

ତ୍ରିକୋଶମିତି (TRIGONOMETRY)

7.1 ଉପକ୍ରମଣିକା (Introduction) :

ତ୍ରିକୋଣମିତି (Trigonometry) ଶବ୍ଦର ଅର୍ଥ ତିନି କୋଣର ପରିମାପ । ତ୍ରିକୋଣମିତିର ଅଭିବୃଦ୍ଧି କ୍ୟାମିତିର ଅଭିବୃଦ୍ଧି ସହ ସଂପୃକ୍ତ । ଗ୍ରୀକ୍ କ୍ୟୋତିର୍ବିଦ୍ Hipparchus (140 B.C.) ତ୍ରିକୋଣମିତିର ଆବିଷ୍କାର କରିଥିଲେ । ଗଣିତଜ୍ଞ Bertholomaus Pitisces ଷୋଡ଼ଶ ଶତାବ୍ଦୀରେ ପ୍ରଥମ ତ୍ରିକୋଣମିତି ଗ୍ରନ୍ଥ ରଚନା କରିଥିଲେ । ଗଣିତର ବିଭିନ୍ନ ଶାଖାରେ ତ୍ରିକୋଣମିତିର ପ୍ରୟୋଗ ଅତ୍ୟନ୍ତ ବହୁଳ । ଉଚ୍ଚତା ଓ ଦୂରତା (Height and Distance) ନିରୂପଣ ଏବଂ କ୍ୟୋତିର୍ବିଜ୍ଞାନ(Astronomy)ରେ ତ୍ରିକୋଣମିତିର ବହୁ ପ୍ରୟୋଗ ଅଛି ।

7.2 ତ୍ରିକୋଶମିତିକ ଅନୁପାତ (Trigonometrical Ratios) :

ମନେକର ABC ଗୋଟିଏ ସମକୋଣୀ ଡ୍ରିଭୁକ (ଚିତ୍ର 7.1) ଓ $\angle ABC$ ସମକୋଣ । ଏଠାରେ $\angle BAC$ ଓ $\angle BCA$ ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ସୂକ୍ଷ୍ମକୋଣ । ମନେକର ଏଥିରୁ ଯେକୌଣସି ଗୋଟିଏ କୋଣ $\angle BCA$ କୁ ନେଇ ଆମେ ଆଲୋଚନା କରିବା । ସଂକ୍ଷେପରେ $m\angle BCA$ କୁ ଡିଗ୍ରୀ ମାପରେ θ ବୋଲି ଲେଖିବା । (θ ଏକ ଗ୍ରୀକ୍ ଅକ୍ଷର ଓ ଏହାକୁ 'ଥିଟା' ବୋଲି ପଢ଼ାଯାଏ ।)

 \overline{AC} କୁ କର୍ଣ୍ଣ (hypotenuse), $\angle BCA$ ର ସଂଲଗ୍ନ ବାହୁ \overline{BC} କୁ ଭୂମି (base) ଓ $\angle BCA$ ର ସନ୍ଧୁଖୀନ ବାହୁ \overline{AB} କୁ ଲୟ (perpendicular) କୁହାଯାଏ । ସଂକ୍ଷେପରେ BC=b, AB=p ଓ AC=h ଲେଖାଯାଇଥାଏ । A p,b ଓ h ରୁ ଯେକୌଣସି ଦୁଇଗୋଟିର ଅନୁପାତ, θ କୋଣର ଏକ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ । ସମୁଦାୟ ଛଅ ଗୋଟି ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ଯଥା: sine, cosine, tangent, cotangent, secant ଓ cosecant ଅଛନ୍ତି । ସଂକ୍ଷିପ୍ତ ଭାବେ p ଏଗୁଡ଼ିକୁ sin (ସାଇନ୍), cos (କସ୍), tan (ଟାନ୍), cot (କଟ୍), sec (ସେକ୍) ଓ cosec (କୋସେକ୍) ବୋଲି ଲେଖାଯାଏ । କୋଣ θ ର sin, cos ଇତ୍ୟାଦି ପ୍ରତ୍ୟେକ ଏକ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଅନୁପାତକୁ ସୂଚାଇ ଥାଆନ୍ତି । ଏହି ତ୍ରିକୋଣମିତିକ B ଅନୁପାତଗୁଡ଼ିକର ସଂଜ୍ଞାକୁ ନିମୁରେ ଦିଆଗଲା :

$$\sin \theta = \frac{\frac{n}{n} \frac{n}{n} \frac{n$$

ମନ୍ତବ୍ୟ (i) ଆମେ ଯଦି $\angle BCA$ ର ପରିମାଣକୁ θ ନ ନେଇ $\angle CAB$ ର ପରିମାଣକୁ θ ନେଇଥାନ୍ତେ ତେବେ, $AB = \varphi$ ମିର ଦୈର୍ଘ୍ୟ = b ଓ BC = ଲୟର ଦୈର୍ଘ୍ୟ <math>= p ହୋଇଥାନ୍ତା ।

(ii) $\sin \theta$, $\cos \theta$, $\tan \theta$, $\cot \theta$, $\sec \theta$ ଓ $\csc \theta$ ତ୍ରିକୋଣମିତିକ ଅନୁପାତଗୁଡ଼ିକ ବାହୁ \overline{AB} , \overline{BC} ଓ \overline{CA} ର ଦୈର୍ଘ୍ୟ ଉପରେ ନିର୍ଭର କରନ୍ତି ନାହିଁ ଏମାନେ କେବଳ ସମ୍ପୃକ୍ତ କୋଣର ପରିମାଣ ଉପରେ ନିର୍ଭର କରନ୍ତି ।

ଭଦାହରଣ ସ୍ୱରୂପ
$$\sin\theta=\frac{AB}{AC}$$
 ଏବଂ \overline{AC} ଉପରିଷ୍ଟ A' ବିହୁରୁ A' $\overline{A'B'} \perp \overline{BC}$ ହେଲେ Δ ABC ଓ Δ $A'B'C$ ଦ୍ୱୟ ସଦୃଶ ଏବଂ $\overline{A'}$ $\overline{A$

