Assignment 1

August 25, 2020

You are currently looking at **version 1.3** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.

1 Assignment 1 - Introduction to Machine Learning

For this assignment, you will be using the Breast Cancer Wisconsin (Diagnostic) Database to create a classifier that can help diagnose patients. First, read through the description of the dataset (below).

```
In [4]: import numpy as np
    import pandas as pd
    from sklearn.datasets import load_breast_cancer

    cancer = load_breast_cancer()

#print(cancer.DESCR) # Print the data set description
```

The object returned by load_breast_cancer() is a scikit-learn Bunch object, which is similar to a dictionary.

```
In [8]: cancer.keys()
Out[8]: dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
```

1.0.1 Question 0 (Example)

How many features does the breast cancer dataset have? *This function should return an integer.*

```
In [3]: # You should write your whole answer within the function provided. The auto
# this function and compare the return value against the correct solution v
def answer_zero():
    # This function returns the number of features of the breast cancer day
```

The assignment question description will tell you the general format

```
return len(cancer['feature_names'])
         # You can examine what your function returns by calling it in the cell. If
         # about the assignment formats, check out the discussion forums for any FAQ
        answer zero()
Out[3]: 30
1.0.2 Question 1
Scikit-learn works with lists, numpy arrays, scipy-sparse matrices, and pandas DataFrames, so
converting the dataset to a DataFrame is not necessary for training this model. Using a DataFrame
does however help make many things easier such as munging data, so let's practice creating a
classifier with a pandas DataFrame.
  Convert the sklearn.dataset cancer to a DataFrame.
  This function should return a (569, 31) DataFrame with
  columns =
['mean radius', 'mean texture', 'mean perimeter', 'mean area',
'mean smoothness', 'mean compactness', 'mean concavity',
'mean concave points', 'mean symmetry', 'mean fractal dimension',
'radius error', 'texture error', 'perimeter error', 'area error',
'smoothness error', 'compactness error', 'concavity error',
'concave points error', 'symmetry error', 'fractal dimension error',
'worst radius', 'worst texture', 'worst perimeter', 'worst area',
'worst smoothness', 'worst compactness', 'worst concavity',
'worst concave points', 'worst symmetry', 'worst fractal dimension',
'target']
```

and index =

```
RangeIndex(start=0, stop=569, step=1)
```

Your code here

return table # Return your answer

table = pd.concat((features, response), axis = 1)

features = pd.DataFrame(cancer.data, columns= cancer.feature_names)

response = pd.DataFrame(cancer.target, columns= ['target'])

```
df = answer_one()
  #df
  df.shape

Out[36]: (569, 31)
```

1.0.3 Question 2

What is the class distribution? (i.e. how many instances of malignant (encoded 0) and how many benign (encoded 1)?)

This function should return a Series named target of length 2 with integer values and index = ['malignant', 'benign']

1.0.4 Question 3

Split the DataFrame into X (the data) and y (the labels).

Name: target, dtype: int64

This function should return a tuple of length 2: (X, y), where * X, a pandas DataFrame, has shape (569, 30) * y, a pandas Series, has shape (569,).

2	19.690	21.25	130.00	1203.0	0.10960
3	11.420	20.38	77.58	386.1	0.14250
4	20.290	14.34	135.10	1297.0	0.10030
5	12.450	15.70	82.57	477.1	0.12780
6	18.250	19.98	119.60	1040.0	0.09463
7	13.710	20.83	90.20	577.9	0.11890
8	13.000	21.82	87.50	519.8	0.12730
9	12.460	24.04	83.97	475.9	0.11860
10	16.020	23.24	102.70	797.8	0.08206
11	15.780	17.89	103.60	781.0	0.09710
12	19.170	24.80	132.40	1123.0	0.09740
13	15.850	23.95	103.70	782.7	0.08401
14	13.730	22.61	93.60	578.3	0.11310
15	14.540	27.54	96.73	658.8	0.11390
16	14.680	20.13	94.74	684.5	0.09867
17	16.130	20.68	108.10	798.8	0.11700
18	19.810	22.15	130.00	1260.0	0.09831
19	13.540	14.36	87.46	566.3	0.09779
20	13.080	15.71	85.63	520.0	0.10750
21	9.504	12.44	60.34	273.9	0.10240
22	15.340	14.26	102.50	704.4	0.10730
23	21.160	23.04	137.20	1404.0	0.09428
24	16.650	21.38	110.00	904.6	0.11210
25	17.140	16.40	116.00	912.7	0.11860
26	14.580	21.53	97.41	644.8	0.10540
27	18.610	20.25			0.09440
28		25.27	122.10	1094.0	0.10820
	15.300		102.40	732.4	
29	17.570	15.05	115.00	955.1	0.09847
· ·	7 (01	· · ·	40.24	170 4	0 0000
539	7.691	25.44	48.34	170.4	0.08668
540	11.540	14.44	74.65	402.9	0.09984
541	14.470	24.99	95.81	656.4	0.08837
542	14.740	25.42	94.70	668.6	0.08275
543	13.210	28.06	84.88	538.4	0.08671
544	13.870	20.70	89.77	584.8	0.09578
545	13.620	23.23	87.19	573.2	0.09246
546	10.320	16.35	65.31	324.9	0.09434
547	10.260	16.58	65.85	320.8	0.08877
548	9.683	19.34	61.05	285.7	0.08491
549	10.820	24.21	68.89	361.6	0.08192
550	10.860	21.48	68.51	360.5	0.07431
551	11.130	22.44	71.49	378.4	0.09566
552	12.770	29.43	81.35	507.9	0.08276
553	9.333	21.94	59.01	264.0	0.09240
554	12.880	28.92	82.50	514.3	0.08123
555	10.290	27.61	65.67	321.4	0.09030
556	10.160	19.59	64.73	311.7	0.10030
557	9.423	27.88	59.26	271.3	0.08123

