多成分锚泊线系统分析

摘要

本文建立起了多成分系泊系统的静力学模型,求解出给定环境下的系统各参数,并且设计优化出较好的系泊系统,使其能在复杂多变的环境中保持系统各指标的相对稳定。

对于问题一,本文运用静力学分析将系泊系统分为浮标、钢管、钢桶和重物球、锚链四个成分,对每个成分列出了受力平衡方程和力矩平衡方程。利用 MATLAB 软件编程求解出风速为 12m/s 和 24m/s 时钢桶与竖直方向角度分别为 1.00°和 3.85°。当风速为 12m/s 时,从第 1 节锚链到第 145 节锚链处于悬挂状态,从第 146 节锚链开始沉到海床,当风速为 24m/s 时,锚链全部处于悬挂状态且恰好不沉到海床。

对于问题二,首先利用问题一的模型求解出风速为 36m/s 时,钢桶与竖直方向角度为 8.07°, 锚链在锚点与海床的夹角为 18.01°。考虑到 MATLAB 软件求解时间较长,本文推导了基于锚链 微元的锚链线微分方程,并且与问题一的模型进行了比较。在求解重物球质量时,我们利用钢桶的倾斜角和锚链在锚点与海床夹角的约束条件得到了重物球质量最小值的下限 1781kg;利用浮标的吃水深度的约束条件,得到了重物球质量最大值的上限 3630kg。本文在此基础上构造了评价函数,确定出使钢桶的倾斜角,锚链在锚点与海床夹角和浮标的吃水深度三者达到最优时重物球质量 2920kg。

对于问题三,在问题一模型的基础上增加考虑水流力的作用,建立出 6 输入参数、4 输出参数的映射系统,然后设计了 80 组系统参数在 4 种环境下的仿真实验。通过约束钢桶的倾斜角、锚链在锚点与海床夹角、浮标的吃水深度,得到了在该布放点处系泊系统的最优参数:重物球质量 3000kg、锚链类型 III、锚链长度 26m。

本文优点在于将复杂的多成分锚泊线系统分解为四个成分,分析出系统内的每个物体的空间位置及其受力状态,尤其对每节锚链实现细致的静力分析,缺点在于计算量较大,计算机求解时间略长。为了简化计算,本文尝试将锚链连续化,推导出锚链的连续模型,然后对二者进行了定量比较。在对重物球质量的最优化上,创造性地构造出评价函数,进而求出综合考虑多个条件后的最优重物球质量。

关键词: 系泊系统: 静力分析: 悬链线: 悬链线方程

1 问题重述

1.1 引言

图 1 为系泊系统的简化模型。其物理实体对应的字母已在图中标出。浮标 a 可简化为底面直径 2m、高 2m 的圆柱体,浮标的质量为 1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为 600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共 4 节,每节长度 1m,直径为 50mm,每节钢管的质量为 10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过 16 度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长 1m、外径 30cm 的密封圆柱形钢桶内,设备和钢桶总质量为 100kg。钢桶上接第 4 节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过 5 度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图 1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)

系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

已知近海风荷载和近海水流力的近似公式,以及锚链型号和参数表。

1.2 问题的提出

为了更加完善多成分锚泊线系统的设计,本文依次解决以下问题。

- (1) 某型传输节点选用 II 型电焊锚链 22.05m,选用的重物球的质量为 1200kg。现将该型传输节点布放在水深 18m、海床平坦、海水密度为 1.025×103kg/m3 的海域。若海水静止,分别计算海面风速为 12m/s 和 24m/s 时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
- (2) 在问题 1 的假设下, 计算海面风速为 36m/s 时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量, 使得钢桶的倾斜角度不超过 5 度, 锚链在锚点与海床的夹角不超过 16 度。
- (3)由于潮汐等因素的影响,布放海域的实测水深介于 16m²0m 之间。布放点的海水速度最大可达到 1.5m/s、风速最大可达到 36m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

2 问题分析

本文采用多成分锚泊线静力分析法将系泊系统分为如下四个成分。

(1) 浮标

钢管上设置的浮力器件,其主要作用除提供浮力之外还包括支持钢管、钢桶、重物 及锚链的重量。在悬链锚泊线上配置浮标优点是可以有效地减少锚泊线的动力张力,缺点是浮标 位移较大。

(2) 钢管

在海洋工程中钢管多采用高强度钢制成,强度高并且耐久性好。本题钢管用于连接浮标和钢桶,一共四节,本文当作标准圆柱体处理。

(3) 钢桶和重物球

钢桶用于封装水声通讯系统,设置重物球目的在于控制控制钢桶的倾斜角度。二者密切相关,本文将钢桶和重物球视为一个整体进行分析。

(4) 锚链

锚链选用无档普通链环,每环受力情况不同,本文将对每环分别进行受力分析。

本文将物体受力正交分解到平面直角坐标系上,规定向右为横坐标正方向,向上为纵坐标正方向。

3 模型假设

- 1) 假设浮标不发生倾斜
- 2) 假设钢管、钢桶和锚链等受力不超过断裂极限值
- 3) 假设浮标、钢管、钢桶、重物球和锚链均为密度分布均匀的刚体
- 4) 假设浮标、钢管、钢桶、重物球和锚链等连接处连续无空隙,对计算不产生影响
- 5) 假设浮标、钢管、钢桶、重物球和锚链等等处于稳态条件,不考虑动力响应

4 符号说明

符号	中文名称	单位
A	浮标	
$b_{\rm i}$	第i节钢管	
С	钢桶	
D	重物球	
$e_{\scriptscriptstyle \rm j}$	第 j 节锚链	
F	锚	
M	质量	kg
Н	浮标的吃水深度	m
G	重力加速度	m/s^2
ρ _液	海水密度	kg/m^3
V _排	排水体积	\mathbf{m}^3
S	浮标 a 在风向法平面投影面积	m^2
V	风速	m/s

K	锚泊线系统某一成分。可以代表浮标 a, 钢管 b _i ,钢桶 c 和重物球 d 以及锚链 e _i	
k'	锚泊线系统中与 K 相连的成分。可以代表 浮标 a, 钢管 bi, 钢桶 c 和重物球 d 以及 锚链 ej	
$F_{\rm kg}$	k 成分的重力	N
$F_{\rm kfu}$	k 成分的浮力	N
$F_{\rm kk'x}$	成分 K 收到成分 K'在 x 轴方向的分力	N
$F_{kk'y}$	成分 K 收到成分 K'在 y 轴方向的分力	N

其中 i=1, 2, 3, 4: i=1, 2, ···, n (n 为锚链总节数)

5 模型建立和求解

首先介绍经典物理公式和题目已知方程,以下方程在结题过程中直接使用,无需证明。浮力方程

$$F_{kfu} = \rho_{ik} g v_{ik} \tag{1}$$

重力方程

$$F = mg (2)$$

式中 m 为质量, g 为重力加速度, 本文中 g= 9.8 m/s² 近海风荷载可通过近似公式

$$F = 0.625 \times sv^2 \tag{3}$$

其中 S 为物体在风向法平面的投影面积, v 为风速 近海水流力可通过近似公式

$$F = 374 \times sv^2 \tag{4}$$

S投影面积方程

$$s = d \times (h' - h) \tag{5}$$

式中 d 为浮标直径, h 为浮标总高度, h 为浮标吃水深度

5.1 问题一

(1) 问题分析

首先分别对以上四个成分进行静力分析,得出钢桶和各节钢管的倾斜角度、每环锚链倾斜角度关于浮标吃水深度的方程组,利用 MATLAB 编程求解出浮标吃水深度。再将浮标吃水深度带入方程组,解出钢桶和各节钢管的倾斜角度、每环锚链倾斜角度。由浮标在海面到达的最远位置列出受力平衡条件,求得浮标的游动区域。

- (2) 模型一的建立
- 1) 浮标 a 的受力分析和平衡方程

图 2 浮标 a 的静力图

图中表示浮标 a 受到重力 F_{ag} ,浮力 F_{afu} ,风力在 x 轴方向的分力 F_{feng} ,钢管 b_1 在 y 轴方向的分力 F_{ay} 和钢管 b_1 在 x 轴方向的分力 F_{ax} 。

由浮标 a 受力平衡条件知:

$$\begin{cases} F_{ax} + F_{feng} = 0 \\ F_{ay} + F_{afu} - F_{ag} = 0 \end{cases}$$
 (6)

2) 第 i 节钢管的受力分析和平衡方程

图 3 第 i 节钢管的静力图

首先分析每节钢管的上端。当 i=1,即第 1 节钢管 b_1 上一个连接成分为浮标 a,因此 F_{biy} 表示 b_1 受到浮标 a 在 y 轴方向的分力, F_{bix} 表示 b_1 受到浮标 a 在 x 轴方向的分力;当 i=2, 3, 4 时,即第 i 节钢管上一个连接成分为第 i-1 节钢管,因此 F_{biy} 为第 i 节钢管受到第 i-1 节钢管在 y 轴方向的分力, F_{bix} 为第 i 节钢管受到第 i-1 节钢管在 x 轴方向的分力。

其次分析每节钢管的下端。当 i=1,2,3 时,即第 i 节钢管下一个连接成分为第 i+1 节钢管,因此 F_{biv} 为第 i 节钢管受到第 i+1 节钢管在 y 轴方向的分力, F_{bix} 为第 i 节钢管受到第 i+1 节钢

管在 x 轴方向的分力; 当 i=4 时,即第 4 节钢管下一个连接成分为钢桶 c 和重物球 d,因此 F_{biy} 为第 4 节钢管受到钢桶 c 和重物球 d 在 y 轴方向的分力, F_{bix} 第 4 节钢管受到钢桶 c 和重物球 d 在 x 轴方向的分力。

最后分析每节钢管的浮力 F_{bfu}重力 F_{bg}。

图 3 中 t_i 为第 i 节钢管与 x 轴的夹角。

确定了受力分析后,由第 i 节钢管受力平衡和力矩平衡条件可得:

$$\begin{cases} F_{bix} + F_{bix_{-}} = 0 \\ F_{biy} + F_{biy_{-}} + F_{bfu} - F_{bg} = 0 \\ F_{bix_{-}} \times \sin(t_{i}) + F_{biy} \times \cos(t_{i}) - F_{biy_{-}} \times \cos(t_{i}) - F_{bix} \times \sin(t_{i}) = 0 \end{cases}$$
(7)

在第 i 节钢管与前后成分连接处应用牛顿第三方程可得:

i = 1

$$\begin{cases} F_{b1x_{-}} = -F_{ax} \\ F_{b1y_{-}} = -F_{ay} \end{cases}$$
 (8)

i = 2, 3, 4

$$\begin{cases} F_{bix_{-}} = -F_{b(i-1)x} \\ F_{biy} = -F_{b(i-1)y} \end{cases}$$
 (9)

3) 钢桶 c 和重物球 d 整体的受力分析和平衡方程 已知钢桶 c 和重物球 d 关系密不可分,故将二者作为一个整体研究。

图 4 钢桶 c 和重物球 d 的静力图

首先分析该整体的上端。钢桶 c 和重物球 d 上一个连接成分为第 4 节钢管 b_4 ,因此 F_{cdy} 为整体受到 b_4 在 y 轴方向的分力, F_{cdx} 为整体受到 b_4 在 x 轴方向的分力。

其次分析该整体的下端。钢桶 c 和重物球 d 下一个连接成分为锚链 e_1 ,因此 F_{cdy} 为整体受到锚链 e_1 在 y 轴方向的分力, F_{cdx} 为整体受到锚链 e_1 在 x 轴方向的分力。

最后, F_{cfu} 和 F_{cg} 分别表示钢桶 c 的浮力和重力, F_{dg} 为重物球 d 的重力。由于题目未给出重物球 d 的体积,其浮力忽律不计。

t_{cd}为该整体与 x 轴的夹角。

钢桶 c 和重物球 d 整体受力平衡和力矩平衡条件如下:

$$\begin{cases} F_{cdx} + F_{cdx} = 0 \\ F_{cdy} + F_{cfu} + F_{cdy} - F_{cg} - F_{dg} = 0 \\ (F_{cg} - F_{cfu}) \times \cos(t_{cd}) + 2 F_{cdx} \times \sin(t_{cd}) - 2 F_{cdy} \times \cos(t_{cd}) = 0 \end{cases}$$
(10)

考虑该整体对其他成分的作用力与反作用力,由牛顿第三定律可知:

$$\begin{cases} F_{cdx_{-}} = -F_{b4x} \\ F_{cy} = -F_{b4y} \end{cases}$$
 (11)

