Experimental Evaluation of some Algorithms to Check Inclusion and Equivalence of Regular Expressions

Baudouin Le Charlier Université catholique de Louvain, Belgium baudouin.lecharlier@uclouvain.be

February 1, 2024

Abstract

- 1 Introduction
- 2 A programming framework for regular languages
- 3 The algorithms
- 3.1 The basic algorithm

A first, simple, algorithm to check inclusion or equivalence of two normalized expressions E and E' is depicted in Figure 1.

Correctness proof of the algorithm basicCheck

It is easily verified that the algorithm agrees with the following invariant.

1.
$$\forall \langle F, F' \rangle \in R_{dev}$$
: $\forall x \in Letter : \langle D_x F, D_x F' \rangle \in R_{tod} \cup R_{dev}$

2.
$$\forall \langle F, F' \rangle \in R_{dev} : o_F = o_{F'}$$

Therefore, since $R_{tod} = \{\}$ when the algorithm returns true, the following two conditions hold whenever it returns this value.

1.
$$\forall \langle F, F' \rangle \in R_{dev} : \forall x \in Letter : \langle D_x F, D_x F' \rangle \in R_{dev}$$

2.
$$\forall \langle F, F' \rangle \in R_{dev}$$
: $o_F = o_{F'}$

Those conditions imply that $\forall \langle F, F' \rangle \in R_{dev}$: $\mathcal{L}(F) = \mathcal{L}(F')$. Indeed, we can prove, by induction on the length of w that $\forall w \in Letter^*$: $w \in \mathcal{L}(F) \longleftrightarrow w \in \mathcal{L}(F')$. It is true when w = 1 because $o_F = o_{F'}$. Otherwise, let w = x.u where x is a letter. Clearly,

$$w \in \mathcal{L}(F) \longleftrightarrow x.u \in \mathcal{L}(F)$$

$$\longleftrightarrow u \in \mathcal{L}(D_x F)$$

$$\longleftrightarrow u \in \mathcal{L}(D_x F')$$

$$\longleftrightarrow x.u \in \mathcal{L}(F')$$

$$\longleftrightarrow w \in \mathcal{L}(F')$$

Figure 1: The basic algorithm to check inclusion or equivalence (basicCheck(E, E'))

```
\begin{split} R_{tod} &:= \{\langle E, E' \rangle\}; \ R_{dev} := \{\}; \\ \text{while } R_{tod} \neq \{\}, \ \text{do} \\ & \langle F, F' \rangle \Longleftarrow R_{tod}; \\ tabD &:= computeDirectDerivatives(F); \\ tabD' &:= computeDirectDerivatives(F'); \\ \text{if } uncompatible(tabD, tabD'), \ \text{do} \\ \text{return } false; \\ \text{for every letter } x, \ \text{do} \\ & \text{if } \langle tabD[x], tabD'[x] \rangle \not\in (R_{tod} \cup R_{dev}), \ \text{do} \\ & R_{tod} \Longleftarrow \langle tabD[x], tabD'[x] \rangle; \\ & R_{dev} \Longleftarrow \langle F, F' \rangle; \\ \text{return } true; \end{split}
```

The identity $u \in \mathcal{L}(D_x F) \longleftrightarrow u \in \mathcal{L}(D_x F')$ is a consequence of the induction hypothesis applied to the pair $\langle D_x F, D_x F' \rangle$, which, actually, belongs to R_{dev} . The result just proved implies that $\mathcal{L}(E) = \mathcal{L}(E')$ since, of course, $\langle E, E' \rangle \in R_{dev}$.

To complete the proof, we still need to show that $\mathcal{L}(E) \neq \mathcal{L}(E')$ when the algorithm returns false, and that the algorithm always terminates. To prove the first claim, we can observe that the invariant of the algorithm implies that all pairs $\langle F, F' \rangle \in R_{dev} \cup R_{tod}$ are such that $F = D_w E$ and $F' = D_w E'$ for some $w \in Letter^*$. In fact, this is best proved by making it an additional condition to the invariant. Therefore, the algorithm returns false only if $\mathcal{L}(D_w E) \neq \mathcal{L}(D_w E')$ for some chain w, which implies that $\mathcal{L}(E) \neq \mathcal{L}(E')$. To prove termination, we note that the size of the set R_{dev} increases by one at each iteration of the algorithm but it cannot exceed $nD \times nD'$ where nD and nD' are the numbers of syntactic derivatives of E and E', respectively.

(End of correctness proof)

Given that all the algorithms presented later in this document aim to improve the basicCheck algorithm, it is interesting to show how it performs on an example where significant improvements are actually obtained later. Let us consider the expressions E_n of the form $(a^* b)^*a^na^*$ and E'_n of the form $(a + b)^*a(a + b)^{n-1}$ where $n \ge 1$, from [1]. The relation computed by the version of Algorithm basicCheck that checks inclusion of E_n in E'_n is depicted in Figure 2 (for n = 3).

The same verification can be done by applying the version that checks equivalence of the expressions $E_n + E'_n$, and E'_n . The computed relation is presented in Figure 4. In both cases, the number of computed pairs in the relation R_{dev} is $8 = 2^3$. In general, it is equal to 2^n . Thus, for this class of examples, the time and space complexity of the algorithm is exponential. This is because the number of syntactic derivatives of E'_n is equal to 2^n and because each syntactic derivative of E_n and

Figure 2: Relation computed by Algorithm $basicCheck(\leq)$ for n=3

i	F_i	F_i'
1	(a*b)*aaaa*	$(a + b)*a(a + b)^2$
2	$aaa^* + a^*b(a^*b)^*aaaa^*$	$(a+b)^2 + (a+b)^*a(a+b)^2$
3	$aa^* + a^*b(a^*b)^*aaaa^*$	$a + b + (a + b)^2 + (a + b)^*a(a + b)^2$
4	(a*b)*aaaa*	$a + b + (a + b)*a(a+b)^2$
5	$a^* + a^*b(a^*b)^*aaaa^*$	$1 + a + b + (a + b)^2 + (a + b)^*a(a + b)^2$
6	(a*b)*aaaa*	$1 + a + b + (a + b)*a(a+b)^2$
7	$aaa^* + a^*b(a^*b)^*aaaa^*$	$1 + (a+b)^2 + (a+b)^*a(a+b)^2$
8	(a*b)*aaaa*	$1 + (a + b)*a(a+b)^2$

Figure 3: Relation computed by Algorithm basicCheck(=) for n=3

i	F_i	F_i'
1	E + E'	E'
2	$aaa^* + (a + b)^2 + E' + a^*bE$	$(a + b)^2 + E'$
3	$a + b + aa^* + (a + b)^2 + E' + a^*bE$	$a + b + (a + b)^2 + E'$
4	a + b + E + E'	a + b + E'
5	$1 + a + b + a^* + (a + b)^2 + E' + a^*bE$	$1 + a + b + (a + b)^2 + E'$
6	1 + a + b + E + E'	1 + a + b + E'
7	$1 + aaa^* + (a + b)^2 + E' + a^*bE$	$1 + (a + b)^2 + E'$
8	1 + E + E'	1+E'

 E_n' must be used in at least one pair $\langle F, F' \rangle$ computed by the algorithm.

When the check reports true, an execution of Algorithm basicCheck boils down to compute DFAs for the expressions E and E' with the algorithm proposed in [?] and to check inclusion or equivalence with (the basic version of) Hopcroft and Karp's for DFA ([?]). However, Algorithm basicCheck generally is much faster and economical than building and using DFAs when the check reports false. Thus, in the rest of this paper, we are mainly interested by improving Algorithm basicCheck when the result of the check is true.

3.2 Improved algorithms for checking inclusion

In this section, we describe an improved algorithm to check inclusion of the languages defined by two normalized expressions E and E'. The algorithm uses ideas apparently first proposed by Antimirov in [1]. The same ideas were used later on in [] for checking inclusion of languages defined by NFAs. The method proposed by Antimirov consists of a set of rewrite rules and it lacks a definite strategy to use them. The correctness of the method is not formally proved either. In this section, full-fledged algorithms are described and proved correct.

Let us first give the main ideas of the method. First, it can be observed that, to prove that $E \leq E'$, it is sufficient to prove $E_1 \leq E'$, ..., $E_n \leq E'$ where E is syntactically equal to $E_1 + \ldots + E_n$ $(n \geq 0)$. This may simplify the proof in some "trivial" ways since, for instance, some of the E_i can be direct sub-expressions of E' but the main improvement (in many cases) is due to the fact that we use syntactic derivatives of expressions that are unions of partial derivatives (see [3]). As proved in [], the number of partial derivatives of an expression is small and linear in the size of the expression.

Figure 4:	Relation	computed	by	AlgorithmeQ(\sim_e) for $n=3$
-----------	----------	----------	----	--------------	----------	-------------

i	F_i	F_i'
1	E + E'	E'
2	$aaa^* + (a + b)^2 + E' + a^*bE$	$(a + b)^2 + E'$
3	$a + b + aa^* + (a + b)^2 + E' + a^*bE$	$a + b + (a + b)^2 + E'$
4	a + b + E + E'	a + b + E'
5	$1 + a + b + a^* + (a + b)^2 + E' + a^*bE$	$1 + a + b + (a + b)^2 + E'$
6	1 + a + b + E + E'	1 + a + b + E'
7	$1 + aaa^* + (a + b)^2 + E' + a^*bE$	$1 + (a + b)^2 + E'$
8	1 + E + E'	1+E'

Thus, in the worse case, we only have to perform $O(\operatorname{size}(E) \times 2^{\operatorname{size}(E')})$ instead of $O(2^{\operatorname{size}(E)+\operatorname{size}(E')})$ comparisons. Still more interestingly, it can be the case that pairs $\langle P, F \rangle$ and $\langle P, G \rangle$ have to be checked where F and G are unions and the set of sub-expressions of F is a subset of the set of sub-expressions of G. Then the check of $\langle P, G \rangle$ "obviously" is useless and can be removed from what is to be done. This situation is likely to occur because F and G are syntactic derivatives of the same expression E', which are unions of partial derivatives of E'. As an example, let us look at Figure 2, we see that $F_1 = F_4 = F_6 = F_8$ and that F_1' is a sub-expression of F_4' , F_6' and F_8' . Therefore, it is useless to check the pairs $\langle F_i, F_i' \rangle$ for i = 4, 6, 8.

The improved algorithm to check inclusion is depicted in Figure 5. It makes use of the algorithm $checkSubs(\langle P,F\rangle)$, which checks whether the pair $\langle P,F\rangle$ is subsumed by another pair in $R_{tod} \cup R_{dev}$, or alternatively detects that some such pairs are subsumed by the pair $\langle P,F\rangle$ itself. More precisely, let us note minPairs(P) the set of pairs $\langle P,F'\rangle$ such that $\langle P,F'\rangle \in (R_{tod} \cup R_{dev}) \setminus R_{sub}$. If minPairs(P) contains a pair $\langle P,F'\rangle$ such that $F'\subseteq F$, the algorithm $checkSubs(\langle P,F\rangle)$ adds the pair $\langle P,F\rangle$ to R_{sub} ; otherwise, it adds to R_{sub} all pairs $\langle P,F'\rangle$ such that $F\subseteq F'$.

Correctness proof of the algorithm iEA

The algorithm agrees with the following loop invariant.

- 1. $\forall \langle P, F' \rangle \in R_{dev} : \forall x \in Letter : \forall P' \in \mathcal{D}_x P : \exists \langle P', F'' \rangle \in (R_{tod} \setminus R_{sub}) \cup R_{dev} \text{ such that } F'' \subseteq D_x F'$
- 2. $\forall \langle P, F' \rangle \in R_{dev} : o_P \leq o_{F'}$
- 3. $\forall \langle P, F' \rangle \in R_{sub} : \exists \langle P, F'' \rangle \in (R_{tod} \setminus R_{sub}) \cup R_{dev} : F'' \subset F'$

Therefore, since $R_{tod} \setminus R_{sub} = \{\}$ when the algorithm returns true, the following postconditions hold whenever it returns this value.

