

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Campo Mourão

Departamento Acadêmico de Matemática - DAMAT

Geometria Analítica e Álgebra Linear

Notas de Aula

Prof $^{\underline{a}}$ Dra. Érika Patrícia Dantas de Oliveira Guazzi Campo Mourão - PR ${}^{\underline{0}}$ Período de 2021

Sumário

6	Espaços Vetoriais			207
	6.1	Introdução		. 207
	6.2	Definição e Exemplos		. 208
		6.2.1	Propriedades do Espaço Vetorial	. 211
	6.3	Subes	paço Vetorial	. 212
	6.4 Combinação Linear		inação Linear	. 215
		6.4.1	Subespaços Gerados	. 216
		6.4.2	Dependência e Independência Linear	. 218
		6.4.3	Propriedades	. 220
	6.5	5 Base e Dimensão de um Espaço Vetorial		. 220
		6.5.1	Processo Prático para Determinar uma Base de um Subespaço Ve-	
			torial de \mathbb{R}^n	. 222
		6.5.2	Dimensão	. 222
	6.6	Coordenadas		. 225
		6.6.1	Mudança de Base	. 226
	6.7	.7 Exercícios sobre Espaços Vetoriais		. 227
\mathbf{R}_{0}	eferê	ncias l	Bibliográficas	232

Capítulo 6

Espaços Vetoriais

Os Espaços Vetoriais, em especial, de funções, são aplicados em predição de terremotos, na síntese musical, na dinâmica dos fluidos, no reconhecimento facial e vocal e na prospecção de petróleo.

6.1 Introdução

Examinemos certos aspectos relacionados com dois conjuntos conhecidos: o conjunto V dos vetores e o conjunto $M_{m\times n}(\mathbb{R})$ das matrizes reais m por n. Sejam $u, v, w \in V$, $k_1, k_2 \in \mathbb{R}$ e $A, B, C \in M_{m\times n}(\mathbb{R})$.

• em relação a adição:

1.
$$u + v = v + u$$
 $A + B = B + A$

2.
$$(u+v)+w=u+(v+w)$$
 $(A+B)+C=A+(B+C)$

3.
$$\overrightarrow{0} + u = u + \overrightarrow{0} = u$$
 $A + 0 = 0 + A = A$

4.
$$v + (-v) = (-v) + v = \overrightarrow{0}$$
 $A + (-A) = -A + A = 0$

• em relação à multiplicação por escalar:

1.
$$k_1(k_2v) = (k_1k_2)v$$
 $k_1(k_2A) = (k_1k_2)A$

2.
$$(k_1 + k_2)v = k_1v + k_2v$$
 $(k_1 + k_2)A = k_1A + k_2A$

3.
$$k_1(v+w) = k_1v + k_1w$$
 $k_1(A+B) = k_1A + k_1B$

$$4. 1v = v 1A = A$$

Observação 6.1.1. Esses conjuntos apresentam uma "estrutura" comum em relação a essas operações. Esse fato não só vale para esses dois conjuntos com essas operações mas para muitos outros.

6.2 Definição e Exemplos

Definição 1. Dizemos que um conjunto $V \neq \emptyset$ é um espaço vetorial sobre \mathbb{R} quando, e somente quando:

- I) Existe uma adição $(u, v) \rightarrow u + v \in V$, com as seguintes propriedades:
 - (a) Comutativa, ou seja, u + v = v + u, $\forall u, v \in V$
 - **(b)** Associativa, ou seja, $(u+v)+w=u+(v+w) \ \forall u,v,w \in V$
 - (c) Existe em V um **elemento neutro** para essa adição o qual será simbolizado por $\overrightarrow{0}$, ou seja,

$$\exists \overrightarrow{0} \in V, \ u + \overrightarrow{0} = u, \ \forall \ u \in V$$

(d) Para todo elemento $u \in V$ existe o **elemento oposto**, ou seja, -u. Assim,

$$\forall u \in V, \exists (-u) \in V / u + (-u) = \overrightarrow{0}$$

- II) Está definida uma multiplicação de $\mathbb{R} \times V$ em V, o que significa que a cada par (α, u) de $\mathbb{R} \times V$ está associado um único elemento de V que se indica por αu , e tem-se o seguinte:
 - (a) **Associativa**, ou seja, $\alpha(\beta v) = (\alpha \beta)v$

- (b) Distributiva do produto da soma de dois escalares por um objeto em V, ou seja, $(\alpha + \beta)v = \alpha v + \beta v$
- (c) Distributiva no produto de um escalar qualquer pela soma de dois objetos em V, ou seja, $\alpha(v+w) = \alpha v + \alpha w$
- (d) Elemento neutro da multiplicação, ou seja, 1v = vpara quaisquer $u, v, w \in V$ e $\alpha, \beta \in \mathbb{R}$.

Observação 6.2.1. De maneira análoga define-se espaço vetorial sobre \mathbb{C} .

Exemplo 6.2.1. O conjunto $V = \mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}$ é um espaço vetorial com as operações abaixo:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $k(x_1, y_1) = (kx_1, ky_1).$

Exemplo 6.2.2. O conjunto $V = \mathbb{R}$ é um espaço vetorial real.

Exemplo 6.2.3. Os conjuntos \mathbb{R}^3 , \mathbb{R}^4 , ..., \mathbb{R}^n são espaços vetoriais com as operações de adição e multiplicação por escalar usuais.

Exemplo 6.2.4. O conjunto $\mathcal{M}_{mn}(\mathbb{R})$ com as operações de adição e multiplicação por escalar usuais é um espaço vetorial.

Exemplo 6.2.5. O conjunto de vetores da geometria definidos por meio de segmentos orientados é um espaço vetorial sobre \mathbb{R} .

Exemplo 6.2.6. O conjunto $V = P_n = \{a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \ a_i \in \mathbb{R}\}$ dos polinômios com coeficientes reais de grau menor ou igual a n, mais o polinômio nulo, em relação às operações usuais de adição de polinômios e multiplicação por escalar é um espaço vetorial.

