

TRANSIMS Training Course at TRACC

Transportation Research and Analysis Computing Center

Part 3

Population Synthesis based on CENSUS Resources

Dr.-Ing. Hubert Ley

Transportation Research and Analysis Computing Center

Last Updated: December 9, 2009

Jnit 3

TRACC - TRANSIMS Training Course

Contents

- Introduction
- CENSUS Bureau Data
- Data Sources
- Data Preparation Tools
- Census Bureau PUMS Data
- Census Bureau SF3 Data
- Placement of Households on the Network
- Algorithms
- IPF Algorithms (Traditional and Two-Step)
- Three-Dimensional IPF Procedure

The TRANSIMS Population Synthesizer

- Mimics regional population ("synthetic population")
 - Demographics closely match real population
 - Households distributed spatially to approximate regional population distribution
 - Household locations determine some of the travel origins and destinations
- Functions of the Population Synthesizer
 - Generation of synthetic households from census data at the block group level
 - Development of each household demographic characteristics (income, members, etc)
 - Placement of each synthetic household on a link in transportation network (activity locations)
 - Assignment of vehicles to each household (sharing vehicles and rides within a household)

3

Introduction

- The population generator creates synthetic households from census data to model a real population for the entire coverage area
 - Census data is provided for the entire United States
 - The data is made anonymous by the Census Bureau by
 - Providing summarized data on various levels (STF)
 - Providing small but representative subsets of actual data records taken from a larger area (PUMA)
 - The smallest unit of public Census data with sufficient detail is at the
 - block group level (summary data) for ~ 600 to 3,000 people
 - public use microdata area level (sample records) for ~100,000 people
- Develops associated demographic characteristics for each household
- Places each synthetic household on a link in the transportation network
- Assigns vehicles to each household

Population Synthesizer

- The Census data is broken down by summarizing it on a number of levels:
 - Entire United States (10)
 - By State (40)
 - By County (50)
 - By Census Tract (80)
 - By Census Block Group (90)
 - By Census Block (100)
- Independently, samples are provided for PUMAs (public use microdata areas)
 - 1% and 5% sample records
 - both are made anonymous
- The challenge is to reconstruct a representative synthetic population

TRACC - TRANSIMS Training Course

CENSUS Bureau Data

- The following Census Bureau data is of interest for modeling
 - Summary File 3 tables
 - Contain demographic summary tables from Census data for small geographic areas. These
 one-dimensional summary tables contain information on 100% household demographic
 variables at the Census Block Group level.
 - PUMS tables
 - Public Use Microdata Sample files consist of a 5% representative sample of almost complete census records from those households contained in a collection of census tracts or other small geographic census areas, which collectively is called a Public Use Micro Area (PUMA).
- A PUMA is constructed so that it contains approximately 100,000 individuals.
 These files are edited to protect the confidentiality of all individuals, but they have the information necessary to conduct effective research and analysis.

CENSUS Data

BLUE

PUMS 5% Sample Data

ORANGE

Aggregate STF3 Data

YELLOW

Street Network

TRACC - TRANSIMS Training Course

Data of Interest for TRANSIMS Households

Characteristic aggregate data per household:

HHOLD Household ID

STATE State Abbreviation or FIPS code

PUMA PUMA number

WEIGHT Survey expansion factor

PERSONS The number of persons in the household

WORKERS The number of workers in the household

VEHICLES
 The number of vehicles available to the household

INCOME The household incomeTYPE The household type

HHAGE The age of the head of the household (householder)

NUM_LT5 The number of children less than 5 years old
 NUM_5TO15The number of children between 5 and 15 years old

Λ

Data of Interest for TRANSIMS Households

Characteristic aggregate data per person:

HHOLD Household ID

PERSON Person number within the household

RELATE The relationship or role of the person in the

household

GENDER The gender or sex of the person

AGE The age of the person

WORKER The person's employment status

 Both sets of data (household data and person data) are to be extracted from CENSUS data tables

č

TRACC - TRANSIMS Training Course

PopSyn Input Data

- PopSyn is the Version 4 Population Synthesizer
- PopSyn requires the following input data
 - A Zone Data File (Created by ZoneData)
 - A PUMS Household File (Created by PUMSPrep)
 - A PUMS Population File (Created by PUMSPrep)
 - An Activity Location File ("Enriched" using LocationData)
 - A Process Link File (Created by TransimsNet)
 - A Vehicle Type Distribution File
- There are two documents that will help understanding the process
 - The 2000 US Census Data Preparation How-To
 - The Population Synthesizer How-To
 - Both are available from the TRANSIMS web site

