Statistiek: les 2

Discrete en continue kansverdelingen, intro normale verdeling

Sabine Bertho Giovanni Vanroelen <u>sabine.bertho@kuleuven.be</u> <u>giovanni.vanroelen@uhasselt.be</u>

Even herhalen...

2

Les 1

KANSREKENING = studie van concrete kansfuncties en kansdichtheden

KANSMODELLEN

H2-H7

CONTEXT

BEGINSELEN VAN KANSREKENEN

BASISREGELS:

- Regel van Laplace: $P(A) = \frac{\text{\# gunstige gevallen}}{\text{\# mogelijke gevallen}}$
- Complementregel: $P(A^c) = 1 P(A)$
- Somregel voor 2 gebeurtenissen: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Productregel: $P(A \cap B) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$
- Totale waarschijnlijkheid: $P(B) = \sum_i P(B \cap A_i)$ met alle A_i onderling disjunct en $\sum_i A_i = U$
- Regel van Bayes: $P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{P(B)}$

POPULATIE

STATISTIEK = op basis van een

STEEKPROEF

uit de populatie een uitspraak doen over de GANSE populatie

Discrete kansvariabele vs. continue kansvariabele

kansdichtheid f(x) met $P(a \le X \le b) = \int_a^b f(x) dx$

kansfunctie: $p_i = P(X = x_i)$

KANSREKENING =

studie van concrete

kansfuncties en

kansdichtheden

cumulatieve verdelingsfunctie $F_X(x) = \int_{-\infty}^x f(x) dx$

cumulatieve verdelingsfunctie $F_X(x) = P(X \le x)$

$$\sigma_X^2 = E((X - \mu_X)^2) = E(X^2) - (E(X))^2$$

$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (x - \mu_X)^2 f(x) dx = E(X^2) - (E(X))^2$$

H2-H7

uitspraak doen over de **GANSE** populatie

CONTEXT

Soorten kansvariabelen

Schoenmaat

Maat 38: 1,0% Maat 43: 24,5% Maat 39: 1,9% Maat 44: 17,5% Maat 40: 5,2% Maat 45: 9,6% Maat 41: 9,1% Maat 46: 5,6% Maat 42: 23,9% Maat 47: 1,7%

VS.

Grootte van de voet

Soorten kansvariabelen

Schoenmaat

DISCRETE KANSVARIABELE

VS.

Grootte van de voet

CONTINUE KANSVARIABELE

Soorten kansverdelingen

Schoenmaat

DISCRETE KANSVARIABELE

VS.

Grootte van de voet

CONTINUE KANSVARIABELE

Over welk soort kansvariabele gaat het?

De tijd waarbinnen je 5 km loopt

~88% Continu

Het aantal bladzijden dat je nog moet lezen voordat je boek uit is

~91% Discreet

De buitentemperatuur

Continu

Je eindscore op 20 voor dit vak

×84% Discreet

De kleur van je nieuwe auto

□ (□**1**) (○○○)

De afstand tot aan het eerstvolgende tankstation

Continu

Discrete kansvariabele

- Experiment: gooien met 1 dobbelsteen
- Kansvariabele X = het totaal aantal ogen als 1
 dobbelsteen wordt geworpen

- Mogelijke waarden van $X = \{1, 2, 3, 4, 5, 6\}$
- \circ Gebeurtenis: bvb X=3 (het totaal aantal ogen als 1 dobbelsteen wordt geworpen = 3)
- Kans op een gebeurtenis: P(X = 3) = 1/6

Continue kansvariabele

- Experiment: dartspel spelen
- Kansvariabele X = de afstand van de dartpijl tot
 het centrum van het dartbord

- Mogelijke waarden van X: $x \in [0 \text{ cm}, 22.5 \text{ cm}]$
- o Gebeurtenis: bvb X = 7 (de afstand van de dartpijl tot het centrum van het dartbord = 7 cm)
- \circ Kans op een gebeurtenis: P(X = 7) = 0 (!)

Discrete kansvariabele: kansen weergeven

De kansfunctie van een discrete kansvariabele *X* kent aan elke mogelijke uitkomst van *X* een kans toe.

