Update on $B^{\pm} \to Dh^{\pm}$, $D \to K^+K^-\pi^+\pi^-$ analysis at LHCb and BESIII

Martin Tat

Oxford LHCb

10th January 2022

Outline

- LHCb
 - Summary of current LHCb analysis progression
- 2 BESIII
 - ullet Strong-phase determination in quantum correlated $D^0ar{D^0}$ decays
 - First look at binned fits: Measurement of fractional bin yields K_i
 - Measurement of CP-even fraction F₊
- Summary

LHCb analysis summary

- Previous report on $B^{\pm} \to Dh^{\pm}$, $D \to K^+K^-\pi^+\pi^-$:
 - ullet Global mass fit \Longrightarrow Obtain mass shape
 - ② Binned CP fit ⇒ Obtain CP observables
 - **3** Backgrounds: Charmless, $D \to K\pi\pi\pi\pi^0$, $D \to K\pi\pi\pi$, $D \to K(X)I\nu$

LHCb analysis summary

- Current analysis progress:
 - Finished ANA note draft, currently in 1st circulation in B2OC WG
 - 2 Received comments from 2/3 reviewers, replies ready this week
 - Will request $B \to (K\pi\pi\pi\pi^0)_D h^{\pm}$ MC
 - Fit with c_i , s_i floated?
 - Need to finish off systematics for:
 - Charmless and $K\pi\pi\pi\pi^0$ backgrounds
 - c_i, s_i model-dependent uncertainties

- ullet BESIII: e^+e^- collider at $\psi(3770) o D^0ar{D^0}$ threshold
 - \bullet 2010-2011: 2.93 fb⁻¹
 - Since 23rd December: 0.46 fb⁻¹
 - Expect $20 \, \mathrm{fb^{-1}}$ by end of 2023

- Double-tag analysis: Reconstruct signal mode $(KK\pi\pi)$ and known tag mode
- $D^0 \bar{D^0}$ pair is quantum correlated

- Equivalently, we can consider D_+D_-
 - $D_{\pm}=rac{1}{\sqrt{2}}(D^0\pm ar{D^0})$ are CP eigenstates

- Tag mode can be a flavour tag
 - $\bullet~K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$, $K^-e^+\nu_e$

- Tag mode can be a CP even tag
 - KK, $\pi\pi$, $\pi\pi\pi^{0}$, $K_{S}\pi^{0}\pi^{0}$, $K_{L}\pi^{0}$, $K_{L}\omega$

- Tag mode can be a CP odd tag
 - $K_S\pi^0$, $K_S\omega$, $K_S\eta$, $K_S\eta'$, $K_L\pi^0\pi^0$

The yield in bin i depends on the tag mode:

- Flavour tag:
 - $N_i \propto K_i$
- CP even tag:
 - $N_i \propto K_i + \bar{K}_i 2\sqrt{K_i\bar{K}_i}c_i$
- CP odd tag:
 - $N_i \propto K_i + \bar{K}_i + 2\sqrt{K_i\bar{K}_i}c_i$

Strategy for obtaining c_i (and s_i):

- Measure K_i using flavour tags
- Oetermine yields of CP even/odd tags
- Fit for c_i

Measurement of fractional bin yields K_i

Measurement of fractional bin yields K_i

Model agrees well with data so far!

Measurement of CP-even fraction F_+

- CP tag yields too small for strong-phase analysis...
- Measure CP-even fraction F₊ instead
 - ullet $F_+=1$ for CP even tags, $F_+=0$ for CP odd tags
 - ullet $2F_+-1$ is the average cosine of the strong-phase
- ullet F_+ is an input to GLW analyses of γ
- Good cross check of data-model agreement
- $KK\pi\pi$ model prediction: $F_+ = 0.74$ (2 $F_+ 1 = 0.47$)

Measurement of CP-even fraction F_{+}

Strategy for measuring F_+ :

- Measure double tag yield of CP tags without binning
- Normalize double tag yields with single tag yields

•
$$\frac{N^{\mathrm{DT}}}{N^{\mathrm{ST}}} = \mathrm{BF}(\mathrm{D}^0 \to \mathrm{KK}\pi\pi) \times (1 \pm (2\mathrm{F}_+ - 1))$$

Measurement of CP-even fraction F_+

 $D^0 \rightarrow KK\pi\pi$ BF asymmetry

Fit result: $F_+ = 0.71 \pm 0.04$ Model prediction: $F_+ = 0.74$

Summary

- LHCb:
 - $B^\pm o (K^+K^-\pi^+\pi^-)_D h^\pm$ analysis in B2OC WG review
 - Very encouraging feedback so far
- BESIII:
 - Fractional bin yields K_i agree well with model
 - ullet CP-even fraction F_+ shows good agreement with model, but low yields
 - Will include $K_{S,L}\pi\pi$ tags

Thank you!