

Tweets Sentiment Analysis of 2016 U.S. Presidential Election

Bin Li Computer Science Department New York University

What is sentimental analysis?

- It is a special case of text mining generally focused on opinion polarity
- The goal is to determine if the text opinion is positive, negative or neutral

Why sentimental analysis?

- Microblogging has been a central place for people to express their thoughts and opinions on political parties and candidates
- Provide investment guidance
- A company wants to know the reviews of their products. (restaurant reviews)

http://sentiment.vivekn.com/

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

Opinion Polarity

Problem Statement

 Given a tweet, determine if this tweet is positive, negative or neutral sentiment to a candidate.

Design Diagram

Data preparation

- Tweets Collection: tweets related to election through Twitter APIs
- Data Pre-processing: tokenization, feature reduction (remove non-english words, URLs, stop words and quotation, stemming, repeated characters etc.)
- Aggregate tweets to candidate: map tweets to the corresponding candidate

Data understanding

Tweets to be labeled

How? Keyword search using Twitter Search API and Stream API. On the second and last presidential debate date

Volume: 9.6 million tweets collected and hosted on HPC cluster

Type: highly unstructured text data

Data understanding

Training dataset

10,000 labeled tweets, Combination of the following two dataset:

Stanford sentiment140

Label classified based on emoji, no neutral labeled data

"4","2192559582","Tue Jun 16 07:12:59 PD 2009","NO_QUERY","yogilo","@EliciaKoay you went overboard for the girl's birthday again "

Sanders-twitter

Manually labelled by human whose english is very well. Based on specific topics, IT company like apple, google

"apple", "neutral","125828984293425152","Mon Oct 17 07:02:22 +0000 2011","ok it is back @iphone @apple"

My training dataset includes positive and negative tweets from sentiment 140 and neutral tweets from Sanders.

Data Preparation

- Remove irrelevant info such as URLs, quotes, citations and numbers
- Tokenization using tweet-preprocessor
- Remove punctuation
- Remove stop words
- Apply porter stemmer
- Finally, remove any word whose length is smaller than 3

For tweet,

rt @weneedfeminlsm: the way donald trump treats women is disgusting and repulsive. nothing about this is ok. https://t.co/lmbjgopgnt After preprocessing,

way donald trump treat women disgust repuls noth ok

Do all above steps for both training tweets and tweets to be labeled.

Data Preparation

Implement Naive Bayes algorithm

Text model: unigram or bigram

n*m

	f1	f2	f3	•	-	-		•		•	•	•	-	fm-1	fm
t1	2	4							7						
t2			6								6				
t3		4			6			3	9			е			
t4										4					
t5	2			7		2	13				6				65
•	3			25						45					
•								12		8			5	16	
•			65		2	9					4				
•				1			32	13				78			
-		87			45				4						
tn-1								7		23					65
tn					6								8		

Model training

$$P(yi|x) = \frac{P(x|yi) * P(yi)}{P(x)}, x = a1, a2, ..., an$$

$$\log(P(yi|x)) = \log(P(x|yi)) + \log(P(yi)) - \log(P(x))$$

The goal is to get three prior probabilities that will be used by classification.

- class_prior (P(yi))
 the probability of each label
- feature_prior (P(x))
 the probability of each feature in all feature space
- label_feature_matrix (P(x | yi))
 the probability of each feature under certain label

Model training

sample

f1	fO	f2			fn
11	12	13	-	-	1111

 $P(yi|x) = \frac{P(x|yi) * P(yi)}{P(x)}$

,	. ,			X
log(P(x)	$ yi\rangle$)	/\

	I 1	12	•	•	•	lm
f1	2	4				
f2			6			
		4			6	
-						
fn						

$$\log(P(yi))$$

11 | 11 | 13 | . | . | Im

+

1 | 11

I3 .

lm

Stats

K-fold validation, 4216 features based on 500 training tweets using freq=2

```
bigram stats
unigram stats
                             -----label:neutral-----
-----label:neutral-----
                            tp: 110, tn: 157, fp: 25, fn: 0
tp: 86, tn: 301, fp: 4, fn: 4
                            accuracy: 0.914
accuracy: 0.980
precison: 0.956
                            precison: 0.815
                            recall: 1.000
recall: 0.956
                            -----label:positive-----
-----label:positive-----
                            tp: 63, tn: 273, fp: 4, fn: 9
tp: 129, tn: 253, fp: 7, fn: 4
                            accuracy: 0.963
accuracy: 0.972
                            precison: 0.940
precison: 0.949
                            recall: 0.875
recall: 0.970
                             -----label:negative-----
-----label:negative-----
                            tp: 59, tn: 300, fp: 0, fn: 20
tp: 121, tn: 280, fp: 2, fn: 5
                            accuracy: 0.947
accuracy: 0.983
                            precison: 1.000
precison: 0.984
                            recall: 0.747
recall: 0.960
```

