Theorem: Each nested sequence of non-null compact sets has a common point.

Proof: Let M_n be a nested sequence of non-empty compact sets, i.e., $M_1 \supseteq M_2 \supseteq M_3 \supseteq \cdots$. We want to show that $\bigcap_{n=1}^{\infty} M_n \neq \emptyset$.

Note: $M_1 = \bigcup_{n=1}^{\infty} M_n$. Then, Since M_n is compact for all n, then it is also bounded according to Theorem 31. Therefore, M_1 is also bounded.

Let
$$x_1 \in M_1$$
,
 $x_2 \in M_2$,
 $x_3 \in M_3$,
 \vdots
 $x_n \in M_n$

Now, consider the infinite collection $Z=\{x_1,x_2,x_3..\}$. If Z is finite, x would be a common point. Since M_1 is compact, there exists a limit point $x\in M_1$ of the collection.

Claim: x in M_n for each n

Proof: Suppose not. Then there is some ℓ that $x \notin M_{\ell}$. Since the M_n 's are nested, this means that $x \notin M_w$ for all $w \ge \ell$. Define $\epsilon = \min \{d(x, M_{\ell})/2, x_1, x_2, \ldots, m_{\ell}\}$

Now, consider the neighborhood $N_{\epsilon}(x)$. By construction, $N_{\epsilon}(x) \cap M_{\ell} = \emptyset$. Thus, for all $1 \leq k \leq \ell - 1$, $x_k \notin N_{\epsilon}(x)$, because the distance between x_k and x is greater than or equal to ϵ .

Since x is a limit point of the collection Z, there exists an $x_n \in Z$ such that $x_n \in N_{\epsilon}(x)$. By construction, $x_n \notin M_{\ell}$, so $x_n \notin M_n$ However, we know that $x_n \in M_n$, and since $M_n \subseteq M_{\ell}$ for all $n \ge \ell$, we arrive at a contradiction.

Thus, $x \in M_n$ for each n, and so $\bigcap_{n=1}^{\infty} M_n \neq \emptyset$. This completes the proof.

 \therefore Each nested sequence of non-null compact sets has a common point.