(a) ବ୍ୟୁତକ୍ରମ ସଂପର୍କ (Reciprocal Relations) : $\sin \theta$, $\cos \theta$ ଆଦିର ସଂଜ୍ଞାରୁ ଆମେ ଦେଖୁଛେ ଯେ $\sin \theta$ ଅନୁପାତଟି $\csc \theta$ ଅନୁପାତର, $\cos \theta$ ଅନୁପାତଟି $\sec \theta$ ଅନୁପାତର ଏବଂ $\tan \theta$ ଅନୁପାତଟି $\cot \theta$ ଅନୁପାତର ବ୍ୟୁତକ୍ରମୀ (reciprocal) ।

(ଚିତ୍ର 7.2)

ABC ସମକୋଶୀ ତ୍ରିଭୁକରେ
$$AB^2 + BC^2 = AC^2$$
 ଅର୍ଥାତ୍ (ଚିତ୍ର 7.1ରେ)
$$p^2 + b^2 = h^2 \qquad \qquad(4)$$

ଏହା ସୁପ୍ରସିଦ୍ଧ **ପିଥାଗୋରାସ୍ ଉପପାଦ୍ୟ (Pythagoras Theorem) (**ଏହାକୁ କ୍ୟାମିତିରେ ଅଧ୍ୟୟନ କରିବ)

ପିଥାଗୋରାସ୍ ଉପପାଦ୍ୟ (ସମ୍ବନ୍ଧ (4)) ର ସହାୟତାରେ $\sin \theta$, $\cos \theta$ ଇତ୍ୟାଦି ଅନୁପାତଗୁଡ଼ିକ ମଧ୍ୟରେ ବିଭିନ୍ନ ପ୍ରକାରର ସମ୍ପର୍କ ପ୍ରତିଷ୍ଠା କରାଯାଇପାରିବ ।

(b) ବର୍ଗ ସଂପର୍କ (Square Relations) :

 θ ଏକ କୋଣର ପରିମାଣ ହେଲେ (θ^0 ନ ଲେଖି କେବଳ θ ଲେଖାଯାଉଛି)

 $\sin \theta \mathbf{x} \sin \theta = (\sin \theta)^2 \, \mathbf{g} \, \sin^2 \theta \,$ ବୋଲି ଲେଖାଯାଏ ।

(i)
$$\sin^2 \theta + \cos^2 \theta = 1$$

(ii) $\sec^2 \theta - \tan^2 \theta = 1$
(iii) $\csc^2 \theta - \cot^2 \theta = 1$

$$\dots(5)$$

ପ୍ରମାଣ : (ଚିତ୍ର 7.1)

(i) ବାମପାର୍ଶ୍ୱ = $\sin^2\theta$ + $\cos^2\theta$ = $(\sin\theta)^2$ + $(\cos\theta)^2$ = $\left(\frac{p}{h}\right)^2$ + $\left(\frac{b}{h}\right)^2$ = $\frac{p^2+b^2}{h^2}$ = $\frac{h^2}{h^2}$ = 1 = ଦକ୍ଷିଣପାର୍ଶ୍ୱ (ସମ୍ବନ୍ଧ (4) ପ୍ରୟୋଗ କରି) (ସମାଣିତ)

ଉପରେ ଲିଖିତ ସୂତ୍ର (i), (ii) ଓ (iii) ରୁ ଏହା ସୁକ୍ଷୟ ଯେ,

$$\sec^2\theta = 1 + \tan^2\theta$$
 ଏବଂ $\tan^2\theta = \sec^2\theta - 1$,

$$\csc^2 \theta = 1 + \cot^2 \theta$$
 ଏବଂ $\cot^2 \theta = \csc^2 \theta - 1$ |

(c) ଭାଗକ୍ରିୟା ସଂପର୍କ (Quotient Relations) :

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 ଏବଂ $\cot \theta = \frac{\cos \theta}{\sin \theta}$ ।(6)

 $\sin\theta = \frac{p}{h}$ ଏବଂ $\cos\theta = \frac{b}{h}$ ନେଇ ସମ୍ପର୍କ (6) ପ୍ରମାଶ କରାଯାଇପାରିବ । (ନିଜେ ଚେଷ୍ଟା କର ।)

ଉଦାହରଣ - 1:

 $\cos\theta=rac{3}{5}$ ହେଲେ $\sin\theta$, $\tan\theta$, $\cot\theta$, $\sec\theta$ ଓ $\csc\theta$ ର ମୂଲ୍ୟ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ :

$$\cos\theta=\frac{b}{h}$$
 ଅତଏବ ପ୍ରଶ୍ନାନୁଯାୟୀ $\frac{b}{h}=\frac{3}{5}$ କିୟା $\frac{b}{3}=\frac{h}{5}=k$ (ମନେକର)
 $\therefore b=3k, \ h=5k$ ସୂଚରାଂ $p=\sqrt{h^2-h^2}=\sqrt{(5k)^2-(3k)^2}=\sqrt{16k^2}=4k$ ।

GOS
$$\sin \theta = \frac{p}{h} = \frac{4k}{5k} = \frac{4}{5},$$
 $\tan \theta = \frac{p}{b} = \frac{4k}{3k} = \frac{4}{3}, \cot \theta = \frac{b}{p} = \frac{3k}{4k} = \frac{3}{4},$ $\sec \theta = \frac{h}{h} = \frac{5k}{3k} = \frac{5}{3} \quad \text{As } \csc \theta = \frac{h}{p} = \frac{5k}{4k} = \frac{5}{4}$

ବିକଳ୍ପ ପ୍ରଣାଳୀ :
$$\sin\theta = \sqrt{1-\cos^2\theta} = \sqrt{1-\frac{9}{25}} = \frac{4}{5}$$
,
$$\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{4}{3}, \quad \cot\theta = \frac{1}{\tan\theta} = \frac{3}{4},$$

$$\sec\theta = \frac{1}{\cos\theta} = \frac{5}{3} \,\, \text{ଏବ°} \,\, \csc\theta = \frac{1}{\sin\theta} = \frac{5}{4}$$

ଉଦାହରଣ - 2:

 Δ ABC ରେ ଓ m \angle B= 90° ଓ AB=12 ସେ.ମି. ଏବଂ BC=5 ସେ.ମି.

