emmanuelnk DL4E Assignement 2

February 18, 2024

0.1 Assignment 2 - Developing an Automatic Recording Unit (ARU) with a Raspberry Pi

[1]: # You might need to restart the runtime after running this code. You'll only

0.1.1 Emmanuel NYANDU KAGARABI

```
# have to do this once per runtime. Once you restart, you do not need to run
     ⇔this again
     !git clone https://github.com/scikit-maad/scikit-maad.git
    Cloning into 'scikit-maad'...
    remote: Enumerating objects: 10604, done.
    remote: Counting objects: 100% (1337/1337), done.
    remote: Compressing objects: 100% (537/537), done.
    remote: Total 10604 (delta 802), reused 1209 (delta 752), pack-reused 9267
    Receiving objects: 100% (10604/10604), 183.25 MiB | 21.63 MiB/s, done.
    Resolving deltas: 100% (7747/7747), done.
    Updating files: 100% (267/267), done.
[2]: # !pip install librosa == 0.8.1
     !pip install scikit-maad
    Collecting scikit-maad
      Downloading scikit_maad-1.4.0-py3-none-any.whl (152 kB)
                                152.5/152.5
    kB 3.3 MB/s eta 0:00:00
    Requirement already satisfied: numpy>=1.21 in
    /usr/local/lib/python3.10/dist-packages (from scikit-maad) (1.25.2)
    Requirement already satisfied: scipy>=1.8 in /usr/local/lib/python3.10/dist-
    packages (from scikit-maad) (1.11.4)
    Requirement already satisfied: scikit-image>=0.19 in
    /usr/local/lib/python3.10/dist-packages (from scikit-maad) (0.19.3)
    Requirement already satisfied: pandas>=1.5 in /usr/local/lib/python3.10/dist-
    packages (from scikit-maad) (1.5.3)
    Collecting resampy>=0.4 (from scikit-maad)
      Downloading resampy-0.4.2-py3-none-any.whl (3.1 MB)
                                3.1/3.1 MB
    12.2 MB/s eta 0:00:00
    Requirement already satisfied: matplotlib>=3.6 in
```

```
/usr/local/lib/python3.10/dist-packages (from scikit-maad) (3.7.1)
    Requirement already satisfied: contourpy>=1.0.1 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6->scikit-maad)
    (1.2.0)
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-
    packages (from matplotlib>=3.6->scikit-maad) (0.12.1)
    Requirement already satisfied: fonttools>=4.22.0 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6->scikit-maad)
    (4.48.1)
    Requirement already satisfied: kiwisolver>=1.0.1 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6->scikit-maad)
    Requirement already satisfied: packaging>=20.0 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6->scikit-maad)
    Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-
    packages (from matplotlib>=3.6->scikit-maad) (9.4.0)
    Requirement already satisfied: pyparsing>=2.3.1 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6->scikit-maad)
    (3.1.1)
    Requirement already satisfied: python-dateutil>=2.7 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.6->scikit-maad)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-
    packages (from pandas>=1.5->scikit-maad) (2023.4)
    Requirement already satisfied: numba>=0.53 in /usr/local/lib/python3.10/dist-
    packages (from resampy>=0.4->scikit-maad) (0.58.1)
    Requirement already satisfied: networkx>=2.2 in /usr/local/lib/python3.10/dist-
    packages (from scikit-image>=0.19->scikit-maad) (3.2.1)
    Requirement already satisfied: imageio>=2.4.1 in /usr/local/lib/python3.10/dist-
    packages (from scikit-image>=0.19->scikit-maad) (2.31.6)
    Requirement already satisfied: tifffile>=2019.7.26 in
    /usr/local/lib/python3.10/dist-packages (from scikit-image>=0.19->scikit-maad)
    (2024.2.12)
    Requirement already satisfied: PyWavelets>=1.1.1 in
    /usr/local/lib/python3.10/dist-packages (from scikit-image>=0.19->scikit-maad)
    Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in
    /usr/local/lib/python3.10/dist-packages (from numba>=0.53->resampy>=0.4->scikit-
    maad) (0.41.1)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-
    packages (from python-dateutil>=2.7->matplotlib>=3.6->scikit-maad) (1.16.0)
    Installing collected packages: resampy, scikit-maad
    Successfully installed resampy-0.4.2 scikit-maad-1.4.0
[3]: !pip install -U librosa
```

