Unspecified Veriopt Theory

January 8, 2022

Contents

1	Dat	a-flow Semantics	1
	1.1	Data-flow Tree Representation	2
	1.2	Data-flow Tree Evaluation	3
	1.3	Data-flow Tree Refinement	6
2	Tre	e to Graph	6
3	Dat	a-flow Expression-Tree Theorems	16
	3.1	Extraction and Evaluation of Expression Trees is Deterministic.	16
	3.2	Example Data-flow Optimisations	23
	3.3	Monotonicity of Expression Optimization	24
4	Control-flow Semantics		43
	4.1	Heap	43
	4.2	Intraprocedural Semantics	
	4.3	Interprocedural Semantics	
	4.4	Big-step Execution	47
		4.4.1 Heap Testing	
5	Pro	perties of Control-flow Semantics	49

1 Data-flow Semantics

```
\begin{array}{c} \textbf{theory} \ IRTreeEval\\ \textbf{imports}\\ Graph. \ Values\\ Graph. Stamp\\ HOL-Library. \ Word\\ \textbf{begin} \end{array}
```

We define a tree representation of data-flow nodes, as an abstraction of the graph view.

Data-flow trees are evaluated in the context of a method state (currently called MapState in the theories for historical reasons).

The method state consists of the values for each method parameter, references to method parameters use an index of the parameter within the parameter list, as such we store a list of parameter values which are looked up at parameter references.

The method state also stores a mapping of node ids to values. The contents of this mapping is calculates during the traversal of the control flow graph. As a concrete example, as the SignedDivNode can have side-effects (during division by zero), it is treated as part of the control-flow, since the data-flow phase is specified to be side-effect free. As a result, the control-flow semantics for SignedDivNode calculates the value of a node and maps the node identifier to the value within the method state. The data-flow semantics then just reads the value stored in the method state for the node.

```
type-synonym ID = nat
type-synonym MapState = ID \Rightarrow Value
type-synonym Params = Value list

definition new-map-state :: MapState where
new-map-state = (\lambda x. \ UndefVal)

fun val-to-bool :: Value \Rightarrow bool where
val-to-bool (IntVal32 \ val) = (if \ val = 0 \ then \ False \ else \ True) \mid val-to-bool v = False

fun bool-to-val :: bool \Rightarrow Value where
bool-to-val True = (IntVal32 \ 1) \mid bool-to-val False = (IntVal32 \ 0)
```

1.1 Data-flow Tree Representation

```
BinLeftShift
   BinRightShift
   Bin URight Shift
   BinIntegerEquals
   BinIntegerLessThan
   BinIntegerBelow
datatype (discs-sels) IRExpr =
   UnaryExpr (ir-uop: IRUnaryOp) (ir-value: IRExpr)
   BinaryExpr (ir-op: IRBinaryOp) (ir-x: IRExpr) (ir-y: IRExpr)
   ConditionalExpr (ir-condition: IRExpr) (ir-trueValue: IRExpr) (ir-falseValue:
IRExpr)
 | ParameterExpr (ir-index: nat) (ir-stamp: Stamp)
 | LeafExpr (ir-nid: ID) (ir-stamp: Stamp)
   ConstantExpr (ir-const: Value)
   Constant Var (ir-name: string)
 | VariableExpr (ir-name: string) (ir-stamp: Stamp)
fun is-ground :: IRExpr \Rightarrow bool where
 is-ground (UnaryExpr op e) = is-ground e |
 is-ground (BinaryExpr op e1 e2) = (is-ground e1 \land is-ground e2)
 is-ground (ConditionalExpr b e1 e2) = (is-ground b \wedge is-ground e1 \wedge is-ground
e2)
 is-ground (ParameterExpr i s) = True
 is-ground (LeafExpr \ n \ s) = True \mid
 is-ground (ConstantExpr\ v) = True
 is-ground (Constant Var name) = False
 is-ground (VariableExpr\ name\ s) = False
typedef GroundExpr = \{ e :: IRExpr . is-ground e \}
 using is-ground.simps(6) by blast
      Data-flow Tree Evaluation
1.2
fun unary-eval :: IRUnaryOp \Rightarrow Value \Rightarrow Value where
 unary-eval UnaryAbs\ v = intval-abs\ v \mid
 unary-eval UnaryNeg\ v = intval-negate v \mid
 unary-eval \ UnaryNot \ v = intval-not \ v \mid
 unary-eval UnaryLogicNegation (IntVal32\ v1) = (if\ v1 = 0\ then\ (IntVal32\ 1)\ else
(Int Val 32 \ 0)) \mid
 unary-eval of v1 = UndefVal
fun bin-eval :: IRBinaryOp \Rightarrow Value \Rightarrow Value \Rightarrow Value where
 bin-eval\ BinAdd\ v1\ v2=intval-add\ v1\ v2
```

bin- $eval\ BinMul\ v1\ v2 = intval$ - $mul\ v1\ v2$

```
bin-eval\ BinSub\ v1\ v2 = intval-sub\ v1\ v2
  bin-eval BinAnd\ v1\ v2 = intval-and v1\ v2
  bin-eval\ BinOr\ v1\ v2=intval-or\ v1\ v2
  bin-eval BinXor\ v1\ v2 = intval-xor v1\ v2
  bin-eval\ BinLeftShift\ v1\ v2=intval-left-shift\ v1\ v2
  bin-eval\ BinRightShift\ v1\ v2=intval-right-shift\ v1\ v2
  bin-eval\ BinURightShift\ v1\ v2=intval-uright-shift\ v1\ v2
  bin-eval BinIntegerEquals \ v1 \ v2 = intval-equals v1 \ v2 \mid
  bin-eval BinIntegerLessThan\ v1\ v2 = intval-less-than v1\ v2
  bin-eval BinIntegerBelow\ v1\ v2=intval-below\ v1\ v2
inductive not-undef-or-fail :: Value \Rightarrow Value \Rightarrow bool where
  \llbracket value \neq UndefVal \rrbracket \Longrightarrow not\text{-}undef\text{-}or\text{-}fail\ value\ value}
notation (latex output)
  not-undef-or-fail (- = -)
inductive
  evaltree :: MapState \Rightarrow Params \Rightarrow IRExpr \Rightarrow Value \Rightarrow bool ([-,-] \vdash - \mapsto -55)
  for m p where
  ConstantExpr:
  \llbracket valid\text{-}value \ (constantAsStamp \ c) \ c 
rbracket
    \implies [m,p] \vdash (ConstantExpr\ c) \mapsto c
  ParameterExpr:
  [i < length p; valid-value s (p!i)]
    \implies [m,p] \vdash (ParameterExpr \ i \ s) \mapsto p!i \mid
  Conditional Expr:
  \llbracket [m,p] \vdash ce \mapsto cond;
    branch = (if \ val\ -to\ -bool \ cond \ then \ te \ else \ fe);
    [m,p] \vdash branch \mapsto v;
    v \neq UndefVal
    \implies [m,p] \vdash (ConditionalExpr \ ce \ te \ fe) \mapsto v \mid
  UnaryExpr:
  \llbracket [m,p] \vdash xe \mapsto v;
    result = (unary-eval \ op \ v);
    result \neq UndefVal
    \implies [m,p] \vdash (UnaryExpr \ op \ xe) \mapsto result \mid
  BinaryExpr:
  \llbracket [m,p] \vdash xe \mapsto x;
    [m,p] \vdash ye \mapsto y;
    result = (bin-eval \ op \ x \ y);
    result \neq UndefVal
    \implies [m,p] \vdash (BinaryExpr \ op \ xe \ ye) \mapsto result \mid
```

```
LeafExpr:
\llbracket val = m \ n;
 valid-value s val
 \implies [m,p] \vdash LeafExpr \ n \ s \mapsto val
```

evalRulesvalid-value (constantAsStamp c) c $[m,p] \vdash ConstantExpr \ c \mapsto c$ $\frac{i < |p| \quad \textit{valid-value s } p_{[i]}}{[m,p] \vdash \textit{ParameterExpr i s} \mapsto p_{[i]}}$ $[m,p] \vdash ce \mapsto cond$ branch = (if IRTreeEval.val-to-bool cond then te else fe) $[m,p] \vdash branch \mapsto v \qquad v \neq UndefVal$ $[m,p] \vdash ConditionalExpr \ ce \ te \ fe \mapsto v$ $[m,p] \vdash xe \mapsto v$ $result = unary-eval \ op \ v$ $result \neq UndefVal$ $[m,p] \vdash UnaryExpr \ op \ xe \mapsto result$ $[m,p] \vdash xe \mapsto x$ $result = bin-eval \ op \ x \ y \qquad result \neq UndefVal$ $[m,p] \vdash ye \mapsto y$ $[m,p] \vdash BinaryExpr \ op \ xe \ ye \mapsto result$ val = m n valid-value s val $[m,p] \vdash LeafExpr \ n \ s \mapsto val$

 $code\text{-}pred \ (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ evalT)$ $[show_steps, show_mode_inference, show_intermediate_results]$ evaltree.

inductive

 $evaltrees :: MapState \Rightarrow Params \Rightarrow IRExpr\ list \Rightarrow Value\ list \Rightarrow bool\ ([-,-] \vdash - \mapsto_L$

for m p where

for
$$m$$
 p where

$$EvalNil: [m,p] \vdash [] \mapsto_L [] \mid$$

$$EvalCons: [[m,p] \vdash x \mapsto xval; [m,p] \vdash yy \mapsto_L yyval] \implies [m,p] \vdash (x\#yy) \mapsto_L (xval\#yyval)$$

$$\mathbf{code-pred} \ (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ evalTs)$$

$$evaltrees \ .$$

1.3 Data-flow Tree Refinement

We define the induced semantic equivalence relation between expressions. Note that syntactic equality implies semantic equivalence, but not vice versa.

```
definition equiv-exprs :: IRExpr \Rightarrow IRExpr \Rightarrow bool \ (- \doteq -55) where (e1 \doteq e2) = (\forall m \ p \ v. \ (([m,p] \vdash e1 \mapsto v) \longleftrightarrow ([m,p] \vdash e2 \mapsto v)))
```

We also prove that this is a total equivalence relation (equivp equiv-exprs) (HOL.Equiv_Relations), so that we can reuse standard results about equivalence relations.

```
lemma equivp equiv-exprs
apply (auto simp add: equivp-def equiv-exprs-def)
by (metis equiv-exprs-def)+
```

We define a refinement ordering over IRExpr and show that it is a preorder. Note that it is asymmetric because e2 may refer to fewer variables than e1.

instantiation IRExpr :: preorder begin

```
definition
```

```
\begin{array}{l} \textit{le-expr-def [simp]: (e2 \leq e1)} \longleftrightarrow (\forall \ m \ p \ v. \ (([m,p] \vdash e1 \mapsto v) \longrightarrow ([m,p] \vdash e2 \mapsto v))) \end{array}
```

definition

```
lt-expr-def [simp]: (e1 < e2) \longleftrightarrow (e1 \le e2 \land \neg (e1 \doteq e2))
```

instance proof

```
fix x \ y \ z :: IRExpr

show x < y \longleftrightarrow x \le y \land \neg (y \le x) by (simp add: equiv-exprs-def; auto)

show x \le x by simp

show x \le y \Longrightarrow y \le z \Longrightarrow x \le z by simp

qed
```

end

end

2 Tree to Graph

```
theory TreeToGraph imports Semantics.IRTreeEval Graph.IRGraph begin

fun find-node-and-stamp :: IRGraph \Rightarrow (IRNode \times Stamp) \Rightarrow ID \ option \ \mathbf{where} find-node-and-stamp \ g \ (n,s) = find \ (\lambda i. \ kind \ g \ i = n \ \land \ stamp \ g \ i = s) \ (sorted-list-of-set(ids \ g))
```

export-code find-node-and-stamp

```
fun is-preevaluated :: IRNode \Rightarrow bool where
  is-preevaluated (InvokeNode\ n - - - -) = True\ |
  is-preevaluated (InvokeWithExceptionNode\ n - - - - -) = True\ |
  \textit{is-preevaluated (NewInstanceNode n - - -)} = \textit{True} \mid
  is-preevaluated (LoadFieldNode n - - -) = True
  is-preevaluated (SignedDivNode\ n - - - - -) = True\ |
  is-preevaluated (SignedRemNode\ n - - - - ) = True\ |
  is-preevaluated (ValuePhiNode n - -) = True
  is-preevaluated - = False
inductive
  rep :: IRGraph \Rightarrow ID \Rightarrow IRExpr \Rightarrow bool (- \vdash - \simeq - 55)
  for g where
  ConstantNode:
  \llbracket kind \ g \ n = ConstantNode \ c 
rbracket
    \implies g \vdash n \simeq (\mathit{ConstantExpr}\ c) \mid
  ParameterNode:
  \llbracket kind\ g\ n = ParameterNode\ i;
    stamp \ g \ n = s
    \implies g \vdash n \simeq (ParameterExpr \ i \ s) \mid
  Conditional Node:\\
  \llbracket kind\ g\ n = ConditionalNode\ c\ t\ f;
    g \vdash c \simeq ce;
    g \vdash t \simeq te;
    g \vdash f \simeq fe
    \implies g \vdash n \simeq (ConditionalExpr \ ce \ te \ fe) \mid
  AbsNode:
  \llbracket kind\ g\ n = AbsNode\ x;
    g \vdash x \simeq xe
    \implies g \vdash n \simeq (\mathit{UnaryExpr}\ \mathit{UnaryAbs}\ \mathit{xe}) \mid
  NotNode:
  \llbracket kind\ g\ n = NotNode\ x;
    g \vdash x \simeq xe
    \implies g \vdash n \simeq (\mathit{UnaryExpr\ UnaryNot\ xe}) \mid
  NegateNode:
  [kind\ g\ n = NegateNode\ x;]
    g \vdash x \simeq xe
```

```
\implies g \vdash n \simeq (UnaryExpr\ UnaryNeg\ xe) \mid
LogicNegationNode:
[kind\ g\ n = LogicNegationNode\ x;]
 g \vdash x \simeq xe
 \implies g \vdash n \simeq (UnaryExpr\ UnaryLogicNegation\ xe) \mid
AddNode:
[kind\ g\ n=AddNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinAdd\ xe\ ye) \mid
MulNode:
[kind\ g\ n = MulNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinMul\ xe\ ye) \mid
SubNode:
\llbracket kind\ g\ n = SubNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinSub\ xe\ ye) \mid
AndNode:
[kind\ g\ n = AndNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinAnd\ xe\ ye) \mid
OrNode:
[kind\ g\ n=OrNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \cong (BinaryExpr\ BinOr\ xe\ ye) \mid
XorNode:
\llbracket kind\ g\ n = XorNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinXor\ xe\ ye) \mid
IntegerBelowNode:
[kind\ g\ n = IntegerBelowNode\ x\ y;]
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinIntegerBelow\ xe\ ye) \mid
```

```
Integer Equals Node:
  \llbracket kind\ g\ n = IntegerEqualsNode\ x\ y;
    g \vdash x \simeq xe;
    g \vdash y \simeq ye
    \implies g \vdash n \simeq (BinaryExpr\ BinIntegerEquals\ xe\ ye) \mid
  IntegerLessThanNode:
  [kind\ g\ n = IntegerLessThanNode\ x\ y;]
    g \vdash x \simeq xe;
    g \vdash y \simeq ye
    \implies g \vdash n \simeq (BinaryExpr\ BinIntegerLessThan\ xe\ ye) \mid
  NarrowNode:
  \llbracket kind\ g\ n = NarrowNode\ inputBits\ resultBits\ x;
    g \vdash x \simeq xe
    \implies g \vdash n \simeq (UnaryExpr\ (UnaryNarrow\ inputBits\ resultBits)\ xe)
  SignExtendNode:
  \llbracket kind\ g\ n = SignExtendNode\ inputBits\ resultBits\ x;
    g \vdash x \simeq xe
    \implies g \vdash n \simeq (UnaryExpr\ (UnarySignExtend\ inputBits\ resultBits)\ xe) \mid
  ZeroExtendNode:
  \llbracket kind\ g\ n = ZeroExtendNode\ inputBits\ resultBits\ x;
    g \vdash x \simeq xe
    \implies g \vdash n \simeq (UnaryExpr\ (UnaryZeroExtend\ inputBits\ resultBits)\ xe) \mid
  LeafNode:
  [is-preevaluated (kind g n);
    stamp \ g \ n = s
    \implies g \vdash n \simeq (\textit{LeafExpr } n \ s)
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ exprE) rep.
inductive
  replist :: IRGraph \Rightarrow ID \ list \Rightarrow IRExpr \ list \Rightarrow bool \ (-\vdash -\simeq_L - 55)
  for g where
  RepNil:
  g \vdash [] \simeq_L [] \mid
  RepCons:
  \llbracket g \vdash x \simeq xe;
    g \vdash xs \simeq_L xse
    \implies g \vdash x \# xs \simeq_L xe \# xse
```

