BASIC-ABSTRACT:

The title esters, general formula where R = H, alkyl, aryl, aralkyl, n = 1-3 and X is: (where Y = -S, -SO-, -SO₂, R₁ and R₂ = H, alkyl) are made by treating the corresp. hydroxyaromatic cpd. with the appropriate acid chloride in an organic solvent in the presence of a HCl acceptor, first at 25-35 degrees C, then at 40-60 degrees C. Similar materials, made by a Knoevenagel reaction inapplicable here, are light stabilisers for polymers. An example describes the prepn. of 4-anilinophenyl alpha-cyano-beta, beta-diphenylacrylate, by reacting together, in 20 ml dioxane/20-25 degrees C, 1.85 g (0.01 g mole) p-hydroxydiphenylamine, the appropriate substd. acylic acid chloride, plus 1.4 ml (0.01 g mole) Et₃N. When all the acid chloride has been added the temp. is raised to 40-45 degrees C/3 hrs. and 55-60 degrees C/1 hr, the products filtered, diluted with water, and filtered off, washed and dried, yield 3.37 g (81% on the acid chloride).

ABSTRACTED-PUB-NO: SU 390070A

EQUIVALENT-ABSTRACTS:

DERWENT-CLASS: A60 E14

CPI-CODES: A01-D02; A01-D07; A01-D10; A08-A03; E10-A10; E10-A15;

EP. ESPACNET.COM

WEST

 Generate Collection

L1: Entry 33 of 34

File: DWPI

Dec 28, 1973

DERWENT-ACC-NO: 1974-56342V

DERWENT-WEEK: 197431

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Aromatic esters of alpha-cyano-beta-beta-di phenyl acrylic acids - prep'd by esterifying the corresp. hydroxy aromatic cpd. with a substd acrylic acid chloride

Standard Title Terms (1):AROMATIC ALPHA CYANO BETA BETA DI PHENYL ACRYLIC ACID PREPARATION ESTERIFICATION
CORRESPOND HYDROXY AROMATIC COMPOUND SUBSTITUTE ACRYLIC ACID CHLORIDE