!pip freeze | grep librosa

```
Requirement already satisfied: librosa in /usr/local/lib/python3.10/dist-
packages (0.10.1)
Requirement already satisfied: audioread>=2.1.9 in
/usr/local/lib/python3.10/dist-packages (from librosa) (3.0.1)
Requirement already satisfied: numpy!=1.22.0,!=1.22.1,!=1.22.2,>=1.20.3 in
/usr/local/lib/python3.10/dist-packages (from librosa) (1.25.2)
Requirement already satisfied: scipy>=1.2.0 in /usr/local/lib/python3.10/dist-
packages (from librosa) (1.11.4)
Requirement already satisfied: scikit-learn>=0.20.0 in
/usr/local/lib/python3.10/dist-packages (from librosa) (1.2.2)
Requirement already satisfied: joblib>=0.14 in /usr/local/lib/python3.10/dist-
packages (from librosa) (1.3.2)
Requirement already satisfied: decorator>=4.3.0 in
/usr/local/lib/python3.10/dist-packages (from librosa) (4.4.2)
Requirement already satisfied: numba>=0.51.0 in /usr/local/lib/python3.10/dist-
packages (from librosa) (0.58.1)
Requirement already satisfied: soundfile>=0.12.1 in
/usr/local/lib/python3.10/dist-packages (from librosa) (0.12.1)
Requirement already satisfied: pooch>=1.0 in /usr/local/lib/python3.10/dist-
packages (from librosa) (1.8.0)
Requirement already satisfied: soxr>=0.3.2 in /usr/local/lib/python3.10/dist-
packages (from librosa) (0.3.7)
Requirement already satisfied: typing-extensions>=4.1.1 in
/usr/local/lib/python3.10/dist-packages (from librosa) (4.9.0)
Requirement already satisfied: lazy-loader>=0.1 in
/usr/local/lib/python3.10/dist-packages (from librosa) (0.3)
Requirement already satisfied: msgpack>=1.0 in /usr/local/lib/python3.10/dist-
packages (from librosa) (1.0.7)
Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in
/usr/local/lib/python3.10/dist-packages (from numba>=0.51.0->librosa) (0.41.1)
Requirement already satisfied: platformdirs>=2.5.0 in
/usr/local/lib/python3.10/dist-packages (from pooch>=1.0->librosa) (4.2.0)
Requirement already satisfied: packaging>=20.0 in
/usr/local/lib/python3.10/dist-packages (from pooch>=1.0->librosa) (23.2)
Requirement already satisfied: requests>=2.19.0 in
/usr/local/lib/python3.10/dist-packages (from pooch>=1.0->librosa) (2.31.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in
/usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.20.0->librosa)
(3.2.0)
Requirement already satisfied: cffi>=1.0 in /usr/local/lib/python3.10/dist-
packages (from soundfile>=0.12.1->librosa) (1.16.0)
Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-
packages (from cffi>=1.0->soundfile>=0.12.1->librosa) (2.21)
Requirement already satisfied: charset-normalizer<4,>=2 in
/usr/local/lib/python3.10/dist-packages (from
requests>=2.19.0->pooch>=1.0->librosa) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-
packages (from requests>=2.19.0->pooch>=1.0->librosa) (3.6)
```

```
Requirement already satisfied: urllib3<3,>=1.21.1 in
    /usr/local/lib/python3.10/dist-packages (from
    requests>=2.19.0->pooch>=1.0->librosa) (2.0.7)
    Requirement already satisfied: certifi>=2017.4.17 in
    /usr/local/lib/python3.10/dist-packages (from
    requests>=2.19.0->pooch>=1.0->librosa) (2024.2.2)
    librosa==0.10.1
[4]: colab = True
[5]: !pip install SoundFile
     from google.colab import drive
     from pydrive2.auth import GoogleAuth
     from pydrive2.drive import GoogleDrive
     from google.colab import auth
     from oauth2client.client import GoogleCredentials
     import zipfile
    Requirement already satisfied: SoundFile in /usr/local/lib/python3.10/dist-
    packages (0.12.1)
    Requirement already satisfied: cffi>=1.0 in /usr/local/lib/python3.10/dist-
    packages (from SoundFile) (1.16.0)
    Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-
    packages (from cffi>=1.0->SoundFile) (2.21)
[6]: # Google Authentication
     auth.authenticate user()
     gauth = GoogleAuth()
     gauth.credentials = GoogleCredentials.get_application_default()
     drive = GoogleDrive(gauth)
[7]: # Download files
     downloaded = drive.CreateFile({'id':"1js1fz4Bu98NIds4cErL7NdT1efxavixp"})
     downloaded.GetContentFile('Code.zip')
     # Extract files to temporary location in Google Drive
     with zipfile.ZipFile('Code.zip', 'r') as zip_file:
          zip_file.extractall()
     # Download files
     downloaded = drive.CreateFile({'id':"1ZtnBNlAttwSqiYF4XPfNLE6YX5H8HDAa"})
     downloaded.GetContentFile('Data.zip')
     # Extract files to temporary location in Google Drive
     with zipfile.ZipFile('Data.zip', 'r') as zip_file:
         zip_file.extractall()
```

```
[8]: # Do not delete these imports [ O marks]
    from Preprocessing import *
    import librosa
    import numpy as np
    import random
    #We define the two classes
    positive_class = ['1'] #this corresponds to labels which reprsent present of
      ⇔bird sound
    negative_class =['0'] #the second case
    #Data hyper-parameters
    f_{max} = 15000
    f min = 150
    n_fft = 1024 # Hann window length
    hop length = 256 # Sepctrogram hop size
    n mels = 128
    #
    lowpass_cutoff = 10000 # We take less than nuquist_rate
    nyquist_rate = 11025 #Nyquist rqte
    downsample_rate = 22050 #Frequence to downsqmple
    segment_duration = 3 #
     # -----
    species_folder = '.' # Should contain /Audio and /Annotations, don't change this
    file_type = 'svl' # don't change this
    audio_extension = '.wav' # don't change this
[9]: pre_pro = Preprocessing(species_folder, lowpass_cutoff,
                     downsample_rate, nyquist_rate,
                     segment_duration,
                     positive_class, negative_class,n_fft,
                     hop_length, n_mels, f_min, f_max, file_type,
                     audio_extension)
    X,Y = pre_pro.create_dataset(False)
    pre_pro.save_data_to_pickle(X,Y)
    print("Done")
    Processing: 19_19_fermat_15
    Found file
    Filtering...
    Downsampling...
    19_19_fermat_15
    Reading annotations...
```

Processing: 23_2-2-2024=20_53_19

Found file Filtering... Downsampling...

23_2-2-2024=20_53_19 Reading annotations...

Processing: 6_2-2-2024=14_46_17

Found file Filtering... Downsampling...

Found file

6_2-2-2024=14_46_17 Reading annotations...

Processing: 9_2-2-2024=21_1_26

Filtering...
Downsampling...
9_2-2-2024=21_1_26
Reading annotations...

Processing: 6_2-2-2024=14_43_57

Found file Filtering... Downsampling... 6 2-2-2024=14

6_2-2-2024=14_43_57 Reading annotations...

Processing: 23_2-2-2024=20_39_55

Found file Filtering... Downsampling...

23_2-2-2024=20_39_55 Reading annotations...