TRANSIMS Tools

- PopSyn is the population synthesizer itself
- The input for PopSyn is created using the following tools
 - PUMSPrep
 - SF3Prep
 - ZoneData
 - LocationData
- All data is taken from standard CENSUS files
 - PUMS:

http://www2.census.gov/census 2000/datasets/PUMS/FivePercent

SF3:
 http://www2.census.gov/census 2000/datasets/Summary File 3

All data is based on the Year 2000 CENSUS

11

TRACC - TRANSIMS Training Course

Data Preparation: PUMS Data and PUMSPrep

- H000216551723001011701099979997999799977070 4910786365 4764538933 17748095205 173837387998300180200000200209060503010101010102010 004800061000170000010 0 030 0 0 0100 00350000000090 0 0102000200000441001680080000000021114090002430000024300

- H000584751723001011701099979997999779977070 4910786365 4764538933 17748095205
 1738373879902000603000001002050506030101010103010200040000050000800000010 0
 01000810030 020380200380100000140 0
 0100010301010220015000230000000021141010008000000080000
- ...
- PUMS data files are compressed files for the entire state
 - Compressed 37MB for Illinois
 - Uncompressed 260MB for Illinois
 - 880,000 records for Illinois
 - Text file with no separators between fields and very long lines

Data Preparation: PUMS Data and PUMSPrep

 Typical information that is being extracted and used from the PUMS data sets

Data	Record Size	Beginning At Field	Description of Data	Allowed Values	Description of Values
RECTYPE	1	1	Record Type	Н	Housing Record
PUMA	5	13	Public use microdata area (state dependent)	00100 99999	PUMA code.
RHHINC	7	141	Household income	0000000	N/A* (GQ**/vacant/no income)
				-999999 9999999	Total household income in dollars
RWRKR89	1	148	Workers in	0	N/A*
			family in	1	No Workers
			1989	2	1 Workers
				3	2 Workers
				4	3 Workers
R18UNDR	1	162	Presence of person under 18 years in household	0	N/A* (No person under 18 in household/GQ**/ vacant)
				1	1 or more person under 18 in household

Data	Record Size	Beginning At Field	Description of Data	Allowed Description of Values		
RECTYPE	1	1	Record Type	P	Person Record	
RELAT1	2	9	Relationship	00	Householder	
				01	Husband/Wife	
				02	Son/Daughter	
				03 Stepson/Stepdaughter		
				04	Brother/Sister	
				05	Father/Mother	
				06	Grandchild	
				07	Other relative	
					Non Related	
				08 Roomer/boarder/foster		
				09 Housemate/roommate		
				10 Unmarried partner		
				11 Other non-relative		
					Group Quarters	
				12	Institutionalized person	
				Other person in group quarters.		
SEX	1	11	Sex	0	Male	
				1 Female		
AGE	2	15	Age	00	Less than 1 year	
				01 89 Age in years		
				90 90 or more years old		
WORK89	1	122	Worked last year (1989)	0 N/A (less than 16 years old)		
				1	Worked last year	
				2	Did not work last year	

TRACC - TRANSIMS Training Course

Data Preparation: PUMS Data and PUMSPrep

- Synthetic households in TRANSIMS are divided into three categories:
 - 1. Family households two or more related persons
 - Non-family households persons living alone or unrelated persons living together
 - 3. Group quarters dwellings such as prisons or college dormitories

Data Preparation: PUMS Data and PUMSPrep

- TITLE PUMS Data ExtractionDEFAULT_FILE_FORMAT TAB_DELIMITED
- #---- Input Files ----
- PUMS_DATA_FILE census/PUMS5_17.TXT
- #---- Output Files ----
- NEW_PUMS_HOUSEHOLD_FILE demand/Households
 NEW_PUMS_POPULATION_FILE demand/Persons
- #---- Parameters ---
- HOUSEHOLD_DATA_FIELD_1 HHOLD, INTEGER, 2, 7
 HOUSEHOLD_DATA_FIELD_2 STATE, STRING, 10, 2
 HOUSEHOLD_DATA_FIELD_3 PUMA, INTEGER, 14, 5
 HOUSEHOLD_DATA_FIELD_4 WEIGHT, INTEGER, 102
- HOUSEHOLD_DATA_FIELD_5HOUSEHOLD_DATA_FIELD_6HOUSEHOLD_DATA_FIELD_7
- HOUSEHOLD_DATA_FIELD_8HOUSEHOLD_DATA_FIELD_9HOUSEHOLD_DATA_FIELD_10
- HOUSEHOLD_DATA_FIELD_11HOUSEHOLD_DATA_FIELD_12POPULATION_DATA_FIELD_1
- POPULATION_DATA_FIELD_2
 POPULATION_DATA_FIELD_3
 POPULATION_DATA_FIELD_4
- POPULATION_DATA_FIELD_5 AGE, INTEGER, 25, 2
 POPULATION_DATA_FIELD_6 WORKER, INTEGER, 236, 1
- STATE_PUMA_LISTCONVERSION_SCRIPT
- PUMA, INTEGER, 14, 5
 WEIGHT, INTEGER, 102, 4
 PERSONS, INTEGER, 218, 2
 WORKERS, INTEGER, 0, 1
 VEHICLES, INTEGER, 134, 1
 INCOME, INTEGER, 251, 8
 TYPE, INTEGER, 213, 1
 HHAGE, INTEGER, 0, 2
- NUM_LT5, INTEGER, 0, 2 NUM_5TO15, INTEGER, 0, 2 HHOLD, INTEGER, 2, 7
- PERSON, INTEGER, 9, 2 RELATE, INTEGER, 17, 2 GENDER, INTEGER, 23, 1 AGE, INTEGER, 25, 2
- _6 WORKER, INTEGER, 236, 51100, 51200, 51301, 51302
- census/PUMS_Script.txt

