

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 3 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование алгоритма имитации отжига»

Вариант 7

Выполнила: Кидинова Д.Д., студент группы ИУ8-31

Проверила: Коннова Н.С.,

доцент каф. ИУ8

Цель работы

Изучение метода имитации отжига для поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

Условие задачи

1. На интервале [1,4] задана унимодальная функция одного переменного

$$f(x) = -\sqrt{x}\sin(x) + 2$$

Используя метод имитации отжига осуществить поиск минимума $f^{(x)}$.

2. При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом $\sin(5x)$, т.е. мультимодальной функции $f(x)\sin(5x)$.

Алгоритм имитации отжига:

- 1. Изначально задаются начальная температура $T_{\it max}$ и конечная температура $T_{\it min}$.
- 2. Случайно выбирается точка x_i на отрезке. Вычисляется значение функции в этой точке $f\left(x_i\right)$.
- 3. Пока
 - 1) Случайно выбирается точка x_i на отрезке. Вычисляется значение функции в этой точке $f\left(x_i\right)$.
 - 2) Определяется $\Delta f = f(x_i) f(x_{i-1})$
 - 3) Если $\Delta f \leq 0$, то осуществляется переход в точку x_i
 - 4) Если Δf >0 , то переход осуществляется с вероятностью $P(\Delta f) = \mathrm{e}^{\frac{-\Delta f}{T_i}}$
 - 5) Понижение температуры: $T_{i+1} = T_i \cdot 0,95$

В качестве начальной температуры возьмем $T_{\it max}$ = 10 000 , конечной - $T_{\it min}$ = 0,01

Графики заданных функций

Рисунок 1 - График унимодальной функции y=-sqrt(x)*sin(x)+2 на [1;4]

Рисунок 2 - График мультимодальной функции $y=(-\operatorname{sqrt}(x)*\sin(x)+2)*\sin(5x)$ на [1, 4]

Part 1. Search for the extremum of a unimodal function f(x): Т Х f(x)

