2. ZÁRTHELYI

2015. november **30.**

Programtervező informatikus BSc szak

Gyak.vez. neve	Név
Gyak. ideje	Neptun kód
	Pontszám

- 1. Tegyük fel, hogy $0 \leq \mathbf{A} \in \mathbb{R}^{n \times n}$ mátrixra a sorösszeg konstans. Vagyis $a_{ij} \geq 0$ és $\sum_{j=1}^n a_{ij} = c \ (1 \leq i, j \leq n)$. Igazoljuk, hogy ekkor a spektrálsugárra (6 pont) $\rho(\mathbf{A}) = \|\mathbf{A}\|_{\infty}$.
- **2.** Tekintsük az $\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & a \end{bmatrix}$ mátrixot az $a \in [1, 3]$ paraméterrel! (12 pont)

 - **b)** Válasszuk meg az a paraméter értékét, hogy $\operatorname{cond}_2(\mathbf{A}) = \operatorname{cond}_1(\mathbf{A})$ legyen.
- 3. Az $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 4 \end{bmatrix}$ · $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ lineáris egyenletrendszerre írjuk fel a Jacobi-iterációt! (9 pont)
 - a) Bizonyítsuk a konvergenciát!
 - **b)** Írjuk fel a hibabecslését!
 - c) Hány lépést kell tennünk a 10^{-3} pontosság eléréséhez, ha $\mathbf{x_0} = \mathbf{0}$?
- **4.** Az $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 4 \end{bmatrix} \cdot \mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ lineáris egyenletrendszerre írjuk fel a Gauss–Seidel-iterációt! (7 pont)
 - a) Bizonyítsuk a konvergenciát!
 - **b)** Számítsuk ki $\mathbf{x_1}$ -et a koordinátás alakjában, ha $\mathbf{x_0} = [2, 2, 2]^T$!
 - c) Ebben az esetben a Jacobi- vagy a Gauss–Seidel-iteráció a gyorsabb? Válaszát indokolja!
- 5. Az $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 4 \end{vmatrix}$ \cdot $\mathbf{x} = \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix}$ lineáris egyenletrendszerre írjuk fel a Richardson-iterációt! (8 pont)
 - a) Pontosan mely p paraméter értékekre konvergens?
 - **b)** Mi az optimális paraméter, és mennyi ekkor a kontrakciós együttható?
- 6. Mi lesz az $\mathbf{A}=egin{bmatrix}2&-1&1\\4&2&-1\\4&1&5\end{bmatrix}$ mátrix $J=\{(1,3),(3,2)\}$ pozícióhalmazra illeszkedő (8 pont)