Calculs algébriques et équations

Propriétés. (Distributivité)

- k(a + b) = ka + kb. (simple distributivité) • Pour tous réels *a*, *b*, *k* :
- Pour tous réels a,b,c,d: (a+b)(c+d) = ac + ad + bc + bd (double distributivité) Pour tous réels a,b,c,d: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ et $\frac{a}{b} \frac{c}{d} = \frac{ad-bc}{bd}$ (réduction au même dénominateur)

Propriétés (Identité remarquables).

- Pour tous réels $a, b : (a + b)^2 = a^2 + 2ab + b^2$
- Pour tous réels $a, b : (a b)^2 = a^2 2ab + b^2$

• Pour tous réels $a, b: (a + b)(a - b) = a^2 - b^2$ **Exemple**. Développer $(-3 + x)^2$. $(-3 + x)^2 = ((-3) + x)^2 = (-3)^2 + 2 \times (-3) \times x + x^2 = 9 - 6x + x^2$.

Exemple. Factoriser $x^2 - 2x + 1$. Dans la 2ème identité, on choisit a = x et b = 1. $x^2 - 2x + 1 = (x - 1)^2$.

Exemple. Factoriser $9 - x^2$. D'après la 3ème identité, $9 - x^2 = (3)^2 - x^2 = (3 + x)(3 - x)$.

Propriétés (Equations). Soit a, b, c, k des réels.

- Si a = b alors a + c = b + c. (Ajouter un réel aux 2 côtés d'une égalité conserve l'égalité)
- Si a = b alors a c = b c. (Soustraire un réel aux 2 côtés d'une égalité conserve l'égalité)
- Grâce aux 2 règles précédentes on a : $a = b \Leftrightarrow a + c = b + c$ et on a : $a = b \Leftrightarrow a c = b c$
- Si a=b alors ka=kb. (Multiplier un réel aux 2 côtés d'une égalité conserve l'égalité)
- Si a = b et k ≠ 0 alors a/k = b/k. (Diviser par un réel ≠ 0 une égalité conserve l'égalité)
 Les règles précédentes se résument à une seule règle : Si a = b et f est une fonction alors f(a) = f(b) (Deux choses identiques subissant une même transformation, donnent deux nouvelles choses identiques.)

Exemple. Résoudre (E) 3x - 2 = 6x + 9 sur \mathbb{R} .

Soit $x \in \mathbb{R}$. $(E) \Leftrightarrow 3x - 6x = 9 + 2 \Leftrightarrow -3x = 11 \Leftrightarrow x = -\frac{11}{3}$. L'ensemble des solutions de (E) est $\left\{-\frac{11}{3}\right\}$.

Propriété. Pour tout $a \in \mathbb{R}, b \in \mathbb{R}^*, \frac{a}{b} = 0 \Leftrightarrow a = 0$.

(Un quotient est nul si et seulement si son numérateur est égal à 0.) **Exemple**. Résoudre (E) $\frac{x+1}{x^2+1} = 0$ sur \mathbb{R} .

Soit $x \in \mathbb{R}$. $(E) \Leftrightarrow x + 1 = 0 \Leftrightarrow x = -1$. L'ensemble des solutions de (E) est $\{-1\}$.

Propriété. Pour tout $a, b \in \mathbb{R}$, $ab = 0 \Leftrightarrow a = 0$ ou b = 0

(Un produit est nul si et seulement si <u>au moins l'un</u> de ses facteurs est égal à 0.)

Exemple. Résoudre (E): (x + 3)(2x - 5) = 0 sur \mathbb{R} .

Soit $x \in \mathbb{R}$. $(E) \Leftrightarrow x + 3 = 0$ ou $2x - 5 = 0 \Leftrightarrow x = -3$ ou $x = \frac{5}{2}$. L'ensemble des solutions de (E) est $\left\{-3; \frac{5}{2}\right\}$.

Propriété. On considère l'équation $x^2 = k$ avec k appartenant à \mathbb{R} .

- Si k < 0, l'équation $x^2 = k$ n'a aucune solution réelle.
- Si k = 0, l'équation $x^2 = k$ a une seule solution réelle x = 0.
- Si k > 0, l'équation $x^2 = k$ a deux solutions réelles : $x = \sqrt{k}$ ou $x = -\sqrt{k}$

Exemple. Résoudre $(E): x^2 = 5$ sur \mathbb{R} .

Soit $x \in \mathbb{R}$. $(E) \Leftrightarrow x^2 = 5 \Leftrightarrow x = \sqrt{5}$ ou $x = -\sqrt{5}$. L'ensemble des solutions de (E) est $\{\sqrt{5}; -\sqrt{5}\}$.

Exemple. Résoudre $(E): \frac{1}{r} + \frac{x^2}{3} = 0$ sur \mathbb{R}^* .

Soit $x \in \mathbb{R}^*$. $(E) \Leftrightarrow \frac{3+x^2}{2x} = 0 \Leftrightarrow 3+x^2 = 0 \Leftrightarrow x^2 = -3$. (E) n'a pas de solution sur \mathbb{R} .

Propriété. On considère l'équation $\sqrt{x} = k$ avec k appartenant à \mathbb{R} .

- Si k < 0 l'équation $\sqrt{x} = k$ n'a aucune solution réelle.
- Si $k \ge 0$ l'équation $\sqrt{x} = k$ a une seule solution réelle $x = k^2$.

Exemple. Résoudre (E): $\sqrt{x} = 5$ sur \mathbb{R}_+ . Soit $x \in \mathbb{R}_+$. $(E) \Leftrightarrow \sqrt{x} = 5 \Leftrightarrow x = 25$. L'ensemble des solutions de (E) est $\{25\}$.