Processing: 15_audio_34

Found file Filtering... Downsampling... 15_audio_34

Reading annotations...

Processing: 15_audio_79

Found file Filtering... Downsampling... 15_audio_79

Reading annotations...

Processing: 8_emmanuel_5

Found file
Filtering...
Downsampling...
8_emmanuel_5

Reading annotations...

Processing: 23_2-2-2024=20_38_50

Found file Filtering... Downsampling...

23_2-2-2024=20_38_50 Reading annotations...

Processing: 2_2_someaudiofile_1

Found file Filtering... Downsampling...

2_2_someaudiofile_1 Reading annotations...

Processing: 5_2-2-2024=15_20_0

Found file
Filtering...
Downsampling...
5_2-2-2024=15_20_0
Reading annotations...

Processing: 12_audio_16

Found file Filtering... Downsampling... 12_audio_16

Reading annotations...

Processing: 22_3-2-2024=7_8_50

Found file Filtering... Downsampling... 22_3-2-2024=7_8_50 Reading annotations...

Processing: 19_19_fermat_5

Found file
Filtering...
Downsampling...
19_19_fermat_5

Reading annotations...

Processing: 23_2-2-2024=20_45_9

Found file
Filtering...
Downsampling...
23_2-2-2024=20_45_9
Reading annotations...

Processing: 23_2-2-2024=20_42_15

Found file Filtering... Downsampling...

23_2-2-2024=20_42_15 Reading annotations...

Processing: 18_3-2-2024=6_50_29

Found file Filtering... Downsampling...

18_3-2-2024=6_50_29 Reading annotations...

Processing: 20_r17_dariose

Found file Filtering... Downsampling... 20_r17_dariose

Reading annotations...

Processing: 7_7_2-2-2024=15_20_15

Found file Filtering... Downsampling...

7 7 0 0 0004-1

7_7_2-2-2024=15_20_15 Reading annotations...

Processing: 28_2-2-2024=14_43_47

Found file Filtering... Downsampling...

28_2-2-2024=14_43_47 Reading annotations... Processing: 12_audio_15

Found file Filtering... Downsampling... 12_audio_15

Reading annotations...

Processing: 14_2-2-2024=19_38_59

Found file Filtering... Downsampling...

14_2-2-2024=19_38_59 Reading annotations...

Processing: 19_19_fermat_7

Found file
Filtering...
Downsampling...
19_19_fermat_7
Reading_annotation

Reading annotations...

Processing: 7_7_2-2-2024=15_21_31

Found file Filtering... Downsampling...

7_7_2-2-2024=15_21_31 Reading annotations...

Processing: 21_20240203_063015 Processing: 2_2_someaudiofile_20

Found file Filtering... Downsampling...

2_2_someaudiofile_20 Reading annotations...

Processing: 7_7_2-2-2024=15_21_25

Found file Filtering... Downsampling...

7_7_2-2-2024=15_21_25 Reading annotations...

Processing: 5_2-2-2024=15_18_8

Found file
Filtering...
Downsampling...
5_2-2-2024=15_18_8
Reading annotations...

Processing: 25_2-2-2024=19_41_47

Found file Filtering... Downsampling...

25_2-2-2024=19_41_47 Reading annotations...

Processing: 25_2-2-2024=19_46_20

Found file Filtering... Downsampling...

25_2-2-2024=19_46_20 Reading annotations...

Processing: 24_2-2-2024=14_46_11

Found file Filtering... Downsampling...

24_2-2-2024=14_46_11 Reading annotations... Processing: 12_audio_19

Found file Filtering... Downsampling... 12_audio_19

Reading annotations...

Processing: 15_audio_102

Found file
Filtering...
Downsampling...
15_audio_102

Reading annotations...

Processing: 13_2-2-2024=23_34_56

Found file Filtering... Downsampling...

13_2-2-2024=23_34_56 Reading annotations...

Processing: 13_2-2-2024=23_33_11

Found file Filtering... Downsampling...

13_2-2-2024=23_33_11 Reading annotations...

Processing: 28_2-2-2024=14_47_58

Found file Filtering... Downsampling...

28_2-2-2024=14_47_58 Reading annotations...

Processing: 13_2-2-2024=23_31_32

Found file Filtering... Downsampling...

13_2-2-2024=23_31_32 Reading annotations...

Processing: 23_2-2-2024=20_53_54

Found file Filtering... Downsampling...

23_2-2-2024=20_53_54 Reading annotations...

Processing: 13_2-2-2024=23_36_5

Found file Filtering... Downsampling...

13_2-2-2024=23_36_5
Reading annotations...

Processing: 4_4_aud4-19

Found file Filtering... Downsampling... 4_4_aud4-19

Reading annotations...

Processing: 15_audio_42

Found file
Filtering...
Downsampling...
15_audio_42

Reading annotations...

Processing: 24_2-2-2024=14_45_30

Found file Filtering... Downsampling...

24_2-2-2024=14_45_30 Reading annotations...

Processing: 28_2-2-2024=14_45_32

Found file Filtering... Downsampling...

28_2-2-2024=14_45_32 Reading annotations...

Processing: 6_030224-090128 Processing: 21_3-2-2024=7_18_9

Found file
Filtering...
Downsampling...
21_3-2-2024=7_18_9
Reading annotations...
Processing: 15_audio_114

Found file Filtering... Downsampling... 15_audio_114

Reading annotations...

Processing: 15_audio_71

Found file Filtering... Downsampling... 15_audio_71

Reading annotations...

Processing: 21_3-2-2024=7_27_28

Found file Filtering... Downsampling...

21_3-2-2024=7_27_28 Reading annotations...

Processing: 25_2-2-2024=19_42_22

Found file Filtering... Downsampling...

25_2-2-2024=19_42_22 Reading annotations...

