Contents

1	Prel	liminary	3
2	Gro	up Theory	5
	2.1	Introduction	5
	2.2	Subgroup	7
	2.3	A counting principle	10
	2.4	01 1	12
	2.5	Homomorphism	13
	2.6	Cyclic groups	15
	2.7	· · · · · ·	16
	2.8	Group Action	17
	2.9	Cayley's theorem	18
	2.10	Permutation group	19
		Another counting principle	20
			22
	2.13	Sylow's theorem	23
		Direct product	27
	2.15	Maximial subgroups	28
			28
		Finite abelian groups	28
3	Rins	g Theory	29
	3.1		29
	3.2		30
	3.3	1	31
	3.4	More ideals and quotient rings	31
	3.5	The field of quotients of integral domain	31
	3.6	Euclidean ring	32
	3.7		33
	3.8		
	3.9	Polynomials over field of rationals	35
	3.10	Polynomial rings over commutative rings	35

Chapter 1

Preliminary

 $R \subset A \times A$ is an equivalence relations if

Reflexive: $\forall a \in A, (a, a) \in R$.

Symmetric: $(a,b) \in R \implies (b,a) \in R$.

Transitive: $(a,b) \in R, (b,c) \in R \implies (a,c) \in R.$

A binary relations can be also denoted as aRb whenever $(a, b) \in R$.

If A is a set and if \sim is an equivalence relation on A, then the equivalence class of $a \in A$ is the set $\{x \in A \mid x \sim a\}$ denoted by cl(a).

Theorem 1.1. Equivalence classes partition the set into mutually disjoint subsets and conversely, mutually disjoint subsets give rise to equivalence classes.

If S and T are non-empty sets, then a mapping from S to T is a subset $M \subset S \times T$ such that for every $s \in S$ there is a unique $t \in T$ that $(s,t) \in M$. $\sigma: S \to T$ maybe denoted as $t = s\sigma$ or $t = \sigma(s)$.

1. Preliminary

Chapter 2

Group Theory

2.1 Introduction

Definition: A set S equipped with an associative binary operation is a **semigroup**.

A semigroup can have multiple left or right identities. However, if it has both left identity, e, and right identity, f, then those two are equal since e = ef = f. Two sided identity are unique. We have the same story with inverses.

Definition: A non-empty set of elements G together with a binary operation \circ are said to be a **group** if

Closure: $\forall a, b \in G, a \circ b \in G$.

Associative: $\forall a, b, c \in G, (a \circ b) \circ c = a \circ (b \circ c).$

Identity: $\exists e \in G$ such that $\forall a \in G, a \circ e = e \circ a = a$.

Inverse: $\forall a \in G \ \exists b \in G \ \text{such that} \ a \circ b = b \circ a = e.$

Example 2.1. The set of $n_{\rm th}$ roots of unity forms a group under multiplication.

Example 2.2. The interval [0, 1] forms a group under the following operation.

$$x + y = \begin{cases} x + y & x + y < 1 \\ x + y - 1 & x + y \ge 1 \end{cases}$$

This is called the **group of real numbers modulu 1**.

Example 2.3. The set of all symmetries of a regular n-gon forms a group under composition. i.e. applying two symmetries results in a another symmetry. This is called **dihedral group** of order n, denoted by D_n . We can easily show that $|D_n| = 2n$.

Example 2.4. The permutations of a set form a group under composition, called the **symmetric group**, denoted by S_n for finite sets of size n.

Example 2.5. The **general linear group**, $GL_n(\mathbb{F})$ is set of all non-singular $n \times n$ matrices from field \mathbb{F} .

Example 2.6. The Heisenberg group

$$H(\mathbb{F}) = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \middle| a, b, c \in \mathbb{F} \right\}.$$

Example 2.7. The **Quaternion group**, $Q_8 = \{1, -i, i, -i, j, -j, k, -k\}$ with $i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.$

Definition: A group G is said to be **abelian** or **commutative** if for any two element a and b commute. i.e. $a \circ b = b \circ a$.

Definition: The number of elements in a group is called the **order** of the group and it is denoted by |G|.

Definition: Let $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. If for some choice of a, $G = \langle a \rangle$, then G is said to be a **cyclic group**. More generally, for a set $W \subset G$, $\langle W \rangle = \bigcap W \subset H \subset GH$ where H is a subgroup of G.

Lemma 2.1. Given $a, b \in G$ the equation ax = b and ya = b have unique solutions for $x, y \in G$.

Proof. Note that a^{-1} and b^{-1} are unique. Therefore, $x = a^{-1}b$ and $y = ba^{-1}$ are unique. \square

Exercises

1. Let S be a finite semi-group. Prove that there exists $e \in S$ such that $e^2 = e$.

Proof. Pick $a \in S$ and consider $a_i = a^{2^i}$ for $i \ge 1$. After some point, a_i s repeat, by the pigeon hole principle. Let that point be a_j . Therefore, for some $m \ge 1$.

$$a_j = (a_j)^{2^m}$$

Let $e = a_j^{2^m - 1}$, then

$$e^2 = a_j^{2^{m+1}-2} = a_j^{2^m} a_j^{2^m-2} = a_j a_j^{2^m-2} = e$$

we are done.

2. Show that if a group G is abelian, then for $a, b \in G$ and any integer n, $(ab)^n = a^n b^n$.

Proof. Induct over positive n. It is trivially true for n = 1. Suppose it is true for n = k, then

$$(ab)^{k+1} = (ab)^k ab = a^k b^k ab = a^k ab^k b = a^{k+1} b^{k+1}$$

For negative n, note that

$$(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} \implies (ab)^n = ((ab)^{-1})^{-n} = (a^{-1}b^{-1})^{-n} = a^nb^n$$

hence it is true for all integers n.

3. If a group has an even order, then there exists $a \neq e$ such that $a^2 = e$.

2.2 Subgroup 7

Proof. Let $A = \{g \mid g \neq g^{-1}\}$ and $B = \{g \mid g = g^{-1}\}$. Note that, |A| is even since $g \in A \implies g^{-1} \in A$. Moreover, |G| = |A| + |B|, therefore |B| must be even and since $e \in B$, $|B| \ge 2$.

4. For any n > 2 construct a non-abelian group of order 2n.

Proof. Consider ϕ, ψ where $\psi^n = \phi^2 = e$ and $\psi \phi = \phi \psi^{-1}$. Then

$$G = \{I, \phi, \psi, \psi^2, \dots, \psi^{n-1}, \phi\psi, \dots, \phi\psi^{n-1}\}\$$

is a group of order 2n. Because, by the product rules defined, any combination of ψ and ϕ can be reduced to $\phi^b \psi^k$ where b = 0, 1 and $k = 0, 1, \dots, n-1$. It is cleary non-abelian as well.

5. Find the order of $GL_2(\mathbb{Z}_p)$ and $SL_2(\mathbb{Z}_p)$ for a prime p.

Proof.

$$|GL_2(\mathbb{Z}_p)| = (p+1)p(p-1)^2$$

 $|SL_2(\mathbb{Z}_p)| = (p+1)p(p-1)$

which be can be calculate with some basic casing.

6. Prove that finiteness of $GL_n(\mathbb{F})$ is equivalent to finiteness of \mathbb{F} .

2.2 Subgroup

Definition: A non-empty subset H of a group G is called a **subgroup** if under the product in G, H itself forms a group. H is a subgroup of G is denoted by $H \leq G$. If H is proper subgroup of, H < G.

Lemma 2.2. H is a subgroup of G if and only if

- 1. $\forall a, b \in H, ab \in H$.
- 2. $\forall a \in H, a^{-1} \in H$.

Proof. If H is a subgroup, then the conditions hold. Suppose H is a subset of G that satisfies the conditions. Then,

- 1. $e \in H$ since $(a \in H \implies a^{-1} \in H) \implies e = aa^{-1} \in H$.
- 2. Associativity is inherited from G.

invertibility and closure are given from the conditions. Therefore, H is a subgroup.

Lemma 2.3. If H is a non-empty finite subset of a group G and H is closed under multiplication, then H is a subgroup of G.

Proof. Since H is non-empty there exists a $a \in H$. By closure, a^n for positive integer n, are also in H. We know that for some N, $a^N = e$ and therefore $a^{-1} = a^{N-1} \in H$. By , H is a subgroup.

Definition: Let G be a group and H a subgroup of G. For $a, b \in G$ we say that a is congruent to b mod H, written as $a \equiv b \mod H$ if $ab^{-1} \in H$.

Lemma 2.4. The relation $a \equiv b \mod H$ is an equivalence relation.

Proof. We show the equivalence axioms:

- 1. for any $a, a \equiv a \mod H$ because, $aa^{-1} = e \in H$.
- 2. for any $a, b, a \equiv b \mod H \implies b \equiv a \mod H$ since $ab^{-1} \in H$ because of invertibility implies that $(ab^{-1})^{-1} = ba^{-1} \in H$.
- 3. for any $a, b, c, a \equiv b \mod H, b \equiv c \mod H \implies a \equiv c \mod H$ since $ab^{-1}, bc^{-1} \in H$ because of closure implies that $ab^{-1}bc^{-1} = bc^{-1} \in H$.

Definition: If H is a subgroup of G and $a \in G$, then $Ha = \{ha \mid h \in H\}$ is a **right coset** of H in G. Similarly, $aH = \{ah \mid h \in H\}$ is a **left coset** of H in G.

Lemma 2.5. For all $a \in G$,

$$Ha = \{x \in G \mid a \equiv x \mod H\}$$

Proof. Suppose $x \in G$ and $x \equiv a \mod H$. That is, $xa^{-1} = h$ for some $h \in H$. Then, x = ha. Suppose $h \in H$ and x = ha. Then, $xa^{-1} = h$ and hence $x \equiv a \mod H$.

This implies, two right/left coset of H are either identical or disjoint.

Lemma 2.6. There is a one-to-one correspondence between any two right/left cosets of H.

Proof. Let R_1, R_2 be two right cosets of H with $a_1 \in R_1$ and $a_2 \in R_2$. Note that, $R_1 = Ha_1$ and $R_2 = Ha_2$, therefore the map $g \mapsto ga_1^{-1}a_2$ is a bijective map from R_1 to R_2 .

Theorem 2.7 (Lagrange's theorem). If G is a finite group and H is a subgroup of G, then |H| | |G|.

Proof. By and , and from finiteness of G, the order of G is equal to the number of right cosets multiplied by the cardinality of a right coset which is equal to the order of H. Hence, $|H| \mid |G|$

Definition: If H is a subgroup of G, the **index** of H in G is the number of distince right cosets of H, denoted by [G:H] or $i_G(H)$.

