Integrantes:

Dafne Bonilla Reyes José Camilo García Ponce José Alberto Rosales Peña

1. Demuestre que cada una de las siguientes fórmulas se cumple para cada $n \in \mathbb{N}$.

(a)
$$\sum_{i=1}^{n} (2i-1) = n^2$$
.

(c)
$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$
.

(b)
$$\sum_{i=0}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$
.

(d)
$$\sum_{i=0}^{n} \frac{i}{2^i} = 2 - \frac{n+2}{2^n}$$
.

2. Demuestre cada una de las siguientes desigualdades para los valores de $n \in \mathbb{N}$ especificados.

(a)
$$(1+\frac{1}{n})^n < n$$
 para cada $n \in \mathbb{N}$ tal que $n \geq 3$.

(b)
$$3^n > n^3$$
 para cada $n \in \mathbb{N}$ tal que $n \ge 4$.

3. Demuestre que

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \frac{n+1}{2n}.$$

Para cada $n \in \mathbb{N}$ tal que $n \geq 2$.

- 4. Sea $\{r_i\}_{i\in\mathbb{N}^\times}$ la sucesión definida por $r_1=1$, y $r_{n+1}=4r_n+7$ para cada $n\in\mathbb{N}$. Demuestre que $r_n=\frac{1}{3}(10\cdot 4^{n-1}-7)$ para cada $n\in\mathbb{N}^\times$.
- 5. Sea $\{b_i\}_{i\in\mathbb{N}}$ la sucesión definida por $b_0=1,\,b_1=1,\,$ y $b_n=\frac{1}{3}\left(b_{n-1}+\frac{3}{b_{n-2}}\right)$ para cada $n\in\mathbb{N}$ tal que $n\geq 2$. Demuestre que $1\leq b_n\leq \frac{3}{2}$ para cada $n\in\mathbb{N}$.
- 6. Sea $\{d_i\}_{i\in\mathbb{N}}$ la sucesión definida por $d_0=2$, $d_1=3$, y $d_n=d_{n-1}\cdot d_{n-2}$ para cada $n\in\mathbb{N}$ tal que $n\geq 2$. Encuentre una fórmula explícita para d_n , y demuestre por inducción que su fórmula funciona.
- 7. Sea F_n la sucesión de Fibonacci, y sea $n \in \mathbb{N}$.
 - (a) Demuestre que si n > 5, entonces $F_n = 5F_{n-4} + 3F_{n-5}$.
 - (b) Demuestre que si $k \in \mathbb{N}$ es tal que $k \geq 2$, entonces $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$.
- 8. Un cuadrado mágico de orden n es un arreglo cuadrado de los enteros positivos entre 1 y n^2 tales que la suma de los enteros en cada renglón, columna, y diagonal, es una constante k, llamada la constante mágica. Demuestre que la constante mágica de cualquier cuadrado mágico de orden n es $\frac{n(n^2+1)}{2}$.

1	14	15	4
12	7	6	9
8	11	10	5
13	2	3	16

Un cuadrado mágico de orden 4.

- 9. Sea $n \in \mathbb{N}$ tal que $n \geq 8$. Demuestre que existen $k, l \in \mathbb{N}$ tales que n = 3k + 5l.
- 10. Sea Q la matriz

$$Q = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right).$$

Demuestre que

$$Q^n = \left(\begin{array}{cc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array}\right).$$

Profesor: César Hernández Cruz Ayudante: Alma Rocío Sánchez Salgado Ayudante: Gisselle Ibarra Moreno

