Dynamic Programming

Soontharee Koompairojn 30/3/15

Algorithmic Paradigms

•Greedy.
☐ Build up a solution incrementally,
myopically optimizing some local criterion.
•Divide-and-conquer.
☐ Break up a problem into sub-problems,
□ solve each sub-problem independently, and
☐ combine solution to sub-problems to form solution to original problem.
•Dynamic programming.
☐ Break up a problem into a series of overlapping sub-problems,
☐ And build up solutions to larger and larger sub-problems.

Ref: Algorithm design, Jon Kleinberg and Eva Tardos, slide by Kevin Wayne

Dynamic Programming History

•Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid

"it's impossible to use dynamic in a pejorative sense" "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Ref: Algorithm design, Jon Kleinberg and Eva Tardos, slide by Kevin Wayne

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,
- Some famous dynamic programming algorithms.
 - Unix diff for comparing two files.
 - Viterbi for hidden Markov models.
 - Smith-Waterman for genetic sequence alignment.
 - Bellman-Ford for shortest path routing in networks.
 - Cocke-Kasami-Younger for parsing context free grammars.

Ref: Algorithm design, Jon Kleinberg and Eva Tardos, slide by Kevin Wayne

Fibonacci Numbers

- Finding the nth Fibonacci number F_n, where,
- $F_0 = 0$, $F_1 = 1$
- For all $i \ge 2$, $F_i = F_{i-1} + F_{i-2}$
- Recursive Algorithm

Run time

Fibonacci Numbers

Finding the n^{th} Fibonacci number F_n , where, $F_0 = 0$, $F_1 = 1$ For all $i \ge 2$, $F_i = F_{i-1} + F_{i-2}$

Dynamic Programming Algorithm

Run time

ปัญหา Maximum Subsequence Sum

กำหนดให้ S เป็นลำดับ (sequence) ตัวเลข n ตัว <x₁, x₂, ..., x_n>, โดยอาจจะมีจำนวนลบอยู่ด้วย

ปัญหา ให้คำนวณหา ผลบวกของลำดับย่อย subsequences ของ S ที่มีค่ามากที่สุด

กำหนดให้ s' = subsequence ที่ต่อเนื่องของ S
$$= x_i, x_{i+1}, ..., x_{i+k}, \text{ โดยที่ } 1 \leq i \leq n \quad \text{และ} \quad k \geq 0$$

สมมติ S = \langle 1,-5, 2,-1, 3 \rangle,
ตัวอย่างของ S' ได้แก่
\langle 1 \rangle, \langle 2,-1, 3 \rangle, และ \langle -5, 2 \rangle

MSS ของ sequence S เป็นเท่าไร?

Maximum subsequence sum problem(2)

Developing a dynamic programming algorithm

 ก้าหนดโครงสร้างของ optimal solution แบ่งปัญหาออกเป็นปัญหาย่อย

<u>แนวคิด</u>: เก็บผลรวมที่มากที่สุดของsubsequenceใดๆ สิ้นสุดที่ตัวเลข x_i, โดยที่ 1 ≤ i ≤ n กำหนดให้ B เป็น array 1 มิติขนาด n ตัว

B[i] เก็บค่า ผลบวกที่มากที่สุดของ subsequence สิ้นสุดที่ตัวเลข x_i เมื่อคำนวณค่าในตาราง B จะได้ค่าผลบวกที่มากที่สุดเอง

Pseudocode

$$B[1] = x_1$$

For i = 1 to n do
$$B[i+1] = \begin{bmatrix} B[i] + x_{i+1} & \text{if } B[i] > 0 \\ x_{i+1} & \text{if } B[i] \le 0 \end{bmatrix}$$

- สมมติ S = (1,-5, 2,-1, 3)
- MSS ของ sequence S เป็นเท่าไร?
- ให้เติมค่าในตาราง B ที่มีขนาด 5 ตัว

Subset sum problem

```
กำหนดให้ เซต S = {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>} เป็นเซตของเลขจำนวนเต็มบวก และค่าผลรวมเป็นเลขจำนวนเต็ม B
```

คำถาม: มีเซตย่อย (subset) S' ของ S ที่ผลบวกของสมาชิกใน S' มีค่าเท่ากับ B หรือไม่

ตัวอย่างเช่น กำหนดให้ เซต $S = \{3, 34, 4, 12, 5, 2\}$, และค่าผลรวมเท่ากับ 9

คำถาม: มีเซตย่อย (subset) S' ของ S ที่ผลบวกของสมาชิกใน S' มีค่าเท่ากับ 9 หรือไม่

มี หรือ ไม่มี , True or False ?

