L12_1 Performance Metrics Assignment Project Exam Help Performance Metrics

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Reminder

- Midterm is on 10/20
- Leverage past exams
 - There are several available in the Example Labor the Website
 - Start now with the questions for topics we already know
 - Next week take an exam
 - Set a timer
 Add WeChat powcoder
 - Complete the exam without looking at the solutions
 - Check your answers
- There will be an exam review session

Learning Objectives

• To understand and be able to apply performance metrics to evaluate processor performance.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Single-cycle LC2K Datapath

Multicycle LC2K Datapath

Riddle #1

Problem: How long does it take to help 10 customers?

- You work at McDonald's by yourself
- You help one customer at a time Assignment Project Exam Help

```
Latencies: https://powcodeliotalpatency: 2 minutes
```

30 s – time to take order

30 s – time for customer to payd WeChat payeadain = 20 minutes

60 s – prepare food and give to customer

0 s – everything else

Latencies:

1 ns - Register File read/write time

2 ns – ALU/adder

2 ns – memory access

0 ns – MUX, PC access, sign extend, ROM

Project Exam Help

https://powcoder.com

1. Assuming the above delays, what is the best cycle time that the LC2K single and multi-cycle data wath could ashieve oder

2. Assuming the above delays, for a program consisting of 25 LW, 10 SW, 45 ADD, and 20 BEQ, which is faster?

Single and Multicycle Performance

Latencies:

1 ns - Register File read/write time

2 ns – ALU/adder

2 ns – memory access

Ons – MUX, PC access, sign extend, ROM

Project Exam Help

https://powcoder.com

1. Assuming the above delays, what is the best cycle time that the LC2K single and multi-cycle data wath could ashieve oder

SC: 2 + 1 + 2 + 2 + 1 = 8 ns MC: MAX(2, 1, 2, 2, 1) = 2ns

2. Assuming the above delays, for a program consisting of 25 LW, 10 SW, 45 ADD, and 20 BEQ, which is faster?

SC: 100 cycles * 8 ns = 800 ns

MC: (25*5 + 10*4 + 45*4 + 20*4)cycles * 2ns = 850 ns

What good is multi-cycle?

Single and Multicycle Performance

Latencies:

2 ns - Register File read/write time

2 ns – ALU/adder

2 ns – memory access

Ons – MUX, PC access, sign extend, ROM

Project Exam Help

https://powcoder.com

1. What if the register file access is increased to 2ns, does that change the answer to the previous question? powcoder

SC: 2 + 2 + 2 + 2 + 2 = 10 ns MC: MAX(2, 2, 2, 2, 2) = 2ns

2. Assuming the above delays, for a program consisting of 25 LW, 10 SW, 45 ADD, and 20 BEQ, which is faster?

SC: 100 cycles * 10 ns = 1000 ns MC: (25*5 + 10*4 + 45*4 + 20*4)cycles * 2ns = 850 ns Balancing delays helps multi-cycle

Single-Cycle Performance

Latencies:

1 ns - Register File read/write time

2 ns – ALU/adder

2 ns – memory read access Assignment Project Exam Help

20 ns – memory write access

0 ns – MUX, PC access, sign extend, ROM https://powcoder.com

1. Assuming the above delays, what is the best type time coder that the LC2K single-cycle datapath could achieve?

lw: 2 + 1 + 2 + 2 + 1 = 8 ns

add: 2 + 1 + 2 + 1 = 6 ns

sw: 2 + 1 + 2 + 20 = 25 ns

- Eliminate operations e.g., better algorithm
- Decrease operation latency e.g., smaller transistors, faster clock
- Execute operations in parallel e.g., parallel execution

Performance Metrics

- 1. Response time: when is my job done (time)?
 - When will my books arrive from amazon.com?
 - How long will this Assignmy ion tr Pation to Revan Help
- https://powcoder.com

 2. Throughput: how much work can get done within a specified time (work/time)?

 Add WeChat powcoder
 - How many books will amazon.com sell this week?
 - How many programs/instructions complete per hour?
 - Improved relatively easily by using multiprocessors.