Respuestas

- 1. Demuestre que cada una de las siguientes fórmulas se cumple para cada $n \in \mathbb{N}$.
 - (a) $\sum_{i=1}^{n} (2i-1) = n^2$
 - Caso Base Tenemos que n=1, entonces $\sum_{i=1}^{1}(2i-1)=1=1^2=1$, por lo tanto se cumple.
 - Hipótesis de inducción Suponemos que para algún n tenemos $\sum_{i=1}^n (2i-1) = n^2$
 - Paso inductivo PD que para n+1 tenemos $\sum_{i=1}^{n+1} (2i-1) = (n+1)^2$ Empezamos con que $\sum_{i=1}^{n+1} (2i-1) = 1+3+5+...+2(n+1)-1$ Tenemos que = (1+3+5+...+2n-1)+2(n+1)-1 Por hipótesis $= (n^2)+2(n+1)-1$ Después $= (n^2)+2n+2-1$ Luego $= n^2+2n+1$ Tenemos que es $= (n+1)^2$ Y concluimos que $\sum_{i=1}^{n+1} (2i-1) = (n+1)^2$ \square
 - (b) $\sum_{i=0}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$
 - Caso Base Tenemos que n=0, por lo tanto $\sum_{i=0}^{0} i(i+1)=0=\frac{0(0+1)(0+2)}{3}=0$ por lo tanto se cumple.
 - Hipótesis de inducción Suponemos que para algún ntenemos $\sum_{i=0}^n i(i+1) = \frac{n(n+1)(n+2)}{3}$
 - (c) $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$
 - Caso Base Tenemos que n=0, por lo tanto $\sum_{i=0}^{0} 2^i = 1 = 2^{0+1} - 1 = 1$ por lo tanto se cumple.

- Hipótesis de inducción Suponemos que para algún n tenemos $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$
- Paso inductivo

PD que para n+1 tenemos
$$\sum_{i=0}^{n+1} 2^i = 2^{(n+1)+1} - 1$$

Empezamos con que $\sum_{i=0}^{n+1} 2^i = 1 + 2 + 4 + \dots + 2^{n+1}$
Tenemos que $= (1 + 2 + 4 + \dots + 2^n) + 2^{n+1}$

Empezamos con que
$$\sum_{i=0}^{n+1} 2^i = 1 + 2 + 4 + ... + 2^{n+1}$$

Tenemos que =
$$(1 + 2 + 4 + ... + 2^n) + 2^{n+1}$$

Por hipótesis =
$$(2^{n+1} - 1) + 2^{n+1}$$

Después =
$$2^{n+1} + 2^{n+1} - 1$$

$$Luego = 2^{n+2} - 1$$

Tenemos que es =
$$2^{(n+1)+1} - 1$$

Tenemos que es =
$$2^{(n+1)+1} - 1$$

Y concluimos que $\sum_{i=0}^{n+1} 2^i = 2^{(n+1)+1} - 1$

(d)
$$\sum_{i=0}^{n} \frac{i}{2^i} = 2 - \frac{n+2}{2^n}$$

Tenemos que n = 0, por lo tanto $\sum_{i=0}^{0} \frac{i}{2^i} = 0 = 2 - \frac{0+2}{2^0} = 2 - 2 = 0$ por lo tanto se cumple.

• Hipótesis de inducción

Suponemos que para algún n tenemos $\sum_{i=0}^{n} \frac{i}{2^i} = 2 - \frac{n+2}{2^n}$

• Paso inductivo

PD que para n+1 tenemos
$$\sum_{i=0}^{n} +1 \frac{i}{2^{i}} = 2 - \frac{(n+1)+1}{2^{n+1}}$$

Empezamos con que
$$\sum_{i=0}^{n} +1 \frac{1}{2^{i}} = 0 + \frac{1}{2} + ... + \frac{n+1}{2^{n+1}}$$

