The Kickstarters

CMPE 256 2019F Project Presentation

Presented by:

Xunan Dai

Outline

- Introduction
- Algorithms
- Data Analysis
- Data preprocessing
- Evaluation
- Conclusions

- What is Kickstarter and What Do People Use it for?
 - Fundraising platform for entrepreneurial projects
 - Entirely driven by crowdfunding
- Two Types of Users:
 - Creators start a project hope to raise funds from backers
 - Backers have the opportunity to receive rewards
- 'All or Nothing' Rule Defines if project is successful
 - A creator can only collect the funds if the funding goal has been reached by the deadline (pledged >= goal).

- Question: What Makes a Successful Kickstarter Project?
 - Not all projects have succeeded
- Kaggle Dataset Generated by Web Robots
 - Range from 2009 to 2017
 - 56MB with 99,035 project records
 - 54 attributes with all kinds of categories
 - Location, time, name, pledge, goal, etc.,
- Need to Reduce Features to Generalize the Dataset
 - Some important features contribute to success!

Algorithms

Depends on the Target Field

- Project's Status
 - Successful, Failed
 - Classification Problem:
 - > SVM
 - efficient in high dimensional data
 - Decision Tree
 - handle both numerical and categorical data

- Amount of pledge in \$
 - pledgedUSD
 - Regression Problem:
 - > KNN-Regression
 - works well in high non-linear data
 - \succ MLPR
 - generate non-linear function approximator

Data Analysis Status Distribution

- Around same percentage towards success and failure
- Many canceled in the process

Data Analysis- Projects' Time Distribution

- From 2009 to 2017
- By month

Project launch time is "irrelevant" to a project's success

Data Analysis - Status Distribution

By Category

By States of the U.S.

Data Preprocessing

- Data Cleaning
 - Missing value replacement
- Feature Selection
 - Correlation Map
 - Correlation of each pair
 - Drop all "highly correlated" attributes
 - Combine Features
 - New Features Generation
 - Encoding Features
 - Categorical to numerical
 - Standardization
 - Z-score

Evaluation (Classification)

SVM:

50.9% accuracy (normal)

SVM class	ific	ation report			
		precision	recall	fl-score	support
	0	0.50	0.22	0.31	8862
	1	0.51	0.79	0.62	9147
accur	acy			0.51	18009
macro	avg	0.51	0.50	0.46	18009
weighted	avg	0.51	0.51	0.47	18009

Decision Tree:

98.2% accuracy (overfitting)

	precision	recall	f1-score	support
0	0.98	0.98	0.98	8862
1	0.98	0.98	0.98	9147
accuracy			0.98	18009
macro avg	0.98	0.98	0.98	18009
weighted avg	0.98	0.98	0.98	18009

Evaluation (Regression)

KNN:

RMSE at 0.4923, MSE at 0.24244

Final rmse value is = 0.49238498987935636Final mse value is = 0.24244297825849387

MLPR:

RMSE at 0.4994, MSE at 0.24945

Final rmse value is = 0.4994591341480117Final mse value is = 0.24945942668388152

Conclusions

- Things Worked:
 - Visualizing dataset gives a general picture of each attributes
 - Selected models gives satisfactory prediction
 - Cross validation with proper model parameters
- Things Didn't Work Well:
 - Real evaluation of successful, failed prediction
 - Evaluation of feature selection and transformation

Q&A

Thank You!

