Лекция 9: Обобщенные линейные модели, логистическая регрессия

Важное предположение линейной регрессии

- Нормальное распределение ошибки с константной дисперсией:
- Часто возникающие «особенности»:
 - Несимметричные распределения отклика

- □ Гетероскедастичность
- □ Ограниченная область определения отклика

- Что делать?
 - □ Явно преобразовывать отклик: **E(g(y) | x)**

НО, в общем случае: $g^{-1}(E(g(y)|x)) \neq E(y|x)$

□ Использовать функцию связи:

g(E(y|x))

Пример

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv("cars0.csv",delimiter=",")
data.head()
```

	Make	Model	Type	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower	MPG_City	MPG_Highway	Weight	Wheelbase	Length
0	Acura	MDX	SUV	Asia	All	36945.0	33337.0	3.5	6.0	265	17	23	4451	106	189
1	Acura	RSX Type S 2dr	Sedan	Asia	Front	23820.0	21761.0	2.0	4.0	200	24	31	2778	101	172
2	Acura	TSX 4dr	Sedan	Asia	Front	26990.0	24647.0	2.4	4.0	200	22	29	3230	105	183
3	Acura	TL 4dr	Sedan	Asia	Front	33195.0	30299.0	3.2	6.0	270	20	28	3575	108	186
4	Acura	3.5 RL 4dr	Sedan	Asia	Front	43755.0	39014.0	3.5	6.0	225	18	24	3880	115	197

Пример (МНК) – все плохо

Dep. Variab	ole:	Invoi	се	R-squ	ıared:	0.704	1
Mod	lel:	OL	_S Ad	j. R-squ	ıared:	0.702	J
Metho	od: L	east Squar	es	F-sta	tistic:	336.3	
Da	ite: Wed	01 Nov 20	23 Pro b	Prob (F-statistic):		1.06e-111	
Tin	ne:	01:43:0	01 Lo	g-Likeli	hood:	-4531.2	
No. Observation	ns:	42	28		AIC:	9070.	
Df Residua	als:	42	24		BIC:	9087.	
Df Mod	iel:	3 nonrobust					
Covariance Ty	pe:						
	coef	std err	t	P> t	[0.0	0.9	75]
const	2.25e+04	6682.648	3.367	0.001	9362.7	779 3.56e	+04
Weight	0.0255	1.015	0.025	0.980	-1.9	970 2.0	021
Length -	213.1397	45.054	-4.731	0.000	-301.6	96 -124.	583
Horsepower	218.3874	8.400	26.000	0.000	201.8	377 234.	898

7

Преобразование отклика и логнормальная регрессия

■ Распределение отклика y логнормальное, тогда распределение с.в. $\log(y)$ — нормальное: $\log(y) \sim N(\mu, \sigma^2)$

• Связь моментов исходной с.в. y и $\log(y)$:

$$E(y) = \exp(\mu + \frac{\sigma^2}{2}), D(y) = (e^{\sigma^2} - 1)(E(y))^2$$

• Это значит, что можно построить МНК регрессию для прогнозирования $\log(y) = w^T x$ и получить исходный отклик:

$$\mu = E(\log(y)|x) = w^T x \Rightarrow E(y|x) = \exp\left(w^T x + \frac{\sigma^2}{2}\right)$$

• Откуда брать σ^2 ? Можно взять оценку $\sigma^2 \approx MSE_{val}$, желательно на валидационном наборе

Пример (логнормальная регрессия) – лучше

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X_train, X_test, y_train, y_test = train_test_split(
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    np.log(data['Invoice']),test_size=0.3)
lnr = sm.OLS(endog=y_train, exog=X_train)
lnr_results=lnr.fit()
mse=mean_squared_error(y_test, lnr_results.predict(X_test))
lnr_results.summary()
```



```
fig, ax = plt.subplots(figsize=(5, 5))
ax.scatter(np.exp(mse/2+lnr_results.predict(
    sm.add_constant(data[['Weight','Length','Horsepower']]))),
    results.resid_pearson)
plt.xlim(0, 50000)
plt.ylim(-4, 4)
ax.set_ylabel('Остатки')
ax.set_xlabel('Прогноз')
plt.axhline(y = 0, color = 'r', linestyle = '--')
```

