CSCE 312 Spring 2020 Project 3 Phase 1: In-Lab Exercises

Texas A&M University

February 28th, 2020

1 Phase 1: In-lab Exercises

1.1 Instructions

- 1. You are expected to work in groups of 4 at each table. All brainstorming discussions must be done as a team to promote collaborative thinking.
 - (a) If you happen to be at a table with fewer than 4 people, you can choose to work with fewer people or let your TA's know to assist you in finding extra partner(s).
- 2. Download the collateral from Slack and use the skeletal files provided. Do not change the name of the files nor the names of the pins.
- 3. Add your full name and UIN to the introductory comment present in each .hdl file.
- 4. Complete the problem set provided in this document on your own sheet of paper. Make sure your drawings are clear and handwriting is legible. Show your work.
- 5. Implement the .hdl file for each chip. Keep these handy because you will use some of them and turn them in for Project 3 Phase 2.
- 6. The .tst and .cmp files are optional for today's assignment, but we recommend verifying the behavior of your chip as it will be graded based on correctness.

1.2 Submission

- 1. Submissions must be done individually. Even though you are finding the solutions as a team, each of you is supposed to do the implementation individually, so we know you got the concepts.
- 2. Including your name and UIN, turn in your sheet of paper with the solutions to the problem set by the end of the lab session.
- 3. In a zipped folder named LastName_FirstName_UIN_Lab3.zip turn in the .hdl files before midnight tonight on eCampus.

1.3	Problem Set (30 Points)
	(1 point) A Data Flip Flop (DFF) is characterized with one 1-bit data input in , one 1-bit data output out , and one 1-bit clock input clk . At clock cycle t , what is the output $out(t)$?
2.	(7 points) A $\operatorname{\mathbf{Bit}}$ is characterized with one 1-bit data input in , one 1-bit control signal $load$, one 1-bit
	clock signal clk , and one 1-bit output out .
	(a) (1 point) Draw the interface block diagram (inputs and outputs) of a Bit.
	Bit
	(b) (1 point) Finish the conditional statements below describing the behavior of a Bit. If load(t) then:
	(c) (2 points) Draw the logic gate diagram for a Bit using a DFF.

3.	(9 points)	An	n-bit	Register	r is	characterized	with	one	$\operatorname{n-bit}$	data	input	in,	one	1-bit	control	signal
	load, one 1	l-bit	clock	signal clk ,	an	d one n-bit da	ta ou	tput	out.							

(a) (1 point) Draw the interface block diagram (inputs and outputs) of the multi-bit Register. Make sure you indicate the number of bits going through wires with more than 1 bit.

n-bit Register

(b) (3 points) Draw a the logic gate diagram to implement a 4-bit register with one 4-bit input *in*, one 4-bit output *out*, one 1-bit control signal *load*, and one 1-bit clock signal *clk*.

(c) (5 points) Implement the .hdl file for the 16-bit Register provided.

- 4. (13 points) A **16-bit RAM8** is characterized by one 16-bit data input *in*, one 3-bit control input *address*, one 1-bit control signal *load*, one 1-bit clock signal *clk*, and one 16-bit data output *out*.
 - (a) (2 points) Draw the interface block diagram (inputs and outputs) of the 16-bit RAM8. Make sure you indicate the number of bits going through wires with more than 1 bit.

RAM8

(b) (3 points) Draw the inner logic block diagram of the 16-bit RAM8.

(c) (8 points) Implement the .hdl file for the 16-bit RAM8 file provided.