КОНСПЕКТ ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

СП6ГУ, МКН, СП ЛЕКТОР: БАХАРЕВ ФЁДОР ЛЬВОВИЧ

Оглавление

1	Интегральное исчисление функций		3
	1.1	Первообразная и неопределенный интеграл	3
	1.2	Площадь и псевдоплощадь	4
	1.3	Определенный интеграл.	6
2	Формула Тейлора с остатком в интегральной форме		12
	2.1	Приближенное вычисление интеграла	15
3	Несобственный интеграл		23
	3.1	Вводная в кривые	27
	3.2	Длина кривой	28
4	Дифференциальное исчисление функций нескольких переменных		
	4.1	Линейные отобрежения	30
5	Дифф	реренциал	36

Лекция 1

1 Интегральное исчисление функций

1.1 Первообразная и неопределенный интеграл

Определение: $f:(a,b)\to\mathbb{R}, F:(a,b)\to\mathbb{R}, F$ – первообразная f на (a,b) если F'=f

Теорема: $f, F: (a, b) \to \mathbb{R}, F$ – первообразная f

- 1. $\Rightarrow F + c$ первообразная f
- 2. G:(a,b) первообразная $f\Rightarrow F-G=const$

Доказательство.

- 1. Очевидно.
- 2. $F' = f, G' = f \Rightarrow (F G)' = 0 \Rightarrow (F G) = const(т.к. g(a) g(b) = g'(\theta)(a b) = 0$ по теореме Лагранжа)

Определение: $\int f dx =$ множество всех первообразных f

Свойства:

- 1. $\int f + g dx = \int f dx + \int g dx$
- 2. $\int \lambda f dx = \lambda \int f dx, \lambda \neq 0$
- 3. $\int \alpha f(x) + \beta g(x) dx = \alpha \int f(x) dx + \beta g(x) dx, \alpha^2 + \beta^2 \neq 0$
- 4. (замена переменной в неопр. интеграле) $f:(a,b)\to \mathbb{R}, F \text{ первообразная } f,\ \phi:(c,d)\to (a,b), \phi \text{ дифференцируема.}$ $\Rightarrow \int f(\phi(x))\phi'(x)dx = F(\phi(x)) + c$

Замечание. $\phi(x) = y, \phi'(x)dx = dy \Rightarrow \int f(y)dy = F(y) + c$

5. (формула интегрирования по частям)

$$f,g$$
 – дифф на $(a,b)\Rightarrow\int f(x)g'(x)dx=fg-\int f'(x)g(x)dx$

Доказательство.

$$\Box (fg)' = fg' + f'g$$

1.2 Площадь и псевдоплощадь

Определение: Определение площади: $S: 2^{\mathbb{R}^2} \to [0, +\infty)$

- 1. $S((a_1, b_1) \times (a_2, b_2)) = (b_1 a_1) \cdot (b_2 a_2)$
- 2. $S(E_1 \sqcup E_2) = S(E_1) + S(E_2)$

Замечание. Такая функция не существует.

Определение: (Псевдоплощадь) $\sigma: F \to [0, +\infty]$, где F это ограниченные подмножества \mathbb{R}^2

- 1. $\sigma(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1) \cdot (b_2 a_2)$
- 2. $\sigma(E) = \sigma(E_{-}) + \sigma(E_{+})$ если $E = E_{-} \sqcup E_{+}$ и E_{-}, E_{+} получены разрезанием E вертикальной или горизонтальной линией.
- 3. $E_1 \supset E_2 \Rightarrow \sigma(E_1) \geq \sigma(E_2)$

Замечание. 1. Не важно куда относить точки прямой, т.к. площадь прямой равна θ

2. Псевдоплощадь существует, но не единственна.

 Π ример: $E \in F$

 P_{j} это прямоугольник со сторонами параллельными осям координат, но произвольных размеров.

1.
$$\sigma_1(E) = \inf \left\{ \sum \sigma_1(P_j) \mid E \subset \bigcup_{j=1}^N P_j \right\}$$

2.
$$\sigma_2(E) = \inf \left\{ \sum \sigma_2(P_j) \mid E \subset \bigcup_{j=1}^{\infty} P_j \right\}$$

Замечание. $\sigma_1(E) \geq \sigma_2(E)$ u если $K = ([0,1] \cap \mathbb{Q}) \times [0,1] \Rightarrow \sigma_1(K) = 1, \sigma_2(K) = 0$

Теорема: σ_1 – псевдоплощадь.

Доказательство.

1. Если прямоугольник покрыть конечным числом прямоугольников, то у покрытия сумма площадей не меньше площади прямоугольника. (Т.к. можно провести все вертикальные и горизонтальные линии и разбить на дизъюнктивное объединение)

$$\stackrel{\textstyle <}{\leq} P_1,\dots,P_k$$
 - покрытие E_- с точность $\epsilon,$ P_{k+1},\dots,P_n - покрытие E_+ с точность ϵ $\Rightarrow \sigma_1(E_-)+\epsilon \geq \sigma_1(P_1)+\dots+\sigma_1(P_k)$ $\sigma_1(E_+)+\epsilon \geq \sigma_1(P_{k+1})+\dots+\sigma_1(P_n)$ $\Rightarrow \sigma_1(E_-)+\sigma_1(E_+)+2\epsilon \geq \sum\limits_{i=1}^N \sigma_1(P_i) \geq \sigma_1(E)$

3. Покрытие большего является покрытием меньшего.

Теорема: Псевдоплощадь инварианта относительно сдвигов.

Доказательство.

□ Покрытие также сдвинется.

Замечание. Проверить то же самое для σ_2 .

1.3 Определенный интеграл.

Считаем, что зафиксирована псевдоплощадь σ .

Определение: $a \in \mathbb{R} \Rightarrow a_{+} = \max(a, 0), a_{-} = \max(-a, 0)$

$$a_+ + a_- = |a|, a_+ - a_- = a$$

Аналогично для функции f.

 $\Gamma_f = \{(x, f(x)) \in \mathbb{R}^2\}$

Для $f \ge 0$ $P_f = \{(x,y) : y \in [0,f(x)]\}$ - подграфик f.

Для $f \ge 0$ на $[a,b], P_f[a,b] = \{(x,y): x \in [a,b], y \in [0,f(x)]\}$ - подграфик f.

Замечание. f - $nenp \Rightarrow f_+, f_-$ - nenp.

Определение: f - непр. на [a,b], тогда

$$\int_{a}^{b} f(x)dx = \sigma(P_{f_{+}}[a,b]) - \sigma(P_{f_{-}}[a,b])$$

Свойства:

$$1. \int_a^a f \ dx = 0$$

2.
$$\int_a^b 0 \ dx = 0$$

3.
$$f \ge 0$$
 на $[a,b] \Rightarrow \int_a^b f \ dx \ge 0$

4.
$$\int_{a}^{b} -f \ dx = -\int_{a}^{b} f \ dx$$

- 5. $\int_a^b c \ dx = c \cdot (b a)$
- 6. $f \geq 0$ на $[a,b] \wedge \int_a^b f \ dx = 0 \Rightarrow f = 0$ на [a,b]

Доказательство.

- \square Т.к. функция непрерывна, то если существует точка f со значением не 0, то можно найти окрестность со значением >0 и там будет ненулевая площадь
- 7. (Аддитивность интеграла) $c \in [a,b] \Rightarrow \int_a^b f dx = \int_a^c f dx + \int_c^b f dx$

Доказательство.

□ Следует из аддитивности псевдоплощади.

