Лабораторная работа №2

Используем датасет переписи населения штата Бихар в 2011 году. Он содержит следующие данные:

- Уникальный идентефикатор человека
- Является ли человек женщиной? 0 нет, 1 да
- Является ли человек взрослым? 0 нет, 1 да
- Возраст
- Рост
- Bec

Подключение библиотек:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Монтирование Google Drive для получения доступа к данным, лежащим на нем:

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

Загрузка данных:

```
filename = '/content/drive/MyDrive/bihar.csv'

df = pd.read csv(filename, sep=',')
```

Размер датасета:

```
df.shape (39553, 6)
```

Колонки датасета:

df.columns

```
Index(['personid', 'female', 'adult', 'age', 'height_cm', 'weight_kg'], dtype='object
```

Типы колонок:

df.dtypes

personid int64
female float64
adult float64
age float64
height_cm float64
weight_kg float64
dtype: object

Проверка пропущенных значений:

```
df.isnull().sum()
```

personid 0
female 1
adult 14
age 14
height_cm 6415
weight_kg 6063
dtype: int64

Первые 5 строк датасета:

df.head()

	personid	female	adult	age	height_cm	weight_kg
0	11010101	0.0	1.0	70.0	164.1	48.9
1	11010102	0.0	1.0	32.0	157.3	44.0
2	11010103	1.0	1.0	28.0	150.3	37.7
3	11010104	0.0	0.0	12.0	146.2	30.7
4	11010105	1.0	0.0	11.0	135.1	30.2

Всего строк:

```
total_count = df.shape[0]
print('Bcero cτροκ: {}'.format(total_count))
```

Всего строк: 39553

▼ Обработка пропусков в числовых данных

С помощью цикла по колонкам датасета выберем колонки с пропущенными значениями:

```
num_cols = []
for col in df.columns:
    # Количество пустых значений
    temp_null_count = df[df[col].isnull()].shape[0]
    dt = str(df[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col,

        Колонка female. Тип данных float64. Количество пустых значений 14, 0.0%.
        Колонка adult. Тип данных float64. Количество пустых значений 14, 0.04%.
        Колонка height_cm. Тип данных float64. Количество пустых значений 6415, 16.22%.
        Колонка weight_kg. Тип данных float64. Количество пустых значений 6615, 16.22%.
```

Возьмем только колонки с пропущенными значениями:

```
df_num = df[num_cols]
df_num
```

	female	adult	age	height_cm	weight_kg
0	0.0	1.0	70.0	164.1	48.9
1	0.0	1.0	32.0	157.3	44.0
2	1.0	1.0	28.0	150.3	37.7
3	0.0	0.0	12.0	146.2	30.7
4	1.0	0.0	11.0	135.1	30.2
39548	0.0	1.0	38.0	156.1	60.7
39549	1.0	1.0	28.0	148.9	46.7
39550	1.0	0.0	7.0	116.3	17.7
39551	0.0	0.0	6.0	101.5	13.4
39552	1.0	0.0	3.0	91.5	12.2

39553 rows × 5 columns

Гистограмма по признакам:

```
# Гистограмма по признакам for col in df_num: plt.hist(df[col], 50) plt.xlabel(col) plt.show()
```

```
20000
      17500
      15000
      12500
      10000
df_fem = df_num[['female']]
df_fem.head()
         female
      0
            0.0
      1
            0.0
      2
            1.0
      3
            0.0
      4
            1.0
                                                    from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
                                                    # Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(df_fem)
mask_missing_values_only
     array([[False],
            [False],
            [False],
            [False],
            [False],
            [False]])
       500 -
                                                      I
strategies=['mean', 'median', 'most_frequent']
                                       80
                                              100
                                                     120
def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(df_fem)
    return data_num_imp[mask_missing_values_only]
                                                      I
                                          strategies[0], test_num_impute(strategies[0])
     ('mean', array([0.51357706]))
      1000 -
strategies[1], test_num_impute(strategies[1])
```

```
('median', array([1.]))
strategies[2], test_num_impute(strategies[2])
     ('most_frequent', array([1.]))
def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled_data = data_num_imp[mask_missing_values_only]
    return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_da
df[['age']].describe()
                     age
      count 39539.000000
      mean
                26.286468
                21.170421
       std
                 0.000000
      min
      25%
                 9.000000
      50%
               20.000000
      75%
               40.000000
               115.000000
      max
test_num_impute_col(df, 'age', strategies[0])
     ('age', 'mean', 14, 26.286467564159437, 26.286467564159437)
test_num_impute_col(df, 'age', strategies[1])
     ('age', 'median', 14, 20.0, 20.0)
test_num_impute_col(df, 'age', strategies[2])
```

