Nous innovons pour votre réussite!

Exercices résolus en équilibre des corps rigides dans un plan

Nous innovons pour votre réussite!

Problème résolu 4.2

On applique trois charges à une poutre tel qu'illustré. La poutre est supportée par un appui à rouleau au point A et par un appui à rotule au point B. En supposant que le poids de la poutre est négligeable, déterminez les réactions en A et en B, sachant que P=15 kN.

Nous innovons pour votre réussite!

SOLUTION

Diagramme du corps libre. On trace le diagramme du corps libre; la réaction à l'appui A est verticale et elle est identifiée par A; cependant, la réaction à l'appui B étant de direction inconnue, on la représente selon ses composantes B_x et B_y . On suppose que chacune des composantes agit selon les directions illustrées à la figure ci-contre.

Équations d'équilibre. En écrivant les trois équations d'équilibre suivantes et en les résolvant par rapport à A, B_x et B_y , on obtient

$$\xrightarrow{+} \Sigma F_x = 0$$
: $B_x = 0$

$$+ηΣM_A = 0$$
:
 $-(15 \text{ kN})(3 \text{ m}) + B_y(9 \text{ m}) - (6 \text{ kN})(11 \text{ m}) - (6 \text{ kN})(13 \text{ m}) = 0$
 $B_y = +21.0 \text{ kN}$ $B_y = 21.0 \text{ kN} \uparrow$

$$+$$
 Σ $M_B = 0$:
 $-A$ (9 m) + (15 kN)(6 m) − (6 kN)(2 m) − (6 kN)(4 m) = 0
 $A = +6,00$ kN $A = 6,00$ kN $↑$

Vérification. On peut vérifier ces résultats en additionnant les composantes verticales de toutes les forces externes:

$$+\uparrow \Sigma F_y = +6,00 \text{ kN} - 15 \text{ kN} + 21,0 \text{ kN} - 6 \text{ kN} - 6 \text{ kN} = 0$$

Nous innovons pour votre réussite!

Problème résolu 4.3

Une benne de chargement de 5500 N est au repos sur des rails selon un angle de 25° avec la verticale. Son centre de gravité est à 0,6 m des rails, à mi-distance des deux essieux. La benne est retenue par un câble attaché à 0,48 m des rails. Calculez la tension dans le câble et la réaction à chacun des essieux montés.

Nous innovons pour votre réussite!

SOLUTION

Diagramme du corps libre. On trace d'abord le diagramme du corps libre. La réaction à chacune des roues est perpendiculaire aux rails tandis que la force de traction T est parallèle aux rails. Pour cette raison, on identifie l'axe des x parallèle aux rails et l'axe des y perpendiculaire aux rails. On décompose le poids de la benne de 5500 N selon ses composantes x et y.

$$W_x = +(5500 \text{ N}) \cos 25^\circ = +4980 \text{ N}$$

 $W_y = -(5500 \text{ N}) \sin 25^\circ = -2320 \text{ N}$

Équations d'équilibre. On prend les moments par rapport au point A afin d'éliminer T et R_1 .

Nous innovons pour votre réussite!

Ensuite, en prenant les moments par rapport au point B pour éliminer T et R_2 , on écrit

+ηΣ
$$M_B = 0$$
: (2320 N)(0,5 m) - (4980 N)(0,12 m) - R_1 (1 m) = 0 $R_1 = +562$ N \sim

On obtient la valeur de T en solutionnant

$$\searrow + \Sigma F_x = 0$$
: $+4980 \text{ N} - T = 0$
 $T = +4980 \text{ N}$ $T = 4980 \text{ N}$

Le schéma ci-contre illustre les valeurs des différentes réactions.

Vérification. On peut vérifier les résultats à l'aide de l'équation d'équilibre suivante:

$$\nearrow + \Sigma F_y = +562 \text{ N} + 1758 \text{ N} - 2320 \text{ N} = 0$$

On aurait pu aussi vérifier la solution en calculant les moments par rapport à un point autre que A ou B.

Nous innovons pour votre réussite!

Problème résolu 4.4

Une structure supporte une section du toit d'un petit édifice, tel qu'illustré au schéma ci-contre. Sachant que la tension dans le câble *BDF* est de 150 kN, déterminez la réaction à l'encastrement *E*.

Nous innovons pour votre réussite!

20 kN 20 kN 20 kN 20 kN

SOLUTION

Diagramme du corps libre. On trace le diagramme du corps libre de la structure et du câble BDF. On représente la réaction au point E par les composantes \mathbf{E}_x , \mathbf{E}_y et le couple \mathbf{M}_E . Les autres forces en présence agissant sur le corps libre sont les quatre charges de 20 kN et la tension appliquée à l'extrémité du câble au point F.

Équations d'équilibre. Sachant que

$$DF = \sqrt{(4.5 \text{ m})^2 + (6 \text{ m})^2} = 7.5 \text{ m}$$
, on écrit

Nous innovons pour votre réussite!

Problème résolu 4.5

Un poids de 400 N est attaché à l'extrémité A du levier OA. La constante élastique du ressort BC est de k=12,5 kN/m. Le ressort est au repos quand $\theta=0$. Déterminez la position d'équilibre.

Nous innovons pour votre réussite!

