Binary Heaps (Cont.), Heapsort and Huffman Encoding

Subhabrata Samajder

IIIT, Delhi Winter Semester, 28th April, 2023

Building a Binary Heap Incrementally

Problem: Given elements $\{x_0, \ldots, x_{n-1}\}$, build a binary heap H storing them.

Building a Binary Heap Incrementally

Problem: Given elements $\{x_0, \ldots, x_{n-1}\}$, build a binary heap H storing them.

Trivial Solution: Build the Binary heap incrementally.

CREATEHEAP(H): for i = 0 to n - 1INSERT(x_i, H);

- Consider a complete binary tree of height h with k leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left[\frac{1}{2} \{ 2^h + k - 1 \} \right] = \lceil n/2 \rceil$

- Consider a complete binary tree of height h with k leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left\lceil \frac{1}{2} \{ 2^h + k - 1 \} \right\rceil = \lceil n/2 \rceil$

- Time complexity for inserting a leaf node = $O(\log n)$
- Time complexity for building a heap incrementally is $\mathcal{O}(n \log n)$.

- Consider a complete binary tree of height *h* with *k* leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left\lceil \frac{1}{2} \{ 2^h + k - 1 \} \right\rceil = \lceil n/2 \rceil$

- Time complexity for inserting a leaf node = $O(\log n)$
- Time complexity for building a heap incrementally is $\mathcal{O}(n \log n)$.

A Binary Heap can be build in $\mathcal{O}(n)$ time.

- Consider a complete binary tree of height h with k leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left\lceil \frac{1}{2} \{ 2^h + k - 1 \} \right\rceil = \lceil n/2 \rceil$

- Time complexity for inserting a leaf node = $O(\log n)$
- Time complexity for building a heap incrementally is $O(n \log n)$.

A Binary Heap can be build in $\mathcal{O}(n)$ time.

Conclusion: $\mathcal{O}(n)$ algorithm \Rightarrow each leaf nodes must take $\mathcal{O}(1)$.

• Heap Property: Every node stores values smaller than its children.

- Heap Property: Every node stores values smaller than its children.
- **Note:** Only need to ensure this property at each node.

- Heap Property: Every node stores values smaller than its children.
- **Note:** Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property?

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property? All the leaf nodes surely does!

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property? All the leaf nodes surely does!
- Question: Does this suggest a new approach to build binary heap?

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property? All the leaf nodes surely does!
- Question: Does this suggest a new approach to build binary heap?

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.
- Let v be a node corresponding to index i in H.
- The process of restoring heap property at i called HEAPIFY(i, H).

HEAPIFY(i, H)

For node i, compare its value with those of its children

- If it is greater than any of its children
 - Swap it with smallest child
 - and move down . . .
- Else stop.

HEAPIFY(i, H)

```
Begin n \leftarrow size(H) - 1; Flag \leftarrow true; while (i \leq \lfloor (n-1)/2 \rfloor and Flag = true) \min \leftarrow i; if (H[i] > H[2i+1]) \min \leftarrow 2i+1; if (2i+2 \leq n \text{ and } H[\min] > H[2i+2]) \min \leftarrow 2i+2; if (\min \neq i) swap(H[i], H[\min]); i \leftarrow min; else Flag \leftarrow false; End
```

Complexity

• How many nodes of height *h* can there be in a complete binary tree of *n* nodes?

Complexity

- How many nodes of height h can there be in a complete binary tree of n nodes?
- **Note:** Each sub-tree is also a complete binary tree.
 - A sub-tree of height h has at least 2^h nodes.
 - No two sub-tree of height *h* have any element in common.