- PUMSPrep Control File
 - Refers to the PUMS data file downloaded from the CENSUS web site
 - Creates both a household and a persons (population) file
 - Assigns data from specific column ranges in the PUMS data file to variables that are mostly userdefined
 - Processes data for a specific list of PUMAs that cover the model area
 - Some fields cannot be populated directly but are calculated in a TRANSIMS script (see next page)

TRACC - TRANSIMS Training Course

Data Preparation: PUMS Data and PUMSPrep

- TRANSIMS Script for PUMSPrep
- IF (New Pop.WORKER == 1) THEN
- New_HH.WORKERS = New_HH.WORKERS + 1
- ENDIF
- IF (New_Pop.RELATE == 1) THEN
- New_HH.HHAGE = New_Pop.AGE
- ENDIF
- IF (New_Pop.AGE < 5) THEN
- New_HH.NUM_LT5 = New_HH.NUM_LT5 + 1
- ELSE
- IF (New_Pop.AGE <= 15) THEN
- New_HH.NUM_5TO15 = New_HH.NUM_5TO15 + 1
- ENDIF
- ENDIF

- TRANSIMS Scripts are used for a number of different TRANSIMS tools
- This is a special and somewhat limited programming language
- They are somewhat similar to PL/SQL trigger scripts
- Scripts are written as text files and have to be referenced from the correct control file
- The scripts provide variables on input and output to allow powerful preand post-processing of data
- Here a script is used for creating aggregate counts per household based on person records in the PUMA data file

15

Data Preparation: PUMS Data and PUMSPrep

Sample household file

•	HHOLD	STATE	PUMA	WEIGHT	PERSONS	WORKERS	VEHICLES	INCOME	TYPE	HHAGE	NUM_LT5	NUM_5T015
•	1347	51	100	17	2	1	1	23000	3	32	0	1
•	4366	51	100	31	2	2	2	201030	5	44	0	0
•	5847	51	100	31	2	0	1	4	2	18	0	0
•	7646	51	100	11	3	3	2	42400	5	28	0	0
	20464	51	100	22	2	2	2	13200	3	46	0	0

Sample person file

•	HHOLD	PERSON	RELATE	GENDER	AGE	WORKER
•	1347	1	1	2	32	1
•	1347	2	3	2	10	0
•	4366	1	1	1	44	1
•	4366	2	19	1	50	1
•	5847	1	1	1	18	2
•	5847	2	16	1	24	2
•	7646	1	1	1	28	1
•	7646	2	18	1	28	1
•	7646	3	18	2	26	1
•	20464	1	1	2	46	1

- These are sample household and person files from the Alexandria case study generated by PUMSPrep
- Some of the household data has been aggregated from person records
- These are used as inputs for PopSyn at a later stage of the process

