

Contents

- Knowledge Hypergraph
 - previous work
 - Reification
 - Star-to-Clique

- ◆ HSimplE
 - Framework

- ◆ HypE
 - Framework

- **◆** Experiment
 - Knowledge Hypergraph Completion
 - Knowledge graph Completion

Conclusion

Knowledge Hypergraph

Generalization of knowledge graphs

- Store facts in the form of relations among any number of entities
 - while at most two entities in Knowledge Graph
- More than 1/3 of the entities participate in non-binary relations,
 61% of the relations are non-binary in FREEBASE
 - why Knowledge Hypergraph is needed
- Two methods converting non-binary relations into binary ones
 - reification
 - star-to-clique

Knowledge Hypergraph

Reification

Higher-arity to binary

- Generating a new entity and creating a new tuple
 by inserting an existing entity into the tail part
 - no loss of information during the transformation process

files_between(e1, Vancouver) files_between(e1, New York) files_between(e1, Air Canada)

...

Reification

Problem occurs in test

- Entities that the model never encounters during training
 - do not have a learned embedding for these new entities

• Star-to-Clique

Higher-arity to binary

ullet Converts a tuple defined on k entities into kC_2 tuples with distinct relations between all pairwise entities in tuple

Star-to-Clique

Information loss occurs

- Information loss occurs during the conversion process
 - information that did not exist in the original graph may emerge
 in the process of considering all pairs

CAU

KG completion

Inefficient in Knowledge Hypergraph Completion

- Applying the existing link prediction method
 to the transformed binary triples did not yield satisfactory performance
 - need another methods
- Predictions may need to vary based on the position that entity appears in within the tuple
 - does not matter if the relation is symmetric

→ HSimplE & HypE

HSimplE

SimplE

Inspired by SimplE

- SimplE learns two embedding vectors $e^{(1)}$ and $e^{(2)}$ for entity e, two embedding vectors $r^{(1)}$ and $r^{(2)}$ for relation r
- Scoring function

$$\phi(r(e_1, e_2)) = \odot(\mathbf{r}^{(1)}, \mathbf{e}_1^{(1)}, \mathbf{e}_2^{(2)}) + \odot(\mathbf{r}^{(2)}, \mathbf{e}_2^{(1)}, \mathbf{e}_1^{(2)})$$

- ☐ Each entity learns distinct embedding vectors for the Head and Tail positions
 - Consider the directionality of relation

Framework

4-ary tuple (
$$\alpha = 5$$
)

 $\alpha = \max_{r \in \mathcal{R}}(|r|)$ **Entity 1** Relation **Entity 2 Entity 3 Entity 4** output $\phi(r(e_1,\ldots,e_{|r|}))$

HSimplE

Framework

Use position with shift

- □ Single vector for relation, entity (Unlike SimplE)
 - entity vector can be seen as **concatenation** of different representations of **entity's every possible position** ($e = e_1 + e_2 + e_3 + ...$)
- Scoring function

$$\phi(r(e_i, e_j, \dots, e_k)) = \odot(\mathbf{r}, \mathbf{e_i}, \operatorname{shift}(\mathbf{e_j}, \operatorname{len}(\mathbf{e_j})/\alpha), \dots, \operatorname{shift}(\mathbf{e_k}, \operatorname{len}(\mathbf{e_k}) \cdot (\alpha - 1)/\alpha))) \quad (1)$$

- len(e) returns length of vector e
- shift(v, x) shifts vector v to the left by x steps
- $\qquad \alpha = \max_{\{r \in R\}} (|r|)$

CAU

Framework

HypE

Framework

Use position with convolution filter

- ☐ Single vector for relation, entity
- Positional convolutional weight filters for each possible position
 - transform the embedding of each entity
 - with concatenation and projection
- - ▶ n:the # of filters per position
 - P: projection matrix
 - The result of the function is an entity representation of size d

Framework

Combine with relation embedding

Scoring function

$$\phi(r(e_1,\ldots,e_{|r|})) = \odot(\mathbf{r},f(\mathbf{e_1},1),\ldots,f(\mathbf{e_{|\mathbf{r}|}},|r|))$$

vs. HSimplE

Advantage of learning positional filters

- Learning disentangled from its position keeps entity representations simple
 - HSimplE incorporates position when learning entity embeddings
- Robustness in test
 - ability to infer new entity-position relationships
 - In HSimplE, hard to generalizing and predicting entity-position pairs that did not appear during the training process

Proposed Method

vs. Previous work

Overcome risks about information

- Using Star-to-Clique, tuples might generate different meanings from the original KHG
- ☐ While HSimplE and HypE use original tuple, without converting

Overcome limitations in test

- Using Reification, entity appear in test while unseen in training data inevitably
- □ While HSimplE and HypE, experiments can be conducted under the transductive setting

HSimplE & HypE

Training

Loss Function

$$\mathcal{L}(\mathbf{r}, \mathbf{e}) = \sum_{x' \in \tau'_{train}} -log \left(\frac{e^{\phi(x')}}{e^{\phi(x')} + \sum_{x \in T_{neg}(x')} e^{\phi(x)}} \right)$$