- 1. $\forall \langle P, F' \rangle \in R_{dev} : \forall x \in Letter : \forall P' \in \mathcal{D}_x P : \exists \langle P', F'' \rangle \in R_{dev} \text{ such that } F'' \subseteq D_x F'$
- 2. $\forall \langle P, F' \rangle \in R_{dev} : o_P \leq o_{F'}$

Those conditions imply that $\forall \langle P, F' \rangle \in R_{dev}$: $\mathcal{L}(P) \subseteq \mathcal{L}(F')$. Indeed, we can prove, by induction on the length of w that $\forall w \in Letter^*$: $w \in \mathcal{L}(P) \to w \in \mathcal{L}(F')$. It is true when w = 1 because $o_P \leq o_{F'}$. Otherwise, let w = x.u where x is a letter. Since $w \in \mathcal{L}(P)$, there exists $P' \in \mathcal{D}_x P$: $u \in \mathcal{L}(P')$. Moreover, the first postcondition above implies that R_{dev} contains a

Figure 5: An improved algorithm to check inclusion (iEA (E, E'))

```
Let P_1 + \ldots + P_n = E \setminus E';
R_{tod} := \{ \langle P_1, E' \rangle, \dots, \langle P_n, E' \rangle \};
R_{dev} := \{\}; R_{sub} := \{\};
while R_{tod} \setminus R_{sub} \neq \{\}, do
     \langle P, F' \rangle \longleftarrow R_{tod} \setminus R_{sub};
      tabD := computeDirectDerivatives(P);
      tabD' := computeDirectDerivatives(F');
     if uncompatible(tabD, tabD'), do
          return false;
      for every letter x, do
          let P'_1 + \ldots + P'_{n'} = tabD[x] \setminus tabD'[x];
          for i := 1 to n', do
                if \langle P'_i, tabD'[x] \rangle \notin (R_{tod} \cup R_{dev} \cup R_{sub}), do
                     checkSubs(\langle P'_i, tabD'[x] \rangle);
                    if \langle P_i', tabD'[x] \rangle \not\in R_{sub}, do
                       R_{tod} \Longleftarrow \langle P'_i, tabD'[x] \rangle;
     R_{dev} \longleftarrow \langle P, F' \rangle;
return true;
```

Figure 6: Relation computed by Algorithm iEA to check that $(a*b)*aaa* \le (a+b)*a(a+b)^2$

i	P_i	F_i'
1	(a*b)*aaaa*	$(a + b)*a(a + b)^2$
2	aaa*	$(a + b)^2 + (a + b)^*a(a + b)^2$
3	a*b(a*b)*aaaa*	$(a + b)^2 + (a + b)^*a(a + b)^2$
4	aa*	$a + b + (a + b)^2 + (a + b)^*a(a + b)^2$
5	a*	$1 + a + b + (a + b)^2 + (a + b)^*a(a + b)^2$

Figure 7: Checking $(a*b)*aaa* \le (a+b)*a(a+b)^2$ without subsumption

i	P_i	F_i'
1	(a*b)*aaaa*	$(a + b)*a(a + b)^2$
2	aaa*	$(a + b)^2 + (a + b)^*a(a + b)^2$
3	a*b(a*b)*aaaa*	$(a + b)^2 + (a + b)^*a(a + b)^2$
4	aa*	$a + b + (a + b)^2 + (a + b)^*a(a + b)^2$
5	a*b(a*b)*aaaa*	$a + b + (a + b)^2 + (a + b)^*a(a + b)^2$
6	(a*b)*aaaa*	$a + b + (a + b)*a(a + b)^2$
7	a*	$1 + a + b + (a + b)^2 + (a + b)^*a(a + b)^2$
8	a*b(a*b)*aaaa*	$1 + a + b + (a + b)^2 + (a + b)^*a(a + b)^2$
9	(a*b)*aaaa*	$1 + a + b + (a + b)*a(a + b)^2$
10	aaa*	$1 + (a + b)^2 + (a + b)^*a(a + b)^2$
11	a*b(a*b)*aaaa*	$1 + (a + b)^2 + (a + b)^*a(a + b)^2$
12	(a*b)*aaaa*	$1 + (a + b)*a(a + b)^2$

pair $\langle P', F'' \rangle$ such that $F'' \subseteq D_x F'$. By induction hypothesis, $u \in \mathcal{L}(P') \to u \in \mathcal{L}(F'')$. Thus, $u \in \mathcal{L}(D_x F')$. And, finally, $w = x \cdot u \in \mathcal{L}(F')$.

The result just proved implies that $\mathcal{L}(E) \subseteq \mathcal{L}(E')$: Let $P_1 + \ldots + P_n = E \setminus E'$. It is sufficient to prove that $\mathcal{L}(P_i) \subseteq \mathcal{L}(E')$ for all i such that $1 \leq i \leq n$. We can check that the condition $\langle P_i, E' \rangle \in R_{tod} \cup R_{dev} \cup R_{sub}$ is an invariant of the algorithm. When the algorithm terminates, the condition simplifies to $\langle P_i, E' \rangle \in R_{dev} \cup R_{sub}$. Then, either $\langle P_i, E' \rangle \in R_{dev}$, and the result has been proved above; otherwise $\langle P_i, E' \rangle \in R_{sub}$. Then, by the third condition of the invariant, R_{dev} contains a pair $\langle P_i, E'' \rangle$ such that $E'' \subset E'$. Thus, $\mathcal{L}(P_i) \subseteq \mathcal{L}(E'') \subseteq \mathcal{L}(E')$.

The rest of the proof is similar to the rest of the proof of the algorithm basic Check.

(End of correctness proof)

Let us compare the behaviours the algorithms $basicCheck(\leq)$ and iEA on the running example of Section 1, by looking at Figures 2 and 6. The expression $(a^*b)^*aaaa^*$ has five partial derivatives and they are used exactly once in the relation of Figure 6. More generally, the expression $(a^*b)^*a^na^*$ has n+2 partial derivatives, so that the size of the table is linear in n while the size of the table computed by Algorithm $basicCheck(\leq)$ is 2^n .

3.3 Improved algorithms for checking equivalence

3.3.1 A way to prove equivalence of regular expressions

Let \sim be a relation between regular expressions such that

- 1. $E \sim E' \rightarrow \forall x \in Letter : D_x E \sim D_x E'$
- 2. $E \sim E' \rightarrow o_E = o_{E'}$

Then, for all expressions E and E', $E \sim E' \rightarrow \mathcal{L}(E) = \mathcal{L}(E')$.

The proof is similar to the correctness proof of Algorithm basicCheck.

Proof

We prove that, for very chain $w \in Letter^*$, $E \sim E' \rightarrow (w \in \mathcal{L}(E) \longleftrightarrow w \in \mathcal{L}(E'))$. The proof uses an induction on the length of w. The result is immediate for w = 1, since $E \sim E' \rightarrow o_E = o_{E'}$. Now, let us assume that w = x.u where x is a letter. Clearly, $w \in \mathcal{L}(E)$ implies that $u \in \mathcal{L}(D_x E)$. As, $E \sim E'$, the condition $D_x E \sim D_x E'$ holds. Therefore, by induction hypothesis on w, one has $u \in \mathcal{L}(D_x E')$, which implies $w = x.u \in \mathcal{L}(E')$.

(End of proof)

3.3.2 The improved algorithm to check equivalence

The algorithm is depicted in Figure 8. It is parameterized by the relation \sim , which, in fact, evolves at each iteration and depends on the contents of the relations R_{tod} and R_{dev} . By the way, it can be observed that the algorithm trivially is equivalent to Algorithm basicCheck(=) if we define the relation \sim by $F \sim F' \longleftrightarrow \langle F, F' \rangle \in R_{tod} \cup R_{dev}$ (shortly: $\sim = R_{tod} \cup R_{dev}$). The improvements brought by the new, more general, version, come from using more powerful versions of \sim , which allow us to put less pairs of derivatives in R_{tod} . We consider two more powerful versions.

- 1. (\sim_e) We define \sim_e as the smallest equivalence relation containing $R_{tod} \cup R_{dev}$.
- 2. (\sim_{\oplus}) We define \sim_{\oplus} as the smallest equivalence relation containing $R_{tod} \cup R_{dev}$ such that $E_1 \sim_{\oplus} E'_1$ and $E_2 \sim_{\oplus} E'_2$ implies that $E_1 \oplus E'_1 \sim_{\oplus} E_2 \oplus E'_2$.

Now we can give a (generic) correctness proof of the algorithm $eQ(\sim)$.

Correctness proof of the algorithm $eQ(\sim)$

The algorithm respects the following invariant.

- 1. $\forall \langle F, F' \rangle \in R_{den}$: $\forall x \in Letter : D_x F \sim D_x F'$
- 2. $\forall \langle F, F' \rangle \in R_{dev}$: $o_F = o_{F'}$

The algorithm add a pair $\langle F, F' \rangle$ in R_{dev} at each iteration. It is enough to prove that the invariant is maintained with this new pair. Of course, the second condition is maintained since the algorithm does not stop (returning false). As for the first condition, consider every pair of direct derivatives of F and F', they are noted tabD[x] and tabD'[x] in Figure 8. Either $tabD[x] \sim tabD'[x]$, then nothing is added to R_{tod} , but the required condition $D_x F \sim D_x F'$ already is verified beforehand; otherwise, the pair $\langle tabD[x], tabD'[x] \rangle$ is added to R_{tod} which implies that the condition $D_x F \sim D_x F'$ becomes true since, in any case, $R_{tod} \cup R_{dev} \subseteq \sim$. (Adding a pair to R_{tod} enlarges the relation \sim .)

Figure 8: The improved algorithm to check equivalence (eQ $(\sim)(E, E')$)

```
\begin{split} R_{tod} &:= \{\langle E, E' \rangle\}; \ R_{dev} := \{\}; \\ \text{while } R_{tod} \neq \{\}, \ \text{do} \\ & \langle F, F' \rangle \Longleftarrow R_{tod}; \\ tabD &:= computeDirectDerivatives(F); \\ tabD' &:= computeDirectDerivatives(F'); \\ \text{if } uncompatible(tabD, tabD'), \ \text{do} \\ \text{return } false; \\ \text{for every letter } x, \ \text{do} \\ & \text{if } tabD[x] \not\sim tabD'[x], \ \text{do} \\ & R_{tod} \Longleftarrow \langle tabD[x], tabD'[x] \rangle; \\ & R_{dev} \Longleftarrow \langle F, F' \rangle; \\ \text{return } true; \end{split}
```

When the algorithm terminates, returning true, we can prove that for all expressions F and F', $F \sim F' \rightarrow \forall x \in Letter: D_x F \sim D_x F'$. If $\sim = \sim_e$, it is a consequence of the fact that \sim_e is the smallest equivalence relation containing R_{dev} (using transitivity of \sim_e). If $\sim = \sim_{\oplus}$ it can be proved using transitivity and the fact that, according to the definition of syntactic derivatives in [], the syntactic equality $D_x(F_1 \oplus F_2) = D_x F_1 \oplus D_x F_2$ holds for all normalized expressions F_1 and F_2 . A detailed proof of this fact is given in Appendix A.1.

Finally, we can use the theorem of Section 3.3.1 to prove that all pairs in R_{dev} are language equivalent, thus, in particular, E and E'.

(End of correctness proof)

The above presentation does not make precise the way relations \sim are practically computed and it ignores its cost. This is to be discussed in Section 4. But now, let us examine how the improved algorithm behaves on the running example of Section 1. The relation computed by Algorithm $eQ(\sim_{\oplus})$ is depicted in Figure 9. The column i_b gives the index of the pairs $\langle F_{i_b}, F'_{i_b} \rangle$ in Figure 4. We see that four pairs are not put in the relation by the improved algorithm. Let us explain why. When the expressions F_4 and F'_4 are computed (as $D_b F_2$ and $D_b F'_2$), it is checked whether $F_4 \sim_{\oplus} F'_4$. It is the case because $F'_1 \subset F'_4$, which implies that $F'_4 \sim_{\oplus} (F'_4 \oplus F_1) = F_4$. Thus, the pair $\langle F_4, F'_4 \rangle$ is not added to the relation. Later on, the expressions F_6 and F'_6 are computed (as $D_b F_3$ and $D_b F'_3$). It is found that $F'_1 \subset F'_6$, so that $F'_6 \sim_{\oplus} (F'_6 \oplus F_1) = F_6$. Finally, the expressions F_7 , F'_7 , F_8 , and F'_8 are not computed at all, since they are derivatives of F_4 , F'_4 , F_6 , and F'_6 , which have not been put in the relation.

