Игра ним

Марија Мијаиловић

Ментор: проф.др Миодраг Живковић

Математички факултет Универзитет у Београду

Септембар, 2020

Марија Мијаиловић

Садржај

Игра ним

Витхофова игра

Игра ним

- ▶ Два играча
- ▶ Број жетона и гомила на столу одређују сами играчи
- ▶ Жетони се узимају само са једне гомиле, и мора се узети бар један жетон
- ▶ Нормални и мизерни ним

Пример тока игре нормалног нима

Figure 2: Ток ним игре

Оптимална стратегија за Витхофову игру

- ▶ Две гомиле жетона позиција се може представити паром бројева (x, y), где је $x \le y$
- ▶ Жетони се узимају са једне или обе гомиле приликом узимања жетона са обе гомиле, рецимо k(>0) са једне и I(>0) са друге, мора да буде испуњен услов |k-I| < a, где је a задати позитиван број који се одређује пре почетка партије и не мења се у току саме партије
- ▶ Све позиције се могу разврстати у добитне и изгубљене

Оптимална стратегија за Витхофову игру

Да би се Витхофова игра играла на најбољи могући начин, потребно је знати две ствари:

- Препознати природу тренутне позиције, да ли је добитна или изгубљена.
- ▶ Уколико је тренутна позиција добитна, треба одредити следећи потез тако да се противник нађе у изгубљеној позицији.

Изгубљене позиције за a=1

n	Α	В		
0	0	0		
1	1	2		
2	3	5		
3	4	7		
4	6	10		
5	8	13		
6	9	15		
7	11	18		
8	12	20		
9	14	23		
10	16	26		
11	17	28		

Рекурзивна стратегија

Дефиниција оператора тех

 $\max(A)$ означава најмањи природни број који није у скупу A, тј. $\max(\emptyset)=0$ и $\max(A)=\min\{i|i\notin A\}.$

Рекурзивна карактеризација изгубљених позиција

Све изгубљене позиције (A_n, B_n) могу се изразити на следећи начин:

$$A_n = \max\{A_i, B_i : i < n\} \tag{1}$$

$$B_n = A_n + an \tag{2}$$

Алгебарска стратегија

Алгебарска карактеризација изгубљених позиција

Све изгубљене позиције (A_n,B_n) могу експлицитно изразити на следећи начин $A_n=\lfloor \alpha\cdot n\rfloor, B_n=\lfloor \beta\cdot n\rfloor$, где је:

$$\alpha = \frac{2 - a + \sqrt{a^2 + 4}}{2} \tag{3}$$

$$\beta = \alpha + a, \tag{4}$$

овде су α и β ирационални за свако a>0

Достизање изгубљених позиција рекурзивном и алгебарском стратегијом

- Из изгубљене позиције, једним потезом може се прећи само у добитну позицију
- Из добитне позиције једним потезом може се прећи у изгубљену позицију.
 - Ако је $x=B_n$ онда се из позиције $(x=B_n,y)$ може једним потезом (скидањем жетона са гомиле на којој је y жетона) прећи у изгубљену позицију (A_n,B_n)
 - Ако је $x=A_n$ и $y>B_n$, онда се смањивањем y може доћи у позицију (A_n,B_n) . У противном, ако је $A_n\leq y< B_n$ онда се смањивањем x и y може прећи у позицију (A_m,B_m) , где је $m=\left\lfloor \frac{d}{a}\right\rfloor$ и d=y-x

Верижни разломак

Број α се може једнозначно представити бесконачним верижним разломком облика:

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}},\tag{5}$$

lpha ирационалан број, који задовољава услов 1<lpha<2.

