Práctica 6 Procesador: segmentación lineal con cortocircuitos

Nombre y Apellidos

Nombre y Apellidos

Número de grupo de laboratorio

Preguntas

Para todos los módulos que se solicita un diseño, el cual deba incluirse en el camino de datos para comprobar el funcionamiento del procesador, en la distribución del proyecto está incluido el fichero correspondiente, con la declaración de la interface y si es el caso, la sentencias concurrentes que especifican el retardo. No debe modificarse la interface ni la especificación de los retardos.

1 Diseñe el módulo LATPROH utilizando el menor número posible de registros y puertas lógicas, limitando el número de entradas de las puertas a 2. Justifique el diseño de forma sucinta y sistemática.

Módulo L	ATPROH	Justificación
inst_latph_	latphA latphM	

1

2 Diseñe el módulo LDC utilizando el menor número posible de registros y puertas lógicas, limitando el número de entradas de las puertas a 2 (Lógica de cortocircuitos e interbloqueos en la página 415). Justifique el diseño de forma sucinta y sistemática.

3 Diseñe el módulo LDRD utilizando el menor número posible de puertas lógicas, limitando el número de entradas de las puertas a 2. Justifique el diseño de forma sucinta y sistemática.

4 En el subdirectorio LIB (Organización de los ficheros: árbol de directorios en la página 449) se encuentran los ficheros asociados al diseño de la lógica de interbloqueos (proyecto quartus LIB_C.qpf). Describa en VHDL los 3 módulos anteriores (LDC.vhd, latproh.vhd y LDRD.vhd), utilizando un modelo estructural. Entregue los esquemas RTL de los módulos elaborados por Quartus. Compruebe el diseño la Lógica de Cortocircuitos e Interbloqueos . El programa de prueba suministrado (prueba_LIB_C.vhd) compara a cada ciclo las salidas de los 3 módulos diseñados con los respectivos modelos de referencia correctos¹.

^{1.} Tenga en cuenta que los multiplexores de cortocircuito están ubicados en las etapas DL y ALU. Por tanto, para determinar los cortocircuitos utilizados por una instrucción debe analizar al menos 2 ciclos consecutivos. El modelo de referencia determina las señales de control de los cortocircuitos independientemente de si hay que bloquearse debido a un riesgo de datos. Por tanto, las eventuales discrepancias en las salidas de los módulos LDC durante los ciclos de bloqueo deben ignorarse (página 453).

5 La siguiente tabla relaciona las entradas y las salidas de la lógica de interbloqueos LIBC durante 8 ciclos consecutivos. Suponga que en el ciclo 1 la etapa DL está ocupada por la instrucción "lw x3, 0(x1)" y que las etapas posteriores procesan datos inválidos. Deduzca una posible secuencia de las instrucciones que ocupan la etapa DL durante los siguientes 7 ciclos.

							Salidas LGR						
	Salidas control Cortocircuitos							CP	BDL		DLA		
ciclo	instrucción DL	C1L1	C2L1	C3L1	C4L1	C1L2	C2L2	C3L2	C4L2	bloq	bloq	inyec	inyec
1	lw x3, 0(x1)	0	0	0	0	0	0	0	0	0	0	0	0
2		0	0	0	0	0	0	0	0	1	1	0	1
3		1	0	0	0	0	0	0	0	1	1	0	1
4		0	1	1	0	0	0	0	0	0	0	1	0
5		0	0	0	0	0	0	0	0	0	0	1	0
6		0	0	0	0	0	0	0	0	0	0	0	0
7		0	0	1	0	0	0	0	0	0	0	0	0
8		0	0	0	0	0	0	0	1	0	0	0	0

6 Para facilitar el cálculo del tiempo de ciclo utilizaremos un cronograma donde se representa el retardo de cada elemento del camino de datos. En el cronograma se han tenido en cuenta las etapas para agrupar los componentes del camino de datos. En la tabla siguiente se muestran los acrónimos utilizados para denominar los componentes del camino de datos. Todos deben interpretarse como el retardo del componente. Algunos componentes están incluidos dentro de un módulo que se visualiza, por ejemplo, el decodificador del identificador del registro cuando se escribe en un registro del banco de registros. Los retardos de los componentes utilizados se detallan en los apéndices de la documentación denominados "Retardos", excepto los componentes de la lógica de interbloqueos LCIB. Estos retardos no son representativos de un diseño. Solo son de utilidad para efectuar los cálculos de retardo que se soliciten. Para los

componentes de la LCIB suponga los retardos indicados en la tabla.

		FE	
ES		retBRE	Retardo en la actualización de un registro del banco de registros
		MF	Registro de desacoplo de entrada de la etapa FMTL
FMTL	TL decBRE		Decodificador del puerto de escritura del banco de regis-
			tros. No está representado en las figuras
		FMTL	Módulo para formatear el dato con el cual se actualiza el banco de registros
		mES	Multiplexor en la etapa ES
		AM	Registro de desacoplo de entrada de la etapa M
MD		MDE	Retardo de escritura en memoria
		MDL	Retardo de lectura en memoria
		DLA	Registro de desacoplo de entrada de la etapa ALU
ALU	LU C2L1/C2L2		Multiplexores de cortocircuito
		C2L1/C2L2	Multiplexores de cortocircuito
		mL1	Multiplexor para seleccionar el operando a que utiliza la etapa ALU
		mL2	Multiplexor para seleccionar el operando b que utiliza la etapa ALU
		ALU	Módulo ALU
		FMTE	Módulo para formatear el dato con el cual se actualiza memoria
		excepMD	Lógica de excepción
		decoMD	Decodificador de la dirección de memoria
	_	mSI	Multiplexor
	S	EVAL	Unidad de evaluación de la condición
	Ε	+	Sumador
		DECS	Módulo de secuenciamiento condicional
		mSIC	Multiplexor