1 10000.000 1.894 0.695

2 9500.000 2.271 0.848

3 9025.000 1.218 0.965

4 8573.750 2.047 0.728

1.343 5 8145.062 0.871

6 7737.809 1.346 0.869

7 7350.919 3.179 2.067

8 6983.373 3.476 2.613 9 6634.204 3.180 2.069

6302.494 2.849 1.514

10

2.900

1.593

5987.369

11

29

41

12 5688.001 1.889 0.695

13 5403.601 3.808 3.207

14 5133.421 3.260 2.214

15 4876.750 3.625 2.885

16 4632.912 3.301 2.288

17 4401.267 1.139 1.030

1.121 18 4181.203 1.047

19 3972.143 3.461 2.583

20 3773.536 2.632 1.208 21 3584.859

3.193 2.092 22 3405.616 2.898 1.590

23 3235.335 2.253 0.835

24 3073.569 2.446 0.998

25 2919.890 2.678 1.269

26 2773.896 2.038 0.726

27 2635.201 3.408 2.485

28 2503.441 3.809 3.209

0.787

1.483 30 2259.355 1.298 0.903

2378.269

31

2146.388 3.962 3.456 32 2039.068 2.296 0.866

1.287 33 1937.115 0.911

34 1840.259 1.495 0.781

35 1748.246 3.947 3.432

36 1660.834 2.070 0.737

37 1577.792 3.662 2.951

38 1498.903 1.197 0.982

39 1423.957 3.536 2.723

2.472 40 1352.760 1.024

1285.122

3.600 42 1220.865 2.839

1.173

1.002

3.611 43 1159.822 2.860

1101.831 1.479 0.789 44

45 0.701 1046.740 1.938

46 994.403 1.459 0.800

47 944.682 2.263 0.842 897.448 3.436

48 2.539 49 852.576 3.479 2.617

50	809.947	2.543	1.101
51	769.450	1.569	0.747
52	730.977	3.516	2.685
53	694.428	1.187	0.990
54	659.707	3.382	2.438
55	626.722	1.212	0.969
56	595.386	2.819	1.468
57	565.616	3.143	2.002
58	537.335	3.113	1.950
59	510.469	1.387	0.842
60	484.945	3.735	3.081
61	460.698	2.887	1.572
62	437.663	1.449	0.805
63	415.780	1.194	0.984
64	394.991	2.074	0.738
65	375.241	2.410	0.963
66	356.479	3.096	1.919
67	338.655	1.996	0.713
68	321.723	3.961	3.454
69	305.636	3.602	2.844
70	290.355	3.649	2.929
71	275.837	1.313	0.892
72	262.045	3.970	3.468
73	248.943	1.508	0.775
74	236.496	3.927	3.402
75	224.671	2.688	1.282
76	213.437	2.191	0.795
77	202.765	3.971	3.469
78	192.627	1.910	0.697
79	182.996	2.396	0.949
80	173.846	3.424	2.516
81	165.154	3.139	1.995
82	156.896	3.486	2.629
83	149.051	3.871	3.312
84	141.599	2.180	0.789
85	134.519	1.332	0.879
86	127.793	1.765	0.696
87	121.403	2.737	1.348
88	115.333	1.173	1.001
89	109.566	3.997	3.509
90	104.088	2.930	1.640
91	98.884	3.884	3.332
92	93.939	2.073	0.738
93	89.242	2.087	0.743
94	84.780	2.393	0.948
95	80.541	1.902	0.696
96	76.514	3.673	2.971
97	72.689	3.882	3.329
98	69.054	1.615	0.731
99	65.601	1.177	0.998
100	62.321	1.890	0.695
101	59.205	2.764	1.387

102	56.245	3.246	2.188
103	53.433	2.397	0.951
104	50.761	2.598	1.167
105	48.223	1.711	0.705
106	45.812	2.712	1.314
107	43.521	1.280	0.916
108	41.345	3.921	3.392
109	39.278	3.023	1.794
110	37.314	1.615	0.731
111	35.448	1.325	0.884
112	33.676	1.596	0.737
113	31.992	3.319	2.321
114	30.393	1.338	0.874
115	28.873	3.417	2.502
116	27.429	3.062	1.861
117	26.058	3.833	3.248
118	24.755	2.327	0.890
119	23.517	1.888	0.694
120	22.341	1.237	0.949
121	21.224	2.234	0.822
122	20.163	1.664	0.716
123	19.155	2.785	1.418
124	18.197	1.034	1.126
125	17.287	1.804	0.693
126	16.423	1.985	0.710
127	15.602	1.258	0.933
128	14.822	2.737	1.349
129	14.081	1.490	0.783
130	13.377	1.453	0.803
131	12.708	1.453	0.803
132	12.072	2.331	0.893
133	11.469	3.797	3.187
134	10.895	2.135	0.765
135	10.351	2.170	0.783
136	9.833	3.075	1.884
137	9.341	1.434	0.814
138	8.874	3.080	1.891
139	8.431	1.145	1.026
140	8.009	3.380	2.434
141	7.609	1.479	0.789
142	7.228	2.801	1.442
143	6.867	2.260	0.839
144	6.523	3.644	2.919
145	6.197	1.236	0.950
146	5.887	1.236	0.950
147	5.593	2.880	1.561
148	5.313	3.013	1.778
149	5.048	2.001	0.714
150	4.795	3.891	3.343
151	4.556	3.178	2.065
152	4.328	2.605	1.175
153	4.111	2.012	0.717

154	3.906	2.972	1.710
155	3.711	2.267	0.845
156	3.525	1.600	0.736
157	3.349	1.266	0.926
158	3.181	1.224	0.960
159	3.022	1.300	0.901
160	2.871	2.581	1.145
161	2.728	1.704	0.706
162	2.591	1.700	0.707
163	2.462	2.368	0.925
164	2.339	1.929	0.699
165	2.222	1.251	0.938
166	2.111	1.267	0.926
167	2.005	2.524	1.079
168	1.905	2.524	1.079
169	1.810	2.004	0.715
170	1.719	2.286	0.859
171	1.633	2.456	1.008
172	1.551	2,490	1.043
173	1.474	2.122	0.759
174	1.400	3.477	2.613
175	1.330	2.911	1.610
176	1.264	1.460	0.799
177	1.200	1.490	0.784
178	1.140	1.099	1.067
179	1.083	2.393	0.947
180	1.029	1.141	1.029
181	0.978	2.495	1.049
182	0.929	2.330	0.893
183	0.882	2.404	0.958
184	0.838	2.404	0.958
185	0.796	1.595	0.737
186	0.757	1.595	0.737
187	0.719		
188	0.683		1.974
189	0.649	1.721	0.703
190	0.616		0.789
191		1.602	
192	0.556	1.602	0.735
193	0.528	2.093	0.746
194		2.093	
195	0.477	2.433	0.985
196	0.453	2.433	0.985
197		2.112	
198			0.754
190	0.388	2.112	0.784
200	0.369		0.784
200	0.351	1.366	
202	0.333	1.366	0.856
202	0.316	1.366	0.856
203		1.604	
204	0.286	1.604	0.734
203	⊍.∠00	1.004	0.734

