10/574717 IAP15 Rec'd PCT/PTO 23MAR 2006

Method for the specific rapid detection of beverage-spoiling microorganisms

The invention is related to a method for the specific fast detection of drink-spoiling microorganisms by *in situ*-hybridization. Moreover, the invention is related to specific oligonucleotide probes which are used in the course of the method for detection as well as kits which contain these oligonucleotide probes.

Under the generic clause "non-alcoholic drinks" groups of beverages are summarized like fruit juices, fruit nectars, fruit concentrates, mashed fruits, soft drinks and waters.

Basically non-alcoholic drinks can, due to their diverse/varying composition of nutrients and growth stimulating substances, be classified as potentially endangered by the growth of a large variety of microorganisms.

According to present knowledge mainly yeasts, molds, lactic acid bacteria, acetic acid bacteria, bacilli and alicyclobacilli are found in non-alcoholic drinks and are thus described as "drink-spoiling" microorganisms.

In general contaminations with these microorganisms do not lead to health defects of the consumer but are associated with turbidity, changes of taste and smell within the endproduct and cause high economic losses for the producing industry by image damage based thereon.

Based on the naturally high concentrations of fruit acids and a corresponding low pH-value (a pH range from 2.5 to 4.5) in fruit juices and fruit nectars only acidophilic or acidotolerant microorganisms (such as lactic acid bacteria, alicyclobacilli, acid tolerant yeast and mold species) can grow and subsequently lead to a deterioration of these beverages.

A measure for restricting spoilage due to microorganisms is carbonisation of beverages. This method is commonly used for the production of soft drinks. By the

20

15

5

4]

25

30

addition of CO₂ almost anaerobic conditions are created in the product and only micro-aerophilic, facultatively anaerobic and anaerobic microorganisms (such as lactic acid bacteria, acetic acid bacteria and yeasts) are able to tolerate this environment.

5

10

15

20

25

Non-carbonated beverages are in most cases pasteurised in order to assure a long stability and quality of these products. By pasteurisation all vegetative microorganisms should be killed in a manner as comprehensive as possible. However, spores formed by bacilli or alicyclobacilli are not eliminated by this measure. Furthermore, some mold species are able to sustain this process without damage and subsequently create product damages.

A crucial factor for guaranteeing the biological quality of the beverages is the search for the cause of contamination in order to finally eliminate the same. In general, two ways of contamination are distinguished: contaminations are characterised as primary contaminations when microorganisms are introduced into the process by the raw material or by contamination within the process.

Secondary contaminations are those which appear in the filling area after the actual production of the beverage.

The challenge which arises by these different factors for the microbiological quality control, resides in the comprehensive and fast identification of all cells present in the product in order to be able to initiate corresponding counter measures as fast as possible.

Until now conventional detection of drink-spoiling microorganisms is performed by a several days lasting enrichment of the sample in a selective culture medium followed by light microscopy. Furthermore, for the accurate identification of the drink-spoiling microorganism further physiological tests (like Gram-staining, sugar consumption tests) need to be carried out.

The disadvantages of this solely cultivation-based method are the long duration of the analysis, which cause significant logistic costs in beverage-producing companies. Furthermore, there is the threat of significant image loss for said company, if, after the delivery of products whose microbiological findings had not yet been inequivocally stated, contaminationen are realised and draw-back actions of the spoiled product batches are required.

10

5

In the following the drink-spoiling microorganisms and their state of the art detection is described in detail.

Yeasts and molds:

15

20

25

Microorganisms which can survive heat treatment and cause subsequently problems in the beverages are mainly the molds *Byssochlamys fulva* and *B. nivea*, *Neosartorya fischeri* and *Talaromyces flavus* as well as some yeasts. In carbonated drinks mainly the acid-tolerant, fermentative members of yeasts (*Saccharomyces spp.*, *Dekkera spp.* and *Zygosaccharomyces bailii*) are dominating. Besides the threat of product damage based on taste alterations and turbidity caused by these "fermentative yeasts" there is a potential danger of occasional bursts of the filled bottles.

The detection of yeasts and molds is currently performed by cultivation on corresponding culture media (e.g. SSL-bouillon, OFS-medium, malt-dextrose-medium, wort-agar) and needs between 2 and 7 days. A detection on genus or even species level is very time-consuming and is normally not performed.

Lactic acid bacteria

The members of lactic acid bacteria are Gram-positive, non spore-forming, catalasenegative rods and cocci which are characterised by a very high nutrient demand (above all vitamines, amino acids, purines and pyrimidines). As indicated by the name all lactic acid bacteria are able to produce lactic acid as fermentation product.

5

15

Due to their anaerobic growth and for anaerobic microorganisms atypical high tolerance and insensitivity against oxygen they are described as aerotolerant anaerobics.

10 Up until now the genera Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Carnobacterium, Bifidobacterium, Enterococcus, Pediococcus, Weissella and Streptococcus are referred to as "lactic acid bacteria".

Lactic acid bacteria play an ambivalent role in the food industry. On the one side their presence is wished and indispensable in some processes such as, e.g., the production of sauerkraut. On the other side their presence in beer or fruit juices can lead to a deterioration of the products. The growth of these bacteria is manifested mainly by turbidity, acidification and formation of gas and slime.

In the non-alcoholic drinks industry mainly the bacterial genera *Leuconostoc*, *Lactococcus*, *Lactobacillus*, *Oenococcus*, *Weissella* and *Pediococcus* are relevant as contaminants. Lactic acid bacteria are detected by a 5 to 7 days incubation at 25°C on MRS agar (pH 5.7).

25 Acetic acid bacteria

Bacteria of the genera *Acetobacter*, *Gluconobacter*, *Gluconoacetobacter* and *Acidomonas* are described with the trivial name "acetic acid bacteria". Bacteria of these genera are gram-negative, obligate aerobic, oxidase-negative rods whose optimum growth temperature is at 30°C. Acetic acid bacteria are able to grow also at

pH values of 2.2 to 3.0 and, therefore, can produce product damages in beverages having this pH value.

Phylogenetically, bacteria of this genus are members of the Alphaproteobacteria.

5

The product damages mainly goes along with turbidity and alteration of the taste by the formation of acetic acid and gluconic acid. For the detection of acetic acid bacteria mainly ACM-agar (incubation time: 14 days) and DSM-agar (incubation time: 3 to 5 days) have proved themselves.

10

Bacilli:

Bacilli are Gram-positive aerobic, partly facultatively anaerobic, mostly catalase-positive spore-forming rods. Up until now *Bacillus coagulans* was mainly identified as spoilage microorganism in the non-alcoholic beverage industry.

15

20

25

The detection is performed by plating the sample on dextrose-caseine-peptone agar or yeast extract-peptone dextrose starch agar and subsequent incubation at 55°C (incubation time: 3 days). In order to activate the spores and to achieve a germination of the spores of *B. coagulans*, respectively, a heat treatment of the sample is recommended at 80°C for 10 min. before the actual incubation.

Alicyclobacilli:

Alicyclobacilli are Gram-positive, aerobic, thermophilic and catalase-positive spore-forming rods. Members of this genus produce ? -alicyclic fatty acids as main fatty acids. Up until now *Alicyclobacillus acidoterrestris* was mainly identified in the non-alcoholic beverage industry as spoilage organism. In rare cases also *A. acidocaldarius* and *A. acidiphilus* were identified in spoiled beverages.

The optimum range of the growth temperature for *Alicyclobacillus* spp. is between 26 and 55°C. The pH range where bacteria of this genus can grow, is between 2.2 and 5.8.

- The growth of *A. acidoterrestris* leads to spoilage in fruit juices, which is manifested as alteration of the smell and taste due to the formation of guiacol and dibromophenol. A contamination with this organism proceeds mostly in a non-apparent way, which means that only in rare cases a turbidity is seen in infected beverages.
- Alicyclobacilli can be detected by cultivation for several days at 44 46°C on orange serum agar, potato dextrose agar, K-agar, YSG-agar or BAM-agar. Furthermore, for the exact confirmation of the finding a set of physiological tests is necessary. In order to activate the spores and to achieve a germination of the spores of *Alicyclobacillus ssp.*, respectively, heat treatment of the sample is recommended at 80°C for 10 min. before the actual incubation.

The routine detection methods for drink-spoiling microorgansims used so far, are very protracted and are partly too inaccurate and thus prevent fast and effective counter measures in order to save the contaminated product. The inaccuracy of the detection arises from a missing differentiation up to genus and/or species level.

20

25

30

As a logical consequence of the difficulties presented by traditional cultivation methods for the detection of drink-spoiling microorganisms, detection methods on the basis of nucleic acids are suitable for the fast, safe and specific identification of spoilage microorganisms in non-alcoholic beverages.

In PCR, which is polymerase chain reaction, a characteristic piece of the respective bacterial genome is amplified with specific primers. If the primer finds its target site, a million-fold amplification of a piece of the inherited material occurs. In the following analysis, for example by an agarose gel separating DNA fragments, a

qualitative evaluation can take place. In the most simple case this leads to the conclusion that target sites for the primers used were present in the tested sample. Further conclusions are not possible; these target sites can originate from both a living bacterium and a dead bacterium, or from naked DNA. Since the PCR reaction is positive also in the presence of a dead bacterium or naked DNA, this often leads to false-positive results. A further refinement of this technique is the quantitative PCR which aims at establishing a correlation between the amount of bacteria present and the amount of amplified DNA. Advantages of the PCR are its high specificity, its ease of application and its low expenditure of time. Its main disadvantages are its high susceptibility to contamination and therefore false-positive results, as well as the aforementioned lacking possibility to discriminate between viable and dead cells, and naked DNA, respectively.

5

10

15

20

25

30

A unique approach to combine the specificity of molecularbiological methods such as PCR and the possibility of visualizing bacteria, which is provided by the antibody methods, is the method of fluorescence *in situ* hybridization (FISH; R.I. Amann, W. Ludwig and K.-H. Schleifer, 1995. Phylogenetic identification and *in situ* detection of individual microbial cells without cultivation. Microbiol. Rev. 59, p. 143-169). Using this method bacteria species, genera or groups can be identified and visualized with high specificity.

The FISH technique is based on the fact that in cells of microorganism there are certain molecules which have been mutated only to a small extent in the course of evolution because of their essential function. These are the 16S and the 23S ribosomal ribonucleic acid (rRNA). Both are components of the ribosomes, the sites of protein biosynthesis, and can serve as specific markers on account of their ubiquitous distribution, their size and their structural and functional constancy (Woese, C.R., 1987. Bacterial evolution. Microbiol. Rev. 51, p. 221-271). Based on a comparative sequence analysis, phylogenetic relationships can be established based on these data alone. For this purpose, the sequence data have to be brought into an

alignment. In the alignment, which is based on the knowledge about the secondary structure and tertiary structure of these macromolecules, the homologous positions of the ribosomal nucleic acids are brought in line with each other.

Based on these data, phylogenetic calculations can be made. The use of the most modern computer technology allows to performe even large-scale calculations fast and effectively, as well as to set up large databases which contain the alignment sequences of the 16S, 18S, 23S and 26S rRNA. Due to the fast access to this data material, newly acquired sequences can be phylogenetically analyzed within a short time. These rRNA databases can be used to design species-specific and genus-specific gene probes. Hereby all available rRNA sequences are compared with each other and probes are designed for specific sequence sites, which specifically target a specific species, genus or group of bacteria.

In the FISH (fluorescence *in situ* hybridization) technique, these gene probes which are complementary to a certain region on the ribosomal target sequence, are intoduced into the cell. The gene probes are generally small, 16-20 bases long, single-stranded deoxyribonucleic acid pieces and are directed against a target region which is characteristic for a bacterial species or a bacterial group. If a fluorescencently labeled gene probe finds its target sequence in a cell of a microorganisms, it binds to it and the cells can be detected by means of a fluorescence microscope because of their fluorescence.

The FISH analysis is always performed on a slide, as for the evaluation the bacteria are visualized, i. e. rendered visible, by irradiation with high-energy light. But herein lies one of the disadvantages of the classical FISH analysis: because by definition only comparatively small volumina can be analyzed on a slide, the sensitivity of the method is not satisfying and not sufficient for a reliable analysis.

The present invention thus combines the advantages of the classical FISH analysis with those of cultivation. A comparatively short cultivation step ensures that the bacteria to be detected are present in sufficient numbers before the bacteria are detected using specific FISH.

5

10

15

20

25

The practising of the methods described in the present application for the specific detection of drink-spoiling yeasts of the genera Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces and Saccharomycodes in particular the species Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii or for the specific detection of drink-spoiling molds of the genera Mucor, Byssochlamys, Neosartorya, Aspergillus and Talaromyces in particular species of Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus and A. fischeri, Talaromyces flavus, T. bacillisporus and T. flavus or for the specific detection of drink-spoiling bacteria of the genera Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus and Alicyclobacillus, in particular species of Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus and A. herbarius thus comprises the following steps:

- cultivating the drink-spoiling microorganisms present in the sample to be analysed
- fixing the drink-spoiling microorganisms present in the sample
- incubating the fixed drink-spoiling microorganisms with at least one nucleic acid probe and optionally in combination with a competitor probe, in order to achieve hybridization,
- 30 removing or washing off the non-hybridized nucleic acid probe and

- detecting the drink-spoiling microorganisms hybridized to the nucleic acid probe molecules.

Within the present invention "cultivation" is understood to mean the propagation of the microorganisms present in the sample in a suitable cultivation medium.

For the detection of *yeasts and molds* the cultivation may occur, for example, in SSL-bouillon for 24 hours at 25°C. For the detection of lactic acid bacteria the cultivation may occur, for example, in MRS-bouillon for 48 hours at 30°C. For the detection of acetic acid bacteria the cultivation may occur, for example, on DSM-agar for 48 hours at 28°C. For the detection of bacilli, in particular *B. coagulans*, the cultivation may occur, for example, on dextrose-caseine-peptone agar for 48 hours at 55°C. For the detection of alicyclobacilli the cultivation may occur, for example, in BAM-bouillon for 48 hours at 44°C.

15

or the like.

10

5

In any case, the person skilled in the art can find suitable cultivation methods in the prior art for each microorganism and each group of microorganisms to be analysed, respectively.

Within the present invention "fixing" of the microorganism is understood as a treatment with which the envelope of the microorganism is made permeable for nucleic acid probes. For fixation, usually ethanol is used. If the cell wall cannot be penetrated by the nucleic acid probes despite of using these techniques, the person skilled in the art will know enough further techniques which lead to the same result.

These include, for example, methanol, mixtures of alcohols, low percentage paraformaldehyde solution or a diluted formaldehyde solution, enzymatic treatments

In a particularly preferred embodiment of the method of the present invention an enzymatic step may follow in order to cause complete cell disintegration of the

microoganisms. Enzymes which can accordingly be used for this step, are, for instance, lysozyme, proteinase K, and mutanolysine. The one skilled in the art will know sufficient suitable techniques and will easily find out which means is particularly suitable for cell disintegration of a certain microorganism.

5

10

15

Within the present invention the fixed microorganisms are incubated with fluorescencently labeled nucleic acid probes for the "hybridization". These nucleic acid probes can, after the fixing, penetrate the cell wall and bind to the target sequence in the cell corresponding to the nucleic acid probe. Binding is to be understood as formation of hydrogen bonds between complementary nucleic acid pieces.

In such case the nucleic acid probe can be complementary to a chromosomal or episomal DNA, but can also be complementary to an mRNA or rRNA of the microorganism to be detected. It is advantageous to select a nucleic acid probe which is complementary to a region present in copies of more than 1 in the microorganism to be detected. The sequence to be detected is preferably present in 500-100,000 copies per cell, especially preferred 1,000-50,000 copies. For this reason the sequence of the rRNA is preferably used as a target site, since the ribosomes as sites of protein biosynthesis are present many thousandfold in each active cell.

20

25

30

The nucleic acid probe within the meaning of the invention may be a DNA or RNA probe comprising usually between 12 and 100 nucleotides, preferably between 15 and 50, more between 17 and 25 nucleotides. The selection of the nucleic acid probes is performed taking into consideration whether a complementary sequence is present in the microorganism to be detected. By this selection of a defined sequence, a species of a microorganism, a genus of a microorganism or an entire microorganism group may be detected. In a probe consisting of 15 nucleotides, the sequences should be 100% complementary. In case of oligonucleotides of more than 15 nucleotides, depending on the length of the oligonucleotide, one or more mismatches are allowed.

