TSNE

T Distributed Stochastic Neighborhood Embedding

```
In [11:
   # neighbor hood idea preserved
   # in LLE the neighbor Wij is deterministically caculated -- no probability
   # in TSNE the nighbor weight calculated probabistically -- probob considered
   # Xi is determined such that the neighbor Probab Density is Normal
   # the data poinnts near Xi--closer to mean--more closer to neighbor
   # data points far from Xi---far from mean---not so neighbor
   # more probab -- near
   #lesser probab -far
10
11 # neighbors determined not by distance but by conditional probability
12
   # the high dimension to lower dimension thus focus to preserve the Conditional Probab (stochastic neighborhood remains
13
14
   # probab distribution distance to be kept minmum for determining the neighbor
15
16
   # preserve the condition1 probab--> during transformation from higher to lower dimension
17
18
   # when transformation done --problem in Normal Distribution is Compactness/Crowding of data points and difficult to an
19
20
21
   # hence T distributed to remove this crowding .....
22
23
   # stochastic means analysis of probability
In [2]:
   # Perplexity - no of neighbors identified based on conditional probability
```

```
1  # Perplexity - no of neighbors identified based on conditional probability
2
3  # experimentally proved perplexity value btw 5-50 gives good resulted
4
5  # TSNE - non linear, manifold learning , Local and Global characterisitc Presrved
6
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import fetch openml
```

Accessing the dataset

```
In [7]:
```

```
1 X.head()
```

Out[7]:

	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	•••	pixel775	pixel776	pixel777	pixel778	pixel779	pixel780	pixel781	р
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	

5 rows × 784 columns

```
In [8]:
```

```
1 X.iloc[1]
Out[8]:
pixel1
            0.0
pixel2
            0.0
pixel3
            0.0
pixel4
            0.0
           0.0
pixel5
pixel780
            0.0
pixel781
            0.0
pixel782
            0.0
pixel783
           0.0
pixel784
           0.0
Name: 1, Length: 784, dtype: float64
```

In [9]:

```
1 y.value_counts()
```

Out[9]:

```
7877
7
     7293
3
     7141
2
     6990
9
     6958
     6903
     6876
8
     6825
4
     6824
     6313
Name: class, dtype: int64
```

Plotting the images

In [11]:

```
plt.imshow(X.iloc[1].to_numpy().reshape(28,28),'Greys')

plt.title(y[1]);
```


In [12]:

```
plt.imshow(X.iloc[10].to_numpy().reshape(28,28),'Greys')
plt.title(y[10]);
```


In [13]:

```
plt.imshow(X.iloc[100].to_numpy().reshape(28,28),'Greys')
plt.title(y[100]);
```


In [14]:

```
plt.imshow(X.iloc[34].to_numpy().reshape(28,28),'Greys')

plt.title(y[34]);
```



```
In [15]:
```

```
plt.imshow(X.iloc[1012].to_numpy().reshape(28,28),'Greys')
plt.title(y[1012]);
```

```
1
5 -
10 -
15 -
20 -
25 -
0 5 10 15 20 25
```

In [16]:

```
plt.imshow(X.iloc[500].to_numpy().reshape(28,28),'Greys')
plt.title(y[500]);
```


In [17]:

```
plt.imshow(X.iloc[25000].to_numpy().reshape(28,28),'Greys')

plt.title(y[25000]);
```


Create a Random Sample of 1000 from 70K

In [19]:

np.random.seed(100)
sample=np.random.choice(X.shape[0],1000) # can directly write (70000,1000)
print(sample)

Creating A subset of 1k samples of X,y

```
In [20]:
   1 X1=X.iloc[sample,:] # iloc for rows
   2 X1.shape
Out[201:
(1000, 784)
In [21]:
   1 X1.head()
Out[21]:
               pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel6 pixel7 pixel8 pixel9 pixel10 ... pixel775 pixel776 pixel777 pixel777 pixel778 pixel779 pixel780 pixel78
                                                                                                                                                    0.0 ...
                                                                                                                                                                                                                                                                                         0
 38408
                    0.0
                                  0.0
                                                0.0
                                                              0.0
                                                                            0.0
                                                                                          0.0
                                                                                                         0.0
                                                                                                                      0.0
                                                                                                                                     0.0
                                                                                                                                                                             0.0
                                                                                                                                                                                               0.0
                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                       0.0
                    0.0
                                  0.0
                                                0.0
                                                              0.0
                                                                            0.0
                                                                                          0.0
                                                                                                         0.0
                                                                                                                      0.0
                                                                                                                                    0.0
                                                                                                                                                    0.0 ...
                                                                                                                                                                             0.0
                                                                                                                                                                                               0.0
                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                                                                                         0
 56088
                                                                                                                                                    0.0 ...
                                                                                                                                                                                                                                                                                         0
                    0.0
                                                0.0
                                                                                                        0.0
                                                                                                                     0.0
                                                                                                                                    0.0
                                                                                                                                                                             0.0
                                                                                                                                                                                               0.0
                                                                                                                                                                                                                                                     0.0
                                                                                                                                                                                                                                                                       0.0
 65615
                                  0.0
                                                              0.0
                                                                            0.0
                                                                                          0.0
                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                   0.0
                    0.0
                                  0.0
                                                0.0
                                                              0.0
                                                                            0.0
                                                                                          0.0
                                                                                                        0.0
                                                                                                                      0.0
                                                                                                                                    0.0
                                                                                                                                                    0.0 ...
                                                                                                                                                                             0.0
                                                                                                                                                                                               0.0
                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                                                                                         0
 63370
                                                                                                                                                    0.0 ...
                    0.0
                                  0.0
                                                0.0
                                                              0.0
                                                                            0.0
                                                                                          0.0
                                                                                                        0.0
                                                                                                                      0.0
                                                                                                                                    0.0
                                                                                                                                                                             0.0
                                                                                                                                                                                               0.0
                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                                      0.0
                                                                                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                                                                                         0
 14260
5 rows × 784 columns
In [22]:
   1 y1=y[sample]
   2 y1.shape
Out[22]:
(1000,)
In [23]:
   1 y1.head()
Out[23]:
38408
                       5
56088
                       2
65615
                      2
63370
14260
Name: class, dtype: category
Categories (10, object): ['0', '1', '2', '3', ..., '6', '7', '8', '9']
Building TSNE model
In [24]:
   1 from sklearn.manifold import TSNE
   3 tsne=TSNE(n_components=2,perplexity=30)
In [25]:
   1 X tsne=tsne.fit transform(X1)
   2 X tsne.shape
 \verb|C:\Users\Vishrut\anaconda3\lib\site-packages\sklearn\manifold\t_sne.py:780: Future \verb|Warning: The default initial of the control of the 
alization in TSNE will change from 'random' to 'pca' in 1.2.
    warnings.warn(
C:\Users\Vishrut\anaconda3\lib\site-packages\sklearn\manifold\_t_sne.py:790: FutureWarning: The default learn
ing rate in TSNE will change from 200.0 to 'auto' in 1.2.
    warnings.warn(
Out[25]:
(1000, 2)
In [27]:
  1 X_tsne[0] # dimension reduced to 2
Out[27]:
array([22.939573, 13.993068], dtype=float32)
```

