Big Data Week is one of the most unique global platforms of interconnected community events focusing on the social, political, technological and commercial impacts of Big Data

Follow all the events at

bigdataweek.com

Official Event Hashtag #bdw13

BDW13: WebViz con D3.js

BIG_DATA_WEEK_2013

Óscar Marín Miró @oscarmarinmiro @outliers_es

oscar@outliers.es

CONTENIDOS

INTRODUCCIÓN

D3.JS - INTRO

D3.JS - PROGRAMACIÓN

REFERENCIAS

Material del curso en http://assets.outliers.es/bdw13/dataviz

INTRODUCCIÓN

¿QUÉ SE ENTIENDE POR VISUALIZAR?

"Tecnologías que transforman datos en información mediante elementos visuales"

¿POR QUÉ VISUALIZAR?

http://www.interaction-design.org/encyclopedia/data_visualization_for_human_perception.html

Visualization is critical to data analysis. It provides a front line of attack, revealing intricate structure in data that cannot be absorbed in any other way. We discover unimagined effects, and we challenge imagined ones.

William S. Cleveland: visualizing Data

"Visualization puts the human back into the decision-making process."

1		II		III		IV	
x	у	x	у	x	у	x	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Property	Value		
Mean of x in each case	9 (exact)		
Variance of x in each case	11 (exact)		
Mean of y in each case	7.50 (to 2 decimal places)		
Variance of y in each case	4.122 or 4.127 (to 3 decimal places)		
Correlation between x and y in each case	0.816 (to 3 decimal places)		
Linear regression line in each case	y = 3.00 + 0.500x (to 2 and 3 decimal places, respectively		

El cuarteto de Anscombe (http://en.wikipedia.org/wiki/Anscombe's_quartet)

El cuarteto de Anscombe (http://en.wikipedia.org/wiki/Anscombe's_quartet)

http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak

- Saltar' de los datos a la información, reduciendo el esfuerzo cognitivo
- Facilitar la generación de conocimiento/ insights
- Enriquecer el análisis de datos

FASES DE UN TRABAJO (VISUALIZACIÓN)

¿POR QUÉ VISUALIZAR EN 2013?

- "Big Data" necesita "Big Insights"
- Explosión de herramientas
- Reconocimiento como disciplina imprescindible en el análisis de datos
- Necesidades en múltiples campos
- Tendencia fuerte: Tiempo Real
- El ciudadano como productor de datos
- "Quantified Self"
- Business Analytics

CAPA VISUAL: COMPARACIÓN

- 1. Position along a common scale
- 2. Position along identical displaced scales
- 3. Length
- 4. Angle slope
- 5. Area
- 6. Volume
- 7. Colour hue Colour saturation Density

http://www.stat.auckland.ac.nz/~ihaka/120/Notes/ch05.pdf

- Gráficos y estadística
 - MS-Excel
 - <u>Tableau</u>
 - <u>Qlikview</u>
 - Google Fusion Tables
 - Many Eyes
 - Wordle

- Gráficos y estadística
 - DataWrapper
 - Polychart
 - R/ggplot2

- Programación:
 - <u>D3.js</u>
 - Processing
 - WebGL (three.js)
- Cartografías:
 - Leaflet.js
 - CartoDB

- Redes:
 - <u>Gephi</u>
 - ► Graph-tool/GraphViz
- Postproducción:
 - Adobe Illustrator
 - Inkscape

D3.JS - INTRO

2011, Mike Bostock

http://en.wikipedia.org/wiki/Protovis#Context

- ▶ D3: Data-Driven Documents
- Librería JavaScript
- No es una librería de gráficos
- Sobre estándares HTML5: Javascript, SVG, CSS3
- La librería facilita el mapeo de datos a elementos HTML
- Versión 3.0 recién salida
- Requiere una nueva manera de pensar: curva de aprendizaje fuerte
- Alojada <u>aquí</u>
- Tutorial recomendado : http://alignedleft.com/tutorials/d3/
- Documentación dispersa. La doc de la API <u>aquí</u>
- Elemento central: El 'join' de datos

