Plan

Intelligence Artificielle

M. Exbrayat

B. Diep-Dao

Master STIC - Université d'Orléans - Janvier 2012

- Organisation du cours
- Qu'est-ce que l'intelligence artificielle ?
- Brève histoire d'IA
- Etat de l'art

◆ロ > ◆昼 > ◆草 > ◆草 > 章 りへ@

M. ExbrayatB. Diep-Dao

Organisation du cours

Question(s)

- Cours : mardi 10h15-11h45, TD : jeudi 10h15-12h15
- Ouvrages conseillés
 - Stuart Russell, Peter Norvig
 Artificial Intelligence: A Modern Approach (2ème édition)
 Prentice Hall, 2003

Version française : Intelligence Artificielle, Pearson Education Référence officielle du cours

Site web: http://aima.cs.berkeley.edu

George Luger
 Artificial Intelligence, Structures and Strategies for Complex Problem Solving, 4ème édition
 Addison Wesley

Qu'est-ce que les tâches suivantes ont en commun ?

M. ExbrayatB. Diep-Dao

- Concevoir un programme capable d'identifier et de supprimer les messages non sollicités du courrier électronique
- Concevoir un super-navigateur Web pour tenir automatiquement à jour les logiciels d'un système informatique
- Concevoir un robot pour réaliser une opération chirugicale complexe
- Concevoir un engin spatial capable d'évoluer sur la planète Mars et d'y récolter des données

Réponse

Un tel système doit posséder un certain degré d'intelligence!

Un tel système doit posséder un certain degré d'intelligence!

Question subsidiaire:

Qu'est-ce que l"'intelligence"?

Réponse

Réponse

L'intelligence c'est :

• selon C. Darwin "ce qui permet la survie de l'individu le plus apte, parfaitement adapté à son environnement"

M. ExbrayatB. Diep-Dao

$L'intelligence\ c'est\ :$

• selon C. Darwin "ce qui permet la survie de l'individu le plus apte, parfaitement adapté à son environnement"

M. ExbrayatB. Diep-Dao

 selon T. Edison
 "tout ce qui fait que cela fonctionne et produit le plus de revenus pour l'entreprise"

L'intelligence c'est :

- selon C. Darwin "ce qui permet la survie de l'individu le plus apte, parfaitement adapté à son environnement"
- selon T. Edison

 "tout ce qui fait que cela fonctionne et produit le plus de revenus pour l'entreprise"
- selon A. Turing "ce qui rend difficile la distinction entre une tâche réalisée par un être humain ou par une machine"

"[The automaton of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning," (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act." (Winston, 1992)
"The art of creating machines that perform functions that require intelligence when performed by people." (Kurzweil, 1990)	"Alis concerned with intelligent behavoir in artifacts." (Nilsson, 1998)

M. ExbrayatB. Diep-Dao

Définition d'IA

Définition de l'IA

L'IA est une discipline qui systèmatise et automatise les tâches intellectuelles pour créer des machines capables de

Penser comme un humain	Penser rationnellement		
Agir comme un humain	Agir rationnellement		

Penser comme un humain	Penser rationnellement	
Agir comme un humain	Agir rationnellement	

M. ExbrayatB. Diep-Dao

Penser comme un humain : science cognitive

- Il faut comprendre le fonctionnement de l'esprit humain
- Comparaison des différentes étapes de raisonnement d'un programme avec les raisonnements humains pour résoudre le même problème (General Problem Solver, Newell et Simon)
- Science cognitive : théorie vérifiable du fonctionnement de l'esprit humain

Penser comme un humain	Penser rationnellement
Agir comme un humain	Agir rationnellement

Penser comme un humain : science cognitive Agir comme un humain : test de Turing

M. ExbrayatB. Diep-Dao

- ◀ □ ▶ ◀ ┛ ▶ ◀ 冟 ▶ ◀ 冟 → fl Q Q

M. ExbrayatB. Diep-Dao

Agir comme un humain

Définition de l'IA

- L'IA est l'art de créer des machines qui réalisent des fonctions exigeant de l'intelligence lorsqu'elles sont effectuées par des humains
- "L'ordinateur peut-il penser ?" → "L'ordinateur peut-il se comporter intelligement ?"
- Test de Turing : l'ordinateur passe le test si le juge humain ne peut pas distinguer si les réponses écrites à des questions écrites viennent d'un humain ou de l'ordinateur

