

Covid-19 diagnosis using CNN

Manos Koutoulakis & Manos Markodimitrakis

Outline

- COVID-19
- Scope of this project
- Dataset
- Tools
- References

COVID-19

- Coronavirus Disease 2019 (COVID-19) is an infectious disease derived from Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
- The first case was identified in Wuhan, China in December 2019
- From December 2019 until now the virus has spread all over the world

Source: https://el.wikipedia.org/wiki/COVID-19

Current diagnostic approaches

Source: https://www.researchgate.net/publication/342156516_COVID-19_diagnostic_approaches_different_roads_to_the_same_destination

Scope of this project

Scope

- 1. To diagnose if the patient has Covid-19 through chest X-ray using neural networks
- 2. Develop and improve the current deep learning approaches
- 3. Validate our results

Dataset

Dataset (1/2)

- The dataset contains 950 patients
- Each of them has their own X-Ray image
- There is a wide range of viruses and bacterias in this dataset

(1/2)	Pneumonia	
	SARS	
	Pneumocystis	
	Streptococcus	
	No Finding	
contains	Chlamydophila	
S	E.Coli	
	Klebsiella	
n has their	Legionella	
image	Unknown	
vide range	Lipoid	

COVID-19

Varicella

Bacterial

Influenza

todo

H₁N₁

Herpes Aspiration Nocardia

Mycoplasma

Tuberculosis

Aspergillosis

MERS-CoV

MRSA

584 81 16

> 30 22 22

10

10

13

6

4

11

5 83

18

2

2

8

10

Medical Images

Source: https://github.com/ieee8023/wwid-ighestxray-dataset

https://www.kaggle.com/paultimothymooney/chestxray-pneumonia

Dataset (2/2)

Feature	Number of subjects
Sex	870
Age	713
Finding	950
Survival	361
Went ICU	397
In ICU	335
Needed O2 support	90

Feature	Number of subjects
Temperature	78
pO2 Saturation	119
Modality	950
View	950
Location	894
Filename	950
Date	661

Tools

- Tensorflow
- Matplotlib
- Pandas
- Sklearn.skimage
- Keras

Feature extraction

Classify the Image according to Features

Feature extraction + Classification = CNN

Workflow

- Data preprocessing
- Model creation
- Training
- Validation

Data preprocessing

Model creation

Model: "sequential_2"			
Layer (type)	Output	Shape	Param #
conv2d_8 (Conv2D)	(None,	222, 222, 32)	896
conv2d_9 (Conv2D)	(None,	220, 220, 64)	18496
max_pooling2d_6 (MaxPooling2	(None,	110, 110, 64)	0
dropout_8 (Dropout)	(None,	110, 110, 64)	Θ
conv2d_10 (Conv2D)	(None,	108, 108, 64)	36928
max_pooling2d_7 (MaxPooling2	(None,	54, 54, 64)	0
dropout_9 (Dropout)	(None,	54, 54, 64)	0
conv2d_11 (Conv2D)	(None,	52, 52, 128)	73856
max_pooling2d_8 (MaxPooling2	(None,	26, 26, 128)	0
dropout_10 (Dropout)	(None,	26, 26, 128)	0
flatten_2 (Flatten)	(None,	86528)	0
dense_4 (Dense)	(None,	64)	5537856
dropout_11 (Dropout)	(None,	64)	0
dense_5 (Dense)	(None,	1)	65

Total params: 5,668,097 Trainable params: 5,668,097 Non-trainable params: 0

Training

```
Epoch 1/10
1/8 [==>.....] - ETA: 0s - loss: 0.7509 - accuracy: 0.4375WARNING:tensorflow:From /home/mano
s/anaconda3/envs/tensorEnv/lib/python3.6/site-packages/tensorflow/python/ops/summary ops v2.py:1277: stop (from te
nsorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
racv: 0.6875
Epoch 2/10
racy: 0.5781
Epoch 3/10
8/8 [===========] - 18s 2s/step - loss: 0.6046 - accuracy: 0.6542 - val loss: 0.4759 - val accu
racv: 0.9219
Epoch 4/10
racy: 0.9219
Epoch 5/10
racv: 0.9844
Epoch 6/10
racy: 0.9688
Epoch 7/10
racy: 0.9688
Epoch 8/10
racy: 0.9844
Epoch 9/10
8/8 [===========] - 18s 2s/step - loss: 0.1389 - accuracy: 0.9667 - val loss: 0.0851 - val accu
racy: 0.9844
Epoch 10/10
racy: 0.9844
```

Validation(1/2)

Epoch Loss

Epoch Accuracy

Validation(2/2) - Confusion matrix

References

- 1. Gianluca Maguolo, Loris Nanni, "A Critic Evaluation of Methods for COVID-19 Automatic Detection from X-Ray Images" Sci. Data, vol. 5, no. 1, p. 180202, Dec. 2018, Cite as: https://arxiv.org/2004.12823
- 2. Brownlee J, "How to configure Image Data Augmentation in Keras", April. 2019, Retrieved from: https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
- 3. Sekeroglu, B., & Ozsahin, I., Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 247263032095837, Sep 2020, doi:10.1177/2472630320958376
- 4. Jain R., Gupta M., Taneja S., et al. "Deep learning based detection and analysis of COVID-19 on chest X-ray images", Appl Intell (2020), doi: https://doi.org/10.1007/s10489-020-01902-1

Covid-19 diagnosis using CNN

Source Code: https://github.com/manoskout/covid-19-diagnosis-using-cnn/

Thank you for your attention

Questions?

Manos Koutoulakis & Manos Markodimitrakis