Stats

K-fold validation, 2612 features based on 500 training tweets using freq=3

```
unigram stats
                                 bigram stats
-----label:neutral-----
                                 -----label:neutral-----
tp: 91, tn: 290, fp: 12, fn: 3
                                 tp: 116, tn: 106, fp: 22, fn: 3
accuracy: 0.962
                                accuracy: 0.899
precison: 0.883
                                 precison: 0.841
recall: 0.968
                                 recall: 0.975
-----label:positive-----
                                 -----label:positive-----
tp: 128, tn: 266, fp: 2, fn: 11
                                 tp: 46, tn: 287, fp: 5, fn: 9
accuracy: 0.968
                                 accuracy: 0.960
precison: 0.985
                                 precison: 0.902
recall: 0.921
                                 recall: 0.836
----label:negative----
                                 ----label:negative----
tp: 124, tn: 285, fp: 3, fn: 3
                                 tp: 43, tn: 310, fp: 1, fn: 16
accuracy: 0.986
                                 accuracy: 0.954
precison: 0.976
                                 precison: 0.977
recall: 0.976
                                 recall: 0.729
```

Performance: freq(2) > freq(3), unigram > bigram

Stats

Feature selection

Based on 10,000 training tweets, compare feature frequency

	f1	f2	f3	•	•	•	•	•	fm
t1	2	4							7
t2			6						
t3		4			6			3	9
t4									
	2			7		2	13		
	3			25					
tn								12	

	f1	f2	fk
t1			
t2			
t3			
t4			
•			
•			
tn			

n*m (m = 5000)

n*k (k = 20, 30, 40) ▲

normalization ---

Covariance matrix ---

Eigen vectors

Train(freq=2, model=unigram, PCs=20), Based on 10,000 training data

accuracy: 55.21%

	true 1	true 0	true -1	class precision
pred. 1	539	148	190	61.46%
pred. 0	76	723	60	84.17%
pred1	2383	1371	3949	51.27%
class recall	17.98%	32.25%	94.05%	

Train(freq=2, model=unigram, PCs=30), based on 10,000 training data

accuracy: 55.44%

	true -1	true 1	true 0	class precision
pred1	3914	2339	1355	51.45%
pred. 1	201	584	152	62.33%
pred. 0	84	75	735	82.21%
class recall	93.21%	19.48%	32.78%	

Train(freq=2, model=bigram, PCs=20), Based on 10,000 training data

accuracy: 48.83%

	true 0	true -1	true 1	class precision
pred. 0	389	14	17	92.62%
pred1	1792	4099	2860	46.84%
pred. 1	61	86	121	45.15%
class recall	17.35%	97.62%	4.04%	

Train(freq=2, model=bigram, PCs=30), Based on 10,000 training data

accuracy: 49.25%

	true 1	true -1	true 0	class precision
pred. 1	111	20	3	82.84%
pred1	2869	4162	1863	46.80%
pred. 0	18	17	376	91.48%
class recall	3.70%	99.12%	16.77%	

Evaluation

Model=unigram, feature frequency=2

Trump, compare with baseline, based on 10972 tweets

Hillary, compare with baseline, based on 8941 tweets

Sentiment summary computed by Hadoop Map/Reduce, based on 9.6 million tweets

Deployment

- Write tweets and their predicted sentiment to HBase
- Front end UI to use JavaScript to make REST call to HBase and virtualize tweet sentiment

hillari:2016-11-25 16:36:50_1657 column=data:sentiment, timestamp=1480136553022, value=positive

hillari:2016-11-25 16:36:50_1657 column=data:tweet, timestamp=1480136553022, value=rt @foxnews: .@judgenap: new fbi docs show 'bribe offer to agents in #hillaryclinton email probe https://t.co/49cj9rgdun https://t.co/svfd\x0A

Current standing

Data preparation

- Collected 4,000,000 tweets using keywords search.
 Starting from the second debase. Data is hosted on NYU HPC clusters.
- Downloaded labelled tweets (1.6 million) as training data from Stanford Sentiment140
- Performed tokenization, removed stop words, URLs, repeated characters and quotation, stemming

Acknowledgement

- Stanford sentiment140
- Sanders-twitter
- NYU HPC

<u>helpful links:</u>

http://www.laurentluce.com/posts/twitter-sentiment-analysis-using-python-and-nltk/

http://adilmoujahid.com/posts/2014/07/twitter-analytics/