

Before beginning...

Survey

- 1. 강화학습이 무엇인지 알고 있다
- 2. Q-function이 무엇인지 알고 있다
- 3. Q learning 과 Actor Critic 의 차이를 알고 있다
- 4. Q-learning을 코드로 짤 수 있을 것 같다

0. Recap: Reinforcement Learning

Agent 가 환경 (Environment)과 상호작용하며 정책 (policy) 를 배워 나가는 것

환경 (Environment)

에이전트가 행동을 했을 때 (내재된)규칙에 따라 '무언가' 를 제공해주는 역할

Ex) 바둑 게임, 시뮬레이터, 미로 찾기 ...

상태 (State)

현재 시점 (t) 에서 환경이 어떤 상태인지를 표현하는 값, S_t 로 표기

Ex) 바둑판에 현재 바둑돌이 어떻게 놓여 있는가? 미로에서 내 위치가 어디인가?

: 환경은 agent에게 *s_t* 를 제공.

행동 (Action)

- 에이전트가 특정 시간 t 에 상태 s_t 를 보고 취하는 행동, a_t 로 표기
- Ex) 바둑돌을 (2,2) 위치에 놓는다, 미로에서 ↑ 방향으로 간다
- 그런데, action은 어떻게 정하지?

정책 (Policy)

- 에이전트가 특정 상태에서 행동을 할 규칙이며, s_t 에서 a_t 를 취할 확률분포로 표현됨 $a_t \sim \pi(\cdot | s_t)$
 - 최적 정책 (optimal policy) 는 π^* 로 표기 Ex) 미로의 현재 위치에서 상/하/좌/우로 각각 [0.1,0.4, 0.3,0.2] 의 확률로 가자!

그런데, 에이전트는 정책을 어떻게 결정하지?

보상 (Reward)

- 에이전트가 어떤 행동을 취했을 때 따라오는 **즉각적인** 이득 (혹은 비용)을 표현한 값.
- 에이전트는 reward를 통해 policy를 업데이트함

보상 (Reward)

- Reward 는 s_t , a_t 그리고 s_{t+1} 에 의해 결정됨. 즉 $r_t = r(s_t, a_t, s_{t+1})$
 - 예제를 통해 이해해 봅시다!

In summary, 강화학습이란

Agent 가 특정 state 에서 action을 취했을 때 받는 reward를 통해 policy를 배우는 과정

Goal에 도달할 시 +100을 받으며, 벽에 부딪힐 시 -10점을 받음

State: 각 셀의 위치
$$s_t \in \{(0,0),(0,1),...,(2,2)\}$$

Action: 상/하/좌/우
$$a_t \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$$

Reward:

$$r(s_t, a_t, s_{t+1}) = \begin{cases} 100 & if \ s_{t+1} = (2,2) \\ -10 & if \ s_t = s_{t+1} \\ 0 & otherwise \end{cases}$$

State: 각 셀의 위치
$$s_t \in \{(0,0),(0,1),...,(2,2)\}$$

Action: 상/하/좌/우
$$a_t \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$$

Reward:

$$r(s_t, a_t, s_{t+1}) = \begin{cases} 100 & if \ s_{t+1} = (2,2) \\ -10 & if \ s_t = s_{t+1} \\ 0 & otherwise \end{cases}$$

그러면 $s_t = (2,2)$ 일 때는 어떻게 되나요?

State: 각 셀의 위치
$$s_t \in \{(0,0),(0,1),...,(2,2)\}$$

Action: 상/하/좌/우
$$a_t \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$$

Reward:

$$r(s_t, a_t, s_{t+1}) = \begin{cases} 100 & if \ s_{t+1} = (2,2) \\ -10 & if \ s_t = s_{t+1} \\ 0 & otherwise \end{cases}$$

그러면 $S_t = (2,2)$ 일 때는 어떻게 되나요?

→ Terminal state라 부릅니다! (episodic case)

그렇다면, $s_t = (0,0)$ 일 때와 $s_t = (0,2)$ 일 때의 가치는 똑같을까요?

그렇다면, $s_t = (0,0)$ 일 때와 $s_t = (0,2)$ 일 때의 가치는 똑같을까요?

Value function (가치판단 함수)

$$V^{\pi}(s_t) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{T-t} \gamma^k r_{t+k} \mid s_t \right]$$

(0,2)에서는 (0,0) 에서보다 더 **빠르게** 미래의 reward를 높일 수 있으므로,

$$V(s_t = (0,2)) > V(s_t = (0,0))$$

그렇다면, $s_t = (0,0)$ 일 때와 $s_t = (0,2)$ 일 때의 가치는 똑같을까요?

