

Python for Math Computing

G V V Sharma*

Abstract—This manual is a collection of math problems from the JEE 2016 mains paper, suitably modified as programming problems. These problems are solved using Python. In the process, the student is exposed to various math and plot functions and libraries in Python.

Problem 1. If
$$P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $Q = PAP^T$, find $P^TQ^{2015}P$.

Solution: Since $Q = PAP^T$,

$$P^{T}Q^{2015}P = P^{T}(PAP^{T})^{2015}P (1.1)$$

$$= \{ (P^T P)A \}^{2015}$$
 (1.2)
- A^{2015} (1.3)

$$=A^{2015} (1.3)$$

since
$$PP^T = I$$
. Since, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $A^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $A^3 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$, $A^4 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$,

$$P^{T}Q^{2015}P = \begin{pmatrix} 1 & 2015 \\ 0 & 1 \end{pmatrix} = A^{2015} = \begin{pmatrix} 1 & 2015 \\ 0 & 1 \end{pmatrix}$$

import numpy as np

$$P = np. matrix ([[np. sqrt(3) /2,0.5],[-0.5,np. sqrt(3)/2]])$$

A = np. matrix([[1,1],[0,1]])

B = np. matrix. transpose(P)

Q = np.dot(np.dot(P,A),B)

X = np.linalg.matrix power(Q, 2015)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All material in the manuscript is released under GNU GPL. Free to use for all.

print np.dot(np.dot(B,X),P)

Problem 2. Evaluate $\sum_{r=1}^{15} r^2 \frac{\binom{15}{r}}{\binom{15}{15}}$.

Solution:

$$\sum_{r=1}^{15} r^2 \frac{\binom{15}{r}}{\binom{15}{r-1}} = \sum_{r=1}^{15} r^2 \frac{15!}{r! (15-r)!} \times \frac{(r-1)! (15-r+1)!}{15!}$$
(2.1)

which can be expressed as

$$\sum_{r=1}^{15} r^2 \frac{(r-1)!}{r!} \frac{(16-r)!}{(15-r)!} = \sum_{r=1}^{15} r^2 \frac{(16-r)}{r} \quad (2.2)$$

$$= \sum_{r=1}^{15} (16r - r^2) \quad (2.3)$$

$$= 16 \sum_{r=1}^{15} r - \sum_{r=1}^{15} r^2$$

resulting in

$$16\left\{\frac{r(r+1)}{2}\right\} - \frac{r(r+1)(2r+1)}{6}$$
 (2.4)

$$= \frac{(48r^2 + 48r) - (2r^3 + 3r^2 + r)}{6}$$
 (2.5)

$$= \frac{-2r^3 + 45r^2 + 47r}{6} \tag{2.6}$$

from mpmath import *

#numerical

$$s = 0$$

for r in range (1,16):

$$s += binomial(15,r)*r**2/binomial(15,r-1)$$

print s

1

Problem 3. If

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} - \frac{4}{x^2} \right)^{2x} = e^3, \tag{3.1}$$

find a.

Solution: Since the above expression is quadratic, let

$$\left(1 + \frac{a}{x} - \frac{4}{x^2}\right)^{2x} = \left[\left(1 + \frac{\alpha}{x}\right)\left(1 - \frac{\beta}{x}\right)\right]^{2x}$$

$$= \left[\left(1 + \frac{\alpha}{x}\right)^{\frac{x}{\alpha}}\right]^{2\alpha} \left[\left(1 - \frac{\beta}{x}\right)^{\frac{\beta}{x}}\right]^{2\beta}$$
(3.2)

$$\Rightarrow \lim_{x \to 0} \left[\left(1 + \frac{\alpha}{x} \right)^{\frac{x}{\alpha}} \right]^{2\alpha} \left[\left(1 - \frac{\beta}{x} \right)^{\frac{\beta}{x}} \right]^{2\beta} = e^{2(\alpha - \beta)} \quad (3.4)$$

Thus, from (3.1), (4.2) and (4.3), we obtain

$$a = \alpha - \beta \tag{3.5}$$

$$2\left(\alpha - \beta\right) = 3\tag{3.6}$$

$$\Rightarrow a = \frac{3}{2} \tag{3.7}$$

The following python code yields Fig. 3 verifying the above result.

```
import numpy as np
import matplotlib.pyplot as plt
```

x = 1e3
a = np.linspace(0,2,100)
y = (1 + a/x -4/x**2)**(2*x)
z = ((np.exp(3)))*np.ones(100)
bx=plt.plot(a,z, label = 'e^3')
plt.plot(a,y, label = 'Limit_value')

sol = np.zeros((2,1)) sol[0] = 3.0/2.0sol[1] = np.exp(3)

#Display solution

A = np.around(sol[0], decimals=2)

B = np.around(sol[1],decimals=2)

Fig. 3: LHS and RHS in (3.1)

Problem 4. The function

$$f(x) = \begin{cases} -x & x < 1\\ a + \cos^{-1}(x+b) & 1 \le x \le 2 \end{cases}$$
 (4.1)

is known to be differentiable at x = 1. What is the value of $\frac{a}{b}$?

Solution: Since the function is differentiable at x = 1,

$$\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{+}} f'(x) \tag{4.2}$$

Also,

$$\lim_{x \to 1^{-}} f'(x) = -1 \tag{4.3}$$

$$\lim_{x \to 1^+} f'(x) = -\frac{1}{\sqrt{1 - (x + b)^2}} \tag{4.4}$$

From (4.2) and (4.3),

$$-\frac{1}{\sqrt{1-(x+b)^2}} = -1 \Rightarrow b = -x = -1 \quad (4.5)$$

Since a differentiable function is also continuous,

$$\lim_{x \to 1^{+}} a + \cos^{-1}(x+b) = \lim_{x \to 1^{-}} (-x)$$
 (4.6)

$$\Rightarrow a + \frac{\pi}{2} = -1 \tag{4.7}$$

$$\Rightarrow a = -1 - \frac{\pi}{2} \tag{4.8}$$

Then

$$c = \frac{a}{b} = 1 + \frac{\pi}{2} \tag{4.9}$$

The following python code yields Fig. 4 verifying the above result.

```
import numpy as np
import matplotlib.pyplot as plt
x1 = 1
x2 = np.linspace(-1,1,1000)
x3 = np.linspace(1,2,1000)
b = -x1
a = -x1-np.arccos(b+x1)
y = -x2
z = a + np.arccos(b+(x3))
plt.plot(x3,z, label = '\$f(x) = -
plt.plot(x2,y, label = f(x) = a
  + \bot \ \cos (-1)(x+b)$')
sol = np. zeros((2,1))
sol[0] = 1
sol[1] = -1
#Display solution
A = sol[0]
B = sol[1]
plt . plot (A, B, 'o')
for xy in zip(A,B):
        plt.annotate('(%s, \_%s)' %
           xy, xy=xy, xytext = (30,0)
```

, textcoords='offset_

```
points')

plt . grid ()
plt . legend (loc='best', prop={'size'
    :11})
plt . xlabel ('$x$')
plt . ylabel ('$f(x)$')
plt . savefig ('../figs/ee16b1005.eps
    ')
plt . show ()
```


Fig. 4: Substituting the values of a and b in f(x), the graph is smooth at x = 1. So f(x) is differentiable x = 1.

Problem 5. The tangent at point P, for the curve $x = 4t^2 + 3$, $y = 8t^3 - 1$, with parameter $t \in \mathbf{R}$, meets the curve again at Q. Find the coordinates of Q.

Solution: Let *P* and *Q* be $(4t^2 + 3, 8t^3 - 1)$ and $(4t_1^2 + 3, 8t_1^3 - 1)$ respectively. At P,

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{24t^2}{8t} = 3t. \tag{5.1}$$

Since the tangent at P meets the curve at Q, the equation of the tangent can be expressed as

$$(y - 8t_1^3 + 1) = 3t(x - 4t_1^2 - 3)$$
 (5.2)

which, upon substitution of coordinates of P yields

$$(8t^{3} - 8t_{1}^{3}) = 3t(4t^{2} - 4t_{1}^{2})$$
 (5.3)

$$\Rightarrow 8(t_{1} - t)(t_{1}^{2} + t_{1}t + t^{2}) = 3t.4(t_{1} - t)(t_{1} + t)$$

$$\Rightarrow 2(t_{1}^{2} + t_{1}t + t^{2}) = 3t(t_{1} + t)$$
 (5.4)

$$\Rightarrow 2t_{1}^{2} - tt_{1} - t^{2} = 0$$
 (5.5)

$$\Rightarrow (t_1 - t)(2t_1 + t) = 0 \tag{5.6}$$

$$\Rightarrow t_1 = -\frac{t}{2} \tag{5.7}$$

Thus, Q can now be expressed as $(t^2 + 3, t^3 - 1)$. To demonstrate the solution of this problem, letting t = 1, we obtain P, Q as (7,7), (4,-2) respectively and the equation of the tangent is

$$y - 7 = 3(x - 7) \tag{5.8}$$

The following code generates the plot in Fig. 5 for this problem.

```
#Display solution
A = np.array([7, 4])
B = np.array([7, -2])

plt.plot(A,B,'o')
for xy in zip(A,B):
    plt.annotate('(%s, _%s)' %
        xy, xy=xy, xytext=(30,0)
    , textcoords='offset_
    points')
```


Fig. 5: The tangent at P meets the curve again at Q.

