Comparison of FFT Generated by LegUp vs. Altera Megafunction

FFT Specifications

Comparison will be for:

- 16-bit input and output width
- 64-point FFT (length 64 input and output)

FFT Algorithm

Discrete Fourier Transform (DFT) algorithm is O(N²),
 where N = input size, X = input values, Y = output values

$$Y_k = \sum_{n=0}^{N-1} X_n \exp\left(\frac{-2\pi j}{N}kn\right), \quad k = 0, ..., N-1$$

- An alternative O(Nlog₂N) algorithm exists (FFT) which takes advantage of symmetry. FFT contains 2 steps:
 - 1. Re-ordering the input data (time decimation)
 - 2. Recursively performing a computation known as the "butterfly operation"

Step 1. Time Decimation

Example with input Size 8 (Re-ordering data points 0-7)

With input size 4, the order would go from 0, 1, 2, 3 \rightarrow 0, 2, 1, 3

• Example: input size 4. The O(N²) definition can be rearranged:

$$Y0 = (x_0 + e^{-j2\pi(0)/2} x_2) + e^{-j2\pi(0)/4} (x_1 + e^{-j2\pi(0)/2} x_3)$$

$$Y1 = (x_0 - e^{-j2\pi(0)/2} x_2) + e^{-j2\pi(1)/4} (x_1 - e^{-j2\pi(0)/2} x_3)$$

$$Y2 = (x_0 + e^{-j2\pi(0)/2} x_2) - e^{-j2\pi(0)/4} (x_1 + e^{-j2\pi(0)/2} x_3)$$

$$Y3 = (x_0 - e^{-j2\pi(0)/2} x_2) - e^{-j2\pi(1)/4} (x_1 - e^{-j2\pi(0)/2} x_3)$$

Example: input size 4. The O(N²) definition can be rearranged:

$$\begin{array}{l} \text{Y0} = \underbrace{ (\mathbf{x}_0 + \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y1} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y2} = (\mathbf{x}_0 + \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3}} \\ \end{array} \right) \\ + \underbrace{ e^{-\mathrm{j}2\pi(0)/4}}_{\text{Y3} = (\mathbf{x}_0 + \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3}} \\ + \underbrace{ e^{-\mathrm{j}2\pi(0)/4}}_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3}} \\ + \underbrace{ e^{-\mathrm{j}2\pi(0)/4}}_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_2) } \\ + \underbrace{ e^{-\mathrm{j}2\pi(0)/4}}_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_3) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_3) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_3) } \\ + \underbrace{ e^{-\mathrm{j}2\pi(0)/4}}_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_3) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_3) }_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_3) } \\ + \underbrace{ e^{-\mathrm{j}2\pi(0)/4}}_{\text{Y3} = (\mathbf{x}_0 - \mathbf{e}^{-\mathrm{j}2\pi(0)/2} \, \mathbf{x}_3) }_{\text{Y3} = (\mathbf{x}_0 -$$

Butterfly 1 Butterfly 2

Butterfly Stage 1

Example: input size 4. The O(N²) definition can be rearranged:

$$\begin{array}{l} \text{Y0} = \underbrace{ (x_0 + e^{-j2\pi(0)/2} \, x_2)}_{\text{Y1} = (x_0 - e^{-j2\pi(0)/2} \, x_2)}_{\text{($x_0 - e^{-j2\pi(0)/2} \, x_2)}}_{\text{+ $e^{-j2\pi(0)/4}$}} \underbrace{ (x_1 + e^{-j2\pi(0)/2} \, x_3)}_{\text{+ $e^{-j2\pi(0)/2} \, x_3)}}_{\text{Y2} = (x_0 + e^{-j2\pi(0)/2} \, x_2)}_{\text{- $e^{-j2\pi(0)/4}$}} \underbrace{ (x_1 - e^{-j2\pi(0)/2} \, x_3)}_{\text{($x_1 - e^{-j2\pi(0)/2} \, x_3)}}_{\text{X_1} - e^{-j2\pi(0)/2} \, x_3)}_{\text{SUTTERFLY 1}} \\ & \text{Butterfly 1} \\ \end{array}$$

Butterfly Stage 1

Butterfly operation:

• Example: input size 4. The O(N²) definition can be rearranged:

Butterfly Stage 2

• Example: input size 4. The O(N²) definition can be rearranged:

Butterfly Stage 2

Stage 2 is the final stage. 2 Butterflies per stage, 2 computations per butterfly, and 2 stages, \rightarrow Total number of calculations = 4 log 4 = 8

Fixed point, sin lookup table, values stored as integers

- Fixed point, sin lookup table, values stored as integers
- Time decimation performed by reversing bits:

 Since LegUp currently does not support recursion, butterfly algorithm was implemented iteratively, e.g. with input size 8:

 Since LegUp currently does not support recursion, butterfly algorithm was implemented iteratively, e.g. with input size 8:

Stage 2/3

 Since LegUp currently does not support recursion, butterfly algorithm was implemented iteratively, e.g. with input size 8:

Note that the butterflies in each stage are independent, hence in hardware should be performed in parallel

Stage 3/3

Pattern is true for all sizes (for 64 point FFT, 6 stages)

- First stage: Butterfly (0,1), (2,3), (4,5) . . . (62,63)

Second stage: Butterfly (0,2), (1,3), (4,6), (5, 7) . . . (61, 63)

- Third stage: (0,4), (1,5), (2,6), (3,7), (8,12)... (59,63)

- Fourth stage: (0,8), (1,9)...

Fifth stage: Skips by 16

- Sixth stage: Skips by 32: (0,32), (1,33)... (31,63)

 Implemented in C using for loops, but then LegUp does not take advantage of parallel butterflies

Modifications to Initial C

- However since FFT size is known...
 - Time decimation ordering can be stored rather than calculated
 - Only required sin values can be stored, no need for large lookup
- In fact, all parts of the algorithm can be stored, computations are always the same for a given input size (only input values change)

Manual Verilog Implementation

Finite state machine with 9 states:

- State 1 Accept 1 input per clock cycle and store in shift register
 - 64 Clock Cycles
- State 2 Time decimation, re-order input data
 - 1 Clock Cycle since order is known
- States 3-8 are the 6 stages of computation, during each 32 butterflies are performed in parallel
- State 9 Output one per clock cycle, then return to state 1

Altera Performance vs. Input Size

FFT Size	Input Cycles	Cycles between last input and first output	Total Cycles
32	32	66	130 (32+66+32)
64	64	100	228 (64+100+64)
128	128	175	431 (128+175+128)
256	256	304	812 (256+300+256)
512	512	572	1596 (512+572+512)

Performance Comparison (64-point FFT)

	Altera	Manual Verilog	LegUp, fft.c	LegUp, fft.c
		(verison 2)	(inline on)	(inline off)
LE	4,449	27,785	2,421	2,372
LUTs	3,601	25,566	2,207	2,136
Dedicated Logic	3,836	15,460	977	1,072
Registers				
Total Clock	228	210	3800	10,010
Cycles (first input		(=64+1+1+	(including	(including
to last output)		20*4+64)	return sum)	return sum)
Fmax	198	138	88	100
Critical path delay			(inline on)	(inline off)
Memory Bits	9,948	26,112	6,128	6,128
9-bit Multiplier	24	256	10	4
Elements		(EP2C70F672C6)		

For all performance results physical synthesis was on, and the default minimum clock frequency was constrained to 1000MHz (and not met).