1 Řady

1.1 Úvod

Definice 1.1

Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost. Číslo $s_m=a_1+a_2+\ldots+a_m$ nazveme m-tým částečným součtem řady $\sum a_n$. Součtem nekonečné řady $\sum_{n=1}^\infty a_n$ nazveme limitu posloupnosti $\{s_m\}_{m\in\mathbb{N}}$, pokud tato limita existuje. Je-li tato limita konečná, pak řekneme, že řada je konvergentní. Je-li tato limita nekonečná nebo neexistuje, pak řekneme, že řada je divergentní. Tuto limitu budeme značit $\sum_{n=1}^\infty a_n$.

Věta 1.1 (Nutná podmínka konvergence)

Jestliže je $\sum_{n=1}^{\infty} a_n$ konvergentní, pak $\lim_{n\to\infty} a_n = 0$.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n \text{ konverguje} \implies \exists \lim_{m \to \infty} s_m = s \in \mathbb{R}. \ a_n = s_n - s_{n-1}. \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - s_{n-1}. \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_n - s_{n-1}. \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_n - s_{n-1}. \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_n$

Pozor

Tato věta je pouze a jen implikace.

Věta 1.2 (konvergence součtu řad)

Necht $\alpha \in \mathbb{R} \setminus \{0\}$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

Necht $\sum_{n=1}^{\infty} a_n$ konverguje a $\sum_{n=1}^{\infty} b_n$ konverguje, pak $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n$ konverguje \exists limita z $s_m \to s \in \mathbb{R}$ a to je z AL právě tehdy, když konverguje $\alpha s_m \to \alpha \cdot s \in \mathbb{R}$, tedy $\sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

 $\sum_{n=1}^{\infty}a_n=s\in\mathbb{R}\text{ i }\sum_{n=1}^{\infty}b_n=\sigma\in\mathbb{R}\text{ konvergují, tedy konverguje i }s_m+\sigma_m\to s+\sigma\in\mathbb{R}.$

1.2 Řady s nezápornými členy

Pozorování

Nechť $\{a_n\}_{n=1}^{\infty}$ je řada s nezápornými členy. Pak $\sum_{n=1}^{\infty} a_n$ konverguje, nebo má součet $+\infty$.

Věta 1.3 (Srovnávací kritérium)

 $\frac{1}{Necht \sum_{n=1}^{\infty} a_n \ a \sum_{n=1}^{\infty} b_n \ jsou \ \check{r}ady \ s \ nez\acute{a}porn\acute{y}mi \ \check{c}leny \ a \ necht \ \exists n_0 \in \mathbb{N} \ tak, \ \check{z}e \ \forall n \in \mathbb{N}, \ n \geq n_0 \ plati \ a_n \leq b_n. \ Pak \ a) \sum_{n=1}^{\infty} b_n \ konverguje \implies \sum_{n=1}^{\infty} a_n \ konverguje \ b) \sum_{n=1}^{\infty} a_n \ diverguje \implies \sum_{n=1}^{\infty} b_n \ diverguje.$

Důkaz

a) Označme $s_n = a_1 + \ldots + a_n$ a $\sigma_n = b_1 + \ldots + b_n$. Pro každé $n \in \mathbb{N}, n \geq n_0$ platí

$$s_n = a_1 + \ldots + a_{n_0} + a_{n_0+1} + \ldots + a_n \le a_1 + \ldots + a_{n_0} + b_{n_0+1} + \ldots + b_n \le a_1 + \ldots + a_{n_0} + \sigma_n \le a_1 + \ldots + a_{n_0} + \alpha \le a_1 + \ldots + a_{n$$

A to je konečné, neboť $\sum_{n=1}^{\infty} b_n$ konverguje, tedy $\sigma \in \mathbb{R}$. s_n neklesající a omezená $\Longrightarrow \exists \lim_{n \to \infty} s_n \in \mathbb{R}$.

b) Nepřímím důkazem z a).

Věta 1.4 (Limitní srovnávací kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady s nezápornými členy a nechť $\lim_{n\to\infty} \frac{a_n}{b_n} = A \in \mathbb{R}^*$. Jestliže $A \in (0,\infty)$, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže A = 0, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže $A = \infty$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} b_n$ konverguje.