Value function (가치평가 함수)

$$V^{\pi}(s_t) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{T-t} \gamma^k r_{t+k} \mid s_t \right]$$

(0,2)에서는 (높일 수 있으

미래에 받을 reward에 대한 감가율, discount rate $\gamma \in (0,1)$

$$V(s_t = (0,2)) > V(s_t = (0,0))$$

0

행동에 대한 가치도 평가할 수 있나요? 예!

Q-function (state-action value, 행동가치평가 함수)

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{T-t} \gamma^k r_{t+k} \mid s_t, a_t \right]$$

(2,1)에서는 위로 가면 reward=100을 받고 끝이므로, $Q((0,2),\uparrow)=100$

(1,1) 에서는 상/우 action이 좌/하 action보다 좋으므로, $Q((1,1),\uparrow) = Q((1,1),\to)$ $> Q((1,1),\leftarrow) = Q((1,1),\downarrow)$

Q-learning

- Q function을 갱신하며 배우는 기법
- 초기 $Q(s_t, a_t)$ 는 임의의 값을 가짐 (모든 s_t, a_t 에 대해)

$$Q(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_a Q(s_{t+1}, a)\right)$$

Q-learning

• 갱신될 Q 값은 다음과 같이 업데이트된다.

를 가중해서 더하자 (weighted sum) α : learning rate, 새로운 정보에 얼마나 가중치를 더해서 학습할지 결정.

DQN

Alexnet (NIPS 2012)

ImageNet Classification with Deep Convolutional Neural Networks

DQN (Arxiv version)

DQN (Nature version)

Dec 3, 2012 Dec 19, 2013 Feb 26, 2015

- DQN is the <u>"first"</u> deep learning model to successfully learn control policies <u>"directly"</u> from highdimensional sensory input using reinforcement learning.
- Not current (2020) SOTA, but DQN papers proposed important tricks for stabilizing the training of deep neural network based RL methods.

DQN

- Overcoming "curse of dimensionality" with function approximators.
- Tricks for stabilizing training procedures:
 - Experience replay * Target network **

^{*} Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, DTIC Document, 1993

^{**} Firstly proposed from the 2nd DQN paper.

^{***} Game images are reproduced from the DQN paper <Playing Atari with Deep RL>

Function approximation

Q learning

$$Q(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a)\right)$$

Q learning with function approximation

Q function을 근사하는 network의 parameter θ

$$\underline{Q_{\theta}}(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underline{Q_{\theta}}(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_{a} \underline{Q_{\theta}}(s_{t+1}, a)\right)$$

Target network

Q learning with function approximation

$$Q_{\theta}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q_{\theta}(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_{a} Q_{\theta}(s_{t+1}, a)\right)$$

Q learning with function approximation and target network

$$Q_{\theta}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q_{\theta}(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_{a} Q_{\overline{\theta}}(s_{t+1}, a)\right)$$

 $Q_{\overline{\theta}}$: target network

• 기존의 Q-network와 구조가 완전히 동일하고 parameter만 다른 $(\theta \neq \bar{\theta})$ 별도의 네트워크

Target network

Target network를 쓰는 이유:

학습할 때마다 Q-network 의 가중치는 변하게 되는데, 목표도 같이 변하기 때문에 일정한 값으로 수렴하는 데에 어려움이 있을 있기 때문

https://greentec.github.io/reinforcement-learning-third/

DDPG: Deep Deterministic Policy Gradient

Dec 19, 2013 **ICML 2014 ICLR 2016**

- DDPG는 "Deterministic Policy Gradient" 의 심층학습 버전.
- DQN에서 사용된 심층강화학습을 안정화 하는 기법들이 사용.

DDPG: Motivation

- DQN 방법으로는 discrete한 action만 다룰 수 있다.
- DQN으로 Continuous한 action을 다루려면, discretizing (행동 이산화) 를 해야한다
 - 오른쪽과 같은 7개의 관절을 가진 로봇 팔을 제어한다고 생각해보자.
 - 각 segment당 움직임을 $a_i = \{-k, 0, +k\}$ 로 discretize 한다고 가정하면,
 - Action space : 3 X 3 X ... X 3 = 3^7 = 2187 가지
 - ➤ Continuous action을 완벽하게 표현할 수 없고,
 - ➤ Action space가 exponential하게 늘어남

DDPG: Idea & Contribution

- What we want
 - 연속적인 정책 함수 : $\pi(a|s) \in [a_{min}, a_{max}]$
- Idea
 - 네트워크의 output을 바로 action으로 사용하는 deterministic한 방법을 사용하자.
 - DPG (Deterministic Policy Gradient)에 기반.
 - Actor-Critic 을 활용.

