

Database Systems I

CMPT 354 Summer 2024 Zhengjie Miao

Announcements (Fri. May 31)

- Assignment 2 (Due June 7)
 - Web tool for checking your query result will be available during the weekend
 - Try to run locally first
 - Especially for syntax issues

Outline

- Intro to SQL & basic examples
- Bag semantics
- Subqueries
- Aggregation
- Ordering

SQL

- SQL: Structured Query Language
 - Pronounced "S-Q-L" or "sequel"
 - The standard query language supported by most DBMS
- A brief history
 - IBM System R (1970s)
 - ANSI SQL89
 - ANSI SQL92 (SQL2)
 - ANSI SQL99 (SQL3)
 - ANSI SQL 2003 (added OLAP, XML, etc.)
 - ANSI SQL 2006 (added more XML)
 - ANSI SQL 2008, ...

The curious staying power of SQL

• The most popular programming languages according to statista,

2023

SQL

- Data-definition language (DDL): define/modify schemas, delete relations
- Data-manipulation language (DML): query information, and insert/delete/modify tuples
- Integrity constraints: specify constraints that the data stored in the database must satisfy
- Intermediate/Advanced topics (next weeks):
 - E.g., triggers, views, indexes, programming, recursive queries

Creating and dropping tables

- CREATE TABLE table_name (..., column_name column_type,...);DROP TABLE table name;
- Examples

```
CREATE TABLE User(uid integer, name varchar(30), age integer, pop float);

CREATE TABLE Group(gid char(10), name varchar(100));

CREATE TABLE Member(uid integer, gid char(10));

DROP TABLE Member;

DROP TABLE Group;

DROP TABLE User;
```

- -- everything from -- to the end of line is ignored.
- -- SQL is insensitive to white space.
- -- SQL is insensitive to case (e.g., ...Group... Is equivalent to ...GROUP...).

Basic queries: SFW statement

• SELECT A_1 , A_2 , ..., A_n FROM R_1 , R_2 , ..., R_m WHERE condition;

- Also called an SPJ (selection-projection-join) query
- Corresponds to (but not really equivalent to) relational algebra query:

 Why is it not equivalent to relational algebra query?

$$\pi_{A_1,A_2,...,A_n}(\sigma_{condition}(R_1 \times R_2 \times \cdots \times R_m))$$

Example: reading a table

- List all rows in the User table:
- SELECT * FROM User;
 - Single-table query, so no cross product here
 - WHERE clause is optional
 - * is a shorthand for "all columns"

Example: selection and projection

- Name of users under 18
 - SELECT name FROM User WHERE age<18;
- When was Lisa born?
 - SELECT 2023-age FROM User WHERE name = 'Lisa';
 - SELECT list can contain expressions
 - Can also use built-in functions such as SUBSTR, ABS, etc.
 - String literals (case sensitive) are enclosed in single quotes

Example: join

- List ID's and names of groups with a user whose name contains "Simpson"
 - SELECT Group.gid, Group.name FROM User, Member, Group WHERE User.uid = Member.uid AND Member.gid = Group.gid AND ...;

Example: join

- List ID's and names of groups with a user whose name contains "Simpson"
 - SELECT Group.gid, Group.name FROM User, Member, Group WHERE User.uid = Member.uid AND Member.gid = Group.gid AND User.name LIKE '%Simpson%';
 - LIKE matches a string against a pattern
 - % matches any sequence of zero or more characters
 - Okay to omit table_name in table_name.column_name if column_name is unique

Example: rename

- ID's of all pairs of users that belong to one group
 - Relational algebra query:

```
\pi_{m_1.uid,m_2.uid}
(\rho_{m_1}Member \bowtie_{m_1.gid=m_2.gid \land m_1.uid>m_2.uid} \rho_{m_2}Member)
```

• SQL:

```
SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid
AND m1.uid > m2.uid;
```

AS keyword is completely optional

A more complicated example

Names of all groups that Lisa and Ralph are both in

```
SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g
WHERE u1.name = 'Lisa' AND u2.name = 'Ralph'
AND u1.uid = m1.uid AND u2.uid = m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;
```

Tip: Write the FROM clause first, then WHERE, and then SELECT

Why SFW statements?

