Math. - CC 4

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

L'espace est muni d'un repère orthonormé direct. Pour tout $n \in \mathbb{N}$, on note \mathscr{P}_n l'ensemble des points M(x, y, z) dont les coordonnées vérifient la relation suivante :

$$\mathscr{P}_n$$
: $(x+y+z+1)+n(x-5y+4z-2)=0$

On note \mathscr{P}_{∞} l'ensemble des points M(x,y,z) dont les coordonnées vérifient :

$$\mathscr{P}_{\infty}: \begin{cases} x = 1 + s - t \\ y = -1 + s + 3t \\ z = -1 + s + 4t \end{cases}, \quad (s, t) \in \mathbb{R}^2$$

- 1. Quelle est la nature géométrique des ensembles \mathscr{P}_n et \mathscr{P}_∞ ? Les caractériser.
- 2. Déterminer une équation cartésienne de \mathscr{P}_{∞} .
- 3. Montrer que $\mathscr{D}=\mathscr{P}_0\cap\mathscr{P}_\infty$ est une droite dont on déterminera une représentation paramétrique.
- **4.** Montrer que $\forall n \in \mathbb{N}, \mathcal{D} \subset \mathcal{P}_n$.
- **5.** En déduire l'intersection de \mathscr{P}_n et \mathscr{P}_{∞} pour tout $n \in \mathbb{N}$.
- **6.** Calculer la distance d_n du point A(1,2,3) à \mathcal{P}_n en fonction de $n \in \mathbb{N}$.
- 7. Étudier la convergence de la suite $(d_n)_{n\in\mathbb{N}}$.
- **8.** Calculer la distance d_{∞} du point A(1,2,3) à \mathscr{P}_{∞} .
- **9.** Calculer la distance d du point A(1,2,3) à \mathcal{D} .
- 10. Soient H (resp. H_n, H_∞) le projeté orthogonal de A(1,2,3) sur \mathscr{D} (resp. $\mathscr{P}_n, \mathscr{P}_\infty$). Démontrer que A, H, H_n et H_∞ sont cocycliques c'est-à-dire situés sur un même cercle que l'on caractérisera.

EXERCICE 2

1. Factoriser dans $\mathbb{R}[X]$ le polynôme

$$P = X^3 - 6X^2 + 11X - 6$$

2. Décomposer en éléments simples la fraction rationnelle

$$\frac{3X^2 - 12X + 11}{(X-1)(X-2)(X-3)}$$

3. Déterminer une racine a du polynôme P' (polynôme dérivé de P), et vérifier que

$$\frac{1}{a-1} + \frac{1}{a-2} + \frac{1}{a-3} = 0$$

- **4.** Soient $n \in \mathbb{N}^*$ et $Q \in \mathbb{R}_n[X]$. On suppose que Q admet n racines distinctes a_1, a_2, \dots, a_n .
 - a. Décomposer en éléments simples la fraction rationnelle $\frac{Q'}{Q}$.
 - **b.** Soit a une racine de Q'. Justifier que a n'est pas une racine de Q et montrer que

$$\sum_{k=1}^{n} \frac{1}{a - a_k} = 0$$

EXERCICE 3

1. Montrer que les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3 , et en déterminer une base :

$$F_1 = \left\{ (x, y, z) \in \mathbb{R}^3, x - y - z = 0 \right\}, \quad \text{et} \quad F_2 = \left\{ (x, y, z) \in \mathbb{R}^3, x - y + z = 0 \text{ et } 2x + y - z = 0 \right\}$$

- **2.** Montrer que F_1 et F_2 sont supplémentaires dans \mathbb{R}^3 .
- **3.** Donner la dimension de $F_3 = \text{Vect}\{(1,0,1), (1,-2,-1), (0,1,1)\}.$
- **4.** Donner une base de $F_1 \cap F_3$ et de $F_1 + F_3$.

Fin de l'énoncé