Chapitre 5: Vecteurs aléatoires

1. Définition

Soit (Ω, \mathcal{F}, P) un espace probabilisé et $X = (X_1, ..., X_n)$ une application de Ω dans \mathbb{R}^n , qui à tout élément w de Ω faut correspondre une suite $X(w) = (X_1(w), ..., X_n(w))$. On dit que X est un vecteur aléatoire si pour tout $i = \overline{1, n}$, l'application X_i est une v.a.

Si n=1, on dit variable aléatoire.

Si n=2, on dit couple de variables aléatoires où v.a à deux dimensions.

2. Couple de variables aléatoires

Le couple de variables aléatoires (X,Y) est défini comme une application $(X,Y): \Omega \to \mathbb{R}^2$ à valeurs dans le plan \mathbb{R}^2 .

Exemple: On place au hasard deux boules rouge et vert dans deux boites A et B. On note X, la variable aléatoire « nombre de boules dans la boite A » et Y, la variable aléatoire « nombre de boites vides ».

Définition: On appelle fonction de répartition du couple (X,Y) la fonction

$$F_{(X,Y)}(x,y) = P(X \le x, Y \le y).$$

a. Cas discrèt

Définition : On dit que (X,Y) est un couple discèt si X et Y sont deux v.a discrètes.

a.1. Loi jointe d'un couple de v.a finies

On suppose que la v.a X prend l'une quelconque de m valeurs: $x_1, ..., x_m$ et que la v.a Y prend l'une quelconque de n valeurs: $y_1, ..., y_n$. La loi de répartition d'une v.a à deux dimension (X, Y) est définie par

$$P(X = x_i, Y = y_i) = p_{ij}, \qquad i = 1, ..., m; \quad j = 1, ..., n$$

avec: $p_{ij} \geq 0$ et $\sum_{i} \sum_{j} p_{ij} = 1$. Cette loi peut être donnée par

$X(\Omega)$ $Y(\Omega)$	у	
x	$P(X = x \cap Y = y)$	

Définition : La probabilité que $X = x_i$, i = 1, ..., m est donnée par

$$P(X = x_i) = \sum_{j=1}^{n} p_{ij} = p_{i\bullet}$$

La probabilité que $Y = y_j, j = 1, ..., n$ est donnée par

$$P(Y = y_j) = \sum_{i=1}^{m} p_{ij} = p_{\bullet j}$$

Les $p_{i\bullet}$ et $p_{\bullet j}$, (i=1,...,m; j=1,...,n) constituent les lois de probabilité pour les v.a X et Y. Elles sont dites lois marginales de v.a X et Y respectivement.

Remarque: Il est clair que l'on a

$$\sum_{i=1}^{m} p_{i\bullet} = \sum_{j=1}^{n} p_{\bullet j} = \sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} = 1.$$

Exemple: Dans l'exemple précédant, on a $X(\Omega)=\{0,1,2\},\,Y(\Omega)=\{0,1\}$ et

En effet, p_{11} correspond à X=0 et Y=0, c'est à dire que le nombre de boules dans la boite A est nulle et le nombre de boites vides est nulle; impossible, alors $p_{11}=0$. p_{12} correspond à X=0 et Y=1, alors $p_{12}=\frac{1}{4}$...de la même façon

$X \setminus Y$	0	1	\sum
0	$\frac{0}{4}$	$\frac{1}{4}$	$p_{1\bullet} = \frac{1}{4}$
1	$\frac{2}{4}$	$\frac{0}{4}$	$p_{2\bullet} = \frac{1}{2}$
2	$\frac{0}{4}$	$\frac{1}{4}$	$p_{3\bullet} = \frac{1}{4}$
\sum	$p_{\bullet 1} = \frac{1}{2}$	$p_{\bullet 2} = \frac{1}{2}$	$p_{ij} = 1$

donc

X	0	1	2		Y	0	1
	1	1	1	-et		1	1
$p_{i\bullet}$	$\overline{4}$	$\bar{2}$	$\overline{4}$		$p_{1\bullet}$	$\overline{2}$	$\overline{2}$

et
$$E(X) = 1$$
, $E(Y) = \frac{1}{2}$.

