Statistical Analysis and Document Mining Preliminaries 1

- Random vectors
- Gaussian vectors
- Probabilistic foundations of regression

Random vectors

Random vector in
$$\mathbb{R}^n$$
: $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} = (X_1, \dots, X_n)^T$, where the X_i 's

are real random variables.

Expectation :
$$E[X] = \begin{pmatrix} E[X_1] \\ \vdots \\ E[X_n] \end{pmatrix}$$

Covariance matrix :
$$K_X = \begin{pmatrix} k_{11} & \dots & k_{1n} \\ \vdots & & \vdots \\ k_{n1} & \dots & k_{nn} \end{pmatrix}$$

where $k_{ij} = Cov(X_i, X_j) = E[X_i X_j] - E[X_i]E[X_j]$. $k_{ii} = Var(X_i)$.

Linear transformation of a random vector : AX + b, where A is a deterministic $m \times n$ matrix and b is a deterministic vector in \mathbb{R}^m .

- Expectation : E[AX + b] = AE[X] + b
- Covariance matrix : $K_{AX+b} = K_{AX} = AK_XA^T$

Quadratic form of a random vector : X^TAX , where A is a deterministic $n \times n$ matrix.

• Expectation : $E[X^TAX] = E[X]^TAE[X] + trace(AK_X)$

where $trace(A) = \sum_{i=1}^{n} a_{ii}$, sum of the diagonal elements.

Distribution of X

Discrete case : Probability

$$\forall x = (x_1, \dots, x_n)^T \in \mathbb{R}^n, \ P(X = x) = P(X_1 = x_1, \dots, X_n = x_n)$$

• Continuous case : Density $f_X(x) = f_{(X_1,...,X_n)}(x_1,...,x_n)$

$$\forall B \in \mathcal{B}(\mathbb{R}^n), \ P(X \in B) = \int_B f_X(x) dx$$

Marginal distribution :

$$f_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} f_X(x_1, \dots, x_n) dx_1, \dots dx_{i-1} dx_{i+1} \dots dx_n$$

Independence

If the components X_i of X are independent, we have :

- Discrete case : $P(X = x) = \prod_{i=1}^{n} P(X_i = x_i)$.
- Continuous case : $f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)$.

If $X_1, \ldots X_n$ are independent, for all functions $g_1, \ldots g_n$,

$$E\left[\prod_{i=1}^n g_i(X_i)\right] = \prod_{i=1}^n E\left[g_i(X_i)\right]$$

If X and Y are independent real random variables, Cov(X, Y) = 0. But the converse is false.

If the components of a random vector X are independent, the covariance matrix K_X is diagonal.

A random vector $X = (X_1, \dots, X_n)^T$ is a **Gaussian vector** iff every linear combination of its components $\sum_{i=1}^n a_i X_i$ has a normal distribution.

X is said to have a normal distribution $\mathcal{N}_n(\mu, \Sigma)$ or $\mathcal{N}(\mu, \Sigma)$, where $\mu = E[X] \in \mathbb{R}^n$ and $\Sigma = K_X \in \mathbb{R}^{n \times n}$.

The density of X is :

$$f_X(x) = \frac{1}{(2\pi)^{n/2}\sqrt{\det\Sigma}} \exp\left[-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right]$$

Properties of Gaussian vectors

- For Gaussian vectors, independence and uncorrelation (covariance zero) are equivalent.
- Each sub-vector of a Gaussian vector is still a Gaussian vector.
- If $X \sim \mathcal{N}(\mu, \Sigma)$, $AX + b \sim \mathcal{N}(A\mu + b, A\Sigma A^T)$.
- $X \sim \mathcal{N}(\mu, \Sigma)$ iff there exists A such that $X = AZ + \mu$, where the components of Z are iid $\mathcal{N}(0, 1)$ and $\Sigma = AA^T$.
- If $X \sim \mathcal{N}_n(\mu, \sigma^2 Id)$, $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \mu_i)^2 = \frac{1}{\sigma^2} \|X \mu\|^2$ has the χ_n^2 distribution.

