EECS150 Lab Lecture 0

Kris Pister, Vincent Lee, Ian Juch, Albert Magyar Electrical Engineering and Computer Sciences University of California, Berkeley

What is lab lecture?

- Additional lecture to make your life easier in lab...
- Overview of next week's lab and prelab work
- Tips to avoid pitfalls and problems during the next lab
- Will be held the Friday before a lab week
- Time for you to ask questions about a lab
- Lab logistics and administrative announcements
- Brief overview of prelab or demonstration

Why should I care about labs?

- Labs and project are core part of this course
- Digital design is not just design and coding, it's also about figuring out the tools
- Labs will build up to final project some modules used in final project
- Industry likes people who can do design AND code in verilog
- Can't be good at verilog and design unless you practice

Lab Resources

- Same as class resources
- Website: inst.eecs.berkeley.edu/~cs150/fa12
- Newsgroup: Piazza
- 1 x Professor Pister
- 3 x TAs
- ~60 x your fellow peers

Lab Sections

Lab Lecture

• Fri 2:00-3:00PM 306 Soda

Lab Sections

Tues 5:00-8:00PM 125 Cory Section 011

Tues 5:30-8:30PM 125 Cory Section 011 Vincent and Ian

Wed 9:00-12:00PM 125 Cory Section 012

Thurs 5:00-8:00PM 125 Cory Section 012 Vincent

Wed 5:00-8:00PM 125 Cory Section 013 Ian and Albert

You must attend at least one lab section

If you're in Section 012, FILL OUT THE SURVEY

Floating Lab Section

- Proposed times are:
 - Monday 2-5 PM
 - Monday 4-7 PM
 - Monday 5-8 PM
 - Thursday 5-8 PM
- If you are in the Section 012 and can attend Section 011 or 013, please change to that section until it is full there will be two TAs
- Section 012 will most likely be one TA depending on schedule
- Sections will strictly be capped at 30 students

Lab Logistics

- Labs start next week
- Lab instructions found on the inst website
- Labs due one week from the week they are assigned and due by the end of the last section
- Check offs will only be done in lab or OH
- All labs done individually for the first few labs
- No partial check offs
- Late check offs will incur penalty but still given credit
- Finish all labs important for final project
- No dropped labs

More Lab Logistics...

- Make sure to pick up ONE account form in lab
- Project and lab questions go on Piazza
- Posting source code on Piazza violates academic dishonesty
- Grades entered to bspace check frequently
- All enrolled students should have lab cardkey access
 - Verify yours works or notify TA immediately

Lab Policies

- Standard lab expectations apply
 - Do the pre-lab and come prepared
 - Neglecting the pre-lab makes it harder/impossible to finish during the lab section
 - Read lab manual before section
 - The trajectory of all food and/or drink shall not be towards lab equipment

Lab Schedule Overview

Lab	Date	Checkoff Due
Lab 0: Structural Verilog	8/28, 8/29	9/4, 9/5
Lab 1: Behavior Synthesis	9/4, 9/5	9/11, 9/12
Lab 2: ALU Design and Verification	9/11, 9/12	9/18, 9/19
Lab 3: List Processor and Chipscope	9/18, 9/19	9/25, 9/26
Lab 4: Serial I/O	9/25, 9/26	10/9, 10/10

Project Logistics

- Project will begin around the 6th week of instruction
- Project group sizes are <= 2
- Pick your partner carefully when the time comes
- Partner does not have to be enrolled in same lab
- Additional details announced closer to project

Project Overview

Project Checkpoint	Specification Out	Due Date
Pipelined Processor Design Review	ТВА	10/10
MIPS Processor Implementation	TBA	10/19
Processor Interrupt Implementation	TBA	11/2
Frame Buffers and Graphics Acceleration	TBA	11/16
Audio	TBA	11/30
Final Project Report	TBA	12/8 @ 11:59PM
Extra Credit: BIOS Implementation	TBA	12/8 @ 5PM
Final Project Demonstration	N/A	12/8 4PM-5PM

^{*}Schedule subject to change

Academic Dishonesty and Copying Code

- There's a fine line between collaborating and cheating
- Don't copy code. We will catch you and the wrath of the gods will descend upon you and your partners in crime.
- All incidents will be dealt with appropriately and referred to the professor
- The point of doing labs and writing code is to prepare you for the projects and industry
- Project checkpoints build on each other so you'll have to understand your code anyways

FPGA Development Platform

- Xilinx Virtex 5 xc5vlx110t
- Do not break makes it harder to program
- Do not touch heat sink –
 it gets hot...
- FPGA is pointy if you get into a fight, the FPGA will always win

 Intentionally damaging the lab equipment will affect enrollment

Objectives:

- Cover basic structural verilog constructs
- Get familiar with the development platform
- Pre-lab requirements:
 - Read Chapter 5: Configurable Logic Blocks of the Virtex-5
 User Guide and answer the pre-lab questions
 - Write these answers down somewhere and bring them to lab

- Structural verilog
 - Simple primitive gates –
 AND, OR, XOR, NAND, etc.
 - Exact wiring configurations and interconnections
 - Tells the synthesis tools exactly what you want
- Behavioral verilog
 - Covered next week
 - Tools infer equivalent logic
 - Specify "behavior" of circuit

```
Decoder(output x0,x1,x2,x3;
        input a,b)
{
    wire abar, bbar;
    inv(bbar, b);
    inv(abar, a);
    and(x0, abar, bbar);
    and(x1, abar, b );
    and(x2, a, bbar);
    and(x3, a, b );
}
```

Structural Verilog Code

- This week only, we will indicate where to put your code in each of the files
- Indicated by /*****YOUR CODE HERE*****/ and /****END CODE****/ in code base
- Do not modify any code outside these indicators...
 things will probably break
- Delete specified code it's in the documentation

- Files to modify:
 - /lab0/src/FA.v
 - /lab0/src/Mux2_1.v
 - /lab0/src/Adder.v
 - /lab0/src/ml505top.v
- Check off requirements:
 - Working full adder
 - Working 2-1 mux
 - Working ripple adder
 - Answers to pre-lab
 - Due by Wednesday 8/29 @ 8PM

Project File Structure

Makefile

- Configuration settings to build project
- Don't modify. All hell will break loose...

Synthesis and Build commands

- Run "make" command to build and synthesize
- Run "make impact" to program board
- Run "make clean" to clean project synthesis

src Directory

- Contains all verilog source code
- ml505top.v file top level module

build Directory

- Only available after synthesis
- Contains results of synthesis

cfg Directory

Contains configuration information about synthesis

Lab Problems

- If you have trouble running the tools or synthesis, ask one of us
- Try to debug your code first before asking for help...
 - Debugging is an invaluable skill for the final project
 - TAs will not always be around
- Shooting for two TAs per lab section
- Office hours will be held in the lab
 - TBA
 - Bring lab questions to office hours

Next Week's Lab

- Next week's lab lecture: FPGA Editor and Development Flow (Ian Juch)
- Next week's lab: Behavioral Synthesis

Questions, comments, or concerns?

Acknowledgements

- Some points and content for slides taken from presentations by:
 - Chris Fletcher & John Wawrzynek (2/2010)
 - Chen Sun (2008-2009)
 - Sarah Swisher (2008)
 - Greg Gibeling (2003-2005)