558	14.590	22.68	96.39	657.1	0.08473
559	11.510	23.93	74.52	403.5	0.09261
560	14.050	27.15	91.38	600.4	0.09929
561	11.200	29.37	70.67	386.0	0.07449
562	15.220	30.62	103.40	716.9	0.10480
563	20.920	25.09	143.00	1347.0	0.10990
564	21.560	22.39	142.00	1479.0	0.11100
565	20.130	28.25	131.20	1261.0	0.09780
566	16.600	28.08	108.30	858.1	0.08455
567	20.600	29.33	140.10	1265.0	0.11780
568	7.760	24.54	47.92	181.0	0.05263
	mean compactness	mean concavity	mean cond	cave points	mean symmetry
0	0.27760	0.300100		0.147100	0.2419
1	0.07864	0.086900		0.070170	0.1812
2	0.15990	0.197400		0.127900	0.2069
3	0.28390	0.241400		0.105200	0.2597
4	0.13280	0.198000		0.104300	0.1809
5	0.17000	0.157800		0.080890	0.2087
6	0.10900	0.112700		0.074000	0.1794
7	0.16450	0.093660		0.059850	0.2196
8	0.19320	0.185900		0.093530	0.2350
9	0.23960	0.227300		0.085430	0.2030
10	0.06669	0.032990		0.033230	0.1528
11	0.12920	0.099540		0.066060	0.1842
12	0.24580	0.206500		0.111800	0.2397
13	0.10020	0.099380		0.053640	0.1847
14	0.22930	0.212800		0.080250	0.2069
15	0.15950	0.163900		0.073640	0.2303
16	0.07200	0.073950		0.052590	0.1586
17	0.20220	0.172200		0.102800	0.2164
18	0.10270	0.147900		0.094980	0.1582
19	0.08129	0.066640		0.047810	0.1885
20	0.12700	0.045680		0.031100	0.1967
21	0.06492	0.029560		0.020760	0.1815
22	0.21350	0.207700		0.097560	0.2521
23	0.10220	0.109700		0.086320	0.1769
24	0.14570	0.152500		0.091700	0.1995
25	0.22760	0.222900		0.140100	0.3040
26	0.18680	0.142500		0.087830	0.2252
27	0.10660	0.149000		0.077310	0.1697
28	0.16970	0.168300		0.087510	0.1926
29	0.11570	0.098750		0.079530	0.1739
539	0.11990	0.092520		0.013640	0.2037
540	0.11200	0.067370		0.025940	0.1818
541	0.12300	0.100900		0.038900	0.1872
542	0.07214	0.041050		0.030270	0.1840

