1	Contest	1				
2	Mathematics	1				
3	Data structures	2				
4	Numerical					
5	5 Number theory					
6	Combinatorial	10				
7	Graph	11				
8	Geometry	17				
9	Strings	21				
10 Various						
<u>C</u>	$\frac{\text{Contest}}{\text{Contest}}$ (1)					
template.cpp						
#i: #d: #d: #d: #d: #d: #d: #d: #d: #d:	<pre>#pragma GCC optimize("Ofast") #pragma GCC target("avx, avx2, fma, popcnt") nclude <bits stdc++.h=""> efine rep(i, a, b) for (int i = a; i < (b); ++i) efine all(x) begin(x), end(x) efine sz(x) (int)(x).size() efine uniq(x) x.resize(unique(all(x)) - x.begin()) efine ff first efine ss second efine pb push_back efine emb emplace_back ing namespace std; ing ull = unsigned long long;</bits></pre>					
	ing ll = long long:					

using pii = pair<int, int>; using vi = vector<int>; template <typename T> using min_heap = priority_queue<T, vector</pre> <T>, greater<T>>; int main() { ios::sync_with_stdio(false); cin.tie(0); return 0;

troubleshoot.txt

Write a few simple test cases if sample is not enough. Are time limits close? If so, generate max cases. Is the memory usage fine? Could anything overflow? Make sure to submit the right file. Wrong answer:

Print your solution! Print debug output, as well. Are you clearing all data structures between test cases? Can your algorithm handle the whole range of input? Read the full problem statement again.

Do you handle all corner cases correctly? Have you understood the problem correctly? Any uninitialized variables? Any overflows? Confusing N and M, i and j, etc.? Are you sure your algorithm works? What special cases have you not thought of? Are you sure the STL functions you use work as you think? Add some assertions, maybe resubmit.

Create some testcases to run your algorithm on. Go through the algorithm for a simple case.

Go through this list again. Explain your algorithm to a teammate.

Ask the teammate to look at your code. Go for a small walk, e.g. to the toilet. Is your output format correct? (including whitespace)

Rewrite your solution from the start or let a teammate do it.

Runtime error:

Have you tested all corner cases locally?

Any uninitialized variables?

Are you reading or writing outside the range of any vector? Any assertions that might fail?

Any possible division by 0? (mod 0 for example)

Any possible infinite recursion?

Invalidated pointers or iterators?

Are you using too much memory?

Debug with resubmits (e.g. remapped signals, see Various).

Time limit exceeded:

Do you have any possible infinite loops? What is the complexity of your algorithm? Are you copying a lot of unnecessary data? (References) How big is the input and output? (consider scanf) Avoid vector, map. (use arrays/unordered_map) What do your teammates think about your algorithm?

Memory limit exceeded:

What is the max amount of memory your algorithm should need? Are you clearing all data structures between test cases?

Mathematics (2)

2.1 Equations

52 lines

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e \Rightarrow x = \frac{ed - bf}{ad - bc}$$
$$cx + dy = f \Rightarrow y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given

$$x_i = \frac{\det A_i'}{\det A}$$

where A' is A with the *i*'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2) r^n.$

2.3 Trigonometry

 $\sin(v+w) = \sin v \cos w + \cos v \sin w$ $\cos(v + w) = \cos v \cos w - \sin v \sin w$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos \frac{v+w}{2}\cos \frac{v-w}{2}$$

 $(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter:
$$p = \frac{a+b+c}{2}$$
Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles):

 $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

$$\sin \alpha = \sin \beta$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$\begin{aligned} x &= r \sin \theta \cos \phi & r &= \sqrt{x^2 + y^2 + z^2} \\ y &= r \sin \theta \sin \phi & \theta &= \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z &= r \cos \theta & \phi &= \operatorname{atan2}(y, x) \end{aligned}$$

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{20}$$

2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance

 $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions

Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is

 $Bin(n, p), n = 1, 2, \dots, 0 \le p \le 1.$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \ \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is $\mathrm{Fs}(p),\ 0 \leq p \leq 1.$

$$p(k) = p(1-p)^{k-1}, k = 1, 2, ...$$

 $\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

2.8.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is $\mathrm{U}(a,b),\,a < b.$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$
$$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $Exp(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \ \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2 \sigma_1^2 + b^2 \sigma_2^2)$$

2.9 Pisano period

If m and n are coprime, then k(mn) = lcm(k(m), k(n)).

If p is a prime, then $k(p^n)$ is a divisor of $p^{n-1} \cdot k(p)$.

If p > 5 is a prime and $p \equiv \pm 1 \pmod 5$, then k(p) is a divisor of p-1.

If p > 5 is a prime and $p \equiv \pm 2 \pmod{5}$, then k(p) is a divisor of 2(p+1).

2.10 Sum of squares function

Let $r_k(n)$ denote the number of representations of n in the form $n=x_1^2+x_2^2+\cdots+x_k^2$.

$$r_2(n) = 4(d_1(n) - d_3(n))$$

where d_x is the number of divisors of n which are congruent to x modulo 4.

$$r_4(n) = 8 \sum_{d \mid n, 4 \nmid d} d; \ r_8(n) = 16 \sum_{d \mid n} (-1)^{n+d} d^3$$

If $n=2^km=2^kPQ$, $P=\prod_{v=1}^rp_v^{a_v}$, $Q=\prod_{v=1}^sq_v^{b_v}$ where p_v is a prime $\equiv 1\pmod 4$ and q_v is a prime $\equiv 3\pmod 4$, then:

$$r_3(n^2) = 6P \prod_{v=1}^{s} \left(q_v^{b_v} + 2 \frac{q_v^{b_v} - 1}{q_v - 1} \right)$$

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null-type. **Time:** $\mathcal{O}(\log N)$

<bits/extc++.h>, <ext/pb_ds/assoc_container.hpp>, <ext/pb_ds/trie_policy.hpp> 425730,
16 lines

```
using namespace __gnu_pbds;
template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,
    tree order statistics node update>;
typedef trie<string, null_type, trie_string_access_traits<>,
    pat_trie_tag, trie_prefix_search_node_update> pref_trie;
void example() {
 Tree<int> t, t2; t.insert(8);
  auto it = t.insert(10).first; assert(it == t.lower_bound(9));
        assert(t.order_of_key(10) == 1); assert(t.order_of_key
       (11) == 2); assert(*t.find_by_order(0) == 8);
 t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
  pref_trie trie;
  trie.insert(s);
  auto range=base.prefix_range(x.substr(1));
  for (auto it=range.first; t<20 && it!=range.second; it++) cout<<"
         "<<*it<<endl:
```

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but $\sim 3x$ faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
   const uint64_t C = 11(4e18 * acos(0)) | 71;
   ll operator()(1l x) const { return __builtin_bswap64(x*C); }
};
__gnu_pbds::gp_hash_table<1l,int,chash> h({},{},{},{},{},{1<<16});</pre>
```

```
SegmentTree.h
```

Description: Basic Segment tree 1D

d344de, 87 lines

```
const int MAX N = 1e5 + 7;
const int INF = 1e9 + 7;
int n;
vector <int> a:
int st[MAX_N << 2];
void build(int id, int lt, int rt) {
    if (lt == rt) {
        st[id] = a[lt - 1];
        return ;
    int mid = (lt + rt) >> 1;
   build(id << 1, lt, mid);</pre>
   build(id << 1 | 1, mid + 1, rt);
    st[id] = max(st[id << 1], st[id << 1 | 1]);
// Update one, query range
void insert(int x, int value, int id, int lt, int rt) {
    if (x < lt || rt < x) {</pre>
        return ;
    if (lt == rt) {
        st[id] = value;
        return :
    int mid = (lt + rt) >> 1;
    insert(x, value, id << 1, lt, mid);</pre>
    insert(x, value, id << 1 | 1, mid + 1, rt);
    st[id] = max(st[id << 1], st[id << 1 | 1]);
int query(int 1, int r, int id, int lt, int rt) {
    if (r < lt || rt < l) {
        return -INF;
    if (1 <= lt && rt <= r) {
        return st[id];
    int mid = (lt + rt) >> 1;
    return max(query(1, r, id << 1, lt, mid), query(1, r, id <<</pre>
          1 | 1, mid + 1, rt));
// update range, query range
long long lazy[MAX_N << 2];</pre>
void down(int id) {
    long long value = lazv[id];
    lazy[id] = 0;
    st[id << 1] += value;
    lazy[id << 1] += value;</pre>
    st[id << 1 | 1] += value;
    lazv[id << 1 | 1] += value;
void insert_range(int 1, int r, long long value, int id, int lt
     , int rt) {
    if (r < lt || rt < l) {</pre>
        return ;
    if (1 <= lt && rt <= r) {
        st[id] += value;
```

```
lazv[id] += value;
       return :
    down(id);
    int mid = (lt + rt) >> 1;
    insert_range(l, r, value, id << 1, lt, mid);</pre>
    insert_range(1, r, value, id << 1 | 1, mid + 1, rt);
    st[id] = max(st[id << 1], st[id << 1 | 1]);
long long query(int 1, int r, int id, int lt, int rt) {
    if (r < lt || rt < l) {
       return -INF;
    if (1 <= 1t && rt <= r) {
        return st[id];
    down(id);
    int mid = (lt + rt) >> 1;
    return max(query(1, r, id << 1, lt, mid), query(1, r, id <<</pre>
         1 | 1, mid + 1, rt));
```

LazySegmentTree.h

Description: Segment tree with ability to add or set values of large intervals, and compute max of intervals. Can be changed to other things. Use with a bump allocator for better performance, and SmallPtr or implicit indices to save memory.

```
Usage: Node* tr = new Node(v, 0, sz(v));
Time: \mathcal{O}(\log N).
```

bbf899, 60 lines

```
"../various/BumpAllocator.h"
const int inf = 1e9;
const bool PERSISTENT = false; // set to true for persistence
struct Node {
 Node *1 = 0, *r = 0;
 int lo, hi, mset = inf, madd = 0, val = -inf;
 Node (int lo, int hi):lo(lo), hi(hi) {} // Large interval of -inf
 Node (vi& v, int lo, int hi): lo(lo), hi(hi) {
   if (lo + 1 < hi) {
     int mid = lo + (hi - lo)/2;
     1 = new Node(v, lo, mid); r = new Node(v, mid, hi);
     val = max(1->val, r->val);
   else val = v[lo];
 int query(int L, int R) {
   if (R <= lo || hi <= L) return -inf;
   if (L <= lo && hi <= R) return val;
   push():
   return max(1->query(L, R), r->query(L, R));
 Node* set(int L, int R, int x, bool persist = PERSISTENT) {
   if (R <= lo || hi <= L) return this;
   Node* res = persist ? new Node(*this) : this;
   if (L <= lo && hi <= R) {
     res->mset = res->val = x;
     res->madd = 0;
   } else {
     res->push();
     res->l=res->l->set(L,R,x),res->r=res->r->set(L,R,x);
     res -> val = max(res -> 1 -> val, res -> r -> val);
    return res;
 Node* add(int L, int R, int x, bool persist = PERSISTENT) {
```

if (R <= lo || hi <= L) return this;

Node* res = persist ? new Node(*this) : this;

```
if (L <= lo && hi <= R) {
      if (res->mset != inf) res->mset += x;
      else res->madd += x;
      res->val += x;
    } else {
      res->push();
      res->l=res->l->add(L,R,x),res->r=res->r->add(L,R,x);
      res->val = max(res->l->val, res->r->val);
    return res;
  void push() {
    bool nw = PERSISTENT:
    if (!1) {
      nw = false;
      int mid = lo + (hi - lo)/2;
      1 = new Node(lo, mid); r = new Node(mid, hi);
    if (mset != inf)
     l=l->set(lo,hi,mset,nw),r=r->set(lo,hi,mset,nw),mset=inf;
    else if (madd)
      l=1- add (lo, hi, madd, nw), r=r- add (lo, hi, madd, nw), madd=0;
};
```

Wavelet Tree.h

Description: Basic Wavelet Tree

```
<br/>
<br/>
dits/stdc++.h>
                                                     20cd8a, 107 lines
using namespace std;
const int MAXN = (int)3e5 + 9;
const int MAXV = (int)1e9 + 9; //maximum value of any element
//array values can be negative too, use appropriate minimum and
     maximum value
struct wavelet tree {
 int lo, hi;
 wavelet tree *1, *r;
 int *b, *c, bsz, csz; // c holds the prefix sum of elements
  wavelet_tree() {
   10 = 1;
    hi = 0:
    bsz = 0;
    csz = 0, 1 = NULL;
    r = NULL;
 void init(int *from, int *to, int x, int y) {
   lo = x, hi = y;
    if(from >= to) return;
    int mid = (lo + hi) >> 1;
    auto f = [mid](int x) {
      return x <= mid;
    b = (int*)malloc((to - from + 2) * sizeof(int));
    bsz = 0;
    b[bsz++] = 0;
    c = (int*)malloc((to - from + 2) * sizeof(int));
    csz = 0;
    c[csz++] = 0;
    for(auto it = from; it != to; it++) {
     b[bsz] = (b[bsz - 1] + f(*it));
      c[csz] = (c[csz - 1] + (*it));
      bsz++;
      csz++;
    if(hi == lo) return;
    auto pivot = stable_partition(from, to, f);
    1 = new wavelet tree();
```

```
1->init(from, pivot, lo, mid);
    r = new wavelet tree();
    r->init(pivot, to, mid + 1, hi);
  //kth smallest element in [l, r]
  //for array [1,2,1,3,5] 2nd smallest is 1 and 3rd smallest is
  int kth(int 1, int r, int k) {
   if(1 > r) return 0;
   if(lo == hi) return lo;
    int inLeft = b[r] - b[1 - 1], 1b = b[1 - 1], rb = b[r];
    if(k <= inLeft) return this->l->kth(lb + 1, rb, k);
    return this->r->kth(l - lb, r - rb, k - inLeft);
  //count of numbers in [l, r] Less than or equal to k
  int LTE(int 1, int r, int k) {
    if(1 > r || k < lo) return 0;
   if(hi <= k) return r - 1 + 1;
    int 1b = b[1 - 1], rb = b[r];
    return this->1->LTE(lb + 1, rb, k) + this->r->LTE(l - lb, r
          - rb, k);
  //count of numbers in [l, r] equal to k
  int count(int 1, int r, int k) {
    if(1 > r \mid \mid k < lo \mid \mid k > hi) return 0;
    if(lo == hi) return r - 1 + 1;
    int 1b = b[1 - 1], rb = b[r];
    int mid = (lo + hi) >> 1;
    if(k <= mid) return this->l->count(lb + 1, rb, k);
    return this->r->count(1 - 1b, r - rb, k);
  //sum of numbers in [l, r] less than or equal to k
  int sum(int 1, int r, int k) {
    if(1 > r \text{ or } k < 10) \text{ return } 0;
    if(hi <= k) return c[r] - c[l - 1];
    int 1b = b[1 - 1], rb = b[r];
    return this->1->sum(lb + 1, rb, k) + this->r->sum(l - lb, r
  ~wavelet_tree() {
   delete 1;
    delete r;
};
wavelet_tree t;
int a[MAXN];
int main() {
  int i, j, k, n, m, q, l, r;
  cin >> n;
  for (i = 1; i \le n; i++) cin >> a[i];
  t.init(a + 1, a + n + 1, -MAXV, MAXV);
  //beware! after the init() operation array a[] will not be
       same
  cin >> q;
  while (q--) {
   int x:
   cin >> x;
    cin >> 1 >> r >> k;
   if(x == 0) {
     cout << t.kth(l, r, k) << endl; //kth smallest
    } else if(x == 1) {
     cout << t.LTE(1, r, k) << endl; //less than or equal to K
    else if(x == 2) {
     cout << t.count(1, r, k) << endl; //count occurrence of K</pre>
           in [l, r]
      //sum of elements less than or equal to K in [l, r]
     cout << t.sum(1, r, k) << endl;</pre>
```