17

TRACC - TRANSIMS Training Course

Data Preparation: SF3 Data and SF3Prep

- uSF3,IL,000,10,0000001,423440,206752,13570,14070,14137,8776,6760,3577,3408,10882,22548,20936,18161,16123,14823,12572,9074,3030,3500,212 9,2420,2794,1922,953,587,216688,14920,12474,12922,7667,6057,3424,3188,10911,23845,21977,19057,17545,16136,14408,10179,3294,3756,2160,29 28,4116,2891,1838,995,3811,1890,139,132,119,97,68,112,48,110,200,139,155,196,83,53,104,18,40,13,5,22,12,223,1921,125,162,153,65,128,81,22,78, 247,156,121,120,149,132,20,44,41,19,119,18,0,20,724021,381817,40784,38737,32662,20786,16320,8827,8842,28143,45018,36094,30473,24826,1870 4,12362,6869,2191,2556,1502,1744,2127,1381,565,304,342204,38487,37271,31815,18414,14356,7485,7587,22505,35703,29844,26553,22557,15959,1 1523,7283,2480,2995,1666,2098,2623,1671,752,577,249431,125851,18892,14970,12198,6333,4095,2085,2038,6421,10206,9244,9364,8064,5986,4833 ,3362,1111,1612,825,1005,1373,1048,474,312,123580,18018,14106,12095,6271,4113,2140,2118,6128,9941,8656,8337,7772,5588,4983,3089,1163,166 3,884,1163,2102,1491,1016,743,1529141,800477,89661,83155,68705,41180,33512,18086,17287,55162,90223,76251,64796,52237,38751,26640,16699 ,5437,6908,4333,4935,6326,3657,1568,968,7226644,85223,79309,66722,36015,27665,14516,14254,44041,72789,64163,55851,46356,34180,25270,172 22,5826,7318,4171,5557,7494,4603,2300,1819
- uSF3,IL,000,10,0000002,418352,204642,13352,13904,13926,8652,6635,3542,3382,10790,22396,20804,18042,16003,14676,12453,8908,2997,3448,212 0,2406,2766,1907,953,580,213710,14712,12327,12670,7560,5951,3346,3145,10793,23607,21762,18795,17339,15839,14177,9966,3247,3705,2143,286 9,4062,2881,1827,987,3525,1745,137,117,110,94,65,112,48,94,180,125,137,181,69,48,98,18,40,13,0,22,12,22,3,1780,125,158,123,61,117,81,22,74,223 146,105,117,141,128,18,33,36,19,11,7,18,0,17,716684,377614,40407,38303,32245,20550,16103,8697,8740,27888,44609,35673,30154,24486,18443,1 2235,6812,2173,2538,1481,1730,2118,1372,558,299,339070,38129,36925,31532,18221,14216,7419,7510,22371,35404,29534,26309,22273,15773,114 58,7210,2472,2989,1656,2090,2613,1660,746,560,238298,120402,18142,14298,11484,5986,3920,2022,1951,6316,9960,8979,9024,7736,5645,4573,31 76,977,1506,784,928,1256,1021,435,283,117896,17272,13514,11452,5911,3956,2093,2070,5917,9634,8392,7967,7345,5188,4679,2887,1109,1548,852 ,1087,1970,1388,959,706,1508724,795465,88439,81979,67614,40565,33031,17836,17052,54600,89316,75364,63959,51446,38088,26155,16445,5317,6844,4255,4886,6230,3557,1531,956,713259,84155,78230,65679,35415,57265,14357,14115,43617,72065,63441,55260,45702,33580,24973,16935,574 3,7223,4111,5497,7357,4504,2262,1773
- ...
- SF3 data files are compressed files for the entire state or by county
 - Compressed 404MB for Illinois
 - Uncompressed approx. 10GB for Illinois
 - 76 county data files for Illinois
 - Text file with separators between fields and very long lines

Data Preparation: SF3 Data and SF3Prep

- TITLE SF3 Data Extraction

 DEFAULT_FILE_FORMAT TAB_DELIMITED

 #---- Input Files ---SF3_GFGGAPPLY_FILE_1 census/ilego.uf3
- SF3_GEOGRAPHY_FILE_1 census/ilgeo.uf3
 SF3_SEGMENT_FILE_1_1 census/il00001.uf3
 SF3_SEGMENT_FILE_1_7 census/il00007.uf3
- #---- Output Files ----
- NEW_ZONE_DATA_FILE ZonesSF3
- #---- Parameters ----
- ZONE_DATA_FIELD_RANGE_1 STATE
 ZONE_DATA_FIELD_RANGE_2 COUNTY
 ZONE_DATA_FIELD_RANGE_3 TRACT
 ZONE_DATA_FIELD_RANGE_4 BLKGRP
- ZONE_DATA_FIELD_RANGE_5
 ZONE_DATA_FIELD_RANGE_6
 ZONE_DATA_FIELD_RANGE_6
 ZONE_DATA_FIELD_RANGE_7
 ZONE_DATA_FIELD_RANGE_8
 ZONE_DATA_FIELD_RANGE_8
 ZONE_DATA_FIELD_RANGE_9
 ZONE_DATA_FIELD_RANGE_9
 ZONE_DATA_FIELD_RANGE_10
 ZONE_DATA_FIELD_RANGE_10
- SF3 SUMMARY LEVEL 90
- STATE COUNTY LIST 51013, 51059, 51510
- INPUT_COORDINATE_SYSTEM LATLONG, MILLION_DEGREES
- OUTPUT_COORDINATE_SYSTEM UTM, 16N, METERS