Tenemos que =
$$(0 + \frac{1}{2} + ... + \frac{n}{2n}) + \frac{n+1}{2n+1}$$

Por hipótesis =
$$2 - \frac{n+2}{2n} + \frac{n+1}{2n+3}$$

Después =
$$2 - \frac{(2^{n+1})(n+2) - (n+1)(2^n)}{(2^n)(2^{n+1})}$$

Paso inductivo PD que para n+1 tenemos
$$\sum_{i=0}^{n} +1\frac{i}{2^{i}} = 2 - \frac{(n+1)+2}{2^{n+1}}$$
 Empezamos con que $\sum_{i=0}^{n} +1\frac{i}{2^{i}} = 0 + \frac{1}{2} + \dots + \frac{n+1}{2^{n+1}}$ Tenemos que $= (0 + \frac{1}{2} + \dots + \frac{n}{2^{n}}) + \frac{n+1}{2^{n+1}}$ Por hipótesis $= 2 - \frac{n+2}{2^{n}} + \frac{n+1}{2^{n+1}}$ Después $= 2 - \frac{(2^{n+1})(n+2)-(n+1)(2^{n})}{(2^{n})(2^{n+1})}$ Luego $= 2 - \frac{(2^{n})(2)(n+2)-(n+1)}{(2^{n})(2^{n+1})} = 2 - \frac{(2)(n+2)-(n+1)}{(2^{n+1})}$ Tenemos que es $= 2 - \frac{2n+4-n-1}{(2^{n+1})} = 2 - \frac{n+3}{(2^{n+1})}$ Con esto tenemos que $= 2 - \frac{(n+1)+2}{(2^{n+1})}$

Tenemos que es =
$$2 - \frac{2n+4-n-1}{(2^{n+1})} = 2 - \frac{n+3}{(2^{n+1})}$$

Con esto tenemos que =
$$2 - \frac{(n+1)+2}{(2^{n+1})}$$

Y concluimos que
$$\sum_{i=0}^n + 1\frac{i}{2^i} = 2 - \frac{(n+1)+2}{2^{n+1}}$$
 \square

- 2. Demuestre cada una de las siguientes desigualdades para los valores de $n \in \mathbb{N}$ especificados.
 - (a) $(1 + \frac{1}{n})^n < n$ para cada $n \in \mathbb{N}$ tal que $n \ge 3$
 - Caso Base

Tenemos que n=3, por lo tanto $(1+\frac{1}{3})^3=\frac{64}{27}<3$ por lo tanto se cumple.

• Hipótesis de inducción

Suponemos que para algún $n \ge 3$ tenemos $(1 + \frac{1}{n})^n < n$

• Paso inductivo

PD
$$(1 + \frac{1}{n+1})^{n+1} < n+1$$

PD
$$(1 + \frac{1}{n+1})^{n+1} < n+1$$

Empezamos con que $(1 + \frac{1}{n+1})^{n+1} = (1 + \frac{1}{n+1})^n \cdot (1 + \frac{1}{n+1})^1$
Por hipótesis $(1 + \frac{1}{n+1})^n \cdot (1 + \frac{1}{n+1})^1 < n \cdot (1 + \frac{1}{n+1})^1$
Después $(1 + \frac{1}{n+1})^{n+1} < n + \frac{n}{n+1}$

Por hipótesis
$$(1+\frac{1}{n+1})^n \cdot (1+\frac{1}{n+1})^1 < n \cdot (1+\frac{1}{n+1})^1$$

Después
$$(1 + \frac{1}{n})^{n+1} < n + \frac{n}{n}$$

Luego
$$(1 + \frac{1}{n+1})^{n+1} < n + \frac{n+1}{n+1}$$

Después $(1 + \frac{1}{n+1})^{n+1} < n+1$
Y concluimos que $(1 + \frac{1}{n+1})^{n+1} < n+1$

