

أنظمة الملفات

الصفحة	العنوان
5	1. أقراص التخزين
5	2. نظام الملفات
6	3. مستويات نظام الملفات
7	4. طرق حجز كتل الملفات
8	5. أنظمة الملفات الشهيرة
8	6. نظام ملفات الـ CD-ROM
9	7. بنية المجلد في نظام 9660 ISO
10	8. نظام الملفات CP/M
11	9. نظام الملفات MS-DOS
12	10. جدول تخصيص الملفات في نظام ملفات MS-DOS
13	11. بنية جدول تخصيص الملفات
14	12. نظام ملفات Windows 98
15	13. أسماء الملفات في Windows 98
16	14. نظام ملفات VNIX V7
18	15. نظام ملفات 2000 Windows
19	16. البنية الفيزيائية لنظام الملفات NTFS
20	17. بنية جدول الملفات الرئيسي MFT
20	18. أهم واصفات الملف
21	19. البحث عن ملف في نظام NTFS
22	20. الملفات المترفعة في نظام NTFS
23	21. المجلدات
23	22. آلية حماية المعطيات من الضياع
24	23. ضغط الملفات في نظام NTFS
25	24. استخدام ضغط الملفات
25	25. نظام تشفير الملفات EFS
26	26. استخدام نظام تشفير الملفات
27	27. ميزات نظام NTFS
27	28. ميزات نظام FAT
28	29 اختيار نظام الملفات

28	30. التحويل بين أنظمة الملفات
29	31. التمارين

الكلمات المفتاحية:

نظام الملفات، جدول تخصيص الملفات، مدخل، قائمة الواصفات، مجلد، كتلة معطيات، عناقيد المعطيات، مؤشر إلى ملف، مؤشر إلى مجلد، منطقة جدول الملفات الرئيسي، جدول الملفات الرئيسي، الملفات المترفعة، قطاع معطل، المجلد الجذر، i-node.

ملخص:

يركز هذا الفصل على التعرف إلى أنظمة الملفات، وعلى بنيتها وأنواعها.

أهداف تعليمية:

يهدف هذا الفصل إلى:

- التعرف على نظام الملفات (وظيفته، مستوياته، أشهر أنواعه).
 - نظام ملفات 180 9660.
 - نظام الملفات CP/M.
 - نظام ملفات MS-DOS.
 - جدول تخصيص الملفات FAT.
 - نظام ملفات 98 Windows.
 - نظام ملفات V7.
 - نظام ملفات 2000 Windows.
- نظام الملفات NTFS، بنية جدول الملفات الرئيسي، آلية حماية وضغط وتشفير الملفات.
 - اختيار نظام الملفات.
 - ميزات NTFS.
 - ميزات FAT.
 - التحويل بين أنظمة الملفات.

المخطط:

- 1. أقراص التخزين.
 - 2. نظام الملفات.
- 3. مستويات نظام الملفات.
- 4. طرق حجز كتل الملفات.
 - 5. أنظمة الملفات الشهيرة.
- 6. نظام ملفات الـ CD-ROM.
- 7. المجلد في نظام 180 9660.
 - 8. نظام الملفات CP/M.
 - 9. نظام الملفات MS-DOS.
- 10. جدول تخصيص الملفات في نظام ملفات MS-DOS.
 - 11. بنية جدول تخصيص الملفات.
 - 12. نظام ملفات 98 Windows.
 - 13. أسماء الملفات في Windows 98.
 - 14. نظام ملفات VNIX V7.
 - . Windows 200 نظام ملفات 15
 - 16. البنية الفيزبائية لنظام الملفات NTFS.
 - 17. بنية جدول الملفات الرئيسي MFT.
 - 18. أهم واصفات الملف.
 - 19. البحث عن ملف في نظام NTFS.
 - 20. الملفات المترفعة في نظام NTFS.
 - 21. المجلدات.
 - 22. آلية حماية المعطيات من الضياع.
 - 23. ضغط الملفات في نظام NTFS.
 - 24. استخدام ضغط الملفات.
 - 25. نظام تشفير الملفات EFS.
 - 26. استخدام نظام تشفير الملفات.
 - 27. ميزات نظام NTFS.
 - 28. ميزات نظام FAT.
 - 29. اختيار نظام الملفات.
 - 30. التحويل بين أنظمة الملفات.
 - 31. التمارين

1. أقراص التخزين

يجب أن تحقق أقراص التخزين الخاصتين التاليتين:

- إمكانية تخزين الملفات على القرص، وإعادة كتابتها في الموقع نفسه، بالإضافة إلى إمكانية قراءة كتلة من القرص، تعديلها، وكتابتها مجدداً في نفس المكان.
- الوصول المباشر إلى أي كتلة من المعطيات على القرص، وهذا ما يعطي سهولة في الوصول إلى معطيات الملف، إما بشكل تسلسلي أو بشكل عشوائي.

2. نظام الملفات

يَستخدِم نظام التشغيل ما يسمى نظام الملفات، من أجل تأمين وصول ملائم وفعّال إلى القرص، والسماح بتخزين المعطيات، وتحديد مكانها، بالإضافة إلى استرجاعها بسهولة.

