

# R Programming for Quantitative Finance

Guy Yollin

Applied Mathematics University of Washington

#### Outline

- R language overview and history
- R language references
- Short R Tutorial
- 4 The R help system
- Web resources for R
- 6 IDE editors for R

#### Lecture references



J. Adler.

R in a Nutshell: A Desktop Quick Reference. O'Reilly Media, 2010.

• Chapters 1-3



W. N. Venables and D. M. Smith. *An Introduction to R*. 2013.

• Sections 1-3

#### Outline

- R language overview and history
- 2 R language references
- Short R Tutorial
- The R help system
- Web resources for R
- 6 IDE editors for R

# The R programming language

- R is a language and environment for statistical computing and graphics
- R is based on the S language originally developed by John Chambers and colleagues at AT&T Bell Labs in the late 1970s and early 1980s
- R (sometimes called "GNU~S") is free open source software licensed under the GNU general public license (GPL 2)
- R development was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand in the 1990s
- R is formally known as The R Project for Statistical Computing
  - www.r-project.org

# Strengths of the R programming language

- Data manipulation
- Data analysis
- Statistical modeling
- Data visualization



Plot from the  $PerformanceAnalytics\ package$ 

# S language implementations

R is the most recent and full-featured implementation of the S language

- Original S AT & T Bell Labs
- S-PLUS (S plus a GUI)
  - Statistical Sciences, Inc.†
  - Mathsoft, Inc.
  - Insightful, Inc.
  - Tibco, Inc.
- R The R Project for Statistical Computing



Figure from The History of S and R, John Chambers, 2006

<sup>&</sup>lt;sup>†</sup>Founded by UW Professor Doug Martin, CompFin Program Director

#### R timeline



# Recognition of software excellence

# Association for Computing Machinery

John Chambers received the 1998 ACM Software System Award

Dr. Chambers' work will forever alter the way people analyze, visualize, and manipulate data

#### American Statistical Association

Robert Gentleman and Ross Ihaka received the 2009 ASA Statistical Computing and Graphics Award

> In recognition for their work in initiating the R Project for Statistical Computing

#### Outline

- R language overview and history
- R language references
- Short R Tutorial
- 4 The R help system
- Web resources for R
- 6 IDE editors for R

#### Essential web resources

- An Introduction to R
  - W.N. Venables, D.M. Smith
  - R Development Core Team



- R Reference Card 2.0
  - Baggott & Short



#### Introductory texts

- R in a Nutshell: A Desktop Quick Reference
  - Joseph Adler
  - O'Reilly Media, 2009



- A Beginner's Guide to R
  - Zuur, Ieno, Meesters
  - Springer, 2009



#### Introductory texts

- R in Action
  - Robert Kabacoff
  - Manning Publications, 2011



- The Art of R Programming
  - Norman Matloff
  - No Starch Press, 2011



#### Statistics with R

- Introductory Statistics with R 2nd Edition
  - P. Dalgaard
  - Springer, 2008



- Modern Applied Statistics with S, 4th Edition
  - Venables and Ripley
  - Springer, 2002



#### Experience with other statistical computing languages

For those with experience in MATLAB, David Hiebeler has created a MATLAB/R cross reference document:

http://www.math.umaine.edu/~hiebeler/comp/matlabR.pdf

For those with experience in SAS, SPSS, or Stata, Robert Muenchen has written R books for this audience:

http://r4stats.com

#### Outline

- R language overview and history
- 2 R language references
- Short R Tutorial
- 4 The R help system
- Web resources for R
- 6 IDE editors for R

# Interacting with R

#### R is an interpreted language<sup>†</sup>

- An R interpreter must be running in order to evaluate R commands or execute R scripts
  - RGui which includes an R Console window
  - RStudio which includes an R Console window



<sup>†</sup>http://en.wikipedia.org/wiki/Interpreted\_language

#### R expression evaluation

R expressions are processed via R's Read-eval-print loop †:

#### The Read-Evaluate-Print Loop (REPL) for R



<sup>†</sup>http://en.wikipedia.org/wiki/Read-eval-print\_loop

# Interacting with the RGui

The RGui is an *interactive* command driven *environment*:

- Type R commands (expressions) into the R Console
- Copy/Paste multiple R commands into the R Console
- Source an R script
  - An R script is simply a text file of multiple R commands



Commands entered interactively into the R console

#### Interacting with RStudio

# The RStudio is an *Integrated Development Environment (IDE)* R:

- Embedded R Console
  - RStudio runs an R interpreter automatically
- Program editor for R
- Plot window
- File browser
- Integrated version control
- R debugger