- (b) $3^n > n^3$ para cada $n \in \mathbb{N}$ tal que $n \ge 4$
 - Caso Base Tenemos que n=4, por lo tanto $3^4=81>4^3=64$ por lo tanto se cumple.
 - Hipótesis de inducción Suponemos que para algún $n \geq 4$ tenemos $3^n > n^3$
 - Paso inductivo PD $3^{n+1}>(n+1)^3$ Por hipótesis tenemos que $3^n>n^3$ Sabemos que $(n+1)^3=n^3+3n^2+3n+1$ Por hipótesis $3^n>n^3$ Luego $3^n>n^3>3n^2$ porque n>3 y $n^3>n^2$ y con esto tenemos que $3^n>3n^2$ Después $3^n>n^3>3n+1$ porque $n^3>3n$ y $n^3>1$ y con esto tenemos que $3^n>3n+1$ Y con lo anterior tenemos que $3^n+3^n+3^n=3^{n+1}>n^3+3n^2+3n+1$ Y esto es igual a $3^{n+1}>(n+1)^3$ \square
- 3. Demuestre que $\prod_{i=2}^n \left(1-\frac{1}{i^2}\right) = \frac{n+1}{2n}$ para cada $n \in \mathbb{N}$ tal que $n \geq 2$
 - Caso Base Tenemos que n=2, por lo tanto $\prod_{i=2}^{n} \left(1-\frac{1}{i^2}\right)=1-\frac{1}{4}=\frac{3}{4}=\frac{2+1}{2(2)}=\frac{3}{4}$ por lo tanto se cumple.
 - Hipótesis de inducción Suponemos que para algún $n\geq 2$ tenemos $\prod_{i=2}^n\left(1-\frac{1}{i^2}\right)=\frac{n+1}{2n}$
- 4. Sea $\{r_i\}_{i\in\mathbb{N}^\times}$ la sucesión definida por $r_1=1,$ y $r_{n+1}=4r_n+7$ para cada $n\in\mathbb{N}$. Demuestre que $r_n=\frac{1}{3}(10\cdot 4^{n-1}-7)$ para cada $n\in\mathbb{N}^\times$.

• Caso Base

Tenemos que n=1, por lo tanto $r_1=\frac{1}{3}(10\cdot 4^{1-1}-7)=\frac{1}{3}(10\cdot 4^0-7)=\frac{1}{3}(10\cdot 1-7)=\frac{1}{3}(3)=1$ por lo tanto se cumple.

• Hipótesis de inducción

Sea $n \in \mathbb{N}$, suponemos que para todo $i, 0 \le i \le n$ se cumple $r_i = \frac{1}{3}(10 \cdot 4^{i-1} - 7)$

• Paso inductivo

PD
$$r_{n+1} = \frac{1}{3}(10 \cdot 4^{(n+1)-1} - 7)$$

Por sucesión tenemos $r_{n+1} = 4r_n + 7$

Y por hipótesis = $4(\frac{1}{3}(10 \cdot 4^{n-1} - 7)) + 7$

Luego =
$$4(\frac{10 \cdot 4^{n-1} - 7}{3}) + 7$$

Y por hipótesis =
$$4(\frac{1}{3}(10 \cdot 4)^{1/2})$$

Luego = $4(\frac{10 \cdot 4^{n-1} - 7}{3}) + 7$
Después = $\frac{4(10 \cdot 4^{n-1} - 7) + 21}{3} + 7$
Después = $\frac{4(10 \cdot 4^{n-1} - 7) + 21}{3}$

Después =
$$\frac{4(10 \cdot 4^{n-1} - 7) + 3}{3}$$

Y esto =
$$\frac{(10\cdot4^n-28)+21}{3} = \frac{10\cdot4^n-7}{3}$$

Después =
$$\frac{3}{1}$$

Y esto = $\frac{(10 \cdot 4^n - 28) + 21}{3} = \frac{10 \cdot 4^n - 7}{3}$
Luego = $\frac{1}{3}(10 \cdot 4^n - 7) = \frac{1}{3}(10 \cdot 4^{(n+1)-1} - 7)$

Y concluimos que $r_{n+1} = \frac{1}{3}(10 \cdot 4^{(n+1)-1} - 7)$

5. Sea $\{b_i\}_{i\in\mathbb{N}}$ la sucesión definida por $b_0=1,\,b_1=1,\,$ y $b_n=\frac{1}{3}\left(b_{n-1}+\frac{3}{b_{n-2}}\right)$ para cada $n\in\mathbb{N}$ tal que $n \geq 2$. Demuestre que $1 \leq b_n \leq \frac{3}{2}$ para cada $n \in \mathbb{N}$.

