Name:	
ASU ID Number:	

CSE 472: Social Media Mining

Homework III - Information Diffusion, Community Analysis

Prof. Huan Liu Due at 2021 Nov 02, 11:59 PM

This is an *individual* homework assignment. Please submit a digital copy of this homework to **Gradescope**. For your solutions, even when not explicitly asked you are supposed to concisely justify your answers.

1. [Community Analysis] For the given Graph and k=3, Using Clique Percolation Method (CPM) what are the detected communities?

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		

2. [Community Analysis] Compute the following metrics for the given figure:

Figure 1: The communities.

NMI			
urity			

3. [Information Diffusion] Given the following graph, the weight of the edges denote the $p_{v,w}$ which is the probability of v activating w and vice-versa (for an undirected graph). Follow the ICM procedure until it converges for the following graph such that node A is activated at time 0. Mention all the nodes that are activated by the end. Consider the threshold value to be 0.3.

Figure 2: Independent Cascade Model Graph

1		
1		
I .		
I .		
1		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		

4. [Information Diffusion] Does Independent Cascade Model (ICM) converge? Why? When the ICM stops running the algorithm has converged? Please justify your answer with details.

