

Digital Signal Processors

Guzmán Sánchez José Emmanuel Mejia Ortiz Aarón Enrique Sáenz Barragán Ricardo Pero, ¿Qué @#!\$+% es un DSP?

Pues...

Es un microprocesador diseñado para realizar operaciones con señales de una forma más rápida, menor latencia y mejor eficiencia energética.

Permite interactuar con componentes de la vida real

Lo anterior le permite operar señales digitales casi en tiempo real

¿De dónde surgen?

Algoritmos comunes para DSP hacen uso de muchas operaciones matemáticas

Señales son comunmente convertidas de análogas a digitales y viceversa

Algunos procesadores pueden ejecutar algoritmos para DSP, pero no son adecuados para ciertos dispositivos o aplicaciones

La necesidad de analizar grandes flujos de datos constantes de manera rápidad y eficiente Pero...
¿Cómo lo hacen?

Arquitectura Von Neumann

Arquitectura Harvard

Memoria de programa

Solo instrucciones

CPU

11

Memoria de datos

Solo datos

Arquitectura Super Harvard

Memoria de programa

Solo instrucciones

CPU

Cache de instrucciones

Controlador E/S

Memoria de datos Solo datos

Arquitectura de un DSP

♦ Se basa en la SHARC

Harvard Architecture

Super Harvard Architecture

Arquitectura Super Harvard

Tiene un caché de instrucciones que guarda las últimas 32 operaciones usadas.

En la memoria de programa también guarda datos secundarios

Las entradas I/O
puede pasar
directamente a
memoria, no es
necesario que pasen
por el procesador

MAC (Multiplyaccumulate): Realiza la multiplicación de dos datos y guarda el dato en un acumulador

Componentes Principales

Program Memory: Guarda el programa que el DSP usará

Data Memory: Almacena información a procesar

Compute Engine: Accede a los datos de memoria y al programa en mempria para operar datos

Input/Output: Conecta con el mundo exterior

Arquitectura DSP

Arquitectura dsPIC33

Arquitectura dsPIC33

Set de instrucciones

Set de instrucciones tradicional: Se compone de instrucciones generales que permiten realizar una gran variedad de operaciones

Set de instrucciones optimizado: Contiene instrucciones para realizar operaciones comunes que son frecuentemente usados en los algoritmos para DSP

Superioridad DSP

- Arquitectura altamente paralela
- ♦ Instrucciones para mejorar el desempeño del paralelismo
 - ♦ SIMD (Arquitectura)
 - ♦ VLIW (Very Large Instruction Word)
 - Arquitecturas Super-escalares
 - ♦ Tiene buffers circulares

 De las instrucciones que se muestran a continuación, realiza las modificaciones necesarias para representar su ejecución en una Arquitectura Super Harvard

	VON NEUMAN		
1	Lee instrucción de memoria		
2	Decodifica opcode		
3	Va por los datos a memoria		
4	Guarda datos IO en memoria		
5	Lee datos IO en memoria		
6	Opera		
7	7 Guarda resultado en memoria		

Solución

VON NEUMAN

SUPER HARVARD

1	Lee instrucción de memoria	Lee instrucción de memoria	Guarda datos IO en memoria	1
2	Decodifica opcode	Decodifica opcode	Guarda datos IO en memoria	2
3	Va por los datos a memoria	Va por los datos a memoria	Lee datos IO en memoria	3
4	Guarda datos IO en memoria	Opera	Guarda datos IO en memoria	4
5	Lee datos IO en memoria	Guarda en memoria	Guarda datos IO en memoria	5
6	Opera	Lee datos IO en memoria	Va por los datos a memoria	6
7	Guarda en memoria	Guarda datos IO en memoria	Opera	7
8	Lee instrucción de memoria	Guarda datos IO en memoria	Guarda en memoria	8
9	Decodifica opcode	Lee datos IO en memoria	Va por los datos a memoria	9
10	Va por los datos a memoria	Guarda datos IO en memoria	Opera	10
11	Guarda datos IO en memoria			11
12	Lee datos IO en memoria			12
13	Opera			13
14	Guarda en memoria			14

Referencias

- Chaparro, L., Akan, A. (2019). <u>Signals and Systems Using MATLAB (Third Edition)</u>.
- Smith, S. (2003) <u>Digital Signal Processing: A</u> <u>Practical Guide for Engineers and Scientists</u>
- https://en.wikipedia.org/wiki/Digital_signal_processor
- https://www.dspguide.com/ch28.htm

waarom18mo
wmamu_ems
wsaenzzzup