In the Name of the God the Compassionate and the Merciful

Associated Prof.: Reza Faraji Dana

Mohammad Reza Arani 810100511

Hw8 - Computational Electro Magnetics

University of Tehran
1401/10/26

1 | Page

Table of Contents

Table of Contents

Problem-1:	3
Prony's Method Tests:	6
Test Case 1:	8
Test Case 2:	
Part B:	13
Real Images Solution:	13
Modal Solution:	16
Complex Images Solution:	
Comparison:	18
Time Analysis:	19
Part C:	19
Problem-2:	21

Problem-1:

Infinitesimal Dipole is located between 2 PEC sheets at:

Figure 1

As the problem induces, it is to be solved using complex images method first implemented at waterloo university.

• In spatial domain, the single point source is equal to a plane source in spectral domain.

<Due to Sommerfeld's identity>

- As "T" value grows larger, our approximation gets valid for Near-field approximation of the problem.
- As "a" value shrinks and get closer to 0, the radiation from the source point will be suppressed by its images and the answer tends to 0.
- Transform from spectral domain to spatial domain is undertaken using Prony's series approximation and then using Weyl Identity augmented with Grover's R_{eff} formula.

Starting the solution of Complex Images Method:

• Consider below given spectral function which is obtained from ODE solution of Wave Equation in spectral domain in this geometry:

$$ilde{g} = rac{1}{2jeta_z} \left(e^{-jeta_z(z-z')} - e^{-jeta_z(z+z')} + rac{e^{-jeta_zig(2a+z-z'ig)} - e^{-jetaig(2a+z+z'ig)} + e^{-jeta_zig(2a-z+z'ig)} - e^{-jeta_zig(2a-z-z'ig)}}{1-e^{-jeta_z(2a)}}
ight)$$

By extracting $e^{-j\beta_z 2a}$ from the nominator we can then consider below function to approximate:

$$ilde{F}(eta_z) \,=\, rac{e^{-jeta_z 2a}}{1-e^{-jeta_z 2a}} \simeq \sum_{n=1}^N a_m e^{eta_z b_m}\,;\, a_m,\, b_m \in \mathbb{C}$$

This function behaves as:

Figure 2

X-Axis is β_z and the Y-Axis is the $\tilde{F}(\beta_z)$

Then we have:

$$ilde{g} = rac{1}{2jeta_z} \left(e^{-jeta_z(z-z')} - e^{-jeta_z(z+z')} + e^{-jeta_z(2a)} rac{e^{-jeta_z\left(z-z'
ight)} - e^{-jeta\left(z-z'
ight)} + e^{-jeta_z\left(z-z'
ight)}}{1 - e^{-jeta_z(2a)}}
ight)$$

Or

$$ilde{g} = rac{1}{2jeta_z} \Big(e^{-jeta_z(z-z')} - e^{-jeta_z(z+z')} + ilde{F}(eta_z) ig[e^{-jeta_z(z-z')} - e^{-jeta_z(z+z')} + e^{-jeta_z(-z+z')} - e^{-jeta_z(-z-z')} ig] \Big)$$

Using Weyl Identity

$$egin{align} gigg(ec{r},ec{r}'igg) &= rac{e^{-jkR_0}}{4\pi R_0} - rac{e^{-jkR_1}}{4\pi R_1} + \sum_{m=1}^N a_m \sum_{l=1}^3 \left(-1
ight)^l rac{e^{-jkR_{ml}}}{4\pi R_{ml}} \ R_{ml} &= \sqrt[2]{
ho^2 + \left(Z_l + jb_m
ight)^2}, \end{aligned}$$

Where Z_l equals to:

$$Z_l \,=\, egin{cases} l = 0 & |z-z'| \ l = 1 & z+z' \ l = 2 & |-z+z'| \ l = 3 & -z-z' \end{cases}$$

• Applying Grover's method, we obtain:

$$egin{aligned} \psi(m,n) &= rac{1}{\Delta \ell_m \Delta \ell_n} \int_{\Delta \ell_m} \int_{\Delta \ell_n} gig(ec{r},ec{r'}ig) d\ell d\ell' \ &= \ &\simeq rac{e^{-jkR_0^{eff}}}{4\pi R_0^{eff}} - rac{e^{-jkR_1^{eff}}}{4\pi R_1^{eff}} + \sum_{m=1}^N a_m \sum_{l=0}^3 rac{e^{-jkR_{ml}^{eff}}}{4\pi R_{ml}^{eff}} \end{aligned}$$

