Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра обчислювальної математики

3BIT

на тему:

Застосування методу Бубнова-Гальоркіна до розв'язання граничної задачі звичайного диференціального рівняння

Виконав студент IV курсу групи ОМ-4 Півень Денис Миколайович Науковий керівник кандидат фізико-математичних наук доцент кафедри обчислювальної математики Кузьмін Анатолій Володимирович

Зміст

1	Постановка задачі	. 3				
	1.1 Загальний вигляд					
	1.2 Дані конкретного варіанту					
2	2 Короткі теоретичні відомості методу який використовується.					
3	Детальний опис алгоритму з вказанням обчислюваних формул	. 4				
	3.1 Метод Бубнова-Гальоркіна для граничної задачі звичайного ди-					
	ференціального рівняння другого порядку	4				
	3.2 Спосіб вибору системі координатних функцій					
4	Лістинг програмного коду з коментарями					
5	Представлення результатів у графічному та табличному ви-					
	глядах	. 8				
6	Аналіз отриманих результатів та висновки	. 8				

1 Постановка задачі

Знайти розв'язок задачі методом Бубнова-Гальоркіна.

1.1 Загальний вигляд

$$-\frac{d}{dx}\left(p(x)\cdot\frac{d}{dx}y(x)\right) + a(x)\cdot\frac{d}{dx}y(x) + q(x)\cdot y(x) = f(x)$$

$$h_1\cdot\frac{d}{dx}y(0) - h_2\cdot y(0) = 0$$

$$H_1\cdot\frac{d}{dx}y(1) + H_2\cdot y(1) = 0$$

$$(2)$$

1.2 Дані конкретного варіанту

$$\frac{p(x)}{1 + \sin(\pi x)} \frac{q(x)}{3} \frac{h_1, h_2}{1, 2} \frac{H_1, H_2}{0, 1} \frac{a(x)}{\sin(\pi x)} \frac{f(x)}{2x^2 + \sin(2x)}$$

$$-\frac{d}{dx} \left((1 + \sin(\pi x)) \cdot \frac{d}{dx} y(x) \right) + \sin(\pi x) \cdot \frac{d}{dx} y(x) + 3 \cdot y(x) = 2x^2 + \sin(2x)$$

$$\frac{d}{dx} y(0) - 2 \cdot y(0) = 0$$

$$y(1) = 0$$

2 Короткі теоретичні відомості методу який використовується

Метод Бубнова-Гальоркіна— чисельний метод розв'язання диференціальних рівнянь з граничними умовами. Диференціальні рівняння з граничними умовами у математичній фізиці називаються задачею математичної фізики.

Нехай є диференціальне рівняння з деякими крайовими умовами (першого роду)

$$\hat{A}[u(x)] = f(x), a \le x \le b$$

$$u(a) = \alpha, u(b) = \beta$$
(3)

Наближений розв'язок шукаємо у вигляді наступної суми

$$u(x) \approx y_n(x) = \phi_0(x) + \sum_{k=1}^n \phi_k(x) \cdot \alpha_k \tag{4}$$

 $\phi_0(x)$ — деяка неперервна функція, що задовільняє крайові умови (3),

 $\phi_k(x), 1 \leq k < \infty$, якась система лінійно незалежних функцій, повна в класі неперервних функцій, що визначені на відрізку [a,b] і набувають нульових значень на його кінцях.

3 Детальний опис алгоритму з вказанням обчислюваних формул

3.1 Метод Бубнова-Гальоркіна для граничної задачі звичайного диференціального рівняння другого порядку

Визначимо узагальнений розв'язок задачі (1), (2).

Виберемо функцію v, яка задовільняє граничним умовам (2).

Рівняння (1) помножимо на v і проінтегруємо від 0 до 1.

$$\int_0^1 \left(-(py')' + ay' + qy \right) v \, dx = \int_0^1 fv \, dx$$

Застосуємо формулу інтегрування за часинами

$$\int_0^1 (py'v' + ay'v + qyv) \ dx - py'v \Big|_0^1 = \int_0^1 fv \ dx$$

$$\int_0^1 (py'v' + ay'v + qyv) \ dx - p(1)y'(1)v(1) + p(0)y'(0)v(0) = \int_0^1 fv \ dx$$

$$\int_0^1 \left(py'v' + ay'v + qyv \right) dx + \frac{H_2}{H_1} p(1)y(1)v(1) + \frac{h_2}{h_1} p(0)y(0)v(0) = \int_0^1 fv \, dx \quad (5)$$

Співвідношення (5) визначає узагальнений розв'язок задачі (1), (2) для $y \in W_2^1(0,1)$

