Introduction of neural network in MATLAB

TA

Name: LIN, YI-HSUAN

Email: linyh@solab.me.ntu.edu.tw

Syntax & Description

Remember to install "Deep Learning Toolbox".

- 1. [Y,Xf,Af] = sim(net,X,Xi,Ai,T)
 - Simulate neural network.
 - sim is usually called implicitly by calling the neural network as a function.
 - For instance, these two expressions return the same result: y = sim(net,x,xi,ai)
 & y = net(x,xi,ai).
- net = feedforwardnet(hiddenSizes,trainFcn)
 - Generate feedforward neural network.
 - hiddenSize: Size of the hidden layers in the network; 10 (default).
 - trainFcn: Training function name; 'trainIm' (default).
- 3. trainedNet = train(net,X,T)
 - Train shallow neural network
 - X: Network inputs; T: Network targets.

Example: Construct and Train a Feedforward Neural Network (1/2)

• Load the training data.

```
7 [x, t] = simplefit_dataset;
```

 Construct a feedforward network with one hidden layer of size 10.

```
net = feedforwardnet(10);
```

 Train the network net using the training data.

```
net = train(net, x, t);
```

 Estimate the targets using the trained network.

```
16 y = net(x);
```

Example: Construct and Train a Feedforward

Neural Network (2/2)

```
view(net);
```

View the trained network.

```
perf = perform(net, y, t)
```

 Assess the performance of the trained network. The default performance function is mean squared error.

perf =

2.0078e-05

Training Results

Training finished: Met validation criterion

Training Progress

Unit	Initial Value	Stopped Value	Target Value
Epoch	0	19	1000
Elapsed Time	-	00:00:00	-
Performance	30.4	1.07e-06	0
Gradient	83.7	0.00347	1e-07
Mu	0.001	1e-07	1e+10
Validation Checks	0	6	6

Training Algorithms

Data Division: Random dividerand

Training: Levenberg-Marquardt trainIm

Performance: Mean Squared Error mse

Calculations: MEX

Reference

- 1. https://www.mathworks.com/help/deeplearning/ref/feedforwardnet.html?s_tid=doc_ta
- 2. https://www.mathworks.com/help/deeplearning/ref/network.train.html?s_tid=doc_ta
- 3. https://www.mathworks.com/help/deeplearning/ref/sim.html?s_ti d=doc_ta