Нека је $[a_0,a_1,a_2,\ldots]$ верижни развој броја α и за низове p_n и q_n важи следећа рекурентна релација:

$$p_{-1} = 1, \ p_0 = a_0, \ p_n = a_n p_{n-1} + p_{n-2}, \ (n \ge 1)$$
 (6)

$$q_{-1} = 0, \ q_0 = 1, \ q_n = a_n q_{n-1} + q_{n-2}, \ (n \ge 1).$$

р и q системи нумерације

p-систем

$$N = \sum_{i=0}^{m} s_i \rho_i, 0 \le s_i \le a_{i+1}, \tag{8}$$

при чему, ако је $s_{i+1}=a_{i+2}$, онда је $s_i=0$ за свако $i\geq 0$.

q-систем

$$N = \sum_{i=0}^{n} t_i q_i, 0 \le t_0 < a_1, \ 0 \le t_i \le a_{i+1}, \tag{9}$$

при чему, ако је $t_i = a_{i+1}$, онда је $t_{i-1} = 0$ за свако $i \ge 1$.

Репрезентација R је (m+1)-торка за коју важи:

$$R = (d_m, d_{m-1}, \dots, d_1, d_0), \ 0 \le d_i \le a_{i+1}, \tag{10}$$

при чему за свако $i \geq 0$ важи: ако је $d_{i+1} = a_{i+2}$ онда је $d_i = 0$.

p-интерпретација и q-интерпретација репрезентације R

$$I_p = \sum_{i=0}^m d_i p_i \tag{11}$$

$$I_q = \sum_{i=0}^{m} d_i q_i \tag{12}$$

Веза између p-интерпретације I_p и q-репрезентације R_q :

$$I_p(R_q(k)) = I_p(d_m, d_{m-1}, \dots, d_0).$$

$$R^{'}=(d_m,d_{m-1},\dots,d_1,d_0,0)$$
 - леви померај репрезентације R $R^{''}=(d_m,d_{m-1},\dots,d_1)$ - десни померај репрезентације R

Приказ првих неколико бројева записаних у p и q систему, за $a_i=2$, $i\geq 1$

q ₃	\mathbf{q}_2	q_1	\mathbf{q}_0	p ₃	p ₂	p ₁	\mathbf{p}_0	
12	5	2	1	17	7	3	1	n
			1				1	1
		1	0				2	2
		1	1			1	0	3
		2	0			1	1	4
	1	0	0			1	2	5
	1	0	1			2	0	6
	1	1	0		1	0	0	7
	1	1	1		1	0	1	8
	1	2	0		1	0	2	9
	2	0	0		1	1	0	10
	2	0	1		1	1	1	11
1	0	0	0		1	1	2	12
1	0	0	1		1	2	0	13
1	0	1	0		2	0	0	14
1	0	1	1		2	0	1	15

Аритметичка карактеризација изгубљених позиција

Уколико је текућа позиција $(x,y), 0 < x \le y$, прво се рачуна $R_p(x)$ и проверава се да ли се завршава парним или непарним бројем нула.

- 1. Уколико се $R_p(x)$ завршава непарним бројем нула, онда је $x = B_n$, тако да је победнички потез $(x,y) \to (I_p(R_p^{''}(x)),x)$.
- 2. Уколико се $R_p(x)$ завршава парним бројем нула, онда је $x=A_n$. Ако је $y>I_p(R_p^{'}(x))$ победнички потез је $(x,y)\to (x,I_p(R_p^{'}(x)).$ У противном, ако је $y<I_p(R_p^{'}(x),$ рачунамо $d=y-x, m=\lfloor\frac{d}{a}\rfloor.$ Уколико се $R_q(m)$ завршава парним бројем нула, онда је $A_m=I_p(R_q(m));$ у противном је $A_m=I_p(R_q(m))+1.$ У оба случаја победнички потез је $(x,y)\to (A_m,A_m+ma).$

Figure 3: График рекурзивне стратегије за конструкцију табеле изгубљених позиција за n до 41943040

Figure 4: График алгебарске стратегије за конструкцију табеле изгубљених позиција за n до 41943040

Figure 5: График аритметике стратегије за конструкцију табеле изгубљених позиција за n=41943040

Figure 6: Сумиран приказ извршавања свих стратегија за конструкцију табеле изгубљених позиција

за конструкцију табеле изгубљених позиција

4000 2000 0

Kpaj

Хвала на пажњи! Питања?