Dans ce problème, on note $\mathcal{E} = (e_1, e_2, e_3)$ la base canonique ((1,0,0), (0,1,0), (0,0,1)) de l'espace vectoriel \mathbb{R}^3 . On note Id l'application identité de \mathbb{R}^3 dans lui-même et O l'application nulle.

Pour tout couple de nombres réels (a, b), on note J(a, b) la matrice

$$J(a,b) = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}.$$

Enfin, on note Φ l'application linéaire de \mathbb{R}^3 dans lui-même dont la matrice dans la base canonique est

$$M = \begin{pmatrix} -1 & 5 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

1. Montrer que, pour tout n entier naturel non nul, on a

$$[J(a,b)]^n = \begin{pmatrix} a^n & na^{n-1} & 0\\ 0 & a^n & 0\\ 0 & 0 & b^n \end{pmatrix}.$$

- 2. (a) Montrer que $\Phi^3 + \Phi^2 5\Phi + 3\operatorname{Id} = O$.
 - (b) On note $\Pi(X)$ le polynôme $\Pi(X) = X^3 + X^2 5X + 3$. Montrer que $\Pi(X)$ possède une racine double que l'on explicitera.
 - (c) Soit $\lambda \in \mathbb{R}$ et $u \in \mathbb{R}^3$ un vecteur non nul tels que $\Phi(u) = \lambda u$. Montrer que $\Pi(\lambda) = 0$.
- 3. (a) Donner une base du sous-espace vectoriel $\text{Ker}(\Phi + 3 \text{Id})$ formée de vecteur(s) de dernière coordonnée sur la base \mathcal{E} égale à 1.
 - (b) Donner une base du sous-espace vectoriel $\operatorname{Ker}(\Phi-\operatorname{Id})$ formée de vecteur(s) de dernière coordonnée sur la base $\mathcal E$ égale à 1.
- 4. (a) Déterminer $x \in \mathbb{R}^3$, de dernière coordonnée sur la base \mathcal{E} égale à 1, vérifiant

$$\Phi(x) = x + \sum_{i=1}^{3} e_i.$$

- (b) Donner une base du sous-espace vectoriel $E = \operatorname{Ker} (\Phi \operatorname{Id})^2$ formée de vecteurs de dernière coordonnée sur la base \mathcal{E} égale à 1.
- (c) Montrer que $\Phi(E) \subset E$ et que $\mathbb{R}^3 = E \oplus \operatorname{Ker}(\Phi + 3\operatorname{Id})$.
- 5. (a) Donner une base \mathcal{B} de \mathbb{R}^3 , formée de vecteurs de dernière coordonnée sur la base \mathcal{E} égale à 1, dans laquelle la matrice de Φ vaut M' = J(1, -3).
 - (b) Exprimer, pour tout n entier naturel, la matrice M^n à l'aide de n, $P = P_{\mathcal{E}}^{\mathcal{B}}$, P^{-1} et M' puis calculer la première colonne de M^n .
- 6. Soit $(u_n)_{n\geqslant 0}$ la suite réelle définie par

$$u_0 = 0,$$
 $u_1 = 0,$ $u_2 = 1$ et $\forall n \in \mathbb{N}^*, u_{n+2} = -u_{n+1} + 5u_n - 3u_{n-1}.$

- (a) Dans les trois questions, on note $(U_n)_{n\geqslant 0}$ la suite de vecteurs de \mathbb{R}^3 de coordonnées (u_{n+2},u_{n+1},u_n) dans la base \mathcal{E} . Montrer que, pour tout n entier naturel, $U_{n+1}=\Phi(U_n)$.
- (b) En déduire que, pour tout n entier naturel, $U_n = \Phi^n(U_0)$ puis, à l'aide de la question 5b, une expression de u_n .