Problem 6. Find the minimum distance of a point on the curve $y = x^2 - 4$ from the origin.

Solution: Let P be the point on the curve closest to the origin. If the coordinates of the point be (h, k), then its distance from the origin is given by

$$d^2 = h^2 + k^2 \tag{6.1}$$

Since *P* lies on the curve,

$$k = h^2 - 4 (6.2)$$

From (6.1) and (6.2),

$$d^{2} = k^{2} + k + 4$$

$$= \left(k + \frac{1}{2}\right)^{2} + \frac{15}{4}$$
(6.3)

Thus, the smallest distance is given by the above equation as $\frac{\sqrt{15}}{2}$. The nearest point is given by (6.2) and (6.3) as $\left(\pm\sqrt{\frac{7}{2}},-\frac{1}{2}\right)$

The following code yields Figs. 6.1 and 6.2 explaining the solution.

import numpy as np
import matplotlib.pyplot as plt

k = np.linspace(-5,5,100)
d = np.sqrt(k**2 + k + 4)

```
\# dist = np.min(d)*np.ones(100)
plt.figure(1)
^2+k+4}$')
plt. text (-0.5, np. sqrt (15)/2 - 0.2, '$
  frac {\\ sqrt {15}}{2}\\ right)$')
plt.plot(-0.5, np. sqrt(15)/2, 'o')
plt.grid()
plt.legend(loc='best', prop={'size'
   :11})
plt.xlabel('$k$')
plt.ylabel('$d$')
plt.savefig('../figs/ee16b1007a.
  eps')
x = np. linspace(-2.5, 2.5, 100)
y = x * * 2 - 4
plt.figure(2)
plt.plot(x,y,label = \$y=x^2-4\$)
plt.ylim(-6,1)
plt. x \lim (-2.5, 2.5)
plt.plot(np.sqrt(3.5),-0.5,'o')
plt.plot(-np.sqrt (3.5), -0.5, 'o')
plt.plot(0,0,'o')
plt.text(-np.sqrt(3.5)+0.1,-0.5, P)
  \ \\ left(-\\ sqrt{\\ frac
   \{7\}\{2\}\}, - \ frac \{1\}\{2\} \ \ \ right)
plt.text(np.sqrt(3.5) -0.8, -0.5, '$
  frac \{1\}\{2\} \perp \backslash right\} \ Q'
plt.text(0.1,0,O_{-}(0,0)')
plt.xlabel('$x$')
plt.ylabel('y')
plt.grid()
plt.legend(loc='best', prop={'size'
   :11})
plt.savefig('../figs/ee16b1007b.
  eps')
plt.show()
```

Problem 7. Sketch the region

$$A = \{(x, y) | y \ge x^2 - 5x + 4, x + y \ge 1, y \le 0\}.$$
(7.1)

Fig. 6.1: The minimum distance is $\frac{\sqrt{17}}{2}$ for $k = -\frac{1}{2}$

Fig. 6.2: *OP* and *OQ* represent the minimum distance of the origin from the parabola.

Solution: The desired region is plotted in Fig. 7 using the following code.

```
import numpy as np
import matplotlib.pyplot as plt
from pylab import *

x = np.linspace(1,4,100)

y1 = 1-x
y2 = x**2 - 5*x + 4
X = np.concatenate([x,x[::-1]])
Y = np.concatenate([y1,y2[::-1]])

f, a = plt.subplots()
```


Fig. 7: The desired region is in green colour.

Problem 8. A variable line drawn through the intersection of the lines $\frac{x}{3} + \frac{y}{4} = 1$ and $\frac{x}{4} + \frac{y}{3} = 1$ meets the coordinate axes at A and $B, A \neq B$. Sketch the locus of the midpoint of AB.

Solution: The interstion of the two lines is the solution of the matrix equation

$$\begin{pmatrix} \frac{1}{3} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (8.1)

given by $\left(\frac{12}{7}, \frac{12}{7}\right)$. If A is (a, 0) and B is (0, b), the mid point of AB is $\left(\frac{a}{2}, \frac{b}{2}\right)$. The equation of the line AB is

$$\frac{x}{a} + \frac{y}{b} = 1 \tag{8.2}$$

From the given information, this line passes through $\left(\frac{12}{7}, \frac{12}{7}\right)$. Substituting $h = \frac{a}{2}, y = \frac{b}{2}$ in the above and simplifying, the locus is obtained as

$$\frac{1}{h} + \frac{1}{k} = \frac{7}{6} \tag{8.3}$$

The sketch of the locus is available in Fig. 8.

import matplotlib.pyplot as plt

import numpy as np

plt.show()

```
#Point of intersection
A = np. array([[1.0/3, 1.0/4]],
   [1.0/4, 1.0/3]
B = np. array([1,1])
U = np.dot(np.linalg.inv(A),np.
   transpose (B))
#Sketching tThe curve
h = np.concatenate((np.linspace
   (0.5, 5.9/7, 50), np.linspace
   (6.1/7, 1.2, 50), axis=0)
k = 1/(7.0/6 - 1/h)
plt.stem(h,k, label='$\\frac{1}{h}
   \bot + \bot \setminus frac \{1\}\{k\} \bot = \bot \setminus frac \{7\}\{6\}\}
plt.xlabel('$h$')
plt.ylabel('$k$')
plt.grid()
plt.legend()
plt.savefig('../figs/ee16b1009.eps
```

Problem 9. The point (2, 1) is translated parallel to the line L: x - y = 4 by $2\sqrt{3}$ units to yield the point Q. If Q lies in the 3rd quadrant, sketch the line passing through Q and \bot L.

Solution: The slope of the given line is 1 indicating an angle of $\frac{\pi}{4}$. Thus, the coordinates of Q are

$$\left(2 - 2\sqrt{3}\cos\frac{\pi}{4}, 1 - 2\sqrt{3}\frac{\pi}{4}\right) = \left(2 - \sqrt{6}, 1 - \sqrt{6}\right) \tag{9.1}$$

The equation of the line perpendicular to L can be expressed as

$$x + y = c \tag{9.2}$$

Since this line passes through Q, $c = 3 - 2\sqrt{6}$. Fig. 9 illustrates this problem.

Fig. 8: Locus of the midpoint. Symmetric about the the point $\left(\frac{6}{7},0\right)$

Fig. 9: $c = 3 - 2\sqrt{6}$

```
import numpy as np
import matplotlib.pyplot as plt
def line(a,b):
    m = (b[1]-a[1])/(b[0]-a[0])
    c = a[1] - m * a[0]
    x = np.linspace(a[0],b[0],100)
    y = m*x + c
    plt.plot(x,y, label = '$PQ$')
P = np.transpose(np.array([2,1]))
Q = P - 2*np.sqrt(3)*np.cos(0.25*
   np.pi)*np.transpose(np.array
   ([1,1])
line(P,Q)
plt.plot(P[0],P[1],'o')
plt.plot(Q[0],Q[1],'o')
plt. text (P[0], P[1] - 0.3, 'P')
plt.text(Q[0]-0.3,Q[1],'Q')
plt.ylim(-5,2)
plt. x \lim (-3,4)
x = np. linspace(Q[0], P[0])
y = x-4
plt.plot(x,y,label = '$x_-_y_=_4$'
y = 3 - 2*np.sqrt(6) - x
plt. plot (x, y, label) = '$x_u+_uy_u=_uc$'
```

```
plt . grid()
plt . legend()
plt . axis('equal')
plt . xlabel('$x$')
plt . ylabel('$y$')
plt . savefig('../figs/ee16b1010.eps
')
plt . show()
```

Problem 10. A circle passes through (-2, 4) and touches the y-axis at (0, 2). Find out which of the following lines represents the diameter of the circle.