ହେଲେ $cosec^2C-tanA$ ର ମୂଲ୍ୟ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ :

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{12^2 + 5^2} = \sqrt{169} = 13,$$

ଅଧାର $AC = 13$ ସେ.ମି. ।

∴ cosec C =
$$\frac{AC}{AB} = \frac{13}{12}$$
 $\triangleleft Q^{\circ}$ tan A = $\frac{BC}{AB} = \frac{5}{12}$

12 ସେ.ମି.

ସେ.ମି.

ଉଦାହରଣ - 3:

ଯଦି
$$\cot \theta = \frac{a}{b}$$
 ତେବେ $\frac{a\cos\theta - b\sin\theta}{a\cos\theta + b\sin\theta}$ ର ମୂଲ୍ୟ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ :
$$\cot \theta = \frac{a}{h} \Rightarrow \frac{\cos \theta}{\sin \theta} = \frac{a}{h}$$

ଅଧୀତ୍
$$\frac{\cos\theta}{a} = \frac{\sin\theta}{b} = k$$
 (ମନେକର) $\therefore \cos\theta = ak$ ଓ $\sin\theta = bk$;

$$\frac{a \cos \theta - b \sin \theta}{a \cos \theta + b \sin \theta} = \frac{a x ak - b x bk}{a x ak + b x bk} = \frac{k(a^2 - b^2)}{k(a^2 + b^2)} = \frac{a^2 - b^2}{a^2 + b^2}$$

$$\therefore$$
 $\cot \theta = \frac{a}{b}$ ହେଲେ ଦଭ ପରିପ୍ରକାଶଟିର ମୂଲ୍ୟ $\frac{a^2 - b^2}{a^2 + b^2}$ (ଉତ୍ତର)

ବିକଳ୍ପ ପ୍ରଣାଳୀ :
$$\frac{a\cos\theta - b\sin\theta}{a\cos\theta + b\sin\theta} = \frac{\frac{a\cos\theta - b\sin\theta}{\sin\theta}}{\frac{a\cos\theta + b\sin\theta}{\sin\theta}} = \frac{\frac{a\cos\theta}{\sin\theta} - \frac{b\sin\theta}{\sin\theta}}{\frac{a\cos\theta}{\sin\theta} + \frac{b\sin\theta}{\sin\theta}} \quad (\because \sin \theta \neq 0)$$

$$= \frac{a \cot \theta - b}{a \cot \theta + b} = \frac{a \times \frac{a}{b} - b}{a \times \frac{a}{b} + b} = \frac{\frac{a^2}{b} - b}{\frac{a^2}{b} + b} = \frac{\frac{a^2 - b^2}{b}}{\frac{a^2 + b^2}{b}} = \frac{a^2 - b^2}{a^2 + b^2} \quad (aaa)$$

ଉଦାହରଣ - 4:

$$\sec \theta = \frac{13}{5}$$
 ହେଲେ ପ୍ରମାଶ କର ଯେ, $\frac{2\sin\theta - 3\cos\theta}{4\sin\theta - 9\cos\theta} = 3$

ସମାଧାନ :
$$\sec \theta = \frac{13}{5} \Rightarrow \cos \theta = \frac{5}{13}$$
 । ସୁତରା°

$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{\frac{13^2 - 5^2}{13^2}} = \sqrt{\frac{12^2}{13^2}} = \frac{12}{13};$$

$$\therefore \frac{2\sin\theta - 3\cos\theta}{4\sin\theta - 9\cos\theta} = \frac{2 \times \frac{12}{13} - 3 \times \frac{5}{13}}{4 \times \frac{12}{13} - 9 \times \frac{5}{13}} = \frac{\frac{24 - 15}{13}}{\frac{48 - 45}{13}} = \frac{9}{3} = 3 = 9$$
 କରିଶପାର୍ଶ୍ୱ (ପ୍ରମାଶିତ)

7.4 ସରଳ ତ୍ରିକୋଶମିତିକ ଅଭେଦ (Simple Trigonometrical Indentities) :

$$\sin \theta \times \csc \theta = 1, \qquad \sin^2 \theta + \cos^2 \theta = 1,$$

$$\cos \theta \times \sec \theta = 1,$$
 $\sec^2 \theta - \tan^2 \theta = 1,$

$$\tan \theta \mathbf{x} \cot \theta = 1,$$
 $\csc^2 \theta - \cot^2 \theta = 1$

ଅତଏବ ଏ ପ୍ରତ୍ୟେକଟି ସୂତ୍ର ଗୋଟିଏ ଗୋଟିଏ ଅଭେଦ । ମାତ୍ର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ $\sin\theta$, $\cos\theta$ ଇତ୍ୟାଦିକୁ ନେଇ ଅନେକ ଅଭେଦର ଗଠନ ସୟବ । ସେହି ଅଭେଦଗୁଡ଼ିକର ପ୍ରମାଣ କରିବା ପାଇଁ ଏହି ସୂତ୍ରଗୁଡ଼ିକର ପ୍ରୟୋଗ ବାରୟାର କରିବାକୁ ପଡ଼େ । ପ୍ରତି ଅଭେଦରେ ଦୁଇଟି ପାର୍ଶ୍ୱ ଥାଏ । ଯଥା:ବାମପାର୍ଶ୍ୱ (L.H.S) ଓ ଦକ୍ଷିଣପାର୍ଶ୍ୱ (R.H.S) । ଅଭେଦଟିର ପ୍ରମାଣ ପାଇଁ ଆମକୁ ବାମପାର୍ଶ୍ୱରୁ ଆରୟ କରି ଦକ୍ଷିଣପାର୍ଶ୍ୱରେ କିୟା ଦକ୍ଷିଣପାର୍ଶ୍ୱରୁ ଆରୟ କରି ବାମପାର୍ଶ୍ୱରେ କିୟା ବାମପାର୍ଶ୍ୱ ଓ ଦକ୍ଷିଣପାର୍ଶ୍ୱକୁ ସରଳୀକରଣ କରି ଏକ ସାଧାରଣ ସୋପାନରେ ପହଞ୍ଚିବାକୁ ପଡ଼ିଥାଏ ।

