Canonical Forms

Lecture 3

Outlines

- Functions in Canonical Forms
 - Sum of Products (SOP)
 - Product of Sums (POS)

Canonical Form

- เป็นการเขียนสมการบูลีนเพื่อบรรยายฟังก์ชันตรรกที่ได้จาก ตารางค่าความจริง โดยใช้การเขียนในรูปแบบมาตรฐาน เต็ม
- เขียนได้ 2 รูปแบบมาตรฐาน
 - Sum of Products (SOP)
 - Product of Sums (POS)

Sum of Products

- ในแต่ละแถวของตารางค่าความจริง เขียนสัญลักษณ์แทนอินพุทด้วยการนำตัวแปรอินพุท แต่ละตัวมา AND กันโดยตัวแปรอินพุทที่มีค่า 1 ให้แทนด้วยตัวแปรนั้น และตัวแปรอินพุท ที่มีค่า 0 ให้แทนด้วยคอมพลีเมนต์ของตัวแปรนั้น
- เลือกอินพุทในแถวของตารางค่าความจริงที่ให้ค่าเอาท์พุทเป็น 1 แล้วนำมา OR กัน อินพุท เหล่านี้เรียกว่า minterms
- ตัวอย่าง จากตารางค่าความจริง เขียนสมการบูลีนของตัวแปร F ในรูป SOP

Sum of Products (2)

• ตัวอย่าง: จากตารางค่าความจริง จงเขียนสมการบูลีนของตัวแปร F ในรูปของ SOP และ เขียน Schematic Diagram

Sum of Products (3)

• ตัวอย่าง: จากตารางค่าความจริง จงเขียนสมการบูลีนของตัวแปร F ในรูปของ SOP และ เขียน Schematic Diagram

Combination Your 1 ray Output . Trass

	Α	В	С	F	n.s
	0	0	0	0	- called product
	0	0	1	0	F(A,B,C): (ABC) + ABC + ABC + ABC + ABC /
	0	1	0	0	A V
	0	1	1	1	2 5 minterms#
)	1	0	0	1 /	
	1	0	1	1 /	
,	\ 1	1	0	1	

Sum of Products (4) Cout pronounced C-in out

 ตัวอย่าง: จากตารางค่าความจริง จงเขียนสมการบูลีนของตัวแปร S, Cout ในรูปของ SOP และเขียน Schematic Diagram

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

SOP in Short Form

2 of Catern Monre major sol Enns

A B C Minterms 0 0 0 A'B'C' m0 0 0 1 A'B'C m1 0 1 0 A'BC' m2 0 1 1 A'B'C m3 1 0 0 AB'C' m4 1 0 1 AB'C m5 1 1 0 ABC' m6 1 1 1 ABC m7		1		_			
0 0 1 A'B'C m1 (1) 0 1 0 A'BC' m2 0 1 1 A'B'C m3 1 0 0 AB'C' m4 1 0 1 AB'C m5 1 1 0 ABC' m6 1 1 1 ABC m7	A	В	C	Minter	ms		
0 1 0 A'BC' m2 0 1 1 A'B'C m3 1 0 0 AB'C' m4 1 0 1 AB'C m5 1 1 0 ABC' m6 1 1 1 ABC m7	0	0	0	A'B'C'	m0		
0 1 1 A'B'C m3 1 0 0 AB'C' m4 1 0 1 AB'C m5 1 1 0 ABC' m6 1 1 1 ABC m7	0	0	1	A'B'C	m1 <	7	
1 0 0 AB'C' m4 1 0 1 AB'C m5 1 1 0 ABC' m6 1 1 1 ABC m7	0	1	0	A'BC'	m2)	
1 0 1 AB'C m5 1 1 0 ABC' m6 1 1 1 ABC m7	0	1	1	A'B'C	m3		
1 1 0 ABC' m6 1 1 1 ABC m7	1	0	0	AB'C'	m4		
1 1 1 ABC m7	1	0	1	AB'C	m5		
1 1 1 ABC m7 Horary, Her	1	1	0	ABC'	m6		
#6536Jas Binary, Hex	1		1	ABC	m7		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Hongsholas Binary, Hex						

