Worksheet 5 Review 2

April 12, 2020

Question 1

• Statement: $\forall m, n \in \mathbb{Z}, (\exists k_1 \in \mathbb{Z}, m = 2k_1 + 1) \land (\exists k_2 \in \mathbb{Z}, n = 2k_2 + 1) \Rightarrow (\exists k_3 \in \mathbb{Z}, mn = 2k_3 + 1)$

Proof. Let $m, n \in \mathbb{Z}$. Assume there is an integer k_1 such that $m = 2k_1 + 1$. Assume there is an integer k_2 such that $n = 2k_2 + 1$. Let $k_3 = (2k_1k_2) + k_1 + k_2$.

We need to prove $mn = 2k_3 + 1$.

The assumption tells us $m = 2k_1 + 1$ and $n = 2k_2 + 1$.

By using these facts and then multiplying them together, we can conclude

$$mn = (2k_1 + 1)(2k_2 + 1) (1)$$

$$=4k_1k_2+2k_1+2k_2+1\tag{2}$$

$$= 2[(2k_1k_2) + k_1 + k_2] + 1 \tag{3}$$

$$=2k_3+1\tag{4}$$

Notes:

- Noticed professor pre-calculates the value of k_3 as roughwork before writing proof

- Question 2
- Question 3
- Question 4