- SF3Prep Control File
 - Refers to the SF3 data files downloaded from the CENSUS web site
 - Creates an intermediate zone data file (SF3 zone data file)
 - Assigns data from specific summary tables in the SF3 data files to variables that are mostly userdefined
 - Processes data for a specific list of counties that cover the model area
 - Reprojection of the geocoding for the centroids for each block group is necessary (TRANSIMS uses UTM)

TRACC - TRANSIMS Training Course

Association of CENSUS Data with the TRANSIMS Model

- At this point, the CENSUS data is in a format that's suitable for the population synthesizer
- The PUMAs and the SF3 block group data are at this time not associated with each other
- The TRANSIMS network, and specifically the activity locations, are at this point unaware of any of the preparatory work done in the previous steps
- Activity locations need to associated with specific block groups and PUMAs for further processing
- The data files are now being processed to include appropriate geographic coding by placing relational indices into the files
- This is based on GIS shape files available from the CENSUS web site
 - These shape files contain polygons for block groups and PUMAs
- More details can be found in the current PopSyn How-To document

19

Data Preparation: The ZoneData Tool

```
BlockGroup Data Manipulation
DEFAULT_FILE_FORMAT
                         TAB DELIMITED
#---- Input Files ----
NET_ZONE_TABLE
BOUNDARY_POLYGON_1
                          census/arcview/p517_d00.shp
BOUNDARY_POLYGON_2
                           census/arcview/bg17_d00.shp
CONVERSION SCRIPT
                        census/BlockGroup Script.txt
#---- Output Files ----
NEW_ZONE_TABLE
#---- Parameters ----
COPY_EXISTING_FIELDS
                        NO
NEW ZONE FIELD 1
                        STATE, INTEGER, 3
NEW ZONE FIELD 2
                        COUNTY, INTEGER, 5
NEW_ZONE_FIELD_3
                        TRACT, INTEGER, 7
NEW_ZONE_FIELD_4
                        BLKGRP, INTEGER, 2
NEW_ZONE_FIELD_5
                        PUMA, INTEGER, 5
NEW ZONE FIELD 6
                        AGE1, INTEGER, 5
NEW_ZONE_FIELD_7
                        AGE2, INTEGER, 5
NEW_ZONE_FIELD_8
                        AGE3, INTEGER, 5
NEW_ZONE_FIELD_9
                        AGE4, INTEGER, 5
NEW_ZONE_FIELD_10
                         AGE5, INTEGER, 5
NEW_ZONE_FIELD_11
                         AGE6, INTEGER, 5
NEW ZONE FIELD 12
                         AGE7, INTEGER, 5
NEW_ZONE_FIELD_13
                         AGE8. INTEGER. 5
```

	NEW ZONE FIELD 14	SIZE1, INTEGER, 5
	NEW ZONE FIELD 15	SIZE2, INTEGER, 5
	NEW ZONE FIELD 16	SIZE3, INTEGER, 5
	NEW ZONE FIELD 17	SIZE4, INTEGER, 5
	NEW_ZONE_FIELD_18	SIZES, INTEGER, 5
	NEW ZONE FIELD 19	SIZE6, INTEGER, 5
	NEW ZONE FIELD 20	SIZE7, INTEGER, 5
		,, -
	NEW ZONE FIELD 21	INCOME1, INTEGER, 5
	NEW ZONE FIELD 22	INCOME2, INTEGER, 5
	NEW ZONE FIELD 23	INCOME3, INTEGER, 5
	NEW ZONE FIELD 24	INCOME4, INTEGER, 5
	NEW ZONE FIELD 25	INCOMES, INTEGER, 5
	NEW ZONE FIELD 26	INCOME6, INTEGER, 5
	NEW ZONE FIELD 27	INCOME7, INTEGER, 5
	NEW_ZONE_FIELD_28	INCOME8, INTEGER, 5
•	NEW_ZONE_FIELD_29	INCOME9, INTEGER, 5
•	NEW_ZONE_FIELD_30	INCOME10, INTEGER, 5
	NEW ZONE FIELD 31	INCOME11, INTEGER, 5
	NEW_ZONE_FIELD_32	INCOME12, INTEGER, 5
•	NEW_ZONE_FIELD_33	INCOME13, INTEGER, 5
•	NEW_ZONE_FIELD_34	INCOME14, INTEGER, 5
•	NEW_ZONE_FIELD_35	INCOME15, INTEGER, 5
•	NEW_ZONE_FIELD_36	INCOME16, INTEGER, 5
•	NEW_ZONE_FIELD_37	HOUSEHOLDS, INTEGER, 6
•	INPUT_COORDINATE_SYS	
•	OUTPUT_COORDINATE_SY	STEM UTM, 18N, METERS

