AP Calculus BC

Unit 9 - Sequences and Series

1	Find the first four terms and the 50 th term for the sequence: $a_n = \frac{n}{n+7}$
2	Find the first six terms and the 50 th term for the sequence: $d_n = n^2 - 2n$.
3	Find the first four terms and the 8^{th} term for the sequence: $a_1 = 1$; $a_n = 2a_{n-1}$ for all $n \ge 2$.
4	Find the first four terms and the 8^{th} term for the sequence: $u_1 = 1; u_2 = 2; u_n = u_{n-1} + u_{n-2}$ for all $n \ge 3$.
5	Determine the convergence or divergence of $a_n = \frac{2n+1}{n}$. If the sequence converges, find its limit.
6	Determine the convergence or divergence of $a_n = (-1)^n \frac{n-1}{n+1}$. If the sequence converges, find its limit.
7	Determine the convergence or divergence of $a_n = 5 + (0.9)^n$. If the sequence converges, find its limit.
8	Determine the convergence or divergence of $a_n = n \sin\left(\frac{7}{n}\right)$. If the sequence converges, find its limit.
9	Find the limit of the sequence $\left\{\frac{3n^4}{n^4+1}\right\}$ or state that it does not exist.
10	Find the limit of the sequence $\left\{\frac{5e^n+1}{e^n}\right\}$ or state that it does not exist.

Evaluate each limit or state that it does not exist.

$1) \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{11x}$	$2) \lim_{x \to 1} \frac{\int_1^x \cos(5t) dt}{x^2 - 1}$	$3) \lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n$
--	---	--

Find the limit of each sequence or determine that the limit does not exist.

$4) a_n = \sqrt{\left(1 - \frac{1}{10n}\right)^n}$	$5) a_n = \left(1 + \frac{9}{n}\right)^{8n}$	$6) a_n = \frac{n}{e^n + 11n}$
$7) a_n = \left(\frac{10}{n}\right)^{10/n}$	8) $a_n = \ln(n^3 + 5) - \ln(7n^3 + 11n)$	9) $a_n = \left(n\sin\frac{17}{n}\right)$
10) $a_n = \frac{\left(-1\right)^n n}{2n+3}$	$11) \ a_n = \cos\left(\frac{n\pi}{12}\right)$	12) $a_n = \frac{\left(-1\right)^{n+1}}{4n+1}$
13) $a_n = \frac{3^n}{3^n + 5^n}$	14) $a_n = 2 + \cos \frac{5}{n}$	15) $a_n = \frac{\ln n}{n^{1.6}}$
16) $a_n = \frac{8^n + 5^n}{8^n + n^{110}}$	17) $a_n = \frac{9^n}{n^9 7^n}$	

Answers

1) e^{-11}	$2) \frac{\cos 5}{2}$	3) e ²	4) $e^{-1/20}$	5) e^{72}	6) 0
7) 1	8) -ln7	9) 17	10) DNE	11) DNE	12) 0
13) 0	14) 3	15) 0	16) 1	17) DNE	

Write an expression for the *n*th term.

(a) 3, 8, 13, 18, . . .

(b) 5, -15, 45, -135, . . .

(c) 1, 4, 9, 16, 25, ...

1

Use the nth Term Divergence Test to determine whether or not the following series converge:

(a)
$$\sum_{n=1}^{\infty} \frac{1+3n^2+n^3}{4n^3-5n+2}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{2n!+1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(n+2)!}{10n!}$$

3

Use the indicated test for convergence to determine if the series converges or diverges. If possible, state the value to which it converges.

(a) Geometric Series: $3 + \frac{15}{4} + \frac{75}{16} + \frac{375}{64} + \cdots$ (b) Geometric Series: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \cdots$

Determine whether the following series converge or diverge. If they converge, find their sum. 4

(a)
$$\sum_{n=1}^{\infty} \frac{2n+3}{3n-5}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!}{2n!+1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{3^n - 2}{3^n}$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{(1.1)^n}$$

Determine if each series converges or diverges. If it converges, find the sum.

1)
$$\frac{1}{17} + \frac{1}{289} + \frac{1}{4913} + \dots + \frac{1}{17^k} + \dots$$

$$\frac{1}{17} + \frac{1}{289} + \frac{1}{4913} + \dots + \frac{1}{17^k} + \dots$$
 2) $1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^n + \dots$

3)
$$\sum_{n=0}^{\infty} \frac{5^n}{9^{n+1}}$$

Use the divergence test (n^{th} term test) to determine whether each series diverges or state that the test is inconclusive.

