ΕΜΠ / ΣΗΜΜΥ / ΗΜ ΠΕΔΙΑ Β / Καθ. Ι.Λ.Τσαλαμέγκας

1η άσκηση

α) Ο κύλινδρος ακτίνας α και μήκους 2h του Σχ.(α) πληρούται με χωρικό φορτίο πυκνότητας

$$\rho = \rho_0 \frac{r}{a} \cos \varphi$$

 $(0 < r < a, 0 \le \varphi < 2\pi, -h < z < h)$ (r, φ, z) είναι κυλινδρικές συντεταγμένες). Να βρεθεί το δυναμικό Φ σε τυχαίο σημείο (x, y, z). Το αποτέλεσμα να δοθεί σε μορφή ολοκληρώματος (τριπλού) με σαφώς ορισμένη ολοκληρωτέα συνάρτηση και σαφώς ορισμένα όρια ολοκληρώσεως. Ο υπολογισμός του ολοκληρώματος δεν ζητείται. (Η διηλεκτρική σταθερά είναι ε παντού.)

β) Η σφαίρα ακτίνας α του Σχ.(β) πληρούται με χωρικό φορτίο πυκνότητας

$$\rho = \rho_0 \frac{r}{a} \cos \theta \sin \varphi$$

 $(0 < r < a, 0 \le \varphi < 2\pi, 0 \le \theta \le \pi)$ (r, θ, φ) είναι σφαιρικές συντεταγμένες). Η επιφάνεια της σφαίρας φέρει επιφανειακό φορτίο πυκνότητας $\sigma = \sigma_0 \cos \theta$ $(0 \le \theta \le \pi)$. Να βρεθεί το δυναμικό Φ σε τυχαίο σημείο (x, y, z). Το αποτέλεσμα να δοθεί σε μορφή αθροίσματος δύο ολοκληρωμάτων που το καθένα να έχει σαφώς ορισμένη ολοκληρωτέα συνάρτηση και σαφώς ορισμένα όρια ολοκληρώσεως. Ο υπολογισμός των ολοκληρωμάτων δεν ζητείται. (Η διηλεκτρική σταθερά είναι ε παντού.)

2η άσκηση

α) Ο κύλινδρος ακτίνας α και μήκους 2h του $\Sigma \chi_{\cdot}(\alpha)$ πληρούται με χωρικό φορτίο πυκνότητας

$$\rho = \rho_0 \frac{r_{\rm T}}{q} \cos \varphi$$

 $(0 < r_{\rm T} < a, 0 \le \varphi < 2\pi, -h < z < h)$ $(r_{\rm T}, \varphi, z)$ είναι κυλινδρικές συντεταγμένες). Η διηλεκτρική σταθερά είναι ε παντού. 1) Να βρεθεί η ηλεκτρική διπολική ροπή \overline{p} . 2) Να βρεθεί η έκφραση του ηλεκτρικού δυναμικού $\Phi(r, \theta, \varphi)$ σε σφαιρικές συντεταγμένες για μεγάλα r.

β) Για τη διάταξη που δείχνει το Σχ.(β) να βρεθεί η συνολική διπολική ροπή ως προς την αρχή O. (Τα τέσσερα σημειακά φορτία βρίσκονται σε απόσταση a από την αρχή). Να βρεθεί επίσης η έκφραση του ηλεκτρικού δυναμικού $\Phi(r,\theta,\varphi)$ σε σφαιρικές συντεταγμένες για μεγάλα r (r>>a).

γ) Η σφαίρα ακτίνας a του $\Sigma \chi.(\gamma)$ φέρει επιφανειακό φορτίο με πυκνότητα σ_0 στο άνω ημισφαίριο και επιφανειακό φορτίο με πυκνότητα $-\sigma_0$ στο κάτω ημισφαίριο. Να βρεθεί η συνολική διπολική ροπή ως προς την αρχή O. Να βρεθεί επίσης η έκφραση του ηλεκτρικού δυναμικού $\Phi(r,\theta,\varphi)$ σε σφαιρικές συντεταγμένες για μεγάλα r (r>>a).