Idea การแก้ปัญหา subset sum

- Given: A (multi-)set S of $\{a_1, a_2, ..., a_n\}$ of positive integers and a positive integer B
- Question: Is there a subset S' of S such that the sum of the elements in S' is equal to B?
 - -กำหนดคำถามในรูปฟังก์ชัน T(n,B)
 - โดยที่ n คือ จำนวนตัวเลข
 - B เป็น ตัวเลขผลรวมตามโจทย์กำหนด
 - แตกเป็นปัญหาย่อย จากแนวคิดที่ ค่าผลรวมตัวหลัง ๆ มาจาก เซตของตัวเลขในช่วงแรก ๆ
 - กำหนดให้ **T(i,j)** เป็นคำถามว่า มี **subset S'** ใน **{a₁, a₂,..., a_i}**
 - ที่มีผลบวกเท่ากับ j หรือไม่ ?

การพิสูจน์ โดยวิธี Induction

พิสูจน์ว่า **T(n,B)** เป็นจริงหรือไม่ (พิสูจน์ว่ามีเซตย่อยจากจำนวน **n** ตัวที่มีผลบวก**= B** หรือไม่)

Base case:

ถ้าตัวเลขตัวใดตัวหนึ่งมีขนาด B แล้วจะเป็นจริง

- Induction step (วิเคราะห์ครั้งที่ 1):
 - ถ้าสำหรับฟังก์ชัน T(n-1, B) เป็นจริง,
 นั่นคือเราไม่จำเป็นต้องใช้ an
 - ถ้าสำหรับฟังก์ชัน T(n-1, B) เป็นเท็จ,
 นั่นคือ เราต้องใช้ a_n
 กรณีนี้ เซตของตัวเลขก่อนหน้านี้จะมีค่าผลรวมเป็น B- a_n
 - ดังนั้นเราแบ่ง ปัญหา T(n,B) ออกเป็น
 ปัญหาย่อย T(n-1,B) และ T(n-1, B- a_n)

การพิสูจน์ โดยวิธี Induction(2)

- เนื่องจากเราจะต้องมีการแบ่งเป็นปัญหาย่อย ๆ
 นั่นคือ การจะแก้ปัญหา subset sum ที่มีผลรวมเท่ากับ B
 เราต้องแก้ปัญหา subset sum ที่มีค่าน้อยกว่าหรือเท่ากับ B ด้วย
- Induction step (วิเคราะห์ครั้งที่ 2):
 - สำหรับเซตตัวเลข i ตัว $\{a_1, a_2, ..., a_i\}$
 - ให้ ไป็นผลบวกของเซตตัวเลข ไ ตัว
 - ถ้า j = 0 นั่นคือ ไม่มีตัวเลขตัวไหนอยู่ในเซตคำตอบ
 - ถ้า $a_1 = j$ นั่นคือ a_1 เป็นสมาชิกตัวเดียวในเซตคำตอบ

วิเคราะห์ปัญหาร่วมกับ table

								ผลรว	าม j									
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
first	i=1	0																
item	i=2	0																
i	i=3	0																
	i=4	0																

การพิสูจน์ โดยวิธี Induction(2)

```
— แบ่งปัญหา T(i,j) ออกเป็น ปัญหาย่อย T(i-1,j) และ T(i-1,j-a_i) สมมติเรารู้คำตอบของ T(i-1,j) โดยที่ 0 \le j \le B, ถ้า j-a_i < 0 เราก็ไม่ต้องสนใจปัญหาย่อยนี้
```

Subset sum problem(2)