Exemplo 6.2.7. O conjunto $V = \{f : \mathbb{R} \to \mathbb{R}\}$ das funções reais definidas em toda a reta com as operações

$$(f+g)(x) = f(x) + g(x)$$

e

$$(\alpha f)(x) = \alpha f(x)$$

é um espaço vetorial.

Solução: Sejam $f, g e h \in V e \alpha, \beta \in \mathbb{R}$.

- I) Existe uma adição $(f,g) \rightarrow f + g \in V$, com as seguintes propriedades:
 - (a) (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x)
 - (b) ((f+g)+h)(x) = (f+g)(x)+h(x) = (f(x)+g(x))+h(x) = f(x)+(g(x)+h(x)) = f(x)+(g+h)(x) = (f+g+h)(x)
 - (c) (0+f)(x) = 0(x) + f(x) = 0 + f(x) = f(x), onde 0(x) = 0, $\forall x \in \mathbb{R}$
 - (d) (f + (-f))(x) = f(x) + (-f)(x) = f(x) f(x) = 0, onde $-f(x) \notin o$ elemento oposto de f(x)
- II) Está definida uma multiplicação de $\mathbb{R} \times V$ em V, o que significa que a cada par (α, f) de $\mathbb{R} \times V$ está associado um único elemento de V que se indica por αf , e tem-se o seguinte:
 - (a) $(\alpha(\beta f))(x) = \alpha(\beta f)(x) = \alpha(\beta f(x)) = (\alpha\beta)f(x) = ((\alpha\beta)f)(x)$
 - **(b)** $((\alpha + \beta)f)(x) = (\alpha + \beta)f(x) = \alpha f(x) + \beta f(x) = (\alpha f)(x) + (\beta f)(x) = (\alpha f + \beta f)(x)$
 - (c) $(\alpha(f+g))(x) = \alpha(f+g)(x) = \alpha(f(x)+g(x)) = \alpha f(x) + \alpha g(x) =$ = $(\alpha f)(x) + (\alpha g)(x) = (\alpha f + \alpha g)(x)$

(d)
$$(1f)(x) = 1f(x) = f(x)$$

Exemplo 6.2.8. O conjunto $V = \mathbb{R}_+$ com as operações

$$u \bigoplus v = uv$$

e

$$k \bigotimes u = u^k$$

onde $u, v \in \mathbb{R}_+$ e $k \in \mathbb{R}$, é um espaço vetorial. Justifique. Verifique que $1 \bigoplus 1 = 1$ e que $2 \bigotimes 1 = 1$.

Solução: Link da Solução.

Observação 6.2.2. Os elementos do espaço vetorial V serão chamados vetores, independentemente de sua natureza.

6.2.1 Propriedades do Espaço Vetorial

Seja V um espaço vetorial real.

- 1. Existe um único vetor nulo em V (elemento neutro da adição).
- 2. Cada vetor $u \in V$, admite apenas um simétrico $-u \in V$.
- 3. Se u + w = v + w então u = v.
- 4. -(-v) = v
- 5. $\forall \alpha \in \mathbb{R}, \ \alpha \overrightarrow{0} = \overrightarrow{0}$
- 6. $\forall u \in V, 0u = \overrightarrow{0}$
- 7. $\alpha u = \overrightarrow{0} \Rightarrow \alpha = 0$ ou $u = \overrightarrow{0}$
- 8. $(-\alpha)u = \alpha(-u) = -(\alpha u)$

6.3 Subespaço Vetorial

Definição 2. Seja V um espaço vetorial real. Um subconjunto W de V é um subespaço vetorial de V se:

- a) $\overrightarrow{0} \in W$, isto \acute{e} , W contém o vetor nulo;
- **b)** $\forall u, v \in W, u + v \in W;$
- c) $\forall \alpha \in \mathbb{R} \ e \ \forall \ u \in W, \ \alpha u \in W$.

Observação 6.3.1. Sempre que $\overrightarrow{0}$ não pertencer a W, W não é um subespaço de V.

Teorema 6.3.1. Se W é um subespaço vetorial de V, então W também é um espaço vetorial sobre \mathbb{R} .

Exemplo 6.3.1. Sejam $V = \mathbb{R}^2$ e $S = \{(x,y) \in \mathbb{R}^2 / y = 2x\}$ ou $S = \{(x,2x); x \in \mathbb{R}\}$. Mostre que S é um subespaço vetorial do \mathbb{R}^2 .

Solução: Link da Solução.

Exemplo 6.3.2. Verifique que $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$ é um subespaço de \mathbb{R}^3 . Solução: Considere $u \in W$, ou seja, u = (x, y, z) = (x, -x, z), onde $x, z \in \mathbb{R}$. Note que:

- (i) $\vec{0} \in W$, pois se x = 0 e z = 0, então $u = (0, 0, 0) \in W$.
- (ii) Sejam $u = (x_1, -x_1, z_1)$ e $v = (x_2, -x_2, z_2) \in W$. Então, obtemos que $u + v = (x_1, -x_1, z_1) + (x_2, -x_2, z_2) = (x_1 + x_2, -x_1 x_2, z_1 + z_2) = (x_1 + x_2, -(x_1 + x_2), z_1 + z_2) \in W$, pois y = -x.
- (iii) Sejam $\alpha \in \mathbb{R}$ e $u = (x_1, -x_1, z_1) \in W$. Então, obtemos que $\alpha u = \alpha(x_1, -x_1, z_1) = (\alpha x_1, \alpha(-x_1), \alpha z_1) = (\alpha x_1, -(\alpha x_1), \alpha z_1) \in W$, pois y = -x.

Portanto, W é um subespaço vetorial de \mathbb{R}^3 .

Exemplo 6.3.3. Sejam $V = \mathbb{R}^2$ e $W = \{(x, 4 - 2x); x \in \mathbb{R}\}$. Mostre que W não é um subespaço vetorial do \mathbb{R}^2 .

Solução: Link da Solução.

