(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 April 2006 (20.04.2006)

(10) International Publication Number WO 2006/042002 A2

- (51) International Patent Classification: *A61K 38/17* (2006.01)
- (21) International Application Number:

PCT/US2005/035961

- (22) International Filing Date: 5 October 2005 (05.10.2005)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/616,596 60/688,355 5 October 2004 (05.10.2004) US 6 June 2005 (06.06.2005) US

- (71) Applicant (for all designated States except US): ORE-GON HEALTH AND SCIENCE UNIVERSITY [US/US]; Technology and Research Collaborations, 2525 SW First Avenue, Suite 120, Mail Stop AD120, Portland, OR 97201 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CLINTON, Gail, M. [US/US]; Oregon Health & Science University, 2525 SW First Avenue, Suite 120, Mail Stop AD120, Portland, OR 97301 (US). ROBERTS, Charles, T., Jr. [US/US]; Oregon Health & Science University, 2525 SW First Avenue, Suite 120, Mail Stop AD120, Portland, OR 97301 (US).

- (74) Agents: DAVISON, Barry, L. et al.; Davis Wright Tremaine LLP, 2600 Century Square, 1501 Fourth Avenue, Seattle, WA 98101-1688 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS FOR TREATING DISEASE

(57) Abstract: The present invention discloses for the first time that the insulin receptor (IR) is a target of Herstatin, which modulates IR and IR-mediated intracellular signaling. In preferred aspects, Herstatin binds at nM concentrations to cell-surface IR, up-regulates basal IR expression by several-fold, induces the accumulation of pro-IR, and stimulates insulin activation of the ERK pathway. Moreover, these changes in insulin signaling are accompanied by alterations in IGF-IR expression, IRS-2 levels, and the serine phosphorylation state of both IRS-1 and IRS-2. Preferred aspects provide novel therapeutic methods and pharmaceutical compositions for treatment of conditions associated with altered IR expression or IR-mediated signaling, including but not limited to insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and combinations thereof, and cancer.

2006/042002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COMPOSITIONS AND METHODS FOR TREATING DISEASE

FIELD OF THE INVENTION

Aspects of the invention relate generally to therapeutic molecules, compositions and methods for treatment of diseases through modulation of the insulin receptor (IR) and IR-mediated intracellular signaling by administration of Herstatin or variants thereof, and in more particular aspects relate to compositions and methods for cell targeting, and for the treatment of conditions or diseases associated with altered IR expression or altered IR-mediated signaling, including but not limited to insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and combinations thereof, and cancer.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to: United States Provisional Patent Application Serial No. 60/616,596, filed 05 October 2004 and entitled "COMPOSITIONS AND METHODS FOR TREATING DISEASE"; and to United States Provisional Patent Application Serial No. 60/688,355, filed 06 June 2005, of same title, both of which are incorporated by reference herein in their entireties.

BACKGROUND

The Insulin Receptor. The insulin receptor is the canonical member of the insulin receptor family of receptor tyrosine kinases, which also includes the IGF-IR and the insulin receptor-related receptor (IRR). These molecules share a heterotetrameric structure comprised of two extracellular ligand-binding α subunits, which are coupled to each other and to two transmembrane β subunits by disulfide linkages. The intracellular portion of the β subunit contains the intrinsic tyrosine kinase catalytic domain, which is activated by binding of extracellular ligand and a presumed conformational change in the β subunit. The activated receptor undergoes autophosphorylation of tyrosine residues in the kinase domain as well as residues in the flanking juxtamembrane and carboxyl-terminal domains. The phosphorylation of these residues, particularly in the juxtamembrane region, allows the recruitment of scaffolding adapter proteins such as IRS-1 and IRS-2 and Shc, which are then phosphorylated on tyrosine residues by the activated receptor to recruit a second level of signaling molecules to initiate the signaling cascades that are responsible for insulin action. These include the ERK arm of the

MAPK pathway, the P13K-Akt/PKB pathway, and the APS-Cbl-CrkII-TC10 pathway. In cells expressing both insulin and IGF-I receptors, hybrid receptors consisting of insulin and IGF-I receptor α-β hemireceptors can form. These are activated by IGF-I but not by insulin. The insulin receptor family of receptors differs from the erbB/Her receptors by virtue of their existence as pre-dimerized heterotetramers and their use of intermediates such as IRS and Shc proteins to couple to downstream signaling pathways.

5

10

15

20

25

30

Diabetes and Related Conditions. The epidemic of obesity occurring in the in the United States and around the world portends a significant increase in type 2 diabetes mellitus in the adult and, increasingly, in the pediatric populations. There is also growing concern regarding the prevalence of pre-diabetic conditions such as the metabolic syndrome, the incidence of which dwarfs that of clinically apparent diabetes per se. The hyperglycemia of type 2 diabetes results from defects in both insulin sensitivity and pancreatic β-cell function, leading to a relatively insulin-deficient state. There is also a growing appreciation that insulin resistance may play an important role in cardiac disease. A mainstay of current therapy is the use of insulin-sensitizing agents such as metformin and thiazolidinediones that act to enhance the ability of insulin to trigger appropriate cellular responses such as glucose transport in insulintarget tissues. These treatments suffer, however, from a lack of mechanistic specificity, high. rates of unresponsiveness (up to 30% for thiazolidinediones), and frequent side effects. Although advances are being made in the generation of islets for transplant, the time frame for the successful application of these approaches in human patients with both type 1 and type 2 disease and their ability to affect insulin resistance remains unclear. Thus, there continues to be an urgent need to design new and novel therapies to treat insulin resistance (see, e.g., Alsheikh-Ali & Karas, Amer J Cardiology, 93:1417-8, 2004; Ovalle & Fernando, Southern Med J., 95:1188-94, 2002; and Zangeneh et al., Mayo Clinic Proc. 78:471-479, 2003).).

The ErbB Receptor Family. The ErbB receptor family consists of four receptor tyrosine kinases: EGFR (HER-1, erbB-1), HER-2 (neu, erbB-2), HER-3 (erbB-3) and HER-4 (erbB-4). Altered expression of ErbB receptors by mutational activation, receptor overexpression, and tumor production of ligands contributes to the development and maintenance of a variety of human cancers (Olayioye et al., Embo J., 19:3159-67, 2000).

The ErbB receptors are activated by several ligands with an EGF core domain (EGF-related growth factors). The exception is the HER-2 receptor, which is recruited as a preferred dimer partner with other ligand binding erbB receptors (*Id.*). The eleven mammalian EGF-like ligands are all agonists, whereas Drosophila express the ligand Argos that inhibits activation of

5

10

15

20

25

30

the EGFR (Dougall et al., Oncogene 9:2109-23, 1994; Hynes & Stem, Biochim. Biophys. Acta 1198:165-84, 1994); Tzahar & Yarden, Biochim. Biophys. Acta 1377:25-37, 1998).

Insulin-like growth factor 1 receptor (IGF-IR). Anti-erbB receptor antibody agents, such as the HER-2-specific antibody rhuMAb4D5 (HERCEPTIN™) have been approved for cancer therapy. Significantly, however, tumor cells may be inherently resistant, or gain resistance, to anti-erbB receptor therapies through activation of IGF-IR pathways (Chakravarti et al., Cancer Res. 62:200-7, 2002; Lu et al., J. Biol. Chem. 279:2856-65, 2004; Lu et al., J. Natl. Cancer Inst., 93:1852-7, 2001). Activation of the IGF-IR by IGF-I promotes, inter alia, proliferation, survival, transformation, metastasis, and angiogenesis (Baserga, Hum. Pathol. 31, 275-6, 2000; Wang & Sun, Curr. Cancer Drug Targets 2:191-207, 2002), and signaling through both IGF-IR and EGF receptors is central to tumorigenesis. IGF-IR is in the same receptor family as the insulin receptor.

Herstatin. Although the HER-2 receptor does not directly bind EGF-like ligands, a secreted product of an HER-2 alternative transcript, Herstatin, binds with high affinity to the ectodomains of all members of the EGF receptor family, including EGFR/HER1/erbB1, HER2/neu/erbB2, HER3/erbB3, and HER4/erbB4, and to ΔEGFR and IGF-IR (Shamieh et al.,. FEBS Letters, 568:163-166, 2004). Herstatin was originally cloned from ovarian cancer cells, and consists of a segment (340 amino acids identical to the N-terminal subdomains I and II) of the HER-2 ectodomain, followed by 79 amino acids, encoded by intron 8 that function as a receptor binding domain (RBD) (Doherty et al., Proc. Natl. Acad. Sci. USA 96:10869-74, 1999). Herstatin blocks homomeric and heteromeric ErbB receptor interactions (e.g., dimerization and activation), inhibits signaling by EGR ligands and by IGF-1 (e.g., inhibits activation of the PI3K/Akt pathway initiated by EGF, TGFα, Heregulin and IGF-1) (Doherty et al., Proc Natl Acad Sci., 96:10869-10874, 1999; Azios et al., Oncogene, 20:5199-5209, 2001; Justman & Clinton, J Biol Chem., 277:20618-20624, 2002; Jhabvala-Romero et al., Oncogene, 22:8178-8186, 2003; and Shamieh et al., supra), causes growth arrest, and has utility as an anti-cancer agent (Id., Azios et al., Oncogene 20:5199-209, 2001; Jhabvala-Romero et al., Oncogene 22:8178-86, 2003; Justman & Clinton, J. Biol. Chem. 277:20618-24, 2002).

There is, therefore, a need in the art to further investigate and characterize the interactions among the IR, the erbB family receptors, and the IGF-I receptor, and to identify modulators of the signaling mediated by these receptors.

There is a pronounced need in the art to identify and develop IR modulators as therapeutic agents.

There is a pronounced need in the art to design new and novel therapies to treat insulin resistance.

There is a need in the art to further assess and exploit the receptor-modulating utilities of Herstatin.

5

10

15

SUMMARY OF THE INVENTION

The present invention relates to therapeutic molecules and compositions for modulation of the insulin receptor (IR) and IR-mediated intracellular signaling by administration of an isoform of a cell surface receptor, and in preferred aspects, to administration of Herstatin, which is an example of such a cell surface receptor isoform. Aspects of the invention are based upon the discovery that the insulin receptor (IR) is a target of Herstatin, which specifically binds to the IR with nM affinity. According to preferred aspects of the present invention, Herstatin alters the landscape of IR-mediated signaling, exerting a positive effect on IR expression, and substantially increasing IR-mediated ERK pathway activation. The MEK (MAPK kinase)-ERK pathway has been shown to be significantly involved in glucose transport (e.g., Harmon et al., Am. J. Physiol. Endocrinol. Metab., 287:E758-E766, 2004).

In particular aspects, Herstatin was shown herein to bind at nM concentrations to cell-surface IR, to up-regulate basal IR expression by several-fold, and to induce the accumulation of pro-IR.

20

In additional aspects, and with respect to signal transduction, Herstatin was shown herein to substantially (e.g., >40-fold) stimulate insulin activation of the ERK pathway, but to have little effect on insulin-stimulated activation of the PI3K/Akt pathway.

In further aspects, these changes in insulin signaling were shown herein to be accompanied by about a 4-fold *decrease* in IGF-IR expression, a decrease in the apparent serine phosphorylation state of IRS-1, and a slight decrease in IRS-2 levels as well as a decrease in apparent serine phosphorylation of IRS-2.

Therefore, according to particular aspects of the present invention, Herstatin, a cell surface receptor isoform, has substantial utility for modulating insulin signaling in cells expressing IR.

30

25

Preferred aspects of the present invention thus provide novel therapeutic methods and pharmaceutical compositions comprising a cell surface receptor isoform (e.g., Herstatin, and/or variants thereof) for modulating IR, and IR-mediated signal transduction.

Alternative preferred aspects provide for a novel use of Herstatin in therapeutic methods and pharmaceutical compositions for treating various diseases associated with or characterized

by alterations in insulin sensitivity or resistance (e.g., conditions or diseases characterized by altered IR expression and/or altered IR-related signaling).

In preferred embodiments, the invention provides novel methods and compositions for the treatment of conditions or diseases associated with altered IR expression or altered IR-mediated signaling, including but not limited to at least one of insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and cancer.

Additional aspects provide novel methods of targeted drug delivery.

10

15

20

25

30

Methods of treatment. Particularly preferred embodiments provide a method for treating or modulating a condition having an aspect related to, or associated with, or characterized by altered IR expression or altered IR-mediated signaling at a cellular level, comprising administering to a subject having such a condition, a therapeutically effective amount of a cell surface receptor isoform such as Herstatin, or a variant thereof (e.g., a therapeutically effective amount of a Int8 RBD polypeptide, or a variant thereof), that binds to the extracellular domain of cellular target IR. Preferably, the condition is selected from the group consisting of insulin resistance, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, diabetes-associated lipid metabolism disorders, neurodegenerative disorders, and combinations thereof. In alternative related embodiments, the cell further expresses a target receptor selected from the group consisting of: EGFR (HER-1, erbB-1); ΔEGFR; HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4); IGF-IR and combinations thereof.

Alternative related preferred embodiments further comprise administering a therapeutically effective amount of a molecule such as a small molecule, protein, peptide or receptor-specific antibody that binds to the extracellular domain of a target receptor selected from the group consisting of: IR, EGFR (HER-1, erbB-1); ΔEGFR; HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4), and IGF-IR.

Preferably, the methods further comprise administration of the cell surface receptor isoforms of this invention in combination with a therapeutically effective amount of an agent selected from the group consisting of: insulin, insulin-sensitizing agents, insulin secretogogues, and combinations thereof. Preferably, the insulin-sensitizing agent is selected from the group consisting of biguanides, metformin, thiazolidinediones (glitazones), and combinations thereof. Preferably, the insulin secretogogue is selected from the group consisting of sulfonylureas, meglitinides, and combinations thereof.

5

5

10

15

20

25

30

Pharmaceutical compositions. Additional preferred embodiments provide a pharmaceutical composition for treating a condition having an aspect related to, or associated with or characterized by altered IR expression or altered IR-mediated signaling at a cellular level, comprising, along with a pharmaceutically acceptable carrier or excipient, a cell surface receptor isoform such as Herstatin, or a variant thereof (e.g., a Int8 RBD polypeptide, or a variant thereof), that binds to the extracellular domain of a cellular target IR. Preferably, the condition is selected from the group consisting of insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and combinations thereof. In alternative related preferred embodiments, the targeted cell further expresses a target receptor selected from the group consisting of: EGFR (HER-1, erbB-1); \(\Delta EGFR; HER-2 \) (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4); IGF-IR, and combinations thereof. Preferably, the pharmaceutical composition further comprises an agent selected from the group consisting of: insulin, insulinsensitizing agents, insulin secretogogues, and combinations thereof. Preferably, the insulinsensitizing agent is selected from the group consisting of biguanides, metformin, thiazolidinediones (glitazones), and combinations thereof. Preferably, the insulin secretogogue is selected from the group consisting of sulfonylureas, meglitinides, and combinations thereof...

Cell targeting. Yet further preferred embodiments provide methods and compositions for targeting a therapeutic agent to a cell expressing IR, comprising attaching the therapeutic agent to the cell surface receptor isoform, such as Herstatin, or to a variant thereof (e.g., a Int8 RBD polypeptide, or a variant thereof), that binds to the extracellular domain of a cellular target IR.

In related embodiments, the targeted cell further expresses a target receptor selected from the group consisting of: EGFR (HER-1, erbB-1); Δ EGFR; HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4); IGF-IR, and combinations thereof.

Preferably, in all of the above-described preferred embodiments, the Herstatin, or variant thereof, comprises a polypeptide selected from the group consisting of SEQ ID NO:2, or a fragment of SEQ ID NO:2 of about 80 to 419 contiguous residues in length, wherein the C-terminal 79 contiguous amino acids are present, wherein at least one N-linked glycosylation site is present, and wherein the polypeptide binds to the extracellular domain of insulin receptor with an affinity binding constant of at least 10⁸ M⁻¹. In particular aspects, the Herstatin, or variant thereof, comprises a sequence selected from the group consisting of SEQ ID NOS:32-42.

6

Preferably, the Herstatin or variant thereof comprises SEQ ID NO:32. Preferably, the Herstatin or variant thereof consists of SEQ ID NO:32.

Preferably, the Int8 RBD polypeptide, or a variant thereof comprises a polypeptide selected from the group consisting of SEQ ID NO:1, or a fragment of SEQ ID NO:1 of about 50 to 79 contiguous residues in length, wherein the polypeptide binds to the extracellular domain of insulin receptor with an affinity binding constant of at least 10⁸ M⁻¹. In particular aspects, the Int8 RBD polypeptide, or a variant thereof, comprises a sequence selected from the group consisting of SEQ ID NO:21-31. Preferably, the Int8 RBD polypeptide or variant thereof comprises SEQ ID NO:21. Preferably, the Int8 RBD polypeptide or variant thereof consists of SEQ ID NO:21.

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

25

30

Figure 1 shows, according to particular aspects of the present invention as described in more detail in EXAMPLE II below, that Herstatin bound at nM concentrations to 3T3 cells over-expressing insulin receptor (IR), but not to 3T3 parental cells.

Figures 2A and 2B show, according to particular aspects as described in more detail in EXAMPLE III below, that Herstatin expression up-regulated IR expression and activation in MCF-7 cells.

Figures 3A and 3B show, according to particular aspects as described in more detail in EXAMPLE IV below, that in MCF-7 cells Herstatin expression substantially amplified insulinstimulated ERK activation.

Figures 4A, 4B, 4C and 4D show, according to particular aspects as described in more detail in EXAMPLE V below, that Herstatin altered the expression of an array of proteins that are directly involved in insulin action.

Figure 5 shows, according to particular aspects, that the EGFR inhibitor AS1478 does not affect insulin signaling.

Figure 6 shows, according to particular aspects, that inhibition of the EGF receptor with an EGF receptor-specific inhibitor does not lead to an increase in insulin receptor.

DETAILED DESCRIPTION OF THE INVENTION

Herstatin is an example of a cell surface receptor isoform, that may also be referred to as an alternative receptor product or an intron fusion protein, which functions as a receptor ligand, and functions as a secreted ligand that inhibits members of the EGF receptor family. Herstatin binds with high affinity to all members of the EGF receptor family, including

EGFR/HER1/erbB1, HER2/neu/erbB2, HER3/erbB3, HER4/erbB4, and to ΔEGFR, and further binds to the IGF-IR.

The present invention discloses for the first time that the insulin receptor (IR) is a target of the cell surface receptor isoform, Herstatin, which specifically binds to the IR with nM affinity. According to preferred aspects of the present invention, Herstatin binds at nM concentrations to cell-surface IR, and further modulates insulin signaling in cells (e.g., MCF-7 human breast cancer cells, etc) expressing IR.

5

10

15

20

25

30

Herstatin is disclosed herein to alter expression of the IR and in particular to up-regulate basal IR expression by several-fold, and induce the accumulation of pro-IR.

Herstatin is further disclosed herein to modulate insulin activation. Herstatin stimulates insulin activation of the ERK pathway in a range of about 5- to about 80-fold, while having a more modest to little effect on insulin-stimulated (IR-mediated) activation of the PI3K/Akt pathway.

Significantly, these changes in insulin signaling were shown herein to be accompanied by a *decrease* in IGF-IR expression in the range of about a 2- to about a 10-fold decrease, a decrease in the apparent serine phosphorylation state of IRS-1, and a slight decrease in IRS-2 levels as well as a decrease in apparent serine phosphorylation of IRS-2.

Therefore, preferred aspects of the present invention provide for uses of Herstatin in novel methods and compositions for treating a condition having an aspect related to, or associated with or characterized by altered IR expression or IR-mediated signal transduction.

The instant description and Examples, in various aspects, disclose the ability of Herstatin to modulate insulin action in cell models (e.g., a breast cancer cell model that consists of the well-characterized MCF-7 human breast cancer cell line, and two derivative clones that express human Herstatin from a stably transfected expression vector).

In particular aspects, Herstatin binding to cell-surface IR was investigated using IR-expressing 3T3 cells (IRA-3T3). Moreover, the effects of Herstatin on the expression and activation of the IR itself, and upon the expression and activation of the major signaling pathways that emanate from the activated insulin receptor (e.g., the ERK pathway and the PI3K/Akt pathway) were investigated in MCF-7 and in Herstatin-expressing MCF-7 cells. All of the individual assays were repeated a minimum of three times with similar, if not identical, results, and many of the findings have been replicated and confirmed in experiments with an independent Herstatin-expressing MCF-7 clone.

According to preferred aspects of the present invention, Herstatin upregulates IR expression and IR-mediated signal transduction (e.g., substantially (>40-fold) stimulating insulin

activation of the ERK pathway). Therefore, Herstatin and/or RBD Int8 polypeptides, and Herstatin- and/or RBD Int8 polypeptide-based agents (e.g., conjugates with drugs, toxins, radionuclides, etc.) have utility as therapeutic agents for treatment of diseases or conditions having an aspect related to, or associated with or characterized by altered IR expression or altered IR-mediated signaling at a cellular level (e.g., insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and combinations thereof).

Preferred aspects provide novel methods and compositions for treating cellular insulin resistance (for discussion of insulin resistance see, e.g., Alsheikh-Ali & Karas, Amer J Cardiology, 93:1417-8, 2004; Ovalle & Fernando, Southern Med J., 95:1188-94, 2002; and Zangeneh et al., Mayo Clinic Proc. 78:471-479, 2003).

According to additional preferred aspects, Herstatin and/or Herstatin-based agents can be used to target IR-expressing cells and/or modulate IR-mediated signaling.

DEFINITIONS

5

10

15

20

25

30

"Herstatin," an example of a cell surface receptor isoform (also referred to as an intron fusion protein) refers to the polypeptides of SEQ ID NO:2 (including SEQ ID NOS:32-42), and additionally includes functional (e.g., target receptor-binding) variants (including conservative amino acid sequence variants as described herein), fragments, muteins, derivatives and fusion proteins thereof.

As used herein, an isoform of a cell surface receptor (also referred to herein as a CSR isoform), such as an isoform of a receptor tyrosine kinase, refers to a receptor that lacks a domain or portion thereof sufficient to alter or modulate a biological activity of the receptor or modulate a biological activity compared to a wildtype and/or predominant form of the receptor. A CSR isoform refers to a receptor that lacks a domain or portion of a domain sufficient to alter or modulate a biological activity of the receptor, for example the insulin receptor. Generally, a biological activity is altered in an isoform at least 0.1, 0.5, 1, 2, 3, 4, 5, or 10-fold compared to a wildtype and/or predominant form of the receptor. Typically, a biological activity is altered 10-, 20-, 50-, 100- or 1000-fold or more. With reference to an isoform, alteration of activity refers to difference in activity between the particular isoform, which is shortened, compared to the unshortened form of the receptor. Alteration of biological activity includes an enhancement or a reduction of activity. In particular embodiments, alteration of a biological activity is a reduction in the activity. In particular embodiments, an alteration of a biological activity is a reduction in

biological activity, and the reduction can be at least 0.1 0.5 1, 2, 3, 4, 5, or 10-fold compared to a wildtype and/or predominant form of the receptor. Typically, a biological activity is reduced 5, 10, 20, 50, 100 or 1000-fold or more. Reference herein to a CSR isoform with altered activity refers to the alteration in an activity by virtue of the different structure or sequence of the CSR isoform compared to a cognate receptor.

Reference herein to modulating the activity of a target cell surface receptor means that a CSR isoform interacts in some manner with the target receptor and activity, such as ligand binding or dimerization or other signal-transduction-related activity is altered.

5

10

15

20

25

30

Intron fusion proteins (IFPs) are exemplary CSR isoforms. IFPs, for purposes herein include natural and combinatorial IFPs. A natural IFP refers to a polypeptide that is encoded by an alternatively spliced RNA that contains one or more amino acids encoded by an intron operatively linked to one or more portions of the polypeptide encoded by one or more exons of a gene. Alternatively spliced mRNA is one that is isolated or is one that can be prepared synthetically by joining splice donor and acceptor sites in a gene. A natural IFP contains one or more amino acids and/or one or more stop codons encoded by an intron sequence. A combinatorial IFP refers to a polypeptide that is shortened compared to a wildtype or predominant form of a polypeptide. Typically, the shortening removes one or more domains or a portion thereof from a polypeptide such that a biological activity is altered. Combinatorial IFPs often mimic a natural IFP in that one or more domains or a portion thereof that is/are deleted in a natural IFP derived from the same gene sequence or derived from a gene sequence in a related gene family.

As used herein, natural with reference to IFP, refers to any protein, polypeptide or peptide or fragment thereof (by virtue of the presence of the appropriate splice acceptor/donor sites) that is encoded within the genome of an animal and/or is produced or generated in an animal or that could be produced from a gene. Natural IFPs include allelic variant. IFPs can be modified post-translationally.

"RBD Int8 polypeptide" refers to the polypeptides of SEQ ID NO:1 (including SEQ ID NOS:21-31), and additionally includes functional (e.g., target receptor-binding) variants (including conservative amino acid sequence variants as described herein), fragments, muteins, derivatives and fusion proteins thereof.

"Mutant RBD Int8 polypeptide" or "mutant Int8 RBD polypeptide" refers to the intron 8-encoded receptor binding domain variants (with an Arg to Ile mutation at residue 31 thereof) of SEQ ID NO:3), and additionally includes functional (e.g., target receptor non-binding) variants (including conservative amino acid sequence variants as described herein), fragments, muteins,

derivatives and fusion proteins thereof. Representative, corresponding Herstatin variants (Arg to Ile mutation at residue 371) are given as SEQ ID NO:4.

"EGFR," "HER-1" or "erbB-1" refer to the art-recognized human epidermal growth factor receptor, erbB-1 (cDNA: NM_005228, SEQ ID NO:5; protein: NP_005219, SEQ ID NO:6), and including Herstatin-, and/or Int8 RBD polypeptide-binding variants thereof.

5

10

20

"ΔEGFR" refers to the art-recognized receptor, ΔEGFR (cDNA: SEQ ID NO:7; protein: SEQ ÎD NO:8) (see Ekstrand et al., PNAS 89:4309-4313, 1992; and Nishikawa et al., PNAS 91:7727-7731, 1994) (comprising a deletion in the ECD; cDNA positions 275 through 1075, corresponding to exons 2-7 of the EGFR gene), and including Herstatin-, and/or Int8 RBD polypeptide-binding variants thereof.

"HER-2" or "erbB-2" refers to the art-recognized human receptor, erbB-2 (cDNA: NM_004448, SEQ ID NO:9; protein: NP_004439, SEQ ID NO:10), and including Herstatin-, and/or Int8 RBD polypeptide-binding variants thereof.

"HER-3" or "erbB-3" refers to the art-recognized human receptor, erbB-3 (cDNA: NM_001982, SEQ ID NO:11; protein: NP_001973, SEQ ID NO:12), and including Herstatin-, and/or Int8 RBD polypeptide-binding variants thereof.

The phrase "mutant form of HER-3" refers to a HER-3 protein having a substitution of Glu for Gly in the ectodomain of HER-3 corresponding to a single point mutation at nucleotide position 1877 ("a" instead of "g" at this position), resulting in substitution of Glu instead of Gly at residue position 560) (cDNA: SEQ ID NO:13; protein: SEQ ID NO:14).

"HER-4" or "erbB-4" refers to the art-recognized human receptor, erbB-4 (cDNA: NM_005235, SEQ ID NO:15; protein: NP_005226, SEQ ID NO:16), and including Herstatin-, and/or Int8 RBD polypeptide-binding variants thereof.

"IGF-IR" refers to the art recognized insulin-like growth factor I receptor (cDNA: NM_000875, SEQ ID NO:17; protein: NP_000866, SEQ ID NO:18), and including Herstatin-, and/or Int8 RBD polypeptide-binding variants thereof.

"Insulin receptor" or IR refers to the art-recognized insulin receptor (cDNA: NM_000208, SEQ ID NO:19; protein: NP_000199, SEQ ID NO:20), and including Herstatin-, and/or Int8 RBD polypeptide-binding variants thereof.

TABLE 1. Summary of key SEQ ID NOS and accession numbers:

MOLECULE	cDNA	PROTEIN
RBD Int8 polypeptide(s))		SEQ ID NO:1
Herstatin(s)		SEQ ID NO:2
		SEQ ID NOS:32-42
Mutant Int8 RBD		SEQ ID NO:3
polypeptide(s)		SEQ ID NOS:21-31
Mutant Herstatin(s)		SEQ ID NO:4
EGFR (HER-1 or erbB-1)	SEQ ID NO:5 (NM_005228)	SEQ ID NO:6 (NP_005219)
ΔEGFR	SEQ ID NO:7	SEQ ID NO:8
HER-2 (erbB-2)	SEQ ID NO:9 (NM_004448)	SEQ ID NO:10 (NP_004439)
HER-3 (erbB-3)	SEQ ID NO:11 (NM_001982)	SEQ ID NO:12 (NP_001973)
Mutant form of HER-3	SEQ ID NO:13	SEQ ID NO:14
HER-4 (erbB-4)	SEQ ID NO:15 (NM_005235)	SEQ ID NO:16 (NP_005226)
IGF-IR	SEQ ID NO:17 (NM_000875)	SEQ ID NO:18 (NP_000866)
Insulin receptor (IR)	SEQ ID NO:19 (NM_000208)	SEQ ID NO:20
		(NP_000199.1)

Cell Surface Receptor (CSR) Isoforms

Provided herein are cell surface receptor (CSR) isoforms (including intron fusion proteins; IFPs) having the novel biological activity of altering IR expression or altered IR mediated signaling. The CSR isoforms differ from the cognate receptors in that there are insertions and/or deletions, and the resulting CSR isoforms exhibit a difference in one or more activities or functions compared to the cognate receptor. Such differences include, for example elimination of all or part of a transmembrane domain, and/or a change in a biological activity of the CSR (e.g., as disclosed herein, the ability to modulate insulin receptor (IR) expression or IR-mediated signaling). The CSR isoforms provided herein can be used for modulating the activity of a cell surface receptor (e.g., the IR). They also can be used as targeting agents (e.g., targeting

5

10

15

20

25

30

IR) for delivery of molecules, such as drugs or toxins or nucleic acids, to targeted cells or tissues.

A CSR isoform refers to a receptor that lacks a domain or portion of a domain sufficient to alter a biological activity (e.g., an activity with respect to the IR). Thus, an isoform may differ from a wildtype and/or predominant form of the receptor, in that it lacks one or more biological activities of the receptor. Additionally, CSR isoforms can contain a new domain and/or biological function as compared to a wildtype and/or predominant form of the receptor. For example, intron-encoded amino acids can introduce a new domain or portion thereof into a CSR isoform. Biological activities that can be altered (or gained) include, but are not limited to, protein-protein interactions such as dimerization, multimerization and complex formation, specificity and/or affinity for ligand, cellular localization and relocalization, membrane anchoring, enzymatic activity such as kinase activity, response to regulatory molecules including regulatory proteins, cofactors, and other signaling molecules, such as in a signal transduction pathway. Generally, a biological activity is altered in an isoform at least 0.1, 0.5, 1, 2, 3, 4, 5, or 10-fold as compared to a wildtype and/or predominant form of the receptor. Typically, a biological activity is altered 10, 20, 50, 100 or 1000-fold or more. For example, an isoform can be reduced with respect to a particular biological activity.

CSR isoforms can also modulate an activity of a wildtype and/or predominant form of the cognate receptor. For example, a CSR isoform can interact directly or indirectly with a CSR isoform and modulate a biological activity of the cognate receptor. Biological activities that can be altered include, but are not limited to, protein-protein interactions such as dimerization, multimerization and complex formation, specificity and/or affinity for ligand, cellular localization and relocalization, membrane anchoring, enzymatic activity such as kinase activity, response to regulatory molecules including regulatory proteins, cofactors, and other signaling molecules, such as in a signal transduction pathway.

A CSR isoform can interact directly or indirectly with a cell surface receptor to cause or participate in a biological effect, such as by modulating a biological activity of the cell surface receptor (e.g., in the instant case, the IR). A CSR isoform also can interact independently of a cell surface receptor to cause a biological effect, such as by initiating or inhibiting a signal transduction pathway. For example, a CSR isoform can initiate a signal transduction pathway and enhance or promote cellular metabolism. In another example, a CSR isoform can interact with the cell surface receptor as a ligand, causing a biological effect for example by inhibiting a signal transduction pathway that can promote or alter a cellular response to insulin. Hence, the isoforms provided herein can function as cell surface receptor ligands in that they interact with

the targeted receptor in the same manner that a cognate ligand interacts with and alters receptor activity. The isoforms can bind as a ligand, but not necessarily to the ligand binding site, and can serve to block receptor dimerization. They act as ligands in the sense that they interact with the receptor. The CSR isoforms also can act by binding to ligands for the receptor and/or by preventing receptor activities, such as dimerization.

For example, a CSR isoform can compete with a CSR for ligand binding. A CSR isoform can act as a dominant negative inhibitor, for example, when complexed with a CSR. A CSR isoform can act as a dominant negative inhibitor or as a competitive inhibitor of a CSR, for example, by complexing with a CSR isoform and altering the ability of the CSR to multimerize (e.g, dimerize or trimerize) with other CSRs. A CSR isoform can compete with a CSR for interactions with other polypeptides and cofactors in a signal transduction pathway.

The cell surface isoforms and families of isoforms provided herein include, for example, isoforms of the HER-2 receptor (e.g., Herstatin), IR, etc. Pharmaceutical compositions containing one or more different CSR isoforms are provided. Also provided are methods of treatment of diseases and conditions by administering the pharmaceutical compositions or delivering a CSR isoform, such by administering the isoform protein (polypeptide, etc), and/or by administration of a vector that encodes the isoform. Administration, by either means, can be effected in vivo or ex vivo. Also provided are methods for expressing, isolating and formulating CSR isoforms.

20

25

30

15

10

Herstatin and/or RBD Int8 polypeptides and therapeutic agents

In preferred aspects, the present invention provides for Herstatin (e.g., the sequences of SEQ ID NO:2) and polypeptides thereof that bind to a *insulin receptor* (IR) as a target receptor (specifically, or in addition to the known targets: EGFR, HER-2, HER-3, DEGFR, HER-4 and IGF-IR). Also provided are RBD Int8 polypeptides (e.g., the sequences of SEQ ID NO:1) and receptor-binding polypeptides thereof that bind to a *insulin receptor* as a target receptor (specifically, or in addition to the known targets EGFR, HER-2, HER-3, DEGFR, HER-4 and IGF-IR).

Preferably, the Herstatin and/or RBD Int8 polypeptides comprise an amino acid sequence of SEQ ID NO:1 (or of SEQ ID NO:1 having from 1, to about 3, to about 5, to about 10, or to about 20 conservative amino acid substitutions), or a fragment of a sequence of SEQ ID NO:1 (or a fragment of SEQ ID NO:1 having from 1, to about 3, to about 5, to about 10, or to about 20 conservative amino acid substitutions) of about 50 to 79 contiguous residues in length, wherein the polypeptide binds to the extracellular domain (ECD) of a target receptor (e.g.,

EGFR, HER-2, HER-3, DEGFR, HER-4, IGF-IR and IR (as disclosed herein)) with an affinity binding constant of at least 10⁷ M⁻¹, at least 5 x 10⁷ M⁻¹, or at least 10⁸ M⁻¹. Preferably, the Herstatin and/or RBD Int8 polypeptide is from about 69 to 79 contiguous residues in length, with a IR affinity binding constant of at least 10⁷ M⁻¹, at least 5 x 10⁷ M⁻¹, or at least 10⁸ M⁻¹ (similar to the respective binding constants associated with the known EGFR, HER-2, HER-3, DEGFR, HER-4 and IGF-IR target receptors). Preferably, Herstatin and/or RBD Int8 polypeptide comprises a sequence of SEQ ID NO:1, or a conservative amino acid substitution variant thereof. In particular aspects, the Int8 RBD polypeptide, or a variant thereof, comprises a sequence selected from the group consisting of SEQ ID NO:21. Preferably, the Int8 RBD polypeptide or variant thereof consists of SEQ ID NO:21.

Preferably, the Herstatin and/or RBD Int8 polypeptides comprise an amino acid sequence of SEO ID NO:2 (or of SEO ID NO:2 having from 1, to about 3, to about 5, to about 10, or to about 20 conservative amino acid substitutions), or a fragment of a sequence of SEQ ID NO:2 (or a fragment of SEO ID NO:2 having from 1, to about 3, to about 5, to about 10, or to about 20 conservative amino acid substitutions) of about 80 to 419 contiguous residues in length, wherein the C-terminal 79 contiguous amino acids are present, and wherein the polypeptide binds to the extracellular domain (ECD) of a IR with an affinity binding constant of at least 10⁷ M⁻¹, at least 5 x 10⁷ M⁻¹, or at least 10⁸ M⁻¹ (similar to the respective binding constants associated with the known EGFR, HER-2, HER-3, DEGFR, HER-4 and IGF-IR target receptors). Preferably, the Herstatin and/or RBD Int8 polypeptide is from about 350 to 419 contiguous residues in length, wherein the polypeptide binds to the extracellular domain (ECD) of a IR with an affinity binding constant of at least $10^7 \,\mathrm{M}^{-1}$, at least $5 \times 10^7 \,\mathrm{M}^{-1}$, or at least 10^8 M-1 (similar to the respective binding constants associated with the known EGFR, HER-2, HER-3. DEGFR, HER-4 and IGF-IR target receptors). Preferably, comprises a sequence of SEQ ID NO:2, or a conservative amino acid substitution variant thereof. In particular aspects, the Herstatin, or variant thereof, comprises a sequence selected from the group consisting of SEQ ID NOS:32-42. Preferably, the Herstatin or variant thereof comprises SEQ ID NO:32. Preferably, the Herstatin or variant thereof consists of SEQ ID NO:32.

_.

5

10

15

20

25

30

Biologically Active Variants

Variants of Herstatin and/or RBD Int8 polypeptide have substantial utility in various aspects of the present invention. Variants can be naturally or non-naturally occurring. Naturally occurring variants are found in humans or other species and comprise amino acid sequences

which are substantially identical to the amino acid sequences shown in SEQ ID NO:1 or SEQ ID NO:2, and include natural sequence polymorphisms. Species homologs of the protein can be obtained using subgenomic polynucleotides of the invention, as described below, to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, yeast, or bacteria, identifying cDNAs which encode homologs of the protein, and expressing the cDNAs as is known in the art.

Non-naturally occurring variants which retain substantially the same biological activities as naturally occurring protein variants, including the target RBD activity and the modulation of target receptor signaling activity, are also included here. Preferably, naturally or non-naturally occurring variants have amino acid sequences which are at least 85%, 90%, or 95% identical to the amino acid sequence shown in SEQ ID NOS:1 or 2. More preferably, the molecules are at least 98% or 99% identical. Percent identity is determined using any method known in the art. A non-limiting example is the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 1. The Smith-Waterman homology search algorithm is taught in Smith and Waterman, Adv. Appl. Math. 2:482-489, 1981.

As used herein, "amino acid residue" refers to an amino acid formed upon chemical digestion (hydrolysis) of a polypeptide at its peptide linkages. The amino acid residues described herein are generally in the "L" isomeric form. Residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property is retained by the polypeptide. NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxyl terminus of a polypeptide. In keeping with standard polypeptide nomenclature described in *J. Biol. Chem.*, 243:3552-59 (1969) and adopted at 37 C.F.R. §§ 1.821-1.822, abbreviations for amino acid residues are shown in Table 1:

TABLE 1 – Table of Correspondence

5

10

15

20

25

SYMBOL		
1-Letter	3-Letter	AMINO ACID
Y	Tyr	Tyrosine
G	Gly	Glycine
F	Phe	Phenylalanine
M	Met	Methionine

SYMBOL		
Α	Ala	Alanine
S	Ser	Serine
I	Ile	Isoleucine
L	Leu	Leucine
T	Thr	Threonine
V	Val	Valine
P	Pro	Praline
K	Lys	Lysine
Н	His	Histidine
Q	Gln	Glutamine
E	Glu	glutamic acid
Z	Glx	Glu and/or Gln
W	Trp	Tryptophan
R	Arg	Arginine
D	Asp	aspartic acid
N	Asn	Asparagines
В	Asx	Asn and/or Asp
С	Cys	Cysteine
X	Xaa	Unknown or other

It should be noted that all amino acid residue sequences represented herein by a formula have a left to right orientation in the conventional direction of amino-terminus to carboxylterminus. In addition, the phrase "amino acid residue" is defined to include the amino acids listed in the Table of Correspondence and modified and unusual amino acids, such as those referred to in 37 C.F.R. §§ 1.821-1.822, and incorporated herein by reference. Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or more amino acid residues or to an amino-terminal group such as NH₂ or to a carboxyl-terminal group such as COOH.

5

10

Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity can be found using computer programs well known in the art, such as DNASTARTM software. Preferably, amino acid changes in the protein variants disclosed herein are conservative amino acid changes, *i.e.*, substitutions of similarly charged or uncharged amino acids. A conservative amino acid change

involves substitution of one of a family of amino acids which are related in their side chains. Naturally occurring amino acids are generally divided into four families: acidic (aspartate, glutamate), basic (lysine, arginine, histidine), non-polar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine) amino acids. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids.

In a peptide or protein, suitable conservative substitutions of amino acids are known to those of skill in this art and generally can be made without altering a biological activity of a resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g., Watson et al. Molecular Biology of the Gene, 4th Edition, 1987, The Benjamin/Cummings Pub. Co., p.224).

Such substitutions may be made in accordance with those set forth in TABLE 2 as follows:

15

10

5

TABLE 2

Original residue Ala (A)	Conservative substitution Gly; Ser
Arg (R)	Lys
Asn (N)	Gln; His
Cys (C)	Ser
Gln (Q)	Asn
Glu (E)	Asp
Gly (G)	Ala; Pro
His (H)	Asn; Gln
Ile (I)	Leu; Val
Leu (L)	Ile; Val
Lys (K)	Arg; Gln; Glu
Met (M)	Leu; Tyr; Ile
Phe (F)	Met; Leu; Tyr
Ser (S)	Thr
Thr (T)	Ser
Trp (W)	Туг
Tyr (Y)	Trp; Phe
Val (V)	Ile; Leu

Other substitutions also are permissible and can be determined empirically or in accord with other known conservative (or non-conservative) substitutions.

Variants of the Herstatin and/or RBD Int8 polypeptide disclosed herein include glycosylated forms, aggregative conjugates with other molecules, and covalent conjugates with unrelated chemical moieties (e.g., pegylated molecules). Covalent variants can be prepared by linking functionalities to groups which are found in the amino acid chain or at the N- or C-terminal residue, as is known in the art. Variants also include allelic variants, species variants, and muteins. Truncations or deletions of regions which do not affect functional activity of the proteins are also variants.

5

10

15

20

25

30

A subset of mutants, called muteins, is a group of polypeptides in which neutral amino acids, such as serines, are substituted for cysteine residues which do not participate in disulfide bonds. These mutants may be stable over a broader temperature range than native secreted proteins (Mark et al., United States Patent 4,959,314).

Preferably, amino acid changes in the Herstatin and/or RBD Int8 polypeptide variants are conservative amino acid changes, *i.e.*, substitutions of similarly charged or uncharged amino acids. A conservative amino acid change involves substitution of one of a family of amino acids which are related in their side chains. Naturally occurring amino acids are generally divided into four families: acidic (aspartate, glutamate), basic (lysine, arginine, histidine), non-polar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine) amino acids. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids.

It is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the biological properties of the resulting secreted protein or polypeptide variant. Properties and functions of Herstatin and/or RBD Int8 polypeptide protein or polypeptide variants are of the same type as a protein comprising the amino acid sequence encoded by the nucleotide sequences shown in SEQ ID NO:1 or 2, although the properties and functions of variants can differ in degree.

Herstatin and/or RBD Int8 polypeptide variants include glycosylated forms, aggregative conjugates with other molecules, and covalent conjugates with unrelated chemical moieties (e.g., pegylated molecules). Herstatin and/or RBD Int8 polypeptide variants also include allelic variants (e.g., polymorphisms), species variants, and muteins. Truncations or deletions of

5

10

15

20

25

30

regions which do not preclude functional activity of the proteins are also variants. Covalent variants can be prepared by linking functionalities to groups which are found in the amino acid chain or at the N- or C-terminal residue, as is known in the art.

It will be recognized in the art that some amino acid sequence of the Herstatin and/or RBD Int8 polypeptides of the invention can be varied without significant effect on the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there are critical areas on the protein which determine activity. In general, it is possible to replace residues that form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein. The replacement of amino acids can also change the selectivity of binding to cell surface receptors (Ostade et al., *Nature 361*:266-268, 1993). Thus, the Herstatin and/or RBD Int8 polypeptides of the present invention may include one or more amino acid substitutions, deletions or additions, either from natural mutations or human manipulation.

Of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or negatively charged amino acids. The latter results in proteins with reduced positive charge to improve the characteristics of the disclosed protein. The prevention of aggregation is highly desirable. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because they can be immunogenic (Pinckard et al., *Clin. Exp. Immunol.* 2:331-340, 1967; Robbins et al., *Diabetes* 36:838-845, 1987; Cleland et al., *Crit. Rev. Therapeutic Drug Carrier Systems* 10:307-377, 1993).

Amino acids in the Herstatin and/or RBD Int8 polypeptides of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, *Science 244*:1081-1085, 1989). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as binding to a natural or synthetic binding partner. Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., *J. Mol. Biol. 224*:899-904, 1992 and de Vos et al. *Science 255*:306-312,1992).

As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein. Of course, the number of amino acid substitutions a skilled artisan would make depends on many factors,

including those described above. Generally speaking, the number of substitutions for any given Herstatin and/or RBD Int8 polypeptide will not be more than 50, 40, 30, 25, 20, 15, 10, 5 or 3.