3η άσκηση: α) Ιδανικό ηλεκτρικό δίπολο $\overline{p} = \hat{x}p$ έχει το κέντρο του στη θέση (0,0,h). Να βρεθεί το δυναμικό στη θέση (x,y,z). β) Να επαναληφθεί το προηγούμενο ερώτημα στην περίπτωση όπου $\overline{p} = \hat{z}p$.

$$h \underbrace{\overline{p}}_{O} \xrightarrow{\overline{p}} x$$

4η άσκηση: Η σφαίρα ακτίνας a του σχήματος φέρει στην επιφανειά της επιφανειακό φορτίο με άγνωστη πυκνότητα σ . Η συνάρτηση του ηλεκτρικού δυναμικού σε σφαιρικές συντεταγμένες στις περιοχές 1 ($0 \le r \le a$) και 2 ($r \ge a$) είναι

$$\Phi_1 = V \frac{r}{a} \cos \theta = V \frac{z}{a} \; , \; 0 \le r \le a \; \text{ fat } \Phi_2 = V \frac{a^2}{r^2} \cos \theta \; , \; r \ge a$$

όπου V γνωστή σταθερά. Η διηλεκτρική σταθερά είναι ε_0 παντού. Να βρεθεί:

- α) Η επιφανειακή πυκνότητα σ και η ένταση του ηλεκτρικού πεδίου.
- β) Η συνολική ηλεκτρική ενέργεια της διάταξης με τουλάχιστον δύο από τους γνωστούς τρόπους.

5η άσκηση: Στη σφαιρική διάταξη του σχήματος, η σφαίρα ακτίνας a φέρει στο εσωτερικό της χωρικό ηλεκτρικό φορτίο πυκνότητας

$$\rho = \rho_0 \frac{r}{a} \quad (0 \le r < a).$$

Η επιφάνεια της σφαίρας (r=a) έχει δυναμικό $\Phi=V$. Η διηλεκτρική σταθερά είναι ε_0 παντού. Να βρεθεί:

- α) Η συνάρτηση δυναμικού σε κάθε περιοχή του χώρου.
- β) Η επιφανειακή πυκνότητα ηλεκτρικού φορτίου στην επιφάνεια της σφαίρας.
- γ) Η συνολική ηλεκτρική ενέργεια με τους διάφορους γνωστούς τρόπους.

6η άσκηση:

α) Να δειχθεί ότι η συνάρτηση

$$\Phi(r,\theta) = \left(Ar + \frac{B}{r^2}\right) \cos\theta \,, \tag{1}$$

όπου A και B αυθαίρετες σταθερές, ικανοποιεί την εξίσωση Laplace σε σφαιρικές συντεταγμένες.

- β) Χρησιμοποιώντας σχέσεις της μορφής (1), να βρεθούν οι συναρτήσεις δυναμικού $\Phi_1(r,\theta)$ και $\Phi_2(r,\theta)$ στις περιοχές 1 $(r \le a)$ και 2 $(r \ge a)$ στη διάταξη του σχήματος. Διέγερση είναι το επιφανειακό φορτίο $\sigma = \sigma_0 \cos \theta$ στην επιφάνεια της σφαίρας ακτίνας a. Η διηλεκτρική σταθερά στις δύο περιοχές είναι ε_1 και ε_2 , αντίστοιχα.
- γ) Να βρεθεί η ένταση του ηλεκτρικού πεδίου παντού και να δειχθεί ότι το διάνυσμα της έντασης στην περιοχή 1 είναι σταθερό.

7η άσκηση:

$$\frac{\varepsilon_{3}}{\varepsilon_{2}} \qquad \frac{\Phi = 0}{\rho(z) = \rho_{0} z / h} \qquad z = h$$

$$\frac{\varepsilon_{2}}{\varepsilon_{1}} \qquad \Phi = V \qquad z = 0$$

Στην απέραντη ως προς x και y διάταξη, που δείχνει σε τομή το σχήμα, η περιοχή 0 < z < h έχει χωρικό ηλεκτρικό φορτίο με πυκνότητα $\rho = \rho_0 z / h$, όπου ρ_0 σταθερά. Οι επιτρεπτότητες ε_1 , ε_2 , ε_3 είναι σταθερές. Οι επίπεδες επιφάνειες z=0 και z=h έχουν δυναμικό $\Phi=V$ και $\Phi=0$, αντίστοιχα. Αν $\overline{E}(z=2h)=\hat{z}E_0$, όπου E_0 γνωστή σταθερά, να βρεθούν:

- α) Η συνάρτηση δυναμικού παντού.
- β) Η πυκνότητα του επιφανειακού φορτίου στις επιφάνειες z=0 και z=h .
- γ) Να επαναληφθεί το α) ερώτημα αν $\varepsilon_2 = \varepsilon_0 h / z$.