To increase the specificity of nucleic acid probes competitor probes can be used. Within the present invention competitor probes are understood to mean in particular oligonucleotides which block possibly undesired bindings of the nucleic acid probes and thereby show a higher sequence similarity to the non-target genera and species of microorganisms, respectively, than to the target genera and species of microorganisms, respectively. By using competitor probes the binding of the nucleic acid probe to the nucleic acid sequence of non-target genera or species of microorganisms can be prevented and thus does not lead to false signals. The non-labelled competitor probe is always used in combination with the labelled oligonucleotide probe.

5

10

15

20

25

30

The competitor probe should be complementary to a nucleic acid sequence having high sequence similarity to the nucleic acid sequence of the genera and species of microorganism, respectively, to be detected. In a particularly preferred embodiment the competitor probe is complementary to the rRNA of non-target genera and species of microorganism, respectively.

Within the meaning of the invention the competitor probe is a DNA or RNA sequence usually comprising between 12 and 100 nucleotides, preferably between 15 and 50, particularly preferably between 17 and 25 nucleotides. By selecting a defined sequence, a bacterial species, a bacterial genus or an entire bacterial group may be blocked. A probe consisting of 15 nucleotides should be 100% complementary to the nucleic acid sequence to be blocked. In case of oligonucleotides consisting of more than 15 nucleotides, depending on the length of the oligonucleotide, one or more mismatches are allowed.

Within the methods of the present invention the nucleic acid probe molecules of the present invention have the following lengths and sequences (all nucleic acid probe molecules are noted in 5'-3' direction).

The nucleic acid probe molecules of the present invention are useful for the specific detection of drink-spoiling yeasts of the genera Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces and Saccharomycodes in particular the species Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii or for the specific detection of drink-spoiling molds of the genera Mucor, Byssochlamys, Neosartorya, Aspergillus and Talaromyces in particular species of Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus and A. fischeri, Talaromyces flavus, T. bacillisporus and T. flavus or for the specific detection of drink-spoiling bacteria of the genera Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus and Alicyclobacillus, in particular species of Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus and A. herbarius and are used correspondingly in the detection method according to the invention.

20

5

10

15

Within the present invention probes that detect different species of microorganims can be used in combination, in order to enable the simultaneous detection of different microoganisms. This leads likewise to an increase of speed of the detection method.

a) Nucleic acid molecules which specifically detect drink-spoiling yeasts:

SEQ ID No. 1: 5'-GTTTGACCAGATTCTCCGCTC

The sequence SEQ ID No. 1 is particularly useful for the detection of microorganisms of the genus Zygosaccharomyces.

SEQ ID No. 2: 5'- GTTTGACCAGATTTTCCGCTCT

SEQ ID No. 3: 5'- GTTTGACCAAATTTTCCGCTCT

SEQ ID No. 4: 5'- GTTTGTCCAAATTCTCCGCTCT

5 -

10

The nucleic acid molecules according to SEQ ID No. 2 to SEQ ID No. 4 are used as unlabelled competitor probes for the detection of microorganisms of the genus *Zygosaccharomyces* in combination with the nucleic acid probe according to SEQ ID No. 1 in order to prevent the binding of the labelled nucleic acid probe specific for members of the genus *Zygosaccharomyces* to nucleic acid sequences, which are not specific for members of the genus *Zygosaccharomyces*.

SEQ ID No. 5: 5'- CCCGGTCGAATTAAAACC

SEQ ID No. 6: 5'- GCCCGGTCGAATTAAAAC

15 SEQ ID No. 7: 5'- GGCCCGGTCGAATTAAAA

SEQ ID No. 8: 5'- AGGCCCGGTCGAATTAAA

SEQ ID No. 9: 5'- AAGGCCCGGTCGAATTAA

SEQ ID No. 10: 5'- ATATTCGAGCGAAACGCC

SEQ ID No. 11: 5'- AAAGATCCGGACCGGCCG

20 SEQ ID No. 12 5'- GGAAAGATCCGGACCGGC

SEQ ID No. 13 5'- GAAAGATCCGGACCGGCC

SEQ ID No. 14 5'- GATCCGGACCGGCCGACC

SEQ ID No. 15 5'- AGATCCGGACCGGCCGAC

SEQ ID No. 16 5'- AAGATCCGGACCGGCCGA

25 SEQ ID No. 17 5'- GAAAGGCCCGGTCGAATT

SEQ ID No. 18 5'- AAAGGCCCGGTCGAATTA

SEQ ID No. 19 5'- GGAAAGGCCCGGTCGAAT

SEQ ID No. 20 5'- AGGAAAGGCCCGGTCGAA

SEQ ID No. 21 5'- AAGGAAAGGCCCGGTCGA

The sequences SEQ ID No. 5 to SEQ ID No. 21 are particularly suitable for the detection of Zygosaccharomyces bailii.

SEQ ID No. 22: 5'- ATAGCACTGGGATCCTCGCC

5

The sequence SEQ ID No. 22 is particularly suitable for the detection of Zygosaccharomyces fermentati.

SEQ ID No. 23:

5'- CCAGCCCCAAAGTTACCTTC

10 SEQ ID No. 24: 5'- TCCTTGACGTAAAGTCGCAG

The sequences SEQ ID No. 23 to SEQ ID No. 24 are particularly suitable for the detection of Zygosaccharomyces microellipsoides.

15 SEQ ID No. 25: 5'- GGAAGAAACCAGTACGC SEQ ID No. 26: 5'- CCGGTCGGAAGAAACCA SEQ ID No. 27: 5'- GAAGAAAACCAGTACGCG SEQ ID No. 28: 5'- CCCGGTCGGAAGAAACC SEQ ID No. 29: 5'- CGGTCGGAAGAAACCAG 20 SEQ ID No. 30: 5'- GGTCGGAAGAAACCAGT SEQ ID No. 31: 5'- AAGAAAACCAGTACGCGG SEQ ID No. 32: 5'- GTACGCGGAAAAATCCGG SEQ ID No. 33: 5'- AGTACGCGGAAAAATCCG 5'- GCGGAAAAATCCGGACCG SEQ ID No. 34: 25 SEQ ID No. 35: 5'- CGGAAGAAAACCAGTACG 5'- GCCCGGTCGGAAGAAAC SEQ ID No. 36:

SEQ ID No. 37:

5'- CGCGGAAAAATCCGGACC

SEQ ID No. 38:

5'- CAGTACGCGGAAAAATCC

SEQ ID No. 39:

5'- AGAAAACCAGTACGCGGA

30 SEQ ID No. 40: 5'- GGCCCGGTCGGAAGAAA

	SEQ ID No. 41:	5'- ATAAACACCACCCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'- GAGAGGCCCGGTCGGAAG
	SEQ ID No. 44:	5'- AGAGGCCCGGTCGGAAGA
5	SEQ ID No. 45:	5'- GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGTCAGTAAAT
	SEQ ID No. 48:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 49:	5'- TAAACACCACCCGATCCC
10	SEQ ID No. 50:	5'- GGAGAGGCCCGGTCGGAA
	SEQ ID No. 51:	5'- GAAAACCAGTACGCGGAA
	SEQ ID No. 52:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'- GGCCACAGGGACCCAGGG
	SEQ ID No. 54:	5'- TCACCAAGGGCCACAGGG
15	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG
	SEQ ID No. 56:	5'- TTCACCAAGGGCCACAGG
	SEQ ID No. 57:	5'- ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	5'- AGGGCCACAGGGACCCAG
	SEQ ID No. 59:	5'- GTTCACCAAGGGCCACAG
20	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
25	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTCGGA
	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTCGG
30	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTCG

SEQ ID No. 71: 5'- AGGGCTAGCCAGAAGGAG
SEQ ID No. 72: 5'- GGGCTAGCCAGAAGGAGA
SEQ ID No. 73: 5'- AGAAGGAGAGGCCCGGTC
SEQ ID No. 74: 5'- CAAGGGCCACAGGGACCC
SEQ ID No. 75: 5'- CCAAGGGCCACAGGGACC

The sequences SEQ ID No. 25 to SEQ ID No. 75 are particularly suitable for the detection of *Zygosaccharomyces mellis*.

10	SEQ ID No. 76:	5'- GTCGGAAAAACCAGTACG
10	SEQ ID No. 77:	5'- GCCCGGTCGGAAAAACCA
	SEQ ID No. 78:	5'- CCGGTCGGAAAAACCAGT
	SEQ ID No. 79:	5'- CCCGGTCGGAAAAACCAG
	SEQ ID No. 80:	5'- TCGGAAAAACCAGTACGC
15	SEQ ID No. 81:	5'- CGGAAAAACCAGTACGCG
	SEQ ID No. 82:	5'- GGAAAAACCAGTACGCGG
	SEQ ID No. 83:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 84:	5'- AGTACGCGGAAAAATCCG
	SEQ ID No. 85:	5'- GCGGAAAAATCCGGACCG
20	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
25	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
	SEQ ID No. 95:	5'- GGCCCGGTCGGAAAAACC
30	SEQ ID No. 96:	5'- GAAAAACCAGTACGCGGA

	SEQ ID No. 97:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
	SEQ ID No. 100:	5'- AAGGCCCGGTCGGAAAAA
5	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
	SEQ ID No. 105:	5'- AGGCCCGGTCGGAAAAAC
10	SEQ ID No. 106:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGTCGGAAA
	SEQ ID No. 110:	5'- AAAGGCCCGGTCGGAAAA
15	SEQ ID No. 111:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGTCGGAA
	SEQ ID No. 113:	5'- ATCTCTTCCGAAAGGTCG
	SEQ ID No. 114:	5'- CATCTCTTCCGAAAGGTC
	SEQ ID No. 115:	5'- CTCTTCCGAAAGGTCGAG
20	SEQ ID No. 116:	5'- CTTCCGAAAGGTCGAGAT
	SEQ ID No. 117:	5'- TCTCTTCCGAAAGGTCGA
	SEQ ID No. 118:	5'- TCTTCCGAAAGGTCGAGA
	SEQ ID No. 119:	5'- CCTAGTGGTGCCCTTCCG
	SEQ ID No. 120:	5'- TAGTGGTGCCCTTCCGTC
25	SEQ ID No. 121:	5'- AGTGGTGCCCTTCCGTCA
	SEQ ID No. 122:	5'- GCCAAGGTTAGACTCGTT
	SEQ ID No. 123:	5'- GGCCAAGGTTAGACTCGT
	SEQ ID No. 124:	5'- CCAAGGTTAGACTCGTTG
	SEQ ID No. 125:	5'- CAAGGTTAGACTCGTTGG
30	SEQ ID No. 126:	5'- AAGGTTAGACTCGTTGGC

The sequences SEQ ID No. 76 to SEQ ID No. 126 are particularly suitable for the detection of *Zygosaccharomyces rouxii*.

5 SEQ ID No. 127: 5'- CTCGCCTCACGGGGTTCTCA

The sequence SEQ ID No. 127 is particularly suitable for the simultanous detection of *Zygosaccharomyces mellis* and *Zygosaccharomyces rouxii*.

10	SEQ ID No. 128:	5'- GGCCCGGTCGAAATTAAA
	SEQ ID No. 129:	5'- AGGCCCGGTCGAAATTAA
	SEQ ID No. 130:	5'- AAGGCCCGGTCGAAATTA
	SEQ ID No. 131:	5'- AAAGGCCCGGTCGAAATT
	SEQ ID No. 132:	5'- GAAAGGCCCGGTCGAAAT
15	SEQ ID No. 133:	5'- ATATTCGAGCGAAACGCC
	SEQ ID No. 134:	5'- GGAAAGGCCCGGTCGAAA
	SEQ ID No. 135:	5'- AAAGATCCGGACCGGCCG
	SEQ ID No. 136:	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 137:	5'- GAAAGATCCGGACCGGCC
20	SEQ ID No. 138:	5'- GATCCGGACCGGCCGACC
	SEQ ID No. 139:	5'- AGATCCGGACCGGCCGAC
	SEQ ID No. 140:	5'- AAGATCCGGACCGGCCGA
	SEQ ID No. 141:	5'- AGGAAAGGCCCGGTCGAA
	SEQ ID No. 142:	5'- AAGGAAAGGCCCGGTCGA

The sequences SEQ ID No. 128 to SEQ ID No. 142 are particularly suitable for the detection of *Zygosaccharomyces bisporus*.

SEQ ID No. 143: 5'-CGAGCAAAACGCCTGCTTTG

30 SEQ ID No. 144: 5'-CGCTCTGAAAGAGAGTTGCC

25

The sequences SEQ ID No. 143 and SEQ ID No. 144 are particularly suitable for the detection of Hanseniaspora uvarum.

5 SEQ ID No. 145: 5'-AGTTGCCCCCTACACTAGAC

SEQ ID No. 146:

5'-GCTTCTCCGTCCCGCGCCG

The sequences SEQ ID No. 145 and SEQ ID No. 146 are particularly suitable for the detection of Candida intermedia.

10

15

SEQ ID No. 147: 5'- AGATTYTCCGCTCTGAGATGG

The nucleic acid probe molecule according to SEQ ID No. 147 is used as unlabelled competitor probe for the detection of Candida intermedia in combination with the oligonucleotide probe according to SEQ ID No. 146, in order to prevent the binding of the labelled oligonucleotide probe specific for Candida intermedia to nucleic acid sequences which are not specific for Candida intermedia.

SEQ ID No. 148:

5'- CCTGGTTCGCCAAAAAGGC

20

The sequence SEQ ID No. 148 is particularly suitable for the detection of Candida parapsilosis.

SEQ ID No. 149:

5'-GATTCTCGGCCCCATGGG

25

The sequence SEQ ID No. 149 is particularly suitable for the detection of Candida crusei (Issatchenkia orientalis).

SEQ ID No. 150: 5'- ACCCTCTACGGCAGCCTGTT

30

The sequence SEQ ID No. 150 is particularly suitable for the detection of *Dekkera* anomala and *Brettanomyces* (*Dekkera*) bruxellensis.

SEQ ID No. 151: 5'- GATCGGTCTCCAGCGATTCA

5

The sequence SEQ ID No. 151 is particularly suitable for the detection of Brettanomyces (Dekkera) bruxellensis.

SEQ ID No. 152: 5'- ACCCTCCACGGCGGCCTGTT

10

The sequence SEQ ID No. 152 is particularly suitable for the detection of Brettanomyces (Dekkera) naardenensis.

SEQ ID No. 153: 5'- GATTCTCCGCGCCATGGG

15

The sequence SEQ ID No. 153 is particularly suitable for the detection of *Pichia membranaefaciens*.

SEQ ID No. 154: 5'- TCATCAGACGGGATTCTCAC

20

30

The sequence SEQ ID No. 154 is particularly suitable for the simultaneous detection of *Pichia minuta* and *Pichia anomala*.

SEQ ID No. 155: 5'- CTCATCGCACGGGATTCTCACC

25 SEQ ID No. 156: 5'- CTCGCCACACGGGATTCTCACC

The nucleic acid probe molecules according to SEQ ID No. 155 and SEQ ID No. 156 are used as unlabelled competitor probes for the simultanous detection of *Pichia minuta and Pichia anomala* in combination with the oligonucleotide probe according to SEQ ID No. 154, in order to prevent the binding of the labelled oligonucleotide

probe specific for *Pichia minuta* and *Pichia anomala*, to nucleic acid sequences which are not specific for *Pichia minuta* and *Pichia anomala*.

SEQ ID No. 157: 5'-AGTTGCCCCCTCTAAGC

5

The sequence SEQ ID No. 157 is particularly suitable for the detection of Saccharomyces exiguus.

SEQ ID No. 158: 5'-CTGCCACAAGGACAAATGGT

10 SEQ ID No. 159: 5'-TGCCCCCTCTTCTAAGCAAAT

The sequences SEQ ID No. 158 and SEQ ID No. 159 are particularly suitable for the detection of *Saccharomyces ludwigii*.

15 SEQ ID No. 160: 5'-CCCCAAAGTTGCCCTCTC

The sequence SEQ ID No. 160 is particularly suitable for the detection of Saccharomyces cerevisiae.

