Assignment 1 (1/3)

Subhadip Chowdhury

- This homework is due at the beginning of class on **Friday** 1/12. You may cite results from class as appropriate. Unless otherwise stated, you must provide a complete explanation for your solutions, not simply an answer. You are encouraged to work together on these problems, but you must write up your solutions independently.
- Hand in the exercises only, not the reading material part. You are encouraged to think about the exercises marked with a (⋆) or (†) if
 you have time, but you don't need to hand them in. If you correctly solve a (†)-marked problem, you will get a candy!
- Remember that you can always use the result of the previous assignment problems without proof to solve the new assignment problems.
- We are currently covering Chapter 12 from Stewart.

Important Points and Reading Materials

- Review of material from 150s/130s.
 - Limit of rational functions.
 - Derivative of functions of one variables Chain Rule.
 - Graph function of the form y = f(x) where f is a polynomial, rational function, trigonometric, inverse trigonometric, exponential, or logarithmic function.
 - Trigonometry Addition identities, values of sin, cos, tan at $0, \pi/6, \pi/4, \pi/3, \pi/2$ and corresponding angles in other quadrants identities of the form $\cos(3\pi/2 \theta) = -\sin(\theta)$.
- 3-dimensional geometry
 - In two dimensions, giving a single equation will (usually) describe a curve. What would a single equation describe in three dimensions? Would it be a curve or a surface? How many equations would you need to typically describe a curve?
 - In two dimensions, an equation of the form y = f(x) describes a curve. If you take the same equation in three dimensions, it will now give you a surface. How does that surface relate to the original curve?
 - What do we mean by equation of an object? E.g. if a surface *S* has equation $z = x^3 + y$, that means the set of points (x, y, z) in 3 dimensions that are solution to the equation $z = x^3 + y$, collectively make up the surface *S*.
 - We mentioned in class that equation of a sphere with radius r and center at the origin is

$$x^2 + y^2 + z^2 = r^2.$$

What is the equation of a sphere with radius r and center at (a, b, c)?

- If f(x, y, z) = c denotes equation of a surface, what kind of objects are denoted by f(x, y, z) > c and f(x, y, z) < c? E.g. What does the set of points $\{(x, y, z) \mid z < x^2 + y^2\}$ look like?

Problems

Exercise 1

Show that the equation

$$x^{2} + y^{2} + z^{2} + 6x - 8y - 2z + 25 = 0$$

denotes a sphere. Find its center and radius. Do the same for

$$3x^2 + 3y^2 + 3z^2 = 10 + 6y + 12z$$

Exercise 2

(12.1.10) Let P = (2, -1, 0), Q = (4, 1, 1), R = (4, -5, 4). Show that the triangle PQR is a right angled triangle. [HINT: Use Pythagoras identity.]

Exercise 3

(12.1.15) Find equation of the sphere that passes through the point (4, 3, 1) and has center (3, 8, 1).

Exercise 4

(12.1.23c) Find equation of the sphere with center (2, -3, 6) that touches the XZ-plane.

Exercise 5

(12.1.40) Write inequalities to describe the solid cylinder that lies on or below the plane z = 8 and on or above the disk in the XY-plane with center the origin and radius 2.

Exercise 6†

Find equation of the sphere that passes through the points (1,0,0), (0,1,0), and (0,0,1) and has the smallest possible radius.

Exercise 7*

Let $P = (p_1, p_2, p_3)$ and $Q = (q_1, q_2, q_3)$. Let R be a point on the straight line segment \overline{PQ} such that $PR/RQ = \lambda$. Find the coordinates of R.

Exercise 8†

Find the ratio in which the YZ-plane divides the line joining (2, 4, 5) and (3, 5, 7).