

University of Applied Sciences

Modellierung, Simulation und Regelung einer drehzahlvariablen Windturbine

Automation in regenerativen Energiesystemen (VA3)

Name: Matrikelnummer:

Christopher Berg 579665 Sebastian Richter 572906 Aaron Zielstorff 567183

Fachbereich: FB1

Studiengang: M. Elektrotechnik

Fachsemester: 3. FS

Fach: VA3 Automation in regenerativen Energiesystemen

Dozent: Prof. Dr.-Ing. Horst Schulte

Abgabe am: 10. Februar 2022

Inhaltsverzeichnis htm.

Inhaltsverzeichnis

1	Einführung in die Windenergieanlage	4
2	Theoretische Grundlagen 2.1 Stromröhrentheorie 2.2 Tragflügeltheorie 2.3 WEA-Kennfelder 2.4 Lookup Tables	6 6 6 6
3	Modellierung des Umrichters	7
4	Modellierung des Antriebsstranges	8
5	Momentenregelung des Antriebstrangs5.1 Unterer Teillastbereich	9 9 9
6	Turm- und Blatt-Modell6.1 Aerodynamik	10 10 10
Lit	teraturverzeichnis	11

Λ		• 1							
Α	рb	ulc	lun	1051	verz	ze.	ch	n	I.S
	~~			o- '				• • •	_

htm

Abbil	dungsverzeichnis									
	Aufbau NREL Windturbine Modell des Turms und der Blätter									

Tabellenverzeichnis

	1.1	Modellparameter																														
--	-----	-----------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

1 Einführung in die Windenergieanlage

Ziel dieser Arbeit soll es sein, eine drehzahlvariable 5 MW Windturbine zu Modellieren, Simulieren und die Regelung umzusetzen. Konkret handelt es sich um eine *NREL*-Turbine, die für den Offshore-Einsatz konzipiert ist.

Dafür sollen folgende Anforderungen umgesetzt werden:

- 1. Erstellung des mathematischen Modells der Windturbine
- 2. Implementierung des Modells in Matlab/Simulink
- 3. Untergliederung des Modells in die Teilmodelle Antriebsstrang, Aerodynamik, Turm- und Blattdynamik
- 4. Umsetzung eines reduzierten Windturbinen-Modells für den Teil- und Volllastbereich
- 5. Reglerentwurf für alle Arbeitspunkte (über kennfeldbasierte, arbeitspunktabhängige Nachführung der Reglerkoeffizienten)

Der modellhafte Aufbau einer Windturbine ist nachfolgend (in Abbildung 1.1) dargestellt.

Abb. 1.1: Modellhafte Darstellung einer NREL Windturbine

Wie bereits aus den Anforderungen hervorgeht, soll das umzusetzende Modell unterteilt werden. Dabei besitzt jedes Teilmodell eigene Parameter/Konstanten, die in Tabelle 1.1 aufgezeigt sind.

Symbol	Parameter	Wert
	Antriebsstrang	
$n_{ m g}$	Getriebeübersetzungsverhältnis	97.0
$J_{ m r}$	Rotor Trägheitsmoment	$38759\cdot 10^3\mathrm{kg}\cdot\mathrm{m}^2$
$J_{ m g}$	Generator Trägheitsmoment	$534.1\mathrm{kg}\cdot\mathrm{m}^2$
$k_{\rm s}$	Triebsstrangsteifigkeit bez. auf schnelle Welle	$867637000/n_{\rm g}^2$
$d_{ m s}$	Dämpfungsfaktor d. Triebsstranges	$6215000/n_{\rm g}^2$
	Turm	
$m_{ m Nac}$	Gondelmasse	$240000\mathrm{kg}$
$m_{ m Rot}$	Rotormasse (Blätter und Narbe)	$11000\mathrm{kg}$
m_{Tow}	Turmmasse	$347460\mathrm{kg}$
$m_{ m T}$	Ersatzmasse der Windkraftanlage	$m_{\mathrm{Nac}} + m_{\mathrm{Rot}} + 0.25 \cdot m_{\mathrm{Tow}}$
k_{T}	Ersatzsteifigkeit des Turmes	$1981900\mathrm{N/m}$
$d_{ m T}$	Dämpfungsfaktor des Turmes	$7 \cdot 10^4$
	Rotorblatt	
R	Blattradius	63 m
$m_{ m Bla}$	Masse eines Rotorblattes	$17740\mathrm{kg}$
r_{B}	Effektive Blattlänge	$21.975\mathrm{m}$
$m_{ m B}$	Effektiv schwingende Blattmasse	$0.25 \cdot m_{ m Bla}$
k_{B}	Ersatzsteifigkeit eines Blattes	$40000\mathrm{N/m}$
$d_{ m B}$	Dämpfungsfaktor eines Blattes	$2 \cdot 10^4$
	Weitere Parameter	
ρ	Luftdichte	$1.225\mathrm{kg/m^3}$

Tab. 1.1: Modellparameter der NREL Windturbine

Ziel soll es sein eine Regelung für den Teillast- und Volllastbetrieb umzusetzen, die auf die in Simulink implementierten (Teil-)Modelle angewendet wird. Als Stellgröße gelten das Generatormoment und der kollektive Pitchwinkel. Dabei sind folgende Systemgrenzen zu berücksichtigen:

- 1. Stellgrößenbegrenzung des Pitchantriebes von maximal 8°
- 2. Maximale Narbenauslenkung bei Böen sei $1.5\,\mathrm{m}$
- 3. Maximale Blattauslenkung an der Spitze sei 7 m
- 4. Die Rotordrehzahl darf maximal 1.2-fach so groß sein wie die Nenndrehzahl

2 Theoretische Grundlagen

- 2.1 Stromröhrentheorie
- 2.2 Tragflügeltheorie
- 2.3 WEA-Kennfelder
- 2.4 Lookup Tables

3 Modellierung des Umrichters

4 Modellierung des Antriebsstranges

5 Momentenregelung des Antriebstrangs

- 5.1 Unterer Teillastbereich
- 5.2 Oberer Teillastbereich
- 5.3 Volllastbereich

6 Turm- und Blatt-Modell

6.1 Aerodynamik

6.2 Modellierung des Turmes und des Blattes

Abb. 6.1: Modell des Turms und der Blätter

Literaturverzeichnis

Literaturverzeichnis

[1] HTW-Logo auf dem Deckblatt

 $https://de.wikipedia.org/wiki/Datei:Logo_HTW_Berlin.svg$

Stand: 17.08.2018 um 14:49 Uhr

[2] HTW-Logo in der Kopfzeile

http://tonkollektiv-htw.de/

Stand: 17.08.2018 um 14:53 Uhr

[3] Skript Automation in regenerativen Energiesystemen

Prof. Dr.-Ing. Horst Schulte

[4] Anleitung Linearisierung eines zeitinvarianten,

nichtlinearen Zustandmodells

Prof. Dr.-Ing. Heide Brandstädter

[5] Regelungs- und Steuerungstechnik: Polstellenverteilung

Prof. Dr.-Ing. M. Buss