- Purpose:
 - Estimate the empirical significance of learning.
 - Determine what features of U.S. data learning can explain.
- Learning suggested to deliver features:
 - Orphanides and Williams (2005): Inflation scares.
 - Milani (2005): Macroeconomic persistence.
 - Milani (2007): Time varying volatility.
- Estimate a NK model with learning and RE by MLE.
- Examine forecast errors, evolution of shocks, and evolution of expectations

Utility function:

$$U_0 = E_0^* \sum_{t=0}^{\infty} \beta^t \left[\frac{1}{1-\sigma} \xi_t \left(c_t(i) - \eta c_{t-1}(i) \right)^{1-\sigma} - \frac{1}{1+\mu} n_t(i)^{1+\mu} \right]$$

- E_t^* : possibly non-rational expectations operator.
- $c_t(i)$: consumption at time t.
- $n_t(i)$: labor supply at time t.
- ξ_t : common preference shock.
- β : discount factor.
- $\sigma \in (0, \infty)$: related to the intertemporal elasticity of substitution.
- $\eta \in [0,1)$: degree of habit formation.

Final good production:

$$y_t = \left[\int_0^1 y_t(i)^{\frac{\theta - 1}{\theta}} di \right]^{\frac{\theta}{\theta - 1}}$$

• y_t output of final good, $y_t(i)$ output of intermediate good i.

• $\theta \in (1, \infty)$: elasticity of substitution in production.

Intermediate goods production:

Model with capital: $y_t(i) = z_t k_t(i)^{\alpha} \left(\nu^t n_t(i) \right)^{1-\alpha}$

Model without capital: $y_t(i) = z_t n_t(i)$

- z_t : common technology shock.
- $k_t(i)$: firm-specific capital good.
- ν : growth rate of labor productivity (growth rate of real output per capita).
- Follow Calvo (1983) pricing: fraction $1-\omega$ firms re-optimize their price each period.
- Inflation indexation: Those who cannot re-optimize may adjust according to:

$$\ln(p_t(i)) = \ln(p_{t-1}(i)) + \gamma \pi_{t-1}$$

• With firm-specific capital (Woodford, 2005), leads to Phillips curve:

$$\pi_t = \frac{\gamma}{1 + \beta \gamma} \pi_{t-1} + \frac{\beta}{1 + \beta \gamma} E_t \pi_{t+1} + \kappa \hat{s}_t$$

- \hat{s}_t : average marginal cost in the economy (percentage deviation from steady state).
- κ : function of many parameters.
- Final good is converted to a firm-specific capital good.
- Investment of $I_t(i)$ leads to capital stock next period:

$$k_{t+1}(i) = (1 - \delta)k_t(i) + \mu_t I_t(i) - \frac{\phi}{2} \left[\frac{k_{t+1}(i)}{k_t(i)} - 1 \right]^2 k_t(i)$$

- $-\mu_t$: common investment technology shock.
- $-\delta$: depreciation rate.
- $-\phi$: capital adjustment cost parameter.
- Profit maximizing marginal cost:

$$\hat{s}_t = \frac{\mu + \alpha}{1 - \alpha} \hat{y}_t - \frac{\alpha(\mu + 1)}{1 - \alpha} \hat{k}_t - \hat{\lambda}_t - \frac{\mu + 1}{1 - \alpha} \hat{z}_t,$$

• Market clearing condition:

Model with capital: $y_t = c_t + I_t + g_t$

Model without capital: $y_t = c_t$

- g_t : Exogenous demand shocks such as changes in government spending and net exports.
- Model without capital: interest rate responds to output gap:

$$\hat{r}_t = \rho_r \hat{r}_{t-1} + (1 - \rho_r) \left(\psi_\pi \pi_t + \psi_y \tilde{y}_t \right) + \epsilon_{r,t}$$

- $-\psi_{\pi} \in (0,\infty)$: feedback on inflation.
- $-\psi_y \in (0,\infty)$: feedback on output.
- $-\rho_r \in (0,1)$: smoothing parameter.
- Model with capital: interest rate responds to the deviation of output from steady state:

$$\hat{r}_t = \rho_r \hat{r}_{t-1} + (1 - \rho_r) (\psi_\pi \pi_t + \psi_u \hat{y}_t) + \epsilon_{r,t}$$