•

Figure 9: Relation computed by Algorithm eQ (\sim_{\oplus}) for n=3

i	i_b	F_{i_b}	F_{i_b}'
1	1	E + E'	E'
2	2	$aaa^* + (a + b)^2 + E' + a^*bE$	$(a + b)^2 + E'$
3	3	$a + b + aa^* + (a + b)^2 + E' + a^*bE$	$a + b + (a + b)^2 + E'$
4	5	$1 + a + b + a^* + (a + b)^2 + E' + a^*bE$	$1 + a + b + (a + b)^2 + E'$

4 Notes on the implementation

Before presenting the experimental evaluation of the algorithms described in Section 3, which is the main goal of this paper, it is necessary to give information about the programming framework used to implement the algorithms. A complete description of this framework, called *the background*, has not been published yet but it uses techniques similar to the ones explained in [8]. Partial descriptions of it are given in [6, 7]. Below key aspects of the background are pointed out.

The background contains the representation of a limited set of normalized expressions. Expressions are uniquely represented and identified by an integer. Identifiers of expressions range from 0 to a maximum value N, e.g. 5,000,000. A global array of N arrays of integers is used to represent all expressions. The identifier iExpr of an expression E gives access to an array of integers containing the identifiers of its direct sub-expressions. The types of expressions (0, 1, LETTER, UNION, ...) are provided by another array of length N. (Other global arrays are used to record additional information about the expressions but they are not used by the algorithms of this paper.) The identifier of an expression is computed from its type and the identifiers of its direct sub-expressions using hashing techniques, which allows normalization of (external) expressions in $O(n \log n)$ where n is the size of the expression to normalize. The background maintains a list of the integers actually used to identify expressions as well as a complementary list of all free identifiers. So, identifiers are attributed to expressions on demand. Therefore the same expression is usually given different identifiers at different system runs. When all or many identifiers are used, a kind of specialized garbage collector can be called to mark expressions necessary to complete the current task, and to return the identifiers of the others to the free list.

4.1 Implementation of the basic algorithm

To implement the basic algorithm (see Figure 1) in the context of the background, a global array of N integers is used to represent the sets of pairs R_{tod} and R_{dev} . The same array is reused at every execution of the algorithm. In fact, pairs of expressions are treated as a new kind of expression, of a new type.² The set R_{dev} is put in the first positions of the global array and the set R_{tod} in the following first thereafter. The pairs of derivatives are computed with a breadth-first strategy, i.e. (for two letters), with respect to a, b, aa, ab, ba, bb, Using a depht-first strategy would be possible but it is inadequate for the improved algorithms (see the next two subsections). The arrays of derivatives tabD and tabD' actually are arrays of integers (identifiers). Since the letters a, b, \ldots are given identifiers $2, 3, \ldots$, getting the value tabD[x] for a letter x is done in O(1). The

¹The system is implemented in Java, so arrays of (identifiers of) sub-expressions are Java arrays, of variable length, possibly equal to null when an identifier is not used.

²Such pairs can also be possibly viewed as so-called extended expressions (see e.g. [3, 5, 7]). For instance, Algorithm $basicCheck (\leq)$ can be modified to compute a DFA for the extended expression $E \setminus E'$ (see [7]).

algorithm computeDirectDerivatives is fully described in [6]; the most optimized version is used here. It computes derivatives that are unions of partial derivatives (see [2, 6]), thus, in practice, sorted arrays of identifiers, which greatly contributes to the efficiency of the improved algorithms. The check uncompatible (tabD, tabD') must at least compare tabD[0] and tabD'[0] (note that the identifiers of the expressions 0 and 1 actually are the integers 0 and 1) but additional simple checks can improve efficiency (see [10]). To check whether a pair of derivatives $\langle tabD[x], tabD'[x] \rangle$ belongs to $R_{tod} \cup R_{dev}$ we use another global array of N elements, reused at every execution of the algorithm. Conceptually, it is an array of booleans whose i-th element is set to true when the pair identified by i is put into R_{tod} . However, to not allocate a new array at each execution of the algorithm, an array of integers is used as well as a global integer that is increased by one at each execution, the new value playing the role of true, and the lower ones the role of tabe.

Using the above data structures, the implementation of the algorithm basicCheck(E, E') can be estimated as (time) optimal since the total execution time is equal to the time spent building the relation R_{dev} , which is proportional to $\sharp R_{dev}$, plus the time necessary to compute all the derivatives of E and E', each derivative being computed only once (see [6]). Although $\sharp R_{dev}$ can be equal to $nD \times nD'$, where nD and nD' are the number of derivatives of E and E', it can be the case that it takes much more time to compute the derivatives than to compute the relation R_{dev} (see Section 5).

4.2 Implementation of Algorithm iEA (E, E')

To implement the algorithm of Figure 5, the same data structures as those described in the previous subsection are used, with a simple modification to take into account the set R_{sub} , and a new global array to implement the operation $checkSubs(\langle P,F\rangle)$. As for the set R_{sub} , we reuse the same global array used to check the presence of a pair in $R_{tod} \cup R_{dev}$ but we need a different value to indicate that a pair belongs to R_{sub} . The global integer playing the role of true is incremented two times. The first increment is used to identify pairs in $R_{tod} \cup R_{dev}$, not subsumed by another one in the same set. The second increment is used to identify pairs in R_{sub} . Those pairs can belong to $R_{tod} \cup R_{dev}$ or not: It does not matter, since they must be ignored by the algorithm.

For implementing the operation $checkSubs(\langle P, F \rangle)$, we use a single global array of N elements. Let P an expression occurring in at least a pair of $R_{tod} \cup R_{dev} \cup R_{sub}$. Its identifier iP is used a pointer in the global array to the first element of a list containing the identifiers of all pairs $\langle P, F_1 \rangle$, ..., $\langle P, F_{n_P} \rangle$ belonging to $(R_{tod} \cup R_{dev}) \setminus R_{sub}$. Let pTab be the (name of the) global array and let iPF_j be the identifier of the pair $\langle P, F_j \rangle$. The following equalities hold:

$$\operatorname{pTab}[iP] = iPF_1, \quad \operatorname{pTab}[iPF_j] = iPF_{j+1} \quad (1 \le j < n_P), \quad \operatorname{pTab}[iPF_{n_P}] = -1.$$

Using these representation conventions, the operation $checkSubs(\langle P, F \rangle)$ (see subsection 3.2) can be carried out through a single traversal of the list related to P. To check subsumption of F by a F_j in the list, or the contrary, an operation subsumeTest(F, F') is used, which checks if one of the sets of sub-expressions of F and F' is a subset of the other. Its complexity is proportional to the number of sub-expressions of F and F'. A difficult question is to find a best order to maintain sorted the list related to P, in order to minimize the number of subsumption checks, on the average. The current strategy is to put the pair winning the subsumption check (be it F or one of the F_j 's), at the beginning of the list, hoping it has a chance to win again at the next call of $checkSubs(\langle P, F' \rangle)$.

4.3 Implementations of Algorithm eQ $(\sim)(E, E')$

To implement the algorithm of Figure 8, the same data structures as those described in 4.1 are used. (Remember that the "improved" algorithm is just basicCheck(E, E') when \sim is equal to $R_{tod} \cup R_{dev}$.) The only thing to make precise concerns the implementation of the relations \sim_e and \sim_{\oplus} . Concerning \sim_e it is natural to implement it with a UNION-FIND data structure [9]. So both the check $tabD[x] \not\sim_e tabD'[x]$ and the possible enlargement of the relation \sim_e are done in (almost) O(1).³

As for the relation \sim_{\oplus} , several possibilities have been investigated. Simply stated, there are two main options:

- 1. We compute the check $tabD[x] \sim_{\oplus} tabD'[x]$ from scratch, on the basis of the relation $R_{tod} \cup R_{dev}$, as suggested in [4].
- 2. We maintain a kind of UNION-FIND data structure to represent the relation \sim_{\oplus} , or a better approximation of it than merely $R_{tod} \cup R_{dev}$.

Now, let's take a look at these possibilities, from the simplest to the most elaborated. In order to check whether $F \sim_{\oplus} F'$, we can compute two longest expressions \hat{F} and \hat{F}' such that $F \sim_{\oplus} \hat{F}$ and $F' \sim_{\oplus} \hat{F}'$ [4]. Then $F \sim_{\oplus} F'$ if and only if $\hat{F} = \hat{F}'$ (i.e. their identifiers are equal). The computation of \hat{F} (and similarly of \hat{F}') can be done by iterating through the relation $R_{tod} \cup R_{dev}$, which is straightforward since it is contained in a prefix of an array. For every pair $\langle F_i, F_i' \rangle$, it can be checked if $F_i \subseteq \hat{F}$ (or, alternatively, $F_i' \subseteq \hat{F}$); if it is the case we execute the operation $\hat{F} := \hat{F} \oplus F_i'$ (alternatively, $\hat{F} := \hat{F} \oplus F_i$) and we mark the position i as successfully tested. We iterate on the relation $R_{tod} \cup R_{dev}$ until no unmarked position can be successfully tested. This may require at most $\sharp(R_{tod} \cup R_{dev})$ iterations in the whole relation, although it is rarely the case, in practice. In the following and, especially, in Section 5, this version of Algorithm eQ (\sim_{\oplus}) is called E2. Moreover, the algorithms basicCheck(=) and eQ (\sim_e) are called E and E1, respectively.

A drawback of the above method is the fact that the expressions \hat{F} and \hat{F}' are forgotten after the test $\hat{F} = \hat{F}'$, so that part or all of the work done to compute them must possibly be redone at further iterations of the global algorithm. Thus, we can choose to keep track of these expressions by linking F to \hat{F} and F' to \hat{F}' when the pair $\langle F, F' \rangle$ is added into the relation $R_{tod} \cup R_{dev}$. In fact, we can do better: By adding $\langle F, F' \rangle$ into the relation, we enlarge the relation \sim_{\oplus} in such a way that $F \sim_{\oplus} F'$, but since $F \sim_{\oplus} \hat{F}$ and $F' \sim_{\oplus} \hat{F}'$, we also have $F \sim_{\oplus} F' \sim_{\oplus} (F \oplus F') \sim_{\oplus} (\hat{F} \oplus \hat{F}')$. Thus, we can build a version of Algorithm eQ (\sim_{\oplus}) such that both F and F' are linked to $(\hat{F} \oplus \hat{F}')$ when the pair $\langle F, F' \rangle$ is added into the relation $R_{tod} \cup R_{dev}$. This can shorten the computation of (a new value of) \hat{F} (or \hat{F}') if one of the two expressions F or F' is computed later on as a new derivative: The new computation can start from the old value of \hat{F} (or \hat{F}'). To implement the link, a UNION-FIND structure similar to the one explained for \sim_e is used. Let us note rep(E) the representative of E in the UNION-FIND structure. For the problem at hand, the equalities $\operatorname{rep}(F) = \operatorname{rep}(F') = (\hat{F} \oplus \hat{F}')$ are established.⁴ Note that it is often the case that other expressions have the same representative

³In fact, the background contains a global UNION-FIND data structure, which is normally used to record classes of equivalent expressions in a simplification algorithm [7]. However, it cannot be straightforwardly used because the relation \sim_e is not guaranteed to relate equivalent expressions until the algorithm returns true. So the following "trick" is used. A new "pseudo" type of expressions is introduced, called BOX. A boxed expression is of the form box(E), where E is a normal, unboxed, expression. The UNION-FIND data structure for \sim_e is built inside the global UNION-FIND data structure of the background, using identifiers of boxed expressions. When the algorithm terminates, returning true or false, the identiers of all boxed expressions are removed from the UNION-FIND data structure and they are returned to the free list of identifiers. (This requires only one additional global variable to a linked list of identifiers of boxed expressions but we leave out further implementation details.)

⁴More exactly, boxed versions of the expressions are used.

than F or F' beforehand; their representatives automatically are updated in the same way as those of F and F', thanks to the UNION-FIND structure.

Still another idea, when a new pair $\langle F, F' \rangle$ such that $\hat{F} \neq \hat{F}'$ is computed, consists of adding $\langle \hat{F}, \hat{F}' \rangle$ to the relation $R_{tod} \cup R_{sub}$, instead of $\langle F, F' \rangle$. This maintains the invariant as well. Indeed, assume that $F = D_x G$ and $F' = D_x G'$ for some pair $\langle G, G' \rangle \in (R_{tod} \cup R_{dev})$. Adding $\langle \hat{F}, \hat{F}' \rangle$ to R_{tod} ensures that $\hat{F} \sim_{\oplus} \hat{F}'$ for the extended relation \sim_{\oplus} . Thus,

$$D_x G = F \sim_{\oplus} \hat{F} \sim_{\oplus} \hat{F'} \sim_{\oplus} F' = D_x G'.$$

The benefit of this version is that it does not need a UNION-FIND data structure so that no boxed expressions are needed either. However it adds to the relation $R_{tod} \cup R_{dev}$ pairs of larger expressions for which it takes more time to compute their derivatives. Keeping in mind the experimental evaluation of Section 5, this variant is called E3 in the following, while the variant using the UNION-FIND data structure is called E4.