$$F=\overline{A}\,\overline{B}C+A\overline{B}\,\overline{C}+ABC$$

$$F = m_1 + m_4 + m_7$$

$$= \sum m(1, 4, 7)^{Y(A, B, C, D) = m_5 + m_b + m_B}$$

Product of Sums mossing sop

- ในแต่ละแถวของตารางค่าความจริง เขียนสัญลักษณ์แทนอินพุทด้วยการนำตัวแปรอินพุท แต่ละตัวมา OR กัน โดยตัวแปรอินพุทที่มีค่า O ให้แทนด้วยตัวแปรนั้น และตัวแปรอินพุทที่ มีค่า 1 ให้แทนด้วยคอมพลีเมนต์ของตัวแปรนั้น
- เลือกอินพุทในแถวของตารางค่าความจริง ที่ ให้ค่าเอาท์พุทเป็น 0 แล้วนำมา AND กัน อิน พุทเหล่านีเรียกว่า Maxterms
- ตัวอย่าง: จากตารางค่าความจริง เขียนสมการบูลีนของตัวแปร F ในรูปของ Product of Sums

Product of Sums (2)

• ตัวอย่าง: จากตารางค่าความจริง จงเขียนสมการบูลีนของตัวแปร F ในรูปของ POS และ เขียน Schematic Diagram

Las n Maxterm no utput) O 660 3217
AND

Que Maxterm OR no

on 1 bis compliment

Product of Sums (3)

• ตัวอย่าง: จากตารางค่าความจริง จงเขียนสมการบูลีน ของตัวแปร F ในรูปของ POS และ เขียน Schematic Diagram

Α	В	С	F	F(A,B,C)=(A+B+C)(A+B+C)(A+B+C)
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Products of Sums (4)

• ตัวอย่าง: จากตารางค่าความจริง จงเขียนสมการบูลีนของตัวแปร S, Cout ในรูป POS และเขียน Schematic Diagram

Α	В	Cin	S	Cout	
0	0	0	0	0	5 =
0	0	1	1	0	Cout=
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

POS in Short Form

• เราสามารถเขียน POS อย่างย่อโดยการใช้เลขฐาน 2 มาแทน Maxterm

Α	В	С	Maxterms
0	0	0	A+B+C M0
0	0	1	A+B+C' M1
0	1	0	A+B'+C M2
0	1	1	A+B'+C' M3
1	0	0	A'+B+C M4
1	0	1	A'+B+C' M5
1	1	0	A'+B'+C M6
1	1	1	A'+B'+C' M7

Switching Between SOP and POS

- การแปลงฟังก์ชันระหว่าง SOP และ POS สามารถทำได้ ง่ายโดยอาศัยการเปลี่ยน minterms และ Maxterms
- ตัวอย่าง

$$F(A, B, C) = \Sigma m(1, 3, 5, 6, 7) = \Pi M(0, 2, 4)$$

Incomplete Function

- ในบางฟังก์ชันอาจมีอินพุทบางค่าที่เราไม่สนใจว่าเอาท์พุทสำหรับอินพุทเหล่านั้นจะเป็น อะไร
- ค่าของเอาท์พุทที่เราไม่สนใจนี้เรียกว่า don't cares และเราจะแทนค่าเหล่านี้ ในตารางค่า ความจริงด้วยเครื่องหมาย "x"

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	x 7
1	1	0	X (จะไร่กูก จะไร่กูก
1	1	1	x J

ต องเพียน อ่อร์ง cares เธออ (จังส์)
$$F(A,B,C)=m_1+m_3+m_4+d_5+d_6+d_7$$

$$F(A,B,C)=M_0\cdot M_2\cdot D_5\cdot D_6\cdot D_7$$
ex. นุ่นยนต์มี 5 inputs (5 actions la กรดงของ)

เผลงว่าสอง input 3 bit (5 combinations)

วะเหลือ 3 input 7 ได้ได้ได้ (6 เองไม่ให้ นกุดอาโนระหา)