Processing: 18_2_20240203_084120 Processing: 23_2-2-2024=20_49_48

23_2-2-2024=20_49_48

Reading annotations...

Processing: 18_3-2-2024=6_50_57

Found file Filtering... Downsampling...

18_3-2-2024=6_50_57 Reading annotations...

Processing: 19_19_fermat_1

Found file Filtering... Downsampling... 19 19 fermat 1

Reading annotations...

Processing: 2_2_someaudiofile_7

Found file Filtering... Downsampling...

2_2_someaudiofile_7 Reading annotations...

Processing: 17_2-2-2024=15_41_32

Found file Filtering... Downsampling...

17_2-2-2024=15_41_32 Reading annotations...

Processing: 12_audio_3

Found file Filtering... Downsampling... 12_audio_3

Reading annotations...

Processing: 24_2-2-2024=14_46_5

Found file Filtering... Downsampling... 24_2-2-2024=14_46_5 Reading annotations...

Processing: 2_2_someaudiofile_6

Found file Filtering... Downsampling...

2_2_someaudiofile_6 Reading annotations... Processing: 15_audio_9

15_audio_9

Reading annotations...

Processing: 5_2-2-2024=15_21_4

Found file Filtering... Downsampling... 5_2-2-2024=15_21_4

Reading annotations...

Processing: 22_2-2-2024=14_44_19

Found file Filtering... Downsampling...

22_2-2-2024=14_44_19
Reading annotations...
Processing: 15_audio_86

Found file Filtering... Downsampling... 15_audio_86

Reading annotations...

Processing: 7_7_2-2-2024=15_23_16

Found file Filtering... Downsampling...

7_7_2-2-2024=15_23_16 Reading annotations...

Processing: 15_audio_56

Found file Filtering... Downsampling... 15_audio_56

Reading annotations...

Processing: 7_7_2-2-2024=15_24_26

Found file Filtering... Downsampling...

7_7_2-2-2024=15_24_26
Reading annotations...

Processing: 26_michael_4

Found file Filtering... Downsampling... 26_michael_4

Reading annotations...

Processing: 15_audio_90

 ${\tt Downsampling...}$

15_audio_90

Reading annotations...

Processing: 21_3-2-2024=7_15_14

Found file Filtering... Downsampling...

21_3-2-2024=7_15_14
Reading annotations...

Processing: 4_4_aud4-15

Found file Filtering... Downsampling... 4 4 aud4-15

Reading annotations...

Processing: 26_084431

Found file Filtering... Downsampling... 26 084431

Reading annotations...

Processing: 21_3-2-2024=7_11_9

Found file Filtering... Downsampling... 21 3-2-2024=7

21_3-2-2024=7_11_9 Reading annotations...

Processing: 21_3-2-2024=7_26_53

Found file Filtering... Downsampling...

21_3-2-2024=7_26_53 Reading annotations... Processing: 15_audio_97

Found file Filtering... Downsampling... 15_audio_97

Reading annotations...

Processing: 18_3-2-2024=6_50_22

Found file Filtering... Downsampling...

18_3-2-2024=6_50_22

Reading annotations...

Processing: 24_3

24_3

Reading annotations...

Processing: 22_2-2-2024=14_41_59

Found file Filtering... Downsampling...

22_2-2-2024=14_41_59 Reading annotations...

Processing: 24_2-2-2024=14_42_40

Found file Filtering... Downsampling...

24_2-2-2024=14_42_40 Reading annotations...

Processing: 28_2-2-2024=14_40_58

Found file Filtering... Downsampling...

28_2-2-2024=14_40_58 Reading annotations...

Processing: 23_2-2-2024=20_37_39

Found file Filtering... Downsampling...

23_2-2-2024=20_37_39 Reading annotations...

Processing: 19_19_fermat_2

Found file
Filtering...
Downsampling...
19_19_fermat_2

Reading annotations...

Processing: 23_2-2-2024=20_46_19

Found file Filtering... Downsampling...

23_2-2-2024=20_46_19 Reading annotations...

Processing: 28_2-2-2024=14_41_28

Found file Filtering... Downsampling...

28_2-2-2024=14_41_28 Reading annotations...

Processing: 14_2-2-2024=19_38_23

14_2-2-2024=19_38_23

Reading annotations...

Processing: 15_audio_3

Found file Filtering... Downsampling... 15_audio_3

Reading annotations...

Processing: 21_3-2-2024=7_31_33

Found file Filtering... Downsampling...

21_3-2-2024=7_31_33 Reading annotations...

Processing: 23_2-2-2024=20_41_40

Found file Filtering... Downsampling...

23_2-2-2024=20_41_40 Reading annotations...

Processing: 25_2-2-2024=19_44_42

Found file Filtering... Downsampling...

25_2-2-2024=19_44_42 Reading annotations... Processing: 15_audio_44

Found file Filtering... Downsampling... 15_audio_44

Reading annotations...

Processing: 22_2-2-2024=14_39_40

Found file Filtering... Downsampling...

22_2-2-2024=14_39_40 Reading annotations...

Processing: 15_audio_48

Found file Filtering... Downsampling... 15_audio_48

Reading annotations...

Processing: 23_2-2-2024=20_52_9

23_2-2-2024=20_52_9 Reading annotations...

Processing: 7_030224-101338 Processing: 15 audio 83

Found file Filtering... Downsampling... 15_audio_83

Reading annotations...

Processing: 14_3-2-2024=7_7_40

Found file Filtering... Downsampling... 14_3-2-2024=7_7_40 Reading annotations...

Processing: 25_2-2-2024=19_42_57

Found file Filtering... Downsampling...

25_2-2-2024=19_42_57 Reading annotations...

Processing: 17_2-2-2024=15_42_43

Found file Filtering... Downsampling...

17_2-2-2024=15_42_43 Reading annotations...

Processing: 28_2-2-2024=14_42_43

Found file Filtering... Downsampling...

