

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
C_{e} =	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica analy hom are carract.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.5W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6D + 0.6W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	1262.44	<u>6260.57</u>	k
Compressive Load =	<u>4540.16</u>	<u>5016.45</u>	k
Lateral Load =	330.02	2844.70	k
Moment (Weak Axis) =	0.66	0.36	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 151219.8 in-lbs Resisting Force Required = 2291.21 lbs A minimum 132in long x 33in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3818.68 lbs to resist overturning. Minimum Width = Weight Provided = 6579.38 lbs Sliding Force = 656.14 lbs Use a 132in long x 33in wide x 18in tall Friction = 0.4 Weight Required = 1640.35 lbs ballast foundation to resist sliding. Resisting Weight = 6579.38 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 656.14 lbs Cohesion = 130 psf Use a 132in long x 33in wide x 18in tall 30.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3289.69 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in	33 in	34 in	35 in	36 in
FA	1514 lbs	1514 lbs	1514 lbs	1514 lbs	1657 lbs	1657 lbs	1657 lbs	1657 lbs	2253 lbs	2253 lbs	2253 lbs	2253 lbs	-573 lbs	-573 lbs	-573 lbs	-573 lbs
FB	1544 lbs	1544 lbs	1544 lbs	1544 lbs	1999 lbs	1999 lbs	1999 lbs	1999 lbs	2530 lbs	2530 lbs	2530 lbs	2530 lbs	-2880 lbs	-2880 lbs	-2880 lbs	-2880 lbs
F _V	171 lbs	171 lbs	171 lbs	171 lbs	1170 lbs	1170 lbs	1170 lbs	1170 lbs	993 lbs	993 lbs	993 lbs	993 lbs	-1312 lbs	-1312 lbs	-1312 lbs	-1312 lbs
P _{total}	9637 lbs	9837 lbs	10036 lbs	10236 lbs	10236 lbs	10435 lbs	10634 lbs	10834 lbs	11362 lbs	11562 lbs	11761 lbs	11961 lbs	494 lbs	614 lbs	734 lbs	853 lbs
M	3829 lbs-ft	3829 lbs-ft	3829 lbs-ft	3829 lbs-ft	4911 lbs-ft	4911 lbs-ft	4911 lbs-ft	4911 lbs-ft	6237 lbs-ft	6237 lbs-ft	6237 lbs-ft	6237 lbs-ft	2273 lbs-ft	2273 lbs-ft	2273 lbs-ft	2273 lbs-ft
е	0.40 ft	0.39 ft	0.38 ft	0.37 ft	0.48 ft	0.47 ft	0.46 ft	0.45 ft	0.55 ft	0.54 ft	0.53 ft	0.52 ft	4.60 ft	3.70 ft	3.10 ft	2.66 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	249.5 psf	248.6 psf	247.7 psf	246.9 psf	249.8 psf	248.9 psf	248.0 psf	247.1 psf	263.2 psf	261.8 psf	260.5 psf	259.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	387.6 psf	382.6 psf	377.9 psf	373.5 psf	426.9 psf	420.8 psf	414.9 psf	409.5 psf	488.1 psf	480.1 psf	472.6 psf	465.5 psf	133.0 psf	80.4 psf	69.8 psf	66.9 psf

Maximum Bearing Pressure = 488 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 33in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2832.0 \text{ ft-lbs}$

Resisting Force Required = 2059.62 lbs S.F. = 1.67

Weight Required = 3432.69 lbs Minimum Width = 33 in in Weight Provided = 6579.38 lbs A minimum 132in long x 33in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		33 in			33 in			33 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	261 lbs	626 lbs	212 lbs	867 lbs	2510 lbs	829 lbs	93 lbs	183 lbs	45 lbs		
F _V	207 lbs	204 lbs	210 lbs	154 lbs	149 lbs	163 lbs	208 lbs	205 lbs	209 lbs		
P _{total}	8406 lbs	8771 lbs	8357 lbs	8621 lbs	10264 lbs	8583 lbs	2475 lbs	2565 lbs	2427 lbs		
М	826 lbs-ft	818 lbs-ft	834 lbs-ft	622 lbs-ft	620 lbs-ft	651 lbs-ft	823 lbs-ft	816 lbs-ft	827 lbs-ft		
е	0.10 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.08 ft	0.33 ft	0.32 ft	0.34 ft		
L/6	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft	0.46 ft		
f _{min}	218.3 psf	231.0 psf	216.1 psf	240.2 psf	294.6 psf	236.8 psf	22.4 psf	25.9 psf	20.6 psf		
f _{max}	337.5 psf	348.9 psf	336.4 psf	329.8 psf	384.0 psf	330.7 psf	141.2 psf	143.7 psf	139.9 psf		

Maximum Bearing Pressure = 384 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 33in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 33in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.492 k 12.808 k 7.421 k <u>47%</u>	Rear Strut Maximum Axial Load = 4.298 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 58%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.968 k 12.808 k 7.421 k <u>27%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	0	Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, Δ_{MAX} = 0.525 in $0.525 \le 0.802$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 117 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 323.677 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 117 \\ \mathsf{J} &= & 0.432 \\ & & 205.839 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= & 28.7 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.5 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

h/t = 37.0588

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{mDbr}{mDbr}$$

$$S2 = \frac{77.2}{100}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L S t = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} S t = & 2.788 \text{ k-ft} \end{array}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b = 88.9 \text{ in}$ J = 1.08 152.913 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14 $L_b = 88.9$ J = 1.08 161.829 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$

29.2

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

 $\phi F_1 = 29.4 \text{ ksi}$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_1 =$

3.4.16.1 Used Rb/t = 18.1
$$(Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ lx = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ l y = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ S y = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

 $P_{max} =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S1 = \sqrt{\frac{1.6Dc}{1.6Dc}}$$

 $S1 = 0.51461$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp^*b/t]$$

$$\phi F_I = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

x =

Sy =

 $M_{max}Wk = 1.460 \text{ k-ft}$

27.5 mm

0.621 in³

24.5

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

	<u> Weak Axis:</u> 3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
φF _L = 29.6 ksi	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F Cy$$

$$\varphi F_L = 38.9 \text{ kg}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

 $M_{max}St =$ 1.460 k-ft

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_l Wk =$ 28.2 ksi

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942$$

87.2529

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

S14.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ Iy = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Y	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-90.111	-90.111	0	0
2	M14	٧	-90.111	-90.111	0	0
3	M15	V	-141.602	-141.602	0	0
4	M16	V	-141.602	-141.602	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	205.967	205.967	0	0
2	M14	V	157.908	157.908	0	0
3	M15	V	85.82	85.82	0	0
4	M16	y	85.82	85.82	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	540.798	2	1187.52	2	.816	1	.004	1	0	1	0	1
2		min	-691.266	3	-1474.164	3	-60.469	5	271	4	0	1	0	1
3	N7	max	.035	9	1229.654	1	426	12	0	12	0	1	0	1
4		min	16	2	-276.987	3	-253.862	4	508	4	0	1	0	1
5	N15	max	.025	9	3492.431	1	0	12	0	12	0	1	0	1
6		min	-1.928	2	-971.106	3	-243.859	4	495	4	0	1	0	1
7	N16	max	2011.422	2	3858.805	2	0	11	0	9	0	1	0	1
8		min	-2188.23	3	-4815.823	3	-60.271	5	274	4	0	1	0	1
9	N23	max	.036	14	1229.654	1	8.896	1	.019	1	0	1	0	1
10		min	16	2	-276.987	3	-247.985	4	498	4	0	1	0	1
11	N24	max	540.798	2	1187.52	2	047	12	0	12	0	1	0	1
12		min	-691.266	3	-1474.164	3	-60.993	5	273	4	0	1	0	1
13	Totals:	max	3090.77	2	12053.583	1	0	12						
14		min	-3571.56	3	-9289.231	3	-922.677	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	93.952	1	496.563	1	-6.347	12	0	3	.224	1	0	4
2			min	4.632	12	-734.711	3	-157.233	1	015	2	.011	12	0	3
3		2	max	93.952	1	347.69	1	-5.024	12	0	3	.091	4	.678	3
4			min	4.632	12	-517.036	3	-120.813	1	015	2	.005	12	457	1
5		3	max	93.952	1	198.817	1	-3.7	12	0	3	.048	5	1.12	3
6			min	4.632	12	-299.36	3	-84.393	1	015	2	038	1	753	1
7		4	max	93.952	1	49.944	1	-2.376	12	0	3	.025	5	1.327	3
8			min	4.632	12	-81.684	3	-47.973	1	015	2	11	1	888	1
9		5	max	93.952	1	135.991	3	75	10	0	3	.005	5	1.297	3
10			min	4.632	12	-98.929	1	-20.991	4	015	2	142	1	862	1
11		6	max	93.952	1	353.667	3	24.867	1	0	3	005	12	1.032	3
12			min	3.554	15	-247.803	1	-16.096	5	015	2	135	1	674	1
13		7	max	93.952	1	571.343	3	61.287	1	0	3	004	12	.531	3
14			min	-5.603	5	-396.676	1	-14.048	5	015	2	088	1	325	1
15		8	max	93.952	1	789.019	3	97.707	1	0	3	.001	10	.186	1
16			min	-16.724	5	-545.549	1	-12	5	015	2	046	4	206	3
17		9	max	93.952	1	1006.694	3	134.127	1	0	3	.124	1	.857	1
18			min	-27.845	5	-694.422	1	-9.952	5	015	2	056	5	-1.179	3

Model Name

Schletter, Inc. HCV

:

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19			max	93.952	1	843.295	1	-5.566	12	.004	14	.289	1	1.69	1
20			min	4.632	12	-1224.37	3	-170.547	1	015	2	.007	12	-2.387	3
21		11	max	93.952	1	694.422	1	-4.242	12	.015	2	.124	1	.857	1
22			min	4.632	12	-1006.694	3	-134.127	1	0	3	.002	12	-1.179	3
23		12	max	93.952	1	545.549	1	-2.918	12	.015	2	.044	4	.186	1
24			min	4.632	12	-789.019	3	-97.707	1	0	3	003	3	206	3
25		13	max	93.952	1	396.676	1	-1.595	12	.015	2	.02	5	.531	3
26			min	4.632	12	-571.343	3	-61.287	1	0	3	088	1	325	1
27		14	max	93.952	1	247.803	1	271	12	.015	2	0	15	1.032	3
28			min	3.293	15	-353.667	3	-24.867	1	0	3	135	1	674	1
29		15	max	93.952	1	98.929	1	11.553	1	.015	2	005	12	1.297	3
30			min	-6.073	5	-135.991	3	-16.803	5	0	3	142	1	862	1
31		16	max	93.952	1	81.684	3	47.973	1	.015	2	003	12	1.327	3
32			min	-17.193	5	-49.944	1	-14.755	5	0	3	11	1	888	1
33		17	max	93.952	1	299.36	3	84.393	1	.015	2	0	3	1.12	3
34			min	-28.314	5	-198.817	1	-12.707	5	0	3	061	4	753	1
35		18	max	93.952	1	517.036	3	120.813	1	.015	2	.073	1	.678	3
36			min	-39.435	5	-347.69	1	-10.659	5	0	3	065	5	457	1
37		19	max	93.952	1	734.711	3	157.233	1	.015	2	.224	1	0	1
38			min	-50.555	5	-496.563	1	-8.611	5	0	3	076	5	0	3
39	M14	1	max	57.589	4	528.053	1	-6.523	12	.009	3	.256	1	0	1
40			min	1.982	12	-576.619	3	-162.207	1	012	1	.012	12	0	3
41		2	max	46.468	4	379.18	1	-5.199	12	.009	3	.13	4	.535	3
42			min	1.982	12	-411.008	3	-125.787	1	012	1	.006	12	491	1
43		3	max	44.373	1	230.307	1	-3.875	12	.009	3	.072	5	.891	3
44			min	1.982	12	-245.396	3	-89.367	1	012	1	016	1	822	1
45		4	max	44.373	1	81.433	1	-2.552	12	.009	3	.039	5	1.067	3
46			min	1.982	12	-79.784	3	-52.947	1	012	1	094	1	99	1
47		5	max	44.373	1	85.828	3	-1.228	12	.009	3	.008	5	1.063	3
48			min	1.982	12	-67.44	1	-31.468	4	012	1	131	1	998	1
49		6	max	44.373	1	251.44	3	19.893	1	.009	3	005	12	.881	3
50			min	-7.368	5	-216.313	1	-25.335	5	012	1	129	1	844	1
51		7	max	44.373	1	417.052	3	56.313	1	.009	3	004	12	.519	3
52			min	-18.489	5	-365.186	1	-23.287	5	012	1	088	1	529	1
53		8	max	44.373	1	582.663	3	92.733	1	.009	3	0	10	0	15
54			min	-29.61	5	-514.06	1	-21.239	5	012	1	074	4	065	2
55		9	max	44.373	1	748.275	3	129.153	1	.009	3	.113	1	.584	1
56			min	-40.73	5	-662.933	1	-19.191	5	012	1	093	5	744	3
57		10	max	65.878	4	811.806	1	-5.39	12	.009	3	.272	1	1.383	1
58			min	1.982	12	-913.887	3	-165.573	1	012	1	.007	12	-1.644	3
59		11	max	E 4 3E3	4	662.933		-4.067	12	.012	1	.131	4	.584	1
60			min	1.982	12			-129.153		009	3	.002	12	744	3
61		12	max		1	514.06	1	-2.743	12	.012	1	.07	5	0	15
62			min	1.982	12	-582.663	3	-92.733	1	009	3	007	1	065	2
63		13			1	365.186	1	-1.419	12	.012	1	.037	5	.519	3
64			min	1.982	12	-417.052	3	-56.313	1	009	3	088	1	529	1
65		14	max	44.373	1	216.313	1	042	3	.012	1	.006	5	.881	3
66			min	1.982	12	-251.44	3	-32.158	4	009	3	129	1	844	1
67		15		44.373	1	67.44	1	16.527	1	.012	1	004	12	1.063	3
68			min	.634	15	-85.828	3	-25.482	5	009	3	131	1	998	1
69		16	max		1	79.784	3	52.947	1	.012	1	002	12	1.067	3
70			min	-10.129	5	-81.433	1	-23.434	5	009	3	094	1	99	1
71		17	max		1	245.396	3	89.367	1	.012	1	.002	3	.891	3
72			min	-21.25	5	-230.307	1	-21.386	5	009	3	078	4	822	1
73		18			1	411.008	3	125.787	1	.012	1	.1	1	.535	3
74			min	-32.37	5	-379.18	1	-19.338	5	009	3	096	5	491	1
75		19	max		1	576.619	3	162.207	1	.012	1	.256	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-43.491	5	-528.053	1	-17.29	5	009	3	115	5	0	3
77	M15	1	max	79.846	5	676.971	2	-6.475	12	.012	2	.256	1	0	2
78			min	-46.565	1	-313.321	3	-162.19	1	008	3	.012	12	0	3
79		2	max	68.726	5	484.01	2	-5.151	12	.012	2	.166	4	.292	3
80			min	-46.565	1	-225.804	3	-125.77	1	008	3	.006	12	629	2
81		3	max	57.605	5	291.049	2	-3.828	12	.012	2	.098	5	.489	3
82			min	-46.565	1	-138.288	3	-89.35	1	008	3	017	1	-1.049	2
83		4	max	46.484	5	98.087	2	-2.504	12	.012	2	.055	5	.592	3
84			min	-46.565	1	-50.771	3	-52.93	1	008	3	094	1	-1.259	2
85		5	max	35.364	5	36.745	3	-1.18	12	.012	2	.014	5	.599	3
86			min	-46.565	1	-94.874	2	-40.801	4	008	3	131	1	-1.261	2
87		6	max	24.243	5	124.262	3	19.91	1	.012	2	005	12	.512	3
88			min	-46.565	1	-287.835	2	-34.654	5	008	3	129	1	-1.054	2
89		7	max	13.122	5	211.778	3	56.33	1	.012	2	004	12	.33	3
90			min	-46.565	1	-480.797	2	-32.606	5	008	3	088	1	638	2
91		8	max	2.002	5	299.295	3	92.75	1	.012	2	0	10	.053	3
92			min	-46.565	1	-673.758	2	-30.558	5	008	3	099	4	027	1
93		9	max	-2.364	12	386.811	3	129.17	1	.012	2	.113	1	.822	2
94			min	-46.565	1	-866.719	2	-28.51	5	008	3	128	5	318	3
95		10	max	-2.364	12	1059.681	2	-5.438	12	.008	3	.272	1	1.866	2
96		10	min	-46.565	1	-474.328	3	-165.59	1	012	2	.007	12	785	3
97		11	max	3.579	5	866.719	2	-4.114	12	.008	3	.165	4	.822	2
98			min	-46.565	1	-386.811	3	-129.17	1	012	2	.002	12	318	3
99		12	max	-2.364	12	673.758	2	-2.791	12	.008	3	.095	5	.053	3
100		12	min	-46.565	1	-299.295	3	-92.75	1	012	2	007	1	027	1
101		13	max	-2.364	12	480.797	2	-1.467	12	.008	3	.051	5	.33	3
102		10	min	-46.565	1	-211.778	3	-56.33	1	012	2	088	1	638	2
103		14	max	-2.364	12	287.835	2	122	3	.008	3	.01	5	.512	3
104		17	min	-46.565	1	-124.262	3	-41.509	4	012	2	129	1	-1.054	2
105		15	max	-2.364	12	94.874	2	16.51	1	.008	3	004	12	.599	3
106		13	min	-51.249	4	-36.745	3	-34.803	5	012	2	131	1	-1.261	2
107		16	max	-2.364	12	50.771	3	52.93	1	.008	3	002	12	.592	3
108		10	min	-62.37	4	-98.087	2	-32.755	5	012	2	002 094	1	-1.259	2
109		17	max	-02.37	12	138.288	3	89.35	1	.008	3	.002	3	.489	3
110		17	min	-73.49	4	-291.049	2	-30.707	5	012	2	104	4	-1.049	2
111		18		-73.49	12	225.804	3	125.77	1	.008	3	<u>104</u> .1	1	.292	3
112		10	max	-84.611		-484.01	2	-28.659	5	012	2	132	5	629	2
113		19	min		12		3	162.19	1		3				2
		19	max	-2.364 -95.732		313.321			5	.008	2	.256	1	0	
114	MAG	1	min		4	-676.971	2	-26.611	12	012		162	5 1	0	5
115 116	<u>M16</u>		max	78.721	5	646.258 -290.412	2	-6.188		.012	3	.225	12	<u> </u>	3
		2	min							011		.01			
117		2	max		5	453.296	2	-4.864	12	.012	1	.124	4	.267	3
118		2	min	<u>-99.84</u>	1	-202.896		-121.047	1	<u>011</u>	3	.004	12	<u>596</u>	2
119		3	max	56.48	5	260.335	2	-3.541	12	.012	1	.072	5	.44	3
120		1	min	<u>-99.84</u>	1	-115.379	3	-84.627	1	011	3	037	1	982	2
121		4	max	45.359	5	67.374	2	-2.217	12	.012	1	.04	5	.517	3
122		-	min	-99.84	1	-27.863	3	-48.207	1	011	3	109	1	<u>-1.16</u>	2
123		5	max	34.239	5	59.654	3	855	10	.012	1	.011	5	5	3
124			min	-99.84	1	-125.588	2	-29.385	4	011	3	142	1	-1.128	2
125		6	max	23.118	5	147.17	3	24.633	1	.012	1	005	12	.388	3
126		_	min	-99.84	1	-318.549	2	-24.395	5	011	3	135	1	888	2
127		7	max	11.998	5	234.687	3	61.053	1	.012	1	004	12	.181	3
128			min	<u>-99.84</u>	1	-511.51	2	-22.347	5	<u>011</u>	3	088	1	438	2
129		8	max	.877	5	322.203	3	97.473	1	.012	1	0	10	.221	2
130			min	-99.84	1	-704.472	2	-20.299	5	011	3	067	4	121	3
131		9	max	-4.63	12	409.72	3	133.893	1	.012	1	.123	1	1.088	2
132			min	-99.84	1	-897.433	2	-18.251	5	011	3	086	5	517	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

