

Инженер умных систем ИУС № 1

Введение в язык Си. Практическое задание № 2 Системы счисления. Булева алгебра.

Содержание

Системы счисления	3
Задание №1:	3
Задание №2:	4
Задание №3:	5
Задание №4:	6
Булева алгебра	7
Задание №1:	7
Задание №2:	7
Задание №3:	8
Задание №4:	8
Задание №5:	9

Системы счисления

Задание №1:

Перевести 12345678_{10} из 10 в 16 систему счисления.

Решение:

Переведем число в двоичную, сгруппируем по 4 бита, и каждую группу переведем в 16-юю систему счисления.

$12345678_{10} \rightarrow 101111000110000101001110_{2}$

12345678 : 2 = 6172839 6172839 : 2 = 3086419 3086419 : 2 = 1543209	Остаток Остаток Остаток	0 1 1	3014 : 2 = 1507 1507 : 2 = 753 753 : 2 = 376	Остаток Остаток Остаток	0 1 1
1543209 : 2 = 771604 771604 : 2 = 385802	Остаток	0	376 : 2 = 188 188 : 2 = 94	Остаток	0
385802 : 2 = 192901	Остаток	0	94 : 2 = 47	Остаток	0
192901 : 2 = 96450 96450 : 2 = 48225	Остаток Остаток	1	47 : 2 = 23 23 : 2 = 11	Остаток Остаток	1 1
48225 : 2 = 24112 24112 : 2 = 12056	Остаток Остаток	0	11:2=5 5:2=2	Остаток Остаток	1 1
12056 : 2 = 6028	Остаток	0	2:2=1	Остаток	0
6028 : 2 = 3014	Остаток	0	1:2=0	Остаток	1

$1011\,1100\,0110\,0001\,0100\,1110_{2} \rightarrow BC614E_{16}$

Результат:

 $12345678_{10} \rightarrow BC614E_{16}$

Задание №2:

Перевести 1000000_{10} из 10 в 16 систему счисления.

Решение:

Переведем число сразу 16-юю систему счисления, деля на 16.

$1000000_{10} \rightarrow F4240_{16}$

1000000 : 16 = 62500	Остаток	0_{10}	0_{16}
62500 : 16 = 3906	Остаток	4 ₁₀	4 ₁₆
3906 : 16 = 244	Остаток	2 ₁₀	216
244 : 16 = 15	Остаток	4 ₁₀	4 ₁₆
15 : 16 = 0	Остаток	15 ₁₀	F_{16}

Результат:

 $1000000_{10} \rightarrow F4240_{16}$

Задание №3:

Перевести 12345678₁₆ из 16 в 10 систему

Решение:

Разобъем число на группы по 2 цифры и переведем каждую группу в двоичную систему счисления.

 $12345678_{16} \rightarrow 0001001000110100010101111000_{2}$

 $12_{16} = 0001 \ 0010_2$ $34_{16} = 0011 \ 0100_2$ $56_{16} = 0101 \ 0110_2$ $78_{16} = 0111 \ 1000_2$

Возводим число 2 в степень соответствующим № бита от конца, начиная отсчет с 0, и суммируем результаты:

 $0001\,0010\,0011\,0100\,0101\,0110\,0111\,1000_2 = 268435456*1 +$

134217728*0 + 67108864*0 + 33554432*1 + 16777216*0 +

8388608*0+4194304*0+2097152*1+1048576*1+

524288*0 + 262144*1 + 131072*0 + 65536*0 +

32768*0+16384*1+8192*0+4096*1+

2048*0+1024*1+512*1+256*0+

128*0+64*1+32*1+16*1+

8*1 + 4*0 + 2*0 + 1*0 = 305419896

Результат:

 $12345678_{16} \rightarrow 305419896_{10}$

Задание №4:

Перевести 1000000_{16} из 16 в 10 систему счисления.

Решение:

Возводим число 16 в степень соответствующим № цифры от конца, начиная отсчет с 0, и суммируем результаты:

$$1000000_{16} = 16^6 *1 + 16^5 *0 + 16^4 *0 + 16^3 *0 + 16^2 *0 + 16^1 *0 + 16^0 *0 =$$
16777216

Результат:

 $1000000_{16} \rightarrow 16777216_{10}$

Булева алгебра

Задание №1:

Записать в виде логического выражение ответ Винни Пуха: "Сгущенного молока и меда и можно без хлеба"

Решение:

Обязательное условие одновременное наличие "Сгущенного молока" и Меда, а вот Хлеб на результат не влияет. Ведь можно так и этак.

Результат:

"Сгущенное молоко" & Мед

Альтернативный ответ, ну если не можно, а нужно:

"Сгущенное молоко" && Мед && !Хлеб

Задание №2:

Доказать тождество $A \rightarrow B = |A| |B|$.

Таблицу истинности на Си можно распечатать **

Решение:

Заполним таблицу истиности для импликации $A \to B$ и выражения |A| | B для параметров A и B.

Α	В	$A \rightarrow B$!A	!A B
1	2	3	4	5
FALSE	FALSE	TRUE	TRUE	TRUE
FALSE	TRUE	TRUE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE	FALSE
TRUE	TRUE	TRUE	FALSE	TRUE

Результат:

Значения в 3 и 5 столбцах совпадает. Тождество доказано.

Задание №3:

Доказать тождество A \leftrightarrow B = (A && B) | | (!A && !B).

Таблицу истинности на Си можно распечатать**

Решение:

Заполним таблицу истиности для импликации $A \longleftrightarrow B$ и выражения (A && B) || (!A && !B) для параметров A и B.

Α	В	A && B	!A	!B	!A && !B	(A && B) (!A && !B)	$A \leftrightarrow B$
1	2	3	4	5	6	7	8
FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE

Результат:

Значения в 7 и 8 столбцах совпадает. Тождество доказано.

Задание №4:

Найти эквивалент для ⊕?

Решение:

Нарисуем схема пересечения множеств А и В:

Вариант 1:

Исключающее ИЛИ (\bigoplus) это области ограниченные окружностями A || B, за исключением области их пересечения A && B.

(A | | B) && !(A && B)

Вариант 2:

Исключающее ИЛИ (\bigoplus) это 2 множества, где каждое включает себя, но не включает 2-ое множество:

Проверим сочиненные выражения с помощью таблиц истиности:

Α	В	A ⊕ B	(A B) && !(A && B)	(A && !B) (B && !A)
1	2	3	4	5
FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	TRUE	TRUE	TRUE	TRUE
TRUE	FALSE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	FALSE	FALSE

Значения столбцов 4 и 5 совпадают со значением столбца 3.

Результат:

Вариант 1: (А | | В) && !(А && В)

Вариант 2: (А && !В) | | (В && !А)

Задание №5:

* Упростить выражение $X = (B \rightarrow A) \cdot \overline{(A+B)} \cdot (A \rightarrow C)$

Решение:

$$X = (B \rightarrow A) * !(A + B) * (A \rightarrow C) =$$

$$= (!B + A) * !A * !B * (!A + C) =$$

$$= (!B * !A + A * !A) * !B * (!A + C) = (!B * !A + 0) * !B * (!A + C) =$$

$$= !B * !A * !B * (!A + C) = !B * !A * (!A + C) =$$

$$= !B * (!A * !A + !A * C) = !B * (!A + !A * C) = !B * !A * (1 + C) =$$

$$= !B * !A * 1 = !A * !B = !(A + B)$$

Результат:

$$X = (B \rightarrow A) * !(A + B) * (A \rightarrow C) = !(A + B)$$