Виберемо систему координатних функцій $\{w_i(x)\}_{i=\overline{1,\infty}}$

- 1. Система функцій належить $W_2^1(0,1)$
- 2. Система функцій лінійно-незалежна
- 3. Система функцій ϵ повною

Будемо шукати наближений розв'язок граничної задачі у вигляді $y\approx y_N=\sum_{i=1}^N c_iw_i$ Підставимо в рівність (5) замість y наближення y_N і будемо вимагати, щоб (5) виконувалась для кожного $v=y_j$

$$\sum_{i=1}^{N} c_i \int_0^1 \left(pw_i'w_j' + aw_i'w_j + qw_iw_j \right) dx + \frac{H_2}{H_1} p(1)w_i(1)w_j(1) + \frac{h_2}{h_1} p(0)w_i(0)w_j(0)$$

$$= \int_0^1 f w_j \, dx$$

Маємо систему лінійних алгебраїчних рівнянь

$$A\overline{c} = \overline{b}$$

$$A = [a_{ij}] = \int_0^1 \left(pw_i'w_j' + aw_iw_j' + qw_iw_j \right) dx + \frac{H_2}{H_1}p(1)w_i(1)w_j(1) + \frac{h_2}{h_1}p(0)w_i(0)w_j(0)$$

$$b_j = \int_0^1 fw_j dx$$

Розв'язуємо систему лінійних алгебраїчних рівнянь і записуємо наближений розв'язок задачі (1), (2)

3.2 Спосіб вибору системі координатних функцій

Розглянемо задачу Штурма-Ліувілля і знайдемо власні числа та власні функції

$$\begin{cases} y'' + \lambda x = 0, \\ h_1 \cdot y'(0) - h_2 \cdot y(0) = 0 \\ H_1 \cdot y'(1) + H_2 \cdot y(1) = 0 \end{cases}$$

$$\begin{cases} y(x) = c_1 \sin\left(\sqrt{\lambda}x\right) + c_2 \cos\left(\sqrt{\lambda}x\right) \\ y'(x) = \sqrt{\lambda} c_1 \cos\left(\sqrt{\lambda}x\right) - \sqrt{\lambda} c_2 \sin\left(\sqrt{\lambda}x\right) \end{cases}$$

$$\begin{cases} \sqrt{\lambda} h_1 c_1 - h_2 c_2 = 0 \\ \sqrt{\lambda} H_1 \left(c_1 \cos\sqrt{\lambda} - c_2 \sin\sqrt{\lambda}\right) + H_2 \left(c_1 \sin\sqrt{\lambda} + c_2 \cos\sqrt{\lambda}\right) = 0 \end{cases}$$

$$D\left(\sqrt{\lambda}\right) = \begin{vmatrix} \sqrt{\lambda} h_1 & -h_1 \\ \sqrt{\lambda} H_1 \cos\sqrt{\lambda} + H_2 \sin\sqrt{\lambda} & -\sqrt{\lambda} H_1 \sin\sqrt{\lambda} + H_2 \cos\sqrt{\lambda} \end{vmatrix} = 0$$

$$\sqrt{\lambda} = \mu$$

$$\mu h_1 \left(-\mu H_1 \sin\mu + H_2 \cos\mu\right) + h_1 \left(\mu H_1 \cos\mu + H_2 \sin\mu\right) = (-H_1 h_1 \mu^2 + H_2 h_2) \sin\mu + (H_2 h_1 \mu + H_1 h_2 \mu) \cos\mu = 0$$

$$tg\mu = \frac{\mu (H_2 h_1 + H_1 h_2)}{\mu^2 H_1 h_1 - H_2 h_2} \tag{6}$$

Знайдемо чисельні розв'язки рівняння (6)

 $\{\mu_{k=\overline{1,N}}\}$ тоді $\lambda_k=\mu_k^2$

Знайдемо власні функції

$$\mu h_1 c_1 - h_2 c_2 = 0 c_2 = \frac{\mu_k h_1 c_1}{h_2}$$
$$y_k(x) = c_k \left(\sin(\mu_k x) + \frac{\mu_k h_1}{h_2} \cos(\mu_k x) \right)$$

