各李代数的结构

2020年4月17日

目录

1

1 介绍

2	A_l		3
	2.1	根系结构验证	3
	2.2	邓金图计算根系	3
	2.3	矩阵实现的验证	4
		1 介绍	
	本ス	文档对九种典型及例外李代数进行了:	
	• 验	证其根系结构(W5 作业)	
	• 利	用邓金图计算根系(W6 作业)	
	• 验	证其矩阵实现的正确性(W7 作业)	
	其□	中验证根系结构是指,验证这一根系满足如下性质:	
	• 任	意一个非零根 α 的负值 $-\alpha$ 也是根(这个太 trivial 了就略去了)	0
		意两根满足 $\frac{2(\alpha,\beta)}{(\alpha,\alpha)}\in\mathbb{Z}$,或者等价地,两根夹角与其长度比有对系。	应
	• 对	于任意两个根 α 和 β , $\beta-2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\alpha$ 也是根。	

1 介绍 2

注意到后两点对于 α 和 β 互为负值或相互正交的情况都是 trivial 的,从而只用讨论夹 30°,45°,60° 度角的情况即可(以下称这些为 non-trivial 夹角,剩下的称 trivial 夹角)。同时,如果 α 和 β 满足这两个条件,那么容易验证 α 和 $-\beta$ 也满足,从而总可以不失一般性地选取正负号来简化讨论。

对于矩阵实现,我们理应验证全部的对易关系:

$$[H_i, H_j] = 0 (1)$$

$$[H_i, E_\alpha] = \alpha_i E_\alpha \tag{2}$$

$$[E_{\alpha}, E_{-\alpha}] = \alpha^i H_i \tag{3}$$

$$[E_{\alpha}, E_{\beta}] = N_{\alpha\beta} E_{\alpha+\beta} \tag{4}$$

我们的验证过程中会常用到这一关系式:

$$[D, E_{ij}] = (D_{ii} - D_{jj})E_{ij}$$
 (5)

其中 D 是对角矩阵, E_{ij} 代表只有 (i,j) 元非零的矩阵。

我们讨论的矩阵实现中,H 都是显式地写为了同时对角化的形式,从而(1)自然满足。(2)可以直接验证,并在过程中求出 α_i 。

注意到(2),(3),(4)三式右边都有待定系数。这些系数之间需要满足一些关系。首先,各 α_i 之间需要满足根向量间的关系,即它们应该是该李代数的根系在某一组正交基下的坐标,这一般是容易验证的。再者,雅可比行列式必须满足。经过简单的计算可以得知只有下列两种雅可比行列式是non-trivial 的:

$$[E_{\beta}, [E_{\alpha}, E_{-\alpha}]] + \text{cyc.} = 0 \tag{6}$$

$$[E_{\alpha}, [E_{\beta}, E_{\gamma}]] + \text{cyc.} = 0 \tag{7}$$

$$[E_{\alpha}, [E_{\beta}, E_{-\alpha-\beta}]] + \text{cyc.} = 0 \tag{8}$$

分别给出:

$$N_{\alpha,\beta-\alpha}N_{-\alpha,\beta} + N_{-\alpha,\alpha+\beta}N_{\beta,\alpha} = (\alpha,\beta)$$
(9)

$$N_{\beta\gamma}N_{\alpha,\beta+\gamma} + N_{\gamma\alpha}N_{\beta,\gamma+\alpha} + N_{\alpha\beta}N_{\gamma,\alpha+\beta} = 0 \tag{10}$$

$$(N_{\beta,-\alpha-\beta} - N_{\alpha,\beta})\alpha^i + (N_{-\alpha-\beta,\alpha} - N_{\alpha,\beta})\beta^i = 0$$
(11)

