

FDG-PET: Data Processing and Analysis Using SPM

Xin Di, Ph.D.

New Jersey Institute of Technology

1

I have no disclosures.

OHBM 2024

A brief introduction to FDG-PET

Access and checking data

Preprocessing

Data analysis

OHBM 2024

3

A brief introduction to FDG-PET

- [18F]Fluorodeoxyglucose
- Half life of 18 F = 109.8 min
- Cerebral glucose consumptions
 - Neurons
 - Astrocytes

Rahman et al., 2019, in Biomed Pharmacother

OHBM 2024

A brief introduction to FDG-PET

- Two aspects of PET imaging data
 - Static
 - Dynamic
- Radiotracer administration
 - Bolus
 - Constant infusion

5

A brief introduction to FDG-PET

Quantifications

- Static image (average)
- Standardized uptake value (SUV)
- Regional cerebral metabolic rate of glucose consumption (rCMRGlc)
- Kinetic modeling

OHBM 2024

A brief introduction to FDG-PET

Activation analysis

Connectivity (covariance) analysis

Zeki et al., 1991, in J Neurosci.

OHBM 2024

7

Access FDG-PET data

• OpenNeuro PET

• Supplementary information By Sala et al., (2023) link

Access FDG-PET data

Demonstration dataset

- The Energetic Costs of the Human Connectome (ds003382)
- Total n = 20
- Eye open vs. eye closed: n = 9
 - FDG-PET
 - T1 MRI
 - fMRI
 - DWI
- 48.8 GB

https://openneuro.org/datasets/ds004513/

9

Check data information

- Number of images
- Frame duration

Data integrity

- Voxel dimension/size
- Brain coverage/origin

File types

- .json file
- .nii or .nii.gz files
- .tsv file

OHBM 2024

ΤC

NIIT

PET header information

- % Read PET image header information
- METADATA = niftiinfo('C:\PET_Munich\Data\sub-s003\ses-open\pet\sub-s003_ses-open_task-rest_pet.nii.gz');
- ImageSize: [256 256 256 31]
- PixelDimensions: [1.0431 1.0431 1.0156 1]

13

Plot PET images

- % Read PET image
- v = spm_vol('C:\PET_Munich\Data\sub-s003\sesopen\pet\sub-s003_ses-open_task-rest_pet.nii.gz');
- y = spm_read_vols(v);
- % Select the middle sagittal slices for all the frames
- I = squeeze(y(size(y,1)/2,:,:,:));
- % Rotate the matrices for diaplay
- J = imrotate(I,90);
- % Plot all the frames using montage
- figure; montage(J,'DisplayRange',[0 20000])

Blood recording TSV file

- % Read blood sample recording data TSV file
- T_recording = readtable('C:\PET_Munich\Data\sub-s003\sesopen\pet\sub-s003_ses-open_task-rest_recordingautosampler_blood.tsv','FileType','text');
- % Plot plasma radioactivity data
- figure; plot(T_recording.time,T_recording.plasma_radioac tivity,'-d');
- title('Plasma Radioactivity')
- xlabel('Seconds')
- ylabel('Bq/mL')

OHBM 2024

15

Check image initial position - 'Check Reg' button in SPM - 'Contour' PET MNI template WALTER MNI template OHBM 2024

Set origin

- 'Display' button in SPM
- The origin of the image far from the anterior commissure may cause failures in image normalization and coregistration

Automated steps

- Place origin in the center
- Linear transformation

17

Preprocessing of FDG-PET images

- Quality control
 - Check imaging parameters across participants
 - Check to make sure each preprocessing step finished successfully
- Motion correction and calculation of a static image
 - Realign
- Spatial normalization to a standard space
 - Segmentation of anatomical MRI image
 - Apply deformation field to normalize the mean PET image
- Spatial smoothing

Realign of PET images

- Realign the last five PET images to correct for head motion
- Calculate a mean image

Realign of PET images

N TI WILL

- Realign the last five PET images to correct for head motion
- Calculate a mean image

OHBM 2024

21

Segmentation of T1 weighted image

- Segment the T1 weighted MRI image into GM, WM, CSF, and so on.
- Obtain a deformation field map that maps native space to MNI space.

23

Segmentation of T1 weighted image

- Segment the T1 weighted MRI image into GM, WM, CSF, and so on.
- Obtain a deformation field map that maps native space to MNI space.

Coregistration of mean PET image to T1 weighted image

- Skull striping
 - · Image calculator
 - i1.*((i2+i3+i4)>0.5)
- Setting origin if necessary

25

Spatial Normalize

- Apply the deformation field maps to the mean PET data
- Voxel sizes

OHBM 2024

27

Spatial Normalize

- Apply the deformation field maps to the mean PET data
- Voxel sizes

- Apply the deformation field maps to the mean PET data
- Voxel sizes

29

Statistical analysis

Eye closed

Participants

• Where in the brain is there higher glucose metabolism when the eyes are open compared to when they are closed?

31

Statistical analysis

- Voxel-wise generalized linear model (GLM)
- Global Normalization
 - Proportional
 - ANCOVA (additive)
- Global Calculation
- Mask

Statistical analysis

- Voxel-wise generalized linear model (GLM)
- Global Normalization
 - Proportional
 - ANCOVA (additive)
- Global Calculation
- Mask

33

Statistical analysis Open-closed Open-closed SPM(To) SPM(To)

Acknowledgements

- Lab members
 - Dr. Bharat Biswal
 - Donna Chen
 - Dr. Sukesh Das
 - Pratik Jain
 - Le Gao

 Open access datasets Castrillon et al. (2023)

Funding

OHBM 2024

2 [

