COMP3421

Particle Systems, Ray Tracing

Robert Clifton-Everest

Email: robertce@cse.unsw.edu.au

Particle systems

- Some visual phenomena are best modelled as collections of small particles.
- Examples: rain, snow, fire, smoke, dust

Particle systems

- Particles are usually represented as small textured quads or point sprites – single vertices with an image attached.
- They are billboarded, i.e transformed so that they are always face towards the camera.

Billboarding

Billboarding

 An approximate form of billboarding can be achieved by having polygons face a plane perpendicular to the camera

Point Sprites

- Using GL_POINTS to draw a textured sprite.
- Points have position, but no rotation or scale, so are implicitly billboarded
- Size of points can be set with

```
gl.glPointSize(int)
```

Particle systems

 Particles are created by an emitter object and evolve over time, usually changing position, size, colour.

Particle evolution

- Usually the rules for particle evolution are simple local equations:
 - -interpolate from one colour to another over time
 - -move with constant speed or acceleration.
- To simulate many particles it is important these update steps are kept simple and fast.

Particles on the GPU

- Particle systems are well suited to implementation as vertex shaders.
- The particles can be represented as individual vertices.
- A vertex shader can compute the position of each particle at each moment in time.

Exercise

 Adapt the fireworks example so that particle calculations are performed in the shader.

Global Lighting

 The lighting equation we looked at earlier only handled direct lighting from sources:

$$I = \boxed{I_a \rho_a} + \sum_{l \in \text{lights}} I_l \left(\rho_d(\hat{\mathbf{s_l}} \cdot \hat{\mathbf{m}}) + \rho_{sp} \left(\hat{\mathbf{r_l}} \cdot \hat{\mathbf{v}} \right)^f \right)$$

- We added an ambient fudge term to account for all other light in the scene.
- Without this term, surfaces not facing a light source are black.

Story so far...

Global lighting

- In reality, the light falling on a surface comes from everywhere. Light from one surface is reflected onto another surface and then another, and another, and...
- Methods that take this kind of multi-bounce lighting into account are called global lighting methods.

Raytracing and Radiosity

- There are two main methods for global lighting:
 - Raytracing models specular reflection and refraction.
 - Radiosity models diffuse reflection.
- Both methods are computationally expensive and are rarely suitable for real-time rendering.

Ray Tracing — 1980s

Ray tracing - 2006

Ray tracing - 2018

https://www.youtube.com/watch?
 v=J3ue35ago3Y

Ray Tracing - COMP342 I

Ray tracing

- Ray tracing is a different approach to rendering than the pipeline we have seen so far.
- In the OpenGL pipeline we model objects as meshes of polygons which we convert into fragments and then display (or not).
- In ray tracing, we model objects as implicit forms and compute each pixel by casting a ray and seeing which models it intersects.

Projective Methods vs RayTracing

- Projective Methods:
 - For each **object:** Find and update each pixel it influences
- Ray Tracing:
 - For each pixel:
 Find each object that influences it and update accordingly

Projective Methods vs RayTracing

- They share lots of techniques:
 - -shading models,
 - -calculation of intersections,
- They also have differences:
 - projection and hidden surface removal come for 'free' in ray tracing

Location of Pixels

 Where on the near plane does a given pixel (x,y) appear? (Lower left corners of pixels)

$$i_{c} = -w + x \left(\frac{2w}{c}\right)$$

$$= w \left(\frac{2x}{c} - 1\right)$$
Camera
(E)
$$i_{c} = -w + x \left(\frac{2w}{c}\right)$$

$$= w \left(\frac{2x}{c} - 1\right)$$
Camera
(E)
$$i_{c} = -w + x \left(\frac{2w}{c}\right)$$

$$= w \left(\frac{2x}{c} - 1\right)$$

Location of Pixels

 Where on the near plane does a given pixel (x,y) appear? (Lower left corners of pixels)

$$jr = h\left(\frac{2y}{r} - 1\right)$$

$$Example 2h$$

$$Exam$$

The point P(x,y) of pixel (x,y) is given by:

$$P(x,y) = E + w(\frac{2x}{c} - 1)\mathbf{i} + h(\frac{2y}{r} - 1)\mathbf{j} - n\mathbf{k}$$