			_				_
Dep. Vari	able:	In	voice	R-	squared:	0.76	8
М	odel:	OLS		Adj. R-squared:		0.76	6
Met	thod:	Least Squares F-statistic:		statistic:	325.	9	
ı	Date: W	ed, 01 Nov	2023 I	3 Prob (F-statistic):		2.68e-9	3
Time:		01:	54:31	Log-Likelihood:		9.511	5
No. Observations:			299		-11.0	2	
Df Residuals:			295		3.77	9	
Df M	odel:		3				
Covariance 7	Туре:	nonr	obust				
	coef	std err	t	t P> t	[0.025	0.975]	
const	9.6851	0.209	46.330	0.000	9.274	10.097	
Weight	0.0001	2.83e-05	4.264	0.000	6.5e-05	0.000	
Length	-0.0060	0.001	-4.324	0.000	-0.009	-0.003	
Horsepower	0.0055	0.000	22.407	0.000	0.005	0.006	

Обобщенная линейная модель

Функция связи
$$g(E(y|x)) = w_0 + w_1 x_1 ... + w_k x_p = \langle x, w \rangle$$

■ Распределение отклика принадлежит экспоненциальному семейству $y_i \sim \text{Exp}(\theta, \phi)$, где плотность определена как:

$$p(y|\theta,\phi) = exp\left(\frac{y\theta - c(\theta)}{\phi} + h(y,\phi)\right)$$

- Математическое ожидание с.в. y зависит только от θ через некоторую монотонную ϕy нкцию связи g(.) (link function) как: $\mu = E(y) = c'(\theta) \Rightarrow \theta = g(\mu) = [c']^{-1}(\mu)$
- Дисперсия с.в. у есть функция от среднего: $D(y) = \phi c''(\theta)$
- Распределение отклика наблюдений может подсказать какую функцию связи и функцию потерь следует выбрать

Важные частные случаи

- Линейная регрессия: $p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right)$
- Логистическая регрессия: $p(y|\mu) = \mu^y (1-\mu)^{1-y}$
- Пуассоновская регрессия: $p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$
- Гамма регрессия: $p(y|\nu,\mu) = \frac{1}{\Gamma(\nu)y} \left(\frac{y\nu}{\mu}\right)^{\nu} e^{-\frac{y\nu}{\mu}}$

Регрессия	Отклик	Параметр $ heta$ (среднее)	Параметр ϕ	Дисперсия	Каноническая функция связи
Линейная	непрерывный неограниченный	μ	σ	σ²	тождество g(µ)= µ
Логистическая	бинарный категориальный	μ	1	(1- μ) μ	логит g(µ)= log(µ/(1- µ))
Пуассоновская	«Счетчик» - дискретный положительный	λ	1	λ	логарифм g(µ)= log(µ)
Гамма	непрерывный положительный	μ	V	μ/ v ²	обратная g(µ)= 1/µ

Примеры вывода функции связи

- Суть: приведение распределения к каноническому виду $\mathrm{Exp}(\theta,\phi)$
- Линейная регрессия (нормальное распределение):

$$p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right) = \exp\left(\frac{y\mu - \frac{1}{2}\mu^2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right)$$
$$\theta = g(\mu) = \mu, c(\theta) = \frac{1}{2}\mu^2 = \frac{1}{2}\theta^2$$

Пуассоновская регрессия (распределение Пуассона):

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^{y}}{y!} = \exp\left(\frac{y\log(\lambda) - \lambda}{1} - \log(y)!\right)$$
$$\theta = g(\lambda) = \log(\lambda), c(\theta) = \lambda = e^{\theta}$$

■ Логистическая регрессия (распределение Бернулли):

$$p(y|\mu) = \mu^y (1-\mu)^{1-y} = \exp\left(y\log\left(\frac{\mu}{1-\mu}\right) - \log(1-\mu)\right)$$
$$\theta = g(\mu) = \log\left(\frac{\mu}{1-\mu}\right), c(\theta) = -\log(1-\mu) = \log(1+e^{\theta})$$

Не все так однозначно

- На практике часто используют неканонические функции связи
- Например, для логистической регрессии:
 - Каноническая logit
 - \square probit: $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mu} z^2 dz$
 - $\log \log \log(-\log(1-\mu))$
- Для гамма регрессии:
 - Каноническая обратная
 - log, тождественная и др.
- Для «счетчиков»:

среднего

- Может быть «смесь» счетчиков
- "zero inflated" смесь 0 и пуассоновского счетчика

