Foundational Approach to optimize Allocation & Positioning of Health Posts in Malawi – Analysis Approach

Ver 1 1 1 1 10/12/2018

Contents

- 1 Discussion on Feedback
- 2 Foundational Approach Overview
- <u>3</u> Population Density Mapping
- <u>4</u> Short Term Population Movement Analysis
- <u>5</u> Long Term Population Movement Analysis
- 6 Assumptions

Discussion on Feedback

#	Feedback	Feedback from	Infosys Response	Feedback incorporation status
1	Step 1 - While appropriate in densely clustered, urban areas, the size of these polygons should be capped in rural areas to the estimated maximum range of cell-phone towers (5-10km radius from node), in order not to under-estimate the call-density.	C/S	As discussed and agreed with C/S and DIAL on 18-Sep, we will assume the max range of each tower as 10 km, refer appendix (slide #42) for more details.	Completed
<u>2</u>	Step 1 - Administrative units outside of this range should be excluded from the analysis.	C/S	 Administrative unit without any mobile coverage will be excluded from our analysis. ~ 85% population will be covered if tower radius (range) is 10 km [Cooper/Smith - Erwin]. We have also validated and this value is 84.65%. 	Completed
3	Step 1 - C/S will conduct a parallel 'gapanalysis' of these excluded populations to address potential equity concerns.	C/S	 C/S Gap analysis approach details have to be shared with Infosys We will utilize the gap analysis inputs in our analysis 	NA
4	Step 2a - Log(Pj) = α + β log(Dj) + δD + εi	C/S	We will consider applying district fixed effect. While there are various factors like behavioral differences in cell-phone use (week day v/s week end, average call duration, A2P origin region, etc.) and demographic/ socio-economic indicators (mean age, education attainment, etc.), we can consider this based on data availability and demographics subject matter inputs from C/S.	Completed
5	Step 2a - Test for Spatial Correlation using Moran's I and if reject the null, use a spatial lag model accounting for proximity of units, or cluster error terms.	C/S	This will be addressed as part of the Spatial Correlation analysis performed during Regression Analysis. pysal python library will be used for Spatial Correlation analysis.	NA NAVigate your next

Discussion on Feedback Contd...

	# Feedback	Feedback from	Infosys Response	Feedback incorporation status
	6 Step 2b - Spatial correlation issues addressed direct the specification (see above). Recommend against sampling a coordinate with 100 km radius, as parawill be region specific and cannot be extrapolated to country as a whole.	meters	We may try both random and stratified sampling. Final decision of the sampling will be taken based on the results from the data.	Completed
-	Step 2b - Recommend using bootstrap a nalysis, san with replacement 1000 times and using distributio coefficients to infer mean and standard deviation of Infosys can work with C/S on this.	nof	We may try both random and stratified sampling. Final decision of the sampling will be taken based on the results from the data.	Completed
\$	Step 2b-In parallel, suggest k-fold cross-validation randomly sampling 70% of data k times and testing remaining 30% according to best practice. Use R2 cas indicator of predictive performance. Infosys can with C/S on this.	g on or MSE	We have considered this, even though it is not explicitly called out in our approach.	Completed
9	 Step 2c - Test sensitivity of β to different CDR data including – Daily aggregated vs. night-time Calls sent vs. calls received Weekday vs. weekend Need agreement on what the principal specificat (ie night-time calls sent on a weekday) and which subsequent robustness tests will be reported. > Ac these agreed upon CDR variations, test and compa predictive power as outlined in Step 2b. 	ionis	 For sensitivity testing of β, following data can be considered - ✓ Daily aggregated vs. night-time and ✓ Weekday vs. weekend "Calls sent vs. calls received" can't be considered as it is not available. 	Completed

Discussion on Feedback Contd...

