MC14009AL MC14009CL MC14009CP MC14010AL MC14010CL MC14010CP

HEX BUFFERS

The MC14009 hex inverter/buffer and MC14010 noninverting hex buffer are constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These complementary MOS devices find primary use where low power dissipation and/or high noise immunity is desired. Both devices can be used as current "sink" or "source" drivers, as CMOS-to-CMOS or CMOS-to-bipolar (TTL or DTL) logic level converters, or as multiplexers (1-to-6). The MC14009 also provides the invert function.

- Quiescent Power Dissipation = 50 nW/package typical
- High Current Sinking Capability
 8.0 mA minimum @ VOL = 0.5 V and VDD = 10 V
- Supply Voltage Range = 3.0 Vdc to 18 Vdc (MC14009/10 AL)
- Supply Voltage Range = 3.0 Vdc to 18 Vdc (MC14009/10 AL)
 3.0 Vdc to 16 Vdc (MC14009/10CL/CP)
- Wide CMOS-to-Bipolar Conversion Range -

From MCMOS operating with specified supply voltage range to TTL or DTL operating with ± 3.0 V to ± 6.0 V supply. Conversion with logic output levels ≥ 6.0 V is permitted if VCC \leq VDD.

Pin for Pin Replacement for CD4009A -- MC14009
 CD4010A -- MC14010

MAXIMUM RATINGS (Voltages referenced to V_{SS}, Pin8)

Rating	Symbol	Value	Unit
DC Supply Voltage (V _{CC} ≤V _{DD}) -AL Version CL,CP Version	V _{DD}	+18 to -0.5 +16 to -0.5	Vdc
Input Voltage, All Inputs	Vin	V _{DD} to -0.5	Vdc
DC Current Drain per Pin*	ı	10	mAdc
Operating Temperature Range —AL Version CL,CP Version	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

^{*}Buffered Outputs may supply higher current.

McMOS

(LOW-POWER COMPLEMENTARY MOS)

HEX BUFFERS

Inverting — MC14009A L/CL/CP Noninverting — MC14010A L/CL/CP

See Mechanical Data Section for package dimensions

MC14009, MC14010 (continued)