4) 第 i 节锚链的受力分析和平衡方程

图 5 第 j 节锚链的静力图

首先分析每节锚链的上端。记锚链总节数为 n。当 j=1 时,即第 1 节锚链 e_1 上一个连接成分为钢桶 c 和重物球 d 整体,因此 Fe_j y_表示第 1 节锚链受到钢桶和重物球在 y 轴方向的分力, Fe_j x_表示第 1 节锚链受到钢桶和重物球在 x 轴方向的分力;当 j=2,3,…, jn 时,即第 j 节锚链 e_j 上一个连接成分为第 j-1 节锚链,因此 F_{e_j} 为第 j 节锚链受到第 j-1 节锚链 在 y 轴方向的分力, F_{e_i} 为第 j 节锚链受到第 j-1 节锚链在 x 轴方向的分力。

其次分析每节锚链的下端。当 $j=1,2,\cdots$, j_{n-1} 时,即第 j 节锚链 e_j 下一个连接成分为第 j+1 节锚链,因此 $F_{e_j x}$ 为第 j 节锚链受到第 j+1 节锚链在 y 轴方向的分力, $F_{e_j x}$ 为第 j 节锚链受到第 j+1 节锚链在 x 轴方向的分力,当 j=n 时,第 n 节锚链 e_n 下一个连接成分为锚,因此 $Fe_j y$ 表示第 n 节锚链受到锚在 y 轴方向的分力, $Fe_j x$ 表示第 n 节锚链受到锚在 x 轴方向的分力。

第 j 节锚链还受到自身重力 Feg。图中 t_i为第 j 节锚链与 x 轴的夹角。

第 i 节锚链的受力平衡和力矩平衡方程如下:

$$\begin{cases} F_{ejx} + F_{ejx_{-}} = 0 \\ F_{ejy} + F_{ejy_{-}} + F_{efu} - F_{eg} = 0 \\ F_{ejx} \times \sin(t_{j}) + F_{ejy_{-}} \times \cos(t_{j}) - F_{ejy} \times \cos(t_{j}) - F_{ejy_{-}} \times \sin(t_{j}) = 0 \end{cases}$$
(12)

在第 j 节锚链的上端和下端运用牛顿第三定律可得:

$$j = 1$$

$$\begin{cases} F_{elx_{-}} = -F_{cdx} \\ F_{ely_{-}} = -F_{cdy} \end{cases}$$
 (13)

j = 2 : n

$$\begin{cases} F_{ejx_{-}} = -F_{e(j-1)x} \\ F_{ejy_{-}} = -F_{e(j-1)y} \end{cases}$$
 (14)

(3) 模型一的求解

下图展示了将以上方程组在 MATLAB 中的求解过程。

图 6 MATLAB 程序流程图

图 6 表示了浮标的吃水深度 h 到水深 H 的映射关系。在程序的实际计算中,已知水深 H 等于 18m,可以先解出 h 值。再根据 h 和系统各成分之间的力学方程,求解出浮标、钢管、钢桶、锚链等成分的倾角及受力状态。

游动区域最大半径为所有钢管、钢桶、锚链长度在 x 轴的投影, 计算公式为:

$$r = \sum_{i=1}^{4} l_{bi} \times \cos(t_i) + l_c \times \cos(t_{cd}) + \sum_{i=1}^{n} l_{ei} \times \cos(t_i)$$
 (15)

式中 r 表示游动区域最大半径, l_{bi} 、 l_{c} 和 l_{ej} 分别表示第 i 节钢管的长度、钢桶 c 的长度和 第 j 节锚链的长度。

(3) 结果分析

表 1 问题 1 各物理量的值

比较变量风速	钢桶倾 斜角度	第1节钢管倾斜角	第2节钢管倾斜角	第3节钢 管倾斜角	第4节钢管倾斜角	浮标的 吃水深度 (m)	游动区域 最大半径 (m)
12 m/s	1.0083	0.9774	0.9832	0.9890	0. 9949	0. 7348	14. 3052
24 m/s	3.8498	3.7360	3.7572	3.7787	3.8005	0.7489	17. 4255

表 1 的倾斜角度为该成分与 y 轴夹角 (°)。两种风速下的锚链形状如下图所示。

图 7 风速为 12 m/s 和 24 m/s 时多成分锚泊线系统示意图

图 7 以锚作为原点,曲线 1 和曲线 2 分别代表了为风速为 12m/s 和 24m/s 时锚链的形状示意图。问题 1 已知锚链总长度 22.05m,选用的 II 型锚链每节长度 105 mm,可以求出锚链总共 210节。

当风速为 12m/s 时,第 1 节锚链与 x 轴夹角为 77.6603°,此后的锚链与 x 轴夹角逐渐减小,从第 146 节锚链开始,至第 210 节锚链与 x 轴夹角均为 0°。其实际含义是,第 1 节锚链至第 145 节锚链均处于悬挂状态,而从第 146 节锚链至第 210 节锚链均沉到海床上,处于水平状态。

当风速为 24m/s 时,第 1 节锚链与 x 轴夹角为 58.8001°,此后的锚链与 x 轴夹角逐渐减小,从第 208 节锚链开始,至第 210 节锚链与 x 轴夹角均为 0°。由于 MATLAB 计算存在微小误差,可以近似理解成第 208 和 209 节锚链与 x 轴夹角有很小的角度,仍然处于悬挂状态。从锚链整体来看,风速为 24m/s 时锚链全部处于悬挂状态且恰好不沉到海床。

5.2 问题二

(1) 问题分析

在问题1的假设下,问题2包含两个子问题。

- 1) 要求风速为 36m/s 时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。 其静力分析过程与模型一完全相同,可以直接使用模型一的解题思路。将风速 36m/s 带入模型一的 MATLAB 程序中求解。
- 2)要求调节重物球质量 m 使其满足钢桶的倾斜角度不超过 5 度,锚链在锚点与海床的夹角不超过 16 度及其他隐含条件。

(2) 应用模型一

表 2 问题 2 各物理量的值

比较变量风速	钢桶倾斜 角度	第1节钢管 倾斜角	第2节钢管 倾斜角	第3节钢管倾斜角	第4节钢管 倾斜角	吃水深度 (m)	游动区域最 大半径(m)
36 m/s	8. 0708	7. 8454	7. 8876	7. 9302	7. 9733	0. 7700	18. 7256

表 2 的倾斜角度为该成分与 y 轴夹角 (°)。风速为 36 m/s 时锚链形状如下图所示。

图 8 风速为 36m/s 时多成分锚泊线系统示意图

风速为 36m/s 时,第 1 节锚链与 x 轴夹角为 47.2198° ,第 210 节锚链与 x 轴夹角为 18.0107° 。

(3) 模型二的建立

本文计算风速为 12m/s 和 24m/s 时各物理量用时约为 42s, 主要原因是将整条锚链分为 210 节, MATLAB 迭代解方程组比较耗时。考虑到调节重物球质量需要较大计算量,因此设计模型二的锚链线微分方程,希望减少运算时间,达到优化算法的目的。图 N 是对锚链微元进行静力学分析。

图 9 锚链微元的受力分析

如图所示为锚链微元静力图^[1],其中 F_{eg} 是锚链单位长度重量, dl_{ej} 为锚链微元长度,T 为锚链微元下端张力,dT 为张力在 dl_{ej} 上的增量, t_j 为 T 的方向(锚链微元下端的切线方向)与水平线的夹角, dt_j 为 t_j 在 dl_{ej} 上的增量。受力分析沿水平与垂直方向建立平衡方程,可得:

$$\begin{cases} (T+dT)\cos(t_{j}+dt_{j}) - T\cos(t_{j}) = 0\\ (T+dT)\sin(t_{j}+dt_{j}) - T\sin(t_{j}) - F_{eg} dl_{ej} = 0 \end{cases}$$
 (16)

将其展开并同时考虑到当 dt_i 为极小量时, $cos(dt_i) \approx 1$ 和 $sin(dt_i) \approx dt_i$, 以及忽略含二阶微量的项, 简化得到:

$$\begin{cases} T \sin(t_j) dt_j - \cos(t_j) dT = 0 \\ T\cos(t_j) dt_j + \sin(t_j) dT - F_{eg} dl_{ej} = 0 \end{cases}$$
(17)

由方程组(17)可得:

$$\begin{cases} Tdt_j = F_{eg} \cos(t_j) dl_{ej} \\ dT = F_{eg} \sin(t_j) dl_{ej} \end{cases}$$
(18)

又

$$\begin{cases} dx = \cos(t_j) dl_{ej} \\ dy = \sin(t_j) dl_{ej} \end{cases}$$
(19)

根据(18),(19)式在锚链链 ab 上积分,且

$$T_0 = T_a \cos(t_{ja}) = T_b \cos(t_{jb})$$
 (20)

式中 Ta, t ja 与 Tb, t jb 为悬垂线段 ab 两段的张力及其倾角 (见图)。T0 为 Ta, Tb 的水平分量,ab 长为 L, a 端与 b 端的垂直距离为 y, 水平距离为 x。

图 10 锚链受力分析图

$$dT = F_{eg} dy (21)$$

积分后可得:

$$T_b = T_a + F_{\rho\sigma} y \tag{22}$$

由于 T=T₀/cos(t_i), 根据式子得:

$$dy = (T_0 / F_{eg})(\sin(t_i) / \cos^2(t_i)) dt_i$$
 (23)

因(T₀/F_{eg})在积分范围内为常量,积分后可得到:

$$y = (T_0 / F_{eg})(\sqrt{\tan^2(t_{jb}) + 1} - \sqrt{\tan^2(t_{ja}) + 1})$$
(24)

除此之外

$$dx = (T_0 / F_{eg})(1/\cos(t_i)) dt_i$$
 (25)

$$dl = (T_0 / F_{\rho\sigma})(1/\cos^2(t_i)) dt_i$$
 (26)

积分可得

$$x = (T_0 / F_{eg}) \left[\sinh^{-1}(\tan(t_{jb})) - \sinh^{-1}(\tan(t_{ja})) \right]$$
 (27)

$$L = (T_0 / F_{eg})(\tan(t_{ih}) - \tan(t_{ia}))$$
(28)

至此我们得到了锚链各物理量之间的微分方程。

(4) 模型二与模型一的比较

模型二的锚链线微分方程在 MATLAB 中运行时间约 2s 左右。模型二相比与模型一虽然显著地减少了运行时间,但是否能用模型二代替模型一进行问题 2 的求解,取决于两个模型的相对误差,定义式(29)。将锚链从系泊系统中隔离出来,在其他条件不变的情况下,改变锚链上端张力,研究模型一与模型二拟合值的相对误差^[2]。

$$error = \frac{\left| A_2 - A_1 \right|}{A_1} \tag{29}$$

其中 error 表示相对误差,A 可以表示第 n 个锚链与海平面夹角 t_n 、锚链长度在 x 轴的投影长度 X 和锚链长度在 y 轴的投影长度 Y。 A_2 表示由模型二计算得到的物理量, A_1 表示由模型一得到的物理量。

_	• • •	1 10			4 11 1 1	2		4 // / / 4 // / 4	, , , , , , , , , , , , , , , , , , ,	1111	*
_	锚链上端 水平拉力 (N)	锚链上端 竖直拉力 (N)	X ₁ (m)	X ₂ (m)	error _x (m)	Y ₁ (m)	Y ₂ (m)	$error_y$	t_{n1}	t_{n2}	$\operatorname{error}_{\operatorname{tn}}$
_	1850	3500	10.49	12.44	0.16	19.40	18. 13	0.07	1.07	0.82	0.30
	1850	4000	9.41	11.02	0.15	19.94	19.06	0.05	1.12	0.93	0.20
	1850	4500	8.51	9.84	0.14	20.34	19.70	0.03	1.17	1.02	0.15
	1900	3500	10.70	12.66	0.15	19.28	17.97	0.07	1.05	0.81	0.30
	1900	4000	9.61	11.24	0.14	19.84	18.93	0.05	1.11	0.92	0.21
	1900	4500	8.70	10.05	0.13	20.26	19.60	0.03	1.16	1.00	0.15
	1950	3500	10.92	12.88	0.15	19. 16	17.82	0.08	1.04	0.80	0.31
	1950	4000	9.82	11.45	0.14	19.74	18.80	0.05	1.10	0.91	0.21
_	1950	4500	8.90	10.26	0.13	20.18	19.49	0.04	1.15	0.99	0.16

