

Assur'aimant Insurance Charges Prediction

Using Python with Sklearn

Brief: Prédire une prime d'assurance grâce l'IA

Emad DARWICH Cédric DUROISIN

January 17, 2023

- **▶** Introduction
- Data analysis
- ▶ Modeling
- Conclusion

Assur'aimant proposal

- Perform data analysis to better understand Assur'aimant's customers
- Create a solution that would allow Assur'aimant to estimate the insurance premiums of its subscribers in the US market

Our objective is twofold:

Data analysis

Conduct an exploratory data analysis to better understand Assur'aimant's customers

Modeling

Create a machine learning model that estimates customers' insurance charges based on their demographic data.

- Introduction
- ► Data analysis
- ▶ Modeling
- Conclusion

The file Dataset contains:

- 1338 observations
- 7 features
 4 numerical features (age, bmi, children and charges)
 and 3 categorical features (sex, smoker and region)
- no missing values
- and only one duplicate Rows

age	sex	bmi	children	smoker	region	charges
19	male	30.59	0	no	northwest	1639.5631
19	male	30.59	0	no	northwest	1639.5631

Categorical features

Frequency tables:

children	n	f	F
0	574	0.428999	0.428999
1	324	0.242152	0.671151
2	240	0.179372	0.850523
3	157	0.117339	0.967862
4	25	0.018685	0.986547
5	18	0.013453	1.000000

smoker	no	yes
sex		
female	547	115
male	517	159

DatasetCategorical feature by charges

DatasetCategorical feature by charges

DatasetCategorical features by charges

Categorical features by charges

Categorical feature by charges

Categorical features by charges

DatasetCategorical feature by charges

Only bmi and charges have outliers

- bmi has 9 outliers
- charges has 139 outliers

2 Data analysis

- Testing normality graphically
- Apply log-transformations
- Normality test

skew

kurt

0.055673

-1.245088

Numerical features

0.284047

-0.050732

1.515880

1.606299

Numerical features : charges

Numerical features: age

Numerical features: bmi

Numerical features: bmi

charges	ORIGIN.		log transf.		sqrt transf.		Cube R transf.	
	stat	pvalue (5%)	stat	pvalue (5%)	stat	pvalue (5%)	stat	pvalue (5%)
Agostino and Pearson	336.885	0.000	52.717	0.000	112.461	0.000	69.040	0.000
Shapiro-Wilk	0.815	0.000	0.983	0.000	0.934	0.000	0.962	0.000
Kolmogorov-Smirnov	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000

age	ORIGIN.		log transf.		sqrt transf.		Cube R transf.	
	stat	pvalue (5%)	stat	pvalue (5%)	stat	pvalue (5%)	stat	pvalue (5%)
Agostino and Pearson	1557.821	0.000	593.282	0.000	1349.019	0.000	1067.809	0.000
Shapiro-Wilk	0.945	0.000	0.930	0.000	0.942	0.000	0.939	0.000
Kolmogorov-Smirnov	1.000	0.000	0.998	0.000	1.000	0.000	0.996	0.000

bmi	ORIGIN.		log transf.		sqrt transf.		Cube R transf.	
	stat	pvalue (5%)	stat	pvalue (5%)	stat	pvalue (5%)	stat	pvalue (5%)
Agostino and Pearson	17.581	0.000	15.400	0.000	2.851	0.240	4.127	0.127
Shapiro-Wilk	0.994	0.000	0.995	0.000	0.999	0.345	0.998	0.169
Kolmogorov-Smirnov	1.000	0.000	0.997	0.000	1.000	0.000	0.994	0.000

sqrt transf. (y) = $y^{\frac{1}{2}}$ Cube Root transformation (y) = $y^{\frac{1}{3}}$

Here we test the null hypothesis that a sample comes from a normal distribution

Correlation

2 Data analysis

- Pearson correlation
- Point Biserial test for correlation
- χ^2 test for correlation
- ANOVA