Замечание. Соглашение: $\int_a^b f dx = -\int_b^a f dx \Rightarrow a \partial \partial u m u$ вность верна u для $c \not\in [a,b]$

8. (Монотонность) $f \geq g$ на $[a,b] \Rightarrow \int_a^b f dx \geq \int_a^b g dx$

Доказательство.

$$\Box f \geq g \Rightarrow f_+ \geq g_+ \land f_- \leq g_-$$

- 9. $(b-a) \min_{[a,b]} f \leq \int_a^b f dx \leq (b-a) \max_{[a,b]} f$
- 10. (Теорема о среднем) $\exists c \in [a,b]: \int_a^b f dx = f(c) \cdot (b-a)$

Доказательство.

$$\frac{\int_{a}^{b} f dx}{b - a} \in [\min f, \max f] \Rightarrow \exists c$$

11. (Теорема Барроу) $\Phi(x) = \int_a^x f(t)dt, \Psi(x) = \int_x^b f(t)dt$

 Φ - интеграл с переменным верхним пределом, Ψ - нижним

$$\Phi' = f, \Psi' = -f$$

Доказательство.

 $\square x_1, x_2$

$$\frac{\Phi(x_1) - \Phi(x_2)}{x_1 - x_2} = \frac{\int_{x_1}^{x_2} f(t)dt}{x_1 - x_2} \stackrel{x_1 - fix}{\Rightarrow} \lim_{x_2 \to x_1} \frac{\Phi(x_1) - \Phi(x_2)}{x_1 - x_2} = \lim_{x_2 \to x_1} \frac{\int_{x_1}^{x_2} f(t)dt}{x_1 - x_2} = \lim_{x_2 \to x_1} f(\theta)$$

где θ лежит между x_1 и x_2

$$\Rightarrow \Phi(x_1) = f(x_1)$$

 $\Phi + \Psi = const \Rightarrow \Psi' = -f$

12. (формула Ньютона-Лейбница) F - первообразная \Rightarrow

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F|_{a}^{b}$$

Доказательство.

$$\Phi(x) = \int_a^x f \Rightarrow F = \Phi + c \Rightarrow F(b) - F(a) = \Phi(b) - \Phi(a) = \int_a^b f$$

13. (Линейность интеграла)

$$f, g \in C[a, b], \alpha, \beta \in R \Rightarrow \int_a^b (\alpha f + \beta g) dx = \alpha \int_a^b f dx + \beta \int_a^b g dx$$

Доказательство.

- □ Следует из существования первообразной.
- 14. $|\int_{a}^{b} f dx| \le \int_{a}^{b} |f| dx$

Доказательство.

$$\left| \int_{a}^{b} f \right| = \left| \int_{a}^{b} f_{+} - \int_{a}^{b} f_{-} \right| \leq \int_{a}^{b} f_{+} + \int_{a}^{b} f_{-} = \int_{a}^{b} |f|$$

15. (формула интегрирования по частям)

$$f, x \in C^1[a, b] \Rightarrow \int_a^b f(x)g'(x)dx = f(x)g(x)\Big|_a^b - \int_a^b f'(x)g(x)dx$$

Доказательство.

- □ Следует из формулы Ньютона-Лейбница и формулы интегрирования по частям для неопределенного интеграла.
- 16. (Замена переменной) $f:[a,b] \to \mathbb{R}, \phi[c,d] \to [a,b], \phi \in C^1[c,d]$

$$\Rightarrow \forall p, q \in [c, d] \int_{p}^{q} f(\phi(t))\phi'(t)dt = \int_{\phi(t)}^{\phi(q)} f(x)dx$$

Пример:

(a)
$$\int_0^1 e^{\sin(x)} \cos(x) \ dx = [\sin(x) = y, dy = \cos(x) dx] = \int_{\sin(0)}^{\sin(1)} e^y \ dy = \dots$$

(b)
$$\int_0^1 \sqrt{1 - x^2} \, dx = \left[x = \sin(y), dx = \cos(y) dy \right] = \int_0^{\arcsin(1)} \sqrt{1 - \sin^2(y)} \cos(y) \, dy = \int_0^{\frac{\pi}{2}} \cos^2(y) \, dy$$
$$= \int_0^{\frac{\pi}{2}} \frac{1 + \cos^2(y)}{2} \, dy = \int_0^{\frac{\pi}{2}} \frac{1}{2} \, dy = \frac{\pi}{4}$$

Лекция 2

Пример:

$$W_n = \int_0^{\pi/2} (\sin x)^n dx = \int_0^{\pi/2} (\cos x)^n dx$$
 (т.к. можно сделать замену $y = \pi/2 - x$)

$$W_n = \int_0^{\pi/2} \cos^n x dx = \int_0^{\pi/2} \cos^{n-1} x d(\sin x) = \cos^{n-1} x \cdot \sin x \Big|_0^{\pi/2} - \int_0^{\pi/2} \sin x d(\cos^{n-1} x) = \cos^{n-1} x \sin x \Big|_0^{\pi/2} = \cos^{n-1} x \sin x + \sin^{n-1} x \cos^{n-1} x \cos^{n-1}$$

$$=0\;(\text{при}\;n\geqslant 2)-\int_0^{\pi/2}\sin x\cdot(n-1)\cos^{n-2}x(-\sin x)dx=(n-1)\int_0^{\pi/2}(1-\cos^2x)\cos^{n-2}xdx=$$

$$= (n-1)(W_{n-2} - W_n)$$

Итого получаем рекуректную формулу:

$$W_n = \frac{n-1}{n} \cdot W_{n-2}, W_0 = \pi/2, W_1 = 1$$

Тогда итоговая формула:

$$W_{2k} = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{1}{2} \cdot W_0 = \frac{(2k-1)!!}{(2k)!!} W_0 = \frac{(2k-1)!!}{(2k)!!} \pi/2$$

$$W_{2k+1} = \frac{2k}{2k+1} \cdot \frac{2k-2}{2k-1} \cdot \dots \cdot \frac{2}{3} \cdot W_1 = \frac{(2k)!!}{(2k+1)!!} W_1 = \frac{(2k)!!}{(2k+1)!!}$$

(Офф-топ): Можно заметить, что $(2k)!! = 2^k \cdot k!$ и $(2k+1)!! = \frac{(2k+1)!}{(2k)!!} = \frac{(2k+1)!!}{2^k \cdot k!}$

Также, стоит отметить, что $W_n \geqslant W_{n+1} \geqslant W_{n+2} \geqslant ...$, т.к. $\sin^n x \leqslant \sin^{n-1} x$, то есть интегрируем меньшую функцию, на одном и том же промежутке. Также, заметим, что это на самом деле есть неплохое приблежение числа π .

Формула Валлиса

$$W_{2k+2} \leqslant W_{2k+1} \leqslant W_{2k}$$

$$\pi/2 \cdot \frac{(2k+1)!!}{(2k+2)!!} \le \frac{(2k)!!}{(2k+1)!!} \le \pi/2 \cdot \frac{(2k-1)!!}{(2k)!!}$$

$$\pi/2 \cdot \frac{2k+1}{2k+2} \le \frac{((2k)!!)^2}{(2k+1)((2k-1)!!)^2} \le \frac{\pi}{2}$$

$$\lim_{k \to \infty} \frac{(2k!!)^2}{(2k+1)((2k-1)!!)^2} = \pi/2 \Rightarrow \lim_{k \to \infty} \frac{2k!!}{\sqrt{2k+1}(2k-1)!!} = \sqrt{\pi/2}$$

Следствие:

$$\sum_{k=0}^{2n} C_{2n}^k = 4^n, \ C_{2n}^n = \frac{(2n)!}{(n!)^2}$$

$$\frac{(2k)!!}{(2k-1)!!} = \frac{(2^k \cdot k!)^2}{(2k)!} = \frac{4^k \cdot (k!)^2}{(2k)!}$$

По формуле Валлиса:

$$\frac{1}{\sqrt{2k+1}} \cdot \frac{4^k}{C_{2k}^k} \to \sqrt{\pi/2} \Leftrightarrow C_{2k}^k \sim \sqrt{\frac{2}{\pi}} \cdot \frac{4^k}{\sqrt{2k+1}}$$

2 Формула Тейлора с остатком в интегральной форме

$$f(x) = T_{n,x_0}f(x) + R_{n,x_0}f(x)$$
, где $T_{n,x_0}f(x) = f(x_0) + f'(x_0)(x-x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$

Теорема (остаток в интегральной форме):

Если
$$f \in C^{n+1}\langle a,b \rangle$$
, $x,x_0 \in \langle a,b \rangle$, то $R_{n,x_0}f(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt$

Доказательство.

