Collision-Resistant Hash functions (CRHF's) 1

Pro podpis libovolně dlouhé zprávy nejprve aplikujeme hash h a pak až digitální podpis. Požadavky:

- Výstup h je ostře menší než vstup: |h(m)| << |m|.
- Funkce h je efektivně spočitatelná.
- Je těžké efektivně nalézt kolizi: $(m, m') : m \neq m'$ a h(m) = h(m').

Definice 1 $H = \{h_i : \{0,1\}^{\ell_d(i)} \to \{0,1\}^{\ell_r(i)}\}_{i \in I}$ je kolekcí CRHF's pokud platí:

- 1. Generování: existuje PPT $G: i \leftarrow G(1^n), i \in I$.
- 2. Komprese: $\ell_d(i) > \ell_r(i), \forall i \in I$.
- 3. Efektivita: $h_i(x)$ lze vyhodnotit v čase poly(i) pro všechny $i \leftarrow G(1^n)$ a $x \in \{0,1\}^{\ell_d(i)}$.
- 4. Collision Resistent: Pro všechny PPT A existuje negligible funkce ε taková,

$$\Pr[A(i) = (x, x') : x \neq x', h_i(x) = h_i(x')] \le \varepsilon(n),$$

kde pravděpodobnost je přes $i \leftarrow G(1^n)$ a náhodné mince A.

- 5. Technická podmínka: $n \leq poly(i)$ pro všechny $i \leftarrow G(1^n)$.
- Typické nastavení: $\ell_d(i)$ je libovolné a $\ell_r(i) = n$.
- Možné útoky:
 - 1. Hádání: $\ell_d = 2n$ a $\ell_r = n$.
 - Vybereme náhodně $m,m' \leftarrow \{0,1\}^{2n} \ \left(\Pr[m=m'] = \frac{1}{2^{2n}}\right)$. Kolizi uhádneme s pravděpodobností vyšší než $\frac{1}{2^n} \frac{1}{2^{2n}}$.
 - 2. Birthday Attack:
 - Vybereme t náhodných zpráv a hledáme kolizi.
 - Pravděpodobnost, že najdeme kolizi je počet dvojic krát pravděpodobnost kolize v náhodné dvojici. Tedy pravděpodobnost nalezení kolize je větší než:

$$\binom{t}{2} \left(\frac{1}{2^n} - \frac{1}{2^{2n}} \right) \approx \frac{t^2}{2^{n+1}}.$$

 – Pro $t = \Theta(2^{\frac{n}{2}})$ pak máme konstantní pravděpodobnost nalezení kolize.

2 Universal One-way Hash Functions

Collision-resistent je silný předpoklad, někdy stačí následující:

- 1. A zvolí $x \in \{0,1\}^{\ell_d(i)}$.
- 2. $i \leftarrow G(1^n)$.
- 3. A vrátí $x' : x \neq x'$ a $h_i(x) = h_i(x')$.
- UOWHF's existují pokud existují jednosměrné funkce.
- CRHF's nelze zkonstruovat pomocí black-box metod ani z jednosměrných permutací.

3 Merkle-Damgård Transformace

Definice CRHF's dává kompresi o 1 bit, nyní ukážeme kompresi o libovolný počet bitů.

- 1. Kompresní funkce $h: \{0,1\}^{\ell+n} \to \{0,1\}^n$.
- 2. Pro zprávu $M \in \{0,1\}^*$:
 - (a) Rozděl M do bloků délky ℓ :

$$M = M_1 || M_2 || M_3 || \dots || M_t.$$

Blok M_t je doplněn 0 na délku ℓ . Definujme funkci H následovně

$$H(M) = h(M_t||h(M_{t-1}||h(M_{t-2}...h(M_1||IV)...))),$$

kde IV je inicializační vektor nastaven například na samé 0.

Schéma transformace je zobrazeno na následujícím obrázku.

Tvrzení 1 Pokud je h kolekcí CRHF's pak i H je kolekcí CRHF's.

4 Konstrukce CRHF's

Věta 1 Kolekce CRHF's existují pokud platí předpoklad o obtížnosti faktorizace přirozených čísel nebo nalezení diskrétního logaritmu.

Myšlenka důkazu. Mějme generátor g pro grupu \mathbb{Z}_p^* . Nechť $y \leftarrow \mathbb{Z}_p^*$. Problém diskrétního logaritmu je nalézt $x \in \mathbb{Z}_{p-1}$ takové, že $g^x \equiv y \pmod{p}$. Definujme

$$h_{p,g,y}: \mathbb{Z}_{p-1} \times \{0,1\} \to \mathbb{Z}_p^*,$$

 $h_{p,g,y}(x,b) = y^b \cdot g^x \pmod{p}.$

Ukážeme, že kolize $h_{p,g,y}$ nám dává diskrétní logaritmus y. Mějme PPT A, který najde s velkou pravděpodobností kolizi $(x,b) \neq (x',b')$ a $h_{p,g,y}(x,b) = h_{p,g,y}(x',b')$. Rozlišíme dva případy. Předpokládejme, že b = b', pak ukážeme, že nenastane kolize. Pokud $y^b \cdot g^x \equiv y^b g^{x'} \pmod{p}$, pak také $g^x \equiv g^{x'} \pmod{p}$. Prvek g je ale generátor grupy \mathbb{Z}_p^* , tedy x = x'.

Nechť tedy $b \neq b'$ a bez újmy na obecnosti b = 0 a b' = 1. Pak tedy máme

$$g^{x} \equiv yg^{x'} \pmod{p}$$
$$y \equiv g^{x-x'} \pmod{p}.$$

Tedy x - x' je diskrétní logaritmus y vzhledem ke g.