ELECTRICAL CHARACTERISTICS

Charterwine Page Symbol Wish								<u></u>	MC14009/10AL MC14009/10CL/CP										1			
County Visible Coun	1.23 Value 1.25	Characteristic						-65°C		ļ.,	+25°C +125°C						+25°C				4	
MC14000 (Vm = 30 Wed) (Vm = 10 Wed	10 10 10 10 10 10 10 10					Vdc	Vdc	Min	Max	Min	Тур	Max	Min	Max	Min	Max	Min	Тур	Mex	Min	Max	+-
Control 10 Version 10 Versi	10 10 10 - 0 001 - 0 0 0 0 0 0 0 0 0 0 0			1,2,3	Vout							1	1				ĺ				1	٧
Control 10 Version 10 Versi	10 10 10 - 0 001 - 0 0 0 0 0 0 0 0 0 0 0	(Vin = 5.0 Vdc)								-	0	0.01		0.05	- 1	0.01	-	١,	0.01	_	0.05	
MC14000 100 100 100 100 100 100 100 100 10	Solution	(V _{in} = 10 Vdc)			1													٥	0.01	-	0.05	ı
Control Cont	Solution		10011 1			15				-	l °	-	-	-	-	-	<u> </u>	0	-	-		ı
Myn 0 Need	10		U Level		ŀ	5.0	E 0		١,,,	Ī	_	001		۰.۰۰						Т		1
Mart 1- 100	18.	(Vin = 0 Vdc)		ł									Ī.		_					-		
March 4000 100	Solid Soli	(Vin = 0 Vdc)		1			-	l -	-			-] -	-	-	-			- 1		-	
Vist 0 Med Vist 10	Second 11	MC14009		i			t	†	 	-	-	_	\vdash	H	\vdash		-	Ľ	 	 	├─	† v
Winter W	10 10 10 10 10 10 10 10	(V _{in} = 0 Vdc)		i					-			-			4.99	-	4.99	5.0	-	4.95	- :	1
MC14010 17-12-20 1-	Section Sect	(Vin = 0 Vdc)			1		10	9.99		9.99		-	9.95	-	9.99	-		10	-		- 1	1
1	Solid Soli				1	15	-	-	-	-	15	-	-	-	-	-	-	15	-	-	-	ı
Continue 10 voice 10 10 10 999 999 10 999 999 10 999 999 10 999 15 999 10 999 15 999 15 999 15 999 15 999 15 999 15 999 15 999 15 999 15 999 15 999 15 999 15 999 15 15	10		"1" Level		ļ		 		_		-	_		\vdash	\vdash	\vdash	-	├	 	┾	-	1
15 15 15 15 15 15 15 15	Section Sect	(Vin = 10 Vdc)			1				1			-										1
Value Valu	Valid	(Vin = 15 Vdc)					"	9.99	_	9.99			9.95	-	9.99	-	9.99		-		1	1
MC14006 (Your 23 5 Ved) (Your 24 5 Ved) (Your	Solid Soli				 			⊢-	-	ļ-	15	<u> </u>		-	_	_		''	<u> </u>	┶	-	١.,
(Vou. 23.5 Vote) 50 50 50 10 - 10 20 - 0 0 0 10 20 - 10 - 10 20 - 10 Vote Vote Vote 210.5 Vote Vote 21	10 10 10 20 - 20 30 0 - 12 - 20 0 0 30 0 1 19 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-	VNL	l	I	1	l	l									1	1		١ ٧
10	10 10 10 20 - 20 30 0 - 12 - 20 0 0 30 0 1 19 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					5.0	5.0	10	~	10	20	_	ا و ہ ا		10	_	10	20	_	١٠٩	_	ı
Vogu 210 5 Vote	15	(Vout ≥7.0 Vdc)		ļ					_			_										
(Your \$45 Ved) (Your	10 10 29 - 30 45 - 30 - 29 - 30 45 - 30 - 30 - 45 - 30 - 45 - 30 - 45 - 30 - 45 - 30 - 45 - 30 - 45 - 30 - 45 - 30 - 45 - 30 - 45 - 4		į	1	_	15	15	-	-	-		-	-	-	-	-	-			1 -	_	
10	10 10 29 - 30 45 - 30 - 29 - 30 45 - 30 - 30 - 45 - 30 - 45 - 30 - 45 - 30 - 45 - 4	(Vout ≤1.5 Vdc)			VNH	5.0	5.0	1.4	-	1.5	2.25	-	1.5	-	1.4		1.5	2.25	-	1.5	-	V