#	Feedback	Feedback from	Response	Feedback incorporation status
10	Step 2b - Calculating population growth based on estimated growth rate r > Once 2a and 2b complete, Infosys working with C/S can calculate r using population estimates projected from Step 2a using multiple years of CDR data: r= Ln(P2017/P2016)	C/S	 Please note that our approach is to analyze population movements using CDR and not calculate population estimate using CDR data as a proxy for 2019-2023. We had discussion with C/S on 10/03/2018 and they are agreed for the above point. 	Completed
11	Update Metric sheet for CDR data (Syed provided)	DIAL	This is incorporated in metric sheet	Completed
12	Long term / population migration approach (step 2), remove "List of events (shock)" and better to include the same in short term / dynamic population movement section	DIAL	This was an error and is corrected now.	Completed
<u>13</u>	Revisit approach for short term and long term movement	DIAL	Approach for short term and long term movement was updated.	Completed
<u>14</u>	How will population density growth be modeled?	DIAL	This will be done based on clarification inputs from Worldpop	Open
15	Will any additional aggregated MNO data (like age, churn rate etc.) be useful for analysis?	DIAL	 As agreed by C/S, district fixed effect is not required i.e. one common α(alpha) and β (beta) for entire Malawi is not required. Rather this will be run at regional level i.e. North, Central & Southern regions. So we will have 3 α(alpha) and β(beta). 	Completed

Foundational Approach Overview

Use Case Objective

Develop an analytical model to forecast / optimize the 900 health posts to be setup in Malawi over next 5 years [2019-2025] using the Anonymized CDR and Geospatial data (MNO Tower, Health Post) at Administrative Unit Level 2 (TA/GVH).

There are 2 distinct levels of optimization involved as outlined below, and CDR data can provide insights for both

- Allocation of health posts to a given Adm Unit
- Positioning of health post within a given Adm Unit

Estimating Population Movements through CDR Analysis

Timescale of Available Data Coverage

2017

POPULATION

2018

2016

2015

POPULATION DENSITY - 2015

2014

2013

2020

POPULATION DENSITY - 2020

2021

2022

2023

2019

Granularity -

Temporal/Geo

YEARLY / DISTRICT (ADM1)

YEARLY / SUB TA (ADM2)

Foundational Approach - High Level Overview

Prepare Reference Population Density Forecast

Interpolate/Extrapolate the
Population Density (2016-2023) at
TA Adm Unit level using
Exponential/Alternate Growth model
(Worldpop 2015 & 2020 population
density data)

Model Call density to Population density relationship

Model a Power Law relationship between CDR Call Density and Population Density in an Adm Unit (2016-2018 Airtel CDR data)

Analyze the CDR to model

- Short term movements
- long term movements

Estimate Migration Factor using long term movement

- From long term population movement (migration) model, extract the inflow/outflow factor for each Adm Unit
- Apply Call to Population density scaling factor to get the adjusted population

(2016-2018 Airtel CDR data)

For each Adm Units, estimate points of interest with high transient intraday population

For each Adm Unit, identify temporal shifts if any of points of interest (2016-2018 Airtel CDR data)

Using 2016-2017 mobile growth rate, model an empirical (exponential) mobile user base growth, and extrapolate the migration factor for 2019-2023.

Population Density Mapping

Population Density Mapping using Anonymized CDR - Approach

For scaling the population movements analyzed through Mobile CDR as a proxy, we need to establish a relationship between the mobile user density to the population density. This is done through two steps approach.

Step1- Compute MP (mobile phone) User Density for each Administrative Unit

Step 2.a- Magnify MP
User Density against
Census / RS derived
population density using
Power Law

Step 2.b- Cross validation procedures to derive "α" and "β" parameters

Step 2.c- Sensitivity analysis of " α " and " β " parameters

Population Density Mapping Approach

Step 1 – Compute Mobile User Density for each Administrative Unit

Obtain Voronoi polygons for towers and calculate overlap of administrative unit and polygons

Calculation of Mobile phone user density for each voronoi tower polygon

Legend

Ai- Area of administrative "i"

Ci-Number of calls or unique callers at tower "i"

Vi-Voronoi polygon obtained for tower "i"

Avi- Area of voronoi polygon Vi

Xij-Area of intersection between area Aj and Avi

Dvi-Mobile phone user density –ratio of Ci/Avi

Navigate your next

Population Density Mapping (without Fix Effect Factor) - Approach (contd..)