- Out of many possible ways of structuring SQL statements, why did the designers choose SELECT-FROM-WHERE?
 - A large number of queries can be written using only selection, projection, and cross product (or join)
 - Any query that uses only these operators can be written in a canonical form: $\pi_L \left(\sigma_p(R_1 \times \cdots \times R_m) \right)$
 - Example: $\pi_{R.A,S.B}(R \bowtie_{p_1} S) \bowtie_{p_2} (\pi_{T.C}\sigma_{p_3}T)$ = $\pi_{R.A,S.B,T.C}\sigma_{p_1 \wedge p_2 \wedge p_3}(R \times S \times T)$
 - SELECT-FROM-WHERE captures this canonical form

Set versus bag semantics

- Set
 - No duplicates
 - Relational model and algebra use set semantics
- Bag
 - Duplicates allowed
 - Number of duplicates is significant
 - SQL uses bag semantics by default

Set versus bag example

 $\pi_{gid}Member$ gid dps gov abc ...

Member

uid	gid
142	dps
123	gov
857	abc
857	gov
456	abc
456	gov

SELECT gid FROM Member;

gid
dps
gov
abc
gov
abc
gov
...

A case for bag semantics

- Efficiency
 - Saves time of eliminating duplicates
- Which one is more useful?
 - $\pi_{age}User$
 - SELECT age FROM User;
 - The first query just returns all possible user ages
 - The second query returns the user age distribution
- Besides, SQL provides the option of set semantics with DISTINCT keyword

Forcing set semantics

- ID's of all pairs of users that belong to one group
 - SELECT m1.uid AS uid1, m2.uid AS uid2 FROM Member AS m1, Member AS m2 WHERE m1.gid = m2.gid AND m1.uid > m2.uid;
 - Say Lisa and Ralph are in both the book club and the student government
 - SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2 ...
 - With DISTINCT, all duplicate (uid1, uid2) pairs are removed from the output

Semantics of SFW

```
• SELECT [DISTINCT] E_1, E_2, ..., E_n
 FROM R_1, R_2, ..., R_m
 WHERE condition;
• For each t_1 in R_1:
   For each t_2 in R_2: ...
      For each t_m in R_m:
        If condition is true over t_1, t_2, ..., t_m:
          Compute and output E_1, E_2, ..., E_n as a row
 If DISTINCT is present
    Eliminate duplicate rows in output
• t_1, t_2, ..., t_m are often called tuple variables
```

SQL set and bag operations

- UNION, EXCEPT, INTERSECT
 - Set semantics
 - Duplicates in input tables, if any, are first eliminated
 - Duplicates in result are also eliminated (for UNION)
 - Exactly like set ∪, –, and ∩ in relational algebra
- UNION ALL, EXCEPT ALL, INTERSECT ALL
 - Bag semantics

the row occurs in neither table or that the row occurs more often in the second table

- Think of each row as having an implicit count (the number of times it appears in the table)
- Bag union: sum up the counts from two tables
- Bag difference: proper-subtract the two counts

return you zero

Obtaining does not the grinters ection: take the minimum of the two counts

If a row appears more often in the

second table, then the difference will

Examples of set operations

Examples of bag operations

Bag1 Bag2 fruit fruit apple apple apple orange orange orange apple (SELECT * FROM Bag1) (SELECT * FROM Bag1) (SELECT * FROM Bag1) UNION ALL **EXCEPT ALL** INTERSECT ALL (SELECT * FROM Bag2); (SELECT * FROM Bag2); (SELECT * FROM Bag2); fruit fruit fruit apple apple apple apple apple orange orange

Ask professor about this result apple apple orange orange

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

```
• (SELECT uid1 FROM Poke)

EXCEPT

(SELECT uid2 FROM Poke);
```

- Users who poked others but never got poked by others
- (SELECT uid1 FROM Poke) EXCEPT ALL (SELECT uid2 FROM Poke);
 - Users who poked others more than others poke them

SQL features covered so far

- SELECT-FROM-WHERE statements (selection-projection-join queries)
- Set and bag operations

Next: how to nest SQL queries (besides set/bag operations)