表 3 模型一和模型二锚链长度在 x 轴和 v 轴、锚点与海床夹角的值和相对误差

从表 3 可以看出模型二与模型一相对误差较大。其原因是,本文使用的无档普通环链任意两节连接处切线方向偏离较大。所以锚链更符合模型一的离散化处理,即将每节锚链迭代计算; 若采用模型二的连续化处理,即将锚链元连续化积分,计算误差较大。

模型二实质是理论上对锚链线的计算方法,与本题实际情况并不符合,为减小误差,下文将不再考虑模型二的情况。

(5) 应用模型一

调节重物球 d 质量 m,使得钢桶 c 的倾斜角度不超过 5 度,锚链 en 在锚点与海床夹角不超过 16 度。

记钢桶与 y 轴的夹角为 t_{cy} ,锚链 e_n 在锚点与海床的夹角为 t_n 。 t_{cy} 不超过 5 度且 t_n 不超过 16 度。由系泊系统的物理学意义知,重物球质量 m 越大,锚链 e_n 在锚点与海床的夹角 t_n 越小,钢桶 c 的倾斜角度 t_{cy} 越小,浮标 a 的吃水深度 h 越大,即在定义区间上 m 与 t_n 、 t_{cy} 呈单调负相关关系,m 与 h 呈单调负相关关系。下面给出重物球质量 m 上下限的求解过程。

1) 确定重物球质量 m 下限的范围

记满足条件的重物球最小质量为 m_{min} 。假设在极端情况下 $m_{min} \rightarrow 0$,tn 大于 16° 且 t_{cy} 大于 5°,因此 m_{min} 要大于某临界值, m_{min} 的约束方程为:

$$\begin{cases} t_n \le 16^{\circ} \\ t_{cy} \le 5^{\circ} \end{cases} \tag{30}$$

由表 N-1 可得,当风速为 36m/s,重物球质量 1200kg 时, t_n 约为 18° 大于 16° , t_{cy} 约为 8° 大于 5° ,不符合条件。若要满足约束方程,则 m_{min} 应大于 1200kg。然后增加 m_{min} 的取值,分别带入模型一中 MATLAB 编程求解,可以得到对应的 t_n 、 t_{cy} 和 h 值,如表 4 所示。

表 4 不同	m _{min} 对应的 t _n 、t _{cy} 和 h 值	
在锚点与	钢桶的倾斜角度 t _{cy}	

重物球质量	锚链在锚点与 海床的夹角 t _n (°)	钢桶的倾斜角度 t _{cy}	浮标的吃水深度 h
(kg)	海外的类用 L _n ()		(m)
1200	18.0107	8.0708	0.7700
2000	12.8850	4. 2461	1.0096
3000	2.7242	2.0581	1.3102
4000	0.0000	0.8888	1.6112

表 4 显示,由于 tn和 tcy 关于 m的函数具有单调性, mmn 取值在 1200kg 和 2000kg 之间。

2) 确定重物球质量 m 上限的范围

记满足条件的重物球最小质量为 m_{max}。假设在极端情况下 m_{max}→∞, 浮标全部沉入海平面, 不符合题意。因此 max 要小于某临界值, max 的约束方程为:

$$h \le \alpha \times h$$
 (31)

其中, h 为浮标总高度, h 为浮标吃水深度, α 为工程上对浮标最大吃水深度占总高度的 比值,本文取值为0.75。

由式(31)知h取值应小于等于1.5m。表N显示,由于h关于m的函数具有单调性,当满足 式(31)时, m_{max}取值在3000kg和4000kg之间。

3) 利用离散点求 t_n、t_{cv}和 h 关于 m 的拟合方程

重物球质量 m 在 1200kg 至 4000kg 的区间上,从 m=1200kg 开始取值,每隔 100kg 取值,最 后取值到 m=4000kg, 共29 个 m 值, 分别输入模型一的程序中, 得到对应的 t_n、t_{cv}和 h。经 matlab 多项式拟合残差模分别为 $1.6122e^{-3}$, $7.6752e^{-7}$, $3.59e^{-3}$, 说明拟合方程残差很小, 拟合效果较好。 多项式次数分别为九次、六次、一次、拟合方程系数见附录。

4) 利用拟合方程求 mmin 和 mmax

方程组(30)取等号时求得 main 的一个下限值为 1781kg,另一个下限值为 1546kg。因为 main 要同时满足这两个下限值, 所以 main 值为 1781kg。

同理, 求得 m_{max} 值为 3630kg。

至此已经得出重物球质量 m 范围在 1781kg 和 3630kg 之间。

当 m \in (1781kg, 3630 kg) 时, $t_n \in$ (0°, 14.46°), $t_{cv} \in$ (1.25°, 5°), $h \in$ (0.95m, 1.5m) .

5)建立评价函数确优化 m 值

记 f (m) 为 m 的评价函数, 表达式为:

$$f(m) = \sqrt{\frac{(16 - t_{cy})}{s_{tn}} \cdot \frac{(5 - t_n)}{s_{tcy}}} \times \frac{1.5 - h}{s_h}$$
 (32)

其中 S_{tn} 、 S_{tcy} 和 S_h 分别为 t_n 、 t_{cy} 和 h 的区间长度。

该评价函数定性上符合 t_n 、t_{cy}、h 对优化 m 的影响, f (m) 的值越大说明该 m 的得分越 高,即该 m 较优。当 $t_n=5$ °或 $t_{cv}=16$ °或 $t_n=1.5$ m 时 t(m)=0,此时三个约束条件达到临界值, 这样的 m 是最差的, 评价函数值为 0 符合对问题的定性认识。为求得 f (m) 的最大值, 对 m 求 导,得出 m=2920kg 时, t_n, t_{cv}和 h 三者达到最优。

(6) 结果分析

实际中重物球会受到海水腐蚀等其他环境因素的影响,其质量会发生改变,所以有必要对

结果做敏感性分析。

当 m=2920kg, 我们进行结果分析即敏感性分析。敏感性分析是指从定量分析的角度研究有关因素发生某种变化对某一个或一组关键指标影响程度的一种不确定分析技术^[3]。其实质是通过逐一改变相关变量数值的方法来解释关键指标受这些因素变动影响大小的规律。其公式如下:

$$S(y,m) = \left| \frac{dy}{dm} \cdot \frac{m}{y} \right| \tag{33}$$

其中 y 代表 t_n 、 t_{cy} 和 h 关于 m 的函数。在 m=2920 点出求导进行灵敏度分析可得,当 m 变化 1%时,h 值变化 0.68%, t_n 值变化 9.80%, t_{cy} 值变化 2.16%。可以看出, t_n 受 m 的变化影响较大,其次是 t_{cy} ,最次是 h。 t_n 受 m 的变化影响较大意味着当 m 质量变小时(如受海水腐蚀), t_n 有可能超过 16°,即锚有可能被提起,所以建议在海水含盐量高区域建立系泊系统时,采用抗腐蚀性高的材料制作重物球,以提高系泊系统的稳定性[4]。

5.3 问题三

(1) 问题分析

在模型一的基础上,增加考虑水流力的作用,建立起 6 输入参数、4 输出参数的映射系统。其中输出参数为浮标的水深度 Y_1 、浮标游动区域半径 Y_2 、锚泊线末端倾斜角度 Y_3 、钢桶倾斜角度 Y_4 等尽可能小。输入参数可分为两类:环境因素(海面风速 X_1 、海水深度 X_2 、海水流速 X_3)、系泊系统参数(重物球的质量 X_4 、锚链的型号 X_5 、锚链的长度 X_6)。

系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度、锚链在锚点与海床的夹角、钢桶的倾斜角度尽可能小,但是系泊系统所处的环境变化多样,环境因素的变化会对系泊系统的各参数产生影响,所以系泊系统的设计需要考虑到风力、水流力和水深情况的变化。在本题中,布放海域的实测水深介于 16m~20m 之间。布放点的海水速度最大可达到 1.5m/s、风速最大可达到 36m/s。

本文设计了 80 个系统,对应于 80 组系统参数 (锚链的型号、长度和重物球的质量)。在四种不同环境下(高风高流潮涨、高风高流潮落、低风底流潮涨、低风底流潮落),求解出了这 80 个系统的浮标吃水深度、锚链在锚点与海床的夹角、钢桶的倾斜角度。最后得出 3 个较优解,进一步考虑入水深度后,得到 1 个最优解。该最优系泊系统抗环境变化能力强,并且在 4 种环境下均满足角度约束条件。

(2) 模型三的建立

1) 浮标 a 的受力分析和平衡方程

图 11 浮标 a 的静力图

由静力平衡方程知:

$$\begin{cases} F_{ax} + F_{feng} + F_{wat} = 0 \\ F_{ay} + F_{afu} - F_{ag} = 0 \end{cases}$$

$$(34)$$

2) 成分 k (第 i 节钢管和第 j 节锚链) 的受力分析和平衡方程

图 12 成分 k 的静力图

根据受力平衡和力矩平衡条件知:

$$\begin{cases} F_{kx} + F_{kx_{-}} + F_{wat} = 0 \\ F_{ky} + F_{ky_{-}} + F_{kfu} - F_{kg} = 0 \\ F_{kx_{-}} \times \sin \theta + F_{ky} \times \cos \theta - F_{kx} \times \cos \theta - F_{ky_{-}} \times \sin \theta = 0 \end{cases}$$

$$(35)$$

3) 钢桶 c 和重物 d 的受力分析和平衡方程

图 13 钢桶 c 和重物 d 的静力图

由受力平衡和力矩平衡条件可得:

$$\begin{cases} F_{cdx} + F_{cdx_{\perp}} + F_{wat} = 0 \\ F_{cdy} + F_{cfu} + F_{cdy_{\perp}} - F_{cg} - F_{dg} = 0 \\ F_{cg} \times \cos \theta + F_{wat} \times \sin \theta + 2F_{cdx_{\perp}} \sin \theta - 2F_{cdy_{\perp}} \times \cos \theta = 0 \end{cases}$$
(36)

与模型一类似,模型三建立起了浮标的吃水深度 h 到水深 H 的映射关系。给定水深 H 求得吃水深度 h, 进而求得系泊系统的其他各参数, 从而建立起 6 输入参数、4 输出参数的映射系统。

(4) 模型三的求解

表 5 水深、风速和流速对应不同的环境

环境	水深(m)	风速(m/s)	流速(m/s)
高风高流涨潮	20	32	1.3
高风高流潮落	16	32	1.3
低风底流涨潮	20	12	0.5
低风底流潮落	16	12	0.5

重物球质量离散的取 4 个值(1200, 2000, 3000, 4000),锚泊链型号取 5 类,锚泊链长度离散的取 4 个值(20, 22, 24, 26),这三个参数构成 80 组系泊系统参数(参数编号见附录),在 4 种不同环境下,分别对这 80 个系统求解其浮标的吃水深度、锚链在锚点与海床的夹角、钢桶的倾斜角度,求解所得数据见附录。

在 4 种不同的环境下,分别筛选出满足钢桶的倾斜角度不超过 5 度、锚链在锚点与海床的夹角不超过 16 度的系统参数,然后再取交集,得到 3 组可行的系统参数,它们在 4 种环境下均能够保持上述条件,参数编号为 52、64、72,其所代表的系统参数,见表格 6。

表 6 不同参数编号对应的重物球质量、锚泊链类型和链长

参数编号	重物球质量(kg)	锚链类型	锚链链长(m)
52	3000	III	26
64	4000	Ι	26
72	4000	III	26

若进一步考虑入水深度尽可能小,并且采用第二问中的假设,令入水深度<1.5,可得到一组最优的系泊系统参数(参数编号 52),其在 4 种情况下均能保持入水深度小于 1.5、钢桶的倾斜角度不超过 5 度、锚链在锚点与海床的夹角不超过 16 度。由此可得第 52 号参数为最优解,另外 64、72 号为次优解。

(5) 结果分析

本题粗略地考虑了环境因素的变化对系泊系统的设计的影响,给出了一个最优解,实际上在该解附近存在更好的解^[5]。

6 模型评价

从模型的建立过程来看,利用离散模型考虑到了系统中每一个物体,计算得到的结果比较精确,但是计算量很大。应用微积分知识对系统中的锚泊线进行连续化处理,经数学推导后得到连续模型,连续模型可以大大减小计算量,但是结果上与离散模型误差较大,不能实际应用于该问题。对该问题进一步的分析可以在推导连续模型时考虑锚泊线的力学性质,或者引入修正因子来消除离散问题连续化所产生的误差,本文未做这方面的工作。