- Contribution
 - High-dimensional + Continuous 한 action space에서 학습 가능

DDPG: Background

- actions $a_t \in \mathbb{R}^N$, action space $A = \mathbb{R}^N$
- policy $\mu: S \to A$
 - policy의 output을 직접 action으로 사용
- discounted future reward: $R_t = \sum_{i=t}^T \gamma^{i-t} r(s_i, a_i)$
 - Discount factor : $\gamma \in [0,1]$
- <u>목표 : expected return을 maximize하는 policy를 학습하는 것</u>

Critic[©] Loss function

Action value function

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_t \sim E, a_t \sim \pi}[R_t | s_t, a_t]$$

Bellman equation

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{r_t, s_{t+1} \sim E}[r(s_t, a_t) + \gamma \mathbb{E}_{a_{t+1} \sim \pi}[Q^{\pi}(s_{t+1}, a_{t+1})]]$$

• Bellman equation 에 deterministic policy(μ)를 적용 : Expectation term을 빠져나오게 된다.

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{r_t, s_{t+1} \sim E}[r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, a_{t+1})]$$

Loss function

$$L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i))^2$$

$$y_i = r_i + \gamma Q(s_{i+1}, \mu(s_{i+1}))$$
 $i = \text{batch index}$

Actor Loss function: from DPG(Deterministic Policy Gradient)

• Policy π 를 따랐을 때의 state distribution $\rho^{\pi}(s')$ 은 다음과 같이 계산 가능

$$\rho^{\pi}(s') \stackrel{\text{def}}{=} \int_{s \in \mathcal{S}} \sum_{t=1}^{\infty} \gamma^{t-1} p_1(s) p(s \to s', t, \pi) \ ds$$

 $p(s \to s', t, \pi)$: 정책 π 를 고려할 때, 현재 상태 s 에서 t 시점 이후에 상태 s' 로 이동할 확률

- Improper state distribution:
 - 임의의 state *s* 에서, state *s* '에 도달할 확률.
 - 하지만, 먼 미래의 도착 확률을 감가해서 고려한다.

$$J(\pi_{\theta}) = \int_{s \in \mathcal{S}} \rho^{\pi_{\theta}}(s) \int_{a \in \mathcal{A}} \pi_{\theta}(s, a) r(s, a) da ds$$
$$= \mathbb{E}_{s \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}} [r(s, a)]$$

Actor의 Loss function : from DPG(Deterministic Policy Gradient)

Stochastic policy $| \cos function J(\pi_{\theta}) |$:

$$J(\boldsymbol{\pi}_{\boldsymbol{\theta}}) = \int_{s \in \mathcal{S}} \rho^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s) \int_{a \in \mathcal{A}} \boldsymbol{\pi}_{\boldsymbol{\theta}}(s, a) r(s, a) \, da \, ds$$
$$= \mathbb{E}_{s \sim \rho^{\boldsymbol{\pi}_{\boldsymbol{\theta}}, a \sim \boldsymbol{\pi}_{\boldsymbol{\theta}}}}[r(s, a)]$$

Deterministic policy $| \cos function J(\mu_{\theta}) |$:

$$J(\mu_{\theta}) = \int_{s \in \mathcal{S}} \rho^{\mu_{\theta}}(s) \, r(s, \mu_{\theta}(s)) \, ds$$
$$= \mathbb{E}_{s \sim \rho^{\pi_{\theta}}} [r(s, \mu_{\theta}(s))]$$

Actor의 Gradient

• $J(\mu_{\theta}) \supseteq |$ gradient:

$$\nabla_{\theta} J(\mu_{\theta}) = \int_{s \in \mathcal{S}} \rho^{\mu_{\theta}}(s) \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q(s, a) \Big|_{a = \mu_{\theta}(s)} ds$$
$$= \mathbb{E}_{s \sim \rho^{\pi_{\theta}}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q(s, a) \Big|_{a = \mu_{\theta}(s)} \right]$$

- 이 알고리즘을 구현하기 위해서 필요한 것?:
- 1) θ 에 대한 gradient를 계산하기 쉬운 <u>결정적</u> 정책 함수 $\mu_{\theta}(s)$

Neural Network?