База:

$$n=0,\,\,{
m To}\,\,f(x)=f(x_0)+\int_{x_0}^xf'(t)dt$$
 — формула Ньютона-Лейбница

Переход:

$$R_{n,x_0}f(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{1}{n!} \cdot \int_{x_0}^x f^{(n+1)}(t) d(-\frac{(x-t)^{n+1}}{n+1}) =$$

$$= -\frac{1}{n!} \cdot \frac{(x-t)^{n+1}}{n+1} f^{(n+1)}(t) \Big|_{x_0}^x + \frac{1}{n!} \int_{x_0}^x \frac{(x-t)^{n+1}}{n+1} df^{(n+1)}(t) =$$

$$= \frac{(x-x_0)^{n+1}}{(n+1)!} f^{n+1}(x_0) + R_{n+1,x_0}f(x)$$

Лемма (чуть более хитрая теорема о среднем):

$$f, g \in C[a, b], g \geqslant 0 \Rightarrow \exists c \in (a, b) : \int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx$$

Доказательство.

$$m = \min_{[a,b]} f, \quad M = \max_{[a,b]} f$$

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x)$$

$$m \int_{a}^{b} g(x)dx \leqslant \int_{a}^{b} f(x)g(x)dx \leqslant M \int_{a}^{b} g(x)dx$$

$$\frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} \in [m,M] \Rightarrow$$
 равно значению в некоторой промежуточной точке

Берём остаток в интегральной форме:

$$R_{n,x_0}f(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt =$$

$$\exists \theta: \frac{1}{n!} f^{(n+1)}(\theta) \int_{x_0}^x (x-t)^n dt = \frac{1}{(n+1)!} f^{(n+1)}(\theta) \cdot (x-x_0)^{(n+1)}$$
 — остаток в форме Лагранжа

Некоторые студенты на экзамене стали жертвой следующего:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + R_n$$

$$R_n = \frac{n!}{(n+1)!} \cdot \frac{(-1)^{n+1}}{(1+\theta)^n} \cdot x^{n+1} = \frac{(-1)^{n+1}}{n+1} \cdot \frac{x^{n+1}}{(1+\theta)^n}$$

При каких $x, R_n \to 0$?

При $x \in (0,1)$ утверждение очевидно, но что делать при $x \in (-1,0)$?

$$R_n = \frac{1}{n!} \int_0^x ...$$
 То be continued (Федор Львович думал, что так можно, но не получилось :))

2.1 Приближенное вычисление интеграла

Определение: $[a,b], \tau$ — дробление отрезка [a,b] $\tau = \{x_0, x_1, ..., x_n\},$

где $a = x_0 < x_1 < \ldots < x_n = b \quad |\tau| = \max_{k=0,\ldots,n-1} |x_{k+1} - x_k|$ - мелкость (ранг) дробления

 $\theta = \{t_1,...,t_n\}$ – оснащение дробления $\tau,$ где $t_j \in [x_{j-1},x_j]$

(au, heta) — оснащенное дробление

 $f \in C[a,b]$ интегральная сумма $S_{\tau,\theta}(f) = \sum_{j=0}^{n-1} f(t_{j+1})(x_{j+1} - x_j)$

Теорема: $f \in C[a,b] \Rightarrow S_{\tau,\theta}(f) \underset{|T| \to 0}{\rightarrow} \int_a^b f(x) dx$,

T.e. $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall \tau, \theta : |\tau| < \delta \Rightarrow \left| \int_a^b f dx - S_{\tau,\theta}(f) \right| < \varepsilon$

Определение: f функция на [a,b], существование предела $S_{\tau,\theta}(f)$ при $|\tau|\to 0$ означает, что f интегрируема по Риману и $\lim = \int_a^b f dx$

<u>Упраженение:</u> Доказать, что если у функции есть один разрыв первого рода, то она интегрируема по Риману

Доказательство.

По теореме Кантора $\forall \varepsilon>0\ \exists\, \delta>0: \forall x,y\in [a,b]: |x-y|<\delta\Rightarrow |f(x)-f(y)|<\frac{\varepsilon}{b-a}$

Берем дробление $\tau: |\tau| < \delta$

$$\left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} f(x) dx \right| = \left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} f(c_j) \cdot (x_j - x_{j-1}) dx \right| = \left| \sum_{j=1}^{n} (f(t_j) - f(c_j)) \cdot (x_j - x_{j-1}) \right| < \frac{\varepsilon}{b-a} \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon$$

 $\underline{\exists a\partial a \lor a:} \ f$ имеет разрыв в точке c первого рода и $f\in C[a,b), f\in C(c,b], \exists \lim_{x\to c-} f, \exists \lim_{x\to c+} f,$ тогда $S_{\tau,\theta}f\to \int_a^c f+\int_c^b f$

Пример:

1.

$$\int_0^a e^x dx = ?, \ \tau = \{0, \frac{a}{n}, \frac{2a}{n}, ..., \frac{na}{n}\}, \ \theta = \{0, \frac{a}{n}, ..., \frac{n-1}{n}a\}$$

$$S_{\tau,\theta}f = \sum_{j=1}^{n} f\left(\frac{a_{j-1}}{n}\right) (x_j - x_{j-1}) = \frac{a}{n} \cdot \left(1 + e^{a/n} + \dots + e^{\frac{n-1}{n}a}\right) = \frac{a}{n} \cdot \frac{e^{\frac{na}{n}} - 1}{e^{a/n} - 1} \to e^a - 1$$

2.

$$1^p + 2^p + \dots + n^p = n^{p+1} \cdot \left(\left(\frac{1}{n} \right)^p + \dots + \left(\frac{n}{n} \right)^p \right) / n = 0$$

$$\tau = \{0, \frac{1}{n}, ..., \frac{n}{n}\}, \theta = \{\frac{1}{n}, ..., \frac{n}{n}\}, f(x) = x^p$$

3. интеграл Пуассона

$$\int_0^{\pi} \log\left(1 - 2a\cos x + a^2\right) dx$$

$$f = \log(1 - 2a\cos x + a^2), [0, \pi], \tau = \{0, \frac{\pi}{n}, ..., \frac{\pi n}{n}\}, \theta = \{0, \frac{\pi}{n}, ..., \frac{\pi(n-1)}{n}\}$$

$$S_{\tau,\theta}f = \sum_{j=1}^{n} \frac{\pi}{n} \cdot \log\left(1 - 2a\cos\frac{\pi(j-1)}{n} + a^2\right) = \frac{\pi}{n}\log\prod_{j=1}^{n} \left(1 - 2a\cos\frac{\pi(j-1)}{n} + a^2\right)$$

Заметим, что $a^2 - 2a\cos\theta + 1 = (a - e^{-i\theta})(a - e^{i\theta})$

$$\prod_{j=1}^{n} (1 - 2a\cos\frac{\pi(j-1)}{n} + a^2) = \prod_{j=1}^{n} (a - e^{\frac{-\pi(j-1)}{n}i})(a - e^{\frac{\pi(j-1)}{n}i}) = \frac{(a^{2n} - 1) \cdot (a-1)}{(a+1)} = \frac{(a^{2n} - 1) \cdot (a-1)}{(a-1)} = \frac{(a^{2n} - 1) \cdot (a-1)}{(a-1)} = \frac{(a^{2n} - 1) \cdot (a-1)}{(a$$

$$= \frac{\pi}{n} \cdot \log \frac{(a^{2n} - 1)(a - 1)}{a + 1} \underset{n \to \infty}{\to} \begin{cases} 0 & |a| < 1 \\ 2\pi \log |a| & |a| > 1 \\ ? & |a| = 1 \end{cases}$$

Замечание. $\int_a^b f(x)dx \approx S_{\tau,\theta}(f)$ Можно ли оценить погрешность?

$$\left| \int -S \right| \leqslant \sum |f(t_j) - f(c_j)|(x_{j+1} - x_j) \leqslant \sum |t_j - c_j| \max |f'|(x_{j+1} - x_j) \leqslant M \cdot |\tau|(b-a), \ \epsilon \partial e \ \max |f'| = M$$

Замечание. Более точная формула для приблеженного вычисления интеграла

Приближаем трапециями (формула трапеций)

$$\int_a^b f dx \approx \sum (x_{j+1} - x_j) \cdot \frac{f(x_j) + f(x_{j+1})}{2}$$

Теорема (о погрешности в формуле трапеций): $f \in C^2[a,b]$

$$\left| \int_{a}^{b} f - \sum_{a} (x_{j+1} - x_{j}) \cdot \frac{f(x_{j}) + f(x_{j+1})}{2} \right| \leq \frac{1}{8} |\tau|^{2} \int_{a}^{b} |f''(x)| dx$$

Лекция 3

$$f \in C^2[a,b]$$
 $\theta = \{x_0 = a, x_1, ..., x_n = b\}$

$$\left| \int_a^b f dx - \sum_{j=1}^n \frac{f(x_j) + f(x_{j-1})}{2} \right| \leqslant \frac{|\theta|^2}{8} \int_a^b |f''|, \text{ где } |\theta| = \max|x_j - x_{j-1}| - \text{мелкость}(\text{ранг}) \text{ разбиения}$$

Доказательство.

1. Разбиения в этой теореме не нужно. Достаточно доказать для отрезка, где $x_0 = a, x_1 = b.$

$$\int_a^b |f''| = \sum \int_{x_{j-1}}^{x_j}$$

$$\int_{a}^{b} f dx = \sum \int_{x_{j-1}}^{x_j}$$

Сводим к неравенству:

$$\left| \int_{a}^{b} f - \frac{f(a) + f(b)}{2} \cdot (b - a) \right| \leqslant \frac{(b - a)^{2}}{8} \cdot \int_{a}^{b} |f''|$$

2. Рассмотрим разностное отношение функциий. Для этого введем g - линейная функция, такая что g(a)=f(a), g(b)=f(b).

$$\Rightarrow \int_a^b f - \frac{f(a) + f(b)}{2} \cdot (b - a) = \int_a^b f - g, \text{ Ho } g'' = 0 \Rightarrow$$

$$\int_{a}^{b} |f''| = \int_{a}^{b} |f'' - g''| = \int_{a}^{b} |(f - g)''|$$

3. Свели утверждение к

$$\left| \int_a^b f \right| \leqslant \frac{(b-a)^2}{8} \int_a^b |f''|, f \in C^2[a,b], f(a) = f(b) = 0, \text{ где } f \text{ на самом деле } f - g(b) = 0$$

$$\int_a^b f(x)dx = \int_a^b f(x)d(x-\alpha) = f(x)(x-\alpha)\Big|_a^b - \int_a^b (x-\alpha)f'(x)dx = 0 - \int_a^b (x-\alpha)f'(x)dx = 0$$

$$-\int_{a}^{b} f'(x)d\left(\frac{x^{2}}{2} - \alpha x + \beta\right) = -f'(x)\left(\frac{x^{2}}{2} - \alpha x + \beta\right)\Big|_{a}^{b} + \int_{a}^{b} f''(x)\left(\frac{x^{2}}{2} - \alpha x + \beta\right)dx = 0$$

$$\alpha, \beta: \frac{(x-a)(x-b)}{2} = \frac{x^2}{2} - \alpha x + \beta$$

$$\left| \frac{(x-a)(x-b)}{2} \right| \le \left(\frac{b-a}{2} \right)^2 \cdot \frac{1}{2} = \frac{(b-a)^2}{8}$$

$$\left|\int_a^b f\right|\leqslant \frac{(b-a)^2}{8}\int_a^b |f''|$$

Следствие: (для равномерного дробления)

Если $x_0 = a, x_1 = a + \frac{b-a}{n}, ... x_n = b$, то

$$\left| \int_{a}^{b} f(x)dx - \sum_{j=1}^{n} \frac{f(x_{j}) - f(x_{j-1})}{2} \cdot \frac{b-a}{n} \right| \leqslant \frac{(b-a)^{2}}{8 \cdot n^{2}} \int_{a}^{b} |f''|$$

Теорема (формула Эйлера-Маклорена):

$$f \in C^{2}[m, n], m < n, f(m) + f(m+1) + \dots + f(n) = ?$$

Доказательство.

$$\int_{m}^{n}fdx-\sum_{i=m+1}^{n}\frac{f(j)+f(j-1)}{2}=\int_{m}^{n}f''(x)\frac{\{x\}(\{x\}-1)}{2}dx$$
(для подробностей 29 минута записи)

Все кроме крайних (f(m) и f(n)) по 2 раза в

$$\sum_{i=m+1}^{n} \frac{f(i) + f(i-1)}{2}$$

Поэтому

$$f(m) + \dots + f(n) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f dx + \int_{m}^{n} f''(x) \frac{\{x\}(1 - \{x\})}{2} dx$$

Примеры:

1.

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, f(x) = \frac{1}{x}$$

$$H_n = \frac{1 + \frac{1}{n}}{2} + \underbrace{\int_1^n \frac{dx}{x}}_{=\ln n} + \underbrace{\int_1^n \frac{2}{x^3} \cdot \frac{\{x\}(1 - \{x\})}{2}}_{=I_n} dx$$

$$I_n \leqslant \int_1^n \frac{dx}{x^3} = -\frac{1}{2x^2} \Big|_1^n = \frac{1}{2} - \frac{1}{2n^2}$$

$$H_n = \ln n + \frac{1}{2} + \frac{1}{2n} + I_n = \ln n + \delta + o(1)$$

 I_n — возрастает и ограничена, где δ - нек. конст. Эйлера (про нее неизвестного ничего, кроме миллиона знаков после запятой :)

2. (формула Стирлинга) $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty$

<u>Марката</u> не следует думать, что факториал равен этой штуке, это означает только то, что отношение стремится к единице

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right)$$

 \triangle Ошибка на (n-1)!