133		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
136	133		10	max	-4.63	12	1090.394	2	-5.725	12	.012	1	.288	1	2.165	2
136	134			min	-99.84	1	-497.236	3	-170.313	1	011	3	.008	12	-1.008	3
136	135		11	max	488	15	897.433	2	-4.401	12	.011	3	.127	4	1.088	2
138														12		
138			12			12				12		3		4		
139										1						
1440			13			_						_				
144											_					
1442			1/											_		
143			17													
1444			15									_				
146			13			-										
146			40									_		_		
147			16													
148																_
149			17													
150				min		_				5		_		4		
151			18	max		12		3		1	-	3				
152				min	-100.631	4		2		5	012	1		5	596	2
153 M2	151		19	max	-4.63	12	290.412	3	157.467	1	.011	3	.225	1	0	2
154	152			min	-111.752	4	-646.258	2	-16.897	5	012	1	117	5	0	5
154	153	M2	1	max	1103.244	1	2.072	4	.878	1	0	3	0	3	0	1
155						3		15		4						1
156			2	max	1103.623	1				1	0	3	0	1	0	15
157										_				4		
158			3								•			_		
159														_		
160			1									_		_		
161			-										_			
162			-													
163			5								-			-		
164			6													
165			В													
166			-													_
167			/							_				_	_	
168														_		
169			8											_		
170												_		_		
171			9			1_				1	0	3		1		15
172	170					3		15	-59.78	4	0	4		4	004	4
173 11 max 1107.036 1 1.738 4 .878 1 0 3 .002 1 001 15 174 min -1313.264 3 .429 15 -60.438 4 0 4 151 4 005 4 175 12 max 1107.416 1 1.705 4 .878 1 0 3 .002 1 001 15 176 min -1312.98 3 .419 12 -60.768 4 0 4 166 4 005 4 177 13 max 1107.795 1 1.672 4 .878 1 0 3 .003 1 001 15 178 min -1312.695 3 .406 12 -61.097 4 0 4 182 4 006 4 179 14 max 1108.174 <t< td=""><td>171</td><td></td><td>10</td><td>max</td><td>1106.657</td><td>1</td><td>1.772</td><td>4</td><td>.878</td><td>1</td><td>0</td><td>3</td><td>.002</td><td>1</td><td>001</td><td>15</td></t<>	171		10	max	1106.657	1	1.772	4	.878	1	0	3	.002	1	001	15
174 min -1313.264 3 .429 15 -60.438 4 0 4 151 4 005 4 175 12 max 1107.416 1 1.705 4 .878 1 0 3 .002 1 001 15 176 min -1312.98 3 .419 12 -60.768 4 0 4 166 4 005 4 177 13 max 1107.795 1 1.672 4 .878 1 0 3 .003 1 001 15 178 min -1312.695 3 .406 12 -61.097 4 0 4 182 4 006 4 179 14 max 1108.174 1 1.638 4 .878 1 0 3 .003 1 002 15 180 min -1312.411 3 <t< td=""><td>172</td><td></td><td></td><td></td><td></td><td></td><td>.437</td><td>15</td><td>-60.109</td><td>4</td><td>0</td><td></td><td>135</td><td>4</td><td>004</td><td></td></t<>	172						.437	15	-60.109	4	0		135	4	004	
174 min -1313.264 3 .429 15 -60.438 4 0 4 151 4 005 4 175 12 max 1107.416 1 1.705 4 .878 1 0 3 .002 1 001 15 176 min -1312.98 3 .419 12 -60.768 4 0 4 166 4 005 4 177 13 max 1107.795 1 1.672 4 .878 1 0 3 .003 1 001 15 178 min -1312.695 3 .406 12 -61.097 4 0 4 182 4 006 4 179 14 max 1108.174 1 1.638 4 .878 1 0 3 .003 1 002 15 180 min -1312.411 3 <t< td=""><td>173</td><td></td><td>11</td><td>max</td><td>1107.036</td><td>1</td><td>1.738</td><td>4</td><td>.878</td><td>1</td><td>0</td><td>3</td><td>.002</td><td>1</td><td>001</td><td>15</td></t<>	173		11	max	1107.036	1	1.738	4	.878	1	0	3	.002	1	001	15
175 12 max 1107.416 1 1.705 4 .878 1 0 3 .002 1 001 15 176 min -1312.98 3 .419 12 -60.768 4 0 4 166 4 005 4 177 13 max 1107.795 1 1.672 4 .878 1 0 3 .003 1 001 15 178 min -1312.695 3 .406 12 -61.097 4 0 4 182 4 006 4 179 14 max 1108.174 1 1.638 4 .878 1 0 3 .003 1 002 15 180 min -1312.411 3 .393 12 -61.427 4 0 4 197 4 006 4 181 15 max 1108.553 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>15</td><td></td><td>4</td><td>0</td><td></td><td></td><td>4</td><td></td><td></td></t<>						_		15		4	0			4		
176 min -1312.98 3 .419 12 -60.768 4 0 4 166 4 005 4 177 13 max 1107.795 1 1.672 4 .878 1 0 3 .003 1 001 15 178 min -1312.695 3 .406 12 -61.097 4 0 4 182 4 006 4 179 14 max 1108.174 1 1.638 4 .878 1 0 3 .003 1 002 15 180 min -1312.411 3 .393 12 -61.427 4 0 4 197 4 006 4 181 15 max 1108.553 1 1.605 4 .878 1 0 3 .003 1 002 15 182 min -1312.126 3 <t< td=""><td></td><td></td><td>12</td><td>max</td><td>1107.416</td><td>1</td><td>1.705</td><td>4</td><td></td><td>1</td><td>0</td><td>3</td><td></td><td>1</td><td>001</td><td>15</td></t<>			12	max	1107.416	1	1.705	4		1	0	3		1	001	15
177 13 max 1107.795 1 1.672 4 .878 1 0 3 .003 1 001 15 178 min -1312.695 3 .406 12 -61.097 4 0 4 182 4 006 4 179 14 max 1108.174 1 1.638 4 .878 1 0 3 .003 1 002 15 180 min -1312.411 3 .393 12 -61.427 4 0 4 197 4 006 4 181 15 max 1108.553 1 1.605 4 .878 1 0 3 .003 1 002 15 182 min -1312.126 3 .38 12 -61.756 4 0 4 213 4 007 4 183 16 max 1108.933 1 1.571 4 .878 1 0 3 .003 1 002 <td></td> <td></td> <td></td> <td>min</td> <td>-1312 98</td> <td>3</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td>				min	-1312 98	3				4				4		
178 min -1312.695 3 .406 12 -61.097 4 0 4 182 4 006 4 179 14 max 1108.174 1 1.638 4 .878 1 0 3 .003 1 002 15 180 min -1312.411 3 .393 12 -61.427 4 0 4 197 4 006 4 181 15 max 1108.553 1 1.605 4 .878 1 0 3 .003 1 002 15 182 min -1312.126 3 .38 12 -61.756 4 0 4 213 4 007 4 183 16 max 1108.933 1 1.571 4 .878 1 0 3 .003 1 002 15 184 min -1311.842 3 <t< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td></t<>			13									_		_		
179 14 max 1108.174 1 1.638 4 .878 1 0 3 .003 1002 15 180 min -1312.411 3 .393 12 -61.427 4 0 4197 4006 4 181 15 max 1108.553 1 1.605 4 .878 1 0 3 .003 1002 15 182 min -1312.126 3 .38 12 -61.756 4 0 4213 4007 4 183 16 max 1108.933 1 1.571 4 .878 1 0 3 .003 1002 15 184 min -1311.842 3 .367 12 -62.086 4 0 4229 4007 4 185 17 max 1109.312 1 1.538 4 .878 1 0 3 .004 1002 15 186 min -1311.557 3 .354 12 -62.415 4 0 4245 4007 4 187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1002 15 188 min -1311.273 3 .341 12 -62.745 4 0 4261 4008 4														_		
180 min -1312.411 3 .393 12 -61.427 4 0 4 197 4 006 4 181 15 max 1108.553 1 1.605 4 .878 1 0 3 .003 1 002 15 182 min -1312.126 3 .38 12 -61.756 4 0 4 213 4 007 4 183 16 max 1108.933 1 1.571 4 .878 1 0 3 .003 1 002 15 184 min -1311.842 3 .367 12 -62.086 4 0 4 229 4 007 4 185 17 max 1109.312 1 1.538 4 .878 1 0 3 .004 1 002 15 186 min -1311.557 3 <t< td=""><td></td><td></td><td>1/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			1/													_
181 15 max 1108.553 1 1.605 4 .878 1 0 3 .003 1 002 15 182 min -1312.126 3 .38 12 -61.756 4 0 4 213 4 007 4 183 16 max 1108.933 1 1.571 4 .878 1 0 3 .003 1 002 15 184 min -1311.842 3 .367 12 -62.086 4 0 4 229 4 007 4 185 17 max 1109.312 1 1.538 4 .878 1 0 3 .004 1 002 15 186 min -1311.557 3 .354 12 -62.415 4 0 4 245 4 007 4 187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1 002 15 188 min -1311.273 3 .341 12 -62.745 4 0 4 261 4			17													
182 min -1312.126 3 .38 12 -61.756 4 0 4 213 4 007 4 183 16 max 1108.933 1 1.571 4 .878 1 0 3 .003 1 002 15 184 min -1311.842 3 .367 12 -62.086 4 0 4 229 4 007 4 185 17 max 1109.312 1 1.538 4 .878 1 0 3 .004 1 002 15 186 min -1311.557 3 .354 12 -62.415 4 0 4 245 4 007 4 187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1 002 15 188 min -1311.273 3 <t< td=""><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			15													
183 16 max 1108.933 1 1.571 4 .878 1 0 3 .003 1 002 15 184 min -1311.842 3 .367 12 -62.086 4 0 4 229 4 007 4 185 17 max 1109.312 1 1.538 4 .878 1 0 3 .004 1 002 15 186 min -1311.557 3 .354 12 -62.415 4 0 4 245 4 007 4 187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1 002 15 188 min -1311.273 3 .341 12 -62.745 4 0 4 261 4 008 4			13											-		
184 min -1311.842 3 .367 12 -62.086 4 0 4 229 4 007 4 185 17 max 1109.312 1 1.538 4 .878 1 0 3 .004 1 002 15 186 min -1311.557 3 .354 12 -62.415 4 0 4 245 4 007 4 187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1 002 15 188 min -1311.273 3 .341 12 -62.745 4 0 4 261 4 008 4			10													
185 17 max 1109.312 1 1.538 4 .878 1 0 3 .004 1 002 15 186 min -1311.557 3 .354 12 -62.415 4 0 4 245 4 007 4 187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1 002 15 188 min -1311.273 3 .341 12 -62.745 4 0 4 261 4 008 4			16								_					
186 min -1311.557 3 .354 12 -62.415 4 0 4 245 4 007 4 187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1 002 15 188 min -1311.273 3 .341 12 -62.745 4 0 4 261 4 008 4																
187 18 max 1109.691 1 1.505 4 .878 1 0 3 .004 1 002 15 188 min -1311.273 3 .341 12 -62.745 4 0 4 261 4 008 4			17											_		
188 min -1311.273 3 .341 12 -62.745 4 0 4261 4008 4												_		_		_
			18								0			_		
189 19 max 1110.07 1 1.471 4 .878 1 0 3 .004 1 002 15						3	.341	12	-62.745	4	0		261	4	008	4
	189		19	max	1110.07	1	1.471	4	.878	1	0	3	.004	1	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	T	Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-1310.988	3	.328	12	-63.074	4	0	4	277	4	008	4
