Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 9

Esercizi svolti

Es. 1. Si costruisca la tavola di verità della seguente espressione booleana:

$$(x \oplus (y NOR z)) NAND (x+yz)$$

SOLUZIONE:

			_	_	_			
X	у	\boldsymbol{Z}	\boldsymbol{Z}	y NOR z	$x \oplus (y NOR z)$	yz	x+yz	$x \oplus (y \ NOR \ z) \ NAND \ (x+yz)$
0	0	0	1	0	0	0	0	1
0	0	1	0	1	1	0	0	1
0	1	0	1	0	0	0	0	1
0	1	1	0	0	0	1	1	1
1	0	0	1	0	1	0	1	0
1	0	1	0	1	0	0	1	1
1	1	0	1	0	1	0	1	0
1	1	1	0	0	1	1	1	0
	x 0 0 0 0 1 1 1 1	x y 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1	x y z 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x y z z y NOR z 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Es. 2. Si verifichi, mediante le tavole di verità, la seguente uguaglianza:

Si scrivano poi le espressioni duale e complementare dell'uguaglianza.

SOLUZIONE:

La tavola di verità delle due espressioni è:

			_		_	-	-	_	
X	У	\boldsymbol{Z}	X	zy	x + zy	X	x+y	z(x+y)	X+Z(X+y)
0	0	0	1	0	1	1	1	0	1
0	0	1	1	0	1	1	1	1	1
0	1	0	1	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	0
1	1	1	0	1	1	0	1	1	1

L'espressione duale è x(z+xy) = x(z+y)

L'espressione complementare è x(z+xy) = x(z+y)

Es. 3. Sia $y = x1 x0 + \underline{x1} \underline{x0}$. Si esprima y con una espressione booleana equivalente formata da sole porte NAND.

SOLUZIONE:

Si lavora usando De Morgan e la definizione della negazione con porte NAND

```
x1 x0 + \underline{x1} \underline{x0} = x1 x0 + (\underline{x1 + x0})
= (\underline{x1} \underline{x0}) \text{ NAND } (\underline{x1} + \underline{x0})
= (\underline{x1} \text{ NAND } \underline{x0}) \text{ NAND } (\underline{x1} \text{ NAND } \underline{x0})
= (\underline{x1} \text{ NAND } \underline{x0}) \text{ NAND } ((\underline{x1} \text{ NAND } \underline{x1}) \text{ NAND } (\underline{x0} \text{ NAND } \underline{x0}))
```

Esercizi da svolgere

- **Es. 1.** Si consideri la seguente espressione booleana: x + z(x + y(x + z)). Se ne costruisca la tavola di verità, l'espressione duale e la complementare.
- **Es. 2.** Si considerino le seguenti espressioni booleane, dove il simbolo \oplus denota lo XOR (cioè, l'OR esclusivo, che vale 1 se e soltanto se uno dei due operatori vale 1) e le si riscrivano usando solo porte NAND:

$$X \oplus (Y \oplus Z)$$

$$XY + XZ + YZ$$