Computer Science 350 Assignment Two

Steven Kerr 6022796

11/05/2019

1. i

A decider is a machine that halts on all inputs. For a proof that M is not a decider we must first find a string that, when passed to machine M, will not halt.

Let u = 01 and let us run u on M.

as we can see here, when q_3 is reached, the input can never reach a final state ie:

$$\delta(q_3, \sqcup) = (q_3, \sqcup, R)$$

$$\delta(q_3, 0) = (q_3, 0, R)$$

$$\delta(q_3, 1) = (q_3, 1, R)$$

Therefore machine M is not a decider.

1. ii

The language recognised by a Turing-machine is, by definition, the set of strings that the machine accepts. Let such a set be called L and let $L = \{1^n 0^k | n \ge 0 \text{ and } k > 0\}$

Now we must prove A = L(M)

By definition, if M is a turing machine with input alphabet Σ , let L(M) be the set of strings over Σ accepted by M. If A is a language over Σ , we say that M recognises L if A = L(M).

So, I must prove that $A \subseteq L(M)$ and $L(M) \subseteq A$.

```
i)A \subseteq L(M)
```

Suppose that $w \in A$. So w contains $n\#1^s$ and $k\#0^s$ where $n \ge 0$ and k > 0. Let $w = w_1w_2 \dots w_n$ and let w_k be the first 0 in w $(1 \le k \le n)$. so $w = 1^{k-1}0^j$ and j = n - (k-1).

We need to show that $w \in L(M)$, ie that M accepts w. So we need to show that there is a sequence of configurations $C_1 \ldots, C_{|}$ such that C_1 is the starting configuration of M on w, each C_i yields ${}_MC_{i+1}$ (where $1 \leq i < n$), and $C_{|}$ is an accepting configuration.

We construct the following sequence of cfs on M:

```
C_{1} = q_{1}1^{k-1}0^{j} \sqcup \sqcup \ldots,
C_{2} = 1^{1}q_{1}1^{k-2}0^{j} \sqcup \sqcup \ldots,
C_{k} = 1^{k-1}q_{1}0^{j} \sqcup \sqcup \ldots,
C_{k+1} = 1^{k-1}0q_{2}0^{j-1} \sqcup \sqcup \ldots,
C_{k+2} = 1^{k-1}00q_{2}0^{j-2} \sqcup \sqcup \ldots,
C_{n-1} = 1^{k-1}0^{j-1}q_{2}0 \sqcup \sqcup \ldots,
C_{n} = 1^{k-1}0^{j}q_{2} \sqcup \sqcup \ldots,
C_{n+1} = 1^{k-1}0^{j} \sqcup q_{accept} \sqcup \ldots
```

It is obvious that $C_i \vdash_M C_{i+1}$ for $1 \leq i < k$, since $\delta(q_1, 1) = (q_1, 1, R)$ and so until the machine encounters the first 0, ie w_k , it simply stays in q_1 and moves right. In addition, $C_k \vdash_M C_{k+1}$, since $\delta(q_2, 0) = (q_2, 0, R)$ and so until the machine encounters the first \sqcup , ie w_{n+1} , it simply stays in q_2 and moves to the right. Finally, $C_n \vdash_M C_{n+1}$ [Reason: $C_n = 1^{k-1}0^j q_2 \sqcup \sqcup \ldots$, and this yields $M_{n+1} = 1^{k-1}0^j \sqcup q_{accept} \sqcup \ldots$ since $\delta(q_2, \sqcup) = (q_{accept}, \sqcup, R)$]

Note also that C_1 is the start configuration of M on w, and C_{n+1} is an accepting configuration. It follows from definitions 3 M accepts w. Hence since w was an arbitrary member of A, it follows that for all $w \in 0, 1^*$, if $w \in A$ then $w \in L(M)$. Hence $(*)A \subseteq L(M)$.

$$ii)L(M) \subset A$$

Consider $w \in L(M)$. Since $w \in L(M)$, M accepts w. So there is a sequence of cfs $C_1, C_2, \ldots, C_{n+1}$ such that C_1 is the start cf of M on w, each $C_i \vdash_M C_{i+1}(for0 \le i \le k)$, also $C_k \vdash_M C_{k+1}(for0 \le k < n)$, and C_{n+1} is an accepting cf.

Suppose that $C_{n+1} = 1^k 0^j q_{accept}$. Clearly $w = 1^k 0^j$ where $k \ge 0$ and j > 0 (since M doesn't change any of the input symbols). Now note that the application of δ that yields C_{n+1} from the preceding cf C_n is $\delta(q_2, \sqcup) = (q_{accept}, \sqcup, R)$ and to get to q_2 there must be at least one 0 in w as from C_k to C_{k+1} is $\delta(q_1, 0) = (q_2, 0, R)$. It follows that w contains one or more 0^s and zero or more 1^s , and so $w \in A$.