191	M3	1_	max		2	8.01	4	1.252	4	0	3	0	1_	.008	4
192			min	-624.291	3	1.895	15	.004	12	0	4	02	4	.002	15
193		2	max	487.71	2	7.24	4	1.792	4	0	3	0	1	.005	4
194			min	-624.419	3	1.714	15	.004	12	0	4	019	4	0	12
195		3	max	487.54	2	6.47	4	2.333	4	0	3	0	1	.003	2
196			min	-624.547	3	1.533	15	.004	12	0	4	018	4	0	3
197		4	max	487.37	2	5.7	4	2.873	4	0	3	0	1	0	2
198			min	-624.675	3	1.352	15	.004	12	0	4	017	4	002	3
199		5	max	487.199	2	4.93	4	3.414	4	0	3	0	1	0	15
200			min	-624.802	3	1.171	15	.004	12	0	4	016	4	003	3
201		6	max	487.029	2	4.16	4	3.954	4	0	3	0	1_	001	15
202			min	-624.93	3	.99	15	.004	12	0	4	014	4	005	6
203		7	max	486.859	2	3.39	4	4.495	4	0	3	0	1	001	15
204			min	-625.058	3	.809	15	.004	12	0	4	012	4	006	6
205		8	max	486.688	2	2.62	4	5.035	4	0	3	0	1	002	15
206			min	-625.186	3	.628	15	.004	12	0	4	011	5	007	6
207		9	max	486.518	2	1.85	4	5.576	4	0	3	0	1	002	15
208			min	-625.313	3	.447	15	.004	12	0	4	008	5	008	6
209		10	max	486.348	2	1.08	4	6.116	4	0	3	0	1	002	15
210			min	-625.441	3	.266	15	.004	12	0	4	006	5	009	6
211		11	max	486.177	2	.389	2	6.657	4	0	3	0	1	002	15
212			min	-625.569	3	066	3	.004	12	0	4	003	5	009	6
213		12	max		2	096	15	7.198	4	0	3	0	1	002	15
214			min	-625.697	3	516	3	.004	12	0	4	0	5	009	6
215		13	max		2	277	15	7.738	4	0	3	.003	4	002	15
216			min	-625.825	3	-1.231	6	.004	12	0	4	0	12	009	6
217		14	max	485.666	2	458	15	8.279	4	0	3	.006	4	002	15
218			min	-625.952	3	-2.001	6	.004	12	0	4	0	12	008	6
219		15	max	485.496	2	639	15	8.819	4	0	3	.01	4	002	15
220		'	min	-626.08	3	-2.771	6	.004	12	Ö	4	0	12	007	6
221		16	max		2	82	15	9.36	4	0	3	.014	4	001	15
222		1.0	min	-626.208	3	-3.541	6	.004	12	0	4	0	12	006	6
223		17	max		2	-1.001	15	9.9	4	0	3	.018	4	0	15
224		1	min	-626.336	3	-4.311	6	.004	12	0	4	0	12	004	6
225		18	max		2	-1.182	15	10.441	4	0	3	.022	4	0	15
226			min	-626.463	3	-5.081	6	.004	12	0	4	0	12	002	6
227		19	max	484.814	2	-1.363	15	10.981	4	0	3	.027	4	0	1
228		'	min	-626.591	3	-5.851	6	.004	12	0	4	0	12	0	1
229	M4	1		1226.587	1	0	1	424	12	0	1	.017	4	0	1
230	IVIT			-279.286		0	1	-252.619		0	1	0	12	0	1
231		2		1226.758	1	0	1	424	12	0	1	0	12	0	1
232			min		3	0	1	-252.767		0	1	012	4	0	1
233		3		1226.928		0	1	424	12	0	1	012	12	0	1
234		3		-279.031	3	0	1	-252.914		0	1	041	4	0	1
235		4		1227.098	<u> </u>	0	1	424	12	0	1	0	12	0	1
236		4		-278.903		0	1	-253.062		0	1	071	4	0	1
237		5		1227.269	<u> </u>	0	1	424	12	0	1	0	12	0	1
238		J		-278.775	3	0	1	-253.21	4	0	1	1	4	0	1
		G						- <u>.424</u>			-		12		
239		6		1227.439	1	0	1		12	0	1	120		0	1
240		7		-278.647	3_1	0		-253.357	4	0	1	129	4	0	
241		7		1227.609	1	0	1	424	12	0	1	0	12	0	1
242		0	min		3_	0	1	-253.505		0	1	158	4	0	1
243		8		1227.78	1	0	1	424	12	0	1	0	12	0	1
244			min		3	0	1	-253.653		0	1	187	4	0	1
245		9		1227.95	1_	0	1	424	12	0	1	0	12	0	1
246			min	-278.264	3	0	1	-253.8	4	0	1	216	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1228.12	1	0	1	424	12	0	1	0	12	0	1
248			min	-278.136	3	0	1	-253.948	4	0	1	245	4	0	1
249		11	max	1228.291	1	0	1	424	12	0	1	0	12	0	1
250			min	-278.009	3	0	1	-254.095	4	0	1	274	4	0	1
251		12	max	1228.461	1	0	1	424	12	0	1	0	12	0	1
252			min	-277.881	3	0	1	-254.243	4	0	1	304	4	0	1
253		13	max	1228.631	1	0	1	424	12	0	1	0	12	0	1
254			min	-277.753	3	0	1	-254.391	4	0	1	333	4	0	1
255		14	max	1228.802	1	0	1	424	12	0	1	0	12	0	1
256			min	-277.625	3	0	1	-254.538	4	0	1	362	4	0	1
257		15	max	1228.972	1	0	1	424	12	0	1	0	12	0	1
258			min	-277.498	3	0	1	-254.686	4	0	1	391	4	0	1
259		16	max	1229.143	1	0	1	424	12	0	1	0	12	0	1
260			min	-277.37	3	0	1	-254.834	4	0	1	42	4	0	1
261		17		1229.313	1	0	1	424	12	0	1	0	12	0	1
262			min	-277.242	3	0	1	-254.981	4	0	1	45	4	0	1
263		18	max	1229.483	1	0	1	424	12	0	1	0	12	0	1
264			min		3	0	1	-255.129	4	0	1	479	4	0	1
265		19	max	1229.654	1	0	1	424	12	0	1	0	12	0	1
266			min	-276.987	3	0	1	-255.277	4	0	1	508	4	0	1
267	M6	1		3542.869	1	2.583	2	0	1	0	1	0	4	0	1
268			min	-4298.226	3	034	3	-57.691	4	0	4	0	1	0	1
269		2		3543.249	1	2.556	2	0	1	0	1	0	1	0	3
270		_	min	-4297.941	3	054	3	-58.021	4	0	4	015	4	0	2
271		3		3543.628	1	2.53	2	0	1	0	1	0	1	0	3
272			min	-4297.657	3	073	3	-58.35	4	0	4	03	4	001	2
273		4	_	3544.007	1	2.504	2	0	1	0	1	0	1	0	3
274		•	min	-4297.372	3	093	3	-58.68	4	0	4	045	4	002	2
275		5		3544.387	1	2.478	2	0	1	0	1	0	1	0	3
276			min	-4297.088	3	112	3	-59.009	4	0	4	06	4	003	2
277		6		3544.766	1	2.452	2	0	1	0	1	0	1	0	3
278			min	-4296.804	3	132	3	-59.338	4	0	4	075	4	003	2
279		7		3545.145	1	2.426	2	0	1	0	1	0	1	0	3
280		'	min	-4296.519	3	151	3	-59.668	4	0	4	09	4	004	2
281		8		3545.524	1	2.4	2	0	1	0	1	0	1	0	3
282			min	-4296.235	3	171	3	-59.997	4	0	4	106	4	004	2
283		9		3545.904	1	2.374	2	0	1	0	1	0	1	0	3
284			min		3	19	3	-60.327	4	0	4	121	4	005	2
285		10		3546.283	1	2.348	2	0	1	0	1	0	1	0	3
286		- 10	min		3	21	3	-60.656	4	0	4	136	4	006	2
287		11		3546.662	1	2.322	2	0	1	0	1	0	1	0	3
288			min		3	229	3	-60.986	4	0	4	152	4	006	2
289		12		3547.041	1	2.296	2	0	1	0	1	0	1	0	3
290		15	min		3	249	3	-61.315	4	0	4	168	4	007	2
291		13		3547.421	1	2.27	2	0	1	0	1	0	1	0	3
292		10	min	-4294.812	3	268	3	-61.645	4	0	4	183	4	007	2
293		14		3547.8	1	2.244	2	0	1	0	1	0	1	0	3
294		T -	min		3	288	3	-61.974	4	0	4	199	4	008	2
295		15		3548.179	1	2.218	2	0	1	0	1	0	1	0	3
296		13	min	-4294.244	3	307	3	-62.304	4	0	4	215	4	009	2
297		16		3548.558	1	2.192	2	0	1	0	1	0	1	009 0	3
298		10	min		3	327	3	-62.633	4	0	4	231	4	009	2
		17			1	2.166	2		1	0	1		1		3
299		17		3548.938 -4293.675	2		3	62.063		0	4	247		01	2
300		10	min		3	346	•	-62.963	1			247	1		
301		18		3549.317	1	2.14	3	-63.292		0	4	264		0	3
302		10		-4293.39		366			4	0			4	01	
303		19	ımax	3549.696	1	2.114	2	0	1	0	_1_	0	1	0	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-4293.106	3	385	3	-63.621	4	0	4	28	4	011	2
305	M7	1	max	1853.23	2	8.019	6	1.116	4	0	1	0	1	.011	2
306			min	-1965.413	3	1.882	15	0	1	0	4	02	4	0	3
307		2	max	1853.059	2	7.249	6	1.656	4	0	1	0	1	.008	2
308			min	-1965.54	3	1.701	15	0	1	0	4	019	4	003	3
309		3	max	1852.889	2	6.479	6	2.197	4	0	1	0	1	.006	2
310			min	-1965.668	3	1.52	15	0	1	0	4	019	4	004	3
311		4		1852.718	2	5.709	6	2.737	4	0	1	0	1	.003	2
312			min	-1965.796	3	1.339	15	0	1	0	4	017	4	005	3
313		5	max		2	4.939	6	3.278	4	0	1	0	1	.001	2
314		<u> </u>	min	-1965.924	3	1.158	15	0.270	1	0	4	016	4	006	3
315		6		1852.378	2	4.169	6	3.818	4	0	1	0	1	0	2
316		<u> </u>	min	-1966.051	3	.977	15	0.010	1	0	4	015	4	007	3
317		7		1852.207	2	3.399	6	4.359	4	0	1	0	1	001	15
318			min	-1966.179	3	.796	15	0	1	0	4	013	4	007	3
319		8		1852.037	2	2.631	2	4.899	4	0	1	0	1	002	15
320		- 0	min	-1966.307	3	.565	12	0	1	0	4	011	4	002	3
321		9		1851.867	_	2.031	2	5.44	4		1	0	1	002	15
321		9	min	-1966.435	3	.265	12	0	1	0	4	009	4	002	4
		10						•		-	1				
323 324		10		1851.696 -1966.563	<u>2</u> 3	1.431	3	5.98 0	4	0	4	0	1_1	002	15
		4.4	min			128				0		006	4	009	
325		11		1851.526	2	.831	2	6.521	4	0	1	0	1	002	15
326		40	min		3	578	3	7,000	1	0	4	004	5	009	4
327		12		1851.356	2	.231	2	7.062	4	0	1	0	1	002	15
328		40	min	-1966.818	3	-1.028	3	7 000	1	0	4	001	5	009	4
329		13		1851.185	2	29	15	7.602	4	0	1	.002	4	002	15
330			min	-1966.946	3	-1.478	3	0	1	0	4	0	1_	009	4
331		14		1851.015	2	471	15	8.143	4	0	1	.005	4	002	15
332			min	-1967.074	3	-1.991	4	0	1	0	4	0	1_	008	4
333		15		1850.845	2	652	15	8.683	4	0	1	.009	4	002	15
334			min	-1967.201	3_	-2.761	4	0	1	0	4	0	1_	007	4
335		16		1850.674	2	833	15	9.224	4	0	1_	.013	4	001	15
336			min	-1967.329	3	-3.531	4	0	1	0	4	0	1	006	4
337		17	max	1850.504	2	-1.014	15	9.764	4	0	1	.017	4	001	15
338			min	-1967.457	3	-4.301	4	0	1	0	4	0	1	004	4
339		18	max	1850.334	2	-1.195	15	10.305	4	0	1	.021	4	0	15
340			min	-1967.585	3	-5.071	4	0	1	0	4	0	1	002	4
341		19	max	1850.163	2	-1.376	15	10.845	4	0	1_	.025	4	0	1
342			min	-1967.712	3	-5.841	4	0	1	0	4	0	1	0	1
343	M8	1		3489.365	1	0	1	0	1	0	1	.016	4	0	1
344			min	-973.406	3	0	1	-245.916	4	0	1	0	1	0	1
345		2	max	3489.535	1	0	1	0	1	0	1	0	1	0	1
346			min	-973.278	3	0	1	-246.064	4	0	1	012	4	0	1
347		3	max	3489.706	1	0	1	0	1	0	1	0	1	0	1
348			min	-973.15	3	0	1	-246.211	4	0	1	041	4	0	1
349		4	max	3489.876	1	0	1	0	1	0	1	0	1	0	1
350				-973.023	3	0	1	-246.359	4	0	1	069	4	0	1
351		5		3490.047	1	0	1	0	1	0	1	0	1	0	1
352				-972.895		0	1	-246.507	4	0	1	097	4	0	1
353		6		3490.217	1	0	1	0	1	0	1	0	1	0	1
354				-972.767	3	0	1	-246.654		0	1	126	4	0	1
355		7		3490.387	1	0	1	0	1	0	1	0	1	0	1
356				-972.639		0	1	-246.802		0	1	154	4	0	1
357		8		3490.558	1	0	1	0	1	0	1	0	1	0	1
358				-972.512	3	0	1	-246.949		0	1	182	4	0	1
359		9		3490.728	1	0	1	0	1	0	1	0	1	0	1
360				-972.384		0	1	-247.097		0	1	211	4	0	1
300			1111111	012.004	J	U		Z71.U31		U		.411			