20 SEQ ID No. 161: 5'-GCCGCCCCAAAGTCGCCCTCTAC

SEQ ID No. 162: 5'-GCCCCAGAGTCGCCTTCTAC

The nucleic acid probe molecules according to SEQ ID No. 161 and SEQ ID No. 162 are used as unlabelled competitor probes for the detection of *Saccharomyces* cerevisiae in combination with the oligonucleotide probe according to SEQ ID No. 160, in order to prevent the binding of the labelled oligonucleotide probe specific for *Saccharomyces cerevisiae*, to nucleic acid sequences which are not specific for *Saccharomyces cerevisiae*.

b) Nucleic acid probe molecules which specifically detect drink-spoiling molds:

SEQ ID No. 163: 5'-AAGACCAGGCCACCTCAT

The sequence SEQ ID No. 163 is particularly suitable for the detection of *Mucor racemosus*.

SEQ ID No. 164: 5'- CATCATAGAACACCGTCC

The sequence SEQ ID No. 164 is particularly suitable for the detection of Byssochlamys nivea.

SEQ ID No. 165: 5'- CCTTCCGAAGTCGAGGTTTT

The sequence SEQ ID No. 165 is particularly suitable for the detection of Neosartorya fischeri.

SEQ ID No. 166: 5'- GGGAGTGTTGCCAACTC

The sequence SEQ ID No. 166 is particularly suitable for the simultaneous detection of *Aspergillus fumigatus* and *A. fischeri*.

SEQ ID No. 167: 5'- AGCGGTCGTTCGCAACCCT

The sequence SEQ ID No. 167 is particularly suitable for the detection of 25 Talaromyces flavus.

SEQ ID No. 168: 5'- CCGAAGTCGGGGTTTTGCGG

The sequence SEQ ID No. 168 is particularly suitable for the simultaneous detection of *Talaromyces bacillisporus* and *T. flavus*.

c) Nucleic acid probe molecules, which specifically detect drink-spoiling lactic acid bacteria

5	SEQ ID No. 169:	5'- GATAGCCGAAACCACCTTTC
	SEQ ID No. 170:	5'- GCCGAAACCACCTTTCAAAC
	SEQ ID No. 171:	5'- GTGATAGCCGAAACCACCTT
	SEQ ID No. 172:	5'- AGTGATAGCCGAAACCACCT
	SEQ ID No. 173:	5'- TTTAACGGGATGCGTTCGAC
10	SEQ ID No. 174:	5'- AAGTGATAGCCGAAACCACC
	SEQ ID No. 175:	5'- GGTTGAATACCGTCAACGTC
	SEQ ID No. 176:	5'- GCACAGTATGTCAAGACCTG
	SEQ ID No. 177:	5'- CATCCGATGTGCAAGCACTT
	SEQ ID No. 178:	5'- TCATCCGATGTGCAAGCACT
15	SEQ ID No. 179:	5'- CCGATGTGCAAGCACTTCAT
	SEQ ID No. 180:	5'- CCACTCATCCGATGTGCAAG
	SEQ ID No. 181:	5'- GCCACAGTTCGCCACTCATC
	SEQ ID No. 182:	5'- CCTCCGCGTTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTCGCCACAGTTCGC
20	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGC
	SEQ ID No. 185:	5'- CCAGTTCGCCACAGTTCGCC
	SEQ ID No. 186:	5'- CTCATCCGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
25	SEQ ID No. 189:	5'- CAGTTCGCCACAGTTCGCCA
	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
	SEQ ID No. 191:	5'- CGCCACAGTTCGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTCGCCACAGTTCGCCACT
30	SEQ ID No. 194:	5'- TCCTCCGCGTTTGTCACCGG

	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
	SEQ ID No. 196:	5'- AGTTCGCCACAGTTCGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTCGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTCGACT
5	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
	SEQ ID No. 200:	5'- CCACAGTTCGCCACTCATCC
	SEQ ID No. 201:	5'- GATTTAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTCGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTCGACTTG
10	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCTCCGCGTTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
15	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGATAGCC
	SEQ ID No. 210:	5'- CACCAGTTCGCCACAGTTCG
	SEQ ID No. 211:	5'- ACGGGATGCGTTCGACTTGC
	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
20	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
	SEQ ID No. 216:	5'- TCCGCGTTTGTCACCGGCAG
	SEQ ID No. 217:	5'- TGAACCGTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
25	SEQ ID No. 219:	5'- CCGCGTTTGTCACCGGCAGT
	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
	SEQ ID No. 221:	5'- CATTTAACGGGATGCGTTCG
	SEQ ID No. 222:	5'- CACAGTTCGCCACTCATCCG
	SEQ ID No. 223:	5'- TTCGCCACAGTTCGCCACTC
30	SEQ ID No. 224:	5'- CTCCGCGTTTGTCACCGGCA

	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTCATCCT
	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
5	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
	SEQ ID No. 230:	5'- CTTGGTGAACCGTTACTCCA
	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCAA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
10	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
	SEQ ID No. 235:	5'- TAATACGCCGCGGGTCCTTC
	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCGGGTCCTTCCAG
	SEQ ID No. 238:	5'- TCACCAGTTCGCCACAGTTC
15	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
	SEQ ID No. 240:	5'- CTCACCAGTTCGCCACAGTT
	SEQ ID No. 241:	5'- CGCCGCCAGGGTTCATCCTG
	SEQ ID No. 242:	5'- CCTTGGTGAACCATTACTCC
	SEQ ID No. 243:	5'-TGGTGAACCATTACTCCACC
20	SEQ ID No. 244:	5'- GCCGCCAGGGTTCATCCTGA
	SEQ ID No. 245:	5'- GGTGAACCATTACTCCACCA
	SEQ ID No. 246:	5'- CCAGGGTTCATCCTGAGCCA
	SEQ ID No. 247:	5'- AATACGCCGCGGGTCCTTCC
	SEQ ID No. 248:	5'- CACGCCGCCAGGGTTCATCC
25	SEQ ID No. 249:	5'- AGTTCGCCACTCATCCGATG
	SEQ ID No. 250:	5'- CGGGATGCGTTCGACTTGCA
	SEQ ID No. 251:	5'- CATTGCCTTGGTGAACCGTT
	SEQ ID No. 252:	5'- GCACGCCGCCAGGGTTCATC
	SEQ ID No. 253:	5'- CTTCCTCCGCGTTTGTCACC
30	SEQ ID No. 254:	5'- TGGTGAACCGTTACTCCACC

	SEQ ID No. 255:	5'- CCTTCCTCCGCGTTTGTCAC
	SEQ ID No. 256:	5'- ACGCCGCGGGTCCTTCCAGA
	SEQ ID No. 257:	5'- GGTGAACCGTTACTCCACCA
	SEQ ID No. 258:	5'- GGGTCCTTCCAGAAGTGATA
5	SEQ ID No. 259:	5'- CTTCCAGAAGTGATAGCCGA
	SEQ ID No. 260:	5'- GCCTTGGTGAACCATTACTC
	SEQ ID No. 261:	5'- ACAGTTCGCCACTCATCCGA
	SEQ ID No. 262:	5'- ACCTTCCTCCGCGTTTGTCA
	SEQ ID No. 263:	5'- CGAACCGACTTTGGGTGTTG
10	SEQ ID No. 264:	5'- GAACCGACTTTGGGTGTTGC
	SEQ ID No. 265:	5'- AGGTTACCGAACCGACTTTG
	SEQ ID No. 266:	5'- ACCGAACCGACTTTGGGTGT
	SEQ ID No. 267:	5'- TTACCGAACCGACTTTGGGT
	SEQ ID No. 268:	5'- TACCGAACCGACTTTGGGTG
15	SEQ ID No. 269:	5'- GTTACCGAACCGACTTTGGG

The sequences SEQ ID No. 169 to SEQ ID No. 269 are particularly suitable for the detection of Lactobacillus collinoides.

20 SEQ ID No. 270: 5'- CCTTTCTGGTATGGTACCGTC SEQ ID No. 271: "5'= TGCACCGCGGAYCCATCTCT

- ----

The sequences SEQ ID No. 270 to SEQ ID No. 271 are particularly suitable for the detection of members of the genus Leuconostoc.

25

SEQ ID No. 272: 5'- AGTTGCAGTCCAGTAAGCCG SEQ ID No. 273: 5'- GTTGCAGTCCAGTAAGCCGC SEQ ID No. 274: 5'- CAGTTGCAGTCCAGTAAGCC SEQ ID No. 275: 5'- TGCAGTCCAGTAAGCCGCCT SEQ ID No. 276: 5'- TCAGTTGCAGTCCAGTAAGC

30

	SEQ ID No. 277:	5'- TTGCAGTCCAGTAAGCCGCC
	SEQ ID No. 278:	5'- GCAGTCCAGTAAGCCGCCTT
	SEQ ID No. 279:	5'- GTCAGTTGCAGTCCAGTAAG
	SEQ ID No. 280:	5'- CTCTAGGTGACGCCGAAGCG
5	SEQ ID No. 281:	5'- ATCTCTAGGTGACGCCGAAG
	SEQ ID No. 282:	5'- TCTAGGTGACGCCGAAGCGC
	SEQ ID No. 283:	5'- TCTCTAGGTGACGCCGAAGC
	SEQ ID No. 284:	5'- CCATCTCTAGGTGACGCCGA
	SEQ ID No. 285:	5'- CATCTCTAGGTGACGCCGAA
10	SEQ ID No. 286:	5'- TAGGTGACGCCGAAGCGCCT
	SEQ ID No. 287:	5'- CTAGGTGACGCCGAAGCGCC
	SEQ ID No. 288:	5'- CTTAGACGGCTCCTTCCTAA
	SEQ ID No. 289:	5'- CCTTAGACGGCTCCTTCCTA
	SEQ ID No. 290:	5'- ACGTCAGTTGCAGTCCAGTA
15	SEQ ID No. 291:	5'- CGTCAGTTGCAGTCCAGTAA
	SEQ ID No. 292:	5'- ACGCCGAAGCGCCTTTTAAC
	SEQ ID No. 293:	5'- GACGCCGAAGCGCCTTTTAA
	SEQ ID No. 294:	5'- GCCGAAGCGCCTTTTAACTT
	SEQ ID No. 295:	5'- CGCCGAAGCGCCTTTTAACT
20	SEQ ID No. 296:	5'- GTGACGCCGAAGCGCCTTTT
	SEQ ID No. 297:	· 5'= TGACGCCGAAGCGCCTTTTA
	SEQ ID No. 298:	5'- AGACGGCTCCTTCCTAAAAG
	SEQ ID No. 299:	5'- ACGGCTCCTTCCTAAAAGGT
	SEQ ID No. 300:	5'- GACGGCTCCTTCCTAAAAGG
25	SEQ ID No. 301:	5'- CCTTCCTAAAAGGTTAGGCC

The sequences SEQ ID No. 272 to SEQ ID No. 301 are particularly suitable for the simultanous detection of *Leuconostoc mesenteroides* and *Leuconostoc pseudomesenteroides*.

	SEQ ID No. 302:	5'- GGTGACGCCAAAGCGCCTTT
	SEQ ID No. 303:	5'- AGGTGACGCCAAAGCGCCTT
	SEQ ID No. 304:	5'- TAGGTGACGCCAAAGCGCCT
	SEQ ID No. 305:	5'- CTCTAGGTGACGCCAAAGCG
5	SEQ ID No. 306:	5'- TCTAGGTGACGCCAAAGCGC
	SEQ ID No. 307:	5'- CTAGGTGACGCCAAAGCGCC
	SEQ ID No. 308:	5'- ACGCCAAAGCGCCTTTTAAC
	SEQ ID No. 309:	5'- CGCCAAAGCGCCTTTTAACT
	SEQ ID No. 310:	5'- TGACGCCAAAGCGCCTTTTA
10	SEQ ID No. 311:	5'- TCTCTAGGTGACGCCAAAGC
	SEQ ID No. 312:	5'- GTGACGCCAAAGCGCCTTTT
	SEQ ID No. 313:	5'- GACGCCAAAGCGCCTTTTAA
	SEQ ID No. 314:	5'- ATCTCTAGGTGACGCCAAAG
	SEQ ID No. 315:	5'- CATCTCTAGGTGACGCCAAA
15	SEQ ID No. 316:	5'- TCCATCTCTAGGTGACGCCA
	SEQ ID No. 317:	5'- CCATCTCTAGGTGACGCCAA
	SEQ ID No. 318:	5'- CTGCCTTAGACGGCTCCCCC
	SEQ ID No. 319:	5'- CCTGCCTTAGACGGCTCCCC
	SEQ ID No. 320:	5'- GTGTCATGCGACACTGAGTT
20	SEQ ID No. 321:	5'- TGTGTCATGCGACACTGAGT
	SEQ ID No. 322:	5'- CTTTGTGTCATGCGACACTG
	SEQ ID No. 323:	5'-TTGTGTCATGCGACACTGAG
	SEQ ID No. 324:	5'- TGCCTTAGACGGCTCCCCCT
	SEQ ID No. 325:	5'- AGACGGCTCCCCTAAAAGG
25	SEQ ID No. 326:	5'- TAGACGGCTCCCCTAAAAG
	SEQ ID No. 327:	5'- GCCTTAGACGGCTCCCCCTA
	SEQ ID No. 328:	5'- GCTCCCCCTAAAAGGTTAGG
	SEQ ID No. 329:	5'- GGCTCCCCCTAAAAGGTTAG
	SEQ ID No. 330:	5'- CTCCCCTAAAAGGTTAGGC
30	SEQ ID No. 331:	5'- TCCCCCTAAAAGGTTAGGCC

	SEQ ID No. 332:	5'- CCCTAAAAGGTTAGGCCACC
	SEQ ID No. 333:	5'- CCCCTAAAAGGTTAGGCCAC
	SEQ ID No. 334:	5'- CGGCTCCCCTAAAAGGTTA
	SEQ ID No. 335:	5'- CCCCCTAAAAGGTTAGGCCA
5	SEQ ID No. 336:	5'- CTTAGACGGCTCCCCCTAAA
	SEQ ID No. 337:	5'- TTAGACGGCTCCCCTAAAA
	SEQ ID No. 338:	5'- GGGTTCGCAACTCGTTGTAT
	SEQ ID No. 339:	5'- CCTTAGACGGCTCCCCCTAA
	SEQ ID No. 340:	5'- ACGGCTCCCCTAAAAGGTT
10	SEQ ID No. 341:	5'- GACGGCTCCCCCTAAAAGGT

The sequences SEQ ID No. 302 to SEQ ID No. 341 are particularly suitable for the detection of *Leuconostoc pseudomesenteroides*.

