Class 8: Breast Cancer Mini-Project

Kevin Tan (PID: A16774162)

About

In today's lab we will work with fine needle aspiration (FNA) of breast mass data from the University of Wisconsin.

Data Import

```
fna.data <- read.csv("WisconsinCancer.csv")
wisc.df <- data.frame(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius mean	texture mean	perimeter_mean	area mea	n
842302	M	17.99	10.38	122.80		
			10.30			
842517	M	20.57	17.77	132.90	1326.	0
84300903	М	19.69	21.25	130.00	1203.)
84348301	М	11.42	20.38	77.58	386.	1
84358402	М	20.29	14.34	135.10	1297.	0
843786	М	12.45	15.70	82.57	477.	1
	smoothness	_mean compa	ctness_mean co	oncavity_mean o	concave.po	ints_mean
842302	0.	11840	0.27760	0.3001		0.14710
842517	0.	08474	0.07864	0.0869		0.07017
84300903	0.	10960	0.15990	0.1974		0.12790
84348301	0.	14250	0.28390	0.2414		0.10520
84358402	0.	10030	0.13280	0.1980		0.10430
843786	0.	12780	0.17000	0.1578		0.08089
	symmetry_m	ean fractal	_dimension_mea	an radius_se te	exture_se	perimeter_se
842302	0.2	419	0.078	71 1.0950	0.9053	8.589
842517	0.1	812	0.0566	0.5435	0.7339	3.398
84300903	0.2	:069	0.0599	99 0.7456	0.7869	4.585

84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883		0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smoothne	ess_se compa	actness_se	concavity_se	concave.po	ints_se
842302		006399	0.04904	0.05373	_	0.01587
842517	74.08 0.0	005225	0.01308	0.01860		0.01340
84300903	94.03 0.0	006150	0.04006	0.03832		0.02058
84348301	27.23 0.0	009110	0.07458	0.05661		0.01867
84358402	94.44 0.0	011490	0.02461	0.05688		0.01885
843786	27.19 0.0	007510	0.03345	0.03672		0.01137
	symmetry_se fra	ctal_dimens:	ion_se radi	ius_worst tex	ture_worst	
842302	0.03003	0.0	006193	25.38	17.33	
842517	0.01389		003532	24.99	23.41	
84300903	0.02250	0.0	004571	23.57	25.53	
84348301	0.05963		009208	14.91	26.50	
84358402	0.01756	0.0	005115	22.54	16.67	
843786	0.02165		005082	15.47	23.75	
	<pre>perimeter_worst</pre>		smoothness	_		
842302	184.60	2019.0		0.1622	0.665	6
842517	158.80			0.1238	0.186	
84300903	152.50	1709.0		0.1444	0.424	:5
84348301	98.87	567.7		0.2098	0.866	3
84358402	152.20	1575.0		0.1374	0.205	0
843786	103.40	741.6		0.1791	0.524	:9
	concavity_worst	concave.po	ints_worst	symmetry_wor	st	
842302	0.7119		0.2654	0.46	01	
842517	0.2416		0.1860	0.27	50	
84300903	0.4504		0.2430	0.36	13	
84348301	0.6869		0.2575	0.66	38	
84358402	0.4000		0.1625	0.23	64	
843786	0.5355		0.1741	0.39	85	
	fractal_dimensi	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

Q. How many observations/patients/indivduals/samples are in this dataset?

nrow(wisc.df)

[1] 569

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

B M 357 212

Q3. How many variables/features in the data are suffixed with _mean?

colnames(wisc.df)