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

361	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
363	1 1 1 1 1 1 1 1 1 1 1 1 1
365	1 1 1 1 1 1 1 1 1 1 1
366	1 1 1 1 1 1 1 1 1
366	1 1 1 1 1 1 1 1 1
367	1 1 1 1 1 1 1 1
368	1 1 1 1 1 1 1
369	1 1 1 1 1
370	1 1 1 1
371	1 1 1
372	1
373	1
374	_
375	1
376	
377	1
378	1
379	1
Min Min	1
M10	1
Min -1316.108 3 .447 15 -57.611 4 0 5 0 3 0 383 2 max 1103.623 1 1.949 6 039 12 0 1 0 10 0 0 384 min -1315.824 3 .439 15 -57.941 4 0 5 015 4 0 385 3 max 1104.002 1 1.916 6 039 12 0 1 0 12 0 386 min -1315.54 3 .432 15 -58.27 4 0 5 03 4 0 387 4 max 1104.381 1 1.883 6 039 12 0 1 0 12 0 388 min -1315.255 3 .424 15 -58.599 4 0 5 045 4 001 389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.971 3 .416 15 -58.929 4 0 5 06 4 002 391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0 392 min -1314.686 3 .408 15 -59.258 4 0 5 075 4 002 393 7 max 1105.519 1 1.782 6 039 12 0 1 0 12 0 394 min -1314.402 3 .4 15 -59.588 4 0 5 075 4 002 395 8 max 1105.898 1 1.749 6 039 12 0 1 0 12 0 396 min -1314.117 3 .392 15 -59.917 4 0 5 105 4 003 397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.838 3 .385 15 -60.247 4 0 5 121 4 004 399 10 max 1106.657 1 1.682 6 039 12 0 1 0 12 0 400 min -1313.548 3 .377 15 -60.576 4 0 5 136 4 004 401 11 max 1107.036 1 1.649 6 039 12 0 1 0 12 001 401	1
383 2 max 1103.623 1 1.949 6 039 12 0 1 0 10 0 384 min -1315.824 3 .439 15 -57.941 4 0 5 015 4 0 385 3 max 1104.002 1 1.916 6 039 12 0 1 0 12 0 386 min -1315.54 3 .432 15 -58.27 4 0 5 03 4 0 387 4 max 1104.381 1 1.883 6 039 12 0 1 0 12 0 388 min -1315.255 3 .424 15 -58.599 4 0 5 045 4 001 389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.402	1
384 min -1315.824 3 .439 15 -57.941 4 0 5 015 4 0 385 3 max 1104.002 1 1.916 6 039 12 0 1 0 12 0 386 min -1315.54 3 .432 15 -58.27 4 0 5 03 4 0 387 4 max 1104.381 1 1.883 6 039 12 0 1 0 12 0 388 min -1315.255 3 .424 15 -58.599 4 0 5 045 4 001 389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.971 3 .416 15 -58.929 4 0 5 06	1
385 3 max 1104.002 1 1.916 6 039 12 0 1 0 12 0 386 min -1315.54 3 .432 15 -58.27 4 0 5 03 4 0 387 4 max 1104.381 1 1.883 6 039 12 0 1 0 12 0 388 min -1315.255 3 .424 15 -58.599 4 0 5 045 4 001 389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.971 3 .416 15 -58.929 4 0 5 06 4 002 391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0	15
386 min -1315.54 3 .432 15 -58.27 4 0 5 03 4 0 387 4 max 1104.381 1 1.883 6 039 12 0 1 0 12 0 388 min -1315.255 3 .424 15 -58.599 4 0 5 045 4 001 389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.971 3 .416 15 -58.929 4 0 5 06 4 002 391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0 392 min -1314.686 3 .408 15 -59.258 4 0 5 075	6
387 4 max 1104.381 1 1.883 6 039 12 0 1 0 12 0 388 min -1315.255 3 .424 15 -58.599 4 0 5 045 4 001 389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.971 3 .416 15 -58.929 4 0 5 06 4 002 391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0 392 min -1314.686 3 .408 15 -59.258 4 0 5 075 4 002 393 7 max 1105.519 1 1.782 6 039 12 0 1	15
388 min -1315.255 3 .424 15 -58.599 4 0 5 045 4 001 389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.971 3 .416 15 -58.929 4 0 5 06 4 002 391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0 392 min -1314.686 3 .408 15 -59.258 4 0 5 075 4 002 393 7 max 1105.519 1 1.782 6 039 12 0 1 0 12 0 394 min -1314.402 3 .4 15 -59.588 4 0 5 09	6
389 5 max 1104.761 1 1.849 6 039 12 0 1 0 12 0 390 min -1314.971 3 .416 15 -58.929 4 0 5 06 4 002 391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0 392 min -1314.686 3 .408 15 -59.258 4 0 5 075 4 002 393 7 max 1105.519 1 1.782 6 039 12 0 1 0 12 0 394 min -1314.402 3 .4 15 -59.588 4 0 5 09 4 003 395 8 max 1105.898 1 1.749 6 039 12 0 1	15
390 min -1314.971 3 .416 15 -58.929 4 0 5 06 4 002 391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0 392 min -1314.686 3 .408 15 -59.258 4 0 5 075 4 002 393 7 max 1105.519 1 1.782 6 039 12 0 1 0 12 0 394 min -1314.402 3 .4 15 -59.588 4 0 5 09 4 003 395 8 max 1105.898 1 1.749 6 039 12 0 1 0 12 0 396 min -1314.117 3 .392 15 -59.917 4 0 5 105	6
391 6 max 1105.14 1 1.816 6 039 12 0 1 0 12 0 392 min -1314.686 3 .408 15 -59.258 4 0 5 075 4 002 393 7 max 1105.519 1 1.782 6 039 12 0 1 0 12 0 394 min -1314.402 3 .4 15 -59.588 4 0 5 09 4 003 395 8 max 1105.898 1 1.749 6 039 12 0 1 0 12 0 396 min -1314.117 3 .392 15 -59.917 4 0 5 105 4 003 397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.833 3 .385 <	15
392 min -1314.686 3 .408 15 -59.258 4 0 5 075 4 002 393 7 max 1105.519 1 1.782 6 039 12 0 1 0 12 0 394 min -1314.402 3 .4 15 -59.588 4 0 5 09 4 003 395 8 max 1105.898 1 1.749 6 039 12 0 1 0 12 0 396 min -1314.117 3 .392 15 -59.917 4 0 5 105 4 003 397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.833 3 .385 15 -60.247 4 0 5 121 <td>6</td>	6
393 7 max 1105.519 1 1.782 6 039 12 0 1 0 12 0 394 min -1314.402 3 .4 15 -59.588 4 0 5 09 4 003 395 8 max 1105.898 1 1.749 6 039 12 0 1 0 12 0 396 min -1314.117 3 .392 15 -59.917 4 0 5 105 4 003 397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.833 3 .385 15 -60.247 4 0 5 121 4 004 399 10 max 1106.657 1 1.682 6 039 12 0 1	15
394 min -1314.402 3 .4 15 -59.588 4 0 5 09 4 003 395 8 max 1105.898 1 1.749 6 039 12 0 1 0 12 0 396 min -1314.117 3 .392 15 -59.917 4 0 5 105 4 003 397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.833 3 .385 15 -60.247 4 0 5 121 4 004 399 10 max 1106.657 1 1.682 6 039 12 0 1 0 12 0 400 min -1313.548 3 .377 15 -60.576 4 0 5 136 </td <td>6</td>	6
395 8 max 1105.898 1 1.749 6 039 12 0 1 0 12 0 396 min -1314.117 3 .392 15 -59.917 4 0 5 105 4 003 397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.833 3 .385 15 -60.247 4 0 5 121 4 004 399 10 max 1106.657 1 1.682 6 039 12 0 1 0 12 0 400 min -1313.548 3 .377 15 -60.576 4 0 5 136 4 004 401 11 max 1107.036 1 1.649 6 039 12 0 1 <td>15</td>	15
396 min -1314.117 3 .392 15 -59.917 4 0 5 105 4 003 397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.833 3 .385 15 -60.247 4 0 5 121 4 004 399 10 max 1106.657 1 1.682 6 039 12 0 1 0 12 0 400 min -1313.548 3 .377 15 -60.576 4 0 5 136 4 004 401 11 max 1107.036 1 1.649 6 039 12 0 1 0 12 001	6
397 9 max 1106.278 1 1.716 6 039 12 0 1 0 12 0 398 min -1313.833 3 .385 15 -60.247 4 0 5 121 4 004 399 10 max 1106.657 1 1.682 6 039 12 0 1 0 12 0 400 min -1313.548 3 .377 15 -60.576 4 0 5 136 4 004 401 11 max 1107.036 1 1.649 6 039 12 0 1 0 12 001	15
398 min -1313.833 3 .385 15 -60.247 4 0 5 121 4 004 399 10 max 1106.657 1 1.682 6 039 12 0 1 0 12 0 400 min -1313.548 3 .377 15 -60.576 4 0 5 136 4 004 401 11 max 1107.036 1 1.649 6 039 12 0 1 0 12 001	6
399 10 max 1106.657 1 1.682 6 039 12 0 1 0 12 0 400 min -1313.548 3 .377 15 -60.576 4 0 5 136 4 004 401 11 max 1107.036 1 1.649 6 039 12 0 1 0 12 001	15
400 min -1313.548 3 .377 15 -60.576 4 0 5 136 4 004 401 11 max 1107.036 1 1.649 6 039 12 0 1 0 12 001	6
401 11 max 1107.036 1 1.649 6039 12 0 1 0 12001	15
	6
	15
402 min -1313.264 3 .369 15 -60.906 4 0 5152 4005	6
403 12 max 1107.416 1 1.615 6039 12 0 1 0 12001	15
404 min -1312.98 3 .361 15 -61.235 4 0 5167 4005	6
405 13 max 1107.795 1 1.582 6039 12 0 1 0 12001	15
406 min -1312.695 3 .353 15 -61.565 4 0 5183 4005	6
407	15
408 min -1312.411 3 .345 15 -61.894 4 0 5199 4006	6
409 15 max 1108.553 1 1.515 6039 12 0 1 0 12001	15
410 min -1312.126 3 .337 15 -62.224 4 0 5215 4006	6
411 16 max 1108.933 1 1.482 6039 12 0 1 0 12001	15
412 min -1311.842 3 .33 15 -62.553 4 0 5231 4007	6
413 17 max 1109.312 1 1.448 6039 12 0 1 0 12002	15
414 min -1311.557 3 .322 15 -62.882 4 0 5247 4007	6
415 18 max 1109.691 1 1.415 2039 12 0 1 0 12002	15
416 min -1311.273 3 .314 15 -63.212 4 0 5263 4007	6
417	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-1310.988	3	.306	15	-63.541	4	0	5	279	4	008	6
419	M11	1	max	487.881	2	7.955	6	1.211	4	0	1	0	12	.008	6
420			min	-624.291	3	1.859	15	077	1	0	4	02	4	.002	15
421		2	max	487.71	2	7.185	6	1.752	4	0	1	0	12	.005	2
422			min	-624.419	3	1.678	15	077	1	0	4	019	4	0	12
423		3	max	487.54	2	6.415	6	2.292	4	0	1	0	12	.003	2
424			min	-624.547	3	1.497	15	077	1	0	4	018	4	0	3
425		4	max	487.37	2	5.645	6	2.833	4	0	1	0	12	0	2
426			min	-624.675	3	1.316	15	077	1	0	4	017	4	002	3
427		5	max	487.199	2	4.875	6	3.373	4	0	1	0	12	0	15
428			min	-624.802	3	1.135	15	077	1	0	4	016	4	003	3
429		6	max		2	4.105	6	3.914	4	0	1	0	12	001	15
430			min	-624.93	3	.954	15	077	1	0	4	014	4	005	4
431		7	max	486.859	2	3.335	6	4.454	4	0	1	0	12	002	15
432			min	-625.058	3	.773	15	077	1	0	4	013	4	006	4
433		8	max	486.688	2	2.565	6	4.995	4	0	1	0	12	002	15
434			min	-625.186	3	.592	15	077	1	0	4	011	4	008	4
435		9	max		2	1.795	6	5.536	4	0	1	0	12	002	15
436			min	-625.313	3	.411	15	077	1	0	4	009	4	009	4
437		10	max	486.348	2	1.025	6	6.076	4	0	1	0	12	002	15
438			min	-625.441	3	.23	15	077	1	0	4	006	4	009	4
439		11	max		2	.389	2	6.617	4	0	1	0	12	002	15
440			min	-625.569	3	066	3	077	1	0	4	003	4	01	4
441		12	max	486.007	2	132	15	7.157	4	0	1	0	12	002	15
442			min	-625.697	3	516	3	077	1	0	4	0	1	009	4
443		13	max	485.837	2	313	15	7.698	4	0	1	.003	5	002	15
444		1.0	min	-625.825	3	-1.286	4	077	1	0	4	0	1	009	4
445		14	max		2	494	15	8.238	4	0	1	.006	5	002	15
446		17	min	-625.952	3	-2.056	4	077	1	0	4	0	1	008	4
447		15	max		2	675	15	8.779	4	0	1	.01	4	002	15
448		'0	min	-626.08	3	-2.826	4	077	1	0	4	0	1	007	4
449		16	max		2	856	15	9.319	4	0	1	.013	4	001	15
450		'0	min	-626.208	3	-3.596	4	077	1	0	4	0	1	006	4
451		17	max	485.155	2	-1.037	15	9.86	4	0	1	.017	4	001	15
452		11/	min	-626.336	3	-4.366	4	077	1	0	4	0	1	004	4
453		18	max	484.985	2	-1.218	15	10.4	4	0	1	.022	4	0	15
454		10	min	-626.463	3	-5.136	4	077	1	0	4	0	1	002	4
455		19	max		2	-1.399	15	10.941	4	0	1	.026	4	0	1
456		13	min	-626.591	3	-5.906	4	077	1	0	4	0	1	0	1
457	M12	1	max			0	1	9.239	1	0	1	.016	4	0	1
458	IVIIZ	<u> </u>		-279.286		0	1	-247.688		0	1	0	1	0	1
459		2		1226.758	1	0	1	9.239	1	0	1	0	1	0	1
460				-279.158		0	1	-247.836		0	1	012	4	0	1
461		3		1226.928	_ <u></u>	0	1	9.239	1	0	1	.002	1	0	1
462		3		-279.031		0	1	-247.983		0	1	041	4	0	1
463		4		1227.098	<u> </u>	0	1	9.239	1	0	1	.003	1	0	1
464		-	min		3	0	1	-248.131	_	0	1	069	4	0	1
465		5		1227.269	<u> </u>	0	1	9.239	1	0	1	.004	1	0	1
		5			3	0	1	-248.278			1		4	0	1
466		G		-278.775			•			0	1	098		-	
467		6		1227.439	1	0	1	9.239	4	0	1	.005	4	0	1
468		7	min		3	0		-248.426		0		126	_	_	
469		7		1227.609	1	0	1	9.239	1	0	1	.006	1	0	1
470		0		-278.52	3	0	1	-248.574		0	1	155	4	0	1
471		8		1227.78	1	0	1	9.239	1	0	1	.007	1	0	1
472				-278.392	3_	0	1	-248.721		0	1	183	4	0	1
473		9		1227.95	1	0	1	9.239	1	0	1	.008	1	0	1
474			min	-278.264	3	0	1	-248.869	4	0	1	212	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1228.12	1	0	1	9.239	1	0	1	.009	1	0	1
476			min	-278.136	3	0	1	-249.017	4	0	1	24	4	0	1
477		11	max	1228.291	1	0	1	9.239	1	0	1	.01	1	0	1
478			min	-278.009	3	0	1	-249.164	4	0	1	269	4	0	1
479		12		1228.461	1	0	1	9.239	1	0	1	.011	1	0	1
480			min	-277.881	3	0	1	-249.312	4	0	1	298	4	0	1
481		13		1228.631	1	0	1	9.239	1	0	1	.012	1	0	1
482			min		3	0	1	-249.46	4	0	1	326	4	0	1
483		14		1228.802	1	0	1	9.239	1	0	1	.013	1	0	1
484		17	min	-277.625	3	0	1	-249.607	4	0	1	355	4	0	1
485		15		1228.972	1	0	1	9.239	1	0	1	.014	1	0	1
486		13			3	0	1	-249.755	4	0	1	384	4	0	1
		16	min				1				1		1		1
487		16		1229.143	1	0		9.239	1	0		.015		0	_
488		47	min	-277.37	3	0	1	-249.902	4	0	1_	412	4	0	1
489		17		1229.313	1	0	1	9.239	1	0	1	.016	1	0	1
490		10	min	-277.242	3	0	1	-250.05	4	0	1_	441	4	0	1
491		18		1229.483	1	0	1	9.239	1	0	_1_	.018	1	0	1
492			min	-277.114	3	0	1	-250.198	4	0	<u>1</u>	47	4	0	1
493		19	max	1229.654	1	0	1	9.239	1	0	_1_	.019	1	0	1
494			min	-276.987	3	0	1	-250.345	4	0	1	498	4	0	1
495	M1	1	max	157.238	1	734.688	3	50.536	5	0	1_	.224	1	0	3