15	SEQ ID No. 342:	5'- ACGCCGCAAGACCATCCTCT
	SEQ ID No. 343:	5'- CTAATACGCCGCAAGACCAT
	SEQ ID No. 344:	5'- TACGCCGCAAGACCATCCTC
	SEQ ID No. 345:	5'- GTTACGATCTAGCAAGCCGC
	SEQ ID No. 346:	5'- AATACGCCGCAAGACCATCC
20	SEQ ID No. 347:	5'- CGCCGCAAGACCATCCTCTA
	SEQ ID No. 348:	5'- GCTAATACGCCGCAAGACCA
	SEQ ID No. 349:	5'- ACCATCCTCTAGEGATCCAA
	SEQ ID No. 350:	5'- TAATACGCCGCAAGACCATC
	SEQ ID No. 351:	5'- AGCCATCCCTTTCTGGTAAG
25	SEQ ID No. 352:	5'- ATACGCCGCAAGACCATCCT
	SEQ ID No. 353:	5'- AGTTACGATCTAGCAAGCCG
	SEQ ID No. 354:	5'- AGCTAATACGCCGCAAGACC
	SEQ ID No. 355:	5'- GCCGCAAGACCATCCTCTAG
	SEQ ID No. 356:	5'- TTACGATCTAGCAAGCCGCT
30	SEQ ID No. 357:	5'- GACCATCCTCTAGCGATCCA'''

	SEQ ID No. 358:	5'- TTGCTACGTCACTAGGAGGC
	SEQ ID No. 359:	5'- ACGTCACTAGGAGGCGGAAA
	SEQ ID No. 360:	5'- TTTGCTACGTCACTAGGAGG
	SEQ ID No. 361:	5'- GCCATCCCTTTCTGGTAAGG
5	SEQ ID No. 362:	5'- TACGTCACTAGGAGGCGGAA
	SEQ ID No. 363:	5'- CGTCACTAGGAGGCGGAAAC
	SEQ ID No. 364:	5'- AAGACCATCCTCTAGCGATC
	SEQ ID No. 365:	5'- GCACGTATTTAGCCATCCCT
	SEQ ID No. 366:	5'- CTCTAGCGATCCAAAAGGAC
10	SEQ ID No. 367:	5'- CCTCTAGCGATCCAAAAGGA
	SEQ ID No. 368:	5'- CCATCCTCTAGCGATCCAAA
	SEQ ID No. 369:	5'- GGCACGTATTTAGCCATCCC
	SEQ ID No. 370:	5'- TACGATCTAGCAAGCCGCTT
	SEQ ID No. 371:	5'- CAGTTACGATCTAGCAAGCC
15	SEQ ID No. 372:	5'- CCGCAAGACCATCCTCTAGC
	SEQ ID No. 373:	5'- CCATCCCTTTCTGGTAAGGT
	SEQ ID No. 374:	5'- AGACCATCCTCTAGCGATCC
	SEQ ID No. 375:	5'- CAAGACCATCCTCTAGCGAT
	SEQ ID No. 376:	5'- GCTACGTCACTAGGAGGCGG
20	SEQ ID No. 377:	5'- TGCTACGTCACTAGGAGGCG
	SEQ ID No. 378:	5'- CTACGTCACTAGGAGGCGGA
	SEQ ID No. 379:	5'- CCTCAACGTCAGTTACGATC
	SEQ ID No. 380:	5'- GTCACTAGGAGGCGGAAACC
	SEQ ID No. 381:	5'- TCCTCTAGCGATCCAAAAGG
25	SEQ ID No. 382:	5'- TGGCACGTATTTAGCCATCC
	SEQ ID No. 383:	5'- ACGATCTAGCAAGCCGCTTT
	SEQ ID No. 384:	5'- GCCAGTCTCTCAACTCGGCT
	SEQ ID No. 385:	5'- AAGCTAATACGCCGCAAGAC
	SEQ ID No. 386:	5'- GTTTGCTACGTCACTAGGAG
30	SEQ ID No. 387:	5'- CGCCACTCTAGTCATTGCCT

	SEQ ID No. 388:	5'- GGCCAGCCAGTCTCTCAACT
	SEQ ID No. 389:	5'- CAGCCAGTCTCTCAACTCGG
	SEQ ID No. 390:	5'- CCCGAAGATCAATTCAGCGG
	SEQ ID No. 391:	5'- CCGGCCAGTCTCTCAACTCG
5	SEQ ID No. 392:	5'- CCAGCCAGTCTCTCAACTCG
	SEQ ID No. 393:	5'- TCATTGCCTCACTTCACCCG
	SEQ ID No. 394:	5'- GCCAGCCAGTCTCTCAACTC
	SEQ ID No. 395:	5'- CACCCGAAGATCAATTCAGC
	SEQ ID No. 396:	5'- GTCATTGCCTCACTTCACCC
10	SEQ ID No. 397:	5'- CATTGCCTCACTTCACCCGA
	SEQ ID No. 398:	5'- ATTGCCTCACTTCACCCGAA
	SEQ ID No. 399:	5'- CGAAGATCAATTCAGCGGCT
	SEQ ID No. 400:	5'- AGTCATTGCCTCACTTCACC
	SEQ ID No. 401:	5'- TCGCCACTCTAGTCATTGCC
15	SEQ ID No. 402:	5'- TTGCCTCACTTCACCCGAAG
	SEQ ID No. 403:	5'- CGGCCAGTCTCTCAACTCGG
	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
	SEQ ID No. 405:	5'- ACCCGAAGATCAATTCAGCG
	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
20	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
	SEQ ID No. 408:	5'- GCACCCATCGTTTACGGTAT
	SEQ ID No. 409:	5'- CACCCATCGTTTACGGTATG
	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTTGCTACGTCACTAGGA
25	SEQ ID No. 412:	5'- GCCTCAACGTCAGTTACGAT
	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'- TCACTAGGAGGCGGAAACCT
	SEQ ID No. 415:	5'- AGCCTCAACGTCAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
30	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC

	SEQ ID No. 418:	5'- CAAGCTAATACGCCGCAAGA
	SEQ ID No. 419:	5'- TTCGCCACTCTAGTCATTGC
	SEQ ID No. 420:	5'- CCGAAGATCAATTCAGCGGC
	SEQ ID No. 421:	5'- CGCAAGACCATCCTCTAGCG
5	SEQ ID No. 422:	5'- GCAAGACCATCCTCTAGCGA
	SEQ ID No. 423:	5'- GCGTTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
10	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
	SEQ ID No. 428:	5'- ACAAGCTAATACGCCGCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTTTACCTTAGGCACCGGC
15	SEQ ID No. 432:	5'- GATTTTACCTTAGGCACCGG
	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA
	SEQ ID No. 434:	5'- ACGCCACCAGCGTTCATCCT
	SEQ ID No. 435:	5'- GCCAAGCGACTTTGGGTACT
	SEQ ID No. 436:	5'- CGGAAAATTCCCTACTGCAG
20	SEQ ID No. 437:	5'- CGATCTAGCAAGCCGCTTTC
	SEQ ID No. 438:	5'- GGTACCGTCAAGCTGAAAAC
	SEQ ID No. 439:	5'- TGCCTCACTTCACCCGAAGA
	SEQ ID No. 440:	5'- GGCCGGCCAGTCTCTCAACT
	SEQ ID No. 441:	5'- GGTAAGGTACCGTCAAGCTG
25	SEQ ID No. 442:	5'- GTAAGGTACCGTCAAGCTGA
	SEQ ID No. 443:	5'- CCGCAAGACCATCCTCTAGG
	SEQ ID No. 444:	5'- ATTTAGCCATCCCTTTCTGG

30

The sequences SEQ ID No. 342 to SEQ ID No. 444 are particularly suitable for the detection of *Oenococcus oeni*.

	SEQ ID No. 445:	5'- AACCCTTCATCACACACG
	SEQ ID No. 446:	5'- CGAAACCCTTCATCACAC
	SEQ ID No. 447:	5'- ACCCTTCATCACACACGC
5	SEQ ID No. 448:	5'- TACCGTCACACACTGAAC
	SEQ ID No. 449:	5'- AGATACCGTCACACACTG
	SEQ ID No. 450:	5'- CACTCAAGGGCGGAAACC
	SEQ ID No. 451:	5'- ACCGTCACACACTGAACA
	SEQ ID No. 452:	5'- CGTCACACACTGAACAGT
10	SEQ ID No. 453:	5'- CCGAAACCCTTCATCACA
	SEQ ID No. 454:	5'- CCGTCACACACTGAACAG
	SEQ ID No. 455:	5'- GATACCGTCACACACTGA
	SEQ ID No. 456:	5'- GGTAAGATACCGTCACAC
	SEQ ID No. 457:	5'- CCCTTCATCACACACGCG
15	SEQ ID No. 458:	5'- ACAGTGTTTTACGAGCCG
	SEQ ID No. 459:	5'- CAGTGTTTTACGAGCCGA
	SEQ ID No. 460:	5'- ACAAAGCGTTCGACTTGC
	SEQ ID No. 461:	5'- CGGATAACGCTTGGAACA
	SEQ ID No. 462:	5'- AGGGCGGAAACCCTCGAA
20	SEQ ID No. 463:	5'- GGGCGGAAACCCTCGAAC
	SEQ ID No. 464:	5'- GGCGGAAACCCTCGAACA
	SEQ ID No. 465:	5'- TGAGGGCTTTCACTTCAG =- =
	SEQ ID No. 466:	5'- AGGGCTTTCACTTCAGAC
	SEQ ID No. 467:	5'- GAGGGCTTTCACTTCAGA
25	SEQ ID No. 468:	5'- ACTGCACTCAAGTCATCC
	SEQ ID No. 469:	5'- CCGGATAACGCTTGGAAC
	SEQ ID No. 470:	5'- TCCGGATAACGCTTGGAA
	SEQ ID No. 471:	5'- TATCCCCTGCTAAGAGGT
	SEQ ID No. 472:	5'- CCTGCTAAGAGGTAGGTT

30 SEQ ID No. 473: 5'- CCCTGCTAAGAGGTAGGT

	SEQ ID No. 474:	5'- CCCCTGCTAAGAGGTAGG
	SEQ ID No. 475:	5'- TCCCCTGCTAAGAGGTAG
	SEQ ID No. 476:	5'- ATCCCCTGCTAAGAGGTA
	SEQ ID No. 477:	5'- CCGTTCCTTTCTGGTAAG :
5	SEQ ID No. 478:	5'- GCCGTTCCTTTCTGGTAA
	SEQ ID No. 479:	5'- AGCCGTTCCTTTCTGGTA
	SEQ ID No. 480:	5'- GCACGTATTTAGCCGTTC
	SEQ ID No. 481:	5'- CACGTATTTAGCCGTTCC
	SEQ ID No. 482:	5'- GGCACGTATTTAGCCGTT
10	SEQ ID No. 483:	5'- CACTTTCCTCTACTGCAC
	SEQ ID No. 484:	5'- CCACTTTCCTCTACTGCA
	SEQ ID No. 485:	5'- TCCACTTTCCTCTACTGC
	SEQ ID No. 486:	5'- CTTTCCTCTACTGCACTC
	SEQ ID No. 487:	5'- TAGCCGTTCCTTTCTGGT
15	SEQ ID No. 488:	5'- TTAGCCGTTCCTTTCTGG
	SEQ ID No. 489:	5'- TTATCCCCTGCTAAGAGG
	SEQ ID No. 490:	5'- GTTATCCCCTGCTAAGAG
	SEQ ID No. 491:	5'- CCCGTTCGCCACTCTTTG
	SEQ ID No. 492:	5'- AGCTGAGGGCTTTCACTT
20	SEQ ID No. 493:	5'- GAGCTGAGGGCTTTCACT
	SEQ ID No. 494:	5'- GCTGAGGGCTTTCACTTC
	SEQ ID No. 495:	5'- CTGAGGGCTTTCACTTCA

The sequences SEQ ID No. 445 to SEQ ID No. 495 are particularly suitable for the detection of bacteria of the genus *Weissella*.

SEQ ID No. 496: 5' CCCGTGTCCCGAAGGAAC
SEQ ID No. 497: 5' GCACGAGTATGTCAAGAC
SEQ ID No. 498: 5' GTATCCCGTGTCCCGAAG

30 SEQ ID No. 499: 5' TCCCGTGTCCCGAAGGAA

	SEQ ID No. 500:	5' ATCCCGTGTCCCGAAGGA
	SEQ ID No. 501:	5' TATCCCGTGTCCCGAAGG
	SEQ ID No. 502:	5' CTTACCTTAGGAAGCGCC
	SEQ ID No. 503:	5' TTACCTTAGGAAGCGCCC
5	SEQ ID No. 504:	5' CCTGTATCCCGTGTCCCG
	SEQ ID No. 505:	5' CCACCTGTATCCCGTGTC
	SEQ ID No. 506:	5' CACCTGTATCCCGTGTCC
	SEQ ID No. 507:	5' ACCTGTATCCCGTGTCCC
	SEQ ID No. 508:	5' CTGTATCCCGTGTCCCGA
10	SEQ ID No. 509:	5' TGTATCCCGTGTCCCGAA
	SEQ ID No. 510:	5' CACGAGTATGTCAAGACC
	SEQ ID No. 511:	5' CGGTCTTACCTTAGGAAG
	SEQ ID No. 512:	5' TAGGAAGCGCCCTCCTTG
	SEQ ID No. 513:	5' AGGAAGCGCCCTCCTTGC
15	SEQ ID No. 514:	5' TTAGGAAGCGCCCTCCTT
	SEQ ID No. 515:	5' CTTAGGAAGCGCCCTCCT
	SEQ ID No. 516:	5' CCTTAGGAAGCGCCCTCC
	SEQ ID No. 517:	5' ACCTTAGGAAGCGCCCTC
	SEQ ID No. 518:	5' TGCACACAATGGTTGAGC
20	SEQ ID No. 519:	5' TACCTTAGGAAGCGCCCT
	SEQ ID No. 520:	5' ACCACCTGTATCCCGTGT
	SEQ ID No. 521:	5' GCACCACCTGTATCCCGT
	SEQ ID No. 522:	5' CACCACCTGTATCCCGTG
	SEQ ID No. 523:	5' GCGGTTAGGCAACCTACT
25	SEQ ID No. 524:	5' TGCGGTTAGGCAACCTAC
	SEQ ID No. 525:	5' TTGCGGTTAGGCAACCTA
	SEQ ID No. 526:	5' GGTCTTACCTTAGGAAGC
	SEQ ID No. 527:	5' GCTAATACAACGCGGGAT
	SEQ ID No. 528:	5' CTAATACAACGCGGGATC

SEQ ID No. 529: 5' ATACAACGCGGGATCATC

30

	SEQ ID No. 530:	5' CGGTTAGGCAACCTACTT
	SEQ ID No. 531:	5' TGCACCACCTGTATCCCG
	SEQ ID No. 532:	5' GAAGCGCCCTCCTTGCGG
	SEQ ID No. 533:	5' GGAAGCGCCCTCCTTGCG
5	SEQ ID No. 534:	5' CGTCCCTTTCTGGTTAGA
	SEQ ID No. 535:	5' AGCTAATACAACGCGGGA
	SEQ ID No. 536:	5' TAGCTAATACAACGCGGG
	SEQ ID No. 537:	5' CTAGCTAATACAACGCGG
	SEQ ID No. 538:	5' GGCTATGTATCATCGCCT
10	SEQ ID No. 539:	5' GAGCCACTGCCTTTTACA
	SEQ ID No. 540:	5' GTCGGCTATGTATCATCG
	SEQ ID No. 541:	5' GGTCGGCTATGTATCATC
	SEQ ID No. 542:	5' CAGGTCGGCTATGTATCA
	SEQ ID No. 543:	5' CGGCTATGTATCATCGCC
15	SEQ ID No. 544:	5' TCGGCTATGTATCATCGC
	SEQ ID No. 545:	5' GTCTTACCTTAGGAAGCG
	SEQ ID No. 546:	5' TCTTACCTTAGGAAGCGC

The sequences SEQ ID No. 496 to SEQ ID No. 546 are particularly suitable for the detection of bacteria of the genus *Lactococcus*.

d) Nucleic acid molecules, which specifically detect drink-spoiling acetic acid bacteria:

25 SEQ ID No. 547: 5'- GTACAAACCGCCTACACGCC
SEQ ID No. 548: 5'- TGTACAAACCGCCTACACGC
SEQ ID No. 549: 5'- GATCAGCACGATGTCGCCAT
SEQ ID No. 550: 5'- CTGTACAAACCGCCTACACG
SEQ ID No. 551: 5'- GAGATCAGCACGATGTCGCC

30 SEQ ID No. 552: 5'- AGATCAGCACGATGTCGCCA

SEQ ID No. 553: 5'- ATCAGCACGATGTCGCCATC

	SEQ 15 1.0. 333.	5 THE OTHER OTHER OTHER OTHER
	SEQ ID No. 554:	5'- TCAGCACGATGTCGCCATCT
	SEQ ID No. 555:	5'- ACTGTACAAACCGCCTACAC
	SEQ ID No. 556:	5'- CCGCCACTAAGGCCGAAACC
5	SEQ ID No. 557:	5'- CAGCACGATGTCGCCATCTA
	SEQ ID No. 558:	5'- TACAAACCGCCTACACGCCC
	SEQ ID No. 559:	5'- AGCACGATGTCGCCATCTAG
	SEQ ID No. 560:	5'- CGGCTTTTAGAGATCAGCAC
	SEQ ID No. 561:	5'- TCCGCCACTAAGGCCGAAAC
10	SEQ ID No. 562:	5'- GACTGTACAAACCGCCTACA
	SEQ ID No. 563:	5'- GTCCGCCACTAAGGCCGAAA
	SEQ ID No. 564:	5'- GGGGATTTCACATCTGACTG
	SEQ ID No. 565:	5'- CATACAAGCCCTGGTAAGGT
	SEQ ID No. 566:	5'- ACAAGCCCTGGTAAGGTTCT
15	SEQ ID No. 567:	5'- ACAAACCGCCTACACGCCCT
	SEQ ID No. 568:	5'- CTGACTGTACAAACCGCCTA
	SEQ ID No. 569:	5'- TGACTGTACAAACCGCCTAC
	SEQ ID No. 570:	5'- ACGATGTCGCCATCTAGCTT
	SEQ ID No. 571:	5'- CACGATGTCGCCATCTAGCT
20	SEQ ID No. 572:	5'- CGATGTCGCCATCTAGCTTC
	SEQ ID No. 573:	5'- GCACGATGTCGCCATCTAGC
	SEQ ID No. 574:	5'- GATGTCGCCATCTAGCTTCC
	SEQ ID No. 575:	5'- ATGTCGCCATCTAGCTTCCC
	SEQ ID No. 576:	5'- TGTCGCCATCTAGCTTCCCA
25	SEQ ID No. 577:	5'- GCCATCTAGCTTCCCACTGT
	SEQ ID No. 578:	5'- TCGCCATCTAGCTTCCCACT
	SEQ ID No. 579:	5'- CGCCATCTAGCTTCCCACTG
	SEQ ID No. 580:	5'- GTCGCCATCTAGCTTCCCAC
	SEQ ID No. 581:	5'- TACAAGCCCTGGTAAGGTTC
30	SEQ ID No. 582:	5'- GCCACTAAGGCCGAAACCTT