CorrelationPearson correlation

Correlation

Pearson correlation

age -												
bmi -	0.11											
children -	0.04	0.01										
charges -	0.30	0.20	0.07									
sex_female -	0.02	-0.05	-0.02	-0.06								
sex_male -	-0.02	0.05	0.02	0.06	-1.00							
smokerno -	0.03	-0.00	-0.01	-0.79	0.08	-0.08						
smoker_yes -	-0.03	0.00	0.01	0.79	-0.08	0.08	-1.00					
region_northeast -	0.00	-0.14	-0.02	0.01	0.00	-0.00	-0.00	0.00				
region_northwest -	0.00	-0.14	0.03	-0.04	0.01	-0.01	0.04	-0.04	-0.32			
region_southeast -	-0.01	0.27	-0.02	0.07	-0.02	0.02	-0.07	0.07	-0.35	-0.35		
region_southwest -	0.01	-0.01	0.02	-0.04	0.00	-0.00	0.04	-0.04	-0.32	-0.32	-0.35	
	age	ī	children -	charges -	sex_female-	sex_male-	smoker_no-	smoker_yes -	northeast -	northwest	southeast -	southwest

Corr.: "charges" and "sex"

Point Biserial corr. : 0.057

t-value: -2.098

p-value: 0.036

Corr.: "charges" and "smoker"

Point Biserial corr. : -0.787

t-value: 46.665 p-value: 0.000

Here we test the null hypothesis that the correlation is statistically significant.

p-value	sex	region	smoker	bmi class
sex				
region	0,9239			
smoker	0.0062	0,063548		
bmi class	0.2251	0.00005	0,609511	

Ho: The variables are not correlated with each other (Independent).

| ANOVA between "charges" and "children" |

F-value: 3.297 p-value: 0.006

HO:there is no difference in means H1: at least two means differ by comparing two groups.

ASSUMPTION CHECK (Normality - Shapiro)

The assumption of normality is tested on the residuals Residuals are not normal (stat (W) = 0.812, p=0.000)

No significant differences between categories

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1	group2	meandiff	p-adj	lower	upper	reject
0	1	365.1962	0.9	-2026.0598	2756.4522	False
0	2	2707.5881	0.0413	62.3365	5352.8398	True
0	3	2989.3428	0.0662	-109.9976	6088.6831	False
0	4	1484.6807	0.9	-5546.1043	8515.4657	False
0	5	-3579.9404	0.7925	-11817.2428	4657.3621	False
1	2	2342.3919	0.2025	-588.3514	5273.1352	False
1	3	2624.1465	0.2211	-722.1665	5970.4596	False
1	4	1119.4845	0.9	-6023.6128	8262.5817	False
1	5	-3945.1366	0.7286	-12278.5064	4388.2332	False
2	3	281.7546	0.9	-3250.5338	3814.0431	False
2	4	-1222.9074	0.9	-8454.9949	6009.18	False
2	5	-6287.5285	0.2705	-14697.3027	2122.2458	False
3	4	-1504.6621	0.9	-8914.9012	5905.577	False
3	5	-6569.2831	0.2432	-15132.7437	1994.1775	False
4	5	-5064.6211	0.7242	-15702.2375	5572.9954	False

Reject = True, means statistically significant difference.

| ANOVA between "charges" and "children" |

F-value: 27.952 p-value: 0.000

 ${\rm H0:} there$ is no difference in means ${\rm H1:}$ at least two means differ by comparing two groups.

ASSUMPTION CHECK (Normality - Shapiro)

The assumption of normality is tested on the residuals Residuals are not normal (stat (W) = 0.862, p=0.000)

Kruskal-Wallis test

statistic : 15.8076 pvalue : 0.0004
No significant differences between categories

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1	group2	meandiff	p-adj	lower	upper	reject
normal	obese	5270.111	0.0	3204.8498	7335.3722	True
normal	overweight	705.2854	0.7474	-1570.2691	2980.8399	False
obese	overweight	-4564.8256	0.0	-6327.8405	-2801.8107	True

Reject = True, means statistically significant difference.

| ANOVA between "charges" and "region" |

F-value: 2.970 p-value: 0.031

HO:there is no difference in means H1: at least two means differ by comparing two groups.