- 1. Procédons par récurrence.
 - <u>Initialisation</u>: Pour n = 1, on a $\begin{pmatrix} a^1 & 1a^0 & 0 \\ 0 & a^1 & 0 \\ 0 & 0 & b^1 \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix} = [J(a,b)]^1$, ce qui démontre que la propriété est vraie au rang 1.
 - <u>Hérédité</u>: Soit $n \in \mathbb{N}^*$. Supposons que la relation est vraie au rang n et démontrons la au rang n+1. On a

$$\begin{split} [J(a,b)]^{n+1} &= [J(a,b)]^n \cdot J(a,b) \\ &= \begin{pmatrix} a^n & na^{n-1} & 0 \\ 0 & a^n & 0 \\ 0 & 0 & b^n \end{pmatrix} \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix} \qquad \text{d'après l'hypothèse} \\ &= \begin{pmatrix} a^{n+1} & (n+1)a^n & 0 \\ 0 & a^{n+1} & 0 \\ 0 & 0 & b^{n+1} \end{pmatrix}, \end{split}$$

ce qui démontre la relation au rang n+1.

D'après le principe de récurrence, on a

$$\forall n \in \mathbb{N}^*, \qquad [J(a,b)]^n = \begin{pmatrix} a^n & na^{n-1} & 0\\ 0 & a^n & 0\\ 0 & 0 & b^n \end{pmatrix}.$$

2. (a) On a

$$M^{2} = \begin{pmatrix} 6 & -8 & 3 \\ -1 & 5 & -3 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad M^{3} = \begin{pmatrix} -14 & 33 & -18 \\ 6 & -8 & 3 \\ -1 & 5 & -3 \end{pmatrix},$$

ce qui donne, après calculs,

$$M^3 + M^2 - 5M + 3I_3 = 0.$$

Or, comme M est la matrice de Φ dans la base canonique \mathcal{E} , on sait, d'après le cours, que $M^3 + M^2 - 5M + 3I_3$ et la matrice de $\Phi^3 + \Phi^2 - 5\Phi + 3$ Id dans cette même base. Ainsi, la relation matricielle ci-dessus se traduit par

$$\Phi^3 + \Phi^2 - 5\Phi + 3 \text{ Id} = O$$

(b) On constate que 1 est une racine évidente de Π . De plus, $\Pi'(X) = 3X^2 + 2X - 5$ d'où $\Pi'(1) = 0$. Ainsi, d'après le cours, on peut affirmer que 1 est une racine (au moins) double de Π . Par suite, on peut factoriser $\Pi(X)$ sous la forme $\Pi(X) = 1(X-1)^2(X-a)$ où a désigne la dernière racine de Π . En identifiant les coefficients constants dans les deux expressions de $\Pi(X)$, on obtient -a = 3, d'où a = -3. Par suite,

 $\Pi(X)$ admet 1 comme racine double et -3 comme racine simple.

(c) Comme $\Phi(u) = \lambda u$, on a $\Phi^2(u) = \Phi(\Phi(u)) = \Phi(\lambda u) = \lambda \Phi(u) = \lambda^2 u$ et $\Phi^3(u) = \Phi(\Phi^2(u)) = \Phi(\lambda^2 u) = \lambda^2 \Phi(u) = \lambda^3 u$. Par suite, comme $\Phi^3 + \Phi^2 - 5\Phi + 3 \operatorname{Id} = O$, on a

$$0 = (\Phi^{3} + \Phi^{2} - 5\Phi + 3 \operatorname{Id})(u)$$

$$= \Phi^{3}(u) + \Phi^{2}(u) - 5\Phi(u) + 3 \operatorname{Id}(u)$$

$$= \lambda^{3} u + \lambda^{2} u - 5\lambda u + 3u$$

$$= (\lambda^{3} + \lambda^{2} - 5\lambda + 3)u,$$

d'où $\lambda^3 + \lambda^2 - 5\lambda + 3 = 0$ puisque $u \neq 0$. Donc $\Pi(\lambda) = 0$.