	SEQ ID No. 583:	5'- ACTAAGGCCGAAACCTTCGT
	SEQ ID No. 584:	5'- CTAAGGCCGAAACCTTCGTG
	SEQ ID No. 585:	5'- CACTAAGGCCGAAACCTTCG
	SEQ ID No. 586:	5'- AAGGCCGAAACCTTCGTGCG
5	SEQ ID No. 587:	5'- CCACTAAGGCCGAAACCTTC
	SEQ ID No. 588:	5'- TAAGGCCGAAACCTTCGTGC
	SEQ ID No. 589:	5'- AGGCCGAAACCTTCGTGCGA
	SEQ ID No. 590:	5'- TCTGACTGTACAAACCGCCT
	SEQ ID No. 591:	5'- CATCTGACTGTACAAACCGC
10	SEQ ID No. 592:	5'- ATCTGACTGTACAAACCGCC
	SEQ ID No. 593:	5'- CTTCGTGCGACTTGCATGTG
	SEQ ID No. 594:	5'- CCTTCGTGCGACTTGCATGT
	SEQ ID No. 595:	5'- CTCTCTAGAGTGCCCACCCA
	SEQ ID No. 596:	5'- TCTCTAGAGTGCCCACCCAA
15	SEQ ID No. 597:	5'- ACGTATCAAATGCAGCTCCC
	SEQ ID No. 598:	5'- CGTATCAAATGCAGCTCCCA
	SEQ ID No. 599:	5'- CGCCACTAAGGCCGAAACCT
	SEQ ID No. 600:	5'- CCGAAACCTTCGTGCGACTT
	SEQ ID No. 601:	5'- GCCGAAACCTTCGTGCGACT
20	SEQ ID No. 602:	5'- AACCTTCGTGCGACTTGCAT
	SEQ ID No. 603:	5'- CGAAACCTTCGTGCGACTTG
	SEQ ID No. 604:	5'- ACCTTCGTGCGACTTGCATG
	SEQ ID No. 605:	5'- GAAACCTTCGTGCGACTTGC
	SEQ ID No. 606:	5'- GGCCGAAACCTTCGTGCGAC
25	SEQ ID No. 607:	5'- AAACCTTCGTGCGACTTGCA
	SEQ ID No. 608:	5'- CACGTATCAAATGCAGCTCC

The sequences SEQ ID No. 547 to SEQ ID No. 608 are particularly suitable for the simultaneous detection of bacteria of the genera *Acetobacter* and *Gluconobacter*.

	SEQ ID No. 609:	5'- GCTCACCGGCTTAAGGTCAA
	SEQ ID No. 610:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 611:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 612:	5'- CTCACCGGCTTAAGGTCAAA
5	SEQ ID No. 613:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 614:	5'- GCTCACCGGCTTAAGGTCAA
	SEQ ID No. 615:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 616:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 617:	5'- CTCACCGGCTTAAGGTCAAA
10	SEQ ID No. 618:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 619:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 620:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 621:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 622:	5'- CCACAACCCTCTCTCACACT
15	SEQ ID No. 623:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 624:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 625:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 626:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 627:	5'- ACCCTCTCTCACACTCTAGT
20	SEQ ID No. 628:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 629:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 630:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 631:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 632:	5'- AGGCTCCTCCACAGGCGACT
25	SEQ ID No. 633:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 634:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 635:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 636:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 637:	5'- GGTTCGCTCACCGGCTTAAG
30	SEQ ID No. 638:	5'- ATTCCACAACCCTCTCAC

	SEQ ID No. 639:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 640:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 641:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 642:	5'- AGCCAGGTTGCCGCCTTCGC
5	SEQ ID No. 643:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 644:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 645:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 646:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 647:	5'- CGGCTTAAGGTCAAACCAAC
10	SEQ ID No. 648:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 649:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 650:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 651:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 652:	5'- TCGCTGACCCGACCGTGGTC
15	SEQ ID No. 653:	5'- CGCTGACCGACCGTGGTCG
	SEQ ID No. 654:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 655:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 656:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 657:	5'- CAGGCGACTTGCGCCTTTGA
20	SEQ ID No. 658:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 659:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 660:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 661:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 662:	5'- ACGCAGGCTCCTCCACAGGC
25	SEQ ID No. 663:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 664:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 665:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 666:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No667:	5'- TTTGACCCTCAGGTGTCATG
30	SEQ ID No. 668:	5'- GACCCTCAGGTGTCATGCGG

	SEQ ID No. 669:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 670:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 671:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 672:	5'- CCCTCAGGTGTCATGCGGTA
5	SEQ ID No. 673:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 674:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 675:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 676:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 677:	5'- ACCAGCTATCGATCATCGCC
10	SEQ ID No. 678:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 679:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 680:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 681:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 682:	5'- TTCGTGCGACTTGCATGTGT
15	SEQ ID No. 683:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 684:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 685:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 686:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 687:	5'- TCCACAGGCGACTTGCGCCT
20	SEQ ID No. 688:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 689:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 690:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 691:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 692:	5'- GCTCACCGGCTTAAGGTCAA
25	SEQ ID No. 693:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 694:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 695:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 696:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 697:	5'- TCACCGGCTTAAGGTCAAAC
30	SEQ ⁻ ID No. 698:	5'- CAACCCTCTCTCACACTCTA

	SEQ ID No. 699:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 700:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 701:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 702:	5'- CACAACCCTCTCTCACACTC
5	SEQ ID No. 703:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 704:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 705:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 706:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 707:	5'- AGGTCAAACCAACTCCCATG
10	SEQ ID No. 708:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 709:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 710:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 711:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 712:	5'- GCAGGCTCCTCCACAGGCGA
15	SEQ ID No. 713:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 714:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 715:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 716:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 717:	5'- TGACCCGACCGTGGTCGGCT
20	SEQ ID No. 718:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 719:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 720:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 721:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 722:	5'- GGAATTCCACAACCCTCTCT
25	SEQ ID No. 723:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 724:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 725:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 726:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 727:	5'- CACCGGCTTAAGGTCAAACC
30	SEQ'ID No. 728:	5'- ACCGGCTTAAGGTCAAACCA

	Q ID No. 729:	5'- ACCCAACATCCAGCACACAT
SEC	Q ID No. 730:	5'- TCGCTGACCCGACCGTGGTC
SEC	Q ID No. 731:	5'- CGCTGACCGACCGTGGTCG
SEC	Q ID No. 732:	5'- GACCCGACCGTGGTCGGCTG
5 SEC	Q ID No. 733:	5'- GCTGACCCGACCGTGGTCGG
SEC	Q ID No. 734:	5'- CTGACCCGACCGTGGTCGGC
SEC	Q ID No. 735:	5'- CAGGCGACTTGCGCCTTTGA
SEC	Q ID No. 736:	5'- TCATGCGGTATTAGCTCCAG
SEC	Q ID No. 737:	5'- ACTAGCTAATCGAACGCAGG
10 SEC	Q ID No. 738:	5'- CATGCGGTATTAGCTCCAGT
SEC	Q ID No. 739:	5'- CGCAGGCTCCTCCACAGGCG
SEC	Q ID No. 740:	5'- ACGCAGGCTCCTCCACAGGC
SEC	Q ID No. 741:	5'- CTCAGGTGTCATGCGGTATT
SEC	Q ID No. 742:	5'- CGCCTTTGACCCTCAGGTGT
15 SEC	Q ID No. 743:	5'- ACCCTCAGGTGTCATGCGGT
SEC	Q ID No. 744:	5'- CCTCAGGTGTCATGCGGTAT
SEC	Q ID No. 745:	5'- TTTGACCCTCAGGTGTCATG
SEC	Q ID No. 746:	5'- GACCCTCAGGTGTCATGCGG
SEC	Q ID No. 747:	5'- TGACCCTCAGGTGTCATGCG
20 SEC	Q ID No. 748:	5'- GCCTTTGACCCTCAGGTGTC
· SEC	Q ID No. 749:	5'- TTGACCCTCAGGTGTCATGC
SEC	Q ID No. 750:	5'- CCCTCAGGTGTCATGCGGTA
SEC	Q ID No. 751:	5'- CCTTTGACCCTCAGGTGTCA
SEC	Q ID No. 752:	5'- CTTTGACCCTCAGGTGTCAT
25 SEC	Q ID No. 753:	5'- AGTTATCCCCCACCCATGGA
) ID No. 754:	5'- CCAGCTATCGATCATCGCCT
SEC	Z 115 110: 75 1.	
	Q ID No. 755:	5'- ACCAGCTATCGATCATCGCC
SEC		5'- ACCAGCTATCGATCATCGCC 5'- CAGCTATCGATCATCGCCTT
SEC SEC	Q ID No. 755:	

	SEQ ID No. 759:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 760:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 761:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 762:	5'- ATCGATCATCGCCTTGGTAG
5	SEQ ID No. 763:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 764:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 765:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 766:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 767:	5'- CCTCCACAGGCGACTTGCGC
10	SEQ ID No. 768:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 769:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 770:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 771:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 772:	5'- ACAACCCTCTCTCACACTCT
15	SEQ ID No. 773:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 774:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 775:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 776:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 777:	5'- TTCCACAACCCTCTCTCACA
20	SEQ ID No. 778:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 779:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 780:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 781:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 782:	5'- TGAGCCAGGTTGCCGCCTTC
25	SEQ ID No. 783:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 784:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 785:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 786:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 787: _	5'- GTTCGCTCACCGGCTTAAGG
30	SEQ ID No. 788:	⁻⁵ '- GGTTCGCTCACCGGCTTAAG

	SEQ ID No. 789:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 790:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 791:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 792:	5'- GAATTCCACAACCCTCTCTC
5	SEQ ID No. 793:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 794:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 795:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 796:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 797:	5'- AACGCAGGCTCCTCCACAGG
10	SEQ ID No. 798:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 799:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 800:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 801:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 802:	5'- ACCCAACATCCAGCACACAT
15	SEQ ID No. 803:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 804:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 805:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 806:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 807:	5'- CTGACCCGACCGTGGTCGGC
20	SEQ ID No. 808:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 809:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 810:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 811:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 812:	5'- CGCAGGCTCCTCCACAGGCG
25	SEQ ID No. 813:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 814:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 815:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 816:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 817:	. 5'- CCTCAGGTGTCATGCGGTAT
30	SEQ ID No. 818:	: 5'- TTTGACCCTCAGGTGTCATG

	SEQ ID No. 819:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 820:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 821:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 822:	5'- TTGACCCTCAGGTGTCATGC
5	SEQ ID No. 823:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 824:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 825:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 826:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 827:	5'- CCAGCTATCGATCATCGCCT
10	SEQ ID No. 828:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 829:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 830:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 831:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 832:	5'- CTATCGATCATCGCCTTGGT
15	SEQ ID No. 833:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 834:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 835:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 836:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 837:	5'- CCACAGGCGACTTGCGCCTT
20	SEQ ID No. 838:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID-No. 839:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 840:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 841:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 842:	5'- ACAGGCGACTTGCGCCTTTG
25		

The sequences SEQ ID No. 609 to SEQ ID No. 842 are particularly suitable for the simultaneous detection of bacteria of the genera *Acetobacter*, *Gluconobacter* and *Gluconoacetobacter*.

30 e) Nucleic acid probe molecules, which specifically detect drink-spoiling bacilli:

	SEQ ID No. 843:	5'- AGCCCCGGTTTCCCGGCGTT
	SEQ ID No. 844:	5'- CGCCTTTCCTTTTTCCTCCA
	SEQ ID No. 845:	5'- GCCCGGTTTCCCGGCGTTA
5	SEQ ID No. 846:	5'- GCCGCCTTTCCTTTTTCCTC
	SEQ ID No. 847:	5'- TAGCCCCGGTTTCCCGGCGT
	SEQ ID No. 848:	5'- CCGGGTACCGTCAAGGCGCC
	SEQ ID No. 849:	5'- AAGCCGCCTTTCCTTTTCC
	SEQ ID No. 850:	5'- CCCCGGTTTCCCGGCGTTAT
10	SEQ ID Nö. 851:	5'- CCGGCGTTATCCCAGTCTTA
	SEQ ID No. 852:	5'- AGCCGCCTTTCCTTTTCCT
	SEQ ID No. 853:	5'- CCGCCTTTCCTTTTTCCTCC
	SEQ ID No. 854:	5'- TTAGCCCCGGTTTCCCGGCG
	SEQ ID No. 855:	5'- CCCGGCGTTATCCCAGTCTT
15	SEQ ID No. 856:	5'- GCCGGGTACCGTCAAGGCGC
	SEQ ID No. 857:	5'- GGCCGGGTACCGTCAAGGCG
	SEQ ID No. 858:	5'- TCCCGGCGTTATCCCAGTCT
	SEQ ID No. 859:	5'- TGGCCGGGTACCGTCAAGGC
	SEQ ID No. 860:	5'- GAAGCCGCCTTTCCTTTTC
20	SEQ ID No. 861:	5'- CCCGGTTTCCCGGCGTTATC
	SEQ ID No. 862:	-5'-CGGCGTTATCCCAGTCTTAC
	SEQ ID No. 863:	5'- GGCGTTATCCCAGTCTTACA
	SEQ ID No. 864:	5'- GCGTTATCCCAGTCTTACAG
	SEQ ID No. 865:	5'- CGGGTACCGTCAAGGCGCCG
25	SEQ ID No. 866:	5'- ATTAGCCCCGGTTTCCCGGC
	SEQ ID No. 867:	5'- AAGGGGAAGGCCCTGTCTCC
	SEQ ID No. 868:	5'- GGCCCTGTCTCCAGGGAGGT
	SEQ ID No. 869:	5'- AGGCCCTGTCTCCAGGGAGG
	SEQ ID No. 870:	5'- AAGGCCCTGTCTCCAGGGAG
30	SEQ ID No. 871:	5'- GCCCTGTCTCCAGGGAGGTC