```
return 0;
UnionFindRollback.h.
Description: Disjoint-set data structure with undo. If undo is not needed,
skip st, time() and rollback().
Usage: int t = uf.time(); ...; uf.rollback(t);
Time: \mathcal{O}(\log(N))
                                                        f37547, 20 lines
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : find(e[x]); }
  int time() { return sz(st); }
 void rollback(int t) {
    for (int i = time(); i --> t;)
      e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
   a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    st.emb(a, e[a]); st.emb(b, e[b]);
    e[a] += e[b]; e[b] = a;
    return true;
};
Matrix.h
Description: Basic operations on square matrices.
Usage: Matrix<int, 3> A;
A.d = \{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector < int > vec = \{1, 2, 3\};
vec = (A^N) * vec;
                                                        5cd6b8, 90 lines
<br/>
<br/>
dits/stdc++.h>
using namespace std;
const int mod = 998244353;
struct Mat {
 int n, m;
 vector<vector<int>> a;
 Mat() { }
 Mat(int _n, int _m) \{n = _n; m = _m; a.assign(n, vector < int > (
      m, 0)); }
 \label{eq:mat_vector} \mbox{Mat(vector< vector<int> > v) { n = v.size(); m = n ? v[0].}
       size() : 0; a = v; }
 inline void make_unit() {
    assert (n == m);
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) a[i][j] = i == j;
 inline Mat operator + (const Mat &b) {
    assert (n == b.n && m == b.m);
    Mat ans = Mat(n, m);
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        ans.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
    return ans;
 inline Mat operator - (const Mat &b) {
    assert (n == b.n && m == b.m);
```

```
Mat ans = Mat(n, m);
    for (int i = 0; i < n; i++) {
     for (int j = 0; j < m; j++) {
       ans.a[i][j] = (a[i][j] - b.a[i][j] + mod) % mod;
   return ans;
 inline Mat operator * (const Mat &b) {
   assert (m == b.n);
   Mat ans = Mat(n, b.m);
   for (int i = 0; i < n; i++) {
     for(int j = 0; j < b.m; j++) {
       for (int k = 0; k < m; k++) {
         ans.a[i][j] = (ans.a[i][j] + 1LL * a[i][k] * b.a[k][j]
              ] % mod) % mod;
   return ans;
 inline Mat pow(long long k) {
   assert (n == m);
   Mat ans(n, n), t = a; ans.make_unit();
   while (k) {
     if (k \& 1) ans = ans * t;
     t = t * t;
     k >>= 1;
   return ans:
 inline Mat& operator += (const Mat& b) { return *this = (*
     this) + b; }
 inline Mat& operator -= (const Mat& b) { return *this = (*
      this) - b; }
 inline Mat& operator *= (const Mat& b) { return *this = (*
     this) * b; }
 inline bool operator == (const Mat& b) { return a == b.a; }
 inline bool operator != (const Mat& b) { return a != b.a; }
int32 t main() {
 ios_base::sync_with_stdio(0);
 cin.tie(0);
 int n, m, k; cin >> n >> m >> k;
 Mat a(n, m);
 for (int i = 0; i < n; i++) {
   for (int j = 0; j < m; j++) {
     cin >> a.a[i][i];
 Mat b(m, k):
 for (int i = 0; i < m; i++) {
   for (int j = 0; j < k; j++) {
     cin >> b.a[i][j];
 Mat ans = a * b;
 for (int i = 0; i < n; i++) {
   for (int j = 0; j < k; j++) {
     cout << ans.a[i][j] << ' ';
   cout << '\n';
 return 0;
```

DynamicLichaoTree.h

Description: Container where you can add segment of the form kx+m, and query maximum/minimum values at points x. Useful for dynamic programming ("convex hull trick").

```
Time: \mathcal{O}(\log N)
```

77a4a3, 48 lines

```
template<typename T, T minX, T maxX, T defVal, bool maximum>
struct DynamicLiChaoTree {
  struct Line { T a, b; inline T calc(T x) const { return a * x
       + b; }};
  struct Node {
   Line line = {0, maximum ? defVal : -defVal};
   Node *lt = nullptr, *rt = nullptr;
  void update (Node* cur, T l, T r, T u, T v, Line nw) {
    \#define newNode(x) if (!x) x = new Node()
    if (v < 1 || r < u) return;
   T \text{ mid} = (1 + r) >> 1;
    if (u <= 1 && r <= v) {
     if (cur->line.calc(1) >= nw.calc(1)) swap(cur->line, nw);
     if (cur->line.calc(r) <= nw.calc(r)) { cur->line = nw;
          return; }
      if (nw.calc(mid) >= cur->line.calc(mid)) {
       newNode(cur->rt);
        update(cur->rt, mid + 1, r, u, v, cur->line);
       cur->line = nw;
      } else {
       newNode(cur->lt);
        update(cur->lt, l, mid, u, v, nw);
    } else {
     newNode(cur->lt); newNode(cur->rt);
     update(cur->lt, l, mid, u, v, nw);
     update(cur->rt, mid + 1, r, u, v, nw);
    #undef newNode
public:
  DynamicLiChaoTree() { root = new Node(); }
  void add(T a, T b, T l = minX, T r = maxX) {
   if (!maximum) a = -a, b = -b;
    update(root, minX, maxX, 1, r, {a, b});
  T query(T x) {
   Node* cur = root;
    T res = cur->line.calc(x), l = minX, r = maxX, mid;
    while (cur) {
     res = max(res, cur->line.calc(x));
     mid = (1 + r) >> 1;
     if (x <= mid) cur = cur->lt, r = mid;
     else cur = cur->rt, 1 = mid + 1;
    return maximum ? res : -res;
};
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

Time: $\mathcal{O}(\log N)$

8ec1c7, 29 lines

```
struct Line {
 mutable ll k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(11 x) const { return p < x; }
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const 11 inf = LLONG MAX;
```

```
ll div(ll a, ll b) { // floored division
   return a / b - ((a ^ b) < 0 && a % b); }
 bool isect(iterator x, iterator y) {
   if (y == end()) return x \rightarrow p = inf, 0;
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
 void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
   while ((y = x) != begin() \&\& (--x)->p >= y->p)
     isect(x, erase(y));
 ll query(ll x) {
   assert(!empty());
   auto 1 = *lower_bound(x);
    return 1.k * x + 1.m;
};
```

Treap.h

Time: $\mathcal{O}(\log N)$

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data.

9556fc, 49 lines struct Node { Node *1 = 0, *r = 0;

```
int val. v, c = 1;
 Node(int val) : val(val), y(rand()) {}
 void recalc();
};
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each (n->1, f); f(n->val); each (n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
 if (!n) return {};
 if (cnt(n->1) >= k) \{ // "n-> val >= k" for lower_bound(k) \}
    auto pa = split(n->1, k);
    n->1 = pa.second;
    n->recalc();
    return {pa.first, n};
  } else {
    auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k"
    n->r = pa.first;
    n->recalc();
    return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
 if (!r) return 1;
 if (1->y > r->y) {
    1->r = merge(1->r, r);
    l->recalc();
    return 1;
  } else {
    r->1 = merge(1, r->1);
    r->recalc();
    return r;
Node* ins(Node* t, Node* n, int pos) {
  auto pa = split(t, pos);
  return merge (merge (pa.first, n), pa.second);
```

```
// Example application: move the range (l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
 tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k \le 1) t = merge(ins(a, b, k), c);
 else t = merge(a, ins(c, b, k - r));
```

```
BIT2DUpdateRangeQueryRange.h
Description: BIT 2D Update range Query range
                                                    87eb75, 64 lines
using namespace std;
const int N = 1010;
struct BIT2D {
 long long M[N][N][2], A[N][N][2];
   memset (M, 0, sizeof M);
   memset(A, 0, sizeof A);
 void upd2(long long t[N][N][2], int x, int y, long long mul,
      long long add) {
    for (int i = x; i < N; i += i & -i) {
      for (int j = y; j < N; j += j & -j) {
       t[i][i][0] += mul;
       t[i][j][1] += add;
 void upd1(int x, int y1, int y2, long long mul, long long add
   upd2(M, x, y1, mul, -mul * (y1 - 1));
   upd2 (M, x, v2, -mul, mul * v2);
   upd2(A, x, y1, add, -add * (y1 - 1));
   upd2 (A, x, y2, -add, add \star y2);
 void upd(int x1, int y1, int x2, int y2, long long val) {
   upd1(x1, y1, y2, val, -val * (x1 - 1));
   upd1(x2, y1, y2, -va1, va1 * x2);
 long long query2(long long t[N][N][2], int x, int y) {
   long long mul = 0, add = 0;
   for (int i = y; i > 0; i -= i \& -i) {
     mul += t[x][i][0];
     add += t[x][i][1];
   return mul * x + add;
 long long query1(int x, int y) {
   long long mul = 0, add = 0;
   for(int i = x; i > 0; i -= i & -i) {
     mul += query2(M, i, y);
     add += query2(A, i, y);
   return mul * x + add;
 long long query(int x1, int y1, int x2, int y2) {
   return query1(x2, y2) - query1(x1 - 1, y2) - query1(x2, y1
        -1) + query1(x1 - 1, y1 - 1);
} t;
int main() {
 int q;
 cin >> q;
 while(q--) {
   int ty, x1, y1, x2, y2;
```

cin >> ty;

 $if(ty == 1) {$

```
6
```

```
long long val;
  cin >> x1 >> y1 >> x2 >> y2 >> val;
  t.upd(x1, y1, x2, y2, val); // add val from top-left(x1,
      y1) to bottom-right (x2, y2);
} else {
  cin >> x1 >> y1 >> x2 >> y2;
  cout << t.query(x1, y1, x2, y2) << '\n'; // output sum
      from top-left(x1, y1) to bottom-right (x2, y2);
}
}</pre>
```

MoQueries.h

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in).

```
Time: \mathcal{O}\left(N\sqrt{Q}\right)
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer
vi mo(vector<pii> 0) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t) \{ return K(Q[s]) < K(Q[t]); \});
  for (int qi : s) {
   pii q = Q[qi];
    while (L > q.first) add(--L, 0);
    while (R < g.second) add (R++, 1);
    while (L < q.first) del(L++, 0);
    while (R > g.second) del(--R, 1);
    res[qi] = calc();
  return res;
vi moTree(vector<array<int, 2>> 0, vector<vi>& ed, int root=0){
 int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [\&] (int x, int p, int dep, auto& f) -> void {
   par[x] = p;
   L[x] = N;
   if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
   if (!dep) I[x] = N++;
   R[x] = N;
  dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
  for (int qi : s) rep(end, 0, 2) {
   int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] \le L[a] \&\& R[a] \le R[b]))
     I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
    if (end) res[qi] = calc();
  return res;
```

Numerical (4)

4.1 Polynomials and recurrences

```
Polynomial.h
                                                    c9b7b0, 17 lines
struct Polv {
  vector<double> a;
  double operator()(double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val:
 void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
   a.pop_back();
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for (int i=sz(a)-1; i--;) c=a[i], a[i]=a[i+1]*x0+b, b=c;
   a.pop_back();
};
```

PolyRoots.h

Description: Finds the real roots to a polynomial.

Usage: polyRoots({{2,-3,1}},-le9,le9) // solve $x^2-3x+2=0$ **Time:** $\mathcal{O}(n^2 \log(1/\epsilon))$

```
"Polynomial.h"
                                                     8e8096, 23 lines
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) \{ return \{-p.a[0]/p.a[1]\}; \}
 vector<double> ret;
 Poly der = p;
 der.diff();
 auto dr = polyRoots(der, xmin, xmax);
 dr.emb(xmin-1);
 dr.emb(xmax+1);
 sort(all(dr));
 rep(i, 0, sz(dr) -1) {
   double l = dr[i], h = dr[i+1];
   bool sign = p(1) > 0;
   if (sign ^ (p(h) > 0)) {
     rep(it, 0, 60) { // while (h - l > 1e-8)
       double m = (1 + h) / 2, f = p(m);
       if ((f <= 0) ^ sign) 1 = m;
       else h = m:
     ret.emb((1 + h) / 2);
 return ret;
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + \ldots + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \ldots n-1$. **Time:** $\mathcal{O}\left(n^2\right)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
  temp[i] -= last * x[k];
```

```
}
return res;
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version.