- Non-policy shocks (percentage deviations from steady state) are AR(1):
 - Preference shock: $\hat{\xi}_t = \rho_{\xi} \hat{\xi}_{t-1} + \epsilon_{\xi,t}$
 - Technology shock: $\hat{z}_t = \rho_z \hat{z}_{t-1} + \epsilon_{z,t}$
 - Investment shock: $\hat{\mu}_t = \rho_{\mu}\hat{\mu}_{t-1} + \epsilon_{\mu,t}$
 - Demand shock: $\hat{g}_t = \rho_g \hat{g}_{t-1} + \epsilon_{g,t}$
- $\epsilon_{\xi,t}$, $\epsilon_{z,t}$, $\epsilon_{\mu,t}$, $\epsilon_{g,t}$, $\epsilon_{r,t}$ are independently normally distributed with mean zero

- Re-write the model without capital in terms of the output gap.
- Notation:
 - Tilde denotes (percentage) deviation from fully flexible outcome.
 - Superscript f denotes fully flexible outcome.
 - Superscript * denotes steady state value.
- Natural rate of interest:

$$r_{t}^{n} = r_{t}^{f} - E_{t} \pi_{t+1}^{f}$$
$$r_{t}^{n} = (1 - \rho_{r^{n}}) r^{*} + \rho_{n} r_{t-1}^{n} + \epsilon_{t}^{r^{n}}$$

• Consumer first order conditions + market clearing:

$$\tilde{\lambda}_t = E_t \tilde{\lambda}_{t+1} + (r_t - r_t^n - E_t \pi_{t+1})$$

$$\tilde{\lambda}_t = \frac{1}{(1 - \beta \eta)(1 - \eta)} \left[\beta \eta \sigma E_t \tilde{y}_{t+1} - \sigma (1 + \beta \eta^2) \tilde{y}_t + \sigma \eta \tilde{y}_{t-1} \right]$$

• Phillips curve:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \left(\mu \tilde{y}_t - \tilde{\lambda}_t \right) + u_t$$

• Cost push shock:

$$u_t = \rho_u u_{t-1} + \epsilon_t^u$$

• The New Keynesian model has the form:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 E_t x_{t+1} + \Psi z_t$$
$$z_t = A z_{t-1} + \epsilon_t$$

- $-x_t$ vector of time t variables, observable to agents at following time period.
- $-z_t$: vector of time t shocks, observable to agents in current period.
- Rational expectations solution:

$$x_t = Gx_{t-1} + Mz_t$$

- Agents estimate elements of G and M by least squares.
- X_t : vector of regressors: $X'_t = [1 \ x'_{t-1} \ z'_t].$
- Y_t : vector of dependent variables: $Y_t = x_t$.
- $\hat{\phi}_t$: least squares estimate of the coefficients in G and M.
- Information at available at time t: x_{t-1} , z_t .
- Evolution of $\hat{\phi}_t$ in recursive form:

$$\hat{\phi}_t = \hat{\phi}_{t-1} + gR_t^{-1}X_{t-1}\left(Y_t - X_{t-1}'\hat{\phi}_{t-1}\right)$$

$$R_t = R_{t-1} + g(X_{t-1}X_{t-1}' - R_{t-1})$$

- where g is the constant learning gain.
- Method: Maximum likelihood estimation.
- Data: Quarterly data for 1960 through 2005.
- Model with no capital:
 - CBO measure of the output gap.
 - Annualized quarterly inflation rate of the GDP deflator.
 - Annualized quarterly Federal funds rate.
- Model with endogenous capital:
 - Real GDP per capita.
 - Real private consumption per capita.
 - Real gross private domestic investment per capita.
 - Annualized quarterly inflation rate of the GDP deflator.
 - Annualized quarterly Federal funds rate.
- Calibrated parameters:
 - Model without capital: $\beta = 0.99$, $\mu = 0$ (perfectly inelasticy labor supply).
 - Model with capital: $\beta = 0.99, \, \delta = 0.025, \, \alpha = 0.33, \, \nu = 1.00533.$

- $\hat{\phi}_t$ and R_t must be initialized for estimation.
- MSV solution, expected outer product of the state vector under RE.
 - Much of learning theory valid for the neighborhood of the MSV solution.
 - Initial conditions are supported by the microfoundations.
 - Problem: Learning dynamics smallest when near MSV solution.

• Joint estimation:

- Problems: As many as 40 additional parameters (endogenous capital estimation).
- Motivation: illustrates how estimates for structural parameters depend on initial conditions.
- Alternative approach: Use a VAR(1) from pre-sample data
 - Problem: latent variables are regressors capital stock, structural shocks.

