МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 2.2.6 Определение энергии активации по температурной зависимости вязкости жидкости

Салтыкова Дарья Б04-105

1 Введение

Цель работы: 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязксоти жидкости по закону Стокса и расчет энергии активации.

Оборудование: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром 1-2 мм).

2 Теоретические сведения

2.1 Энергия активации

Двойственный характер свойств жидкостей связан с особенностя- ми движения их молекул. В газах молекулы движутся хаотично, в их расположении отсутствует порядок. В кристаллических твердых телах частицы колеблются около определенных положений равновесия — узлов кристаллической решетки. В жидкостях, как и в кристал- лах, каждая молекула находится в потенциальной яме электрического поля, создаваемого окружающими молекулами. Молекулы колеблются со средней частотой, близкой к частоте колебаний атомов в кристаллических телах (~ 10¹² Гц), и с амплитудой, определяемой размерами объема, предоставленного ей соседними молекулами. Глубина потенциальной ямы в жидкостях больше средней кинетической энергии колеблющейся молекулы, поэтому молекулы колеблются вокруг более или менее стабильных положений равновесия. Однако у жидкостей различие между этими двумя энергиями невелико, так что молекулы нередко выскакивают из «своей» потенциальной ямы и занимают место в другой.

Для того чтобы перейти в новое состояние, молекула должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно опистаь формулой

$$\eta \sim Ae^{W/kT}$$

2.2 Формула Стокса

На всякое тело, двигающееся в вязкой жидкости, действует сила сопротивления. В общем случае величина этой силы зависит от многих факторов: от вязкости жидкости, от формы тела, от характера обтекания и т. д. Стоксом было получено строгое решение задачи о ламинарном обтекании шарика безграничной жидкостью. В этом случае сила сопротивления F определяется формулой

$$F = 6\pi \eta r v$$

2.3 Рассчетная формула вязкости

Измеряя на опыте установившуюся скорость падения шариков v и величины r, ρ , ρ_0 , можно определить вязкость жидкости по формуле

$$\eta = \frac{2}{9}gr^2\frac{\rho - \rho_0}{v}$$

3 Экспериментальная установка

Для измерений используется стеклянный цилиндрический сосуд В, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина ≈ 40 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками с помощью линейки, а время падения с помощью секундомера, определяют скорость шарика vyct. Сам сосуд В помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате.

Схема прибора (в разрезе) показана на Рис. 1.

Рис. 1: Установка для определения коэффициента вязкости жидкости

4 Ход работы

T, K	298	304	308	313	318	323		
$\rho_0, \ \Gamma/\mathrm{cm}^3$	1,258	1,256	1,254	1,252	1,250	1,248		
L, см	$20,0 \pm 0,1$							
$ ho_{ m creклa}, \ ho/{ m cm}^3$	2,52							
$ ho_{ m cmanu}, \ \Gamma/{ m cm}^3$	7,80							

1. Отберем 12 стеклянных и 12 стальных шариков и с помощью микроскопа измерим их средние диаметры (см. Таблицу ниже). Погрешность измерения диаметра для стеклянных шариков примем $\sigma_{d1}=0.1$ мм, для стальных - $\sigma_{d2}=0.3$ мм.

2. Измерим установившиеся скорости падения шариков на L=20 см, $\sigma_L=0.1$ см и вычислим вязкость. Погрешность измерения времени примем $\sigma_t=0.2$ с. Оценим также время релакации τ и путь релаксации $S=v_{\rm ycr}\tau$.

T, K	298				
шарики	1 стекло	2 стекло	1 сталь	2 сталь	
d, мм	2,06	2,04	0,80	0,80	
t, c	47,03	47,22	50,50	50,90	

T, K	304					
шарики	1 стекло	2 стекло	1 сталь	2 сталь		
d, мм	2,02	2,10	0,82	0,94		
t, c	29,79	29,39	31,00	32,52		

T, K	308					
шарики	1 стекло	2 стекло	1 сталь	2 сталь		
d, мм	2,06	2,08	1,20	0,80		
t, c	23,81	23,06	26,36	36,32		

T, K	313					
шарики	1 стекло	2 стекло	1 сталь	2 сталь		
d, мм	2,12	2,10	0,72	0,84		
t, c	17,39	16,32	29,88	17,88		

T, K	318					
шарики	1 стекло	2 стекло	1 сталь	2 сталь		
d, мм	2,08	2,10	0,68	0,82		
t, c	12,08	12,04	24,74	18,39		

T, K	323				
шарики	1 стекло	2 стекло	1 сталь	2 сталь	
d, мм	2,06	2,06	0,76	0,70	
t, c	9,00	8,88	12,78	15,52	

Получаем следующие значения:

T, K	298		304		308		313	
$\eta, \Pi a \cdot c$	0,63		0,44		0,36		0,25	
$\sigma_{\eta}, \Pi a \cdot c$	0,18		0,12		0,09		0,08	
	стекло	сталь	стекло	сталь	стекло	сталь	стекло	сталь
$\tau, \cdot 10^{-3} \text{ c}$	0,86	0,48	1,38	0,77	1,73	1,21	2,41	1,09
$\sigma_{\tau}, \cdot 10^{-3} \text{ c}$	0,08	0,12	0,13	0,11	0,17	0,14	0,23	0,16
$S, \cdot 10^{-2} \text{ MM}$	0,37	0,19	0,93	0,48	1,48	0,84	2,86	1,03
$\sigma_S, \cdot 10^{-2} \text{ MM}$	0,04	0,14	0,09	0,33	0,14	0,47	0,04	0,01

T, K	31	8	323		
$\eta, \Pi a \cdot c$	0,2	20	0,13		
$\sigma_{\eta}, \Pi a \cdot c$	0,0	7	0,04		
	стекло сталь		стекло	сталь	
$\tau, \cdot 10^{-3} \text{ c}$	3,36	1,15	4,52	1,73	
$\sigma_{\tau}, \cdot 10^{-3} \text{ c}$	0,22	0,13	0,23	0,24	
$S, \cdot 10^{-2} \text{ MM}$	5,57	1,12	10,12	2,50	
$\sigma_S, \cdot 10^{-2} \text{ MM}$	0,10	0,01	1,04	2,04	

3. Для каждого из опытов вычислим значение числа Re.

T, K	298	304	308	313	318	323
Re	0,006	0,014	0,022	0,040	0,070	0,134

4. Построим график зависимости $\ln \eta$ от 1/T и по угловому коэффициенту прямой определим энергию активации.

$$W = k \frac{d \ln \eta}{d(1/T)} = (7.7 \pm 0.2) \cdot 10^{-20}$$
 Дж

5 Вывод

В ходе работы:

1. Вычислена вязкость исследуемой жидкости по закону Стокса при различных температурах. Значения в пределах погрешности соответствуют табличным.

T, K	298	304	308	313	318	323
$\eta, \Pi a \cdot c$	0,63	0,44	0,36	$0,\!25$	0,20	0,13
$\sigma_{\eta}, \Pi a \cdot c$	0,18	0,12	0,09	0,08	0,07	0,04

- 2. Получены значения времени релаксации. Поскольку время падения в несколько раз больше времени релаксации, процесс установления скорости можно считать закончившимся.
- 3. Вычислена энергия активации глицерина $W = (7.7 \pm 0.2) \cdot 10^{-20} \; \text{Дж}.$
- 4. Получены числа Рейнольдса (все они меньше 0,5), которые позволяют утверждать, что в условиях опыта течение можно считать ламинарным.