Algèbre linéaire avancée II printemps 2021

Série 1

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit R un anneau.

- i) Montrer que l'élément 1 est unique.
- ii) Montrer qu'un élément inversible $r \in R^*$ n'est pas un diviseur de zéro.
- iii) Montrer que deux polynômes

$$p(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$
 et $q(x) = b_0 + b_1 x + b_2 x^2 + \cdots \in R[x]$

sont égaux si et seulement si $a_i = b_i$ pour tous i.

- iv) Soit $R^{n\times n}$ l'anneau des matrices $n\times n$ sur R. Montrer que le centre de $R^{n\times n}$ est $Z(R^{n\times n})=\{aI_n\colon a\in Z(R)\}.$
- Exercice 2. 1. Trouver le polynôme $f(x) \in \mathbb{Z}_5[x]$ de degré au plus 4 tel que f(0) = 1, f(1) = 2, f(2) = 4, f(3) = 0, f(4) = 4. Établir un système d'équations linéaires correspondant.
 - 2. Faire la division avec reste des polynômes $f(x) = 3x^4 + 2x^2 + x + 1$ et $2x^2 + 3x + 2$ sur le corps \mathbb{Z}_5 .

Exercice 3. Soit K un corps. Montrer que le déterminant de $A=V_{r_0,\dots,r_n}\in K^{(n+1)\times (n+1)}$ est

$$\det(V_{r_0,...,r_n}) = \prod_{0 \leq i < j \leq n} (r_j - r_i).$$

Exercice 4. Soit R un anneau et $\alpha \in Z(R)$ un élément du centre de R. Montrer que l'application

$$egin{array}{lll} \Phi \colon R[x] &
ightarrow & R \ f(x) & \mapsto & f(lpha) \end{array}$$

est un morphisme d'anneaux surjectif.

Exercice 5. (*) Soit K un corps et $a_0, a_1, \ldots, a_n \in K$ des éléments distincts $(n \ge 1)$. On définit

$$c_k(x) = rac{\prod_{i
eq k} (x - a_i)}{\prod_{i
eq k} (a_k - a_i)}$$

et soit $f(x) \in K[x]$ un polynôme tel que f(x) = 0 ou $\deg(f(x)) \leq n.$ Montrer que

$$f(x) = f(a_0)c_0(x) + f(a_1)c_1(x) + \cdots + f(a_n)c_n(x).$$