Definition: Let G be a group and $a \in G$, then the **order** or **period** of a is the least positive integer m such that $a^m = e$. If no such integer exists we say that a is of infinite order. The order of a is denoted by $\operatorname{ord}_G(a)$.

Corollary 2.8. If G is a finite group, then

- 1. $|G| = i_G(H)|H|$.
- 2. $\operatorname{ord}_G(a) \mid |G|$.

2.2 Subgroup 9

- 3. $a^{|G|} = e$.
- 4. If |G| is a prime, then G is cyclic.

Let A be a non-empty subset of G. The smallest subgroup of G that contains A is denoted by $\langle A \rangle$

$$\langle A \rangle = \bigcap_{\substack{A \subset H \\ H < G}} H$$

Lemma 2.9. Let A be a non-empty subset of G. Let

$$\bar{A} = \left\{ a_1^{\epsilon_1} a_2^{\epsilon_2} \dots a_n^{\epsilon_n} \,\middle|\, n \in \mathbb{Z}_0^+, a_i \in A, \epsilon_i = \pm 1 \right\}$$

. Then $\langle A \rangle = \bar{A}$.

Proof. First note that \bar{A} is a subgroup of G that contains A, hence $\langle A \rangle \subset \bar{A}$. Moreover, since $\langle A \rangle$ is a subgroup of G that contains A, then $a_i^{\epsilon_i} \in \langle A \rangle$, hence their product is in $\langle A \rangle$ as well. That is, $\bar{A} \subset \langle A \rangle$, thus $\langle A \rangle = \bar{A}$.

Definition: Let $H, K \leq G$. The **join** of subgroups H and K denoted by $\langle H, K \rangle$ is the smallest subgroup which contains both subgroups.

Subgroups of a groups can be represented by a lattice such as below.

Figure 2.1: The subgroup lattice of D_8

Exercises

1. Suppose G is abelian group. Show that, the **torsion subgroup** $\{g \in G \mid \operatorname{ord}_G(g) < \infty\}$ is a subgroup of G. Also, show that this is not generally true when G is non-abelian.

2.3 A counting principle

Let H and K be two subgroups of G, then

$$HK = \{hk \mid h \in H, k \in K\}$$

Lemma 2.10. HK is a subgroup of G if and only if HK = KH.

Proof. Suppose HK is a subgroup. If $hk \in HK$, then

$$k^{-1}h^{-1} \in HK \implies k^{-1} \in H, h^{-1} \in K \implies k \in H, h \in K \implies hk \in KH$$

hence $HK \subset KH$. If $kh \in KH$, then

$$hk \in HK \implies k^{-1} \in H, h^{-1} \in K \implies k \in H, h \in K \implies kh \in HK$$

thus HK = KH. Suppose HK = KH with $h_1k_1, h_2k_2 \in HK$.

1. for closure we have

$$h_1k_1h_2k_2 = h_1k_1(k_2'h_2') = h_1(k_1k_2')h_2' = h_1(k_1^*h_2') = h_1h_2''k_2^{*'}$$

2. for inverse

$$(h_1k_1)^{-1} = k_1^{-1}h_1^{-1} = h_1'k_1'$$

Corollary 2.11. If H and K are subgroups of an abelian group G, then HK is a subgroup of G.

Lemma 2.12. If H and K are finite subgroups G, then

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

Proof. If $h_1 \in H \cap K$ then $hk = (hh_1)(h_1^{-1}k)$. Therefore, hk appears at least $|H \cap K|$ times. If hk = h'k', then $h'^{-1}h = k'k^{-1} \in H \cap K$. Let $u = h'^{-1}h$ then $h' = hu^{-1}$ and k' = uk. Thus, all duplicates are accounted for.

Corollary 2.13. If H and K are subgroups of G and $|H|, |K| > \sqrt{|G|}$, then $H \cap K \neq \{e\}$.

Proof. $HK \subset G$ therefore, $|HK| \leq |G|$ and

$$|G| \ge |HK| = \frac{|H||K|}{|H \cap K|} > \frac{|G|}{|H \cap K|}$$

which implies that $|H \cap K| > 1$.

Exercises

1. Let G be a group such that the intersection of all of its subgroups that are different from $\{e\}$ is different from $\{e\}$. Prove that every element in G has finite order.

Proof. For the sake of contradiction, suppose $a \in G$ has infinite order. Then, a^k are all different and

$$\bigcup_{k=1}^{\infty} \langle a^k \rangle = \{e\}$$

which is a contradiction.

- 2. Show that there is one-to-one correspondence between the right and left cosets of a subgroup.
- 3. Suppose H and K are finite index subgroups in G. Show that $H \cap K$ is a finite subgroup in G.

Proof. Let Ha_1, \ldots, Ha_n be the right cosets of H in G and Kb_1, \ldots, Kb_m be the right costs of K in G. Then,

$$G = G \cap G = \bigcap_{i} Ha_{i} \cap \bigcap_{j} Kb_{j} = \bigcap_{i,j} Ha_{i} \cap Kb_{j}$$

Suppose $Ha_i \cap Kb_j$ is not empty. Let $g \in Ha_i \cap Kb_j$, then $Hg = Ha_i$ and $Kg = Kb_j$. Thus,

$$Ha_i \cap Kb_j = Hg \cap Kg = (H \cap K)g$$

Therefore, $Ha_i \cap Kb_j$ are either empty or a right coset of $H \cap K$. Since there finitely many $Ha_i \cap Kb_j$, there finitely many right cosets of $H \cap K$ in G. Moreover, $[G:H \cap K] \leq [G:H][G:K]$ by this construction. Note that, $H \cap K$ is finite index in H, and let $(H \cap K)c_1, \ldots, (H \cap K)c_l$ be the right cosets of $H \cap K$ in H. We claim that $(H \cap K)c_ra_i$ are the right cosets of $H \cap K$ in G. By definition, for each $x \in G$, there exists i such that $x \in Ha_i$ and hence $x = ha_i$ for some $h \in H$. Similarly, there exists i such that $i \in Ha_i$ and hence $i \in Ha_i$ for some $i \in Ha_i$. Therefore, $i \in Ha_i$ and $i \in Ha_i$ are disjoint. Consider $i \in Ha_i$ and $i \in Ha_i$ and $i \in Ha_i$ are disjoint. Consider $i \in Ha_i$ and $i \in Ha_i$ and $i \in Ha_i$ are disjoint. Consider $i \in Ha_i$ and $i \in Ha_i$ and $i \in Ha_i$ are disjoint. Consider $i \in Ha_i$ and $i \in Ha_i$ and $i \in Ha_i$ are disjoint. Consider $i \in Ha_i$ and $i \in Ha_i$ and $i \in Ha_i$ are disjoint. Consider $i \in Ha_i$ and $i \in Ha_i$ are disjoint.

$$(H \cap K)c_{r_1}a_{i_1} = (H \cap K)c_{r_2}a_{i_2} \implies a_{i_1} = a_{i_2}, (H \cap K)c_{r_1} = (H \cap K)c_{r_2}$$

 $\implies a_{i_1} = a_{i_2}, c_{r_1} = c_{r_2}$

As a result, $[G: H \cap K] = [G: H][H: H \cap K]$.

4. Let H be a finite index subgroup in G. Show that there is only finitely many subgroups of form aHa^{-1} in G.

Proof. Let a_1H, \ldots, a_nH be left cosets of H. Then, $Ha_1^{-1}, \ldots, Ha_n^{-1}$ are right cosets of H. Suppose $aH = a_iH$, then $Ha^{-1} = Ha_i^{-1}$ and therefore, $aHa^{-1} = a_iHa_i^{-1}$. Since there are finitely many $a_iHa_i^{-1}$, then there are finitely many aHa^{-1} .

- 5. If an abelian group has subgroups of orders m and n, respectively, then show it has a subgroup whose order is the least common multiple of m and n.
- 6. Let G be a finite (abelian) group in which the number of solutions in G of the equation $x^n = e$ is at most n for every positive integer n. Prove that G must be a cyclic group.

2.4 Normal subgroups

Definition: A subgroup N of G is **normal** if $\forall g \in G, n \in N, gng^{-1} \in N$.

Lemma 2.14. N is normal if and only if $gNg^{-1} = N$ for every $g \in G$.

Proof. By definition, $gNg^{-1} \subset N$. Let $n \in N$, then $g^{-1}ng = n'$ for some $n' \in N$. Hence, $n \in gNg^{-1}$ for all $n \in N$.

Lemma 2.15. N is a normal subgroup if and only if every left coset of N is a right coset.

Proof. If N is normal, then by 2.14, gN = Ng for all g. Suppose, for all $g \in G$, gN = Nh for some $h \in G$. Then, $h = gn \implies gN = Ngn$ for $n \in N$. This implies, $gNn^{-1} = gN = Ng$ and therefore, $gNg^{-1} = N$ which by 2.14 means that N is normal.

Lemma 2.16. N is a normal subgroup if and only if the product of two right cosets of N is a right coset as well.

Proof. If N is normal, then

$$NaNb = N(aN)b = N(Na)b = Nab$$

Then, suppose NaNb = Nc for all $a, b \in G$ and some $c \in G$. This implies NaNb = Nab and therefore, $NaNa^{-1} = N \implies NaN = Na$.

$$NaN = Na \implies \forall n, an \in Na \implies aN \subset Na$$

 $Na^{-1}N = Na^{-1} \implies \forall n \exists n', a^{-1}n = n'a^{-1} \implies na = an' \implies Na \subset aN$

therefore, aN = Na.

Definition: G/N is called a **quotient group** is the set of all right cosets of N.

Theorem 2.17. If N is normal in G, then G/N is a group. Furthermore, for finite G, $|G/N| = \frac{|G|}{|N|}$.

Proof. Checking axioms is pretty easy. Note that, $|G/N| = i_G(N)$.

Exercises

- 1. The groups in which all subgroups are normal are called **Dedekind groups**. Non-abelian dedekind groups are called **Hamiltonian groups**. Show that quaternion group is a Hamiltonian group.
- 2. Show that if K is a normal subgroup of N and N is a normal subgroup of G, then K is not necessarily a subgroup of G.

2.5 Homomorphism

Definition: A mapping ϕ from a group G to another group \bar{G} is a **homomorphism** if for all $a,b\in G$

$$\phi(ab) = \phi(a)\phi(b)$$

Lemma 2.18. Suppose G is a group, N a normal subgroup of G, $\phi : G \to G/N$ given by $\phi(x) = Nx$ for all $x \in G$. Then, ϕ is a homomorphism.

