Introducción al Procesamiento de Señales Curso 2013

Clase 8

Javier G. García

1 de octubre de 2013

Transformada de Fourier

Definición:

Transformada de Fourier directa (o integral de Foorier o ecuación de análisis):

$$X(t) = \mathcal{F}\{x(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} x(t)e^{-j2\pi t}dt$$

Transformada de Fourier inversa (o ecuación de síntesis):

$$x(t) = \mathcal{F}^{-1}\{X(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} X(t)e^{j2\pi t}dt$$

Transformada de Fourier

Interpretación:

Medida de parecido con exponenciales complejas de frecuencia fija:

Transformada de Fourier - Existencia

Condiciones de Dirichlet:

Si queremos que:

$$X(f) = \mathcal{F}\{\mathcal{F}^{-1}\{X(\cdot)\}(t)\}(f)$$

$$x(t) = \mathcal{F}^{-1}\{\mathcal{F}\{x(\cdot)\}(t)\}(t)$$

Es suficiente que se cumplan simultáneamente:

- ▶ x es absolutamente integrable $\int |x| < \infty$.
- x tiene un número finito de máximos y mínimos dentro de cualquier intervalo finito.
- x tiene un número finito de discontinuidades finitas dentro de cualquier intervalo finito.

Transformada de Fourier - Existencia 2

Si x(t) es discontinua en t_0 se obtiene:

$$\hat{x}(t_0) = \mathcal{F}^{-1}\{\mathcal{F}\{x(\cdot)\}(t)\}(t_0) = \frac{x(t_0^+) + x(t_0^-)}{2}$$

Hay señales de uso frecuente (constantes, escalón, senoidales) que no cumplen con las condiciones de Dirichlet (CD). Para incluir a esas señales se recurre al uso de distribuciones (delta de Dirac).

Transformada de Fourier - Simetrías

$$X(t) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi tt}dt$$

Como:

$$e^{-j2\pi ft} = \underbrace{\cos(j2\pi ft)}_{par} - \underbrace{j\underbrace{\sin(j2\pi ft)}}_{impar}$$

y usando que $\int_{-\infty}^{+\infty} x_{impar} = 0$ Si x es real $\Leftrightarrow X$ es Hermítica, es decir $X(f) = X^*(-f)$

Transformada de Fourier - Propiedades 1

Dualidad:Si $x \supset X$

1. $X^*(t) \supset X^*(-f)$

2. $X(-t) \supset x(t)$

▶ $x par \rightarrow X par$ entonces $x(t) \supset X(f)$ y también $X(t) \supset x(f)$

3. $x(-t) \supset X(-f)$

Linealidad:Si $x \supset X$ e $y \supset Y$ entonces

$$\alpha X(t) + \beta Y(t) \supset \alpha X(t) + \beta Y(t)$$

Transformada de Fourier - Propiedades 2

Translación: Si $x\supset X$, $t_0\in\Re$ y $f_0\in\Re$ entonces

$$X(t-t_0)\supset e^{-j2\pi ft_0}X(t)$$

$$e^{j2\pi f_0 t}X(-t)\supset x(f-f_0)$$
 por dualidad (2)

Similaridad: Si $x \supset X$ y $a \in \Re$ entonces

$$x(at) \supset \frac{1}{|a|}X(f/a)$$

Translación y similaridad juntos: Si $x \supset X$ y $a, b \in \Re$ entonces

$$x(at-b)=x\left(a(t-b/a)\right)\supset rac{1}{|a|}X(f/a)e^{-j2\pi frac{b}{a}}$$

Transformada de Fourier - Propiedades 3

Derivación: Si $x \supset X$, entonces

$$\frac{dx}{dt}(t) = x'(t) \supset j2\pi f X(t)$$

$$-j2\pi t x(t) \supset \frac{dX}{df}(f) = X'(f)$$

Notar que al derivar se incrementan las altas frecuencias.

Integración: Si $x \supset X$ y $a \in \Re$ entonces

$$\int_{-\infty}^{t} x(\lambda) d\lambda \supset \frac{X(t)}{j2\pi t} + \frac{X(0)\delta(t)}{2}$$

Transformada de Fourier - Propiedades 4

Convolución: Si $x \supset X$ e $y \supset Y$ entonces

$${x * y}(t) \supset X(f)Y(f)$$

Multiplicación: Si $x \supset X$ e $y \supset Y$ entonces

$$x(t)y(t)\supset \{X*Y\}(f)$$

Transformada de Fourier - Algunos ejemplos 1

$$x(t) = e^{-\alpha t} u(t), \quad \alpha > 0$$

$$e^{-\alpha t} u(t) \supset \frac{1}{\alpha + i2\pi t} \quad \alpha > 0$$

$$m{x}(t) = e^{-lpha|t|}, \quad lpha > 0$$
 $e^{-lpha|t|} \supset rac{2lpha}{lpha^2 + 4\pi^2 f^2} \quad lpha > 0$