هنالك مشكلتان أساسيتان لنظام الملفات:

- كيفية ظهور نظام الملفات بالنسبة للمستخدم، وهذا يتضمن تعريف الملف، تعريف واصفاته، وتحديد العمليات المتاحة عليه، بالإضافة إلى توصيف بنية المجلدات، وتوصيف طريقة تنظيم الملفات.
- الخوارزميات وبنى المعطيات التي يجب خلقها، لتحقيق التقابل بين نظام الملفات المنطقي، وأجهزة التخزين الفيزيائية.

3. مستويات نظام الملفات

هنالك خمس مستويات لنظام الملفات:

- التحكم بالدخل/الخرج وتجهيزات التخزين: عبارة عن الطبقة الدنيا لنظام الملفات، تهتم بعملية نقل الملفات من نظام القرص إلى الذاكرة.
- نظام الملفات الأساسي: يقوم بإعطاء تعليمات عامة إلى قرص التخزين المناسب، من أجل قراءة وكتابة كتل فيزيائية على القرص.
 - جزء تنظيم الملف: يهتم بالملف وكتله المنطقية والفيزيائية.
- نظام الملفات المنطقي: يستخدم بنية المجلد، من أجل تزويد جزء تنظيم الملف، بالمعلومات التي يحتاجها، كما أنه مسؤول عن حماية وأمن الملفات.

4. طرق حجز كتل الملفات

هنالك ثلاث طرق لحجز كتل المعطيات في نظام الملفات:

1. حجز مستمر:

يحتاج كل ملف إلى حجز مجموعة متتالية من كتل المعطيات من أجل تخزينه. وبالتالي فإن عملية القراءة من القرص تتم بشكل تسلسلي أيضاً.

المشكلة الأساسية في هذه الطريقة هي إيجاد عدد كافي من الكتل المتتالية لتخزبن الملف.

6

4

2

Contiguous allocation

2. حجز مترابط: كل ملف عبارة عن مجموعة من الكتل المترابطة، حيث

يحتوي المجلد على مؤشر إلى أول وآخر كتلة في الملف، كما أن كل كتلة تشير إلى الكتلة التي تليها.

Linked allocation حجز مترابط

3. حجز مفهرس:

يوجد لكل ملف كتلة فهرس تحوي على عناوبن الكتل الخاصة بهذا الملف، وبالتالي فإن الوصول إلى أي كتلة، يتم بشكل مباشر من خلال كتلة الفهرس، وهذا يسرع عملية الوصول.

حجز مفهرس

5. أنظمة الملفات الشهيرة

أشهر أنظمة الملفات:

- نظام الملفات ISO 9660 المستخدم لتنظيم الـCD-ROM.
- نظام الملفات (CP/M (Control Program for Microcomputer) الخاص بالحواسب الشخصية.
- نظام الملفات الخاص بنظام التشغيل MS-DOS ونظام 95 Windows ونظام و Windows 98، حيث يعتمد نظام الملفات على جدول تخصيص الملفات (FAT (File Allocation Table).
 - نظام الملفات VNIX V7 الخاص بنظام التشغيل UNIX.
- نظام الملفات (NTFS (NT File System) أي نظام الملفات الشبكي، تم تطويره من أجل الأقراص Windows 2000 الصلبة التي تتعامل مع نظام التشغيل Windows NT، ولاحقاً مع نظم التشغيل Windows XP.

6. نظام ملفات الـCD-ROM

إن بنية الـCD-ROM مختلفة عن بنية القرص الصلب، فالمسارات الموجودة في القرص الصلب غير موجودة في الكرص الصلب غير موجودة في الـCD، إنما بنية الـCD عبارة عن حلزون واحد مستمر، ومُقسّم إلى كتل منطقية تدعى قطاعات مؤلفة من 2352 بايت.

كما أنه لا يوجد حاجة لترك فراغات بين الكتل لأنه لا يمكن حذف أو إضافة كتل جديدة إلى الـCD بعد الكتابة عليه.

أشهر نظام ملفات مستخدم للـCD-ROM هو النظام 1SO 9660.

يتم تنظيم الحجم ضمن الـCD كما يلي:

- يبدأ كل CD بـ16 كتلة محجوزة، لا تستخدم من قبل نظام الملفات ISO 9660، إنما تستخدم فقط من قبل مُصنِّع الـCD)، أو من قبل مُصنِّع الـCD)، أو من أجل أغراض أخرى.
- يأتي بعد الـ16 كتلة، كتلة واحدة (تدعى واصف الحجم الرئيسي) تحوي على معلومات عامة عن الـ10 من ضمنها مميز النظام (32 بايت)، مميز الحجم (32 بايت)، مميز الناشر (128 بايت)، بالإضافة إلى مميز تحضير المعطيات (128 بايت).
- يحتوي واصف الحجم الرئيسي على: اسم ثلاث ملفات يمكن أن تحوي معلومات عن الـCD، حجم الكتلة المنطقية، عدد كتل المعطيات، زمن انتهاء صلاحية الـCD، بالإضافة إلى مدخل يؤشر إلى المجلد الجذر ضمن الـCD.
 - من خلال المجلد الجذر يمكن الوصول إلى بقية الملفات على الـCD.