Caso base:

$$b_0 = b_1 = 1$$

$$1 \le 1 \le \frac{3}{2}$$

Hipótesis de inducción:

Para todo i tal que $0 \le i < n$ se cumple que $1 \le b_i \le \frac{3}{2}$

Paso inductivo:

Por hipótesis de inducción $1 \le b_{n-2} \le \frac{3}{2}$

$$1 \ge \frac{1}{b_{n-2}} \ge \frac{2}{3}$$

Por hipótesis de inducción
$$1 \le b_{n-1} \le \frac{3}{2}$$

 $\frac{1}{3}(1 + \frac{3}{b_{n-2}}) \le \frac{1}{3}(b_{n-1} + \frac{3}{b_{n-2}}) \le \frac{1}{3}(\frac{3}{2} + \frac{3}{b_{n-2}})$
 $\frac{1}{3} + \frac{1}{b_{n-2}} \le \frac{1}{3}(b_{n-1} + \frac{3}{b_{n-2}}) \le \frac{1}{2} + \frac{1}{b_{n-2}}$
Por la definición de la sucesión $\frac{1}{3} + \frac{1}{b_{n-2}} \le b_n \le \frac{1}{2} + \frac{1}{b_{n-2}}$

Como
$$1 \ge \frac{1}{b_{n-2}} \ge \frac{2}{3}$$
, entonces $\frac{1}{3} + \frac{2}{3} \le b_n \le \frac{1}{2} + 1$

Por lo tanto, $1 \le b_n \le \frac{3}{2}$

- 6. Sea $\{d_i\}_{i\in\mathbb{N}}$ la sucesión definida por $d_0=2,\ d_1=3,\ y\ d_n=d_{n-1}\cdot d_{n-2}$ para cada $n\in\mathbb{N}$ tal que $n \geq 2$. Encuentre una fórmula explícita para d_n , y demuestre por inducción que su fórmula funciona.
 - Formula explicita es $d_n = 3^{F_n} \cdot 2^{F_n-1}$ donde F_n es el n-esimo termino de la sucesión de Fibonacci donde $F_0 = 0$, $F_1 = 1$ y $F_n = F_{n-1} + F_{n-2}$ Esto lo sacamos al ver:

$$\begin{aligned} d_0 &= 2 \\ d_1 &= 3 = 3^1 \cdot 2^0 \\ d_2 &= 3 \cdot 2 = 6 = 3^1 \cdot 2^1 \\ d_3 &= 3 \cdot 2 \cdot 3 = 18 = 3^2 \cdot 2^1 \\ d_4 &= 3 \cdot 2 \cdot 3 \cdot 3 \cdot 2 = 108 = 3^3 \cdot 2^2 \\ d_4 &= 3 \cdot 2 \cdot 3 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 3 = 1944 = 3^5 \cdot 2^3 \end{aligned}$$

Y como podemos ver los exponentes son los números de la secuencia de Fibonacci

Sea n=0 entonces $d_0=3^{F_0}\cdot 2^{F_10-1}=3^0\cdot 2^1=2$ por lo tanto se cumple Sea n = 1 entonces $d_1 = 3^{F_1} \cdot 2^{F_1 - 1} = 3^1 \cdot 2^0 = 3$ por lo tanto se cumple

• Hipótesis de inducción

Sea $n \in \mathbb{N}$, suponemos que para k tal que $0 \le k \le n$ se cumple $d_k = 3^{F_k} \cdot 2^{F_{\lfloor k-1 \rfloor}}$

• Paso inductivo

PD
$$d_{n+1} = 3^{F_{n+1}} \cdot 2^{F_{|n|}}$$

Por sucesión $d_{n+1} = d_n \cdot d_{n-1}$

Por hipótesis $d_{n+1} = (3^{F_n} \cdot 2^{F_|n-1|}) \cdot (3^{F_{n-1}} \cdot 2^{F_|n-2|})$

