Praca inżynierska

System monitoringu serwerów "ServerMonitor"

Autor: Konrad Komada

Promotor: dr Beata Pańczyk

Cel pracy

- Zaprojektowanie zbioru skryptów i aplikacji automatyzujących czynności związane z monitoringiem stanu serwerów, ich zasobów, usług, parametrów pracy oraz wysyłających powiadomienia w przypadku pojawienia się anomalii, mogących skutkować awarią oraz w przypadku zaistnienia awarii.
- Skrypty powinny cechować się dużą autonomicznością działania, czyli powinny wykonywać wszelkie możliwe czynności zaradcze i naprawcze automatycznie.
- Cały system powinien być łatwo skalowalny, czyli powinien umożliwiać dokładanie nowych usług i serwerów do monitoringu.

Zakres pracy

- Skrypty i aplikacja przeznaczone do monitoringu serwerów pracujących pod kontrolę systemu Linux i jego usług.
- Główną technologią skryptową jest język Bash oraz Sh.
- Technologią dla części aplikacyjnej jest język C++ oraz biblioteka QT.
- Powiadomienia drogą e-mail oraz przedstawi podstawowe parametry serwera poprzez graficzny interfejs użytkownika (GUI).
- Wykorzystana technologie sieciowe TCP/IP (ipv4 oraz ipv6).

Architektura systemu

- Architektura jedno i dwuwarstwowa dla skryptów.
- Architektura dwuwarstwowa dla aplikacji Klient-Serwer.
- Środowisko Linux Debian 7.8 (Wheezy) na serwerze VPS z oprogramowaniem DirectAdmin (panel serwera).
- Środowisko Linux lub Cygwin po stronie klienta.
- Języki programowania BASH, SH, QT C++.

Założenia funkcjonalne systemu

- Automatyczne blokowanie adresów IP, z których dokonano ataków na serwer (na usługi serwera).
- Powiadamianie o błędach w konfiguracji usług na przykładzie usługi DNS.
- Monitorowanie bieżącego i historycznego obciążenia CPU.
- Monitorowanie wykorzystania CPU przez procesy PHP-FPM poszczególnych użytkowników i w przypadku przekraczania limitów zakańczanie pracy tych procesów.
- Monitorowanie pracy poszczególnych usług serwera takich jak Apache, PHP, Exim, Dovecot, MySQL i w przypadku wykrycia awarii usługi dokonania jej ponownego uruchomienia.
- Monitoring użycia twardego dysku lub macierzy dyskowej.

Założenia funkcjonalne systemu c.d.

- Wykonywanie automatycznych kopii bezpieczeństwa wszystkich monitorowanych serwerów.
- Kopie wykonywane na system plików umożliwiający tworzenie twardych dowiązań (twardych linków), dzięki którym te same pliki z różnych kopii jeśli nie różnią zajmują jedną i tą samą na dysku – oszczędność miejsca na dysku, na serwerze kopii bezpieczeństwa.
- Kompresja przesyłanych danych do kopii w trakcie połączenia, w celu oszczędzania ilości przesyłanych danych przez łącze internetowe (rsync). Wykluczenie danych zbędnych z kopii.
- · Bezpieczeństwo przesyłanych danych (ssh).

Serwery VPS

Model systemu

Serwer monitorowany - Serwer monitorujący - Stanowisko administratora

Lista głównych skryptów

Lp.	Nazwa	Opis
1.	hardlink-backup-server.sh	Tworzenie kopii z twardymi linkami
2.	onekiller.sh	Pilnowanie limitów CPU użytkownika
3.	autofail2ban.sh	Generowanie czarnej listy adresów IP
4.	ipset.sh	Tablice hasz. dla czarnych list adresów IP
5.	rsync_firewall_serwer2.sh	Wysyłanie czarnych list na inne serwery
6.	firewall_ipv4.sh	Zapora sieciowa dla protokołu IPv4
7.	firewall_ipv6.sh	Zapora sieciowa dla protokołu IPv6
8.	named-checkconf.sh	Monitorowanie poprawności stref DNS
9.	pingtest-ipv4.sh	Test odpowiedzi na pingi - monitoring
10.	check_phpnodes.sh	Pilnowanie pracy serwerów PHP
11.	check-{service}.sh	Pilnowanie różnych usług serwera
12.	check_hdd_usage.sh	Monitoring użycia dysku
13.	check_all_snmp.sh	Monitoring innych zasobów (z SNMP)

Aplikacja QT C++ (GUI)

Monitoring wielu serwerów

Bezpieczeństwo

- Zastosowanie oprogramowania Rsync oraz SSH zapewnia wysoką niezawodność i bezpieczeństwo na etapie tworzenia połączenia przeznaczonego do przesyłania danych (kopie bezpieczeństwa).
- Wysyłanie powiadomień za pomocą e-maili zapewnia duże bezpieczeństwo i niezawodność przekazywania wiadomości do administratora systemu.

Wnioski

- Stworzony na potrzeby niniejszej pracy system, już funkcjonuje produkcyjne.
- Skrypty do tworzenia kopii bezpieczeństwa owych dwóch serwerów spisują się bardzo dobrze ponieważ na maszynie VPS wyposażonej w 100GB przestrzeń dyskową, znajduje kilkanaście pełnych kopii obu maszyn VPS, z których każda osobno posiada 25GB oraz 10GB danych, do zabezpieczenia.
- Skrypty wysyłające wiadomości e-mail z powiadomieniami o zdarzeniach sprawdzają się w praktyce. Wiele razy przyczyniły się do szybkiego rozwiązania awarii związanych z pojawiającym się błędem w konfiguracji usług lub z przeciążeniem serwera.
- Skrypt zapory sieciowej z powodzeniem zablokował w czasie trzech miesięcy pracy serwera około 10 tyś atakujących adresów IP, bez widocznego wzrostu obciążenia CPU.

Kierunki rozwoju

- Na pewno część skryptowa będzie bardzo intensywnie rozwijana wraz ze wzrostem ilości usług oraz użytkowników serwera. Będzie wymagana ich optymalizacja oraz zwiększenie ich możliwości jak w przypadku skryptu onekiller.sh, który będzie musiał zostać rozbudowany o nowe funkcje obsługujące procesy uprzywilejowane.
- Część aplikacyjna QT C++ będzie musiała zostać przygotowana na urządzenia mobilne. Koniecznością będzie poprawienie jej wyglądu i dostosowanie do urządzeń mobilnych.