Modeling relativistic X-ray polarization signals in AGN

(with MoCA)

Tamborra F.

Matt G.

Bianchi S.

Goosmann R., Dovciak M., Bursa M.

Outline

- A brief introduction
- Description of the model and the code
- Some results on AGN
- Conclusion, future work and observational perspectives

A Brief Introduction

Multi-temperature BB emission

Steady, geometrically thin & optically thick disc (Shakura-Sunyaev 1973)

Galactic BHs (10 M_{\odot}) \rightarrow soft X-rays SMBHs (10⁸ M_{\odot}) \rightarrow UV

Comptonization by relativistic (thermal) electrons

Two-phase disc (Haardt-Maraschi 1991)

The parameters of the corona are basically unknown!

Description of the model

HEMISPHERICAL corona

 $(10^8 M_{sun})$

SLAB corona

(τ is defined vertically)

Seed photons:

- limb darkening
- horizontal (i.e. 0°) polarization

(Chandrasekhar 1960)

Corona parameters:

- thermal energy (kT = 100 keV)
- optical depth ($\tau = 0.1, 1$)

Description of the code

MoCA: a Monte Carlo code for Comptonization in Astrophysics

Main feature:

- Fully special relativistic (K-N cross-section, Maxwell-Juttner distribution) GR will be included soon!
- Modular (different corona geometries and compact object)
- Include polarization

Result

- the spectra -

Sphere / tau = 1

Result - the polarization -

Slab / tau = 1

$\begin{array}{c} \mathsf{SLAB} \\ \mathsf{\tau} = \mathbf{1} \end{array}$

SPHERE $\tau = 1$

Result - the polarization -

(picture from Schnittman+ 2009)

Conclusion

 Polarized x-ray radiation is expected in AGN due to Comptonization and can reach ~10% of observed flux in the best scenario (without GR effects)

 Polarimetry offers 2 new independent observables which are complementary to specral analysis

These observables are extremely sensitive to geometry
angle of view

Future Work

Trajectories for vertically emitted photons Schwarzschild black hole, horizon at $2 r_g$

Kerr black hole (a = 0.9), horizon at 1.43 r_g

- Include GR
- Even more flexibility (turn on/off GR and polarization)

Light bending de-polarizes polarized radiation (and polarizes unpolarized radiation)

Observational Perspectives ...none yet

Fig. 3. Track images from 20 keV X-rays (left) and 4.5 keV X-rays (right).

Costa et al. (2001), Bellazzini et al. (2009), Muleri et al. (2009), Soffitta et al. (2012 - 2013)

...but the technology is ready and well tested (yesterday's talk by Paolo Soffitta on XIPE / IXPE)