Luego =
$$(3^{F_n} \cdot 3^{F_{n-1}}) \cdot (2^{F_{n-1}} \cdot 2^{F_{n-2}})$$

Después = $3^{F_n + F_{n-1}} \cdot 2^{F_n + F_{n-1}} \cdot 2^{F_n + F_{n-2}}$

Por secuencia de Fibonacci = $3^{F_{n+1}} \cdot 2^{F_{|n|}}$

Y concluimos que $d_{n+1} = 3^{F_{n+1}} \cdot 2^{F_{|n|}} \square$

- 7. Sea F_n la sucesión de Fibonacci, y sea $n \in \mathbb{N}$.
 - (a) Demuestre que si n > 5, entonces $F_n = 5F_{n-4} + 3F_{n-5}$.
 - Caso Base

Sea n = 6 entonces $F_6 = 5F_{6-4} + 3F_{6-5} = 5F_2 + 3F_1 = 5(1) + 3(1) = 8$ por lo que se cumple

• Hipótesis de inducción

Sea $n \in \mathbb{N}$ tal que n > 5, suponemos que para i tal que $5 \le i \le n$ se cumple $F_i =$ $5F_{i-4} + 3F_{i-5}$

• Paso inductivo

Demostrar para n + 1, PD $F_{n+1} = 5F_{(n+1)-4} + 3F_{(n+1)-5}$

Por sucesión de Fibonacci $F_{n+1} = F_n + F_{n-1}$

Por hipótesis $F_{n+1} = (5F_{n-4} + 3F_{n-5}) + (5F_{(n-1)-4} + 3F_{(n-1)-5})$

Luego = $(5F_{n-4} + 3F_{n-5}) + (5F_{n-5} + 3F_{n-6})$

Después = $5(F_{n-4} + F_{n-5}) + 3(F_{n-5} + F_{n-6})$

Por sucesión de Fibonacci = $5(F_{n-3}) + 3(F_{n-4})$

Y esto es = $5(F_{(n+1)-4}) + 3(F_{(n+1)-5})$

Y concluimos que $F_{n+1} = 5(F_{(n+1)-4}) + 3(F_{(n+1)-5}) \square$

(b) Demuestre que si $k \in \mathbb{N}$ es tal que $k \geq 2$, entonces $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$.

• Caso Base

Sea n=0 y k=2 entonces $F_{0+2}=F_2F_{0+1}+F_{2-1}F_0=F_2F_1+F_1F_0=1(1)+1(0)=1$ por lo tanto se cumple

• Hipótesis de inducción

Sea $n \in \mathbb{N}$ y $k \in \mathbb{N}$ tal que $k \ge 2$, suponemos que para n+m donde m tal que $2 \le m \le k$ se cumple $F_{n+m} = F_m F_{n+1} + F_{m-1} F_n$

• Paso inductivo

Demostrar pata n+1 y k+1, PD $F_{(n+1)+(k+1)} = F_{k+1}F_{(n+1)+1} + F_{(k+1)-1}F_{n+1}$ Por sucesión de Fibonacci $F_{(n+1)+(k+1)} = F_{n+k} + F_{(n-1)+(k-1)}$ Por hipótesis = $(F_kF_{n+1} + F_{k-1}F_n) + (F_{k-1}F_n + F_{k-2}F_{n-1})$ Después = $(F_k + F_{k-1}F_{n+1}F_n) + (F_{k-1} + F_{k-2}F_n + F_{n-1})$ Por sucesión de Fibonacci = $(F_{k+1}F_{n+2}) + (F_kF_{n+1})$ Esto es = $(F_{k+1}F_{(n+1)+1}) + (F_{(k+1)-1}F_{n+1})$ Y concluimos que $F_{(n+1)+(k+1)} = (F_{k+1}F_{(n+1)+1}) + (F_{(k+1)-1}F_{n+1})$ \square

8. Un cuadrado mágico de orden n es un arreglo cuadrado de los enteros positivos entre 1 y n^2 tales que la suma de los enteros en cada renglón, columna, y diagonal, es una constante k, llamada la constante mágica. Demuestre que la constante mágica de cualquier cuadrado mágico de orden n es $\frac{n(n^2+1)}{2}$.