Description	Parameter	RE	Std. dev.	Learning	Std. dev.
Learning gain	g			0.0104	0.0048
Habit formation	η	0.9953	0.0105	0.9470	0.0214
Inverse elasticity sub.	σ	0.0830	0.0724	0.5057	0.4069
Phillips curve slope	κ	0.0001	0.0001	0.0001	0.0001
Price indexation	γ	0.9686	0.0458	0.9730	0.0172
Interest rate smoothing	$ ho_r$	0.8449	0.0269	0.8943	0.0178
Policy feedback on output	ψ_y	0.2073	0.0778	0.3346	0.0931
Policy feedback on inflation	ψ_{π}	1.2812	0.2230	1.5895	0.3079
Persistence nat. int. rate	$ ho_n$	0.9944	0.0081	0.9016	0.0273
Persistence cost push	ρ_u	1.50E-6	0.0684	0.0000	0.0224
Std. dev. nat. int. rate	s_n	0.0009	0.0005	0.1150	0.1065
Std. dev. cost push	s_u	2.45E-6	3.40E-6	2.49E-6	3.00E-7
Std. dev. policy shock	s_r	5.48E-6	3.40E-6	5.31E-6	3.30E-7
Steady state inflation	π^*	7.9795	2.8442	5.6139	1.0109

- \bullet Learning gain statistically significantly different from zero.
- Habit formation and indexation remain significant sources of persistence.
- Most parameters are very similar.

Output gap

Forecast error output gap —

Learning (RE initial conditions)

Differences in Forecast Errors

Correlation of Forecast Errors

Output gap 0.9858

 $\begin{array}{c} {\rm Inflation} \\ {\rm 0.9707} \end{array}$

Interest Rate 0.9833

- \bullet Forecast errors essentially the same.
- \bullet Forecast errors are largest for 1970s.
 - Neither model explains monetary policy in 1979-1982 period.
 - Neither model explains changes in volatility.

Natural Rate Shock

Cost Push Shock

Policy Shock

Learning (RE initial conditions)

Natural Rate Shock

Cost Push Shock

Policy Shock

Difference in Smoothed Shocks

Natural Rate Shock

Cost Push Shock

Policy Shock

Correlation of Smoothed Shocks

Natural Rate Shock 0.7150

 $\begin{array}{c} {\rm Cost~Push~Shock} \\ 0.9799 \end{array}$

Policy Shock 0.9907

Description	Parameter	Estimate	Std. dev.
Learning gain	g	0.0116	0.0072
Habit formation	η	0.0436	0.0404
Inverse elasticity sub.	σ	2.4018	2.8262
Phillips curve slope	κ	0.0001	0.0003
Price indexation	γ	0.9940	1.1123
Interest rate smoothing	ρ_r	0.8940	0.0279
Policy feedback on output	ψ_y	0.2973	0.1329
Policy feedback on inflation	ψ_{π}	1.0576	0.1989
Persistence nat. int. rate	ρ_n	0.9987	1.00E-8
Persistence cost push	ρ_u	0.0002	0.0823
Std. dev. nat. int. rate	s_n	0.0007	0.0080
Std. dev. cost push	s_u	1.5E-05	6.06E-06
Std. dev. policy shock	s_r	5.4E-06	4.6E-07
Steady state inflation	π^*	1.6478	0.8418

- Learning gain statistically significantly different from zero.
- $\bullet\,$ Degree of habit formation is close to zero.
- Point estimate of price indexation still high, still significant.

Output gap

Learning (Estimated initial conditions)

Output gap

Differences in Forecast Errors

Output gap

Inflation

Interest Rate

Correlation of Forecast Errors

Output gap 0.7333

Inflation 0.8472

Interest Rate 0.8861

Natural Rate Shock

 ${\bf Cost\ Push\ Shock}$

Policy Shock

Learning (Estimated initial conditions)

Natural Rate Shock

Cost Push Shock

Policy Shock

Difference in Smoothed Shocks

Natural Rate Shock

Cost Push Shock

Policy Shock

Correlation of Smoothed Shocks

Natural Rate Shock 0.7150

Cost Push Shock 0.9799

Policy Shock 0.9907

	RE	Learning (RE init.)	Learning (Est. init.)
MSE Output	1.0920	1.1041	0.7303
MSE Inflation	1.6613	1.5781	1.4175
MSE Fed Funds	1.2594	1.0879	0.9435
Log-likelihood	-303.8	-291.9	-241.6

