Technische Universität Berlin

SoSe 2023

Fakultät II, Institut für Mathematik

Sekretariat MA 6–2, Antje Schulz Prof. Dr. Michael Joswig

Dr. Frank Lutz, Martin Knaack, Marcel Wack

4. Programmieraufgabe Computerorientierte Mathematik II

Abgabe: 26.5.2023 über den Comajudge bis 17 Uhr

Aufgabenstellung

In dieser Aufgabe soll eine Union-Find-Datenstruktur erstellt werden. Es sei $V \subset \mathbb{Z}^2_{\geq 0}$ eine als Liste von Tupeln $(x,y) \in \mathbb{Z}^2_{\geq 0}$ gegebene endliche Grundmenge.

Type TupleSet:

Schreiben Sie einen Type Alias für Vector{Tuple{Int,Int}} mit dem Namen TupleSet. Zusätzlich benötigen Sie einene Konstruktor TupleSet(V:Vector{Tuple{Int,Int}}). Der ein Objekt vom Typ TupleSet als lexikographisch geordneten Vektor erstellt. Beispielaufruf:

```
1>>> S = TupleSet([(0,3),(0,1),(1,3),(1,0)])
2 4-element Vector{Tuple{Int64, Int64}}:
3 (0, 1)
4 (0, 3)
5 (1, 0)
6 (1, 3)
```

Type Partition:

Schreiben Sie einen Type Partition mit dem Attribut

• Sets::Vector{TupleSet} Ein Vektor von TupleSets.

Zusätzlich brauchen sie folgende Funktionen

- a) Partition(V::TupleSet)::Partition Erzeugt eine Partition von <math>V in einelementige Mengen, die in der Liste Sets abgelegt werden.
- c) MakeSet(P::Partition, (x,y)::Tuple{Int,Int}) Fügt der Liste Sets ein Set-Objekt hinzu, das mit dem Tupel (x,y) initialisiert wird. Falls das Tupel (x,y) bereits in einem TupleSet von Sets enthalten ist, wird nichts hinzugefügt.
- d) FindSet(P::Partition, (x,y)::Tuple{Int,Int}) Es sei S das TupleSet, welches das Tupel (x,y) enthält. Dann gibt die Funktion das Repräsentanten-Tupel S[1] zurück. S soll hierzu lexikographisch geordnet sein. Falls das Tupel (x,y) in keinem TupleSet von Sets enthalten ist, geben sie -1 zurück. Tipp: Sie können sort benutzen.
- e) union!(P::Partition, (x1,y1)::TupleInt,Int, (x2,y2)::TupleInt,Int)

 Es seien S1 und S2 Objekte in Sets, die (x1,y1) bzw. (x2,y2) enthalten. Dann entfernt
 Union die beiden Objekte S1 und S2 aus Sets und fügt statt ihrer ein neues Objekt S hinzu,
 das die lexikographisch geordnete Vereinigung von S1 und S2 ist. Den Fall, dass (x1,y1)
 und (x2,y2) in keinem Element von Sets enthalten ist, müssen sie nicht beachten.

Beispielaufrufe:

```
_{1}\ 1{>}S\ =\ TupleSet\left(\left[\left(\,0\,\,,3\,\right)\,\,,\left(\,0\,\,,1\,\right)\,\,,\left(\,1\,\,,3\,\right)\,\,,\left(\,1\,\,,0\,\right)\,\right]\right)\,;
_{2} 2>P = Partition(S);
_{4} 3>union!(P,(1,3),(0,1)).Sets
5 3—element Vector{Vector{Tuple{Int64, Int64}}}:
6 [(0, 3)]
_{7} [(1, 0)]
s [(0, 1), (1, 3)]
_{9} 4>union!(P,(0,1),(0,3)).Sets
10 2—element Vector\{Vector\{Tuple\{Int64, Int64\}\}\}:
11 [(1, 0)]
   [(0, 1), (0, 3), (1, 3)]
_{13} 5>FindSet(P,(0,3))
(0, 1)
_{15} 6>MakeSet (P, (300,1)). Sets
16 3—element Vector{Vector{Tuple{Int64, Int64}}}:
   [(1, 0)]
   [(0, 1), (0, 3), (1, 3)]
   [(300, 1)]
_{20} 7>union!(P,(300,1),(0,1)).Sets
21 2-element Vector{Vector{Tuple{Int64, Int64}}}:
[(1, 0)]
[(0, 1), (0, 3), (1, 3), (300, 1)]
```

Info: In Julia können Typen einer Variable zugeordnet werden. Dies nennt man einen Type Alias.

```
#Beispiel
const MeineZahl = Union{Int,Nothing}
```