Step 2.a - Magnify MP User Density against Census / RS derived population density using Power Law

Estimation of parameters is done using equation(1) below, where "Pi" is worldpop population density for a given **Total Population** Nighttime population Mobile Phone (MP) administrative unit "i". estimate (P estimate) densities adjustment using User Density Di To facilitate the **estimation of parameters**, problem statement Using "Pi" for all census derived national (Night-time) for is converted into a **standard linear regression** model by taking administrative units population-"P" administrative unit 'j'log transformations as in equation (2). (From step 1) $P_{j_{adjusted}} = (P/P_{(estimate)}) * \alpha * (Dj)^{\beta} - (3)$ Steps related to population parameters at training stage are discussed below.

Parameters

α: Scale Ratio

$$Pj = \alpha * (Dj)^{\beta} - (1)$$

$$Log(Pj) = Log(\alpha) + (\beta * log(Dj)) - (2)$$

 $oldsymbol{\beta}$: Super linear effect of population density (census) on night-time user density

• We would run the step 2.a region-wise (North, South, Central) resulting in 3 pairs of α and β .

Notes on availability of data

- Current availability of data for population in Malawi is at district level. In this specific case, population at administrative units is lower than districts in hierarchy (ADM-2(TA) and 3 (GVH) levels) is of interest.
- Population data available at district level is not close to estimates obtained using Facebook HRSL file for the year 2015.
- To estimate population density in Malawi, it is assumed that **Worldpop's 2015 estimates –ppp-adj-V2** version will be used instead of available district level data. Total population indicated for the year 2015 in **Worldpop ppp adj_V2** file is 17303306.73, which is very close to the value indicated in **Facebook HRSL file** (17201196.95).

Navigate your nex

15 • Worldpop 2015 ppp V2 unadjusted has total population count of 15799142.22.

https://www.researchgate.net/publication/267449917 Dynamic population mapping using mobile phone data

Population Density Mapping - Approach (contd..)

Step 2.b – Cross validation procedures to derive " α " and " β " parameters

Training set

Evaluation set

- For Malawi, spatial resolution (sqrt(land area/total administrative units) is around 5.5km (at ADM-3 level)**.
- At the lowest level of administrative units, Malawi has around 3100 units.
- Land areas of Portugal and Malawi are comparable as well. Malawi has a land area of 4000 sq.km [https://tradingeconomics.com/malawi/land-area-sq-km-wb-data.html]
- While deciding % of data for train and test, we would also consider k-fold technique for cross-validation.
- Spatial correlation is studied using Moran I's test. Based on the test results we infer the correlation among units.
- With respect to sampling techniques (random/stratified), we may consider both the options. We will decide based on the results from the data

Step 2.c – Sensitivity analysis of " α " and " β " parameters

Study of population density estimations to population parameters

• Parameter "α" and "β" will be tested for sensitivity using CDR data [Daily aggregated vs. night-time and Weekday vs. weekend CDR data]

Estimating User Density Growth Rate

User Density growth rate can be estimated through

Computed user density value for the years 2016 and 2017 based upon anonymized CDR data @ Administrative unit area

$$D_t = D_0 * e^{r * t}$$

$$r = ln (D_{2017}/D_{2016})$$

Legend

 D_{t} : User density for the year t

 D_0 : User density for the initial year

r: Annual user density growth rate (urban/rural)

t: # of year between the initial year and input data and the year being projected

D₂₀₁₇: User density for the year 2017

D₂₀₁₆: User density for the year 2016

Short Term Population Movement

Use Case: Dynamic Population Movement Approach

Approach- Two steps approach is suggested for dynamic Population movement

Step 1 – Finding out the trajectory at individual level

Step 2- Tracing out the aggregate trajectory from individual level and analyze population mobility motifs

Inputs	 Day wise anonymized CDR data aggregated at unique subscriber level 	 Individual trajectory recognition for each of the unique subscriber for a month
Key Activities	 Sort the day wise call records for each of the unique subscribers according to the time stamp attached to them and map these calls to the respective towers. This will give us the daily trajectory of an individual. Extract the stay points and divide move/ stay segments based on the parameters and threshold applied on the CDR data From the daily trajectory of each of the individual identify the most frequent trajectory for each one of them over a considerable period of time (e.g. over a month) 	 From the individual level information aggregate to a administrative unit Identify the most visited trajectories per administrative unit. Identify frequently visited stay points per administrative unit. Perform mobility motifs analysis for dynamic population movement
Deliverables	 Individual trajectory recognition for each of the unique subscriber for a month 	 Most visited trajectories per Administrative unit Most frequently visited stay point per Administrative unit

Dynamic Movement Analysis

OD Matrix - Construct mobility matrix using ADM Unit - tower, tower-tower, tower – ADM Unit aggregated statistics, to analyze mobility between ADM Units

Trajectory Analysis - Analyze aggregated reconstructed trajectories between ADM units and within ADM unit to identify zones/places of interest, through home locations, stay points, movement routes, mobility motifs.

