Examples of Linear Programming Problems Pattern Classification

Σιώρος Βασίλειος Ανδρινοπούλου Χριστίνα

Νοέμβριος 2019

1 Introduction to Feature Vectors

Έστω **m** αντικείμενα, τα οποία επιθυμούμε να ταξινομήσουμε σε δύο διακριτές ομάδες, με κάθε αντικείμενο να ανήκει αυστηρά σε μία μόνο ομάδα.

Παραδείγματος χάριν φυτά, που επιθυμούμε να διαχωρίσουμε σε εσπεριδοειδή και μη.

Θεωρούμε πως τα αντιχείμενα αυτά περιγράφονται επαρχώς από ${f n}$ το πλήθος χαραχτηριστιχά.

Στην περίπτωση της ταξινόμησης φυτών, σε εσπεριδοειδή και μη, τα χαρακτηριστικά αυτά θα μπορούσαν να είναι το ύψος του δέντρου, αν είναι φυλλοβόλο ή όχι, δηλαδή αν ρίχνει τα φύλλα του το χειμώνα και σε τι κλίμα ευδοκιμεί.

Μπορούμε λοιπόν, να αναπαραστίσουμε κάθε αντικείμενο με ένα **n**-διάστατο διάνυσμα.

Παραδείγματος χάριν, έστω ένα στιγμιότυπο x της κλάσης των εσπεριδοειδών με τα εξής x χαρακτηριστικά

 Υ ψος : 8m

Φυλλοβόλο: Όχι

Κλίμα: Τροπικό ∨ Υποτροπικό ∨ Εύκρατο

τότε, το παραπάνω αντικείμενο μπορεί να αναπαρασταθεί από το 3-διάστατο διάνυσμα

 $x^* = [8m, 'Οχι, Τροπικό <math>\lor Υποτροπικό \lor Εύκρατο]$

Είναι προφανές από το προηγούμενο παράδειγμα, ότι τα χαρακτηριστικά των αντικειμένων μπορεί να είναι μη αριθμητικά. Ωστόσο, υπάρχουν μέθοδοι μετατροπής τους σε αριθμητικά κι ως εκ τούτου, το παραπάνω διάνυσμα μπορεί εύκολα να απεικονιστεί στον \mathbb{R}^3 . Λοιπόν, θα εστιάσουμε στην περίπτωση των αριθμητικών χαρακτηριστικών.

2 Introduction to Pattern Classification

Δεδομένης της προηγουμένως ορισθείσας αναπαράστασης αντιχειμένων, θεωρούμε τα σύνολα

Γνωρίζουμε ότι, ένα υπερεπίπεδο διαχωρίζει ένα αφινικό χώρο σε δύο ημιχώρους.

Τα σύνολα K και N χαρακτηρίζονται γραμμικά διαχωρίσιμα, αν υπάρχει υπερεπίπεδο, τέτοιο ώστε τα αντικείμενα, που ανήκουν στο σύνολο K να εντοπίζονται στον έναν ημιχώρο και τα αντικείμενα, που ανήκουν στο σύνολο N στον άλλον ημιχώρο.

Πιο τυπικά θα λέγαμε ότι τα σύνολα K και N χαρακτηρίζονται γραμμικά διαχωρίσιμα, αν υπάρχουν $a \in \mathbb{R}^n$ και $b \in \mathbb{R}$, τέτοια ώστε

$$K \subseteq \{x \in \mathbb{R}^n : a^T \cdot x \ge b\}$$

 $N \subseteq \{x \in \mathbb{R}^n : a^T \cdot x < b\}$

(a) Γραμμικά διαχωρίσιμα σύνολα

(b) Μη γραμμικά διαχωρίσιμα σύνολα

3 Pattern Classification via Linear Programming

Ένας γραμμικός ταξινομητής αρχικά τροφοδοτείται με ένα σύνολο αντικειμένων, η κλάση των οποίων είναι γνωστή, εκ των προτέρων. Βάσει αυτού του συνόλου υπολογίζονται τα $a \in \mathbb{R}^n$ και $b \in \mathbb{R}$. Το σύνολο αυτό αποτελεί το σύνολο εκπαίδευσης του ταξινομητή.

Για κάθε αταξινόμητο αντικείμενο x, το πρόσημο της παράστασης $a^T \cdot x - b$ υποδεικνύει σε ποια ομάδα ανήκει.

4 Coding