ଅଭେଦଗୁଡ଼ିକର ପ୍ରମାଶ କଲାବେଳେ ନିମୁଲିଖିତ ବୀଜଗଣିତର ସୂତ୍ର ବା ଅଭେଦ ଯଥା -

$$(a \pm b)^2 = a^2 + b^2 \pm 2ab,$$

 $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3 = a^3 \pm b^3 \pm 3ab \ (a \pm b),$
 $a^2 - b^2 = (a + b) \ (a - b)$
 $a^3 \pm b^3 = (a \pm b) \ (a^2 \mp ab + b^2) = (a \pm b)^3 \mp 3ab \ (a \pm b)$

ଇତ୍ୟାଦିର ପ୍ରୟୋଗ ଆବଶ୍ୟକତା ଅନୁଯାୟୀ କରାଯାଇଥାଏ । (ଅଭେଦରେ θ (ଥିଟା) ପରିବର୍ତ୍ତେ α (ଆଲ୍ଫା), β (ବିଟା) ଏବଂ γ (ଗାମା) ଆଦି ଗ୍ରୀକ୍ ଅକ୍ଷର ମଧ୍ୟ ବ୍ୟବହୃତ ହୋଇଥାଏ ।)

ଉଦାହରଣ - 5:

ପ୍ରମାଣ କର ଯେ, (i)
$$\sin^6\theta + \cos^6\theta + 3\sin^2\theta \cdot \cos^2\theta = 1$$
 (ii) $\tan^4\alpha + \tan^2\alpha = \sec^4\alpha - \sec^2\alpha$ ସମାଧାନ : (i) ବାମପାର୍ଶ୍ୱ $= \sin^6\theta + \cos^6\theta + 3\sin^2\theta \cdot \cos^2\theta$ $= \sin^6\theta + \cos^6\theta + 3\sin^2\theta \cdot \cos^2\theta$ $= \sin^6\theta + \cos^6\theta + 3\sin^2\theta \cdot \cos^2\theta$ $[\because \sin^2\theta + \cos^2\theta]$ $= (\sin^2\theta)^3 + (\cos^2\theta)^3 + 3\sin^2\theta \cdot \cos^2\theta \text{ (sin}^2\theta + \cos^2\theta)$ $= (\sin^2\theta + \cos^2\theta)^3 = 1^3 = 1 = \alpha$ ହେଣଣପାର୍ଶ୍ୱ (ପ୍ରମାଣିତ) (ii) ବାମପାର୍ଶ୍ୱ $= \tan^4\alpha + \tan^2\alpha = \tan^2\alpha \text{ (tan}^2\alpha + 1) = \tan^2\alpha \text{ (1+tan}^2\alpha)$ $= \tan^2\alpha \cdot \sec^2\alpha$ $[\because \sec^2\alpha = 1 + \tan^2\alpha]$ $\Rightarrow \sec^2\alpha \text{ (sec}^2\alpha - 1)$ $= \sec^2\alpha \tan^2\alpha$ $[\because \sec^2\alpha - 1 = \tan^2\alpha]$ $\Rightarrow \sec^2\alpha \tan^2\alpha$ $[\because \sec^2\alpha - 1 = \tan^2\alpha]$ $\Rightarrow \sec^2\alpha \tan^2\alpha$ $[\because \sec^2\alpha - 1 = \tan^2\alpha]$ $\Rightarrow \sec^2\alpha \tan^2\alpha$ $[\because \sec^2\alpha - 1 = \tan^2\alpha]$ $\Rightarrow \sec^2\alpha \tan^2\alpha$ $[\because \sec^2\alpha - 1 = \tan^2\alpha]$

ଉଦାହରଣ $-\mathbf{6}$: ପ୍ରମାଶ କର ଯେ, $(i) (\sec \theta - \cos \theta) (\csc \theta - \sin \theta) = \frac{1}{\tan \theta + \cot \theta}$

(ii)
$$\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \csc\theta - \cot\theta$$

ସମାଧାନ : (i) ବାମପାର୍ଶ୍ୱ = (
$$\sec \theta - \cos \theta$$
) ($\csc \theta - \sin \theta$)
$$= \left(\frac{1}{\cos \theta} - \cos \theta\right) \left(\frac{1}{\sin \theta} - \sin \theta\right) = \frac{1 - \cos^2 \theta}{\cos \theta} \times \frac{1 - \sin^2 \theta}{\sin \theta}$$
 [$\because 1 - \cos^2 \theta = \sin^2 \theta \ dQ^\alpha = 1 - \sin^2 \theta = \cos^2 \theta$]
$$= \frac{\sin^2 \theta}{\cos \theta} \times \frac{\cos^2 \theta}{\sin \theta} = \sin \theta \cdot \cos \theta = 1$$

$$\Rightarrow \frac{\sin \theta \cdot \cos \theta}{1} = \frac{1}{\tan \theta + \cot \theta} = \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin^2 \theta} + \cos^2 \theta$$

$$= \frac{\sin \theta \cdot \cos \theta}{1} = \frac{\sin \theta \cdot \cos \theta}{1} = \frac{\sin \theta \cdot \cos \theta}{\sin^2 \theta + \cos^2 \theta} = 1]$$

$$= \sin \theta \cdot \cos \theta$$

$$\therefore \Rightarrow \sin \theta \cdot \cos \theta$$

$$\therefore \Rightarrow \sin \theta \cdot \cos \theta$$

$$\Rightarrow \cos \theta \cdot \cos \theta \cdot \cos \theta$$

$$\Rightarrow \cos \theta \cdot \cos \theta \cdot \cos \theta \cdot \cos \theta$$
 (i)
$$\Rightarrow \cos \theta \cdot \cos \theta \cdot \cos \theta \cdot \cos \theta \cdot \cos \theta$$
 (ii)
$$\Rightarrow \cos \theta \cdot \cos \theta$$
 (ii)
$$\Rightarrow \cos \theta \cdot \cos \theta$$
 (ii)
$$\Rightarrow \cos \theta \cdot \cos \theta$$

 $= \frac{\sec^2 A - \sec^2 B + \tan^2 B - \tan^2 A}{(\tan A + \tan B)(\sec A + \sec B)}$