```
[1] "diagnosis"
                                "radius mean"
 [3] "texture_mean"
                                "perimeter_mean"
 [5] "area_mean"
                                "smoothness mean"
 [7] "compactness_mean"
                                "concavity_mean"
 [9] "concave.points_mean"
                                "symmetry_mean"
[11] "fractal_dimension_mean"
                                "radius_se"
[13] "texture_se"
                                "perimeter_se"
[15] "area_se"
                                "smoothness_se"
[17] "compactness_se"
                                "concavity_se"
[19] "concave.points_se"
                                "symmetry_se"
[21] "fractal_dimension_se"
                                "radius_worst"
[23] "texture_worst"
                                "perimeter_worst"
                                "smoothness_worst"
[25] "area_worst"
[27] "compactness_worst"
                                "concavity_worst"
[29] "concave.points_worst"
                                "symmetry_worst"
[31] "fractal_dimension_worst"
inds <- grep("_mean", colnames(wisc.df))</pre>
```

[1] 10

length(inds)

Initial Analysis

Before analysis I want to take out the expert diagnosis column (aka the answer) from our dataset.

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)</pre>
```

[1] M M M M M M M Levels: B M

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean t	exture_mean	perimete	er_mean	area_mean	smoothn	ess_mean
842302	17.99	10.38		122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_m	ean concavit	ty_mean o	concave.	points_mea	an symme	try_mean
842302	0.27	760	0.3001		0.147	10	0.2419
842517	0.07	'864	0.0869		0.070	17	0.1812
84300903	0.15	990	0.1974		0.1279	90	0.2069
84348301	0.28	390	0.2414		0.1052	20	0.2597
84358402	0.13	3280	0.1980		0.1043	30	0.1809
843786	0.17	000	0.1578		0.0808	39	0.2087
	fractal_dimen	sion_mean ra	adius_se	texture	_se perime	eter_se	area_se
842302		0.07871	1.0950	0.9	053	8.589	153.40
842517		0.05667	0.5435	0.7	339	3.398	74.08
84300903		0.05999	0.7456	0.7	869	4.585	94.03
84348301		0.09744	0.4956	1.1	.560	3.445	27.23
84358402		0.05883	0.7572	0.7	813	5.438	94.44
843786		0.07613	0.3345	0.8	902	2.217	27.19
	smoothness_se	compactness	s_se con	cavity_s	e concave	.points_	se
842302	0.006399	0.04	4904	0.0537	3	0.015	87
842517	0.005225	0.0	1308	0.0186	50	0.013	40
84300903	0.006150	0.04	4006	0.0383	32	0.020	58
84348301	0.009110	0.0	7458	0.0566	51	0.018	67
84358402	0.011490	0.0	2461	0.0568	88	0.018	85

843786	0.007510	0.03345	0.03672	0.01137
	symmetry_se frac	ctal_dimension_se	radius_worst	texture_worst
842302	0.03003	0.006193	25.38	17.33
842517	0.01389	0.003532	24.99	23.41
84300903	0.02250	0.004571	23.57	25.53
84348301	0.05963	0.009208	14.91	26.50
84358402	0.01756	0.005115	22.54	16.67
843786	0.02165	0.005082	15.47	23.75
	perimeter_worst	area_worst smoot	hness_worst c	ompactness_worst
842302	184.60	2019.0	0.1622	0.6656
842517	158.80	1956.0	0.1238	0.1866
84300903	152.50	1709.0	0.1444	0.4245
84348301	98.87	567.7	0.2098	0.8663
84358402	152.20	1575.0	0.1374	0.2050
843786	103.40	741.6	0.1791	0.5249
	concavity_worst	<pre>concave.points_w</pre>	orst symmetry	_worst
842302	0.7119	0.	2654	0.4601
842517	0.2416	0.	1860	0.2750
84300903	0.4504	0.	2430	0.3613
84348301	0.6869	0.	2575	0.6638
84358402	0.4000	0.	1625	0.2364
843786	0.5355	0.	1741	0.3985
	fractal_dimension	on_worst		
842302		0.11890		
842517		0.08902		
84300903		0.08758		
84348301		0.17300		
84358402		0.07678		
843786		0.12440		

Clustering

We can try a kmeans() clustering first

```
km <- kmeans(wisc.data, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 438, 131

Cluster means:

```
radius_mean texture_mean perimeter_mean area_mean smoothness_mean 1 12.55630 18.57037 81.12347 496.0619 0.0948845
```

```
2
     19.37992
                   21.69458
                                 128.23130 1185.9298
                                                              0.1012946
  compactness_mean concavity_mean concave.points_mean symmetry_mean
        0.09109982
                        0.06243776
1
                                             0.03343254
                                                              0.1780580
2
        0.14861298
                        0.17693947
                                             0.10069878
                                                              0.1915397
  fractal dimension mean radius se texture se perimeter se area se
                                                     2.152881 23.78529
1
              0.06345402 0.3041909
                                       1.215153
2
              0.06060290 0.7428038
                                       1.222538
                                                     5.250580 95.67817
  smoothness_se compactness_se concavity_se concave.points_se symmetry_se
    0.007173263
                     0.02347469
                                   0.02874551
                                                      0.01063632 0.02061358
1
    0.006598687
                     0.03217669
                                   0.04241977
                                                      0.01567398 0.02030397
2
  fractal_dimension_se radius_worst texture worst perimeter_worst area worst
           0.003747503
                            14.04390
                                           24.70954
                                                             91.93751
                                                                        619.6479
1
2
           0.003953389
                            23.70947
                                           28.91267
                                                            158.49618 1753.0229
  smoothness_worst compactness_worst concavity_worst concave.points_worst
                                             0.2192149
1
         0.1299591
                            0.2233118
                                                                   0.09132984
2
         0.1404247
                            0.3577577
                                             0.4493061
                                                                   0.19243107
  symmetry_worst fractal_dimension_worst
1
       0.2835537
                                0.08328194
2
       0.3118817
                                0.08616550
Clustering vector:
   842302
             842517
                      84300903
                                 84348301
                                           84358402
                                                        843786
                                                                   844359
                                                                           84458202
                             2
                                        1
                                                                        2
   844981
           84501001
                        845636
                                 84610002
                                             846226
                                                        846381
                                                                 84667401
                                                                            84799002
        1
                   1
                             1
                                        2
                                                   2
                                                              1
                                                                        1
                                                                                   1
   848406
           84862001
                        849014
                                  8510426
                                            8510653
                                                       8510824
                                                                  8511133
                                                                              851509
                   2
                             2
                                                                                   2
        1
                                        1
                                                   1
                                                              1
                                                                        1
   852552
             852631
                        852763
                                             852973
                                                        853201
                                                                   853401
                                   852781
                                                                              853612
        2
                                        2
                                                   2
                                                                        2
                   2
                              1
85382601
             854002
                        854039
                                   854253
                                             854268
                                                        854941
                                                                   855133
                                                                              855138
                                                              1
                                                                               85715
   855167
             855563
                        855625
                                   856106
                                           85638502
                                                        857010
                                                                 85713702
        1
                   1
                             2
                                        1
                                                   1
                                                              2
                                                                        1
                                                                                   1
                                                        857392
                                                                   857438
   857155
             857156
                        857343
                                   857373
                                             857374
                                                                            85759902
                                                   1
                                                              2
                                                                        1
        1
                   1
                              1
                                        1
                                             858970
                                                                   858986
