AMS 572 Data Analysis I Summarizing and Exploring Data

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

Content

- Types of variables
- ► Measures of location
- ▶ Measures of spread, shape
- ▶ Data displays

Types of variables

- ▶ A *variable* is a quantity that may vary from object to object
- ▶ A *sample* or *data set* is a collection of values of one or more variables.
- Quantitative variable intrinsically numerical e.g. age, height. weight
- Qualitative (categorical) intrinsically nonnumerical e.g.

Types of variables

- ▶ Qualitative (categorical) intrinsically nonnumerical
 - ▶ Binary, dichotomous e.g., temale/male
 - Ordinal natural ordering
 - e.g., attitude (strongly Gree, agree, neutral disagree, strongly Nominal no natural ordering
 - e.g., voce
- ▶ In recording qualitative data, numerical values may be assigned

Measures of Location

- ▶ (Arithmetic) Mean
- Percentiles
- ► Median
- ► Mode
- ► Geometric mean

Arithmetic mean

► Data:

$$x_1, x_2, \ldots, x_n$$

► Mean:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

► Example: Duration of hospital stay in days:

$$x_1 = 5, x_2 = 10, x_3 = 6, x_4 = 11$$

Mean:

$$\overline{X} = \frac{1}{4}(5 + 10 + 6 + 11) = \frac{32}{4} = 8$$

Properties of Mean

ightharpoonup Let c be any constant

▶ If

$$y_i = x_i + c \text{ for } i = 1, 2, 3, \dots, n,$$

then

► If

$$y_i = cx_i \text{ for } i = 1, 2, 3, \dots, n,$$

then

Properties of Mean - Example

▶ A sample of birth weights in a hospital found

$$\bar{y} = 3166.9 \text{ grams}$$

- ▶ 1 oz = 28.35 g
- ▶ Therefore the mean in ozs. is

$$\bar{x} = \frac{3166.9}{28.35} = 111.7$$
 08

Order Statistics

- dependent
- ▶ Data: $x_1, x_2, ..., x_n$
- ▶ Order data from smallest to largest

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$$

- $ightharpoonup x_{(1)}, x_{(2)}, \dots, x_{(n)}$ are order statistics
- ► Note

$$x_{(1)} = \min\{x_1, x_2, \dots, x_n\}$$

 $x_{(n)} = \max\{x_1, x_2, \dots, x_n\}$

► Example: Duration of hospital stay in days:

$$x_1 = 5, x_2 = 10, x_3 = 6, x_4 = 11$$

Order statistics:

$$x_{(1)} = 5, x_{(2)} = 6, x_{(3)} = 10, x_{(4)} = 11$$

Percentiles

- ► Intuitive definition: the *x percentile* is such that *x*% of the observations are less than that value
- ▶ Also known as sample quantile
- ▶ The $(p \times 100)^{th}$ percentile of a sample

$$\hat{\zeta}_p = \begin{cases} y_{(np+p)} & \text{if } np+p \text{ is an integer} \\ \{y_{(\lfloor np+p \rfloor)} + y_{(\lceil np+p \rceil)}\}/2 & \text{otherwise} \end{cases}$$
 for 0

Percentiles: General form

► General form (Hyndman and Fan, Am Stat 1996)

$$\hat{\zeta}_p = (1 - \gamma)y_{(j)} + \gamma y_{(j+1)}$$

where j = |pn + k| for some $k \in \mathbb{R}$ and $0 \le \gamma \le 1$.

▶ Your textbook

$$\hat{\zeta}_p = \begin{cases} y_{(np+p)} & \text{if } np+p \text{ is an intege} \\ y_{(m)} + [np+p-m](y_{(m+1)} - y_{(m)}) & \text{otherwise} \end{cases}$$

where $m = \lfloor np + p \rfloor$

Example

Suppose n = 278 and we want the 75th percentile

$$np = 278 \times .75 = 208.5$$
(or $np + p = 209.25$)

such that

$$\hat{\zeta}_{.75} = x_{(209)}$$

R
> x <- 1:278
> quantile(x,.75,type=2)
75%
209

Median

▶ The sample median is the 50th percentile

$$\hat{\zeta}_{.5} = \left\{ \begin{array}{ll} y_{(\frac{n+1}{2})} & \text{if } n \text{ is odd} \\ \\ \{y_{(n/2)} + y_{(n/2+1)}\}/2 & \text{if } n \text{ is even} \end{array} \right.$$