 $\mathbf{code\text{-}pred}\ (\mathit{modes}:\ i\Rightarrow i\Rightarrow o\Rightarrow \mathit{bool}\ \mathit{as}\ \mathit{exprListE})\ \mathit{replist}$.

repRules

```
kind\ g\ n = ConstantNode\ c
                                     g \vdash n \simeq ConstantExpr c
                      kind\ g\ n = ParameterNode\ i \qquad stamp\ g\ n = s
                                   g \vdash n \simeq ParameterExpr i s
                            kind\ g\ n = AbsNode\ x \qquad g \vdash x \simeq xe
                               q \vdash n \simeq UnaryExpr\ UnaryAbs\ xe
                \frac{\mathit{kind}\ g\ n = \mathit{AddNode}\ x\ y \qquad g \vdash x \simeq \mathit{xe} \qquad g \vdash y \simeq \mathit{ye}}{g \vdash n \simeq \mathit{BinaryExpr}\ \mathit{BinAdd}\ \mathit{xe}\ \mathit{ye}}
                \mathit{kind}\ g\ n = \mathit{MulNode}\ x\ y \qquad g \vdash x \simeq xe \qquad g \vdash y \simeq ye
                              g \vdash n \simeq BinaryExpr\ BinMul\ xe\ ye
                kind \ g \ n = SubNode \ x \ y \qquad g \vdash x \simeq xe \qquad \underline{g} \vdash y \simeq ye
                              g \vdash n \simeq BinaryExpr\ BinSub\ xe\ ye
                        is-preevaluated (kind g(n)) stamp(g(n) = s)
                                      g \vdash n \simeq LeafExpr \ n \ s
values \{t. eg2\text{-}sq \vdash 4 \simeq t\}
fun stamp-unary :: IRUnaryOp \Rightarrow Stamp \Rightarrow Stamp where
  stamp-unary op (IntegerStamp\ b\ lo\ hi) = unrestricted-stamp\ (IntegerStamp\ b\ lo\ hi)
  stamp-unary op -= IllegalStamp
definition fixed-32 :: IRBinaryOp set where
  fixed-32 = \{BinIntegerEquals, BinIntegerLessThan, BinIntegerBelow\}
fun stamp-binary :: IRBinaryOp \Rightarrow Stamp \Rightarrow Stamp \Rightarrow Stamp where
  stamp-binary op (IntegerStamp b1 lo1 hi1) (IntegerStamp b2 lo2 hi2) =
    (case op \in fixed-32 of True \Rightarrow unrestricted-stamp (IntegerStamp 32 lo1 hi1)
     (if (b1 = b2) then unrestricted-stamp (IntegerStamp b1 lo1 hi1) else Illegal-
Stamp)) \mid
  stamp-binary op - - = IllegalStamp
fun stamp-expr :: IRExpr \Rightarrow Stamp where
```

stamp-expr (UnaryExpr op x) = stamp-unary op (stamp-expr x)

```
stamp-expr\ (BinaryExpr\ bop\ x\ y) = stamp-binary\ bop\ (stamp-expr\ x)\ (stamp-expr\ x)
y)
  stamp-expr (ConstantExpr val) = constantAsStamp val |
  stamp-expr(LeafExpr(i s) = s \mid
  stamp-expr (ParameterExpr i s) = s
  stamp-expr (ConditionalExpr c t f) = meet (stamp-expr t) (stamp-expr f)
export-code stamp-unary stamp-binary stamp-expr
fun unary-node :: IRUnaryOp \Rightarrow ID \Rightarrow IRNode where
  unary-node UnaryAbs\ v = AbsNode\ v
  unary-node UnaryNot \ v = NotNode \ v
  unary-node\ UnaryNeg\ v=NegateNode\ v\mid
  unary-node UnaryLogicNegation \ v = LogicNegationNode \ v \mid
  unary-node (UnaryNarrow\ ib\ rb) v=NarrowNode\ ib\ rb\ v
  unary-node (UnarySignExtend\ ib\ rb) v=SignExtendNode\ ib\ rb\ v
  unary-node (UnaryZeroExtend\ ib\ rb) v=ZeroExtendNode\ ib\ rb\ v
fun bin-node :: IRBinaryOp \Rightarrow ID \Rightarrow ID \Rightarrow IRNode where
  bin-node BinAdd\ x\ y = AddNode\ x\ y\ |
  bin-node BinMul\ x\ y = MulNode\ x\ y\ |
  bin-node BinSub \ x \ y = SubNode \ x \ y \mid
  bin\text{-}node\ BinAnd\ x\ y = AndNode\ x\ y\ |
  bin-node BinOr \ x \ y = OrNode \ x \ y \mid
  bin-node BinXor \ x \ y = XorNode \ x \ y \mid
  bin-node\ BinLeftShift\ x\ y = LeftShiftNode\ x\ y\ |
  bin-node\ BinRightShift\ x\ y=RightShiftNode\ x\ y
  bin-node BinURightShift \ x \ y = UnsignedRightShiftNode \ x \ y \ |
  bin-node BinIntegerEquals \ x \ y = IntegerEqualsNode \ x \ y \ |
  bin-node\ BinIntegerLessThan\ x\ y = IntegerLessThanNode\ x\ y\ |
  bin-node BinIntegerBelow \ x \ y = IntegerBelowNode \ x \ y
fun choose-32-64 :: int \Rightarrow int64 \Rightarrow Value where
  choose-32-64 bits\ val =
     (if bits = 32
      then (IntVal32 (ucast val))
      else\ (IntVal64\ (val)))
inductive fresh-id :: IRGraph \Rightarrow ID \Rightarrow bool where
  n \notin ids \ g \Longrightarrow fresh-id \ g \ n
code-pred fresh-id.
```

```
fun get-fresh-id :: IRGraph \Rightarrow ID where
  get-fresh-id g = last(sorted-list-of-set(ids g)) + 1
export-code get-fresh-id
value get-fresh-id eg2-sq
value get-fresh-id (add-node 6 (ParameterNode 2, default-stamp) eg2-sq)
inductive
  unrep :: IRGraph \Rightarrow IRExpr \Rightarrow (IRGraph \times ID) \Rightarrow bool (- \triangleleft - \leadsto - 55)
  unrepList :: IRGraph \Rightarrow IRExpr\ list \Rightarrow (IRGraph \times ID\ list) \Rightarrow bool\ (- \triangleleft_L - \leadsto -
55)
   where
  ConstantNodeSame:
  \llbracket find\text{-}node\text{-}and\text{-}stamp\ g\ (ConstantNode\ c,\ constantAsStamp\ c) = Some\ n \rrbracket
    \implies g \triangleleft (ConstantExpr c) \rightsquigarrow (g, n)
  ConstantNodeNew:\\
  \llbracket find\text{-}node\text{-}and\text{-}stamp\ g\ (ConstantNode\ c,\ constantAsStamp\ c) = None;
    n = get-fresh-id g;
    g' = add-node n (ConstantNode c, constantAsStamp c) g
    \implies g \triangleleft (ConstantExpr\ c) \rightsquigarrow (g',\ n)
  ParameterNodeSame:
  \llbracket find\text{-}node\text{-}and\text{-}stamp\ g\ (ParameterNode\ i,\ s) = Some\ n \rrbracket
    \implies g \triangleleft (ParameterExpr \ i \ s) \rightsquigarrow (g, \ n) \mid
  ParameterNodeNew:
  \llbracket find\text{-}node\text{-}and\text{-}stamp\ g\ (ParameterNode\ i,\ s) = None;
    n = get\text{-}fresh\text{-}id g;
    g' = add-node n (ParameterNode i, s) g
    \implies g \triangleleft (ParameterExpr \ i \ s) \rightsquigarrow (g', n) \mid
  Conditional Node Same: \\
  \llbracket g \triangleleft_L [ce, te, fe] \rightsquigarrow (g2, [c, t, f]);
    s' = meet (stamp \ g2 \ t) (stamp \ g2 \ f);
    find-node-and-stamp g2 (ConditionalNode c t f, s') = Some n
    \implies g \triangleleft (ConditionalExpr \ ce \ te \ fe) \rightsquigarrow (g2, n)
  Conditional Node New:\\
  \llbracket g \triangleleft_L [ce, te, fe] \rightsquigarrow (g2, [c, t, f]);
    s' = meet (stamp \ g2 \ t) (stamp \ g2 \ f);
    find-node-and-stamp g2 (ConditionalNode c t f, s') = None;
    n = qet-fresh-id q2;
    g' = add-node n (ConditionalNode c t f, s') g2
```

```
\implies g \triangleleft (ConditionalExpr \ ce \ te \ fe) \rightsquigarrow (g', n)
  UnaryNodeSame: \\
  \llbracket g \triangleleft xe \rightsquigarrow (g2, x);
    s' = stamp\text{-}unary op (stamp g2 x);
    find-node-and-stamp g2 (unary-node op x, s') = Some n
    \implies g \triangleleft (UnaryExpr \ op \ xe) \rightsquigarrow (g2, n) \mid
  UnaryNodeNew:
  \llbracket g \triangleleft xe \leadsto (g2, x);
    s' = stamp\text{-}unary \ op \ (stamp \ g2 \ x);
    find-node-and-stamp g2 (unary-node op x, s') = None;
    n = get-fresh-id g2;
    g' = add-node n (unary-node op x, s') g2
    \implies g \triangleleft (UnaryExpr \ op \ xe) \rightsquigarrow (g', n)
  BinaryNodeSame:
  \llbracket g \triangleleft_L [xe, ye] \leadsto (g2, [x, y]);
    s' = stamp-binary op (stamp g2 x) (stamp g2 y);
    find-node-and-stamp \ g2 \ (bin-node \ op \ x \ y, \ s') = Some \ n]
    \implies g \triangleleft (BinaryExpr \ op \ xe \ ye) \rightsquigarrow (g2, n)
  BinaryNodeNew:
  \llbracket g \triangleleft_L [xe, ye] \rightsquigarrow (g2, [x, y]);
    s' = stamp\text{-}binary\ op\ (stamp\ g2\ x)\ (stamp\ g2\ y);
    find-node-and-stamp g2 (bin-node op x y, s') = None;
    n = get-fresh-id g2;
    g' = add-node n (bin-node op x y, s') g2
     \implies g \triangleleft (BinaryExpr \ op \ xe \ ye) \leadsto (g', \ n) \mid
  AllLeafNodes:
  stamp \ q \ n = s
    \implies g \triangleleft (LeafExpr \ n \ s) \rightsquigarrow (g, \ n) \mid
  UnrepNil:
  g \triangleleft_L [] \leadsto (g, []) \mid
  UnrepCons:
  \llbracket g \triangleleft xe \leadsto (g2, x);
    g2 \triangleleft_L xes \leadsto (g3, xs)
    \implies g \triangleleft_L (xe\#xes) \rightsquigarrow (g3, x\#xs)
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ unrep E)
\mathbf{code\text{-}pred}\ (modes:\ i\Rightarrow i\Rightarrow o\Rightarrow bool\ as\ unrepListE)\ unrepList .
```

```
unrepRules
 find-node-and-stamp g (ConstantNode c, constantAsStamp c) = Some n
                           g \triangleleft ConstantExpr c \leadsto (g, n)
  find-node-and-stamp g (ConstantNode c, constantAsStamp c) = None
                                   n = get-fresh-id g
           g' = add-node n (ConstantNode c, constantAsStamp c) g
                           g \triangleleft ConstantExpr c \leadsto (g', n)
            find-node-and-stamp g (ParameterNode i, s) = Some n
                         g \triangleleft ParameterExpr \ i \ s \leadsto (g, n)
             find-node-and-stamp g (ParameterNode i, s) = None
       n = get-fresh-id g' = add-node n (ParameterNode i, s) g
                         g \triangleleft ParameterExpr \ i \ s \leadsto (g', n)
g \triangleleft_L [ce, te, fe] \rightsquigarrow (g2, [c, t, f]) s' = meet (stamp g2 t) (stamp g2 f)
        find-node-and-stamp g2 (ConditionalNode c t f, s') = Some n
                     g \triangleleft ConditionalExpr \ ce \ te \ fe \leadsto (g2, n)
g \triangleleft_L [ce, te, fe] \leadsto (g2, [c, t, f]) s' = meet (stamp g2 t) (stamp g2 f)
         find-node-and-stamp g2 (ConditionalNode c t f, s') = None
  n = get-fresh-id g2
                              g' = add-node n (ConditionalNode c t f, s') g2
                     g \triangleleft ConditionalExpr \ ce \ te \ fe \rightsquigarrow (g', n)
                             g \triangleleft_L [xe, ye] \leadsto (g2, [x, y])
                s' = stamp\text{-}binary\ op\ (stamp\ g2\ x)\ (stamp\ g2\ y)
           find-node-and-stamp g2 (bin-node op x y, s') = Some n
                       g \triangleleft BinaryExpr \ op \ xe \ ye \leadsto (g2, n)
                            g \triangleleft_L [xe, ye] \leadsto (g2, [x, y])
                s' = stamp\text{-}binary \ op \ (stamp \ g2 \ x) \ (stamp \ g2 \ y)
             find-node-and-stamp g2 (bin-node op x y, s') = None
      n = get-fresh-id g2
                                 g' = add-node n (bin-node op x y, s') g2
                        g \triangleleft BinaryExpr \ op \ xe \ ye \leadsto (g', n)
           q \triangleleft xe \rightsquigarrow (q2, x) s' = stamp-unary op (stamp q2 x)
           find-node-and-stamp g2 (unary-node op x, s') = Some n
                         g \triangleleft UnaryExpr \ op \ xe \leadsto (g2, n)
           g \triangleleft xe \leadsto (g2, x)
                                     s' = stamp\text{-}unary \ op \ (stamp \ g2 \ x)
             find-node-and-stamp g2 (unary-node op x, s') = None
     n = get-fresh-id g2
                                 g' = add-node n (unary-node of x, s') g2
                          g \triangleleft UnaryExpr \ op \ xe \leadsto (g', n)
                                    stamp \ g \ n = s
                             g \triangleleft LeafExpr \ n \ s \leadsto (g, n)
```

```
definition \ sq\text{-}param0 :: IRExpr \ \mathbf{where}
  sq	ext{-}param0 = BinaryExpr\ BinMul
    (ParameterExpr 0 (IntegerStamp 32 (- 2147483648) 2147483647))
    (ParameterExpr 0 (IntegerStamp 32 (- 2147483648) 2147483647))
values \{(n, g) : (eg2\text{-}sq \triangleleft sq\text{-}param0 \leadsto (g, n))\}
definition encodeeval :: IRGraph \Rightarrow MapState \Rightarrow Params \Rightarrow ID \Rightarrow Value \Rightarrow bool
  ([-,-,-] \vdash - \mapsto - 50)
  where
  encodeeval q m p n v = (\exists e. (q \vdash n \simeq e) \land ([m,p] \vdash e \mapsto v))
values \{v. \ evaltree \ new-map-state \ [IntVal32 \ 5] \ sq-param0 \ v\}
declare evaltree.intros [intro]
declare evaltrees.intros [intro]
definition graph-refinement :: IRGraph \Rightarrow IRGraph \Rightarrow bool where
  graph-refinement g1 g2 =
         (\forall \ n \ . \ n \in ids \ g1 \longrightarrow (\forall \ e1. \ (g1 \vdash n \simeq e1) \longrightarrow (\exists \ e2. \ (g2 \vdash n \simeq e2) \wedge e1 \geq e1) \longrightarrow (\exists \ e2. \ (g2 \vdash n \simeq e2) \wedge e1 \geq e1)
(e2)))
lemma graph-refinement:
  graph-refinement g1 g2 \Longrightarrow (\forall n \ m \ p \ v. \ n \in ids \ g1 \longrightarrow ([g1, m, p] \vdash n \mapsto v) \longrightarrow
([g2, m, p] \vdash n \mapsto v))
  by (meson encodeeval-def graph-refinement-def le-expr-def)
definition graph-represents-expression :: IRGraph <math>\Rightarrow ID \Rightarrow IRExpr \Rightarrow bool
  (-\vdash - \trianglelefteq - 50)
  where
  \textit{graph-represents-expression g n } e = (\forall \textit{ m p v }. ([\textit{m,p}] \vdash e \mapsto \textit{v}) \longrightarrow ([\textit{g,m,p}] \vdash \textit{n}
\mapsto v))
```