   857637
             857793
                        857810
                                   858477
                                                        858981
                                                                              859196
        2
                   1
                              1
                                        1
85922302
             859283
                        859464
                                   859465
                                             859471
                                                        859487
                                                                   859575
                                                                              859711
                             1
                                                   1
                                                                        2
        1
                   1
                                        1
                                                              1
                                                                                   1
   859717
             859983
                       8610175
                                  8610404
                                             8610629
                                                       8610637
                                                                  8610862
                                                                             8610908
        2
                   1
                             1
                                        2
                                                   1
                                                              2
                                                                        2
                                                                                   1
   861103
            8611161
                       8611555
                                  8611792
                                             8612080
                                                       8612399
                                                                 86135501
                                                                            86135502
        1
                   1
                             2
                                        2
                                                   1
                                                              2
                                                                        1
                                                                                   2
```

86208	862028	862009	861853	861799	861648	861598	861597
2	1	1	1	1	1	1	1
862980	862965	862722	862717	862548	862485	862261	86211
1	1	1	1	1	1	1	1
86408	864033	864018	86355	863270	863031	863030	862989
1	1	1	2	1	1	1	1
865128	864877	864729	864726	864685	864496	864292	86409
2	2	1	1	1	1	1	1
866203	866083	86561	865468	865432	865423	86517	865137
2	1	1	1	1	2	2	1
868202	867739	867387	86730502	8670	866714	866674	866458
1	2	1	1	1	1	2	1
869224	869218	869104	868999	868871	868826	868682	868223
1	1	2	1	1	1	1	1
871001502	871001501	869931	86973702	86973701	869691	869476	869254
1	1	1	1	1	1	1	1
871149	871122	8711216	8711202	8711003	8711002	87106	8710441
1	1	1	2	1	1	1	1
8712729	87127	8712291	8712289	8712064	871201	8711803	8711561
2	1	1	2	1	2	2	1
872113	871642	871641	87164	87163	87139402	8712853	8712766
1	1	1	1	1	1	1	2
873843	873701	873593	873592	873586	873357	87281702	872608
1	2	2	2	1	1	1	1
875093	874858	874839	874662	874373	874217	874158	873885
1	1	1	1	1	2	1	1
877500	877486	877159	875938	875878	87556202	875263	875099
1	2	2	1	1	1	1	1
879830	879804	879523	87930	87880	878796	877989	877501
2	1	1	1	1	2	2	1
8810987	8810955	881094802	8810703	8810528	881046502	8810436	8810158
1	1	1	2	1	2	1	1
8812877	8812844	8812818	8812816	88119002	8811842	8811779	8811523
1	1	1	1	2	2	1	1
88199202	881972	881861	88147202	88147102	88147101	88143502	8813129
1	2	1	1	1	1	1	1
88330202	883270	883263	88299702	88249602	882488		88203002
2	1	2	2	1	1	2	1
884626	884448	884437	884180	88411702	883852	883539	88350402
1	1	1	2	1	1	1	1
886452	886226	8860702	885429	88518501	884948	884689	88466802
1	2	2	2	1	2	1	1
889403	888570	888264	887549	88725602	887181	886776	88649001

2	1	2	1	2	2	2	1
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
2	2	1	1	1	1	1	1
8910988	8910996	8911163	8911164	8911230	8911670	8911800	8911834
2	1	2	1	1	2	1	1
8912049	8912055	89122	8912280	8912284	8912521	8912909	8913
2	1	2	1	1	_	1	_
8913049	89143601	89143602	8915	891670	891703	891716	891923
1	1	1	_	1	_	1	_
891936	892189	892214			892604		
1	1	1			1		
89296	893061	89344	89346	893526	893548	893783	89382601
1	1	1	_	1	_	1	_
89382602	893988	894047		894090		894329	894335
1	1	1		1		1	_
894604	894618			89511501			895299
1	2	1		1			_
8953902	895633			897132			89742801
1	1	1	_				_
897604	897630			89813			
1	2	1	2	1	_	1	_
89864002	898677			898690			
1	1	1				1	
899987				9010259			901034301
2	1	1	-	1	_	1	_
901034302	901041						
1	1	_	_	_		_	_
9011971							901303
2	2	1	_	2	2	1	_
901315	9013579			901549			
1	1	1	_	1	_	1	_
902727		902975					
002507	1			1			
							904357
2	2 904647	1	1	1	1	1	1
	1 905501	005500					
90524101		905502					
	90602302						906878
	2 907367			1 00760601			
1	1	1	1	1	1	1	1

908194	908445	908469	908489	908916	909220	909231	909410
2							
909411	909445	90944601	909777	9110127	9110720	9110732	9110944
1	2	1	1	2	1	2	1
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
1	2	1	2	1	1	1	1
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
1	1	1	1	2	2	1	1
911320502	9113239	9113455	9113514	9113538	911366	9113778	9113816
1	1	1	1	2	1	1	1
911384	9113846	911391	911408	911654	911673	911685	911916
1					1		
912193	91227	912519	912558			913102	
1	_						
913512	913535			914062	914101	914102	914333
1	_		2				
914366	914580	914769	91485	914862	91504	91505	915143
1	1	2	2	1	1	1	2
915186	915276	91544001	91544002	915452	915460	91550	915664
1	1	1	1	1	1	1	1
915691	915940	91594602	916221	916799	916838	917062	917080
	1				2		
917092	91762702	91789	917896	917897	91805	91813701	91813702
1		1			1		
918192	918465						
1	_				2		
91979701	919812						922296
1							
922297	922576	922577	922840	923169	923465	923748	923780
1	_	_		_	_	_	_
924084	924342	924632	924934	924964	925236	925277	925291
1	_	1		_			_
925292	925311				926682		927241
1	1	1	2	2	2	1	2
92751							
1							

Within cluster sum of squares by cluster:

[1] 28559677 49383423

(between_SS / total_SS = 69.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

table(km\$cluster)

1 2 438 131

Cross-table

table(km\$cluster, diagnosis)

diagnosis B M 1 356 82 2 1 130

Let's try hclust() the key input required for hclust() is a distance matrix as produced by the dist() function

hc <- hclust(dist(wisc.data))</pre>

I cna make a tree like figure

plot(hc)

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

PCA

Do we need to scale the data?

We can look a the sd of each column (original variable)

round(apply(wisc.data, 2, sd))

radius_mean	texture_mean	perimeter_mean
4	4	24
area_mean	${\tt smoothness_mean}$	compactness_mean
352	0	0
concavity_mean	concave.points_mean	symmetry_mean
0	0	0
fractal_dimension_mean	radius_se	texture_se
0	0	1
perimeter_se	area_se	smoothness_se
2	45	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	fractal_dimension_se	radius_worst
0	0	5

