Notas para termodinamica

- ullet El cambio de energia interna ΔU solo depende del estado inicial y final.
- Para un proceso ciclico (donde el estado final es igual al inicial) $\Delta U=0$.
- La energia interna depende solo de la temperatura del sistema que es una variable de estado.
- Proceso adiabatico proceso que ocurre sin intercambio de calor.

Ecuaciones +

$$P \cdot V = n \cdot R \cdot T$$

$$R = 8,31 \frac{J}{K \cdot mol}$$

$$\Delta U = \frac{f}{2} \cdot n \cdot R \cdot \Delta T$$

Grados de libertad		
Gas monoatomico	Gas diatomico	Gas poliatomico
f=3	f = 5	f = 6

Proceso	Q	W	ΔU
Isocorico	$Cv\cdot n\cdot \Delta T$	0	$rac{f}{2} \cdot n \cdot R \cdot \Delta T = C v \cdot n \cdot \Delta T$
Isobarico	$Cp\cdot n\cdot \Delta T$	$P\cdot \Delta V$	$Cv\cdot n\cdot \Delta T$
Isotermico	$n \cdot R \cdot T \cdot ln(rac{V_f}{V_i})$	$n \cdot R \cdot T \cdot ln(rac{V_f}{V_i})$	0

$$Cv = rac{f}{2} \cdot R$$
 $Cp = Cv + R$

Proceso Adibatico reversible

Para un proceso adiabatico reversible, se cumple lo siguiente:

Proceso adibatico reversible		
$T \cdot V^{\gamma-1} = cte$	$P\cdot V^{\gamma}=cte$	

Dado que se cumple aquello, podemos afirmar lo siguiente:

Proceso adibatico reversible

$$Ti \cdot Vi^{\gamma-1} = Tf \cdot Vf^{\gamma-1}$$

$$Pi \cdot Vi^{\gamma} = Pf \cdot Vf^{\gamma}$$

Donde γ va a depender del tipo de gas con el que trabajemos:

Gas monoatomico	Gas diatomico	Gas poliatomico
$\gamma=rac{5}{3}$	$\gamma=rac{7}{5}$	$\gamma=rac{4}{3}$

Maquinas termicas 💫

Bomba de calor: se absorbe calor de una fuente a alta temperatura. La maquina realiza trabajo, y se libera calor a una fuente a baja temperatura.

Refrigeradores: extraen calor de un deposito a baja temperatura, y dicho calor se le entrega a un deposito de temperatura alta gracias a un trabajo que se le brinda a la maquina. (La maquina **recibe** el trabajo).

Dado que ambos son ciclos, el $\Delta U=0\Longrightarrow Q_{total}=W_{total}$

$$W = |Q_c| - |Q_f|$$

Eficiencia

$$e = \frac{ \circ til}{Entregado}$$

$$W = |Q_c| - |Q_f|$$

Eficiencia segun la maquina que se trabaje		
Maquina termica	$e=rac{W}{Q_c}$	
Ciclo de carnot	$e=1-rac{T_f}{T_c}$	
Refrigerador	$e=rac{Q_f}{W}$	
De carnot	$e=rac{T_f}{T_c-T_f}$	
Bomba de calor	$e=rac{Q_c}{W}$	
De carnot	$e=rac{T_c}{T_c-T_f}$	

Maquina de Carnot

En estas maquinas siempre vamos a reconocer un patron que se repite, y es el siguiente:

- 1. Proceso 1-2 Expansion Isotermica.
- 2. Proceso 2-3 Expansion Adiabatica.
- 3. Proceso 3-4 \longrightarrow Expansion **Isotermica**.
- 4. Proceso 4-1 → Expansion Adiabatica.

Eficiencia en una maquina termica de Carnot:

$$e = 1 - \frac{Tf}{Tc}$$

Ninguna maquina puede tener una eficiencia mayor a la de Carnot, ya que Carnot se considera como "la maquina ideal".

Si hablamos de eficiencia en un refrigerador o bomba de calor (De Carnot), la eficiencia es la siguiente:

- Refrigerador de Carnot $\longrightarrow e = \frac{Tf}{Tc Tf}$.
- Bomba de calor de Carnot $\longrightarrow e = \frac{T_c}{T_{c-Tf}}$.

Entropia

El cambio de entropia que sufre el sistema para ir de un estado inicial a uno final esta dado por:

$$\Delta S = \int_{i}^{f} \frac{dQ}{T} = \left[\frac{J}{K}\right]$$

Cambio de entropia para un proceso reversible.

• Depende solo del estado inicial y del estado final, **nunca del proceso**.

• En si la entropia siempre aumenta, lo que puede disminuir o aumentar es la variacion de entropia, la cual si le **agregamos calor** al sistema, esta **aumenta**. En el caso de que le **saquemos calor** al sistema, esta **disminuye**.

Casos para la entropia 🎚

• Proceso adiabatico reversible o isoentropico:

$$\Delta S=0$$

• Proceso Isotermico:

$$\Delta S = \int_i^f rac{dQ}{T} \quad \Longrightarrow \quad rac{1}{T} \cdot \int_i^f dQ \quad \Longrightarrow \quad \Delta S = rac{Q}{T}$$

$$\Delta S = n \cdot R \cdot ln(rac{V_f}{V_i})$$

• Proceso isobarico:

$$egin{array}{lll} Q = Cp \cdot n \cdot \Delta T & \Longrightarrow & dQ = Cp \cdot n \cdot dT \ \Delta S = \int_{i}^{f} rac{dQ}{T} & \Longrightarrow & \int_{Ti}^{Tf} rac{Cp \cdot n \cdot dT}{T} & \Longrightarrow & Cp \cdot n \cdot \int_{Ti}^{Tf} rac{dT}{T} \end{array}$$

$$\Delta S = Cp \cdot n \cdot ln(rac{Tf}{Ti})$$

• Proceso isocorico:

$$\Delta S = Cv \cdot n \cdot ln(rac{Tf}{Ti})$$