Обработка пропусков в категориальных данных

('age', 'most_frequent', 14, 8.0, 8.0)

```
filename1 = '/content/drive/MyDrive/titles.csv'
cr = pd.read_csv(filename1, sep=',')
df.shape
    (39553, 6)
cr.dtypes
    code
                  object
    title
                  object
                 object
    section
                float64
    class
    subclass
               object
    group
                 float64
    main_group
                 float64
    dtype: object
cr.isnull().sum()
    code
                   0
                   0
    title
    section
                   0
                   9
    class
    subclass
                  145
                  819
    group
    main_group
                  819
    dtype: int64
```

cr.head()

	code	title	section	class	su
0	А	HUMAN NECESSITIES	А	NaN	
1	A01	AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTI	А	1.0	
2	A01B	SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS	А	1.0	
3	A01B1/00	Hand tools (edge trimmers for lawns A01G3/06	А	1.0	
4	A01B1/02	Spades; Shovels {(hand-operated dredgers E02F3	А	1.0	

С помощью цикла по колонкам выберем категориальные колонки с пропущенными значениями:

```
cr_cols = []
for col in cr.columns:
    # Количество пустых значений
    temp_null_count = cr[cr[col].isnull()].shape[0]
```

```
LR2.ipynb - Colaboratory
    dt = str(cr[col].dtype)
    if temp null count>0 and (dt=='object'):
        cr_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка \{\}. Тип данных \{\}. Количество пустых значений \{\}, \{\}%.'.format(col,
     Колонка subclass. Тип данных object. Количество пустых значений 145, 0.37%.
cat temp_data = cr[['subclass']]
cat_temp_data.head()
```

	subclass
0	NaN
1	NaN
2	В
3	В
4	В

```
cat_temp_data['subclass'].unique()
     array([nan, 'B', 'C', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P',
            'V', 'Y', 'Q', 'Z', 'R', 'S', 'T', 'W', 'A', 'E'], dtype=object)
cat_temp_data[cat_temp_data['subclass'].isnull()].shape
     (145, 1)
# Импьютация наиболее частыми значениями
```

```
imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data_imp2 = imp2.fit_transform(cat_temp_data)
data_imp2
     array([['B'],
            ['B'],
            ['B'],
            ['T'],
            ['T'],
```

Пустые значения отсутствуют np.unique(data_imp2)

['T']], dtype=object)

```
array(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'Z'], dtype=object)
```

```
# Импьютация константой
```

```
imp3 = SimpleImputer(missing values=np.nan, strategy='constant', fill value='NA')
```

▼ Преобразование категориальных признаков в числовые

```
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
```

	c1
0	В
1	В
2	В
3	В
4	В
260471	Т
260472	Т
260473	Т
260474	Т
260475	Т
260476 rd)WS ×

Кодирование категорий целочисленными значениями (label encoding)

from sklearn.preprocessing import LabelEncoder

```
cat enc['c1'].unique()
     array(['B', 'C', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'V',
             'Y', 'Q', 'Z', 'R', 'S', 'T', 'W', 'A', 'E'], dtype=object)
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
# Наименования категорий в соответствии с порядковыми номерами
# Свойство называется classes, потому что предполагается что мы решаем
# задачу классификации и каждое значение категории соответствует
# какому-либо классу целевого признака
le.classes_
     array(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'Z'], dtype=object)
cat_enc_le
     array([ 1, 1, 1, ..., 17, 17, 17])
np.unique(cat_enc_le)
     array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
             17, 18, 19, 20, 21])
# В этом примере видно, что перед кодированием
# уникальные значения признака сортируются в лексикографиеском порядке
le.inverse_transform([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21])
     array(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'Z'], dtype=object)
```

Масштабирование данных

MinMax масштабирование

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(df[['weight_kg']])
```

```
plt.hist(df['weight_kg'], 50)
plt.show()
```


plt.hist(sc1_data, 50)
plt.show()

Масштабирование данных на основе Z-оценки

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(df[['weight_kg']])
plt.hist(sc2_data, 50)
plt.show()
```

