Let's Grow More

Name:Rashmi Ranjan Nayak

Task #1

Exploratory Data Analysis on Dataset - Terrorism:

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading the Terrorism dataset:

```
In [2]:
```

```
df = pd.read_csv("TerrorismGlobal.csv")
```

C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3063: DtypeWarning: Columns (4,6,31,33,61,62,63,76,79,90,92,94,96,114,115,121) have mixed types.Specify dtype option on import or set low_memory=False.

interactivity=interactivity, compiler=compiler, result=result)

In [3]:

df.head()

Out[3]:

0 1970000001 1970000002 197001000		7	2	NaN	0	NaN	58	Dominican Republic	2	 NaN	NaN	NaN	Na
	0002 1970	0	0					. topus.io				11011	
2 107001000			U	NaN	0	NaN	130	Mexico	1	 NaN	NaN	NaN	Na
2 19/001000	0001 1970	1	0	NaN	0	NaN	160	Philippines	5	 NaN	NaN	NaN	N
3 197001000	0002 1970	1	0	NaN	0	NaN	78	Greece	8	 NaN	NaN	NaN	N
4 197001000	0003 1970	1	0	NaN	0	NaN	101	Japan	4	 NaN	NaN	NaN	N

In [4]:

df.shape

Out[4]:

(181691, 135)

Rename columns according to user friendly:

```
In [5]:
```

```
df.rename(columns={'iyear':'Year','imonth':'Month','iday':'Day','city':'City','country_txt':'Country','region_txt
':'Region','attacktype1_txt':'AttackType','targtype1_txt':'TargetType','weaptype1_txt':'WeaponType','gname':'Grou
p','dbsource':'Source'},inplace = True)
```

In [6]:

```
df['Casualities'] = df.nkill + df.nwound ## Add a extra column as Casualities
```

```
In [7]:
```

df.head()

Out[7]:

	eventid	Year	Month	Day	approxdate	extended	resolution	country	Country	region	 scite1	scite2	scite3	Source	IN٦
0	197000000001	1970	7	2	NaN	0	NaN	58	Dominican Republic	2	 NaN	NaN	NaN	PGIS	
1	197000000002	1970	0	0	NaN	0	NaN	130	Mexico	1	 NaN	NaN	NaN	PGIS	
2	197001000001	1970	1	0	NaN	0	NaN	160	Philippines	5	 NaN	NaN	NaN	PGIS	
3	197001000002	1970	1	0	NaN	0	NaN	78	Greece	8	 NaN	NaN	NaN	PGIS	
4	197001000003	1970	1	0	NaN	0	NaN	101	Japan	4	 NaN	NaN	NaN	PGIS	
5 r	ows × 136 colu	mns													•

Selecting the required features:

In [8]:

```
df = df[['Year','Month','Day','Country','Region','City','latitude','longitude','AttackType','TargetType','WeaponT
ype','nkill','nwound','Source','Group','Casualities']]
```

In [9]:

df.head()

Out[9]:

	Year	Month	Day	Country	Region	City	latitude	longitude	AttackType	TargetType	WeaponType	nkill	nwo
0	1970	7	2	Dominican Republic	Central America & Caribbean	Santo Domingo	18.456792	-69.951164	Assassination	Private Citizens & Property	Unknown	1.0	
1	1970	0	0	Mexico	North America	Mexico city	19.371887	-99.086624	Hostage Taking (Kidnapping)	Government (Diplomatic)	Unknown	0.0	
2	1970	1	0	Philippines	Southeast Asia	Unknown	15.478598	120.599741	Assassination	Journalists & Media	Unknown	1.0	
3	1970	1	0	Greece	Western Europe	Athens	37.997490	23.762728	Bombing/Explosion	Government (Diplomatic)	Explosives	NaN	1
4	1970	1	0	Japan	East Asia	Fukouka	33.580412	130.396361	Facility/Infrastructure Attack	Government (Diplomatic)	Incendiary	NaN	

Count of terrorist attacks year wise:

In [10]:

```
plt.subplots(figsize=(15,6))
sns.countplot('Year',data=df,palette='YlOrBr',edgecolor=sns.color_palette('dark',10))
plt.xticks(rotation=90)
plt.title('Number of Terrorist Activities Each Year')
plt.show()
```


Casualities :: Years :

In [11]:

```
plt.subplots(figsize=(15,6))
year_cas = df.groupby('Year').Casualities.sum().to_frame().reset_index()
year_cas.columns = ['Year', 'Casualities']
sns.barplot(x=year_cas.Year, y=year_cas.Casualities, palette='rocket',edgecolor=sns.color_palette('dark',10))
plt.xticks(rotation=90)
plt.title('Number of Casualities Each Year')
plt.show()
```


Attacks:: Countries

As you can see #Iraq has maximum number of attacks so, Iraq has to implement more on deffence system

Iraq >> Afganistan >> Pak [TOP #3]

In [12]:

```
plt.subplots(figsize=(15,6))
country_attacks = df.Country.value_counts()[:15].reset_index()
country_attacks.columns = ['Country','Total Attacks']
sns.barplot(x=country_attacks.Country, y=country_attacks['Total Attacks'], palette='OrRd_r',edgecolor=sns.color
_palette('dark',10))
plt.xticks(rotation=30)
plt.title('Number of Total Attacks in Each Country')
plt.show()
```


Iraq has most attacks so Number of Casualities is also high

In [13]:

```
plt.subplots(figsize=(100,6))
count_cas = df.groupby('Country').Casualities.sum().to_frame().reset_index().sort_values(by='Casualities',ascendi
ng=False)
sns.barplot(x=count_cas.Country, y=count_cas.Casualities, palette='OrRd_r',edgecolor=sns.color_palette('dark',10))
plt.xticks(rotation=30)
plt.title('Number of Total Casualities in Each Country')
plt.show()
```

Region wise attack graph:

Red-zone :- Middle-East and North Africa

In [14]:

```
region_attacks = df.Region.value_counts().to_frame().reset_index()
region_attacks.columns = ['Region','Total Attacks']
plt.subplots(figsize=(15,6))
sns.barplot(x=region_attacks.Region, y=region_attacks['Total Attacks'])
plt.xticks(rotation=90)
plt.title('Number of Total Attacks in Each Region')
plt.show()
```


Explossives are widely used for terrorist attacks: As we can see from the bellow graph:

```
In [15]:
```

```
df['WeaponType'].value_counts().plot(kind='barh',color="blue")
Out[15]:
```

<matplotlib.axes._subplots.AxesSubplot at 0x26f22ac7748>

As we can see from the (Year-Casualities) graph that most of the yearly attacks has under 2000 casualities

In [16]:

sns.pairplot(df, vars=['Year','Month','Day','Casualities'])

Out[16]:

<seaborn.axisgrid.PairGrid at 0x26f22bb2088>

In [17]:

```
chart = sns.catplot(x='WeaponType',y='Year', kind='box', height=5, aspect=3, data=df,orient='v')
chart.set_xticklabels(rotation=45)
chart.set_yticklabels(rotation=90)
```

Out[17]:

<seaborn.axisgrid.FacetGrid at 0x26f22a76fc8>

In []: