

Self-contemplating In-context Learning Enhances T cell Receptor Generation for Novel Epitopes

Code

National Institute of General Medical Sciences

Pengfei Zhang^{1,2}, Sonal Sujit Prabhu^{1,2}, Seojin Bang³ and Heewook Lee^{1,2,*}
¹School of Computing and Augmented Intelligence, ²Biodesign Institute, Arizona State University
³DeepMind, Google

Background

• Role of TCRs in Immunity. T cell receptors (TCRs) plays a critical role in adaptive immune systems as they enable T cells to recognize abnormal cells from healthy cells.

Motivations

- Designing TCRs for novel epitopes is essential for advancing engineering TCR therapy.
- Most novel epitopes lack known cognate TCRs, posing a challenge for generative models.

Contributions

- Expand context window with in-context training.
- Generate synthetic TRCs for novel epitopes.

Antigen Presenting Cell Antigen TCR T-Cell

Prompting approches

- Designed for epitopes with no known binding TCRs.
- Step 1: Generating candidate TCRs using zero-shot inference.
- Step 2: Scoring and ranking candidates using: binding affinity predictor (e.g., BAP model) and sequence likelihood (e.g., GPT log-likelihood)
- Step 3: Selecting the top-k filtered TCRs as in-context examples for improved generation.

Few-Shot Prompting Inference Prompt EPI\$TCR₁\$...\$TCR_k\$ Response TCR

