EDA HW5

B02901178 江誠敏

December 8, 2015

1 Problem 1.

- 1. No, since we don't know the exact amount of iteration r.
- 2. Yes, as long as we know W or w_i is bounded (so that $W < n \max w_i$.

2 Problem 2.

	swap	gain	Σ gain	locked	A	B
1	(c,d)	0	0	c,d	a, b, d	c, e, f
2	(b, f)	-39	-39	b, c, d, f	a, d, f	c, b, e
3	(a,e)	39	0	a, b, c, d, e, f	d, e, f	a, b, c

3 Problem 3.

We define

- 1. Solution space: Each partition that split the vertice into to group with same size is in the solution space.
- 2. Neighborhood structure: Let (A, B) be a balanced partitioning. For all $a \in A, b \in B$, we swap these vertice and become a new partition (A', B'), then all these partition are the neighborhood of (A, B).
- 3. Cost Function: We define the total cost (cut size) to be our cost function.

Then we could preform annealing. That is, set a random initial state and temperature. Then each time, we pick a random neighbor, calculate the cost difference, and decide if we should go to the new state.

4 Problem 4.

First we compact the placement, and then derive the B-tree.

- 1. (a): [(0,0),(0,2),(2,2),(2,0)].
- $2. \ (c) \colon [(0,0),(0,5),(3,5),(3,0)].$
- 3. (b): [(0,0),(0,5),(3,5),(3,3),(5,3),(5,0)].
- 4. (d): [(0,0),(0,5),(3,5),(3,6),(6,6),(6,0)].
- 5. (e): [(0,0),(0,8),(4,8),(4,6),(6,6),(6,0)].

Area cost = 48. Area efficiency = $36/48 \approx 0.75\%$.

5 Problem 5.

$$m = 19$$

$$n = 23$$

$$p = 19$$

$$q = 424$$

$$r \approx 176.67$$

$$s \approx 20.10$$

6 Problem 6.

- (a) a = 10, b = 10, err = 0%.
- (b) a = 10, b = 12, err = 16.7%.
- (c) a = 10, b = 14, err = 28.6%.
- (d) As the degree increase, the error rate increases. Using MST estimation or fit by some polynomial (i.e, $\hat{b} = pa + q$, where a is HPWL, \hat{b} is the new estimate, and p, q are some parameter.) may give a better result.

7 Problem 7.

We split a square into 4 nodes. That is, we use (b,d) to represent a node, where b is a square in the graph and d is a direction, which means that "We traversed to the square d with the last direction facing d". Also we change the distance(cost) to a 2-tuple (x,y) such that x is the path length, and y is the number of bends on the path. We define

$$(x_1,y_1) < (x_2,y_2) \quad \Leftrightarrow \quad x_1 < x_2 \ \lor \ (x_1 = x_2 \ \land \ y_1 < y_2)$$

and

$$(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2).$$

The distance from (b_1, d_1) to (b_2, d_2) is set to (1, 0) if $d_1 = d_2$ and (1, 1) if $d_1 \neq d_2$, when b_1, b_2 are adjacent. Now set the distance d(S, i) = 0 for each of the 4 distance and find the minimum path to d(T, i) using any shortest path finding algorithm gives the answer.

8 Problem 8.

9 Problem 9.