- 1) 4x + 5y 6 = 0
- 2) 2x 3y + 10 = 0
- 3) 3x + 4y 3 = 0
- 4) 5x + 2y + 4 = 0

Solution: Let the equation of the circle be

$$(x-h)^2 + (y-k)^2 = r^2$$
 (10.1)

Since the circle touches the y-axis, the radius of the circle is |h| and k=2. Thus, the equation of the circle can be expressed as

$$(x-h)^2 + (y-2)^2 = h^2 (10.2)$$

Since the circle passes through the points (-2, 4), substituting these in the above equation yields

$$(h+2)^2 + 4 = h^2 (10.3)$$

$$\Rightarrow h = -2 \tag{10.4}$$

Thus, the equation of the circle is

$$(x+2)^2 + (y-2)^2 = 4$$
 (10.5)

Fig. 10 illustrates this problem.

```
import numpy as np
import matplotlib.pyplot as plt
t = np. linspace(-np. pi, np. pi, 100)
x = -2 + r * np. cos(t)
y = 2 + r*np.sin(t)
plt.plot(x,y)
plt.grid()
plt.axis('equal')
plt.axis([-4, 0, 0, 4])
x = np. linspace(-4, 0, 100)
y1 = (6 - 4*x)/5
y2 = (10 + 2*x)/3
y3 = 0.75*(1-x)
y4 = -(4 + 5*x)/2
plt.plot(x,y1,label = ^{\circ}5y_+_4x_-_
  6 = 0;
plt. plot (x, y2, label = '\$3y - 2x - 2
   10 = 0;
plt.plot(x,y3,label = 34y_+3x_-
   3 = 0;
plt.plot(x, y4, label = '$2y_+_5x_+
  4 = 0;
plt.legend(loc=1,prop={'size':8})
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.plot(-2,2,'o')
plt.text(-2, 1.75, 'O')
plt.savefig('../figs/ee16b1011.eps
plt.show()
```

Problem 11. The eccentricity of a hyperbola satisfies the equation $9e^2 - 18e + 5 = 0$. (5,0) is a focus and the corresponding directrix is 5x = 9. Plot the hyperbola.

Solution: The standard equation of hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \tag{11.1}$$

Fig. 10: 2x - 3y + 10 = 0 is the diameter.

and the eccentricity is given by

$$e^2 = 1 + \frac{b^2}{a^2} \tag{11.2}$$

The focus of the hyperbola is at (ae, 0), e > 1. From the given information,

$$9e^2 - 18e + 5 = 0,$$
 (11.3)

$$\Rightarrow (3e - 1)(3e - 5) = 0 \tag{11.4}$$

yielding $e = \frac{1}{3}$ or $e = \frac{5}{3}$. Since e > 1, the desired value of the eccentricity is $e = \frac{5}{3}$. Since the focus is at (5,0), a = 3. From (11.2), substituting for the values of a and e,

$$1 + \left(\frac{b}{3}\right)^2 = \left(\frac{5}{3}\right)^2. \tag{11.6}$$

$$\Rightarrow b = 4 \tag{11.7}$$

Thus, the equation of the parabola is

$$\frac{x^2}{9} - \frac{y^2}{16} = 1\tag{11.8}$$

The following code plots the hyperbola in Fig. 11.

import numpy as np import matplotlib.pyplot as plt x = np. linspace(-10, 10, 10000) y1 = np. sqrt(16*((x**2)/9 - 1)) y2 = -np. sqrt(16*((x**2)/9 - 1)) plt. plot(x, y1)plt. plot(x, y2)

Fig. 11: Sketch of the hyperbola

Problem 12. Sketch the ellipse $\frac{x^2}{27} + \frac{y^2}{3} = 1$.

Solution: The following code plots the ellipse in Fig. 12

Problem 13. Find the minimum and maximum values of $4 + \frac{1}{2} \sin^2 2x - 2 \cos^4 x$, $x \in \mathbb{R}$.

Fig. 12: Graph of ellipse $\frac{x^2}{27} + \frac{y^2}{3} = 1$

Solution: From the given information,

$$y = 4 + \frac{1}{2}\sin^2 2x - 2\cos^4 x \tag{13.1}$$

$$= 4 + 2\sin^2 x \cos^2 x - 2\cos^4 x \tag{13.2}$$

$$= 2 + 2\sin^2 x \cos^2 x + 2\sin^2 x \left(1 + \cos^2 x\right)$$
 (13.3)

$$= 2 + 4\sin^2 x \cos^2 x + 2\sin^2 x \tag{13.4}$$

$$= 4 - \cos 2x - \cos^2 2x \tag{13.5}$$

$$=4+\frac{1}{4}-\left(\cos 2x+\frac{1}{2}\right) \tag{13.6}$$

From the above, it is obvious that the maximum value is $4\frac{1}{4}$. From the above, we have

$$y = 2 + 2\sin^2 2x + 2\sin^2 x \tag{13.7}$$

which has the minimum value of 2 when $\sin x = 0$. The following code verifies the above result.

```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi,np.pi,1000)
y = 4 + 0.5*(np.sin(2*x))**2 - 2*(
    np.cos(x))**4
plt.plot(x,y)
plt.grid()
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.savefig('../figs/ee16b1014.eps
')
plt.show()
```


Fig. 13: Minimum value is 2 and maximum is $4\frac{1}{4}$

0.2 0.0

Fig. 14: $\sqrt{2x+1} - \sqrt{2x-1} - 1$ intersects the x-axis at $x = \frac{5}{8}$

Problem 14. Find the solution of the equation $\sqrt{2x+1} - \sqrt{2x-1} = 1, x \ge \frac{1}{2}$.

Solution: Since

plt.show()

$$(\sqrt{2x+1} - \sqrt{2x-1})(\sqrt{2x+1} + \sqrt{2x-1}) = 2,$$
$$(\sqrt{2x+1} + \sqrt{2x-1}) = 2$$
$$\Rightarrow \sqrt{2x+1} = \frac{3}{2} \Rightarrow x = \frac{5}{8}$$
(14.1)

The graphical solution is available in Fig. 14

import numpy as np import matplotlib.pyplot as plt x = np. linspace (0.5, 5, 100)y = np. sqrt(2*x + 1) - np. sqrt(2*x-1) - 1plt.plot(x,y)plt.plot(5.0/8,0,'o') plt.grid() plt.text(5.0/8 + 0.1, 0, P')plt.xlabel('\$x\$') plt.ylabel('\$y\$') plt.savefig('../figs/ee16b1015.eps

Problem 15. Let z = 1 + ai, a > 0 be a complex number such that z^3 is a real number. Find $\sum_{k=0}^{11} z^k$.

Solution:

$$z^3 = (1 + ai)^3 \tag{15.1}$$

$$= (1 - 3a^2) + (3a - a^3)$$
 (15.2)

Since z^3 is a real number,

$$\Im(z) = 0 \tag{15.3}$$

$$\Rightarrow 3a - a^3 = 0 \tag{15.4}$$

Since a > 0, the desired solution is $a = \sqrt{3}$. Hence $z = 1 + \sqrt{3}i = 2e^{\frac{i\pi}{3}}$ and

$$\sum_{k=0}^{11} z^k = \frac{(z^{12} - 1)}{z - 1} \tag{15.5}$$

$$= \frac{2^{12}e^{\frac{112\pi}{3}}}{1+\sqrt{3}i-1}$$

$$= \frac{2^{12}}{\sqrt{3}i}$$
(15.6)

$$=\frac{2^{12}}{\sqrt{3}_1}\tag{15.7}$$

The following code provides numerical solutions. a can be found through Fig. 15.

import numpy as np import matplotlib.pyplot as plt

Fig. 15: For positive values, $\Im(z)$ intersects the x-axis at $a = \sqrt{3}$.

Problem 16. $A = \begin{pmatrix} -4 & -1 \\ 3 & 1 \end{pmatrix}$. Find the determinant of $A^{2016} - 2A^{2015} - A^{2014}$.

Solution: The given matrix expression can be simplified as

$$A^{2016} - 2A^{2015} - A^{2014} = A^{2014} \left(A^2 - 2A - I \right) (16.1)$$

The characteristic equation for the matrix A is obtained as

$$det(A - \lambda I) = 0 \tag{16.2}$$

$$\Rightarrow (\lambda + 4)(\lambda - 1) + 3 = 0 \tag{16.3}$$

$$\Rightarrow \lambda^2 + 3\lambda - 1 = 0 \tag{16.4}$$

From the Cayley-Hamilton theorem,

$$A^2 + 3A - I = 0 \Rightarrow A^2 - 2A - I = -5A$$
 (16.5)

Since det(A) = -1, det(-5A) = -25. The following code provides the numerical solution to the given problem.

import numpy as np
$$A = np. array([[-4, -1], [3, 1]])$$

$$B = np. dot(A,A)$$

print $np. linalg. det(B - 2*A - np. identity(2))$

Problem 17. Find the solutions of the following equations

$$n^{2} - 3n - 108 = 0$$

$$n^{2} + 5n - 84 = 0$$

$$n^{2} + 2n - 80 = 0$$

$$n^{2} + n - 110 = 0$$

Which of these satisfy $\frac{n+2}{n-2}C_6 = 11$?

