

A Shadow Culling Algorithm for Interactive Ray Tracing

Jae-ho Nah, Kyung-ho Lee, Woo-chan Park, Tack-don Han Yonsei University, Korea E-mail: jhnah@msl.yonsei.ac.kr

Abstract

We present a novel shadow culling algorithm in ray tracing. For interactive ray tracing, our approach exploits frame-to-frame coherence instead of preprocessing of building shadow data. In this algorithm, shadow results are stored to each primitive and used in the next frames. We also present a novel occlusion testing method to guarantee exact shadows. In experiments with BART scenes, our algorithm shows 7-19 percent reduction in cost of traversal and 9-24 percent reduction in cost of intersection test.

KEYWORDS: Ray tracing, real-time rendering, shadow algorithm

Overall Flow of the Shadow Culling Algorithm

- Why this occlusion testing is needed?
- Updating shadow results is valid if and only if the primitive is not occluded on the view point
- Algorithm details
 - (1) Compare primitives between the current pixel and two reference pixels.
 - (2) If the primitives are different, intersection test is executed between the current primary ray and the primitive on the reference pixel.
 - (3) If the hit result is true, the primitive on the reference pixel is partially occluded by the primitive on the current pixel.
- Example

5

- The current pixel: 5
- Reference pixels: 2 and 4
- Result : The faint blue triangle is partially occluded

Added stages

- · Detect shadows and execute the culling
- FULLY RENDERED && FULL SHADOW
- Shadow tracing is skipped
- FULLY_RENDERED && NON_SHADOW
- Shadow tracing is executed about only dynamic objects
- Simple OR operation
 - current shadow mode | new shadow mode
- ex) 11(PARTIAL_SHADOW) =

01(FULL_SHADOW) | 10(NON_SHADOW)

- Set occlusion modes of rendered primitives
- $INIT \rightarrow FULLY_RENDERED$
- Non-occluded primitive
- FULLY RENDERED → INIT
- Use the number of rendered pixels
- Prevent shadow artifacts on zoom-in

Ray generation point

Pixel

Required Addition Information

• An occlusion mode (2bit)

can be merged to a 32bit • A shadow mode (2bit*light sources) \ \ \ \ integer in less than ten lights

Occlusion mode (value)					
	INIT(00)				
Λ.	PARTIALLY				
<u> </u>	OCCLUDED(01)				
\wedge	FULLY_				
\triangle	RENDERED(10)				
<u></u>	DYNAMIC(11)				

Shadow mode (value)					
	INIT(00)				
	FULL_SHADOW				
	(01)				
\wedge	NON_SHADOW				
	(10)				
Λ	PARTIAL_				
	SHADOW (11)				

- The number of current rendered pixels (1 integer) cocclusion mode
- The highest number of rendered pixels (1 integer)

setting stage

Benchmark Results

	Cost reduction ratio of shadow ray traversal		Cost reduction ratio of shadow ray/primitive intersection test		Additional intersection tests for occlusion
Scene	Avg.	Max.	Avg.	Max.	testing
BART Kitchen		59.5%		59.8%	
	19.8%	(20 th frame)	24.5%	(19 th frame)	0.173 per pixel
BART Robot	7.4%	19.5% (31 th frame)	9.5%	29.6% (41 th frame)	0.149 per pixel

512*512 resolution, kd-tree ray tracer

Future Works

- Apply shadow caching reduce the calculation of partially occluded primitives
- Apply triangle subdivision reduce the ratio of primitives which have partial shadows
- · Support soft shadows

Acknowledgment

This work was supported by the forth stage of the Brain Korea 21 Project in 2009.