Ministère des Enseignements Secondaires Office du Baccalauréat du Cameroun

Examen: BACCALAUREAT-2009

Séries: A4

Epreuve: Mathématiques

Durée: 3 heures Coefficient: 3

L'épreuve comporte quatre (04) exercices indépendants.

EXERCICE 1: (5points)

I- 1- Résoudre dans IR² le système suivant :
$$\begin{cases} 2x + y = 1 \\ 5x + 3y = 4 \end{cases}$$

1pt

1pt

1pt

En déduire l'ensemble solution du système suivant : $\begin{cases} 2 \ln x + \ln y = 1 \\ 5 \ln x + 3 \ln y = 1 \end{cases}$

II- Parmi les quatre réponses qui sont proposées, une seule est juste. Recopier sur votre feuille de composition son numéro.

1-

Une primitive de la fonction f définie par : $f(x) = \frac{3}{2-x}$ est sur]2, $+\infty$ [:

a)
$$F(x) = -3ln(2-x)$$

c)
$$F(x) = \frac{1}{3} \ln|2 - x| + k$$

b)
$$F(x) = 3ln |2-x|$$

d)
$$F(x) = 1 - 3ln(x - 2) + 1pt$$

La dérivée de la fonction g définie par : $g(x) = e^{2x} \ln x$ sur $]0, +\infty[$ est :

a)
$$2e^{x} \ln x + \frac{e^{2x}}{x}$$

b)
$$2e^{2x} \ln x$$

c)
$$2e^{2x} \ln x + \frac{e^{2x}}{x}$$

d)
$$\frac{e^{2x}}{x}$$

3. La fonction $x \to \frac{1}{x}$ est:

- a) Décroissante sur IR*
- c) Décroissante sur]2, +∞[
- b) Croissante sur IR*
- d) Décroissante sur]-3,0[U]0, +∞[

EXERCICE 2: (5points)

Les décisions d'un conseil de classe de fin d'année sont les suivantes selon les tranches de moyennes:

Pour une moyenne de l'intervalle [0,7[, l'élève est exclu.

Pour une moyenne de l'intervalle [7,10], l'élève redouble la classe.

Pour une moyenne de l'intervalle [10,14], l'élève est admis en classe supérieure sans

Pour une moyenne de l'intervalle [14,20], l'élève est admis en classe supérieure avec

Les effectifs de chacune de ces tranches de moyennes obtenues dans cette classe sont consignés dans le tableau ci-dessous :

Moyennes	[0,7[[7	7,10[[10,14[[14,20[
Effectifs	6	15	8	24	12	

1-	Représenter les décisions du conseil de cette classe par un diagramme	2pts
	circulaire.	2pts 0,5pt
2-	Calculer la moyenne générale \overline{X} de cette classe.	· A
3-	Déterminer la classe modale et calculer la médiane de cette serie statistique	lpt
4-	Construire le nolygone des effectifs cumulés croissants de cette serie	
	statistique. (On prendra 0,5cm pour unité de moyenne et 1cm pour 10	
	élèves).	1,5pt
	AND LAND	

(5points) EXERCICE 3:

Une urne contient 8 boules marquées 10, 4 boules marquées 15 et 3 boules marquées 20. Les boules sont indiscernables au toucher. On tire simultanément 3 boules de cette urne.

Calculer la probabilité de chacun des événements suivants :

		« n'obtenir aucune boule marquée 10 ».	lpt
2-	R	« Obtenir au moins une boule marquée 15 ».	1,5pt
		« Obtenir une boule de chaque type ».	lpt
		« Obtenir un total de 50 points ».	1,5pt

(5points) EXERCICE 4:

Soit f la fonction numérique définie sur IR par $f(x) = x - 2 + \frac{1}{c^x}$ et (C) sa C 10

	50	e.	
cour	be re	présentative dans le plan muni du repère orthonormé (O,\vec{i},\vec{j}) . L'unité G	le
long 1-	ueur	choisie sur les axes est 2cm. Calculer la limite de f en $+\infty$. Vérifier que, pour tout nombre réel x non nul, $f(x) = x(1 - \frac{2}{x} + \frac{1}{xe^x})$	0,5pt 0,25pt
	c)	En déduire que $\lim_{x \to -\infty} f(x) = +\infty \text{ (On admet que } \lim_{x \to -\infty} xe^{x}$	0,5pt
2-	a)	$x \to -\infty$ $x \to -\infty$ Montrer que $f'(x) = \frac{e^x - 1}{e^x}$ et étudier le sens de variations de f .	1pt
3-		Dresser le tableau de variations de f . Calculer $\lim_{x \to +\infty} (f(x) - (x-2))$	0,25pt 0,25pt
	b)	En déduire que la droite (D) d'équation $y = x - 2$ est asymptote	0,25pt
4- 5-	Etuc	oblique à (C) quand x tend vers $+\infty$. dier les positions relatives de (C) et (D) . estruire (C) et (D) dans le repère (O, \vec{i}, \vec{j}) .	0,5pt 1,5pt