Complexity

- How many nodes of height h can there be in a complete binary tree of n nodes?
- **Note:** Each sub-tree is also a complete binary tree.
 - A sub-tree of height h has at least 2^h nodes.
 - No two sub-tree of height h have any element in common.
- : the # trees of height h is bounded above by $\frac{n}{2^h}$.
- Hence, time complexity of building a heap is given by

$$\sum_{h=1}^{\log n} \frac{n}{2^h} \cdot \mathcal{O}(h) \le cn \sum_{h=1}^{\log n} \frac{h}{2^h} < cn \sum_{h=1}^{\infty} \frac{h}{2^h}$$

$$= cn \cdot \frac{(1/2)}{(1-1/2)^2} \quad [\because \sum_{i=1}^{\infty} ix^i = \frac{x}{(1-x)^2} \text{ for } |x| < 1]$$

$$= 2cn = \mathcal{O}(n).$$

Heapsort

Heapsort

• Build heap *H* on the given *n* elements.

```
    While (H is not empty)
    x ← EXTRACT-MIN(H);
    print x;
```

• Complexity: $\mathcal{O}(n \log n)$.

Heapsort

Homework:

- Implement a BINARY-MAX-HEAP in C.
- Use it to sort numbers in an decreasing order.
- For a given n,
 - Take (fixed) m many random inputs of size n each.
 - Compute the average time take by your Heapsort program.
- Repeat the above process for $n = 4, 5, \dots, 1000$.
- Plot the values in a graph where x-axis is n and y-axis denotes the average time taken for each n.

Huffman Coding

Huffman Coding

- Are used to compress information.
 - Like WinZip (although WinZip doesn't use the Huffman algorithm).
 - JPEGs do use Huffman as part of their compression process.
- Basic idea: Instead of storing characters in a file as 8-bit ASCII value, store the more frequently occurring characters using fewer bits and less frequently occurring characters using more bits
 - On average this should decrease the filesize (usually by 1/2).

Huffman Coding (Cont.)

An Example: Consider the string, "duke blue devils"

• Do a frequency count of the characters:

е	d	u		space	k	b	V	i	S
3	2	2	2	2	1	1	1	1	1

- Next we use a Greedy algorithm to build up a Huffman Tree.
 - Start with nodes for each character.

Huffman Coding (Cont.)

- Pick the nodes with the smallest frequency and combine them together to form a new node.
 - The selection of these nodes is the Greedy part.

 Remove the two selected nodes are from the set and replace it with a combined node.

Continue until only 1 node left in the set.

Huffman Coding (Cont.)

Huffman Coding: Assign Codes

- Assign codes to the tree:
 - 0: For left child.
 - 1: For Right child.

- A traversal of the tree from root to leaf gives the Huffman code for that particular leaf character.
- Note: No code is the prefix of another code.

Huffman Coding: Code Assignment

е	d	u	I	space	i	S	k	b	V
00	010	011	100	101	1100	1101	1110	11110	11111

Huffman Coding: Compression

- Use these codes to encode the string.
- Encoding of "duke blue devils":

010 011 1110 00 101 11110 100 011 00 101 010 00 11111 1100 100 1101

Grouped then into bytes:

- : it takes 7 bytes of space.
- In contrast, the uncompressed string takes 16 characters \times 1 byte/char = 16 bytes.

Huffman Decoding: Uncompression

- Reading the compressed file bit by bit.
 - Start at the root of the tree.
 - If a 0 is read, head left.
 - If a 1 is read, head right.
 - When a leaf is reached decode that character and start over again at the root of the tree
- : Huffman table information needs to be saved as a header in the compressed file.
 - Doesnt add a significant amount of size to the file for large files (which are the ones you want to compress anyway).
 - Or we could use a fixed universal set of codes/frequencies.

Homework

Implement Huffman encoding and decoding in C.

• Using it create a compression software that takes as input a text file and outputs a compressed file with the Huffman encoding table in the header of the file.

• Also create a uncompression software that will take the compressed file created above and output the original text file.

Thank You for your kind attention!

Books and Other Materials Consulted

- Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein.
- 2 Taken from Prof. Surendar Baswana (CSE, IIT Kanpur) lecture slides.
- Taken from Prof. Surendar Baswana (CSE, IIT Kanpur) lecture slides.
- 4 Huffman Coding part taken from the following website.

Questions!!