543	0.06877	0.029870	0.032750	0.1628
544	0.10180	0.036880	0.023690	0.1620
545	0.06747	0.029740	0.024430	0.1664
546	0.04994	0.010120	0.005495	0.1885
547	0.08066	0.043580	0.024380	0.1669
548	0.05030	0.023370	0.009615	0.1580
549	0.06602	0.015480	0.008160	0.1976
550	0.04227	0.000000	0.00000	0.1661
551	0.08194	0.048240	0.022570	0.2030
552	0.04234	0.019970	0.014990	0.1539
553	0.05605	0.039960	0.012820	0.1692
554	0.05824	0.061950	0.023430	0.1566
555	0.07658	0.059990	0.027380	0.1593
556	0.07504	0.005025	0.011160	0.1791
557	0.04971	0.000000	0.000000	0.1742
558	0.13300	0.102900	0.037360	0.1454
559	0.10210	0.111200	0.041050	0.1388
560	0.11260	0.044620	0.043040	0.1537
561	0.03558	0.000000	0.000000	0.1060
562	0.20870	0.255000	0.094290	0.2128
563	0.22360	0.317400	0.147400	0.2149
564	0.11590	0.243900	0.138900	0.1726
565	0.10340	0.144000	0.097910	0.1752
566	0.10230	0.092510	0.053020	0.1590
567	0.27700	0.351400	0.152000	0.2397
568	0.04362	0.000000	0.000000	0.1587
	mean fractal dimension		worst radii	ıs \
0	mean fractal dimension 0.07871		worst radio	
0 1	mean fractal dimension 0.07871 0.05667		worst radiu 25.38 24.99	30
1	0.07871		25.38	30 90
	0.07871 0.05667		25.38 24.99	30 90 70
1 2	0.07871 0.05667 0.05999		25.38 24.99 23.5	30 90 70 10
1 2 3 4	0.07871 0.05667 0.05999 0.09744		25.38 24.99 23.57 14.93	30 90 70 10
1 2 3	0.07871 0.05667 0.05999 0.09744 0.05883		25.38 24.99 23.5 14.93 22.54	30 90 70 10 40 70
1 2 3 4 5	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613		25.38 24.99 23.5 14.93 22.54	30 90 70 10 40 70
1 2 3 4 5 6	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742		25.38 24.99 23.5 14.93 22.54 15.4 22.88	30 90 70 10 40 70 30
1 2 3 4 5 6 7	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742		25.38 24.99 23.5 14.93 22.54 15.4 22.88	30 90 70 10 40 70 30 60
1 2 3 4 5 6 7 8	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389		25.38 24.99 23.5 14.93 22.5 15.4 22.88 17.00	30 90 70 10 40 70 30 60 90
1 2 3 4 5 6 7 8	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243		25.38 24.99 23.57 14.93 22.54 15.47 22.88 17.06 15.49	30 90 70 10 40 70 30 60 90
1 2 3 4 5 6 7 8 9	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697		25.38 24.99 23.57 14.93 22.54 15.47 22.88 17.06 15.49 15.09	30 90 70 10 40 70 30 60 90 90
1 2 3 4 5 6 7 8 9 10	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697 0.06082		25.38 24.99 23.57 14.93 22.54 15.47 22.88 17.06 15.49 15.09 19.19	30 90 70 10 40 70 30 60 90 90
1 2 3 4 5 6 7 8 9 10 11 12	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697 0.06082 0.07800		25.38 24.99 23.57 14.93 22.54 15.47 22.88 17.00 15.49 15.09 19.19 20.42	30 90 70 10 40 70 30 60 90 90 90 20 60
1 2 3 4 5 6 7 8 9 10 11 12 13	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697 0.06082 0.07800 0.05338		25.38 24.99 23.57 14.93 22.54 15.47 22.88 17.06 15.49 15.09 19.19 20.42 20.96	30 90 70 10 40 70 30 60 90 90 90 90 40 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697 0.06082 0.07800 0.05338 0.07682		25.38 24.99 23.57 14.92 22.54 15.47 22.88 17.06 15.49 15.09 19.19 20.42 20.96 16.84	30 90 70 10 40 70 30 60 90 90 90 20 60 40 30 60
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697 0.06082 0.07800 0.05338 0.07682 0.07077		25.38 24.99 23.57 14.93 22.54 15.47 22.88 17.00 15.49 15.03 19.19 20.42 20.96 16.84 15.03	30 90 70 10 40 70 30 90 90 90 20 60 40 30 60 70
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697 0.06082 0.07800 0.05338 0.07682 0.07682 0.07077 0.05922		25.38 24.99 23.57 14.93 22.54 15.47 22.88 17.06 15.49 15.09 19.19 20.42 20.96 16.84 15.03 17.46 19.07	30 90 70 10 40 70 30 60 90 90 90 90 90 90 90 90 90 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.07871 0.05667 0.05999 0.09744 0.05883 0.07613 0.05742 0.07451 0.07389 0.08243 0.05697 0.06082 0.07800 0.05338 0.07682 0.07077 0.05922 0.07356		25.38 24.99 23.57 14.92 22.54 15.47 22.88 17.06 15.49 15.09 16.84 15.00 17.46 19.07 20.96	30 90 70 10 40 70 30 60 90 90 90 90 90 40 30 60 70 60 20

