							1
$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4 i k}{(\alpha_0 - 4 \beta_1)(1 + 2 k^2)}$
$\tau_1^{\#1}_{+\alpha\beta}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2 k^2}{(\alpha_{0}-4 \beta_{1})(1+k^2)^2}$	0	0	0	0
$\sigma_1^{\#_2}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0 - 4\beta_1)(1 + k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\#1}_{\alpha\beta\chi}$	
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0	
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4} + \beta_1$	

	$\sigma^{\#1}_{2^+lphaeta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2^{+}}^{\#1}\dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

$f_{1^{-}}^{\#2}$	0	0	0	$-\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$	0	0	0
$f_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}$ \tilde{I} (α_0 - 4 β_1) k
$\omega_1^{\#2}{}_+^{lphaeta} f_1^{\#1}{}_+^{lphaeta}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) \left \frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \right $	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha \beta \frac{1}{4}$	$\omega_1^{\#_2} + \alpha \beta$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} +^{\alpha}$

	$\sigma_{0^+}^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2}(\alpha_{0}-4\beta_{1})}{\alpha_{0}(\alpha_{0}-4\beta_{1})k+8\alpha_{6}\beta_{1}k^{3}}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k + 8 \alpha_6 \beta_1 k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0-4\beta_1}$

 $f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 2 \, \beta_1 \ \omega_{\alpha \ \chi}^{\ \chi} \, \partial_\beta f^{\alpha\beta} - 2 \, \beta_1 \ \omega_{\alpha \ \delta}^{\ \delta} \, \partial_\beta f^{\alpha\beta} - \alpha_0 \ f^{\alpha\beta} \, \partial_\beta \omega_{\alpha \ \chi}^{\ \chi} +$ $-\frac{1}{2} \, \alpha_0 \, \, \omega_{\alpha \chi \beta} \, \, \omega^{\alpha \beta \chi_{-} \frac{1}{2}} \, \alpha_0 \, \, \omega^{\alpha \beta}_{\alpha} \, \, \omega^{\chi}_{\beta \, \, \chi} + 2 \, \beta_1 \, \, \omega^{\alpha \beta}_{\alpha} \, \, \omega^{\chi}_{\beta \, \, \chi} - 2 \, \beta_1 \, \, \omega^{\chi \delta}_{\alpha} \, \, \omega^{\alpha +}_{\chi \delta} + 2 \, \omega^{\alpha \beta}_{\alpha} \, \, \omega^{\alpha \beta}_{\alpha} \, \, \omega^{\alpha \beta}_{\beta \, \, \chi} + 2 \, \omega^{\alpha \beta}_{\alpha} \, \, \omega^{\alpha \beta}_{\beta \, \, \chi} + 2 \, \omega^{\alpha \beta}_{\alpha} \, \, \omega^{\alpha \beta}_{\beta \, \, \chi} + 2 \, \omega^{\alpha \beta}_{\beta$ $\beta_1 \, \partial_\chi f^\delta_{\ \beta} \, \partial^\chi f_{\ \delta}^{\ \beta} + 4 \, \beta_1 \, \partial^\beta f^\alpha_{\ \alpha} \, \partial_\delta f_{\ \beta}^{\ \delta} - 2 \, \beta_1 \, \partial_\beta f_{\ \chi}^{\ \beta} \, \partial_\delta f^{\chi\delta} + \frac{2}{3} \, \alpha_6 \, \partial_\beta \omega^{\alpha\beta}_{\ \alpha} \, \partial_\delta \omega^{\chi\delta}_{\ \chi}$ $\alpha_0 \ f^{\alpha\beta} \ \partial_\chi \omega_{\alpha\beta}^{\ \chi} - \alpha_0 \ f^{\alpha}_{\ \alpha} \ \partial_\chi \omega^{\beta\chi}_{\beta} + 4 \ \beta_1 \ \omega_{\alpha\chi\beta} \ \partial^\chi f^{\alpha\beta} + \beta_1 \ \partial_\chi f_{\beta}^{\ \delta} \partial^\chi f_{\delta}^{\ \beta} +$ $\alpha_0 \, \partial_\beta \omega^{\alpha\beta}_{\ \alpha} + 2 \, \beta_1 \, \, \omega^{\, \, \chi}_{\beta \, \, \chi} \, \partial^\beta f^{\alpha}_{\ \alpha} + 2 \, \beta_1 \, \, \omega^{\, \, \delta}_{\beta \, \, \delta} \, \partial^\beta f^{\alpha}_{\ \alpha} - 2 \, \beta_1 \, \partial_\beta f^{\, \chi}_{\ \chi} \, \partial^\beta f^{\alpha}_{\ \alpha} +$ $\beta_1 \, \partial^\chi f_{\zeta}^{\ \beta} \, \partial^\zeta f_{\beta\chi} - \beta_1 \, \partial^\chi f_{\zeta}^{\ \beta} \, \partial^\zeta f_{\chi\beta} + \beta_1 \, \partial^\chi f_{\delta\zeta} \partial^\zeta f^\delta_{\ \chi} - \beta_1 \, \partial^\chi f_{\zeta\delta} \partial^\zeta f^\delta_{\ \chi}$ Lagrangian density

	+		(')	('')	(,)	
Source constraints	SO(3) irreps	$\tau_{o+}^{\#2} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} = 0 \ \exists$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0 \ \exists$	Total #:
$\omega_{0^{\text{-}}}^{\#1}$	(0	0	0	0 $\frac{1}{2}$ (α_0 - 4 β_1)	
$f_{0}^{#2}$	(0	0	0	0	
$f_{0}^{\#1}$	$i(\alpha_0-4\beta_1)k$	1/2	$-4 \beta_1 k^2$	0	0	
$\omega_{0}^{\#1}$	$\alpha_0 \rightarrow 0 \rightarrow 0$	$\omega_{0} + 1 \left \frac{1}{2} - 2 p_1 + \alpha_6 x \right = \frac{1}{\sqrt{2}}$	$\frac{\bar{l} (\alpha_0 - 4 \beta_1) k}{\sqrt{2}}$	0	0	
	#1	+ ₀	$f_{0}^{\#1}$ \dagger	$f_{0}^{#2} +$	$\omega_{0^{\text{-}}}^{\#1}\dagger$	

 \sim

Massive particle						
Pole residue:	$\left \frac{1}{\alpha_0} + \frac{1}{\alpha_6} - \frac{1}{4\beta_1} > 0 \right $					
Polarisations:	1					
Square mass:	$-\frac{\alpha_0 (\alpha_0 - 4 \beta_1)}{8 \alpha_6 \beta_1} > 0$					
Spin:	0					
Parity:	Even					

Quadratic pole					
Pole residue:	$\frac{1}{\alpha_0} > 0$				
Polarisations:	2				