Analyzing Radiocarbon Data with Temporal Order Constraints

Reilly Villanueva

Department of Mathematics

May 6th, 2016

Calibration Curve

Calibration Curve

Bayes Theorem

B is an event.

 A_1, \ldots, A_n is a set of disjoint outcomes.

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

Bayes for Probability Densities

X for conventional carbon dates.

 θ for ages of samples.

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta)d\theta}$$

Temporal Order Constraints

For samples $\alpha_1, \alpha_2, \alpha_3$ as shown

We assume ordered ages: $0 < \theta_1 < \theta_2 < \theta_3 < 50000$

Numerical Integration

Bayes:

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta)d\theta}$$

Approximating the Integral:

$$\int_{a}^{b} f(x|\theta)\pi(\theta)d\theta \approx \sum_{i=a}^{b} f(x|\theta_{i})\pi(\theta_{i})\Delta\theta_{i}$$

Markov Chains

Let Θ_i be a random variable, and let θ_i be a single draw from the random variable Θ_i .

A **Markov chain** is a sequence $\Theta_1, \Theta_2, \ldots$ of random variables where the conditional distribution of Θ_{n+1} given $\theta_1, \ldots, \theta_n$ depends only on θ_n .

A sequence of random variables $\Theta_1, \Theta_2, \ldots$ is **stationary** if for every positive integer k, the distribution of the k-tuple $(\theta_{n+1}, \ldots, \theta_{n+k})$ does not depend on n.

Gibbs Sampler

Begin with the Markov chain at state t, written as $x^t = (x_1^t, \dots, x_n^t)$.

1. Generate
$$X_1^{t+1} \sim f_1(x_1 | x_2^t, \dots, x_p^t)$$
.

- 2. Generate $X_2^{t+1} \sim f_2(x_2|x_1^{t+1}, x_3^t, \dots, x_p^t)$. :
- p. Generate $X_p^{t+1} \sim f_p(x_p|x_1^{t+1}, \dots, x_{p-1}^{t+1}).$

Metropolis-Hastings

Let h be the (not necessarily normalized) probability density of the stationary distribution we are constructing.

- 1. While at position x_i , propose a move to position y having probability density conditioned on x_i , written as $q(y|x_i)$.
- 2. Let h(x) be the density at the sample when h is parameterized by x. Compute the Hastings ratio:

$$r(x_i, y) = \frac{h(y)q(y|x_i)}{h(x_i)q(x_i|y)}.$$

3. Accept the proposed move with probability $a(x_i, y) = \min(1, r(x_i, y))$.

Highest Posterior Density Region

Proposal Density for Samples with Carbon Dates

 θ^i_j is the i-th estimate for the j-th sample's age and x_j is the radiocarbon date of the j-th sample

$$f(x_j|\theta_{j-1}^{i-1},\theta_{j+1}^{i-1}) = \begin{cases} N(\theta_j^{i-1},\sigma^2), & \text{if } \frac{\theta_j^{i-1}-\theta_{j-1}^{i-1}}{2} < \theta_j^i < \frac{\theta_{j+1}^{i-1}-\theta_j^{i-1}}{2} \\ 0, & \text{otherwise} \end{cases}$$

Proposal Density for Samples without Carbon Dates

 z_k is the sample without a carbon date

$$f(z_k|\theta_{k-1}^i,\theta_{k+1}^i) = \begin{cases} c, & \text{if } \theta_{k-1}^i < \theta_k^i < \theta_{k+1}^i \\ 0, & \text{otherwise} \end{cases}$$

where c is some constant

R Tephra Data

Description	Carbon-14 age	Location relative
	(years BP)	to R tephra
Coniferous needle	8905±20	20.5cm above
Twig	8920±60	directly above
Charcoal	8890±40	directly under
Peat	8760±80	50cm below
Small twig	8990±60	100cm+ below

Credit: U.S. Geological Survey Department of the Interior/USGS

Comparing Numerical Integration and MCMC

Posterior Densities