Solution: From the following code, the solution to each of the above equations are n = 12, 7, 8 and 10 respectively. The given condition can be expressed as

$$\frac{{}^{n+2}C_6}{{}^{n-2}P_2} = 11 \tag{17.1}$$

$$\Rightarrow \frac{(n+2)!}{(n-4)!6!} \frac{(n-4)!}{(n-2)!} = 11 \tag{17.2}$$

$$\Rightarrow \frac{n(n-1)(n+1)(n+2)}{6!} = 11 \tag{17.3}$$

From the above equation, it is obvious that the correct solution is 9. So none of the solutions of the given equations satisfy the given condition. This is verified numerically through the following code.

$$q_r = np.array(q_r)$$

 $s = q_r[q_r>0]$

import numpy as np

print
$$s*(s-1)*(s+1)*(s+2)/np$$
. math. factorial (6)

Problem 18. Sketch

$$f(x) = \begin{cases} \frac{2x^2}{a} & 0 \le x < 1\\ a & 1 \le x < \sqrt{2}\\ \frac{2b^2 - 4b}{x^3} & \sqrt{2} \le x < \infty \end{cases}$$

for (a, b) equal to

1)
$$(\sqrt{2}, 1 - \sqrt{3})$$

2)
$$(-\sqrt{2}, 1 + \sqrt{3})$$

3)
$$(\sqrt{2}, -1 + \sqrt{3})$$

3)
$$(\sqrt{2}, -1 + \sqrt{3})$$

4) $(-\sqrt{2}, 1 - \sqrt{3})$

In which case is f(x) continuous?

Solution: The following python code generates the following figures

import numpy as np import matplotlib.pyplot as plt a = np. sqrt(2)*np. array([1,-1,1,-1])b = np. array([1,1,-1,1]) + np. sqrt(3)*np.array([-1,1,1,-1])t = ord('a')x1 = np. linspace (0, 1, 100)x2 = np. linspace(1, np. sqrt(2), 100)x3 = np. linspace (np. sqrt (2), 5, 100)for i in range (0,4): y1 = 2*(x1**2)/a[i]y2 = np.ones(100)*a[i]y3 = (2*(b[i]**2) - 4*b[i])/(x3**3) plt.figure(i) plt.plot(x1,y1)plt. plot (x2, y2)plt. plot (x3, y3)plt.grid() plt.savefig('../figs/ee16b1019

Problem 19. Sketch $f(x) = \sin^4 x + \cos^4 x$. Find the intervals within $(0, \pi)$ when it is increasing.

'+chr(t+i)+'.eps')

Solution: The following code plots the graph in Fig. 19 outlining the intervals when the function is increasing.

```
import numpy as np
import matplotlib.pyplot as plt
```


Fig. 18.1: Continuous for $(\sqrt{2}, 1 - \sqrt{3})$

Fig. 18.2: Discontinuous for $(-\sqrt{2}, 1 + \sqrt{3})$

```
from pylab import *
```

```
z = np. linspace (0.25*np.pi, 0.5*np.
   pi,100)
t = np. linspace (0.5*np.pi, 0.75*np.
   pi,100)
s = np. linspace (0.75*np.pi, np.pi)
   ,100)
y = np. sin(x) **4 + np. cos(x) **4
u = np. sin(z) **4 + np. cos(z) **4
v = np. sin(t) **4 + np. cos(t) **4
w = np. sin(s) **4 + np. cos(s) **4
plt.plot(x,y)
```

x = np. linspace(0, 0.25*np.pi, 100)

Fig. 18.3: Continuous for $(\sqrt{2}, 1 + \sqrt{3})$

Fig. 18.4: Discontinuous for $\left(-\sqrt{2}, 1 - \sqrt{3}\right)$

Problem 20. The reflected line is given by y + 2x = 1. The surface is given by 7x - y + 1 = 0. Which of the following is the incident line?

Fig. 19: The green shaded region is where the function is increasing.

1)
$$41x - 38y + 38 = 0$$

2)
$$41x + 25y - 25 = 0$$

3)
$$41x + 38y - 38 = 0$$

4)
$$41x - 25y + 25 = 0$$

Solution: The point at which the reflected line touches the surface is the solution of the equation

$$A = \begin{pmatrix} 2 & 1 \\ 7 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{20.1}$$

(20.2)

yielding the point (0, 1). Angle between the given line is given

$$\theta = \tan^{-1} \frac{(m_1 - m_2)}{(1 + m_1 * m_2)}$$
 (20.3)

where m_1, m_2 are slopes of surface and reflected line respectively.

$$\theta = \tan^{-1} \frac{(7 - (-2))}{(1 + 7 * (-2)))} \tag{20.4}$$

$$\theta = \tan^{-1} \frac{-9}{13} \tag{20.5}$$

The slope of the incident line can be found by reversing the direction of the angle along the surface. Letting the angle that the incident line makes along the x-axis to be ϕ ,

$$\phi = \tan^{-1} \frac{(m_1 - \tan \theta)}{(1 + m_1 * \tan \theta)}$$
 (20.6)

$$m = \frac{(7 - \frac{9}{13})}{(1 + 7 * \frac{9}{13})} \tag{20.7}$$

$$m = \frac{(91 - 9)}{(63 + 13)} \tag{20.8}$$

$$m = \frac{41}{38} \tag{20.9}$$

Since m is the slope and 1 is the intercept and thus in slope form equation of line is y = mx + 1. Thus the equation of the incident line is

$$38y = 41x + 38 \tag{20.10}$$

The following code summarises the solution through the plot in Fig. 20

```
import numpy as np
import matplotlib.pyplot as plt
A = np. array([[2,1],[7,-1]])
B = np. transpose(np. array([1, -1]))
print np.dot(np.linalg.inv(A),B)
x = np. linspace(-3,3,10)
z = 7 * x + 1
plt.plot(x,z,label = 'Surface')
x = np. linspace(-3, 0, 5)
y = 1 - 2 * x
w = 41 * x / 38 + 1
plt.plot(x,y,label = 'Incident')
plt.plot(x,w,label = 'Reflected')
plt.grid()
plt.axis('equal')
plt.axis([-5,5,-5,5])
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.legend()
plt.savefig('../figs/ee16b1021.eps
plt.show()
```

Problem 21. The lines x - y = 1 and 2x + y = 3 intersect at O. A circle with centre at point O passes through the point (1, -1). Sketch the following lines

- 1) 4x + y 3 = 0
- 2) x + 4y + 3 = 0
- 3) 3x y 4 = 0
- 4) x 3y 4 = 0

Fig. 20: 41x - 38y + 38 = 0 is the incident line

Which of these is a tangent to the circle? At what point?

Solution: The lines x-y=1 and 2x+y=3 intersect at the point O, whose coordinates are obtained from the following equation

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \tag{21.1}$$

as $\left(\frac{4}{3}, \frac{1}{3}\right)$. Since the circle has centre at O and passes through the point (1, -1), its radius is

$$r = \sqrt{\left(\frac{4}{3} - 1\right)^2 + \left(\frac{1}{3} + 1\right)^2} = \frac{\sqrt{17}}{3}$$
 (21.2)

The equation of the circle is then obtained as

import matplotlib.pyplot as plt

import numpy as np

$$\left(x - \frac{4}{3}\right)^2 + \left(y - \frac{1}{3}\right)^2 = \frac{17}{9} \tag{21.3}$$

The following python code plots the circle as well as the various lines in Fig. 21.

```
#Point of intersection
A = np.array([[1,-1],[2,1]])
B = np.transpose(np.array([1,3]))
O = np.dot(np.linalg.inv(A),B)

#Finding radius
P = np.transpose(np.array([1,-1]))
r = np.linalg.norm(O-P)
```

```
#Intersection plot
x = np. linspace(-3,5,10000)
y = x - 1
z = 3 - 2 * x
plt.axis('equal')
plt.plot(x,y,label = '$y_{-}-x_{-}+_{1}l_{-}=
plt.plot(x,z,label = ^{\circ}y_+_2x_=_3$
plt.grid()
theta = np.linspace(0,2*np.pi,100)
x = r*np.cos(theta) + 4.0/3
y = r*np.sin(theta) + 1.0/3
r = 3 - 4*x
s = -(3 + x)/4.0
t = 3*x - 4
u = (x - 4)/3.0
plt.plot(x,y)
plt.plot(x,r,label = ^{\circ}y_+_3x_=_3$
plt.plot(x,t,label = ^{\circ}$y_-_3x_+_4_
   = 0,
plt.plot(x,u,label = 3y_--x_+-4
   = .0$')
plt.plot(x,s,label = `\$4y + x + 3
   = -0$')
plt. axis ([-3,5,-3,3], 'equal')
plt.legend()
plt.savefig('../figs/ee16b1022.eps
plt.show()
```

Problem 22. P and Q are distinct points on the parabola $y^2 = 4x$, with parameters t and t_1 respectively. The normal at P passes through Q. Find the minimum value of t_1^2 .

