Hidden Markov Models: lecture 3

Local decoding

Xavier Didelot

HMM definition

- ▶ A Hidden Markov Model (HMM) is a Markov chain in which the sequence of states $C_1, ..., C_T$ is not observed but hidden
- ► Instead of observing the sequence of states, we observe the emissions X₁,..., X_T
- A HMM is defined by two quantities:
 - ▶ The transition matrix Γ of elements γ_{ij} where i and j are states:

$$\gamma_{ij} = p(C_t = j | C_{t-1} = i)$$

▶ The emission probabilities $p_i(x)$ where i is a state and x is an emission:

$$p_i(x) = p(X_t = x | C_t = i)$$

▶ The unconditional distribution at t is denoted u(t) and the initial distribution is u(1)

$$\mathbf{u}(t) = (p(C_t = 1), p(C_t = 2), ..., p(C_t = m))$$

Dependency graph of a hidden Markov model

$$p(\mathbf{X}^{(T)}, \mathbf{C}^{(T)}) = p(C_1) \prod_{k=2}^{T} p(C_k | C_{k-1}) \prod_{k=1}^{T} p(X_k | C_k)$$
$$p(\mathbf{X}^{(T)}, \mathbf{c}^{(T)}) = u_{c_1}(1) \prod_{k=2}^{T} \gamma_{c_{k-1}c_k} \prod_{k=1}^{T} p_{c_k}(x_k)$$

Forward recursion

▶ Define the vector α_t such that

$$\alpha_t(j) = p(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_t = j)$$

▶ In particular:

$$\alpha_1(j) = p(X_1 = x_1, C_1 = j) = u_j(1)p_j(x_1)$$

 $\alpha_1 = u(1)P(x_1)$

We have the recursion:

$$\alpha_t(j) = \sum_{k=1}^m \alpha_{t-1}(k) \gamma_{kj} p_j(x_t)$$

$$\alpha_t = \alpha_{t-1} \Gamma P(x_t)$$

- We can used the forward algorithm to calculate the values of α_t iteratively, and to compute the likelihood $L_T = \alpha_T \mathbf{1}'$
- ▶ Computational complexity is $O(Tm^2)$

Filtering and smoothing

- ▶ The distribution $p(C_T|\mathbf{X}^{(T)})$ of the hidden state at the end of the observed sequence is often of interest
- ► This problem is called **filtering** and can be solved using the forward algorithm
- ▶ By definition $\alpha_T(j) = p(\mathbf{X}^{(T)} = \mathbf{x}^{(T)}, C_T = j)$ and therefore:

$$p(C_T = j | \mathbf{X}^{(T)}) = \frac{\alpha_T(j)}{\sum_{i=1}^m \alpha_T(i)} = \frac{\alpha_T(j)}{L_T}$$

- More generally, we might want to know the distribution $p(C_t|\mathbf{X}^{(T)})$ of hidden state at some point in the observed sequence
- ► This problem is called **smoothing** but can't be solved just using the forward recursion on its own
- ► The forward recursion reveals $\alpha_t(j) = p(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_t = j)$ but we can not deduce directly $p(C_t|\mathbf{X}^{(T)})$, except for t = T

Decoding terminology

- ► The smoothing problem is also called **local decoding**
- Decoding means to find the values of the hidden states. Local decoding means we find the value at a given point, as opposed to **global decoding** where we try and find the joint distribution of hidden states at all timepoints
- Note that global decoding is not the same as applying local decoding to all timepoints one by one because the states are not independent
- ▶ Global decoding will be covered in the next lecture, for now we focus on local decoding, ie finding $p(C_t|\mathbf{X}^{(T)})$

Backward recursion

▶ Define the vector β_t such that

$$\beta_t(i) = p(X_{t+1} = x_{t+1}, X_{t+2} = x_{t+2}, ..., X_T = x_T | C_t = i)$$

= $p(\mathbf{X}_{t+1}^T = \mathbf{x}_{t+1}^T | C_t = i)$

In particular:

$$\beta_{T-1}(i) = p(X_T = x_T | C_{T-1} = i) = \sum_{k=1}^{m} \gamma_{ik} p_k(x_T)$$