$$\ln n! = \ln 1 + \dots + \ln n = \frac{\ln 1 + \ln n}{2} + \int_{1}^{n} \ln x dx + \underbrace{\int_{1}^{n} (\ln x)'' \frac{\{x\}(1 - \{x\})}{2} dx}_{\int_{1}^{n} -\frac{1}{x^{2}} \dots = I_{n}} = \frac{\ln n!}{n!}$$

$$= n \ln n - n + 1 + \frac{\ln n}{2} + I_n \bigcirc$$

$$|I_n| \leqslant \int_1^n \frac{1}{x^2} = 1 - \frac{1}{n}$$

$$=$$
 $n \ln n - n + \frac{\ln n}{2} + \ln const + o(1)$, т.к. $I_n = O(1)$

$$\Rightarrow n! \sim \frac{n^n}{e^n} \sqrt{n} \cdot c$$

Применим формулу Валисса

$$C_{2n}^n = \frac{(2n)!}{n!n!} \sim \frac{\left(\frac{2n}{e}\right)^{2n}\sqrt{2n} \cdot c}{\left(\left(\frac{n}{e}\right)^n\sqrt{n} \cdot c\right)^2} = \frac{1}{c} \cdot 4^n \cdot \frac{1}{\sqrt{n}} \cdot \sqrt{2} \Rightarrow c = \sqrt{2\pi}$$

3 Несобственный интеграл

Мотивация:

$$\int_0^{\pi} \frac{dx}{2 + \cos x} = \left[t = \lg \frac{x}{2} \right] = \int_0^{\lg \frac{\pi}{2} = +\infty} \dots dt$$

Как с таким бороться?

Пишем неопределенный интеграл, считаем его и подставляем.

Определение: $f \in C[a,b], b \in \mathbb{R} \cup \{+\infty\}$

$$\int_a^{\to b} f dx$$
 = $\lim_{B \to b-} \int_a^B f dx$ — частичный интеграл

Несобственный интеграл

- сх-ся ⇐⇒ ∃ lim конечный
- расх-ся $\iff \nexists \lim$

2 ситуации, в которых это бывает полезно:

Замечание. $\mathit{Ecnu}\ f \in C[a,b], b \in \mathbb{R} \Rightarrow \int_a^{\to b} f dx = \int_a^b f dx$

Теорема (Критерий Коши):

$$\textstyle \int_a^{\to b} f dx \, \operatorname{сходится} \Longleftrightarrow \forall \varepsilon > 0 \,\, \exists \delta \in [a,b) : \forall B_1, B_2 \in (\delta,b) \Rightarrow \left| \int_{B_1}^{B_2} \right| < \varepsilon$$

Доказательство.

$$\square$$
 $F(b)$ $= \int_a^B f dx$ $= \int_a^B f dx$

$$\int_a^{\to b} -\operatorname{cx-cx} \Longleftrightarrow \lim_{B\to b^-} F(B) \Longleftrightarrow \forall \varepsilon>0 \ \exists \delta\in[a,b) \ : \forall B_1,B_2\in(\delta,b) \Rightarrow |F(B_1)-F(B_2)|<\varepsilon$$
— критерей Коши для функций.

Свойства:

1. (аддитивность)

$$\int_{a}^{\rightarrow b}fdx=\int_{a}^{c}fdx+\int_{c}^{\rightarrow b}fdx, \forall c\in[a,b)$$

Нужно понимать это так: если один из двух интегралов сходится, то сходится и второй и верно равенство

2.
$$\int_a^{\to b} f dx$$
 ex-ся $\Rightarrow \int_B^{\to b} f dx \to 0, B \to b-$

3. (линейность)
$$\int_a^{\to b} (\alpha f + \beta g) dx = \alpha \int_a^{\to b} f(x) dx + \beta \int_a^{\to b} g(x) dx$$

4. (монотонность)
$$f\geqslant g\Rightarrow \int_a^{\to b}f\geqslant \int_a^{\to b}g$$

5. $\int_a^{\to b} |f| dx$ сх-ся $\Rightarrow \int_a^{\to b} f dx$ сходится и верно неравенство $\left| \int_a^{\to b} f dx \right| \leqslant \int_a^{\to b} |f| dx$

Доказательство.

$$\Box \int_{a}^{\to b} |f| dx \text{ сх-ся} \Rightarrow \forall \varepsilon > 0 \ \exists \delta \in [a,b] : \forall B_{1}, B_{2} \in (\delta,b) \Rightarrow \int_{B_{1}}^{B_{2}} |f| dx < \varepsilon \Rightarrow$$
$$\Rightarrow \left| \int_{B_{1}}^{B_{2}} f dx \right| < \varepsilon \Rightarrow \text{верен критерий Коши для обычного интеграла}$$

Определение: Если $\int_a^{\to b} |f| dx$ — сх-ся \Rightarrow говорят, что $\int_a^{\to b} f dx$ сх-ся абсолютно

Определение: $\int_a^{\to b} f$ сх-ся, а $\int_a^{\to b} |f|$ расх \Rightarrow условная сходимость

- $fg\Big|_a$ 6. (инт. по частям) $\int_a^{\to b} f g' dx =$ $-\int_{a}^{b} f'gdx$ $=\lim_{b-} f(b)g(b) - f(a)g(a)$ только если \exists
- 7. (замена переменной) $\phi: [\alpha,\beta) \to [a,b), \phi \in c'[\alpha,\beta)$

$$\int_{a}^{b} f(\phi(x))\phi'(x)dx = \int_{\phi(a)}^{\phi(b-)=\lim_{x\to b^{-}} \phi(x)\in\mathbb{R}\cup\{\infty\}} f(y)dy$$

Если один интеграл существует, то и другой тоже и они равны

Доказательство.

$$\int_{\alpha}^{\beta} f(\phi(x))\phi'(x)dx = \int_{\phi(\alpha)}^{\phi(\beta)\to\phi(\beta-)} f(y)dy \to \int_{\phi(\alpha)}^{\to\phi(\beta-)} f(y)dy$$

 $\phi(\beta-) \neq b \Rightarrow \Pi$ инт — собственный \Rightarrow по первому пункту

$$\phi(\beta-) = b, b_n \to b-, \beta_n \to \beta$$

$$\exists \beta_n : \phi(\beta_n) = b_n$$

$$\int_{\alpha}^{\beta_n} f(\phi(x))\phi'(x)dx = \int_{\phi(\alpha)}^{b_n} f(y)dy$$

и переходим к предыдущему пункту

Лекция 5

3.1 Вводная в кривые

Определение: Путь Путь в $\mathbb{R}^m x : [a, b] \mapsto \mathbb{R}^m$ — непрерывное.

Определение: Носитель пути Носитель пути: $\gamma([a,b]) \in \mathbb{R}^m$

Определение: Путь замкнут если $\gamma(a) = \gamma(b)$.

Определение: Если γ — инъекция, то такой путь называется простым.

Замечание. Можно определять путь покоординатно: $\gamma(t) = (\gamma_1(t), \dots, \gamma_m(t))$ Где $\gamma_i - \kappa$ оординатные функции.

Определение: Назовём два пути $\gamma_1 \colon [a,b] \mapsto \mathbb{R}^m$ и $\gamma_2 \colon [c,d] \mapsto \mathbb{R}^m$ эквивалентными, если \exists строго возрастающая биекция $\varphi \colon [a,b] \mapsto [c,d]$, так что $\gamma_2 \circ \varphi = \gamma_1$.

Замечание. Это отношение эквивалентности.

Определение: Кривая в \mathbb{R}_m — класс эквивалентности путей Представители — параметризация.

Замечание. На самом деле параметризаций у одного носителя может быть много. Например у полуокружности есть следующие параметризации: $(\cos x, \sin x), (x, \sqrt{1-x^2})$

Замечание. Зная параметризацию можно определить носитель кривой, начало и конец, но хочется понимать ещё про гладкость.

Определение: γ — гладкий путь, если $\gamma_i \in C_1[a,b]$.

Гладкая кривая — кривая, у которой ∃ гладкая параметризация.

Замечание. Нельзя утверждать, что у гладкой кривой есть явная касательная в каждой её точке.

3.2 Длина кривой

Замечание. По факту, хотим подробить нашу кривую на маленькие отрезочки и засуммировать их, давайте подумаем как это сделать аккуратно.

Определение: $\gamma \colon [a,b] \mapsto \mathbb{R}^m$ — путь. $\theta = \{t_0,\dots,t_n\}, a = t_0 < t_1 < \dots < t_n = b$ — разбиение [a,b]. $l_{\theta}(\gamma) = \sum_{j=1}^n |\gamma(t_j) - \gamma(t_{j-1})|;$

Тогда длиной назовём $l(\gamma) = \sup_{\theta} l_{\theta}(\gamma)$

Замечание. Заметим, что длина есть у любого пути, так как мы не вводили дополнительные требования на путь.

Замечание. Посмотрим на $(x, x \sin \frac{1}{x})$ Вопрос: Путь бесконечной длины?

Теорема: $\gamma_1 \sim \gamma_2 \Rightarrow l(\gamma_1) = l(\gamma_2)$

Доказательство.

$$\square \ \gamma_2 \circ \varphi = \gamma_1 \ \theta$$
 — дробление $[a,b], \ \varphi(\theta)$ — дробление $[a,b]. \ \sum_{j=1}^n |\gamma_1(t_j) - \gamma_1(t_{j-1})| = \sum_{j=1}^n |\gamma_2(\varphi(t_j)) - \gamma_2(\varphi(t_{j-1}))|. \ l_{\theta}(\gamma_1) = l_{\varphi(\theta)}(\gamma_2)$

Теорема: $\gamma\colon [a,b]\mapsto \mathbb{R}^m, c\in (a,b).$ Пусть $\gamma_-=\gamma\big|_a^c, \gamma_+=\gamma\big|_c^b.$ Требуется доказать, что $l(\varphi)=l(\varphi_-)+l(\varphi_+)$

Доказательство.

 \square θ_{-} — дробление $[a,c],\ \theta_{+}$ — дробление [c,b] \Rightarrow $\theta=\theta_{-}+\theta_{+}$ — дробление [a,b] Докажем неравенство в две стороны.

$$l(\varphi) \ge l_{\theta}(\varphi) = l_{\theta_{-}}(\varphi_i) + l_{\theta_{+}}(\varphi_i) \Rightarrow$$

$$l(\varphi) \ge \sup_{\theta_-} l_{\theta_-}(\gamma_-) + \sup_{\theta_+} l_{\theta_+}(\gamma_+) = l(\gamma_-) + l(\gamma_+).$$

Докажем в обратную сторону. θ — дробление $[a,b] \to \overline{\theta} = \theta \cup \{c\} \to \theta_{+/-}$.

$$l_{\theta}(\gamma) \leq l_{\overline{\theta}}(\gamma) = l_{\theta-}(\gamma_-) + l_{\theta+}(\gamma_+) \leq l(\gamma_i) + l(\gamma_+) \Rightarrow \sup_{\theta} l_{\theta}(\gamma) \leq l(\gamma_-) + l(\gamma_+).$$

Теорема (О длине гладкого пути):
$$\gamma \colon [a,b] \mapsto \mathbb{R}^m, \gamma_j = C'[a,b] \Rightarrow l(\gamma) = \int_a^b |\gamma'(t)| dt$$
, где $|\gamma'(t)| = \sqrt{\sum_{j=1}^m |\gamma_j(t)|^2}$

Доказательство.

 \square θ — дробление [a,b], $\theta\colon a=t_0<\dots< t_n=b$

$$l_{\theta}(\gamma) = \sum_{j=1}^{m} \gamma(t_j) - \gamma(t_{j-1})$$

$$|\gamma(t_j) - \gamma(t_{j-1})| = \sqrt{\sum_{k=1}^m |\gamma_k(t_j) - \gamma_k(t_{j-1})|^2} = \sqrt{\sum_{k=1}^m |\gamma_k'(?)|^2 (t_j - t_{j-1})^2} = (t_j - t_{j-1}) \sqrt{\sum_{k=1}^m |\gamma_k'(?)|^2}.$$

Пусть $m_{j,k} = \min_{[t_{j-1},t_j]} |\gamma_k'|$, $M_{j,k} = \max_{[t_{j-1},t_j]} |\gamma_k'|$. Тогда можно продолжить следующим образом:

$$(t_j - t_{j-1}) \sqrt{\sum_{k=1}^m m_{j,k}^2} \le |\gamma(t_j) - \gamma(t_{j-1})| \le (t_j - t_{j-1}) \sqrt{\sum_{k=1}^m M_{j,k}^2}$$

С другой стороны:

$$(t_j - t_{j-1}) \sqrt{\sum_{k=1}^m m_{j,k}^2} \le \int_{t_{j-1}}^{t_j} |\gamma'(t)| dt \le (t_j - t_{j-1}) \sqrt{\sum_{k=1}^m M_{j,k}^2}$$

Суммируем по j:

$$\sum (t_j - t_{j-1})\sqrt{?} \le \begin{cases} l_{\theta}(\gamma) \\ \int_a^b |\gamma'(t)| dt \end{cases} \le \sum (t_j - t_{j-1})\sqrt{?}.$$

Заметим, что обе части стремятся к одному и тоже при $|\theta| \to 0$.

Тогда для $\varepsilon > 0$ по теореме кантора $\delta > 0$:

 $\forall s,t \in [a,b] \colon |s-t| < \delta, \forall k = 1\dots m, |(|\gamma_k'(s) - \gamma_k'(t)) < \varepsilon \text{ Тогда } |M_{j,k} - m_{j,k}| < \varepsilon \text{ если } t_j - t_{j-1} < \delta.$

$$\sqrt{\sum_{k=1}^{m} M_{j,k}^2} - \sqrt{\sum_{k=1}^{m} m_{j,k}^2} \le \sqrt{\sum_{k=1}^{m} (M_{j,k} - m_{j,k})^2} < \sqrt{m\varepsilon}.$$

Тогда

|п.ч - л.ч|
$$<\sum_{k=1}^m (t_j-t_{j-1})\sqrt{m}\varepsilon=(b-a)\sqrt{m}\varepsilon$$

Следствие:

1. (Длина графика функции)

Пусть
$$f:[a,b]\mapsto \mathbb{R}, f\in C^1[a,b], G_f=\{(x,f(x))\mid x\in [a,b]\}\subseteq \mathbb{R}^2$$
. Тогда длина графика функции равна: $l(G_f)=\int\limits_a^b\sqrt{1+(f'(x))^2}dx$

2. Есть функция $r \colon [\alpha, \beta] \mapsto \mathbb{R}_+, r \in C^1[\alpha, \beta]$ Тогда можно запараметризовать эту кривую как: $(r(t)\cos t, r(t)\sin t)$, обозначим за координаты x(t), y(t) соответственно.

Тогда:
$$x'(t) = r'(t)\cos t - r(t)\sin t; y'(t) = r'(t)\sin t + r(t)\cos t$$

Значит длину кривой можно вычислить следующим образом: $l = \int\limits_{\alpha}^{\beta} \sqrt{(r')^2 + r^2} d\varphi$

4 Дифференциальное исчисление функций нескольких переменных

Замечание. Прежде чем начать, подумаем что нам вообще надо. Производную можно представлять как линейное приближение функции в какой-либо точке. $f: X \mapsto Y$, где X, Y - X линейные, нормированные, полные, пространства над одним полем скаляров (\mathbb{R} или \mathbb{C}). $f(x) = f(x_0) + A(x - x_0) + o(x - x_0)$. Объясним почему наложены те или иные условия. В одномерье A было числом. В общем случае A должно быть линейным отображением, поэтому нам хочется чтобы поле скаляров у X, Y было одним и тем же. Более того, хочется иметь возможность переходить к пределу, а когда мы переходим к пределу естественно хотеть иметь корректное расстояние, поэтому нам нужна нормированность и полнота.