 $(\tan A + \tan B)(\sec A + \sec B)$

$$=\frac{(\sec^2 A - \tan^2 A) - (\sec^2 B - \tan^2 B)}{(\tan A + \tan B)(\sec A + \sec B)}$$

$$=\frac{1-1}{(\tan A + \tan B)(\sec A + \sec B)} \quad [\because \sec^2 \theta - \tan^2 \theta = 1]$$

$$=\frac{0}{(\tan A + \tan B)(\sec A + \sec B)} = 0 = 9 \Re \text{GCL}$$

$$=\frac{1}{(\tan A + \tan B)(\sec A + \sec B)} = 0 = 9 \Re \text{GCL}$$

$$=\frac{1}{(\tan A + \tan B)(\sec A + \sec B)} = \frac{1}{(\tan A + \tan B)(\sec A + \sec B)} = \frac{1}{(\tan A + \tan B)(\sec A + \sec B)} = \frac{1}{(\tan A + \tan B)(\sec A + \sec B)} = \frac{1}{(\cot A + \tan B)(\cot A + \cot A$$

ଅନୁଶୀଳନୀ - 7 (a) (କ) ବିଭାଗ

1. ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

(i)
$$\sin \theta \times \cot \theta = \dots$$
 [$\cos \theta$, $\tan \theta$, $\sec \theta$]

(ii)
$$\cos \theta \times \tan \theta = \dots$$
 [$\sin \theta$, $\csc \theta$, $\cot \theta$]

(iii)
$$\sin \theta \times \sec \theta \times \cot \theta = \dots$$
 [tan θ , cosec θ , 1]

(iv)
$$\cos \theta \times \csc \theta \times \tan \theta = \dots$$
 [1, $\cot \theta$, $\sec \theta$]

$$(v)$$
 $\tan \theta = 1$ ହେଲେ $\tan \theta + \cot \theta = \dots [1, 2, \sin \theta . \cos \theta]$

(vi)
$$\tan^2 \theta + \cot^2 \theta - (\csc^2 \theta + \sec^2 \theta) = \dots [1, -1, -2]$$

(vii) ABC ସମକୋଶୀ
$$\Delta$$
 ରେ m \angle B = 90° ଓ
AB = 3 , BC = 4 ହେଲେ \sin C= $\left[\frac{3}{5}, \frac{4}{5}, 1\right]$

(ix)
$$\sin x = \dots \left[\sqrt{1 - \cos^2 x}, \sqrt{\cos^2 x - 1}, \sqrt{1 - \cos x}, \sqrt{\cos x - 1} \right]$$

(x) sec
$$x = [\sqrt{1 - \tan^2 x}, \sqrt{\tan^2 x - 1}, \sqrt{1 + \tan^2 x}, \sqrt{1 + \tan x}]$$

- 2. ନିମ୍ନ ପ୍ରଶ୍ୱଗୁଡ଼ିକର ଉତ୍ତର ପ୍ରଦାନ କର ।
 - (i) $\sin \alpha$ କୁ $\cot \alpha$ ରେ ପ୍ରକାଶ କର ।
 - (ii) cos α କୁ tan α ରେ ପ୍ରକାଶ କର ।
 - (iii) cosec α କୁ sec α ରେ ପ୍ରକାଶ କର ।
 - (iv) sec α କୁ cosec α ରେ ପ୍ରକାଶ କର ।
- 3. ନିମ୍ନ ପ୍ରଶ୍ୱଗୁଡ଼ିକର ଉତ୍ତର ପ୍ରଦାନ କର ।
 - (i) $\sin \alpha = \frac{3}{5}$ ହେଲେ $\cos \alpha$ x $\cot \alpha$ ର ମାନ କେତେ ?
 - (ii) $\cos \alpha = \frac{4}{5}$ ହେଲେ $\sin \alpha \mathbf{x} \tan \alpha$ ର ମାନ କେତେ ?
 - (iii) $\tan \alpha = \frac{5}{12}$ ହେଲେ $\cot \alpha$ x $\csc \alpha$ ର ମାନ କେତେ ?
 - (iv) $\cot \alpha = \frac{5}{12}$ ହେଲେ $\tan \alpha$ x sec α ର ମାନ କେତେ ?

(ଖ) ବିଭାଗ

- 4. $\csc \theta = \sqrt{2}$ ହେଲେ, ଅନ୍ୟ ପାଞ୍ଚଗୋଟି ଅନୁପାତର ମୂଲ୍ୟ କେତେ ?
- 5. $\tan \theta = 1$ ହେଲେ, ଅନ୍ୟ ପାଞ୍ଚଗୋଟି ଅନୁପାତର ମୂଲ୍ୟ କେତେ ?
- 6. $\cot \theta = \sqrt{3}$ ହେଲେ, ଅନ୍ୟ ପାଞ୍ଚଗୋଟି ଅନୁପାତର ମୂଲ୍ୟ କେତେ ?
- 7. \triangle ABC ରେ m∠A = 90°, AB = 20 ସେ.ମି. ଓ AC = 21 ସେ.ମି. ହେଲେ, \sin B, \cos C ଓ \tan B ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- 8. $\cos\theta=rac{3}{5}$ ହେଲେ, $(\sin\theta-\cos\theta)\div(2\,\tan\theta)$ ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- 9. $\cos\theta = \frac{40}{41}$ ହେଲେ, $\tan\theta \div (1-\tan^2\theta)$ ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- $10. \quad \tan\theta = \frac{a}{b}$ ହେଲେ, $(\cos\theta + \sin\theta) \div (\cos\theta \sin\theta)$ ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- 11. $\tan\theta=\frac{\sqrt{3}-1}{\sqrt{3}+1}$ ହେଲେ, $\sin\theta+\cos\theta$ ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- 12. $\sin \beta = \frac{m}{\sqrt{m^2 + n^2}}$ ହେଲେ, $\tan \beta$ ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- $\sin A = \frac{1}{2}$ ହେଲେ, $\cot A + \frac{\sin A}{1+\cos A}$ ର ମୂଲ୍ୟ ନିରୂପଣ କର ।
- 14. Δ ABC ରେ m \angle C = 90° , BC = 20 ସେ.ମି. ଓ \tan B = $\frac{1}{4}$ ହେଲେ, AC ଓ AB ନିରୂପଣ କର ।

(ଗ) ବିଭାଗ

ନିମ୍ନଲିଖିତ ଅଭେଦଗୁଡ଼ିକର ପ୍ରମାଣ କର । (15 ରୁ 36 ପର୍ଯ୍ୟନ୍ତ)

15.
$$(\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cdot \cos \theta$$
 16. $\frac{1}{\csc \theta - \cot \theta} = \csc \theta + \cot \theta$