end

3 Data-flow Expression-Tree Theorems

```
\begin{array}{c} \textbf{theory} \ IRTreeEvalThms \\ \textbf{imports} \\ TreeToGraph \\ HOL-Eisbach.Eisbach \\ \textbf{begin} \end{array}
```

3.1 Extraction and Evaluation of Expression Trees is Deterministic.

First, we prove some extra rules that relate each type of IRNode to the corresponding IRExpr type that 'rep' will produce. These are very helpful for proving that 'rep' is deterministic.

```
named-theorems rep
```

```
lemma rep-constant [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = ConstantNode\ c \Longrightarrow
   e = ConstantExpr c
  by (induction rule: rep.induct; auto)
lemma rep-parameter [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = ParameterNode\ i \Longrightarrow
   (\exists s. \ e = ParameterExpr \ i \ s)
  by (induction rule: rep.induct; auto)
lemma rep-conditional [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ q\ n = ConditionalNode\ c\ t\ f \Longrightarrow
   (\exists ce te fe. e = ConditionalExpr ce te fe)
  by (induction rule: rep.induct; auto)
lemma rep-abs [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = AbsNode\ x \Longrightarrow
   (\exists xe. \ e = UnaryExpr\ UnaryAbs\ xe)
  by (induction rule: rep.induct; auto)
lemma rep-not [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind \ q \ n = NotNode \ x \Longrightarrow
   (\exists \, xe. \ e = \mathit{UnaryExpr} \ \mathit{UnaryNot} \ \mathit{xe})
  by (induction rule: rep.induct; auto)
lemma rep-negate [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = NegateNode\ x \Longrightarrow
```

```
(\exists xe. \ e = UnaryExpr\ UnaryNeg\ xe)
  by (induction rule: rep.induct; auto)
lemma rep-logicnegation [rep]:
  q \vdash n \simeq e \Longrightarrow
  kind\ g\ n = LogicNegationNode\ x \Longrightarrow
   (\exists xe. \ e = UnaryExpr\ UnaryLogicNegation\ xe)
  by (induction rule: rep.induct; auto)
lemma rep-add [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = AddNode\ x\ y \Longrightarrow
  (\exists xe \ ye. \ e = BinaryExpr \ BinAdd \ xe \ ye)
  by (induction rule: rep.induct; auto)
lemma rep-sub [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = SubNode\ x\ y \Longrightarrow
   (\exists xe \ ye. \ e = BinaryExpr \ BinSub \ xe \ ye)
  by (induction rule: rep.induct; auto)
lemma rep-mul [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = MulNode\ x\ y \Longrightarrow
   (\exists xe \ ye. \ e = BinaryExpr \ BinMul \ xe \ ye)
  by (induction rule: rep.induct; auto)
lemma rep-and [rep]:
  g \vdash n \simeq e \Longrightarrow
  kind\ g\ n = AndNode\ x\ y \Longrightarrow
   (\exists xe \ ye. \ e = BinaryExpr \ BinAnd \ xe \ ye)
  by (induction rule: rep.induct; auto)
lemma rep-or [rep]:
  g \vdash n \simeq e \Longrightarrow
  kind \ q \ n = OrNode \ x \ y \Longrightarrow
  (\exists xe \ ye. \ e = BinaryExpr \ BinOr \ xe \ ye)
  by (induction rule: rep.induct; auto)
lemma rep-xor [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = XorNode\ x\ y \Longrightarrow
  (\exists xe \ ye. \ e = BinaryExpr \ BinXor \ xe \ ye)
  by (induction rule: rep.induct; auto)
lemma rep-integer-below [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = IntegerBelowNode\ x\ y \Longrightarrow
   (\exists xe \ ye. \ e = BinaryExpr \ BinIntegerBelow \ xe \ ye)
```

```
by (induction rule: rep.induct; auto)
lemma rep-integer-equals [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = IntegerEqualsNode\ x\ y \Longrightarrow
   (\exists xe \ ye. \ e = BinaryExpr \ BinIntegerEquals \ xe \ ye)
  by (induction rule: rep.induct; auto)
\mathbf{lemma} \ \mathit{rep-integer-less-than} \ [\mathit{rep}] :
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = IntegerLessThanNode\ x\ y \Longrightarrow
   (\exists xe \ ye. \ e = BinaryExpr \ BinIntegerLessThan \ xe \ ye)
  by (induction rule: rep.induct; auto)
lemma rep-narrow [rep]:
  q \vdash n \simeq e \Longrightarrow
   kind \ q \ n = NarrowNode \ ib \ rb \ x \Longrightarrow
   (\exists x. \ e = UnaryExpr (UnaryNarrow ib \ rb) \ x)
  by (induction rule: rep.induct; auto)
lemma rep-sign-extend [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = SignExtendNode\ ib\ rb\ x \Longrightarrow
   (\exists x. \ e = UnaryExpr (UnarySignExtend \ ib \ rb) \ x)
  by (induction rule: rep.induct; auto)
lemma rep-zero-extend [rep]:
  g \vdash n \simeq e \Longrightarrow
   kind\ g\ n = ZeroExtendNode\ ib\ rb\ x \Longrightarrow
   (\exists x. \ e = UnaryExpr\ (UnaryZeroExtend\ ib\ rb)\ x)
  by (induction rule: rep.induct; auto)
lemma rep-load-field [rep]:
  g \vdash n \simeq e \Longrightarrow
   is-preevaluated (kind g n) \Longrightarrow
   (\exists s. \ e = LeafExpr \ n \ s)
  by (induction rule: rep.induct; auto)
method solve-det uses node =
  (match\ node\ \mathbf{in}\ kind\ {\mbox{--}} = node\ {\mbox{--}}\ \mathbf{for}\ node \Rightarrow
     \langle match \ rep \ in \ r: - \Longrightarrow - = node - \Longrightarrow - \Longrightarrow
       \langle match\ IRNode.inject\ in\ i:\ (node\ -=\ node\ -)=-\Rightarrow
          (\mathit{match}\ \mathit{RepE}\ \mathit{in}\ e\hbox{:-}\Longrightarrow (\bigwedge x.\ \mathit{-}=\mathit{node}\ x\Longrightarrow \mathit{-})\Longrightarrow \mathit{-}\Longrightarrow
            \langle metis \ i \ e \ r \rangle \rangle \rangle \rangle
    match \ node \ \mathbf{in} \ kind \ -- = node \ -- \ \mathbf{for} \ node \Rightarrow
     \langle match \ rep \ in \ r: - \Longrightarrow - = node - - \Longrightarrow - \Longrightarrow
        (\textit{match IRNode.inject in i: } (\textit{node} - - = \textit{node} - -) = - \Rightarrow \\
          \langle match \; RepE \; in \; e: - \Longrightarrow (\bigwedge x \; y. \; - = \; node \; x \; y \Longrightarrow -) \Longrightarrow - \Longrightarrow
```

```
\langle metis \ i \ e \ r \rangle \rangle \rangle \rangle
   match \ node \ \mathbf{in} \ kind \ -- = node \ -- - \ \mathbf{for} \ node \Rightarrow
    \langle match \ rep \ in \ r: - \Longrightarrow - = node - - - \Longrightarrow - \Rightarrow
       \langle match\ IRNode.inject\ in\ i:\ (node --- = node ---) = - \Rightarrow
         \langle match \; RepE \; in \; e: - \Longrightarrow (\bigwedge x \; y \; z. \; - = \; node \; x \; y \; z \Longrightarrow -) \Longrightarrow - \Longrightarrow
           \langle metis \ i \ e \ r \rangle \rangle \rangle \rangle
  match \ node \ \mathbf{in} \ kind - - = node - - - \mathbf{for} \ node \Rightarrow
    \langle match \ rep \ in \ r: - \Longrightarrow - = node - - - \Longrightarrow - \Longrightarrow
       \langle match\ IRNode.inject\ in\ i:\ (node --- = node ---) = - \Rightarrow
         \langle match \; RepE \; in \; e: - \Longrightarrow (\bigwedge x. \; - = node \; - \; x \Longrightarrow -) \Longrightarrow - \Longrightarrow
           \langle metis \ i \ e \ r \rangle \rangle \rangle )
Now we can prove that 'rep' and 'eval', and their list versions, are determin-
istic.
lemma repDet:
  shows (g \vdash n \simeq e1) \Longrightarrow (g \vdash n \simeq e2) \Longrightarrow e1 = e2
proof (induction arbitrary: e2 rule: rep.induct)
  case (ConstantNode\ n\ c)
  then show ?case using rep-constant by auto
next
  case (ParameterNode \ n \ i \ s)
  then show ?case using rep-parameter by auto
next
  case (ConditionalNode\ n\ c\ t\ f\ ce\ te\ fe)
  then show ?case
    by (solve-det node: ConditionalNode)
  case (AbsNode \ n \ x \ xe)
  then show ?case
    by (solve-det node: AbsNode)
next
  case (NotNode \ n \ x \ xe)
  then show ?case
    by (solve-det node: NotNode)
  case (NegateNode \ n \ x \ xe)
  then show ?case
    by (solve-det node: NegateNode)
  case (LogicNegationNode \ n \ x \ xe)
  then show ?case
    by (solve-det node: LogicNegationNode)
  case (AddNode \ n \ x \ y \ xe \ ye)
  then show ?case
    by (solve-det node: AddNode)
```

