Useful Formulas 1

1.1 General

• Arithmetic Series: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

• Geometric Series: $\begin{cases} \sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a}, \ \forall a \in \mathbb{R} \\ \sum_{i=0}^{\infty} a^{i} = \frac{1}{1 - a}, \ \forall |a| < 1 \end{cases}$ • Integration by Parts: $\int_{a}^{b} f(x)g'(x)dx = [a]$

• Binomial Thm: $\begin{cases} (x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i} \\ \forall x, y \in \mathbb{R} & n \in \mathbb{N} \end{cases}$

• Exponential Fn: $\sum_{i=0}^{\infty} \frac{a^i}{i!} = e^a$, $\forall a \in \mathbb{R}$

• Gamma Fn: $\begin{cases} \Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx, \ a > 0 \\ \Gamma(n) = (n-1)!, \ n \in \mathbb{N} \end{cases}$

1.2**Probability**

• Law of Total Probability: \forall partition $\{A_i\}_{i=1}^n$

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i)$$

• Bayes Rule: \forall partition $\{A_i\}_{i=1}^n$

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

• Multiplication Rule: $P\left(\bigcap_{i=1}^{n} A_i\right) =$

$$P(A_1)P(A_2|A_1) \times \cdots \times P(A_n|A_1,\ldots,A_{n-1})$$

• Inclusion-Exclusion Principle:

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_j)$$

$$\vdots$$

$$+ (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$$

Calculus 1.3

• Change of Variables:

$$\int_{a}^{b} f(x)dx \stackrel{(x=h(u))}{=} \int_{h^{-1}(a)}^{h^{-1}(b)} f(h(u))h'(u)du$$

• Fundamental Theorem of Calculus:

$$F'(x) = f(x) \Rightarrow \int_{a}^{b} f(x)dx = F(b) - F(a)$$
$$F(x) = \int_{a}^{x} f(u)du \Rightarrow F'(x) = f(x)$$

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Multivariate Distributions

Marginal PDF

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$

• Conditional PDF

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• 2D PDF method, for $(Z, W) = h(X, Y) \Leftrightarrow$

$$\Leftrightarrow (X,Y) = h^{-1}(Z,W)$$

$$f_{Z,W}(z,w) = \frac{f_{X,Y}(h^{-1}(z,w))}{|J(h^{-1}(z,w))|},$$

where
$$|J| = \begin{vmatrix} dz/dx & dz/dy \\ dw/dx & dw/dy \end{vmatrix}$$

• Convolution method, for Z = X + Y

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(x, z - x) dx$$

• Order Statistics, for $X_i \sim^{iid} F(x)$

$$P(X_{(i)} \le x) = \sum_{k=i}^{n} \binom{n}{k} [F(x)]^{k} [1 - F(x)]^{n-k}$$

Expectations

 \bullet Mean of Cont./Discr. RV X

$$E(X) = \mu = \int_{-\infty}^{\infty} x f_X(x) dx / = \sum_{x} x p_X(x)$$

• Mean of function h of RV X

$$E(h(X)) = \int_{-\infty}^{\infty} h(x) f_X(x) dx / = \sum_{x} h(x) p_X(x)$$

• Variance of RV

$$V(X) = \sigma^2 = E[(X - \mu)^2] = E(X^2) - [E(X)]^2$$

• Moment Generating Function of RV X $m_X(t) = E(e^{tX})$ $E(X^k) = m_X^{(k)}(0)$

• Covariance of two RVs Cov(X,Y) = E(XY) - E(X)E(Y)

• Expectation of Linear Function of RVs

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E(X_i)$$

• Variance of Linear Function of RVs

$$V\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 V(X_i) + 2 \sum_{1 \le i < j \le n} a_i a_j Cov(X_i, X_j)$$

 \bullet Law of Total Expectation/Variance

$$E(X) = E(E(X|Y))$$

$$V(X) = E(V(X|Y)) + V(E(X|Y))$$

1.6 Inequalities

- Markov Inequality, for X > 0 $P(X \ge a) \le E(X)/a$
- Chebyshev Inequality $P(|X \mu| \ge a) \le V(X)/a^2$
- Cauchy-Schwarz Inequality $(E(XY))^2 \le E(X^2)E(Y^2)$
- Jensen Inequality, for convex $g(\cdot)$ $E(g(X)) \ge g(E(X))$

1.7 Limit Theorems

- Weak Law of Large Numbers for i.i.d. X_i $(X_1 + \dots + X_n)/n = \bar{X}_n \to^P \mu$
- Central Limit Theorem for i.i.d. X_i $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \to^D N(0, 1)$

1.8 Important Distributions

Name	PMF/PDF	CDF	Mean	Variance	MGF
Discrete Distributions					
$\boxed{\text{Binomial}(n,p)}$	$ \begin{pmatrix} \binom{n}{x} p^x (1-p)^{n-x} \\ x = 0, \dots, n \end{pmatrix} $		np	np(1-p)	$(1 - p + pe^t)^n$
Geometric (p) $(\# \text{ trials})$	$\begin{vmatrix} p(1-p)^{x-1} \\ x = 1, \dots, \infty \end{vmatrix}$	$1-(1-p)^x$	1/p	$(1-p)/p^2$	$\begin{vmatrix} \frac{pe^t}{1 - (1 - p)e^t} \\ t < -\ln(1 - p) \end{vmatrix}$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!$ $x = 0, \dots, \infty$		λ	λ	$\exp\{\lambda(e^t - 1)\}$
$\boxed{ \text{NegBinom}(r, p) }$			r/p	$r(1-p)/p^2$	$ \left(\frac{pe^t}{1 - (1 - p)e^t} \right)^r $ $ t < -\ln(1 - p) $
HyperGeom $(n, M, N,)$	$\binom{M}{x} \binom{N-M}{n-x} / \binom{N}{n}$ $x = 0, \dots, n, \ x \le M,$ $x \ge n - N + M$		nM/N	$n\frac{M}{N}\frac{(N-M)}{N}\frac{(N-n)}{(N-1)}$	
Continuous Distributions					
Uniform (ℓ, u)	$1/(u-\ell), \ x \in [\ell, u]$	$\frac{x-\ell}{u-\ell}$	$\frac{u+\ell}{2}$	$\frac{(u-\ell)^2}{12}$	$\frac{e^{tu} - e^{t\ell}}{t(u - \ell)}$
Exponential(λ)	$\lambda e^{-\lambda x}, \ x \ge 0$	$1 - e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda - t}, \ t < \lambda$
$Normal(\mu, \sigma^2)$	$\begin{vmatrix} \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\} \\ x \in \mathbb{R} \end{vmatrix}$		μ	σ^2	$\exp\{\mu t + \frac{1}{2}\sigma^2 t^2\}$
$\overline{\mathrm{Gamma}(a,\lambda)}$	$\frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x}, x \ge 0$		a/λ	a/λ^2	$\left(\frac{\lambda}{\lambda - t}\right)^a, \ t < \lambda$