Exemplo 6.3.4. O conjunto das matrizes simétricas é um subespaço vetorial de $M_n(\mathbb{R})$. Solução: Denotemos o conjunto das matrizes simétrica por S, ou seja,

$$S = \{ A \in M_n(\mathbb{R}) / A^t = A \}.$$

Sejam $A, B, O \in S$, onde O é a matriz nula. Note que:

- (i) $O \in S$, pois matriz nula é simétrica, ou seja, $O^t = O$.
- (ii) $A + B \in S$, pois $(A + B)^t = A^t + B^t = A + B$.
- (iii) $\alpha A \in S$, pois $(\alpha A)^t = \alpha A^t = \alpha A$.

Portanto, o conjunto das matrizes simétricas é um subespaço vetorial de $M_n(\mathbb{R})$.

Exemplo 6.3.5. Sejam $V = \mathbb{R}^3$ e $W = \{(x, y, z) \in \mathbb{R}^3 / ax + by + cz = 0\}$. Mostre que W é um subespaço vetorial do \mathbb{R}^3 .

Solução: Link da Solução.

Exemplo 6.3.6.
$$S = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \in M_{2\times 2} \ / \ a, b \in \mathbb{R} \right\} \ \'e \ um \ subespaço \ de \ V = M_{2\times 2}$$
? Solução: Link da Solução.

Exemplo 6.3.7. $S = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$ é um subespaço de $V = \mathbb{R}^2$?

Solução: Note que a primeira componente dos vetores em S são maiores do que zero. Assim, o vetor nulo não pertence ao subconjunto S, ou seja, não satisfaz a condição (i) da definição de subespaço vetorial. Isso nos leva que S não é um subespaço de \mathbb{R}^2 . Além disso, ao considerar $u \in S$, para qualquer escalar $\alpha \in \mathbb{R}$ tal que $\alpha < 0$, temos que $\alpha u \notin S$, pois a sua primeira componente será negativa, ou seja, não satisfaz a condição (iii) da definição de subespaço vetorial. E novamente, isso nos leva que S não é um subespaço de \mathbb{R}^2 .

Observação 6.3.2. Todo espaço vetorial V admite pelo menos dois subespaços: o conjunto $W = \{\vec{0}\}\$, chamado **subespaço nulo** ou **subespaço zero** e o próprio espaço vetorial V. Esses dois são chamados **subespaços triviais** de V. Os demais são denominados subespaços próprios de V.

Exemplo 6.3.8. Seja $V = \mathbb{R}^2$, os subespaços triviais são $\{(0,0)\}$ e \mathbb{R}^2 , e os subespaços próprios são as retas que passam pela origem.

Exemplo 6.3.9. Os subespaços triviais de $V = \mathbb{R}^3$ são $S = \{(0,0,0)\}$ e o próprio \mathbb{R}^3 . Os subespaços próprios são as retas e os planos que passam pela origem.

Definição 3. Sejam U e V subespaços vetoriais de um espaço vetorial W. Indicaremos por U+V e chamaremos de soma de U com V o seguinte subconjunto de W

$$U+V=\{u+v\,/\,u\in U\ \mathsf{e}\ v\in V\}$$

e indicaremos por $U \cap V$ e chamaremos de intersecção de U e V o seguinte subconjunto de W

$$U\bigcap V=\{w\,/\,w\in U\ \text{e}\ w\in V\}$$

Teorema 6.3.2. Se U e V são subespaços vetoriais de W, então U+V e $U \cap V$ também são subespaços vetoriais de W.

Definição 4. Sejam U e V subespaços vetoriais de W tais que $U \cap V = \{\overrightarrow{0}\}$. Neste caso diz-se que U + V é soma direta dos subespaços U e V.

Notação: $U \bigoplus V$.

Teorema 6.3.3. Sejam U e V subespaços vetoriais de um espaço vetorial W. Então, $W = U \bigoplus V$ se, e somente se, cada vetor $w \in W$ admite uma única decomposição w = u + v, com $u \in U$ e $v \in V$.

Exemplo 6.3.10. Verifique que $\mathbb{R}^3 = U \bigoplus V$, onde $U = \{(x, 0, 0) \in \mathbb{R}^3 / x \in \mathbb{R}\}$ $e = \{(0, y, z) \in \mathbb{R}^3 / y, z \in \mathbb{R}\}.$

Solução: Link da Solução.

6.4 Combinação Linear

Definição 5. Sejam os vetores v_1, v_2, \ldots, v_n do espaço vetorial V e os escalares c_1, c_2, \ldots, c_n . Qualquer vetor $v \in V$ da forma:

$$v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$$

 \acute{e} uma combinação linear dos vetores v_1, v_2, \ldots, v_n .

Exemplo 6.4.1. O vetor $v = (2,3) \in \mathbb{R}^2$ é uma combinação linear dos vetores $\overrightarrow{i} = (1,0)$ $\overrightarrow{j} = (0,1)$, pois

$$(2,3) = 2 \cdot (1,0) + 3 \cdot (0,1).$$

Exemplo 6.4.2. O vetor $v=(5,2,3)\in\mathbb{R}^3$ é uma combinação linear dos vetores $\overrightarrow{i}=(1,0,0), \ \overrightarrow{j}=(0,1,0), \ e \ \overrightarrow{k}=(0,0,1), \ pois$

$$(5,2,3) = 5 \cdot (1,0,0) + 2 \cdot (0,1,0) + 3 \cdot (0,0,1).$$

Exemplo 6.4.3. Dado $V = P_2$, o polinômio $v = 7x^2 + 11x - 26$ é uma combinação linear dos polinômios $v_1 = 5x^2 - 3x + 2$ e $v_2 = -2x^2 + 5x - 8$.

Solução: Link da Solução.

