

# Big Data Meets Learning Science

# Apache Spark Summit East 2017

Alfred Essa VP, Research and Data Science McGraw-Hill Education @malpaso



| August 1997 |                       |    |
|-------------|-----------------------|----|
| 1           | Innocessian Discaling |    |
|             | Innovation Pipelin    | 10 |
|             |                       |    |

- 2 McGraw-Hill Learning Science
- 3 Spark, DataBricks



Speed of innovation, not data, is the differentiator.



# Spark Factor

Technology

Apache Spark

Time to Market

People

Process

DataBricks



# **Innovation Pipeline**





# Databricks underpins our innovation pipeline and workflow.



# McGraw-Hill Learning Science



# From Print to Digital: 128-year Journey





K-12, Higher Ed & Professional businesses



~4,800 employees

# Adaptive Platform Leverages MHE Reach and Scale

May 2013

Introduction of SmartBook Now

1,500+ adaptive products available



Authors trained to use MHE Adaptive

 $\sim 5,500,000$ 

Learners who have used MHE Adaptive

 $\sim 10,000,000,000$ 

Student interactions

# Research Phase



# Learning Tool for Optimizing Acquisition and Recall

1

Learning Science Principles

Effortful Recall

Spaced Practice

Interleaving

Cognitive Science Model

Stacked Algorithm Mobile App





## databricks

StudyWise\_Dashboard\_Notebook (Pythori)

♠ Import Notebook

StudyWise Analtytics Data

Anonymized user interaction data is send in JSON format from a users mobile device to an S3 bucket.

This s3 bucket is mounted in the DBFS file system.

To infer the JSON schema for this data, read one record:

df\_studywise\_one = sqlContext.read.json("dbfs:/mnt/r\_dvtl-prod.mheducation.com/dvtl-document-api/prod/data/2017/02/01/20/dvtl-document-api-firehose-prod-1-2017-02-01-20-01-15-49a79219-8ebe-4e1b-8a0a-8575538c9c12")



### databricks

### StudyWise\_Dashboard\_Notebook (Python)

The five StudyWise apps were released in the Apple App Store on Jan. 31, 2017. Here we read all of the data from Feb. 1 through Feb. 7, 2017.

The command below reads this data into a Spark DataFrame.

> df\_studywise = sqlContext.read.schema(schema\_one).json("dbfs:/mnt/dvtl-document-api.dvtl-prod.mheducation.com/prod/data/2017/02/\*/\*/")

To be able to run straight Spark SQL on this data, we load it into a Temporary View:

> df\_studywise.createOrReplaceTempView("studywise")

Now do a SQL query to see how many questions have been answered per app in this data:

> %sql select session.flashcardApplication, count(\*) from studywise group by session.flashcardApplication







# Spark, DataBricks

# The Problem



# The Solution

A classifier to predict abandonment



Jacqueline Feild Data Scientist



Nicholas Lewkow Data Scientist

# Solution: A Classifier to Predict Abandonment



- Logistic Regression used for initial classification algorithm
  - Simple algorithm to interpret
  - Provides probability estimates instead of hard classification label
  - Allows for simple interpretation of feature importance
- One classifier works for all disciplines

# Parallel Pipeline for Creating Classifier

# The Spark Pipeline

Notebook



# Spark Transformation



# Speedup with Spark



$$S_n = rac{t_1}{t_n} egin{array}{l} S_n : ext{Speedup from $n$ cores} \ & t_i : ext{Time to run on 1 core} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n : ext{Time to run on $n$ cores} \ & t_n$$





# Evaluate Model Accuracy

- Use area under the receiver operating characteristic 0.95 curve (AUC-ROC) as another measure of model accuracy
  - 0.9 1.0 = excellent
  - 0.8 0.9 = good
  - 0.7 0.8 = fair
  - 0.6 0.7 = poor
  - 0.5 0.6 = fail



 Look at how the AUC-ROC for a model changes throughout the semester

# **Evaluate Intervention Window**

### Intervention Window:

How much time in advance can we provide for an intervention to occur prior to abandonment?



## Conclusions

Technology is important, but build an agile innovation workflow with Databricks.