Performance Metrics – Execution Time

Response time for a program is its execution time

Execution time (for an application) Project Exam Help

- total instructions executed x CPI x clock period
 Called the "Iron Law" of period period coder.com
- CPI = Cycles Per Instruction = avg number of clock cycles per instruction for an application
- For multi-cycle processor implementations we need:
 - Cycles necessary for each type of instruction
 - Mix of instructions executed in the application (dynamic instruction execution profile)

Performance Metrics - Units

What are the units of (instructions executed x CPI x clock period)?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

instr.
$$x \frac{\text{cycle}}{\text{instr.}} x \frac{\text{time}}{\text{cycle}} = \text{time}$$

How Far Have We Come?

- Single-cycle processor implementations
 - CPI = ?

2. Assuming the above delays, for a program consisting of 25 LW, 10 SW, 45 ADD, and 20 BEQ, which is faster?

2 ns - Register File read/write time

0 ns - MUX, PC access, sign extend, ROM

Latencies:

2 ns – ALU/adder

2 ns – memory access

• clock period = ? Assignment Project Exam Help

https://powcoder.com

- Multi-cycle processor implementations

 - clock period = ?
 - Add WeChat powcoder • CPI = ?

- Next step: improve CPI without impacting clock period
 - The easiest thing to do is to work on multiple instructions at the same time.

How Far Have We Come?

- Single-cycle processor implementations
 - CPI = 1

2. Assuming the above delays, for a program consisting of 25 LW, 10 SW, 45 ADD, and 20 BEQ, which is faster?

2 ns - Register File read/write time

0 ns – MUX, PC access, sign extend, ROM

- clock period = 10 Assignment Project Exam Help
- "Iron law" execution time = instr. * CPI * clock period = 100 * 1 * 10ns = 1000 ns https://powcoder.com
 Multi-cycle processor implementations

Latencies:

2 ns – ALU/adder

2 ns – memory access

- - CPI = 4.25

Add WeChat powcoder

- clock period = 2 ns
- "Iron law" execution time = instr. * CPI * clock period = 100 * 4.25 * 2ns = 850 ns
- Next step: improve CPI without impacting clock period
 - The easiest thing to do is to work on multiple instructions at the same time.

Logistics

- There are 3 videos for lecture 12
 - L12 1 Performance Metrics
 - L12_2 Pipelining Astrioghactiont Project Exam Help
- L12_3 Pipelining_Execution-Example https://powcoder.com
 There is one worksheet for lecture 12
- - Add WeChat powcoder 1. L12 worksheet

L12_2 Assignment Project Exam Help Pipelining-Introduction

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Char powcoder

Learning Objectives

- To describe the overlap in executing instructions, i.e., executing more than one instruction at any one time in a datapath.
 - We want to see how to govern the instruction in the starting the next.
- To identify the stages of a pipeline datapath and describe the dataflow of instruction execution hat powcoder
 - What control, state, and execution units are necessary to support overlap of instruction execution, and how does data flow between these units.

Utilization

Observation: at any time, utilization is low for single and multicycle datapaths

Optimization: start next instruction before current instruction finishes execution.

Riddle #2

Problem: How long does it take to help 10 customers?

- Abigail, Jack and Yujia work together at Burger King
 - Abigail takes the order from the customer
 - Jack handles the castsiggisteent Project Exam Help

 - Yujia makes the food and gives it to the customer
 Abigail starts helping the next customer immediately after taking the order of the first Add WeChat powcoder

Latencies:

30 s – time to take order

30 s – time for customer to pay

60 s – prepare food and give to customer

0 s – everything else

Latency for first customer: 2 minutes

Latency for each customer after: 1 min.

Total time: 11 minutes

Pipelining

Want to execute an instruction?

- Build a processor (multi-cycle)
- Line up instructions (1, 2, 3, ...)

