Inhaltsverzeichnis

1	deterministisches Modell	1
2	Modell mit Rauschen	4

1 deterministisches Modell

Durch die Wahl der Anfangsparameter im deterministischen Modell ohne bias-Strom kann beeinflusst werden, ob das System in den Gleichgewichtszustand oder auf den stabilen Grenzzyklus geht:

Abbildung 1: Verhalten der Membranspannung mit burstenden Anfangsbedingungen

Abbildung 2: Verhalten der Membranspannung mit nicht-burstenden Anfangsbedingungen

Ob eine Kombination von Startparametern Bursten hervorruft, kann z.B. aus den Phasenporträts in master.pdf ermittelt werden.

Die Evolution des Systems lässt sich auch gut am Phasendiagramm beobachten:

Abbildung 3: Beziehung zwischen Gatingvariable und Membranspannung bei burstenden Anfangsbedingungen

Abbildung 4: Beziehung zwischen Gatingvariable und Membranspannung bei nichtburstenden Anfangsbedingungen

2 Modell mit Rauschen

Durch Einführung von Rauschen können Übergänge zwischen dem burstenden und dem Ruhezustand herbeigeführt werden.

Abbildung 5: Ohne Bias-Strom weist der Ruhezustand bei rauschinduzierten Übergängen längere Verweilzeiten auf

Abbildung 6: Bei I=1 beobachtet weisen beide Zustände etwa gleiche Verweilzeiten auf

Abbildung 7: Bei I=3 ist nahezu nur noch Bursten zu sehen