Penser comme un humain	Penser rationnellement		
Agir comme un humain	Agir rationnellement		

Penser comme un humain : science cognitive Agir comme un humain : test de Turing Penser rationnellement : approche logique

Définition de l'IA

Agir rationnellement

Penser comme un humain	Penser rationnellement		
Agir comme un humain	Agir rationnellement		

Penser comme un humain : science cognitive

Agir comme un humain : test de Turing Penser rationnellement : approche logique

Agir rationnellement : agir pour atteindre un objectif

- Agent : unité qui fonctionne de façon autonome, perçoit son environnement, s'adapte aux changements et est capable d'atteindre un objectif
- Agent rationnel : agent qui agit pour atteindre le meilleur résultat ou dumoins le meilleur résultat espéré

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

M. ExbrayatB. Diep-Dao

Définition de l'IA

Penser comme un humain	Penser rationnellement		
Agir comme un humain	Agir rationnellement		

En haut : processus de pensée et de réflexion

Penser comme un humain	Penser rationnellement		
Agir comme un humain	Agir rationnellement		

M. ExbrayatB. Diep-Dao

En haut : processus de pensée et de réflexion

En bas : comportement

Penser comme un humain	Penser rationnellement	
Agir comme un humain	Agir rationnellement	

En haut : processus de pensée et de réflexion

En bas : comportement

A gauche : mesure du succès par rapport à l'humain

Penser comme un humain	Penser rationnellement	
Agir comme un humain	Agir rationnellement	

En haut : processus de pensée et de réflexion

En bas : comportement

A gauche : mesure du succès par rapport à l'humain

A droite : mesure par rapport à la rationalité

M. ExbrayatB. Diep-Dao

◆□ > ◆圖 > ◆ = > ◆ = > ○

M. ExbrayatB. Diep-Dao

Le Test de Turing

Le Test de Turing

- En 1950 Alan Turing publie son papier "Computing Machinery and Intelligence" dans lequel il décrit une méthode pour tester un système d'IA
 - Turing prédit qu'avant 2000, une machine aurait 30% de chance de tromper une personne non avertie pendant 5 minutes
 - Il définit les principales composantes d'un système d'IA : connaissances, raisonnement, compréhension du langage naturel, apprentissage
- Test de Turing : un individu communique à l'aide d'un terminal d'ordinateur avec un interlocuteur invisible. Il doit décider si l'interlocuteur est un être humain ou un système d'IA imitant un être humain.

Loebner Prize

http://www.loebner.net/Prizef/loebner-prize.html

• 2008 : http://www.elbot.com

Agir comme un humain

L'ordinateur doit posséder les capacités de

- traitement du langage naturel : pouvoir communiquer en un langage naturel
- représentation de connaissance : stocker ce qu'il sait ou ce qu'il *perçoit*
- raisonnement automatique : utilisater des connaissances pour répondre à des guestions ou déduire une conclusion
- apprentissage automatique : detecter et extrapoler des règles

Total Turing test:

- computer vision : perception d'objets
- robotics : manipulation d'objets

La science cognitive

- Vers 1960 "révolution cognitive" : la psychologie prenant en compte le traitement de l'information remplace l'orthodoxie prévalante du behaviorisme
- Besoin de théories scientifiques sur les activités internes du cerveau
- Quel niveau d'abstraction ? connaissances ou circuits ?
- Comment valider les résultats expérimentaux ?
 - étude et analyse du comportement humain (approche top-down)
 - déduction à partir de données neurologiques (approche bottom-up)
- Les deux approches correspondent maintenant à
 - top-down : science cognitive
 - bottom-up: neurosciences cognitives

M. ExbrayatB. Diep-Dao

elles sont différenciées de l'IA

<ロ > → □ > → □ > → □ > → □ → つへ(~)

◆ロ → ◆御 → ◆ き → ◆ き → りへ(~)

M. ExbrayatB. Diep-Dao

Les lois de la pensée

- Aristote : quels sont des processus de pensée corrects ?
- Plusieurs formes de logique :
 - notation et règles de dérivation pour les pensées, sans relation avec une mécanisation du raisonnement
- Ligne directe des mathématiques et de la philosophie à l'IA moderne
- Problèmes :
 - tous les comportements intelligents ne sont pas le résultat d'un raisonnement logique (formalisme)
 - quel est le but de l'action de penser ? quelles pensées doit-on avoir ? (stratégie)