4.1 Линейные отобрежения

Определение: X,Y — линейные пространства над одним полем скаляров. $U\colon X\mapsto Y$ — линейное, если

1. (Аддитивность) $U(x_1 + x_2) = U(x_1) + U(x_2)$

2. (Однородность)

$$U(\lambda x) = \lambda U(x)$$

Определение: Пусть X_1, X_2, \ldots, X_n, Y — пространства над одним полем скаляров. Тогда $U \colon X_1 \times \cdots \times X_n \mapsto Y$ — полилинейное, если оно линейно по каждому из аргументов.

Замечание. Часто скобочки опускаются: U(x) = Ux

Пример:

1. $X=C[-1,1], \delta\colon X\mapsto \mathbb{R}, \delta(f)=f(0).$ Тогда δ — линейное отображение.

2.
$$X=C[a,b], Y=\mathbb{R}.$$
 Тогда $Uf=\int\limits_a^b f dx$ — линейное отображение.

3.
$$X = C[a, b], Y = C[a, b]$$
. Тогда $(Uf)(x) = \int_{a}^{x} f(t)dt$

4. $X = C^1[a,b], Y = C[a,b]$. Тогда $(Df)(x) = f'(x), D \colon X \mapsto Y$ тоже линейное отображение.

5.
$$X_1=X_2=\ldots X_n=\mathbb{R}=Y$$
. Тогда $U(x_1,\ldots,x_n)=x_1\cdot \cdot \cdot \cdot x_n$ — полилинейное отображение.

- 6. $X_1 = \mathbb{R}^m, X_2 = \mathbb{R}^m, Y = \mathbb{R}$. Тогда $U(X_1, X_2) = (X_1, X_2)$, где (X_1, X_2) скалярное произведение, линейное по первой координате.
- 7. $X_1 = \mathbb{R}^3, X_2 = \mathbb{R}^3, Y = \mathbb{R}^3$. Тогда $U(x_1, x_2) = x_1 \times x_2 = [x_1, x_2]$, где $[x_1, x_2]$ линейное отображение, полилинейное отображение.
- 8. $X_1 = \cdots = X_m = \mathbb{R}^m$. Тогда $U(x_1, \dots, x_m) = \det(x_1, \dots, x_m)$ полилинейное отображение.

Теорема (О непрерывности линейного отображения): $U: X \mapsto Y$ — линейное, X, Y — линейные, нормированные отображения (далее лно) над одним полем скаляров. Тогда следующие утверждения эквивалентны:

1. U — непрерывно

 $2. \ U \ -$ непрерывно в 0

3. $\exists C : \forall x \in X, ||U_x||_Y \leq C||x||_x$

Доказательство.

1. $(1) \Rightarrow (2)$ — очевидно

 $2. \ (2) \Rightarrow (3) \ \forall \varepsilon > 0, \exists \delta > 0 \colon \forall x \colon \|x\| \leq \delta, \|U_x\| \leq \varepsilon. \ x \to \overline{x} = x \tfrac{\delta}{\|x\|} \Rightarrow \|U_x \overline{x}\| \leq \varepsilon$

3. (3) \Rightarrow (1) липшецевость \Rightarrow непрерывное.

Теорема: $U: X_1 \times \cdots \times X_n \mapsto Y$ — полилинейное. Тогда следующие утверждения эквивалентны:

1. U — непрерывно

 $2. \ U \ -$ непрерывно в 0

3. $\exists C : ||U(X_1, \dots, X_n)|| \le C||x_1|| \cdot \dots \cdot ||x_n||$

Замечание.

Определение: $U: X \to Y$ — лно. $||U|| = \inf\{C \mid \forall x \in X ||U_x|| \le C ||x||\}$

Замечание. inf достигается то есть: $\forall x \in X, \|U_x\| \leq \|U\| \cdot \|x\|$

<u>Пример:</u> $U \colon C[a,b] \mapsto C[a,b],$ причём $(Uf)(x) = \int_a^x f(t) dt.$ Хотим оценить.

Лекция 24.03

В прошлой серии:

$$U:X \to Y$$
 — линейное непрерывное

$$||U||=\inf\{c: \forall x\in X||Ux||\leqslant C||x||\}$$

$$\forall x ||Ux|| \leqslant ||U||||x|| \Rightarrow ||U|| \geqslant \frac{||Ux||}{||x||}$$

$$||U|| = \sup_{x \neq 0}$$

 $\frac{\|Ux\|}{||x||} = sup_{||x||=1}||U||$, но не максимум, т.к. сфера не обязательно компактна

 $\underline{\mathit{Упражнениe:}}\ \|U\| = \sup_{\|x\| < 1} \|Ux\| = \sup_{\|x\| \leqslant 1} \|Ux\|$

Замечание. $U: X_1 \times X_2 ... \times X_m \to Y$ - полилинейное отображение

$$||U|| = \inf\{C : \forall x_1 \ inX_1, ..., \forall x_n \in X_m ||U(x_1, ..., x_n)|| \leqslant C||x_1||...||x_m||\}$$

$$\Rightarrow \forall x_1,...,x_m \|U(x_1,...,x_m)\| \leqslant \|U\| \cdot \|x_1\|...\|x_m\|$$

$$||U|| = \sup_{x_1,..,x_n} \frac{||U(x_1, x_2, ...x_n)||}{||x_1||...||x_n||}$$

 Π ример:

$$D: C^1[0,1] \to C[0,1]; (Df)(x) = f'(x)$$

Норма в $C^1[0,1]$:

1. $\phi_1(f) = \max_{x \in [0,1]} |f(x)|$

2. $\phi_2(f) = \max_{x \in [0,1]} |f'(x)|$ — не норма (т.к. обнуляется на константах)

3. $\phi_3(f) = \phi_1(f) + \phi_2(f)$

 $(C^1[0,1],\phi_1)$ — не полное пространство (берем непрерывную не дифференцируемую функцию и приближаем многочленом, например $|x|=x^{1-\varepsilon}$)

 $Упражнение: (C^1[0,1], \phi_3)$ — полное пространство

$$||Df||_{C[0,1]} \leqslant C||f||_{C^1[0,1]}$$

c=1 годится

$$||f'||_{C[0,1]} \le (||f'||_{C[0,1]} + ||f||_{C[0,1]})$$

$$f_k(x) = \sin(kx); ||f'_k||_c = k; ||f_k|| = 1$$

Теорема: X,Y - линейные нормированные пространства над одним полем скаляров (\mathbb{R},\mathbb{C}) $L(X,Y)=\{U:X\to Y,U-$ линейно непрерывное $\}$ — линейное множество (линейное пространство)

- 1. $||U_1 + U_2|| \le ||U_1|| + ||U_2||$
- 2. $\|\lambda U\| = |\lambda| \cdot \|U\|$
- $3. \|U\| = 0 \Leftrightarrow U = 0$
- 4. $U \in L(X,Y), V \in L(Y,Z) \Rightarrow VU \in L(X,Z)$ и $\|VU\| \leqslant \|V\| \cdot \|U\|$

Доказательство.