In addition, pegylation of Herstatin and/or RBD Int8 polypeptides and/or muteins is expected to provide such improved properties as increased half-life, solubility, and protease resistance. Pegylation is well known in the art.

Fusion Proteins

5

10

15

20

25

30

Fusion proteins comprising proteins or polypeptide fragments of Herstatin and/or RBD Int8 polypeptide can also be constructed. Fusion proteins are useful for generating antibodies against amino acid sequences and for use in various targeting and assay systems. For example, fusion proteins can be used to identify proteins which interact with a Herstatin and/or RBD Int8 polypeptide of the invention or which interfere with its biological function. Physical methods, such as protein affinity chromatography, or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can also be used for this purpose. Such methods are well known in the art and can also be used as drug screens. Fusion proteins comprising a signal sequence can be used.

A fusion protein comprises two protein segments fused together by means of a peptide bond. Amino acid sequences for use in fusion proteins of the invention can be utilize the amino acid sequence shown in SEQ ID NOS:1 or 2 or can be prepared from biologically active variants of SEQ ID NOS:1 or 2, such as those described above. The first protein segment can include of a full-length Herstatin and/or RBD Int8 polypeptide.

Other first protein segments can consist of about 50 to about 79 contiguous amino acids from SEQ ID NO:1, or, with respect to SEQ ID NO:2, from about 80 to 419 contiguous residues in length, wherein the C-terminal 79 contiguous amino acids of SEQ ID NO:2 are present, or from about 350 to 419 contiguous residues in length wherein the C-terminal 79 contiguous amino acids of SEQ ID NO:2 are present.

The second protein segment can be a full-length protein or a polypeptide fragment. Proteins commonly used in fusion protein construction include β -galactosidase, β -glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenical acetyltransferase (CAT). Additionally, epitope tags can be used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags. Other fusion constructions can

include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions.

These fusions can be made, for example, by covalently linking two protein segments or by standard procedures in the art of molecular biology. Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises a coding region for the protein sequence of SEQ ID NOS:1 or 2 in proper reading frame with a nucleotide encoding the second protein segment and expressing the DNA construct in a host cell, as is known in the art. Many kits for constructing fusion proteins are available from companies that supply research labs with tools for experiments, including, for example, Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), Clontech (Mountain View, CA), Santa Cruz Biotechnology (Santa Cruz, CA), MBL International Corporation (MIC; Watertown, MA), and Quantum Biotechnologies (Montreal, Canada; 1-888-DNA-KITS).

Cell Targeting

10

15

20

25

30

According to additional preferred aspects of the present invention, cell surface receptor isoforms such as Herstatin- and/or RBD Int8 polypeptide-based agents can be used to target insulin receptor (IR) on cells (e.g., insulin-resistant cells, IR-expressing cells involved with some aspect of glucose regulation or metabolism, cancer cells, etc.). Herstatin- and/or RBD Int8 polypeptide-based agents can be used to deliver a locally acting biological agent that will affect the targeted cell.

IR, in the context of the inventive targeting, is expressed on the surface of cells and is accessible (specifically, or in addition to at least one of the other known Herstatin targets: EGFR; HER-2; HER-3; HER-4, ΔEGFR and IGF-IR) to exogenous molecules. For example, where IR is present at higher levels on particular IR-bearing cells (e.g., adipocytes, hepatocytes, skeletal muscle cells, pancreatic beta cells, brain/nerve cells, etc) as compared to other cells, they can be utilized as preferential targets for systemic Herstatin- and/or RBD Int8 polypeptide-based agents and therapies. The differential expression of the target receptor (e.g., IR) enables the specificity of Herstatin- and/or RBD Int8 polypeptide-based agents-based therapy. Herstatin- and/or RBD Int8 polypeptide-based agents (e.g., drugs, cytoxic agents, labeling agents, etc.) directed against the target receptor preferentially affect the targeted cell over normal tissue. For example, a Herstatin- or RBD Int8 polypeptide-drug conjugate that binds a IR present predominantly on particular cells (e.g., adipocytes, hepatocytes, skeletal muscle cells, pancreatic beta cells, brain/nerve cells, etc) would be expected to selectively affect those cells within a treated individual. Preferably, the target receptor is accessible to the Herstatin- and/or

RBD Int8 polypeptide-based agent, and is found in substantially greater concentrations on the targeted cells (e.g., adipocytes, hepatocytes, skeletal muscle cells, pancreatic beta cells, brain/nerve cells, etc) relative to other cells that don't express IR or that express IR at relatively low levels.

Therefore, the present invention includes Herstatin- and/or RBD Int8 polypeptide-based agents specific to one or more of the target receptors (e.g., IR) that will enable or facilitate therapeutic treatments relating to, for example, adipocytes, hepatocytes, skeletal muscle cells, pancreatic beta cells, brain cells, etc.

5

10

15

20

25

30

In particular aspects, Herstatin- and/or RBD Int8 polypeptides are conjugated or coupled to drugs, or to toxins.

In alternate embodiments, Herstatin- and/or RBD Int8 polypeptides are conjugated or coupled to radionuclides.

Additional embodiments provide for Herstatin- and/or RBD Int8 polypeptide-coated liposomes that contain one or more biologically active compounds.

In preferred embodiments, Herstatin-mediated targeting is used to deliver drugs or other agents to adipocytes, hepatocytes, skeletal muscle cells, pancreatic beta cells, brain cells, and combinations thereof.

In alternate aspects, targeted binding of an Herstatin- and/or RBD Int8 polypeptide-agent to a cell is sufficient to modulate IR-mediated signaling, inhibit or alter growth (e.g., cytostatic effects) or even kill the target cell (cytotoxic effects) if so desired. The mechanism of these activities may vary, but may involve Herstatin- and/or RBD Int8 polypeptide-dependent receptor activation, changes in receptor expression, cell-mediated cytotoxicity, activation of apoptosis, inhibition of ligand-receptor function, or provide a signal for complement fixation. In fact, Herstatin- and/or RBD Int8 polypeptide-agents may exhibit one or several such activities. In particular aspects, Herstatin- and/or RBD Int8 polypeptide-agents are cytostatic, but not cytotoxic. In particular embodiments, Herstatin- and/or RBD Int8 polypeptide-agents bind to target receptors (e.g., IR, EGFR (HER-1, erbB-1); HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4), Δ EGFR or IGF-IR), and modulate signaling and cellular metabolism, or are either cytoxic or cytostatic, etc.

In additional embodiments, Herstatin- and/or RBD Int8 polypeptide-agents are conjugated or coupled to a diverse array of compounds which include, but are not limited to proteins, drugs, toxins or cytotoxic agents, cytostatic agents, radionuclides, apoptotic factors (Wuest et al. 2002), anti-angiogenic compounds or other biologically active compounds which will affect cellular signaling or metabolism, inhibit the growth of or even kill the target cell or

tissue. For example, cytotoxic or cytostatic agents include, but are not limited to, diphtheria toxin and Pseudomonas exotoxin (Kreitman 2001 a; Kreitman 2001 b), ricin (Kreitman 2001 a), gelonin, doxorubicin (Ajani et al. 2000) and its derivatives, iodine-131, yttrium-90 (Witzig 2001), indium-111 (Witzig 2001), RNase (Newton and Ryback 2001), calicheamicin (Bernstein 2000), apoptotic agents, and antiangiogenic agents (Frankel et al. 2000; Brinkmann et al. 2001; Garnett 2001). According to particular aspects of the present invention, Herstatin- and/or RBD Int8 polypeptides coupled to these compounds are used to adversely affect cells displaying one or more target receptors (e.g., IR, EGFR (HER-1, erbB-1); HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4), Δ EGFR or IGF-IR).

5

10

15

20

25

30

Toxins can also be targeted to specific cells by incorporation of the toxin into Herstatin-and/or RBD Int8 polypeptide-coated liposomes. The Herstatin- and/or RBD Int8 polypeptide-based agent directs the liposome to the target cell where the bioactive compound is released. For example, cytotoxins in Herstatin- and/or RBD Int8 polypeptide-coated liposomes are used to treat cancer. In alternate embodiments, these targeted liposomes are loaded with DNA encoding bioactive polypeptides (e.g., inducible nitric oxide synthase; Khare et al. 2001).

Prodrugs or enzymes can also be delivered to targeted cells by specific Herstatin- and/or RBD Int8 polypeptide-agents. In this case the Herstatin conjugate consists of a Herstatin- and/or RBD Int8 polypeptide-based agent coupled to a drug that can be activated once the polypeptide agent binds the target cell. Examples of this strategy using antibodies have been reviewed (Denny 2001; Xu and McLeod 2001).

Therefore, in particular embodiments, Herstatin- and/or RBD Int8 polypeptide-prodrug/enzyme conjugates targeted to one or more target receptors (e.g., IR, EGFR (HER-1, erbB-1); HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4), ΔEGFR or IGF-IR) have utility for the treatment of, for example, cancer and other treatable conditions discussed herein.

The specificity and high affinity of the Herstatin- and/or RBD Int8 polypeptide-based agents makes them ideal candidates for delivery of toxic agents to a specific subset of cellular targets. Preferably, one or more target receptors (e.g., IR, EGFR (HER-1, erbB-1); HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4), Δ EGFR or IGF-IR) are present at higher levels on the target cells (e.g., cancer, tumor cells) than on non-cancer cells.

As used herein, a composition refers to any mixture. It can be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous or any combination thereof.

As used herein, a combination refers to any association between or among two or more items. The combination can be two or more separate items, such as two compositions or two

collections, can be a mixture thereof, such as a single mixture of the two or more items, or any variation thereof.

As used herein, a pharmaceutical effect refers to an effect observed upon administration of an agent intended for treatment of a disease or disorder or for amelioration of the symptoms thereof.

5

10

15

20

25

30

As used herein, treatment means any manner in which the symptoms of a condition, disorder or disease or other indication, are ameliorated or otherwise beneficially altered.

As used herein therapeutic effect means an effect resulting from treatment of a subject that alters, typically improves or ameliorates the symptoms of a disease or condition or that cures a disease or condition. A therapeutically effective amount refers to the amount of a composition, molecule or compound which results in a therapeutic effect following administration to a subject.

In particular aspects, a therapeutic effect may also encompass prophylaxis of symptoms of a condition.

As used herein, the term "subject" refers to animals, including mammals, such as human beings. As used herein, a patient refers to a human subject.

As used herein, the phrase "associated with" or "characterized by" refers to certain biological aspects such as expression of a receptor or signaling by a receptor that occurs in the context of a disease or condition. Such biological aspects may or may not be causative or integral to the disease or condition but merely an aspect of the disease or condition.

As used herein, a biological activity refers to a function of a polypeptide including but not limited to complexation, dimerization, multimerization, receptor-associated kinase activity, receptor-associated protease activity, phosphorylation, dephosphorylation, autophosphorylation, ability to form complexes with other molecules, ligand binding, catalytic or enzymatic activity, activation including auto-activation and activation of other polypeptides, inhibition or modulation of another molecule's function, stimulation or inhibition of signal transduction and/or cellular responses such as cell proliferation, migration, differentiation, and growth, degradation, membrane localization, membrane binding, and oncogenesis. A biological activity can be assessed by assays described herein and by any suitable assays known to those of skill in the art, including, but not limited to *in vitro* assays, including cell-based assays, *in vivo* assays, including assays in animal models for particular diseases.

Pharmaceutical Compositions and Therapeutic Uses

5

10

15

20

25

30

Pharmaceutical compositions of the invention comprise a cell surface receptor isoform such as Herstatin and/or RBD Int8 polypeptides, or Herstatin- and/or RBD Int8 polypeptidebased agents of the claimed invention in a therapeutically effective amount. "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation is determined by routine experimentation and is within the judgment of the clinician. For purposes of the present invention, an effective dose will generally be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the Herstatin and/or RBD Int8 polypeptide constructs in the individual to which it is administered. A non-limiting example of a pharmaceutical composition is a composition that either enhances or diminishes signaling mediated by the inventive target receptors (e.g., IR, EGFR, HER-2, HER-3, ΔEGFR, HER-4 and IGF-IR). Where such signaling modulates a disease-related process, modulation of the signaling would be the goal of the therapy.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which can be administered without undue toxicity. Suitable carriers can be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Pharmaceutically acceptable carriers in therapeutic compositions can include liquids such as water, saline, glycerol and ethanol. Auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, can also be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to Liposomes are included within the definition of a injection can also be prepared. pharmaceutically acceptable carrier. Pharmaceutically acceptable salts can also be present in the pharmaceutical composition, e.g., mineral acid salts such as hydrochlorides, hydrobromides,

phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in *Remington's Pharmaceutical Sciences* (Mack Pub. Co., New Jersey, 1991).

5

10

15

20

Delivery Methods

Once formulated, the compositions of the invention can be administered (as proteins/polypeptides, or in the context of expression vectors for gene therapy) directly to the subject or delivered ex vivo, to cells derived from the subject (e.g., as in ex vivo gene therapy). Direct delivery of the compositions will generally be accomplished by parenteral injection, e.g., subcutaneously, intraperitoneally, intravenously or intramuscularly, myocardial, intratumoral, peritumoral, or to the interstitial space of a tissue. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment can be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in, for example, International Publication No. WO 93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells. Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, direct microinjection of the DNA into nuclei, and viral-mediated, such as adenovirus (and adeno-associated virus) or alphavirus, all well known in the art.

25

30

In a preferred embodiment, certain disorders (e.g., of proliferation, such as cancer, etc), can be amenable to treatment by administration of a therapeutic agent based on the provided polynucleotide or corresponding polypeptide. The therapeutic agent can be administered in conjunction with one or more other agents including, but not limited to, receptor-specific antibodies and/or other agents (e.g., insulin-sensitizing agents, chemotherapeutic agents, etc). Administered "in conjunction" includes administration at the same time, or within 1 day, 12 hours, 6 hours, one hour, or less than one hour, as the other therapeutic agent(s). The compositions may be mixed for co-administration, or may be administered separately by the same or different routes.

5

10

15

20

25

30

The dose and the means of administration of the inventive pharmaceutical compositions are determined based on the specific qualities of the therapeutic composition, the condition, age, and weight of the patient, the progression of the disease, and other relevant factors. For example, administration of polynucleotide therapeutic compositions agents of the invention includes local or systemic administration, including injection, oral administration, particle gun or catheterized administration, and topical administration. The therapeutic polynucleotide composition can contain an expression construct comprising a promoter operably linked to a polynucleotide encoding, for example, about 80 to 419 (or about 350 to 419) contiguous amino acids of SEQ ID NO:2. Various methods can be used to administer the therapeutic composition directly to a specific site in the body. For example, an abnormal tissue, or small metastatic lesion is located and the therapeutic composition injected several times in several different locations within the body of the tissue, or tumor. Alternatively, arteries which serve a tissue or tumor are identified, and the therapeutic composition injected into such an artery, in order to deliver the composition directly into the tumor. A tissue or tumor that has a necrotic center is aspirated and the composition injected directly into the now empty center of the tissue or tumor. X-ray imaging is used to assist in certain of the above delivery methods.

Herstatin and/or RBD Int8 polypeptide-mediated targeted delivery of therapeutic agents to specific tissues can also be used. Receptor-mediated DNA delivery techniques are described in, for example, Findeis et al., *Trends Biotechnol.* (1993) 11:202; Chiou et al., *Gene Therapeutics: Methods And Applications Of Direct Gene Transfer* (J.A. Wolff, ed.) (1994); Wu et al., *J. Biol. Chem.* (1988) 263:621; Wu et al., *J. Biol. Chem.* (1994) 269:542; Zenke et al., *Proc. Natl. Acad. Sci.* (USA) (1990) 87:3655; Wu et al., *J. Biol. Chem.* (1991) 266:338.

For gene therapy, therapeutic compositions containing a polynucleotide are administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 mg to about 2 mg, about 5 mg to about 500 mg, and about 20 mg to about 100 mg of DNA can also be used during a gene therapy protocol. Factors such as method of action (e.g., for enhancing or inhibiting levels of the encoded gene product) and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy of the subgenomic polynucleotides. Where greater expression is desired over a larger area of tissue, larger amounts of subgenomic polynucleotides or the same amounts re-administered in a successive protocol of administrations, or several administrations to different adjacent or close tissue portions of, for example, a tumor site, may be required to affect a positive therapeutic outcome. In all cases,

routine experimentation in clinical trials will determine specific ranges for optimal therapeutic effect.

The therapeutic polynucleotides and polypeptides of the present invention can be delivered using gene delivery vehicles. The gene delivery vehicle can be of viral or non-viral origin (see generally, Jolly, Cancer Gene Therapy (1994) 1:51; Kimura, Human Gene Therapy (1994) 5:845; Connelly, Human Gene Therapy (1995) 1:185; and Kaplitt, Nature Genetics (1994) 6:148). Expression of such coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence can be either constitutive or regulated.

10

15

20

25

30

Viral-based vectors for delivery of a desired polynucleotide and expression in a desired cell are well known in the art. Exemplary viral-based vehicles include, but are not limited to, recombinant retroviruses (see, e.g., WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Patent No. 5, 219,740; WO 93/11230; WO 93/10218; U.S. Patent No. 4,777,127; GB Patent No. 2,200,651; EP 0 345 242; and WO 91/02805), alphavirus-based vectors (e.g., Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532), and adeno-associated virus (AAV) vectors (see, e.g., WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655). Administration of DNA linked to killed adenovirus as described in Curiel, Hum. Gene Ther. (1992) 3:147 can also be employed.

Non-viral delivery vehicles and methods can also be employed, including, but not limited to, polycationic condensed DNA linked or unlinked to killed adenovirus alone (see, e.g., Curiel, Hum. Gene Ther. (1992) 3:147); ligand-linked DNA (see, e.g., Wu, J. Biol. Chem. 264:16985 (1989)); eukaryotic cell delivery vehicles cells (see, e.g., U.S. Patent No. 5,814,482; WO 95/07994; WO 96/17072; WO 95/30763; and WO 97/42338) and nucleic charge neutralization or fusion with cell membranes. Naked DNA can also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Patent No. 5,580,859. Liposomes that can act as gene delivery vehicles are described in U.S. Patent No. 5,422,120; WO 95/13796; WO 94/23697; WO 91/14445; and EP 0524968. Additional approaches are described in Philip, Mol. Cell Biol. 14:2411 (1994), and in Woffendin, Proc. Natl. Acad. Sci. (1994) 91:11581-11585.

Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al., *Proc. Natl. Acad. Sci. USA 91*(24):11581 (1994). Moreover, the coding sequence and the product of expression of such can be delivered through

deposition of photopolymerized hydrogel materials or use of ionizing radiation (see, e.g., U.S. Patent No. 5,206,152 and WO 92/11033). Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun (see, e.g., U.S. Patent No. 5,149,655); use of ionizing radiation for activating transferred gene (see, e.g., U.S. Patent No. 5,206,152 and WO 92/11033).

Conditions Treatable

5

10

15

20

25

30

Particular aspects of the present invention, for the first time, disclose that Herstatin or Int8 RBD polypeptides, and variants thereof, can not only modulate the expression/level of cellular insulin receptors (IR) (both pro-IR and IR), but also modulate IR-mediated signal transduction (e.g., ERK pathway). According to particular aspects, Herstatin or Int8 RBD polypeptides, and variants thereof can be used in therapeutic methods and pharmaceutical compositions to treat a variety of conditions having an aspect related to, or associated with altered IR expression or altered IR-mediated signaling at a cellular level. Such methods comprising administering to a subject having such a condition, a therapeutically effective amount of a Herstatin or Int8 RBD polypeptide, or a variant thereof, that binds to the extracellular domain of cellular target insulin receptor. Such methods also encompass gene delivery-related methods.

IR is well known in the art to be involved with, *inter alia*, glycemic control (e.g., hyperand hypo-glycemia) and glucose metabolism. Accordingly, conditions having an aspect related to, or associated with altered glycemic control and/or glucose metabolism are within the scope of treatable conditions according to the present invention. Such conditions include, but are not limited to insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and combinations thereof.

Insulin resistance syndrome has become the major health problem of our times, and is associated with obesity, dyslipidemia, atherosclerosis, hypertension, and type-2 diabetes shorten life spans, and hyperandrogenism with polycystic ovarian syndrome affect quality of life and fertility in increasing numbers of women (see, e.g., Ten & Maclaren, J. Clin Endocrinol Metab., 89:2526-2539, 2004; and see Le Roith 7 Zick, Diabetes Care 24:588-597, 2001; both incorporated herein by reference). In particular preferred aspects, Herstatin or Int8 RBD polypeptide, or variants thereof can be used to treat insulin resistance syndrome.

Insulin resistance and associated abnormalities are believed to have a role in pregnancy induced hypertension (new-onset hypertension), and many features of the insulin resistance syndrome are associated with this condition (see, e.g., Seely & Solomon, J. Clin. Endocrinol. Metab., 88:2393-2398, 2003; incorporated herein by reference). According to the present invention, Herstatin or Int8 RBD polypeptide, or variants thereof can be used to treat hypertension and new-onset hypertension.

In prolonged critical illness neuroendocrine changes lead to more extensive metabolic changes. For example, insulin resistance and hyperglycemia are associated with critical illness (e.g., in surgically critically ill populations with or without diabetes, post-myocardial infarction in patients with diabetes, etc.) (see, e.g., Ronbinson & H. van Soeren, AACN Clinical Issues, 15:45-62, 2004; incorporated herein by reference). According to the present invention, Herstatin or Int8 RBD polypeptide, or variants thereof can be used to treat critical illness.

Significantly, impairment of insulin signaling in the brain has been linked, on the basis of studies using IR-knockout (NIRKO) mice, to neurodegenerative diseases. NIRKO mice exhibit a complete loss of insulin-mediated activation of phosphatidylinositol 3-kinase and insulin-mediated inhibition of neuronal apoptosis, resulting in markedly reduced phosphorylation of Akt and GSK3 β and leading to a substantially increased phosphorylation of the microtubule-associated protein Tau, a hallmark of neurodegenerative diseases (e.g., Alzheimer's disease) (see, e.g., Schubert et al., PNAS 101:3100-3105, 2004, incorporated herein by reference). According to the present invention, Herstatin or Int8 RBD polypeptide, or variants thereof can be used to treat to neurodegenerative diseases (e.g., Alzheimer's disease).

Combination Therapies

5

10

15

20

25

30

According to additional preferred aspects of the invention, Herstatin-related treatment of conditions having an aspect related to, or characterized by altered glycemic control and/or glucose metabolism, including, but not limited to insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, and combinations thereof, may further comprise administration of another therapeutic agent.

For example, the inventive treatment methods may further comprise administering a therapeutically effective amount of a receptor-specific antibody that binds to the extracellular domain of a target receptor selected from the group consisting of: IR, EGFR (HER-1, erbB-1);

□EGFR; HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4), and IGF-IR.

Alternatively, the inventive treatment methods may further comprise administering a therapeutically effective amount of an agent selected from the group consisting of: insulin, insulin-sensitizing agents, insulin secretogogues, and combinations thereof. Preferably, the insulin-sensitizing agent is selected from the group consisting of biguanides, metformin, thiazolidinediones (glitazones), and combinations thereof. Preferably, the insulin secretogogue is selected from the group consisting of sulfonylureas, meglitinides, and combinations thereof (see, e.g., Zangeneh et al., Mayo Clin Proc., 78:471-479, 2003, incorporated by reference herein).

The present invention will now be illustrated by reference to the following examples which set forth particularly advantageous embodiments. However, it should be noted that these embodiments are illustrative and are not to be construed as restricting the claimed invention in any way.

EXAMPLE I

(Materials and Methods)

Cell lines, transfections, expression vectors, western blots and antibodies

5

10

15

20

25

30

Cell lines. IRA-3T3 (3T3 cells transfected with a human insulin receptor cDNA have been previously described (Faria et al., *J. Biol. Chem.* 269:13922-13928 (1994)), and Herstatin-expressing MCF-7 cell clones were obtained using previously described methods (Shamieh et al., *FEBS Letters*, 568:163-166, 2004).

Transfections. For transient transfections, 2 μg of empty vector or 2 μg expression vector are added with Lipofectamine^{τM} (GIBCO-BRL) to cells in 6 cm plates.

Western blot analysis, and antibodies. For Western blot analyses, whole-cell lysates or immunoprecipitated proteins were resolved by SDS-PAGE and transferred onto nitrocellulose membranes (BioRad, Hercules, CA). Blots were blocked in 5% milk and incubated with primary antibody overnight at 4°C. The antibodies included anti-insulin receptor (IR; against the β subunit), anti-IGF-IR, anti-IRS-1, anti-IRS-2, anti-phosphotyrosine, anti-phospho-Akt, anti-Akt, anti-phospho-ERK, anti-ERK, and anti-Shc antibodies (Santa Cruz Biotechnology, Transduction Laboratories, Cell Signaling Technologies, Upstate Laboratories, or Biosource). After washing, the blots were incubated with secondary antibody conjugated to HRP for 30 min (BioRad, Hercules, CA). The membranes were developed with SuperSignalTM West Dura (Pierce, Rockford, IL) and exposed to x-ray film.

Expression and purification of intron 8-encoded peptide (Int8) and Herstatin:

Receptor binding domain (RBD). Intron 8 cDNA, in the pET 30 bacterial expression vector (Novagen, Madison, WI), is expressed in bacteria (BL-21), and purified by nickel affinity chromatography as described (Doherty et al., supra).

Herstatin. For purification of insect Herstatin, S2 insect cells, stably transfected with 6xHis tagged-Herstatin in the pMT/BiP expression plasmid (Invitrogen, Carlsbad, CA), were induced with 100 μM cupric sulfate for about 16hrs. Herstatin was purified to about 90% purity by Ni-NTA (Qiagen, Valencia, CA) affinity chromatography as previously described (Jhabvala-Romero et al. Supra.).

Cell binding studies:

5

10

15

20

25

ELISA. Monolayer cultures of ~2 x 10⁶ cells were plated in 6-well tissue culture plates, and were incubated with purified Herstatin for 2 hours at 4°C in serum-free DMEM. Cells were washed with Phosphate Buffered Saline (PBS) and extracted in 50mM Tris·HCl, pH 7.0, 1.0% NP-40. Herstatin bound to cells were quantified using a sandwich Herstatin ELISA per manufacturer's instructions (Upstate Biotechnology, Lake Placid, NY).

The dissociation constant (K_D) and maximal binding (B_{max}) of Herstatin were determined by nonlinear regression analysis of the plot of pmol of bound *versus* nM of Herstatin added. Statistical comparisons between different binding curves were performed by extra sums-of-squares F-test nonlinear regression coefficients. All tests were performed ($\alpha = 0.05$) using GraphPadTM Prism 4TM software (GraphPadTM Software, 1994-2003).

Pull-down assays with int8 peptide immobilized on protein S agarose:

About 100 μ l of a 50% suspension of S-protein agarose (Novagen) is incubated with or without 100 μ g of int8 peptide with an S-protein tag, at room temperature for 1hr, and then washed twice with 500 μ l PBS. The agarose samples are then incubated at room temperature for 1 hr with 200 μ g of transfected cell extract, then washed twice with 500 μ l of PBS with 1% NP40. The proteins associated with the resin are eluted at 92°C for 2 min in 40 μ l of SDS-sample buffer, and analyzed as a Western blot.

30 Growth assays:

Cells (4x10⁴) were plated in quadruplicate in 24-well plates, incubated in serum-free DMEM for 24 hours, and treated with either 10 nM insulin (Sigma) or an equivalent volume of vehicle (25 mM HEPES). At the indicated time points, cell monolayers were washed with PBS and incubated for 30 minutes at 37°C with 30 µl of MTS reagent [3-(4,5-dimethylthiazol-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl-2H-tetrazolium) inner salt Aqueous One Solution (Promega; Madison, WI) dissolved in 270 ml PBS] per well. Absorbance at 490 nm was determined a Bio-Tek plate reader.

5 EGFR inhibitor studies

10

15

20

25

30

Control MCF-7 cells were serum-starved overnight and treated with the EGFR kinase inhibitor AG1478 (Sigma) or vehicle (DMSO) for 5 minutes prior to the addition of 14 nM EGF or 10 nM insulin (Sigma). After growth factor treatment, cell lysates were prepared and analyzed for ERK and Akt/PKB activation as described above. The 24-hour treatment was done in regular growth medium.

EXAMPLE II

(Herstatin was shown to bind specifically to insulin receptor (IR) with nM binding affinity)

The interaction of Herstatin with IR in transfected 3T3 cells (IRA-3T3) was investigated. Herstatin bound specifically to IR at nM concentrations, and IR was thus shown herein to be a target of Herstatin.

Methods. Cell lines, expression vectors, protein purification, pull down assays, antibodies, Western blot analysis and ELISA assays were as described under EXAMPLE I, herein above.

Results. The interaction between Herstatin and IR was investigated. FIGURE 1 shows that Herstatin, purified from transfected S2 insect cells, exhibited dose-dependent binding to IR at nM concentrations. Increasing concentrations of Herstatin, expressed and purified from stably-transfected S2 insect cells, were added to 3T3 parental cells (filled triangles; "NIH-3T3") or 3T3 cells transfected with a human IR cDNA (filled squares; "IRA-3T3") as previously described (Shamieh et al., FEBS Letters, 568:163-166, 2004). After incubation for 2hrs on ice, the cells were washed twice with PBS, and the bound Herstatin was quantified using a Herstatin ELISA (Upstate). The data are plotted as Herstatin ELISA units versus concentration added. The results indicate that Herstatin binds at nM concentrations to cells expressing IR, but not to 3T3 parental cells.

These results demonstrate that Herstatin binds specifically to IR with nM binding affinity and that IGF-IR is a target of Herstatin.

EXAMPLE III

(Herstatin up-regulated insulin receptor (IR) expression, and activation

of IR by insulin in MCF-7 cells)

According to particular embodiments of the present invention, Herstatin not only upregulates IR expression, but also up-regulates activation of IR by insulin (FIGURE 2).

Methods. Cell lines, expression vectors, protein purification, pull down assays, antibodies, Western blot analysis and ELISA assays were as described under EXAMPLE I, herein above. Insulin was added either to MCF-7 breast carcinoma cells, or to an MCF-7 cell line stably transfected with a Herstatin expression vector, to determine whether Herstatin expression affects IR expression, and/or insulin-stimulated IR signal transduction.

Results. FIGURE 2 shows that Herstatin expression not only up-regulated IR expression (including pro-IR), but also up-regulated IR activation (and thus signaling) in MCF-7 cells. Control and Herstatin-expressing MCF-7 cells were grown in complete medium prior to an overnight incubation in serum-free medium. Insulin was then added to the control and Herstatin-expressing cells and whole-cell lysates were prepared at the indicated times and processed directly for Western immunoblots with anti-insulin receptor (IR), phospho-Akt, Akt, phospho-ERK, and ERK antibodies, or first immunoprecipitated with anti-IR antibody and immunoprecipitates (IP) then analyzed by Western immunoblotting with anti-phosphotyrosine and anti-IR antibodies after transfer to nitrocellulose membranes. Following incubation of blots with primary antibodies, immunoreactive proteins were detected by enhanced chemiluminescence after a secondary incubation with HRP-conjugated secondary antisera. Similar results were obtained with a second Herstatin-expressing MCF-7 clone.

These results demonstrate that Herstatin not only up-regulates IR expression (including pro-IR), but also modulates IR-mediated signaling.

Additionally, as shown in FIGURE 2 (see also FIGURE 3 below), Herstatin up-regulated insulin-stimulated ERK activation (increased phospho-ERK).

25

30

5

10

15

20

EXAMPLE IV

(Herstatin expression amplified insulin-stimulated ERK activation in MCF-7 cells)

The effect of Herstatin expression on insulin-stimulated ERK activation/signaling was further investigated.

Methods. Methods were as described above under EXAMPLE III herein above.

Results. FIGURE 3 shows, in MCF-7 cells, that Herstatin expression amplified insulinstimulated ERK activation. Control and Herstatin-expressing MCF-7 cells were treated and analyzed as those of Figure 2. Film exposures of enhanced chemiluminescence signals were

quantified by scanning densitometry, and the values for the phospho-ERK signals were normalized to the ERK signals to determine the relative level of ERK phosphorylation as a measure of activation.

Herstatin expression substantially amplified insulin-stimulated ERK activation in MCF-7 cells.

5

10

15

20

25

30

According to particular aspects of the present invention, this result supports a substantial utility for Herstatin in treating insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and combinations thereof.

This is because the MEK (MAPK kinase)-ERK pathway has been shown to be significantly involved in glucose transport (e.g., Harmon et al., Am. J. Physiol. Endocrinol. Metab., 287:E758-E766, 2004). Specifically, Harmon et al show specific inhibition of MAPK kinase (MEK) by the inhibitors PD-98059 and U-0216, resulting in significant inhibition of insulin-stimulated glucose uptake. The data support the importance of MEK for activation of GLUT4, and further, since the only target of MEK is ERK, the importance of the MEK (MAPK kinase)-ERK pathway for glucose transport.

EXAMPLE V

(Herstatin altered the expression of an array of proteins that are directly involved in insulin action.)

In addition to the regulation of insulin receptor protein, the regulation of the IRS-1 and IRS-2 proteins and Shc (that function as adapter proteins linking the activated insulin receptor to some of its downstream pathways), the expression of ERK and Akt/PKB, and the regulation of the IGF-IR (which may contribute to enhanced insulin receptor activation by decreasing the proportion of insulin receptor/IGF-I receptor hybrids, which do not respond to insulin) was investigated.

Methods. Cell lines, expression vectors, protein purification, antibodies and ELISA assays were as described under EXAMPLE I, herein above.

Results. Figure 4 shows that Herstatin altered the expression of an array of proteins that are directly involved in insulin action. Lysates from control and Herstatin-expressing MCF-7 cells were prepared from respective untreated (no insulin) cells following overnight incubation in serum-free media, and processed directly or (in the case of the IR) also immunoprecipitated prior to Western immunoblot analysis as described in relation to Figure 2.

These data illustrate that Herstatin: up-regulates insulin receptor protein as assessed by direct Western immunoblot and following immunoprecipitation; mediates the apparent phosphorylation state of the IRS-1 and IRS-2 (differentially down-regulated compared with IRS-1) proteins that function as adapter proteins linking the activated insulin receptor to some of its downstream pathways (see, e.g., Le Roith 7 Zick, Diabetes Care 24:588-597, 2001, discussing role of IRS (IR substrate) proteins in IR-mediated signal transduction); elicits a slight decrease in IRS-2 expression; alters the relative expression of Shc isoforms expressed; increases the relative expression ratio of ERK1 and ERK2; and down-regulates the IGF-IR, which may contribute to enhanced insulin receptor activation by decreasing the proportion of IR/IGF-IR hybrids, which do not respond to insulin.

EXAMPLE VI

(The EGFR inhibitor AS1478 does not affect insulin signaling or lead to an increase in IR)

Figure 5 shows, according to particular aspects, that the EGFR inhibitor AS1478 did not affect insulin signaling.

Figure 6 shows, according to particular aspects, that inhibition of the EGF receptor with an EGF receptor-specific inhibitor did not lead to an increase in insulin receptor.

20 Other references of interest:

5

10

15

- Jhabvala-Romero, F., A. Evans, S. Guo, M. Denton, and G. M. Clinton, 2003, Herstatin inhibits heregulin-mediated breast cancer cell growth and overcomes tamoxifen resistance in breast cancer cells that overexpress HER-2: *Oncogene*, v. 22, p. 8178-86.
- Lin, Y. Z., S. W. Li, and G. M. Clinton, 1990, Insulin and epidermal growth factor stimulate phosphorylation of p185HER-2 in the breast carcinoma cell line, BT474: *Mol Cell Endocrinol*, v. 69, p. 111-9.
- Christianson, T. A., J. K. Doherty, Y. J. Lin, E. E. Ramsey, R. Holmes, E. J. Keenan, and G. M. Clinton, 1998, NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer: *Cancer Res*, v. 58, p. 5123-9.
- Garrett, T. P., N. M. McKern, M. Lou, T. C. Elleman, T. E. Adams, G. O. Lovrecz, H. J. Zhu, F. Walker, M. J. Frenkel, P. A. Hoyne, R. N. Jorissen, E. C. Nice, A. W. Burgess, and C. W. Ward, 2002, Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha: Cell, v. 110, p. 763-73.

Filmus, J., M. N. Pollak, J. G. Cairncross, and R. N. Buick, 1985, Amplified, overexpressed and rearranged epidermal growth factor receptor gene in a human astrocytoma cell line: *Biochem Biophys Res Commun*, v. 131, p. 207-15.

Filmus, J., M. N. Pollak, R. Cailleau, and R. N. Buick, 1985, MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF: Biochem Biophys Res Commun, v. 128, p. 898-905.

CLAIMS

1. A method for treating a condition associated with altered insulin receptor expression or altered insulin receptor-mediated signaling, said method comprising administering to a subject in need thereof, a therapeutically effective amount of Herstatin, or a variant thereof, that binds to the insulin receptor.

5

10

15

20

- 2. A method for treating a condition associated with altered insulin receptor expression or altered insulin receptor-mediated signaling, comprising administering to a subject in need thereof, a therapeutically effective amount of a Int8 RBD polypeptide, or a variant thereof, that binds to the insulin receptor.
- 3. The method of any one of claims 1 or 2, wherein the condition is at least one selected from the group consisting of insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, and neurodegenerative disorders.
- 4. The method of any one of claims 1 or 2, wherein the cell further expresses at least one target receptor selected from the group consisting of: EGFR (HER-1, erbB-1); ΔEGFR; HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4); and IGF-IR.
- 5. The method of claim 1, wherein the Herstatin, or variant thereof, comprises a polypeptide selected from the group consisting of SEQ ID NO:2, or a fragment of SEQ ID NO:2 of about 80 to 419 contiguous residues in length, wherein the C-terminal 79 contiguous amino acids are present, wherein at least one N-linked glycosylation site is present, and wherein the polypeptide binds to the insulin receptor.
- 6. The method of claim 1, wherein the Herstatin, or variant thereof, comprises a sequence selected from the group consisting of SEQ ID NOS:32-42.
- 7. The method of claim 1, wherein the Herstatin, or variant thereof, comprises SEQ ID NO:32.

8. The method of claim 2, wherein the Int8 RBD polypeptide, or a variant thereof comprises a polypeptide selected from the group consisting of SEQ ID NO:1, or a fragment of SEQ ID NO:1 of about 50 to 79 contiguous residues in length, wherein the polypeptide binds to the insulin receptor.

9. The method of claim 2, wherein the Int8 RBD polypeptide, or a variant thereof, comprises a sequence selected from the group consisting of SEQ ID NOS:21-31,

5

10

15

20

- 10. The method of claim 2, wherein the Int8 RBD polypeptide, or a variant thereof, comprises SEQ ID NO:21.
- 11. The method of any one of claims 1 or 2, further comprising administering a therapeutically effective amount of a receptor-specific antibody that binds to a target receptor selected from the group consisting of: insulin receptor (IR), EGFR (HER-1, erbB-1); ΔEGFR; HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4), and IGF-IR.
 - 12. The method of any one of claims 1 or 2, further comprising administration of a therapeutically effective amount of an agent selected from the group consisting of: insulin, insulin-sensitizing agents, insulin secretogogues, and combinations thereof.
 - 13. The method of claim 12, wherein the insulin-sensitizing agent is selected from the group consisting of biguanides, metformin, thiazolidinediones (glitazones), and combinations thereof.
- 14. The method of claim 12, wherein the insulin secretogogue is selected from the group consisting of sulfonylureas, meglitinides, and combinations thereof.
 - 15. A pharmaceutical composition for treating a condition associated with altered insulin receptor expression or altered insulin receptor-mediated signaling, comprising, Herstatin, or a variant thereof, that binds to the insulin receptor and a pharmaceutically acceptable carrier or excipient.
 - 16. A pharmaceutical composition for treating a condition associated with altered insulin receptor expression or altered insulin receptor-mediated signaling, comprising, a Int8

RBD polypeptide, or a variant thereof, that binds to the insulin receptor and a pharmaceutically acceptable carrier or excipient.

17. The pharmaceutical composition of any one of claims 15 or 16, wherein the condition is selected from the group consisting of insulin resistance syndrome, pre-diabetic conditions, metabolic syndrome, type 1 and type 2 diabetes, cardiac disease, diabetes-associated vascular disease, atherosclerosis, hypertension, diabetes-associated lipid metabolism disorders (dyslipidemia), obesity, critical illness, neurodegenerative disorders, and combinations thereof.

5

10

15

20

- 18. The pharmaceutical composition of claim 15, wherein the Herstatin, or variant thereof, comprises a polypeptide selected from the group consisting of SEQ ID NO:2, or a fragment of SEQ ID NO:2 of about 80 to 419 contiguous residues in length, wherein the C-terminal 79 contiguous amino acids are present, wherein at least one N-linked glycosylation site is present, and wherein the polypeptide binds to the insulin receptor.
- 19. The pharmaceutical composition of claim 16, wherein the Int8 RBD polypeptide, or a variant thereof comprises a polypeptide selected from the group consisting of SEQ ID NO:1, or a fragment of SEQ ID NO:1 of about 50 to 79 contiguous residues in length, wherein the polypeptide binds to the insulin receptor.
- 20. The pharmaceutical composition of any one of claims 15 or 16, further comprising an agent selected from the group consisting of: insulin, insulin-sensitizing agents, insulin secretogogues, and combinations thereof.
- 21. The pharmaceutical composition of claim 20, wherein the insulin-sensitizing agent is selected from the group consisting of biguanides, metformin, thiazolidinediones (glitazones), and combinations thereof.
- 22. The pharmaceutical composition of claim 20, wherein the insulin secretogogue is selected from the group consisting of sulfonylureas, meglitinides, and combinations thereof..
- 23. A method for targeting a therapeutic agent to a cell expressing insulin receptor, comprising attaching the therapeutic agent to Herstatin, or to a variant thereof, that binds to the extracellular domain of a cellular target insulin receptor.

24. A method for targeting a therapeutic agent to a cell expressing insulin receptor, comprising attaching the therapeutic agent to a Int8 RBD polypeptide, or a variant thereof, that binds to the cellular target insulin receptor.

25. The method of any one of claims 23 or 24, wherein the cell further expresses a target receptor selected from the group consisting of: EGFR (HER-1, erbB-1); ΔEGFR; HER-2 (erbB-2); HER-3 (erbB-3); HER-4 (erbB-4); IGF-IR, and combinations thereof.

5

10

- 26. The method of claim 23, wherein the wherein the Herstatin, or variant thereof, comprises a polypeptide selected from the group consisting of SEQ ID NO:2, or a fragment of SEQ ID NO:2 of about 80 to 419 contiguous residues in length, wherein the C-terminal 79 contiguous amino acids are present, wherein at least one N-linked glycosylation site is present, and wherein the polypeptide binds to the insulin receptor.
- 27. The method of claim 24, wherein the Int8 RBD polypeptide, or a variant thereof comprises a polypeptide selected from the group consisting of SEQ ID NO:1, or a fragment of SEQ ID NO:1 of about 50 to 79 contiguous residues in length, wherein the polypeptide binds to the insulin receptor.