206	0.271	1.604	0.734
207	0.258	1.604	0.734
208	0.245	2.171	0.784
209	0.233	2.377	0.933
210	0.221	2.377	0.933
211	0.210	2.377	0.933
212	0.199	1.969	0.706
213	0.189	1.969	0.706
214	0.180	1.969	0.706
215	0.171	1.969	0.706
216	0.162	1.969	0.706
217	0.154	1.969	0.706
218	0.147	1.969	0.706
219	0.139	1.642	0.722
220	0.132	1.642	0.722
221	0.126	1.642	0.722
222	0.119	1.642	0.722
223	0.113	1.642	0.722
224	0.108	1.642	0.722
225	0.102	1.642	0.722
226	0.097	1.642	0.722
227	0.092	1.884	0.694
228	0.088	1.884	0.694
229	0.083	1.884	0.694
230	0.079	1.884	0.694
231	0.075	1.884	0.694
232	0.071	1.430	0.816
233	0.068	1.430	0.816
234	0.065	1.430	0.816
235	0.061	1.430	0.816
236	0.058	1.430	0.816
237	0.055	1.667	0.715
238	0.053	1.667	0.715
239	0.050	1.667	0.715
240	0.047	1.833	0.692
241	0.045	1.833	0.692
242	0.043	1.833	0.692
243	0.041	1.833	0.692
244	0.039	1.833	0.692
245	0.037	1.833	0.692
246	0.035	1.833	0.692
247	0.033	1.833	0.692
248	0.031	1.833	0.692
249	0.030	1.833	0.692
250	0.028	1.833	0.692
251	0.027	1.833	0.692
252	0.026	1.833	0.692
253	0.024	1.833	0.692
254	0.023	1.833	0.692
255	0.022	1.833	0.692
256	0.021	1.833	0.692
257	0.020	1.833	0.692

```
258
        0.019 1.833 0.692
259
        0.018 1.833
                      0.692
260
        0.017 1.833
                      0.692
261
        0.016 1.833
                      0.692
262
        0.015 1.833
                       0.692
263
        0.015
               1.833
                       0.692
264
        0.014 1.833
                      0.692
265
        0.013 1.833
                      0.692
266
        0.012 1.833
                       0.692
267
        0.012 1.833
                      0.692
268
        0.011 1.833
                      0.692
269
        0.011 1.833
                      0.692
270
        0.010 1.833
                      0.692
Result for function -\operatorname{sqrt}(x) \sin(x) + 2:
        Xmin = 1.833 Fmin = 0.692
Part 2. Search for the extremum of a multimodal function f(x) * sin(5x):
 Ν
         Т
                 Х
                        f(x)
 1 10000.000 2.291 -0.772
               1.540 0.751
 2 9500.000
               1.623
                      0.704
 3 9025.000
 4 8573.750
               3.622 -1.937
 5
     8145.062
               1.680
                      0.608
 6 7737.809
               2.206 -0.804
 7
     7350.919
               2.039 -0.506
     6983.373
               1.304
                      0.209
 9
     6634.204
               2.697
                      1.027
 10
     6302.494
               3.654 -1.607
 11
     5987.369
               2.408 -0.484
 12
     5688.001
               1.373 0.468
 13
     5403.601
               3.763 -0.103
14
     5133.421 1.868 0.060
 15
     4876.750
               1.321 0.280
     4632.912 3.477 -2.599
 16
17
     4401.267
               3.405 -2.399
               3.704 -0.973
 18
     4181.203
              2.447 -0.325
 19
     3972.143
     3773.536
               3.372 -2.213
 21
     3584.859
               3.587 -2.230
 22
     3405.616
               1.011 -1.081
 23
     3235.335
               2.457 -0.280
 24
     3073.569
               2.506 -0.040
 25
     2919.890
               1.655 0.656
 26
     2773.896
               3.806
                      0.581
               3.930
 27
     2635.201
                      2.438
 28
     2503.441
               2.891
                      1.500
 29
     2378.269
               1.761
                      0.406
               2.509 -0.022
 30
     2259.355
     2146.388
               2.347 -0.670
 31
     2039.068
               2.275 -0.790
 33 1937.115 2.695 1.020
```