- Experiment: gooien met 1 dobbelsteen
- \circ Kansvariabele X = het totaal aantal ogen

Kansfunctie:

•
$$P(X = 1) = 1/6$$

•
$$P(X = 2) = 1/6$$

•
$$P(X = 3) = 1/6$$

•
$$P(X = 4) = 1/6$$

•
$$P(X = 5) = 1/6$$

•
$$P(X = 6) = 1/6$$

Kanshistogram = weergave van de kansfunctie

Continue kansvariabele: kansen weergeven

Dichtheidsfunctie f(x)

- > Tegenhanger van de kansfunctie
- Voorwaarden:

$$> f(x) \ge 0$$

$$\sum_{-\infty}^{\infty} f(x)dx = 1$$

Oppervlakte als kansmaat:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Continue kansvariabele: kansen weergeven

Dichtheidsfunctie f(x)

- > Tegenhanger van de kansfunctie
- > Voorwaarden:

$$> f(x) \ge 0$$

$$\sum_{-\infty}^{\infty} f(x)dx = 1$$

> Oppervlakte als kansmaat:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Continue kansvariabele: dichtheidsfunctie

De dichtheidsfunctie voor een behoorlijk goede dartspeler wordt

gegeven door:
$$f(x) = \begin{cases} \frac{-x^2}{150} + \frac{257}{900} & \text{als} & 0 \le x \le 4\\ 0 & \text{als} & x < 0 \text{ en } 4 < x \end{cases}$$

- a) Ga na dat de totale kans = 1
- b) Bereken de kans dat deze speler5 punten scoort bij een worp

Les 2a: Discrete en continue kansverdelingen

Discrete vs. continue kansvariabele: formularium

Welke uitspraken over de cumulatieve verdelingsfunctie zijn zeker waar?

De cumulatieve verdelingsfunctie

De cumulatieve verdelingsfunctie van X is gedefinieerd als

$$F_X(x) = P(X \le x).$$

CONTINUE KANSVARIABELE

De cumulatieve verdelingsfunctie

De cumulatieve verdelingsfunctie van X is gedefinieerd als

$$F_X(x) = P(X \le x).$$

CONTINUE KANSVARIABELE

De cumulatieve verdelingsfunctie

De cumulatieve verdelingsfunctie van X is gedefinieerd als

$$F_X(x) = P(X \le x).$$

$$F_X(x) = \sum p_i$$

$$F_X(x) = \int_{-\infty}^x f(x) \ dx$$

Discrete vs. continue kansvariabele: formularium

Discrete kansvariabele vs. continue kansvariabele

kansfunctie: $p_i = P(X = x_i)$

$$\sum_i p_i = 1$$

cumulatieve verdelingsfunctie $F_X(x) = P(X \le x)$

kansdichtheid f(x) met $P(a \le X \le b) = \int_a^b f(x) dx$

cumulatieve verdelingsfunctie $F_X(x) = \int_{-\infty}^x f(x) dx$

Verwachtingswaarde of gemiddelde

De verwachting(swaarde) E(X) of μ_X is het gemiddelde van alle uitkomsten voor X wanneer je het experiment héél dikwijls zou uitvoeren.

Voorbeeld: gooien met een eerlijke dobbelsteen

$$E(X) = \frac{1+2+3+4+5+6}{6} = 3,5$$

Ofwel:

$$E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3,5$$

Algemeen:
$$\mu_X = E(X) = \sum_{i=1}^m x_i p_i$$

Verwachtingswaarde of gemiddelde

De verwachting(swaarde) E(X) of μ_X is het gemiddelde v uitkomsten voor X wanneer je het experiment héél dikwi uitvoeren.

Voorbeeld: schoenen
$$\mu_X = \mathrm{E}(X) = \sum_{i=1}^n x_i p_i$$

$$E(X) = 38 \cdot 0.01 + 39 \cdot 0.019 + 40 \cdot 0.052 + 41 \cdot 0.091$$
$$+ 42 \cdot 0.239 + 43 \cdot 0.245 + 44 \cdot 0.175 + 45 \cdot 0.096$$
$$+ 46 \cdot 0.056 + 47 \cdot 0.017 = 42.9$$

Gemiddelde schoenmaat

Maat 38: 1,0%

Maat 39: 1,9%

Maat 40: 5,2%

Maat 41: 9,1%

Maat 42: 23,9%

Maat 43: 24,5%

Maat 44: 17,5%

Maat 45: 9,6%

Maat 46: 5,6%

UH Maat 47: 1,7%

Verwachtingswaarde of gemiddelde

$$\mu_X = E(X) = \sum_{i=1}^m x_i p_i$$

$$\mu_X = \mathrm{E}(X) = \int_{-\infty}^{+\infty} x f(x) \, dx$$

Voorbeeld: dartbord

De dichtheidsfunctie voor een behoorlijk goede dartspeler wordt

gegeven door:
$$f(x) = \begin{cases} \frac{-x^2}{150} + \frac{257}{900} & \text{als} & 0 \le x \le 4\\ 0 & \text{als} & x < 0 \text{ en } 4 < x \end{cases}$$