	SEQ ID No. 872:	5'- CGTTATCCCAGTCTTACAGG
	SEQ ID No. 873:	5'- GGGTACCGTCAAGGCGCCGC
	SEQ ID No. 874:	5'- CGGCAACAGAGTTTTACGAC
	SEQ ID No. 875:	5'- GGGGAAGGCCCTGTCTCCAG
5	SEQ ID No. 876:	5'- AGGGGAAGGCCCTGTCTCCA
	SEQ ID No. 877:	5'- GCAGCCGAAGCCGCCTTTCC
	SEQ ID No. 878:	5'- TTCTTCCCCGGCAACAGAGT
	SEQ ID No. 879:	5'- CGGCACTTGTTCTTCCCCGG
	SEQ ID No. 880:	5'- GTTCTTCCCCGGCAACAGAG
10	SEQ ID No. 881:	5'- GGCACTTGTTCTTCCCCGGC
	SEQ ID No. 882:	5'- GCACTTGTTCTTCCCCGGCA
	SEQ ID No. 883:	5'- CACTTGTTCTTCCCCGGCAA
	SEQ ID No. 884:	5'- TCTTCCCCGGCAACAGAGTT
	SEQ ID No. 885:	5'- TTGTTCTTCCCCGGCAACAG
15	SEQ ID No. 886:	5'- ACTTGTTCTTCCCCGGCAAC
	SEQ ID No. 887:	5'- TGTTCTTCCCCGGCAACAGA
	SEQ ID No. 888:	5'- CTTGTTCTTCCCCGGCAACA
	SEQ ID No. 889:	5'- ACGGCACTTGTTCTTCCCCG
	SEQ ID No. 890:	5'- GTCCGCCGCTAACCTTTTAA
20	SEQ ID No. 891:	5'- CTGGCCGGGTACCGTCAAGG
	SEQ ID No. 892: "	[~] 5'- TCTGGCCGGGTACCGTCAAG
	SEQ ID No. 893:	5'- TTCTGGCCGGGTACCGTCAA
	SEQ ID No. 894:	5'- CAATGCTGGCAACTAAGGTC
	SEQ ID No. 895:	5'- CGTCCGCCGCTAACCTTTTA
25	SEQ ID No. 896:	5'- CGAAGCCGCCTTTCCTTTTT
	SEQ ID No. 897:	5'- CCGAAGCCGCCTTTCCTTTT
	SEQ ID No. 898:	5'- GCCGAAGCCGCCTTTCCTTT
	SEQ ID No. 899:	5'- AGCCGAAGCCGCCTTTCCTT
	SEQ ID No. 900:	5'- ACCGTCAAGGCGCCGCCCTG
30	SEQ ID No. 901:	5'- CCGTGGCTTTCTGGCCGGGT

	SEQ ID No. 902:	5'- GCTTTCTGGCCGGGTACCGT
	SEQ ID No. 903:	5'- GCCGTGGCTTTCTGGCCGGG
	SEQ ID No. 904:	5'- GGCTTTCTGGCCGGGTACCG
	SEQ ID No. 905:	5'- CTTTCTGGCCGGGTACCGTC
5	SEQ ID No. 906:	-5'- TGGCTTTCTGGCCGGGTACC
	SEQ ID No. 907:	5'- GTGGCTTTCTGGCCGGGTAC
	SEQ ID No. 908:	5'- CGTGGCTTTCTGGCCGGGTA
	SEQ ID No. 909:	5'- TTTCTGGCCGGGTACCGTCA
	SEQ ID No. 910:	5'- GGGAAGGCCCTGTCTCCAGG
10	SEQ ID No. 911:	5'- CGAAGGGGAAGGCCCTGTCT
	SEQ ID No. 912:	5'- CCGAAGGGGAAGGCCCTGTC
	SEQ ID No. 913:	5'- GAAGGGGAAGGCCCTGTCTC
	SEQ ID No. 914:	5'- GGCGCCGCCCTGTTCGAACG
	SEQ ID No. 915:	5'- AGGCGCCGCCCTGTTCGAAC
15	SEQ ID No. 916:	5'- AAGGCGCCGCCCTGTTCGAA
	SEQ ID No. 917:	5'- CCCGGCAACAGAGTTTTACG
	SEQ ID No. 918:	5'- CCCCGGCAACAGAGTTTTAC
	SEQ ID No. 919:	5'- CCATCTGTAAGTGGCAGCCG
	SEQ ID No. 920:	5'- TCTGTAAGTGGCAGCCGAAG
20	SEQ ID No. 921:	5'- CTGTAAGTGGCAGCCGAAGC
	SEQ ID No. 922:	-5'- CCCATCTGTAAGTGGCAGCC
	SEQ ID No. 923:	75'- TGTAAGTGGCAGCCGAAGCC
	SEQ ID No. 924:	5'- CATCTGTAAGTGGCAGCCGA
	SEQ ID No. 925:	5'- ATCTGTAAGTGGCAGCCGAA
25	SEQ ID No. 926:	5'- CAGCCGAAGCCGCCTTTCCT
	SEQ ID No. 927:	5'- GGCAACAGAGTTTTACGACC
	SEQ ID No. 928:	5'- CCGGCAACAGAGTTTTACGA
	SEQ ID No. 929:	5'- TTCCCCGGCAACAGAGTTTT
	SEQ ID No. 930:	5'- CTTCCCCGGCAACAGAGTTT
30	SEQ ID No. 931:	5'- TCCCCGGCAACAGAGTTTTA

SEQ ID No. 932: 5'- CCGTCCGCCGCTAACCTTTT

The sequences SEQ ID No. 843 to SEQ ID No. 932 are particularly suitable for the detection of *Bacillus coagulans*.

5

f) Nucleic acid probe molecules which specifically detect drink-spoiling Alicyclobacilli:

```
SEQ ID No. 933:
                   5'- CTTCCTCCGACTTACGCCGG
    SEQ ID No. 934: 5'- CCTCCGACTTACGCCGGCAG
10
    SEQ ID No. 935: 5'- TTCCTCCGACTTACGCCGGC
    SEQ ID No. 936:
                 5'- TCCTCCGACTTACGCCGGCA
    SEQ ID No. 937:
                 5'- TCCGACTTACGCCGGCAGTC
    SEQ ID No. 938:
                  5'- CCGACTTACGCCGGCAGTCA
                  5'- GCCTTCCTCCGACTTACGCC
15
    SEQ ID No. 939:
    SEQ ID No. 940:
                 5'- CCTTCCTCCGACTTACGCCG
    SEQ ID No. 941: 5'- GCTCTCCCCGAGCAACAGAG
    SEQ ID No. 942:
                 5'- CTCTCCCCGAGCAACAGAGC
    SEQ ID No. 943:
                   5'- CGCTCTCCCCGAGCAACAGA
20
    SEQ ID No. 944:
                   5'- CTCCGACTTACGCCGGCAGT
    SEQ ID No. 945: -- -5'=TCTCCCCGAGCAACAGAGCT
    SEQ ID No. 946: 5'-CGACTTACGCCGGCAGTCAC
    SEQ ID No. 947:
                 5'- TCGGCACTGGGGTGTGTCCC
                 5'- GGCACTGGGGTGTGTCCCCC
    SEQ ID No. 948:
25
    SEQ ID No. 949:
                 5'- CTGGGGTGTGTCCCCCAAC
    SEQ ID No. 950:
                 5'- CACTGGGGTGTGTCCCCCCA
    SEQ ID No. 951:
                 5'- ACTGGGGTGTGTCCCCCCAA
    SEQ ID No. 952:
                  5'- GCACTGGGGTGTGTCCCCCC
    SEQ ID No. 953:
                   5'- TGGGGTGTGTCCCCCCAACA
30
    SEQ ID No. 954: 5'- CACTCCAGACTTGCTCGACC
```

	SEQ ID No. 955:	5'- TCACTCCAGACTTGCTCGAC
	SEQ ID No. 956:	5'- CGGCACTGGGGTGTGTCCCC
	SEQ ID No. 957:	5'- CGCCTTCCTCCGACTTACGC
	SEQ ID No. 958:	5'- CTCCCGAGCAACAGAGCTT
5	SEQ ID No. 959:	5'- ACTCCAGACTTGCTCGACCG
	SEQ ID No. 960:	5'- CCCATGCCGCTCTCCCCGAG
	SEQ ID No. 961:	5'- CCATGCCGCTCTCCCCGAGC
	SEQ ID No. 962:	5'- CCCCATGCCGCTCTCCCCGA
	SEQ ID No. 963:	5'- TCACTCGGTACCGTCTCGCA
10	SEQ ID No. 964:	5'- CATGCCGCTCTCCCCGAGCA
	SEQ ID No. 965:	5'- ATGCCGCTCTCCCCGAGCAA
	SEQ ID No. 966:	5'- TTCGGCACTGGGGTGTGTCC
	SEQ ID No. 967:	5'- TGCCGCTCTCCCCGAGCAAC
	SEQ ID No. 968:	5'- TTCACTCCAGACTTGCTCGA
15	SEQ ID No. 969:	5'- CCCGCAAGAAGATGCCTCCT
	SEQ ID No. 970:	5'- AGAAGATGCCTCCTCGCGGG
	SEQ ID No. 971:	5'- AAGAAGATGCCTCCTCGCGG
	SEQ ID No. 972:	5'- CGCAAGAAGATGCCTCCTCG
	SEQ ID No. 973:	5'- AAGATGCCTCCTCGCGGGCG
20	SEQ ID No. 974:	5'- CCGCAAGAAGATGCCTCCTC
	SEQ ID No. 975:	-5'- GAAGATGCCTCCTCGCGGGC
	SEQ ID No976:	·5′CCGCGGAAGAAGATGCCTCC
	SEQ ID No. 977:	5'- CAAGAAGATGCCTCCTCGCG
	SEQ ID No. 978:	5'- TCCTTCGGCACTGGGGTGTG
25	SEQ ID No. 979:	5'- CCGCTCTCCCCGAGCAACAG
	SEQ ID No. 980:	5'- TGCCTCCTCGCGGGCGTATC
	SEQ ID No. 981:	5'- GACTTACGCCGGCAGTCACC
	SEQ ID No. 982:	5'- GGCTCCTCTCTCAGCGGCCC
	SEQ ID No. 983:	5'- CCTTCGGCACTGGGGTGTGT
30	SEQ ID No. 984:	'5'- GGGGTGTGTCCCCCCA'ACAC

	SEQ ID No. 985:	5'- GCCGCTCTCCCCGAGCAACA
	SEQ ID No. 986:	5'- AGATGCCTCCTCGCGGGCGT
	SEQ ID No. 987:	5'- CACTCGGTACCGTCTCGCAT
	SEQ ID No. 988:	5'- CTCACTCGGTACCGTCTCGC
5	SEQ ID No. 989:	5'- GCAAGAAGATGCCTCCTCGC
	SEQ ID No. 990:	5'- CTCCAGACTTGCTCGACCGC
	SEQ ID No. 991:	5'- TTACGCCGGCAGTCACCTGT
	SEQ ID No. 992:	5'- CTTCGGCACTGGGGTGTGTC
	SEQ ID No. 993:	5'- CTCGCGGGCGTATCCGGCAT
10	SEQ ID No. 994:	5'- GCCTCCTCGCGGGCGTATCC
	SEQ ID No. 995:	5'- ACTCGGTACCGTCTCGCATG
	SEQ ID No. 996:	5'- GATGCCTCCTCGCGGGCGTA
	SEQ ID No. 997:	5'- GGGTGTGTCCCCCAACACC
	SEQ ID No. 998:	5'- ACTTACGCCGGCAGTCACCT
15	SEQ ID No. 999:	5'- CTTACGCCGGCAGTCACCTG
	SEQ ID No. 1000:	5'- ATGCCTCCTCGCGGGCGTAT
•	SEQ ID No. 1001:	5'- GCGCCGCGGGCTCCTCTCTC
	SEQ ID No. 1002:	5'- GGTGTGTCCCCCCAACACCT
	SEQ ID No. 1003:	5'- GTGTGTCCCCCCAACACCTA
20	SEQ ID No. 1004:	5'- CCTCGCGGGCGTATCCGGCA
	SEQ ID No. 1005:	5'-CCTCACTCGGTACCGTCTCG
	SEQ ID No. 1006:	5'- TCCTCACTCGGTACCGTCTC
	SEQ ID No. 1007:	5'- TCGCGGCGTATCCGGCATT
	SEQ ID No. 1008:	5'- TTTCACTCCAGACTTGCTCG
25	SEQ ID No. 1009:	5'- TACGCCGGCAGTCACCTGTG
	SEQ ID No. 1010:	5'- TCCAGACTTGCTCGACCGCC
	SEQ ID No. 1011:	5'- CTCGGTACCGTCTCGCATGG
	SEQ ID No. 1012:	5'- CGCGGCGTATCCGGCATTA
	SEQ ID No. 1013:	5'- GCGTATCCGGCATTAGCGCC
30	SEQ ID No. 1014:	5'- GGGCTCCTCTCAGCGGCC

	SEQ ID No. 1015:	5'- TCCCCGAGCAACAGAGCTTT
	SEQ ID No. 1016:	5'- CCCCGAGCAACAGAGCTTTA
	SEQ ID No. 1017:	5'- CCGAGCAACAGAGCTTTACA
-	SEQ ID No. 1018:	5'- CCATCCCATGGTTGAGCCAT
5	SEQ ID No. 1019:	5'- GTGTCCCCCAACACCTAGC
	SEQ ID No. 1020:	5'- GCGGGCGTATCCGGCATTAG
	SEQ ID No. 1021:	5'- CGAGCGGCTTTTTGGGTTTC
	SEQ ID No. 1022:	5'- CTTTCACTCCAGACTTGCTC
	SEQ ID No. 1023:	5'- TTCCTTCGGCACTGGGGTGT
10	SEQ ID No. 1024:	5'- CCGCCTTCCTCCGACTTACG
	SEQ ID No. 1025:	5'- CCCGCCTTCCTCCGACTTAC
	SEQ ID No. 1026:	5'- CCTCCTCGCGGGCGTATCCG
	SEQ ID No. 1027:	5'- TCCTCGCGGGCGTATCCGGC
	SEQ ID No. 1028:	5'- CATTAGCGCCCGTTTCCGGG
15	SEQ ID No. 1029:	5'- GCATTAGCGCCCGTTTCCGG
	SEQ ID No. 1030:	5'- GGCATTAGCGCCCGTTTCCG
	SEQ ID No. 1031:	5'- GTCTCGCATGGGGCTTTCCA
	SEQ ID No. 1032:	5'- GCCATGGACTTTCACTCCAG
	SEQ ID No. 1033:	5'- CATGGACTTTCACTCCAGAC
20		

The sequences SEQ ID No. 933 to SEQ ID No. 1033 are particularly suitable for the detection of bacteria of the genus Alicyclobacillus.

SEQ ID No. 1034: 5'- CCTTCCTCCGGCTTACGCCGGC

SEQ ID No. 1035: 5'- CCTTCCTCCGACTTGCGCCGGC

SEQ ID No. 1036: 5'- CCTTCCTCCGACTTCACCGGC

30

The nucleic acid probe molecules according to SEQ ID No. 1034 to SEQ ID No. 1036 are used as unlabelled competitor probes for the detection of bacteria of the genus *Alicyclobacillus* in combination with the oligonucleotide probe according to

SEQ ID No. 933, in order to prevent the binding of the labelled oligonucleotide probe specific for bacteria of the genus *Alicyclobacillus* to nucleic acid sequences which are not specific for bacteria of the genus *Alicyclobacillus*.