Table subqueries

- Use query result as a table
 - In set and bag operations, FROM clauses, etc.
 - A way to "nest" queries
- Example: names of users who poked others more than others poked them

Scalar subqueries

- A query that returns a single row can be used as a value in WHERE,
 SELECT, etc.
- Example: users at the same age as Bart

```
• SELECT *
FROM User
WHERE age = (SELECT age
FROM User
WHERE name = 'Bart');
```

- Runtime error if subquery returns more than one row
 - Under what condition will this error never occur?
- What if the subquery returns no rows? the name 'Bart' is unique
 - The answer is treated as a special value NULL, and the comparison with NULL will fail

IN subqueries

- x IN (subquery) checks if x is in the result of subquery
- Example: users at the same age as (some) Bart
 - SELECT *
 FROM User
 WHERE age IN (SELECT age
 FROM User
 WHERE name = 'Bart');

EXISTS subqueries

- EXISTS (subquery) checks if the result of subquery is non-empty
- Example: users at the same age as (some) Bart

```
• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User
WHERE name = 'Bart'
AND age = u.age);
```

 This happens to be a correlated subquery—a subquery that references tuple variables in surrounding queries

Semantics of subqueries

```
• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User
WHERE name = 'Bart'
AND age = u.age);
```

- For each row u in User
 - Evaluate the subquery with the value of u.age
 - If the result of the subquery is not empty, output u.*
- The DBMS query optimizer may choose to process the query in an equivalent, but more efficient way (example?)

Scoping rule of subqueries

- To find out which table a column belongs to
 - Start with the immediately surrounding query
 - If not found, look in the one surrounding that; repeat if necessary
- Use table_name.column_name notation and AS (renaming) to avoid confusion

Another example

```
• SELECT * FROM User u
WHERE EXISTS
(SELECT * FROM Member m
WHERE uid u.uid
AND EXISTS
(SELECT * FROM Member
WHERE uid = u.uid AND gid <> m.gid));
```

Users who join at least two groups

Quantified subqueries

- A quantified subquery can be used syntactically as a value in a WHERE condition
- Universal quantification (for all):
 - ... WHERE x op ALL(subquery) ...
 - True iff for all t in the result of subquery, x op t
- Existential quantification (exists):
 - ... WHERE x op ANY | SOME($\hat{s}ubquery$) ...
 - True iff there exists some t in subquery result such that x op t
 - Beware
 - In common parlance, "any" and "all" seem to be synonyms
 - But in SQL, ANY really means "some"

Examples of quantified subqueries

Which users are the most popular?

```
• SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);
```

```
• SELECT *
FROM User
WHERE NOT
(pop < ANY(SELECT pop FROM User));

Is this right?
Will this not exclude the most unpopular user?
```

Use NOT to negate a condition

More ways to get the most popular

Which users are the most popular?

```
• SELECT *
FROM User AS u
WHERE NOT EXISTS
(SELECT * FROM User
WHERE pop > u.pop);
```

```
• SELECT * FROM User
WHERE uid NOT IN
(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);
```

SQL features covered so far

- SELECT-FROM-WHERE statements
- Set and bag operations
- Subqueries
 - Subqueries allow queries to be written in more declarative ways (recall the "most popular" query)
 - But in many cases they don't add expressive power
 - Try translating other forms of subqueries into [NOT] EXISTS, which in turn can be translated into join (and difference)
 - Watch out for number of duplicates though

Next: aggregation and grouping

Aggregates

- Standard SQL aggregate functions: COUNT, SUM, AVG, MIN, MAX
- Example: number of users under 18, and their average popularity

```
• SELECT COUNT(*), AVG(pop)
FROM User
WHERE age < 18;
```

COUNT(*) counts the number of rows

Aggregates with DISTINCT

• Example: How many users are in some group?

```
• SELECT COUNT(DISTINCT uid) FROM Member;
```

is equivalent to:

```
• SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member) AS T;
```

Grouping

• SELECT ... FROM ... WHERE ... GROUP BY *list_of_columns*;

- Example: compute average popularity for each age group
 - SELECT age, AVG(pop) FROM User GROUP BY age;