case $(MulNode \ n \ x \ y \ xe \ ye)$

then show ?case

```
by (solve-det node: MulNode)
next
 case (SubNode \ n \ x \ y \ xe \ ye)
 then show ?case
   by (solve-det node: SubNode)
\mathbf{next}
 case (AndNode \ n \ x \ y \ xe \ ye)
 then show ?case
   by (solve-det node: AndNode)
next
 case (OrNode \ n \ x \ y \ xe \ ye)
 then show ?case
   by (solve-det node: OrNode)
next
 case (XorNode \ n \ x \ y \ xe \ ye)
 then show ?case
   by (solve-det node: XorNode)
\mathbf{next}
 case (IntegerBelowNode \ n \ x \ y \ xe \ ye)
 then show ?case
   by (solve-det node: IntegerBelowNode)
\mathbf{next}
 case (IntegerEqualsNode\ n\ x\ y\ xe\ ye)
 then show ?case
   by (solve-det node: IntegerEqualsNode)
next
 case (IntegerLessThanNode\ n\ x\ y\ xe\ ye)
 then show ?case
   by (solve-det node: IntegerLessThanNode)
next
 case (NarrowNode \ n \ x \ xe)
 then show ?case
   by (metis IRNode.inject(28) NarrowNodeE rep-narrow)
 case (SignExtendNode \ n \ x \ xe)
 then show ?case
   using SignExtendNodeE rep-sign-extend IRNode.inject(39)
   by (metis IRNode.inject(39) SignExtendNodeE rep-sign-extend)
next
 case (ZeroExtendNode \ n \ x \ xe)
 then show ?case
   by (metis IRNode.inject(50) ZeroExtendNodeE rep-zero-extend)
 case (LeafNode \ n \ s)
 then show ?case using rep-load-field LeafNodeE by blast
qed
lemma repAllDet:
 g \vdash xs \simeq_L e1 \Longrightarrow
```

```
g \vdash xs \simeq_L e2 \Longrightarrow
   e1 = e2
proof (induction arbitrary: e2 rule: replist.induct)
  case RepNil
  then show ?case
    using replist.cases by auto
\mathbf{next}
  case (RepCons\ x\ xe\ xs\ xse)
  then show ?case
    by (metis list.distinct(1) list.sel(1) list.sel(3) repDet replist.cases)
\mathbf{lemma}\ evalDet:
  [m,p] \vdash e \mapsto v1 \Longrightarrow
   [m,p] \vdash e \mapsto v2 \Longrightarrow
 apply (induction arbitrary: v2 rule: evaltree.induct)
  by (elim EvalTreeE; auto)+
\mathbf{lemma}\ evalAllDet:
  [m,p] \vdash e \mapsto_L v1 \Longrightarrow
   [m,p] \vdash e \mapsto_L v2 \Longrightarrow
   v1 = v2
  apply (induction arbitrary: v2 rule: evaltrees.induct)
  apply (elim EvalTreeE; auto)
  using evalDet by force
\mathbf{lemma}\ encodeEvalDet:
  [g,m,p] \vdash e \mapsto v1 \Longrightarrow
   [g,m,p] \vdash e \mapsto v2 \Longrightarrow
  v1 = v2
 by (metis encodeeval-def evalDet repDet)
lemma graphDet: ([g,m,p] \vdash nid \mapsto v1) \land ([g,m,p] \vdash nid \mapsto v2) \Longrightarrow v1 = v2
  using encodeEvalDet by blast
A valid value cannot be UndefVal.
\mathbf{lemma}\ \mathit{valid}\text{-}\mathit{not}\text{-}\mathit{undef}\text{:}
 assumes a1: valid-value s val
 assumes a2: s \neq VoidStamp
 shows val \neq UndefVal
 apply (rule valid-value.elims(1)[of s val True])
 using a1 a2 by auto
lemma valid-VoidStamp[elim]:
  shows \ valid-value VoidStamp \ val \Longrightarrow
      val = UndefVal
```

```
using valid-value.simps by (metis IRTreeEval.val-to-bool.cases)
lemma valid-ObjStamp[elim]:
 shows valid-value (ObjectStamp klass exact nonNull alwaysNull) val \Longrightarrow
     (\exists v. val = ObjRef v)
 using valid-value.simps by (metis IRTreeEval.val-to-bool.cases)
lemma valid-int32[elim]:
 shows valid-value (IntegerStamp 32 l h) val \Longrightarrow
     (\exists v. val = IntVal32 v)
 apply (rule IRTreeEval.val-to-bool.cases[of val])
 using Value.distinct by simp+
lemma valid-int64[elim]:
 shows valid-value (IntegerStamp 64 l h) val \Longrightarrow
     (\exists v. val = IntVal64 v)
 apply (rule IRTreeEval.val-to-bool.cases[of val])
 using Value.distinct by simp+
TODO: could we prove that expression evaluation never returns UndefVal?
But this might require restricting unary and binary operators to be total...
lemma leafint32:
 assumes ev: [m,p] \vdash LeafExpr\ i\ (IntegerStamp\ 32\ lo\ hi) \mapsto val
 shows \exists v. val = (Int Val 32 v)
proof -
 have valid-value (IntegerStamp 32 lo hi) val
   using ev by (rule LeafExprE; simp)
 then show ?thesis by auto
qed
lemma leafint64:
 assumes ev: [m,p] \vdash LeafExpr\ i\ (IntegerStamp\ 64\ lo\ hi) \mapsto val
 shows \exists v. val = (Int Val 64 v)
proof -
 have valid-value (IntegerStamp 64 lo hi) val
   using ev by (rule LeafExprE; simp)
 then show ?thesis by auto
qed
lemma default-stamp [simp]: default-stamp = IntegerStamp 32 (-2147483648)
2147483647
 using default-stamp-def by auto
lemma valid32 [simp]:
 assumes valid-value (IntegerStamp 32 lo hi) val
 shows \exists v. (val = (Int Val 32 \ v) \land lo \leq sint \ v \land sint \ v \leq hi)
```

```
using assms valid-int32 by force
lemma valid64 [simp]:
 assumes valid-value (IntegerStamp 64 lo hi) val
 shows \exists v. (val = (Int Val64 \ v) \land lo \leq sint \ v \land sint \ v \leq hi)
 using assms valid-int64 by force
experiment begin
{f lemma}\ int-stamp-implies-valid-value:
 [m,p] \vdash expr \mapsto val \Longrightarrow
  valid-value (stamp-expr expr) val
proof (induction rule: evaltree.induct)
 case (ConstantExpr c)
 then show ?case sorry
next
 case (ParameterExpr s i)
 then show ?case sorry
 case (ConditionalExpr ce cond branch te fe v)
 then show ?case sorry
 case (UnaryExpr xe v op)
 then show ?case sorry
next
 case (BinaryExpr\ xe\ x\ ye\ y\ op)
 then show ?case sorry
 case (LeafExpr\ val\ nid\ s)
 then show ?case sorry
qed
end
lemma valid32or64:
 {\bf assumes}\ valid\text{-}value\ (IntegerStamp\ b\ lo\ hi)\ x
 shows (\exists v1. (x = IntVal32 v1)) \lor (\exists v2. (x = IntVal64 v2))
 using valid32 valid64 assms valid-value.elims(2) by blast
lemma valid32or64-both:
 assumes valid-value (IntegerStamp b lox hix) x
 and valid-value (IntegerStamp b loy hiy) y
 shows (\exists v1 v2. \ x = IntVal32 \ v1 \land y = IntVal32 \ v2) \lor (\exists v3 v4. \ x = IntVal64)
v3 \wedge y = Int Val64 v4
  using assms valid32or64 valid32 valid-value.elims(2) valid-value.simps(1) by
metis
       Example Data-flow Optimisations
lemma a\theta a-helper [simp]:
```

assumes a: valid-value (IntegerStamp 32 lo hi) v

```
shows intval-add v (IntVal32 0) = v
proof -
 obtain v32 :: int32 where v = (IntVal32 \ v32) using a valid32 by blast
 then show ?thesis by simp
ged
lemma a0a: (BinaryExpr BinAdd (LeafExpr 1 default-stamp) (ConstantExpr (IntVal32
\theta)))
           \geq (LeafExpr\ 1\ default\text{-}stamp)
 by (auto simp add: evaltree.LeafExpr)
lemma xyx-y-helper [simp]:
 assumes valid-value (IntegerStamp 32 lox hix) x
 assumes valid-value (IntegerStamp 32 loy hiy) y
 shows intval-add x (intval-sub y x) = y
proof -
 obtain x32 :: int32 where x: x = (IntVal32 x32) using assms valid32 by blast
 obtain y32 :: int32 where y: y = (IntVal32 \ y32) using assms valid32 by blast
 show ?thesis using x y by simp
qed
lemma xyx-y:
 (BinaryExpr BinAdd
    (LeafExpr x (IntegerStamp 32 lox hix))
    (BinaryExpr BinSub
     (LeafExpr y (IntegerStamp 32 loy hiy))
     (LeafExpr x (IntegerStamp 32 lox hix))))
  \geq (LeafExpr\ y\ (IntegerStamp\ 32\ loy\ hiy))
 by (auto simp add: LeafExpr)
```

3.3 Monotonicity of Expression Optimization

We prove that each subexpression position is monotonic. That is, optimizing a subexpression anywhere deep inside a top-level expression also optimizes that top-level expression.

Note that we might also be able to do this via reusing Isabelle's 'mono' operator (HOL.Orderings theory), proving instantiations like 'mono (UnaryExprop)', but it is not obvious how to do this for both arguments of the binary expressions.

```
lemma mono-unary:

assumes e \ge e'

shows (UnaryExpr op e) \ge (UnaryExpr op e')

using UnaryExpr assms by auto

lemma mono-binary:

assumes x \ge x'
```

```
assumes y \geq y'
 shows (BinaryExpr\ op\ x\ y) \ge (BinaryExpr\ op\ x'\ y')
 using BinaryExpr assms by auto
lemma mono-conditional:
 assumes ce \geq ce'
 assumes te \ge te'
 assumes fe \geq fe'
 shows (ConditionalExpr ce te fe) \geq (ConditionalExpr ce' te' fe')
proof (simp only: le-expr-def; (rule allI)+; rule impI)
 \mathbf{fix} \ m \ p \ v
 assume a: [m,p] \vdash ConditionalExpr ce te fe \mapsto v
 then obtain cond where ce: [m,p] \vdash ce \mapsto cond by auto
 then have ce': [m,p] \vdash ce' \mapsto cond using assms by auto
 define branch where b: branch = (if \ val\ -to\ -bool \ cond \ then \ te \ else \ fe)
 define branch' where b': branch' = (if val-to-bool cond then te' else fe')
 then have [m,p] \vdash branch \mapsto v using a b ce evalDet by blast
 then have [m,p] \vdash branch' \mapsto v using assms b b' by auto
 then show [m,p] \vdash ConditionalExpr ce' te' fe' \mapsto v
   using ConditionalExpr ce' b'
   using a by blast
\mathbf{qed}
end
theory Tree To Graph Thms
imports
  Tree To Graph
  IRTreeEvalThms
  HOL-Eisbach.Eisbach
Lift refinement monotonicity to graph level. Hopefully these shouldn't really
be required.
lemma mono-abs:
 assumes kind \ g1 \ n = AbsNode \ x \land kind \ g2 \ n = AbsNode \ x
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes xe1 \ge xe2
 assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 \ge e2
 by (metis AbsNode assms(1) assms(2) assms(3) assms(4) mono-unary repDet)
lemma mono-not:
 assumes kind\ g1\ n=NotNode\ x\wedge kind\ g2\ n=NotNode\ x
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes xe1 \ge xe2
 assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 \ge e2
```

```
by (metis\ NotNode\ assms(1)\ assms(2)\ assms(3)\ assms(4)\ mono-unary\ repDet)
lemma mono-negate:
 assumes kind g1 n = NegateNode x \land kind g2 n = NegateNode x
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes xe1 \ge xe2
 assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 \ge e2
 by (metis\ NegateNode\ assms(1)\ assms(2)\ assms(3)\ assms(4)\ mono-unary\ repDet)
lemma mono-logic-negation:
 assumes kind g1 n = LogicNegationNode x \land kind g2 n = LogicNegationNode x
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes xe1 \ge xe2
 assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 > e2
 by (metis LogicNegationNode assms(1) assms(2) assms(3) assms(4) mono-unary
repDet)
lemma mono-narrow:
 assumes kind g1 n = NarrowNode ib rb x \land kind g2 n = NarrowNode ib rb x
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes xe1 \ge xe2
 assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 \ge e2
 using assms mono-unary repDet NarrowNode
 by metis
lemma mono-sign-extend:
 assumes kind g1 n = SignExtendNode ib rb x \wedge kind g2 n = SignExtendNode ib
rb x
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes xe1 \ge xe2
 assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 \ge e2
  by (metis SignExtendNode assms(1) assms(2) assms(3) assms(4) mono-unary
repDet)
lemma mono-zero-extend:
 assumes kind q1 n = ZeroExtendNode ib rb x \wedge kind q2 n = ZeroExtendNode ib
rb x
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes xe1 \ge xe2
 assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 \ge e2
 {f using} \ assms \ mono-unary \ repDet \ ZeroExtendNode
 by metis
```