Proof. Note that
$$\phi(xy) = Nxy$$
 and $\phi(x)\phi(y) = NxNy = Nxy$.

Definition: If ϕ is a homomorphism of G into \bar{G} , the **kernel** of ϕ , K_{ϕ} is defined as $K_{\phi} = \{x \in G \mid \phi(x) = \bar{e}\}.$

Lemma 2.19. If $\phi: G \to \bar{G}$ is a homomorphism, then

1.
$$\phi(e) = \bar{e}$$
.

2.
$$\phi(x^{-1}) = (\phi(x))^{-1}$$
.

Proof.

$$\phi(xe) = \phi(x) = \phi(x)\phi(e) \implies \phi(e) = \bar{e}$$

and

$$\phi(x^{-1})\phi(x) = \phi(x^{-1}x) = \bar{e} \implies \phi(x^{-1}) = (\phi(x))^{-1}$$

Lemma 2.20. If ϕ is a homomorphism, then K_{ϕ} is a normal subgroup of G.

Proof. Pick an arbitray $x \in G$ and $y \in K_{\phi}$. Then,

$$\phi(xyx^{-1}) = \phi(x)\phi(y)\phi(x^{-1}) = \bar{e}$$

hence, $xyx^{-1} \in K_{\phi}$.

Lemma 2.21. If ϕ is a homomorphism, then the set all iverse images of $\bar{g} \in \bar{G}$ under ϕ is given by $K_{\phi}x$ for any particular inverse image of \bar{q} .

Proof. Suppose y is another inverse image of \bar{g} .

$$\phi(y) = \bar{g} \qquad \phi(x) = \bar{g}$$

$$\Longrightarrow \phi(yx^{-1}) = \bar{e} \qquad \Longrightarrow yx^{-1} \in K_{\phi}$$

which means $y \in K_{\phi}x$. Also, clearly each $y \in K_{\phi}x$ is an inverse image of \bar{g} .

Definition: A homomorphism $\phi: G \to \bar{G}$ is an **isomorphism** if ϕ is one-to-one.

Definition: Two groups G and \bar{G} are **isomorphic** if there exists an isomorphism of G onto \bar{G} . Isomorphic groups are denoted by $G \approx \bar{G}$.

Corollary 2.22. Let ϕ be a homomorphism. Then, ϕ is an isomorphism if and only if $K_{\phi} = \{e\}.$

Proof. If ϕ is an isomorphism, then it is injective and hence only $e \in K_{\phi}$. Suppose $K_{\phi} = \{e\}$, then we must show that ϕ is a injective function. Suppose $\phi(x) = \phi(y)$, then by 2.21, $yx^{-1} \in K_{\phi}$. Thus, y = x and ϕ is injective.

Theorem 2.23. If $\phi: G \to \bar{G}$ is a surjective homomorphism, then $G/K_{\phi} \approx \bar{G}$

Proof. Consider the following mapping, $\psi: G/K_{\phi} \to \bar{G}$. For any $X \in K/\phi$, $\psi(X) = \phi(g)$ for some $g \in X$. This is well-defined since if $g, g' \in X$, then g' = xg for some $x \in K_{\phi}$ and hence

$$\phi(g') = \phi(g)\phi(x) = \phi(g)$$

Furthermore, ψ is injective. Suppose $xK_{\phi}, yK_{\phi} \in G/K_{\phi}$. Then,

$$\psi(xK_{\phi}) = \psi(yK_{\phi}) \implies \phi(x) = \phi(y) \implies xy^{-1} \in K_{\phi}$$

which implies that $x \in K_{\phi}y$ and hence $K_{\phi}y = K_{\phi}x$. Moreover, this map is surjective. Let $\bar{g} \in \bar{G}$. Since ϕ is surjective, then there exists an inverse image g. Therefore, $\psi(gK_{\phi}) = \bar{g}$. Finally, we must show that ψ is a homomorphism. Since K_{ϕ} is normal in G we have

$$\psi(xK_{\phi}yK_{\phi}) = \psi(xyK_{\phi}) = \phi(xy) = \phi(x)\phi(y) = \psi(xK_{\phi})\psi(yK_{\phi})$$

which concludes the proof.

Thus, we can find all homomorphic images of G by going through normal subgroups of G.

Definition: A group is **simple** if it has no non-trivial homomorphic images. i.e. it has no non-trivial normal subgroup.

Theorem 2.24 (Cauchy's theorem for finite abelian groups). Suoppose G is a finite abelian group, and $p \mid |G|$ where p is a prime number. Then, there is an element $a \neq e$ such that $a^p = e$.

Proof. We induct over |G|. For G with a single element, the theorem is true trivially. If G has non-trivial subgroup H, then G is cyclic and hence all its elements satisfy the condition. Suppose H is a non-trivial group of G. Since G is abelian, then H is normal in G. If $p \mid |H|$ then by induction we are done. Suppose otherwise, then $p \mid |G/H|$. Consider a set S where each element correspond to a right coset of H. Clearly, there is a isomorphism between G/H and S. Since S is a subgroup of G and $P \mid |S|$ by induction hypothesis we are done.

Theorem 2.25 (Sylow's theorem for finite abelian groups). Suppose the group G is a finite abelian group and $p^{\alpha} \mid\mid |G|$, then G has a unique subgroup of order p^{α} .

Proof. We first prove the existence of such group. For $\alpha=0$, the claim holds trivially as $\{e\}$ is a subgroup of order 1. Suppose $H=\left\{x\in G\,\middle|\, x^{p^n}=e\right\}$ is a subgroup of G. Since $p\mid |G|$ there is a non identity element g such that $g^p=e$. Hence $g\in H$. We show that $q\mid |H|$ for any other prime $q\neq p$. Since otherwise there is a an element $h\in H$ where $h\neq e$ and $h^q=e$ by 2.24. Since q and p^n are coprime, then h=e which is a contradiction. Lastly, we claim that $p^\alpha\mid |H|$. Suppose the contrary that $p^\beta\mid |H|$ for some $\beta<\alpha$. Then, the quotient group of H, $p\mid |G/H|$. By 2.24, there is a right coset $Hx\neq H$ such that $(Hx)^p=Hx^p=H$. This implies that $x^p\in H$ which means $(x^p)^{p^n}=e$ for some n. $x^{p^{n+1}}=e\Longrightarrow x\in H$. which is a contradtion. Thus, $|H|=p^\alpha$.

Finally, suppose $K \neq H$ is another subgroup of G such that $|K| = p^{\alpha}$. Then, note that

$$|HK| = \frac{|H||K|}{|H \cap K|} = \frac{p^{2\alpha}}{|H \cap K|} \implies p^{\gamma} || |HK|$$

However, this is a contradiction since HK is a subgroup in G. Therefore H is unique in G.

Lemma 2.26. Suppose $\phi: G \to \bar{G}$ is a surjective homomorphism and \bar{H} is a subgroup of \bar{G} . Let $H = \{x \in G \mid \phi(x) \in \bar{H}\}$. Then, H is a subgroup of G and $H \supset K_{\phi}$. If \bar{H} is normal in \bar{G} , then H is normal. Moreover, this association sets up a one-to-one mapping from the set of all subgroups \bar{G} onto the set of all subgroups of G which contain K_{ϕ} .

Proof. Since $\bar{e} \in \bar{H}$, then $K_{\phi} \subset H$. Let $x, y \in H$. $xy \in H$ since $\phi(xy) = \phi(x)\phi(y) \in \bar{H}$ and $x^{-1} \in H$ since $\phi(x^{-1}) = (\phi(x))^{-1} \in \bar{H}$. Thus, H is a subgroup in G. Assume that \bar{H} is normal and pick arbitray elements $g \in G$ and $h \in H$.

$$\phi(ghg^{-1}) = \phi(g)\phi(h)(\phi(g))^{-1} \in \bar{H} \implies ghg^{-1} \in H$$

hence H is normal in G. Let $\bar{H}, \bar{H'}$ be two subgroups of \bar{G} and $H = \phi^{-1}(\bar{H}), H' = \phi^{-1}(\bar{H'})$. Thus far we have proved that $H, H' \supset K_{\phi}$ are subgroups of G and ϕ^{-1} is surjective. If $\bar{H} \neq \bar{H'}$, then there is an element $x \in \bar{H}$ but $x \notin \bar{H'}$. We should see that for any $y = \phi^{-1}(x)$, $y \subset H$ but $y \notin H'$. Since $\phi(y) = x \in \bar{H}$, then $y \in H$. If $y \in H'$, then $\phi(y) = x \in \bar{H'}$ which is a contradiction. Therefore, ϕ^{-1} is a injective as well. So ϕ^{-1} is a bijection between the subgroups of \bar{G} and subgroups of G that contain K_{ϕ} .

Theorem 2.27. Let $\phi: G \to \bar{G}$ be a surjective homomorphism, \bar{N} a normal subgroup of \bar{G} , and $N = \{x \in G \mid \phi(x) \in N\}$. Then, $G/N \approx \bar{G}/\bar{N}$ and equivalently $G/N \approx (G/K_{\phi})/(N/K_{\phi})$.

Proof. The last equivalency results immediately from 2.23.

Exercises

- 1. Let U be a subset of a group G. The subgroup generated by U, denoted by $\langle U \rangle$ is the smallest subgroup that contains U. Show that $\langle U \rangle$ exists and give a construction for it.
- 2. Let $U = \{xyx^{-1}y^{-1} \mid x, y \in G\}$. In this case, $\langle U \rangle$ is usually written as \hat{G} and is called the **commutator subgroup** of G.
 - (a) Prove \hat{G} is normal in G.
 - (b) Prove G/\hat{G} is abelian.
 - (c) If G/N is abelian, prove that $N \supset \hat{G}$.
 - (d) Prove that if H is a subgroup of G and $H \supset \hat{G}$, then H is normal in G.
 - (e) Let $G = GL_2(\mathbb{R})$ and $N = SL_2(\mathbb{R})$. Show that $N = \hat{G}$.
- 3. Show that $Q_8 \approx \mathrm{GL}_2(\mathbb{C})$.

2.6 Cyclic groups

We claim that cyclic groups of the same order are isomorphic. To show this, first consider the following proposition.

Proposition 2.28. 1. If $G = \langle g \rangle$, then $|G| = \operatorname{ord}_G(g)$.

2. If $x \in G$ and $x^m = x^n = e$, then $x^{\gcd(m,n)} = e$.

Theorem 2.29. Cyclic groups of the same order are isomorphic.

