Support Vector Machines

Machine Learning Group

Department of Computer Sciences
University of Texas at Austin

Perceptron Revisited: Linear Separators

• Binary classification can be viewed as the task of separating classes in feature space:

Linear Separators

• Which of the linear separators is optimal?

SVM—Support Vector Machines

- A new classification method for both linear and nonlinear data
- It uses a nonlinear mapping to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)

SVM—History and Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- Features: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used both for classification and prediction
- Applications:
 - handwritten digit recognition, object recognition, speaker
 identification, benchmarking time-series prediction tests

SVM—Margins and Support Vectors

Classification Margin

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are *support vectors*.
- *Margin* ρ of the separator is the distance between support vectors.

Maximum Margin Classification

- Maximizing the margin is good according to intuition.
- Implies that only support vectors matter; other training examples are ignorable.

Linear SVM Mathematically

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbf{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathbf{T}}\mathbf{x}_{i} + b \leq -\rho/2 \quad \text{if } y_{i} = -1$$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x}_{i} + b \geq \rho/2 \quad \text{if } y_{i} = 1 \qquad \Longleftrightarrow \qquad y_{i}(\mathbf{w}^{\mathbf{T}}\mathbf{x}_{i} + b) \geq \rho/2$$

- For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is $r = \frac{\mathbf{y}_s(\mathbf{w}^T\mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$
- Then the margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

Linear SVMs Mathematically (cont.)

• Then we can formulate the *quadratic optimization problem*:

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|}$$
 is maximized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$$
 is minimized

and for all
$$(\mathbf{x}_i, y_i)$$
, $i=1..n$: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Solving the Optimization Problem

Find w and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

- Need to optimize a *quadratic* function subject to *linear* constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- The solution involves constructing a *dual problem* where a *Lagrange* multiplier α_i is associated with every inequality constraint in the primal (original) problem:

Find $\alpha_1 \dots \alpha_n$ such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i \mathbf{x}_i^T \mathbf{x}_i$ is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

The Optimization Problem Solution

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point \mathbf{x} and the support vectors \mathbf{x}_i we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^T \mathbf{x}_i$ between all training points.

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called *soft*.

Soft Margin Classification Mathematically

• The old formulation:

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

• Modified formulation incorporates slack variables:

Find \mathbf{w} and \mathbf{b} such that $\mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma \xi_{i} \text{ is minimized}$ and for all (\mathbf{x}_{i}, y_{i}) , i=1..n: $y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}$, $\xi_{i} \geq 0$

• Parameter *C* can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Classification – Solution

• Dual problem is identical to separable case (would *not* be identical if the 2-norm penalty for slack variables $C\Sigma \xi_i^2$ was used in primal objective, we would need additional Lagrange multipliers for slack variables):

Find
$$\alpha_1 ... \alpha_N$$
 such that

$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute **w** explicitly for classification:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Linear SVMs: Overview

- The classifier is a *separating hyperplane*.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find $\alpha_1 \dots \alpha_N$ such that

$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

• General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- If every datapoint is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \to \phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{\varphi}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{\varphi}(\mathbf{x}_j)$$

- A *kernel function* is a function that is equivalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$,

Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j})^{2} = 1 + x_{i1}^{2}x_{j1}^{2} + 2 x_{i1}x_{j1} x_{i2}x_{j2} + x_{i2}^{2}x_{j2}^{2} + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} =$$

$$= [1 \ x_{i1}^{2} \sqrt{2} x_{i1}x_{i2} \ x_{i2}^{2} \sqrt{2}x_{i1} \sqrt{2}x_{i2}]^{\mathsf{T}} [1 \ x_{j1}^{2} \sqrt{2} x_{j1}x_{j2} \ x_{j2}^{2} \sqrt{2}x_{j1} \sqrt{2}x_{j2}] =$$

$$= \mathbf{\phi}(\mathbf{x}_{i})^{\mathsf{T}}\mathbf{\phi}(\mathbf{x}_{j}), \text{ where } \mathbf{\phi}(\mathbf{x}) = [1 \ x_{i}^{2} \sqrt{2} x_{i1}x_{2} \ x_{2}^{2} \sqrt{2}x_{i} \sqrt{2}x_{2}]$$

• Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\varphi(\mathbf{x})$ explicitly).

What Functions are Kernels?

- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^{\mathrm{T}} \varphi(\mathbf{x}_j)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$		$K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
K=					
	•••				
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	•••	$K(\mathbf{x}_n,\mathbf{x}_n)$

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$ Mapping $\Phi: \mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ has $\binom{d+p}{p}$ dimensions
 - Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_i) = e$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to a function (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has *intrinsic* dimensionality d (the mapping is not *onto*), but linear separators in it correspond to *non-linear* separators in original space.

Non-linear SVMs Mathematically

• Dual problem formulation:

Find $\alpha_1 \dots \alpha_n$ such that

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i K(\mathbf{x}_i, \mathbf{x}_i)$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i
- The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!

Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The support vectors are the essential or critical training examples —they lie closest to the decision boundary (MMH)
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper)
 bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik *et al.* '97], principal component analysis [Schölkopf *et al.* '99], etc.
- Most popular optimization algorithms for SVMs use *decomposition* to hill-climb over a subset of α_i 's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.