#### Teoria da Computação

#### Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

24 de Abril de 2024

#### Notação assintótica

- Expressar a complexidade de algoritmos;
- Funções matemáticas;
- Notação Assintótica;
- Descreve o comportamento de funções no limite;
- A notação assintótica descreve o crescimento de funções;
- Foca no que é importante;
- Abstrair os termos de baixa ordem e constantes multiplicativas;
- Análise Assintótica de Algoritmos.

## Comparar funções

- A notação assintótica;
- Comparar funções com estes símbolos:

## Principais Anotações de Funções Assintóticas

| Notação  | Descrição                                              |
|----------|--------------------------------------------------------|
| 0        | f(n) = O(g(n)) significa que $g(n)$ é um limite        |
|          | superior assintótico para $f(n)$ .                     |
| Ω        | $f(n) = \Omega(g(n))$ significa que $g(n)$ é um limite |
|          | inferior assintótico para $f(n)$ .                     |
| Θ        | $f(n) = \Theta(g(n))$ significa que $f(n)$ é limitada  |
|          | assintoticamente superior e inferiormente por          |
|          | g(n).                                                  |
| 0        | f(n) = o(g(n)) significa que $f(n)$ cresce mais        |
|          | lentamente do que $g(n)$ para entradas grandes.        |
| $\omega$ | $f(n) = \omega(g(n))$ significa que $f(n)$ cresce      |
|          | mais rapidamente do que $g(n)$ para entradas           |
|          | grandes.                                               |

## Definição

- Seja T(n) e f(n) função dos números inteiros para os reais;
- Dizemos que T(n) é O(f(n)) se:
- Existir constantes positivas c e  $n_0$ ;
- Tais que  $T(n) \le cf(n)$ ;
- Para todo  $n \ge n_0$ .

# Ilustração da relação T(n) = O(f(n))



- f(n) = 5tn + 3t;

  - $g_1(n) = n$   $g_2(n) = n^2$
  - $g_3(n) = \sqrt{n}$

```
• f(n) = 5tn + 3t;

• g_1(n) = n;

• 5tn + 3t \le 5tn + 3tn;
```

- f(n) = 5tn + 3t;
  g<sub>1</sub>(n) = n;
  5tn + 3t ≤ 5tn + 3tn = 8tn = cn;
- $f(n) \leq cn$ ;

```
• f(n) = 5tn + 3t;

• g_1(n) = n;

• 5tn + 3t \le 5tn + 3tn = 8tn = cn;

• f(n) \le cn;

• c = 8t;

• n_0 = 1;

• f(n) \notin O(g_1(n));
```

• 
$$f(n) = 5tn + 3t;$$

• 
$$g_2(n) = n^2$$

• 
$$5tn + 3t \le 5tn + 3tn = 8tn \le 8tn^2$$
;

• 
$$f(n) \notin O(g_2(n));$$

- f(n) = 5tn + 3t; •  $g_3(n) = \sqrt{n}$
- $5tn + 3t \le c\sqrt{n}$ ;

• 
$$f(n) = 5tn + 3t$$
;  
•  $g_3(n) = \sqrt{n}$ 

$$\bullet \ \frac{5tn+3t}{\sqrt{n}} \le \frac{c\sqrt{n}}{\sqrt{n}};$$

• 
$$f(n) = 5tn + 3t$$
;  
•  $g_3(n) = \sqrt{n}$ 

• 
$$5t\sqrt{n} + \frac{3t}{\sqrt{n}} \le c$$
;

- f(n) = 5tn + 3t;
  - $g_3(n) = \sqrt{n}$
- $5t\sqrt{n} + \frac{3t}{\sqrt{n}} \le c$ ;
- f(n) não é  $O(\sqrt{n})$ ;

#### Classes Comuns em Análise Assintótica



#### Exercícios 1

• 
$$T(n) = 50n^2 + 2n + 1 \in O(n^2)$$
;

• 
$$T(n) = 20n^3 + 10nlgn + 1 \in O(n^3)$$
;

#### Exercícios 2

- Implemente a busca binária O(log(n));
- Piore essa busca binária em termos de big O.

### Bibliografia Básica

- LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos de Teoria da Computação. 2 ed. Porto Alegre: Bookman, 2000.
- VIEIRA, N. J. Introdução aos Fundamentos da Computação. Editora Pioneira Thomson Learning, 2006.
- DIVERIO, T. A.; MENEZES, P. B. Teoria da Computação: Máquinas Universais e Computabilidade. Série Livros Didáticos Número 5, Instituto de Informática da UFRGS, Editora Sagra Luzzato, 1 ed. 1999.

# Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024