Puissances d'une matrice

3. (a) La matrice de $\Phi + 3 \operatorname{Id}$ dans la base \mathcal{E} est $M + 3I_3$. Pour trouver le noyau de $\Phi + 3 \operatorname{Id}$, il suffit de chercher les vecteurs u = (a, b, c) tel que $(\Phi + 3 \operatorname{Id})(u) = 0$, c'est-à-dire

$$(M+3I_3) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \iff \begin{cases} 2a + 5b - 3c = 0 & (L_1) \\ a + 3b = 0 & (L_2) \\ b + 3c = 0 & (L_3) \end{cases}$$

$$\iff \begin{cases} -b - 3c = 0 & (L_1) \longleftarrow (L_1 - 2L_2) \\ a + 3b = 0 & (L_2) \\ b + 3c = 0 & (L_3) \end{cases}$$

$$\iff \begin{cases} a + 3b = 0 & (L_2) \\ a + 3b = 0 & (L_2) \\ b + 3c = 0 & (L_3) \end{cases}$$

$$\iff \begin{cases} a = 9c \\ b = -3c \end{cases}$$

Donc $\operatorname{Ker}(\Phi + 3\operatorname{Id}) = \{(9c, -3c, c) \ / \ c \in \mathbb{R}\} = \mathbf{Vect}((9, -3, 1))$ est la droite vectorielle de \mathbb{R}^3 dirigée par le vecteur (9, -3, 1).

(b) La matrice de Φ – Id dans la base canonique est $M-I_3$. Pour déterminer le noyau de Φ – Id, il suffit de rechercher les vecteurs u=(a,b,c) tel que $(\Phi-\mathrm{Id})(u)=0$, c'est-à-dire

$$(M - I_3) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \iff \begin{cases} -2a + 5b - 3c = 0 & (L_1) \\ a - b = 0 & (L_2) \\ b - c = 0 & (L_3) \end{cases}$$

$$\iff \begin{cases} 3b - 3c = 0 & (L_1) \longleftarrow (L_1 + 2L_2) \\ a - b = 0 & (L_2) \\ b - c = 0 & (L_3) \end{cases}$$

$$\iff \begin{cases} a - b = 0 & (L_1) \longleftarrow (L_1 + 3L_3) \\ a - b = 0 & (L_2) \\ b - c = 0 & (L_3) \end{cases}$$

$$\iff \begin{cases} a = c \\ b = c \end{cases}$$

Donc $\operatorname{Ker}(\Phi - \operatorname{Id}) = \{(c, c, c) \ / \ c \in \mathbb{R}\} = \mathbf{Vect}((1, 1, 1))$ est la droite vectorielle de \mathbb{R}^3 dirigée par le vecteur (1, 1, 1).

4. (a) Posons x = (a, b, c). On a

$$\left(\Phi(x) = x + \sum_{i=1}^{3} e_{i} \right) \iff M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\iff \begin{cases} -2a + 5b - 3c = 1 & (L_{1}) \\ a - b & = 1 & (L_{2}) \\ b - c & = 1 & (L_{3}) \end{cases}$$

$$\iff \begin{cases} 3b - 3c = 3 & (L_{1}) \longleftarrow (L_{1} + 2L_{2}) \\ a - b & = 1 & (L_{2}) \\ b - c & = 1 & (L_{3}) \end{cases}$$

$$\iff \begin{cases} a - b & = 1 & (L_{2}) \\ b - c & = 1 & (L_{3}) \end{cases}$$

$$\iff \begin{cases} a = 2 + \lambda \\ b = 1 + \lambda & (\lambda \in \mathbb{R}). \\ c = \lambda \end{cases}$$

Donc, pour choisir une solution de ce système dont la dernière coordonnée sur la base \mathcal{E} est égale à 1, il faut et suffit de prendre $\lambda = 1$, ce qui donne (a, b, c) = (3, 2, 1). Donc x = (3, 2, 1).

Puissances d'une matrice

(b) Comme $\operatorname{Ker}(\Phi - \operatorname{Id}) \subset \operatorname{Ker}([\Phi - \operatorname{Id}]^2)$, le vecteur directeur $(1, 1, 1) = e_1 + e_2 + e_3$ de la droite $\operatorname{Ker}(\Phi - \operatorname{Id})$ appartient aussi à E. D'autre part, le vecteur x de la question précédente vérifie $\Phi(x) = x + e_1 + e_2 + e_3$, donc $\Phi(x) - x \in \operatorname{Ker}(\Phi - \operatorname{Id})$. Cela signifie que $x \in E$. Nous disposons ainsi de deux vecteurs : $e_1 + e_2 + e_3 = (1, 1, 1)$ et x = (3, 2, 1), qui appartiennent à E. Comme ces deux vecteurs ne sont pas colinéaires, ils forment une famille libre de E.

