CSC343: Introduction to Databases

Winter 2019

Questions?

Summary

Recall ...

- Superkey: a set of one or more attributes whose combined values are unique
 - Does every relation has a superkey?
- Key: the minimal set of one or more attributes whose combined values are unique

Movies(mID, title, director, year, length)

- A key vs coincidence
- A kind of integrity constraint

Recall ...

• Referential Integrity constraints: relations refer to each other \rightarrow restricts the values for the referring attribute $R_1[X_1,...,X_N] \subseteq R_2[Y_1,...,Y_N]$

• Foreign Key: iff
$$< Y_1, ..., Y_N >$$
 is a key in $R_2 \rightarrow$ refers to a single tuple Roles($\underline{mID}, \underline{aID}, \underline{character}$)

 $Roles[mID] \subseteq Movies[mID]$

mID and aID are NOT keys in the relation Roles

Relational Model Exercises: Qs #1 - 3

Relational Algebra

Relational Algebra

- Queries operate on relations and return relations as a result
 - Operands: relation
 - Operators: filter, slice, join

Movies

mID	title	director	year	length
1	Shining	Kubrick	1980	146
2	Player	Altman	1992	146
3	Chinatown	Polanski	1974	131
4	Repulsion	Polanski	1965	143
5	Star Wars IV	Lucas	1977	126
6	American Graffiti	Lucas	1973	110
7	Full Metal Jacket	Kubrick	1987	156

Artists

aID	aName	nat
1	Nicholson	American
2	Ford	American
3	Stone	British
4	Fisher	American

Roles

mID	aID	character
1	1	Jack Torrance
3	1	Jake 'J.J.' Gittes
1	3	Delbert Grady
5	2	Han Solo
6	2	Bob Falfa
5	4	Princess Leia Organa

Select: filter rows

 Select/filter some rows that satisfy a condition i.e. the result is a relation that contains tuples that satisfy some condition

• Notation: $\sigma_c(e)$

c: a condition (a Boolean expression)

e: an expression

• Example: $\sigma_{length>130}$ (Movies)

Select: filter rows

Example: $\sigma_{length>130}$ (Movies)

mID	title	director	year	length
1	Shining	Kubrick	1980	146
2	Player	Altman	1992	146
3	Chinatown	Polanski	1974	131
4	Repulsion	Polanski	1965	143
Ľ	Cton Mona IV	Lucco	1077	126
J	otal Walsiv	Пасаз	1711	120
6	American Craffiti	Lucac	1072	110
Ũ	THITOTICALL GLATITO	David	1770	110
7	Full Metal Jacket	Kubrick	1987	156

Project: select columns

 Select some columns i.e. the result is a relation that contains the specified attributes

• Notation: $\pi_L(R)$

R: a relation

L: a list of one or more attributes

• Example: π_{title} (Movies)

Project: select columns

Example: $\pi_{title,year}(Movies)$

title	year
Shining	1980
Player	1992
Chinatown	1974
Repulsion	1965
Star Wars IV	1977
American Graffiti	1973
Full Metal Jacket	1987

Can compose larger expressions

• Example: $\pi_{\text{title,year}}(\sigma_{\text{length}>130}(\text{Movies}))$

title	year
Shining	1980
Player	1992
Chinatown	1974
Repulsion	1965
Full Metal Jacket	1987

Relational Model Exercises: Qs #4

Join: Cartesian Product

• Notation: $R_1 \times R_2$

	Α	В		В	
	a1	b1		b1	
R_1	a2	b2	R_2	b2	

A	В	В	С
a1	b1	b1	c1
a1	b1	b2	c2
a2	b2	b1	c1
a2	b2	b2	c2

• If the number of rows in R_1 , R_2 , R_3 is 100, 20, 3 respectively, how many rows will $R_1 \times R_2 \times R_3$ have?

- Can compose larger expressions
 - Example: Find all characters in movies with length > 130

- Can compose larger expressions
 - Example: Find all characters in movies with length > 130

$$\pi_{character}(\sigma_{(Movies.mID=Roles.mID)\land (length>130)}(Movies \times Roles))$$

• Notation: $R_1 \bowtie R_2$

Α	В
a1	b1
a2	b2

В	С
b1	c1
b2	c2

Α	В	В	С
a1	b1	b1	c1
a1	b1	b2	c2
a2	b2	b1	c1
a2	b2	b2	c2

• Notation: $R_1 \bowtie R_2$

 R_1

Α	В
a1	b1
a2	b2

В	С
b1	c1
b2	c2

	Α	В	В	C
	a1	b1	b1	c1
	a1	b 1	b 2	c2
_	a2	b2	b1	c1
	a2	b2	b2	c2

• Notation: $R_1 \bowtie R_2$

Α	В
a1	b1
a2	b2

В	С
b1	c1
b2	c2

Α	В	В	С
a1	b1	b1	c1
a2	b2	b2	c2

• Notation: $R_1 \bowtie R_2$

	Α	В
	a1	b1
1	a2	b2

В	С
b1	c1
b2	c2

Α	В	С
a1	b1	c1
a2	b2	c2

Join: Theta Join

- Notation: $R_1 \bowtie_{condition} R_2$
- This is equivalent to $\sigma_{condition}(R_1 \times R_2)$

Set Operations

- $R_1 \cup R_2 \rightarrow$ union
- $R_1 \cap R_2 \rightarrow$ intersection
- $R_1 R_2 \neq R_2 R_1 \rightarrow \text{difference}$
- Only if R_1 and R_2 have the same attributes (name and order)

Composing large expressions

Precedence Rules:

- $\sigma, \pi > \times, \bowtie > \cap > \cup, -$
- Use brackets

Assignment operators:

- R := expression
- $R(A_1, ..., A_n) := expression$