17.
$$\frac{\tan^2 \theta}{\sec \theta + 1} = \sec \theta - 1$$
 18.
$$\frac{\cos A}{1 - \sin A} = \frac{1 + \sin A}{\cos A}$$

19.
$$\cot \alpha + \tan \alpha = \csc \alpha \times \sec \alpha$$
 20. $\cos^4 \theta - 2\cos^2 \theta + 1 = \sin^4 \theta$

21.
$$\cos^4 \theta - \sin^4 \theta = 1 - 2\sin^2 \theta$$
 22. $\frac{1}{1 - \sin \theta} + \frac{1}{1 + \sin \theta} = 2\sec^2 \theta$

23.
$$\frac{1-\tan^3\theta}{1-\tan\theta} = \sec^2\theta + \tan\theta$$
 24.
$$\frac{2\tan\theta}{1+\tan^2\theta} = 2\sin\theta \cdot \cos\theta$$

25.
$$\frac{2\cos^2\theta - 1}{\cot\theta - \tan\theta} = \sin\theta \cdot \cos\theta$$
 26.
$$\frac{\sin^2\theta}{1 + \cos\theta} + \frac{\sin^2\theta}{1 - \cos\theta} = 2$$

27.
$$\frac{1+\sin\theta}{1-\sin\theta} + \frac{1-\sin\theta}{1+\sin\theta} - 4\tan^2\theta = 2$$
 28.
$$\frac{1}{1+\tan^2\theta} + \frac{1}{1+\cot^2\theta} = 1$$

29.
$$\frac{1}{1+\cos^2\theta} + \frac{1}{1+\sec^2\theta} = 1$$
 30. $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2 \sec\theta$

31.
$$\frac{\operatorname{cosecA}}{\operatorname{cosecA} - 1} + \frac{\operatorname{cosecA}}{\operatorname{cosecA} + 1} = 2 \operatorname{sec^2A}$$
 32.
$$\operatorname{cot^2 \theta} - \frac{1}{\sin^2 \theta} + 1 = 0$$

33.
$$\sec A (1 + \sin A) (\sec A - \tan A) = 1$$

34. (cosec
$$\alpha - \sin \alpha$$
) (sec $\alpha - \cos \alpha$) (tan $\alpha + \cot \alpha$) = 1

35.
$$\frac{1+\sin\theta}{1-\sin\theta} = (\sec \theta + \tan \theta)^2$$

36.
$$\tan^2 A \cdot \sec^2 B - \sec^2 A \cdot \tan^2 B = \tan^2 A - \tan^2 B$$

$$37.$$
 $\tan\theta+\sin\theta=m$ ଓ $\tan\theta-\sin\theta=n$ ହେଲେ ପ୍ରମାଶ କର ଯେ $m^2-n^2=4\sqrt{mn}$ [ସୂଚନା : ମିଶାଣ ଓ ଫେଡାଣ କଲେ $\tan\theta=\frac{1}{2}(m+n)$ ଓ $\sin\theta=\frac{1}{2}(m-n)$]

38.
$$x = a \sin \theta$$
 ଓ $y = b \tan \theta$ ହେଲେ ପ୍ରମାଶ କର ଯେ $\frac{a^2}{x^2} - \frac{b^2}{y^2} = 1$ [ସୂଚନା : $\frac{a}{x} = \csc \theta$, $\frac{b}{y} = \cot \theta$]

$$39.$$
 $x=a\cos\theta+b\sin\theta$ ଓ $y=a\sin\theta-b\cos\theta$ ହେଲେ ପ୍ରମାଶ କର ଯେ $x^2+y^2=a^2+b^2$

$$40$$
. ଯଦି $\sin\theta + \sin^2\theta = 1$ ହୁଏ, ତେବେ ପ୍ରମାଣ କର ଯେ $\cos^2\theta + \cos^4\theta = 1$

7.5 କେତେଗୋଟି ନିର୍ଦ୍ଧିଷ୍ଟ କୋଶର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ

(Trigonometrical ratios of some particular angles):

 $\theta=30^\circ,\,45^\circ$ ଓ 60° ହେଲେ ତ୍ରିକୋଶମିତିକ ଅନୁପାତ $\sin\theta,\,\cos\theta$ ଇତ୍ୟାଦିର ମୂଲ୍ୟ କିପରି ନିରୂପିତ ହୋଇ ପାରିବ ବର୍ତ୍ତମାନ ଆମେ ଦେଖିବା ।

 $\theta=30^{\circ},\ 45^{\circ}:$ ମନେକର ABC ଏକ ସମବାହୁ ତ୍ରିଭୁଜ ଓ ଏହାର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ x ଏକକ । A ବିନ୍ଦୁରୁ \overline{BC} ପ୍ରତି \overline{AD} ଲୟ ଅଙ୍କନ କର । Δ ABC ରେ AB=BC=CA ଏବଂ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ କୋଣର ପରିମାଣ 60° ।

ଏଠାରେ
$$BD = \frac{x}{2}$$
 ଏକକ ଏବଂ

$$AD = \sqrt{AB^2 - BD^2} = \sqrt{x^2 - \frac{x^2}{4}} = \frac{3x^2}{4} = \frac{x\sqrt{3}}{2}$$

ABD ସମକୋଶୀ ତ୍ରିଭୁକରେ $\,m\angle B\,=\,60^{\scriptscriptstyle 0}\,$ ଓ $\,m\angle BAD\,=\,30^{\scriptscriptstyle 0}\,$ । $\,B\,$ $\,ABD\,$ ସମକୋଶୀ ତ୍ରିଭୁକରେ

$$\sin 30^{\circ} = \frac{BD}{AB} = \frac{\frac{x}{2}}{x} = \frac{1}{2},$$
 $\cos 30^{\circ} = \frac{AD}{AB} = \frac{\frac{x\sqrt{3}}{2}}{x} = \frac{\sqrt{3}}{2},$

$$\tan 30^{\circ} = \frac{\sin 30^{\circ}}{\cos 30^{\circ}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}, \qquad \cot 30^{\circ} = \frac{1}{\tan 30^{\circ}} = \sqrt{3},$$

$$\sec 30^{\circ} = \frac{1}{\cos 30^{\circ}} = \frac{2}{\sqrt{3}}, \qquad \qquad \csc 30^{\circ} = \frac{1}{\sin 30^{\circ}} = 2$$

