Minimal examples of MINLPs

Niloy Saha

1 MINLP with linear objective and non-linear constraint

Let \mathbb{S} denote the set of switches and \mathbb{C} denote the set of controllers. Each controller $j \in \mathbb{C}$ has a capacity μ_j , and a unit cost of using it c_j . Let the binary variable x_{ij} denote whether switch $i \in \mathbb{S}$ is assigned to controller $j \in \mathbb{C}$. The response time of a controller is given as:

$$rt_j = \frac{1}{\mu_j - \sum_{i \in \mathbb{S}} x_{ij}} \quad \forall j \in \mathbb{C}$$
 (1)

We want to assign switches to controllers so that the overall cost of assignment $\sum_{j} c_{j} \sum_{i} x_{ij}$ is minimized, provided the response time of a controller rt_{j} is below a threshold θ .

The problem is formulated as an mixed integer non-linear programming (MINLP) problem with a linear objective and non-linear constraint as follows:

$$\sum_{i} c_{j} \sum_{i} x_{ij} \tag{2a}$$

subject to
$$\sum_{i \in \mathbb{C}} x_{ij} = 1 \quad \forall i \in \mathbb{S}$$
 (2b)

$$rt_j \le \theta \quad \forall j \in \mathbb{C}$$
 (2c)

$$x_{ij} \in \{0, 1\} \tag{2d}$$

Here Equation (2b) ensures each switch is assigned to only one controller, and Equation (2c) specifies the non-linear constraint.

MINLP with non-linear objective and lin-2 ear constraints

Here, we consider the same problem as above, but consider the objective as minimizing the overall response time.

$$\sum_{i} rt_{j} \tag{3a}$$

min
$$\sum_{j} rt_{j}$$
 (3a) subject to
$$\sum_{j \in \mathbb{C}} x_{ij} = 1 \quad \forall i \in \mathbb{S}$$
 (3b)

$$x_{ij} \in \{0, 1\} \tag{3c}$$

Here Equation (3b) ensures each switch is assigned to only one controller, and Equation (3a) specifies the non-linear objective.