FIG. 1

FIG 2A

3/11

FIG. 3A

FIG. 3B

FIG. 4A

FIG. 4B

PCT/US2005/035961 WO 2006/042002

8/11

* Not corrected for differences in total IRS-1 between cell lines

* Not corrected for differences in total IRS-2 between cell lines

FIG. 4D

101

FIG. 6

49321-146.ST25.txt SEQUENCE LISTING

<110> Oregon Health & Science University Clinton, Gail Roberts, Charles T <120> COMPOSITIONS AND METHODS FOR TREATING DISEASE <130> 49321-146 <150> US 60/616,596 <151> 2004-10-05 <150> US 60/688,355 <151> 2005-06-06 <160> 42 <170> PatentIn version 3.3 <210> 1 <211> 79 <212> PRT <213> Homo sapiens <220> <221> MISC_FEATURE <222> (2)..(2) <223> Xaa reflects Thr or Ser variants <220> <221> MISC_FEATURE <222> (5)..(5) <223> Xaa reflects Leu or Pro variants <220> <221> MISC_FEATURE <222> (6)..(6) <223> Xaa reflects Pro or Leu variants <220> <221> MISC_FEATURE <222> (16)..(16) <223> Xaa reflects Leu or Gln variants <220> <221> MISC FEATURE <222> (17)..(17)
<223> Xaa reflects Arg or Cys variants <220> <221> MISC FEATURE <222> (18)..(18) <223> Xaa reflects Met or Leu variants <220> <221> MISC FEATURE <222> (21)..(21) <223> Xaa reflects Gly, Asp, Ala or Val variants <220> <221> MISC_FEATURE <222> (31)..(31)

```
49321-146.ST25.txt
<223> Xaa reflects Arg or Ile variants
<220>
<221> MISC FEATURE
<222> (36)..(36)
<223> Xaa reflects Leu or Ile variants
<220>
<221> MISC_FEATURE
<222> (54)..(54)
<223> Xaa reflects Pro or Arg variants
<220>
<221> MISC_FEATURE
<222> (64)..(64)
<223> Xaa reflects Pro or Leu variants
<220>
<221> MISC FEATURE
<222> (73)..(73)
<223> Xaa reflects Asp or Asn variants
<400> 1
Gly Xaa His Ser Xaa Xaa Pro Arg Pro Ala Ala Val Pro Val Pro Xaa
Xaa Xaa Gln Pro Xaa Pro Ala His Pro Val Leu Ser Phe Leu Xaa Pro
Ser Trp Asp Xaa Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu
Ser Pro Thr Ser Val Xaa Ile Ser Pro Val Ser Val Gly Arg Gly Xaa
Asp Pro Asp Ala His Val Ala Val Xaa Leu Ser Arg Tyr Glu Gly
                      70
<210> 2
<211> 419
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (342)..(342)
<223> Xaa reflects Thr or Ser variants
<220>
<221> MISC_FEATURE
<222> (345)..(345)
<223> Xaa reflects Leu or Pro variants
<220>
<221> MISC_FEATURE
<222> (346)..(346)
<223> Xaa reflects Pro or Leu variants
```

Page 2

```
<220>
<221> MISC_FEATURE
<222>
      (356).. (356)
<223> Xaa reflects Leu or Gln variants
<220>
<221> MISC FEATURE
<222> (357)..(357)
<223> Xaa reflects Arg or Cys variants
<220>
<221> MISC FEATURE
<222> (358)..(358)
<223> Xaa reflects Met or Leu variants
<220>
<221> MISC FEATURE
<222> (361)..(361)
<223> Xaa reflects Gly, Asp, Ala or Val variants
<220>
<221> MISC_FEATURE
\langle 222 \rangle (371) \dots (371)
<223> Xaa reflects Arg or Ile variants
<220>
<221> MISC FEATURE
<222> (376)..(376)
<223> Xaa reflects Leu or Ile variants
<220>
<221> MISC_FEATURE
<222> (394)..(394)
<223> Xaa reflects Pro or Arg variants
<220>
<221> MISC FEATURE
<222> (404)..(404)
<223> Xaa reflects Pro or Leu variants
<220>
<221> MISC_FEATURE
      (413) .. (413)
<222>
<223> Xaa reflects Asp or Asn variants
<400> 2
Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Ala Leu Leu
                                    10
Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Cys Lys
Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
        35
                            40
Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
                        55
    50
```

												•		
Leu Pro 65	Thr .	Asn	Ala	Ser 70	Leu					25.t Asp		Gln	Glu	Val 80
Gln Gly	Tyr '	Val	Leu 85	Cys	Ala	His	Asn	Gln 90	Val	Arg	Gln	Val	Pro 95	Leu
Gln Arg		Arg 100	Ile	Val	Arg	Gly	Thr 105	Gln	Leu	Phe	Glu	Asp 110	Asn	Tyr
Ala Leu	Ala 1 115	Val	Leu	Asp	Asn	Gly 120	Asp	Pro	Leu	Arg	Arg 125	Thr	Thr	Pro
Val Thr 130	Gly A	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu Thr 145	Glu (Cys	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu Cys	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn Gln		Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Cys
His Pro	Cys :	Ser	Pro	Cys	Cys	Lys 200	Gly	Ser	Arg	Cys	Trp 205	Gly	Glu	Ser
Ser Glu 210	Asp (Сув	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Сув
Ala Arg 225	Cys 1	Lys		Pro 230	Leu	Pro	Thr	Asp	Сув 235	Cys	His	Glu	Gln	Cys 240
Ala Ala	Gly (_	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Cys	Leu	Ala	Cys 255	Leu
His Phe		His 260	Ser	Gly	Ile	Cys	Glu 265	Leu	His	Cys	Pro	Ala 270	Leu	Val
Thr Tyr	Asn 7 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Сув	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr Thr 290	Phe (Gly	Ala		Сув 295	Val	Thr	Ala	Сув	Pro 300	Tyr	Asn	Lys	Leu
Ser Thr 305	Asp V	Val	Gly	Ser 310	Cys	Thr	Leu	Val	Сув 315	Pro	Leu	His	Asn	Gln 320

```
49321-146.ST25.txt
Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys
                325
                                     330
Pro Cys Ala Arg Gly Xaa His Ser Xaa Xaa Pro Arg Pro Ala Ala Val
                                 345
Pro Val Pro Xaa Xaa Xaa Gln Pro Xaa Pro Ala His Pro Val Leu Ser
                             360
Phe Leu Xaa Pro Ser Trp Asp Xaa Val Ser Ala Phe Tyr Ser Leu Pro
                        375
Leu Ala Pro Leu Asp Pro Thr Ser Val Xaa Ile Ser Pro Val Ser Val
                                        395
                    390
Gly Arg Gly Xaa Asp Pro Asp Ala His Val Ala Val Xaa Leu Ser Arg
                                    410
                405
Tyr Glu Gly
<210> 3
<211> 79
<212> PRT
<213> artificial sequence
<220>
 <223> ECDIIIA domain non-binding mutant (Arg to Ile mutation at residue
<220>
<221>
       misc feature
<222> (2)..(2)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (5)..(6)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (16)..(16)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (18) .. (18)
<223> Xaa can be any naturally occurring amino acid
<220>
       misc_feature
<221>
<222> (21)..(21)
<223> Xaa can be any naturally occurring amino acid
```

Page 5

<220>

49321-146.ST25.txt <221> misc_feature <222> (36) . . (36) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (54) . . (54)<223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (64)..(64) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (73)..(73) <223> Xaa can be any naturally occurring amino acid <400> 3 Gly Xaa His Ser Xaa Xaa Pro Arg Pro Ala Ala Val Pro Val Pro Xaa 5 10 Arq Xaa Gln Pro Xaa Pro Ala His Pro Val Leu Ser Phe Leu Ile Pro 20 25 Ser Trp Asp Xaa Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 Ser Pro Thr Ser Val Xaa Ile Ser Pro Val Ser Val Gly Arg Gly Xaa 50 55 Asp Pro Asp Ala His Val Ala Val Xaa Leu Ser Arg Tyr Glu Gly 65 70 <210> 4 <211> 419 <212> PRT <213> artificial sequence <220> <223> Herstatin; receptor non-binding mutant (Arg to Ile mutation at residue 371) <220> <221> misc feature <222> (342)..(342) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature $(345) \dots (346)$ <222> <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature

Page 6

<222> (356)..(356)

49321-146.ST25.txt <223> Xaa can be any naturally occurring amino acid <220> <221> misc feature <222> (358)..(358) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (361)..(361) Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (376) . . (376) <223> Xaa can be any naturally occurring amino acid <220> <221> misc feature <222> (394)..(394)<223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (404)..(404) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature (413)..(413) <222> <223> Xaa can be any naturally occurring amino acid <400> 4 Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Ala Leu Leu Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Cys Lys 25 Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 Gln Gly Tyr Val Leu Cys Ala His Asn Gln Val Arg Gln Val Pro Leu 90 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro

Page 7

125

120

Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Cys	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Сув	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Cys
His	Pro	Cys 195	Ser	Pro	Cys	Cys	Lys 200	Gly	Ser	Arg	Cys	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	Сув	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Cys
Ala 225	Arg	Сув	Lys	Gly	Pro 230	Leu	Pro	Thr	Asp	Cys 235	Сув	His	Glu	Gln	Cys 240
Ala	Ala	Gly	Сув	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Суз	Leu	Ala	Cys 255	Leu
His	Phe	Asn	His 260	Ser	Gly	Ile	Cys	Glu 265	Leu	His	Cys	Pro	Ala 270	Leu	Val
Thr	Tyr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Cys	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr	Thr 290	Phe	Gly	Ala	Ser	Сув 295		Thr	Ala	Сув	Pro 300	Tyr	Asn	Lys	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Cys	Thr	Leu	Val	Сув 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg 330	Cys	Glu	ГÀв	Cys	Ser 335	Lys
Pro	Cys	Ala	Arg 340	Gly	Xaa	His	Ser	Xaa 345	Xaa	Pro	Arg	Pro	Ala 350	Ala	Val
Pro	Val	Pro 355	Xaa	Arg	Xaa	Gln	Pro 360	Xaa	Pro	Ala	His	Pro 365	Val	Leu	Ser
Phe	Leu 370	Ile	Pro	Ser	Trp	Asp 375	Xaa	Val		Ala .ge 8	380	Tyr	Ser	Leu	Pro

Leu Ala Pro Leu Asp Pro Thr Ser Val Xaa Ile Ser Pro Val Ser Val

390 395 Gly Arg Gly Xaa Asp Pro Asp Ala His Val Ala Val Xaa Leu Ser Arg 405 410 Tyr Glu Gly <210> 5 <211> 5616 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (247)..(3879) <223> HER-1 coding sequence <400> 5 ccccggcgca gcgcggccgc agcagcctcc gcccccgca cggtgtgagc gcccgacgcg 60 gccgaggcgg ccggagtccc gagctagccc cggcggccgc cgccgcccag accggacgac 120 180 aggocacete greggegree georgagree eegecregee gecaaegeea caaceaeege 240 qcacqqcccc ctgactccgt ccagtattga tcgggagagc cggagcgagc tcttcgggga 288 gcageg atg ega eee tee ggg aeg gee ggg gea geg ete etg geg etg Met Arg Pro Ser Gly Thr Ala Gly Ala Ala Leu Leu Ala Leu 336 ctg gct gcg ctc tgc ccg gcg agt cgg gct ctg gag gaa aag aaa gtt Leu Ala Ala Leu Cys Pro Ala Ser Arg Ala Leu Glu Glu Lys Lys Val tgc caa ggc acg agt aac aag ctc acg cag ttg ggc act ttt gaa gat 384 Cys Gln Gly Thr Ser Asn Lys Leu Thr Gln Leu Gly Thr Phe Glu Asp 35 cat ttt ctc agc ctc cag agg atg ttc aat aac tgt gag gtg gtc ctt 432 His Phe Leu Ser Leu Gln Arg Met Phe Asn Asn Cys Glu Val Val Leu 480 qqq aat ttg gaa att acc tat gtg cag agg aat tat gat ctt tcc ttc Gly Asn Leu Glu Ile Thr Tyr Val Gln Arg Asn Tyr Asp Leu Ser Phe tta aag acc atc cag gag gtg gct ggt tat gtc ctc att gcc ctc aac 528 Leu Lys Thr Ile Gln Glu Val Ala Gly Tyr Val Leu Ile Ala Leu Asn 80 aca gtg gag cga att cct ttg gaa aac ctg cag atc atc aga gga aat 576 Thr Val Glu Arg Ile Pro Leu Glu Asn Leu Gln Ile Ile Arg Gly Asn 100 atg tac tac gaa aat tcc tat gcc tta gca gtc tta tct aac tat gat 624 Met Tyr Tyr Glu Asn Ser Tyr Ala Leu Ala Val Leu Ser Asn Tyr Asp Page 9

					115					120					125	•	
								gag Glu									672
								ttc Phe 150									720
								gac Asp									768
								aac Asn									816
								agc Ser									864
								atc Ile									912
•	tgc Cys	cgt Arg	ggc Gly 225	aag Lys	tcc Ser	ccc Pro	agt Ser	gac Asp 230	tgc Cys	tgc Cys	cac His	aac Asn	cag Gln 235	tgt Cys	gct Ala	gca Ala	960
								agc Ser									1008
į	cga Arg 255	gac Asp	gaa Glu	gcc Ala	acg Thr	tgc Cys 260	aag Lys	gac Asp	acc Thr	tgc Cys	ccc Pro 265	cca Pro	ctc Leu	atg Met	ctc Leu	tac Tyr 270	1056
								gat Asp									1104
1	ttt Phe	ggt Gly	gcc Ala	acc Thr 290	tgc Cys	gtg Val	aag Lys	aag Lys	tgt Cys 295	ccc Pro	cgt Arg	aat Asn	tat Tyr	gtg Val 300	gtg Val	aca Thr	1152
9	gat Asp	cac His	ggc Gly 305	tcg Ser	tgc Cys	gtc Val	cga Arg	gcc Ala 310	tgt Cys	Gly ggg	gcc Ala	gac Asp	agc Ser 315	tat Tyr	gag Glu	atg Met	1200
								tgt Cys									1248
1	aaa Lys 335	gtg Val	tgt Cys	aac Asn	gga Gly	ata Ile 340	ggt Gly	att Ile	ggt Gly	gaa Glu	ttt Phe 345	aaa Lys	gac Asp	tca Ser	ctc Leu	tcc Ser 350	1296
	ata Ile	aat Asn	gct Ala	acg Thr	aat Asn 355	att Ile	aaa Lys	cac His	ttc Phe	aaa Lys 360	aac Asn	tgc Cys	acc Thr	tcc Ser	atc Ile 365	agt Ser	1344
9	ggc	gat Asp	ctc Leu	cac His	atc Ile	ctg Leu	ccg Pro	gtg Val	gca Ala	Phe	agg Arg ge 10	Gly	gac Asp	tcc Ser	ttc Phe	aca Thr	1392

			370		ŗ			375	1-14	6.51	25.0		380		•	
cat His	act Thr	cct Pro 385	cct Pro	ctg Leu	gat Asp	cca Pro	cag Gln 390	gaa Glu	ctg Leu	gat Asp	att Ile	ctg Leu 395	aaa Lys	acc Thr	gta Val	1440
												cct Pro				1488
												cgc Arg				1536
												ctg Leu				1584
tcc Ser	ttg Leu	gga Gly	tta Leu 450	cgc Arg	tcc Ser	ctc Leu	aag Lys	gag Glu 455	ata Ile	agt Ser	gat Asp	gga Gly	gat Asp 460	gtg Val	ata Ile	1632
att Ile	tca Ser	gga Gly 465	aac Asn	aaa Lys	aat Asn	ttg Leu	tgc Cys 470	tat Tyr	gca Ala	aat _. Asn	aca Thr	ata Ile 475	aac Asn	tgg Trp	aaa Lys	1680
aaa Lys	ctg Leu 480	ttt Phe	Gly Ggg	acc Thr	tcc Ser	ggt Gly 485	cag Gln	aaa Lys	acc Thr	aaa Lys	att Ile 490	ata Ile	agc Ser	aac Asn	aga Arg	1728
ggt Gly 495	gaa Glu	aac Asn	agc Ser	tgc Cys	aag Lys 500	gcc Ala	aca Thr	ggc Gly	cag Gln	gtc Val 505	tgc Cys	cat His	gcc Ala	ttg Leu	tgc Cys 510	1776
tcc Ser	ccc Pro	gag Glu	ggc Gly	tgc Cys 515	tgg Trp	ggc Gly	ccg Pro	gag Glu	ccc Pro 520	agg Arg	gac Asp	tgc Cys	gtc Val	tct Ser 525	tgc Cys	1824
cgg Arg	aat Asn	gtc Val	agc Ser 530	cga Arg	ggc Gly	agg Arg	gaa Glu	tgc Cys 535	gtg Val	gac Asp	aag Lys	tgc Cys	aac Asn 540	ctt Leu	ctg Leu	1872
												tgc Cys 555				1920
cac His	cca Pro 560	gag Glu	tgc Cys	ctg Leu	cct Pro	cag Gln 565	gcc Ala	atg Met	aac Asn	atc Ile	acc Thr 570	tgc Cys	aca Thr	gga Gly	cgg Arg	1968
gga Gly 575	cca Pro	gac Asp	aac Asn	tgt Cys	atc Ile 580	cag Gln	tgt Cys	gcc Ala	cac His	tac Tyr 585	att Ile	gac Asp	ggc Gly	ccc Pro	cac His 590	2016
tgc Cys	gtc Val	aag Lys	acc Thr	tgc Cys 595	ccg Pro	gca Ala	gga Gly	gtc Val	atg Met 600	gga Gly	gaa Glu	aac Asn	aac Asn	acc Thr 605	ctg Leu	2064
gtc Val	tgg Trp	aag Lys	tac Tyr 610	gca Ala	gac Asp	gcc Ala	ggc Gly	cat His 615	gtg Val	tgc Cys	cac His	ctg Leu	tgc Cys 620	cat His	cca Pro	2112
aac Asn	Cys Cys	acc Thr	tac Tyr	gga Gly	tgc Cys	act Thr	gjå aaa	cca Pro	Gly	ctt Leu ge 1:	Glu	ggc Gly	tgt Cys	cca Pro	acg Thr	2160

		625					630	- 552	T - 74.4	0.01		635				
					ccg Pro											2208
ctc Leu 655	ttg Leu	ctg Leu	ctg Leu	gtg Val	gtg Val 660	gcc Ala	ctg Leu	Gly 9gg	atc Ile	ggc Gly 665	ctc Leu	ttc Phe	atg Met	cga Arg	agg Arg 670	2256
					aag Lys											2304
gag Glu	ctt Leu	gtg Val	gag Glu 690	cct Pro	ctt Leu	aca Thr	ccc Pro	agt Ser 695	gga Gly	gaa Glu	gct Ala	ccc Pro	aac Asn 700	caa Gln	gct Ala	2352
ctc Leu	ttg Leu	agg Arg 705	atc Ile	ttg Leu	aag Lys	gaa Glu	act Thr 710	gaa Glu	ttc Phe	aaa Lys	aag Lys	atc Ile 715	aaa Lys	gtg Val	ctg Leu	2400
					ggc Gly											2448
					att Ile 740											2496
					aac Asn											2544
gcc Ala	agc Ser	gtg Val	gac Asp 770	aac Asn	ccc Pro	cac His	gtg Val	tgc Cys 775	cgc Arg	ctg Leu	ctg Leu	ggc Gly	atc Ile 780	tgc Cys	ctc Leu	2592
acc Thr	tcc Ser	acc Thr 785	gtg Val	cag Gln	ctc Leu	atc Ile	acg Thr 790	cag Gln	ctc Leu	atg Met	ccc Pro	ttc Phe 795	ggc	tgc Cys	ctc Leu	2640
ctg Leu	gac Asp 800	tat Tyr	gtc Val	cgg Arg	gaa Glu	cac His 805	aaa Lys	gac Asp	aat Asn	att Ile	ggc Gly 810	tcc Ser	cag Gln	tac Tyr	ctg Leu	2688
ctc Leu 815	aac Asn	tgg Trp	tgt Cys	gtg Val	cag Gln 820	atc Ile	gca Ala	aag Lys	ggc Gly	atg Met 825	aac Asn	tac Tyr	ttg Leu	gag Glu	gac Asp 830	2736
cgt Arg	cgc Arg	ttg Leu	gtg Val	cac His 835	cgc Arg	gac Asp	ctg Leu	gca Ala	gcc Ala 840	agg Arg	aac Asn	gta Val	ctg Leu	gtg Val 845	aaa Lys	2784
					aag Lys											2832
ggt Gly	gcg Ala	gaa Glu 865	gag Glu	aaa Lys	gaa Glu	tac Tyr	cat His 870	gca Ala	gaa Glu	gga Gly	ggc	aaa Lys 875	gtg Val	cct Pro	atc Ile	2880
aag Lys	tgg Trp	atg Met	gca Ala	ttg Leu	gaa Glu	tca Ser	att Ile	tta Leu	His	aga Arg ge 12	Ile	tat Tyr	acc Thr	cac His	cag Gln	2928

	49	321-146.ST25.CXC
880	885	890

agt gat gtc Ser Asp Val 895	tgg agc tac Trp Ser Tyr 900	ggg gtg acc Gly Val Thr	gtt tgg gag ttg atg acc ttt Val Trp Glu Leu Met Thr Phe 905 910	2976
gga tcc aag Gly Ser Lys	cca tat gac Pro Tyr Asp 915	gga atc cct Gly Ile Pro	gcc agc gag atc tcc tcc atc Ala Ser Glu Ile Ser Ser Ile 920 925	3024
ctg gag aaa Leu Glu Lys	gga gaa cgc Gly Glu Arg 930	ctc cct cag Leu Pro Gln 935	cca ccc ata tgt acc atc gat Pro Pro Ile Cys Thr Ile Asp 940	3072
gtc tac atg Val Tyr Met 945	Ile Met Val	aag tgc tgg Lys Cys Trp 950	atg ata gac gca gat agt cgc Met Ile Asp Ala Asp Ser Arg 955	3120
cca aag ttc Pro Lys Phe 960	cgt gag ttg Arg Glu Leu	atc atc gaa Ile Ile Glu 965	ttc tcc aaa atg gcc cga gac Phe Ser Lys Met Ala Arg Asp 970	3168
ccc cag cgc Pro Gln Arg 975	tac ctt gtc Tyr Leu Val 980	att cag ggg Ile Gln Gly	gat gaa aga atg cat ttg cca Asp Glu Arg Met His Leu Pro 985 990	3216
agt cct aca Ser Pro Thr	gac tcc aac Asp Ser Asn 995	ttc tac cgt Phe Tyr Arg		ac 3264 sp
atg gac gac Met Asp Asp	gtg gtg ga Val Val As 1010	t gcc gac gag p Ala Asp Glu 101		3309
ggc ttc ttc Gly Phe Phe	agc agc cc Ser Ser Pr 1025	c tcc acg tca o Ser Thr Ser 103	cgg act ccc ctc ctg agc Arg Thr Pro Leu Leu Ser 0 1035	3354
tct ctg agt Ser Leu Ser	gca acc ag Ala Thr Se 1040	c aac aat tcc r Asn Asn Ser 104		3399
aga aat ggg Arg Asn Gly	ctg caa ag Leu Gln Se 1055	c tgt ccc atc r Cys Pro Ile 106	aag gaa gac agc ttc ttg Lys Glu Asp Ser Phe Leu 0 1065	3444
cag cga tac Gln Arg Tyr	agc tca ga Ser Ser As 1070	c ccc aca ggc p Pro Thr Gly 107	gcc ttg act gag gac agc Ala Leu Thr Glu Asp Ser 1080	3489
ata gac gac Ile Asp Asp	acc ttc ct Thr Phe Le 1085	c cca gtg cct u Pro Val Pro 109	gaa tac ata aac cag tcc Glu Tyr Ile Asn Gln Ser 0 1095	3.534
gtt ccc aaa Val Pro Lys	agg ccc gc Arg Pro Al 1100	t ggc tct gtg a Gly Ser Val 110	cag aat cct gtc tat cac Gln Asn Pro Val Tyr His 5 1110	3579
aat cag cct Asn Gln Pro	ctg aac cc Leu Asn Pr 1115	c gcg ccc agc o Ala Pro Ser 112	aga gac cca cac tac cag Arg Asp Pro His Tyr Gln 0 1125	3624
gac ccc cac	agc act gc	a gtg ggc aac	ccc gag tat ctc aac act Pro Glu Tyr Leu Asn Thr	3669

49321-146.ST25.txt 1130 1135 1140

1130	1135 1140.ST25.CXC	
gtc cag ccc acc tgt gtc aac agc Val Gln Pro Thr Cys Val Asn Ser 1145		714
tgg gcc cag aaa ggc agc cac caa Trp Ala Gln Lys Gly Ser His Gln 1160		759
tac cag cag gac ttc ttt ccc aag Tyr Gln Gln Asp Phe Phe Pro Lys 1175	3 3 3	304
ttt aag ggc tcc aca gct gaa aat Phe Lys Gly Ser Thr Ala Glu Asn 1190		349
cca caa agc agt gaa ttt att gga Pro Gln Ser Ser Glu Phe Ile Gly 1205		399
cctaaaaatc cagactcttt cgatacccag	gaccaagcca cagcaggtcc tccatcccaa 39	959
cagccatgcc cgcattagct cttagaccca	cagactggtt ttgcaacgtt tacaccgact 40	19
agccaggaag tacttccacc tcgggcacat	tttgggaagt tgcattcctt tgtcttcaaa 40	79
ctgtgaagca tttacagaaa cgcatccagc	aagaatattg tccctttgag cagaaattta 41	L39
tctttcaaag aggtatattt gaaaaaaaa	aaaagtatat gtgaggattt ttattgattg 41	L99
gggatcttgg agtttttcat tgtcgctatt	gatttttact tcaatgggct cttccaacaa 42	259
ggaagaagct tgctggtagc acttgctacc	ctgagttcat ccaggcccaa ctgtgagcaa 43	319
ggagcacaag ccacaagtct tccagaggat	gettgattcc agtggttctg cttcaaggct 43	379
tccactgcaa aacactaaag atccaagaag	geetteatgg ceccageagg ceggateggt 44	139
actgtatcaa gtcatggcag gtacagtagg	ataagccact ctgtcccttc ctgggcaaag 44	199
aagaaacgga ggggatggaa ttcttcctta	gacttacttt tgtaaaaatg tccccacggt 45	559
acttactccc cactgatgga ccagtggttt	ccagtcatga gcgttagact gacttgtttg 46	519
tcttccattc cattgttttg aaactcagta	tgctgcccct gtcttgctgt catgaaatca 46	579
gcaagagagg atgacacatc aaataataac	toggattoca goodacattg gattcatcag 47	739
catttggacc aatagcccac agctgagaat	gtggaatacc taaggatagc accgcttttg 47	799
ttctcgcaaa aacgtatctc ctaatttgag	gctcagatga aatgcatcag gtcctttggg 48	359
gcatagatca gaagactaca aaaatgaagc	tgctctgaaa tctcctttag ccatcacccc 49	919
aacccccaa aattagtttg tgttacttat	ggaagatagt tttctccttt tacttcactt 49	79
caaaagcttt ttactcaaag agtatatgtt	ccctccaggt cagctgcccc caaaccccct 50	39
ccttacgctt tgtcacacaa aaagtgtctc	tgccttgagt catctattca agcacttaca 50	99
gctctggcca caacagggca ttttacaggt	gcgaatgaca gtagcattat gagtagtgtg 51	L 5 9

5219

5279

5339

5399

5459

5519

5579

5616

WO 200	6/042002				PCT/US
gaattcaggt	agtaaatatg	and the second s	9321-146.ST ttgaaattga	25.txt taatgctttc a	acaacattta
	-			ttctctacaa 1	_
				ctgtgtgtgc	
		_			
		_		tctcctagtc a	
		_		ttcagcctac a	
agtcacacac	acatacaaaa	tgttcctttt	gcttttaaag	taatttttga (ctcccagatc
agtcagagcc	cctacagcat	tgttaagaaa	gtatttgatt	tttgtctcaa 1	tgaaaataaa
actatattca	tttccactct	aaaaaaaaa	aaaaaaa		
	o o sapiens				
<400> 6					
Met Arg Pro	o Ser Gly Th 5	r Ala Gly i	Ala Ala Leu 10	Leu Ala Leu	Leu Ala 15
Ala Leu Cys	s Pro Ala Se 20		Leu Glu Glu 25	Lys Lys Val	Cys Gln
Gly Thr Ser	r Asn Lys Le	Thr Gln 1	Leu Gly Thr	Phe Glu Asp 45	His Phe
Leu Ser Leu 50	u Gln Arg Me	t Phe Asn A	Asn Cys Glu	Val Val Leu 60	Gly Asn
Leu Glu Ile 65	e Thr Tyr Va 70	l Gln Arg	Asn Tyr Asp 75	Leu Ser Phe	Leu Lys 80
Thr Ile Gl	n Glu Val Al 85	a Gly Tyr '	Val Leu Ile 90	Ala Leu Asn	Thr Val 95
Glu Arg Ile	e Pro Leu Gl 100		Gln Ile Ile 105	Arg Gly Asn 110	Met Tyr

Tyr Glu Asn Ser Tyr Ala Leu Ala Val Leu Ser Asn Tyr Asp Ala Asn 115 120 125

Lys Thr Gly Leu Lys Glu Leu Pro Met Arg Asn Leu Gln Glu Ile Leu 130 135 140

His Gly Ala Val Arg Phe Ser Asn Asn Pro Ala Leu Cys Asn Val Glu 145 150 155 160

Ser Ile Gln Trp Arg Asp Ile Val Ser Ser Asp Phe Leu Ser Asn Met
165 170 175

Ser Met Asp Phe Gln Asn His Leu Gly Ser Cys Gln Lys Cys Asp Pro 180 185 190

Ser Cys Pro Asn Gly Ser Cys Trp Gly Ala Gly Glu Glu Asn Cys Gln 195 200 205

Lys Leu Thr Lys Ile Ile Cys Ala Gln Gln Cys Ser Gly Arg Cys Arg 210 215 220

Gly Lys Ser Pro Ser Asp Cys Cys His Asn Gln Cys Ala Ala Gly Cys 225 230 235 240

Thr Gly Pro Arg Glu Ser Asp Cys Leu Val Cys Arg Lys Phe Arg Asp 245 250 255

Glu Ala Thr Cys Lys Asp Thr Cys Pro Pro Leu Met Leu Tyr Asn Pro 260 265 270

Thr Thr Tyr Gln Met Asp Val Asn Pro Glu Gly Lys Tyr Ser Phe Gly 275 280 285

Ala Thr Cys Val Lys Lys Cys Pro Arg Asn Tyr Val Val Thr Asp His 290 295 300

Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr Glu Met Glu Glu 305 310 315 320

Asp Gly Val Arg Lys Cys Lys Lys Cys Glu Gly Pro Cys Arg Lys Val 325 330 335

Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp Ser Leu Ser Ile Asn 340 345 350

Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile Ser Gly Asp 355 360 365

Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp Ser Phe Thr His Thr 370 380

Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr Val Lys Glu 385 390 395 400

Ile Thr Gly Phe Leu Leu Ile Gln Ala Trp Pro Glu Asn Arg Thr Asp 405 410 415

								4932	1-14	6.SI	'25.t	XC			
Leu	His	Ala	Phe 420	Glu	Asn	Leu	Glu	Ile 425	Ile	Arg	Gly	Arg	Thr 430	Lys	Gln

His Gly Gln Phe Ser Leu Ala Val Val Ser Leu Asn Ile Thr Ser Leu 435 440 445

Gly Leu Arg Ser Leu Lys Glu Ile Ser Asp Gly Asp Val Ile Ile Ser 450 455 460

Gly Asn Lys Asn Leu Cys Tyr Ala Asn Thr Ile Asn Trp Lys Lys Leu 465 470 475 480

Phe Gly Thr Ser Gly Gln Lys Thr Lys Ile Ile Ser Asn Arg Gly Glu 485 490 495

Asn Ser Cys Lys Ala Thr Gly Gln Val Cys His Ala Leu Cys Ser Pro 500 505 510

Glu Gly Cys Trp Gly Pro Glu Pro Arg Asp Cys Val Ser Cys Arg Asn 515 520 525

Val Ser Arg Gly Arg Glu Cys Val Asp Lys Cys Asn Leu Leu Glu Gly 530 540

Glu Pro Arg Glu Phe Val Glu Asn Ser Glu Cys Ile Gln Cys His Pro 545 550 555 560

Glu Cys Leu Pro Gln Ala Met Asn Ile Thr Cys Thr Gly Arg Gly Pro 565 570 575

Asp Asn Cys Ile Gln Cys Ala His Tyr Ile Asp Gly Pro His Cys Val 580 585 590

Lys Thr Cys Pro Ala Gly Val Met Gly Glu Asn Asn Thr Leu Val Trp 595 600 605

Lys Tyr Ala Asp Ala Gly His Val Cys His Leu Cys His Pro Asn Cys 610 615 620

Thr Tyr Gly Cys Thr Gly Pro Gly Leu Glu Gly Cys Pro Thr Asn Gly 625 630 635

Pro Lys Ile Pro Ser Ile Ala Thr Gly Met Val Gly Ala Leu Leu Leu 645 650 655

Leu Leu Val Val Ala Leu Gly Ile Gly Leu Phe Met Arg Arg Arg His 660 665 670

49321-146.ST25.txt Ile Val Arg Lys Arg Thr Leu Arg Arg Leu Leu Gln Glu Arg Glu Leu 680 Val Glu Pro Leu Thr Pro Ser Gly Glu Ala Pro Asn Gln Ala Leu Leu 695 Arg Ile Leu Lys Glu Thr Glu Phe Lys Lys Ile Lys Val Leu Gly Ser 710 Gly Ala Phe Gly Thr Val Tyr Lys Gly Leu Trp Ile Pro Glu Gly Glu 730 725 Lys Val Lys Ile Pro Val Ala Ile Lys Glu Leu Arg Glu Ala Thr Ser 740 745 Pro Lys Ala Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Ser 760 Val Asp Asn Pro His Val Cys Arg Leu Leu Gly Ile Cys Leu Thr Ser 775 770 Thr Val Gln Leu Ile Thr Gln Leu Met Pro Phe Gly Cys Leu Leu Asp 795 785 790 Tyr Val Arg Glu His Lys Asp Asn Ile Gly Ser Gln Tyr Leu Leu Asn 810 805 Trp Cys Val Gln Ile Ala Lys Gly Met Asn Tyr Leu Glu Asp Arg Arg 825 820 Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Thr Pro 840 835

Gln His Val Lys Ile Thr Asp Phe Gly Leu Ala Lys Leu Leu Gly Ala 850 855 860

Glu Glu Lys Glu Tyr His Ala Glu Gly Gly Lys Val Pro Ile Lys Trp 865 870 875 880

Met Ala Leu Glu Ser Ile Leu His Arg Ile Tyr Thr His Gln Ser Asp 885 890 895

Val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ser 900 - 905 910

Lys Pro Tyr Asp Gly Ile Pro Ala Ser Glu Ile Ser Ser Ile Leu Glu 915 920 925

Lys Gly Glu Arg Leu Pro Gln Pro Pro Ile Cys Thr Ile Asp Val Tyr 930 940

Met Ile Met Val Lys Cys Trp Met Ile Asp Ala Asp Ser Arg Pro Lys 945 950 955 960

Phe Arg Glu Leu Ile Ile Glu Phe Ser Lys Met Ala Arg Asp Pro Gln 965 970 975

Arg Tyr Leu Val Ile Gln Gly Asp Glu Arg Met His Leu Pro Ser Pro 980 985 990

Thr Asp Ser Asn Phe Tyr Arg Ala Leu Met Asp Glu Glu Asp Met Asp 995 1000 1005

Asp Val Val Asp Ala Asp Glu Tyr Leu Ile Pro Gln Gln Gly Phe 1010 1015 1020

Phe Ser Ser Pro Ser Thr Ser Arg Thr Pro Leu Leu Ser Ser Leu 1025 1030 1035

Ser Ala Thr Ser Asn Asn Ser Thr Val Ala Cys Ile Asp Arg Asn 1040 1045 1050

Gly Leu Gln Ser Cys Pro Ile Lys Glu Asp Ser Phe Leu Gln Arg 1055 1060 1065

Tyr Ser Ser Asp Pro Thr Gly Ala Leu Thr Glu Asp Ser Ile Asp 1070 1075 1080

Asp Thr Phe Leu Pro Val Pro Glu Tyr Ile Asn Gln Ser Val Pro 1085 1090 1095

Lys Arg Pro Ala Gly Ser Val Gln Asn Pro Val Tyr His Asn Gln 1100 1105 1110

Pro Leu Asn Pro Ala Pro Ser Arg Asp Pro His Tyr Gln Asp Pro 1115 1120 1125

His Ser Thr Ala Val Gly Asn Pro Glu Tyr Leu Asn Thr Val Gln 1130 1140

Pro Thr Cys Val Asn Ser Thr Phe Asp Ser Pro Ala His Trp Ala 1145 1150 1155

Gln Lys Gly Ser His Gln Ile Ser Leu Asp Asn Pro Asp Tyr Gln 1160 1165 1170

49321-146.ST25.txt
Gln Asp Phe Phe Pro Lys Glu Ala Lys Pro Asn Gly Ile Phe Lys
1175 1180 1185

Gly Ser Thr Ala Glu Asn Ala Glu Tyr Leu Arg Val Ala Pro Gln 1190 1195 1200

Ser Ser Glu Phe Ile Gly Ala 1205 1210

<210> 7 <211> 4815 <212> DNA <213> Homo sapiens

<220> <221> CDS

<222> (247)..(3078)

<223> delta EGFR coding sequence [represents in-frame deletion of 801
 bp (275-1027) of the ECD of EGFR corresponding to exons 2-7 of
 the gene]

<400> 60 coccegegea gegegeege ageageetee geeceeegea eggtgtgage geeegaegeg geogaggegg coggagtece gagetagece eggeggeege egeogeceag aceggacgae 120 aggecacete gteggegtee geeegagtee eegeetegee geeaacgeea caaccacege 180 240 gcacggcccc ctgactccgt ccagtattga tcgggagagc cggagcgagc tcttcgggga 288 geageg atg ega eee tee ggg acg gee ggg gea gtg gat gtg aac eee Met Arg Pro Ser Gly Thr Ala Gly Ala Val Asp Val Asn Pro 10 1 5 gag ggc aaa tac agc ttt ggt gcc acc tgc gtg aag aag tgt ccc cgt 336 Glu Gly Lys Tyr Ser Phe Gly Ala Thr Cys Val Lys Lys Cys Pro Arg 15 20 384 aat tat gtg gtg aca gat cac ggc tcg tgc gtc cga gcc tgt ggg gcc Asn Tyr Val Val Thr Asp His Gly Ser Cys Val Arg Ala Cys Gly Ala 35 40 gac agc tat gag atg gag gaa gac ggc gtc cgc aag tgt aag aag tgc 432 Asp Ser Tyr Glu Met Glu Glu Asp Gly Val Arg Lys Cys Lys Lys Cys 50 55 480 gaa ggg cct tgc cgc aaa gtg tgt aac gga ata ggt att ggt gaa ttt Glu Gly Pro Cys Arg Lys Val Cys Asn Gly Ile Gly Ile Gly Glu Phe 65 70 aaa gac tca ctc tcc ata aat gct acg aat att aaa cac ttc aaa aac 528 Lys Asp Ser Leu Ser Ile Asn Ala Thr Asn Ile Lys His Phe Lys Asn 85 80 tgc acc tcc atc agt ggc gat ctc cac atc ctg ccg gtg gca ttt agg 576 Cys Thr Ser Ile Ser Gly Asp Leu His Ile Leu Pro Val Ala Phe Arg 100 95 ggt gac tcc ttc aca cat act cct cct ctg gat cca cag gaa ctg gat 624 Gly Asp Ser Phe Thr His Thr Pro Pro Leu Asp Pro Gln Glu Leu Asp

Page 20

				115				4932	1-14 120	6.ST	25.0	χC		125			
att Ile	ctg Leu	aaa Lys	acc Thr 130	gta Val	aag Lys	gaa Glu	atc Ile	aca Thr 135	ggg Gly	ttt Phe	ttg Leu	ctg Leu	att Ile 140	cag Gln	gct Ala	672	
tgg Trp	cct Pro	gaa Glu 145	aac Asn	agg Arg	acg Thr	gac Asp	ctc Leu 150	cat His	gcc Ala	ttt Phe	gag Glu	aac Asn 155	cta Leu	gaa Glu	atc Ile	720	
ata Ile	cgc Arg 160	ggc Gly	agg Arg	acc Thr	aag Lys	caa Gln 165	cat His	ggt Gly	cag Gln	ttt Phe	tct Ser 170	ctt Leu	gca Ala	gtc Val	gtc Val	768	
agc Ser 175	ctg Leu	aac Asn	ata Ile	aca Thr	tcc Ser 180	ttg Leu	gga Gly	tta Leu	cgc Arg	tcc Ser 185	ctc Leu	aag Lys	gag Glu	ata Ile	agt Ser 190	816	
gat Asp	gga Gly	gat Asp	gtg Val	ata Ile 195	att Ile	tca Ser	gga Gly	aac Asn	aaa Lys 200	aat Asn	ttg Leu `	tgc Cys	tat Tyr	gca Ala 205	aat Asn	864	
aca Thr	ata Ile	aac Asn	tgg Trp 210	aaa Lys	aaa Lys	ctg Leu	ttt Phe	999 Gly 215	acc Thr	tcc Ser	ggt Gly	cag Gln	aaa Lys 220	acc Thr	aaa Lys	912	
att Ile	ata Ile	agc Ser 225	aac Asn	aga Arg	ggt Gly	gaa Glu	aac Asn 230	agc Ser	tgc Cys	aag Lys	gcc Ala	aca Thr 235	ggc Gly	cag Gln	gtc Val	960	
tgc Cys	cat His 240	gcc Ala	ttg Leu	tgc Cys	tcc Ser	ccc Pro 245	gag Glu	ggc Gly	tgc Cys	tgg Trp	ggc Gly 250	ccg Pro	gag Glu	ccc Pro	agg Arg	1008	
gac Asp 255	tgc Cys	gtc Val	tct Ser	tgc Cys	cgg Arg 260	aat Asn	gtc Val	agc Ser	cga Arg	ggc Gly 265	agg Arg	gaa Glu	tgc Cys	gtg Val	gac Asp 270	1056	
aag Lys	tgc Cys	aac Asn	ctt Leu	ctg Leu 275	gag Glu	ggt Gly	gag Glu	cca Pro	agg Arg 280	gag Glu	ttt Phe	gtg Val	gag Glu	aac Asn 285	tct Ser	1104	
gag Glu	tgc Cys	ata Ile	cag Gln 290	tgc Cys	cac His	cca Pro	gag Glu	tgc Cys 295	ctg Leu	cct Pro	cag Gln	gcc Ala	atg Met 300	aac Asn	atc Ile	1152	
acc Thr	tgc Cys	aca Thr 305	gga Gly	cgg Arg	gga Gly	cca Pro	gac Asp 310	aac Asn	tgt Cys	atc Ile	cag Gln	tgt Cys 315	gcc Ala	cac His	tac Tyr	1200	
att Ile	gac Asp 320	ggc Gly	ccc Pro	cac His	tgc Cys	gtc Val 325	aag Lys	acc Thr	tgc Cys	ccg Pro	gca Ala 330	gga Gly	gtc Val	atg Met	gga Gly	1248	
gaa Glu 335	aac Asn	aac Asn	acc Thr	ctg Leu	gtc Val 340	tgg Trp	aag Lys	tac Tyr	gca Ala	gac Asp 345	gcc Ala	ggc Gly	cat His	gtg Val	tgc Cys 350	1296	
cac His	ctg Leu	tgc Cys	cat His	cca Pro 355	aac Asn	tgc Cys	acc Thr	tac Tyr	gga Gly 360	tgc Cys	act Thr	Gly 999	cca Pro	ggt Gly 365	ctt Leu	1344	
gaa Glu	ggc Gly	tgt Cys	cca Pro	acg Thr	aat Asn	gly aga	cct Pro	aag Lys	Ile	ccg Pro ge 2:	Ser	atc Ile	gcc Ala	act Thr	ggg Gly	1392	

			370					375	1-14	6.51	25.0	,,,,,,	380			
atg Met	gtg Val	999 Gly 385	gcc Ala	ctc Leu	ctc Leu	ttg Leu	ctg Leu 390	ctg Leu	gtg Val	gtg Val	gcc Ala	ctg Leu 395	Gly ggg	atc Ile	ggc Gly	1440
ctc Leu	ttc Phe 400	atg Met	cga Arg	agg Arg	cgc Arg	cac His 405	atc Ile	gtt Val	cgg Arg	aag Lys	cgc Arg 410	acg Thr	ctg Leu	cgg Arg	agg Arg	1488
ctg Leu 415	ctg Leu	cag Gln	gag Glu	agg Arg	gag Glu 420	ctt Leu	gtg Val	gag Glu	cct Pro	ctt Leu 425	aca Thr	ccc Pro	agt Ser	gga Gly	gaa Glu 430	1536
gct Ala	ccc Pro	aac Asn	caa Gln	gct Ala 435	ctc Leu	ttg Leu	agg Arg	atc Ile	ttg Leu 440	aag Lys	gaa Glu	act Thr	gaa Glu	ttc Phe 445	aaa Lys	1584
aag Lys	atc Ile	aaa Lys	gtg Val 450	ctg Leu	ggc Gly	tcc Ser	ggt Gly	gcg Ala 455	ttc Phe	ggc Gly	acg Thr	gtg Val	tat Tyr 460	aag Lys	gga Gly	1632
ctc Leu	tgg Trp	atc Ile 465	cca Pro	gaa Glu	ggt Gly	gag Glu	aaa Lys 470	gtt Val	aaa Lys	att Ile	ccc Pro	gtc Val 475	gct Ala	atc Ile	aag Lys	1680
gaa Glu	tta Leu 480	aga Arg	gaa Glu	gca Ala	aca Thr	tct Ser 485	ccg Pro	aaa Lys	gcc Ala	aac Asn	aag Lys 490	gaa Glu	atc Ile	ctc Leu	gat Asp	1728
gaa Glu 495	gcc Ala	tac Tyr	gtg Val	atg Met	gcc Ala 500	agc Ser	gtg Val	gac Asp	aac Asn	ccc Pro 505	cac His	gtg Val	tgc Cys	cgc Arg	ctg Leu 510	1776
ctg Leu	ggc Gly	atc Ile	tgc Cys	ctc Leu 515	acc Thr	tcc Ser	acc Thr	gtg Val	cag Gln 520	ctc Leu	atc Ile	acg Thr	cag Gln	ctc Leu 525	atg Met	1824
ccc Pro	ttc Phe	ggc Gly	tgc Cys 530	ctc Leu	ctg Leu	gac Asp	tat Tyr	gtc Val 535	cgg Arg	gaa Glu	cac His	aaa Lys	gac Asp 540	aat Asn	att Ile	1872
ggc Gly	tcc Ser	cag Gln 545	tac Tyr	ctg Leu	ctc Leu	aac Asn	tgg Trp 550	tgt Cys	gtg Val	cag Gln	atc Ile	gca Ala 555	aag Lys	ggc Gly	atg Met	1920
aac Asn	tac Tyr 560	ttg Leu	gag Glu	gac Asp	cgt Arg	cgc Arg 565	ttg Leu	gtg Val	cac His	cgc Arg	gac Asp 570	ctg Leu	gca Ala	gcc Ala	agg Arg	1968
aac Asn 575	gta Val	ctg Leu	gtg Val	aaa Lys	aca Thr 580	Pro	cag Gln	cat His	gtc Val	aag Lys 585	atc Ile	aca Thr	gat Asp	ttt Phe	999 Gly 590	2016
ctg Leu	gcc Ala	aaa Lys	ctg Leu	ctg Leu 595	ggt Gly	gcg Ala	gaa Glu	gag Glu	aaa Lys 600	gaa Glu	tac Tyr	cat His	gca Ala	gaa Glu 605	gga Gly	2064
ggc Gly	aaa Lys	gtg Val	cct Pro 610	atc Ile	aag Lys	tgg Trp	atg Met	gca Ala 615	ttg Leu	gaa Glu	tca Ser	att Ile	tta Leu 620	cac His	aga Arg	2112
atc Ile	tat Tyr	acc Thr	cac His	cag Gln	agt. Ser	gat Asp	gtc Val	tgg Trp	Ser	tac Tyr ge 22	Gly	gtg Val	acc Thr	gtt Val	tgg Trp	2160