Description	Parameter	RE	Std. dev.	Learning	Std. dev.
Learning gain	g			3.51E-6	7.01E-6
Habit formation	η	0.0855	0.0846	0.1078	0.0805
Inverse elasticity sub.	σ	16.5056	13.8189	16.8358	14.5459
Capital / output ratio	k_y	4.4799	0.2129	4.5061	0.2129
Consumption / output ratio	c_y	0.7141	0.0547	0.7234	0.0516
Inverse elasticity labor	μ	1.53E-5	0.3944	1.00E-5	0.4396
Capital adjustment cost	ϕ	27.9001	5.4801	27.4460	5.9845
Phillips curve slope	κ	0.0116	0.0034	0.0119	0.0037
Price indexation	$ \gamma $	0.9999	0.0000	0.9999	0.0000
Interest rate smoothing	$ ho_r$	0.8147	0.0196	0.8103	0.0203
Policy feedback on output	ψ_y	0.0326	0.0116	0.0356	0.0122
Policy feedback on inflation	ψ_{π}	1.5401	0.1504	1.4735	0.1405
Persistence in tech. shock	ρ_z	1.40E-5	0.0888	1.00E-5	0.0902
Persistence in pref. shock	ρ_{ξ}	0.9793	0.0176	0.9800	0.0167
Persistence in inv. shock	$ ho_{\mu}$	0.9295	0.0235	0.9282	0.0253
Persistence in AD shock	ρ_g	0.9989	0.0042	0.9993	0.0035
Std. dev. tech. shock	s_z	0.2399	0.1262	0.2326	0.1325
Std. dev. inv. shock	s_{μ}	0.1996	0.1219	0.1900	0.1251
Std. dev. pref. shock	s_{ξ}	0.1722	0.1447	0.1857	0.1626
Std. dev. policy shock	s_r	0.0025	0.0001	0.0024	0.0001
Std. dev. AD shock	$ s_g $	0.0222	0.0091	0.0238	0.0098
Steady state inflation	$\frac{s_g}{\pi^*}$	8.6918	2.3997	10.3678	3.0793
Steady state output	y^*	1.2521	0.1033	1.2355	0.0984

- $\bullet\,$ Learning gain essentially zero.
- $\bullet\,$ All parameter estimates are very similar.
- \bullet Habit formation close to zero under both RE and Learning.
- \bullet Inflation indexation very close to one.

Description	Parameter	Estimate	Std. dev.
Learning gain	g	0.0288	0.0077
Habit formation	η	0.0772	0.1031
Inverse elasticity sub.	σ	16.6941	14.4002
Capital / output ratio	k_y	4.5086	1.5187
Consumption / output ratio	c_y	0.7213	0.0842
Inverse elasticity labor	μ	0.0132	1.3992
Capital adjustment cost	ϕ	28.1764	38.5551
Phillips curve slope	κ	0.0120	0.0154
Price indexation	γ	0.9999	0.0000
Interest rate smoothing	$ ho_r$	0.8776	0.0351
Policy feedback on output	ψ_y	0.0374	0.0661
Policy feedback on inflation	ψ_{π}	1.5654	0.4185
Persistence in tech. shock	$ ho_z$	0.0000	0.0124
Persistence in pref. shock	ρ_{ξ}	0.9611	0.0234
Persistence in inv. shock	$ ho_{\mu}$	0.9364	0.0405
Persistence in AD shock	ρ_g	0.9999	0.0001
Std. dev. tech. shock	s_z	0.2569	0.5566
Std. dev. inv. shock	s_{μ}	0.1830	0.1692
Std. dev. pref. shock	s_{ξ}	0.1707	0.1461
Std. dev. policy shock	s_r	0.0024	0.0001
Std. dev. AD shock	$rac{s_g}{\pi^*}$	0.0255	0.0154
Steady state inflation		9.5185	6.1255
Steady state output	y^*	1.2396	0.1424

- \bullet Learning gain parameter significantly greater than zero.
- All parameter estimates are very similar.
- \bullet Habit formation close to zero under both RE and Learning.
- Inflation indexation very close to one.

Learning (RE initial conditions)

Differences in Forecast Errors (Correlations)

Learning (Estimated initial conditions)

Differences in Forecast Errors (Correlations)

Technology shock

 $Investment\ shock$

Monetary policy shock

Preference shock

Aggregate demand shock

Learning (RE initial conditions)

Technology shock

Investment shock

Monetary policy shock

 ${\bf Preference\ shock}$

Aggregate demand shock

Differences in smoothed shocks (Correlations)

Learning (Estimated initial conditions)

Differences in smoothed shocks (Correlations)

- Recall estimated gain: $g = 3.51(10^{-6})$
- Tiny changes in coefficients.

• Very slow to adjust.

	RE	Learning (RE init.)	Learning (Est. init.)
MSE Output	23558.2	24868.6	24652.0
MSE Consumption	7129.3	7105.1	6883.4
MSE Investment	7118.3	6930.3	7656.7
MSE Inflation	1.6727	1.7508	1.3893
MSE Fed Funds	1.4116	1.5910	1.4483
Log-likelihood	-3042.2	-3041.6	-241.6