WEEK- 7: Applications-Practice:Iris dataset from scikit learn perform data exploration,preprocessing and splitting

Session No.3

Data Cleaning With Python Pandas

In [7]:

import numpy as np
import pandas as pd
import seaborn as sns
import os

```
[8]:
1 print(os.listdir())
```

['.anaconda', '.bash_history', '.conda', '.condarc', '.continuum', '.gitconf ig', '.idea', '.ipynb_checkpoints', '.ipython', '.jupyter', '.lesshst', '.ma tplotlib', '.packettracer', '.viminfo', '.VirtualBox', '.vscode', '1st inter nal.ipynb', '87.py', 'aiml', 'AIML files', 'AIML_CIE1-2.b.ipynb', 'anaconda 3', 'anakonda', 'AppData', 'Application Data', 'area.py', 'Assignment Week 4 & 5.ipynb', 'Atlassian', 'BFS.py', 'BOSTON_KERAS.ipynb', 'Cal.csv', 'calc.p y', 'Cars Pro.ipynb', 'Cars Program.ipynb', 'CIE 2.b Ans.ipynb', 'CIE 2.ipyn b', 'CIE 3 Question Paper.ipynb', 'CIE-2.b.ipynb', 'CIE-3.ipynb', 'Cisco Pac ket Tracer 8.1.1', 'Company_web', 'Confusion matrix and Accuracy.ipynb', 'Contacts', 'Cookies', 'Cross validation 1.ipynb', 'Data Integration 4Week.ipyn b', 'DataVisualization MATPLOTLIB.ipynb', 'DC with PP.ipynb', 'Decision Tre e.ipynb', 'DFS.py', 'Documents', 'Downloads', 'Dtree BreastCancer.ipynb', 'E
mp1.py', 'Emp11.py', 'Emp2.py', 'Emp3.py', 'Emp4.py', 'Emp5.py', 'Emp6.py', 'Emp7.py', 'Emp8.py', 'Emp9.py', 'ex.py', 'exp.py', 'exp1.py', 'exp2.py', 'e xp3.py', 'Factorial.py', 'Favorites', 'Fibonacci.py', 'first python.py', 'first.py', 'Geometry.py', 'Grouping pandas .ipynb', 'Hash.py', 'hello.py.ipyn b', 'hello.txt', 'import libraries.py', 'IntelGraphicsProfiles', 'K-means Cl ustering.ipynb', 'LinearRegression.ipynb', 'LinearRegression1.ipynb', 'Linke dList.py', 'LinkedList1.py', 'Links', 'Local Settings', 'Logistic Regressio n.ipynb', 'main.py', 'MediaGet2', 'ML Library.ipynb', 'Movie_data.ipynb', 'M TCars.csv File.ipynb', 'Multiple Linear Regression.ipynb', 'Music', 'My Docu ments', 'NetHood', 'New Microsoft Excel Worksheet.xlsx', 'New Microsoft Word Document.docx', 'NTUSER.DAT', 'ntuser.dat.LOG1', 'ntuser.dat.LOG2', 'NTUSER. DAT{1c2b59c6-c5f5-11eb-bacb-000d3a96488e}.TM.blf', 'NTUSER.DAT{1c2b59c6-c5f5 -11eb-bacb-000d3a96488e}.TMContainer00000000000000001.regtrans-ms', 'NTUS 2.regtrans-ms', 'ntuser.ini', 'Numpy DataFrame.ipynb', 'Numpy Moduls.ipynb', 'OneDrive', 'Pandas DataFrame.ipynb', 'pictures1.py', 'Polynomial Regressio n.ipynb', 'Precision, Recall, F1 Score.ipynb', 'PrintHood', 'PriorityQueue.p y', 'PycharmProjects', 'python.py', 'python1.py', 'python2.py', 'python3.p y', 'python4.py', 'python5.py', 'python6.py', 'python7.py', 'python8. py.tx t', 'python9.py', 'Queue.py', 'Random Forest.ipynb', 'Recent', 'Reg no.43.ip ynb', 'Regression Matrics.ipynb', 'Saved Games', 'seaborn-data', 'Searches', 'SendTo', 'sh.py.ipynb', 'Shru', 'shru.DB', 'shru.main.py', 'shru.num.py', 'shru.py', 'shru.set.py', 'shru.tuple.py', 'shru1.py', 'shrushti.py', 'Simpl e Linear Regression .ipynb', 'skill test.py', 'sonu.DB', 'sonu.py', 'stack.p y', 'stack_main.py', 'Start Menu', 'stu.py', 'Support Vector Machine.ipynb', 'Templates', 'testrepo', 'Time Series.ipynb', 'ubuntu-2022-07-10-14-26-58.lo g', 'Univariate Pro.ipynb', 'Untitled Folder', 'Untitled.ipynb', 'Untitled1 0.ipynb', 'Untitled11.ipynb', 'Untitled12.ipynb', 'Untitled13.ipynb', 'Untit led14.ipynb', 'Untitled15.ipynb', 'Untitled16.ipynb', 'Untitled17.ipynb', 'U ntitled18.ipynb', 'Untitled19.ipynb', 'Untitled2.ipynb', 'Untitled20.ipynb', 'Untitled21.ipynb', 'Untitled22.ipynb', 'Untitled23.ipynb', 'Untitled24.ipyn b', 'Untitled25.ipynb', 'Untitled26.ipynb', 'Untitled27.ipynb', 'Untitled28. ipynb', 'Untitled29.ipynb', 'Untitled3.ipynb', 'Untitled30.ipynb', 'Untitled 31.ipynb', 'Untitled32.ipynb', 'Untitled33.ipynb', 'Untitled4.ipynb', 'Untitled5.ipynb', 'Untitled6.ipynb', 'Untitled7.ipynb', 'Untitled8.ipynb', 'Untitled7.ipynb', 'Untitled8.ipynb', 'Untitled8.ipynb',

