This file was provided by: Muath Alghamdi

Test-6, April 2 Levels 3 and 4

 a_2 =a+1

Problem 1. Define sequence of positive integers $\{a_n\}$ as $a_1 = a$ and $a_{n+1} = a_n^2 + 1$ for $n \ge 1$. Prove that there is no index n for which

$$\prod_{k=1}^{n} \left(a_k^2 + a_k + 1 \right)$$

is a perfect square.

Problem 2. A sequence (a_1, a_2, \ldots, a_k) consisting of pairwise different cells of an $n \times n$ board is called a *cycle* if $k \geq 4$ and cell a_i shares a side with cell a_{i+1} for every $i=1,2,\ldots,k$, where $a_{k+1}=a_1$. We will say that a subset X of the set of cells of a board is *malicious* if every cycle on the board contains at least one cell belonging to X. Determine all real numbers C with the following property: for every integer $n \geq 2$ on an $n \times n$ board there exists a malicious set containing at most Cn^2 cells.

Problem 3. Determine all arithmetic sequences a_1, a_2, \ldots for which there exists integer N > 1 such that for any positive integer k the following divisibility holds

$$a_1a_2\ldots a_k \mid a_{N+1}a_{N+2}\ldots a_{N+k}$$
.

السؤال الأول

$$\prod_{k=1}^n (a_k^2+a_k+1)$$

مربع كامل.

السؤال الثاني

يقال لمتتابعة a_1, a_2, \cdots, a_k من الخلايا المختلفة للوح ذي القياس $n \times n$ بأنها a_1, a_2, \cdots, a_k والخلية a_i من الخلايا والمختلفة للوح ذي القياس a_i بحيث a_i من خلايا اللوح بأنها م*اكرة* إذا احتوت كلُّ متتابعة دائرية أحد خلايا a_i أوجد جميع الأعداد الحقيقية a_i التي تحقق من خلايا اللوح بأنها م*اكرة* إذا احتوت كلُّ متتابعة دائرية أحد خلايا a_i أوجد جميع الأعداد الحقيقية a_i التي تحقق الخاصية التالية: لكل عدد صحيح موجب a_i هناك مجموعة جزئية ماكرة على لوح من القياس a_i محتوي على الأكثر على a_i خلية.

السؤال الثالث

N>1 وجد جميع المتتابعات الحسابية a_1,a_2,\cdots من الأعداد الصحيحة الموجبة التي تحقق وجود عدد صحيح بحيث لكل عدد صحيح موجب k تتحقق قابلية القسمة التالية

الزمن 4 ساعات ونصف مع أطيب التمنيات بالتوفيق