28_2-2-2024=14_42_43
Reading annotations...

Processing: 8_emmanuel_6

Found file Filtering... Downsampling... 8_emmanuel_6

Reading annotations...

Processing: 20_r27_dariose

Found file Filtering... Downsampling... 20_r27_dariose

Reading annotations...

Processing: 5_20240203_063015 Processing: 24_2-2-2024=14_43_16 Found file

Filtering...

Downsampling...

24_2-2-2024=14_43_16

Reading annotations...

Processing: 28_2-2-2024=14_40_23

Found file Filtering... Downsampling...

28_2-2-2024=14_40_23

Reading annotations...

Processing: 14_2-2-2024=19_43_33

Found file Filtering... Downsampling...

14_2-2-2024=19_43_33 Reading annotations...

Processing: 3_030224-082609 Processing: 20_r2_dariose

Found file Filtering... Downsampling... 20_r2_dariose

Reading annotations...

Processing: 13_2-2-2024=23_37_15

Found file Filtering... Downsampling...

13_2-2-2024=23_37_15 Reading annotations...

Processing: 21_3-2-2024=7_28_38

Found file Filtering... Downsampling...

21_3-2-2024=7_28_38 Reading annotations...

Processing: 22_3-2-2024=7_6_28

Found file
Filtering...
Downsampling...
22_3-2-2024=7_6_28
Reading annotations...

Processing: 4_4_aud4-1

Found file Filtering... Downsampling... 4_4_aud4-1

Reading annotations...

Processing: 12_audio_12

Found file Filtering... Downsampling... 12_audio_12

Reading annotations...

Processing: 15_audio_57

Found file Filtering... Downsampling... 15_audio_57

Reading annotations...

Processing: 20_r13_dariose

Found file Filtering... Downsampling... 20_r13_dariose

Reading annotations...

Processing: 6_2-2-2024=14_48_31

Found file Filtering... Downsampling...

6_2-2-2024=14_48_31 Reading annotations...

Processing: 4_20240203_075055 Processing: 25_2-2-2024=19_44_7

Found file Filtering... Downsampling... 25_2-2-2024=19_44_7

Reading annotations...

Processing: 13_2-2-2024=23_27_56

Found file Filtering... Downsampling...

13_2-2-2024=23_27_56
Reading annotations...
Processing: 15_audio_67

Found file Filtering... Downsampling... 15_audio_67

Reading annotations...

Processing: 21_3-2-2024=7_20_1

Found file Filtering... Downsampling... 21_3-2-2024=7_20_1 Reading annotations...

Processing: 15_audio_5

Found file Filtering... Downsampling... 15_audio_5

Reading annotations...

Processing: 15_audio_116

Found file Filtering... Downsampling... 15_audio_116

Reading annotations...

Processing: 21_3-2-2024=7_28_3

Found file
Filtering...
Downsampling...
21_3-2-2024=7_28_3
Reading annotations...

Processing: 14_2-2-2024=19_39_35

Found file Filtering... Downsampling...

14_2-2-2024=19_39_35 Reading annotations...

Processing: 18_3-2-2024=6_51_3

Found file
Filtering...
Downsampling...
18_3-2-2024=6_51_3
Reading annotations...

Processing: 16_030224-090521 Processing: 6_2-2-2024=14_44_31

Found file Filtering... Downsampling...

6_2-2-2024=14_44_31 Reading annotations...

Processing: 20_r19_dariose

Found file Filtering... Downsampling... 20_r19_dariose

Reading annotations...

Processing: 23_2-2-2024=20_41_45

Found file Filtering... Downsampling... 23_2-2-2024=20_41_45

Reading annotations...

Processing: 15_audio_109

Found file

Filtering...

Downsampling...

15_audio_109

Reading annotations...

Processing: 23_2-2-2024=20_38_9

Found file

Filtering...

Downsampling...

23_2-2-2024=20_38_9

Reading annotations...

Processing: 24_2-2-2024=14_45_36

Found file

Filtering...

Downsampling...

24_2-2-2024=14_45_36

Reading annotations...

Processing: 15_audio_95

Found file

Filtering...

Downsampling...

15_audio_95

Reading annotations...

Processing: 8_emmanuel_8

Found file

Filtering...

Downsampling...

8_emmanuel_8

Reading annotations...

Processing: 13_2-2-2024=23_33_17

Found file

Filtering...

Downsampling...

13 2-2-2024=23 33 17

Reading annotations...

Processing: 15_audio_11

Found file

Filtering...

Downsampling...

15_audio_11

Reading annotations...

Processing: 27_audio_annotation2

Found file

Filtering...

Downsampling...

 ${\tt 27_audio_annotation2}$

Reading annotations...

Processing: 24_2-2-2024=14_43_10

Found file Filtering...
Downsampling...

24_2-2-2024=14_43_10 Reading annotations...

Processing: 14_2-2-2024=19_39_0

Found file
Filtering...
Downsampling...
14_2-2-2024=19_39_0
Reading annotations...

Processing: 17_2-2-2024=15_42_42

Found file Filtering...
Downsampling...

17_2-2-2024=15_42_42
Reading annotations...

Processing: 22_audio1

Found file Filtering... Downsampling... 22_audio1

Reading annotations...

Processing: 23_2-2-2024=20_41_4

Found file
Filtering...
Downsampling...

23_2-2-2024=20_41_4 Reading annotations...

Processing: 8_emmanuel_3

Found file Filtering... Downsampling... 8_emmanuel_3

Reading annotations...

Processing: 11_030224-105230

Processing: 20_075055

Processing: 18_3-2-2024=6_55_37

Found file Filtering... Downsampling...

18_3-2-2024=6_55_37 Reading annotations...