 Assignment Project Exam Help Find instructions
- https://powcoder.com Overlap execution
 - Cycle #1: Fetch 1
 - Cycle #2: Fetch 2 Decode Add WeChat powcoder
 Cycle #3: Fetch 3 Decode 2 ALU 1

 -
- This is called *pipelining* instruction execution.
- Used extensively for the first time on IBM 360 (1960s).
- CPI approaches 1

Pipelining – Automotive Assembly

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder order pickup

Pipelining – Instruction Execution

Pipelining Today

- Execute as many instructions at the same time as possible.
 - Pipelining: 12-20+ cycles
 - Multiple pipelines Assignment Project Exam Help
- Pentium:
 - 2 pipelines, 5 cycles each (10 introct/opo in flight er.com
- Pentium Pro/II/III
 - 3 pipelines (kinda), 12 cycles eathden We Chat powcoder
 - Instructions can execute out of their original program order
- Pentium IV
 - 4 pipelines, 20 cycles deep
 - Prescott: 4 pipelines, 31 cycles deep (could be clocked up to 8 GHz with special cooling)
- Core i7 (Nehalem)
 - 4 pipelines, 16 cycles deep

Pipelined implementation of LC2Kx

- Break the execution of the instruction into cycles.
 - Similar to the multi-cycle datapath
- Design a separate data pathent greect level on performed during each cycle.

 https://powcoder.com
 - https://powcoder.com
 Build pipeline registers to communicate between the stages.

Add WeChat powcoder

Aside: Pipeline Registers

Since we're breaking operations into multiple cycles, we'll need extra **state** to keep track of data at each stage

- Pipeline register Assignment Project Exam Help
 - It stores... whatever is relevant for that stage mitters... bowcoder.com
 - Kind of like the **Instruction Register** in our multi-cycle design, but we will need one for each week powcoder
 - Whatever goes in on the left gets saved and output on the right

Our new pipelined datapath

Pipelining Pipelining

29

Stage 1: Fetch

- Design a datapath that can fetch an instruction from memory every cycle.
 - Use PC to index managing to mental Prestruction and Help
 - Increment the PC (assume no branches for now) https://powcoder.com
- Write everything neededdtb Wordblettpæxecultion to the pipeline register (IF/ID)
 - The next stage will read this pipeline register.
 - Note that pipeline register must be edge-triggered

Pipeline Datapath – Fetch Stage

First slide of L12_3

Pipelining

Stage 2: Decode

- Design a datapath that reads the IF/ID pipeline register, decodes instruction and reads register file (specified by regA and regB of instruction bits). Assignment Project Exam Help
 - Decode is easy, just pass on the opcode and let later stages figure out their own control signals for the posterior der.com

Add WeChat powcoder

- Write everything needed to complete execution to the pipeline register (ID/EX)
 - Pass on the offset field and both destination register specifiers (or simply pass on the whole instruction!).
 - Including PC+1 even though decode didn't use it.

Pipeline Datapath – Decode Stage

Stage 3: Execute

- Design a datapath that performs the proper ALU operation for the instruction specified and the values present in the ID/EX pipeline register.
 - Assignment Project Exam Help

 The inputs are the contents of regA and either the contents of regB or the offset field on the instruction.//powcoder.com

 • Also, calculate PC+1+offset in case this is a branch.

Add WeChat powcoder

- Write everything needed to complete execution to the pipeline register (EX/Mem)
 - ALU result, contents of regB and PC+1+offset
 - Instruction bits for opcode and destReg specifiers
 - Result from comparison of regA and regB contents

Pipeline Datapath – Execute Stage

Stage 4: Memory Operation

- Design a datapath that performs the proper memory operation for the instruction specified and the values present in the EX/Mem pipeline register. Assignment Project Exam Help
 - ALU result contains address for Id and st instructions.
 - Opcode bits control memory: R/W and enable signals.

Add WeChat powcoder

- Write everything needed to complete execution to the pipeline register (Mem/WB)
 - ALU result and MemData
 - Instruction bits for opcode and destReg specifiers

Pipeline Datapath – Memory Stage

Stage 5: Write Back

- Design a datapath that completes the execution of this instruction, writing to the register file if required.
 - Write MemData to Adesit Regulant Pinstruct Towns Help
 - Write ALU result to destReg for add or nor instructions.
 - Opcode bits also control register Write enable signal.

Add WeChat powcoder

Pipeline Datapath – Writeback Stage

Putting it All Together

Sample Code (Simple)

Let us run the following code on pipelined LC2K2x:

Time Graphs (a.k.a. Pipe Trace)

A vertical slice reports the entire activity of the pipeline at time 5

Logistics

- There are 3 videos for lecture 12
 - L12 1 Performance Metrics
 - L12_2 Pipelining Astrioghactiont Project Exam Help
- - Add WeChat powcoder 1. L12 worksheet