Éléments de mathématiques pour la physique

JÉRÔME - - FILIO Paul

13 septembre 2024

Table des matières

1	Syst	Systèmes de coordonnées				
	1.1	Coord	onnées cartésiennes			
		1.1.1	Vecteur position			
		1.1.2	Vecteur vitesse			
		1.1.3	Vecteur accélération			
		1.1.4	Différentielles des vecteurs de base			
		1.1.5	Déplacement élémentaire			
		1.1.6	Volume élémentaire			
	1.2	Coord	onnées cylindriques			
		1.2.1	Vecteur position			
		1.2.2	Vecteur vitesse			
		1.2.3	Vecteur accélération			
		1.2.4	Différentielles des vecteurs de base			
		1.2.5	Déplacement élémentaire			
		1.2.6	Volume élémentaire			
	1.3	Coord	onnées shériques			
		1.3.1	Vecteur position			
		1.3.2	Différentielles des vecteurs de base			
		1.3.3	Déplacement élémentaire			
		1.3.4	Volume élémentaire			
2	Vec	teurs o	eurs et différentiation 3			
	2.1		urs et différentiation			
		2.1.1	Nabla			
		2.1.2	Gradient			
		2.1.3	Divergence			
		2.1.4	Rotationnel			
		2.1.5	Laplacien scalaire			
	2.2		entielle d'une fonction de plusieurs variables			
	2.3		ation d'un champ vectoriel			
		2.3.1	Circulation le long d'une courbe fermée			
		2.3.2	Circulation d'un gradient			

1 Systèmes de coordonnées

1.1 Coordonnées cartésiennes

1.1.1 Vecteur position

$$\overrightarrow{OM} = x\overrightarrow{\mathbf{u}_x} + y\overrightarrow{\mathbf{u}_y} + z\overrightarrow{\mathbf{u}_z}$$

1.1.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{x}\overrightarrow{\mathbf{u}_x} + \dot{y}\overrightarrow{\mathbf{u}_y} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.1.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \ddot{x} \overrightarrow{u_x} + \ddot{y} \overrightarrow{u_y} + \ddot{z} \overrightarrow{u_z}$$

1.1.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_x} = dx\overrightarrow{u_x}$$
$$d\overrightarrow{u_y} = dy\overrightarrow{u_x}$$
$$d\overrightarrow{u_z} = dz\overrightarrow{u_z}$$

1.1.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}x\overrightarrow{\mathrm{u}_x} + \mathrm{d}y\overrightarrow{\mathrm{u}_y} + \mathrm{d}z\overrightarrow{\mathrm{u}_z}$$

1.1.6 Volume élémentaire

$$d\tau = dx dy dz$$

1.2 Coordonnées cylindriques

1.2.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.2.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{r}\overrightarrow{\mathbf{u}_r} + r\dot{\theta}\overrightarrow{\mathbf{u}_\theta} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.2.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \left(\ddot{r} - r\dot{\theta}^2\right) \overrightarrow{\mathbf{u}_r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right) \overrightarrow{\mathbf{u}_\theta} + \ddot{z} \overrightarrow{\mathbf{u}_z}$$

1.2.4 Différentielles des vecteurs de base

$$d\overrightarrow{\mathbf{u}_r} = d\theta \overrightarrow{\mathbf{u}_\theta}$$

$$d\overrightarrow{\mathbf{u}_\theta} = -d\theta \overrightarrow{\mathbf{u}_r}$$

$$d\overrightarrow{\mathbf{u}_z} = dz \overrightarrow{\mathbf{u}_z}$$

1.2.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + \mathrm{d}z\overrightarrow{\mathrm{u}_z}$$

