CS528 Task Scheduling (Part II)

A Sahu

Dept of CSE, IIT Guwahati

A Sahu

Parallel Machines

Ti	P1	P2	Р3	P4
T1	10	10	10	10
T2	12	12	12	12
Т3	16	16	16	16
T4	20	20	20	20

P: Identical

Ti	P1	P2	P3	P4			
T1	10	15	20	25			
T2	12	18	24	30			
Т3	16	24	32	40			
T4	20	30	40	50			
Q: Uniform : with							

speed difference

Ti **P2 P3 P4 T1** 8 12 2 10 **T2 12** 28 **25** 13 **T3** 32 16 14 4 38 42 **22** 20 **T4**

 $(S_1=1, S_2=2/3, S_3=1/2, S_4=2/5)$ R: Unrelated :

R: Unrelated : heterogeneous

Classification of Scheduling Problems

Classes of scheduling problems can be specified in terms of the three-field classification

where

- α specifies the **machine environment**,
- β specifies the **job characteristics**, and
- γ describes the **objective function(s)**.

P_m | | C_{max}

- n tasks, m processors
- ET: t₁, t₂, t₃,...., t_n
- m-Subset Sum problem
- INDEP(m) Problem: NPC in strong sense
- Divide the tasks in m sets such that
 - Difference of Sum of ETs of all the set is minimized: does not exceed a value K
 - Min (Max(Sum(Set₁), Sum(Set₂), ...Sum(Set_m)))

- n tasks, m processors, infinite pre-emption allowed
- ET: t₁, t₂, t₃,...., t_n
- Divide all the work among all the cores equally
 - $Avg = (\Sigma t_i)/m$ work to each cores
 - If $max(t_i)$ >Avg, C_{max} = $max(t_i)$, Task need to execute serially
- Handle the boundary cases

- n tasks, m uniform processors, infinite preemption allowed
- Longer task executed on high speed processor till it execution is long enough as compared to others
 - Sort the tasks based on LPT
 - Allocate long task to higher speed processors one by one
 - When execution time of longer task is no longer long as compared to other then co-execute

Algorithm level

```
t := 0;
WHILE there exist jobs with positive level {
            Assign(t);
     t₁ := min{s > t | a job completes at time s};
     t_2 := min\{s > t \mid there are jobs i, j with p_i(t) > p_i(t)
                    and p_i(s) = p_i(s) at time s};
     t := min\{t_1, t_2\}
```

Assign (t)

```
J := \{i \mid pi(t) > 0\};
M := \{M1, ..., Mm\};
WHILE J = \emptyset and M = \emptyset {
      Find the set I \subseteq J of jobs with highest level;
       r := \min\{/M/, /I/\};
      Assign jobs in I to be processed jointly on the r
                      fastest machines in M;
      J := J \setminus I;
      Eliminate the r fastest machines in M from M
```


Precedence constraints (prec)

Before certain jobs are allowed to start processing, one or more jobs first have to be completed.

Definition

- Successor
- Predecessor
- Immediate successor
- Immediate predecessor
- Transitive Reduction

Precedence constraints (prec)

One or more job have to be completed before another job is allowed to start processing.

Definition

- Successor
- Predecessor
- Immediate successor
- Immediate predecessor
- Transitive Reduction

Precedence constraints (prec)

One or more job have to be completed before another job is allowed to start processing. *Prec : Arbitrary acyclic graph*

Definition

- Successor
- Predecessor
- Immediate successor
- Immediate predecessor
- Transitive Reduction

Special precedence constraints

- In-tree (Out-tree)
- In-forest (Out-forest)
- Opposing forest
- Interval orders
- Series-parallel orders
- Level orders

Special precedence constraints

$P_{m} | prec, p_{j} = 1 | C_{max} (m \ge 1)$

- Processor Environment
 - m identical processors are in the system.
- Job characteristics
 - Precedence constraints are given by a precedence graph;
 - Preemption is not allowed;
 - The release time of all the jobs is 0.
- Objective function
 - $-C_{max}$: the time the last job finishes execution.
 - If c_j denotes the finishing time of J_j in a schedule S,

$$C_{max} = max_{1 \le j \le n} c_j$$

Gantt Chart

A Gantt chart indicates the time each job spends in execution, as well as the processor on which it executes of some Schedule

$P_m | prec, p_j = 1 | C_{max}$

Theorem 1

Pm | prec, $p_j = 1 | C_{max}$ is NP-complete.