5 Hashovací Funkce v Praxi

Schéma	Návrh	Délka Výstupu	$ m \acute{U}tok$	Poznámka
		(v bitech)		
MD4	Rivest, 1990	128	1995	
MD5	1992	128	1998	
SHA1	1994	160	2005	• Kolize v čase 2 ⁶⁰
				• Lepší než birthday attack
SHA2/SHA256	2005	256	Zatím neprolomen	 Heuristický kandidát
				 Používá se v bitcoinu

6 Hash-then-Sign

Nyní ukážeme, že pokud existují kolekce CRHF's pak existují schémata elektronického podpisu pro libovolně dlouhé zprávy. Nechť (G,S,V) je one-time elektronický podpis pro $M=\{0,1\}^n$ a H je kolekcí CRHF's pro $\{0,1\}^*$ s výstupy délky n. Zkonstruujeme one-time elektronický podpis (G',S',V') pro zprávy libovolné délky.

$$G'$$
: $pk' = (pk, i), sk' = (sk, i),$ kde $(pk, sk) \leftarrow G(1^n)$ a pro generátor G_H z H : $i \leftarrow G_H(1^n)$.

 $S': S'_{sk}(m) = S_s k(h_i(m)).$

$$V'$$
: $V'_{pk}(m,\sigma) = V_{pk}(h_i(m),\sigma)$.

Věta 2 Pokud (G, S, V) je secure one-time elektronický podpis pro $M = \{0, 1\}^n$ a H je kolekce CRHF's pro $\{0, 1\}^*$ pak (G', S', V') je secure one-time elektronický podpis pro $M' = \{0, 1\}^*$.

 $D\mathring{u}kaz$. Mějme PPT A, který padělá podpis pro (G',S',V') s pravděpodobností alespoň ε (non-negligible). Algoritmus A(pk') pošle nejvýše jeden dotaz m na $S'_{sk'}(\cdot)$ a dostane odpověď $\sigma' \leftarrow S'_{sk'}(m)$. Algoritmus A uspěje pokud vrátí (m',σ') takové, že $m \neq m'$ a $V'_{pk'}(m',\sigma') = accept$.

7 Další Aplikace CRHF's

- Fingerprinting
- Deduplikace dat test, zda soubor již není na serveru

7.1 Merkle Hash Tree

Mějme $h:\{0,1\}^{2\ell}\to\{0,1\}^\ell$ a data $X=\{0,1\}^*.$ Rozdělíme X do bloků velikosti $\ell,$ tedy

$$X = x_1||x_2||\dots||x_t,$$

kde $|x_i| = \ell$. Můžeme předpokládat, že $|X| = \ell t$ a t je mocnina 2, jinak použijeme padding nulami. Mějme binární strom s t listy. Ke každému vrcholu v přiřadíme hodnotu $c_X(v) \in \{0,1\}^{\ell}$. Do listů umístíme bloky x_i a následně počítáme hashe od listu nahoru. Mějme vrchol v jehož synové v_1 a v_2 již mají spočítané hodnoty $c(v_1)$ a $c(v_2)$ pak hodnota na vrcholu v bude $c_X(v) = h(c_X(v_1)||c_X(v_2))$. Označme $MT_h(X)$ hodnotu v kořeni stromu.

Příklad použití: chceme uložit data na serveru a mít možnost ověřit, že server data nezměnil bez toho aniž bychom si daná data pamatovali.

- 1. Spočítáme $MT_h(X)$ a odešleme data na server.
- 2. Chceme získat x_i a ověřit, že server data nezměnil.
- 3. Nechť P je cesta z listu, kde je uloženo x_i , do kořene stromu.
- 4. Server pošle hodnoty všech vrcholů z P a všech jejich bratrů.
- 5. Nyní můžeme ověřit, zda hodnoty na cestě P jsou správně spočítané a zda hodnota v kořeni je rovna $MT_h(X)$ je potřeba $O(\log t)$ -krát spočítat h.
- 6. Aby server podvrhl x_i musí umět nalézt kolizi h.

Figure 1: Příklad Merkle hash tree pro data s 8 bloky. Při vyžádání bloku x_6 ze serveru je červeně vyznačená cesta P z listu x_6 do kořene a modře jsou označeny data, která server odešle.

Lemma 1 Nechť $MT_h(X) = MT_h(X')$ pro $X \neq X' \in \{0,1\}^{t\ell}$. Pak musí existovat vrchol v ve stromu se syny v_1 a v_2 takový, že

$$c_X(v_1)||c_X(v_2) \neq c_{X'}(v_1)||c_{X'}(v_2),$$

$$h(c_X(v_1)||c_X(v_2)) = h(c_{X'}(v_1)||c_{X'}(v_2)).$$

Důkaz. Postupujme od listů nahoru. Mějme x_i a x_i' bloky X a X' takové, že $x_i \neq x_i'$. Vezměme list v_1 , kde jsou uloženy x_i a x_i' a jeho bratra v_2 . Pro vrcholy v_1 a v_2 jistě platí, že

$$c_X(v_1)||c_X(v_2) \neq c_{X'}(v_1)||c_{X'}(v_2).$$

Nechť v je jejich otec. Pokud pro v platí, že $c_X(v)=c_{X'}(v)$, pak jsme skončili. Jinak vezmeme $v_1:=v$ a v_2 je bratr v a celý proces opakujeme. Jelikož pro kořen stromu r platí, že $c_X(r)=c_{X'}(r)$ tak jistě najdeme požadované vrcholy v, v_1 a v_2 .