7. بنية المجلد في نظام 9660 ISO

يتألف المجلد الجذر وجميع المجلدات الأخرى من عدد متغير من المداخل، حيث يحتوي المدخل الأخير منها على بت للدلالة على نهاية هذه المداخل. كما أن مداخل المجلد نفسه متغيرة الطول، فكل مدخل يتألف من 10 إلى 12 حقل، حيث يشير البايت الأول من المدخل إلى طول هذا المدخل.

تحتوي حقول المدخل على:

- الكتلة الأولى من الملف، وبما أن الملفات مخزنة بشكل تسلسلي على الـCD، فإن الكتلة الأولى من الملف تعبر عن مسار الملف بشكل كامل.
 - الوقت والتاريخ.
- حقل للمؤشرات، للتمييز بين مدخل ملف ومدخل مجلد، للدلالة على المدخل الأخير، بالإضافة إلى مؤشرات أخرى.
- حقل للدلالة إلى الـCD الذي يحتوي الملف، حيث يمكن أن يحوي CD ما على مجلد يؤشر إلى ملف موجود في CD آخر.
 - حقل لحجم الملف.
- حقل لاسم الملف، حيث يتألف من الاسم الأساسي، ثم (.)، ومن ثم لاحقة الملف، ثم (;)، يليها رقم ثنائي.

بالنسبة لمداخل المجلد فيتم ترتيبها ترتيب أبجدي، ماعدا المدخلين الأول والثاني، فالمدخل الأول يشير للمجلد نفسه، والمدخل الثاني يشير للمجلد الأب له.

ملحق الرسم		
File location	موضع الملف	
File size	حجم الملف	
Date and time	الوقت والزمن	
CD#	رقم الـCD	
L	حجم الملف	
File name	اسم الملف	
Base name	الاسم الأساسي	
Ext	اللاحقة	
Directory entry length	طول مدخل المجلد	

8. نظام الملفات CP/M

نظام الملفات الخاص بالحواسب الشخصية (CP/M Control Program for Microcomputers). يتألف نظام الملفات من مجلد واحد ثابت الحجم، يحتوي على مداخل ثابتة الحجم (32 بايت)، حيث أن جميع الملفات في النظام موجودة ضمن هذا المجلد.

يقوم نظام الملفات CP/M عند طلب الوصول إلى ملف معين، بالبحث ضمن المجلد عن مدخل هذا الملف، وبعد إيجاده، يقوم بأخذ أرقام كتل الملف منه، وذلك ليتمكن من الوصول إليها.

يتألف المدخل من الحقول التالية:

رمز المستخدم والذي يعبر عن مالك الملف، اسم الملف، لاحقة الملف، عدد كتل الملف.

ملحق الرسم		
User code	رمز المستخدم	
File name	اسم الملف	
Extension	اللاحقة	
Block count	عدد الكتل	
Disk block numbers	أرقام كتل القرص	

9. نظام ملفات MS-DOS

يشبه نظام ملفات الـMS-DOS نظام ملفات MS-MS فالنسخ الأولى منه كانت تحوي على مجلد واحد يضم جميع الملفات. أما مع النسخ الجديدة ومع توسع وظائف نظام الملفات، أصبحت بنية النظام هرمية، مع إمكانية تداخل المجلدات ضمن البنية. أي أنه يمكن للمجلد الجذر أن يحوي مجلدات جزئية، وكل مجلد جزئي يمكن أن يحوي مجلدات أخرى وهكذا. وبالتالى أصبحت البنية عبارة عن شجرة تبدأ بالمجلد الجذر.

يتم البحث ضمن نظام الملفات عن ملف أو مجلد معين انطلاقاً من مساره، حيث يتم تحليل المسار جزء بجزء حتى الوصول إلى المجلد أو الملف المطلوب.

على الرغم من أن حجم المجلدات ضمن النظام غير ثابت، إلا أن حجم مداخل المجلد ثابت (32 بايت). يتألف مدخل المجلد من الحقول التالية:

اسم الملف، واصفات الملف (يحتوي على بتات للدلالة أن الملف للقراءة فقط، مؤرشف، ملف مخفي، أو ملف نظام)، زمن وتوقيت البناء، كتلة البداية، بالإضافة إلى حجم الملف.

هنالك أيضاً فرق آخر بين نظام ملفات MS-DOS و MS-DOS حيث لا يخزن MS-DOS عناوين الكتل في مداخل المجلد، إنما يتم حفظها في جدول تخصيص الملفات (FAT) ضمن الذاكرة الرئيسية. ويتم الوصول إلى العنصر المحدد من هذا الجدول (الذي يمثل الملف المطلوب)، من خلال رقم الكتلة الأولى من الملف، حيث يخزن هذا الرقم في مدخل المجلد.

