NCERT Question 11.9.3.9

EE23BTECH11019 - Faisal Imtiyaz *

transform:

Question: Find the sum to indicated number of terms in the geometric progression:

 $1, -a, a^2, -a^3, ...n$ terms (if $a \neq -1$).

Solution:

Input Parameters	Values	Description
<i>x</i> (0)	1	First term
r	(-a)	Common ratio
x(n)	$(-a)^n u(n)$	General term
	TABLE 1	

GIVEN INPUTS

Signal	Transform	
$\frac{1}{1-z^{-1}}$	u(n)	
$\frac{1}{1-az^{-1}}$	$(a)^n u(n)$	
	TABLE 2	
	GIVEN INPUTS	

 $y(n) = \delta(n) + \left[\frac{1 - (-a)^n}{1 - (-a)} \right] u(n)$

Poles of the respecttive signals are as:

$$1 - z^{-1} = 0 \tag{1}$$

$$\implies |z| = 1 \tag{2}$$

$$1 - az^{-1} = 0 (3)$$

$$\implies |z| = \frac{1}{a} \tag{4}$$

Both the Signals are right sided so ROC is:

$$|z| > 1$$
and $|z| > \frac{1}{a}$ (6)

(7)

(5)

So for 0 < a < 1 ROC is $|z| > \frac{1}{a}$ and otherwise ROC is |z| > 1

From Table 1,

$$X(z) = \frac{1}{1 + az^{-1}} \tag{8}$$

$$y(n) = (-a)^n u(n) * u(n)$$
 (9)

$$\implies Y(z) = X(z) \cdot U(z)$$
 (10)

$$= \frac{1}{1 + az^{-1}} \cdot \frac{1}{1 - z^{-1}} \tag{11}$$

(12)

 $Y(z) = \frac{1}{a+1} \left| \frac{1}{1-z^{-1}} - \frac{1}{1+az^{-1}} \right|$ (13) $= \frac{1}{a+1} \left[\frac{1-z^{-2}}{1-z^{-1}} + \frac{z^{-1}}{1-z^{-1}} - \frac{1-a^2z^{-1}}{1+az^{-1}} - \frac{a^2z^{-1}}{1+az^{-1}} \right]$

Using Z transform pairs to find the inverse Z-

$$a + 1 \begin{bmatrix} 1 - z^{-1} & 1 - z^{-1} & 1 + az^{-1} & 1 + az^{-1} \\ 1 & z^{-1} & a^2 z^{-1} \end{bmatrix}$$
 (14)

$$=1 + \frac{1}{a+1} \left[\frac{z^{-1}}{1-z^{-1}} - \frac{a^2 z^{-1}}{1+az^{-1}} \right]$$
 (15)

$$y(n) = \delta(n) + \left[\frac{1}{a+1} \left[1 - a^2 \cdot (-a)^n \right] \right] u(n)$$
 (16)

$$y(n) = \delta(n) + \left[\frac{1 - (-a)^n}{1 - (-a)}\right] u(n)$$
 (17)

Fig. 1. Plot of y(n)