	Unnamed: 0	year	month	passenger
0	0	1949.0	January	112.0
1	1	NaN	February	118.0
2	2	1949.0	March	NaN
3	3	1949.0	April	129.0
4	4	1949.0	May	121.0
5	5	1949.0	June	113.0
6	6	1949.0	July	124.0
7	7	1949.0	August	126.0
8	8	1949.0	Septmber	132.0
9	9	1949.0	Octomber	116.0
10	10	NaN	November	114.0
11	11	1949.0	December	117.0
ΤN	[11]:			

```
1 df.isnull().sum()
```

Out[11]:

Unnamed: 0 0 year
2 month 0
passenger 1
dtype: int64

Handling the program

Step 1: Detecting NA N/A and na Values

```
In [14]:
```

```
1 missing_value=["N/a","na",np.nan]
2 df=pd.read_csv("C:\\Users\\maths\\aiml\\flights.csv",na_values=missing_val
ue) [15]:
```

```
1 df.isnull().sum()
Out[15]:
Unnamed: 0  0
year     2
month    0
passenger  1
dtype: int64 In
[16]:
```

```
1 df.isnull().any()
```

Out[16]:

Unnamed: 0 False
year True
month False
passenger True
dtype: bool In

[19]:

sns.heatmap(df.isnull(), yticklabels=False, annot=True)

Out[19]:

<AxesSubplot:>

Step 2: Lets learn how to to Remove this Values

In [25]:

```
1 df1 = pd.DataFrame(data={
2    "year":[1,np.nan,3,2,3],
3    "month":[22,np.nan,2,np.nan,22]
4 })
```

```
In
         month
                  [26]:
  1df1
Out[26]:
   year
   1.0
           22.0
 0
 1 NaN
          NaN
 2
    3.0
           2.0
 3
    2.0
           NaN
    3.0
           22.0
 4
In [28]:
 1 df1.dropna()
Out[28]:
   year month
    1.0
 0
           22.0
 2
    3.0
           2.0
    3.0
          22.0
In [29]:
  1 df1.dropna(how='all')
Out[29]: year
      month
 0
      1.0 22.0
 2
      3.0
           2.0
 3
      2.0 NaN
```

3.0 22.0

[30]:

1df1

Out[30]:

```
In
```

```
month
   year
 0
     1.0
           22.0
   NaN
 1
           NaN
 2
     3.0
            2.0
 3
     2.0
           NaN
 4
     3.0
           22.0
In [31]:
  1 df1.fillna(0)
Out[31]: year
      month
```

```
0
      1.0 22.0
 1
      0.0
           0.0
 2
      3.0
           2.0
 3
      2.0
           0.0
 4
      3.0 22.0
In [32]:
 1 # Forward fill
 2 df1.fillna(method='ffill')
```