Пример гамма регрессии

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    family=sm.families.Gamma())
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:		Invoic	e No.	Observa	ations:	428	
Model:		GLI	М	Df Resi	iduals:	424	
Model Family:		Gamm	a	Df	Model:	3	
Link Function:	inv	erse_powe	er		Scale: 0	.11306	
Method:		IRL	S L	og-Likel	ihood: -	5686.6	
Date:	Wed,	01 Nov 202	3	Dev	riance:	310.53	
Time:		02:03:0	7	Pearso	n chi2:	47.9	
No. Iterations:			8 Pseud	lo R-squ	ı. (CS):	-74.85	7
Covariance Type:		nonrobus	st				ر
	coef	std err	z	P> z	[0.025	0.9	9751
const 4.8	318e-05	6.76e-06	7.124	0.000	3.49e-05	6.14	- e-05
Weight 6.0	088e-09	5.99e-10	-10.164	0.000	-7.26e-09	-4.91	e-09
Length 2.3	391e-07	4.43e-08	5.402	0.000	1.52e-07	3.26	e-07
Horsepower -1.4	467e-07	2.88e-09	-50.999	0.000	-1.52e-07	-1.41	e-07

Как считать? Ответ позже

Статистика Уальда (аналогично Стьюденту для МНК)

гетероскедастичность?

Пример гамма регрессии с неканонической тождественной функцией связи

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']])
    family=sm.families.Gamma(sm.families.links.identity()))
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:	Invoice	No. Observations:	428
Model:	GLM	Df Residuals:	424
Model Family:	Gamma	Df Model:	3
Link Function:	identity	Scale:	0.066351
Method:	IRLS	Log-Likelihood:	-4359.6
Date:	Wed, 01 Nov 2023	Deviance:	24.571
Time:	02:06:57	Pearson chi2:	28.1
No. Iterations:	19	Pseudo R-squ. (CS):	0.9438
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	2.359e+04	4377.250	5.389	0.000	1.5e+04	3.22e+04
Weight	2.8085	0.849	3.307	0.001	1.144	4.473
Length	-209.3271	31.087	-6.734	0.000	270.256	-148.398
Horsepower	161.8258	8.531	18.969	0.000	145.105	178.547

Пример гамма регрессии с неканонической функцией связи log

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    family=sm.families.Gamma(sm.families.links.Log()))
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:	Invoice	No. Observations:	428
Model:	GLM	Df Residuals:	424
Model Family:	Gamma	Df Model:	3
Link Function:	Log	Scale:	0.059580
Method:	IRLS	Log-Likelihood:	-4346.8
Date:	Wed, 01 Nov 2023	Deviance:	23.319
Time:	02:10:09	Pearson chi2:	25.3
No. Iterations:	12	Pseudo R-squ. (CS):	0.9614
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	9.6571	0.169	57.017	0.000	9.325	9.989
Weight	0.0001	2.57e-05	4.863	0.000	7.47e-05	0.000
Length	-0.0058	0.001	-5.077	0.000	-0.008	-0.004
Horsepower	0.0055	0.000	25.850	0.000	0.005	0.006

Максимизация правдоподобия для GLM методом Ньютона-Рафсона

Принцип максимума правдоподобия:

$$L(w) = -\log \prod_{i=1}^l p(y_i|\theta_i,\phi_i) = -\sum_{i=1}^l [y_i\theta_i - c(\theta_i)]/\phi_i o \min_w$$
 , где $\theta_i = w^Tx_i$

■ Метод Ньютона-Рафсона (*t* – номер итерации):

$$w^{t+1} = w^t - \eta_t \left(\nabla^2 L(w^t) \right)^{-1} \nabla L(w^t)$$

■ Градиент $\nabla L(w^t)$:

$$\frac{\partial L(w)}{\partial w_j} = \sum_{i=1}^{l} \frac{y_i - c'(w^T x_i)}{\phi_i} x_i$$

■ Матрица Гессе $\nabla^2 L(w^t)$:

$$\frac{\partial^2 L(w)}{\partial w_j \partial w_k} = -\sum_{i=1}^l \frac{c''(w^T x_i)}{\phi_i} x_i x_k$$

10

Mетод IRLS (Iteratively reweighted least squares)

- Обозначения:
 - \square Взвешенная (по наблюдениям) матрица признаков $\widetilde{X}=W_tX$,
 - \square где X исходная матрица данных,
 - \square $W_t = diag\left(\sqrt{rac{c\prime\prime(heta_i)}{\phi_i}}
 ight)$ веса наблюдений на t-ой итерации
 - \square $\widetilde{y_i} = \frac{y_i c`(\theta_i)}{\sqrt{\phi_i c``(\theta_i)}}$ модифицированные отклики
- Метод Ньютона-Рафсона принимает вид:

$$w^{t+1} = w^{t} - \eta_{t} \left(X^{T} W_{t} W_{t} X \right)^{-1} X^{T} W_{t} \left(\sqrt{\frac{\phi_{i}}{c``(\theta_{i})}} \frac{y_{i} - c'(\theta_{i})}{\phi_{i}} \right)$$