ସେହିପରି ABD ସମକୋଶୀ ତ୍ରିଭୁଜରେ $m \angle B = 60^\circ$ । ସୁତରା°

$$\sin 60^{\circ} = \frac{AD}{AB} = \frac{\frac{x\sqrt{3}}{2}}{x} = \frac{\sqrt{3}}{2}$$
, $\cos 60^{\circ} = \frac{BD}{AB} = \frac{\frac{x}{2}}{x} = \frac{1}{2}$,

$$\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}, \qquad \cot 60^{\circ} = \frac{1}{\tan 60^{\circ}} = \frac{1}{\sqrt{3}},$$

$$\sec 60^{\circ} = \frac{1}{\cos 60^{\circ}} = 2$$
, $\csc 60^{\circ} = \frac{1}{\sin 60^{\circ}} = \frac{2}{\sqrt{3}}$

 $\theta=45^{\circ}$:ମନେକର ABC ଏକ ସମକୋଶୀ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁକ ଓ m \angle B= 90° ଏଠାରେ m \angle A = m \angle C = 45° , AB = BC = x ଏକକ ହେଲେ, $AC=\sqrt{x^2+x^2}$ ଏକକ = $x\sqrt{2}$ ଏକକ

 $\angle C$ ର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ଗୁଡ଼ିକୁ ନେଲେ,

$$\sin 45^{0} = \frac{AB}{AC} = \frac{x}{x\sqrt{2}} = \frac{1}{\sqrt{2}}, \qquad \cos 45^{0} = \frac{BC}{AC} = \frac{x}{x\sqrt{2}} = \frac{1}{\sqrt{2}},$$

$$\tan 45^{0} = \frac{\sin 45^{0}}{\cos 45^{0}} = 1, \qquad \cot 45^{0} = \frac{1}{\tan 45^{0}} = 1,$$

$$\sec 45^{0} = \frac{1}{\cos 45^{0}} = \sqrt{2}, \qquad \csc 45^{0} = \frac{1}{\sin 45^{0}} = \sqrt{2}$$

ଏହି ନିର୍ଦ୍ଦିଷ୍ଟ କୋଣମାନଙ୍କ ତ୍ରିକୋଣମିତିକ ଅନୁପାତର ମୂଲ୍ୟଗୁଡ଼ିକୁ ମନେ ରଖିବା ଉଚିତ ଓ ଏହି ମୂଲ୍ୟଗୁଡ଼ିକ ନିମ୍ବସ୍ଥ ସାରଣୀରେ ଦିଆଗଲା ।

କୋଣର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ପରିମାଣ	sin	cos	tan	cot	sec	cosec
300	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2
450	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$

ଏହି ସାରଣୀରୁ ଆମେ ଦେଖୁଛେ ଯେ,

 $\sin 30^{\circ} = \cos 60^{\circ}$, $\tan 30^{\circ} = \cot 60^{\circ}$, $\sec 30^{\circ} = \csc 60^{\circ}$, $\sin 60^{\circ} = \cos 30^{\circ}$, $\tan 60^{\circ} = \cot 30^{\circ}$, $\sec 60^{\circ} = \csc 30^{\circ}$, $\sin 45^{\circ} = \cos 45^{\circ}$, $\tan 45^{\circ} = \cot 45^{\circ}$ $\operatorname{49^{\circ}} \sec 45^{\circ} = \csc 45^{\circ}$

ଉଦାହରଣ - 8:

$$\frac{4}{3}\cot^2 30^0 + 4 \sin^2 60^0 + 2 \csc^2 45^0 + \frac{4}{3}\tan^2 60^0$$
 ର ମୂଲ୍ୟ ନିରୁପଣ କର ।

ସମାଧାନ :
$$\frac{4}{3}\cot^2 30^0 + 4\sin^2 60^0 + 2\csc^2 45^0 + \frac{4}{3}\tan^2 60^0$$

= $\frac{4}{3}\left(\sqrt{3}\right)^2 + 4\left(\frac{\sqrt{3}}{2}\right)^2 + 2\left(\sqrt{2}\right)^2 + \frac{4}{3}\left(\sqrt{3}\right)^2$
= $\frac{4}{3}$ x 3 + 4 x $\frac{3}{4}$ + 2 x 2 + $\frac{4}{3}$ x 3 = 4 + 3 + 4 + 4 = 15 (ଉଉର)

ଉଦାହରଣ - 9:

 $\theta=30^{\circ}$ ନେଇ ନିମ୍ନଲିଖିତ ଉକ୍ତିଦ୍ୱୟର ସତ୍ୟତା ପରୀକ୍ଷା କର ।

- (i) $\sin (2\theta) = 2 \sin \theta . \cos \theta$
- (ii) $\cos (2\theta) = \cos^2 \theta \sin^2 \theta$

ସମାଧାନ : (i) ବାମପାର୍ଶ୍ୱ =
$$\sin (2\theta) = \sin (2 \times 30^0) = \sin 60^0 = \frac{\sqrt{3}}{2}$$
 ଦକ୍ଷିଣପାର୍ଶ୍ୱ = $2 \sin \theta . \cos \theta = 2 \times \sin 30^0 \times \cos 30^0 = 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$ ସୁତରା° ଉଦ୍ଭିଟି ସତ୍ୟ ଅଟେ ।

(ii) ବାମପାର୍ଶ୍ୱ =
$$\cos (2\theta) = \cos (2 \times 30^{\circ}) = \cos 60^{\circ} = \frac{1}{2}$$
, ଦକ୍ଷିଣପାର୍ଶ୍ୱ = $\cos^2 \theta - \sin^2 \theta = \cos^2 30^{\circ} - \sin^2 30^{\circ}$ = $\left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$; ଅତଏବ ଏହି ଉକ୍ତିଟି ମଧ୍ୟ ସତ୍ୟ ଅଟେ ।

ଉଦାହରଣ - 10 :

ପ୍ରମାଶ କର ଯେ, $\sin 60^{\circ}.\cos 30^{\circ} + \cos 60^{\circ}.\sin 30^{\circ} = \tan 45^{\circ}$

