

РІЅСОЭ. Тренинг дин. программирования. □ Дискретный рюкзак с повторениями (с практикой A) □ Дискретный рюкзак без повторений (с практикой B) □ Ступеньки (с практикой C) □ Множественное умножение матриц (теоретически) □ Задачи (A) (B) (C) □ Материалы: http://tinyurl.com/ei-pisl

https://github.com/Khmelov/PISL2017-01-26

Кафедра экономической информатики. Бгуир. 2017

→ Github:

2

PISL09. Тренинг дин. программирования.

Напомним план для дин. прогр.

- 1. Какие значения мы вычисляем (что ищем)
- 2. Как их вычислять (какое рекуррентное соотношение)
- 3. Какие начальные значения (инициализация рекуррентных соотношений)
- 4. Направление расчета (рекурсия или итерация)
- 5. Где искать ответ

Подробнее о плане решения задач на динамическое программирование: https://youtu.be/iKj-xl4enLw?t=20m

Кафедра экономической информатики. Бгуир. 2017

,

РІSLO9. Тренинг дин. программирования. Рюкзак с повторениями: подзадачи Рассмотрим оптимальное решение и предмет і в нём: сі wi

Кафедра экономической информатики. Бгуир. 2017

PISLO9. Тренинг дин. программирования. Дин. программирования. Функция КNАРЅАСКѾІТНКЕРЅВИ($W, w_1, \ldots, w_n, c_1, \ldots, c_n$) создать массив $D[0 \ldots W] = [0, 0, \ldots, 0]$ для w от 1 до W: для i от 1 до n: если $w_i \le w$: $D[w] \leftarrow \max(D[w], D[w - w_i] + c_i)$ Вернуть D[W]

PISLO9. Тренинг дин. программирования. Дин. прог. снизу вверх Функция КNАРSACKWITHREPSBU($W, w_1, \ldots, w_n, c_1, \ldots, c_n$) создать массив $D[0 \ldots W] = [0, 0, \ldots, 0]$ для w от 1 до w: для i от 1 до n: если $w_i \le w$: $D[w] \leftarrow \max(D[w], D[w - w_i] + c_i)$ Вернуть D[W] Время работы: O(nW). Кафедра экономической информатики. Бгуир. 2017

PISL09. Тренинг дин. программирования.

Пример: W = 1030 руб. 14 руб. 16 руб. 9 руб.
6 3 4 2

0 1 2 3 4 5 6 7 8 9 10
0 0 9 14 18 0 0 0 0 0 0

Кафедра экономической информатики. Бгуир. 2017

21

PISL09. Тренинг дин. программирования.

Рюкзак без повторений

- Что если повторения запрещены?
- Знание оптимальных стоимостей для $D[w w_i]$ не поможет для вычисления D[w], поскольку оптимальное решение для рюкзака вместимости $w w_i$ уже может содержать i-й предмет (и тогда к этому решению нельзя будет просто добавить предмет i, чтобы получить решение для рюкзака вместимости w).
- Новые подзадачи: для $0 \le w \le W$ и $0 \le i \le n$, D[w,i] максимальная стоимость рюкзака вместимости w, если разрешено использовать только предметы $1,\ldots,i$.
- Предмет *і* либо используется, либо нет:

$$D[w, i] = \max\{D[w - w_i, i - 1] + c_i, D[w, i - 1]\}.$$

Кафедра экономической информатики. Бгуир. 2017

23

PISLO9. Тренинг дин. программирования. Пример: W = 10 30 руб. 14 руб. 16 руб. 9 руб. 6 3 4 2