a.2. Loi conditionnelle d'un couple de v.a

Définition : La conditionnelle de Y si $Y=y_j$ est définie par

$$P_{Y=y_j}(X=x_i) = P(X=x_i|Y=y_j) = \frac{P(X=x_i,Y=y_i)}{P(Y=y_i)} = \frac{p_{ij}}{p_{\bullet j}}$$

avec $p_{\bullet j} \neq 0, \forall j = 1, ..., n.$

De même

$$P_{X=x_i}(Y=y_j) = P(Y=y_j | X=x_{ij}) = \frac{P(Y=y_i, X=x_i)}{P(X=x_i)} = \frac{p_{ij}}{p_{i\bullet}}$$

avec $p_{i\bullet} \neq 0, \forall i = 1, ..., m$.

a.3. Variables aléatoires indépendantes

Définition : Les deux v.a X et Y sont dites indépendantes ssi pour tout couple (i, j), on a

$$p_{ij} = p_{i\bullet} \times p_{\bullet j}, \qquad i = 1, ..., m; \quad j = 1, ..., n.$$

Définition : Si l'espérance mathématique de la v.a XY existe, alors

$$E(XY) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j p_{ij}.$$

Remarque: Si X et Y sont indépendantes, alors

$$E(XY) = \sum_{i=1}^{m} x_i p_{i\bullet} \sum_{j=1}^{n} y_j p_{\bullet j} = E(X) E(Y).$$

La réciproque n'est pas toujours vraie.

Exemple: Dans l'exemple précédant, on pose $Z(\Omega) = XY(\Omega) = \{0, 1, 2\}$ et soient l'évènement $U = \{XY = 0\} = \{(0, 0), (0, 1), (1, 0), (2, 0)\}$, alors $P(U) = \frac{3}{4}$, l'évènement $V = \{XY = 1\} = \{(1, 1)\}$, alors $P(V) = \frac{0}{4}$, l'évènement $W = \{XY = 2\} = \{(2, 1)\}$, alors $P(W) = \frac{1}{4}$, donc

z_i	0	1	2	\sum
p_{z_i}	$\frac{3}{4}$	$\frac{0}{4}$	$\frac{1}{4}$	1
$z_i p_{z_i}$	0	0	$\frac{2}{4}$	$\frac{1}{2}$

alors $E(XY) = E(X)E(Y) = \frac{1}{2}$, mais X et Y ne sont pas indépendantes, puisque par exemple on a: $p_{11} = 0$, $p_{1\bullet} = \frac{1}{4}$ et $p_{\bullet 1} = \frac{1}{2}$ alors $p_{11} \neq p_{1\bullet} \times p_{\bullet 1}$.

b. Cas continus

Définition : Un couple de v.a Z = (X, Y) est dit absolument continu s'il existe une application f(x, y) vérifiée les propriétés

$$i) f(x,y) \ge 0, \forall (x,y) \in \mathbb{R}^2.$$

$$ii) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx dy = 1.$$

Remarque:

1. La probabilité que le point (X, Y) se trouve dans le domaine \triangle est

$$P[(X,Y) \in \Delta] = \iint_{\Delta} f(x,y) dxdy.$$

2. En particulier, si $\triangle = [a, b] \times [c, d]$

$$P[(X,Y) \in \Delta] = P[(a \le X \le b, c \le Y \le d)] = \int_a^b \int_c^d f(x,y) \, dy dx.$$

b.1. Fonction de répartition

Définition : La fonction de répartition du couple de v.a Z = (X, Y) est définie par

$$F_Z(x,y) = P\left[\left(X \le x, Y \le y\right)\right] = \int_{-\infty}^x \int_{-\infty}^y f\left(u,v\right) dv du.$$

Remarque:

- 1. On a: $f_Z(x,y) = \frac{\partial^{2F_Z(x,y)}}{\partial x \partial y}$.
- 2. Les fonctions

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(u, v) dv du = \lim_{y \to +\infty} F_Z(x, y)$$
 et $F_Y(y) = P(Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{+\infty} f(u, v) du dv = \lim_{x \to +\infty} F_Z(x, y)$

sont les fonctions de répartitions marginales des v.a X et Y.