 $\mathbf{lemma}\ mono\text{-}conditional\text{-}graph:$

```
assumes kind g1 n = ConditionalNode\ c\ t\ f \land kind\ g2\ n = ConditionalNode\ c\ t\ f
  assumes (g1 \vdash c \simeq ce1) \land (g2 \vdash c \simeq ce2)
  assumes (g1 \vdash t \simeq te1) \land (g2 \vdash t \simeq te2)
  assumes (g1 \vdash f \simeq fe1) \land (g2 \vdash f \simeq fe2)
  assumes ce1 \ge ce2 \land te1 \ge te2 \land fe1 \ge fe2
  assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
 shows e1 \ge e2
 by (metis\ ConditionalNodeE\ IRNode.inject(6)\ assms(1)\ assms(2)\ assms(3)\ assms(4)
assms(5) assms(6) mono-conditional repDet rep-conditional)
lemma mono-add:
  assumes kind g1 n = AddNode \ x \ y \land kind \ g2 \ n = AddNode \ x \ y
 assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
 assumes (g1 \vdash y \simeq ye1) \land (g2 \vdash y \simeq ye2)
  assumes xe1 \ge xe2 \land ye1 \ge ye2
  assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
  shows e1 \ge e2
  using mono-binary assms
  by (metis AddNodeE IRNode.inject(2) repDet rep-add)
lemma mono-mul:
  assumes kind g1 n = MulNode \ x \ y \land kind \ g2 \ n = MulNode \ x \ y
  assumes (g1 \vdash x \simeq xe1) \land (g2 \vdash x \simeq xe2)
  assumes (g1 \vdash y \simeq ye1) \land (g2 \vdash y \simeq ye2)
  assumes xe1 \ge xe2 \land ye1 \ge ye2
  assumes (g1 \vdash n \simeq e1) \land (g2 \vdash n \simeq e2)
  shows e1 \ge e2
  using mono-binary assms
  by (metis IRNode.inject(27) MulNodeE repDet rep-mul)
lemma encodes-contains:
  g \vdash n \simeq e \Longrightarrow
  kind \ g \ n \neq NoNode
  apply (induction rule: rep.induct)
  apply (match IRNode.distinct in e: ?n \neq NoNode \Rightarrow
          \langle presburger \ add : \ e \rangle ) +
  by fastforce
lemma no-encoding:
  assumes n \notin ids g
  shows \neg(g \vdash n \simeq e)
  using assms apply simp apply (rule notI) by (induction e; simp add: en-
codes-contains)
\mathbf{lemma}\ not\text{-}excluded\text{-}keep\text{-}type\text{:}
  assumes n \in ids \ q1
  assumes n \notin excluded
  assumes (excluded \leq as\text{-}set g1) \subseteq as\text{-}set g2
```

```
shows kind\ g1\ n=kind\ g2\ n\ \land\ stamp\ g1\ n=stamp\ g2\ n
  using assms unfolding as-set-def domain-subtraction-def by blast
method metis-node-eq-unary for node :: 'a \Rightarrow IRNode =
  (match\ IRNode.inject\ \mathbf{in}\ i:\ (node\ -=\ node\ -)=-\Rightarrow
     \langle metis i \rangle)
method metis-node-eq-binary for node :: 'a \Rightarrow 'a \Rightarrow IRNode =
  (match\ IRNode.inject\ \mathbf{in}\ i:\ (node - - = node - -) = - \Rightarrow
     \langle metis i \rangle
method metis-node-eq-ternary for node :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow IRNode =
  (match\ IRNode.inject\ \mathbf{in}\ i:\ (node --- = node ---) = - \Rightarrow
     \langle metis i \rangle)
{\bf lemma}\ graph-semantics-preservation:
  assumes a: e1' \ge e2'
 assumes b: (\{n'\} \subseteq as\text{-}set\ g1) \subseteq as\text{-}set\ g2
 assumes c: g1 \vdash n' \simeq e1'
 assumes d: g2 \vdash n' \simeq e2'
 shows graph-refinement g1 g2
  unfolding graph-refinement-def
  apply (rule allI) apply (rule impI) apply (rule allI) apply (rule impI)
proof -
  fix n e1
  assume e: n \in ids \ g1
 assume f: (g1 \vdash n \simeq e1)
  show \exists e2. (g2 \vdash n \simeq e2) \land e1 \geq e2
  proof (cases n = n')
   \mathbf{case} \ \mathit{True}
   have g: e1 = e1' using cf True repDet by simp
   have h: (g2 \vdash n \simeq e2') \land e1' \geq e2'
     using True a d by blast
   then show ?thesis
     using g by blast
  \mathbf{next}
   {f case}\ {\it False}
   have n \notin \{n'\}
     using False by simp
   then have i: kind \ g1 \ n = kind \ g2 \ n \wedge stamp \ g1 \ n = stamp \ g2 \ n
     using not-excluded-keep-type
     using b e by presburger
   show ?thesis using f i
   proof (induction e1)
     case (ConstantNode\ n\ c)
     then show ?case
       by (metis eq-refl rep.ConstantNode)
     case (ParameterNode \ n \ i \ s)
     then show ?case
```

```
by (metis eq-refl rep.ParameterNode)
   next
     case (ConditionalNode n c t f ce1 te1 fe1)
     have k: g1 \vdash n \simeq ConditionalExpr ce1 te1 fe1 using f ConditionalNode
      by (simp add: ConditionalNode.hyps(2) rep.ConditionalNode)
     obtain cn tn fn where l: kind g1 n = ConditionalNode cn tn fn
       using ConditionalNode.hyps(1) by blast
     then have mc: g1 \vdash cn \simeq ce1
       using ConditionalNode.hyps(1) ConditionalNode.hyps(2) by fastforce
     from l have mt: g1 \vdash tn \simeq te1
       using ConditionalNode.hyps(1) ConditionalNode.hyps(3) by fastforce
     from l have mf: g1 \vdash fn \simeq fe1
       using ConditionalNode.hyps(1) ConditionalNode.hyps(4) by fastforce
     then show ?case
     proof -
      have q1 \vdash cn \simeq ce1 using mc by simp
      have g1 \vdash tn \simeq te1 using mt by simp
      have g1 \vdash fn \simeq fe1 using mf by simp
      have cer: \exists ce2. (g2 \vdash cn \simeq ce2) \land ce1 \geq ce2
        using ConditionalNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-ternary ConditionalNode)
       have ter: \exists te2. (g2 \vdash tn \simeq te2) \land te1 \geq te2
        using ConditionalNode a b c d l no-encoding not-excluded-keep-type repDet
singletonD
        by (metis-node-eq-ternary ConditionalNode)
      have \exists fe2. (g2 \vdash fn \simeq fe2) \land fe1 \geq fe2
       using ConditionalNode a b c d l no-encoding not-excluded-keep-type repDet
singletonD
        by (metis-node-eq-ternary ConditionalNode)
         then have \exists ce2 te2 fe2. (g2 \vdash n \simeq ConditionalExpr ce2 te2 fe2) \land
Conditional Expr\ ce1\ te1\ fe1 \geq Conditional Expr\ ce2\ te2\ fe2
        {\bf using} \ \ Conditional Node. prems \ l \ mono-conditional \ rep. \ Conditional Node \ cer
ter
        by (smt (verit) IRTreeEvalThms.mono-conditional)
      then show ?thesis
        by meson
     qed
   next
     case (AbsNode \ n \ x \ xe1)
     have k: g1 \vdash n \simeq UnaryExpr\ UnaryAbs\ xe1\ using\ f\ AbsNode
      by (simp\ add:\ AbsNode.hyps(2)\ rep.AbsNode)
     obtain xn where l: kind g1 n = AbsNode xn
      using AbsNode.hyps(1) by blast
     then have m: g1 \vdash xn \simeq xe1
      using AbsNode.hyps(1) AbsNode.hyps(2) by fastforce
     then show ?case
     proof (cases xn = n')
      case True
```

```
then have n: xe1 = e1' using c \ m \ repDet by simp
       then have ev: g2 \vdash n \simeq UnaryExpr\ UnaryAbs\ e2'\ using\ AbsNode.hyps(1)
l m n
        using AbsNode.prems True d rep.AbsNode by simp
       then have r: UnaryExpr\ UnaryAbs\ e1' \geq UnaryExpr\ UnaryAbs\ e2'
        by (meson a mono-unary)
      then show ?thesis using ev r
        by (metis \ n)
     next
      case False
      have g1 \vdash xn \simeq xe1 using m by simp
      have \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        \mathbf{using}\ \mathit{AbsNode}
       using False b encodes-contains l not-excluded-keep-type not-in-g singleton-iff
        by (metis-node-eq-unary AbsNode)
        then have \exists xe2. (g2 \vdash n \simeq UnaryExpr\ UnaryAbs\ xe2) \land UnaryExpr
UnaryAbs \ xe1 \ge UnaryExpr \ UnaryAbs \ xe2
        by (metis AbsNode.prems l mono-unary rep.AbsNode)
       then show ?thesis
        by meson
     ged
   \mathbf{next}
     case (NotNode \ n \ x \ xe1)
     have k: g1 \vdash n \simeq UnaryExpr\ UnaryNot\ xe1\ using\ f\ NotNode
       by (simp add: NotNode.hyps(2) rep.NotNode)
     obtain xn where l: kind g1 n = NotNode xn
       using NotNode.hyps(1) by blast
     then have m: g1 \vdash xn \simeq xe1
      using NotNode.hyps(1) NotNode.hyps(2) by fastforce
     then show ?case
     proof (cases xn = n')
      \mathbf{case} \ \mathit{True}
      then have n: xe1 = e1' using c \ m \ repDet by simp
       then have ev: g2 \vdash n \simeq UnaryExpr\ UnaryNot\ e2' using NotNode.hyps(1)
l m n
        using NotNode.prems True d rep.NotNode by simp
      then have r: UnaryExpr\ UnaryNot\ e1' \geq UnaryExpr\ UnaryNot\ e2'
        by (meson a mono-unary)
      then show ?thesis using ev r
        by (metis \ n)
     next
      case False
      have g1 \vdash xn \simeq xe1 using m by simp
      have \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        \mathbf{using}\ \mathit{NotNode}
        using False i b l not-excluded-keep-type singletonD no-encoding
        by (metis-node-eq-unary NotNode)
        then have \exists xe2. (g2 \vdash n \simeq UnaryExpr\ UnaryNot\ xe2) \land UnaryExpr
UnaryNot \ xe1 \ge UnaryExpr \ UnaryNot \ xe2
```

```
by (metis NotNode.prems l mono-unary rep.NotNode)
      then show ?thesis
        by meson
     qed
   next
     case (NegateNode \ n \ x \ xe1)
     have k: g1 \vdash n \simeq UnaryExpr\ UnaryNeg\ xe1\ using\ f\ NegateNode
      by (simp add: NegateNode.hyps(2) rep.NegateNode)
     obtain xn where l: kind g1 n = NegateNode xn
       using NegateNode.hyps(1) by blast
     then have m: g1 \vdash xn \simeq xe1
      using NegateNode.hyps(1) NegateNode.hyps(2) by fastforce
     then show ?case
     proof (cases xn = n')
      \mathbf{case} \ \mathit{True}
      then have n: xe1 = e1' using c m repDet by simp
     then have ev: g2 \vdash n \simeq UnaryExpr\ UnaryNeg\ e2'\ using\ NegateNode.hyps(1)
l m n
        using NegateNode.prems True d rep.NegateNode by simp
      then have r: UnaryExpr\ UnaryNeg\ e1' \geq UnaryExpr\ UnaryNeg\ e2'
        by (meson a mono-unary)
      then show ?thesis using ev r
        by (metis \ n)
     next
      {\bf case}\ \mathit{False}
      have g1 \vdash xn \simeq xe1 using m by simp
      have \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using NegateNode
        using False i b l not-excluded-keep-type singletonD no-encoding
        by (metis-node-eq-unary NegateNode)
        then have \exists xe2. (g2 \vdash n \simeq UnaryExpr\ UnaryNeg\ xe2) \land UnaryExpr
UnaryNeg \ xe1 \ge UnaryExpr \ UnaryNeg \ xe2
        by (metis NegateNode.prems l mono-unary rep.NegateNode)
      then show ?thesis
        by meson
     qed
   next
     case (LogicNegationNode\ n\ x\ xe1)
      have k: g1 \vdash n \simeq UnaryExpr\ UnaryLogicNegation\ xe1\ using\ f\ LogicNega-
tionNode
      \textbf{by} \ (simp \ add: \ LogicNegationNode.hyps(2) \ rep.LogicNegationNode)
     obtain xn where l: kind g1 n = LogicNegationNode xn
      using LogicNegationNode.hyps(1) by blast
     then have m: g1 \vdash xn \simeq xe1
      using LogicNegationNode.hyps(1) LogicNegationNode.hyps(2) by fastforce
     then show ?case
     proof (cases xn = n')
      case True
      then have n: xe1 = e1' using c \ m \ repDet by simp
```

```
then have ev: g2 \vdash n \simeq UnaryExpr\ UnaryLogicNegation\ e2' using
LogicNegationNode.hyps(1) l m n
        \mathbf{using}\ LogicNegationNode.prems\ True\ d\ rep.LogicNegationNode\ \mathbf{by}\ simp
      then have r: UnaryExpr\ UnaryLogicNegation\ e1' \geq UnaryExpr\ UnaryLog-
icNegation e2'
        by (meson a mono-unary)
      then show ?thesis using ev r
        by (metis \ n)
     next
      case False
      have g1 \vdash xn \simeq xe1 using m by simp
      have \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        \mathbf{using}\ LogicNegationNode
        using False i b l not-excluded-keep-type singletonD no-encoding
        by (metis-node-eq-unary LogicNegationNode)
         then have \exists xe2. (g2 \vdash n \simeq UnaryExpr\ UnaryLogicNegation\ xe2) \land
UnaryExpr\ UnaryLogicNegation\ xe1 \geq UnaryExpr\ UnaryLogicNegation\ xe2
        by (metis\ LogicNegationNode.prems\ l\ mono-unary\ rep.LogicNegationNode)
      then show ?thesis
        by meson
     qed
   \mathbf{next}
     case (AddNode \ n \ x \ y \ xe1 \ ye1)
     have k: g1 \vdash n \simeq BinaryExpr\ BinAdd\ xe1\ ye1\ using\ f\ AddNode
      by (simp\ add:\ AddNode.hyps(2)\ rep.AddNode)
     obtain xn yn where l: kind g1 n = AddNode xn yn
      using AddNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
      using AddNode.hyps(1) AddNode.hyps(2) by fastforce
     from l have my: g1 \vdash yn \simeq ye1
      using AddNode.hyps(1) AddNode.hyps(3) by fastforce
     then show ?case
     proof -
      have g1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using AddNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary AddNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
        using AddNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary AddNode)
     then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinAdd xe2 ye2) \land BinaryExpr
BinAdd\ xe1\ ye1 \geq BinaryExpr\ BinAdd\ xe2\ ye2
        by (metis AddNode.prems l mono-binary rep.AddNode xer)
      then show ?thesis
        by meson
     qed
```

```
next
     case (MulNode \ n \ x \ y \ xe1 \ ye1)
     have k: g1 \vdash n \simeq BinaryExpr\ BinMul\ xe1\ ye1\ using\ f\ MulNode
      by (simp add: MulNode.hyps(2) rep.MulNode)
     obtain xn yn where l: kind \ q1 \ n = MulNode \ xn \ yn
      using MulNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
       using MulNode.hyps(1) MulNode.hyps(2) by fastforce
     from l have my: g1 \vdash yn \simeq ye1
       using MulNode.hyps(1) MulNode.hyps(3) by fastforce
     then show ?case
     proof -
      have g1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using MulNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary MulNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
        using MulNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary MulNode)
      then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinMul xe2 ye2) \land BinaryExpr
BinMul\ xe1\ ye1 \geq BinaryExpr\ BinMul\ xe2\ ye2
        by (metis MulNode.prems l mono-binary rep.MulNode xer)
      then show ?thesis
        by meson
    ged
   next
     case (SubNode\ n\ x\ y\ xe1\ ye1)
     have k: g1 \vdash n \simeq BinaryExpr\ BinSub\ xe1\ ye1 using f\ SubNode
      by (simp\ add:\ SubNode.hyps(2)\ rep.SubNode)
     obtain xn yn where l: kind g1 n = SubNode xn yn
      using SubNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
      using SubNode.hyps(1) SubNode.hyps(2) by fastforce
     from l have my: g1 \vdash yn \simeq ye1
      using SubNode.hyps(1) SubNode.hyps(3) by fastforce
     then show ?case
     proof -
      have g1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using SubNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary SubNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
      using SubNode a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary SubNode)
```

```
then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinSub xe2 ye2) \land BinaryExpr
BinSub\ xe1\ ye1 \ge BinaryExpr\ BinSub\ xe2\ ye2
        by (metis SubNode.prems l mono-binary rep.SubNode xer)
      then show ?thesis
        by meson
     qed
   next
     case (AndNode\ n\ x\ y\ xe1\ ye1)
     have k: g1 \vdash n \simeq BinaryExpr\ BinAnd\ xe1\ ye1 using f\ AndNode
      by (simp\ add:\ AndNode.hyps(2)\ rep.AndNode)
     obtain xn yn where l: kind g1 n = AndNode xn yn
      using AndNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
      using AndNode.hyps(1) AndNode.hyps(2) by fastforce
     from l have my: g1 \vdash yn \simeq ye1
      using AndNode.hyps(1) AndNode.hyps(3) by fastforce
     then show ?case
     proof -
      have g1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using AndNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary AndNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
           using AndNode a b c d l no-encoding not-excluded-keep-type repDet
singletonD
        by (metis-node-eq-binary AndNode)
     then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinAnd xe2 ye2) \land BinaryExpr
BinAnd\ xe1\ ye1 \ge BinaryExpr\ BinAnd\ xe2\ ye2
        by (metis AndNode.prems l mono-binary rep.AndNode xer)
      then show ?thesis
        by meson
     qed
   next
     case (OrNode \ n \ x \ y \ xe1 \ ye1)
     have k: g1 \vdash n \simeq BinaryExpr\ BinOr\ xe1\ ye1\ using\ f\ OrNode
      \mathbf{by}\ (simp\ add:\ OrNode.hyps(2)\ rep.OrNode)
     obtain xn yn where l: kind g1 n = OrNode xn yn
       using OrNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
      using OrNode.hyps(1) OrNode.hyps(2) by fastforce
     from l have my: g1 \vdash yn \simeq ye1
      using OrNode.hyps(1) OrNode.hyps(3) by fastforce
     then show ?case
     proof -
      have q1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
```

```
using OrNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary OrNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
      using OrNode a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary OrNode)
      then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinOr xe2 ye2) \land BinaryExpr
BinOr\ xe1\ ye1 \geq BinaryExpr\ BinOr\ xe2\ ye2
        by (metis OrNode.prems l mono-binary rep.OrNode xer)
      then show ?thesis
        by meson
     qed
   next
     case (XorNode\ n\ x\ y\ xe1\ ye1)
     have k: g1 \vdash n \simeq BinaryExpr\ BinXor\ xe1\ ye1\ using\ f\ XorNode
      by (simp add: XorNode.hyps(2) rep.XorNode)
     obtain xn yn where l: kind g1 n = XorNode xn yn
      using XorNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
      using XorNode.hyps(1) XorNode.hyps(2) by fastforce
     from l have my: g1 \vdash yn \simeq ye1
       using XorNode.hyps(1) XorNode.hyps(3) by fastforce
     then show ?case
     proof -
      have g1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using XorNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary XorNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
            using XorNode a b c d l no-encoding not-excluded-keep-type repDet
singletonD
        by (metis-node-eq-binary XorNode)
     then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinXor xe2 ye2) \land BinaryExpr
BinXor\ xe1\ ye1 > BinaryExpr\ BinXor\ xe2\ ye2
        by (metis XorNode.prems l mono-binary rep.XorNode xer)
      then show ?thesis
        by meson
     qed
   next
     case (IntegerBelowNode\ n\ x\ y\ xe1\ ye1)
     have k: g1 \vdash n \simeq BinaryExpr\ BinIntegerBelow\ xe1\ ye1 using f IntegerBe-
lowNode
      \mathbf{by}\ (simp\ add:\ IntegerBelowNode.hyps(2)\ rep.IntegerBelowNode)
     obtain xn yn where l: kind g1 n = IntegerBelowNode xn yn
      using IntegerBelowNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
      using IntegerBelowNode.hyps(1) IntegerBelowNode.hyps(2) by fastforce
```

```
from l have my: q1 \vdash yn \simeq ye1
       using IntegerBelowNode.hyps(1) IntegerBelowNode.hyps(3) by fastforce
     then show ?case
     proof -
      have q1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using IntegerBelowNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary IntegerBelowNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
       using IntegerBelowNode a b c d l no-encoding not-excluded-keep-type repDet
singletonD
        by (metis-node-eq-binary IntegerBelowNode)
       then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinIntegerBelow xe2 ye2) \land
BinaryExpr BinIntegerBelow xe1 ye1 > BinaryExpr BinIntegerBelow xe2 ye2
          by (metis IntegerBelowNode.prems l mono-binary rep.IntegerBelowNode
xer
      then show ?thesis
        by meson
     ged
   next
     case (IntegerEqualsNode\ n\ x\ y\ xe1\ ye1)
    have k: g1 \vdash n \simeq BinaryExpr\ BinIntegerEquals\ xe1\ ye1\ using\ f\ IntegerEqual-
sNode
       by (simp\ add:\ IntegerEqualsNode.hyps(2)\ rep.IntegerEqualsNode)
     obtain xn yn where l: kind g1 n = IntegerEqualsNode xn yn
       using IntegerEqualsNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
      using IntegerEqualsNode.hyps(1) IntegerEqualsNode.hyps(2) by fastforce
     from l have my: g1 \vdash yn \simeq ye1
       using IntegerEqualsNode.hyps(1) IntegerEqualsNode.hyps(3) by fastforce
     then show ?case
     proof -
      have g1 \vdash xn \simeq xe1 using mx by simp
      have q1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using IntegerEqualsNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary IntegerEqualsNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
           using IntegerEqualsNode\ a\ b\ c\ d\ l\ no-encoding\ not-excluded-keep-type
repDet \ singletonD
        by (metis-node-eq-binary IntegerEqualsNode)
       then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinIntegerEquals xe2 ye2) <math>\land
BinaryExpr\ BinIntegerEquals\ xe1\ ye1 \geq BinaryExpr\ BinIntegerEquals\ xe2\ ye2
         \mathbf{by}\ (metis\ Integer Equals Node.prems\ l\ mono-binary\ rep.Integer Equals Node
xer)
      then show ?thesis
```

```
by meson
     \mathbf{qed}
   next
     case (IntegerLessThanNode n x y xe1 ye1)
      have k: g1 \vdash n \simeq BinaryExpr\ BinIntegerLessThan\ xe1\ ye1 using f Inte-
gerLessThanNode
      \mathbf{by}\ (simp\ add:\ IntegerLessThanNode.hyps(2)\ rep.IntegerLessThanNode)
     obtain xn yn where l: kind g1 n = IntegerLessThanNode xn yn
       using IntegerLessThanNode.hyps(1) by blast
     then have mx: g1 \vdash xn \simeq xe1
       using IntegerLessThanNode.hyps(1) IntegerLessThanNode.hyps(2) by fast-
force
     from l have my: g1 \vdash yn \simeq ye1
       using IntegerLessThanNode.hyps(3) by fast-
force
     then show ?case
     proof -
      have g1 \vdash xn \simeq xe1 using mx by simp
      have g1 \vdash yn \simeq ye1 using my by simp
      have xer: \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using IntegerLessThanNode
        using a b c d l no-encoding not-excluded-keep-type repDet singletonD
        by (metis-node-eq-binary IntegerLessThanNode)
      have \exists ye2. (g2 \vdash yn \simeq ye2) \land ye1 \geq ye2
         using IntegerLessThanNode a b c d l no-encoding not-excluded-keep-type
repDet \ singletonD
        by (metis-node-eq-binary IntegerLessThanNode)
      then have \exists xe2 ye2. (g2 \vdash n \simeq BinaryExpr BinIntegerLessThan xe2 ye2)
\land BinaryExpr BinIntegerLessThan xe1 ye1 \ge BinaryExpr BinIntegerLessThan xe2
ye2
     \mathbf{by} \; (\textit{metis IntegerLessThanNode}. \textit{prems } l \; \textit{mono-binary rep.} IntegerLessThanNode
xer
      then show ?thesis
        by meson
     qed
     case (NarrowNode n inputBits resultBits x xe1)
     have k: g1 \vdash n \simeq UnaryExpr (UnaryNarrow inputBits resultBits) xe1 using
f NarrowNode
      by (simp\ add:\ NarrowNode.hyps(2)\ rep.NarrowNode)
     obtain xn where l: kind g1 n = NarrowNode inputBits resultBits xn
      using NarrowNode.hyps(1) by blast
     then have m: g1 \vdash xn \simeq xe1
      using NarrowNode.hyps(1) NarrowNode.hyps(2)
      by auto
     then show ?case
     proof (cases xn = n')
      case True
      then have n: xe1 = e1' using c \ m \ repDet by simp
```

```
then have ev: g2 \vdash n \simeq UnaryExpr (UnaryNarrow inputBits resultBits) e2'
using NarrowNode.hyps(1) \ l \ m \ n
        using NarrowNode.prems True d rep.NarrowNode by simp
    then have r: UnaryExpr (UnaryNarrow\ inputBits\ resultBits) e1' \geq UnaryExpr
(UnaryNarrow inputBits resultBits) e2'
        by (meson a mono-unary)
      then show ?thesis using ev r
        by (metis \ n)
     next
      case False
      have g1 \vdash xn \simeq xe1 using m by simp
      have \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using NarrowNode
      using False b encodes-contains l not-excluded-keep-type not-in-g singleton-iff
        by (metis-node-eq-ternary NarrowNode)
         then have \exists xe2. (g2 \vdash n \simeq UnaryExpr (UnaryNarrow inputBits re-
sultBits) \ xe2) \land UnaryExpr \ (UnaryNarrow\ inputBits\ resultBits) \ xe1 \ge UnaryExpr
(UnaryNarrow inputBits resultBits) xe2
        by (metis NarrowNode.prems l mono-unary rep.NarrowNode)
      then show ?thesis
        by meson
     \mathbf{qed}
   next
     case (SignExtendNode n inputBits resultBits x xe1)
      have k: g1 \vdash n \simeq UnaryExpr (UnarySignExtend inputBits resultBits) xe1
using f SignExtendNode
      by (simp add: SignExtendNode.hyps(2) rep.SignExtendNode)
     obtain xn where l: kind g1 n = SignExtendNode inputBits resultBits xn
      using SignExtendNode.hyps(1) by blast
     then have m: g1 \vdash xn \simeq xe1
      using SignExtendNode.hyps(1) SignExtendNode.hyps(2)
      by auto
     then show ?case
     proof (cases xn = n')
      \mathbf{case} \ \mathit{True}
      then have n: xe1 = e1' using c \ m \ repDet by simp
      then have ev: g2 \vdash n \simeq UnaryExpr (UnarySignExtend inputBits resultBits)
e2' using SignExtendNode.hyps(1) l m n
        using SignExtendNode.prems True d rep.SignExtendNode by simp
        then have r: UnaryExpr (UnarySignExtend inputBits resultBits) e1' \ge
UnaryExpr (UnarySignExtend inputBits resultBits) e2'
        by (meson a mono-unary)
      then show ?thesis using ev r
        by (metis \ n)
     next
      case False
      have g1 \vdash xn \simeq xe1 using m by simp
      have \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        \mathbf{using}\ SignExtendNode
```

```
using False b encodes-contains l not-excluded-keep-type not-in-g singleton-iff
        by (metis-node-eq-ternary SignExtendNode)
     then have \exists xe2. (g2 \vdash n \simeq UnaryExpr (UnarySignExtend inputBits result-
Bits) xe2) \land UnaryExpr (UnarySignExtend inputBits resultBits) xe1 \ge UnaryExpr
(UnarySignExtend inputBits resultBits) xe2
        by (metis SignExtendNode.prems l mono-unary rep.SignExtendNode)
      then show ?thesis
        by meson
     qed
   next
     case (ZeroExtendNode n inputBits resultBits x xe1)
     have k: g1 \vdash n \simeq UnaryExpr (UnaryZeroExtend inputBits resultBits) xe1
\mathbf{using}\ f\ ZeroExtendNode
      by (simp\ add:\ ZeroExtendNode.hyps(2)\ rep.ZeroExtendNode)
     obtain xn where l: kind g1 n = ZeroExtendNode inputBits resultBits xn
      using ZeroExtendNode.hyps(1) by blast
     then have m: q1 \vdash xn \simeq xe1
      using ZeroExtendNode.hyps(1) ZeroExtendNode.hyps(2)
      by auto
     then show ?case
     proof (cases xn = n')
      {\bf case}\  \, True
      then have n: xe1 = e1' using c \ m \ repDet by simp
     then have ev: g2 \vdash n \simeq UnaryExpr (UnaryZeroExtend inputBits resultBits)
e2' using ZeroExtendNode.hyps(1) l m n
        using ZeroExtendNode.prems True d rep.ZeroExtendNode by simp
        then have r: UnaryExpr (UnaryZeroExtend inputBits resultBits) e1' \geq e1'
UnaryExpr (UnaryZeroExtend inputBits resultBits) e2'
        by (meson a mono-unary)
      then show ?thesis using ev r
        by (metis \ n)
     next
      {\bf case}\ \mathit{False}
      have g1 \vdash xn \simeq xe1 using m by simp
      have \exists xe2. (g2 \vdash xn \simeq xe2) \land xe1 \geq xe2
        using ZeroExtendNode
      using False b encodes-contains l not-excluded-keep-type not-in-g singleton-iff
        by (metis-node-eq-ternary ZeroExtendNode)
     then have \exists xe2. (g2 \vdash n \simeq UnaryExpr (UnaryZeroExtend inputBits result-
Bits) xe2) \land UnaryExpr (UnaryZeroExtend inputBits resultBits) xe1 \ge UnaryExpr
(UnaryZeroExtend\ inputBits\ resultBits)\ xe2
        by (metis\ ZeroExtendNode.prems\ l\ mono-unary\ rep.ZeroExtendNode)
      then show ?thesis
        by meson
     qed
   next
     case (LeafNode \ n \ s)
   then show ?case
     by (metis eq-refl rep.LeafNode)
```

```
qed
qed
qed
```

```
definition maximal-sharing:
  \textit{maximal-sharing } g = (\forall \textit{ n1 n2 }. \textit{ n1} \in \textit{ids } g \land \textit{n2} \in \textit{ids } g \longrightarrow
      (\forall e. (g \vdash n1 \simeq e) \land (g \vdash n2 \simeq e) \longrightarrow n1 = n2))
lemma tree-to-graph-rewriting:
  e1 > e2
  \land (g1 \vdash n \simeq e1) \land maximal\text{-}sharing g1
 \land (\{n\} \leq as\text{-}set \ g1) \subseteq as\text{-}set \ g2
 \land (g2 \vdash n \simeq e2) \land maximal\text{-}sharing g2
  \implies graph-refinement g1 g2
  using graph-semantics-preservation
  by auto
declare [[simp-trace]]
lemma equal-refines:
  fixes e1 e2 :: IRExpr
  assumes e1 = e2
 shows e1 \ge e2
  using assms
 by simp
declare [[simp-trace=false]]
lemma subset-implies-evals:
 assumes as\text{-}set\ g1\subseteq as\text{-}set\ g2
 shows (g1 \vdash n \simeq e) \Longrightarrow (g2 \vdash n \simeq e)
proof (induction e arbitrary: n)
  case (UnaryExpr \ op \ e)
  then have n \in ids \ g1
    \mathbf{using}\ no\text{-}encoding\ \mathbf{by}\ force
  then have kind \ g1 \ n = kind \ g2 \ n
    using assms unfolding as-set-def
    by blast
  then show ?case using UnaryExpr UnaryRepE
  \textbf{by} \ (smt \ (verit, \ ccfv\text{-}threshold) \ AbsNode \ LogicNegationNode \ NarrowNode \ NegateN-
ode\ NotNode\ SignExtendNode\ ZeroExtendNode)
next
  case (BinaryExpr op e1 e2)
  then have n \in ids \ g1
    using no-encoding by force
  then have kind g1 n = kind g2 n
```

```
using assms unfolding as-set-def
   by blast
 then show ?case using BinaryExpr BinaryRepE
   by (smt (verit, ccfv-threshold) AddNode MulNode SubNode AndNode OrNode
XorNode\ IntegerBelowNode\ IntegerEqualsNode\ IntegerLessThanNode)
 case (ConditionalExpr e1 e2 e3)
 then have n \in ids \ g1
   using no-encoding by force
 then have kind \ g1 \ n = kind \ g2 \ n
   using assms unfolding as-set-def
 then show ?case using ConditionalExpr ConditionalExprE
   by (smt (verit, best) ConditionalNode ConditionalNodeE)
next
 case (ConstantExpr x)
 then have n \in ids \ q1
   using no-encoding by force
 then have kind \ g1 \ n = kind \ g2 \ n
   using assms unfolding as-set-def
 then show ?case using ConstantExpr ConstantExprE
   by (metis ConstantNode ConstantNodeE)
next
 case (ParameterExpr x1 x2)
 then have in-g1: n \in ids g1
   using no-encoding by force
 then have kinds: kind g1 n = kind g2 n
   using assms unfolding as-set-def
  \mathbf{by} blast
 from in-g1 have stamps: stamp g1 n = stamp g2 n
   using assms unfolding as-set-def
   by blast
 from kinds stamps show ?case using ParameterExpr ParameterExprE
   by (metis ParameterNode ParameterNodeE)
 case (LeafExpr\ nid\ s)
 then have in-g1: n \in ids \ g1
   using no-encoding by force
 then have kinds: kind g1 n = kind g2 n
   using assms unfolding as-set-def
   by blast
 from in-g1 have stamps: stamp g1 n = stamp g2 n
   using assms unfolding as-set-def
   by blast
 from kinds stamps show ?case using LeafExpr LeafExprE LeafNode
  by (smt (23) IRExpr.distinct(29) IRExpr.simps(16) IRExpr.simps(28) rep.simps)
next
 case (ConstantVar x)
```

```
then have in-g1: n \in ids \ g1
   using no-encoding by force
  then have kinds: kind g1 n = kind g2 n
   using assms unfolding as-set-def
   by blast
  from in-g1 have stamps: stamp g1 n = stamp g2 n
   using assms unfolding as-set-def
  from kinds stamps show ?case using ConstantVar
   using rep.simps by blast
next
 case (VariableExpr x s)
 then have in-g1: n \in ids g1
   using no-encoding by force
  then have kinds: kind g1 n = kind g2 n
   using assms unfolding as-set-def
   by blast
 from in-g1 have stamps: stamp g1 n = stamp g2 n
   using assms unfolding as-set-def
   by blast
 {\bf from} \ kinds \ stamps \ {\bf show} \ ?case \ {\bf using} \ Variable Expr
   using rep.simps by blast
qed
lemma subset-refines:
 assumes as-set g1 \subseteq as-set g2
 shows graph-refinement g1 g2
proof -
 have ids \ g1 \subseteq ids \ g2 using assms unfolding as\text{-}set\text{-}def
   by blast
 show ?thesis unfolding graph-refinement-def
   apply (rule allI) apply (rule impI) apply (rule allI) apply (rule impI)
   proof -
     fix n e1
     assume 1:n \in ids \ q1
     assume 2:g1 \vdash n \simeq e1
     show \exists e2. (g2 \vdash n \simeq e2) \land e1 \geq e2
       using assms 1 2 using subset-implies-evals
       by (meson equal-refines)
   qed
 qed
lemma graph-construction:
  e1 \ge e2
 \land as\text{-}set \ g1 \subseteq as\text{-}set \ g2 \land maximal\text{-}sharing \ g1
 \land (g2 \vdash n \simeq e2) \land maximal\text{-}sharing g2
 \implies (g2 \vdash n \trianglelefteq e1) \land \mathit{graph-refinement} \ g1 \ g2
```

```
\begin{array}{l} \textbf{using} \ subset-refines \\ \textbf{by} \ (meson \ encode eval-def \ graph-represents-expression-def \ le-expr-def) \end{array}
```