Suggested Metric/KPI for Anonymized CDR data

Reference	Asa	I want	So that	Applicability in Malawi Use case	Metric / KPI	Remarks	Feasibility	Relevance	Rationale for Relevence
A	Demand Side Agency (DSA)	to better understand the movement of population following a shock, such as an epidemic outbreak or natural disaster	I can make better informed decisions.						
~	DSA 🔻	to understand where a population is moving to immediately following a shock	I can better support their humanitarian needs.	Yes ▼	# of calls / callers during shock period	Assuming we would use events fro	Yes ▼	Yes 🏋	Movements associate with recurring sh- floods, disease ooutbreaks helps bette
A2	DSA	to understand the movement of population during the period following a shock	I can monitor the situation, measure the impact of decisions and continue to make decisions or predictions.	Yes	# of calls / callers post shock period	events such as earth quakes or seasonal events such as floods,	Yes	Yes	facility.
А3	DSA	I can see when and if people are returning to the affected location following a shock	I can understand the medium- to long-term impact on a region.	Yes	# of calls / callers at the shock location pre and post shock	disease outbreaks along with dates and impact areas.	Yes	Yes	
A6	DSA	To know the population of a region at a specific time	Measure the number of people exposed to, or at risk from, a given situation	Yes	# of calls / callers at that specific time for a given location	using population density approach	Yes	Yes	To decide the size and operation hours facility
A7	DSA	to see current population estimates based on mobile data for a particular area	I can use draw informed conclusions about the impact of a shock in a specific region.	Yes	we are already doing	we are already doing	Yes		To understand facility burden in an area
A10	DSA	to see population movement data over a specific time period	I can monitor how population movements have changed e.g. in response to interventions.	Yes	# of calls / callers at a location for a given time frame		Yes	Yes	In long term to optimize number of healt based on population at a location. Durin understand number of temproray health required.
A11	DSA	to see predicted population movement estimates	I can prepare for an epidemic or disease outbreak, limit its severity and restrict its spread.	Yes	Identify seasonal population movement due disease outbreak	Based on previous disease outbreak population movement, future movements can be estimated.	Yes	Yes	For better operation planning in surrour facility. Understand temproary health fa
A12	DSA	to segregate appliaction and human related CDR data	I can differentiate between application and human related CDR data	Yes	# of A2P contacts / day and # of P2P contacts / day		Yes		more accurate estimation of population Malawi
A 13	DSA	to understand the distribution of CDR data across SMS and voice	I can differentiate between SMS and voice data in CDR	Yes	# of SMS / day and # of voice calls / day		Yes	Yes	better understanding on the distribution data from visual representation
A14	DSA	to understand SMS and voice data distribution in CDR data as per town or district	I can get a overview of # of CDR data as per town or district	Yes	# of SMS / district and # of voice calls / district		Yes	Tes	better understanding on the distribution data from visual representation
A15	DSA	to understand daily CDR data distribution	I can get a overview of day wise CDR data distribution as per town or district	Yes	# of calls / day for each of the town or district		Yes	Yes	better understanding on the distribution data from visual representation
A16	DSA	to understand day wise unique subscriber's distribution	I can get a overview of day wise CDR data distribution as per unique subscribers	Yes	# of calls from unique numbers / day for each of the town or district		Yes	Yes	better understanding on the distribution data from visual representation
A17	DSA	to understand total no of visited location daywise for each unique subscriber	I can get an understanding about the individual mobility pattern	Yes	# of unique location visisted / day foe each of the unique subscriber		Yes	Yes	better understanding on the distribution data from visual representation
A18	DSA	to understand the CDR data distribution across a day	I can get the overview on CDR data distribution across Time-of-the-day	Yes	# of calls at specific time points / day		Yes	Tes	better understanding on the distribution data from visual representation
A19	DSA	to understand cell towers distribution	I can get an overview of the distribution of cell towers as per town or district	Yes	# of cell towers / town or district		Yes		better understanding on the distribution data from visual representation
120	DO.	l. , , , , , , , , , , , , , , , , , , ,	I can get the overview of the distribution of cell ids		La / 11111 P		L,		better understanding on the distribution