RStudio includes an embedded R Console

#### Calling functions

#### R makes extensive use of functions<sup>†</sup>

- Functions can be defined to take zero or more arguments
- Functions typically return a value
  - a return value is not required
- Functions are called by name with any arguments enclosed in parentheses
  - even if the function has no arguments the parentheses are required

```
sin(pi/2)
## [1] 1
print("Hello, world")
## [1] "Hello, world"
abs(-8)
## [1] 8
cos(2*sqrt(2))
## [1] -0.95136313
date()
## [1] "Sun Aug 31 17:08:42 2014"
```

 $<sup>^\</sup>dagger$ http://en.wikipedia.org/wiki/Functional\_programming

#### Assigning values to variables

Like other programming languages, values can be stored in variables

- Variables are typically assigned in 1 of 3 ways:
  - assignment operator: <-</li>
  - assignment function: assign
  - equal sign: =
    - must be used to assign arguments in a function call

```
v <- 5
## [1] 5
assign("e", 2.7183)
## [1] 2.7183
s = sqrt(2)
## [1] 1.4142136
r <- rnorm(n=2)
## [1] -1.0067110533 -0.0020828847
s*e+y
## [1] 8.8442567
```

# Object orientation in R

#### Everything in R is an Object<sup>†</sup>

 Use functions 1s and objects to list all objects in the current workspace

```
x <- c(3.1416,2.7183)
m <- matrix(rnorm(9),nrow=3)
tab <- data.frame(store=c("downtown","eastside","airport"),sales=c(32,17,24))
cities <- c("Seattle","Portland","San Francisco")
ls()
## [1] "cities" "e" "filename" "m" "r" "s"
## [7] "tab" "x" "y"</pre>
```

<sup>†</sup>http://en.wikipedia.org/wiki/Object-oriented\_programming

### Object classes

#### All R objects have a class

The class of an object determines what it can do and what you can do with it

- Use function class to display an object's class
- There are many R classes; basic classes are:
  - numeric
  - character
  - data.frame
  - matrix

```
[,1]
                       [.2]
                                 [.3]
  [1,]
      0.374352397 0.586864810 -0.73778598
  [2,]
      -0.071532765 -0.262264339 -0.19904931
  [3.]
       class(m)
## [1] "matrix"
tab
      store sales
  1 downtown
             32
  2 eastside
             17
## 3
    airport
             24
class(tab)
  [1] "data.frame"
```

#### Vectors

R is a vector/matrix programming language (also know as an array programming language $^{\dagger}$ )

- vectors can easily be created with c, the combine function
- most places where single value can be supplied, a vector can be supplied and R will perform a vectorized operation

```
my.vector <- c(2, 4, 3, 7, 10)
my.vector

## [1] 2 4 3 7 10

my.vector^2

## [1] 4 16 9 49 100

sqrt(my.vector)

## [1] 1.4142136 2.0000000 1.7320508 2.6457513 3.1622777</pre>
```

<sup>†</sup>http://en.wikipedia.org/wiki/Array\_programming

# Creating vectors with the c function

```
constants \leftarrow c(3.1416,2.7183,1.4142,1.6180)
constants
## [1] 3.1416 2.7183 1.4142 1.6180
my.labels <- c("pi","euler","sqrt2","golden")</pre>
my.labels
## [1] "pi" "euler" "sqrt2" "golden"
names(constants) <- my.labels</pre>
constants
## pi euler sqrt2 golden
## 3.1416 2.7183 1.4142 1.6180
```

- The [1] in the above output is labeling the first element of the vector
- The c function can be used to create character vectors, numeric vectors, as well as other types of vectors

#### Indexing vectors

Vectors indices are placed with square brackets: []

Vectors can be indexed in any of the following ways:

- vector of positive integers
- vector of negative integers
- vector of named items
- logical vector

```
constants[c(1,3,4)]
      pi sqrt2 golden
## 3.1416 1.4142 1.6180
constants[c(-1,-2)]
## sqrt2 golden
## 1.4142 1.6180
constants[c("pi", "golden")]
      pi golden
## 3.1416 1.6180
constants > 2
       pi euler sqrt2 golden
     TRUE
            TRUE FALSE FALSE
constants[constants > 2]
      pi euler
## 3.1416 2.7183
```

# Creating integer sequences with the a:b operator

The sequence operator will generate a vector of integers between a and b Sequences of this type are particularly useful for indexing vectors, matrices, data.frames etc.

```
1:5
## [1] 1 2 3 4 5
-(1:4)
## [1] -1 -2 -3 -4
letters[1:15]
   [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"
letters[16:26]
   [1] "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
letters[-(1:15)]
  [1] "p" "a" "r" "s" "t" "u" "v" "w" "x" "v" "z"
```