In which R^{eff} may be calculated using below equation:

$$R^{eff}=rac{\Delta \ell_m \Delta \ell_n}{M}$$

And M can be reached using:

$$egin{aligned} M &= lpha \sinh^{-1}\left(rac{lpha}{d}
ight) - eta \sinh^{-1}\left(rac{eta}{d}
ight) - \gamma + \ \sinh^{-1}\left(rac{\gamma}{d}
ight) + \delta \sinh^{-1}\left(rac{\delta}{d}
ight) - \sqrt[2]{lpha^2 + d^2} + \sqrt[2]{eta^2 + d^2} + \ \sqrt[2]{\gamma^2 + d^2} - \sqrt[2]{\delta^2 + d^2} \end{aligned}$$

$$egin{aligned} \gamma &= \Delta \ell_m + \delta \ \ eta &= \Delta \ell_n + \delta \ \ lpha &= \Delta \ell_n + \delta + \Delta \ell_m \end{aligned}$$

Figure 3

Prony's Method Tests:

Prony's method as utilized above, is implemented in MATLAB as:

• First, Equation system is achieved using formulas obtained in the course.

Figure 4

```
Coeff_Alpha = zeros(M,M);
for p=1:M
    Coeff_Alpha(p,:) = flip(F_B_z(1+p-1:M+p-1));
end
Sampled_Points = -conj(F_B_z(M+1:2*M))';
Alpha = inv(Coeff_Alpha)* Sampled_Points;
```

• Now by having these Coefficients we have to calculate the roots of the polynomial with this form:

$$μ^{N} + α_{1}μ^{N-1} + α_{2} μ^{N-2} + ... + α_{N=1}μ + α_{N} = 0 \Rightarrow$$

$$(μ-μ_{1})(μ-μ_{2}) ... (μ-μ_{N}) = 0 \Rightarrow ... ω ω ω ω ω ω ω...$$

Figure 5

Which can be done using MATLAB built-in function "roots".

```
Mu = roots([1 ; Alpha]);
B_m = log(Mu);
```

By obtaining the μ values, we have paved the path until calculation of α values.

This can be done by forming another system of equations which is depicted below:

Figure 6

```
Coeff_A = zeros(M,M);
for p=1:M
    Coeff_A(p,:) = (Mu.^(p-1)).*ones(M,1) ;
end

Sampled_Points_2 = conj(F_B_z(1:M))';
A = inv(Coeff_A) * Sampled_Points_2;
```

Test Case 1:

From the class notes we have:

Figure 7

Figure 8

Obtained values are the same as what it should be!

Figure 9

Also, b_m values are the same:

```
>> Out_object.B_m

ans =

0

-0.693147180559944
```

Figure 10

After calculation of the roots and the corresponding b_m values, we have to get a_m values as below:

```
>> Out_object.A

ans =

7.999999999997
24.000000000000043
```

Figure 11

• Also, the same as class notes!

Figure 12

Comparison of estimated function and the original function:

Figure 13

Both plots overlap each other and are exactly the same.

Test Case 2:

• A more complex scenario is implemented below:

X	0.5	2+1.5j	2.5	2+3.5j	
$\mathbf{E}(\mathbf{V})$	-0.5000000000000000 -	-0.884546873465022 -	-0.5000000000000000 -	-0.986863706853306 –	
$ \Gamma(\Lambda)$	1.95815868232297i	0.164218689894810i	0.166136708627264i	0.0267614030201496i	

Where F(X) is the function:

$$F(X) = \frac{e^{-jX}}{1 - e^{-jX}}$$

• Obtained roots and their corresponding coefficients:

11	+	-			
μ	1.11166334232769	0.0980814568368275			
	-	-			
	0.702764626824133i	0.422256022318346i			
h	+	-			
D_m	0.273966333323648	0.835869148542786			
	-	_			
	0.563741499013032i	1.79902869470424i			

```
>> Out_object.Mu

ans =

1.111663342327695 - 0.702764626824133i
-0.098081456836827 - 0.422256022318346i

>> Out_object.B_m

ans =

0.273966333323648 - 0.563741499013032i
-0.835869148542786 - 1.799028694704241i
```

Figure 14

• The final output looks like:

Figure 15

• Obtained Coefficients Matrix for acquiring a_m has been brought in Table:

1.0000000000000000000000000000000000000	1.0000000000000000000000000000000000000
0.000000000000i	0.000000000000i
1.11166334232769 -	-0.0980814568368275 -
0.702764626824133i	0.422256022318346i

Which is the same as:

For illustration, another function is estimated:

$$F(X) = \frac{e^{-X}}{1 - e^{-X}}$$

Figure 17

An extended version for more points for the same function:

• Corresponding figures are depicted in the pdf file attached.