496			min	-8.611	5	-495.185	1	-93.85	1	0	3	076	5	015	2
497		2	max	157.728	1	733.678	3	51.777	5	0	1	.174	1	.248	1
498			min	-8.382	5	-496.531	1	-93.85	1	0	3	049	5	387	3
499		3	max		3	559.69	1	-1.865	15	0	3	.125	1	.497	1
500			min	-224.803	2	-534.189	3	-93.187	1	0	1	022	5	759	3
501		4	max		3	558.344	1	-1.029	15	0	3	.076	1	.203	1
502			min	-224.313	2	-535.198	3	-93.187	1	0	1	023	5	476	3
503		5	max		3	556.998	1	193	15	0	3	.026	1	004	15
504			min	-223.823	2	-536.208	3	-93.187	1	0	1	023	5	194	3
505		6	max		3	555.652	1	.837	5	0	3	001	12	.089	3
506		Ĭ	min		2	-537.217	3	-93.187	1	0	1	028	4	398	2
507		7	max		3	554.306	1	2.078	5	0	3	003	12	.373	3
508			min	-222.844	2	-538.227	3	-93.187	1	0	1	072	1	681	2
509		8	max	377.188	3	552.96	1	3.32	5	0	3	006	12	.657	3
510		0	min	-222.354	2	-539.237	3	-93.187	1	0	1	121	1	97	1
511		9			3	47.376	2	47.98	5		9	.072	1	.768	3
		9	max						1	0	3		5		
512		40	min		2	.406	15			0		121		<u>-1.106</u>	1
513		10	max	387.808	3	46.03	2	49.221	5	0	9	0	10	.748	3
514		4.4	min	-157.856	2	0	5	-137.592	1	0	3	096	4	-1.128	2
515		11		388.175	3	44.684	2	50.463	5	0	9	004	12		3
516		40		-157.366	2	-1.681	4	-137.592		0	3	084	4	-1.152	2
517		12	max		3	351.745	3	136.927	5	0	2	.12	1	.635	3
518			min	-94.032	10	-632.757	2	-91.067	1	0	3	185	5	-1.021	2
519		13		398.717	3	350.736	3	138.168	5	0	2	.072	1	.449	3
520			min	-93.624	10	-634.103	2	-91.067	1_	0	3	113	5	687	2
521		14		399.084	3	349.726	3	139.41	5	0	2	.024	1	.265	3
522				-93.216	10	-635.449		-91.067	1	0	3	04	5	362	1
523		15	max		3	348.716	3	140.651	5	0	2	.034	5	.08	3
524			min	-92.807	10	-636.795	2	-91.067	1	0	3	025	1	042	1
525		16	max	399.819	3	347.707	3	141.893	5	0	2	.109	5	.32	2
526			min		10	-638.141	2	-91.067	1	0	3	073	1	103	3
527	<u> </u>	17	max	400.186	3	346.697	3	143.134	5	0	2	.184	5	.658	2
528			min	-91.991	10	-639.487	2	-91.067	1	0	3	121	1	287	3
529		18	max		5	648.093	2	-4.63	12	0	5	.165	5	.331	2
530			min		1	-289.457	3	-113.054		0	2	172	1	142	3
531		19	max		5	646.747	2	-4.63	12	0	5	.117	5	.011	3
UUI		10	παλ	10.001		U-10.1 -1 1		T.00	14	·		1 111		.011	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-157.463	1	-290.467	3	-111.813	4	0	2	225	1	012	1
533	M5	1	max	341.084	1	2448.665	3	88.536	5	0	1	0	1	.029	2
534			min	11.132	12	-1678.64	1	0	1	0	4	167	4	0	3
535		2	max	341.574	1	2447.655	3	89.778	5	0	1	0	1	.914	1
536			min	11.377	12	-1679.986	1	0	1	0	4	121	4	-1.293	3
537		3	max	1205.232	3	1697.806	1	38.105	4	0	4	0	1	1.76	1
538			min	-788.495	2	-1706.104	3	0	1	0	1	074	4	-2.534	3
539		4	max	1205.6	3	1696.46	1	39.346	4	0	4	0	1	.864	1
540			min	-788.005	2	-1707.113	3	0	1	0	1	053	4	-1.634	3
541		5		1205.967	3	1695.114	1	40.588	4	0	4	0	1	.012	9
542		<u> </u>	min	-787.515	2	-1708.123	3	0	1	0	1	032	4	733	3
543		6	+	1206.335	3	1693.768	1	41.829	4	0	4	0	1	.169	3
544		<u> </u>	min	-787.025	2	-1709.133	3	0	1	0	1	011	5	956	2
545		7	+	1206.702	3	1692.422	1	43.07	4	0	4	.012	4	1.071	3
546			min	-786.535	2	-1710.142	3	0	1	0	1	0	1	-1.818	1
547		8	max		3	1691.076	1	44.312	4	0	4	.035	4	1.974	3
548		0				-1711.152	3	0	1	0	1		1		1
			min	<u>-786.045</u>	2			_			-	0		-2.711	_
549		9		1223.406	3	158.339	2	154.19	4	0	1	0	1_	2.272	3
550		40	min	-653.42	2	.407	15	0		0	_	168	4_	-3.07	1
551		10	1	1223.774	3	156.993	2	155.432	4	0	1	0	1_	2.2	3
552		4.4	min	-652.93	2	0	15	0	1	0	1_	087	5_	-3.131	2
553		11		1224.141	3	155.647	2	156.673	4	0	1	0	_1_	2.129	3
554			min	-652.44	2	-1.534	6	0	1	0	1	006	5_	-3.213	2
555		12	1	1240.635	3	1107.251	3	192.23	4	0	1	0	_1_	1.869	3
556			min	-519.863	2	-1950.084	2	0	1	0	4	265	4	-2.876	2
557		13	max		3	1106.242	3	193.472	4	0	1_	0	_1_	1.285	3
558			min	-519.373	2	-1951.43	2	0	1	0	4	163	4	-1.847	2
559		14	max	1241.37	3	1105.232	3	194.713	4	0	1_	0	_1_	.701	3
560			min	-518.883	2	-1952.776	2	0	1	0	4	06	4	853	1
561		15	max	1241.738	3	1104.223	3	195.955	4	0	1	.043	4_	.214	2
562			min	-518.393	2	-1954.122	2	0	1	0	4	0	1_	004	13
563		16		1242.105	3	1103.213	3	197.196	4	0	1	.146	_4_	1.246	2
564			min	-517.903	2	-1955.468	2	0	1	0	4	0	_1_	464	3
565		17	max	1242.472	3	1102.204	3	198.438	4	0	1	.251	4	2.278	2
566			min	-517.413	2	-1956.814	2	0	1	0	4	0	1_	-1.046	3
567		18	max	-11.695	12	2184.863	2	0	1_	0	4	.263	4_	1.174	2
568			min	-341.124	1	-993.769	3	-32.777	5	0	1	0	1	547	3
569		19	max	-11.45	12	2183.517	2	0	1	0	4	.246	4	.024	1
570			min	-340.634	1	-994.778	3	-31.535	5	0	1	0	1	022	3
571	M9	1	max	157.238	1	734.688	3	93.85	1	0	3	011	12	0	3
572			min	6.347	12	-495.185	1	4.632	12	0	4	224	1	015	2
573		2	max		1	733.678	3	93.85	1	0	3	009	12	.248	1
574			min	6.592	12	-496.531	1	4.632	12	0	4	174	1	387	3
575		3		375.351	3	559.69	1	93.187	1	0	1	006	12	.497	1
576			min	-224.803	2	-534.189	3	4.59	12	0	3	125	1	759	3
577		4		375.718	3	558.344	1	93.187	1	0	1	004	12	.203	1
578			min		2	-535.198	3	4.59	12	0	3	076	1	476	3
579		5	max	376.086	3	556.998	1	93.187	1	0	1	001	12	004	15
580				-223.823	2	-536.208	3	4.59	12	0	3	032	4	194	3
581		6		376.453	3	555.652	1	93.187	1	0	1	.023	1	.089	3
582			min			-537.217	3	4.59	12	0	3	021	5	398	2
583		7		376.821	3	554.306	1	93.187	1	0	1	.072	1	.373	3
584			min	-222.844	2	-538.227	3	4.59	12	0	3	014	5	681	2
585		8		377.188	3	552.96	1	93.187	1	0	1	.121	1	.657	3
586			min	-222.354	2	-539.237	3	4.59	12	0	3	007	5	97	1
587		9	max		3	47.376	2	137.592	1	0	3	003	12	.768	3
588			min			.412	15	6.57	12	0	9	145	4	-1.106	1
000			111111	100.070		.714	10	0.07	14			+ U	т_	1.100	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	387.808	3	46.03	2	137.592	1	0	3	0	1	.748	3
590			min	-157.856	2	.006	15	6.57	12	0	9	095	4	-1.128	2
591		11	max	388.175	3	44.684	2	137.592	1	0	3	.073	1	.728	3
592			min	-157.366	2	-1.635	6	6.57	12	0	9	06	5	-1.152	2
593		12	max	398.349	3	351.745	3	168.256	4	0	3	006	12	.635	3
594			min	-94.032	10	-632.757	2	4.209	12	0	2	226	4	-1.021	2
595		13	max	398.717	3	350.736	3	169.498	4	0	3	003	12	.449	3
596			min	-93.624	10	-634.103	2	4.209	12	0	2	137	4	687	2
597		14	max	399.084	3	349.726	3	170.739	4	0	3	001	12	.265	3
598			min	-93.216	10	-635.449	2	4.209	12	0	2	047	4	362	1
599		15	max	399.452	3	348.716	3	171.981	4	0	3	.043	4	.08	3
600			min	-92.807	10	-636.795	2	4.209	12	0	2	.001	12	042	1
601		16	max	399.819	3	347.707	3	173.222	4	0	3	.134	4	.32	2
602			min	-92.399	10	-638.141	2	4.209	12	0	2	.003	12	103	3
603		17	max	400.186	3	346.697	3	174.463	4	0	3	.226	4	.658	2
604			min	-91.991	10	-639.487	2	4.209	12	0	2	.006	12	287	3
605		18	max	-6.433	12	648.093	2	99.939	1	0	2	.223	4	.331	2
606			min	-157.953	1	-289.457	3	-80.085	5	0	3	.008	12	142	3
607		19	max	-6.188	12	646.747	2	99.939	1	0	2	.225	1	.011	3
608			min	-157.463	1	-290.467	3	-78.844	5	0	3	.01	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.117	2	.007	3 9.479e-3	2	NC	1	NC	1
2			min	546	4	021	3	003	2 -1.734e-3	3	NC	1	NC	1
3		2	max	0	1	.301	3	.034	1 1.087e-2	2	NC	5	NC	2
4			min	546	4	083	1	016	5 -1.779e-3	3	727.495	3	7123.284	1
5		3	max	0	1	.561	3	.081	1 1.227e-2	2	NC	5	NC	3
6			min	546	4	237	1	019	5 -1.824e-3	3	402.069	3	2924.459	1
7		4	max	0	1	.719	3	.122	1 1.366e-2	2	NC	5	NC	3
8			min	546	4	323	1	013	5 -1.869e-3	3	316.29	3	1938.787	1
9		5	max	0	1	.755	3	.143	1 1.506e-2	2	NC	5	NC	3
10			min	546	4	327	1	003	5 -1.914e-3	3	301.568	3	1654.054	1
11		6	max	0	1	.672	3	.138	1 1.646e-2	2	NC	5	NC	3
12			min	546	4	252	1	.006	15 -1.959e-3	3	337.623	3	1716.665	
13		7	max	0	1	.495	3	.108	1 1.785e-2	2	NC	5	NC	3
14			min	546	4	116	1	.004	10 -2.004e-3	3	453.543	3	2195.861	1
15		8	max	0	1	.27	3	.062	1 1.925e-2	2	NC	4	NC	2
16			min	546	4	.001	15	001	10 -2.049e-3	3	803.632	3	3838.375	1
17		9	max	0	1	.212	2	.022	3 2.064e-2	2	NC	4	NC	1
18			min	546	4	.005	15	006	10 -2.094e-3	3	2458.139	2	NC	1
19		10	max	0	1	.273	2	.021	3 2.204e-2	2	NC	3	NC	1
20			min	546	4	026	3	014	2 -2.14e-3	3	1499.868	2	NC	1
21		11	max	0	12	.212	2	.022	3 2.064e-2	2	NC	4	NC	1
22			min	546	4	.005	15	013	5 -2.094e-3	3	2458.139	2	NC	1
23		12	max	0	12	.27	3	.062	1 1.925e-2	2	NC	4	NC	2
24			min	546	4	.001	15	013	5 -2.049e-3	3	803.632	3	3838.375	1
25		13	max	0	12	.495	3	.108	1 1.785e-2	2	NC	5	NC	3
26			min	546	4	116	1	005	5 -2.004e-3	3	453.543	3	2195.861	1
27		14	max	0	12	.672	3	.138	1 1.646e-2	2	NC	5	NC	3
28			min	546	4	252	1	.005	15 -1.959e-3	3	337.623	3	1716.665	1
29		15	max	0	12	.755	3	.143	1 1.506e-2	2	NC	5	NC	3
30			min	546	4	327	1	.009	10 -1.914e-3	3	301.568	3	1654.054	1
31		16	max	0	12	.719	3	.122	1 1.366e-2	2	NC	5	NC	3
32			min	546	4	323	1	.008	10 -1.869e-3	3	316.29	3	1938.787	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
33		17	max	0	12	.561	3	.081	1 1.227e-2	2	NC	5	NC	3
34			min	546	4	237	1	.005	10 -1.824e-3	3	402.069	3	2924.459	1
35		18	max	0	12	.301	3	.034	1 1.087e-2	2	NC	5	NC	2
36			min	546	4	083	1	0	10 -1.779e-3	3	727.495	3	7123.284	1
37		19	max	0	12	.117	2	.007	3 9.479e-3	2	NC	1	NC	1
38			min	546	4	021	3	003	2 -1.734e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.228	3	.006	3 5.596e-3	2	NC	1	NC	1
40			min	422	4	367	2	003	2 -4.09e-3	3	NC	1	NC	1
41		2	max	0	1	.544	3	.024	1 6.7e-3	2	NC	5	NC	1
42			min	422	4	688	1	023	5 -4.971e-3	3	721.992	1	9550.644	5
43		3	max	0	1	.813	3	.065	1 7.803e-3	2	NC	5	NC	3
44			min	422	4	968	1	028	5 -5.852e-3	3	387.615	1	3666.148	1
45		4	max	0	1	.999	3	.104	1 8.906e-3	2	NC	15	NC	3
46			min	422	4	-1.172	1	019	5 -6.733e-3	3	289.597	1	2273.105	1
47		5	max	0	1	1.088	3	.127	1 1.001e-2	2	NC	15	NC	3
48			min	422	4	-1.285	1	003	5 -7.613e-3	3	253.972	1	1869.532	1
49		6	max	0	1	1.079	3	.125	1 1.111e-2	2	NC	15	NC	3
50			min	422	4	-1.307	1	.007	10 -8.494e-3	3	248.142	1	1895.481	1
51		7	max	0	1	.989	3	.1	1 1.222e-2	2	NC	15	NC	3
52			min	422	4	-1.251	1	.004	10 -9.375e-3	3	263.728	1	2384.264	1
53		8	max	0	1	.853	3	.058	1 1.332e-2	2	NC	15	NC	2
54			min	422	4	-1.148	1	001	10 -1.026e-2	3	298.659	1	4107.753	1
55		9	max	0	1	.719	3	.031	4 1.442e-2	2	NC	15	NC	1
56		<u> </u>	min	422	4	-1.04	2	006	10 -1.114e-2	3	346.134	1	7474.654	_
57		10	max	0	1	.657	3	.019	3 1.553e-2	2	NC	5	NC	1
58		10	min	422	4	994	2	013	2 -1.202e-2	3	373.65	2	NC	1
59		11	max	0	12	.719	3	.02	3 1.442e-2	2	NC	15	NC	1
60			min	422	4	-1.04	2	023	5 -1.114e-2	3	346.134	1	NC	1
61		12	max	0	12	.853	3	.058	1 1.332e-2	2	NC	15	NC	2
62		12	min	422	4	-1.148	1	027	5 -1.026e-2	3	298.659	1	4107.753	1
63		13	max	0	12	.989	3	<u>027</u> .1	1 1.222e-2	2	NC	15	NC	3
64		13	min	422	4	-1.251	1	017	5 -9.375e-3	3	263.728	1	2384.264	1
65		14		<u>422</u> 0	12	1.079	3	.125	1 1.111e-2		NC	15	NC	3
		14	max	422		-1.307	1		15 -8.494e-3	3	248.142	1	1895.481	1
66		4.5	min		4		_	0						3
67		15	max	0	12	1.088	3	.127	1 1.001e-2	2	NC 252.072	15	NC 1000 F33	3
68		40	min	422	4	-1.285	1	.008	10 -7.613e-3	3	253.972	1_	1869.532	1
69		16	max	0	12	.999	3	.104	1 8.906e-3	2	NC 000 F07	15	NC	3
70		47	min	422	4	<u>-1.172</u>	1	.007	10 -6.733e-3	3	289.597	1_	2273.105	
71		17	max	0	12	.813	3	.065	1 7.803e-3	2	NC	5	NC	3
72		10	min	422	4	<u>968</u>	1	.003	10 -5.852e-3	3	387.615	1	3666.148	1
73		18		0	12	.544	3	.032	4 6.7e-3	2	NC To a coo	5	NC	1
74			min	423	4	688	1	0	10 -4.971e-3	3	721.992	1	7231.523	
75		19	max	0	12	.228	3	.006	3 5.596e-3	2	NC	1	NC	1
76			min	423	4	367	2	003	2 -4.09e-3	3	NC	1	NC	1
77	M15	1_	max	0	12	.233	3	.006	3 3.465e-3	3_	NC	1_	NC	1_
78			min	351	4	367	2	003	2 -5.793e-3	2	NC	1	NC	1
79		2	max	0	12	.435	3	.024	1 4.214e-3	3	NC	5	NC	1
80			min	351	4	757	2	033	5 -6.938e-3	2	600.468	2	6914.284	
81		3	max	0	12	.611	3	.065	1 4.964e-3	3	NC	5	NC	3
82			min	351	4	-1.089	2	04	5 -8.083e-3	2	323.899	2	3655.066	1
83		4	max	0	12	.742	3	.105	1 5.713e-3	3	NC	15	NC	3
84			min	351	4	-1.326	2	029	5 -9.227e-3	2	243.964	2	2267.496	1
85		5	max	0	12	.819	3	.127	1 6.462e-3	3	NC	15	NC	3
86			min	351	4	-1.447	2	007	5 -1.037e-2	2	216.628	2	1865.111	1
87		6	max	0	12	.841	3	.125	1 7.211e-3	3	NC	15	NC	3
88			min	351	4	-1.452	2	.007	10 -1.152e-2	2	215.59		1890.531	1
89		7	max	0	12	.815	3	.1	1 7.961e-3	3	NC	15	NC	3
		•			-									$\overline{}$

