Estadística bayesiana

Tarea 2

Fecha de entrega: 13 de octubre

- 1. Sea $X \mid \theta \sim \text{Bin}(n, \theta)$ con n conocido y donde se asume que a priori $\theta \sim \text{Be}(\sqrt{n}/2, \sqrt{n}/2)$.
 - (a) Encuentre el estimador de Bayes d^* bajo una pérdida cuadrática y obtenga el riesgo de Bayes.
 - (b) Considere ahora el estimador $d_0(x) = x/n$. Encuentre el riesgo de Bayes y compárelo con el de d^* . ¿Qué sucede cuando se toma n = 10, 50 y 100?
- 2. Sea $X \mid \theta \sim \mathcal{N}(\theta, 1)$ donde se asume que a priori $\theta \sim \mathcal{N}(0, n)$.
 - (a) Encuentra el riesgo bayesiano bajo una pérdida cuadrática. ¿Cómo se comporta dicho riesgo cuando n crece?
 - (b) Sea n = 1. Demuestre que bajo la función de pérdida,

$$l(\theta, d) = \exp\left(\frac{3\theta^2}{4}\right)(\theta - d)^2,$$

el estimador bayesiano es $\tilde{d}(x) = 2x$.

- (c) ¿Cuál es el riesgo bayesiano asociado a $\tilde{d}(x)$ y cómo se compara con el del inciso (a)?
- 3. Sea X_1, \ldots, X_n una muestra aleatoria con distribución Pareto (α, β) , cuya función de densidad está dada para $x > \beta$ por

$$f(x \mid \alpha, \beta) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}.$$

Supóngase que se observa $Y=\min\{X_1,\ldots,X_n\}$ y que α es conocida pero β no.

- (a) Muestre que la distribución gamma es una familia conjugada para el parámetro β .
- (b) Encuentre el estimador bayesiano bajo una función de pérdida cuadrática.
- 4. Sea X_1, \ldots, X_n una colección de variables que se asumen intercambiables tales que $X_i \mid \theta \sim \text{Ber}(\theta)$.

- (a) Utilizando la distribución impropia $f(\theta) \propto \theta^{-1}(1-\theta)^{-1}$ encuentre la distribución posterior de $\theta \mid \mathbf{x}$.
- (b) Obtén la aproximación de Laplace para esta distribución posterior.
- (c) Muestra que la distribución inicial $f(\theta)$ es equivalente a una distribución uniforme para

$$\beta = \log\left(\frac{\theta}{1-\theta}\right).$$

- (d) Para dicha transformación, encuentra la distribución posterior y la aproximación de Laplace correspondiente.
- (e) ¿Para qué parametrización tiene más sentido utilizar la aproximación de Laplace?

5. Considera la integral

$$I = \int_0^{10} \exp(-2|x-5|) dx.$$

- (a) Suponga que $X \sim \text{Unif}(0, 10)$. Mostrar que la integral se puede ver como una esperanza con respecto a dicha distribución. De esta forma, utilizando el lenguaje de programación de tu preferencia, deriva una aproximación a I utilizando integración de Monte Carlo.
- (b) Explica como se puede estimar I utilizando el método de muestreo por importancia con distribución instrumental $g(x) = \mathcal{N}(x \mid 5, 1)$. Detalla el algoritmo e implementalo.
- (c) ¿Cuál de los dos métodos anteriores prefieres?

6. Sea $X \sim \mathcal{N}(0, 1)$.

- (a) Explica cómo utilizar la integración de Monte Carlo para encontrar $\mathbb{P}(X > a)$ para $a \in \mathbb{R}$.
- (b) ¿Cuáles son las dificultades para valores grandes de a?
- (c) Supóngase que se desea estimar dicha probabilidad pero utilizando el método de muestreo por importancia utilizando como distribución instrumental $g = \mathcal{N}(\mu, 1)$. Considerando los casos a = 3 y $\mu = 4$ y a = 4.5 y $\mu = 4.5$, comente las ventajas de este enfoque comparado con simular directamente de una distribución $\mathcal{N}(0, 1)$.
- (d) Explica cómo encontrar $\mathbb{P}(X > 4.5)$ utilizando el muestro por importancia con distribución instrumental dada por una exponencial de parámetro $\lambda = 1$ y truncada en 4.5 cuya densidad está dada por

$$g(x) = \exp(-(x-4.5))\mathbb{I}(x)_{(4.5,\infty)}$$

7. Demuestra que para el muestreo por importancia, se tiene que

$$g^*(x) = \frac{|h(x)|f(x)}{\int |h(t)|f(t)dt},$$

minimiza la varianza del estimador

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} h(x_i) w(x_i).$$

- 8. Suponga que bajo un enfoque bayesiano se tiene que $f(\theta \mid x) = cg(\theta)$ donde $g(\theta) \propto f(x \mid \theta) f(\theta)$ y c es la constante de normalización. Para una función $h(\theta)$ se desea encontrar $\mathbb{E}(h(\theta) \mid x)$. Suponga además que se tiene una muestra $\theta_1, \ldots, \theta_N$ provenientes de una distribución $q(\theta)$ cuyo soporte es el mismo que el de $f(\theta \mid x)$.
 - (a) Si c es conocida ¿cómo se puede estimar $\mathbb{E}(h(\theta) \mid x)$ a partir de la muestra generada de $q(\theta)$?
 - (b) Si c es desconocida, ¿cómo se podría estimar c a partir de la muestra generada de $q(\theta)$?
 - (c) Finalmente, detalle cómo estimar $\mathbb{E}(h(\theta) \mid x)$ cuando c es desconocida.
- 9. Sea $X \mid \theta \sim \mathcal{N}(\theta, 1)$ donde se asume que a priori que $\theta \sim \mathcal{C}(0, 1)$.
 - (a) Utilizando la integración de Monte Carlo encuentra $\mathbb{E}(\theta \mid x)$ y $\mathsf{Var}(\theta \mid x)$. Realiza tus aproximaciones para m = 10, 100, 1000, 10000 y 100000 simulaciones.
 - (b) ¿Cómo se comparan los estimadores del inciso anterior con los estimadores correspondientes a una distribución inicial $\mathcal{N}(0,1)$?
- 10. Considera la distribución de Kumaraswamy definida en el intervalo (0,1) y cuya densidad está dada por

$$f(x \mid a, b) = abx^{a-1}(1 - x^a)^{b-1}.$$

- (a) Obtén la cdf de dicha distribución e implementa un algoritmo para simular una muestra de tamaño 10,000.
- (b) Utilizando el algoritmo de aceptación y rechazo con distribución uniforme como distribución instrumental, simula una muestra de tamaño 10,000. ¿Cuántas variables tuviste que generar hasta obtener las 10,000 deseadas?
- (c) Utilizando el muestreo por importancia con distribución uniforme como la distribución instrumental, genera una muestra de tamaño 10,000.
- (d) Obtener de forma analítica la esperanza de la distribución y compara para diferentes tamaños de muestra el estimador de Monte Carlo de los tres métodos anteriores.

Actividades de DataCamp

Realizar los siguientes cursos de manera individual

- 1. Introduction to Writing Functions in R
- 2. Intermediate R
- 3. Writing Efficient R Code