Since w was an arbitrart member of L(M), it follows that for all $w \in \{0, 1\}^*$, if $w \in L(M)$ then $w \in A$. Hence $L(M) \subseteq A$.

1. iii

The language A is turing-decidable. This is because there exists a turing-machine that decides A. As a simple example, if we took the turing-machine Q, removed q_3 and redirected anything going to q_3 to q_{reject} and called it Q_2 we would have:

```
\delta(q_1, \sqcup) = (q_{reject}, \sqcup, R)
\delta(q_1, 0) = (q_2, 0, R)
\delta(q_1, 1) = (q_1, 1, R)
\delta(q_2, \sqcup) = (q_{accept}, \sqcup, R)
\delta(q_2, 0) = (q_2, 0, R)
\delta(q_2, 1) = (q_{reject}, 1, R)
```

As you can see here, Q_2 decides language A. In q_1 the input can be rejected, looped on 1^s or sent to q_2 . q_2 can be accepted, loop on 0^s or rejected. Therefore, Q_2 decides A and the language A is decidable.

2. i Turing-Machine M

A formal definition of the above Turing machine

- $\bullet \ M \ = \ (Q, \ \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- $\bullet \ Q = (q_0, q_1, q_2, q_3, q_{accept}, q_{reject})$
- $\Sigma = \{0, 1\}^*$
- $\bullet \ \Gamma \ = \ \{0,\ 1,\ \sqcup,\ X\}$

δ	0	1	Ц	X
q_0	q_1	q_3	q_{reject}	q_0
q_1	q_1	q_2	q_{accept}	q_1
q_2	q_2	q_2	q_0	q_2
q_3	q_2	q_3	q_{reject}	q_3

description:

This machine matches 1^s and 0^s together.

If there is no match for a 0, then there are more 0^s than 1^s .

When the machine is started q_0 checks the input. If the input is 0 then the machine replaces 0 with \sqcup and moves right to q_1 . q_1 then moves right through all the X^s and 0^s looking for a 1. Once a 1 has been located (this means that a 0 has been matched with a 1), the machine replaces 1 with an X and then moves left into q_2 .

In q_2 the machine moves left through all the 1^s , X^s and 0^s looking for \sqcup (the initial matched item). Once \sqcup has been found the machine returns to q_0 to start again. Note that q_0 moves right over all the X^s looking for the first instance of 1 or 0.

If the input is 1 then the machine replaces 1 with \sqcup moves to q_3 . q_3 then moves right through all the X^s and 1^s looking for a 0. Once a 0 has been located (this means that a 1 has been matched with a 0), the machine replaces 0 with an X and then moves left into q_2 (q_2 has already been explained).

The machine moves right into q_{accept} if a \sqcup is found in q_1 . This means that no matching 1 was found for a 0 which then means that there are more 0^s than 1^s .

The machine moves right into q_{reject} in two cases:

- 1. If the string is the empty string. This means that there are not more 0^s than 1^s and is therefore rejected.
- 2. If the machine is in q_3 and a \sqcup is found. This means that no matching 0 was found for a 1 which then means that there are more 1^s than 0^s .

2. ii

```
Computation for machine M on string 01: \vdash_M q_0 01 \sqcup \sqcup \ldots
\vdash_M q_1 1 \sqcup \sqcup \ldots
\vdash_M q_2 \sqcup X \sqcup \sqcup \ldots
\vdash_M \sqcup q_0 X \sqcup \sqcup \ldots
\vdash_M \sqcup X q_0 \sqcup \sqcup \ldots
\vdash_M \sqcup X \sqcup q_{reject} \sqcup \ldots
Computation for machine M on string 100: \vdash_M q_0 100 \sqcup \sqcup \ldots
\vdash_M q_2 \sqcup X 0 \sqcup \sqcup \ldots
\vdash_M q_2 \sqcup X 0 \sqcup \sqcup \ldots
\vdash_M \sqcup q_0 X 0 \sqcup \sqcup \ldots
\vdash_M \sqcup X \sqcup q_1 \sqcup \sqcup \ldots
\vdash_M \sqcup X \sqcup q_1 \sqcup \sqcup \ldots
\vdash_M \sqcup X \sqcup q_1 \sqcup \sqcup \ldots
\vdash_M \sqcup X \sqcup \sqcup q_{accept} \sqcup \ldots
```

2. iii

We start by assuming that there is a turing machine N that decides L_1 . We can then construct a turing machine N' that decides $\overline{L_1}$ in the following way: N' = "On input w":

- 1. Simulate N on w.
- 2. Accept if N rejects, reject if N accepts.