### Comparing vector and non-vector computing

```
# vectorized operation
# taking the log of each element in a vector
x \leftarrow c(97.87, 96.18, 95, 86.39, 88.18, 90.8, 86.06, 82.27, 83.32, 85.3, 83.25, 82.13, 78.54)
log(x)
    [1] 4.5836401 4.5662214 4.5538769 4.4588719 4.4793802 4.5086593 4.4550447
##
##
    [8] 4.4100065 4.4226886 4.4461745 4.4218481 4.4083034 4.3636080
# non-vectorized computation
# taking the log of each element in a vector
n <- length(x)
y \leftarrow rep(0,n)
for( i in 1:n )
  y[i] \leftarrow log(x[i])
У
    [1] 4.5836401 4.5662214 4.5538769 4.4588719 4.4793802 4.5086593 4.4550447
##
    [8] 4.4100065 4.4226886 4.4461745 4.4218481 4.4083034 4.3636080
##
```

# Comparing vector and non-vector computing

```
# vectorized operation
# taking the log of each element in a matrix
x \leftarrow matrix(c(2,9,4,7,5,3,6,1,8),nrow=3)
x^2
## [,1] [,2] [,3]
## [1.] 4 49 36
## [2,] 81 25 1
## [3,] 16 9 64
# non-vectorized computation
# taking the log of each element in a matrix
v <- x
for( i in 1:nrow(x) )
 for( j in 1:ncol(x) )
   y[i,j] \leftarrow x[i,j]^2
у
## [,1] [,2] [,3]
## [1,] 4 49 36
## [2,] 81 25 1
## [3.] 16 9 64
```

#### Outline

- R language overview and history
- 2 R language references
- Short R Tutorial
- 4 The R help system
- Web resources for R
- 6 IDE editors for R

# The HTML help system

# R has a comprehensive Html help facility

- Run the help.start function
- R GUI menu item Help|Html help



```
help.start()
## If nothing happens, you should open
## 'http://127.0.0.1:28913/doc/html/index.html' yourself
```

#### The help function

#### Obtain help on a particular topic via the help function

- help(topic)
- ?topic

```
help(read.table)
```



#### The help.search function

Search help for a particular topic via the help.search function

- help.search(topic)
- ??topic

??predict



### Help tab in RStudio

RStudio incorporates a dedicated help tab which facilitates accessing the R Html help system



#### Outline

- R language overview and history
- 2 R language references
- Short R Tutorial
- 4 The R help system
- Web resources for R
- 6 IDE editors for R

## R Homepage

#### http://www.r-project.org

- List of CRAN mirror sites
- Manuals
- FAQs
- Site seach
- Mailing lists
- Links



## CRAN - Comprehensive R Archive Network

#### http://cran.fhcrc.org

- CRAN Mirrors
  - About 45 countries
  - About 100 sites worldwide
  - About 15 sites in US
- R Binaries
- R Packages
  - 5800+ packages
- R Sources
- Task Views



#### CRAN Task Views

# Organizes the 5800+ R packages by application

- Finance
- Time Series
- Econometrics
- Optimization
- Machine Learning



#### Stackoverflow

Stackoverflow has become the primary resource for help with R



http://stackoverflow.com/

### R-SIG-FINANCE

- Nerve center of the R finance community
- Daily must read
- Exclusively for Finance-specific questions, not general R questions



https://stat.ethz.ch/mailman/listinfo/r-sig-finance

## Google's R Style Guide

- Naming convention
- Coding Syntax
- Program Organization



http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

## Quick R

#### http://www.statmethods.net

#### Introductory R Lessons

- R Interface
- Data Input
- Data Management
- Basic Statistics
- Advanced Statistics
- Basic Graphs
- Advanced Graphs



## R graphics details, colors, and other tech notes

#### Site of Earl Glynn of Stowers Institute for Medical Research

- R Graphics and other useful information
  - R Color Chart
  - Using Color in R (great presentation)
  - Plot area, margins, multiple figures
  - Mixture models
  - Distance measures and clustering
  - Using Windows Explorer to Start R with Specified Working Directory (under tech notes)

http://research.stowers-institute.org/efg/R/index.htm

## Programming in R

Online R programming manual from UC Riverside:

- R Basics
- Finding Help
- Code Editors for R
- Control Structures
- Functions
- Object Oriented Programming
- Building R Packages

http://manuals.bioinformatics.ucr.edu/home/programming-in-r

#### Other useful R sites

R Bloggers

Aggregation of about 550 R blogs

http://www.r-bloggers.com

R Site Search

Search R function help, vignettes, R-help

http://finzi.psych.upenn.edu/search.html

R Seek

R specific search site

http://www.rseek.org/

Revolution Blog

Blog from David Smith of Revolution

http://blog.revolutionanalytics.com

Inside-R

R community site by Revolution Analytics

http://www.inside-r.org

## Outline

- R language overview and history
- R language references
- Short R Tutorial
- 4 The R help system
- Web resources for R
- 6 IDE editors for R