在整个的静力学分析中,我们未考虑浮标的倾斜,而实际上浮标的倾斜会影响其在水中的受力,进而影响系统的一系列参数,而且也未考虑环境因素(风速、海水流速、水深)的短时变化对整个系统的动力学响应。在最后一问中,限于计算机求解时间,本文只考虑了四种环境因素的组合,实际上的环境因素变化多样,并且环境因素间的转化会对系泊系统产生冲击,系泊系统承受环境因素突变的能力如何是衡量系泊系统稳定性的重要指标。

总的来说,本文在经典牛顿力学的基础上较好的给出了该问题的解答。尤其在第二问中,考虑到要使浮标的吃水深度、锚链在锚点与海床的夹角、钢桶的倾斜角度尽可能小。我们创造性的构造出重物球质量的评价函数,以得分的高低找到了在该评价体系下的一个合适的重物球质量。

7 参考文献

- [1] 何静, FPSO 悬式锚腿系泊系统的锚系设计研究, 武汉理工大学硕士学位论文, P15-P17, 2007
- [2] 朱亚洲, 浮体锚泊线响应分析研究, 哈尔滨工程大学硕士学位论文, P21-P22, 2009
- [3] 郭飞,盛岩峰等,《浅海环境观测专用浮标和潜标锚泊系统的研究》,《海洋技术》,第 19 卷 第 2 期: P7—P12,2000 年 6 月
- [4] 王天英,《基于静特性分析的浅海新型 FPS0 多点系泊系统设计》,《中国造船》,54 卷,增刊 2:2013 年 11 月
- [5] 段文义, 张坚,《河口、 浅海 ADCP 定点海流观测资料的比较与整理》,《浙江水利科技》, 第 5 期 总第 147 期: P15—P18, 2006 年 9 月

8 附录

第一问MATLAB代码

主程序

```
c1c
clear
m=1200;%重物球质量
v=36:%风速
f=@(h) analy(h, m, v);
[h0 \text{ ef flag}]=fsolve(f, 0.75);
[wucha datab ct datae L]=analy(h0, m, v);
t1=datae(210, 3)/pi*180;
t2=90-ct/pi*180;
                                   函数analy
function [wucha datab ct datae L]=analy(h,
m, v)
%对浮块a受力分析
Ffeng=0. 625*2*(2-h)*v^2;
Fafu=1.025e3*9.8*pi*h;
Fag=1000*9.8;
Fax=-Ffeng;
Fay=Fag-Fafu;
%对钢管b1受力分析
Fbg=10*9.8; Fbfu=1.025e3*9.8*pi*(25/1000)^2;
Fb1x =-Fax;Fb1y =-Fay;%浮块a对钢管1的作用力
datab=zeros(4:3):%每根钢管的下端点受力与钢管倾角
[datab(1, 1), datab(1, 2), datab(1, 3)] = f1(Fb1x, Fb1y, Fbg, Fbfu);
%对钢管b2---b4受力分析
for i=2:4
    [datab(i, 1), datab(i, 2), datab(i, 3)] = f1(-datab(i-1, 1), -datab(i-1, 2), Fbg, Fbfu);
end
%对铁桶c与重物球d组成的整体cd受力分析
Fcdx =-datab(4, 1); Fcdy =-datab(4, 2); %4号钢管对cd的作用力
[Fcdx Fcdy ct]=f2(Fcdx, Fcdy, m); %Fcdx与Fcdy是锚链对该整体的作用力, ct是铁桶c的倾角
%对锚链链条e1受力分析
Feg=0.105*7*9.8;Fefu=0;
Felx =-Fcdx;Fely =-Fcdy;%cd整体对锚链链条el的作用力
datae=zeros(210,3):%每根链条的下端受力与链条倾角
[datae(1, 1), datae(1, 2), datae(1, 3)]=f1(Fe1x, Fe1y, Feg, Fefu);
%对锚链链条e2---e210受力分析
```

```
for i=2:210
    [datae(i, 1), datae(i, 2), datae(i, 3)]=f1(-datae(i-1, 1), -datae(i-1, 2), Feg, Fefu);
    if datae(i, 3)<0
        datae(i, 2)=0;
        datae(i, 3)=0;
        for k=i+1:210
             datae(k, 1) = datae(i, 1);
             datae (k, 2) = 0;
             datae (k, 3) = 0;
        end
        break;
    end
end
%求浮标与锚的垂直距离
H=h:
for i=1:4;
    H=H+1*sin(datab(i, 3));
end
H=H+1*sin(ct);
for i=1:210
    H=H+0.105*sin(datae(i,3));
end
wucha=H-18;
%求浮标与锚的水平距离
L=0;
for i=1:210
    L=L+0.105*cos(datae(i, 3));
end
L=L+1*\cos(ct):
for i=1:4
    L=L+1*cos(datab(i,3));
end
wucha;
```

函数f1

```
function [Fx, Fy, t]=f1(Fx_, Fy_, Fg, Ffu)
f=@(X)[X(1)+Fx_;...
    X(2)+Fy_+Ffu-Fg;...
    X(1)*sin(X(3))+Fy_*cos(X(3))-X(2)*cos(X(3))-Fx_*sin(X(3))];
```

```
X0=fsolve(f, [-Fx, -Fy, 0]);
F_{X}=X_{0}(1); F_{Y}=X_{0}(2); t=X_{0}(3);
                                        函数f2
function [Fcdx Fcdy ct]=f2(Fcdx ,Fcdy ,m)
Fcg=100*9.8; Fcfu=1.025e3*9.8*1*pi*(15/100)^2;
Fdg=m*9.8;
f=@(X)[X(1)+Fcdx;...
    X(2) + Fcfu + Fcdy_- - Fcg - Fdg;...
    (Fcg-Fcfu)*cos(X(3))+2*Fcdx *sin(X(3))-2*Fcdy *cos(X(3))];
X0=fsolve(f, [-Fcdx, Fcdy, 0]);
Fcdx=XO(1);
Fcdy=XO(2);
ct = XO(3);
                                  第二问MATLAB代码
                                       主程序1
c1c
clear
data=[];
i=1;
v = 36;
h=waitbar(i/30, 'ing...');
for m=1200:100:4000
f=@(h) analy (h, m, v);
[h0 ef flag]=fsolve(f, 0.75);
[wucha datab ct datae L]=analy(h0, m, v);
t1=datae(210, 3)/pi*180;
t2=90-ct/pi*180;
data(i, 1) = m;
data(i, 2) = h0;
data(i, 3)=t1;
data(i, 4) = t2;
i=i+1;
waitbar (i/30, h);
end
                          (函数analy、f1、f2同第一问)
                               主程序2(离散模型)
c1c
clear
```

```
%对锚链链条e1受力分析
Feg=0.105*7*9.8;Fefu=0;
Felx =1950;Fely =4500;%cd整体对锚链链条el的作用力
datae=zeros (210, 3);%每根链条的下端受力与链条倾角
[datae(1, 1), datae(1, 2), datae(1, 3)]=f1(Fe1x, Fe1y, Feg, Fefu);
%对锚链链条e2---e210受力分析
for i=2:210
    [datae(i, 1), datae(i, 2), datae(i, 3)]=f1(-datae(i-1, 1), -datae(i-1, 2), Feg, Fefu);
    if datae(i, 3)<0
        datae(i, 2)=0;
        datae(i, 3)=0;
        for k=i+1:210
             datae(k, 1) = datae(i, 1);
             datae (k, 2) = 0;
             datae (k, 3) = 0;
        end
        break;
    end
end
X=0; Y=0;
for i=1:210
    X=X+0.105*\cos(\text{datae}(i, 3));
    Y=Y+0.105*sin(datae(i,3));
end
ta=datae (210, 3);
Ta = (datae(210, 1)^2 + datae(210, 2)^2)^(1/2);
                                   函数lisananaly
function [X, Y, ta, Ta]=lisananaly(Tbx, Tby)
data1=zeros (210, 3);
[data1(1, 1), data1(1, 2), data(1, 3)] = f1(Tbx, Tby, 0.105*7*9.8, 0);
for i=2:210
    [data1(i, 1), data1(i, 2), data(i, 3)]=f1(-data1(i-1, 1), -data1(i-
1, 2), 0.105*7*9.8, 0);
end
X=0;
for i=1:210
    X=X+0.105*cos(data1(i, 3));
end
Y=0:
for i=1:210
    Y=Y+0.105*sin(data1(i,3));
end
```

```
ta=data1(210, 3);
Ta = (data1(210, 1)^2 + data1(210, 2)^2)^(1/2);
                                          函数f1
function [Fx, Fy, t]=f1(Fx, Fy, Fg, Ffu)
f=@(X)[X(1)+F_{X_{-}};...
    X(2) + Fy + Ffu - Fg; \dots
    X(1)*\sin(X(3))+Fy_*\cos(X(3))-X(2)*\cos(X(3))-Fx_*\sin(X(3));
X0=fsolve(f, [-Fx, -Fy, 0]);
F_{x}=X_{0}(1); F_{y}=X_{0}(2); t=X_{0}(3);
                                 主程序3(连续模型)
c1c
clear
Tbx = [1850, 1900, 1950];
Tby=[3500, 4000, 4500];
index=1:
data=[];
for i=1:3
    p1=Tbx(i);
    data(index, 1) = p1;
    for j=1:3
         p2=Tby(j);
         data(index, 2) = p2;
         [data(index, 3), data(index, 4), data(index, 5), data(index, 6)]=f3(p1, p2);
         index=index+1;
    end
end
                                           函数f3
function [Ta, ga, X, Y]=f3 (Tbx, Tby)
1=22.05;
w=7;
gb=atan(Tby/Tbx);
Tb = (Tbx^2 + Tby^2)^(1/2);
T0=Tb*cos(gb);
ga=atan(tan(gb)-(1*w/T0));
X = (T0/w) * (asinh(tan(gb)) - asinh(tan(ga)));
Y = (T0/w) * (1/\cos(gb) - 1/\cos(ga));
Ta=Tb-w*Y:
```

