Jméno a příjmení:

Podpis:

1. Množina všech řešení rovní	ice $x = \sqrt{x+6}$ v oboru reálných čísel je
-------------------------------	--

a) {3}

b) $\{-3\}$

(30)- 6

c) {2}

d) $\{-3,2\}$

- e) $\{-2,3\}$
- 2. Rovnice kružnice se středem S = [1, -1] a poloměrem r = 2 je
 - a) $x^2 + 2x + y^2 2y 2 = 0$
- b) $x^2 2x + y^2 + 2y 2 = 0$

(30)

- c) $x^2 + 2x + y^2 2y = 0$
- e) $x^2 + 2x + y^2 2y + 2 = 0$
- d) $x^2 2x + y^2 + 2y = 0$

- 6

- 3. $(1+x^2)^{1/2} x^2(1+x^2)^{-1/2} =$
 - a) $(1+x^2)^{-2}$

b) $(1+x^2)^{-1/2}$ d) $1+x-x^2-x^3$

- c) $(1+x^2)^{3/2}$

- 6

- e) $\sqrt{1+x^2}-\frac{x^2}{(1+x^2)^2}$
- 4. Máme 56 lahví vína o objemu 0,75 litru. Kdyby víno bylo v lahvích o objemu 0,7 litru, kolik lahví by bylo naplněno?
 - a) 58

b) 60

(30)

c) 62

d) 63

- 6

- e) 64
- 5. Množina všech řešení nerovnice $\left|\frac{3-x}{2}\right| > 3$ je
 - a) $(-\infty, -3)$

b) $(-\infty, 3) \cup (9, \infty)$

(30)- 6

c) $(-\infty, -3) \cup (9, \infty)$

d) $(9, \infty)$

- e) $(-\infty, -\frac{3}{2}) \cup (\frac{9}{2}, \infty)$
- 6. Mezi čísly a, b, c, d, e platí nerovnosti: a < d, c > d, d > e, d < b. Který z následujících vztahů může platit?
 - a) b = c

b) a = c

(40)

c) b = e

- d) Může platit kterýkoli z předchozích vztahů.
- e) Nemůže platit ani jeden z předchozích
- vztahů.
- 8

- 7. Jestliže $y = \log_3 x$, pak $y \in \langle -1, 2 \rangle$ právě pro
 - a) $x \in \langle -3, 9 \rangle$

b) $x \in \langle -1, 8 \rangle$ d) $x \in \langle 1/3, 9 \rangle$ (40)- 8

- c) $x \in \langle 1/3, 8 \rangle$
- e) žádná z předchozích možností není správná
- 8. Jestliže x a y jsou dvě různá čísla z intervalu $(0, \pi/2)$, pro která platí $y = \pi/2 x$, pak
- a) $\sin x = \sin y$

b) $\cos x = \cos y$

(40)

c) $\cos x = -\sin y$

d) $\sin x = -\sin y$

- 8

- e) $\sin x = \cos y$
- 9. Určete všechny hodnoty parametru p, pro které rovnice $x^2 + 2px + p = 0$ nemá reálné kořeny.
 - a) $p \in (0, \infty)$

b) $p \in (-1, 0)$

(40)

c) $p \in (0,1)$

d) $p \in (-\infty, 0) \cup (1, \infty)$

- 8

e) $p \in (-\infty, -1) \cup (0, \infty)$

- 10. Jestliže čtvrtý člen geometrické posloupnosti je $a_4 = 27$ a q = -3/2, pak součet prvních tří členů této posloupnosti je
 - a) -14

b) -9

(40)

- c) 0

d) 9

e) 14

- 8

c) 8

e) 10,4

- 16

11.	Je dána funkce $f(x) = x^2 - 1$. Pak $f(x+1) + y$	f(x-1) =		
	a) $2x^2$	b) $2x^2 - 2$	(50)	
	c) $2x^2 + 4x$	d) $4x^2 - 1$	- 10	
	e) $4x^2 + 2$			
12.	Přímky $p: x = -1 + t; \ y = 2 - 3t; \ t \in R$ a $q: 3x$	x + y + 2 = 0 jsou		
	a) kolmé	b) různoběžné, ale nikoli kolmé	(50)	
	c) rovnoběžné různé	d) totožné	- 10	
	e) mimoběžné	,		
13.	* * * *	ekterou ze tří barev, přičemž barva líce je vždy ji kti různých obrázků. Všechny přípustné kombinace lvě karty nejsou stejné. Kolik je karet celkem?		
	a) 10	b) 15	(50)	
	c) 30	d) 60	- 10	
ı	e) 75	<i></i>		
14.	Řešení rovnice $4-2z=i(3+z)$ v komplexním	oboru je		
	a) $-1 + 2i$	b) $1 + 2i$	\bigcirc	
	c) $1 - 2i$	d) $2+i$	- 10	
	$\stackrel{\circ}{=}$ $2-i$,		
15.	Krychle má hranu $a=2$. Koule o stejném obje	mu jako tato krychle má poloměr		
	a) $\sqrt[3]{6/\pi}$	b) $\sqrt[3]{8/\pi}$	(50)	
	c) $\sqrt[3]{8\pi}$	d) $\pi \sqrt[3]{6}$	- 10	
	$(2) \sqrt{3/\pi}$			
16.	Máše je 24 let. Má dvakrát tolik let, jako bylo let je Dáše?	Dáše, když Máše bylo tolik let, jako je Dáše dnes	. Kolil	
	a) 12	b) 14	(80)	
	c) 16	d) 18	- 16	
	e) 20	,		
17.	Množina všech řešení rovnice $\cos(2x) + 3\sin x + 1 = 0$ v oboru reálných čísel (k je celé číslo) je právě			
	a) $\left\{ \frac{\pi}{4} + 2k\pi, \frac{3\pi}{4} + 2k\pi \right\}$	b) $\left\{ \frac{\pi}{3} + 2k\pi, \frac{2\pi}{3} + 2k\pi \right\}$	80	
	c) $\{\frac{7\pi}{6} + 2k\pi, \frac{11\pi}{4} + 2k\pi\}$	d) $\left\{\frac{2\pi}{3} + 2k\pi, \frac{4\pi}{3} + 2k\pi\right\}$	- 16	
	c) $\left\{ \frac{7\pi}{6} + 2k\pi, \frac{11\pi}{6} + 2k\pi \right\}$ e) $\left\{ \frac{\pi}{3} + 2k\pi, \frac{5\pi}{3} + 2k\pi \right\}$	7 (3)		
	V krabici jsou předměty různých vlastností. Víme, že některé žluté předměty mají tvar koule a že všechny koule jsou duté. Jaký závěr ohledně předmětů v krabici z těchto informací můžeme vyvodit?			
	a) Žádný dutý předmět není žlutý.	b) Žádný žlutý předmět není dutý.	(80)	
	c) Aspoň jeden dutý předmět je žlutý.	d) Všechny duté předměty jsou žluté.	- 16	
	e) Žádné z předchozích tvrzení z uvedených předpokladů neplyne.			
19.	Operace \ominus je definována jako $a \ominus b = ab + 3b$. Určete x , víme-li, že $2 \ominus (x \ominus 3) = 30$.			
	a) -2	b) -1	80	
	c) 0	d) 1	- 16	
	e) 2			
20.		rvní pumpou by se cisterna vyprázdnila o 4 hodiny na vyprázdnila pouze první (výkonnější) pumpou 3 $184,96; 28^2 = 784; 52^2 = 2704; 68^2 = 4624)$		
	a) 6	b) 7,6	80	
	,			

d) 9,6