2018-03-06

Definition: binary operation

S: set, *: binary operation

$$*: S \times S \to S$$

$$*(a,b) = a * b$$

 $\langle S, * \rangle$ (* : 적절한 조건 \rightarrow Group(군), Ring(환), Field(체))

1.

Z = set of integers

$$(Z,+)$$

2.

 $Z_n = \{0, 1, ..., n-1\}$ (when n: 양의정수) $(Z_n, +_n)$

 $+_n$: modulo n

3.

$$< M_n(R), +> < M_n(R), \cdot>$$

4.

$$R_{2\pi} = [0, 2\pi), +_{2\pi}$$

 $< R_{2\pi}, +_{2\pi} >$

5.

 $U_n = \{z \in C | z^n = 1\} \text{ (n-th root of unity)}$ $< U_n, \cdot > (\because (ab)^n = a^n b^n = 1)$ when $z = 1(\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}), z^n = 1$ $U_n = \{1, z, z^2, ..., z^{n-1}\}$

6.

$$u = z \in C||z| = 1$$
 (circle) $< u, \cdot >$

not binary operation

1.

2.

< M(R), + > (M(R))은 모든 크기에 해당하는 행렬)

Definition

$$< S, * >$$

commutative

$$a * b = b * a$$

associative

$$(a * b) * c = a * (b * c)$$

Commot(?)

$$|S| < \infty$$

$$S = \{a_1, a_2, ..., a_n\}$$

for all $i, j, a_i \cdot a_j = a_k$ for some k

Definition: issomorphism

$$< S, * >, < S', *' >$$

$$\phi: S - > S'$$

1) ϕ : one to one, onto.

2)
$$\phi(a*b) = \phi(a)*'\phi(b)$$
 (homomorphic property)

 \Leftrightarrow

 ϕ is issomorphism

S, S' 사이에 ϕ 가 존재한다면 S = S' (isomorphism)

1.

$$< R(,), +>, < R + (X,), \cdot>$$

 $x->a^x$ (some a>0)

one to one

2.

$$U_n = \{1, z, z^2, ..., z^{n-1}\} < U_n, \cdot > \simeq < Z_n, +_n > z^i \to i$$

$$\phi(z^i \cdot z^j) = \phi(z^{i+j\%n})) = i + j\%n$$

3.

$$< Z, +>, < 2Z, +>$$

$$Z \rightarrow 2Z \ n \rightarrow 2n$$
 one to one
$$\phi(n+m) = \phi(n) + \phi(m)$$

How to proof not issomrophism

$$(S,*)! \simeq (S',*')$$
 assume $< S, *> \simeq < S', *'>$ then " ... " holds structure prop.
$$< Q, +>, < R, +>$$

$$|Q|=|Z|=\aleph_0$$

$$|R|>\aleph_0$$

 $< Z, \cdot > ! \simeq < Z+, \cdot >$

1.

if)
$$\phi$$
 exists
$$x=0 or 1 \Leftrightarrow x\cdot x=x \Leftrightarrow \phi(x)\cdot \phi(x)=\phi(x) \Leftrightarrow \phi(x)=1$$
 $\phi(0)=1, \phi(1)=1$ not one to one

contradiction. so, $\langle Z, \cdot \rangle! \simeq \langle Z+, \cdot \rangle$

2.

$$\langle Z, +> ! \simeq < Q, +> \\ |Z| = |Q|$$
 if) ϕ exists $xisNone \Leftrightarrow x+x=3 \Leftrightarrow \phi(x)+\phi(x)= \\ \phi(3) = cinQ$
$$\phi(v) = \frac{c}{2}$$
 v is None contradiction. so, $\langle Z, +> ! \simeq < Q, +>$

3.

$$< R, \cdot > \simeq < C, \cdot >$$

 $C = \{a + bi | a, binR\}$
 $|C| = |R|$
 $x^2 = -1$
??????

I don't know

????? $(G,\,\cdot\,): \text{Group } G\simeq G'$ $\mathbf{n}=\dim\,\mathbf{V}\,\,\text{i inf } V\,=F^n(FisRorC,ithink?)$ |G|=n when $\mathbf{n}{=}4$ Z_4,Z_2xZ_2

Group

< G,*>: Group
⇔
0) *: binary operation (it might be) (closure)
1) * is associative
2) exists e in G s.t a * e = a (= e * a) (some a in G)
e: identity
3) for all a in G, exists a' s.t. a*a' = e (= a'*a)
a': inverse of a
()로 약화해도 됨 * 기준으로 방향 중요.

uniqueness of e

if exists e, e' e = e * e' = e'contradiction

uniqueness of a'

if exists a',a'' a'=a'*e=a'*(a*a'')=(a'*a)*a''=e*a''=a'' contradiction