Solution: Using the parametric form, the points P and Q can be expressed as $\left(t^2, 2t\right)$ and $\left(t_1^2, 2t_1\right)$ respectively. The slope of the normal at P is

$$-\frac{dx}{dy} = -\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = -t \tag{22.1}$$

Fig. 21: The tangent to the circle at (1, -1) is x + 4y + 3 = 0.

The equation of the normal is then obtained as

$$(y - 2t) = -t(x - t^2)$$
 (22.2)

$$\Rightarrow 2(t_1 - t) = -t(t_1 - t)(t_1 + t) \tag{22.3}$$

$$\Rightarrow t_1 = -\left(t + \frac{2}{t}\right) \tag{22.4}$$

Thus,

$$t_1^2 = 4 + t^2 + \frac{4}{t^2} \tag{22.5}$$

$$= \left(t - \frac{2}{t}\right)^2 + 8\tag{22.6}$$

and the minimum value of t_1^2 is obtained from the above as 8. For this value,

$$t - \frac{2}{t} = 0 \Rightarrow t = \pm \sqrt{2} \tag{22.7}$$

The following code provides a visualisation of the problem.

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,20,500)
y1 = 2*np.sqrt(x)
y2 = -2*np.sqrt(x)

plt.axis('equal')
plt.plot(x,y1)
plt.plot(x,y2)
plt.grid()

```
temp = np. sqrt(2)*np. linspace
   (0.2, 1.2, 6)
for i in range (0,6):
    t = temp[i]
    P = np.array([t**2, 2*t])
    if i = 5:
        plt.plot(P[0],P[1],'o')
        plt. text (P[0]+0.2, P[1]+1, '
           P')
    else:
         plt.plot(P[0],P[1],'o')
    y = 2*t - t*(x - t**2)
    plt.plot(x,y)
t1 = -2*np.sqrt(2)
Q = np. array([t1**2,2*t1])
plt.plot(Q[0],Q[1],'o')
plt. text (Q[0]-1,Q[1]-2.5, 'Q')
plt.savefig('../figs/ee16b1023.eps
plt.show()
```


Fig. 22: Normals to the parabola for various values of t plotted. For $t = \sqrt{2}$, $t_1 = -2\sqrt{2}$, $Q(t_1^2 = 8, 2t_1 = -4\sqrt{2})$ has the smallest x-coordinate among all the normals.

Problem 23. The transverse axis of a hyperbola is along the major axis of the conic $\frac{x^2}{3} + \frac{y^2}{4} = 4$. The vertices of the hyperbola are at the foci of this conic. The eccentricity of the hyperbola is $\frac{3}{2}$. Which of the points (0,2), $(\sqrt{5},2\sqrt{2})$, $(\sqrt{10},2\sqrt{3})$, $(5,2\sqrt{3})$, do not lie on the Hyperbola?

Solution: Let the equation of the ellipse be

$$\frac{x^2}{p^2} + \frac{y^2}{q^2} = 1 {(23.1)}$$

Then the semi-major and semi-minor axes of the ellipse are $q=4, p=2\sqrt{3}$ respectively. The eccentricity of the ellipse is

$$\varepsilon = \sqrt{1 - \left(\frac{p}{q}\right)^2} = \frac{1}{2} \tag{23.2}$$

The foci of the ellipse are at $(0, \pm q\varepsilon)$ on the y-axis. Let the equation of the hyperbola be

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \tag{23.3}$$

Then $b = q\varepsilon = 2$. Since the eccentricity $e = \frac{3}{2}$,

$$a = b\sqrt{e^2 - 1} = \sqrt{5} \tag{23.4}$$

Thus the equation of the desired hyperbola is

$$\frac{y^2}{4} - \frac{x^2}{5} = 1 \tag{23.5}$$

The following code provides a visualisation of the problem in Fig. 23.

```
import numpy as np
import matplotlib.pyplot as plt
#ellipse
t = np.linspace(-np.pi, np.pi, 100)
p = 2*np.sqrt(3)
q = 4
 = p*np.cos(t)
y = q*np.sin(t)
e = np. sqrt(1 - (p/q) **2)
plt.plot(x,y)
plt.grid()
plt.axis('equal')
plt.plot(0,q*e,'o')
plt . plot (0, -q*e, 'o')
plt. text (0, (q*e) - 0.6, 'F1')
plt. text (0, (-q*e) + 0.2, F2')
#hyperbola
a = np. sqrt(5)
x = np. linspace(-4, 4, 100)
y1 = b*np.sqrt((x/a)**2 + 1)
```


Fig. 23: The point C with coordinates $(5, 2\sqrt{3})$ does not lie on the hyperbola.

Problem 24. Find the minimum value of $\tan A$ + $\tan B$, given that $A + B = \frac{\pi}{6}$, A > 0, B > 0.

Solution:

$$\tan A + \tan B = \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}$$
 (24.1)

$$= \frac{\sin(A+B)}{\cos A \cos B}$$
 (24.2)

$$= \frac{2\sin(A+B)}{\cos(A+B) + \cos(A-B)}$$
 (24.3)

$$= \frac{2}{\sqrt{5} + 2\cos(A+B)}$$
 (24.4)

(24.1)

 \therefore $A + B = \frac{\pi}{6}$. The above expression is minimum when $\cos(A - B)$ is 1, or $A = B = \frac{\pi}{12}$. The graph is plotted in Fig. 24 import numpy as np import matplotlib.pyplot as plt A = np. linspace(0, (np. pi)/6, 100)B = (np.pi)/6 - A

$$y = np. tan(A) + np. tan(B)$$

 $min_y = np. min(y)$

 $\min x = (np.pi)/12$

plt.plot(A, y)plt.plot(min_x,min_y,'o') plt.grid() plt.ylabel('\$tan(A) + tan(B)')plt.xlabel('\$A_(Radians)\$') plt.savefig('../figs/ee16b1025.eps plt.show()

Fig. 24: Finding the minimum of $\tan A + \tan B$, $A + \tan B$ $B = \frac{\pi}{6}$

Problem 25. Find θ for which $\frac{2+31\sin\theta}{1-21\sin\theta}$ is purely imaginary.

Solution: Simplifying the complex number,

$$\frac{2+3i\sin\theta}{1-2i\sin\theta} = \frac{(2+3i\sin\theta)(1+2i\sin\theta)}{1+4(\sin\theta)^2}$$
 (25.1)

$$= \frac{(2 - 6(\sin \theta)^2) + 7\iota \sin \theta}{1 + 4(\sin \theta)^2}$$
 (25.2)

For the number to be purely imaginary,

$$2 - 6(\sin \theta)^2 = 0 \Rightarrow \sin \theta = \pm \frac{1}{\sqrt{3}}$$
 (25.3)

$$\Rightarrow \theta = \arcsin \pm \left(\frac{1}{\sqrt{3}}\right) \tag{25.4}$$

The graph is plotted in Fig. 25

```
import numpy as np
import matplotlib.pyplot as plt
t = np. linspace(-0.5*np.pi, 0.5*np.
   pi, 100)
im z = (2 - 6*np.sin(t)**2)/(1 +
  4*np. sin(t)**2)
plt.plot(t,im_z)
plt.plot(-np.arcsin(1/np.sqrt(3))
   ,0,'o')
plt.plot(np.arcsin(1/np.sqrt(3))
   ,0,'o')
plt.grid()
plt.xlabel('$\\theta}$\(\text{Radians}\)')
plt.ylabel('Imaginary_part')
plt.savefig('../figs/ee16b1026.eps
plt.show()
```


Fig. 25: Complex number is imaginary at $\theta = \arcsin \pm \left(\frac{1}{\sqrt{3}}\right)$

Problem 26. Find the sum of all the solutions of

$$\left(x^2 - 5x + 5\right)^{x^2 + 4x - 60} = 1$$

Solution: The solution can be obtained through the following cases

1) $(x^2 - 5x + 5) = 1$. This yields the solution

$$(x-1)(x-4) = 0 \Rightarrow x = 1,4.$$
 (26.1)

2) $(x^2 - 5x + 5) = -1, (x^2 + 4x - 60)$ even. The first condition yields

$$(x^2 - 5x + 6) = 0 (26.2)$$

$$(x-3)(x-2) = 0 \Rightarrow x = 3,2$$
 (26.3)

Testing the solutions for the second condition,

$$x^{2} + 4x - 60 = \begin{cases} -39 & x = 3\\ -48 & x = 2 \end{cases}$$
 (26.4)

giving x = 2 as the desired solution.