Agent rationnel

• D'une manière abstraite, un agent est une fonction f qui met en correspondance des séquences perceptives P* et des actions A

$$f: P* \rightarrow A$$

- Pour n'importe quelle classe d'environnements et de tâches. on recherche l'agent (ou le groupe d'agents) ayant la meilleur performance
- Mais les limites calculatoires rendent inaccessible la rationnalité parfaite
 - → concevoir le meilleur *programme* étant donné les ressources (temps et calculs) disponibles

- Philosophie : logique, méthode de raisonnement
- Mathématiques : représentations formelles et preuves, algorithmes, (in)décidabilité, probabilité
- Psychologie : adaptation, phénomènes de perception et de contrôle moteur, techniques expérimentales (psychophysique, etc.)
- Linguistique : représentation des connaissances, grammaire
- Neurosciences : substrat physique et biologique de l'activité mentale
- Théorie du contrôle : systèmes asservis, stabilité, concept d'agent optimal simple

- 1943 McCulloch & Pitts: modélisation des neurones
- 1950 ouvrage "Computing Machinery and Intelligence" de A. Turing: vision complète de l'IA
- 1952-69 période euphorique!
- 1950s 1er programmes d'IA :
 - programme de jeu de dame de A. Samuel
 - "Logic Theorist" de A. Newell & H. Simon
 - General Problem Solver
 - Geometry Theorem Prover de H. Gelernter

M. ExbrayatB. Diep-Dao

- 1956 réunion de Dartmouth : le terme "Intelligence Artificielle" est adopté
- 1965 algorithme de A. Robinson pour le raisonnement logique

◆ロ → ◆御 → ◆ き → ◆ き → りへ(~)

M. ExbrayatB. Diep-Dao

Brève histoire de l'IA (2)

- 1966-74 IA découvre la complexité des calculs recherche en réseaux de neurones disparaît (presque) complètement
- 1969-79 1ers développements de système à base de connaissances
- 1980-88 industrie des systèmes experts en plein boum, projet japonnais "Fifth Generation"
- 1988-93 industrie des systèmes experts s'effondre : "Hiver de I'IA''
- 1985-95 réseaux de neurones redeviennent populaires
- 1988-présent lA devient une science, révolution dans le contenu et la méthodologie
- 1995-présent émergence d'agents intelligents

Etat de l'art

Lesquels des cas suivants sont actuellement possibles ?

- jouer décemment au ping-pong
- conduire un véhicule le long d'une route sinueuse en montagne
- conduire un véhicule dans le centre d'une grande ville
- jouer décemment au bridge
- découvrir et prouver un nouveau théorème mathématique
- écrire une histoire intentionnellement drôle
- donner un conseil compétent dans un domaine précis du droit
- traduire une conversation entre un français et un anglais en temps réel dans les 2 sens

- Dans les années 60, un célèbre professeur du MIT disait : "à la fin de l'été on aura développé un œil électronique"
- En 2008, il n'y a toujours pas de système de vision par ordinateur capable de comprendre une scène complexe
- Mais des systèmes informatiques effectuent couramment
 - surveillance du trafic routier.
 - reconnaissance de visages (images et vidéo),
 - analyse d'images médicales, etc...

- En 1958, H. Simon (CMU) prédisait que dans 10 ans un ordinateur serait champion d'échecs
- Cette prédiction s'est vérifiée en 1998 (!!!)
- Ajourd'hui les ordinateurs ont gagné les titres de champions du monde au jeux de dames, d'Othello et d'échecs, mais ils sont encore très mauvais en jeu de Go

◆ロ > ◆昼 > ◆草 > ◆草 > 章 りへ@

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

M. ExbrayatB. Diep-Dao

Prédictions et réalité

- Dans les années 70, beaucoup croyaient que des robots informatisés seraient partout de l'usine au domicile
- Aujoud'hui quelques industries (automobile, électronique) sont très robotisées, mais les robots domestiques sont encore du domaine du futur
- Des robots ont exploré Mars, d'autres réalisent des opérations du cerveau et du cœur, des robots humanoïde sont opérationnels et disponibles à la location

M. ExbrayatB. Diep-Dao Exemples de systèmes d'IA

Exemples de systèmes d'IA

- * robots
- * programme de jeu d'échecs
- * système de reconnaissance vocale
- * système de reconnaissance de la parole
- * vérificateur de syntaxe
- * reconnaissance de formes
- * diagnostic médical
- * algorithmes de jeu
- * traduction automatique
- * ordonnancement de ressources
- * systèmes à base de connaissances (diagnostic, conseil, planification, etc.)

