Case Study: Optimizing Supply Planning Using Machine Learning

Janani Ravi Co-founder, Loonycorn

www.loonycorn.com

Overview

Al in the supply chain and route optimization

Case Study: Dynamic Vehicle Routing Problem

Al in the Supply Chain and Route Optimization

Benefits of Al in Supply Chain

Estimating supply chain expenses

Lowering freight costs

Faster, more secure, more accurate supplier deliveries

Improved planning for participants in the supply chain

Vehicle Routing Problem (VRP)

"What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?"

Vehicle Routing Problem (VRP)

NP-hard problem so commercial solvers often use heuristics to solve large-sized, real-world problems

Setting up the VRP

Delivery from one or more depots

Given a set of vehicles

Vehicles operated on a set of roads

Drivers drive on a road network to
customers

Setting up the VRP

Determine a set of routes such that:

All customer requirements and operational constraints satisfied

Global transportation cost minimized

VRP Variants

VRPP: Vehicle Routing Problem with Profits

VRPPD: Vehicle Routing Problem with Pickup and Delivery

VRPTW: Vehicle Routing Problem with Time Windows

CVRP: Capacitated Vehicle Routing Problem

Case Study: Dynamic Vehicle Routing Problem

A Three-stage Algorithm for the Large Scale Dynamic Vehicle Routing Problem with Industry 4.0 Approach

Background and Context

Dynamic large scale vehicle routing, Industry 4.0, proposed solution overview

Dynamic Vehicle Routing Problem (DVRP)

Designing the optimal set of routes for a fleet of vehicles in order to serve a given set of customers while new customer orders arrive during the performance of the planned earlier work day.

Dynamic Vehicle Routing Problem (DVRP)

Designing the optimal set of routes for a fleet of vehicles in order to serve a given set of customers while new customer orders arrive during the performance of the planned earlier work day.

Dynamic Vehicle Routing Problem (DVRP)

Designing the optimal set of routes for a fleet of vehicles in order to serve a given set of customers while new customer orders arrive during the performance of the planned earlier work day.

Industry 4.0

The fourth industrial revolution also known as "smart manufacturing", "industrial internet", "integrated industry"

Industry 4.0

Smart manufacturing network based on digitalization and automatization where machines and products interact with each other without any human involvement

Industry 4.0 and DVRP

Constant communication between systems:

Supply chain management

Control tower

Depot

Drivers of vehicles

Industry 4.0 and DVRP

Drivers can dynamically change or update their routes

GPS allows the control tower to know the current position of the driver

Can communicate next customer to visit

RFID chips and sensors in package facilitate this communication

Vehicle Routing Problem (VRP)

NP-hard problem so commercial solvers often use heuristics to solve large-sized, real-world problems

Two Types of Heuristics

Cluster first - route second

Route first - cluster second

Customers segmented using different clustering algorithms K-means, Gaussian Mixture Models, BIRCH

Routing performed using construction algorithms such as Savings algorithm, Path Cheapest Arc algorithm

Apply improvement algorithms such as Guided Local Search, Simulated Annealing, Tabu Search

Problem Definition

Fixed number of vehicles with fixed capacity

Depart from a depot

Deliver products to customers at demand points

New customers with known demand emerge over time

Distance assumed Euclidean distance

Constraints

Vehicle starts and ends at depot

All customer demands accepted

Customer demands should be fully satisfied

Only one vehicle assigned to each route

Sum of demands does not exceed vehicle's capacity

Cost of travel proportional to distance

Methodology and Results

Three stage algorithm and results

Clustering

Unsupervised learning technique that separates data into groups

Find clusters with similar orders and similar geographic locations

First order clustering based on number of vehicles - refined to satisfy capacity of each vehicle

Find favorable clusters that satisfy capacity constraint - use K-means, GMMs, BIRCH

Feasible result from clustering algorithm fed into construction algorithm

Construction

Construct feasible route for each cluster separately

Objective function to minimize is total distance traveled

Use heuristic based algorithms such as Path Cheapest Arc, Savings, Global Cheapest Arc

Best route corresponds to shortest distance traveled

Improvement

Heuristic-based algorithms get a good solution in a reasonable amount of time - solution may not be optimal

Improvement algorithms help find better solutions - Guided Local Search, Simulated Annealing, Tabu Search

Exchanging or inserting may be done between and during routes - called "inter-route improvement"

New Customers

After executing the algorithm new customers may enter the system

Need to modify vehicle routes

Re-run the entire 3-stage algorithm

Customers already served removed from the system

Vehicle positions updated

Steps performed for each new customer

Data Used

Case study 1:

Single depot

4 vehicles, capacity of 100

100 customers at t = 0

20 new customers enter randomly

Data Used

Case study 2:

Single depot

4 vehicles, capacity of 125

100 customers at t = 0

100 new customers enter randomly

Results

Best results for case study 1:

K-means clustering

Savings algorithm for construction

Guided Local Search for route improvements

Results

Best results for case study 2:

K-means clustering

Global Cheapest Arc algorithm for construction

Guided Local Search for route improvements

Summary

Al in the supply chain and route optimization

Case Study: Dynamic Vehicle Routing Problem

Up Next:
Applying Machine Learning
Techniques to Retail Data