Finally, we can go a step further to design a still more ambitious version ensuring that every expression F occurring in the relation $R_{tod} \cup R_{dev}$ is linked to its best possible (i.e. longest) representative in the relation \sim_{\oplus} . This is normally the case with Algorithm E4 for the expressions F and F' just after adding the new pair $\langle F, F' \rangle$ into $R_{tod} \cup R_{dev}$, but this may no longer be the case after some iterations of the algorithm because the relation \sim_{\oplus} enlarges monotonically. This final version, which we call E5 in the following, has to maintain the following invariant.

- 1. $\forall X, X' \in dom(R_{tod} \cup R_{den}) : X \subseteq rep(X') \rightarrow rep(X) \subseteq rep(X')$
- 2. $\forall \langle X, Y \rangle \in R_{tod} \cup R_{dev} : X \oplus Y \subseteq rep(X), rep(Y)$
- 3. $\forall \langle X, Y \rangle \in R_{tod} \cup R_{dev} : \operatorname{rep}(X) = \operatorname{rep}(Y)$
- 4. $\forall X \in dom(R_{tod} \cup R_{dev}) : X \sim_{\oplus} rep(X)$

Observe that the last three conditions are ensured by Algorithm E4. The additional first condition tells that no representative $\operatorname{rep}(X')$ can be increased since for all $X \subseteq \operatorname{rep}(X')$, the equality $\operatorname{rep}(X') = \operatorname{rep}(X') \oplus \operatorname{rep}(X)$ holds. To maintain the first condition when a new pair $\langle F, F' \rangle$ is added to $R_{tod} \cup R_{dev}$, we have to check all other pairs $\langle X, Y \rangle$ in the relation to see whether $F \subseteq \operatorname{rep}(X)$ or $F' \subseteq \operatorname{rep}(X)$ and $\operatorname{rep}(F) \not\subseteq \operatorname{rep}(X)$. For all such pairs, we execute $\operatorname{rep}(X) := \operatorname{rep}(X) \oplus \operatorname{rep}(F)$ so that $\operatorname{rep}(X)$ is increased. Such pairs $\langle X, Y \rangle$, for which $\operatorname{rep}(X)$ is increased, must then be taken into account, in the same way as $\langle F, F' \rangle$ until no remaining representative can be improved.

5 Experimental evaluation

5.1 Introduction

We compare the practical efficiency of the algorithms proposed before on several class of problems. First, we consider a class of problems where iEA is "exponentially faster" than iE and we show that E2, E3, E4 and E5 provide similar efficiency improvements. Second, we compare the efficiency of the main algorithms for comparing randomly generated expressions. Third, we assess the benefit of using some of the algorithms as subproblems in an algorithm simplifying regular expressions.

Note that all measurements are made with a background using 5,000,000 identifiers.

Also, additional measurements and comparison of (variants) of the algorithms are proposed in the appendix. Altough they are significant and informative, they are left out of the main paper to focus on the most interesting issues.

Table 1: Checking	$(a^* b)^*a^na^*$	$\leq (a + b)*a(a$	$+ b)^{n-1}$
-------------------	-------------------	--------------------	--------------

n	$t_{ m E}$	$t_{ m E1}$	$t_{ m E2}$	$t_{ m E3}$	$t_{ m E4}$	$t_{ m E5}$	$t_{ m iE}$	$t_{ m iEA}$	$\sharp R_{\mathrm{exp}}$	$R_{\sim_{\oplus}}$	$\sharp R_{\mathrm{iEA}}$
1	77.5μ	125μ	92.1μ	139μ	136μ	112μ	88.2μ	87.1μ	2	2	3
2	183μ	353μ	154μ	161μ	241μ	198μ	151μ	124μ	4	3	4
3	276μ	445μ	299μ	266μ	480μ	280μ	179μ	117μ	8	4	5
4	730μ	659μ	324μ	406μ	429μ	344μ	336μ	134μ	16	5	6
5	725μ	887μ	388μ	258μ	432μ	398μ	452μ	221μ	32	6	7
6	1.29 m	1.57m	394μ	327μ	589μ	561μ	796μ	150μ	64	7	8
7	2.53m	3.15m	606μ	419μ	588μ	566μ	1.18 m	178μ	128	8	9
8	3.83m	4.42m	609μ	468μ	686μ	734μ	2.47 m	182μ	256	9	10
9	6.48m	8.02m	476μ	469μ	692μ	736μ	2.93 m	192μ	512	10	11
10	12.6m	13.3m	554μ	583μ	976μ	710μ	5.34 m	217μ	1.02K	11	12
11	25.1m	28.7m	711μ	572μ	1.49m	1.21m	10.8m	251μ	2.04K	12	13
12	41.3 m	49.5m	1.24m	579μ	1.66m	1.35 m	19.6 m	250μ	4.09 K	13	14
13	79.9 m	102m	1.34m	1.04m	1.78 m	1.70m	47.4 m	257μ	8.19 K	14	15
14	139 m	190 m	1.36 m	1.02m	1.80m	1.70m	97.6 m	286μ	16.3K	15	16
15	283m	279 m	1.48 m	982μ	2.03m	1.93m	168 m	305μ	32.7K	16	17
16	414m	455m	1.72 m	1.10m	2.11m	2.09 m	300m	510μ	65.5K	17	18
17	847 m	933 m	1.95 m	1.32m	2.38m	2.07m	444 m	593μ	131K	18	19
18	1.77 s	1.95 s	2.28m	4.95m	2.62m	2.26m	911 m	325μ	262K	19	20
19	3.40 s	3.79 s	2.12m	990μ	2.95m	2.43m	1.95 s	385μ	524K	20	21
20	6.08 s		2.43m	1.03m	2.95m	2.31m	3.78 s	520μ	1.04M	21	22

5.2 A class of problems where inclusion can be checked in linear time

We consider the class of expressions already used to differentiate the various algorithms in Section 3. Remember that we note E_n the expression (a* b)*aⁿa* and E'_n the expression (a + b)*a(a + b)ⁿ⁻¹. We apply the algorithms iE and iEA to check that $E_n \leq E'_n$ for n = 1 to n = 20. We also apply the algorithms E, E1, E2, E3, E4 and E5 to the expressions $E_n + E'_n$ and E'_n , to perform that same check. The execution times and the sizes of the relations computed by the algorithms are reported in Table 1. The meaning of the first nine columns is obviously indicated. The column $\sharp R_{\text{exp}}$ is the size of the relations computed by the algorithms E, E1, and iE; it is always equal to 2^n . The column $\sharp R_{\text{exp}}$ is the size of the relation computed by the algorithms E2, E3, E4, E5. The column $\sharp R_{\text{iEA}}$ is the size of the relation computed by the algorithm iEA. We clearly see that E, E1 and iE have an exponential complexity (with respect to n) in both time and space, while the other algorithms behave linearly on this class of problems. Times measurements are not very reliable with java on my machine, especially when n is small. Neverteless, we see that iEA is at least to time faster than the algorithms based on congruence closure. Moreover, the algorithm E1, which only checks equivalence by transitivity is not faster than E and is unable to complete the check for n = 20 due to a lack of expression identifiers, in spite of using gargage collection.

5.3 Random expressions

In this subsection, the efficiency of the algorithms presented in this paper is discussed by applying them to randomly generated expressions of various sizes, from 10 to 2560. The expressions use two letters and they do not contain any occurrence of the symbol 0. They are generated in such a way that all expressions of this form have the same probability of being chosen (for a given size). Normal

Table 2: Statistics on Algorithms iE and iEA when $E \leq E'$

		Al	gorithm	iE		Algorithm iEA					
ℓ	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	$\sharp R$	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subs}	$\sharp R$
10	146μ	161μ	2.71 m	125μ	4	156μ	161μ	2.71 m	96.7μ	3.82μ	3
20	195μ	260μ	2.76 m	116μ	9	214μ	231μ	2.86m	93.3μ	7.59μ	6
40	267μ	496μ	1.22m	211μ	23	286μ	441μ	967μ	168μ	16.9μ	13
80	503μ	844μ	1.26m	391μ	56	506μ	810μ	1.42m	290μ	38.9μ	39
160	1.24m	2.25m	4.85m	949μ	159	970μ	1.82 m	3.73m	525μ	92.7μ	91
320	4.21m	6.66m	10.5m	3.32m	806	2.26m	4.06 m	7.78m	1.10m	387μ	305
640	32.3m	73.5 m	102m	25.5m	6.65K	9.34 m	21.3m	37.4m	3.99m	2.76m	1.26K
1280	394 m	669m	2.57s	287m	117K	57 m	159m	487m	12.5m	34.9m	5.87K
2560	8.07 s			6.01s	1.17M	380m	895 m	3.44 s	63.6m	286m	21.4K

(non normalized) expressions are first generated and they are normalized before the algorithms are applied to them. (Normalization reduces the size of the expressions by approximatively 25%, on the average.) For each size, three kinds of pairs of expressions are selected. The first set only contains pairs $\langle E, E' \rangle$ such that $E \not \leq E'$ (i.e. $\mathcal{L}(E) \not \subseteq \mathcal{L}(E')$). The second set contains pairs such that $E \leq E'$. The third set contains pairs of equivalent expressions. The three sets contains 50 pairs of independently generated expressions. The sets are created by generating expressions completely randomly and selecting pairs of consecutive expressions meeting a given condition. For selecting equivalent pairs, it is checked that both are equivalent to $(a + b)^*$.

5.3.1 Checking inclusion

We first compare the efficiency of Algorithms iE and iEA on expressions such that $E \leq E'$ in Table 16. The first column ℓ indicates the size of the expressions to compare. For both algorithms, the columns t_{med} , $t_{9/10}$, and t_{max} give the median execution time, the ninth decile, and the maximum value of the execution time, respectively; the columns t_{deriv} are the average time spent in Algorithm computeDirectDerivatives; the columns $\sharp R$ show the number of pairs in the relation R_{dev} when the algorithms terminate. Finally, t_{subs} is the average of the time spent checking subsumption in Algorithm iEA (i.e. in the calls to *checkSubs*). It can be observed that the speed-up brought by Algorithm iEA over iE is significant and that it increases with the size of the expressions. The time spent computing derivatives is reduced by almost two orders of magnitude for $\ell=2560$. In the case of iE, approximatively 75% of the execution time is spent computing derivatives, for all sizes, while it becomes almost marginal for iEA when ℓ grows. However, for large values of ℓ , the time spent in checking subsumption increases up to 75\% of the total execution time. As for the size of the relation, it grows much quicker for iE than for iEA, up to 25% of the total number of identifiers available in the background (for $\ell = 2560$), while it remains under 0.5% for iEA. The average size of the relation nevertheless grows exponentially for iEA but much more slowly than for iE. Note that iE is only able to check 33 pairs for $\ell = 2560$, so the values indicated for $\sharp R$ are underestimated. More pairs should be needed for some problems, possibly more than the number of available identifiers.