SOLUTION

Diagramme du corps libre (DCL). On trace le DCL du système composé du levier et du cylindre. En identifiant par s l'allongement du ressort par rapport à sa position au repos, on a: $s = r\theta$ et $F = ks = kr\theta$.

Équation d'équilibre. Si l'on additionne les moments de W et F par rapport au point O, on a:

$$+ \gamma \Sigma M_O = 0$$
: $Wl \sin \theta - r(kr\theta) = 0$ $\sin \theta = \frac{kr^2}{Wl} \theta$

En substituant les valeurs données, on obtient

$$\sin \theta = \frac{(12.5 \text{ kN/m})(0.06 \text{ m})^2}{(400 \text{ N})(0.16 \text{ m})} \theta \qquad \sin \theta = 0.703 \theta$$

Une solution par essais et erreurs donne $\theta = 0$ ou $\theta = 80,3^{\circ}$

$$\theta = 0$$
 ou $\theta = 80.3^{\circ}$

Nous innovons pour votre réussite!

Exemples d'appuis simples glissants (ou libres) :

Nous innovons pour votre réussite!

- Poutres

a) Poutre simple: poutre pourvue d'un appui double et d'un appui simple

CA

éussite!

Fig. 7.10

Équations d'équilibre (43):

$$\sum F_h = 0$$
: $R_{Ah} - \sum_{i=1}^n P_i \cos \alpha_i = 0 \longrightarrow R_{Ah} = \sum_{i=1}^n P_i \cos \alpha_i$

Il est plus simple d'utiliser immédiatement la troisième équation de l'équilibre plan ($\sum M = 0$). En effet, cette équation est vraie quel que soit le point choisi pour le calcul des moments. Si on choisit le point A ou B, on élimine une des réactions verticales inconnues.

$$\sum_{A} M_{A}^{1} = 0: \quad R_{Bv} L - (wb) (a + b/2) - \sum_{A} (P_{i} \sin \alpha_{i}) (x_{i})$$

$$R_{Bv} = \frac{wb (a + 0.5 b) - \sum_{A} (P_{i} \sin \alpha_{i}) x_{i}}{L}$$

Université Internationale de Casablanca

pour votre réussite!

$$\sum F_{\nu} = 0: \quad R_{A\nu} + R_{B\nu} - wb - \sum P_i \sin \alpha_i = 0$$

$$R_{Av} = wb + \sum P_i \sin \alpha_i - R_{Bv}$$

Exemple de poutres simples: pont à travées indépendantes

- Notes: 1) Chaque travée est une poutre simple appuyée sur une culée et un pilier, ou sur deux piliers.
 - Au moins une des extrémités de chaque poutre est retenue horizontalement.

Nous innovons pour votre réussite!

b) Porte-à-faux: élément sur un appui unique forcément un appui triple

Nous innovons pour votre réussite!

'Équations d'équilibre

$$\sum F_h = 0: \quad R_{Ah} - \sum_{i=1}^{h} P_i \cos \alpha_i = 0 \longrightarrow R_{Ah} = \sum_{i=1}^{h} P_i \cos \alpha_i$$

$$\sum F_v = 0: \quad R_{Av} - wb - \sum P_i \sin \alpha_i = 0$$

$$R_{Av} = wb + \sum P_i \sin \alpha_i$$

$$\sum M_A = 0: \quad M_A - (wb) (a + b/2) - \sum (P_i \sin \alpha_i) x_i = 0$$

$$M_A = (wb) (a + b/2) + \sum (P_i \sin \alpha_i) x_i$$

Nous innovons pour votre réussite!

Exemple

Paramètres connus $\begin{cases} \text{la g\'eom\'etrie: } L, h, a_1, a_2 \text{ et } \alpha \\ \text{les charges appliqu\'ees: } P_1 \text{ et } P_2 \end{cases}$

Nous innovons pour votre réussite!

Inconnues: R_{Ah} , R_{Av} , R_B

Équation géométrique: $R_{Bh} = R_{Bv} \tan \alpha$

Équations d'équilibre:
$$\sum F_h = 0$$
 $R_{Ah} - R_{Bh} = 0$ $(R_{Ah} = R_{Bh})$
$$\sum F_{\nu} = 0 \quad R_{A\nu} + R_{B\nu} - P_1 - P_2 = 0$$

$$\sum M_A = 0 \quad R_{B\nu} L - R_{Bh} h - P_1 a_1 - P_2 a_2 = 0$$

De la dernière équation, on obtient: $R_{Bv} = \frac{P_1 a_1 + P_2 a_2}{L - h \tan \alpha}$

Nous innovons pour votre réussite!

Exemple

$$\sum F_{h} = 0: R_{Ah} - R_{Bh} = 0$$

$$\sum F_{v} = 0: R_{Av} + R_{Bv} - P_{1} - P_{2} = 0$$

$$\sum M_{A} = 0: R_{Bv} L - R_{Bh} h - P_{1} a_{1} - P_{2} a_{2} = 0$$
(3)

Nous innovons pour votre réussite!

Une articulation ne transmet que des forces

$$\sum_{M_C} \frac{1}{2} = 0: R_{B\nu} (L - a_c) - R_{Bh} (h + h') - P_2 (a_2 - a_c) = 0$$
(3) et (4) R_{Bh} et $R_{B\nu}$ (1) R_{Ah} (2) $R_{A\nu}$