Metrics-KPIs for CDR

Anonymized CDR data analysis

Type of Analysis on CDR data	Insights generation	Level of data aggregation	Relevance to usecase
I dentification of a pplication and human related CDR data	Segregation of application and human related CDR data	Raw CDR data	Yes
Distribution of CDR data as per SMS/Voice	SMS and voice data distribution in CDR data	Raw CDR data	Yes
Overview of # of CDR data as per Towns / Districts	SMS and voice data distribution in CDR data as per town /district	Raw CDR data	Yes
Day-wise CDR data distribution as per Towns / Districts	Daily CDR data distribution	Day level aggregation	Yes
Day-wise unique sender Id as per Towns / Districts	Day wise unique senders distribution	Day level aggregation	Yes
Average total unique location (daily)	Total unique location visited day-wise	Day level aggregation	Yes
Unique originating number of CDR from Districts	Details of unique originating location	Day level aggregation	Yes
Time of the day -wise CDR data distribution as per Towns/Districts	CDR data distribution as per time of the day	Hourly level aggregation	Yes
Distribution of Cell Towers as per Towns / Districts	Cell towers distribution	Day level aggregation	Yes
Burden of cellidacross Towns / Districts	Details on Burden of cell	Day level aggregation	Yes
Busiest cellid across Towns / Districts	Top most busiest cell id	Day level aggregation	Yes
Distribution of Health Facilities and Towers	Health Facilities locations coverage by Towers	Day level aggregation	Yes

Anonymized CDR data analysis (contd...)

Type of Analysis on CDR data	Insights generation	Level of data aggregation	Relevance to usecase
Distribution of Health Facilities and Towers wrt administrative areas	Health Facilities locations coverage by Towers	Day level aggregation	Yes
Location of cell Tower at TA/GVH level	Location of cell Tower at TA/GHV level	Day level aggregation	Yes
Most Visited Locations in the highest populated Administrative Unit	Most visited locations at a dministrative unit	Day level aggregation	Yes
Trip distance distribution	Trip distance pattern	Day level aggregation	Yes
Radi us of gyration	Quantifying human mobility patterns	Day level aggregation	Yes
# of visited location distribution	Visited location pattern	Day level aggregation	Yes
Frequently visited locations	Frequently visited location pattern	Individual level aggregation	Yes
# of re-visited location distribution	Re-visited location pattern	Day level aggregation	Yes
Average time spent distribution (min)	Time spent pattern for voice	Individual level aggregation	Yes
Proportion of home interactions	Proportion of home interaction with other interactions	Individual level aggregation	Yes
Churn Rate	Provides insight into the growth or decline of the subscriber base	Individual level aggregation	Yes

Long Term Population Movement

Use Case: Population Migration – Approach

This approach proposes a mobile CDR based approach (mobile phone MP) to obtain population migration of a given tower level.

Approach- Three steps approach is suggested for Population Migration

Step 1- Aggregation of CDR data @ month level as per tower and unique users.

Step 2- Understand population movement by netflows and proportion of inflow/outflow

Step 3- Inference on change in user density and compute population migration

Inputs	 Anonymized CDR data Aggregation rules for CDR data @ daylevel 	 Aggregated CDR data at month level as per tower and unique user 	 Details of change in unique subscriber list at tower level. Proportion of Inflow/Outflow information month wise for each district.
Key Activities	 Identify A2P and P2P SMS Create script to do aggregation of CDR data at month level for each tower and each unique user Perform aggregation of CDR data at month level for towers and unique users 	 Identify new and inactive unique subscriber count at each tower. Calculate netflow change of population at each tower Calculate proportion of inflow/outflow at higher ADM levels for each month 	 Identify administrative units with floating population movements. Scaling user density at tower over months to population density Identify locations with consistent inflow and outflow of populations
Deliverables	 Aggregated CDR data at month level as per tower and unique users 	 Details of change in unique subscriber list at tower level. Proportion of Inflow/Outflow information month wise for each district. 	 Locations with favorable conditions to stay (using proportion of inflow) and difficult to stay (using proportion of outflow) and floating population (using inflow and outflow) Population density of units month wise

Proportion of Inflow and Outflow based population movement analysis

Rationale:-

- A higher proportion of inflow month over month at a district/TA may be due to favorable living conditions at that location.
- A higher proportion of outflow month over month at a district/TA may indicate not so favorable living conditions at that location.
- A high proportion of inflow and outflow indicate floating population movement.

