

Анализ и обнаружение аномалий в ІоТ-данных

Понятие аномалий в данных

Аномалия – это наблюдение, отклоняющееся от общих закономерностей данных, существенно отличающееся от типичных значений и требующее специального внимания при анализе.

Причины возникновения аномалий

Технические сбои оборудования

Ошибки датчиков

Внешние факторы

Взлом систем мониторинга

Необычное поведение наблюдаемого объекта

Задачи анализа аномалий

Предотвращение аварий

Своевременное устранение сбоев

Улучшение качества прогнозов

Повышение безопасности и надёжности технологических процессов и систем

Типы аномалий в данных

Точечные аномалии Единичные экстремумы в данных

Контекстуальные аномалии

Значения, аномальные только в определенных условиях

Коллективные аномалии

Группы нетипичных значений в данных

Методы анализа аномалий

Статистические подходы

- Z-score
- Межквартильный размах

Методы машинного обучения

- Isolation Forest
- LOF (Local Outlier Factor)

Визуальный анализ

Графики, диаграммы и другие методы визуализации данных

Isolation Forest: основной принцип ®

Построение случайных деревьев решений

Алгоритм создает множество деревьев решений со случайным выбором признаков

Определение глубины изоляции

Измеряется, насколько быстро объект изолируется в дереве

Сравнение с **нормальными объектами**

Аномалии изолируются на меньшей глубине, чем нормальные объекты.

Особенности ІоТ-данных

Огромные массивы данных от множества устройств

ША Разнообразие сенсоров

Различные типы датчиков и измеряемых параметров

∕∨ Высокая частота измерений

Постоянный поток данных в реальном времени

Периодические тренды

Циклические паттерны в данных

Множественные корреляции

Взаимосвязи между разлійчными параметрами

Наличие шума

Помехи и искажения в измерениях

Задача выявления аномалий в ІоТ-данных 🚯

Возможности RapidMiner для анализа IoT-данных

	Загрузка и предобработка данных				
[S _{XML}	Расширения для обнаружения аномалий				
Q	Визуализация результатов				
ſ٩	Интерпретация результатов				

Этапы предобработки ІоТ-данных

X

Проверка типов данных

Убедиться, что все данные имеют корректный формат

Обработка пропусков

Заполнение или удаление отсутствующих значений

Преобразование временных меток

Конвертация Epoch в читаемый формат даты и времени

Исключение нерелевантных признаков

Удаление параметров, не влияющих на анализ

Загрузка данных в RapidMiner

Оператор Read CSV

Используется для загрузки loT-данных в формате CSV

- Автоматически определяет типы данных
- Позволяет настроить параметры импорта

Row No.	ts	device	со	humidity	light	lpg	motion	smoke	temp
1	159451209	b8:27:eb:bf	0.005	51	false	0.008	false	0.020	22.700
2	159451209	00:0f:00:70	0.003	76	false	0.005	false	0.013	19.700
3	159451209	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
4	159451209	1c:bf:ce:15:	0.004	76.800	true	0.007	false	0.019	27
5	159451210	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
6	159451210	1c:bf:ce:15:	0.004	77.900	true	0.007	false	0.019	27
7	159451210	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
8	159451210	00:0f:00:70	0.003	76	false	0.005	false	0.014	19.700
9	159451210	1c:bf:ce:15:	0.004	77.900	true	0.007	false	0.018	27
10	159451210	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
11	159451211	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
12	159451211	1c:bf:ce:15:	0.004	78	true	0.007	false	0.019	27
13	159451211	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
14	159451211	1c:bf:ce:15:	0.004	78	true	0.007	false	0.019	27
15	159451212	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
16	159451212	00:0f:00:70	0.003	75.800	false	0.005	false	0.014	19.700
17	159451212	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600
18	159451212	b8:27:eb:bf	0.005	50.900	false	0.008	false	0.020	22.600

ExampleSet (405,184 examples,0 special attributes,9 regular attributes)