3. Les fonctions

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, v) dv$$
 et $f_Y(y) = \int_{-\infty}^{+\infty} f(u, y) du$

sont les fonctions de densités marginales des v.a X et Y, avec $f_{X}\left(x\right)=F_{X}'\left(x\right)$ et $f_{Y}\left(y\right)=F_{Y}'\left(y\right)$.

Exemple: Soient $c \in \mathbb{R}$, f la fonction définie par

$$f(x,y) = cxye^{-x^2-y^2}, \qquad x,y \in \mathbb{R}_+$$

- 1. Déterminer c pour que f soit la fonction de densité d'un couple aléatoire (X,Y).
- 2. Calculer $F_{(X,Y)}$ la fonction de répartition du couple (X,Y) .
- 3. En déduire les fonctions de répartitions marginales.
- 4. Calculer les fonctions de densité marginale.

Solution:

1. La fonction f doit être positive, ainsi $c \ge 0$, de plus $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dxdy = 1$, alors

4

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx dy = \int_{0}^{+\infty} \int_{0}^{+\infty} cxy e^{-x^2 - y^2} dx dy = \frac{c}{4} = 1 \Longleftrightarrow c = 4.$$

2. Fonction de répartition du couple (X, Y).

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) dv du.$$

Si x ou $y \in]-\infty, 0[$ alors $F_{(X,Y)}(x,y)=0.$

Si x et $y \in [0, +\infty[$ alors

$$F_{(X,Y)}(x,y) = \int_0^x \int_0^y 4uve^{-u^2-v^2} dv du = 4 \int_0^x ue^{-u^2} du \int_0^y ve^{-v^2} dv$$
$$= \left(1 - e^{-x^2}\right) \left(1 - e^{-y^2}\right).$$

3. Fonctions de répartitions marginales: si x et $y \in [0, +\infty[$

$$F_X(x) = \lim_{y \to +\infty} F_{(X,Y)}(x,y) = \lim_{y \to +\infty} \left(1 - e^{-x^2}\right) \left(1 - e^{-y^2}\right) = \left(1 - e^{-x^2}\right)$$

et $F_Y(y) = \lim_{x \to +\infty} F_{(X,Y)}(x,y) = \lim_{x \to +\infty} \left(1 - e^{-x^2}\right) \left(1 - e^{-y^2}\right) = \left(1 - e^{-y^2}\right)$

4. Fonctions de densité marginale si x et $y \in [0, +\infty[$

$$f_X(x) = F'_X(x) = 2xe^{-x^2}1_{\mathbb{R}_+}(x)$$

et $f_Y(y) = F'_Y(y) = 2ye^{-y^2}1_{\mathbb{R}_+}(y)$.

b.2. Loi conditionnelle

Définition : Soit Z = (X, Y) un couple aléatoire absolument continu, f_Z sa fonction de densité.

a) La loi conditionnelle de X sachant Y est donnée par :

$$f_{X|Y=y}\left(x\right) = \frac{f_Z\left(x,y\right)}{f_Y\left(y\right)}, \text{ avec } f_Y\left(y\right) \neq 0.$$

b) La loi conditionnelle de Y sachant X est donnée par :

$$f_{Y|X=x}(y) = \frac{f_Z(x,y)}{f_X(x)}$$
, avec $f_X(x) \neq 0$.

