Assignment 9: Cam-Clay Assigned: 29th April 2019 Due: 10th May 2019

1 Simple shear

- 1. Kaolin is reconstituted to a slurry and is then permitted to re-consolidate onedimensionally. It eventually reaches a vertical effective stress of 100 kPa in a Simple Shear Apparatus:
 - (a) Estimate its water content
 - (b) Predict its undrained shear strength
 - (c) It is then permitted to drain while it continues shearing; predict its drained shear strength.
 - (d) What volumetric change will the sample eventually suffer during its drained shearing? How would this estimate be changed if a pre-consolidation stress of 1000 kPa had first been imposed during the initial setting-up.
- 2. London Clay is normally consolidated to 1000 kPa and then permitted to swell back into equilibrium (with zero pore pressure) under a normal stress of 50 kPa
 - (a) Predict both drained and undrained shear strengths using SSA Cam Clay.
 - (b) Estimate the pore water pressure consistent with your estimate of the undrained shear strength. Comment on the magnitude in relation to the probable behavior of heavily over-consolidated London Clay exposed in an excavation.

2 Triaxial tests

- 1. Establish expression for TX compression Cam Clay parameter M as a function of ϕ_{crit} . Assume that the test eventually come to mobilize $\phi_c rit$ in the vertical plane. Hint: Use earth pressure co-efficient to relate different component of stresses.
- 2. A saturated clay is characterized by these Cam-Clay parameters: M=0.87, $\lambda=0.091$, $\kappa=0.035$ and $\Gamma=2.072$ at p'=1kPa. Consider two different soil specimens consolidated to the same $p'_c=100kPa$. Specimen A is isotropically consolidated to $p'_0=100kPa$, while Specimen B is anisotropically consolidated to $p'_0=100kPa$ with $K_c=\sigma'_{1c}/\sigma'_{3c}=2.0$.
 - (a) Sketch the initial states, paths and yield surfaces for each specimen in q p' and $v \ln p'$ space.
 - (b) Use the OCC and MCC models to predict the undrained shear strength fro the two speciments. Compare your results.

Spring 2019 CE394M Advanced Analysis in Geotechnical Engineering

- (c) Use the OCC and MCC models to predict the drained q_f at failure.
- 3. Weald clay is reconstituted as a saturated slurry and isotropically consolidated to p' = 100kPa, before being allowed to swell back to 70kPa.
 - (a) What will be its water content?
 - (b) It is then to be subjected to undrained triaxial compression. At what deviatoric stress q might the sample yield? Estimate the axial strain at yield (assuming effective Poisson's ratio of 0.15).
 - (c) If q is allowed to increase a further 10% as the undrained test progresses, search for a consistent value of the mean effective stress p' at that stage.
 - (d) What ultimate undrained strength q_u should be recorded?
 - (e) What volumetric strain should occur if the sample were finally allowed to drain while shearing continued, and what would be the ultimate strength?

• Parameter values which fit soil data

	London Clay	Weald Clay	Kaolin	Dog's Bay Sand	Ham River Sand
λ*	0.161	0.093	0.26	0.334	0.163
К*	0.062	0.035	0.05	0.009	0.015
Γ∗ at 1 kPa	2.759	2.060	3.767	4.360	3.026
σ∗ _{c, virgin} kPa	1	1	1	Loose 500	Loose 2500
				Dense 1500	Dense 15000
ϕ_{crit}	23°	24°	26°	39°	32°
M_{comp}	0.89	0.95	1.02	1.60	1.29
M_{extn}	0.69	0.72	0.76	1.04	0.90
w_L	0.78	0.43	0.74		
W_P	0.26	0.18	0.42		
G_s	2.75	2.75	2.61	2.75	2.65

Note: 1) parameters $\lambda *$, $\kappa *$, $\Gamma *$, $\sigma *_c$ should depend to a small extent on the deformation mode, e.g. SSA, BA-PS, TA-AS, etc. This may be neglected unless further information is given.

2) Sand which is loose, or loaded cyclically, compacts more than Cam Clay allows.