21

TRACC - TRANSIMS Training Course

Data Preparation: The ZoneData Tool

- Out.ZONE = atoi (Polygon2.STATE) * 100000 + Polygon2.INDEX
- Out.PUMA = atoi (Polygon1.PUMA5)
- IF (Out.PUMA == 0 OR Out.ZONE == 0) THEN
- RETURN (0)
- ENDIF
- Out.AGE1 = In.HH_AGE1 + In.NF_AGE1
- Out.AGE2 = In.HH_AGE2 + In.NF_AGE2
- Out.AGE3 = In.HH_AGE3 + In.NF_AGE3
- ...
- Out.AGE8 = In.HH_AGE8 + In.NF_AGE8
- Out.SIZE1 = In.NF_SIZE1
- Out.SIZE2 = In.HH_SIZE2 + In.NF_SIZE2
- Out.SIZE3 = In.HH_SIZE3 + In.NF_SIZE3
- ...
- Out.SIZE7 = In.HH_SIZE7 + In.NF_SIZE7
- Out.INCOME1 = In.HH_INC1 + In.NF_INC1
- Out.INCOME2 = In.HH_INC2 + In.NF_INC2
- Out.INCOME8 = In.HH_INC8 + In.NF_INC8
- Out.INCOME9 = In.HH INC9 + In.NF INC9
- Out.INCOME10 = In.HH_INC10 + In.NF_INC10
- Out.INCOME16 = In.HH INC16 + In.NF INC16
- Out.HOUSEHOLDS = Out.SIZE1 + Out.SIZE2 + Out.SIZE3 +
- Out.SIZE4 + Out.SIZE5 + Out.SIZE6 + Out.SIZE7
- RETURN (1)

- This is an example ZoneData TRANSIMS script
- Creates a unique zone ID from state IDs and other GIS shape file attributes
- Filters illegal data entries out by returning a value of 0 to ZoneData
- Combines household aggregate data with non-household aggregate data
- Calculates household totals
- More details can be found in the PopSyn How-To document

Associating Activity Locations with CENSUS Data

- TITLE Add Census IDs to Activity Locations
- DEFAULT_FILE_FORMAT TAB_DELIMITED
- PROJECT_DIRECTORY ../
- #---- Input Files ----
- NET DIRECTORY ../network
- NET_ACTIVITY_LOCATION_TABLE Activity_Location
- BOUNDARY_POLYGON_1 census/arcview/p517_d00.shp
 BOUNDARY_POLYGON_2 census/arcview/bg17_d00.shp
- CONVERSION_SCRIPT census/LocationData_Census_Script.txt
- #---- Output Files ----
- NEW DIRECTORY ../network
- NEW_ACTIVITY_LOCATION_TABLE Activity_Location_Final
- #---- Parameters ----
- COPY_EXISTING_FIELDS
 YES
- CREATE_NOTES_AND_NAME_FIELDS YES
- NEW_LOCATION_FIELD_1 STATE, STRING, 2
- NEW_LOCATION_FIELD_2
 NEW_LOCATION_FIELD_3
 BG_ID, INTEGER, 10
- INPUT COORDINATE SYSTEM LATLONG, DEGREES
- OUTPUT_COORDINATE_SYSTEM UTM, 18N, METERS

- LocationData Control File
 - Reads an existing activity location data and copies all fields to a new activity location table
 - Creates three new fields in the output file to contain geographic attributes (e.g. membership in PUMAs, block groups, states ...
 - The three fields are populated using a TRANSIMS script (see next page)

23

TRACC - TRANSIMS Training Course

Associating Activity Locations with CENSUS Data

- TRANSIMS Script for LocationData
- IF (In.ZONE > 0 AND In.ZONE < 1945) THEN
- Out.BG_ID = atoi (Polygon2.STATE) * 100000 + Polygon2.INDEX
- Out.PUMA = atoi (Polygon1.PUMA5)
- Out.STATE = Polygon2.STATE
- ELSE
- Out.BG_ID = 0
- Out.PUMA = 0
- Out.STATE = ""
- ENDIF
- RETURN (1)

- Activity-based modeling makes only sense for "internal" traffic analysis zones
- In Chicago, we have 1945 internal zones
- The script can be modified and provides quite a level of flexibility
- Once the activity locations are aware of their geocoding, the population synthesizer can be run
- This step finalizes the data preparation procedure