Developing a dynamic programming algorithm

• กำหนดโครงสร้างของ optimal solution แบ่งปัญหาออกเป็นปัญหาย่อย

```
แนวคิด: เราเก็บคำตอบของปัญหาย่อยไว้ใน 2D Boolean array T, ที่มีขนาด n แถว และ B+1 คอลัมน์. ถ้าเซตย่อย (subset) \{a_1, a_2, ..., a_i\} มีผลรวมเท่ากับ j ให้ค่า T[i,j] = true มิฉะนั้น ให้ค่า T[i,j] = false
```

Subset sum problem(3)

```
สำหรับแถวแรก,
for 0 \le j \le B
  if (j=0) or (a_1 = j)
         T[1,j] = true
  else T[1,j] = false
สำหรับแถว i,
for 0 \le j \le B
  if ((T[i-1,j]==true) \text{ or } (T[i-1,j-a_i]==true))
                 T[i,j] = true
                 T[i,j] = false
  else
```

ตัวอย่าง

ผลรวม **B** = **16**

Is there a subset (มี Subsetหรือไม่)?

True or False?

	ผลรวม B																
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a ₁ =2																	
a ₂ =3																	
a ₃ =5 a ₄ =6																	
a ₄ =6																	

Matrix Multiplication

- Let A be a p x q matrix
- Let B be a q x r matrix
- Let C be the matrix product AB ,a p x r matrix
- It uses p x q x r multiplications.

http://en.wikipedia.org/wiki/Matrix_multiplication

Matrix Multiplication (1)

Matrix multiplication is associative.

For matrices A, B and C, A(BC) = (AB)C

Suppose A is a r x 2 matrix
 B is a 2 x r matrix
 C is a r x 1 matrix

- How many multiplication of the product A(BC)?
- How many multiplication of the product (AB)C?

Matrix Chain Multiplication

Given: A chain $\langle A_1 A_2 ... A_n \rangle$ of matrices where A_i is a $p_{i-1} \times p_i$ matrix $(1 \le i \le n)$

Required: Fully parenthesize the product $A_1 A_2 ... A_n$ so that the number of scalar multiplications is minimized.

Method

1. Exhaustive search? the run time is exponential in n

that is,
$$\binom{2n}{n}$$
 / $(n + 1) = \Omega (4^n / n^{3/2})$

2. Dynamic Programming

Matrix Chain Multiplication(2)

- Developing a dynamic programming algorithm
- Determine the structure of an optimal solution
 Decompose the problem into subproblems.

Let
$$M = A_1 A_2 ... A_n = M_1 M_2$$

where $M_1 = A_1 A_2 ... A_k$
 $M_2 = A_{k+1} A_{k+2} ... A_n$

Observation: Regardless of the value of \mathbf{k} , for the evaluation of \mathbf{M} to be optimal, the evaluations of \mathbf{M}_1 and \mathbf{M}_2 must themselves be solved optimally.

Matrix Chain Multiplication(3)

```
For 1 \le i \le j \le n

Let m[i,j] stores the minimum cost

(the minimum number of multiplications used)

for computing the subchain A_i A_{i+1} ... A_j

Let A_i be a p_{i-1} x p_i matrix (1 \le i \le n)
```

For all the possible values k such that $i \le k < j$ Where the product A_i A_{i+1} . . . A_j

From the definition of m , m[i,j] = 0 where i=j To evaluate the product optimally, split at k, We incur the following 3 costs: Cost m[i,k] evaluating A_i A_{i+1} ... A_k Cost m[k+1,j] evaluating A_{k+1} A_{k+2} ... A_j Cost p_{i-1} p_k p_i evaluating the product of 2 matrices

Therefore,

$$m[i,j] = \min_{i \le k < j} [m[i,k] + m[k+1,j] + p_{i-1}p_kp_j]$$

Matrix Chain Multiplication(4)

Example: Given a chain of 4 matrices

Let A_1 be a 5x4 matrix

A₂ be a 4x6 matrix

A₃ be a 6x2 matrix

 A_4 be a 2x7 matrix

Find m[1,4] = ?

m[i,j]	1	2	3	4
1	0			
2		0		
3			0	
4				0

Matrix Chain Multiplication(5)

