Artificial Intelligence

Neural Networks

Lesson 13: Self-Organizing Maps

Vincenzo Piuri

Università degli Studi di Milano

Contents

- Self-organizing maps
- Topology preserving mapping
- Training
- Examples of self-organizing maps

Self-Organizing Maps (1)

- A self-organizing map (or Kohonen feature map) is a feed-forward 2-layered neural network, similar to the Vector Quantization Learning networks with local connections only among neighboring hidden/output neurons
- The network input function of each output neuron is a distance function of input and weight vector
- The activation function of each output neuron is a radial function
 - Monotonically decreasing function
 - $f: \mathbb{R}_0^+ \to [0,1]$ with f(0) = 1 and $\lim_{x \to \infty} f(x) = 0$

Self-Organizing Maps (2)

- The output function of each output neuron is the identity.
- The output is often discretized according to the "winner takes all" principle.
- On the output neurons a neighborhood relationship is defined

Self-Organizing Maps (3)

hexagonal grid

- Neighborhood of the output neurons: neurons form a grid
 - Thin black lines: Indicate nearest neighbors of a neuron
 - Thick gray lines: Indicate regions assigned to a neuron for visualization

Topology Preserving Mapping (1)

- Images of points close to each other in the original space should be close to each other in the image space
 - Robinson projection of the surface of a sphere (maps from 3 dimensions to 2 dimensions)
 - The topology is preserved, although distances, angles, areas may be distorted

Topology Preserving Mapping (2)

- Neuron space/grid
 - Usually 2D quadratic or hexagonal grid
- Input/data space
 - Usually highdim.
 - (here: only 3D)

Topology Preserving Mapping (3)

 Find topology preserving mapping by respecting the neighborhood

$$- \vec{r_u}^{(new)} = \vec{r_u}^{(old)} + \eta(t) f_{nb}(d_{neurons}(u, u_*), \varrho(t)) (\vec{x} - \vec{r_u}^{(old)})$$

- u_* is the winner neuron (reference vector closest to data point)
- The neighborhood function f_{nb} is a radial function
- Time dependent learning rate
- Time dependent neighborhood radius

Topology Preserving Mapping (4)

The neighborhood size is reduced over time

 A neighborhood function that is not a step function has a "soft" border and thus allows for a smooth reduction of the neighborhood size

Training

- Initialize the weight vectors of the neurons of the self-organizing map
 - Place initial reference vectors in the input/data space
 - Randomly selecting training examples

Training

- Choose a training sample / data point
- Find the winner neuron with the distance function in the data space (the neuron with the closest reference vector)
- Compute the time dependent radius and learning rate and adapt the corresponding neighbors of the winner neuron

Examples of Self-Organizing Maps (1)

- Self-organizing map with 10×10 neurons (quadratic grid)
- Initialization with random reference vectors
- Gaussian neighborhood function

$$f_{\rm nb}(d_{\rm neurons}(u, u_*), \varrho(t)) = \exp\left(-\frac{d_{\rm neurons}^2(u, u_*)}{2\varrho(t)^2}\right)$$

- Time-dependent neighborhood radius
- Time-dependent learning rate

Examples of Self-Organizing Maps (2)

 SOM state after 10, 20, 40, 80 and 160 training steps

Examples of Self-Organizing Maps (3)

 SOM state after 10, 20, 40, 80 and 160 training steps

Examples of Self-Organizing Maps (4)

- Training a self-organizing map may fail if
 - the (initial) learning rate is chosen too small or
 - the (initial) neighborhood radius is chosen too small.

Examples of Self-Organizing Maps (5)

- Self-organizing maps that have been trained with random points from
 - (a) a rotation parabola
 - (b) a simple cubic function
 - (c) the surface of a sphere

Examples of Self-Organizing Maps (6)

- Original space and image space have different dimensionality
 - (In the previous example they were both two-dimensional)
- Self-organizing maps can be used for dimensionality reduction