RNA-seq_Plotting

MTM

10/10/2020

Loading Souce Data

\$ X50001_N_1: num 0 0 0 0 0 0 ... ## \$ X50000_N_1: num 0 0 0 2.65 0 ... ## \$ X50002_N_1: num 0 0 0 1.73 0 ...

Loaded human log2FC data, normalized counts and sample guide from Posfai's Plos Pathogens paper, and lncRNA plus gene neighbor lists from Kaessman's Nature paper.

```
Hs_Log2FC <- read.csv("source_data/Hs_Log2FC.csv", header = TRUE)</pre>
lncRNAs_paper <- read.csv("source_data/lncRNAs_filtered_data_Kaessmann2019.csv", header= TRUE)</pre>
norm_counts_all <- read.csv("source_data/Norm_counts_all.csv", header = TRUE)</pre>
sample_guide <- read.csv("source_data/SampleGuide_data_dds.csv", header = TRUE)</pre>
Check data
str(Hs_Log2FC)
## 'data.frame':
                    196428 obs. of 7 variables:
                     : Factor w/ 32738 levels "ENSG0000000003",..: 9245 2666 11831 7874 11519 12533 3
   $ Ensembl.ID
  $ Gene.name
                      : Factor w/ 32641 levels "1-Dec", "1-Mar", ...: 14980 29377 5108 4174 3172 12073 656
  $ log2FoldChange : num 4.7 3.99 -2.73 3.47 2.42 ...
                      : num 1.07e-14 3.44e-13 1.89e-12 1.87e-11 1.90e-11 ...
  $ pvalue
   $ adjusted.p.value: num 1.76e-10 7.74e-09 4.02e-08 2.10e-07 1.55e-07 6.46e-07 3.43e-07 2.08e-06 2.
## $ Cell.line
                     : Factor w/ 2 levels "HepG2", "HuH7": 1 1 1 1 1 2 1 1 2 2 ...
  $ time.point
                      : Factor w/ 3 levels "early", "late", ...: 3 2 1 2 3 1 2 3 1 1 ...
str(lncRNAs_paper)
                    182544 obs. of 10 variables:
## 'data.frame':
## $ X
                         : int 1 2 3 4 5 6 7 8 9 10 ...
## $ XLOC.id
                         : Factor w/ 182544 levels "Chi_XLOC_000004",..: 16840 16841 16842 16843 16844
                         : Factor w/ 7 levels "Chicken", "Human",..: 2 2 2 2 2 2 2 2 2 ...
## $ Species
## $ chromosome
                         : Factor w/ 1023 levels "1","1.09921E+12",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Dynamic
                         : logi FALSE FALSE FALSE TRUE TRUE ...
## $ ENSEMBL75.id
                         : Factor w/ 10893 levels "ENSG00000031544",...: 3604 NA 3114 3198 1509 NA 389 N
## $ LncRNA.name
                         : Factor w/ 10305 levels "0610005C13Rik",..: 5132 NA 9632 6338 5023 NA 7623 NA
## $ Minimum.age
                         : Factor w/ 11 levels "180Mya","20Mya",..: 10 10 8 8 8 8 8 8 8 8 ...
                         : Factor w/ 8 levels "antisense", "divergent_BT",..: 8 7 8 3 7 8 4 1 2 1 ...
   $ Genomic.class
   $ Nearest.coding.gene: Factor w/ 21739 levels "ENSG00000000005",..: 9216 10696 10667 11091 11074 11
str(norm_counts_all)
## 'data.frame':
                    32738 obs. of 41 variables:
                : Factor w/ 32738 levels "ENSG00000000003",..: 24279 23552 15844 23678 23859 23572 2385