Now, let us compare the same algorithms for pairs of expressions E, E' such that $E \not\leq E'$. It is reasonable to think that this is a frequently occurring situation, with a much higher probability than the case $E \leq E'$, analyzed above, which can be seen as the worst case scenario. Statistics on such pairs are given in Table 3. It can be observed that the two algorithms behaves similarly

Table 3: Statistics on Algorithms iE and iEA when $E \not\leq E'$

		Algo	rithm iE	C .		Algorithm iEA					
ℓ	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	$\sharp R$	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subs}	$\sharp R$
10	49.3μ	78.6μ	164μ	41.4μ	2	76.2μ	108μ	240μ	30.3μ	2.73μ	2
20	84.9μ	132μ	208μ	73.7μ	2	155μ	171μ	2.43m	99.8μ	4.57μ	3
40	120μ	260μ	338μ	106μ	2	145μ	280μ	522μ	71.8μ	8.84μ	4
80	191μ	462μ	799μ	171μ	4	234μ	521μ	931μ	128μ	16μ	7
160	237μ	600μ	1.90m	214μ	4	298μ	807μ	2.21m	165μ	20.5μ	9
320	380μ	842μ	5.33m	339μ	8	411μ	897μ	2.46m	233μ	33.7μ	15
640	304μ	711μ	1.97m	278μ	3	391μ	627μ	4.39m	212μ	31.4μ	10
1280	445μ	1.81m	2.68m	417μ	5	525μ	1.50m	3.14m	299μ	36.1μ	22
2560	628μ	967μ	7.80m	588μ	11	696μ	1.07m	10.3m	318μ	73.6μ	35

Table 4: Statistics on Algorithms E and E4 when $\mathcal{L}(E) = \mathcal{L}(E')$

		Algori	thm E		Algorithm E4					
ℓ	t_{med}	$t_{9/10}$	t_{max}	$t_{\it deriv}$	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	
10	53.5μ	131μ	2.60 m	96.5μ	77.2μ	208μ	2.70 m	92.2μ	3.61μ	
20	213μ	511μ	745μ	211μ	180μ	380μ	580μ	117μ	8.51μ	
40	192μ	412μ	3.19m	266μ	273μ	621μ	3.33m	236μ	18.1μ	
80	313μ	702μ	2.63m	418μ	642μ	1.14 m	3.55m	338μ	57μ	
160	891μ	1.34m	7.36m	1.01m	1.66m	2.75 m	7.63m	692μ	288μ	
320	3.18m	7.03 m	17 m	3.39 m	4.66m	7.86 m	20.1m	1.42m	1.20m	
640	19.1 m	38.6m	122m	20.2m	17.4 m	41.6 m	63.7 m	4.48m	6.30m	
1280	273 m	1.07s	5.71s	367 m	68m	119 m	170 m	10.4m	22.4m	
2560	7.55 s	18.8 s	30 s	7.50s	180m	432m	1.30s	26.5m	95.3m	

and that they are reasonably efficient on these test data: Most of the checks require less than a millisecond.

5.3.2 Checking equivalence

The algorithms for checking equivalence are now compared on a set of pairs of equivalent expressions (actually equivalent to $(a + b)^*$). The basic algorithm E is compared to Algorithm E4, which appears to be the most efficient on the average, in Table 4. The name of the columns are as in the previous tables, except t_{subst} which gives the average time spent in checking for some expressions X and X' that $X \subseteq \operatorname{rep}(X')$ in order to possibly increase $\operatorname{rep}(X')$. We observe that both algorithms have similar execution times when ℓ is less or equal to 320 but Algorithm E4 behaves much more better for greater expressions. The time spent computing derivatives increases almost linearly for E4, while it increases exponentially for E. For largest values of ℓ , the time spent in subsumption checks becomes the largest part of the execution time.

More statistics are given in Table 5. Here, the execution times are correlated to $\sharp R$, i.e. the size of the relation R_{dev} , computed by the algorithms. First, it can be seen that the size of the relation is much bigger for E than for the other algorithms. It is almost equal to 50% of the number of available identifiers. In fact, when $\ell=2560$, Algorithm E is able to complete the test only for 36

Table 5: Statistics on Algorithms for cheking equivalence when $\mathcal{L}(E) = \mathcal{L}(E')$

		Е	E	1	E2		E3	E4	E5
ℓ	t_{avrg}	$\sharp R$	t_{avrg}	$\sharp R$	t_{avrg}	$\sharp R$	t_{avrg}	t_{avrg}	t_{avrg}
10	110μ	3	134μ	3	133μ	3	161μ	145μ	151μ
20	247μ	5	186μ	5	205μ	5	221μ	213μ	216μ
40	297μ	10	273μ	9	428μ	7	455μ	396μ	426μ
80	469μ	21	467μ	19	878μ	13	908μ	731μ	876μ
160	1.17m	77	1.16m	52	3 m	26	2.38 m	1.97 m	2.04m
320	4.19m	565	3.68m	234	11.8m	50	7.61 m	5.44m	6.50m
640	23.8m	3.07K	20m	873	42.2m	95	27.8 m	22.3m	24m
1280	531 m	159K	288m	11K	158m	183	84.5 m	71.2 m	91.9 m
2560	9.79 s	2.35M	9.28 s	157K	756m	337	351m	265m	292 m

Table 6: Time to compute derivatives when $\mathcal{L}(E) = \mathcal{L}(E')$

ℓ	Е	E1	E2	E3	E4	E5
10	96.5μ	96.9μ	94.7μ	107μ	92.2μ	92.2μ
20	211μ	125μ	128μ	127μ	117μ	113μ
40	266μ	189μ	244μ	259μ	236μ	234μ
80	418μ	339μ	340μ	427μ	338μ	378μ
160	1.01m	874μ	655μ	919μ	692μ	641μ
320	3.39 m	2.82m	1.68m	2.31 m	1.42m	1.42m
640	20.2m	17 m	3.60m	7.23 m	4.48m	4.03m
1280	367 m	265m	8.45m	19.4 m	10.4m	13.3m
2560	7.50s	8.76s	22m	70.7 m	26.5m	26.7m

pairs of expressions, so that the actual value of $\sharp R$ is underestimated (as well as the value of t_{avrg}). Looking to the figures for Algorithm E1, we see that the size of $\sharp R$ remains much more smaller than for E: Only 3% of the number of available identifiers, for $\ell=2560$. Nevertheless, the execution times for E1 are not much better. This is explained by the fact that, for both algorithms, most of the execution time is spent computing derivatives, which are memoized. The time spent building R_{dev} is almost marginal, even for E. The results for the four versions of Algorithm eQ (\sim_{\oplus}) are more striking. Note that they always compute relations R_{dev} of exactly the same size and that this size grows less than linearly.⁵ Algorithm E2, which recomputes the largest expression \hat{F} such that $F \sim_{\oplus} \hat{F}$, from scratch, as in [4], is more than two times less efficient than the three other versions. The execution times of these best versions clearly are less than quadratic.

Tables 6 and 7 provide information on how the execution time of the algorithms is distributed between the main tasks: Computing derivatives, checking inclusion (\subseteq), and building new expressions (mainly \oplus). Table 6 depicts the times spent by the various algorithms to compute derivatives. Algorithms E et E1 compute all derivatives of E and E' exactly once and the times should be the same. The differences in Table 6 are partly due to the low precision of the method used to measure time in java, but also to the fact that using memoization has a cost, which is higher for E. The timings for E2, E4 and E5 also should be equal. The timings for E3 are higher because the pairs

⁵Of course, this is true only on the average.

Table 7: Statistics on Algorithms for cheking equivalence when $\mathcal{L}(E) = \mathcal{L}(E')$

	E	22	E	E3	E	E4	E	E5
ℓ	n_{subst}	t_{subst}	n_{subst}	t_{subst}	n_{subst}	t_{subst}	n_{subst}	t_{subst}
10	6	4.33μ	15	6.50μ	5	3.61μ	6	4.34μ
20	34	9.49μ	58	11.6μ	23	8.51μ	31	9.15μ
40	177	28.9μ	185	31.1μ	90	18.1μ	113	23.2μ
80	812	97.1μ	653	85.9μ	440	57μ	562	74.1μ
160	4.28K	587μ	2.47K	336μ	2.03K	288μ	2.53K	341μ
320	22.8K	3.15m	11.7K	1.51m	10 K	1.20m	12.4K	1.56m
640	88.8 K	12.6m	42.7K	6.80m	42.1K	6.30m	50.4K	7.55m
1280	318K	48.6m	144K	20.6m	165K	22.4m	196K	27.8m
2560	1.21M	222m	527K	88.6m	656K	95.3m	783K	109m

Table 8: Statistics on Algorithms for cheking equivalence when $\mathcal{L}(E) = \mathcal{L}(E')$

Alg	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	$\sharp R$	$\max(\sharp R)$	ℓ_1	ℓ_2
Ε	18.1 m	1.61m	30.7 m	494 m	15.6 m		2.29 K	155K	387	388
E1	19.2 m	2.03m	27.6m	505 m	15.6 m		840	27 K	387	388
E2	134 m	6.39m	143 m	7.14 s	2.76 m	44.9 m	134	2.01K	578	318
E3	102m	5.33m	137 m	5.76 s	4.41m	30.5m	134	2.01K	578	318
E4	135m	5.09m	116 m	7.70 s	2.46m	41.5 m	134	2.01K	578	318
E5	172 m	6.18 m	160m	9.67 s	2.67 m	52.8m	134	2.01K	578	318
EA	7.91m	1.69m	11.3m	218m	2.81m	2.16m	1.10K	18.1K	578	318

of expressions added to $R_{tod} \cup R_{dev}$ are of the form $\langle \hat{F}, \hat{F}' \rangle$ instead of $\langle F, F' \rangle$. Expressions such as \hat{F} and \hat{F}' are larger so their derivation takes more time. Nevertheless, we can see that the timings for E2 to E5 grow less than quadratically. Table 7 contains statistics on the numbers (n_{subst}) and timings (t_{subst}) of inclusion checks (\subseteq) executed by the algorithms, on the average. Because it computes expressions \hat{F} from scratch, Algorithm E2 performs about twice as many checks as the others, and its execution times are proportionally increased. Algorithm E3 is best on this issue because derivatives of pairs of expressions $\langle F, F' \rangle$ chosen in R_{tod} are very frequently found syntactically equal, so that the computation of \hat{F} and \hat{F}' is unnecessary.

Putting together the figures from Tables 5, 6, and 7, we conclude that for Algorithms E and E1, most of the execution time is spent computing derivatives, whose number grows exponentially whith ℓ . For expressions denoting the same regular language, they virtually compute the DFAs of both expressions while executing the algorithm of [?] on them, in parallel. Computing the DFAs takes most of the time. As for Algorithms E2 to E5, the time spent computing derivatives is just a small part of the total execution time, which becomes proportionally smaller when ℓ grows. The time spent checking inclusion is greater and it proportionally grows with ℓ . The rest of the time is spent creating expressions, mostly through the operation \oplus .

Table 9: Statistics on Algorithms for cheking equivalence when $\mathcal{L}(E) = \mathcal{L}(E')$

Alg	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	t_{\oplus}	$\sharp R$	$\max(\sharp R)$	ℓ_1	ℓ_2
\mathbf{E}	21.8 m	1.63 m	33.2 m	387 m	19.5 m	0μ	1.98 m	2.53 K	153K	381	382
E1	22.1m	1.90m	38.6m	316 m	18.7m	0μ	2.71m	1.14K	26.8K	381	382
E2	144 m	5.46m	165m	6.27s	2.59m	49.3m	2.74m	150	2.02K	356	641
E3	110m	4.07m	115m	4.90s	4.31m	31.5 m	960μ	150	2.02K	356	641
E4	163m	4.68m	173m	7.48 s	2.85m	47.2m	2.20m	150	2.02K	356	641
E5	202m	5.80m	190m	9.18 s	2.88m	59.8m	2.18m	150	2.02K	356	641
EA	7.09 m	1.36m	9.97m	200m	2.52m	1.92m	323μ	1.01K	16.8K	356	641

Table 10: Statistics on Algorithms for cheking equivalence when $\mathcal{L}(E) = \mathcal{L}(E')$

Alg	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	t_{\oplus}	$\sharp R$	$\max(\sharp R)$	ℓ_1	ℓ_2
E	21.8 m	1.63 m	33.2 m	387 m	1.52 m	0μ	256μ	146	153K	381	382
E1	22.1m	1.90m	38.6m	316m	1.45m	0μ	354μ	137	26.8K	381	382
E2	144m	5.46m	165m	6.27s	689μ	1.45m	648μ	58	2.02K	356	641
E3	110m	4.07m	115m	4.90s	1.06m	894μ	305μ	58	2.02K	356	641
E4	163m	4.68m	173 m	7.48s	644μ	1.18m	431μ	58	2.02K	356	641
E5	202m	5.80m	190m	9.18 s	730μ	1.43m	388μ	58	2.02K	356	641
EA	7.09 m	1.36m	9.97m	200m	758μ	105μ	157μ	301	16.8K	356	641

Table 11: Statistics on Algorithms for cheking equivalence when $\mathcal{L}(E) = \mathcal{L}(E')$

