

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson
Institute of Computing - UNICAMP

ML Process

Feature extraction/selection/scaling

Selecting the proper features to train a machine learning model:

- enables the machine learning algorithm to train faster
- reduces the complexity of a model and makes it easier to interpret
- improves the accuracy of a model if the right subset is chosen
- reduces overfitting

"Sometimes, less is better"

it

Selecting the proper features to train a machine learning moderning

enable
 ine learning algorithm to train

Main goal

have features that are

informative and non-redundant

subset is chosen

reduces overfitting

Feature selection: identify the features that are most useful for the problem under examination

• Ex: find out that the *size* feature is more useful to predict a house *price* than the *color* feature

Feature extraction: Derive (create) new features based on the existing ones

• Ex: transform individual features (e.g., square them), or combine multiple features (e.g. by multiplying them) to create new features

Feature selection: identify the features that are most useful for the problem under examination

Approach using feature selection

Feature selection: identify the features that are most useful for the problem under examination

Common approaches for feature selection:

- Filter methods
- Wrapper methods
- Embedded methods

Filter methods: features are selected based on statistical test scores that measure their correlation with the outcome variable (label)

Common methods:

- Pearson correlation coefficient
- Chi-square coefficient
- Mutual information

Limitations:

 Relationship between features is not considered => tend to select redundant features

Filter methods: features are selected based on statistical test scores that measure their correlation with the outcome variable (label)

Common methods:

- Pearson correlation coefficient
- Chi-square coefficient
- Mutual information

Limitations:

Relationship between features is select redundant features

Model agnostic

Selection of features is independent of ML algorithm.

Wrapper methods: measure the usefulness of a subset of feature by actually training a model on it Common methods:

- Forward Selection
- Backward Elimination
- Recursive feature elimination (RFE)

Limitations:

- Requires training a new model for each subset => huge number of computations
- Best feature set is usually associated with a specific type of model

Embedded methods: consider feature selection as a part of the model training.

Example: Regularization method

• Lasso regression: Cost Func. = $LSq_{\theta}(X,Y) + \sum |\theta_{i}|$

Limitations:

Specific to model (e.g., embedded into the cost function)

Feature selection: Main benefits

Benefits:

- Simplify models to make them easy for users to interpret
- Reduce the model training time
- Avoid dimension explosion
- Improve model generalization and avoid overfitting

Feature extraction: Derive (create) new features based on the existing ones

Feature extraction: Derive (create) new features based on the existing ones

Approach without feature extraction

Feature extraction: Derive (create) new features based on the existing ones

Approach using feature extraction

Feature extraction: Derive (create) new features based on the existing ones

Approaches for feature extraction:

- Create new features
 - Ex: Feature cross, kernel-tricks...
- Dimensionality reduction techniques
 - Focus on reducing dimensionality by combining existing features into a smaller set of new features
 - Ex: Isomap, UMAP, PCA, Autoencoder, ...

Feature scaling:

Many ML algorithms do not perform well when the input numerical attributes have very different scales

Ex: #bedrooms vs. house price

Feature scaling:

Many ML algorithms do not perform well when the input numerical attributes have very different scales

• Ex: #bedrooms vs. house price

Two common approaches

- min-max scaling (a.k.a. normalization)
 - Normalize data to the interval [0-1]
- standardization
 - Subtract the mean value and divide by the standard deviation

Feature scaling:

Many ML algorithms do not perform well when the input numerical attributes have very different scales

• Ex: #bedrooms vs. house price

Approach using feature scaling (standardization)

Feature extraction/selection/scaling: Techniques to improve the set features used on the machine learning model!

Instituto de Computação

UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson
Institute of Computing - UNICAMP