

Answer the following questions.

Elaborate how the following task is achieved by computer (your answer should be limited to memory and registers for this purpose and busses).
 ADD [12FCBD10h], AL

FREE RESPONSE QUESTION

2. Given the code snippet below, fill in the register value/status of FLAGS where indicated:(3 Points)

```
1. 295100F7h
               MOV AL, 0FFh ; EIP: 95100F8h
2. 295100F8h
               MOV BL, OAh
3. 295100F9h
               MOV CL, 14h
               ADD AL, 1
4. 295100FAh
                            ;CF: 1 OF: 0 ZF: 1 SF: 0
               SUB BL,CL
                             ;CF:1 OF:0 SF: 1 ZF:0
5. 295100FBh
               DEC AL
6. 295100FCh
7. 295100FDh
               INC BL
               INC CL
8. 295100FEh
9. 295100FFh
               SUB BL,CL
```

3. Executing the following code snippet, what value will be stored in EAX? (2 Points)

```
.data
    val64 LABEL QWORD
    var1 BYTE 12h,13h,14h
    var2 WORD 2 DUP (41h,42h), 2 DUP('AB')
    var3 DWORD $

.code
    MOV EAX,DWORD PTR val64
```

- **A. 42141312h** (41141312h was correct, though, this was closest to answers provided, others even don't make sense)
- **B.** 14131241h
- **C.** 42411413h
- **D.** 41121314h

4. Assuming that data segment in Question#3, above, starts at **1000FFF9h.** Draw out the byte by byte memory look up with addresses for **var2**. (**4 Points**)

```
var1 BYTE 12h,13h,14h
var2 WORD 2 DUP (41h,42h), 2 DUP('AB')
var3 DWORD $
```

Answer:

1000 FFFCh	41h	1001 0004h	41h ('A')
1000 FFFDh	00	1001 0005h	00
1000 FFFEh	42h	1001 0006h	42h ('B')
1000 FFFFh	00	1001 0007h	00
1001 0000h	41h	1001 0008h	41h ('A')
1001 0001h	00	1001 0009h	00
1001 0002h	42h	1001 000Ah	42h ('B')
1001 0003h	00	1001 000Bh	00

Whole data segment may be seen as following, it is also considerable if a student has reserved a single byte for each of 'A' and 'B'

1000 FFF9h	12h	1001 0001h	00	1001 0009h	00
1000 FFFAh	13h	1001 0002h	42h	1001 000Ah	42h ('B')
1000 FFFBh	14h	1001 0003h	00	1001 000Bh	00
1000 FFFCh	41h	1001 0004h	41h ('A')	1001 000Ch	0Ch
1000 FFFDh	00	1001 0005h	00	1001 000Dh	00h
1000 FFFEh	42h	1001 0006h	42h ('B')	1001 000Eh	01h
1000 FFFFh	00	1001 0007h	00	1001 000Fh	10h
1001 0000h	41h	1001 0008h	41h ('A')		

5. With the help of LOOP replace each of the following NEGATIVE elements in **wArray** with its mathematical twice without using MUL, write only the code part: (**5 Points**)

```
wArray SWORD 1,-2,7,-6,15,-12,25,-20,37,-30
```

SOLUTION:

```
.code
MOV ECX, 5
MOV ESI, OFFSET [wArray+2]
L1: MOV AX,[ESI]
ADD AX, AX
MOV [ESI], AX
ADD ESI, 4
LOOP L1
```