34	1840.259	3.075	0.612
35	1748.246	3.597	-2.158
36	1660.834	2.115	-0.691
37	1577.792	1.356	0.411
38	1498.903	1.411	0.578
39	1423.957	1.187	-0.339
40	1352.760	3.729	-0.618
41	1285.122	3.402	-2.386
42	1220.865	2.407	-0.486
43	1159.822	3.520	-2.557
44	1101.831	1.534	0.749
45	1046.740	2.267	-0.796
46	994.403	2.486	-0.142
47	944.682	1.212	-0.213
48	897.448	1.997	-0.380
49	852.576	2.063	-0.570
50	809.947	2.060	-0.563
51	769.450	1.477	0.705
52	730.977	3.181	-0.401
53	694.428	1.494	0.725
54	659.707	3.308	-1.703
55	626.722	3.253	-1.160
56	595.386	2.489	-0.126
57	565.616	3.758	-0.193
58	537.335	1.693	0.580
59	510.469	3.690	-1.165
60	484.945	2.455	-0.287
61	460.698	3.253	-1.167
62	437.663	1.653	0.658
63	415.780	1.242	-0.067
64	394.991	3.098	0.415
65	375.241	3.629	-1.870
66	356.479	2.936	1.414
67	338.655	3.192	-0.526
68	321.723	1.013	-1.076
69	305.636	2.741	1.228
70	290.355	2.459	-0.272
71	275.837	2.116	-0.692
72	262.045	3.149	-0.077
73	248.943	2.902	1.486
74	236.496	2.796	1.416
75	224.671	3.918	2.281
76	213.437	2.579	0.368
77	202.765	3.816	0.729
78	192.627	3.971	2.926
79	182.996	1.482	0.711
80	173.846	1.172	-0.414
81	165.154	2.075	-0.601
82	156.896	2.167	-0.772
83	149.051	3.545	-2.471
84	141.599	3.801	0.498
85	134.519	1.818	0.229

86	127.793	1.793	0.309
87	121.403	3.140	0.015
88	115.333	1.304	0.211
89	109.566	3.742	-0.429
90	104.088	2.443	-0.343
91	98.884	1.510	0.738
92	93.939	3.310	-1.722
93	89.242	3.310	-1.722
94	84.780	2.773	1.348
95	80.541	2.905	1.481
96	76.514	2.214	-0.807
97	72.689	3.452	-2.566
98	69.054	3.708	-0.919
99	65.601	1.589	0.737
100	62.321	3.203	-0.634
101	59.205	2.721	1.143
102	56.245	1.571	0.747
103	53.433	2.864	1.511
104	50.761	1.658	0.650
105	48.223	1.988	-0.350
106	45.812	1.200	-0.273
107	43.521	1.891	-0.023
108	41.345	3.904	2.095
109	39.278	3.047	0.838
110	37.314	1.581	0.742
111	35.448	3.286	-1.490
112	33.676	3.476	-2.599
113	31.992	2.606	0.526
114	30.393	3.709	-0.910
115	28.873	1.655	0.656
116	27.429	1.377	0.481
117	26.058	3.486	-2.600
118	24.755	3.053	0.791
119	23.517	2.066	-0.579
120	22.341	1.620	0.707
121	21.224	2.926	1.441
122	20.163	1.019	-1.058
123	19.155	1.019	-1.058
124	18.197	1.252	-0.022
125	17.287	1.291	0.155
126	16.423	2.775	1.356
127	15.602	1.428	0.617
128	14.822	2.957	1.343
129	14.081	2.949	1.373
130	13.377	1.691	0.585
131	12.708	3.718	-0.783
132	12.072	3.718	-0.783
133	11.469	3.611	-2.039
134	10.895	3.828	0.929
135		3.387	
136	9.833	1.938	-0.182
137	9.341	1.198	-0.283
101	3.341	1.130	0.203