第三问matlab代码

主程序

```
c1c
clear
tic
close all
%海域环境参数
H=16;%海水深度
v=32;%海面风速
u=1.3;%海水流速
%系泊系统参数
m=[1200 2000 3000 4000];%重物球质量
kinde=[1 2 3 4 5];%锚泊链类型
Le=[20, 22, 24, 26];%锚泊链长度
index=1;
data=[];
h=waitbar (1/80, 'ing...');
for i=1:4
    data(index, 1) = m(i);
    for j=1:5
        data(index, 2)=kinde(j);
        for k=1:4
            data(index, 3)=Le(k);
            [data(index, 5), data(index, 6), data(index, 7), data(index, 8)]=...
                main(m(i), v, H, kinde(j), Le(k), u);
            index=index+1;
            waitbar (index/80, h);
        end
    end
end
%[h0, L, t1, t2]=main(m, v, H, kinde, Le, u)
Toc
                                     函数analy
function [wucha datab ct datae L]=analy(h, m, v, H, kinde, Le, u)
d1=[0.078, 0.105, 0.12, 0.15, 0.18];
dw=[3. 2, 7, 12. 5, 19. 5, 28. 12];
N=floor(Le/dl(kinde));
%对浮块a受力分析
Ffeng=0. 625*2*(2-h)*v^2;
Fafu=1.025e3*9.8*pi*h;
Fag=1000*9.8;
Fax=-Ffeng-374*2*h*u^2;
```

```
Fay=Fag-Fafu;
%对钢管b1受力分析
Fbg=10*9.8; Fbfu=1.025e3*9.8*pi*(25/1000)^2;
Fb1x =-Fax:Fb1v =-Fav:%浮块a对钢管1的作用力
datab=zeros(4:3);%每根钢管的下端点受力与钢管倾角
 [datab(1, 1), datab(1, 2), datab(1, 3)]=fb(Fb1x, Fb1y, Fbg, Fbfu, u);
%对钢管b2---b4受力分析
for i=2:4
            [datab(i, 1), datab(i, 2), datab(i, 3)] = fb(-datab(i-1, 1), -datab(i-1, 2), Fbg, Fbfu, u);
end
%对铁桶c与重物球d组成的整体cd受力分析
Fcdx =-datab(4, 1); Fcdy =-datab(4, 2); %4号钢管对cd的作用力
 [Fcdx Fcdy ct]=fcd(Fcdx_,Fcdy_,m,u);%Fcdx与Fcdy是锚链对该整体的作用力,ct是铁桶c的倾
%对锚链链条e1受力分析
Feg=d1 (kinde) *dw (kinde) *9.8; Fefu=0;
Felx =-Fcdx;Felv =-Fcdv;%cd整体对锚链链条el的作用力
datae=zeros(N, 3);%每根链条的下端受力与链条倾角
 [datae(1, 1), datae(1, 2), datae(1, 3)]=fe(Fe1x, Fe1y, Feg, Fefu, kinde, u);
%对锚链链条e2---eN受力分析
for i=2:N
           [datae(i, 1), datae(i, 2), datae(i, 3)] = fe(-datae(i-1, 1), -datae(i-1, 2), datae(i-1, 2), da
1, 2), Feg, Fefu, kinde, u);
           if datae(i, 3)<0
                      datae(i, 2)=0;
                      datae(i, 3)=0;
                      for k=i+1:210
                                 datae(k, 1) = datae(i, 1);
                                 datae (k, 2) = 0:
                                 datae (k, 3) = 0;
                      end
                      break;
           end
end
%求浮标与锚的垂直距离
HH=h;
for i=1:4;
           HH=HH+1*sin(datab(i,3));
end
HH=HH+1*sin(ct):
for i=1:N
           HH=HH+0.105*sin(datae(i,3));
end
```

```
wucha=HH-H;
%求浮标与锚的水平距离
L=0;
for i=1:N
    L=L+0.105*cos(datae(i, 3));
end
L=L+1*\cos(ct);
for i=1:4
    L=L+1*cos(datab(i,3));
end
wucha;
                                       函数main
function [h0, L, t1, t2]=main(m, v, H, kinde, Le, u)
%重物球质量m
%海面风速v。可选值<36
%海水深度H。可选值16~25
%锚泊线类型kinde。可选值1, 2, 3, 4, 5
%锚泊线长度Le。可选值20~25
%%海水流速u。可选值<1.5
f=@(h) analy(h, m, v, H, kinde, Le, u);
[h0 \text{ ef flag}]=fsolve(f, 0.75);
[wucha datab ct datae L]=analy(h0, m, v, H, kinde, Le, u);
t1=datae (end, 3)/pi*180;
t2=90-ct/pi*180;
                                        函数f1
function [Fx, Fy, t]=f1(Fx, Fy, Fg, Ffu)
f=@(X)[X(1)+F_X;...
    X(2) + Fy + Ffu - Fg; \dots
    X(1)*\sin(X(3))+Fy*\cos(X(3))-X(2)*\cos(X(3))-Fx*\sin(X(3))];
X0=fsolve(f, [-Fx, -Fy, 0]);
F_{X}=X_{0}(1); F_{Y}=X_{0}(2); t=X_{0}(3);
                                        函数fb
function [Fx, Fy, t]=f1(Fx, Fy, Fg, Ffu, u)
f=@(X)[X(1)+F_X +(374*(0.05*1)*sin(X(3))*u^2);...
    X(2) + Fy + Ffu - Fg; \dots
    X(1)*\sin(X(3))+Fy_*\cos(X(3))-X(2)*\cos(X(3))-Fx_*\sin(X(3));
X0=fsolve(f, [-Fx, -Fy, 0]);
F_{x}=X_{0}(1); F_{y}=X_{0}(2); t=X_{0}(3);
                                       函数fcd
```

```
function [Fcdx Fcdy ct]=fcd(Fcdx , Fcdy , m, u)
Fcg=100*9.8; Fcfu=1.025e3*9.8*1*pi*(15/100)^2;
Fdg=m*9.8;
f=@(X)[X(1)+Fcdx +374*(1*0.3)*sin(X(3))*u^2;...
                 X(2)+Fcfu+Fcdy -Fcg-Fdg;...
                  (Fcg-Fcfu)*cos(X(3))+374*(1*0.3)*sin(X(3))*u^2*sin(X(3))+2*Fcdx *sin(X(3))-2*Fcdx 
2*Fcdy *cos(X(3));
X0=fsolve(f, [-Fcdx_, Fcdy_, 0]);
Fcdx=XO(1);
Fcdy=XO(2);
ct = XO(3);
                                                                                                                                                                  函数fe
 function [Fx, Fy, t]=fe(Fx_, Fy_, Fg, Ffu, kinde, u)
d1=[0.078, 0.105, 0.12, 0.15, 0.18];
f=@(X)[X(1)+Fx +374*(d1(kinde)*d1(kinde)/4*1/3*sin(X(3)))*u^2;...
                 X(2)+Fy+Ffu-Fg;...
                 X(1)*\sin(X(3))+Fy_*\cos(X(3))-X(2)*\cos(X(3))-Fx_*\sin(X(3));
X0=fsolve(f, [-Fx_, -Fy_, 0]);
F_{X}=X_{0}(1); F_{Y}=X_{0}(2); t=X_{0}(3);
```

9 支撑材料

9.1 三种风速下的锚链形状

	第 j ^d	节锚链与 x 轴的夹	角
j	风速 v=12m/s	风速 v=24m/s	风速
J	/ \(\text{\tint{\tin{\tin	/ NXE V 2 III/ 3	v=36m/s
1	77.6603	58.8001	47. 2198
2	77. 5769	58. 6767	47. 1241
3	77. 4925	58. 5525	47.0280
4	77. 4070	58. 4273	46. 9316
5	77. 3202	58. 3013	46.8348
6	77. 2323	58. 1743	46. 7377
7	77. 1432	58. 0465	46.6403
8	77.0529	57. 9177	46. 5425
9	76. 9613	57. 7880	46. 4443
10	76.8684	57.6573	46. 3458
11	76. 7742	57. 5257	46. 2469
12	76.6787	57. 3931	46. 1477
13	76. 5818	57. 2596	46.0481
14	76. 4835	57. 1251	45. 9481
15	76. 3838	56. 9896	45.8478
16	76. 2826	56. 8531	45. 7471
17	76. 1799	56. 7157	45.6461
18	76.0758	56. 5772	45. 5447
19	75. 9701	56. 4376	45. 4429
20	75.8628	56. 2971	45. 3408
21	75. 7538	56. 1555	45. 2383
22	75. 6433	56.0129	45. 1354
23	75. 5310	55.8692	45.0321
24	75. 4170	55. 7244	44. 9285
25	75. 3012	55. 5785	44.8245
26	75. 1836	55. 4316	44.7201
27	75.0642	55. 2835	44.6153
28	74. 9429	55. 1344	44.5102
29	74.8196	54. 9841	44. 4047
30	74. 6943	54. 8327	44. 2988
31	74. 5670	54. 6801	44. 1925
32	74. 4376	54. 5264	44. 0858
33	74. 3061	54. 3715	43. 9787
34	74. 1724	54. 2154	43.8713
35	74.0365	54. 0582	43.7635

36	73.8983	53. 8997	43.6552
37	73. 7577	53. 7401	43. 5466
38	73.6147	53. 5792	43. 4376
39	73. 4693	53. 4171	43. 3282
40	73. 3213	53. 2537	43. 2184
41	73. 1707	53. 0891	43. 1082
42	73. 0175	52. 9232	42.9976
43	72.8615	52.7560	42.8866
44	72.7027	52. 5876	42.7752
45	72.5410	52. 4178	42.6634
46	72. 3764	52. 2467	42.5512
47	72.2088	52. 0743	42. 4386
48	72.0380	51.9005	42.3256
49	71.8641	51. 7254	42. 2122
50	71.6869	51. 5489	42.0984
51	71.5062	51. 3711	41.9841
52	71.3221	51. 1918	41.8695
53	71. 1345	51.0112	41.7544
54	70.9432	50.8291	41.6389
55	70.7481	50. 6456	41.5231
56	70. 5491	50. 4606	41.4068
57	70. 3462	50. 2742	41.2900
58	70. 1391	50. 0863	41.1729
59	69. 9278	49.8970	41.0553
60	69.7121	49. 7061	40.9373
61	69.4920	49. 5137	40.8189
62	69. 2673	49. 3198	40.7001
63	69.0377	49. 1244	40.5808
64	68.8033	48. 9274	40.4611
65	68. 5639	48.7288	40.3410
66	68. 3192	48. 5287	40. 2205
67	68.0692	48. 3269	40.0995
68	67.8136	48. 1236	39. 9781
69	67. 5523	47. 9186	39.8563
70	67. 2851	47.7120	39.7340
71	67.0118	47. 5038	39.6113
72	66.7322	47. 2939	39. 4881
73	66. 4462	47. 0823	39. 3646
74	66. 1534	46.8690	39. 2405
75	65. 8537	46.6540	39. 1161
76	65. 5468	46. 4372	38. 9912
77	65. 2326	46. 2188	38.8658
78	64. 9106	45. 9985	38.7400

79	64. 5808	45. 7766	38.6138
80	64. 2428	45. 5528	38. 4871
81	63. 8963	45. 3272	38.3600
82	63. 5410	45.0999	38. 2324
83	63. 1767	44.8707	38. 1044
84	62.8029	44.6396	37. 9759
85	62. 4194	44. 4067	37.8470
86	62. 0259	44. 1720	37.7176
87	61.6219	43. 9353	37. 5878
88	61. 2070	43.6968	37. 4575
89	60. 7809	43. 4563	37. 3268
90	60. 3432	43. 2139	37. 1956
91	59.8934	42.9696	37.0639
92	59. 4311	42. 7233	36. 9318
93	58. 9559	42. 4751	36. 7992
94	58. 4671	42. 2248	36.6662
95	57. 9644	41.9726	36. 5327
96	57. 4471	41.7183	36. 3988
97	56. 9149	41.4621	36. 2643
98	56. 3669	41. 2037	36. 1294
99	55.8028	40. 9433	35. 9941
100	55. 2218	40.6809	35.8583
101	54.6234	40. 4164	35.7220
102	54.0068	40. 1497	35. 5852
103	53. 3714	39. 8810	35. 4480
104	52.7164	39.6101	35. 3103
105	52.0412	39. 3371	35. 1722
106	51.3449	39.0620	35. 0335
107	50.6269	38. 7847	34. 8944
108	49.8861	38. 5052	34. 7549
109	49. 1220	38. 2235	34.6148
110	48.3335	37. 9397	34. 4743
111	47. 5199	37. 6536	34. 3333
112	46.6803	37. 3653	34. 1918
113	45.8137	37. 0748	34. 0499
114	44.9193	36. 7820	33.9075
115	43.9961	36. 4870	33.7645
116	43.0433	36. 1897	33.6212
117	42.0600	35. 8901	33. 4773
118	41.0452	35. 5883	33. 3330
119	39. 9982	35. 2841	33. 1881
120	38.9180	34. 9777	33. 0428
121	37. 8039	34. 6689	32.8971

122	36. 6551	34. 3578	32.7508
123	35. 4711	34. 0444	32 . 6041
124	34. 2511	33. 7287	32 . 4568
125	32. 9947	33. 4106	32. 3091
126	31. 7014	33. 0902	32. 1609
127	30. 3711	32. 7674	32. 0122
128	29.0036	32. 4423	31.8631
129	27. 5989	32. 1148	31.7134
130	26. 1572	31. 7849	31. 5633
131	24. 6790	31. 4527	31.4127
132	23. 1650	31. 1181	31. 2616
133	21.6159	30. 7811	31.1100
134	20.0329	30. 4418	30. 9579
135	18. 4174	30. 1000	30.8054
136	16.7709	29.7559	30.6523
137	15. 0955	29. 4094	30. 4988
138	13. 3932	29.0605	30. 3448
139	11.6665	28.7093	30. 1903
140	9.9180	28. 3556	30. 0353
141	8. 1507	27. 9996	29.8798
142	6. 3676	27.6413	29.7239
143	4. 5720	27. 2805	29. 5674
144	2. 7674	26. 9174	29.4105
145	0.9573	26. 5520	29. 2531
146	0.0000	26. 1842	29.0952
147	0.0000	25.8141	28. 9368
148	0.0000	25. 4417	28.7779
149	0.0000	25.0669	28.6185
150	0.0000	24. 6898	28. 4587
151	0.0000	24. 3104	28. 2984
152	0.0000	23. 9288	28. 1376
153	0.0000	23. 5449	27.9762
154	0.0000	23. 1587	27.8145
155	0.0000	22.7703	27.6522
156	0.0000	22. 3796	27. 4894
157	0.0000	21.9868	27. 3262
158	0.0000	21. 5918	27. 1625
159	0.0000	21. 1946	26. 9983
160	0.0000	20. 7952	26.8336
161	0.0000	20. 3937	26.6685
162	0.0000	19.9902	26. 5028
163	0.0000	19. 5845	26. 3367
164	0.0000	19. 1768	26. 1701