6	525		630	4932	1-14	6.ST	25.L	635				
gag ttg a Glu Leu M 640	itg acc t Met Thr P	he Gly S	cc aag Ser Lys 545	cca Pro	tat Tyr	gac Asp	gga Gly 650	atc Ile	cct Pro	gcc Ala	agc Ser	2208
gag atc t Glu Ile S 655	cc tcc a Ser Ser I	tc ctg g le Leu G 660	gag aaa Slu Lys	gga Gly	gaa Glu	cgc Arg 665	ctc Leu	cct Pro	cag Gln	cca Pro	ccc Pro 670	2256
ata tgt a Ile Cys T	hr Ile A	at gtc t sp Val T 75	ac atg	Ile	atg Met 680	gtc Val	aag Lys	tgc Cys	tgg Trp	atg Met 685	ata Ile	2304
gac gca g Asp Ala A	gat agt c Asp Ser A 690	gc cca a rg Pro L	ag ttc ys Phe	cgt Arg 695	gag Glu	ttg Leu	atc Ile	atc Ile	gaa Glu 700	ttc Phe	tcc Ser	2352
aaa atg g Lys Met A 7	gcc cga g Ala Arg A '05	ac ccc c sp Pro G	ag cgc In Arg 710	tac Tyr	ctt Leu	gtc Val	att Ile	cag Gln 715	gly ggg	gat Asp	gaa Glu	2400
aga atg c Arg Met H 720	at ttg c Iis Leu P	ro Ser P	cct aca Pro Thr 725	gac Asp	tcc Ser	aac Asn	ttc Phe 730	tac Tyr	cgt Arg	gcc Ala	ctg Leu	2448
atg gat g Met Asp G 735	gaa gaa g Slu Glu A	ac atg g sp Met A 740	gac gac Asp Asp	gtg Val	gtg Val	gat Asp 745	gcc Ala	gac Asp	gag Glu	tac Tyr	ctc Leu 750	2496
atc cca c Ile Pro G	Sln Gln G	gc ttc t ly Phe P 55	tc agc Phe Ser	agc Ser	ccc Pro 760	tcc Ser	acg Thr	tca Ser	cgg Arg	act Thr 765	ccc Pro	2544
ctc ctg a Leu Leu S	ngc tct c Ser Ser L 770	tg agt g eu Ser A	jca acc Ala Thr	agc Ser 775	aac Asn	aat Asn	tcc Ser	acc Thr	gtg Val 780	gct Ala	tgc Cys	2592
att gat a Ile Asp A 7	nga aat g Arg Asn G 185	gg ctg c	caa agc 31n Ser 790	tgt Cys	ccc Pro	atc Ile	aag Lys	gaa Glü 795	gac Asp	agc Ser	ttc Phe	2640
ttg cag c Leu Gln A 800	ga tac a Arg Tyr S	er Ser A	gac ccc Asp Pro 305	aca Thr	ggc Gly	gcc Ala	ttg Leu 810	act Thr	gag Glu	gac Asp	agc Ser	2688
ata gac g Ile Asp A 815	Jac acc t Asp Thr P	tc ctc c he Leu F 820	cca gtg Pro Val	cct Pro	gaa Glu	tac Tyr 825	ata Ile	aac Asn	cag Gln	tcc Ser	gtt Val 830	2736
ccc aaa a Pro Lys A	arg Pro A	ct ggc t la Gly S 35	ct gtg Ser Val	cag Gln	aat Asn 840	cct Pro	gtc Val	tat Tyr	cac His	aat Asn 845	cag Gln	2784
cct ctg a Pro Leu A	ac ccc g Asn Pro A 850	cg ccc a la Pro S	agc aga Ser Arg	gac Asp 855	cca Pro	cac His	tac Tyr	cag Gln	gac Asp 860	ccc Pro	cac His	2832
	la Val G 865	ly Asn P	Pro Glu 870	Tyr	Leu	Asn	Thr	Val 875	Gln	Pro	Thr	2880
tgt gtc a Cys Val A	ac agc a Asn Ser T	ca ttc g hr Phe A	gac agc Asp Ser	cct Pro	Ala	cac His ge 23	Trp	gcc Ala	cag Gln	aaa Lys	ggc Gly	2928

880		885	13321-146.31	890	
agc Cac caa Ser His Gln 895	att agc ctg Ile Ser Leu 900	gac aac Asp Asn	Cct gac tac Pro Asp Tyr 905	cag cag gac ttc ttt Gln Gln Asp Phe Phe 910	2976
ccc aag gaa Pro Lys Glu	gcc aag cca Ala Lys Pro 915	aat ggc Asn Gly	atc ttt aag Ile Phe Lys 920	ggc tcc aca gct gaa Gly Ser Thr Ala Glu 925	3024
				agt gaa ttt att gga Ser Glu Phe Ile Gly 940	3072
gca tga ccad Ala	eggagga tagta	itgagc cc	taaaaatc cag	gactettt egatacecag	3128
gaccaagcca d	cagcaggtcc to	catcccaa	cagccatgcc	cgcattagct cttagaccca	3188
cagactggtt t	tgcaacgtt ta	ıcaccgact	agccaggaag	tacttccacc tcgggcacat	3248
tttgggaagt t	gcattcctt to	jtcttcaaa	ctgtgaagca	tttacagaaa cgcatccagc	3308
aagaatattg t	ccctttgag ca	ıgaaattta	tctttcaaag	aggtatattt gaaaaaaaaa	3368
aaaagtatat g	gtgaggattt tt	attgattg	gggatcttgg	agtttttcat tgtcgctatt	3428
gatttttact t	caatgggct ct	tccaacaa	ggaagaagct	tgctggtagc acttgctacc	3488
ctgagttcat o	ccaggcccaa ct	gtgagcaa	ggagcacaag	ccacaagtct tccagaggat	3548
gcttgattcc a	agtggttctg ct	tcaaggct	tccactgcaa	aacactaaag atccaagaag	3608
gccttcatgg c	cccagcagg co	ggatcggt	actgtatcaa	gtcatggcag gtacagtagg	3668
ataagccact c	etgtecette et	gggcaaag	aagaaacgga	ggggatggaa ttcttcctta	3728
gacttacttt t	gtaaaaatg to	cccacggt	acttactccc	cactgatgga ccagtggttt	3788
ccagtcatga g	gegttagaet ga	cttgtttg	tcttccattc	cattgttttg aaactcagta	3848
tgctgcccct g	gtettgetgt ca	itgaaatca	gcaagagagg	atgacacatc aaataataac	3908
tcggattcca c	gcccacattg ga	ittcatcag	catttggacc	aatagcccac agctgagaat	3968
gtggaatacc t	aaggatagc ac	cgcttttg	ttctcgcaaa	aacgtatctc ctaatttgag	4028
gctcagatga a	atgcatcag gt	cctttggg	gcatagatca	gaagactaca aaaatgaagc	4088
tgctctgaaa t	ctcctttag co	atcacccc	aaccccccaa	aattagtttg tgttacttat	4148
ggaagatagt t	ttctccttt ta	cttcactt	caaaagcttt	ttactcaaag agtatatgtt	4208
ccctccaggt c	agctgcccc ca	aaccccct	ccttacgctt	tgtcacacaa aaagtgtctc	4268
tgccttgagt c	atctattca ag	cacttaca	gctctggcca	caacagggca ttttacaggt	4328
gcgaatgaca g	jtagcattat ga	gtagtgtg	gaattcaggt	agtaaatatg aaactagggt	4388
ttgaaattga t	aatgettte ac	aacatttg	cagatgtttt	agaaggaaaa aagtteette	4448
ctaaaataat t	tctctacaa tt	ggaagatt	ggaagattca	gctagttagg agcccacctt	4508

49321-146.ST25.txt

<210> 8

<211> 943

<212> PRT

<213> Homo sapiens

<400> 8

Met Arg Pro Ser Gly Thr Ala Gly Ala Val Asp Val Asn Pro Glu Gly
1 5 10 15

Lys Tyr Ser Phe Gly Ala Thr Cys Val Lys Lys Cys Pro Arg Asn Tyr 20 25 30

Val Val Thr Asp His Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser 35 40 45

Tyr Glu Met Glu Glu Asp Gly Val Arg Lys Cys Lys Cys Glu Gly
50 60

Pro Cys Arg Lys Val Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp 65 70 75 80

Ser Leu Ser Ile Asn Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr 85 90 95

Ser Ile Ser Gly Asp Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp 100 105 110

Ser Phe Thr His Thr Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu 115 120 125

Lys Thr Val Lys Glu Ile Thr Gly Phe Leu Leu Ile Gln Ala Trp Pro 130 135 140

Glu Asn Arg Thr Asp Leu His Ala Phe Glu Asn Leu Glu Ile Ile Arg 145 150 155 160

Gly Arg Thr Lys Gln His Gly Gln Phe Ser Leu Ala Val Val Ser Leu 165 170 175

			•	•				4932	1-14	6.51	25.t	xt			
Asn	Ile	Thr	Ser 180	Leu	Gly	Leu	Arg	Ser 185	Leu	Lys	Glu	Ile	Ser 190	Asp	Gly
Asp	Val	Ile 195	Ile	Ser	Gly	Asn	Lys 200	Asn	Leu	Сув	Туг	Ala 205	Asn	Thr	Ile
Asn	Trp 210	Lys	Lys	Leu	Phe	Gly 215	Thr	Ser	Gly	Gln	Lys 220	Thr	Lys	Ile	Ile
Ser 225	Asn	Arg	Gly	Glu	Asn 230	Ser	Сув	Lys	Ala	Thr 235	Gly	Gln	Val	Cys	His 240
Ala	Leu	Сув	Ser	Pro 245	Glu	Gly	Сув	Trp	Gly 250	Pro	Glu	Pro	Arģ	Asp 255	Cys
Val	Ser	Суз	Arg 260	Asn	Val	Ser	Arg	Gly 265	Arg	Glu	Сув	Val	Asp 270	Lys	Суз
Asn	Leu	Leu 275	Glu	Gly	Glu	Pro	Arg 280	Glu	Phe	Val	Glu	Asn 285	Ser	Glu	Суз
Ile	Gln 290	Cys	His	Pro	Glu	Сув 295	Leu	Pro	Gln	Ala	Met 300	Asn	Ile	Thr	Сув
Thr 305	Gly	Arg	Gly	Pro	Asp 310	Asn	Суз	Ile	Gln	Cys 315	Ala	His	Tyr	Ile	Asp 320
Gly	Pro	His	Cys	Val 325	Lys	Thr	Сув	Pro	Ala 330	Gly	Val	Met	Gly	Glu 335	Asn
Asn	Thr	Leu	Val 340	Trp	Lys	Tyr	Ala	Asp 345	Ala	Gly	His	Val	Cys 350	His	Leu
Cys	His	Pro 355	Asn	Cys	Thr	Tyr	Gly 360	Сув	Thr	Gly	Pro	Gly 365	Leu	Glu	Gly
Сув	Pro 370	Thr	Asn	Gly	Pro	Lys 375	Ile	Pro	Ser	Ile	Ala 380	Thr	Gly	Met	Val
Gly 385	Ala	Leu	Leu	Leu	Leu 390	Leu	Val	Val	Ala	Leu 395	Gly	Ile	Gly	Leu	Phe 400
Met	Arg	Arg	Arg	His 405	Ile	Val	Arg	ГÀв	Arg 410	Thr	Leu	Arg	Arg	Leu 415	Leu
Gln	Glu	Arg	Glu 420	Leu	Val	Glu	Pro	Leu 425	Thr	Pro	Ser	Gly	Glu 430	Ala	Pro

Asn Gln Ala Leu Leu Arg Ile Leu Lys Glu Thr Glu Phe Lys Ile 435 440 49321-146.ST25.txt 49321-146.ST25.txt 49321-146.ST25.txt 49321-146.ST25.txt 49321-146.ST25.txt

Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys Gly Leu Trp 450 455 460

Ile Pro Glu Gly Glu Lys Val Lys Ile Pro Val Ala Ile Lys Glu Leu 465 470 475 480

Arg Glu Ala Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu Asp Glu Ala 485 490 495

Tyr Val Met Ala Ser Val Asp Asn Pro His Val Cys Arg Leu Leu Gly 500 505 510

Ile Cys Leu Thr Ser Thr Val Gln Leu Ile Thr Gln Leu Met Pro Phe 515 520 525

Gly Cys Leu Leu Asp Tyr Val Arg Glu His Lys Asp Asn Ile Gly Ser 530 540

Gln Tyr Leu Leu Asn Trp Cys Val Gln Ile Ala Lys Gly Met Asn Tyr 545 550 555 560

Leu Glu Asp Arg Arg Leu Val His Arg Asp Leu Ala Ala Arg Asn Val 565 570 575

Leu Val Lys Thr Pro Gln His Val Lys Ile Thr Asp Phe Gly Leu Ala 580 585 590

Lys Leu Leu Gly Ala Glu Glu Lys Glu Tyr His Ala Glu Gly Gly Lys
595 600 605

Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu His Arg Ile Tyr 610 615 620

Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu 625 630 635 640

Met Thr Phe Gly Ser Lys Pro Tyr Asp Gly Ile Pro Ala Ser Glu Ile 645 650 655

Ser Ser Ile Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro Pro Ile Cys 660 665 670

Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met Ile Asp Ala 675 680 685

49321-146.ST25.txt
Asp Ser Arg Pro Lys Phe Arg Glu Leu Ile Ile Glu Phe Ser Lys Met

690 695 70

Ala Arg Asp Pro Gln Arg Tyr Leu Val Ile Gln Gly Asp Glu Arg Met 705 710 715 720

His Leu Pro Ser Pro Thr Asp Ser Asn Phe Tyr Arg Ala Leu Met Asp 725 730 735

Glu Glu Asp Met Asp Asp Val Val Asp Ala Asp Glu Tyr Leu Ile Pro
740 745 750

Gln Gln Gly Phe Phe Ser Ser Pro Ser Thr Ser Arg Thr Pro Leu Leu 755 760 765

Ser Ser Leu Ser Ala Thr Ser Asn Asn Ser Thr Val Ala Cys Ile Asp 770 775 780

Arg Asn Gly Leu Gln Ser Cys Pro Ile Lys Glu Asp Ser Phe Leu Gln 785 790 795 800

Arg Tyr Ser Ser Asp Pro Thr Gly Ala Leu Thr Glu Asp Ser Ile Asp 805 810 815

Asp Thr Phe Leu Pro Val Pro Glu Tyr Ile Asn Gln Ser Val Pro Lys 820 825 830

Arg Pro Ala Gly Ser Val Gln Asn Pro Val Tyr His Asn Gln Pro Leu 835 840 845

Asn Pro Ala Pro Ser Arg Asp Pro His Tyr Gln Asp Pro His Ser Thr 850 855 860

Ala Val Gly Asn Pro Glu Tyr Leu Asn Thr Val Gln Pro Thr Cys Val 865 870 875 880

Asn Ser Thr Phe Asp Ser Pro Ala His Trp Ala Gln Lys Gly Ser His 885 890 895

Gln Ile Ser Leu Asp Asn Pro Asp Tyr Gln Gln Asp Phe Pro Lys 900 905 910

Glu Ala Lys Pro Asn Gly Ile Phe Lys Gly Ser Thr Ala Glu Asn Ala 915 920 925

Glu Tyr Leu Arg Val Ala Pro Gln Ser Ser Glu Phe Ile Gly Ala 930 935 940

49321-146.3123.080
<210> 9 <211> 4530
<211> 4530 <212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (151)(3918)
<223> HER-2 coding sequence
<pre><400> 9 aattetegag etegtegace ggtegaegag etegagggte gaegageteg agggegegeg 60</pre>
aattetegag etegtegace ggtegacgag etegagggte gacgaggeeg aggggeg
cocggecocc accostegea geaccoegeg ecoegegeee teccageegg gtecageegg 120
agccatgggg ccggagccgc agtgagcacc atg gag ctg gcg gcc ttg tgc cgc 174
Met Glu Leu Ala Ala Leu Cys Arg
1 5
tgg ggg etc etc etc gec etc ttg eec eec gga gec geg age acc caa 222
Trp Gly Leu Leu Ala Leu Leu Pro Pro Gly Ala Ala Ser Thr Gln
10 15 20
gtg tgc acc ggc aca gac atg aag ctg cgg ctc cct gcc agt ccc gag 270
Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser Pro Glu
25 30 35 40
acc cac ctg gac atg ctc cgc cac ctc tac cag ggc tgc cag gtg gtg 318
Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln Val 45 50 55
45
cag gga aac ctg gaa ctc acc tac ctg ccc acc aat gcc agc ctg tcc 366
Gln Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser
60 65 70
ttc ctg cag gat atc cag gag gtg cag ggc tac gtg ctc atc gct cac 414
Phe Leu Gln Asp Ile Gln Glu Val Gln Gly Tyr Val Leu Ile Ala His
75 80 85
aac caa gtg agg cag gtc cca ctg cag agg ctg cgg att gtg cga ggc 462
Asn Gln Val Arg Gln Val Pro Leu Gln Arg Leu Arg Ile Val Arg Gly
90 95 100
acc cag ctc ttt gag gac aac tat gcc ctg gcc gtg cta gac aat gga 510 Thr Gln Leu Phe Glu Asp Asn Tyr Ala Leu Ala Val Leu Asp Asn Gly
105 110 115 120
gac ccg ctg aac aat acc acc cct gtc aca ggg gcc tcc cca gga ggc 558
Asp Pro Leu Asn Asn Thr Thr Pro Val Thr Gly Ala Ser Pro Gly Gly 125 130 135
125 130 135
ctg cgg gag ctg cag ctt cga agc ctc aca gag atc ttg aaa gga ggg 606
Leu Arg Glu Leu Gln Leu Arg Ser Leu Thr Glu Ile Leu Lys Gly Gly
140 145 150
gto ttg ato cag cgg aac coo cag cto tgo tao cag gao acg att ttg 654
Val Leu Ile Gln Arg Asn Pro Gln Leu Cys Tyr Gln Asp Thr Ile Leu
155 160 165
tag and gas ats the sac and and sac sag stg get ste aca stg ata 702
tgg aag gac atc ttc cac aag aac aac cag ctg gct ctc aca ctg ata 702 Trp Lys Asp Ile Phe His Lys Asn Asn Gln Leu Ala Leu Thr Leu Ile
170 175 180

								4932					_ • -			
gac Asp 185	acc Thr	aac Asn	cgc Arg	tct Ser	cgg Arg 190	gcc Ala	Cys	Cac His	Pro	tgt Cys 195	Ser	Pro	Met	Cys	Lys 200	750
ggc Gly	tcc Ser	cgc Arg	tgc Cys	tgg Trp 205	gga Gly	gag Glu	agt Ser	tct Ser	gag Glu 210	gat Asp	tgt Cys	cag Gln	agc Ser	ctg Leu 215	acg Thr	798
cgc Arg	act Thr	gtc Val	tgt Cys 220	gcc Ala	ggt Gly	ggc Gly	tgt Cys	gcc Ala 225	cgc Arg	tgc Cys	aag Lys	gly ggg	cca Pro 230	ctg Leu	ccc Pro	846
act Thr	gac Asp	tgc Cys 235	tgc Cys	cat His	gag Glu	cag Gln	tgt Cys 240	gct Ala	gcc Ala	ggc Gly	tgc Cys	acg Thr 245	ggc Gly	ccc Pro	aag Lys	894
cac His	tct Ser 250	gac Asp	tgc Cys	ctg Leu	gcc Ala	tgc Cys 255	ctc Leu	cac His	ttc Phe	aac Asn	cac His 260	agt Ser	ggc Gly	atc Ile	tgt Cys	942
gag Glu 265	ctg Leu	cac His	tgc Cys	cca Pro	gcc Ala 270	ctg Leu	gtc Val	acc Thr	tac Tyr	aac Asn 275	aca Thr	gac Asp	acg Thr	ttt Phe	gag Glu 280	990
tcc Ser	atg Met	ccc Pro	aat Asn	ccc Pro 285	gag Glu	ggc Gly	cgg Arg	tat Tyr	aca Thr 290	ttc Phe	ggc Gly	gcc Ala	agc Ser	tgt Cys 295	gtg Val	1038
act Thr	gcc Ala	tgt Cys	ccc Pro 300	tac Tyr	aac Asn	tac Tyr	ctt Leu	tct Ser 305	acg Thr	gac Asp	gtg Val	gga Gly	tcc Ser 310	tgc Cys	acc Thr	1086
ctc Leu	gtc Val	tgc Cys 315	ccc Pro	ctg Lėu	cac His	aac Asn	caa Gln 320	gag Glu	gtg Val	aca Thr	gca Ala	gag Glu 325	gat Asp	gga Gly	aca ' Thr	1134
cag Gln	cgg Arg 330	tgt Cys	gag Glu	aag Lys	tgc Cys	agc Ser 335	aag Lys	ccc Pro	tgt Cys	gcc Ala	cga Arg 340	gtg Val	tgc Cys	tat Tyr	ggt Gly	1182
ctg Leu 345	ggc Gly	atg Met	gag Glu	cac His	ttg Leu 350	cga Arg	gag Glu	gtg Val	agg Arg	gca Ala 355	Val	acc Thr	agt Ser	gcc Ala	aat Asn 360	1230
atc Ile	cag Gln	gag Glu	ttt Phe	gct Ala 365	ggc Gly	tgc Cys	aag Lys	aag Lys	atc Ile 370	ttt Phe	ggg	agc Ser	ctg Leu	gca Ala 375	ttt Phe	1278
ctg Leu	ccg Pro	gag Glu	agc Ser 380	ttt Phe	gat Asp	ggg Gly	gac Asp	cca Pro 385	gcc Ala	tcc Ser	aac Asn	act Thr	gcc Ala 390	ccg Pro	ctc Leu	1326
cag Gln	cca Pro	gag Glu 395	cag Gln	ctc Leu	caa Gln	gtg Val	ttt Phe 400	gag Glu	act Thr	ctg Leu	gaa Glu	gag Glu 405	atc Ile	aca Thr	ggt Gly	1374
tac Tyr	cta Leu 410	tac Tyr	atc Ile	tca Ser	gca Ala	tgg Trp 415	ccg Pro	gac Asp	agc Ser	ctg Leu	cct Pro 420	gac Asp	ctc Leu	agc Ser	gtc Val	1422
ttc Phe 425	cag Gln	aac Asn	ctg Leu	caa Gln	gta Val 430	atc Ile	cgg Arg	gga Gly	cga Arg	att Ile 435	ctg Leu	cac His	aat Asn	ggc Gly	gcc Ala 440	1470

								4932	1-14	6.ST	25.t	xt					
tac Tyr	tcg Ser	ctg Leu	acc Thr	ctg Leu 445	caa Gln	ggg Gly	ctg	ggc Gly	atc	agc	tgg	ctg	gjå aaa	ctg Leu 455	cgc Arg		1518
tca Ser	ctg Leu	agg Arg	gaa Glu 460	ctg Leu	ggc Gly	agt Ser	gga Gly	ctg Leu 465	gcc Ala	ctc Leu	atc Ile	cac His	cat His 470	aac Asn	acc Thr		1566
								ccc Pro									1614
ccg Pro	cac His 490	caa Gln	gct Ala	ctg Leu	ctc Leu	cac His 495	act Thr	gcc Ala	aac Asn	cgg Arg	cca Pro 500	gag Glu	gac Asp	gag Glu	tgt Cys		1662
gtg Val 505	ggc Gly	gag Glu	ggc Gly	ctg Leu	gcc Ala 510	tgc Cys	cac His	cag Gln	ctg Leu	tgc Cys 515	gcc Ala	cga Arg	gly ggg	cac His	tgc Cys 520		1710
tgg Trp	ggt Gly	cca Pro	Gly 999	ccc Pro 525	acc Thr	cag Gln	tgt Cys	gtc Val	aac Asn 530	tgc Cys	agc Ser	cag Gln	ttc Phe	ctt Leu 535	cgg Arg		1758
ggc Gly	cag Gln	gag Glu	tgc Cys 540	gtg Val	gag Glu	gaa Glu	tgc Cys	cga Arg 545	gta Val	ctg Leu	cag Gln	GJÅ BBB	ctc Leu 550	ccc Pro	agg Arg		1806
gag Glu	tat Tyr	gtg Val 555	aat Asn	gcc Ala	agg Arg	cac His	tgt Cys 560	ttg Leu	ccg Pro	tgc Cys	cac His	cct Pro 565	gag Glu	tgt Cys	cag Gln		1854 ⁻
ccc Pro	cag Gln 570	aat Asn	ggc Gly	tca Ser	gtg Val	acc Thr 575	tgt Cys	ttt Phe	gga Gly	ccg Pro	gag Glu 580	gct Ala	gac Asp	cag Gln	tgt Cys		1902
gtg Val 585	gcc Ala	tgt Cys	gcc Ala	cac His	tat Tyr 590	aag Lys	gac Asp	cct Pro	ccc Pro	ttc Phe 595	tgc Cys	gtg Val	gcc Ala	cgc Arg	tgc Cys 600		1950
								tcc Ser									1998
cca Pro	gat Asp	gag Glu	gag Glu 620	ggc Gly	gca Ala	tgc Cys	cag Gln	cct Pro 625	tgc Cys	ccc Pro	atc Ile	aac Asn	tgc Cys 630	acc Thr	cac His		2046
tcc Ser	tgt Cys	gtg Val 635	gac Asp	ctg Leu	gat Asp	gac Asp	aag Lys 640	ggc Gly	tgc Cys	ccc Pro	gcc Ala	gag Glu 645	cag Gln	aga Arg	gcc Ala		2094
agc Ser	cct Pro 650	ctg Leu	acg Thr	tcc Ser	atc Ile	gtc Val 655	tct Ser	gcg Ala	gtg Val	gtt Val	ggc Gly 660	att Ile	ctg Leu	ctg Leu	gtc Val		2142
gtg Val 665	gtc Val	ttg Leu	Gly 999	gtg Val	gtc Val 670	ttt Phe	gly aaa	atc Ile	ctc Leu	atc Ile 675	aag Lys	cga Arg	cgg Arg	cag Gln	cag Gln 680	•	2190
aag Lys	atc Ile	cgg Arg	aag Lys	tac Tyr 685	acg Thr	atg Met	cgg Arg	aga Arg	ctg Leu 690	ctg Leu	cag Gln	gaa Glu	acg Thr	gag Glu 695	ctg Leu		2238

								4932								
gtg Val	gag Glu	ccg Pro	ctg Leu 700	aca Thr	cct Pro	agc Ser	gga Gly	gcg Ala 705	atg Met	ccc Pro	aac Asn	cag Gln	gcg Ala 710	cag Gln	atg Met	2286
cgg Arg	atc Ile	ctg Leu 715	aaa Lys	gag Glu	acg Thr	gag Glu	ctg Leu 720	agg Arg	aag Lys	gtg Val	aag Lys	gtg Val 725	ctt Leu	gga Gly	tct Ser	2334
ggc Gly	gct Ala 730	ttt Phe	ggc Gly	aca Thr	gtc Val	tac Tyr 735	aag Lys	ggc Gly	atc Ile	tgg Trp	atc Ile 740	cct Pro	gat Asp	Gly aaa	gag Glu	2382
aat Asn 745	gtg Val	aaa Lys	att Ile	cca Pro	gtg Val 750	gcc Ala	atc Ile	aaa Lys	gtg Val	ttg Leu 755	agg Arg	gaa Glu	aac Asn	aca Thr	tcc Ser 760	2430
					gaa Glu											2478
gtg Val	ggc Gly	tcc Ser	cca Pro 780	tat Tyr	gtc Val	tcc Ser	cgc Arg	ctt Leu 785	ctg Leu	ggc Gly	atc Ile	tgc Cys	ctg Leu 790	aca Thr	tcc Ser	2526
acg Thr	gtg Val	cag Gln 795	ctg Leu	gtg Val	aca Thr	cag Gln	ctt Leu 800	atg Met	ccc Pro	tat Tyr	ggc Gly	tgc Cys 805	ctc Leu	tta Leu	gac Asp	2574
cat His	gtc Val 810	cgg Arg	gaa Glu	aac Asn	cgc Arg	gga Gly 815	cgc Arg	ctg Leu	ggc Gly	tcc Ser	cag Gln 820	gac Asp	ctg Leu	ctg Leu	aac Asn	2622
tgg Trp 825	tgt Cys	atg Met	cag Gln	att Ile	gcc Ala 830	aag Lys	ggg Gly	atg Met	agc Ser	tac Tyr 835	ctg Leu	gag Glu	gat Asp	gtg Val	cgg Arg 840	2670
ctc Leu	gta Val	cac His	agg Arg	gac Asp 845	ttg Leu	gcc Ala	gct Ala	cgg Arg	aac Asn 850	gtg Val	ctg Leu	gtc Val	aag Lys	agt Ser 855	ccc Pro	2718
aac Asn	cat His	gtc Val	aaa Lys 860	att Ile	aca Thr	gac Asp	ttc Phe	ggg Gly 865	ctg Leu	gct Ala	cgg Arg	ctg Leu	ctg Leu 870	gac Asp	att Ile	2766
gac Asp	gag Glu	aca Thr 875	gag Glu	tac Tyr	cat His	gca Ala	gat Asp 880	Gly ggg	ggc Gly	aag Lys	gtg Val	ccc Pro 885	atc Ile	aag Lys	tgg Trp	2814
atg Met	gcg Ala 890	ctg Leu	gag Glu	tcc Ser	att Ile	ctc Leu 895	cgc Arg	cgg Arg	cgg Arg	ttc Phe	acc Thr 900	cac His	cag Gln	agt Ser	gat Asp	2862
gtg Val 905	tgg Trp	agt Ser	tat Tyr	ggt Gly	gtg Val 910	act Thr	gtg Val	tgg Trp	gag Glu	ctg Leu 915	atg Met	act Thr	ttt Phe	ggg Gly	gcc Ala 920	2910
aaa Lys	cct Pro	tac Tyr	gat Asp	ggg Gly 925	atc Ile	cca Pro	gcc Ala	cgg Arg	gag Glu 930	atc Ile	cct Pro	gac Asp	ctg Leu	ctg Leu 935	gaa Glu	2958
aag Lys	ggg gly	gag Glu	cgg Arg 940	ctg Leu	ccc Pro	cag Gln	ccc Pro	ccc Pro 945	atc Ile	tgc Cys	acc Thr	att Ile	gat Asp 950	gtc Val	tac Tyr	3006

atg Met	atc Ile	atg Met 955	gtc Val	aaa Lys	tgt Cys	tgg Trp	atg	att	1-14 gac Asp	tct	ga	a to u Cy	gt c	gg c rg P	ca	aga Arg	3054
				gtg Val								a A					3102
				ațc Ile													3150
				tac Tyr 1005	Arg					ı As					G]		3195
				gct Ala 1020	Glu		tat Tyr			. Pi			cag Gln		Pł		3240
				cct Pro 1035	Ala		g ggc Gly			, G			gtc Val		Hi		3285
				tca Ser 1050	Ser					, G			gac Asp		T		3330
				ccc Pro 1065	Ser		gag Glu			ı Pı			tct Ser		Le		3375
				ggg Gly 1080	Ala					. Pł			ggt Gly		Le		3420
				gcc Ala 1095	Lys					Le			aca Thr		As		3465
				cag Gln 1110						Pı					Le		3510
ccc Pro	tct Ser	gag Glu	act Thr	gat Asp 1125	ggc	tac Tyr	gtt Val	gcc Ala	ccc Pro 113) Le			tgc Cys		Pr		3555
				gtg Val 1140						. Ai			cag Gln		Pr		3600
				ggc Gly 1155						Ar					Al		3645
				gcc Ala 1170						G]					Va		3690
gtc Val	aaa Lys	gac Asp	gtt Val	ttt Phe 1185	gcc Ala	ttt Phe	ggg Gly	ggt	gcc Ala 119	. Va			aac Asn		G1		3735

49321-146.ST25.txt	
tac ttg aca ccc cag gga gga gct gcc cct cag ccc cac cct cct Tyr Leu Thr Pro Gln Gly Gly Ala Ala Pro Gln Pro His Pro Pro	3780
1200 1205 1210	
cet gee tte age cea gee tte gae aac ete tat tae tgg gae cag	3825
Pro Ala Phe Ser Pro Ala Phe Asp Asn Leu Tyr Tyr Trp Asp Gln 1215 1220 1225	
gac cca cca gag cgg ggg gct cca ccc agc acc ttc aaa ggg aca Asp Pro Pro Glu Arg Gly Ala Pro Pro Ser Thr Phe Lys Gly Thr	3870
Asp Pro Pro Glu Arg Gly Ala Pro Pro Ser Thr Phe Lys Gly Thr 1230 1235 1240	
cet acg gea gag aac eea gag tae etg ggt etg gae gtg eea gtg	3915
Pro Thr Ala Glu Asn Pro Glu Tyr Leu Gly Leu Asp Val Pro Val 1245 1250 1255	
tga accagaaggc caagtccgca gaagccctga tgtgtcctca gggagcaggg	3968
aaggeetgae ttetgetgge atcaagaggt gggagggeee teegaceaet teeaggggaa	4028
cctgccatgc caggaacctg tcctaaggaa ccttccttcc tgcttgagtt cccagatggc	4088
tggaaggggt ccagcctcgt tggaagagga acagcactgg ggagtctttg tggattctga	4148
ggccctgccc aatgagactc tagggtccag tggatgccac agcccagctt ggccctttcc	4208
ttccagatcc tgggtactga aagcettagg gaagetggee tgagagggga ageggeeeta	4268
agggagtgtc taagaacaaa agcgacccat tcagagactg tccctgaaac ctagtactgc	4328
cccccatgag gaaggaacag caatggtgtc agtatccagg ctttgtacag agtgcttttc	4388
tgtttagttt ttactttttt tgttttgttt ttttaaagac gaaataaaga cccaggggag	4448
aatgggtgtt gtatggggag gcaagtgtgg ggggtccttc tccacaccca ctttgtccat	4508
ttgcaaatat attttggaaa ac	4530

<210> 10 <211> 1255

<212> PRT

<213> Homo sapiens

<400> 10

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80 Page 34

49321-146.ST25.txt

Gln	Gly	Tyr	Val	Leu 85	Ile	Ala	His	Asn	Gln 90	Val	Arg	Gln	Val	Pro 95	Leu
Gln	Arg	Leu	Arg 100	Ile	Val	Arg	Gly	Thr 105	Gln	Leu	Phe	Glu	Asp 110	Asn	Tyr
Ala	Leu	Ala 115	Val	Leu	Asp	Asn	Gly 120	Asp	Pro	Leu	Asn	Asn 125	Thr	Thr	Pro
Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Íle	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Суз	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Cys
His	Pro	Cys 195	Ser	Pro	Met	Сув	Lys 200	Gly	Ser	Arg	Cys	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	Cys	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Сув
Ala 225	Arg	Cys	Lys	Gly	Pro 230	Leu	Pro	Thr	Asp	Сув 235	Cys	His	Glu	Gln	Cys 240
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Сув	Leu	Ala	Сув 255	Leu
His	Phe	Asn	His 260	Ser	Gly	Ile	Суз	Glu 265	Leu	His	Сув	Pro	Ala 270	Leu	Val
Thr	туr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr	Thr 290	Phe	Gly	Ala	Ser	Cys 295	Val	Thr	Ala	Сув	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Сув	Thr	Leu	Val	Сув 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg	Сув	Glu	Lys	Сув	Ser 335	Lys

Page 35

Pro	Cys	Ala	Arg 340	Val	Cys	Tyr	Gly	Leu 345	Gly	Met	Glu	His	Leu 350	Arg	Glu
Val	Arg	Ala 355	Val	Thr	Ser	Ala	Asn 360	Ile	Gln	Glu	Phe	Ala 365	Gly	Cys	Lys
Lys	Ile 370	Phe	Gly	Ser	Leu	Ala 375	Phe	Leu	Pro	Glu	Ser 380	Phe	Asp	Gly	Asp
Pro 385	Ala	Ser	Asn	Thr	Ala 390	Pro	Leu	Gln	Pro	Glu 395	Gln	Leu	Gln	Val	Phe 400
Glu	Thr	Leu	Glu	Glu 405	Ile	Thr	Gly	Tyr	Leu 410	Tyr	Ile	Ser	Ala	Trp 415	Pro
Asp	Ser	Leu	Pro 420	Asp	Leu	Ser	Val	Phe 425	Gln	Asn	Leu	Gln	Val 430	Ile	Arg
Gly	Arg	Ile 435	Leu	His	Asn	Gly	Ala 440	Tyr	Ser	Leu	Thr	Leu 445	Gln	Gly	Leu
Gly	Ile 450	Ser	Trp	Leu	Gly	Leu 455	Arg	Ser	Leu	Arg	Glu 460	Leu	Gly	Ser	Gly
Leu 465	Ala	Leu	Ile	His	His 470	Asn	Thr	His	Leu	Cys 475	Phe	Val	His	Thr	Val 480
Pro	Trp	Asp	Gln	Leu 485	Phe	Arg	Asn	Pro	His 490	Gln	Ala	Leu	Leu	His 495	Thr
Ala	Asn	Arg	Pro 500	Glu	Asp	Glu	Сув	Val 505	Gly	Glu	Gly	Leu	Ala 510	Сув	His
Gln	Lęu	Cys 515	Ala	Arg	Gly	His	Cys 520	Trp	Gly	Pro	Gly	Pro 525	Thr	Gln	Сув
Val	Asn 530	Cys	Ser	Gln	Phe	Leu 535	Arg	Gly	Gln	Glu	Сув 540	Val	Glu	Glu	Сув
Arg 545	Val	Leu	Gln	Gly	Leu 550	Pro	Arg	Glu	Tyr	Val 555	Asn	Ala	Arg	His	Сув 560
Leu	Pro	Cys	His	Pro 565	Glu	Сув	Gln	Pro	Gln 570	Asn	Gly	Ser	Val	Thr 575	Cys
Phe	Gly	Pro	Glu 580	Ala	Asp	Gln	Cys	Val 585		Cys ge 3		His	Tyr 590	Lys	Asp

Pro	Pro	Phe 595	Cys	Val	Ala	Arg	Cys 600	Pro	Ser	Gly	Val	Lys 605	Pro	Asp	Leu
Ser	Tyr 610	Met	Pro	Ile	Trp	Lys 615	Phe	Pro	Asp	Glu	Glu 620	Gly	Ala	Cys	Gln
Pro 625	Сув	Pro	Ile	Asn	Cys 630	Thr	His	Ser	Сув	Val 635	Asp	Leu	Asp	Asp	Lys 640
Gly	Сув	Pro	Ala	Glu 645	Gln	Arg	Ala	Ser	Pro 650	Leu	Thr	Ser	Ile	Val 655	Ser
Ala	Val	Val	Gly 660	Ile	Leu	Leu	Val	Val 665	Val	Leu	Gly	Val	Val 670	Phe	Gly
Ile	Leu	Ile 675	Lys	Arg	Arg	Gln	Gln 680	Lys	Ile	Arg	Lys	Tyr 685	Thr	Met	Arg
Arg	Leu 690	Leu	Gln	Glu	Thr	Glu 695	Leu	Val	Glu	Pro	Leu 700	Thr	Pro	Ser	Gly
Ala 705	Met	Pro	Asn	Gln	Ala 710	Gln	Met	Arg	Ile	Leu 715	Lys	Ġlu	Thr	Glu	Leu 720
Arg	Lys	Val	Lys	Val 725	Leu	Gly	Ser	Gly	Ala 730	Phe	Gly	Thr	Val	Tyr 735	Lys
Gly	Ile	Trp	Ile 740	Pro	Asp	Gly	Glu	Asn 745	Val	Lys	Ile	Pro	Val 750	Ala	Ile
Lys	Val	Leu 755	Arg	Glu	Asn	Thr	Ser 760	Pro	Lys	Ala	Asn	Lys 765	Glu	Ile	Leu
Asp	Glu 770	Ala	Tyr	Val	Met	Ala 775	Gly	Val	Gly	Ser	Pro 780	Tyr	Val	Ser	Arg
Leu 785	Leu	Gly	Ile	Сув	Leu 790	Thr	Ser	Thr	Val	Gln 795	Leu	Val	Thr	Gln	Leu 800
Met	Pro	Tyr	Gly	Cys 805	Leu	Leu	Asp	His	Val 810	Arg	Glu	Asn	Arg	Gly 815	Arg
Leu	Gly	Ser	Gln 820	Asp	Leu	Leu	Asn	Trp 825	Сув	Met	Gln	Ile	Ala 830	Lys	Gly
Met	ser	Tyr 835	Leu	Glu	Asp	Val	Arg 840	Leu		His ge 3		Asp 845	Leu	Ala	Ala

49321-146.ST25.txt

Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe 850 855 860

Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp 865 870 875 880

Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg 885 890 895

Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val 900 905 910

Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala 915 920 925

Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro 930 935 940

Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met 945 950 955 960

Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe 965 970 975

Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu 980 985 990

Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu 995 1000 1005

Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr 1010 1015 1020

Leu Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly 1025 1030 1035

Ala Gly Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg 1040 1045 1050

Ser Gly Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu 1055 1060 1065

Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser 1070 1075 1080

Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu 1085 1090 1095

Gln	Ser 1100		Pro	Thr	His	Asp 1105	Pro	Ser	Pro	Leu	Gln 1110	Arg	Tyr	Ser	
Glu	Asp 1115	Pro	Thr	Val	Pro	Leu 1120	Pro	Ser	Glu	Thr	Asp 1125	Gly	Tyr	Val	
Ala	Pro 1130	Leu	Thr	Cys	Ser	Pro 1135	Gln	Pro	Glu	Tyr	Val 1140	Asn	Gln	Pro	
Asp	Val 1145	Arg	Pro	Gln	Pro	Pro 1150	Ser	Pro	Arg	Glu	Gly 1155	Pro	Leu	Pro	
Ala	Ala 1160	Arg	Pro	Ala	Gly	Ala 1165	Thr	Leu	Glu	Arg	Ala 1170	Lys	Tḥr	Leu	·
Ser	Pro 1175	Gly	Lys	Asn	Gly	Val 1180	Val	Lys	Asp	Val	Phe 1185	Ala	Phe	Gly	
Gly	Ala 1190	Val	Glu	Asn	Pro	Glu 1195	Tyr	Leu	Thr	Pro	Gln 1200	Gly	Gly	Ala	
Ala	Pro 1205	Gln	Pro	His	Pro	Pro 1210	Pro	Ala	Phe	Ser	Pro 1215	Ala	Phe	Asp	_
Asn	Leu 1220	Tyr	Tyr	Trp	Asp	Gln 1225	Asp	Pro	Pro	Glu	Arg 1230	Gly	Ala	Pro	
Pro	Ser 1235	Thr	Phe	Lys	Gly	Thr 1240	Pro	Thr	Ala	Glu	Asn 1245	Pro	Glu	Tyr	
Leu	Gly 1250	Leu	Asp	Val	Pro	Val 1255						,			
<210 <211 <212 <213	l> 49 2> Di	L 975 VA omo s	sapie	ens											
<220 <221 <222	l> CI	OS L99) .	(42	227)											
<400			acaca	1000	c tco	cctgo	cca t	ccct	cccc	g ga	actcc	ggct	ccgg	gctccga	60
														gttcag	120
gtgg	gctctt	g co	ctcga	atgto	cta	agccta	agg g	gcco	ccgg	gg co	ggact	tgg	ctgg	gctccc	180
ttca	ccct	ct go	ggag	gtc a	atg a	agg go	eg aa		ac go Page		g cag	g gtg	g ctg	g ggc	231