Processing: 6_2-2-2024=14_43_21

Found file

```
Filtering...
     Downsampling...
     6_2-2-2024=14_43_21
     Reading annotations...
     Processing: 17_030224-102335
     Processing: 3_2-2-2024=22_0_31
     Found file
     Filtering...
     Downsampling...
     3_2-2-2024=22_0_31
     Reading annotations...
     Processing: 15_audio_43
     Found file
     Filtering...
     Downsampling...
     15_audio_43
     Reading annotations...
     Processing: 5_2-2-2024=15_21_45
     Found file
     Filtering...
     Downsampling...
     5_2-2-2024=15_21_45
     Reading annotations...
     Done
     0.2
          Step 1: Pre-process the data
     0.3 Data shapes
[10]: print(X.shape)
      print(Y.shape)
     (1909, 66150)
     (1909,)
[14]: test_audio = X[0]
[15]: test_audio.shape
[15]: (66150,)
[16]: S = librosa.feature.melspectrogram(y=test_audio, n_fft=n_fft,__
       →hop_length=hop_length, n_mels=n_mels, fmin=f_min, fmax=f_max)
[17]: # 2 View the mel spectrogram before doing anything else. Try and view a_
      ⇔spectrogram
      # that contains some type of sound.
      fig, ax = plt.subplots()
```

[17]: <matplotlib.colorbar.Colorbar at 0x7d8d4643a950>

[18]: <matplotlib.colorbar.Colorbar at 0x7d8d46c7e950>

0.3.1 Task 1: preprocessing

The data in X and Y is not fully pre-processed. X has segments of audio which have been extracted from the audio files along with their label in Y.

- Implement a function called audio_to_spectrogram(audio) which takes in one audio signal, and returns a mel-spectrogram.
- This function should implement some type of normalisation.

```
[19]: def audio_to_spectrogram(audio):
    S = librosa.feature.melspectrogram(y=audio, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, fmin=f_min, fmax=f_max)
    S_db = librosa.power_to_db(S, ref=np.max)
    return S_db
```

0.3.2 Task 2

• You need to add some code which visualises 3 presence events, and 3 absence events. You are free to plot any example in X and Y. But the examples should be different.

Presence events

[]: # random presence spectrogram

```
[26]: Y1 = np.where(Y =='1')[0]
    random_index1 = random.randint(0,len(Y1)-1)
    X_s = audio_to_spectrogram(X[Y1[random_index1]])
    librosa.display.specshow(X_s,x_axis='time', y_axis='mel', sr=4800)
    print(Y[Y1[random_index1]],':',random_index1)# TO DO
```

1:738


```
[]: Y1 = np.where(Y =='1')[0]
random_index1 = random.randint(0,len(Y1)-1)
X_s = audio_to_spectrogram(X[Y1[random_index1]])
librosa.display.specshow(X_s,x_axis='time', y_axis='mel', sr=4800)
print(Y[Y1[random_index1]],':',random_index1)# TO DO
```



```
[]: Y1 = np.where(Y =='1')[0]
random_index1 = random.randint(0,len(Y1)-1)
X_s = audio_to_spectrogram(X[Y1[random_index1]])
librosa.display.specshow(X_s,x_axis='time', y_axis='mel', sr=4800)
print(Y[Y1[random_index1]],':',random_index1)# TO DO
```



```
[]: Y1 = np.where(Y =='0')[0]
random_index1 = random.randint(0,len(Y1)-1)
X_s = audio_to_spectrogram(X[Y1[random_index1]])
librosa.display.specshow(X_s,x_axis='time', y_axis='mel', sr=4800)
print(Y[Y1[random_index1]],':',random_index1)# TO DO
```


Absence events

```
[]: Y1 = np.where(Y =='0')[0]
random_index1 = random.randint(0,len(Y1)-1)
X_s = audio_to_spectrogram(X[Y1[random_index1]])
librosa.display.specshow(X_s,x_axis='time', y_axis='mel', sr=4800)
print(Y[Y1[random_index1]],':',random_index1)# TO DO
```



```
[]: Y1 = np.where(Y =='0')[0]
random_index1 = random.randint(0,len(Y1)-1)
X_s = audio_to_spectrogram(X[Y1[random_index1]])
librosa.display.specshow(X_s,x_axis='time', y_axis='mel', sr=4800)
print(Y[Y1[random_index1]],':',random_index1)# TO DO
```



```
[20]: #Here is a function that will convert all of your audio segments into

spectrograms, using the function you wrote above.

def convert_all_to_image(segments):

spectrograms = []

for segment in segments:
    spectrograms.append(audio_to_spectrogram(segment))

return np.array(spectrograms)
```

Create all the spectrograms

```
[21]: #Create all the spectrograms
X_S = convert_all_to_image(X)
```

[30]: X_S.shape

[30]: (1909, 128, 259)

[31]: #Look how many precense and absence examples are in the training data.
unique, counts = np.unique(Y, return_counts=True)

```
original_distribution = dict(zip(unique, counts))
print('Data distribution:',original_distribution)
```

Data distribution: {'0': 481, '1': 1428}

0.3.3 Task 3: given the values above, how many presence examples and absence examples would you like to have? You don't have to write anything down, just reflect on this.

0.3.4 Task 4:

- Implement a function that will augment one spectrogram.
- The input will be a spectrogram, and it's target.
- The output should be the modified spectogram, and the target.

This function receives one spectrogram (2D matrix).

It also receives the true target value for that spectrogram

You must implement something to change the spectrogram in some way.

You do not need to get a noisy example or any external data, do mix up or anything complicated. Only manipulate this spectrogram stored in the variable spectrogram in some way so that this function acts like an augmentation function.