Spectral representation of Gaussian vectors

There exists an orthogonal matrix U ($UU^T = U^TU = Id$) such that $K_X = U\Lambda U^T$, where :

- \bullet Λ is the diagonal matrix made of the eigenvalues of K_X .
- The columns of U are the eigenvectors of K_X .

If $X \sim \mathcal{N}(\mu, \Sigma)$, $\Sigma = U \Lambda U^T$, then $Y = U^T (X - \mu) \sim \mathcal{N}(0, \Lambda)$. It means that any Gaussian vector can be linearly transformed in a Gaussian vector with centered and independent components.

The equidensity contours of a multivariate normal distribution are ellipsoids centered at the mean. The directions of the principal axes of the ellipsoids are given by the eigenvectors of Σ .

Example, bivariate normal distribution

Density and equidensity contours of a bivariate normal distribution

Probabilistic foundations of regression

X and Y: two real random variables.

If X and Y are dependent, it is logical to use the observed value x of X in order to predict the value of Y.

 \implies we look for a function φ such that $\hat{Y} = \varphi(X)$ is "as close as possible" to Y.

Probabilistic foundations of regression

X and Y: two real random variables.

If X and Y are dependent, it is logical to use the observed value x of X in order to predict the value of Y.

 \implies we look for a function φ such that $\hat{Y}=\varphi(X)$ is "as close as possible" to Y.

Criteria

- $E[Y \varphi(X)] = 0.$
- $Var[Y \varphi(X)]$ is minimal.

Best prediction of Y given X

X and Y are assumed to belong to $L^2=\left\{X; E[X^2]<+\infty
ight\}.$

Scalar product in
$$L^2: \langle X, Y \rangle = E[XY]$$
.
Associated norm: $\|X\|^2 = E[X^2]$. $Var[X] = \|X - E[X]\|^2$

The best approximation of a random variable X by a constant is the orthogonal projection of X on the space of constant random variables.

Best prediction of Y given X

X and Y are assumed to belong to $L^2=\left\{X; E[X^2]<+\infty
ight\}.$

Scalar product in
$$L^2: \langle X, Y \rangle = E[XY]$$
.
Associated norm: $\|X\|^2 = E[X^2]$. $Var[X] = \|X - E[X]\|^2$

The best approximation of a random variable X by a constant is the orthogonal projection of X on the space of constant random variables. This best approximation is E[X].

Best prediction of Y given X

X and Y are assumed to belong to $L^2 = \{X; E[X^2] < +\infty\}$.

Scalar product in
$$L^2: \langle X, Y \rangle = E[XY]$$
.
Associated norm: $\|X\|^2 = E[X^2]$. $Var[X] = \|X - E[X]\|^2$

The best approximation of a random variable X by a constant is the orthogonal projection of X on the space of constant random variables. This best approximation is E[X].

Let
$$L_X^2 = \{ \varphi(X); \varphi : \mathbb{R} \to \mathbb{R} \}.$$

The best prediction of Y given X is the orthogonal projection of Y on L_X^2 . This best prediction is E[Y|X].

Useful results on the conditional expectation

Law of total expectation

$$E[Y] = E[E[Y|X]]$$

Pythagorean theorem

$$||Y - E[Y]||^2 = ||Y - E[Y|X]||^2 + ||E[Y|X] - E[Y]||^2$$

Law of total variance

$$V[Y] = E[Var[Y|X]] + Var[E[Y|X]]$$

Best affine prediction of Y given X

Affine prediction : $\hat{Y} = \beta_1 X + \beta_0$.

Best affine prediction of Y given X

Affine prediction : $\hat{Y} = \beta_1 X + \beta_0$.

The best affine prediction of Y given X is

$$\hat{Y} = E[Y] + \frac{Cov(X, Y)}{Var(X)}[X - E[X]]$$