165	0.0000	18. 7671	26.0030
166	0.0000	18. 3553	25.8355
167	0.0000	17.9416	25.6675
168	0.0000	17.5260	25. 4990
169	0.0000	17. 1084	25.3300
170	0.0000	16.6889	25. 1606
171	0.0000	16. 2677	24.9906
172	0.0000	15.8445	24.8202
173	0.0000	15. 4196	24.6494
174	0.0000	14. 9930	24. 4781
175	0.0000	14. 5647	24. 3063
176	0.0000	14. 1346	24. 1340
177	0.0000	13.7030	23. 9613
178	0.0000	13. 2697	23. 7881
179	0.0000	12.8350	23.6144
180	0.0000	12. 3987	23. 4403
181	0.0000	11.9609	23. 2657
182	0.0000	11.5217	23.0907
183	0.0000	11.0811	22. 9152
184	0.0000	10.6392	22.7393
185	0.0000	10. 1961	22. 5629
186	0.0000	9.7516	22. 3860
187	0.0000	9.3060	22. 2087
188	0.0000	8.8593	22.0309
189	0.0000	8. 4115	21.8527
190	0.0000	7.9626	21.6741
191	0.0000	7.5127	21.4950
192	0.0000	7.0619	21.3155
193	0.0000	6.6103	21. 1355
194	0.0000	6. 1578	20.9551
195	0.0000	5. 7045	20.7742
196	0.0000	5. 2505	20. 5930
197	0.0000	4. 7959	20.4112
198	0.0000	4. 3406	20. 2291
199	0.0000	3.8848	20.0465
200	0.0000	3. 4285	19.8635
201	0.0000	2.9718	19.6801
202	0.0000	2.5147	19. 4963
203	0.0000	2.0572	19.3120
204	0.0000	1. 5996	19. 1273
205	0.0000	1. 1417	18. 9422
206	0.0000	0.6836	18.7567
207	0.0000	0. 2255	18.5708

208	0.0000	0.0000	18. 3845
209	0.0000	0.0000	18. 1978
210	0.0000	0.0000	18.0107

9.2第一问数据

风速 12

吃水深

度 0.734781

游动区域最大半径 14.30518

钢管的倾角(弧度

制) 1.553737

2 1.553636

3 1.553535

4 1.553432

钢桶的倾角 1.553198

锚泊链链条的倾角(弧度制) 1 1.355427

2 1.353973

3 1.3525

4 1.351006

5 1.349493

6 1.347958

7 1.346403

8 1.344826

9 1.343227

10 1.341606

11 1.339962

12 1.338295

13 1.336604

14 1.334888

- 15 1.333148
- 16 1.331382
- 17 1.329591
- 18 1.327773
- 19 1.325928
- 20 1.324055
- 21 1.322154
- 22 1.320224
- 23 1.318264
- 24 1.316275
- 25 1.314254
- 26 1.312202
- 27 1.310117
- 28 1.307999
- 29 1.305848
- 30 1.303662
- 31 1.30144
- 32 1.299182
- 02 1.200102
- 33 1.296887
- 34 1.294553
- 35 1.292181
- 36 1.289768
- 37 1.287315
- 38 1.284819
- 39 1.282281
- 40 1.279698
- 41 1.27707
- 42 1.274395
- 43 1.271673
- 44 1.268902
- 45 1.26608
- 46 1.263207
- 47 1.260281
- 48 1.257301
- 49 1.254265
- 50 1.251172
- 51 1.248019
- 52 1.244806
- 53 1.241531
- 54 1.238192
- 55 1.234787
- 56 1.231314
- 57 1.227772

- 58 1.224158
- 1.22047 59
- 60 1.216706
- 61 1.212864
- 62 1.208942
- 63 1.204936
- 1.200845 64
- 65 1.196665
- 1.192395 66
- 67 1.188031
- 68 1.18357
- 69 1.17901
- 70 1.174346
- 71 1.169576
- 72 1.164697
- 73 1.159704
- 74 1.154594
- 75 1.149364
- 76 1.144008
- 77 1.138523
- 1.132904 78
- 79 1.127148
- 80
- 1.121248
- 81 1.1152
- 82 1.109
- 83 1.102641
- 84 1.096118
- 1.089425 85
- 86 1.082556
- 87 1.075504
- 88 1.068264
- 89 1.060828
- 90 1.053188
- 91 1.045338
- 92 1.037269
- 93 1.028974
- 94 1.020444
- 95 1.011669
- 96 1.002642
- 97 0.993352
- 98 0.983789
- 99 0.973943
- 100 0.963803

- 101 0.953358
- 102 0.942596
- 103 0.931506
- 104 0.920075
- 105 0.90829
- 106 0.896138
- 107 0.883605
- 108 0.870678
- 109 0.85734
- 110 0.843579
- 0.829379 111
- 112 0.814724
- 113 0.7996
- 0.783989 114
- 115 0.767877
- 116 0.751248
- 0.734085 117
- 118 0.716374
- 119
- 0.698099
- 120 0.679247
- 121 0.659802
- 122 0.639753
- 123 0.619087
- 124 0.597794
- 125 0.575866
- 0.553294 126
- 127 0.530076
- 128 0.506208
- 129 0.481691
- 130 0.45653
- 131 0.430731
- 132 0.404305
- 133 0.377269
- 134 0.34964
- 135 0.321444
- 136 0.292708
- 137 0.263466
- 138 0.233755
- 139 0.203618
- 140 0.173101
- 141 0.142256
- 142 0.111135
- 143 0.079797

1 1 1	0.040001
144	0.048301
145	0.016709
146	0
147	0
148	0
149	0
150	0
151	0
152153	0
153 154	0
154 155	
156	0
157	0
15 <i>1</i>	0
159	0
160	0
161	0
162	0
163	0
164	0
165	0
166	0
167	0
168	0
169	0
170	0
171	0
172	0
173	0
174	0
175	0
176	0
177	0
178	0
179	0
180	0
181	0
182	0
183	0
184	0
185	0
186	0

风速 24

吃水深

度 0.748924

游动区域最大半径 17.4255

钢管的倾角(弧度

制) 1 1.505591

2 1.50522

3 1.504845

4 1.504465

钢桶的倾角 1.503605

锚泊链链条的倾角(弧度制)

- 1 1.026256
- 2 1.024102
- 3 1.021934
- 4 1.019749
- 5 1.017549
- 6 1.015334
- 7 1.013102
- 8 1.010854
- 9 1.00859
- 10 1.00631
- 11 1.004013
- 11 1.00-013
- 12 1.001699
- 13 0.999369
- 14 0.997021
- 15 0.994656
- 16 0.992274
- 17 0.989875
- 18 0.987458
- 19 0.985023
- 20 0.98257
- 21 0.980098
- 22 0.977609
- 23 0.975101
- 24 0.972574
- 25 0.970028
- 26 0.967464
- 27 0.96488
- 28 0.962276
- 29 0.959653
- 30 0.957011
- 31 0.954348
- 32 0.951665
- 33 0.948962
- 34 0.946238
- 35 0.943493
- 36 0.940728
- 37 0.937941
- 38 0.935133
- 39 0.932304
- 40 0.929452

- 41 0.926579
- 42 0.923684
- 43 0.920766
- 44 0.917826
- 45 0.914863
- 46 0.911877
- 47 0.908868
- 48 0.905835
- 49 0.902779
- 50 0.899699
- 51 0.896594
- 52 0.893466
- 0.000+00
- 53 0.890313
- 54 0.88713555 0.883932
- 56 0.880704
- 0.000704
- 57 0.87745158 0.874171
- 30 0.014111
- 59 0.870866
- 60 0.867535
- 61 0.864177
- 62 0.860793
- 63 0.857382
- 64 0.853944
- 65 0.850478
- 66 0.846985
- 67 0.843464
- 68 0.839915
- 69 0.836338
- 70 0.832732
- 71 0.829097
- 72 0.825434
- 73 0.82174
- 74 0.818018
- 75 0.814265
- 76 0.810483
- 77 0.80667
- 78 0.802826
- 79 0.798952
- 80 0.795046
- 81 0.79111
- 82 0.787141
- 83 0.783141

- 84 0.779108
- 85 0.775044
- 86 0.770946
- 87 0.766816
- 88 0.762653
- 89 0.758456
- 90 0.754225
- 91 0.749961
- 92 0.745663
- 93 0.74133
- 94 0.736962
- 95 0.73256
- 96 0.728122
- 97 0.723649
- 98 0.719141
- 99 0.714596
- 100 0.710016
- 101 0.705399
- 101 0.700000
- 102 0.700745
- 103 0.696055
- 104 0.691327
- 105 0.686563
- 106 0.68176
- 107 0.67692
- 108 0.672043
- 109 0.667127
- 110 0.662172
- 111 0.657179
- 112 0.652147
- 113 0.647077
- 114 0.641967
- 115 0.636818
- 116 0.631629
- 117 0.626401
- 118 0.621132
- 119 0.615824
- 120 0.610475
- 121 0.605087
- 122 0.599657
- 123 0.594187
- 124 0.588677
- 125 0.583125
- 126 0.577533

- 127 0.571899
- 128 0.566225
- 129 0.560509
- 130 0.554752
- 131 0.548953
- 132 0.543113
- 133 0.537232
- 134 0.531309
- 135 0.525344
- 136 0.519338
- 137 0.513291
- 107 0.010231
- 138 0.507202
- 139 0.501071
- 140 0.494899141 0.488686
- 1.12 0.100000
- 142 0.482431
- 143 0.476135
- 144 0.469798
- 145 0.46342
- 146 0.457001
- 147 0.450541
- 148 0.444041
- 149 0.4375
- 150 0.430919
- 151 0.424297
- 152 0.417636
- 153 0.410935
- 154 0.404195
- 155 0.397416
- 156 0.390598
- 157 0.383742
- 450 007004
- 158 0.376847
- 159 0.369915
- 160 0.362945
- 161 0.355938
- 162 0.348894
- 163 0.341814
- 164 0.334698
- 165 0.327547
- 166 0.320361
- 167 0.31314
- 168 0.305886
- 169 0.298598

170 0.291277 171 0.283924 172 0.276539 173 0.269124 174 0.261677 175 0.254201 176 0.246696 177 0.239162 178 0.231601 179 0.224012 180 0.216397 181 0.208757 182 0.201092 183 0.193402 184 0.18569 185 0.177955 186 0.170198 187 0.162421 188 0.154624 189 0.146808 190 0.138973 191 0.131122 192 0.123254 193 0.115371 194 0.107474 195 0.099563 196 0.091639 197 0.083704 198 0.075758 199 0.067803 200 0.059839 201 0.051868 202 0.043889 203 0.035906 204 0.027917 205 0.019926 206 0.011931 207 0.003935 208 0 0 209

0

210

9.3 第二问数据

风速 36

吃水深

度 0.7700

游动区域最大半径 18.7156

钢管的倾角(弧度

制)	1	1.433868	82.154592	7.8454	7.8454
	2	1.433132	82.11243	7.8876	7.8876
	3	1.432388	82.069814	7.9302	7.9302
	4	1.431637	82.026739	7.9733	7.9733

钢桶的倾角(弧度

制) 1.429935

锚泊链链条的倾角(弧度制) 1 0.8241408

2 0.8224703

3 0.8207937

4 0.819111

5 0.8174222

6 0.8157274

7 0.8140264

8 0.8123193

9 0.810606

10 0.8088865

10 0.0000003

11 0.8071608

12 0.8054289

13 0.8036906

14 0.8019461

15 0.800195316 0.7984381

17 0.7966746

18 0.7949047

- 19 0.7931284
- 20 0.7913456
- 21 0.7895564
- 22 0.7877607
- 23 0.7859585
- 24 0.7841498
- 25 0.7823346
- 26 0.7805127
- 27 0.7786843
- 28 0.7768492
- 29 0.7750075
- 30 0.7731591
- 04 0 774 00 44
- 31 0.7713041
- 32 0.7694423
- 33 0.7675738
- 34 0.7656985
- 35 0.7638164
- 36 0.7619276
- 07 0.7000010
- 37 0.7600318
- 38 0.7581293
- 39 0.7562198
- 40 0.7543035
- 41 0.7523802
- 42 0.75045
- 43 0.7485128
- 44 0.7465686
- 45 0.7446174
- 46 0.7426591
- 47 0.7406938
- 48 0.7387214
- 49 0.7367419
- 50 0.7347552
- JO 0.13-1332
- 51 0.732761452 0.7307604
- 32 0.1301004
- 53 0.7287522
- 54 0.7267368
- 55 0.7247141
- 56 0.7226841
- 57 0.7206469
- 58 0.7186023
- 59 0.7165504
- 60 0.7144912
- 61 0.7124246