ASSUMPTION CHECK (Normality - shapiro)

The assumption of normality is tested on the residuals Residuals are not normal (stat (W) = 0.827, p=0.000)

No significant differences between categories

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1	group2	meandiff	p-adj	lower	upper	reject
northeast	northwest	-988.8091	0.7245	-3428.9343	1451.3161	False
northeast	southeast	1329.0269	0.4745	-1044.9417	3702.9955	False
northeast	southwest	-1059.4471	0.6792	-3499.5723	1380.6781	False
northwest	southeast	2317.8361	0.0583	-54.1994	4689.8716	False
northwest	southwest	-70.638	0.9999	-2508.8826	2367.6066	False
southeast	southwest	-2388.4741	0.0477	-4760.5096	-16.4386	True

 ${\tt Reject = True, \ means \ statistically \ significant \ difference.}$

- Introduction
- Data analysis
- ► Modeling
- Conclusion

Machine Learning Models

Model	R2	MAE	RMSE	Score (test)	Score (trainging)	Score (CV)
LASSO (Polynomial=2)	0.9124	1957.294489	3340.68227	0.92258252	0.858246217	0.8488 (+/- 0.04)
ElasticNet (Polynomial=2)	0.9124	1960.457382	3335.03664	0.92284396	0.857777099	0.8488 (+/- 0.04)
Ridg (Polynomial=2)	0.9088	2029.465675	3419.33535	0.91889416	0.861147147	0.8432 (+/- 0.04)
LR (Polynomial=2)	0.908	2059.129706	3441.72265	0.91782865	0.861231494	0.8395 (+/- 0.04)
LASSO (Polynomial=1)	0.7717	3655.59983	5092.51496	0.8200991	0.739238658	0.7286 (+/- 0.04)
ElasticNet (Polynomial=1)	0.7724	3662.001424	5094.07174	0.81998909	0.739370553	0.7285 (+/- 0.04)
LR (Polynomial=1)	0.7759	3708.067361	5107.96534	0.81900583	0.739694812	0.7282 (+/- 0.04)
Ridg (Polynomial=1)	0.7743	3706.798635	5107.54383	0.8190357	0.739682407	0.7282 (+/- 0.04)

Machine Learning

Cook's distance

Machine Learning Models

Model	R2	MAE	RMSE	Score (test)	Score (trainging)	Score (CV)	
LASSO (Polynomial degree=2)	0.9167	1406.28958	3284.14811	0.92518061	0.93174224	0.9289 (+/- 0.03)	
ElasticNet (Polynomial degree=2)	0.9163	1418.11301	3286.18929	0.92508757	0.93147991	0.9289 (+/- 0.03)	
Ridg (Polynomial degree=2)	0.9156	1405.07355	3316.22355	0.92371199	0.93386043	0.9260 (+/- 0.03)	
LR (Polynomial degree=2)	0.9156	1422.81265	3316.64098	0.92369278	0.93393518	0.9076 (+/- 0.05)	
LASSO (Polynomial degree=1)	0.7717	3862.59891	5146.51752	0.81626342	0.82742769	0.8217 (+/- 0.02)	
ElasticNet (Polynomial degree=1)	0.7723	3870.75378	5149.93451	0.81601936	0.82752003	0.8217 (+/- 0.02)	
Ridg (Polynomial degree=1)	0.774	3909.13092	5166.05096	0.81486604	0.8277796	0.8211 (+/- 0.02)	
LR (Polynomial degree=1)	0.7756	3916.18802	5168.88797	0.81466265	0.82779611	0.8210 (+/- 0.02)	

Model	Score (CV)	Score (CV Cook)	
LASSO (Polynomial degree=2)	0.8488	0.9289	+0.0801
ElasticNet (Polynomial degree=2)	0.8488	0.9289	+0.0801
Ridg (Polynomial degree=2)	0.8432	0.926	+0.0828
LR (Polynomial degree=2)	0.8395	0.9076	+0.068
LASSO (Polynomial degree=1)	0.7286	0.8217	+0.0931
ElasticNet (Polynomial degree=1)	0.7285	0.8217	+0.0932
Ridg (Polynomial degree=1)	0.7282	0.8211	+0.0929
LR (Polynomial degree=1)	0.7282	0.821	+0.0928

LASSO (Polynomial degree=<class 'sklearn preprocessing polynomial PolynomialFeatures'>)

Machine Learning

Results analysis

40/43

- Introduction
- Data analysis
- Modeling
- **▶** Conclusion

- Smoking impact on health
- More observations
- More features (Alcool consumption, ...)

Assur'aimant Insurance Charges Prediction

Thank you for listening!
Any questions?