Approach:-

New connections and inactive numbers are identified while computing inflow/outflow proportion.

Obtain location for each unique subscriber at month level

Compute proportion of inflow and outflow of population for each district/TA.(Account for new and inactive connections).

Infer locations with floating population movements, favorable locations to stay etc.

Terms:-

Proportion of inflow:- For a given month "m" and district "d", it is the ratio of (population moved into district "d" from other districts in month "m")/(total population outside district "d" in month "m-1")

Proportion of outflow:- For a given month "m" and district "d", it is the ratio of (population moved out of district "d" to other districts in month "m")/(total population in district "d" in month "m-1")

Population migration at tower/Administrative unit level

Rationale:-To understand the population migration at administrative units over long term

Approach:-

- Net flow(outflow-inflow) of users is calculated for each tower month wise.
- The observed net flow change over each month is used to obtain the change in subscriber density for each tower month wise.
- Change in subscriber density is used as proxy to sense the change in population over months at the tower level.
- Changes in subscriber density is used to obtain base population estimates at administrative unit levels.
- This is scaled appropriately for each administrative unit to obtain population estimates for the unit.

Terms:-

"Netflow" for month "m" for tower "j" is defined as (# of subscribers in month "m-1"+(# of subscribers inflow from other regions for month "m")-(# of subscribers outflow from tower "j" to other locations in month "m").

Subscriber density- (Number of subscribers) / (Area of polygon for tower)

Assumptions

Assumptions

- In this approach it is assumed that all cell towers are similar * wrt transmission power, antenna heights, elevation, structural and environmental characteristics. This ensures that the approach is less computationally intensive.
- For computational convenience 7 pm to 7 am is assumed as the night time and from 9 am to 6 pm its is assumed as the working hours or the most productive hours of the day for an individual.
- A phone user's home location is identified as the most frequently communicated tower during nights of weekdays and weekends over the study period.
- Each of the unique subscribers/users comes back to their base/home location at the end of the day.
- Approximately 85% of population will be covered if mobile tower range is 10 km.

Appendix

Dynamic Population Movement – Methods

- Route Pattern Analysis Track movements of people through a given area at a particular time, through home locations, stay points, movement routes and timing of mobile phone users.
- Human Mobility Motifs Analyze the daily movements using the Mobility Motifs paradigm (ref: Schneider et al).
- **Individual Mobility Patterns** Explore the statistical properties of the population's mobility patterns using a truncated Levy flight model (ref: Barabasi et al).
- Analysis Based on Rank of Locations Analyze the daily movements on the basis of the # of times an individual visited to a place.
- Analysis Based on Radius of Gyration Characterizing human mobility patterns and human daily travel with periodicity and regularity, the radius of gyration for an individual can be predicted and this can be used to track their future movement path.

http://humnet.scripts.mit.edu/wordpress2/wp-content/uploads/2010/10/J.-R.-Soc.-Interface-2013-Schneider-.pdf http://barabasi.com/f/250.pdf

Method - Route Pattern Analysis

- Identify the frequent travelled routes for each subscriber based on a pre-defined threshold for # of occurrences.
- The analysis would be based on the frequent route patterns as follows:
- Source Destination
 Pattern 1: P1 P2

Pattern 1 is the most frequently found route pattern for a subscriber and thus would be the base line for further analysis.

■ Pattern 2: P1 ——

As compared to Pattern 1, only the destination has changed to P3 in Pattern 2. This is a case of **Temporary Movement.**

Pattern 3:

As compared to Pattern 1, the source is changed to P4 in Pattern 3. This is a case of **Population Migration**.

All these analysis can be done using at least 1 month of CDR data. For these patterns, the aggregation of CDR data will take place at day level for a subscriber.

Р3

Method –Human Mobility Motifs and Individual Mobility Patterns

Daily Mobility Motifs together with magnification factor can be used to estimate dynamic population at any location for a given time frame.