Définition: Soit (X,Y) un couple aléatoire absolument continu.

a) L'espérance conditionnelle de X sachant Y est donnée par :

$$E(X|Y=y) = \int_{\mathbb{R}} x f_{X|Y=y}(x) dx.$$

b) L'espérance conditionnelle de Y sachant X est donnée par :

$$E(Y|X=x) = \int_{\mathbb{R}} y f_{Y|X=x}(y) dy.$$

b.3. Variables aléatoires indépendantes

Définition : Les deux v.a X, Y sont dites indépendantes ssi

$$\begin{split} P\left[\left(X \leq x, Y \leq y\right)\right] &= P\left(X \leq x\right) P\left(Y \leq y\right), \quad \text{ou} \\ F_{\left(X,Y\right)}\left(x,y\right) &= F_{X}\left(x\right) F_{Y}\left(y\right), \quad \text{ou} \\ f_{\left(X,Y\right)}\left(x,y\right) &= f_{X}\left(x\right) f_{Y}\left(y\right). \end{split}$$

Remarque:

1. Si l'espérance de la v.a XY existe, alors

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} uv f_{(X,Y)}(u,v) dv du.$$

2. Si X et Y sont indépendants, alors

$$E(XY) = E(X) E(Y),$$

mais la réciproque est fausse comme dans le cas discrèt.

3. Vecteurs aléatoires

a. Loi d'un vecteur aléatoire

Nous avons défini les vecteurs aléatoires à n dimensions comme un n-uplet variables réelles $X = (X_1, \ldots, X_n)$.

Définition : La loi du vecteur X est une mesure de probabilité sur \mathbb{R}^n muni de sa tribu Borélienne $\mathcal{B}(\mathbb{R}^n)$. Elle est notée P_X et se définit par:

$$\forall B \in \mathcal{B}(\mathbb{R}^n); \qquad P_X(B) = P(X \in B).$$

Remarque:

1. Si le vecteur X admet une densité notée f, la loi jointe s'écrit

$$P(X \in B) = \int_{B} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

f est une fonction positive définie sur \mathbb{R}^n et d'intégrale égale a 1.

2. La loi marginale de X_i , $(i = \overline{1, n})$ est alors la loi de densité

$$f_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} f(x_1, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n.$$

3. La fonction de répartition

$$\forall (x_1, \dots, x_n) \in \mathbb{R}^n : \qquad F_X(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(y_1, \dots, y_n) \, dy_n \dots dy_1.$$

Définition:

1. L'espérance du vecteur X sur \mathbb{R}^n est donnée par:

$$E(X) = (E(X_1), \dots E(X_n)).$$

2. Pour une fonction $g: \mathbb{R}^n \to \mathbb{R}^n$ mesurable telle que:

$$\int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_1 \dots dx_n < \infty$$

on déduit:

$$E[g(X)] = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_1 \dots dx_n.$$

b. Matrice de covariance

Définition : On appelle matrice de covariance du vecteur X, la matrice carré K_X de taille n dont les coefficients sont donnée par (s'ils existes)

$$\forall i, j = 1, ..., n;$$
 $k_{ij} = Cov(X_i, X_j)$

οù

$$Cov(X_i, X_j) = E[(X_i - E(X_i))(X_j - E(X_j))] = E(X_i X_j) - E(X_i) E(X_j).$$

 $Cov(X_i, X_j)$ s'appelle covariance des variables X_i, X_j . K_X est une matrice symétrique semi-définie positive.

Remarque:

1. Pour un couple de variables aléatoires réelles (X,Y), nous avons

$$K_{(X,Y)} = \left(\begin{array}{cc} Var\left(X \right) & Cov\left(X,Y \right) \\ Cov\left(X,Y \right) & Var\left(Y \right) \end{array} \right).$$

2. Le nombre réel r défini par

$$r = \frac{Cov(X, Y)}{\sigma_X \sigma_Y},$$
 où $\sigma_X^2 = Var(X)$ et $\sigma_Y^2 = Var(Y)$

est dit coefficient de corrélation de X et Y.