Alg	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	$\sharp R$	$\max(\sharp R)$	ℓ_1	ℓ_2
E	24.3 m	1.64 m	46.8 m	433 m	21.7 m		2.53 K	153K	381	382
E1	22.3m	1.79 m	40.8m	316m	18.9 m		1.14K	8.15K	356	641
E2	147 m	5.43m	151 m	6.36s	2.57m	50.9m	150	2.02K	356	641
E3	113 m	4.67m	113 m	5.04s	4.41m	32.7m	150	2.02K	356	641
E4	162m	4.87m	158m	7.47s	2.87 m	47.2m	150	2.02K	356	641
E5	248m	6.42m	188 m	11.7s	3.39m	67.6m	150	2.02K	356	641
EA	9.30m	1.63m	13.8m	218m	3.52m	2.31m	1.01K	16.8K	356	641

Table 12: Statistics on Algorithms for cheking equivalence when $\mathcal{L}(E) = \mathcal{L}(E')$

Alg	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	$\sharp R$	$\max(\sharp R)$	ℓ_1	ℓ_2
E	22.4 m	1.52m	32.9 m	570 m	19.6 m		2.34 K	153K	381	382
E1	21.1 m	2.08m	28.9m	361m	17.7 m		965	10.5K	582	320
E2	151 m	5.77m	135m	7.24s	3.07m	50 m	151	2.01K	582	320
E3	116m	4.97m	124m	5.67s	4.60m	33.7m	151	2.01K	582	320
E4	174 m	5.26m	149m	8.53s	3.24m	47.4m	151	2.01K	582	320
E5	219 m	6.47m	224m	10.7s	3.28m	61.7m	151	2.01K	582	320
EA	7.48 m	1.70m	14.4m	196m	2.78 m	1.93m	1.05K	17.4K	582	320

Table 13: Statistics on Algorithms for simplifying expressions

A	lg		iEA -	— E1			iEA -	— E4			iEA -	– EA	
	ℓ	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{avg}	t_{med}	$t_{9/10}$	t_{max}
	10	280μ	170μ	494μ	6.91 m	294μ	169μ	526μ	6.35m	256μ	148μ	447μ	6.48 m
	20	839μ	439μ	1.66 m	7.39 m	601μ	440μ	1.05m	4.85m	586μ	383μ	987μ	6.83m
	40	1.58m	1 m	3.27 m	8.96m	1.60m	1.07m	2.92 m	9.71 m	1.32 m	933μ	2.35 m	7.77 m
	80	2.49 m	1.58m	4.55m	14.8m	3.02 m	1.96 m	5.73 m	19.7 m	2.22m	1.64m	3.95 m	15.5m
1	60	5.67 m	3.41m	9.27 m	105 m	7.75 m	4.02m	12.8m	106 m	5.11 m	3.44m	9.10m	42.9 m
3	20	18.3 m	8.10m	31.1 m	425m	42m	8.86 m	51.2 m	2.04s	13.6 m	6.89m	25.1 m	201 m
6	40	39.2 m	14.5 m	60.5 m	556m	114 m	20.3 m	113 m	1.70s	50.1m	14.8m	56.5 m	878 m
12	80	177 m	30.9 m	99.8 m	9.02 s	762m	55.7 m	359 m	55.2s	222m	37.2m	113 m	15.7 s
25	60	227m	62.7 m	310m	3.79 s	3.81s	130 m	2.31s	157 s	1.50s	65 m	289 m	116 s

Table 14: Statistics on Algorithms for simplifying expressions

Alg		iE –	- E1			iE –	- E4			iE —	- EA	
ℓ	tavg	t_{med}	$t_{9/10}$	t_{max}	tavg	t_{med}	$t_{9/10}$	t_{max}	tavg	t_{med}	$t_{9/10}$	t_{max}
10	289μ	194μ	509μ	6.20 m	276μ	143μ	510μ	6.45m	419μ	222μ	618μ	13.1 m
20	577μ	439μ	1.08 m	5.17 m	561μ	391μ	1.04m	4.88m	582μ	406μ	980μ	5.28m
40	1.41 m	945μ	2.56m	8.67m	1.46m	916μ	2.84m	9.39 m	1.31 m	883μ	2.49 m	7.53m
80	2.56m	1.77 m	4.86m	13.6 m	2.99m	1.96m	5.69m	17.7 m	2.45m	1.81m	4.85m	14.3m
160	6.06m	3.20m	9.92 m	123m	8.04m	4.26m	13.8m	121 m	6.45m	4.06m	12.4 m	48.1 m
320	15.4 m	7.43 m	24.4m	337 m	42.4 m	8.24m	57.1 m	2.04s	14.5 m	7.34 m	26.6 m	205m
640	38.1 m	13.8 m	61.3 m	507 m	107 m	18.2m	85.6 m	1.64 s	58.2 m	15 m	59.2 m	1.37 s
1280	268m	34.7 m	149 m	16.2s	825m	59.3 m	382 m	53.2s	299 m	37.9 m	132 m	15.4s
2560	478m	72.8m	364 m	20.6 s	64.5s	155 m	2.04s	6065s	1.70s	80.6 m	703 m	102 s

Table 15: Statistics on Algorithms for simplifying expressions

Alg		iE -	— E			iEA	— E			iEA -	— E2	
ℓ	tavg	t_{med}	$t_{9/10}$	t_{max}	tavg	t_{med}	$t_{9/10}$	t_{max}	tavg	t_{med}	$t_{9/10}$	t_{max}
10	228μ	131μ	362μ	6.09 m	227μ	141μ	383μ	6.01 m	246μ	162μ	430μ	5.87 m
20	479μ	350μ	835μ	5.27m	504μ	356μ	848μ	4.85m	558μ	396μ	1.02m	4.81m
40	1.06m	757μ	1.88m	7.02m	1.15 m	856μ	1.88m	7.16 m	1.33 m	880μ	2.50m	9.12m
80	2.07m	1.46m	3.90m	10.9m	2.19m	1.55m	4.11m	12.2m	2.37 m	1.55m	4.69 m	13.8m
160	4.73 m	2.63 m	6.91m	92.2m	4.76 m	2.80m	6.97m	85.3m	7.84 m	4.49 m	15 m	116 m
320	14.1 m	7.07 m	21.8m	290 m	13 m	6.29m	22.2m	288m	59.9 m	10.4m	63.3 m	3.32s
640	35 m	12.9m	55.8m	537 m	34.5 m	12.9m	53.1 m	533 m	130 m	18.7 m	112 m	1.99 s
1280	315 m	33.8 m	219m	19.5 s	174 m	31.4 m	112 m	8.99s	892 m	57.7 m	401 m	66.8s
2560	455m	71.1 m	344m	21.7 s	198 m	52.8m	251m	3.32s	3.65s	151 m	1.64s	169 s

Table 16: Statistics on Algorithms for simplifying expressions

Alg		iEA -	— E3			iEA -	— E5			iE –	– E3	
ℓ	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{avg}	t_{med}	$t_{9/10}$	t_{max}	t_{avg}	t_{med}	$t_{9/10}$	t_{max}
10	300μ	153μ	415μ	11.2 m	272μ	157μ	529μ	6.14m	242μ	155μ	398μ	6.12 m
20	585μ	400μ	1 m	5.08 m	607μ	411μ	1.22m	5.18m	546μ	400μ	1.18 m	4.94 m
40	1.64m	962μ	3.36 m	10.4m	1.63m	1.01m	3.60m	10.6m	1.34m	871μ	2.63m	7.85 m
80	2.88m	1.83 m	5.68m	18.5 m	3.03m	2 m	5.82 m	24.3m	2.60m	1.77 m	5.48 m	15.1 m
160	8.83m	3.96 m	15.3 m	175 m	9.21 m	5 m	16.1 m	133 m	8.62m	4.10 m	14.1m	177 m
320	29.8 m	9.24 m	58.7 m	856 m	47.7 m	9.70 m	75.7 m	2.30s	30.6 m	9.73 m	56.1 m	816 m
640	420m	19.1 m	118 m	31.9 s	131 m	20.5 m	113 m	2.32s	394 m	19.1 m	98m	30.8 s
1280	540 m	62.3 m	321 m	35.9 s	1 s	59.8 m	477 m	74.6s	625 m	59.8 m	409 m	28.7 s
2560	3.45s	126 m	1.99 s	87.2 s	5.01s	157 m	1.88s	195 s	34.3s	140m	2.37 s	3110s

5.3.3 Using the algorithms to simplify expressions

6 Conclusion

References

- [1] Valentin M. Antimirov. Rewriting regular inequalities (extended abstract). In Horst Reichel, editor, Fundamentals of Computation Theory, 10th International Symposium, FCT '95, Dresden, Germany, August 22-25, 1995, Proceedings, volume 965 of Lecture Notes in Computer Science, pages 116–125. Springer, 1995.
- [2] Valentin M. Antimirov. Partial derivatives of regular expressions and finite automaton constructions. *Theor. Comput. Sci.*, 155(2):291–319, 1996.
- [3] Valentin M. Antimirov and Peter D. Mosses. Rewriting extended regular expressions. *Theoretical Computer Science*, 143:195–209, 1994.
- [4] Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to congruence. In Roberto Giacobazzi and Radhia Cousot, editors, *The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '13, Rome, Italy January 23 25, 2013*, pages 457–468. ACM, 2013.
- [5] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
- [6] Baudouin Le Charlier. Another look at derivatives of regular expressions, with an experimental evaluation. SSRN, 2023.
- [7] Baudouin Le Charlier. A program that simplifies regular expressions (tool paper). CoRR, abs/2307.06436, 2023.
- [8] Baudouin Le Charlier and Mêton Mêton Atindehou. A data structure to handle large sets of equal terms. In James H. Davenport and Fadoua Ghourabi, editors, 7th International Symposium on Symbolic Computation in Software Science, SCSS 2016, Tokyo, Japan, March 28-31, 2016, volume 39 of EPiC Series in Computing, pages 81–94. EasyChair, 2016.
- [9] Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. *Commun. ACM*, 7(5):301–303, 1964.
- [10] Stefan Kahrs and Colin Runciman. Simplifying regular expressions further. *J. Symb. Comput.*, 109:124–143, 2022.

Table 17: Statistics on Algorithms iEADFS and iEAO when $E_1 \leq E_2$

		Algo	rithm iA	DFS			Algo	orithm iI	EAO	
ℓ	t_{mean}	t_{max}	t_{deriv}	t_{subs}	$\sharp R$	t_{mean}	t_{max}	t_{deriv}	t_{subs}	$\sharp R$
10	154μ	2.79 m	87.8μ	3.12μ	3	174μ	2.54 m	99.3μ	2.89μ	2
20	171μ	466μ	79.3μ	6.35μ	6	259μ	2.92m	160μ	6.44μ	5
40	355μ	2.99m	206μ	19μ	13	349μ	2.99 m	219μ	12.5μ	11
80	600μ	1.39m	312μ	42.6μ	38	589μ	1.44m	362μ	27.7μ	28
160	1.03m	3.74m	546μ	95.3μ	95	1.22m	3.96 m	862μ	53.6μ	73
320	3.18 m	10.3m	1.42m	696μ	447	3.86m	13.5m	3.01m	154μ	280
640	21.6m	208m	5.99m	10.2m	2.90K	25m	101m	21.2 m	927μ	1.63K
1280	391 m	5.60s	52m	290m	33.3K	189 m	925m	166 m	9.28 m	14.2K
2560	6.49 s	10s	570 m	5.50s	314K	3.29s	10s	2.92s	200m	155K

A Proofs

A.1 The relation \sim_{\oplus} fulfills the conditions required by Theorem 3.3.1

Proof

When Algorithm $eQ(\sim_{\oplus})$ terminates, returning *true*, the following postconditions hold.