ملحق الرسم		
File name	اسم الملف	
Extension	اللاحقة	
Attributes	الواصفات	
Reserved	منطقة محجوزة	
Time and date	الوقت والتاريخ	
First block number	رقم الكتلة الأولى	
Size	الحجم	

10. جدول تخصيص الملفات في نظام ملفات MS-DOS

يأتي جدول تخصيص الملفات بثلاث نسخ من أجل نظام MS-DOS:

- FAT-12.1
- FAT-16.2
- FAT-32.3

حيث تعتمد هذه النسخ على عدد البتات المستخدمة في عناوين القرص:

- FAT-12 يستخدم 12 بت للعنوان
- FAT-16 يستخدم 16 بت للعنوان
- FAT-32 يستخدم فقط 28 بت للعنوان

كما أن حجم كتل المعطيات من أجل كل جداول FAT هي من مضاعفات 512 بايت.

- فمن أجل نظام 12-FAT وحجم كتلة 512 bytes، يكون الحجم الأعظمي لجزء القرص الصلب الذي يمكن عنونته (212 * 512) أي حوالي 2MB.
- ومن أجل نظام 16-FAT وحجم كتلة 32 KB، فإن الحجم الأعظمي لجزء القرص الذي يمكن عنونته 2GB.
 - يبين الجدول التالي الحجم الأعظمي الذي يمكن عنونته، تبعاً لجدول تخصيص الملفات وحجم الكتلة:

FAT-32	FAT-16	FAT-12	حجم الكتلة
		2MB	0.5KB
		4MB	1KB
	128MB	8MB	2KB
1TB	256MB	16MB	4KB
2TB	512MB		8KB
2TB	1024MB		16KB
2TB	2048MB		32KB

11. بنية جدول تخصيص الملفات

تبدأ كل نسخة من جدول تخصيص الملفات ببعض البتات (والتي لها دلالات معينة)، ومن ثم تأتي عناوين عناقيد المعطيات والمخزنة ضمن الجدول أيضاً.

للوصول إلى عنقود المعطيات التالي، تتم قراءة عنوانه من جدول تخصيص الملفات بانزياح معين عن العنقود الحالي.

هنالك بعض القيم الخاصة لبتات الدلالة، مثلاً 0 يعني أن هذا العنقود لا يُستخدم، وقيم عليا تعبر عن نهاية سلسلة العناقيد وعن القطاعات المعطلة. أما بقية القيم الأخرى فهي تشير إلى عناقيد معطيات، وبما أنه لا يمكن أن ينتمي العنقود إلى أكثر من ملف أو مجلد، فإن القيم غير الخاصة للبتات هي قيم فريدة على مستوى جدول تخصيص الملفات.

12. نظام ملفات 98 Windows

تستخدم النسخ الأولى من نظام التشغيل 95 windows نظم الملفات 12-FAT و 16-FAT، ولكن في نظام FAT-32 و 16-FAT، ولكن في نظام FAT-32 و 18-FAT-32 و 18-FAT-32

إن بنية مدخل المجلد المستخدمة في نظام windows 98 هي نفسها بنية المدخل في MS-DOS ولكن مع بعض الحقول الإضافية:

الحقل NT: لإظهار أن هذا الملف متوافق مع نظام windows.

الحقل Sec: يقدم هذا الحقل بتات إضافية لحل مشكلة تخزين توقيت اليوم.

الحقل Last Access: يخزن هذا الحقل تاريخ (دون توقيت) آخر تعديل على الملف.

وبما أن رقم الكتل أصبح يمثل على 32 بت في 32-FAT، لذلك نحتاج إلى 16 بت إضافية لتخزين الـ16 بت العليا من رقم الكتلة الأولى من الملف.

ملحق الرسم		
Base name	الاسم الأساسي	
Ext	اللاحقة	
Attributes	الواصفات	
Creation date/time	تاريخ/توقيت البناء	
Last access	آخر وصول	
Upper 16 bits of starting block	الـ16 بت العليا من الكتلة الأولى	
Lower 16 bits of starting block	الـ16 بت الدنيا من الكتلة الأولى	
Last write date/time	تاريخ/توقيت آخر كتابة	
File size	حجم الملف	

13. أسماء الملفات في windows 98

يعطي نظام windows 98 إمكانية استخدام أسماء طويلة للملف، فكيف يحقق هذه التقنية مع المحافظة على التوافق مع طول الأسماء في MS-DOS؟

الحل هو بإعطاء اسمين للملف اسم طويل للتوافق مع windows 98 وآخر للتوافق مع MS-DOS وتخر للتوافق مع MS-DOS، فمن أجل windows 98 يتم أخذ المحارف الستة الأولى من الإسم، تحويلها إلى محارف كبيرة، ومن ثم إضافة تتمة للاسم 1~، وفي حال وجود ملف بهذا الاسم يتم وضع التتمة 2~ وهكذا.