Thinking with joins

http://bost.ocks.org/mike/join/

D3: Características

- Escalas ordinales y cuantitativas
- Funciones para control de ejes
- Módulo de layouts: redes, treemap, circle packing, etc
- Captura de eventos de zoom y panning
- ColorBrewer incluído
- Permite acabados interactivos para producción
- Eventos de gestos para tabletas
- Librería 'geo'

D3:Algunos ejemplos significativos

- Redes: http://bl.ocks.org/mbostock/4062045
- Mapa de cloropletas: http://bl.ocks.org/mbostock/4060606
- ala "Hans Rosling": http://bost.ocks.org/mike/nations/
- Zoomable treemap: http://mbostock.github.com/d3/talk/20111018/treemap.html
- World Tour: http://bl.ocks.org/mbostock/4183330
- Force Directed States: http://mbostock.github.com/d3/talk/20111018/force-states.html
- Coffee Flavour Wheel: http://www.jasondavies.com/coffee-wheel/
- La mayoría de los interactivos visuales de The NYT

D3: Conclusiones

- La potencia está en que se apoya en los estándares HTML: Gran futuro a largo plazo
- Por tanto se puede jugar con CSS, SVG, eventos JS
- Hay muchísimos ejemplos ya hechos
- Muchas dudas resueltas en StackOverFlow
- El punto fuerte principal es la interactividad web
- Es complejo de entender, pero los layout ayudan a abstraer

HTML+DOM+CSS3+JAVASCRIPT+ SVG/CANVAS/WEBGL

HTML

```
<!DOCTYPE html>
<html lang="es">
  <head>
    <meta charset="utf-8">
    <title>Plantilla D3</title>
    <script type="text/javascript" src="d3.v3.js"></script>
 </head>
  <body>
    <script type="text/javascript">
      // Nuestro codigo D3
    </script>
  </body>
</html>
```

DOM

- Document Object Model
- Estructura jerárquica de HTML
- Cada nodo es un elemento
- Mantienen relaciones entre sí: hijos, padres, hermanos, descendientes, etc..
- Se manipula con Javascript o librerías auxiliares: JQuery, D3, etc..
- ▶ Ej: d3.selectAll("div").append("p")
- #id", ".clase","h1"

CSS 3.0

- ▶ Cascading Style Sheets
- ▶ Presentación visual del HTML
- ▶ Selectores
- ▶ Propiedades
- ▶ Reglas (propiedades de los selectores)

CSS 3.0: Selectores

```
h1 /* headers de nivel 1*/
p /* Párrafos*/
.myClase /* Clase 'myClase' */
#myld /* Id 'myld */
```

CSS 3.0: Reglas y Propiedades

```
p {
    font-size: 12px;
    line-height: 14px;
    color: black;
}
```

CSS 3.0: Inclusión

CSS 3.0: Referencias

https://developer.mozilla.org/en-US/docs/CSS/CSS_Reference

http://www.w3schools.com/cssref/default.asp

Javascript: Lenguaje dinámico ejecutado (en este caso) en el navegador

Una buena referencia https://developer.mozilla.org/en-US/docs/JavaScript/Reference

Javascript: Inclusión en el HTML

HTML5

SVG: Scalable Vector Graphics

```
<svg width="100px" height="50px">
  <text class="hola" x="10" y="20">Hola mundo</text>
  </svg>
```

Referencias:

https://developer.mozilla.org/es/docs/SVG/Element http://www.w3.org/TR/SVG/

D3.JS -PROGRAMACIÓN

TEMPLATE D3.JS

Abrir code/ejemplo1.html

SELECCIONES D3

Abrir code/ejemplo2.html

INSERCIONES Y ENCADENADOS

Abrir code/ejemplo3.html

EL MÉTODO SELECTALLO DE D3.JS

Abrir code/ejemplo4.html

EL MÉTODO DATAO DE D3.JS

Abrir code/ejemplo5.html

EJERCICIO DE CONSOLIDACIÓN DATAO D3.JS. DATOS COMPUESTOS

Abrir code/ejercicio6.html

JER THORP

http://blog.blprnt.com/blog/blprnt/your-random-numbers-getting-started-with-processing-and-data-visualization