49321-146.ST25.txt Met Arg Ala Asn Asp Ala Leu Gln Val Leu Gly 1 5 10

					Met 1	Arg	Ala	Asn	Asp 5	Ala	Leu	Gln	Val	Leu 10	Gly	
ttg Leu	ctt Leu	ttc Phe	agc Ser 15	ctg Leu	gcc Ala	cgg Arg	ggc Gly	tcc Ser 20	gag Glu	gtg Val	ggc Gly	aac Asn	tct Ser 25	cag Gln	gca Ala	279
gtg Val	tgt Cys	cct Pro 30	Gly 999	act Thr	ctg Leu	aat Asn	ggc Gly 35	ctg Leu	agt Ser	gtg Val	acc Thr	ggc Gly 40	gat Asp	gct Ala	gag Glu	327
aac Asn	caa Gln 45	tac Tyr	cag Gln	aca Thr	ctg Leu	tac Tyr 50	aag Lys	ctc Leu	tac Tyr	gag Glu	agg Arg 55	tgt Cys	gag Glu	gtg Val	gtg Val	375
atg Met 60	ggg Gly	aac Asn	ctt Leu	gag Glu	att Ile 65	gtg Val	ctc Leu	acg Thr	gga Gly	cac His 70	aat Asn	gcc Ala	gac Asp	ctc Leu	tcc Ser 75	423
ttc Phe	ctg Leu	cag Gln	tgg Trp	att Ile 80	cga Arg	gaa Glu	gtg Val	aca Thr	ggc Gly 85	tat Tyr	gtc Val	ctc Leu	gtg Val	gcc Ala 90	atg Met	471
aat Asn	gaa Glu	ttc Phe	tct Ser 95	act Thr	cta Leu	cca Pro	ttg Leu	ccc Pro 100	aac Asn	ctc Leu	cgc Arg	gtg Val	gtg Val 105	cga Arg	Gly 999	519
acc Thr	cag Gln	gtc Val 110	tac Tyr	gat Asp	gly ggg	aag Lys	ttt Phe 115	gcc Ala	atc Ile	ttc Phe	gtc Val	atg Met 120	ttg Leu	aac Asn	tat Tyr	567
aac Asn	acc Thr 125	aac Asn	tcc Ser	agc Ser	cac His	gct Ala 130	ctg Leu	cgc Arg	cag Gln	ctc Leu	cgc Arg 135	ttg Leu	act Thr	cag Gln	ctc Leu	615
acc Thr 140	gag Glu	att Ile	ctg Leu	tca Ser	ggg Gly 145	ggt Gly	gtt Val	tat Tyr	att Ile	gag Glu 150	aag Lys	aac Asn	gat Asp	aag Lys	ctt Leu 155	. 663
tgt Cys	cac His	atg Met	gac Asp	aca Thr 160	att Ile	gac Asp	tgg Trp	agg Arg	gac Asp 165	atc Ile	gtg Val	agg Arg	gac Asp	cga Arg 170	gat Asp	711
gct Ala	gag Glu	ata Ile	gtg Val 175	gtg Val	aag Lys	gac Asp	aat Asn	ggc Gly 180	aga Arg	agc Ser	tgt Cys	ccc Pro	ccc Pro 185	tgt Cys	cat His	759
gag Glu	gtt Val	tgc Cys 190	aag Lys	gly aaa	cga Arg	tgc Cys	tgg Trp 195	ggt Gly	cct Pro	gga Gly	tca Ser	gaa Glu 200	gac Asp	tgc Cys	cag Gln	807
Thr	Leu 205	Thr	Lys	Thr	Ile	Сув 210	Ala	Pro	Gln	Cys	Asn 215	ggt Gly	His	Cys	Phe	855
ggg Gly 220	ccc Pro	aac Asn	ccc Pro	aac Asn	cag Gln 225	tgc Cys	tgc Cys	cat His	gat Asp	gag Glu 230	tgt Cys	gcc Ala	Gly 999	ggc Gly	tgc Cys 235	903
Ser	ĞÎy	Pro	Gln	Asp 240	Thr	Asp	Cys	Phe	Ala 245	Cys	Arg	cac His	Phe	Asn 250	Asp	951
agt	gga	gcc	tgt	gta	cct	cgc	tgt	cca		cct ge 40		gtc	tac	aac	aag	999

Ser	Gly	Ala	Cys 255	Val	Pro	Arg					25.t Leu		Tyr 265	Asn	Ŀÿs	
											aag Lys					1047
											gtg Val 295					1099
											gaa Glu					1143
Gly 999	ctc Leu	aag Lys	atg Met	tgt Cys 320	gag Glu	cct Pro	tgt Cys	ggg Gly	gga Gly 325	cta Leu	tgt Cys	ccc Pro	aaa Lys	gcc Ala 330	tgt Cys	1191
gag Glu	gga Gly	aca Thr	ggc Gly 335	tct Ser	ggg ggg	agc Ser	cgc Arg	ttc Phe 340	cag Gln	act Thr	gtg Val	gac Asp	tcg Ser 345	agc Ser	aac Asn	1239
											ggc Gly					1287
ctg Leu	atc Ile 365	acc Thr	ggc Gly	ctc Leu	aat Asn	gga Gly 370	gac Asp	ccc Pro	tgg Trp	cac His	aag Lys 375	atc Ile	cct Pro	gcc Ala	ctg Leu	1335
gac Asp 380	cca Pro	gag Glu	aag Lys	ctc Leu	aat Asn 385	gtc Val	ttc Phe	cgg Arg	aca Thr	gta Val 390	cgg Arg	gag Glu	atc Ile	aca Thr	ggt Gly 395	1383
tac Tyr	ctg Leu	aac Asn	atc Ile	cag Gln 400	tcc Ser	tgg Trp	ccg Pro	ccc Pro	cac His 405	atg Met	cac His	aac Asn	ttc Phe	agt Ser 410	gtt Val	1431
ttt Phe	tcc Ser	aat Asn	ttg Leu 415	aca Thr	acc Thr	att Ile	gga Gly	ggc Gly 420	aga Arg	agc Ser	ctc Leu	tac Tyr	aac Asn 425	cgg Arg	ggc Gly	1479
ttc Phe	tca Ser	ttg Leu 430	ttg Leu	atc Ile	atg Met	aag Lys	aac Asn 435	ttg Leu	aat Asn	gtc Val	aca Thr	tct Ser 440	ctg Leu	ggc Gly	ttc Phe	1527
											tat Tyr 455					1575
agg Arg 460	cag Gln	ctc Leu	tgc Cys	tac Tyr	cac His 465	cac His	tct Ser	ttg Leu	aac Asn	tgg Trp 470	acc Thr	aag Lys	gtg Val	ctt Leu	cgg Arg 475	1623
ggg Gly	cct Pro	acg Thr	gaa Glu	gag Glu 480	cga Arg	cta Leu	gac Asp	atc Ile	aag Lys 485	cat His	aat Asn	cgg Arg	ccg Pro	cgc Arg 490	aga Arg	1671
gac Asp	tgc Cys	gtg Val	gca Ala 495	gag Glu	ggc Gly	aaa Lys	gtg Val	tgt Cys 500	gac Asp	cca Pro	ctg Leu	tgc Cys	tcc Ser 505	tct Ser	gly ggg	1719
gga	tgc	tgg	ggc	cca	ggc	cct	ggt	cag		ttg ge 41	tcc 1	tgt	cga	aat	tat	1767

								4932	1-14	6.ST	25.t	xt				
Gly	Сув	Trp 510	Gly	Pro	Gly	Pro	Gly 515	Gln	Cys	Leu	Ser	Cys 520	Arg	Asn	Tyr	
agc Ser	cga Arg 525	gga Gly	ggt Gly	gtc Val	tgt Cys	gtg Val 530	acc Thr	cac His	tgc Cys	aac Asn	ttt Phe 535	ctg Leu	aat Asn	ggg Gly	gag Glu	1815
cct Pro 540	cga Arg	gaa Glu	ttt Phe	gcc Ala	cat His 545	gag Glu	gcc Ala	gaa Glu	tgc Cys	ttc Phe 550	tcc Ser	tgc Cys	cac His	ccg Pro	gaa Glu 555	1863
tgc Cys	caa Gln	ccc Pro	atg Met	999 Gly 560	ggc Gly	act Thr	gcc Ala	aca Thr	tgc Cys 565	aat Asn	ggc Gly	tcg Ser	ggc Gly	tct Ser 570	gat Asp	1911
act Thr	tgt Cys	gct Ala	caa Gln 575	tgt Cys	gcc Ala	cat His	ttt Phe	cga Arg 580	gat Asp	ggg Gly	ccc Pro	cac His	tgt Cys 585	gtg Val	agc Ser	1959
					gtc Val											2007
cca Pro	gat Asp 605	gtt Val	cag Gln	aat Asn	gaa Glu	tgt Cys 610	cgg Arg	ccc Pro	tgc Cys	cat His	gag Glu 615	aac Asn	tgc Cys	acc Thr	cag Gln	2055
999 Gly 620	tgt Cys	aaa Lys	gga Gly	cca Pro	gag Glu 625	ctt Leu	caa Gln	gac Asp	tgt Cys	tta Leu 630	gga Gly	caa Gln	aca Thr	ctg Leu	gtg Val 635	2103
ctg Leu	atc Ile	ggc Gly	aaa Lys	acc Thr 640	cat His	ctg Leu	aca Thr	atg Met	gct Ala 645	ttg Leu	aca Thr	gtg Val	ata Ile	gca Ala 650	gga Gly	2151
ttg Leu	gta Val	gtg Val	att Ile 655	ttc Phe	atg Met	atg Met	ctg Leu	ggc Gly 660	ggc	act Thr	ttt Phe	ctc Leu	tac Tyr 665	tgg Trp	cgt Arg	2199
gjå aaa	cgc Arg	cgg Arg 670	att Ile	cag Gln	aat Asn	aaa Lys	agg Arg 675	gct Ala	atg Met	agg Arg	cga Arg	tac Tyr 680	ttg Leu	gaa Glu	cgg Arg	2247
ggt Gly	gag Glu 685	agc Ser	ata Ile	gag Glu	cct Pro	ctg Leu 690	gac Asp	ccc Pro	agt Ser	gag Glu	aag Lys 695	gct Ala	aac Asn	aaa Lys	gtc Val	2295
ttg Leu 700	gcc Ala	aga Arg	atc Ile	ttc Phe	aaa Lys 705	gag Glu	aca Thr	gag Glu	cta Leu	agg Arg 710	aag Lys	ctt Leu	aaa Lys	gtg Val	ctt Leu 715	2343
ggc Gly	tcg Ser	ggt Gly	gtc Val	ttt Phe 720	gga Gly	act Thr	gtg Val	cac His	aaa Lys 725	gga Gly	gtg Val	tgg Trp	atc Ile	cct Pro 730	gag Glu	2391
ggt Gly	gaa Glu	tca Ser	atc Ile 735	aag Lys	att Ile	cca Pro	gtc Val	tgc Cys 740	att Ile	aaa Lys	gtc Val	att Ile	gag Glu 745	gac Asp	aag Lys	2439
agt Ser	gga Gly	cgg Arg 750	cag Gln	agt Ser	ttt Phe	caa Gln	gct Ala 755	gtg Val	aca Thr	gat Asp	cat His	atg Met 760	ctg Leu	gcc Ala	att Ile	2487
ggc	agc	ctg	gac	cat	gcc	cac	att	gta		ctg ge 4:		gga	cta	tgc	cca	2535

40001 146 ST25 tXt	
49321-146.ST25.txt Gly Ser Leu Asp His Ala His Ile Val Arg Leu Ely Leu Cys Pro 765 770 775	
ggg tca tct ctg cag ctt gtc act caa tat ttg cct ctg ggt tct ctg Gly Ser Ser Leu Gln Leu Val Thr Gln Tyr Leu Pro Leu Gly Ser Leu 780 785 790 795	2583
ctg gat cat gtg aga caa cac cgg ggg gca ctg ggg cca cag ctg ctg Leu Asp His Val Arg Gln His Arg Gly Ala Leu Gly Pro Gln Leu Leu 800 805 810	2631
ctc aac tgg gga gta caa att gcc aag gga atg tac tac ctt gag gaa Leu Asn Trp Gly Val Gln Ile Ala Lys Gly Met Tyr Tyr Leu Glu Glu 815 820 825	2679
cat ggt atg gtg cat aga aac ctg gct gcc cga aac gtg cta ctc aag His Gly Met Val His Arg Asn Leu Ala Ala Arg Asn Val Leu Leu Lys 830 835 840	2727
tca ccc agt cag gtt cag gtg gca gat ttt ggt gtg gct gac ctg ctg Ser Pro Ser Gln Val Gln Val Ala Asp Phe Gly Val Ala Asp Leu Leu 845 850 855	2775
cct cct gat gat aag cag ctg cta tac agt gag gcc aag act cca att Pro Pro Asp Asp Lys Gln Leu Leu Tyr Ser Glu Ala Lys Thr Pro Ile 860 865 870 875	2823
aag tgg atg gcc ctt gag agt atc cac ttt ggg aaa tac aca cac cag Lys Trp Met Ala Leu Glu Ser Ile His Phe Gly Lys Tyr Thr His Gln 880 885 890	2871
agt gat gtc tgg agc tat ggt gtg aca gtt tgg gag ttg atg acc ttc Ser Asp Val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe 895 900 905	2919
ggg gca gag ccc tat gca ggg cta cga ttg gct gaa gta cca gac ctg Gly Ala Glu Pro Tyr Ala Gly Leu Arg Leu Ala Glu Val Pro Asp Leu 910 915 920	2967
cta gag aag ggg gag cgg ttg gca cag ccc cag atc tgc aca att gat Leu Glu Lys Gly Glu Arg Leu Ala Gln Pro Gln Ile Cys Thr Ile Asp 925 930 935	3015
gtc tac atg gtg atg gtc aag tgt tgg atg att gat gag aac att cgc Val Tyr Met Val Met Val Lys Cys Trp Met Ile Asp Glu Asn Ile Arg 940 945 950 955	3063
cca acc ttt aaa gaa cta gcc aat gag ttc acc agg atg gcc cga gac Pro Thr Phe Lys Glu Leu Ala Asn Glu Phe Thr Arg Met Ala Arg Asp 960 965 970	3111
cca cca cgg tat ctg gtc ata aag aga gag agt ggg cct gga ata gcc Pro Pro Arg Tyr Leu Val Ile Lys Arg Glu Ser Gly Pro Gly Ile Ala 975 980 985	3159
cct ggg cca gag ccc cat ggt ctg aca aac aag aag cta gag gaa gta Pro Gly Pro Glu Pro His Gly Leu Thr Asn Lys Lys Leu Glu Glu Val 990 995 1000	3207
gag ctg gag cca gaa cta gac cta gac cta gac ttg gaa gca gag Glu Leu Glu Pro Glu Leu Asp Leu Asp Leu Asp Leu Glu Ala Glu 1005 1010 1015	3252
gag gac aac ctg gca acc acc aca ctg ggc tcc gcc ctc agc cta Page 43	3297

Glu	Asp 1020	Asn	Leu	Ala	Thr	Thr 1025	49 Thr	321 - Leu	Gly	ST25 Ser	.txt Ala 1030	Leu	Ser	Leu	•	
cca Pro	gtt Val 1035	gga Gly	aca Thr	ctt Leu	aat Asn	cgg Arg 1040	cca Pro	cgt Arg	ggg Gly	agc Ser	cag Gln 1045	agc Ser	ctt Leu	tta Leu		3342
agt Ser	cca Pro 1050	tca Ser	tct Ser	gga Gly	tac Tyr	atg Met 1055	ccc Pro	atg Met	aac Asn	cag Gln	ggt Gly 1060	aat Asn	ctt Leu	GJA aaa	•	3387
						gca Ala 1070										3432
						cac His 1085										3477
tca Ser	gag Glu 1095	tca Ser	tca Ser	gag Glu	GJA aaa	cat His 1100	gta Val	aca Thr	ggc Gly	tct Ser	gag Glu 1105	gct Ala	gag Glu	ctc Leu		3522
		Lys				tgt Cys 1115										3567
cca Pro	cgg Arg 1125	cca Pro	cgc Arg	gga Gly	gat Asp	agc Ser 1130	gcc Ala	tac Tyr	cat His	tcc Ser	cag Gln 1135	cgc Arg	cac His	agt Ser		3612
						cca Pro 1145										3657
gag Glu	gat Asp 1155	gtc Val	aac Asn	ggt Gly	tat Tyr	gtc Val 1160	atg Met	cca Pro	gat Asp	aca Thr	cac His 1165	ctc Leu	aaa Lys	ggt Gly		3702
	ccc Pro 1170					ggc Gly 1175							ctc Leu			3747
	gtc Val 1185					gaa Glu 1190										3792
	atg Met 1200	aac Asn	cgg Arg	agg Arg	aga Arg	agg Arg 1205	cac His	agt Ser	cca Pro	cct Pro	cat His 1210	ccc Pro	cct Pro	agg Arg		3837
	agt Ser 1215					ctg Leu 1220										3882
	gac Asp 1230					ctg Leu 1235										3927
						ccc Pro 1250					act Thr 1255					3972
gac	tat	gaa	tat	atg	aat	cgg	caa		gat Page		ggt	ggt	cct	999		4017

							40	.221_	146	erra 5	.txt				
Asp	Tyr 1260	Glu	Tyr	Met	Asn	Arg 1265	Gln	Arg	Asp	Gly	Gly 1270	Gly	Pro	Gly	
ggt Gly		tat Tyr	gca Ala	gcc Ala	atg Met	ggg Gly 1280	gcc Ala	tgc Cys	cca Pro	gca Ala	tct Ser 1285	gag Glu	caa Gln	gjå aaa	4062
tat Tyr						ttt Phe 1295	cag Gln	Gly 333	cct Pro	gga Gly	cat His 1300	cag Gln	gcc Ala	ccc Pro	4107
cat His	gtc Val 1305	cat His	tat Tyr	gcc Ala	cgc Arg	cta Leu 1310	aaa Lys	act Thr	cta Leu	cgt Arg	agc Ser 1315	tta Leu	gag Glu	gct Ala	4152
	gac Asp 1320	tct Ser	gcc Ala	ttt Phe	gat Asp	aac Asn 1325	cct Pro	gat Asp	tac Tyr	tgg Trp	cat His 1330	agc Ser	agg Arg		4197
	ccc Pro 1335					cag Gln 1340			taa	ctco	etgeto	ec c1	tgtg	gcact	4247
cago	gagca	at ti	taatg	ggcag	g cta	gtgc	ctt 1	tagag	gggta	ac c	gtette	ctcc	ctat	tccctc	4307
tctc	tccca	ag gi	tccca	agcco	ctt	ttcc	ca g	gtcc	cagao	ca at	tccat	tca	atc	ttggag	4367
gctt	ttaaa	ac at	tttt	gacac	e aaa	attct	ta 1	tggta	atgta	ag co	cagcto	gtgc	act	tcttct	4427
cttt	cccaa	ac co	ccago	gaaag	ggtt	ttcct	ta (ttttg	gtgtg	gc ti	tccca	agtc	ccat	ttcctca	4487
gctt	cttca	ıc aç	ggcad	ctcct	gga	agatat	ga a	aggat	tact	ca ita	ccata	ccc	ttc	ctctcag	4547
gcto	ttgad	ct a	cttgg	gaact	agg	gctctt	at q	gtgtg	gcctt	ct g	ttcc	catc	aga	ctgtcaa	4607
gaag	jaggaa	a g	ggagg	gaaac	c cta	agcaga	agg a	aaagt	tgtaa	at ti	tggti	tat	gact	tcttaac	4667
cccc	tagaa	ia ga	acaga	aagct	taa	aatct	gt 9	gaaga	aaaga	ag gt	tagga	agta	gata	attgatt	4727
acta	itcata	aa ti	cago	cactt	: aac	ctatga	agc (caggo	catca	at a	ctaaa	cttc	acc	tacatta	4787
tctc	actta	ag to	cctt	tatca	a tco	ttaaa	aac a	aatto	ctgtg	ga ca	ataca	tatt	atc	catttt	4847
acac	aaagg	gg aa	agtc	gggca	a tgg	gtggct	ca 1	tgcci	tgtaa	at c	cagca	actt	tgg	gaggctg	4907
aggo	agaag	gg at	ttaco	ctgas	g gca	aggag	gtt 1	tgaga	accag	gc ti	agcca	aaca	tag	taagacc	4967
ccca	itctc														4975

<210> 12

<211> 1342

<212> PRT

<213> Homo sapiens

<400> 12

Met Arg Ala Asn Asp Ala Leu Gln Val Leu Gly Leu Leu Phe Ser Leu 1 5 10 15

Ala Arg Gly Ser Glu Val Gly Asn Ser Gln Ala Val Cys Pro Gly Thr 20 25 30

Leu Asn Gly Leu Ser Val Thr Gly Asp Ala Glu Asn Gln Tyr Gln Thr 35 40 45

Leu Tyr Lys Leu Tyr Glu Arg Cys Glu Val Val Met Gly Asn Leu Glu 50 55 60

Ile Val Leu Thr Gly His Asn Ala Asp Leu Ser Phe Leu Gln Trp Ile 65 70 75 80

Arg Glu Val Thr Gly Tyr Val Leu Val Ala Met Asn Glu Phe Ser Thr 85 90 95

Leu Pro Leu Pro Asn Leu Arg Val Val Arg Gly Thr Gln Val Tyr Asp 100 105 110

Gly Lys Phe Ala Ile Phe Val Met Leu Asn Tyr Asn Thr Asn Ser Ser 115 120 125

His Ala Leu Arg Gln Leu Arg Leu Thr Gln Leu Thr Glu Ile Leu Ser 130 135 140

Gly Gly Val Tyr Ile Glu Lys Asn Asp Lys Leu Cys His Met Asp Thr 145 150 155 160

Ile Asp Trp Arg Asp Ile Val Arg Asp Arg Asp Ala Glu Ile Val Val
165 170 175

Lys Asp Asn Gly Arg Ser Cys Pro Pro Cys His Glu Val Cys Lys Gly
180 185 190

Arg Cys Trp Gly Pro Gly Ser Glu Asp Cys Gln Thr Leu Thr Lys Thr

Ile Cys Ala Pro Gln Cys Asn Gly His Cys Phe Gly Pro Asn Pro Asn 210 215 220

Gln Cys Cys His Asp Glu Cys Ala Gly Gly Cys Ser Gly Pro Gln Asp 225 230 235 240

Thr Asp Cys Phe Ala Cys Arg His Phe Asn Asp Ser Gly Ala Cys Val 245 250 255

Pro Arg Cys Pro Gln Pro Leu Val Tyr Asn Lys Leu Thr Phe Gln Leu 260 265 270

Glu Pro Asn Pro His Thr Lys Tyr Gln Tyr Gly Gly Val Cys Val Ala 275 280 285

49321-146.ST25.txt

Ser Cys Pro His Asn Phe Val Val Asp Gln Thr Ser Cys Val Arg Ala 290 295 300

Cys Pro Pro Asp Lys Met Glu Val Asp Lys Asn Gly Leu Lys Met Cys 305 310 315 320

Glu Pro Cys Gly Gly Leu Cys Pro Lys Ala Cys Glu Gly Thr Gly Ser 325 330 335

Gly Ser Arg Phe Gln Thr Val Asp Ser Ser Asn Ile Asp Gly Phe Val 340 345 350

Asn Cys Thr Lys Ile Leu Gly Asn Leu Asp Phe Leu Ile Thr Gly Leu 355 360 365

Asn Gly Asp Pro Trp His Lys Ile Pro Ala Leu Asp Pro Glu Lys Leu 370 380

Asn Val Phe Arg Thr Val Arg Glu Ile Thr Gly Tyr Leu Asn Ile Gln 385 390 395 400

Ser Trp Pro Pro His Met His Asn Phe Ser Val Phe Ser Asn Leu Thr 405 410 415

Thr Ile Gly Gly Arg Ser Leu Tyr Asn Arg Gly Phe Ser Leu Leu Ile 420 425 430

Met Lys Asn Leu Asn Val Thr Ser Leu Gly Phe Arg Ser Leu Lys Glu 435 440 445

Ile Ser Ala Gly Arg Ile Tyr Ile Ser Ala Asn Arg Gln Leu Cys Tyr 450 455 460

His His Ser Leu Asn Trp Thr Lys Val Leu Arg Gly Pro Thr Glu Glu 465 470 475 480

Arg Leu Asp Ile Lys His Asn Arg Pro Arg Arg Asp Cys Val Ala Glu 485 490 495

Gly Lys Val Cys Asp Pro Leu Cys Ser Ser Gly Gly Cys Trp Gly Pro 500 505 510

Gly Pro Gly Gln Cys Leu Ser Cys Arg Asn Tyr Ser Arg Gly Gly Val

Cys Val Thr His Cys Asn Phe Leu Asn Gly Glu Pro Arg Glu Phe Ala 530 535 540

49321-146.ST25.txt

His Glu 545	Ala	Glu	Cys	Phe 550	Ser	Сув	His	Pro	Glu 555	Cys	Gln	Pro	Met	Gly 560
Gly Thr	Ala	Thr	Cys 565	Asn	Gly	Ser	Gly	Ser 570	Asp	Thr	Сув	Ala	Gln 575	Cys

Ala His Phe Arg Asp Gly Pro His Cys Val Ser Ser Cys Pro His Gly

Val Leu Gly Ala Lys Gly Pro Ile Tyr Lys Tyr Pro Asp Val Gln Asn

Glu Cys Arg Pro Cys His Glu Asn Cys Thr Gln Gly Cys Lys Gly Pro

Glu Leu Gln Asp Cys Leu Gly Gln Thr Leu Val Leu Ile Gly Lys Thr

His Leu Thr Met Ala Leu Thr Val Ile Ala Gly Leu Val Val Ile Phe

Met Met Leu Gly Gly Thr Phe Leu Tyr Trp Arg Gly Arg Arg Ile Gln

Asn Lys Arg Ala Met Arg Arg Tyr Leu Glu Arg Gly Glu Ser Ile Glu

Pro Leu Asp Pro Ser Glu Lys Ala Asn Lys Val Leu Ala Arg Ile Phe

Lys Glu Thr Glu Leu Arg Lys Leu Lys Val Leu Gly Ser Gly Val Phe

Gly Thr Val His Lys Gly Val Trp Ile Pro Glu Gly Glu Ser Ile Lys

Ile Pro Val Cys Ile Lys Val Ile Glu Asp Lys Ser Gly Arg Gln Ser

Phe Gln Ala Val Thr Asp His Met Leu Ala Ile Gly Ser Leu Asp His

Ala His Ile Val Arg Leu Leu Gly Leu Cys Pro Gly Ser Ser Leu Gln

Leu Val Thr Gln Tyr Leu Pro Leu Gly Ser Leu Leu Asp His Val Arg

49321-146.ST25.txt

Gln His Arg Gly Ala Leu Gly Pro Gln Leu Leu Leu Asn Trp Gly Val 805 810 815

Gln Ile Ala Lys Gly Met Tyr Tyr Leu Glu Glu His Gly Met Val His 820 825 830

Arg Asn Leu Ala Ala Arg Asn Val Leu Leu Lys Ser Pro Ser Gln Val 835 840 845

Gln Val Ala Asp Phe Gly Val Ala Asp Leu Leu Pro Pro Asp Asp Lys 850 860

Gln Leu Leu Tyr Ser Glu Ala Lys Thr Pro Ile Lys Trp Met Ala Leu 865 870 875 880

Glu Ser Ile His Phe Gly Lys Tyr Thr His Gln Ser Asp Val Trp Ser 885 890 895

Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ala Glu Pro Tyr 900 905 910

Ala Gly Leu Arg Leu Ala Glu Val Pro Asp Leu Leu Glu Lys Gly Glu 915 920 925

Arg Leu Ala Gln Pro Gln Ile Cys Thr Ile Asp Val Tyr Met Val Met 930 935 940

Val Lys Cys Trp Met Ile Asp Glu Asn Ile Arg Pro Thr Phe Lys Glu 945 950 955 960

Leu Ala Asn Glu Phe Thr Arg Met Ala Arg Asp Pro Pro Arg Tyr Leu 965 970 975

Val Ile Lys Arg Glu Ser Gly Pro Gly Ile Ala Pro Gly Pro Glu Pro 980 985 990

His Gly Leu Thr Asn Lys Lys Leu Glu Glu Val Glu Leu Glu Pro Glu 995 1000 1005

Leu Asp Leu Asp Leu Glu Ala Glu Glu Asp Asn Leu Ala 1010 1015 1020

Thr Thr Leu Gly Ser Ala Leu Ser Leu Pro Val Gly Thr Leu 1025 1030 1035

Asn Arg Pro Arg Gly Ser Gln Ser Leu Leu Ser Pro Ser Ser Gly 1040 1045 1050

Tyr	Met 1055		Met	Asn	Gln	Gly 1060		Leu	Gly	Gly	Ser 1065	Сув	Gln	Glu
Ser	Ala 1070		Ser	Gly	Ser	Ser 1075		Arg	Сув	Pro	Arg 1080		Val	Ser
Leu	His 1085	Pro	Met	Pro	Arg	Gly 1090		Leu	Ala	Ser	Glu 1095		Ser	Glu
Gly	His 1100		Thr	Gly	Ser	Glu 1105		Glu	Leu	Gln	Glu 1110		Val	Ser
Met	Cys 1115	Arg	Ser	Arg	Ser	Arg 1120	Ser	Arg	Ser	Pro	Arg 1125	Pro	Arg	Gly
Asp	Ser 1130	Ala	Tyr	His	Ser	Gln 1135	Arg	His	Ser	Leu	Leu 1140	Thr	Pro	Val
Thr	Pro 1145	Leu	Ser	Pro		Gly 1150	Leu	Glu	Glu	Glu	Asp 1155	Val	Asn	Gly
Tyr	Val 1160	Met	Pro	Asp	Thr	His 1165	Leu	Lys	Gly	Thr	Pro 1170	Ser	Ser	Arg
Glu	Gly 1175	Thr	Leu	Ser	Ser	Val 1180	Gly	Leu	Ser	Ser	Val 1185	Leu	Gly	Thr
Glu	Glu 1190	Glu	Asp	Glu	Asp	Glu 1195	Glu	Tyr	Glu	Tyr	Met 1200	Asn	Arg	Arg
_	Arg 1205					His 1210							Leu	Glu
Glu	Leu 1220	Gly	Tyr	Glu	Tyr	Met 1225	Asp	Val	Gly	Ser	Asp 1230	Leu	Ser	Ala
Ser	Leu 1235	Gly	Ser	Thr	Gln	Ser 1240	Сув	Pro	Leu	His	Pro 1245	Val	Pro	Ile
Met	Pro 1250	Thr	Ala	Gly	Thr	Thr 1255	Pro	Asp	Glu	qaA	Tyr 1260	Glu	Tyr	Met
Asn	Arg 1265	Gln	Arg	Asp	Gly	Gly 1270	Gly	Pro	Gly	Gly	Asp 1275	Tyr	Ala	Ala
Met	Gly 1280	Ala	Cys	Pro	Ala	Ser 1285	Glu	Gln	Gly	Tyr	Glu 1290	Glu	Met	Arg

Ala Phe Gln Gly Pro Gly His Gln Ala Pro His Val His Tyr Ala 1295 1300 1305
Arg Leu Lys Thr Leu Arg Ser Leu Glu Ala Thr Asp Ser Ala Phe 1310 1315 1320
Asp Asn Pro Asp Tyr Trp His Ser Arg Leu Phe Pro Lys Ala Asn 1325 1330 1335
Ala Gln Arg Thr 1340
<210> 13 <211> 4975 <212> DNA <213> Homo sapiens
<220> <221> CDS <222> (199)(4227) <223> HER-3 mutant coding sequence
<220> <221> mutation <222> (1877)(1877) <223> mutation, comprising substitution of "a" instead of "g" at this position
<400> 13 ctctcacaca cacacccc teccetgeca teceteceeg gaeteegget eeggeteega 60
ttgcaatttg caacctccgc tgccgtcgcc gcagcagcca ccaattcgcc agcggttcag 120
gtggctcttg cctcgatgtc ctagcctagg ggcccccggg ccggacttgg ctgggctccc 180
ttcaccctct gcggagtc atg agg gcg aac gac gct ctg cag gtg ctg ggc 231 Met Arg Ala Asn Asp Ala Leu Gln Val Leu Gly 1 5 10
ttg ctt ttc agc ctg gcc cgg ggc tcc gag gtg ggc aac tct cag gca 279 Leu Leu Phe Ser Leu Ala Arg Gly Ser Glu Val Gly Asn Ser Gln Ala 15 20 25
gtg tgt cct ggg act ctg aat ggc ctg agt gtg acc ggc gat gct gag Val Cys Pro Gly Thr Leu Asn Gly Leu Ser Val Thr Gly Asp Ala Glu 30 35 40
aac caa tac cag aca ctg tac aag ctc tac gag agg tgt gag gtg gtg Asn Gln Tyr Gln Thr Leu Tyr Lys Leu Tyr Glu Arg Cys Glu Val Val 45 50 55
atg ggg aac ctt gag att gtg ctc acg gga cac aat gcc gac ctc tcc Met Gly Asn Leu Glu Ile Val Leu Thr Gly His Asn Ala Asp Leu Ser 60 70 75
ttc ctg cag tgg att cga gaa gtg aca ggc tat gtc ctc gtg gcc atg 471

						•										
						cca Pro										519
acc Thr	cag Gln	gtc Val 110	tac Tyr	gat Asp	gjå aaa	aag Lys	ttt Phe 115	gcc Ala	atc Ile	ttc Phe	gtc Val	atg Met 120	ttg Leu	aac Asn	tat Tyr	567
aac Asn	acc Thr 125	aac Asn	tcc Ser	agc Ser	cac His	gct Ala 130	ctg Leu	cgc Arg	cag Gln	ctc Leu	cgc Arg 135	ttg Leu	act Thr	cag Gln	ctc Leu	615
acc Thr 140	gag Glu	att Ile	ctg Leu	tca Ser	999 Gly 145	ggt Gly	gtt Val	tat Tyr	att Ile	gag Glu 150	aag Lys	aac Asn	gat Asp	aag Lys	ctt Leu 155	663
tgt Cys	cac His	atg Met	gac Asp	aca Thr 160	att Ile	gac Asp	tgg Trp	agg Arg	gac Asp 165	atc Ile	gtg Val	agg Arg	gac Asp	cga Arg 170	gat Asp	711
gct Ala	gag Glu	ata Ile	gtg Val 175	gtg Val	aag Lys	gac Asp	aat Asn	ggc Gly 180	aga Arg	agc Ser	tgt Cys	ccc Pro	ccc Pro 185	tgt Cys	cat His	759
gag Glu	gtt Val	tgc Cys 190	aag Lys	Gly 999	cga Arg	tgc Cys	tgg Trp 195	ggt Gly	cct Pro	gga Gly	tca Ser	gaa Glu 200	gac Asp	tgc Cys	cag Gln	807
aca Thr	ttg Leu 205	acc Thr	aag Lys	acc Thr	atc Ile	tgt Cys 210	gct Ala	cct Pro	cag Gln	tgt Cys	aat Asn 215	ggt Gly	cac His	tgc Cys	ttt Phe	855
999 Gly 220	ccc Pro	aac Asn	ccc Pro	aac Asn	cag Gln 225	tgc Cys	tgc Cys	cat His	gat Asp	gag Glu 230	tgt Cys	gcc Ala	éjà aaa	ggc Gly	tgc Cys 235	903
tca Ser	ggc Gly	cct Pro	cag Gln	gac Asp 240	aca Thr	gac Asp	tgc Cys	ttt Phe	gcc Ala 245	tgc Cys	cgg Arg	cac His	ttc Phe	aat Asn 250	gac Asp	951
agt Ser	gga Gly	gcc Ala	tgt Cys 255	gta Val	cct Pro	cgc Arg	tgt Cys	cca Pro 260	cag Gln	cct Pro	ctt Leu	gtc Val	tac Tyr 265	aac Asn	aag Lys	999
cta Leu	act Thr	ttc Phe 270	cag Gln	ctg Leu	gaa Glu	ccc Pro	aat Asn 275	ccc Pro	cac His	acc Thr	aag Lys	tat Tyr 280	cag Gln	tat Tyr	gga Gly	1047
gga Gly	gtt Val 285	tgt Cys	gta Val	gcc Ala	agc Ser	tgt Cys 290	ccc Pro	cat His	aac Asn	ttt Phe	gtg Val 295	gtg Val	gat Asp	caa Gln	aca Thr	1095
tcc Ser 300	tgt Cys	gtc Val	agg Arg	gcc Ala	tgt Cys 305	cct Pro	cct Pro	gac Asp	aag Lys	atg Met 310	gaa Glu	gta Val	gat Asp	aaa Lys	aat Asn 315	1143
gly ggg	ctc Leu	aag Lys	atg Met	tgt Cys 320	gag Glu	cct Pro	tgt Cys	ggg Gly	gga Gly 325	cta Leu	tgt Cys	ccc Pro	aaa Lys	gcc Ala 330	tgt Cys	1191
gag Glu	gga Gly	aca Thr	ggc Gly 335	tct Ser	Gly 333	agc Ser	cgc Arg	ttc Phe 340	Gln	act Thr	Val	gac Asp	tcg Ser 345	agc Ser	aac Asn	1239

Page 52

att Ile	gat Asp	gga Gly 350	ttt Phe	gtg Val	aac Asn	tgc Cys	acc Thr 355	aag Lys	atc Ile	ctg Leu	ggc Gly	aac Asn 360	ctg Leu	gac Asp	ttt Phe	1287
ctg Leu	atc Ile 365	acc Thr	ggc Gly	ctc Leu	aat Asn	gga Gly 370	gac Asp	ccc Pro	tgg Trp	cac His	aag Lys 375	atc Ile	cct Pro	gcc Ala	ctg Leu	1335
gac Asp 380	cca Pro	gag Glu	aag Lys	ctc Leu	aat Asn 385	gtc Val	ttc Phe	cgg Arg	aca Thr	gta Val 390	cgg Arg	gag Glu	atc Ile	aca Thr	ggt Gly 395	1383
tac Tyr	ctg Leu	aac Asn	atc Ile	cag Gln 400	tcc Ser	tgg Trp	ccg Pro	ccc Pro	cac His 405	atg Met	cac His	aac Asn	ttc Phe	agt Ser 410	gtt Val	1431
ttt Phe	tcc Ser	aat Asn	ttg Leu 415	aca Thr	acc Thr	att Ile	gga Gly	ggc Gly 420	aga Arg	agc Ser	ctc Leu	tac Tyr	aac Asn 425	cgg Arg	ggc Gly	1479
ttc Phe	tca Ser	ttg Leu 430	ttg Leu	atc Ile	atg Met	aag Lys	aac Asn 435	ttg Leu	aat Asn	gtc Val	aca Thr	tct Ser 440	ctg Leu	ggc Gly	ttc Phe	1527
cga Arg	tcc Ser 445	ctg Leu	aag Lys	gaa Glu	att Ile	agt Ser 450	gct Ala	Gly aaa	cgt Arg	atc Ile	tat Tyr 455	ata Ile	agt Ser	gcc Ala	aat Asn	1575
					cac His 465											1623
Gly	cct Pro	acg Thr	gaa Glu	gag Glu 480	cga Arg	cta Leu	gac Asp	atc Ile	aag Lys 485	cat His	aat Asn	cgg Arg	ccg Pro	cgc Arg 490	aga Arg	1671
gac Asp	tgc Cys	gtg Val	gca Ala 495	gag Glu	ggc Gly	aaa Lys	gtg Val	tgt Cys 500	gac Asp	cca Pro	ctg Leu	tgc Cys	tcc Ser 505	tct Ser	gjå aaa	1719
gga Gly	tgc Cys	tgg Trp 510	ggc Gly	cca Pro	ggc Gly	cct Pro	ggt Gly 515	cag Gln	tgc Cys	ttg Leu	tcc Ser	tgt Cys 520	cga Arg	aat Asn	tat Tyr	1767
agc Ser	cga Arg 525	gga Gly	ggt Gly	gtc Val	tgt Cys	gtg Val 530	acc Thr	cac His	tgc Cys	aac Asn	ttt Phe 535	ctg Leu	aat Asn	ggg Gly	gag Glu	1815
cct Pro 540	cga Arg	gaa Glu	ttt Phe	gcc Ala	cat His 545	gag Glu	gcc Ala	gaa Glu	tgc Cys	ttc Phe 550	tcc Ser	tgc Cys	cac His	ccg Pro	gaa Glu 555	1863
tgc Cys	caa Gln	ccc Pro	atg Met	gag Glu 560	ggc Gly	act Thr	gcc Ala	aca Thr	tgc Cys 565	aat Asn	ggc Gly	tcg Ser	ggc Gly	tct Ser 570	gat Asp	1911
act Thr	tgt Cys	gct Ala	caa Gln 575	tgt Cys	gcc Ala	cat His	ttt Phe	cga Arg 580	gat Asp	Gly 999	ccc Pro	cac His	tgt Cys 585	gtg Val	agc Ser	1959
agc Ser	tgc Cys	ccc Pro 590	cat His	gga Gly	gtc Val	cta Leu	ggt Gly 595	gcc Ala	aag Lys	ggc Gly	Pro	atc Ile 600	tac Tyr	aag Lys	tac Tyr	2007

Page 53

cca Pro	gat Asp 605	gtt Val	cag Gln	aat Asn	gaa Glu	tgt Cys 610	cgg Arg	ccc Pro	tgc Cys	cat	gag Glu 615	aac Asn	tgc Cys	acc Thr	cag Gln	2055
											gga Gly					2103
ctg Leu	atc Ile	ggc Gly	aaa Lys	acc Thr 640	cat His	ctg Leu	aca Thr	atg Met	gct Ala 645	ttg Leu	aca Thr	gtg Val	ata Ile	gca Ala 650	gga Gly	2151
ttg Leu	gta Val	gtg Val	att Ile 655	ttc Phe	atg Met	atg Met	ctg Leu	ggc Gly 660	ggc Gly	act Thr	ttt Phe	ctc Leu	tac Tyr 665	tgg Trp	cgt Arg	2199
											cga Arg					2247
											aag Lys 695					2295
											aag Lys					2343
											gtg Val				Glu	2391
											gtc Val					2439
											cat His					2487
											ctg Leu 775					2535
											cct Pro					2583
											Gly 999					2631
											tac Tyr					2679
											aac Asn					2727
									Phe		gtg Val 855					2775

Page 54

cct Pro 860	cct Pro	gat Asp	gat Asp	aag Lys	cag Gln 865	ctg Leu	cta Leu	tac Tyr	agt Ser	gag Glu 870	ı A	cc aaq la Lys	g act	c cca	a att D Ile 875	2823
										Gly		aa tad ys Ty			Gln	2871
												ag ttg lu Le		Thi		2919
												aa gta lu Vai 920	Pro			2967
cta Leu	gag Glu 925	aag Lys	Gly ggg	gag Glu	cgg Arg	ttg Leu 930	gca Ala	cag Gln	ccc Pro	cag Glr	ı I	tc tgo le Cys 35	aca Thi	a att	gat Asp	3015
											A	at gaq sp Gli				3063
										Thr		gg ato rg Met			g Asp	3111
												gg cct ly Pro		/ Ile		3159
												ag cta ys Lei 100	ı G		aa gta lu Val	3207
	ctg Leu 1005	Glu) Le					ttg Leu 1015		gca Ala		3252
	gac Asp 1020	Asr	ctg Lev	gca Ala	acc Thr	t acc Thr 102	Tl	ca ci nr Le	tg g eu G	gc t	cc er	gcc Ala 1030		agc Ser		3297
		Gly					J Pi					cag Gln 1045			tta Leu	3342
agt Ser	cca Pro 1050	Ser	tct Ser	gga Gly	tac Tyr	atg Met 105	. P	cc at	tg a et A	ac c sn G	ag Iln	ggt Gly 1060	aat Asn	ctt Leu	Gly ggg	3387
ggg Gly	tct Ser 1065	Сув	cag Gln	gag Glu	tct Ser	gca Ala 107	ı Va	et to	et g er G	gg a ly S	gc er	agt Ser 1075	gaa Glu	cgg Arg	tgc Cys	3432
ccc Pro	cgt Arg 1080	Pro	gto Val	tct Ser	cta Leu	cac His	Pı	ca at	tg c et P	ca c ro A	gg	gga Gly 1090	tgc Cys	ctg Leu	gca Ala	3477
tca Ser	gag Glu 1095	Ser	tca Ser	gag Glu	Gly gag	Cat His	V a	a ac	nr G	gc t ly S ge 5	er	gag Glu 1105	gct Ala	gag Glu	ctc Leu	3522

_		Lys									agg Arg 1120				3567
	cgg Arg 1125										cag Gln 1135				3612
	ctg Leu 1140										999 Gly 1150				3657
	gat Asp 1155												aaa Lys		3702
act Thr	ccc Pro 1170	tcc Ser	tcc Ser	cgg Arg	gaa Glu	ggc Gly 1175	acc Thr	ctt Leu	tct Ser	tca Ser	gtg Val 1180	ggt Gly	ctc Leu	agt Ser	3747
	gtc Val 1185													gaa Glu	3792
	atg Met 1200	aac Asn	cgg Arg	agg Arg	aga Arg	agg Arg 1205	cac His	agt Ser	cca Pro	cct Pro	cat His 1210	ccc Pro	cct Pro	agg Arg	3837
	agt Ser 1215														3882
	gac Asp 1230														3927
	cct Pro 1245												gat Asp		3972
	tat Tyr 1260													gly aaa	4017
ggt Gly	gat Asp 1275	tat Tyr	gca Ala	gcc Ala	atg Met	ggg Gly 1280	gcc Ala	tgc Cys	cca Pro	gca Ala	tct Ser 1285	gag Glu	caa Gln	gly ggg	4062
tat Tyr	gaa Glu 1290	gag Glu	atg Met	aga Arg	gct Ala	ttt Phe 1295	cag Gln	gly aaa	cct Pro	gga Gly	cat His 1300	cag Gln	gcc Ala	ccc Pro	4107
cat His	gtc Val 1305	cat His	tat Tyr	gcc Ala	cgc Arg	cta Leu 1310	aaa Lys	act Thr	cta Leu	cgt Arg	agc Ser 1315	tta Leu	gag Glu	gct Ala	4152
aca Thr	gac Asp 1320	tct Ser	gcc Ala	ttt Phe	gat Asp	aac Asn 1325	cct Pro	gat Asp	tac Tyr	tgg Trp	cat His 1330	agc Ser	agg Arg	ctt Leu	4197
	ccc Pro 1335								taa	ctc	etgete	ec et	gtg	gcact	4247

