Gandhar Kulkarni (mmat2304)

1

We are given $f(z) = z^2 - z\bar{z}^2 - 2|z|^2$. Since z = x + iy, we can expand it in f to get

$$f(x,y) = -2(x^2 + y^2) + i4xy.$$

Thus $u=-2(x^2+y^2), v=4xy$. Then we have $u_x=-4x, u_y=-4y, v_x=4y, v_y=4x$. If f is holomorphic, then we must have $u_x=v_y\implies -4x=4x\implies x=0$. Also we must have $u_y=-v_x\implies -4y=-4y\implies y\in\mathbb{R}$. Thus f satisfies the Cauchy Riemann equations on $\{0\}\times\mathbb{R}$, which is not a domain since it is not open. Thus it is complex differentiable at each point of the type (0,y) where $y\in\mathbb{R}$, but not holomorphic at any point in $\mathbb C$ since the points at which it satisfies the Cauchy Riemann equations is not open in $\mathbb C$.

2

Let us assume that there exists a holomorphic function on a domain D such that its image lies entirely on a vertical line, say $x=\frac{1}{2}$. Thus for f=u+iv, we must have that $u=\frac{1}{2}$, a constant. Then $u_x=u_y=0$, and by the Cauchy-Riemann equations, we have $v_y=u_x=0=u_y=-v_x$. Thus we have v constant as well, which means that f must be a constant.

3

4

5

1.

2.

6

Let $C:=\{e^{it}:t\in\left[0,\frac{pi}{2}\right]\}$, which parametrizes the curve. Then

$$\begin{split} \int_C \overline{\log(z)} dz &= \int_0^{\frac{\pi}{2}} \overline{\log(e^{it})} |ie^{it}| dt \\ &= \int_0^{\frac{\pi}{2}} \overline{\log(1) + it} dt \\ &= \int_0^{\frac{\pi}{2}} -it dt \\ &= -i\frac{\pi^2}{4}. \end{split}$$