ebmb

Solve multiband Eliashberg equations

O 11:			
()uflina			
- Outilite -			

This software provides three programs:

- 1. ebmb itself solves the multiband Eliashberg equations (Eqs. 1 or 2) on a cut-off imaginary axis and optionally continues the results to the real axis via PADÉ approximants.
 - A material is defined by nothing but an ELIASHBERG spectral function or, as fallback, an EINSTEIN phonon frequency and intra- and interband electron-phonon couplings, COULOMB pseudo-potentials and, if desired, the band densities of BLOCH states, otherwise assumed to be constant.
- 2. critical finds the critical point via the bisection method varying a parameter of choice. Superconductivity is defined by the kernel of the linearized gap equation (Eq. 3) having an eigenvalue greater than or equal to unity.
- tc finds the critical temperature for each band separately via the bisection method. Superconductivity is defined by the order parameter exceeding a certain threshold. Usually, it is preferable to use critical.

```
—— Installation ——
```

The makefile is designed for the *GNU* or *Intel* Fortran compiler:

```
$ make FC=gfortran FFLAGS=-03
```

```
____ I/O _____
```

• Parameters are defined on the command line:

The available keys and default values are listed in Table 1.

- Unless tell=false, the results are printed to standard output.
- Unless file=none, a binary output file is created. For critical and tc it simply contains
 one or more double precision floating point numbers, for ebmb the format defined in
 Tables 2 and 3 is used.
- The provided *Python* wrapper functions load the results into *NumPy* arrays:

(replace) decides whether an existing (file) is used or overwritten.

Given a band structure, its discretized domain and n-1 filters, an input file with the density of states resolved for n subdomains is generated like this:

```
from numpy import cos, dot, linspace, pi
DOSfile('dos.in', epsilon=lambda *k: -cos(k).sum() / 2,
    domain=[linspace(-pi, pi, 1000, endpoint=False)] * 2,
    filters=[lambda *k: pi ** 2 / 2 <= dot(k, k) <= pi ** 2])</pre>
```

Let $\hbar=k_{\rm B}=1$. Fermionic and bosonic Matsubara frequencies are defined as $\omega_n=(2n+1)\pi T$ and $\nu_n=2n\pi T$, respectively. The quantity of interest is the Nambu self-energy matrix¹

$$\boldsymbol{\Sigma}_{i}(n) = i\omega_{n}[1 - Z_{i}(n)]1 + \underbrace{Z_{i}(n)\,\Delta_{i}(n)}_{\boldsymbol{\phi}_{i}(n)}\boldsymbol{\sigma}_{1} + \chi_{i}(n)\boldsymbol{\sigma}_{3},$$

where the Pauli matrices are defined as usual and i is a band index. Renormalization $Z_i(n)$, order parameter $\phi_i(n)$ and energy shift $\chi_i(n)$ are determined by the Eliashberg equations²

$$Z_{i}(n) = 1 + \frac{T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\omega_{m} Z_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{-}(n, m),$$

$$\phi_{i}(n) = T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\phi_{j}(m)}{\Theta_{j}(\varepsilon, m)} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)],$$

$$\chi_{i}(n) = -T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\varepsilon - \mu + \chi_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{+}(n, m),$$

$$\Theta_{i}(\varepsilon, n) = [\omega_{n} Z_{i}(n)]^{2} + \phi_{i}^{2}(n) + [\varepsilon - \mu + \chi_{i}(n)]^{2},$$

$$(1)$$

and may then be analytically continued to the real-axis by means of PADÉ approximants.³ The electron-phonon coupling matrices and the rescaled COULOMB pseudo-potential are connected to the corresponding input parameters via

$$\Lambda_{ij}^{\pm}(n,m) = \lambda_{ij}(n-m) \pm \lambda_{ij}(n+m+1), \qquad \lambda_{ij}(n) = \int_{0}^{\infty} d\omega \frac{2\omega \alpha^{2} F_{ij}(\omega)}{\omega^{2} + \nu_{n}^{2}} \stackrel{\uparrow}{\underset{\text{Einstein}}{\uparrow}} \frac{\lambda_{ij}}{1 + \left[\frac{\nu_{n}}{\omega_{E}}\right]^{2}},$$

$$U_{ij}^{*}(m) = \begin{cases} 2\mu_{ij}^{*}(N_{C}) & \text{for } m < N_{C}, \\ 0 & \text{otherwise,} \end{cases} \frac{1}{\mu_{ij}^{*}(N_{C})} = \frac{1}{\mu_{ij}^{*}} + \ln \frac{\omega_{E}}{\omega_{N_{C}}}$$