JER THORP

Abrir code/circles.html

JER THORP

Abrir code/ circlesInteractivo.html

JER THORP

Abrir code/circlesInteractivoJoin.html

JER THORP

Abrir code/barsInteractivoJoin.html

JER THORP

Abrir code/barsInteractivoJoinCompleto.html

JER THORP

Abrir code/circlesInteractivoPanel.html

UNICIDAD DEL DATAO. REPASO

```
> var a = [{nombre: 'a'}, {nombre: 'b'}, {nombre: 'c'}];
  undefined
> var b = [{nombre: 'a'}, {nombre: 'b'}, {nombre: 'd'}];
  undefined
> join = d3.select("body").selectAll("p").data(a,function(d){return d.nombre;});
  [▶ Array[3] ]
> join.enter().append("p").attr("dummy",function(d,i){console.log("entra"+d.nombre);});
  entraa
  entrab
  entrac
⟨ [▶ Array[3] ]
> join = d3.select("body").selectAll("p").data(b,function(d){return d.nombre;});
  [▶ Array[3] ]
> join.enter().append("p").attr("dummy",function(d,i){console.log("entra"+d.nombre);});
  entrad
⟨ [▶ Array[3] ]
> join.exit().attr("dummy",function(d,i){console.log("sale"+d.nombre);}).remove();
  salec
⟨ [▶ Array[3] ]
>
```

D3.JS: LAYOUTS

- A partir de una estructura de datos javacript, calculan posiciones y tamaños
- Cada layout espera un input diferente y ofrece un output diferente
- Los layouts jerárquicos esperan el mismo output
- Doc de layouts
- Doc de layouts jerárquicos

D3.JS:CIRCLE PACKING

Abrir code/ circlePackingTheDoors.html

D3.JS: FORCE LAYOUT

- Documentación
- La entrada es una lista de nodos y vértices
- Los nodos llevan un elemento 'index', los vértices, en target y source hacen referencia a estos vértices.
- Weight da info interna del número de conexiones
- El método 'tick' se llama en cada recálculo de las posiciones. En este método es donde actualizamos las posiciones
- Abrir code/network.html

REFERENCIAS

http://www.taschen.com/pages/es/catalogue/design/all/04984/facts.information_graphics.htm

http://www.amazon.com/Processing-Programming-Handbook-Designers-Artists/dp/0262182629

http://shop.gestalten.com/data-flow-159.html

http://www.amazon.co.uk/Information-Beautiful-David-McCandless/dp/0007294662

http://shop.oreilly.com/product/0636920025429.do

http://www.elartefuncional.com/

http://www.edwardtufte.com/tufte/books_vdqi

http://www.packtpub.com/data-visualization-a-successful-design-process/book

http://oreilly.com/shop/product/0636920023135.html

http://shop.oreilly.com/product/0636920024729.do?sortby=publicationDate

http://www.amazon.com/Net-Locality-Location-Matters-Networked/dp/1405180609

Proyectos y Tendencias

- Visualizing Data
- Information Aesthetics
- Flowing Data
- Data Visualization
- Visual.ly

Discurso y Narrativas

- Perceptual Edge
- The Functional Art
- Eager Eyes
- Fell in Love with Data
- Michael Babwahsingh

Proceso y crítica

- Charts 'n Things
- The Why Axis
- Junk Charts
- Graphic Sociology
- National Geographic

Tutoriales y Consejos

- Scott Murray
- Jerôme Cukier
- Jim Vallandingham
- Gregor Aisch
- Naomi Robbins

Inspiración

- Visualizing.org
- Information is Beautiful Awards
- New York Times
- Guardian datablog
- Stamen
- Pitch Interactive
- Periscopic
- Moritz Stefaner
- Santiago Ortiz
- Tulp Interactive

EVENTOS Y CONFERENCIAS

http://datavisualization.ch/events/13-conferences-to-attend-in-2013/

- Strata Conference
- Tapestry
- Infographics EU
- <u>Malofiej</u>
- Eyeo festival
- <u>EuroVis</u>
- **SIGGRAPH**
- OpenVis

TWITTER

https://twitter.com/jargila/infovisualization

https://twitter.com/eagereyes/nytimes-graphics

https://twitter.com/francisgagnon/dataviz

https://twitter.com/NicolasLoubet/data-viz-stars

https://twitter.com/maxcuratella/interaction-design

Outliers

Because differences matter.

www.outliers.es @outliers_es

