Exercice 3.4 — Séries de Fourier et convolution. Soit $f \in L^2(\mathbb{T})$. Que peut-on dire de la série $\sum_{k \in \mathbb{Z}} c_k(f)^2 e_k(x)$?

Commentaires. Cet exercice mélange les notions de séries de Fourier et de convolution. L'argument clé est le théorème 3.71 qui lie ces deux notions.

Corrigé. Dans l'espace de Hilbert $L^2(\mathbb{T})$ (dont on note $\|\cdot\|$ la norme), on applique l'égalité de Parseval (voir la sous-section 3.3.1) à un élément $f \in L^2(\mathbb{T})$:

$$\sum_{k\in\mathbb{Z}} \left|c_k(f)\right|^2 = \|f\|^2 < +\infty.$$

La série de fonctions $\sum c_k(f)^2 e_k$ converge donc normalement sur \mathbb{R} . La remarque 3.79 montre alors que la somme g de cette série définit un élément de $\mathscr{C}(\mathbb{T})$ dont les coefficients de Fourier vérifient $c_k(g) = c_k(f)^2$.

Le théorème 3.56 (adapté au tore $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$) montre que la fonction f*f, convolée de deux fonctions de $L^2(\mathbb{T})$, est donc une fonction continue sur \mathbb{T} . Par ailleurs, le théorème de convolution 3.71 affirme que $c_k(f*f) = c_k(f)^2$. On obtient donc $c_k(g) = c_k(f*f)$. L'injectivité de \mathcal{F} (voir le théorème 3.71) assure alors que g = f*f pour presque tout $x \in \mathbb{T}$. Comme ces deux fonctions sont continues, on en déduit que f*f = g. La série

$$\sum_{k \in \mathbb{Z}} c_k(f)^2 e_k(x)$$

converge donc normalement sur \mathbb{R} vers f * f(x).

Exercice 3.5 — Convergence simple d'une série de Fourier. Soit f un élément de $L^1(\mathbb{T})$. On suppose que, pour presque tout t dans \mathbb{R} ,

$$S_N(f)(t) \xrightarrow[N \to +\infty]{} 0.$$

Montrer que les coefficients de Fourier $c_n(f)$ sont nuls.

Commentaires. Cet exercice utilise les moyennes de Cesàro pour exploiter l'hypothèse sur les sommes partielles $S_N(f)$.

Corrigé. La suite $(S_N(f)(t))_N$ converge (au sens classique) vers 0, donc elle converge aussi au sens de Cesàro vers 0. Ainsi, la suite $(\sigma_N(f)(t))_N$ qui est la suite des moyennes de Cesàro de $(S_N(f)(t))_N$ converge aussi vers 0 pour presque tout $t \in \mathbb{R}$.

Par ailleurs, d'après le théorème de Fejér 3.75, $\sigma_{\rm N}(f)$ tend vers f dans L¹(T). De plus, un résultat de la théorie de la mesure (voir le théorème 3.12 de [RUD]) affirme que l'on peut extraire de $\sigma_{\rm N}(f)$ une sous-suite qui converge presque partout vers f.

On en déduit que la fonction f est nulle presque partout et que ses coefficients de Fourier $c_n(f)$ sont tous nuls.

Exercice 3.6 – Théorème ergodique de Von Neumann. Soient $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert, T un endomorphisme de H continu, de norme $||T|| \leq 1$. Notons T_n la moyenne des premiers itérés successifs de T :

$$T_n = \frac{1}{n+1} \sum_{k=0}^{n} T^k.$$

L'objectif de cet exercice est de montrer que :

$$\forall x \in \mathcal{H}, \qquad \mathcal{T}_n(x) \xrightarrow[n \to +\infty]{} p(x),$$

où p est le projecteur orthogonal sur Ker (I - T).

a) Montrer les équivalences, pour $x \in H$,

$$Tx = x \iff \langle Tx, x \rangle = ||x||^2 \iff \langle x, Tx \rangle = ||x||^2.$$

b) Montrer que $Ker(I - T) = Ker(I - T)^*$. En déduire que

$$\forall x \in \text{Ker}(I - T)^*, \qquad T_n(x) \xrightarrow[n \to \infty]{} p(x) = x.$$

- c) Pour $x \in \text{Im}(I-T)$, montrer que $T_n(x) \xrightarrow[n \to +\infty]{} 0$.
- **d)** En déduire que $T_n(x) \xrightarrow[n \to \infty]{} 0$ lorsque $x \in \overline{\text{Im}(I T)}$.
- e) Démontrer le résultat annoncé.
- **f)** Soit $H = L^2(\mathbb{T})$ muni de son produit scalaire canonique (voir la section 3.3). Posons $\alpha \notin 2\pi \mathbb{Q}$, montrer que, pour tout $f \in H$,

$$\frac{1}{n} \sum_{k=0}^{n-1} f(\cdot + k\alpha) \xrightarrow{\mathrm{H}} \frac{1}{2\pi} \int_0^{2\pi} f(x) \, \mathrm{d}x.$$

Commentaires. Nous proposons ici une preuve qui utilise une décomposition de H en somme directe orthogonale. On en trouve une autre démonstration utilisant des arguments d'optimisation dans [WIL, 4.47]. Si $H = \mathbb{R}^3$ et T est une rotation d'angle irrationnel, alors on peut visualiser le théorème (dessin ci-contre).