Visual SI S Void Visual SI S Void Visual SI S Void Visual S S Void Visua	Val.	(Vout ≤3.0 Vdc)		l				2.9	-	3.0			3.0	-				4.5	-			l
(Vo., x 5.3 Ved) (Vo.,	Solid Soli			I		15	15	-		ļ	6.75	-	-					6.75	<u> </u>	<u> </u>		\perp
(Your \$4.5 Ved) (Your \$4.5 Ved) (Your \$3.5 Ved) (Your \$2.5 Ved) (Your \$3.5 Ved	10			I	VNL	١		١	[١ `	l]		1.]					I	1	1		I۷
(Voy, 23.5 Ved) (Voy, 27.0 Ved	15	(Vout <3.0 Vdc)		I	1							-							-		-	1
(Voy. 23 5 Vota) (Voy. 27 0 Vota) (Voy. 28 Vota) (Voy. 29	Value Valu	(Vout ≤4.5 Vdc)		l	l			- 3.0	-	-		_	2.9		3.0				1 -	2.9	-	1
(Your 27.0 Vide) (Your	10	(Vout ≥3.5 Vdcl		I	VNL	_		14	-	15		Ė	15	-	1,4		_		۱÷	15	-	١,
(V _{QH} = 7.0 S Vac)	\(\frac{1}{10} \) \(\frac{1}{1	(V _{out} ≥7.0 Vdc)		l	- 1414														-			ľ
Note Control Current	The content of the co	(V _{out} ≥10.5 Vdc)		L	1			-		-			-		-					-	- 1	1
(VO + 2.5 Voc)	Source S				1					$\overline{}$	\Box		П		-		П		1	\vdash	\vdash	✝
V(V _O + 9.5 Vsc)	969) 969) 960 10	(Va		5	ЮН	l	l	1	1	L.								I]	I		~
(VO) 13.5 Vac)	15 15 15 15 15 15 15 15	(VOH = 2.5 Vdc)	Source	1																	-	l
	961 Sink 6 10L 5.0 5.0 3.75 - 3.0 4.0 - 2.1 - 3.6 - 3.0 4.0 - 2.4 - 70 4.0 10 10 10 10 10 - 8.0 10 - 5.6 - 9.6 - 8.0 10 - 6.4 - 10 10 10 10 10 - 8.0 10 - 5.6 - 9.6 - 8.0 10 - 6.4 - 10 10 10 10 10 - 8.0 10 - 5.6 - 9.6 - 8.0 10 - 6.4 - 10 10 10 - 10 10 - 10 - 10 10 - 10 10 - 10 10 10 - 10 10 10 - 10 10 10 - 10 10 10 - 10 10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10			ľ				-0.9	-	-0.6		-	-0.4	-	-0.72	-						
I/O ₁ = 0.4 Vic) Sink S	Sol Sink Sink Sol So	011			1	- 13		+-	F	-	-5.0	<u> </u>	-		-		<u> </u>	-5.0	<u> </u>	-		Η.
(VOL = 0.5 Vac)	10	IVOL = 0.4 Vdcl	Sink	۰	101	5.0	5.0	3 75	١	3 n	l an	_	9,1	_	26	_	امدا	أمما	i .	24		~
(V _Q = 1.5 Vac)	15 15 15 - - - 35 - - - - 35 - - - - - 35 - - - - - 35 - - - - - - 35 - - - - - - 35 - - - - - - - - -				1				-			_		_					_		_ 1	1
Page	MC14000				1	15	15	-	-		35	-							- 1			1
Control Cont	MC14010	nput Current			1in	-		-	-	-	10	_	-	-	- 1	_		10	-	 -		DA.
Dissemit Dissipation	7 PO 5.0 1.5 - 0.06 1.5 - 100 - 15 - 0.5 1.5 - 210 w 10 5.0 - 0.1 5.0 - 300 - 15 - 0.5 50 - 210 w 15 5.0 - 0.1 5.0 - 300 - 50 - 0.88 - 210 w 16 mu/pF) CL + 12 ns 16 mu/pF) CL + 12 ns 10 nu/pF) CL + 13 ns 10 10 9.0 30 9.0 40 8.0 35 9.0 40 8.0 35			-	Cin	-		-		-			-	-	-	-	-	10	-	-		٥
10	10		MC14010		L	-		<u> </u>	_	<u> </u>									-	_		
15	15 0.15 0.05 1.00	Idescent Dissipation		7	^{PD}			_		_					_		-			-		"