Here, I'm gonna use Frequency masking:

```
[32]: def augment_one_spectrogram(spectrogram, true_target):
    # I generate a mel spectrogram
    new_spectrogram = np.copy(spectrogram) # I make a copy to avoid modifying_
    the original

# I apply frequency masking
    frequency_mask_width = np.random.randint(5, 15) # Augmenting the range of_
    frequency mask width
    freq = np.random.randint(10, new_spectrogram.shape[0] -_
    frequency_mask_width - 5) # Adjusting the range of starting index
    new_spectrogram[freq:freq + frequency_mask_width, :] = -1 # Using -1 as the_
        replacement value

# Return the augmented spectrogram and the target
    return new_spectrogram, true_target
```

I want to make a checking of my function by choosing randomly an example

```
[33]: Train = augment_one_spectrogram(X_S[203],true_target=0)
    print("X_S[203] =",X_S[203],'\n\n','Train =',Train)

X_S[203] = [[-14.21230605 -10.10971887 -8.18760825 ... -5.5651371
    -13.96667573
    -15.39436494]
    [-16.83111643 -10.83082035 -9.7400247 ... -4.91921544 -10.91584858
```

```
-16.37213842]
      [-18.2384621 \quad -10.12533755 \quad -6.65819527 \dots \quad -6.66925107 \quad -12.60868316
       -12.14073141]
      [-78.00076808 -78.00076808 -78.00076808 ... -78.00076808 -78.00076808
       -78.000768081
      [-78.00076808 -78.00076808 -78.00076808 ... -78.00076808 -78.00076808
       -78.00076808]
      [-78.00076808 -78.00076808 -78.00076808 ... -78.00076808 -78.00076808
       -78.00076808]]
      Train = (array([[-14.21230605, -10.10971887, -8.18760825, ..., -5.5651371,
             -13.96667573, -15.39436494],
             [-16.83111643, -10.83082035, -9.7400247, ..., -4.91921544,
             -10.91584858, -16.37213842],
             [-18.2384621, -10.12533755, -6.65819527, ..., -6.66925107,
             -12.60868316, -12.14073141],
             [-78.00076808, -78.00076808, -78.00076808, ..., -78.00076808,
             -78.00076808, -78.00076808],
             [-78.00076808, -78.00076808, -78.00076808, ..., -78.00076808,
             -78.00076808, -78.00076808],
             [-78.00076808, -78.00076808, -78.00076808, ..., -78.00076808,
             -78.00076808, -78.00076808]]), 0)
[34]: # Original
      plt.figure(figsize=(12, 10))
      plt.subplot(2, 2, 1)
      imag=librosa.display.specshow(X_S[203], y_axis='mel', x_axis='time',_
       ⇔sr=downsample_rate,)
      plt.title('Original')
      # Augmentation
      plt.subplot(2, 2, 2)
      Train_2= Train[0]
      imag=librosa.display.specshow(Train_2, y_axis='mel', x_axis='time',_
       ⇒sr=downsample_rate)
      plt.title('Frequency masking')
```

[34]: Text(0.5, 1.0, 'Frequency masking')

This function will randomly select one spectrogram which contains a presence bird call.

```
[35]: def randomly_select_presence(all_spectrograms, targets):
    # Find all the indices where there is a presence example
    presence_indices = np.where(targets =='1')[0]

# Randomly select index
    random_index = random.randint(0,len(presence_indices)-1)

return all_spectrograms[presence_indices[random_index]]
```

This function will randomly select one spectrogram which does not contain a gibbon call.

```
[36]: def randomly_select_absence(all_spectrograms, targets):
    # Find all the indices where there is a absence example
    absence_indices = np.where(targets =='0')[0]

# Randomly select index
    random_index = random.randint(0,len(absence_indices)-1)

return all_spectrograms[absence_indices[random_index]]
```

This function will generate one new spectrogram with a presence bird call in it.

```
[37]: def generate_new_presence_spectrograms(all_spectrograms, all_targets, quantity):
    new_spectrograms = []
    new_targets = []
    for i in range (0, quantity):
```

```
presence_spectrogram = randomly_select_presence(all_spectrograms, u
all_targets)
augmented_spectrogram, augmented_target = u
augment_one_spectrogram(presence_spectrogram,
'1')

new_spectrograms.append(augmented_spectrogram)
new_targets.append(augmented_target)

return np.asarray(new_spectrograms), np.asarray(new_targets)
```

This function will generate one new spectrogram without bird call in it.

0.3.5 Task 5:

• Now generate actual presence calls, here you need to specify how many you want to create, extra. The value specified in the function is the amount of extra spectrograms that you want to create, which will contain gibbon calls.

```
[53]: new_presence, new_targets = generate_new_presence_spectrograms(X_S, Y, 252) #__ 
$\to TO DO$
```

Check the shapes of the newly created data

```
[54]: print(new_presence.shape) print(new_targets.shape) (252, 128, 259) (252,)
```

0.3.6 Task 6

Randomly select two of your newly created spectrograms, and view it.

[62]: librosa.display.specshow(new_presence[8])

[62]: <matplotlib.collections.QuadMesh at 0x7d8d462b8790>

[51]: librosa.display.specshow(new_presence[134])# TO DO)

[51]: <matplotlib.collections.QuadMesh at 0x7d8d46663bb0>

Now combine all of your existing spectrograms which contain bird calls, along with all of the newly created ones.

```
[63]: X_positive = np.concatenate([X_S[np.where(Y =='1')], new_presence])
X_positive = np.asarray(X_positive)
print(X_positive.shape)
Y_positive = np.concatenate([Y[np.where(Y =='1')], new_targets])
Y_positive = np.asarray(Y_positive)
print(Y_positive.shape)

(1680, 128, 259)
(1680,)
```

0.3.7 Task 7

• Now generate actual absence spectrograms, here you need to specify how many you want to create, extra. The value specified in the function is the amount of extra spectrograms that you want to create, which will not contain gibbon calls.

```
[64]: new_absence, new_targets = generate_new_absence_spectrograms(X_S, Y, 999) # TO_{\square} \hookrightarrow DO)
```

Check the shapes of the newly created data

[65]: print(new_absence.shape) print(new_targets.shape)

(999, 128, 259) (999,)

0.3.8 Task 8

Randomly select two of your newly created spectrograms, and view it.

