Homework 3

1. For each of the following values of q, generate 5 random members and run the Miller-Rabin test using them. What is the probability that q is prime?

$$q = 10601$$

Step 1. $q \not\equiv 0 \pmod{2}$. So q is odd.

Step 2.
$$(q-1) = 2^k l \Longrightarrow 10600 = 2^3 * 1325$$
.
k = 3; l = 1325.

Step 3. Choose a random base $a \in \{1, 2, \dots 10600\}$.

Step 4. Compute the below sequence. $\{a^l, a^{2l}, a^{4l}, a^{8l}\}$, since k = 3.

Table 1: Test for each random base.

\mathbf{Base}	Sequence	Test 1	Test 2
192	2892, 10076, 10600, 1	Prime	Composite
7219	7709, 10076, 10600, 1	Prime	Composit
5435	8244, 525, 10600, 1	Prime	Composite
1169	10076, 10600, 1, 1	Prime	Compoiste
16	1, 1, 1, 1	Prime	Prime

Result. q = 10601 is a Prime and tested as prime by Miller-Rabin with Probability = 1 for the given random bases.

1

$$q = 101101$$

Step 1. $q \not\equiv 0 \pmod{2}$. So q is odd.

Step 2.
$$(q-1) = 2^k l \Longrightarrow 10600 = 2^2 * 25275$$
.
 $k = 2; l = 25275$.

Step 3. Choose a random base $a \in \{1, 2, \dots 101100\}$.

Step 4. Compute the below sequence.

 $\{a^l, a^{2l}, a^{4l}\}$, since k = 2.

Table 2: Test for each random base.

Base	Sequence	Test 1	Test 2
21082	39885, 90091, 1	Prime	Composite
101046	42834, 71709, 82720	Composite	Prime
92196	16666, 31109, 31109	Composite	Prime
72167	24452, 90091, 1	Prime	Composite
47752	86659, 1, 1	Prime	Composite

Result. q, $101101 \equiv 0 \pmod{7}$, is a Composite and tested by Miller-Rabin as prime with Probability = 1 for the given random bases.

q = 15841

Step 1. $q \not\equiv 0 \pmod{2}$. So q is odd.

Step 2.
$$(q-1) = 2^k l \Longrightarrow 10600 = 2^5 * 495.$$

k = 5; l = 495.

Step 3. Choose a random base $a \in \{1, 2, \dots 15840\}$.

Step 4. Compute the below sequence. $\{a^{l}, a^{2l}, a^{4l}, a^{8l}, a^{16l}, a^{32l}\}$, since k = 5.

Table 3: Test for each random base.

\mathbf{Base}	Sequence	Test 1	Test 2
14293	6852, 13021, 218, 1, 1, 1	Prime	Composite
15346	$1,\ 1,\ 1,\ 1,\ 1,\ 1$	Prime	Prime
2472	12461, 3039, 218, 1, 1, 1	Prime	Composite
2698	776, 218, 1, 1, 1, 1	Prime	Composite
5057	3380, 3039, 218, 1, 1, 1	Prime	Composite

Result. q, $15841 \equiv 0 \pmod{7}$, is a Composite and tested by Miller-Rabin as Prime with Probability = 1 for the given random bases.

- 2. Compute the following
 - 1. 7^7 in $\mathbb{Z}4$

use bomod like here)

In $\mathbb{Z}4$, $[7^7] = 7^7 \mod 4$

In $\mathbb{Z}4$, [7] = [3] and $7^3 mod 4 = 3$

We can write $7^7 = 7^3 * 7^3 * 7 \Longrightarrow 7^7 mod4 = (7^3 mod4) * (7^3 mod4) * (7mod4) mod4$ By substitution, we get, $7^7 mod4 = 27 mod4 = 3$ in $\mathbb{Z}4$

2. 7^{7^7} in $\mathbb{Z}4$

In $\mathbb{Z}4$, $[7^{7^7}] = 7^{7^7} \mod 4$

From above problem we know, $7^7 = 3$ in $\mathbb{Z}4$

 $7^{7^7} \ mod4 = ((7^7 mod4)^7) mod4$

 $7^{7^7} \mod 4 = 3^7 \mod 4 = 3$

 $7^{7^7} = 3 \ in \ \mathbb{Z}4$

3. 7^{7^7} in $\mathbb{Z}5$

In $\mathbb{Z}5, \lceil 7^{7^{7^7}} \rceil = 7^{7^{7^7}} \mod 5$

5 is a prime number and is a coprime to 7, so by Fermat's little therom, $7^4 mod 5 = 1$ Let say $7^{7^7} = r + 4k$, then by applying Fermat's therom, $7^{7^7} mod 5 = (7^r mod 5) mod 5$

If $7^{7^7} = r + 4k$, then $r = 7^{7^7} \mod 4$

By above problem, we know that $7^{7} \mod 4 = 3 \Longrightarrow r = 3$

By substitution, $7^{77} \mod 5 = (7^3 \mod 5) \mod 5 = 3 \mod 5$

 $\text{In } \mathbb{Z}5, 3mod 5 = 3 \Longrightarrow [7^{7^7}] = 3$

3. Compute $2^{3^{4^5}} mod 79$

79 is a prime number and $2\sqrt{7}$ are coprime. By Fermat's little therom, $2^{78} mod 79 = 1$

Let $3^{4^5} = r + 78k$, then, $2^{3^{4^5}} \mod 79 = (2^r)(2^{78})^k \mod 79$

By applying Fermans therom, $2^{3^{4^5}} mod 79 = (2^r) mod 79$

If $3^{4^5} = r + 78k \implies r = 3^{4^5} \mod{78}$

We can factorize 78 = 2 * 3 * 13. Now we find modulus of 3^{4^5} for each factor

 $3^{4^5} mod 2 = 1 mod 2$

 $3^{4^5} mod 3 = 0 mod 3$

For $3^{4^5} mod 13$, let $4^5 = x + 12s$, then $3^{4^5} mod 13 = (3^4)(3^{12})^s mod 13$

13 is a prime and 3, 13 are coprime, by applying Fermats therom,

we can say, $3^{4^5} mod 13 = 3 mod 13$, where x=4

Now we have 3 modulo, y = 1 mod 2; y = 0 mod 3; y = 3 mod 13

If we apply chinese remainder therom to solve above modulo, we get $3^{45} mod 78 = 237 mod 78$

 $\implies r = 237 mod 78 = 3 \implies 2^{3^{4^5}} mod 79 = (2^3) mod 79$

4. Prove that if gcd(m,n) = 1 then $\varphi(m.n) = \varphi(m).\varphi(n)$

Given function $\varphi(n)$ is a set of integers obtained by a modulo (n). It was given that $gcd(m,n) = 1 \Longrightarrow integer \ m, \ n \ are \ coprime$.

Chinese remainder theorem says that if $q = b_1.b_2$ where b_1, b_2 are positive integers and such that $gcd(b_1, b_2) = 1$, then the below map is isomorphic, that is one-to-one, so, $\lambda_{q,(b_1,b_2)} = \mathbb{Z}/q\mathbb{Z} = (\mathbb{Z}/b_1\mathbb{Z}) \times (\mathbb{Z}/b_2\mathbb{Z})$

If we substitute $b_1 = m, b_2 = n$ we get below mapping. $(\mathbb{Z}/mn\mathbb{Z})^{\times} = (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$ $\Longrightarrow \varphi(m.n) = \varphi(m).\varphi(n)$