for 0

► Example: Duration of hospital stay in days:

$$x_1 = 5, x_2 = 10, x_3 = 6, x_4 = 11$$

Median:
$$N=4$$

$$\hat{\zeta}_{5} = \frac{\gamma_{5} + \gamma_{(3)}}{2} = g$$

Mode

- ➤ The mode is the most frequently occurring value in the data set
- ► E.g., if

$$x_1 = 5, x_2 = 11, x_3 = 6, x_4 = 11$$

then made is 1

Geometric Mean

- ▶ Data: $x_1, x_2, ..., x_n$
- ightharpoonup The geometric mean of x is

$$\bar{x}_g = (x_1 x_2 \cdots x_n)^{1/n}$$

Let $y_i = \log(x_i)$ for $i = 1, 2, \dots, n$. Then

$$\overline{y} = \frac{\omega_{j}(x_{1}) + \cdots + (\omega_{j}(x_{n}))}{n} \rightarrow \omega_{j}(\pi x_{1})^{n} \qquad \overline{X}_{j} = \omega_{j}(\overline{y})$$

▶ Eg, suppose $x_1 = 10$ and $x_2 = 0.1$. Then

$$\overline{X}_{g} = (10 \times 0.1)^{\frac{1}{2}}$$

Anthmetic

- ▶ Mean is most often used measure
- ▶ Median is better if there are influential observations (more robust to extreme values)
- ▶ Mode rarely used (exception: nominal data)

Example

▶ Duration of hospital stay in days:

$$x_1 = 5, x_2 = 10, x_3 = 6, x_4 = 11$$

$$\mathbf{M} = \hat{\xi}_{0.5} = \overline{\chi} \cdot \hat{\xi}_{0.5} = 7.6$$
After the last observation:
$$\chi_1 = 5, \chi_2 = 10. \quad \chi_3 = 5.6$$

$$\chi_1 = 5, \chi_2 = 10. \quad \chi_3 = 5.0$$

$$\mathbf{M} = \hat{\xi}_{0.5} = \hat{\xi}_{0.5} = \hat{\xi}_{0.5} = 10.7$$

Measures of Spread, Shape

- ► Range
- ▶ Variance and standard deviation
- ► Interquartile range
- ► Skewness, Kurtosis

Range

► Range:

$$r_a = x_{(n)} - x_{(1)}$$

- ► Easy to calculate
- ► Sensitive to unusual observations (outliers)
- ▶ Usually, the larger n is, the larger r_a

AMS 572

Sample Variance and Standard Deviation

- ▶ Want to measure deviation from mean
- ► Sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right)$$

Sample standard deviation

$$s = \sqrt{s^2}$$

Sample Variance and Standard Deviation

▶ An alternative form of the sample variance is

$$s_1^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

MLE

• We have shown that s^2 is unbiased for population variance σ^2 , however

$$E(s_1^2) = \sigma^2 - \frac{\sigma^2}{n}$$

Sample Standard Deviation

- ▶ The units of s are the same as the units of x_i
- \blacktriangleright If s is large, the data are spread over a wide range
- \triangleright If c is a constant and

$$y_i = x_i + c,$$

then
$$Sy = S_{oc}$$

▶ If

$$y_i = cx_i$$

then

Some approximations quinto 75)

- ▶ The interval $\bar{x} \pm s$ will contain approx 68% of the observations
- ▶ The interval $\bar{x} \pm 2s$ will contain approx 95% of the observations
- \triangleright Approx s by

$$s \approx \frac{\hat{\zeta}_{.75} - \hat{\zeta}_{.25}}{1.35}$$

Note

is called interquartile range γ is called interquartile range γ

Symmetry and Skewness

- ► Informally, define *symmetry* to indicate having a uniform or even distribution about the mean
- ▶ If a distribution is symmetric,

mean=median

- ▶ Data sets that are not symmetric are said to be *skewed*
- ► Skewness is a measurement of the degree to which a data set is skewed

