CSCI 303

Introduction to Data Science

10 - Exploratory Data Analysis

This Lecture

• Explore the California Housing data set

The obligatory setup code...

```
In [132]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sk
import sklearn.datasets

from pandas import Series, DataFrame

plt.style.use('bmh')

matplotlib inline
```

The California Housing Dataset

A well known and heavily studied dataset for statistical inference.

Available in the scikit-learn package, or many sources online.

```
In [133]:
           1 from sklearn.datasets import fetch_california_housing
           2 raw = fetch_california_housing()
           3 #print(raw.target names)
           4 cali = DataFrame(raw.data, columns=raw.feature names)
           6 #example if you do not want to put the target in the cali dataframe
              \#X = cali
           8 #y = raw.target
           9
          10 #example if you want to put the target in the cali dataframe, be sure to separate for ML
          11 cali['MedHouseVal'] = raw.target
          12 X = cali[['HouseAge', 'AveRooms', 'AveBedrms']]
          13 y = cali['MedHouseVal']
          14 #if you want to remove a column, you can use the .drop
          15 #cali = cali.drop('MedHouseVal', axis=1)
          17 cali.head()
```

Out[133]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422

```
In [134]: 1 print(raw.DESCR)
```

.. _california_housing_dataset:

California Housing dataset

Data Set Characteristics:

:Number of Instances: 20640

:Number of Attributes: 8 numeric, predictive attributes and the target

:Attribute Information:

```
median income in block group
- MedInc
- HouseAge
               median house age in block group
               average number of rooms per household
- AveRooms
               average number of bedrooms per household

    AveBedrms

- Population
              block group population
               average number of household members
- AveOccup
               block group latitude
- Latitude
- Longitude
               block group longitude
```

:Missing Attribute Values: None

This dataset was obtained from the StatLib repository. $\verb|https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html| (https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html| (https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html| (https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html| (https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html| (https://www.dcc.fc.up.housing.html| (https://www.dcc.fc.up.housing.html| (https://www.dcc.fc.up.housing.html| (https://www.dcc.fc.up.housing.html| (http$ g.html)

The target variable is the median house value for California districts, expressed in hundreds of thousands of dollars (\$100,000).

This dataset was derived from the 1990 U.S. census, using one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).

An household is a group of people residing within a home. Since the average number of rooms and bedrooms in this dataset are provided per household, these columns may take surpinsingly large values for block groups with few households and many empty houses, such as vacation resorts.

It can be downloaded/loaded using the :func:`sklearn.datasets.fetch_california_housing` function.

- .. topic:: References
 - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability Letters, 33 (1997) 291-297

Basic Statistics								

pandas provides the describe function (similar to R's summary):

In [135]: 1 cali.describe()

Out[135]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	3.070655	35.631861	-119.569704	2.068558
std	1.899822	12.585558	2.474173	0.473911	1132.462122	10.386050	2.135952	2.003532	1.153956
min	0.499900	1.000000	0.846154	0.333333	3.000000	0.692308	32.540000	-124.350000	0.149990
25%	2.563400	18.000000	4.440716	1.006079	787.000000	2.429741	33.930000	-121.800000	1.196000
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	2.818116	34.260000	-118.490000	1.797000
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	3.282261	37.710000	-118.010000	2.647250
max	15.000100	52.000000	141.909091	34.066667	35682.000000	1243.333333	41.950000	-114.310000	5.000010

What Shall We Explore?

Some ideas:

- · distributions of individual inputs
- · correlations between pairs of inputs and/or the target
- your suggestion here

Distributions

Often best explored via histogram.

A histogram divides data into (usually) even sized bins, then counts the frequency of occurrence of samples in each bin.

For example, let's look at average number of rooms per dwelling.

```
In [136]:
```

```
1 #using the defaults, does this give useful information?
2 plt.hist(cali['AveRooms'])
3 plt.show()
```


Very normal looking, isn't it? We can vary the number of bins for more or less precision.

How about the average number of household members?

```
In [138]: 1 plt.hist(cali['AveOccup'], bins=20, range=[1,10])
2 plt.show()
```


Correlations

Often best explored via a scatter plot.

I theorize that there will be a correlation between average number of bedrooms and average occupancy. Let's take a look:

```
In [139]: 1 plt.scatter(cali['AveBedrms'], cali['AveOccup'])
2 plt.xlabel('AveBedrms'); plt.ylabel('AveOccup');
3 plt.show()
```


There seems to be some odd artifacts on the AveOccup axis, we should explore further.

Let's take a closer look at the AveOccup data.

```
In [140]: 1 #find the max to double check the plot?
    print(cali['AveOccup'].max())

# #see what the counts of unique values are in this Series object
    cali['AveOccup'].value_counts()
    #cali['AveOccup'].value_counts()
```

1243.3333333333333

```
Out[140]: 3.000000 35
2.000000 18
2.500000 17
2.666667 16
2.333333 13
Name: AveOccup, dtype: int64
```

_ __

These large numbers seems suspicious. Some kind of accidental input, corporate housing, hmm?

```
In [141]: 1 #let's explore just the large values, starting with more than 10 occupants
2 caliSubset = cali[cali['AveOccup'] > 10]
3 caliSubset.describe()
```