6.4.1 Subespaços Gerados

Definição 6. Sejam $S = \{u_1, u_2, \dots, u_n\}$ um subconjunto do espaço vetorial V. O subespaço [S] é dito subespaço gerado por S, onde cada elemento de [S] é uma combinação linear de u_1, u_2, \dots, u_n , ou seja,

$$[S] = \{ v \in V / v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n \ \text{e} \ c_i \in \mathbb{R} \}$$

Notação: [S] ou $S = [u_1, u_2, \dots, u_n]$

Observação 6.4.1. • O conjunto S acima é formado por todas as combinações lineares possíveis dos vetores u_1, u_2, \dots, u_n de V

- Os vetores u_1, u_2, \ldots, u_n são chamados geradores de S
- $S = \emptyset \Rightarrow [\emptyset] = \{0\}$
- $\{u_1,\ldots,u_n\}\subset[u_1,u_2,\ldots,u_n]$

Exemplo 6.4.4. Os vetores $\overrightarrow{i} = (1,0)$ e $\overrightarrow{j} = (0,1)$ geram o espaço vetorial \mathbb{R}^2 , pois qualquer vetor $(x,y) \in \mathbb{R}^2$ é combinação linear de \overrightarrow{i} e \overrightarrow{j} , ou seja,

$$(x,y) = (x,0) + (0,y) = x(1,0) + y(0,1) = x\overrightarrow{i} + y\overrightarrow{j}$$

$$Logo, \ [\overrightarrow{i}, \overrightarrow{j}] = \mathbb{R}^2$$

Exemplo 6.4.5. Os vetores $e_1 = (1,0,0), e_2 = (0,1,0)$ e $e_3 = (0,0,1)$ geram o espaço vetorial \mathbb{R}^3 , pois qualquer vetor $(x,y,z) \in \mathbb{R}^3$ é combinação linear de e_1,e_2 e e_3 :

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

 $Logo, [e_1, e_2, e_3] = \mathbb{R}^3$

Exemplo 6.4.6. Os vetores $\overrightarrow{i}=(1,0,0)$ e $\overrightarrow{j}=(0,1,0)$ geram o subespaço $S=\{(x,y,0)\in\mathbb{R}^3/x,y\in\mathbb{R}\},$ pois

$$(x, y, 0) = x(1, 0, 0) + y(0, 1, 0)$$

Logo, [i,j] = S é um subespaço próprio do \mathbb{R}^3 e representa geometricamente o plano xOy.

Exemplo 6.4.7. Dados $V=\mathbb{R}^3$, u=(1,0,0) e v=(1,1,0), determine [u,v]. Solução: Link da Solução.

Observação 6.4.2. Dados n vetores v_1, v_2, \ldots, v_n de V e w tal que $w = a_1v_1 + a_2v_2 + \ldots + a_nv_n$ então:

$$[v_1, v_2, \dots, v_n, w] = [v_1, v_2, \dots, v_n]$$

pois todo vetor v que é combinação linear de v_1, v_2, \ldots, v_n, w é também combinação linear de v_1, v_2, \ldots, v_n .

<u>De fato</u>, supondo que: $v \in [v_1, v_2, \dots, v_n, w]$, então existem números reais b_1, b_2, \dots, b_n, b tais que $v = b_1v_1 + b_2v_2 + \dots + b_nv_n + bw$ mas $w = a_1v_1 + a_2v_2 + \dots + a_nv_n$ logo, $v = b_1v_1 + b_2v_2 + \dots + b_nv_n + b(a_1v_1 + a_2v_2 + \dots + a_nv_n)$ ou $v = (b_1 + ba_1)v_1 + (b_1 + ba_2)v_2 + \dots + (b_n + ba_n)v_n$ logo v é combinação linear de v_1, v_2, \dots, v_n , isto é, $v \in [v_1, v_2, \dots, v_n]$ Para mostrar a recíproca, isto é, se $v \in [v_1, v_2, \dots, v_n]$ então $v \in [v_1, v_2, \dots, v_n, w]$, basta considerar b = 0.

Definição 7. Dizemos que um espaço vetorial V é finitamente gerado se existe $S \subset V$, S finito, de maneira que V = [S].

Exemplo 6.4.8. Verifique que
$$M_{2\times 2}(\mathbb{R}) = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$$
. Solução: Considere $c_1, c_2, c_3, c_4 \in \mathbb{R}$ e escrevendo a combinação linear, obtemos:

$$c_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + c_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}).$$

Portanto, $M_{2\times 2}(\mathbb{R})$ é um espaço vetorial finitamente gerado.

6.4.2 Dependência e Independência Linear

A partir da observação 6.4.2 temos que um espaço vetorial V pode ser gerado por n vetores ou por n+1 vetores. Isto é, o conjunto gerador de V pode ter n ou n+1 vetores. Em nossos estudos estamos interessados no conjunto gerador de um espaço vetorial que seja o menor possível. Para determinarmos esse conjunto precisamos do conceito de dependência e independência linear.

Definição 8. Seja V um espaço vetorial sobre \mathbb{R} . Dizemos que um conjunto $A = \{v_1, v_2, \dots, v_n\} \subset V$ é **linearmente independente** (L.I.) se, e somente se, a equação

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = \overrightarrow{0}$$

só admitir a solução nula, isto é, $a_1 = a_2 = \ldots = a_n = 0$.

Definição 9. Dizemos que $A = \{v_1, v_2, \dots, v_n\} \subset V$ é linearmente dependente (L.D.) se, e somente se, A não é L.I., ou seja, se a equação

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = \overrightarrow{0}$$

admitir solução diferente da solução nula.

Exemplo 6.4.9. O conjunto $L = \{(1, 1, 0, 0), (0, 2, 1, 0), (0, 0, 0, 3)\} \subset \mathbb{R}^4$ é L.I. Justifique.

Solução: Link da Solução.

Exemplo 6.4.10. O conjunto $L = \{(1, 1, 0, 0), (0, 1, 0, 0), (2, 1, 0, 0)\} \subset \mathbb{R}^4$ é L.D. Justifique.

Solução: Link da Solução.