Důkaz

(i) $Z \lim_{n\to\infty} \frac{a_n}{b_n} = K \in (0,\infty)$ plyne, $k \varepsilon = \frac{K}{2} \exists n_0 \ \forall n \ge n_0 : \left| \frac{a_n}{b_n} - K \right| < \varepsilon = \frac{K}{2}$, tedy $\frac{K}{2} \le \frac{a_n}{b_n} \le \frac{3}{2}K$.

 $\sum_{n=1}^{\infty} b_n \text{ konverguje} \overset{\text{konvergence součtu řad}}{\Longrightarrow} \sum_{n=1}^{\infty} \frac{3}{2} K \cdot b_n \text{ konverguje} \wedge a_n \leq \frac{3}{2} K \cdot b_n \overset{\text{Srov. kritérium}}{\Longrightarrow} \sum_{n=1}^{\infty} a_n \text{ konverguje}.$

 $\sum_{n=1}^{\infty} a_n$ konverguje $\wedge \frac{K}{2} \cdot b_n \leq a_n \implies \sum_{n=1}^{\infty} \frac{K}{2} \cdot b_n$ konverguje $\implies \sum_{n=1}^{\infty} b_n$ konverguje.

(ii) Z $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ plyne, k $\varepsilon = 1 \exists n_0 \ \forall n \geq n_0 : \left| \frac{a_n}{b_n} - K \right| < \varepsilon = 1$, tedy $a_n < b_n$, a pokud $\sum_{n=1}^{\infty} b_n$ konverguje, tak $\sum_{n=1}^{\infty} a_n$ konverguje podle srovnávacího kritéria.

(iii) Úplně stejně jako (ii).

Věta 1.5 (Cauchyovo odmocninové kritérium)

 $Necht \sum_{n=1}^{\infty} a_n$ je řada s nezápornými členy, potom

$$(i)\exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \sqrt[n]{a_n} < q \implies \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(ii) \limsup_{n \to \infty} \sqrt[n]{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii) \lim_{n \to \infty} \sqrt[n]{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iv) \limsup_{n \to \infty} \sqrt[n]{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje,$$

$$(v) \lim_{n \to \infty} \sqrt[n]{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje.$$

Důkaz

 $(i)\ b_n = q^n.$ Víme, že $a_n < b_n \ \forall n \geq n_0,$ tedy použijeme srovnávací kritérium.

$$(i) \implies (ii): b_n = \left\{\sqrt[n]{a_n}, \sqrt[n+1]{a_n}, \ldots\right\}. \lim_{n \to \infty} b_n = \limsup_{n \to \infty} \sqrt[n]{a_n} < 1. \text{ Nalezneme } q \in \mathbb{R}$$

 $\left(\limsup_{n\to\infty}\sqrt[n]{a_n},1\right). \text{ Z definice } \lim_{n\to\infty}b_n \text{ pro } \varepsilon=q-\limsup_{n\to\infty}\sqrt[n]{a_n} \text{ je } \exists n_0 \ \forall n\geq n_0: b_n< q, \text{ tedy } \forall n\geq n_0: \sqrt[n]{a_n}< q, \text{ tedy podle } (i) \sum_{n=1}^\infty a_n \text{ konverguje.}$

$$(ii) \implies (iii) : \exists \lim_{n \to \infty} \sqrt[n]{a_n} \implies \limsup_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n} < 1$$
, tedy podle (ii) $\sum_{n=1}^{\infty} a_n$ konverguje.