- 62 0.7103505
- 63 0.708269
- 64 0.7061801
- 65 0.7040837
- 66 0.7019799
- 67 0.6998685
- 68 0.6977495
- 69 0.6956231
- 70 0.693489
- 71 0.6913474
- 72 0.6891981
- 73 0.6870412
- 74 0.6848766
- 75 0.6827043
- 10 0.0021040
- 76 0.6805244
- 77 0.6783367
- 78 0.6761413
- 79 0.6739381
- 80 0.6717271
- 81 0.6695084
- 82 0.6672818
- 83 0.6650474
- 84 0.6628051
- 85 0.6605549
- 86 0.6582969
- 87 0.6560309
- 88 0.653757
- 89 0.6514751
- 90 0.6491853
- 91 0.6468875
- 92 0.6445817
- 93 0.6422679
- 94 0.639946
- 34 0.033340
- 95 0.6376161
- 96 0.6352781
- 97 0.632932
- 98 0.6305778
- 99 0.6282155
- 100 0.6258451
- 101 0.6234665
- 102 0.6210797
- 103 0.6186848
- 104 0.6162817

- 105 0.6138703
- 106 0.6114508
- 0.609023 107
- 108 0.6065869
- 109 0.6041426
- 110 0.60169
- 111 0.5992291
- 112 0.59676
- 113 0.5942825
- 114 0.5917967
- 115 0.5893025
- 116 0.5868
- 117 0.5842892
- 0.58177 118
- 0.5792424 119
- 120 0.5767064
- 121 0.574162
- 122 0.5716093
- 0.5690481 123
- 124 0.5664785
- 125 0.5639004
- 126 0.561314
- 127 0.5587191
- 128 0.5561157
- 129 0.5535039
- 0.5508837 130
- 131 0.5482549
- 132 0.5456177
- 133 0.5429721
- 134 0.5403179
- 135 0.5376553
- 136 0.5349842
- 0.5323047 137
- 138 0.5296166
- 139 0.52692
- 140 0.524215
- 141 0.5215015
- 142 0.5187795
- 143 0.516049
- 0.51331 144
- 0.5105625 145
- 0.5078065 146
- 147 0.5050421

- 148 0.5022692
- 149 0.4994878
- 150 0.496698
- 151 0.4938997
- 152 0.4910929
- 153 0.4882777
- 154 0.485454
- 155 0.4826219
- 156 0.4797814
- 157 0.4769324
- 158 0.474075
- 150 0.474075
- 159 0.4712093
- 160 0.4683351
- 161 0.4654526
- 162 0.4625616
- 163 0.4596624
- 164 0.4567548
- 165 0.4538388
- 166 0.4509145
- 167 0.4479819
- 168 0.4450411
- 169 0.4420919
- 170 0.4391345
- 270 0.1001010
- 171 0.4361689
- 172 0.433195
- 173 0.430213
- 174 0.4272227
- 175 0.4242243
- 176 0.4212178
- 177 0.4182031
- 178 0.4151803
- 179 0.4121495
- 180 0.4091106
- 181 0.4060637
- 182 0.4030087
- 183 0.3999458
- 184 0.3968749
- 185 0.3937961
- 186 0.3907094
- 187 0.3876149
- 188 0.3845125
- 189 0.3814023
- 190 0.3782843

191 0.3751586 192 0.3720251 0.368884 193 194 0.3657352 195 0.3625788 196 0.3594149 197 0.3562434 198 0.3530644 199 0.3498779 200 0.346684 201 0.3434827 202 0.3402741 203 0.3370581 204 0.3338349 205 0.3306045 206 0.3273669 207 0.3241221 208 0.3208703 209 0.3176114 210 0.3143456

连续与离散的比较

X					Υ		ta			
				相对误			相对误			相对
Tbx	Tby	连续	离散	差	连续	离散	差	连续	离散	差
1850	3500	10.48529	12.44027	0.15715	19.39708	18.12949	0.069919	1.065686	0.822084	0.296
1850	4000	9.406045	11.0186	0.146348	19.94291	19.05504	0.046595	1.122413	0.931995	0.204
1850	4500	8.509377	9.844429	0.135615	20.34175	19.70301	0.032418	1.168322	1.016864	0.148
1900	3500	10.70257	12.66268	0.154794	19.27804	17.9735	0.072581	1.054313	0.808774	0.303
1900	4000	9.612456	11.23743	0.144604	19.84423	18.92567	0.048536	1.111908	0.919182	0.209
1900	4500	8.703917	10.0543	0.134309	20.25927	19.59588	0.033853	1.158622	1.004864	0.153
1950	3500	10.91584	12.87931	0.152451	19.15807	17.81765	0.07523	1.043085	0.795794	0.310
1950	4000	9.815792	11.45176	0.142857	19.74444	18.79565	0.050479	1.101512	0.906615	0.214
1950	4500	8.896079	10.2607	0.132995	20.17562	19.48775	0.035297	1.149004	0.993043	0.157

调节重物球重量

			锚链在	
			锚点与	
	重物球	入水深	海床的	
钢桶的倾斜角度	质量	度 h	夹角 t1	钢桶的倾斜角度
8.070765	1200	0.770026	18.01067	8.070765
4.246116	1300	0.799914	17.44743	7.387317
2.05814	1400	0.82982	16.86775	6.782648
0.888794	1500	0.859743	16.26869	6.244027
	1600	0.889681	15.64748	5.761294
	1700	0.919632	15.00135	5.326252
	1800	0.949597	14.32753	4.932219
	1900	0.979575	13.62311	4.573696
	2000	1.009565	12.88501	4.246116
	2100	1.039567	12.1099	3.94566
	2200	1.069582	11.29417	3.669109
	2300	1.099609	10.43386	3.41373
	2400	1.129649	9.524586	3.177189
	2500	1.159701	8.561498	2.957482
	2600	1.189766	7.539172	2.752879
	2700	1.219845	6.451541	2.561875
	2800	1.249937	5.291789	2.383159
	2900	1.280044	4.052244	2.215585
	3000	1.310165	2.724242	2.05814
	3100	1.340302	1.297984	1.909932
	3200	1.370454	0	1.770175
	3300	1.400602	0	1.638252
	3400	1.430736	0	1.513557
	3500	1.460857	0	1.395516
	3600	1.490964	0	1.283613
	3700	1.521055	0	1.177387
	3800	1.551129	0	1.076421
	3900	1.581185	0	0.980337
	4000	1.611223	0	0.888794

9.3 第三问数据

高风高流涨潮时

高风高流涨潮时。H=20; v=32; u=1.3

高风高流涨潮时。H=2U,V=32,U=1.3							
		锚	锚				
		泊	泊				
		链	链				
		类	链				
重物球质量		型	长	参数编号	浮标入水深度	游动区域半径	锚链在锚点
12	200	1	20	1	0.769276467	23.62738085	
12	200	1	22	2	0.763333991	26.78746607	
12	200	1	24	3	0.759180714	29.73735477	
12	200	1	26	4	0.755948207	32.73787058	
12	200	2	20	5	0.818453356	14.71570735	
12	200	2	22	6	0.805698542	17.40399328	
12	200	2	24	7	0.797741635	19.90255961	
12	200	2	26	8	0.792488469	22.27223669	
12	200	3	20	9	0.873461967	10.76757665	
12	200	3	22	10	0.850645276	13.49380218	
12	200	3	24	11	0.839055361	15.88702862	
12	200	3	26	12	0.832927984	17.94701724	
12	200	4	20	13	1.278375366	2.918912358	
12	200	4	22	14	0.990455577	6.660211915	
12	200	4	24	15	0.93174083	9.510825186	
12	200	4	26	16	0.91154072	11.59781997	
12	200	5	20	17	3.354424244	0.555687857	
12	200	5	22	18	2.222343278	1.056634253	
12	200	5	24	19	1.306067431	3.042234317	
12	200	5	26	20	1.066616023	6.139302545	
20	000	1	20	21	1.016055701	23.49302834	
20	000	1	22	22	1.010396562	26.62499165	
20	000	1	24	23	1.006431714	29.55401834	
20	000	1	26	24	1.003343356	32.53724427	
20	000	2	20	25	1.063144582	14.72703625	
20	000	2	22	26	1.051404098	17.3605352	
20	000	2	24	27	1.044015032	19.82093411	
20	000	2	26	28	1.039122521	22.16226848	
20	000	3	20	29	1.114934275	10.90088465	
20	000	3	22	30	1.094793545	13.53591006	
	000	3	24	31	1.084379704	15.87271546	
	000	3	26	32	1.078867483	17.89578055	
	000	4	20	33	1.414066198	3.534043035	
		•		20	_: := :::::::::::::::::::::::::::::::::		

2000	4	22	34	1.218696531	7.014012945
2000	4	24	35	1.171680523	9.682731407
2000	4	26	36	1.154589619	11.68115863
2000	5	20	37	3.356123055	0.600287724
2000	5	22	38	2.234393231	1.221898313
2000	5	24	39	1.452157871	3.651570619
2000	5	26	40	1.293067388	6.499109122
3000	1	20	41	1.324755294	23.50765331
3000	1	22	42	1.319405473	26.61378135
3000	1	24	43	1.315647794	29.52358465
3000	1	26	44	1.312718735	32.49079799
3000	2	20	45	1.369604793	14.86949134
3000	2	22	46	1.358928438	17.45107579
3000	2	24	47	1.352146836	19.87494571
3000	2	26	48	1.347645052	22.18883395
3000	3	20	49	1.418104873	11.15037851
3000	3	22	50	1.400645484	13.69762808
3000	3	24	51	1.391459091	15.97885231
3000	3	26	52	1.386603431	17.96473332
3000	4	20	53	1.63581578	4.304928843
3000	4	22	54	1.509952122	7.459484639
3000	4	24	55	1.473261504	9.955033138
3000	4	26	56	1.459221283	11.86558492
3000	5	20	57	3.359177857	0.671154627
3000	5	22	58	2.262940569	1.530707807
3000	5	24	59	1.682708897	4.390126518
3000	5	26	60	1.582783863	6.934445443
4000	1	20	61	1.633548192	23.59391332
4000	1	22	62	1.628484525	26.67745424
4000	1	24	63	1.624920213	29.57035921
4000	1	26	64	1.622140806	32.52342425
4000	2	20	65	1.676395025	15.06297132
4000	2	22	66	1.666651687	17.59975091
4000	2	24	67	1.660415218	19.99164634
4000	2	26	68	1.65626944	22.28123487
4000	3	20	69	1.722136138	11.43004616
4000	3	22	70	1.706896309	13.90281486
4000	3	24	71	1.698772896	16.13558829
4000	3	26	72	1.694500471	18.08843058
4000	4	20	73	1.891721032	5.013096336
4000	4	22	74	1.805219591	7.889822
4000	4	24	75	1.775989183	10.24522465
4000	4	26	76	1.764399595	12.08111166

4000	5	20	77	3.363999079	0.766881331
4000	5	22	78	2.324655989	2.019736348
4000	5	24	79	1.943694312	5.054326262
4000	5	26	80	1.877022347	7.343747706

高风高流潮落时

H=16; v=32; u=1.3

11 10 / 1 02 / 4 1.0							
		锚					
		泊					
		链					
		类					
重物球质量		型	锚泊链链长	参数编号		浮标入水深度	游动区域半径
	1200	1	2	0	1	0.749753528	25.71810984
	1200	1	2	2	2	0.746784329	28.64048973
	1200	1	2	4	3	0.744685194	31.41047164
	1200	1	2	6	4	0.743068788	34.25906878
	1200	2	2	0	5	0.779673659	17.85530566
	1200	2	2	2	6	0.775496005	20.09975899
	1200	2	2	4	7	0.772792827	22.27284843
	1200	2	2	6	8	0.771088252	24.39050506
	1200	3	2	0	9	0.811019438	14.6573622
	1200	3	2	2	10	0.806685433	16.68442227
	1200	3	2	4	11	0.804586006	18.60235599
	1200	3	2	6	12	0.803919131	20.32906583
	1200	4	2	0	13	0.870365116	9.993038755
	1200	4	2	2	14	0.861672291	11.70228284
	1200	4	2	4	15	0.857874381	13.35131483
	1200	4	2	6	16	0.857147476	14.7550798
	1200	5	2	0	17	0.96692628	6.285048569
	1200	5	2	2	18	0.939874606	8.06898546
	1200	5	2	4	19	0.930627877	9.51379403
	1200	5	2	6	20	0.928425227	10.75140141
	2000	1	2	0	21	0.996889019	25.50107558
	2000	1	2	2	22	0.994085109	28.40700786
	2000	1	2	4	23	0.99210684	31.16438838
	2000	1	2	6	24	0.99058964	34.00232637
	2000	2	2	0	25	1.025958039	17.7195488
	2000	2	2	2	26	1.022122783	19.93942122
	2000	2	2	4	27	1.019658825	22.0937245
	2000	2	2	6	28	1.018131105	24.19661
	2000	3	2	0	29	1.056572565	14.57503264
	2000	3	2	2	30	1.052774746	16.57074846
	2000	3	2	4	31	1.051021692	18.46575934

