

Surface mount wideband silicon NPN RF bipolar transistor

Technical

Simulation

Product description

The BFP420 is a low noise device based on a grounded emitter (SIEGET[™]) that is part of Infineon's established fourth generation RF bipolar transistor family. Its transition frequency f_T of 25 GHz, high gain and low current characteristics make the device suitable for oscillators up to 10 GHz. It remains cost competitive without compromising on ease of use.

Feature list

- Minimum noise figure NF_{min} = 1.1 dB at 1.8 GHz, 2 V, 5 mA
- High gain G_{ms} = 21 dB at 1.8 GHz, 2 V, 20 mA
- $OIP_3 = 22 \text{ dBm at } 1.8 \text{ GHz}, 2 \text{ V}, 20 \text{ mA}$

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Potential applications

- Radio-frequency oscillators
- Broadband low noise amplifiers (LNAs) for CATV, DVB-T, DAB/DMB and FM/AM radio
- LNAs for sub-1 GHz ISM band applications

Device information

Product name / Ordering code	Package	Pin co	nfigura	tion	Marking	Pieces / Reel	
BFP420 / BFP420H6327XTSA1	SOT343	1 = B	2 = E	3 = C	4 = E	AMs	3000
BFP420 / BFP420H6433XTMA1							10000

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Surface mount wideband silicon NPN RF bipolar transistor

Table of contents

Table of contents

	Product description	1
	Feature list	1
	Product validation	1
	Potential applications	1
	Device information	1
	Table of contents	2
1	Absolute maximum ratings	3
2	Thermal characteristics	4
3	Electrical characteristics	6
3.1	DC characteristics	6
3.2	General AC characteristics	6
3.3	Frequency dependent AC characteristics	7
3.4	Characteristic DC diagrams	8
3.5	Characteristic AC diagrams	11
4	Package information SOT343	16
	Revision history	17
	Disclaimer	18

Surface mount wideband silicon NPN RF bipolar transistor

Absolute maximum ratings

1 Absolute maximum ratings

Table 1 Absolute maximum ratings at $T_A = 25$ °C (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or test condition
		Min.	Max.		
Collector emitter voltage	V_{CEO}	_	4.5	٧	Open base
			4.1		T _A = -55 °C, open base
Collector emitter voltage	V _{CES}		15		E-B short circuited
Collector base voltage	V_{CBO}		15		Open emitter
Emitter base voltage	V_{EBO}		1.5		Open collector
Base current	I _B		9	mA	-
Collector current	Ic		60		
Total power dissipation ¹⁾	P _{tot}		210	mW	<i>T</i> _S ≤ 98 °C
Junction temperature	TJ		150	°C	-
Storage temperature	T_{Stg}	-55			

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding only one of these values may cause irreversible damage to the integrated

circuit.

Datasheet 3 Revision 2.0 2019-01-25

 $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ is measured on the emitter lead at the soldering point of the PCB.

Thermal characteristics

2 Thermal characteristics

Table 2 Thermal resistance

Parameter	Symbol Values				Unit	Note or test condition
		Min.	Тур.	Max.		
Junction - soldering point	R _{thJS}	_	250	_	K/W	-

Figure 1 Total power dissipation $P_{\text{tot}} = f(T_S)$

Thermal characteristics

Permissible pulse load $R_{thJS} = f(t_p)$ Figure 2

Figure 3 Permissible pulse load $P_{\text{tot,max}} / P_{\text{tot,DC}} = f(t_p)$

Electrical characteristics

3 Electrical characteristics

3.1 DC characteristics

Table 3 DC characteristics at $T_A = 25 \,^{\circ}\text{C}$

Parameter	Symbol Values				Unit	Note or test condition	
		Min.	Тур.	Max.			
Collector emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V	$I_C = 1 \text{ mA}, I_B = 0,$ open base	
Collector emitter leakage current	I _{CES}	_	_	10 ²⁾	μΑ	$V_{CE} = 15 \text{ V}, V_{BE} = 0,$ E-B short circuited	
Collector base leakage current	I _{CBO}			100 ²⁾	nA	$V_{CB} = 5 \text{ V}, I_E = 0,$ open emitter	
Emitter base leakage current	I _{EBO}			3 ²⁾	μΑ	$V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0, open collector	
DC current gain	h _{FE}	60	95	130		V _{CE} = 4 V, I _C = 20 mA, pulse measured	

3.2 General AC characteristics

Table 4 General AC characteristics at $T_A = 25$ °C

Parameter	Symbol	Symbol Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Transition frequency	f_{T}	18	25	_	GHz	$V_{CE} = 3 \text{ V}, I_{C} = 30 \text{ mA},$ f = 2 GHz
Collector base capacitance	C _{CB}	_	0.15	0.3	pF	$V_{CB} = 2 \text{ V}, V_{BE} = 0,$ f = 1 MHz, emitter grounded
Collector emitter capacitance	C _{CE}		0.37	-		$V_{CE} = 2 \text{ V}, V_{BE} = 0,$ f = 1 MHz, base grounded
Emitter base capacitance	C _{EB}		0.55			$V_{\rm EB}$ = 0.5 V, $V_{\rm CB}$ = 0, f = 1 MHz, collector grounded

² Maximum values not limited by the device but by the short cycle time of the 100% test.