Attention, ce théorème ergodique de Von Neumann établit la convergence de la suite $(T_n(x))_{n\in\mathbb{N}}$ vers p(x) pour tout $x\in H$, mais ceci n'entraîne pas la convergence de la suite d'opérateurs $(T_n)_{n\in\mathbb{N}}$ vers p. En effet, la convergence établie est une convergence simple, alors que la convergence de T_n vers p dans l'espace des endomorphismes continu de H serait une convergence uniforme sur la sphère unité (d'après la définition de la norme d'une application linéaire continue).

Corrigé.

a) Comme $\langle x, T(x) \rangle = \overline{\langle T(x), x \rangle}$, on a l'équivalence

$$\langle \mathbf{T}(x), x \rangle = ||x||^2 \iff \langle x, \mathbf{T}(x) \rangle = ||x||^2.$$

Par ailleurs, si $\mathrm{T}(x)=x$, alors $\langle \mathrm{T}(x),x\rangle=\|x\|^2$. Il reste à montrer que si $\langle \mathrm{T}(x),x\rangle=\|x\|^2$ alors $\mathrm{T}x=x$. On utilise pour cela le cas d'égalité dans l'inégalité de Cauchy-Schwarz (voir la sous-section 3.1.1). Pour x=0, on a $\mathrm{T}(x)=x=0$; supposons à présent que $x\neq 0$. Comme $\|\mathrm{T}\|\leqslant 1$, l'inégalité de Cauchy-Schwarz donne

$$\langle \mathrm{T}(x), x \rangle \leqslant \|\mathrm{T}(x)\| \, \|x\| \leqslant \|x\|^2.$$

L'hypothèse assure que le membre de droite et celui de gauche sont égaux. Ainsi, on a égalité dans l'inégalité dans Cauchy-Schwarz et donc il existe $\lambda \in \mathbb{R}_+$ tel que $\mathrm{T}(x) = \lambda x$. Par suite $\langle \lambda x, x \rangle = \langle \mathrm{T}(x), x \rangle$ et donc $\lambda \|x\|^2 = \|x\|^2$. Comme $x \neq 0$, on en déduit que $\lambda = 1$. Finalement, on a bien $\mathrm{T}(x) = x$.

b) Comme $||T|| = ||T^*|| \le 1$, on peut appliquer le résultat de la question **a** à T puis à T^* pour obtenir

$$T(x) = x \iff \langle x, T(x) \rangle = ||x||^2$$
 et $T^*(x) = x \iff \langle T^*(x), x \rangle = ||x||^2$.

Par définition de l'adjoint, on a $\langle T^*x, x \rangle = \langle x, Tx \rangle$, ce qui implique

$$x \in \text{Ker}(I - T)^* \iff x \in \text{Ker}(I - T).$$

On obtient donc Ker $(I - T)^* = \text{Ker } (I - T)$. On en déduit que $T^k(x) = x$ pour tout $x \in \text{Ker } (I - T)^*$ et tout $k \in \mathbb{N}$. Ainsi, $T_n(x) = x = p(x)$ pour tout n, ce qui donne le résultat souhaité.

c) Soit $x \in \text{Im}(I-T)$; il existe $y \in H$ tel que (I-T)(y) = x. On a alors

$$T_n(x) = \frac{1}{n+1} \sum_{k=0}^{n} (T^k(y) - T^{k+1}(y)) = \frac{1}{n+1} (y - T^{n+1}(y)).$$

Ceci implique

$$\|\mathbf{T}_n(x)\| \le \frac{1}{n+1} (\|y\| + \|\mathbf{T}^{n+1}(y)\|),$$

et, puisque
$$||T|| \le 1$$
, $||T_n(x)|| \le \frac{2}{n+1} ||y||$.

