CS70-Spring 2024 — Discussion 0A Solutions

吴彦祖, SID 20211003341

June 19, 2025

Collaborators: 吴彦祖

1. 命题练习

将以下句子转化为命题逻辑,并将以下命题转化为中文。说明每个语句是否为真,并给出简要理由。

(a) 存在一个不是有理数的实数。

命题逻辑表达: $\exists x \in \mathbb{R}, x \notin \mathbb{Q}$ 真。理由: 如 $\sqrt{2}$ 就是一个无理数。

(b) 所有整数要么是自然数,要么是负数,但不能两者兼是。

命题逻辑表达: $\forall x \in \mathbb{Z}$, $(x \in \mathbb{N}) \lor (x < 0)$, 且 $(x \in \mathbb{N}) \land (x < 0)$ 不成立。 真。理由: 自然数和负数没有交集,所有整数要么属于自然数(通常指非负整数),要么是负数。

(c) 如果一个自然数能被 6 整除, 那么它能被 2 整除或能被 3 整除。

命题逻辑表达: $\forall x \in \mathbb{N}, 6 | x \implies (2 | x \vee 3 | x)$ 真。理由: 6 的倍数必然是 2 和 3 的倍数之一。

(d) $(\forall x \in \mathbb{Z})(x \in \mathbb{Q})$

中文翻译: 所有整数都是有理数。

真。理由:每个整数都可以写成分数形式(如 $n = \frac{n}{1}$)。

(e) $(\forall x \in \mathbb{Z})(((2 \mid x) \lor (3 \mid x)) \Longrightarrow (6 \mid x))$

中文翻译: 所有整数中, 只要能被2或3整除, 就能被6整除。

假。理由: 反例: x=2 能被 2 整除但不能被 6 整除。

(f) $(\forall x \in \mathbb{N})(x > 7 \Longrightarrow (\exists a, b \in \mathbb{N})(a + b = x))$

中文翻译: 所有大于7的自然数都可以表示为两个自然数之和。

真。理由: 取 a = 1, b = x - 1 即可。

2. 真值表

通过写出真值表, 判断以下等价关系是否成立。明确说明每对是否等价。

(a) $P \wedge (Q \vee P) \equiv P \wedge Q$

P	Q	$Q \lor P$	$P \wedge (Q \vee P)$	$P \wedge Q$
T	Т	Т	T	Τ
T	F	Т	T	F
F	Γ	Т	\mathbf{F}	\mathbf{F}
F	F	F	\mathbf{F}	\mathbf{F}

不等价。理由: 当 P 为真, Q 为假时, 左边为真, 右边为假。

(b) $(P \vee Q) \wedge R \equiv (P \wedge R) \vee (Q \wedge R)$

P	Q	R	$P \lor Q$	$(P \lor Q) \land R$	$P \wedge R$	$Q \wedge R$	$(P \wedge R) \vee (Q \wedge R)$
T	T	Т	Т	${ m T}$	Т	Т	T
T	T	F	Т	${ m F}$	F	F	F
T	F	Т	Τ	${ m T}$	T	F	T
T	F	F	Τ	${ m F}$	F	F	F
F	\mathbf{T}	Т	Т	${ m T}$	F	Т	T
F	\mathbf{T}	F	Т	${ m F}$	F	F	F
F	F	Т	F	\mathbf{F}	F	F	F
F	F	F	F	\mathbf{F}	F	F	F

等价。理由:分配律,两边恒等。

(c) $(P \wedge Q) \vee R \equiv (P \vee R) \wedge (Q \vee R)$

P	Q	R	$P \wedge Q$	$(P \wedge Q) \vee R$	$P \vee R$	$Q \vee R$	$(P \vee R) \wedge (Q \vee R)$
Τ	Τ	Т	Т	T	Τ	Т	T
T	T	F	Τ	T	Τ	Т	${ m T}$
T	F	T	F	T	${ m T}$	Т	${ m T}$
T	F	F	F	\mathbf{F}	${ m T}$	F	${ m F}$
F	\mathbf{T}	T	F	T	${ m T}$	Т	${ m T}$
F	\mathbf{T}	F	F	F	\mathbf{F}	Т	${ m F}$
F	\mathbf{F}	T	F	T	${ m T}$	Т	${ m T}$
F	\mathbf{F}	F	F	F	\mathbf{F}	F	\mathbf{F}

等价。理由:吸收律,两边恒等。

3. 蕴含

以下哪些蕴含无论 P 取何值总是为真? 对于每个假的断言,给出一个反例(即找出一个 P(x,y) 使得蕴含为假)。

- (a) $\forall x \forall y P(x,y) \Longrightarrow \forall y \forall x P(x,y)$ 恒真。理由:量词顺序互换不影响全称命题。
- (b) $\forall x \exists y P(x,y) \Longrightarrow \exists y \forall x P(x,y)$ 不恒真。反例:设 P(x,y) 表示 "x < y",则对每个 x 存在 y 使得 x < y,但不存在某个 y 使得对所有 x 都有 x < y。
- (c) $\exists x \forall y P(x,y) \Longrightarrow \forall y \exists x P(x,y)$ 恒真。理由: 如果存在某个 x 对所有 y 都成立,则对每个 y 取这个 x 即可。