			Name	! !	Type	Missing	Statistics		Filter (9 / 9 attributes): Search for Attribute ▼ ▼
Data		~	ts		Real	0	Min 1594512094.386	Max 1595203417.264	Average 1594858017.297
Statistics		~	device		Nominal	0	Least 1c:bf:ce [] (105918)	Most b8:27:eb [] (187451)	Values b8:27:eb:bf:9d:51 (187451), 00:0f:00:70:91:0a (111815),[1 mol
		~	со		Real	0	0.001	Max 0.014	Average 0.005
	Visualizations	~	humidity		Real	0	Min 1.100	Max 99.900	Average 60.512
	"	~	light		Nominal	0	Least true (112527)	Most false (292657)	Values false (292657), true (112527)
Annotations	Annotations	~	lpg		Real	0	Min 0.003	Max 0.017	Average 0.007
		~	motion		Nominal	0	Least true (482)	Most false (404702)	Values false (404702), true (482)
		~	smoke		Real	0	Min 0.007	Max 0.047	Average 0.019
		v	temp		Real	0	Min O	Max 30.600	Average 22.454

Преобразование временных данных

Исходный формат Epoch Время в секундах с 1970 года

Generate Attributes

Создание новых атрибутов даты/времени

Numerical to Date

Преобразование числа в дату

Isolation Forest B RapidMiner

Число деревьев

Определяет количество случайных деревьев для построения модели

Размер листьев

Максимальное количество объектов в листовом узле

Выборка bootstrap

Метод формирования обучающих выборок для деревьев

Эвристика выбора признаков

Стратегия отбора признаков при построении деревьев

Process	Parameters ×					
P Detect Outlier (I	solation Forest)					
number of trees	100					
max leaf size	1					
bootstrap ratio	0.9					
✓ use feature heuristic						
score calculation	average_path					

Оператор Generate Outlier Flag

Функциональность оператора

- Добавляет бинарную метку аномалий
- Выделяет топ-N% наиболее аномальных наблюдений по расчётному скору

Визуализация временых аномалий

Линейные графики наглядно отображают аномальные пики в значениях датчиков (например, СО и температуры) с помощью цветовой маркировки

Диаграмма рассеяния для анализа аномалий

Выявление нетипичных комбинаций параметров

- Температура и влажность
- Газ и температура
- Другие комбинации параметров

Диаграммы рассеяния позволяют визуально определить точки, выпадающие из общего распределения данных

Анализ булевых признаков в юТданных

Аномальные комбинации булевых признаков (например, движение без света) выявляются через специальные графики и группировки

Гистограммы распределения аномалий

Гистограммы показывают, что большинство аномалий сосредоточено в экстремальных значениях признаков (например, концентрации СО).

Причины выявленных аномалий в ІоТ-данных

Неисправности датчиков

Физические поломки или сбои в работе измерительных устройств

Ж Сбои передачи данных

Проблемы с сетевым соединением или протоколами передачи

Реальные физические события

Утечки газа, экстремальные температуры и другие реальные аномалии

Ограничения анализа аномалий

Методы обнаружения аномалий могут приводить к ложным срабатываниям или пропускать скрытые аномалии. Эффективность сильно зависит от выбора параметров алгоритмов.

Рекомендации по анализу loT-данных

Сочетание нескольких алгоритмов

Регулярная перекалибровка датчиков

Проверка наиболее подозрительных аномалий вручную

Перспективные направления анализа аномалий

- Алгоритмы глубокого обучения
- Гибридные модели
- Подходы на основе ансамблей

Всё это обеспечивает более глубокий анализ многомерных данных.

Заключение по анализу аномалий

Проактивное управление

Предотвращение аварий до их возникновения благодаря раннему обнаружению отклонений.

Оптимизация ресурсов

Сокращение затрат на обслуживание за счет точечного реагирования.

Повышение надежности

Улучшение стабильности инфраструктуры через мониторинг скрытых проблем.

Улучшение процессов

Накопление данных об аномалиях помогает совершенствовать бизнеспроцессы.

Грамотный анализ аномалий – ключ к устойчивости ІоТ-систем.