1	14	15	4
12	7	6	9
8	11	10	5
13	2	3	16

Un cuadrado mágico de orden 4.

- Formula La formula m es $\sum_{i=1}^{n^2} i = \frac{n^2(n^2+1)}{2}$ donde n es el numero de orden del cuadro y entonces $k = \frac{m}{n}$
- Caso Base Sea n=1 entonces $m_1=\sum_{i=1}^{1^2}i=\frac{1^2(1^2+1)}{2}=\frac{2}{2}=1$ entonces $k=\frac{1}{1}=1$ y $\frac{1(1^2+1)}{2}=\frac{2}{2}=1$ entonces se cumple
- Hipótesis de inducción Suponemos que para n se cumple $k_n=\frac{m_n}{n}$ donde $m_n=\sum_{i=1}^{n^2}i=\frac{n^2(n^2+1)}{2}$
- Paso inductivo

Demostramos para n+1, PD $k_{n+1}=\frac{m_{n+1}}{n+1}=\frac{n+1((n+1)^2+1)}{2}$ Sabemos que $m_{n+1}=1+2+3+\ldots+(n+1)^2-1+(n+1)^2$ Por formula $m_{n+1}=\frac{(n+1)^2((n+1)^2+1)}{2}$ Ahora para ver si es k_{n+1} hacemos $\frac{m_{n+1}}{n+1}$

Esto es $\frac{\frac{(n+1)^2((n+1)^2+1)}{2}}{n+1}$ Luego $\frac{(n+1)^2((n+1)^2+1)}{2(n+1)}$ Después $\frac{n+1((n+1)^2+1)}{2}$

Y concluimos que $k_{n+1} = \frac{n+1((n+1)^2+1)}{2}$

- 9. Sea $n \in \mathbb{N}$ tal que $n \geq 8$. Demuestre que existen $k, l \in \mathbb{N}$ tales que n = 3k + 5l.
 - Caso Base Sea n=8 entonces podemos escribir 8=3+5 por lo tanto k=1 y l=1 y se cumple
 - Hipótesis de inducción Sea $n \in \mathbb{N}$ tal que $n \geq 8$, suponemos que para m tal que $8 \leq m \leq n$ se cumple m = 3k + 5l, con $k, l \in \mathbb{N}$
 - Paso inductivo

Probar para n+1, tenemos tres casos:

Caso 1: n + 1 = 9 tenemos que 9 = 3(3) + 5(0)

Caso 2: n + 1 = 10 tenemos que 10 = 3(0) + 5(2)

Caso 3: $n+1 \ge 11$ tenemos que es $(n+1)-3 \ge 8$ entonces $n-2 \ge 8$

Por hipótesis n-2=3k+5l

Entonces n + 1 = n - 2 + 3 = 3k + 5l + 3

Después 3k + 5l + 3 = 3(k+1) + 5l

Y concluimos que n + 1 = 3(k + 1) + 5l

10. Sea Q la matriz

$$Q = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right).$$

Demuestre que

$$Q^n = \left(\begin{array}{cc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array} \right).$$

Donde F_n denota al n-ésimo número de Fibonacci.

• Caso Base Sea n = 1 entonces

$$Q^1 = \left(\begin{array}{cc} F_{1+1} & F_1 \\ F_1 & F_{1-1} \end{array}\right) = \left(\begin{array}{cc} F_2 & F_1 \\ F_1 & F_1 \end{array}\right)$$

y por secuencia de Fibonacci tenemos

$$= \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)$$

por lo que se cumple.