Cross-entropy loss based on Softmaxd

- □ Produce a set of negative samples of size N|r|
 - ► |r|: the number of arguments that the relation takes
 - N: ratio of negative samples (hyperparameter)

Dataset

			num	ber of tu	ples	number of tuples with respective arity				
Dataset	$ \mathcal{E} $	$ \mathcal{R} $	#train	#valid	#test	#arity=2	#arity=3	#arity=4	#arity=5	#arity=6
WN18	40,943	18	141,442	5,000	5,000	151,442	0	0	0	0
FB15k	14,951	1,345	483,142	50,000	59,071	592,213	0	0	0	0
JF17K	29,177	327	77,733	-	24,915	56,322	34,550	9,509	2,230	37
FB-AUTO	3,410	8	6,778	2,255	2,180	3,786	0	215	7,212	0
M-FB15K	10,314	71	415,375	39,348	38,797	82,247	400,027	26	11,220	0

Table 5: Dataset Statistics.

- WN18, FB15K: with binary relation
- □ JF17K, FB-AUTO, M-FB15K: with non-binary relation

V EDIEV

Knowledge Hypergraph Completion

			JF1/K			FB-AUTO				M-FB15K				
	Model		MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10
reification	r-SimplE		0.102	0.069	0.112	0.168	0.106	0.082	0.115	0.147	0.051	0.042	0.054	0.070
	m-DistMult		0.463	0.372	0.510	0.634	0.784	0.745	0.815	0.845	0.705	0.633	0.740	0.844
multi-arity	m-CP		0.391	0.298	0.443	0.563	0.752	0.704	0.785	0.837	0.680	0.605	0.715	0.828
	m-TransH [Wen et al., 2016]	0.444	0.370	0.475	0.581	0.728	0.727	0.728	0.728	0.623	0.531	0.669	0.809
	HSimplE (O	urs)	0.472	0.378	0.520	0.645	0.798	0.766	0.821	0.855	0.730	0.664	0.763	0.859
	HypE (Ours))	0.494	0.408	0.538	0.656	0.804	0.774	0.823	0.856	0.777	0.725	0.800	0.881

IC1712

- r : to binary triple with reification
- ▶ m-: extend existing method to multi-arity
- ☐ HypE shows better performance than HSimplE

Experiment

CAU

In constrained budget

- Analyzed that, at low embedding dimensions,
 HSimplE lacked the resources to learn position information effectively
- HypE learns position information independently of the embedding representation

Experiment

CAU

Missing position test

- Train and test with "Missing Position Test Set"
 - entity-position that not encounter in train set, but in test set (1,806 test samples)
- ☐ HSimplE can infer, but HypE do better

• Knowledge Graph Completion

	WN18					FB15k			
Model	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	
CP [Hitchcock, 1927]	0.074	0.049	0.080	0.125	0.326	0.219	0.376	0.532	
TransH [Wang et al., 2014]	-	-	-	0.867	-	-	-	0.585	
m-TransH [Wen et al., 2016]	0.671	0.495	0.839	0.923	0.351	0.228	0.427	0.559	
DistMult [Yang et al., 2015]	0.822	0.728	0.914	0.936	0.654	0.546	0.733	0.824	
HSimplE (Ours) and SimplE [Kazemi and Poole, 2018]	0.942	0.939	0.944	0.947	0.727	0.660	0.773	0.838	
HypE (Ours)	0.934	0.927	0.940	0.944	0.725	0.648	0.777	0.856	

☐ Both HSimplE and HypE outperformed existing embedding-based models

Experiment

Dataset	#arity=2	#arity=3	#arity=4	#arity=5	#arity=6
JF17K	56,322	34,550	9,509	2,230	37

Ablation Study on Different Arities

	Arity			
Model	2	3	4-5-6	All
r-SimplE	0.478	0.025	0.017	0.168
m-DistMult	0.495	0.648	0.809	0.634
m-CP	0.409	0.563	0.765	0.560
m-TransH [Wen et al., 2016]	0.411	0.617	0.826	0.596
HSimplE (Ours)	0.497	0.699	0.745	0.645
HypE (Ours)	0.466	0.693	0.858	0.656
# train tuples	36,293	18,846	6,772	61,911
# test tuples	10,758	10,736	3,421	24,915

Table 4: Breakdown performance of Hit@10 across relations with different arities on JF17K dataset along with their statistics.

- □ Difference between r-SimplE and HSimplE in multi-arity
- Proposed methods show state-of-the-art performance

Conclusion

Previous work

- ☐ Two methods that convert Knowledge Hypergraph to Knowledge graph
- Reification and Star-to-Clique have fundamental issue with the method itself
- Tuples are used for training, requiring the incorporation of position information

HSimplE

Learn entity embedding with position-specific information using shifts

HypE

convolution filters for each position are used to learn independently from entity embedding

Experiment

- Limitations of the Existing Converting Method
- ☐ HypE shows better performance than HSimplE in missing position test set