Par ailleurs, la matrice de $(\Phi - Id)^2$ dans la base canonique est

$$(M - I_3)^2 = \begin{pmatrix} -2 & 5 & -3 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}^2 = \begin{pmatrix} 9 & -18 & 9 \\ -3 & 6 & -3 \\ 1 & -2 & 1 \end{pmatrix},$$

donc

rang
$$((M - I_3)^2)$$
 = rang $\begin{pmatrix} 9 & -18 & 9 \\ -3 & 6 & -3 \\ 1 & -2 & 1 \end{pmatrix}$ = rang $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -2 & 1 \end{pmatrix}$ = 1,

ce qui implique, d'après le théorème du rang, que $\dim E = 2$.

Les deux vecteurs $e_1 + e_2 + e_3$ et x forment donc une famille libre de deux vecteurs du sous-espace E qui est de dimension 2, ce qui implique que $(e_1 + e_2 + e_3, x) = ((1, 1, 1), (3, 2, 1))$ est une base de E.

(c) Soit $v \in \Phi(E)$ de sorte qu'il existe $u \in E$ tel que $v = \Phi(u)$. Alors $(\Phi - id)^2(v) = \Phi((\Phi - id)^2(u)) = 0$ car $u \in E$, donc $v \in \text{Ker}([\Phi - Id]^2)$, c'est-à-dire $v \in E$. Donc

$$\Phi(E) \subset E$$
.

Pour montrer que $\mathbb{R}^3 = E \oplus \operatorname{Ker}(\Phi + 3\operatorname{Id})$, il suffit de prouver que $E \cap \operatorname{Ker}(\Phi + 3\operatorname{Id}) = \{0\}$ et dim $E + \operatorname{dim}\left(\operatorname{Ker}(\Phi + 3\operatorname{Id})\right) = 3$. Cette dernière relation est clairement vérifiée puisque l'on sait que dim E = 2 d'après la question précédente et dim $\left(\operatorname{Ker}(\Phi + 3\operatorname{Id})\right) = 1$ d'après la question 3.a). Par ailleurs, si $u \in E \cap \operatorname{Ker}(\Phi + 3\operatorname{Id})$, alors $\Phi^2(u) = u$ et $\Phi(u) = 3u$, donc $u = \Phi^2(u) = \Phi(\Phi(u)) = \Phi(3u) = 3\Phi(u) = 9u$, ce qui implique que u = 0, d'où $E \cap \operatorname{Ker}(\Phi + 3\operatorname{Id}) = \{0\}$. Par conséquent,

$$\mathbb{R}^3 = E \oplus \operatorname{Ker}(\Phi + 3\operatorname{Id}).$$

5. (a) Comme $\mathbb{R}^3 = E \oplus \operatorname{Ker}(\Phi + 3\operatorname{Id})$, on sait, d'après le cours, que la réunion d'une base de E et d'une base de $\operatorname{Ker}(\Phi + 3\operatorname{Id})$ forme une base de \mathbb{R}^3 . Par suite, la famille de vecteurs $\mathcal{B} = ((1,1,1),(3,2,1),(9,-3,1))$ est une base de \mathbb{R}^3 .

Or $\Phi(1,1,1) = (1,1,1)$, $\Phi(3,2,1) = (1,1,1) + (3,2,1)$ et $\Phi(9,-3,1) = -3(9,-3,1)$, donc la matrice de Φ dans la base \mathcal{B} est

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix} = J(1; -3).$$

Par conséquent, dans la base $\mathcal{B} = ((1,1,1),(3,2,1),(9,-3,1))$, la matrice de Φ est M' = J(1,-3).