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

133 10 max 0 1 .247 1 .015 3 1.573e-2 3 NC 5 NC 1 134 min 142 4 201 3 011 2 -1.858e-2 1 1683.444 1 NC 1 135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1 136 min 142 4 162 3 02 5 -1.744e-2 1 2758.356 3 NC 1 137 12 max 0 1 .015 9 .063 1 1.36e-2 3 NC 3 NC 2		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
93															
93			8												
95															
95			9		-										
96			40												
98			10												
98			4.4							2 -1.61e-2					
99			11		_					3 9.459e-3					_
100			40												
101			12			-									
102			40												_
103			13												3
104			4.4												1
105			14		-					1 7.211e-3					3
106			4.5												1
107			15												
108			10												
109			16												3
110															1
111			17			-									
112															
113			18												_
114													_		
115 M16			19		-										_
116															
117		<u>M16</u>	1					+							_
118															_
119 3 max 0 12 .117 3 .081 1 8.274e-3 3 NC 5 NC 3 120 min 142 4 372 2 031 5 -1.061e-2 1 492.213 2 2930.959 1 121 4 max 0 12 .161 3 .122 1 9.339e-3 3 NC 5 NC 3 122 min 142 4 493 2 023 5 -1.175e-2 1 392.395 2 1939.018 1 123 5 max 0 12 .158 3 .143 1 1.04e-2 3 NC 5 NC 3 124 4 142 4 508 2 008 5 -1.289e-2 1 38.044 2 1651.095 1 126 min 142 4 419			2		_										
120				min							•				
121 4 max 0 12 .161 3 .122 1 9.339e-3 3 NC 5 NC 3 122 min 142 4 493 2 023 5 -1.175e-2 1 392.395 2 1939.018 1 123 5 max 0 12 .158 3 .143 1 1.04e-2 3 NC 5 NC 3 124 min 142 4 508 2 008 5 -1.289e-2 1 383.044 2 1651.095 1 125 6 max 0 12 .11 3 .138 1 1.147e-2 3 NC 5 NC 3 126 min 142 4 419 2 .006 15 -1.402e-2 1 448.264 2 1709.405 1 127 7 max 0 12			3												
122															
123 5 max 0 12 .158 3 .143 1 1.04e-2 3 NC 5 NC 3 124 min 142 4 508 2 008 5 -1.289e-2 1 383.044 2 1651.095 1 125 6 max 0 12 .11 3 .138 1 1.147e-2 3 NC 5 NC 3 126 min 142 4 419 2 .006 15 -1.402e-2 1 448.264 2 1709.405 1 127 7 max 0 12 .026 3 .109 1 1.253e-2 3 NC 5 NC 3 128 min 142 4 249 2 .005 10 -1.516e-2 1 664.591 2 2177.177 1 129 8 max 0 12			4		-					1 9.339e-3	3_				3
124 min 142 4 508 2 008 5 -1.289e-2 1 383.044 2 1651.095 1 125 6 max 0 12 .11 3 .138 1 1.147e-2 3 NC 5 NC 3 126 min 142 4 419 2 .006 15 -1.402e-2 1 448.264 2 1709.405 1 127 7 max 0 12 .026 3 .109 1 1.253e-2 3 NC 5 NC 3 128 min 142 4 249 2 .005 10 -1.516e-2 1 664.591 2 2177.177 1 129 8 max 0 12 .015 9 .063 1 1.36e-2 3 NC 3 NC 2 130 min 142 4 0				min	142										
125 6 max 0 12 .11 3 .138 1 1.147e-2 3 NC 5 NC 3 126 min 142 4 419 2 .006 15 -1.402e-2 1 448.264 2 1709.405 1 127 7 max 0 12 .026 3 .109 1 1.253e-2 3 NC 5 NC 3 128 min 142 4 249 2 .005 10 -1.516e-2 1 664.591 2 2177.177 1 129 8 max 0 12 .015 9 .063 1 1.36e-2 3 NC 3 NC 2 130 min 142 4 074 3 0 10 -1.63e-2 1 1636.163 2 3763.493 1 131 9 max 0 12			5		-	12					3_				3
126 min 142 4 419 2 .006 15 -1.402e-2 1 448.264 2 1709.405 1 127 7 max 0 12 .026 3 .109 1 1.253e-2 3 NC 5 NC 3 128 min 142 4 249 2 .005 10 -1.516e-2 1 664.591 2 2177.177 1 129 8 max 0 12 .015 9 .063 1 1.36e-2 3 NC 3 NC 2 130 min 142 4 074 3 0 10 -1.63e-2 1 1636.163 2 3763.493 1 131 9 max 0 12 .17 1 .028 4 1.466e-2 3 NC 4 NC 1 132 min 142 4 162<				min							_				1
127 7 max 0 12 .026 3 .109 1 1.253e-2 3 NC 5 NC 3 128 min 142 4 249 2 .005 10 -1.516e-2 1 664.591 2 2177.177 1 129 8 max 0 12 .015 9 .063 1 1.36e-2 3 NC 3 NC 2 130 min 142 4 074 3 0 10 -1.63e-2 1 1636.163 2 3763.493 1 131 9 max 0 12 .17 1 .028 4 1.466e-2 3 NC 4 NC 1 132 min 142 4 162 3 005 10 -1.744e-2 1 2758.356 3 8336.655 4 133 10 max 0 1			6												
128 min 142 4 249 2 .005 10 -1.516e-2 1 664.591 2 2177.177 1 129 8 max 0 12 .015 9 .063 1 1.36e-2 3 NC 3 NC 2 130 min 142 4 074 3 0 10 -1.63e-2 1 1636.163 2 3763.493 1 131 9 max 0 12 .17 1 .028 4 1.466e-2 3 NC 4 NC 1 132 min 142 4 162 3 005 10 -1.744e-2 1 2758.356 3 8336.655 4 133 10 max 0 1 .247 1 .015 3 1.573e-2 3 NC 5 NC 1 134 min 142 4 20				min	142										
129 8 max 0 12 .015 9 .063 1 1.36e-2 3 NC 3 NC 2 130 min 142 4 074 3 0 10 -1.63e-2 1 1636.163 2 3763.493 1 131 9 max 0 12 .17 1 .028 4 1.466e-2 3 NC 4 NC 1 132 min 142 4 162 3 005 10 -1.744e-2 1 2758.356 3 8336.655 4 133 10 max 0 1 .247 1 .015 3 1.573e-2 3 NC 5 NC 1 134 min 142 4 201 3 011 2 -1.858e-2 1 1683.444 1 NC 1 135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1<			7					1			3				3
130 min 142 4 074 3 0 10 -1.63e-2 1 1636.163 2 3763.493 1 131 9 max 0 12 .17 1 .028 4 1.466e-2 3 NC 4 NC 1 132 min 142 4 162 3 005 10 -1.744e-2 1 2758.356 3 8336.655 4 133 10 max 0 1 .247 1 .015 3 1.573e-2 3 NC 5 NC 1 134 min 142 4 201 3 011 2 -1.858e-2 1 1683.444 1 NC 1 135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1 136 min 142 4 162 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>				min		-									1
131 9 max 0 12 .17 1 .028 4 1.466e-2 3 NC 4 NC 1 132 min 142 4 162 3 005 10 -1.744e-2 1 2758.356 3 8336.655 4 133 10 max 0 1 .247 1 .015 3 1.573e-2 3 NC 5 NC 1 134 min 142 4 201 3 011 2 -1.858e-2 1 1683.444 1 NC 1 135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1 136 min 142 4 162 3 02 5 -1.744e-2 1 2758.356 3 NC 1 137 12 max 0 1 .015 9 .063 1 1.36e-2 3 NC 3 NC 2			8					9							
132 min 142 4 162 3 005 10 -1.744e-2 1 2758.356 3 8336.655 4 133 10 max 0 1 .247 1 .015 3 1.573e-2 3 NC 5 NC 1 134 min 142 4 201 3 011 2 -1.858e-2 1 1683.444 1 NC 1 135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1 136 min 142 4 162 3 02 5 -1.744e-2 1 2758.356 3 NC 1 137 12 max 0 1 .015 9 .063 1 1.36e-2 3 NC 3 NC 2				min									2		
133 10 max 0 1 .247 1 .015 3 1.573e-2 3 NC 5 NC 1 134 min 142 4 201 3 011 2 -1.858e-2 1 1683.444 1 NC 1 135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1 136 min 142 4 162 3 02 5 -1.744e-2 1 2758.356 3 NC 1 137 12 max 0 1 .015 9 .063 1 1.36e-2 3 NC 3 NC 2			9		-						3_				_
134 min 142 4 201 3 011 2 -1.858e-2 1 1683.444 1 NC 1 135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1 136 min 142 4 162 3 02 5 -1.744e-2 1 2758.356 3 NC 1 137 12 max 0 1 .015 9 .063 1 1.36e-2 3 NC 3 NC 2				min	142	4		3			1_		3		4
135 11 max 0 1 .17 1 .018 1 1.466e-2 3 NC 4 NC 1 136 min 142 4 162 3 02 5 -1.744e-2 1 2758.356 3 NC 1 137 12 max 0 1 .015 9 .063 1 1.36e-2 3 NC 3 NC 2			10		-	1					3		5		1
136 min 142 4 162 3 02 5 -1.744e-2 1 2758.356 3 NC 1 137 12 max 0 1 .015 9 .063 1 1.36e-2 3 NC 3 NC 2					142	4		3			_		_		-
137			11	max		1			.018		3				_
	136			min	142	4	162	3	02	5 -1.744e-2	1		3		
	137		12	max	0	1	.015		.063		3		3		2
	138			min	142	4	074	3	021		1	1636.163	2	3763.493	1
	139		13	max		1	.026		.109	1 1.253e-2	3		5	NC	3
140 min142 4249 201 5 -1.516e-2 1 664.591 2 2177.177 1				min	142	4					1				-
141	141		14	max	0	1	.11	3	.138	1 1.147e-2	3	NC	5	NC	3
142 min142 4419 2 .005 15 -1.402e-2 1 448.264 2 1709.405 1	142			min	142	4	419	2	.005		1	448.264	2	1709.405	1
	143		15	max	0	1	.158	3	.143		3	NC	5	NC	3
144 min142 4508 2 .01 10 -1.289e-2 1 383.044 2 1651.095 1				min	142	4					1	383.044	2	1651.095	1
			16		0	1		3			3		5		3
146 min142 4493 2 .009 10 -1.175e-2 1 392.395 2 1939.018 1	146				142	4	493	2	.009		1	392.395	2	1939.018	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.117	3	.081	1	8.274e-3	3_	NC	5	NC	3
148			min	142	4	372	2	.005	10	-1.061e-2	1_	492.213	2	2930.959	
149		18	max	0	1	.032	3	.037	4	7.209e-3	3_	NC	5	NC	2
150			min	142	4	161	2	.001	10	-9.47e-3	1_	884.272	2	6325.042	4
151		19	max	0	1	.108	1	.005	3	6.144e-3	3	NC	_1_	NC	1
152			min	142	4	077	3	003	2	-8.332e-3	1_	NC	1_	NC	1
153	<u>M2</u>	1	max	.006	1	.005	2	.007	1	1.332e-3	5	NC	_1_	NC	2
154			min	007	3	009	3	515	4	-1.921e-4	1_	NC	_1_	107.513	4
155		2	max	.006	1	.004	2	.007	1	1.421e-3	_5_	NC	1_	NC	2
156			min	007	3	009	3	473	4	-1.792e-4	<u>1</u>	NC	_1_	117.103	4
157		3	max	.005	1	.004	2	.006	1	1.511e-3	5	NC	_1_	NC	2
158			min	006	3	008	3	431	4	-1.664e-4	_1_	NC	1_	128.499	4
159		4	max	.005	1	.003	2	.005	1	1.6e-3	5	NC	1	NC	1
160			min	006	3	008	3	389	4	-1.535e-4	1_	NC	1_	142.171	4
161		5	max	.005	1	.002	2	.005	1	1.689e-3	_5_	NC	_1_	NC	1
162			min	005	3	008	3	349	4	-1.406e-4	<u>1</u>	NC	1_	158.759	4
163		6	max	.004	1	.002	2	.004	1	1.778e-3	5	NC	_1_	NC	1
164		_	min	005	3	007	3	309	4	-1.278e-4	_1_	NC	1_	179.152	4
165		7	max	.004	1	.001	2	.004	1	1.867e-3	_5_	NC	_1_	NC	1
166		_	min	005	3	007	3	271	4	-1.149e-4	1_	NC	1_	204.609	4
167		8	max	.004	1	0	2	.003	1	1.956e-3	5_	NC	1	NC	1
168		_	min	004	3	006	3	234	4	-1.02e-4	_1_	NC	1_	236.97	4
169		9	max	.003	1	0	2	.003	1	2.049e-3	4	NC	1	NC	1
170			min	004	3	006	3	198	4	-8.913e-5	1_	NC	1_	279.001	4
171		10	max	.003	1	0	2	.002	1	2.143e-3	4_	NC	_1_	NC	1
172			min	003	3	006	3	165	4	-7.625e-5	_1_	NC	1_	335.033	4
173		11	max	.003	1	0	15	.002	1	2.237e-3	_4_	NC	_1_	NC	1
174			min	003	3	005	3	134	4	-6.338e-5	_1_	NC	<u>1</u>	412.149	4
175		12	max	.002	1	0	15	.001	1	2.33e-3	4_	NC	_1_	NC	1
176			min	003	3	005	3	106	4	-5.05e-5	_1_	NC	1_	522.609	4
177		13	max	.002	1	0	15	.001	1	2.424e-3	4	NC	1	NC	1
178			min	002	3	004	3	08	4	-3.763e-5	_1_	NC	1_	689.184	4
179		14	max	.002	1	0	15	0	1	2.518e-3	_4_	NC	1	NC	1
180			min	002	3	004	3	058	4	-2.475e-5	_1_	NC	1_	958.24	4
181		15	max	.001	1	0	15	0	1	2.612e-3	_4_	NC	_1_	NC	1
182			min	002	3	003	3	039	4	-1.188e-5	_1_	NC	1_	1436.783	
183		16	max	0	1	0	15	0	1	2.706e-3	4	NC	1	NC	1
184			min	001	3	002	3	023	4	-4.712e-7	3	NC	_1_	2421.125	4
185		17	max	0	1	0	15	0	1	2.799e-3	4_	NC	_1_	NC	1
186		1.0	min	0	3	002	3	011	4	3.665e-7	12	NC	1_	5012.969	
187		18	max	0	1	0	15	0	1	2.893e-3		NC	1	NC	1
188		1.0	min	0	3	0	3	003	4	1.013e-6	12	NC	1_	NC	1
189		19	max	0	1	0	1	0	1	2.987e-3	4_	NC	1_	NC NC	1
190	1.40		min	0	1	0	1	0	1	1.66e-6	12	NC	1_	NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-5.349e-7	12	NC	1_	NC	1
192		_	min	0	1	0	1	0	1	-7.031e-4	4	NC	1_	NC	1
193		2	max	0	3	0	15	.014	4	9.532e-6	_1_	NC	1	NC	1
194			min	0	2	002	6	0	12	-6.875e-5	_5_	NC	1_	NC	1
195		3	max	0	3	0	15	.028	4	5.698e-4	4	NC		NC NC	1
196			min	0	2	003	6	0	12	1.438e-6	<u>12</u>	NC NC	1_	NC NC	1
197		4	max	0	3	001	15	.04	4	1.206e-3	4	NC NC	1	NC NC	1
198			min	0	2	005	6	0	12	2.425e-6	12	NC	1_	NC NC	1
199		5_	max	.001	3	001	15	.052	4	1.843e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	3.411e-6	12	NC	1_	8864.577	5
201		6	max	.002	3	002	15	.063	4	2.479e-3	4	NC	1_	NC	1
202			min	001	2	009	6	0	12	4.398e-6	12	NC	1_	8328.093	
203		7	max	.002	3	002	15	.074	4	3.116e-3	4	NC	_1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

