Q1. (10 points; 5 points per part) Give an algorithm (pseudo code, with explanation) to compute 2^2^n in linear time, assuming multiplication of arbitrary size integers takes unit time. What is the bit-complexity if multiplications do not take unit time, but are a function of the bit-length.

I created a table of values for 2^2^n using python to look for patterns:

N	0	1	2	3	4
2^2^n	2	4	16	256	65536

The sequence starts at 2 and then each successive term is just the previous squared, so I wrote this code:

Foo(n):

Result = 2
For i = 0 to n
Result = result * result
Return result

If multiplication is a O(1) operation, there are only n multiplications to do, so runtime should be linear. If multiplication is a function of number size (I'm going to say O(n^2), since that's the fastest multiplication algorithm we know so far), then O(n) multiplications times O(n^2) per multiplication = O(n^3) overall runtime.

Q2. (10 points total; 5 points per part) Consider the problem of computing $N! = 1 \cdot 2 \cdot 3 \cdots N$. (a) If N is an n-bit number, how many bits long is N! in O() notation (give the tightest bound)?

I wrote n! as a function of just n like so:

$$\ln(n!) = \sum_{i=1}^{n} \ln(i) \approx \int_{1}^{n} \ln(x) = x \ln(x) - x \Big|_{1}^{n} = n \ln(n) - n + 1$$

This simplifies down to n! = nln(n) - n

Log base 2 of the above expression should give the approximate number of bits needed to store n! as a function of n.

(b) Give an algorithm to compute N! and analyze its running time.

Foo(n)

Result = 1

For i = 1 to n

Result *= result * i

The above function needs to do n multiplications. We know that multiplication is $O(n^2)$ operation in terms of bit complexity, so total runtime of the above code is $O(n^3)$.

Q3. (10 points; 5 points per part) Find the GCD of 1492 and 1776, using a) the prime factorization method and using Euclid's method, and

Prime Factorization:

The prime factorization of 1492 is $2^2 * 373$ The prime factorization of 1776 is $2^4 * 3 * 37$

The largest number we can make using the prime factors that is common to both 1492 and 1776 is 2^2 or 4, so 4 is the GCD of 1492 and 1776.

Euclid's Method:

Α	В	R (a mod b)	q
1776	1492	284	= 1776 - 1492
1492	284	72	= 1492 – 5*284
284	72	68	= 284 – 3*72
72	68	4	= 72 – 68
68	4	0	

4 is the number than results in a remainder of 0, so 4 is the GCD of 1492 and 1776.

b) express the GCD as an integer linear combination of the two inputs.

Using, the extended Euclid's algorithm and the work above, we have:

4 = 72 - 68 4 = 72 - (284 - 3*72) 4 = -284 + 4*72 4 = -284 + 4(1492-5*284) 4 = 4*1492 - 21*284 4 = 4*1492 - 21(1776 - 1492)

4 = -21*1776 + 25*1492