$$\left(\tilde{X}^{T} \tilde{X} \right)^{-1} \tilde{X}^{T}$$

 На каждом шаге - МНК линейной регрессии с взвешенными наблюдениями и модифицированными откликами:

$$\|\tilde{X} - \tilde{y}w\|^2 \to \min_{w}$$

Особенности поиска решения

- При небольшой выборке IRLS лучший вариант
- Но на больших выборках используют методы:
 - □ градиентные (в том числе стохастические)
 - □ квазиньютоновские (в том числе lbfgs)
- Есть варианты борьбы с переобучением:
 - □ L₁ и L₂ регуляризация
 - □ пошаговый отбор переменных (вместо тестов Фишера или Стьюдента – тест Уальда, информационные критерии и кроссвалидация работают как и для МНК)
- Для оценки важности переменных используются:
 - стандартные ошибки расчета коэффициентов (за рамками нашего курса)
 - □ статистика Уальда для оценки важности коэффициентов:

$$\frac{w_i}{SE(w_i)} \sim N(0,1)$$

Пуассоновская регрессия

 Для моделирования количества наступлений события или доли (rate) наступлений события как функции от предикторов:

$$\log(E(y|x)) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_k \Rightarrow \mu(w) = e^{w_0} \cdot e^{w_1 x_1} \cdots e^{w_p x_p}$$

- Положительный (и как правило дискретный) отклик
- Функция связи: log
- Функция потерь: $L(x, y, w) = y \log \left(\frac{y}{\mu(w)}\right) (y \mu(w))$
- Интерпретация построенной модели:
 - e^w мультипликативный эффект на отклик от изменения предиктора на единицу
 - Папример, если $e^{w_1} = 1.2$, тогда увеличение x_1 на одну единицу вызывает 20% увеличение ожидаемого отклика, а если $e^{w_2} = 0.8$, тогда увеличение x_2 на одну единицу вызывает 20% уменьшение ожидаемого отклика

Пуассоновская регрессия

- Пуассоновская регрессия наиболее подходит для редких событий
 - □ распределение отклика должно иметь маленькое среднее (<10 или даже <5, в идеале ~1)
 - иначе гамма и логнормальное распределение может быть лучше чем пуассоновское, если распределение сильно ассиметричное или есть чрезмерная дисперсия
 - □ или нормальное, если распределение достаточно симметричное

Пример пуассоновской регрессии

dt=pd.read_csv("ships.csv",delimiter=",")
dt.head()

	type	age_period	operation_period	months	damages
0	1	1	1	127	0
1	1	1	2	63	0
2	1	2	1	1095	3
3	1	2	2	1095	4
4	1	3	1	1512	6

X.head()

	Intercept	C(type)[T.2]	C(type)[T.3]	C(type)[T.4]	C(type)[T.5]	months
0	1.0	0.0	0.0	0.0	0.0	127.0
1	1.0	0.0	0.0	0.0	0.0	63.0
2	1.0	0.0	0.0	0.0	0.0	1095.0
3	1.0	0.0	0.0	0.0	0.0	1095.0
4	1.0	0.0	0.0	0.0	0.0	1512.0

```
from patsy import dmatrices
import statsmodels.api as sm
y, X = dmatrices("damages~C(type)+months", dt, return_type="dataframe")
pois_model = sm.GLM(y,X, family=sm.families.Poisson())
pois_results = pois_model.fit()
pois_results.summary()
```

Generalized Linear Model Regression Results

Dep. Variable):	damag	es N	o. Obse	rvations:	34
Mode	l:	GL	.M	Df R	esiduals:	28
Model Family	r:	Poiss	on	ı	Of Model:	5
Link Function	ı:	L	og	Scale: Log-Likelihood:		1.0000
Method	l:	IRI	S			-125.73
Date	: Tue,	31 Oct 202	23		eviance:	153.59
Time):	02:55:	48	Pears	son chi2:	151.
No. Iterations	s:		6 Pse	udo R-s	qu. (CS):	1.000
Covariance Type	: :	nonrobu	ıst			
	coef	std err	z	P> z	[0.025	0.975]
Intercept 1	.7650	0.154	11.429	0.000	1.462	2.068
C(type)[T.2] 1	.4035	0.194	7.219	0.000	1.022	1.785
C(type)[T.3] -1	.2434	0.327	-3.798	0.000	-1.885	-0.602
C(type)[T.4] -0	.8902	0.287	-3.097	0.002	-1.454	-0.327
C(type)[T.5] -0	.1078	0.235	-0.460	0.646	-0.568	0.352

Пример пуассоновской регрессии

<matplotlib.lines.Line2D at 0x2e7d9070c70>

Логистическая регрессия

 Почему нельзя моделировать вероятность как непрерывный отклик с помощью линейной регрессии?