N' always halts because N always halts. N' gives the correct result, because if $w \in L_1$ N will accept and so N' will reject, and if $w \notin L_1$, N will reject in which case N' will accept.

This means that N' decides $\overline{L_1}$ and the language is decidable.

We now have machine N' that decides $\overline{L_1}$ and we have machine M that decides the language L. Using these two machines we can now construct a turing machine M' that decides L_2 in the following way:

M' = "On input w":

- 1. Simulate N' on w.
- 2. if N' accepts, move to 3. if N' rejects, reject.
- 3. Simulate M on w.
- 4. if M accepts, reject. if M rejects, accept

M' always halts because N' and M always halts. M' gives the correct result, because if $w \notin \overline{L_1}$ N' will reject and so if $w \in \overline{L_1}$, then w will be sent to M. In M if $w \notin L$, M will accept w, else M will reject.

This means that M' decides L_2 and the language is decidable.

3.

 $Q = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are NFAs over some alphabet } \Sigma \text{ and } \emptyset \sqsubseteq L(A) \text{ and } L(A) \sqsubseteq L(B) \text{ is Turing-decidable.}$

Note \sqsubseteq = 'Is a proper set of'

Proof: Firstly, we know that any NFA can be replicated by a DFA. Secondly, by definition, we know the empty set is a proper subset of any nonempty set. So, we know that L(A) is not an empty set.

Again, by definition, we know that $L(A) \sqsubseteq L(B)$ iff:

 $\forall x \in L(A), x \in L(B)$ but $\forall y \in L(B), \neg(\forall y) \in L(A)$ which implies that:

$$L(A) \cap L(B) = \emptyset \cap L(B) \cap L(A) \neq \emptyset$$

From the proofs of the closure of the class of regular languages under intersection, complement and union, we can construct a DFA C which recognises $L(A) \cap \overline{L(B)} = \emptyset \cap L(B) \cap \overline{L(A)} \neq \emptyset$.

This construction can be carried out by a TM. Once we have such a C, we can test to see if $L(A) \subseteq L(B)$ } by testing to see if $L(A) \cap \overline{L(B)} = \emptyset$ and $L(B) \cap \overline{L(A)} \neq \emptyset$ using the TM C^* .

 $C^* = \text{'On input} < A, B >$, where A and B are NFAs:',

- 1. Convert A, B to DFAs A', B'.
- 2. Use T on $\langle A' \rangle$ from 'Theorem 10' to show that L(A) is not empty. If T rejects then got to 3, else reject.
- 3. let B'' be the DFA that recognises $\overline{L(B)}$ let D be a DFA that recognises $L(A) \cap \overline{L(B)}$. Use T on < D >, If T rejects then reject, else got to 4.
- 4. let A'' be the DFA that recognises $\overline{L(A)}$ let E be the DFA that recognises $L(B) \cap \overline{L(A)}$. Use T on E > 0, If E accepts then E rejects then E that recognises E then E that recognises E that recognises E that recognises E that E is the E that recognises E that E is the E that recognises E that E is the E that E is that E is the E that E is the E that E is the E that E is that E is that E is the E that E is that E

Clearly C^* accepts $< A, B > \text{iff } L(A) \sqsubseteq L(B)$. C^* will always end in a reject or accept state because we make use of the theorem 10 E_{DFA} is decidable. In step 1 we convert the NFAs to DFAs. Then in step 2 we check to see if L(A) is empty. If $L(A) \neq \emptyset$ then we move to step 3 and check to see if $L(A) \cap \overline{L(B)} = \emptyset$ if accepted then we move to step 4 and check $L(B) \cap \overline{L(A)} \neq \emptyset$. As we can see, C^* will always halt on input < A, B > because of theorem 10 where a E_{DFA} is decidable.

4.

$$\bigcirc(A,B) = \{w \in \{0,1\}^* | (w \in A \& w \in B) \text{ or } w \in A \circ B\}$$

$$\bigotimes(A, B) = \{ w \in \{0, 1\}^* | (w \in A \& w \notin B) \text{ or } w \in A \circ B \}$$

Note, the symbols \bigcirc and \bigotimes will represent given language. We can also assume that languages A and B are decidable.

Proof: I will start with deciding $A \circ B$. (Theorem 3. iv).