Out[141]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
count	37.000000	37.000000	37.000000	37.000000	37.000000	37.000000	37.000000	37.000000	37.000000
mean	3.938989	29.972973	5.688776	1.171687	2615.648649	87.786668	36.105135	-119.856757	1.816920
std	3.132148	15.146482	3.872472	0.499331	2306.519868	232.632680	2.156088	2.050462	1.304639
min	0.499900	5.000000	2.111111	0.625000	13.000000	10.153846	32.560000	-122.500000	0.425000
25%	1.912500	17.000000	3.166667	0.937500	822.000000	12.296089	34.070000	-121.290000	1.154000
50%	3.419100	29.000000	5.123810	1.074713	1722.000000	15.602941	36.510000	-120.650000	1.425000
75%	4.302900	41.000000	6.468000	1.142857	4198.000000	21.333333	37.790000	-118.170000	2.125000
max	15.000100	52.000000	24.500000	3.500000	8733.000000	1243.333333	40.410000	-115.220000	5.000010

```
In [142]: 1 #looks like there are 37 out of the 20K+ samples that are in this selection caliSubset.head()
```

Out[142]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
91	0.8668	52.0	2.443182	0.988636	904.0	10.272727	37.80	-122.28	1.37500
270	3.8750	33.0	3.021277	0.659574	575.0	12.234043	37.78	-122.18	2.25000
1039	4.3029	16.0	6.090592	1.121951	4930.0	17.177700	38.42	-120.97	1.21900
1067	3.4191	52.0	4.530612	0.816327	1107.0	11.295918	39.73	-121.85	1.37500
1617	11.7064	17.0	9.361702	1.127660	1722.0	12.212766	37.84	-122.08	5.00001

What are the chances that 37 out of the 20K+ samples are corrupt or not usable?

That looks better! Wait ... now what is going on with the AveBedrms? 35 bedrooms, that is a big house!

```
In [144]: 1  #shall we further refine the dataset, removing those possible outliers, using a best guess?
2  caliSubset = caliSubset['AveBedrms'] <= 13]
3  plt.scatter(caliSubset['AveBedrms'], caliSubset['AveOccup'])
4  plt.xlabel('AveBedrms'); plt.ylabel('AveOccup');
5  plt.show()</pre>
```


What shall we look at now? We could check to see if there is a correlation between average number of rooms and the target, median value?

```
In [145]: 1 plt.scatter(caliSubset['AveRooms'], caliSubset['MedHouseVal'])
2 plt.xlabel('AveRooms'); plt.ylabel('MedHouseVal');
3 plt.show()
```



```
In [146]: 1 #Wow - what is going on at the 500K, lots clustered up there? How should we look?
           2 print(caliSubset['MedHouseVal'].max())
           3 caliSubset['MedHouseVal'].value_counts().iloc[:10]
          5.00001
Out[146]: 5.00001
                     960
          1.37500
                     119
          1.62500
                    111
          1.12500
                     103
          1.87500
                     93
          2.25000
                      89
          3.50000
                      78
          0.87500
                      77
          2.75000
                      65
          1.50000
                      64
          Name: MedHouseVal, dtype: int64
In [147]: 1 caliSubset[caliSubset['MedHouseVal'] >= 5]
```

Out[147]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
89	1.2434	52.0	2.929412	0.917647	396.0	4.658824	37.80	-122.27	5.00001
459	1.1696	52.0	2.436000	0.944000	1349.0	5.396000	37.87	-122.25	5.00001
493	7.8521	52.0	7.794393	1.051402	517.0	2.415888	37.86	-122.24	5.00001
494	9.3959	52.0	7.512097	0.955645	1366.0	2.754032	37.85	-122.24	5.00001
509	7.8772	52.0	8.282548	1.049861	947.0	2.623269	37.83	-122.23	5.00001
20422	5.1457	35.0	6.958333	1.217593	576.0	2.666667	34.14	-118.90	5.00001
20426	10.0472	11.0	9.890756	1.159664	415.0	3.487395	34.18	-118.69	5.00001
20427	8.6499	4.0	7.236059	1.032528	5495.0	2.553439	34.19	-118.80	5.00001
20436	12.5420	10.0	9.873315	1.102426	1179.0	3.177898	34.21	-118.69	5.00001
20443	3.3438	50.0	5.342857	0.942857	130.0	3.714286	34.27	-118.85	5.00001

987 rows \times 9 columns

I'm quite suspicious that this value is some kind of data-entry default.

- 1. It's the same number, 5.001 for 987 of the entries?
- 2. It's the maximum and same value no matter the number of rooms, age, etc. Could be some big outliers in there!

For now, let's remove that data. It might not be justified, but without access to the original data collection info, it makes the most sense to me.

Out[148]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09	0.781
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21	0.771
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22	0.923
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32	0.847
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24	0.894

19612 rows × 9 columns

We are left with over 19K samples, we can move on ... see how it goes!

We have done some histograms and scatter plots to explore our data, removed some possible outliers ... now what?


```
In [150]: 1 # we can change our a 3rd dimension to our target using a gradiant of color
2 # using our caliSubset with some outliers removed, plot using the pandas plotting library
3 caliSubset.plot(kind='scatter', x='AveRooms', y='MedInc', c='MedHouseVal', colormap='Blues_r')
4 plt.show()
```


So these plots makes some sense with the value increasing as the income increases \dots

- · Recall, we removed some suspicious data.
- We almost certainly lost some good data.
- Was removing data the right thing to do?

Other questions we could explore:

- What could we do with the Latitude and Longitude features?
- Does population have any berring on the target?
- Enter here during class