with the Eliashberg spectral function $\alpha^2 F_{ij}(\omega)$. Alternatively, if the band density $n_i(\varepsilon)$ of Bloch states with energy ε per spin, band and unit cell is given,

$$\frac{1}{\mu_{ij}^*(N_{\text{C}})} = \frac{1}{\mu_{ij}^*} + \ln \frac{2\omega_{\text{E}}}{D} + \frac{1}{\pi} \sum_{i} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{i}(\varepsilon)}{n_{i}(\mu_{0})} \begin{cases} \frac{1}{\varepsilon - \mu_{0}} \arctan \frac{\varepsilon - \mu_{0}}{\omega_{N_{\text{C}}}} & \text{for } \varepsilon \neq \mu_{0}, \\ \frac{1}{\omega_{N_{\text{C}}}} & \text{otherwise,} \end{cases}$$

where D is the electronic bandwidth. μ_0 and μ are the chemical potentials for free and interacting particles, respectively. The latter ensures that the particle number is conserved:

$$2\sum_{i}\int_{-\infty}^{\infty} d\varepsilon \frac{n_{i}(\varepsilon)}{\mathrm{e}^{(\varepsilon-\mu_{0})/T}+1} = n_{0} \stackrel{!}{=} n \approx 1 - 4T\sum_{i}\int_{-\infty}^{\infty} d\varepsilon \, n_{i}(\varepsilon) \left[\sum_{n=0}^{N-1} \frac{\varepsilon-\mu+\chi_{i}(n)}{\Theta_{i}(\varepsilon,n)} + \frac{\arctan\frac{\varepsilon-\mu}{\omega_{N}}}{2\pi T}\right].$$

Approximating $n_i(\varepsilon) \approx n_i(\mu_0)$ yields $\chi_i(n) = 0$ and the constant-DOS ELIASHBERG equations

$$Z_{i}(n) = 1 + \frac{\pi T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \frac{\omega_{m}}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} \Lambda_{ij}^{-}(n, m),$$

$$\Delta_{i}(n) = \frac{\pi T}{Z(n)} \sum_{j} \sum_{m=0}^{N-1} \frac{\Delta_{j}(m)}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)].$$
(2)

¹Y. Nambu, Phys. Rev. **117**, 648 (1960)

²G. M. ELIASHBERG, Soviet Phys. JETP **11**, 696 (1960).

A comprehensive review is given by P. B. ALLEN and B. MITROVIĆ in Solid state physics 37 (1982)

³H. J. VIDBERG and J. W. SERENE, J. Low Temp. Phys. 29, 179 (1977)

At the critical temperature, $\Delta_i(m)$ is infinitesimal and negligible relative to ω_m . This yields

$$\Delta_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \Delta_{j}(m),$$

$$K_{ij}(n, m) = \frac{1}{2m+1} [\Lambda_{ij}^{+}(n, m) - \delta_{ij} \delta_{nm} D_{i}^{N}(n) - U_{ij}^{*}(m)],$$

$$D_{i}^{N}(n) = \sum_{j} \sum_{m=0}^{N-1} \Lambda_{ij}^{-}(n, m) \stackrel{N=\infty}{=} \sum_{j} \left[\lambda_{ij} + 2 \sum_{m=1}^{n} \lambda_{ij}(m) \right].$$
(3)

 $Z_i(n)$ is not biased by the cutoff if $D_i^{\infty}(n)$ is used in place of $D_i^N(n)$ in the kernel $K_{ij}(n,m)$.

—— Acknowledgment —
Parts of the program are inspired by the EPW code ⁴ and work of Malte Rösner.
raits of the program are thisphred by the Er W code and work of Matte Rosher.
— Contact —

Any feedback may be directed to jan.berges@uni-bremen.de.

⁴See F. Giustino, M. L. Cohen and S. G. Louie, Phys. Rev. B **76**, 165108 (2007) for a methodology review. Results related to Eliashberg theory are given by E. R. Margine and F. Giustino, Phys. Rev. B **87**, 024505 (2013)