Given the above theorem, we let Z_n denotes the cyclic group of order n, which is unique upto isomorphism.

Proposition 2.30. Let $G = \langle g \rangle$.

- 1. If $\operatorname{ord}_G(g) = \infty$, then $G = \langle g^a \rangle$ if and only if $a = \pm 1$.
- 2. If $\operatorname{ord}_G(g) = n < \infty$, then $G = \langle g^a \rangle$ if and only if $\gcd(n, a) = 1$. Hence, G has $\phi(n)$ generators.

Proposition 2.31. Let $G = \langle g \rangle$. All subgroups of G are cyclic. That is, if $H \leq G$, then $H = \langle g^d \rangle$ for some $d \in \mathbb{Z}$.

- 1. If $\operatorname{ord}_G(g) = \infty$, then for all $a, b \in \mathbb{Z}_0^+$ with $a \neq b$, $\langle g^a \rangle \neq \langle g^b \rangle$. Moreover, for $m \in \mathbb{Z}$, $\langle g^m \rangle = \langle g^{|m|} \rangle$. This implies, that all subgroups of G correspond bijectively with \mathbb{Z}_0^+ .
- 2. If $\operatorname{ord}_G(g) = n < \infty$, then for all $a \mid n$, $\langle g^a \rangle$ is a subgroup and for all m, $\langle g^m \rangle = \langle g^{\gcd(m,n)} \rangle$. This implies, that all subgroups of G correspond bijectively to divisors of n.

2.7 Automorphism

Definition: An isomorphism of a group onto iteslf is called an **automorphism**.

Lemma 2.32. If G is a group, then $\mathscr{A}(G)$, the set of all automorphisms of G is also a group. The $\mathscr{A}(G)$ is also denoted by $\operatorname{Aut}(G)$.

Proof. The $\operatorname{Aut}(G)$ is a group under composition. Suppose $\theta, \phi, \psi \in \operatorname{Aut}(G)$.

1. It is closed under composition. Since ϕ, θ are both bijective, then their composition is a bijection as well. Moreover, it is a homomorphisms

$$\phi(\psi(xy)) = \phi(\psi(x)\psi(y)) = \phi(\psi(x))\phi(\psi(y))$$

therefore, $\phi \circ \psi \in \text{Aut}(G)$.

2. The identity is the identity transformation I.

$$I\circ\phi=\phi\circ I=\phi$$

3. the inverse of each automorphisms is its inverse map. Suppose ϕ^{-1} is inverse of ϕ

$$xy = \phi \left(\phi^{-1}(x)\right) \phi \left(\phi^{-1}(y)\right) = \phi \left(\phi^{-1}(x)\phi^{-1}(x)\right) \implies \phi^{-1}(xy) = \phi^{-1}(x)\phi^{-1}(y)$$

4. composition is associative

$$\phi \circ (\psi \circ \theta) = (\phi \circ \psi) \circ \theta$$

for any maps ϕ, ψ, θ from G to G.

Example 2.8. $T_g: G \to G$ with $xT_g = g^{-1}xg$. T_g is an automorphisms. T_g is called the **inner automorphism corresponding to** g. Let $\mathscr{T}(G) = \{T_g \in \operatorname{Aut}(G) \mid g \in G\}$ is the **inner automorphism group** and is also denoted by $\operatorname{Inn}(G)$. $\Psi: G \to \operatorname{Aut}(G)$ given by $g\Psi = T_g$ is a homomorphism. The kernel of Ψ is the **center** of G, Z(G), the set of the elements that commute with all other elements. Note that, if $g_o \in K_{\Psi}$, then $T_{g_o} = I$, hence $g_0^{-1}xg_0 = x$ implying $g_0x = xg_0$ for all $x \in G$. If $g_0 \in Z(G)$, then $xg_0 = g_0x$ for all x, thus $T_{g_0} = I$ and $g_0 \in K_{\Psi}$.

Lemma 2.33. $G/Z \approx \text{Inn}(G)$.

Proof. Since $K_{\psi} = Z$, this is an immediate result of 2.23, by considering $\Psi : G \to \text{Inn}(G)$. \square

Lemma 2.34. Let G be a group and ϕ be an automorphism of G. If $a \in G$ is of order |a| > 0, then $|\phi(a)| = |a|$.

Proof. For any homomorphism $\phi: G \to \bar{G}$, $|\phi(a)| |a|$ since

$$\phi(a)^{|a|} = \phi(a^{|a|}) = \phi(e) = \bar{e}$$

since both ϕ and ϕ^{-1} are homomorphism from G to G, then

$$\begin{aligned} |\phi(a)| &| |a| \\ |\phi^{-1}(\phi(a))| &= |a| ||\phi(a)| \\ \Longrightarrow |\phi(a)| &= |a| \end{aligned}$$

Exercises

- 1. A subgroup C of G is said to be a **characteristics subgroup** of G if $CT \subset C$ for all automorphisms T of G. For any group G, prove that the commutator subgroup \hat{G} is a characteristic subgroup of G.
- 2. Let G be a finite group, T an automorphism of G with property that xT = x if and only if x = e. Suppose futher that $T^2 = I$. Prove that G must be abelian.
- 3. Let G be a finite group, T an automorphism of G that sends more than three-quarters of the elements of G onto their inverses. Prove that $xT = x^{-1}$ and that G is abelian.
- 4. Let G be a group of order 2n. Suppose that half of the elements of G are of order 2, and the other half form a subgroup H of order n. Prove that H is of odd order and is an abelian subgroup of G.

2.8 Group Action

Definition: The action of a group G on a set A is a map $\cdot: G \times A \to A$ which satisfies:

- 1. $g \cdot (h \cdot a) = (gh) \cdot a$ for all $g, h \in G$ and $a \in A$.
- 2. $e \cdot a = a$ for all $a \in A$.

Suppose \cdot is an action of G on A. Then, $\sigma_g: A \to A$ given by $\sigma_g(a) = g \cdot a$ is a permutation of A. Furthermore, $\tau: G \to S_A, g \mapsto \sigma_g$ is a homomorphism.

Example 2.9. The **trivial action** is given by $g \cdot a = a$ for all $g \in G$ and $a \in A$. In contrast, in a **faithful action** of G on A, no $g \neq e$ satisfies $g \cdot a = a$ for all A. In other words, in a faithful action, each element of G produces a different permutation. Thus τ is an injective homomorphism.

Unless it is ambiguous, we omit the \cdot , and write $q \cdot a$ as qa.

Definition: The **kernel** of an action is $\{g \in G \mid ga = a \ \forall a \in A\}$.

Definition: The **stabilizer** of a is $\{g \in G \mid ga = a\}$.

2.9 Cayley's theorem

Theorem 2.35 (Cayley). Every group is isomorphic to a subgroup of A(S) for some set S.

Proof. Take S = G and let $\tau_g : S \to S$ be given by $\tau_g : x \mapsto xg$ for a $g \in G$. We claim that $\theta : G \to A(S)$ given by $\theta : g \mapsto \tau_g$ is an isomorphism. First, we must show that θ is well defined. That is, for all $g \in G$, $\tau_g \in A(S)$. Note that, if xg = yg, then x = y, hence τ_g is injective. For every $y \in G$, $y = yg^{-1}\tau_g$, hence τ_g is surjective. Thus, $\tau_g \in A(S)$. Second, we show that θ is a homomorphism. For all $g, h, x \in G$, x(gh) = (xg)h therefore, $x_g = x_g \tau_h$. Finally, to show that θ is an isomorphism, we must show that it is injective. If for all $x \in G$, $x \in G$, $x \in G$, then $x \in G$ is an isomorphism, we must show that it is injective.

The construction above, describes a group G as a subgroup of A(G) that for finite G, is of order |G|!. Too BIG. We wish to make it smaller. Consider the following results.

Theorem 2.36. If G is a group, H a subgroup of G, and S is the set of all right cosets of H in G, then there is a homomorphism $\theta: G \to A(S)$ and the kernel of θ is the largest normal subgroup of G which is contained in H.

Proof. Let $\tau_g: S \to S$ be given by $Hx\tau_g = Hxg$ and then let $\theta: G \to A(S)$ be given by $\theta: g \mapsto \tau_g$. One can easily check that, $\tau_g \in A(S)$ for all g and that θ is a homomorphism. Suppose K is the kernel of θ . Since K is a kernel of a homomorphism, it is normal. Moreover, if $g \in K$, then Hxg = Hx for all $x \in G$. In particular, Hg = H which implies that $g \in H$. As a result, $K \subset H$. Lastly, suppose K' is another normal subgroup of G which is contained in H. If $g' \in K'$, then for all $x \in G$, $xg'x^{-1} \in K' \subset H'$. That is, there exists a $h_x \in H$ such that xg' = hx which implies Hxg' = Hx for all x. Therefore, $g' \in K$ and $K' \subset K$. Which was what was wanted.

Given the above theorem, if H has no non-trivial normal subgroup of G inside it, then θ is an isomorphism.

Lemma 2.37. If G is a finite group, and $H \neq G$ is a subgroup of G such that $|G| \nmid i(H)!$, then H must contain a non-trivial normal subgroup of G. In particular, G is not simple.

Proof. Suppose H contains no non-trivial normal subgroup of G. Then, by preceding theorem, θ is an isomorphism and G is isomorphic to a subgroup of A(S), where A(S) = i(H)!. By Lagrange, theorem, $|G| \mid i(H)!$ which was what was wanted.

Exercises

- 1. Let |G| = pq, p > q are primes, prove
 - (a) G has a subgroup of order p and a subgroup of order q.
 - (b) If $q \nmid p-1$, then G is cyclic.
 - (c) Given two primes, p and q with $q \mid p-1$, there exists a non-abelian group of order pq.
 - (d) Any two non-abelian groups of order pq are isomorphic.

2.10 Permutation group

Suppose S is a finite set having n elements x_1, \ldots, x_n . If $\phi \in A(S)$, then ϕ is a one-to-one correspondence and it can be represented as

$$\phi: \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_{i_1} & x_{i_2} & \dots & x_{i_n} \end{pmatrix}$$

where $x_{i_j} = \phi(x_j)$. More simply

$$\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

By considering composition of $\theta, \psi \in A(S)$, we can define multiplication on their representation.

For $\theta \in A(S)$ and $a, b \in S$, $a \stackrel{\theta}{\equiv} b \iff a = b\theta^i$ for some $i \in \mathbb{Z}$. This defines an equivalence relation.