- c) Bereken de gemiddelde afstand tot het centrum van een worp
- d) Bereken de gemiddelde score voor deze dartspeler

$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$\mu_X = E(X) = \sum_{i=0}^{m} x_i p_i$$

Les 2b: Statistische kengetallen

Variantie en standaardafwijking (spreiding)

Voorbeeld: gooien met een eerlijke dobbelsteen

x_i	$\mathbf{Y}(X=x_i)$	x_i μ
1	1/6	-2.5
2	1	-1.5
3	1/6	-0.5
4	1/6	0.5
5	1/	1.5
6	-/6	2.5
		E(X - 1) = 0

x_i	$P(X=x_i)$	$(x_i - \mu)^2$
1	1/6	6.25
2	1/6	2.25
3	1/6	0.25
4	1/6	0.25
5	1/6	2.25
6	1/6	6.25
		$E[(X - \mu)^2] = 35/12 = 2.91667$

$$6,25 \cdot \frac{1}{6} + 2,25 \cdot \frac{1}{6} + 0,25 \cdot \frac{1}{6} + 0,25 \cdot \frac{1}{6} + 2,25 \cdot \frac{1}{6} + 6,25 \cdot \frac{1}{6}$$

Variantie en standaardafwijking (spreiding)

Definitie 3.5 De variantie (notatie σ_X^2 of Var(X)) van een discrete kansvariabele X is

$$\sigma_X^2 = \text{Var}(X) = \text{E}((X - \mu_X)^2)$$

= $\text{E}(X^2) - [\text{E}(X)]^2$

Voorbeeld: gooien met een eerlijke dobbelsteen

$$E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3,5$$

$$E(X^{2}) = 1^{2} \cdot \frac{1}{6} + 2^{2} \cdot \frac{1}{6} + 3^{2} \cdot \frac{1}{6} + 4^{2} \cdot \frac{1}{6} + 5^{2} \cdot \frac{1}{6} + 6^{2} \cdot \frac{1}{6} = \frac{91}{6}$$

$$\sigma_X^2 = \frac{91}{6} - 3.5^2 = 2.91667$$

Variantie en standaardafwijking (spreiding)

Definitie 3.5 De variantie (notatie σ_X^2 of Var(X)) van een discrete kansvariabele X is

$$\sigma_X^2 = \text{Var}(X) = \text{E}((X - \mu_X)^2)$$

= $\text{E}(X^2) - [\text{E}(X)]^2$

Een andere maat voor de spreiding van X is de **standaardafwijking** σ_X (de vierkantswortel van de variantie).

Gemiddelde en variantie

$$\mu_X = E(X) = \sum_{i=1}^m x_i p_i$$

$$\sigma_X^2 = E((X - \mu_X)^2)$$

= $E(X^2) - (E(X))^2$

$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (x - \mu_X)^2 f(x) \, dx$$
$$= E(X^2) - (E(X))^2$$

Voorbeeld: dartbord

De dichtheidsfunctie voor een behoorlijk goede dartspeler wordt

gegeven door:
$$f(x) = \begin{cases} \frac{-x^2}{150} + \frac{257}{900} & \text{als} & 0 \le x \le 4\\ 0 & \text{als} & x < 0 \text{ en } 4 < x \end{cases}$$

- e) Bereken de standaardafwijking voor de afstand van het centrum tot een worp.
- f) Bereken de standaardafwijking op de score voor deze dartspeler

$$\sigma_X^2 = E((X - \mu_X)^2) \qquad \sigma_X^2 = \int_{-\infty}^{+\infty} (x - \mu_X)^2 f(x) dx$$

$$= E(X^2) - (E(X))^2$$

Les 2b: Statistische kengetallen

Discrete vs. continue kansvariabele: formularium

Discrete kansvariabele vs. continue kansvariabele

kansfunctie: $p_i = P(X = x_i)$

cumulatieve verdelingsfunctie $F_X(x) = P(X \le x)$

 $\sigma_X^2 = E((X - \mu_X)^2) = E(X^2) - (E(X))^2$

kansdichtheid f(x) met $P(a \le X \le b) = \int_a^b f(x) dx$

cumulatieve verdelingsfunctie $F_X(x) = \int_{-\infty}^x f(x) dx$

$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (x - \mu_X)^2 f(x) dx = E(X^2) - (E(X))^2$$

Percentiel en kwantiel

Definitie 4.3 Het p% percentiel is die x waarvoor

$$F_X(x) = \frac{p}{100}.$$

We spreken ook over het $\frac{p}{100}$ -kwantiel. De mediaan is die x waarvoor $F_X(x) = 0.5$.