```

```
$ X50003 N 1: num 0 0 0 0 0 ...
##
   $ X50005_N_1: num 0 0 0 2.2 0 ...
                      0 0 1.65 5.79 0 ...
  $ X50006 N 1: num
## $ X50007_N_1: num
                      0 0 0 4.64 0 ...
   $ X50008_N_1: num
                      00000...
## $ X50009_N_1: num
                     0 0 0 4.89 0 ...
  $ X50011 N 1: num
                     0 0 0 3.29 0 ...
##
   $ X50013_N_1: num
                      0 0 0 1.58 0 ...
                      0.639 0 0 2.557 0 ...
##
   $ X50014_N_1: num
## $ X50015_N_1: num
                     0 0 0 6.11 0 ...
  $ X50018_N_1: num
                     0 0 0 4.86 0 ...
##
                      0 0 1.35 2.02 0 ...
   $ X50019_N_1: num
   $ X50021_N_1: num
                     0 0 0 1.93 0 ...
  $ X50022_N_1: num
                     0 0 0 1.74 0 ...
##
   $ X50023_N_1: num
                      0 0 0.657 5.257 0 ...
##
   $ X50024_N_1: num
                      0 0 0 5.25 0 ...
##
   $ X50025_N_1: num
                     00000...
##
  $ X50026 N 1: num
                      0 0 1.67 11.69 0 ...
##
  $ X50027_N_1: num
                      0 0 0 2.33 0 ...
##
   $ X50030_N_1: num
                      0 0 0 0 0 ...
## $ X50031_N_1: num
                     0 0 0 0 0 ...
## $ X50033 N 1: num
                      0 0 0 1.81 0 ...
##
   $ X50034_N_1: num
                      0 0 0 5.11 0 ...
##
   $ X50035 N 1: num
                      0 0 0 7.58 0 ...
## $ X50036_N_1: num
                     0 0 0 0 0 0 0 0 0 0 ...
## $ X50038 N 1: num
                      00000...
##
   $ X50039_N_1: num
                      0 0 0 0 0 ...
   $ X50040_N_1: num
                     00000...
## $ X50041_N_1: num
                     0 0 0 4.78 0 ...
## $ X50042_N_1: num
                      00000...
##
   $ X50043_N_1: num
                      0 0 0 0 0 ...
##
   $ X50044_N_1: num
                      00000...
  $ X50045_N_1: num
                      0 0 0 0 0 ...
## $ X50046_N_1: num
                      00000...
   $ X50047 N 1: num
                      00000...
## $ X50048_N_1: num 0.852 0 0 0 0 ...
  $ X50049 N 1: num 0 0 0 0 0 ...
str(sample_guide)
## 'data.frame':
                   40 obs. of 6 variables:
                    : Factor w/ 40 levels "50000_N_1", "50001_N_1",...: 2 1 3 4 5 6 7 8 9 10 ...
##
   $ X
                    : num 59.1 72.9 68 64.5 60.9 ...
## $ count
## $ Cell.line
                    : Factor w/ 2 levels "HepG2", "HuH7": 2 2 2 2 2 2 2 2 2 2 ...
                    : Factor w/ 3 levels "early", "late", ...: 1 NA 1 1 1 3 2 2 NA 1 ...
   $ time.groups
   $ analysis.groups: Factor w/ 8 levels "HepG2.control",..: 6 5 6 6 6 8 7 7 5 6 ...
## $ time.groups2
                    : Factor w/ 4 levels "control", "early", ...: 2 1 2 2 2 4 3 3 1 2 ...
```