Exemplo 6.4.11. Dados os vetores $e_1 = (1, 0, ..., 0)$, $e_2 = (0, 1, ..., 0)$, $..., e_n = (0, 0, ..., 1)$ do \mathbb{R}^n e $u = (a_1, a_2, ..., a_n)$ um vetor qualquer do \mathbb{R}^n . Temos que $u = a_1e_1 + a_2e_2 + ... + a_ne_n$. Além disso, se

$$x_1e_1 + x_2e_2 + \ldots + x_ne_n = \overrightarrow{0},$$

então $x_1 = x_2 = \ldots = x_n = 0$. Portanto os vetores e_1, e_2, \ldots, e_n são linearmente independentes.

Exercício 6.4.1. Considere o espaço vetorial $M_{2\times 2}$, verifique se o conjunto

$$A = \left\{ \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -3 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -4 \\ 3 & 1 \end{pmatrix} \right\}$$

é L.I ou L.D.

6.4.3 Propriedades

Consideremos um espaço vetorial V sobre \mathbb{R} :

- 1. Se um conjunto finito $L \subset V$ contém o vetor nulo, então esse conjunto é L.D.
- 2. Se $S = \{u\} \subset V$ e $u \neq \overrightarrow{0}$, então S é L.I.
- 3. Se $S = \{u_1, u_2, \dots, u_n\} \subset V$ é L.D., então um dos seus vetores é combinação linear dos outros.
- 4. Se S_1 e S_2 são subconjuntos de finitos e não vazios de V, se $S_1 \subset S_2$ e S_1 é L.D, então S_2 é também L.D.
- 5. Se S_1 e S_2 são subconjuntos finitos e não vazios de V, se $S_1 \subset S_2$ e S_2 é L.I, então S_1 é também L.I.

6.5 Base e Dimensão de um Espaço Vetorial

Definição 10. Um conjunto $B = \{v_1, v_2, \dots, v_n\} \subset V$ é uma base do espaço vetorial V se:

- i) B é L.I.
- ii) [B] = V, ou seja, B gera V.

Exemplo 6.5.1. $B = \{(1,1), (-1,0)\} \text{ \'e base de } \mathbb{R}^2.$ Justifique.

Solução: Link da Solução.

Exemplo 6.5.2. $B = \{(1,0), (0,1)\}$ é uma base do \mathbb{R}^2 , dita base canônica de \mathbb{R}^2 .

Exemplo 6.5.3. Se $V = \mathbb{R}^3$, $v_1 = (1,0,0)$, $v_2 = (0,1,0)$ e $v_3 = (0,0,1)$ então $\{v_1, v_2, v_3\}$ é base de \mathbb{R}^3 , chamada base canônica de \mathbb{R}^3 , pois para qualquer vetor u = (x, y, z) do \mathbb{R}^3 , temos

$$u = xv_1 + yv_2 + zv_3$$

e os vetores (0,1,0), (0,1,0) e (0,0,1) são LI.

Exemplo 6.5.4. $B = \{(1, 0, \dots, 0), \dots, (0, 0, \dots, 1)\}$ é uma base do \mathbb{R}^n , dita base canônica de \mathbb{R}^n .

Exemplo 6.5.5. Verifique que
$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \acute{e}$$
 a base canônica de $M_{2\times 2}(\mathbb{R})$.

Solução: Link da Solução.

Exemplo 6.5.6. $B = \{1, x, x^2, \dots, x^n\}$ é uma base do espaço vetorial P_n (conjunto de polinômios de grau menor ou igual a n), também dita base canônica.

Exemplo 6.5.7. $B = \{(2, -1)\}$ não é base de \mathbb{R}^2 . Por quê?

<u>Solução:</u> Note que B é LI, pois B tem um único vetor e esse vetor é diferente do vetor nulo. Mas, B não gera o espaço vetorial \mathbb{R}^2 , pois o vetor $(1,0) \in \mathbb{R}^2$ e $(1,0) \notin B$.

Exercício 6.5.1. O conjunto $\{(1,0),(2,0)\}$ não é base do \mathbb{R}^2 . Por quê?

Exemplo 6.5.8. O conjunto $\{(1,0,0),(0,1,0)\}$ não é uma base de \mathbb{R}^3 . Temos que (1,0,0) e (0,1,0) são LI, mas não geram \mathbb{R}^3 .

222

Teorema 6.5.1. Todo espaço vetorial finitamente gerado admite uma base.

Teorema 6.5.2. Se $B = \{v_1, v_2, \dots, v_n\}$ for uma base de um espaço vetorial V, então todo conjunto com mais de n vetores será linearmente dependente.

6.5.1 Processo Prático para Determinar uma Base de um Subespaço Vetorial de \mathbb{R}^n

Um subespaço de \mathbb{R}^n , em geral, ou é dado pelos seus geradores ou é possível achar esses geradores. A seguir é apresentado um dispositivo prático para achar uma base desse subespaço a partir dos seus geradores. Mais especificamente, utiliza-se o conceito de matriz escalonada.

Dispositivo prático: Se u_1, \ldots, u_r , se apresentam na forma escalonada, então os vetores u_1, \ldots, u_r formam um conjunto L.I.

Exemplo 6.5.9. Seja $V = [(2, 1, 1, 0), (1, 0, 1, 2), (0, -1, 1, 4)] \subset \mathbb{R}^4$, determine uma base de V.

Solução: Link da Solução.

6.5.2 Dimensão

Teorema 6.5.3 (Teorema da Invariância). Seja V um espaço vetorial finitamente gerado. Então duas bases quaisquer de V têm o mesmo número de vetores.

Definição 11. Seja V um espaço vetorial finitamente gerado. Denomina-se dimensão de V o número de vetores de qualquer uma de suas bases. Diz-se também que V é um espaço de dimensão finita.

Exemplo 6.5.10. Determine a dimensão dos seguintes espaços vetoriais:

- a) \mathbb{R}^2
- b) $M_{2\times 2}(\mathbb{R})$

Solução: Link da Solução.

que $dim(M_{m\times n}(\mathbb{R})) = mn$.