Part B:

ب) على تصدير تحلط تا بع مح (در هذه مع) عبر عائم رفعت رف بدت آدرير و با على مودال و لعادم هيم تعالم لله.

Figure 19

Real Images Solution:

Starting from spectral domain form of green function below:

$$\frac{g}{z > z} = \frac{\sin(\beta_z z) \sin(\beta_z (a-z))}{\beta_z \cdot \sin(\beta_z a)} = \frac{(e^{j\beta_z z} - e^{j\beta_z z})(e^{j\beta_z (a-z)} - e^{j\beta_z (a-z)})}{2j\beta_z (e^{j\beta_z a} - e^{j\beta_z a})}$$

Figure 20

Which eventually leads to:

$$= e^{-i\beta_{z}(z-z')} - e^{-i\beta_{z}(z+z')} - e^{-i\beta_{z}(2\alpha-z-z')} + e^{-i\beta_{z}(2\alpha-z+z')}$$

$$= 2i\beta_{z}(1-e^{-i2\beta_{z}\alpha})$$

$$= 2i\beta_{z}(1-e^{-i2\beta_{z}\alpha})$$

$$= e^{-i\beta_{z}(z-z')} - e^{-i\beta_{z}(2\alpha-z-z')} + e^{-i\beta_{z}(2\alpha-z+z')}$$

Figure 21

Which by using Maclaurin expansion below:

$$\frac{1}{1-z} = 2+z+z+1 + \dots = \sum_{n=0}^{\infty} z^n \cdot j |z| < 1$$

Figure 22

We have:

$$\frac{1}{1-e^{2j}\beta_z\alpha} = \sum_{n=0}^{\infty} e^{-j\beta_z}2n\alpha$$

$$\frac{1}{1-e^{2j}\beta_z\alpha} = \sum_{n=0}^{\infty} e^{-j\beta_z}2n\alpha$$

$$\frac{1}{1-e^{2j}\beta_z\alpha} = \sum_{n=0}^{\infty} e^{-j\beta_z}(2\alpha-z-z)$$

Figure 23

And then by using Weyl Identity we get:

```
g(\vec{r}_{3}\vec{r}_{1}) = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} (-1)^{k} \frac{e^{-jk}Re}{4\pi Re}; \quad Re = \sqrt{(x-x')^{2} + (y-y')^{2} + (x_{2}+2\pi\alpha)^{2}}
= \begin{cases} x-z' & \text{if } l=0 \\ x+z' & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ x+z' & \text{if } l=1 \end{cases}
= \begin{cases} x-z' & \text{if } l=1 \\ 2a-|x-z'| & \text{if } l=2 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases}
= \begin{cases} x-z' & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases}
= \begin{cases} x-z' & \text{if } l=0 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |x-z'| & \text{if } l=0 \\ |x-z'| & \text{if } l=1 \end{cases} \quad \begin{cases} |
```

Figure 24

MATLAB Code:

```
%% Init:
c = 3e+08;
fc = c;
Lambda = fc/c;
K = 2*pi/Lambda;
T = 1;
a = Lambda/5;
z = (0.001:a/100:10*a/10)';
y = a;
x = a;
z_p = 8*a/10;
x_p = 0;
y_p = 0;
%% Real Images Solution:
% Max_iter = 10;
g_real_images = zeros(length(z),Max_iter);
for n=1:Max_iter
    for 1=0:3
        Z_L = [ abs(z-z_p) , z+z_p , 2*a-abs(z-z_p), 2*a-(z+z_p) ];
        R_nl = sqrt((x-x_p)^2 + (y-y_p)^2 + (Z_L(:,l+1) + 2*n*a).^2
        g_{real_images(:,n)} = g_{real_images(:,n)} + ((-1)^1)^* = \exp(-1j*K*R_nl)./(4*pi*R_nl);
    end
end
```

Modal Solution:

Again, we start from spectral domain solution:

$$g(x,y,z|x,y',z') = \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{\sin(\beta_z z') \sin(\beta_z (\alpha-z))}{\beta_z \cdot \sin(\beta_z \alpha)} H_o^{(R)}(k_\rho \rho) k_\rho dk_\rho$$

Figure 25

And then using Hankel Transform to get to the spatial domain form and applying contour integration over a specific path we get:

Figure 26

Finally, Modal solution form becomes:

Figure 27

• Hankel function in MATLAB can be called via:

Description

H = besselh(nu,Z) computes the Hankel function of the first kind $H_{\nu}^{(1)}(z) = J_{\nu}(z) + iY_{\nu}(z)$ for each element in array Z.

example

H = besselh(nu,K,Z) computes the Hankel function of the first or second kind $H_{\nu}^{(K)}(z)$, where K is 1 or 2, for each element of array Z.

example

H = besselh(nu,K,Z,scale) specifies whether to scale the Hankel function to avoid overflow or loss of accuracy. If scale is 1, then Hankel functions of the first kind $H_{\nu}^{(1)}(z)$ are scaled by e^{-iZ} , and Hankel functions of the second kind $H_{\nu}^{(2)}(z)$ are scaled by e^{+iZ} .

exampl

Figure 28

MATLAB Code:

```
%% Modal Solution:

Max_iter = 100;
g_Modal = zeros(length(z),Max_iter);

for n=1:Max_iter
    k_rho_n = sqrt( K^2-(n*pi/a)^2 ) ;
    Rho = sqrt( (x-x_p)^2 + (y-y_p)^2 ) ;
    H_02 = besselh(0,2,k_rho_n * Rho);
    g_Modal(:,n) = g_Modal(:,n) + H_02*sin(n*pi/a*z_p)*sin(n*pi/a*z)/(1j*2*a);
end
```

Complex Images Solution:

Comparison:

Figure 29

And with fewer iterations we have:

Figure 30

Time Analysis:

Figure 31

Part C:

To obtain new values for this ψ function, we have to replace the formula below:

$$\psi(m,n) = \frac{1}{a \cdot s_m \cdot s_m} \int_{\Omega} dx dx$$

$$\frac{1}{12} \int_{\Omega} \frac{1}{n^n \cdot n^n} \frac{1}{n^n \cdot s_m} \int_{\Omega} dx dx$$

$$\frac{1}{12} \int_{\Omega} \frac{1}{n^n \cdot n^n} \int_{\Omega} \frac{1}{n^n \cdot s_m} \int_{\Omega} dx dx$$

$$\frac{1}{12} \int_{\Omega} \frac{1}{n^n \cdot n^n} \int_{\Omega} \frac{1}{n^n \cdot s_m} \int_{\Omega} \frac{1}{n^n \cdot$$

And then use Numerical integration to its values:

$$\psi(m_{2}m) = \sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)}{j2\alpha} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} H_{i}H_{j}H_{o}^{(2)}\left(\kappa\rho_{n}\left(\chi_{i}'-\chi_{j}'\right)\right) \right\}$$

$$= \frac{1}{\sqrt{2}} \frac{\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)}{j2\alpha} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} H_{i}H_{j}H_{o}^{(2)}\left(\kappa\rho_{n}\left(\chi_{i}'-\chi_{j}'\right)\right) \right\}$$

$$= \frac{1}{\sqrt{2}} \frac{\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)}{j2\alpha} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} H_{i}H_{j}H_{o}^{(2)}\left(\kappa\rho_{n}\left(\chi_{i}'-\chi_{j}'\right)\right) \right\}$$

$$= \frac{1}{\sqrt{2}} \frac{\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)\sin\left(\frac{n\pi}{\alpha}\chi_{n}'\right)}{j2\alpha} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} H_{i}H_{j}H_{o}^{(2)}\left(\kappa\rho_{n}\left(\chi_{i}'-\chi_{j}'\right)\right) \right\}$$

Figure 32

Figure 33

Input Impedance:

0.0006 + 0.1029i

Problem-2:

The problem is defined as below:

Figure 34

Convergence is ensured in this series so that last 2 consecutive term get close enough that their difference gets lower than the given threshold.