Opmerking: De mediaan is het 0.50-kwantiel of het 50% percentiel. Dus bij kwantielen is het getal dat ervoor komt een kans (of fractie) en bij percentielen een percentage.

Percentiel en kwantiel

Definitie 4.3 Het p% percentiel is die x waarvoor

$$F_X(x) = \frac{p}{100}.$$

We spreken ook over het $\frac{p}{100}$ -kwantiel. De mediaan is die x waarvoor $F_X(x) = 0.5$.

Opmerking: De mediaan is het 0.50-kwantiel of het 50% percentiel. Dus bij kwantielen is het getal dat ervoor komt een kans (of fractie) en bij percentielen een percentage.

Voorbeeld: dartbord

De dichtheidsfunctie voor een behoorlijk goede dartspeler wordt

gegeven door:
$$f(x) = \begin{cases} \frac{-x^2}{150} + \frac{257}{900} & \text{als} & 0 \le x \le 4\\ 0 & \text{als} & x < 0 \text{ en } 4 < x \end{cases}$$

g) Bereken de mediaan voor deze dichtheidsfunctie?

$$F_X(x) = \int_{-\infty}^x f(x) \, dx$$

Les 2b: Statistische kengetallen

Déjà vu: Variantie (spreiding)

Definitie 3.5 De variantie (notatie σ_X^2 of Var(X)) van een discrete kansvariabele X is

$$\sigma_X^2 = \text{Var}(X) = \text{E}((X - \mu_X)^2)$$

= $\text{E}(X^2) - [\text{E}(X)]^2$

x_i	$P(X=x_i)$	$(x_i - \mu)^2$
1	1/6	6.25
2	1/6	2.25
3	1/6	0.25
4	1/6	0.25
5	1/6	2.25
6	1/6	6.25
		$E[(X - \mu)^2] = 35/12 = 2.91667$

Eigenschap 3.7 Stel $S_n = X_1 + X_2 + \ldots + X_n \text{ met } X_i, i = 1, \ldots, n \text{ kansvariabelen. Dan geldt:}$

- $E(S_n) = E(X_1) + \ldots + E(X_n)$
- Als X_1, \ldots, X_n onderling onafhankelijk zijn, dan

$$Var(S_n) = Var(X_1) + \ldots + Var(X_n).$$

Som van variabelen

OF

Eigenschap 3.7 Stel $S_n = X_1 + X_2 + \ldots + X_n \text{ met } X_i, i = 1, \ldots, n \text{ kansvariabelen. Dan}$ geldt:

- $E(S_n) = E(X_1) + ... + E(X_n)$
- Als X_1, \ldots, X_n onderling onafhankelijk zijn, dan

$$Var(S_n) = Var(X_1) + \ldots + Var(X_n).$$

KU LEUVEN

Som van variabelen

Wat als X_1, \ldots, X_n onderling <u>afhankelijk</u> zijn?

Voorbeeld: gooien met een eerlijke dobbelsteen.

Kansvariabele X= het aantal gegooide ogen, $\sigma_X^2=\frac{35}{12}$ (zie slide 26)

Kansvariabele D = het dubbel van het aantal gegooide ogen.

d_i	$P(D=d_i)$	$d_i P(D = d_i)$	$d_i^2 P(D = d_i)$
2	1/6	2/6	4/6
4	1/6	4/6	16/6
6	1/6	6/6	36/6
8	1/6	8/6	64/6
10	1/6	10/6	100/6
12	1/6	12/6	144/6
		E(D) = 7	$E(D^2) = 182/3$

$$\sigma_D^2 = E(D^2) - (E(D))^2$$

$$\sigma_D^2 = \frac{182}{3} - 7^2 = \frac{35}{3} \neq \frac{35}{12} + \frac{35}{12}$$

Voorbeeld: gooien met een eerlijke dobbelsteen.

Kansvariabele D = het dubbel van het aantal gegooide ogen.