5	SEQ ID No. 1037:	5'- ACCGTCTCACAAGGAGCTTT
	SEQ ID No. 1038:	5'- TACCGTCTCACAAGGAGCTT
	SEQ ID No. 1039:	5'- GTACCGTCTCACAAGGAGCT
	SEQ ID No. 1040:	5'- GCCTACCCGTGTATTATCCG
	SEQ ID No. 1041:	5'- CCGTCTCACAAGGAGCTTTC
10	SEQ ID No. 1042:	5'- CTACCCGTGTATTATCCGGC
	SEQ ID No. 1043:	5'- GGTACCGTCTCACAAGGAGC
	SEQ ID No. 1044:	5'- CGTCTCACAAGGAGCTTTCC
	SEQ ID No. 1045:	5'- TCTCACAAGGAGCTTTCCAC
	SEQ ID No. 1046:	·5'- TACCCGTGTATTATCCGGCA
15	SEQ ID No. 1047:	5'- GTCTCACAAGGAGCTTTCCA
	SEQ ID No. 1048:	5'- ACCCGTGTATTATCCGGCAT
	SEQ ID No. 1049:	5'- CTCGGTACCGTCTCACAAGG
	SEQ ID No. 1050:	5'- CGGTACCGTCTCACAAGGAG
	SEQ ID No. 1051:	5'- ACTCGGTACCGTCTCACAAG
20	SEQ ID No. 1052:	5'- CGGCTGGCTCCATAACGGTT
	SEQ ID No. 1053:	5'- ACAAGTAGATGCCTACCCGT
	SEQ ID No. 1054:-	5'- TGGCTCCATAACGGTTACCT
	SEQ ID No. 1055:	5'- CAAGTAGATGCCTACCCGTG
	SEQ ID No. 1056:	5'- CACAAGTAGATGCCTACCCG
25	SEQ ID No. 1057:	5'- GGCTCCATAACGGTTACCTC
	SEQ ID No. 1058:	5'- ACACAAGTAGATGCCTACCC
	SEQ ID No. 1059:	5'- CTGGCTCCATAACGGTTACC
	SEQ ID No. 1060:	5'- GCTGGCTCCATAACGGTTAC
	SEQ ID No. 1061:	5'- GGCTGGCTCCATAACGGTTA .
30	SEQ ID No. 1062:	5'- GCTCCATAACGGTTACCTCA

	SEQ ID No. 1063:	5'- AAGTAGATGCCTACCCGTGT
	SEQ ID No. 1064:	5'- CTCCATAACGGTTACCTCAC
	SEQ ID No. 1065:	5'- TGCCTACCCGTGTATTATCC
	SEQ ID No. 1066:	5'- TCGGTACCGTCTCACAAGGA
5	SEQ ID No. 1067:	5'- CTCACAAGGAGCTTTCCACT
	SEQ ID No. 1068:	5'- GTAGATGCCTACCCGTGTAT
	SEQ ID No. 1069:	5'- CCTACCCGTGTATTATCCGG
	SEQ ID No. 1070:	5'- CACTCGGTACCGTCTCACAA
	SEQ ID No. 1071:	5'- CTCAGCGATGCAGTTGCATC
10	SEQ ID No. 1072:	5'- AGTAGATGCCTACCCGTGTA
	SEQ ID No. 1073:	5'- GCGGCTGGCTCCATAACGGT
	SEQ ID No. 1074:	5'- CCAAAGCAATCCCAAGGTTG
	SEQ ID No. 1075:	5'- TCCATAACGGTTACCTCACC
	SEQ ID No. 1076:	5'- CCCGTGTATTATCCGGCATT
15	SEQ ID No. 1077:	5'- TCTCAGCGATGCAGTTGCAT
	SEQ ID No. 1078:	5'- CCATAACGGTTACCTCACCG
	SEQ ID No. 1079:	5'- TCAGCGATGCAGTTGCATCT
	SEQ ID No. 1080:	5'- GGCGGCTGGCTCCATAACGG
	SEQ ID No. 1081:	5'- AAGCAATCCCAAGGTTGAGC
20	SEQ ID No. 1082:	5'- TCACTCGGTACCGTCTCACA
	SEQ ID No. 1083:	5'- CCGAGTGTTATTCCAGTCTG
	SEQ ID No. 1084:	5'- CACAAGGAGCTTTCCACTCT
	SEQ ID No. 1085:	5'- ACAAGGAGCTTTCCACTCTC
	SEQ ID No. 1086:	5'- TCACAAGGAGCTTTCCACTC
25	SEQ ID No. 1087:	5'- CAGCGATGCAGTTGCATCTT
	SEQ ID No. 1088:	5'- CAAGGAGCTTTCCACTCTCC
	SEQ ID No. 1089:	5'- CCAGTCTGAAAGGCAGATTG
	SEQ ID No. 1090:	5'- CAGTCTGAAAGGCAGATTGC
	SEQ ID No. 1091:	5'- CGGCGGCTGGCTCCATAACG
30	SEQ ID No. 1092:	5'- CCTCTCTCAGCGATGCAGTT

	SEQ ID No. 1093:	5'- CTCTCTCAGCGATGCAGTTG
	SEQ ID No. 1094:	5'- TCTCTCAGCGATGCAGTTGC
	SEQ ID No. 1095:	5'- CTCTCAGCGATGCAGTTGCA
	SEQ ID No. 1096:	5'- CAATCCCAAGGTTGAGCCTT
5	SEQ ID No. 1097:	5'- AATCCCAAGGTTGAGCCTTG
	SEQ ID No. 1098:	5'- AGCAATCCCAAGGTTGAGCC
	SEQ ID No. 1099:	5'- CTCACTCGGTACCGTCTCAC
	SEQ ID No. 1100:	5'- GCAATCCCAAGGTTGAGCCT
	SEQ ID No. 1101:	5'- GCCTTGGACTTTCACTTCAG
10	SEQ ID No. 1102:	5'- CATAACGGTTACCTCACCGA
	SEQ ID No. 1103:	5'- CTCCTCTCAGCGATGCAG
	SEQ ID No. 1104:	5'- TCGGCGGCTGGCTCCATAAC
	SEQ ID No. 1105:	5'- AGTCTGAAAGGCAGATTGCC
	SEQ ID No. 1106:	5'- TCCTCTCTCAGCGATGCAGT
15	SEQ ID No. 1107:	5'- CCCAAGGTTGAGCCTTGGAC
	SEQ ID No. 1108:	5'- ATAACGGTTACCTCACCGAC
	SEQ ID No. 1109:	5'- TCCCAAGGTTGAGCCTTGGA
	SEQ ID No. 1110:	5'- ATTATCCGGCATTAGCACCC
	SEQ ID No. 1111:	5'- CTACGTGCTGGTAACACAGA
20	SEQ ID No. 1112:	5'- GCCGCTAGCCCCGAAGGGCT
	SEQ ID No. 1113:	5'- CTAGCCCCGAAGGGCTCGCT
	SEQ ID No. 1114:	5'- CGCTAGCCCEGAAGGGCTEG
	SEQ ID No. 1115:	5'- AGCCCCGAAGGGCTCGCTCG
	SEQ ID No. 1116:	5'- CCGCTAGCCCCGAAGGGCTC
25	SEQ ID No. 1117:	5'- TAGCCCCGAAGGGCTCGCTC
	SEQ ID No. 1118:	5'- GCTAGCCCCGAAGGGCTCGC
	SEQ ID No. 1119:	5'- GCCCCGAAGGGCTCGCTCGA
	SEQ ID No. 1120:	5'- ATCCCAAGGTTGAGCCTTGG
	SEQ ID No. 1121:	5'- GAGCCTTGGACTTTCACTTC
30	SEQ ID No. 1122:	5'- CAAGGTTGAGCCTTGGACTT

	SEQ ID No. 1123:	5'- GAGCTTTCCACTCTCCTTGT
	SEQ ID No. 1124:	5'- CCAAGGTTGAGCCTTGGACT
	SEQ ID No. 1125:	5'- CGGGCTCCTCTCTCAGCGAT
	SEQ ID No. 1126:	5'- GGAGCTTTCCACTCTCCTTG
5	SEQ ID No. 1127:	5'- GGGCTCCTCTCTCAGCGATG
	SEQ ID No. 1128:	5'- TCTCCTTGTCGCTCTCCCCG
	SEQ ID No. 1129:	5'- TCCTTGTCGCTCTCCCCGAG
	SEQ ID No. 1130:	5'- AGCTTTCCACTCTCCTTGTC
	SEQ ID No. 1131:	5'- CCACTCTCCTTGTCGCTCTC
10	SEQ ID No. 1132:	5'- GGCTCCTCTCTCAGCGATGC
	SEQ ID No. 1133:	5'- CCTTGTCGCTCTCCCGAGC
	SEQ ID No. 1134:	5'- CACTCTCCTTGTCGCTCTCC
	SEQ ID No. 1135:	5'- ACTCTCCTTGTCGCTCTCCC
	SEQ ID No. 1136:	5'- CTCTCCTTGTCGCTCTCCCC
15	SEQ ID No. 1137:	5'- GCGGGCTCCTCTCAGCGA
	SEQ ID No. 1138:	5'- GGCTCCATCATGGTTACCTC

The sequences SEQ ID No. 1037 to SEQ ID No. 1138 are particularly suitable for the detection of *Alicyclobacillus acidoterrestris*.

The second district and the second se

SEQ ID No. 1139: 5'- CCGTCTCCTAAGGAGCTTTCCA...

20

25

The nucleic acid probe molecule according to SEQ ID No. 1139 is used as unlabelled competitor probe for the detection of *Alicyclobacillus acidoterrestris* in combination with the oligonucleotide probe according to SEQ ID No. 1044, in order to prevent the binding of the labelled oligonucleotide probe specific for *Alicyclobacillus acidoterrestris* to nucleic acid sequences which are not specific for *Alicyclobacillus acidoterrestris*.

30 SEQ ID No. 1140: 5'- TCCCTCCTTAACGGTTACCTCA

SEQ ID No. 1141: 5'- TGGCTCCATAA(A/T)GGTTACCTCA

The nucleic acid probe molecules according to SEQ ID No. 1140 to SEQ ID No. 1141 are used as unlabelled competitor probe for the detection of *Alicyclobacillus acidoterrestris* in combination with the oligonucleotide probe according to SEQ ID No. 1057, in order to prevent the binding of the labelled oligonucleotide probe specific for *Alicyclobacillus acidoterrestris*, to nucleic acid sequences which are not specific for *Alicyclobacillus acidoterrestris*.

10 SEQ ID No. 1142: 5'- CTTCCTCCGGCTTGCGCCGG

5

15

20

25

30

SEQ ID No. 1143: 5'- CGCTCTTCCCGA(G/T)TGACTGA

SEQ ID No. 1144: 5'- CCTCGGGCTCCTCCATC(A/T)GC

The sequences SEQ ID No. 1142 to SEQ ID No. 1144 are particularly suitable for the simultaneous detection of *Alicyclobacillus cycloheptanicus* and *A. herbarius*.

A further subject of the invention are derivatives of the above oligonucleotide sequences, demonstrating specific hybridization with target nucleic acid sequences of the respective microorganism despite deviations in sequence and/or length, and which are therefore suitable for use in a method according to the invention and ensure the specific detection of the respective microorganism. These derivatives especially include:

a) nucleic acid molecules which (i) are identical with respect to the bases to one of the above oligonucleotide sequences (SEQ ID No. 1, 5 to 146, 148 to 154, 157 to 160, 163 to 1033, 1037 to 1138, 1142 to 1144) to at least 80%, preferably to at least 90% particularly preferred to at least 92%, 94%, 96%, or (ii) differ from the above oligonucleotide sequences by one or more deletions and/or additions and which allow for a specific hybridization with nucleic acid sequences of drink-spoiling yeasts of the genera Zygosaccharomyces, Hanseniaspora, Candida,

5

10

15

20

25

30

Brettanomyces, Dekkera, Pichia, Saccharomyces and Saccharomycodes and in particular of the species Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii or of the drink-spoiling molds of the genera Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, in particular of the species Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus and T. flavus or of the drinkspoiling bacteria of the genera Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus and Alicyclobacillus, in particular of the species Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus and A. herbarius. In this context "specific hybridization" means that under the hybridization conditions described here or those known to the person skilled in the art in relation to in situ hybridization techniques, only the ribosomal RNA of the target organisms binds to the oligonucleotide, but not the rRNA of non-target microrganisms.

b) nucleic acid molecules which specifically hybridize under stringent conditions to a sequence complementary to the nucleic acid molecules mentioned in a) or to one of the probes SEQ ID No. 1, 5 to 146, 148 to 154, 157 to 160, 163 to 1033, 1037 to 1138, 1142 to 1144.

c) Nucleic acid molecules comprising an oligonucleotide sequence of SEQ ID No. 1, 5 to 146, 148 to 154, 157 to 160, 163 to 1033, 1037 to 1138, 1142 to 1144 or the sequence of a nucleic acid molecule according to a) or b) and having at least one further nucleotide in addition to the mentioned sequences and their

derivatives, respectively, according to a) or b) and allowing specific hybridization with nucleic acid sequences of target organisms.

A further subject of the invention are also derivatives of the above competitor probe sequences, showing specific hybridizations with target nucleic acid sequences of the respective non-target genrera and species, respectively, despite variations in sequence and/or length, and which therefore prevent the binding of the oligonucleotide probe to the nucleic acid sequences of the genera and species, respectively, not to be detected. They are suitable for use in a method according to the invention and ensure a specific detection of the respective microorganism. These derivatives especially include

a) nucleic acid molecules which (i) are identical in terms of bases to one of the above oligonucleotide sequences (SEQ ID No. 2 to 4, 147, 155 to 156, 161 to 162, 1034 to 1036, 1139 to 1141) to at least 80%, preferably to at least 90%, particularly preferably to at least 92%, 94%, 96%, or (ii) differ from the above oligonucleotide sequences by one or more deletions and/or additions and which inhibit a specific hybridization of a specific oligonucleotide probe to nucleic acid sequences of a microorganism not to be detected.

20

15

5

10

b) Nucleic acid molecules which specifically hybridize to a sequence complementary to the nucleic acid molecules mentioned in a) or to one of the probes SEQ ID No. 2 to 4, 147, 155 to 156, 161 to 162, 1034 to 1036, 1139 to 1141 under stringent conditions.

25

c) Nucleic acid molecules comprising an oligonucleotide sequence of SEQ ID No. 2 to 4, 147, 155 to 156, 161 to 162, 1034 to 1036, 1139 to 1141 or the sequence of a nucleic acid molecule according to a) or b) and having at least one further nucleotide in addition to the mentioned sequences and their derivatives, respectively, according

to a) or b) and prevent the binding of a specific oligonucleotide probe to the nucleic acid sequence of a non-target microorganism.

The degree of sequence identity of a nucleic acid probe molecule to the oligonucleotide probes having SEQ ID No. 1 to SEQ ID No. 1144 can be determined using the usual algorithms. In this respect, for example, the program for determining the sequence identity available under http://www.ncbi.nlm.nih.gov/BLAST (on this page for example the link "Standard nucleotide-nucleotide BLAST [blastn]") is suitable.

10

15

20

25

30

5

In the present invention "hybridization" can have the same meaning as "complementary". The present invention also comprises those oligonucleotides, which hybridize to the (theoretical) antisense strand of one of the inventive oligonucleotides including the derivatives of the present invention of SEQ ID No. 1 bis SEQ ID No. 1144.

The term "stringent conditions" generally means conditions under which a nucleic acid sequence preferentially hybridizes to its target sequence and to a clearly lower extent, or not at all, to other sequences. Stringent conditions are partly sequence-dependent and will vary under different circumstances. Longer sequences hybridize specifically at higher temperatures. In general, stringent conditions are selected in such a way that the temperature is approximately-5°C below the thermal melting point (T_m) for the specific sequence at a defined ionic strength, pH and nucleic acid concentration. The T_m is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probe molecules complementary to the target sequence hybridize to the target sequence in the steady state.

The nucleic acid probe molecules of the present invention may be used within the detection method with various hybridization solutions. Various organic solvents may be used in concentrations of 0-80%. By keeping stringent hybridization conditions, it

is guaranteed that the nucleic acid probe molecule indeed hybridizes to the target sequence. Moderate conditions within the meaning of the invention are e.g. 0% formamide in a hybridization buffer as described below. Stringent conditions within the meaning of the invention are for example 20 % to 80 % formamide in the hybridization buffer.

5

10

15

20

25

Within the method according to the invention for the specific detection of yeasts of the genera Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces and Saccharomycodes, in particular of the species Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii a typical hybridization solution contains 0%-80% formamide, preferably 20%-60% formamide, particularly preferably 40% formamide. In addition, it has a salt concentration of 0.1 mol/l - 1.5 mol/l, preferably of 0.7 mol/l - 1.0 mol/l, and particularly preferably of 0.9 mol/l, whereby the salt preferably being sodium chloride. Further, the hybridization solution usually comprises a detergent, such as for instance sodium dodecyl sulfate (SDS) in a concentration of 0.001% - 0.2%, preferably in a concentration of 0.005% - 0.05%, particularly preferably in a concentration of 0.01%. For buffering the hybridization solution, various compounds such as Tris-HCl, sodium citrate, PIPES or HEPES may be used, which are usually used in concentrations of 0.01 - 0.1 mol/l, preferably of 0.01 to 0.05 mol/l, in a pH range of 6.0 - 9.0, preferably 7.0 to 8.0. The particularly preferred embodiment of the hybridization solution in accordance with the invention contains 0.02 mol/l Tris-HCl, pH 8.0.