Semantics of GROUP BY

```
SELECT ... FROM ... WHERE ... GROUP BY ...;
```

- Compute FROM (×)
- Compute WHERE (σ)
- Compute GROUP BY: group rows according to the values of GROUP BY columns
- Compute SELECT for each group (π)
 - For aggregation functions with DISTINCT inputs, first eliminate duplicates within the group
- Number of groups = number of rows in the final output

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

uid	name	age	рор
142	Bart	10	0.9
857	Lisa	8	0.7
123	Milhouse	10	0.2
456	Ralph	8	0.3

Compute GROUP BY: group rows according to the values of GROUP BY columns

age	avg_pop				
10	0.55				
8	0.50				

uid	name	age	рор
142	Bart	10	0.9
123	Milhouse	10	0.2
857	Lisa	8	0.7
456	Ralph	8	0.3

Aggregates with no GROUP BY

 An aggregate query with no GROUP BY clause = all rows go into one group

SELECT AVG(pop) FROM User;

Group all rows into one group

Aggregate over the whole group

uid	name	age	рор	uid	name	age	рор	
142	Bart	10	0.9	142	Bart	10	0.9	avg_pop
857	Lisa	8	0.7	857	Lisa	8	0.7	0.525
123	Milhouse	10	0.2	123	Milhouse	10	0.2	
456	Ralph	8	0.3	456	Ralph	8	0.3	

Restriction on SELECT

- If a query uses aggregation/group by, then every column referenced in SELECT must be either
 - Aggregated, or
 - A GROUP BY column

Since each group can have multiple values in the column, you can not know which value will be returned if you only select one of the values

Why?

 This restriction ensures that any SELECT expression produces only one value for each group

Examples of invalid queries

- SELECT uid, age WRONG! FROM User GROUP BY age;
 - Recall there is one output row per group
 - There can be multiple uid values per group
- SELECT uid, MAX(pop) FROM UseringONG!
 - Recall there is only one group for an aggregate query with no GROUP BY clause
 - There can be multiple *uid* values
 - Wishful thinking (that the output uid value is the one associated with the highest popularity) does NOT work
 - Another way of writing the "most popular" query?

HAVING

- Used to filter groups based on the group properties (e.g., aggregate values, GROUP BY column values)
- SELECT ... FROM ... WHERE ... GROUP BY ... HAVING condition;
 - Compute FROM (×)
 - Compute WHERE (σ)
 - Compute GROUP BY: group rows according to the values of GROUP BY columns
 - Compute HAVING (another σ over the groups)
 - Compute SELECT (π) for each group that passes HAVING

HAVING examples

- List the average popularity for each age group with more than a hundred users
 - SELECT age, AVG(pop)
 FROM User
 GROUP BY age
 HAVING COUNT(*) > 100;
 - Can be written using WHERE and table subqueries
- Find average popularity for each age group over 10
 - SELECT age, AVG(pop)
 FROM User
 GROUP BY age
 HAVING age > 10;
 - Can be written using WHERE without table subqueries

SQL features covered so far

- SELECT-FROM-WHERE statements
- Set and bag operations
- Subqueries
- Aggregation and grouping
 - More expressive power than relational algebra

Next: ordering output rows

ORDER BY

- SELECT [DISTINCT] ...
 FROM ... WHERE ... GROUP BY ... HAVING ...
 ORDER BY output_column [ASC | DESC], ...;
- ASC = ascending, DESC = descending
- Semantics: After SELECT list has been computed and optional duplicate elimination has been carried out, sort the output according to ORDER BY specification

ORDER BY example

- List all users, sort them by popularity (descending) and name (ascending)
 - SELECT uid, name, age, pop FROM User
 ORDER BY pop DESC, name;
 - ASC is the default option
 - Strictly speaking, only output columns can appear in ORDER BY clause (although some DBMS support more)
 - Can use sequence numbers instead of names to refer to output columns: ORDER BY 4 DESC, 2;

SQL features covered so far

- SELECT-FROM-WHERE statements
- Set and bag operations
- Subqueries
- Aggregation and grouping
- Ordering

**Next: NULL's, outerjoins, data modification, constraints, ...