Exemplo 6.5.11. Determine a dimensão dos seguintes espaços vetoriais:

- a) \mathbb{R}^n
- **b)** $M_{m \times n}(\mathbb{R})$
- c) $P_n(\mathbb{R})$
- $\mathbf{d}) \ \{\overrightarrow{0}\}\$

<u>Solução:</u> Recorde que a dimensão de um espaço vetorial é dado pela cardinalidade de uma das suas bases.

- (a) Pelo exemplo 6.5.4, temos que uma base do espaço \mathbb{R}^n é dada por $B = \{(1, 0, \dots, 0), \dots, (0, 0, \dots e \text{ tem } n \text{ vetores. Assim, obtemos que } \dim(\mathbb{R}^n) = n.$
- $B = \left\{ \begin{pmatrix} 1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 1 \end{pmatrix} \right\} e tem \ m \times n \ vetores. \ Assim, \ obtemos$

(c) Pelo exemplo 6.5.6, temos que uma base do espaço P_n é dada por $B = \{1, x, x^2, \dots, x^n\}$ e tem n+1 vetores. Assim, obtemos que $\dim(P_n) = n+1$.

(d) Por convenção, tem-se que $dim(\{\overrightarrow{0}\}) = 0$.

Observação 6.5.1. A dimensão de qualquer subespaço S do \mathbb{R}^3 só poderá ser 0, 1, 2 ou 3. Temos os seguintes casos:

- dim S = 0, então $S = \{\overrightarrow{0}\}$ é a origem
- $\dim S = 1$, então S é uma reta que passa pela origem
- $\dim S = 2$, então S é um plano que passa pela origem
- dim S = 3, então S é o próprio \mathbb{R}^3

De forma geral, para verificar que B é base temos que verificar que é L.I. e gera o espaço. Além disso, temos **duas situações**:

- Se dim V = n, qualquer subconjunto de V com n vetores L.I. é uma base de V.
- Se $\dim V = n$, qualquer subconjunto de V com n vetores geradores de V é uma base de V.

Exemplo 6.5.12. O conjunto $B = \{(2,1), (-1,3)\}$ \acute{e} uma base $do \mathbb{R}^2$?

Solução: Note que $dim(\mathbb{R}^2) = 2$ e B \acute{e} LI, pois $\begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 \\ 0 & 7/2 \end{pmatrix}$, ou seja, está em forma escalonada.

 $Logo, dim(\mathbb{R}^2) = 2$ e $B \subset \mathbb{R}^2$ com dois vetores LI segue que, a partir da primeira situação das duas dadas acima, B é uma base do espaço vetorial \mathbb{R}^2 .

Teorema 6.5.4 (Teorema do Completamento). Seja V um espaço vetorial de dimensão $n \ge 1$. Se $\{u_1, u_2, \ldots, u_r\} \subset V$ é um subconjunto L.I com r vetores e r < n, então existem n-r vetores $u_{r+1}, \ldots, u_n \in V$, de maneira que

$$B = \{u_1, u_2, \dots, u_r, u_{r+1}, \dots, u_n\}$$

é uma base de V.

Exemplo 6.5.13. Sejam os vetores $v_1 = (1, -1, 1, 2)$ e $v_2 = (-1, 1, -1, 0)$. Completar o conjunto $\{v_1, v_2\}$ de modo a formar uma base de \mathbb{R}^4 .

Solução: Link da Solução.

Teorema 6.5.5. Seja $B = \{v_1, v_2, \dots, v_n\}$ uma base de um espaço vetorial V. Então, todo vetor $v \in V$ se exprime de maneira única como combinação linear dos vetores de B.

Teorema 6.5.6 (Dimensão da Soma de dois Subespaço). Seja W um espaço vetorial sobre \mathbb{R} de dimensão finita. Se U e V são subespaços de W, então

$$\dim(U+V) = \dim U + \dim V - \dim(U \cap V)$$

Exemplo 6.5.14. Considere os subespaços de \mathbb{R}^4 :

$$U = [(1,0,1,0),(0,1,0,0)]$$
 e $V = \{(x,y,z,t) \in \mathbb{R}^4 \mid x+y=0\}.$

Determinemos $\dim(U \cap V)$ e $\dim(U + V)$.

<u>Solução:</u> <u>Link da Solução</u>.

6.6 Coordenadas

Definição 12. Seja $B = \{v_1, v_2, \dots, v_n\}$ uma base de V. Tomemos $v \in V$, sendo $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$. Os números a_1, a_2, \dots, a_n são chamados componentes ou coordenadas de v em relação à base B.

Notação:
$$v_B=(a_1,a_2,\ldots,a_n)$$
 ou $v_B=\left[\begin{array}{c}a_1\\a_2\\\vdots\\a_n\end{array}\right]$

Exemplo 6.6.1. No \mathbb{R}^2 , consideremos as bases $A = \{(1,0), (0,1)\}$, $B = \{(2,0), (1,3)\}$ e $C = \{(1,-3), (2,4)\}$. Dado o vetor v = (8,6), determine as coordenadas de v em relação a cada uma das bases.

Solução: Link da Solução.

6.6.1 Mudança de Base

Seja V um espaço vetorial de dimensão n e consideremos duas bases de V, $B = \{u_1, \ldots, u_n\}$ e $C = \{v_1, \ldots, v_n\}$. Então, existe uma única família de escalares α_{ij} de maneira que

$$v_1 = \alpha_{11}u_1 + \dots + \alpha_{n1}u_n$$

$$v_2 = \alpha_{12}u_1 + \dots + \alpha_{n2}u_n$$

$$\dots \dots \dots \dots \dots$$

$$v_n = \alpha_{1n}u_1 + \dots + \alpha_{nn}u_n$$

A matriz quadrada de ordem n

$$[I]_{C,B} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix}$$

chama-se matriz de mudança da base B para a base C.