Propriétés:

1. Symétrique: Cov(X, Y) = Cov(Y, X).

En effet

$$Cov(X,Y) = E(XY) - E(X)E(Y) = E(YX) - E(Y)E(X).$$

2. Pour tout $a, b, c, d \in \mathbb{R}$, la Cov est bilinéaire:

$$Cov (aX_{1} + bX_{2}, cY_{1} + dY_{2}) = aCov (X_{1}, cY_{1} + dY_{2}) + bCov (X_{2}, cY_{1} + dY_{2})$$

$$= acCov (X_{1}, Y_{1}) + adCov (X_{1}, Y_{2})$$

$$+bcCov (X_{2}, Y_{1}) + bdCov (X_{2}, Y_{2}).$$

- 3. Si X et Y sont indépendantes, alors Cov(X,Y) = 0.
- 4. $Var(aX + bY) = a^{2}Var(X) + 2abCov(X, Y) + b^{2}Var(Y)$.
- 5. D'après l'inégalité de Cauchy-Schwarz, nous avons

$$|Cov(X,Y)| \le \sqrt{Var(X)}\sqrt{Var(Y)} = \sigma_X\sigma_Y,$$

alors $-1 \le r \le 1$.

En effet: $\forall \lambda \in \mathbb{R}$; $Var(\lambda X + Y) \geq 0$, alors

$$\mathcal{P}(\lambda) = \lambda^2 Var(X) + 2\lambda Cov(X, Y) + Var(Y) \ge 0$$

où $\mathcal{P}(\lambda)$ est un polynôme de degré 2 par rapport à λ , donc

$$\mathcal{P}(\lambda) \geq 0 \Leftrightarrow (Cov(X,Y))^2 - Var(X)Var(Y) \leq 0$$

 $\Leftrightarrow (Cov(X,Y))^2 \leq Var(X)Var(Y).$

Exemple: Soit U et V deux variables aléatoires indépendantes de loi $\mathcal{U}(0,1)$. Notons

$$\left\{ \begin{array}{l} X = U + V \\ Y = U - V \end{array} \right.$$

On cherche à calculer la matrice de covariance du couple (X, Y).

Solution: On a

$$K_{(X,Y)} = \begin{pmatrix} Var(X) & Cov(X,Y) \\ Cov(X,Y) & Var(Y) \end{pmatrix}.$$

Alors

$$Var(X) = Var(U+V) = Var(U) + 2Cov(U,V) + Var(V) = \frac{1}{12} + 0 + \frac{1}{12} = \frac{1}{6}$$

$$Var(X) = Var(U-V) = Var(U) - 2Cov(U,V) + Var(V) = \frac{1}{12} - 0 + \frac{1}{12} = \frac{1}{6}$$

$$Cov(X,Y) = Cov(U+V,U-V) = Var(U) - Var(V) + Cov(U,V) - Cov(U,V) = 0$$

donc la matrice de covariance du couple (X, Y)

$$K_{(X,Y)} = \begin{pmatrix} \frac{1}{6} & 0\\ 0 & \frac{1}{6} \end{pmatrix} \neq 0$$

les v.a X et Y ne sont pas indépendantes.

Remarque:

- 1. Si les v.a X_1, \ldots, X_n sont indépendantes, la matrice K_X est diagonale.
- 2. En notation matricielle, la matrice de covariance d'un vecteur X est égal à

$$K_X = E\left[\left(X - E\left(X \right) \right)^{-T} \left(X - E\left(X \right) \right) \right].$$

Proposition: Soit X un vecteur aléatoire de dimension n. Soit A une matrice de taille $m \times n$, alors:

$$K_{AX} = AK_X^T A$$
 (^T A transposé de A).

Démonstration: Nous avons

$$K_{AX} = E\left[\left(AX - E\left(AX\right)\right)^{T}\left(AX - E\left(AX\right)\right)\right] = E\left[A\left(X - E\left(X\right)\right)^{T}\left(X - E\left(X\right)^{T}A\right)\right]$$
$$= AE\left[\left(X - E\left(X\right)\right)^{T}\left(X - E\left(X\right)\right)\right]^{T}A.$$

Exemple: Il est possible de retrouver le résultat de l'exemple précédent de manière directe. En effet, nous avons

$$\left(\begin{array}{c} X \\ Y \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} U \\ V \end{array}\right).$$