Within the method according to the invention for the specific detection of molds of ... 30 the genera Mucor, Byssochlamys, Neosartorya, Aspergillus and Talaromyces, in

particular of the species Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus and T. flavus, a typical hybridization solution contains 0%-80% formamide, preferably 10%-60% formamide, particularly preferably 20% formamide. In addition, it has a salt concentration of 0.1 mol/l - 1.5 mol/l, preferably of 0.7 mol/l -1.0 mol/l, and particularly preferably of 0.9 mol/l, whereby the salt preferably being sodium chloride. Further, the hybridization solution usually comprises a detergent, such as for instance sodium dodecyl sulfate (SDS) at a concentration of 0.001% -0.2%, preferably at a concentration of 0.005 - 0.05%, particularly preferably at a concentration of 0.01%. For buffering the hybridization solution, various compounds such as Tris-HCl, sodium citrate, PIPES or HEPES may be used, which are usually used in concentrations of 0.01 - 0.1 mol/l, preferably of 0.01 to 0.05 mol/l, in a pH range of 6.0 - 9.0, preferably 7.0 to 8.0. The particularly preferred embodiment of the hybridization solution in accordance with the invention contains 0.02 mol/l Tris-HCl, pH 8.0.

5

10

15

20

25

Within the method according to the invention for the specific detection of bacteria of the genera Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus and Alicyclobacillus, in particular of the species Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus and A. herbarius, a typicāl-hybridization solution contains 0%-80% formamide, preferably 10%-60% formamide, particularly preferably 20% formamide. In addition, it has a salt concentration of 0.1 mol/l - 1.5mol/l, preferably of 0.7 mol/l - 1.0 mol/l, and particularly preferably of 0.9 mol/l, whereby the salt preferably being sodium chloride. Further, the hybridization solution usually comprises a detergent, such as for instance sodium dodecyl sulfate (SDS) at a concentration of 0.001% - 0.2%, preferably at a concentration of 0.005% ... - 0.05%, particularly preferably at a concentration of 0.01%. For buffering the 30 hybridization solution, various compounds such as Tris-HCl, sodium citrate, PIPES

or HEPES may be used, which are usually used in concentrations of 0.01 - 0.1 mol/l, preferably of 0.01 to 0.05 mol/l, in a pH range of 6.0 - 9.0, preferably 7.0 to 8.0. The particularly preferred embodiment of the hybridization solution in accordance with the invention contains 0.02 mol/l Tris-HCl, pH 8.0.

5

10

15

20

25

30

It shall be understood that the one skilled in the art can select the specified concentrations of the constituents of the hybridization buffer in such a way that the desired stringency of the hybridization reaction is achieved. Particularly preferred embodiments are related from stringent to particularly stringent hybridization conditions. Using these stringent conditions the one skilled in the art can determine whether a particular nucleic acid molecule allows the specific detection of nucleic acid sequences of target organisms and may thus be reliably used within the invention.

The concentration of the nucleic acid probe in the hybridization buffer depends on the kind of label and on the number of target structures. In order to allow rapid and efficient hybridization, the number of nucleic acid probe molecules should exceed the number of target structures by several orders of magnitude. However, it has to be taken into consideration that in fluorescence *in situ*-hybridization (FISH) too high levels of fluorescencently labelled nucleic acid probe molecules result in increased background fluorescence. The concentration of the nucleic acid probe molecules should therefore be in the range between 0.5 and 500 ng/µl. Within the method of the present invention the preferred nucleic acid probe concentration is between 1.0 and 10 ng for each nucleic acid probe molecule used per µl of hybridization solution. The volume of hybridization solution used should be between 8 µl and 100 ml, in a particularly preferred embodiment of the method of present invention it is 30 µl.

The concentration of the competitor probe in the hybridization buffer depends on the number of target structures. In order to allow rapid and efficient hybridization, the number of competitor probes should exceed the number of target structures by

several orders of magnitude. The concentration of the competitor probe molecules should therefore be in a range between 0.5 and 500 ng/ μ l. Within the method of the present invention the preferred concentration is between 1.0 and 10 ng for each competitor probe molecule used per μ l of hybridization solution. The volume of hybridization solution used should be between 8 μ l and 100 ml, in a particularly preferred embodiment of the method of present invention it is 30 μ l.

The hybridization usually lasts between 10 minutes and 12 hours, preferably the hybridization lasts for about 1.5 hours. The hybridization temperature is preferably between 44°C and 48°C, particularly preferably 46°C, whereby the parameter of the hybridization temperature as well as the concentration of salts and detergents in the hybridization solution may be optimized depending on the nucleic acid probes, especially their lengths and the degree to which they are complementary to the target sequence in the cell to be detected. The one skilled in the art is familiar with appropriate calculations.

After hybridization the non-hybridized and excess nucleic acid probe molecules should be removed or washed off, which is usually achieved by a conventional washing solution. This washing solution may, if desired, contain 0.001-0.1%, preferably 0.005-0.05%, particularly preferably 0.01% of a detergent such as SDS, as well as Tris-HCl in a concentration of 0.001-0.1 mol/l, preferably 0.01-0.05 mol/l, particularly preferably 0.02 mol/l, wherein the pH value of Tris-HCl is within-the range of 6.0 to 9.0, preferably of 7.0 to 8.0, particularly preferably 8.0. A detergent may be contained, although this is not obligatorily necessary. Furthermore, the washing solution usually contains NaCl, whereby the concentration is 0.003 mol/l to 0.9 mol/l, preferably 0.01 mol/l to 0.9 mol/l, depending on the stringency required. Moreover, the washing solution may contain EDTA, whereby the concentration is preferably 0.005 mol/l. The washing solution may further contain suitable amounts of preservatives known to the expert.

5

10

15

20

25

In general, buffer solutions are used in the washing step which can in principle be very similar to the hybridization buffer (buffered sodium chloride solution), except that the washing step is usually performed in a buffer with a lower salt concentration and at a higher temperature, respectively. For theoretical estimation of the hybridization conditions, the following formula may be used:

$$Td = 81.5 + 16.6 lg[Na^{+}] + 0.4 x (\% GC) - 820/n - 0.5 X (\% FA)$$

Td = dissociation temperature in °C

 $[Na^{\dagger}]$ = molarity of the sodium ions

% GC = percentage of guanine and cytosine nucleotides relative to the total number of bases

n = length of the hybrid

% FA = formamide content

15

20

5

Using this formula, the formamide content (which should be as low as possible due to the toxicity of the formamide) of the washing buffer may for example be replaced by a correspondingly lower sodium chloride content. However, the person skilled in the art is, from the extensive literature concerning in situ hybridization methods, aware of the fact that, and in which way, the mentioned contents can be varied. Concerning the stringency of the hybridization conditions, the same applies as outlined above for the hybridization buffer.

The "washing off" of the non-bound nucleic acid probe molecules is usually performed at a temperature in the range of 44°C to 52°C, preferably of 44°C to 50°C and particularly preferably at 46°C for 10 to 40 minutes, preferably for 15 minutes.

The specifically hybridized nucleic acid probe molecules can then be detected in the respective cells, provided that the nucleic acid probe molecule is detectable, e.g., by linking the nucleic acid probe molecule to a marker by covalent binding. As

detectable markers, for example, fluorescent groups, such as for example CY2 (available from Amersham Life Sciences, Inc., Arlington Heights, USA), CY3 (also available from Amersham Life Sciences), CY5 (also obtainable from Amersham Life Sciences), FITC (Molecular Probes Inc., Eugene, USA), FLUOS (available from Roche Diagnostics GmbH, Mannheim, Germany), TRITC (available from Molecular Probes Inc., Eugene, USA), 6-FAM or FLUOS-PRIME are used, which are well known to the person skilled in the art. Also chemical markers, radioactive markers or enzymatic markers, such as horseradish peroxidase, acid phosphatase, alkaline phosphatase, peroxidase may be used. For each of these enzymes a number of chromogens is known which may be converted instead of the natural substrate and may be transformed into either coloured or fluorescent products. Examples of such chromogens are listed in the following table:

Table

15

10

5

Enzyme

Chromogen

1. Alkaline phosphatase and	4-methylumbelliferyl	phosphate	(*), bis(4-
acid phosphatase	methylumbelliferyl	phosphate,	(*) 3-O-
	methylfluorescein,	flavon	e-3-diphosphate
+ ÷	triammonium salt	(*), p-nitrop	henylphosphate
	disodium salt		^-
2. Peroxidase	tyramine hydrochloric	de (*), 3-(p-h	ydroxyphenyl)-
	propionate (*), p-hydro	oxyphenethyl a	lcohol (*), 2,2'-
	azino-di-3-ethylbenzot	thiazoline s	ulfonic acid
	(ABTS), ortho-phenyl	endiamine dih	ydrochloride, o-
	dianisidine, 5-aminos	salicylic acid,	p-ucresol (*),
	3,3'-dimethyloxy	benzidine,	3-methyl-2-
•	benzothiazoline hydra	zone, tetrameth	ylbenzidine

3. Horseradish peroxidase H_2O_2 + diammonium benzidine

H₂O₂ + tetramethylbenzidine

4. \(\beta - D - galactosidase \)
o-nitrophenyl-\(\beta - D - galactopyranoside \), 4-

methylumbelliferyl-ß-D-galactoside

5. Glucose oxidase ABTS, glucose and thiazolyl blue

* fluorescence

Finally, it is possible to design the nucleic acid probe molecules in such a way that another nucleic acid sequence suitable for hybridization is present at their 5' or 3' ends. This nucleic acid sequence in turn comprises about 15 to 100, preferably 15-50 nucleotides. This second nucleic acid region may in turn be detected by a nucleic acid probe molecule which is detectable by one of the above-mentioned agents.

Another possibility is the coupling of the detectable nucleic acid probe molecules to a haptene which may subsequently be brought into contact with an antibody recognising the haptene. Digoxigenin may be mentioned as an example of such a haptene. Other examples in addition to those mentioned are well known to the one skilled in the art.

15

5

The final evaluation is, depending on the kind of labelling of the probe used, possible, among others, with an optical microscope, epifluorescence microscope, chemoluminometer, fluorometer.

An important advantage of the methods described in this application for the specific detection of drink-spoiling yeasts of the genera Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces and Saccharomycodes, in particular of the species Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C.

25 crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B.

naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii or for the specific detection of drink-spoiling molds of the genera Mucor, Byssochlamys, Neosartorya, Aspergillus and Talaromyces, in particular of species Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus and A. fischeri, Talaromyces flavus, T. bacillisporus and T. flavus, or for the specific detection of drink-spoiling bacteria of the genera Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, in particular of the species Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus and A. herbarius compared to the detection methods described above is the exceptional speed. In comparison to conventional cultivation methods which need up to 10 days, the result is obtained within 24 to 48 hours when the methods according to the invention are used.

5

10

15

20

25

Another advantage is the ability to perform an accurate differentiation of the drink-spoiling microorganims to be detected. With the methods common up to now no differentiation of the microorganisms was carried out until the genus or species level, as the differentiation was either not possible at all or was too time-consuming.

Another advantage is the specificity of these methods. With the nucleic acid probe molecules used, drink-spoiling yeasts of the genera Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces and Saccharomycodes, in particular the species Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii or drink-spoiling molds of the genera Mucor,

Byssochlamys, Neosartorya, Aspergillus and Talaromyces, in particular of the species Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus and A. fischeri, Talaromyces flavus, T. bacillisporus and T. flavus or drinkspoiling bacteria of the genera Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus and Alicyclobacillus, in particular of the species Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus and A. herbarius can be detected in a highly specific manner. By the visualisation of the microorganisms a visual control may be performed at the same time. False-positive results, such as often occurring in polymerase chain reaction, are therefore ruled out.

10

15

20

25

30

Another advantage of the methods according to the invention is their ease of use. Thus, using this methods, large numbers of samples can be easily tested regarding the presence of the mentioned microorganims.

Finally, an important advantage compared to the state of the art is the possible simultaneous detection of several of the mentioned microorganisms by the use of respective mixtures of probes. Following this approach all practise relevant drink-spoiling microorganisms can be detected in a few tests.

· :-- -

Different probes may hereby be coupled with different labels, so that the various, detected micororganisms may be discriminated in an easy and reliable way. For example, a first oligonucleotide may be specifically labelled with a green fluorescence dye and serves for the detection of a certain genus or species of microorganism. A second oligonucleotide is also specifically labelled with, for instance, a red fluorescence dye and serves for the detection of a second genus or species of microorganism. The oligonucleotides referred to as competitor probes remain non-labelled and prevent the binding of the first and/or the second oligonucleotide probe to bacteria which do not belong to the genera or species to be

detected. The different labels, e.g. the green fluorescence dye on the one hand and the red fluorescence dye on the other hand may be differentiated in an easy manner, for example by using different filters in fluorescence microscopy.

5 The methods according to the invention may be used in various ways.

For example, non-alcoholic drinks (e.g. fruit juices, fruct nectars, fruit concentrates, mashed fruits, soft drinks and waters) may be tested for the presence of the microorganisms to be detected.

10

20

25

For example, also environmental samples can be tested for the presence of the micororganisms to be detected. Theses samples may be, for example, collected from soil or be parts of plants.

15 The method according to the invention may further be used for testing sewage samples or silage samples.

The method according to the invention may further be used for testing medicinal samples, e.g. stool samples, blood cultures, sputum, tissue samples (also sections), wound material, urine, samples from the respiratory tract, implants and catheter surfaces.

Another field of use of the method according to the invention is the control of food. In preferred embodiments the food samples are obtained from milk or milk products (yogurt, cheese, curd, butter, buttermilk), drinking water, alcoholic drinks (beer, wine, spirits), bakery products or meat products.

A further field of use of the method according to the invention is the analysis of pharmaceutical and cosmetic products, e.g. ointments, creams, tinctures, juices, solutions, drops, etc.

Furthermore, according to the invention, kits for performing the respective methods are provided. The hybridization arrangement contained in these kits is described for example in German patent application 100 61 655.0. Express reference is herewith made to the disclosure contained in this document with respect to the in situ hybridization arrangement.

Besides the described hybridization arrangement (referred to as VIT reactor), the most important component of the kits is the respective hybridization solution (referred to as VIT solution) with the nucleic acid probe molecules specific for the microorganisms to be detected, which are described above (VIT solution). Further contained are the respective hybridization buffer (Solution C) and a concentrate of the respective washing solution (Solution D). Also contained are optionally fixation solutions (Solution A and Solution B) as well as optionally an embedding solution (finisher). Optionally, solutions are contained for performing in parallel a positive control as well as of a negative control.

The following example is intended to illustrate the invention without limitation.

20 Example

5

10

15

25

Specific rapid detection of drink-spoiling microorganisms in a sample

A sample is cultivated for 20 to 48 hours in a suitable manner. For the detection of yeasts and molds cultivation may be performed, for example, in SSL-bouillon for 24 hours at 25°C. For the detection of lactic acid bacteria the cultivation may be performed for example in MRS-bouillon for 48 hours at 30°C. For the detection of aceteic acid bacteria the cultivation may be performed, for example, on DSM-agar for 48 hours at 28°C. For the detection of bacilli, in particular *B. coagulans*, the cultivation may be performed, for example, on dextrose-casein-peptone-agar for 48

hours at 55°C. For the detection of alicyclobacilli, the cultivation may be performed, for example, in BAM-bouillon for 48 hours at 44°C.

To an aliquot of the culture the same volume of fixation solution (Solution B, ethanol absolute) is added. Alternatively, an aliquot of the culture may be centrifuged (4000 g, 5 min, room temperature) and, after discarding the supernatant, the pellet may be dissolved in 4 drops of fixation solution (Solution B).

For performing the hybridization a suitable aliquot of the fixed cells (preferably 5 μ l) is applied onto a slide and dried (46°C, 30 min, or until completely dry). Alternatively, the cells may also be applied to other carrier materials (e.g. a microtiter plate or a filter). The dried cells are then completely dehydrated by again adding the fixation solution (Solution B). The slide is again dried (room temperature, 3 min, or until completely dry).

15

20

25

10

5

Then the hybridization solution (VIT solution, hybridization buffer containing labeled probe molecules) containing the above described nucleic acid probe molecules specific for the microorganisms to be detected, is applied to the fixed, dehydrated cells. The preferred volume is 40 µl. The slide is then incubated (46°C, 90 min) in a chamber humidified with hybridization buffer (Solution C), preferably the VIT reactor (c. f. DE 100 61 655.0).

Then the slide is removed from the chamber, the chamber is filled with washing solution (Solution D, diluted 1:10 with distilled water) and the slide is incubated in the chamber (46°C, 15 min).

Then the chamber is filled with distilled water, the slide is briefly immersed and then air-dried in lateral position (46°C, 30 min or until completely dry).

Then the slide is embedded in a suitable medium (Finisher).

Finally, the sample is analyzed with the help of a fluorescence microscope.