#### **RStudio**

## RStudio is a fully-featured open-source IDE for R

- R language highlighting
- Paste/Source to R console
- object explorer
- tabbed graphics window
- integrated version control
- 1-click kintr/Sweave compilation



RStudio also provides a server-based version (R running in the cloud)

## Revolution R Enterprize Visual Development Environment

Revolution Analytics is a company that sells a commercial distribution of R including a desktop IDE

Revolution R Enterprize is *free* to academic users

- R language highlighting
- Paste/Source code to R
- Source code debugger
- object explorer
- runs R in SDI mode

http://www.revolutionanalytics.com



#### WinEdt and R-Sweave

Based on WinEdt, an excellent shareware editor with support for LATEX and Sweave development

- R language highlighting
- Paste/Source code to R
- 1-click Sweave compilation
- Supports R in MDI mode
- Paste/Source code to S-PLUS

```
R-WinEdt - [C:\Rprojects\blotterVECM\blotterVECM-2f.R]
                                                                                       _ | D | X
He Edit Format Search Insert Tools Options Window Help R
                                                                                       _ & X
0 2 3 3 0 0 0 M D R- R- R- R 2
updatePackages,R blotterVECM-2f.R
trv(rm(list=ls(envir=.blotter).envir=.blotter).silent=T)
try(zm(list=ls(envir=.instrument),envir=.instrument),silent=T)
Library (quantmod)
library (TTR)
library (blotter)
library (PerformanceAnalytics)
library (zee)
library (xts)
library (dyn)
proj.dir = paste(R.proj, "blotterVECM", sep="\\")
setwd(proj.dir)
source("residualCointTest.r")
graphics.off()
windows (height=8, width=10)
starting.date = '2002-01-10'
ending.date = '2009-12-31'
kInitialEquity = 1e7
kTradeSize = kInitialEquity/10
kWindowSize = 60
kExtremeHigh = 0.90
kThresholdHigh = 0.50
kThresholdLow = 0.50
kExtremeLow = 0.10
kMinTstat = -1.5
kMinFV = 1.0
# setup account, portfolio, and pair, and data
pair.list = list(c("LLTC", "ADI"), c("XLNX", "ADI"), c("ALTR", "ADI"), c("LLTC", "ALTR"), c("X
pair, vec = unlist(lapply(X=pair,list, FUN = function(x) paste(x,collapse="")))
                                   Wrap Indent INS LINE Spell
```

http://www.winedt.com

http://www.winedt.org/Config/modes/R-Sweave.php

## StatET - An Eclipse Plug-In for R

StatET is a plug-in for the open-source Eclipse development environment

- R language highlighting
- Paste/Source code to R
- Source code debugger
- 1-click Sweave compilation
- Supports R in SDI mode
- Excellent documentation by Longhow Lam



http://www.walware.de/goto/statet

## Notepad++ and NpptoR

NpptoR is an automation widget (based on AuotHotkey) which allows the very useful program editor Notepad++ to interact with R

- R language highlighting
- Paste/Source code to R
- Supports R in SDI mode

```
C:\Rprojects\UW\downloadYahoo\script01.R - Notepad++
   Edit Search View Encoding Language Settings Macro Run TextFX Plugins Window 2
    SDAFE-packages to | DESCRIPTION | script1R
       setud(paste(R.proj, "UN\\PCA", sep="\\"))
      ibm <- get.hist.guote(instrument="IBM",guote="A",start="2010-01-01",guiet=T)
      hpg <- get.hist.guote(instrument="HPO",guote="A",start="2010-01-01",guiet=T)
      nsft <- get.hist.guote(instrument="MSFT",guote="A",start="2010-01-01",guiet=")
       intc <- get.hist.guote(instrument="INTC",guote="A",start="2010-01-01",guiet=T)
       dat <- merge (ibm, hpg, msft, intc)
      colnames (dat) <- c("IBM", "HPO", "MSFT", "INTC")
      write.zoo(x=dat,file="ibmhpq.txt")
 13 m (dat)
      prices <- read.zoo(file="ibmhpq.txt",header=T)
      returns <- 100*diff(log(prices))
      pca.mod <- proomp(returns,center=T,scale. = F)
```

```
http://notepad-plus-plus.org
http://sourceforge.net/projects/npptor
```



http://depts.washington.edu/compfin