0 1 2 3 4 5 6 7 8 9 10

0 0 9 14 18 23 30 32 39 44 48

Кафедра экономической информатики. Бгуир. 2017

Кафедра экономической информатики. Бгуир. 2017

PISL09. Тренинг дин. программирования.

```
КNAPSACKWITHOUTREPSBU(W, w_1, \ldots, w_n, c_1, \ldots, c_n) создать массив D[0 \ldots W, 0 \ldots n] для w от 0 до W: D[w, 0] \leftarrow 0 для i от 0 до n: D[0, i] \leftarrow 0 для i от 1 до m: для w от 1 до W: D[w, i] \leftarrow D[w, i - 1] если w_i \leq w: D[w, i] = \max(D[w, i], D[w - w_i, i - 1] + c_i) вернуть D[W, n]
```

```
      PISLO9. Тренинг дин. программирования.

      КNАРЅАСКѾІТНОИТЯЕРЅВИ (W, w_1, \ldots, w_n, c_1, \ldots, c_n)

      создать массив D[0 \ldots W, 0 \ldots n]

      для w от 0 до W:

      D[w, 0] \leftarrow 0

      для i от 1 до i:

      для i от 1 до i:

      для i от 1 до i:

      i для i от 1 до i

      i для i для i

      i для i

      i для i

      i для i

      i для i
```


PISL09. Тренинг дин. программирования. Пример: W = 1014 руб. 16 руб. 30 руб. 9 руб. 2 0 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 30 30 30 30 30 2 0 0 14 14 14 30 30 30 44 44 3 0 0 0 14 16 16 30 30 30 44 46 4 0 0 9 14 16 23 30 30 39 44 46 Оптимальное решение: 0 1 0 Кафедра экономической информатики. Бгуир. 2017

Ω

PISL09. Тренинг дин. программирования.

Сверху вниз или снизу вверх?

- Рассмотренные алгоритмы заполняют таблицу снизу вверх: от более простых задач к более сложным.
- Алгоритм, заполняющий таблицу сверху вниз, делает рекурсивные вызовы для подзадач, но до того, как решать подзадачу, проверят, не сохранён ли уже ответ для неё в таблице.
- Если все подзадачи должны быть решены, то подход снизу вверх обычно работает быстрее, поскольку не имеет накладных расходов на рекурсию.

Кафедра экономической информатики. Бгуир. 2017

22

PISL09. Тренинг дин. программирования.

Дин. прог. сверху вниз для рюкзака с повторениями

```
KNAPSACKTD(w)
```

```
если w нет в хеш-таблице H: v \leftarrow 0 для всех i от 1 до n: если w_i \leq w: v \leftarrow \max\{v, \text{KnapsackTD}(w-w_i)+c_i\} H[w] \leftarrow v вернуть H[w]
```

Кафедра экономической информатики. Бгуир. 2017

35

PISL09. Тренинг дин. программирования.

Сверху вниз или снизу вверх?

- Рассмотренные алгоритмы заполняют таблицу снизу вверх: от более простых задач к более сложным.
- Алгоритм, заполняющий таблицу сверху вниз, делает рекурсивные вызовы для подзадач, но до того, как решать подзадачу, проверят, не сохранён ли уже ответ для неё в таблице.
- Если все подзадачи должны быть решены, то подход снизу вверх обычно работает быстрее, поскольку не имеет накладных расходов на рекурсию.
- Есть, однако, ситуации, когда не нужно решать все подзадачи (чтобы решить исходную задачу): например, если W и все w_i делятся на 100, то нас не интересуют решения для подзадач D[w] при w, не делящемся на 100.

Кафедра экономической информатики. Бгуир. 2017

2/1

PISL09. Тренинг дин. программирования.

Время работы

■ Время работы O(nW) не является полиномиальным, потому что длина входа пропорциональная $\log W$, а не W.

Кафедра экономической информатики. Бгуир. 2017

PISL09. Тренинг дин. программирования.

Время работы

- Время работы O(nW) не является полиномиальным, потому что длина входа пропорциональная $\log W$, а не W.
- Другими словами, время работы есть $O(n2^{\log W})$.

Кафедра экономической информатики. Бгуир. 2017

7

PISL09. Тренинг дин. программирования.

Время работы

- Время работы O(nW) не является полиномиальным, потому что длина входа пропорциональная $\log W$, а не W.
- Другими словами, время работы есть $O(n2^{\log W})$.
- Например, для

W = 71345970345617824751

(всего двадцать цифр!) алгоритму потребуется около 10^{20} базовых операций.