138	8.874	1.198	-0.283
139	8.431	2.469	-0.223
140	8.009	2.781	1.374
141	7.609	3.838	1.091
142	7.228	2.949	1.371
143	6.867	2.944	1.388
144	6.523	3.886	1.824
145	6.197	3.539	-2.493
146	5.887	1.263	0.030
147	5.593	1.849	0.125
148	5.313	3.497	-2.595
149	5.048	1.171	-0.419
150	4.795	3.078	0.587
151	4.556	2.086	-0.627
152	4.328	3.448	-2.559
153	4.111	3.996	3.170
154	3.906	1.012	-1.078
155	3.711	3.567	-2.362
156	3.525	1.600	0.728
157	3.349	1.172	-0.414
158	3.181	3.023	1.004
159	3.022	1.606	0.722
160	2.871	3.186	-0.456
161	2.728	3.534	-2.515
162	2.591	3.534	-2.515
163	2.462	3.534	-2.515
164	2.339	2.357	-0.644
165	2.222	2.357	-0.644
166	2.111	1.041	-0.987
167	2.005	1.041	-0.987
168	1.905	1.904	-0.065
169	1.810	1.839	0.157
170	1.719	3.366	-2.172
171	1.633	3.366	-2.172
172	1.551	3.551	-2.443
173	1.474	3.551	-2.443
174	1.400	3.551	-2.443
175	1.330	3.551	-2.443
176	1.264	3.542	-2.481
177	1.200	3.542	-2.481
178	1.140	3.542	-2.481
179	1.083	3.542	-2.481
180	1.029	3.542	-2.481
181	0.978	3.542	-2.481
182	0.929	3.542	-2.481
183	0.882	3.327	-1.866
184	0.838	3.327	-1.866
185	0.796	3.327	-1.866
186	0.757	3.327	-1.866
187	0.719	3.327	-1.866
188	0.683	3.489	-2.600
189	0.649	3.489	-2.600

190	0.616	3.489	-2.600
191	0.585	3.506	-2.584
192	0.556	3.506	-2.584
193	0.528	3.423	-2.481
194	0.502	3.423	-2.481
195	0.477	3.423	-2.481
196	0.453	3.423	-2.481
197	0.430	3.423	-2.481
198	0.409	3.423	-2.481
199	0.388	3.423	-2.481
200	0.369	3.423	-2.481
201	0.351	3.423	-2.481
202	0.333	3.423	-2.481
203	0.316	3.423	-2.481
204	0.301	3.423	-2.481
205	0.286	3.423	-2.481
206	0.271	3.498	-2.594
207	0.258	3.498	-2.594
208	0.245	3.498	-2.594
209	0.233	3.498	-2.594
210	0.221	3.498	-2.594
211	0.210	3.498	-2.594
212	0.199	3.498	-2.594
213	0.189	3.498	-2.594
214	0.180	3.498	-2.594
215	0.171	3.498	-2.594
216	0.162	3.490	-2.599
217	0.154	3.490	-2.599
218	0.147	3.490	-2.599
219	0.139	3.490	-2.599
220	0.132	3.490	-2.599
221	0.126	3.490	-2.599
222	0.119	3.490	-2.599
223	0.113	3.490	-2.599
224	0.108	3.490	-2.599
225	0.102	3.490	-2.599
226	0.097	3.490	-2.599
227	0.092	3.490	-2.599
228	0.088	3.490	-2.599
229	0.083	3.496	-2.595
230	0.079	3.496	-2.595
231	0.075	3.496	-2.595
232	0.071	3.496	-2.595
233	0.068	3.496	-2.595
234	0.065	3.496	-2.595
235	0.061	3.496	-2.595
236	0.058	3.496	-2.595
237	0.055	3.496	-2.595
238	0.053	3.496	-2.595
239	0.050	3.496	-2.595
240	0.047	3.496	-2.595
241	0.045	3.496	-2.595

```
242
       0.043 3.496 -2.595
243
       0.041 3.496 -2.595
       0.039 3.496 -2.595
        0.037 3.496 -2.595
246
       0.035 3.496 -2.595
247
        0.033 3.496 -2.595
248
       0.031 3.496 -2.595
249
        0.030 3.496 -2.595
       0.028 3.496 -2.595
250
251
       0 027 3 496 -2 595
252
       0.026 3.496 -2.595
253
       0.024 3.496 -2.595
254
       0.023 3.496 -2.595
255
       0.022 3.496 -2.595
256
       0.021 3.496 -2.595
        0.020 3.496 -2.595
        0.019 3.496 -2.595
259
       0.018 3.496 -2.595
260
        0.017 3.496 -2.595
261
       0.016 3.496 -2.595
262
        0.015 3.496 -2.595
       0 015 3 496 -2 595
263
264
       0.014 3.496 -2.595
265
       0.013 3.496 -2.595
       0.012 3.496 -2.595
266
267
       0.012 3.496 -2.595
268
       0.011 3.496 -2.595
       0.011 3.496 -2.595
269
270
        0.010 3.496 -2.595
Result for function (-sqrt(x) sin(x) + 2) * sin(5x):
        Xmin = 3.496 Fmin = -2.595
```