3) Making the power 0,

$$x^2 + 4x - 60 = 0 \Rightarrow x = -10, 6.$$
 (26.5)

Hence the required solutions are x = 1, 4, 2, 6, -10 and the sum of these roots is 3.

import numpy as np

$$\#case \ 1 - base \ 1$$

c1 = np.roots([1,-5,4])

#case 2 - base -1, even exponent r1 = np.roots([1,-5,6]) r2 = np.polyval([1,4,-60],r1) c2 = r1[np.nonzero(np.round(r2)%2 ==0)]

#case 3 - any base, 0 exponent c3 = np.roots([1,4,-60])

print np.sum(c1) + np.sum(c2) + np.sum(c3)

Problem 27. The sum of the first 10 terms of the series $\left(1\frac{3}{5}\right)^2 + \left(2\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2 + 4^2 + \left(4\frac{4}{5}\right)^2 + \dots$ is $\frac{16}{5}m$. Find m.

Solution: The given sum can be expressed as

$$\left(\frac{4}{5}\right)^2 \left(2^2 + 3^2 + 4^2 + \dots \cdot 11^2\right) = \frac{16}{5}m$$
 (27.1)

$$\Rightarrow \left(\frac{4}{5}\right)^2 \left[\sum_{k=1}^{11} k^2 - 1\right] = \frac{16}{5}m \qquad (27.2)$$

$$\Rightarrow \left(\frac{4}{5}\right)^2 \left(\frac{11.12.23}{6} - 1\right) = \frac{16}{5}m\tag{27.3}$$

$$\Rightarrow m = 101 \tag{27.4}$$

Problem 28. $p = \lim_{x\to 0+} (1 + \tan^2 \sqrt{x})^{\frac{1}{2x}}$. Find $\log p$.

Solution: From the given information,

$$\log p = \lim_{x \to 0+} \frac{1}{2x} \left((1 + \tan^2 \sqrt{x}) \right)$$

$$= \frac{1}{2} \lim_{x \to 0+} \frac{\tan^2 \sqrt{x}}{\sqrt{x^2}} \frac{1}{\tan^2 \sqrt{x}} \left((1 + \tan^2 \sqrt{x}) \right)$$
(28.1)
(28.2)

$$=\frac{1}{2}$$
 (28.3)

The following code verifies this result in Fig. 28

```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0.01,10,100)
y = (1/(2*x))*(np.log(1 + (np.tan(np.sqrt(x)))**2))
plt.plot(x,y)
plt.grid()
plt.xlabel('x')
plt.ylabel('log(p)')
plt.plot(0,0.5,'o')
plt.savefig('../figs/ee16b1029.eps')
plt.show()
```

Problem 29. $f(x) = |\log 2 - \sin x|, x \in \mathbf{R}$ and g(x) = f(f(x)). Which of the following is true?

- 1) g is not differentiable at x = 0
- 2) $g'(0) = \cos(\log 2)$

Fig. 28: $\log p = 0.5, x = 0+$

- 3) $g'(0) = -\cos(\log 2)$
- 4) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$.

Solution: The function

$$g(x) = |\log 2 - \sin |\log 2 - \sin x||$$
 (29.1)

Sketching this function in Fig. 29 using the following octave code, it is seen that the function is continuous at x = 0. Computing the right and left hand limits for g'(x) at x = 0 for $h = 10^{-10}$, the octave code shows that

$$\frac{g(h) - g(0)}{h} = \frac{g(0) - g(h)}{h} = \cos(\log 2)$$
 (29.2)

Fig. 29: g(x) continuous at x = 0, hence differentialble. $g'(0) = \cos(\log 2)$

Problem 30. Consider

$$f(x) = \tan^{-1} \sqrt{\left(\frac{1+\sin x}{1-\sin x}\right)}, x \in \left(0, \frac{\pi}{2}\right)$$

Sketch the normal to f(x) at $x = \frac{\pi}{6}$. Does it pass through any of the points $(0,0), (0,\frac{2\pi}{3}), (\frac{\pi}{6},0), (\frac{\pi}{4},0)$?

The given function can be simplified as

$$f(x) = \tan^{-1} \sqrt{\frac{1 + \sin(x)}{1 - \sin(x)}}$$
 (30.1)

$$= \tan^{-1} \sqrt{\frac{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}}$$
 (30.2)

$$= \tan^{-1} \cot \left(\frac{\pi}{4} - \frac{x}{2}\right) \tag{30.3}$$

$$= \frac{\pi}{4} + \frac{x}{2} \tag{30.4}$$

The normal to f(x) has the equation

$$y = -2x + c, (30.5)$$

where c is a constant. If $x = \frac{\pi}{6}$, $f(x) = \frac{\pi}{3}$. Substituting the coordinates $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ in the equation for the normal, $c = \frac{2\pi}{3}$.

The normal and the given points are plotted in Fig. 30.

```
import numpy as np
import matplotlib.pyplot as plt
x = np. linspace (0, 0.5 * np. pi, 100)
y = -2*x + (2*np.pi)/3
plt.plot(x,y,label='Normal_$(y_+2
   x = 2 \cdot pi/3 \cdot 
plt.plot(0,0,'o')
plt . plot (0, 2*np.pi/3, 'o')
plt.plot(np.pi/6,0,'o')
plt.plot(np.pi/4,0,'o')
plt. text (0+0.01, 0, '(0, 0)')
plt. text (0+0.01, 2*np.pi/3, '(0, 2$)
   pi$/3)')
plt.text(np.pi/6+0.02,0,'(\$\pi\$
   (6,0)
plt.text(np.pi/4+0.02,0,'(\$\pi\$
   /4,0)')
plt.grid()
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.legend()
plt.savefig('../figs/ee16b1031.eps
plt.show()
```

Problem 31. Sketch $\left[\frac{(n+1)(n+2)...(3n)}{n^{2n}}\right]^{\frac{1}{n}}$ and verify if its limit at $n \to \infty$ is $\frac{18}{e^4}, \frac{27}{e^2}, \frac{9}{e^2}$ or $3 \log 3 - 2$.

Solution: The given expression can be simplified as

$$p_n = \left[\frac{(n+1)(n+2)\dots(3n)}{n^{2n}} \right]^{\frac{1}{n}} = \left[\frac{(3n)!}{n!n^{2n}} \right]^{\frac{1}{n}}$$
 (31.1)

From Stirling's formula, for large n,

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n. \tag{31.2}$$

Fig. 30: The normal passes through the point $\left(0, \frac{2\pi}{3}\right)$.

Substituting the above in (31.1),

$$\left[\frac{(3n)!}{n!n^{2n}}\right]^{\frac{1}{n}} = \left[\frac{\sqrt{2\pi}(3n)\left(\frac{3n}{e}\right)^{3n}}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^{n}.n^{2n}}\right]^{\frac{1}{n}}$$

$$= \left[\frac{\sqrt{3}(3)^{3n}}{e^{2n}}\right]^{\frac{1}{n}} = \frac{27}{e^{2}}$$
(31.4)

in the limit. This solution agrees with the plot of p_n shown in Fig. 31.

```
import numpy as np
import matplotlib.pyplot as plt
maxlen = 20
p = []
x = np. linspace (1, maxlen, maxlen)
for n in range (1, maxlen+1):
    1 = n
    product = []
    for k in range (1, 2*n + 1):
        1 = 1 + 1
         product.append(np.double(1
    p.append((np.prod(product)/(n
       **(2*n)))**(1.0/n)
plt.stem(x,p)
sol = np. array([18.0/np.exp(4)]
   ,27.0/\text{np.exp}(2),9.0/\text{np.exp}(2),3*
   np.log(3) - 2]
y = np.ones(maxlen)
```


Fig. 31: In the limit, the expression converges to $\frac{27}{e^2}$

Problem 32. Sketch the region

$$\left\{ (x,y) : y^2 \ge 2x, x^2 + y^2 \le 4x, x \ge 0, y \ge 0 \right\}$$

Solution: The following code plots the desired region in Fig. 32.

```
import numpy as np
import matplotlib.pyplot as plt
from pylab import *

x = np.linspace(0,4,100)

y1 = np.sqrt(2*x)
y2 = np.sqrt(4*x - x**2)
z = np.maximum(y1,y2)
fill_between(x,z,color='g')
fill_between(x,y1)
```


Fig. 32: Desired region is in green colour

Problem 33. Two sides of a rhombus are along the lines x - y + 1 = 0 and 7x - y - 5 = 0. Its diagonals intersect at (-1, -2). Find the vertices of the rhombus.