		BDL	Registro de desacoplo de entrada de la etapa DL
DL	U	retBRL	Retardo en la lectura de un registro del banco de registro
	С	C4L1/C4L2	Multiplexores de cortocircuito
		C3L1/C3L2	Multiplexores de cortocircuito
		deco	Retardo del decodificador
		FMTD	Formateador del campo literal en la UC
	U	FMTS	Formateador del campo literal en la USE
	S		
	E		D' '
	L	RD ^a	Riesgos de datos y cortocircuitos
	C	RS	Riesgos de secuenciamiento
	I В	LGR	Lógica de Gestión
		CP	Registro CP
BUS		MI	Retardo de lectura de la ,emoria de instrucciones
		+	Sumador
CP	CP mescus		Multiplexor cuya salida es entrada en el registro CP
		decoMI	Decodificador de la dirección de memoria
		excepMI	Lógica de excepción
		etardos de	
re	tKl	ט = 4 ns; re	etRS = 2 ns; retLGR = 1 ns.

Indique el retardo de cada etapa y el tiempo de ciclo mínimo.

	etapa						
	CP	В	DL	Α	М	F	Е
Tiempo de etapa (ns)							
Tiempo de ciclo (ns)							

4 Práctica 6

7 Utilice el programa char_sort (Simulación en la página 422). Añada un proceso al programa de prueba (ENSAMBLADO/PRUEBAS/prueba_Rproc_MD_MI_C.vhd) para obtener las métricas indicadas en la tabla. Compare el rendimiento del procesador con cortocircuitos respecto del procesador segmentado sin cortocircuitos.

	Procesador segmentado CON cortocircuitos	Procesador segmentado SIN cortocircuitos
Ciclos perdidos por riesgos de datos		
Ciclos perdidos por riesgos de secuenciamiento		
Ciclos de ejecución		
Tiempo de ciclo (ns)		
Ganancia		

8 Considere la unidad de secuenciamiento con reducción de la latencia de la instrucción "jal" (página 432). Diseñe el módulo LDRS utilizando el menor número posible de puertas lógicas, limitando el número de entradas de las puertas a 2. Justifique el diseño de forma sucinta y sistemática.

Incluya el diseño en el fichero LDRS_ModSecu_rell.vhd (Organización de los ficheros: reducción de la latencia al ejecutar la instrucción "jal" en la página 473). El proyecto quartus está definido en el subdirectorio PROC_SEG_ModSecu_rell.

Indique, para el programa fact_recurs, la reducción en ciclos perdidos por riesgos de secuenciamiento cuando se reduce la latencia al ejecutar una instrucción "jal" (Simulación: reducción de la latencia al ejecutar la instrucción "jal" en la página 469). Para ello, añada un proceso al programa de prueba (prueba_Rproc_MD_MI_C_ModSecu_rell.vhd) que cuente los ciclos perdidos debidos a riesgos de secuenciamiento.

	Ciclos perdidos por riesgos de secuenciamiento				
Programa	Antes de reducir la latencia	Una vez reducida la latencia	Reducción (%)		
fact_recurs					

Las siguientes preguntas corresponden a la USE con Predicción de seguir en secuencia en instrucciones de secuenciamiento condicional (página 436).

9 Diseñe el módulo Ersec utilizando el menor número posible de puertas lógicas, limitando el número de entradas de las puertas a 2. Justifique el diseño de forma sucinta y sistemática.

10 Diseñe el módulo Errell utilizando el menor número posible de puertas lógicas, limitando el número de entradas de las puertas a 2. Justifique el diseño de forma sucinta y sistemática.

11 Diseñe el módulo LDRS utilizando el menor número posible puertas lógicas, limitando el número de entradas de las puertas a 2. Justifique el diseño de forma sucinta y sistemática.

12Diseñe el módulo LGR utilizando el menor número posible puertas lógicas, limitando el número de entradas de las puertas a 2. Justifique el diseño de forma sucinta y sistemática.

13 Incluya los diseños anteriores en los ficheros correspondientes (Organización de los ficheros: predicción de seguir en secuencia en la página 483). El proyecto quartus está definido en el subdirectorio PROC_SEG_ModSecu_rell_PreSecu.

Indique para los siguientes programas la reducción en ciclos perdidos por riesgos de secuenciamiento cuando se predice seguir en secuencia (Simulación: predicción de seguir en secuencia en la página 479). Para ello modifique el programa de pruebas. Indique también el número de predicciones y el número de errores de predicción.

	Ciclos perdidos por riesgos de secuenciamiento					
Programa	Una vez reducida la latencia (jal)	Una vez reducida la latencia y predicción de seguir en secuencia	Reducción	Predicciones	Errores	
Euclides						
Sort						

14 Observe que los dos mecanismos de predicción fija descritos utilizan la misma unidad de secuenciamiento, solo cambia el control de los multiplexores de encaminamiento de direcciones (página 438, página 442). Indique, para cada mecanismo de predicción, qué multiplexores de la USE se podrían eliminar.

Predicción	multiplexores que se pueden eliminar	Justificación
fija seguir en secuencia		
fija modificar el secuenciamiento		