Clean up and transform dataframes

1. Transform categorical data into factors

```
Hs_Log2FC$Cell.line <- as.factor(Hs_Log2FC$Cell.line)
Hs_Log2FC$time.point <- as.factor(Hs_Log2FC$time.point)
sample_guide$Cell.line <- as.factor(sample_guide$Cell.line)
sample_guide$time.groups2 <- as.factor(sample_guide$time.groups2)</pre>
```

2. Rename some columns for simplicity.

```
lncRNAs_paper <- dplyr::rename(lncRNAs_paper, Ensembl.ID=ENSEMBL75.id)
norm_counts_all <- dplyr::rename(norm_counts_all, Ensembl.ID=X)
sample_guide <- dplyr::rename(sample_guide, sample.ID=X)</pre>
```

Plotting DEGs

1. Create variables that contain threshold criteria. The lfc.cutoff is set to 0.58; remember that we are working with log2 fold changes so this translates to an actual fold change of 1.5.

```
### Set thresholds

padj.cutoff <- 0.05
logfc.cutoff <- 0.58</pre>
```

2. Create vector that helps us identify the genes that meet our criteria:

```
threshold<-Hs_Log2FC$adjusted.p.value<padj.cutoff & abs(Hs_Log2FC$log2FoldChange)>logfc.cutoff
```

We now have a logical vector of values that has a length which is equal to the total number of genes in the dataset. The elements that have a TRUE value correspond to genes that meet the criteria (and FALSE means it fails). How many genes are differentially expressed in infected compared to Control, given our criteria specified above? Does this reduce our results?

```
length(which(threshold))
```

```
## [1] 264
```

To add this vector to our results table we can use the \$ notation to create the column on the left hand side of the assignment operator, and the assign the vector to it instead of using cbind():

```
Hs_Log2FC$threshold<-threshold
```

Now we can easily subset the results table to only include those that are significant using the subset() function: sig_DE_all<-data.frame(subset(Hs_Log2FC,threshold==TRUE))

Subset lncRNAs from sig_DE_all

1. Need to clean up lncRNA table

```
#check how many lncRNAs are in table from paper
length(lncRNAs_paper$Ensembl.ID)
## [1] 182544
#remove na in r - remove rows - na.omit function / option
lncRNAs_paper <-na.omit(lncRNAs_paper)</pre>
```

NA values have been removed. Here I am not sure if I removed IDs that did had an NAs in some other column, but I think it doesn't matter.

$2. Subset \ lncRNAs$

```
sig_DE_lncRNA <- sig_DE_all[sig_DE_all$Ensembl.ID %in% lncRNAs_paper$Ensembl.ID,]
print(sig_DE_lncRNA)</pre>
```

шш		Daniel ID	0		1 OF - 1 -1 Ob	1	. 14
##	7	Ensembl.ID			log2FoldChange	=	adjusted.p.value
	7	ENSG00000267934		176F20.3		4.58000e-11	0.000000343
	46	ENSG00000233246		-415J8.5		9.03000e-07	0.004375660
##	50	ENSG00000224189		HOXD-AS1		1.03000e-06	0.004375660
##	59	ENSG00000245648				1.83000e-06	0.002072254
##	65	ENSG00000260710		616M22.7		2.96000e-06	0.002546216
##	79	ENSG00000264569		650J16.1		4.36000e-06	0.003363469
##	82	ENSG00000267934	CTB-	176F20.3		4.73000e-06	0.029937621
##	107	ENSG00000227857	RP4	-533D7.5	2.592566	1.13000e-05	0.017175348
##	109	ENSG00000240498	CD	KN2B-AS1	1.600369	1.17000e-05	0.006606007
##	127	ENSG00000224093	RP5-1	.033H22.2	-2.178604	2.14000e-05	0.025271331
##	128	ENSG00000237686	RP5-1	120P11.1	-1.477782	2.22000e-05	0.011062147
##	136	ENSG00000266903	CTB	3-171A8.1	-1.656562	2.57000e-05	0.027349680
##	148	ENSG00000233255	AC	019181.2	-1.612433	3.05000e-05	0.014382847
##	161	ENSG00000231721	L	INC-PINT	-1.704573	3.81000e-05	0.031147379
##	163	ENSG00000245648	RP11-2	77P12.20	1.800723	3.85000e-05	0.034405348
##	181	ENSG00000229656	RP11	-462L8.1	2.028474	5.59000e-05	0.018641326
##	186	ENSG00000267308	AC	004510.3	2.804807	5.97000e-05	0.045838478
##	188	ENSG00000245532		NEAT1	1.461839	6.12000e-05	0.045838478
##	244	ENSG00000259347	RP11	-798K3.2	-1.195173	1.08638e-04	0.030713876
##	277	ENSG00000259867	RP11-	525K10.3	-1.857503	1.56850e-04	0.036119672
##	307	ENSG00000224272	AC	114730.3	-1.155861	2.01106e-04	0.045898901
##		Cell.line time.	point t	hreshold			
##	7	HepG2	late	TRUE			
##	46	_	early	TRUE			
##	50	_	early	TRUE			
##	59	_	early	TRUE			
##	65	HepG2	mid	TRUE			
##	79	_	early	TRUE			
##	82	HuH7	late	TRUE			
##	107	HepG2	early	TRUE			
	109	_	early	TRUE			
##	127		early	TRUE			
	128	_	early	TRUE			
	136		early	TRUE			
	148	_	early	TRUE			
	161		early	TRUE			
	163	HuH7	mid	TRUE			
	181	HepG2	mid	TRUE			
	186	HepG2	late	TRUE			
	188	HepG2	late	TRUE			
	244	_	early	TRUE			
	277	HepG2	mid	TRUE			
	307		early	TRUE			
			- - J	11001			