Solution: The point of intersection of the two lines is one vertex of the rhombus. This point is obtained by soving the following matrix equation

$$\begin{pmatrix} 1 & -1 \\ 7 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
 (33.1)

using the octave code to obtain the point P(1,2). Since diagonals of a rhombus bisect each other and the point of intersection O is given as (-1, -2) the coordinates of the opposite vertex R are given by

$$\mathbf{x} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -1 \\ -2 \end{pmatrix} \Rightarrow \mathbf{x} = \begin{pmatrix} -3 \\ -6 \end{pmatrix} \tag{33.2}$$

Since the sides of a rhombus are equal, if the unknown vertex Q has coordinates (x, y),

$$PQ = QR \Rightarrow (x-1)^2 + (y-2)^2 = (x+3)^2 + (y+6)^2$$
$$\Rightarrow x + 2y = -5$$
(33.3)

Note that the above locus is actually the diagonal QS. Letting PQ be

$$x - y + 1 = 0, (33.4)$$

Q is obtained from the following equation

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -5 \\ -1 \end{pmatrix} \tag{33.5}$$

as $\left(-\frac{7}{3}, -\frac{4}{3}\right)$. Similarly, letting *PS* to be

$$7x - y - 5 = 0, (33.6)$$

S is obtained from the equation

$$\begin{pmatrix} 1 & 2 \\ 7 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -5 \\ 5 \end{pmatrix} \tag{33.7}$$

as $(\frac{1}{3}, -\frac{8}{3})$. Fig. 33 explains the problem.

```
import numpy as np
import matplotlib.pyplot as plt
def line(a,b,s):
```

$$B = np. array([-1,5])$$

 $P = np. dot(A,B)$

$$Q = np. dot(A,B)$$

#Finding S

$$R = \text{np.transpose} (\text{np.array} ([-3, -6]))$$

$$O = \text{np.transpose} (\text{np.array} ([-1, -2]))$$

$$O = np. transpose (np. array ([-1, -2]))$$

```
plt.axis('equal')
line(P,Q, '$y_=_x_+_1$')
line(S,P, '$y_=_x_+_1$')
line(Q,S, '$x_+_2y_+_5_=_0$')
line(Q,R, '$y_=_7x_+_15$')
line(R,S, '$y_=_x_-3$')
point(P, 'P', -0.4,0)
point(Q, 'Q', -0.5,0)
point(R, 'R', 0.2, -0.3)
point(S, 'S', 0.2,0)
point(O, 'O', 0.12,0)
plt.legend(loc=4)
plt.grid()
plt.savefig('../figs/ee16b1034.eps
')
plt.show()
```


Fig. 33: Desired rhombus.

Problem 34. Sketch the locus of the centres of circles which touch the circle $x^2 + y^2 - 8x - 8y - 4 = 0$ as well as the x-axis.

Solution: The given circle can be expressed in standard form as

$$(x-4)^2 + (y-4)^2 = 6^2$$
 (34.1)

i.e., the cricle has centre at (4,4) and radius 6. Let (h,k) be the centre of a circle that touches the given circle. Since this circle touches the *x*-axis, its radius is *k*. This circle can touch the given circle internally or externally.

1) External: In this case, sum of radius of two cir-

cles is equal to distance between them. Hence,

$$|k| + 6 = \sqrt{(h-4)^2 + (k-4)^2}$$

$$(34.2)$$

$$\Rightarrow k^2 + 12|k| + 36 = (h-4)^2 + k^2 - 8k + 16$$

$$(34.3)$$

$$\Rightarrow 12|k| + 8k = (h-4)^2 - 20 \qquad (34.4)$$

$$\Rightarrow k = \begin{cases} \frac{(h-4)^2 - 20}{20} & k > 0 \\ -\frac{(h-4)^2 - 20}{4} & k < 0 \end{cases}$$

$$(34.5)$$

2) *Internal:* Modulus of difference of radius of two circles is equal to distance between them. hence

$$||k| - 6| = \sqrt{(h - 4)^2 + (k - 4)^2}$$

$$(34.6)$$

$$\Rightarrow k^2 - 12|k| + 36 = (h - 4)^2 + k^2 - 8k + 16$$

$$(34.7)$$

$$\Rightarrow -12|k| + 8k = (h - 4)^2 - 20 \qquad (34.8)$$

$$\Rightarrow k = \begin{cases} \frac{(h - 4)^2 - 20}{20} & k < 0 \\ -\frac{(h - 4)^2 - 20}{4} & k > 0 \end{cases}$$

$$(34.9)$$

Both the above cases can be combined to obtain the locus as the curves

$$y = \frac{(x-4)^2}{20} - 1$$
 (34.10)
$$y = 5 - \frac{(x-4)^2}{4}$$
 (34.11)

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0,2*np.pi,100)
x = 6*np.cos(t) + 4
y = 6*np.sin(t) + 4

plt.axis('equal')
plt.plot(x,y,label = 'Circle')

x = np.linspace(-3,12,100)
y1 = ((x-4)**2)/20 - 1
y2 = 5 - ((x-4)**2)/2

plt.plot(x,y1,label = 'Locus_1')
plt.plot(x,y2,label = 'Locus_2')

```
plt.axis([-5,12,-5,10])
plt.grid()
plt.legend(loc=3)
plt.savefig('../figs/ee16b1035.eps
')
plt.show()
```


Fig. 34: Required loci.

Problem 35. One of the diameters of the circle $x^2 + y^2 - 4x + 6y - 12 = 0$ is a chord of a circle S. The centre of S is at (-3, 2). Sketch S and find its radius.

Solution: The given circle can be expressed in standard form as

$$(x-2)^2 + (y+3)^2 = 5^2$$
 (35.1)

i.e., the circle has centre at O with coordinates (2,-3) and radius 5. Using the distance formula, $OS = 5\sqrt{2}$. Let the radius of the circle with centre at S be r. r can be obtained using Budhayana's theorem as

$$r^2 = 5^2 + OS^2 \tag{35.2}$$

$$\Rightarrow r = 5\sqrt{3} \tag{35.3}$$

The diameter of the circle with centre O and chord of circle with centre S is perpendicular to OS. The equation of the diameter is thus obtained as

$$(y+3) = (x-2) \Rightarrow y = x-5$$
 (35.4)

Fig. 35 summarises the problem.

```
import numpy as np
import matplotlib.pyplot as plt
```

```
def line(a,b):
    m = (b[1]-a[1])/(b[0]-a[0])
    c = a[1] - m * a[0]
    x = np. linspace(a[0], b[0], 100)
    y = m*x + c
    plt.plot(x,y)
def point (P, T, O1, O2):
    plt.plot(P[0],P[1],'o')
    plt. text(P[0]+O1, P[1]+O2, T)
t = np. linspace (0, 2*np. pi, 100)
x = 5*np.cos(t) + 2
y = 5*np.sin(t) - 3
plt.axis('equal')
plt.plot(x,y)
y = x - 5
plt.plot(x,y)
S = np. array([-3,2])
O = np. array([2, -3])
point(S, 'S', -1, -0.1)
point (O, 'O', 0.45, -0.5)
line(O,S)
t = np. linspace (0, 2*np. pi, 100)
r = 5*np.sqrt(3)
x = r * np. cos(t) - 3
y = r * np. sin(t) + 2
plt.plot(x,y)
plt.grid()
plt.savefig('../figs/ee16b1036.eps
plt.show()
```

Problem 36. P is the nearest point of the parabola $y^2 = 8x$ to the centre C of the circle $x^2 + (y + 6)^2 = 1$. Sketch the circle with centre P and passing through C.