205 8 max .002 3002 15 .084 4 3.752e-3 4 206 min002 2011 6 0 12 6.371e-6 12 81	090.639 6 NC 1	8312.82 5
206 min002 2011 6 0 12 6.371e-6 12 81	NC 1	
		NC 1
		8746.465 5
207 9 max .002 3003 15 .093 4 4.388e-3 4	NC 1	NC 1
	545.536 <u>6</u>	9693.93 5
209	NC 2 258.376 6	NC 1
		NC 1
	NC 2 218.105 6	NC 1
	NC 2	NC 1
	424.474 6	NC 1
215	NC 1	NC 1
	921.718 6	NC 1
217	NC 1	NC 1
	821.915 6	NC 1
219	NC 1	NC 1
220 min003 2009 6 0 12 1.328e-5 12	NC 1	NC 1
221 16 max .005 3001 15 .156 4 8.844e-3 4	NC 1	NC 1
222 min004 2008 1 0 12 1.426e-5 12	NC 1	NC 1
223 17 max .005 3 0 15 .166 4 9.48e-3 4	NC 1	NC 1
224 min004 2006 1 0 12 1.525e-5 12	NC 1	NC 1
225 18 max .005 3 0 15 .177 4 1.012e-2 4	NC 1	NC 1
226 min004 2005 1 0 12 1.624e-5 12	NC 1	NC 1
227 19 max .005 3 0 5 .189 4 1.075e-2 4	NC 1	NC 1
228 min004 2003 1 0 12 1.722e-5 12	NC 1	NC 1
229 M4 1 max .003 1 .004 2 0 12 2.057e-5 1	NC 1	NC 3
230 min 0 3005 3189 4 -5.479e-4 4	NC 1	131.336 4
231 2 max .003 1 .003 2 0 12 2.057e-5 1	NC 1	NC 2
232 min 0 3005 3174 4 -5.479e-4 4	NC 1	142.906 4
233 3 max .003 1 .003 2 0 12 2.057e-5 1	NC 1	NC 2
234 min 0 3005 3158 4 -5.479e-4 4	NC 1	156.669 4
235 4 max .002 1 .003 2 0 12 2.057e-5 1	NC 1	NC 2
236 min 0 3005 3143 4 -5.479e-4 4	NC 1	173.198 4
237 5 max .002 1 .003 2 0 12 2.057e-5 1	NC 1	NC 2
238 min 0 3004 3128 4 -5.479e-4 4	NC 1	193.267 4
239 6 max .002 1 .003 2 0 12 2.057e-5 1	NC 1	NC 2
240 min 0 3004 3114 4 -5.479e-4 4 241 7 max .002 1 .002 2 0 12 2.057e-5 1	NC 1 NC 1	217.951 4 NC 2
	NC 1 NC 1	
	NC 1	248.779 4 NC 2
243 8 max .002 1 .002 2 0 12 2.057e-5 1 244 min 0 3003 3086 4 -5.479e-4 4	NC 1	287.977 4
245 9 max .002 1 .002 2 0 12 2.057e-5 1	NC 1	NC 2
246 min 0 3003 3073 4 -5.479e-4 4	NC 1	338.898 4
247	NC 1	NC 1
248 min 0 3003 3061 4 -5.479e-4 4	NC 1	406.783 4
249 11 max .001 1 .002 2 0 12 2.057e-5 1	NC 1	NC 1
250 min 0 3002 305 4 -5.479e-4 4	NC 1	500.207 4
251	NC 1	NC 1
252 min 0 3002 3039 4 -5.479e-4 4	NC 1	634.003 4
253 13 max 0 1 .001 2 0 12 2.057e-5 1	NC 1	NC 1
254 min 0 3002 303 4 -5.479e-4 4	NC 1	835.707 4
255	NC 1	NC 1
256 min 0 3002 3021 4 -5.479e-4 4	NC 1	1161.338 4
257	NC 1	NC 1
258 min 0 3001 3014 4 -5.479e-4 4	NC 1	1740.039 4
259 16 max 0 1 0 2 0 12 2.057e-5 1	NC 1	NC 1
260 min 0 3 0 3008 4 -5.479e-4 4	NC 1	2928.844 4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	2.057e-5	1	NC	1_	NC	1
262		10	min	0	3	0	3	004	4	-5.479e-4	4	NC	1_	6051.695	4
263		18	max	0	1	0	2	0	12	2.057e-5	1	NC	1_	NC	1
264			min	0	3	0	3	001	4	-5.479e-4	4	NC	1_	NC	1
265		19	max	0	1	00	1	0	1_	2.057e-5	_1_	NC	_1_	NC	1_
266		_	min	0	1	0	1	0	1	-5.479e-4	4	NC	_1_	NC	1
267	<u>M6</u>	1_	max	.019	1	.02	2	0	1_	1.399e-3	_4_	NC	_4_	NC	1
268			min	023	3	029	3	519	4	0	1_	1938.909	3	106.563	4
269		2	max	.018	1	.018	2	0	1	1.487e-3	4	NC	4	NC	1
270			min	022	3	027	3	477	4	0	1_	2055.116	3	116.07	4
271		3	max	.017	1	.016	2	0	1	1.574e-3	4_	NC	4	NC	1
272			min	02	3	025	3	435	4	0	_1_	2186.123	3	127.367	4
273		4	max	.016	1	.015	2	0	1	1.662e-3	_4_	NC	_4_	NC	1_
274			min	019	3	024	3	393	4	0	1	2334.923	3	140.92	4
275		5	max	.015	1	.013	2	0	1	1.749e-3	4	NC	4	NC	1
276			min	018	3	022	3	352	4	0	1	2505.367	3	157.366	4
277		6	max	.014	1	.012	2	0	1	1.837e-3	4	NC	1_	NC	1
278			min	017	3	02	3	312	4	0	1	2702.487	3	177.583	4
279		7	max	.013	1	.01	2	0	1	1.924e-3	4	NC	1	NC	1
280			min	015	3	019	3	273	4	0	1	2932.997	3	202.822	4
281		8	max	.012	1	.009	2	0	1	2.012e-3	4	NC	1	NC	1
282			min	014	3	017	3	236	4	0	1	3206.052	3	234.907	4
283		9	max	.01	1	.007	2	0	1	2.099e-3	4	NC	1	NC	1
284			min	013	3	016	3	2	4	0	1	3534.472	3	276.582	4
285		10	max	.009	1	.006	2	0	1	2.187e-3	4	NC	1	NC	1
286			min	011	3	014	3	167	4	0	1	3936.774	3	332.14	4
287		11	max	.008	1	.005	2	0	1	2.275e-3	4	NC	1	NC	1
288			min	01	3	012	3	135	4	0	1	4440.74	3	408.61	4
289		12	max	.007	1	.004	2	0	1	2.362e-3	4	NC	1	NC	1
290			min	009	3	011	3	107	4	0	1	5090.028	3	518.152	4
291		13	max	.006	1	.003	2	0	1	2.45e-3	4	NC	1	NC	1
292			min	008	3	009	3	081	4	0	1	5957.405	3	683.36	4
293		14	max	.005	1	.002	2	0	1	2.537e-3	4	NC	1	NC	1
294			min	006	3	008	3	058	4	0	1	7173.86	3	950.241	4
295		15	max	.004	1	.001	2	0	1	2.625e-3	4	NC	1	NC	1
296			min	005	3	006	3	039	4	0	1	9001.378	3	1425	4
297		16	max	.003	1	0	2	0	1	2.712e-3	4	NC	1	NC	1
298			min	004	3	005	3	023	4	0	1	NC	1	2401.823	4
299		17	max	.002	1	0	2	0	1	2.8e-3	4	NC	1	NC	1
300			min	003	3	003	3	011	4	0	1	NC	1	4975.066	4
301		18		.001	1	0	2	0	1	2.887e-3	4	NC	1	NC	1
302		1.0	min	001	3	002	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.975e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1717		min	0	1	0	1	0	1	-6.988e-4	4	NC	1	NC	1
307		2	max	0	3	0	2	.014	4	0	1	NC	1	NC	1
308		-	min	0	2	002	3	0	1	-7.673e-5	4	NC	1	NC	1
309		3	max	.002	3	<u>002</u> 0	15	.028	4	5.454e-4	4	NC	1	NC	1
310			min	002	2	005	3	0	1	0	1	NC NC	1	NC	1
311		4	max	.002	3	005 001	15	.04	4	1.168e-3	4	NC NC	1	NC NC	1
312		1	min	003	2	007	3	<u>.04</u> 0	1	0	1	NC	1	9620.958	_
313		5		.003	3	007 002	15	.052	4	1.79e-3	4	NC NC	1	NC	1
314		10	max	004	2	002	3	<u>.052</u>	1	0	1	NC NC	1	8293.115	_
315		6		.005	3	009 002	15	.063	4	2.412e-3	4	NC NC	1	NC	1
316		U	max	005 004	2		3	<u>.063</u>	1	0	<u>4</u> 1	9255.602	3	7741.418	_
		7	min			01			4	Ü					
317		/	max	.006	3	002	15	.073	4	3.034e-3	4	NC	_1_	NC	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
318			min	005	2	012	3	0	1	0	1_	8241.821	3	7665.11	4
319		8	max	.007	3	003	15	.083	4	3.656e-3	4	NC	<u>1</u>	NC	1
320			min	006	2	013	3	0	1	0	1	7638.012	3	7981.211	4
321		9	max	.008	3	003	15	.092	4	4.278e-3	4	NC	1_	NC	1
322			min	007	2	014	3	0	1	0	1	7320.141	3	8722.832	4
323		10	max	.009	3	003	15	.101	4	4.9e-3	4	NC	_1_	NC	1
324			min	008	2	014	3	0	1	0	1	7232.024	3	NC	1
325		11	max	.01	3	003	15	.11	4	5.522e-3	4	NC	1_	NC	1
326			min	009	2	014	3	0	1	0	1	7257.605	4	NC	1
327		12	max	.011	3	003	15	.118	4	6.144e-3	4	NC	1	NC	1
328			min	01	2	013	3	0	1	0	1	7463.14	4	NC	1
329		13	max	.011	3	003	15	.126	4	6.767e-3	4	NC	1_	NC	1
330			min	011	2	012	3	0	1	0	1	7961.223	4	NC	1
331		14	max	.012	3	003	15	.135	4	7.389e-3	4	NC	1	NC	1
332			min	012	2	011	3	0	1	0	1	8864.296	4	NC	1
333		15	max	.013	3	002	15	.143	4	8.011e-3	4	NC	1	NC	1
334			min	013	2	01	1	0	1	0	1	NC	1_	NC	1
335		16	max	.014	3	002	15	.153	4	8.633e-3	4	NC	1_	NC	1
336			min	013	2	009	1	0	1	0	1	NC	1	NC	1
337		17	max	.015	3	001	15	.162	4	9.255e-3	4	NC	1	NC	1
338			min	014	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.016	3	0	15	.173	4	9.877e-3	4	NC	1	NC	1
340			min	015	2	007	1	0	1	0	1	NC	1_	NC	1
341		19	max	.017	3	0	15	.184	4	1.05e-2	4	NC	1	NC	1
342			min	016	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.015	2	0	1	0	1	NC	1	NC	1
344			min	002	3	017	3	184	4	-5.967e-4	4	NC	1	134.774	4
345		2	max	.008	1	.014	2	0	1	0	1	NC	1	NC	1
346			min	002	3	016	3	169	4	-5.967e-4	4	NC	1	146.65	4
347		3	max	.007	1	.013	2	0	1	0	1	NC	1	NC	1
348			min	002	3	015	3	154	4	-5.967e-4	4	NC	1	160.778	4
349		4	max	.007	1	.012	2	0	1	0	1	NC	1	NC	1
350			min	002	3	014	3	14	4	-5.967e-4	4	NC	1	177.744	4
351		5	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
352			min	002	3	013	3	125	4	-5.967e-4	4	NC	1	198.344	4
353		6	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
354			min	002	3	012	3	111	4	-5.967e-4	4	NC	1	223.681	4
355		7	max	.006	1	.01	2	0	1	0	1	NC	1	NC	1
356			min	002	3	011	3	097	4	-5.967e-4	4	NC	1	255.325	4
357		8	max	.005	1	.009	2	0	1	0	1	NC	1	NC	1
358			min	001	3	011	3	084	4	-5.967e-4	4	NC	1	295.559	4
359		9	max	.005	1	.008	2	0	1	0	1	NC	1	NC	1
360			min	001	3	01	3	071	4	-5.967e-4	4	NC	1	347.826	4
361		10	max	.004	1	.007	2	0	1	0	1	NC	1	NC	1
362		l . Č	min	001	3	009	3	059	4	-5.967e-4	4	NC	1	417.507	4
363		11	max	.004	1	.006	2	0	1	0	1	NC	1	NC	1
364			min	001	3	008	3	048	4	-5.967e-4	4	NC	1	513.402	4
365		12	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	007	3	038	4	-5.967e-4	4	NC	1	650.738	4
367		13	max	.003	1	.005	2	<u>.030</u>	1	0	1	NC	1	NC	1
368		10	min	0	3	006	3	029	4	-5.967e-4	4	NC	1	857.778	4
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370		17	min	0	3	005	3	021	4	-5.967e-4	4	NC	1	1192.025	_
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372		13	min	0	3	004	3	014	4	-5.967e-4	4	NC	1	1786.044	
373		16	max	.001	1	.002	2	014 0	1	0	1	NC NC	1	NC	1
374		10	min	0	3	003	3	008	4	-5.967e-4	4	NC	1	3006.325	_
3/4			111111	U	J	003	J	000	4	-J.3076-4	4	INC		3000.323	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
375		17	max	0	1	.002	2	0	1	0	1	NC	1_	NC	1
376			min	0	3	002	3	004	4	-5.967e-4	4	NC	1_	6211.902	4
377		18	max	0	1	0	2	0	1	0	1_	NC	_1_	NC	1
378		40	min	0	3	0	3	001	4	-5.967e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
380	N440	4	min	0	1	0	1	0	1	-5.967e-4	4	NC NC	1_	NC NC	1
381	M10	1	max	.006	1	.005	2	0	12	1.401e-3	4	NC NC	1_	NC 400.740	2
382		_	min	007	3	009	3	<u>519</u>	4	9.981e-6	12	NC NC	<u>1</u> 1	106.712	4
383		2	max	.006	1	.004	2	0	12	1.488e-3	4	NC	1	NC 440 222	2
384		2	min	007	3	009	2	476	12	9.334e-6	12	NC NC		116.232 NC	2
385		3	max	.005	3	.004 008		0		1.575e-3 8.687e-6	4	NC NC	1		4
386		1	min	006			3	434	4		12			127.544	
387		4	max	.005	1	.003	2	0	12	1.662e-3	4	NC NC	1	NC	1
388		-	min	006	3	008	3	392	4	8.041e-6	12	NC NC		141.117	4
389		5	max	.005 005	3	.002	3	0 351	12	1.749e-3	12	NC NC	1	NC 157.585	4
391		6	min	.003	1	008 .002	2	<u>351</u> 0	12	7.394e-6 1.836e-3	4	NC NC	1	NC	1
392		10	max	00 4	3	002 007	3	311	4	6.747e-6	12	NC NC	1	177.831	4
		7	min		1								1		1
393		-	max	.004	3	.001	2	0	12	1.923e-3	4	NC NC	1	NC	-
394 395		8	min	005 .004	1	007 0	2	<u>273</u> 0	12	6.1e-6 2.01e-3	<u>12</u> 4	NC NC	1	203.106 NC	1
396		-	max	004	3	006	3	235	4	5.454e-6	12	NC NC	1	235.236	4
397		9	min	.003	1	<u>006</u> 0	2		12	2.096e-3	4	NC NC	1	NC	1
		9	max	004	3	006	3	0 2				NC NC	1	276.97	4
398		10	min		1	006 0			4	4.807e-6	12	NC NC	1	NC	1
399 400		10	max	.003 003	3	006	3	0 166	12	2.183e-3	12	NC NC	1	332.608	4
401		11	min	.003	1	006 0	2	166 0	12	4.16e-6 2.27e-3	4	NC NC	1	NC	1
401			max		3	005	3	135		3.514e-6	12	NC NC	1		
		12	min	003 .002	1		2		4	2.357e-3		NC NC	1	409.186	1
403		12	max min	003	3	0 005	3	0 107	12	2.867e-6	12	NC NC	1	NC 518.887	4
405		13	max	.002	1	005 0	15	<u>107</u> 0	12	2.444e-3	4	NC NC	1	NC	1
406		13	min	002	3	004	3	081	4	2.22e-6	12	NC	1	684.335	4
407		14	max	.002	1	004	15	<u>061</u> 0	12	2.531e-3	4	NC	1	NC	1
408		14	min	002	3	004	3	058	4	1.574e-6	12	NC	1	951.608	4
409		15	max	.002	1	0	15	<u>.030</u>	12	2.618e-3	4	NC	1	NC	1
410		13	min	002	3	003	3	039	4	9.269e-7	12	NC	1	1427.076	4
411		16	max	0	1	<u>003</u>	15	<u>039</u>	12	2.705e-3	4	NC	1	NC	1
412		10	min	001	3	002	3	023	4	-9.986e-7	1	NC	1	2405.395	4
413		17	max	0	1	0	15	0	12	2.792e-3	4	NC	1	NC	1
414		1,	min	0	3	002	4	011	4	-1.387e-5	1	NC	1	4982.745	4
415		18	max	0	1	0	15	0		2.879e-3		NC	1	NC	1
416		10	min	0	3	0	4	003	4	-2.675e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.966e-3	4	NC	1	NC	1
418		10	min	0	1	0	1	0	1	-3.962e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.251e-5	1	NC	1	NC	1
420		<u>'</u>	min	0	1	0	1	0	1	-6.964e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.014	4	-4.516e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-7.173e-5	4	NC	1	NC	1
423		3	max	0	3	0	15	.028	4	5.53e-4	4	NC	1	NC	1
424		Ť	min	0	2	004	4	0	1	-3.158e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.04	4	1.178e-3	4	NC	1	NC	1
426			min	0	2	005	4	0	1	-5.362e-5	1	NC	1	9950.471	4
427		5	max	.001	3	002	15	.052	4	1.802e-3	4	NC	1	NC	1
428			min	0	2	007	4	0	1	-7.567e-5	1	NC	1	8612.363	_
429		6	max	.002	3	002	15	.063	4	2.427e-3	4	NC	1	NC	1
430			min	001	2	009	4	001	1	-9.772e-5	1	NC	1	8079.452	_
431		7	max	.002	3	003	15	.073	4	3.052e-3	4	NC	1	NC	1
		•													