(b) On sait, d'après le cours et la question précédente, que si P désigne la matrice de la base \mathcal{B} vers la base canonique \mathcal{E} , on a $M = PM'P^{-1}$. Par suite

$$M^{n} = \underbrace{(PM'P^{-1})(PM'P^{-1})\cdots(PM'P^{-1})}_{\substack{n \text{ facteurs } PM'P^{-1} \\ = PM' \underbrace{P^{-1}P}_{=I_{3}}M'\underbrace{P^{-1}P}_{=I_{3}}M'P^{-1}\cdots PM'\underbrace{P^{-1}P}_{=I_{3}}M'P^{-1}}_{=I_{3}}$$

$$= PM'^{n}P^{-1}$$

$$\text{Donc } M^n = PM'^n P^{-1} \qquad \text{avec} \qquad P = \begin{pmatrix} 1 & 3 & 9 \\ 1 & 2 & -3 \\ 1 & 1 & 1 \end{pmatrix} \cdot$$

d'où

$$P^{-1} = \frac{1}{16} \begin{pmatrix} -5 & -6 & 27\\ 4 & 8 & -12\\ 1 & -2 & 1 \end{pmatrix}.$$

On sait, d'après la question 1, que

$$(M')^n = [J(1; -3)]^n = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-3)^n \end{pmatrix},$$

donc

$$M^{n} = P(M')^{n}P^{-1} = \begin{pmatrix} 1 & 3 & 9 \\ 1 & 2 & -3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-3)^{n} \end{pmatrix} \frac{1}{16} \begin{pmatrix} -5 & -6 & 27 \\ 4 & 8 & -12 \\ 1 & -2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 & 9 \\ 1 & 2 & -3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -5 + 4n & \clubsuit & \heartsuit \\ 4 & \diamondsuit & \spadesuit \\ (-3)^{n} & \blacksquare & \square \end{pmatrix}$$
$$= \frac{1}{16} \begin{pmatrix} 7 + 4n + 9(-3)^{n} & \oplus & \ominus \\ 3 + 4n - 3(-3)^{n} & \otimes & \odot \\ -1 + 4n + (-3)^{n} & \otimes & \bigcirc \end{pmatrix}$$

ce qui montre que

la première colonne de
$$M^n$$
 est $\frac{1}{16} \begin{pmatrix} 7 + 4n + 9(-3)^n \\ 3 + 4n - 3(-3)^n \\ -1 + 4n + (-3)^n \end{pmatrix}$.

- 6. Soit $(u_n)_{n\geqslant 0}$ la suite à valeurs réels définie par $u_0=0, u_1=0, u_2=1$ et la relation de récurrence $\forall n\in \mathbb{N}^*, u_{n+2}=-u_{n+1}+5u_n-3u_{n-1}$.
 - (a) Soit $n \in \mathbb{N}^*$. On a

$$MU_{n-1} = \begin{pmatrix} -1 & 5 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_{n+1} \\ u_n \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} -u_{n+1} + 5u_n - 3u_{n-1} \\ u_{n+1} \\ u_n \end{pmatrix} = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = U_n,$$

où l'avant-dernière égalité découle de la définition de la suite $(u_n)_{n\geq 0}$. Donc

$$\forall n \in \mathbb{N}^*, \qquad U_n = \Phi(U_{n-1}).$$

- (b) Procédons par récurrence.
 - <u>Initialisation</u>: Pour n=0, on a $\Phi^0(U_0)=\mathrm{Id}(U_0)=U_0$ donc la relation est vérifiée pour n=0.
 - <u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons que $U_n = \Phi^n(U_0)$ et démontrons cette relation au rang n+1. On a

$$\Phi^{n+1}(U_0) = \Phi(\Phi^n(U_0))$$

$$= \Phi(U_n) \quad \text{par hypothèse de récurrence}$$

$$= U_{n+1} \quad \text{d'après le résultat de la question 6. c},$$

donc la relation est justifiée au rang n+1.

D'après le principe de récurrence, on a

$$\forall n \in \mathbb{N}, \qquad U_n = \Phi^n(U_0).$$

La relation précédente se traduit matriciellement par l'égalité

$$\forall n \in \mathbb{N}, \qquad \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Or le second membre de cette égalité correspond à la première colonne de M^n , donc, d'après le résultat de la question 5. b),

$$\forall n \in \mathbb{N}, \qquad \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 7 + 4n + 9(-3)^n \\ 3 + 4n - 3(-3)^n \\ -1 + 4n + (-3)^n \end{pmatrix},$$

ce qui donne, en identifiant les troisièmes coordonnées de ces deux vecteurs colonnes,

$$\forall n \in \mathbb{N}, \qquad u_n = \frac{-1 + 4n + (-3)^n}{16}.$$