Solution: Let P be denoted by $(2t^2, 4t)$. Let the centre of the circle (0, -6) be O. Then

$$OP^{2} = (2t^{2} - 0)^{2} + (4t + 6)^{2} = 4(t^{4} + 4t^{2} + 12t + 9)$$
(36.1)

Differentiating OP^2 with respect to t and equating

Fig. 35: The diameter of circle with centre O is a chord of the circle with centre S.

to 0 results in

$$t^{3} + 2t + 3 = 0 (36.2)$$

$$\Rightarrow (t+1)(t^{2} - t + 3) = 0 (36.3)$$

(36.4)

yielding t = -1. Thus, P is (2, -4) and $OP = 2\sqrt{2}$. The equation of the desired circle is

$$(x-2)^2 + (y+4)^2 = 8 (36.5)$$

```
import numpy as np
import matplotlib.pyplot as plt
def line(a,b):
    m = (b[1] - a[1]) / (b[0] - a[0])
    c = a[1] - m * a[0]
    x = np.linspace(a[0], b[0], 100)
    y = m*x + c
    plt.plot(x,y)
def point (P, T, O1, O2):
    plt.plot(P[0],P[1],'o')
    plt. text (P[0]+O1, P[1]+O2, T)
t = np. linspace(-np. pi, np. pi, 100)
r = 1
x = r * np. cos(t)
y = r * np. sin(t) - 6
plt.figure(1)
plt.axis('equal')
```

```
plt.plot(x,y,label = 'Given\_circle
t = np. linspace(-1.5, 1.5, 100)
x = 2*t**2
y = 4 * t
plt.plot(x,y,label = 'Given_{\perp}
   parabola')
O = np. array([0, -6])
P = np. array([2, -4])
line (O, P)
OP = np.linalg.norm(O-P)
t = np. linspace(-np. pi, np. pi, 100)
x = r * np. cos(t) + 2
y = r * np. sin(t) - 4
plt.plot(x,y,label = 'Required_
   circle')
plt.figure(1)
point(P, 'P', 0.2, 0.1)
point (O, 'O', -0.64, -0.64)
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.grid()
plt.legend()
plt.savefig('../figs/ee16b1037a.
   eps')
plt.figure(2)
#Function for finding minimum
t = np. linspace(-2, 2, 100)
OP = 2*np. sqrt(np.polyval)
   ([1,0,4,12,9],t))
plt.figure(2)
plt.plot(t,OP)
plt.grid()
plt.xlabel('$t$')
plt.ylabel('OP')
plt.savefig('../figs/ee16b1037b.
   eps')
plt.show()
```


Fig. 36.1: Figures for the given problem

Fig. 36.2: *OP* has a minimum at t = -1.

Problem 37. The length of the latus rectum of a hyperbola is 8 and the length of its conjugate axis is half the distance between its foci. Sketch the hyperbola and find its eccentricity.

Solution: Let the equation of the hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \tag{37.1}$$

Since the length of the latus rectum is 8,

$$\frac{2b^2}{a} = 1\tag{37.2}$$

The length of the conjugate axis is 2b and the distance between the foci is $2ae, e = \sqrt{1 + \frac{b^2}{a^2}}$, where e is the eccentricity. Given that $2b = \frac{2ae}{2}$.

From the given information,

$$2b = \sqrt{a^2 + b^2} \tag{37.3}$$

Since $a = 2b^2$, from the above equation, $b = \frac{\sqrt{3}}{2}$ and $a = \frac{3}{2}$. The eccentricity

$$e = \frac{2}{\sqrt{3}} \tag{37.4}$$

The desired hyperbola is plotted in Fig. 37.

```
import numpy as np
import matplotlib.pyplot as plt
def plot point(Q, t, O1, O2):
    plt.plot(Q[0],Q[1],'o')
    plt. text(Q[0]+O1,Q[1]+O2,t)
a = 1.5
b = np. sqrt(3)/2
e = np. sqrt(1 + (b/a) **2)
print e
x = np. linspace(-4,4,1000)
y1 = b*np.sqrt((x/a)**2 - 1)
y2 = -y1
plt.plot(x,y1)
plt.plot(x,y2)
plt.grid()
plt.xlabel('$x$')
plt.ylabel('$y$')
F1 = [a*e, 0]
F2 = [-a*e, 0]
plot_point(F1, '$F_1$', 0.15, -0.1)
plot_point(F2, '$F_2$', -0.45, -0.1)
plt.savefig('../figs/ee16b1038.eps
plt.show()
```

Problem 38. A wire of length 2 units is cut into two parts which are bent respectively to form a square of side x units and a circle of radius of r units. Find x if the sum of the areas of the square and the circle so formed is minimum.

Solution: From the given information, adding the perimeters of the square and the circle,

$$4x + 2\pi r = 2 \Rightarrow 2x + \pi r = 1$$
 (38.1)

Fig. 37: Foci at F_1 and F_2 . Eccentricity $e = \frac{2}{\sqrt{3}}$

The sum of the areas of the square and circle is

$$A = x^{2} + \pi r^{2} = x^{2} + \frac{(1 - 2x)^{2}}{\pi}$$

$$= \frac{(\pi + 4) x^{2} - 4x + 1}{\pi}$$

$$= \left(1 + \frac{4}{\pi}\right) \left\{ \left(x - \frac{2}{(\pi + 4)}\right) + \frac{1}{(\pi + 4)} - \left(\frac{2}{(\pi + 4)}\right)^{2} \right\}$$
(38.2)

Thus, A is minimum for $x = \frac{2}{\pi + 4}$. We obtain

$$r = \frac{1 - \frac{4}{4+\pi}}{\pi} = \frac{1}{\pi + 4} = \frac{x}{2}$$
 (38.5)

Let P be denoted by $(2t^2, 4t)$. Let the centre of the circle (0, -6) be O. Then

$$OP^{2} = (2t^{2} - 0)^{2} + (4t + 6)^{2} = 4(t^{4} + 4t^{2} + 12t + 9)$$
(38.6)

Differentiating OP^2 with respect to t and equating to 0 results in

$$t^{3} + 2t + 3 = 0 (38.7)$$

$$\Rightarrow (t+1)(t^2 - t + 3) = 0$$
 (38.8)
(38.9)

yielding t = -1. Thus, P is (2, -4) and $OP = 2\sqrt{2}$. The equation of the desired circle is

$$(x-2)^2 + (y+4)^2 = 8 (38.10)$$

Fig. 38 plots A with respect to x.

```
import numpy as np
```

import matplotlib.pyplot as plt def point (P, T, O1, O2): plt.plot(P[0],P[1],'o') plt.text(P[0]+O1,P[1]+O2,T) $\mathbf{def} f(\mathbf{x})$: **return** x**2 + ((1 - 2*x)**2)/np.pi x = np. linspace (0, 1, 20)plt.plot(x, f(x))x = 2/(np.pi + 4)P = np.array([x, f(x)])r = (1 - 2*x)/np.pipoint (P, 'P', 0, 0.03) plt.grid() plt.xlabel('\$x\$') plt.ylabel('\$A\$') plt.savefig('../figs/ee16b1039.eps plt.show()

Fig. 38: Area is minimum for $x = \frac{2}{\pi+4}$

Problem 39. For $x \in \mathbb{R}$, $x \neq 0$, $x \neq 1$, let $f_0(x) = \frac{1}{1-x}$ and $f_{n+1}(x) = f_0(f_n(x))$, $n = 0, 1, \ldots$ Then find the value of $f_{100}(3) + f_1(\frac{2}{3}) + f_2(\frac{3}{2})$.

Solution: From the given information,

$$f_1(x) = f_0(f_0(x)) = \frac{1}{1 - \frac{1}{1-x}} = \frac{1-x}{-x},$$
 (39.1)

$$f_2(x) = f_0(f_1(x)) = \frac{1}{1 - \frac{1 - x}{-x}} = x,$$
 (39.2)

$$f_3(x) = f_0(f_2(x)) = \frac{1}{1-x} = f_0(x),$$
 (39.3)

$$f_4(x) = f_0(f_3(x)) = \frac{1}{1 - \frac{1}{1 - x}} = \frac{1 - x}{-x} = f_1(x)$$
 (39.4)

The function repeats in a similar manner for other values of n as well. From (39.1),(39.2), (39.3) and (39.4),

$$f_{100}(3) = f_1(3) = \frac{1-3}{-3} = \frac{2}{3}$$
 (39.5)

$$f_1\left(\frac{2}{3}\right) = \frac{1-\frac{2}{3}}{-\frac{2}{3}} = \frac{-1}{2}$$
 (39.6)

$$f_2\left(\frac{3}{2}\right) = \frac{3}{2} \tag{39.7}$$

resulting in

$$f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right) = \frac{2}{3} + \frac{-1}{2} + \frac{3}{2} = \frac{5}{3}$$
 (39.8)

#%f100 which is equal to f1 a=recr(1, recr(100,3)) b=recr(1, recr(1,2.0/3.0)) #f1 c=recr(1, recr(2,3.0/2.0)) #f2

print (a,b,c)

#%Gives the required result Sum=a+b+c

print (Sum)

Problem 40. If the mean deviation of the numbers 1, 1 + d, ..., 1 + 100d from their mean is 255, then a value of d

- 1) 10.1
- 2) 20.2
- 3) 10
- 4) 5.05

Problem 41. Find the number of $x \in [0, 2\pi]$ for which

$$\left| 2\sin^4 x + 18\cos^2 x \right| - \left| 2\cos^4 x + 18\sin^2 x \right| = 1$$
(41.1)

Problem 42. If $0 \le x \le 2\pi$, find the number of real values of x which satisfy the equation

$$\cos x + \cos 2x + \cos 3x + \cos 4x = 0 \tag{42.1}$$

Problem 43. Simplify the Boolean expression

$$(p \land q) c \lor q \lor (p \land q)$$
 (43.1)