			6					ical ale
key file form tell	default none F16.12 true	unit - -	Symbol	description output file number edit descriptor use standard output?	ebrill + + +	+ + +	رن ^ب + + +	vaiiable vaiiable - -
Т	10	K	T	temperature	+	+	+	+
omegaE cutoff cutoffC	0.02 15 ω _N	eV ω_{E} ω_{E}	$\omega_{ extsf{E}} \ \omega_{N} \ \omega_{N_{ extsf{C}}}$	EINSTEIN frequency overall cutoff frequency COULOMB cutoff frequency	+ + +	+ + +	+ + +	+ - -
lambda, lamda muStar, mu* muC	1 0 0	1 1 1	$\lambda_{ij} \ \mu^*_{ij} \ \mu_{ij}$	electron-phonon coupling rescaled Соисомв potential unscaled Соисомв parameter	+ + +	+ + +	+ + +	+ + +
bands	1	1	_	number of bands	+	+	+	_
dos, DOS a2f, a2F	none none	_ _	_ _	file with density of states file with ELIASHBERG function	+++	+	+	_
n mu conserve chi	- 0 true true	1 eV -	n ₀ μ ₀ –	initial occupancy number initial chemical potential conserve particle number? consider energy shift?	+ + + +	+ + + +	+ + + + +	_ _ _ _
limit	250000	1	_	maximum number of iterations	+	+	+	_
epsilon error zero rate	$10^{-15} 10^{-5} 10^{-10} 10^{-1}$	a.u. a.u. eV 1	_ _ _ _	negligible float difference bisection error negligible gap at \mathcal{T}_c (threshold) growth rate for bound search	+ - -	+ + + +	+ + - +	_ _ _ _
lower upper clip eta, 0+ resolution measurable	0 - 15 0 0 false	eV eV ω_E eV 1	- - - -	minimum real-axis frequency maximum real-axis frequency maximum real-axis frequency infinitesimal energy 0 ⁺ resolution of real-axis solution find measurable gap?	+ + + + +	- - - -	- - - -	- - - -
unscale rescale imitate	true true false	- - -	_ _ _	estimate missing muC from mu*? use μ_{ij}^* rescaled for cutoff? use $Z_i(n)$ biased by cutoff?	+ + -	+ + -	+ + +	_ _ _
normal	false	_	-	enforce normal state?	+	_	_	_
power	true	_	_	power method for single band?	_	_	+	_

Table 1: Input parameters.

- The columns ebmb, tc and critical show which keys are used by these programs.
- The rightmost column indicates which parameters may be chosen as variable for critical. The variable is marked with a negative sign; its absolute value is used as initial guess. If no parameter is negative, the critical temperature is searched for.
- lambda, muStar, and muC expect flattened square matrices of equal size the elements of which are separated by commas. It is impossible to vary more than one element at once.
- ullet dos has lines arepsilon/eV $n_1/\text{a.u.}$ $n_2/\text{a.u.}$... with arepsilon ascending but not necessarily equidistant.
- ullet a2F has lines ω/eV $\alpha^2F_{1,1}$ $\alpha^2F_{2,1}$... with ω ascending but not necessarily equidistant.

 $\label{eq:characters} $$ \langle \operatorname{CHARACTERS} \ \operatorname{key} \rangle \colon \langle n_1 \times \ldots \times n_r \ \operatorname{NUMBERS} \ \operatorname{value} \rangle $$ associate key with value$

DIM: $\langle \text{INTEGER } r \rangle \langle r \text{ INTEGERS } n_1 \dots n_r \rangle$ define shape (column-major)

INT: take NUMBERS as INTEGERS
REAL: take NUMBERS as DOUBLES

Table 2: Statements allowed in binary output. The data types CHARACTER, INTEGER and DOUBLE take 1, 4 and 8 bytes of storage, respectively.

imaginary-a					
iomega	Matsubara frequency (without i)				
Delta	gap	$\Delta_i(n)$			
Z	renormalization	$Z_i(n)$			
chi	energy shift	$\chi_i(n)$			
phiC	constant Соигомв contribution	$\phi_{C_{m{i}}}$			
status	status (steps till convergence or -1)				
occupancy results					
n0	initial)	n_0			
n	final } occupancy number	n			
mu0	initial) shamical natantial	μ_0			
mu	final } chemical potential	μ			
effective pa	a2F given				
lambda	electron-phonon coupling	λ_{ij}			
omegaE	EINSTEIN frequency	ω_{E}			
real-axis results resolution >					
omega	frequency	ω			
Re[Delta]	real)	4 ()			
<pre>Im[Delta]</pre>	imaginary } gap	$arDelta_i(\omega)$			
Re[Z]	real)	7()			
Im[Z]	imaginary renormalization	$Z_i(\omega)$			
Re[chi]	real]	(.)			
<pre>Im[chi]</pre>	imaginary } energy shift	$\chi_i(\omega)$			
measurable	measurable results measurabl				
Delta0	measurable gap $\Delta_{0i} =$	$Re[\Delta_i(\Delta_{0i})]$			
status0	status of measurable gap	_			

Table 3: Keys used in binary output.