```
Usage: double func(double x) { return 4+x+.3*x*x; }
double xmin = qss(-1000, 1000, func);
Time: \mathcal{O}(\log((b-a)/\epsilon))
                                                      31d45b, 14 lines
double gss(double a, double b, double (*f)(double)) {
 double r = (sgrt(5)-1)/2, eps = 1e-7;
 double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2);
  while (b-a > eps)
   if (f1 < f2) { //change\ to > to\ find\ maximum}
      b = x2; x2 = x1; f2 = f1;
      x1 = b - r*(b-a); f1 = f(x1);
    } else {
      a = x1; x1 = x2; f1 = f2;
      x2 = a + r*(b-a); f2 = f(x2);
 return a:
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x=0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\}; vd b = \{1,1,-4\}, c = \{-1,-1\}, x; T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
aa8530, 62 lines
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 \mid \mid MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
 int m, n;
  vi N, B;
  vvd D:
  LPSolver(const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }
      rep(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
      N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
      b[s] = a[s] * inv2;
    rep(j, 0, n+2) if (j != s) D[r][j] *= inv;
```

rep(i,0,m+2) if (i != r) D[i][s] *= -inv;

```
7
```

```
D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
     int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
     if (D[x][s] >= -eps) return true;
      int r = -1:
      rep(i,0,m) {
       if (D[i][s] <= eps) continue;</pre>
       if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
     pivot(r, s);
  T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
     pivot(r, n);
     if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;
      rep(i, 0, m) if (B[i] == -1) {
       int s = 0;
       rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i, 0, m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

4.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
    int b = i;
  rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
    if (i != b) swap(a[i], a[b]), res *= -1;
    res *= a[i][i];
    if (res == 0) return 0;
  rep(j,i+1,n) {
      double v = a[j][i] / a[i][i];
      if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
    }
}
return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version. **Time:** $\mathcal{O}\left(N^3\right)$

```
and a state of (N')

and
```

while (a[j][i] != 0) { // gcd step

```
ll t = a[i][i] / a[j][i];
    if (t) rep(k,i,n)
        a[i][k] = (a[i][k] - a[j][k] * t) % mod;
    swap(a[i], a[j]);
    ans *= -1;
    }
}
ans = ans * a[i][i] % mod;
if (!ans) return 0;
}
return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
   double v, bv = 0;
   rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
   if (bv <= eps) {
     rep(j,i,n) if (fabs(b[j]) > eps) return -1;
     break:
    swap(A[i], A[br]);
   swap(b[i], b[br]);
   swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
    rep(j, i+1, n) {
     double fac = A[j][i] * bv;
     b[j] = fac * b[i];
     rep(k, i+1, m) A[j][k] -= fac*A[i][k];
    rank++;
 x.assign(m, 0);
 for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
   rep(j, 0, i) b[j] -= A[j][i] * b[i];
 return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
"SolveLinear.h" 08e495, 7 lines  \begin{split} &\text{rep}(\texttt{j},\texttt{0},\texttt{n}) &\text{ if } (\texttt{j} != \texttt{i}) \text{ // instead of } rep(\texttt{j}, i+1, n) \\ &\text{// } \dots \text{ then at the end:} \\ &\text{x.assign}(\texttt{m}, \text{ undefined}); \\ &\text{rep}(\texttt{i},\texttt{0}, \text{rank}) &\text{ if } (\text{fabs}(\texttt{A}[\texttt{i}][\texttt{j}]) > \text{eps) goto fail;} \\ &\text{x}[\texttt{col}[\texttt{i}]] = \texttt{b}[\texttt{i}] \text{ / A}[\texttt{i}][\texttt{i}]; \\ &\text{fail:; } \} \end{split}
```

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}(n^2m)$

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
 assert(m \le sz(x));
 vi col(m); iota(all(col), 0);
   for (br=i; br<n; ++br) if (A[br].any()) break;
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j, 0, n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
   rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
     A[j] ^= A[i];
   rank++;
 x = hs():
 for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j,0,i) b[j] ^= A[j][i];
 return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step. Time: $\mathcal{O}(n^3)$

```
ebfff6, 35 lines
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j, i+1, n) {
     double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k, i+1, n) A[j][k] -= f*A[i][k];
      rep(k, 0, n) tmp[j][k] -= f*tmp[i][k];
```

```
rep(j,i+1,n) A[i][j] /= v;
rep(j,0,n) tmp[i][j] /= v;
A[i][i] = 1;
}

for (int i = n-1; i > 0; --i) rep(j,0,i) {
   double v = A[j][i];
   rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
}

rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
```

MatrixInverse-mod.h

Description: Invert matrix A modulo a prime. Returns rank; result is stored in A unless singular (rank < n). For prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

Time: $\mathcal{O}\left(n^3\right)$

```
"../number-theory/ModPow.h"
                                                      a6f68f, 36 lines
int matInv(vector<vector<ll>>& A) {
 int n = sz(A); vi col(n);
  vector<vector<11>> tmp(n, vector<11>(n));
  rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n) if (A[j][k]) {
     r = j; c = k; goto found;
   return i;
found:
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c
    swap(col[i], col[c]);
    11 v = modpow(A[i][i], mod - 2);
    rep(j,i+1,n) {
     ll f = A[j][i] * v % mod;
     A[j][i] = 0;
     rep(k, i+1, n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
     rep(k,0,n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;
    rep(j,i+1,n) A[i][j] = A[i][j] * v % mod;
    rep(j, 0, n) tmp[i][j] = tmp[i][j] * v % mod;
   A[i][i] = 1;
  for (int i = n-1; i > 0; --i) rep(j, 0, i) {
   11 v = A[i][i];
   rep(k, 0, n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;
  rep(i,0,n) rep(j,0,n)
   A[col[i]][col[i]] = tmp[i][i] % mod + (tmp[i][i] < 0 ? mod
       : 0);
  return n;
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,$$

where a_0 , a_{n+1} , b_i , c_i and d_i are known. a can then be obtained from

$$\{a_i\} = \operatorname{tridiagonal}(\{1,-1,-1,\ldots,-1,1\},\{0,c_1,c_2,\ldots,c_n\},\\ \{b_1,b_2,\ldots,b_n,0\},\{a_0,d_1,d_2,\ldots,d_n,a_{n+1}\}).$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

Time: $\mathcal{O}\left(N\right)$ 8f9fa8, 26 lines

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
   const vector<T>& sub, vector<T> b) {
 int n = sz(b); vi tr(n);
 rep(i, 0, n-1) {
   if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0}
     b[i+1] -= b[i] * diag[i+1] / super[i];
     if (i+2 < n) b[i+2] = b[i] * sub[i+1] / super[i];
     diag[i+1] = sub[i]; tr[++i] = 1;
     diag[i+1] -= super[i]*sub[i]/diag[i];
     b[i+1] -= b[i] * sub[i] / diag[i];
 for (int i = n; i--;) {
   if (tr[i]) {
     swap(b[i], b[i-1]);
     diag[i-1] = diag[i];
     b[i] /= super[i-1];
   } else {
     b[i] /= diag[i];
     if (i) b[i-1] -= b[i] * super[i-1];
 }
 return b:
```

4.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: $\operatorname{conv}(a, b) = c$, where $c[x] = \sum_x a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum_i a_i^2 + \sum_i b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod.

Time: $\mathcal{O}(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
  int n = sz(a), L = 31 - __builtin_clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k *= 2) {
    R.resize(n); rt.resize(n);
    auto x = polar(1.0L, acos(-1.0L) / k);
    rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];</pre>
```

```
vi rev(n);
 rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
 vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x *= x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
 return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

```
"FastFourierTransform.h"
typedef vector<ll> vl;
template<int M> vl convMod(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 vl res(sz(a) + sz(b) - 1);
 int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
 vector < C > L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
 rep(i, 0, sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
 fft(L), fft(R);
 rep(i,0,n) {
   int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
 fft (outl), fft (outs);
 rep(i, 0, sz(res)) {
   11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
    11 bv = 11(imag(out1[i])+.5) + 11(real(outs[i])+.5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
 return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_x a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. conv(a, b) = c, where $c[x] = \sum_x a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

```
Time: \mathcal{O}(N \log N)
```

00ced6, 35 lines

```
".../number-theory/ModPow.h" ced03d, 33 line const 11 mod = (119 << 23) + 1, root = 62; // = 998244353 // For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21 // and 483 << 21 (same root). The last two are > 10^59.
```

```
typedef vector<ll> v1;
void ntt(vl &a) {
  int n = sz(a), L = 31 - _builtin_clz(n);
  static vl rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
   rt.resize(n);
   11 z[] = \{1, modpow(root, mod >> s)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  vi rev(n);
  rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
  int s = sz(a) + sz(b) - 1, B = 32 - \underline{\underline{}}builtin\_clz(s), n = 1
  int inv = modpow(n, mod - 2);
  vl L(a), R(b), out(n);
  L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i, 0, n) out[-i \& (n - 1)] = (ll)L[i] * R[i] % mod * inv %
  ntt(out);
  return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

Time: $\mathcal{O}(N \log N)$

464cf3, 16 lines

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

 $\bf Description:$ Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM ≤ mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
11* inv = new 11[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

b83e45, 8 lin

```
const 11 mod = 1000000007; // faster if const

11 modpow(11 b, 11 e) {
    11 ans = 1;
    for (; e; b = b * b % mod, e /= 2)
        if (e & 1) ans = ans * b % mod;
    return ans;
}
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a.

Time: $\mathcal{O}\left(\sqrt{m}\right)$

c040b8, 11 lin

```
11 modLog(11 a, 11 b, 11 m) {
    11 n = (11) sqrt(m) + 1, e = 1, f = 1, j = 1;
    unordered_map<11, 11> A;
    while (j <= n && (e = f = e * a % m) != b % m)
        A[e * b % m] = j++;
    if (e == b % m) return j;
    if (__gcd(m, e) == __gcd(m, b))
        rep(i,2,n+2) if (A.count(e = e * f % m))
        return n * i - A[e];
    return -1;
}</pre>
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c) \% m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

670e3d, 13 lines

```
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
  ull res = k / m * sumsq(to) + c / m * to;
  k % = m; c % = m;
  if (!k) return res;
  ull to2 = (to * k + c) / m;
  return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
}
ll modsum(ull to, ll c, ll k, ll m) {
  c = ((c % m) + m) % m;
  k = ((k % m) + m) % m;
  return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
}
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
    for (; e; b = modmul(b, b, mod), e /= 2)
        if (e & 1) ans = modmul(ans, b, mod);
    return ans;
}
```

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

```
"ModPow.h"
                                                        19a793, 24 lines
11 sqrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
 if (a == 0) return 0;
 assert (modpow(a, (p-1)/2, p) == 1); // else no solution
 if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
 11 s = p - 1, n = 2;
 int r = 0, m;
 while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
 11 x = modpow(a, (s + 1) / 2, p);
 11 b = modpow(a, s, p), g = modpow(n, s, p);
  for (;; r = m) {
    11 t = b;
    for (m = 0; m < r && t != 1; ++m)
      t = t * t % p;
    if (m == 0) return x;
    11 \text{ gs} = \text{modpow}(g, 1LL << (r - m - 1), p);
    q = qs * qs % p;
    x = x * qs % p;
    b = b * q % p;
```

5.2 Primality

FastEratosthenes.h

 $\textbf{Description:} \ \ \text{Prime sieve for generating all primes smaller than LIM}.$

Time: LIM=1e9 ≈ 1.5 s

c6f45b, 20 line

```
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
  vi pr = \{2\}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i \le S; i += 2) if (!sieve[i]) {
    cp.emb(i, i * i / 2);
    for (int j = i * i; j \le S; j += 2 * i) sieve[j] = 1;
  for (int L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
      for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.emb((L + i) * 2 + 1);
  for (int i : pr) isPrime[i] = 1;
  return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMulLL.h"
                                                      60dcd1, 12 lines
bool isPrime(ull n) {
  if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
  ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\},
      s = \underline{builtin_ctzll(n-1)}, d = n >> s;
  for (ull a : A) { // ^ count trailing zeroes
   ull p = modpow(a%n, d, n), i = s;
    while (p != 1 && p != n - 1 && a % n && i--)
     p = modmul(p, p, n);
    if (p != n-1 && i != s) return 0;
  return 1:
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                      a33cf<u>6</u>, 18 lines
ull pollard(ull n) {
  auto f = [n] (ull x) { return modmul(x, x, n) + 1; };
  ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  while (t++ % 40 | | __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
  return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
  if (isPrime(n)) return {n};
  ull x = pollard(n);
  auto 1 = factor(x), r = factor(n / x);
 1.insert(l.end(), all(r));
  return 1;
```

PrimeCounting.h

Description: Count number of primes from 1 to n.

a1c48e, 30 lines

```
11 count_primes(ll n) {
  vector<11> v, dp;
  for (11 k = 1; k * k <= n; ++k) {
   v.emb(n / k); v.emb(k);
  sort(all(v)); uniq(v);
  // return i such that v[i] = x, since v[i] = i + 1 for i \le x
  // and v[v.size() - i] = n / i for i \le sqrt(n),
  // we can calculate index in O(1)
  ll sq = (ll) sqrt(n);
  auto geti = [&](11 x) {
    return (x \le sq)? ((int)x - 1): (int)(v.size() - (n / x))
  dp.resize(sz(v));
  rep(i,0,sz(v)) dp[i] = v[i]; // S(n, 0) = n
  int a = 0;
```

```
for (11 p = 2; p * p <= n; ++p) {
  // this condition is true for primes
  if (dp[geti(p)] != dp[geti(p - 1)]) {
    for (int i = (int)v.size() - 1; i >= 0; --i) {
     if (v[i] 
     dp[i] -= dp[geti(v[i] / p)] - a;
return dp[geti(n)] - 1;
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in __qcd instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
ll euclid(ll a, ll b, ll &x, ll &y) {
 if (!b) return x = 1, y = 0, a;
 11 d = euclid(b, a % b, y, x);
 return y = a/b * x, d;
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey 0 < x < lcm(m, n). Assumes $mn < 2^{62}$. Time: $\log(n)$

```
"euclid.h"
                                                      04d93a, 7 lines
ll crt(ll a, ll m, ll b, ll n) {
 if (n > m) swap(a, b), swap(m, n);
 11 x, y, g = euclid(m, n, x, y);
 assert((a - b) % g == 0); // else no solution
 x = (b - a) % n * x % n / q * m + a;
 return x < 0 ? x + m*n/g : x;
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

```
ax + by = d
```

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, $m, n \text{ coprime } \Rightarrow \phi(mn) = \phi(m)\phi(n).$ If $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ then $\phi(n) =$ $(p_1 - 1)p_1^{k_1 - 1}...(p_r - 1)p_r^{k_r - 1}.$ $\phi(n) = n \cdot \prod_{p|n} (1 - 1/p).$ $\sum_{d|n} \phi(d) = n, \sum_{1 \le k \le n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$

Euler's thm: $a, n \text{ coprime } \Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

const int LIM = 5000000;

```
int phi[LIM];
void calculatePhi() {
 rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
 for (int i = 3; i < LIM; i += 2) if (phi[i] == i)
   for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number x > 0, finds the closest rational approximation p/q with $p, q \leq N$. It will obey $|p/q - x| \leq 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