IC_ = 15 pF)	16 ml/pFi CL + 12 ms 10 ml/pFi CL + 8.0 ms 10 ml/pFi CL + 8.0 ms 10 ml/pFi CL + 5.0 ms 110 ml/pFi CL + 5.0 ms 110 ml/pFi CL + 5.0 ms 110 ml/pFi CL + 19 ms 110 ml/pFi CL + 19 ms 110 ml/pFi CL + 14 ms 110 ml/pFi CL + 20 ms						l -	-		l			- 1	-	-	-	-		-	-	-	
MC14009 TepH_ = (0.16 ns/pF) CL + 12 ns	10 nulp C_1 + 8.0 ns 10 10 9.0 30 9.0 40 9.0 10 10 9.0 10 9.0 10 9.0 10 9.0 10 9.0 10	urn-On Delay Time**		4	TPHL															\Box		_
TepH_ = (0.16 m/pF) C_L + 12 ns	10 nulp C_1 + 8.0 ns 10 10 9.0 30 9.0 40 9.0 10 10 9.0 10 9.0 10 9.0 10 9.0 10 9.0 10		j						1	1		i .										
TepH_ ** (0.30 ns/pF) C_t *8.0 ns 10 10 - - 9.0 30 - - - 9.0 40 TepH_ ** (1.00 ns/pF) C_t *6.0 ns 15 15 - - 7.0 - - - - 9.0 40 TepH_ ** (1.00 ns/pF) C_t *7.0 ns 10 5.0 - - 8.0 25 - - - - 8.0 35 TepH_ ** (1.03 ns/pF) C_t *19 ns 10 10 - - 5.0 5.0 - - - 2.0 36 TepH_ ** (1.03 ns/pF) C_t *19 ns 10 10 - - TepH_ ** (1.008 ns/pF) C_t *19 ns 10 10 - - TepH_ ** (1.008 ns/pF) C_t *14 ns 15 15 - - TepH_ ** (1.008 ns/pF) C_t *14 ns 10 TepH_ ** (1.008 ns/pF) C_t *14 ns 10 TepH_ ** (1.008 ns/pF) C_t *19 ns TepH_ ** (1.008 ns/pF) C_t *19 ns TepH_ ** (1.008 ns/pF) C_t *19 ns TepH_ ** (1.008 ns/pF) C_t *19 ns TepH_ ** (1.008 ns/pF) C_t *15 ns TepH_ ** (1.03 ns/pF) C_t *15 ns TepH_ ** (0.14 ns/pF) C_t *15 ns TepH_ ** (0.14 ns/pF) C_t *20 ns TepH_ ** (0.14 ns/pF) C_t *20 ns TepH_ ** (0.16 ns/pF) C_t *20 ns TepH_ ** (0.16 ns/pF) C_t *20 ns	10 nulp C_1 + 8.0 ns 10 10 9.0 30 9.0 40 9.0 10 10 9.0 10 9.0 10 9.0 10 9.0 10 9.0 10								ł						۱ ا							
Teht. (1.008 nt/oF) C_(+ 6.0 ns 15 15 7.0 - 8.0 75 15 15 15 - 8.0 75 15 15 15 15 15 15 15	15	TPHL = (0.10 ns/pF) Ct + 8.0 ns							-				-	-	-	-	-			-	- 1	
TPHL * (10.05 nt/pF) CL + 5.0 ns 10	10 5.0 - - - 8.0 25 - - - - 8.0 35 - - - 8.0 35 - - - - 8.0 35 - - - - 8.0 35 - - - - - 8.0 35 - - - - - 8.0 35 - - - - - - - - -	tput = (0.08 ns/oF) Cr + 6.0 ns	1										1 1									1
TPHL (1.03 nt/pF) CL + 5.0 ns	15 5.0 5.0 5.0 5.0 1.3	tpHL = {0.95 ns/pF} CL + 7.0 ns			1			-	-							_						1
Tept. = (0.38 ns/pF) CL + 19 ns 10	10	tpHL = (0.03 ns/pF) CL + 5.0 ns			1	15	5.0		-	-	5.0	•	- 1			-						1
tPHL = (0.08 nt/6F) CL + 19 ns 10 10 - </td <td> 10</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td> </td> <td></td> <td>_</td> <td>\vdash</td> <td></td> <td>-</td> <td>\rightarrow</td> <td>\neg</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>ł</td>	10					 		 		_	\vdash		-	\rightarrow	\neg				-			ł
TepH_ = (10.06 m/gF) C_t + 14 ns	15	tpHL = (0.38 ns/pF) CL + 19 ns						- 1		-			-	- [-					-	-	ı