Out[32]: year

month

```
1.0 22.0
1.0 22.0
2.0 2.0
3.0 2.0
4 3.0 22.0
[33]:
1df1
```

Out[33]:

```
In
```

```
month
   year
 0
    1.0
           22.0
   NaN
 1
           NaN
 2
    3.0
            2.0
 3
    2.0
           NaN
 4
    3.0
           22.0
In [34]:
  1 # Backward fill
  2 df1.fillna(method='bfill')
Out[34]: year
      month
 0
    1.0
           22.0
 1
    3.0
            2.0
 2
    3.0
            2.0
           22.0
 3
    2.0
 4
    3.0
           22.0
In [35]:
  1 df1.interpolate()
Out[35]: year
      month
 0
      1.0 22.0
 1
      2.0 12.0
 2
      3.0
           2.0
 3
      2.0 12.0
 4
      3.0 22.0
In [36]:
  1 df_drop = df.dropna()
```

[37]: 1 df_drop

Out[37]:

	Unnamed:	0	year	month	passenger
0		0	1949.0	January	112.0
3		3	1949.0	April	129.0
4		4	1949.0	May	121.0
5		5	1949.0	June	113.0
6		6	1949.0	July	124.0
7		7	1949.0	August	126.0
8		8	1949.0	Septmber	132.0
9		9	1949.0	Octomber	116.0
11 In	[38]:	11	1949.0	December	117.0
1	df				

Out[38]:

Unnamed: 0 year month passenger

0	0	1949.0	January	112.0
1	1	NaN	February	118.0
2	2	1949.0	March	NaN
3	3	1949.0	April	129.0
4	4	1949.0	May	121.0
5	5	1949.0	June	113.0
6	6	1949.0	July	124.0
7	7	1949.0	August	126.0
8	8	1949.0	Septmber	132.0
9	9	1949.0	Octomber	116.0
10	10	NaN	November	114.0
11	11	1949.0	December	117.0

```
In
  [39]:

1   df.fillna({
        'year':232323
        })
```

Out[39]:

	Unnamed: 0	year	month	passenger
0	0	1949.0	January	112.0
1	1	232323.0	February	118.0
2	2	1949.0	March	NaN
3	3	1949.0	April	129.0
4	4	1949.0	May	121.0
5	5	1949.0	June	113.0
6	6	1949.0	July	124.0
7	7	1949.0	August	126.0
8	8	1949.0	Septmber	132.0
9	9	1949.0	Octomber	116.0
10	10	232323.0	November	114.0
11 In [11	1949.0	December	117.0

Artificial Intelligence and Machine Learning-20CS51I

Training and Testing Data

```
impor panda ; ;
c | read_csv "C:\\Users\\maths\\aiml\\carPrice.csv"
c hea |
```

Out[74]:

69000	6	1800
35000	3	34000
57000	5	26100
225000	2	40000
46000	4	31500

```
scatter ( 'Mileage' ( 'Sell Price($)'
```

Out[76]:

matplotlib.collections.PathCollection at 0x2297842d130>

50000 75000 100000 125000 150000 175000 200000 225000

```
'Mileage' 'Age(yrs)' |
'Sell Price($)'
```

Out[78]:

Milea	age	Age(yrs)
0	69000	6
1	35000	3
2	57000	5
3 22	25000	2
4	46000	4
5	59000	5

```
In
   6 52000
                 5
   7 72000
                 6
   8 91000
                 8
   9 67000
                 6
In [79]:
Out[79]:
     34000
2
     26100
     40000
4
     31500
5
     26750
6
     32000
     19300
     12000
     22000
9
Name: Sell Price($), dtype: int64 In
[80]:
       fro sklearn model_selection impor train_test_split
           x\_train \ x\_tes \ y\_train \ y\_tes \ train\_test\_split \ test\_size \ 0 
       prin "X: 1
       prin "X_train:" 1 x_train
       prin "X_test:" 1 x_tes |
  х:
  X_train: 8
X_test: 2 In
[82]:
       x_train
Out[82]: Mileage
         Age(yrs)
  8 910002 570005 59000
                 8
5
5
  0 69000
9 67000
                 6 6 2
  3 225000
  7 72000
6 52000
                 6
5
In [83]:
       x_tes
Out[83]: Mileage
         Age(yrs)
  4 46000
1 35000
In [84]:
```

Artificial Intelligence and Machine Learning-20CS51I

```
4 31500
1 34000
Name: Sell Price($), dtype: int64 In
```