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
432			min	001	2	011	4	001	1	-1.198e-4	1_	8763.454	4	8049.26	4
433		8	max	.002	3	003	15	.083	4	3.676e-3	_4_	NC	_1_	NC	1_
434			min	002	2	012	4	002	1	-1.418e-4	1_	7851.594	4	8447.421	4
435		9	max	.002	3	003	15	.092	4	4.301e-3	4	NC	1_	NC	1
436			min	002	2	013	4	002	1	-1.639e-4	1_	7310.595	4	9329.141	4
437		10	max	.003	3	003	15	.101	4	4.926e-3	4	NC	2	NC	1_
438			min	002	2	013	4	002	1	-1.859e-4	1_	7045.718	4	NC	1
439		11	max	.003	3	003	15	11	4	5.55e-3	4	NC	2	NC	1
440			min	002	2	014	4	003	1	-2.079e-4	1_	7017.771	4	NC	1
441		12	max	.003	3	003	15	.118	4	6.175e-3	4_	NC	2	NC	1_
442			min	003	2	013	4	003	1	-2.3e-4	1_	7228.053	4	NC	1
443		13	max	.004	3	003	15	.126	4	6.8e-3	4_	NC	_1_	NC	1_
444			min	003	2	013	4	004	1	-2.52e-4	1	7720.766	4	NC	1
445		14	max	.004	3	003	15	.135	4	7.424e-3	4	NC	1_	NC	1
446			min	003	2	011	4	004	1	-2.741e-4	1	8606.101	4	NC	1
447		15	max	.004	3	002	15	.144	4	8.049e-3	4	NC	1_	NC	1
448			min	003	2	01	4	005	1	-2.961e-4	1	NC	1	NC	1
449		16	max	.005	3	002	15	.153	4	8.674e-3	4	NC	1	NC	1
450			min	004	2	008	4	005	1	-3.182e-4	1	NC	1	NC	1
451		17	max	.005	3	002	15	.163	4	9.298e-3	4	NC	1	NC	1
452			min	004	2	006	1	006	1	-3.402e-4	1	NC	1	NC	1
453		18	max	.005	3	0	15	.174	4	9.923e-3	4	NC	1	NC	1
454			min	004	2	005	1	006	1	-3.623e-4	1	NC	1	NC	1
455		19	max	.005	3	0	15	.185	4	1.055e-2	4	NC	1	NC	1
456			min	004	2	003	1	007	1	-3.843e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.004	2	.007	1	-1.149e-6	12	NC	1	NC	3
458			min	0	3	005	3	185	4	-5.586e-4	4	NC	1	133.957	4
459		2	max	.003	1	.003	2	.006	1	-1.149e-6	12	NC	1	NC	2
460			min	0	3	005	3	17	4	-5.586e-4	4	NC	1	145.757	4
461		3	max	.003	1	.003	2	.006	1	-1.149e-6	12	NC	1	NC	2
462			min	0	3	005	3	155	4	-5.586e-4	4	NC	1	159.795	4
463		4	max	.002	1	.003	2	.005	1	-1.149e-6	12	NC	1	NC	2
464			min	0	3	005	3	14	4	-5.586e-4	4	NC	1	176.652	4
465		5	max	.002	1	.003	2	.005	1	-1.149e-6	12	NC	1	NC	2
466			min	0	3	004	3	126	4	-5.586e-4	4	NC	1	197.12	4
467		6	max	.002	1	.003	2	.004	1	-1.149e-6	12	NC	1	NC	2
468			min	0	3	004	3	112	4	-5.586e-4	4	NC	1	222.296	4
469		7	max	.002	1	.002	2	.004	1	-1.149e-6	12	NC	1	NC	2
470			min	0	3	004	3	098	4	-5.586e-4	4	NC	1	253.737	4
471		8	max	.002	1	.002	2	.003	1	-1.149e-6	12	NC	1	NC	2
472			min	0	3	003	3	084	4	-5.586e-4		NC	1	293.715	4
473		9	max	.002	1	.002	2	.003	1	-1.149e-6	12	NC	1	NC	2
474			min	0	3	003	3	072	4			NC	1	345.649	4
475		10	max	.001	1	.002	2	.002	1	-1.149e-6		NC	1	NC	1
476		1.0	min	0	3	003	3	06	4	-5.586e-4	4	NC	1	414.885	4
477		11	max	.001	1	.002	2	.002	1	-1.149e-6		NC	1	NC	1
478			min	0	3	002	3	049	4	-5.586e-4	4	NC	1	510.168	4
479		12	max	.001	1	.002	2	.001	1	-1.149e-6		NC	1	NC	1
480		14	min	0	3	002	3	038	4	-5.586e-4	4	NC	1	646.626	4
481		13	max	0	1	.002	2	.001	1	-1.149e-6	12	NC	1	NC	1
482		13	min	0	3	002	3	029	4	-5.586e-4	4	NC	1	852.343	4
483		14		0	1	.002	2	<u>029</u> 0	1	-1.149e-6	12	NC	1	NC	1
484		14	max min	0	3	002	3	021	4	-1.149e-6 -5.586e-4	4	NC NC	1	1184.451	4
485		15		0	1	<u>002</u> 0	2		1		_	NC NC	1	NC	1
		15	max		3			0		-1.149e-6	12		1		
486		16	min	0		001	3	014	4	-5.586e-4	4	NC NC	_	1774.662	
487		16	max	0	1	0	2	0	1	-1.149e-6		NC NC	1	NC	1
488			min	0	3	0	3	008	4	-5.586e-4	4_	NC	1_	2987.109	4

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	I C	(n) I /z Ratio	I.C.
489	WICHTIBOT	17	max	0	1	0	2	0	1	-1.149e-6	12	NC NC	1	NC NC	1
490			min	0	3	0	3	004	4	-5.586e-4	4	NC	1	6172.057	4
491		18	max	0	1	0	2	0	1	-1.149e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-5.586e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-1.149e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-5.586e-4	4	NC	1	NC	1
495	M1	1	max	.007	3	.117	2	.546	4	1.57e-2	1	NC	1	NC	1
496			min	003	2	021	3	0	12	-2.567e-2	3	NC	1	NC	1
497		2	max	.007	3	.056	2	.531	4	8.243e-3	4	NC	4	NC	1
498			min	003	2	01	3	005	1	-1.27e-2	3	1914.865	2	NC	1
499		3	max	.007	3	.01	3	.514	4	1.349e-2	4_	NC	5_	NC	1
500			min	003	2	008	2	007	1	-1.331e-4	<u>1</u>	922.203	2	7849.712	5
501		4	max	.007	3	.043	3	.498	4	1.182e-2	_4_	NC	5_	NC	1
502			min	003	2	081	2	007	1	-4.746e-3	3	581.54	2	5495.714	5
503		5	max	.006	3	.086	3	.482	4	1.014e-2	4_	NC	<u>15</u>	NC	1
504			min	003	2	158	2	005	1	-9.368e-3	3	419.333	2	4306.324	
505		6	max	.006	3	.133	3	.465	4	1.416e-2	1	NC	<u>15</u>	NC	1
506			min	003	2	232	2	002	1	-1.399e-2	3	330.039	2	3596.254	
507		7	max	.006	3	.179	3	.448	4	1.893e-2	1_	NC	<u>15</u>	NC	1
508			min	003	2	299	2	0	12	-1.861e-2	3	277.363	2	3119.165	
509		8	max	.006	3	.216	3	.43	4	2.369e-2	1	8994.044	<u>15</u>	NC 0700 504	1
510			min	003	2	<u>351</u>	2	0	12	-2.323e-2	3	246.219	2	2783.504	4
511		9	max	.006	3	.241	3	.411	4	2.621e-2	1_	8406.86	15	NC OFFICE 400	1
512		4.0	min	003	2	385	2	0	1	-2.337e-2	3	230.013	2	2583.186	
513		10	max	.006	3	.25	3	.389	4	2.753e-2	2	8227.981	<u>15</u>	NC OFOC 700	1
514		4.4	min	003	2	396	2	0	12	-2.052e-2	3	225.252	2	2526.762	4
515		11	max	.006	3	.244	3	.366	4	2.959e-2	2	8406.627	<u>15</u>	NC OF OO 440	1
516		40	min	003	2	385	2	0	12	-1.767e-2	3	230.75	2	2588.113	
517		12	max	.006	3	.223	3	.34	4	2.857e-2	2	8993.509	<u>15</u>	NC 2702 222	1
518 519		13	min	003 .005	3	<u>35</u> .19	3	.311	1	-1.478e-2 2.291e-2	3	248.465 NC	<u>2</u> 15	2783.322 NC	1
520		13	max	003	2	295	2	.311	1	-1.183e-2	3	282.832	2	3275.865	4
521		14	max	.005	3	<u>295</u> .147	3	.281	4	1.726e-2	2	NC	15	NC	1
522		14	min	003	2	227	2	.201	12	-8.885e-3	3	340.496	1	4298.918	_
523		15	max	.005	3	<u>227</u> .1	3	.249	4	1.16e-2	2	NC	15	NC	1
524		13	min	003	2	151	2	0	12	-5.937e-3	3	439.233	1	6517.761	4
525		16	max	.005	3	.051	3	.218	4	9.089e-3	4	NC	5	NC	1
526		10	min	003	2	075	2	0	12	-2.989e-3	3	621.448	1	NC	1
527		17	max	.005	3	.004	3	.189	4	1.015e-2	4	NC	5	NC	1
528		- 17	min	003	2	005	2	0	12	-4.038e-5	3	1009.601	1	NC	1
529		18	max	.005	3	.055	1	.164	4	1.054e-2	2	NC	4	NC	1
530		10	min	003	2	038	3	0	12	-4.315e-3	3	2133.378	1	NC	1
531		19	max	.005	3	.108	1	.142	4	2.118e-2	2	NC	1	NC	1
532		10	min	003	2	077	3	0	1	-8.757e-3	3	NC	1	NC	1
533	M5	1	max	.021	3	.273	2	.546	4	0	1	NC	1	NC	1
534	IVIO		min	014	2	026	3	0	1	-3.507e-6	4	NC	1	NC	1
535		2	max	.021	3	.132	2	.534	4	6.917e-3	4	NC	5	NC	1
536			min	014	2	01	3	0	1	0.5170 5	1	820.811	2	NC	1
537		3	max	.021	3	.031	3	.519	4	1.362e-2	4	NC	5	NC	1
538			min	014	2	027	2	.013	1	0	1	386.693	2	6449.775	
539		4	max	.021	3	.12	3	.503	4	1.11e-2	4	9895.613	15	NC	1
540			min	014	2	215	2	0	1	0	1	237.1	2	4833.649	
541		5	max	.02	3	.242	3	.485	4	8.575e-3	4	6923.431	15	NC	1
542			min	014	2	419	2	0	1	0.07000	1	167.116	2	4021.562	4
543		6	max	.02	3	.378	3	.466	4	6.052e-3	4	5329.619	15	NC	1
544			min	013	2	62	2	0	1	0.0320 3	1	129.308	2	3516.69	4
545		7	max	.019	3	.511	3	.448	4	3.528e-3	4	4409.347	15	NC	1
									<u> </u>	, - :					

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	<u>Sec</u>		x [in]	LC_	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L			
546			min	013	2	803	2	0	1	0	1_		2	3143.969	4
547		8	max	<u>.019</u>	3	.623	3	.43	4	1.005e-3	4_		15	NC	1
548			min	013	2	949	2	0	1	0	1_		2	2824.751	4
549		9	max	.019	3	.694	3	.411	4	0	1_		15	NC	1
550			min	013	2	-1.042	2	0	1	-2.224e-6	5		2	2580.667	4
551		10	max	.018	3	.72	3	.389	4	0	_1_	3517.32	15	NC	1
552			min	012	2	-1.073	2	0	1	-2.131e-6	5	86.001	2	2544.554	4
553		11	max	.018	3	.703	3	.365	4	0	1_		15	NC	1
554			min	012	2	-1.042	2	0	1	-2.037e-6	5	88.225	2	2616.332	4
555		12	max	.017	3	.642	3	.341	4	7.266e-4	4	3874.527	15	NC	1
556			min	012	2	946	2	0	1	0	1	95.48	2	2737.499	4
557		13	max	.017	3	.544	3	.312	4	2.551e-3	4	4409.763	15	NC	1
558			min	012	2	793	2	0	1	0	1	109.436	1	3221.226	4
559		14	max	.017	3	.42	3	.28	4	4.376e-3	4	5330.435	15	NC	1
560			min	012	2	603	2	0	1	0	1	133.668	1	4446.339	4
561		15	max	.016	3	.282	3	.247	4	6.201e-3	4		15	NC	1
562			min	011	2	397	1	0	1	0	1	176.204	1	7813.554	4
563		16	max	.016	3	.142	3	.214	4	8.026e-3	4	9898.993	15	NC	1
564			min	011	2	194	1	0	1	0	1		1	NC	1
565		17	max	.015	3	.011	3	.185	4	9.851e-3	4		5	NC	1
566			min	011	2	016	2	0	1	0	1		1	NC	1
567		18	max	.015	3	.127	1	.161	4	5.003e-3	4		5	NC	1
568			min	011	2	101	3	0	1	0	1		1	NC	1
569		19	max	.015	3	.247	1	.142	4	0	1		1	NC	1
570		10	min	011	2	201	3	0	1	-1.744e-6	4		1	NC	1
571	M9	1	max	.007	3	.117	2	.546	4	2.567e-2	3		1	NC	1
572	IVIO	<u>'</u>	min	003	2	021	3	0	1	-1.57e-2	1		1	NC	1
573		2	max	.007	3	.056	2	.533	4	1.27e-2	3		4	NC	1
574			min	003	2	01	3	0	12	-7.636e-3	1		2	NC NC	1
575		3	max	.007	3	.01	3	.518	4	1.359e-2	4		5	NC	1
576		3	min	003	2	008	2	.516	12	-2.989e-5	10		2	6620.446	4
577		4	max	.007	3	.043	3	.502	4	1.068e-2	5		5	NC	1
578		4	min	003	2	0 43	2	<u>.502</u>	12	-4.632e-3	1		2	4898.614	4
579		5		.006	3	.086	3	.485	4		3		<u>-</u> 15	NC	1
		3	max		2		2		12	9.368e-3 -9.398e-3	1			4029.741	4
580		6	min	003	3	1 <u>58</u>	3	0		1.399e-2	_		<u>2</u> 15		1
581		6	max	.006 003	2	.133 232		.466	4		3			NC 3495.421	
582		7	min				2	0	12	-1.416e-2	1_		2		4
583		-	max	.006	3	.179	3	.448	4	1.861e-2	3_		15	NC 2444.00	1
584			min	003	2	299	2	0	1	-1.893e-2	1_		2	3114.86	4
585		8	max	.006	3	.216	3	.43	4	2.323e-2	3		15	NC 0007.047	1
586			min	003	2	351		0	1	-2.369e-2			2	2807.047	4
587		9	max	.006	3	.241	3	.411	4	2.337e-2	3_		<u>15</u>	NC OFFO 450	1
588		40	min	003	2	385	2	0	12	-2.621e-2	1_		2	2576.458	4
589		10	max	.006	3	.25	3	.389	4	2.052e-2	3		15	NC	1
590			min	003	2	396	2	0	1	-2.753e-2	2		2	2527.798	4
591		11	max	.006	3	.244	3	.366	4	1.767e-2	3		15	NC	1
592			min	003	2	385	2	0	1	-2.959e-2	2		2	2596.535	4
593		12	max	.006	3	.223	3	.341	4	1.478e-2	3		15	NC	1
594			min	003	2	35	2	0	12	-2.857e-2	2		2	2760.117	4
595		13	max	.005	3	.19	3	.312	4	1.183e-2	3_		15	NC	1
596			min	003	2	295	2	0	12	-2.291e-2	2		2	3276.345	4
597		14	max	.005	3	.147	3	.28	4	8.885e-3	3		15	NC	1
598			min	003	2	227	2	002	1	-1.726e-2	2		1	4423.799	5
599		15	max	.005	3	.1	3	.247	4	5.937e-3	3		15	NC	1
600			min	003	2	151	2	004	1	-1.16e-2	2		1	7149.241	5
601		16	max	.005	3	.051	3	.215	4	7.846e-3	5	NC	5	NC	1
602			min	003	2	075	2	006	1	-5.938e-3	2	621.448	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.005	3	.004	3	.186	4	9.903e-3	4	NC	5	NC	1
604			min	003	2	005	2	007	1	-5.077e-4	1	1009.601	1	NC	1
605		18	max	.005	3	.055	1	.162	4	4.706e-3	5	NC	4	NC	1
606			min	003	2	038	3	005	1	-1.054e-2	2	2133.378	1	NC	1
607		19	max	.005	3	.108	1	.142	4	8.757e-3	3	NC	1	NC	1
608			min	003	2	077	3	0	12	-2.118e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)		
4855	1.0	0.65	3156		

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status	
Steel	2559	6071	0.42	Pass	
Concrete breakout	5118	10231	0.50	Pass	
Adhesive 5118		8093	0.63	Pass (Governs)	
Shear Factored Load, V _{ua} (lb)		Design Strength, øVn (lb)	Ratio	Status	
Steel	1784	3156	0.57	Pass (Governs)	
T Concrete breakout x+	3567	8641	0.41	Pass	
Concrete breakout y-	1784	22862	0.08	Pass	
Pryout	3567	20601	0.17	Pass	
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status	

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.