КАФЕДРА №

должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ	О ЛАБОРАТОРНОЙ РА	БОТЕ
Вычи	исление кусочной функ	ции
по курсу: ОС	СНОВЫ ПРОГРАММИРО	ВАНИЯ
БОТУ ВЫПОЛНИЛ		
ГУДЕНТ ГР. №	подпись, дата	инициалы, фамили

1.Цель работы: целью работы является изучение основных управляющих структур программирования и функций.

2.Задание:

Согласно варианту 17:

Вариант 17
$$F = \begin{cases} ax^2 - cx + b & \text{при } x + 10 < 0 \text{ и } b \neq 0 \\ \frac{x - a}{x - c} & \text{при } x + 10 > 0 \text{ и } b = 0 \\ \frac{-x}{a - c} & \text{в остальных случаях} \end{cases}$$

Вычислить и вывести на экран в виде таблицы значения функции F на интервале Xнач, Xкон с шагом dx. Вид функции F определяется индивидуальным вариантом. Коэффициенты a, b, c являются действительными числами. Значения a, b, c, Xнач, Xкон, dx вводятся с клавиатуры.

3. Описание созданных функций:

Для реализации задания нам потребуются следующие функции:

Имя: main

Назначение: решение кусочно заданой функции

Входные данные: нет Выходные данные: нет

Побочный эффект: отсутствует.

Тестовые данные:

A 1 B 2 C 3 xMin -10 xMax 10 dx 1 Otbet: -10 -5 -9 -4.5 -8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5 4 2	тестовые данные.	
C 3 xMin -10 xMax 10 dx 1 Other:	A	1
xMin -10 xMax 10 dx 1 OTBET: -5 -10 -5 -9 -4.5 -8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	В	2
xMax 10 dx 1 OTBET: -10 -9 -4.5 -8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	С	3
dx 1 OTBET: -10 -9 -4.5 -8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	xMin	-10
OTBET: -10 -5 -9 -4.5 -8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	xMax	10
-10 -5 -9 -4.5 -8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	dx	1
-9 -4.5 -8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	Ответ:	
-8 -4 -7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	-10	-5
-7 -3.5 -6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	-9	-4.5
-6 -3 -5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5		-4
-5 -2.5 -4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	-7	-3.5
-4 -2 -3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	-6	-3
-3 -1.5 -2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5	-5	-2.5
-2 -1 -1 -0.5 0 0 1 0.5 2 1 3 1.5		-2
-1 -0.5 0 0 1 0.5 2 1 3 1.5	-3	-1.5
0 0 1 0.5 2 1 3 1.5	-2	-1
1 0.5 2 1 3 1.5	-1	-0.5
2 1 3 1.5	0	0
3 1.5	1	0.5
		1
4 2	3	1.5
	4	2

5	2.5
6	3
7	3.5
8	4
9	4.5
10	5

Прототип: int main()

Псевдокод

А Функция проверки ввода данных read_double() В Функция проверки ввода данных read_double() С Функция проверки ввода данных read_double() хМіп Функция проверки ввода данных read_double() хМах Функция проверки ввода данных read_double() dx Функция проверки ввода данных read_double()

Если
$$x+10 < 0$$
 и $b \neq 0$ то $y+=ax\ 2-cx+b$ или же если $x+10 > 0$ и $b=0$ то $y+=(x-a)/(x-c)$ или же то $y+=(-x)/(a-c)$ Вывод в консоль значения таблицы со значениями X и Y

Блок-схема:

Имя: read_double

Назначение: проверка переменной а на корректность ввода

Входные данные: а(значение в градусах). **Выходные данные**: а(значение в градусах).

Побочный эффект: отсутствует. Прототип: double read_double()

Псевдокод

Цикл продолжается до тех пор, пока пользователь не введет корректное значение Ввод числа ${\bf x}$

Если предыдущее извлечение оказалось неудачным, то...

Возвращаем scanf_s в 'обычный' режим работы(обнуление битов состояния)

Удаляем значения предыдущего ввода из входного буфера

Если всё хорошо, то возвращаем х

Возврат значения х

Блок-схема:

4.Текст программы

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cmath>

```
#include <iomanip>
#include "lib.h"
using namespace std;
double ftab(double a, double b, double c, double x) {
    if (((x + 10) < 0) && (b != 0)) {
        return a * pow(x, 2) - c * x + b;
    else if (((x + 10) > 0) \&\& (b == 0)) {
        return (x - a) / (x - c);
    }
    else {
        return (-x) / (a - c);
}
int main() {
    // смена кодировки
    system("chcp 65001");
    double a = 0;
    double b = 0;
    double c = 0;
    double xMin = 0;
    double xMax = 0;
    double dx = 0;
    draw_line(20);
    // вводим числа
    cout << "a = ";
    a = read_double();
    cout << "b = ";
    b = read_double();
    cout << "c = ";
    c = read_double();
    draw_line(20);
    // ввод шага с проверкой на диапазон
    while (true) {
        cout << "xMin = ";</pre>
        xMin = read_double();
        cout << "xMax = ";</pre>
        xMax = read_double();
        if (xMin == xMax) {
            cout << "Диапазон числа одинаковый" << endl;
            draw_line(20);
        else break;
    }
    // ввод шага с проверкой на его размер
    while (true) {
        cout << "dx = ";
        dx = abs(read_double());
        if (((xMin < xMax) ? (xMax - xMin) : (xMin - xMax)) < dx) {
```

```
cout << "Шаг слишком маленький" << endl;
        }
       else break;
   }
   draw_line(20);
   double y = 0;
   // вывод шапки таблицы
   cout << "| " << setw(7) << "X | " << setw(11) << "Y |\n";
   draw line(20);
   double x = xMin;
   // цикл while для того чтобы его можно было развернуть
   while (((xMin < xMax) ? (x < xMax + dx) : (x > xMax - dx))) {
        // наша функция
       y = ftab(a, b, c, x);
        // после каждого шага вычисляем шаг
       cout << "| " << setw(4) << x << " | " << setw(8) << (isinf(y) ? 0 : (isnan(y) ? 0</pre>
: y)) << " |\n";
        // каждую итерацию цикла обновляем счётсчик
        x += (xMin < xMax) ? (dx) : (-dx);
        /*
          (a == b)? b: a;
          это выражение можно представить так:
          if (a == b) {
            return b;
          } else {
            return a;
        */
   }
   draw_line(20);
   return 0;
}
```

5.Пример выполнения программы

6.Анализ результатов и вывода

В результате выполнения лабораторной работы были изучены основные управляющие структуры.

К достоинствам программы можно отнести:

- Производится проверка входных данных.
- Программа корректно считает кусочную функцию.

Из недостатков можно отметить:

- Программа не оптимизирована.
- Недостаточно детализированная таблица.