1.

$$||(U_1 + U_2)x|| = ||U_1x + U_2x|| \le ||U_1x|| + ||U_2x|| \le ||U_1||x + ||U_2||x \le (||U_1|| + ||U_2||)||X||$$

$$\Rightarrow ||U_1 + U_2|| \leqslant ||U_1|| + ||U_2||$$

2.

$$\|\lambda u\| = \sup_{\|x\|=1} \|\lambda Ux\| = |\lambda| \sup_{\|x\|=1} \|Ux\| = |\lambda| \cdot \|U\|$$

- 3. Без комментариев
- 4.

$$\|VUx\|\leqslant \|V\|\|Ux\|\leqslant \underbrace{\|V\|\cdot\|U\|}_{=C}\cdot\|X\|\Rightarrow \|VU\|\leqslant \|V\|\|U\|$$

Теорема: L(X,Y) — полное, если Y полное

Доказательство.

$$\square$$
 $\{U_k\}\subset L(X,Y),\,\{U_k\}$ — фунд.

$$\forall \varepsilon > 0 \ \exists N : \forall m, n > N \quad \underbrace{\|U_m - U_n\| \leqslant \varepsilon}_{\forall x \ \|U_m x - U_n x\| \leqslant \varepsilon \|x\|(*)}$$

$$\Rightarrow U_m x - фунд в Y \Rightarrow \exists \lim_{m \to \infty} U_m x =: U(x)$$

- 1. U линейное (очевидно, т.к. \lim линейная операция)
- 2. U непрерывно

3.
$$||U_m - U|| \to 0, m \to \infty$$

В (*)
$$n \to \infty$$
 получаем $\forall x \|U_m x - U x\| \leqslant \varepsilon \|x\| \Rightarrow U_m - U \in L(X,Y), \|U_m - U\| \leqslant \varepsilon$

Теорема: (штрих) $L(X_1,...,X_n;Y)$ — полное, если Y — полное, где L — полилинейные, непрерывные отображения из $X_1 \times ... \times X_n \to Y$

Теорема: $X_1,...X_s,X_{s+1},...,X_k;Y$ - линейные нормированные пространства

$$A = L(X_1, ..., X_s; L(X_{s+1}, ..., X_k; Y))$$

 $\stackrel{\simeq}{\searrow}$

изометрический изоморфизм(биекция, сохр. линейную струкутуру и норму

$$L(X_1,...,X_k;Y) = B$$

Доказательство.

$$\square \ u \in A, x_1 \in X_1, ..., x_s \in X_s \Rightarrow U(x_1, ..., x_s) \in L(x_{s+1}, ..., x_k; Y)$$

$$x_{s+1} \in X_{s+1}, ..., x_k \in X_k \Rightarrow U(x_1, ..., x_s)(x_{s+1}, ..., x_k) \in Y$$

 $U^{\sim} \in B; U^{\sim}(x_1,...x_k) := U(x_1,...,x_s)(x_{s+1},...,x_k)$ — полилинейное отображение, непрерывное

$$\|U^{\sim}\| = \sup_{x_1, \dots x_k} \frac{\|U(x_1, \dots x_s)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_s} \sup_{x_{s+1}, \dots, x_k} \frac{\|U(x_1, \dots, x_s)(x_{s+1}, \dots, x_k)\|}{\|x_{s+1}\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_{s+1}\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_k)\|}{\|x_1\| \dots \|x_k\|} = \sup_{x_1, \dots, x_k} \frac{\|U(x_1, \dots, x_k)(x_{s+1}, \dots, x_$$

$$= \sup_{x_1, \dots, x_s} \frac{\|U(x_1, \dots, x_s)\|}{\|x_1\| \dots \|x_s\|} = \|U\|$$

5 Дифференциал

Определение: $U \subset X$ — открытое, $f: U \to Y, X, Y$ - линейные полные нормированные пространства, $x_0 \in U$

$$f$$
 дифференцируемо в (\cdot) x_0 , если $f(x_0+h)=f(x_0)+Ah+o(h),h\to 0$, где $A\in L(X,Y)$, и $\frac{\|\alpha(h)\|}{\|h\|}\to 0,h\to 0$

A — дифференциал f в $(\cdot)x_0$

$$A = df(x_0) = d_{x_0}f = D_{x_0}f = f'(x_0)$$
 (не производная !!!)

Замечание.

1. Если X — конечномерно, то из линейности следует непр., т.к. $\exists C = \max_{\|x\|=1} \|Ux\| < \infty$

2. $Onpedenehue: в \infty$ мерном пространстве в лит-ре называется дифференцируемость по Фреше

Свойства:

1. f – дифф в $(\cdot)x_0 \Rightarrow f$ — непр. в $(\cdot)x_0$

Доказательство.

$$\Box f(x_0 + h) = f(x_0) + \underbrace{df(x_0)h + o(h)}_{\to 0, h \to 0}$$

2. дифференциал единственен

Доказательство.

$$\Box f(x_0 + h) = f(x_0) + A_1(h) + o(h) = f(x_0) + A_2(h) + o(h) \Rightarrow (A_2 - A_2)(h) = o(h)$$

$$\frac{\|(A_1 - A_2)h\|}{\|h\|} \to 0, h \to 0$$

Берём
$$h_0 - fix, h = th_0, t \to 0$$

$$\frac{\|(A_1-A_2)(th_0)\|}{\|th_0\|}=\frac{\|(A_1-A_2)(h_0)\|}{\|h_0\|}\to 0, t\to 0\Rightarrow=0,$$
 т.к. не зависит от t

3. (линейность)
$$f,g$$
 — дифф. в $(\cdot)x_0\Rightarrow \alpha f+\beta g$ — дифф в $(\cdot)x_0$

$$d(\alpha f + \beta g)(x_0) = \alpha df(x_0) + \beta dg(x_0)$$

4. (дифференциал композиции — правило цепочки)

$$x_0 \in U \subset X, f(x_0) \in V \subset Y, Z$$

$$f: U \to Y, g: V \to Z$$

$$f$$
 — дифф. в (\cdot) $x_0,$ g — дифф. в (\cdot) $f(x_0)$

$$\Rightarrow g\circ f$$
дифф в $(\cdot)\,x_0$ и $d(g\circ f)(x_0)\in L(X,Z)=dg(f(x_0))\in L(Y,Z)\circ df(x_0)\in L(X,Y)$

Доказательство.

$$\Box g(f(x_{0} + h)) = g(f(x_{0})) + dg(f(x_{0}))(f(x_{0} + h) - f(x_{0})) + o(f(x_{0} + h) - f(x_{0})) =$$

$$= g(f(x_{0})) + dg(f(x_{0}))(df(x_{0})h + o(h)) + o(f(x_{0} + h) - f(x_{0})) =$$

$$= g(f(x_{0})) + \underbrace{dg(f(x_{0}))df(x_{0})}_{\in L(X,Z)} h + \underbrace{dg(f(x_{0}))(o(h)) + o(f(x_{0} + h) - f(x_{0}))}_{?(=)o(h)}$$

$$\|dg(f(x_{0}))\| \leq \|dg(f(x_{0}))\| \cdot \underbrace{\|o(h)\|}_{=o(h)}$$

$$\|f(x_{0} + h) - f(x_{0})\| \leq C\|h\| \Rightarrow \underbrace{(=)o(h)}$$

5. (дифференциал обратного отображения)

$$U\subset X, V\subset Y, f:U\to V$$
 — биекция, f — непр. в (\cdot) $x_0,\,f^{-1}$ — непр. в (\cdot) $f(x_0)=y_0$ f дифф в (\cdot) x_0
$$\exists (df(x_0))^{-1}\in L(Y,X)$$
 $\Rightarrow f^{-1}$ дифф в (\cdot) y_0 и $df^{-1}(y_0)=(df(x_0))^{-1}$