- 1. $a \stackrel{\theta}{\equiv} a$ for all a, since $a = a\theta^0$.
- 2. $a \stackrel{\theta}{\equiv} b$ implies $b \stackrel{\theta}{\equiv} a$, since $a = b\theta^i \implies b = a\theta^{-1}$.
- 3. $a \stackrel{\theta}{\equiv} b$ and $b \stackrel{\theta}{\equiv} c$ implies $a \stackrel{\theta}{\equiv} c$, since $a = b\theta^i$ and $b = c\theta^j$ implies $a = c\theta^{i+j}$.

We call the equivalence classes of $s \in S$, the **orbit** of s under θ . The orbit of s consists of all elements in form of $s\theta^i$, $i \in \mathbb{Z}$. If S is finite, then there is a smallest positive integer l = l(s) such that $s\theta^l = s$. By **cycle** of θ we mean the ordered set $(s, s\theta, \ldots, s\theta^{l-1})$.

Lemma 2.38. Every permutation is a product of its cycles.

Proof. Note that the cycles of a permutation are disjoint, and each is a permutation, hence their product is a permutation. Suppose ψ is the permutation of the product of cycles of θ . ψ is well-defined since the product of disjoint permutation is commutative. Furthermore, for each $s \in S$, $s\psi = \theta s$ thus, $\theta = \psi$.

Lemma 2.39. Every cycle can be written as a product of 2-cycle or **transpositions**.

Proof. Every m-cycle can be written as a product of 2-cycles.

$$\begin{pmatrix} 1 & 2 & \dots & m \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \dots \begin{pmatrix} m-1 & m \end{pmatrix} \qquad \Box$$

Definition: A permutation $\theta \in S_n$ is said to be an **even permutation** if it can be represented as a product of an even number of transpositions,

The proof of well-definition of even permutation involves the polynomial $p(x_1, \ldots, x_n)$

$$p(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j)$$

Define the action of $\theta \in A(S_n)$ on the polynomial p

$$\theta \cdot p = \prod_{i < j} (x_{\theta(i)} - x_{\theta(j)})$$

It can be easily seen that $\theta \cdot p = \pm p$. In fact, if θ is a transposition, then $\theta \cdot p = -p$. Since this is an action on p, if θ is the product of m transposition, $\theta \cdot p = (-1)^m p$. Therefore, even permutations are well-defined. That is, no permutation can be written as a product of even number of transpositions and odd number of transpositions simultaneously.

Let $A_n \subset S_n$ be the set of even permutations. A_n is a subgroup of S_n and it is called the alternating group.

Lemma 2.40. The alternating group is a normal subgroup of S_n of index 2, .

Proof. A way to prove this lemma, is to show that every odd permutation is in one coset of A_n .

Another way, is to show that $\Psi: S_n \to W$ given by

$$\theta \Psi = \begin{cases} 1 & \theta \text{ is even} \\ -1 & \theta \text{ is odd} \end{cases}$$

is an onto homomorphism. W is the group of $\{1, -1\}$ under multiplication. Then A_n is the kernel of Ψ . Since $S_n/A_n \approx W$, then

$$\frac{|S_n|}{|A_n|} = |W| = 2$$

Which was what was wanted.

Exercises

- 1. (a) What is the order of an n-cycle.
 - (b) What is the order of the product of disjoint cycles of length m_1, m_2, \ldots, m_k .
 - (c) How do you find the order of a given permutation?
- 2. Prove that A_5 has no non-trivial normal subgroups.
- 3. If $n \geq 5$ prove that A_n is the only non-trivial normal subgroup in S_n .

2.11 Another counting principle

Definition: If $a, b \in G$, then b is said to be a **conjugate** of a in G, denoted by $a \sim b$, if there exists an element $c \in G$ such that $b = c^{-1}ac$

Lemma 2.41. Conjugacy is an equivalence relation on G.

Proof. 1. $a \sim a$ for all $a \in G$, $a = e^{-1}ae$.

- 2. $a \sim b \implies b \sim a$ for all $a, b \in G$, since $a = c^{-1}bc$ implies that $b = cac^{-1}$.
- 3. $a \sim b, b \sim c \implies a \sim c$ for all $a, b, c \in G$, since $a = d^{-1}bd = d^{-1}e^{-1}ced = (ed)^{-1}c(ed)$.

For $a \in G$ let $C(a) = \{x \in G \mid x \sim a\}$. C(a) is called the **conjugate class** of a in G. It consists all elements in form of $y^{-1}ay$ for $y \in G$. Suppose G is a finite group and A is a set of representative of conjugacy classes. Then,

$$|G| = \sum_{a \in A} |C(a)|$$

Definition: Suppose $a \in G$. The **normalizer** of a in G, denoted by N(a), is the set of all elements that commute with a, $N(a) = \{x \in G \mid ax = xa\}$.

Lemma 2.42. N(a) is a subgroup of G.

Proof. Suppose $x, y \in N(a)$, then a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a. And $x^{-1}a = ax^{-1}$ holds. Therefore, N(a) is a subgroup of G.

Theorem 2.43. If G is a finite group, then $|C(a)| = i_G(N(a))$. i.e. the number of elements conjugate to a in G is the index of normalized of a in G.

Proof. Let S be the set of right cosets of N(a) in G. Consider $\varphi: S \to C(a)$ given by $\varphi: N(a)g \mapsto g^{-1}ag$. This, function is well-defined since if N(a)g = N(a)h, then g = nh for some $n \in N(a)$. Then, $g^{-1}ag = h^{-1}n^{-1}anh = h^{-1}ah$. Similarly, it is injective. If $N(a)g\varphi = N(a)h\varphi$, then $g^{-1}ag = h^{-1}ah \implies a = (gh^{-1})a(hg^{-1}) \implies hg^{-1} \in N(a)$ hence N(a)g = N(a)h. φ is clearly surjective. Suppose $x \in C(a)$, then there exists $g \in G$ such that $x = g^{-1}ag$. Then, $N(a)g\varphi = g^{-1}ag = x$. Therefore, φ is a bijection and $|C(a)| = i_G(N(a))$.

Corollary 2.44. The class equation of G

$$|G| = \sum_{a \in A} \frac{|G|}{|N(a)|}$$

Recall that the center Z(G) of a group G is the set of all $a \in G$ such that ax = xa for all $x \in G$.

Lemma 2.45. $a \in Z(G)$ if and only if N(a) = G. If G is finite, $a \in Z(G)$ if and only if |N(a)| = |G|.

Proof. It can be readily proven by applying the definitions.

2.11.1 Applications of **2.43**

Theorem 2.46. If $|G| = p^n$ where p is a prime number, then $Z(G) \neq \{e\}$.

Proof. Let z = |Z(G)|. For each $a \in Z(G)$, |C(a)| = 1. For each $b \notin Z(G)$, $N(a) \neq G$, hence $|N(a)| = p^k$ for some 0 < k < n. Therefore, $|C(a)| = p^{n-k}$ with $n - k \ge 1$. Hence,

$$p^{n} = \sum_{a \in A} |C(a)|$$

$$= \sum_{A \cap Z(G)} |C(a)| + \sum_{A \cap (Z(G))^{c}} |C(a)|$$

$$= z + \sum_{A \cap (Z(G))^{c}} |C(a)|$$

We have shown that, for $a \notin Z(G)$, then $p \mid |C(a)|$, thus $p \mid z$. Since $e \in Z(G)$, then Z(G) contains at least p elements.

Corollary 2.47. If $|G| = p^2$ where p is a prime number, then G is abelian.

Proof. Based on the proof last theorem, |Z(G)| = p, p^2 . Suppose |Z(G)| = p and $a \notin Z(G)$. Then, $Z(G) \subsetneq N(a)$. By Lagrange's theorem, $|N(a)| \mid |G|$, thus $|N(a)| = p^2$ which means $a \in Z(G)$, a contradiction. Therefore, $|Z(G)| = p^2$ and G is abelian.

Theorem 2.48 (Cauchy). If p is a prime number and $p \mid |G|$, then G has an element of order p.

Proof. If |G| = p, then G is cyclic and the theorem holds. Suppose, the statement is true for all groups with |G| = pk for $1 \le k \le n-1$, we will show that it is also true for |G| = np. That is, we will prove the theorem by induction. If G has a non-trivial subset H where $p \mid |H|$, then we would be done. Suppose, that p divides the order of no non-trivial subgroup of H. Consider the normalizer subgroups, N(a). If a normalizer subgroup is trivial, then N(a) = G and hence $a \in Z(G)$. If it is not trivial, then its index divides p.

$$p^{n} = z + \sum_{A \cap (Z(G))^{c}} |C(a)| \implies p \mid z$$

That is $p \mid |Z(G)|$. Therefore, Z(G) = G which means G is abelian. By Cauchy's theorem for abelian groups, there exists $a \neq e$ such that $a^p = e$.

Recall that every permutation in S_n can be decomposed into disjoint cycles. We shall say a permutation $\sigma \in S_n$ has the **cycle decomposition** $\{n_1, \ldots, n_r\}$ if it can be written as product of disjoint cycles of length n_1, \ldots, n_r with $n_1 \leq n_2 \leq \cdots \leq n_r$.

Lemma 2.49. Two permutations in S_n are conjugate if and only if they have the same cycle decomposition.

Proof. Conjugation in S_n leaves the cyclic decomposition unchanged. Also, for any two permutations with the same cyclic decomposition, we can find a $\theta \in S_n$ such that $\sigma_1 = \theta^{-1}\sigma_2\theta$.

Corollary 2.50. The number of conjugate classes in S_n is p(n), the number of partitions of n.

Proof. Every conjugate class corresponds to a partition of n.

Exercises

1.

2.12 Centralizers and Normalizers

Definition: Let A be a non-empty subset of G. $C_G(A) = \{g \in G \mid gag^{-1} = a \ \forall a \in A\}$ is called the **centralizer** of A in G. $N_G(A) = \{g \in G \mid gAg^{-1} = A\}$ is the **normalizer** of A in G.

Example 2.10. $Z(G) = C_G(G)$.

Proposition 2.51. For all $A \subset G$, $C_G(A)$ and $N_G(A)$ are subgroups of G and

$$C_G(A) \le N_G(A) \le G$$

Proposition 2.52. $C_G(Z(G)) = G$.

Proposition 2.53. If $A \subset B$, then $C_G(B) < C_G(A)$.

Proposition 2.54. If $H \leq G$, then $H \leq N_G(H)$ and $H \leq C_G(H)$ if and only if H is abelian. Furthermore, $N_H(A) = N_G(A) \cap H$ and $N_H(A) \leq H$.

Proposition 2.55. If $A \subset G$, then $N_G(A) \geq Z(G)$.