tent (10.08 ni/6F) Ct + 14 ns	10 5.0 - - 15 25 - - - 15 35 - -	tens = (0.06 or/oF) C; + 14																			-	ı
TPH_ = (0.09 nr/6F) C_t + 9.0 ns	19 Ansigh C L + 9.0 ms 4	tpH = (0.08 ns/nF) Cr + 14 ns														- 1						l
Un-OHD Delay Time** (C_ = 15 pc) MC14009/10 1p_L + (1.0 ns/pc) C_ + 35 ns 1p_L + (0.34 ns/pc) C_ + 19 ns 1p_L + (0.34 ns/pc) C_ + 18 ns 15	#** 4	tPHL = (0.09 ns/pF) CL + 9.0 ns	ļ					-		-		-	-	_	<u> </u>	_ [ء ا			1
(CL = 15 pc) MC14009/10 1P(LH * (1.0 nt/pF) CL * 35 ns 1P(LH * (0.34 nt/pF) CL + 19 ns 10 10 25 55 25 70 1P(LH * (0.34 nt/pF) CL + 15 ns 15 15 20 25 30 25 40 1P(LH * (0.34 nt/pF) CL + 18 ns 15 50 25 30 25 40 1P(LH * (0.16 nt/pF) CL + 18 ns 15 50 25 30 25 40 1P(LH * (0.16 nt/pF) CL + 18 ns 15 50 20 20 20 20 1put Rise Time** 1 ty 1 ty 1 ty 2 ty 1	0 nt/pFi C1 + 35 ns	urn-Off Detay Time**		4	tPLH			\vdash			\vdash		\vdash		\dashv	\neg	\vdash		\vdash	1	\vdash	,
tpt_H * (1.0 n/s)F i C_t * 35 ns 50 50 - - - 50 80 - - - - 50 100 tpt_H * (0.04 m/s)F i C_t * 15 ns 10 0 - - 25 55 - - - - 25 70 tpt_H * (0.34 m/s)F i C_t * 15 ns 15 15 15 - - 20 - - - - 25 40 tpt_H * (0.16 m/s)F i C_t * 18 ns 15 5.0 - - 20 - - - - 20 MC14009 1 1 5.0 5.0 - - - 20 - - - - - 20 - - - - - 20 - - - - - 20 - <td> 40 ns/pF C_1 + 19 ns 10 10 - - 25 55 - - - - 25 70 - - 28 18 18 18 19 19 19 19 1</td> <td>(C_L = 15 pF)</td> <td>Ì</td> <td></td> <td> </td> <td>l</td> <td>l</td> <td></td> <td>1</td> <td> </td> <td> </td> <td>ļ</td> <td>] </td> <td> </td> <td></td> <td></td> <td> </td> <td></td> <td>l i</td> <td>1 1</td> <td></td> <td>Ι ຶ</td>	40 ns/pF C_1 + 19 ns 10 10 - - 25 55 - - - - 25 70 - - 28 18 18 18 19 19 19 19 1	(C _L = 15 pF)	Ì			l	l		1			ļ]						l i	1 1		Ι ຶ
tpt, # 10.40 nt/pF1 Ct + 19 ns tpt, # 10.40 nt/pF1 Ct + 19 ns tpt, # 10.34 nt/pF1 Ct + 15 ns tpt, # 10.34 nt/pF1 Ct + 20 ns tpt, # 10.36 nt/pF1 Ct + 18 ns tpt, # 10.36 nt/pF1 Ct + 18 ns tpt, # 10.36 nt/pF1 Ct + 18 ns tpt, # 10.36 nt/pF1 Ct + 20 ns tpt, # 10.40 nt/pF1 Ct + 44 ns tpt, # 10.40 nt/pF1 Ct + 20 ns tpt, # 10.50 nt/pF1 Ct + 20 ns	40 ns/pF C_1 + 19 ns 10 10 - - 25 55 - - - - 25 70 - - 28 18 18 18 19 19 19 19 1						١			i .					ŀ					1 1		1
tpt, H = (0.34 ns/6F) C_t + 15 ns	34 ms/pF C ₁ + 15 ns 15 15 - - 20 - - - - 1.0 20 - - - 1.0 20 - - - 1.0 20 - - - 1.0 20 - - - 1.0 20 - - - 1.0 20 - - - 1.0 20 - - - - 20 - - - 20 - - - 20 - - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	tp_H * (1.0 ns/pF) C _L + 35 ns						-	-	-			-	~	- [-	-			- 1	-	ı
TELL 10.16 ns/pF CL + 18 ns	15 50 20 20 - 20 -	tp: µ = (0.34 ns/pF) C; + 15 ∧s	I													- 1						1
