Universidade Federal de Juiz de Fora Lista de Exercício

Método dos Elementos Finitos - MAC026 Guilherme Almeida Felix da Silva - 201365504B

Problema 1 Resolver o problema de valor inicial y' = arctan(y) com:

$$N_1 = 30$$

 $N_2 = 135$
 $y(0) = 1$
 $x \in [0, 1]$

Onde N_1 e N_2 são números de pontos do domínio, usando os métodos:

- (a) Euler Explícito
- (b) Euler Implícito
- (c) Euler Modificado
- (d) Trapézio

Solução - Euler Explícito: Seja y' = f(y), integrando temos:

$$\int_{k}^{k+1} y' dy = \int_{k}^{k+1} f(y) dy$$
$$y_{k+1} - y_{k} = \int_{k}^{k+1} f(y) dy$$

Nesse caso, aproxima-se a função $f(y_{k+1})$ pelo valor constante f(y) e tem-se:

$$y_{k+1} - y_k = f(y_k)(h)$$
$$y_{k+1} = y_k + hf(y_k)$$

onde h é o intervalo entre o ponto no instante k e o instante k+1 Implementando-se a solução, obtém-se:

Figura 1: Euler Explícito

Solução - Euler Implícito:

Nesse método, a diferença para o anterior é a aproximação da função f(y) pelo valor constante $f(y_{k+1})$ e tem-se:

$$y_{k+1} - y_k = f(y_{k+1})(h)$$

 $y_{k+1} = y_k + hf(y_{k+1})$

O que torna o método implícito é a necessidade de se conhecer o valor da função f no instante k+1 para se determinar o valor da função y no mesmo instante k+1 Reorganizando os termos, tem-se:

$$y_{k+1} - y_k - hf(y_{k+1}) = 0$$
$$F(y_{k+1}) = 0$$

A partir desse ponto utiliza-se algum método numérico para determinar o zero da função $F(y_{k+1})$. Obtém-se:

Figura 2: Euler Implícito

Solução - Euler Modificado:

Esse método inicia como o de Euler. Porém, a integral de f(y) é aproximada usando a regra do trapézio.

$$y_{k+1} - y_k = \frac{h}{2}(f(y_{k+1}) + f(y_k))$$

Da forma como está apresentado, é um método implícito. Para torná-lo explícito, o valor de y_{k+1} a ser avaliado em $f(y_{k+1})$ é determinado pelo método de Euler explícito. Pode-se escrever:

$$y_{k+1} - y_k = \frac{h}{2}(f(y_k + hf(y_k)) + f(y_k))$$

Figura 3: Euler Modificado

Solução - Método do Trapézio:

Esse método consiste em resolver a integral usando a regra do trapézio, que consiste em aproximar a área abaixo da curva pela área de um trapézio.

$$y_{k+1} - y_k = \frac{h}{2}(f(y_{k+1}) + f(y_k))$$

Da forma como está apresentado, é um método implícito. É, portanto, utilizado um método numérico para a resolução:

$$y_{k+1} - y_k - \frac{h}{2}(f(y_k + hf(y_k)) + f(y_k)) = 0$$
$$F(y_{k+1}) = 0$$

A solução:

Figura 4: Trapézio

Problema 2 Resolver o problema de valor inicial $y' = y^2 - g(x)$ com:

$$g(x) = \frac{x^4 - 6x^3 + 12x^2 - 14x + 9}{(1+x)^2}$$

$$h_1 = 0.2$$

$$h_2 = 0.1$$

$$h_3 = 0.05$$

$$y(0) = 2$$

$$x \in [0, 1.6]$$

Onde $h_1,\ h_2,\ h_3$ é a discretização do domínio, usando os métodos:

- (a) Euler Explícito
- (b) Euler Implícito
- (c) Euler Modificado
- (d) Trapézio

Solução

Figura 5: Euler Explícito

Figura 6: Euler Implícito

Figura 7: Euler Modificado

Figura 8: Trapézio