For a proper convergence, threshold is considered to be 10^{-3} ;

Shanks's Transform formulation implementation in MATLAB comes below:

```
function S_T1 = perform_Shanks(S_n)
    M = length(S_n);

S_T1 = zeros(1,M-1-2+1);
    for i=1:M-2
        A = S_n(i);
        B = S_n(i+1);
        C = S_n(i+2);
        S = Shanks_Trans_nodes(A,B,C);
        S_T1(i) = S ;

end

function S = Shanks_Trans_nodes(A,B,C)
S = (C*A-B^2)/(C+A-2*B) ;
end
```

After finding the right number of terms to start from, the below table is achieved:

0									
1		0.69314012							
1	•••	7374205							
0.50000000		0.69314886	0.69314711						
0000000		9333182	9737629						
0.83333333		0.69314668	0.69314719	0.69314717					
3333333		1971590	6108489	9506449					
0.58333333		0.69314735	0.69314717	0.69314717	0.69314718				
3333333		4031818	6120171	7877719	6043765				
0.78333333		0.69314711	0.69314718	0.69314718	0.69314718	0.69314718			
3333333		1911928	1988220	7773986	3766039	7455125			
0.61666666		0.69314721	0.69314717	0.69314717	0.69314717	0.69314717	0.69314717		
6666667		0655419	9616545	0801418	4291965	1031682	7677940		
0.75952380		0.69314716	0.69314718	0.69314717	0.69314717	0.69314718	0.69314718	0.69314719	
9523810		6238412	0970217	6203286	1181333	2694033	0819805	7854007	
0.63452380		0.69314718	0.69314717	0.69314714	0.69314715	0.69314717	0.69314718	0.69314718	
9523810		7892628	9603046	6411038	9085680	2323245	4389785	3370418	0.69314729 1985178
0.74563492		0.69314717	0.69314718	0.69314716	0.69314703	0.69314710	0.69314714	0.69314716	
0634921	<u> </u>	6565422	0810286	8228574	3274481	1079378	4181797	6770018	
0.64563492 0634921	•••	0.69314718 2765315	0.69314717 5736741	0.69314719	0.69314718	0.69314720 9548667	0.69314719		
			0.69314716	3467518	1514178 0.69314720		4193413		
0.73654401 1544012	•••	0.69314717 9326246	0.69314716 8094248	0.69314717 6658810	0.69314720 5652950	0.69314719 0835223			
0.65321067		0.69314718	0.69314719	0.69314714	0.69314716	0.69314718			
8210678	•••	1431651	0.09314719	2022397	5730256	7455125			
0.73013375		0.69314718	0.69314723	0.69314721	3730230	7433123			
5133755		0247842	4477407	9318417					
0.65870518		0.69314718	0.69314721	7510117					
3705184		1001345	2628626						
0.72537185		0.69314718	2020020						
0371851		0604408							
0.66287185									
0371851									
0.72169537									
9783615									
0.66613982									
4228060									
0.71877140									
3175428									
0.66877140									
3175428									
0									
1									
0.50000000	•••								
0000000	-								
0.83333333	• • •								
0.58333333			1	1	1	 	1		
3333333	•••								
0.78333333				1	1	 	 		
3333333									
0.61666666									
6666667									
0.75952380									
9523810									
0.63452380									
9523810			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
0.74563492									
0634921							1		
0.64563492									
0634921									

0.73654401 1544012	•••				
0.65321067 8210678					
0.73013375 5133755					

We can see that digits are solid for final columns:

0.693147291985178 VS 0.693147166770018

And

0.693147166770018 VS 0.693147194193413

The error is less than threshold for both of these terms! =>
The convergence criterion has been met!

- Maximum Number of iterations is found so that we meet convergence criterion and if it has not been met, 2 more terms will be added to the initial calculated series.
- Initial number of series to be calculated is considered an odd number so that the final column contains only 1 term.
- Convergence happens for:
 - o 6th iteration of the algorithm.
 - o Starting from 7 terms, we end up summing up 7 terms.
 - Error_1 = 0.000681513934527755 ; Error_2 = 3.437101543557475e − 05 where Error_1 is the difference between final term of third column and second column and Error_2 is of that first and second column correspondingly.

The original series met this criterion after calculation of 1002 number of Terms!

This shows 1002-7 = 995 improvement!

The Exact solution of this series is:

$$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}=\log(2)\approx 0.69315$$

$$\log(x) \text{ is the natural logarithm}$$

Figure 35

والسلام على من اتبع الهدى