TELL 10.16 m/pF CL + 18 ns	15 50 20 20 - 20 -	tp_H = (0.36 ns/pF) C ₁ + 20 ns	I					-	-							_						1
utput Rise Trime** (2 - 15 pF) MC14009 1; + (2.4 ns/pF) CL + 24 ns 1; + (1.0 ns/pF) CL + 20 ns 10 10 38 100 38 120 1; + (1.0 ns/pF) CL + 20 ns 10 10 38 100 38 120 1; + (1.8 ns/pF) CL + 20 ns 15 15 30 30 120 1; + (1.8 ns/pF) CL + 56 ns 1; + (0.76 ns/pF) CL + 29 ns 10 10 50 100 50 120 1; + (0.6 ns/pF) CL + 21 ns 15 15 30 30	A	tPLH = (0.16 ns/pF) CL + 18 ns	J			15				-												l
12 15. pF) MC14029 1y + (12. ns/pF) C_1 + 44 ns 1y + (10. ns/pF) C_2 + 20 ns 10 10 35 100 30 180 1y + (10.82 ns/pF) C_2 + 20 ns 15 15 30 30 30 120 1y + (10.82 ns/pF) C_1 + 36 ns 1y + (0.76 ns/pF) C_2 + 39 ns 10 10 50 100 50 120 1y + (0.6 ns/pF) C_2 + 21 ns 15 15 30 30 120 1y + (0.6 ns/pF) C_2 + 21 ns 15 15 30 30 120 1y + (0.6 ns/pF) C_2 + 21 ns 15 15 30		utput Rise Time**		4	tr		1	П	_	П	\vdash		\vdash	-	\dashv		\dashv		$\overline{}$	Н		,
t ₁ + (2.4 ns/pF) C ₁ + 44 ns 5.0 5.0 80 125 80 160 t ₂ + (1.0 ns/pF) C ₁ + 20 ns 10 10 35 100 30 30 30 30 30 30 30 30 30 30 30 30 30 30 80 125 80 125 80 125 80 120 80 125	10 10 - - 35 100 - - - 35 120 - -					ł	l							I	ŀ	- 1						۱
t ₊ * (1.0 nst/pF) C ₁ * 20 ns t ₊ * (1.0 st/pF) C ₂ * 20 ns t ₊ * (1.0 st/pF) C ₂ * 20 ns t ₊ * (1.0 nst/pF) C ₂ * 20 ns t ₊ * (1.0 nst/pF) C ₂ * 30 ns t ₊ * (1.0 nst/pF) C ₂ * 30 ns t ₊ * (1.0 nst/pF) C ₂ * 21 ns t ₊ * (1.0 nst/pF) C ₂ * 21 ns t ₊ * (1.0 nst/pF) C ₂ * 20 ns t ₊ * (10 10 - - 35 100 - - - 35 120 - -		1				۱)						- 1	ı	- [ı I	.		[]		ı
t, * (0.62 ns/pF) C_t + 20 ns 15 15 - - 30 - - - 30 - MC14010 t, * (1.6 ns/pF) C_t + 56 ns 5.0 5.0 - - - 80 125 -	15 15 30 30 10 160 - 10 160 10 160 - 10 160 10 160 - 10 160 10 160 - 10 160 10 160 - 10 160 - 10 160 10 160 - 1	tr = (1 0 ns/nF) Cr + 20 ns	1		l .								-	-	- [-	- 			-		ı
MC14010 t; *16 nt/pF) Ct; *56 ns t; *(0.76 nt/pF) Ct; *56 ns t; *(0.76 nt/pF) Ct; *21 ns 10 10 50 100 50 120 t; *(0.8 nt/pF) Ct; *21 ns 15 15 30 30 120 utout Fall True** (Ct; *15 pF) MC14029 t; *(0.20 nt/pF) Ct; *9.0 ns t; *(0.10 nt/pF) Ct; *7.0 ns 10 10 9.0 40 13 80 10 10 9.0 40 13 80	10 C1 + 56 ns	t _r = (0.62 ns/pF) C ₁ + 20 ns						_		🗓		.00	_ 1	_ []	: I		<u>-</u>		120	-	<u>-</u>	l
t, = 11.6 nst/pFi C _L + 26 ns t, = (0.76 nst/pFi C _L + 29 ns t, = (0.6 nst/pFi C _L + 21 ns 15 15 30 30 30 30	10 10 50 100 50 100 50 120 120 120 150 120		ļ			<u> </u>	ــــــــــــــــــــــــــــــــــــــ	ш		\sqcup							لللل	~~	لئا	لبتط		
t ₇ = (0.76 nt/pF) C ₄ = 39 ns t ₇ = (0.8 nt/pF) C ₄ = 21 ns 15	10 10 50 100 50 120 120 120 150 120		ŀ			5.0	5.0	_	_	ا ۔ ا	80	125	_ I	_ I	_ [_ 1	_ 1	an l	160			İ
