MOwNiT – laboratorium Rozwiązywanie układów równań liniowych metodami bezpośrednimi

Dany jest układ równań liniowych $\mathbf{A}x = \mathbf{b}$.

1) Elementy macierzy **A** o wymiarze $n \times n$ są określone wzorem:

$$\begin{cases} a_{1j} = 1 \\ a_{ij} = \frac{1}{i+j-1} \quad dla \quad i \neq 1 \end{cases}$$
 $i, j = 1, \dots, n$

Przyjmij wektor x jako dowolną n-elementową permutację ze zbioru $\{1, -1\}$ i oblicz wektor \mathbf{b} .

Następnie metodą eliminacji Gaussa rozwiąż układ równań liniowych $\mathbf{A}\mathbf{x}=\mathbf{b}$ (przyjmując jako niewiadomą wektor \mathbf{x}). Przyjmij różną precyzję dla znanych wartości macierzy \mathbf{A} i wektora \mathbf{b} . Sprawdź, jak błędy zaokrągleń zaburzają rozwiązanie dla różnych rozmiarów układu (porównaj – zgodnie z wybraną normą – wektory \mathbf{x} obliczony z \mathbf{x} zadany). Przeprowadź eksperymenty dla różnych rozmiarów układu.

2) Powtórz eksperyment dla macierzy zadanej wzorem:

$$\begin{cases} a_{ij} = \frac{2i}{j} & dla \quad j \ge i \\ a_{ij} = a_{ji} & dla \quad j < i \end{cases}$$

$$i, j = 1, \dots, n$$

Porównaj wyniki z tym, co otrzymano w przypadku układu z punktu 1). Spróbuj uzasadnić, skąd biorą się różnice w wynikach. Sprawdż uwarunkowanie obu układów.

- 3) Powtórz eksperyment dla jednej z macierzy zadanej wzorem poniżej (macierz i parametry podane w zadaniu indywidualnym). Następnie rozwiąż układ metodą przeznaczoną do rozwiązywania układów z macierzą trójdiagonalną. Porównaj wyniki otrzymane dwoma metodami (czas, dokładność obliczeń i zajętość pamięci) dla różnych rozmiarów układu. Przy porównywaniu czasów należy pominąć czas tworzenia układu. Opisz, jak w metodzie dla układów z macierzą trójdiagonalną przechowywano i wykorzystywano macierz A.
 - a) (m,k parametry zadania):

$$\begin{cases} a_{i,i} = k \\ a_{i,i+1} = \frac{1}{i+m} \\ a_{i,i-1} = \frac{k}{i+m+1} & dla \quad i > 1 \\ a_{i,j} = 0 & dla \quad j < i-1 \quad oraz \quad j > i+1 \end{cases}$$

b) (*m*,*k* - parametry zadania):

$$\begin{cases} a_{i,i} = -m \cdot i - k \\ a_{i,i+1} = i \end{cases}$$

$$\begin{cases} a_{i,i+1} = i \\ a_{i,i-1} = \frac{m}{i} \quad dla \quad i > 1 \\ a_{i,j} = 0 \quad dla \quad j < i-1 \quad oraz \quad j > i+1 \end{cases}$$