 A ray from the camera through P(x,y) is given by:

$$R(t) = E + t(P(x,y) - E)$$

 $= E + t\mathbf{v}$
 $\mathbf{v} = w(\frac{2x}{c} - 1)\mathbf{i} + h(\frac{2y}{r} - 1)\mathbf{j} - n\mathbf{k}$

$$R(t) = E + t(P(x,y) - E)$$
$$= E + t\mathbf{v}$$

When:

```
t = 0, we get E (Eye/Camera)
t = 1, we get P(x,y) – the point on the near plane
t > 1 point in the world
t < 0 point behind the camera – not on ray</li>
```

Intersections

- We want to compute where this ray intersects with objects in the scene.
- For basic shapes, we can do this with the equation of the shape in implicit form:

$$F(x, y, z) = 0$$

which we can also write as:

$$F(P) = 0$$

 We substitute the formula for the ray into F and solve for t.

Intersecting a generic sphere

 For example, a unit sphere at the origin has implicit form:

$$F(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$$

or:

$$F(P) = |P|^2 - 1 = 0$$

Intersecting a generic sphere

 We substitute the ray equation into F and solve for t:

$$F(R(t)) = 0$$
 $|R(t)|^2 - 1 = 0$
 $|E + \mathbf{v}t|^2 - 1 = 0$
 $|\mathbf{v}|^2 t^2 + 2(E \cdot \mathbf{v})t + (|E|^2 - 1) = 0$

· which we can solve for t (as a quadratic).

Intersecting a generic sphere

We will get zero, one or two solutions:

$$t_{1,2} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Exercise

Where is the intersection of

$$R(t) = (3,2,3) + (-3,-2,-3)t$$

With the generic sphere?

Intersecting a generic plane

The x-y plane has implicit form:

$$F(x, y, z) = z = 0$$
$$F(P) = p_z = 0$$

Intersecting with the ray:

$$F(R(t)) = 0$$

$$E_z + t\mathbf{v}_z = 0$$

$$t = -\frac{E_z}{\mathbf{v}_z}$$

Intersecting a generic cube

- To compute intersections with the generic cube (-1,-1,-1) to (1,1,1) we apply the Cyrus-Beck clipping algorithm encountered in week 3. Extending the algorithm to 3D is straightforward.
- The same algorithm can be used to compute intersections with arbitrary convex polyhedral and meshes of convex faces.

Non-generic solids

- We can avoid writing special-purpose code to calculate intersections with non-generic spheres, boxes, planes, etc.
- Instead we can transform the ray and test it against the generic version of the shape.

Transformed spheres

- We can transform a sphere by applying affine transformations
- Let P be a point on the generic sphere.
- We can create an arbitrary ellipsoid by transforming P to a new coordinate frame given by a matrix M.

2D example

Transformed circle
$$F(M^{-1}Q) = 0$$

$$F(P) = 0$$

$$Q = \mathbf{M}P$$

$$P = \mathbf{M}^{-1}Q$$

$$F(\mathbf{M}^{-1}Q) = 0$$

Q = MP

Non-generic solids

 So in general if we apply a coordinate transformation M to a generic solid with implicit equation F(P) = 0 we get:

$$F(\mathbf{M}^{-1}Q) = 0$$

$$F(\mathbf{M}^{-1}R(t)) = 0$$

$$F(\mathbf{M}^{-1}E + t\mathbf{M}^{-1}\mathbf{v}) = 0$$

Non-generic Solids

In other words:

- -Apply the inverse transformation to the ray.
- -Do standard intersection with the generic form of the object.
- -Affine transformations preserve relative distances so values of t will be valid.

Ray Tracing Pseudocode

```
for each pixel (x,y):
    v = P(x,y) - E
    hits = {};
    for each object obj in the scene:
        E' = M-1 * E
        v' = M-1 * v
        hits.add(obj.hit(E', v'))
    hit = h in hits with min time > 1
    if (hit is null)
        set (x,y) to background
    else
        set (x,y) to hit.obj.colour(R(hit.time))
```


Shading & Texturing

- When we know the object we hit and the point at which the hit occurs, we can compute the lighting equation to get the illumination.
- Likewise if the object has a texture we can compute the texture coordinates for the hit point to calculate its colour.
- We combine these as usual to compute the pixel colour.