end

4 Control-flow Semantics

```
theory IRStepObj
imports
TreeToGraph
begin
```

4.1 Heap

The heap model we introduce maps field references to object instances to runtime values. We use the H[f][p] heap representation. See $\cite{heap-reps-2011}$. We also introduce the DynamicHeap type which allocates new object references sequentially storing the next free object reference as 'Free'.

```
type-synonym ('a, 'b) Heap = 'a \Rightarrow 'b \Rightarrow Value
type-synonym Free = nat
type-synonym ('a, 'b) DynamicHeap = ('a, 'b) Heap \times Free

fun h-load-field :: 'a \Rightarrow 'b \Rightarrow ('a, 'b) DynamicHeap \Rightarrow Value where
h-load-field f r (h, n) = h f r

fun h-store-field :: 'a \Rightarrow 'b \Rightarrow Value \Rightarrow ('a, 'b) DynamicHeap \Rightarrow ('a, 'b)
DynamicHeap where
h-store-field f r v (h, n) = (h(f := ((h f)(r := v))), n)

fun h-new-inst :: ('a, 'b) DynamicHeap \Rightarrow ('a, 'b) DynamicHeap \times Value
where
h-new-inst (h, n) = ((h,n+1), (ObjRef (Some n)))

type-synonym FieldRefHeap = (string, objref) DynamicHeap
```

```
definition new-heap :: ('a, 'b) DynamicHeap where new-heap = ((\lambda f. \lambda p. UndefVal), 0)
```