Notação: $I_{C,B}$

Teorema 6.6.1. Seja V um espaço vetorial de dimensão n e consideremos duas bases de V, $B = \{u_1, \ldots, u_n\}$ e $C = \{v_1, \ldots, v_n\}$. Então,

$$v_B = [I]_{C,B} \cdot v_C.$$

Exemplo 6.6.2. No \mathbb{R}^2 , consideremos as bases $A = \{(1,0), (0,1)\}$, $B = \{(2,0), (1,3)\}$ e $C = \{(1,-3), (2,4)\}$. Dado o vetor v = (8,6), verifique que:

(a)
$$v_A = [I]_{B,A} \cdot v_B$$

$$(b) v_B = [I]_{C,B} \cdot v_C$$

Solução: Link da Solução.

6.7 Exercícios sobre Espaços Vetoriais

Exercício 6.7.1. No espaço vetorial $M_{3\times 2}(\mathbb{R})$, consideremos os vetores:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 1 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- (a) Calcular 2A + b 3C;
- (b) Calcular $X \in M_{3\times 2}(\mathbb{R})$ tal que $\frac{A+X}{2} \frac{X-B}{3} = c$;
- (c) Existem $t_1, t_2 \in \mathbb{R}$ de maneira que $A = t_1B + t_2C$?

Exercício 6.7.2. No espaço vetorial $P_3(\mathbb{R})$ sejam dados os vetores $f(t) = t^3 - 1$, $g(t) = t^2 + t - 1$ e h(t) = t + 2.

- (a) Calcular 2f(t) + 3g(t) 4h(t);
- **(b)** Existe $k \in \mathbb{R}$ de maneira que f(t) + kg(t) = h(t)?
- (c) Existem $k_1, k_2 \in \mathbb{R}$ tais que $f(t) = k_1 g(t) + k_2 h(t)$?

Exercício 6.7.3. No \mathbb{R}^2 consideremos os vetores u=(1,1), v=(3,-2) e w=(3,-2). Resolver a equação:

$$\frac{x+u}{2} + \frac{v+x}{3} = w$$

na incógnita $x \in \mathbb{R}^2$.

228

Exercício 6.7.4. Quais dos seguintes conjuntos W abaixo são subespaços do \mathbb{R}^3 ?

(a)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x = 0\}$$

(b)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x \in Z\}$$

(c)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x - 3z = 0\}$$

(d)
$$W = \{(x, y, z) \in \mathbb{R}^3 | ax + by + cz = 0, \text{ com } a, b, c \in \mathbb{R} \}$$

Exercício 6.7.5. Quais dos conjuntos abaixo são subespaços do espaço $P(\mathbb{R})$ de todos os polinômios reais?

(a)
$$W = \{f(t) \in P(\mathbb{R}) | f(t) \text{ tem grau maior que } 2\}$$

(b)
$$W = \{f(t)|f(0) = 2f(1)\}$$

(c)
$$W = \{f(t)|f(t) > 0, \forall t \in \mathbb{R}\}$$

(d)
$$W = \{f(t)|f(t) + f'(t) = 0\}$$

Exercício 6.7.6. Verificar que não são subespaços vetoriais do \mathbb{R}^3 ?

(a)
$$\{(x, y, z) \in \mathbb{R}^3 | x = 1\}$$

(b)
$$\{(x, y, z) \in \mathbb{R}^3 | x^2 + y + z = 0\}$$

(c)
$$\{(x, y, z) \in \mathbb{R}^3 | x \le y \le z\}$$

$$(d) \{(x, y, z) \in \mathbb{R}^3 | x, y \in Q\}$$

Em cada caso quais axiomas não se verificam?

Exercício 6.7.7. Seja I = [0,1]. Verificar se são subespaços vetoriais de C(I), isto é, conjunto das funções reais contínuas em I.

(a)
$$f \in C(I)|f(0) = 0$$

(b)
$$f \in C(I) | \int_0^1 f(t) dt = 0$$

(c)
$$f \in C(I) | f(0) = f(1) \}$$

Exercício 6.7.8. Sejam $U, V \in W$ os seguintes subespaços do \mathbb{R}^3 :

$$U = \{(x, y, z) | x = z\}, V = \{(x, y, z) | x = y = 0\} \ e \ W = \{(x, y, z) | x + y + z = 0\}.$$

Verifique que $U+V=\mathbb{R}^3,\ U+W=\mathbb{R}^3$ e $V+W=\mathbb{R}^3.$ Em algum dos casos a soma é direta?

Exercício 6.7.9. Mostrar que os polinômios 1-t, $(1-t)^2$, $(1-t)^3$ e 1 geram $P_3(\mathbb{R})$.

Exercício 6.7.10. Dar um sistema de geradores para cada um dos seguintes subespaços do \mathbb{R}^3 :

(a)
$$U = \{(x, y, z) | x - 2y = 0\}$$

$$(b)\;V=\{(x,y,z)|x+z=0\;\;{\rm e}\;\;x-2y=0\}$$

(c)
$$W = \{(x, y, z)|x + 2y - 3z = 0\}$$

(d)
$$U \cap V$$

(e)
$$V + W$$

Exercício 6.7.11. Quais os subconjuntos abaixo do \mathbb{R}^3 são linearmente independentes:

(a)
$$\{(1,0,0),(0,1,0),(0,0,1),(2,3,5)\}$$

$$(b) \; \{(1,1,1), (1,0,1), (1,0,-2)\}$$

$$(c) \ \{(0,0,0), (1,2,3), (4,1,-2)\}$$

$$(d) \{(1,1,1), (1,2,1), (3,2,-1)\}$$

Exercício 6.7.12. Quais dos subconjuntos abaixo do $P_4(\mathbb{R})$ são linearmente independentes:

(a)
$$\{1, x - 1, x^2 + 2x + 1, x^2\}$$

(b)
$$\{2x, x^2 + 1, x + 1, x^2 - 1\}$$

(c)
$$\{x(x-1), x^3, 2x^3 - x^2, x\}$$

(d)
$$\{x^4 + x - 1, x^3 - x + 1, x^2 - 1\}$$

Exercício 6.7.13. Demonstrar que o conjunto $\{1, e^x, e^{2x}\}$ de vetores de C([0, 1]) é L.I.