 \triangleright Define rth sample moment about the mean

$$m_r = \frac{\sum_i (y_i - \bar{y})^r}{n}$$
 for $r = 1, 2, 3, \dots$

► Text definition of sample skewness:

$$a_3 = \frac{\sum_i (y_i - \bar{y})^3 / n}{\{\sum_i (y_i - \bar{y})^2 / (n - 1)\}^{3/2}}$$

 $ightharpoonup a_3 > 0$ indicates skewness to the right

Kurtosis

- ► Kurtosis is a measure of the flatness or peakedness of a distribution; degree of archedness; thickness of tails
- ▶ Text definition of *sample* kurtosis:

$$a_4 = \frac{\sum_i (y_i - \bar{y})^4 / n}{\{\sum_i (y_i - \bar{y})^2 / (n - 1)\}^2}$$

▶ $a_4 > 3$ indicates the distribution has heavier tails than the normal distribution.

9. 7 destribution, Cauchy

Data display

- Simplest form is a line listing
- ▶ A frequency table gives the frequency of observations within a set of ordered intervals
- ▶ Intervals should be mutually exclusive and exhaustive
- ▶ 8 to 10 intervals is usually sufficient
- ▶ With the exception of the end intervals, the length of the intervals should be constant

Frequency Table - Example

Blood Pressure	Pop1	Pop2	Pop3
< 106	218	4	23
106-11 4/ \$	272	23	132
116-12 ∦ ऽ	337	49	290
126-13 ∦ 5	362	33	347
136-14 /5	302	41	346
146-15 ∦ ६	261	38	202
156-164 📞	166	23	109
> 16/4 5	314	52	112
-			
Total	2232	263	1561

Frequency Tables

- ► Table on previous slide example of *empirical frequency* distribution
- Difficult to compare blood pressure distributions due to different sample sizes
- ▶ Divide by sample size to get *empirical relative frequency* distribution

ERFD - Example

Blood Pressure	Pop1	Pop2	Pop3
< 106	0.098	0.015	0.015
106-114	0.122	0.087	0.085
116-124	0.151	0.186	0.186
126-134	0.162	0.125	0.222
136-144	0.135	0.156	0.222
146-154	0.117	0.144	0.129
156-164	0.074	0.087	0.070
> 164	0.141	0.198	0.072
Total	2232	263	1561

Graphs

- ► Histogram
- ▶ Stem and leaf plot
- ► Box plot
- ► Trellis/conditional plots

Histogram

- ▶ Data are divided into intervals as in a frequency table
- ▶ A histogram is a bar graph with the area of each bar equal to the relative frequency in the interval.
- ▶ Can compare histograms from samples of different size
- ▶ Intervals need not be the same width
- ▶ Beware effect of choice of interval width

vandom vorm

- > x <- c(rnorm(50,-2.5),rnorm(1000),rnorm(600,2.7))
- > hist(x,breaks=5,col="gray",xlab="x",main="")
- > hist(x,breaks=50,col="gray",xlab="x",main="")

33

Stem and Leaf Plot: Example

> stem(mileage)

The decimal point is 1 digit(s) to the right of the |

- 1 | 37
- 2 | 0134557889
- 3 | 011125678
- 4 | 00
- 5 | 0

Box plot

- ▶ The top of the box is the 75th percentile $(\hat{\zeta}_{.75})$; the bottom is the 25th percentile $(\hat{\zeta}_{.25})$
- ▶ A line through the box is drawn at the median
- ► The lines extending out of the box (whiskers) may extend to
- ▶ the 90th and 10th percentiles
- ▶ the largest and smallest values
- ▶ largest observation $\leq \hat{\zeta}_{.75} + 1.5 \text{ x IQR};$ smallest observation $\geq \hat{\zeta}_{.25} - 1.5 \text{ x IQR}$
- Data beyond whiskers may be plotted individually

Boxplot Example

> boxplot(mileage)

Box plot and Histogram Example

Multivariate plots

- ▶ Describe relationships/associations between more than one variable
- Scatterplots
 - Simple for two variables
 - ightharpoonup Add color, symbols for > 2 variables

 $\mathrm{AMS}\ 572$

39

Trellis plots

Tables or graphs?

- ▶ Tables best suited for looking up specific information
- Graphs better for perceiving trends, making comparisons and predictions