Proposition 2.56. $Z(H(\mathbb{F})) \approx \mathbb{F}$, the additive group of the field \mathbb{F} .

2.13 Sylow's theorem

Theorem 2.57 (Sylow). If p is a prime number and $p^{\alpha} \mid |G|$, then G has a subgroup of order p^{α} .

We give three proofs for this theorem.

Proof. Let $|G| = p^{\alpha}m$ where $p^r \mid\mid m$ for some $r \geq 0$. Consider \mathcal{M} , the set of all p^{α} -element subsets of G. Clearly, $|\mathcal{M}| = \binom{p^{\alpha}m}{p^{\alpha}}$. Let $e_p(n)$ be $p^{e_p(n)} \mid\mid n$. We claim that $p^r \mid\mid |\mathcal{M}|$. Note that

$$e_p(|\mathcal{M}|) = e_p((p^{\alpha}m)!) - e_p((p^{\alpha})!) - e_p((p^{\alpha}(m-1))!)$$

For any m and α

$$e_p((p^{\alpha}m)!) = me_p((p^{\alpha})!) + e_p(m!)$$

therefore,

$$e_{p}(|\mathcal{M}|) = e_{p}((p^{\alpha}m)!) - e_{p}((p^{\alpha})!) - e_{p}((p^{\alpha}(m-1))!)$$

$$= e_{p}(m!) - e_{p}((m-1)!)$$

$$= e_{p}\left(\frac{m!}{(m-1)!}\right)$$

$$= e_{p}(m)$$

which proves the claim. Define the equivalence relation \sim on \mathcal{M} as following. $M_1, M_2 \in \mathcal{M}$ are equivalent if there exists a $g \in G$ such that $M_1 = M_2 g$. There is at least one equivalence class that the number of elements in that class does not divide p^{r+1} . As otherwise, $p^{r+1} \mid |\mathcal{M}|$ which is a contradiction. Suppose $\{M_1, \ldots, M_n\}$ where $p^{r+1} \nmid n$ is that equivalence class. Let $H = \{g \in G \mid M_1 g = M_1\}$. It can be easily shown that H is a subgroup of G. We will show that $i_G(H) = n$. Let $\phi: Hg \mapsto M_1g$

• ϕ is well-defined. Let $Hg_1 = Hg_2$, then $g_2 = hg_1$ where $h \in H$. Hence

$$M_1 g_2 = M_1 h g_1 = M_1 g_1$$

• ϕ is injective. Suppose $M_1g_1 = M_1g_2$, then $M_1g_1g_2^{-1} = M_2$ thus $g_1g_2^{-1} \in H \implies Hg_1 = Hg_2$.

• ϕ is clearly surjective.

Note that $\{M_1g \mid g \in G\} = \{M_1, \ldots, M_n\}$ by definition. Then, $i_G(H) = n$. which implies $p^{\alpha} \mid |H|$. For each $m_1 \in M_1$, $m_1H_1 \subset M_1$, therefore, H has at most p^{α} distinct elements. Thus $|H| = p^{\alpha}$.

Corollary 2.58. If $p^m \mid |G|$, $p^{m+1} \nmid |G|$, then G has a subgroup of order p^m .

The second proof is by induction.

Proof. For |G| = 2, the only prime divisor is 2 and G itself is a subgroup of G with order 2. Suppose for all groups with order less than |G|, the theorem holds and suppose $p^{\alpha} \mid |G|$. If G has a non-trivial subgroup H where $p^{\alpha} \mid |H|$, then by induction hypothesis there exists a subgroup T of H with p^{α} elements. We are done, since T is a subgroup of G as well. Suppose, G does not have a non-trivial subgroup whose order is divisible by p^{α} . Consider the normalizer groups N(a). If N(a) = G, then $a \in Z(G)$. Otherwise, $p^{\alpha} \nmid |N(a)|$, hence $p \mid i_G(N(a))$. By class equation, 2.44,

$$|G| = |Z(G)| + \sum_{A \cap (Z(G))^c} i_G(N(a))$$

which implies that $p \mid |Z(G)|$. By Cauchy's theorem, there exists an element $b \in Z(G)$ with order p. Let $B = \langle b \rangle$. Since $B \subset Z(G)$ it commutes with all elements of G and hence it is a normal subgroup. Let $\bar{G} = G/B$, then $|\bar{G}| = |G|/|B| = |G|/p$. Therefore, $p^{\alpha-1} \mid |\bar{G}|$ and by the induction hypothesis, there exists a subgroup \bar{P} with order of p^{α} . Let $P = \{x \in G \mid Bx \in \bar{P}\}$, then P/B is isomorphic to \bar{P} and hence $|P| = |\bar{P}||B| = p^{\alpha}$. Which was what was wanted.

A subgroup of G of order p^m where $p^m \mid\mid |G|$ is called a p-Sylow group. For the third proof of Sylow's theorem, consider the following lemmas.

Lemma 2.59. S_{p^k} has a p-Sylow group.

Proof. For k=1, the order of p-Sylow group is p. Therefore, $H=\langle (1 \ 2 \ \dots \ p) \rangle$ is a p-Sylow group. Suppose that $S_{p^{k-1}}$ has a p-Sylow group. Consider the permutation $\sigma \in S_{p^k}$ defined as following

$$\sigma = (1 \quad p^{k-1} + 1 \quad \dots \quad (p-1)p^{k-1} + 1) (2 \quad p^{k-1} + 2 \quad \dots \quad (p-1)p^{k-1} + 2)$$
$$\dots (p^{k-1} \quad 2p^{k-1} \quad \dots \quad p^k)$$

Let $A_n = \left\{ \tau \in S_{p^k} \,\middle|\, i\tau = i \text{ for } i \leq (n-1)p^{k-1} \text{ and } i > np^{k-1} \right\}$ for $n=1,\ldots,p$ the set of all permutations that only change the elements $(n-1)p^{k-1}+1,\ldots,np^{k-1}$. It can be easily shown that A_n is a subgroup of S_{p^k} . Futhermore, $A_n = \sigma^{-n}A_1\sigma^n$ and $|A_1| = (p^{k-1})!$, in fact $A_1 \approx S_{p^{k-1}}$. Therefore, A_n has a p-Sylow group P_n , where $P_n = \sigma^{-n}P_1\sigma^n$. Let $T = P_1P_2\dots P_n$. Since $P_i \subset A_i$ and A_i are disjoint, then P_i are disjoint and hence they commute. Thus T is a subgroup of S_{p^k} with order $|P_1|^p = p^{pe_p(p^{k-1}!)}$. Which means T is a not a p-Sylow group. Note that $\sigma \notin T$ and $P_i\sigma^j = \sigma^j P_{i+j}$. Consider $P = \{\sigma^j t \, | \, t \in T, 0 \leq j < p\}$, we claim that P is a subgroup of S_{p^k} .

1. Let $t = q_1 \dots q_p$ where $q_i \in P_1$. Then,

$$\sigma^{j}t\sigma^{k}t' = \sigma^{j}q_{1}\dots q_{p-1}q_{p}\sigma^{k} t'$$

$$= \sigma^{j}q_{1}\dots q_{p-1}\sigma^{k}q'_{p} t'$$

$$= \sigma^{j+k}q'_{1}\dots q'_{p-1}q'_{p} t'$$

where $q_i' \in P_{i+j}$. Since P_i are commutative, then $q_1' \dots q_p' t' \in T$.

2. The inverse of $\sigma^j t$ can be easily found.

The order of P is $p|T| = p^{pe_p(p^{k-1}!)+1} = p^{e_p(p^k!)}$. Which means, P is a p-Sylow subgroup of S_{p^k} .

Definition: Let G be a group, A, B subgroups of G. If $x, y \in G$ define $x \sim_B^A y$ if y = axb for some $a \in A$ and $b \in B$.

Lemma 2.60. The relation \sim_B^A defines an equivalence relation on G. The equivalence class of $x \in G$ is the set $AxB = \{axb \mid a \in A, b \in B\}$.

Proof.

- 1. For all $x \in G$, x = exe and hence $x \sim_B^A x$.
- 2. For all $x, y \in G$, if $x \sim_B^A y$, then y = axb for some $a \in A$ and $b \in B$, hence $x = a^{-1}yb^{-1}$, therefore, $y \sim_B^A x$.
- 3. For all $x, y, z \in G$, if $x \sim_B^A y$ and $y \sim_B^A z$, then $y = a_1xb_1$ and $z = a_2yb_2$ for some $a_1, a_2 \in A$ and $b_1, b_2 \in B$, hence $z = a_2a_1xb_1b_2$, therefore, $x \sim_B^A z$.

Lemma 2.61. If A, B are finie subgroups of G then

$$|AxB| = \frac{|A||B|}{|A \cup xBx^{-1}|}$$

Proof. Note that $|AxB| = |AxBx^{-1}|$

$$|AxB| = |AxBx^{-1}| = \frac{|A||xBx^{-1}|}{|A \cap xBx^{-1}|} = \frac{|A||B|}{|A \cap xBx^{-1}|}$$

which proves the lemma.

Lemma 2.62. Let G be a finite group and suppose G is a subgroup of the finite group M. Suppose further that M has a p-Sylow group subgroup Q. Then G has a p-Sylow subgroup P. In fact, $P = G \cap xQx^{-1}$ for some $x \in M$.

Proof. Let $p^m \mid\mid |M|$ and $p^n \mid\mid |G|$ with $n \leq m$. Therefore, $|Q| = p^m$ and since $G \cap xQx^{-1} \subset xQx^{-1}$ for all $x \in M$, then $|G \cap xQx^{-1}| = p^{m_x}$ for some $m_x \leq n$. Note that by the above's lemma

$$|GxQ| = \frac{|G||Q|}{|G \cup xPx^{-1}|} = \frac{p^n \alpha p^m}{p^{m_x}} = p^{n+m-m_x} \alpha$$

We claim that there exists $x \in M$ such that $m_x = n$. As otherwise, m_x would be strictly smaller than n, hence $n - m_x \ge 1$. Thus,

$$|M| = \sum_{x \in A} |GxQ|$$

would divide p^{m+1} which is a contradiction. Therefore, let x be such that $m_x = n$ and $P = G \cap xQx^{-1}$

$$|P| = \frac{|G||Q|}{|G \cap xQx^{-1}|} = \frac{p^n \alpha p^m}{p^m \alpha} = p^n$$

which means that P is a p-Sylow group of G.

We now present the thrid proof.

Proof. Let |G| = n. By the Cayley's theorem, we can isomorphically embed G in S_n . Let $p^k > n$. Then, S_n is a subgroup of S_{p^k} and therefore G is a subgroup of S_{p^k} . By the last lemma, G has a p-Sylow group.

