

10/528,612 - 571

571

Amendments to the Claims:

- I. Process 1-3 Form I
II. Comp Form II 4
III. Process Form II 5

This listing of claims will replace all prior versions, and listings, of claims in the application.

IV Conferm II 6

1. (currently amended) A process for preparing a compound of formula (I)

(I)

453

518/453 20/03/2013

249/61 249/62

249/63

where R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino; and R⁶ is hydrogen or a protecting group,

which process comprises cyclisation of a compound of formula (II)

(II)

391 Process I, II, V, VI, VII, VIII

where R⁴, R⁵ and R⁶ are as defined in relation to formula (I), and R⁷ is a nitrogen protecting group[[,]]; and removing the group R⁷[[,]]; and thereafter if desired, optionally removing any protecting group R⁶.

2. (original) A method according to claim 1 wherein R⁷ is a group of sub-formula (i)

where R^8 is a straight chain alkyl group of from 1 to 6 carbon atoms.

3. (original) A process according to claim 1 or claim 2 wherein R^4 and R^5 are independently selected from hydrogen, halo, nitro, cyano, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, ureido, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl and C_{1-6} alkanoyloxy.

4. (original) A compound of formula (II) as defined in claim 1.

5. (original) A process for preparing a compound according to claim 4 which comprises reacting a compound of formula (III)

(III)

where R^4 and R^5 are as defined in relation to formula (I), and R^{12} is a directing nitrogen protecting group,

with a compound of formula (IV)

where R^7 is as defined above, under acidic conditions.

6. (original) A compound of formula (III) as defined in claim 5.

7. (original) A process for preparing a compound according to claim 6 which comprises reacting a compound of formula (V)

(V)

where R^4 and R^5 are as defined above in claim 1 and R^{12} is as defined in relation to formula (III), with a compound of formula (VI)

where L is a leaving group.

8. (original) A compound of formula (V) as defined in claim 7.

9. (currently amended) A process for preparing a compound according to claim 8 which comprises reacting a compound of formula (VII)

(VII)

where R^4 and R^5 are as defined in claim 1 and R^{12} is as defined in relation to formula (III), with a lithiating agent, such as ~~N~~ butyl lithium, and subsequently with a formylating agent[[,]] such as a compound of formula (VIII)

(VIII)

where R^9 and R^{10} are alkyl groups and in particular lower alkyl groups of 1 to 4 carbon atoms, such as methyl.

10. (original) A compound of formula (VII) as defined in claim 9.

11. (original) A process for preparing a compound according to claim 10 which comprises subjecting a compound of formula (IX)

where R^4 and R^5 are as defined above in relation to formula (I),
to a Curtius rearrangement reaction, in the presence of an alcohol of formula $R^{12}OH$ where R^{12} is
as defined in claim 5.

12. (currently amended) A method process according to claim 1, for the production of preparing a compound of formula (I) where R^6 is hydrogen, wherein the method further comprises the step of reacting the compound of formula (I) obtained with an amine of formula (XIII)[[.]]

where R^{14} is selected from hydrogen or C_{1-8} alkyl,
 m is an integer of from 0 to 4,
each R^{15} is the same or different and is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, $N-(C_{1-6}$ alkyl)amino, $N,N-(C_{1-6}$ alkyl)₂amino, C_{1-6} alkanoylamino, $N-(C_{1-6}$ alkyl)carbamoyl, $N,N-(C_{1-4}$ alkyl)₂carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, $N-(C_{1-6}$ alkyl)sulphamoyl, $N,N-(C_{1-6}$ alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino, C_{1-6} alkylsulphonyl- $N-(C_{1-6}$ alkyl)amino, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl C_{1-6} alkyl, aryl, aryl C_{1-6} alkyl, heterocyclic group and (heterocyclic group) C_{1-6} alkyl; wherein R^4 $\underline{R^{15}}$ may be optionally substituted on carbon by one or more

groups selected from P and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R; each R¹⁶ is the same or different and is selected from is hydrogen or C₁₋₆alkyl; R¹⁷ is selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, sulphamoylamino, N-(C₁₋₆alkyl)sulphamoylamino, N,N-(C₁₋₆alkyl)₂sulphamoylamino, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonylaminocarbonyl, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino and a group -E-F-G-H; wherein E and G are independently selected from a direct bond, -O-, -S-, -SO-, -SO₂-, -OC(O)-, -C(O)O-, -C(O)-, -NR^a-, -NR^aC(O)-, -C(O)NR^a-, -SO₂NR^a-, -NR^aSO₂-, -NR^aC(O)NR^b-, -OC(O)NR^a-, -NR^aC(O)O-, -NR^aSO₂NR^b-, -SO₂NR^aC(O)- and -C(O)NR^aSO₂-; wherein R^a and R^b are independently selected from hydrogen or C₁₋₆alkyl which is optionally substituted by a group V; F is C₁₋₆alkylene optionally substituted by one or more Q or a direct bond; H is selected from aryl, C₃₋₈cycloalkyl and heterocyclic groups; wherein H may be optionally substituted on carbon by one or more groups selected from S and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from T; P, S and Q are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group;

wherein P, S and Q may be optionally and independently substituted on carbon by one or more groups selected from V and wherein if said heterocyclic group contains an -NH-moiety that nitrogen may be optionally substituted by a group selected from U; V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylarnino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphanyl, ethylsulphanyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N- benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;

R, T and U are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)carbamoyl, phenyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl wherein R, T and U may be optionally and independently substituted on carbon by one or more groups selected from V;

to produce producing a compound of formula (XIV)

where R⁴, R⁵, R¹⁵, R¹⁶, R¹⁷ and m are as defined above,
or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof.

13. (new) The process of claim 9, wherein the formylating agent is a compound of formula (VIII)

(VIII)

where R^9 and R^{10} are alkyl groups.

14. (new) The process of claim 13, wherein one or both of R^9 and R^{10} are lower alkyl groups.

15. (new) The process of claim 14, wherein one or both of R^9 and R^{10} are methyl groups