4.2 Intraprocedural Semantics

```
fun find-index :: 'a \Rightarrow 'a \ list \Rightarrow nat \ \mathbf{where}
find-index - [] = 0 \ |
find-index v (x \# xs) = (if \ (x=v) \ then \ 0 \ else \ find-index \ v \ xs + 1)
```

fun phi- $list :: IRGraph \Rightarrow ID \Rightarrow ID \ list \ \mathbf{where}$

```
\textit{phi-list } g \ n =
          (filter (\lambda x.(is-PhiNode\ (kind\ g\ x)))
                (sorted-list-of-set\ (usages\ g\ n)))
fun input-index :: IRGraph \Rightarrow ID \Rightarrow ID \Rightarrow nat where
      input-index g \ n \ n' = find-index n' \ (input s-of (kind \ g \ n))
fun phi-inputs :: IRGraph \Rightarrow nat \Rightarrow ID \ list \Rightarrow ID \ list where
     phi-inputs g \ i \ nodes = (map \ (\lambda n. \ (inputs-of \ (kind \ g \ n))!(i+1)) \ nodes)
fun set-phis :: ID list \Rightarrow Value\ list \Rightarrow MapState \Rightarrow MapState\ where
      set-phis [] [] m = m
      set-phis (n \# xs) (v \# vs) m = (set-phis xs vs (m(n := v)))
     set-phis [ (v \# vs) m = m |
     set-phis (x \# xs) [] m = m
Intraprocedural semantics are given as a small-step semantics.
Within the context of a graph, the configuration triple, (ID, MethodState,
Heap), is related to the subsequent configuration.
inductive step :: IRGraph \Rightarrow Params \Rightarrow (ID \times MapState \times FieldRefHeap) \Rightarrow (ID \times FieldRef
\times MapState \times FieldRefHeap) \Rightarrow bool
     (-, -\vdash -\to -55) for g p where
      SequentialNode:
      [is-sequential-node\ (kind\ g\ nid);
          nid' = (successors-of (kind g nid))!0
          \implies g, p \vdash (nid, m, h) \rightarrow (nid', m, h) \mid
      IfNode:
      [kind\ g\ nid = (IfNode\ cond\ tb\ fb);
          q \vdash cond \simeq condE;
          [m, p] \vdash condE \mapsto val;
          nid' = (if \ val\text{-}to\text{-}bool \ val \ then \ tb \ else \ fb)
          \implies g, p \vdash (nid, m, h) \rightarrow (nid', m, h) \mid
      EndNodes:
      [is-AbstractEndNode\ (kind\ g\ nid);
          merge = any-usage g nid;
          is-AbstractMergeNode (kind g merge);
          i = find\text{-}index\ nid\ (inputs\text{-}of\ (kind\ g\ merge));
          phis = (phi-list\ q\ merge);
           inps = (phi-inputs \ g \ i \ phis);
           g \vdash inps \simeq_L inpsE;
          [m, p] \vdash inpsE \mapsto_L vs;
          m' = set-phis phis vs m
          \implies g, p \vdash (nid, m, h) \rightarrow (merge, m', h) \mid
```

```
NewInstanceNode:
 [kind\ g\ nid = (NewInstanceNode\ nid\ f\ obj\ nid');
   (h', ref) = h-new-inst h;
   m' = m(nid := ref)
 \implies g, p \vdash (nid, m, h) \rightarrow (nid', m', h') \mid
LoadFieldNode:
  \llbracket kind\ g\ nid = (LoadFieldNode\ nid\ f\ (Some\ obj)\ nid');
   g \vdash obj \simeq objE;
   [m, p] \vdash objE \mapsto ObjRef ref;
   h-load-field f ref h = v;
   m' = m(nid := v)
 \implies g, p \vdash (nid, m, h) \rightarrow (nid', m', h)
SignedDivNode:
 [kind\ g\ nid\ =\ (SignedDivNode\ nid\ x\ y\ zero\ sb\ nxt);
   g \vdash x \simeq xe;
   g \vdash y \simeq ye;
   [m, p] \vdash xe \mapsto v1;
   [m, p] \vdash ye \mapsto v2;
   v = (intval-div \ v1 \ v2);
   m' = m(nid := v)
 \implies g, p \vdash (nid, m, h) \rightarrow (nxt, m', h) \mid
SignedRemNode:
 \llbracket kind\ g\ nid = (SignedRemNode\ nid\ x\ y\ zero\ sb\ nxt);
   g \vdash x \simeq xe;
   g \vdash y \simeq ye;
   [m, p] \vdash xe \mapsto v1;
   [m, p] \vdash ye \mapsto v2;
   v = (intval - mod \ v1 \ v2);
   m' = m(nid := v)
 \implies g, p \vdash (nid, m, h) \rightarrow (nxt, m', h) \mid
StaticLoadFieldNode:
 \llbracket kind\ g\ nid = (LoadFieldNode\ nid\ f\ None\ nid');
   h-load-field f None h = v;
   m' = m(nid := v)
 \implies g, p \vdash (nid, m, h) \rightarrow (nid', m', h) \mid
StoreFieldNode:
 \llbracket kind\ g\ nid = (StoreFieldNode\ nid\ f\ newval\ - (Some\ obj)\ nid');
   g \vdash newval \simeq newvalE;
   g \vdash obj \simeq objE;
   [m, p] \vdash newvalE \mapsto val;
   [m, p] \vdash objE \mapsto ObjRef ref;
   h' = h-store-field f ref val h;
   m' = m(nid := val)
```

```
\implies g, p \vdash (nid, m, h) \rightarrow (nid', m', h') \mid
  StaticStoreFieldNode:
    \llbracket kind\ g\ nid = (StoreFieldNode\ nid\ f\ newval\ -\ None\ nid');
      g \vdash newval \simeq newvalE;
      [m, p] \vdash newvalE \mapsto val;
      h' = h-store-field f None val h;
      m' = m(nid := val)
    \implies g, p \vdash (nid, m, h) \rightarrow (nid', m', h')
code-pred (modes: i \Rightarrow i \Rightarrow i * i * i \Rightarrow o * o * o \Rightarrow bool) step.
4.3
        Interprocedural Semantics
type-synonym Signature = string
type-synonym\ Program = Signature 
ightharpoonup IRGraph
inductive step-top :: Program \Rightarrow (IRGraph \times ID \times MapState \times Params) \ list \times ID \times MapState \times Params
FieldRefHeap \Rightarrow (IRGraph \times ID \times MapState \times Params) \ list \times FieldRefHeap \Rightarrow
  (-\vdash -\longrightarrow -55)
  for P where
  Lift:
  \llbracket g, p \vdash (nid, m, h) \rightarrow (nid', m', h') \rrbracket
    \implies P \vdash ((g,nid,m,p)\#stk, h) \longrightarrow ((g,nid',m',p)\#stk, h') \mid
  InvokeNodeStep:
  [is-Invoke\ (kind\ g\ nid);
    callTarget = ir\text{-}callTarget (kind g nid);
    kind\ g\ callTarget = (MethodCallTargetNode\ targetMethod\ arguments);
    Some \ targetGraph = P \ targetMethod;
    m' = new-map-state;
    g \vdash arguments \simeq_L argsE;
    [m, p] \vdash argsE \mapsto_L p'
    \implies P \vdash ((q, nid, m, p) \# stk, h) \longrightarrow ((targetGraph, 0, m', p') \# (q, nid, m, p) \# stk, h)
  ReturnNode:
  \llbracket kind\ g\ nid = (ReturnNode\ (Some\ expr)\ -);
    g \vdash expr \simeq e;
    [m, p] \vdash e \mapsto v;
    cm' = cm(cnid := v);
    cnid' = (successors-of (kind cg cnid))!0
```

 $\implies P \vdash ((g,nid,m,p)\#(cg,cnid,cm,cp)\#stk,h) \longrightarrow ((cg,cnid',cm',cp)\#stk,h) \mid$

```
ReturnNodeVoid:
  [kind\ g\ nid = (ReturnNode\ None\ -);
   cm' = cm(cnid := (ObjRef (Some (2048))));
   cnid' = (successors-of (kind cg cnid))!0
   \implies P \vdash ((g,nid,m,p)\#(cg,cnid,cm,cp)\#stk, h) \longrightarrow ((cg,cnid',cm',cp)\#stk, h) \mid
  UnwindNode:\\
  [kind\ g\ nid = (UnwindNode\ exception);
   g \vdash exception \simeq exceptionE;
   [m, p] \vdash exceptionE \mapsto e;
   kind\ cg\ cnid = (InvokeWithExceptionNode - - - - exEdge);
   cm' = cm(cnid := e)
  \implies P \vdash ((g,nid,m,p)\#(cg,cnid,cm,cp)\#stk,\ h) \longrightarrow ((cg,exEdge,cm',cp)\#stk,\ h)
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool) step-top.
4.4 Big-step Execution
type-synonym Trace = (IRGraph \times ID \times MapState \times Params) list
fun has-return :: MapState \Rightarrow bool where
 has\text{-}return \ m = (m \ 0 \neq UndefVal)
inductive exec :: Program
      \Rightarrow (IRGraph \times ID \times MapState \times Params) \ list \times FieldRefHeap
     \Rightarrow (IRGraph \times ID \times MapState \times Params) \ list \times FieldRefHeap
     \Rightarrow \mathit{Trace}
      \Rightarrow bool
  (- ⊢ - | - →* - | -)
  for P
  where
  \llbracket P \vdash (((g,nid,m,p)\#xs),h) \longrightarrow (((g',nid',m',p')\#ys),h');
   \neg(has\text{-}return\ m');
   l' = (l @ [(g,nid,m,p)]);
   exec\ P\ (((g',nid',m',p')\#ys),h')\ l'\ next-state\ l'']
   \implies exec\ P\ (((g,nid,m,p)\#xs),h)\ l\ next-state\ l''
  \llbracket P \vdash (((g,nid,m,p)\#xs),h) \longrightarrow (((g',nid',m',p')\#ys),h');
   has-return m';
   l' = (l @ [(q, nid, m, p)])
```

```
\implies exec\ P\ (((g,nid,m,p)\#xs),h)\ l\ (((g',nid',m',p')\#ys),h')\ l'
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow o \Rightarrow bool \ as \ Exec) \ exec.
inductive exec-debug :: Program
     \Rightarrow (IRGraph \times ID \times MapState \times Params) \ list \times FieldRefHeap
     \Rightarrow nat
     \Rightarrow (IRGraph \times ID \times MapState \times Params) \ list \times FieldRefHeap
     \Rightarrow bool
  (-⊢-→*-* -)
  where
  [n > 0;
   p \vdash s \longrightarrow s';
    exec-debug p s' (n - 1) s''
    \implies exec\text{-}debug\ p\ s\ n\ s''
  [n = 0]
    \implies exec\text{-}debug\ p\ s\ n\ s
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool) exec-debug.
4.4.1 Heap Testing
definition p3:: Params where
 p3 = [IntVal32 \ 3]
\mathbf{values} \ \{ (prod.fst(prod.snd \ (prod.snd \ (hd \ (prod.fst \ res))))) \ \theta
     | res. (\lambda x. Some \ eg2\text{-}sq) \vdash ([(eg2\text{-}sq,0,new\text{-}map\text{-}state,p3), (eg2\text{-}sq,0,new\text{-}map\text{-}state,p3)],
new-heap) \rightarrow *2* res
definition field-sq :: string where
 field-sq = "sq"
definition eg3-sq :: IRGraph where
  eg3-sq = irgraph
    (0,\,StartNode\,\,None\,\,4,\,\,VoidStamp),
    (1, ParameterNode 0, default-stamp),
    (3, MulNode 1 1, default-stamp),
    (4, StoreFieldNode 4 field-sq 3 None None 5, VoidStamp),
    (5, ReturnNode (Some 3) None, default-stamp)
values {h-load-field field-sq None (prod.snd res)
          | res. (\lambda x. Some \ eg3-sq) \vdash ([(eg3-sq, 0, new-map-state, p3), (eg3-sq, 0, new-map-state, p3))
new-map-state, p3)], new-heap) \rightarrow *3* res}
definition eg4-sq :: IRGraph where
  eg4-sq = irgraph
```

```
(0, StartNode\ None\ 4,\ VoidStamp),
(1, ParameterNode\ 0,\ default-stamp),
(3,\ MulNode\ 1\ 1,\ default-stamp),
(4,\ NewInstanceNode\ 4\ ''obj\text{-}class''\ None\ 5,\ ObjectStamp\ ''obj\text{-}class''\ True\ True\ True\ True),
(5,\ StoreFieldNode\ 5\ field\text{-}sq\ 3\ None\ (Some\ 4)\ 6,\ VoidStamp),
(6,\ ReturnNode\ (Some\ 3)\ None,\ default\text{-}stamp)
]
\mathbf{values}\ \{h\text{-}load\text{-}field\ field\text{-}sq\ (Some\ 0)\ (prod.snd\ res)}\mid res.
(\lambda x.\ Some\ eg4\text{-}sq)\ \vdash\ ([(eg4\text{-}sq,\ 0,\ new\text{-}map\text{-}state,\ p3)],\ (eg4\text{-}sq,\ 0,\ new\text{-}map\text{-}state,\ p3)],\ new\text{-}heap)\ \rightarrow*4*\ res\}
\mathbf{end}
```

