# AlphaGo Zero

Part I Game Tree Search Techniques

- Game tree search
  - MinMax
  - Alpha-Beta pruning
- Monte-Carlo tree search
- AlphaGo Zero

# Go



#### Some numbers

```
Chess
```

- ~10^46 10^49 legal positions
- ~10^123 game tree size
- ~ 35 branching 80 ply

Go

9x9

~10^38 legal positions 45 ply

19x19

2081681993819799846994786333448627702865224538845305484256394 5682092741961273801537852564845169851964390725991601562812854 6089888314427129715319317557736620397247064840935

~10^169 legal positions

~250 branching 150 ply

1996 Deep Blue defeats Gary Kasparov (but looses the match 2-4)
1997 Deep Blue defeats Gary Kasparov (wins the match 3 1/2-2 1/2)

2007 MoGo defeats Gua Juan (5P) in 9x9 Go

Arpad Rimmel, Olivier Teytaud, Chang-Shing Lee, Shi-Jim Yen, Mei-Hui Wang, et al.. "Current Frontiers in Computer Go". IEEE Transactions on Computational Intelligence and AI in games, IEEE Computational Intelligence Society, 2010

- October 2015
   AlphaGo Fan defeats European Champion Fan Hui (2 professional Dan)
- March 2016
   AlphaGo Lee defeats Lee Sedol (9 professional Dan).
- 2016/17
   AlphaGo Zero defeats both those programs and all other existing Go programs ..
- 2017
   Alpha Zero defeats best chess playing program Stockfish

"Mastering the game of Go without human knowledge", D. Silver et al., Nature **550**, 354–359 (2017)

"Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm", D. Silver et al., arXiv:17121815v1

## Game tree

max



min



max



## MinMax





## Min Max

```
minS[node_] := node
maxS[node_] := node
maxS[node_List] := Max[minS /@ node]
minS[node_List] := Min[maxS /@ node]
```

# Branch and cut



### Branch and cut

```
BBMinS[node_, bound_] := node
BBMaxS[node_, bound_] := node
BBMaxS[node_List, bound_] :=
Module[\{m = -Infinity, t, i, n, nodes = \{\}\},
  For[i = 1, i <= Length[node], i++,
   t = BBMinS[node[[i]], m];
   m = If[t > m, t, m];
   If[m >= bound, Break[]]
  ];
  m
BBMinS[node_List, bound_] :=
Module[\{m = Infinity, t, i, n, nodes = \{\}\},
  For[i = 1, i <= Length[node], i++,</pre>
   t = BBMaxS[node[[i]], m];
   m = If[t < m, t, m];
   If[m <= bound, Break[]]</pre>
   ];
  m
```

 $\alpha$  -  $\beta$  prunning



# Alpha - Beta pruning

```
AlphaBetaMinS[node_, \[Alpha]_, \[Beta]_] := node
AlphaBetaMaxS[node_, \[Alpha]_, \[Beta]_ ] := node
AlphaBetaMaxS[node_List, \[Alpha]_, \[Beta]_] :=
Module[\{m = \{Alpha\}, t, i, n, nodes = \{\}\}\},
  For[i = 1, i <= Length[node], i++,
   t = AlphaBetaMinS[node[[i]], m, \[Beta]];
   m = If[t > m, t, m];
   If[m >= \[Beta], Break[]]
   ];
 m
AlphaBetaMinS[node_List, \[Alpha]_, \[Beta]_] :=
Module[\{m = \setminus [Beta], t, i, n, nodes = \{\}\},
  For[i = 1, i <= Length[node], i++,
   t = AlphaBetaMaxS[node[[i]], \[Alpha], m];
   m = If[t < m, t, m];
   If[m <= \[Alpha], Break[]]</pre>
   ];
```

D.E. Knuth, R.W. Moore "An Analysis of Alpha-Beta Pruning" Artificial Intelligence **6** (1975) 293.

## Heuristics

In most games tree cannot be evaluated completelly

#### Enhancements

Move ordering
Iterative deepening

Transposition tables

Parallelisation

#### Monte-Carlo tree search



C. Brown et al. "A Survey of Monte Carlo Tree Search Methods" IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012

### Monte-Carlo tree search

- Selection
- Expansion
- Simulation
- Backpropagation

#### Multi armed bandit

K - distribution

Maximize gain

Minimize regret

$$nE(X_{i_{max}}) - E(\sum_{t=1}^{n} X_{i_t})$$

Exploitation vs. Exploration

#### UCB1

$$I_{t} = \underset{i \in \{1, \dots, K\}}{\operatorname{argmax}} \left\{ \overline{X}_{i, T_{i}(t-1)} + \sqrt{\frac{2 \ln(t-1)}{T_{i}(t-1)}} \right\}$$

#### **UCT**

$$I_t = \underset{v' \in \text{children of } v}{\operatorname{argmax}} \left\{ \frac{Q(v')}{N(v')} + + c\sqrt{\frac{2\ln N(v)}{N(v')}} \right\}$$

# AlphaGo Zero



$$\pi(a|s) = \frac{N(a,s)^{\frac{1}{\tau}}}{\sum_{b} N(b,s)^{\frac{1}{\tau}}}$$

# Alpha Go Zero PUCT

$$(\mathbf{p}, \nu) = f_{\theta}(s) \quad p_a = P(a|s)$$

$$\underset{a}{\operatorname{argmax}} \left\{ \frac{Q(s,a)}{N(s,a)} + c_{puct} p_a \frac{\sum_{b} N(s,b)}{N(s,a)} \right\}$$