EXPLAN: Explaining Black-box Classifiers using Adaptive Neighborhood Generation

Peyman Rasouli, Ingrid Chieh Yu

Introduction

EXPLAN is a local model-agnostic explanation method applicable to tabular data classification problems. It is a module-based algorithm consisted of dense data generation, representative data selection, data balancing, and rule-based interpretable model.

Fig. 2. Visualization of EXPLAN's neighborhood construction process.

Algorithm

Algorithm 1 EXPLAN Explanation Method

Input: $\{x, f, \mathcal{D}, \mathcal{N}, \tau\}$

/* x: instance to explain, f: black-box model, \mathcal{D} : distribution of training data, \mathcal{N} : # initial neighborhood samples,

τ : # minimum samples per class */ Output: $\{C, e\}$

/* C: interpretable model, e: explanation of x */

- 1: **function** EXPLAN $(x, f, \mathcal{D}, \mathcal{N}, \tau)$
- 2: $\mathcal{Z} \leftarrow \text{DATAGENERATION}(x, f, \mathcal{D}, \mathcal{N})$
- 3: $\mathcal{Z}' \leftarrow \text{DATASELECTION}(x, f, \mathcal{Z}, \tau)$
- 4: $\mathcal{X} \leftarrow \text{DATABALANCING}(f, \mathcal{Z}')$
- 5: $C, e \leftarrow \text{InterpretableModel}(x, f, \mathcal{X})$
- 6: **return** C, e

Algorithm 2 Dense Data Generation 1: **procedure** DATAGENERATION $(x, f, \mathcal{D}, \mathcal{N})$ procedure RANDOMDATAGENERATION(\mathcal{D}, \mathcal{N}) $\mathcal{S} \leftarrow DataSampling(\mathcal{D}, \mathcal{N})$ 3: return S /* random data points */ 4: **procedure** SURROGATEMODELCONSTRUCTION(f, S) $\mathcal{T} \leftarrow RandomForestConstructor(\mathcal{S}, f(\mathcal{S}))$ 6: /* RF surrogate model */ return \mathcal{T} **procedure** ContributionExtraction(x, S, T) $\mathcal{V}(x) \leftarrow TreeInterpreter(\mathcal{T}, x)$ 9: for all $s \in \mathcal{S}$ do 10: $\mathcal{V}(s) \leftarrow TreeInterpreter(\mathcal{T}, s)$ 11: Observation-level feature importance return V /* feature importance */ 12: **procedure** SampleManipulation(x, S, T, V) $l_x \leftarrow \mathcal{T}(x)$ 14: $\mathcal{Z} \leftarrow \{\}$ for all $s \in \mathcal{S}$ do $l_s \leftarrow \mathcal{T}(s)$ **for** $j \leftarrow 1, \mathcal{F}$ **do** /* \mathcal{F} : feature dimension */ if $(s_i \neq x_i)$ then 19: if $(\mathcal{V}_{s_i}^{l_x} = \mathcal{V}_{x_i}^{l_x}) \wedge (\mathcal{V}_{s_i}^{l_s} = \mathcal{V}_{x_i}^{l_s})$ then 20: 21: $s_i \leftarrow x_i$ $\mathcal{Z} \leftarrow \mathcal{Z} \cup s$ 22: **return** \mathcal{Z} /* meaningful dense data w.r.t x */ 23: return Z24:

training set distribution

from random forest explanations

Train surrogate random forest

Draw perturbed samples from

Values of features in s with the same contributions as in x set to values from x

Algorithm 3 Representative Data Selection

- 1: **procedure** DATA SELECTION $(x, f, \mathcal{Z}, \tau)$
 - $/* n_c$: number of clusters */ $n_c \leftarrow 2$
- $\mathcal{Z}' \leftarrow \{\}$
- for all $l \in \mathcal{L}$ do /* L: set of labels */ $\mathcal{G}_l \leftarrow \{z \in Z \mid f(z) = l\}$ 5:
- $G_1 \leftarrow x \cup G_1$ 6:
- while True do
- $c_x, c_{\neg x} \leftarrow AgglomerativeClustering(\mathcal{G}_l, n_c)$ 8:
- if $|c_x| \geq \tau$ then 9:
- $G_l \leftarrow c_x$ 10: else 11:

14:

- 12:
- $\mathcal{Z}' \leftarrow \mathcal{Z}' \cup \mathcal{G}_1$ 13:

return \mathcal{Z}'

- break
 - /* representative data set */

Data Balancing

Generate samples in classes with small representations via equation:

$$x_{new} = x_i + \lambda \times (x_{zi} - x_i)$$

Rule-based Interpretable model

Build a classifier (decision tree) on obtained dataset and values of black-box model

Experiments

Experimental setup

- Matched against LIME, LORE, and Anchor explanation methods on:
 - fidelity comparison
 - neighborhood analysis
 - explanation comparison
- Black-boxes: Neural Network, Logistic Regression, Gradient Boosting
- Datasets:

TABLE I DESCRIPTION OF THE DATA SETS.

Data set	# Instances	# Features	Class imbalance
Adult	49K	14	<=50K: 76% - >50K: 24%
German	1 K	20	Good: 70% - Bad: 30%
COMPAS	7K	52	Medium-Low: 72% - High: 28%

TABLE II COMPARISON OF $fidelity_x$ scores.

TABLE III	
Comparison of $fidelity_{oldsymbol{\mathcal{X}}}$	SCORES.