Выводы

Из полученных таблиц и графиков видно, что метод имитации отжига достаточно эффективен при отыскании экстремума как унимодальной, так и мультимодальной функции одного переменного. Так как алгоритм имеет вероятностную природу, то глобальный экстремум может оказаться не найденным при недостаточно большом количестве итераций.

Ответ на контрольный вопрос

• В чем состоит сущность метода имитации отжига? Какова область применимости данного метода?

Метод имитации отжига заключается в переходе в новую случайно сгенерированную точку с определенной вероятностью, которая зависит от разности значений функции в данных точках, а также от «температуры» на данном шаге. «Температура» уменьшается с каждым шагом. Основное преимущество метода — возможность выхода из локального экстремума,

даже если разность значений функции говорит о том, что новая точка точно не является экстремумом.

Области применения:

- 1. Создание пути
- 2. Реконструкция изображения
- 3. Назначение задач и планирование
- 4. Размещение сети
- 5. Глобальная маршрутизация
- 6. Обнаружение и распознавание визуальных объектов
- 7. Разработка специальных цифровых фильтров

Приложение. Исходный код программы

```
#include <iostream>
#include <cmath>
#include <random>
#include <iomanip>
using std::cout;
using std::string;
double T MAX = 10000.;
const double T MIN = 0.01;
const double LOWER EDGE = 1.;
const double UPPER EDGE = 4.;
enum IsUnimodal : bool {
    True = true,
    False = false
};
double MyFunction(const double &x) {
    return -sqrt(x) * sin(x) + 2;
}
void PrintTopLine() {
    cout << std::setw(3) << " N "
          << std::setw(9) << "T "
          << std::setw(9) << "x "
          << std::setw(9) << "f(x)\n";
}
void PrintLine(const int &number, const double &temperature, const double &x,
                 const double &y) {
    cout << std::fixed << std::setprecision(3)</pre>
          << std::setw(3) << number << " "
          << std::setw(9) << temperature << " "
          << std::setw(6) << x << " "
          << std::setw(6) << y << '\n';
}
void SearchMinimumOfFunction(const IsUnimodal &isUnimodal) {
    std::random device rd;
    std::mt19937 gen(rd());
    std::uniform real distribution < double > dist(LOWER EDGE, UPPER EDGE);
    double x = dist(gen);
    double y = (isUnimodal ? MyFunction(x) : sin(5 * x) * MyFunction(x));
    int number = 1;
    double tCurrent = T MAX;
    PrintTopLine();
    while (tCurrent > T_MIN) {
         double xNext = dist(gen);
         double yNext = (isUnimodal ? MyFunction(xNext) : sin(5 * xNext) *
                                                                  MyFunction(xNext));
         PrintLine(number, tCurrent, x, y);
         double deltaF = yNext - y;
         if (deltaF <= 0) {
             x = xNext;
              y = yNext;
         } else {
              double p = exp(-deltaF / tCurrent);
```

```
std::discrete distribution<> distrib({1 - p, p});
              if (distrib(gen)) {
                   x = xNext;
                   y = yNext;
              }
         tCurrent *= 0.95;
         number++;
    }
    cout << "\nResult for function\t";</pre>
    cout << (isUnimodal? "-sqrt(x) sin(x) + 2": "(-sqrt(x) sin(x) + 2) * sin(5x)");
    cout << " :\n\tXmin = " << x
           << " Fmin = " << y;
    cout << "\n\n";
}
int main() {
    cout << "Variant 7: \t -sqrt(x) * sin(x) + 2 \t [" << LOWER_EDGE << "; "
           << UPPER EDGE << "]\n";
    cout << "Part 1. Search for the extremum of a unimodal function f(x) : n";
    SearchMinimumOfFunction(IsUnimodal::True);
    cout << "Part 2. Search for the extremum of a multimodal function "
              "f(x) * sin(5x) : \n";
    SearchMinimumOfFunction(IsUnimodal::False);
}
```