

Hierarchical Temporal Memory. jl A short δ from paper to code

Konstantinos Samaras-Tsakiris

https://github.com/oblynx/HierarchicalTemporalMemory.jl

HierarchicalTemporalMemory

an algorithmic model to understand the human brain

HierarchicalTemporalMemory.jl

Julia package for model research and time series prediction

Make the HTM algorithms accessible with 475 lines of Julia

Experiments from the literature are reproduced to demonstrate correctness

A biologically constrained neural network...

Why all the fuss?

HTM aims first to model the brain and secondly to machine learning applications. This package similarly targets research on the model itself first and applications secondly.

HTM theory is not yet complete, lacking a definitive way to stabilize sequence representations and compose small models. Exactly for this reason, we believe that a concise and high level model can accelerate the research.

As a computational neuroscience research direction, the path should be explored between lower-level brain models (like [4]) that make fewer assumptions than HTM.

*(z::BitVector,W::SparseMatrixCSC)= Vector(z)*W *(z::Adjoint{Bool,BitVector},W::SparseMatrixCSC)= Vector(z.parent)'W *(W::Adjoint{<:Any,<:SparseMatrixCSC},z::BitVector)= W*Vector(z) *(W::SparseMatrixCSC,z::BitVector)= W*Vector(z)

A short δ ...

How do the proximal and distal synapses activate the neurons?

> The definitions from [1],[3], made in Julia:

 $o_i = b_i \sum W_{ij} z_j$ $a_i = ((o_i \geq Z(V_i, k)) \land (o_i \geq \theta_{stim}))$ $o(z) = @> (b(sp) .* (W \square (sp)'*(z|>vec)))$ reshape(sz□□) $\alpha(o) = o \cdot + tiebreaker(o, Z(o)) \cdot >=$

@>Z(o) max. $(\theta_stimulus_activate)$

 $a_{ij}^t = (j \in C^t) \land (\pi_{ij}^{t-1} = 1 \lor \sum \pi_{ij}^{t-1} = 0)$ predicted(c, Π)= @percolumn(&, Π ,c, k)

burst(c, Π)= c .& .!@percolumn(any, Π , k) # No $activate(c,\Pi) = (predicted(c,\Pi) \cdot | burst(c,\Pi)') | > vec$ nacro percolumn(f,a,b,k) esc(:(\$f.(reshape(\$a,\$k,:), \$b'))) macro percolumn(reduce,a,k) (\$reduce(reshape(\$a,\$k,:),dims=1)|> vec))

Characteristics

Next steps...

- Reproduce time series prediction experiments
 - Test & better docs Contributions welcome!
 - Implement sensorimotor inference
 - Explore temporal pooling and model composition

References

- C Yuwei, A Subutai, H Jeff. "The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding"
- J Hawkins, S Ahmad. "Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex"
- Y Cui, S Ahmad, J Hawkins. "Continuous Online Sequence Learning with an Unsupervised Neural Network Model"
- [4] H Markram et al. "Reconstruction and Simulation of Neocortical Microcircuitry".