رأينا سابقاً طريقة تخزين اسم الملف في نظام MS-DOS، أما في نظام Windows 98 فلكل مدخل لاسم طويل يستخدم 13 محرف للتعبير عنه، حيث يتم تخزينها بطريقة معكوسة، تبدأ بالاسم الأساسي (6 محارف كما في MS-DOS)، ومن ثم مجموعة من المقاطع:

- المقطع Attributes: يستخدم للتمييز بين اسم ملف طويل، واسم ملف في نظام MS-DOS (حيث يحوي هذا الحقل القيمة من قبل نظام -MS في حال الاسم الطويل، ويتم تجاهل هذه القيمة من قبل نظام -MS (DOS).
 - المقطع Sequence: لتحديد رقم المقطع، في حال استمرار الاسم على أكثر من مقطع.
- المقطع Checksum: يتم استخدام هذا المقطع لتفادي بعض المشاكل التي تحدث في التسمية، والتحقق من الاسم الموجود.

يستخدم في نظام Windows 98 لكل مدخل اسم طويل، 13 محرف للتعبير عنه، حيث يتم تخزينها بطريقة معكوسة، تبدأ بالاسم الأساسي، ومن ثم مجموعة من المقاطع كما في الشكل التالي:

ملحق الرسم		
Characters	محارف	
Sequence	تتالي	
Attributes	الواصفات	
Checksum	التحقق من المجموع	

14. نظام ملفات 77 UNIX

نظام الملفات عبارة عن شجرة تبدأ بالمجلد الجذر، بالإضافة إلى وصلات إضافية تشكل بيان موجه. يحوي مدخل المجلد في نظام UNIX، مدخل واحد لكل ملف ضمن المجلد، كما أن المدخل بسيط البنية، حيث يستخدم نظام UNIX بنية i-node.

يحوي مدخل المجلد على حقلين: اسم الملف، وعدد العقد i-node لهذا الملف (2 بايت). تحوي i-node في نظام UNIX على عدد من الواصفات: حجم الملف، ثلاث أزمنة (البناء، آخر تعديل، آخر وصول)، المالك، المجموعة، معلومات الحماية، عدد مداخل المجلدات التي تشير إلى هذه الـi-node.

من أجل الوصول إلى كتل الملف المخزنة على القرص، يتم تخزين الـ10 عناوين الأولى ضمن العقدة النسبة نفسها، وبذلك فإذا كان الملف صغير فإن جميع عناوين الكتل التابعة له ستُخزن ضمن العقدة نفسها. أما بالنسبة للملفات الكبيرة فإن أحد العناوين ضمن العقدة، يشير إلى كتلة تدعى "كتلة غير مباشرة وحيدة"، حيث تحوي هذه العقدة بدورها على عناوين كتل على القرص، وبنفس الطريقة يمكن أن تشير إلى كتلة تدعى "كتلة غير مباشرة مزدوجة"، ونفس الأمر يتكرر من أجل هذه الكتلة.

يستخدم نظام UNIX بنية i-node لتنظيم الملفات، كما هو موضح في الشكل:

ملحق الرسم		
File name	اسم الملف	
i-node number	رقم المعقدة	
Attributes	واصفات	
Disk addresses	عناوين القرص	
Single indirect block	كتلة غير مباشرة وحيدة	
Double indirect block	كتلة غير مباشرة مزدوجة	
Triple indirect block	كتلة غير مباشرة ثلاثية	
Addresses of data blocks	عناوين كتل المعطيات	

15. نظام ملفات 2000 Windows

يدعم نظام Windows 2000 مجموعة من أنظمة الملفات أهمها FAT-32 وFAT-32 و NTFS، وسنشرح فيما يلي بنية نظام الملفات NTFS، يحتوي كل جزء من القرص يستخدم نظام الملفات NTFS، على ملفات، مجلدات، بالإضافة إلى بني معطيات أخرى.

ينظم كل حجم على شكل تتالي من الكتل (عناقيد) ثابتة الحجم (بين 512 بايت و64 كيلوبايت)، حيث يشار إلى الكتلة من خلال انزياحها عن بداية الحجم من خلال عدد بـ64 بت.

بنية المعطيات الأساسية في كل حجم هي جدول الملف الأساسي (MFT)، وهو عبارة عن تتالي خطي من تسجيلات ثابتة الحجم (1 كيلوبايت)، حيث تعبر كل تسجيلة عن ملف أو مجلد.

تحوي كل تسجيلة على واصفات الملف: اسم الملف، الختم الزمني، قائمة عناوين الكتل المؤلفة له. يمكن أن يستخدم أكثر من تسجيلة لتخزين عناوين الكتل في حال كون الملف كبير، وعندها تدعى التسجيلة الأولى بالتسجيلة الأساسية.

إن جدول الملف الأساسي هو عبارة عن ملف أيضاً، ولذلك يمكن أن يخزن في أي مكان ضمن الحجم. تحجز التسجيلات الـ16 الأولى من MFT، لتخزين الملفات المترفعة لنظام NTFS والتي سنشرحها لاحقاً.