20		0.06811			14.500	
21		0.06905			10.230	
22		0.07032			18.070	
23		0.05278			29.170	
24		0.06330			26.460	
25		0.07413		•••	22.250	
26		0.06924		• • •	17.620	
27		0.05699		• • •	21.310	
28		0.056540		• • •	20.270	
29		0.06149		• • •	20.010	
		0.00149		• • •		
 539		0.07751		• • •	8.678	
540		0.07731		• • •	12.260	
541		0.06762		• • •	16.220	
542		0.05541		• • •		
				• • •	16.510	
543		0.05781		• • •	14.370	
544		0.06688		• • •	15.050	
545		0.05801		• • •	15.350	
546		0.06201		• • •	11.250	
547		0.06714		• • •	10.830	
548		0.06235		• • •	10.930	
549		0.06328		• • •	13.030	
550		0.05948		• • •	11.660	
551		0.06552		• • •	12.020	
552		0.05637		• • •	13.870	
553		0.06576		• • •	9.845	
554		0.05708		• • •	13.890	
555		0.06127		• • •	10.840	
556		0.06331		• • •	10.650	
557		0.06059		• • •	10.490	
558		0.06147		• • •	15.480	
559		0.06570			12.480	
560		0.06171			15.300	
561		0.05502			11.920	
562		0.07152			17.520	
563		0.06879			24.290	
564		0.05623			25.450	
565		0.05533			23.690	
566		0.05648			18.980	
567		0.07016			25.740	
568		0.05884			9.456	
	worst texture	worst per	imeter	worst area	worst smoothness	\
0	17.33	_	184.60	2019.0	0.16220	•
1	23.41		158.80	1956.0	0.12380	
2	25.53		152.50	1709.0	0.14440	
3	26.50		98.87	567.7	0.20980	
4	16.67		152.20	1575.0	0.13740	
					3.2.2.10	

5	23.75	103.40	741.6	0.17910
6	27.66	153.20	1606.0	0.14420
7	28.14	110.60	897.0	0.16540
8	30.73	106.20	739.3	0.17030
9	40.68	97.65	711.4	0.18530
10	33.88	123.80	1150.0	0.11810
11	27.28	136.50	1299.0	0.13960
12	29.94	151.70	1332.0	0.10370
13	27.66	112.00	876.5	0.11310
14	32.01	108.80	697.7	0.16510
15	37.13	124.10	943.2	0.16780
16	30.88	123.40	1138.0	0.14640
17	31.48	136.80	1315.0	0.17890
18	30.88	186.80	2398.0	0.15120
19	19.26	99.70	711.2	0.14400
20	20.49	96.09	630.5	0.13120
21	15.66	65.13	314.9	0.13120
22		125.10		
	19.08		980.9	0.13900
23	35.59	188.00	2615.0	0.14010
24	31.56	177.00	2215.0	0.18050
25	21.40	152.40	1461.0	0.15450
26	33.21	122.40	896.9	0.15250
27	27.26	139.90	1403.0	0.13380
28	36.71	149.30	1269.0	0.16410
29	19.52	134.90	1227.0	0.12550
• •				
539	31.89	54.49	223.6	0.15960
540	19.68	78.78	457.8	0.13450
541	31.73	113.50	808.9	0.13400
542	32.29	107.40	826.4	0.10600
543	37.17	92.48	629.6	0.10720
544	24.75	99.17	688.6	0.12640
545	29.09	97.58	729.8	0.12160
546	21.77			
		71.12	384.9	0.12850
547	22.04	71.08	357.4	0.14610
548	25.59	69.10	364.2	0.11990
549	31.45	83.90	505.6	0.12040
550	24.77	74.08	412.3	0.10010
551	28.26	77.80	436.6	0.10870
552	36.00	88.10	594.7	0.12340
553	25.05	62.86	295.8	0.11030
554	35.74	88.84	595.7	0.12270
555	34.91	69.57	357.6	0.13840
556	22.88	67.88	347.3	0.12650
557	34.24	66.50	330.6	0.10730
558	27.27	105.90	733.5	0.10260
559	37.16	82.28	474.2	0.12980
560	33.17	100.20	706.7	0.12410
500	J J • ± /	100.20	, 5 5 • 7	0.12410