- 1. $\forall \langle F, F' \rangle \in R_{dev} : \forall x \in Letter : D_x F \sim_{\oplus} D_x F'$
- 2. $\forall \langle F, F' \rangle \in R_{dev}$: $o_F = o_{F'}$

We have to show that the quantification $\forall \langle F, F' \rangle \in R_{dev}$ can be generalized to $\forall \langle F, F' \rangle : F \sim_{\oplus} F'$. Let us fix two expressions F and F' such that $F \sim_{\oplus} F'$. By definition of \sim_{\oplus} , there exist expressions $F_0, \ldots, F_n, X_0, \ldots, X_{n-1}, Y_0, \ldots, Y_{n-1} \ (n \geq 0)$, and $F'_0, \ldots, F'_{n'}, X'_0, \ldots, X'_{n'-1}, Y'_0, \ldots, Y'_{n'-1} \ (n' \geq 0)$, such that $F_n = F'_{n'}$, and

$$\begin{array}{ll} F = F_0, & \langle X_i, Y_i \rangle \in R_{dev}, & X_i \subseteq F_i, & F_{i+1} = F_i \oplus Y_i, & (0 \le i < n) \\ F' = F'_0, & \langle X'_i, Y'_i \rangle \in R_{dev}, & X'_i \subseteq F'_i, & F'_{i+1} = F'_i \oplus Y'_i, & (0 \le i < n') \end{array}$$

We can prove by induction on i $(0 \le i \le n)$ that $D_x F \sim_{\oplus} D_x F_i$. The result is clear for i = 0. Let $i \ge 0$. Then, $D_x F_{i+1} = (D_x F_i \oplus D_x Y_i) \sim_{\oplus} (D_x F_i \oplus D_x X_i)$ (because $\langle X_i, Y_i \rangle \in R_{dev}$ implies $D_x X_i \sim_{\oplus} D_x Y_i$). But the condition $X_i \subseteq F_i$ implies that $D_x F_i \oplus D_x X_i = D_x (F_i \oplus X_i) = D_x F_i$. Therefore, $D_x F_{i+1} = (D_x F_i \oplus D_x Y_i) \sim_{\oplus} D_x F_i \sim_{\oplus} D_x F$. So, we have: $D_x F \sim_{\oplus} D_x F_n$.

In the same way, we can prove that $D_x F' \sim_{\oplus} D_x F'_{n'}$. But, since $F_n = F'_{n'}$, we can conclude that $D_x F \sim_{\oplus} D_x F'$ by transitivity of \sim_{\oplus} .

We also have to prove, for the same F and F', that $o_F = o_{F'}$. It is easy to show that $o_F = o_{F_i}$ for the expressions F_i , above. Assuming it is true for i, since $o_{X_i} = o_{Y_i}$ and $X_i \subseteq F_i$, we can conclude that $o_{Y_i} \leq o_{F_i}$. Therefore, $o_{F_{i+1}} = o_{F_i}$, and, finally, $o_F = o_{F'}$.

(End of proof)

Table 18: Statistics on Algorithms iEA, iEADFS and iEAO when $E_1 \leq E_2$

		Algorith	ım iEA		A	Algorithm	iEADF	S	Algorithm iEAO			
ℓ	$\sharp subst$	$\sharp subs$	$\sharp s_a$	$\sharp s_b$	$\sharp subst$	$\sharp subs$	$\sharp s_a$	$\sharp s_b$	$\sharp subst$	$\sharp subs$	$\sharp s_a$	$\sharp s_b$
10	0	3	0	0	0	3	0	0	0	3	0	0
20	2	6	0	1	2	6	0	1	1	6	0	0
40	10	17	0	3	10	17	1	4	3	13	0	1
80	61	53	3	14	59	52	4	14	14	33	1	4
160	273	141	8	49	255	143	10	48	41	87	2	15
320	1.80K	493	35	187	3.09 K	699	52	252	263	336	13	56
640	15.1K	2.18K	136	922	54.4K	4.72K	343	1.82K	1.64K	2K	61	367
1280	213K	10.3K	627	4.43K	1.93M	56.6K	3.16K	23.2K	21.5K	18.1K	609	3.92K
2560	1.86M	39.9K	2.55K	18.5K	34.9M	517K	30.1K	203K	355K	207K	7.55K	47.5K

Table 19: Statistics on Algorithms iECADR and ECADR

	iECA	$DR (E_1)$	$\not\leq E_2$	ECA	$DR (E_1)$	$\not\leq E_2$	iECA	DR (E_1)	$\leq E_2$	ECADR $(E_1 = E_2)$		
ℓ	t_{mean}	t_{deriv}	$\sharp R$	t_{mean}	t_{deriv}	$\sharp R$	t_{mean}	t_{deriv}	$\sharp R$	t_{mean}	t_{deriv}	$\sharp R$
10	256μ	145μ	5	214μ	120μ	3	224μ	76.9μ	5	244μ	127μ	2
20	281μ	143μ	9	272μ	130μ	7	298μ	140μ	10	267μ	119μ	7
40	533μ	318μ	20	482μ	278μ	15	650μ	358μ	24	507μ	264μ	12
80	960μ	637μ	58	738μ	451μ	38	1.34m	844μ	61	745μ	429μ	23
160	2.92m	2.18m	209	1.49m	1.05 m	101	3.07m	2.15 m	170	1.50m	1.04 m	59
320	14.4m	12.2m	831	4.15m	3.31m	306	17.2 m	13.6 m	838	4.15m	3.13 m	245
640	177 m	167 m	8.75K	28.9 m	26.1 m	1.67K	185 m	163 m	6.82K	20.4m	17.3 m	888
1280	3.59 s	3.48s	80.8K	226m	216 m	10.1K	4 s	3.79 s	81.6K	289 m	265m	11K
2560	9.83 s	9.72 s	113K	6.33 s	6.16s	129K	10s	10s	89.4K	5.89s	5.56s	121K

Table 20: Statistics on Algorithms E1, E2 and E3 when $E_1=E_2\,$

	Alg	gorithm [E1		Algorith	m E2			Algorith	m E3	
ℓ	t_{mean}	$t_{\it deriv}$	$\sharp R$	t_{mean}	t_{deriv}	t_{subst}	$\sharp R$	t_{mean}	t_{deriv}	t_{subst}	$\sharp R$
10	177μ	97.3μ	3	299μ	115μ	23.2μ	6	205μ	51.4μ	8.46μ	3
20	203μ	115μ	5	470μ	145μ	54.8μ	9	297μ	117μ	22.6μ	5
40	394μ	211μ	9	906μ	228μ	144μ	15	773μ	208μ	81.8μ	9
80	564μ	384μ	19	1.66m	404μ	424μ	23	1.31m	347μ	229μ	16
160	1.14 m	851μ	52	4.66m	923μ	1.59m	45	4.24m	663μ	1.19m	36
320	3.70 m	2.99m	234	18.2m	2.36m	7.85m	87	20m	1.80m	7.90 m	79
640	20m	17.7 m	873	60 m	7.20 m	27.3m	152	281 m	5.02m	105m	216
1280	284 m	270m	11K	195 m	18.7 m	89.6 m	290	1.08 s	14.6m	559 m	478
2560	6 s	5.80s	114K	800 m	70.8 m	362m	507	1.90 s	40.7m	768m	611

Table 21: Statistics on Algorithms E and EOPT when $E_1 \not \leq E_2$

		Alg	orithm l	E			A	lgorithm	EOPT		
ℓ	t_{mean}	$t_{9/10}$	t_{max}	t_{deriv}	$\sharp R$	t_{mean}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	$\sharp R$
10	135μ	137μ	2.57 m	84μ	1	89.3μ	133μ	257μ	34.3μ	0.43μ	1
20	111μ	159μ	276μ	57.1μ	1	136μ	242μ	389μ	60.5μ	2.74μ	1
40	194μ	272μ	2.56m	126μ	1	210μ	350μ	2.55m	80.2μ	3.15μ	1
80	197μ	342μ	849μ	119μ	2	214μ	436μ	936μ	117μ	4.52μ	2
160	271μ	434μ	1.78m	171μ	2	357μ	709μ	3.48m	174μ	23.3μ	2
320	301μ	437μ	2.04m	191μ	2	369μ	516μ	4.61m	190μ	27.1μ	2
640	237μ	518μ	651μ	129μ	2	270μ	560μ	825μ	133μ	5.10μ	2
1280	341μ	813μ	2.42m	222μ	2	386μ	797μ	3.26m	215μ	15.4μ	2
2560	350μ	509μ	3.29m	221μ	2	369μ	612μ	3.29m	216μ	4.97μ	2

Table 22: Statistics on Algorithms EA and EOPT when $E_1=E_2$

			Algorit	hm EA				A	lgorithm	EOPT		
ℓ	t_{mean}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	$\sharp R$	t_{mean}	$t_{9/10}$	t_{max}	t_{deriv}	t_{subst}	$\sharp R$
10	195μ	326μ	2.71 m	48.6μ	2.48μ	6	141μ	242μ	455μ	46.9μ	3.88μ	3
20	201μ	284μ	513μ	96μ	5.89μ	13	256μ	430μ	570μ	116μ	8.18μ	5
40	395μ	567μ	3.22m	232μ	11.5μ	28	498μ	725μ	3.17m	252μ	24.1μ	8
80	631μ	1 m	1.84 m	330μ	22.9μ	63	826μ	1.14m	2.69 m	342μ	87.9μ	13
160	1.24 m	1.80m	3.67 m	618μ	56.6μ	151	2.09 m	3.36m	9.02m	646μ	507μ	26
320	2.90 m	4.59m	9.94 m	1.27m	330μ	532	5.69m	8.92m	21m	1.43m	1.90m	51
640	9.96 m	16.6m	30.1 m	4.10m	1.71m	1.56K	25.7 m	48.8m	92.9m	4.31m	11.7m	97
1280	61.9 m	125m	805m	14.8m	24.6m	6.55K	81.7 m	123m	214m	9.52m	39.5m	185
2560	870 m	1.49 s	10s	117m	425m	33.3K	341m	489m	1.36s	25.1m	186m	340

Table 23: Simplification of Regular Expressions with Algorithms iEA and EOPT

				Use of	f IEA			Use of	EOPT	
ℓ	t_{mean}	ℓ_{sim}	n_{true}	t_{true}	n_{false}	t_{false}	n_{true}	t_{true}	n_{false}	t_{false}
10	373μ	5	114	645μ	384	3.29 m	21	266μ	344	4.27m
20	696μ	9	383	1.74m	1.37K	7.81 m	57	539μ	1.14K	11.5m
40	1.29m	17	991	2.85m	3.74K	15.6m	172	2.75 m	3.19K	27.7m
80	2.24m	24	2.17K	6.41m	8.13K	31.4 m	378	5.34 m	7.11K	59.6m
160	4.37 m	40	4.52K	16 m	17 K	63.3m	772	23.1m	14.5K	157m
320	10.9m	45	8.85K	37.9 m	33.9K	158m	1.56K	141 m	29 K	448m
640	23.1 m	53	17.3K	104 m	65.9K	284 m	2.91K	354 m	56.7K	1.06s
1280	58.2 m	68	33.4K	278m	130K	554m	5.85K	2.08 s	114K	2.07s
2560	112 m	58	64K	624m	249K	987 m	11K	3.88s	213K	4.36s

Table 24: Simplification of Regular Expressions with Algorithms iEA and EA

				Use of	f IEA			Use	of EA	
ℓ	t_{mean}	ℓ_{sim}	n_{true}	t_{true}	n_{false}	t_{false}	n_{true}	t_{true}	n_{false}	t_{false}
10	352μ	5	113	605μ	374	2.88 m	21	244μ	337	3.56m
20	677μ	9	387	1.63m	1.38K	6.59m	58	469μ	1.14K	9.32m
40	1.24 m	17	1.01K	2.90m	3.81K	14.2m	180	1.94m	3.26K	24.7m
80	2.08 m	25	2.18K	6.89m	8.20K	30.9 m	371	4.69m	7.13K	49m
160	4.26m	41	4.57K	15.4m	17.2K	95.1m	779	14.1m	14.6K	121m
320	7.59 m	45	8.94K	34.9 m	34.2K	132 m	1.58K	44.9m	29.2K	241m
640	15.4m	53	17.6K	101m	67.2K	275 m	2.97K	87.5 m	57.8K	569m
1280	33.6 m	67	34K	268m	132K	628m	5.94K	250m	116K	1.28s
2560	61.4 m	58	64.8K	682m	254K	1.08 s	11.2K	621m	218K	2.23s

Table 25: Simplification of Regular Expressions with Algorithms iE and E

				Use	of iE			Use	of E	
ℓ	t_{mean}	ℓ_{sim}	n_{true}	t_{true}	n_{false}	t_{false}	n_{true}	t_{true}	n_{false}	t_{false}
10	345μ	5	49	613μ	502	2.27 m	21	217μ	337	2.58 m
20	613μ	9	173	1.68m	1.79K	4.83m	57	422μ	1.14K	5.99m
40	1.16 m	17	437	3.39m	4.89K	11.9 m	179	1.99m	3.23K	16m
80	1.86m	25	1.02K	10.4m	10.4K	25.7m	372	3.81m	7.11K	31.3m
160	3.51m	41	2.08K	40.1m	22K	49.4m	779	15.2m	14.6K	69.4m
320	7.44 m	45	4.14K	122m	43.4K	111 m	1.57K	42m	29 K	154m
640	16 m	53	8.07K	434m	85.3K	243 m	2.93K	82m	57.2K	328m
1280	237 m	68	15.2K	9.17 s	172K	424m	6.03K	10.5 s	117K	572m
2560	222m	66	29.8K	9.17 s	333K	781 m	11.5K	1.25s	222K	1 s