```
Time: \mathcal{O}(\log N)
typedef double d; // for N \sim 1e7; long double for N \sim 1e9
pair<11, 11> approximate(d x, 11 N) {
 11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; dy = x;
    ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
       a = (11) floor(y), b = min(a, lim),
       NP = b*P + LP, NQ = b*Q + LQ;
    if (a > b) {
      // If b > a/2, we have a semi-convergent that gives us a
      // better approximation; if b = a/2, we *may* have one.
      // Return {P, Q} here for a more canonical approximation.
      return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q))?
        make_pair(NP, NQ) : make_pair(P, Q);
    if (abs(y = 1/(y - (d)a)) > 3*N) {
      return {NP, NQ};
    LP = P; P = NP;
    LQ = Q; Q = NQ;
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3} Time: $\mathcal{O}(\log(N))$

```
struct Frac { ll p, q; };
template<class F>
Frac fracBS(F f, 11 N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N]
 if (f(lo)) return lo;
 assert(f(hi));
  while (A || B) {
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
      Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
      if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
        adv -= step; si = 2;
    hi.p += lo.p * adv;
    hi.q += lo.q * adv;
    dir = !dir:
    swap(lo, hi);
    A = B; B = !!adv;
 return dir ? hi : lo;
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

```
a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),
```

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Fibonacci

 $F[2k] = F[k] * (2 * F[k+1] - F[k]) \ F[2k+1] = F[k+1]^2 + F[k]^2 \ F1^2 + F2^2 + F3^3 + \dots Fn^2 = Fn * Fn + 1$

5.7 Primes

p=962592769 is such that $2^{21}\mid p-1,$ which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than $1\,000\,000.$

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^a-2}$.

5.8 Estimates

 $\sum_{d|n} d = O(n \log \log n).$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.9 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d \mid n} f(d) \Leftrightarrow f(n) = \sum_{d \mid n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\sum_{d|n} \mu(d) = [n = 1]$$
 (very useful)

$$g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 < m < n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 < m < n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor)$$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

n	1 2 3	4	5 6	7	8		9	10	
								628800	
n	11	12	13	1	4	15	16	17	
n!	4.0e7	4.86	e8 6.2e	9.8.7	e10 1.	3e12	2.1e13	3.6e14	
n	20	25	30	40	50	100	150	171	
n!	2e18	2e25	3e32	8e47	3e64	9e157	6e262	$2 > DBL_1$	ЛАХ

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table.

Time: $\mathcal{O}\left(n\right)$

044568, 6 lines

6.1.2 Cycles

Let $g_S(n)$ be the number of n-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

$$\frac{n}{p(n)} \begin{vmatrix} 0.1 & 2.3 & 4.5 & 6.7 & 8.9 & 20 & 50 & 100 \\ 1.1 & 2.3 & 5.7 & 11 & 15 & 22 & 30 & 627 & \sim 2e5 & \sim 2e8 \end{vmatrix}$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + \ldots + n_1 p + n_0$ and $m = m_k p^k + \ldots + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.2.3 Binomials

multinomial.h

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

 $c(8,k) = 8,0,5040,13068,13132,6769,1960,322,28,1 \\ c(n,2) = 0,0,1,3,11,50,274,1764,13068,109584,\dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$ # with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- ullet strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.

- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$ Time: $\mathcal{O}(VE)$

```
const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
  nodes[s].dist = 0;
  sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
  rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
   if (abs(cur.dist) == inf) continue;
   11 d = cur.dist + ed.w;
   if (d < dest.dist) { dest.prev = ed.a; dest.dist = (i < lim</pre>
         -1 ? d : -inf); }
  rep(i,0,lim) for (Ed e : eds) { if (nodes[e.a].dist == -inf)
      nodes[e.b].dist = -inf; }
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf_{i \in I} if_i$ and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

```
Time: \mathcal{O}(N^3)
```

531245, 12 lines

```
const 11 inf = 1LL << 62;
void floydWarshall(vector<vector<11>>& m) {
  int n = sz(m);
  rep(i, 0, n) m[i][i] = min(m[i][i], OLL);
  rep(k, 0, n) rep(i, 0, n) rep(j, 0, n)
    if (m[i][k] != inf && m[k][j] != inf) {
      auto newDist = max(m[i][k] + m[k][j], -inf);
     m[i][j] = min(m[i][j], newDist);
  rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
    if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
```

XYBFS.h

Description: Use queue to find shortest path from single source when all edges have weight W = X or $W = Y(X, Y \ge 0)$ Time: $\mathcal{O}(N+M)$ 2a89cc, 11 lines

queue QX , QY push source S to QX while one of the two queues is not empty: u = pop minimal distant node among the two queue heads for all edges e of form (u,v): if dist(v) > dist(u) + cost(e): dist(v) = dist(u) + cost(e);if cost(e) == X: QX.push(dist(v),v); else:

```
QY.push(dist(v),v);
```

TopoSort.h

Time: $\mathcal{O}\left(|V| + |E|\right)$

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
501c48, 14 lines
vi topoSort(const vector<vi>& gr) {
 vi indeg(sz(gr)), ret;
 for (auto& li : gr) for (int x : li) indeg[x]++;
 queue<int> q; // use priority_queue for lexic. largest ans.
 rep(i, 0, sz(qr)) if (indeg[i] == 0) q.push(i);
 while (!q.empty()) {
   int i = q.front(); // top() for priority queue
   ret.emb(i);
   q.pop();
   for (int x : gr[i])
     if (--indeg[x] == 0) q.push(x);
 return ret:
```

7.2 Network flow

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

Time: $\mathcal{O}\left(V^2\sqrt{E}\right)$

```
9ef5ca, 47 lines
struct PushRelabel {
 struct Edge {
   int dest, back;
   11 f, c;
 };
 vector<vector<Edge>> q;
 vector<11> ec;
 vector<Edge*> cur;
 vector<vi> hs; vi H;
 PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
 void addEdge(int s, int t, ll cap, ll rcap=0) {
   if (s == t) return;
   g[s].pb({t, sz(g[t]), 0, cap});
   g[t].pb({s, sz(g[s])-1, 0, rcap});
 void addFlow(Edge& e, ll f) {
   Edge &back = g[e.dest][e.back];
   if (!ec[e.dest] && f) hs[H[e.dest]].emb(e.dest);
   e.f += f; e.c -= f; ec[e.dest] += f;
   back.f -= f; back.c += f; ec[back.dest] -= f;
 ll calc(int s, int t) {
   int v = sz(g); H[s] = v; ec[t] = 1;
   vi co(2*v); co[0] = v-1;
    rep(i,0,v) cur[i] = g[i].data();
    for (Edge& e : g[s]) addFlow(e, e.c);
    for (int hi = 0;;) {
     while (hs[hi].empty()) if (!hi--) return -ec[s];
     int u = hs[hi].back(); hs[hi].pop_back();
     while (ec[u] > 0) // discharge u
       if (cur[u] == g[u].data() + sz(g[u])) {
         H[u] = 1e9;
          for (Edge& e : g[u]) if (e.c && H[u] > H[e.dest]+1)
           H[u] = H[e.dest]+1, cur[u] = &e;
          if (++co[H[u]], !--co[hi] && hi < v)
```

```
rep(i, 0, v) if (hi < H[i] && H[i] < v)
            --co[H[i]], H[i] = v + 1;
        hi = H[u];
      } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
        addFlow(*cur[u], min(ec[u], cur[u]->c));
      else ++cur[u];
bool leftOfMinCut(int a) { return H[a] >= sz(g); }
```

MinCostMaxFlow.h

Description: Min-cost max-flow, assumes no negative cycles.

```
Time: Ignoring SPFA, \mathcal{O}(FM \log M) if caps are integers and F is max flow.
struct MCMF {
  using F = 11; using C = 11;
  const F INF FLOW = numeric limits<F>::max();
  const C INF_COST = numeric_limits<C>::max();
    int to; F cap; C cost; int next;
    Edge (int to, F cap, C cost, int next) : to(to), cap(cap),
         cost(cost), next(next) {}
  int n, t, S, T; F totalFlow; C totalCost;
  vi last, vis; vector<C> dis; vector<Edge> edges;
  MCMF(int n) : n(n), t(0), totalFlow(0), totalCost(0), last(n,
        -1), vis(n, 0), dis(n, 0) {}
  int addEdge(int from, int to, F cap, C cost) {
    edges.push_back(Edge(to, cap, cost, last[from]));
    last[from] = t++;
    edges.push_back(Edge(from, 0, -cost, last[to]));
    last[to] = t++;
    return t - 2;
  pair<F, C> maxflow(int _S, int _T) {
    S = _S; T = _T; SPFA();
    while (1) { while (1) {
        rep(i,0,n) vis[i] = 0;
        if (!findFlow(S, INF_FLOW)) break;
      if (!modifyLabel()) break;
    return {totalFlow, totalCost};
private:
  void SPFA() {
    rep(i,0,n) dis[i] = INF_COST;
    min_heap<pair<C, int>> Q;
    Q.emplace(dis[S] = 0, S);
    while (!Q.empty()) {
      C d = Q.top().first;
      int x = Q.top().second;
      Q.pop();
      // For double: dis[x] > d + EPS
      if (dis[x] != d) continue;
      for (int it = last[x]; it >= 0; it = edges[it].next)
        if (edges[it].cap > 0 && dis[edges[it].to] > d + edges[
          Q.emplace(dis[edges[it].to] = d + edges[it].cost,
               edges[it].to);
    C disT = dis[T];
    rep(i, 0, n) dis[i] = disT - dis[i];
  F findFlow(int x, F flow) {
    if (x == T) {
      totalCost += dis[S] * flow; totalFlow += flow;
      return flow;
```

```
vis[x] = 1; F now = flow;
    for (int it = last[x]; it >= 0; it = edges[it].next)
     // For double: abs(dis[edges[it].to]+edges[it].cost-dis[x
     if (edges[it].cap && !vis[edges[it].to] &&
          dis[edges[it].to] + edges[it].cost == dis[x]) {
       F tmp = findFlow(edges[it].to,min(now,edges[it].cap));
       edges[it].cap-=tmp;edges[it^1].cap+=tmp;now-=tmp;
       if (!now) break;
    return flow - now;
  bool modifyLabel() {
   C d = INF_COST;
    rep(i,0,n) if (vis[i])
     for (int it = last[i]; it >= 0; it = edges[it].next)
       if (edges[it].cap && !vis[edges[it].to])
          d = min(d, dis[edges[it].to]+edges[it].cost-dis[i]);
    // For double: if (d > INF\_COST / 10)
                                              INF\_COST = 1e20
    if (d == INF_COST) return false;
   rep(i,0,n) if (vis[i]) dis[i] += d;
    return true;
};
```

Dinic.h

} while (lvl[t]);

Description: Flow algorithm with complexity $O(VE \log U)$ where U = $\max |\operatorname{cap}|$. $O(\min(E^{1/2}, V^{2/3})E)$ if U = 1; $O(\sqrt{V}E)$ for bipartite matching. b2af4f, 42 lines

struct Dinic { struct Edge { int to, rev; 11 c. oc: 11 flow() { return max(oc - c, OLL); } // if you need flows }; vi lvl, ptr, q; vector<vector<Edge>> adj; $Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) \{ \}$ void addEdge(int a, int b, ll c, ll rcap = 0) { adj[a].pb({b, sz(adj[b]), c, c}); $adj[b].pb({a, sz(adj[a]) - 1, rcap, rcap});$ 11 dfs(int v, int t, ll f) { if (v == t || !f) return f; for (int& i = ptr[v]; i < sz(adj[v]); i++) { Edge& e = adj[v][i];if (lvl[e.to] == lvl[v] + 1)if (ll $p = dfs(e.to, t, min(f, e.c))) {$ e.c -= p, adj[e.to][e.rev].c += p; return p; return 0; 11 calc(int s, int t) { 11 flow = 0; q[0] = s;rep(L,0,31) do { // 'int L=30' maybe faster for random data lvl = ptr = vi(sz(q));int qi = 0, qe = lvl[s] = 1; while (qi < qe && !lvl[t]) { int v = q[qi++];for (Edge e : adj[v]) if (!lvl[e.to] && e.c >> (30 - L)) q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;while (ll p = dfs(s, t, LLONG_MAX)) flow += p;

```
return flow;
bool leftOfMinCut(int a) { return lvl[a] != 0; }
```

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

```
Time: \mathcal{O}(V^3)
                                                       8b0e19, 21 lines
pair<int, vi> globalMinCut(vector<vi> mat) {
 pair<int, vi> best = {INT MAX, {}};
 int n = sz(mat);
 vector<vi> co(n);
 rep(i, 0, n) co[i] = {i};
 rep(ph,1,n) {
    vi w = mat[0];
    size t s = 0, t = 0;
    rep(it,0,n-ph) { //O(V^2) \rightarrow O(E log V) with prio. queue}
     w[t] = INT_MIN;
     s = t, t = max_element(all(w)) - w.begin();
     rep(i, 0, n) w[i] += mat[t][i];
    best = min(best, \{w[t] - mat[t][t], co[t]\});
    co[s].insert(co[s].end(), all(co[t]));
    rep(i,0,n) mat[s][i] += mat[t][i];
    rep(i, 0, n) mat[i][s] = mat[s][i];
```

7.3 Matching

mat[0][t] = INT_MIN;

hopcroftKarp.h

return best;

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i]will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa(m, -1); hopcroftKarp(q, btoa);

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
bool dfs(int a, int L, vector<vi>& q, vi& btoa, vi& A, vi& B) {
 if (A[a] != L) return 0;
 A[a] = -1;
 for (int b : q[a]) if (B[b] == L + 1) {
   B[b] = 0;
   if (btoa[b] == -1 \mid \mid dfs(btoa[b], L + 1, g, btoa, A, B))
      return btoa[b] = a, 1;
 return 0;
int hopcroftKarp(vector<vi>& g, vi& btoa) {
 int res = 0:
 vi A(g.size()), B(btoa.size()), cur, next;
 for (;;) {
    fill(all(A), 0); fill(all(B), 0); cur.clear();
    for (int a : btoa) if (a != -1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.emb(a);
    for (int lay = 1;; lay++) {
     bool islast = 0;
      next.clear();
      for (int a : cur) for (int b : q[a]) {
        if (btoa[b] == -1) {
          B[b] = lay;
          islast = 1;
        } else if (btoa[b] != a && !B[b]) {
          B[b] = lay;
          next.emb(btoa[b]);
```

```
if (islast) break;
 if (next.empty()) return res;
 for (int a : next) A[a] = lay;
 cur.swap(next);
rep(a, 0, sz(g)) res += dfs(a, 0, g, btoa, A, B);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
"DFSMatching.h"
                                                     045958, 20 lines
vi cover(vector<vi>& q, int n, int m) {
 vi match(m, -1);
 int res = dfsMatching(q, match);
 vector<bool> lfound(n, true), seen(m);
  for (int it : match) if (it != -1) lfound[it] = false;
  rep(i,0,n) if (lfound[i]) q.emb(i);
  while (!q.emptv()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
   for (int e : g[i]) if (!seen[e] && match[e] != -1) {
     seen[e] = true;
      g.emb(match[e]);
 rep(i,0,n) if (!lfound[i]) cover.emb(i);
 rep(i,0,m) if (seen[i]) cover.emb(n+i);
 assert(sz(cover) == res);
 return cover;
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = costfor L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires N < M.

Time: $\mathcal{O}(N^2M)$ 1e0fe9, 31 lines

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n - 1);
 rep(i,1,n) {
   p[0] = i;
    int j0 = 0; // add "dummy" worker 0
    vi dist(m, INT_MAX), pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
      done[j0] = true;
      int i0 = p[j0], j1, delta = INT_MAX;
      rep(j,1,m) if (!done[j]) {
        auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
        if (cur < dist[j]) dist[j] = cur, pre[j] = j0;</pre>
        if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
        else dist[j] -= delta;
      j0 = j1;
    } while (p[j0]);
    while (j0) { // update alternating path
```

```
int j1 = pre[j0];
  p[j0] = p[j1], j0 = j1;
}
rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
return {-v[0], ans}; // min cost
}
```

7.4 DFS algorithms

BridgeArticulationPoint.h

Description: Find bridges and articulation points (duplicate edges are ok).

