IMPERIAL

Clustering mutually-exciting Hawkes processes for honeypot sessions

Agenda

01	Introduction
02	Honeypot command-line data
03	Topic modelling + Hawkes processes
04	Topic-IP point process
05	Simulation
06	Inference
07	Application to honeypot data

Motivation: honeypot sessions

- Computer terminal commands arrive on honeypot in sessions.
- Sessions made up of commands, tokenised into words.

```
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /
wget http://abc.def.ghi.jkl/Zerow.sh
curl -0 http://abc.def.ghi.jkl/Zerow.sh
chmod 777 Zerow.sh
sh Zerow.sh
tftp abc.def.ghi.jkl -c get tZerow.sh
chmod 777 tZerow.sh subcommand (word)
sh tZerow.sh
rm -rf Zerow.sh tZerow.sh
```

Example session

Motivation: clustering of sessions and IPs

- Sessions and commands can be grouped by attacker intent.
- Attacker behaviour evolves over time: investigate temporal dynamics.
- Sessions originate from multiple IP addresses.
- Useful to identify groups of coordinated/related threat actors.

Existing work

- Topic models cluster documents (sessions) by words (commands) only.
- Hawkes processes capture temporal self and mutual-excitation.

Authors	Model structure	Inference	Application
Li et al., 2014	Latent Dirichlet	VI	Modelling search
	allocation (LDA) $+$ self-exciting Hawkes		engine queries
He et al, 2015	Correlated topic model +	VI	Diffusion of
	mutually-exciting Hawkes		information in text
Du et al., 2015	Dirichlet process mixture	MCMC +	Clustering document
	+ self-exciting Hawkes	SMC	streams
Zheng et al, 2021	Dirichlet process $+$	SMC	Cyber threat
	marked self-exciting		detection via user
	Hawkes		activity modelling
Goda et al., 2022	LDA + mutually-exciting	MLE	Propagation of ideas
	Hawkes		in social networks

Table: Examples of models combining topic models with Hawkes processes.

Topic-IP Point Process (TIPP) model

- Combines topic modelling with mutually-exciting point processes.
- Clusters sessions by attacker intent via constrained Bayesian clustering (CBC, Sanna Passino et al., 2025): single topic per session.
- Temporal dynamics modelled by multivariate Hawkes process (MHP).
- Cluster source IPs.

Topic-IP Point Process (TIPP) model

- Combines topic modelling with mutually-exciting point processes.
- Clusters sessions by attacker intent via constrained Bayesian clustering (CBC, Sanna Passino et al., 2025): single topic per session.
- Temporal dynamics modelled by multivariate Hawkes process (MHP).
- Cluster source IPs.

Focus: recovery of Hawkes parameters and IP groups.

Honeypot data

- Sessions collected between May and Nov 2023.
- Observe: timestamps t, source IP addresses y, commands w.
- Latent: topics z, IP groups γ .
- 15990 sessions over U = 20 IP addresses.

TIPP model: sessions

- Each session is $(t_d, z_d, y_d, w_d) =$ (time (hours), topic, IP, commands).
- Latent topic z_d represents attacker intent.
 - For now: assume topics are known, learned via topic model.
- IP address y_d has group $\gamma(y_d)$.

Session	Time t	Topic	IP y	IP group $\gamma(y)$
nmap -sV 10.0.0	0.5	reconnaissance	1XX.1XX.3X.2X	1
wget http://mal	1.2	install malware	2XX.X.1XX.7X	2
./xmrig -o str	2.8	cryptojacking	1XX.5X.1XX.4X	3

Table: Example honeypot session activity.

TIPP model: Hawkes process

- Sessions arrive via MHP with latent topic $z_d = k$ and source IP $y_d = u$.
- Conditional intensity for (k, u):

$$\lambda_{k,u}(t) = \lambda_{k,u}^{0} + \lambda_{k,u}^{(z)} + \lambda_{k,u}^{(y)} + \lambda_{k,u}^{(z,y)}$$

- λ^0 : baseline intensity.
- $\lambda^{(z)}$: mutual-excitation from topic k and IPs in group $\gamma(u)$ excluding u.
- $\lambda^{(y)}$: mutual-excitation from IP u and topics active for group $\gamma(u)$ excluding k.
- $\lambda^{(z,y)}$: self-excitation from topic k and IP u.

TIPP model: Hawkes process

- Sessions arrive via MHP with latent topic $z_d = k$ and source IP $y_d = u$.
- Conditional intensity for (k, u):

$$\lambda_{k,u}(t) = \lambda_{k,u}^{0} + \lambda_{k,u}^{(z)} + \lambda_{k,u}^{(y)} + \lambda_{k,u}^{(z,y)}$$

- λ^0 : baseline intensity.
- $\lambda^{(z)}$: mutual-excitation from topic k and IPs in group $\gamma(u)$ excluding u.
- $\lambda^{(y)}$: mutual-excitation from IP u and topics active for group $\gamma(u)$ excluding k.
- $\lambda^{(z,y)}$: self-excitation from topic k and IP u.
- Self-excitation: observing (k, u) makes (k, u) more likely.
- Mutual-excitation: observing (k,u) makes $\textit{related}\ (k',u')$ more likely.

TIPP model: excitation kernels

Intensities:

$$\lambda_{k,u}(t) = \sum_{\substack{t_i < t \\ (z_i, y_i) = (k, u)}} \omega_{k,u}(t - t_i)$$

Excitation kernels take scaled exponential forms:

$$\omega_{k,u}(t-t_i) = \rho_{k,u} \exp\{-(\rho_{k,u} + \sigma_{k,u})(t-t_i)\}$$

Enables fast computation of Hawkes likelihood (Daley & Vere-Jones, 2003):

$$L(T) = \prod_{k,u} \left[\prod_{j=1}^{N_{k,u}} \lambda_{k,u}(t_{k,u}^{(j)}) \right] \exp\{-\Lambda_{k,u}(T)\}$$

where $\Lambda_{k,u}(t)$ is the compensator for process (k,u).

Simulations

- Simulate Hawkes process: adaptation of Ogata, 1981 and Chen, 2016.
- Univariate: jump $\rho=0.2$, "decay" $\sigma=2.0$.
- Multivariate: self and mutual-excitation.

Inference framework

- 1. Infer session topics z using CBC via MCMC (Sanna Passino et al., 2025).
- 2. Fit Hawkes parameters ρ, σ and IP groups γ conditional on topics.
- 3. Optional: update z conditional on ρ, σ, γ .

Application to honeypot data

- CBC assigns K = 5 topics.
- MCMC: 10,000 iterations.

Model fit diagnostics

- Residual analysis and KS test for goodness-of-fit.
- TIPP outperforms baseline and self-exciting-only processes.

Fitted intensities

Some mutual-excitation, but intensities dominated by self-excitation.

IP grouping

Conclusion

- Integrated topic models with Hawkes processes.
- Additional features (time, source IP) are useful for honeypot session analysis.
- Can identify coordinated threat actors via IP grouping.
- Future ideas: filter automated sessions, scalability, change-point detection.

IMPERIAL

Thank you! Questions?