Simple Linear Regression

Grinnell College

September 26, 2025

Review

- Scatterplot descriptions
 - form, strength, direction, outliers
- Pearson's correlation (r)
 - strength and direction of linear relationship for 2 quant. variables
- ightharpoonup Spearman's correlation (ρ)
 - strength and direction of monotone relationship
 - more robust to outliers

Grinnell College SST-115 September 26, 2025 2 / 19

Motivation

If I asked you to guess your income after ten years, how would you guess?

Grinnell College SST-115 September 26, 2025 3 / 19

Motivation

If I told you my salary, how would you predict your (future) income?

Motivation

If I told you my salary, how would you predict your (future) income?

Linear Regression allows us to do this formally

Basic Idea

Regression is how we model data; for us it's the "best fit line"

Two Main Goals:

- ► Use the regression/our best fit line(s) to describe the relationship between the explanatory variable(s) and the response variable
 - Science!
- Use the explanatory variable(s) to predict the response variable
 - Prediction and Al stuff

Notation

- The variable being predicted is the response (aka "variable of interest")
 - Usually denoted as y
- the variable we are using to do the prediction/explanation is the explanatory variable (aka "covariate" or occasionally "predictor")
 - Usually denoted as x or X
- The estimates themselves are usually denoted with a "hat"
 - \hat{y} is our predicted response
 - $ightharpoonup eta_0$ and eta_1 are our estimated intercept and slope of the regression line (more in a second)

Grinnell College SST-115 September 26, 2025 7 / 19

Notation Comparison

Statisticians use different symbols to write out a line than what you probably saw in HS algebra

Algebra

y = mx + b

m = slope: change in y over the change in x (rise / run)

b = intercept: value where the line cross the y-axis

All points fall exactly on the line

Statistics

$$\hat{y} = \beta_0 + \beta_1 X$$

$$\beta_1 = \mathsf{slope}$$

$$\beta_0 = \text{intercept}$$

Not all of our data points will exactly on the line o variability

How it works

A regression line for the canidae data set predicting bite force (response) using body mass (explanatory)

- y's denote the values of the datapoints for the response variable
- **\triangleright** points on the line are predicted values for the y's, denoted as \hat{y}
 - \hat{y} are ALWAYS on our best-fit-line
- **residual**: difference between data and predictions $(\mathbf{e} = y \hat{y})$

Grinnell College SST-115 September 26, 2025

9/19

How it works

The regression line is the line that best fits through the data

- Need to define "best"
- **O**ptimality critera: minimizes sum of squared residuals $\sum e_i^2$
- Least Squares Regression is another, more explicit name for this

Grinnell College SST-115 September 26, 2025 10 / 19

Some Formula's

$$\hat{y} = \beta_0 + \beta_1 X$$
 (regression equation)

$$ightharpoonup \hat{eta}_1 = \left(rac{s_x}{s_y} \right) r$$
 (slope)

$$\hat{\beta_0} = \overline{y} - \hat{\beta}_1 \overline{x} \quad \text{(intercept)}$$

ightharpoonup e = y - \hat{y} (residual)

Pearson's Height Data

-	Mean	Std.Dev.	Correlation (r_{xy})
Father	67.68	2.74	0.501
Son	68.68	2.81	0.501

Father	Son
65.0	59.8
63.3	63.2
65.0	63.3
65.8	62.8
61.1	64.3
63.0	64.2
:	:

Pearson's Height Data

We could calculate our regression line using info from this table.

	Mean	Std.Dev.	Correlation (r_{xy})
Father	67.68	2.74	0.501
Son	68.68	2.81	0.501

Regression equation:

$$\hat{y}=b_0+b_1X$$

$$b_0 = \left(\frac{s_x}{s_y}\right)r$$
$$= \left(\frac{2.81}{2.74}\right)0.501 = 0.514$$

13 / 19

$$b_1 = \overline{y} - b_1 \overline{x}$$

= 68.68 - 0.514 * 67.68 = 33.893

Pearson's Height Data - Plot Line

We can make R graph the line on our scatterplot.

Pearson's Height Data - Prediction

The formula for the regression line

$$\hat{y} = \beta_0 + X\beta_1$$

can be expressed in terms our our original variables and what we wish to predict

$$\widehat{\mathsf{Son's Height}} = 33.9 + 0.51 \times \mathsf{Father's Height}$$

Given the Father's height, we can predict the son's height using this equation by plugging in a value for the father's height

Example: Predict the height of the son for a father with a height of 65in.

Son's Height =
$$33.9 + 0.51 \times 65.0 = 67.30$$
 in.

Pearson's Height Data - Prediction

Predicted Son's Height = 67.30 inches for a father with height = 65in

▶ Check to see if our prediction makes sense on the graph

16 / 19

Residual

A Residual is the difference between an observed value and a prediction

- ▶ often labeled as **e** (e for "error", occasionally ϵ)
- ightharpoonup e = y \hat{y}

Interpretation: the residual tells us whether we have over- or under-predicted the values for the response variable in our data (and by how much)

- ▶ positive value → under-predicted
- ▶ negative value → over-predicted
- ightharpoonup hard truth ightarrow I always forget which is which

Pearson's Height Data - Residual

In our data set, the first father had a height of 65 inches. We can calculate the residual for this father. We predicted the son's height to be 67.30 inches.

$e = y - \hat{y}$
= observed value - predicted value
= 59.8 in. -67.30 in. $= -7.5$ in.

Interpretation: We overpredicted the height of this particular son by 7.5 inches

Father	Son
65.0	59.8
63.3	63.2
65.0	63.3
65.8	62.8
61.1	64.3
63.0	64.2
:	:

Next Time

At this point everything we've done in linear regression has only been a mathematical result

- ▶ The Best-fit-line is a geometric minimization problem
- ► We have yet to make assumptions

Next time, we will introduce the assumptions for SLR and then interpretations for the slope and intercept

- Assumptions are wrong -> best fit line is wrong
- ALWAYS check the assumptions before you worry about your interpretations
- NO INTERPRETATION for $\hat{\beta}_0$ or $\hat{\beta}_1$ is valid if the assumptions are broken (in a meaningful way)

Grinnell College SST-115 September 26, 2025 19 / 19