Data set	Black-box	EXPLAN	LIME	LORE	_	Data set	Black-box	EXPLAN	LIME	LORE
Adult	GB LR NN	$0.994\pm.1$ $0.992\pm.1$ $0.992\pm.1$	0.838±.4 0.940±.2 0.859±.3	$0.980\pm.1$ $0.989\pm.1$ $0.977\pm.2$		Adult	GB LR NN	$ \begin{vmatrix} 0.971 \pm .0 \\ 0.990 \pm .0 \\ 0.980 \pm .0 \end{vmatrix} $	$0.738 \pm .0$ $0.793 \pm .1$ $0.804 \pm .0$	0.996±.0 0.995±.0 0.993±.0
German	GB LR NN	1.000±.0 0.990±.1 1.000±.0	0.910±.3 0.940±.2 0.930±.3	0.950±.2 0.910±.3 0.990±.1		German	GB LR NN	0.942±.0 0.972±.0 0.981±.0	0.223±.1 0.179±.1 0.037±.1	$0.979\pm.0$ $0.944\pm.2$ $0.987\pm.0$
COMPAS	GB LR NN	1.000±.0 1.000±.0 0.999±.0	0.911±.3 0.925±.3 0.915±.3	0.999±.0 0.981±.1 0.986±.1	Į.	COMPAS	GB LR NN	0.984±.0 0.988±.0 0.988±.0	0.897±.0 0.919±.0 0.896±.0	0.982±.1 0.975±.1 0.974±.1

instance-level

neighborhood-level

TABLE IV COMPARISON OF $precision_e$ SCORES.

Data set	Black-box	EXPLAN	LORE	Anchor
Adult	GB	0.924±.1	0.852±.2	0.980±.1
	LR	0.966±.1	0.894±.2	0.963±.0
	NN	0.895±.2	0.815±.2	0.971±.1
German	GB	0.897±.2	0.816±.2	0.984±.0
	LR	0.937±.1	0.835±.3	0.994±.0
	NN	0.950±.1	0.879±.2	0.976±.1
COMPAS	GB	0.914±.2	0.855±.2	0.963±.0
	LR	0.912±.2	0.862±.2	0.963±.0
	NN	0.898±.2	0.851±.2	0.979±.0

Сомр	ARIS	ON OF	FE	ATURE	FRE	QUENCY '	VARIANCE.	
				100000000000000000000000000000000000000	0.00	I do not be to the second of the second of		

 $1.191 \pm .2$

 $1.087 \pm .2$

 $1.174 \pm .5$

 $0.469 \pm .0$

 $0.513 \pm .0$

 $0.467 \pm .0$

 $0.529 \pm .1$

 $0.535 \pm .1$

 $0.533 \pm .1$

GB

LR

NN

GB

LR

NN

GB

LR

NN

Adult

German

COMPAS

TABLE V

COMPARISON OF FEATURE FREQUENCY VARIANCE.					Сомі	PARISON OF J	ACCARD MEAS	SURE OF STA	BILITY.
Data set	Black-box	EXPLAN	LORE	Anchor	Data set	Black-box	EXPLAN	LORE	Ancho

 $2.263 \pm .5$

 $2.259 \pm .5$

 $2.273 \pm .5$

 $2.296 \pm .6$

 $2.293 \pm .7$

 $2.334 \pm .6$

 $1.342 \pm .4$

 $1.335 \pm .4$

 $1.314 \pm .4$

 $1.497 \pm .1$

 $1.523 \pm .1$

 $1.509 \pm .1$

 $0.472 \pm .0$

 $0.469 \pm .0$

 $0.468 \pm .0$

 $0.682 \pm .1$

 $0.678 \pm .1$

 $0.681 \pm .1$

COMPAS

set	Black-box	EXPLAN	LORE	
1	GR	0.827 ± 1	0.821 ± 1	0

Data set	Black-box	EXPLAN	LORE	Anchor
Adult	GB	0.827±.1	$0.821 \pm .1$	$0.755 \pm .$

TABLE VI

Aduii	LR NN	$0.827\pm.1$ $0.859\pm.1$ $0.856\pm.1$	$0.821\pm.1$ $0.799\pm.1$ $0.728\pm.1$	0.733± 0.671± 0.744±
German	GB LR NN	$ \begin{vmatrix} 0.702 \pm .1 \\ 0.729 \pm .1 \\ 0.846 \pm .1 \end{vmatrix} $	0.694±.2 0.698±.2 0.779±.1	0.754± 0.819± 0.884±

GB

LR

NN

Adult	LR NN	$0.827\pm.1$ $0.859\pm.1$ $0.856\pm.1$	$0.821\pm.1$ $0.799\pm.1$ $0.728\pm.1$	$0.753\pm.1$ $0.671\pm.1$ $0.744\pm.2$
erman	GB	0.702±.1	0.694±.2	$0.754\pm.1$
	LR	0.729±.1	0.698±.2	$0.819\pm.2$
	NN	0.846±.1	0.779±.1	$0.884\pm.1$

 $0.888 \pm .1$

 $0.886 \pm .1$

 $0.848 \pm .1$

 $0.858 \pm .2$

 $0.859 \pm .2$

 $0.807 \pm .2$

 $0.859 \pm .1$

 $0.854 \pm .1$

 $0.822 \pm .1$

Explanation generated by EXPLAN for an input from *Adult* data set and *GB* black-box

```
x = \{ age: 30; \}
                                                    e = \{ age: \le 30, 
                                                         capital-gain < 0
     workclass: Private;
                                                         hours-per-week ≤ 44
     marital-status: Never-married;
                                                        } -> class: < 50K
     occupation: Prof-speciality;
     relationship: Unmarried;
     race: White:
     sex: Male;
     capital-gain: 0;
     capital-loss: 0;
     hours-per-week: 40;
     native-country: United-States
     class: < 50K
```

Thank you for your attention

Time for Q&A