Plotting transformed data point

```
In [28]:
```

```
1 plt.scatter(X_tsne[:,0],X_tsne[:,1]);

40 -
20 -
0 -
-20 -
-40 -
```

In [29]:

-60

```
plt.scatter(X_tsne[:,0],X_tsne[:,1],c=y1.astype(float));
```


Creating A DF

```
In [30]:
```

Out[30]:

	X0	X1	Label
38408	22.939573	13.993068	5
56088	-13.561443	-1.145843	2
65615	-9.424026	-8.405927	2
63370	34.267212	25.340717	4
14260	29.056919	34.054592	4
43545	-24.426233	-17.090849	6
6051	1.756038	30.691936	9
22851	-29.010527	-18.734632	6
65851	20.353048	20.824131	4
65658	-20.211996	20.025196	5

1000 rows × 3 columns

```
In [32]:
```

```
plt.figure(figsize=(15,12))
sns.lmplot(data=X_df,x='X0',y='X1',hue='Label');
```

<Figure size 1080x864 with 0 Axes>

In [33]:

```
plt.figure(figsize=(15,12))
sns.lmplot(data=X_df,x='X0',y='X1',hue='Label',fit_reg=False);
```

<Figure size 1080x864 with 0 Axes>

exercise:

perform TSNE on wine dataset

In [34]:

wine=pd.read_csv('https://gist.githubusercontent.com/tijptjik/9408623/raw/b237fa5848349a14a14e5d4107dc7897c21951f5/wine

```
In [35]:
```

1 wine

Out[35]:

	Wine	Alcohol	Malic.acid	Ash	Acl	Mg	Phenols	Flavanoids	Nonflavanoid.phenols	Proanth	Color.int	Hue	OD	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560

178 rows × 14 columns

In [39]:

```
1 X=wine.drop(['Wine'],axis=1)
2 X
```

Out[39]:

	Alcohol	Malic.acid	Ash	Acl	Mg	Phenols	Flavanoids	Nonflavanoid.phenols	Proanth	Color.int	Hue	OD	Proline
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560

178 rows \times 13 columns

In [37]:

```
1 y=wine['Wine']
2 y
3
```

Out[37]:

177

3

```
0 1
1 1
2 1
3 1
4 1
...
173 3
174 3
175 3
176 3
```

Name: Wine, Length: 178, dtype: int64

In [40]:

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_scaled=sc.fit_transform(X)
X_scaled
```

Out[40]:

In [41]:

```
1 X_tsnel=tsne.fit_transform(X_scaled)
2 X_tsnel.shape
```

C:\Users\Vishrut\anaconda3\lib\site-packages\sklearn\manifold_t_sne.py:780: FutureWarning: The default initi
alization in TSNE will change from 'random' to 'pca' in 1.2.
warnings.warn(

C:\Users\Vishrut\anaconda3\lib\site-packages\sklearn\manifold_t_sne.py:790: FutureWarning: The default learn
ing rate in TSNE will change from 200.0 to 'auto' in 1.2.
 warnings.warn(

Out[41]:

(178, 2)

In [43]:

Out[43]:

	Х0	X1	Label
0	7.347120	-11.491316	1
1	5.356689	-8.376481	1
2	9.458805	-7.371906	1
3	9.938459	-10.236125	1
4	7.817649	-3.619836	1
173	-12.022795	7.351344	3
174	-10.405829	8.078941	3
175	-8.957156	8.595711	3
176	-9.391712	8.767690	3
177	-11.709583	8.868699	3

178 rows × 3 columns

```
In [47]:
```

```
plt.figure(figsize=(15,12))
sns.lmplot(data=X1_df,x='X0',y='X1',hue='Label',fit_reg=False);
```

<Figure size 1080x864 with 0 Axes>

In []:

1