Boosting

Vinoth Aryan Nagabosshanam March 25, 2017

Boosting

Boosting builds lots of smaller trees. Unlike random forests, each new tree in boosting tries to patch up the deficiencies of the current ensemble.

```
library(gbm)

## Warning: package 'gbm' was built under R version 3.3.3

## Loading required package: survival

## Loading required package: lattice

## Loading required package: splines

## Loading required package: parallel

## Loaded gbm 2.1.3

library(ISLR)

## Warning: package 'ISLR' was built under R version 3.3.3

library(MASS)

## Warning: package 'MASS' was built under R version 3.3.3

#View(Boston)

train=sample(1:nrow(Boston),300)

boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=10000,shrinkage=0.01,intera summary(boost.boston)
```



```
##
               var
                      rel.inf
## lstat
            1stat 38.6743820
               rm 24.0341064
## rm
## dis
              dis 8.5945754
## nox
                    6.2267140
              nox
              age 5.5646177
## age
              crim 5.2125267
## crim
## black
            black 3.6692445
## ptratio ptratio
                   3.0925433
## tax
              tax 2.2994252
## indus
             indus 1.0031019
## rad
                    0.8944638
              rad
## chas
              chas
                    0.5448754
## zn
                zn 0.1894238
plot(boost.boston,i="lstat")
```


plot(boost.boston,i="rm")

Lets make a prediction on the test set. With boosting, the number of trees is a tuning parameter, and if we have too many we can overfit. So we should use cross-validation to select the number of trees. We will leave this as an exercise. Instead, we will compute the test error as a function of the number of trees, and make a plot.

test.err=double(13)

```
n.trees=seq(from=100,to=10000,by=100)
predmat=predict(boost.boston,newdata=Boston[-train,],n.trees=n.trees)
dim(predmat)

## [1] 206 100
berr=with(Boston[-train,],apply( (predmat-medv)^2,2,mean))
plot(n.trees,berr,pch=19,ylab="Mean Squared Error", xlab="# Trees",main="Boosting Test Error")
abline(h=min(test.err),col="red")
```

Boosting Test Error