Page 56

cagggagcat ttaatggcag	ctagtgcctt	tagagggtac	cgtcttctcc	ctattccctc	4307
teteteccag gteccagece	cttttcccca	gtcccagaca	attccattca	atctttggag	4367
gcttttaaac attttgacac	aaaattctta	tggtatgtag	ccagctgtgc	actttcttct	4427
ctttcccaac cccaggaaag	gttttcctta	ttttgtgtgc	tttcccagtc	ccattcctca	4487
gettetteac aggeactect	ggagatatga	aggattactc	tccatatccc	ttcctctcag	4547
gctcttgact acttggaact	aggctcttat	gtgtgccttt	gtttcccatc	agactgtcaa	4607
gaagaggaaa gggaggaaac	ctagcagagg	aaagtgtaat	tttggtttat	gactcttaac	4667
cccctagaaa gacagaagct	taaaatctgt	gaagaaagag	gttaggagta	gatattgatt	4727
actatcataa ttcagcactt	aactatgagc	caggcatcat	actaaacttc	acctacatta	4787
tctcacttag tcctttatca	tccttaaaac	aattctgtga	catacatatt	atctcatttt	4847
acacaaaggg aagtcgggca	tggtggctca	tgcctgtaat	ctcagcactt	tgggaggctg	4907
aggcagaagg attacctgag	gcaaggagtt	tgagaccagc	ttagccaaca	tagtaagacc	4967
cccatctc					4975

<210> 14

<211> 1342

<212> PRT

<213> Homo sapiens

<400> 14

Met Arg Ala Asn Asp Ala Leu Gln Val Leu Gly Leu Leu Phe Ser Leu 1 5 10 15

Ala Arg Gly Ser Glu Val Gly Asn Ser Gln Ala Val Cys Pro Gly Thr 20 25 30

Leu Asn Gly Leu Ser Val Thr Gly Asp Ala Glu Asn Gln Tyr Gln Thr 35 40 45

Leu Tyr Lys Leu Tyr Glu Arg Cys Glu Val Val Met Gly Asn Leu Glu 50 60

Ile Val Leu Thr Gly His Asn Ala Asp Leu Ser Phe Leu Gln Trp Ile 65 70 75 80

Arg Glu Val Thr Gly Tyr Val Leu Val Ala Met Asn Glu Phe Ser Thr 85 90 95

Leu Pro Leu Pro Asn Leu Arg Val Val Arg Gly Thr Gln Val Tyr Asp
100 105 110

Gly Lys Phe Ala Ile Phe Val Met Leu Asn Tyr Asn Thr Asn Ser Ser Page 57

115 125 His Ala Leu Arg Gln Leu Arg Leu Thr Gln Leu Thr Glu Ile Leu Ser 130 135 Gly Gly Val Tyr Ile Glu Lys Asn Asp Lys Leu Cys His Met Asp Thr 145 Ile Asp Trp Arg Asp Ile Val Arg Asp Arg Asp Ala Glu Ile Val Val 165 170 Lys Asp Asn Gly Arg Ser Cys Pro Pro Cys His Glu Val Cys Lys Gly 180 185 Arg Cys Trp Gly Pro Gly Ser Glu Asp Cys Gln Thr Leu Thr Lys Thr 195 Ile Cys Ala Pro Gln Cys Asn Gly His Cys Phe Gly Pro Asn Pro Asn 215 210 Gln Cys Cys His Asp Glu Cys Ala Gly Gly Cys Ser Gly Pro Gln Asp 235 Thr Asp Cys Phe Ala Cys Arg His Phe Asn Asp Ser Gly Ala Cys Val Pro Arg Cys Pro Gln Pro Leu Val Tyr Asn Lys Leu Thr Phe Gln Leu 265 Glu Pro Asn Pro His Thr Lys Tyr Gln Tyr Gly Gly Val Cys Val Ala 280 Ser Cys Pro His Asn Phe Val Val Asp Gln Thr Ser Cys Val Arg Ala 290 295 Cys Pro Pro Asp Lys Met Glu Val Asp Lys Asn Gly Leu Lys Met Cys 310 Glu Pro Cys Gly Gly Leu Cys Pro Lys Ala Cys Glu Gly Thr Gly Ser Gly Ser Arg Phe Gln Thr Val Asp Ser Ser Asn Ile Asp Gly Phe Val 345 Asn Cys Thr Lys Ile Leu Gly Asn Leu Asp Phe Leu Ile Thr Gly Leu 360

Asn Gly Asp Pro Trp His Lys Ile Pro Ala Leu Asp Pro Glu Lys Leu Page 58

		49321-146.ST25.txt
370	375	380

Asn 385	Val	Phe	Arg	Thr	Val 390	Arg	Glu	Ile	Thr	Gly 395		Leu	Asn	Ile	Gln 400
Ser	Trp	Pro	Pro								Phe			Leu 415	Thr

Thr Ile Gly Gly Arg Ser Leu Tyr Asn Arg Gly Phe Ser Leu Leu Ile 420 425

Met Lys Asn Leu Asn Val Thr Ser Leu Gly Phe Arg Ser Leu Lys Glu 435

Ile Ser Ala Gly Arg Ile Tyr Ile Ser Ala Asn Arg Gln Leu Cys Tyr 455

His His Ser Leu Asn Trp Thr Lys Val Leu Arg Gly Pro Thr Glu Glu 470

Arq Leu Asp Ile Lys His Asn Arg Pro Arg Arg Asp Cys Val Ala Glu 485

Gly Lys Val Cys Asp Pro Leu Cys Ser Ser Gly Gly Cys Trp Gly Pro 500

Gly Pro Gly Gln Cys Leu Ser Cys Arg Asn Tyr Ser Arg Gly Gly Val 520 515

Cys Val Thr His Cys Asn Phe Leu Asn Gly Glu Pro Arg Glu Phe Ala 535

His Glu Ala Glu Cys Phe Ser Cys His Pro Glu Cys Gln Pro Met Glu

Gly Thr Ala Thr Cys Asn Gly Ser Gly Ser Asp Thr Cys Ala Gln Cys 565 575

Ala His Phe Arg Asp Gly Pro His Cys Val Ser Ser Cys Pro His Gly 585 590

Val Leu Gly Ala Lys Gly Pro Ile Tyr Lys Tyr Pro Asp Val Gln Asn 595 600 605

Glu Cys Arg Pro Cys His Glu Asn Cys Thr Gln Gly Cys Lys Gly Pro 620 615

Glu Leu Gln Asp Cys Leu Gly Gln Thr Leu Val Leu Ile Gly Lys Thr Page 59

	•	49321-146.ST25.txt	
625	630	635	640

His Leu Thr Met Ala Leu Thr Val Ile Ala Gly Leu Val Val Ile Phe

Met Met Leu Gly Gly Thr Phe Leu Tyr Trp Arg Gly Arg Arg Ile Gln

Asn Lys Arg Ala Met Arg Arg Tyr Leu Glu Arg Gly Glu Ser Ile Glu

Pro Leu Asp Pro Ser Glu Lys Ala Asn Lys Val Leu Ala Arg Ile Phe

Lys Glu Thr Glu Leu Arg Lys Leu Lys Val Leu Gly Ser Gly Val Phe

Gly Thr Val His Lys Gly Val Trp Ile Pro Glu Gly Glu Ser Ile Lys

Ile Pro Val Cys Ile Lys Val Ile Glu Asp Lys Ser Gly Arg Gln Ser

Phe Gln Ala Val Thr Asp His Met Leu Ala Ile Gly Ser Leu Asp His

Ala His Ile Val Arg Leu Leu Gly Leu Cys Pro Gly Ser Ser Leu Gln

Leu Val Thr Gln Tyr Leu Pro Leu Gly Ser Leu Leu Asp His Val Arg

Gln His Arg Gly Ala Leu Gly Pro Gln Leu Leu Leu Asn Trp Gly Val

Gln Ile Ala Lys Gly Met Tyr Tyr Leu Glu Glu His Gly Met Val His

Arq Asn Leu Ala Ala Arg Asn Val Leu Leu Lys Ser Pro Ser Gln Val

Gln Val Ala Asp Phe Gly Val Ala Asp Leu Pro Pro Asp Asp Lys

Gln Leu Leu Tyr Ser Glu Ala Lys Thr Pro Ile Lys Trp Met Ala Leu

Glu Ser Ile His Phe Gly Lys Tyr Thr His Gln Ser Asp Val Trp Ser Page 60

PCT/US2005/035961 WO 2006/042002

	49321-146.ST25.txt	•
885	890	895

Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ala Glu Pro Tyr

Ala Gly Leu Arg Leu Ala Glu Val Pro Asp Leu Leu Glu Lys Gly Glu

Arg Leu Ala Gln Pro Gln Ile Cys Thr Ile Asp Val Tyr Met Val Met

Val Lys Cys Trp Met Ile Asp Glu Asn Ile Arg Pro Thr Phe Lys Glu

Leu Ala Asn Glu Phe Thr Arg Met Ala Arg Asp Pro Pro Arg Tyr Leu

Val Ile Lys Arg Glu Ser Gly Pro Gly Ile Ala Pro Gly Pro Glu Pro

His Gly Leu Thr Asn Lys Lys Leu Glu Glu Val Glu Leu Glu Pro Glu

Leu Asp Leu Asp Leu Glu Ala Glu Glu Asp Asn Leu Ala

Thr Thr Thr Leu Gly Ser Ala Leu Ser Leu Pro Val Gly Thr Leu

Asn Arg Pro Arg Gly Ser Gln Ser Leu Leu Ser Pro Ser Ser Gly

Tyr Met Pro Met Asn Gln Gly Asn Leu Gly Gly Ser Cys Gln Glu

Ser Ala Val Ser Gly Ser Ser Glu Arg Cys Pro Arg Pro Val Ser

Leu His Pro Met Pro Arg Gly Cys Leu Ala Ser Glu Ser Ser Glu

Gly His Val Thr Gly Ser Glu Ala Glu Leu Gln Glu Lys Val Ser

Met Cys Arg Ser Arg Ser Arg Ser Pro Arg Pro Arg Gly

Asp Ser Ala Tyr His Ser Gln Arg His Ser Leu Leu Thr Pro Val Page 61

Thr Pro Leu Ser Pro Pro Gly Leu Glu Glu Glu Asp Val Asn Gly 1145 1150 1155

Tyr Val Met Pro Asp Thr His Leu Lys Gly Thr Pro Ser Ser Arg

Glu Gly Thr Leu Ser Ser Val Gly Leu Ser Ser Val Leu Gly Thr 1175 1180 1185

Glu Glu Glu Asp Glu Asp Glu Glu Tyr Glu Tyr Met Asn Arg Arg 1190 1195

Arg Arg His Ser Pro Pro His Pro Pro Arg Pro Ser Ser Leu Glu 1205 1210 1215

Glu Leu Gly Tyr Glu Tyr Met Asp Val Gly Ser Asp Leu Ser Ala 1225 1220

Ser Leu Gly Ser Thr Gln Ser Cys Pro Leu His Pro Val Pro Ile 1235 1240

Met Pro Thr Ala Gly Thr Thr Pro Asp Glu Asp Tyr Glu Tyr Met 1250 1255 1260

Asn Arg Gln Arg Asp Gly Gly Gly Pro Gly Gly Asp Tyr Ala Ala 1270 1265

Met Gly Ala Cys Pro Ala Ser Glu Gln Gly Tyr Glu Glu Met Arg 1280 1285 1290

Ala Phe Gln Gly Pro Gly His Gln Ala Pro His Val His Tyr Ala 1295 1300 1305

Arg Leu Lys Thr Leu Arg Ser Leu Glu Ala Thr Asp Ser Ala Phe 1310 1315

Asp Asn Pro Asp Tyr Trp His Ser Arg Leu Phe Pro Lys Ala Asn 1325 1330 1335

Ala Gln Arg Thr 1340

<210> 15 <211> 5484 <212> DNA <213> Homo sapiens

<22 <22 <22 <22	1> (2>		(3:		seqı	ience	e										
<40		15 agc a	acgg	gato	cg aq	gacti	tccaa	a aaa							a ctt / Leu		54
												gtc Val 20				:	102
												ctg Leu				:	150
												tac Tyr				:	198
tgt Cys	gag Glu	gtt Val	gtc Val	atg Met 60	ggc Gly	aac Asn	ctg Leu	gag Glu	ata Ile 65	acc Thr	agc Ser	att Ile	gag Glu	cac His 70	aac Asn	:	246
cgg Arg	gac Asp	ctc Leu	tcc Ser 75	ttc Phe	ctg Leu	cgg Arg	tct. Ser	gtt Val 80	cga Arg	gaa Glu	gtc Val	aca Thr	ggc Gly 85	tac Tyr	gtg Val	:	294
tta Leu	gtg Val	gct Ala 90	ctt Leu	aat Asn	cag Gln	ttt Phe	cgt Arg 95	tac Tyr	ctg Leu	cct Pro	ctg Leu	gag Glu 100	aat Asn	tta Leu	cgc Arg	;	342
att Ile	att Ile 105	cgt Arg	Gly ggg	aca Thr	aaa Lys	ctt Leu 110	tat Tyr	gag Glu	gat Asp	cga Arg	tat Tyr 115	gcc Ala	ttg Leu	gca Ala	ata Ile	;	390
ttt Phe 120	tta Leu	aac Asn	tac Tyr	aga Arg	aaa Lys 125	gat Asp	gga Gly	aac Asn	ttt Phe	gga Gly 130	ctt Leu	caa Gln	gaa Glu	ctt Leu	gga Gly 135		438
												tat Tyr				•	486
aac Asn	aaa Lys	ttc Phe	ctt Leu 155	tgt Cys	tat Tyr	gca Ala	gac Asp	acc Thr 160	att Ile	cat His	tgg Trp	caa Gln	gat Asp 165	att Ile	gtt Val	!	534
cgg Arg	aac Asn	cca Pro 170	tgg Trp	cct Pro	tcc Ser	aac Asn	ttg Leu 175	act Thr	ctt Leu	gtg Val	tca Ser	aca Thr 180	aat Asn	ggt Gly	agt Ser	į	582
tca Ser	gga Gly 185	tgt Cys	gga Gly	cgt Arg	tgc Cys	cat His 190	aag Lys	tcc Ser	tgt Cys	act Thr	ggc Gly 195	cgt Arg	tgc Cys	tgg Trp	gga Gly	(630
ccc Pro 200	aca Thr	gaa Glu	aat Asn	cat His	tgc Cys 205	cag Gln	act Thr	ttg Leu	aca Thr	agg Arg 210	acg Thr	gtg Val	tgt Cys	gca Ala	gaa Glu 215	(678
caa	tgt	gac	ggc	aga	tgc	tac	gga	cct		gtc ge 6:		gac	tgc	tgc	cat	•	726

					•			4932	1 14	د د ۳	25 t	xt ·				
Gln	Суѕ	Asp	Gly	Arg 220	Cys	Tyr		Pro					Cys	Сув 230	His	
cga Arg	gaa Glu	tgt Cys	gct Ala 235	gga Gly	ggc Gly	tgc Cys	tca Ser	gga Gly 240	cct Pro	aag Lys	gac Asp	aca Thr	gac Asp 245	tgc Cys	ttt Phe	774
gcc Ala	tgc Cys	atg Met 250	aat Asn	ttc Phe	aat Asn	gac Asp	agt Ser 255	gga Gly	gca Ala	tgt Cys	gtt Val	act Thr 260	cag Gln	tgt Cys	ccc Pro	822
caa Gln	acc Thr 265	ttt Phe	gtc Val	tac Tyr	aat Asn	cca Pro 270	acc Thr	acc Thr	ttt Phe	caa Gln	ctg Leu 275	gag Glu	cac His	aat Asn	ttc Phe	870
aat Asn 280	gca Ala	aag Lys	tac Tyr	aca Thr	tat Tyr 285	gga Gly	gca Ala	ttc Phe	tgt Cys	gtc Val 290	aag Lys	aaa Lys	tgt Cys	cca Pro	cat His 295	918
aac Asn	ttt Phe	gtg Val	gta Val	gat Asp 300	tcc Ser	agt Ser	tct Ser	tgt Cys	gtg Val 305	cgt Arg	gcc Ala	tgc Cys	cct Pro	agt Ser 310	tcc Ser	966
aag Lys	atg Met	gaa Glu	gta Val 315	gaa Glu	gaa Glu	aat Asn	G1 999	att Ile 320	aaa Lys	atg Met	tgt Cys	aàa Lys	cct Pro 325	tgc Cys	act Thr	1014
gac Asp	att Ile	tgc Cys 330	cca Pro	aaa Lys	gct Ala	tgt Cys	gat Asp 335	ggc Gly	att Ile	ggc Gly	aca Thr	gga Gly 340	tca Ser	ttg Leu	atg Met	1062
tca Ser	gct Ala 345	cag Gln	act Thr	gtg Val	gat Asp	tcc Ser 350	agt Ser	aac Asn	att Ile	gac Asp	aaa Lys 355	ttc Phe	ata Ile	aac Asn	tgt Cys	1110
acc Thr 360	aag Lys	atc Ile	aat Asn	Gly 999	aat Asn 365	ttg Leu	atc Ile	ttt Phe	cta Leu	gtc Val 370	act Thr	ggt Gly	att Ile	cat His	ggg Gly 375	1158
gac Asp	cct Pro	tac Tyr	aat Asn	gca Ala 380	att Ile	gaa Glu	gcc Ala	ata Ile	gac Asp 385	cca Pro	gag Glu	aaa Lys	ctg Leu	aac Asn 390	gtc Val	1206
ttt Phe	cgg Arg	aca Thr	gtc Val 395	aga Arg	gag Glu	ata Ile	aca Thr	ggt Gly 400	ttc Phe	ctg Leu	aac Asn	ata Ile	cag Gln 405	tca Ser	tgg Trp	1254
cca Pro	cca Pro	aac Asn 410	atg Met	act Thr	gac Asp	ttc Phe	agt Ser 415	gtt Val	ttt Phe	tct Ser	aac Asn	ctg Leu 420	gtg Val	acc Thr	att Ile	1302
ggt Gly	gga Gly 425	aga Arg	gta Val	ctc Leu	tat Tyr	agt Ser 430	ggc Gly	ctg Leu	tcc Ser	ttg Leu	ctt Leu 435	atc Ile	ctc Leu	aag Lys	caa Gln	1350
cag Gln 440	ggc Gly	atc Ile	acc Thr	tct Ser	cta Leu 445	cag Gln	ttc Phe	cag Gln	tcc Ser	ctg Leu 450	aag Lys	gaa Glu	atc Ile	agc Ser	gca Ala 455	1398
gga Gly	aac Asn	atc Ile	tat Tyr	att Ile 460	act Thr	gac Asp	aac Asn	agc Ser	aac Asn 465	ctg Leu	tgt Cys	tat Tyr	tat Tyr	cat His 470	acc Thr	1446
att	aac	tgg	aca	aca	ctc	ttc	agc	aca		aac ge 6		aga	ata	gta	atc	1494

Glu Pro Leu Thr Pro Ser Gly Thr Ala Pro Asn Gln Ala Gln Leu Arg 700 705 710 att ttg aaa gaa act gag ctg aag agg gta aaa gtc ctt ggc tca ggt Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 720 725																		
Arg Asp Asp Arg Lys Ala Glu Asp Cys Thr Ala Glu Gly Met Val Cys 495 acc cat ctg tgt tcc agt gat ggc tgt tgg gga cct ggg cca gac caa Asp His Leu Cys Ser Ser Asp Gly Cys Trp Gly Pro Gly Pro Asp Gln 505 tgt ctg tgg tgc cgc cgc ttc agt aga gga agg atc tgc ata gag tct cys Leu Ser Cys Arg Arg Phe Ser Arg Gly Arg Tle Cys Ite Glu Ser 520 tgt cac ctc tat gat ggt gaa ttt cgg agg ttt gag aat ggc tcc atc Cys Asp Leu Tyr Asp Gly Glu Phe Arg Glu Phe Glu Asp Gly Ser Ile Sta Sta Sta Cys Asp Leu Tyr Asp Gly Glu Phe Arg Glu Phe Glu Asp Gly Ser Ile 550 tgt gtg gag tgt gac ccc cag tgt gag agg atg gga gat ggc ctc ctc Cys Val Glu Cys Asp Pro Gln Cys Glu Lys Met Glu Asp Gly Leu Leu 5555 aca tgc cat gga ccg ggt cct gac aac tgt aca aag tgc tct cat ttt Thr Cys His Gly Pro Gly Pro Asp Asp Cys Thr Lys Cys Ser His Phe 570 aaa gat ggc cca aac tgt gtg gaa aaa tgt cca gat ggc tta cag ggg Lys Asp Gly Pro Asp Asp Cys Thr Lys Cys Ser His Phe 587 aca ac agt ggc cca aac tgt gtg gaa aaa tgt cca gat ggc tta cag ggg Lys Asp Gly Pro Asp Cys Val Glu Lys Cys Pro Asp Gly Leu Gln Gly 585 gca aac agt ttc att ttc aag tat gct gat cca gat ggc tta cag ggg Lys Asp Gly Pro Asp Cys Tyr Ala Asp Pro Asp Arg Glu Cys His 600 cca tgc cat cca acc tgc acc caa ggg tgc acc acc acc acc ggc cac acc tgc cat cac acc tgc acc acc agg ggg tgc acc acc Asp Cys His Pro Ash Cys Thr Gln Gly Cys Ash Gly Pro Thr Ser His 620 gac tgc att tac tac cca tgg acg ggc cat tcc act tta cca cat acc acc Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 655 gct aga act ccc ctg att gca gct gac gga gta att ggt ggg ctc ttc tatt Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 665 ctg gtc att gtg ggt ctg aca ttt gca gtt aca acc acc acc acc acc acc acc acc a	Ile	Asn	Trp		Thr	Leu	Phe	Ser	Thr						Val	Ile		
Asn His Leu Cys Ser Ser Asp Gly Cys Trp Gly Pro Gly Pro Asp Gln 510 tgt ctg tcg tgt cgc cgc ttc agt aga gga agg atc tgc ata gag tct Cys Leu Ser Cys Arg Arg Phe Ser Arg Gly Arg Ile Cys Ile Glu Ser 520 tgt aac ctc tat gat ggt gga attt cgg gag ttt gag aat ggc tcc atc Cys Asn Leu Tyr Asp Gly Glu Phe Arg Glu Phe Glu Asn Gly Ser Ile 540 tgt gtg gag tgt gac ccc cag tgt gag aag atg gaa gat ggc ctc ctc Cys Val Glu Cys Asp Pro Gln Cys Glu Lys Met Glu Asp Gly Leu Leu 555 aca tgc cat gga ccg ggt cct gac acc tgt aca aag tgc tct cat ttt Thr Cys His Gly Pro Gly Pro Asp Asn Cys Thr Lys Cys Ser His Phe 570 aaa gat ggc cca aac tgt gtg gaa aaa atgt cca gat ggc tta cag ggg Lys Asp Gly Pro Asp Asn Cys Thr Lys Cys Ser His Phe 580 gca aca agt ttc att ttc aag tat gct gat ca gat ggc tta cag ggg Lys Asp Gly Pro Asn Cys Val Glu Lys Cys Pro Asp Arg Gly Leu Gln Gly 585 gca aca agt ttc att ttc aag tat gct gat aca ggt cca gat cgg gag tgc cac Ala Asn Ser Phe Ile Phe Lys Tyr Ala Asp Pro Asp Arg Glu Cys His Glo 615 cca tgc cat cca aac tgc acc caa ggg tgt aac ggt cc act agt cat Pro Cys His Pro Asn Cys Thr Gln Gly Cys Asn Gly Pro Thr Ser His 620 gac tgc att tac tac cca tgg acg ggc cat tcc act tta cca cat cat asp Cys Thr Gly His Ser Thr Leu Pro Gln His 645 gct aga act ccc ctg att gca gct gga gta att ggt ggg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 665 ctg gtc att ggg gt ctg aca ttt gca gt gga gta att ggt ggg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 665 ctg gtc att ggg gt ctg aca ttt gac att ga aga aga aga aga aga aga acc atta act cca gg gg ca att ct ggt gas acc act aca aca gas acc aca cat aca aca aca aca aca aca aca	cgg Arg	gac Asp	Asn	aga Arg	aaa Lys	gct Ala	gaa Glu	Asn	tgt Cys	act Thr	gct Ala	gaa Glu	Gly	atg Met	gtg Val	tgc Cys	נ	1542
Cys Leu Ser Cys Arg Arg Phe Ser Arg Gly Arg Ile Cys Ile Glu Ser 520 tgt aac ctc tat gat ggt gaa ttt cgg gag ttt gag aat ggc tcc ac cys Asn Leu Tyr Asp Gly Glu Phe Arg Glu Phe Glu Asn Gly Ser Ile 540 tgt gtg gag tgt gac ccc cag tgt gag aag atg gaa gat ggc ctc ctc Cys Val Glu Cys Asp Pro Gln Cys Glu Lys Met Glu Asp Gly Leu Leu 560 aca tgc cat gga ccg ggt cct gac aac tgt aca aag tgc tct cat ttt Thr Cys His Gly Pro Gly Pro Asp Asn Cys Thr Lys Cys Ser His Phe 570 aaa gat ggc cca aac tgt gtg gaa aaa tgt cca gat ggc tct Cat Ctc Cys Val Gly Pro Asn Cys Val Glu Lys Cys Pro Asp Gly Leu Gln Gly 585 gca aca agt ttc att ttc aag tat gct gat cca gat ggc tta cag ggg Lys Asp Gly Pro Asn Cys Val Glu Lys Cys Pro Asp Gly Leu Gln Gly 585 gca aca agt ttc att ttc aag tat gct gat cca gat cgg gag tgc cac Ala Asn Ser Phe Ile Phe Lys Tyr Ala Asp Pro Asp Arg Glu Cys His 600 cca tgc cat cca aac tgc acc caa ggg tgt aac ggt ccc act agt cat pro Cys His Pro Asn Cys Thr Gln Gly Cys Asn Gly Pro Thr Ser His 615 gct aga act ccc tag dt gac gcd gac ggc cat tcc act tta cca cat Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 635 gct aga act ccc ctg att gca gct gga gta att ggt ggg gtc ttc tat Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 650 ctg gtc att tgg ggt ctg aca ttt gct gtt tat gtt aga agg agg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 650 ctg gtc att ggg ggt ctg aca ttt gct gtt tat gtt aga agg agg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 660 ctg gtc att ggg ggt ctg aca ttt gct gtt tat gtt aga agg agg ctg lle Lys Lys Lys Arg Ala Leu Arg Arg Phe Leu Glu Thr Glu Leu Arg Arg Phe Leu Glu Thr Glu Leu Arg Arg Phe Leu Glu Thr Glu Leu Arg Arg Phe Leu Glu Thr Pro Ser Gly Thr Ala Pro Asn Gln Ala Gln Leu Arg 700 att ttg gaa aga ggt ttt tat aaa ggt att ttg gta cct gaa gga act ttt gt gaa acc gga ctc act cat ggc tca act ttg gga acc ggt ttt ttg gaa acc gga gta act ttt ggc gt ttt gaa agg acct gct gat gas ggt acct gaa gga gta cct gaa gga gaa act ttg	aac Asn	His	ctg Leu	tgt Cys	tcc Ser	agt Ser	Asp	gly	tgt Cys	tgg Trp	gga Gly	Pro	Gly ggg	cca Pro	gac Asp	caa Gln	1	L590
Cys Asn Leu Tyr Asp Gly Glu Phe Arg Glu Phe Glu Asn Gly Ser Ile 550 tgt gtg gag tgt gac ccc cag tgt gag aag atg gaa gat ggc ctc ctc Cys Val Glu Cys Asp Pro Gln Cys Glu Lys Met Glu Asp Gly Leu Leu 555 aca tgc cat gga ccg ggt cct gac aac tgt aca aag tgc tct cat ttt Thr Cys His Gly Pro Gly Pro Asp Asn Cys Thr Lys Cys Ser His Phe 570 aaa gat ggc cca aac tgt gtg gaa aaa tgt cca gat ggc ttc cag ggg Lys Asp Gly Pro Asn Cys Val Glu Lys Cys Pro Asp Gly Leu Gln Gly 585 gca aac agt ttc att ttc aag tat gct gat cca gat cgg gag tgc Ca Ala Asn Ser Phe Ile Phe Lys Tyr Ala Asp Pro Asp Asp Gly Cys His 6615 cca tgc cat cca aac tgc acc caa ggg tgt aac ggt cca act gg gag tgc Cac Asp Cys His Pro Asn Cys Thr Gln Gly Cys Asp Gly Pro Thr Ser His 620 gac tgc att tac tac cca tgg acg ggc cat tcc act tta cca cac Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 635 gct aga act ccc ctg att gca gct gga gta att ggt ggg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 665 ctg gt att gtg ggt ctg aca tt gct gt tat gt ggg gg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 665 ctg gt att gtg ggt ctg aca tt gct gt tat gt aga aga gag aga gag aga gag aga gag aga aga gag acc aca aac aac	Сув	ctg Leu	tcg Ser	tgt Cys	cgc Arg	Arg	ttc Phe	agt Ser	aga Arg	gga Gly	Arg	atc Ile	tgc Cys	ata Ile	gag Glu	Ser	1	L638
Cys Val Glu Cys Asp Pro Gln Cys Glu Lys Met Glu Asp Gly Leu Leu 5555 aca tgc cat gga ccg ggt cct gac aac tgt aca aag tgc tct cat ttt Thr Cys His Gly Pro Gly Pro Asp Asp Cys Thr Lys Cys Ser His Phe 570 aaa gat ggc cca aac tgt gtg gaa aaa tgt cca gat ggc tta cag ggg Lys Asp Gly Pro Asp Cys Val Glu Lys Cys Pro Asp Gly Leu Gln Gly 585 gca aac agt ttc att ttc aag tat gct gat cca gat cgg gag tgc cat Ala Asp Ser Phe Ile Phe Lys Tyr Ala Asp Pro Asp Arg Glu Cys His 615 cca tgc cat cca aac tgc acc caa ggg tgt aac ggg tgt acc ggt cca act agt cat Pro Cys His Pro Asp Cys Thr Gln Gly Cys Asp Gly Pro Thr Ser His 630 gac tgc att tac tac cca tgg acg ggc cat tcc act tta cca caa cat Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 645 gct aga act ccc tg att gca gct gga gta att ggt ggg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 650 ctg gtc att gtg ggt ctg aca ttt gct gtt tat gtt aga agg aga cg cg gtc atc act agt cat Ala Arg Thr Pro Leu Thr Phe Ala Val Tyr Val Arg Arg Lys Ser 665 atc aaa aag aaa aga gcc ttg aga aga ttc ttg gaa aca ggt cca acc cat Cglu Pro Leu Thr Pro Ser Gly Thr Ala Pro Asp Gln Ala Gln Leu Val Ile Lys Lys Arg Ala Leu Arg Arg Phe Leu Glu Thr Glu Leu Val 685 gaa cca tta act ccc agt ggc aca acc cca acc acc acc acc acc acc	tgt Cys	aac Asn	ctc Leu	tat Tyr	Asp	ggt Gly	gaa Glu	ttt Phe	cgg Arg	Glu	ttt Phe	gag Glu	aat Asn	ggc Gly	Ser	atc Ile	1	1686
Thr Cys His Gly Pro Gly Pro Asp Asp Asp Cys Thr Lys Cys Ser His Phe 570 aaa gat ggc cca aac tgt gt gaa aaa tgt cca gat ggc tta cag ggg Lys Asp Gly Pro Asp Cys Val Glu Lys Cys Pro Asp Gly Leu Gln Gly 590 gca aac agt ttc att ttc aag tat gct gat cca gat cgg gag tgc cac Ala Asp Ser Phe Ile Phe Lys Tyr Ala Asp Pro Asp Asp Glu Cys His 600 cca tgc cat cca aac tgc acc caa ggg tgt aac ggg ccat cat gcc cat ggc cat for Cys His Pro Asp Cys Thr Gln Gly Cys Asp Gly Pro Thr Ser His 630 gac tgc att tac tac cca tgg acg ggc cat tcc act tta cca caa cat Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 645 gct aga act ccc ctg att gga ggt aat ggt ggg gg gta att ggt gg	tgt Cys	gtg Val	gag Glu	Cys	gac Asp	ccc Pro	cag Gln	tgt Cys	Glu	aag Lys	atg Met	gaa Glu	gat Asp	Gly	ctc Leu	ctc Leu	1	1734
See and any ser pro and the late of the la	aca Thr	tgc Cys	His	gga Gly	ccg Pro	ggt Gly	cct Pro	Asp	aac Asn	tgt Cys	aca Thr	aag Lys	Сув	tct Ser	cat His	ttt Phe	1	1782
Ala Asn Ser Phe Ile Phe Lys Tyr Ala Asp Pro Asp Arg Glu Cys His 600 cca tgc cat cca aac tgc acc caa ggg tgt aac ggt ccc act agt cat Pro Cys His Pro Asn Cys Thr Gln Gly Cys Asn Gly Pro Thr Ser His 620 cac tgc act tac cca tgg acg ggc cat tcc act tta cca caa cat Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 635 cac aga act ccc ctg att gca gct gga gta att ggt ggg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 650 ctg gtc att ggg ggt ctg aca ttt gct gtt tat gtt aga agg aag acg Leu Val Ile Val Gly Leu Thr Phe Ala Val Tyr Val Arg Arg Lys Ser 665 cac acc acc acc acc acc gaa acc acc acc	aaa Lys	Asp	ggc Gly	cca Pro	aac Asn	tgt Cys	Val	gaa Glu	aaa Lys	tgt Cys	cca Pro	Asp	ggc Gly	tta Leu	cag Gln	gjå aaa	1	1830
Pro Cys His Pro Asn Cys Thr Gln Gly Cys Asn Gly Pro Thr Ser His 620 gac tgc att tac tac cca tgg acg ggc cat tcc act tta cca caa cat Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 645 gct aga act ccc ctg att gca gct gga gta att ggt ggg ctc ttc att Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 650 ctg gtc att gtg ggt ctg aca ttt gct gt tat gtt aga agg aag agc Leu Val Ile Val Gly Leu Thr Phe Ala Val Tyr Val Arg Arg Lys Ser 665 atc aaa aag aaa aga gcc ttg aga aga ttc ttg gaa aca gag ttg gtg Ile Lys Lys Arg Ala Leu Arg Arg Phe Leu Glu Thr Glu Leu Val 685 gaa cca tta act ccc agt ggc aca gca ccc aat caa gct caa ctt cgt Glu Pro Leu Thr Pro Ser Gly Thr Ala Pro Ass Gln Ala Gln Leu Arg 705 att ttg aaa gaa act gag ctt aag agg gta aaa gtc ctt ggc tca ggt Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 att ttg aaa gaa act gag ctg aag agg gta aaa gtc ctt ggc tca ggt Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 gct ttt gga acg gtt tat aaa ggt att tgg gta ccc gaa gga gaa act	Ăla					Phe					Pro					His	1	L878
Asp Cys Ile Tyr Tyr Pro Trp Thr Gly His Ser Thr Leu Pro Gln His 635 Trp Glo Glo His 645 G45 G45 G45 G45 G45 G45 G45 G45 G45 G	cca Pro	tgc Cys	cat His	cca Pro	Asn	tgc Cys	acc Thr	caa Gln	Gly 999	Cys	aac Asn	ggt Gly	ccc Pro	act Thr	Ser	cat His	, 1	1926
Ala Arg Thr Pro Leu Ile Ala Ala Gly Val Ile Gly Gly Leu Phe Ile 650 ctg gtc att gtg ggt ctg aca ttt gct gtt tat gtt aga agg aag agc Leu Val Ile Val Gly Leu Thr Phe Ala Val Tyr Val Arg Arg Lys Ser 665 atc aaa aag aaa aga gcc ttg aga aga ttc ttg gaa aca gag ttg gtg Ile Lys Lys Lys Arg Ala Leu Arg Arg Phe Leu Glu Thr Glu Leu Val 680 gaa cca tta act ccc agt ggc aca gca ccc aat caa gct caa ctt cgt Glu Pro Leu Thr Pro Ser Gly Thr Ala Pro Asn Gln Ala Gln Leu Arg 700 att ttg aaa gaa act gag ctg aag agg gta aaa gtc ctt ggc tca ggt Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 gct ttt gga acg gtt tat aaa ggt att tgg gta cct gaa gga gaa act	gac Asp	tgc Cys	att Ile	Tyr	tac Tyr	cca Pro	tgg Trp	acg Thr	Gly	cat His	tcc Ser	act Thr	tta Leu	Pro	caa Gln	cat His	1	L974
Leu Val Ile Val Gly Leu Thr Phe Ala Val Tyr Val Arg Arg Lys Ser 675 atc aaa aag aaa aga gcc ttg aga aga ttc ttg gaa aca gag ttg gtg Ile Lys Lys Lys Arg Ala Leu Arg Arg Phe Leu Glu Thr Glu Leu Val 680 gaa cca tta act ccc agt ggc aca gca ccc aat caa gct caa ctt cgt Glu Pro Leu Thr Pro Ser Gly Thr Ala Pro Asn Gln Ala Gln Leu Arg 700 att ttg aaa gaa act gag ctg aag agg gta aaa gtc ctt ggc tca ggt Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 gct ttt gga acg gtt tat aaa ggt att tgg gta cct gaa gga gaa act	gct Ala	aga Arg	Thr	ccc Pro	ctg Leu	att Ile	gca Ala	Ala	gga Gly	gta Val	att Ile	ggt Gly	Gly	ctc Leu	ttc Phe	att Ile	2	2022
Ile Lys Lys Lys Arg Ala Leu Arg Arg Phe Leu Glu Thr Glu Leu Val 680 gaa cca tta act ccc agt ggc aca gca ccc aat caa gct caa ctt cgt Glu Pro Leu Thr Pro Ser Gly Thr Ala Pro Asn Gln Ala Gln Leu Arg 700 att ttg aaa gaa act gag ctg aag agg gta aaa gtc ctt ggc tca ggt Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 gct ttt gga acg gtt tat aaa ggt att tgg gta cct gaa gga gaa act		val					Thr					Val					2	2070
Glu Pro Leu Thr Pro Ser Gly Thr Ala Pro Asn Gln Ala Gln Leu Arg 700 705 710 att ttg aaa gaa act gag ctg aag agg gta aaa gtc ctt ggc tca ggt Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 720 725 gct ttt gga acg gtt tat aaa ggt att tgg gta cct gaa gga gaa act	Ile	aaa Lys	aag Lys	aaa Lys	aga Arg	Ala	ttg Leu	aga Arg	aga Arg	ttc Phe	Leu	gaa Glu	aca Thr	gag Glu	ttg Leu	Val	2	2118
Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly 715 720 725 gct ttt gga acg gtt tat aaa ggt att tgg gta cct gaa gga gaa act					Pro					Pro					Leu	Arg	. 2	2166
				Glu					Arg					Gly			2	214
	gçt	ttt	gga	acg	gtt	tat	aaa	ggt	att				gaa	gga	gaa	act	. 2	2262

	Ala	Phe	Gly 730	Thr	Val	туr	Гуз	Gly 735	4932 Ile	1-14 Trp	6.ST Val	25.t Pro	xt Glu 740	Gly	Glu	Thr	
	gtg Val	aag Lys 745	att Ile	cct Pro	gtg Val	gct Ala	att Ile 750	aag Lys	att Ile	ctt Leu	aat Asn	gag Glu 755	aca Thr	act Thr	ggt Gly	ccc Pro	2310
	aag Lys 760	gca Ala	aat Asn	gtg Val	gag Glu	ttc Phe 765	atg Met	gat Asp	gaa Glu	gct Ala	ctg Leu 770	atc Ile	atg Met	gca Ala	agt Ser	atg Met 775	2358
															cca Pro 790		2406
	atc Ile	cag Gln	ctg Leu	gtt Val 795	act Thr	caa Gln	ctt Leu	atg Met	ccc Pro 800	cat His	ggc Gly	tgc Cys	ctg Leu	ttg Leu 805	gag Glu	tat Tyr	2454
	gtc Val	cac His	gag Glu 810	cac His	aag Lys	gat Asp	aac Asn	att Ile 815	gga Gly	tca Ser	caa Gln	ctg Leu	ctg Leu 820	ctt Leu	aac Asn	tgg Trp	2502
	tgt Cys	gtc Val 825	cag Gln	ata Ile	gct Ala	aag Lys	gga Gly 830	atg Met	atg Met	tac Tyr	ctg Leu	gaa Glu 835	gaa Glu	aga Arg	cga Arg	ctc Leu	2550
	gtt Val 840	cat His	cgg Arg	gat Asp	ttg Leu	gca Ala 845	gcc Ala	cgt Arg	aat Asn	gtc Val	tta Leu 850	gtg Val	aaa Lys	tct Ser	cca Pro	aac Asn 855	2598
															gga Gly 870		2646
•	gaa Glu	aaa Lys	gag Glu	tac Tyr 875	aat Asn	gct Ala	gat Asp	gga Gly	gga Gly 880	aag Lys	atg Met	cca Pro	att Ile	aaa Lys 885	tgg Trp	atg Met	2694
	gct Ala	ctg Leu	gag Glu 890	tgt Cys	ata Ile	cat His	tac Tyr	agg Arg 895	aaa Lys	ttc Phe	acc Thr	cat His	cag Gln 900	agt Ser	gac Asp	gtt Val	2742
															gga Gly		2790
															gag Glu		2838
															tac Tyr 950		2886
	gtc Val	atg Met	gtc Val	aaa Lys 955	tgt Cys	tgg Trp	atg Met	att Ile	gat Asp 960	gct Ala	gac Asp	agt Ser	aga Arg	cct Pro 965	aaa Lys	ttt Phe	2934
	aag Lys	gaa Glu	ctg Leu 970	gct Ala	gct Ala	gag Glu	ttt Phe	tca Ser 975	agg Arg	atg Met	gct Ala	cga Arg	gac Asp 980	cct Pro	caa Gln	aga Arg	2982
	tac	cta	gtt	att	cag	ggt	gat	gat	cgt		aag ge 60		ccc	agt	cca	aat	3030

Tyr Leu Val Ile Gln 985		et Lys Leu Pro Ser 995	Pro Asn
gac agc aag ttc ttt Asp Ser Lys Phe Phe 1000	cag aat ctc ttg Gln Asn Leu Leu 1005	gat gaa gag gat Asp Glu Glu Asp 1010	ttg gaa 3075 Leu Glu
gat atg atg gat gct Asp Met Met Asp Ala 1015	gag gag tac ttg Glu Glu Tyr Leu 1020	gtc cct cag gct Val Pro Gln Ala 1025	ttc aac 3120 Phe Asn
atc cca cct ccc atc Ile Pro Pro Pro Ile 1030	tat act tcc aga Tyr Thr Ser Arg 1035	gca aga att gac Ala Arg Ile Asp 1040	tcg aat 3165 Ser Asn
agg agt gaa att gga Arg Ser Glu Ile Gly 1045	cac agc cct cct His Ser Pro Pro 1050	cct gcc tac acc Pro Ala Tyr Thr 1055	ccc atg 3210 Pro Met
tca gga aac cag ttt Ser Gly Asn Gln Phe 1060	gta tac cga gat Val Tyr Arg Asp 1065		
caa gga gtg tct gtg Gln Gly Val Ser Val 1075	ccc tac aga gcc Pro Tyr Arg Ala 1080		
gaa gct cct gtg gca Glu Ala Pro Val Ala 1090	cag ggt gct act Gln Gly Ala Thr 1095	gct gag att ttt Ala Glu Ile Phe 1100	gat gac 3345 Asp Asp
tcc tgc tgt aat ggc Ser Cys Cys Asn Gly 1105	acc cta cgc aag Thr Leu Arg Lys 1110	cca gtg gca ccc Pro Val Ala Pro 1115	cat gtc 3390 His Val
caa gag gac agt agc Gln Glu Asp Ser Ser 1120	acc cag agg tac Thr Gln Arg Tyr 1125	agt gct gac ccc Ser Ala Asp Pro 1130	acc gtg 3435 Thr Val
ttt gcc cca gaa cgg Phe Ala Pro Glu Arg 1135	agc cca cga gga Ser Pro Arg Gly 1140		
	cga gac aaa ccc Arg Asp Lys Pro 1155		
	cct ttt gtt tct Pro Phe Val Ser 1170		
	aat ccc gaa tat Asn Pro Glu Tyr 1185		
cca ccc aag gcc gag Pro Pro Lys Ala Glu 1195	gat gag tat gtg Asp Glu Tyr Val 1200		
	acc ttg gga aaa Thr Leu Gly Lys 1215		
aac ata ctg tca atg	cca gag aag gcc	aag aaa gcg ttt Page 67	gac aac 3750

