Algoritmi e Strutture Dati

a.a. 2016/17

Compito del 9/6/2017

Cognome:				Nome:					
				E-mail:					
		(3		rte I ercizio vale 2 punti)					
1.	Completare la seguente tabella indicando la complessità delle operazioni che si riferiscono a un dizionario di <i>n</i> elementi. Per l'operazione Predecessore e Cancellazione si assuma di essere sull'elemento <i>x</i> a cui si applica l'operazione.								
		Ricerca	Minimo	Predecessore	Cancellazione	Costruzione			
	Albero binario di ricerca								
	Array ordinato in senso decrescente								
2.	in un grafo pesato c (dove <i>n</i> rappresenta	on pesi positiv	vi avente comples	olvere il problema dei ssità $T(n) = 3T(n/2) + n^2$ e sostiene che il suo a sposta , se l'affermazio	lgoritmo sia più ef				
3.	La Prof.ssa Raffae complessità	tà ha svilupp		o per risolvere il pro $T(n) = T(n/2) + 2^n$	blema "Ciclo Ha	miltoniano" avente			

(dove n rappresenta il numero di vertici del grafo), e sostiene che questo le consente di dimostrare che P = NP.

Si dica, giustificando tecnicamente la risposta, se l'affermazione è corretta.

Algoritmi e Strutture Dati

a.a. 2016/17

Compito del 9/6/2017

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

1. Dati due numeri interi x ed y definiamo la distanza tra x ed y come d(x, y) = |x - y|. Sia T un albero binario di ricerca le cui chiavi sono numeri interi e avente *almeno due* nodi. Si descriva un algoritmo **efficiente** che restituisca la distanza minima fra le chiavi di due nodi di T.

Per l'esame da 12 CFU, deve essere fornita una funzione C e si devono dichiarare i tipi Tree e Node utilizzati per rappresentare l'albero binario di ricerca e il nodo.

Per l'esame da 9 CFU, è sufficiente specificare lo pseudocodice.

2. Scrivere un algoritmo **efficiente** *maxIntervallo(v, n)* che, dato un vettore *v* di *n* intervalli (con *n*>0), verifica se esiste un intervallo in *v* che contiene tutti gli altri intervalli. **Tutti gli intervalli sono NON vuoti.** Analizzare la complessità dell'algoritmo giustificando opportunamente la risposta.

Si devono scrivere eventuali procedure e/o funzioni ausiliarie.

Esempio:

Sia
$$v = \langle (-2,11), (-5,-4), (-1,7), (10,15) \rangle$$
 maxIntervallo $(v,4) = false$
Sia $v = \langle (-2,11), (-11,15), (7,10) \rangle$ maxIntervallo $(v,3) = true$

3. Si vuole costruire una rete stradale che colleghi cinque città (A-E), minimizzando i costi complessivi di realizzazione. I costi per la costruzione di una strada tra due città sono sintetizzati nella seguente tabella (dove +∞ significa che la strada è irrealizzabile):

	A	В	C	D	Е
A	0	3	5	11	9
В	3	0	3	9	8
С	5	3	0	$+\infty$	10
D	11	9	+∞	0	7
Е	9	8	10	7	0

Si formuli il problema dato in termini di un problema di ottimizzazione su grafi, e si descriva un algoritmo per la sua soluzione discutendone correttezza e complessità. Infine, si simuli accuratamente l'algoritmo presentato per determinare una soluzione del problema.

4. Sia G = (V, E) un grafo non orientato, connesso e pesato. Dato un taglio $(S, V \setminus S)$ di G, sia (u,v) un arco che lo attraversa tale che per tutti gli altri archi (x,y) che attraversano il taglio risulta $w(x,y) \le w(u,v)$. Si stabilisca, giustificando formalmente la risposta, se la seguente affermazione è vera o falsa: «Se T è un albero di copertura di G che non contiene (u,v), allora T non è un albero di copertura massimo.»

Si può affermare la stessa cosa se si assume che tutti i pesi di G siano distinti? Perché?

Nota: nel fornire le giustificazioni *non* si faccia ricorso al teorema fondamentale degli MST.