Theorem 2.63 (Second part of Sylow's theorem). If G is a finite group, p is a prime and $p^n \mid\mid |G|$, then any two subgroups of G of order p^n are conjugate.

Proof. Let A and B be two p-Sylow groups of G with order p^n . Consider the double coset decomposition of G with respected to A and B.

$$|AxB| = \frac{|A||B|}{|A \cap xBx^{-1}|} = p^{2n-m_x}$$

where $m_x = |A \cap xBx^{-1}|$. If $A \neq xBx^{-1}$ for any $x \in G$, then $m_x < n$ for all $x \in G$. Therefore, $2n - m_x \ge n + 1$ for all $x \in G$. Particularly, if A is the set of representatives of equivalence classes of \sim_B^A ,

$$|G| = \sum_{x \in A} |AxB|$$

which means $p^{n+1} \mid |G|$ which is a contradiction. Therefore, there exists a $x \in G$ such that $A = xBx^{-1}$.

Definition: Suppose H is a subgroup of G. The **normalizer** of H is the subgroup $N(H) = \{x \in G \mid x^{-1}Hx = H\}$.

Lemma 2.64. Let H be a subgroup of G. Then, the number of distinct conjugates of H is $i_G(N(H))$.

Proof. Let S be the set of right cosets of N(H) in G and T be the set of conjugates of H. Consider $\varphi: S \to T$ given by $\varphi: N(H)g \mapsto g^{-1}Hg$. This, function is well-defined since if N(H)g = N(H)h, then g = nh for some $n \in N(H)$. Then, $g^{-1}Hg = h^{-1}n^{-1}Hnh = h^{-1}Hh$. Similarly, it is injective. If $N(H)g\varphi = N(H)h\varphi$, then $g^{-1}Hg = h^{-1}Hh \implies H = (gh^{-1})H(hg^{-1}) \implies hg^{-1} \in N(H)$ hence N(H)g = N(H)h. φ is clearly surjective. Suppose $x^{-1}Hx \in T$ then, $N(H)x\varphi = x^{-1}Hx$. Therefore, φ is a bijection and $|T| = |S| = i_G(N(H))$. \square

Corollary 2.65. The number of p-Sylow subgroups in G equals |G|/|N(P)| where P is any p-Sylow subgroup of G. In particular, this number is a divisor of |G|.

Proof. p-Sylow subgroups are conjugates.

Theorem 2.66 (Second part of Sylow's theorem). The number of p-Sylow subgroups in G, is of the form 1 + kp.

Proof. Let $p^n \mid\mid G$ and consider the double coset decomposition of G with respect to P and P.

$$|PxP| = \frac{(|P|)^2}{|P \cap xPx^{-1}|}$$

if $x \in N(P)$, then $P \cap xPx^{-1} = P$ and hence $|P \cap xPx^{-1}| = p^n$. Otherwise, $P \cap xPx^{-1} \subsetneq P$ and hence $|P \cap xPx^{-1}| = p^{m_x}$ for some $m_x < n$. Therefore,

$$|G| = \sum_{x \in N(P)} |PxP| + \sum_{x \notin N(P)} |PxP|$$

If $x \in N(P)$, then $xPx^{-1} = P \implies PxP = Px$. Hence, the first summation is

$$\sum_{x \in N(P)} |Px| = |P|i_{N(P)}(P) = |N(P)|$$

and the second summation is divisible by p^{n+1} hence there exists an intger u such that

$$\sum_{x \notin N(P)} |PxP| = p^{n+1}u$$

therefore

$$|G| = |N(P)| + p^{n+1}u \implies i_G(N(P)) = 1 + \frac{p^{n+1}u}{|N(P)|}$$

Moreover, p^{n+1} does not divide G and hence it does not divide N(P). Thus, $p^{n+1}u/|N(P)|$ is an integer divisible by p.

Exercises

1. Let N be a subgroup of of finite group G such that $i_G(N)$ is the smallest prime factor of |G|. Prove N is normal.

2.

2.14 Direct product

Let A and B be any two groups and $G = A \times B$. Define the operation \circ_G as $(a_1, b_1) \circ_G (a_2, b_2) = (a_1 \circ_A a_2, b_1 \circ_B b_2)$. It can be readily verified that G is group under the operation \circ_G . We call (G, \circ_G) the **external direct product** of A and B.

Now suppose $G = A \times B$ and consider $\bar{A} = \{(a, f) \in G \mid a \in A\}$ where f is the unit element of B. Then, \bar{A} is a normal subgroup in G and is isomorphic to A. We claim that $G = \bar{A}\bar{B}$ and every $g \in G$ has a unique decomposition in the form of $g = \bar{a}\bar{b}$ where $\bar{a} \in \bar{A}$ and $\bar{b} \in \bar{B}$. Thus we have realized G as an **internal product** $\bar{A}\bar{B}$ of two normal subgroups.

Definition: Let G be a group and N_1, \ldots, N_n normal subgroups of G such that

- 1. $G = N_1 \dots N_n$.
- 2. Any $g \in G$ can be uniquely represented as $g = n_1 n_2 \dots n_n$ where $n_i \in N_i$.

We then say that G is the **internal direct product** of N_1, \ldots, N_n .

Lemma 2.67. Suppose that G is the internal product of N_1, \ldots, N_n . Then for $i \neq j$, $N_i \cap N_j = \{e\}$ and if $a \in N_i$ and $b \in N_j$ then ab = ba.

Theorem 2.68. Suppose that G is the internal product of N_1, \ldots, N_n and let $T = N_1 \times \cdots \times N_n$. Then G and T are isomorphic.

2.15 Maximial subgroups

Definition: A subgroup M < G is **maximal** if there exists no subgroup H such that M < H < G.

Theorem 2.69. Every proper subgroup of a finite group has a maximal subgroup.

2.16 Finitely generated group

Definition: A group G is **finitely generated** if there is a finite set A such that $G = \langle A \rangle$.

Proposition 2.70. Every finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic.

2.17 Finite abelian groups

Theorem 2.71 (The fundamental theorem on finite abelian groups). Every finite abelian group is the direct product of cyclic groups.

Definition: If G is an abelian group of order p^n , p a prime, and $G = A_1 \times \cdots \times A_k$ where A_i is cyclic of order p^{n_i} with $n_1 \geq n_2 \geq \cdots \geq n_k > 0$, then the integers n_1, n_2, \ldots, n_k are called the **invariants** of G.

Definition: Ig G is an abelian group and s is any integer, then $G(s) = \{x \in G \mid x^s = e\}$.

Lemma 2.72. If G and G' are isomorphic abelian groups, then for every integer s, G(s) and G'(s) are isomorphic.

Chapter 3

Ring Theory

Definition: A non-empty set R is an **associative ring** if in R there are defined two operations $(+,\cdot)$ such that for all $a,b,c\in R$

- 1. R is closed under +.
- 2. + is commutative.
- 3. + is associative.
- 4. There exists an element $0 \in R$, which is the identity element of +.
- 5. For each a, there exists b such that a + b = b + a = 0.
- 6. R is closed under \cdot .
- $7. \cdot is associative.$
- 8. · is distributive over +. That is, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.

If there is an element $1 \in R$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$, R is said to be a **ring with unity**. If \cdot is commutative, R is said to be a **commutative ring**. If the non-zero elements of R form an abelian group under \cdot , R is said to be a **field**.

Example 3.1. Consider the **real quaternions**, $Q = \{\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k \mid \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\}$ with multiplication rules; $i^2 = j^2 = k^2 = ijk = 1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. Then, Q is a non-commutative ring and its non-zero elements form a non-commutative group under multiplication.

3.1 Some special classed of ring

Definition: If R is a commutative ring, then a non-zero element $a \in R$ is a **zero-divisor** if there exists another non-zero element b such that ab = 0.

Definition: A commutative ring is an **integral domain** if it has no zero-divisors.

Definition: A ring in which all non-zero elements form a group under multiplication is called a division ring or skew-field.

Definition: A field is a commutative division ring.

3. Ring Theory

Lemma 3.1. for all $a, b, c \in R$

1.
$$a \cdot 0 = 0 \cdot a = 0$$
.

2.
$$a(-b) = (-a)b = -ab$$
.

3.
$$(-a)(-b) = ab$$
.

If $1 \in R$

1.
$$(-1)a = -a$$
.

2.
$$(-1)(-1) = 1$$
.

Lemma 3.2. A finite integral domain is a field.

Corollary 3.3. If p is a prime, \mathbb{Z}_p is a field.

Definition: An integral domain D is said to be of characteristic 0 if the relation ma = 0 where $a \neq 0$ and $m \in \mathbb{Z}$ holds only if m = 0. D is of finite characteristic if there exists a positive integer m such that for all $a \in D$, ma = 0. The characteristic of D is the samllest such integer. We say that a ring R has n-torsion if there exists $a \neq 0$ in R such that na = 0 and $ma \neq 0$ for 0 < m < n.

3.2 Homomorphisms

Definition: A mapping ϕ from the ring R into the ring R' is a homomorphism if

$$\phi(a+b) = \phi(a) + \phi(b)$$

and

$$\phi(ab) = \phi(a)\phi(b)$$

for all $a, b \in R$.

Lemma 3.4. If $\phi: R \to R'$ is a homomorphism

- 1. $\phi(0) = 0$.
- 2. $\phi(-a) = -\phi(a)$.

Definition: Suppose $\phi: R \to R'$ is a homomorphism. The kernel $I(\phi) = \{a \in R\} \phi(a) = 0$.

Lemma 3.5. If $\phi: R \to R'$ is a homomorphism

- 1. $I(\phi)$ is a subgroup of R under addition.
- 2. If $a \in I(\phi)$ and $r \in R$, then $ra, arI(\phi)$.

Definition: A homomorphism R into R' is an isomorphism of it is one-to-one. R and R' are isomorphic if there is an onto isomorphism between them.

Lemma 3.6. The homomorphism $\phi: R \to R'$ is an isomorphism if and only if $I(\phi) = \{0\}$.

3.3 Ideals and quotient ring

Definition: A non-empty subset U of R is a **two-sided ideal** of R if

- 1. U is a subgroup of R under addition.
- 2. For all $u \in U$ and $r \in R$, $ur, ru \in U$.

R/U is the set of distinct cosets of U in R as a group under addition. R/U is a ring with (a+U)(b+U)=ab+U.

If R is commutative or it has unit element, then R/U is commutative or has unit element. But the converse is not necessarily true. — give an example.