Кафедра экономической информатики. Бгуир. 2017

39

PISL09. Тренинг дин. программирования.

Время работы

- Время работы O(nW) не является полиномиальным, потому что длина входа пропорциональная $\log W$, а не W.
- Другими словами, время работы есть $O(n2^{\log W})$.

Кафедра экономической информатики. Бгуир. 2017

38

PISL09. Тренинг дин. программирования.

Перемножение последовательности матриц

Вход: последовательность n матриц A_1, \ldots, A_n , которые нужно перемножить.

Выход: порядок умножения, минимизирующий

стоимость умножения.

Кафедра экономической информатики. Бгуир. 2017

PISLO9. Тренинг дин. программирования.

Замечания

■ Обозначим размеры матриц $A_1, ..., A_n$ через

$$m_0 \times m_1, m_1 \times m_2, \ldots, m_{n-1} \times m_n$$

соответственно. То есть размер A_i есть $m_{i-1} imes m_i$.

• Умножение матриц не коммутативно (в общем случае, $A \times B \neq B \times A$), но ассоциативно:

$$A \times (B \times C) = (A \times B) \times C$$
.

lacksquare Значит, A imes B imes C imes D может быть вычислено как

$$(A \times B) \times (C \times D)$$
 или $(A \times (B \times C)) \times D$.

lacktriangleright Стоимость умножения двух матриц размеров p imes q и q imes r будем считать pqr.

Кафедра экономической информатики. Бгуир. 2017

11

PISLO9. Тренинг дин. программирования. Пример: $A \times ((B \times C) \times D)$ $X = A \times B \times C \times D$ $X = A \times D \times D \times D$ Стоимость: $20 \cdot 1 \cdot 10$ Кафедра экономической информатики. Бгуир. 2017

PISLO9. Тренинг дин. программирования.

Пример: $(A \times B) \times (C \times D)$

 $\begin{array}{c} A\times B\times C\times D \\ 50\times 100 \end{array}$

стоимость: $50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100 = 7000$

Кафедра экономической информатики. Бгуир. 2017

40

PISL09. Тренинг дин. программирования.

Подзадачи и рекуррентное соотношение

 $lacksymbol{\blacksquare}$ Для $1 \leq i \leq j \leq n$, пусть

D[i,j] = мин. стоимость вычисления $A_i \times A_{i+1} \times \ldots \times A_j$.

- Корень поддерева разбивает его на два поддерева: $A_i \times \ldots \times A_k$ и $A_{k+1} \times \ldots \times A_j$ (для некоторого $i \leq k < j$).
- Рекуррентное соотношение:

$$D[i,j] = \min_{i \leq k < j} \{ D[i,k] + D[k+1,j] + m_{i-1} \cdot m_k \cdot m_j \}.$$

Кафедра экономической информатики. Бгуир. 2017

51

РІSLO9. Тренинг дин. программирования. Порядки как строго двоичные деревья A = B = C A = C

PISL09. Тренинг дин. программирования.

Дин. прог. сверху вниз

Инициализация

создать таблицу $D[1\ldots n,1\ldots n] \leftarrow [\infty,\ldots,\infty]$

Кафедра экономической информатики. Бгуир. 2017

PISL09. Тренинг дин. программирования.

Дин. прог. сверху вниз

Инициализация

```
создать таблицу D[1\ldots n,1\ldots n] \leftarrow [\infty,\ldots,\infty]
```

Функция MATRIXMULTTD(i, j)

```
если D[i,j] = \infty:
если i=j: D[i,j] \leftarrow 0
иначе:
для k от i до j-1:
\ell \leftarrow \texttt{MATRIXMULTTD}(i,k)
r \leftarrow \texttt{MATRIXMULTTD}(k+1,j)
D[i,j] \leftarrow \min(D[i,j], \ell+r+m_{i-1}m_km_j)
вернуть D[i,j]
```

Кафедра экономической информатики. Бгуир. 2017

E2

PISL09. Тренинг дин. программирования.

