CS 6160 Cryptology Lecture 14 a: Introduction to Number Theory

Maria Francis

October 27, 2020

Venturing into Public Key Cryptography

- We have seen that private/secret/symmetric key cryptography (encryption and MACs) can be based on the assumption that pseudorandom permutations/block ciphers exist.
- I.e., there exists some keyed permutation F for which it is hard to distinguish in polynomial time between interactions with F_k (for a uniform, unknown key k) and interactions with a truly random permutation.
- It looks like a strong assumption. But we saw some practical constructions resistant to attacks which gives *an indication* that existence of PRPs is plausible.
- But right now we do not know how to prove the pseudorandomness of any of the practical constructions relative to any *reasonable assumption*.

Back to OWFs

- It is possible to prove that PRPs exist based on the much milder assumption that one-way functions exist.
- But after Lecture 3 we have not really seen any OWFs.

A top down approach so far.

Number Theory Recap

- The examples of OWFs we see will be number theoretic in nature and so it is important to have a recap of the theory.
- The study of number theory in cryptography will be algorithmic in nature.
- The set of integers are typically denoted as \mathbb{Z} .
- We say that a divides b, $a \mid b$ if there exists an integer c s.t. ac = b.
- If a does not divide b we write $a \nmid b$.
- We look at cases when all these integers are positive but the definitions typically make sense for negative integers as well.
- Exercise: if $a \mid b$ and $a \mid c$ then $a \mid (xb + yc)$ for any $x, y \in \mathbb{Z}$.
- If $a \mid b$ and a is positive, then we call a a divisor of b and if $a \notin \{1, b\}$ then a is a nontrivial divisor or factor.

Basic Results

- Every integer greater than 1 can be expressed uniquely as product of primes (upto ordering). (Fundamental Theorem of Arithmetic)
- Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$. Then there exists unique integers q, r for which a = qb + r and $0 \le r < b$. (Division Algorithm)
- The above q and r can be computed in polynomial time, polynomial in the length of the input.
- What is the length of an integer N? ||N|| = |log N| + 1

Basic Results

- The greatest common divisor of $a, b \in \mathbb{Z}$, gcd(a, b) is the largest integer c s.t. $c \mid a$ and $c \mid b$.
- With either a (or b) zero we take gcd as b (or a) and if both are zeroes then gcd is n.d.
- If p is prime gcd(a, p) is either equal to 1 or p.
- If gcd(a, b) = 1 then we say a and b are relatively prime.
- Computing gcd in polynomial time : Euclidean Algorithm!
- Let $a, b \in \mathbb{Z}$. Then there exist integers u, v s.t. ua + vb = gcd(a, b). (Extended Euclidean Algorithm)

Euclidean Algorithm

- How to compute the gcd, greatest common divisior?
- We are used to factoring but for large numbers that may not be possible. Euclid's algorithm more efficient.
- Idea $gcd(r_0, r_1) = gcd(r_0 r_1, r_1)$.
- We can do this iteratively!

$$gcd(r_0, r_1) = gcd(r_0 \bmod r_1, r_1)$$

 $gcd(r_0, r_1) = gcd(r_1, r_0 \bmod r_1)$

Euclidean Algorithm

Input Two positive integers, a and b.

Output g := gcd(a, b)

Algorithm: gcd(a, b)

- 1. If a < b, exchange a and b. Assume w.l.o.g. $a \ge b \ge 0$.
- 2. If b = 0 then output a.
- 3. Else $gcd(b, a \mod b)$.

Euclid's Algorithm

$$gcd(888, 54) =$$
 $888 = 54 * 16 + 24$
 $54 = 24 * 2 + 6$
 $24 = 6 * 4 + 0$

Therefore gcd is 6.

Basic Results

- Let $a, b, N \in \mathbb{Z}$ with N > 1.
- $a \mod N$ denotes the remainder of a upon division by N.
- By division algorithm we have $a \mod N = r$ where $0 \le r < N$.
- The mapping of a to a mod N is called reduction modulo N.
- If $a \mod N = b \mod N$ then we say a and b are congruent modulo N, $a = b \mod N$.
- Note: $a = b \mod N$ iff $N \mid (a b)$.
- The textbook refers to $[a \mod N]$ as the remainder of a upon division by N.
- E.g: $36 = 21 \mod 15$ but $36 \neq [21 \mod 15] = 6$.