Lemma 3.7. If U is an ideal of the ring R. then R/U is a ring and is a homomorphic image of R.

Theorem 3.8. Suppose $\phi: R \to R$ " is a homomorphism and let $U = I(\phi)$. Then, $R' \approx R/U$. Moreover, there is a one-to-one correspondence between the set of ideals of R' and the set of ideals of R that contain U. This correspondence can be achieved by associating with an ideal W' of R', the ideal W in R defined by $W = \{x \in R \mid \phi(x) \in W'\}$, then $W' \approx R/W$.

3.4 More ideals and quotient rings

Lemma 3.9. Let R be a commutative ring with unit element whose only ideals are (0) and R. Then, R is a field.

Definition: An ideal $M \neq R$ is said to be **maximal ideal** of R whenever U is an ideal of R such that $M \subset U \subset R$, then either UR or U = M.

If a ring has unit element, then using axiom of choice it can be shown that there is a maximal ideal.

Theorem 3.10. If R is a commutative ring with unit element and M is an ideal of R, then M is maximal ideal if and only if R/M is a field.

3.5 The field of quotients of integral domain

Definition: A ring R can be **imbedded** in ring R' if there is an isomorphism of R into R'. If R and R' have unit elements, this isomorphism should take 1 onto 1'. R' will be called an **over ring or extension** of R.

Theorem 3.11. Every integral domain can be imbedded in a field.

Proof. Take a look at quotients $\frac{a}{b}$. $M = \{(a,b) \mid a,b \in D, b \neq 0\}$. $(a,b) \sim (c,d)$ if ad = bc. F be the set of equivalence classes. F is a field and D can be imbedded in F.

F is called the **field of quotients** of D.

3. Ring Theory

3.6 Euclidean ring

Definition: An integral domain R is an **Euclidean ring** if for every $a \neq 0$ in R there exists a non-negative integer d(a) such that

- 1. For all non-zero $a, b \in R$, $d(a) \leq d(ab)$.
- 2. For all non-zero $a, b \in R$, there exists $t, r \in R$ such that a = tb + r where either r = 0 or d(r) < d(b).

$$\langle a \rangle = \{ xa \mid x \in R \}.$$

Theorem 3.12. Let R be a Euclidean ring and let A be an ideal of R. Then, there exists $a_0 \in A$ such that A consists exactly of a_0x as x ranges over R.

Definition: An integral domain R with unit element is a **principle ideal ring** if every ideal A of R is of the form $A = \langle a \rangle$ for some $a \in R$

Corollary 3.13. A Euclidean ring possesses a unit element.

Definition: If $a \neq 0$ and b are in a commutative ring R, then a is said to divide b there exists $c \in R$ such that b = ac denoted by $a \mid b$.

Remark 1.

- 1. $a \mid b, b \mid c \implies a \mid c$.
- 2. $a \mid b$, $a \mid c \implies a \mid (b \pm c)$.
- 3. $a \mid b \implies a \mid bx$ for all $x \in R$.

Definition: If $a, b \in R$, then $d \in R$ is the greatest common divisor of a and b if

- 1. $d \mid a, d \mid b$.
- $2. c \mid a, c \mid b \implies c \mid d.$

It is denoted as $d = (a, b) = \gcd(a, b)$.

Lemma 3.14. Let R be a Euclidean ring. Then, any two elements a and b in R have a greatest common divisor d. Moreover, $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$.

Definition: Let R be a commutative ring with unit element. An element $a \in R$ is a **unit** in R if there exists an element b such that ab = 1.

A unit is an element whose multiplicative inverse exists in R.

Lemma 3.15. Let R be an integral domain with unit element and suppose that for $a, b \in R$ both $a \mid b$ and $b \mid a$ are true. Then, a = ub, where u is a unit in R.

Definition: In a commutative ring R with unit element, two elements a and b are **associates** if b = ua for some unit $u \in R$.

Lemma 3.16. Let R be a Euclidean ring and $a, b \in R$ be non-zero elements. If b is not a unit in R, then d(a) < d(ab).

Definition: Let R be a Euclidean. A non-unit elemnt $\pi \in R$ is **prime** if whenever $\pi = ab$, one of a or b is a unit in R.

Theorem 3.17. Let R be a Euclidean ring. Then, every element is either a unit in R or can be written as a product of finite number prime elements.

Definition: Let R be a Euclidean ring. Two elements a and b in R are **relatively prime** if their greatest common divisor is a unit in R.

Lemma 3.18. Let R be a Euclidean ring. If $a \mid bc$ but a and b are relatively prime, then $a \mid c$.

Lemma 3.19. If π is a prime element in a Euclidean ring R, then $\pi \mid ab \implies \pi \mid a$ or $\pi \mid b$.

Theorem 3.20 (Unique factorization theorem). Let R be a Euclidean ring and $a \neq 0$ be non-unit element of R. Suppose that $a = \pi_1 \dots \pi_n = \pi'_1 \dots \pi'_m$ where π_i and π'_j are prime elements. Then, n = m and each π_i is an associate of a π'_j and each π'_j is an associate of a π_i .

Combining unique factorization theorem with 3.17 gives that every non-zero element in R can be written uniquely up to associates as a product of primes in R.

Lemma 3.21. The ideal $A = \langle a_0 \rangle$ is a maximal ideal of the Euclidean ring R if and only if a_0 is a prime element.

3.7 A particular Euclidean ring

The domain of Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}, i = \sqrt{-1}\}$ is a Euclidean ring, with $d(a + bi) = a^2 + b^2$.

Theorem 3.22. $\mathbb{Z}[i]$ is a Euclidean ring.

Lemma 3.23. Let p be a prime integer and suppose for integer c relatively prime to p we can find integers x and y such that $x^2 + y^2 = cp$. Then, p can be written as a sum of two squares of integers. i.e. there exists integers a and b such that $a^2 + b^2 = p$.

Lemma 3.24. If $p \equiv 1 \mod 4$, we can solve the congruence $x^2 \equiv -1 \mod p$.

Theorem 3.25. If p is a prime of form 4n + 1, then $p = a^2 + b^2$ for some integers a and b.

3. Ring Theory

3.8 Polynomial rings

Let F be a field. $F[x] = \{a_0 + a_1x + \cdots + a_nx^n \mid n \geq 0, a_i \in F\}$ is the ring of polynomials in the indeterminate x.

Definition: If $p(x) = a_0 + a_1 x + \cdots + a_m x^m$ and $q(x) = b_0 + \cdots + b_n x^n$ are in F[x], then p(x) = q(x) if m = n and for each $i \ge 0$, $a_i = b_i$.

Definition: $p(x) + q(x) = c_0 + \cdots + c_k x^k$ where $c_i = a_i + b_i$.

Definition: $p(x)q(x) = c_0 + \cdots + c_k x^k$ where $c_i = \sum_{t=0}^i a_t b_{i-t}$.

Therefore, F[x] is a commutative ring with unit element.

Definition: If $f(x) = a_0 + a_1 x + \cdots + a_n x^n \neq 0$ and $a_n \neq 0$, then the **degree** of f is n. *i.e.* the degree of f, deg $f = \min\{n \geq 0 \mid a_k = 0, \ \forall k > n\}$. The zero polynomial can be defined to be of infinite degree.

Lemma 3.26. If $f(x), g(x) \neq 0$ are two polynomials in F[x], then

$$\deg(fg) = \deg(f) + \deg(g)$$

Corollary 3.27. $f(x), g(x) \neq 0$, then $\deg(f) \leq \deg(fg)$.

Corollary 3.28. F[x] is an integral domain.

Since F[x] is an integeral domain, we can construct its field of quotients which is the field of rational functions in x over F.

Lemma 3.29 (The division algorithm). Given two polynomials f(x) and $g(x) \neq 0$, there exists two polynomials $t(x), r(x) \in F[x]$ such that f(x) = t(x)g(x) + r(x) where r(x) = 0 or $\deg r < \deg g$.

Theorem 3.30. F[x] is a Euclidean ring.

Theorem 3.31. F[x] is a principle ideal group.

Lemma 3.32. Given two polynomials $f(x), g(x) \in F[x]$, the greatest common divisor d(x) = (f(x), g(x)) can be realized as $d(x) = \lambda(x)f(x) + \mu(x)g(x)$ for some $\lambda(x), \mu(x) \in F[x]$.

Definition: A polynomial $p(x) \in F[x]$ is **irreducible** over F if whenever p(x) = a(x)b(x) with $a(x), b(x) \in F[x]$, one of a(x) or b(x) has degree 0.

Lemma 3.33. Any polynomial in F[x] can be written in a unique manner as product of irreducible polynomials in F[x].

Lemma 3.34. The ideal $A = \langle p(x) \rangle$ in F[x] is a maximal ideal if and only p(x) is irreducible.

3.9 Polynomials over field of rationals

Definition: The polynomial $f(x) = a_0 + a_1 x + \dots + a_n x^n$ where $a_i \in \mathbb{Z}$ is said to be **primitive** if the greatest common divisor of a_0, \dots, a_n is 1.

Lemma 3.35. If f(x) and g(x) are primitive, then f(x)g(x) is a primitive polynomial.

Definition: The **content** of a polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ where $a_i \in \mathbb{Z}$ is the $gcd(a_0, \ldots, a_n)$.

Theorem 3.36 (Guass' lemma). If primitive polynomial f(x) can be factored as a product of two polynomials with rational coefficients, it can be factored as the product of two polynomials with integer coefficients.

Definition: A polynomial is said to be **integer monic** if all of its coefficients are integers and its highest coefficient is 1.

Corollary 3.37. If an integer monic polynomial f(x) can be factored as a product of two polynomials with rational coefficients, it can be factored as a product of two integer monic polynomials.

Theorem 3.38 (The Eisenstein criterion). Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ with $a_i \in \mathbb{Z}$. Suppose that for some $p, p \nmid a_n, p \mid a_{n-1}, \ldots, p \mid a_1, p \mid a_0, \text{ but } p^2 \nmid a_0.$ Then, f(x) is irreducible over rationals.

3.10 Polynomial rings over commutative rings

 $R[x] = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in R\}$. For the rest of this section R is assumed to be commutative and have unit element. $R[x_1, \dots, x_n]$ is the ring of polynomials in the indeterminate x_1, \dots, x_n . It can be constructed as $R[x_1][x_2]\dots[x_n] = \{\sum a_{i_1,\dots,i_n}x_1^{i_1}\dots x_n^{i_n}\}$.

Lemma 3.39. If R is an integral domain, so is R[x] and by induction, $R[x_1, \ldots, x_n]$ is an integral domain.