1. Ullman (1976)

$$3SAT \le Pm \mid prec, p_j = 1 \mid C_{max}$$

2. Lenstra and Rinooy Kan (1978)

k-clique
$$\leq$$
 Pm | prec, $p_j = 1 | C_{max}$

 P_m prec, $pj = 1 \mid C_{max}$ is NP-complete.

Proof: out of Syllabus

$P_m | prec, p_j = 1 | C_{max}$

Mayr (1985)

Theorem 2

Pm | $p_j = 1$, SP | C_{max} is NP-complete.

SP: Series - parallel

Theorem 3

Pm | $p_j = 1$, OF | C_{max} is NP-complete.

OF: Opposing - forest

Proof: out of Syllabus

Hu's HLF/CP Algorithm

- T. C. Hu (1961), Critical Path/Highest Level First
- Assign a level h to each job.
 - If job has no successors, h(j) equals 1.
 - Otherwise, h(j) equals one plus the maximum level of its immediate successors.
- Set up a priority list L by nonincreasing order of the jobs' levels.
- Execute the list scheduling policy on this level based priority list L.

HLF/CP algorithm: Example

HLF/CP algorithm

Time complexity

O(|V|+|E|) (|V| is the number of jobs and |E| is the number of edges in the precedence graph)

- Theorem (Hu, 1961): HLF/CP for Tree
 - The HLF algorithm is optimal for $P_m \mid p_j = 1$, in-tree (out-tree) $\mid C_{max}$.
 - The HLF algorithm is optimal for $P_m \mid p_j = 1$, inforest (out-forest) $\mid C_{max}$.

HLF/CP algorithm

N.F. Chen & C.L. Liu (1975)

The approximation ratio of HLF algorithm for the problem with general precedence constraints:

If m = 2,
$$\delta_{HLF} \le 4/3$$
.
If m ≥ 3 , $\delta_{HLF} \le 2 - 1/(m-1)$.

PTAS Algorithms: Pm | prec, $p_j = 1 | C_{max}$

- PTAS : Polynomial Time Approximation Scheme
- Approximation List scheduling policies
 - Graham's list algorithm/Greedy List
 - Discussed in Cilk Lectures: T ≤ 2T*, Also proved
 - CLR Book Chapter 27, Multi-threaded Algorithm
 - HLF algorithm
 - MSF algorithm

List scheduling policies

- Set up a priority list L of jobs.
- When a processor is idle, assign the first ready job to the processor and remove it from the list L.

$oldsymbol{J}_{11}$	$oldsymbol{J_9}$	J_8	J_6	J_3
$oldsymbol{J}_{10}$	J_{13}	$oldsymbol{J}_7$	$oldsymbol{J_5}$	$oldsymbol{J}_2$
$oldsymbol{J}_{12}$			$oldsymbol{J_4}$	$oldsymbol{J}_1$

First job of the list may not be ready

$$L = (J_9, J_8, J_7, J_6, J_5, J_{11}, J_{10}, J_{12}, J_{13}, J_4, J_3, J_2, J_1)$$

Graham's list algorithm

- Graham first analyzed the performance of the simplest list scheduling algorithm.
- List scheduling algorithm with an arbitrary job list is called Graham's list algorithm.
- Approximation ratio for Pm | prec, $p_j = 1 | C_{max}$ $\delta = 2-1/m$. (Tight bound!)
 - •Approximation ratio is δ if for each input instance, the makespan produced by the algorithm is at most δ times of the optimal makespan.

CP Algo: CLR Book Page 779-783

 T_P = execution time on P processors

CP Algorithms

 T_P = execution time on P processors

$$T_1 = work$$

$$T_{\infty} = span^*$$

LOWER BOUNDS

$$\bullet T_P \ge T_1/P$$

$$\bullet T_P \ge T_{\infty}$$

$$\bullet T_p \ge T_{\infty}$$

*Also called *critical-path length* or computational depth.

CP: Greedy-Scheduling Theorem

Theorem [Graham '68 & Brent '75].

Any greedy scheduler achieves

 $T_P \leq T_1/P + T_{\infty}$.

Proof.

complete steps ≤ T₁/P, since each complete step performs P work.

incomplete steps ≤ T_∞, since each incomplete step reduces the span of the unexecuted dag by 1.

CP: Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge \max\{T_1/P, T_\infty\}$ (lower bounds), we have

$$T_P \le T_1/P + T_\infty$$

 $\le 2 \cdot \max\{T_1/P, T_\infty\}$
 $\le 2T_P^* \cdot \blacksquare$