On en déduit que $T_n(x) \xrightarrow[n \to \infty]{} 0$.

d) Soit $\varepsilon > 0$. Considérons $x \in \overline{\text{Im}(I - T)}$ et $y \in \text{Im}(I - T)$ tel que $||x - y|| \le \varepsilon$. On écrit alors

$$\|T_n(x)\| \le \|T_n(x) - T_n(y)\| + \|T_n(y)\|.$$

Comme $||T|| \leq 1$, on a $||T_n|| \leq 1$. Ainsi

$$\|T_n(x)\| \le \|T_n\| \|x - y\| + \|T_n(y)\| \le \varepsilon + \|T_n(y)\|.$$
 (*)

Comme $y \in \text{Im}(I - T)$, la question **c** assure que $T_n(y) \xrightarrow[n \to \infty]{} 0$. On passe à la limite supérieure dans (*) pour obtenir

$$\limsup_{n \to +\infty} \| \mathbf{T}_n(x) \| \leqslant \varepsilon.$$

On peut conclure $T_n(x) \xrightarrow[n \to \infty]{} 0$.

e) D'après l'application 3.32 et la question b, l'espace H se décompose en

$$H = \operatorname{Ker} (I - T)^* \stackrel{\perp}{\oplus} \overline{\operatorname{Im} (I - T)} = \operatorname{Ker} (I - T) \stackrel{\perp}{\oplus} \overline{\operatorname{Im} (I - T)}.$$

Tout élément z de H se décompose donc de façon unique en z=x+y avec $x\in {\rm Ker}\,({\rm I}-{\rm T})$ et $y\in \overline{{\rm Im}\,({\rm I}-{\rm T})}$. Comme ${\rm T}_n(z)={\rm T}_n(x)+{\rm T}_n(y)$, les questions ${\bf b}$ et ${\bf d}$ montrent que ${\rm T}_n(z)\xrightarrow[n\to\infty]{}x=p(z)$.

f) Considérons l'endomorphisme de $H = L^2(\mathbb{T})$

$$T: \begin{cases} H \longrightarrow H \\ f \longmapsto (x \mapsto f(x + \alpha)). \end{cases}$$

L'endomorphisme T est continu de norme 1. En fait, c'est même une isométrie :

$$\forall f \in \mathcal{H}, \qquad \|\mathcal{T}(f)\| = \|f\|.$$

On peut donc utiliser le théorème ergodique de Von Neumann (question \mathbf{e}). Pour cela on cherche alors le noyau de I-T. Montrons que $\mathrm{Ker}\,(I-T)$ est exactement l'ensemble des fonctions constantes de H.

Notons $g = T(f) = f(\cdot + \alpha)$. Grâce à un changement de variables, on vérifie que,

$$\forall n \in \mathbb{N}, \quad c_n(g) = e^{-in\alpha}c_n(f).$$

Par ailleurs, si $f \in \text{Ker}(I - T)$, on a g = f (dans $L^2(T)$) et donc

$$\forall n \in \mathbb{N}, \quad c_n(g) = c_n(f).$$

Comme $\alpha \notin 2\pi \mathbb{Q}$, on a $e^{-in\alpha} \neq 1$ pour $n \neq 0$. Finalement, on a l'équivalence

$$f \in \text{Ker}(I - T) \iff \forall n \in \mathbb{N}^*, \quad c_n(f) = 0.$$

Par ailleurs, le théorème 3.71 assure que

$$\forall n \in \mathbb{N}^*, \quad c_n(f) = 0 \iff f \text{ est constante.}$$

Le théorème de Von Neumann affirme donc que

$$x \longmapsto \frac{1}{n} \sum_{k=0}^{n-1} f(x + k\alpha)$$

converge dans H vers la projection de f sur l'espace des fonctions constantes c'est-à-dire vers

$$\langle \mathbf{1}, f \rangle \mathbf{1} = c_0(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx.$$

Exercice 3.7 – Densité des polynômes orthogonaux. Soient I un intervalle de \mathbb{R} et ρ une fonction poids. On suppose qu'il existe un réel $\alpha > 0$ tel que

$$\int_{\mathbf{I}} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty. \tag{*}$$

Il s'agit de montrer que les polynômes orthogonaux associés à ρ forment une base hilbertienne de $L^2(I,\rho)$.

- a) Dans cette question, ρ est une fonction de poids quelconque. Supposons que pour tout $n \in \mathbb{N}$, $x \mapsto x^n \in L^1(I, \rho)$. Montrer que pour tout $p \in [1, +\infty[$ et tout $n \in \mathbb{N}$, $x \mapsto x^n \in L^p(I, \rho)$.
- **b)** Dans la suite on suppose que ρ vérifie (*) et l'on considère une fonction $f \in L^2(I, \rho)$. Montrer que la fonction φ définie par

$$\forall\,x\in\mathbb{R},\qquad \varphi(x)=\begin{cases} f(x)\rho(x) &\text{ si }x\in\mathcal{I},\\ 0 &\text{ sinon,} \end{cases}$$

est une fonction de $L^1(\mathbb{R})$.

On peut donc considérer sa transformée de Fourier c'est-à-dire pour $\omega \in \mathbb{R}$

$$\widehat{\varphi}(\omega) = \int_{\mathcal{I}} f(x)e^{-i\omega x}\rho(x) \,\mathrm{d}x.$$

Montrer que $\widehat{\varphi}$ se prolonge en une fonction F holomorphe sur

$$B_a = \{ z \in \mathbb{C}, \quad | \mathcal{I}m \, z | < a/2 \}.$$