Exercício 6.7.14. Demonstrar que o conjunto $\{1, e^x, xe^x\}$ de vetores de C([0, 1]) é L.I.

Exercício 6.7.15. Dar uma base e a dimensão do subespaço W de \mathbb{R}^4 onde $W = \{(x,y,z,t) \in \mathbb{R}^4 | x-y=y \text{ e } x-3y+t=0\}.$

Exercício 6.7.16. Sendo W e U subespaços do \mathbb{R}^4 de dimensão 3, que dimensões pode ter W+U se (1,2,1,0), (-1,1,0,1), (1,5,2,1) é um sistema de geradores de $W \cap U$?

Exercício 6.7.17. Sendo $W = \{(x, y, z, t) \in \mathbb{R}^4 | x - y = y \text{ e } x - 3y + t = 0\}$ e U = [(1, 2, 1, 3), (3, 1, -1, 4)], determinar uma base e a dimensão de U + W e $U \cap W$.

Exercício 6.7.18. Achar uma base e a dimensão do seguinte subespaço de \mathbb{R}^4 : $U = \{(x, y, z, t) | x - y = 0 \text{ e } x + 2y + t = 0\}.$

Exercício 6.7.19. No espaço vetorial \mathbb{R}^3 consideremos os seguintes subespaços:

$$U = \{(x, y, z) | x = 0\} \quad V = \{(x, y, z) | x - 2z = 0\} \quad W = [(1, 1, 0), (0, 0, 2)].$$

Determinar uma base e a dimensão de cada um dos seguintes subespaços: U, V, W, $U \cap V$, V + W e U + V + W.

Exercício 6.7.20. Determinar uma base e a dimensão do subespaço de $M_3(\mathbb{R})$ constituído das matrizes anti-simétricas.

Exercício 6.7.21. Mostrar que os polinômios 1, 1 + t, $1 - t^2$, $e \ 1 - t - t^2 - t^3$ formam uma base de $P_3(\mathbb{R})$.

Exercício 6.7.22. Determinar uma base e a dimensão do espaço solução de cada um dos sequintes sistemas lineares homogêneos:

$$(a) \begin{cases} x - y = 0 \\ 2x - 3y = 0 \\ 3x + \frac{1}{2}y = 0 \end{cases} \qquad (b) \begin{cases} x + y + z = 0 \\ 2x - y - 2z = 0 \\ x + 4y + 5z = 0 \end{cases}$$

$$(c) \begin{cases} 2x - 2y + z = 0 \\ 3x - y + 3z = 0 \\ 3y + 4z = 0 \end{cases} \qquad (d) \begin{cases} x - y - z - t = 0 \\ 3x - y + 2z - 4t = 0 \\ 2y + 5z + t = 0 \end{cases}$$

Exercício 6.7.23. Mostrar que as matrizes

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array}\right)$$

formam uma base de $M_2(\mathbb{R})$.

Exercício 6.7.24. Determinar uma base de \mathbb{R}^4 que contenha os seguintes vetores (1, 1, 1, 0) e (1, 1, 2, 1).

Exercício 6.7.25. Determinar as coordenadas do vetor $u = (4, -5, 3) \in \mathbb{R}^3$ em relação às sequintes bases:

- (a) canônica;
- (b) $\{(1,1,1),(1,2,0),(3,1,0)\}$
- (c) $\{(1,2,1),(0,3,2),(1,1,4)\}$

Exercício 6.7.26. Determinar as coordenadas do polinômio t^3 em relação à seguinte base de $P_3(\mathbb{R})$: $\{1, 2-t, t^2+1, 1+t+t^3\}$.

Referências Bibliográficas

- [1] ANTON, Howard; BUSBY, Robert C. Álgebra linear contemporânea. Porto Alegre: Bookman, 2006.
- [2] BIANCHINI, Waldecir. Planos. Disponível em: https://www.geogebra.org/m/VXMuWTtE
- [3] BOBKO, Nara. Seções Cônicas. Disponível em: https://www.geogebra.org/m/g3y7bq68
- [4] BOYER, Carl B.; MERZBACH, Uta C. *História da matemática*. Editora Blucher, 2012.
- [5] CAMARGO, Ivan de; BOULOS, Paulo. Geometria analítica: um tratamento vetorial. 3ª edição rev e ampl. São Paulo: Prentice Hall, 2005.
- [6] CASSOL, Henrique L. G. Equações Paramétricas da reta. Disponível em: https://www.geogebra.org/m/RqkquH6P
- [7] LEMKE, Raiane. Retas no \mathbb{R}^3 : Parametrização e gráfico de retas no \mathbb{R}^3 . Disponível em: https://www.geogebra.org/m/Qdwfjkj4
- [8] LEON, Steven J. Álgebra Linear com Aplicações . Rio de Janeiro: LTC, 2013.
- [9] LIMA, Elon Lages. Álgebra linear. Rio de Janeiro: IMPA, 2006.
- [10] LIMA, Elon Lages. Geometria Analítica e Álgebra linear. Rio de Janeiro: IMPA, 2015.
- [11] MARCONDES, C. A.; GENTIL, N.; GRECO, S. E. Matemática, Série Novo Ensino Médio. volume único. São Paulo: Editora Ática.

- [12] RODRIGUES, Aroldo, E. A. Atividade sobre Quádricas. Disponível em: https://www.geogebra.org/m/xraxuttv
- [13] STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. São Paulo: McGraw-Hill, 1987.
- [14] STEINBRUCH, Alfredo; WINTERLE, Paulo. Geometria Analítica. São Paulo: McGraw-Hill, 1987.

Neste arquivo contém as referências para a disciplina de Geometria Analítica e Álgebra Linear. Ressalto ainda a disponibilidade online de diversas outras referências via Bibliotec-UTFPR pelo link http://www.utfpr.edu.br/biblioteca/bibliotec.