ସମାଧାନ : (i) ବାମପାର୍ଶ୍ = sin 60° . cos 30° + cos 60° . sin 30°

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$$
 ଦକ୍ଷିଣପାର୍ଶ୍ୱ = $\tan 45^0 = 1$ (ପ୍ରମାଶିତ)

ଅନୁଶୀଳନୀ - 7 (b)

(କ) ବିଭାଗ

1. ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

(i)
$$\sin 30^\circ = \dots \left[\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{\sqrt{3}}{2} \right]$$

(ii)
$$\sin 45^{\circ} \times \cos 45^{\circ} = \dots \left[\sqrt{2}, 1, \frac{1}{2} \right]$$

(iii)
$$\tan 30^{\circ} \times \tan 60^{\circ} = \dots$$
 $\left[\sqrt{3}, 1, 3\right]$

(iv)
$$\sec 60^{\circ} x \sin 30^{\circ} = \dots$$
 $\left[1, \frac{1}{4}, \frac{1}{2}\right]$

(v)
$$\csc 45^{\circ} \times \sec 45^{\circ} = \dots$$
 [1, 2, 3]

(vi)
$$2\cos 60^{\circ} - 1 = \dots$$
 [0, 1, 2]

 $\theta=30^\circ$ ନେଇ ନିମ୍ନଲିଖିତ ଉକ୍ତିମାନଙ୍କର ସତ୍ୟତା ପରୀକ୍ଷା କର ।

(i)
$$\sin \theta \times \cos \theta = \frac{1}{2} \sin (2\theta)$$
 (ii) $\sin^2 \theta + \cos^2 \theta = 1$

(iii)
$$\sec^2 \theta - \tan^2 \theta = 1$$
 (iv) $\csc^2 \theta - \cot^2 \theta = 1$

(v)
$$\cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta$$

(ଖ) ବିଭାଗ

- $\theta = 30^{\circ}, \, 45^{\circ}$ ଓ 60° ନେଇ ନିମ୍ବଲିଖିତ ଉକ୍ତିମାନଙ୍କର ସତ୍ୟତା ପରୀକ୍ଷା କର ।
 - (i) $\tan \theta \times \csc \theta = \sec \theta$
- (ii) $\cot \theta \times \sec \theta = \csc \theta$
 - (iii) $\tan \theta + \cot \theta = \sec \theta \cdot \csc \theta$ (iv) $\cos^2 \theta \times \csc \theta + \sin \theta = \csc \theta$

```
4. ନିମ୍ନଲିଖିତ ପରିପ୍ରକାଶଗୁଡ଼ିକର ମୂଲ୍ୟ ନିରୂପଣ କର ।
```

(i)
$$\sin 60^{\circ}$$
 . $\cos 30^{\circ} + \cos 60^{\circ}$. $\sin 30^{\circ}$

(ii)
$$\cos 60^{\circ} \cdot \cos 45^{\circ} - \sin 60^{\circ} \cdot \sin 45^{\circ}$$

(iii)
$$4 \cos^3 60^\circ - 3\cos 60^\circ$$

(iv)
$$4 \cos^2 60^0 + 4 \sin^2 45^0 - \sin^2 30^0$$

(v)
$$(\csc^2 45^0 + \sec^2 30^0) (\sin^2 30^0 + 4 \cot^2 45^0 - \sec^2 60^0)$$

(vi)
$$\frac{\sin 30^{0} + \cos 45^{0} - \tan 60^{0}}{\cot 30^{0} - \sin 45^{0} - \cos 60^{0}}$$

(vii)
$$\frac{4}{\cot^2 30^0} + \frac{1}{\sin^2 60^0} - \cos^2 45^0 - \tan^2 45^0$$

(viii)
$$\frac{\tan^2 60^0 + 4\cos^2 45^0 + 3\sec^2 30^0 + 6\cos^2 30^0}{\csc 30^0 + \sec 60^0 + \cot^2 45^0}$$

(ix)
$$\frac{\tan 45^0}{\csc 30^0} + \frac{\sec 60^0}{\cot 45^0} - \frac{2\sin 30^0}{\tan 45^0}$$

(x)
$$\frac{\sin^2 60^0 + \cos^2 45^0 + \tan^2 30^0}{\cos^2 60^0 + \sin^2 45^0 + \cot^2 30^0}$$

(ଗ) ବିଭାଗ

5. ଯଦି
$$\alpha = 60^\circ$$
 ଓ $\beta = 30^\circ$ ହୁଏ, ତେବେ ନିମୁଲିଖିତ ଉକ୍ତିଗୁଡ଼ିକର ସତ୍ୟତା ପରୀକ୍ଷା କର ।

(i)
$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

(ii)
$$cos(\alpha - \beta) = cos \alpha \cdot cos\beta + sin \alpha \cdot sin \beta$$

(iii)
$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha . \tan \beta}$$

6. ପ୍ରମାଶ କର :

(i)
$$\sin 45^{\circ}.\cos 60^{\circ}.\cos 30^{\circ} + \cos 45^{\circ}.\sin 60^{\circ}.\sin 30^{\circ} = \sin 45^{\circ}.\sin 60^{\circ}$$

(ii)
$$\cos 60^{\circ} = 1 - 2\sin^2 30^{\circ} = 2 \cos^2 30^{\circ} -1$$

(iii)
$$\tan 60^{\circ} = \frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}}$$
 (iv) $\frac{\cot 60^{\circ} \cdot \cot 30^{\circ} + 1}{\cot 30^{\circ} - \cot 60^{\circ}} = \sqrt{3}$

(v)
$$\frac{\tan 45^{0} + \tan 30^{0}}{1 - \tan 45^{0} \cdot \tan 30^{0}} = 2 + \sqrt{3}$$
 (vi) $\cot 30^{0} + \frac{1}{\csc 30^{0} + \cot 30^{0}} = \csc 30^{0}$

(vii)
$$\frac{1}{\sec 45^{0} - \tan 45^{0}} = \frac{1 + \sin 45^{0}}{\cos 45^{0}} \quad \text{(viii)} \quad \frac{\cot^{2} 30^{0}}{\sin^{2} 60^{0}} - \frac{\cot^{2} 60^{0}}{\sin^{2} 30^{0}} = \cot^{2} 30^{0} - \cot^{2} 60^{0}$$