Frequency dependent AC characteristics 3.3

Measurement setup is a test fixture with Bias-T's in a 50 Ω system, T_A = 25 °C.

Testing circuit Figure 4

Table 5 AC characteristics, $V_{CE} = 2 \text{ V}$, f = 1.8 GHz

Parameter	Symbol	Values			Unit	Note or test condition	
		Min.	Тур.	Max.			
Power gain				_	dB		
Maximum power gain	G _{ms}	_	21			$I_{\rm C} = 20 {\rm mA}$	
Transducer gain	$ S_{21} ^2$	14	17				
Noise figure		_					
Minimum noise figure	NF _{min}		1.1			$I_{\rm C} = 5 \text{mA}$	
Linearity					dBm		
3rd order intercept point at output	OIP ₃		22			$I_{\rm C} = 20 \text{ mA}, Z_{\rm S} = Z_{\rm L} = 50 \Omega$	
• 1 dB gain compression point at output	OP _{1dB}		12				

Note:

 $G_{\rm ms}$ = $IS_{21}/S_{12}I$ for k < 1; $G_{\rm ma}$ = $IS_{21}/S_{12}I$ (k-(k^2 -1) $^{1/2}$) for k > 1. In order to get the NF_{min} values stated in this chapter, the test fixture losses have been subtracted from all measured results. OIP₃ value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.1 MHz to 6 GHz.

3.4 Characteristic DC diagrams

Figure 5 Collector current vs. collector emitter voltage $I_C = f(V_{CE})$, $I_B = parameter$

Figure 6 DC current gain $h_{FE} = f(I_C)$, $V_{CE} = 3 \text{ V}$

Figure 7 Collector current vs. base emitter forward voltage $I_C = f(V_{BE})$, $V_{CE} = 3 \text{ V}$

Figure 8 Base current vs. base emitter forward voltage $I_B = f(V_{BE})$, $V_{CE} = 3 \text{ V}$

Figure 9 Base current vs. base emitter reverse voltage $I_B = f(V_{EB})$, $V_{CE} = 3 \text{ V}$

Figure 10 Collector emitter breakdown voltage $V_{CER} = f(R_{BE})$, $I_C = 1$ mA

3.5 Characteristic AC diagrams

Figure 11 Transition frequency $f_T = f(I_C)$, f = 2 GHz, $V_{CE} =$ parameter

Figure 12 Collector base capacitance $C_{CB} = f(V_{CB}), f = 1 \text{ MHz}$

Gain G_{ma} , G_{ms} , $|S_{21}|^2 = f(f)$, $V_{\text{CE}} = 2 \text{ V}$, $I_{\text{C}} = 20 \text{ mA}$ Figure 13

Maximum power gain $G_{\text{max}} = f(I_{\text{C}})$, $V_{\text{CE}} = 2 \text{ V}$, f = parameter in GHzFigure 14

Maximum power gain $G_{\text{max}} = f(V_{\text{CE}})$, $I_{\text{C}} = 20 \text{ mA}$, f = parameter in GHzFigure 15

Figure 16 Source impedance for minimum noise figure $Z_{S,opt} = f(f)$, $V_{CE} = 2 \text{ V}$, $I_C = 5 / 20 \text{ mA}$

Noise figure $NF_{min} = f(f)$, $V_{CE} = 2 \text{ V}$, $Z_S = Z_{S,opt}$, $I_C = 5 / 20 \text{ mA}$ Figure 17

Noise figure $NF_{min} = f(I_C)$, $V_{CE} = 2 \text{ V}$, $Z_S = Z_{S,opt}$, f = parameter in GHzFigure 18

infineon

Electrical characteristics

Figure 19 Noise figure $NF_{min} = f(I_C)$, $Z_S = Z_{S,opt}$, $NF_{50} = f(I_C)$, $Z_S = 50 \Omega$, $V_{CE} = 2 V$, f = 1.8 GHz

Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as a guarantee that all devices have identical characteristic curves. $T_A = 25 \,^{\circ}\text{C}$.

Package information SOT343

4 Package information SOT343

Figure 20 Package outline

Figure 21 Foot print

Figure 22 Marking layout example

Figure 23 Tape dimensions

Surface mount wideband silicon NPN RF bipolar transistor

Revision history

Revision history

Document version	Date of release	Description of changes
Revision 2.0	2019-01-25	New datasheet layout, typical DC curves added.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-01-25 Published by Infineon Technologies AG 81726 Munich, Germany

© 2019 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ikw1524056005786

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury