Cálculo de Probabilidades I — Septiembre 2014

Ejercicio 1. Se dispone de n monedas, cada una con probabilidades de cara y cruz iguales a p y q, con p + q = 1, respectivamente. En un primer lanzamiento se lanzan las n monedas. En el segundo lanzamiento se vuelven a lanzar las monedas cuyo resultado haya sido cruz, sin tocar las monedas que hayan resultado cara. Se repite iterativamente este procedimiento de tal forma que en el lanzamiento k se lanzan las monedas que hayan sido cruz en el lanzamiento k - 1, sin tocar las monedas que hayan sido cara.

Sea X_k , para $k \geq 1$, la variable aleatoria que indica el número de caras entre las n monedas tras el lanzamiento k-ésimo, y sea T_n el lanzamiento en el que, por primera vez, las n monedas son cara.

- (a) Probar que X_k tiene distribución binomial $B(n, 1 q^k)$.
- (b) Hallar la función de probabilidad de X_{k+1} condicionado por $X_k = j$.
- (c) Determinar la función de probabilidad de T_n (se sugiere establecer que $\{T_n>k\}=\{X_k< n\}$) y probar que

$$E[T_n] = \sum_{k=0}^{\infty} \left[1 - (1 - q^k)^n \right] = \sum_{j=1}^n \binom{n}{j} \frac{(-1)^{j-1}}{1 - q^j}.$$

(Puede probarse que $\lim_{n\to\infty} E[T_n]/\log n = -1/\log q$.)

Ejercicio 2. El mus se juega con una baraja española de cuarenta cartas con los siguientes valores:

El 2 se asimila al as (A) y el 3 se asimila al rey (R). Se reparten cuatro cartas al azar a un jugador. Se dice que tiene "duples" cuando tiene dos dobles parejas o cuatro cartas iguales (por ejemplo: 355R, A222, 66CC). Se dice que tiene "medias" cuando tiene tres cartas iguales y no tiene "duples" (por ejemplo: A22S o 777R).

- (a) Calcular la probabilidad de tener "duples".
- (b) Calcular la probabilidad de tener "medias".

Ejercicio 1.

- (a) Cada una de las n monedas es lanzada sucesivamente hasta que resulta cara. La probabilidad de que, en la k-ésima etapa del experimento, una moneda sea cruz es q^k , pues los k lanzamientos han debido ser cruz. La probabilidad de que sea cara es, por tanto, $1-q^k$. Puesto que los lanzamientos de las n monedas son independientes, se tiene que X_k tiene distribución binomial de parámetros $B(n, 1-q^k)$.
- (b) Si $X_k = j$, para algún $0 \le j \le n$, entonces en el siguiente lanzamiento se lanzan n-j monedas. Los posibles valores de X_{k+1} son $r=j,j+1,\ldots,n$, y será $X_{k+1}=r$ cuando de esas n-j monedas r-j hayan resultado cara. Por tanto,

$$P\{X_{k+1} = r \mid X_k = j\} = \binom{n-j}{r-j} p^{r-j} q^{n-r}.$$

Informalmente, puede decirse que X_{k+1} se distribuye como j más una binomial B(n-j,p). (c) Se cumple en efecto que $T_n > k$ precisamente cuando $X_k < n$ puesto que el instante T_n es posterior a k cuando en el k-ésimo lanzamiento aún no se han obtenido n caras. Así,

$$P\{T_n > k\} = P\{X_k < n\}$$

= 1 - P\{X_k = n\}
= 1 - (1 - q^k)^n.

Esta expresión es válida para $k \ge 0$. Se deduce que, para $k \ge 1$,

$$P\{T_n = k\} = P\{T_n > k - 1\} - P\{T_n > k\}$$
$$= (1 - q^k)^n - (1 - q^{k-1})^n.$$

El valor de $E[T_n]$ se deduce directamente de la igualdad

$$E[T_n] = \sum_{k=0}^{\infty} P\{T_n > k\}.$$

Ejercicio 2.

- (a) El número de formas de repartir 4 cartas a un jugador es $\binom{40}{4} = 91390$. Para obtener duples se tiene que dar alguna de las siguientes posibilidades (disjuntas), para las que se indica el número de posibilidades.
 - 4 reyes o 4 ases: $2 \cdot \binom{8}{4} = 140$.
 - 4 cartas iguales, que no sean ases o reyes: $6 \cdot {4 \choose 4} = 6$.
 - doble pareja de ases y reyes: $\binom{8}{2} \cdot \binom{8}{2} = 784$.
 - doble pareja de ases o reyes, y de otra carta que no sea ni as ni rey: $2 \cdot {8 \choose 2} \cdot 6 \cdot {4 \choose 2} = 2016$.
 - doble pareja de cartas que no sean ni as ni rey: $\binom{6}{2}\binom{4}{2}\binom{4}{2} = 540$.

En total, hay 3486 manos posibles con duples, por lo que la probabilidad pedida es

$$\frac{3486}{91390} \simeq 3.8 \%.$$

- (b) Para obtener medias se tiene que dar alguna de las siguientes posibilidades (disjuntas), para las que se indica el número de posibilidades.
 - 3 reyes o 3 ases: $2 \cdot {8 \choose 3} \cdot 32 = 3584$.
 - 3 cartas iguales, que no sean ases o reyes: $6 \cdot {4 \choose 3} \cdot 36 = 864$.

En total, hay 4448 manos posibles con medias, por lo que la probabilidad pedida es

$$\frac{4448}{91390} \simeq 4.9 \%.$$