Порядок подзадач

- Хотим идти от меньших подзадач к бо́льшим.
- Размером подзадачи естественно считать требующееся количество умножений: j-i.
- Возможный порядок:

Кафедра экономической информатики. Бгуир. 2017

51

PISL09. Тренинг дин. программирования.

Дин. прог. сверху вниз

Инициализация

```
создать таблицу D[1\ldots n,1\ldots n] \leftarrow [\infty,\ldots,\infty]
```

Функция MATRIXMULTTD(i, j)

```
если D[i,j] = \infty:
  если i = j: D[i,j] \leftarrow 0
  иначе:
  для k от i до j-1:
  \ell \leftarrow \texttt{MATRIXMULTTD}(i,k)
  r \leftarrow \texttt{MATRIXMULTTD}(k+1,j)
  D[i,j] \leftarrow \min(D[i,j], \ell + r + m_{i-1}m_km_j)
  вернуть D[i,j]
```

Время работы: $O(n^3)$.

Кафедра экономической информатики. Бгуир. 2017

54

PISLO9. Тренинг дин. программирования.

Дин. прог. снизу вверх

```
Функция МАТRIXMULTBU (m_0, m_1, \ldots, m_n) создать массив D[1\ldots n, 1\ldots n] \leftarrow [\infty, \ldots, \infty] для i от 1 до n: D[i,i] \leftarrow 0 для s от 1 до n-1: для i от 1 до n-s: j \leftarrow i+s для k от i до j-1: D[i,j] \leftarrow \min(D[i,j], D[i,k] + D[k+1,j] + m_{i-1}m_km_j) вернуть D[1,n]
```

Кафедра экономической информатики. Бгуир. 2017

סו

PISL09. Тренинг дин. программирования.

Дин. прог. снизу вверх

```
Функция МАТRIXMULTBU(m_0, m_1, \ldots, m_n)

создать массив D[1\ldots n, 1\ldots n] \leftarrow [\infty, \ldots, \infty]
для i от 1 до n:

D[i,i] \leftarrow 0
для s от 1 до n-1:

для i от 1 до n-s:

j \leftarrow i+s

для k от i до j-1:

D[i,j] \leftarrow \min(D[i,j], D[i,k] + D[k+1,j] + m_{i-1}m_km_j)

вернуть D[1,n]
```

Время работы: $O(n^3)$.

Кафедра экономической информатики. Бгуир. 2017

Кафедра экономической информатики. Бгуир. 2017

-7

Задание А.

```
Задача на программирование: рюкзак с повторами
Первая строка входа содержит целые числа
   1<=W<=100000 вместимость рюкзака
   1<=n<=300
                   сколько есть вариантов золотых слитков
                    (каждый можно использовать множество раз).
Следующая строка содержит п целых чисел, задающих веса слитков:
 0<=w[1]<=100000 ,..., 0<=w[n]<=100000
Найдите методами динамического программирования
максимальный вес золота, который можно унести в рюкзаке.
Sample Input:
10 3
1 4 8
Sample Output:
10
Sample Input 2:
15 3
2 8 16
Sample Output 2:
14
```

PISLO9. Тренинг дин. программирования.

Кафедра экономической информатики. Бгуир. 2017

Задание Б.

```
/*
Задача на программирование: ръкзак без повторов

Первая строка входа содержит целые числа

1<=W<=100000 вместимость ръкзака

1<=n<=300 число золотых слитков
 (каждый можно использовать только один раз).

Следующая строка содержит п целых чисел, задающих веса каждого из слитков:

0<=w{1}<=100000 ,..., 0<=w{n}<=100000

Найдите методами динамического программирования
максимальный вес золота, который можно унести в ръкзаке.

Sample Input:
10 3
1 4 8
Sample Output:
9

*/

*/

Кафедра экономической информатики. Бгуир. 2017
```

Задание С.