DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI

Odd Semester of the Academic year 2015 - 2016

MA322 & MA 311M Assignment/Problem sheet 4

Instructor: Dr. J. C. Kalita

Due before midnight of 30 August 2015

1. Consider the nonlinear system

$$f(x,y) = x^2 + y^2 - 25 = 0$$
, $q(x,y) = x^2 - y - 2 = 0$

Using software package that has 2D plotting capabilities, illustrate what is going on in solving such a system by plotting f(x, y) and g(x, y) and show their intersection with the xy-plane. Determine approximate roots of these equations from the graphical results.

2. Solve the above pair of simultaneous nonlinear equations by first eliminating y and then solving the resulting equation in x by Newton's method. Start with initial value $x_0 = 1$. Likewise solve the system

$$\sin(x+y) = e^{(x-y)}, \quad \cos(x+6) = x^2y^2$$

with initial guess $(x_0, y_0) = (-0.01, -0.01)$.

- 3. Find the root of the equation $e^x x 1 = 0$ by modified Newton's method.
- 4. Newton's method can be defined for the equation f(z) = g(x,y) + ih(x,y), where f(z) is an analytic function of the complex variable z = x + iy (x and y are real) and g(x,y) and h(x,y) are real functions for all x and y. The derivative f'(z) is given by $f'(z) = g_x + ih_x = h_y ig_y$ because the **Cauchy-Riemann Equations** $g_x = h_y$ and $h_x = -g_y$ hold. Show that Newton's method

$$z_{n+1} = z_n - \frac{f(z_n)}{f'(z_n)}$$

can be written in the form

$$x_{n+1} = x_n - \frac{gh_y - hg_y}{g_x h_y - g_y h_x}$$
$$y_{n+1} = y_n - \frac{hg_x - gh_x}{g_x h_y - g_y h_x}$$

Here all the functions are evaluated at $z_n = x_n + iy_n$.

- 5. Using problem 4, find a complex root of each of the following:
- (a) $z^3 z 1 = 0$
- (b) $2z^3 6(1+i)z 6(1-i) = 0$.