Visualizing DE lncRNAs

Load packages that will be needed

```
# Load libraries
library(reshape)
library(ggplot2)
library(ggrepel)
library(RColorBrewer)
library(pheatmap)
Before it gets more complicated, I am going to split my data per cell line.
sig_DE_lncRNA_hepg2<-sig_DE_lncRNA[sig_DE_lncRNA$Cell.line=="HepG2",]
sig_DE_lncRNA_huh7<-sig_DE_lncRNA[sig_DE_lncRNA$Cell.line=="HuH7",]</pre>
I am going to focus on HepG2 for now
Extract the normalized count values for these genes by subsetting.
sig_DE_lncRNA_hepg2_counts <- norm_counts_all[norm_counts_all$Ensembl.ID %in% sig_DE_lncRNA_hepg2$Ensem
# use first column for row names
sig_DE_lncRNA_hepg2_counts <- data.frame(sig_DE_lncRNA_hepg2_counts, row.names = 1)</pre>
Backtrack and get only HepG2 samples
#transform analysis.groups to factors
sample_guide$analysis.groups <- as.factor(sample_guide$analysis.groups)</pre>
#extract HepG2 samples
HepG2samples<-sample_guide[sample_guide$Cell.line=="HepG2",c("sample.ID","analysis.groups")]</pre>
remove(siglncHepG2_counts)
## Warning in remove(siglncHepG2_counts): object 'siglncHepG2_counts' not found
remove(counts_sigLncHepG2)
## Warning in remove(counts_sigLncHepG2): object 'counts_sigLncHepG2' not found
library(data.table)
# qet data
 data(sig_DE_lncRNA_hepg2_counts)
## Warning in data(sig_DE_lncRNA_hepg2_counts): data set
## 'sig_DE_lncRNA_hepg2_counts' not found
# transpose
  t_sigHepG2counts <- transpose(sig_DE_lncRNA_hepg2_counts)</pre>
colnames(t_sigHepG2counts) <- rownames(sig_DE_lncRNA_hepg2_counts)</pre>
  rownames(t_sigHepG2counts) <- colnames(sig_DE_lncRNA_hepg2_counts)</pre>
```

```
#make rownames a new column
setDT(t_sigHepG2counts, keep.rownames = "sample.ID")
```

Now subset

THERE IS AN ERROR IN THE SIG_HEPG2 COUNTS SAMPLE IDs. An X was added at some point in front of the name.

```
#subset by indexing columns
sigHepG2counts<-sig_DE_lncRNA_hepg2_counts[,c(28:40)]</pre>
```

Plot

```
#load packages
library(pheatmap)
### Set a color palette
heat.colors <- brewer.pal(11, "Set3")
### Run pheatmap
pheatmap(sigHepG2counts, color = heat.colors, cluster_rows = T, show_rownames=T, border_color=NA, fontsize = 10, scale="row", fontsize_row = 10, height=5, width = 5)</pre>
```