- □ Как представить категориальный отклик в виде числовой переменной?
- □ Если отклик закодирован (1=Yes, 0=No), а прогноз 1.1 или -0.4, что это означает?
- □ Если переменная имеет только два значения (или несколько), имеет ли смысл требовать постоянство дисперсии или нормальность ошибок?
- □ Вероятность ограничена, а линейная функция нет. Принимая во внимание ограниченность вероятности, можно ли предполагать линейную связь между предиктором и откликом?

Логистическая регрессия

Уравнение регрессии:

Функция связи (логит) и обратная ей (логистическая):

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \mu \Rightarrow$$

$$\Rightarrow p_i = \sigma(\mu) = \frac{1}{1 + e^{-\mu}} = \frac{1}{1 + e^{-x^T w}}$$

Основное предположение линейной логистической регрессии (линейная зависимость логита вероятности от предикторов):

меньше $\leftarrow \mu \rightarrow$ больше Ограничивает значение отклика

Функция потерь логистической регрессии

Функция потерь (логарифмическая) является аппроксимацией негладкой функции потерь sign(.):

$$L(y, x, w) = \log[1 + \exp(-yw^{T}x)] \ge$$
$$\ge \operatorname{sign}(yw^{T}x)$$

30 25 20 -1.5 -1.0 0.5 0 0.5 1.0 1.5 20 25 30

■ Градиент $\nabla Q(w)$ и матрица Гессе $\nabla^2 Q(w)$ для метода Ньютона-Рафсона:

$$w^{t+1} = w^t - \eta_t \ (\nabla^2 Q(w^t))^{-1} \nabla Q(w^t)$$

$$\frac{\partial Q(w)}{\partial w_j} = \sum_{i=1}^l (1-\sigma_i) y_i x_i, \\ \frac{\partial^2 Q(w)}{\partial w_j \partial w_k} = -\sum_{i=1}^l (1-\sigma_i) \sigma_i y_i x_i x_k$$
 где $\sigma_i = \sigma \big(y_i w^T x_i \big), \ \sigma(z) = \frac{1}{1+e^{-z}}$ - сигмоидальная функция

IRLS для логистической регрессии

- На каждом шаге:
 - МНК линейной регрессии с взвешенными наблюдениями и модифицированными остатками, старающийся улучшить эмпирический риск на самых «сложных» примерах:

$$Q(w) = \sum_{i=1}^{l} (1 - \sigma_i) \sigma_i \left(w^T x_i - \frac{y_i}{\sigma_i} \right)^2 \to \min_{w} \quad \leftrightarrow \quad \left\| \tilde{X} - \tilde{y}w \right\|^2 \to \min_{w}$$

- где:
 - \square Взвешенная (по наблюдениям) матрица признаков $ilde{X} = W_t X$
 - □ X исходная матрица данных,
 - \square $W_t = diag((1-\sigma_i)\sigma_i)$ веса наблюдений на t-ой итерации,
 - поскольку $\sigma_i = P(y_i|x_i)$ вероятность правильной классификации x_i , то чем ближе x_i к границе, тем больше вес $(1-\sigma_i)\sigma_i$ и «сложнее» пример
 - $\widetilde{y}_i = \frac{y_i}{\sigma_i}$ модифицированные отклики, чем выше вероятность ошибки тем больше $\frac{1}{\sigma_i}$

Многоклассовая логистическая регрессия и функция softmax

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.inspection import DecisionBoundaryDisplay

iris = datasets.load_iris()
X = iris.data[:, :2]
Y = iris.target

logreg = LogisticRegression()
logreg.fit(X, Y)

DecisionBoundaryDisplay.from_estimator(
    logreg, X, cmap="Pastel1")
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap="Set1")
plt.show()
```


 Логистическая регрессия с двумя классами обобщается на случай К классов (многомерная логистическая функция):

$$p(y = k|x) = \frac{e^{x^T w_k}}{\sum_{j=1}^{K} e^{x^T w_j}}$$

- Для каждой пары классов существует своя граница - линейная разделяющая функция, где вероятности классов совпадают
- Многоклассовая логистическая регрессия также называется мультиномиальной регрессией, а многомерная логистическая функция -softmax, которая «нормализует» Кмерный вектор так, чтобы сумма координат = 1