561	38.30	75.19	439.6	0.09	267	
562	42.79	128.70	915.0	0.14		
563	29.41	179.10	1819.0	0.14		
564	26.40	166.10	2027.0	0.14	100	
565	38.25	155.00	1731.0	0.11		
566	34.12	126.70	1124.0	0.11		
567	39.42	184.60	1821.0	0.16		
568	30.37	59.16	268.6	0.08		
	worst compactness	worst concavity	worst con	cave points	worst	_
0	0.66560	0.71190		0.26540		0.4
1	0.18660	0.24160		0.18600		0.2
2	0.42450	0.45040		0.24300		0.3
3	0.86630	0.68690		0.25750		0.6
4	0.20500	0.40000		0.16250		0.2
5	0.52490	0.53550		0.17410		0.3
6	0.25760	0.37840		0.19320		0.3
7	0.36820	0.26780		0.15560		0.3
8	0.54010	0.53900		0.20600		0.4
9	1.05800	1.10500		0.22100		0.4
10	0.15510	0.14590		0.09975		0.2
11	0.56090	0.39650		0.18100		0.3
12	0.39030	0.36390		0.17670		0.3
13	0.19240	0.23220		0.11190		0.2
14	0.77250	0.69430		0.22080		0.3
15	0.65770	0.70260		0.17120		0.4
16	0.18710	0.29140		0.16090		0.3
17	0.42330	0.47840		0.20730		0.3
18	0.31500	0.53720		0.23880		0.2
19	0.17730	0.23900		0.12880		0.2
20	0.27760	0.18900		0.07283		0.3
21	0.11480	0.08867		0.06227		0.2
22	0.59540	0.63050		0.23930		0.4
23	0.26000	0.31550		0.20090		0.2
24	0.35780	0.46950		0.20950		0.3
25	0.39490	0.38530		0.25500		0.4
26	0.66430	0.55390		0.27010		0.4
27	0.21170	0.34460		0.14900		0.2
28	0.61100	0.63350		0.20240		0.4
29	0.28120	0.24890		0.14560		0.2
 E20	0 20640	0 22020		0 05000		0 0
539	0.30640	0.33930		0.05000		0.2
540 541	0.21180	0.17970		0.06918		0.2
541	0.42020	0.40400		0.12050 0.10950		0.3
542	0.13760	0.16110				0.2
543	0.13810	0.10620		0.07958		0.2
544 545	0.20370 0.15170	0.13770 0.10490		0.06845 0.07174		0.2
545	0.131/0	0.10490		0.0/1/4		0.2

546	0.08842	0.04384	0.02381
547	0.22460	0.17830	0.08333
548	0.09546	0.09350	0.03846
549	0.16330	0.06194	0.03264
550	0.07348	0.0000	0.00000
551	0.17820	0.15640	0.06413
552	0.10640	0.08653	0.06498
553	0.08298	0.07993	0.02564
554	0.16200	0.24390	0.06493
555	0.17100	0.20000	0.09127
556	0.12000	0.01005	0.02232
557	0.07158	0.0000	0.00000
558	0.31710	0.36620	0.11050
559	0.25170	0.36300	0.09653
560	0.22640	0.13260	0.10480
561	0.05494	0.0000	0.00000
562	0.79170	1.17000	0.23560
563	0.41860	0.65990	0.25420
564	0.21130	0.41070	0.22160
565	0.19220	0.32150	0.16280
566	0.30940	0.34030	0.14180
567	0.86810	0.93870	0.26500
568	0.06444	0.0000	0.00000

0.2

0.3

0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.4

0.2

worst fractal dimension

0	0.11890
1	0.08902
2	0.08758
3	0.17300
4	0.07678
5	0.12440
6	0.08368
7	0.11510
8	0.10720
9	0.20750
10	0.08452
11	0.10480
12	0.10230
13	0.06287
14	0.14310
15	0.13410
16	0.08216
17	0.11420
18	0.07615
19	0.07259
20	0.08183
21	0.07773
22	0.09946
۷ ۷	0.000

```
23
                       0.07526
24
                       0.09564
25
                       0.10590
26
                       0.12750
27
                       0.07421
28
                       0.09876
29
                       0.07919
. .
                            . . .
                       0.10660
539
540
                       0.08134
541
                       0.10230
542
                       0.06956
543
                       0.06443
                       0.08492
544
545
                       0.06953
546
                       0.07399
547
                       0.09479
548
                       0.07920
549
                       0.07626
550
                       0.06592
                       0.08032
551
552
                       0.06484
553
                       0.07393
554
                       0.07242
555
                       0.08283
556
                       0.06742
557
                       0.06969
558
                       0.08004
                       0.08732
559
560
                       0.08321
561
                       0.05905
562
                       0.14090
563
                       0.09873
564
                       0.07115
565
                       0.06637
566
                       0.07820
567
                       0.12400
568
                       0.07039
```

[569 rows x 30 columns]

1.0.5 Question 4

Using train_test_split, split X and y into training and test sets (X_train, X_test, y_train, and y_test).