The Population Synthesizer Control File

- Population Synthesis
- DEFAULT FILE FORMAT TAB DELIMITED
- PROJECT_DIRECTORY
- #---- Input Files ----
- NET DIRECTORY ../network
- NET_ACTIVITY_LOCATION_TABLE Activity_Location_Final
- NET PROCESS LINK TABLE Process Link
- PUMS_HOUSEHOLD_FILE Households PUMS_POPULATION_FILE Persons
- ZONE_DATA_FILE ZonesData
- VEHICLE_TYPE_DISTRIBUTION inputs/Vehicle_Distribution.txt
- #---- Output Files ----
- NEW_HOUSEHOLD_FILE household/Households NEW_POPULATION_FILE household/Persons NEW_VEHICLE_FILE household/Vehicles NEW_PROBLEM_FILE Problems
- POPSYN_REPORT_1 PUMS_HOUSEHOLD_SUMMARY POPSYN_REPORT_2 PUMS_POPULATION_SUMMARY SYNTHETIC_HOUSEHOLD_SUMMARY POPSYN_REPORT_3 POPSYN_REPORT_4 SYNTHETIC POPULATION SUMMARY

- #---- Parameters ----
- STATE_PUMA_LIST 51100, 51200, 51301, 51302
- PUMS WEIGHT FIELD WEIGHT
- ##PUMS_VEHICLE_FIELD
 PUMS_AGE_FIELD VEHICLES
- AGE ZONE_DATA_ID_FIELD ZONE
- LOCATION_ZONE_FIELD BG_ID
- ZONE_TOTAL_FIELD_1 HOUSEHOLDS
 - PUMS_ATTRIBUTE_FIELD_1_1 INCOME
- PUMS_ATTRIBUTE_BREAKS_1_1 10000, 15000, 20000, 25000, 30000, 35000, 40000, 50000, 60000, 75000, 100000, 125000, 150000, 200000
- ZONE_FIELD_GROUP_1_1 INCOME

- ZONE FIELD GROUP 1 2 AGE
- PUMS_ATTRIBUTE_FIELD_1_3 PERSONS
- PUMS_ATTRIBUTE_BREAKS_1_3 2, 3, 4, 5, 6, 7
- ZONE_FIELD_GROUP_1_3
- STARTING_HOUSEHOLD_ID STARTING_VEHICLE_ID
- RANDOM_NUMBER_SEED MAXIMUM_IPF_ITERATIONS MAXIMUM_IPF_DIFFERENCE 0.0000001
- OUTPUT_HOUSEHOLD_FIELDS HHOLD, STATE, PUMA,
 PERSONS, VEHICLES, WORKERS, INCOME, HHAGE,
 NUM_LT5, NUM_5TO15
- OUTPUT_POPULATION_FIELDS HHOLD, PERSON, GENDER, AGE, WORKER

25

Population Synthesizer Reports

PUMS Household Summary

_	Attribute Name	Total	Average	Minimum	Maximum
-	PERSONS	32818.00	2.29	1.00	16.00
-	VEHICLES	21685.00	1.52	0.00	6.00
-	WORKERS	20836.00	1.46	0.00	9.00
-	INCOME	1178458950.00	82346.37	-10000.00	912000.00
-	HHAGE	640829.00	44.78	0.00	93.00
-	NUM_LT5	2091.00	0.15	0.00	6.00
_	NUM 5TO15	4011.00	0.28	0.00	6.00

PUMS Population Summary

-	Attribute Name	Total	Average	Minimum	Maximum
-	AGE	1191231.00	36.30	0.00	93.00
-	GENDER	49545.00	1.51	1.00	2.00
_	WORKER	32596.00	0.99	0.00	2.00

Population Synthesizer Reports (cont)

Synthetic Household Summary

-	Attribute Name	Total	Average	Minimum	Maximum
_	HHOLD	3098143686.00	39358.50	1.00	78716.00
_	LOCATION	325396060.00	4133.80	21.00	7734.00
-	PERSONS	229370.00	2.91	1.00	16.00
-	PUMA	15730832.00	199.84	100.00	302.00
_	VEHICLES	174389.00	2.22	0.00	11.00
-	WORKERS	134074.00	1.70	0.00	9.00
_	INCOME	6657460978.00	84575.70	0.00	912000.00
_	HHAGE	3550791.00	45.11	0.00	93.00
_	NUM_LT5	20727.00	0.26	0.00	6.00
-	NUM_5TO15	34254.00	0.44	0.00	6.00

Synthetic Population Summary

-	Attribute Name	Total	Average	Minimum	Maximum
-	HHOLD	9195758639.00	40091.37	1.00	78716.00
-	PERSON	556402.00	2.43	1.00	16.00
-	AGE	7456021.00	32.51	0.00	93.00
-	GENDER	346911.00	1.51	1.00	2.00
-	WORKER	214704.00	0.94	0.00	2.00

27

TRACC - TRANSIMS Training Course

Algorithms

IPF Algorithms (Traditional and Two-Step)

- The algorithm adopted by the TRANSIMS Population Synthesizer is based on two types of IPF algorithms:
 - The traditional IPF procedure proposed by Deming and Stephan (1940).
 - The two-step IPF procedure developed by Beckman (1996), known as the modified IPF procedure.
- Traditional Procedure fits only one block group at a time.
- Two-step Procedure can simultaneously consider all block groups that make up a PUMA.
- The two-step procedure makes use of the traditional IPF procedure in its analysis.