•
$$x(t) = \delta(t)$$
 $\delta(t) \supset 1$

•
$$x(t) = 1$$

 $1 \supset \delta(f)$ por dualidad (2)

Transformada de Fourier - Algunos ejemplos 2

► Cajón: $x(t) = \Box(t)$

$$\sqcap(t)\supset \mathsf{sinc}(f)=\frac{\mathsf{sen}(\pi f)}{\pi f}$$

▶ Signo: $x(t) = \operatorname{sgn}(t)$

$$sgn(t) \supset \frac{1}{j\pi f} = \frac{-j}{\pi f}$$

$$\frac{1}{j\pi t}\supset \operatorname{sgn}(f)$$

► Escalón: x(t) = u(t), (no es módulo integrable!!)

$$u(t) = \frac{1}{2} \left(1 + \operatorname{sgn}(t) \right)$$

$$u(t) \supset \frac{1}{2} \left(\delta(f) + \frac{1}{j\pi f} \right)$$

Transformada de Fourier - Algunos ejemplos 3

▶ Exponencial compleja: $x(t) = e^{j2\pi f_0 t}$ con $f_0 \in \Re$

$$e^{j2\pi f_0 t} \supset \delta(f-f_0)$$

► Coseno: $x(t) = \cos(2\pi f_0 t)$

$$\cos(2\pi f_0 t) \supset \frac{1}{2} \left(\delta(f+f_0) + \delta(f-f_0)\right)$$

▶ Seno: $x(t) = \text{sen}(2\pi f_0 t)$

$$\operatorname{sen}(2\pi f_0 t) \supset \frac{1}{2j} \left(-\delta(f + f_0) + \delta(f - f_0) \right)$$

▶ Pulso gaussiano: $x(t) = e^{\pi t^2}$

$$e^{\pi t^2} \supset e^{\pi f^2}$$

Transformada de Fourier - Modulación 1

Si $x\supset X$ y $f_0,t_o\in\Re$ entonces

$$x(t)\cos(2\pi f_0 t) \supset \frac{1}{2}(X(f+f_0)+X(f-f_0))$$

$$x(t) \mathrm{sen}(2\pi f_0 t) \supset \frac{j}{2} (X(f + f_0) - X(f - f_0))$$

De forma dual

$$\frac{1}{2} (x(t+t_0) + x(t-t_0)) \supset X(f) \cos(2\pi f t_0)$$

Serie de Fourier

Definición:

Si x(t) es periódica de período T y cumple ciertas condiciones (CD), entonces se puede representar como:

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi kt/T}$$

 c_k son los coeficientes de la serie y se calculan como:

$$c_k = rac{1}{T} \int_0^T x(t) e^{-j2\pi kt/T} dt$$

Transformada de Fourier de señales periódicas

x(t) puede escribirse como:

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi kt/T}$$

Utilizando la linealidad de la TF y la propiedad de translación resulta

$$X(f) = \sum_{k=-\infty}^{+\infty} c_k \delta(f - k/T)$$

Las señales periódicas tienen espectro de líneas (aparecen deltas de dirac).

La separación de las deltas es inversamente proporcional al período.

Vinculación de la SF con la TF

¿Habrá alguna vinculación entre los c_k y la TF de un período de la señal?

Respuesta en Frecuencia de SLIT

Sea un SLIT con respuesta impulsional h(t). Sean x(t) e y(t) la entrada y la salida de dicho sistema respectivamente. Como

$$y(t) = \{x * y\}(t)$$

Utilizando propiedades de la TF llegamos a que

$$Y(f) = H(f)X(f)$$

donde H(f) es la respuesta en frecuencia del sistema (Recordar la motivación de la primera clase de TF). Ver ejemplo circuito RC.

Ver sistemas en cascada y en paralelo.

Respuesta en Frecuencia de SLIT

Sea un SLIT con respuesta impulsional h(t). Sean x(t) e y(t) la entrada y la salida de dicho sistema respectivamente. Como

$$y(t) = \{x * y\}(t)$$

Utilizando propiedades de la TF llegamos a que

$$Y(f) = H(f)X(f)$$

donde H(f) es la respuesta en frecuencia del sistema (Recordar la motivación de la primera clase de TF). Ver ejemplo circuito RC.

Ver sistemas en cascada y en paralelo.