Herbst 14 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Für die holomorphen Funktionen $f: \mathbb{C} \to \mathbb{C}$ und $g: \mathbb{C} \to \mathbb{C}$ gelte $|f(z)| \le |g(z)|$ für alle $z \in \mathbb{C}$. Zeigen Sie: Es gibt ein $\lambda \in \mathbb{C}$ mit $|\lambda| \le 1$, so dass $f(z) = \lambda g(z)$ für alle $z \in \mathbb{C}$.

Lösungsvorschlag:

Falls g die Nullfunktion ist, folgt auch $f \equiv 0$ und die Aussage ist für jedes $\lambda \in \overline{B_1(0)}$ trivial wahr. Sei g nicht konstant 0, dann besitzt die Nullstellenmenge nach dem Identitätssatz keinen Häufungspunkt in $\mathbb C$ und jede Nullstelle ist von endlicher Ordnung. Sei $z_0 \in \mathbb C$ eine k-fache Nullstelle von g, dann handelt es sich auch um eine k-fache Nullstelle von f. Dass es sich um eine Nullstelle handelt ist klar, für $n \in \mathbb N_0$ mit n < k und $z \neq z_0$ gilt $0 \le \frac{|f(z)|}{|z-z_0|^n} \le \frac{|g(z)|}{|z-z_0|^n} \xrightarrow{z \to z_0} 0$, woraus die Behauptung folgt. Die Funktion $h := \frac{f}{g}$ ist holomorph auf $\mathbb C \setminus g^{-1}(0)$ und besitzt eine holomorphe Fortsetzung auf ganz $\mathbb C$ (entwickle f und g um jede Nullstelle von g in Potenzreihen) und ist zudem betragsmäßig durch 1 beschränkt, nach Liouville also konstant $c \in \overline{B_1(0)}$. Daraus folgt f = cg wie behauptet.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$