Проведемо нормування системи функцій і знайдемо c_k

$$\int_0^1 y_k^2(x) \, dx = 1$$

4 Лістинг програмного коду з коментарями

```
# Постановка задачі p \coloneqq x \to 1 + \sin(\operatorname{Pi} \cdot x) : q \coloneqq x \to 3 : h_1 \coloneqq 1 : h_2 \coloneqq 2 : H_1 \coloneqq 0 : H_2 \coloneqq 1 : a \coloneqq x \to \sin(\operatorname{Pi} \cdot x) : f \coloneqq x \to 2 \cdot x^2 + \sin(2 \cdot x) : f \coloneqq x \to 2 \cdot x^2 + \sin(2 \cdot x) : de \coloneqq -diff\left(p(x) \cdot \frac{d}{dx} y(x), x\right) + a(x) \cdot diff(y(x), x) + q(x) \cdot y(x) = f(x); cond \coloneqq h_1 \cdot D(y)(0) - h_2 \cdot y(0) = 0, H_1 \cdot D(y)(1) + H_2 \cdot y(1) = 0; -\cos(\pi x) \pi \left(\frac{d}{dx} y(x)\right) - \left(1 + \sin(\pi x)\right) \left(\frac{d^2}{dx^2} y(x)\right) + \sin(\pi x) \left(\frac{d}{dx} y(x)\right) + 3y(x) = 2x^2 + \sin(2x) D(y)(0) - 2y(0) = 0, y(1) = 0
```

#Пошук функцій, що задовільняють крайові умови $f1 := x \rightarrow \tan(x)$;

 $x \rightarrow \tan(x)$

 $f2 := x \rightarrow -\frac{x}{2};$

 $x \rightarrow -\frac{1}{2}x$

plot([f1(x), f2(x)], x = 0...20, discont = true);


```
\begin{split} N &:= 5: \\ \text{mu} &:= \left[ seq \left( f\!solve \left( f\!I(x) = \!f\!2(x), x = \frac{\text{Pi}}{2} + i \cdot \text{Pi} ... \frac{3 \cdot \text{Pi}}{2} + i \cdot \text{Pi} \right), i = 0 ... N - 1 \right) \right]; \\ & \left[ 2.288929728, 5.086985094, 8.096163603, 11.17270587, 14.27635292 \right] \\ FI &:= seq \left( umapply \left( \sin(\text{mu}[i] \cdot x) + \frac{\text{mu}[i]}{2} \cdot \cos(\text{mu}[i] \cdot x), x \right), i = 1 ... N \right); \\ x &\to \sin(2.288929728 \, x) + 1.144464864 \cos(2.288929728 \, x), x \to \sin(5.086985094 \, x) + 2.543492547 \cos(5.086985094 \, x), x \\ &\to \sin(8.096163603 \, x) + 4.048081802 \cos(8.096163603 \, x), x \to \sin(11.17270587 \, x) + 5.586352935 \cos(11.17270587 \, x), x \\ &\to \sin(14.27635292 \, x) + 7.138176460 \cos(14.27635292 \, x) \\ \text{plot} \left( \left[ seq \left( FI(x) \right[ i], i = 1 ... 3 \right) \right], x = 0 ... 1 \right); \end{split}
```



```
#Нормалізація функцій розв'язків norma := seq(\operatorname{sqrt}(imt(FI(x)[i] \cdot FI(x)[i], x=0 \dots 1)), i=1 \dots N); \\ 1.185284739, 1.996165616, 2.990565689, 4.043967056, 5.121208996 FInorma := seq\left(unapply\left(\frac{FI(x)[i]}{norma[i]}, x\right), i=1 \dots N\right); \\ x \to 0.8436791322 \sin(2.288929728 \, x) + 0.9655611233 \cos(2.288929728 \, x), x \to 0.5009604373 \sin(5.086985094 \, x) \\ + 1.274189139 \cos(5.086985094 \, x), x \to 0.3343848970 \sin(8.096163603 \, x) + 1.353617416 \cos(8.096163603 \, x), x \\ \to 0.2472819353 \sin(11.17270587 \, x) + 1.381404165 \cos(11.17270587 \, x), x \to 0.1952663914 \sin(14.27635292 \, x) \\ + 1.393845959 \cos(14.27635292 \, x) \\ seq(\operatorname{sqrt}(int(FInorma(x)[i] \cdot FInorma(x)[i], x=0 \dots 1)), i=1 \dots N);
```