Suppose A and B are Turing-decidable. Let M_1 decide A and M_2 decide B. Then N, a NTM, decides $A \circ B$. N is as follows:

N = 'On input w',

- 1. Non-deterministically split w into two parts, x and y. Go to 2.
- 2. Run M_1 on the left part, x. If M_1 accepts, go to 3. if M_1 rejects, go to q_{reject} .
- 3. Run M_2 on the right part y. If M_2 accepts, accept. If M_2 rejects, go to q_{reject} .

Clearly N accepts w iff w is the concatenation of two strings x and y, the first of which is in A and the second in B, and N rejects otherwise. Hence N decides $A \circ B$.

Now we will look at $(w \in A \& w \notin B)$. This means that $A \cap B = \emptyset$. Also, $(w \in A \& w \in B)$ would then mean that $A \cap \overline{B} = \emptyset$ and we can use this to say that:

$$\bigodot = A \cap \overline{B} = \emptyset$$

$$\bigotimes = A \cap B = \emptyset$$

We can use the following two Turing machine's M^* to show that the set of Turing decidable languages are closed under \bigcirc and M^{**} to show that the set of Turing decidable languages are closed under \bigotimes :

Let A' be the DFA that accepts the language A. Let B' be the DFA that accepts the language B and run both M^* and M^{**} in the following way:

 $M^* = \text{'On input } A \text{ and } B, \text{ where } A \text{ and } B \text{ are decidable languages'}$

- 1. Let B'' be the DFA that decides \overline{B} and let D be the DFA that recognises $(A \cap \overline{B})$. Use T (from theorem 10) on < D >, if T accepts, accept. If T rejects got to 2.
- 2. Take a string w such that $w \in \{0,1\}^*$ and use Turing machine N on w. If N accepts, accept. If N rejects, reject.

 M^{**} = 'On input A and B, where A and B are decidable languages'

- 1. Let D^* be the DFA that recognises $(A \cap B)$. Use T on $< D^* >$. If T accepts accept. If T rejects, go to 2.
- 2. Take a string w such that $w \in \{0,1\}^*$ and use Turing machine N on w. If N accepts, accept. If N rejects, reject.

As we can see, machine M^* and M^{**} can only accept or reject the two languages A and B. This is because we use T from theorem 10 which decides a DFA input. So T will always halt in an accept or reject state. We also make use of Theorem 3. iv where Turing machine N decides concatenation of two decidable languages. N is also decidable because N will always halt in an accept or reject state. We already know the languages A and B are Turing-decidable and we can see that M^* and M^{**} are also decidable. Therefore, M^* decides:

$$(A, B) = \{w \in \{0, 1\}^* | (w \in A \& w \in B) \text{ or } w \in A \circ B\}$$

and M^{**} decides :

$$(A, B) = \{ w \in \{0, 1\}^* | (w \in A \& w \notin B) \text{ or } w \in A \circ B \}$$

The set of Turing-decidable languages is also closed under both \bigotimes and \bigcirc . We know this because we have proven above that both languages are decidable using Turing machines M^* and M^{**} . This means, by definition of closure The class of Turing-decidable languages over a fixed alphabet is closed under the operations of i) union, ii) intersection, iii) complement, iv) concatenation, and v) star. Therefore, we can perform all operations on \bigotimes and \bigcirc .

5. [bonus question]

Consider $L = \{1^n | \text{there is a consecutive run of at least n 7's in the decimal expansion of } \pi \}$. Prove that L is Turing-decidable.

We know that the decimal expansion of π is countably infinite. We can easily map the natural numbers N to $decimal^{\pi}$. This means that the decimal expansion of π is regular which means there is a DFA that accepts it.

It seems like this is possible but i am not sure about putting a limit on n. For instance,

Case 1: there is a consecutive run of atleast n 7's

Case 2: the machine never halts because n is too high.

If I put a limit on n then i know it will always halt. The question does state that 'atleast n 7's' which makes me think that we can put a bound on n. Another thing i know about the first million digits of π :

1. '7' appears 10,287 times

- 2. '77' appears 943 times
- 3. '777' appears 93 times
- 4. '7777' appears 16 times
- 5. '77777' appears 0 times

Because we know that the decimal expansion of π is countably infinite there is a possibility off the string 7^k where $k \geq 5$ in the next million digits of π so i propose two algorithms we can consider:

- 1. For every integer $n \ge 0$, the string 7^n appears in the decimal representation of π . In this case, the algorithm always returns *accept*.
- 2. There is a largest integer N such that 7^N appears in the decimal representation of π . In this case the following algorithm (with the value N hard-coded) is always correct:

We have no idea which of these algorithms is correct, or what value of N is the right one in algorithm 2. We do know that one of these algorithms is guaranteed to be correct. Therefore, there is an algorithm to decide whether a string of n 7^s appears in π . This makes L Turing-decidable.