Invertible Modulo **N**

- Congruence modulo N does not in general respect division. l.e., if $a = a' \mod N$ and $b = b' \mod N \Rightarrow a/b = a'/b' \mod N$.
- Take N = 24, $3 \cdot 2 = 6 = 15 \cdot 2 \mod 24$ but $3 \neq 15 \mod 24$.
- Sometimes it is meaningful to define division or invertible modulo *N*.
- If for a given integer b there exists an integer c s.t. $bc = 1 \mod N$ then b is invertible modulo N.
- c is a multiplicative inverse of b modulo N.
- 0 is never invertible.
- If c, c' are multiplicative inverses of b modulo N then $c \mod N = c' \mod N$, so we can assume b^{-1} is the unique multiplicative inverse of b that lies in $\{1, \ldots, N-1\}$.

Invertible Modulo **N** & Groups

- Which integers are invertible modulo a given modulus N?
- Let $b, N \in \mathbb{Z}$ s.t. $b \ge 1$ and N > 1. Then b is invertible modulo N iff gcd(b, N) = 1.
- Addition, subtraction, multiplication and computation of inverses modulo ${\it N}$ can all be carried out in polynomial time.
- We have also seen exponentiation can be carried out in polynomial time.
- What is a Group? A set *G* with a binary operation ∘ for which the following properties hold:
 - ▶ Closure: $\forall g, h \in G, g \circ h \in G$.
 - Existence of an identity: There exists an identity $e \in G$ s.t. $\forall g \in G$, $e \circ g = g \circ e = g$.
 - Existence of inverses: $\forall g \in G$, there exists an element $h \in G$ s.t. $g \circ h = e = h \circ g$. h is called an inverse of g.
 - ▶ Associativity: $\forall g_1, g_2, g_3 \in G$, $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.

Basics of Groups

- Commutative groups-
- Finite groups with |G| the order of the group.
- Subgroup of G: subset of G that is also a group.
- Usually omit the o notation and represent operations as addition or multiplication.
- \mathbb{Z} : set of integers is a group w.r.t normal addition but not a group w.r.t. multiplication.
- What about $\mathbb R$ the set of real numbers under multiplication? Think about 0!
- The group we will follow in crypto : $\mathbb{Z}_N = \{0, \dots, N-1\}, + \bmod N$ and $\mathbb{Z}_N^*, \times \bmod N$.
- What is \mathbb{Z}_N^* ? The set of all invertible elements modulo N.

Important Results from Groups

- Let G be a finite group with m = |G| the order of the group. Then for any element g in G, $g^m = 1$.
- Let G be a finite group with m = |G| the order of the group. Then for any element g in G, and any $x \in \mathbb{Z}$ $g^x = g^x \mod m$.
- Let G be a finite group with m=|G| the order of the group. Let e>0 be an integer and define

$$f_e:G o G$$
 $f_e(g)=g^e.$

If gcd(e, m) = 1 then f_e is a permutation.

- Also if $d = e^{-1} \mod m$, then f_d is the inverse of f_e . Since gcd(e, m) = 1, e is invertible modulo m.

Group \mathbb{Z}_N^*

- In the assignment we saw that taking nonzero elements in \mathbb{Z}_N it can fail to be a group.
- Which elements in $\{1,\dots,N-1\}$ are invertible? Exactly those for which $\gcd(b,N)=1$.

$$\mathbb{Z}_{N}^{*} := \{b \in \{1, \dots, N-1\} : gcd(b, N) = 1\}.$$

- \mathbb{Z}_N^* is an abelian group under multiplication modulo N. $|\mathbb{Z}_N^*|$ is denoted as $\varphi(N)$, the Euler Totient Function.
- For example N=6, there are two numbers relatively prime to 6 : 1 and 5 and $\varphi(6)=2$.
- If N = pq, where p and q are primes, then $\varphi(N) = (p-1)(q-1)$.

Computing Euler's Phi Function

Theorem

Given the factorization of N,

$$N=p_1^{e_1}\cdot p_2^{e_2}\cdots p_n^{e_n},$$

where the p_i s are all distinct primes and e_i are positive integers, then

$$\varphi(N) = \prod_{i=1}^n (p_i^{e_i} - p_i^{e_i-1}).$$

E.g: $N = 240 = 2^4 \cdot 3 \cdot 5$. We have,

Computing $\varphi(N)$ is as hard as factoring! If we know the factorization of N then it is easy to calculate $\varphi(N)$.

Euler's Theorem

Theorem Let a and N be integers with gcd(a, N) = 1 (i.e. $a \in \mathbb{Z}_N^*$) then: $a^{\varphi(N)} \equiv 1 \mod N.$

Proof of Euler's Theorem

- Let $A = \{ax : x \in \mathbb{Z}_N^*\}$. $A \subseteq \mathbb{Z}_N^*$ (since x_M is group)
- If $|A| < |\mathbb{Z}_N^*| \Rightarrow \exists i, j \in \mathbb{Z}_N^*$, s.t. $i \neq j$, ai = aj (by pigeonhole principle).
- But a^{-1} exists, multiplying with it on both sides we get i=j. Thus $A=\mathbb{Z}_N^*$.
- Multiplying elements of \mathbb{Z}_N^* and A we get,

$$\prod_{x \in \mathbb{Z}_N^*} x \bmod N = \prod_{y \in A} y \bmod N = \prod_{x \in \mathbb{Z}_N^*} ax \bmod N$$

$$\prod_{x \in \mathbb{Z}_N^*} x \bmod N = a^{\varphi(N)} \prod_{x \in \mathbb{Z}_N^*} x \bmod N$$

$$a^{\varphi(N)} \equiv 1 \bmod N.$$

Fermat's Little Theorem - Corollary of Euler's Theorem

In
$$\mathbb{Z}_p^*$$
, $\varphi(p) = (p^1 - p^0) = p - 1$.

Theorem

Let a be an integer in \mathbb{Z}_p^* where p is a prime . Then,

$$a^{p-1} \equiv 1 \mod p$$
.

Cyclic Subgroups of G

- We consider a finite group G of order m.
- Take any $g\in G$, the subgroup generated by g is $\langle g \rangle = \{g^0,g^1,\dots,\}.$
- We know that $g^m = 1$. Can there be a smaller i for which $g^i = 1$? Order of g or its multiples.
- Then $g^{i} = 0, g^{i+1} = g^{1}$, and so on..
- So $\langle g \rangle = \{g^0, \dots, g^{i-1}\}.$
- If i is the smallest integer for which $g^i=1$ then i is the order of the group generated by g.

Basic Results

- Let G be a finite group and $g \in G$ an element of order i.
 - ▶ for any integer x, $g^x = g^{x \mod i}$
 - ► Something stronger: $g^x = g^y$ iff $x = y \mod i$.
- Identity element generates a group of order 1, the only one.
- If there exists g s.t. it has order m then G is a cyclic group and g is a generator, not necessarily the generator!
 - ▶ I.e. every element $h \in G$ is of the form g^x for some $x \in \{0, ..., m-1\}$.
- Let G be a finite group of order m, say $g \in G$ has order i. Then $i \mid m$.
- If *G* is a group of prime order *p*, then *G* is cyclic. All the elements of *G* are generators except the identity.
- If p is prime then \mathbb{Z}_p^* is a cyclic group of order p-1. Is every element a generator?

Examples

- Consider $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}.$ It has order (5-1)(3-1) = 8.
- $\langle 2 \rangle = \{1, 2, 4, 8\}$. Order of 2 is 4.
- The order 4 divides the order of the group 8. Also 2 is not a generator.
- Should it be necessarily cyclic? In fact \mathbb{Z}_{15}^* is not cyclic.
- Consider \mathbb{Z}_7^* . It is cyclic by previous result.
- $\langle 2 \rangle = \{1,2,4\}$, so 2 is not a generator.
- 3 is a generator. All elements need not be generators.