Step1 : Computing m[1,2]

definition m[i,j] =
$$\min_{i \le k < j} [m[i,k] + m[k+1,j] + p_{i-1} p_k p_j]$$

m[1,2] = $\min_{1 \le k < 2} [m[1,k] + m[k,2] + p_0 p_k p_2]$
= m[1,1] + m[2,2] + p_0 p_1 p_2
= 0 + 0 + 5x4x6 = 120

m[i,j]	1	2	3	4
1	0	120		
2		0		
3			0	
4				0

Matrix Chain Multiplication(6)

Step 2: Computing m[2,3]

definition m[i,j] =
$$\min_{i \le k < j} [m[i,k] + m[k+1,j] + p_{i-1} p_k p_j]$$

m[2,3] = $\min_{2 \le k < 3} [m[2,k] + m[k,3] + p_1 p_k p_3]$
= m[2,2] + m[3,3] + p₁ p₂ p₃
= 0 + 0 + 4x6x2 = 48

m[i,j]	1	2	3	4
1	0	120		
2		0	48	
3			0	
4				0

Matrix Chain Multiplication(7)

Step 3: Computing m[3,4]

definition m[i,j] =
$$\min_{i \le k < j} [m[i,k] + m[k+1,j] + p_{i-1} p_k p_j]$$

m[3,4] =

=

m[i,j]	1	2	3	4
1	0	120		
2		0	48	
3			0	
4				0

Matrix Chain Multiplication(8)

Step 4: Computing m[1,3]

definition m[i,j] =
$$\min_{i \le k < j} [m[i,k] + m[k+1,j] + p_{i-1} p_k p_j]$$

$$m[1,3] = \min_{1 \le k < 3} [m[1,k] + m[k+1,3] + p_0 p_k p_3]$$

$$m[1,3] = \min_{1 \le k < 3} [m[1,1] + m[2,3] + p_0 p_1 p_3]$$

$$m[1,2] + m[3,3] + p_0 p_2 p_3$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,3] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[3,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[1,2] + m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3} [m[2,2] + p_0 p_2 p_3]$$

$$= \min_{1 \le k < 3}$$

	A_1	A	7		
P	5	4	6	2	7
	\mathbf{p}_{0}	p_1	• •	•	p_4

m[i,j]	1	2	3	4
1	0	120	88	
2		0	48	
3			0	84
4				0

Matrix Chain Multiplication(9)

Step 5: Computing m[2,4]

definition m[i,j] =
$$\min_{i \le k < j} [m[i,k] + m[k+1,j] + p_{i-1} p_k p_j]$$

$$m[2,4] =$$

=

$oxedsymbol{oxed}$	ı A	A ₃	1 A	
5	4	6	2	7
\mathbf{p}_0	p_1	• •	•	p ₄

m[i,j]	1	2	3	4
1	0	120	88	
2		0	48	
3			0	84
4				0

Matrix Chain Multiplication(10)

Step 6: Computing m[1,4]

definition m[i,j] =
$$\min_{i \le k < j} [m[i,k] + m[k+1,j] + p_{i-1} p_k p_j]$$

$$m[1,4] = \min_{1 \le k < 4} [m[1,k] + m[k+1,4] + p_0 p_k p_4]$$

$$m[1,1] + m[2,4] + p_0 p_1 p_4$$

$$m[1,2] + m[3,4] + p_0 p_2 p_4$$

$$m[1,3] + m[4,4] + p_0 p_3 p_4$$

m[i,j]	1	2	3	4
1	0	120	88	
2		0	48	104
3			0	84
4				0

Matrix Chain Multiplication(11)

Pseudocode

```
1. for i = 1 to n do m[i,i] = 0; // subscript diffeence = 0
2. for q = 1 to n-1 do // q represents the subscript difference
2.1 for i = 1 to n-q do 2.1.1j = i + q; 2.1.2m[i,j] = minimum over i <= k < j of [m[i,k] + m[k+1,j] + p<sub>i-1</sub>p<sub>k</sub>p<sub>j</sub>];
3. Print m[1,n] // optimal solution
```