2004-2005 学年第二学期 《模拟电子技术》试卷 B 卷

-、(12 分)试求下列几种情况下图示电路输出端电位 V_O Q Q_A 和 Q_A 通过的电流: (1) V_A =8V, V_B =0V; (2) V_A =18V, V_B =-7V; (3) V_A =4V, V_B =4V; 。设二极管的正向电阻为零,反向电阻为无穷大,稳压二极管的稳定电压为 10V。

二、 $(20 \, \beta)$ 图示电路中,已知 R_{B1} =7. $5k\,\Omega$, R_{B2} =2. $5k\,\Omega$, R_{C} =2 $k\,\Omega$, R_{E} =2 $k\,\Omega$, R_{E} =2 $k\,\Omega$, R_{E} =2 $k\,\Omega$, R_{E} =0. 6V, V_{CC} =12V,三极管的 β =50, 设各电容对交流可视为短路。

- 1. 估算电路的静态工作点 I_B、I_C、V_{CE};
- 2. 求晶体管的输入电阻 r_{be} ;
- 3. 画出小信号等效电路;
- 4. 求电路的输入电阻 Ri 和输出电阻 Ro;

5. 求电压增益 A v。

+ \mathbf{v}_{i}

+Vcc

 \mathbf{v}_{o}

第1页共3页

三、(16 分) 电路如图所示,已知 $R_L=8 \Omega$, v_i 为正弦波,要求最大输出功率

Pom=9W。BJT 的饱和压降 VCES 可以忽略不计。求:

- 1. 正、负电源 Vcc 的最小值;
- 2. 根据 V_{CC} 的最小值, 计算相应的 I_{CM} 、 $|V_{(BR)|CEO}|$ 的最小值;
- 3. 输出功率最大 $(P_{om}=9W)$ 时,电源提供的功率 P_{V} ; v_{i} o-
- 4. 每个管子的管耗 Pcm 的最小值。

 $^{
m P+V}_{
m CC}$

四、 $(12 \, \mathcal{H})$ 由运放组成的 BJT 电流放大系数 β 的测试电路如图所示,设 BJT 的 V_{BE} =0. $7V_{\circ}$ 0. $7V_{\circ}$ 1. 求出 BJT 的 e_{\circ} 5 と 各极的电位值; (2) 若电压表读数为 $120 \, \text{mV}$ 7 、试求 BJT 的 β 值。

五(15 分)、电路入图所示,设运放是理想的,已知 $R_1=R_4=R_5=R_6=R_7=R_8=50K$

- Ω , R_2 =150K Ω , R_3 =37.5K Ω , R_9 =16.5K Ω , C=100 μ F。 \overline{x} :
- 1. 写出 v_{o1}、v_{o2}和 v_o的表达式;
- 2. A3 运放组成的电路属于何种类型的反馈组态。

六、 $(13 \, \text{分})$ 电路如图所示,集成稳压器 7824 的 2,3 端电压 V_{32} = V_{REF} =24 V_{REF} =2

七、(12 分) 测得某放大电路中有两个三极管 A 和 B,A 管三极的对地电位分别为: V_1 =9V、 V_2 =6V, V_3 =6. 7V;B 管三极的对地电位分别为: V_4 =-9V、 V_5 =-6V, V_6 =-6. 2V。试确定 A 管和 B 管是 PNP 型还是 NPN 型? 是硅管还是锗管? V_1 、 V_2 、 V_3 、 V_4 、 V_5 、 V_6 对应的是哪个极(发射极、基极和集电极)的电压。