[66]: librosa.display.specshow(new_absence[7])# TO DO)

[66]: <matplotlib.collections.QuadMesh at 0x7d8d461c8550>

[67]: librosa.display.specshow(new_absence[17])# TO DO)

[67]: <matplotlib.collections.QuadMesh at 0x7d8d462424a0>

Now combine all of your existing spectrograms which do not contain gibbon calls, along with all of the newly created ones.

```
[68]: X_negatives = np.concatenate([X_S[np.where(Y =='0')], new_absence])
X_negatives = np.asarray(X_negatives)
print(X_negatives.shape)

Y_negatives = np.concatenate([Y[np.where(Y =='0')], new_targets])
Y_negatives = np.asarray(Y_negatives)
print(Y_negatives.shape)

(1480, 128, 259)
(1480,)
```

Combine all the positives features and negative features. Do the same for the targets

```
[69]: X_dataset = np.concatenate([X_positive, X_negatives])
Y_dataset = np.concatenate([Y_positive, Y_negatives])
```

Check the shapes of the completed dataset.

```
[70]: print(X_dataset.shape)
print(Y_dataset.shape)

(3160, 128, 259)
(3160,)
```

Reshape so that the data is in a format that is ready for Tensorflow.

```
[71]: X_dataset = np.expand_dims(X_dataset, axis=-1)
     Check the shape again
[72]: print(X_dataset.shape)
      print(Y_dataset.shape)
     (3160, 128, 259, 1)
     (3160,)
     Some pre-processing to convert the categorical targets into one-hot encoded ones
[73]: from tensorflow.keras.utils import to_categorical
      call_order = ['0','1']
      # Converting categorical string labels ('presence' and 'absence) to Os and 1s
      for index, call_type in enumerate(call_order):
          Y_dataset = np.where(Y_dataset == call_type, index, Y_dataset)
      Y_dataset = to_categorical(Y_dataset,
                                    num_classes = 2)
     Check shapes again
[74]: print(X dataset.shape)
      print(Y_dataset.shape)
     (3160, 128, 259, 1)
     (3160, 2)
     Delete some RAM
[75]: del X_S, Y, X
[98]: from tensorflow.keras.layers import Dense, Dropout, Flatten, MaxPool2D, Conv2D
      from tensorflow.keras.models import Sequential
      INPUT_SHAPE = (128, 259, 1)
      model = Sequential()
      # Create one convolutional layer
      model.add(Conv2D(filters = 16, kernel_size = 4, input_shape = INPUT_SHAPE,__
       ⇔activation = 'relu'))
      # Create one max pooling layer
      model.add(MaxPool2D(pool_size = 2))
      # Create another convolutional layer
      model.add(Conv2D(filters = 32, kernel_size = 4, activation = 'relu'))
```

```
# Create another max pooling layer
model.add(MaxPool2D(pool_size=2))
# Create another convolutional layer
model.add(Conv2D(filters = 64, kernel_size = 4, activation = 'relu'))
# Create another max pooling layer
model.add(MaxPool2D(pool_size=2))
# Create another convolutional layer
model.add(Conv2D(filters = 128, kernel_size = 4, activation = 'relu'))
# Create another max pooling layer
model.add(MaxPool2D(pool_size=2))
model.add(Flatten())
# Here we create 16 fully connected units
model.add(Dense(units = 16, activation='relu'))
# The output
model.add(Dense(2, activation = 'softmax'))
#update the weights
model.compile(loss='categorical_crossentropy',_
 ⇔optimizer='adam',metrics=['accuracy'])
```

0.3.9 Task 9: model training

- Implement your own network and training.
- You are free to do whatever you want and show/explain your reasoning. You are free to add text or anything else you want to share.

Train the model

```
[99]: # TO DO model.summary()
```

Model: "sequential_6"

```
Layer (type) Output Shape Param #

conv2d_23 (Conv2D) (None, 125, 256, 16) 272

max_pooling2d_23 (MaxPooli (None, 62, 128, 16) 0

ng2D)

conv2d_24 (Conv2D) (None, 59, 125, 32) 8224
```

```
max_pooling2d_24 (MaxPooli (None, 29, 62, 32)
     ng2D)
     conv2d_25 (Conv2D)
                            (None, 26, 59, 64)
                                                 32832
     max_pooling2d_25 (MaxPooli (None, 13, 29, 64)
     ng2D)
     conv2d_26 (Conv2D)
                            (None, 10, 26, 128)
                                                 131200
     max_pooling2d_26 (MaxPooli (None, 5, 13, 128)
     ng2D)
     flatten_6 (Flatten)
                            (None, 8320)
     dense_12 (Dense)
                            (None, 16)
                                                 133136
                            (None, 2)
     dense_13 (Dense)
                                                 34
     Total params: 305698 (1.17 MB)
     Trainable params: 305698 (1.17 MB)
     Non-trainable params: 0 (0.00 Byte)
[100]: | history = model.fit(X_dataset,Y_dataset,epochs=3,
                      validation_split=0.2)
     Epoch 1/3
     0.6630 - val_loss: 0.5593 - val_accuracy: 0.7263
     Epoch 2/3
     0.7211 - val_loss: 0.3521 - val_accuracy: 0.8987
     Epoch 3/3
     0.8074 - val_loss: 0.3282 - val_accuracy: 0.9051
[97]: #del history
[101]: plt.plot(history.history['accuracy'])
     plt.plot(history.history['val_accuracy'])
     plt.title('model accuracy')
     plt.ylabel('accuracy')
     plt.xlabel('epoch')
     plt.legend(['train', 'test'], loc='upper left')
     plt.show()
     # summarize history for loss
```

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```


