Tercer Examen Parcial

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (4 pts) Pruebe que para cualquier natural n se cumple $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Demostración. Sea $\varphi(n)$ la propiedad:

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Veamos por inducción que $\forall n \in \mathbb{N}(\varphi(n))$.

Base. Se cumple $\varphi(0)$; efectivamente:

$$\sum_{k=0}^{0} k^2 = 0^2$$
= 0
= $\frac{0 \cdot (0+1) \cdot (2 \cdot 0 + 1)}{6}$

<u>Paso inductivo.</u> Sea $n \in \mathbb{N}$ y supongamos que $\varphi(n)$ (H.I.), esto es:

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Veamos que $\varphi(n+1)$, es decir:

$$\sum_{k=0}^{n+1} k^2 = \frac{(n+1)(n+2)(2(n+1)+1)}{6}$$

En efecto:

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(n(2n+1) + 6(n+1))}{6}$$

$$= \frac{(n+1)(2n^2 + n + 6n + 6)}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

$$= \frac{(n+1)(n+2)(2(n+1) + 1)}{6}$$

Por lo tanto, se cumple $\varphi(n+1)$; finalizando el paso inductivo.

Debido al primer principio de inducción, se concluye que $\forall n \in \mathbb{N}(\varphi(n))$.

Ej. 2 (3 pts) Sean A y B conjuntos, con $B \subseteq A$. Prueba que, si B es finito y A infinito, entonces $A \setminus B$ es infinito.

Demostración. Por contradicción, supongamos que A es infinito, $B \subseteq A$ finito y que $A \setminus B$ es finito. Dado que $B \subseteq A$, entonces $A = (A \setminus B) \cup B$, de donde, A es unión de dos conjuntos finitos (y ajenos), con ello, A es finito. Esto contradice la hipótesis de que A es infinito; por lo tanto ocurre la negación de "A es infinito, $B \subseteq A$ finito y $A \setminus B$ es finito"; equivalentemente, "si B es finito y A infinito, entonces $A \setminus B$ es infinito".

Ej. 3 (3 pts) Sean $x, y \in \mathbb{R}$ y $a_{900}, a_{899}, \dots, a_1, a_0$ son los coeficientes (en orden) del polinomio $(x + y)^{900}$; es decir $(x + y)^{900} = a_{900}x^{900} + a_{899}x^{899}y + \dots + a_1xy^{899} + a_0y^{900}$. ¿Cuál de los siguientes números es mayor, a_{100} o a_{798} ? Demuestra todas tus afirmaciones.

Solución. Se afirma que $a_{100} < a_{798}$. Por el Teorema del Binomio de Newton, se tiene que:

$$a_{100} = \binom{900}{100}$$
 y $a_{798} = \binom{900}{798}$

Y por propiedades de los coeficientes binomiales: $a_{798} = \binom{900}{798} = \binom{900}{900-798} = \binom{900}{102}$. Ahora,

notemos que:

$$\frac{a_{100}}{a_{798}} = \frac{\binom{900}{100}}{\binom{900}{102}} \\
= \frac{900!}{100!(900 - 100)!} \cdot \frac{102!(900 - 102)!}{900!} \\
= \frac{102!}{100!} \cdot \frac{(900 - 102)!}{(900 - 100)!} \\
= \frac{102 \cdot 101}{(900 - 100)(900 - 102)} \\
= \frac{102 \cdot 101}{800 \cdot 798} \\
< 1$$

Por lo tanto, $a_{100} < a_{798}$.

Ej. 4 (+1 pts) Sea $A \subseteq \mathbb{N}$ y supongamos que $\forall x (x \in A \to x+1 \in A)$. Prueba que si $m \in \mathbb{N} \cap A$, entonces $\{n \in \mathbb{N} \mid n \geq m\} \subseteq A$.

 \Diamond

Demostración. Sea $\varphi(n)$ la propiedad: $n \in A$. Observemos que:

$$\{n \in \mathbb{N} \mid n \ge m\} \subseteq A \Leftrightarrow \forall n \in \mathbb{N} (n \ge m \to n \in A)$$
$$\Leftrightarrow \forall n \in \mathbb{N} (n \ge m \to n \in A)$$
$$\Leftrightarrow \forall n \ge m (n \in A)$$

Por tanto, para demostrar lo que nos ataña, basta probar por inducción (a partir de un punto) que $\forall n \geq m(\varphi(n))$.

Base. Se cumple $\varphi(m)$; efectivamente, esto es simplemente porque " $m \ge m$ " es verdadera y " $m \in A$ " también (pues por hipótesis general, $m \in \mathbb{N} \cap A$).

<u>Paso inductivo.</u> Sea $n \ge m$ y supongamos que $\varphi(n)$ (H.I.), esto es, $n \in A$. Veamos que $\varphi(n+1)$, es decir, que $n+1 \in A$. Esto es inmediato de la hipótesis general, recordemos que $\forall x (x \in A \to x + 1 \in A)$. Lo cual prueba el paso inductivo.

Debido al primer principio de inducción, se concluye que $\forall n \geq m(\varphi(n))$, es decir, se cumple la contención $\{n \in \mathbb{N} \mid n \geq m\} \subseteq A$.