• Hipótesis de inducción Suponemos que para n se cumple

$$Q^n = \left(\begin{array}{cc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array}\right)$$

• Paso inductivo Demostrar para n + 1 PD

$$Q^{n+1} = \left(\begin{array}{cc} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{array}\right)$$

Sabemos que $Q^{n+1} = Q^n \cdot Q^1$ Por hipótesis

$$Q^{n+1} = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$Q^{n+1} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\begin{aligned} a_{11} &= (F_{n+1} \cdot 1) + (F_n \cdot 1) = F_{n+1} + F_n = F_{n+2} \\ a_{12} &= (F_{n+1} \cdot 1) + (F_n \cdot 0) = F_{n+1} + 0 = F_{n+1} \\ a_{21} &= (F_n \cdot 1) + (F_{n-1} \cdot 1) = F_n + F_{n-1} = F_{n+1} \\ a_{22} &= (F_n \cdot 1) + (F_{n-1} \cdot 0) = F_n + 0 = F_n \end{aligned}$$

$$Q^{n+1} = \left(\begin{array}{cc} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{array} \right) \square$$

11. Demostración para sucesión de Fibonacci

Sea F_n la sucesión de Fibonacci, y sea sea $n \in \mathbb{N}$, sabemos que $F_0 = 0$, $F_1 = 1$ y $F_n = F_{n-1} + F_{n-2}$. Demostrar que $F_n = \frac{1}{\sqrt{5}} [(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n]$

- Caso Base Sea n=0, tenemos que $F_0 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^0 - \left(\frac{1-\sqrt{5}}{2} \right)^0 \right] = \frac{1}{\sqrt{5}} [1-1] = 0$, por lo que se cumple. Sea n=1, tenemos que $F_1=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^1-(\frac{1-\sqrt{5}}{2})^1]=\frac{1}{\sqrt{5}}[\frac{1+\sqrt{5}-1+\sqrt{5}}{2}]=\frac{1}{\sqrt{5}}[\frac{2\sqrt{5}}{2}]=\frac{1}{\sqrt{5}}[\sqrt{5}]=\frac{1}{\sqrt{5}}[$ 1, por lo que se cumple.
- Hipótesis de inducción Sea $n \in \mathbb{N}$, suponemos que para todo $k, 0 \le k < n$ se cumple $F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right]$
- Paso inductivo

PD
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

PD
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Por sucesión tenemos que $F_n = F_{n-1} + F_{n-2}$
Por hipótesis $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-2} \right]$

Luego =
$$\frac{1}{\sqrt{5}} \left[\left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} + \left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \right] - \left[\left(\frac{1-\sqrt{5}}{2} \right)^{n-1} + \left(\frac{1-\sqrt{5}}{2} \right)^{n-2} \right] \right]$$

Después =
$$\frac{1}{\sqrt{5}} [(\frac{1+\sqrt{5}}{2})^{n-2} \cdot (\frac{1+\sqrt{5}}{2}+1) - (\frac{1-\sqrt{5}}{2})^{n-2} \cdot (\frac{1-\sqrt{5}}{2}+1)]$$

Y eso =
$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{1+\sqrt{5}+2}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{1-\sqrt{5}+2}{2} \right) \right]$$

Luego =
$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{6+2\sqrt{5}}{4} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{6-2\sqrt{5}}{4} \right) \right]$$

Después =
$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{6+2\sqrt{5}}{2^2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{6-2\sqrt{5}}{2^2} \right) \right]$$

Y eso =
$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{(1+\sqrt{5})^2}{2^2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{(1-\sqrt{5})^2}{2^2} \right) \right]$$

Luego =
$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^{n-2} \cdot \left(\frac{1-\sqrt{5}}{2} \right)^2 \right]$$

Después =
$$\frac{1}{\sqrt{5}} [(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n]$$

Y esto es
$$F_n = \frac{1}{\sqrt{5}} [(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n] \square$$