Asn Ile Leu Ser Met Pro Glu Lys Ala Lys Lys Ala Phe Asp Asn 1225 1230 1235	
cct gac tac tgg aac cac agc ctg cca cct cgg agc acc ctt cag Pro Asp Tyr Trp Asn His Ser Leu Pro Pro Arg Ser Thr Leu Gln 1240 1245 1250	3795
cac cca gac tac ctg cag gag tac agc aca aaa tat ttt tat aaa His Pro Asp Tyr Leu Gln Glu Tyr Ser Thr Lys Tyr Phe Tyr Lys 1255 1260 1265	3840
cag aat ggg cgg atc cgg cct att gtg gca gag aat cct gaa tac Gln Asn Gly Arg Ile Arg Pro Ile Val Ala Glu Asn Pro Glu Tyr 1270 1275 1280	3885
ctc tct gag ttc tcc ctg aag cca ggc act gtg ctg ccg cct cca Leu Ser Glu Phe Ser Leu Lys Pro Gly Thr Val Leu Pro Pro Pro 1285 1290 1295	3930
cct tac aga cac cgg aat act gtg gtg taa gctcagttgt ggttttttag Pro Tyr Arg His Arg Asn Thr Val Val 1300 1305	3980
gtggagagac acacetgete caattteece accecetet etttetetgg tggtetteet	4040
tctaccccaa ggccagtagt tttgacactt cccagtggaa gatacagaga tgcaatgata	4100
gttatgtgct tacctaactt gaacattaga gggaaagact gaaagagaaa gataggagga	4160
accacaatgt ttcttcattt ctctgcatgg gttggtcagg agaatgaaac agctagagaa	4220
ggaccagaaa atgtaaggca atgctgccta ctatcaaact agctgtcact ttttttcttt	4280
ttettttet ttetttgttt etttetteet ettettttt tttttttt	4340
ggttgaaaca cccatgctat ctgttcctat ctgcaggaac tgatgtgtgc atatttagca	4400
tccctggaaa tcataataaa gtttccatta gaacaaaaga ataacatttt ctataacata	4460
tgatagtgtc tgaaattgag aatccagttt ctttccccag cagtttctgt cctagcaagt	4520
aagaatggcc aactcaactt tcataattta aaaatctcca ttaaagttat aactagtaat	4580
tatgttttca acactttttg gtttttttca ttttgttttg	4640
tttgctcccc tatttttggc tttaatttct aattgcaaag atgtttacat caaagcttct	4700
tcacagaatt taagcaagaa atattttaat atagtgaaat ggccactact ttaagtatac	4760
aatctttaaa ataagaaagg gaggctaata tttttcatgc tatcaaatta tcttcaccct	4820
catcotttac attiticaac attititit ciccataaat gacactacti gataggoogt	4880
tggttgtctg aagagtagaa gggaaactaa gagacagttc tctgtggttc aggaaaacta	4940
ctgatacttt caggggtggc ccaatgaggg aatccattga actggaagaa acacactgga	5000
ttgggtatgt ctacctggca gatactcaga aatgtagttt gcacttaagc tgtaatttta	5060
tttgttcttt ttctgaactc cattttggat tttgaatcaa gcaatatgga agcaaccagc	5120
aaattaacta atttaagtac atttttaaaa aaagagctaa gataaagact gtggaaatgc	5180
caaaccaagc aaattaggaa ccttgcaacg gtatccaggg actatgatga gaggccagca Page 68	5240

49321-146.ST25.txt

cattatcttc	atatgtcacc	tttgctacgc	aaggaaattt	gttcagttcg	tatacttcgt	5300
aagaaggaat	gcgagtaagg	attggcttga	attccatgga	atttctagta	tgagactatt	5360
tätatgaagt	agaaggtaac	tctttgcaca	taaattggta	taataaaaag	aaaaacacaa	5420
acattcaaag	cttagggata	ggtccttggg	tcaaaagttg	taaataaatg	tgaaacatct	5480
tctc						5484

<210> 16

<211> 1308

<212> PRT

<213> Homo sapiens

<400> 16

Met Lys Pro Ala Thr Gly Leu Trp Val Trp Val Ser Leu Leu Val Ala 1 5 10 15

Ala Gly Thr Val Gln Pro Ser Asp Ser Gln Ser Val Cys Ala Gly Thr
20 25 30

Glu Asn Lys Leu Ser Ser Leu Ser Asp Leu Glu Gln Gln Tyr Arg Ala 35 40 45

Leu Arg Lys Tyr Tyr Glu Asn Cys Glu Val Val Met Gly Asn Leu Glu 50 55 60

Ile Thr Ser Ile Glu His Asn Arg Asp Leu Ser Phe Leu Arg Ser Val 65 70 75 80

Arg Glu Val Thr Gly Tyr Val Leu Val Ala Leu Asn Gln Phe Arg Tyr 85 90 95

Leu Pro Leu Glu Asn Leu Arg Ile Ile Arg Gly Thr Lys Leu Tyr Glu 100 105 110

Asp Arg Tyr Ala Leu Ala Ile Phe Leu Asn Tyr Arg Lys Asp Gly Asn 115 120 125

Phe Gly Leu Gln Glu Leu Gly Leu Lys Asn Leu Thr Glu Ile Leu Asn 130 135 140

Gly Gly Val Tyr Val Asp Gln Asn Lys Phe Leu Cys Tyr Ala Asp Thr 145 150 155 160

Ile His Trp Gln Asp Ile Val Arg Asn Pro Trp Pro Ser Asn Leu Thr
165 170 175

Leu Val Ser Thr Asn Gly Ser Ser Gly Cys Gly Arg Cys His Lys Ser Page 69

	49321-146.ST	25.txt
180	185	190

Cys Thr Gly Arg Cys Trp Gly Pro Thr Glu Asn His Cys Gln Thr Leu 200 195

Thr Arg Thr Val Cys Ala Glu Gln Cys Asp Gly Arg Cys Tyr Gly Pro 210 220

Tyr Val Ser Asp Cys Cys His Arg Glu Cys Ala Gly Gly Cys Ser Gly 230

Pro Lys Asp Thr Asp Cys Phe Ala Cys Met Asn Phe Asn Asp Ser Gly 245

Ala Cys Val Thr Gln Cys Pro Gln Thr Phe Val Tyr Asn Pro Thr Thr

Phe Gln Leu Glu His Asn Phe Asn Ala Lys Tyr Thr Tyr Gly Ala Phe 275

Cys Val Lys Lys Cys Pro His Asn Phe Val Val Asp Ser Ser Ser Cys 300 290

Val Arg Ala Cys Pro Ser Ser Lys Met Glu Val Glu Glu Asn Gly Ile

Lys Met Cys Lys Pro Cys Thr Asp Ile Cys Pro Lys Ala Cys Asp Gly

Ile Gly Thr Gly Ser Leu Met Ser Ala Gln Thr Val Asp Ser Ser Asn 350

Ile Asp Lys Phe Ile Asn Cys Thr Lys Ile Asn Gly Asn Leu Ile Phe 360 355

Leu Val Thr Gly Ile His Gly Asp Pro Tyr Asn Ala Ile Glu Ala Ile 370 375

Asp pro Glu Lys Leu Asn Val Phe Arg Thr Val Arg Glu Ile Thr Gly 385 390 395 400

Phe Leu Asn Ile Gln Ser Trp Pro Pro Asn Met Thr Asp Phe Ser Val 405 410

Phe Ser Asn Leu Val Thr Ile Gly Gly Arg Val Leu Tyr Ser Gly Leu 420 425 430

Ser Leu Leu Ile Leu Lys Gln Gln Gly Ile Thr Ser Leu Gln Phe Gln Page 70

49321-146.ST25.txt Ser Leu Lys Glu Ile Ser Ala Gly Asn Ile Tyr Ile Thr Asp Asn Ser Asn Leu Cys Tyr Tyr His Thr Ile Asn Trp Thr Thr Leu Phe Ser Thr Ile Asn Gln Arg Ile Val Ile Arg Asp Asn Arg Lys Ala Glu Asn Cys Thr Ala Glu Gly Met Val Cys Asn His Leu Cys Ser Ser Asp Gly Cys Trp Gly Pro Gly Pro Asp Gln Cys Leu Ser Cys Arg Arg Phe Ser Arg Gly Arg Ile Cys Ile Glu Ser Cys Asn Leu Tyr Asp Gly Glu Phe Arg Glu Phe Glu Asn Gly Ser Ile Cys Val Glu Cys Asp Pro Gln Cys Glu Lys Met Glu Asp Gly Leu Leu Thr Cys His Gly Pro Gly Pro Asp Asn

Cys Thr Lys Cys Ser His Phe Lys Asp Gly Pro Asn Cys Val Glu Lys

Cys Pro Asp Gly Leu Gln Gly Ala Asn Ser Phe Ile Phe Lys Tyr Ala

Asp Pro Asp Arg Glu Cys His Pro Cys His Pro Asn Cys Thr Gln Gly

Cys Asn Gly Pro Thr Ser His Asp Cys Ile Tyr Tyr Pro Trp Thr Gly

His Ser Thr Leu Pro Gln His Ala Arg Thr Pro Leu Ile Ala Ala Gly

Val Ile Gly Gly Leu Phe Ile Leu Val Ile Val Gly Leu Thr Phe Ala

Val Tyr Val Arg Arg Lys Ser Ile Lys Lys Lys Arg Ala Leu Arg Arg

Phe Leu Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly Thr Ala Page 71

		49321-146.ST25.C
690	695	700
690	695	700

Pro Asn Gln Ala Gln Leu Arg Ile Leu Lys Glu Thr Glu Leu Lys Arg Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys Gly Ile Trp Val Pro Glu Gly Glu Thr Val Lys Ile Pro Val Ala Ile Lys Ile Leu Asn Glu Thr Thr Gly Pro Lys Ala Asn Val Glu Phe Met Asp Glu Ala Leu Ile Met Ala Ser Met Asp His Pro His Leu Val Arg Leu Leu Gly Val Cys Leu Ser Pro Thr Ile Gln Leu Val Thr Gln Leu Met Pro His Gly Cys Leu Leu Glu Tyr Val His Glu His Lys Asp Asn Ile Gly Ser Gln Leu Leu Leu Asn Trp Cys Val Gln Ile Ala Lys Gly Met Met Tyr Leu Glu Glu Arg Arg Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe Gly Leu Ala Arg Leu Leu Glu Gly Asp Glu Lys Glu Tyr Asn Ala Asp Gly Gly Lys Met Pro Ile Lys Trp Met Ala Leu Glu Cys Ile His Tyr Arg Lys Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Ile Trp Glu Leu Met Thr Phe Gly Gly Lys Pro Tyr Asp Gly Ile Pro Thr Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro Pro Ile

Cys Thr Ile Asp Val Tyr Met Val Met Val Lys Cys Trp Met Ile Asp Page 72

Ala Asp Ser Arg Pro Lys Phe Lys Glu Leu Ala Ala Glu Phe Ser Arg

Met Ala Arq Asp Pro Gln Arg Tyr Leu Val Ile Gln Gly Asp Asp Arg

Met Lys Leu Pro Ser Pro Asn Asp Ser Lys Phe Phe Gln Asn Leu Leu

Asp Glu Glu Asp Leu Glu Asp Met Met Asp Ala Glu Glu Tyr Leu

Val Pro Gln Ala Phe Asn Ile Pro Pro Pro Ile Tyr Thr Ser Arg

Ala Arg Ile Asp Ser Asn Arg Ser Glu Ile Gly His Ser Pro Pro

Pro Ala Tyr Thr Pro Met Ser Gly Asn Gln Phe Val Tyr Arg Asp

Gly Gly Phe Ala Ala Glu Gln Gly Val Ser Val Pro Tyr Arg Ala

Pro Thr Ser Thr Ile Pro Glu Ala Pro Val Ala Gln Gly Ala Thr

Ala Glu Ile Phe Asp Asp Ser Cys Cys Asn Gly Thr Leu Arg Lys

Pro Val Ala Pro His Val Gln Glu Asp Ser Ser Thr Gln Arg Tyr

Ser Ala Asp Pro Thr Val Phe Ala Pro Glu Arg Ser Pro Arg Gly

Glu Leu Asp Glu Glu Gly Tyr Met Thr Pro Met Arg Asp Lys Pro

Lys Gln Glu Tyr Leu Asn Pro Val Glu Glu Asn Pro Phe Val Ser

Arg Arg Lys Asn Gly Asp Leu Gln Ala Leu Asp Asn Pro Glu Tyr

His Asn Ala Ser Asn Gly Pro Pro Lys Ala Glu Asp Glu Tyr Val Page 73

49321-146.ST25.txt	
1190 1195 1200	
Asn Glu Pro Leu Tyr Leu Asn Thr Phe Ala Asn Thr Leu Gly Lys 1205 1210 1215	
Ala Glu Tyr Leu Lys Asn Asn Ile Leu Ser Met Pro Glu Lys Ala 1220 1225 1230	
Lys Lys Ala Phe Asp Asn Pro Asp Tyr Trp Asn His Ser Leu Pro 1235 1240 1245	
Pro Arg Ser Thr Leu Gln His Pro Asp Tyr Leu Gln Glu Tyr Ser 1250 1255 1260	
Thr Lys Tyr Phe Tyr Lys Gln Asn Gly Arg Ile Arg Pro Ile Val 1265 1270 1275	
Ala Glu Asn Pro Glu Tyr Leu Ser Glu Phe Ser Leu Lys Pro Gly 1280 1285 1290	
Thr Val Leu Pro Pro Pro Tyr Arg His Arg Asn Thr Val Val 1295 1300 1305	,
<210> 17 <211> 4989 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> (46)(4149)	
<223> IGF-1R coding sequence	
<400> 17	
ttttttttttttttttttttttgagaaa gggaatttca tcccaaataa aagga atg aag tct ggc 5' Met Lys Ser Gly 1	7
tcc gga gga ggg tcc ccg acc tcg ctg tgg ggg ctc ctg ttt ctc tcc Ser Gly Gly Gly Ser Pro Thr Ser Leu Trp Gly Leu Leu Phe Leu Ser 5 10 15 20	5
gcc gcg ctc tcg ctc tgg ccg acg agt gga gaa atc tgc ggg cca ggc Ala Ala Leu Ser Leu Trp Pro Thr Ser Gly Glu Ile Cys Gly Pro Gly 25 30 35	3
atc gac atc cgc aac gac tat cag cag ctg aag cgc ctg gag aac tgc Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu Lys Arg Leu Glu Asn Cys 40 45 50	1
acg gtg atc gag ggc tac ctc cac atc ctg ctc atc tcc aag gcc gag Thr Val Ile Glu Gly Tyr Leu His Ile Leu Leu Ile Ser Lys Ala Glu 55 60 65	9
gac tac ege age tac ege tte eee aag ete aeg gte att ace gag tac 29° Page 74	7

								4933	1 - 14	6 CT	:25.t	vt				
Asp	Tyr 70	Arg	Ser	Tyr	Arg	Phe 75	Pro						Thr	Glu	Tyr	
ttg Leu 85	ctg Leu	ctg Leu	ttc Phe	cga Arg	gtg Val 90	gct Ala	ggc Gly	ctc Leu	gag Glu	agc Ser 95	ctc Leu	gga Gly	gac Asp	ctc Leu	ttc Phe 100	345
					atc Ile											393
					atg Met											441
ctg Leu	agg Arg	aac Asn 135	att Ile	act Thr	cgg Arg	999 999	gcc Ala 140	atc Ile	agg Arg	att Ile	gag Glu	aaa Lys 145	aat Asn	gct Ala	gac Asp	489
ctc Leu	tgt Cys 150	tac Tyr	ctc Leu	tcc Ser	act Thr	gtg Val 155	gac Asp	tgg Trp	tcc Ser	ctg Leu	atc Ile 160	ctg Leu	gat Asp	gcg Ala	gtg Val	537
					gtg Val 170											585
ctg Leu	tgt Cys	cca Pro	ggg Gly	acc Thr 185	atg Met	gag Glu	gag Glu	aag Lys	ccg Pro 190	atg Met	tgt Cys	gag Glu	aag Lys	acc Thr 195	acc Thr	633
atc , Ile	aac Asn	aat Asn	gag Glu 200	tac Tyr	aac Asn	tac Tyr	cgc Arg	tgc Cys 205	tgg Trp	acc Thr	aca Thr	aac Asn	cgc Arg 210	tgc Cys	cag Gln	681
aaa Lys	atg Met	tgc Cys 215	cca Pro	agc Ser	acg Thr	tgt Cys	ggg Gly 220	aag Lys	cgg Arg	gcg Ala	tgc Cys	acc Thr 225	gag Glu	aac Asn	aat Asn	729
gag Glu	tgc Cys 230	tgc Cys	cac His	ccc Pro	gag Glu	tgc Cys 235	ctg Leu	ggc Gly	agc Ser	tgc Cys	agc Ser 240	gcg Ala	cct Pro	gac Asp	aac Asn	777
gac Asp 245	acg Thr	gcc Ala	tgt Cys	gta Val	gct Ala 250	tgc Cys	cgc Arg	cac His	tac Tyr	tac Tyr 255	tat Tyr	gcc Ala	ggt Gly	gtc Val	tgt Cys 260	825
gtg Val	cct Pro	gcc Ala	tgc Cys	ccg Pro 265	ccc Pro	aac Asn	acc Thr	tac Tyr	agg Arg 270	ttt Phe	gag Glu	ggc Gly	tgg Trp	cgc Arg 275	tgt Cys	873
gtg Val	gac Asp	cgt Arg	gac Asp 280	ttc Phe	Cys Cys	gcc Ala	aac Asn	atc Ile 285	ctc Leu	agc Ser	gcc Ala	gag Glu	agc Ser 290	agc Ser	gac Asp	921
					atc Ile											969
					aac Asn											1017
gaa	ggt	cct	tgc	ccg	aag	gtc	tgt	gag		gaa ge 7!		aaa	aca	aag	acc	1065

Glu 325	Gly	Pro	Cys	Pro	Lys 330	Val	Cys				:25.t Lys		Thr	Lys	Thr 340	
											gga Gly					1113
aag Lys	ggc Gly	aat Asn	ttg Leu 360	ctc Leu	att Ile	aac Asn	atc Ile	cga Arg 365	cgg Arg	gly aaa	aat Asn	aac Asn	att Ile 370	gct Ala	tca Ser	1161
											gtg Val					1209
aag Lys	atc Ile 390	cgc Arg	cat His	tct Ser	cat His	gcc Ala 395	ttg Leu	gtc Val	tcc Ser	ttg Leu	tcc Ser 400	ttc Phe	cta Leu	aaa Lys	aac Asn	1257
ctt Leu 405	cgc Arg	ctc Leu	atc Ile	cta Leu	gga Gly 410	gag Glu	gag Glu	cag Gln	cta Leu	gaa Glu 415	Gly ggg	aat Asn	tac Tyr	tcc Ser	ttc Phe 420	1305
tac Tyr	gtc Val	ctc Leu	gac Asp	aac Asn 425	cag Gln	aac Asn	ttg Leu	cag Gln	caa Gln 430	ctg Leu	tgg Trp	gac Asp	tgg Trp	gac Asp 435	cac His	1353
cgc Arg	aac Asn	ctg Leu	acc Thr 440	atc Ile	aaa Lys	gca Ala	Gly 999	aaa Lys 445	atg Met	tac Tyr	ttt Phe	gct Ala	ttc Phe 450	aat Asn	ccc Pro	1401
aaa Lys	tta Leu	tgt Cys 455	gtt Val	tcc Ser	gaa Glu	att Ile	tac Tyr 460	cgc Arg	atg Met	gag Glu	gaa Glu	gtg Val 465	acg Thr	ggg ggg	act Thr	1449
aaa Lys	999 Gly 470	cgc Arg	caa Gln	agc Ser	aaa Lys	999 Gly 475	gac Asp	ata Ile	aac Asn	acc Thr	agg Arg 480	aac Asn	aac Asn	Gly 999	gag Glu	1497
aga Arg 485	gcc Ala	tcc Ser	tgt Cys	gaa Glu	agt Ser 490	gac Asp	gtc Val	ctg Leu	cat His	ttc Phe 495	acc Thr	tcc Ser	acc Thr	acc Thr	acg Thr 500	1545
											tac Tyr					1593
											aag Lys					1641
											tgc Cys					1689
											aag Lys 560					1737
ggc Gly 565	atc Ile	tta Leu	cta Leu	cat His	999 Gly 570	ctg Leu	aag Lys	ccc Pro	tgg Trp	act Thr 575	cag Gln	tac Tyr	gcc Ala	gtt Val	tac Tyr 580	1785
gtc	aag	gct	gtg	acc	ctc	acc	atg	gtg		aac ge 76	gac 5	cat _.	atc	cgt	ggg	1833

						•										
Val	Lys	Ala	Val	Thr 585	Leu	Thr					25.t Asp		Ile	Arg 595	Gly	
gcc Ala	aag Lys	agt Ser	gag Glu 600	atc Ile	ttg Leu	tac Tyr	att Ile	cgc Arg 605	acc Thr	aat Asn	gct Ala	tca Ser	gtt Val 610	cct Pro	tcc [.] Ser	1881
att Ile	ccc Pro	ttg Leu 615	gac Asp	gtt Val	ctt Leu	tca Ser	gca Ala 620	tcg Ser	aac Asn	tcc Ser	tct Ser	tct Ser 625	cag Gln	tta Leu	atc Ile	1929
gtg Val	aag Lys 630	tgg Trp	aac Asn	cct Pro	ccc Pro	tct Ser 635	ctg Leu	ccc Pro	aac Asn	ggc Gly	aac Asn 640	ctg Leu	agt Ser	tac Tyr	tac Tyr	1977
att Ile 645	gtg Val	cgc Arg	tgg Trp	cag Gln	cgg Arg 650	cag Gln	cct Pro	cag Gln	gac Asp	ggc Gly 655	tac Tyr	ctt Leu	tac Tyr	cgg Arg	cac His 660	2025
aat Asn	tac Tyr	tgc Cys	tcc Ser	aaa Lys 665	gac Asp	aaa Lys	atc Ile	ccc Pro	atc Ile 670	agg Arg	aag Lys	tat Tyr	gcc Ala	gac Asp 675	ggc Gly	2073
acc Thr	atc Ile	gac Asp	att Ile 680	gag Glu	gag Glu	gtc Val	aca Thr	gag Glu 685	aac Asn	ccc Pro	aag Lys	act Thr	gag Glu 690	gtg Val	tgt Cys	2121
ggt Gly	Gly 999	gag Glu 695	aaa Lys	Gly ggg	cct Pro	tgc Cys	tgc Cys 700	gcc Ala	tgc Cys	ccc Pro	aaa Lys	act Thr 705	gaa Glu	gcc Ala	gag Glu	2169
aag Lys	cag Gln 710	gcc Ala	gag Glu	aag Lys	gag Glu	gag Glu 715	gct Ala	gaa Glu	tac Tyr	cgc Arg	aaa Lys 720	gtc Val	ttt Phe	gag Glu	aat Asn	2217
ttc Phe 725	ctg Leu	cac His	aac Asn	tcc Ser	atc Ile 730	ttc Phe	gtg Val	ccc Pro	aga Arg	cct Pro 735	gaa Glu	agg Arg	aag Lys	cgg Arg	aga Arg 740	2265
gat Asp	gtc Val	atg Met	caa Gln	gtg Val 745	gcc Ala	aac Asn	acc Thr	acc Thr	atg Met 750	tcc Ser	agc Ser	cga Arg	agc Ser	agg Arg 755	aac Asn	2313
acc Thr	acg Thr	gcc Ala	gca Ala 760	gac Asp	acc Thr	tac Tyr	aac Asn	atc Ile 765	acc Thr	gac Asp	ccg Pro	gaa Glu	gag Glu 770	ctg Leu	gag Glu	2361
aca Thr	gag Glu	tac Tyr 775	cct Pro	ttc Phe	ttt Phe	gag Glu	agc Ser 780	aga Arg	gtg Val	gat Asp	aac Asn	aag Lys 785	gag Glu	aga Arg	act Thr	2409
gtc Val	att Ile 790	tct Ser	aac Asn	ctt Leu	cgg Arg	cct Pro 795	ttc Phe	aca Thr	ttg Leu	tac Tyr	cgc Arg 800	atc Ile	gat Asp	atc Ile	cac His	2457
agc Ser 805	tgc Cys	aac Asn	cac His	gag Glu	gct Ala 810	gag Glu	aag Lys	ctg Leu	ggc Gly	tgc Cys 815	agc Ser	gcc Ala	tcc Ser	aac Asn	ttc Phe 820	2505
gtc Val	ttt Phe	gca Ala	agg Arg	act Thr 825	atg Met	ccc Pro	gca Ala	gaa Glu	gga Gly 830	gca Ala	gat Asp	gac Asp	att Ile	cct Pro 835	ggg Gly	2553
cca	gtg	acc	tgg	gag	cca	agg	cct	gaa		tcc ge 7		ttt	tta	aag	tgg	2601

Pro Val 7	Thr Trp 840	Glu Pro <i>F</i>	Arg Pro		146.ST2 n Ser l	le Phe L	eu Lys 50	Trp	
ccg gaa d Pro Glu I									2649
tac gga t Tyr Gly 9 870		Val Glu A			u Cys V				2697
tac agg a Tyr Arg I 885									2745
tac aca g Tyr Thr <i>I</i>	gcc cgg Ala Arg	att cag g Ile Gln A 905	gcc aca Ala Thr	tct ct Ser Le 91	u Ser G	ggg aat g Gly Asn G	gg tcg ly Ser 915	tgg Trp	2793
aca gat o			Tyr Val			Thr Gly T			2841
ttc atc o	cat ctg His Leu 935	atc atc o	gct ctg Ala Leu 940	ccc gt Pro Va	c gct g l Ala V	gtc ctg t Val Leu L 945	tg atc eu Ile	gtg Val	2889
gga ggg t Gly Gly I 950		Ile Met I			e His A				2937
agc agg o Ser Arg I 965	ctg ggg Leu Gly	aat gga g Asn Gly V 970	gtg ctg Val Leu	tat gc Tyr Al	c tct g a Ser V 975	gtg aac c /al Asn P	cg gag ro Glu	tac Tyr 980	2985
ttc agc g	Ala Ala				p Glu 7				3033
gag aag a Glu Lys 1	atc acc [le Thr 1000	Met Ser	cgg gaa Arg Glu	ctt Leu 1005	ggg cag Gly Glr	g ggg tcg n Gly Ser	ttt q Phe 0	31 y 999	3078
atg gtc t Met Val 1	at gaa Tyr Glu 1015	Gly Val	gcc aag Ala Lys	ggt Gly 1020	gtg gtg Val Val	g aaa gat l Lys Asp	gaa d Glu 1 1025	cct Pro	3123
gaa acc a Glu Thr A		Ala Ile						atg Met	3168
cgt gag a Arg Glu A		Glu Phe						gag Glu	3213
ttc aat t Phe Asn C		His Val						caa Gln	3258
ggc cag c Gly Gln F		Leu Val						gat Asp	3303
ctc aaa a	igt tat	ctc cgg	tct ctg		cca gaa age 78	a atg gag	aat a	ıat	3348

Leu	Lys	Ser	Tyr 1090	Leu	Arg	Ser		9321 Arg 1095	Pro				Asn 1100	Asn	
								agc Ser 1110	Lys	atg Met			atg Met 1115	gcc Ala	3393
			gca Ala 1120	gac Asp	ggc Gly	atg Met	gca Ala	tac Tyr 1125	Leu	aac Asn	gcc Ala	aat Asn	aag Lys 1130	ttc Phe	3438
_		_						aat Asn 1140	Сув					gat Asp	3483
		_				_		ggt Gly 1155	Met				atc Ile 1160	tat Tyr	3528
			tat Tyr 1165						Lys					gtg Val	3573
cgc Arg	tgg Trp	atg Met	tct Ser 1180	cct Pro	gag Glu	tcc Ser	ctc Leu	aag Lys 1185	Asp	gga Gly	gtc Val	ttc Phe	acc Thr 1190	act Thr	3618
	_	_	gtc Val 1195					gtc Val 1200	Val					gcc Ala	3663
			gag Glu 1210					ggc Gly 1215	Leu					gtc Val	3708
			gtc Val 1225						Leu				gac Asp 1235	aac Asn	3753
			atg Met 1240						Arg				cag Gln 1250	tat Tyr	3798
									Glu				agc Ser 1265		3843
									Glu				tac Tyr 1280		3888
agc Ser	gag Glu	gag Glu	aac Asn 1285	aag Lys	ctg Leu	ccc Pro	gag Glu	ccg Pro 1290	Glu	gag Glu	ctg Leu	gac Asp	ctg Leu 1295	gag Glu	3933
cca Pro	gag Glu	aac Asn	atg Met 1300	gag Glu	agc Ser	gtc Val	ccc Pro	ctg Leu 1305	Asp	ccc Pro	tcg Ser	gcc Ala	tcc Ser 1310	tcg Ser	3978
			cca Pro 1315						Ser				gcc Ala 1325		4023
aac	ggc	ccc	ggc	cct	3 33	gtg	ctg		ctc Page		gcc	agc	ttc	gac	4068

PCT/US2005/035961 WO 2006/042002

49321-146.ST25.txt Asn Gly Pro Gly Val Leu Val Leu Arg Ala Ser Phe Asp 1330 1335 1340	
gag aga cag cct tac gcc cac atg aac ggg ggc cgc aag aac gag Glu Arg Gln Pro Tyr Ala His Met Asn Gly Gly Arg Lys Asn Glu 1345 1350 1355	4113
cgg gcc ttg ccg ctg ccc cag tct tcg acc tgc tga tccttggatc Arg Ala Leu Pro Leu Pro Gln Ser Ser Thr Cys 1360 1365	4159
ctgaatctgt gcaaacagta acgtgtgcgc acgcgcagcg gggtgggggg ggagagagag	4219
ttttaacaat ccattcacaa gcctcctgta cctcagtgga tcttcagttc tgcccttgct	4279
gcccgcggga gacagcttct ctgcagtaaa acacatttgg gatgttcctt ttttcaatat	4339
gcaagcagct ttttattccc tgcccaaacc cttaactgac atgggccttt aagaacctta	4399
atgacaacac ttaatagcaa cagagcactt gagaaccagt ctcctcactc tgtccctgtc	4459
cttccctgtt ctccctttct ctctcctctc tgcttcataa cggaaaaata attgccacaa	4519
gtccagctgg gaagcccttt ttatcagttt gaggaagtgg ctgtccctgt ggccccatcc	4579
aaccactgta cacacccgcc tgacaccgtg ggtcattaca aaaaaacacg tggagatgga	4639
aatttttacc tttatctttc acctttctag ggacatgaaa tttacaaagg gccatcgttc	4699
atecaagget gttaccattt taacgetgee taattttgee aaaateetga aettteteee	4759
teateggeee ggegetgatt cetegtgtee ggaggeatgg gtgageatgg cagetggttg	4819
ctccatttga gagacacgct ggcgacacac tccgtccatc cgactgcccc tgctgtgctg	4879
ctcaaggcca caggcacaca ggtctcattg cttctgacta gattattatt tgggggaact	4939
ggacacaata ggtctttctc tcagtgaagg tggggagaag ctgaaccggc	4989

<210> 18

<211> 1367 <212> PRT

<213> Homo sapiens

<400> 18

Met Lys Ser Gly Ser Gly Gly Gly Ser Pro Thr Ser Leu Trp Gly Leu 15 5 10

Leu Phe Leu Ser Ala Ala Leu Ser Leu Trp Pro Thr Ser Gly Glu Ile 25 30 20

Cys Gly Pro Gly Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu Lys Arg 40 45 35

Leu Glu Asn Cys Thr Val Ile Glu Gly Tyr Leu His Ile Leu Leu Ile 60 55 50

Ser Lys Ala Glu Asp Tyr Arg Ser Tyr Arg Phe Pro Lys Leu Thr Val Page 80

65	70	49321-146.ST25.txt 75	80
Ile Thr Glu Tyr Leu 85	Leu Leu Phe	e Arg Val Ala Gly Leu Glu Ser 90 95	Leu
Gly Asp Leu Phe Pro	Asn Leu Thr	Val Ile Arg Gly Trp Lys Leu 105 110	Phe
Tyr Asn Tyr Ala Leu 115	Val Ile Phe	e Glu Met Thr Asn Leu Lys Asp 125	Ile
Gly Leu Tyr Asn Leu 130	Arg Asn Ile	e Thr Arg Gly Ala Ile Arg Ile 140	Glu
Lys Asn Ala Asp Leu 145	Cys Tyr Leu 150	Ser Thr Val Asp Trp Ser Leu 155	Ile 160
Leu Asp Ala Val Ser 165	Asn Asn Tyr	Ile Val Gly Asn Lys Pro Pro 170 175	
Glu Cys Gly Asp Leu 180	Cys Pro Gly	Thr Met Glu Glu Lys Pro Met 185 190	Сув
Glu Lys Thr Thr Ile 195	Asn Asn Glu 200	TYT Asn Tyr Arg Cys Trp Thr	Thr
Asn Arg Cys Gln Lys 210	Met Cys Pro	Ser Thr Cys Gly Lys Arg Ala 220	Сув
Thr Glu Asn Asn Glu 225	Cys Cys His	Pro Glu Cys Leu Gly Ser Cys 235	Ser 240
Ala Pro Asp Asn Asp 245	Thr Ala Cys	3 Val Ala Cys Arg His Tyr Tyr 250 255	
Ala Gly Val Cys Val 260	Pro Ala Cys	Pro Pro Asn Thr Tyr Arg Phe 265 270	Glu
Gly Trp Arg Cys Val 275	Asp Arg Asp	o Phe Cys Ala Asn Ile Leu Ser 285	Ala
Glu Ser Ser Asp Ser 290	Glu Gly Phe 295	e Val Ile His Asp Gly Glu Cys 300	Met
Gln Glu Cys Pro Ser 305	Gly Phe Ile	e Arg Asn Gly Ser Gln Ser Met 315	Tyr 320

Cys Ile Pro Cys Glu Gly Pro Cys Pro Lys Val Cys Glu Glu Glu Lys

Page 81

				325					1-14 330	6.ST	25.t	xt		335	
Lys	Thr	Lys	Thr 340	Ile	Asp	Ser	Val	Thr 345	Ser	Ala	Gln	Met	Leu 350	Gln	Gly
Сув	Thr	Ile 355	Phe	Lys	Gly	Asn	Leu 360	Leu	Ile	Asn	Ile	Arg 365	Arg	Gly	Asn
Asn	Ile 370	Ala	Ser	Glu	Leu	Glu 375	Asn	Phe	Met	Gly	Leu 380	Ile	Glu	Val	Val
Thr 385	Gly	Tyr	Val	Lys	Ile 390	Arg	His	Ser	His	Ala 395	Leu	Val	Ser	Leu	Ser 400
Phe	Leu	Lys	Asn	Leu 405	Arg	Leu	Ile	Leu	Gly 410	Glu	Glu	Gln	Leu ,	Glu 415	Gly
Asn	Tyr	Ser	Phe 420	Tyr	Val	Leu	Asp	Asn 425	Gln	Asn	Leu	Gln	Gln 430	Leu	Trp
Asp	Trp	Asp 435	His	Arg	Asn	Leu	Thr 440	Ile	Lys	Ala	Gly	Lys 445	Met	Tyr	Phe
Ala	Phe 450	Asn	Pro	Lys	Leu	Cys 455	Val	Ser	Glu	Ile	Tyr 460	Arg	Met	Glu	Glu
Val 465	Thr	Gly	Thr	Lys	Gly 470	Arg	Gln	Ser	Lys	Gly 475	Asp	Ile	Asn	Thr	Arg 480
Asn	Asn	Gly	Glu	Arg 485	Ala	Ser	Сув	Glu	Ser 490	Asp	Val	Leu	His	Phe 495	Thr
Ser	Thr	Thr	Thr 500	Ser	Lys	Asn	Arg	Ile 505	Ile	Ile	Thr	Trp	His 510	Arg	Tyr
Arg	Pro	Pro 515	Asp	Tyr	Arg	qaA	Leu 520	Ile	Ser	Phe	Thr	Val 525	Tyr	Tyr	Lys
Glu	Ala 530	Pro	Phe	Lys	Asn	Val 535	Thr	Glu	Tyr	Asp	Gly 540	Gln	Asp	Ala	Cys
Gly 545	Ser	Asn	Ser	Trp	Asn 550	Met	Val	.Asp	Val	Asp 555	Leu	Pro	Prọ	Asn	Lys 560
Asp	val	Glu	Pro	Gly 565	Ile	Leu	Leu	His	Gly 570	Leu	Lys	Pro	Trp	Thr 575	Gln

Tyr Ala Val Tyr Val Lys Ala Val Thr Leu Thr Met Val Glu Asn Asp Page 82

565

570

49321-146.ST25.txt	
585	590

His Ile Arg Gly Ala Lys Ser Glu Ile Leu Tyr Ile Arg Thr Asn Ala

Ser Val Pro Ser Ile Pro Leu Asp Val Leu Ser Ala Ser Asn Ser Ser

Ser Gln Leu Ile Val Lys Trp Asn Pro Pro Ser Leu Pro Asn Gly Asn

Leu Ser Tyr Tyr Ile Val Arg Trp Gln Arg Gln Pro Gln Asp Gly Tyr

Leu Tyr Arg His Asn Tyr Cys Ser Lys Asp Lys Ile Pro Ile Arg Lys

Tyr Ala Asp Gly Thr Ile Asp Ile Glu Glu Val Thr Glu Asn Pro Lys

Thr Glu Val Cys Gly Gly Glu Lys Gly Pro Cys Cys Ala Cys Pro Lys

Thr Glu Ala Glu Lys Gln Ala Glu Lys Glu Glu Ala Glu Tyr Arg Lys

Val Phe Glu Asn Phe Leu His Asn Ser Ile Phe Val Pro Arg Pro Glu

Arg Lys Arg Arg Asp Val Met Gln Val Ala Asn Thr Thr Met Ser Ser

Arg Ser Arg Asn Thr Thr Ala Ala Asp Thr Tyr Asn Ile Thr Asp Pro

Glu Glu Leu Glu Thr Glu Tyr Pro Phe Phe Glu Ser Arg Val Asp Asn

Lys Glu Arg Thr Val Ile Ser Asn Leu Arg Pro Phe Thr Leu Tyr Arg

Ile Asp Ile His Ser Cys Asn His Glu Ala Glu Lys Leu Gly Cys Ser

Ala Ser Asn Phe Val Phe Ala Arg Thr Met Pro Ala Glu Gly Ala Asp

Asp Ile Pro Gly Pro Val Thr Trp Glu Pro Arg Pro Glu Asn Ser Ile Page 83

	49321-146	S.ST25.CXC
835	840	845

Phe Leu Lys Trp Pro Glu Pro Glu Asn Pro Asn Gly Leu Ile Leu Met

Tyr Glu Ile Lys Tyr Gly Ser Gln Val Glu Asp Gln Arg Glu Cys Val

Ser Arg Gln Glu Tyr Arg Lys Tyr Gly Gly Ala Lys Leu Asn Arg Leu

Asn Pro Gly Asn Tyr Thr Ala Arg Ile Gln Ala Thr Ser Leu Ser Gly

Asn Gly Ser Trp Thr Asp Pro Val Phe Phe Tyr Val Gln Ala Lys Thr .

Gly Tyr Glu Asn Phe Ile His Leu Ile Ile Ala Leu Pro Val Ala Val

Leu Leu Ile Val Gly Gly Leu Val Ile Met Leu Tyr Val Phe His Arg

Lys Arg Asn Asn Ser Arg Leu Gly Asn Gly Val Leu Tyr Ala Ser Val

Asn Pro Glu Tyr Phe Ser Ala Ala Asp Val Tyr Val Pro Asp Glu Trp

Glu Val Ala Arg Glu Lys Ile Thr Met Ser Arg Glu Leu Gly Gln Gly

Ser Phe Gly Met Val Tyr Glu Gly Val Ala Lys Gly Val Val Lys

Asp Glu Pro Glu Thr Arg Val Ala Ile Lys Thr Val Asn Glu Ala

Ala Ser Met Arg Glu Arg Ile Glu Phe Leu Asn Glu Ala Ser Val

Met Lys Glu Phe Asn Cys His His Val Val Arg Leu Leu Gly Val

Val Ser Gln Gly Gln Pro Thr Leu Val Ile Met Glu Leu Met Thr

Arg Gly Asp Leu Lys Ser Tyr Leu Arg Ser Leu Arg Pro Glu Met Page 84

1085

49321-146.ST25.txt

Glu Asn	Asn	Pro	Val	Leu	Ala	Pro	Pro	Ser	Leu	Ser	Lys	Met	Ile
1100					1105					1110			

1090

- Gln Met Ala Gly Glu Ile Ala Asp Gly Met Ala Tyr Leu Asn Ala 1115 1120 1125
- Asn Lys Phe Val His Arg Asp Leu Ala Ala Arg Asn Cys Met Val 1130 1135 1140
- Ala Glu Asp Phe Thr Val Lys Ile Gly Asp Phe Gly Met Thr Arg 1145 1150 1155
- Asp Ile Tyr Glu Thr Asp Tyr Tyr Arg Lys Gly Gly Lys Gly Leu 1160 1165 1170
- Leu Pro Val Arg Trp Met Ser Pro Glu Ser Leu Lys Asp Gly Val 1175 1180 1185
- Phe Thr Thr Tyr Ser Asp Val Trp Ser Phe Gly Val Val Leu Trp 1190 1195 1200
- Glu Ile Ala Thr Leu Ala Glu Gln Pro Tyr Gln Gly Leu Ser Asn 1205 1210 1215
- Glu Gln Val Leu Arg Phe Val Met Glu Gly Gly Leu Leu Asp Lys 1220 1225 1230
- Pro Asp Asn Cys Pro Asp Met Leu Phe Glu Leu Met Arg Met Cys 1235 1240 1245
- Trp Gln Tyr Asn Pro Lys Met Arg Pro Ser Phe Leu Glu Ile Ile 1250 1255 1260
- Ser Ser Ile Lys Glu Glu Met Glu Pro Gly Phe Arg Glu Val Ser 1265 1270 1275
- Phe Tyr Tyr Ser Glu Glu Asn Lys Leu Pro Glu Pro Glu Glu Leu 1280 1285 1290
- Asp Leu Glu Pro Glu Asn Met Glu Ser Val Pro Leu Asp Pro Ser 1295 1300 1305
- Ala Ser Ser Ser Ser Leu Pro Leu Pro Asp Arg His Ser Gly His 1310 1315 1320
- Lys Ala Glu Asn Gly Pro Gly Pro Gly Val Leu Val Leu Arg Ala Page 85

49321-146.ST25.txt 1325 1330 1335

Ser Phe Asp Glu Arg Gln Pro Tyr Ala His Met Asn Gly Gly Arg 1340 1345 1350

Lys Asn Glu Arg Ala Leu Pro Leu Pro Gln Ser Ser Thr Cys 1355 1360 1365

<210> 19 <211> 4691 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (107)..(4255)

<223> coding sequence

<220>

<221> sig_peptide

 $\langle 222 \rangle$ $(10\overline{7})..(187)$

<223> signal peptide coding region

<220>

<221> misc feature

<222> (188)..(2392)

<223> insulin receptor alpha subunit mature peptide coding region

<220>

<221> misc_feature

<222> (2393)..(4252)

<223> insulin receptor beta subunit mature peptide coding region

<400> 19

qaqaaqgacq cgcggccccc agcgctcttg ggggccgcct cggagcatga cccccgcggg 60

ccagcgccgc gcgcctgatc cgaggagacc ccgcgctccc gcagcc atg ggc acc 115

Met Gly Thr

gcg ctg cta ctg ggc gcc gcg ggc cac ctg tac ccc gga gag gtg tgt 211
Ala Leu Leu Gly Ala Ala Gly His Leu Tyr Pro Gly Glu Val Cys
20 25 30 35

ccc ggc atg gat atc cgg aac aac ctc act agg ttg cat gag ctg gag
Pro Gly Met Asp Ile Arg Asn Asn Leu Thr Arg Leu His Glu Leu Glu
40 45 50

aat tgc tct gtc atc gaa gga cac ttg cag ata ctc ttg atg ttc aaa 307 Asn Cys Ser Val Ile Glu Gly His Leu Gln Ile Leu Leu Met Phe Lys

acg agg ccc gaa gat ttc cga gac ctc agt ttc ccc aaa ctc atc atg
Thr Arg Pro Glu Asp Phe Arg Asp Leu Ser Phe Pro Lys Leu Ile Met
70 75 80

49321-146.ST25.txt atc act gat tac ttg ctg ctc ttc cgg gtc tat ggg ctc gag agc ctg 403 Ile Thr Asp Tyr Leu Leu Phe Arg Val Tyr Gly Leu Glu Ser Leu aag gac ctg ttc ccc aac ctc acg gtc atc cgg gga tca cga ctg ttc 451 Lys Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Ser Arg Leu Phe 499 ttt aac tac gcg ctg gtc atc ttc gag atg gtt cac ctc aag gaa ctc Phe Asn Tyr Ala Leu Val Ile Phe Glu Met Val His Leu Lys Glu Leu ggc ctc tac aac ctg atg aac atc acc cgg ggt tct gtc cgc atc gag 547 Gly Leu Tyr Asn Leu Met Asn Ile Thr Arg Gly Ser Val Arg Ile Glu 135 aag aac aat gag ctc tgt tac ttg gcc act atc gac tgg tcc cgt atc 595 Lys Asn Asn Glu Leu Cys Tyr Leu Ala Thr Ile Asp Trp Ser Arg Ile ctg gat tcc gtg gag gat aat cac atc gtg ttg aac aaa gat gac aac 643 Leu Asp Ser Val Glu Asp Asn His Ile Val Leu Asn Lys Asp Asp Asn 165 gag gag tgt gga gac atc tgt ccg ggt acc gcg aag ggc aag acc aac 691 Glu Glu Cys Gly Asp Ile Cys Pro Gly Thr Ala Lys Gly Lys Thr Asn 185 tgc ccc gcc acc gtc atc aac ggg cag ttt gtc gaa cga tgt tgg act 739 Cys Pro Ala Thr Val Ile Asn Gly Gln Phe Val Glu Arg Cys Trp Thr cat agt cac tgc cag aaa gtt tgc ccg acc atc tgt aag tca cac ggc 787 His Ser His Cys Gln Lys Val Cys Pro Thr Ile Cys Lys Ser His Gly 215 835 tgc acc gcc gaa ggc ctc tgt tgc cac agc gag tgc ctg ggc aac tgt Cys Thr Ala Glu Gly Leu Cys Cys His Ser Glu Cys Leu Gly Asn Cys tet cag ece gae gae ece ace aag tge gtg gee tge ege aac tte tae 883 Ser Gln Pro Asp Asp Pro Thr Lys Cys Val Ala Cys Arg Asn Phe Tyr ctg gac ggc agg tgt gtg gag acc tgc ccg ccc ccg tac tac cac ttc 931 Leu Asp Gly Arg Cys Val Glu Thr Cys Pro Pro Pro Tyr Tyr His Phe 979 cag gac tgg cgc tgt gtg aac ttc agc ttc tgc cag gac ctg cac cac Gln Asp Trp Arg Cys Val Asn Phe Ser Phe Cys Gln Asp Leu His His 1027 aaa tgc aag aac tcg cgg agg cag ggc tgc cac caa tac gtc att cac Lys Cys Lys Asn Ser Arg Gln Gly Cys His Gln Tyr Val Ile His 1075 aac aag tgc atc cct gag tgt ccc tcc ggg tac acg atg aat tcc Asn Asn Lys Cys Ile Pro Glu Cys Pro Ser Gly Tyr Thr Met Asn Ser 315 age aac ttg ctg tgc acc cca tgc ctg ggt ccc tgt ccc aag gtg tgc 1123 Ser Asn Leu Leu Cys Thr Pro Cys Leu Gly Pro Cys Pro Lys Val Cys 330