- ▶ In matrix format: $\beta'_{T-1} = \Gamma P(x_T) \mathbf{1}'$
- ▶ We have the recursion:

$$\beta_{t}(i) = \sum_{k=1}^{m} p(X_{t+1} = x_{t+1}, \boldsymbol{X}_{t+2}^{T} = \boldsymbol{x}_{t+2}^{T}, C_{t+1} = k | C_{t} = i)$$

$$= \sum_{k=1}^{m} \beta_{t+1}(k) \gamma_{ik} p_{k}(x_{t+1})$$

▶ In matrix format: $m{eta}_t' = m{\Gamma}m{P}(x_{t+1})m{eta}_{t+1}'$

Backward algorithm

- We deduce the backward algorithm which has similar properties to the forward algorithm from the previous lecture:

 - ▶ For t from T-2 down to 1, calculate $\beta'_t = \mathbf{\Gamma} \mathbf{P}(x_{t+1})\beta'_{t+1}$
 - Return the likelihood $L_T = \boldsymbol{u}(1)\boldsymbol{P}(x_1)\beta_1'$
- This algorithm calculates the likelihood in an alternative manner to the forward algorithm, which is redundant, but it is important because of the next slide

Combining forward and backward values

We have:

$$\alpha_{t}(i)\beta_{t}(i) = p(\mathbf{X}^{(t)}, C_{t} = i)p(\mathbf{X}_{t+1}^{T}|C_{t} = i)$$

$$= p(C_{t} = i)p(\mathbf{X}^{(t)}|C_{t} = i)p(\mathbf{X}_{t+1}^{T}|C_{t} = i)$$

$$= p(\mathbf{X}^{(T)} = \mathbf{x}^{(T)}, C_{t} = i)$$

 $\alpha_t \beta_t' = p(\boldsymbol{X}^{(T)} = \boldsymbol{x}^{(T)}) = I \tau$

Therefore:

- \blacktriangleright We now have T redundant ways of calculating L_T
- More importantly:

$$p(C_t = i | \boldsymbol{X}^{(T)} = \boldsymbol{x}^{(T)}) = \frac{p(C_t = i, \boldsymbol{X}^{(T)} = \boldsymbol{x}^{(T)})}{p(\boldsymbol{X}^{(T)} = \boldsymbol{x}^{(T)})} = \alpha_t(i)\beta_t(i)/L_T$$

We can therefore combine the forward and backward values to perform local decoding

Forward-backward algorithm

- The forward-backward algorithm can be used to perform local decoding
- It is simply the combination of the forward and backward algorithms
- ▶ Firstly we run the forward algorithm to calculate the values of α_t and the likelihood L_T
- \blacktriangleright Secondly we run the backward algorithm to calculate the values of β_t
- ▶ Finally we compute the values of $p(C_t = i | \mathbf{X}^{(T)})$ using:

$$p(C_t = i | \mathbf{X}^{(T)} = \mathbf{x}^{(T)}) = \alpha_t(i)\beta_t(i)/L_T$$

The path made from selecting the states with the highest marginal probability is called the maximum accuracy path

Example: the occasionally dishonest casino

- Suppose a casino typically uses a fair die, but every now and then switches to loaded one with increased probability of throwing 6s
- ▶ We observe the scores from successive throws
- ▶ We want to know when the casino is being dishonest

Example: the occasionally dishonest casino

- State H is honest, state D is dishonest
- The emissions are categorical, so the model is a multinomial-HMM

$$p_H(1) = p_H(2) = p_H(3) = p_H(4) = p_H(5) = p_H(6) = 1/6$$

- $p_D(1) = p_D(2) = p_D(3) = p_D(4) = p_D(5) = 1/9$ and $p_D(6) = 4/9$
- $ightharpoonup \gamma_{HD} = \gamma_{DH} = 0.1$ and $\gamma_{HH} = \gamma_{DD} = 0.9$
- Observed values:

True unobserved sequence of states:

Example: the occasionally dishonest casino

- ▶ In this case the maximum accuracy path is exactly equal to the true path!
- ▶ But it does not mean that it is the always the best path
- In fact, the maximum accuracy path can even end up having a probability of zero!
- To find the best path globally, we need to perform global decoding

Conclusions

- ► The forward algorithm can be used to calculate the likelihood in a HMM
- ► The backward algorithm can do the same thing and works in the same way, but goes backwards (from T to 1 rather than from 1 to T)
- Combining the forward and backward algorithm reveals the marginal probability of the hidden states, thus allowing to perform smoothing aka local decoding
- Next time we will ask ourselves how to perform global decoding