- 1. Volem calcular les arrels de $x^3 + x 1000$ amb un esquema iteratiu de la forma x = g(x).
 - (a) Demostreu que només té una arrel real.
 - (b) Formeu esquemes iteratius que no convergeixin cap a la solució.
 - (c) Formeu-ne que convergeixin. Quin serà el més ràpid? Determineu per a aquest un interval on es compleixin les hipòtesis del lema de contracció. Determineu el mínim nombre d'iteracions per a assegurar (teòricament) un error menor que 10⁻⁶. Trobeu la solució.
 - (d) Considereu ara $x = g(x) = \sqrt{\frac{1000}{x} 1}$. Calculeu la solució. Accelereu per Aitken la successió anterior.
- 2. Usant els mètodes de bisecció, secant i Newton, trobeu els zeros de les funcions:
 - (a) $f(x) = 4\sin(x) + 1 x$.
 - (b) $f(x) = 1 x e^{-2x}$.
 - (c) $f(x) = (x+1)e^{x-1} 1$.
- 3. Sigui $f(x) = \frac{x^3 + bx}{3x^2 + d}$. Calculeu les constants b i d de manera que el mètode de iteració tingui convergència quadràtica cap a \sqrt{a} . A partir d'això calculeu, treballant amb doble precisió, $\sqrt{10}$ amb 10 xifres decimals. Què s'observa?
- 4. Apliqueu Newton per a calcular totes les arrels de $x \exp(\exp(\exp(x))) = 1$.
- 5. Calculeu l'arrel més petita de $x^5 + 2x^4 + 3x^3 + 4x^2 + 5x + 1$ per iteració de la funció $g(x) = (x^5 + 2x^4 + 3x^3 + 4x^2 + 1)/(-5)$. Quin ordre s'observa? Justifiqueu-lo.
- 6. Resoleu $x = \cos(x)$ per iteració simple, amb el mètode de Aitken i el de Steffensen.
- 7. Proveu que l'ordre de convergència del mètode de Steffensen

$$x_{k+1} = x_k - \frac{(f(x_k))^2}{f(x_k + f(x_k)) - f(x_k)}$$

en el càlcul de zeros simples de funcions dues vegades diferenciables amb continuïtat és 2. Quant val la constant asimptòtica de l'error?

8. (a) Demostreu que el mètode de Newton modificat per a zeros múltiples

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$$

té ordre de convergència 2 en calcular un zero α de multiplicitat m de f.

- (b) Calculeu la constant asimptòtica de l'error (suposeu que $f^{(m+1)}(\alpha) \neq 0$).
- 9. Apliqueu el mètode de Newton a un sistema de 2 equacions amb 2 variables

$$f(x,y) = 0, \qquad g(x,y) = 0.$$

Donat un iterat (x_n, y_n) trobeu, en funció de f i g, l'expressió analítica dels increments δ i ε que determina el següent iterat (x_{n+1}, y_{n+1}) amb $x_{n+1} = x_n + \delta$, $y_{n+1} = y_n + \varepsilon$.

10. Apliqueu el mètode de Newton amb dues variables per tal de calcular la solució del sistema no lineal:

$$x = \sin(x+y),$$
 $y = \cos(x-y)$

prop de $x=1,\,y=1$. Acabeu el procés quan el vector residual, resultat de restar els dos membres de cada equació, sigui menor que 10^{-10} en $\|\cdot\|_{\infty}$.

- 11. Donat el polinomi $P(x) = 5x^4 8x^3 x^2 + x 6$, determineu dos intervals que continguin totes les arrels reals (positives i negatives respectivament)
 - (a) Aplicant la regla de Laguerre.
 - (b) Aplicant la regla de Newton.
- 12. Calculeu pel mètode de Bairstow, els zeros del polinomi $P(x) = x^4 + 5x^3 + 3x^2 5x 9$.