(iv): podobně jako v $(i) \Longrightarrow (ii)$ dostaneme $\forall n_0 > n_k : b_{n_0} > q > 1$, tedy $\forall n_0 \exists n > n_0 : \sqrt[n]{a_n} > q > 1 \Longrightarrow a_n > 1 \Longrightarrow \lim_{n \to \infty} a_n \neq 0$, tedy podle nutné podmínky konvergence $\sum_{n=1}^{\infty} a_n$ diverguje.

$$(iv) \implies (v) : \lim_{n \to \infty} \sqrt[n]{a_n} = \lim \sup_{n \to \infty} \sqrt[n]{a_n}.$$

Věta 1.6 (d'Alambertovo podílové kritérium)

Necht $\sum_{n=1}^{\infty} a_n$ je řada s kladnými členy. Potom:

$$(i) \exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{a_{n+1}}{a_n} < q \implies \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(ii) \limsup_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iv) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje,$$

 $D\mathring{u}kaz$

- (i) Víme indukcí $a_{n_0+k} < q^k a_{n_0}$ a z konvergence geometrické řady $\sum_{k=1}^{\infty} q^k a_n$ konverguje $\Longrightarrow \sum_{k=1}^{\infty} a_{n_0+k}$ konverguje $\Longrightarrow \sum_{n=1}^{\infty} a_n$ konverguje.
- $\begin{array}{lll} (i) & \Longrightarrow & (ii) \colon b_n = \sup \left\{ \frac{a_{n+1}}{a_n}, \frac{a_{n+2}}{a_{n+1}}, \ldots \right\} \colon \lim_{n \to \infty} b_n = \limsup_{\substack{n \to \infty \\ a_n}} \frac{a_{n+1}}{a_n} < 1. \text{ Zvolíme} \\ q \in (\lim_{n \to \infty} b_n, 1). \text{ Tedy } \exists n_0 \ \forall n \geq n_0 : b_n < q \implies \forall n \geq n_0 : \frac{a_{n+1}}{a_n} < q, \text{ tudíž podle } (i) \\ \sum_{n=1}^{\infty} a_n \text{ konverguje.} \end{array}$
 - $(ii) \implies (iii) \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \limsup_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, tedy podle $(ii) \sum_{n=1}^{\infty} a_n$ konverguje.
- (iv): Z $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$ definicí limity pro $\varepsilon < \lim_{n\to\infty} \frac{a_{n+1}}{a_n} 1$ vyplývá $\exists n_0 \ \forall n \geq n_0$: $\frac{a_{n+1}}{a_n} > 1 \implies a_{n+1} > a_n$. Máme rostoucí posloupnost kladných čísel $\implies \lim_{n\to\infty} a_n \neq 0$, tedy podle nutné podmínky konvergence $\sum_{n=1}^{\infty} a_n$ diverguje.

Věta 1.7 (Kondenzační kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ je řada s nezápornými členy splňující $a_n \geq a_{n+1}$, $\forall n \in \mathbb{N}$. Pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} 2^n \cdot a_{2^n}$ konverguje.

 $D\mathring{u}kaz$

Pro $k \in \mathbb{N}$: $s_k = \sum_{j=1}^k a_j \ t_k = \sum_{j=0}^k 2^j \cdot a_{2^j}$.

 \Leftarrow : Označme $A=\sum_{j=0}^k 2^j\cdot a_{2^j}$, pak $A\in\mathbb{R}$. Nechť $m\in\mathbb{N}$ a nalezneme $kin\mathbb{N},\ m<2^k$. Pak $t_k\leq A$ a:

$$s_m \le a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \ldots + (a_{2^{k-1}} + \ldots + a_{2^k-1}) \le t_{k-1} \le A.$$

Tedy s_m je shora omezená a rostoucí $\implies \exists \lim_{m \to \infty} s_m \in \mathbb{R} \implies \sum_{n=1}^{\infty} a_n$ konverguje.

 \Longrightarrow : Označme $B=\sum_{n=1}^\infty a_n\in\mathbb{R}.$ Zvolme $k\in\mathbb{N}$ a nalezneme $m\in\mathbb{N},$ aby $2^k\leq m.$ Pak $s_m\leq B$ a platí:

$$s_m \ge a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \ldots + (a_{2^{k-1}+1} + \ldots + a_{2^k}) \ge a_1 + \frac{1}{2} (t_k - 1 \cdot a_1) \le \frac{1}{2} t_k \implies$$

 t_k je shora omezená rostoucí posloupnost $\implies \sum_{n=1}^{\infty} 2^n a_{2^n}$ konverguje.