ملحق الرسم		
MTF record	تسجيلة MTF	
Record header	ترويسة التسجيلة	
Standard info header	ترويسة المعلومات القياسية	
Standard info	معلومات قياسية	
File name header	ترويسة اسم الملف	
File name	اسم الملف	
Data header	ترويسة المعطيات	
Info about data blocks	معلومات عن كتل المعطيات	
Disk blocks	كتل القرص	
Blocks numbers	أرقام الكتل	

16. البنية الفيزيائية لنظام الملفات NTFS

لا يوجد نظرياً حجم أعظمي للأجزاء المنطقية التي يمكن أن يتعامل معها نظام الملفات NTFS، ولكن عملياً فإن حجم الأجزاء متعلق بحجم القرص الصلب.

يَقسِم نظام الملفات NTFS القرص إلى قسمين:

- منطقة جدول الملفات الرئيسي MFT zone: وهي عبارة عن الـ12% الأولى من القرص، وهي منطقة فارغة لا يمكن الكتابة فيها، إنما تبقى فارغة تحسباً لتزايد حجم جدول الملفات الرئيسي (MFT)، وذلك منعاً لتقسيمه.
- منطقة تخزين الملفات: المساحة المتبقية من القرص %88 والمقسمة إلى كتل (عناقيد)، والمخصصة لتخزين الملفات.

يتم استخدام MFT zone بالشكل التالي:

عندما يزداد حجم ملف MFT ولا توجد مساحة كافية لتخزينه، يتم إنقاص حجم MFT zone وإضافة هذه المساحة المقطوعة إلى MFT، وبذلك لا يتم تقسيم MFT.

ملحق الرسم		
MFT zone	منطقة جدول الملفات الرئيسي	
MFT	جدول الملفات الرئيسي	
Place of files	مساحة مخصصة للملفات	

17. بنية جدول الملفات الرئيسي MFT

يعتبر جدول الملفات الرئيسي MFT الملف الأهم في نظام الملفات NTFS، وهو أول الملفات المترفعة في النظام. حيث يمثل المجلد المركزي لجميع الملفات في النظام، وهو مقسم إلى تسجيلات بحجوم ثابتة (عادةً 1 كيلوبايت)، وكل تسجيلة تتبع إلى ملف معين، تحوي كل تسجيلة على جميع المعلومات الخاصة بالملف (الاسم، الحجم، مواقع الأجزاء)، ما عدا المعطيات المخزنة في الملف. في حال عدم كفاية تسجيلة واحدة للملف يتم حجز أكثر من تسجيلة له.

18. أهم واصفات الملف

أهم واصفات الملف في نظام الملفات NTFS:

- 1. معلومات قياسية: مثل عدد الوصلات والختم الزمني.
- 2. قائمة الواصفات: قائمة بمسارات تسجيلات الواصفات (في حال امتداد الملف على أكثر من تسجيلة).
 - 3. اسم الملف.
 - 4. معلومات الأمان: مالك الملف والأشخاص المخولين بالوصول إليه.
 - 5. معطيات الملف.
 - 6. رقم مميز للغرض: رقم مميز للملف ضمن حجم التخزبن.
 - 7. فهرس الجذر: يستخدم لتحقيق المجلدات والفهارس.
 - 8. فهرس الحجز: يستخدم لتحقيق المجلدات والفهارس.

الوصف	نوع الواصفة
مثل عدد الوصلات والختم الزمني	معلومات قياسية
قائمة بمسارات تسجيلات الواصفات (في حال امتداد الملف على أكثر من تسجيلة)	قائمة الواصفات
اسم الملف	اسم الملف
مالك الملف والأشخاص المخولين بالوصول إليه	معلومات الأمان
معطيات الملف	المعطيات
رقم مميز للملف ضمن حجم التخزين	رقم مميز للغرض
يستخدم لتحقيق المجلدات والفهارس	فهرس الجذر
يستخدم لتحقيق المجلدات والفهارس	فهرس الحجز

19. البحث عن ملف في نظام NTFS

- لنفرض أنه مطلوب فتح الملف التالي "C:\maria\web.htm" فكيف سيتم البحث عن هذا الملف:
- البدء بالمجلد الجذر، وذلك لإيجاد الحجم المناسب الذي سنبدأ منه البحث وفي مثالنا نبحث عن المدخل (C).
- بعد إيجاد الحجم المناسب نبحث في جدول الملف الأساسي MFT الخاص به، عن المجلد الذي يحمل الاسم "maria"، وهذه العملية تبدأ انطلاقاً من المجلد الجذر ضمن هذا الحجم.
- بعد إيجاد موقع المجلد المطلوب ضمن MFT، يتم البحث ضمن هذا المجلد عن الملف المطلوب "web.htm".

