

Project Overview

Dataset Description: -

The project utilizes the Amazon Product Reviews dataset from Kaggle, which contains customer reviews for various Amazon products. The dataset includes key information such as:

- Product names and categories
- Customer reviews and ratings (1-5 stars)
- -Review text and metadata
- Product categories and descriptions

on_Products_May19.csv

Initial Hypothesis: -

- 1. Product reviews can be effectively categorized into distinct sentiment classes (positive, negative, neutral) based on both star ratings and review text.
- 2. Products can be meaningfully clustered into 4-6 meta-categories based on their descriptions and reviews.
- 3. Review sentiment patterns within product categories can reveal valuable insights about product performance and customer satisfaction.

Data Wrangling and Cleaning

Major Challenges: -

1. Missing Data → df.isnull().sum()

solve

2. Duplicate Reviews → unique_count = df['name'].nunique() duplicate count = df['name'].duplicated().sum()

3. Text Preprocessing


```
def preprocess_text(text):
    # Lowercase
    text = text.lower()
    # Remove HTML tags
    text = re.sub(r'<.*?>', ", text)
    # Remove URLs
    text = re.sub(r'http\S+\ww\S+\http\S+", ", text)
    # Remove user mentions and hashtags
    text = re.sub(r'\@\w+\\", ", text)
    # Remove punctuation
    text = text.translate(str.maketrans(", ", string.punctuation))
    # Remove numbers
    text = re.sub(r'\d+', ", text)
    # Remove extra whitespace
    text = re.sub(r'\s+', '', text).strip()
    return text
```

solve

Data Enrichment Methods: -

- 1. Text Feature Extraction
- 2. Category Clustering
- 3. Sentiment Analysis Enhancement

** Used SentenceTransformer Created TF-IDF features Implemented K-means clustering Used TextBlob

Challenge Resolution: -

1. Data Quality Improvements

- Implemented robust text preprocessing
- Handled multilingual reviews
- Standardized product categories

2. Feature Engineering Solutions

- Created meaningful product clusters
- Generated sentiment scores
- Extracted key product attributes

3. Performance Optimization

- Used efficient data structures
- Implemented batch processing
- Optimized memory usage

Exploratory Data Analysis

Accuracy:	94.02%			
[Classifica	ation Report: precision	recall	f1-score	support
Negative Neutral Positive	0.75 0.45 0.97	0.68 0.40 0.98	0.71 0.42 0.98	316 241 5110
accuracy macro avg weighted avg	0.72 0.94	0.69 0.94	0.94 0.70 0.94	5667 5667 5667

Major Obstacle

Lessons Learned

- 1. Technical Insights
 - Importance of thorough data preprocessing
 - Value of efficient model selection
 - Need for robust error handling
- 2. Process Improvements
 - Better initial planning
 - More comprehensive testing
 - Regular performance monitoring

Primary Challenges

- 1. Model Performance Issues
 - Initial sentiment analysis accuracy was lower than expected
 - Clustering results needed refinement
 - Resource constraints with large models
- 2. Resolution Steps
 - Implemented more sophisticated preprocessing
 - Used lighter, more efficient models
 - Enhanced feature engineering

Summary of each model

1. distilbert-base-uncased

- Library: transformers (by Hugging Face)
- Purpose: Sentiment classification of customer reviews (positive, neutral, negative).
- Used for: Fine-tuned for review classification using Trainer and TrainingArguments.
- Benefit:
 - Provided a custom sentiment model tailored to the review dataset.
 - Improved accuracy by balancing class weights during training.

2. all-MiniLM-L6-v2

- Library: sentence-transformers
- Purpose: Convert product names and categories into numerical embeddings (vectors).
- . Used for: Clustering products based on text similarity.
- Benefit:
 - Enabled grouping similar products into 4 categories.
 - Helped visualize product clusters using KMeans and PCA.

3. facebook/bart-large-cnn

- Library: transformers (via pipeline ("summarization"))
- Purpose: Summarize review texts into structured product summaries.
- Used for: Automatically generating short blog-style recommendations for each product category.
- Benefit:
 - Created readable summaries of top-rated and worst products.
 - Highlighted key differences and pros/cons using natural language generation.

thank you any questions?