29

TRACC - TRANSIMS Training Course

Three-Dimensional IPF Procedure

- The same algorithm can be extended for additional dimensions
- The following is a typical example
 - Householde Income
 - INC<30,000
 - 30,000 < INC<60,000
 - 60,000 < INC<75,000
 - 75,000 < INC<100,000
 - INC>100,000
- Age of Householder
 - 15 >HHAGE< 24
 - 25 <HHAGE< 34
 - 35 < HHAGE < 44
 - 45 < HHAGE < 54</p>
 - 55 <HHAGE< 64
 - 65 <HHAGE< 74
 - HHAGE>74

- Number of Workers
 - WORKERS = 0
 - WORKERS = 1
 - WORKERS = 2
 - WORKERS > 2

Three-Dimensional IPF Procedure

The generalized mathematical formulation developed by Deming *et al.* [1940] for the 3-dimensional matrix of 7×5×4 can be stated as follows:

$$m_{ijk}' = n_{ijk} \frac{m_{i..}}{n}$$
(I)

$$m_{ijk}^{\prime\prime} = m_{ijk}^{\prime} \frac{m_{.j.}}{m_{.j.}^{\prime}}$$
 (II)

$$m_{ijk}^{\prime\prime\prime} = m_{ijk}^{\prime\prime} \frac{m_{..k}}{m_{..k}^{\prime\prime}}$$
 (III)

n = In general, it refers to a cell or a marginal value in the PUMS data,

m = In general, it refers to the marginal value of the STF-3A matrix,

 n_{ijk} = Sample frequency from PUMS data falling in the cell n_{ijk} (please see the figure below for illustration),

 $m_{j,'}$ = Marginal data of the updated matrix (from PUMS) for the second (j) dimension,

 $m_{..k}$ = Marginal data of the STF-3A file for the third (k) dimension, for example here the third (k) dimension is the WORKERS variable, and

 $n_{.k}' =$ Marginal data of the updated matrix for the third (k) dimension.

m..k = Marginal data of the STF-3A file for the third (k) dimension, WORKER m.j.' = Marginal data of the updated matrix (from PUMS) for the second (j) dimension, m..k'' = Marginal data of the updated matrix for the third (k) dimension.

TRACC - TRANSIMS Training Course

Two-Step (Modified) IPF

- TRANSIMS uses a two-step IPF procedure instead
- Traditional procedure fits only one block group at a time
- Beckman showed that fitting only one block group at a time may not be entirely correct
 - The sum of the block's STF-3A should also have the same correlation structure as the PUMS data, which equally represents all the blocks in a PUMA
- The two-step IPF procedure can simultaneously consider all block groups that make up the PUMA
- Details on the Two-Step IPF can be found in the TRANSIMS documentation, in particular the
 - The 2000 US CENSUS Data Preparation How-To
 - The Population Synthesizer How-To

31

PopSyn in a Nutshell

- Extract the household attribute classifications for each PUMA;
- Construct the PUMA cross-classification table for the selected household attributes;
- Retrieve the zone marginal totals for each identified attribute;
- Aggregate the marginal totals for all zones within a PUMA;
- Apply an IPF process to adjust the PUMA cross-classification table based on the aggregate marginal totals;
- Apply a second IPF process to estimate the cross-classification table for each zone
 using zone marginal totals and the adjusted PUMA cross-classification table as an
 additional marginal constraint;
- Randomly select a corresponding PUMS household for each household in the zone cross-classification table;
- Randomly assign the household to an activity location within the zone using the specified location weights; and
- Randomly select a vehicle type for each household vehicle and assign the vehicle to the parking lot attached to the household's activity location.

33

TRACC - TRANSIMS Training Course

Credits and Acknowledgements

- GIS visualization materials were mostly developed at Argonne based on the TRANSIMS tools developed by AECOM for USDOT
- Chicago road and transit network data used in some of the examples was provided by the Chicago Metropolitan Agency for Planning
- USDOT provided the funding for the development of these training materials
- USDOT provided the funding for the TRACC computing center and the resources necessary to perform these training session
- Some materials have been developed for USDOT by Prof. Antoine Hobeika, Virginia Polytechnic Institute, Civil and Environmental Engineering
- The presentation is loosely based on materials provided by USDOT at a training course in November 2006, and has been updated using the information available in the How-To documentation from the TRANSIMS web site