Análise de Erros em Aritmética de Ponto Flutuante

Márcio Antônio de Andrade Bortoloti

Cálculo Numérico

Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia

Sumário

Instabilidade Numérica

Mal - Condicionamento

Instabilidade Numérica

Ocorre quando um resultado intermediário, contaminado com um erro, influencia todos os resultados subsequentes, mesmo que todos os cálculos subsequentes sejam feitos com exatidão.

Exemplo:

Resolver a integral

$$I_n = e^{-1} \int_0^1 x^n e^x \, dx.$$

Integrando por partes,

$$I_n = e^{-1} \left\{ \left[x^n e^x \right]_0^1 - \int_0^1 n x^{n-1} e^x \, dx \right\}$$
$$= 1 - n e^{-1} \int_0^1 x^{n-1} e^x \, dx = 1 - n I_{n-1}$$

Assim, obtemos uma fórmula de recorrência

$$\begin{cases} I_0 = e^{-1} \int_0^1 e^x \, dx = e^{-1}(e - 1) = 0.6321 \\ I_n = 1 - nI_{n-1}, \quad n = 1, 2, \dots \end{cases}$$

\overline{n}	0	1	2	3	4	5	6	7
$\overline{I_n}$	0.6321	0.3679	0.2642	0.2074	0.1704	0.1480	0.1120	0.2160

Por outro lado, observe que

$$I_n = e^{-1} \int_0^1 x^n e^x \, dx < e^{-1} \max_{0 \le x \le 1} \{e^x\} \int_0^1 x^n \, dx$$

$$= e^{-1} \max_{0 \le x \le 1} \{e^x\} \frac{1}{n+1}$$

$$< \frac{1}{n+1}$$
 Assim, $I_7 < \frac{1}{8} = 0.1250$.

4

Analisando a instabilidade ...

Considere

$$\tilde{I}_0 = I_0 + \epsilon_0,$$

onde ϵ_0 representa um erro. Considere todas as operações seguintes realizadas de modo exato.

Assim

$$\tilde{I}_n = 1 - n\tilde{I}_{n-1}, \quad n = 1, 2, \cdots$$

Vamos definir o erro no passo n por $r_n = \tilde{I}_n - I_n$.

Assim

$$r_n = -nr_{n-1}, \quad n = 1, 2, \cdots$$

Assim,

$$r_n = (-1)^n n! \ \epsilon_0$$

Analisando a instabilidade ...

Exercício

Encontre uma forma mais precisa de calcular I_7 , no exemplo anterior.

- ullet Observa-se que o erro cresce na direção de n mas decresce na direção oposta.
- Nota-se que

$$I_{n-1} = \frac{1 - I_n}{n}$$

- Para calcularmos I_7 temos que ter um valor inicial para a sequência I_n , o que não é fácil encontrar.
- Mas, neste caso, nota-se que $I_n \to 0$.
- Assim, se tomarmos $I_{20}=0$ e construir a sequência para $n=20,19,18,\cdots$, vamos obter $I_7=0.1123835$ com todos os dígitos corretos.

Efeitos Numéricos - Mal - Condicionamento

Considere o sistema

$$\begin{cases} x+y=2\\ x+1.01y=2.01 \end{cases}$$

cuja solução é (1,1).

O que aconteceria se alterarmos o número 2.01 para 2.02 ? A solução agora seria (0,2).

Efeitos Numéricos - Mal - Condicionamento

Outro Exemplo

Considere o seguinte problema de valor inicial

$$\begin{cases} y'' = y \\ y(0) = a \\ y'(0) = b \end{cases}$$

onde a,b são dados. A solução é dada por

$$y(x) = C_1 e^x + C_2 e^{-x}$$

Se a=1 e b=-1 então, das condições iniciais

$$\begin{cases} y(0) = C_1 + C_2 = 1 \\ y'(0) = C_1 - C_2 = -1 \end{cases}$$

cuja solução é $C_1=0$ e $C_2=1$. De onde obtem-se $y(x)=e^{-x}$.

Efeitos Numéricos - Mal - Condicionamento

Mas se fizermos a=1 e $b=-1+\delta$ com $|\delta|$ pequeno teremos

$$\begin{cases} y(0) = C_1 + C_2 = 1\\ y'(0) = C_1 - C_2 = -1 + \delta \end{cases}$$

cuja solução é $C_1=\delta/2$ e $C_2=1-\delta/2$. Assim a solução desse novo problema é

$$y(x) = e^{-x} + \delta \mathrm{senh} x.$$