Clustering module 12

Clustering

- Goal: Partition rows of a table into clusters, in order to:
 - Minimize difference within-cluster
 - Maximize difference extra-cluster
- Applications:
 - Find groups of similar customers
 - Find patterns in purchases
- We will see how to use it to explore data
- Many clustering techniques:
 - K-Means
 - Agglomerative clustering
 - DBScan

• ...

The Agglomerative Clustering Steps

- 1. Start with *n* clusters (each record is its own cluster)
- 2. Merge two closest records into one cluster
- 3. At each successive step, the two clusters closest to each other are merged
- Finish when the desired number of clusters is reached

1. Say "Every point is its own cluster"

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

The algorithm will stop when it reaches the desired number of clusters

Based **on linkage**:

- Single linkage
- Complete linkage
- Average linkage

And **on distance**:

- Say "Every point is its Euclidean
 - Manhattan
 - Hamming
- Find most similar pair of clusters

own cluster"

- 3. Merge it into a parent cluster
- 4. Repeat...until you've merged the whole dataset into one cluster

Linkage

K-Means

K-Means Clustering Algorithm

- 1. Choose # of clusters desired, *k*
- 2. Start with a partition into k clusters

 Often based on random selection of k centroids
- 3. At each step, move each record to cluster with closest centroid
- 4. Recompute centroids, repeat step 3
- 5. Stop when moving records increases withincluster dispersion

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint (blue) finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints). Black lines are the ownership boundaries of each centroid

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

K-means Start

Advance apologies: in Black and White this example will deteriorate

Example generated by Dan Pelleg's super-duper fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD99) (available on
www.autonlab.org/pap.html)

K-means terminates

Clustering for data exploration

Today's data set

- Affairs.csv:
 - One row = one person
 - Columns:
 - age, children: age and number of children
 - religious: the person's religiousness
 - educ: the person's education level
 - occupation: a code that identifies the person's occupation
 - rate_marriage: how the person rates his or her marriage,
 - yrs_married: length of the marriage, in years
 - affairs: time spent, in hours/week, in extra-marital affairs

Our goal is to find groups of homogeneous people

Cluster the rows of the table

```
df = pd.read_csv('affairs.csv', index_col=0)

df = pd.get_dummies(columns=['occupation'],data=df)
```

```
from sklearn.cluster import KMeans
clu = KMeans(n_clusters=3, random_state=0)
clu.fit(df)
```

Retrieve the cluster labels:

Each row in the data set is labeled with a **categorical value** that indicates its cluster

```
clu.labels_[:20]
array([2, 2, 0, 1, 2, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 1, 2])
```

Summary information on cluster

```
df2=pd.DataFrame.copy(df)
df2['cluster'] = clu.labels_
df2.groupby('cluster').mean()
```

	rate_marriage	age	yrs_married	children	religious	educ	affairs	occupation_1	occupation_2
cluster									
0	4.215116	24.095785	3.358430	0.496366	2.330814	14.348547	0.876362	0.009012	0.127616
1	3.945343	39.979215	20.461124	3.060431	2.649731	13.883757	0.394723	0.003849	0.120862
2	4.017824	30.927474	11.814382	1.972649	2.449293	14.177013	0.591874	0.003073	0.161647

Is there anything that strikes you as unexpected?

Complete here

Let's verify it

```
df3 = df2.copy()
df3['young']=(df3['age'] <= 27)
df3.groupby('young').agg({'affairs' : ['size', 'mean'], 'rate_marriage' : 'mean'})</pre>
```

	rate_marriage		affairs			
	mean	size	mean			
young						
False	3.991987	2496	0.459645			
True	4.185530	3870	0.863859			

```
import seaborn as sns
sns.factorplot(x='young', y='affairs', data=df3,kind='bar', aspect=2)
```

<seaborn.axisgrid.FacetGrid at 0x16bb7c18>

import seaborn as sns
sns.factorplot(x='young', y='rate_marriage', data=df3,kind='bar', aspect=2)

<seaborn.axisgrid.FacetGrid at 0x162b6f98>

Tips for clustering

Use few attributes

 Too many attributes make it very hard to see the differences between the clusters

Do not have correlated attributes

• E.g., in the previous example, we could have removed at least one among age, children, and yrs_married

Use a small number of clusters

Or else, it may be very hard to tell the difference between them

Optimizing the clustering

- For each clustering technique t that you want to try:
 - For each *k*=2...10
 - Run technique t with k clusters
 - Measure the quality of the clusters obtained (see next slide)

ullet Return the best combination of technique t and k

Measuring the cluster quality – Silhouette Coefficient

- Input:
 - Data
 - Cluster assignment
- Output:
 - A score from -1 to 1 where
 - 0 is random clustering
 - 1 is perfect clustering
- For each point *i*, compute:
 - a_i = mean distance between i and all other points in the same cluster
 - b_i = mean distance between i and the points in the next nearest cluster
 - $s_i = \frac{b_i a_i}{\max(a_i, b_i)}$
- The overall silhouette coefficient is the mean value of s_i , $i = 1 \dots n$

Finding the best clustering technique and number of clusters

```
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.cluster import Birch
from sklearn.cluster import AgglomerativeClustering
bestSil = -1
for k in range(2,10):
    clus = [KMeans(n_clusters=k,n_jobs=-1), Birch(n_clusters=k), AgglomerativeClustering(n_clusters=k)]
   for cl in clus:
        res = cl.fit(df)
        sil = metrics.silhouette_score(X, res.labels_)
        print (str(cl)[:10] + 'with k = '+str(k) + ":" + str(round(sil,4)))
        if (sil > bestSil):
           bestSil = sil
           bestCl = cl
```