	49321-146.ST25.txt															
cac His 340	ctc Leu	cta Leu	gaa Glu	ggc Gly	gag Glu 345	aag Lys	acc	atc	gac	tcg	gtg Val	acg	tct Ser	gcc Ala	cag Gln 355	1171
gag Glu	ctc Leu	cga Arg	gga Gly	tgc Cys 360	acc Thr	gtc Val	atc Ile	aac Asn	999 Gly 365	agt Ser	ctg Leu	atc Ile	atc Ile	aac Asn 370	att Ile	1219
cga Arg	gga Gly	ggc Gly	aac Asn 375	aat Asn	ctg Leu	gca Ala	gct Ala	gag Glu 380	cta Leu	gaa Glu	gcc Ala	aac Asn	ctc Leu 385	ggc Gly	ctc Leu	1267
att Ile	gaa Glu	gaa Glu 390	att Ile	tca Ser	ggg Gly	tat Tyr	cta Leu 395	aaa Lys	atc Ile	cgc Arg	cga Arg	tcc Ser 400	tac Tyr	gct Ala	ctg Leu	1315
gtg Val	tca Ser 405	ctt Leu	tcc Ser	ttc Phe	ttc Phe	cgg Arg 410	aag Lys	tta Leu	cgt Arg	ctg Leu	att Ile 415	cga Arg	gga Gly	gag Glu	acc Thr	1363
ttg Leu 420	gaa Glu	att Ile	Gly ggg	aac Asn	tac Tyr 425	tcc Ser	ttc Phe	tat Tyr	gcc Ala	ttg Leu 430	gac Asp	aac Asn	cag Gln	aac Asn	cta Leu 435	1411
agg Arg	cag Gln	ctc Leu	tgg Trp	gac Asp 440	tgg Trp	agc Ser	aaa Lys	cac His	aac Asn 445	ctc Leu	acc Thr	acc Thr	act Thr	cag Gln 450	gly ggg	1459
				His							ttg Leu					1507
aag Lys	atg Met	gaa Glu 470	gaa Glu	gtt Val	tca Ser	gga Gly	acc Thr 475	aag Lys	ggg Gly	cgc Arg	cag Gln	gag Glu 480	aga Arg	aac Asn	gac Asp	1555
att Ile	gcc Ala 485	ctg Leu	aag Lys	acc Thr	aat Asn	999 Gly 490	gac Asp	aag Lys	gca Ala	tcc Ser	tgt Cys 495	gaa Glu	aat Asn	gag Glu	tta Leu	1603
											aag Lys					1651
tgg Trp	gag Glu	ccg Pro	tac Tyr	tgg Trp 520	ccc Pro	ccc Pro	gac Asp	ttc Phe	cga Arg 525	gac Asp	ctc Lėu	ttg Leu	Gly ggg	ttc Phe 530	atg Met	1699
ctg Leu	ttc Phe	tac Tyr	aaa Lys 535	gag Glu	gcc Ala	cct Pro	tat Tyr	cag Gln 540	aat Asn	gtg Val	acg Thr	gag Glu	ttc Phe 545	gat Asp	Gly aaa	1747
cag Gln	gat Asp	gcg Ala 550	tgt Cys	ggt Gly	tcc Ser	aac Asn	agt Ser 555	tgg Trp	acg Thr	gtg Val	gta Val	gac Asp 560	att Ile	gac Asp	cca Pro	1795
ccc Pro	ctg Leu 565	agg Arg	tcc Ser	aac Asn	gac Asp	ccc Pro 570	aaa Lys	tca Ser	cag Gln	aac Asn	cac His 575	cca Pro	ggg Gly	tgg Trp	ctg Leu	1843
atg Met 580	cgg Arg	ggt Gly	ctc Leu	aag Lys	ccc Pro 585	tgg Trp	acc Thr	cag Gln	tat Tyr	gcc Ala 590	atc	ttt Phe	gtg Val	aag Lys	acc Thr 595	1891

								4000								
ctg Leu	gtc Val	acc Thr	ttt Phe	tcg Ser 600	gat Asp	gaa Glu	cgc Arg	4932 cgg Arg	acc	tat	ggg	gcc	aag Lys	agt Ser 610	gac Asp	.1939
								acc Thr 620								1987
								tcc Ser								2035
cca Pro	ccc Pro 645	tcc Ser	gac Asp	ccc Pro	aat Asn	ggc Gly 650	aac Asn	atc Ile	acc Thr	cac His	tac Tyr 655	ctg Leu	gtt Val	ttc Phe	tgg Trp	2083
gag Glu 660	agg Arg	cag Gln	gcg Ala	gaa Glu	gac Asp 665	agt Ser	gag Glu	ctg Leu	ttc Phe	gag Glu 670	ctg Leu	gat Asp	tat Tyr	tgc Cys	ctc Leu 675	2131
aaa Lys	Gly 999	ctg Leu	aag Lys	ctg Leu 680	ccc Pro	tcg Ser	agg Arg	acc Thr	tgg Trp 685	tct Ser	cca Pro	cca Pro	ttc Phe	gag Glu 690	tct Ser	2179
gaa Glu	gat Asp	tct Ser	cag Gln 695	aag Lys	cac His	aac Asn	cag Gln	agt Ser 700	gag Glu	tat Tyr	gag Glu	gat Asp	tcg Ser 705	gcc Ala	ggc Gly	2227
gaa Glu	tgc Cys	tgc Cys 710	tcc Ser	tgt Cys	cca Pro	Lys	aca Thr 715	gac Asp	tct Ser	cag Gln	atc Ile	ctg Leu 720	aag Lys	gag Glu	ctg Leu	2275
gag Glu	gag Glu 725	tcc Ser	tcg Ser	ttt Phe	agg Arg	aag Lys 730	acg Thr	ttt Phe	gag Glu	gat Asp	tac Tyr 735	ctg Leu	cac His	aac Asn	gtg Val	2323
								tca Ser								2371
agg Arg	cca Pro	tct Ser	cgg Arg	aaa Lys 760	cgc Arg	agg Arg	tcc Ser	ctt Leu	ggc Gly 765	gat Asp	gtt Val	ggg Gly	aat Asn	gtg Val 770	acg Thr	2419
gtg Val	gcc Ala	gtg Val	ccc Pro 775	acg Thr	gtg Val	gca Ala	gct Ala	ttc Phe 780	ccc Pro	aac Asn	act Thr	tcc Ser	tcg Ser 785	acc Thr	agc Ser	2467
gtg Val	ccc Pro	acg Thr 790	agt Ser	ccg Pro	gag Glu	gag Glu	cac His 795	agg Arg	cct Pro	ttt Phe	gag Glu	aag Lys 800	gtg Val	gtg Val	aac Asn	2515
aag Lys	gag Glu 805	tcg Ser	ctg Leu	gtc Val	atc Ile	tcc Ser 810	ggc Gly	ttg Leu	cga Arg	cac His	ttc Phe 815	acg Thr	ggc Gly	tat Tyr	cgc Arg	2563
atc Ile 820	gag Glu	ctg Leu	cag Gln	gct Ala	tgc Cys 825	aac Asn	cag Gln	gac Asp	acc Thr	cct Pro 830	gag Glu	gaa Glu	cgg Arg	tgc Cys	agt Ser 835	2611
gtg Val	gca Ala	gcc Ala	tac Tyr	gtc Val 840	agt Ser	gcg Ala	agg Arg	acc Thr	atg Met 845	cct Pro	gaa Glu	gcc Ala	aag Lys	gct Ala 850	gat Asp	2659

49321-146.ST25.txt gac att qtt qqc cct qtg acg cat gaa atc ttt gag aac aac gtc gtc 2707 Asp Ile Val Gly Pro Val Thr His Glu Ile Phe Glu Asn Asn Val Val 855 cac ttg atg tgg cag gag ccg aag gag ccc aat ggt ctg atc gtg ctg 2755 His Leu Met Trp Gln Glu Pro Lys Glu Pro Asn Gly Leu Ile Val Leu 870 tat gaa gtg agt tat cgg cga tat ggt gat gag gag ctg cat ctc tgc 2803 Tyr Glu Val Ser Tyr Arg Arg Tyr Gly Asp Glu Glu Leu His Leu Cys 2851 gtc tcc cgc aag cac ttc gct ctg gaa cgg ggc tgc agg ctg cgt ggg Val Ser Arg Lys His Phe Ala Leu Glu Arg Gly Cys Arg Leu Arg Gly 905 ctg tca ccg ggg aac tac agc gtg cga atc cgg gcc acc tcc ctt gcg 2899 Leu Ser Pro Gly Asn Tyr Ser Val Arg Ile Arg Ala Thr Ser Leu Ala 920 ggc aac ggc tct tgg acg gaa ccc acc tat ttc tac gtg aca gac tat 2947 Gly Asn Gly Ser Trp Thr Glu Pro Thr Tyr Phe Tyr Val Thr Asp Tyr 935 tta gac gtc ccg tca aat att gca aaa att atc atc ggc ccc ctc atc 2995 Leu Asp Val Pro Ser Asn Ile Ala Lys Ile Ile Ile Gly Pro Leu Ile 950 ttt gtc ttt ctc ttc agt gtt gtg att gga agt att tat cta ttc ctg 3043 Phe Val Phe Leu Phe Ser Val Val Ile Gly Ser Ile Tyr Leu Phe Leu 965 3091 aga aag agg cag cca gat ggg ccg ctg gga ccg ctt tac gct tct tca Arg Lys Arg Gln Pro Asp Gly Pro Leu Gly Pro Leu Tyr Ala Ser Ser 995 980 aac cct gag tat ctc agt gcc agt gat gtg ttt cca tgc tct gtg Asn Pro Glu Tyr Leu Ser Ala Ser Asp Val Phe Pro Cys Ser Val 3136 1000 tac gtg ccg gac gag tgg gag gtg tct cga gag aag atc acc ctc Tyr Val Pro Asp Glu \mbox{Trp} Glu Val Ser Arg \mbox{Glu} Lys Ile \mbox{Thr} Leu 3181 1025 1015 3226 ctt cga gag ctg ggg cag ggc tcc ttc ggc atg gtg tat gag ggc Leu Arg Glu Leu Gly Gln Gly Ser Phe Gly Met Val Tyr Glu Gly 1030 aat gcc agg gac atc atc aag ggt gag gca gag acc cgc gtg gcg Asn Ala Arg Asp Ile Ile Lys Gly Glu Ala Glu Thr Arg Val Ala 3271 1055 1045 gtg aag acg gtc aac gag tca gcc agt ctc cga gag cgg att gag Val Lys Thr Val Asn Glu Ser Ala Ser Leu Arg Glu Arg Ile Glu 3316 1060 1065 1070 ttc ctc aat gag gcc tcg gtc atg aag ggc ttc acc tgc cat cac Phe Leu Asn Glu Ala Ser Val Met Lys Gly Phe Thr Cys His His 3361 1075 1080 1085 gtg gtg cgc ctc ctg gga gtg gtg tcc aag ggc cag ccc acg ctg Val Val Arg Leu Leu Gly Val Val Ser Lys Gly Gln Pro Thr Leu 3406

WO 2006/042002

1095

1090

								0201	746	OTOE	tvt				•
gtg g Val V	gtg Val	atg Met	gag Glu	ctg Leu 1105	atg Met	gct Ala	cac	gga	-146. gac Asp 1110	ctg	aag	agc	tac Tyr	ctc Leu 1115	3451
cgt t Arg S	tct Ser	ctg Leu	cgg Arg	cca Pro 1120	gag Glu	gct Ala	gag Glu	aat Asn	aat Asn 1125	cct Pro	ggc Gly	cgc Arg	cct Pro	ccc Pro 1130	3496
cct a	acc Thr	ctt Leu	caa Gln	gag Glu 1135	atg Met	att Ile	cag Gln	atg Met	gcg Ala 1140	gca Ala	gag Glu	att Ile	gct Ala	gac Asp 1145	3541
ggg a	atg Met	gcc Ala	tac Tyr	ctg Leu 1150	aac Asn	gcc Ala	aag Lys	aag Lys	ttt Phe 1155	gtg Val	cat His	cgg Arg	gac Asp	ctg Leu 1160	3586
gca g Ala A	gcg Ala	aga Arg	aac Asn	tgc Cys 1165	atg Met	gtc Val	gcc Ala	cat His	gat Asp 1170	ttt Phe	act Thr	gtc Val	aaa Lys	att Ile 1175	3631
gga g Gly <i>F</i>	gac Asp	ttt Phe	gga Gly	atg Met 1180	acc Thr	aga Arg	gac Asp	atc Ile	tat Tyr 1185	gaa Glu	acg Thr	gat Asp	tac Tyr	tac Tyr 1190	3676
cgg a	aaa Lys	Gly ggg	ggc Gly	aag Lys 1195	ggt Gly	ctg Leu	ctc Leu	cct Pro	gta Val 1200	cgg Arg	tgg Trp	atg Met	gca Ala	ccg Pro 1205	3721
gag t Glu s	tcc Ser	ctg Leu	aag Lys	gat Asp 1210	Gly aaa	gtc Val	ttc Phe	acc Thr	act Thr 1215	tct Ser	tct Ser	gac Asp	atg Met	tgg Trp 1220	3766
tcc t Ser I	ttt Phe	ggc Gly	gtg Val	gtc Val 1225	ctt Leu	tgg Trp	gaa Glu	atc Ile	acc Thr 1230	agc Ser	ttg Leu	gca Ala	gaa Glu	cag Gln 1235	3811
cct t Pro 1	tac Tyr	caa Gln	ggc Gly	ctg Leu 1240	tct Ser	aat Asn	gaa Glu	cag Gln	gtg Val 1245	ttg Leu	aaa Lys	ttt Phe	gtc Val	atg Met 1250	3856
gat o	gga Gly	ggg Gly	tat Tyr	ctg Leu 1255	gat Asp	caa Gln	ccc Pro	gac Asp	aac Asn 1260	tgt Cys	cca Pro	gag Glu	aga Arg	gtc Val 1265	3901
act o	gac Asp	ctc Leu	atg Met	cgc Arg 1270	atg Met	tgc Cys	tgg Trp	caa Gln	ttc Phe 1275	aac Asn	ccc Pro	aag Lys	atg Met	agg Arg 1280	3946
cca a Pro 3	acc Thr	ttc Phe	ctg Leu	gag Glu 1285	att Ile	gtc Val	aac Asn	ctg Leu	ctc Leu 1290	aag Lys	gac Asp	gac Asp	ctg Leu	cac His 1295	3991
ccc a	agc Ser	ttt Phe	cca Pro	gag Glu 1300	gtg Val	tcg Ser	ttc Phe	ttc Phe	cac His 1305	agc Ser	gag Glu	gag Glu	aac Asn	aag Lys 1310	4036
gct o	ccc Pro	gag Glu	agt Ser	gag Glu 1315	gag Glu	ctg Leu	gag Glu	atg Met	gag Glu 1320	ttt Phe	gag Glu	gac Asp	atg Met	gag Glu 1325	4081
aat g Asn V	gtg Val	ccc Pro	ctg Leu	gac Asp 1330	cgt Arg	tcc Ser	tcg Ser	cac His	tgt Cys 1335	cag Gln	agg Arg	gag Glu	gag Glu	gcg Ala 1340	4126

49321-146.ST25.txt
ggg ggc cgg gat gga ggg tcc tcg ctg ggt 'ttc aag cgg agc tac Gly Gly Arg Asp Gly Gly Ser Ser Leu Gly Phe Lys Arg Ser Tyr 1345 1350 1355
gag gaa cac atc cct tac aca cac atg aac gga ggc aag aaa aac Glu Glu His Ile Pro Tyr Thr His Met Asn Gly Gly Lys Lys Asn 1360 1365 1370
ggg cgg att ctg acc ttg cct cgg tcc aat cct tcc taa cagtgcctac Gly Arg Ile Leu Thr Leu Pro Arg Ser Asn Pro Ser 1375 1380
cgtggcgggg gcgggcaggg gttcccattt tcgctttcct ctggtttgaa agcctctgga
aaactcagga ttctcacgac tctaccatgt ccagtggagt tcagagatcg ttcctataca
tttctgttca tcttaaggtg gactcgtttg gttaccaatt taactagtcc tgcagaggat
ttaactgtga acctggaggg caaggggttt ccacagttgc tgctcctttg gggcaacgac
ggtttcaaac caggattttg tgttttttcg ttcccccac ccgccccag cagatggaaa
gaaagcacct gtttttacaa attcttttt ttttttttt tttttttt ttgctggtgt
ctgagcttca gtataaaaga caaaacttcc tgtttgtgga acaaaatttc gaaagaaaaa
accaaa
<210> 20 <211> 1382 <212> PRT <213> Homo sapiens
<400> 20
Met Gly Thr Gly Gly Arg Gly Ala Ala Ala Ala Pro Leu Leu Val 1 5 10 15
Ala Val Ala Ala Leu Leu Gly Ala Ala Gly His Leu Tyr Pro Gly 20 25 30
Glu Val Cys Pro Gly Met Asp Ile Arg Asn Asn Leu Thr Arg Leu His 35 40 45
Glu Leu Glu Asn Cys Ser Val Ile Glu Gly His Leu Gln Ile Leu Leu
50 55 60

Glu Ser Leu Lys Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Ser 100 105 110

49321-146.ST25.txt Arg Leu Phe Phe Asn Tyr Ala Leu Val Ile Phe Glu Met Val His Leu 115 120 Lys Glu Leu Gly Leu Tyr Asn Leu Met Asn Ile Thr Arg Gly Ser Val 135 Arg Ile Glu Lys Asn Asn Glu Leu Cys Tyr Leu Ala Thr Ile Asp Trp Ser Arg Ile Leu Asp Ser Val Glu Asp Asn His Ile Val Leu Asn Lys 170 Asp Asp Asn Glu Glu Cys Gly Asp Ile Cys Pro Gly Thr Ala Lys Gly 185 Lys Thr Asn Cys Pro Ala Thr Val Ile Asn Gly Gln Phe Val Glu Arg Cys Trp Thr His Ser His Cys Gln Lys Val Cys Pro Thr Ile Cys Lys 210 Ser His Gly Cys Thr Ala Glu Gly Leu Cys Cys His Ser Glu Cys Leu 225 230 Gly Asn Cys Ser Gln Pro Asp Asp Pro Thr Lys Cys Val Ala Cys Arg 250 Asn Phe Tyr Leu Asp Gly Arg Cys Val Glu Thr Cys Pro Pro Pro Tyr 260 Tyr His Phe Gln Asp Trp Arg Cys Val Asn Phe Ser Phe Cys Gln Asp 275 280 Leu His His Lys Cys Lys Asn Ser Arg Arg Gln Gly Cys His Gln Tyr 295 Val Ile His Asn Asn Lys Cys Ile Pro Glu Cys Pro Ser Gly Tyr Thr 310 315 Met Asn Ser Ser Asn Leu Leu Cys Thr Pro Cys Leu Gly Pro Cys Pro 330 325 Lys Val Cys His Leu Leu Glu Gly Glu Lys Thr Ile Asp Ser Val Thr 345

Ser Ala Gln Glu Leu Arg Gly Cys Thr Val Ile Asn Gly Ser Leu Ile 360 365 355

340

Ile Asn Ile Arg Gly Gly Asn Asn Leu Ala Ala Glu Leu Glu Ala Asn 370 375 380

Leu Gly Leu Ile Glu Glu Ile Ser Gly Tyr Leu Lys Ile Arg Arg Ser 385 390 395 400

Tyr Ala Leu Val Ser Leu Ser Phe Phe Arg Lys Leu Arg Leu Ile Arg 405 410 415

Gly Glu Thr Leu Glu Ile Gly Asn Tyr Ser Phe Tyr Ala Leu Asp Asn 420 425 430

Gln Asn Leu Arg Gln Leu Trp Asp Trp Ser Lys His Asn Leu Thr Thr 435 440 445

Thr Gln Gly Lys Leu Phe Phe His Tyr Asn Pro Lys Leu Cys Leu Ser 450 455 460

Glu Ile His Lys Met Glu Glu Val Ser Gly Thr Lys Gly Arg Gln Glu 465 470 475 480

Arg Asn Asp Ile Ala Leu Lys Thr Asn Gly Asp Lys Ala Ser Cys Glu 485 490 495

Asn Glu Leu Leu Lys Phe Ser Tyr Ile Arg Thr Ser Phe Asp Lys Ile
500 505 510

Leu Leu Arg Trp Glu Pro Tyr Trp Pro Pro Asp Phe Arg Asp Leu Leu 515 520 525

Gly Phe Met Leu Phe Tyr Lys Glu Ala Pro Tyr Gln Asn Val Thr Glu 530 535 540

Phe Asp Gly Gln Asp Ala Cys Gly Ser Asn Ser Trp Thr Val Val Asp 545 550 555 560

Ile Asp Pro Pro Leu Arg Ser Asn Asp Pro Lys Ser Gln Asn His Pro 565 570 575

Gly Trp Leu Met Arg Gly Leu Lys Pro Trp Thr Gln Tyr Ala Ile Phe 580 585 590

Val Lys Thr Leu Val Thr Phe Ser Asp Glu Arg Arg Thr Tyr Gly Ala
595 600 605

Lys Ser Asp Ile Ile Tyr Val Gln Thr Asp Ala Thr Asn Pro Ser Val 610 615 620

49321-146.ST25.txt Pro Leu Asp Pro Ile Ser Val Ser Asn Ser Ser Ser Gln Ile Ile Leu 630 Lys Trp Lys Pro Pro Ser Asp Pro Asn Gly Asn Ile Thr His Tyr Leu Val Phe Trp Glu Arg Gln Ala Glu Asp Ser Glu Leu Phe Glu Leu Asp Tyr Cys Leu Lys Gly Leu Lys Leu Pro Ser Arg Thr Trp Ser Pro Pro Phe Glu Ser Glu Asp Ser Gln Lys His Asn Gln Ser Glu Tyr Glu Asp Ser Ala Gly Glu Cys Cys Ser Cys Pro Lys Thr Asp Ser Gln Ile Leu 715 Lys Glu Leu Glu Glu Ser Ser Phe Arg Lys Thr Phe Glu Asp Tyr Leu His Asn Val Val Phe Val Pro Arg Lys Thr Ser Ser Gly Thr Gly Ala Glu Asp Pro Arg Pro Ser Arg Lys Arg Arg Ser Leu Gly Asp Val Gly Asn Val Thr Val Ala Val Pro Thr Val Ala Ala Phe Pro Asn Thr Ser Ser Thr Ser Val Pro Thr Ser Pro Glu Glu His Arg Pro Phe Glu Lys Val Val Asn Lys Glu Ser Leu Val Ile Ser Gly Leu Arg His Phe Thr Gly Tyr Arg Ile Glu Leu Gln Ala Cys Asn Gln Asp Thr Pro Glu Glu Arg Cys Ser Val Ala Ala Tyr Val Ser Ala Arg Thr Met Pro Glu Ala 840 Lys Ala Asp Asp Ile Val Gly Pro Val Thr His Glu Ile Phe Glu Asn 860 855

875

Asn Val Val His Leu Met Trp Gln Glu Pro Lys Glu Pro Asn Gly Leu

870

Ile Val Leu Tyr Glu Val Ser Tyr Arg Arg Tyr Gly Asp Glu Glu Leu 885 890 895

His Leu Cys Val Ser Arg Lys His Phe Ala Leu Glu Arg Gly Cys Arg 900 905 910

Leu Arg Gly Leu Ser Pro Gly Asn Tyr Ser Val Arg Ile Arg Ala Thr 915 920 925

Ser Leu Ala Gly Asn Gly Ser Trp Thr Glu Pro Thr Tyr Phe Tyr Val 930 935 940

Thr Asp Tyr Leu Asp Val Pro Ser Asn Ile Ala Lys Ile Ile Ilè Gly 945 955 960

Pro Leu Ile Phe Val Phe Leu Phe Ser Val Val Ile Gly Ser Ile Tyr 965 970 975

Leu Phe Leu Arg Lys Arg Gln Pro Asp Gly Pro Leu Gly Pro Leu Tyr 980 985 990

Ala Ser Ser Asn Pro Glu Tyr Leu Ser Ala Ser Asp Val Phe Pro Cys 995 1000 1005

Ser Val Tyr Val Pro Asp Glu Trp Glu Val Ser Arg Glu Lys Ile 1010 1015 1020

Thr Leu Leu Arg Glu Leu Gly Gln Gly Ser Phe Gly Met Val Tyr 1025 1030 1035

Glu Gly Asn Ala Arg Asp Ile Ile Lys Gly Glu Ala Glu Thr Arg 1040 1045 1050

Val Ala Val Lys Thr Val Asn Glu Ser Ala Ser Leu Arg Glu Arg 1055 1060 1065.

Ile Glu Phe Leu Asn Glu Ala Ser Val Met Lys Gly Phe Thr Cys 1070 1075 1080

His His Val Val Arg Leu Leu Gly Val Val Ser Lys Gly Gln Pro 1085 1090 1095

Thr Leu Val Val Met Glu Leu Met Ala His Gly Asp Leu Lys Ser 1100 1105 1110

Tyr Leu Arg Ser Leu Arg Pro Glu Ala Glu Asn Asn Pro Gly Arg 1115 1120 1125

Þro	Pro 1130		Thr	Leu	Gln	Glu 1135	Met				.txt Ala 1140	Ala	Glu	Ile
Ala	Asp 1145		Met	Ala	Tyr	Leu 1150	Asn	Ala	Lys	Lys	Phe 1155	Val	His	Arg
Asp	Leu 1160		Ala	Arg	Asn	Cys 1165		Val	Ala	His	Asp 1170		Thr	Val
Lys	Ile 1175		Asp	Phe	Gly	Met 1180		Arg	Asp	Ile	Tyr 1185		Thr	Asp
Tyr	Tyr 1190	Arg	Lys	Gly	Gly	Lys 1195	Gly	Leu	Leu	Pro	Val 1200	Arg	Trp	Met
Ala	Pro 1205	Glu	Ser	Leu	Lys	Asp 1210	-	Val	Phe	Thr	Thr 1215	Ser	Ser	Asp
Met	Trp 1220	Ser	Phe	Gly	Val	Val 1225	Leu	Trp	Glu	Ile	Thr 1230	Ser	Leu	Ala
Glu	Gln 1235	Pro	Tyr	Gln	Gly	Leu 1240	Ser	Asn	Glu	Gln	Val 1245	Leu	Lys	Phe
Val	Met 1250	Asp	Gly	Gly	Tyr	Leu 1255	Asp	Gln	Pro	Asp	Asn 1260	Cys	Pro	Glu
Arg	Val 1265	Thr	Asp	Leu	Met	Arg 1270	Met	Сув	Trp	Gln	Phe 1275	Asn	Pro	Lys
Met	Arg 1280	Pro	Thr	Phe	Leu	Glu 1285	Ile	Val	Asn	Leu	Leu 1290	Lys	Asp	Asp
Leu	His 1295	Pro	Ser	Phe	Pro	Glu 1300	Val	Ser	Phe	Phe	His 1305	Ser	Glu	Glu
Asn	Lys 1310	Ala	Pro	Glu	Ser	Glu 1315	Glu	Leu	Glu	Met	Glu 1320	Phe	Glu	Asp
Met	Glu 1325	Asn	Val	Pro	Leu	Asp 1330	Arg	Ser	Ser	His	Сув 1335		Arg	Glu
Glu	Ala 1340	Gly	Gly	Arg	Asp	Gly 1345	Gly	Ser	Ser	Leu	Gly 1350	Phe	Lys	Arg
Ser	Tyr 1355	Glu	Glu	His	Ile	Pro 1360	Tyr	Thr	His	Met	Asn 1365	Gly	Gly	Lys

49321-146.ST25.txt

Lys Asn Gly Arg Ile Leu Thr Leu Pro Arg Ser Asn Pro Ser 1370 1375 1380

<210> 21

<211> 79

<212> PRT

<213> Homo sapiens

<400> 21

Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu
1 5 10 15

Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 25 30

Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40 45

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75

<210> 22

<211> 79

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (2)..(2)

<223> Xaa reflects Thr or Ser variants

<400> 22

Gly Xaa His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu
1 10 15

Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 25 30

Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 55 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75

<210> 23
<211> 79
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa reflects

<222> (5)..(5)
<223> Xaa reflects Leu or Pro variants

<400> 23

Gly Thr His Ser Xaa Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu
1 5 10 15

Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 25 30

Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40 45

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 55 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75

<210> 24 <211> 79 <212> PRT <213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> Xaa reflects Pro or Leu variants

<400> 24

Gly Thr His Ser Leu Xaa Pro Arg Pro Ala Ala Val Pro Val Pro Leu 1 5 10 15

Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 25 30

Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40 45

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75
Page 99

35

49321-146.ST25.txt

<210> 25 <211> 79 <212> PRT <213> Homo sapiens <220> <221> MISC FEATURE <222> (16)..(16) <223> Xaa reflects Leu or Gln variants <400> 25 Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Xaa 5 10 Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 25 20 Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40 Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 55 Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 70 65 <210> 26 <211> 79 <212> PRT <213> Homo sapiens <220> <221> MISC_FEATURE <222> (17)..(17) <223> Xaa reflects Arg or Cys variants <220> <221> misc_feature <222> (18)..(18) <223> Xaa can be any naturally occurring amino acid Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu 5 Arg Xaa Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu

49321-146.ST25.txt

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 55 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75

<210> 27

<211> 79

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (18)..(18)

<223> Xaa reflects Met or Leu variants

<220>

<221> misc feature

<222> (21)..(21)

<223> Xaa can be any naturally occurring amino acid

<400> 27

Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu 1 5 10 15

Arg Met Gln Pro Xaa Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 25 30

Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40 45

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75

<210> 28

<211> 79

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (21)..(21)

<223> Xaa reflects Gly, Asp, Ala or Val variants

<220>

<221> misc_feature

<222> (36)..(36)

<223> Xaa can be any naturally occurring amino acid

<400> 28

49321-146.ST25.txt

Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu 1 5 10 15

Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 25 30

Ser Trp Asp Xaa Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40 45

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 55 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75

<210> 29

<211> 79

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (31)..(31)

<223> Xaa reflects Arg or Ile variants

<220>

<221> misc feature

<222> (54)..(54)

<223> Xaa can be any naturally occurring amino acid

<400> 29

Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu 1 5 10 15

Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro 20 25 30

Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40 45

Ser Pro Thr Ser Val Xaa Ile Ser Pro Val Ser Val Gly Arg Gly Pro 50 55 60

Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly 65 70 75

<210> 30

<211> 79

<212> PRT

<213> Homo sapiens

```
<220>
<221> MISC_FEATURE
<222> (36)..(36)
<223> Xaa reflects Leu or Ile variants
<220>
<221> misc feature
<222>
      (64)..(64)
<223> Xaa can be any naturally occurring amino acid
<400> 30
Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu
                5
                                    10
Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro
            20
Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu
        35
                            40
Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Xaa
    50
                        55
Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg Tyr Glu Gly
65
<210> 31
<211> 79
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<222> (54)..(54)
<223> Xaa reflects Pro or Arg variants
<220> '
<221> misc feature
      (73)..(73)
<223> Xaa can be any naturally occurring amino acid
<400> 31
Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val Pro Val Pro Leu
                                                        15 .
                5
Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser Phe Leu Arg Pro
            20
```

Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro Leu Ala Pro Leu 35 40

Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val Gly Arg Gly Pro Page 103

Asp Pro Asp Ala His Val Ala Val Xaa Leu Ser Arg Tyr Glu Gly 70

<210> 32

<211> 419

<212> PRT

<213> Homo sapiens

<400> 32

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 25

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 70

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu

Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105

Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 115 120

Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser

Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 150

Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165

Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 185

His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 205

PCT/US2005/035961 WO 2006/042002

49321-146.ST25.txt

Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys

Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys

Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu 245 250

His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val

Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 280

Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu

Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 310

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325

Pro Cys Ala Arg Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val 345 340

Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 375

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 390

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 405 410

Tyr Glu Gly

<210> 33 <211> 419 <212> PRT <213> Homo sapiens

49321-146.ST25.txt

<220>

<221> MISC_FEATURE

<222> (342)..(342)

<223> Xaa reflects Thr or Ser variants

<400> 33

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys
20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95

Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105 110

Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 115 120 125

Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 130 135 140

Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 145 150 155 160

Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 170 175

Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 185 190

His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 205

Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 210 215 220

Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys Page 106

Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu 245

His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val 265 260

Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 280 275

Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu 290 295

Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 310 305

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 330 325

Pro Cys Ala Arg Gly Xaa His Ser Leu Pro Pro Arg Pro Ala Ala Val 340

Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 375

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 395 385 390

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 410 405

Tyr Glu Gly

<210> 34

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

(345)..(345) <222>

<223> Xaa reflects Leu or Pro variants

<400> 34

49321-146.ST25.txt Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 40 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 105 100 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 115 120 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 130 135 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 155 145 150 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 170 165 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 210 Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys 225

250

Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu

His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val 260 265 270

Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 275 280 285

Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu 290 295 300

Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 305 310 315 320

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325 330 335

Pro Cys Ala Arg Gly Thr His Ser Xaa Pro Pro Arg Pro Ala Ala Val 340 345 350

Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 405 410 415

Tyr Glu Gly

<210> 35

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

 $\langle 222 \rangle$ $(346) \dots (346)$

<223> Xaa reflects Pro or Leu variants

<400> 35

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

49321-146.ST25.txt

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
50 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95

Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105 110

Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 115 120 125

Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 130 135 140

Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 145 150 . 155 160

Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 170 175

Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 185 190

His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 205

Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 210 215 220

Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys 225 230 235 240

Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu 245 250 255

His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val 260 265 270

Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 275 280 285

Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu 290 295 300

Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 305 310 315 320

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325 330 335

Pro Cys Ala Arg Gly Thr His Ser Leu Xaa Pro Arg Pro Ala Ala Val 340 345 350

Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 375 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg
405 410 415

Tyr Glu Gly

<210> 36

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (356)...(356)

<223> Xaa reflects Leu or Gln variants

<400> 36

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60 Page 111

Leu 65	Pro	Thr	Asn	Ala	Ser 70	Leu	Ser	Phe	Leu	Gln 75	Asp	Ile	Gln	Glu	Val 80
Gln	Gly	Tyr	Val	Leu 85	Ile	Ala	His	Asn	Gln 90	Val	Arg	Gln	Val	Pro 95	Leu
Gln	Arg	Leu	Arg 100	Ile	Val	Arg	Gly	Thr 105	Gln	Leu	Phe	Glu	Asp 110	Asn	Tyr
Ala	Leu	Ala 115	Val	Leu	Asp	Asn	Gly 120	Asp	Pro	Leu	Asn	Asn 125	Thr	Thr	Pro
Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Ile	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Cys	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Сув
His	Pro	Сув 195	Ser	Pro	Met	Cys	Lys 200	Gly	Ser	Arg	Суз	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	Сув	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Сув
Ala 225	Arg	Cys	Lys	Gly	Pro 230		Pro	Thr	Asp	Cys 235	Сув	His	Glu	Gln	Cys 240
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Сув	Leu	Ala	Cys 255	Leu
His	Phe	Asn	His 260	Ser	Gly	Ile	Сув	Glu 265	Leu	His	Сув	Pro	Ala 270	Leu	Val
Thr	туr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr	Thr 290	Phe	Gly	Ala	Ser	Cys 295	Val	Thr	Ala	Сув	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Cys	Thr	Leu		Cys 315 je 11	Pro .2	Leu	His	Asn	Gln 320

49321-146.ST25.txt

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325 330 335

Pro Cys Ala Arg Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val 340 345 350

Pro Val Pro Xaa Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 375 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 405 410 415

Tyr Glu Gly

<210> 37

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (357)..(357)

<223> Xaa reflects Arg or Cys variants

<220>

<221> misc_feature

<222> (358)..(358)

<223> Xaa can be any naturally occurring amino acid

<400> 37

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 60

49321-146.ST25.txt

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
65 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95

Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
100 105 110

Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 115 120 125

Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 130 135 140

Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 145 150 155 160

Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 170 175

Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 185 190

His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 205

Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 210 220

Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys 225 230 235 240

Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu 245 250 255

His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val 260 265 270

Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 275 280 285

Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu 290 295 300

Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 305 310 315 320

49321-146.ST25.txt

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325 330 335

Pro Cys Ala Arg Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val 340 345 350

Pro Val Pro Leu Arg Xaa Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 375 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 405 410 415

Tyr Glu Gly

<210> 38

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (358)..(358)

<223> Xaa reflects Met or Leu variants

<220>

<221> misc_feature

<222> (361)..(361)

<223> Xaa can be any naturally occurring amino acid

<400> 38

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
65 75 80

Page 115

Gln	Gly	Tyr	Val	Leu 85	Ile	Ala	His	Asn	Gln 90	Val	Arg	Gln	Val	Pro 95	Leu
Gln	Arg	Leu	Arg 100	Ile `	Val	Arg	Gly	Thr 105	Gln	Leu	Phe	Glu	Asp 110	Asn	Tyr
Ala	Leu	Ala 115	Val	Leu	Asp	Asn	Gly 120	Asp	Pro	Leu	Asn	Asn 125	Thr	Thr	Pro
Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Ile	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Cys	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Сув
His	Pro	Сув 195	Ser	Pro	Met	Cys	Lys 200	Gly	Ser	Arg	Cys	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	Cys	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Сув
Ala 225	Arg	Сув	Lys	Gly	Pro 230	Leu	Pro	Thr	Asp	Cys 235	Cys	His	Glu	Gln	Сув 240
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Cys	Leu	Ala	Сув 255	Leu
His	Phe	Asn	His 260	Ser	Gly	Ile	Сув	Glu 265	Leu	His	Сув	Pro	Ala 270	Leu	Val
Thr	Tyr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr	Thr 290	Phe	Gly	Ala	Ser	Сув 295	Val	Thr	Ala	Cys	Pro 300	туг	Asn	туг	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Сув	Thr	Leu	Val	Cys 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	330	Cys je 11		Lys	Cys	Ser 335	Lys

49321-146.ST25.txt

Pro Cys Ala Arg Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val

Pro Val Pro Leu Arg Met Gln Pro Xaa Pro Ala His Pro Val Leu Ser

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg
405 410 415

Tyr Glu Gly

<210> 39

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (361)..(361)

<223> Xaa reflects Gly, Asp, Ala or Val variants

<220>

<221> misc feature

<222> (376)..(376)

<223> Xaa can be any naturally occurring amino acid

<400> 39

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys
20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80

Gln	Gly	Tyr	Val	Leu 85	Ile	Ala	His	4932 Asn	1-14 Gln 90	6.ST Val	25.t Arg	xt Gln	Val	Pro 95	Leu
Gln	Arg	Leu	Arg 100	Ile	Val	Arg	Gly	Thr 105	Gln	Leu	Phe	Glu	Asp 110	Asn	Tyr
Ala	Leu	Ala 115	Val	Leu	Asp	Asn	Gly 120	Asp	Pro	Leu	Asn	Asn 125	Thr	Thr	Pro
Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Ile	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Cys	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Cys
His	Pro	Сув 195	Ser	Pro	Met	Cys	Lys 200	Gly	Ser	Arg	Cys	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	Сув	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Сув 220	Ala	Gly	Gly	Cys
Ala 225	Arg	Cys	Lys	Gly	Pro 230	Leu	Pro	Thr	Asp	Cys 235	Cys	His	Glu	Gln	Cys 240
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Cys	Leu	Ala	Cys 255	Leu
His	Phe	Asn	His 260	Ser	Gly	Ile	Суѕ	Glu 265	Leu	His	Сув	Pro	Ala 270	Leu	Val
Thr	Tyr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr	Thr 290	Phe	Gly	Ala	Ser	Cys 295	Val	Thr	Ala	Cys	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Cys	Thr	Leu	Val	Cys 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg 330	Сув	Glu	ГÀЗ	Сув	Ser 335	ГÀв

Pro Cys Ala Arg Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val 340 345 350

Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365

Phe Leu Arg Pro Ser Trp Asp Xaa Val Ser Ala Phe Tyr Ser Leu Pro 370 375 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 405 410 415

Tyr Glu Gly

<210> 40

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (371)...(371)

<223> Xaa reflects Arg or Ile variants

<220>

<221> misc_feature

<222> (394)..(394)

<223> Xaa can be any naturally occurring amino acid

<400> 40

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95 Page 119

1

49321-146.ST25.txt

Gln	Arg	Leu	Arg 100	Ile	Val	Arg	Gly	Thr 105	Gln	Leu	Phe	Glu	Asp 110	Asn	Tyr
Ala	Leu	Ala 115	Val	Leu	Asp	Asn	Gly 120	Asp	Pro	Leu	Asn	Asn 125	Thr	Thr	Pro
Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Ile	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Cys	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Сув
His	Pro	Cys 195	Ser	Pro	Met	Сув	Lys 200	Gly	Ser	Arg	Cys	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	Cys	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Сув 220	Ala	Gly	Gly	Сув
Ala 225	Arg	Сув	Lys	Gly	Pro 230	Leu	Pro	Thr	Asp	Cys 235	Cys	His	Glu	Gln	Cys 240
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Cys	Leu	Ala	Cys 255	Leu
His	Phe	Asn	His 260	Ser	Gly	Ile	Сув	Glu 265	Leu	His	Cys	Pro	Ala 270	Leu	Val
Thr	Tyr	Asn 275	Thr	Ąsp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr	Thr 290	Phe	Gly	Ala	Ser	Cys 295	Val	Thr	Ala	Сув	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Сув	Thr	Leu	Val	Cys 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg 330	Cys	Glu	Lys	Cys	Ser 335	Lys
Pro	Cys	Ala	Arg 340	Gly	Thr	His	Ser	Leu 345		Pro e 12		Pro	Ala 350	Ala	Val

49321-146.ST25.txt

Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Xaa Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 405 410 415

Tyr Glu Gly

<210> 41

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (376)..(376)

<223> Xaa reflects Leu or Ile variants

<220>

<221> misc_feature

<222> (404)..(404)

<223> Xaa can be any naturally occurring amino acid

<400> 41

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95

							•			- 0"		·-	•		
Gln	Arg	Leu	Arg 100	Ile	Val	Arg	Gly	4932 Thr 105	Gln	6.SI Leu	Phe	Glu	Asp 110	Asn	Tyr
Ala	Leu	Ala 115	Val	Leu	Asp	Asn	Gly 120	Asp	Pro	Leu	Asn	Asn 125	Thr	Thr	Pro
Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Ile	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Суз	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Àsn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Cys
His	Pro	Сув 195	Ser	Pro	Met	Сув	Lys 200	Gly	Ser	Arg	Сув	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	Сув	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Сув
Ala 225	Arg	Сув	Lys	Gly	Pro 230	Leu	Pro	Thr	Asp	Cys 235	Cys	His	Glu	Gln	Cys 240
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Cys	Leu	Ala	Сув 255	Lev
His	Phe	Asn	His 260	Ser	Gly	Ile	Cys	Glu 265	Leu	His	Суѕ	Pro	Ala 270	Leu	Val
Thr	туг	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arc
Tyr	Thr 290	Phe	Gly	Ala	Ser	Cys 295	Val	Thr	Ala	Суѕ	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Cys	Thr	Leu	Val	Cys 315	Pro	Leu	His	Asn	Glr 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg	Сув	Glu	Lys	Cys	Ser 335	Lys

Pro Cys Ala Arg Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val 340 345 350

49321-146.ST25.txt

Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 375 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Xaa Asp Pro Asp Ala His Val Ala Val Asp Leu Ser Arg 405 410 415

Tyr Glu Gly

<210> 42

<211> 419

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (394)..(394)

<223> Xaa reflects Pro or Arg variants

<220>

<221> misc feature

<222> (413)..(413)

<223> Xaa can be any naturally occurring amino acid

<400> 42

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95

Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105 110

49321-146.ST25.txt

Ala Leu Ala	Val Leu	Asp As	n Gly	Asp	Pro	Leu	Asn	Asn	Thr	Thr	Pro
115			120					125			

- Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 130 135 140
- Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 145 150 155 160
- Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 170 175
- Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 185 190
- His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 205
- Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 210 . 215 220
- Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys 225 230 235 240
- Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu 245 250 255
- His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val
- Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 275 280 285
- Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu 290 295 300
- Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 305 310 315 320
- Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325 330 335
- Pro Cys Ala Arg Gly Thr His Ser Leu Pro Pro Arg Pro Ala Ala Val 340 345 350
- Pro Val Pro Leu Arg Met Gln Pro Gly Pro Ala His Pro Val Leu Ser 355 360 365 Page 124

PCT/US2005/035961

49321-146.ST25.txt

Phe Leu Arg Pro Ser Trp Asp Leu Val Ser Ala Phe Tyr Ser Leu Pro 370 380

Leu Ala Pro Leu Ser Pro Thr Ser Val Pro Ile Ser Pro Val Ser Val 385 390 395 400

Gly Arg Gly Pro Asp Pro Asp Ala His Val Ala Val Xaa Leu Ser Arg 405 410 415

Tyr Glu Gly