t _T = (0.6 ns/pF) C _L + 21 ns	15 15 - - 30 - - - 30 - - - 30 - -	$t_r = (0.76 \text{ ns/pF}) C_1 + 39 \text{ ns}$	ļ					-		-			_		_ [I			- I	1	ı
Upot Fall Time ** (C _L * 15 pF) MC14009 1* * (0.22 ns/pF) C _L * 9.0 ns 1* * (0.10 ns/pF) C _L * 7.0 ns 10 10 9.0 40 13 60	14 ty	t _r = (0.6 ns/pF) C _L + 21 ns			L	15		ᄓ		~			-	- 1	-	- 1	-		-	-	-	1
(C ₄ • 15 pF) MC14009 (+ (0.22 nt/pF) C ₄ • 90 ns (+ (0.10 nt/pF) C ₄ • 70 ns	11/0F1 CL + 90 ns 15.0	utput Fall Time **		4	ч									\neg				$\neg \neg$		П		,
ty * (0.22 ns/pF) C _L * 9 0 ns 50 50 13 45 13 60 14 * (0.10 ns/pF) C _L * 7 0 ns 10 10 10 9 0 40 1 - 1 2 0 50 50 15 € (0.10 ns/pF) C _L * 7 0 ns 10 10 10 9 0 40 1 - 1 2 0 50 50 15 € (0.10 ns/pF) C _L * 7 0 ns 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 9.0 40 9.0 50 15 15 70 25 45 25 60 15 15 25 45 25 60	(CL * 15 pF)					l	ı i					I	ŀ	- [- 1	l					
14 • (0.10 ns/pF) C ₁ + 7.0 ns	10 10 9.0 40 9.0 50 15 15 70 25 45 25 60 15 15 25 45 25 60	MC14009					٠,	ļ ļ			ا ا	ا ـ ا	ļļ	ŀ	- 1	ı	ļ	_ 1	ا ا			ı
10 10 7 m/s (1007 m/s (100	15 15 70 70 10 15 15 10 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18			1				-		-			-	- 1	-	-				-	-	ì
	st/oFI CL + 22 ns	ty = (0.22 ns/pF) C _L + 9.0 ns										**	-	_ []					50		-	l
		ty = (0.22 ns/pF) C _L + 9.0 ns ty = (0.10 ns/pF) C _L + 7.0 ns																				
		$t_f = (0.22 \text{ ns/pF}) \text{ C}_L + 9.0 \text{ ns}$ $t_f = (0.10 \text{ ns/pF}) \text{ C}_L + 7.0 \text{ ns}$ $t_f = (0.07 \text{ ns/pF}) \text{ C}_L + 6.0 \text{ ns}$	1				'"			_	, ° I	1	-	_ 1	_ [-	- 1	′ ′ 1	-	- 1	-	
		ty = (0.22 ns/pF) C _L + 9.0 ns ty = (0.10 ns/pF) C _L + 7.0 ns	:					Ш		H		45	-		-	_	-	\dashv	- FC	H	\dashv	

*DC Noise Margin (VNH, VNL) is defined as the maximum voltage change, from an ideal "1" or "0" input level, before producing an output state change.
**The formula given is for the typical characteristics only.

FIGURE 1 - CURRENT AND VOLTAGE TRANSFER CHARACTERISTICS TEST CIRCUIT

FIGURE 2 - TYPICAL VOLTAGE AND CURRENT TRANSFER CHARACTERISTICS versus TEMPERATURE

FIGURE 3 — TYPICAL VOLTAGE TRANSFER CHARACTERISTICS versus TEMPERATURE

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS 20 ns ~ - 20 ns V_{DD} Input VDD VCC 50% - 10% tPHL. Voн Pulse 90% Output MC14009 50% Generator 10% VOL Output MC14010 #Invert on MC14009 only

FIGURE 5 - TYPICAL OUTPUT SOURCE CHARACTERISTICS

FIGURE 6 - TYPICAL OUTPUT SINK CHARACTERISTICS

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD)

7

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.