ملحق الرسم		
Directory	مجلد	
Look up	البحث	
Hard disk volume	حجم القرص الصلب	
Device	التجهيزة	
Root directory	المجلد الجذر	
Path name	مسار الاسم	

20. الملفات المترفعة في نظام NTFS

- إن الملفات الـ16 المترفعة هي عبارة عن ملفات نظام، كل منها مسؤول عن جزء معين من عمل النظام.
 - توضع الملفات المترفعة في المجلد الجذر لقرص الـNTFS، وكل ملف يبدأ بإشارة \$.
 - قائمة الملفات المترفعة:

الوصف	الملف
جدول الملفات الرئيسي	\$MFT
نسخة من الـ16 تسجيلة، مخزنة في منتصف القرص	\$MFTmirr
ملف دعم	\$LogFile
معلومات عن نظام الملفات	\$Volume
قائمة بواصفات الملفات القياسية	\$AtrrDef
المجلد الجذر	\$.
المساحة الفارغة	\$Bitmap
قطاع الإِقلاع	\$Boot
معلومات عن صلاحيات المستخدم	\$Quota
جدول التوافق بين المحارف الكبيرة والصغيرة	\$Upcase

21. المجلدات

المجلدات في نظام NTFS عبارة عن ملف خاص يحوي مؤشرات إلى ملفات ومجلدات أخرى.

يُقسَم ملف المجلد إلى كتل، كل منها يحوي اسم الملف، الواصفات الأساسية، بالإضافة إلى مؤشر إلى تسجيلة الملف في MFT، والتي تحوي على المعلومات الكاملة عن هذا الملف.

البنية الداخلية للمجلد عبارة عن شجرة ثنائية، وهذا ما يسرع من عملية البحث عن الملفات، مقارنة مع نظم الملفات الأخرى مثل FAT.

22. آلية حماية المعطيات من الضياع

يحتوي نظام الملفات NTFS على نسختين متشابهتين من جدول الملفات الرئيسي (MFT)، فإذا تشوهت النسخة الأصلية منه نتيجة لتعطل قطاع ما، فإن النظام عند التشغيل التالي للجهاز، يستخدم النسخة الأخرى من MFT و ينشئ تلقائياً نسخة جديدة، مع الأخذ بعين الاعتبار وجود القطاع المعطل، وبهذا فإن النظام يضمن حفظ البيانات من الضياع.

23. ضغط الملفات في نظام NTFS

- يقدم نظام الملفات NTFS آلية ضغط شفافة بالنسبة للمستخدمين، حيث يمكن بناء الملف بنمط الضغط. وهذا يعني أن نظام الملفات يحاول ضغط كتل هذا الملف عند كتابتها على القرص، ويقوم بفك الضغط بشكل أوتوماتيكي عند قراءتها منه.
 - تتم عملية الضغط كما يلي:
- 1. عندما يقوم نظام الملفات بكتابة ملف (بنمط الضغط)، يفحص الـ16 كتلة الأولى من الملف، ويطبّق خوارزمية الضغط عليها.
- 2. إذا كان بالإمكان تخزين نتيجة الضغط على عدد من الكتل أقل من 16، عندها يتم كتابة الكتل مضغوطة على القرص.
 - 3. أما إذا كانت نتيجة الضغط ما تزال بحاجة إلى 16 كتلة، عندها يتم كتابة الكتل من دون ضغط.
 - 4. يتم بعد ذلك تطبيق نفس العملية على الكتل الـ16 التالية وهكذا.
- نلاحظ من المثال التالي أن الكتل الـ16 الأولى قد تم ضغطها، أما الكتل الـ16 الثانية فبقيت من دون ضغط:

24. استخدام ضغط الملفات

يمكن استخدام نظام ضغط الملفات في نظام تشغيل Windows XP كما يلي: ضغط يميني على الملف المراد ضغطه، اختيار خصائص، ثم خيارات متقدمة Advanced، ثم خيار ضغط المحتوى لحفظه على القرص:

25. نظام تشفير الملفات EFS

يُقدِم نظام تشفير الملفات (EFS)، نواة تقنية التشفير المستخدمة لتخزين الملفات المشفرة في نظام الملفات المحولون .NTFS عير المخولين إليها. حيث يستقبل المستخدمون غير المخولون بالدخول إلى ملف أو مجلد مشفر، رسالة "Access Denied" في حال محاولة الدخول.

لا يختلف التعامل مع الملفات المشفرة عن نظيرتها غير المشفرة، فعملية التشفير شفافة بالنسبة للمستخدم، حيث يتم فك التشفير بشكل أوتوماتيكي من قبل النظام، وذلك أثناء الدخول إلى ملف أو مجلد مشفر.

26. استخدام نظام تشفير الملفات

يمكن استخدام نظام تشفير الملفات في نظام تشغيل Windows XP كما يلي: ضغط يميني على الملف المراد تشفيره، اختيار خصائص، ثم خيارات متقدمة Advanced، ثم خيار تشفير الملف:

قبل حفظ الإعدادات الجديدة، يقوم Windows بسؤال المستخدم إذا كان يرغب بتشفير الملف وحده أم الملف والمجلد الأب له:

27. ميزات نظام NTFS

ميزات نظام NTFS:

- 1. نظام ملفات قابل للاسترجاع: يحتفظ بنسخ من ملفات النظام المهمة، ويقوم باسترجاعها في حال حدوث مشكلة في النظام.
 - 2. يدعم نظام NTFS إمكانية تشفير الملفات في نظام تشغيل NTFS إwindows .2000
 - 3. يدعم إمكانية ضغط الملفات.
- 4. يؤمن ميزات أمن إضافية في حالة الإقلاع من القرص المرن (منع إمكانية الدخول إلى نظام الملفات أو طلب معلومات حساب المدير).
 - 5. يدعم إمكانية حفظ نسختين من المعطيات على قرصين مختلفين.
- فعالية أكبر في استخدام مساحة القرص الملفات FAT، مما يعطي فعالية أكبر في استخدام مساحة القرص الصلب.
 - 7. يدعم حجوم تخزبن كبيرة للأقراص الصلبة.

