Lucas Martins

12011ECP022

lucas.martins@ufu.br

Coursera: Real Time Systems - Assignment 3

Instruções

Área de upload do assignment 3 do curso Development of Real-Time Systems (https://www.coursera.org/learn/real-time-systems)

Forneça em arquivo compactado: relatório respondendo:

Teoria:

A seguinte parte da atribuição é uma tarefa puramente teórica que não requer ferramentas adicionais. A tarefa é encontrar o maior tamanho de quadro possível para o escalonador cíclico estruturado seguindo os requisitos 1,2 e 3 para encontrar o maior tamanho de quadro. Os três conjuntos de tarefas a seguir devem ser usados:

- 1. T1(15, 1, 14) T2(20, 2, 26) T3(22, 3)
- 2. T1(4, 1) T2(5, 2, 7) T3(20, 5)
- 3. T1(5, 0.1) T2(7, 1) T3(12, 6) T4(45, 9)

Fornece um relatório escrito que deve conter:

- Cálculos para cada etapa para encontrar o tamanho do quadro para cada conjunto de tarefas
 - **Tamanho** do quadro resultante para cada conjunto de tarefas

Solução 1:

F = H/f (Cyclic Scheduler)

F = Tamanho do quadro

H = Hiper período

f = número de quadros que se dividem igualmente no hiper período

	Р	е	D
T1	15	1	14
T2	20	2	26
Т3	22	3	22

H (Hiper período) = LCM do período de todas as tarefas = LCM (15, 20, 22) = 660

Encontrando f

Critério 1: f deve ser grande o suficiente para que uma tarefa inteira se encaixe, $(f \ge eimax) \rightarrow f \ge 3$

Critério 2: f deve dividir o hiperperíodo igualmente, $(f/H) \rightarrow f = 1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 660$

Critério 3: Uma lacuna de quadro deve estar presente entre a liberação e prazo final (2f- gdc (Pi, f) \leq Di) \rightarrow f = 6,5,4,3,2

Portanto, os valores finais de f podem ser 3,4,5,6

Solução 2:

F = H/f (Cyclic Scheduler)

F = Tamanho do quadro

H = Hiper período

f = número de quadros que se dividem igualmente no hiper período

	Р	е	D
T1	4	1	4
T2	5	2	7
Т3	20	5	20

H (Hiper período) = LCM do período de todas as tarefas = LCM (4, 5, 20) = 20

Encontrando f

Critério 1: f deve ser grande o suficiente para que uma tarefa inteira se encaixe, $(f \ge eimax) \rightarrow f \ge 5$

Critério 2: f deve dividir o hiperperíodo igualmente, (f/H) \rightarrow f = = 1, 2, 4, 5, 10, 20

Critério 3: Uma lacuna de quadro deve estar presente entre a liberação e prazo final (2f- gdc (Pi, f) \leq Di) \rightarrow f = 4,2

Já que o tamanho mínimo do quadro deve ser de pelo menos 5 de acordo com os critérios1. f = 4,2 e a tarefa deverá ser dividida para ser acomodada no quadro.

Solução 3:

F = H/f (Cyclic Scheduler)

F = Tamanho do quadro

H = Hiper período

f = número de quadros que se dividem igualmente no hiper período

	Р	е	D
T1	5	0.1	5
T2	7	1	7
Т3	12	6	12
T4	45	9	45

H (Hiper período) = LCM do período de todas as tarefas = LCM (5, 7, 12, 45) = 1260

Encontrando f

Critério 1: f deve ser grande o suficiente para que uma tarefa inteira se encaixe, $(f \ge eimax) \rightarrow f \ge 9$

Critério 2: f deve dividir o hiperperíodo igualmente, (f/H) \rightarrow f = 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260

Critério 3: Uma lacuna de quadro deve estar presente entre a liberação e prazo final (2f- gdc (Pi, f) \leq Di) \rightarrow f = 3,2

Já que o tamanho mínimo do quadro deve ser de pelo menos 9 de acordo com os critérios1. f = 3,2 e a tarefa deverá ser dividida para ser acomodada no quadro.

Simulação Assignment 1

Simulação 1: tarefas T1(2, 0.5), T2(3, 1.2), T3(6, 0.5) e scheduler RM Qual é o fator de utilização do sistema e qual é o valor para Urm(3)?

Fator de utilização = 0,7333

Urm = 0,7797

Qual é o tempo de resposta mínimo / máximo / médio de todas as tarefas?

Task	min	avg	max	std dev
TASK T1	0.500	0.500	0.500	0.000
TASK T2	1.700	1.700	1.700	0.000
TASK T3	2.700	2.700	2.700	0.000

Alguma tarefa está perdendo o prazo? Qual tarefa? Onde?

Não.

Se um prazo for perdido, isso poderia ser evitado alterando-se o scheduler?

Sim.

Resultado:

Gantt chart

Simulação Assignment 2

Simulação 2: tarefas T1(2, 0.5, 1.9) T2(5, 2) T3(1, 0.1, 0.5) T4(10, 5, 20) e scheduler EDF

Qual é o fator de utilização do sistema e qual é o valor para Urm(4)?

Fator de utilização = 1,25 Urm = 0,7568

Qual é o tempo de resposta mínimo / máximo / médio de todas as tarefas?

Task	min	avg	max	std dev
TASK T1	0.600	0.600	0.600	0.000
TASK T2	2.800	3.100	3.400	0.300
TASK T3	0.100	0.100	0.100	0.000
TASK T4	20.000	20.000	20.000	0.000

Alguma tarefa está perdendo o prazo? Qual tarefa? Onde?

Sim, a Tarefa 4 foi perdida.

Da mesma forma foi perdido em T2_4, T2_5, T2_6, etc.

Se um prazo for perdido, isso poderia ser evitado alterando o scheduler? Sim.

Resultados:

Gantt chart