= 2X met X = het aantal gegooide ogen (met $\sigma_X^2 = \frac{35}{12}$)

Eigenschap 4.6 Als X een kansvariabele is en a en b zijn constanten, dan

•
$$E(aX + b) = aE(X) + b$$
 of $\mu_{aX+b} = a\mu_X + b$.

•
$$\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$$
 of $\sigma_{aX+b}^2 = a^2 \sigma_X^2$.

$$\sigma_D^2 = \frac{35}{3}$$

$$\sigma_{2X}^2 = 2^2 \cdot \frac{35}{12} = \frac{35}{3}$$

$$\sigma_{2X}^2 = 2^2 \cdot \frac{35}{12} = \frac{35}{3}$$

Algemeen

Eigenschap 4.7 Stel $S = a_0 + a_1 X_1 + a_2 X_2 + \ldots + a_n X_n \text{ met } X_i, i = 1, \ldots, n \text{ kansvariabelen}$ en a_i reële getallen. Dan geldt

- $E(S) = a_0 + a_1 E(X_1) + \ldots + a_n E(X_n)$ of $\mu_S = a_0 + a_1 \mu_{X_1} + \ldots + a_n \mu_{X_n}$.
- Als X_1, \ldots, X_n onderling onafhankelijk zijn, dan

$$Var(S) = a_1^2 Var(X_1) + \ldots + a_n^2 Var(X_n)$$
 of $\sigma_S^2 = a_1^2 \sigma_{X_1}^2 + \ldots + a_n^2 \sigma_{X_n}^2$.

Het is belangrijk om op te merken dat Var(X - Y) = Var(X) + Var(Y) (bij onafhankelijkheid).

Voorbeeld: zwaartekracht voor een volle mand appels:

$$F_z = (m_{mand} + m_{appel 1} + \dots + m_{appel n}) \cdot g$$

 $E(F_z)$? $Var(F_z)$?

Algemeen

Eigenschap 4.7 Stel $S = a_0 + a_1 X_1 + a_2 X_2 + \ldots + a_n X_n \text{ met } X_i, i = 1, \ldots, n \text{ kansvariabelen}$ en a_i reële getallen. Dan geldt

- $E(S) = a_0 + a_1 E(X_1) + \ldots + a_n E(X_n)$ of $\mu_S = a_0 + a_1 \mu_{X_1} + \ldots + a_n \mu_{X_n}$.
- Als X_1, \ldots, X_n onderling onafhankelijk zijn, dan

$$Var(S) = a_1^2 Var(X_1) + \ldots + a_n^2 Var(X_n)$$
 of $\sigma_S^2 = a_1^2 \sigma_{X_1}^2 + \ldots + a_n^2 \sigma_{X_n}^2$.

Het is belangrijk om op te merken dat Var(X - Y) = Var(X) + Var(Y) (bij onafhankelijkheid).

$$= X + (-1) \cdot Y$$

Algemeen

Eigenschap 4.7 Stel $S = a_0 + a_1 X_1 + a_2 X_2 + \ldots + a_n X_n \text{ met } X_i, i = 1, \ldots, n \text{ kansvariabelen}$ en a_i reële getallen. Dan geldt

- $E(S) = a_0 + a_1 E(X_1) + \ldots + a_n E(X_n)$ of $\mu_S = a_0 + a_1 \mu_{X_1} + \ldots + a_n \mu_{X_n}$.
- Als X_1, \ldots, X_n onderling onafhankelijk zijn, dan

$$Var(S) = a_1^2 Var(X_1) + \ldots + a_n^2 Var(X_n)$$
 of $\sigma_S^2 = a_1^2 \sigma_{X_1}^2 + \ldots + a_n^2 \sigma_{X_n}^2$.

Het is belangrijk om op te merken dat Var(X - Y) = Var(X) + Var(Y) (bij onafhankelijkheid).

Formularium:

LINEAIRE COMBINATIES: Als X_1, X_2, \ldots, X_n onderling onafhankelijke normaal verdeelde toevalsvariabelen zijn met verwachting μ_i en standaardafwijking σ_i voor i = 1, 2, ..., n dan is $Y = a_1 X_1 + a_2 X_2 + \cdots + a_n X_n + b$ cok normaal verdeeld met verwachting $\mu = a_1 \mu_1 + a_2 \mu_2 + \cdots + a_n \mu_n + b$ en standaardafwijking $\sigma = \sqrt{a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \cdots + a_n^2 \sigma_n^2}$. (opmerking: hierbij mogen de constanten a_i en b negatief zijn !!)