28. ميزات نظام FAT

ميزات نظام الملفات FAT:

- 1. أفضل بالنسبة للأقراص الصلبة ذات الحجوم الأقل من 500MB، فهو أخف حملاً على النظام من نظام الملفات NTFS.
 - 2. متوافق مع نظام التشغيل DOS ومع نظام Windows 9x.
 - 3. يمكن الإقلاع من قرص إقلاع windows 9x أو DOS لحل مشاكل النظام.

29. اختيار نظام الملفات

- نلاحظ دائما قبل تنصيب نظام تشغيل ما، أنه يجب تحديد نظام الملفات الذي سيتم استخدامه، ويتم الاختيار عادةً، تبعاً لحجم القرص، وطبيعة العمل على الحاسب، حيث إن نظام الملفات هو الأسلوب الذي يتم بموجبه تخزين المعطيات على القرص.
- تعتمد أنظمة التشغيل الحديثة وهي Windows 2000 و Windows XP نظام الملفات NTFS أو يعتبر نظام يمكن استخدام أحد أنظمة ملفات جدول تخصيص الملفات الأخرى FAT أو FAT32. ولكن يعتبر نظام الملفات NTFS هو النظام الموصى باستخدامه، حيث تتوفر فيه كافة قدرات نظام الملفات FAT الأساسية، بالإضافة إلى ميزات أخرى.

نظام التشغيل DOS **WinXP** Win2000 **WinNT** Win98 Win95 نظام الملفات X Χ X Χ X X FAT16 X X X FAT32 (for OSR) X X X **NTFS**

30. التحويل بين أنظمة الملفات

التحويل من نظام الملفات FAT إلى نظام الملفات NTFS ممكن وبدون فقد للمعطيات، ويتم وفق الخطوات التالية:

قائمة ابدأ Start، ثم Command prompt ،Accessories ،All programs، ومن ثم كتابة التعليمة التالية: convert drive_letter: /fs:ntfs.

مثلاً كتابة التعليمة التالية convert D:/fs:ntfs سوف تقوم بتهيئة السواقة D بتهيئة NTFS.

التحويل العكسي من NTFS إلى FAT غير ممكن، ويؤدي إلى ضياع في المعطيات، لذلك يجب استخدام برامج خاصة لذلك.

31. التمارين:

ن مستويات لنظام الملفات:	a .]
--------------------------	-------

- A. نظام الملفات الأساسي
 - B. جزء تنظيم الملف
- C. نظام الملفات المنطقى
- D. جميع الإجابات صحيحة

2. أشهر أنظمة الملفات:

- UNIX V7 .A
- ISO 9660 .B
 - NTFS .C
- D. جميع الإجابات صحيحة
- 3. يتألف نظام الملفات CP/M من مجلد واحد ثابت الحجم، يحتوي على مداخل ثابتة الحجم (32 بايت):
 - A. صح
 - B. خطأ
- 4. لا يخزن MS-DOS عناوين الكتل في مداخل المجلد، إنما يتم حفظها في جدول تخصيص الملفات (FAT) ضمن الذاكرة الرئيسية:
 - A. صح
 - B. خطأ
 - 5. حجم كتل المعطيات من أجل كل جداول FAT هي من مضاعفات 512 بايت:
 - A. صح
 - B. خطأ
- 6. يعتبر جدول الملفات الرئيسي MFT الملف الأهم في نظام الملفات NTFS، وهو أول الملفات المترفعة في النظام:
 - A. صح
 - B. خطأ

- 7. أهم واصفات الملف في نظام الملفات NTFS:
 - A. معلومات الأمان
 - B. فهرس الجذر
 - C. فهرس الحجز
 - D. جميع الإجابات صحيحة
- 8. توضع الملفات المترفعة في المجلد الجذر لقرص الـNTFS، وكل ملف يبدأ بإشارة \$:
 - A. صح
 - B. خطأ
 - 9. ميزات نظام NTFS:
 - A. يدعم إمكانية ضغط الملفات
 - B. نظام ملفات قابل للاسترجاع
 - C. يستخدم حجوم عناقيد أصغر
 - D. جميع الإجابات صحيحة

الإجابة الصحيحة	رقم التمرين
(D)	.1
(D)	.2
(A)	.3
(A)	.4
(A)	.5
(A)	.6
(D)	.7
(A)	.8
(D)	.9