 $\underline{\mathbf{Time:}\ \mathcal{O}\left(E+V\right)}$

eedee1, 37 line

```
const int N = 1e6 + 6:
int n, m, Time, num[N], low[N];
unordered_map<int, int> adj[N];
vector<pii> bridges;
bool isCut[N];
inline void addEdge(int u, int v) {
  ++adj[u][v]; ++adj[v][u];
void dfs(int u, int p) {
  int nChild = 0;
  num[u] = low[u] = ++Time;
  for (auto &e: adj[u]) {
    int v = e.first;
    if (v == p) continue;
    ++nChild;
    if (num[v]) low[u] = min(low[u], num[v]);
    else {
     dfs(v, u);
      low[u] = min(low[u], low[v]);
      if ((p == -1 \&\& nChild >= 2) || (p != -1 \&\& low[v] >= num)
           [u])) {
        isCut[u] = true;
      if (low[v] >= num[v] && e.second == 1) {
       bridges.emb(u, v);
void runTarjan() {
  for (int i = 1; i \le n; ++i) {
    if (!num[i]) dfs(i, -1);
```

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u,v belong to the same component, we can reach u from v and vice versa.

Usage: $scc(graph, [\&](vi\&v) \{ \dots \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components.

Time: $\mathcal{O}\left(E+V\right)$

1048d5, 23 lines

```
vi val, comp, z, cont;
int Time, ncomps;
template<class G, class F> int dfs(int j, G& g, F& f) {
  int low = val[j] = ++Time, x; z.emb(j);
  for (auto e : g[j]) if (comp[e] < 0)
    low = min(low, val[e] ?: dfs(e,g,f));
  if (low == val[j]) {</pre>
```

```
do {
    x = z.back(); z.pop_back();
    comp[x] = ncomps;
    cont.emb(x);
} while (x != j);
f(cont); cont.clear();
    ncomps++;
}
return val[j] = low;
}
template<class G, class F> void scc(G& g, F f) {
    int n = sz(g);
    val.assign(n, 0); comp.assign(n, -1);
    Time = ncomps = 0;
    rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);
}</pre>
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N); for each edge (a,b) { ed[a].emb(b, eid); ed[b].emb(a, eid++); } bicomps([&] (const vi& edgelist) \{...\}); Time: \mathcal{O}(E+V)
```

888ab4, 31 lines

```
vi num, st:
vector<vector<pii>>> ed;
int Time;
template<class F>
int dfs(int at, int par, F& f) {
 int me = num[at] = ++Time, e, y, top = me;
 for (auto pa : ed[at]) if (pa.second != par) {
   tie(y, e) = pa;
    if (num[y]) {
     top = min(top, num[y]);
     if (num[y] < me) st.emb(e);</pre>
   } else {
      int si = sz(st);
      int up = dfs(y, e, f);
     top = min(top, up);
     if (up == me) {
       st.emb(e);
       f(vi(st.begin() + si, st.end()));
       st.resize(si);
      else if (up < me) st.emb(e);</pre>
      else { /* e is a bridge */ }
 return top;
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
 rep(i, 0, sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions $(\sim x)$.

```
Usage: TwoSat ts(number of boolean variables); ts.orClause(0, \sim3); // Var 0 is true or var 3 is false ts.must(2); // Var 2 is true ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0..N-1] holds the assigned values to the vars Time: \mathcal{O}(N+E), where N is the number of boolean variables, and E is the
```

```
struct TwoSat {
 int N; vector<vi> gr; vi values; // 0 = false, 1 = true
 TwoSat(int n = 0) : N(n), gr(2*n) {}
 int addVar() { // (optional)
   gr.emb(); gr.emb(); return N++;
 void orClause(int f, int j) {
   f = \max(2*f, -1-2*f); j = \max(2*j, -1-2*j);
   qr[f^1].emb(j); qr[j^1].emb(f);
 void must(int x) { orClause(x, x); }
 void xorClause(int f, int j) {orClause(f, j);orClause(~f,~j);}
 void nandClause(int f, int j) { orClause(~f, ~j); }
 void implies(int f, int j) { orClause(~f, j); }
 void atMostOne(const vi& li) { // (optional)
   if (sz(li) <= 1) return;
   int cur = \simli[0];
   rep(i,2,sz(li)) {
     int next = addVar();
     orClause(cur, ~li[i]); orClause(cur, next);
     orClause(~li[i], next); cur = ~next;
   orClause(cur, ~li[1]);
 vi val, comp, z; int time = 0;
 int dfs(int i) {
   int low = val[i] = ++time, x; z.emb(i);
   for(int e : qr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
   if (low == val[i]) do {
     x = z.back(); z.pop_back();
     comp[x] = low;
     if (values[x>>1] == -1)
       values[x>>1] = !(x&1);
   } while (x != i);
   return val[i] = low;
 bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
   rep(i,0,2*N) if (!comp[i]) dfs(i);
   rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
   return 1;
};
```

EulerWalk.h

number of clauses.

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret. **Time:** $\mathcal{O}(V + E)$

```
vi eulerWalk(vector<vector<pii>>>& gr, int nedges, int src=0) {
  int n = sz(gr);
  vi D(n), its(n), eu(nedges), ret, s = {src};
  D[src]++; // to allow Euler paths, not just cycles
  while (!s.empty()) {
```

int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);

if (it == end) { ret.emb(x); s.pop_back(); continue; }

```
tie(y, e) = gr[x][it++];
 if (!eu[e]) {
   D[x]--, D[y]++;
   eu[e] = 1; s.emb(y);
for (int x : D) if (x < 0 || sz(ret) != nedges+1) return {};
return {ret.rbegin(), ret.rend()};
```

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

Time: $\mathcal{O}(NM)$

```
vi edgeColoring(int N, vector<pii> eds) {
 vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
  for (pii e : eds) ++cc[e.first], ++cc[e.second];
 int u, v, ncols = *max_element(all(cc)) + 1;
 vector<vi> adj(N, vi(ncols, -1));
  for (pii e : eds) {
   tie(u, v) = e;
   fan[0] = v;
   loc.assign(ncols, 0);
   int at = u, end = u, d, c = free[u], ind = 0, i = 0;
   while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
   cc[loc[d]] = c;
    for (int cd = d; at !=-1; cd ^= c ^ d, at = adj[at][cd])
     swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
     int left = fan[i], right = fan[++i], e = cc[i];
     adj[u][e] = left;
     adj[left][e] = u;
     adj[right][e] = -1;
     free[right] = e;
   adj[u][d] = fan[i];
   adj[fan[i]][d] = u;
   for (int y : {fan[0], u, end})
     for (int& z = free[y] = 0; adj[y][z] != -1; z++);
 rep(i, 0, sz(eds))
   for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
 return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

Time: $\mathcal{O}\left(3^{n/3}\right)$, much faster for sparse graphs

b0d5b1, 12 lines

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = \simB(), B X={}, B R={}) {
  if (!P.any()) { if (!X.any()) f(R); return; }
  auto q = (P | X)._Find_first();
  auto cands = P & ~eds[q];
  rep(i,0,sz(eds)) if (cands[i]) {
   R[i] = 1;
    cliques(eds, f, P & eds[i], X & eds[i], R);
   R[i] = P[i] = 0; X[i] = 1;
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs. 4fca92, 49 lines

```
typedef vector<bitset<200>> vb;
struct Maxclique {
 double limit=0.025, pk=0;
 struct Vertex { int i, d=0; };
 typedef vector<Vertex> vv;
 vv V;
 vector<vi> C;
 vi qmax, q, S, old;
 void init(vv& r) {
   for (auto\& v : r) v.d = 0;
   for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
   sort(all(r), [](auto a, auto b) { return a.d > b.d; });
   int mxD = r[0].d;
   rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
   old[lev] = S[lev - 1];
   while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
     q.emb(R.back().i);
     1717 T:
     for(auto v:R) if (e[R.back().i][v.i]) T.pb({v.i});
     if (sz(T)) {
       if (S[lev]++ / ++pk < limit) init(T);</pre>
       int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
       C[1].clear(), C[2].clear();
       for (auto v : T) {
         int k = 1;
         auto f = [&](int i) { return e[v.i][i]; };
         while (any_of(all(C[k]), f)) k++;
         if (k > mxk) mxk = k, C[mxk + 1].clear();
         if (k < mnk) T[j++].i = v.i;
         C[k].emb(v.i);
       if (j > 0) T[j - 1].d = 0;
       rep(k, mnk, mxk + 1) for (int i : C[k])
         T[j].i = i, T[j++].d = k;
       expand(T, lev + 1);
     else if (sz(q) > sz(qmax)) qmax = q;
     q.pop_back(), R.pop_back();
 vi maxClique() { init(V), expand(V); return qmax; }
 Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
   rep(i, 0, sz(e)) V.pb({i});
};
```

Trees

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

Time: $\mathcal{O}(|S| \log |S|)$

```
"LCA.h"
                                                      7edd75, 21 lines
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.time));
 vi li = subset, &T = lca.time;
```

```
auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
sort(all(li), cmp);
int m = sz(1i)-1;
rep(i,0,m) {
  int a = li[i], b = li[i+1];
  li.emb(lca.lca(a, b));
sort(all(li), cmp);
li.erase(unique(all(li)), li.end());
rep(i,0,sz(li)) rev[li[i]] = i;
vpi ret = {pii(0, li[0])};
rep(i, 0, sz(li)-1) {
  int a = li[i], b = li[i+1];
  ret.emb(rev[lca.lca(a, b)], b);
return ret;
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

Time: $\mathcal{O}\left((\log N)^2\right)$

return res;

```
"../data-structures/LazySegmentTree.h"
                                                     6f34db, 46 lines
template <bool VALS_EDGES> struct HLD {
 int N, tim = 0;
 vector<vi> adi;
 vi par, siz, depth, rt, pos;
 Node *tree;
  HLD(vector<vi> adj )
    : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
      rt(N), pos(N), tree(new Node(0, N)) { dfsSz(0); dfsHld(0); }
  void dfsSz(int v) {
    if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
    for (int& u : adj[v]) {
      par[u] = v, depth[u] = depth[v] + 1;
      dfsSz(u);
      siz[v] += siz[u];
      if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
    pos[v] = tim++;
    for (int u : adj[v]) {
      rt[u] = (u == adj[v][0] ? rt[v] : u);
      dfsHld(u);
 template <class B> void process(int u, int v, B op) {
    for (; rt[u] != rt[v]; v = par[rt[v]]) {
      if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
      op(pos[rt[v]], pos[v] + 1);
    if (depth[u] > depth[v]) swap(u, v);
    op(pos[u] + VALS_EDGES, pos[v] + 1);
 void modifyPath(int u, int v, int val) {
    process(u, v, [&](int 1, int r) { tree->add(1, r, val); });
 int queryPath(int u, int v) { // Modify depending on problem
    int res = -1e9;
    process(u, v, [&](int 1, int r) {
        res = max(res, tree->query(1, r));
```

3a4eae, 29 lines

```
int querySubtree(int v) { // modifySubtree is similar
   return tree->query(pos[v] + VALS EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

5909e2, 90 lines

```
struct Node { // Splay tree. Root's pp contains tree's parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
  Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
   if (c[0]) c[0] -> p = this;
    if (c[1]) c[1] -> p = this;
   // (+ update sum of subtree elements etc. if wanted)
  void pushFlip() {
   if (!flip) return;
    flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
   if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p\rightarrow c[1] == this : -1; }
  void rot(int i, int b) {
   int h = i ^ b;
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
   if ((y->p = p)) p->c[up()] = y;
   c[i] = z -> c[i ^ 1];
    if (b < 2) {
     x - c[h] = v - c[h ^ 1];
     z \rightarrow c[h ^1] = b ? x : this;
   y - > c[i ^ 1] = b ? this : x;
    fix(); x->fix(); y->fix();
   if (p) p->fix();
    swap(pp, y->pp);
  void splay() {
    for (pushFlip(); p; ) {
     if (p->p) p->p->pushFlip();
     p->pushFlip(); pushFlip();
     int c1 = up(), c2 = p->up();
     if (c2 == -1) p > rot(c1, 2);
     else p->p->rot(c2, c1 != c2);
  Node* first() {
   pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
  vector<Node> node;
  LinkCut(int N) : node(N) {}
  void link(int u, int v) { // add an edge (u, v)
    assert(!connected(u, v));
   makeRoot(&node[u]);
   node[u].pp = &node[v];
  void cut(int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
   makeRoot(top); x->splay();
```

```
assert(top == (x->pp ?: x->c[0]));
   if (x->pp) x->pp = 0;
   else {
     x->c[0] = top->p = 0;
     x->fix();
 bool connected(int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
 void makeRoot(Node* u) {
   access(u);
   u->splay();
   if(u->c[0]) {
     u -> c[0] -> p = 0;
     u - c[0] - flip ^= 1;
     u - > c[0] - > pp = u;
     u - > c[0] = 0;
     u->fix();
 Node* access(Node* u) {
   u->splay();
   while (Node* pp = u->pp) {
     pp->splay(); u->pp = 0;
     if (pp->c[1]) {
       pp - c[1] - p = 0; pp - c[1] - pp = pp; 
     pp -> c[1] = u; pp -> fix(); u = pp;
    return u;
};
```

DirectedMST.h.