2000	3	26	32	1.050583994	20.1759889
2000	4	20	33	1.113287557	10.02334778
2000	4	22	34	1.106047863	11.67904144
2000	4	24	35	1.103083269	13.28944123
2000	4	26	36	1.102720868	14.67364468
2000	5	20	37	1.201337032	6.488535835
2000	5	22	38	1.180538628	8.157093297
2000	5	24	39	1.173589412	9.53624827
2000	5	26	40	1.172421274	10.73532538
3000	1	20	41	1.305995248	25.44027729
3000	1	22	42	1.303372004	28.33133156
3000	1	24	43	1.301526339	31.07720711
3000	1	26	44	1.300118263	33.90529874
3000	2	20	45	1.334126844	17.7236694
3000	2	22	46	1.330659276	19.92029074
3000	2	24	47	1.328454443	22.05649316
3000	2	26	48	1.32711949	24.14482995
3000	3	20	49	1.363929847	14.61804905
3000	3	22	50	1.360700831	16.5827443
3000	3	24	51	1.359320168	18.45433717
3000	3	26	52	1.359097138	20.14960477
3000	4	20	53	1.417869176	10.15922472
3000	4	22	54	1.412095845	11.76187209
3000	4	24	55	1.409998375	13.33251642
3000	4	26	56	1.409898265	14.70282773
3000	5	20	57	1.49797675	6.772356425
3000	5	22	58	1.482767344	8.330782946
3000	5	24	59	1.47805014	9.643917268
3000	5	26	60	1.477655026	10.81405148
4000	1	20	61	1.615167036	25.45966848
4000	1	22	62	1.612713037	28.33774452
4000	1	24	63	1.610992268	31.07352206
4000	1	26	64	1.609687394	33.89291534
4000	2	20	65	1.642431297	17.79581813
4000	2	22	66	1.639298738	19.97206657
4000	2	24	67	1.637332575	22.09222134
4000	2	26	68	1.636176595	24.16750814
4000	3	20	69	1.671494069	14.71922538
4000	3	22	70	1.66877244	16.65651193
4000	3	24	71	1.667729241	18.50703058
4000	3	26	72	1.667644927	20.19276758
4000	4	20	73	1.723027381	10.33277306
4000	4	22	74	1.718479872	11.88971396

	400	<i>i</i> O	4	24	73	1./1/131/14	13.42310137
	400	00	4	26	76	1.717130234	14.79024375
	400	0	5	20	77	1.797059065	7.057117385
	400	00	5	22	78	1.785949314	8.526081672
	400	00	5	24	79	1.783009031	9.783054111
	400	00	5	26	80	1.782966929	10.93969322
低风底流涨潮时							
H=20 ; v=12 ; u=0.5							
		锚					
		泊					
		链					
		类					
重物球质量		型	锚泊链链长	参数编号	浮标入水深度	游动区域半径	锚链在锚点与海
	1200	1	20	1	0.721397111	21.59231176	
	1200	1	22	2	0.721397111	24.32231176	
	1200	1	24	3	0.721397111	26.94731176	
	1200	1	26	4	0.721397111	29.67731176	
	1200	2	20	5	0.743935493	12.09123809	
	1200	2	22	6	0.743935493	14.08623809	
	1200	2	24	7	0.743935493	16.08123809	
	1200	2	26	8	0.743935493	18.07623809	
	1200	3	20	9	0.777025863	7.892174777	
	1200	3	22	10	0.777025863	9.677174777	
	1200	3	24	11	0.777025863	11.46217478	
	1200	3	26	12	0.777025863	13.14217478	
	1200	4	20	13	1.051624082	0.743192627	86
	1200	4	22	14	0.837603642	4.439281062	15
	1200	4	24	15	0.837214236	5.946005345	
	1200	4	26	16	0.837214236	7.311005345	
	1200	5	20	17	3.345220476	0.08501847	89
	1200	5	22	18	2.190748032	0.160698228	89
	1200	5	24	19	1.060381843	0.881620397	8
	1200	5	26	20	0.925973048	3.449694997	
	2000	1	20	21	0.969640254	21.67845829	
	2000	1	22	22	0.969640254	24.40845829	
	2000	1	24	23	0.969640254	27.03345829	
	2000	1	26	24	0.969640254	29.76345829	
	2000	2	20	25	0.991841055	12.23225197	
	2000	2	22	26	0.991841055	14.22725197	
	2000	2	24	27	0.991841055	16.22225197	
	2000	2	26	28	0.991841055	18.21725197	
	2000	3	20	29	1.024384411	8.063158661	

1.717131774

13.42516157

2000	0	22	20	1 00 400 4411	0.040450001
2000	3	22	30	1.024384411	9.848158661
2000	3	24	31	1.024384411	11.63315866
2000	3	26	32	1.024384411	13.31315866
2000	4	20	33	1.137644535	1.680720547
2000	4	22	34	1.0835651	4.666588136
2000	4	24	35	1.083540528	6.139079276
2000	4	26	36	1.083540528	7.504079276
2000	5	20	37	3.34526075	0.09193898
2000	5	22	38	2.191057971	0.188521865
2000	5	24	39	1.193156262	1.851546865
2000	5	26	40	1.170769535	3.656334965
3000	1	20	41	1.279943473	21.8242978
3000	1	22	42	1.279943473	24.5542978
3000	1	24	43	1.279943473	27.1792978
3000	1	26	44	1.279943473	29.9092978
3000	2	20	45	1.301723628	12.44251659
3000	2	22	46	1.301723628	14.43751659
3000	2	24	47	1.301723628	16.43251659
3000	2	26	48	1.301723628	18.42751659
3000	3	20	49	1.333583948	8.306275778
3000	3	22	50	1.333583948	10.09127578
3000	3	24	51	1.333583948	11.87627578
3000	3	26	52	1.333583948	13.55627578
3000	4	20	53	1.404102852	2.846189672
3000	4	22	54	1.391453552	4.932823621
3000	4	24	55	1.391453552	6.402823621
3000	4	26	56	1.391453552	7.767823621
3000	5	20	57	3.345333179	0.103014231
3000	5	22	58	2.191906005	0.246701086
3000	5	24	59	1.480117804	2.61831406
3000	5	26	60	1.476772989	3.930361535
4000	1	20	61	1.590245005	21.98231802
4000	1	22	62	1.590245005	24.71231802
4000	1	24	63	1.590245005	27.33731802
4000	1	26	64	1.590245005	30.06731802
4000	2	20	65	1.611605089	12.66411427
4000	2	22	66	1.611605089	14.65911427
4000	2	24	67	1.611605089	16.65411427
4000	2	26	68	1.611605089	18.64911427
4000	3	20	69	1.64278242	8.560011724
4000	3	22	70	1.64278242	10.34501172
4000	3	24	71	1.64278242	12.13001173
4000	3	26	72	1.64278242	13.81001173
	-	_ - v			

5.

	4000	4	20	13	1.703403063	3.3339222	40
	4000	4	22	74	1.699367894	5.205452627	
	4000	4	24	75	1.699367894	6.675452627	
	4000	4	26	76	1.699367894	8.040452629	
	4000	5	20	77	3.345451013	0.118174673	89
	4000	5	22	78	2.194719782	0.373843059	88
	4000	5	24	79	1.783008316	3.043211399	13
	4000	5	26	80	1.782763619	4.2123205	
低风底流落潮时							
H=16; v=12; u=0.5							
, ,		锚					
		泊					
		链					
		类					
重物球质量		型	锚泊链链长	参数编号	浮标入水深度	游动区域半径	锚链在锚点与海
	1200	1	20	1	0.717710914	23.61538959	
	1200	1	22	2	0.717710914	26.34538959	
	1200	1	24	3	0.717710914	28.97038959	
	1200	1	26	4	0.717710914	31.70038959	
	1200	2	20	5	0.734672554	14.9135328	
	1200	2	22	6	0.734672554	16.9085328	
	1200	2	24	7	0.734672554	18.9035328	
	1200	2	26	8	0.734672554	20.8985328	
	1200	3	20	9	0.758902199	11.14705859	
	1200	3	22	10	0.758902199	12.93205859	
	1200	3	24	11	0.758902199	14.71705859	
	1200	3	26	12	0.758902199	16.39705859	
	1200	4	20	13	0.802504469	6.640349666	
	1200	4	22	14	0.802504469	8.005349666	
	1200	4	24	15	0.802504469	9.475349666	
	1200	4	26	16	0.802504469	10.84034967	
	1200	5	20	17	0.866551551	3.647220309	
	1200	5	22	18	0.866551551	4.802220309	
	1200	5	24	19	0.866551551	5.957220309	
	1200	5	26	20	0.866551551	7.112220309	
	2000	1	20	21	0.965933916	23.68214266	
	2000	1	22	22	0.965933916	26.41214266	
	2000	1	24	23	0.965933916	29.03714266	
	2000	1	26	24	0.965933916	31.76714266	
	2000	2	20	25	0.982558811	15.03564495	
	2000	2	22	26	0.982558811	17.03064495	
	2000	2	24	27	0.982558811	19.02564495	
	_000	_	21	_,	1.302030011		

1.703465683

3.5359222

	_				
2000	2	26	28	0.982558811	21.02064495
2000	3	20	29	1.006246901	11.30191227
2000	3	22	30	1.006246901	13.08691227
2000	3	24	31	1.006246901	14.87191227
2000	3	26	32	1.006246901	16.55191227
2000	4	20	33	1.048824575	6.820107124
2000	4	22	34	1.048824575	8.185107124
2000	4	24	35	1.048824575	9.655107124
2000	4	26	36	1.048824575	11.02010712
2000	5	20	37	1.111350508	3.842514909
2000	5	22	38	1.111350508	4.997514909
2000	5	24	39	1.111350508	6.152514909
2000	5	26	40	1.111350508	7.307514909
3000	1	20	41	1.276210934	23.80423312
3000	1	22	42	1.276210934	26.53423312
3000	1	24	43	1.276210934	29.15923312
3000	1	26	44	1.276210934	31.88923312
3000	2	20	45	1.292416717	15.22324642
3000	2	22	46	1.292416717	17.21824642
3000	2	24	47	1.292416717	19.21324642
3000	2	26	48	1.292416717	21.20824642
3000	3	20	49	1.315426842	11.5272551
3000	3	22	50	1.315426842	13.3122551
3000	3	24	51	1.315426842	15.0972551
3000	3	26	52	1.315426842	16.7772551
3000	4	20	53	1.356723674	7.071123745
3000	4	22	54	1.356723674	8.436123745
3000	4	24	55	1.356723674	9.906123745
3000	4	26	56	1.356723674	11.27112374
3000	5	20	57	1.417330654	4.1078567
3000	5	22	58	1.417330654	5.262856695
3000	5	24	59	1.417330654	6.417856695
3000	5	26	60	1.417330654	7.572856695
4000	1	20	61	1.586484838	23.93833312
4000	1	22	62	1.586484838	26.66833311
4000	1	24	63	1.586484838	29.29333311
4000	1	26	64	1.586484838	32.02333311
4000	2	20	65	1.60227192	15.42194754
4000	2	22	66	1.60227192	17.41694754
4000	2	24	67	1.60227192	19.41194754
4000	2	26	68	1.60227192	21.40694754
4000	3	20	69	1.624605307	11.76310295
4000	3	22	70	1.624605307	13.54810295

4000	3	24	71	1.624605307	15.33310295
4000	3	26	72	1.624605307	17.01310295
4000	4	20	73	1.66462314	7.33160575
4000	4	22	74	1.66462314	8.696605749
4000	4	24	75	1.66462314	10.16660575
4000	4	26	76	1.66462314	11.53160575
4000	5	20	77	1.723313462	4.381150483
4000	5	22	78	1.723313462	5.536150483
4000	5	24	79	1.723313462	6.691150483
4000	5	26	80	1.723313462	7.846150483