CS 440 Introduction to Artificial Intelligence

Lecture 9:

CPSs and Intro to Logic

13 February 2030

- S is a set of examples
- p_⊕ is the proportion of examples in class ⊕
- p_⊕ = 1 − p_⊕ is the proportion of examples in class ⊕

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\ominus} \cdot \log_2 p_{\ominus}$$

- Interpretation:
 - amount of unorderedness in the class distribution of S

For a complex (non-binary) set

$$\mathsf{E}(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

- When an attribute A splits the set S into subsets S_i
 - we compute the average entropy
 - and compare the sum to the entropy of the original set S

Information Gain for Attribute A

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

- The attribute that maximizes the difference is selected
 - i.e., the attribute that reduces the unorderedness most!
- Note:
 - maximizing information gain is equivalent to minimizing average entropy, because E(S) is constant for all attributes A

- Greedy approach
 - Recursively select trait that maximizes information gain.

```
Build_Decision_Tree(S, Attributes)
```

- If S is monotone (all same type) or Attributes = {}
 - return
- //Find best attribute
- IG_{best}=-1
- for all attributes a
 - S' = set of subsets from dividing S by a
 - $\text{ if } IG(S') > IG_{\text{best}}$
 - $IG_{best} = IG(S)$
 - $a_{hest} = a$
- S' = set of subsets from dividing S by a
- For all S' in
 - Build_Decision_Tree(S', Attributes \ a_{best})

- Will this algorithm find the optimal decision tree?
 - What would we define as an optimal decision tree?
- How could this method be modified to accommodate sets with missing traits?
- How could this method be modified to accommodate nondiscrete data
 - Example:
 - Wait times = 8 min, 9 min, 11 min, 19 min
 - Exact prices

Rutgers

Constraint- Satisfaction Problems

- Discrete and Finite Domains
 - E.g., map-Coloring, 8-queens puzzle
- Boolean CSPs
 - Satisfiability problems (prototypical NP-Complete problem)
- · Discrete and Infinite Domains
 - Scheduling over the set of integers (e.g., all the days after today)
- Continuous Domains
 - Scheduling over continuous time
 - Linear Programming problems
 - Constraints are linear inequalities over the variables

Additional examples:

- · crossword puzzles, cryptography problems, Sudoku
- and many classical NP-Complete problems:
 - clique problems, vertex-cover, traveling salesman, subset-sum, hamiltonian-cycle

Color the map of Australia so that no two neighboring regions have the same color

Variables: { WA, NT, Q, NSW, V, SA, T}

Domain for each variable: {red, green, blue}

Constraints:

WA ≠ NT, WA ≠ SA, NT ≠ SA, NT ≠ Q,

SA ≠ Q, SA ≠ NSW, SA ≠ V,

Q ≠ NSW, NSW ≠ V

Backtracking Search

RUTGERS

Backtracking: Forward Checking

	WA	NT	Q	NSW	V	SA	Т
Initially	RGB						
After WA=R	R	G B	RGB	RGB	RGB	G B	RGB
After $Q = G$	R	В	G	RB	RGB	В	RGB
After V=B	R	В	G	R	В		RGB

RUTGERS

Backtracking: Intelligent Backjumping

- Order: Q, NS, V, T, SA
- Failure when trying to assign SA
- SA's conflict set {Q, NS, V}
- Backjump to the latest node in the conflict set: V
- Skip Tasmania

Assume WA=red and NSW =red, then assign T, NT, Q, SA

SA will cause a conflict, whatever we do...

• Where should the algorithm backjump?

CSP Examples: Robotics

- Robot task planning
 - Conditions needed to accomplish task
 - Example door must be open to enter room

Binary CSP example: Wumpus World

	¬P	P∧Q	PVQ	P⇒Q	P⇔Q
	TRUE	FALSE	FALSE	TRUE	TRUE
	TRUE	FALSE	TRUE	TRUE	FALSE
	FALSE	FALSE	TRUE	FALSE	FALSE
	FALSE	TRUE	TRUE	TRUE	TRUE

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square	1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2		1,2 OK	2,2 P?	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1		1,1 V OK	2,1 A B OK	3,1 P?	4,1
		(a)		-			(b)	

Truth Table for Wumpus World

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false	false false	false $false$	false $false$	false false	false false	false true	true true	true true	true false	true true	false false	false false
;	:	:	:	:	:	:	:	:	;	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	
true	true	true	true	true	true	true	false	true	true	false	true	

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
S	= Stench
V	= Visited
W	= Wumpus

1,4	2,4 P?	3,4	4,4
1,3 W!	2,3 A S G B	3,3 _{P?}	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 V OK	3,1 P!	4,1

(a)

(b)

Wumpus World

Wumpus

Agent

Pit

Gold

+1000 for gold
-1000 falling into pit
-1 for each action
-10 for using arrow