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

```
Time: \mathcal{O}\left(E\log V\right)
"../data-structures/UnionFindRollback.h"
                                                       39e620, 60 lines
struct Edge { int a, b; ll w; };
struct Node {
 Edge kev;
 Node *1, *r;
 11 delta;
 void prop() {
    kev.w += delta;
    if (1) 1->delta += delta;
   if (r) r->delta += delta;
   delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a | | !b) return a ?: b;
 a->prop(), b->prop();
 if (a->key.w > b->key.w) swap(a, b);
 swap(a->1, (a->r = merge(b, a->r)));
 return a;
void pop(Node*\& a) { a->prop(); a = merge(a->1, a->r); }
pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
 RollbackUF uf(n);
 vector<Node*> heap(n);
 for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
 11 \text{ res} = 0;
 vi seen(n, -1), path(n), par(n);
  seen[r] = r;
 vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
```

```
deque<tuple<int, int, vector<Edge>>> cvcs;
rep(s,0,n) {
  int u = s, qi = 0, w;
  while (seen[u] < 0) {</pre>
    if (!heap[u]) return {-1,{}};
    Edge e = heap[u]->top();
    heap[u]->delta -= e.w, pop(heap[u]);
    Q[qi] = e, path[qi++] = u, seen[u] = s;
    res += e.w, u = uf.find(e.a);
    if (seen[u] == s) {
      Node * cvc = 0;
      int end = qi, time = uf.time();
      do cyc = merge(cyc, heap[w = path[--qi]]);
      while (uf.join(u, w));
      u = uf.find(u), heap[u] = cyc, seen[u] = -1;
      cycs.push_front({u, time, {&Q[qi], &Q[end]}});
  rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
for (auto& [u,t,comp] : cycs) { // restore sol (optional)
  uf.rollback(t);
  Edge inEdge = in[u];
  for (auto& e : comp) in[uf.find(e.b)] = e;
  in[uf.find(inEdge.b)] = inEdge;
rep(i,0,n) par[i] = in[i].a;
return {res, par};
```

Description: Check if two trees are isomorphic or not by rooting the trees at their centroids. Vertices are 0-indexed.

Time: $\mathcal{O}(N \log N)$

int f = dfs(q1, c1[0]);

return false;

};

int n, cnt = 0; vector<vi> q1, q2; map<vi, int> mp; int findCentroid(vector<vi> &g, int u, int p, vi& c) { bool ok = true; int nChild = 1; for (int v: q[u]) if (v != p) { int t = findCentroid(q, v, u, c); if (t > (n >> 1)) ok = false; nChild += t; if $(ok \&\& (n - nChild) \le (n >> 1)) c.emb(u);$ return nChild; int dfs(vector $\langle vi \rangle$ &q, int u, int p = -1) { for (int v: q[u]) if (v != p) id.emb(dfs(q, v, u)); sort (all (id)): if (!mp.count(id)) mp[id] = ++cnt; return mp[id]; bool check() { vi c1, c2; findCentroid(g1, 0, -1, c1); findCentroid(q2, 0, -1, c2); if (c1.size() != c2.size()) return false;

for (int r2: c2) if (dfs(q2, r2) == f) return true;

7.8 Advanced

KShortestPaths.h

Description: Finds the k shortest paths (not required to be simple) from S to T in a digraph.

Time: $\mathcal{O}\left(M+N\log N+K\right)$

b86e95, 56 lines

```
struct Edge { int u, v, w; };
struct Node {
 int v, h; ll w;
 Node *ls, *rs;
 Node (int v, 11 w) : v(v), h(1), w(w), ls(0), rs(0) {}
Node* merge(Node* u, Node* v) {
 if (!u) return v;
 if (!v) return u;
 if (u->w > v->w) swap(u, v);
 Node * p = new Node(*u);
 p->rs = merge(u->rs, v);
  if (p->rs && (!p->ls || p->ls->h < p->rs->h)) swap(p->ls, p->
 p->h = (p->rs ? p->rs->h : 0) + 1;
 return p;
vector<11> k_shortest_paths(int N, const vector<Edge>& edges,
    int S, int T, int K) {
  vector<vi> G(N);
  rep(i,0,sz(edges)) G[edges[i].v].emb(i);
  min_heap<pair<ll, int>> pq;
  vector<11> d(N, -1); vi done(N), par(N, -1), p;
  pq.emplace(d[T] = 0, T);
  while (!pq.empty()) {
   int u = pq.top().second; pq.pop();
   if (done[u]) continue;
   p.emb(u); done[u] = 1;
    for (int i : G[u]) {
     auto [v, _, w] = edges[i];
     if (d[v] == -1 \mid | d[v] > d[u] + w) {
       par[v] = i;
       pq.emplace(d[v] = d[u] + w, v);
  if (d[S] == -1) return vector<11>(K, -1);
  vector<Node*> heap(N);
  rep(i,0,sz(edges)) {
   auto [u, v, w] = edges[i];
   if (~d[u] && ~d[v] && par[u] != i)
     heap[u] = merge(heap[u], new Node(v, d[v] + w - d[u]));
  for (int u : p) if (u != T)
   heap[u] = merge(heap[u], heap[edges[par[u]].v]);
  min_heap<pair<11, Node*>> q;
  if (heap[S]) g.emplace(d[S] + heap[S]->w, heap[S]);
  vector<ll> res = {d[S]};
  for (int i = 1; i < K && !g.empty(); ++i) {
   auto [w, node] = g.top(); q.pop(); res.emb(w);
   if (heap[node->v])
     q.emplace(w + heap[node->v]->w, heap[node->v]);
    for (auto s : {node->ls, node->rs})
     if (s) q.emplace(w + s->w - node->w, s);
  res.resize(K, -1);
  return res;
```

7.9 Math

7.9.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.9.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{k} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.) $$_{47\rm ec0a,\ 28\ lines}$$

```
template <class T> int sgn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
 typedef Point P;
 Тх, у;
 explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
 P operator+(P p) const { return P(x+p.x, y+p.y); }
 P operator-(P p) const { return P(x-p.x, y-p.y); }
 P operator*(T d) const { return P(x*d, y*d); }
 P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
 T dist2() const { return x*x + y*y; }
 double dist() const { return sqrt((double)dist2()); }
 // angle to x-axis in interval [-pi, pi]
 double angle() const { return atan2(y, x); }
 P unit() const { return *this/dist(); } // makes dist()=1
 P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
 // returns point rotated 'a' radians ccw around the origin
 P rotate (double a) const {
   return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
 friend ostream& operator << (ostream& os, P p) {
   return os << "(" << p.x << "," << p.y << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.

f6bf6b, 4 lines

```
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
  return (double) (b-a).cross(p-a)/(b-a).dist();
}
```

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

```
Usage: Point < double > a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;
"Point.h"</pre>
```

" 5c88f4, 6 lines

```
typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
  if (s==e) return (p-s).dist();
  auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
  return ((p-s)*d-(e-s)*t).dist()/d;
}
```

SegmentIntersection.h

Description:


```
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter) == 1)
cout << "segments intersect at " << inter[0] << endl;</pre>
"Point.h", "OnSegment.h"
                                                     9d57f2, 13 lines
template<class P> vector<P> segInter(P a, P b, P c, P d) {
  auto oa = c.cross(d, a), ob = c.cross(d, b),
       oc = a.cross(b, c), od = a.cross(b, d);
  // Checks if intersection is single non-endpoint point.
  if (sqn(oa) * sqn(ob) < 0 && sqn(oc) * sqn(od) < 0)
    return { (a * ob - b * oa) / (ob - oa) };
  if (onSegment(c, d, a)) s.insert(a);
  if (onSegment(c, d, b)) s.insert(b);
  if (onSegment(a, b, c)) s.insert(c);
  if (onSegment(a, b, d)) s.insert(d);
  return {all(s)};
```

lineIntersection.h

Description:


```
emplate<class P>
air<int, P> lineInter(P s1, P e1, P s2, P e2) {
  auto d = (e1 - s1).cross(e2 - s2);
  if (d == 0) // if parallel
    return {-(s1.cross(e1, s2) == 0), P(0, 0)};
  auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
```

```
return {1, (s1 * p + e1 * q) / d};
}
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q) ==1;
```

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p)<=epsilon) instead when using Point<double>.

```
template<class P> bool onSegment(P s, P e, P p) {
  return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;</pre>
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

to (translation, rotation and polynomial of line q0-q1 to point r. $\begin{array}{c} p_0 \\ q_0 \\ \hline q_1 \\ \hline \\ 03a306, 6 \text{ lines} \end{array}$

```
typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,
      const P& q0, const P& q1, const P& r) {
   P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
   return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
}
```

LineProjectionReflection.h

Description: Projects point p onto line ab. Set refl=true to get reflection of point p across line ab insted. The wrong point will be returned if P is an integer point and the desired point doesn't have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow.

"Point.h"

```
P lineProj(P a, P b, P p, bool refl=false) {
  P v = b - a;
  return p - v.perp()*(1+refl)*v.cross(p-a)/v.dist2();
```

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted int j = 0; rep(i,0,n) \{ while (v[j] < v[i].t180()) ++j; \} // sweeps j such that (j-i) represents the number of positively oriented triangles with vertices at 0 and i 0f0602.35 lines
```

```
struct Angle {
  int x, y;
  int t;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
```

```
Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
    assert(x || v);
    return y < 0 \mid | (y == 0 \&\& x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return \{-x, -y, t + half()\}; }
 Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a. dist2() and b. dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (ll)b.x) <
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
 if (b < a) swap(a, b);</pre>
 return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point \ a + vector \ b
 Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
 return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle \ b - angle \ a}
 int tu = b.t - a.t; a.t = b.t;
 return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

| CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents -0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
if (h2 == 0) out.pop_back();
return out;
}
```

CircleLine.h

Description: Finds the intersection between a circle and a line. Returns a vector of either 0, 1, or 2 intersection points. P is intended to be Point<double>.

CirclePolygonIntersection.h

"../../content/geometry/Point.h"

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}\left(n\right)$

```
typedef Point < double > P:
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
 auto tri = [&](P p, P q) {
    auto r2 = r * r / 2;
    P d = q - p;
    auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
    auto det = a * a - b;
    if (det <= 0) return arg(p, g) * r2;
    auto s = max(0., -a-sgrt(det)), t = min(1., -a+sgrt(det));
    if (t < 0 \mid \mid 1 \le s) return arg(p, q) * r2;
    P u = p + d * s, v = p + d * t;
    return arg(p,u) * r2 + u.cross(v)/2 + arg(v,g) * r2;
 };
 auto sum = 0.0;
 rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum:
```

circumcircle.h

Description:

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.

a1ee63, 19 lines

```
typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
  return (B-A).dist()*(C-B).dist()*(A-C).dist()/
      abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
  P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
}
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

```
"circumcircle.h" 09dd0a, 17 lines
pair<P, double> mec(vector<P> ps) {
```

```
shuffle(all(ps), mt19937(time(0)));
P \circ = ps[0];
double r = 0, EPS = 1 + 1e-8;
rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
 o = ps[i], r = 0;
 rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
   o = (ps[i] + ps[j]) / 2;
   r = (o - ps[i]).dist();
   rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) {
     o = ccCenter(ps[i], ps[j], ps[k]);
     r = (o - ps[i]).dist();
return {o, r};
```

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector\langle P \rangle v = \{P\{4,4\}, P\{1,2\}, P\{2,1\}\};
bool in = inPolygon(v, P{3, 3}, false);
Time: \mathcal{O}\left(n\right)
```

"Point.h", "OnSegment.h", "SegmentDistance.h"

2bf504, 11 lines

```
template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
 int cnt = 0, n = sz(p);
 rep(i,0,n) {
   P q = p[(i + 1) % n];
   if (onSegment(p[i], q, a)) return !strict;
   //or: if (segDist(p[i], q, a) \le eps) return !strict;
   cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;
 return cnt;
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T! f12300, 6 lines "Point.h"

```
template<class T>
T polygonArea2(vector<Point<T>>& v) {
 T a = v.back().cross(v[0]);
  rep(i, 0, sz(v) -1) a += v[i].cross(v[i+1]);
 return a;
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}(n)$

```
"Point.h"
                                                      9706dc, 9 lines
typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
 P res(0, 0); double A = 0;
  for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
    res = res + (v[i] + v[j]) * v[j].cross(v[i]);
   A += v[j].cross(v[i]);
  return res / A / 3;
```

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.


```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h"
                                                       056a39, 13 lines
typedef Point < double > P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
  vector<P> res;
  rep(i, 0, sz(poly)) {
    P cur = poly[i], prev = i ? poly[i-1] : poly.back();
    bool side = s.cross(e, cur) < 0;</pre>
    if (side != (s.cross(e, prev) < 0))
      res.pb(lineInter(s, e, cur, prev).second);
    if (side)
      res.pb(cur);
 return res:
```

PolygonUnion.h

Description: Calculates the area of the union of n polygons (not necessarily convex). The points within each polygon must be given in CCW order. (Epsilon checks may optionally be added to sideOf/sgn, but shouldn't be needed.)

Time: $\mathcal{O}(N^2)$, where N is the total number of points

```
"Point.h", "sideOf.h"
                                                     d141b0, 33 lines
typedef Point < double > P;
double rat(P a, P b) { return sqn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {
 double ret = 0;
 rep(i, 0, sz(poly)) rep(v, 0, sz(poly[i])) {
   P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
   vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
   rep(j, 0, sz(poly)) if (i != j) {
      rep(u, 0, sz(poly[j])) {
       P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
        int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
       if (sc != sd) {
         double sa = C.cross(D, A), sb = C.cross(D, B);
         if (\min(sc, sd) < 0)
            segs.emb(sa / (sa - sb), sgn(sc - sd));
       } else if (!sc && !sd && j<i && sgn((B-A).dot(D-C))>0){
         segs.emb(rat(C - A, B - A), 1);
          seqs.emb(rat(D - A, B - A), -1);
   sort (all (segs));
   for (auto\& s : seqs) s.first = min(max(s.first, 0.0), 1.0);
   double sum = 0;
   int cnt = seqs[0].second;
   rep(j,1,sz(segs)) {
     if (!cnt) sum += segs[j].first - segs[j - 1].first;
     cnt += seqs[j].second;
    ret += A.cross(B) * sum;
 return ret / 2;
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Time: $\mathcal{O}(n \log n)$

if (sz(pts) <= 1) return pts;

```
"Point.h"
                                                          310954, 13 lines
typedef Point<ll> P;
vector<P> convexHull(vector<P> pts) {
```

```
sort(all(pts));
vector<P> h(sz(pts)+1);
int s = 0, t = 0;
for (int it = 2; it--; s = --t, reverse(all(pts)))
  for (P p : pts) {
    while (t \ge s + 2 \&\& h[t-2].cross(h[t-1], p) \le 0) t--;
    h[t++] = p;
return \{h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])\};
```