```
texture_worst perimeter_worst area_worst
6 34 569
smoothness_worst compactness_worst concavity_worst
0 0 0
concave.points_worst symmetry_worst fractal_dimension_worst
0 0 0
```

Yes we need to scale. We will run prcomp() with scale=TRUE.

```
wisc.pr <- prcomp(wisc.data, scale=T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC2
                          PC1
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
                                                                         PC14
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Standard deviation
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                         PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2 plot)...

```
library (ggplot2)

res <- as.data.frame(wisc.pr$x)

ggplot(res) +
  aes(x=PC1, y=PC2, col = diagnosis) +
  geom_point()</pre>
```


Combining Methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

We need 7 PCs to account for 90% of the variability

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership factor I need to "cut" the tree with the cutree() function.

```
grps <- cutree(hc, k=2)</pre>
```

Q. How many patients are in each cluster group?

```
table(grps)
```

grps 1 2 203 366

plot(res\$PC1, res\$PC2, col=grps)

Prediction

We can use our PCA result (model) to do predictions, that is take new unseen data and project it onto our new PC variables

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
                                                                            PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                     0.8193031
                      PC9
                                          PC11
                                                    PC12
           PC8
                                PC10
                                                              PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                         PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706
                                      0.06565549
                                                   0.25591230 -0.4289500
                      PC22
           PC21
                                 PC23
                                            PC24
                                                        PC25
                                                                     PC26
                                                  0.02124121
[1,] 0.1228233 0.09358453 0.08347651 0.1223396
                                                              0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
```

```
PC27 PC28 PC29 PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152 0.09638361 0.002795349 -0.019015820
```

```
plot(res$PC1, res$PC2, col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], labels=c(1,2), col="white")
```


Q18. Which of these patients should we prioritize for follow up?

Patient 2

Summary

Principal Component Analysis (PCA) is a super useful method for analyzing large datasets. This is used to reduce the dimensions that you are measuring. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.