 M. Exbrayat B. Diep-Dao

<ロ > ← □

Qu'est -ce qu'un problème pour l'IA?

- C'est un problème n'ayant pas de solution analytique connue ou dont la résolution est impraticable (problème hors du possible)
- Exemple : problème du voyageur de commerce (TSP)
 - * un voyageur de commerce doit visiter n villes,
 - * il doit débuter et terminer son parcours au même endroit,
 - * il doit visiter chaque ville une seule fois

le nombre de routes possibles est n!/2

Explosion combinatoire!

M. ExbrayatB. Diep-Dao

Explosion combinatoire - TSP

Villes	Routes
1	1
2	1
3	3
4	12
5	60
6	360
7	2520
8	20160
9	181440
10	1814400
11	19958400

Explosion combinatoire - TSP

- Un problème TSP de 10 villes a 181000 solutions possibles
- Un problème TSP de 20 villes a 10.000.000.000.000 solutions possibles

(II y a 1.000.000.000.000.000.000 litres d'eau sur la planète)

Michalewicz. Z, Evolutionary Algorithms for Constrained Optimization Problems, CEC 2000 (Tutorial)

Explosion combinatoire

(processeurs actuels : de 10 à 50 000 MIPS)

Sur un ordinateur capable d'exécuter 1 million instructions/seconde

n	10	20	50	100	200
n ²	1/10.000 seconde	1/2500 seconde	1/400 seconde	1/100 seconde	1/25 seconde
n ⁵	1/10 seconde	3,2 seconde	5,2 minutes	2,8 heures	3,7 jours
2 ⁿ	1/1000 seconde	1 seconde	35,7 années	geq 400 trillion de siècles	$\sim 10^{45}$ siècles
n ⁿ	2,8 heures	3,3 trillions d'années	$\sim 10^{70}$ siècles	$\sim 10^{185}$ siècles	$\sim 10^{445}$ siècles

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Où en est-on ajourd'hui?

- Navlab : un véhicule (Ford escort) a fait le trajet de Washington à San Diego en étant 98% du temps sous pilotage automatique
- *Inrets* : système automatique de contrôle du trafic qui établit des rapports en langage naturel
- Deep Space 1 : sonde automatique de la NASA ayant survolé un astéroïde
- Détection de fraude sur cartes de crédit et autorisation de crédits, sur communications téléphoniques
- Moteurs de recherche : cf www.citeseer.com, système de classification et d'indexation automatique d'articles de recherche
- Mots croisés : résolution des mots-croisés du NYT aussi bien que le meilleur lecteur humain

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

M. ExbrayatB. Diep-Dao

M. ExbrayatB. Diep-Dao

Surprises!

Certaines tâches difficiles pour l'être humain sont "faciles" pour la machine

- Jeux de dames et d'Othello
- Planification en logistique
- Etablissement d'horaires de compagnies aériennes
- Détection de fraudes
- Tri de courrier
- Preuve de théorèmes
- Conception automatique
- Mots-croisés

Surprises!

Certaines tâches aisées pour l'être humain sont difficiles pour la machines

- Reconnaissance de la parole
- Reconnaissance de visages
- Composition en musique et en art
- Navigation automatique
- Activités motrices (marche)
- Compréhension du langage naturel
- Raisonnement de sens commun

Contenu du cours

4 approches différentes de la résolution de problèmes en IA seront présentées

- Résolution par recherche de solutions dans un espace d'états
- Résolution par raisonnement et en présence d'incertitude
- Résolution par planification
- Résolution par apprentissage automatique

- Résolution par recherche de solutions dans un espace d'états
 - agents intelligents
 - algorithmes de recherche
- Résolution par raisonnement et en présence d'incertitude
 - systèmes logiques et raisonnement
 - incertitude et probabilité, théorie de la décision
- Résolution par planification
 - système de planification et d'ordonnancement
- Résolution par apprentissage automatique
 - méthode d'apprentissage automatique