MinkowskiSum.h

Description: Minkowski sum of two polygons.

```
Time: \mathcal{O}(M+N)
                                                              249887, 25 lines
using pll = pair<11, 11>;
```

```
inline pll operator +(const pll &a, const pll &b) {
 return {a.X + b.X, a.Y + b.Y};
inline pll operator - (const pll &a, const pll &b) {
 return {a.X - b.X, a.Y - b.Y};
inline 11 cross(const pl1 &a, const pl1 &b) {
 return a.X * b.Y - b.X * a.Y;
void minkowski (const vector<pl1> &A, const vector<pl1> &B,
    vector<pll> &C) {
 int i = 0, j = 0, m = A.size(), n = B.size();
 C.pb(A[0] + B[0]);
  while (i < m \mid | j < n) {
    pll last = C.back();
    pll v1 = A[(i + 1) % m] - A[i];
    pl1 v2 = B[(j + 1) % n] - B[j];
    if (j == n \mid \mid (i < m \&\& cross(v1, v2) >= 0)) {
      C.pb(last + v1); ++i;
    } else {
      C.pb(last + v2); ++j;
 C.pop_back();
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

Time: $\mathcal{O}(n)$

```
"Point.h"
                                                     c571b8, 12 lines
typedef Point<1l> P;
array<P, 2> hullDiameter(vector<P> S) {
 int n = sz(S), j = n < 2 ? 0 : 1;
 pair<11, array<P, 2>> res({0, {S[0], S[0]}});
 rep(i,0,j)
    for (;; j = (j + 1) % n) {
      res = \max(res, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
      if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)
        break;
 return res.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h"
                                                                 71446b, 14 lines
typedef Point<ll> P;
```

```
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)
    return false;
  while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
  }
  return sgn(1[a].cross(1[b], p)) < r;
}</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side (i,i+1), \bullet (i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i,i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
"Point.h"
                                                     7cf45b, 39 lines
#define cmp(i,j) sqn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
 if (extr(0)) return 0;
  while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
  return lo;
#define cmpL(i) sqn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
  int endB = extrVertex(poly, (b - a).perp());
  if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
   return {-1, -1};
  array<int, 2> res;
  rep(i, 0, 2) {
   int lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
     int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
   res[i] = (lo + !cmpL(hi)) % n;
    swap (endA, endB);
 if (res[0] == res[1]) return {res[0], -1};
  if (!cmpL(res[0]) && !cmpL(res[1]))
   switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
     case 0: return {res[0], res[0]};
     case 2: return {res[1], res[1]};
 return res;
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

```
pair<P, P> closest(vector<P> v) {
    assert(sz(v) > 1);
    set<P> S;
    sort(all(v), [](P a, P b) { return a.y < b.y; });
    pair<11, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
    int j = 0;
    for (P p : v) {
        P d{1 + (ll)sqrt(ret.first), 0};
        while (v[j].y <= p.y - d.x) S.erase(v[j++]);
        auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
        for (; lo != hi; ++lo)
            ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
        S.insert(p);
    }
    return ret.second;</pre>
```

ac41a6, 17 lines

ManhattanMST.h

Time: $\mathcal{O}(n \log n)$

typedef Point<ll> P;

"Point.h"

Description: Given N points, returns up to 4*N edges, which are guaranteed to contain a minimum spanning tree for the graph with edge weights w(p, q) = -p.x - q.x - + -p.y - q.y -. Edges are in the form (distance, src, dst). Use a standard MST algorithm on the result to find the final MST. **Time:** $\mathcal{O}(N \log N)$

```
"Point.h"
                                                     e2611c, 23 lines
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
 rep(k,0,4) {
    sort(all(id), [&](int i, int j) {
     return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});
   map<int, int> sweep;
   for (int i : id) {
     for (auto it = sweep.lower_bound(-ps[i].y);
                it != sweep.end(); sweep.erase(it++)) {
       int j = it->second;
       P d = ps[i] - ps[j];
       if (d.y > d.x) break;
       edges.pb(\{d.y + d.x, i, j\});
     sweep[-ps[i].y] = i;
    for (P\& p : ps) if (k \& 1) p.x = -p.x; else swap(p.x, p.y);
 return edges;
```

BetterKDTree.cpp

```
<bits/stdc++.h> 7195cc, 164 lines

/*
    A straightforward, but probably sub-optimal KD-tree
        implmentation
that's probably good enough for most things (current it's a 2D-
        tree)

- constructs from n points in O(n lg^2 n) time
- handles nearest-neighbor query in O(lg n) if points are well
        distributed
- worst case for nearest-neighbor may be linear in pathological
        case

*/
using namespace std;
```

```
// number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric limits < ntype > ::max();
// point structure for 2D-tree, can be extended to 3D
struct point {
    ntype x, y;
    point(ntype xx = 0, ntype yy = 0): x(xx), y(yy) {}
bool operator == (const point & a,
    const point & b) {
    return a.x == b.x && a.y == b.y;
// sorts points on x-coordinate
bool on_x(const point & a,
    const point & b) {
    return a.x < b.x;</pre>
// sorts points on y-coordinate
bool on_y(const point & a,
    const point & b) {
    return a.y < b.y;</pre>
// squared distance between points
ntype pdist2(const point & a,
    const point & b) {
    ntype dx = a.x - b.x, dy = a.y - b.y;
    return dx * dx + dy * dy;
// bounding box for a set of points
struct bbox {
    ntype x0, x1, y0, y1;
    bbox(): x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
    // computes bounding box from a bunch of points
    void compute(const vector < point > & v) {
        for (int i = 0; i < v.size(); ++i) {
            x0 = min(x0, v[i].x);
            x1 = max(x1, v[i].x);
            y0 = min(y0, v[i].y);
            v1 = max(v1, v[i].v);
    // squared distance between a point and this bbox, 0 if
    ntype distance(const point & p) {
        if (p.x < x0) {
            if (p.v < y0) return pdist2(point(x0, y0), p);</pre>
            else if (p.y > y1) return pdist2(point(x0, y1), p);
            else return pdist2(point(x0, p.y), p);
        else if (p.x > x1) {
            if (p.y < y0) return pdist2(point(x1, y0), p);</pre>
            else if (p.y > y1) return pdist2(point(x1, y1), p);
            else return pdist2(point(x1, p.y), p);
            if (p.y < y0) return pdist2(point(p.x, y0), p);</pre>
            else if (p.y > y1) return pdist2(point(p.x, y1), p)
            else return 0;
// stores a single node of the kd-tree, either internal or leaf
struct kdnode {
    bool leaf; // true if this is a leaf node (has one point)
    point pt; // the single point of this is a leaf
    bbox bound; // bounding box for set of points in children
```

```
kdnode * first, * second; // two children of this kd-node
    kdnode(): leaf(false), first(0), second(0) {}~kdnode() {
       if (first) delete first;
       if (second) delete second;
    // intersect a point with this node (returns squared
        distance)
   ntype intersect(const point & p) {
        return bound.distance(p);
    // recursively builds a kd-tree from a given cloud of
        points
    void construct(vector < point > & vp) {
        // compute bounding box for points at this node
        bound.compute(vp);
        // if we're down to one point, then we're a leaf node
       if (vp.size() == 1) {
           leaf = true;
            pt = vp[0];
       } else {
            // split on x if the bbox is wider than high (not
                 best heuristic...)
            if (bound.x1 - bound.x0 >= bound.y1 - bound.y0)
                sort(vp.begin(), vp.end(), on_x);
            // otherwise split on y-coordinate
                sort(vp.begin(), vp.end(), on_y);
            // divide by taking half the array for each child
            // (not best performance if many duplicates in the
                 middle)
            int half = vp.size() / 2;
            vector < point > vl(vp.begin(), vp.begin() + half);
            vector < point > vr(vp.begin() + half, vp.end());
            first = new kdnode();
            first -> construct(v1);
            second = new kdnode();
            second -> construct(vr);
// simple kd-tree class to hold the tree and handle queries
struct kdtree {
    kdnode * root:
    // constructs a kd-tree from a points (copied here, as it
        sorts them)
    kdtree(const vector < point > & vp) {
       vector < point > v(vp.begin(), vp.end());
       root = new kdnode();
       root -> construct(v);
    }~kdtree() {
       delete root;
    // recursive search method returns squared distance to
        nearest point
   ntype search (kdnode * node,
       const point & p) {
        if (node -> leaf) {
            // commented special case tells a point not to find
                  itself
                          if (p = node \rightarrow pt) return sentry;
                          else
            return pdist2(p, node -> pt);
       ntype bfirst = node -> first -> intersect(p);
       ntype bsecond = node -> second -> intersect(p);
        // choose the side with the closest bounding box to
            search first
```

```
if (bfirst < bsecond) {</pre>
            ntype best = search(node -> first, p);
            if (bsecond < best)</pre>
                best = min(best, search(node -> second, p));
            return best;
        } else {
            ntype best = search(node -> second, p);
            if (bfirst < best)</pre>
                best = min(best, search(node -> first, p));
            return best:
    // squared distance to the nearest
   ntype nearest(const point & p) { return search(root, p); }
int main() {
   vector < point > vp;
    for (int i = 0; i < 100000; ++i) { vp.push_back(point(rand))</pre>
         () % 100000, rand() % 100000)); }
    kdtree tree(vp);
    for (int i = 0; i < 10; ++i) {
        point g(rand() % 100000, rand() % 100000);
        cout << "Closest squared distance to (" << q.x << ", " \,
             << q.y << ")" << " is " << tree.nearest(q) << endl
```

8.53D

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
 double v = 0;
 for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
 return v / 6;
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long. 8058a<u>e</u>, 32 lines

```
template<class T> struct Point3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
 bool operator<(R p) const {
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
 bool operator==(R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
   return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
 //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
 //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
```

```
//returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate(double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}\left(n^2\right)
"Point3D.h"
                                                      ce1872, 49 lines
typedef Point3D<double> P3;
struct PR {
  void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
  int cnt() { return (a !=-1) + (b !=-1); }
  int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
  assert (sz(A) >= 4);
  vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
  auto mf = [\&] (int i, int j, int k, int l) {
    P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[1]) > q.dot(A[i]))
      q = q * -1;
    F f{q, i, j, k};
    E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.pb(f);
  rep(i, 0, 4) rep(j, i+1, 4) rep(k, j+1, 4)
    mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j, 0, sz(FS)) {
      F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
        E(a,b).rem(f.c);
        E(a,c).rem(f.b);
        E(b,c).rem(f.a);
        swap(FS[j--], FS.back());
        FS.pop_back();
    int nw = sz(FS);
    rep(j,0,nw) {
      F f = FS[j];
\#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
      C(a, b, c); C(a, c, b); C(b, c, a);
  for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
    A[it.c] - A[it.a]).dot(it.q) \ll 0) swap(it.c, it.b);
  return FS;
};
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
   double f2, double t2, double radius) {
  double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
 double dy = sin(t2) * sin(f2) - sin(t1) * sin(f1);
 double dz = cos(t2) - cos(t1);
 double d = sqrt(dx*dx + dy*dy + dz*dz);
 return radius*2*asin(d/2);
```

Strings (9)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

Time: $\mathcal{O}(n)$

f5d5d8, 24 lines

```
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    int q = p[i-1];
    while (q \&\& s[i] != s[q]) q = p[q-1];
   p[i] = g + (s[i] == s[g]);
  return p:
void compute automaton(const string& s, vector<vi>& aut) {
  vi p = pi(s);
  aut.assign(sz(s), vi(26));
  rep(i, 0, sz(s)) rep(c, 0, 26)
    if (i > 0 \&\& s[i] != 'a' + c)
      aut[i][c] = aut[p[i - 1]][c];
      aut[i][c] = i + (s[i] == 'a' + c);
vi match (const string& s, const string& pat) {
  vi p = pi(pat + ' \setminus 0' + s), res;
  rep(i,sz(p)-sz(s),sz(p))
    if (p[i] == sz(pat)) res.emb(i - 2 * sz(pat));
  return res;
```

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:]and s, except z[0] = 0. (abacaba -> 0010301)

Time: $\mathcal{O}(n)$

25caa4, 24 lines

```
vi Z(const string& S) {
 vi z(sz(S));
  int 1 = -1, r = -1;
  rep(i,1,sz(S)) {
   z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
   while (i + z[i] < sz(S) \&\& S[i + z[i]] == S[z[i]])
     z[i]++;
    if (i + z[i] > r)
     1 = i, r = i + z[i];
  return z;
```

```
int main(){
 vector <int> z_prefix = Z("aba$abacaba");
 int pat len = 3;
 for (int i=0; i<z_prefix.size(); i++) {</pre>
   if (z_prefix[i] == pat_len) {
     cout << i - pat_len - 1 << ' ';
 }
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded

```
Time: \mathcal{O}(N)
                                                       e7ad79, 13 lines
array<vi, 2> manacher(const string& s) {
 int n = sz(s);
 array < vi, 2 > p = {vi(n+1), vi(n)};
  rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) {
    int t = r-i+!z;
    if (i<r) p[z][i] = min(t, p[z][l+t]);</pre>
    int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L>=1 && R+1<n && s[L-1] == s[R+1])
     p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
 return p;
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end()); Time: $\mathcal{O}(N)$ d07a42, 8 lines

```
int minRotation(string s) {
 int a=0, N=sz(s); s += s;
 rep(b,0,N) rep(k,0,N) {
   if (a+k == b \mid | s[a+k] < s[b+k]) \{b += max(0, k-1); break; \}
   if (s[a+k] > s[b+k]) \{ a = b; break; \}
 return a;
```

SuffixArrav.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. Time: $\mathcal{O}(n \log n)$

38db9f, 23 lines

```
struct SuffixArray {
 vi sa, lcp;
 SuffixArray(string& s, int lim=256) { // or basic_string<int>
   int n = sz(s) + 1, k = 0, a, b;
   vi \times (all(s)+1), y(n), ws(max(n, lim)), rank(n);
   sa = lcp = y, iota(all(sa), 0);
   for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(y), n - j);
     rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
     fill(all(ws), 0);
     rep(i,0,n) ws[x[i]]++;
     rep(i, 1, lim) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
```

```
swap(x, y), p = 1, x[sa[0]] = 0;
      rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
      for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

Suffix Automaton.h

Description: Builds suffix automaton for a string.