其中,如果令

$$n(\beta, \alpha) = N_{-\alpha, \beta} N_{\alpha, \beta - \alpha} \tag{12}$$

 $2 A_L$ 3

则(9)改写为

$$n(\beta + \alpha, \alpha) - n(\beta, \alpha) = -(\alpha, \beta) \tag{13}$$

假设 β 的 α 根系为 $\beta-q\alpha$ 至 $\beta+p\alpha$,对根链求和,可以求出 $\frac{2(\alpha,\beta)}{(\alpha,\alpha)}=q-p$,再利用这一结果可以得到

$$n(\beta, \alpha) = \frac{1}{2}q(p+1)(\alpha, \alpha) \tag{14}$$

(11)给出

$$N_{\alpha\beta} = N_{-\alpha-\beta,\alpha} = N_{\beta,-\alpha-\beta} \tag{15}$$

命题: 取素根系 π , 只要令

$\mathbf{2}$ A_l

2.1 根系结构验证

 A_l 的根系结构为:

$${e_i - e_j | 1 \le i, j \le l + 1, i \ne j}$$
 (16)

取两个 $\alpha=e_i-e_j$ 和 $\beta=e_k-e_l$ 。如果 i,j 和 k,l 是四个不同的数,那么显然两者正交。non-trivial 的情况只有当 i,j 中的一个和 k,l 中的一个相等时出现。不妨设 i=k,则两者内积为 1,而两者模方均为 2,故有 $\cos\theta=\frac{1}{2}$,与两者长度相等一致。此时有 $\frac{(\alpha,\beta)}{(\alpha,\alpha)}=\frac{1}{2}$,从而 $\beta-2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\alpha-\beta-\alpha=e_j-e_l$,确实为根。

2.2 邓金图计算根系

其 Cartan 矩阵为 $A_{ij} = 2\delta_{ij} - \delta_{i,j+1} - \delta_{i,j-1}$ 一级根为素根 α_i ,此时有对应的 $q_j = 2\delta_{ij}$,而

$$p_j = q_j - A_{jl}k_l = q_j - A_{ji} = \delta_{i,j+1} + \delta_{i,j-1}$$
(17)

其中 k_l 指当前根在素根基下的展开系数,这里即为 δ_{li} ,以下不再赘述。 从而二级根为 $\alpha_i + \alpha_{i+1}$,此时对应 $q_j = \delta_{ji} + \delta_{j,i+1}$,而

$$p_{j} = q_{j} - A_{jl}k_{l}$$

$$= \delta_{ji} + \delta_{j,i+1} - (2\delta_{ji} - \delta_{j,i+1} - \delta_{j,i-1}) - (2\delta_{j,i+1} - \delta_{j,i+2} - \delta_{ji})$$

$$= \delta_{i,i-1} + \delta_{i,i+2} \quad (18)$$

 $2 A_L$

从而三级根只能是二级根头尾加上一个,即 $\alpha_i + \alpha_{i+1} + \alpha_{i+2}$ 形式。

由此可作递归。假设 n 级根全都为 $a_i + a_{i+1} + \cdots + a_{i+n-1}$ 形式,则 其对应的 $q_j = \delta_{j,i} + \delta_{j,i+n-1}$ (只有去掉最边上的才能去完之后还是一串连着的形式),于是

$$p_{j} = q_{j} - A_{jl}k_{l} = \delta_{j,i} + \delta_{j,i+n-1} - \sum_{m=i}^{i+n-1} (2\delta_{jm} - \delta_{j,m+1} - \delta_{j,m-1})$$

$$= \delta_{j,i} + \delta_{j,i+n-1} - (\delta_{j,i} - \delta_{j,i-1} + \delta_{j,i+n-1} - \delta_{j,i+n}) = \delta_{j,i-1} + \delta_{j,i+n}$$
 (19)

从而确实 n+1 级根只能是 $\alpha_i + \alpha_{i+1} + \cdots + \alpha_{i+n}$ 。 注意上述推导 p_j 中如果求和指标超出可取值范围,对应部分直接写成零即可,不影响结论。

从而递归成立。于是得知 A_l 的根系用素根表达为:

$$\left\{ \sum_{m=i}^{j} \alpha_m \middle| 1 \le i \le j \le l \right\} \tag{20}$$

2.3 矩阵实现的验证