MC-Cons: RNA 2D structural assignment

Gabriel [™]C-Parent

outline

- what?
- why?
- how?
- what's next?
- ▶ Q&A

aknowledements first

francois major

julie

robitaille

stephen leong

stefanie schirmer

marc-frederic blanchet

koan

mathieu dupont

nathanael weill

what?

what? 4/21

so you have structures...

Given secondary structures of functionally related RNAs, which ones might explain the function?

what? 5/21

now you can have consensus!

Let's suppose that their function is explained by a subset of similar structures (consensus).

In this case, 2 consensus make sense. Sometimes you get more, sometimes you get less.

what? 6/21

why?

why? 7/21

what's the point?

- goal: finding common/similar structures within suboptimal secondary structures
- useful for
 - improving secondary structure prediction for functionally related RNAs
 - exploring shared alternative structures

why? 8/21

how?

how? 9/21

workflow

- a consensus minimizes the sum of pairs of distances between objects
- optimization steps
 - base pair structural similarity (modified tree edit distance)
 - string edit distance on Vienna dot-bracket representation
- two solver in C++ (branch & bound and genetic algorithm)

how? 10/21

first match base pairs

- base pair trees created (many-to-one function)
- unit tree indel distance calculates number of base pairs to add or remove to transform a tree into another

how? 11/21

then match unpaired

- filtered by tree structure, now refine
- placing the bulges around the skeleton...
- string edit distance on dot-bracket

now? 12/2:

examples

examples 13/21

IREs

IREs structural assignment given 10 suboptimal for 29 different IREs.

examples 14/21

tRNAs

examples 15/21

what's next?

what's next?

future work

- MC-Cons improvements
 - parallelization
 - better distance functions?
 - heuristic improvement?
- derivative works
 - base pair tree constraints/masks
 - 3D to 2D tree distance

what's next?

recap

recap 18/21

recap

- MC-Cons creates RNA 2D structural assignment
- useful for finding structures explaining function
- available at https://github.com/major-lab/MC-Cons

recap 19/21

Q&A

Q&A 20/21

Q&A

https://github.com/major-lab/MC-Cons

Q&A 21/21