Table 26: Simplification of Regular Expressions with Algorithms iECADR and ECADR

				Use of i	iECADR			Use of	ECADR	
ℓ	t_{mean}	ℓ_{sim}	n_{true}	t_{true}	n_{false}	t_{false}	n_{true}	t_{true}	n_{false}	t_{false}
10	517μ	5	107	1.63 m	362	8.81 m	20	8.29μ	326	5.29 m
20	899μ	9	360	3.40m	1.32K	19.3 m	55	96.1μ	1.10K	12.6m
40	1.67 m	17	950	6.58m	3.57K	45.2m	161	795μ	3.04K	32.9m
80	3.27 m	24	2.09 K	16.3m	8 K	115 m	363	2.43m	6.92K	76.8m
160	8.40 m	40	4.34K	58.8m	16.7K	334 m	730	9.40 m	14.1K	253m
320	27 m	45	8.61K	178 m	33.3K	1.47s	1.49K	26.1m	28.2K	710m
640	53.7 m	52	16.9K	472m	64.6K	2.81s	2.74K	47.5 m	55.2K	1.62s
1280	467 m	67	33.2K	8.48 s	130K	22.4s	5.75K	1.42s	112K	12 s
2560	1.33 s	65	66K	11.1s	259K	81.5 s	11.3K	934 m	218K	16 s

Table 27: Simplification of Regular Expressions with Algorithms iES and ES

				Use o	f iES			Use	of ES	
ℓ	t_{mean}	ℓ_{sim}	n_{true}	t_{true}	n_{false}	t_{false}	n_{true}	t_{true}	n_{false}	t_{false}
10	444μ	5	114	414μ	372	1.13 m	21	194μ	337	1.73 m
20	633μ	10	390	1.08m	1.39K	3.53m	55	392μ	1.15K	4.74m
40	2.09 m	18	979	2.95m	3.80K	15.1m	170	2.23m	3.30K	28.2m
80	2.84 m	28	2.16K	5.19m	8.17K	22.9m	336	5.05m	7.39K	47m
160	4.13m	47	4.52K	10.3m	17.4K	58.2m	699	11.8m	15.3K	127m
320	8.34 m	62	8.92K	22.4m	35.2K	124m	1.33K	28.2m	31.4K	301m
640	13.6 m	72	17.5K	40.2m	69.5K	210m	2.60K	56.3m	62.2K	532m
1280	30.3 m	107	34.4K	72.5m	138K	475m	5.25K	123m	126K	1.35s
2560	54.2 m	100	65.8K	167m	265K	922m	9.84K	242m	237K	2.42s

Table 28: Simplification of Regular Expressions with Algorithms iES and ES (+ memo)

				Use o	f iES			Use	of ES	
ℓ	t_{mean}	ℓ_{sim}	n_{true}	t_{true}	n_{false}	t_{false}	n_{true}	t_{true}	n_{false}	t_{false}
10	572μ	5	114	676μ	372	19.4 m	21	270μ	337	2.73 m
20	954μ	10	390	1.12m	1.39K	27.2m	55	366μ	1.15K	4.88m
40	1.32m	18	979	1.87m	3.80K	21.8m	170	1.43m	3.30K	15.3m
80	1.85m	28	2.16K	3.98m	8.17K	31.5 m	336	2.59 m	7.39K	31.2m
160	3.36 m	47	4.52K	9.05m	17.4K	55m	699	4.92m	15.3K	80.4m
320	5.35 m	62	8.92K	14.8m	35.2K	94.4 m	1.33K	9.31 m	31.4K	125m
640	9.50 m	72	17.5 K	33.5 m	69.5 K	160m	2.60K	19.2 m	62.2K	258m
1280	19.6 m	107	34.4K	74.3m	138K	367 m	5.25K	43.8 m	126K	614m
2560	33.9 m	100	65.8K	164m	265K	605m	9.84K	69.9 m	237K	961m

Table 29: Relation computed by Algorithms iEA and iEADFS

i	E_{1i}	E_{2i}
1	$(a*b)*a^4a*$	$(a + b)*a(a + b)^3$
2	a^3a^*	$(a + b)^3 + (a + b)^*a(a + b)^3$
3	$a*b(a*b)*a^4a*$	$(a + b)^3 + (a + b)^*a(a + b)^3$
4	a^2a^*	$(a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
5	aa*	$a + b + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
6	a*	$1 + a + b + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$

Table 30: Relation computed by Algorithm iEANS

i	E_{1i} E_{2i}	
\perp		
1	$(a*b)*a^4a*$	$(a + b)*a(a + b)^3$
2	a^3a^*	$(a + b)^3 + (a + b)^*a(a + b)^3$
3	$a*b(a*b)*a^4a*$	$(a + b)^3 + (a + b)^*a(a + b)^3$
4	a^2a^*	$(a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
5	$a*b(a*b)*a^4a*$	$(a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
6	$(a*b)*a^4a*$	$(a + b)^2 + (a + b)^*a(a + b)^3$
7	aa*	$a + b + (a + b)^{2} + (a + b)^{3} + (a + b)^{*}a(a + b)^{3}$
8	$a*b(a*b)*a^4a*$	$a + b + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
9	$(a*b)*a^4a*$	$a + b + (a + b)^2 + (a + b)^*a(a + b)^3$
10	a^3a^*	$a + b + (a + b)^3 + (a + b)^*a(a + b)^3$
11	$a*b(a*b)*a^4a*$	$a + b + (a + b)^3 + (a + b)^*a(a + b)^3$
12	$(a*b)*a^4a*$	$a + b + (a + b)*a(a + b)^3$
13	a*	$1 + a + b + (a + b)^{2} + (a + b)^{3} + (a + b)^{*}a(a + b)^{3}$
14	$a*b(a*b)*a^4a*$	$1 + a + b + (a + b)^{2} + (a + b)^{3} + (a + b)^{*}a(a + b)^{3}$
15	$(a*b)*a^4a*$	$1 + a + b + (a + b)^2 + (a + b)^*a(a + b)^3$
16	a^3a^*	$1 + a + b + (a + b)^3 + (a + b)^*a(a + b)^3$
17	$a*b(a*b)*a^4a*$	$1 + a + b + (a + b)^3 + (a + b)^*a(a + b)^3$
18	$(a*b)*a^4a*$	$1 + a + b + (a + b)*a(a + b)^3$
19	a^2a^*	$1 + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
20	$a*b(a*b)*a^4a*$	$1 + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
21	$(a*b)*a^4a*$	$1 + (a + b)^2 + (a + b)*a(a + b)^3$
22	a^3a^*	$1 + (a + b)^3 + (a + b)^*a(a + b)^3$
23	$a*b(a*b)*a^4a*$	$1 + (a + b)^3 + (a + b)^*a(a + b)^3$
24	$(a*b)*a^4a*$	$1 + (a + b)*a(a + b)^3$

Table 31: Relation computed by Algorithm iEAO

i	E_{1i}	E_{2i}
1	$(a*b)*a^4a*$	$(a + b)*a(a + b)^3$
2	$a^3a^* + a^*b(a^*b)^*a^4a^*$	$(a + b)^3 + (a + b)^*a(a + b)^3$
3	$a^2a^* + a^*b(a^*b)^*a^4a^*$	$(a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
4	$aa^* + a^*b(a^*b)^*a^4a^*$	$a + b + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
5	$a^* + a^*b(a^*b)^*a^4a^*$	$1 + a + b + (a + b)^{2} + (a + b)^{3} + (a + b)^{*}a(a + b)^{3}$

Table 32: Relation computed by Algorithm iEP

i	E_{1i}	E_{2i}
1	$(a*b)*a^4a*$	$(a + b)*a(a + b)^3$
2	$a^3a^* + a^*b(a^*b)^*a^4a^*$	$(a + b)^3 + (a + b)^*a(a + b)^3$
3	$a^2a^* + a^*b(a^*b)^*a^4a^*$	$(a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
4	$(a*b)*a^4a*$	$(a + b)^2 + (a + b)^*a(a + b)^3$
5		$a + b + (a + b)^{2} + (a + b)^{3} + (a + b)^{*}a(a + b)^{3}$
6	$(a*b)*a^4a*$	$a + b + (a + b)^2 + (a + b)^*a(a + b)^3$
7	$a^3a^* + a^*b(a^*b)^*a^4a^*$	$a + b + (a + b)^3 + (a + b)^*a(a + b)^3$
8	$(a*b)*a^4a*$	$a + b + (a + b)*a(a + b)^3$
9		$1 + a + b + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
10	$(a*b)*a^4a*$	$1 + a + b + (a + b)^2 + (a + b)^*a(a + b)^3$
11	$a^3a^* + a^*b(a^*b)^*a^4a^*$	$1 + a + b + (a + b)^3 + (a + b)^*a(a + b)^3$
12	$(a*b)*a^4a*$	$1 + a + b + (a + b)*a(a + b)^3$
13	$a^2a^* + a^*b(a^*b)^*a^4a^*$	$1 + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
14	$(a*b)*a^4a*$	$1 + (a + b)^2 + (a + b)^*a(a + b)^3$
15	` ,	$1 + (a + b)^3 + (a + b)^*a(a + b)^3$
16	$(a*b)*a^4a*$	$1 + (a + b)*a(a + b)^3$

Table 33: Relation computed by Algorithm EA

i	E_{1i}	E_{2i}
1	$(a*b)*a^4a*$	$(a + b)*a(a + b)^3$
2	a^3a^*	$(a + b)^3 + (a + b)^*a(a + b)^3$
3	$a*b(a*b)*a^4a*$	$(a + b)^3 + (a + b)^*a(a + b)^3$
4	a^2a^*	$(a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$
5	aa*	$a + b + (a + b)^{2} + (a + b)^{3} + (a + b)^{*}a(a + b)^{3}$
6	a*	$1 + a + b + (a + b)^2 + (a + b)^3 + (a + b)^*a(a + b)^3$

Table 34: Relation computed by Algorithms EOPT and E2

i	E_{1i}	E_{2i}
1	35 + 41	41
2	31 + 38 + 41 + 45	38 + 41
3	30 + 37 + 38 + 41 + 45	37 + 38 + 41
4	2 + 3 + 29 + 37 + 38 + 41 + 45	2+3+37+38+41
5	1+2+3+28+37+38+41+45	1 + 2 + 3 + 37 + 38 + 41

Table 35: Relation computed by Algorithms E and E1 $\,$

-		F
\imath	E_{1i}	E_{2i}
1	35 + 41	41
2	31 + 38 + 41 + 45	38 + 41
3	30 + 37 + 38 + 41 + 45	37 + 38 + 41
4	35 + 37 + 41	37 + 41
5	2 + 3 + 29 + 37 + 38 + 41 + 45	2+3+37+38+41
6	2+3+35+37+41	2+3+37+41
7	2+3+31+38+41+45	2+3+38+41
8	2 + 3 + 35 + 41	2 + 3 + 41
9	1+2+3+28+37+38+41+45	1+2+3+37+38+41
10	1+2+3+35+37+41	1+2+3+37+41
11	1+2+3+31+38+41+45	1+2+3+38+41
12	1+2+3+35+41	1+2+3+41
13	1 + 30 + 37 + 38 + 41 + 45	1 + 37 + 38 + 41
14	1 + 35 + 37 + 41	1 + 37 + 41
15	1 + 31 + 38 + 41 + 45	1 + 38 + 41
16	1 + 35 + 41	1 + 41

Table 36: Relation computed by Algorithm E3

i	E_{1i}	E_{2i}
1	35 + 41	41
2	31 + 35 + 38 + 41 + 45	35 + 38 + 41
3	30 + 31 + 35 + 37 + 38 + 41 + 45	31 + 35 + 37 + 38 + 41 + 45
4	2 + 3 + 29 + 30 + 31 + 35 + 37 + 38 + 41 + 45	2 + 3 + 30 + 31 + 35 + 37 + 38 + 41 + 45
5	1+2+3+28+29+30+31+35+37+38+41+45	1 + 2 + 3 + 29 + 30 + 31 + 35 + 37 + 38 + 41 + 45