#Пошук однозначної функції розв'язку двома способами

$$A := \mathit{Matrix} \bigg(N, N, \bigg[\mathit{seq} \bigg(\bigg[\mathit{seq} \bigg(\mathit{int} \bigg(p(x) \cdot \frac{\mathrm{d}}{\mathrm{d} \, x} \mathit{FInorma}(x) \, [\, i\,] \cdot \frac{\mathrm{d}}{\mathrm{d} \, x} \mathit{FInorma}(x) \, [\, j\,] + a(x) \cdot \mathit{FInorma}(x) \, [\, i\,] \cdot \frac{\mathrm{d}}{\mathrm{d} \, x} \mathit{FInorma}(x) \, [\, j\,] + q(x) \\ \cdot \mathit{FInorma}(x) \, [\, i\,] \cdot \mathit{FInorma}(x) \, [\, j\,], \, x = 0 \, \ldots 1 \bigg) + \frac{h_2}{h_1} \cdot \mathit{FInorma}(0) \, [\, i\,] \cdot \mathit{FInorma}(0) \, [\, j\,], \, j = 1 \, \ldots N \bigg) \bigg] \bigg) : \\ b := \mathit{Vector}(N, \big[\mathit{seq}(\mathit{int}(f(x) \cdot \mathit{FInorma}(x) \, [\, j\,], \, x = 0 \, \ldots 1 \big), \, j = 1 \, \ldots N \big) \, \big]) : \\ c := \mathit{LinearSolve}(A, b) : \\ A, c = b; \\ \end{split}$$

1.000000000, 1.000000000, 0.9999999995, 1.000000000, 1.000000000

```
9.396015514
             -2.461987298 -4.100927229 0.926849658
                                                       -1.342771793
                                                                          0.105689342153412
                                                                                                     1.006493829
1.049284199
              43.99108488
                           -3.980644882
                                         -12.43172767
                                                       1.284832241
                                                                         -0.0236868024401653
                                                                                                    -0.9178694781
              2.459498326
                                         -5.539305074
                                                        -25.01669193
                                                                         0.00938106371548343
 4.524723950
                            108.9735868
                                                                                                    0.4541958243
             -12.74828729
                            3.989178527
                                          206.0098544
                                                        -7.102170004
                                                                         -0.00385014033651472
                                                                                                    -0.3887567824
0.757432919
-1.437633324
             1.138965392
                           -25.25256841
                                          5.542415185
                                                        335.2841373
                                                                         0.00211645449263301
                                                                                                    0.2724576207
```

```
#Бубнова-Гальоркіна res := x \rightarrow add(c[i] \cdot FInorma(x)[i], i=1 ..N): #Maple nsol := dsolve([de, cond], y(x), numeric):
```

5 Представлення результатів у графічному та табличному виглядах

```
#Побудова p1 := plot(res(x), x = 0..1, thickness = 3, color = red): p2 := odeplot(nsol, style = point, numpoints = 75, color = blue, symbolsize = 20): display(<math>p1, p2);
```



```
#Порівняння результатів result := Vector(10, [seq(res(0.1 \cdot i), i = 1 ..10)]) : maple := Vector(10, [seq(op(2, op(2, nsol(0.1 \cdot i))), i = 1 ..10)]) : absErr := Vector(10, [seq(abs(result[i] - maple[i]), i = 1 ..10)]) : varErr := Vector(10, [seq(absErr[i] / maple[i], i = 1 ..9), 0]) : result, maple, absErr, varErr :
```

x	Бубнова — Гальоркіна	Maple	Абсолютна похибка	Відносна похибка
0.1	0, 096154908504083700	0, 095985446167936800	0, 000169462336146953	0, 001765500322314080
0.2	0, 107324732270878000	0, 108623057683989000	0, 001298325413111520	0, 011952576559653300
0.3	0, 118487662873634000	0, 118916251375227000	0, 000428588501593011	0, 003604120518739260
0.4	0, 127298828989384000	0, 126516619858789000	0, 000782209130595152	0, 006182659096237400
0.5	0, 130129416480203000	0, 130694275613251000	0, 000564859133048212	0, 004321988322730660
0.6	0, 128331689678342000	0, 130155522452076000	0, 001823832773734270	0, 014012719086935500
0.7	0, 123029780086655000	0, 122670837727584000	0, 000358942359070122	0, 002926061040417990
0.8	0, 105645696009944000	0, 104335618243141000	0, 001310077766803490	0, 012556380925931900
0.9	0, 063819326769174300	0, 068033881257224200	0, 004214554488049920	0, 061947876707422000
1	-0, 00000000001321588	0, 0000000000000000000	0, 00000000001321588	0, 0000000000000000000

6 Аналіз отриманих результатів та висновки

У результаті виконаної роботи було отримано розв'язок граничної задачі звичайного диференціального рівняння другого порядку за допомогою методу Бубнова-Гальоркіна та вбудованого методу програми Maple. Максимальна похибка методу Бубнова-Гальоркіна не перебільшує 0.5%, що свідчить про те, що метод є придатним для розв'язання задач такого типу.