1.2.6 Volume élémentaire

$$d\tau = r dr d\theta dz$$

1.3 Coordonnées shériques

$$\theta, \varphi) \in [0, \pi[\times [0, 2\pi[$$

1.3.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.3.2 Différentielles des vecteurs de base

$$d\overrightarrow{\mathbf{u}_{r}} = d\theta \overrightarrow{\mathbf{u}_{\theta}} + \sin(\theta) d\varphi \overrightarrow{\mathbf{u}_{\varphi}}$$

$$d\overrightarrow{\mathbf{u}_{\theta}} = -d\theta \overrightarrow{\mathbf{u}_{r}} + \cos(\theta) d\varphi \overrightarrow{\mathbf{u}_{\varphi}}$$

$$d\overrightarrow{\mathbf{u}_{\varphi}} = -d\varphi \left(\sin(\theta) \overrightarrow{\mathbf{u}_{r}} + \cos(\theta) \overrightarrow{\mathbf{u}_{\theta}}\right)$$

1.3.3 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + r\sin(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi}$$

1.3.4 Volume élémentaire

$$d\tau = r^2 \sin\theta \, dr \, d\theta \, d\varphi$$

2 Vecteurs et différentiation

2.1 Vecteurs et différentiation

2.1.1 Nabla

$$\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{\mathbf{u}_x} + \frac{\partial}{\partial y} \overrightarrow{\mathbf{u}_y} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cartésiennes

$$\overrightarrow{\nabla} = \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{\theta} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cylindriques
$$= \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \varphi} \overrightarrow{\mathbf{u}_\varphi}$$
 en coordonnées sphériques

2.1.2 Gradient

$$\overrightarrow{\operatorname{grad}} f = \overrightarrow{\nabla} f$$

$$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial x} \overrightarrow{u_x} + \frac{\partial f}{\partial y} \overrightarrow{u_y} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{\theta} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \varphi} \overrightarrow{u_\varphi}$$

en coordonnées cartésiennes en coordonnées cylindriques en coordonnées sphériques

2.1.3 Divergence

$$\overrightarrow{div} \overrightarrow{A} = \overrightarrow{\nabla} . \overrightarrow{A}$$

$$\begin{split} \operatorname{div} \overrightarrow{A} &= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \\ &= \frac{1}{r} \frac{\partial (rA_r)}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z} \\ &= \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (A_\theta \sin(\theta))}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial A_\varphi}{\partial \varphi} \end{split}$$

en coordonnées cylindriques en coordonnées cylindriques

2.1.4 Rotationnel

$$\overrightarrow{\operatorname{rot} A} = \overrightarrow{\nabla} \wedge \overrightarrow{A}$$

2.1.5 Laplacien scalaire

$$\begin{split} \Delta f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cart\'esiennes} \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cylindriques} \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \varphi^2} & \text{en coordonn\'es sph\'eriques} \end{split}$$

2.2 Différentielle d'une fonction de plusieurs variables

$$df = \overrightarrow{\operatorname{grad}}(f).\overrightarrow{d\ell}$$

$$\mathrm{d}f = \frac{\partial f}{\partial x}\,\mathrm{d}x + \frac{\partial f}{\partial y}\,\mathrm{d}y + \frac{\partial f}{\partial z}\,\mathrm{d}z$$
 en coordonnées cartésiennes

2.3 Circulation d'un champ vectoriel

Circulation d'un champ vectoriel \overrightarrow{v} du point A au point B le long d'une courbe \mathcal{C} :

$$\mathfrak{C} = \int_{A}^{B} \overrightarrow{v}.\overrightarrow{\mathrm{d}\ell}$$

2.3.1 Circulation le long d'une courbe fermée

$$\oint_{\mathcal{C}} \overrightarrow{v}.\overrightarrow{\mathrm{d}\ell} = \iint_{\mathcal{S}} \overrightarrow{\mathrm{rot}}(\overrightarrow{v}).\overrightarrow{\mathrm{d}S}$$

2.3.2 Circulation d'un gradient

$$\int_{A}^{B} \overrightarrow{\operatorname{grad}}(f).\overrightarrow{\operatorname{d}\ell} = f(B) - f(A)$$