2) a에 대한 gradient를 계산하기 쉬운 Q(s,a).

Challenges

- 학습이 불안정함
 - DQN처럼 target network를 도입하여 학습을 안정화 시킴.
 - $\theta' \leftarrow \tau\theta + (1-\tau)\theta'$, with $\tau \ll 1$

- Exploration이 힘듦
 - ➤ Deterministic policy를 사용함으로써, off-policy로 학습하는 것이 가능해짐!
 - Ornstein-Uhlenbeck 과정 (OU process)를 이용한 exploration
 - : 시간적으로 연관된 noise를 주어서 exploration을 진행

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}, \theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode =
$$1$$
, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for
$$t = 1$$
, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}$$

end for end for

Pendulum-v0 (OpenAl gym)

Goal: Pendulum 이 위로 잘 서 있도록 control하는 것

State

$$s_t = \left[\cos(\theta), \sin(\theta), \dot{\theta}\right]$$

• $\theta \in [-\pi,\pi]$: 단위 축으로부터의 각도

Action

- $a_t \in [-2, 2]$
- Joint에 가하는 힘의 크기

Reward

$$r_t = -(\theta^2 + 0.1 \times \dot{\theta}^2 + 0.001 \times a_t^2)$$

- $r_t \in [-16.273, 0]$
- $\theta = -\pi$ or π 일 때 minimum, $\theta = 0$ 일 때 maximum

Terminal

Terminal 조건은 없으며, time step>200 일 때 종료

https://gym.openai.com/envs/Pendulum-v0/

Jupyter Notebook 실습코드

DDPG_tutorial.ipynb

- Gym-Pendulum 환경 불러오기
- 2. Agent 만들 준비하기
 - Actor Network
 - Critic Network
 - Target Network (Actor, Critic)
 - Replay Memory
 - OU process
- 3. Agent 만들기
- 4. Agent 학습 및 테스트

Industrial polymerization reactor

from do-mpc: https://www.do-mpc.com/en/latest/example_gallery/industrial_poly.html

• 고분자 반응로 모델: monomer 와 water을 이용해 product를 생성

Project Description

Objective:

$$maximize_{a_{1},...,a_{T}} \sum_{t=1}^{T-1} R(s_{t}, a_{t}, s_{t+1})$$

$$s.t. \quad s_{t+1} = f(s_{t}, a_{t})$$

• State variable s_t :

State	Init. cond.	Min.	Max.	Unit
$m_{ m W}$	10,000	0	inf.	kg
m_{A}	853	0	inf.	kg
$m_{ m P}$	26.5	0	inf.	kg
T_{R}	90.0	$T_{\rm set} - 2.0$	$T_{\rm set}$ + 2.0	°C
T_{S}	90.0	0	100	$^{\circ}C$
$T_{\mathbf{M}}$	90.0	0	100	$^{\circ}C$
T_{EK}	35.0	0	100	°C
T_{AWT}	35.0	0	100	°C
$T_{ m adiab}$	104.897	0	109	°C
$m_{ m F}^{ m acc}$	0	0	30,000	kg

Objective는 m_p 를 가장 빨리 높이는 것 ~ 20680 까지!

Safety variable

Project Description

• Control variable a_t :

Control	Min.	Max.	Unit
$\dot{m}_{ m F}$	0	30,000	$kg h^{-1}$
$T_{ m M}^{ m IN}$	60	100	°C
$T_{ m M}^{ m IN} \ T_{ m AWT}^{ m IN}$	60	100	°C

Action variable의 boundary를 잘 체크할 것!

Project Description

- Reward
 - Stage reward

-
$$r(s_t, a_t, s_{t+1}) = s_{t+1}(m_p) - s_t(m_p)$$

: m_p 를 maximize 하는 것이 objective 이므로, 한 step 간의 m_p 의 gap 을 reward로 줌

Terminal reward

$s_T = Terminal$	if

Condition

$$s_T(m_p) > 20680 (kg)$$
 or $T_{adiab} > 109 (°C)$

Terminal reward

$$s_T(m_p) > 20680 (kg)$$
 $r(s_{T-1}, a_{T-1}, s_T) = 100$

$$r(s_{T-1}, a_{T-1}, s_T) = -100$$

Jupyter Notebook 실습코드

main.ipynb

- 1. Gym-Poly reactor 환경 불러오기
- 2. State / action variable plot

Task

- 1. 주어진 환경에서 DDPG agent로 학습한 결과
- 2. MPC control / model-based 강화학습과 비교