Set the random number generator state to 0 using random_state=0 to make sure your results match the autograder!

This function should return a tuple of length 4: (X_train, X_test, y_train, y_test),

```
where * X_train has shape (426, 30) * X_test has shape (143, 30) * y_train has shape
(426,) * y_test has shape (143,)

In [48]: from sklearn.model_selection import train_test_split

def answer_four():
    X, y = answer_three()
    # Your code here
    X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0)

return X_train, X_test, y_train, y_test

answer4 = answer_four()
    type(answer4)
Out[48]: tuple
```

1.0.6 **Question 5**

Using KNeighborsClassifier, fit a k-nearest neighbors (knn) classifier with X_train, y_train and using one nearest neighbor (n_neighbors = 1).

This function should return a sklearn.neighbors.classification. KNeighborsClassifier.

```
In [51]: from sklearn.neighbors import KNeighborsClassifier

def answer_five():
    X_train, X_test, y_train, y_test = answer_four()
    # Your code here
    knn = KNeighborsClassifier(n_neighbors= 1)

    return knn.fit(X_train, y_train)

answer5 = answer_five()
    type(answer5)

Out [51]: sklearn.neighbors.classification.KNeighborsClassifier
```

1.0.7 Question 6

Using your knn classifier, predict the class label using the mean value for each feature.

Hint: You can use cancerdf.mean() [:-1].values.reshape(1, -1) which gets the mean value for each feature, ignores the target column, and reshapes the data from 1 dimension to 2 (necessary for the precict method of KNeighborsClassifier).

This function should return a numpy array either array ([0.]) or array ([1.])

```
# Your code here
knn = answer_five()
result = knn.predict(means)
return result # Return your answer
answer_six()
Out[56]: array([1])
```

1.0.8 **Question** 7

Using your knn classifier, predict the class labels for the test set X_test.

This function should return a numpy array with shape (143,) and values either 0.0 or 1.0.

1.0.9 **Question 8**

Find the score (mean accuracy) of your knn classifier using X_test and y_test . This function should return a float between 0 and 1

1.0.10 Optional plot

Try using the plotting function below to visualize the differet predicition scores between training and test sets, as well as malignant and benign cells.

```
In [59]: def accuracy_plot():
    import matplotlib.pyplot as plt

%matplotlib notebook

X_train, X_test, y_train, y_test = answer_four()

# Find the training and testing accuracies by target value (i.e. malignment)
```

```
mal_train_X = X_train[y_train==0]
mal_train_y = y_train[y_train==0]
ben_train_X = X_train[y_train==1]
ben_train_y = y_train[y_train==1]
mal_test_X = X_test[y_test==0]
mal_test_y = y_test[y_test==0]
ben_test_X = X_test[y_test==1]
ben_test_y = y_test[y_test==1]
knn = answer_five()
scores = [knn.score(mal_train_X, mal_train_y), knn.score(ben_train_X,
          knn.score(mal_test_X, mal_test_y), knn.score(ben_test_X, ber
plt.figure()
# Plot the scores as a bar chart
bars = plt.bar(np.arange(4), scores, color=['#4c72b0','#4c72b0','#55a8
# directly label the score onto the bars
for bar in bars:
    height = bar.get_height()
    plt.gca().text(bar.get_x() + bar.get_width()/2, height*.90, '{0:...
                 ha='center', color='w', fontsize=11)
# remove all the ticks (both axes), and tick labels on the Y axis
plt.tick_params(top='off', bottom='off', left='off', right='off', labe
# remove the frame of the chart
for spine in plt.gca().spines.values():
    spine.set_visible(False)
plt.xticks([0,1,2,3], ['Malignant\nTraining', 'Benign\nTraining', 'Mal
plt.title('Training and Test Accuracies for Malignant and Benign Cells
```

Uncomment the plotting function to see the visualization.

Comment out the plotting function when submitting your notebook for grading.

```
In [61]: #accuracy_plot()
In []:
```