Ainsi

$$K_{(X,Y)} = K_{A(U,V)} = AK_{(U,V)} {}^{T}A, \text{ avec } A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$K_{(X,Y)} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{12} & 0 \\ 0 & \frac{1}{12} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{6} \end{pmatrix}.$$

c. Changement de variables

Soit $X = (X_1, \ldots, X_n)$ un vecteur aléatoire de densité f_X . On appellera support de f_X le domaine D, supposé ouvert, défini par

$$D = \left\{ x \in \mathbb{R}^n, f_X(x) > 0 \right\}.$$

Soient $Z = \varphi(X)$ avec φ est définie sur le domaine, bijective sur son image $\Delta = \varphi(D)$ et supposons que φ et φ^{-1} sont de classe C^1 sur D et Δ resp. Considérons le déterminant

$$Jac(\varphi)(x) = \begin{vmatrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial \varphi_1}{\partial x_n} \\ \vdots & \cdots & \vdots \\ \frac{\partial \varphi_n}{\partial x_1} & \cdots & \frac{\partial \varphi_n}{\partial x_n} \end{vmatrix} \neq 0.$$

Proposition: La densité du vecteur aléatoire Z est donnée par:

$$\forall z \in \varphi(D): f_X(z) = \left| Jac(\varphi^{-1})(z) \right| f_X(\varphi^{-1}(z)).$$

Exemple: Soient X_1 , X_2 , X_3 trois variables indépendantes de loi $\mathcal{U}(0,1)$. On cherche a déterminer la loi du triplet (Z_1, Z_2, Z_3) défini par les relations

$$Z_1 = -\ln X_1, \qquad Z_2 = -X_2 \ln X_1, \qquad Z_3 = -X_2 \ln X_3.$$

Solution: L'image du domaine $D = (0,1)^3$ est égale à

$$\triangle = \{(z_1, z_2, z_3); 0 < z_2 < z_1, 0 < z_3\}$$

et nous avons

$$x_1 = \exp(-z_1), \qquad x_2 = \frac{z_2}{z_1}, \qquad x_3 = x_1 = \exp(-\frac{z_3 z_1}{z_2}).$$

Le Jacobien du changement de variables est donné par

$$\begin{vmatrix} -\exp(-z_1) & 0 & 0 \\ -\frac{z_2}{z_1^2} & \frac{1}{z_1} & 0 \\ \cdots & \cdots & -\frac{z_1}{z_2} \exp\left(-\frac{z_3 z_1}{z_2}\right) \end{vmatrix} = \frac{\exp\left[-z_1\left(1 + \frac{z_3}{z_2}\right)\right]}{z_2}$$

finalement, nous obtenons

$$f\left(z_1,z_2,z_3
ight) = rac{\exp\left[-z_1\left(1+rac{z_3}{z_2}
ight)
ight]}{z_2} 1_{ riangle}\left(z_1,z_2,z_3
ight).$$

d. Fonctions caractéristiques

Définition: On appelle fonction caractéristique du vecteur aléatoire $X = (X_1, \dots, X_n)$ la fonction à valeurs complexes définie par

$$\forall t \in \mathbb{R}^n : \qquad \varphi_X(t) = E\left[\exp\left(i\sum_{k=1}^n t_k X_k\right)\right].$$

Lorsque le vecteur X admet une densité :

$$\forall t \in \mathbb{R}^n : \qquad \varphi_X(t) = \int_{\mathbb{R}^n} \exp\left(i\sum_{k=1}^n t_k X_k\right) f_X(x_1, \dots, x_n) dx_1 \dots dx_n.$$

Proposition: Deux vecteurs X et Y ont même loi si et seulement si $\varphi_X = \varphi_Y$.

4. Vecteurs gaussiens

a. Caractérisation des vecteurs gaussiens

Définition: On dit que $X = (X_1, ..., X_n)$ est un vecteur aléatoire gaussien si toute combinaison linéaire à coefficients réels des X_i suit une loi normale $\mathcal{N}(m, \sigma^2)$.

Remarque: Un vecteur dont toutes les coordonnées sont gaussiennes n'est pas nécessairement gaussien.

Proposition: Soit X_1, \ldots, X_n des variables indépendantes de loi $\mathcal{N}(0, 1)$. Alors le vecteur $X = (X_1, \ldots, X_n)$ est un vecteur gaussien.

