Exercise 3.

The lekelehood function is:

$$L(\theta|x) = \prod_{i=1}^{n} e^{-(x_i - \theta)} I(x_i \ge \theta)$$

$$= e^{-\frac{\sum_{i=1}^{n} x_i + n \theta} I(x_1 \ge \theta) \prod_{i=1}^{n} I(x_i \in \mathbb{R})}$$

$$= e^{n\theta} I(x_1 \ge \theta) e^{-\frac{\sum_{i=1}^{n} x_i}{n} I(x_i \in \mathbb{R})}$$

$$= e^{n\theta} I(x_1 \ge \theta) e^{-\frac{\sum_{i=1}^{n} x_i}{n} I(x_i \in \mathbb{R})}$$

Herre. $x_1 = min(x_1, x_2, ... x_n)$ Herre x_1 is a Sufficient statistic by Factorization theorem.

Likelehood Ratio Test Statistic is

$$\lambda(x) = \frac{L(\widehat{\theta}_0|x)}{L(\widehat{\theta}|x)} \qquad (1)$$

Here,
$$\hat{\Theta} = \alpha \pi g \max L(\Theta|x); \Theta = \{\Theta: -\alpha < \theta < \alpha\}$$

and
$$\hat{\theta}_0 = \underset{\theta \in \Theta_0}{\text{arg max } L(\theta|x); \theta_0 = \{\theta: -\alpha < \theta < \theta_0\}}$$

Now for 1st case:

I when
$$\theta(x_1) = \sum_{i=1}^{n} x_i + n\theta$$
,
then $L(\theta|x) = e^{-\sum_{i=1}^{n} x_i + n\theta}$,
which increases as θ increases.

I When $\theta > \chi_1$, then $L(\theta | \chi) = 0$

So, L (OIX) is an increasing function when O is less than on equal to the minimum order statistic X1; when O is larger than X1 the likelihood functions drops to zerro.

So,
$$\hat{\theta} = X_1$$
 Or min $(X_1, --, X_n)$
and SUP $L(\theta | X) = L(\hat{\theta} | 1X)$
 $\theta \in \Theta$
 $= L(X_1 | X)$

For second case:

when $\Theta_0 < x_1$. Then the largest $L(\Theta|x)$ can be is $L(\Theta_0|x)$. So, $\widehat{\Theta}_0 = \Theta_0$

U when $\Theta_0 > \chi_1$, then, $\widehat{\Theta}_0 = \chi_1$ on min $(\chi_1, --- \chi_n)$

Therefore, $\hat{\theta}_0 = \begin{cases} \theta_0, \theta_0 < x_1 \\ x_1, \theta_0 \ge x_1 \end{cases}$

Now ean (1) become

$$\lambda(x) = \frac{L(\widehat{\theta}_0 | x)}{L(\widehat{\theta}_1 | x)} = \begin{cases} \frac{L(\theta_0 | x)}{L(x_1 | x)}, & \theta_0 < x_1 \\ \frac{L(x_1 | x)}{L(x_1 | x)} = 1, & \theta_0 > x_1 \end{cases}$$

we have Ho: 0 < 0, vs H1: 0>00

I If $x_1 < \theta_0$, we centainly don't want to reject to and conclude that $\theta > \theta_0$

It is only when $x_1 > \theta_0$ do we have evidence that θ might be larger than θ_0 . So, the larger the x_1 , the smaller the $\lambda(x)$, the more evidence against θ .

Now,
$$\lambda(x) = \frac{L(\theta_0 | x)}{L(x_1 | x)} = \frac{e^{-\sum_{i=1}^{n} x_i} + n\theta_0}{e^{-\sum_{i=1}^{n} x_i} + nx_1}$$

[x1 = men (x1 -- xn)]