

Prof. Luca Iuliano

Politecnico di Torino
Department of Management and Production Engineering (DIGEP), Torino, Italy

LA FANTASIA E LE ILLUSIONI

LA FANTASIA E LE ILLUSIONI

«<u>Trappole Low-Cost</u>» con prestazioni mediocri in termini di tolleranze, rugosità e prestazioni meccaniche;

Investimento anche inferiore a € 1.000,00 con l'illusione di produrre elementi funzionali;

LA FANTASIA E LE ILLUSIONI

In caso di uso domestico:

- che realizza il CAD 3D ?;
- Sicurezza di utilizzo?
- Materiale sicuro a contatto con minori?

Si tratta di una tecnologia innovativa che rende possibile la produzione, in poche ore e senza l'uso di utensili, di oggetti di geometria comunque complessa, direttamente dal modello matematico dell'oggetto realizzato su di un sistema CAD 3D.

LA REALTA'

Sistemi industriali con volumi di lavoro fino al metro cubo, in grado di funzionare in modalità senza presidio e di assicurare adeguate prestazioni in termini di tolleranze dimensionali, rugosità superficiali e caratteristiche meccaniche;

Materiali definitivi

Listini adeguati alle prestazioni

Evoluzione dell'Additive Manufacturing

1984 – Brevetto US No 4.575.330 per SLA

1987 – La *Prototipazione Rapida* è una realtà commerciale

1990 – *Rapid Casting*: anime per fonderia in sabbia prodotte con tecnologia additiva

1995 – *Rapid Tooling*: inserti per stampi prodotti con tecnologia additiva

2000 – Additive Manufacturing: componenti finali prodotti con tecnologia additiva

2011 – 49.000 machine installate (in totale dal 1984)

2014 – 543 machine per metallo (+55% in un anno)

Aerospace

Medical and Dental

Automotive

Jewelry

Lattice Structures and Filters

Living Hinges and Assemblies

Design from biological structures

PREREQUISITO

L'adozione delle tecniche di fabbricazione additiva è subordinata alla disponibilità del modello matematico del componente realizzato su di un sistema CAD tridimensionale.

IL CICLO DELLA FA

CAD 3D

Sistema CAD

File STL

Orientamento Generazione supporti

> <u>Software</u> <u> Macchina FA</u>

Esecuzione Slicing

Costruzione sezioni Macchina FA

Rimozione supporti Pulizia Finitura

Operazioni manuali

IL FORMATO .STL

- 1. Lo standard universale nella Fabbricazione Additiva per i modelli matematici e' il formato STL (Standard Triangulation Language)
- 2. Si converte il modello CAD di tipo solido (3D) in un modello tipo "Shell" in cui la superficie esterna è approssimata attraverso triangoli di diverse dimensioni (a seconda della risoluzione richiesta) in modo da seguire il profilo del modello
- 3. L'utilizzo di questo formato pone tuttora molti problemi, ma, grazie anche alla diffusione di numerosi software correttivi, rimane attualmente il formato più affidabile e diffuso nell'ambito della FA

IL FORMATO .STL: Facetting

Modello CAD 3D

Modello a triangoli

IL FORMATO .STL

Triangolarizzazione delle superfici esterna e interna di un guidafili per macchina tessile per generare il file STL

IL CICLO DELLA FA

CAD 3D

File STL

Orientamento
Generazione supporti

<u>Software</u> <u>Macchina FA</u>

Esecuzione Slicing

Costruzione sezioni Macchina FA

Rimozione supporti Pulizia Finitura

Operazioni manuali

I SUPPORTI: SCOPI

 Ancorare il modello in costruzione all'area di lavoro, permettendone comunque la successiva rimozione

Supportare le parti sporgenti

I SUPPORT!

I SUPPORTI: UN ESEMPIO

SLICING: Staircase

- Intersezione del modello in formato .STL con piani paralleli aventi normale parallela all'asse z e distanti di una quantità ΔZ
- I dati relativi alle sezioni ottenute sono quelli direttamente utilizzati dalla macchina di FA.

SLICING

Esecuzione dello slicing per la definizione delle sezioni di costruzione

Part Orientation - Slicing

SLICING

Costante

Adattativo

Slicing - Examples

Post-processing

- Draining and rinsing
- Support removal
- Post-curing and heat-treating
- Surface finishing

AM is reproducible and reliable only under equal well controlled standardized conditions

Finishing

- Permanent surface coloring
- Painting
- Plating
- Vacuum Metallization
- Blasting
- Polishing

I vantaggi della Fabbricazione Additiva

PROCESSO

- Una sola macchina, forma illimitate
- Assenza di attrezzature
- Assenza di dispositivi di bloccaggio
- Sottosquadri ammessi
- Un solo step produttivo
- Minimo intervento dell'operatore
- Tempi e costi legati solo alle dimensioni e non alla complessità geometrica

PRODOTTO

- Libertà di progettazione
- Strutture leggere
 (forme cave complesse)
- Parti integrate
- Design ergonomico
- Personalizzazione

Costi in funzione della complessità geometrica

Gli svantaggi della Fabbricazione Additiva

PROCESSO

- Volumi di lavoro limitati
- Dimensioni dei pezzi limitate dale dimensioni della macchina
- Velocità di costruzione limitate
- Ogni macchina può lavorare con un numero limitato di materiali

PRODOTTO

- Necessità di strutture di supporto
- Finitura superficiale scarsa
- Numero limitato di materiali commerciali
- Costo dei materiali

Quali materiali?

Organic

Ceramic

Polymeric

Organic materials	Ceramic materials	Polymeric materials	Metallic materials
Waxes	Alumina	ABS	Aluminium
Tissue / cells	Mullite	Polyamide (nylon)	Tool Steel
	Zirconia	Filled PA	Titanium
	Silicon Carbide	PEEK	Inconel
Beta-Tri calcium Phosphate		Thermosetting epoxies	Cobalt Chrome
	Ceramic (nano) lo	aded epoxies	Copper
	Silica (sand)	PMMA	Stainless steel
	Plaster	Polycarbonate	Gold / platinum
Metallic	Graphite	Polyphenylsulfone	Hastelloy

ULTEM

Aluminium loaded polyamide

CLASSIFICAZIONE DELLE TECNICHE DI AM

FABBRICAZIONE ADDITIVA

La Fabbricazione Additiva è stata concepita nella metà degli anni '80 per ridurre i tempi per la realizzazione dei prototipi e per molti anni ha assunto il nome di «Prototipazione Rapida»

La realizzazione dei prototipi è ancora oggi l'applicazione principale della fabbricazione additiva

I PROTOTIPI

Durante la fase di sviluppo di un prodotto vengono realizzate le seguenti tipologie di prototipi:

- concettuali
- funzionali
- tecnici
- Preserie

Gli obiettivi di ciascuno sono ovviamente differenti così come il materiale impiegato per la costruzione e la tecnologia di fabbricazione.

LA MOTIVAZIONE ECONOMICA

LA MOTIVAZIONE ECONOMICA