Démonstration: Soit a_1, \ldots, a_n des scalaires et $Y = \sum_{k=1}^n a_k X_k$. La fonction caractéristique de Y est

$$\varphi_Y(t) = E\left[\exp\left(itY\right)\right] = E\left[\exp\left(it\sum_{k=1}^n a_k X_k\right)\right] = \prod_{k=1}^n E\left[\exp\left(ita_k X_k\right)\right]$$
$$= \prod_{k=1}^n \varphi_{X_k}(a_k t) = \prod_{k=1}^n \exp\left(-\frac{a_k^2 t^2}{2}\right) = \exp\left(-\frac{t^2}{2}\sum_{k=1}^n a_k^2\right).$$

La variable Y suit donc la loi $\mathcal{N}(0, \sum_{k=1}^{n} a_k^2)$.

Proposition: Soit X un vecteur gaussien, d'espérance $m \in \mathbb{R}^n$ et de matrice de covariance K_X . La fonction caractéristique de X est définie par

$$\forall t \in \mathbb{R}^n : \qquad \varphi_X(t) = \exp\left(i^T t m - \frac{1}{2}^T t K t\right).$$

b. Propriétés des vecteurs gaussiens

- 1. Soit $X \in \mathbb{R}^n$ un vecteur gaussien et K sa matrice de covariance. Les variables X_k sont indépendantes si et seulement la matrice K est diagonale.
- 2. Soit $m \in \mathbb{R}^n$ et K une matrice symétrique d'ordre n, définie positive (det $K \neq 0$). La loi normale $\mathcal{N}(m,K)$ admet pour densité

$$\forall x \in \mathbb{R}^n : \qquad f_X(x) = \frac{1}{\left(\sqrt{2\pi}\right)^n} \frac{1}{\sqrt{\det K}} \exp\left(-\frac{1}{2} T(x-m) K^{-1}(x-m)\right).$$

5. Convergence dans le cas vectoriel

Théorème: Soit une suite du vecteurs aléatoires $X_n: (\Omega_n, \mathcal{F}_n, P_n) \to (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ et un autre vecteur aléatoire $X: (\Omega_\infty, \mathcal{F}_\infty, P_\infty) \to (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$. Alors les propriétés (a) et (b) suivantes sont équivalentes:

- (a) Pour tout $t \in \mathbb{R}^{k}$, $\varphi_{X_{n}}\left(t\right) \to \varphi_{X}\left(t\right)$, quand $n \to \infty$.
- (b) Pour tout point de continuité $x \in \mathbb{R}^{k}$, $F_{X_{n}}(x) \to F_{X}(x)$, quand $n \to \infty$.

Définition: Si l'un de deux points (a) ou (b) dans le théorème précédant a lieu, alors nous disons que X_n converge vaguement vers X, ou X_n converge en distribution vers X, ou X_n converge en loi vers X, notée:

$$X_n \rightsquigarrow X$$
 ou $X_n \xrightarrow{d} X$ ou $X_n \xrightarrow{\mathcal{L}} X$.

6. Théorème central limite vectoriel

Théorème: Soient X_1, \ldots, X_d des vecteurs aléatoires de \mathbb{R}^n i.i.d admettant un moment d'ordre 2. On note m leur espérance et K leur matrice de covariance. Alors

$$\sqrt{d}\left(\overline{X}_{d}-m\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0,K\right).$$

Preuve: On calcule, pour tout d la fonction caractéristique de $Z_d = \sqrt{d} \left(\overline{X}_d - m \right)$:

$$\forall t \in \mathbb{R}^n : \qquad \varphi_{Z_d}(t) = E\left[\exp\left(i^T t Z_d\right)\right]$$

on a par le théorème central limite que ${}^TtZ_d \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, {}^TtKt\right)$

$$\forall t \in \mathbb{R}^n : \qquad \varphi_{Z_d}\left(t\right) \underset{d \to \infty}{\longrightarrow} \exp\left(-\frac{1}{2} \ ^T t K t\right).$$