4)
$$\sum_{n=0}^{\infty} \frac{n}{5n+1}$$

5)
$$\sum_{k=0}^{\infty} \frac{3}{900+3k}$$

Determine the convergence or divergence of each series.

()	\sum_{∞}	1
6)	$\sum_{k=2}^{\infty} \frac{1}{k}$	$(k-1)^3$

$$7) \quad \sum_{k=3}^{\infty} \frac{1}{\left(k-2\right)^4}$$

8)
$$\sum_{n=1}^{\infty} \frac{12}{n^{1/2}}$$

$$9) \quad \sum_{k=2}^{\infty} \frac{1}{6e^k}$$

$$10) \sum_{k=0}^{\infty} \frac{6}{\sqrt{k+3}}$$

Answers

1) Converges; $\frac{1}{16}$	2) Converges; 2	3) Converges; $\frac{1}{4}$	4) Diverges by nth term test	5) Inconclusive
6) Converges by p-	7) Converges by p-	8) Diverges by p-	9) Converges by	10) Diverges by integral test
series test	series test	series test	Integral test	

Write out the first four terms of the sequence of partial sums for each geometric series. Then find the sum of the infinite series.

1.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n}$$
2.
$$\sum_{n=1}^{\infty} \frac{7}{4^n}$$
3.
$$\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n}$$
4.
$$\sum_{n=0}^{\infty} \left(\frac{2^{n+1}}{5^n}\right)$$

Determine whether each series converges or diverges. Give a reason for your answer. If the series converges, find its sum, if possible.

$5. \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^n$	6. $\sum_{n=0}^{\infty} \cos(n\pi)$	$7. \sum_{n=1}^{\infty} \ln \frac{1}{n}$	8. $\sum_{n=0}^{\infty} \frac{n!}{1000^n}$
9. $\sum_{n=0}^{\infty} \left(\frac{e}{\pi}\right)^n$	$10. \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$	$11. \sum_{n=1}^{\infty} \frac{n}{n+1}$	$12. \sum_{n=2}^{\infty} \frac{5}{n+1}$
$13. \sum_{n=1}^{\infty} \frac{3}{\sqrt{n}}$	$14. \sum_{n=1}^{\infty} \frac{-2}{n\sqrt{n}}$	$15. \sum_{n=1}^{\infty} \left(-\frac{1}{8^n} \right)$	$16. \sum_{n=2}^{\infty} \frac{\ln n}{n}$
$17. \sum_{n=1}^{\infty} \frac{2^n}{3^n}$	$18. \sum_{n=0}^{\infty} \frac{-2}{n+1}$	$19. \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$	$20. \sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$

- 2) $\sum_{k=0}^{\infty} \frac{3}{10^{k+1}} =$
- sequence:

$$a_1 = 1$$
, $a_2 = 3$, $a_n = 2a_{n-1} + 3$

List the first six terms for the recursively defined sequence:

$$a_1 = 1$$
, $a_2 = 3$, $a_n = a_{n-1} + a_{n-2}$

5) Find the formula for the n^{th} term of the sequence given by:

$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}$$
...

 $\sum_{k=0}^{\infty} \frac{2}{6^{k+1}} =$

6) Find the formula for the n^{th} term of the sequence is given by:

$$1, -\frac{1}{3}, \frac{1}{5}, -\frac{1}{7}, \frac{1}{9}$$
...

- 7) Determine if $\sum_{n=1}^{\infty} \frac{1}{(\sqrt{5}-1)^n}$ converges or diverges.
- 8) Determine if $\sum_{n=1}^{\infty} \frac{1}{(\sqrt{3}-1)^n}$ converges or diverges.
- 9) The integral test confirms that the series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^2}$ converges. What is $\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{r^2} dx$?
- 10) Determine the convergence or divergence of each series:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{e^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

(g)
$$\sum_{n=1}^{\infty} n$$

(h)
$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$$

11) Find the sum of the series: $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$

12) Find the sum of the series: $\sum_{i=1}^{\infty} \frac{(-1)^{n-i}}{3^{n-1}}$