```
Usage: SuffixAutomaton sa; for (char c : s) sa.extend(c - 'a');
1. Number of distinct substr:
- Find number of different paths -> DFS on SA
-f[u] = 1 + sum(f[v]) for v in nxt[u]
2. Number of occurrences of a substr:
- Initially, in extend: cnt[cur] = 1; cnt[clone] = 0;
- Sort order by decreasing len
- for (p in order)
cnt[link[p.second]] += cnt[p.second]
3. Find total length of different substrings:
- We have f[u] = number of strings starting from node u
- ans[u] = sum(ans[v] + d[v]) for v in nxt[u]
4. Lexicographically k-th substring
- Based on number of different substring
5. Smallest cyclic shift
- Build SA of S+S, then just follow smallest link
6. Find first occurrence
- firstpos[cur] = len[cur] - 1, firstpos[clone] = firstpos[q]
Time: \mathcal{O}(N)
```

```
daa577, 35 lines
struct SuffixAutomaton {
 const static int N = 2e6 + 666;
  int sz, last, len[N], link[N], nxt[N][33];
  //vector<pii> order;
 SuffixAutomaton() {
   len[0] = 0;
    link[0] = -1;
    memset(nxt[0], 0, sizeof(nxt[0]));
    sz = 1; last = 0;
 void extend(int c) {
   int cur = sz++, p;
    len[cur] = len[last] + 1;
    memset(nxt[cur], 0, sizeof(nxt[cur]));
    //order.emb(len[cur], cur):
    for (p = last; p != -1 && !nxt[p][c]; p = link[p])
     nxt[p][c] = cur;
    if (p == -1) link[cur] = 0;
    else {
      int q = nxt[p][c];
      if (len[p] + 1 == len[q]) link[cur] = q;
        int clone = sz++;
        len[clone] = len[p] + 1;
        link[clone] = link[q];
        memcpy(nxt[clone], nxt[q], sizeof(nxt[q]));
        //order.emb(len[clone], clone);
        for (; p != -1 && nxt[p][c] == q; p = link[p])
         nxt[p][c] = clone;
        link[q] = link[cur] = clone;
    last = cur;
```

55a830, 18 lines

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l, r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l, r) substrings. The root is 0 (has l = -1, r = 0), non-existent children are -1. To get a complete tree, append a dummy symbol - otherwise it may contain an incomplete path (still useful for substring matching, though).

Time: $\mathcal{O}(26N)$

```
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; //N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
  string a; //v = cur \ node, q = cur \ position
  int t[N][ALPHA],1[N],r[N],p[N],s[N],v=0,q=0,m=2;
  void ukkadd(int i, int c) { suff:
   if (r[v]<=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; qoto suff; }
     v=t[v][c]; q=l[v];
    if (q==-1 || c==toi(a[q])) q++; else {
     1[m+1]=i; p[m+1]=m; 1[m]=1[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q < r[m]) { v = t[v][toi(a[q])]; q + = r[v] - l[v]; }
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; goto suff;
  SuffixTree(string a) : a(a) {
    fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
   fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
   rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  pii best;
  int lcs(int node, int i1, int i2, int olen) {
   if (1[node] <= i1 && i1 < r[node]) return 1;</pre>
   if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
   int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
   rep(c,0,ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
   return mask;
  static pii LCS(string s, string t) {
   SuffixTree st(s + (char)('z' + 1) + t + (char)('z' + 2));
   st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
```

PalindromicTree.h

Description: Builds palindromic tree for a string.

Time: $\mathcal{O}(N)$

7e1d73, 24 lines

```
struct PalindromicTree {
 const static int N = 1e5, ALPHA = 26;
 int n, last, sz, s[N], len[N], link[N], to[N][ALPHA];
 PalindromicTree() {
   s[n++] = -1;
   link[0] = 1;
```

```
len[1] = -1;
   sz = 2:
 int get_link(int v) {
   while (s[n - len[v] - 2] != s[n - 1]) v = link[v];
   return v;
 void extend(int c) {
   s[n++] = c;
   last = get_link(last);
   if (!to[last][c]) {
     len [sz] = len[last] + 2;
     link[sz] = to[get_link(link[last])][c];
     to[last][c] = sz++;
   last = to[last][c];
};
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with AhoCorasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N = sum of length of patterns. $\operatorname{find}(x)$ is $\mathcal{O}(N)$, where N = length of x. findAll is $\mathcal{O}(NM)$.

```
struct AhoCorasick {
 enum {alpha = 26, first = 'A'}; // change this!
 struct Node {
   // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
 };
 vector<Node> N;
 vi backp:
 void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0:
   for (char c : s) {
     int& m = N[n].next[c - first];
     if (m == -1) \{ n = m = sz(N); N.emb(-1); \}
     else n = m;
   if (N[n].end == -1) N[n].start = j;
   backp.emb(N[n].end);
   N[n].end = j;
   N[n].nmatches++;
 AhoCorasick(vector<string>& pat) : N(1, -1) {
   rep(i,0,sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emb(0);
   queue<int> q;
   for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     rep(i,0,alpha) {
       int &ed = N[n].next[i], y = N[prev].next[i];
       if (ed == -1) ed = v;
       else {
         N[ed].back = y;
         (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
           = N[y].end;
         N[ed].nmatches += N[y].nmatches;
```

```
q.push(ed);
vi find(string word) {
  int n = 0;
  vi res; // ll count = 0:
  for (char c : word) {
   n = N[n].next[c - first];
    res.emb(N[n].end);
    // count += N[n]. nmatches;
 return res;
vector<vi> findAll(vector<string>& pat, string word) {
  vi r = find(word);
  vector<vi> res(sz(word));
  rep(i,0,sz(word)) {
   int ind = r[i];
    while (ind !=-1) {
     res[i - sz(pat[ind]) + 1].emb(ind);
      ind = backp[ind];
 }
  return res;
```

LCS.h

Description: Find longest common substring Time: $\mathcal{O}(N+M)$

```
"../strings/SuffixAutomaton.h"
string lcs(const string& s, const string &t) {
 SuffixAutomaton sa;
  for (const char& c: s) sa.extend(c - 'a');
 int bestpos = 0, best = 0, v = 0, l = 0;
 rep(i,0,sz(t)) {
   int c = t[i] - 'a';
    while (v && !sa.nxt[v][c]) {
     v = sa.link[v];
     l = sa.len[v];
    if (sa.nxt[v][c]) {
      v = sa.nxt[v][c];
      ++1;
    if (1 > best) bestpos = i, best = 1;
 return t.substr(bestpos - best + 1, best);
```

ModMul2611.h

Description: Computer $a * b \mod (2^{61} - 1)$, useful for hashing $q_{21935, 9 \text{ lines}}$

```
constexpr uint64_t mod = (1ull<<61) - 1; // Mersenne prime</pre>
uint64_t modmul(uint64_t a, uint64_t b) {
           uint64_t 11 = (uint32_t)a, h1 = a>>32, 12 = (uint32_t)b, h2 =
                                               b>>32;
           uint64_t 1 = 11*12, m = 11*h2 + 12*h1, h = h1*h2;
           uint64 t ret = (1\&mod) + (1>>61) + (h << 3) + (m >> 29) + (m >> 
                                          << 35 >> 3) + 1;
            ret = (ret & mod) + (ret>>61);
           ret = (ret & mod) + (ret>>61);
           return ret-1;
```

24

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

IntervalCover.h

auto it = addInterval(is, L, R);

if (it->first == L) is.erase(it);

if (R != r2) is.emplace (R, r2);

auto r2 = it->second;

else (int&)it->second = L;

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$ 6c9952, 19 lines

```
template < class T >
vi cover(pair < T, T > G, vector < pair < T, T > I) {
    vi S(sz(I)), R;
    iota(all(S), 0);
    sort(all(S), [&] (int a, int b) { return I[a] < I[b]; });
    T cur = G.first;
    int at = 0;
    while (cur < G.second) { // (A)
        pair < T, int > mx = make_pair(cur, -1);
        while (at < sz(I) && I[S[at]].first <= cur) {
            mx = max(mx, make_pair(I[S[at]].second, S[at]));
            at++;
        }
        if (mx.second == -1) return {};
        cur = mx.first;
        R.emb(mx.second);
    }
    return R;
}</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
\begin{array}{lll} \textbf{Usage:} & \text{constantIntervals(0, sz(v), [\&] (int x) \{return \ v[x];\}, [\&] (int lo, int hi, T val) $\{\dots\}$);} \\ \textbf{Time:} & \mathcal{O}\left(k\log\frac{n}{k}\right) & & \text{753a4c, 19 lines} \end{array}
```

```
template<class F, class G, class T>
void rec(int from, int to, F& f, G& q, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
   g(i, to, p);
   i = to; p = q;
 } else {
   int mid = (from + to) >> 1;
   rec(from, mid, f, g, i, p, f(mid));
   rec(mid+1, to, f, g, i, p, q);
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 q(i, to, q);
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

Usage: int ind = ternSearch(0, n-1, [&] (int i) {return a[i];}); Time: $\mathcal{O}\left(\log(b-a)\right)$ 9155b4, 11 lines

```
template < class F >
int ternSearch(int a, int b, F f) {
   assert(a <= b);
   while (b - a >= 5) {
      int mid = (a + b) / 2;
      if (f(mid) < f(mid+1)) a = mid; // (A)
      else b = mid+1;
   }
   rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
   return a;
}</pre>
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum $S \le t$ such that S is the sum of some subset of the weights.

```
int knapsack(vi w, int t) {
  int a = 0, b = 0, x;
  while (b < sz(w) && a + w[b] <= t) a += w[b++];
  if (b == sz(w)) return a;
  int m = *max_element(all(w));
  vi u, v(2*m, -1);
  v[a+m-t] = b;
  rep(i,b,sz(w)) {
    u = v;
    rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
    for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
      v[x-w[j]] = max(v[x-w[j]], j);
}
for (a = t; v[a+m-t] < 0; a--);
  return a;</pre>
```

10.3 Dynamic programming KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c)+f(b,d) \le f(a,d)+f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. **Time:** $\mathcal{O}\left(N^2\right)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1. **Time:** $\mathcal{O}((N + (hi - lo)) \log N)$

```
d38d2b, 18 lines
struct DP { // Modify at will:
 int lo(int ind) { return 0; }
 int hi(int ind) { return ind; }
 11 f(int ind, int k) { return dp[ind][k]; }
  void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
  void rec(int L, int R, int LO, int HI) {
    if (L >= R) return;
    int mid = (L + R) \gg 1;
    pair<11, int> best(LLONG_MAX, LO);
    rep(k, max(LO, lo(mid)), min(HI, hi(mid)))
     best = min(best, make_pair(f(mid, k), k));
    store(mid, best.second, best.first);
    rec(L, mid, LO, best.second+1);
    rec(mid+1, R, best.second, HI);
 void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
};
```

10.4 Debugging tricks

- signal (SIGSEGV, [] (int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)];
 computes all sums of subsets.</pre>

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to a (mod b) in the range [0, 2b).

struct FastMod { ull b, m; $FastMod(ull b) : b(b), m(-1ULL / b) {}$ ull reduce(ull a) { // a % b + (0 or b) return a - (ull) ((__uint128_t(m) * a) >> 64) * b; };

FastInput.h

Description: Read an integer from stdin. Usage requires your program to pipe in input from file.

Usage: ./a.out < input.txt</pre>

Time: About 5x as fast as cin/scanf.

7b3c70, 16 lines

```
inline char gc() { // like getchar()
 static char buf[1 << 16];
 static size_t bc, be;
 if (bc >= be) {
   buf[0] = 0, bc = 0;
   be = fread(buf, 1, sizeof(buf), stdin);
 return buf[bc++]; // returns 0 on EOF
int readInt() {
 int a, c;
 while ((a = qc()) < 40);
 if (a == '-') return -readInt();
 while ((c = gc()) >= 48) a = a * 10 + c - 480;
 return a - 48;
```

BumpAllocator.h

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation. 745db2, 8 lines

// Either globally or in a single class: static char buf[450 << 201; void* operator new(size t s) static size t i = sizeof buf; assert(s < i);return (void*)&buf[i -= s]; void operator delete(void*) {}

SmallPtr.h

Description: A 32-bit pointer that points into BumpAllocator memory.

```
2dd6c9, 10 lines
"BumpAllocator.h"
template<class T> struct ptr {
 unsigned ind:
  ptr(T*p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
   assert(ind < sizeof buf);
 T& operator*() const { return *(T*)(buf + ind); }
 T* operator->() const { return &**this; }
 T& operator[](int a) const { return (&**this)[a]; }
 explicit operator bool() const { return ind; }
```

BumpAllocatorSTL.h

Description: BumpAllocator for STL containers.

Usage: vector<vector<int, small<int>>> ed(N);

```
bb66d4, 13 lines
char buf[450 << 20] alignas(16);</pre>
```

```
size t buf ind = sizeof buf;
template<class T> struct small {
 typedef T value type;
  small() {}
 template < class U > small(const U&) {}
 T* allocate(size t n) {
   buf_ind -= n * sizeof(T);
   buf_ind &= 0 - alignof(T);
    return (T*) (buf + buf_ind);
 void deallocate(T*, size_t) {}
};
```

PairHash.h

Description: Allow using pair with hash-based containers 14168c, 9 lines

```
namespace std {
 template<>
 struct hash<pair<int,int>> {
   size_t operator()(const pair<int,int>& x) const {
     return 1000000009LL * x.first + x.second;
 };
```

IterateBitset.h

Description: Iterate bitset in O(n / 32)

```
for (int i = b._Find_first(); i < sz(b); i = b._Find_next(i)) {</pre>
 cout << i << endl;
```

RabinKarp.h

Description: Search String

```
vector<int> rabin_karp(string const& s, string const& t) {
   const int p = 31;
   const int mod = 1e9 + 9;
   vector<long long> p_pow(max(s.size(), t.size()));
   p pow[0] = 1;
    for (int i = 1; i < p_pow.size(); i++)</pre>
       p_pow[i] = (p_pow[i - 1] * p) % mod;
   vector<long long> hash_T(t.size() + 1, 0);
   for (int i = 0; i < t.size(); i++) {
       hash_T[i + 1] = (hash_T[i] + (t[i] - 'a' + 1) * p_pow[i]
   long long hash_s = 0;
   for (int i = 0; i < s.size(); i++) {
       hash_s = (hash_s + (s[i] - 'a' + 1) * p_pow[i]) % mod;
   vector<int> ocurrences;
    for (int i = 0;
        (i + (int)s.size() - 1) < t.size(); i++) {
       long long cur_t = (hash_T[i + s.size()] + mod - hash_T[
            il) % mod;
       if ((hash_s * p_pow[i]) % mod == cur_t)
           ocurrences.push back(i);
   return ocurrences;
```

Hash.h

Description: Hash for map int

1a2c37, 14 lines

```
struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
       x += 0x9e3779b97f4a7c15;
```

```
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
       x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
       return x ^ (x >> 31);
   size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM =
            chrono::steady_clock::now().time_since_epoch().
                count();
       return splitmix64(x + FIXED_RANDOM);
};
gp_hash_table < int, int, chash > inQ;
```