Method –Population Estimation and Mobility Pattern (contd...)

- Stay & Pass by extraction: Parsing the mobile phone CDR data to extract anchor points (i.e., stay locations) of individual daily travel and to differentiate stops from pass-by points is the first stage before identifying individual mobility networks.
- Home detection: An individual always departs from home and returns home by the end of a day (assumption), for planning purpose, it is important to understand individuals' mobility patterns from their home and a phone user's home tower is identified as the most frequently communicated tower during nights of weekdays, and weekends over the study period.
- User day filtration: It's important to sample user-days when the mobile device is used frequently enough. Separate observations on weekdays from those on weekends, as mobility patterns can be different. Here we only focus on records on weekdays.
- Daily Mobility Motifs: With the extracted stay locations, users' identified home location, we will be able to identify the mobility networks. It has been observed that not all users necessarily have the first stay-point (or potential stay-point) starting from their home tower, or the last stay point (or potential stay-point) ending at their home tower every day in the filtered trajectory, due to the passive nature of the CDR data. In order to form a complete tour for each user, we make the assumption that, if a user travels in a day, s/he starts the first trip from, and ends the last trip at home.
- Population, daily trip & Mobility network scaling, aggregation and visualization: After filtering the user-day samples, it is important to verify that users with more phone usage events do not have systematic differences in travel behavior. Therefore, we examine the relationship between the filtered users' cell phone usage patterns and their daily travel patterns.
- Magnify CDR data against Census: Reallocated points are aggregated by each census of population census. The magnification factor is the number of people a user represents and can be computed by comparing real population of a census zone with the aggregated number of mobile phone users.

Method - Analysis Based on Rank of Locations

- For all the districts we can find out the rank L when each location is ranked on the basis of the number of times an individual was recorded in its vicinity.
- Theoretically it has been found out that people devote most of their time to a few locations, although spending their remaining time in other places, visited with diminished regularity.
- The same kind of analysis can be done on Malawi and this might be helpful in finding out the population movement analysis.

Method - Analysis Based on Radius of Gyration

Gyration radius of individual's trajectory plays a key role in characterizing human mobility pattern. Because of the importance for quantitatively understanding human mobility patterns, it's essential to find out the factors responsible for the gyration radius of trajectories. Different kind of analysis can be done on radius of gyration:

- As the radius of gyration (RG) has a strong impact on travel distance distribution aver all users, we can do a graphical comparison of average rg across all the districts of Malawi to obtain meaningful insights regarding the travel pattern of individuals in those districts
- Analyze the variability of RG with respect to the distance between an individual's home and
 work location (we can assume the most frequent pattern from the route pattern analysis as the
 route between an individual's home and work location if we consider the data only for
 weekdays)
- Analyze the variability of RG with respect to maximum daily travel distance of an individual

CDR Data Aggregation – High Level Entity Model

Aggregated Entity	Key Processing Steps	Features Extracted
Daily_CDR_Summary	Get_Daily_CDR_Summary	User_Id, date, month, year, # of calls, # of towers, max_used_tower_callcount
Daily_Tower_Summary	Get_Daily_Tower_Summary	Tower_Id, date, month, year, Hourly_Traffic, Total #calls, Total # of unique callers
Monthly_Caller_Summary & User_Master	Update_Master_User* Filter_A2P_CDR Map_User_Home_Tower	User_Id, Month, Year, Home Tower, Avg Daily Calls. A2P_Flag (update in User_Master)
Monthly_Tower_Summary & Tower_Master	Update_Master_Tower_List Detect_Home_Tower_Changes Calculate_Monthly_Flow	Tower_Id, Month, Year, Average_Daily_Calls (by event type) # home users # visitors Monthly_Ingres (detect change in home tower) Monthly_Egres (detect change in home tower) Avg_Hourly_Traffic (23 columns)

^{*} This can be reused from Caller_Anonymization

What is Dynamic Population Movement?

Population dynamics is the study of how and **why populations** change in size and structure overtime. **Important** factors in **population dynamics** include rates of reproduction, death and migration.

Characteristics of Dynamic Population Movement:

- It has been found that in contrast with the random trajectories predicted by the prevailing Le 'vy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic travel distance and a significant probability to return to a few highly frequented locations.
- After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that, despite the diversity of their travel history, humans follow simple reproducible patterns.
- This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent-based modelling.

Approach – Human Mobility Pattern study

Trip distance distribution (Levy fight form)

$$p(r) = r^{-\beta}$$
; $\beta = 1.59$; r:distance

Radius of gyration

$$r_g^a(t) = \sqrt{\frac{1}{n_c^a(t)} \sum_{i=1}^{n_c^a} (\vec{r_i^a} - \vec{r}_{cm}^a)^2}, \quad \text{where } \vec{r_i^a} \text{ represents the } i = 1, ..., n_c^a(t) \text{ positions recorded for user } c$$
and $\vec{r}_{cm}^a = 1/n_c^a(t) \sum_{i=1}^{n_c^a} \vec{r_i^a}$ is the center of mass of the trajectory.

where \vec{r}_i^a represents the $i=1,...,n_c^a(t)$ positions recorded for user a

of visited location distribution

$$f(N) = e^{-(\ln N - \mu)^2/(2\sigma^2)} / (N\sigma(2\pi)^{1/2})$$

$$\mu = 1, \ \sigma = 0.5$$

N:# of locations

of re-visited location distribution

$$s(t) = t^{\mu}$$
; $\mu = 0.6$; $t = time$

Individual Trajectory Based Population Movement Analysis

Approach:

Terms:

- Trajectory data: Is a sequence of time-stamped points, P = (p1, p2,...pn), where p = (ID, time, latitude, longitude) and n = a total number of points.
- Stay point: This is a geographical reference to a place where a user stayed over a time threshold (tt) within a distance threshold (dt). In a trajectory, stay point is characterized by a set of consecutive points P = {pm, pm+1, ..., pn}, where ∀m< i ≤ n, Distance(pm, pi) ≤ dt, Distance(pm, pn+1) > dt and Time Interval(pm, pn) ≥ tt. Therefore, s = (x, y, ta, tl), where x, y are a centroid location of those points in a stay point.

Population density- Notes on availability of data

Dataset	Availability
World pop	2010, 2015, 2020 , 2008 (Census)
CDR dataset	2016,2017

- World pop data is available for the years 2010, 2015 and 2020, while CDR dataset is available for 2016 and 2017.
- World pop used 2008 census for Malawi and projected it for the years 2010, 2015 and 2020 using an exponential function.
- Using the 2015 worldpop adjusted file, we obtain population estimates for the year 2015, but it doesn't match with the available data of CDR, which is available only for 2016, 2017.
- How to overcome this data interval availability issue
- Using the exponential growth approach from world pop and referred paper* obtain population estimates for 2016 and 2017. Check whether the estimates are inline with the 2020 world pop estimates.
- Using CDR for 2016, 2017 and worldpop estimates for the same time period from previous step, obtain a relation between cell phone mobile user density and population estimates. (Estimate alpha and beta).
- For the year 2018, since CDR data would be unavailable, capture mobile penetration in Malawi or similar countries (through research articles or information) and use it to extrapolate the cell phone usage in 2018.
- Use the extrapolated CDR information for 2018 to compute population density estimates for the year 2018. Check if the obtained estimates are in line with world pop 2020 estimates.

DIAL- Justification for Cell-Tower Coverage Radius

The working range of a cell site depends on a <u>number of factors</u> including

- · Height of antenna over surrounding terrain, establishing line of sight
- · The <u>frequency</u> of signal in use,
- · The transmitter's rated power.
- · Reflection and absorption of radio energy by buildings or vegetation.

In urban areas, masts are built close to each other to handle the heavier demand in terms of users, <u>1-2 km apart</u>. In rural areas, the *maximum* range of a mast depends on technical considerations, notably the ability of a low-powered personal cell phone to transmit back to the mast. Under ideal conditions (tall mast and flat terrain), a GSM signal can technically travel <u>up to 70 km</u>. Under more realistic conditions, with hilly terrain and potential obstacles, the maximum distance can be <u>as little as 5 km</u>.

To capture these considerations, the Cooper/Smith gap analysis allows for different radii, with a minimum of 5km in rural areas to reflect worse case conditions, 10km as the median value of expected range, and 20km as a realistic upper bound.