5 Properties of Control-flow Semantics

```
theory IRStepThms
imports
IRStepObj
IRTreeEvalThms
begin
```

We prove that within the same graph, a configuration triple will always transition to the same subsequent configuration. Therefore, our step semantics is deterministic.

```
theorem stepDet:
  (g, p \vdash (nid, m, h) \rightarrow next) \Longrightarrow
  (\forall next'. ((g, p \vdash (nid, m, h) \rightarrow next') \longrightarrow next = next'))
proof (induction rule: step.induct)
  case (SequentialNode nid next m h)
  have notif: \neg(is\text{-}IfNode\ (kind\ g\ nid))
   using SequentialNode.hyps(1) is-sequential-node.simps
   by (metis is-IfNode-def)
  have notend: \neg(is\text{-}AbstractEndNode\ (kind\ g\ nid))
   using SequentialNode.hyps(1) is-sequential-node.simps
   by (metis\ is-AbstractEndNode.simps\ is-EndNode.elims(2)\ is-LoopEndNode-def)
  have notnew: \neg(is-NewInstanceNode\ (kind\ g\ nid))
   using SequentialNode.hyps(1) is-sequential-node.simps
   by (metis is-NewInstanceNode-def)
 have notload: \neg(is\text{-}LoadFieldNode\ (kind\ g\ nid))
   using SequentialNode.hyps(1) is-sequential-node.simps
   by (metis is-LoadFieldNode-def)
  have notstore: \neg(is\text{-}StoreFieldNode\ (kind\ g\ nid))
```

```
using SequentialNode.hyps(1) is-sequential-node.simps
   by (metis is-StoreFieldNode-def)
 have notdivrem: \neg(is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
     using SequentialNode.hyps(1) is-sequential-node.simps is-SignedDivNode-def
is-SignedRemNode-def
   by (metis is-IntegerDivRemNode.simps)
 from notif notend notnew notload notstore notdivrem
 show ?case using SequentialNode step.cases
  by (smt (23) IRNode.disc(1028) IRNode.disc(2270) IRNode.discI(31) Pair-inject
is-sequential-node.simps(18) is-sequential-node.simps(43) is-sequential-node.simps(44))
next
 case (If Node nid cond to for m val next h)
 then have notseg: \neg(is\text{-sequential-node (kind q nid)})
   {\bf using}\ is\mbox{-}sequential\mbox{-}node.simps\ is\mbox{-}AbstractMergeNode.simps
   by (simp\ add:\ IfNode.hyps(1))
 have notend: \neg(is\text{-}AbstractEndNode\ (kind\ q\ nid))
   using is-AbstractEndNode.simps
   by (simp\ add:\ IfNode.hyps(1))
 have notdivrem: \neg(is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
   using is-AbstractEndNode.simps
   by (simp\ add:\ IfNode.hyps(1))
 from notseq notend notdivrem show ?case using IfNode repDet evalDet IRN-
ode.distinct IRNode.inject(11) Pair-inject step.simps
   by (smt (z3) IRNode.distinct IRNode.inject(12) Pair-inject step.simps)
next
 case (EndNodes nid merge i phis inputs m vs m' h)
 have notseq: \neg(is\text{-}sequential\text{-}node\ (kind\ g\ nid))
   using EndNodes.hyps(1) is-AbstractEndNode.simps is-sequential-node.simps
   by (metis is-EndNode.elims(2) is-LoopEndNode-def)
 have notif: \neg(is\text{-}IfNode\ (kind\ g\ nid))
   \mathbf{using}\ EndNodes.hyps(1)\ is	ext{-}IfNode-def\ is	ext{-}AbstractEndNode.elims
   by (metis IRNode.distinct-disc(1058) is-EndNode.simps(12))
 have notref: \neg(is\text{-}RefNode\ (kind\ g\ nid))
   using EndNodes.hyps(1) is-sequential-node.simps
     using IRNode.disc(1899) IRNode.distinct(1473) is-AbstractEndNode.simps
is-EndNode.elims(2) is-LoopEndNode-def is-RefNode-def
   by metis
 have notnew: \neg(is\text{-}NewInstanceNode\ (kind\ q\ nid))
   using EndNodes.hyps(1) is-AbstractEndNode.simps
  using IRNode.distinct-disc(1442) is-EndNode.simps(29) is-NewInstanceNode-def
   by (metis\ IRNode.distinct-disc(1901)\ is-EndNode.simps(32))
 have notload: \neg(is\text{-}LoadFieldNode\ (kind\ g\ nid))
   using EndNodes.hyps(1) is-AbstractEndNode.simps
   using is-LoadFieldNode-def
   by (metis IRNode.distinct-disc(1706) is-EndNode.simps(21))
 have notstore: \neg(is\text{-}StoreFieldNode\ (kind\ g\ nid))
   using EndNodes.hyps(1) is-AbstractEndNode.simps is-StoreFieldNode-def
   by (metis IRNode.distinct-disc(1926) is-EndNode.simps(44))
 have notdivrem: \neg(is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
```

```
using\ EndNodes.hyps(1)\ is-AbstractEndNode.simps\ is-SiqnedDivNode-def\ is-SiqnedRemNode-def
  using IRNode.distinct-disc(1498) IRNode.distinct-disc(1500) is-IntegerDivRemNode.simps
is-EndNode.simps(36) is-EndNode.simps(37)
   by auto
  from notseg notif notref notnew notload notstore notdivrem
 show ?case using EndNodes repAllDet evalAllDet
  \textbf{by} \ (smt \ (z3) \ is\text{-}If Node\text{-}def \ is\text{-}LoadFieldNode\text{-}def \ is\text{-}New InstanceNode\text{-}def \ is\text{-}RefNode\text{-}def
is-StoreFieldNode-def is-SignedDivNode-def is-SignedRemNode-def Pair-inject is-IntegerDivRemNode.elims(3)
step.cases)
next
  case (NewInstanceNode nid f obj nxt h' ref h m' m)
  then have notseq: \neg(is\text{-sequential-node }(kind \ g \ nid))
   {f using}\ is\mbox{-}sequential\mbox{-}node.simps\ is\mbox{-}AbstractMergeNode.simps
   by (simp\ add:\ NewInstanceNode.hyps(1))
 have notend: \neg(is\text{-}AbstractEndNode\ (kind\ q\ nid))
   using is-AbstractMergeNode.simps
   by (simp add: NewInstanceNode.hyps(1))
  have notif: \neg(is\text{-}IfNode\ (kind\ g\ nid))
   using is-AbstractMergeNode.simps
   by (simp\ add:\ NewInstanceNode.hyps(1))
  have notref: \neg(is\text{-}RefNode\ (kind\ g\ nid))
   using is-AbstractMergeNode.simps
   by (simp\ add:\ NewInstanceNode.hyps(1))
  have notload: \neg(is\text{-}LoadFieldNode\ (kind\ g\ nid))
   using is-AbstractMergeNode.simps
   by (simp\ add:\ NewInstanceNode.hyps(1))
  have notstore: \neg(is\text{-}StoreFieldNode\ (kind\ g\ nid))
   \mathbf{using}\ is\text{-}AbstractMergeNode.simps
   by (simp add: NewInstanceNode.hyps(1))
  have notdivrem: \neg (is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
   using is-AbstractMergeNode.simps
   by (simp\ add:\ NewInstanceNode.hyps(1))
 from notseq notend notif notref notload notstore notdivrem
 show ?case using NewInstanceNode step.cases
    by (smt (z3) IRNode.disc(1028) IRNode.disc(2270) IRNode.discI(11) IRN-
ode.distinct(2311) IRNode.distinct(2313) IRNode.inject(31) Pair-inject)
next
  case (LoadFieldNode nid f obj nxt m ref h v m')
  then have notseq: \neg(is\text{-sequential-node (kind g nid)})
   \mathbf{using}\ is\text{-}sequential\text{-}node.simps\ is\text{-}AbstractMergeNode.simps}
   by (simp\ add:\ LoadFieldNode.hyps(1))
  have notend: \neg(is\text{-}AbstractEndNode\ (kind\ g\ nid))
   using is-AbstractEndNode.simps
   by (simp\ add:\ LoadFieldNode.hyps(1))
 have notdivrem: \neg(is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
   using is-AbstractEndNode.simps
   by (simp add: LoadFieldNode.hyps(1))
  from notseq notend notdivrem
```

show ?case using LoadFieldNode step.cases repDet evalDet

```
by (smt (z3) IRNode.distinct(1051) IRNode.distinct(1721) IRNode.distinct(1739)
IRNode.distinct(1741) IRNode.distinct(1745) IRNode.inject(20) Pair-inject Value.inject(3)
option.distinct(1) \ option.inject)
next
 case (StaticLoadFieldNode\ nid\ f\ nxt\ h\ v\ m'\ m)
 then have notseq: \neg(is\text{-}sequential\text{-}node\ (kind\ g\ nid))
   {\bf using} \ is-sequential-node.simps \ is-AbstractMergeNode.simps
   by (simp\ add:\ StaticLoadFieldNode.hyps(1))
 have notend: \neg(is\text{-}AbstractEndNode\ (kind\ g\ nid))
   using is-AbstractEndNode.simps
   by (simp\ add:\ StaticLoadFieldNode.hyps(1))
 have notdivrem: \neg(is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
   by (simp add: StaticLoadFieldNode.hyps(1))
 from notseq notend notdivrem
 show ?case using StaticLoadFieldNode step.cases
  by (smt (z3) IRNode.distinct(1051) IRNode.distinct(1721) IRNode.distinct(1739)
IRNode.distinct(1741) IRNode.distinct(1745) IRNode.inject(20) Pair-inject option.distinct(1))
next
 case (StoreFieldNode nid f newval uu obj nxt m val ref h' h m')
 then have notseq: \neg(is\text{-sequential-node (kind g nid)})
   {f using}\ is\mbox{-}sequential\mbox{-}node.simps\ is\mbox{-}AbstractMergeNode.simps
   by (simp\ add:\ StoreFieldNode.hyps(1))
 have notend: \neg(is\text{-}AbstractEndNode\ (kind\ g\ nid))
   using is-AbstractEndNode.simps
   by (simp add: StoreFieldNode.hyps(1))
 have not divrem: \neg(is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
   by (simp\ add:\ StoreFieldNode.hyps(1))
 from notseg notend notdivrem
 {\bf show}~?case~{\bf using}~StoreFieldNode~step.cases~repDet~evalDet
  by (smt (z3) IRNode.distinct(1097) IRNode.distinct(1745) IRNode.distinct(2317)
IRNode.distinct(2605)\ IRNode.distinct(2627)\ IRNode.inject(43)\ Pair-inject\ Value.inject(3)
option.distinct(1) \ option.inject)
next
 case (StaticStoreFieldNode nid f newval uv nxt m val h' h m')
 then have notseq: \neg(is\text{-sequential-node }(kind \ g \ nid))
   using is-sequential-node.simps is-AbstractMergeNode.simps
   by (simp add: StaticStoreFieldNode.hyps(1))
 have notend: \neg(is\text{-}AbstractEndNode\ (kind\ q\ nid))
   using is-AbstractEndNode.simps
   by (simp\ add:\ StaticStoreFieldNode.hyps(1))
 have notdivrem: \neg(is\text{-}IntegerDivRemNode\ (kind\ g\ nid))
   by (simp\ add:\ StaticStoreFieldNode.hyps(1))
 from notseq notend notdivrem
 show ?case using StoreFieldNode step.cases repDet evalDet
  by (smt (z3) IRNode.distinct(1097) IRNode.distinct(1745) IRNode.distinct(2317)
IRNode.distinct(2605) IRNode.distinct(2627) IRNode.inject(43) Pair-inject Static-
StoreFieldNode.hyps(1) StaticStoreFieldNode.hyps(2) StaticStoreFieldNode.hyps(3)
StaticStoreFieldNode.hyps(4) StaticStoreFieldNode.hyps(5) option.distinct(1))
next
```

```
case (SignedDivNode nid x y zero sb nxt m v1 v2 v m' h)
  then have notseq: \neg(is\text{-}sequential\text{-}node\ (kind\ g\ nid))
   {f using}\ is\mbox{-}sequential\mbox{-}node.simps\ is\mbox{-}AbstractMergeNode.simps
   by (simp\ add:\ SignedDivNode.hyps(1))
  have notend: \neg(is\text{-}AbstractEndNode\ (kind\ q\ nid))
   using is-AbstractEndNode.simps
   by (simp\ add:\ SignedDivNode.hyps(1))
  from notseq notend
  show ?case using SignedDivNode step.cases repDet evalDet
  \textbf{by} \; (smt \; (z3) \; IRNode.distinct (1091) \; IRNode.distinct (1739) \; IRNode.distinct (2311) \; \\
IRNode.distinct(2601) IRNode.distinct(2605) IRNode.inject(40) Pair-inject)
next
  \mathbf{case} \ (\mathit{SignedRemNode} \ \mathit{nid} \ \mathit{x} \ \mathit{y} \ \mathit{zero} \ \mathit{sb} \ \mathit{nxt} \ \mathit{m} \ \mathit{v1} \ \mathit{v2} \ \mathit{v} \ \mathit{m'} \ \mathit{h})
  then have notseq: \neg(is\text{-sequential-node }(kind \ g \ nid))
   using is-sequential-node.simps is-AbstractMergeNode.simps
   by (simp\ add:\ SignedRemNode.hyps(1))
  have notend: \neg(is\text{-}AbstractEndNode\ (kind\ q\ nid))
   using is-AbstractEndNode.simps
   by (simp\ add:\ SignedRemNode.hyps(1))
  from notseq notend
  show ?case using SignedRemNode step.cases repDet evalDet
  by (smt (z3) IRNode.distinct(1093) IRNode.distinct(1741) IRNode.distinct(2313)
IRNode.distinct(2601) IRNode.distinct(2627) IRNode.inject(41) Pair-inject)
qed
lemma stepRefNode:
  \llbracket kind \ g \ nid = RefNode \ nid' \rrbracket \Longrightarrow g, p \vdash (nid,m,h) \rightarrow (nid',m,h)
  by (simp add: SequentialNode)
lemma IfNodeStepCases:
  assumes kind \ g \ nid = IfNode \ cond \ tb \ fb
  assumes g \vdash cond \simeq condE
  assumes [m, p] \vdash condE \mapsto v
  assumes g, p \vdash (nid, m, h) \rightarrow (nid', m, h)
  shows nid' \in \{tb, fb\}
  using step.IfNode repDet stepDet assms
  by (metis insert-iff old.prod.inject)
lemma IfNodeSeq:
  shows kind g nid = IfNode cond to fb \longrightarrow \neg (is-sequential-node (kind g nid))
  unfolding is-sequential-node.simps by simp
lemma IfNodeCond:
  assumes kind \ g \ nid = IfNode \ cond \ tb \ fb
  assumes g, p \vdash (nid, m, h) \rightarrow (nid', m, h)
  shows \exists condE \ v. \ ((g \vdash cond \simeq condE) \land ([m, p] \vdash condE \mapsto v))
  using assms(2,1) by (induct\ (nid,m,h)\ (nid',m,h)\ rule:\ step.induct;\ auto)
```

```
lemma step-in-ids:

assumes g, p \vdash (nid, m, h) \rightarrow (nid', m', h')

shows nid \in ids \ g

using assms apply (induct \ (nid, m, h) \ (nid', m', h') \ rule: step.induct)

using is-sequential-node.simps(45) not-in-g

apply simp

apply (metis \ is-sequential-node.simps(53))

using ids-some

using IRNode.distinct(1113) apply presburger

using EndNodes(1) is-AbstractEndNode.simps \ is-EndNode.simps(45) ids-some

apply (metis \ IRNode.disc(1218) \ is-EndNode.simps(52))

by simp+
```

 $\quad \mathbf{end} \quad$