Part IB - Statistics Definitions

Lectured by D. Spiegelhalter Lent 2015

Estimation

Review of distribution and density functions, parametric families. Examples: binomial, Poisson, gamma. Sufficiency, minimal sufficiency, the Rao-Blackwell theorem. Maximum likelihood estimation. Confidence intervals. Use of prior distributions and Bayesian inference.

Hypothesis testing

Simple examples of hypothesis testing, null and alternative hypothesis, critical region, size, power, type I and type II errors, Neyman-Pearson lemma. Significance level of outcome. Uniformly most powerful tests. Likelihood ratio, and use of generalised likelihood ratio to construct test statistics for composite hypotheses. Examples, including t-tests and F-tests. Relationship with confidence intervals. Goodness-of-fit tests and contingency tables. [4]

Linear models

Derivation and joint distribution of maximum likelihood estimators, least squares, Gauss-Markov theorem. Testing hypotheses, geometric interpretation. Examples, including simple linear regression and one-way analysis of variance. Use of software. [7]

Contents

1	Introduction and probability review	3
2	Estimation, bias and mean squared error	4
	2.1 Mean squared error	4

1 Introduction and probability review

Definition (Statistics). *Statistics* is a set of principle and procedures for gaining and processing quantitative evidence in order to help us make judgements and decisions.

2 Estimation, bias and mean squared error

Definition (Statistic). A *statistic* is an estimate of θ . It is a function T of a data. If $\mathbf{X} = \mathbf{x} = (x_1, \dots, x_n)$, then our estimate is written as $\hat{\theta} = T(\mathbf{x})$. $T(\mathbf{X})$ is an *estimator* of θ .

The distribution of $T = T(\mathbf{X})$ is its sampling distribution.

Note that capital **X** denotes a random variable and **x** is an observed value. So $T(\mathbf{X})$ is a random variable and $T(\mathbf{x})$ is a particular value.

Definition (Bias). Let $\hat{\theta} = T(\mathbf{X})$ be an estimator of θ . The bias of $\hat{\theta}$ is the difference between its expected value and true value.

$$bias(\hat{\theta}) = \mathbb{E}_{\theta}(\hat{\theta}) - \theta.$$

Note that the subscript θ does not represent the random variable, but the thing we want to estimate. This is inconsistent with the use for, say the pmf.

An estimator is *unbiased* if it has no bias, i.e. $\mathbb{E}_{\theta}(\hat{\theta}) = \theta$.

2.1 Mean squared error

Definition (Mean squared error). The mean squared error of an estimator $\hat{\theta}$ is $\mathbb{E}_{\theta}[(\hat{\theta} - \theta)^2]$.

Sometimes, we use the *root mean squared error*, that is the square root of the above.